pax_global_header00006660000000000000000000000064145612712000014510gustar00rootroot0000000000000052 comment=789adda169bbff5d2c2eeb56ddf1840f04fc75e6 statistics-release-1.6.3/000077500000000000000000000000001456127120000153275ustar00rootroot00000000000000statistics-release-1.6.3/CONTRIBUTING.md000066400000000000000000000126421456127120000175650ustar00rootroot00000000000000# Contribution Guidelines #### 1. License and Documentation The **statistics** package is distributed under [GNU General Public License (GPL)](https://www.gnu.org/licenses/gpl-3.0.en.html) with few minor exceptions. Some functions are in the Public Domain. If you are submitting a few function, it should be licensed under GPLv3+ with the following header (use appropriate year, name, etc.) as shown below: ``` ## Copyright (C) 2022 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or ## (at your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, ## see . ``` New functions should be properly documented with the embedded help file in [Texinfo](https://www.gnu.org/software/texinfo/) format. This part should be placed outside (before) the function's main body and after the License block. The Texinfo manual can be found [here](https://www.gnu.org/software/texinfo/manual/texinfo/) although reading through existing function files should do the trick. ``` ## -*- texinfo -*- ## @deftypefn {Function File} @var{p} = anova1 (@var{x}) ## ## Help file goes here. ## ## @end deftypefn ``` **Note:** the texinfo is not printed on the command window screen as it appears in the source file. Type e.g. `help anova1` to display the help document in `anova1` function in order to review it. #### 2. Demos Although examples of using a function can go into the help documentation, it is always useful to have example embedded as demos, which the user can invoke with the `demo` command. ``` e.g. >> demo anova1 ``` These should go at the end of the file after the function or any other helper functions that might be present in the file. A small demo sample is shown below. ``` %!demo %! x = meshgrid (1:6); %! x = x + normrnd (0, 1, 6, 6); %! anova1 (x, [], 'off'); ``` Note: demos can also contain comments which are printed when a demo is ran and may be very useful for the user to understand the function's usage. Embed comments in the usual manner after the `%!` starting characters in each line. For example: ``` %!demo %! x = [46 64 83 105 123 150 150]; %! c = [0 0 0 0 0 0 1]; %! f = [1 1 1 1 1 1 4]; %! ## Subtract 30.92 from x to simulate a 3 parameter wbl with gamma = 30.92 %! wblplot (x - 30.92, c, f, 0.05); ``` #### 3. BISTs (testing suite) It is also **very important** that function files contain a testing suite that will test for correct output, properly catching errors etc. BISTs should go at the bottom the file using `%!` starting characters. An example of such a testing suite is shown below. ``` %!error chi2gof () %!error chi2gof ([2,3;3,4]) %!error chi2gof ([1,2,3,4], "nbins", 3, "ctrs", [2,3,4]) %!error chi2gof ([1,2,3,4], "expected", [3,2,2], "nbins", 5) %!test %! x = [1 2 1 3 2 4 3 2 4 3 2 2]; %! [h, p, stats] = chi2gof (x); %! assert (h, 0); %! assert (p, NaN); %! assert (stats.chi2stat, 0.1205375022748029, 1e-14); ``` It is best practice to append tests during development, since it will save time debugging and it will certainly help catching marginal errors that would otherwise have quickly come back as bug reports. It also **important** appending tests when fixing a bug or implementing some new functionality into an existing function. Please, add BISTs, they help a lot with the maintenance :wink::innocent: of the statistics package. There is not such as a thing as too many tests in a function. :metal::v: #### 4. Coding style The coding style of GNU Octave should be used. In general, limit the lines at 80 characters long. - Use `LF` (unix) for end of lines, and NOT `CRLF` (windows). - Use `##` for comments. Don't use `%` or `%%` as in Matlab. - Use `!` instead of `~` for logical NOT. ``` a != 0; b(! isnnan (a)) = []; ``` - **Don't use tabs!** Indent the bodies of statement blocks with 2 spaces. - When calling functions, put spaces after commas and before the calling parentheses, as shown below: ``` x = max (sin (y+3), 2); ``` - An exception are matrix or cell constructors. ``` >> a = [sin(x), cos(x)]; >> b = {sin(x), cos)x)}; ``` **Note:** spaces in the above example would result in a parse error! - For an indexing expression, do not put a space after the identifier (this differentiates indexing and function calls nicely). - When indexing, the space after a comma is not necessary if index expressions are simple, but add a space for complex expressions as shown below: ``` A(:,i,j) A([1:i-1; i+1:n] ``` - Always use a specific end-of-block statement (like endif, endswitch) rather than the generic end. - Enclose the if, while, until, and switch conditions in parentheses. ``` if (isvector (a)) s = sum (a); endif ``` Do not do this, however, with the iteration counter portion of a for statement! ``` for i = 1:n b(i) = sum (a(:,1)); end ``` **That's about it all I suppose!** Just keep more or less consistent with what's in the other function files of the statistics packages and you should be fine :smile: statistics-release-1.6.3/COPYING000066400000000000000000001045121456127120000163650ustar00rootroot00000000000000 GNU GENERAL PUBLIC LICENSE Version 3, 29 June 2007 Copyright (C) 2007 Free Software Foundation, Inc. Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. Preamble The GNU General Public License is a free, copyleft license for software and other kinds of works. The licenses for most software and other practical works are designed to take away your freedom to share and change the works. By contrast, the GNU General Public License is intended to guarantee your freedom to share and change all versions of a program--to make sure it remains free software for all its users. We, the Free Software Foundation, use the GNU General Public License for most of our software; it applies also to any other work released this way by its authors. You can apply it to your programs, too. When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for them if you wish), that you receive source code or can get it if you want it, that you can change the software or use pieces of it in new free programs, and that you know you can do these things. To protect your rights, we need to prevent others from denying you these rights or asking you to surrender the rights. Therefore, you have certain responsibilities if you distribute copies of the software, or if you modify it: responsibilities to respect the freedom of others. For example, if you distribute copies of such a program, whether gratis or for a fee, you must pass on to the recipients the same freedoms that you received. You must make sure that they, too, receive or can get the source code. And you must show them these terms so they know their rights. Developers that use the GNU GPL protect your rights with two steps: (1) assert copyright on the software, and (2) offer you this License giving you legal permission to copy, distribute and/or modify it. For the developers' and authors' protection, the GPL clearly explains that there is no warranty for this free software. For both users' and authors' sake, the GPL requires that modified versions be marked as changed, so that their problems will not be attributed erroneously to authors of previous versions. Some devices are designed to deny users access to install or run modified versions of the software inside them, although the manufacturer can do so. This is fundamentally incompatible with the aim of protecting users' freedom to change the software. The systematic pattern of such abuse occurs in the area of products for individuals to use, which is precisely where it is most unacceptable. Therefore, we have designed this version of the GPL to prohibit the practice for those products. If such problems arise substantially in other domains, we stand ready to extend this provision to those domains in future versions of the GPL, as needed to protect the freedom of users. Finally, every program is threatened constantly by software patents. States should not allow patents to restrict development and use of software on general-purpose computers, but in those that do, we wish to avoid the special danger that patents applied to a free program could make it effectively proprietary. To prevent this, the GPL assures that patents cannot be used to render the program non-free. The precise terms and conditions for copying, distribution and modification follow. TERMS AND CONDITIONS 0. Definitions. "This License" refers to version 3 of the GNU General Public License. "Copyright" also means copyright-like laws that apply to other kinds of works, such as semiconductor masks. "The Program" refers to any copyrightable work licensed under this License. Each licensee is addressed as "you". "Licensees" and "recipients" may be individuals or organizations. To "modify" a work means to copy from or adapt all or part of the work in a fashion requiring copyright permission, other than the making of an exact copy. The resulting work is called a "modified version" of the earlier work or a work "based on" the earlier work. A "covered work" means either the unmodified Program or a work based on the Program. To "propagate" a work means to do anything with it that, without permission, would make you directly or secondarily liable for infringement under applicable copyright law, except executing it on a computer or modifying a private copy. Propagation includes copying, distribution (with or without modification), making available to the public, and in some countries other activities as well. To "convey" a work means any kind of propagation that enables other parties to make or receive copies. Mere interaction with a user through a computer network, with no transfer of a copy, is not conveying. An interactive user interface displays "Appropriate Legal Notices" to the extent that it includes a convenient and prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells the user that there is no warranty for the work (except to the extent that warranties are provided), that licensees may convey the work under this License, and how to view a copy of this License. If the interface presents a list of user commands or options, such as a menu, a prominent item in the list meets this criterion. 1. Source Code. The "source code" for a work means the preferred form of the work for making modifications to it. "Object code" means any non-source form of a work. A "Standard Interface" means an interface that either is an official standard defined by a recognized standards body, or, in the case of interfaces specified for a particular programming language, one that is widely used among developers working in that language. The "System Libraries" of an executable work include anything, other than the work as a whole, that (a) is included in the normal form of packaging a Major Component, but which is not part of that Major Component, and (b) serves only to enable use of the work with that Major Component, or to implement a Standard Interface for which an implementation is available to the public in source code form. A "Major Component", in this context, means a major essential component (kernel, window system, and so on) of the specific operating system (if any) on which the executable work runs, or a compiler used to produce the work, or an object code interpreter used to run it. The "Corresponding Source" for a work in object code form means all the source code needed to generate, install, and (for an executable work) run the object code and to modify the work, including scripts to control those activities. However, it does not include the work's System Libraries, or general-purpose tools or generally available free programs which are used unmodified in performing those activities but which are not part of the work. For example, Corresponding Source includes interface definition files associated with source files for the work, and the source code for shared libraries and dynamically linked subprograms that the work is specifically designed to require, such as by intimate data communication or control flow between those subprograms and other parts of the work. The Corresponding Source need not include anything that users can regenerate automatically from other parts of the Corresponding Source. The Corresponding Source for a work in source code form is that same work. 2. Basic Permissions. All rights granted under this License are granted for the term of copyright on the Program, and are irrevocable provided the stated conditions are met. This License explicitly affirms your unlimited permission to run the unmodified Program. The output from running a covered work is covered by this License only if the output, given its content, constitutes a covered work. This License acknowledges your rights of fair use or other equivalent, as provided by copyright law. You may make, run and propagate covered works that you do not convey, without conditions so long as your license otherwise remains in force. You may convey covered works to others for the sole purpose of having them make modifications exclusively for you, or provide you with facilities for running those works, provided that you comply with the terms of this License in conveying all material for which you do not control copyright. Those thus making or running the covered works for you must do so exclusively on your behalf, under your direction and control, on terms that prohibit them from making any copies of your copyrighted material outside their relationship with you. Conveying under any other circumstances is permitted solely under the conditions stated below. Sublicensing is not allowed; section 10 makes it unnecessary. 3. Protecting Users' Legal Rights From Anti-Circumvention Law. No covered work shall be deemed part of an effective technological measure under any applicable law fulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20 December 1996, or similar laws prohibiting or restricting circumvention of such measures. When you convey a covered work, you waive any legal power to forbid circumvention of technological measures to the extent such circumvention is effected by exercising rights under this License with respect to the covered work, and you disclaim any intention to limit operation or modification of the work as a means of enforcing, against the work's users, your or third parties' legal rights to forbid circumvention of technological measures. 4. Conveying Verbatim Copies. You may convey verbatim copies of the Program's source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice; keep intact all notices stating that this License and any non-permissive terms added in accord with section 7 apply to the code; keep intact all notices of the absence of any warranty; and give all recipients a copy of this License along with the Program. You may charge any price or no price for each copy that you convey, and you may offer support or warranty protection for a fee. 5. Conveying Modified Source Versions. You may convey a work based on the Program, or the modifications to produce it from the Program, in the form of source code under the terms of section 4, provided that you also meet all of these conditions: a) The work must carry prominent notices stating that you modified it, and giving a relevant date. b) The work must carry prominent notices stating that it is released under this License and any conditions added under section 7. This requirement modifies the requirement in section 4 to "keep intact all notices". c) You must license the entire work, as a whole, under this License to anyone who comes into possession of a copy. This License will therefore apply, along with any applicable section 7 additional terms, to the whole of the work, and all its parts, regardless of how they are packaged. This License gives no permission to license the work in any other way, but it does not invalidate such permission if you have separately received it. d) If the work has interactive user interfaces, each must display Appropriate Legal Notices; however, if the Program has interactive interfaces that do not display Appropriate Legal Notices, your work need not make them do so. A compilation of a covered work with other separate and independent works, which are not by their nature extensions of the covered work, and which are not combined with it such as to form a larger program, in or on a volume of a storage or distribution medium, is called an "aggregate" if the compilation and its resulting copyright are not used to limit the access or legal rights of the compilation's users beyond what the individual works permit. Inclusion of a covered work in an aggregate does not cause this License to apply to the other parts of the aggregate. 6. Conveying Non-Source Forms. You may convey a covered work in object code form under the terms of sections 4 and 5, provided that you also convey the machine-readable Corresponding Source under the terms of this License, in one of these ways: a) Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by the Corresponding Source fixed on a durable physical medium customarily used for software interchange. b) Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by a written offer, valid for at least three years and valid for as long as you offer spare parts or customer support for that product model, to give anyone who possesses the object code either (1) a copy of the Corresponding Source for all the software in the product that is covered by this License, on a durable physical medium customarily used for software interchange, for a price no more than your reasonable cost of physically performing this conveying of source, or (2) access to copy the Corresponding Source from a network server at no charge. c) Convey individual copies of the object code with a copy of the written offer to provide the Corresponding Source. This alternative is allowed only occasionally and noncommercially, and only if you received the object code with such an offer, in accord with subsection 6b. d) Convey the object code by offering access from a designated place (gratis or for a charge), and offer equivalent access to the Corresponding Source in the same way through the same place at no further charge. You need not require recipients to copy the Corresponding Source along with the object code. If the place to copy the object code is a network server, the Corresponding Source may be on a different server (operated by you or a third party) that supports equivalent copying facilities, provided you maintain clear directions next to the object code saying where to find the Corresponding Source. Regardless of what server hosts the Corresponding Source, you remain obligated to ensure that it is available for as long as needed to satisfy these requirements. e) Convey the object code using peer-to-peer transmission, provided you inform other peers where the object code and Corresponding Source of the work are being offered to the general public at no charge under subsection 6d. A separable portion of the object code, whose source code is excluded from the Corresponding Source as a System Library, need not be included in conveying the object code work. A "User Product" is either (1) a "consumer product", which means any tangible personal property which is normally used for personal, family, or household purposes, or (2) anything designed or sold for incorporation into a dwelling. In determining whether a product is a consumer product, doubtful cases shall be resolved in favor of coverage. For a particular product received by a particular user, "normally used" refers to a typical or common use of that class of product, regardless of the status of the particular user or of the way in which the particular user actually uses, or expects or is expected to use, the product. A product is a consumer product regardless of whether the product has substantial commercial, industrial or non-consumer uses, unless such uses represent the only significant mode of use of the product. "Installation Information" for a User Product means any methods, procedures, authorization keys, or other information required to install and execute modified versions of a covered work in that User Product from a modified version of its Corresponding Source. The information must suffice to ensure that the continued functioning of the modified object code is in no case prevented or interfered with solely because modification has been made. If you convey an object code work under this section in, or with, or specifically for use in, a User Product, and the conveying occurs as part of a transaction in which the right of possession and use of the User Product is transferred to the recipient in perpetuity or for a fixed term (regardless of how the transaction is characterized), the Corresponding Source conveyed under this section must be accompanied by the Installation Information. But this requirement does not apply if neither you nor any third party retains the ability to install modified object code on the User Product (for example, the work has been installed in ROM). The requirement to provide Installation Information does not include a requirement to continue to provide support service, warranty, or updates for a work that has been modified or installed by the recipient, or for the User Product in which it has been modified or installed. Access to a network may be denied when the modification itself materially and adversely affects the operation of the network or violates the rules and protocols for communication across the network. Corresponding Source conveyed, and Installation Information provided, in accord with this section must be in a format that is publicly documented (and with an implementation available to the public in source code form), and must require no special password or key for unpacking, reading or copying. 7. Additional Terms. "Additional permissions" are terms that supplement the terms of this License by making exceptions from one or more of its conditions. Additional permissions that are applicable to the entire Program shall be treated as though they were included in this License, to the extent that they are valid under applicable law. If additional permissions apply only to part of the Program, that part may be used separately under those permissions, but the entire Program remains governed by this License without regard to the additional permissions. When you convey a copy of a covered work, you may at your option remove any additional permissions from that copy, or from any part of it. (Additional permissions may be written to require their own removal in certain cases when you modify the work.) You may place additional permissions on material, added by you to a covered work, for which you have or can give appropriate copyright permission. Notwithstanding any other provision of this License, for material you add to a covered work, you may (if authorized by the copyright holders of that material) supplement the terms of this License with terms: a) Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this License; or b) Requiring preservation of specified reasonable legal notices or author attributions in that material or in the Appropriate Legal Notices displayed by works containing it; or c) Prohibiting misrepresentation of the origin of that material, or requiring that modified versions of such material be marked in reasonable ways as different from the original version; or d) Limiting the use for publicity purposes of names of licensors or authors of the material; or e) Declining to grant rights under trademark law for use of some trade names, trademarks, or service marks; or f) Requiring indemnification of licensors and authors of that material by anyone who conveys the material (or modified versions of it) with contractual assumptions of liability to the recipient, for any liability that these contractual assumptions directly impose on those licensors and authors. All other non-permissive additional terms are considered "further restrictions" within the meaning of section 10. If the Program as you received it, or any part of it, contains a notice stating that it is governed by this License along with a term that is a further restriction, you may remove that term. If a license document contains a further restriction but permits relicensing or conveying under this License, you may add to a covered work material governed by the terms of that license document, provided that the further restriction does not survive such relicensing or conveying. If you add terms to a covered work in accord with this section, you must place, in the relevant source files, a statement of the additional terms that apply to those files, or a notice indicating where to find the applicable terms. Additional terms, permissive or non-permissive, may be stated in the form of a separately written license, or stated as exceptions; the above requirements apply either way. 8. Termination. You may not propagate or modify a covered work except as expressly provided under this License. Any attempt otherwise to propagate or modify it is void, and will automatically terminate your rights under this License (including any patent licenses granted under the third paragraph of section 11). However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation. Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies you of the violation by some reasonable means, this is the first time you have received notice of violation of this License (for any work) from that copyright holder, and you cure the violation prior to 30 days after your receipt of the notice. Termination of your rights under this section does not terminate the licenses of parties who have received copies or rights from you under this License. If your rights have been terminated and not permanently reinstated, you do not qualify to receive new licenses for the same material under section 10. 9. Acceptance Not Required for Having Copies. You are not required to accept this License in order to receive or run a copy of the Program. Ancillary propagation of a covered work occurring solely as a consequence of using peer-to-peer transmission to receive a copy likewise does not require acceptance. However, nothing other than this License grants you permission to propagate or modify any covered work. These actions infringe copyright if you do not accept this License. Therefore, by modifying or propagating a covered work, you indicate your acceptance of this License to do so. 10. Automatic Licensing of Downstream Recipients. Each time you convey a covered work, the recipient automatically receives a license from the original licensors, to run, modify and propagate that work, subject to this License. You are not responsible for enforcing compliance by third parties with this License. An "entity transaction" is a transaction transferring control of an organization, or substantially all assets of one, or subdividing an organization, or merging organizations. If propagation of a covered work results from an entity transaction, each party to that transaction who receives a copy of the work also receives whatever licenses to the work the party's predecessor in interest had or could give under the previous paragraph, plus a right to possession of the Corresponding Source of the work from the predecessor in interest, if the predecessor has it or can get it with reasonable efforts. You may not impose any further restrictions on the exercise of the rights granted or affirmed under this License. For example, you may not impose a license fee, royalty, or other charge for exercise of rights granted under this License, and you may not initiate litigation (including a cross-claim or counterclaim in a lawsuit) alleging that any patent claim is infringed by making, using, selling, offering for sale, or importing the Program or any portion of it. 11. Patents. A "contributor" is a copyright holder who authorizes use under this License of the Program or a work on which the Program is based. The work thus licensed is called the contributor's "contributor version". A contributor's "essential patent claims" are all patent claims owned or controlled by the contributor, whether already acquired or hereafter acquired, that would be infringed by some manner, permitted by this License, of making, using, or selling its contributor version, but do not include claims that would be infringed only as a consequence of further modification of the contributor version. For purposes of this definition, "control" includes the right to grant patent sublicenses in a manner consistent with the requirements of this License. Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contributor's essential patent claims, to make, use, sell, offer for sale, import and otherwise run, modify and propagate the contents of its contributor version. In the following three paragraphs, a "patent license" is any express agreement or commitment, however denominated, not to enforce a patent (such as an express permission to practice a patent or covenant not to sue for patent infringement). To "grant" such a patent license to a party means to make such an agreement or commitment not to enforce a patent against the party. If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of the work is not available for anyone to copy, free of charge and under the terms of this License, through a publicly available network server or other readily accessible means, then you must either (1) cause the Corresponding Source to be so available, or (2) arrange to deprive yourself of the benefit of the patent license for this particular work, or (3) arrange, in a manner consistent with the requirements of this License, to extend the patent license to downstream recipients. "Knowingly relying" means you have actual knowledge that, but for the patent license, your conveying the covered work in a country, or your recipient's use of the covered work in a country, would infringe one or more identifiable patents in that country that you have reason to believe are valid. If, pursuant to or in connection with a single transaction or arrangement, you convey, or propagate by procuring conveyance of, a covered work, and grant a patent license to some of the parties receiving the covered work authorizing them to use, propagate, modify or convey a specific copy of the covered work, then the patent license you grant is automatically extended to all recipients of the covered work and works based on it. A patent license is "discriminatory" if it does not include within the scope of its coverage, prohibits the exercise of, or is conditioned on the non-exercise of one or more of the rights that are specifically granted under this License. You may not convey a covered work if you are a party to an arrangement with a third party that is in the business of distributing software, under which you make payment to the third party based on the extent of your activity of conveying the work, and under which the third party grants, to any of the parties who would receive the covered work from you, a discriminatory patent license (a) in connection with copies of the covered work conveyed by you (or copies made from those copies), or (b) primarily for and in connection with specific products or compilations that contain the covered work, unless you entered into that arrangement, or that patent license was granted, prior to 28 March 2007. Nothing in this License shall be construed as excluding or limiting any implied license or other defenses to infringement that may otherwise be available to you under applicable patent law. 12. No Surrender of Others' Freedom. If conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License. If you cannot convey a covered work so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not convey it at all. For example, if you agree to terms that obligate you to collect a royalty for further conveying from those to whom you convey the Program, the only way you could satisfy both those terms and this License would be to refrain entirely from conveying the Program. 13. Use with the GNU Affero General Public License. Notwithstanding any other provision of this License, you have permission to link or combine any covered work with a work licensed under version 3 of the GNU Affero General Public License into a single combined work, and to convey the resulting work. The terms of this License will continue to apply to the part which is the covered work, but the special requirements of the GNU Affero General Public License, section 13, concerning interaction through a network will apply to the combination as such. 14. Revised Versions of this License. The Free Software Foundation may publish revised and/or new versions of the GNU General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. Each version is given a distinguishing version number. If the Program specifies that a certain numbered version of the GNU General Public License "or any later version" applies to it, you have the option of following the terms and conditions either of that numbered version or of any later version published by the Free Software Foundation. If the Program does not specify a version number of the GNU General Public License, you may choose any version ever published by the Free Software Foundation. If the Program specifies that a proxy can decide which future versions of the GNU General Public License can be used, that proxy's public statement of acceptance of a version permanently authorizes you to choose that version for the Program. Later license versions may give you additional or different permissions. However, no additional obligations are imposed on any author or copyright holder as a result of your choosing to follow a later version. 15. Disclaimer of Warranty. THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. 16. Limitation of Liability. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. 17. Interpretation of Sections 15 and 16. If the disclaimer of warranty and limitation of liability provided above cannot be given local legal effect according to their terms, reviewing courts shall apply local law that most closely approximates an absolute waiver of all civil liability in connection with the Program, unless a warranty or assumption of liability accompanies a copy of the Program in return for a fee. END OF TERMS AND CONDITIONS How to Apply These Terms to Your New Programs If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to achieve this is to make it free software which everyone can redistribute and change under these terms. To do so, attach the following notices to the program. It is safest to attach them to the start of each source file to most effectively state the exclusion of warranty; and each file should have at least the "copyright" line and a pointer to where the full notice is found. Copyright (C) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . Also add information on how to contact you by electronic and paper mail. If the program does terminal interaction, make it output a short notice like this when it starts in an interactive mode: Copyright (C) This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'. This is free software, and you are welcome to redistribute it under certain conditions; type `show c' for details. The hypothetical commands `show w' and `show c' should show the appropriate parts of the General Public License. Of course, your program's commands might be different; for a GUI interface, you would use an "about box". You should also get your employer (if you work as a programmer) or school, if any, to sign a "copyright disclaimer" for the program, if necessary. For more information on this, and how to apply and follow the GNU GPL, see . The GNU General Public License does not permit incorporating your program into proprietary programs. If your program is a subroutine library, you may consider it more useful to permit linking proprietary applications with the library. If this is what you want to do, use the GNU Lesser General Public License instead of this License. But first, please read .statistics-release-1.6.3/DESCRIPTION000066400000000000000000000004641456127120000170410ustar00rootroot00000000000000Name: statistics Version: 1.6.3 Date: 2024-2-9 Author: various authors Maintainer: Andreas Bertsatos Title: Statistics Description: The Statistics package for GNU Octave. Categories: Statistics Depends: octave (>= 7.2.0) License: GPLv3+ Url: https://github.com/gnu-octave/statistics statistics-release-1.6.3/INDEX000066400000000000000000000100101456127120000161110ustar00rootroot00000000000000statistics >> Statistics Clustering cluster clusterdata cmdscale confusionmat cophenet crossval evalclusters inconsistent kmeans knnsearch linkage mahal mhsample optimalleaforder pdist pdist2 procrustes rangesearch slicesample squareform Classification Classes ClassificationKNN ConfusionMatrixChart Clustering Classes CalinskiHarabaszEvaluation ClusterCriterion DaviesBouldinEvaluation GapEvaluation SilhouetteEvaluation CVpartition (legacy class of set partitions for cross-validation, used in crossval) @cvpartition/cvpartition @cvpartition/display @cvpartition/get @cvpartition/repartition @cvpartition/set @cvpartition/test @cvpartition/training Regression Classes RegressionGAM Data Manipulation combnk crosstab datasample fillmissing grp2idx ismissing isoutlier normalise_distribution rmmissing standardizeMissing tabulate Descriptive Statistics cdfcalc cl_multinom geomean grpstats harmmean jackknife mad mean median nanmax nanmin nansum std trimmean var Distribution Fitting betafit betalike binofit binolike bisafit bisalike burrfit burrlike evfit evlike expfit explike gamfit gamlike geofit gevfit_lmom gevfit gevlike gpfit gplike gumbelfit gumbellike hnfit hnlike invgfit invglike logifit logilike loglfit logllike lognfit lognlike nakafit nakalike nbinfit nbinlike normfit normlike poissfit poisslike raylfit rayllike ricefit ricelike unidfit unifit wblfit wbllike Distribution Functions betacdf betainv betapdf betarnd binocdf binoinv binopdf binornd bisacdf bisainv bisapdf bisarnd burrcdf burrinv burrpdf burrrnd bvncdf bvtcdf cauchycdf cauchyinv cauchypdf cauchyrnd chi2cdf chi2inv chi2pdf chi2rnd copulacdf copulapdf copularnd evcdf evinv evpdf evrnd expcdf expinv exppdf exprnd fcdf finv fpdf frnd gamcdf gaminv gampdf gamrnd geocdf geoinv geopdf geornd gevcdf gevinv gevpdf gevrnd gpcdf gpinv gppdf gprnd gumbelcdf gumbelinv gumbelpdf gumbelrnd hncdf hninv hnpdf hnrnd hygecdf hygeinv hygepdf hygernd invgcdf invginv invgpdf invgrnd iwishpdf iwishrnd jsucdf jsupdf laplacecdf laplaceinv laplacepdf laplacernd logicdf logiinv logipdf logirnd loglcdf loglinv loglpdf loglrnd logncdf logninv lognpdf lognrnd mnpdf mnrnd mvncdf mvnpdf mvnrnd mvtcdf mvtpdf mvtrnd mvtcdfqmc nakacdf nakainv nakapdf nakarnd nbincdf nbininv nbinpdf nbinrnd ncfcdf ncfinv ncfpdf ncfrnd nctcdf nctinv nctpdf nctrnd ncx2cdf ncx2inv ncx2pdf ncx2rnd normcdf norminv normpdf normrnd poisscdf poissinv poisspdf poissrnd raylcdf raylinv raylpdf raylrnd ricecdf riceinv ricepdf ricernd tcdf tinv tpdf trnd tlscdf tlsinv tlspdf tlsrnd tricdf triinv tripdf trirnd unidcdf unidinv unidpdf unidrnd unifcdf unifinv unifpdf unifrnd vmcdf vminv vmpdf vmrnd wblcdf wblinv wblpdf wblrnd wienrnd wishpdf wishrnd Distribution Statistics betastat binostat chi2stat evstat expstat fstat gamstat geostat gevstat gpstat hygestat lognstat nbinstat ncfstat nctstat ncx2stat normstat poisstat raylstat ricestat tlsstat tstat unidstat unifstat wblstat Experimental Design fullfact ff2n sigma_pts x2fx Machine Learning hmmestimate hmmgenerate hmmviterbi svmpredict svmtrain Model Fitting fitcknn fitgmdist fitlm fitrgam Hypothesis Testing adtest anova1 anova2 anovan bartlett_test barttest binotest chi2gof chi2test correlation_test fishertest friedman hotelling_t2test hotelling_t2test2 kruskalwallis kstest kstest2 levene_test manova1 mcnemar_test multcompare ranksum regression_ftest regression_ttest runstest sampsizepwr signtest ttest ttest2 vartest vartest2 vartestn ztest ztest2 I/O libsvmread libsvmwrite Plotting boxplot cdfplot confusionchart dendrogram ecdf einstein gscatter histfit hist3 manovacluster normplot ppplot qqplot silhouette violin wblplot Regression canoncorr cholcov dcov logistic_regression mnrfit monotone_smooth pca pcacov pcares plsregress princomp regress regress_gp ridge stepwisefit Transforms logit probit Wrappers cdf icdf pdf random statistics-release-1.6.3/NEWS000066400000000000000000000163431456127120000160350ustar00rootroot00000000000000 Summary of important user-visible changes for statistics 1.6.0: ------------------------------------------------------------------- Important Notice: 1) dependency changed to Octave>=7.2.0 2) various distribution functions have been renamed, deprecated, or modified extensively so that backwards compatibility is broken 3) `mad`, `mean`, `median`, `std`, `var` functions shadow core Octave's respective functions 4) incompatibility with the `nan` package New functions: ============== ** betafit (fully Matlab compatible) ** betalike (fully Matlab compatible) ** binofit (fully Matlab compatible) ** binolike (similar functionality to MATLAB's negloglik) ** bisafit (similar functionality to MATLAB's mle) ** bisalike (similar functionality to MATLAB's negloglik and mlecov) ** burrfit (similar functionality to MATLAB's mle) ** burrlike (similar functionality to MATLAB's negloglik and mlecov) ** einstein (plotting function for the einstein tile) ** geofit (similar functionality to MATLAB's mle) ** gumbelcdf ** gumbelfit (similar functionality to MATLAB's mle) ** gumbelinv ** gumbellike (similar functionality to MATLAB's negloglik and mlecov) ** gumbelpdf ** gumbelrnd ** hncdf ** hnfit (similar functionality to MATLAB's mle) ** hninv ** hnlike (similar functionality to MATLAB's negloglik and mlecov) ** hnpdf ** hnrnd ** invgcdf ** invgfit (similar functionality to MATLAB's mle) ** invginv ** invglike (similar functionality to MATLAB's negloglik and mlecov) ** invgpdf ** invgrnd ** isoutlier (fully Matlab compatible) ** logifit (similar functionality to MATLAB's mle) ** logilike (similar functionality to MATLAB's negloglik and mlecov) ** loglcdf ** loglfit (similar functionality to MATLAB's mle) ** loglinv ** logllike (similar functionality to MATLAB's negloglik and mlecov) ** loglpdf ** loglrnd ** lognfit (fully Matlab compatible) ** lognlike (fully Matlab compatible) ** nakafit (similar functionality to MATLAB's mle) ** nakalike (similar functionality to MATLAB's negloglik and mlecov) ** nbinfit (similar functionality to MATLAB's mle) ** nbinlike (similar functionality to MATLAB's negloglik and mlecov) ** mad (fully Matlab compatible) ** normfit (fully Matlab compatible) ** poissfit (fully Matlab compatible, extra functionality) ** poisslike (similar functionality to MATLAB's negloglik) ** raylfit (fully Matlab compatible, extra functionality) ** rayllike (similar functionality to MATLAB's negloglik) ** ridge (fully Matlab compatible) ** unidfit (similar functionality to MATLAB's mle) ** unifit (similar functionality to MATLAB's mle) ** vminv (quantile function for the von Mises distribution) ** wblfit (fully Matlab compatible) ** wbllike (fully Matlab compatible) Improvements: ============= ** bisacdf: supports "upper" option ** burrcdf: supports "upper" option ** cauchycdf: supports "upper" option ** cdf: update support for all univariate cumulative distribution functions ** gamfit: fixed MATLAB compatibility ** gamlike: fixed MATLAB compatibility ** icdf: update support for all univariate quantile functions ** laplacecdf: supports "upper" option ** logicdf: supports "upper" option ** mcnemar_test: updated functionality ** nakacdf: supports "upper" option ** pcacov: fixed MATLAB compatibility ** pdf: update support for all univariate probability density functions ** plsregress: fixed MATLAB compatibility ** random: update support for all univariate functions ** runstest: fixed MATLAB compatibility ** tabulate: fixed MATLAB compatibility ** tricdf: supports "upper" option ** trimmean: fixed MATLAB compatibility Removed Functions: ================== ** run_test (replaced by runstest) ** stdnormal_cdf (replaced by normcdf) ** stdnormal_inv (replaced by norminv) ** stdnormal_pdf (replaced by normpdf) ** stdnormal_rnd (replaced by normrnd) Renamed Functions: ================== ** bisacdf (replacing bbscdf) ** bisainv (replacing bbsinv) ** bisapdf (replacing bbspdf) ** bisarnd (replacing bbsrnd) ** cauchycdf (replacing cauchy_cdf) ** cauchyinv (replacing cauchy_inv) ** cauchypdf (replacing cauchy_pdf) ** cauchyrnd (replacing cauchy_rnd) ** laplacecdf (replacing laplace_cdf) ** laplaceinv (replacing laplace_inv) ** laplacepdf (replacing laplace_pdf) ** laplacernd (replacing laplace_rnd) ** logicdf (replacing logistic_cdf) ** logiinv (replacing logistic_inv) ** logipdf (replacing logistic_pdf) ** logirnd (replacing logistic_rnd) Summary of important user-visible changes for statistics 1.6.1: ------------------------------------------------------------------- Important Notice: 1) `mad`, `mean`, `median`, `std`, `var` functions shadow core Octave's respective functions prior to Octave v9.1 2) incompatibility with the `nan` package New functions: ============== ** ClassificationKNN (new classdef) ** predict (for ClassificationKNN classdef) ** fitcknn ** fitrgam ** knnsearch (fully Matlab compatible) ** mnrfit ** rangesearch (fully Matlab compatible) ** RegressionGAM (new classdef) ** predict (for RegressionGAM classdef) Improvements: ============= ** anovan: new features ** friedman: bug fixes ** pdist: updated functionality, fully MATLAB compatible ** pdist2: updated functionality, fully MATLAB compatible ** regress_gp: updated functionality with RBF kernel ** ridge: bug fixes Summary of important user-visible changes for statistics 1.6.2: ------------------------------------------------------------------- Important Notice: 1) `mad`, `mean`, `median`, `std`, `var` functions shadow core Octave's respective functions prior to Octave v9.1 2) incompatibility with the `nan` package New functions: ============== ** ricecdf ** riceinv ** ricepdf ** ricernd Improvements: ============= ** changed ClassificationKNN legacy class to classdef ** changed RegressionGAM legacy class to classdef ** update figure handling in BISTs, bug fix when calling 'pkg test statistics' Summary of important user-visible changes for statistics 1.6.3: ------------------------------------------------------------------- Important Notice: 1) `mad`, `mean`, `median`, `std`, `var` functions shadow core Octave's respective functions prior to Octave v9.1 2) incompatibility with the `nan` package New functions: ============== ** ricefit ** ricelike ** ricestat ** tlscdf ** tlsinv ** tlspdf ** tlsrnd ** tlsstat Improvements: ============= ** cdf: add support for Rician and location-scale T distributions ** gevlike: deprecate gradient as a second output argument (undocumented) ** icdf: add support for Rician and location-scale T distributions ** pdf: add support for Rician and location-scale T distributions ** random: add support for Rician and location-scale T distributions ** ricernd: fixed bug that produced erroneous results ** updated input validation and documentation to distribution *stat functions statistics-release-1.6.3/ONEWS-1.1.x000066400000000000000000000051151456127120000167120ustar00rootroot00000000000000Summary of important user-visible changes for statistics 1.1.3: ------------------------------------------------------------------- ** The following functions are new in 1.1.3: copularnd mvtrnd ** The functions mnpdf and mnrnd are now also usable for greater numbers of categories for which the rows do not exactly sum to 1. Summary of important user-visible changes for statistics 1.1.2: ------------------------------------------------------------------- ** The following functions are new in 1.1.2: mnpdf mnrnd ** The package is now dependent on the io package (version 1.0.18 or later) since the functions that it depended of from miscellaneous package have been moved to io. ** The function `kmeans' now accepts the 'emptyaction' property with the 'singleton' value. This allows for the kmeans algorithm to handle empty cluster better. It also throws an error if the user does not request an empty cluster handling, and there is an empty cluster. Plus, the returned items are now a closer match to Matlab. Summary of important user-visible changes for statistics 1.1.1: ------------------------------------------------------------------- ** The following functions are new in 1.1.1: monotone_smooth kmeans jackknife ** Bug fixes on the functions: normalise_distribution combnk repanova ** The following functions were removed since equivalents are now part of GNU octave core: zscore ** boxplot.m now returns a structure with handles to the plot elemenets. Summary of important user-visible changes for statistics 1.1.0: ------------------------------------------------------------------- ** IMPORTANT note about `fstat' shadowing core library function: GNU octave's 3.2 release added a new function `fstat' to return information of a file. Statistics' `fstat' computes F mean and variance. Since MatLab's `fstat' is the equivalent to statistics' `fstat' (not to core's `fstat'), and to avoid problems with the statistics package, `fstat' has been deprecated in octave 3.4 and will be removed in Octave 3.8. In the mean time, please ignore this warning when installing the package. ** The following functions are new in 1.1.0: normalise_distribution repanova combnk ** The following functions were removed since equivalents are now part of GNU octave core: prctile ** The __tbl_delim__ function is now private. ** The function `boxplot' now accepts named arguments. ** Bug fixes on the functions: harmmean nanmax nanmin regress ** Small improvements on help text. statistics-release-1.6.3/ONEWS-1.2.x000066400000000000000000000047501456127120000167170ustar00rootroot00000000000000Summary of important user-visible changes for statistics 1.2.4: ------------------------------------------------------------------- ** Made princomp work with nargout < 2. ** Renamed dendogram to dendrogram. ** Added isempty check to kmeans. ** Transposed output of hist3. ** Converted calculation in hmmviterbi to log space. ** Bug fixes for stepwisefit wishrnd. ** Rewrite of cmdscale for improved compatibility. ** Fix in squareform for improved compatibility. ** New cvpartition class, with methods: display repartition test training ** New sample data file fisheriris.txt for tests ** The following functions are new: cdf crossval dcov pdist2 qrandn randsample signtest ttest ttest2 vartest vartest2 ztest Summary of important user-visible changes for statistics 1.2.3: ------------------------------------------------------------------- ** Made sure that output of nanstd is real. ** Fixed second output of nanmax and nanmin. ** Corrected handle for outliers in boxplot. ** Bug fix and enhanced functionality for mvnrnd. ** The following functions are new: wishrnd iwishrnd wishpdf iwishpdf cmdscale Summary of important user-visible changes for statistics 1.2.2: ------------------------------------------------------------------- ** Fixed documentation of dendogram and hist3 to work with TexInfo 5. Summary of important user-visible changes for statistics 1.2.1: ------------------------------------------------------------------- ** The following functions are new: pcares pcacov runstest stepwisefit hist3 ** dendogram now returns the leaf node numbers and order that the nodes were displayed in. ** New faster implementation of princomp. Summary of important user-visible changes for statistics 1.2.0: ------------------------------------------------------------------- ** The following functions are new: regress_gp dendogram plsregress ** New functions for the generalized extreme value (GEV) distribution: gevcdf gevfit gevfit_lmom gevinv gevlike gevpdf gevrnd gevstat ** The interface of the following functions has been modified: mvnrnd ** `kmeans' has been fixed to deal with clusters that contain only one element. ** `normplot' has been fixed to avoid use of functions that have been removed from Octave core. Also, the plot produced should now display some aesthetic elements and appropriate legends. ** The help text of `mvtrnd' has been improved. ** Package is no longer autoloaded. statistics-release-1.6.3/ONEWS-1.3.0000066400000000000000000000012641456127120000166050ustar00rootroot00000000000000Summary of important user-visible changes for statistics 1.3.0: ------------------------------------------------------------------- ** The following functions are new: bbscdf bbsinv bbspdf bbsrnd binotest burrcdf burrinv burrpdf burrrnd gpcdf gpinv gppdf gprnd grp2idx mahal mvtpdf nakacdf nakainv nakapdf nakarnd pdf tricdf triinv tripdf trirnd violin ** Other functions that have been changed for smaller bugfixes, increased Matlab compatibility, or performance: betastat binostat cdf combnk gevfit hist3 kmeans linkage randsample squareform ttest statistics-release-1.6.3/ONEWS-1.4.x000066400000000000000000000141701456127120000167160ustar00rootroot00000000000000Summary of important user-visible changes for statistics 1.4.3: ------------------------------------------------------------------- New functions: ============== ** anova1 (patch #10127) kruskalwallis ** cluster (patch #10009) ** clusterdata (patch #10012) ** confusionchart (patch #9985) ** confusionmat (patch #9971) ** cophenet (patch #10040) ** datasample (patch #10050) ** evalclusters (patch #10052) ** expfit (patch #10092) explike ** gscatter (patch #10043) ** ismissing (patch #10102) ** inconsistent (patch #10008) ** mhsample.m (patch #10016) ** ncx2pdf (patch #9711) ** optimalleaforder.m (patch #10034) ** pca (patch #10104) ** rmmissing (patch #10102) ** silhouette (patch #9743) ** slicesample (patch #10019) ** wblplot (patch #8579) Improvements: ============= ** anovan.m: use double instead of toascii (bug #60514) ** binocdf: new option "upper" (bug #43721) ** boxplot: better Matlab compatibility; several Matlab-compatible plot options added (OutlierTags, Sample_IDs, BoxWidth, Widths, BoxStyle, Positions, Labels, Colors) and an Octave-specific one (CapWidhts); demos added; texinfo improved (patch #9930) ** auto MPG (carbig) sample dataset added from https://archive.ics.uci.edu/ml/datasets/Auto+MPG (patch #10045) ** crosstab.m: make n-dimensional (patch #10014) ** dendrogram.m: many improvements (patch #10036) ** fitgmdist.m: fix typo in ComponentProportion (bug #59386) ** gevfit: change orientation of results for Matlab compatibility (bug #47369) ** hygepdf: avoid overflow for certain inputs (bug #35827) ** kmeans: efficiency and compatibility tweaks (patch #10042) ** pdist: option for squared Euclidean distance (patch #10051) ** stepwisefit.m: give another option to select predictors (patch #8584) ** tricdf, triinv: fixes (bug #60113) Summary of important user-visible changes for statistics 1.4.2: ------------------------------------------------------------------- ** canoncorr: allow more variables than observations ** fitgmdist: return fitgmdist parameters (Bug #57917) ** gamfit: invert parameter per docs (Bug #57849) ** geoXXX: update docs 'number of failures (X-1)' => 'number of failures (X)' (Bug #57606) ** kolmogorov_smirnov_test.m: update function handle usage from octave6+ (Bug #57351) ** linkage.m: fix octave6+ parse error (Bug #57348) ** unifrnd: changed unifrnd(a,a) to return a 0 rather than NaN (Bug #56342) ** updates for usage of depreciated octave functions Summary of important user-visible changes for statistics 1.4.1: ------------------------------------------------------------------- ** update install scripts for octave 5.0 depreciated functions ** bug fixes to the following functions: pdist2.m: use max in distEucSq (Bug #50377) normpdf: use eps tolerance in tests (Bug #51963) fitgmdist: fix an output bug in fitgmdist t_test: Set tolerance on t_test BISTS (Bug #54557) gpXXXXX: change order of inputs to match matlab (Bug #54009) bartlett_test: df = k-1 (Bug #45894) gppdf: apply scale factor (Bug #54009) gmdistribution: updates for bug #54278, ##54279 wishrnd: Bug #55860 Summary of important user-visible changes for statistics 1.4.0: ------------------------------------------------------------------- ** The following functions are new: canoncorr fitgmdist gmdistribution sigma_pts ** The following functions have been moved from the statistics package but are conditionally installed: mad ** The following functions have been moved from octave to be conditionally installed: BASE cloglog logit prctile probit qqplot table (renamed to crosstab) DISTRIBUTIONS betacdf betainv betapdf betarnd binocdf binoinv binopdf binornd cauchy_cdf cauchy_inv cauchy_pdf cauchy_rnd chi2cdf chi2inv chi2pdf chi2rnd expcdf expinv exppdf exprnd fcdf finv fpdf frnd gamcdf gaminv gampdf gamrnd geocdf geoinv geopdf geornd hygecdf hygeinv hygepdf hygernd kolmogorov_smirnov_cdf laplace_cdf laplace_inv laplace_pdf laplace_rnd logistic_cdf logistic_inv logistic_pdf logistic_rnd logncdf logninv lognpdf lognrnd nbincdf nbininv nbinpdf nbinrnd normcdf norminv normpdf normrnd poisscdf poissinv poisspdf poissrnd stdnormal_cdf stdnormal_inv stdnormal_pdf stdnormal_rnd tcdf tinv tpdf trnd unidcdf unidinv unidpdf unidrnd unifcdf unifinv unifpdf unifrnd wblcdf wblinv wblpdf wblrnd wienrnd MODELS logistic_regression TESTS anova bartlett_test chisquare_test_homogeneity chisquare_test_independence cor_test f_test_regression hotelling_test hotelling_test_2 kolmogorov_smirnov_test kolmogorov_smirnov_test_2 kruskal_wallis_test manova mcnemar_test prop_test_2 run_test sign_test t_test t_test_2 t_test_regression u_test var_test welch_test wilcoxon_test z_test z_test_2 ** Functions marked with known test failures: grp2idx: bug #51928 gevfir_lmom: bug #31070 ** Other functions that have been changed for smaller bugfixes, increased Matlab compatibility, or performance: dcov: returned dcov instead of dcor. added demo. violin: can be used with subplots. violin quality improved. princomp: Fix expected values of tsquare in unit tests fitgmdist: test number inputs to function hist3: fix removal of rows with NaN values ** added the packages test data to install statistics-release-1.6.3/ONEWS-1.5.x000066400000000000000000000300501456127120000167120ustar00rootroot00000000000000Summary of important user-visible changes for statistics 1.5.0: ------------------------------------------------------------------- Important Notice: 1) dependency change to Octave>=6.1.0 2) `mean` shadows core Octave's respective function 3) removed dependency on `io` package 4) incompatibility with the `nan` package New functions: ============== ** anova2 (fully Matlab compatible) ** bvncdf ** cdfcalc, cdfplot ** chi2gof (fully Matlab compatible. bug #46764) ** chi2test (bug #58838) ** cholcov (fully Matlab compatible) ** ecdf (fully Matlab compatible) ** evfit (fully Matlab compatible) ** evlike (fully Matlab compatible) ** fitlm (mostly Matlab compatible) ** fillmissing (patch #10102) ** friedman (fully Matlab compatible) ** grpstats (complementary to manova1) ** kruskalwallis (fully Matlab compatible) ** kstest (fully Matlab compatible) ** kstest2 (fully Matlab compatible. bug #56572) ** libsvmread, libsvmwrite (I/O functions for LIBSVM data files) ** manova1 (fully Matlab compatible) ** manovacluster (fully Matlab compatible) ** mean (fully Matlab compatible, it shadows mean from core Octave) ** multcompare (fully Matlab compatible) ** mvtcdfqmc ** ranksum (fully Matlab compatible. bug #42079) ** standardizeMissing (patch #10102) ** svmpredict, svmtrain (wrappers for LIBSVM 3.25) ** tiedrank (complementary to ranksum) ** x2fx (missing function: bug #48146) Improvements: ============= ** anova1: added extra feature for performing Welch's ANOVA (PR #15) ** anovan: mostly Matlab compatible, extra features. (patch #10123, PR #1-42) ** binopdf: implement high accuracy Loader algorithm for m>=10 (bug #34362) ** cdf: extended to include all available distributions ** crosstab: can handle char arrays, fixed ordering of groups ** gaminv: fixed accuracy for small 1st argument (bug #56453) ** geomean: fully Matlab compatible. (patch #59410) ** gevlike: fully Matlab compatible. ACOV output is the inverse Fisher Inf Mat ** grp2idx (fully Matlab compatible, indexes in order of appeearance) ** harmmean: fully Matlab compatible. ** hygepdf: added optional parameter "vectorexpand" to facilitate vectorization of other hyge functions. Allows different inputs lengths for x and t,m,n parameters, with broadcast expanded output (bug #34363) ** hygecdf: improved vectorization for non-scalar inputs. hygeinv hygernd ** ismissing: corrects handling of n-D arrays, NaN indicators, and improves matlab compatibility for different data types. (patch #10102) ** kmeans: improved help file, evaluate efficiency (bug #8959) ** laplace_cdf: allow for parameters mu and scale (bug #58688) laplace_inv laplace_pdf logistic_cdf logistic_inv logistic_pdf ** logistic_regression: fixed incorrect results (bug #60348) ** mvncdf: improved performance and accuracy (bug #44130) ** normplot: fixed ploting error (bug #62394), updated features ** pdf: extended to include all available distributions ** pdist: updated the 'cosine' metric to be more efficient (bug #62495) ** rmmissing: corrects cellstr array handling and improves matlab compatibility for different data types. (patch #10102) ** signtest: fix erroneous results, fully Matlab compatible (bug #49961) ** ttest2: can handle NaN values as missing data (bug #58697) ** violin: fix parsing color vector affecting Octave>=6.1.0 (bug #62805) ** wblplot: fixed coding style and help texinfo. (patch #8579) Removed Functions: ================== ** anova (replaced by anova1) ** caseread, casewrite (do not belong here) ** chisquare_test_homogeneity (replaced by chi2test) ** chisquare_test_independence (replaced by chi2test) ** kolmogorov_smirnov_test (replaced by kstest) ** kolmogorov_smirnov_test_2 (replaced by kstest2) ** kruskal_wallis_test (replaced by kruskalwallis) ** manova (replaced by manova1) ** repanova (replaced by anova2) ** sign_test (replaced by updated signtest) ** tblread, tblwrite (belong to `io` package when tables are implemented) ** t_test, t_test_2 (deprecated: use ttest & ttest2) ** wilcoxon_test (replaced by ranksum) Available Data Sets: ==================== ** acetylene Chemical reaction data with correlated predictors ** arrhythmia Cardiac arrhythmia data from the UCI machine learning repository ** carbig Measurements of cars, 1970–1982 ** carsmall Subset of carbig. Measurements of cars, 1970, 1976, 1982 ** cereal Breakfast cereal ingredients ** examgrades Exam grades on a scale of 0–100 ** fisheriris Fisher's 1936 iris data ** hald Heat of cement vs. mix of ingredients ** heart_scale.dat Used for SVM testing ** kmeansdata Four-dimensional clustered data ** mileage Mileage data for three car models from two factories ** morse Recognition of Morse code distinctions by non-coders ** popcorn Popcorn yield by popper type and brand ** stockreturns Simulated stock returns ** weather Daily high temperatures in the same month in two consecutive years Summary of important user-visible changes for statistics 1.5.1: ------------------------------------------------------------------- Important Notice: 1) `mean` shadows core Octave's respective function 2) incompatibility with the `nan` package New functions: ============== ** barttest (fully Matlab compatible) ** evcdf (fully Matlab compatible) ** evinv (fully Matlab compatible) ** evpdf (fully Matlab compatible) ** evrnd (fully Matlab compatible) ** evstat (fully Matlab compatible) ** gpfit (fully Matlab compatible) ** gplike (fully Matlab compatible) ** gpstat (fully Matlab compatible) ** levene_test (options for testtypes, handling NaNs and GROUPS like anova1) ** ncfcdf (fully Matlab compatible) ** ncfinv (fully Matlab compatible) ** ncfpdf (fully Matlab compatible) ** ncfrnd (fully Matlab compatible) ** ncfstat (fully Matlab compatible) ** nctcdf (fully Matlab compatible) ** nctinv (fully Matlab compatible) ** nctpdf (fully Matlab compatible) ** nctrnd (fully Matlab compatible) ** nctstat (fully Matlab compatible) ** ncx2cdf (fully Matlab compatible) ** ncx2inv (fully Matlab compatible) ** ncx2rnd (fully Matlab compatible) ** ncx2stat (fully Matlab compatible) ** normlike (fully Matlab compatible) ** sampsizepwr (fully Matlab compatible with extra functionality) ** vartestn (fully Matlab compatible) Improvements: ============= ** bartlett_test: improved functionality, hanlding NaNs and GROUPS like anova1 ** chi2cdf: added "upper" option and confidence bounds ** chi2test: improved functionality, handles multi-way tables ** crosstab: returns chi-square and p-value for multiway tables ** evfit: fixed bug that caused an error when x is a row vector ** fcdf: added "upper" option and confidence bounds ** gamcdf: added "upper" option and confidence bounds ** gpcdf: added "upper" option and confidence bounds ** mvnpdf: fixed MATLAB compatibility ** mvnrnd: fixed MATLAB compatibility ** ncx2pdf: reimplemented to be fully MATLAB compatible ** normcdf: added "upper" option and confidence bounds ** tcdf: added "upper" option ** vartest: fixed MATLAB compatibility ** vartest2: fixed MATLAB compatibility ** ztest: fixed MATLAB compatibility Removed Functions: ================== ** cloglog ** nanmean (replaced by mean) ** kolmogorov_smirnov_cdf (unused by new kstest, kstest2 functions) ** u_test (replaced by ranksum) ** var_test (replaced by vartest) ** z_test (replaced by ztest) Summary of important user-visible changes for statistics 1.5.2: ------------------------------------------------------------------- Important Notice: 1) `mean`, `median`, `std`, and `var` functions shadow core Octave's respective functions 2) incompatibility with the `nan` package New functions: ============== ** median (fully Matlab compatible) ** std (fully Matlab compatible) ** var (fully Matlab compatible) Improvements: ============= ** mean: fixed MATLAB compatibility ** multcompare: fixed erroneous results for Welch ANOVA, updated features ** tcdf: fixed erroneous results ** ttest: added support for NaN values and matrix inputs ** ttest2: added support for matrices and multiple t-tests Removed Functions: ================== ** nanmedian (replaced by median) ** nanstd (replaced by std) ** nanvar (replaced by var) Summary of important user-visible changes for statistics 1.5.3: ------------------------------------------------------------------- Important Notice: 1) `mean`, `median`, `std`, and `var` functions shadow core Octave's respective functions 2) incompatibility with the `nan` package New functions: ============== ** adtest (fully Matlab compatible) ** hotelling_t2test (new functionality, replacing old hotelling_test) ** hotelling_t2test2 (new functionality, replacing old hotelling_test_2) ** regression_ftest (new functionality, replacing old f_test_regression) ** regression_ttest (replacing old t_test_regression) ** vmcdf (von Mises cummulative distribution function) Improvements: ============= ** betacdf: added "upper" option ** binocdf: added "upper" option ** expcdf: added "upper" option and confidence bounds ** geocdf: added "upper" option ** gevcdf: added "upper" option ** hygecdf: added "upper" option ** laplace_cdf: updated functionality ** laplace_inv: updated functionality ** laplace_pdf: updated functionality ** laplace_rnd: updated functionality ** logistic_cdf: updated functionality ** logistic_inv: updated functionality ** logistic_pdf: updated functionality ** logistic_rnd: updated functionality ** logncdf: added "upper" option and confidence bounds ** mean: fixed MATLAB compatibility ** median: fixed MATLAB compatibility ** multcompare: print PostHoc Test table ** nbincdf: added "upper" option ** poisscdf: added "upper" option ** raylcdf: added "upper" option ** std: fixed MATLAB compatibility ** unidcdf: added "upper" option ** unifcdf: added "upper" option ** var: fixed MATLAB compatibility ** vmpdf: updated functionality ** vmrnd: updated functionality ** wblcdf: added "upper" option and confidence bounds Removed Functions: ================== ** anderson_darling_cdf (replaced by adtest) ** anderson_darling_test (replaced by adtest) ** hotelling_test (replaced by hotelling_t2test) ** hotelling_test_2 (replaced by hotelling_t2test2) ** f_test_regression (replaced by regression_ftest) ** t_test_regression (replaced by regression_ttest) Summary of important user-visible changes for statistics 1.5.4: ------------------------------------------------------------------- Important Notice: 1) `mean`, `median`, `std`, and `var` functions shadow core Octave's respective functions 2) incompatibility with the `nan` package New functions: ============== ** bvtcdf ** correlation_test (new functionality, replacing old cor_test) ** icdf (wrapper for all available *inv distribution functions) ** fishertest (fully Matlab compatible) ** procrustes (fully Matlab compatible) ** ztest2 (new functionality, replacing old prop_test_2) Improvements: ============= ** cdf: updated wrapper for all available *cdf distribution functions ** dcov: handles missing values and multivariate samples ** geomean: fixed MATLAB compatibility ** harmmean: fixed MATLAB compatibility ** mean: fixed MATLAB compatibility ** median: fixed MATLAB compatibility ** mvtcdf: improved speed, fixed Matlab compatibility ** pdf: updated wrapper for all available *pdf distribution functions ** random: updated wrapper for all available *rnd distribution functions ** regression_ttest: new functionality ** std: fixed MATLAB compatibility ** var: fixed MATLAB compatibility Removed Functions: ================== ** cor_test (replaced by correlation_test) ** prop_test_2 (replaced by ztest2) statistics-release-1.6.3/README.md000066400000000000000000000112251456127120000166070ustar00rootroot00000000000000# statistics This is the official repository for the Statistics package for GNU Octave. **Content:** 1. About 2. Install statistics 3. Provide feedback 4. Contribute ## 1. About The **statistics** package is a collection of functions for statistical analysis. As with GNU Octave, the **statistics** package aims to be mostly compatible with MATLAB's equivalent Statistics and Machine Learning Toolbox. However, this is not always applicable of even possible. Hence, identical (in name) functions do not necessarily share the same functionality or behavior. Nevertheless, they produce consistent and correct results, unless there is a bug: see [Murphy's Law](https://en.wikipedia.org/wiki/Murphy's_law) :smile:. As of 10.6.2022, the developemnt of the **statistics** package was moved from [SourceForge](https://octave.sourceforge.io/statistics/) and [Mercurial](https://en.wikipedia.org/wiki/Mercurial) to [GitHub](https://github.com/gnu-octave/statistics) and [Git](https://en.wikipedia.org/wiki/Git). Given the opportunity of this transition, the package has been redesigned, as compared to the its previous point [release 1.4.3](https://octave.sourceforge.io/download.php?package=statistics-1.4.3.tar.gz) at SourceForge, with the aim to keep its structure simplified and easier to maintain. To this end, two major decisions have been made: - Keep a single dependency to the last two major point releases of GNU Octave. - Deprecate old functions once their fully Matlab compatible equivalents are implemented. You can find its documentation at [https://gnu-octave.github.io/statistics/](https://gnu-octave.github.io/statistics/). ## 2. Install statistics To install the latest release (1.6.3) you need Octave (>=7.2.0) installed on your system. Install it by typing: `pkg install -forge statistics` You can automatically download and install the latest development version of the **statistics** package found [here](https://github.com/gnu-octave/statistics/archive/refs/heads/main.zip) by typing: `pkg install "https://github.com/gnu-octave/statistics/archive/refs/heads/main.zip"` If you need to install a specific release, for example `1.4.2`, type: `pkg install "https://github.com/gnu-octave/statistics/archive/refs/tags/release-1.4.2.tar.gz"` After installation, type: - `pkg load statistics` to load the **statistics** package. - `news statistics` to review all the user visible changes since last version. - `pkg test statistics` to run a test suite for all 389 [^1] functions currently available and ensure that they work properly on your system. [^1]: Several functions are still missing from the statistics package, but you are welcome to [contribute](https://github.com/gnu-octave/statistics/blob/main/CONTRIBUTING.md)! ## 3. Provide feedback You are encouraged to provide feedback regarding possible bugs, missing features[^2], discrepancies or incompatibilities with Matlab functions. You may open an [issue](https://github.com/gnu-octave/statistics/issues) to open a discussion to your particular case. **Please, do NOT use the issue tracker for requesting help.** Use the [discourse group](https://octave.discourse.group/c/help/6) for requesting help with using functions and programming in Octave. Please, make sure that when reporting a bug you provide as much information as possible for other users to be able to replicate it. Use [markdown tips](https://docs.github.com/en/get-started/writing-on-github/getting-started-with-writing-and-formatting-on-github/basic-writing-and-formatting-syntax) to make your post clear and easy to read and understand your issue. [^2]: Don't open an issue just for requesting a missing function! Implement it yourself and make an invaluable contribution :innocent: ## 4. Contribute The **statistics** package is **open source**! Everyone is welcome to contribute. If you find a bug and fix it, just [clone](https://github.com/gnu-octave/statistics.git) this repo with `git clone https://github.com/gnu-octave/statistics.git`, make your changes and add a [pull](https://github.com/gnu-octave/statistics/pulls) request. Alternatively, you may open an issue and add a git-patch file, which will be patched by the maintainer. Make sure you follow the coding style already used in the **statistics** package (similar to GNU Octave). For a summary of the coding style rules used in the package see [Contribute](https://github.com/gnu-octave/statistics/blob/main/CONTRIBUTING.md). Contributing is not only about fixing bugs or implementing new functions. Improving the texinfo of the functions help files or adding BISTs and demos at the end of the function files is also important. Fixing a typo in the help file is still of value though. So don't hesitate to contribute! :+1: statistics-release-1.6.3/doc/000077500000000000000000000000001456127120000160745ustar00rootroot00000000000000statistics-release-1.6.3/doc/statistics.png000066400000000000000000000006421456127120000207760ustar00rootroot00000000000000‰PNG  IHDRddÿ€tIMEß Ó@Ÿ…tEXtCommentCreated with GIMPW1IDATxÚíÜAƒ Ph¼ÿ•颫&mé(Âû«vaŒO%æRJ’º<À‚ ,X`Á‚ ,°`ÁºQ¶c›åüöw‘ˆ±^:9§¥ž³†°`Á‚K`Á‚kvgØ„6­³a…6­Ûï3Óz&+fžaw<­² <,X뾤œËp™ +§ÈåËî†j–ÔMJï>u<±À·¬ÕÞŽÛHw^à›¼†~êpÕeû Zw7„ ,é]ù÷úaå߈3 Ã,X\àÏè¢cßìíü^X±oöömªY°`Á‚%°`ÁÒî´O¤3¬Êö¬t)G´J†!,X°`ÁX°`Á‚K`Á‚uy¦ý®CÄ’Ä9¿ë`ªY°` ,X°`Á‚%°`Áº>Odœ1ë'ø£#IEND®B`‚statistics-release-1.6.3/docs/000077500000000000000000000000001456127120000162575ustar00rootroot00000000000000statistics-release-1.6.3/docs/@cvpartition_cvpartition.html000066400000000000000000000174011456127120000242340ustar00rootroot00000000000000 Statistics: @cvpartition/cvpartition

Function Reference: @cvpartition/cvpartition

statistics: C = cvpartition (X, [partition_type, [k]])

Create a partition object for cross validation.

X may be a positive integer, interpreted as the number of values n to partition, or a vector of length n containing class designations for the elements, in which case the partitioning types KFold and HoldOut attempt to ensure each partition represents the classes proportionately.

partition_type must be one of the following:

KFold

Divide set into k equal-size subsets (this is the default, with k=10).

HoldOut

Divide set into two subsets, "training" and "validation". If k is a fraction, that is the fraction of values put in the validation subset; if it is a positive integer, that is the number of values in the validation subset (by default k=0.1).

LeaveOut

Leave-one-out partition (each element is placed in its own subset).

resubstitution

Training and validation subsets that both contain all the original elements.

Given

Subset indices are as given in X.

The following fields are defined for the ‘cvpartition’ class:

classes

Class designations for the elements.

inds

Subset indices for the elements.

n_classes

Number of different classes.

NumObservations

n, number of elements in data set.

NumTestSets

Number of testing subsets.

TestSize

Number of elements in (each) testing subset.

TrainSize

Number of elements in (each) training subset.

Type

Partition type.

See also: crossval, @cvpartition/display

Source Code: @cvpartition/cvpartition

Example: 1

 

 ## Partition with Fisher iris dataset (n = 150)
 ## Stratified by species
 load fisheriris
 y = species;
 ## 10-fold cross-validation partition
 c = cvpartition (species, 'KFold', 10)
 ## leave-10-out partition
 c1 = cvpartition (species, 'HoldOut', 10)
 idx1 = test (c, 2);
 idx2 = training (c, 2);
 ## another leave-10-out partition
 c2 = repartition (c1)

K-fold cross validation partition
          N: 150
NumTestSets: 10
  TrainSize: 135  135  135  135  135  135  135  135  135  135
   TestSize: 15  15  15  15  15  15  15  15  15  15
HoldOut cross validation partition
          N: 150
NumTestSets: 1
  TrainSize: 140
   TestSize: 10
HoldOut cross validation partition
          N: 150
NumTestSets: 1
  TrainSize: 140
   TestSize: 10
                    
statistics-release-1.6.3/docs/@cvpartition_display.html000066400000000000000000000076111456127120000233410ustar00rootroot00000000000000 Statistics: @cvpartition/display

Function Reference: @cvpartition/display

statistics: display (C)

Display a ‘cvpartition’ object, C.

statistics-release-1.6.3/docs/@cvpartition_get.html000066400000000000000000000076521456127120000224600ustar00rootroot00000000000000 Statistics: @cvpartition/get

Function Reference: @cvpartition/get

statistics: s = get (C, f)

Get a field, f, from a ‘cvpartition’ object, C.

statistics-release-1.6.3/docs/@cvpartition_repartition.html000066400000000000000000000101711456127120000242270ustar00rootroot00000000000000 Statistics: @cvpartition/repartition

Function Reference: @cvpartition/repartition

statistics: Cnew = repartition (C)

Return a new cvpartition object.

C should be a ‘cvpartition’ object. Cnew will use the same partition_type as C but redo any randomization performed (currently, only the HoldOut type uses randomization).

See also: @cvpartition/cvpartition

Source Code: @cvpartition/repartition

statistics-release-1.6.3/docs/@cvpartition_set.html000066400000000000000000000076741456127120000225000ustar00rootroot00000000000000 Statistics: @cvpartition/set

Function Reference: @cvpartition/set

statistics: Cnew = set (C, field, value)

Set field, in a ‘cvpartition’ object, C.

statistics-release-1.6.3/docs/@cvpartition_test.html000066400000000000000000000100761456127120000226520ustar00rootroot00000000000000 Statistics: @cvpartition/test

Function Reference: @cvpartition/test

statistics: inds = test (C, [i])

Return logical vector for testing-subset indices from a ‘cvpartition’ object, C. i is the fold index (default is 1).

statistics-release-1.6.3/docs/@cvpartition_training.html000066400000000000000000000101131456127120000234760ustar00rootroot00000000000000 Statistics: @cvpartition/training

Function Reference: @cvpartition/training

statistics: inds = training (C, [i])

Return logical vector for training-subset indices from a ‘cvpartition’ object, C. i is the fold index (default is 1).

statistics-release-1.6.3/docs/CalinskiHarabaszEvaluation.html000066400000000000000000000163611456127120000244150ustar00rootroot00000000000000 Statistics: CalinskiHarabaszEvaluation

Class Definition: CalinskiHarabaszEvaluation

statistics: obj = evalclusters (x, clust, CalinskiHarabasz)
statistics: obj = evalclusters (…, Name, Value)

A Calinski-Harabasz object to evaluate clustering solutions.

A CalinskiHarabaszEvaluation object is a ClusterCriterion object used to evaluate clustering solutions using the Calinski-Harabasz criterion.

The Calinski-Harabasz index is based on the ratio between SSb and SSw. SSb is the overall variance between clusters, that is the variance of the distances between the centroids. SSw is the overall variance within clusters, that is the sum of the variances of the distances between each datapoint and its centroid.

The best solution according to the Calinski-Harabasz criterion is the one that scores the highest value.

See also: evalclusters, ClusterCriterion, DaviesBouldinEvaluation, GapEvaluation, SilhouetteEvaluation

Source Code: CalinskiHarabaszEvaluation

Method: addK

CalinskiHarabaszEvaluation: obj = addK (obj, K)

Add a new cluster array to inspect the CalinskiHarabaszEvaluation object.

Method: compact

CalinskiHarabaszEvaluation: obj = compact (obj)

Return a compact CalinskiHarabaszEvaluation object (not implemented yet).

Method: plot

CalinskiHarabaszEvaluation: plot (obj)
CalinskiHarabaszEvaluation: h = plot (obj)

Plot the evaluation results.

Plot the CriterionValues against InspectedK from the CalinskiHarabaszEvaluation, obj, to the current plot. It can also return a handle to the current plot.

statistics-release-1.6.3/docs/ClassificationKNN.html000066400000000000000000000452131456127120000224540ustar00rootroot00000000000000 Statistics: ClassificationKNN

Class Definition: ClassificationKNN

statistics: obj = ClassificationKNN (X, Y)
statistics: obj = ClassificationKNN (…, name, value)

Create a ClassificationKNN class object containing a k-Nearest Neighbor classification model.

obj = ClassificationKNN (X, Y) returns a ClassificationKNN object, with X as the predictor data and Y containing the class labels of observations in X.

  • X must be a N×P numeric matrix of input data where rows correspond to observations and columns correspond to features or variables. X will be used to train the kNN model.
  • Y is N×1 matrix or cell matrix containing the class labels of corresponding predictor data in X. Y can contain any type of categorical data. Y must have same numbers of Rows as X.

obj = ClassificationKNN (…, name, value) returns a ClassificationKNN object with parameters specified by Name-Value pair arguments. Type help fitcknn for more info.

A ClassificationKNN object, obj, stores the labelled training data and various parameters for the k-Nearest Neighbor classification model, which can be accessed in the following fields:

FieldDescription
obj.XUnstandardized predictor data, specified as a numeric matrix. Each column of X represents one predictor (variable), and each row represents one observation.
obj.YClass labels, specified as a logical or numeric vector, or cell array of character vectors. Each value in Y is the observed class label for the corresponding row in X.
obj.NumObservationsNumber of observations used in training the ClassificationKNN model, specified as a positive integer scalar. This number can be less than the number of rows in the training data because rows containing NaN values are not part of the fit.
obj.RowsUsedRows of the original training data used in fitting the ClassificationKNN model, specified as a numerical vector. If you want to use this vector for indexing the training data in X, you have to convert it to a logical vector, i.e X = obj.X(logical (obj.RowsUsed), :);
obj.StandardizeA boolean flag indicating whether the data in X have been standardized prior to training.
obj.SigmaPredictor standard deviations, specified as a numeric vector of the same length as the columns in X. If the predictor variables have not been standardized, then "obj.Sigma" is empty.
obj.MuPredictor means, specified as a numeric vector of the same length as the columns in X. If the predictor variables have not been standardized, then "obj.Mu" is empty.
obj.NumPredictorsThe number of predictors (variables) in X.
obj.PredictorNamesPredictor variable names, specified as a cell array of character vectors. The variable names are in the same order in which they appear in the training data X.
obj.ResponseNameResponse variable name, specified as a character vector.
obj.ClassNamesNames of the classes in the training data Y with duplicates removed, specified as a cell array of character vectors.
obj.BreakTiesTie-breaking algorithm used by predict when multiple classes have the same smallest cost, specified as one of the following character arrays: "smallest" (default), which favors the class with the smallest index among the tied groups, i.e. the one that appears first in the training labelled data. "nearest", which favors the class with the nearest neighbor among the tied groups, i.e. the class with the closest member point according to the distance metric used. "nearest", which randomly picks one class among the tied groups.
obj.PriorPrior probabilities for each class, specified as a numeric vector. The order of the elements in Prior corresponds to the order of the classes in ClassNames.
obj.CostCost of the misclassification of a point, specified as a square matrix. Cost(i,j) is the cost of classifying a point into class j if its true class is i (that is, the rows correspond to the true class and the columns correspond to the predicted class). The order of the rows and columns in Cost corresponds to the order of the classes in ClassNames. The number of rows and columns in Cost is the number of unique classes in the response. By default, Cost(i,j) = 1 if i != j, and Cost(i,j) = 0 if i = j. In other words, the cost is 0 for correct classification and 1 for incorrect classification.
obj.NumNeighborsNumber of nearest neighbors in X used to classify each point during prediction, specified as a positive integer value.
obj.DistanceDistance metric, specified as a character vector. The allowable distance metric names depend on the choice of the neighbor-searcher method. See the available distance metrics in knnseaarch for more info.
obj.DistanceWeightDistance weighting function, specified as a function handle, which accepts a matrix of nonnegative distances, and returns a matrix the same size containing nonnegative distance weights.
obj.DistParameterParameter for the distance metric, specified either as a positive definite covariance matrix (when the distance metric is "mahalanobis", or a positive scalar as the Minkowski distance exponent (when the distance metric is "minkowski", or a vector of positive scale values with length equal to the number of columns of X (when the distance metric is "seuclidean". For any other distance metric, the value of DistParameter is empty.
obj.NSMethodNearest neighbor search method, specified as either "kdtree", which creates and uses a Kd-tree to find nearest neighbors, or "exhaustive", which uses the exhaustive search algorithm by computing the distance values from all points in X to find nearest neighbors.
obj.IncludeTiesA boolean flag indicating whether prediction includes all the neighbors whose distance values are equal to the k^th smallest distance. If IncludeTies is true, prediction includes all of these neighbors. Otherwise, prediction uses exactly k neighbors.
obj.BucketSizeMaximum number of data points in the leaf node of the Kd-tree, specified as positive integer value. This argument is meaningful only when NSMethod is "kdtree".

See also: fitcknn, knnsearch, rangesearch, pdist2

Source Code: ClassificationKNN

Method: predict

ClassificationKNN: label = predict (obj, XC)
ClassificationKNN: [label, score, cost] = predict (obj, XC)

Classify new data points into categories using the kNN algorithm from a k-Nearest Neighbor classification model.

label = predict (obj, XC) returns the matrix of labels predicted for the corresponding instances in XC, using the predictor data in obj.X and corresponding labels, obj.Y, stored in the k-Nearest Neighbor classification model, obj.

XC must be an M×P numeric matrix with the same number of features P as the corresponding predictors of the kNN model in obj.

[label, score, cost] = predict (obj, XC) also returns score, which contains the predicted class scores or posterior probabilities for each instance of the corresponding unique classes, and cost, which is a matrix containing the expected cost of the classifications.

See also: fitcknn, ClassificationKNN

Example: 1

 

 ## Create a k-nearest neighbor classifier for Fisher's iris data with k = 5.
 ## Evaluate some model predictions on new data.

 load fisheriris
 x = meas;
 y = species;
 xc = [min(x); mean(x); max(x)];
 obj = fitcknn (x, y, "NumNeighbors", 5, "Standardize", 1);
 [label, score, cost] = predict (obj, xc)

label =
{
  [1,1] = versicolor
  [2,1] = versicolor
  [3,1] = virginica
}

score =

   0.4000   0.6000        0
        0   1.0000        0
        0        0   1.0000

cost =

   0.6000   0.4000   1.0000
   1.0000        0   1.0000
   1.0000   1.0000        0

                    

Example: 2

 

 ## Train a k-nearest neighbor classifier for k = 10
 ## and plot the decision boundaries.

 load fisheriris
 idx = ! strcmp (species, "setosa");
 X = meas(idx,3:4);
 Y = cast (strcmpi (species(idx), "virginica"), "double");
 obj = fitcknn (X, Y, "Standardize", 1, "NumNeighbors", 10, "NSMethod", "exhaustive")
 x1 = [min(X(:,1)):0.03:max(X(:,1))];
 x2 = [min(X(:,2)):0.02:max(X(:,2))];
 [x1G, x2G] = meshgrid (x1, x2);
 XGrid = [x1G(:), x2G(:)];
 pred = predict (obj, XGrid);
 gidx = logical (str2num (cell2mat (pred)));

 figure
 scatter (XGrid(gidx,1), XGrid(gidx,2), "markerfacecolor", "magenta");
 hold on
 scatter (XGrid(!gidx,1), XGrid(!gidx,2), "markerfacecolor", "red");
 plot (X(Y == 0, 1), X(Y == 0, 2), "ko", X(Y == 1, 1), X(Y == 1, 2), "kx");
 xlabel ("Petal length (cm)");
 ylabel ("Petal width (cm)");
 title ("5-Nearest Neighbor Classifier Decision Boundary");
 legend ({"Versicolor Region", "Virginica Region", ...
         "Sampled Versicolor", "Sampled Virginica"}, ...
         "location", "northwest")
 axis tight
 hold off

obj =

  ClassificationKNN object with properties:

            BreakTies: smallest
           BucketSize: [1x1 double]
           ClassNames: [2x1 cell]
                 Cost: [2x2 double]
        DistParameter: [0x0 double]
             Distance: euclidean
       DistanceWeight: [1x1 function_handle]
          IncludeTies: 0
                   Mu: [1x2 double]
             NSMethod: exhaustive
         NumNeighbors: [1x1 double]
      NumObservations: [1x1 double]
        NumPredictors: [1x1 double]
       PredictorNames: [1x2 cell]
                Prior: [2x1 double]
         ResponseName: Y
             RowsUsed: [100x1 double]
                Sigma: [1x2 double]
          Standardize: 1
                    X: [100x2 double]
                    Y: [100x1 double]

                    
plotted figure

statistics-release-1.6.3/docs/ClusterCriterion.html000066400000000000000000000204511456127120000224470ustar00rootroot00000000000000 Statistics: ClusterCriterion

Class Definition: ClusterCriterion

statistics: obj = ClusterCriterion (x, clust, criterion)

A clustering evaluation object as created by evalclusters.

ClusterCriterion is a superclass for clustering evaluation objects as created by evalclusters.

List of public properties:

ClusteringFunction

a valid clustering funtion name or function handle. It can be empty if the clustering solutions are passed as an input matric.

CriterionName

a valid criterion name to evaluate the clustering solutions.

CriterionValues

a vector of values as generated by the evaluation criterion for each clustering solution.

InspectedK

the list of proposed cluster numbers.

Missing

a logical vector of missing observations. When there are NaN values in the data matrix, the corresponding observation is excluded.

NumObservations

the number of non-missing observations in the data matrix.

OptimalK

the optimal number of clusters.

OptimalY

the clustering solution corresponding to OptimalK.

X

the data matrix.

List of public methods:

addK

add a list of numbers of clusters to evaluate.

compact

return a compact clustering evaluation object. Not implemented

plot

plot the clustering evaluation values against the corresponding number of clusters.

See also: evalclusters, CalinskiHarabaszEvaluation, DaviesBouldinEvaluation, GapEvaluation, SilhouetteEvaluation

Source Code: ClusterCriterion

Method: addK

ClusterCriterion: obj = addK (obj, K)

Add a new cluster array to inspect the ClusterCriterion object.

Method: compact

ClusterCriterion: obj = compact (obj)

Return a compact ClusterCriterion object (not implemented yet).

Method: plot

ClusterCriterion: plot (obj)
ClusterCriterion: h = plot (obj)

Plot the evaluation results.

Plot the CriterionValues against InspectedK from the ClusterCriterion, obj, to the current plot. It can also return a handle to the current plot.

statistics-release-1.6.3/docs/ConfusionMatrixChart.html000066400000000000000000000202441456127120000232610ustar00rootroot00000000000000 Statistics: ConfusionMatrixChart

Class Definition: ConfusionMatrixChart

statistics: cmc = ConfusionMatrixChart ()

Create object cmc, a Confusion Matrix Chart object.

"DiagonalColor"

The color of the patches on the diagonal, default is [0.0, 0.4471, 0.7412].

"OffDiagonalColor"

The color of the patches off the diagonal, default is [0.851, 0.3255, 0.098].

"GridVisible"

Available values: on (default), off.

"Normalization"

Available values: absolute (default), column-normalized, row-normalized, total-normalized.

"ColumnSummary"

Available values: off (default), absolute, column-normalized,total-normalized.

"RowSummary"

Available values: off (default), absolute, row-normalized, total-normalized.

MATLAB compatibility – the not implemented properties are: FontColor, PositionConstraint, InnerPosition, Layout.

See also: confusionchart

Source Code: ConfusionMatrixChart

Method: disp

ConfusionMatrixChart: disp (cmc, order)

Display the properties of the ConfusionMatrixChart object cmc.

Method: sortClasses

ConfusionMatrixChart: sortClasses (cmc, order)

Sort the classes of the ConfusionMatrixChart object cmc according to order.

Valid values for order can be an array or cell array including the same class labels as cm, or a value like "auto", "ascending-diagonal", "descending-diagonal" and "cluster".

Example: 1

 

 ## Create a simple ConfusionMatrixChart Object

 cm = ConfusionMatrixChart (gca, [1 2; 1 2], {"A","B"}, {"XLabel","LABEL A"})
 NormalizedValues = cm.NormalizedValues
 ClassLabels = cm.ClassLabels

cm =

ConfusionMatrixChart with properties:

	NormalizedValues: [ 2x2 double ]
	ClassLabels: { 1x2 cell }


NormalizedValues =

   1   2
   1   2

ClassLabels =
{
  [1,1] = A
  [1,2] = B
}

                    
plotted figure

statistics-release-1.6.3/docs/DaviesBouldinEvaluation.html000066400000000000000000000161671456127120000237400ustar00rootroot00000000000000 Statistics: DaviesBouldinEvaluation

Class Definition: DaviesBouldinEvaluation

Function File: obj = evalclusters (x, clust, DaviesBouldin)
Function File: obj = evalclusters (…, Name, Value)

A Davies-Bouldin object to evaluate clustering solutions.

A DaviesBouldinEvaluation object is a ClusterCriterion object used to evaluate clustering solutions using the Davies-Bouldin criterion.

The Davies-Bouldin criterion is based on the ratio between the distances between clusters and within clusters, that is the distances between the centroids and the distances between each datapoint and its centroid.

The best solution according to the Davies-Bouldin criterion is the one that scores the lowest value.

See also: evalclusters, ClusterCriterion, CalinskiHarabaszEvaluation, GapEvaluation, SilhouetteEvaluation

Source Code: DaviesBouldinEvaluation

Method: addK

DaviesBouldinEvaluation: obj = addK (obj, K)

Add a new cluster array to inspect the DaviesBouldinEvaluation object.

Method: compact

DaviesBouldinEvaluation: obj = compact (obj)

Return a compact DaviesBouldinEvaluation object (not implemented yet).

Method: plot

DaviesBouldinEvaluation: plot (obj)
DaviesBouldinEvaluation: h = plot (obj)

Plot the evaluation results.

Plot the CriterionValues against InspectedK from the DaviesBouldinEvaluation ClusterCriterion, obj, to the current plot. It can also return a handle to the current plot.

statistics-release-1.6.3/docs/GapEvaluation.html000066400000000000000000000207711456127120000217130ustar00rootroot00000000000000 Statistics: GapEvaluation

Class Definition: GapEvaluation

statistics: obj = evalclusters (x, clust, gap)
statistics: obj = evalclusters (…, Name, Value)

A gap object to evaluate clustering solutions.

A GapEvaluation object is a ClusterCriterion object used to evaluate clustering solutions using the gap criterion, which is a mathematical formalization of the elbow method.

List of public properties specific to SilhouetteEvaluation:

B

the number of reference datasets to generate.

Distance

a valid distance metric name, or a function handle as accepted by the pdist function.

ExpectedLogW

a vector of the expected values for the logarithm of the within clusters dispersion.

LogW

a vector of the values of the logarithm of the within clusters dispersion.

ReferenceDistribution

a valid name for the reference distribution, namely: PCA (default) or uniform.

SE

a vector of the standard error of the expected values for the logarithm of the within clusters dispersion.

SearchMethod

a valid name for the search method to use: globalMaxSE (default) or firstMaxSE.

StdLogW

a vector of the standard deviation of the expected values for the logarithm of the within clusters dispersion.

The best solution according to the gap criterion depends on the chosen search method. When the search method is globalMaxSE, the chosen gap value is the smaller one which is inside a standard error from the max gap value; when the search method is firstMaxSE, the chosen gap value is the first one which is inside a standard error from the next gap value.

See also: evalclusters, ClusterCriterion, CalinskiHarabaszEvaluation, DaviesBouldinEvaluation, SilhouetteEvaluation

Source Code: GapEvaluation

Method: addK

GapEvaluation: obj = addK (obj, K)

Add a new cluster array to inspect the GapEvaluation object.

Method: compact

GapEvaluation: obj = compact (obj)

Return a compact GapEvaluation object (not implemented yet).

Method: plot

ClusterCriterion: plot (obj)
ClusterCriterion: h = plot (obj)

Plot the evaluation results.

Plot the CriterionValues against InspectedK from the GapEvaluation ClusterCriterion, obj, and show the standard deviation to the current plot. It can also return a handle to the current plot.

statistics-release-1.6.3/docs/RegressionGAM.html000066400000000000000000000433621456127120000216220ustar00rootroot00000000000000 Statistics: RegressionGAM

Class Definition: RegressionGAM

statistics: obj = RegressionGAM (X, Y)
statistics: obj = RegressionGAM (…, name, value)

Create a RegressionGAM class object containing a Generalised Additive Model (GAM) for regression.

A RegressionGAM class object can store the predictors and response data along with various parameters for the GAM model. It is recommended to use the fitrgam function to create a RegressionGAM object.

obj = RegressionGAM (X, Y) returns an object of class RegressionGAM, with matrix X containing the predictor data and vector Y containing the continuous response data.

  • X must be a N×P numeric matrix of input data where rows correspond to observations and columns correspond to features or variables. X will be used to train the GAM model.
  • Y must be N×1 numeric vector containing the response data corresponding to the predictor data in X. Y must have same number of rows as X.

obj = RegressionGAM (…, name, value) returns an object of class RegressionGAM with additional properties specified by Name-Value pair arguments listed below.

NameValue
"predictors"Predictor Variable names, specified as a row vector cell of strings with the same length as the columns in X. If omitted, the program will generate default variable names (x1, x2, ..., xn) for each column in X.
"responsename"Response Variable Name, specified as a string. If omitted, the default value is "Y".
"formula"a model specification given as a string in the form "Y ~ terms" where Y represents the reponse variable and terms the predictor variables. The formula can be used to specify a subset of variables for training model. For example: "Y ~ x1 + x2 + x3 + x4 + x1:x2 + x2:x3" specifies four linear terms for the first four columns of for predictor data, and x1:x2 and x2:x3 specify the two interaction terms for 1st-2nd and 3rd-4th columns respectively. Only these terms will be used for training the model, but X must have at least as many columns as referenced in the formula. If Predictor Variable names have been defined, then the terms in the formula must reference to those. When "formula" is specified, all terms used for training the model are referenced in the IntMatrix field of the obj class object as a matrix containing the column indexes for each term including both the predictors and the interactions used.
"interactions"a logical matrix, a positive integer scalar, or the string "all" for defining the interactions between predictor variables. When given a logical matrix, it must have the same number of columns as X and each row corresponds to a different interaction term combining the predictors indexed as true. Each interaction term is appended as a column vector after the available predictor column in X. When "all" is defined, then all possible combinations of interactions are appended in X before training. At the moment, parsing a positive integer has the same effect as the "all" option. When "interactions" is specified, only the interaction terms appended to X are referenced in the IntMatrix field of the obj class object.
"knots"a scalar or a row vector with the same columns as X. It defines the knots for fitting a polynomial when training the GAM. As a scalar, it is expanded to a row vector. The default value is 5, hence expanded to ones (1, columns (X)) * 5. You can parse a row vector with different number of knots for each predictor variable to be fitted with, although not recommended.
"order"a scalar or a row vector with the same columns as X. It defines the order of the polynomial when training the GAM. As a scalar, it is expanded to a row vector. The default values is 3, hence expanded to ones (1, columns (X)) * 3. You can parse a row vector with different number of polynomial order for each predictor variable to be fitted with, although not recommended.
"dof"a scalar or a row vector with the same columns as X. It defines the degrees of freedom for fitting a polynomial when training the GAM. As a scalar, it is expanded to a row vector. The default value is 8, hence expanded to ones (1, columns (X)) * 8. You can parse a row vector with different degrees of freedom for each predictor variable to be fitted with, although not recommended.
"tol"a positive scalar to set the tolerance for covergence during training. By defaul, it is set to 1e-3.

You can parse either a "formula" or an "interactions" optional parameter. Parsing both parameters will result an error. Accordingly, you can only pass up to two parameters among "knots", "order", and "dof" to define the required polynomial for training the GAM model.

See also: fitrgam, regress, regress_gp

Source Code: RegressionGAM

Method: predict

RegressionGAM: yFit = predict (obj, Xfit)
RegressionGAM: yFit = predict (…, Name, Value)
RegressionGAM: [yFit, ySD, yInt] = predict (…)

Predict new data points using generalized additive model regression object.

yFit = predict (obj, Xfit returns a vector of predicted responses, yFit, for the predictor data in matrix Xfit based on the Generalized Additive Model in obj. Xfit must have the same number of features/variables as the training data in obj.

  • obj must be a RegressionGAM class object.

[yFit, ySD, yInt] = predict (obj, Xfit also returns the standard deviations, ySD, and prediction intervals, yInt, of the response variable yFit, evaluated at each observation in the predictor data Xfit.

yFit = predict (…, Name, Value) returns the aforementioned results with additional properties specified by Name-Value pair arguments listed below.

NameValue
"alpha"significance level of the prediction intervals yInt, specified as scalar in range [0,1]. The default value is 0.05, which corresponds to 95% prediction intervals.
"includeinteractions"a boolean flag to include interactions to predict new values based on Xfit. By default, "includeinteractions" is true when the GAM model in obj contains a obj.Formula or obj.Interactions fields. Otherwise, is set to false. If set to true when no interactions are present in the trained model, it will result to an error. If set to false when using a model that includes interactions, the predictions will be made on the basic model without any interaction terms. This way you can make predictions from the same GAM model without having to retrain it.

See also: fitrgam, RegressionGAM

Example: 1

 

 ## Train a RegressionGAM Model for synthetic values
 f1 = @(x) cos (3 * x);
 f2 = @(x) x .^ 3;
 x1 = 2 * rand (50, 1) - 1;
 x2 = 2 * rand (50, 1) - 1;
 y = f1(x1) + f2(x2);
 y = y + y .* 0.2 .* rand (50,1);
 X = [x1, x2];
 a = fitrgam (X, y, "tol", 1e-3)

a =

  RegressionGAM object with properties:

            BaseModel: [1x1 struct]
                  DoF: [1x2 double]
              Formula: [0x0 double]
            IntMatrix: [0x0 double]
         Interactions: [0x0 double]
                Knots: [1x2 double]
            ModelwInt: [0x0 double]
      NumObservations: [1x1 double]
        NumPredictors: [1x1 double]
                Order: [1x2 double]
       PredictorNames: [1x2 cell]
         ResponseName: Y
             RowsUsed: [50x1 double]
                  Tol: [1x1 double]
                    X: [50x2 double]
                    Y: [50x1 double]

                    

Example: 2

 

 ## Declare two different functions
 f1 = @(x) cos (3 * x);
 f2 = @(x) x .^ 3;

 ## Generate 80 samples for f1 and f2
 x = [-4*pi:0.1*pi:4*pi-0.1*pi]';
 X1 = f1 (x);
 X2 = f2 (x);

 ## Create a synthetic response by adding noise
 rand ("seed", 3);
 Ytrue = X1 + X2;
 Y = Ytrue + Ytrue .* 0.2 .* rand (80,1);

 ## Assemble predictor data
 X = [X1, X2];

 ## Train the GAM and test on the same data
 a = fitrgam (X, Y, "order", [5, 5]);
 [ypred, ySDsd, yInt] = predict (a, X);

 ## Plot the results
 figure
 [sortedY, indY] = sort (Ytrue);
 plot (sortedY, "r-");
 xlim ([0, 80]);
 hold on
 plot (ypred(indY), "g+")
 plot (yInt(indY,1), "k:")
 plot (yInt(indY,2), "k:")
 xlabel ("Predictor samples");
 ylabel ("Response");
 title ("actual vs predicted values for function f1(x) = cos (3x) ");
 legend ({"Theoretical Response", "Predicted Response", "Prediction Intervals"});

 ## Use 30% Holdout partitioning for training and testing data
 C = cvpartition (80, "HoldOut", 0.3);
 [ypred, ySDsd, yInt] = predict (a, X(test(C),:));

 ## Plot the results
 figure
 [sortedY, indY] = sort (Ytrue(test(C)));
 plot (sortedY, 'r-');
 xlim ([0, sum(test(C))]);
 hold on
 plot (ypred(indY), "g+")
 plot (yInt(indY,1),'k:')
 plot (yInt(indY,2),'k:')
 xlabel ("Predictor samples");
 ylabel ("Response");
 title ("actual vs predicted values for function f1(x) = cos (3x) ");
 legend ({"Theoretical Response", "Predicted Response", "Prediction Intervals"});

                    
plotted figure

plotted figure

statistics-release-1.6.3/docs/SilhouetteEvaluation.html000066400000000000000000000167771456127120000233440ustar00rootroot00000000000000 Statistics: SilhouetteEvaluation

Class Definition: SilhouetteEvaluation

Function File: obj = evalclusters (x, clust, silhouette)
Function File: obj = evalclusters (…, Name, Value)

A silhouette object to evaluate clustering solutions.

A SilhouetteEvaluation object is a ClusterCriterion object used to evaluate clustering solutions using the silhouette criterion.

List of public properties specific to SilhouetteEvaluation:

Distance

a valid distance metric name, or a function handle or a numeric array as generated by the pdist function.

ClusterPriors

a valid name for the evaluation of silhouette values: empirical (default) or equal.

ClusterSilhouettes

a cell array with the silhouette values of each data point for each cluster number.

The best solution according to the silhouette criterion is the one that scores the highest average silhouette value.

See also: evalclusters, ClusterCriterion, CalinskiHarabaszEvaluation, DaviesBouldinEvaluation, GapEvaluation

Source Code: SilhouetteEvaluation

Method: addK

SilhouetteEvaluation: obj = addK (obj, K)

Add a new cluster array to inspect the SilhouetteEvaluation object.

Method: compact

SilhouetteEvaluation: obj = compact (obj)

Return a compact SilhouetteEvaluation object (not implemented yet).

Method: plot

SilhouetteEvaluation: plot (obj)
SilhouetteEvaluation: h = plot (obj)

Plot the evaluation results.

Plot the CriterionValues against InspectedK from the SilhouetteEvaluation ClusterCriterion, obj, to the current plot. It can also return a handle to the current plot.

statistics-release-1.6.3/docs/adtest.html000066400000000000000000000205661456127120000204420ustar00rootroot00000000000000 Statistics: adtest

Function Reference: adtest

statistics: h = adtest (x)
statistics: h = adtest (x, Name, Value)
statistics: [h, pval] = adtest (…)
statistics: [h, pval, adstat, cv] = adtest (…)

Anderson-Darling goodness-of-fit hypothesis test.

h = adtest (x) returns a test decision for the null hypothesis that the data in vector x is from a population with a normal distribution, using the Anderson-Darling test. The alternative hypothesis is that x is not from a population with a normal distribution. The result h is 1 if the test rejects the null hypothesis at the 5% significance level, or 0 otherwise.

h = adtest (x, Name, Value) returns a test decision for the Anderson-Darling test with additional options specified by one or more Name-Value pair arguments. For example, you can specify a null distribution other than normal, or select an alternative method for calculating the p-value, such as a Monte Carlo simulation.

The following parameters can be parsed as Name-Value pair arguments.

NameDescription
"Distribution"The distribution being tested for. It tests whether x could have come from the specified distribution. There are two choise available for parsing distribution parameters:
  • One of the following char strings: "norm", "exp", "ev", "logn", "weibull", for defining either the ’normal’, ’exponential’, ’extreme value’, lognormal, or ’Weibull’ distribution family, accordingly. In this case, x is tested against a composite hypothesis for the specified distribution family and the required distribution parameters are estimated from the data in x. The default is "norm".
  • A cell array defining a distribution in which the first cell contains a char string with the distribution name, as mentioned above, and the consecutive cells containing all specified parameters of the null distribution. In this case, x is tested against a simple hypothesis.
"Alpha"Significance level alpha for the test. Any scalar numeric value between 0 and 1. The default is 0.05 corresponding to the 5% significance level.
"MCTol"Monte-Carlo standard error for the p-value, pval, value. which must be a positive scalar value. In this case, an approximation for the p-value is computed directly, using Monte-Carlo simulations.
"Asymptotic"Method for calculating the p-value of the Anderson-Darling test, which can be either true or false logical value. If you specify ’true’, adtest estimates the p-value using the limiting distribution of the Anderson-Darling test statistic. If you specify ’false’, adtest calculates the p-value based on an analytical formula. For sample sizes greater than 120, the limiting distribution estimate is likely to be more accurate than the small sample size approximation method.
  • If you specify a distribution family with unknown parameters for the distribution Name-Value pair (i.e. composite distribution hypothesis test), the "Asymptotic" option must be false.
  • If you use MCTol to calculate the p-value using a Monte Carlo simulation, the "Asymptotic" option must be false.

[h, pval] = adtest (…) also returns the p-value, pval, of the Anderson-Darling test, using any of the input arguments from the previous syntaxes.

[h, pval, adstat, cv] = adtest (…) also returns the test statistic, adstat, and the critical value, cv, for the Anderson-Darling test.

The Anderson-Darling test statistic belongs to the family of Quadratic Empirical Distribution Function statistics, which are based on the weighted sum of the difference [Fn(×)-F(×)]^2 over the ordered sample values X1 < X2 < ... < Xn, where F is the hypothesized continuous distribution and Fn is the empirical CDF based on the data sample with n sample points.

See also: kstest

Source Code: adtest

statistics-release-1.6.3/docs/anova1.html000066400000000000000000000307411456127120000203370ustar00rootroot00000000000000 Statistics: anova1

Function Reference: anova1

statistics: p = anova1 (x)
statistics: p = anova1 (x, group)
statistics: p = anova1 (x, group, displayopt)
statistics: p = anova1 (x, group, displayopt, vartype)
statistics: [p, atab] = anova1 (x, …)
statistics: [p, atab, stats] = anova1 (x, …)

Perform a one-way analysis of variance (ANOVA) for comparing the means of two or more groups of data under the null hypothesis that the groups are drawn from distributions with the same mean. For planned contrasts and/or diagnostic plots, use anovan instead.

anova1 can take up to three input arguments:

  • x contains the data and it can either be a vector or matrix. If x is a matrix, then each column is treated as a separate group. If x is a vector, then the group argument is mandatory.
  • group contains the names for each group. If x is a matrix, then group can either be a cell array of strings of a character array, with one row per column of x. If you want to omit this argument, enter an empty array ([]). If x is a vector, then group must be a vector of the same length, or a string array or cell array of strings with one row for each element of x. x values corresponding to the same value of group are placed in the same group.
  • displayopt is an optional parameter for displaying the groups contained in the data in a boxplot. If omitted, it is ’on’ by default. If group names are defined in group, these are used to identify the groups in the boxplot. Use ’off’ to omit displaying this figure.
  • vartype is an optional parameter to used to indicate whether the groups can be assumed to come from populations with equal variance. When vartype is "equal" the variances are assumed to be equal (this is the default). When vartype is "unequal" the population variances are not assumed to be equal and Welch’s ANOVA test is used instead.

anova1 can return up to three output arguments:

  • p is the p-value of the null hypothesis that all group means are equal.
  • atab is a cell array containing the results in a standard ANOVA table.
  • stats is a structure containing statistics useful for performing a multiple comparison of means with the MULTCOMPARE function.

If anova1 is called without any output arguments, then it prints the results in a one-way ANOVA table to the standard output. It is also printed when displayopt is ’on’.

Examples:

 
 x = meshgrid (1:6);
 x = x + normrnd (0, 1, 6, 6);
 anova1 (x, [], 'off');
 [p, atab] = anova1(x);
 
 
 x = ones (50, 4) .* [-2, 0, 1, 5];
 x = x + normrnd (0, 2, 50, 4);
 groups = {"A", "B", "C", "D"};
 anova1 (x, groups);
 

See also: anova2, anovan, multcompare

Source Code: anova1

Example: 1

 

 x = meshgrid (1:6);
 randn ("seed", 15);    # for reproducibility
 x = x + normrnd (0, 1, 6, 6);
 anova1 (x, [], 'off');


                      ANOVA Table

Source        SS      df        MS       F      Prob>F
------------------------------------------------------
Groups     96.8124     5    19.3625    31.76    0.0000
Error      18.2881    30     0.6096
Total     115.1004    35

                    

Example: 2

 

 x = meshgrid (1:6);
 randn ("seed", 15);    # for reproducibility
 x = x + normrnd (0, 1, 6, 6);
 [p, atab] = anova1(x);


                      ANOVA Table

Source        SS      df        MS       F      Prob>F
------------------------------------------------------
Groups     96.8124     5    19.3625    31.76    0.0000
Error      18.2881    30     0.6096
Total     115.1004    35

                    
plotted figure

Example: 3

 

 x = ones (50, 4) .* [-2, 0, 1, 5];
 randn ("seed", 13);    # for reproducibility
 x = x + normrnd (0, 2, 50, 4);
 groups = {"A", "B", "C", "D"};
 anova1 (x, groups);


                      ANOVA Table

Source        SS      df        MS       F      Prob>F
------------------------------------------------------
Groups   1392.4448     3   464.1483   105.41    0.0000
Error     863.0487   196     4.4033
Total    2255.4935   199

                    
plotted figure

Example: 4

 

 y = [54 87 45; 23 98 39; 45 64 51; 54 77 49; 45 89 50; 47 NaN 55];
 g = [1  2  3 ; 1  2  3 ; 1  2  3 ; 1  2  3 ; 1  2  3 ; 1  2  3 ];
 anova1 (y(:), g(:), "on", "unequal");


           Welch's ANOVA Table

Source        F     df     dfe     Prob>F
-----------------------------------------
Groups     15.52     2    7.58     0.0021

                    
plotted figure

statistics-release-1.6.3/docs/anova2.html000066400000000000000000000260641456127120000203430ustar00rootroot00000000000000 Statistics: anova2

Function Reference: anova2

statistics: p = anova2 (x, reps)
statistics: p = anova2 (x, reps, displayopt)
statistics: p = anova2 (x, reps, displayopt, model)
statistics: [p, atab] = anova2 (…)
statistics: [p, atab, stats] = anova2 (…)

Performs two-way factorial (crossed) or a nested analysis of variance (ANOVA) for balanced designs. For unbalanced factorial designs, diagnostic plots and/or planned contrasts, use anovan instead.

anova2 requires two input arguments with an optional third and fourth:

  • x contains the data and it must be a matrix of at least two columns and two rows.
  • reps is the number of replicates for each combination of factor groups.
  • displayopt is an optional parameter for displaying the ANOVA table, when it is ’on’ (default) and suppressing the display when it is ’off’.
  • model is an optional parameter to specify the model type as either:
    • "interaction" or "full" (default): compute both main effects and their interaction
    • "linear": compute both main effects without an interaction. When reps > 1 the test is suitable for a balanced randomized block design. When reps == 1, the test becomes a One-way Repeated Measures (RM)-ANOVA with Greenhouse-Geisser correction to the column factor degrees of freedom to make the test robust to violations of sphericity
    • "nested": treat the row factor as nested within columns. Note that the row factor is considered a random factor in the calculation of the statistics.

anova2 returns up to three output arguments:

  • p is the p-value of the null hypothesis that all group means are equal.
  • atab is a cell array containing the results in a standard ANOVA table.
  • stats is a structure containing statistics useful for performing a multiple comparison of means with the MULTCOMPARE function.

If anova2 is called without any output arguments, then it prints the results in a one-way ANOVA table to the standard output as if displayopt is ’on’.

Examples:

 
 load popcorn;
 anova2 (popcorn, 3);
 
 
 [p, anovatab, stats] = anova2 (popcorn, 3, "off");
 disp (p);
 

See also: anova1, anovan, multcompare

Source Code: anova2

Example: 1

 


 # Factorial (Crossed) Two-way ANOVA with Interaction

 popcorn = [5.5, 4.5, 3.5; 5.5, 4.5, 4.0; 6.0, 4.0, 3.0; ...
            6.5, 5.0, 4.0; 7.0, 5.5, 5.0; 7.0, 5.0, 4.5];

 [p, atab, stats] = anova2(popcorn, 3, "on");


                      ANOVA Table

Source             SS      df        MS       F      Prob>F
-----------------------------------------------------------
Columns         15.7500     2     7.8750    56.70    0.0000
Rows             4.5000     1     4.5000    32.40    0.0001
Interaction      0.0833     2     0.0417     0.30    0.7462
Error            1.6667    12     0.1389
Total           22.0000    17

                    

Example: 2

 


 # One-way Repeated Measures ANOVA (Rows are a crossed random factor)

 data = [54, 43, 78, 111;
         23, 34, 37, 41;
         45, 65, 99, 78;
         31, 33, 36, 35;
         15, 25, 30, 26];

 [p, atab, stats] = anova2 (data, 1, "on", "linear");


                      ANOVA Table

Source             SS      df        MS       F      Prob>F
-----------------------------------------------------------
Columns       2174.9500     3   724.9833     3.62    0.0873
Rows          8371.7000     4  2092.9250    10.45    0.0007
Error         2404.3000    12   200.3583
Total        12950.9500    19

Note: Greenhouse-Geisser's correction was applied to the
degrees of freedom for the Column factor: F(1.74,6.95)

                    

Example: 3

 


 # Balanced Nested One-way ANOVA (Rows are a nested random factor)

 data = [4.5924 7.3809 21.322; -0.5488 9.2085 25.0426; ...
         6.1605 13.1147 22.66; 2.3374 15.2654 24.1283; ...
         5.1873 12.4188 16.5927; 3.3579 14.3951 10.2129; ...
         6.3092 8.5986 9.8934; 3.2831 3.4945 10.0203];

 [p, atab, stats] = anova2 (data, 4, "on", "nested");


                      ANOVA Table

Source             SS      df        MS       F      Prob>F
-----------------------------------------------------------
Columns        745.3603     2   372.6802     4.02    0.1416
Rows           278.0185     3    92.6728     9.26    0.0006
Error          180.1804    18    10.0100
Total         1203.5592    23

Note: Rows are a random factor nested within the columns.
The Column F statistic uses the Row MS instead of the MSE.

                    
statistics-release-1.6.3/docs/anovan.html000066400000000000000000001360621456127120000204370ustar00rootroot00000000000000 Statistics: anovan

Function Reference: anovan

statistics: p = anovan (Y, GROUP)
statistics: p = anovan (Y, GROUP, name, value)
statistics: [p, atab] = anovan (…)
statistics: [p, atab, stats] = anovan (…)
statistics: [p, atab, stats, terms] = anovan (…)

Perform a multi (N)-way analysis of (co)variance (ANOVA or ANCOVA) to evaluate the effect of one or more categorical or continuous predictors (i.e. independent variables) on a continuous outcome (i.e. dependent variable). The algorithms used make anovan suitable for balanced or unbalanced factorial (crossed) designs. By default, anovan treats all factors as fixed. Examples of function usage can be found by entering the command demo anovan. A bootstrap resampling variant of this function, bootlm, is available in the statistics-resampling package and has similar usage.

Data is a single vector Y with groups specified by a corresponding matrix or cell array of group labels GROUP, where each column of GROUP has the same number of rows as Y. For example, if Y = [1.1;1.2]; GROUP = [1,2,1; 1,5,2]; then observation 1.1 was measured under conditions 1,2,1 and observation 1.2 was measured under conditions 1,5,2. If the GROUP provided is empty, then the linear model is fit with just the intercept (no predictors).

anovan can take a number of optional parameters as name-value pairs.

[…] = anovan (Y, GROUP, "continuous", continuous)

  • continuous is a vector of indices indicating which of the columns (i.e. factors) in GROUP should be treated as continuous predictors rather than as categorical predictors. The relationship between continuous predictors and the outcome should be linear.

[…] = anovan (Y, GROUP, "random", random)

  • random is a vector of indices indicating which of the columns (i.e. factors) in GROUP should be treated as random effects rather than fixed effects. Octave anovan provides only basic support for random effects. Specifically, since all F-statistics in anovan are calculated using the mean-squared error (MSE), any interaction terms containing a random effect are dropped from the model term definitions and their associated variance is pooled with the residual, unexplained variance making up the MSE. In effect, the model then fitted equates to a linear mixed model with random intercept(s). Variable names for random factors are appended with a ’ symbol.

[…] = anovan (Y, GROUP, "model", modeltype)

  • modeltype can specified as one of the following:
    • "linear" (default) : compute N main effects with no interactions.
    • "interaction" : compute N effects and N×(N-1) two-factor interactions
    • "full" : compute the N main effects and interactions at all levels
    • a scalar integer : representing the maximum interaction order
    • a matrix of term definitions : each row is a term and each column is a factor
     
     -- Example:
     A two-way ANOVA with interaction would be: [1 0; 0 1; 1 1]
     

[…] = anovan (Y, GROUP, "sstype", sstype)

  • sstype can specified as one of the following:
    • 1 : Type I sequential sums-of-squares.
    • 2 or "h" : Type II partially sequential (or hierarchical) sums-of-squares
    • 3 (default) : Type III partial, constrained or marginal sums-of-squares

[…] = anovan (Y, GROUP, "varnames", varnames)

  • varnames must be a cell array of strings with each element containing a factor name for each column of GROUP. By default (if not parsed as optional argument), varnames are "X1","X2","X3", etc.

[…] = anovan (Y, GROUP, "alpha", alpha)

  • alpha must be a scalar value between 0 and 1 requesting 100×(1-alpha)% confidence bounds for the regression coefficients returned in stats.coeffs (default 0.05 for 95% confidence).

[…] = anovan (Y, GROUP, "display", dispopt)

  • dispopt can be either "on" (default) or "off" and controls the display of the model formula, table of model parameters, the ANOVA table and the diagnostic plots. The F-statistic and p-values are formatted in APA-style. To avoid p-hacking, the table of model parameters is only displayed if we set planned contrasts (see below).

[…] = anovan (Y, GROUP, "contrasts", contrasts)

  • contrasts can be specified as one of the following:
    • A string corresponding to one of the built-in contrasts listed below:
      • "simple" or "anova" (default): Simple (ANOVA) contrast coding. (The first level appearing in the GROUP column is the reference level)
      • "poly": Polynomial contrast coding for trend analysis.
      • "helmert": Helmert contrast coding: the difference between each level with the mean of the subsequent levels.
      • "effect": Deviation effect coding. (The first level appearing in the GROUP column is omitted).
      • "sdif" or "sdiff": Successive differences contrast coding: the difference between each level with the previous level.
      • "treatment": Treatment contrast (or dummy) coding. (The first level appearing in the GROUP column is the reference level). These contrasts are not compatible with sstype = 3.
    • A matrix containing a custom contrast coding scheme (i.e. the generalized inverse of contrast weights). Rows in the contrast matrices correspond to factor levels in the order that they first appear in the GROUP column. The matrix must contain the same number of columns as there are the number of factor levels minus one.

    If the anovan model contains more than one factor and a built-in contrast coding scheme was specified, then those contrasts are applied to all factors. To specify different contrasts for different factors in the model, contrasts should be a cell array with the same number of cells as there are columns in GROUP. Each cell should define contrasts for the respective column in GROUP by one of the methods described above. If cells are left empty, then the default contrasts are applied. Contrasts for cells corresponding to continuous factors are ignored.

[…] = anovan (Y, GROUP, "weights", weights)

  • weights is an optional vector of weights to be used when fitting the linear model. Weighted least squares (WLS) is used with weights (that is, minimizing sum (weights * residuals .^ 2)); otherwise ordinary least squares (OLS) is used (default is empty for OLS).

anovan can return up to four output arguments:

p = anovan (…) returns a vector of p-values, one for each term.

[p, atab] = anovan (…) returns a cell array containing the ANOVA table.

[p, atab, stats] = anovan (…) returns a structure containing additional statistics, including degrees of freedom and effect sizes for each term in the linear model, the design matrix, the variance-covariance matrix, (weighted) model residuals, and the mean squared error. The columns of stats.coeffs (from left-to-right) report the model coefficients, standard errors, lower and upper 100×(1-alpha)% confidence interval bounds, t-statistics, and p-values relating to the contrasts. The number appended to each term name in stats.coeffnames corresponds to the column number in the relevant contrast matrix for that factor. The stats structure can be used as input for multcompare.

[p, atab, stats, terms] = anovan (…) returns the model term definitions.

See also: anova1, anova2, multcompare, fitlm

Source Code: anovan

Example: 1

 


 # Two-sample unpaired test on independent samples (equivalent to Student's
 # t-test). Note that the absolute value of t-statistic can be obtained by
 # taking the square root of the reported F statistic. In this example,
 # t = sqrt (1.44) = 1.20.

 score = [54 23 45 54 45 43 34 65 77 46 65]';
 gender = {"male" "male" "male" "male" "male" "female" "female" "female" ...
           "female" "female" "female"}';

 [P, ATAB, STATS] = anovan (score, gender, "display", "on", "varnames", "gender");


MODEL FORMULA (based on Wilkinson's notation):

Y ~ 1 + gender

ANOVA TABLE (Type III sums-of-squares):

Source                   Sum Sq.    d.f.    Mean Sq.  R Sq.            F  Prob>F
--------------------------------------------------------------------------------
gender                    318.11       1      318.11  0.138         1.44    .261 
Error                     1992.8       9      221.42
Total                     2310.9      10 

                    
plotted figure

Example: 2

 


 # Two-sample paired test on dependent or matched samples equivalent to a
 # paired t-test. As for the first example, the t-statistic can be obtained by
 # taking the square root of the reported F statistic. Note that the interaction
 # between treatment x subject was dropped from the full model by assigning
 # subject as a random factor (').

 score = [4.5 5.6; 3.7 6.4; 5.3 6.4; 5.4 6.0; 3.9 5.7]';
 treatment = {"before" "after"; "before" "after"; "before" "after";
              "before" "after"; "before" "after"}';
 subject = {"GS" "GS"; "JM" "JM"; "HM" "HM"; "JW" "JW"; "PS" "PS"}';

 [P, ATAB, STATS] = anovan (score(:), {treatment(:), subject(:)}, ...
                            "model", "full", "random", 2, "sstype", 2, ...
                            "varnames", {"treatment", "subject"}, ...
                            "display", "on");


MODEL FORMULA (based on Wilkinson's notation):

Y ~ 1 + treatment + (1|subject)

ANOVA TABLE (Type II sums-of-squares):

Source                   Sum Sq.    d.f.    Mean Sq.  R Sq.            F  Prob>F
--------------------------------------------------------------------------------
treatment                  5.329       1       5.329  0.801        16.08    .016 
subject'                   1.674       4      0.4185  0.558         1.26    .413 
Error                      1.326       4      0.3315
Total                      8.329       9 

                    
plotted figure

Example: 3

 


 # One-way ANOVA on the data from a study on the strength of structural beams,
 # in Hogg and Ledolter (1987) Engineering Statistics. New York: MacMillan

 strength = [82 86 79 83 84 85 86 87 74 82 ...
            78 75 76 77 79 79 77 78 82 79]';
 alloy = {"st","st","st","st","st","st","st","st", ...
          "al1","al1","al1","al1","al1","al1", ...
          "al2","al2","al2","al2","al2","al2"}';

 [P, ATAB, STATS] = anovan (strength, alloy, "display", "on", ...
                            "varnames", "alloy");


MODEL FORMULA (based on Wilkinson's notation):

Y ~ 1 + alloy

ANOVA TABLE (Type III sums-of-squares):

Source                   Sum Sq.    d.f.    Mean Sq.  R Sq.            F  Prob>F
--------------------------------------------------------------------------------
alloy                      184.8       2        92.4  0.644        15.40   <.001 
Error                        102      17           6
Total                      286.8      19 

                    
plotted figure

Example: 4

 


 # One-way repeated measures ANOVA on the data from a study on the number of
 # words recalled by 10 subjects for three time condtions, in Loftus & Masson
 # (1994) Psychon Bull Rev. 1(4):476-490, Table 2. Note that the interaction
 # between seconds x subject was dropped from the full model by assigning
 # subject as a random factor (').

 words = [10 13 13; 6 8 8; 11 14 14; 22 23 25; 16 18 20; ...
          15 17 17; 1 1 4; 12 15 17;  9 12 12;  8 9 12];
 seconds = [1 2 5; 1 2 5; 1 2 5; 1 2 5; 1 2 5; ...
            1 2 5; 1 2 5; 1 2 5; 1 2 5; 1 2 5;];
 subject = [ 1  1  1;  2  2  2;  3  3  3;  4  4  4;  5  5  5; ...
             6  6  6;  7  7  7;  8  8  8;  9  9  9; 10 10 10];

 [P, ATAB, STATS] = anovan (words(:), {seconds(:), subject(:)}, ...
                            "model", "full", "random", 2, "sstype", 2, ...
                            "display", "on", "varnames", {"seconds", "subject"});


MODEL FORMULA (based on Wilkinson's notation):

Y ~ 1 + seconds + (1|subject)

ANOVA TABLE (Type II sums-of-squares):

Source                   Sum Sq.    d.f.    Mean Sq.  R Sq.            F  Prob>F
--------------------------------------------------------------------------------
seconds                   52.267       2      26.133  0.825        42.51   <.001 
subject'                  942.53       9      104.73  0.988       170.34   <.001 
Error                     11.067      18     0.61481
Total                     1005.9      29 

                    
plotted figure

Example: 5

 


 # Balanced two-way ANOVA with interaction on the data from a study of popcorn
 # brands and popper types, in Hogg and Ledolter (1987) Engineering Statistics.
 # New York: MacMillan

 popcorn = [5.5, 4.5, 3.5; 5.5, 4.5, 4.0; 6.0, 4.0, 3.0; ...
            6.5, 5.0, 4.0; 7.0, 5.5, 5.0; 7.0, 5.0, 4.5];
 brands = {"Gourmet", "National", "Generic"; ...
           "Gourmet", "National", "Generic"; ...
           "Gourmet", "National", "Generic"; ...
           "Gourmet", "National", "Generic"; ...
           "Gourmet", "National", "Generic"; ...
           "Gourmet", "National", "Generic"};
 popper = {"oil", "oil", "oil"; "oil", "oil", "oil"; "oil", "oil", "oil"; ...
           "air", "air", "air"; "air", "air", "air"; "air", "air", "air"};

 [P, ATAB, STATS] = anovan (popcorn(:), {brands(:), popper(:)}, ...
                            "display", "on", "model", "full", ...
                            "varnames", {"brands", "popper"});


MODEL FORMULA (based on Wilkinson's notation):

Y ~ 1 + brands + popper + brands:popper

ANOVA TABLE (Type III sums-of-squares):

Source                   Sum Sq.    d.f.    Mean Sq.  R Sq.            F  Prob>F
--------------------------------------------------------------------------------
brands                     15.75       2       7.875  0.904        56.70   <.001 
popper                       4.5       1         4.5  0.730        32.40   <.001 
brands*popper           0.083333       2    0.041667  0.048         0.30    .746 
Error                     1.6667      12     0.13889
Total                         22      17 

                    
plotted figure

Example: 6

 


 # Unbalanced two-way ANOVA (2x2) on the data from a study on the effects of
 # gender and having a college degree on salaries of company employees,
 # in Maxwell, Delaney and Kelly (2018): Chapter 7, Table 15

 salary = [24 26 25 24 27 24 27 23 15 17 20 16, ...
           25 29 27 19 18 21 20 21 22 19]';
 gender = {"f" "f" "f" "f" "f" "f" "f" "f" "f" "f" "f" "f"...
           "m" "m" "m" "m" "m" "m" "m" "m" "m" "m"}';
 degree = [1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0]';

 [P, ATAB, STATS] = anovan (salary, {gender, degree}, "model", "full", ...
                            "sstype", 3, "display", "on", "varnames", ...
                            {"gender", "degree"});


MODEL FORMULA (based on Wilkinson's notation):

Y ~ 1 + gender + degree + gender:degree

ANOVA TABLE (Type III sums-of-squares):

Source                   Sum Sq.    d.f.    Mean Sq.  R Sq.            F  Prob>F
--------------------------------------------------------------------------------
gender                    29.371       1      29.371  0.370        10.57    .004 
degree                    264.34       1      264.34  0.841        95.16   <.001 
gender*degree             1.1748       1      1.1748  0.023         0.42    .524 
Error                         50      18      2.7778
Total                     323.86      21 

                    
plotted figure

Example: 7

 


 # Unbalanced two-way ANOVA (3x2) on the data from a study of the effect of
 # adding sugar and/or milk on the tendency of coffee to make people babble,
 # in from Navarro (2019): 16.10

 sugar = {"real" "fake" "fake" "real" "real" "real" "none" "none" "none" ...
          "fake" "fake" "fake" "real" "real" "real" "none" "none" "fake"}';
 milk = {"yes" "no" "no" "yes" "yes" "no" "yes" "yes" "yes" ...
         "no" "no" "yes" "no" "no" "no" "no" "no" "yes"}';
 babble = [4.6 4.4 3.9 5.6 5.1 5.5 3.9 3.5 3.7...
           5.6 4.7 5.9 6.0 5.4 6.6 5.8 5.3 5.7]';

 [P, ATAB, STATS] = anovan (babble, {sugar, milk}, "model", "full",  ...
                            "sstype", 3, "display", "on", ...
                            "varnames", {"sugar", "milk"});


MODEL FORMULA (based on Wilkinson's notation):

Y ~ 1 + sugar + milk + sugar:milk

ANOVA TABLE (Type III sums-of-squares):

Source                   Sum Sq.    d.f.    Mean Sq.  R Sq.            F  Prob>F
--------------------------------------------------------------------------------
sugar                     2.1318       2      1.0659  0.403         4.04    .045 
milk                      1.0041       1      1.0041  0.241         3.81    .075 
sugar*milk                5.9439       2      2.9719  0.653        11.28    .002 
Error                     3.1625      12     0.26354
Total                      13.62      17 

                    
plotted figure

Example: 8

 


 # Unbalanced three-way ANOVA (3x2x2) on the data from a study of the effects
 # of three different drugs, biofeedback and diet on patient blood pressure,
 # adapted* from Maxwell, Delaney and Kelly (2018): Chapter 8, Table 12
 # * Missing values introduced to make the sample sizes unequal to test the
 #   calculation of different types of sums-of-squares

 drug = {"X" "X" "X" "X" "X" "X" "X" "X" "X" "X" "X" "X" ...
         "X" "X" "X" "X" "X" "X" "X" "X" "X" "X" "X" "X";
         "Y" "Y" "Y" "Y" "Y" "Y" "Y" "Y" "Y" "Y" "Y" "Y" ...
         "Y" "Y" "Y" "Y" "Y" "Y" "Y" "Y" "Y" "Y" "Y" "Y";
         "Z" "Z" "Z" "Z" "Z" "Z" "Z" "Z" "Z" "Z" "Z" "Z" ...
         "Z" "Z" "Z" "Z" "Z" "Z" "Z" "Z" "Z" "Z" "Z" "Z"};
 feedback = [1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0;
             1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0;
             1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0];
 diet = [0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1;
         0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1;
         0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1];
 BP = [170 175 165 180 160 158 161 173 157 152 181 190 ...
       173 194 197 190 176 198 164 190 169 164 176 175;
       186 194 201 215 219 209 164 166 159 182 187 174 ...
       189 194 217 206 199 195 171 173 196 199 180 NaN;
       180 187 199 170 204 194 162 184 183 156 180 173 ...
       202 228 190 206 224 204 205 199 170 160 NaN NaN];

 [P, ATAB, STATS] = anovan (BP(:), {drug(:), feedback(:), diet(:)}, ...
                                    "model", "full", "sstype", 3, ...
                                    "display", "on", ...
                                    "varnames", {"drug", "feedback", "diet"});


MODEL FORMULA (based on Wilkinson's notation):

Y ~ 1 + drug + feedback + diet + drug:feedback + drug:diet + feedback:diet + drug:feedback:diet

ANOVA TABLE (Type III sums-of-squares):

Source                   Sum Sq.    d.f.    Mean Sq.  R Sq.            F  Prob>F
--------------------------------------------------------------------------------
drug                      3430.9       2      1715.4  0.275        10.79   <.001 
feedback                  1833.7       1      1833.7  0.168        11.53    .001 
diet                      5080.5       1      5080.5  0.359        31.94   <.001 
drug*feedback             382.08       2      191.04  0.040         1.20    .308 
drug*diet                 963.04       2      481.52  0.096         3.03    .056 
feedback*diet             44.452       1      44.452  0.005         0.28    .599 
drug*feedback*diet        814.35       2      407.17  0.082         2.56    .086 
Error                     9065.8      57      159.05
Total                      22190      68 

                    
plotted figure

Example: 9

 


 # Balanced three-way ANOVA (2x2x2) with one of the factors being a blocking
 # factor. The data is from a randomized block design study on the effects
 # of antioxidant treatment on glutathione-S-transferase (GST) levels in
 # different mouse strains, from Festing (2014), ILAR Journal, 55(3):427-476.
 # Note that all interactions involving block were dropped from the full model
 # by assigning block as a random factor (').

 measurement = [444 614 423 625 408  856 447 719 ...
                764 831 586 782 609 1002 606 766]';
 strain= {"NIH","NIH","BALB/C","BALB/C","A/J","A/J","129/Ola","129/Ola", ...
          "NIH","NIH","BALB/C","BALB/C","A/J","A/J","129/Ola","129/Ola"}';
 treatment={"C" "T" "C" "T" "C" "T" "C" "T" "C" "T" "C" "T" "C" "T" "C" "T"}';
 block = [1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2]';

 [P, ATAB, STATS] = anovan (measurement/10, {strain, treatment, block}, ...
                            "sstype", 2, "model", "full", "random", 3, ...
                            "display", "on", ...
                            "varnames", {"strain", "treatment", "block"});


MODEL FORMULA (based on Wilkinson's notation):

Y ~ 1 + strain + treatment + (1|block) + strain:treatment

ANOVA TABLE (Type II sums-of-squares):

Source                   Sum Sq.    d.f.    Mean Sq.  R Sq.            F  Prob>F
--------------------------------------------------------------------------------
strain                    286.13       3      95.377  0.580         3.23    .091 
treatment                 2275.3       1      2275.3  0.917        76.94   <.001 
block'                    1242.6       1      1242.6  0.857        42.02   <.001 
strain*treatment           495.9       3       165.3  0.706         5.59    .028 
Error                     207.01       7      29.573
Total                     4506.9      15 

                    
plotted figure

Example: 10

 


 # One-way ANCOVA on data from a study of the additive effects of species
 # and temperature on chirpy pulses of crickets, from Stitch, The Worst Stats
 # Text eveR

 pulse = [67.9 65.1 77.3 78.7 79.4 80.4 85.8 86.6 87.5 89.1 ...
          98.6 100.8 99.3 101.7 44.3 47.2 47.6 49.6 50.3 51.8 ...
          60 58.5 58.9 60.7 69.8 70.9 76.2 76.1 77 77.7 84.7]';
 temp = [20.8 20.8 24 24 24 24 26.2 26.2 26.2 26.2 28.4 ...
         29 30.4 30.4 17.2 18.3 18.3 18.3 18.9 18.9 20.4 ...
         21 21 22.1 23.5 24.2 25.9 26.5 26.5 26.5 28.6]';
 species = {"ex" "ex" "ex" "ex" "ex" "ex" "ex" "ex" "ex" "ex" "ex" ...
            "ex" "ex" "ex" "niv" "niv" "niv" "niv" "niv" "niv" "niv" ...
            "niv" "niv" "niv" "niv" "niv" "niv" "niv" "niv" "niv" "niv"};

 [P, ATAB, STATS] = anovan (pulse, {species, temp}, "model", "linear", ...
                           "continuous", 2, "sstype", "h", "display", "on", ...
                           "varnames", {"species", "temp"});


MODEL FORMULA (based on Wilkinson's notation):

Y ~ 1 + species + temp

ANOVA TABLE (Type II sums-of-squares):

Source                   Sum Sq.    d.f.    Mean Sq.  R Sq.            F  Prob>F
--------------------------------------------------------------------------------
species                      598       1         598  0.870       187.40   <.001 
temp                      4376.1       1      4376.1  0.980      1371.35   <.001 
Error                      89.35      28      3.1911
Total                     8582.2      30 

                    
plotted figure

Example: 11

 


 # Factorial ANCOVA on data from a study of the effects of treatment and
 # exercise on stress reduction score after adjusting for age. Data from R
 # datarium package).

 score = [95.6 82.2 97.2 96.4 81.4 83.6 89.4 83.8 83.3 85.7 ...
          97.2 78.2 78.9 91.8 86.9 84.1 88.6 89.8 87.3 85.4 ...
          81.8 65.8 68.1 70.0 69.9 75.1 72.3 70.9 71.5 72.5 ...
          84.9 96.1 94.6 82.5 90.7 87.0 86.8 93.3 87.6 92.4 ...
          100. 80.5 92.9 84.0 88.4 91.1 85.7 91.3 92.3 87.9 ...
          91.7 88.6 75.8 75.7 75.3 82.4 80.1 86.0 81.8 82.5]';
 treatment = {"yes" "yes" "yes" "yes" "yes" "yes" "yes" "yes" "yes" "yes" ...
              "yes" "yes" "yes" "yes" "yes" "yes" "yes" "yes" "yes" "yes" ...
              "yes" "yes" "yes" "yes" "yes" "yes" "yes" "yes" "yes" "yes" ...
              "no"  "no"  "no"  "no"  "no"  "no"  "no"  "no"  "no"  "no"  ...
              "no"  "no"  "no"  "no"  "no"  "no"  "no"  "no"  "no"  "no"  ...
              "no"  "no"  "no"  "no"  "no"  "no"  "no"  "no"  "no"  "no"}';
 exercise = {"lo"  "lo"  "lo"  "lo"  "lo"  "lo"  "lo"  "lo"  "lo"  "lo"  ...
             "mid" "mid" "mid" "mid" "mid" "mid" "mid" "mid" "mid" "mid" ...
             "hi"  "hi"  "hi"  "hi"  "hi"  "hi"  "hi"  "hi"  "hi"  "hi"  ...
             "lo"  "lo"  "lo"  "lo"  "lo"  "lo"  "lo"  "lo"  "lo"  "lo"  ...
             "mid" "mid" "mid" "mid" "mid" "mid" "mid" "mid" "mid" "mid" ...
             "hi"  "hi"  "hi"  "hi"  "hi"  "hi"  "hi"  "hi"  "hi"  "hi"}';
 age = [59 65 70 66 61 65 57 61 58 55 62 61 60 59 55 57 60 63 62 57 ...
        58 56 57 59 59 60 55 53 55 58 68 62 61 54 59 63 60 67 60 67 ...
        75 54 57 62 65 60 58 61 65 57 56 58 58 58 52 53 60 62 61 61]';

 [P, ATAB, STATS] = anovan (score, {treatment, exercise, age}, ...
                            "model", [1 0 0; 0 1 0; 0 0 1; 1 1 0], ...
                            "continuous", 3, "sstype", "h", "display", "on", ...
                            "varnames", {"treatment", "exercise", "age"});


MODEL FORMULA (based on Wilkinson's notation):

Y ~ 1 + treatment + exercise + age + treatment:exercise

ANOVA TABLE (Type II sums-of-squares):

Source                   Sum Sq.    d.f.    Mean Sq.  R Sq.            F  Prob>F
--------------------------------------------------------------------------------
treatment                  275.7       1       275.7  0.173        11.10    .002 
exercise                  1034.6       2      517.32  0.440        20.82   <.001 
age                       226.36       1      226.36  0.147         9.11    .004 
treatment*exercise        220.94       2      110.47  0.144         4.45    .016 
Error                     1316.9      53      24.848
Total                     3888.3      59 

                    
plotted figure

Example: 12

 


 # Unbalanced one-way ANOVA with custom, orthogonal contrasts. The statistics
 # relating to the contrasts are shown in the table of model parameters, and
 # can be retrieved from the STATS.coeffs output.

 dv =  [ 8.706 10.362 11.552  6.941 10.983 10.092  6.421 14.943 15.931 ...
        22.968 18.590 16.567 15.944 21.637 14.492 17.965 18.851 22.891 ...
        22.028 16.884 17.252 18.325 25.435 19.141 21.238 22.196 18.038 ...
        22.628 31.163 26.053 24.419 32.145 28.966 30.207 29.142 33.212 ...
        25.694 ]';
 g = [1 1 1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 3 3 3 ...
      4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5]';
 C = [ 0.4001601  0.3333333  0.5  0.0
       0.4001601  0.3333333 -0.5  0.0
       0.4001601 -0.6666667  0.0  0.0
      -0.6002401  0.0000000  0.0  0.5
      -0.6002401  0.0000000  0.0 -0.5];

 [P,ATAB, STATS] = anovan (dv, g, "contrasts", C, "varnames", "score", ...
                          "alpha", 0.05, "display", "on");


MODEL FORMULA (based on Wilkinson's notation):

Y ~ 1 + score

MODEL PARAMETERS (contrasts for the fixed effects)

Parameter               Estimate        SE  Lower.CI  Upper.CI        t Prob>|t|
--------------------------------------------------------------------------------
(Intercept)                 19.4     0.483      18.4      20.4    40.16    <.001 
score_1                    -9.33     0.969     -11.3     -7.36    -9.62    <.001 
score_2                       -5      1.31     -7.66     -2.34    -3.82    <.001 
score_3                       -8      1.64     -11.3     -4.66    -4.87    <.001 
score_4                       -8      1.45       -11     -5.04    -5.51    <.001 

ANOVA TABLE (Type III sums-of-squares):

Source                   Sum Sq.    d.f.    Mean Sq.  R Sq.            F  Prob>F
--------------------------------------------------------------------------------
score                     1561.3       4      390.33  0.855        47.10   <.001 
Error                     265.17      32      8.2866
Total                     1826.5      36 

                    
plotted figure

Example: 13

 


 # One-way ANOVA with the linear model fit by weighted least squares to
 # account for heteroskedasticity. In this example, the variance appears
 # proportional to the outcome, so weights have been estimated by initially
 # fitting the model without weights and regressing the absolute residuals on
 # the fitted values. Although this data could have been analysed by Welch's
 # ANOVA test, the approach here can generalize to ANOVA models with more than
 # one factor.

 g = [1, 1, 1, 1, 1, 1, 1, 1, ...
      2, 2, 2, 2, 2, 2, 2, 2, ...
      3, 3, 3, 3, 3, 3, 3, 3]';
 y = [13, 16, 16,  7, 11,  5,  1,  9, ...
      10, 25, 66, 43, 47, 56,  6, 39, ...
      11, 39, 26, 35, 25, 14, 24, 17]';

 [P,ATAB,STATS] = anovan(y, g, "display", "off");
 fitted = STATS.X * STATS.coeffs(:,1); # fitted values
 b = polyfit (fitted, abs (STATS.resid), 1);
 v = polyval (b, fitted);  # Variance as a function of the fitted values
 figure("Name", "Regression of the absolute residuals on the fitted values");
 plot (fitted, abs (STATS.resid),'ob');hold on; plot(fitted,v,'-r'); hold off;
 xlabel("Fitted values"); ylabel("Absolute residuals");

 [P,ATAB,STATS] = anovan (y, g, "weights", v.^-1);


MODEL FORMULA (based on Wilkinson's notation):

Y ~ 1 + X1

ANOVA TABLE (Type III sums-of-squares):

Source                   Sum Sq.    d.f.    Mean Sq.  R Sq.            F  Prob>F
--------------------------------------------------------------------------------
X1                        2237.9       2      1118.9  0.522        11.49   <.001 
Error                     2045.5      21      97.405
Total                     6905.6      23 

                    
plotted figure

plotted figure

statistics-release-1.6.3/docs/assets/000077500000000000000000000000001456127120000175615ustar00rootroot00000000000000statistics-release-1.6.3/docs/assets/ClassificationKNN_201.png000066400000000000000000001475371456127120000241740ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A€IDATxÚìw|ÕúÆÏ: %‘^6€@UÀ@è5´‘¢ p/¨1”âPQá‚€ \Šò£w”^RÜ€(HGé Iæ÷Ç!ãdfvvvfv§=Ïg?ºçÌ9ßy§°ûæÌ9Ï2,Ë‚ ‚ ò¦\FAAYCH!‚ ‚ EBâAA)G‚ ‚ H‘8BAAЄĂ ‚ R$$Žw >œñ cÇŽÉ÷=yò$׸oß¾‚­iiiÜÖ/¿üÒèÕª5kÖüðÃ?üðÃ7 9'_~ù%íX¿~}_ƒçwhßnݺéÕÒßJKK›={v›6mž~úé¼yóV©R¥cÇŽŸ|òÉÇͳäúûï¿ÿõ¯=ýôÓÁÁÁ… ºÿ>Ñv)•‹+r  kذá;ï¼#'û鄸µ£?ÎÃ0yòä)[¶ì /¼püøñ@Æ£NS¦L¡a·oßÞèX ë ‰#ä]¿üò‹.œÅ‹ïß¿ßè£ñ£zõêÕµk×®]»*ÿò°ý9ñŸ>\µjÕW^yeóæÍ—/_NKK;{öìºuëFŽY¥J•µk× R3fΜ9—/_ÎÌ̼wïžÑáÌÌÌ›7o8p`òäÉ‘‘‘ûöí3:" (==ý?þXºtiƒ lð70É(Øè ˆ&Ž¡¡¡¡¡¡‚M!!!Ê9,Ë>|Ïž= Ã}Lf‘¾ç¤P¡BåË—'„„‡‡}dþ•ÛíŽå§YÁÁÁôý¥K—žþù={öDEEiI^ M›6Ñ7111ݺu£ÿ¦)K–,™/_>BÈýû÷¹Æ[·nõèÑãìÙ³yòä Ø ñkGœ1z¢þþûoBHZZZbbb‹-ªT©bT`ä_±$«û÷ïÓœfΜ9*ºŸ8qBpË}ûí·ÜÖGqõ³gÏ6úXµª`Á‚ôX¶lÙb¹sòöÛoÓvíÚU¯–þS§N¸³ôòË/§¤¤ddd\¾|yΜ9… ¢õ‘‘‘¦ŠÙ“¸ÛfÍš5Þ5ÿVäß´.\xùå—¹MÓ¦M3ú$™EžÎ˲›7oΛ7/Ý4jÔ(£#•ÓäÉ“iœíÚµ3:Èz£jÈ‹Ün7˲„—Ë¥ ðÍ7ß|ðà×f×®]{ýõ×7n\¨P¡J•*ÅÇÇ9rDÐ&++ë»ï¾kÞ¼y¹råòæÍ[®\¹ØØØo¾ùæñãÇ\þä¶ŒŒŒñãÇ—.]züøñ>íèñãdzgÏ~î¹ç""" ,X³fÍ_|‘?¿s̘1 Ãp`­Zµb†NV ä9ñ4ñëìٳݺu+V¬Xùòå pùòe0Ã0ï¼óŽxGýõ׈#êÖ­[°`ÁÚµkÏ›7õðÛ¤—/_~ñÅ+UªñüóÏÿøãâ6÷ïߟ0aBëÖ­K–,Y²dÉV­Z;öÎ;ü6^/_[¶lY³f }ÿÖ[oý÷¿ÿŠŠ 8pà’%Kè&·Ûšš*s>•Ü?J®¾òf‚ tãÆóçÏgeeÑ­·oß>þ<7õt)½Þ>IO*S¦Ìÿû_n>è{ï½'¸™•ü«!„\¿~ýõ×_oÒ¤I‘"EÊ—/ß¾}ûuëÖÉœÕgRõÍvëÖ­#FÔ¯_¿P¡Bµk×~ï½÷W_¹ZµjÕ¹sgúþìÙ³Z¢â×÷êÕ‹Ö5J]ü.\èÙ³gXXX©R¥ºwï~ðàAÉøµ|œ4ˆÖ—)S†Ï¼té7 Tü3dU¹Bf×âÅ‹é­òǬ\¹ròäÉÿýïþùg…ÝùU«V¥o&MšD·z]ÛºukÉ’%÷*Ã0III|øóÏ?/yW'$$pmøCMýúõ£ïß~ûmå;zôèQƒ Ä{afæÌ™´Í[o½%npïÞ½Ÿ“Ù³gÓúzõêq•»wï ã÷ªX±"wê¸SÁ¨ØØX.*NÉÉÉâSZ¿~ýJ•*ñ›åÎ[0JzàÀAª2eÊìܹSáe¨{÷î´ÁSO=u÷î]qƒ:Ô®]»víÚË—/ó}º”\}åͨk×®â.¿üò‹§K©äðéLÊŒŸ±,»cÇnë† |ýç¹iÓ¦%JˆpРA2w¬º3©îf‹­V­š q=XÏ’?cÜ}õÕWµüà3_xáZ?räHñ}šeÙ?ÿüóìÙ³ùóç§õß|óÍÙ³g³²²|NÄߦ>Œˆˆ •!!!7æŠüSÁ?LªŠ+FGGÑbž|ø°ê¨”'Ž^ãOKK+W®wöž}öY.*.qÔøqš‘‘Áý«|ÿý÷¹à{õêE+ǯðŸ*d~!q„¼ÈÓŸ¡„¸¸8¯ÝŸ³ü1}ß·o_ÖC’4vìXZÃÿKwÆŒ´²lÙ²´†›ƒ5bÄ®YݺuiåG}Dkø²Õ«W_´hѾ}û~ýõWå;jÒ¤ ­™ýôSZ¹hÑ"®2%%EÜ2..îÑ£G,Ë^¸p¡råÊ‚o¾I“&њ… s_fÇçF@ßzë-¯—I ôôt®å{ï½§ð6++¼^}…Í$ÇÉ$oqK…÷€ò3ÉzKY–-[¶,ÝÊ ¡) ƒkV®\¹7n*›6mêé0UŸIu7<}ú4—{ñ‡6eΘ¤òåË·xñb®½Š¨|JåãŸ9s&­)T¨Ð¾}ûhåðáùî\â¨ýãtèС´>&&†6ÎÊÊâóĉ,daŽ#äEœOÿþýýõW:=ŽÖüßÿýßæÍ›}¢%&&ÒôâÛo¿õdC³aÃúæ_ÿúWùòË/Ó¿æ/\¸@Ínzöì¹hÑ¢E‹½þúë´Í;w¸™‚ýõ—›?þÍ›7÷éÓ§aÆ+VT¾#ÎpáÂ…ÿýï¯]»Fߟ8qâĉ ϰŽçD¬eË–Ñ7C‡ŽŽ&„äÊ•ë³Ï>“|†HU­ZµaÆÑ÷]ºt ~â½pæÌAËܹsÏš5‹®·-S¦Ìûï¿Oë×­[—™™IáIáý£ðêûû&!¾ß^Ϥ+VLpÚ†±qãFºiäÈ‘\ö˜˜H§¤¥¥Ñ;D,ÕgRÅÍV£F .Ý©ZµjLL }þüyÕ—©FM›6Õ•Oû’Ÿ›ï˸ýðÃÅÿüµœr îž={nݺE9zôèŸþI©V­Ú3Ï<£ú0!³ ‰#äE_|ñÅŽ;vìØñõ×_W¬X1<<ü½÷ÞkÙ²%ÝJ×(pÕ9ÑE¬:ÀƲìðáÃY©%Ü‚†¶mÛrÀ‚ rß44ƒiÛ¶mŸ>}:tè°{÷î‘#G¶lÙ²téÒ§OŸöt ÑÑÑ‚zôˆ)q\&±BBB¸64=ëï¿ÿ¾yóæÍ›7e¶+¼^}ß$*î¯gR‰®^½JßÐl Ãà_z±ù«¼ÔIu7›àÞöÕKõÛo¿ý-[—/_¾~ý:ÍÏ®]»6`ÀÕQ)—|ü÷îÝ»~ý:}/ø§*þç¯ñã”î½gÏžô=];Ï%Ž=zôPw€9…ÄR#nrwZZšŠîÓ¦M£Ù 7ç‰SáÂ…¹!¥M›6•p=eÊ”ää䌌ŒŠ+Κ5ëØ±cwî܉‹‹ó´SÁ§ªòåÎûóÏ?¿qãÆÒ¥KûôéS´hQòÓO?q¥Ë9¨P¡BÜ´'AV¡ú»Š/.« zøð!÷5Y¶lÙÂ… syä•+Wø-¹bHH·„Bò2IªqãÆôÍÿýßÿIš§T­Z5,,,,,Œ› '–ÂûGáÕ÷÷M¢âÐn)¿k×.nF)]é¬0ŒB… qܘ¥B©;“ên6}öÞ{ïÑ÷?þøãÕ«W*_¾|ÜÚ&.ƒ¤âþrÒøqJÅ=­^¿~ýÝ»wwïÞMðœÚŽBâÉi×®]111111½{÷æ×sžmµjÕ"„¼ôÒKWsŠïÎ V­Zµèú AæAÅ­±ÈÈȨÄSÑ¢Eé¯×Ð_k˜5km6sæÌW^y¥V­ZÁÁÁ/^T~tJv”––víÚµk×®¥¥¥=ÿüó‹-º~ýúæÍ›9ÇIçBÒåœÄ0L… èûíÛ·sõÛ¶mÓóÉ“'/_¾Ì¹im!!!tñfdd$­áÆÅ*UªðG²Š›]wáÂñÏ»­Y³†;‡Íš5óQrÿ(¼ú¹IÔÝZôé§ŸÒ7 àž8+ ƒaî)*ÚîÕ«W5jÔ¨Q£æÍ›K>ŸÕr&ýt³ù$þh=ª<*.»}û6¿¥ çS®   îŸ?÷o“Âæ4Z¢ÒþqJ©[·.½=nܸññÇÓ¿:ðœÚ~BâÉ©L™2»víÚµk×Ò¥K¹Oº­[·~ûí·ô=ý:É—/_ÉœâæÔ{ÒþónÖ”@­Zµ¢o¾úê+nÂߊ+Š+V¾|ù»wïÞ½{—Bã>g>ìS>¤dG§OŸ.UªT©R¥ÂÃÃé¼¥àààV­Z 8¶—|Ç_ù«\ωdG.sJNN¦ëœX–7nÜo¿ý¦"B?~œ˜˜HÇü®\¹Â™YÆÅÅÑlœ]ÜgŸ}Æý±qâĉ©S§Ò÷ü©WÊÕ©S'î„ 6ìÝwߥã7ééé .äìå*Uªäi®­ÂûGáÕWw“ø*Õ÷€ ]½zõßÿþ÷òåËiñÅ_ä†ÁÝxŸ|ò —ÇO›6mß¾}ûöíË“'`F„O'\R~ºÙ”ëÖ­[Ü¢ã¼yóÒ%#Ê£âïß¿Ÿ››¸råJq’§\õêÕïý½÷Þ;uê¿™.§TÜ #gÄц2zY7dvqë`è’—gžy†ûĉ‰ñdUÈIÆïã£>âߊœõÌ_ýÅ=ŸŠ0aBBB7šBýÀ²²²8“üùówîܹK—.üŸÓõjr¡pG™™™œ?Y©R¥ 4zôè矞{ÌùÛ±,Ë­iÔ¨ÑÔ©SÓÓÓyNX)’óçÏs«òçÏß¼ysÁ[±àDqÆoß}÷ %ÕÓO?ݲeK.± ¢N„,Ë>xð€³‘Ë—/_§NºtéÂ9>†‡‡ÿý÷ß^/“¤Ž?.` 㯷ț7ïÑ£G¹ö¾ÂûGáÕW~“h±ãQxøt&ù·bDDDåÊ•+W®,˜W¼xqÎOGy×®]ãþ *Y²dïÞ½¹OBÈêÕ«%SË™Ô~³‰ož±Ê•+—)S†?œÉ}þ(êðáÃ\÷üùó7iÒ„­D¥<þ””n 3$$$&&FàíOíxtù8ŸBHõêÕ•üs†¬%$Ž]¾|YÒË£víÚžÌáø’I’ÒÒÒø«ù¿8²zõjÉ¡…!C†p©*7›SÅŠ9“á~ýúÑfòŸtJv´wï^Occc©‹!UŸ>}ø[•ürŒ¾çD2/ùúë¯sçÎÍïR°`AîDiICCCãF!!!ÿýïùÝ÷ïß/yÿ”+Wî§Ÿ~âš©ø-é]»vyZ5\¾|ùµk×ò‹ù ï…W_a3-‰£Â{@uâ(©§žzjïÞ½*þÕ°,»råJn†_cÇŽ•9L-gRãÍækâèI7æÿÛW?þ=É ñªHY–íß¿¿€Y @nU5çã¨ËÇ)ß9|âĉ^oBÈr£jÈ‹ÂÃÃOž<ùþûï7iÒä©§ž*UªTëÖ­?þøãƒª6‡£ áž×wìØ±AƒÕ©S'þü+VìÖ­ÛÎ;¿øâ îèiÓ¦Õ¬Y“’+W®¨¨¨7ÞxãèÑ£]ºt¡[—,Y"ÿ;ÅÊwôì³Ïž={öwÞ©_¿~DDDîܹ‹-úÜsÏÍ™3gÛ¶mü¿Ë§M›Ö§OŸ%J(P F’ãüzN$5hР-[¶tïÞ=""âé§ŸîÞ½ûîÝ»%ÕÍWÅÆÆîܹ3..®téÒáááÏ?ÿü¶mÛ8'aª ?~üwÞiÙ²eÉ’%ÃÂÂZ´h1nܸŸþù¹çžÓ²÷&Mšœ9sfÚ´iÍš5+Q¢Džû¬º0ºuëöóÏ?<¸~ýú ,_¾|§N~üñÇ)S¦Èì]Ë™ôßͦ䤕(Q¢uëÖ_ýõŽ;¸1EŸ¢Z°`Á”)SjÖ¬Y @èèèaÆíÛ·Oãêø¹sç¾öÚkô}‰%:wî¼e˾Ó$•.§Tüôë©m)†•2ƒ KèñãÇÔH²[·nFÇb1õë×oÁ‚„/¾øbÈ!F‡cŒpÿ@Ñ¡C‡¶oß>xð`O³¨‰~ÿöîÝK}ªW¯~òäI£Ò_þ]bA~Uîܹñ•/¯ÿûß$„4nܘûý±{÷îq?ùC‡œ)Ü?CT¯^=n¡Œ'éõÏaïÞ½ô –ÅØUH!ÈΊˆˆHII!„¤¤¤”)S¦G·oß=z4]†üÌ3Ïxý: ò*–e¿üòË?þø#99™Ö q´«ð¨‚쬇¶iÓf×®]âMÅŠÛ¾}»“G!ÒK™™™üuåÝ»w_±b…ÑAA~G²¹ÒÒÒ–.]úÍ7ßœ;wîÊ•+Ôl¯M›6Ç—™ðA¤\™™™… ÎÈÈ(S¦Lß¾}ÇŒ£×š0ÈlBâAA)ìx ‚ ‚ EBâAA)G‚ ‚ H‘8BAAЄĂ ‚ R$$ŽAA"!q„ ‚ ‚ ‰#AA¤HH!‚ ‚ EBâAA)G‚ ‚ H‘8BAAЄĂ ‚ Ã0F‡AŠÄ°,kt 63b›Ñ!@9FÉ-IÒVÚ˜'6¯½Œ:È›ØOZB ÒC$i+KXî%.òkEÉöö ©èhÖ¥Yå¦mh„Ýj­Ø!á¼M¦º N¦å¨wŒˆÑØAo;¿ùÌF3Õ—:h f?š§LK>o3sl´—׬ÑTWÁ™4ÁË9¹#æ8j3b›¬~ŒšIÊÑ]P´:M¦»¾4 4Ðl@c Ëáì@†0Oò3 ÆF{倆øø„ÚÒ×Ô64» ‰£ÎÒ÷VM]wÐ@Í94šiqEO™™•bKÚÊeœ4k4ÿUpM,6¹…C–:€Íe¡ h¥±„e’BÇêkƒØ¸ÑJ–° ‘KGÌs¤^iefš£„G‚ ÈúJÚªn¬Ñé±PfÎüG*GÿŠMnÁ$móT 4Ð@MZrKþœB«ÇFMÉY’:Çš4G ‰£ÎÒ÷æ 4Ð@Í«hšÅ$mS’iY ¶ä–Üð$KX’ÜRÇØÌœ~Yˆ&“´Í!nŽHµŠýļw6h šíi‚§À ó3ÓÆÆ%š¾‘ÂØ4 4‰£>Ü^^‹\ WákwÐ@SØ4ÐlNË™™Ñ­\¦e¹ØþžÐxë¬ÍxœJóZoOm$iyýãÚš´•oÊY‰rÿ7ð©hÊi*ºƒšåh$Û+;‡6GË6ÍVŒ!±B¼À Ñ%6}Ô™4VÒ¼ÝàHµÊÓ Ä¿ádŠ2ÝAÍl4åÝAÍï4 ?¦â÷J¾ÇÆO%íô¡acšô. <ªÖS¾.æ´—/‚šá4~Ð@3˜¦áÇT4þSòGl,a=Òô 4=hlr úòu/6Ç€ÊÌSwAS×4Ð@ 4‡Ó%$Ž:ËÌw6hºÐ4 4Ð@ 4«ÓÄb`Ç)ìx@ 4Ð@ 4‡‰£>R½þŸ¾ñµ;h h f,Ík½=eôêËËëŠ}¬ÿ 4Ð@ 4ÐŒ¥ñ_969@HµŠëÿeÚßÝ@ 4Ð@ ´ÀÓ¸W¦„GÕzÊtv h šÞ4þË+ÙfBâP™yh h–£™yEˆshŽR°ÑØMôæãþ=)ÒI߸ÖH×?õòE_ÛƒšF!_ÅR÷o4Ð@ó‰¦Q A>Ëègåv×™2EZãr¹Œ>ò.—Ë%¾{õ*‚h Yˆ&ÑØ£j}¤zý?ÆÆ!kI|÷j4¿ 4Ð@³(Ík½=etæjyq‚+ö¹z~A#Ž%DGw¯§›_Ý¿%ÝA 4Ð §åktÒ #ò¬Ñ¹«µÅŒøgÎý›ÃSQ¦A¤+Òív}(äE‘‘‘îÔ'7ªüÝ®úßh š%hœøõNøÕA<ªÖSJÖÿ«ð€ Ê'ó ¯ÿ@ 4Ð,DcaÇFXÿAT¦24 4Ð@Ã×±B!qÔYH !ˆJß  hæ¡9YHµŠý7bîÓÌüå hΡ9d‚#A⨗ôZÿA&—×»Wß  y-J~€€h y­·§Œ^Ömy)_ð/³þv<%$iÇãɽBÝ¿Ð@ 4KÐ`Ç©”r;î/qkÙñŒ5êã?^±bE÷îÝ›<Ø Aƒ¾}û.\¸PÇ=ÆÄÄÜ»wïèÑ£Z *T¨]»öªU«´Ç3iÒ¤‰' *ÃÃÃkÔ¨1nܸfÍš™äu—^v<2ÿ@ 4Ð,AãįwÄÓj£3WËKðLJº¢µF9BéÙ³§xÓ˜1c!«W¯ÖwÍš5«[·®FHùòå»víªK<4k|á…Ffkøðá;wÎ;7Ã0;vì0É!ë.þOÊüÙ­½hf4Ð$_qtÄLJΟ?¿S§Nµk׎‰‰8pàîÝ»•w¿|ùrݺuG¥=’€­êbFlã¿ô…GGGW­ZuÍš5<lZ¹re‘"EÚ¶m«ïwìØqèÐ!œ(-:tèÔlM›6í‡~X¹r%˲“'O¶ë!óeéiìæ¢%·4ol¡1„ñJÓ(Ð@ $ÍÞ²☑‘Ñ¿ÿ÷ßÿúõë5ª\¹òþýû 0sæL%ÝY–}óÍ7ïÝ»§pw†/ø§™¢ÀžT÷ܱW¯^÷ïß_»v-¿òÔ©Sn·»[·n!!!<<œËÌýôSþÖ¹sçþïÿÛ»w/!dúôéüMÓ¦Mãï‘&ŽJZòcKìÅCòÕW_)9ô@>ûì3þÖÞ½{‹G%ÑV¬X‘¿õ¥—^ ÕëBóÅ­ªÜÌ o~%ÿ@{’;fgæŠ- 4š,r§ÂT±éÕ4Ð${ùãƒ×l²â(ÖÞ½{ëÔ©S³fMnG¬£GV«Ví?ÿù˲ÊG–¨,Z1qdY¶E‹yóæ½sç˲Mš4)^¼8MdYvþüùž¹éØXùòåcccù´Ï?ÿúˆ[O£Z¦ºu_ó²lÙ²ï¿ÿ>++‹¿žºJ•*„B… µå©L™2·oß–ÌÉnÞ¼¹ÿþø`ìØ±t?ÿü3]pɯTÞÒWUªT‰B§{ÊŸºâJ`Ü#éãã¿h,3Ê›Çæƒ.a’¶q¹£yb ž–°p¸Í´4'ˉczzú”)SúõëwùòåÄÄÄõë×7nÜØSã,Y²dðàÁ }Xv<ŽºCCCÛ·o¿aÆùó燇‡ÇÄÄp›j×®ùÉ'ŸÜ¾}›Öܹs§}ûöo¼ñFþüùÅ(·Ûýì³ÏÒ;BH®\¹bcc !¹sçæ7‹ŽŽ.[¶ìôéÓïܹCkÎ;7iÒ¤‹/Ö©S§lÙ²Ó¦M»uëÝô×_%''—+WŽïkCQÞÒWÑ¡P:š(j×®]®\¹O?ý”;³gÏ ìü­î2ó§¼_iz7é +ëPàØFËq<»ÙàHA³ v<öQVVÖˆ#,XвeËM›6 :T~ñÌ™3„Y³fEf‹þ"óêÕ«###;uê¤d§Z9TIÞQÒO÷tïÞ½ÓÓÓ÷ïßߣG\¹þ¹‚ƒƒ§OŸ~þüù¨¨¨Q£F >¼V­ZüñÇôéÓ%ÈÖ«W¯F|ðAïÞ½ß{ï½~ýúµhÑâ©§ž¢†‘œòæÍ;}úô³gÏÖ­[w̘1cÇŽmÒ¤IppðøñãóäÉ3mÚ´ .Ô©SçÍ7ß=ztttôÅ‹§OŸž'O>DyK_T @³gÏz=4†_ýµnݺcÇŽ}ã7ž}öÙºuëB÷§ÿ¢U'_ï^}ÿ-ؘ&ÈùÎØ†Ç8ZrK"0­ä厶:RÐlAs¨ŒždéwÍŸ?ßårMœ8QaûŸ~úéœ0`€ËåŠ}ã7>üðCA{’sÅ>7…Ö§¢Ž¿U-Xäåï»<(X° !d÷îÝâ­GŽ騱c©R¥Š-»iÓ&n“ø—£ÿøã”+W.Ož~üxxxxDDWùꫯ~óÍ7ÿý·äê3(22Òê&¢›™(»ù•ü[p"-¹%7Öè‰ÆÍ}´ö‘Ê C’¶ÊÑ’[Ѝ FÝ‘‚š¸»¸™#¾mÎ\ý«k×®¹\®¨¨¨îRZ¸p!m¶víZ—ËÕ±cGIˆÿìx¸G!K(33344”oúsûöíR¥JõèÑÃèÐä;Ð@ 4O/‡ :Ú|ŽãÅ‹ !>ý[ 4иJÐìM“„Ø^°ãÑGüÛK¼à_¼€Ê@Ö•r÷ ÿ@Í4AcÐìGã·y‚…¤D°ãœ#Øñ€h yzÁŽ‚¤5jÔ(†aV®\)ÞtðàA†a^|ñEBHLLLtt´º](ï«e/ž4iÒ$F¤ˆˆˆ6mÚìܹS—]ø#l‚ HðP¹8ê¦ÔøˆÔø÷ù¾ôd1`·fjBÿ¥/¼wïÞ„eË–‰7­ZµŠòüóÏB‚‚‚‚‚‚ÔíBy_-{‘× /¼02[ǯ_¿þŽ;š7o®Kîè¿°M+ ­— 4МFƒ|ÑCž–¾vLJ³„p/A‘_/9ú­ï£jñÞÝñáúuÕªU (pÿþ}A}ddd‘"EÒÒÒü}Úýª‰'BvíÚ%¨ÿ¿ÿû?BH«V­ŒÐ0É?ª¶ôƒ'Ð@ 4Ÿh[!Œ8jûI‹Ôø׊+\Mj|8¿È—kÅ÷ù¾9ºëúG_ïݵ⊾㎽zõºÿþÚµkù•§Nr»Ýݺu Ñq_œ²²²233ýAV¨N:*TèäÉ“†ìÝðÃËÌ~¼f3æ 4МF³«8j•d¢&#׊+©ñ‚ÿ:Æ#“³ê˜;öêÕ‹ˆžVÓY={ö¤ÅæÍ›sÓø*T¨ðÆo:t(*****ŠVîß¿¿]»vO=õT­ZµÆ?{öl†aŽ;&Ù÷Ë/¿ ~úé§_}õÕ»wïŠ÷BIII‰‹‹+Y²d©R¥:wî|üøqnÓ´iÓjÕªU @§žzªaÆß~û­ŠΛ7/WpàÀ̘1CfœrË–-³fÍú׿þUµjÕõë×ñÅ?þúë¯ÅÍâââÂÃÃ_zé%–e¿ù曘˜˜#GŽTªTiâĉ“&MjÑ¢EBBBZZÚªU«úöí[¸pḸ8åG½qãÆ[·nõïߟ7oÞL¡gÏž¹råZµjUÛ¶m-Zô /øt€?üðCBBB©R¥zõêÅ0ÌòåË›4i²|ùò.]ºøtø‘¼{…¤ù… ±×&¡"7§ 4ÐTмòA³¯'›`Ç)‘ÂÙ¢69æLè2ÇQé®uRrr2!dÉ’%´xîÜ9BÈ¿þõ/®AlllíÚµéûòåËB&M𔙙ɲlfffõêÕ+V¬xóæMÚàÔ©S4¯JII‘ì»|ùrZÌÊʪY³féÒ¥{ÉÈȨ^½z¥J•þúë/º‰®bILLdY¶bÅŠ.—ëñãÇtÓíÛ·ƒƒƒ_}õUÉC£sûôéóV¶FŒÑ­[·àààÎ;?xð€eÙ´´´*UªDGGÓ"˲=jÔ¨QÅŠ322”`ZZZ… Ê—/ãÆ ÚòÆåÊ•«X±"**øìx@ 4[ÒT´¿2Í#ŽJõìÙsäȑ˖-£lt=5÷œZ¬ððð·ß~;W®\„£Gž:uê³Ï>{ê©§èÖjÕª%$$,^¼X²oÅŠãããé{†a¢££W¯^-h“’’rêÔ©O?ý´hÑ¢´¦iÓ¦sçÎ-\¸0!äÀyóæ ~rÃß¼y“òàÁ™?Ë éÔ©S¾|ùè!œ9sfñâÅ´HÉ“'ObbbïÞ½9’+W.…xäÈ‘ß~ûmúôéaaa´&,,løðáo¼ñƱcÇêׯ¯ðð!G‰! KX££€ô®©±Ò}Ú˜…9ŽSj|8}‘lïίÇèÐÔ("""66výúõt¾ÝÊ•+‹/ë©}dd$Í !©©©„ZµjñÔ¨QÃS_—ËÅ/r¾(³fÍšüÊ$$$BŠ-zôèÑ &ôìÙ³N:ÕªUËÈÈ?@þªê¬¬¬sçεhÑâßÿþ÷–-[!¿üò !¤wïÞ|¯GjTtáÂåxæÌB7v¤›¾ùe!cŽ@Ó’[z¥1„áYÂr5ž$nÀF>6 ¦ï±™ù¼© LÍyóýHÕ]S5çÍ÷Ø@#ÄËýæCëË’ß@f–kÅšòEóE׊+Ü‹¶ä Ôøp×òË:{÷îýèÑ£Õ«W_½zuïÞ½ 2Þ„¡¡¡Üûôôtq™¾üõ(žD™Ü˜"_iiiqqq111ëׯ¯R¥Êˆ#NŸ>]¤HåGÊ0L… >ùäBÈöíÛ !ô¹óÔ©S7ˆÔ AåȲ,å‹[>~üXùá›Pf[%m^ZÒV~B AKn)‹’Ï3¸á«3´”uÑ›™Ï›ŠØÔœ7UGêiG\,¾¦ 4hÞ2{†0ôóÜöBâ¨U®å—Å™"_\ÊÈ. 1¿âããCBB–-[öý÷ßgeeÉ<§¨jÕª„¯F›:,wêÔ)~å|0vìØ]»v­[·núôé˜}èLD_wQ©R%BÍY¥JBH¡B…ÚòT¦L™Û·o‡††*?@ÊùùçŸù•t1xdd¤–™úSÞR4AÄC’´UšCXéÁ0Ï© KXÉAOI‰êØÌ|ÞTĦ⼩;RÉkJˆ¡ :hœ4ÜovG}$ÈåSI?eò)¬|HêÚ¾}û 6ÌŸ??<<<&&FaÇÚµk—+WîÓO?½sç­9{ö¬äOÑ(WtttÙ²e§OŸÎ1Ï;7iÒ¤‹/^¼x‘R­Z5®ñòåË©{¹O» Ã™t4±víÚ‘‘‘Ÿ|òÉíÛ·éÖ;wî´oßþ7ÞÈŸ?¿ò¬S§NÙ²e§M›vëÖ-Zó×_%''—+WΜ¿IȘØ@ÇÒ4ÁwÝÊå%žhâ<ƒ~ÉÅ–´•!ŒðIköwžŽ±™ù¼©‰Í÷ó¦îHÕ\S£¯‚sh’¹££²FB°ªZ³¸µÌô ¿(¨‘Yv­ã/ÇHòuÿåNK—.¥7Ò°aÛ+£»víÊߺråÊ   Ê•+3føðáÅŠkÒ¤ !Äív{íÛ¿ÿÐÐPñ^V®\\¹rå·Þzk̘1¥J•*X°à™3gΟ?_ @²eËŽ3æóÏ?ïÓ§OxxxñâÅ+Uª´nÝ:ñAyúå–e (P«V-ú~ýúõ!!!eË–9rä믿^®\9†a–.]êë®X±"88¸|ùò£G5jTÙ²eƒƒƒW­Z¥äð,nU5]`È-3ôZôµ½_iÁŒ4Bþ)f¿÷ÚÐ!1AwÙØþâרÌ|ÞTĦ漩:R×Ôø«àZöÕç߬cVU#qÔ*~¢Æ%‹žÒDOŽ9ºÿä àå¿Ãðàõqܽ{·`“|òDzìÖ­[cbb .ܨQ£ |øá‡„ëׯ{íë)qdYv÷îÝ­[· +Y²dçÎOœ8AëwîÜÙ¸qã‚ VªTiРA7nܘ3gNñâÅÛ¶m+>(™Ä±Q£F„o¾ù†9Ò±cÇR¥J-Z466vÓ¦M*eÙ={ö´k×®dÉ’%K–l×®Ýþýû¹MæLù¾JŠü]OE4S£‰F3†œy‰×îOF|‰ëâïØÌ|ÞTĦ漩:R×Ôø«à½4¼ ’Eâ)”O™b`Gó+==ýСC—.]âW¾òÊ+ùóçç¬--» |CË1ž¡Œöä ’/Áp]ü›™Ï›Š¢ºó¦âHU\S3\‡ÐXÞ_)9Ú8@˜ãPI®¹v ‚‚‚ZµjÕ§O®æï¿ÿ^µjUÇŽ%—E[N¶?@²Öj#iÉ-YÞúM%4:¥UàçÂuWÞEclf>o*bSyÞ|?R×Tß#M^ôi¹ ¬+$Ž:K"S”T®\¹wìØ‘°dÉ’iÓ¦ÅÄÄÜ»w/))ÉèÐp€ºÉbë%ÍA{òm¤ÌÕï‰xëmY"\ü+“”<)x^(ªClf>o¾Ç¦î¼©9R߯©¾G š¼þYMϻߘ$güÞ GíòjÇãUÎÌ,'NœøÙgŸ¥¦¦4hÒ¤IÅŠÛ¾}û³Ï>kt\8@dªÐ6:Jr .aò¡—ÈØEÉ@ŠØÌ|ÞÔĦ꼩škªï‘‚&KSw¿ÙIHõ‘¼¸ÈÕØÆÓÑWÑ1¹ãÇß¿ÿöíÛÛ·o¯W¯žÑAá½K`WA¸]ÈA{R™óÛˆïÌâ‰ÆÏ0ÄÆ1’Áx4vÉî¢Wlf>o*bSyÞ|?R×Tåy3ó¿3Ó¤LR—;=ÉÒòRhÇ#vçá¶8²¨t±ãÑÅYÃf4Â[!AãœYøpâÍt&çº ñ^$vGˆ.±™ù¼©‰MÕySq¤j®© î^çÐçŸ{å¸|G­òÕŽG²=GÈÒ׎Gyw›Ór®VBãº(Mò;ϱ™ù¼©(ªÅÆuñwlf>o*bSyÞ|?R×Tß#ͧûÿòJ¶™8TXd AT¦]/ š=hV\ušuiŽG;¢2ó§¹QŸ8-g¯(ô©¨±;h šá4Nüz'LsÄ£j=%°×‘tÛQÒ‚Ì/ŸÌ/$+T[i€h Kƒ ÙiÍuFFÆÜ¹scbbÂÃà .\»víÄÄÄË—/L… ºu릮ïádžYºt© ~Ô¨Q ì\¹RÜåàÁƒ üøâ‹úELLLtt´§"2ózIÐ@ 4È“8ê,“¤† Oþà³,Û¥K—Aƒ=|ø°OŸ>‰‰‰•*Uš={¶Ëå:yòdà×êÝ»7!dÙ²eâM«V­"„<ÿüóúî1(((((ÈèãÖMf^áh †LQ8j•F;ˆa˜óXý>.Z´hݺu£F:tèÐǽzõ길8BH… îܹ”˜˜œœœ|ïÞ½:uêdddôêÕëÌ™3_|ñE­ZµRRRhãÇ_ºt©C‡QQQûöíÛ¾}{Ó¦MwìØÁ0L… j×®M§nÞ¼¹sçÎáááñññ¹råZµjÕ¹sç-Zô /BV®\ùüóÏ+V,!!!W®\Ë—//\¸pjjêwß}׳gOñ!4hÐàĉׯ_/X° ­©S§Î… ®^½ìuw*T¨[·îöíÛ‹)Òºuë/¿ü²OŸ>K–,iÕª%¯Y³¦^½zûöí#„4oÞüöíÛG%„lÙ²%..ŽbY–ýæ›oÒÓÓ9R©R¥~ø!!!¡T©R Ã,_¾üÊ•+Ë—/ïÒ¥ Ý#w*¼¶ÄæõºëeÇÃýu®‹•h ZàiœœfǃG­â†ãŽ>uqTr5u¼âß~ûm¥J•è]”7oÞ-Z¼÷Þ{¿ÿþ;¿MÅŠ].×ãÇiñöíÛÁÁÁ¯¾ú*-–/_>$$äôéÓ´øÑGB¢¢¢ÒÓÓiÍsÏ=G¹sçmLyï½÷8ø¨Q£!K–,ayÃliiiUªT‰ŽŽ~ðàmöèÑ£FU¬X1##ãÑ£GåÊ• ¿xñ"Ýzùò刈âaÄ‘eÙäädn/,Ëž;wŽò¯ý‹åwÇ…=iÒ¤ÌÌL–eïݻԿŽ?pàÀ°°°Ë—/³¼ÇŒŒŒêÕ«WªT鯿þ¢ÍvîÜIILLLKK«P¡BùòåoܸA7ݸq£\¹r+V¤ã¯üSáµ%?6%¢#Ž^ÿìÖ^ 43h’/‡Œ8bŽc@e’5׺¨wïÞgÏž=vìØ´iÓZ·n}èС±cÇV¬XñÝwßåÚ8pàÈ‘#tdŽróæMB­Iƒ ªV­Jß7oޜҫW¯Ü¹sÓš–-[òÛ‡……1‚ë;a„‚ V==zôÌ™3£FÊ—/­É“'Obbâ¹sçŽ9räÈ‘óçÏ'%%=ýôÓtkxxø°aÃd³gÏž¹råâöBGò¸±IùÝq»xûí·såÊEÉ•+Ã0»wï>þ<Ý:gΜ7n„‡ç¸ RRRN:5lذ¢E‹Òš¦M›Î;·iÓ¦GŽùí·ß†Æ–áÇŸ;wîØ±c|ˆ’–üØ|•¥§±ƒf9šFZ iöGe§ÔP‰jÕª5|øðÕ«W߸qcÙ²eááá&LØ´iÝZ´hÑ£GN˜0¡gÏžuêÔ©V­ZFF¿;—ÓBh¾(®áôÌ3Ïð×£(P 22ò×_å·ùå—_!½{÷æQc .Ð9‹uëÖåw‘·NŒˆˆˆ]¿~ýÝ»w !+W®,^¼xll¬’ÝÑ6‘‘‘\f–/_¾éÓ§_¸p¡B… 5kÖ!„.CNKK‹‹‹‹‰‰Y¿~}•*UFŒqúôé"EŠèxDÁÁÁ‚¬‹f–S§NÝ Rƒ èØ§`¹×Ì©wïÞ=Z½zõÕ«W÷îÝ›À¹-Ê åÓ^{íµßÿý«¯¾ªU«Öºuëºwï^«V­k×®ñÛЃâFjù¢WPp4žÇûÚR›F™y4Ð@ͯ4§LpDâè'eÇ(P`ãÆsçÎo¢ã…ùóç'„ìÚµkݺuÓ§O?pàÀäÉ“ûôéCgþ©Þï©S§ø¹ÑÇOŸ>ír¹ømªT©B)T¨P[žÊ”)sûöíÐÐÐÊ•+B>ÌïBßÈ(>>>$$dÙ²eßÿ}VV üîĨ›7oîß¿?Ož<ƒ úöÛoÏŸ??cÆ ·Û={öl~3zP§NâW~ðÁcÇŽ¥{üùçŸù›Ž?N‰ŒŒŸ %-}’U,oœC“ü> 4Ð@óZoO=ÉÒòØë(·ãá-gÇ3xð`BÈþóº„êÞ½{;w¦søX–¥£7näüïÿ#„ôëׯ14›3gW3yòdBÈÕ«WÙì•~ø!·uìØ±„yóæñQ?ŽŒŒ¬R¥Ê­[·h³¿ÿþ»lÙ²áááééé+VŒˆˆ ‹QX–½~ýzéÒ¥‰çÅ1T]ºt iذaxx8)‰üîÄÇHý/ÇÇÕÐÄnÊ”),oqÌÇË–-[µjÕ¿ÿþ›6ûõ×_óæÍûâ‹/>zô¨lÙ²+VäÖÍܼy³|ùòåÊ•{ôèÊ[*gÇß-®ÝæÃÌ4«Ø£€h¦‰×Í8dq ìx´Jµ¿¨‹•äóhú¼RÇkýðáÃÖ­[ïÞ½»R¥JuëÖ¥ë”wïÞ}íÚµ±cÇÒ„ïÂ… Õ«W/V¬XŸ>}ž~úé½{÷nÛ¶-##£páÂ3fÌhß¾=ß8†rìØ±ÚµkÏ™3gàÀ´fÊ”)o¿ýöÕ«WK–,Y¡B…´´´›7o¶oß>**jïÞ½›7onԨѮ]»råÊÅGmذ¡K—.¥J•zþùç?~üý÷ß_¸pá»ï¾£¿¸jÕ*jÇÓ³gÏܹs/]ºôÆiiižìx¨–-[F·6ìÓO?åo’ßàÓÓÓëÖ­{úôé矾Fn·{ýúõ™™™‡ªP¡ߎ‡ÆY¾|yê¤3oÞ¼{÷î=z´råÊ+W®ìÙ³géÒ¥Ÿþy–e—.]zùòåÿýï]»vìQyK…âìxtñÂàjÌLS×4Ð@³=ìx ßd;N¹Ê÷ïߟ={v£FŠ/ž;wî’%KvêÔé§Ÿ~â·Ù¹sgãÆ ,X©R¥AƒݸqcΜ9Ô%›õ}ık×®;wîlÖ¬Y‘"EªV­:räH:r&F9r¤cÇŽ¥J•*Z´hllì¦M›øQýøãÔœR¤H:*?âøàÁêãHS’ÙxTï?þ0`@¹råòäÉS¶lÙÞ½{s†DðÝ»w·nÝ:,,¬dÉ’;w>qâ·iÏž=íÚµ+Y²dÉ’%Ûµk'c®¼¥ñíxÄy[ÈJ4Ð@M MòåÇ`_’L«êáÇK—.]¾|ùÅ‹ *är¹ ФI}»(]dÍA Šz‰e1Šœ?þÁƒÓgÖžÔ´iSúp–ÓÀ¹Åß~û¿)**Jù¸qãÆ'îØ±C¼#*::zÍš5ž¢Š‰‰Ù¼y3!äòåËÅŠË“'×3–/_>ºªZR2»F)]º´äôPBÈöíÛùÅÆsëÓjÔ¨Ñúõë•ìQyË‹ÎâþRÍÉ4†0,aõ¢ÉÄF’[ŠwÈ#Í!×ÔÞ²ÿ☌ŒŒþýû¿ÿþûׯ_oÔ¨QåÊ•÷ïß?`À€™3gêØÅ“loÇciEDDäÉ“Çè(œ"S­—4³Í‡i,aÂÈÓÂ(¤ÉÄFw$Ï¡ ,qÞ@#Æ]S'Ëþ‰ã²eËRRRêÖ­»sçÎ/¾øbÞ¼y«V­ 9sæéÓ§µwØñ S„+ }é{¤ i§ÉýË Iúƒ‡QšäŽÌ|Þ@#¦¹¦N™àè„ÄqÆ „qãÆq¿íQ¥J•!C†dff ž¢jé"rÿ$š Õ¾}ûFäÝ®B¦½|4‡ÓXÂ’ä–b÷ůWl8E=-qÞ@#Æ]S‡ÊèI–~×sÏ=-¨üé§Ÿ\.×øñãµw1•ùUJìx¸"¿Æ§"hN¦BdŠzÆFSUŽ–³h¹óZà¯)MÌ?m ûÛñœ:u*88X`ýå—_&''5jРA»˜ÍŽ‚ü'Úñ€xC˜')cöp‘Ÿbû‡O’´5Gê©;hi>]S±q‚ýµwïÞ:uêÔ¬YóÆÚ»h±ãÁˆ#d-ÁŽ´ÀО|=ù?6nGö8o ìšJ¾2âhÿ9Ž|eff.X°`РA<øàƒèïãéÞEF˜ÑATf˜Sš™iDןq3ó‘‚f?š½å ÄqÿþýqqqS¦L ›;wn‡üÑE dŠDeæOyÐLE£«aXÂ’ä–~Û‘¯^?æYÉ—;êMOs„ª`€Ó¼ç 4s\S§ÈèI–~×üùó].×ĉýÔEÒŽÇWw,Ž,!Ov<‚b;¼0@³=â±=o­ƒöØäh„Xî¼fÔ5寉yRï Ùü·ªY–]´hQ¡B…Þ|óM™f÷ïß¿~ýzîܹK—.­°‹@|‡I;ÁÈ"!ëJþqßÏBÒ½ÂkwМHã,x¤»oe’B¶jj2d›ô¾Ë$3LÒVËœ7ÐŒ»¦‚JBCœñ´ÚèÌÕ¿ºvíšË劊Šê.¥… Òfk×®u¹\;vTÞ…ìx çv< hž^t´ùÇ‹/B>|xBJ×®]Ó¥ A¾Êê‹7A 4М)›'ŽuêÔq{Öˆ#h³:¸Ýî5kÖ(ï¢P6~B‘‘1wîܘ˜˜ðððÂ… ×®];11ñòåˆS¡B…nݺ©ë{øða†a–.]*¨5jÃ0+W®w9xð Ã0/¾ø"!$&&&::ZÝ®•÷Õ²“ÈÌŸò hBÙ}ú$&&VªTiöìÙ.—ëäÉ“FG§z÷îMY¶l™xÓªU«!Ï?ÿ5>œ[…­Q,Ëʤ† ð,ë ON»wï&„$&&ò+k׮ݣGÇß»wÏ'ZzzzVV–ÂÆ™™™™™™zˆ¼zõêuÿþýµk×ò+O:åv»»uëâfeeìUˆÿaÊ$m“)r•üA4Ð@ 0« MfäÏê4I¦íes;ž€‰Ÿ ìxHN³q{EsGq‚¨oÖH¡™Í‰'Ê”)ïÿðÃGŽÉϨ¦M›6oÞ¼_ý5Ož}è¦ *tîÜ9$$dÆŒYYYÑÑÑãÇoÛ¶í;ï¼óý÷ß_ºt©nݺ3gά^½:mܵk×J•*3æÁƒÕ«WïØ±ã»ï¾+™½8qbüøñ‡zôèQ:uFÕ²å?6°?þøãþóŸÃ‡—*UªcÇŽÝ»w÷t˜½zõš0a²eËzôèÁUÒY={ö¤ÅæÍ›ß¾}ûèÑ£\}úô8p !䨱c„ýû÷O˜0áÀ¥K—îÚµkDDÄ+¯¼’’’%î[µjÕ1cÆÜºu+""¢K—.~øa¡B…{!„¤¤¤¼óÎ;`¦Aƒ“'O®U«–×®Ûm¦Ø½Bl~!6³ 4ÐL4ö7MÅ¡Y‚Æoó ;H‰LhÇ#¸¬þ¸Ê7n$„äÉ“çÕW_ݲeËÇ%›M˜0Ò¢E‹I“&;¶Zµj„Õ«WÓ­åË—ê©§Š/þî»ï¾÷Þ{aaayóæmܸqƒ ¦M›öꫯ2 Å5~úé§ !:t3fLóæÍ !M›6ÍÊÊ¢[»víJ[nÚ´)oÞ¼*T9räèÑ£«T©´dɺuÅŠAAA%J”xõÕW‡ZªT)—ËEùî»ï$¡~ýúùòå»{÷.W]¬X±ÇÓblllíÚµ¹ ãããŸzê© *üûßÿ¦'*Ož<åË—9r䫯¾Z¢D BHJJЏo5BBB^{íµ3fÐF4hx/›7oæpĈaaa… >{ö¬×®]°ã 4Ð@óôrˆFm(–7î¨ûX#U›6m¾ýöÛñãÇÏš5kÖ¬Y4ákÕªUï޽˕+Ç5[¸p¡ËåÚ¸qcpp0!dôèÑaaa6lˆ‹‹£ îÝ»wìØ±ªU«B‚ƒƒG}ÿþýƒæÎ›rüøñ]»vݽ{—Žº]ºté½÷Þ3f í;zôè©S§.]ºô…^àö˜žžþÚk¯U«Vm÷îÝô‡"ß}÷ÝæÍ›7®GIII%J”8xð MCÇŽ[¯^=™#íÕ«WRRÒš5kè^~ûí·£Gþë_ÿ¢G$ÖŠ+&MšôöÛoçÊ•+++ë7Þxúé§<øÔSOB†Z»vmOû:qâÄòåËããã !¯½öZTTÔ† m233_ýuÊ,Z´(!¤sçÎÍš5ûôÓO?ûì3¯'‚ È(ÑÑ;n|ÎÆ4{ sý+£ìxhî觬‘ªwïÞgÏž=vìØ´iÓZ·n}èС±cÇV¬XñÝwßåÚ8pàÈ‘#\ŽuóæMB­Iƒ hÖH¡ƒˆ½zõ¢Y#!„>_æÚ‡……ñí&L˜P°`AÁªç£Gž9sfÔ¨QÜÏ‹çÉ“'11ñܹsGŽ9räÈùóç“’’hÖH 6l˜ÌaöìÙ3W®\Ü^èzjî9µXááá4k¤Áœ:ujøðá4k$„T«V-!!ÁSߊ+Ò¬‘Â0Ltt´x¶hJJÊ©S§† F³FBHÓ¦MçÎÛ´iS%'Ü@Yh½$h æšF™™æ(!qÔY±ãáT«V­áǯ^½úÆË–- Ÿ0a¦M›èÖ¢E‹=zt„ ={ö¬S§NµjÕ222øÝø÷4_×pzæ™gø3 (ù믿òÛüòË/„Þ½{3|øðôéÓ‚Qº*UªB *Ô–§2eÊܾ};44´råʄÇ󻤤¤Èï7>>>$$dÙ²eßÿ}VV–ÌsjèSx#ºFƒtz¼§NâW~ðÁcÇŽÕý„KJ…ù… ¨ÑJÃÌ4«Ø£€hºÐ¼ÖÛRX£Äv<‚©DÖGG‰ç5²}ÂÃË/^©R¥uëÖ±9=tX–¥#sæÌáj&OžL¹zõ*mÒ¥K—ñãÇ·nÝšÒ¨Q£ÌÌLjýúõ!!!eË–9rä믿^®\9úSÔtëÊ•+ƒƒƒK–,9lذ#F”.]:Ož<ij÷KÖÆ lXêðˆî.((¨råÊcÆŒ>|x±bÅèys»Ý^ûöïß?44T¼z•+W~ë­·ÆŒSªT©‚ ž9sÆë ×.Øñ€h yz9ÄŽªí#ùaEV×gÖùòåÛ´iÓìÙ³K”(±}ûöY³fíÚµ«^½z?þø#Íö!eË–]·n]éÒ¥g̘1mÚ´|ùò?~üý÷ß¿sçŽ×A>I5lØpóæÍ·oßþôÓOÿøã‘#Gnß¾]²Ð§kâĉŸ}öYjjê Aƒ&MšT¬X±íÛ·?ûì³FÇ¥^|÷ í–7 hÖ¥y­·¥üø“tõq$²n;ò \+®Dº\n·ÛèC /ŠŒŒt§º‰g3 _-o´A 4Ð ¤ñÅmrÄÓj£'YZ^¦²ã ¿Ê!v<¦ 4Ð@3!Mò…Å1AN}Dh ‰…Ä1 ÂRȱ²Ð: ÐþQrK¯4†0WãIâ aäc“`ªŠM…ÔÄ&+[Ý!úÒuMu?RG ‰£Î¤†È!ÇÊÌ+ASª¤­ü¬H‚–Ü’%‰ò,aer)†0´KŽsSÖE{l*ΛšØ<Ó´Ëδ@]SÈ)‘8jìx ÇÊVC y  ¾ËùbC’¶Js+=Pç9Íb +9à$™hj‰MÅyS›™¯©™i»¦>R; ‰£>òjÇ#(òíxŒŽ‚|À®‚ˆÖªöÂÍ´4Áw9÷<šæLžhÜ@Ý?p¤­rÁˆ’~® cljΛﱙùšš™¸kª™æµÞž2zuŽåÅ-”¦oøE~ (hUÕ%Ä­ª¦ ¹e†^‹üA4«Ð!ÿ³ß{¥:\'è.'ᱩ9o¾ÇfækjfZன*šp1µ“VUÃÇQ«8G’=|È7ôø{ pÅH—Ëè〠E¢>Ž$û/ln¢|‘ˆ-úÔ4³Ð’[>y=ö£„ödôˆ&‘Êbãºø;6çMMlf¾¦f¦ꚪ£qâ×;bš£Ñ™«å¥‹£.ÅÓ$_îøp¯“i/‚hFÑHöH›rÚ“ï_‚áºø;6Eu±™ùšš™˜kª‚&ùrȈ#æ8Tú.…1ÎÚ¤ÝSã#ˆÙVêhºÐ²G€”Óèp+»0YÐ]y™Øü´NBel²'ÊTk8ÌE È5Õ…æ(!qÔYúÚñ˜™Æ‰>Žç¿Rã#hú¨\fþD 4ÐHvÎÄ$mã¾Ë•Øòåq̹0Y&Ñ|Rð¼ÀÖkl¥clŠN”æØìG Ì5ÕQNyNÄQ»ôµã1Ujè•FGù“8¹–®WÜçûò+Mûuh y¥ lt”|—s_ü>ô¹ô)pR›šó¦*6}¯‚shº¦¤ÙIHõ‘¯v<‚÷ª»Ng|ñÿ™éb”h @Ëù-þd¡€Èm'—5æh 6µáÜO<˜õv¤=6çMelf¾¦f¦äšêr¤^ëí)£'YZ^2v<‚zåî<֢ɯ•Qít i”h ùD“Ù‹Bɹ®EØ,{k!^bË^ñ ¹ÉØ8¦ÖØ|?oêbÓ÷*8‡˜kªË‘r¯› Øñh•Œ¤;LŸŠ¦¢y<9ñá®—‰¾ ª»ƒhêi¼ç³ i\åÁpNÚþŽMʼnR›™¯©™i¹¦zÑ89ÍŽªõ” ‘’Ì«dÚÈw÷Jó©»¾4¯âÿûôµ(® 4ÐDãý›B÷ů<–°‰MʼnR›¾WÁ9´€\S]hüq˜8T~]¼¢olZ$vçÑ(}g%ƒh šÿhöGeéUÒZhœÔ¹ó˜y5h h ATHµJ£fÖAD…4Õî<hòÝA 4ÐüJsÈG‚ÄQ/éå€cišdÖȉ= *õòM 4AQò#ÞÆ4½N;h ¦œæµÞž2zY·å%ãq#_Tâ€cEš:w…Ö$ }@Íi4$ f]š:}iÜ+Ç&vA 4Ð@M {åhãÁŽG«`Ç£F|7ë!:Ù.€h ¦¤;h°ãÉ>`H›Låqcš¼YÿBíEÐ@ 4Ð@ó‰&ùrȈ#æ8JëáÇóçÏïÔ©SíÚµcbb¸{÷níX“,d¶oÖCÿËùõ¨ Yzþ5h£1„ñµ£dï±%· @l24]P Ù˜fæûÍœ±Ù[H%”‘‘Ñ¿ÿ÷ßÿúõë5ª\¹òþýû 0sæL_QfÎÆÌLãÄ­¼æ»óŠ^ÓGó.ƒfBKX¯ßI‚´‹|l̤­2;b“[ˆ·ªˆ-`ç 4ûÑŒºß”Ø>( v-h ;ÿѸ”‘+ЧBÒîó}uüD°å h~¥yúNâ†:X hò_c\Ÿ; bcC’¶ê›E¯hf r¿)í¥,6‚'$ŽÚ°a!dܸqùòå£5UªT2dHff¦ºÖ-oœI“´x”ñë‘7z$zÛ.€æšÇAÄä–ž¾XÂ’ä–bšü—«ä—×E¯Ø,z@3ÍÌ÷›IbsŠŒždiF=÷ÜsÑÑтʟ~úÉår?^P/iR£—g h¾šõðôra 4BÓAQQ†F‘)zŠO¦ïý›U¯hf ™ù~ llÜë¬3; :u*88Øårñ+¿üòËäääQ£F 4ˆ_¯—:'иJy¿jÖC,èé »C„’î ùJ£CLÒ6’Ü’$mUBûç)sö°‡¢ØèŽódwþ‰Í¢W43ÐÌ|¿26N°ã$´wïÞ:uêÔ¬YóÆ‚MÖµ¼±4MÞ¯Gð¡|Ñ×ö 9–öä3Ó—î\ŸöÎïâ¿Ø,z@3ÍÌ÷[`b“|9dÐs½(33sÁ‚ƒ zðàÁ|ftDPtÑ 7©Ñ¬ÇN²ÜâM[Òˆh|‹²G-w¤ š„ÄQNû÷ï‹‹›2eJXXØÜ¹s;tèà+ÁêëšÍOSbÖc†5‰†Ð4 4¾è³cV÷Gãº(wjäžns;òSl;o ÙfæûͨØ%$ŽÒJOOŸ2eJ¿~ý._¾œ˜˜¸~ýúÆK¶„Q4±;'³_‡-”‚ om&M½Òr˜€xujä'šÙE%_~êb ÜyÍ~43ßoŒM,§LpDâ(©¬¬¬#F,X° eË–›6m:t(çË£‹tL¿Kã˜ü­>™õèk»ši‚u*$û;I®³ØijS#/‚JO¹£¦ØuÞÔÑ,gRã(šºûÍ9±9EFO²4£æÏŸïr¹&Nœ¨¤±ÀeFÒVFµg hòݵ˜õð';Ëé{½<@³ðfÙ ·æ\ÂÂu'„øJ£]<Æ– Ô›ù¯‚òî ˜¦ú~SŒ.±‰ÿqé{»JÔ;CÁF'®¦˲‹-*T¨Ð›o¾©¼8Í«+ ñö 4…4Ÿ.;¾¯kÅe™?(eŠ^M@³%:z0d›4Ò/-Ž–³F´÷­L2CÈÖ4:<™,ãú±õ“-±Yá*øÔ´€Ñ´Üo*‚Ñ+66¹!,“Ì0úÅFˆg;⌧ÕFg®¦Óµk×\.WTTTw)-\¸PÐÞT&5 ©0ë×h)‚fÉ9ˆ‚Ø@s,ÍÌ÷›Q±I¾2èˆG¡.^¼Hyøðá‰'Ä[=-‘ Èf¢ßIæ”™cƒì$:ÞÆ&ës¿eÓô“3slöÇU§N·g1Â'šÙV";ÆY<ÒîÔ‡syTçõh®Ž h°ô2šæ(!qÔYÚ×›–fÎÔP¦»Àâ‘k)x‰sG }¬ƒh xšX°ã1F,Ëž:ujΜ9£Fzùå—;uê”ðÊ+¯Lš4iíÚµ7oÞ4:@ |•HùÚSÑTÈ@š¤Å£¤_5ë1§ h h¥ÙUfI/^¼øÁ<ûì³Ýºu›:uêêÕ«÷ìÙsæÌ™ŸþyÛ¶m‹/NJJjÒ¤IBBÂ÷ߟžžnt¼ÿ(5!BœÄˆ‹ž’šÐx*‚¦…¦\‚Ü‘Ît‘ñ÷¢EO1‚îžhü{Дœ(Ð@ 4ÛмÖÛRÆ/޹råÊ|°iÓ&BHíÚµ££££¢¢*V¬šžž~ëÖ­?ÿüóÔ©S)))|óÍ7§NúÊ+¯ôîÝ;W.³$¾b[AÆC´™Ô€¦Žæ“”;DxªQX´–=ŠO4¯V hö ñõdìx o¾ù¦víÚíÛ·ÿú믯]»æµ}VVÖÆŽ•ššjlü,ìx,H“7ë1ƒÁh hf¦I¾bÇcðˆÝÂ… ß}÷Ý5kÖ 4¨D‰^Û3 S¿~ý)S¦lÙ²¥fÍšßÿ½±ñCA9G'Ž6lˆ‹‹SñÄ9,,lüøñIIIÆÆïUZ‰ì_b³_¸‹…Öýh š£dpâd`wÈT: ÉKì×#iÖ£}Í5_f¶" 4¿ÒÌüÅh>ÑÄb`Çc þúë¯ãÇó ££J…OŽîÖ¨³Ž2Šýz$wD×\+‡[è³4ÐIÓ(Ð@³.ÍN2WâxëÖ­4jÔ¨GÏ{Ñ1JË'[~Q¡+ hºÓ”d|)÷tPh h š¥i^ëm)ãíxøúä“OvïÞT£F¢E‹2 ctDÞE} /Mñj+#ï2Z`h¾J<C{:(i h š…h|ÁŽÇ0ÅÆÆV«VíðáÃFâƒlcRšB¿SYB€šm‚ 4 Ñ$_°ã1@wïÞ­]»v:uŒ‚ Èþ¢ã@ 4}iö–¹ÇêÕ«?xðÀè(ü(;­/qMì×Ã7ëI0óZÐ@ 4Ð@s”Ì•8¶iÓæ—_~Ù½{·Ñ¨WÀ Aó7[yÍ™õ~=>aͼî4Ð@ 4ub`ÇcˆúôéÓ½{÷!C†L:uûöí¤dtŒBÁŽÇ~4³x”, ú ÌzÌüg1h h§ÙIæJoß¾}öìÙôôô9sæ 2äE)£´TûÂd?õ­;h ù$‰­¼Síh š9i^ëí)£WçäÐøñã].WõêÕûöí›èAFÇ(· —¾áù5‚¢d{ù"h§ùºæš.»ãßy-òkEÐ@ 4ÐLKã¿rlr€Ì•8¶k×®F'Ož4:ÄÏ*¸¼D¹/ŒLw%4åÝAÓ«»W³þÇŠ|QüäSwÐ@ 4ÐŒ¢q¯LÈDª322~ûí·¨¨¨êÕ«‹JyýõùöòE¯ÐüAóUCù¢Wh h&¤ñ_^É6“‰Ǭ¬¬Ü¹sÿý÷ßFâG™pí0hZ$6ëøõø 4ó*BДˆ!Âß»ÐÄ HrK¯Áp½4Æ&?ß_"6_N”©Ö"XަääK¶±Ü‘Ú’æ(™(q ‰‹‹KMMݶÍÂÏBk‡ASGãÄ7ë¡ã”JÌzÌüÙšvKX’ÜÒã z°„Ö&må'Á$·”è¥*6™ìD:6Ùó¦Q åh#{uïYýHíA v<ÆhÀ€5kÖ:tè¤I“Ö®]»CJFÇ(ìxHã,ù52f=æLq@óæŽâzO_ülr Aî(èE’¶›E¯‚i\î(ASÖ[èHH³“Ì•8vìØñçŸÎÌÌ\¼xqRRÒ`)£´TûÂèb+ZàiJ²F®¥8wT^ÔÅ`´@ÓD‰ ÿ‹_’&èò¤Mv/cc³êU° æŽýãÁðØBƒw½:'‡F*Ñ1 %oìâÉFË h¦¢)_v-cÖï×Å!4ÑáÞ(¤q]¸^æ‰M÷ó&³§Óx—>Ç-a†ØìNS~ós¯› †eUŽ~CT© üß!¼±(AÑkŸŠ ™„F¼8f7¸L¸A…ìUx‚¢×>A3íÉØ^ÒVº'·d KGM›5¯‚iÜm@sGSÅš`|‘_ï„iŽæzTmu)1vQm+š9i^³FòdÒdQæ¡Ú`4›Ð’¶ògš+6ÐEãþx0al ±°ã1›vìØ1iÒ¤ëׯÓâ–-[^ýõuëÖ—2­­ h~¢‰ýzøf=bï3¯"ÍW=ùâ÷¶ZV(n¨É„±ÉÊœWÁ¢´'Cξ_Ë©-iö–¹Ǭ¬¬Q£F .....Îè½È´I hæ¤qâ{÷ÐgÙ©ñžŠœ}…&Ð@ 4ÛМ,s%Ž„qãÆ}þùçåË—¿|ùòþýûwíÚuáÂ…°°°É“'ôÑGFG'!Øñ€¦&9Ò“›ON²o¾™ùOvÐ@Íö43§†°ãñ$Ó%ބ֭[oܸqïÞ½‹/ž7oÞŽ;víÚÕ£G\¹Ì-•IŒ`@³"M~õŒübêû¨Å~Â×ö fMúV@³2MR¢)ïh+=ÉÒò2¡ hV¤©^LCWÒèâ7!Ó4Ð@ 4þ›kbœ´8Æ`;žåË—wëÖ-((HEßË—/Ÿ={¶iÓ¦ÆO`Çš~4®R}iMj@ 4ÐìGã;ž€*66¶M›6«W¯NKKSÞë?þ˜}ú´jÕjëÖ­3gÎìß¿¿±ñû* ­öÍ 4y ì{Äf=>y÷x•©æÔƒh ™–foœ8æË—o̘1?üðCÛ¶m¿ÿþûÖ¯_¿S§N¯½öÚÛo¿=uêÔ)S¦Œ9òå—_nРA›6m&L˜ð矾ýöÛk×®5ü!µY}µ/h¦¥‰í{dÜ|®¿¶Ó GÐ@ 4ÿÑœ,S¬S®R¥ÊäÉ“wîÜ9qâÄÖ­[_»vmË–-ÿûßÿæÌ™³`Á‚ÿû¿ÿÛ³gO‰%úõë7oÞ¼ 6ôíÛ7_¾|FGýD;3_fÉhôº[03’æŽîó}ù•fþ“4Ð@ÍB4§Lp4IâHÚ«W¯3fìß¿ûöíË—/Ÿ={ö7ß|³fÍšƒ®Y³fìØ±7fÆèH½K£u h^‹ ÍíJSgߣpèQ£1h šChž86—Ñ“,-/÷Šrë%N. æÉÜGùòq{O~üŸŠ hN£‰×Í8dqŒÁv<6j;]œ\@s2hðî!Úì*tñ 4Ð@Ó¥»!4N°ã|“mœ_@³MfÐQð‡²Š¢Æî hÖ¥I¾2âh¢9ŽNI䂿š@|ûBß¾GP”œiéyë h£Ù[Hý+3g 9Š&°ï›õð‹´ÆÌŸË š.43[Þ˜™æd!qÔ*Øñ€fršÀ¾Ç«›ì›m¸™?åA 4]ºƒæIN™àˆÄ10ÒhÝhªiž< $9®WÜçûêeW!îh f'šSdô$KËKÒlE/ïÐ@Ó…¦z1 ]F£Î½‚{¯‹h š©hü51Oê!ÓÙñlذañâÅ.\ðØÎ;Ž1‡ô²ãQçäh i\¥:û½Ü+”t 4Ð@3?ìxŒÔÆ]ÞdtŒBÙÆº4Ðd%Ý(¬k¥h ¦…&ùrÈ £¹æ8þ÷¿ÿ%„¼øâ‹?þø£Ûƒ´ðÏ;yìØ1¯-ÓÓÓ¿þúëîÝ»GGG·hÑâõ×_?sæŒÑ§2£,ºÈZ‰8ïºJF`Ö#póñUžŸÜ’{ˆ$·dÃF†æi«_c3Ýyó¸ófæØÌ|MÍ›]hö–¹dzgÏFDDŒ;¶dÉ’þà/\¸PI³ÌÌÌ~ýú}üñÇ·nÝŠ‰‰yúé§7nÜØ¥K—ƒúºGÃWÔ‚æošF™“Æ­¼æÖÈÛ÷(É þ”OÚJ“†0üÁš>²É-Ä)Ý*O•l :6GªSº£&6ßiêÎÛ“«à96_O‚ޱ©9of¾¦fŽÍ²4GÉ\‰c‘"EÊ—/Ÿ+—ÎQݹsçСC&LX¼x±’öK—.=räHûöí7oÞüÙgŸ-\¸pÞ¼y„·ß~[Üv< Ù†F%Xˆ-.ŠgFÒÜQ°Ûl$ôû’%,ŸÆ¥$i«D/y7|% iŒMòH=Ű󦂦â¼É§t\CbSwÞÌ|MÍ›Uhb9e‚£ÙÇZµj¥¦¦²¬ÎëuâââúôéóÝwß)läÈBH¿~ý‚ƒƒiM£FªU«öûï¿ÿõ×_ÚãÑñ‹4Ðä»ûJ“_=#iîÑ©}|lFZi$·”Lžä É-%i´‹'šŽG*›¹-Hô:ož®‚–d×ÔŠ±Y—æ™+q|饗nݺõùçŸë‹2eʬY³fÍšÕ¸qc%íÃÃà !ü‘eÙÛ·oçÊ•‹K%9ÑUÕâ¯j—ž§/oúMì©h*h2£’Jh%ñÅïù³˜_d’¶ÉµÒÖIÚÆÿ¾ä'%24qžÁÑô=R±ùý¼i ©9oI[…¹crKnÌSl9Ì4Ǧ‚&wÞxc{Ú¯©sbÓ…&Ù]_šL¥¬¡E{÷îÔôéÓçóÏ?ß·o_‡J—."hШQ#_÷òÜsÏÑ7Û·oWÒ¾S§N ,˜2eJþüùk×®}ëÖ­Y³f]¼x±gÏž… –ìÂÿöõê®B¼=p 4-4Ÿº{¢©VŽçRîòÏdŠšhÉüâV&™a“ÙœyLv¥4·•¦2É~:RÉØŒ;oZi>Ÿ7–°L2ÃÐd‘&{Ù×]—ØÔÒdbÓíš:,6h^íx´ÐBâŒ§ÕÆ.êöj¾£¯ϸqã\.WJJŠ×–ÇŽ‹ŽŽæï÷ÝwßÍÈÈ·´Ù h éKóɾÇ`+ B[ù5O¬}³k<Ñž|fúß4D›I,HÔÑTœ7®‹ c³ß55sl¦¥I¾bÇcðˆcçÎ @RwîÜùàƒîß¿ÿÌ3ÏÔ¬YóæÍ›»víúþûïŸ}öÙÖ­[Aš•=ß‘KL$3Ç©“ì5}2Q!YŸ‘*ŸifŽÍ²4{Ëà9ŽS}W¢=zôáÇßzë­•+WNš4éóÏ?_·n]ÞxãsçÎù„²ÐŠZÐ@SM£“,ù¾|—Gú2ÏzInÝ(›=§P ~³² ü\[`Λ:šŠó¦¼KàcSqÞ¼^SÒB3slÖ¢9JæZ-“&&&¶mÛÖß1\¿~}ûöí•+W~ù嗹ʈˆˆW_}õñãÇ«V­’ïnÑ/~Ð@SMã;>Ò)’ü¢O^|éœâd/>Ér.’ ÄÛŠZÞV–ÿê•~yŒÍÀ󦑿ûyË1ôåÕq0°±©8of¾¦fŽÍü4±Øñ¢<~üØÓ¦ .\ºtÉß1ܼy“R¾|yA}ÅŠ !7nÜÔ |•ÈTÖ- ¦šF|ùñkI³?֕Фí=|_ʬ¦y†b ÌySGSsÞÄé»gÇÁ@Çæûy3ó55sl¶¡ÙUÆ'Ž;w-BÈ‚ ªK©N:¿üò 5Êñ«Ê—/tæÌ6§$ýµÃÊ•+ ÚÃŽ4‡Óø-½.Ê–ñÂ`|7‚QNSŒ$íM4¦)6žéŒ ;7æ«iˆŽçMMÅy£MÅ´~õǸØìvMÍ›¥h^ëm)ƒÇB‚‚‚8›[·n…„„äÏŸ_²ehhè[o½åîß¿ýúõܹs—.]:_¾|M›6ݾ}ûgŸ}–˜˜HÆæÌ™3³fÍ iÞ¼¹$ÁºÖ- ¦‘¦\®WÜñ}]+.ëå…Á·íðÒ={(ëŸÌ ùÉÿBÏüEüýÊm‚ùç'gtˆ-™x>Ò­âØ¼ž(}Λ*ššó–³FÌV&™!d«1±Ùìšš96KÑøz² v<—Ëåš2eŠÿøžìxÖ®]ër¹:vìH‹7nÜhÖ¬™ËåjÓ¦ÍðáÃ_|ñÅêÕ«W­ZuÑ¢Eb¦©ìQ@Í<4ŸÌzLhÌAˆR3›†à¼Y%6ЬE“|9ÄŽÇøGÕ| 8ðÙgŸ5: ¶nݺÁƒ(P`ÇŽ/^lÖ¬Ù²eËúôécthH4Ï€|•™Ï›™cƒ «È\‰ãèÑ£[´ðã0ïäÉ“ÝnwTT” ¾C‡n·{Íš5\Mþüù“’’V®\yôèÑmÛ¶Íš5«fÍš*öhÂ5° xšW³_Z} h Ùžæ(œ8~뻌>c^¤ï/ÿ‚šuiT4_ä›õ)¿¯¹£™-ÜLE3ó—+h Ù†&;žÀè]ßeôJ…OŽîf" 4í4.e”, Pîó}­òafšFhþ ÙI'ŽÃE¢ßAAAÍš5ëׯ߀š7oL Ÿ1c†ÑgLZâïKAÑ“¿‰'?Ð@³M¹Ä¹#‘²Ò=9k(4æ 4Ð@SMóZoKlÇóÊ+¯ð‹.\X¸paddäÌ™3Ë”)ÃÕ_ºtièС§Nú¿ÿû¿6mÚ³@ÔÇ‘x³/ñÚÀÓVÐ@³:Í'yµÒŒÕymh æ_°ã1Lo½õ–Ëåúý÷ßÅ›.\¸àr¹\.×7Œ3‡,dhæ¡É›õX˘4h~¥I¾`Çc€Ž=Q®\9ñ¦2eÊÐz–…ŸAéDíhö–¹Ç[·nÝ»wÏSjxç΢E‹/^Üè0}¥W6€šÿh|‰Íz~=â.Z­h Ùžæ(™+q¬Q£Æ;wvìØ!Þ´k×®[·n=óÌ3FÇèEf¶G 4Òøf=tN¤¤YxÝŒ™yõ%h f~šX ìx Q‡!£G^¿~=ÜqÓ¦M#GŽä˜J°ã 4Õ4š5z*òÉt͵r²™'@ 4§Ñì$s%Žñññ:t¸sçÎðáÃcbb^zé¥~ýúÅÄÄ$&&Þºu+...>>Þ襥Úß$ûñœoÝAÍ4…Y#_Ê5è_9@ 4ДӼÖÛSF¯Î*33sÙ²eMš4qñÔ¬Y³åË—gff„¸µ¢ô ¿È¯%ÛËAÍ®4…Ë®éšk’´•.oäþË/òëA 4Ð|¥ñWRçØä™.q¤ÊÊʺråÊž={8pýúu£Ã‘ÿÛŽûFTnP"ÓÝê4åÝAMIâÈåŽòŸÝ¾A 4ÐTФ™¹Usb¦T©R5ª_¿¾…–Qûjw,h/_´ß4ÐäiÚÅ·ÒØjÈA 4Ð|¥q/¯XûÉàÄñÛo¿ýöÛoÏœ9Ã/ÊËè3¦I6X h§‰ýzf=¦Z}iæú š?hŽ’Á‰ã»ï¾ûî»ï>|˜_”—Ñg̶̋j4Ð,M£ù¢¼_'¯GùõH£@ 4óÓÄ‚O€”˜˜˜˜˜X³fMZ©@FŸ1¡`Çhþ žÅ#W”\y-iÖcæÁ Ð@Íi4;ÉàÄqèСC‡ål½ÿ¥@FŸ1iiq$ÑÒ4ÐìMH~Z$ÿc]¹8ÝOIDATcÐ@“/ÚÆV4u4¯õö”Ñ«srè÷ß7:Ÿ%ïHâÉ‚D¿ h 9æÓškÕÎ’Æ Yˆ&³ÿÑTh¶¡‰h;dU5ò¬Ñ¹ë?ŠŒŒ,W®\óæÍcccëÕ«—;wn£#ò®Ô„þ£4½6ð©hΡeöà©ñá®—Iö_ÿÜ‚GŸŠ»ƒh¡qâ×;aš£¹ìxòæÍ{þüùùóç÷ïß¿aÆÆ [±bÅŸþit\J¥Ä‘Dµ¡ h 9–æ«|2æ4ÔPmóh 9ædGs%އZ´hQbbbƒ ?~¼qãÆ±cÇ>÷Üs Ÿþù‰'L5>ªB¶±G 4±"}ÉötŒMlÖ#öëñIüYðbšB8Cú"É-Ÿ¼ÑCf^g h 9AæJsçÎ]¿~ý¡C‡.\¸ðСCß|óÍ«¯¾}úôé3fÄÇÇ?÷ÜsFÇèEZµ húÒÜñáŒ,MKêä)¯f=Ô¯GÐKázÉÔø\ÌO F<Jaîhæ•¡ d®Ä‘¯’[²OF`­gAh 9ÜŽÇ\#Ž‘‘‘t¬±nݺƒž3gÎñãÇ322ŒŽKNò#>5v 4³ÑˆA±yzÑqAñ˜ è5OpBˆW8MeøTÔØ4Ð@SG“|9dÄÑ\s8ðÅ_ 0 \¹r?þøãG}”P¿~ýAƒ}õÕWGÍÈÈ0:FM2ÕXÐ@ó+q |l‰ýzdìuèlåÁðáîøpñÒi3›†€hþ Ù[æJ .Ü¢E‹7ß|sÅŠœ3gÎàÁƒ].×¾}û>ùä“^x¡^½zFÇèEvúâ 4Õ4î 5—;Médüz<F%€ÓŽòß@žÖ\s²Ó:SÐ@³+ÍÉ2WâÈWbbbÍ$4 ¥† ù*±õOj|„§¢kÅA‘ÈZÑö¾†d§U« fš“…ÄQ«v<¦ú>Í„4Í´4Éy“ü™‘Ú½hî(ïõcæaÐ@³1Í)‘8úI M@ 0MIVhò(Ÿß½Í|8ÑhÝh ù„µ¹Œždiy |:¸‰óºø›€h¢ùi-ŽäÊ…"üŸŠ š@ 4óÓ$_°ã 4Øñ%sýäà¼yó.]ºT¿~ýwß}·aÆ„ñãÇ¿ÿþûýúõ z饗ÆotŒåeæ%´ &¯ÔøpJKÐN³ôZÐ@3-ÍÞ2WâøÓO?åÉ“gÖ¬Y={öüä“O!*TèÞ½ûرcÇ¿xñâ3gΣo²ÓZNÛÐ4 4ÐIãDSF׊+ÜKEîhæïZÐ@³.ÍQ2WâxåÊ•òåË.\˜R¼xñ¢E‹ž8q‚nêÑ£GÑ¢EçÍ›gtŒBÁŽ4Ð@ó7KE#Üçûò+-dRhÖ¥‰å” ŽfK !¹rýRÙ²eûí7ú>(((22òøñãF¨ƒLeóh ™œ–êù׫i½¥`@Í64§ÈèI–9Ô¾}û¨¨¨{÷îÑbRRR«V­¸­ŒŠŠ2:F¡Î¬”1‡jŸÝA 4AÑŠv<^—ËHºóXÅ4Ð,J㯉q”O°Ñ‰kµjÕêË/¿9räÈ‘#+UªT¯^½5kÖìÚµë¹çžûóÏ?>üôÓO£´øC^9ˆ·‡Sò4Ÿºƒhü"‘µ¼13M^â§rij‰d{ù"h &  * ! qÆÓj£3׺qãF›6m\.×àÁƒY–½xñbõêÕ£¢¢^~ùåF¹\®Ï?ÿÜè…²®Íh f9šäK/wKÛ£€ìx#sÍq ûöÛo“’’jÖ¬Iyúé§ß~ûíôôôÝ»wß¼y³eË– 0:F‚ È’b£ ÇÌË{A3ÍÞ2WâH }ú|÷Ýw Û¯X±âÎ;C† ©[·.­©U«VûöíÿüóÏŸþYÐ85!Bü5À=?’,òÛÓïOEÐ@³æsæŒM_WiÍ«ÄîtüA‘ÿÉ$m_Ú&Τ­fˆ 4 ѼÖÛRÆÛñÑŸŠ!„ܺu+$$$þü’-CCCßzë-»˜2eJZZ!dÑ¢E{öìñÚþÇd¦k×®üÊ>úè£>òÔ%v< fRÚŠ+ò4wöÐšÆØ8 Çز[úï¼ k¡=nôñ¼É‹ÿ…'¶ [ŠÈ<Ô4¶m+“̰É,“´$·$I[Íh ñõdìx/—Ë5eÊÿñÇçr¹RRRä›Õ­[÷ÙgŸeYöàÁƒ_}õÕG}´zõêH6¶Íh i¤û"zÄFĦ${œ7ÉgÐcfC3О|š26ÐÌLs²ñ#Ž| 8°^½zÆÆžž~÷îÝÊ•+Oœ8qÉ’%\}™2e¦OŸ^£F ƒÏAAA2~Ž#_£GnÑ¢!äöíÛ»víúßÿþ·{÷nBÈŸþ°îÞ½K9{öìºuë>üðÃýû÷ïܹ311ñÒ¥K¯¿þúÇ}¢™-'h ÙÆH-1Il ¥Æ‡»V\–Üd¡U« Ñ5ÔJøà®~Ù²e]ºtùý÷ß,X€0J”(‘;wn†Éñ%H´&##C²‹jg …Æ f š;>\;r[éãc]bc³ ÀÅ4†ç äó&¹SÕŽ$ M,Mã²F!-i«à™µÕ4Ó¼ÖÛRæZsàÀ   ÷Þ{OàÈ4~üøÍ›7oܸqðàÁþ£yóæß|óMjjªËåâ*9B©Zµª 1õq$Þl8¼6·ù 4«ÐrŒ;ò tÜR:ªcsBÎØ+®ì”1ÕyçMP/ï!"éQâ“¡‰uiOüÉ64–6°Á‘‚æo_°ã1LõêÕëСW¸ótïÞ½N:ZøžìxîÝ»wîܹ?þøƒO:år¹zôèqóæMZsüøñèèèúõëÿù矂¾f¶ù 4ÐlO“|ÁŽG²H1O0 Yš;³¨H‘"÷ïß÷´õÖ­[… òÇ~wîÜùÆoT©ReÍš5„jÕª%%%%''·k×®^½z<8xð Ã0S¦L)V¬˜Ñ' ‚ R#n5ŒFч˜zEšýhö–¹æ8V¯^ýÊ•+Ço:}úô¥K—ªU«˜HüÞ{ï…‡‡ïÙ³çüùó-[¶\µjUûöí}åXh¾?h fiZjöTHÚ 5>BÜÆB«VAÍB4GÉ\‰cÏž=†1bÄÉ“'ùõ'Ož>|8!Dð3€¾jòäÉn·;**JPß¡C·ÛM‡9ÅÇÇÿðÃ)))Û·oÿì³ÏªT©¢df^} h Ù•FÜ^©ñîó}M»Î4ЬK v<ƨI“&ƒ ºpáB÷îÝéðÞ–-[:uê”ðûï¿wëÖ­mÛ¶FÇ(ìx@ 4i$;k”Ü‘kÅ÷ù¾ÊQfÔ 4ëÒì$s%Ž„‘#GΞ=»B… çÎ#„\ºtéÌ™3ÅŠ{ÿý÷ßÿ}££ó(Õ>Ù•|ëh Æ½—ÌùRîHBßøjhš£h*,oìJóZoO½:Ç£þúë¯C‡íÙ³çêÕ«FÇ"'n‘#}Ã/òkEÉöòEÐ@ 4™öò+¬IÒÖ'+‹³ÿË/òëAÍÉ4þJê› ó&ŽVÿS›ûdWî¬!Ó4uÝAͱ4O/·gw~OEÐ@s8Mšé™âQõÎ;ßzë­=zÄÇÇ3fß¾}FG¤R^É·—/:œÆoh )o//¾‰ÀŽD¾hN¦q/¯XûÉøÄqìØ±ÿþ÷¿W­Zuüøñ'N¬\¹²_¿~üß´“̰ú4Ðl@3ójóÐÄî9jdžï Ð@³1M£lO£ù¢ØGÒÜQ¹Ìlh¤‰;žiÉ’%„þýûùå—}ûöíׯßÂ… ;vìHY¹r¥Ñ'G‘`Çh ™‡FxžŽâ–^ÝyÌ<¨hÖ¥ÙI'Ž¿ýö!ä•W^áj†2d!äÌ™3ÆÆæ“T;kèbÌh ùƒf;qyY×4ÐLEóZoO»6'22²aƂʴ´4—ËÕ´iSccS(yg ~½vŸÐ@-4…ÝÍI“_d­ÝÐDPšŠî Yš&^ íUÕ Ë²¦­‘‘‘¥J•Ú¹s§Âz*5!‚{$Dÿè÷TôÚÀ§"h š×ö’Jw­¸L²‡I¸•¡ZŠ ùÔ4Ð8ñë0ÍÑøUÕv’g ÕÆ h>Ñ”Hµ¡‰¤ h »ƒfuš“y8T&\} h 9„&pçIpŸïKßh\mMeæ5° &ßk_” ‰£Î²ÐêKÐ@Íö4Nw’½ÈÚ'³3¯Z 4ŸhjŸ8^»v-Z$Oõt“©¤ÑŽGH3Íà„£hfþâ 4´ÔlOG~ŒYU¾øAÍT4‡Lp$fHY–} ’§zºÉ„ÒËY4Ch&4‚ 4i^³F~KAîH4ø›èbh¦¥y­·§Œ]Ô껌^‡.”r+ í>V44±MáE 43Óø^<^Íz”šh÷7 4KÓ`Ç©”r;n À6 šåhÄÛp#¯Ïf=¾¶ 4«Ó8ÁŽR/%Î2m4s€šuiÖµ¼±M¡èBbeËÐ@ó7 v©kůGª<`GÊ¥Œ‰VXk‘™‡ˆLE3sš'9d‚#A⨗tt™ 4¯4·‡¬cãçR’4FDcd”˵©ŠØ$7ùéHe®‚On>sçÑÞÝ!4ÉEc0 ùƒ¦¼£­dô²nËK¹•† g Ð@‰è)°¸;±Tl$g3ql¬;;;”‰èt¤*bt¸×«@‘-j Fa¨òí‰7š %{W¸k\DÉtµÈ}mh¢I¾2âˆ9Ž•9×炚á4åbUYÞø)6ÉÅ.â>-‹æF5ƦýHî<©ñîó}éI³S­/ 4iöGÿÊäësíJ³PÂäpšò¤J…Žá±qi¥Ûó¢iqä,!©’7©á›YˆÛËA 4Ð|¢ ž&/þ—±ØElw"óÀQÐ4ÐIãëÉ&Øñ@Jd+ Ð@ 4}i’/ΠÇÌf+ ;O£j‚ ‚ H‘œ•8ž;w.22òرc>õº|ùrݺuG¥b†¯pM !„!$rÅ&û=cšØFcDçÁO± Îs¤‡_@Ö®©±´Ôøp׊Ëâz†0òk`o= ­ÏÍ4GÉY‰ãÂ… }í²ì›o¾yïÞ=…íµ¯pÍ$4ÆÃ38Õ™“iT†¹âŠøY¤ÂÍ×]üÜ“‘¥ù—hêrM O¿,J(Çì1Âʤ† aXÂÊt'&K#@³=M,ØñØJwîÜ9tèЄ /^ìkßùóç8p@¦ÀÇÑW™ùSÞÉ4šaHŠU6f•#•¡ÑdNò °ú ÔqÉœ˜&ȵÄF²MIùzM5Ê94ŸÄ–$·×sY£™ýŸAÍ9rDâ×§OŸï¾ûÎ׎gΜ™6mZÕªUeÚx²ã=¹W(4¿ ´Ó¸ÔÙß±ñß‹i‚Ü1À±¦‘&ÙLÎß$i+Cá꤭\K%f+‚¢'ïÐ@ÓNóZoK9ÂŽgÊ”)iii„E‹íÙ³Ga¯ŒŒŒÑ£G-Zô­·Þêß¿¿|c÷ q¼†’Æ ù•ödhÊ3ÜÝÆêG*×8»LƒÀÄÆ5Ю©4A½¼¿ KX&™ah²˜Ü’%,Iöè–"i¶"hìµh ©£ñ;Ûjܸq.—+%%EIãäääÈÈÈÝ»wŸ8qÂår9R²™©Ì/@Ó…Fì‹ØâHeŠDMɉRxeÚ=bÃ55„&ùRbÇóäëÉ.Ö- 4Øñx•#U«PJJÊ×_Ý·o߯ Z2S< —™cƒ ¢DA³ÍÞBâ(¡‡Ž=ºL™2#FŒÐˆ²Í: ÐEc¬}ñ´<Åɱæ‰F'8rÓSã#Äm¸g‚t5Œü:k¯²Ðú\Ðl@s”8JèÃ?¼xñâG}”/_>_ûšy…#hzÑdÖ盵h¬b+\SëÒè‚Á+5>Â}¾¯ø«:‡óNÒVå¹£™WÔ‚f v<~G¡8°dÉ’ÁƒGEE)i;ûÑ”g3V?RóÓT?˜Æ55dg’;r­¸â>ß7G-] ÃÜÑÌN ™¦Qƒô$$ŽB9s†2kÖ¬ÈluïÞ²zõêÈÈÈN:IöRí^‘ýàÆ·î ù›&vä¶ÒÇ ¶9ROE6ûVÄ[™ì‰†ºÄÆj1Mì­¨%6S]S–7Ö¥Yýã~B’´UÂý${ÜQÙŠ ¨Ñº43Ð`Çc°Œ^P)YUýÓO?½‘S p¹\±±±o¼ñƇ~(hÏ-$¤oøE~ (Ù^¾ZàiD´¼—älf›#•¡Qѱqç–«õŠ ×Ôš§]aM¹…«$i+÷†[¬Já[…y5’4ŸŠ ™¦¢»î4þJê› $Ž,˲÷îÝ;wîÜü!ÙK¹÷é™ócQ®(Ó43Ðrü•¥9%±™&> ~Š¿#ÿņkjÍÓËíÙ'‡A/EÐ@ MšéáQ5!„ìܹ³]»vC† ÑÈñúPF¾½|4ChžrO]´ÇfB?Kðklü|±ášBS!¾=ŠÀ*E¾hþ¦q/¯Xû ‰c@e†Ž fÍÌk8@ ÜÌF0ö£yêšB;á&‰£Vùê^¡Úü4Ð@sMœlÙ†æéåŽ7‰Ù h ÉÅŽ<Iñ¨ZO)q¯Pm~h 9&){ДÈ6Ö- ÙædG$Ž• W8‚h NóêΣQ Ù€†µ/&Ge¡Ž hÒ8éâÎcæ¬4]h…ÔP/!qÔ*vò¿ªu1[ 4i^ëí)£WçX^êŒ9Ôya€šLwÐ@³(M~‘µB·Þ+ ;ObX–5:wµ¶R"¸¿˜é_ÒžŠ^øT 4Ð@³ Í“RãÃ]+.“ìn«OEÝAM²È‰_ï„§ÕxT­§|5æ5Ú|€f?šmle@MIwùd¶"é¢Úº4Ð`ÇÃÇ€ÊÒÓØA ŸÓÄ ˆ78Ñé¼Ù,6Ãï^ÐI“y¹yî<ÊÍV”x¯€fšŠî iâu3Y;­RmÇ£‹{…ui‘+®pwž'‹²Ä‘Òѧ1Ùi·•ÖÈĹ⊠Šóf¿Ø ¿{A 0Í“|rçájtqr 4N°ã|“mÌ/L# öE¬s¤DA{"[ô‘-*9o6‹Í w/h†Ð$_nUî<–6‚Í 4É—CF1Ç1 2|¦9h桱R+?h )¡ ÜyRã#ÜçûÒÕÖâׄX{Õh–£Ù[Hý+ë~.ƒæM2ÓÒ÷”±ùh– ©¶}»óð‹´ÆTÖ- Ùæd!qÔ*ÇÚñh¤ 21?aÎÒGêœófæØ@3!M…8OG~x$Í}"›yø 4KМ2Á‰c`¤Ñ®4«ÐÏ4U¡¼áßG/{;Ŧ¤h*[Ðt¡qLþVO«g$-m+š i•Ñ“,-/Iƒ ½Ü+lO{ræ¤ÑJÃcSGGÎާî$çRÉE$òçå=5ö)6ÚË¢±i¿¦6£ñëmLcsÞ]2/ºnÆ6¶2 ™Æ_ó¤Þ‚VéeǣνÂ4Á,7·™bSAü>Š[dj#iR#ëŸó&þíîß¿c³èâ+ÍTÁ˜„F¼ÙƒóÚ\ÖźÅSwÐKã;È7™Ê®4Ð@Í™4É—ÛƒY¥`@3MòåAGÌq´°Lµ@4Ð@Í<4ά‡®’±ôª Ð,G³·8úWf[“h fo·òšïΣ‘iæ43Ð%$ŽZ;Ð@ 4ÃiT\Ê(jé%w4³e h&¤‰å” ŽH#ËÙÊ€h YŽæ“;Š4B_ëÐìGsŠŒždiy™Ç4Ð@Íá4ÖÛZ…Þ+96uç&Á’;¢Iª×Ô̱fEÑæÎc¡ŒÇÌ423ÍNrDâ×§OŸï¾ûNaû 6BÆ—/_>ZS¥J•!C†dffzz`­Ú!"ûiˆoÝA3!Mð^Ð@;ú› í4.=•¤±>ÒœhÚi‚M¤ÉËTF0 ™æµÞž2zuN ôÓO?mÙ²eË–-ýû÷w¹\)))òíŸ{î¹èèh1Äår?^PÏ=(¤oøE~ (Ù^¾ZÀh$çÓOIш·`HÎ'ËŒMÅy#9ë%uMÍhÚi*ºëH“yÑEÖtu-·ÆÖ×¢Æî ©î®/¿’:GKȉ#§qãÆ)IOž<év»•³gÏv¹\_ýµ žÿqÃ}`åü ‘+ÊtÍ(ñ¼•ëN<=CŒˆMù‰‰¶`”©-cÍ4O/š8ʧ^‹’>/ ù›¦ÄmÇWšô. G<ªöUÕ«Ww¹\üš}ûö}õÕWyòäéÚµ«LG¯¿C ß^¾h*hü6Êiž¦Qª£9'6ÐìAS"¾u‹ÀÆE¾š!4%ò‰Æ&· /_÷b!qô¢ÌÌÌ  4èÁƒ|ðAXX˜š W‚f'š^«XëK<-Oqrl Ù’æÕÇWYhµ hXHå´ÿþ¸¸¸)S¦„……Í;·C‡^»˜ö³4iâA/V­Œî+C©I^4- 4ëÒ¨h¾¨ÝÇÌ«}AÓK°ãqºÒÓÓ§L™Ò¯_¿Ë—/'&&®_¿¾qãÆ’-aÇc?šò,Pylž°š!6Ð@Í“;ø)¶¤;™Ã@3ÍNBâ(¡¬¬¬#F,X° eË–›6m:t(çËãIv²•â9/r[écP1ë"¦‰½›ŠóÆfÿ"‹$æÁF]S3ÇšhòX·Î/òEÐ,GóZoO½:' R¸ªzþüù.—kâĉJ˜òüzí~ ˜FDâF²{qõ‚¢'ÓÄæS‘«!¢"1u‹™cÍ4™]d­ÅVF/_óÐßW9ÊÌCk qrÊG$Ž~’Fó Ð@M#MIš hªo°Ð<-—¡õ2F0’9Šj[ÐüGóZoO=ÉÒò˜2p³¤uqˆ 4Ð@M†¦¢{ i2/w|¸O¾0*le@ƒ?;­RmÇ£‹Ch hf¦yR*χ'–.º¸Ì€¦‘¦¼½¸—#žV¹Z^f¶„ 4Ð@ÍpšäËn[Ð`Çã«0ÇQO1„D®¸ÂB_b™y6·h ï)ï‚k h éEK¹óXzEhGÝĈþÐdÌôiåp“}¸¿õ=%‚|áš‚fuš9MjœFã$éÎã+ÄÌ&5Ρ9YHµÊµü2—”œŸ/¬‚ÔDH3ñgŸuiLvòÇëùñM‚k š•išŽ´TµîA,m~a9—ÿIÒdqMA 4½h’Y#×—(0‚H£­ hºÐ*£'YZ^$ûi¦'›’óq§OžÊÛƒæ‰F¼u'ž/™¯©UÌV@ÍN4™—;>\¡/Œ.&5 i§ñ×Ä<©w†`Ç£U ÃpgГ‰ô’7qPçšW}N-C‹\q…k@·F®¸bûkª°;h ™ávµÍ“R¥Üyˆ6WÐüJã;È7¦ ÄÃVOíÕA‰2‘-âš‚h:Ò$_îøp˜Ô8‡;(@²Üln«ÓX©µ,&‰ 4Ð@dôlw²ôúÛÐì-$Žþ•™?­@£b²§Bš06Ð@Í~4N4eÔ×G£@ƒ¼ ‰£V±,ËÓ¾ð'Ìy•…l>lLŒSâš‚hºÓ¸”QÔQèÎcf;CÇÒÄrÊG$Ž‘FKди,P’ÆØèHA 4«ÐäÝyT =êk+š:šSdô$KË‹[*Axsœé‹VjñtàÓ|ꚀFrNQ—\à"ÞŠk h ù&ór{vçÉáÿ¢Ùe4Õ4ÇÚñ¸ÚD4Ïxò|3ûïH7Ï…AþÉ…¸Hd=ô¢)ìnš›fÅîÒÐ7¬ì¾d®©™4Ð@³ M^â'­DÖFþÉ,hºÓ•„†8ãiµÑ™«åHÐ@ 4ÐlF“|¹ãíhRãìx ‚ ¿ÈÌË{A3M_™yé±shöGÿÊêëþ@ 44 4y™9rÍQBâ¨U®å—­òh šåh2©qM,Øñ@~”Ž( h Ù€& G–[¤… ¯­ h_Hµ*5!Bü‘‘šýR’E~{êæå©h š|w{Ðøõ®WÜçûÊX Ò"¿FPä'=LÒ6qš.4Iˆí;}ÄÿÈÛ.ðMÄíå‹ h Ét· MÐ’Ÿµ\`Ķ2b›™µ éBã·y‚…¤D¶±„ 4Ð@-ð4ÉìxLNƒAAyGÿÊÌ+õ@ 4Ð@3œÆøH·¦ÆG(ùÅj ­D¶1ÍQB⨳ô][h~¥YèË4ÐlO£Ëb¯ÔøÁBS%LŽ¥‰;H©>Ž>w7Á§hŽ¥ih Y‹¦ã?%}it”‘[#8jºÈÚ' ™MjœC³«8j•';AÑ“ ƒB» ûѹ̨0©MÍk½-;}$ã ®Ñâé`'š’Æ hzÑÝÍF“—¼/Œv“Ð|¥ ®¤P¶±„ 4Ð@Í 4ÉgÐcf“ £‘;‚ ‚ ?Š>üuÍÞBâè_Yhh h椥Ƈ»V\–Üd¡•È6¦9JHu–ÙV‚h f'š©&ÇÒÄ‚¤T°ã 4Ð@MGš¾Òw, 4‰£>Rí ÎÄ4Ð@t 4ÛÐ$›ùd+Ã/j7©ÍSw¯õö”Ñ«s,/nA}Ã/òkEÉöòEÐ@M—î æµ»±4ž%I[é‹[ÃKßók|*‚¦šÆ_I£¥„ÄQ«øÿÎùòŸ’íå‹ f8MywÐ@³.Í ÿ0=@¹ÆxJkÄEдФwááQµžòjý/ß^¾h†Óøm@Í®4%ò+{ùÊ¡âÛÊ,fT8΀&Ic“[З¯{±8zѹsç"##;¦ ÍÀ•z !‘+®0„ЗŸbãøÜ¾üt¤üc¡»óÓyówl´»^çÍÌóýA 4_it‚#7Í15>BÜÆB+‘mLs”8zÑÂ… }joÂO+šˆ‘ÐEߨÞSn_ s ŸŽ”‘zÖè¥!$rŽΛFhæ¡Ñ7‚Wj|„™×;‡&ìxœ®;wî:th„ ‹/–oir;.™ˆV* SM˜Äõlvæªo,¦ ò3ç-`±æ¼é{¤ š_i$;kô°£÷ù¾ÊQf¨sÍNBâ(­¸¸¸>}ú|÷Ýw Ûk± QÑÝl4&;7•¤±>Òä‹24A~àó¦"¶€7ÃïÐ@Í'šÌGºI¹Ë }ã«I hJh^ëí)£Wç˜T?ýôÓ–-[¶lÙÒ¿—Ë•’’â©¥BK]<|¥‘œO?%iDØHÎzɺ)ñÖä|"È« "¶€·ÀÜo š¾4O/w|¸ØVF/—»Ò¶ 4Ð@³yò¤Ñá@Æè?þ „|úé§*ThԨѥK—¶oß¾sçΉ'>ÿüóFGBéééwïÞ­\¹òĉ—,YÂÕ—)SfúôéX4 YZHõ”Ûí^¾|9˲„gžy&$$Ä舠ÀéáÇ£G.S¦Ìˆ#ŒŽ2RW®\É—/_RRÒK/½DköìÙ3dÈ÷Þ{ï¹çž‹ˆˆ0:@Èïº{÷.!äìÙ³7nÜøðÃccc=z´|ùò™3g¾þúëkÖ¬Á¸#d]aŽ£žzá…NŸ>½k×®7ß|sãÆ½zõ‚!‹sôá‡^¼xñ£>ÂW‚Ã5þü””.k$„4nÜøÅ_|øðá–-[ŒŽ „¸)ï|ðA×®]CCCK•*5tèÐnݺ]¼xqíÚµFAê…ÄQg1 S¼xñôìÙóêÕ«7n4:"(:pàÀ’%KŒyl¤4h@IMM5:(*P @Þ¼yóåË×¼ys~}«V­!¿üò‹ÑBz!qÔª3gÎŒ3fýúõ‚úgžy†ríÚ5£„¡3gÎBfÍš™­îÝ»BV¯^Ù©S'£„$–e333³²²õAAA„B…   •(Q"wîÜ Ãð+é㈌Œ ££ƒ õÂG­*\¸ðÊ•+oܸѾ}{~=õr«P¡‚ÑBP¹rå:vìȯùûï¿wíÚ]ªT)£„¤óçÏ·mÛ¶Aƒ .ä×=z”it€P€Ô¼yóo¾ù&55Õårq•GŽ!„Àä²´º’Ò¢Î;§¦¦Îš5‹û!©_~ù¥OŸ>„7†…… d€Nž<Ù½{÷Î;ã·ª¦Þ½{>|xòäÉ=zô 5G0`@hhèºuë0Ö!:}út×®]£¢¢fÏžýÔSOB~þùç~ýú¯_¿¾X±bFA*…ÄQ?~¼wïÞ?ŽŽŽ.]ºôõë×:Dùè£ðŒÒ±BâèXýòË/üóÏ?Ÿy晊+^ºt)%%%þü3gÎ|öÙgŽ œ¾üòËäää"EŠÔ«WïÁƒdfêÔ©‚ÇSd-Mœ8Ñè,¯’%KvìØñ¯¿þ:þüñãdžyöÙg“““5jdthaºqãÆÒ¥K###Û´ict,P@wëÖ­ÔÔÔ'NäÉ“'66öÓO?­V­šÑ¡AU½zõ"""Î;wâĉ´´4ú½Ð°aC£ã‚ Mˆ#AA¤HXU AA)G‚ ‚ H‘8BAAЄĂ ‚ R$$ŽAA"!q„ ‚ ‚ ‰#AA¤HH!‚ ‚ EBâAÿßÞ½EYõq?Ïî#°L (››<’혡K ¦A\þ°†tF'+#B,¨±IÑ‚Úm&u2ŠQQq¨-Lah!‹ w2ˆK„\öÙ}ÿ8óîì»\Zp/¤ßÏŒûãì9¿óÈ¿yÎsÎAáAáAáÆÑÜÜì9ɲeËwìØñã?š'½{÷zzz^¾|yÎ ÌŒæS^^>·¯ß½{700ðüùó¦Î“ã¸ÌÌLs_ ˜OP8€11 ³H‡@ ¸uëÖÕ«Wßzë­÷Þ{o¶½•––[zNFfÜI¥§§[YYEDD˜:m>Ÿ›––öûï¿›z,˜·þcéà¾bmm­W =zôÔ©S.\ذaóÏ>kxo CCCõõõ–ž–1qRÍÍÍß~ûmjj*ŸÏ7Cæ›7o>zôhJJÊáÇÍ0ÌC¸ã¦%’’’!………–Nç¾’‘‘±pá 6˜g8©P(º»»-=u° Ž`R©”ÒÒÒbéDîÇq–΂Bärù¦M›¬¬¬æÜÉøø¸J¥2¼}XX!ä»ï¾³ôìÀ2°T æÀq!D­Vë¯^½zöìÙúúúÁÁA//¯Õ«W¿þúë=ô!ä“O>ùúë¯i3OOO¥RIéííÍÌÌüé§Ÿnß¾MY¼x±T*ݾ}»³³ó½¤7C&„½{÷^¼x±¨¨¨  àĉƒƒƒ¶¶¶îîújpp°n?/^”Ëå555ŽŽŽ¾¾¾111ûöí+))ÉÎÎ^¹råt“¢”Jeff毿þ:88èîî¾cÇŽçž{n†œ GGGCBB&ÿª¨¨(''§¶¶vttÔÍÍmË–-/¾ø"ÇÓN~~þÉ“'årùÄÄ„««ëêÕ«ãââAVV–B¡¨¯¯·µµ]»víž={´=;99­Zµ*77÷ÝwßeÆl?0O p“Óh4tW5˲ڠL&;qâ„F£Y¼x±““Seeåµk×®\¹òå—_>òÈ#‰D¥R9sf|||Û¶m´†ëí펎noo·¶¶^ºt©Z­nooÿæ›o Å… të›Y™9m³ãÇggg …Âgžy¦««K©TÆÄĤ§§?ÿüó´Á‡~xúôiBˆH$ÍÎÎV("‘HÛÔ“¢.]º”••åààÀ²l{{»R©Ü½{÷áÇ7nÜ8]Úeee ì\¹R/~èÐ!º÷Y$ …šš¥RYVVöé§Ÿê6KLL¬­­eYÖÞÞ¾¦¦¦µµµ¡¡ÁÝÝ=''gÙ²e,ËVWWŸ;wîÖ­['OžÔýâ“O>ùË/¿444x{{[à ,K` 7oÞdYvÕªUºÁ±±±¦¦¦·ß~›eY–eËËËiüÒ¥K,Ë×ÔÔÐHOOÏÎ;Y–MNNÖ~ýé§ŸöòòÒ~Çq²ÖÖVúÓÓÓsÊ31ýÛo¿•””TVVvuuuvvö÷÷ßK¶³ÊäÑG®zßqòý?†a–,YrãÆÌd†Î§Dë6{{{Ý`[[!dÉ’%z­¬¬Äb±^P{×v†à”Û_háØÓÓ3«„àþ€ÂÌm||œ"‰ô¶$k¹¸¸L?}úôÁƒU*•X,–H$ÁÁÁ>>>mmm0C&3œzCû™²ÌÒîežÙlÔ±¶¶ÖŽ«566FÑÝsc tP½û—ð€@áæF’³±±™ÕK‡‡‡“““­¬¬Ž?®»MÏå1g&“=þøãdšG»ººŒ|ù!„ÐíÞz7\]]]§Lcll¬  ÀÖÖvºúxVè ŽŽŽ¦˜ÌsØææìììèèØÒÒ¢·†Ëq\TT”T*òù¹ÚÚZŽã|}}õlll4s&“999999uww_¿~]7~ùòåé6úÜû5$ÿ{ÒQkÑ¢EB¡°³³³ªªJ7^\\œ˜˜(—Ë24½&‹-2ż`žCá¯V«ãããhdxx8))©®®nùòåB¡PÛR­VŒŒÿ•JÚbŽã¸3gÎз˜Ü½{×ԙ̌î\NJJºyó&466îß¿_»QZ·±vRsfggçáá¡Wï2 £M£¹¹™;::RRR!Æz3!}˶Þ6x@`©, ""âúõë¹¹¹ááá"‘ÈÁÁ¡µµudddéÒ¥ü±¶™@ èïïùå—Åbñ_|TTTòÔSOi4𦦦þþþèèèÌÌÌœœœ¿þú‹ž­cŠLþQdddiiiAAAXX݉ÒÙÙ¹nÝ:—ÊÊJ[[Ûé&5çkèçç—‘‘ÑÑÑ¡»)'**êÚµkr¹<44T,/X° ¥¥E¥R…††êmÜž³êêj†a´'+ÀwÀ†III9räÈúõëé `\]]ãããóòòt˜ILL‹Å---ô6ÞgŸ}KK±?þøÃßß?//ïý÷ßŽŽæóù¦ËÄ~ÒÒÒöïß/‘HzzzÆÇÇwíÚuìØ±ááaòÿÛŸõ&5g„òòrÝ Ç“Éd2™L*•þý÷ßwîÜ¡¯:Ô{mÌœi4šŠŠ ÝwêÀƒƒ™áœ00POOZ­vrrÒÝ[ÍqÜš5k&&&ªªªø|¾qGÔh47n …YYYf›fEEÅ+¯¼’ššn¶A`þÀG#ˆõ÷÷/++Ó  ½j$„0 ³uëÖªª*½7»˜T^^žP(4Öª7üë p0‚°°0BȾ}ûJKKÇÆÆîܹ#—ËßyçBHDD„‰ŠŠrqqÉÈÈ0Ï{{{óóówíÚ5ÛS'ྥjã8xð`VV–Z­ÖFø|~\\Ük¯½fºAKJJbbb~øá‡éNM7¢ÔÖÖž={ÖÀSÍàþƒÂÀhÚÚÚ®\¹ÒÝÝÍ0ŒH$ ‰D¦ôÔ©SnnnÚW›ÇqŸþyxx¸‡‡‡©gó G0–À (À (À (À (À ÿ0}Ca›úÅIEND®B`‚statistics-release-1.6.3/docs/assets/ConfusionMatrixChart_101.png000066400000000000000000000214361456127120000247700ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A"åIDATxÚíÝ{”•…}ïáw3#2’ `¼L@1fÂå¨ ñD)÷!UšrlbN,Úe,VÉ:§–jR5!Ò¦ÆK[5ꉷ–c‹\„A!*2¬*Ш#Ô à 3ìóǬC)`üÙó²÷<ÏÊrmÞý:~eý¬wïýîL6›Mà“´I{ùA8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@HqÚ P&“I{[Ùl6í )Ž9qß‹ï¦=h9× =}ó´‘i¯ZNùŒ…iOH‡—ªŽ„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!Â€áø±|ðÁ¾}ûöíÛwÖ¬Yio!ü¦vËO¾5lë[o¤=È­ÌI'—ùê©v׿ü·.7=öÙoÜÞö¬i‚"?Ö3Ï<Óü`Μ9io!¬YòoiOr¯¨ø³“Øaä5mNéܰiMãö-'}¾â³ß¸½ý%ÿ#íeЊÓp‚ª®®^·n]¿~ývìØ±jÕª­[·vïÞ=íQœˆ>ªûíŽw7U¯XòÏÏM{ s%ƒFžtú9û·¼¶ëÿüevÿGI’îóŸýÖÚ媪_nÜúVÚ!·\q<ºæË&L9rd6›7o^Ú‹8Aýü–oϺóÕ­ÄÉç~9I’ücs5&IÒ¸ííº_ýsÒ¦MÛÞƒÒ^9'âÀóæÍ+**;vì¨Q£’$™;Wpt—_}Ó¸ïþ`Üwpæ¹þ›…¯¸ËéÙêkÖz°qÛæ$IŠ:yaŠÂç¥ê£X±bŶmÛ.¾øâ.]ºtîܹ[·nÕÕÕëׯïÓ§OÚÓ8ᔟw~óƒM«_N{ s»ÿëä@Óa‹{ôN’¤içÖ´×AιâxÍŸ†©¬¬L’$“ÉŒ92qÑ€$i¬ÝØøþÛ‡iÛóKí/þ£lcþÕKÒ^9'W__¿hÑ¢ÒÒÒáÇ79øju6›M{'Œ6E¥ƒ'|æë“i[òá¿Í<ðÛi‚œóRõá–,YRWW7a„’’’æ#ýû÷ïÑ£GMMÍ+¯¼2h÷±´íù¥cþ¬¸ëM»·8ûïÞz5íEЄãáš?O={öìÙ³göÔܹs…#@+—)>©ýåW—^X™ÝÿÑÞç«{éélþ´GA ŽÿÅŽ;^zé¥víÚ=úÐãuuu .\°`Á-·ÜR\ì7  µÊd:^ù½“û ý¨zŇóî=ðái‚¥þ‹ùóç755=úÎ;ï<ì©#FlÞ¼yùòåÆ K{&é(\yr¿¡õUó>œoÚ[ >ó_¼ï÷‘O7.ñÙj€Ö,“)¹`|vßÞß.z í)WÿÓÆ_{íµ®]»2äÈgÇÏ=÷,]ºtïÞ½íÛ·O{,-­M‡S‹Ní‘ÝÿQ§«ï:òÙúÕKêWÎI{#ä–+Žÿéàí‹ŠŠŽ|¶¼¼¼¢¢bß¾}‹/N{))(êÔ-I’ÌI'—õ9òE§tN{ ä\ƽ »L&sߋ尿h9× =}ó´‘i¯ZNùŒ…­³ \q D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„§=à8;pà@6›-**J’díÚµ¿úÕ¯Î<óÌáÇ—””¤= ¿N8655Ýu×]O=õÔ#<ò¥/}éå—_¾úê«›šš’$9ï¼ó}ôÑ:¤½ ÎKÕ?þøÏ~ö³’’’æ@üéOÚ¶mÛ[n¹eòäÉ¿þõ¯þóŸ§= ¿ÎǧŸ~º´´táÂ…;vܽ{÷«¯¾:iÒ¤¯ýëI’¬X±báÂ…×^{mÚòXá\qܲeË Aƒ:vì˜$ÉêÕ«›ššÜüÔ¹çžûî»ï¦= ¿N8–––îÛ·¯ùñªU«’$0`@ó/÷îÝÛ¦Máü¤¢prªwïÞkÖ¬Ù±cǾ}ûž}öÙ~ýúuéÒ%I’={öTUUvÚiiÈo…Ž“'Onhh5jÔˆ#Þ{ï½?üÃ?L’ä¿øEeeå®]»¾úÕ¯¦= ¿N8^zé¥ßÿþ÷;tè°k×®ñãÇOš4)I’5kÖÔÔÔ\qÅÍ¿à˜e²ÙlÚ޳l6›Édš¿óÎ;%%%ͯY·˜L&sß‹>‹­ÈuCOßcaáTDá\qlvàÀ4?^»víœ9sV¬XQ__Ÿö.€¼W8÷qôÍ19U8W}s @NÎGßS…sÅÑ7ÇäTá„£oŽÈ©ÂÉ)ßS…޾9 § '}s @Nùæ˜ãÏ7Ç@kã›c µñÍ1…ã`5&IrÆgtéÒåᇾâŠ+ÒÞß ç>ŽI’¬[·nñâÅ¿ùÍo=ØÔÔ´xñâæ¯à˜N8®Y³æßøÆÁ;òªmÛ¶îþ ð)N8>ðÀ ·ß~{ïÞ½§OŸÞ«W¯n¸a×®]3gÎlß¾ýu×]—ö@€üV8ïqüõ¯=pàÀ+¯¼²ÿþ&LØ´iSÏž= pÿý÷¿úê«sæÌI{ @~+œpܱcÇÁ»|÷ìÙsãÆÍïk<å”S¾ò•¯Ìš5+íù­pÂñ3ŸùÌ|Ðü¸¼¼|ÿþý›6mjþå©§žZ]]ö@€üV8áØ¿ÿ•+W®]»6I’3Ï<³´´tþüùÍO½úê«'Ÿ|rÚò[á|8æê«¯^¾|ùĉgΜ9vìØ¡C‡þìg?;pàÀ|°fÍš±cǦ= ¿N84èxâ‰'Š‹‹“$™6mZUUÕ?üÃ?$IR^^þñiÈo…ŽI’ ½W¯^UUUßùÎwšššÒ ßò;Ÿzê©·ß~{øðá³gÏ®¬¬<ô©²²²«®ºjöìÙÇß°aÃã?žöX€ü–ßá¸páÂâââ¿ú«¿jÛ¶íQO8ùä“o»í¶¶mÛ>÷ÜsiÈoùŽ[¶l)//ïÞ½ûï8§K—.={ö|ûí·Ó ßò;÷ìÙÓ©S§O<­cÇŽ|ðAÚcò[~‡c·nÝÖ¯_ÿ‰§½ùæ›;wN{,@~Ëïp<ï¼óvïÞ½zõêßqNUUÕž={~¯oµàHùŽW^ye’$7ÝtÓž={ŽzÂÎ;§M›–$ÉW\‘öX€ü–ßáxÑEM˜0áwÞ3fÌ“O>YWWw𩺺º'žxb̘1µµµÃ‡6lXÚcò[&›Í¦½áSill¼í¶ÛfÍšÕü7Ò¥K—nݺmÛ¶mûöíÍ'Œ3æŽ;îh×®]‹MÊd2iÿ®¹•ïulò>›½ýöÛ<òÈ¢E‹~zºcÇŽ—]vÙäÉ“Ï9眓Édê7¬Nû·h9%½û'7þ2í@ úÛË £ ~_ŽÕ××oÛ¶­sçÎ:tHkƒp„ÖF8B«ÓZñ8íÇYIIIyyyÚ+ P~8€#Ž„GB 0·lÙòüóÏ?ùä“I’ìÞ½;í9¢ >U]]]=sæÌåË—7ÿrÒ¤Iwß}wUUÕ~ô#ßU ð)ÎÇ÷ßÿÛßþö /¼0~üø?øƒ?h>Ø«W¯uëÖ]uÕU[¶lI{ @~+œpüû¿ÿû;vÜ}÷Ý?þñ/ºè¢æƒW]uÕ}÷Ý·oß¾ûî»/íù­pÂqíÚµ_üâ/¿üòÃŽ_vÙeC† YµjUÚò[á„cMMÍgœqÔ§:wî|ð;¬86…Ž}úôY·nÝQŸzóÍ7{õê•ö@€üV8á8tèÐ 6<üðÇì±ÇÞ|óÍ /¼0íù­pnÇsíµ×>÷Üs?üá-ZTRR’$ÉOúÓªªªªªª3Ï<óúë¯O{ @~+œp<餓yä‘»ï¾ûÉ'ŸljjJ’äž{îI’dìØ±Ó¦M+--M{ @~Ëd³Ù´7g{öìÙ¸qã»ï¾Û­[·^½zuéÒ¥…d2™ú «ÓþmZNIïþÉ¿L{Ђþö²Â+¨ˆÂ¹âxPÇŽ 0`À€´‡” ÇÁƒÿî^~ùå´7ä±Â ÇÓN;íÐ_f³Ù;wÖÖÖf³Ù=zœþùiÈo…ŽO?ýô‘·mÛvûí·ÿâ¿8p`Úò[áÜÇñ¨>÷¹ÏÍœ9³W¯^wÞyç¾}ûÒžÇ <“$)..üðÃvíÚuïÞ=í!y¬pÞãxTMMMË—/_¸páYg•ÉdÒžÇ '+**Ž<ØØØØü-2ßúÖ·Òß 'Ï;ï¼£?õÔSÇŒ3jÔ¨´ä·Â Ç'žx"í …¬p>óàƒ>öØci¯(X…sÅñþûïojjú“?ù“´‡¦Â¹âxå•WÖ×׿ð i(L…ŽÓ¦MûÚ×¾ö½ï}ï™gž©­­=pà@Ú‹ Já¼T=vìØ$IvïÞ=mÚ´$IÚ´isØ_ýõ´7ä±Â ÇN:ü#Ç]á„£ÛñäT~¿ÇqæÌ™O?ýtÚ+Z…üÇú§Z°`AÚ+Z…üGZŒp D8’÷Ÿª~ë­·f̘9³ùþŽ›¼Ç÷Þ{Šœ)>¼Ç>}úLž<9í…/ïñ{÷îW^yeÚ+ ŸÇ"Ž„ä÷{o¿ýöîÝ»§½ UÈïpô±€ã¥jB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@HqÚN,Ï>ûìÔ©S;XVVÖ§OŸ?þã?6lXÚ9qmzç½ :õ±¿»ý‹}û¤½È¡Ò“о}AÙ7•}¾S»=û_{ïO^ØòË ¿I{´áx=zôèÝ»wóãÆÆÆÚÚÚeË–-[¶lêÔ©S¦LI{'¨'ç.L{s'e|{ÀgtÜY¿ÿù·v–œÔæ¿÷úìð>§þà—›îXº)íusÂñ(.¹ä’[o½õÐ#/¾øâ”)Sî½÷Þ‰'vîÜ9íœ@>Ü»wý¦-óŸáÿ>»8í-@Î]ýßÊ.8£ãK›w{xMÝþ¦$I¾Ð­ý¢ÿ9ð_úùyol_[ûÛ´BnycÈСC/¸à‚†††7Þx#í-œX®¸ö¦oMûkÕ­ÄWÏû\’$7Í_ß\I’¼öþÞ=¿¹¨Mfx—(|®8FµiÓ&I’:¤=„Ë­7LùhC’$OÍ]øò«ÿ‘ö ·ÎîRúáGM¯¾÷á¡ߨöÛ$Izvj—ö:È9á²råÊ•+Wž}öÙioáÄrÑ /5?X¾ò•´·9÷ÕŸ¯mjÊv°Ù)I’lÚ¹/íusÂñ(–-[vðC0û÷ïߺuë† Î?ÿü»îº«ùº#­Óšš;rI¯N7}¥|_ãÇ_­M{äœp<ŠššššššÃnÞ¼¹ªªjüøñi¯à„PÜ&3eðé·<«¸Mæ›ÿüúû6¤½rN8ŤI“ýTu}}ýš5k¦OŸ~óÍ7g2™qãÆ¥=€”}¥W§ŸŒ?ûœ®íßݽïOŸ®^ºÑ}i¼ðúÉJJJw]ížÒ^-J8Fmß¾½©©©¬¬,í!¤æº!§W~¡ë?®|ïÏç¼™öH—ªCî¸ãŽ$I.¼ð´·ŽL&¹vÈé»÷5þ¯ëÓÞépÅñ(½O’$uuuÕÕÕ»wï.++»á†Ò^@:ºŸrr¯SKêö7-ùΠ#Ÿ}ì•Úû_~7í[Âñ(»OQQQÏž=+++¯¿þúŽ;¦½€t|¾S»$IJO*xÚ)G>»tƒÈPø2ÙlöÓÿ•Édê7¬N{ÐrJz÷OnüeÚ+€ô·—µÎ‚òGB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@H&›Í¦½¡Ðd2™´'¹Õ: J8â¥jB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Žp<øàƒ}ûöíÛ·ï¬Y³ÒÞäʳÏ>Û÷—^zé5×\³téÒ´×AK(N{‚gžy¦ùÁœ9s&Nœ˜ö ‡zôèÑ»wïæÇµµµË–-[¶lÙÔ©S§L™’ö:È-áŸVuuõºuëúõë·cÇŽU«Vmݺµ{÷îirå’K.¹õÖ[=òâ‹/N™2åÞ{ï8qbçÎÓ9ä¥jø´š/7N˜0aäÈ‘ÙlvÞ¼yi/ZÔСC/¸à‚†††7Þx#í-[Â>•Ì›7¯¨¨hìØ±£FJ’dîܹiZZ›6m’$éСCÚC ·„#|*+V¬Ø¶mÛE]Ô¥K—vëÖ­ººzýúõiïZÎÊ•+W®\yöÙgWTT¤½rË{áS™3gN’$•••I’d2™‘#G>úè£sçνñÆÓžäIJeË~fÿþý[·nݰaÃùçŸ×]w5_w„æq8võõõ‹-*-->|x󑃯Vg³Ù´×9QSSóÜÿ÷ /lذ!I’Í›7WUU¥= rN8±[²dI]]݈#JJJšôïß¿G555¯¼òJÚ뀜˜4iÒ›‡X½zõ£>ZRRróÍ7{‹3O8±kþ<õìÙ³Þ øœsΩ­­M|DZ’’’ÁƒϘ1#I’‡z(í9[ÞãÇhÇŽ/½ôR»víF}èñººº… .X°à–[n).ö1h***ŠŠŠ¶lÙ’öÈ-ÿUƒc4þü¦¦¦Ñ£Gßyç‡=5bĈ͛7/_¾|ذaiÏZÂöíÛ›ššÊÊÊÒ¹å¥j8Fïû}äSãÆK¼Z ­FCCÃwÜ‘$É…^˜öÈ-WáXlܸñµ×^ëÚµë!CŽ|vüøñ÷ÜsÏÒ¥K÷îÝÛ¾}û´ÇÇÓ¡·ãI’¤®®®ººz÷îÝeee7ÜpCÚë ·„#‹ƒ·o,**:òÙòòòŠŠŠµk×.^¼ø¨—$üUSSSSSsð—EEE={ö¬¬¬¼þúë;vì˜ö:È­Œ»Íá=Ž„GB„#!€á@ˆp D8"Ž„GB„#!Â(Ï>ûlß¾}o½õÖàù>ø`ß¾}ûöí;kÖ¬ûi‡¹ôÒK¯¹æš¥K—~♇Z¿~ý1Ìû½Ö´Œâ´¤ã™gži~0gΜ‰'õœ=zôîÝ»ùqcccmmí²eË–-[6uêÔ)S¦|Ü™‡iß¾}ˬÈ5á´FÕÕÕëÖ­ëׯߎ;V­ZµuëÖîÝ»yÚ%—\rØ5Â_|qÊ”)÷Þ{ïĉ;wîü;Îlùµ¹æ¥j 5j¾€7a„‘#Gf³ÙyóæÿÄ¡C‡^pÁ o¼ñƉ¿àøŽ@«sàÀyóæ;vÔ¨QI’Ì;7þ§·iÓ&I’:äÅZ€ãH8­ÎŠ+¶mÛvÑEuéÒeàÀݺu«®®nþË'Z¹råÊ•+Ï>û슊Š-Àñå=Ž@«3gΜ$I*++“$Éd2#GŽ|ôÑGçÎ{ã7væ²eË~fÿþý[·nݰaÃùçŸ×]w5_w<ꙇêÚµë~ðƒ–Y kÂh]êëë-ZTZZ:|øðæ#£FjN±©S§f2™CO®©©©©©9ì'lÞ¼¹ªªjüøñŸxf’$ååå-¶ ׄ#к,Y²¤®®n„ %%%ÍGú÷ïߣGšššW^yeРA‡žxƒîsÎ9§¶¶6 |褤¤dðàÁ3fÌH’䡇:Á×w®8­ÈŽ;^zé¥víÚ=úÐãuuu .\°`Á-·ÜR\ü ÿb¬¨¨(**Ú²eK^¬8ŽühEæÏŸßÔÔ4zôè;ï¼ó°§FŒ±yóæåË—6ìwÿíÛ·755•••åÅZ€ãÈKÕ@+rðNÚG>Õü†ÅO|ý·¡¡áŽ;îH’ä /<ñ×_®8åãn‹3cÆŒíÛ·¿öÚk]»v2dÈ‘'Œ?þž{îYºtéÞ½{~»ôa?­®®®ººz÷îÝeee7ÜpC䯛$Éå—_~ÅW|⼎;zdãÆ¿ïZ€\Ž@Aù¸Ûâ444¼!bQQÑ‘'”——WTT¬]»vñâÅ/òöÓŠŠŠzöìYYYyýõ×Öy÷×M’¤W¯^‘y‡9†µ¹–Éf³io x#!€á@ˆp D8"Ž„GB„#!€á@ˆp äÿóÃïHbª§IEND®B`‚statistics-release-1.6.3/docs/assets/RegressionGAM_201.png000066400000000000000000000764111456127120000233270ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A|ÐIDATxÚíÝy\TåâÇñgA@ eÑ0EMqÉÔPÍåŠû†š™©­¹ÜlÓìjijÐOS£ò–K¹–·ºn™ŠZ®©).(¢¸ ˆ+¨0s~œ:w`80³}Þ·×}Ásž9ç9gÎ0_Ÿóœçh$I@I\¬ÝØ‚#T!8@‚#T!8@‚#T!8¢?þøãþóŸÿüç?ÙÙÙå·•wÞyG£Ñh4š¾}ûZ{­fÆŒòAèÞ½»\òé§ŸÊ%­Zµ*íÚÊã+ÜÂreãgÅíÛ·ÇŒS«V-77·ªU«þñÇŽ´95Š<ÇÌ9i+àõèÑC£ÑÄÅÅ·’!C†h4šÞ½{«ßîÏ?ÿ¬Ñh¼½½ÏŸ?_Á»l]…Unnî¢E‹Z·nýÐCùøø´jÕêŸÿüç7J»f§=¤vÁÍÚ €­‹‹‹»{÷®bË–-111ÖnÔâ+oo¼ñÆçŸ.ÿ,jGÚœ¶vŽ•xˆÖ®]»aÃkضmÛÊ•+…o½õ–úíÆÄÄ´nÝzïÞ½ãÇ_³fµC)|¬Õ†îÞ½+IÒÛo¿-ÿÚ§OÃu*×#&NœXªö·B…22©R¥J999Jù³Ï>+—÷ë×O’¤{÷îyI£Ñ|òÉ'&šÒ€N:Õ«WÏèå£F*²©òß5!ÄÛo¿-/ýùçŸ o}üøñ†›Û¿`` aªU«öèÑCþ¹[·nrµE‹É%-[¶´Ègñ–ím*óYQªOÍž–í„éÓ§Oá—œùD.©Zµêž={äBå+M˜ Žf¾qoaÙÞ¦2ŸêO<•{Z榸#yòäO$õ›+[pTöëĉJ,S:™Ì<Ç Ÿ´e;&¦©þ2;uê$„puu½sçŽÑ¢Ï>ûL~UåÊ•_xáùçÚµk®©ôh¦¦¦×Ègžy¦›IÅ%6•ï‹ú£]æ“ßı’Ý»wOxõÕWåT”Ó!EcŒ££BBB ¯3Èž}öÙ'žxBqïÞ½… Ê…óçÏ/\³I“&ò&† îܹs£I·oß.ò…*ßõG»Ì'¿‰cU¤/¾øBù“R‡Œàèhºví:lذ=züòË/'NŒ‰‰©]»ö‰'ŒªÉã”…Ê?:…‡:tèО={äï× k111òŽŒŒŒ“'O ƒD¢üëÚµ«üCjjê³Ï>Ô¢E‹yóæýñÇ52´W¤Æ?üðÆí—$)==ݰfdd¤ÑM‚§NR^¥ ¯R¥ŠòE{úôiÃj†Óh»»»+#ÊM0󫀪|›,uV˜¹§æŸ0FRSS•í–+‡îôéÓÊ=²Â'R¹2ý¦\%TZeñ?e8&%6Ò²ôz½üÏeC†4ͧŸ~Z©R%¥¤wïÞEή¼¼<— ò}Q´Ëvò›>V2ww÷cÇŽmÞ¼¹mÛ¶Bˆ»wïŽ1Âðî:9¤(‚££yðàÁ„ jÖ¬7wîÜ­[·uåää(ÿ¨õõõµz{TªT©’2’Iq¸mÛ6¹<66V.Ÿ6mÚK/½¤L #IÒÁƒg̘ѺuëöíÛ«ùÓcôçÒËËËÇÇGþùÊ•+†‹”ô+GµÄi™¯]»v÷îÝ«W¯¹-ÃÀZ$3߸ h¡P÷6Yð¬0gO…%N£í*oÑ,†µjÕ’¸wïž2kŒÌèD*oòÝÅýjñ?e;&¦iq·nÝ’³”Ü#^XDD„Ὶ ‡mRŽ˜|véôéÓ¦¯*}üÅFïK©ŽvÙNþ•B£ÑDDDtéÒeÇŽòN·`Á‚r:¤¨`GG3cÆŒ>ú¨   ,,lÁ‚¿ÿþ{NNŽò…-«Zµª2VúúõëVoz”ظqcJJŠœo”..!D¥J•æÏŸŸ½råÊaÆ)åBˆ;wÍÕR$£/°¼¼}úôé#Ïš¤”+}ÿ†= ¶pHQfG‡rçÎ¥?_ù"ùí·ß¶nÝjTS™%aîܹÊØ„„„={öìÙ³ÇÃÃC™¸DñàÁågå’åÞ½{•G~ûí·FÁB}{TR.ƒÞ¿îܹâïÿ¢=qâD``````PP|'¯››[çΕIÕ\z{ðàÁ¸qãä½|ùò믿.—ÇÆÆ–8´Ky¼ARR’ò§síÚµ=ô¿¿HHÈ;w„-[¶”ýßÿýŸ2õûï¿/?‰Á43߸ ha‰o“9g…ÊOåžZä„1¢LuixèRRRfÏž-ÿl8lÔ|êˆzfžcV?&e#ß–tþüùÂÓ†Ï;W¾¤ZµjÊ í'N,|1W™@ÀÄMNõë×טd˜ ©|_TmsNþ"UDD„ü2;;û£>’ =š””$ÿÜ´iÓr:¤¨hÖ¾­–¤×ë•ë^^^½zõêÝ»·á󔉲²²”*C‡‰‰Qª}ÿý÷Ê:•IæÚ´i3{öìH’d8¿——W»víŒ`/O¢¾=j¦ã‘=&!&&FY¤Óé” ŸGýÏþsРAÊ\ï½÷^q«5š@.888&&F9D...ÇŽ+±©7nÜP.÷DGGO:UyZ«bÊ”)rµÃ‡+EîîîQQQ 40ܺ‰éxÌ|ã,ÞÂ2¼Mæœ*O<•{jÎ #3ùKnn®Ò3íééÙ³gÏÞ½{{{{Ë%AAAò„D¥:çMlNýQ?q™çX‘ó8šyLŠœà]å!2db:ž×^{M^ôÛo¿–Ÿ9sF9mÞ{ï½{÷î)a}ذaF+yüñÇ…ÞÞÞò¡(’Ò^e,#*ß•GÛœ“¿¸c¥” !yä‘–-[*·¿<ôÐC™™™åtHQÁŽŽfðàÁF†Â”ybŸ~úi¥æ·ß~«Œ†1ôæ›o®P™å_¦<€¤ðCëÔnåï»Êö¨ÿ5œbZ±páBÃ¥»wïVþ$‰ŽŽ–gg,’Ò€öíÛשSÇð…nnn‹-*\³È¦~ÿý÷EþKýùçŸ7œÉL™œLáíí­ 7ýä3ß8˶°lo“9g…ÊOåž–ù„‘Š){÷î-²w¤nݺ;wîTy"©ßœÊRªLfÎ9VäIkæ1©€à¨LR3wî\Ãråœ÷÷÷—§ÎVºÐ„›6mRjÞ¹sGþ÷O=L4rĈM:~üxq¯Uù¾¨<Úe>ù‹;V¹¹¹òmÔFªU«öÃ?”ß!E#8:šÌÌLyâ+—¦M›¾öÚk·oß–Ÿ+*„pww7œFõüùóÏ=÷\«V­ªT©Ò³gÏ;v­ðêիÆ «Y³¦··wãÆsssåò̘1£I“&ÞÞÞ‘‘‘¯¼òÊÕ«W ÿ}WÙžR}‰*ÓG»¸¸ÈO¬2téÒ¥wÞy§U«VÁÁÁ•*Uòóó{â‰'>ÿüs£h6àÂ… cÆŒÑjµýû÷ß¶m[q5‹\UFFÆèÑ£›7oîååÖ·o_ÃÇ|Ét:ÝK/½$¯§fÍš½zõÚ½{·ò<ÓÁÑÌ7β-,ÛÛdÎY¡òÄS¿§e;a$“1åîÝ»ï¼óNLLL@@€¿¿§NÞzë-Ãg0ª9‘TnNå)m&+ó9VÜIkÎ1©€àøàÁù¾ãæÍ›+…Ë–-S’òóó•X¦|²”!zkÖ¬Qó†–š÷EåÑ–Êzòy¬dz½þÓO?‰‰ òññyì±ÇÆgøñ·ÁCŠÒÒHƒXáòóóüñG!Dß¾}­Ý[lO‘Þyç9õéÓç»ï¾«˜8p`Û¶mÏ=÷œ‰‰-¬«üZhgœÊ| ?ˆå÷ßôÑGKûòŽ;nß¾½nݺgΜ±Ô<¸6ËÌc¥’SR;Bp„°Rp`;nܸvûöíçž{Né7U騱cMš4‘$éÿþïÿÆgí])wæ+•œíÚîª@T¯^ý_ÿú—âË/¿¼téR©^ûþûïK’Ô¨Q#åÉËŽÍœc¥’³R;Bp@!^|ñŦM›Þ¿Μ9ê_uæÌ™•+W !æÏŸoÝ )+RÙŽ•JÎyHíïBáêêºnݺÔÔÔân7.’››Ûÿû_OOÏöíÛ[{*NÙŽ•JÎyHíc  —ª  Áª  Áª  Áª  Áª  Áª  Áª Š›µP ·nÝJLLN(Axx8o“íãm²}¼Gv·ÉâœöÚÍ¥jÅ!CNœ8±k×®×_}Ó¦MqqqwïÞBøúúj4šÜÜ\£úòR¹¿ÐRuœýG!„F£©Q£Æ¨Q£|åÊ•M›6 !ÜÜÜ||| ÷æää!äû£-UÀ ÙGp<}úôo¼±aãòF !²²²ä_®_¿.'<ÅÙ³gåE–­àlì#8V«VíÛo¿]»v­Qùùóç…¡¡¡ò¯111:nçÎJI’’““ýüü"##-[ÀÙØGp ßµk×Ö­[•“'O._¾¼J•*­Zµ’Kèââ2þ|y<¢"))éÚµkýû÷¯T©’eë8»yVõ‘#G†šŸŸY»ví«W¯8p@ñá‡öìÙS©¶xñâY³fÕªU+***##cÏž=‹/6œ^ÇRuŠã´wZà$œö»Þn‚£"##ãã?NIIÉÊÊ lذáK/½T¿~}£j?üðúuëŽ9ôØcÅÇÇË3é”G"9íÉ€“pÚïz{ ŽöÂiO&œ„Ó~×ÛÇGXÁª  Áª  Á tN:eí&X‡›µ°iáááÖnPîJ;·ŽV«µv“­ƒà(–ÓNV§Â¿ŽÔãR5T!8”‚F£±v¬†àP Îü¸f‚#T!8@‚#€ZÎ<ÀQÔsæŽ‚à•ŽP…àpü±Æ¤M›6 !BCChíÆ!***22ÒÌ•„††öíÛ·ÈEÓ¦M+|L‚ƒƒŸ|òÉäädkï½pòŽ‚GIóæÍ'Nœ¨ü:oÞ<__ß§žzJ) ±vÿæÀ3f̘>}z£F„®®®®®®å½Ñ!C†Ô®][þ¹   ==}Æ [¶lÙ¶m[‡¬}Hlš“pG€#‰ŠŠŠŠŠR~ýüóÏ~øáÙ³g[»]ÅÊÊÊZ·n]||¼üëöíÛ+`£/¿ür»ví K~üñÇØØØéÓ§a—ªpv={ö¬Zµê±cÇ,µBN§ÓéÊöZ½^_æ×¢¼Nê—_~éÞ½»¿¿­Zµ^xá…;wî(‹RRRúõëW§Nš5kvëÖíçŸ6|á¾}ûzôèÜ£G}ûö)‹BCC_{íµ4mÚ´iÓ¦¦×öÌ3ÏôìÙS*„èØ±£áÇÇÇÆÆöêÕëÈ‘#Ê¢„„„G}ÔÛÛ»zõê­[·^¾|¹™GÃÍÍ­råÊjŽ@^^ÞôéÓ6lèååU·nÝÑ£G_¹rÅp÷çÏŸïëëëîîÞ¤I“É“'?xð@ý¡ûôÓOýýýÝÜÜjÕªõâ‹/*oЉ–ø~Y …B‚¥iµZk7,ÃÞÿ ùúú¶lÙ²pyHHˆV«õññ7nÜœ9sä«ÛcÇŽ•—nÞ¼¹råÊ¡¡¡'Nüç?ÿY¿~}WW×o¾ùF^ºnÝ:77·ÚµkÇÇÇ¿öÚk?ü°››Ûºuë”5÷ïß¿zõê¡¡¡ò M¬íèÑ£Ó¦MB|øá‡ÉÉÉ’$EGG7kÖL^ÕO?ý¤¼p„ þþþÕªUKKK“$iêÔ©BˆN:M›6íÍ7ßlذ¡âûï¿WÚЧOŸ"È»ï¾+„صk—QùÆ…¯½öšš#0tèPFÓ¥K—·Þz«wïÞ®®®­[·V6]«V-!D=ÞxãŽ; !Ú·o¯×ëպƻ»»¿ôÒKóæÍëÑ£‡bôèÑ%nÔtkÕ(Ãynï2#8ZžÓžL½ÿA3…ÿùÏä_ 6lX·n]I’îß¿_¿~ýÈÈÈÜÜ\yé½{÷Ú´iVPPpÿþýÐÐÐììlyivvvݺuÃÂÂîß¿¯¬yÚ´i:®ÄµI’ôã? !¶oß./U‚cAAADDD½zõnܸ!/’ïz7nœ$IaaaZ­6??_^tëÖ-77·_|QÙ;ÓÁqذa“ÿ2a„¾}ûº¹¹õêÕKn¤é6ß½{×ÕÕuäÈ‘Ê:Ÿ}öYÿÌÌLe÷ßÿ}eé¤I“„ß|óÊC·fÍy©^¯oÒ¤IíÚµ%I2±Ñ°GõŽ–ç´'ÇcïÐL÷8–ÄÅÅùûûK’´gÏ!Ä×_m¸ô믿BìÛ·o÷îÝBˆÄÄDÃ¥ òRyÍAAArj,qmRñÁñÀBˆ?þØð…_|ñÅêÕ«%IºvíÚÝ»w•ò3gθ¹¹)¹ªÄàX˜»»{RR’š6çææº¹¹Õ¯_ÿܹsEX9ÊîÞ½[¥J•¾}ûª9taaa†KGŒáëë+I’‰–x„Õ 8ªÇG@™h4VûÏ´Z­á¯Ê$8'OžBÈFC‡Bœ?þôéÓBeð¢ìÑGBÈ‹„ááá...jÖf¢y§NB4iÒİpÔ¨Q Bøùù:thêÔ©ƒnÞ¼yÆ Ôï»á¥j½^ŸžžÞ©S§±cÇnÙ²¥Ä6{zz&&&ž?>44´I“&Ï=÷Üwß}g8бQ£FîîîʯÞÞÞááágΜQsèŒÞå0šØh™pi1ÀQÆt<€2±ó í o1$‡žÙ³g…6!DDDĶmÛD¡ !‡Îüü|ùW___•k3Ñ<9¹¹ñ5}ÿþý~ýú­_¿¾U«VO>ùd¯^½Ú´iÓ¼yó²F:wîÜ7nÛ¶­sçÎ%¶ù¥—^êß¿ÿ?þ¸mÛ¶õë×'%%…‡‡'''¹ 77·?þøC’¤]qoЉ–ù—–dç'¼¥øŸúõë !ªV­ÚµkW¥ðøñãGõõõ•—=zÔp¾CùfçðððÒ®ÍD3ä¾·ãÇNK9sæÌœœœ˜˜˜õë×'&&¾úê«Ê¢Rõ8V¯^=!Dzzz‰m¾~ýzZZšV«=zôèÑ£õzý‚ Æ·hÑ"ù–ãÇçççWªTI~a^^Þ‰'¢££K{è ™Øè?þñ²a” —ªøŸfÍš…‡‡Ï;÷Ö­[rINNN÷îÝ_{í5//¯æÍ›×©S'!!áæÍ›òÒ7n|ôÑGuëÖ-òQ¦×¦TÓëõF/ŒŒŒ¬S§NbbbNNŽ\’žž>mÚ´‹/^¼xQ!ßI-[³fÒ¥W6rצÜÍiºÍ©©©?þøÜ¹såE...ÑÑÑB%)fggË#eÓ§OÏÉÉéÛ·oi!Uy„a)ô8ð?nnn‰‰‰½{÷nÚ´é Aƒòóó×­[wáÂ…+VÈÏLHHG4H’¤•+Wfff®^½ÚÃã´k]×^¸paVVÖ!C”V®\911qРA-Z´0`€F£ù÷¿ÿíææ6eÊwwwooï1cÆ 6¬V­Z»wïÞºuk5víÚµaÆîÝ»—a¯]]]½½½ÓÒÒJlsË–-7n|¸|WµìàÁƒÿøÇ?ýüü¢££7oÞlXù×_íÖ­[@@@@@@·nÝöîÝk¸æÂw4›X›^¯‹‹«V­ZóæÍ¥¿Ïã(IÒ/¿üÒ¥Kÿ€€€^½z¥¤¤ÈåÉÉÉmÛ¶­R¥J½zõFýùçŸ×¨Q£k×®R™æq”$©M›6Bˆ¯¾úªÄ6_¸paÔ¨QuëÖõðð¨S§ÎСCOœ8a¸ûÉÉÉ:tðññiРÁĉïÝ»W¶C7räHù®jÓ-ñý*wU«G‚¶¼ðððÔÔTk·,€?h(•ÐÐÐfÍš}÷ÝwÖnHé”ᙜœ\Þ ƒSq³vÎH#4’(Ç!C†Ô®][!IÒ•+WÖ¯_?f̘ÔÔÔÙ³g[|[®®®®®®%V;pàÀŒ3¦OŸÞ¨Q£rÝe!DAAAzzú† ¶lÙ²mÛ¶:”ÇᄎôòË/·k×Nù5+++222!!aâĉ–ÝÖöíÛÕTËÊÊZ·n]|||Åì²âÇŒ>}:Á± 4 W« ãR5Àñ 2D§Ó¥¤¤X»-§gÏžU«V=v옥V¨Óét:]Ù^«×ëËüZ« 5‰àp rÈÏÏB„††¾öÚkhÚ´iÓ¦Må )))ýúõ«S§NÍš5»uëöóÏ?¾|ÇŽ]ºt©^½zDDĤI“|¸ðz䮵ãÇGEE)…3gÎÌÉÉyÿý÷Ëc‹¦Õ«WO‘žž^â¯_¿ž––¦ÕjG=zôh½^¿`Á‚qãÆ-Z´hêÔ©rÍüüüJ•*É/ÌËË;qâDtt´¼Ú£GN)ßHnºy&6úüÃDk-~aG¸T pvÍš5 Ÿ;wî­[·ä’œœœîÝ»¿öÚk^^^Í›7 ûè£._¾,/ÍÎÎþøã ¯'22²N:‰‰‰999rIzzú´iÓ.^¼¨Ô‘{h©-š&÷}Êý ¦·˜ššúøãÏ;W^äââ"gV%)fggË#eÓ§OÏÉÉéÛ·oóæÍëÔ©“póæMyÑ7>ú裺uë–xmÝÄFM·¶¼ÏR£ ô8œ››[bbbïÞ½›6m:hРüüüuëÖ]¸paÅŠòãçÌ™3hРÈÈÈÁƒWªTiåÊ•ÙÙÙ…×S¹råÄÄÄAƒµhÑbÀ€æßÿþ·››Û”)SÄ_Ç.\˜••5dÈ‹lÑ4WWWooï´´´÷±eË–7ž9sfzzzãÆSSS7lØP½zõ¸¸8yUAAAï¼óί¿þÚ´iÓÝ»wÿôÓOmÚ´1b„‹‹KBBÂàÁƒ›7o>hÐ I’V®\™™™¹zõjÓÍ3±QÓ­µöùâܬ}wŽrÚ;­8ûŽÇðN‘ÂBBBúôécTxðàÁüã~~~ÑÑÑ›7o6\ºcÇŽÎ;ûùù !|||V¯^- ÝU-ûå—_ºtéâïïЫW¯””¹\¯×ÇÅÅU«V­yóæfnQý.·iÓFñÕW_•¸Å .Œ5ªnݺuêÔ:tè‰' Wrrr‡|||4h0qâÄ{÷î)¯ýõ×_»uëЭ[·½{÷š8Ô#GŽ”ïª6½ÑqWµz\Å·¼ðððÔÔTk·,€?h…eff>ôÐC%v§Ùõ„††6kÖì»ï¾³VÊ›áy®r€£Ó~4¸T @)Èq;öj¦qs T¡Ç˜Ò½{wùÉÁ˜²`Ák7¡‚0ƒc‰¸T U 8@‚#T!8Fcí&Ø‚#U!8@{šŽ'//oåÊ•kÖ¬¹xñbÕªUµZí¨Q£ÚµkgTmõêÕ«V­JKKóòòêСäI“ä}–Gça7Á±  `äÈ‘‡öññiӦͽ{÷öîÝ»k×®W^y套^Rª%$$,Z´ÈÛÛ»U«Vk×®=}úô’%K<==-^8fpTÉn.U¯ZµêðáÃ-Z´HNN^¸pá¿ÿýïï¾ûÎ××÷“O>9qâ„\'555))) `ãÆIII›6m1bÄ‘#GæÌ™£¬ÇRu€Ã 5ªd7ÁqãÆBˆ·ÞzKéó«_¿þóÏ?¯Óé~ùå¹dÕªUz½>>>¾fÍšrÉäÉ“}||6lØ ×ë-[ÀÙØMp<{ö¬··w£F ëׯ/„¸pá‚üëþýû]\\¢££• ®®®íÛ·¿~ýúÁƒ-[`›¦M›¦ù;ŸV­Z}þùçüÇÿo¿ý¦ÑhV®\)„ˆŠŠŠŒŒ,íÊöªeddh4šgžyÆâk¶ ÐÐо}ûZ»( » ŽŸ~úéŠ+Œ ;&„xøá‡…’$¥¥¥U¯^½zõê†u´Z­ø+\ZªÀÆ 2dâĉ'Nœ0aBllì™3gÆŒóú믗Ƕ\]]]]]K¬vàÀ¾}ûÊß\ê_U®Œš”Ènnމˆˆ0*Ù³gORR’‡‡GŸ>}„¹¹¹:Î××רšâƬS¢ððp£’ÔÔTkBp"/¿ü²á´YYY‘‘‘ 'N °ì¶¶oß®¦ZVVÖºuëâããKõªreÔ$§ð׺Ӳ›àhH§Ó-_¾üÃ?ÔétsçÎõ÷÷Bäåå !¼½½*W©REqûöm Ö)1lJ@@À!CRRR,+Œ^¯—$©lý”æ¼…¿Ö6JÚÍ¥jÅÞ½{cccg̘áïïÿÅ_ôèÑC.÷õõÕh4¹¹¹FõïÞ½+þê/´T€Ý‘o›ÍÏÏB„††¾öÚkhÚ´iÓ¦Må )))ýúõ«S§NÍš5»uëöóÏ?¾|ÇŽ]ºt©^½zDDĤI“e‘ÜÚO?ýÔßßßÍÍ­V­Z/¾øâ;wÔ쵉×n’éƒ`tІîââ’™™i¸¹Æét:!DBB£>êíí]½zõÖ­[/_¾¼ÈæååMŸ>½aÆ^^^uëÖ=zô•+W¬}² Xö|xðàÁÏ<óLzzz×®]•±õß~ûm§NŽ9³lÙ²‘#G¹¡-[¶´iÓæØ±c#FŒ>|øîÝ»£¢¢Îœ93a„iÓ¦ !>üðï¾úÊèUÿùÏÚµkwôèѸ¸¸!C†¤¤¤´k×î?ÿùáj_yå•¡C‡Î›7¯Y³f .?~¼Ê}/îµ…›dú ´!C†H’ôÝwß)K;vìØ±§žzÊÕÕõÝwß?~|5^ýõ^xáÎ;Çÿᇠ7oôèÑS¦Lyøá‡Çùå—_Ê#Ð`£$;¡Óé^~ùe­Vûâ‹/feeY'66¶aÆ·oß6,|ã7´ZíÞ½{-[Ç­Vkí£–aâšá7ˆµ~.Ò»ï¾+„6lØäÉ“'Ožüúë¯9ò¡‡B¼òÊ+r!Ä´iÓt:$I÷ï߯_¿~dddnn®\áÞ½{mÚ´ +((¸wï^ݺuƒ‚‚.^¼(/ÍÌÌ B¬X±B’¤èèèfÍšI’TPPQ¯^½7nÈ5“““…ãÆ“$éÇBlß¾]^¤¼êþýû¡¡¡!!!ÙÙÙò¢ìììºu놅…Ý¿_iíš5kä¥z½¾I“&µk×.r÷Ï;'„9r¤áž÷ZÃ&™>E4??¿Ž;*›~ûí·…)))’$………iµÚüü|yÑ­[·ÜÜÜ^|ñE¥U}úô‘$éîÝ»®®®Jk%IzöÙgýýý333ÕŸ¥æ+÷Ó~×ÛMãÒ¥K7oÞù¤¸n¿˜˜N·sçNÃXœœœìçç§\°Tpr’Á„ÉÖúÙ„åË—Ïœ9sæÌ™³fÍZ¶lY``àœ9s>úè#¥BPPÐÛo¿íââ"„8tèÐéÓ§'Mš¤Lìáá1nܸôôôƒ-„P®¡Ë}ôQe‘økJ8…Òr5T¾ÖôA(|ЄC† Ñétò%õƒž>}Z¹‚ïççwèС©S§<¸yóæ 6,(((¼QOOÏÄÄÄóçχ††6iÒä¹çžûî»ï ÇÂÖØÇ]ÕÙÙÙçÏŸ÷ôô6lXá¥}ûö>|¸"88xÒ¤I³fÍêÕ«WTTTFFÆž={5j4fÌ¥²¥êìšá´kîîîBˆÙ³ge>!DDDÄŽ;„ư¼Èø%'¥›M%¹ÕhýrÆ•oåBT®\¹Ì{ªòµ¦Báƒ&„èØ±cÍš5×®]ûì³Ï®X±ÂÃÃcÈ!Bˆû÷ï÷ë×oýúõ­ZµzòÉ'{õêÕ¦M›æÍ›¹Ý—^z©ÿþ?þøã¶mÛÖ¯_Ÿ””žœœl¿7¿;6ûŽ/^Bäå奤¤^jx‹Ì¨Q£jÔ¨±nݺõë× ><>>^žIÇâuŽA~YÕªU»víª?~üèÑ£¾¾¾<òˆâ·ß~3|¢ØáÇ ¯GîÛ;~üxTT”R8sæÌœœœ÷ßßôÖ=Ú¡C¥P¾»"ç|1}Š|‰««ëÀ?ûì³[·n­ZµªOŸ>ò5ú]»v­_¿>11ñÕW_U*Ùãxýúõ´´4­V;zôèÑ£Gëõú Œ7nÑ¢ES§N­°}‡zö›7o®~fÄØØØØØØŠ©pÍš5 Ÿ;wîàÁƒå”““Ó½{÷üüü4oÞ<,,ì£>:t¨<ö.;;ûã?.¼žÈÈÈ:uê$&&ÆÅÅU«VM‘žž>mÚ´*u ?ö°yóæuêÔIHH6l˜¼nܸñÑGÕ­[·bÖËM2}Š{í!C>ùä“·Þz+##cÑ¢Er¡ÜÝÓ°aC¥Úš5kþøãÂãSSSSÛµk÷Ö[oMŸ>]¡<ï—a6Ë>‚#åÇÍÍ-11±wïÞM›64hP~~þºuë.\¸°bÅ ùÁ€sæÌ4hPddäàÁƒ+Uª´råÊìììÂë©\¹rbbâ AƒZ´h1`ÀFóïÿÛÍÍmÊ”)â¯ë¼ .ÌÊÊ’/éÊ<<<ä±€ƒ ’$iåÊ•™™™«W¯öðð(×7j’‰ƒPÜÚµkW»ví… wéÒE.ìØ±£··÷˜1c† V«V­Ý»woݺµF»víÚ°aC÷îÝ•—·lÙ²qãÆ3gÎLOOoܸqjjê† ªW¯Wqo?JÃ>nŽ \uëÖmÏž=Mš4Y¶lÙ’%KBCC7mÚ4hÐ yiß¾}·nÝÚ¤I“¥K—Î;÷Î;Ë–-+r=}ûöMNN ýüóÏ/^üØcíÙ³G¾ØÝ¶mÛ¸¸¸M›6Íž=ÛèUòíÉ 4øê«¯–,YñË/¿TÀt†FM2}ФÑh,IÒˆ#”|Y§Nõë××®]{Þ¼y žžžGŽùàƒrrrŒzjÝÝÝ7lØðôÓOÿúë¯ï½÷ÞöíÛ»téòË/¿(’ÛÐýW\¡ÃÓ¨œ×ê…‡‡óÈAŽ?h…eff>ôÐCå݈ŠT†ó\#4’pÆÅ¥jJAžúpN\ª€*G¨Bp€*G€ÒÐ8Å ÔE"8”Ž6\kþJìÁªTÓh„ÏMp€*L0%<<ÜÚM`+Ž€bñ¼A8$¦¬\vîëÔ‚KÕÀÙ”15‚à•Ž*8ýujApNEãÄÏ}1Á88šƒàP®S !ŽP‰àœÍDp΂y¿ÍDp€*G¨BpNŽæ#8§ÀGó  Áª€ã+ãG®SÿÁ8>QmG¨Bp( ש !8Ç Ž–BpŽŽ–Bp(„ëÔE!8@‚#pd p´ ‚#pdeàÈuêb  Áª€Ã*ËG®Sà38ZÁª  Á8š²ÏÝÈG“ŽÀÑ0´±œ  Á@Áuê’€ãàÉÔåŠà£ËÁ€ëÔª  Á8F7V‚#pfnä:µ:G¨Bp€*G`ßÌÝÈujÕŽÀ¾1wc…!8@‚#pb\§. ‚#°WÌÝXÁŽÀ^1º±‚  Á8+8–Á؆6Z Á؆6Z Á8%®S—Áª€Ý`t£u€Ý°ØèF®S— Áª Š]Çôôôðððßÿ½È¥«W¯8p`ddd»víÞ|óÍ›7o–_P1,9º‘ëÔee—ÁqéÒ¥Å-JHHxûí·Ïœ9ÓªU«*Uª¬]»vìØ±yyyåQTæn´ösrr80uêÔ¯¿þºÈ ©©©III7nLJJÚ´iÓˆ#Ž92g΋×p6öccc‡ ¶bÅŠâ*¬ZµJ¯×ÇÇÇ׬YS.™|¸C‡7nœ9s¦R¾jÕªÞ½{Ÿ;wnÉ’%ÖÞGX€¹Áqß¾}®®®ï¿ÿ¾———a¹««ë”)S¼¼¼6mÚdí}ö£üoˆaîÆ2378ž8q"44´Èû`ªT©–‘‘aí}ʬdVþCÝXfæGŸ?þø£¸¥7oÞ¬Zµªµ÷T¨2&3:mž¹Á1""âòåËGŽ)¼èĉ—.]jذ¡µ÷ØÛV!}3´Ñ|æÎãØ®]»Ñ£GöÙgýúõ BlÙ²å×_=sæŒ^¯ïÛ·o×®]­½ ‚”eVíŠz< CÍg À'NœØ¢E‹Y³f¥§§ !.]º$„¨Q£Æøñã gvpæØ,óÈÁŽ;vìØñæÍ›ééé< °ö®›ÇÓ¨íŠÅžU-„ðóókÑ¢…$I[·nݸqã£>ií¶ª¢R#¥¶ Ç­[·~üñÇ;w7nœâí·ß^³f¼(..nêÔ©ŒEÀá•:œU`_#©ÑR̽«zÿþý/¾øâÉ“'õz½âøñãkÖ¬ñññ:thíÚµ¿ùæ›­[·Z{@¹³ÙÔ 2·Çñ³Ï>“$é­·ÞŠ‹‹BlÞ¼YñÁÄÄÄœ;w®[·n_ýuLLŒµwØŒŠš|‡ŽF‹378ž:u*00pĈò¯{÷îuwwŠŠB„„„Ô«WO¾Õ "‘˃¹—ªoݺ¥<¨º  àøñã7vww—K¼¼¼®]»fí}å¨t73p‘Úž™ƒƒƒ/^¼¨Ó鄼wï^ëÖ­åEz½þâÅ‹5jÔ°ö>€rTо½rNÜ[ÞÌ Ž­ZµºuëÖ¼yó.]º4oÞrÐP­Zµ¬½kÀ”CjdŽFk±@pܰaÃ’%KÎ;WÜ[¸gÏkï&°$µÑ­|úIÖbnpܲeK||¼ü³«««µwT+¦FX‘¹ÁñóÏ?BŒ9òÅ_ôññ±öî€òRº Ä–N\ž¶æÇ´´´Úµk¿þúëÎy ŽÍ0®Yw¢oR£-0+íåççß¹sçá‡&5à0 'Ù±n\ãI0¶Æ¬Àçâââããsúôi½^oí–anX´\w#½Œ¶Æ¬àèêê:zôèk×®%$$X{G@ÙY¬obš¹c{ôèqáÂ…¤¤¤={ötïÞ½víÚîîîFu¢££­½›ÀXÇ/š\£ù©‘›`l™¹Á1&&FþáÈ‘#GŽ)²ŽsN­€ ²TXÔ$þþr õ5’m™¹Á±W¯^ÖÞ VyÅ2®P;sƒãìÙ³­½ À˜aÏ¢í_üµýBf±gU_¹råĉùùùaaa 6 ¶öÞàDŠ» ]î™ÌìîFR£½°@p¼yóæ¼yóV¬X¡Óé”BWW×ÁƒÇÇÇó8,«¸ÞDëᲦFz푹ÁQ§Ó½ð ‡òððèܹsݺu]]]Ï;·mÛ¶¯¿þúĉË—/çÖ˜Éj½‰%5«Ì}¤F{dnpüòË/:Ô¬Y³yóæÕ¬YS)ÏÎÎ7nÜ¡C‡¾üòËgŸ}ÖÚ» pvÅõÒÙËϾºôk(ºPÂ`‘™[í3÷Q;wîÔh4‰‰‰†©QQ£F?þØÅÅeÇŽÖÞG€N]Ü϶ ¸¶×Kg/?[—$¤ÿý§’¦P¡Ô¤F[;[PZæÇ“'OÖ­[7((¨ð¢€€€zõê8qÂÚûø“šðgNðªÈpYÚv¢ì4š¿ý'§Ä2á±wæG¼¼¼â–æååyzzZ{Àé”G¯›æ„KKíK±ëå^íd¥oDQIQùNÌÜàØ°a쬬C‡^”’’rñâÅ X{ËhõêÕŒŒŒl׮ݛo¾yóæMk·„0¯wÐò)}Ê)m ¤±"”gRäò´#178ÊOŽyå•WŒÆ2îÚµëå—_BÄÆÆZ{Ë"!!áí·ß>sæL«V­ªT©²víÚ±cÇšè[‹°Ô%ã¢Wn ]YÅ# V¨ ìSäÝt$æÞUÝ£GäääuëÖ3&((($$D‘‘‘‘™™)„ˆíÙ³§µ÷±ÔRSS“’’Ö¬Y#ßô3cÆŒ%K–Ì™3çwÞ±vëØsîœuæ eþ]ÀάØ;  Iܲ0·ÇQ1sæÌ>ø àòåË»wïÞ½{wfff5Þÿý?üÐÚ;X«V­ÒëõñññÊ­â“'OöññÙ°aƒ^¯·vëXSyÜPRd(´ñÞAØ.F¾ëÙð?Q¦; M3½.O;* <9F£Ñôëׯ_¿~W¯^=wîœ$I!!!ÖÞµ²Û¿¿‹‹Ktt´RâêêÚ¾}û~øáàÁƒ-[¶´vXŒEz5Bã̽ƒ°±¬èÓ¯¢cŸGe±gU !jÖ¬éëë[PPàååeíý*;I’ÒÒÒªW¯^½zuÃr­V+„¸páÁ°kyÒâÒ\æ+Щ¹\[Ú^7U—€K¹Zµë4*àœ„•X&8ž>}zÁ‚‡¾råŠ^¯ lܸñ¸qãìñ–êÜÜ\NçëëkT.?tûÆjVnT’ššjí=œšõŸçëʘœÊpÕR*Ó«þ¾ãvJ…âW)ûáÔ­³t«-aʹjç¬?{ºð׺Ӳ@püüóÏçÎ+þóððpuu½råÊ•+W¶nÝ:~üø1cÆX{KG¾uÚÛÛÛ¨¼J•*BˆÛ·o«Y 1°5Žú}fB»²L*cr*ËÁ/ûY§µ8ð§¬ð׺ÓFIsoŽÙ½{÷ܹs5͈#¶lÙòûï¿:t(99yôèÑ...}ôÑîÝ»­½¥ãëë«ÑhrssÊïÞ½+þêw«1šE¥øÿм¢ˆBɼÿ„PUÇô>j}áBkwB˜¿þúk½^?iÒ¤·Þzëá‡–ï¢ œ4iÒ›o¾©×ë—.]jí},777ŸÂ=‹999B£Gr°e6w_gñ!OUr*r¾=3âšíP“q­ÝFûV~Ðæ>e(gæÇ£GV®\yĈ…ÅÅÅyyy=zÔÚûXjׯ_—“¢âìÙ³ò"k·€Ze¿pf²'¯!ÏôËÿ©JNöáHÔL8g`Vp,((¸|ùr@@€««k«vq ²ÇS*&&F§ÓíܹS)‘$)99ÙÏÏ/22ÒÚ­`ŠQÿGCžÉž¼R„<»í„ÓâÁ0ͬà¨Ñh¼¼¼.\¸pëÖ­ÂKsrrÎ;פIkïc© 8ÐÅÅeþüùò¸F!DRRÒµk×ú÷ï_©R%k·€)F_iF6e&d•!ލ<.×ÚË: # ¢lÌ Ž®®®ýúõÓëõ¯¿þúýû÷ =xð`òäÉæÙgŸµö>–Zppð¤I“ÒÓÓ{õê5uêÔ‘#G&$$4jÔÈî©QVF=ˆ°4FÚ sži˜fîtúè£L^À‚þÖËX¦.F[p#¶ÏÁqëÖ­üqçÎÇ'„xûí·×¬Y#/Š‹‹›:u*Óʰˆ?ãT)»-þæ>9fÿþý/¾øâÉ“'õz½âøñãkÖ¬ñññ:thíÚµ¿ùæ›­[·Z{”»ò{”ðßþåi8·ŽêWþÀRÌíqüì³Ï$Izë­·âââ„›7oB|ðÁ111çÎëÖ­Û×_cíÝ`¯$I2qUZÍee€¥˜O:¨<«zïÞ½îîîQQQBˆzõꥧ§[{Øã(ÿ$‰?»‹©Éee¨Hæ^ª¾uë–¿¿¿üsAAÁñãÇ7nìîî.—xyy]»vÍÚûÀ&i4ƒÇCK’ÐHBIh ª "X¹=ŽÁÁÁ/^Ôét®®®¼wï^ëÖ­åEz½þâÅ‹5jÔ°ö>°Ã‰ÿÍ©ó¿Ÿ @©P¿£þš"‘¬6ÀÜÇV­ZݺukÞ¼y—.]š7ož¢}ûöò¢Å‹߸qƒ¿gñ÷D¹oðÏBI*âgƒ×)?sél™¹O4ºtéRllìü!ÿÚ¤I“Õ«Wk4šAƒýþûïBˆ¯¾úêñÇ·önV(§} œÇßî¡–»‹êT4ÿy*vý(?Ìi¿ëÍíq¬U«ÖÊ•+£££Ÿxâ‰ÄÄD¹óàÚµkÕªU›9s¦³¥FÀ)h„$ÿ÷W¢ü¿?ÿ“þüÁÚ­XXy=CýÒ¥KAAA..æS{ä´ÿ cûsôa1“o—S× =Žl“Ó~×[쑃·nÝJII¹|ùrppp»ví<<<œ35Žä·ªÈóãü}fœ¿=°|À¦X 8^¿~}áÂ…kÖ¬ÉËËB<ýôÓíÚµëÛ·o£F>øà???kï#€RøÛ,‰ÂÔóý¸yœ¹‚ùùù/¾øâÒ¥K«U«Ö·o_¥¼fÍšÛ¶m2dˆœ&ØùÖÃ{™‹¸¯Ùðá~ïe´vóVcnpüôÓO>Ü¡C‡7Μ9S)_µjUïÞ½Ï;·dÉkï#€"=ñ2ŸN1σ.®—‘kÊà Ì Žûöísuu}ÿý÷½¼¼ Ë]]]§L™âååµiÓ&kï#€?Û_h” =âÏÚ Øsƒã‰'BCC•§ªR¥JXXXFF†µ÷pjÅM¯­,../šzÀ)™{sŒ2ûwa7oÞ¬Zµªµ÷p:»Á¥Èا¤IB!@5s{#""._¾|äȑ‹Nœ8qéÒ¥† Z{§PBÏ¢A=¹†‰.FÁåi@QÌ ŽƒÖh4&L8vì˜aù±cÇâãã…}úô±ö>KMXüßÓ£åÿ¤¢ …qLäò4 0s/U·k×nôèÑŸ}öY¿~ý„[¶lùõ×_Ïœ9£×ëûöíÛµkWkï#àPJ¾ ýw’0~ÜKqc©€ ½vÍ€Oœ8±E‹³fÍJOOB\ºtIQ£FñãÇÎìÀ"J—튟¾ÛÜ5œe9رcÇŽ;Þ¼y3==ýÁƒaaaÖÞ5À¾öÿ•¥/°4‘5,ö¬j!„ŸŸ_‹-Œ OŸ>]¿~}kï&`»Š ˆEOЭnòkJ»uL+cpLKKÛ·oßÙ³g«T©ÒºuëÇ\Ytîܹ«W¯j4š;wîì۷﫯¾:qℵw°ŽâB¡eb¡)kQÿ"R#@½²Ç ÌŸ?_§Ó)¿víÚuîܹ/^|õÕWSSS­½S€5© …Žk¥½*­< P¥Ž{÷îýøã…5B9rdÓ¦MõêÕÛ²eË©S§<< 'Rê Àå9wþùÏÊ©QáééùÚk¯É?O™2…Ô¦öé,å܈ÿ=]ºL- lJ333«U«V£F ÃByêï‡z¨ZµjÖÞ#À¬ÿöL—2EFkµàxJ}©Z§ÓyyyÊ%•*U²öî–aåËÐE5HnеÛpjæ>«p6qºP›þüÿ2õ2`Y–œ°;6Ú³¨$!4eŽŒLî °,‚#œ‚šÉ·­Õ²¿ýjÑöXà‡RîOg1½u¡‘LϬ]øÖf²À~”%8feeEFFª/?tèµwŽÆº±T ýÛ¯%5éo÷PSh:›ryP~Ê%IÊÍÍU_X„MDƒVþí×Ò>Ó¥P(,¹Óh 6u4Ž¥ÔÁñÇ´v›á\”¼hÓ‘èÏér¸ô pd¥Žõë×·v›á\l:/ £­ót.O*7Çee3“r“ƒà”Ò_£5ݜ󷅅:K5B[Fp„-²Ñk¯ïb,ܾÒÞÈ¢Fq+´ÑCphGØ"›‹D6sUZas‡àŽ@ñ”¹uHi¢Ù^#VçbíÒh¬3—MávFH’ ¦F[9DgE#l…•íÙÃUiÆ5¬‹à§g¹«Ò̼plG8)ÐHr'£mwã1íÀv0ÆÖd…A{òF¥—Ñ&3™áa!5l=ް¦ JE†ñô[´­M { ‹ÛDp„#2êÈ´ÕFXØ‚#EÑÝŠ6‡°°_GT4KÞíAX QÑÌMNe ‹š¢F4–ßd:„E€c 8ÂüoêQƞšP#4å:í"ÓèÓñÀæNcÛQŒitŽàˆŠà$Y&,Á¡ì‰J£±£^FÁ0 ½ŒçAp„ +ÏîÆr½3‡Ä]Õ(/e¾­ø³äHBy0`…MS®»€]#8¢¼”9Zý ºË{êœ Û5ì—ªa“lþžœÁP…»§ 8Â’,“®l²»‘ËÓaI¤+Áæ²ð5Ü¢º­ug —§0Dp„¹¸—Ñw €2 8¢,Ê«+Î&G7ÁeáÀ]q\ž 8vÓÓÓÃÃÃÿý÷"—®^½zàÀ‘‘‘íÚµ{óÍ7oÞ¼Y~uœJ¹'*ÛèntàL €™ì28.]º´¸E o¿ýö™3gZµjU¥J•µk׎;6//¯<ê8›òMTVMô2 †=ÇœœœL:õ믿.²BjjjRRR@@ÀÆ“’’6mÚ4bĈ#GŽÌ™3ÇâuàHèe@ { ޱ±±Ã† [±bEqV­Z¥×ëãããkÖ¬)—Lž<ÙÇÇgÆ z½Þ²uœDuÅÙÆEj`š=Ç3f,X°`Á‚mÛ¶-²Âþýû]\\¢££•WW×öíÛ_¿~ýàÁƒ–­ã$¸+ŽËÓ”–=Ç'žx"&&&&&¦V­Z…—J’”––V½zõêÕ«–kµZ!Ä… ,XDZUt¢²Rw£gbʉ›µ`1¹¹¹:Î××רÜÇÇGqãÆ Ö)Qxx¸QIjjªµZœ¨4ï œþZwZŽå[ž½½½Ê«T©"„¸}û¶ë”ÈŽb¢Ìj‰ªü» wÔ(ƒÂ_ëN%m.8|öÙgʯ®®®cÇŽUóB___F“››kT~÷î]ñW¡¥ê8KT„EʃÍÇüüüÄÄDåW•ÁÑÍÍÍÇǧp`NNŽB¾?ÚRuƒõ¯Û–[w#a€ò`sÁÑÓÓ³Ì×yÒÒÒrrrªU«¦ž={V^dÙ:ÀÁR£õs0ŽÎžîª.QLLŒN§Û¹s§R"IRrr²ŸŸ_dd¤eëØ)›ƒÆpwH”7‡ Žtqq™?¾<Q‘””tíÚµþýûWªTɲuìˆ-¦+ u7ÚÊîàlîRµ9‚ƒƒ'Mš4kÖ¬^½zEEEeddìÙ³§Q£FcÆŒ±x;â`éŠKÒX‹CG!ĨQ£jÔ¨±nݺõë× ><>>^žIÇâul™M§«Òw7r—4¶À†ã…Ý ·»y+O¦Ø9§ý®w¨1ŽNÎ>n|!5`·ŽöÍo|Šàhßì,,–it£µ þDp´?öš¥Êt‘ÚÎ’1àh¸$ ¬Žàhì>,rO öàÛe¯åpPG”¿²v7Ú}?+Ž…àUŽ(gŒnÀQa‹Ý€ "8¢<1ºBpD¹á"5Ž…àUŽ(ft72ÀÛDp„Ía€#¶‰àˆrÀèFÁªaiæu72À›Ep„ma€#6ËÍÚ €‘; I~8(‚#,„bpt\ª†%ü•5¢ì#Ý€£Çæ±ÜåiF7`ãŽ0—§p&\ªFY‘p2G”‰¥S#°}\ªF)•Ïœ; pÀöQïh,òêÂ…’ àŽP­Ðåé‰P#4ÄDc¡‚FS~·Â0º{A#JRÎwO3º{A#LbÎðzQŒò¹{Ø/zQ¹£±ô©±´wÆ0À;BpD!xyšŽØ.U×§@ñŽø ÷Á“¸T !„R#£°;ô8:=+]žft#v‡àèܸ< TãRµ#5€Ò 8:+«¦F8`ް8`ŽN‰‹Ô ôŽÎ‡ÔÊ„àèdl 52À;EpDEc€#vŠàèLl »Ø/‚£Ó 5óCQ©Q#*z¬!£°kG'`3}ŒnÀ®  ÁÑÑÙLw#°wG‡fK©‘ŽØ;‚£ã²¥Ô(à€ýs³vPAм‡ºp¡$ˆw hGU¨»±p"Ô 1¨Ç¥jGdc©Ý€c 8:K‚Ñ8 ‚£c±½ÔÁªH)»+æÎ8à0ŽŽÂV/R3À‡Apt¶š€#!8@‚£ý³áîF8àHŽvΆS£`€#Ž…àhÏl;5Cp€*G»eÛÝŒnÀñíƒFü=‡ÙvjŒnÀíͧFàܬ݀RÈËË[¹råš5k.^¼XµjU­V;jÔ¨víÚU[½zõªU«ÒÒÒ¼¼¼:tè0iÒ$??¿rªc¤F`%{¹¤XPP0lذÇûøø´hÑâÞ½{û÷ïÏÏÏå•W^zé%¥ZBB¢E‹¼½½[¶l™‘‘qîܹG}tÉ’%žžž¯SœðððÔÔTËî¾Fhþ|´´=GÆnÎ+Ê <¾ëíƒd'–/_®Õjãâârsså’S§N=öØc 6<~ü¸\ròäÉ DEEeeeÉ%Ó§O×jµï½÷ž²KÕ1A«ÕZ|÷…$$I’ìçýÀ•Çw½]°›1Ž7nB¼õÖ[JŸ_ýúõŸþyN÷Ë/¿È%«V­Òëõñññ5kÖ”K&Ožìãã³aý^oÙ:V`}ÀÙMp<{ö¬··w£F ëׯ/„¸pá‚üëþýû]\\¢££• ®®®íÛ·¿~ýúÁƒ-[§\i„Æè?!„F… *ŒÝÇO?ýtÅŠF…ÇŽB<üðÃBI’ÒÒÒªW¯^½zuÃ:Z­Vü.-U§¼IB2ú¯¸B[Ãô80»¹«:""¨dÏž=III}úôBäææêt:___£j>>>Bˆ7nX°N‰ÂÃÃJœd­ÄÅt€Ã)üµî´ì&8ÒétË—/ÿðÃu:Ýܹsýýý…yyyBooo£ÊUªTBܾ}Û‚uJä$1gPøkÝi£¤ÍÇ‚‚‚Ï>ûLùÕÕÕuìØ±†öîÝ;mÚ´3gνÿþûmÛ¶•Ë}}}5Mnn®Ñ ïÞ½+þê/´T'dsÁ1???11QùÕÃÃC Ž<˜={öÒ¥K+W®|x||¼<“ŽÅë@0ºgBw‘å9í¿BpNû]oc`uG”ϤÀ QŒpÀ   ÁªQ mÀ™Q mÀ™  ÁªQ2†6Ap„ m‚à•ŽP…àSÝG˜ÂèF  8@‚#T!8¢ m…Q†6€ÂŽP…àUŽø†6Žø†6ŽP…àUŽ`h#P…à†6UŽP…àUŽNÑ@=‚£Sct#PàUŽP…àèt×ʆàèt×ʆàUŽP…àè,ÚÌDpt mf"8@‚#T!8:2Æ5 "8:2Æ5 "8@‚#T!8:Æ5€rBpt4Œkå„àUŽP…àè ÚÊÁÑA0´”7‚#T!8@‚£c\#¨HG;ƸFP‘ŽP…àUŽö‡¡À*Žö‡¡À*ŽP…àUŽöqÀêŽöqÀêŽP…àUŽP…àUŽP…àUŽP…àUŽP…àUì)8ÞºuëÝwßíÙ³g³fͺtéòÚk¯¥§§®¶zõêFFF¶k×îÍ7ß¼yófùÕý ·vP2Þ&ÛÇ{dx›`)vsrrzöìùÍ7ß!:vìøÐC­_¿>666%%ŰZBBÂÛo¿}æÌ™V­ZU©ReíÚµcÇŽÍËË+:NÅn‚ã¼yó²³³Ÿþùü1!!aÅŠ|ðAAAÁôéÓ•:©©©III7nLJJÚ´iÓˆ#Ž92g΋×p6vwïÞíééù /(%ýúõ \V·|ùr­V—››+—œ:uê±ÇkذáñãÇå>J°Æ8ZÀªU«ôz}|||Íš5å’É“'ûøølذA¯×[»uøÓùóç…F="°ºØØØaÆ­X±¢¸ |¾¬®Ä÷ˆ—ÕmܸQñÖ[o)}‡õë×þùçu:2Z€,‚àhû÷ïwqq‰ŽŽVJ\]]Û·oýúõƒZ»uøSFF†¢nݺÖnþfÆŒ ,X°`AÛ¶m‹¬ÀçËêJ|øpYÝÙ³g½½½5jdXX¿~}!Ä… ä_ù(Á"ãh.I’ÒÒÒªW¯^½zuÃr­V+„¸páBË–-­ÝFñ×wÛåË—GŒqâÄ //¯ˆˆˆçŸ¾È[1Pažxâ ù‡mÛ¶^Êç˘~.ðé§Ÿº¹¡;vLñðà >J°zÍ•››«Óé ÷ññBܸqÃÚ ÄŸävüñÇW¯^mÓ¦¿¿ÿ¶mÛâââV­Zeí¦¡X|¾ì.«‹ˆˆ# bÏž=III}úô|”`9ô8š+//OáíímT^¥J!ÄíÛ·­Ý@üéòåËžžžãÇ1b„\ò믿>ÿüóï¿ÿþO<lí¢|¾ì.›¢Óé–/_þá‡êtº¹sçúûû >J°zÍåëë«ÑhrssÊïÞ½+þúÇlÁ—_~yøðaå‹MѶmÛ§žz*//oË–-ÖnŠÆçË.ðá²{÷î1c†¿¿ÿ_|Ñ£G¹œ,…àh.777ŸÂÿ\ËÉÉB(7¯Á6=öØcBˆS§NY»!(Ÿ/ûŇ«‚=xð`ÆŒO?ýtffæ¸qã6lØ`x3%X ÁÑ®_¿.ügÏž•Y»uBI’t:]á)'\]]…U«VµvQ,>_6Ž—-Ðëõ&LX²dILLÌæÍ›_~ùåÂszóQ‚E- &&F§ÓíܹS)‘$)99ÙÏÏ/22ÒÚ­ƒBdddDDD<ýôÓFå‡B„‡‡[»(Ÿ/LJË,]ºtóæÍC‡ýä“OŠë>䣋 8ZÀÀ]\\æÏŸ/B$%%]»v­ÿþ•*U²vë „!!!-Z´Ø·oßêÕ«•ÂC‡-^¼888¸k×®Ön ŠÅçËÆñá²:I’–-[VµjÕ×_ÝD5>J°€àààI“&Íš5«W¯^QQQ{öìiԨј1c¬Ý4üÏ”)Sž}öÙ·ß~û›o¾ »téÒáǽ¼¼>øàžÓjËø|Ù>>\Ö•-?+|ذa…—öíÛwøðá‚,„àh£FªQ£ÆºuëÖ¯_4|øðøøxyš؈ |÷ÝwsçÎݽ{÷éÓ§~øá>}ú¼òÊ+AAAÖnJÀçËÆñá²®‹/ !òòòRRR /5¼E†̧‘$ÉÚm€`Œ#T!8@‚#T!8@‚#T!8@‚#T!8@‚#T!8@‚#T!8(£Ó§O‡Ò AƒŽ;Ž5ê§Ÿ~*ï,\¸0<<|ùòåò¯óçÏ7ü*Mš4)<<|ûöíÖn;àfí°o& @ùõþýû™™™™™™¿üòKÿþýßÿ}k7°»víÒét:t°vCÀ˜ÅÓÓ399Ù°äÖ­[ .üòË/×®]Ûµk× Ëd;vô÷÷oÑ¢E©^5qâÄœœœãÇWØûÅ¥jæëëûÆoDGG !6lØPaÛmÔ¨Ñ!Cêׯoí‹à \DEE !Μ9cí†8””á…:®l/C\ªP.t:B¯×Ë¿Nš4éûï¿ß¶mÛÕ«Wÿõ¯>}zýúõµk×–—þòË/+W®<~üøíÛ·6løØc=÷Üs•*U2\áÚµkׯ_Ÿ’’âççù /mñ³Ï>›3gΔ)S† ¦þüóÏß~ûíÑ£GïÝ»6xðàÞ½{»¸¸!>üðÃ/¾øB®îååuèÐ!ù×õë×ÿý÷'Nœ¸ÿ~ƒ ¢¢¢FŽéêêªf_Œ\ºt)))iÿþý™™™¾¾¾Z­v̘1­ZµR*\»vmÉ’%[¶l¹råŠ"(((**ê™gžQFŽÊ›ûïÿ»xñâ~ø!???44ô±Ç‹÷õõ]¾|ùæÍ›?^µjÕvíÚM˜0ÁÏÏÏð…ëׯÿú믿ýöÛÜÜÜ   &Mš :´M›6¦ß¾ß‘÷ €C"8°ÿüsI’‚‚‚jÖ¬yàÀ½{÷îܹsÁ‚=ô\s„ ëׯBT«Víþýûß~ûmrrrË–-M7cÆŒK–,BÔªUËßßÿ÷ß?tèЯ¿þ:{öl!DË–- V¬XñàÁƒ#FÈ©H’¤É“'¯[·Nàãã³gϞݻwÿôÓO .T2YqûbäôéÓƒþã?|}}ëÕ«wíÚµäää;v,X° S§NBˆk×® 6ìܹsžžž!!!z½þܹsÿþ÷¿7oÞ¼víZÃÍMž<ùèÑ£Z­ÖÇÇç÷ßOOO?qâÄ#<òí·ß6hÐ@«Õ>|xõêÕ™™™‹/6lÃ[o½uèÐ!—ºuëfeemÞ¼yË–-&L=ztqÇ­Äw¤Äýà°$(“S§NiµÚfÍšÞ¿?55õµ×^ÓjµZ­v÷îÝrùĉµZmÛ¶m‡þË/¿dggËå[·nÕjµ;wþý÷ßå’ììì1cÆhµÚýë_rɪU«´ZmË–-·nݪ×ë%I:wî\ll¬¼‰eË–ÉÕ’’’ ݼy³V«ŽŽ>~ü¸Òਨ(­V»mÛ6¥Á­[·nذ¡òëÚµkµZíOQ®iΜ9Bˆ3f4lØP.©_¿~||¼Âè6pC‰‰‰ò«"##å’   yóæyxx¬X±B¾š\ܾvòäI!ÄÀ•¦ÆÅŽøâ‹;w–-((èØ±ãĉ½½½å’jÕªÅÆÆ !222 W5xð`¥3/""¢yóæBˆ#F´k×N.lÞ¼yãÆ…/^4|aÍš5ÿïÿþÏ××WáêêúÌ3Ï 6L¯×/X° È6—øŽ¨Ù/ŽŠàÀ,&ðïyä‘îÝ»öÙg“'O6ªÜ«W¯Ê•++¿Þ¼yóìÙ³aaa52¬æååÕ¶mÛ¼¼¼”””¬¬¬ììì5jtëÖͰÎÃ?üÄOת7nœ;w.88¸mÛ¶†å={öüé§Ÿ ”]½z5+++((¨}ûö†å5kÖŒŽŽÖét'Nœ(n_ŠôÈ#!&Ož¼oß>ùÞ”J•*½úê«ãÆ“+¼ôÒK‹-ªW¯žò’ììl9v1º./_Å.²P’$ÃÂþýû{xx–Œ1BqøðáÂ[QóލÙ/ŽŠ1ŽÌRxGêÔ©cøkzzºüÿáááEÖ¿|ù²Ü§&÷5 )nÓgÏžB<üðÃFåîîîFm0tîÜ9yµ…Õ­[Wü½ÐÄzÓ¦M‹ß·oßSO=U¹r刈ˆÖ­[?ùä“JK—.íØ±ãÀ.\8þüÍ›7‹\•Ò%i¢°ð!B„††•Ô®]ÛÃÃãÊ•+}ºF£ùæ›o¦OŸ^PPP§N–-[vîܹqãÆgÏž}ï½÷,uÌ :Fãêêzÿþý‚‚£à¨æQ³_–j<[Cp`5aaaB//¯7ß|³¸:ÙÙÙ⯞0#r·b‘än¶óçϕ߿ýúõU«V-2É}Fƒ erg¤ÜàRÑh4Í›7—‡$>xð`çÎo¼ñÆš5k:uêÔºuëýë_îîîŸ~ú©áewÑ”æ+|”®\¹’››èååe´HÍ;Râ~ÅÄÄX°ýl cXM@@@5Μ9sìØ1ÃrN׿ÿ¨¨¨k×®Õ¨Q#((èêÕ«›7o6¬séÒ¥;w·æÀÀ@ÿóçÏÿöÛo†åÉÉÉ“'Oþá‡L´'33s×®]†åÙÙÙÛ¶msuuUî³QãÒ¥K:u4hRâîîóüCqñâÅ£GêtºæÍ› Ö”o=±”o¿ýVîGT,]ºT!ßIS†w¤Äý²`ãØ‚#k?~¼^¯?~¼rßÉÝ»wßxã”””FÉ7,Ë·\L™2EÉs.\xùå—M< E£ÑÈ7P¿ñƧOŸ– 322fΜ)„èÚµ«ae½^Ÿ››+ÿüÚk¯ !Þ~ûmù.!DVVÖ¸qãîÝ»7xð`ùB­JAAAwîÜùý÷ß?ÿüse¢ÇsçÎíØ±Cñè£ÊS|Ÿû¬ŸŸ_µjÕä«ÉAAAò½Eêß¿ÿÞ½{øá‡ØØØ:uêT®\ùÌ™3±±±=zôPªùúúÞ¼y3..®N:óæÍS¶Õ¿ÿÚµk{zzž9sF¯×GFFÊIT=—7ß|sòäɳgÏþâ‹/j×®››{æÌI’âââäé~bbb~þùç.]º´hÑB’¤ÔÔÔ›7o6lÉ’%ß~ûí;wäÉqÌÑ£GÍ›7?þøã!!!—/_ÎÍÍuqq?~|ƒ ÊöލÙ/ŽŠàÀš4ÍÌ™3;vì¸nݺ'Nœ;w.44´k×®#FŒðôô”븸¸Ì™3§M›6ëׯ?v옜Ÿ|òÉØØXó¿È¯êСÃ÷ßüøñœœœ¦M›<¸W¯^†Õ&OžöØcíÛ·7|ä z}ûö Z¼xqZZÚÉ“'ýýýÛµk7tèPeFƹsç.^¼xýúõ¨]»vûöíŸyæ™úõëëtº~øaÿþýæáÞ½{6ì‹/¾8zôh•*UÚ´ióÔSO™xä šw¤Äýà¨4&î"”­ÑhLL» ™ü¬êO?ý4::ÚÚmà èq`gjÔ¨aí&€“âæ¨Bp€*\ªÇÔ£G­V[†IË 8ÜU¸T UŽP…àUŽP…àUþrü¨#Ê@[IEND®B`‚statistics-release-1.6.3/docs/assets/RegressionGAM_202.png000066400000000000000000001015371456127120000233260ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A€IDATxÚíÝy\TUãÇñsQ@ eÑ0wÅ%SCQ4ÓÄÜõ13m·(µlÏ-M úY.X>¥V®åS=n™†Z®©).$âŽ"®h ÂÌýýqõ:ΰ\f†™ù¼_¾žÎ=s÷à˹çœ+ɲ,€â¸Ù{àŽÐ„àMŽÐ„àMŽÐ„àˆbüüóÏÿýïÿûßÿfee•ÞVÞyçI’$IêÓ§½Øn&Ož¬œ„îÝ»+%sçÎUJZ·n]Òµ•Æ…3ßÃRUÎW¯Ž=ºfÍšUªTù矜isZxYsÓ–Á)êÑ£‡$Iqqq…­dðàÁ’$=þøãÚ·û믿J’äããsòäÉ2>dû2?W999sæÌiÓ¦Í}÷ÝçëëÛºuë×^{íÒ¥K%]³ËžR‡àaï@ywýúu!Äúõëcbbì½;Њ WÚÞxã/¾øBùZ9Õδ9-ÊÛ=Vì)Z±bÅêÕ«‹XÃÆ—,Y"„xë­·´o7&&¦M›6Û·oõÕW—/_nïÓPFÌÏÕ­[·zô葜œ¬ÖÙµk×®]»¾øâ‹­[·FDDh_¹kžRGA‹#P~U©R%44444488ØÞûSëÖ­S¾ˆŠŠúä“O<==is³ãM[à)2 ™™™›7o~úé§ TÄÇóóó_|ñE!D×®]|ðÁmúÍ7ßB¬X±býúõe|ÔvQà¹zýõוÔèååÕ«W¯þýû{yy !._¾¾|ùòƒ !^}õÕ’n:66¶nݺGýàƒºtéb—Ã/KæçJ–寿þZùzåÊ•<òˆ"999::Z±wïÞŒŒŒí›pµSê@hqtBƒañâÅ:uªS§N¥J•êÔ©ýõ×_çåå™Ô<þüË/¿Ü¾}{__ßÐÐÐîÝ»¯ZµJ]úÆoH’¤>ñéÒ¥‹$IJ·¡Â:ŸÅÅÅ)åãÇ·`ŠðÔSO)kîÔ©“qùwß}§”{{{+û–——7gΜ‡~8$$¤råÊMš4ù׿þõ×_½~ã#:wîÜСCÂÃçL™RXÍüüüwß}·V­Zï¾û®Z!33óå—_n×®]•*UêÖ­Û¯_¿Ý»w›oñäÉ“ƒ  êÛ·ïÎ;ÍëÖ]Ìâ gó=´ø2YvW”èÆÓx¤Ü0YYY'Nœ0 Ê·W®\9qâD~~¾ZáŸþyï½÷ºvíØ¥K—7ß|3;;»D7’–Íi?!Æ5/_¾ú¨RmΜ9JI«V­lrál¾‡–]&‹ïŠÝxZŽÔ²¦wïÞæ9|ø°²tÇŽæ·âþûïONNÖx#iÜœö¢ÖŒŽŽnРÉÚ `üqkî±oÚ’ž-;©ñ]¾|9íŽ#F(‹l²†]»v)‹^{í5ãò¡C‡*åÞÞÞçΓeyòäÉJ‰»»û®]»ÔšÇ—$IÜûãÂ¶Š½.%:Ûÿ´,ð\]»vmÑ¢E‹-Z¹r¥Z˜‘‘¡Ôôðð8{öl9<¥°ÁÑÙ(½••ÿø;wî<|øðÆ«?~ýõW¥ÚÕ«W«W¯®úùùõë×ϸ‰háÂ…²,_¸p!--ÍÛÛ[)üúë¯ÓÒÒ ƒ\’_W÷§ØàxëÖ-¥Žñ¦ÐÐP¥ðÛo¿5^——×ã?>f̘6mÚ¨?¹:TØyS?¨¨Q£F‡*W®¬–¬^½Ú¤f­ZµÔ¥Êï{ã³Ú¹sç÷ß?..ÎÍív»þ—_~©¬áæÍ›uêÔQ÷ꡇRBQDp´òÂÙ|-»LßÚoÿüs¥¤J•*Û¶mS Õ_i¢Èàhå…³ùZv™,¾+´ßxÔ⦰3a„bo$훳,8ªÇuèÐ!5–©LVÞcæ7­eç¤èÔ~ŠŒ;wî,„pww¿víšÉ¢yóæ)ŸªT©ÒsÏ=§|]«V-óšj‹fjjja;ùä“O>Z¤Â›Æë¢ýl[|óq®7nÜF^~ùeåŠR:¥(côqt6ƒ Rž¼üòËJIvvvNNŽòµ:ŸÖÚµk•/Ƨþ@3fLóæÍ›7o~óæM¥—I™íêÃÍ5kÖ(_üúë¯Ê<òHÕªU…¹¹¹JÉÂ… çÏŸ¯t–_¸paJJJJJJÿþý‹ÝЇ‡Ç¬Y³”1!!!}ô‘Rþǘü4ôööþå—_†Ú¦M›ððpã=z´ZíÉ'ŸtwwBœ|X%õg\·nÝ”/RSSŸzê©ààà–-[Μ9óŸþiÔ¨‘I§½5nÜøþûï7Þå Y–ÓÓÓkFFFš üûï¿ÕO©À+W®¬þ¢=räˆq5ãi´===ÕåE°ò•Áj¼L¶º+¬|¸ñèºrrJa‚£³¹uëÖØ±ckÔ¨7cÆŒ 6äçç›4egg«ÔúùùÙ}4ªP¡‚Ú“Iéq¸qãF¥<66V)Ÿ8qâ /¼ N #ËòîÝ»'OžÜ¦M›:hùÑcòãÒÛÛÛ××WùúܹsÆ‹Ô?úÕ³Zì´Ì.\¸~ýúùóç Ü–q`-•® öPh»L6¼+¬9Ra‹Æd»ê2™Å°fÍšÊ7nÜPgQ˜ÜH¥MmPØ·6ÿá`Ù9)z'mîÊ•+J–RZÄÍ5lØÐø¯&ãnÆÔ3¦Ü]:räHÑÏÕ6þÂNc×¥DgÛ²›¿Øs%„$©aÆ]»vÝ´i“ÒE¯×Ïš5«”N)ÊÁÑÙLž<ù“O>ÉÏÏŸ5kÖ_ý•­þÂVT©REí+}ñâE»ïv P¾X³fMJJŠ’oÔ&.!D… >û쳬¬¬%K– :T-BlÞ¼Ùd®–™üËÍÍUç°0 bòˬjÕªUªTQ¾^·n]ZAâââ¼¼¼Ô©›Õ|¦(ì•ÊÊ W{¨ñ2Ùö®°øH…-n“íªfœ={Öx‘ú­§§§:ÄAQÚ©¨DlþÃÁ²sRÆÔ'¤j Û·o7~åŒÚЄúqõö³×¥DgÛ²›¿°suöìYåý“ÆoŽqwwWÛÕ‡åä”ÂbGg£þU÷ùçŸ?÷ÜsM›6õðð8}ú´qI’Ô'AÛ·oWËÏ;×¶mÛ¶mÛvêÔ©èGB꯺+W®—›ä û£]—.]”ŸnÉÉÉ?ýô“R¨>½yóffffffæÍ›7¸hÑ¢óçÏÿòË/ê”›6m*vP§BüòË/², !<==ÕÆ…yà”/òóóëñ÷÷÷óóóóóóòòrww Sª©–„²,ÿöÛoE¯ßú WÚ{¨å2 +î í7ž–#µÉ cBM¥¾ÅÄäÛzõêyxØìÍ ÚOˆöZyÙýœXÀÓÓSi?Sf"4‘ŸŸÿôÓOõo¿ýöŸÿüǼ¦úq›ç`í×EãÙ¶øæ/ì\eddôîÝ»wïÞʬIj¹ÚöoÜZN),Fpt*×®]SÛóÕ_$þùç† Ljª³$̘1C}›°mÛ¶mÛ¶U¬XQ¸DuëÖ-õkõ‘åöíÛÕ¿#¿ÿþ{“`¡}4RƒÞ¼ysÆŒâÞ¿h:¬ŒäõððèÒ¥‹:‰ –Go·nÝ3fŒr°gÏž}ýõוòØØØb»v©¯7HJJRt®X±â¾ûî  ½v횢U«VÊ¢ÿû¿ÿSç£þðÕ71ÍÊ W{Xìe²æ®ÐxãicÆ e8HÕªUÕÚÇgþ0W@ ˆANõêÕ“Šdœ i¼.϶57çªaÆÊOȬ¬¬O>ùD)Ü¿RR’òu³fÍJ锢¬Ù{X7lÉ`0¨Ï¼½½{õêõøã¿1Oˆ!33Sí¡8dȘ˜µÚ?þ¨®Sd®mÛ¶Ó¦M»uë–,ËÆóø{{{·oßÞäöÊ$ Ú÷GËt< “×$ÄÄĨ‹ôz½:ásPPШQ£^{íµªsy|ðÁ…­Öd¹˜˜õ¹¹¹8p Ø]½té’ú¸'::ú½÷ÞSßÖ*„x÷Ýw•j{÷îUŠ<==£¢¢êׯo¼õ"¦ã±òÂÙ|-¸LÖÜo>>jWñ¢ßcå…³íZv™¬¹+4ÞxÔâF.<¦lß¾½ÀÖ‘:uêlÞ¼Yã¤}sOH‰2™5÷X7­•ç¤ ‚£:IÍŒ3ŒËÕ{> @™:[mBB¬]»V­yíÚ5åïŸ=z±“ÇïR¤ƒöY×EãÙ¶øæ/ì\åää(èMT­Zõ§Ÿ~*½SŠ2Fpt6ÊÄWnnnÍš5{å•W®^½ª¼WTáééi<êÉ“'Ÿyæ™Ö­[W®\944´gÏž›6m2Yáùóç‡Z£F ŸÆçää(å·nÝšøàƒcÆŒ1þÏ¿žR””$ub…sÈËËûù矅}úô±÷¾”Çý)Ð;ï¼£¤¢Þ½{ÿðÃe³Ñ]»vmܸñ™gž)bb û*½=tˆ».å£>R^Äò×_5mÚ´¤ïÔ©Óo¿ýV§N£GÚjÜrËÊs¥‘KRBp„°SpP~\ºt)<<üêÕ«Ï<óŒÚnªÑš4i"Ëòÿýßÿ3ÆÞ‡Rê¬9W¹Ú)u Œª@T«Víßÿþ·⫯¾:sæL‰>ûá‡ʲܨQ#õÍËÎÍšs¥‘«RBp@!žþùf͚ݼysúôéÚ?uôèÑ%K–!>ûì3ûNHY–,;W¹æ)u\„ÂÝÝ}åÊ•©©©… 7.‡‡Çÿþ÷?//¯:ØûÊŽeçJ#×<¥Ž‚>ŽÐ„GÕЄàMŽÐ„àMŽÐ„àMŽÐ„àMŽÐ„àMŽÐ„àMŽÐÄÃÞ;PW®\ILLܵk×éÓ§«W¯Þ¸qã1cÆ„‡‡›T[¶lÙÒ¥KÓÒÒ¼½½;vì8~üxÿRªà:$Y–í½šdgg÷èÑ#++«^½zõêÕ;{öìž={<<<–,YÒ¸qcµZBBœ9s|||ZµjuâĉãÇ7mÚtÁ‚^^^6¯àRÜßÿ}{ïƒ&Ó§Oߺuë³Ï>;sæÌG}´ÿþ5kÖüå—_Ž9Ò¿¥NjjêøñãkÔ¨ñã?<ø_ÿúWvvöºuë®_¿Þ±cGÛÖp5ÓÇqëÖ­^^^Ï=÷œZÒ·oß   èõz¥déÒ¥ƒ!>>¾FJÉ„ |}}W¯^m0l[ÀÕ8Lpôóóëܹs¥J•Œ +V¬xëÖ­[·n)ßîܹÓÍÍ-::Z­àîîÞ¡C‡‹/îÞ½Û¶u\ÃÇE‹}òÉ'Æ%;wîûLé(„HJJºpáB¿~ý*T¨`Û:®ÆaÞU½oß¾!C†äååEFFÖªUëüùó»víB|üñÇ={öT«ÍŸ?êÔ©5kÖŒŠŠ:qâĶmÛ6l8þ|ãéulU§0 ²À¹¹ìïz‡ ŽBˆ'N|úé§)))™™™AAA 4xá…êÕ«gRí§Ÿ~Z¹rå¾}û‚ƒƒ|ðÁøøxe&Ò¨S —½™p.û»Þ‘‚££pÙ› Ჿë£#ìŽàMŽÐ„àMŽÐ„àM<ì½€r-""ÂÞ»”:ל[ÇG@¡\v²:¸þ:ÒŽGÕЄàMŽÐ„àMŽÐ„àMŽÐ„àMŽÐ„àpŸ~ú©T¤µk× ! `ï-@TTTdd¤•+ ëÓ§O‹&Nœh~NBBByä‘ääd{=¯8-ZŒ7NývæÌ™~~~ÿú׿ԒÐÐP{ïã=víÚ5yòäI“&5jÔHáîîîîî^Ú>^ùö·ß~+ƒ¾øâ‹íÛ·7.ùùçŸccc'MšDpDÑxT €«ëÙ³g•*U8`«êõz½^oÙg ƒÅŸEi#8\Ôï¿ÿÞ½{÷€€€š5k>÷Üs×®]S¥¤¤ôíÛ·víÚ5jÔxôÑGýõWãîØ±£GAAA!!!=zôرc‡º(,,ì•W^ÙµkW³fÍš5kVôÚž|òÉž={ !¢££Ã„:u2îã¸wïÞØØØÀÀÀ   ^½zíÛ·O]”дiSŸjÕªµiÓæ›o¾±òlxxxTªTIËÈÍÍ4iRƒ ¼½½ëÔ©3jÔ¨sçÎþgŸ}æçççééÙ¤I“ &ܺuKû©›;wn@@€‡‡GÍš5Ÿþyõ¢±Ñb¯lI†­ét:{ï؆£ÿ@óóókÕª•yyhh¨N§óõõ3fÌôéÓ•§ÛO?ý´²tݺu•*U 7nÜk¯½V¯^=ww÷ï¾ûNYºråJZµjÅÇÇ¿òÊ+÷ß¿‡‡ÇÊ•+Õ5÷ëׯZµjaaaÊ ‹XÛþýû'Nœ(„øøã“““eYŽŽŽnÞ¼¹²ª_~ùEýàØ±cªV­š––&Ëò{ï½'„èܹóĉß|óÍ !~üñGuz÷î]à yÿý÷…[¶l1)_³fâ•W^Ñr† "IR×®]ßzë­ÇÜÝݽM›6ê¦kÖ¬)„èÑ£Ço¼Ñ©S'!D‡ ƒ–S׸qcOOÏ^xaæÌ™=zôBŒ5ªØ½·ZXpŸ;ú#8ÚžËÞLœ£ÿ@+"8 !þûßÿ*ßæçç7hРN:²,ß¼y³^½z‘‘‘999ÊÒ7n´mÛ6<<½zõRv²è}¾~ýº»»ûˆ#Ôu>õÔSêáøá‡êÒñãÇ !¾ûî;§nùòåÊRƒÁФI“Zµjɲ\ÄF‹=ÃZµ#8ÚžËÞLœ£ÿ@+ºÅѸ$... @–åmÛ¶ !¾ýö[ã¥ß~û­bÇŽ[·nB$&&/MHHP–*kVRc±k“ Ž»víB|úé§ÆüòË/—-[&Ëò… ®_¿®–=zÔÃÃCÍUÅGsžžžIIIZö9''ÇÃã^½zÇ/ðÄ(APqýúõÊ•+÷éÓGË© 7^:|øp???Y–‹Øh±gX ‚£vôqXD’ìöÏt:ñ·ê$8‡B(FUC† Bœùä“:uêøªÀ¢×¦V3 &ŒŒŒ¬]»vbbbvv¶R’žž>qâÄÓ§OŸ>}Z¡Œ¤V,_¾\mÒ³ŒÒ´©4s½Ï©©©=ôÐŒ3”EnnnÑÑÑB5)fee)=“&MÊÎÎîÓ§OIO±"6ªñ ÃVhqà.ÄÄÄǼY³fÌËË[¹rå©S§/^¬¼0!!AéY8pà@Y–—,Y’‘‘±lÙ²Š+–tmâÎsíÙ³ggff·jÕªqãÆS¦LIOOoܸqjjêêÕ««U«§¬*88øwÞùã?š5k¶uëÖ_~ù¥m۶Çwss+Ñ©3VÄF‹=ð1{ÎqB.;Ò €óqôhEŒªîß¿¿qɰaÔQÕŠÝ»w?öØcAAAþþþÑÑÑëÖ­3®üÇ<úè£>úèöíÛ×l>¢¹ˆµ †¸¸¸ªU«¶hÑB¾wGY–ÿý÷®]»öêÕ+%%E)ONNn×®]åÊ•ëÖ­;jÔ¨¬¬¬/¾ø¢zõêݺu“-šÇQ–å¶mÛ !¾þúëb÷ùÔ©S#GެS§NÅŠk×®=dÈC‡~rrrÇŽ}}}ëׯ?nܸ7nXvêFŒ¡Œª.z£Å^¯b1ªZ;IvðÞÍåPDDDjjª½÷l€h(‘°°°æÍ›ÿðÃöÞ‘’±à>wÙÿ4èãMŽÐ„Á1À6ºw﮼9ΊàlcÖ¬YöÞ”.U@‚#4!8@‚#4!8@‚#4!8@‚#4!8@‚#4!8@‚#À©Lœ8Qº—¯¯oëÖ­¿øâ ƒÁ`«­üù矒$-Y²DYÚÇe¼ÅbY’¤Gy$99¹´w .ÅÃÞ;pE’d!—Þú\«V-!„,ËçÎ[µjÕèÑ£SSS§M›fóm¹»»»»»[m×®]“'Ož4iR£FJõ…ùùùééé«W¯^¿~ýÆ;vìX[t’$ɲlþµk"8œÐ‹/¾Ø¾}{õÛÌÌÌÈÈÈ„„„qãÆÚv[¿ýö›–j™™™+W®Œ/›CBüüóϱ±±“&M"8ZÃ8)ºxj<ª¸‚ÀÀÀÁƒëõú””{ïKÙéÙ³g•*U8`«êõz½^oÙg ƒÅŸEùAp¸¥­(//OöÊ+¯ìÚµ«Y³fÍš5S*¤¤¤ôíÛ·víÚ5jÔxôÑGýõWãoÚ´©k×®ÕªUkذáøñãoݺ¥.êÔ©“qǽ{÷ÆÆÆõêÕkß¾}Bˆ'Ÿ|²gÏžBˆèèè°°0+·¨‡‡G¥J•Ôo‹Øbnnî¤I“4hàíí]§NQ£F;wNY¤œ®Ï>ûÌÏÏÏÓÓ³I“&&L0ÞŸ;vôèÑ#((($$¤G;vìP)Ÿ;wn@@€‡‡GÍš5Ÿþùk×®»ÑbÏOi“$©,7ç(xT p~YYYK—.ussScâ©S§ºuëæëëÛµkW!Ä/¿üÒ«W¯àààAƒ¹¹¹ýðÃݺu[´hÑàÁƒ…ßÿýÀï»ï¾¸¸877·E‹ýøãnhýúõ±±±ÁÁÁÇ—eùë¯¿ŽŠŠÚ½{÷رcÃÂÂÞ{ï½?þ¸M›66ÜbÖ®]{ùòå#F(ß½ÅQ£F}÷Ýw]ºtéׯ_JJÊW_}•’’²mÛ6å³Ë–-;sæL=š5k¶mÛ¶©S§nݺõ·ß~“$é¿ÿýoÿþýƒ‚‚âââ$IZ¾|yûöí—/_þøã«çdÖ¬Y£G®_¿þêÕ«gÏž——7oÞ¼¢7ZôÞ–žJL†­ét:{ïØFéý@riýzÿý÷…C‡0a„ ^ýõ#FÜwß}Bˆ—^zI©*„˜8q¢^¯—eùæÍ›õêÕ‹ŒŒÌÉÉQ*ܸq£mÛ¶áááùùù7nܨS§NppðéÓ§•¥!!!BˆÅ‹˲ݼysY–óóó6lX·nÝK—.)5•AÍcÆŒ‘eùçŸBüöÛoÖo±èCž0aÂØ±cûôéãááÑ«W/eEoñúõëîîî#FŒP×ùÔSOddd¨§ëÃ?T—Ž?^ñÝwßݼy3,,,444++KY”••U§Nððð›7oªŸ]¾|¹²Ô`04iÒ¤V­Z²,±Ñ¢÷Öæ÷Œ÷¹Ëþ®'8ÚžËÞLœM~  Yhùg«}VR”1FMŸ>]Í¡¡¡ÁÁÁJj”eYiâúöÛo×óí·ß !vìØñÇ!¦M›f¼tÊ”)æÁq×®]BˆO?ýÔ¸æ—_~¹lÙ2ùÞàhå‹=d…§§gRR’–cÌÉÉñðð¨W¯ÞñãÇÍ× AÅõë×+W®Ü§OŸ­[· !ë'$$(«U>n¼tøðá~~~²,±Ñ¢÷ÖV·ŠŠà¨}¥K²ù?órÛntË–-꯺¼¼¼”””±cÇOšáævû—àáÇ…C† 1žqÈ!Bˆ“'Oþý÷ßBˆ–-[¯¿À‰•šMš41.9rdÿþýMjÚj‹…²Á`HOOïܹóÓO?½~ýúb·èå啘˜xòäɰ°°&Mš<óÌ3?üðƒq/ÆFyzzªßúøøDDD=zôÈ‘#Bµ€¢iÓ¦Be‘B§Ó/UO{-zom{«˜ kcÑèãpE~~~ê×J$š6mšIæB4lØpÓ¦MÂ,O¨éǘz<<ŠÿÝj«-F’¤°°°3f¬Y³fãÆ]ºt)z‹Bˆ^x¡_¿~?ÿüóÆW­Z•””‘œœ\ØìEÿüó,Ëæ»ªte’ÂxtމÂ6ZìÞ–™®E"8\]½zõ„UªTéÖ­›ZxðàÁýû÷ûùù=ðÀBˆ?ÿü3::Z]ºwï^óõ(MkŒŠŠR §L™’ýᇖƋV·n]!Dzzz±[¼xñbZZšN§5jÔ¨Q£ ìY³ÆŒ3gΜ÷Þ{O©™——W¡B價¹¹‡ŠŽŽVV»ÿ~ã©"•äEï^}ì±ÇŠØ[›ßÐŽGÕW×¼y󈈈3f\¹rE)ÉÎÎîÞ½û+¯¼âííÝ¢E‹ðððO>ùäìÙ³ÊÒ¬¬¬O?ýÔ|=‘‘‘µk×NLLÌÎÎVJÒÓÓ'NœxúôiµŽòÚC[m±hJÛ§ÒZôSSSzè¡3f(‹ÜÜܔ̪&Ŭ¬,¥ç¢bÒ¤IÙÙÙ}úôiÑ¢EíÚµ._¾¬,ºtéÒ'Ÿ|R§NbŸ­±Ñ¢÷¶ n †G€«óððHLL|üñÇ›5k6pàÀ¼¼¼•+Wž:ujñâÅÊë§OŸ>pàÀÈÈÈAƒU¨PaÉ’%YYYæë©T©RbbâÀ[¶lÙ¿I’þóŸÿxxx¼ûî»âÎÃñÙ³ggff<Ø&[,š»»»OZZZ±ÇتU«ÆO™2%==½qãÆ©©©«W¯®V­Z\\œ²ªàààwÞyç?þhÖ¬ÙÖ­[ùå—¶mÛ>ÜÍÍ-!!aРA-Z´8p ,ËK–,ÉÈÈX¶lYÅŠ‹Þ½"6ZôÞ–ÒmÀë5±÷è'ä²#­8ÇŽÇx¤ˆ¹ÐÐÐÞ½{›îÞ½û±Ç ò÷÷ŽŽ^·nñÒM›6uéÒÅßß_áëë»lÙ2a6ªZñûï¿wíÚ5 00°W¯^)))J¹Á`ˆ‹‹«Zµj‹-¬Ü¢öCnÛ¶­â믿.v‹§N9rd:u*V¬X»ví!C†:tÈøt%''wìØÑ××·~ýúãÆ»qã†úÙ?þøãÑG |ôÑG·oß^Ä©1b„2ªºè{~lˆQÕÚ®m/"""55ÕÞ{6À4s÷Ýw_±Íi½EaaaÍ›7ÿá‡ìµ¥Í‚ûÜeÿÓàQ5% LÄíÜ[ ÃàhB‹#(J÷îÝ•7GP”Y³fÙ{P^𨚠 Áš  Áš ‰#MÇ“››»dÉ’åË—Ÿ>}ºJ•*:näÈ‘íÛ·7©¶lÙ²¥K—¦¥¥y{{wìØqüøñÊ‹>K£€ëp˜à˜ŸŸ?bĈ½{÷úúú¶mÛöÆÛ·oß²eËK/½ô /¨ÕæÌ™ãããÓºuë'N¬X±âÈ‘# ,ðòò²y—â0ª—.]ºwïÞ–-[&''Ïž=û?ÿùÏ?üàçç÷ùçŸ:tH©“ššš””¸fÍš¤¤¤µk×>|ß¾}Ó§OW×c«:®Æa‚ãš5k„o½õ–ÚæW¯^½gŸ}V¯×ÿþûïJÉÒ¥K C|||5”’ &øúú®^½Ú`0ض€«q˜àxìØ1ŸFÖ«WOqêÔ)åÛ;wº¹¹EGG«ÜÝÝ;tèpñâÅÝ»wÛ¶ |š8q¢t/__ßÖ­[ñÅ6üãÿÏ?ÿ”$iÉ’%Bˆ¨¨¨ÈÈÈ’®Á²Oëĉ’$=ùä“6_³ ………õéÓÇÞ{K8Lpœ;wîâÅ‹M 8 „¸ÿþû…²,§¥¥U«V­ZµjÆut:¸.mUPÎ }ú(¿¹´ªT™ìP,‡Ó°aC“’mÛ¶%%%U¬X±wïÞBˆœœ½^ïççgRÍ××WqéÒ%Ö)VDD„IIjjª½O!¸_|ÑxÚÌÌÌÈÈÈ„„„qãÆÚv[¿ýö›–j™™™+W®Œ/ѧJ•É.¡0æ¿Ö]–ÃGcz½þ›o¾ùøãõzýŒ3„¹¹¹B“Ê•+WB\½zÕ†uŠEL€r%00pðàÁ )))6ŽeÆ`0ȲlY;¥5Ÿ…ù¯u—’ó¨Zµ}ûöØØØÉ“'|ùå—=zôPÊýüü$IÊÉÉ1©ýúuq§½ÐVuG–e!D^^ž",,ì•W^ÙµkW³fÍš5k¦THIIéÛ·oíÚµkÔ¨ñè£þúë¯Æß´iS×®]«U«Ö°aÃñãÇߺuK]Ô©S'ãÞŠ{÷î êÕ«×¾}û„O>ùdÏž=…ÑÑÑaaaæŸÚ±cG=‚‚‚BBBzôè±cÇu‘²·sçÎ ððð¨Y³æóÏ?íÚ5-G]ÄgÍw©è“`rÒ† æææ–‘‘a¼¹Æëõz!DBBBÓ¦M}||ªU«Ö¦M›o¾ù¦À=ÌÍÍ4iRƒ ¼½½ëÔ©3jÔ¨sçÎÙûfA¡)8ÞºukòäÉO<ñDFFƘ1cV¯^Ý®];u©‡‡‡¯¯¯y‹`vv¶Bm«:Ç’••µtéR7775&ž:uª[·n×®]{衇„¿üòKëÖ­÷îÝ;hР'Ÿ|2==½[·njßúï¿ÿ¾sçÎûöí‹‹‹‹‰‰Y´hш# ÜÐúõëÛ¶m{àÀáÇ6lëÖ­QQQG;vìĉ…üñ×_mò©ÿþ÷¿íÛ·ß¿\\ÜàÁƒSRRÚ·oÿßÿþ×xµ/½ôÒ!CfΜټyóÙ³g¿ú꫽°ÏšïRÑ'Áä¤ }ú'Ÿ|¢V~ûí·ÝÜÜ„{öì9räÈøñãÕ©‚+V¬8f̘ôôôÝ»wïÞ½ûĉ¯¾újÍš5ÕϾôÒKæÝ»wïÁƒ_zé%õµ:tøòË/;tèPÄ®îÞ½ûرcñññJ—}!D@@@|||zzú_ý¥”„‡‡÷ë×OùZ’¤ÈÈH¥•?[ôI0?ižžž}ûöÝ´iÓ… ”¥K–,yðÁ•‰óvìØ±{÷nÛC).^¼(„0ïæææ&IÒï¿ÿ~âÄ ¥ä‹/¾ÈÊÊ ÖxtöòwêßöÞûpŒà(Ëò¢E‹ªT©RôL  pssûì³ÏÔÿ$’’’.\¸Ð¯_¿ *ض <Û²e‹ÚF’———’’2vìXã¡!JB>|X1dÈãÙ‡ "„8yòäßÿ-„hÙ²¥ñú lGPj6iÒĸpäÈ‘ýû÷/bW9"„PŸ¡+š6mª.w¦„S©{®…ÆÏ}ÌOšbðàÁz½^y¤¾{÷î#GލOðýýý÷ìÙóÞ{ï 4¨E‹ 4ÈÏÏ7ߨ——WbbâÉ“'Ú4iòÌ3ÏüðÃÆýGQÞ8ƨꬬ¬“'Ozyy :Ô|iŸ>}† &„ ?~üÔ©S{õêuâĉmÛ¶5jÔhôèÑje[Õ84ãi×<==…Ó¦M3É|Bˆ† nÚ´I!I’qyñKIù¤N:eÓ±^Ù¥¢OBaŸ}úÀ### T¡B…%K–dee™¯§R¥J‰‰‰lÙ²eÿþý%IúÏþãááñî»ïŠ;ÏygÏž™™©<ÒUT¬X1!!Aé 8pà@Y–—,Y’‘‘±lÙ²Š+–ê›ìR'¡°5´oß¾V­Z³gÏ éÚµ«RØ©S'ŸÑ£G:´fÍš[·nݰaCõêÕ·lÙ²zõêîÝ»«oÕªUãÆ§L™’žžÞ¸qãÔÔÔÕ«WW«V-..®ì.?JÂ1ÇPª}ôÑmÛ¶5iÒdÑ¢E , [»víÀ•¥}úôÙ°aC“&M.\8cÆŒk×®-Z´¨ÀõôéÓ'999,,ì‹/¾˜?þƒ>¸mÛ6åaw»víâââÖ®];mÚ4“O)Óëׯÿõ×_/X° aÆ¿ÿþ{Lgh²KEŸ„I’4hÐ Y–‡®æËÚµk¯ZµªV­Z3gÎLHHðòòÚ·oßG}”mÒRëéé¹zõê'žxâ?þøàƒ~ûí·®]»þþûïê„äå„$$“…:=Iã¼Ð.""‚Wpü@3—‘‘qß}÷•v[ Ê’zŸk ÊX—4ãjJ@™úNÉ< ºl@, ª  ÁšJBr‰q0"8h&IÂ…JF¡³~%ŽˆàP0Ó!Õ®ÝÜ(Žš¸|jGhÄà€¢DDDØ{€r€æF!ÁPÞ7çSà{Í ïéÝHj¼ƒà\ï´}€ƒ‘Êr nš€ƒ‘Ë,É‘ïEp.¡ÀÞ(‚#@Ahn4Cp£ìz7’ Bp£4z70¤šÔX‚#4!8¡¹±pL€$IÚŸS6€Ú¤œ‡Ô%Ep D½ |Lñoˆ!5‡GÕЄà@s£&GP~•ÑĤFmŽ ü*éļW°T€k£¹Q3‚#p ©&5–Á”GeÑ»‘ÔXBGP•Æk©a%‚#pI47–oŽŽªÀ1ÔÅ¿WP-Dpå‹ö×R›‡Ââß+(H–ãQ5(_J·w#©Ñ GhBp.ƒæFë@¹Pê7’­FpåB‰º6öNêBGÆmàMŽÀÙÑÜh#G`Otmt G`Oå|ÖFã\[ê·Ü#8'e‹¶Fã\[º×ðÊAPÞYòNjžP—‚#°R'uéáQ5°R gÖ57’ CpÎ…‡Ô¥†àœ©±4@™Ò>©Maï,bÕ§F¦ÚÑ‚àÊ”Mz02†~¥àMŽÀñYÔÜÈãé’"8€²PŠ)ÍÒ‡Ô<ž.)‚#( ¥•ÒF]†xs (´¼WP˜ ‹!5–-‚#(Jü^AKû5ò„Úb<ª¥¨´º6үю Ôœ Á8š672펭€•ìÕ‚%HM«§­€í•·®° ‚#°½Ry!5©ÑÞŽÀЯ± 8€r~åÁØýo޶¡±‘OË«ïön$5–'GP¦JðjÁ’÷kä u©âQ5(—è×Xþ€UJ¥k#O¨Ë%‚#°Š5] ©Jj,§28¦§§GDDüõ×_.]¶lÙ€"##Û·oÿæ›o^¾|¹ôêc¾ÆrÌ!ƒãÂ… [”ðöÛo=z´uëÖ•+W^±bÅÓO?››[u€M<2Fãgi›,C޳³³wíÚõÞ{ï}ûí·VHMMMJJ \³fMRRÒÚµk‡¾oß¾éÓ§Û¼.Ž®.È‘‚cllìСC/^\X…¥K— †øøø5j(%&Lðõõ]½zµÁ`°m\œí›úHåž#ÇÉ“'Ïš5kÖ¬YíÚµ+°ÂÎ;ÝÜÜ¢££Õww÷:\¼xq÷îݶ­l©$©‘~öâHÁñá‡މ‰‰‰‰©Y³¦ùRY–ÓÒÒªU«V­Z5ãrN'„8uê” ë€bIB2þg^rwœu Ûé×h/Îóæ˜œœ½^ïççgRîëë+„¸té’ ë+""¤$55ÕÞgk•èÕ,&C^lõz˜²gþkÝe9OpT†<ûøø˜”W®\YqõêUÖ)1à”´¤ÆBbÁµË{jýZwÙ(éHª‹æçç'IRNNŽIùõë×ÅöB[Õ6À”ŽÆy‚£‡‡‡¯¯¯y‹`vv¶Bm«:ÀZ¼ŠÚ9OpB^¼xQIxªcÇŽ)‹l[×aû¦>GxB sNcbbôzýæÍ›ÕY–“““ýýý###m[×a“¦¾»IË©‚ã€ÜÜÜ>ûì3¥?¢"))éÂ… ýúõ«P¡‚mëKЯё9Ϩj!DHHÈøñã§NÚ«W¯¨¨¨'NlÛ¶­Q£F£G¶y „¸;cá…·Û•H¿FGæTÁQ1räÈêÕ«¯\¹rÕªUÁÁÁÆ ‹WfÒ±yœ˜Æ)ÍgÞ)x:O;…Lã """˜ÇಠŽN—]öw½Sõqe£À'Ô…T-qj¤_c¹Ep¥Æ¢¶F‡–[Gp››úœî 5Žà6[Î×È´;Έàl× :)g›Ž”ˆÆiwÌGØ—XÖÖBpÀ¥ilê3™a§ÐÉE‰§ø†áQ5(T‰§Ý¡_£S#8«1íŽk 8àr˜v–!8àrlÙÔÇ´;®„à,Å´;.†à€K°mSŸ,ñ„Ú1.Á²ÉÍ e![ðxš†Fç@p·çe4Ÿš±€ùy<íÂxT 4ãñ´k#8à´lÙ¯Q’H 8à´löŒ˜·Â@ApÅà­0¸ƒà€«(Á‹§o@’%Áãi¨U €SÑ2÷¦iwJ™vÇép*Z¢[ñÓîðxáQ50RÂÑÓ ‚q)´8€;˜ÜE¢Å‡g›f?¦iDqhqÀáØì§eŒ¸ûîé …aŒË"8àlJðâiq»¡±D1Ôè²ޏ*å7)šÑLJdm¿Æ¾EÑÓ´8à ,^lQC#§!ޏ†Nà 6 ŽW®\III9{ölHHHûöí/\¸`ï£w”pè´`ô4ÌØ 8^¼xqöìÙË—/ÏÍÍB<ñÄíÛ·ïÓ§O£F>úè#{#NÂ8É©C¤µ¿xº¤ÔÖŽÉËË{þùç.\XµjÕ>}ú¨å5jÔØ¸qãàÁƒ•4 ¬W`’“or¹ûïžBévjÔ¸ Á ÖǹsçîÝ»·cÇŽkÖ¬™2eŠZ¾téÒÇüøñã ,°÷1àªJ8tZÐʈ"YwìØáîîþá‡z{{—»»»¿ûî»ÞÞÞk×®µ÷1àÀ,l”$íã`he„FÖÇC‡………8¦råÊááá'Nœ°÷1àÀ,l,IC#­ŒÐÈÚàèëëûÏ?ÿ¶ôòåËUªT±÷1à`,oTKupaÖdž ž={vß¾}æ‹:tæÌ™ ØûpÆIμ Pº ïþ+¸P–…\À[ªÍÑÊ X $IÒØ±c8`\~àÀøøx!DïÞ½í}Œ8€Â’œ’‹:- Yjahe„•¬Ç±}ûö£Fš7o^ß¾}ÃÃÃ…ëׯÿã?Ž=j0úôéÓ­[7{#å” fØ.É›`he„•l0ø¸qãZ¶l9uêÔôôt!Ä™3g„Õ«WõÕWgv&Ìgó.Þˆ²e›WvêÔ©S§N—/_NOO¿uëVxxx`` ½ '¥ÿüó‡6 Bˆƒ._¾Ü××wÈ!µjÕúî»ï6lØ`ïc ¼Šk&,jÚY¨%Bˆ"úD’QJ¬mqœ7ož,Ëo½õV\\œbݺuBˆ>ú(&&æøñã>úè·ß~cïÃÀž´7šÆAI’d¡eÜ ­Œ(ÖÇ¿ÿþ;((høðáÊ·Û·o÷ôôŒŠŠB„††Ö­[Wj €+3‰t¶;šÊ’Ò‘¾Œ(/¬}T}åÊõEÕùùùlܸ±§§§Râíí}áÂ{#åKQ³yMèÍT;(o¬ Ž!!!§OŸÖëõBˆÝ»w߸q£M›6Ê"ƒÁpúôéêÕ«Ûû°KƆ*Ýe­‘‘á§(cÖÇÖ­[_¹reæÌ™gΜ™9s¦¢C‡Ê¢ùóç_ºté°÷1`%xv¬ä¿’DÆo°k;Òž9s&66öŸþQ¾mҤɲeË$I8pà_ý%„øúë¯zè!{f™ŠˆˆHMMµ÷^ì@¡¢¾¦Ø1ÔâNGFíoŽaLyಿë­mq¬Y³æ’%K¢££ƒ‚‚~øáÄÄD¥ÙüÂ… U«V2eŠ«¥F€ë¸=WŽÑób“HWT_FK;2’aG¥õWË™3g‚ƒƒÝܬ ¦ŽÈeÿ ×aÒ²hº´ðæCIH²’3Kòû—VÆòÆe×Ûò•ƒÆjÖ¬iïC ´XãJò‚iqoX$5¢œ°Ap\½zõ‚ Ž?^Øm½mÛ6{&Ö²¼ÙOó ¦ ‹(ç¬ ŽëׯW¾vww·÷á`{Ê£ç"’œù ˜{Jdõ ú,aŽÃÚàøÅ_!FŒñüóÏûúúÚûp°“·;2”Íû>á@¬ ŽiiiµjÕzýõ×]s À¹7jyOà/Åtdd° ”Ui///ïÚµk÷ß?©à”Œã]¡së(ë¨së’‹˜µpV>777__ß#GŽ {ö ¾î¥¸,HX„°*8º»»5êÂ… ö>¬¢>t–$åÑwÿ)Kï)Qþ_ÿHÚއؒµ}{ôèqêÔ©¤¤¤mÛ¶uïÞ½V­Zžžž&u¢££í}˜ÜVìËýÌ›oDM²º‚br!­Œp2Öǘ˜å‹}ûöíÛ·¯À:®9µ:ÀŽ´¿úùv}I*b¾!ßy$]øÇaà œ—µÁ±W¯^ö>,a2¢é iãöEQ@j4Κ÷Œ¡!5ÂyY§M›fïC¸.--‹&ͦ=µêݯ ÊLÖ g³wUŸ;wîСC'NœÈËË oРAHHˆ½àª$QXs`Ó1ùéb²&àJl/_¾L@yaI:4YƒYË¢Ö—ʦ±0<’ dí«7oÞ,IRbb¢qjBT¯^ýÓO?ussÛ´i“½`¶}¼«Ì¤}{òmY˜LÍm\Syûßí/Œ_Xläq4Pk[>\§Nàà`óEuëÖ=tè½PZ¬o>,jåfC˜Í·% I6 |·?Rø´‹FO·KÔ-€µ-Ž+VÌÍÍ-linn®———½Êû¶(bë;–â¾MˆSðób“× aÔªxO†4^Õ=¯þ3Z+¤±686hÐ 33sÏž=æ‹RRRNŸ>]¿~}{£…–-[6`À€ÈÈÈöíÛ¿ùæ›—/_¶÷(TÄ VU6)³µ•“°(‰"_- åßí°XxÖ,é¤ÜŒ€ŠempTÞóÒK/™ôeܲeË‹/¾(„ˆµ÷1Z"!!áí·ß>zôhëÖ­+W®¼bÅŠ§Ÿ~ºˆ¶UeÀ5CU±;ì@bÒx7Þé³( ï|{N! £>‹÷Ì¥C«!PV¬íãØ£Gäää•+WŽ=:88844TqâĉŒŒ !DlllÏž=í}Œ%–ššš””¸|ùreÐÏäÉ“,X0}úôwÞyÇÞ{8‰"úÆ•j·9kv̆qn…½©E ˆBI‡÷ž0å³$›6ûö¦–bÃbW„‹XÌÚG!Ä”)S>úè£ÀÀÀ³gÏnݺuëÖ­Õ«WÿðÃ?þøc{ %–.]j0âããÕ¡â&Lðõõ]½zµÁ`°÷ÞÆÚÃPRE· ³€xw¼óVCµQwßÚR|7Gvbƒ7ÇH’Ô·oß¾}ûž?þøñã²,‡††ÚûÐ,·sçN77·èèhµÄÝݽC‡?ýôÓîÝ»[µjeïÊšÜÊ¿{†2¬Ø¸u°ÀrI „F-ˆBýÛàÞ€( ¥eO¾gU²Íú#Þ­Ì”!›½«ZQ£F ??¿üü|ooo{—ådYNKK«V­ZµjÕŒËu:âÔ©SG¸2— ˆ¦m¥Ìûbö\Õø#ÒÝ'³÷„-I +ל z³Ñ>ËF ÿZÁÂÊ•Ý3 …÷DÙhŠU4a›àxäÈ‘Y³fíÝ»÷ܹsƒ!((¨qãÆcÆŒqÄ!Õ999z½ÞÏÏϤ\yéö¥K—´¬$""¤$55ÕÞG8»ÉãÞ–3óV`ùí(% !”`î”›„5IêsWãÕõã-ßûµºÅ–Kf[1ßaI’da\ÿÎ×Fûl¼Û·ËÍŸ¶¯ï9Î2™ÚÆuþ\AùdþkÝeÙ 8~ñÅ3fÌP:ÿU¬XÑÝÝýܹsçÎÛ°a믾:zôh{cÉ(C§}||LÊ+W®,„¸zõª–•áÊíð!îts3Ž<âN˜Q2’ï,ew̓šZ~{|ûØÔƒ4&«ÑëÞÎvwòÑ( ÓwKÆóÂÜS.î~ÄhCJç?¹ˆrã(ÝmŒ4Z—qB”ŽQÜSéÞ.ß=¿…>.,’ÜàÂÌ­»l”´vpÌÖ­[g̘!IÒðáÃׯ_ÿ×_íÙ³'99yÔ¨QnnnŸ|òÉÖ­[í}Œ%ãçç'IRNNŽIùõë×ÅvG%% Éxð„$) ðö×w)_*MbòÝWÀɲ¬¾8ä¶;/‘“ïLæw÷k¹€r³²ñú…$ÔýÒÝqB¾÷‰­z,Æo½3:–ë[Æø]yÊ>«‡r·P¾;UÍ=Çè°)Ïq÷pÖÇo¿ýÖ`0Œ?þ­·Þºÿþû•ŸøAAAãÇóÍ7 ÃÂ… í}Œ%ãáááëëkÞ²˜-„0y%7…D!îA%åY˜ õk!„iÈ+æ!ìÎnÝÂdÓ¦<Ù$ÕÝ=Ïm¶UØyàüŽËÚà¸ÿþJ•* >Ü|Q\\œ··÷þýûí}Œ%xñâE%)ªŽ;¦,²÷Þ%f˱·;ÜI&Qm¥¢ð€hÔrpDVÇüüü³gϺ»»°j7·àà`Gœ‚+&&F¯×oÞ¼Y-‘e999Ùßß?22ÒÞ{”‰Â¢ÉHÛ;óð™¶ÒË7 ®͇„•ÁQ’$ooïS§N]¹rÅ|ivvöñãÇ›4ibïc,±¸¹¹}öÙgJ¿F!DRRÒ… úõëW¡B{ï`K·;Þüf==½W¯^ï½÷Þˆ#5jäp#ÄáRŠ~mÒïP}/°Æ€XNÞ l÷V>¹Â1('¬ŽgÈ!øí·ßºtéÒ¯_¿°°0I’Ž;öý÷ߟ;w®Gׯ_ÿí·ßÔúáááµk×¶÷QoäȑիW_¹råªU«‚ƒƒ‡ ¯ÌÈ8¢{ÓÞI©•)Oyhñ›dÀ™Ýó–£ÇÐ÷Ît-Ù±5ฬ ŽÓ¦M³÷!N¨Dït¹Ûd(IJ£÷>€.¼eÑVhnW`›wU“eyÆ §OŸnÚ´)“×¥Ä,,*ï,‘ ­f£–E"¸2Ç 6|úé§]ºt3fŒâí·ß^¾|¹²(..î½÷Þ“$ÛM> ¸ãÇÍÆÉÏ8,Þ} müúá{V[3]`ÎÚ7ÇìܹóùçŸ?|ø°Á`BF )ð‘ôÝwºˆ»ït‘d!É…,2+¡•P¬mq 9}ú´^¯wwwß½{÷7Ú´i£,2 §OŸ®^½º½(G Lxwgç6Š’Ú§ã lXÛâØºuë+W®Ìœ9óÌ™33gÎBtèÐAY4þüK—.1ã7PèÄJ¹$ÝâbÅjI“€Òfí„ÀgΜ‰ý矔o›4i²lÙ2I’ø×_ !¾þúë‡zÈÞ‡Y¦\ö5D0vÏ4:wÚ¥âƵˆ;ù¯àYxîôe$#€}¹ìïzk[kÖ¬¹dÉ’èèè   ‡~811Qi¹páBÕªU§L™âj©®¬°)uîJB¾3WŽÉ:Æ%BÜ3;#¯”¥õ ²3gλ¹YL‘Ëþâš lY4­#$Ùì5€æѲ*AG(\öw½Í^9xåÊ•”””³gφ„„´oß¾bÅŠ®™ájŠùÓKºór ¡Ý;×w¡õI{±Ap¼xñâìÙ³—/_ž››+„xâ‰'Ú·oß§OŸF}ôÑGþþþö>FÀÆŒ› «qû‹b§ì–9à(¬mÌËË{þùç.\XµjÕ>}ú¨å5jÔØ¸qãàÁƒ•4 8“¢R£$IBº=ãYE!35 Aj8kƒãܹs÷îÝÛ±cÇ5kÖL™2E-_ºtéã?~üøñ ØûP¾:2ZÃ[¤ÍÁðÜà@¬ Ž;vìpwwÿðý½½ËÝÝÝß}÷]ooïµk×Úû ×rÏ?¹€ÂWUè´Ž”oÖöq>^Ñ»wo{#Pæ ¯ØŽŒÅ¾HP2§NÀÚGÕíÛ·5jÔ¼yóúöí.„X¿~ýüqôèQƒÁЧOŸnݺÙûb?’6Ox&}µ¿¸¥øép(6˜|ܸq-[¶œ:ujzzºâÌ™3BˆêÕ«¿úê«Æ3;åJÑaQùžÀÂÈB.vµ8.Û¼r°S§N:uº|ùrzzú­[·ÂÃÃí}h@QŠõ‹¶÷–lµ82›½«Záïïß²eK“Â#GŽÔ«WÏÞ‡ ¡ñÙñÝÓZ‡³ðHà", Žiii;vì8vìXåʕ۴ióÐC©‹Ž?~þüyI’®]»¶cÇŽ¯¿þúСCö>L@-­Œ‚VF eIpœ5kÖgŸ}¦×ëÕo»uë6cƌӧO¿üòË©©©ö>(à®b›ov‘$æe h%ŽÛ·oÿôÓO…AAA5BìÛ·oíÚµuëÖ]¿~ýßÿ]±bÅš5kz{{{xxøûû7kÖÌÞÇ—¦©9°$©QRÍãi€ *qpüòË/…½zõúè£<<<„¹¹¹/¾øâ¬Y³„±±±'Nôññ±÷qÁ¥iMu·ŸM !ËÎÅhRh< ©à‚J<¸2çÎk¯½¦¤F!„——×+¯¼¢|ýî»ï’awšFÀ(­ŒêÔ9·¿¹ûϼÐÞ‡€•88fddT­ZµzõêÆ…ÊÔß÷Ýw_ÕªUí}DpQE¿Óïž¶Ã{#£­6€Ó+ñ£j½^ïíímR¨”T¨PÁÞ‡×U’gÓ¶òxàâl9#PÆJ6BE’îôe,àmÔÆßòT€áÀ´¦F£×À˜‡BíïžÀÅ•¸#àHÔA0%§¦Iº6  8ÂÁhc6nÚbtm@aÉ£êÌÌÌÈÈHíå{öì±÷aÂyh‰q’ÔæÂ{ ×ÃãiJÈ’à(ËrNNŽörÀJ%c^™ŽŒX¯ÄÁñ矶÷>ÃåX0¦+/(PòFAÌ•88Ö«WÏÞû —Pâ©v„m3…Ô€9Ç œ*éÖ‚aô4EcG8°Ûã]da“A0´2P4‚#ʧot)É ˜Ââ#}ÐŽGÕ(GJüxº,·€Ë#8ÂÎJܳðî8P¦ް³’µùÙ¢¡‘A0X†>Žp¶khäñ4–¡Åv`Éãië&Ü¡•ëÑâ;(Q›ßOK¦…&ë²(|ô4­ŒXàˆ2bÁÄ7’dIðâiÊ U£Œ”¸ÍÑÓ”3G”KŒž ü!8¢YݘÜ€r‰>Ž(E<žÀ™ÐâˆrÃê9w§(M´8ÂÆ,=}çcB˜M²c2íNÑsîOPšް1ËæÜ)ðcL»@¹Â£j”4àްËGOÛ¢K"ý(<ª† XÖ©ñNC£µ±~” Za6š©”%‚#,dùbÍ©‘‘1”+<ª†…,=-ä§Ý‘ÌžV-œôXàˆ2$IæyÓ²9wH”=U£¬z<-˜vÇFpD XØÎÇPœÁ¥Ìv©‘ù°/‚#ŠaU\³i[#ý°/‚#Šay\Ó–™sGÁ¨j” IHÂÓî€òƒàˆX;KbA·lÚæk üàQ5 `qV“„D¿Fœ•CÇôôôˆˆˆ¿þú«À¥Ë–-0`@dddûöíß|óÍË—/—^€¨€“rÈà¸páÂÂ%$$¼ýöÛGmݺuåÊ•W¬XñôÓOçææ–F˜bºœš#Çììì]»v½÷Þ{ß~ûmRSS“’’׬Y“””´víÚáÇïÛ·oúôé6¯ã|¬%‘ùpvŽccc‡ºxñâÂ*,]ºÔ`0ÄÇÇרQC)™0a‚¯¯ïêÕ« ƒmë8+GÛµŒ¡_#å“#ÇÉ“'Ïš5kÖ¬YíÚµ+°ÂÎ;ÝÜÜ¢££Õww÷:\¼xq÷îݶ­ƒ»x£ ®Á‘‚ãÃ?S³fMó¥²,§¥¥U«V­ZµjÆå:NqêÔ)ÖÁm’$ I’•¡Ô’2M£úµq!pÎ3cNNŽ^¯÷óó3)÷õõB\ºtɆuŠaR’ššjï3T«fI”$ó‡Ê–MÖhížPšÌ­»,ç ŽÊg“òÊ•+ !®^½jÃ:Å*Ÿ1Ñœ5ó5Ú6ç‘å–ù¯u—’å.8æççÏ›7OýÖÝÝýé§ŸÖòA???I’rrrLʯ_¿.î´ÚªŽ«“$Þ€ *wÁ1///11Qý¶bÅŠƒ£‡‡‡¯¯¯y‹`vv¶Bm«:.íöPz.àrÊ]pôòò²ø9o```ZZZvvvÕªUÕÂcÇŽ)‹l[ÇqY߯±\ì (sŽ4ªºX111z½~óæÍj‰,ËÉÉÉþþþ‘‘‘¶­ã¸J55–hd ©ÇâTÁqÀ€nnnŸ}ö™ÒQ‘””táÂ…~ýúU¨PÁ¶u\M¹{TmñãÇO:µW¯^QQQ'NœØ¶m[£FFmó:.åö\Œ²0îÚh2A£e³ðâTÁQ1räÈêÕ«¯\¹rÕªUÁÁÁÆ ‹WfÒ±ybeoBY&©™¯ÄoqÛ‹ˆˆp”y5)¨k£ÅÁ'àl¿ë5sª>ް9IðjpÁ…“˜¬ÜEptf’5ÉÏvS6Zµ Ü 8:³Ò›²‘ùpAG˜±éëa€Ó 8â^¤FPg›ÇÂÒ¹ œå[X1Ñ7S6àdŽNȲ¸f>Ë·°n¾FR#N†GÕBð„àR#Єàè<,ž.Q²]hdÊFœÁÑyXاЦQ~81‚£kã!5ÐŒàèÂ4¤F‹‡TçCptl–÷)´i[#]pGÇfy¿F›>¡¦k#®€ À]Ž$$¾¸‚£Ë1CŒ5¯‡®ƒGÕ‰® ì]@Ù#8º ¦lÖ!8: «ž “€ÕŽÃòçÂwR£ÉÐé»k.áȺ6àšŽ(1º6àšŽÎއÔÀFŽåšµ…IÀvŽåšU…méÚ€‹#8:©Rhk¤k#.ŽW–;’$Ù$¢8†šwR‹Ë¤FI*p-¼“XƒGÕN‡® tË›…3º6€RCp´ã°h›pÆä; 4Ë”íÃ"@Y!8–©R ‹šK42†®ÀÁÑ)¥Ægá± ¢ÀÁÑñѵ” ‚#4!8:8fme…àèȘµ”!‚£Ã¢k#([¼«Ú±8†Ú¼WTëÓæFóD( ɲ˜(IÏ©@xTí€Jç!5©àèhèÚì„àMŽ¥š™¸hDpttmvEptšS#3ï€RBp€&GGPPscS—p­ôn%@p,÷Jmþz7€!8@‚cùÆtß Ü 8–c¥“éÚ,Cp,¯èÚÊ{ï4)p µI!38€REp,—ÌšÍC¡$$’"(K<ª.Jí!5½€5Žåšõ³|£w#°Á±œaþP^ËR#(ÇŽŽªD#cèݬGp,7J³¹‘ÞÀzÇò‡Ô ÜcÇrDË,ß‚‰¾€Ë;Í¥1Ë·$I<§6Á£j{+å‡Ô¤F`+ÇrÁ¶}”‚£]1&8‚£ý”rjdîF`[DzSÆÏ£éÝl‹àh'Úš™y”Ž4Onnî’%K–/_~úôé*Uªètº‘#G¶oßÞ¤Ú²eË–.]š––æííݱcÇñãÇûûû—R ѵ8 ‡™ä/??èС{÷îõõõmÙ²å7vîÜ™——÷ÒK/½ð jµ„„„9sæøøø´jÕêĉÇoÚ´é‚ ¼¼¼l^§0©©©œë;“2jyfmM[#s7Pª û]ïüdñÍ7ßètº¸¸¸œœ¥äï¿ÿ~ðÁ4hpðàA¥äðáÃõë׊ŠÊÌÌTJ&Mš¤Óé>øàu=¶ªSNW`¹…,ËrAçüö"à û]ïô¦ãš5k„o½õ–ÚæW¯^½gŸ}V¯×ÿþûïJÉÒ¥K C|||5”’ &øúú®^½Ú`0Ø¶Ž…xH –ÃÇcÇŽùøø4jÔȸ°^½zBˆS§N)ßîܹÓÍÍ-::Z­àîîÞ¡C‡‹/îÞ½Û¶uŠ% ÉäŸB’…y!€Cp˜à8wîÜÅ‹›8p@qÿý÷ !dYNKK«V­ZµjÕŒëèt:q'\ÚªŽ²MþVhCÌÝJÃŒªnذ¡IɶmÛ’’’*V¬Ø»wo!DNNŽ^¯÷óó3©æëë+„¸té’ ë+""¤¤lºÐÊ<ÀÖÌ­»,‡ ŽÆôzý7ß|óñÇëõú3f!rss…>>>&•+W®,„¸zõª ëËEGZàŒÌ­»l”,wÁ1??Þ¼yê·îîîO?ý´q…íÛ·Oœ8ñèÑ£ÁÁÁ~øa»ví”r???I’rrrLVxýúuq§½ÐVulމ¾@ùWî‚c^^^bb¢úmÅŠÕàxëÖ­iÓ¦-\¸°R¥JcÆŒyê©§ŒgUôðððõõ5oÌÎÎB(ã£mU§bîFPÚÊ]pôòò*ð9¯Á`;vìºuëºtéòÞ{ïàÓÒÒ²³³«V­ª;vLYdÛ:å ©”6‡U½páÂuëÖ 2äóÏ?/¬Ù/&&F¯×oÞ¼Y-‘e999Ùßß?22Ò¶u,ÀóhàÐ#8ʲ¼hÑ¢*Uª¼þúëET0`€››ÛgŸ}¦ôGB$%%]¸p¡_¿~*T°mWããΟ?åååU·n]ó¥}úô6l˜òõüùó§NZ³fͨ¨¨'NlÛ¶­aÆóçÏ7ž^ÇVu SÆï¯¤w#eÌeßU]îú8èôéÓBˆÜÜÜ””ó¥êÀj!ÄÈ‘#«W¯¾råÊU«V6,>>^™IÇæuÊ R#(4VÙžËþ€‹pÙßõŽÑÇvGptl¼œ”‚£c£§(3GhBp€&GGEïFPÆŽŽŠÞ Œ  Áš ]€½ ]€½  Áš]€Ý]€Ý  ÁšË5º6€òƒàX®Ñµ”GhBp€&Çòˆ® "8–GtmåÁš  Á±¡k#(ÏŽå]@yFp€&GhBp´?º6‡@p´ã°H×FàŽöAX‡àXvx$ Á±ìÐÊÁš  Áš  Áš  Áš  Áš  Áš  Áš  Áš  Áš  Áš  Áš  Áš  Áš  Áš  Áš  Áš  Áš  Áš  Áš  Áš8Rp¼råÊûï¿ß³gÏæÍ›wíÚõ•W^IOO7¯¶lÙ²DFF¶oßþÍ7ß¼|ùréÕŒEDDØ{`\z—Å¥‡«q˜à˜Ý³gÏï¾ûNÑ©S§ûî»oÕªU±±±)))ÆÕÞ~ûí£G¶nݺråÊ+V¬xúé§sssK£€Kq˜à8sæÌ¬¬¬gŸ}öçŸNHHX¼xñG}”ŸŸ?iÒ$µNjjjRRR``àš5k’’’Ö®];|øð}ûöMŸ>Ýæu\ÃÇ­[·zyy=÷ÜsjIß¾}ƒ‚‚8 ×ë•’¥K— †øøø5j(%&Lðõõ]½zµÁ`°mWã0ÁÑÏϯsçΕ*U2.¬X±â­[·nݺ¥|»sçN77·èèhµ‚»»{‡.^¼¸{÷nÛÖp5-ZôÉ'Ÿ—ìܹóäɓ͛7÷òòBȲœ––V­ZµjÕªWÓétBˆS§NÙ°€ ò°÷”Øž={V¬XqìØ±={öÔ®]{êÔ©JyNNŽ^¯÷óó3©ïëë+„¸té’ ë‹qv.‹Kﲸô.‹K—âxÁ155uùòå², !5jäéé©”+Cž}||LêW®\YqõêUÖ)ví}’l¯ÜÇüüüyóæ©ßº»»?ýôÓÆ]¥JN7räÈöíÛ›Tãfpn±±±;wž6mšÉ".½SÚ¿ÿܹs8pýúõˆˆˆ1cÆ´iÓÆ¤—Þùܺuë믿^½zõ±cÇüýý›4iòâ‹/š¿vÄÕ.=€ÛFBBœ9s|||ZµjuâĉãÇ7mÚtÁ‚^^^öÞ5ØL~~þСC÷îÝëëëÛ²eË7nìܹ3//綾^zá…ÔjÜ ÎM–åáÃ‡ïØ±£W¯^&Á‘Kï”6lØðÒK/ †&Mšøúúþþûïùùù³gÏîܹ³Z‡Kï|ôzý°aÃvïÞÒ¤I“Ë—/ïܹÓÍÍí믿nݺµZÍ/½ «>|¸~ýúQQQ™™™JɤI“t:Ý|`ï]ƒ-}óÍ7:....''G)ùûï¿|ðÁ ªZµªÉ".½³JIIñ÷÷ Úµk×¼yó¦M›öÓO?åææª¸ôΪgÏž•*Uš//ï‡~.|é Ž6xñâEå^Q;vLYdcÍ †±cÇ.X° &&fݺu/¾ø¢yû7ƒó9räˆbÖ¬YwôíÛWñã?FDDôìÙS©Æ¥wJ5jÔ¨P¡‚$IÆ…ÊøùùùÊ·\zçsñâE!Dhh¨Iyxx¸"++KùÖ5/=ÁÑbbbôzýæÍ›ÕY–“““ýýý###í½w°™… ®[·nÈ!ŸþyaMr38Ÿ:uêÔùó磢¢¼¼¼êÖ­k¾´OŸ>Æ S¾æfpzèÛ·¯ù»ª¹ôNiîܹŸ|ò‰¯¯o«V­rrrvîÜ)IÒ´iÓºwï®ÖáÒ;Ÿ .ôïßÿìÙ³¡¡¡ 6¼xñâŸþi0Þ~ûí¡C‡ªÕ\ðÒ»¿ÿþûöÞgš™™¹eËîÝ»O:Õ|–`8®ÔÔÔ+VäççŸ/HýúõÕQ2Ü N/++kÉ’%<òˆq9—Þ)µjÕ*$$$===%%åæÍ›=ôÐ'Ÿ|Ò¦Mã:\zçãíí=pà@!ĹsçöîÝ›——תU«?þX¥rÁKO‹#4ap 4!8@‚#4!8@‚#4!8@‚#4!8@‚#4!8@‚#4!8°Ð‘#G"ÌÔ¯_¿S§N#GŽüå—_J{fÏžñÍ7ß(ß~öÙgÆßB£ñãÇGDDüöÛoöÞÀÃÞ;À±I’¨~{óæÍŒŒŒŒŒŒßÿ½_¿~~ø¡½w°[¶lÑëõ;v´÷Ž€ 8°Š——Wrr²qÉ•+WfÏžýÕW_­X±¢[·ne–É:uêвeË}jܸqÙÙÙ,³3Ž‹GÕlÌÏÏï7ÞˆŽŽB¬^½ºÌ¶Û¨Q£Áƒ׫WÏÞ'œÁ@©ˆŠŠB=zÔÞ;âTnݺ•ŸŸoÁõz½ec<ªP*ôz½Â`0(ߎ?þÇܸqãùóçÿýï9rdÕªUµjÕR–þþûïK–,9xðàÕ«W4hðàƒ>óÌ3*T0^áŠ+V­Z•’’âïïùÜsÏ™lqÞ¼yÓ§O÷Ýw‡ªþúë¯ßÿýþýûoܸ>hРÇÜÍÍMññÇùå—Jµˆˆooï={ö(ß®ZµêÇù¤ÚsTÙÜÿþ÷¿ùóçÿôÓOyyyaaa>ø`||¼ŸŸß7ß|³nݺƒV©R¥}ûöcÇŽõ÷÷7þàªU«¾ýöÛï¿ÿ>'''88¸I“&C† iÛ¶mÑ—¯Ø+RìqpJG¶'˲2ªZ§Ó—:thìØ±¹¹¹Â(SNŸ>ý‹/¾e988¸F»víÚ¾}ûæÍ›gÍšuß}÷)5ÇŽ»jÕ*!DÕªUoÞ¼ùý÷ß'''·jÕªèݘ~üxll¬²‰E‹)Õ’’’Œ¿]·nN§‹ŽŽ>xð ºÃQQQ:nãÆê·iÓ¦Aƒê·+V¬Ðét?üðîÝ»•’ŒŒŒêtº‰'},æž~úiN—ŸŸ¯”|ýõ×:®W¯^Ê·sæÌÑétÏ>ûìõëו’«W¯:T§Ó-[¶Ìxs 4øõ×_•’4lØP§Ó5nÜxË–-JáŸþÙ ANwñâEãêtº§Ÿ~úòå˲,çççÏŸ?¿Aƒõë×ÿûï¿«©çDË)ö¸8+ú8°JNNŽñ<ŽMš4‰ýßÿþ'„xòÉ'zè!ãÊ>>>óæÍk×®]@@€R2uêT!DbbbÓ¦M•’€€€ÄÄÄÀÀÀåË—_¹rE–åO?ýTñÁtêÔI’$!D:u>ÿüsõÙq¦OŸ.„˜©”Ïœ9³bÅŠ‹/Vž&v,æ>,„0`€º«qqqÏ?ÿ|—.]”oóóó;uê4nÜ8¥¤jÕª±±±Bˆ'N¯jРAjc^Æ [´h!„>|xûöí•Â-Z4nÜXqúôiãÖ¨Qãÿþïÿüüü„îîîO>ùäСC ìY³ Üçb¯ˆ–ãà¬ެ"IRнxàîݻϛ7o„ &•{õêU©R%õÛË—/;v,<<¼Q£FÆÕ¼½½Ûµk—›››’’’™™™••U½zõG}Ô¸Îý÷ßÿðöW—.]:~üxHHH»víŒË{öìùË/¿˜÷Tœ?>33388¸C‡Æå5jÔˆŽŽÖëõ‡*ìX ôÀ!&L˜°cÇelJ… ^~ùå1cÆ(^xá…9sæÔ­[WýHVV–»M˜<—WžbX(˲qa¿~ý*V¬h\2|øp!ÄÞ½{Í·¢åŠh9.Ί>ެb>cj×®mümzzºò¿Ö?{ö¬Ò¦®´5 -lÓÇŽBÜÿý&åžžž&û`ìøñãÊjÍÕ©SGÜÛ XÄzT'NŒß±cÇ¿þõ¯J•*5lذM›6<òHÆ Õ:gΜٴiÓ®]»N:uòäÉË—/¸*µI²ˆBóS$„ 3)©U«VÅŠÏ;wëÖ-OOÏ’^ÇÀ)”ªU«{ëÖ-!DÍš5 {Äâáá! ‰DE<ª¾yó¦Âd\v±LÚêÌ·•——Wر¨V­ZË–-Û³gϦM›¶oßž’’²{÷îÙ³g÷ïßÒ¤I’$}÷Ýw“&MÊÏϯ]»v«V­ºtéÒ¸qãcÇŽ}ðÁ¶:çæ§N’$ww÷›7oæçç›G-WDËqÙjç”7Gv.„ðöö~óÍ7 «“••%î´„™Pš ¤4³þüºuëŒëœ9sfóæÍ…­9((( àäÉ“þù§qyrrò„ ~úé§"ö'##cË–-ÆåYYY7ntwwWÇÙhqæÌ™Î;8P-ñôôŒ‰‰yì±Ç„§OŸÞ¿¿^¯oÑ¢…IgMe艭|ÿý÷J;¢jáÂ…Be$W¤Øã²áÎ(oŽìéÕW_5 ¯¾úª:îäúõëo¼ñFJJJ£F”ËÊ‹wß}WÍsÕ;ÀIDAT§NzñÅ‹xŠ$IÊê7ÞxãÈ‘#Já‰'¦L™"„èÖ­›qeƒÁ““£|ýÊ+¯!Þ~ûmeˆ"33s̘17nÜ4hò V£àààk×®ýõ×__|ñ…:ÑãñãÇ7mÚ$„hÚ´©2Å÷áÇ/\¸ ,Õëõ‹/^´h‘B™!Òzç΋ÏÎÎVŽô›o¾ùꫯÜÜÜ ÈRì)ö¸l²ÛÊ'U°§>}úìØ±ã‡~èÝ»wÍš5ýýýÓÓÓsrrBCC?úè#µÎÖ­[úé§§žzÊßß¿jÕªÊÓäàà`e¬Fúõë·}ûöŸ~ú)66¶víÚ•*U:zôh~~~lll=Ôj~~~—/_Ž‹‹«]»öÌ™3ÕmõëׯV­Z^^^G5 ‘‘‘JÕÎÍÍíÍ7ßœ0a´iÓ¾üòËZµjåää=zT–常8eºŸ˜˜˜_ýµk×®-[¶”e955õòåËC‡]°`Á÷ßíÚ5erkôèÑcݺu=ôPhhèÙ³gsrrÜÜÜ^}õÕúõë[vE´gEp`O’$M™2¥S§N+W®|þüù|°C‡ƯÔ®OŸ>ÁÁÁóçÏOKK;|øp@@@ûöí‡ ¢ÎÈ8cÆŒùóç¯Zµj×®]µjÕêСÓO>Y¯^=½^ÿÓO?íܹÓú3üøã:ôË/¿Ü¿åʕ۶mû¯ý«ˆWj¹"Åg%1ŠÊ¡¬¬,I’Š˜v å]ÕsçÎŽŽ¶÷¾p´8p0Õ«W·÷.€‹bp 4!8@U€sêÑ£‡N§³`Òr( ƒc  ª  Áš  Áš ÉÿVúþ(š/IEND®B`‚statistics-release-1.6.3/docs/assets/anova1_201.png000066400000000000000000000210241456127120000220350ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A!ÛIDATxÚíÝqÖuÀñߣ[¸"†ˆÌq–sË¢tyˆÖˆÔ)qWžÑ@WÝ%{žƒsŠçÁYŒà^ÔMz™4¦% Œ 'a5f¥L“ãÝj‚Nì$;ˆ«Çˆ«ÞÕ1®G»<÷ÇÖ¶÷°ì~€Ýýþ~ÏózM´¿ öó<Àì»ï÷÷ým©\.g0“R@1GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„ãÀ^ýõéÓ§ß|óÍ©HI8 \./[¶ìàÁƒ©HL8àؾ}{ê)ÒŽýikk»ûî»§L™’z€ô„ãQuvv.]ºtìØ±·ÜrKêYÒ«K=@~ÝsÏ=»víZ·nÝé§Ÿžz€ô„cßZZZÖ¬YÓÔÔ4cÆŒÖÖÖcúµ©Ç†ÐîÝ»S†pìCGGÇÒ¥K'Mš´dÉ’ãûjöïSDcc£÷§Þ¢y‹úçý·¨ÞŸÕì[$û°bÅŠöööM›6Õ××§ž /Ž©´}ûöM›6]ýõ\pAêYrÄŠc¥¶¶¶,Ëî»ï¾û÷õGyä‘GihhxôÑGSÏ€p¬tÎ9ç\y啽¯ìß¿¿¹¹yâĉӦM›0aBêÒŽ•fΜ9sæÌÞWZ[[›››/ºè¢;ï¼3õtɸǑáV›ÇÐŽ‰·h@Þ¢þyä-êŸ÷‡£Ž„تØÔ©Sý/+Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"©K=^©ÔßgËåÔó‘ÂøiX*)Eúf«€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@H]ê`Ø•JY¹œzˆc¶F¾hqþLj—p€¼«…¢J’ª+[Õ@b…Z®iÂr­\¶G^GB„#ä]u/:Ú§.‡c¨v}6WÅEå€jwdZãÊ Åb«  ºw«) á@ˆpÒ°O]8ŠÁn5É Gje.8. £šíS‘p D8ÃÍrcA G(’jÚ­¦p„#!ÂVö©‹K8@ÁØ­&á@ˆp€â)}êBŽ„G`˜Xn,:á…TÜÝjŠK8R—zà8•³RVœEÇRV¶O]tŠªX)VvcñÙª D8" lû2ü„#0L¦@„#!€ºÔäTGGÇC=´eË–öööQ£FMžœþùWžyæ™Õ«W1bîܹ‘ß¡±±±âÊîÝ»S¿,àxùm½f ÇtuumܸqåÊ•]]]wÝu׸qã"¿J&@Õ8òÛzͦ¤pì϶mÛ¾øÅ/¾üòËgŸ}öwÜ1cÆŒÔ$#ûvèС;ï¼sýúõ§œrÊ¢E‹®½öÚžÖµI8öáðáÃK–,ÙºuëìÙ³—/_>~üøÔ¤'û°~ýú­[·^uÕUË—/O= @^xx¥r¹¼aÆQ£F-[¶,õ,9bűҾ}ûöîÝ[__?þü#?;oÞ¼¦¦¦Ô3$ +µ··gYÖÑѱsçÎ#?ë`5P³„c¥ /¼ÐSŽäGB¬8Y©tÔËåÔÑÂP‡„ت D8"Ž„GB„#!€á@ˆ€Pý*~,JϾ† á@õ«HÃRI,Âñ°U @ˆGR깚¾®5Nª€p ¥r¹&6ŽSõ1 .[Õ0´j¡Œ©Â€ÄºüŽ0„,7RM„#éYt„BŽ0T,7Re„#¹`ÑòO8"È‹*[t´OMõŽ„G|–©J€©²Ýj¨2™åFª•p _,:Bn GL–©b€ܱèù$`ÐXn¤º GòÈ¢#äp€Áa¹‘ªW—zè[¹œmÕQ6Rå„#ùUÊÊEZÃ+Vå±³U @NÙù…¼Ž08è¡ê GB„#ydŸrH8À ±[MuŽ„GrÇ>5ä“p D8À`r›#UL8"È78Bn Gdv«©V€á@ŽØ§†<Ž0øìVS•„#!€¼°O 9'`HØ­¦úGB„#¹`ŸòO8"`¨¸Í‘*#ޤçG(áCÈn5ÕD8"HÌ>5…p€¡e·šª!©K='ªÿÕ¬œïÛ§†Ž…W^ÅJ1Û¸P €Ć?s‹ÕÖîq D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp ¤.õU®Tª•/Z.'ø¢ÀpŽC®Š*IªÃÌV5'ªTª‰8¬8 ­rYW¥wä‚hï+þt H8pB ‘ÅùŸ ÁV5!Â`ÈuïV­j ú¯.» bŸ,Â(€Š4)b¬8"T[Õ') µF8"†‰#2@Ñ Gއ}j¨AÂ`øXt M8"8fö©¡6 G€ae·(.áÀ±±Ü5K8"†›Ýj  „#ÇÀ>5Ô2á€EG ˆ„#!€(ûÔPã„#@v«Â©K=@m+T<–­7BmŽI'ÅJ¥¬0³CÃV5!öÖᆃ&@áGBÜãœT{—Ãÿu­f¿Û­öV@ÍŽÀ‰ª…ŒôN•_@ Ç£úö·¿½yóæ—^zéÔSOýÓ?ýÓ›o¾yìØ±©‡HÆ=Ž}»ûî»o»í¶—_~ùâ‹/>í´Ó~øáë®»®££#õ\‰9[ µL8öa÷îÝ«W¯>묳{ì±Õ«W?þøãW_}õÏþó¯|å+©Gª}j  „c6oÞ|øðá›nºiüøñÝWn¹å–Ñ£GÿèG?:|øpêéÒŽ}xöÙgO:é¤Ë.»¬çÊÉ'Ÿü¡}è—¿üåÏ~ö³ÔÓ$f·j–p¬T.—_zé¥3Î8ãŒ3Îè}}òäÉY–½úê«©ŠÍ>5P\NUWzë­·ºººÆŒSq}ôèÑY–ýêW¿Šü&WvïÞú•ÇãÈoë5K8Vê>:=räÈŠë§vZ–eû÷ïü&2¨nžNM9òÛzͦ¤­êJcÆŒ)•Jo½õVÅõƒf¿[w8>b (4áX©®®nôèÑG®,8p ˲žsÖµF8öᬳÎúå/Ù]Š=öìÙÓý©ÔÓ䂳ÕPƒ„c>üáwuuýÇüGÏ•r¹üä“OŽ;vÚ´i©§ŠÊ>5Pt±ŸúÔ§N:餯ýëÝ÷5fY¶zõê_üâù—ùŽw¼#õti8U݇‰'Þ|óÍ+V¬øøÇ?þÁ~ð•W^yæ™g¦Núw÷w©GƒÜqº¶–ùÓ‡Z#û¶`Á‚3Ï<ó{ßûÞøÃ³Ï>»©©é¦›nê~"Pk¥P„ãQÍ™3gΜ9©§È ÷8'ÊéÚZæOjŠpè}j€Â€áÀ ±[ µC8ƒ@:ôÃ>5P5„#ÀQi>€Þ<Ž`ÈÕÂr¬È†Z ÁᇈÍð¿'þ €!b« oò  ‚p D8ƒÆÙj€ê&ú`ŸàHÇTƒŠµÞÞ*``°G€j a`«Lns¨b ’ú$ŽÀ ³[ P­„#ÀÿcŸàh„#!Â|v«ª’pø=ûÔýŽ„GB„#0$ÜæP}„#Ào¹Á Â€ºÔU­`ÛÕÖú#!ñ»mß"¥Xùw¡kàOÂd…n¯î±ÝìÐ'á šB'co=G«ൠ"á ‚êˬž¥Ç*{]'B8'ªŠ7vå#@oÂ8!ÝQU°ÃÓáœ$ëpU¼Æ g@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp ¤.õ@V*õ÷Ùr9õ|e™p„<¨HÃRI,G¶ªŽ„ت†ôbÕ|Q›ã H8º‹ª§äª)°º_T5½"†”p„žºª‚تÊ`G86½ ËYŠmìãUÊʽ_+áÇãwùX.R„yÊ'F82ú9êQÜ”)ÜÓËåâÍ @®G†CïX©Žv)è«ÐŽœÏq„ÚÒÝŽp„#3‹vÔ&áǦ ªÑ¢#ÇG8Â1¨‚jì¦8€áQU³ÜØÍ¢#ÇJ8BH•Uc7íÀ1ŽPÓ´#qÂV•Ëp¬„#  ê«Ñ¢#A~ä ô§ê«±[þá‘iÛûJž'¨&Â(i¶ªŽUÇ]«ÀаU ýqpzGÀðß]—ós*Ô,[Õ„Xq¬uIöa“|Qkxp‚„c­ËÿüN\Õ¿@‘*oÇ*~ið[}®áyÑ¿à„ G²¬zÛ±*_T:òo¹¿úÀÐp8†ßª¾çÎøÖ ƒK8ò{ÕÔŽªpäÿ©ŽvT0„#•ŠÞŽª†ˆp¤ÅmGÕYæ50T„#}+b;ªFRÇC¿ ²†p¤_ÅZÁ+Vå@ÑØª D8"Ž„GúVÄGÛñBP €á@ˆp ÄÀûÖÑÑñÐCmÙ²¥½½}Ô¨Q“'O^°`Á¥—^šz.€d„c:;;¯¹æš–––Ñ£G_rÉ%o¿ýö¶mÛš››/^|ã7¦žn8ñdL·îó1rN8öaóæÍ---Ó§O_»vm}}}–emmmMMM÷Þ{ï¬Y³Î;ï¼Ô$àÇ><öØcY–Ýzë­ÝÕ˜eYCCÃÂ… »ººžzê©ÔÓ¤!û°gÏž‘#GN:µ÷ņ††,Ë^}õÕÔÓ¤a«º÷ß]]å;ÓÚÚšeÙ¤I“RO†pìÃùçŸ_qå™gžY½zõˆ#æÎù+®ìÞ½;õËŠ*úáçc\G~[¯YÂq]]]7n\¹reWW×]wÝ5nܸȯ*P&’?,±÷‡" ­#¿­×lJÖt8vvv®Y³¦çÓO>ùºë®ëý?ضmÛ¿øÅ—_~ùì³Ï¾ãŽ;f̘‘zdª–: ÿj:ó›ß¬ZµªçÃ#Fô„ã¡C‡î¼óÎõëןrÊ)‹-ºöÚk{NXÔ¦šÇúúú>÷”>¼dÉ’­[·Îž={ùòåãÇO=)@z5ŽG³~ýú­[·^uÕUË—/O=Ëp«Žc%ÎÇÀPðÇJåryÆ £FZ¶lYêYrÄŠc¥}ûöíÝ»·¾¾~þüùG~vÞ¼yMMM©gH@8Vjooϲ¬££cçÎG~ÖÁj f ÇJ^x¡§0É=Žü^5(é> "á@ˆp D8"ŽüV5Œ†‚p¤j9X ƒK8"Ž„GB„#YV½Gª€A$Ž„GB„#!‘ª=ÓÍù,€á@ˆp D8"k]uŸŒéæ| á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"©K=é•J©'Š@8Öºry¸¿b©”à‹'ÎV5!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€ºÔPJ¥þ>,—SÏG†ƒ4€*`«€á@ˆp D8"Ž„ǽþúëÓ§O¿ùæ›SR%SwÞ¢y‹úçý·¨ÞŽF8 \./[¶ìàÁƒ©HL8àؾ}{ê)ÒŽýikk»ûî»§L™’z€ô„ãQuvv.]ºtìØ±·ÜrKêYÒó³ªêž{îÙµk׺uëN?ýôÔ³¤'ûÖÒÒ²fÍš¦¦¦3f´¶¶ë/w­ÞŸy‹ä-êŸ÷g@Þ¢þyè“pìCGGÇÒ¥K'Mš´dÉ’ãøå»wïNý _M‡cggçš5kz><ù䓯»îº,ËV¬XÑÞÞ¾iÓ¦úúúÔ3äEM‡ão~ó›U«Võ|8bĈ뮻nûöí›6múû¿ÿû .¸ õ€9R*—Ë©gÈ—7þË¿üËÑ>ÛÐÐð裦ž š^qìÓ9çœså•Wö¾²ÿþæææ‰'N›6m„ ©HÊãÀZ[[?ñ‰O|üã¿óÎ;SÏŒ€"±U @ˆGB„#!€á@ˆp D8"ñ³ªVÿùŸÿyÅWlÞ¼ù‚ .H=K¾ttt<ôÐC[¶lioo5jÔäÉ“,Xp饗¦ž+GÞ|óÍU«V=÷Üsííígžyæ{ßûÞE‹{çÊ£×_}Μ9³fÍòƒR{ûä'?ùüóÏW\7nÜSO=•z´¼xþùçï¿ÿþÖÖÖƒ666.Z´èø@ê¡ÈáȰZ¿~}êò¨³³óšk®iii=zô%—\òöÛooÛ¶­¹¹yñâÅ7ÞxcêéráÀûØÇöíÛ×ÐÐpùå—¿ñÆ?üá·nÝúÐC½÷½ïM=]¾”ËåeË–þüþç¾ì²ËN:Émü–¿ ‡9sæÌŸ?ß7ø£yì±Ç²,»õÖ[»«1˲†††… vuuÙDëöÓŸþ´¾¾þ†nè¹ò‰O|b„ ­­­]]]©§Ë‘¶¶¶»ï¾{Ê”)©ɽ{÷fYV±ÜH‡~øÀ .ì®Æ,ËÞ÷¾÷]qÅ¿øÅ/ŽÜß§–Yqd8Ü~ûíÿû¿ÿ›eÙ† ž~úéÔãäΞ={FŽ9uêÔÞ²,{õÕWSO— cÆŒ™÷¹«¯¾ºûÊÓO?½páÂ;î¸cæÌ™'NL=`J¿þõ¯³,{饗öíÛ·bÅŠË.»ìí·ßÞ²e˽÷Þûÿø>ú¨uGz89²mÛ¶9sæÜ~ûíãÆ[»ví_üÅ_¤ž(wþú¯ÿz×®]ÍÍÍË–-{üñÇ?ó™ÏxîL–e+V¬hoo_¹r¥oðGóÀ´´´ôTc–e3fÌø›¿ù›ŽŽŽÿøÇ©§K¬çîá/ùËsçÎ3fÌ„ þáþaÞ¼yííí?øÁRHŽGÈ…C‡Ý~ûíû·ûúë¯/Z´èG?úÑŒ3R•S¥RéÌ3Ï\°`Á_ýÕ_ý×ý×ã?žz¢Ä¶oß¾iӦ믿ÞízÇêýï–e/¾øbêA9rä)§œR__ùå—÷¾>{öì,Ë^xá…Ô’#¶ª!½Ã‡/Y²dëÖ­³gÏ^¾|ùøñãSO”/mmmëÖ­ûЇ>tÅWô¾Þ}ý¿ÿû¿S˜X[[[–e÷Ýwß}÷Ý×ûú#<òÈ#444<ú裩gL¬\.>|¸T*U<ðä“OβlÔ¨Q©Loüøño¾ùf©Tê}±{»³³3õtäˆp„ôÖ¯_¿uëÖ«®ºjùòå©gÉ£ÓO?ý;ßùξ}û*±ûÉ|ïyÏ{R˜Ø9çœså•Wö¾²ÿþæææ‰'N›6m„ ©Lï•W^ùÈG>òþ÷¿¿â‡WíØ±#Ë²ÆÆÆÔ¦wùå—?øàƒ/¾øâäÉ“{.þìg?˲ÌcAéM8BbåryÆ £FZ¶lYêYrꬳÎjlllnnþÉO~ÒóÓÏ^xá…7žvÚi_|qê›9sfϯºµ¶¶677_tÑE~Vu·w¿ûÝÓ§Oß¾}û·¿ýíO}êSÝwìØ±nݺ‰'~ä#I=`zóæÍ{ðÁo»í¶o~ó›gœqF–eÏ?ÿüÚµkGýgög©§#G„#$¶oß¾î¡;þü#?;oÞ¼¦¦¦Ô3¦÷¥/}骫®ºá†¦M›öðÿó?ÿóÜsÏeY¶råJωøüç?íµ×ÞvÛm›6m:÷Üs_{íµ–––SO=õ_ÿõ_(ʲì¼óÎûÜç>÷Õ¯~õ£ýèE]ôÖ[o=ûì³¥RéöÛo×»Þ•z:rD8BbíííY–uttìܹóÈÏ:"Óí}ï{ß~ðƒ¯}ík;wîܵkׄ þüÏÿüÆoìþù:0 )S¦|÷»ß½ë®»~úÓŸ¶µµMš4iîܹ‹/>ûì³S–×_ý¸qã¾õ­o=ýôÓcÇŽýð‡?¼hÑ"ÿĨPê~ôÏãxŽ„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp äÿ_÷ és:4IEND®B`‚statistics-release-1.6.3/docs/assets/anova1_301.png000066400000000000000000000204371456127120000220450ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A æIDATxÚíÝ{lÕõýøñÏiñRDZ‹4™÷Y‹Š¦€~ÝØ¶ì§H¶,CãeÓl¸°‘¨ üƒÎyá':™xŽÈ˜Q6@Ý&e¨+DpZ4m´¥=¿?ÎìºÓSxqëçô|ø¼Om^í¡œ'ïÏåäòù|{S•öô €á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€L‡ãÛo¿ÝÐÐðÚk¯•|tÉ’%Ó§O3fÌøñão¹å–>ú(íyÒ”ép|ä‘Gzzèî»ï¾í¶ÛÞzë­sÎ9gÀ€O<ñÄÌ™3wîÜ™öÈ©é—ö)hmmÝ´iÓ²eË}ôÑ’ÐØØ¸hÑ¢áÇ?þøãÆ K’dîܹ?üðüùóo¿ýö´ÇHGw§L™rå•WöTI’<öØc³gÏ.Tc’$7ß|smmísÏ=×ÑÑ‘öøéÈâŽãܹswíÚ•$ÉâÅ‹W¯^ÝýÖ®][UUuá…v®TWW_pÁË–-[·nÝÙgŸöW‚,†ã„  ¿X¹re÷GóùüæÍ›Ifÿ<•­††OJ¹ñ¤”'ÏKò¤”¡Ì>)Y¼8fÏêêêr¹\[[[ÑúÇœ|¾ïA±X¿~ýjkk»ï,¶¶¶&IÒy5@Ödž¾cÇŽB)vzçw ¥=@:„c 'NlooñÅ;WòùüªU« 4f̘´§H‡p,aúôéUUU ,(œ×˜$É¢E‹š››/½ôÒÃ;,íéÒáªêêëëçÌ™3oÞ¼©S§žþùMMMkÖ¬=zôõ×_Ÿöhì§l^ûVæ<)åÉóR†<)”áXÚµ×^;tèÐ¥K—>ûì³#FŒ¸êª«fÏž]¸#@6åòù|Ú3TšÌÞÛ 2"³¯õÎq D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"é—öÀärÑÌçÓž•LŽP.Jæ`.')U"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp ‹\.í €ò%Ž„ôK{HSŸ88_þCæóiO@¯Ždè9@åßµ, ÃJ¾à-ª*às úGa.§ž¸8€á@ˆp D8"Žtá’j g€á@ˆp D8"Ž„GB„#!€á@ˆp D8Ò/íÊÔe—]öÆo-2䥗^J{4€tÇÒ¶lÙRSSs 't]¬««K{.€ÔÇZ[[[ZZ&Ož|Ï=÷¤= @¹pŽc [¶lI’¤h» ã„c MMMI’üñiPFª.¡ŽÛ·oŸ1cÆ›o¾Ù¿ÿQ£FÍš5ëôÓOO{4(/¹\’ϧ=½E8–°uëÖ$Iî½÷ÞO<ñ¼óÎ{÷ÝwW®\¹jÕª;î¸ãòË/|††††¢•ÆÆÆ´¿,JÈç¥{Ñýe=³„c Û·o¯©©¹é¦›f̘QXY½zõ¬Y³îºë® &Ô××ïõ3ÈD€>D;î·Œ|ߺ¿¬g6%ãXƒ>¸aÆÎjL’dܸqW_}õÎ;W¬X‘ötP2Rt%£ÆŽ›$ɦM›Ò€ƒ¯°éì™p,–ÏçÛÛÛ;::ŠÖ«««“$9úè£Ó€CB;îÛÙ$‹5555êšk®)Z_¿~}’ás “jÌ,áXì„N8묳^}õÕ%K–t.®_¿þ¨¯¯¿øâ‹Ó€CŦ#ìY.ïŸ Ýlܸñºë®knn=zôI'ôî»ïnذ¡ÿþ .<÷Üs÷ú¿744¸ª ï²¶g¾?I†_ëí8–0räÈ'Ÿ|rÚ´iÍÍÍË—/oii™6mÚÓO?©F¨`ª1ãÜDZ´aÆ͛7/í)HÛ:öÄ·;ŽPÌÉŽP’pöÎv#‰p€’l:v¥)ŽPšv„"Âz¤Ût!€©Fºް'6¡“p€½Èl;Ún¤ˆ€ÀÞå“\’±vÌ%Þ–˜bÂö"—ɆÊÛq¤‡ª€Ò2{ŒžžGØ“ŒïºiGºŽÐ£ŒW#ŽÀžØt¤“p€Òl7vÒŽ¸ª £âÍxRÐpȨ’U¤–èIaÓÑŒs¨Š)¤’°F8ÀÿPÐáÿ¥÷̦cÆ G`hÇ,Žð¶aÏ„#$‰jÜ63K8ûL;f“pÛûC;fp ëT# G`?ÙtÌá@¦Ùn<@Ú1S„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"é—ö²\.í  ŽdZ>Ÿö{“Ëõ!ɇªŽ„GB„#!€á@ˆp D8"ñÎ1@o¾¥›·Ç(gÂè ݋л¨ô9U"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€~i!¹\Úôý!óù´'€ ޽$—=o#¤È¡jB„#!US‚gh9ÚûD8Rº¡“¢àÀ9T @ˆp D8"޽$Ÿ/÷7e).tƒt G€Þ£„j„Ô GB„#@¯²é¸l7B9޽M;î+ÕeB8¤@;Æ©F( Ú1B5BYŽ„G€ÔØtÜ3ÛPnú¥=@¦ÚQu—ÍoKOÿ辞Áoå@8¤L;v—ÙoH6¿júá•©O-ÿ!{íU\;vå[eK8BÅòÒ{€z¹kµ#Pþ\@QÏPÎì8öhÉ’%=öØæÍ›û÷ïÿÿ÷sæÌ4hPÚC•̦cÆ¿|(vK»ûî»o»í¶·ÞzëœsÎ0`ÀO<1sæÌ;w¦=Pá²|ƒÕåO8–ÐØØ¸hÑ¢áÇÿþ÷¿_´hÑòåËg̘ñúë¯ÏŸ??íрʗÏ'I.—µÿT#ô ±„Ç{¬££cöìÙÆ +¬Ü|ó͵µµÏ=÷\GGGÚÓ.—K’|>kÿey«úáXÂÚµk«ªª.¼ðÂΕêêê .¸`ÇŽëÖ­K{:€Ê¤¡ü Çbù|~óæÍƒICCCÑJcccÚ_PîT£ëÊ)OÝ_Ö3K8+\:}ÔQG­0 I’–––È'‘‰À¾LÚ‘2Ôýe=³)éPu±ººº\.×ÖÖV´þñÇ'Ÿï;\R©+';BÙŽÅúõëW[[Û}g±µµ5I’Îë¬ÕØv„ò$K>|øŽ; ¥ØéwÞ)<”ötéŽ%Lœ8±½½ýÅ_ì\Éçó«V­4hИ1cÒž¨(¶{bÓÊp,aúôéUUU ,(œ×˜$É¢E‹š››/½ôÒÃ;,íé€Ê¡÷L;B¹qUu õõõsæÌ™7oÞÔ©SÏ?ÿü¦¦¦5kÖŒ=úúë¯O{4 r¨ÆYCYŽ¥]{íµC‡]ºté³Ï>;bĈ«®ºjöìÙ…;ò81§¡|ÇM™2eÊ”)iO€v„ráG€Þ¦€>J8ô*Õ¸\(å@8Beò*{€QÞ©ÆáO5¤N8BÅò*»ßTcÙò§Ò%¡’y•Ýò 'Â*œvÜ'ª`„#T>í¤öL8B&hGœp„¬ÐŽ{f»`¯„#dˆvì‰jˆŽ-Ú±;Õ$!s´cWª N8BiÇÕ°O„#d”vTûJ8Bve¹U#À~è—ö@šòù$ƒñ˜Kòª`?GÈ´\&*oÇ`¿8T Ù•åxÊòaz€ý&!£²\Ú`_ GÈ"ÕX ö‰p„ÌQ]iG€8áÙ¢»ÓŽAÂ2D5öD;DGÈ Õ¸gÚ`¯„#d‚jŒÐŽ{&¡ò©Æ8í°Â*œjÜWÚ 'Â*™jÜ?Ú $áK5íÐp„ʤ8è„#!€á@ˆp D8Ò/í2Ä-~€>M8ô’>qƒ$7röÀ¡jB„#!Usô‰Ó¶ÊHÇ(s‘ƒCô òïZp¨€á@ˆCÕP±þààŽP™Êÿ¬S÷ èsª D8"Ž„GB„#!€á@ˆp D8" ¼yãyʆp D8"Ž„GBú¥=• ŸOr¹$ŸO{Ž>Ëwø¯’×P-ú+ƒ”Gí¸ß|߀ÿÑýoMP6ªæ )´#ûÄË}ˆpä`ÒŽPÁ„#™vŒ³Ý@ß"!ª€>G8rðÙtÜ+Õì_P6„#‡„vÜÕ@%9T´cIª€¾K8riÇ"ª€>M8rhiG¨‘CN;Øn ¯ŽÐT#@8Ò2¾é¨¨ ýÒ€¬(´c>É\?æ’¼j 2GzW*s© @År¨š^’Ùõ?L@%Žô†ÌVcv 2G¹ŒWcv Gè%Ú€¾N8rhÙn€Š!9„Tc›Žôi‘CE5–¤軄#‡„jÜí@%9øTã^iGú"áÈA¦ƒ´#}Žp„ÔhGúáÈÁd»q_iGúáÈA£ ² GÕ¸ßl:ÐWGÕx€´#}‚p D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€~i@:r¹èz>Ÿö¬@yŽ%}åP5!v98z:æT áÈAPþ¼r¹>0$”9‡ªŽ„GB„#!€WU—vÙe—½ñÆE‹C† y饗Ò ±´-[¶ÔÔÔœp ]ëêêÒž 5±„ÖÖÖ–––É“'ßsÏ=iÏP.œãX–-[’$)ÚnÈ8áXBSSS’$Ç|Úƒ”‡ªK(„ãöíÛg̘ñæ›oöïßÔ¨Q³fÍ:ýôÓÓ 5±„­[·&Irï½÷žxâ‰çw޻ᄏråÊU«VÝqÇ—_~yä3444­466¦ýeû£ûËzf Ƕoß^SSsÓM7͘1£°²zõêY³fÝu×]&L¨¯¯ßëg‰P1º¿¬g6%3Ž»wï¾ï¾û:[]]=sæÌ$I|ðÁ¢7nÜÕW_}ÿý÷¯X±¢³&2%ÓáøÙgŸu½áÎGQÇ’ÆŽ{ÿý÷oÚ´)í©Ò‘ép¬©©é¾ùœÏç;::r¹\UÕÿ\r^]]$ÉÑGöÔép;žbMMM£FºæškŠÖׯ_ŸdøœáXì„N8묳^}õÕ%K–t.®_¿þ¨¯¯¿øâ‹Ó ¹|>Ÿö egãÆ×]w]ssóèÑ£O:é¤wß}wÆ ýû÷_¸pá¹çž»×ÿ½¡¡ÁUÕå&—KüI/7ž ïÊìk½ÇFŽùä“ON›6­¹¹yùòå---Ó¦M{úé§#ÕP©2}qÌ 6lÞ¼yiOPF„#Ðr¹Ð¢ƒ×åL8½ATç8))¹ @Ž„GB„#!€á@ˆÛñ½¥ûeÔnäЧG ·E¡7«èkª D8"Ž„G %®Œ)OÞCè™p D8"Ž„xç€ +y)LѢ˘€Ï G€ ë…Þ è™CÕ„GB„#!€á@ˆp  —T=Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€~i_.ZÌçÓúáHR„p(8T @ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„d:ß~û톆†×^{­ä£K–,™>}ú˜1cÆË-·|ôÑGiÏËþkhhH{ŠyRÊ“ç¥ yR(™ÇGy¤§‡î¾ûîÛn»í­·Þ:çœs ðÄOÌœ9sçÎi š~i‚ÖÖÖM›6-[¶ìÑG-ù‹->|øã?>lذ$IæÎûðÃÏŸ?ÿöÛoO{|€tdqÇqÊ”)W^yeOÕ˜$Éc=ÖÑÑ1{öìB5&IróÍ7×ÖÖ>÷ÜsiŽ,î8Î;w×®]I’,^¼xõêÕÝ?`íÚµUUU^xaçJuuõ\°lÙ²uëÖ}öÙi)Èb8N˜0¡ð‹•+Wv4ŸÏoÞ¼yðàÁƒîº~ê©§&I²uëVádSÃqÏÚÚÚÚÛÛëêêŠÖkkk“$ùðÃ#ŸÄpeÈ“R†<)åÉóR†<)” áX¬péôQGU´>`À€$IZZZöúÓþ"¾Š ÇÝ»wßwß}¿­®®ž9sf䬫«ËårmmmEëüqòù¾#@Ul8~öÙg÷ÜsOço8âˆ`8öëׯ¶¶¶ûÎbkkk’$×YdMņcMMÍ~2>|øæÍ›[[[عøÎ;ïJû+HGïã¸W'NlooñÅ;WòùüªU« 4f̘´§H‡p,aúôéUUU ,(œ×˜$É¢E‹š››/½ôÒÃ;,íéÒQ±‡ªD}}ýœ9sæÍ›7uêÔóÏ?¿©©iÍš5£G¾þúëÓ 5±´k¯½vèСK—.}öÙgGŒqÕUWÍž=»pG€lÊåóù´g pŽ#!€á@ˆp D8"Ž„¸8îþûïÿå/™$ÉÏ~ö³éÓ§§=Nv=ûì³7ÞxcÑb}}ý¿øÅ+®¸âk_ûZÚfÚêÕ«üñ¿ýíoÿþ÷¿xÜqÇMš4éŠ+®ð&«½¯ûOJuuõàÁƒÏ<óÌn¸aôèÑiHÖ G*Üï~÷»Â/žzê)ᘺ#FœrÊ)…_ïÞ½{ûöí«V­ZµjÕ7Þ8kÖ¬´§Ë¢Ý»wßzë­K—.M’¤¶¶öË_þòG}´aÆ¿üå/‹/þÍo~SWW—öŒYÔõ'¥µµuÓ¦MË—/_¹rå­·ÞzÅW¤=™&©d7nÜ´iÓ—¾ô¥æææµk×¾÷Þ{Ç{lÚCeÚ…^xÇwt]y饗fÍšµpáÂéÓ§sÌ1i˜9wÞyçÒ¥K¿ð…/ÌŸ?ÿŒ3Î(,¾÷Þ{?ýéOW¬X1{öì|0í³¨è'¥££ãé§Ÿþñü“ŸüdذavèI‘s©d…íÆiÓ¦Mš4)ŸÏ?ýôÓiOD±ñãÇ;öÓO?}óÍ7Óž%sþõ¯-Y²dذa¿ýío;«1I’c=öî»ï>ùä“_~ùå7¦=&IUUÕÔ©S.\˜$ɽ÷Þ뽂I‘p¤bþ^]]ýío{òäÉI’,[¶,í¡(¡ªª*I’¤=Hæ<øàƒù|þûßÿþÀ‹:üðÃo¸á†qãÆýóŸÿL{Lþcüøñcƌٸqãš5kÒž…ìŽT¬—_~ùý÷ß7nÜ!CÎ<óÌáÇoܸѫ`¹yå•W^yå•SO=õ´ÓNK{–Ìyþùç“$¹ä’KJ>zÉ%—üú׿ž2eJÚcò__ýêW“$Ù¼ysÚƒ]Îq¤b=õÔSÉç/й\nÒ¤I=ôвeËnºé¦´GË®U«Vu^óÙgŸ½÷Þ{›7o>çœsæÏŸ_Øw¤×ìܹsÇŽC† é߿ڳU__Ÿ$É–-[Ò„ìò75•içÎÏ?ÿ|ÿþý¿þõ¯V:V;=(EÛ¶m[ù¹?ÿùÏ…“¦¦¦W_}5íÑ2çý÷ßO’døðáiÂ>2dHòùs©ŽT¦+V´µµ]tÑE555…•3Î8cĈÛ¶m[·n]ÚÓe×w¿ûÝÆ.6lØðÐCÕÔÔÌ™3Ǩ½¬p »é[š››“$6lXÚƒ]‘ÊT¸žzéÒ¥ Ÿ9räöíÛ—È”“šššsÏ=÷¿øE’$¿úÕ¯Ò'[ 0pàÀ>ø ­­­älÛ¶mÖ¬YwÞygÚ“ò_…¿ÄŽ;!»„#¨¹¹yõêÕGyäÿû_“&MJ’ä¹çžÛ½{wÚ3ò_§vZuuµÓ¶zßĉ“$)Üý»»Â~XÊÊÿøÇ$IN>ùä´!»\Czæ™gÚÛÛ¿ùÍoþüç?/z袋.jjjúÓŸþäºåãƒ>hoo/œõOoúÞ÷¾÷ä“O.X°`òäɃ êúЮ]»/^œ$É„ Ò“ÿxùå—ÿú׿Ž9ò¼óÎK{²ËŽ#¨ó¾ßÝ*Ü[ÄÑêòñé§ŸÞu×]I’|å+_I{–Ì9rä·¾õ­;v|ç;ßéz}RssóM7ÝôöÛo;ößøFÚc’äóùgžyæ?øA’$³gÏÎåriODvÙq¤Ò¼õÖ[ÿû߇ZòåS§N]°`Á /¼ðÉ'ŸuÔQi›9]oÇ“$I[[ÛÆZêëëô£¥=]Ýu×]»víZ±bÅÕW_=pàÀ†††ÖÖÖwÞyçÓO?=å”SæÍ›ç6I©èú“ÒÒÒÒØØøÉ'Ÿ~øáwÜqGáVŽáH¥é¼}cuuu÷G?þøÓN;íõ×_ÿÃþPrK’CjÛ¶mÛ¶mëümuuõ‰'žxÉ%—üð‡?ìþæ%ô‚#ûì¯~õ«W^yeÉ"zAן”ªªªÁƒO˜0á†n=ztÚ£‘u9÷´ Â1B„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"ùÿ [¦ÑPëæ¿IEND®B`‚statistics-release-1.6.3/docs/assets/anova1_401.png000066400000000000000000000230261456127120000220430ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A%ÝIDATxÚíÝ}lUçaøñç3p \Û ØX7©à,¬I-`SHxI¡“²‰Ð¶`±ˆF—‘¹B¬É”VjšIÉH‚£¤±hQÚòöG'Ù T„u1e¼(ÚÊK‹‹ìŒ`ßß÷W×µIú„€ÏµÏç£ü?÷€Ÿã{¯Ï—çÜso&—ËømŠ’ž½ƒp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp JqÒHƻᄏvíÚ£G^¾|¹ªªjñâÅögÖe›M›6544455ÝrË-S¦L©««+//Ozâ‰Éär¹¤çÐÓ~øÃ>öØcíííŸùÌg²Ùì[o½uõêÕ—^zésŸû\Ç6«V­zùå—KKKÇêÔ©ÿþïÿ¾ãŽ;Ö­[WRR’ôô’‘ºp¼téÒôéÓ?øàƒW_}uܸq!„ÇÏ;wÈ!{öì)** !466Κ5kèС›7o6lXáé§Ÿ^·n]MMÍ?ýÓ?%½ÉHÝk·lÙÒÜܼhÑ¢|5†î¸ãŽûî»ïüùóï¾ûn~¤¡¡¡½½½¶¶6_!„eË–e³ÙíÛ····'½ÉH]8þû¿ÿ{&“™5kVçÁ+V466Þyçù/8PTT4uêÔŽ úõë7yòä .³xñâÑ£GwÙæ{ßûÞÖ­[>üì³Ï&=e 1™ÌuþÐg¤7?¾jÕªÛn»­ûM íííµµµÃ† Ë,[¶,›Ínß¾½½½=é‰ÉÈå>ô¿ßz+@ßÒp¼zõêã?^^^¾lÙ²î·8p ¨¨hêÔ©#ýúõ›ûlÒÓHLêÂqÇŽ!„'žx¢cípôèÑ‹-jkk{ë­·ò# íííµµµÃ† Ë,[¶,›Ínß¾½½½=é=HFêÂñäÉ“¥¥¥cÇŽí<8zôè™3gò_8p ¨¨hêÔ©ôë×oòäÉ.\8xð`Ò{ŒÔ½ÆqíÚµÅÅ]÷úèÑ£!„Q£F…r¹\SSSEEEEEEçmÆŒB8sæÌøñã“Þ €¤.o¿ýö.#ûöí«¯¯0`À¬Y³B---mmmeee]6Ëf³!„‹/Æ|—ªªª.#Iï:p=ºÖS+uáØY[[Ûo¼±bÅŠ¶¶¶çž{îÖ[o !´¶¶†JKK»lhРÂ¥K—bþ™}F÷ÃzjSÒ©ê®ÊÊÊ2™LKKK—ñË—/‡_­;¤p쪸¸8›Ív_Ylnn!t\g 6Âñ*++/\¸/Å'OžÌß”ôì’!¯aÚ´immm{öìéÉår»wï.//¯®®NzvÉŽ×0gΜ¢¢¢Õ«Wç_×B¨¯¯?þüƒ>Ø¿ÿ¤g WU_ÃÈ‘#ëêê–/_>sæÌI“&:ujß¾}cÇŽ]°`AÒSHŒp¼¶ùóç:tëÖ­Û¶m1bDMMMmmmþyÒI8~¨3f̘1#éY ¯q ŠGèÝ2™ð—ärIï½p€Þí·6_&£ ¹1œª Šp Šp Š×8’¼Oþ²n¯Ý€ Iž—u@¯àT5Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q¼x!ú䟤Ò÷ø™tæíÐH„p,PÊ€£¡HŠSÕDŽDŽDŽDŽDŽDñv<ôAÞ¸ª ?μçÝuŽ…(— ™Œ‡5×à‘:ž)ƒÉÓ':Ÿœp,PÚ‘î<$à:t~ÖˆTqwß Â±piG:ó`€O®û2¤§UcùfŽM;’ça7–Ù}Œ ôáXè´#pó8‘Ý«¹Ëzžpì´#@¸Æ‰ìàRä‚“ ¿>:2ö<áØ;hÇÔr¿CÏË?é2aR2!¸g’#¡p©FHDFš°Ž¬w%Â'ÇôùEGÒïEHDþ©çÙWàòÇD‡Åž'{혪á©×‹äûÞa±‡ Ç^Æ“$ º çå—¯<õz‡Å&{O’¾Í¡ zžÓÓ½šÓÖ=I8öJÚ±¯RÐÃ,4ö N[÷áØ[y†ô=Ž^ÐÃ,4ö1–{€pìÅ´c_¢¡‡yÒõI–o6áØ»yzô `ГœžîóoáØëyzÄsz:%œ¶¾I„c_ {5+Ð3,4¦ÓÖ7ƒ„$9ŒAÏð\K­Žvô¸!¬8öþQÕ9’AÏð\K9K7pì;<+zG2èNOÓÁQò†Ž}ŠgEoáH=Àu0tኙON8ö5Ú±ð©Fèžh\“GÅ'$û íXÈÌè½\UÝw‰Ç“ šzŽß‚pà Ǿ£ó¯È\.RxòwI—ƒ™H¸<³:s®ƒE8öbú£—êrOu+~(P±—}OçûÑý @!޽€˜H @!ŽêÃ^ÓíµÞé$"(±@‰ ÐxG¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢'=àÉdnÀ6¹\Ò»Ao  wÓ|ô§ªˆ"ˆ’ÆSÕ­­­ßþö·7oÞ|öìÙÁƒ3fþüùwß}w—Í6mÚÔÐÐÐÔÔtË-·L™2¥®®®¼¼<é¹$&uáxõêÕ‡~øÐ¡CÙlö®»îzÿý÷÷ïß¿wïÞÇ{ìÑGíØlÕªU/¿üriié„ N:µeË–ãǯ[·®¤¤$é=HFêNU744:thܸq»wï~饗¾õ­o}÷»ß-++[³fͱcÇòÛ466Ö××WVVîØ±£¾¾~çÎóæÍ;|øð³Ï>›ôô“ºpܱcGá‰'žèX;=zô¢E‹ÚÚÚÞzë­üHCCC{{{mmí°aÃò#Ë–-Ëf³Û·ooooOz’‘ºpzôhaÔ¨Q!„\.×ÔÔTQQQQQÑy›1cÆ„Μ93~üø¤w © ÇÛo¿½ËȾ}ûêëë 0kÖ¬BKKK[[[YYY—ͲÙláâÅ‹1ߥªªªËHcccÒ»\î‡õÔJ]8vÖÖÖöÆo¬X±¢­­í¹çž»õÖ[C­­­!„ÒÒÒ.4(„péÒ¥˜¿Y&@ŸÑý°žÚ”ì³áxõêÕW^y¥ãË~ýú-\¸°óû÷ïÿÚ×¾vâĉ#F|ãߘ8qb~¼¬¬,“É´´´tù /_¾~µîB}6?øàƒçŸ¾ãËt„ã•+WV®\¹~ýú.^¼ø‘GéüîŒÅÅÅÙl¶ûÊbsss¡ã:k€´é³áXRRrÍóÅíííK–,Ùµk×ôéÓŸzê©k†`eeeSSSssó!C:Ož<™¿)é=HFêÞŽgýúõ»víz衇֬YóaˇӦMkkkÛ³gOÇH.—Û½{wyyyuuuÒ{Œt…c.—Û°aÃàÁƒ—.]ú›Í™3§¨¨hõêÕù×5†êëëÏŸ?ÿàƒöïß?éHFŸ=U}MçÎ;}útIIÉܹs»ß:{öìšššÂÈ‘#ëêê–/_>sæÌI“&:ujß¾}cÇŽ]°`AÒ{˜t…ãÙ³gC­­­GŽé~kÇ…Õ!„ùóç:tëÖ­Û¶m1bDMMMmmmþyÒ)“Ëå’žC_SUUå} Kí±>]¯qຠG¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢'=øp™Lב\.é9@z G U&sL¼æ Ð#œª¦ }X ær!“¹ÆJ$pó G ÏG/+Zq€„G¢Gz¡ü k g G ŒË_ P G LÌj¢¸€$G¢G¢G ÏG¿Y£óÔŸCAʧa—F̧¤j€„G X— e$#$J8RØÄ" ¯q Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp JÚÃñ½÷Þ7n\]]]÷›6mÚ4gΜêêê»ï¾û+_ùÊÏþó¤'›^UUUIO>Ї(ÎC”%Õá˜Ëå–.]zùòåî7­ZµêÉ'Ÿ~üxáÅ_|ñÅ;¿ùæ›o¾ùæèÑ£¿ÿýï‡*++›ššš››;_:sòäÉüMIï@2úl8^Ó§>õ©/|á G.]º´wïÞ‘#GVWW>é)@WW¯^}øá‡Ÿy晟ýìgwÝu×§?ýéýû÷ÏŸ?Íš5IO B¡¹¹ùþûï߸qcáÞ{ïýÝßýÝm۶͘1ãÈ‘#IOÞÍGR š››ò“Ÿ|ï{ßû×ýפç]544:thܸq¯¾újIIIáøñã555kÖ¬ùÜç>÷ÇüÇIO´{á…Î;·hÑ¢/ùËù‘ï|ç;ÿøÿøõ¯Ý/U> +ލ3fÌ;×/8 ÓŽ;BO<ñD¾C£G^´hQ[[›Ö‚ÿüÏÿ,))ùÒ—¾Ô1òÀ >üèÑ£mmmIÏŽ^ÌŠ#êé§Ÿþ¿ÿû¿† þã?þ#ééÀo8yòdii騱c;Ž=:„pæÌ™¤g¡¬¬l̘1ì<8`À€+W®\¹r¥ã<ðq G Ô=÷Ü“ÿŸû·Kz.ÐÕÚµk‹‹»þþ‘¶¶¶7ÞxcÅŠmmmÏ=÷Ü­·ÞšôŒà×7oÞœËåBcÇŽýßù¤gDïæâ€ë·ÿþ3f<ýôÓ·Þz뫯¾úñIÏ~Ã_ýÕ_;vlïÞ½K—.ݹsç_ÿõ__¾|9éIÑ‹ G€ëqåÊ•§Ÿ~úoþæoÞ{ï½Å‹oß¾}âĉIO ®!“É :tþüùù—ù?ÿó?;wîLzFôbNU|líííK–,Ùµk×ôéÓŸzê©aÆ%=#øµãÇ¿öÚk“'O¾ï¾û:çßàÿ÷“ž ½˜G€mýúõ»víz衇֬Y£)4C† ùÎw¾³eË–.ã§OŸ!üÑýQÒ¤ŽO.—Û°aÃàÁƒ—.]šô\à*++«ªªöîÝûÃþ°cðÇ?þño¼1hР &$=Az1§ª>žsçÎ>}º¤¤dîܹÝo={vMMMÒs$í¾þõ¯?ôÐC_úÒ—ª««ÿ÷ÿg?ûÙ~ô£Š+\øÏ'!>ž³gφZ[[9ÒýV—ÈPî¸ãŽüàÿò/ÿräÈ‘cÇŽ >üÏÿüÏ}ôÑüçÁuËäßÛ >š×8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8åÿ ÊÙxO:X IEND®B`‚statistics-release-1.6.3/docs/assets/anovan_1001.png000066400000000000000000001341761456127120000222260ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A€IDATxÚìÝ{\LùÿðÏL¥’®²ÚM1µ¡é"E­%k7–½Ø6V¨/VRn¹WXÂf]s·kw]B¾v‘²m¡Rº¸$•îjÎïóÝó›š1eêL§×ósΜ9çýϼçóùœÏáQEÞ„ÏvÐ> q¹ q¹ q¹ q¹ q¹ q¹ q¹ q¹ q¹ q¹ q¹ q¹ q¹ q¹ q¹ q¹ q¹ q¹ q¹ q¹ q¹ q¹ q¹ q¹ q¹ q¹ q¹ q¹ q¹ q¹ q¹ q¹ q¹ q¹ q¹ q¹ q€v¦ªªjåÊ•¶¶¶ÚÚÚÇÿí·ßØ FGG‡Çã=}ú´ñK}úôáñx‡nÕ^¼xQPPP]]M¯ª©©ñx¼ÊÊJ…œ.ãwÞ™0aBAA!¤¬¬ŒÇã©©©57Bh×8@;3yòäÅ‹gdd˜››¿~ý:11q̘1­Ÿ)­¯¿þÚÔÔô×_¥Wmlllmmù|E~¿›ššÚÚÚššš[µjÕùóçkjjèW髌Çãikk;99éëëB™—ø|~Ÿ>}!Û¶m£(jìØ±t}5vìXMMMMMÍÛ·oSU__ß³gOBHÿþý‡ª¢¢¢ªªzÿþ}Š¢|}}éÌÕÑÑQUU•þ%ÙÜÄñ믿&„Œ9²k×®„ÀÀ@ú%:¤wß}×ÝÝ]UUUMMíæÍ›Òâ¹xñbÿþý !³fÍJOO§þ8J; ó)uîÜÙÆÆ†îùè£ÞXf,i~~¾D…&í\#„v ‰#(]ËtïÞ²gϪQâøÆ_ÀLc½ECC#>>¾wïÞ&&& ,¸ÿþ| ­­mggÇ´ 4ùC\Z–öìÙ3BˆxÓBCCý]²víÚ·Ü?ÐZ[ffæ˜1c´´´˜+EGGgçÎÔ?>!dÕªUEvêÔ‰rõêUæ¥3fäææÖÔÔ¤§§Bz÷îM_zQQQ„)S¦P•——7lذ &Ðgtuu%„;vìÁƒ|>_UUõáÇE­^½š>f³Ǭ¬,:æÇSE‡¡¢¢RTTtûöm:ý*--¥(*<<\UUuÞ¼yÒâ¡ýÎdGga>ŠŸþ™¢¨³gÏÒ‰¸´"˜™™õïߟÎ\ !^^^Ô¿ëXç¢ðK˜[8‚‚ѵLLLŒ¶¶v=*++%GÙ¿€Å˜ªMMMÍÆÆ†^îÔ©S= !ï½÷%½a@Zâøßÿþ—bbb"±=44”ÂÔË-Þ?ÐÚF]]ÝÍ›7·nÝ:dÈúÊzøð!So0¯Ã† #„ÄÅÅ1ÍlÏž=£_Šo<‚«ÿþô«eee?þøã´iÓìííé—:D÷! 2„Þ'''‡Ié+šF§tÒÇC‡BÆŽËl¡÷<þ<ýÒÈ‘#—·Éx(鉣Œ³Ð…ŠŠ Ý/TRR"­3„éD¢Mž<¹¤¤„úwâ(ã\GnÁÍ1Ð*LLL.\XPP°aÃñí÷îÝÛ½{·ŽŽNjjêéÓ§/_¾Lùþû}û6ŸÏôèQYYY~~~ïÞ½'L˜ð×_]¸paàÀõõõýõ—´Øòòò!tW—8º•”~õmö§-X°`À€æææ£F"„xyyIAÆGáááAŽ](&%%™µ•™™!D<ª’’’ªªª;wîЯúúú2÷D?~üû7y–‡¦¦¦æååÑ?Ð÷îÝ+±Ã? hÒëׯ.\8cÆŒ¿ÿþ›Þòäɓׯ_B³ÛÑ£G !OŸ>½xñ"!dÀ€Eÿ0{ñâÅ„ &Nœhaa‘ššZQQA9uêÔƒ>øàƒ-[¶|þùçÌ…iiiI¹rå =UQÑ/íØ±£úô8Eiè.…ÄÄÄ¢¢"BHvvvJJ ŸÏ·³³£{W®\¹òêÕ+BȲeËttt-Z$-FãJOÆYþŸ"ϹDrGh-ššš«V­ª¬¬¤‡ ÑÞø«T¼1€Æü&¦Ñ½0âšûCœžá¬¨¨èêÕ«„ÚÚZOOOOOÏ?þøƒ2`À‰fƒ7îßäYð •ôïßÿ³Ï>«¬¬ …B¡ÐÆÆÆÜÜüåË—ãÇïÕ«½Ç wuuµµµ­©©;v,3ÜEœÍèÑ£eÊ”‘#GnܸñÝwß%ÿT5‰‰‰žžžï¾û.Ý+BQ”³³³­­m}}}¿~ýÜÜÜæÌ™#~7‰î`>|ØÚÚÚÇLJ®»Fíìì\WW7{öìwÞy§ÿþ#GެªªêׯßðáÃW¬XQ__?aÂiñBè±:7nLLL?¯Œ³(ü?Eö¹¤EíÛ}åÀ5âczD"3‹ =Æ1##ƒÒ¥K—ÂÂBŠ¢îÝ»§®®Îçó I”زxñbBÈÂ… éU BHqqñÈ?÷¾~ýš®§:$ãæ™3gBAZZEQtúúúô€ô·Ù_Æ}”â!Éø(¨†íß¿ŸíÿOeT]]½~ýú~ýúuéÒEOOÏÞÞ~Ó¦MôÕÌUö믿öéÓÇÈÈÈÏϯ²²’’rÃ\EEÅìÙ³ÍÌÌtttÜÝÝÿûßÿÒÛ«ªªèV´wß}7,,ìÛo¿%„̘1ƒ¢¨¿ÿþ›î(077‹‹{ãt<¾ÿþ{Š¢êêê–.]Ú·oßÎ;¿ÿþûQQQÌt<¯^½ 077×ÖÖvuuýã?dÇ“––Ö«W/MMÍÍ›7Sÿ¾«ZÚY$> µ¥œšìIDíGP0‰Z†ºGÄnŽñññ!„5Šn‡  šª¹äL9Bï6|øpz°ÎÁƒeT…/^¼ppp 344¤Ç9Ñ5r^^Þ[î/=+í£ (jöìÙ„GGGzh9ÈIþI¯Þ¨¶¶öâÅ‹M¾TUUuíÚµ6.šŒxÚ ºª¡u¹¹¹}ñÅâ[~üñÇ¥K—^¸pÁÔÔ4***::úmNáååÕ¿ÿúúúÌÌÌiÓ¦MŸ>òûï¿Ëx‹¾¾þÕ«W—/_îêêZSSc``0f̘U«V=yòdûöío¿¿œd|Ó§OïÕ«×íÛ·333[ëÿdRWW÷ððhò%MMM'''剠Íð¨æûL__?  ®®nÑ¢E6667nd;.2{ö윜œÅ‹wéÒ%&&æÁƒ§Nêܹ3Ûq©²@ûpÿþýŒŒŒŸ~úÉÆÆ†2~üøÍ›7‹D">M¶À¦ªªªÄÄÄ­[·º¹¹Bbbb˜’’2tèP¶CBâ(¯qãÆY[[ÓËï¾û®ª*>:xƒÂ«W¯Þ¾}»¸¸X]]ÝØØX(:;;wéÒE§°±± …ôª–––††FII ÛEnBWu󔔔俿®^½ÚÖÖ6""¢É}¬¬¬è…„„¶ã%ùùù¦¦¦lG`LË™››³BK<|øpãÆW®\yÿý÷{÷îݵk×úúú/^dddÛáÇ¡«Z.«W¯^ºté„ ª««7nÜ(lmmÙŽ :º¤¤¤§OŸöéÓ'99™Ù( Ù 8‰£\ ~øá‡uëÖ?^SSÓÅÅeÕªUjjjlÇÝýû÷)Š ߸~ýúQ£F±pGyõïß?>>ží(:—››ËvÊnêÔ©S§Ne; è(8€2âñxEµÓéx®_¿.Ïn]»vµ´´d;X€f@âÊ…žt·]Ï öóÏ?˳›¥¥%Gh_8€¡ÙŽâm­ZµŠíZGP hhà<$ŽÀ>n44pG`Ú$ŽÀ44´/xä °€Çãu¬133óéÓ§„Ë—/ÏŸ?ïÞ½ÌÃKÚ$ŽÐÖè”±#düôÓOïܹóäÉ“Y³f=þ|ãÆ[¶la;.€Bâm§ã44Òâââ‚‚‚†zîÜ933³]»vEFFž8q‚í¸Zc t¨”‘V\\ìææF¹~ýº»»;!ÄÊÊêÙ³glÇÐBhq€V×Ñ={öLLL,((¸téÒ!C!W¯^566f;.€Bâ­«ãŒhllöìÙÛ¶mûðí­­bcc—.]êããÃv\-„®jh-˜£qøðáçÎËËË …|>_(îÞ½ÛÅÅ…í¸Z‰#´ŠŽÙ7M+..f–544¬­­++++++-,,èW ÙŽ %8€‚¡¡ÑÕÕUöYYYlÇÐH@: ¤É“ vä†FÆùóçÙ U q©$²@ÙI!ï½÷ž´—jkk7lذhÑ"¶ch $Ž]mm­±±qaa¡––½¥¤¤$88ø—_~!„Œ=zýúõ–––²‚†Æ&•––~ÿý÷ùùùÌ–’’’‚‚¶Ç{÷î‰7!3˜ÿ;‰ì¿É±?öÇþ¤Ãt<\Æû‡ÄöÚÚZ]]ÝÊÊJúQxåååâ¯úùù]½zµ¤¤äÚµk555žžž²OÑÁkRi–,Y’˜˜Ø½{÷¤¤$ ‹îݻ߻w/&&†­x,--©¦0;4¹Šý±?öorÿŽ -Ží“J«Èx<Þ7ß|³sçÎŠŠ ñÜîÉ“'‹/.//_½zõŠ+$ÞUUUuâĉ_~ùeÔ¨Q<¯¤¤ÄØØøâÅ‹£Fjò¨Fe¸víÚš5k<<<?~üÁ8::öíÛ÷ܹsŽŽŽl‡ÐÜoqÌÌÌ|úô)!äòåËóçÏß»w¯H$jÁqÊÊÊ-Zääääèè8sæÌ¼¼<¶K3«6EQMö§ÐwîÜI¯2»-_¾¼{÷îôö… RuåÊñ7…Bú¾`Š¢ôõõ555Ÿ={Öx¼#²Æ7ª®®600 „X[[ÓwR»»»Ÿ;wŽí¸Zˆã‰ãÁƒ?ýôÓ;wîÐýqÏŸ?߸qã–-[Zp¨ÐÐÐ[·nEEEíܹ³¶¶Ö××·ªªŠíòA%gÆÖ8)$„„……5¹!nܸ¡¯¯O¯ÆÇÇ¿zõÊÏÏO"kD—<,--:T]]meeEßj——‡ªÚ/Ž'ŽqqqAAAC‡=w™Ù®]»"##Oœ8ÑÜãTUU%&&Ο?ßÍÍÍÎÎ.&&æéÓ§)))l—€±ÖDʼnD›7ož2eÊ‚ (±Ñâhh”ßüùóOŸ>}ôèÑÁƒgddŒ1búôéÆ c;.€âøÇââb777BÈõë×ÝÝÝ !VVVÏž=kîq mll„B!½ª¥¥¥¡¡QRRÂvùdáñxLËbs³½œœŸ¬¬¬ØØX??¿–œœœ®]»VYYÙµk×øøø„„}}ýqãÆ±@ q ¼‘ººººº:!D ¶Ãx+OgÏž¸uëV;;;‡ØØØ˜˜˜… ¶ø€"‘(>>~ÕªU~~~ôWi“”êybæææl‡€`ŒDß´ŒVÀ+W®¸¹¹UTT0s4Ò !={öÔÒÒ_&„Ô××O˜0!00påÊ•ôÎ,64¶÷Ÿ/ wïÞíââÒ²£=|ø0$$äÁƒK—.ýòË/Ù.th­—É]¹r¥   ÿþ.\ Gã%&&>yòÄÄÄ„íB·?›6mb–kkkïÞ½»k×.___¶ãh!n&ŽÅÅÅ̲†††µµueeeee%ÝFX\\lhhØÜcþý÷ß¾¾¾~øá¶mÛ˜N¸'''‡¢(ñqxÆ Û¿ÿĉÙ­ý‘ø™êááaee5oÞ<___MMM¶£h6n&Žôt24·+¹¾¾> `Ò¤IsçÎe»p æêê*Þ~éççI:ücµZI¯^½jkkÙŽ …¸™8Òó¥)PRRÒÓ§Oûô铜œÌl-h¹hKIá·B,,,2*Jii©øjyyùÖ­[{ôèæFh§¸™8¾÷Þ{Ò^ª­­Ý°aâE‹šuÀû÷ïS(¾qýúõM>„  ¢o¸¡oÇ…pvv–Ø¢¦¦¶fͶãh!n&ŽŒÒÒÒï¿ÿ^|®“’’’‚‚‚æ&ŽS§N:u*Û¥hEÌ­ÓíýFf¥Ò¸÷ÃÈÈÍÐ~qzôèàÁƒ322FŒ1}útúa2"kl………:::â[´´´´µµuuu›uœºº:¡PX]]Ýä«;vì°3pà@¶Ë œÅñ1ŽNNN×®]«¬¬ìÚµk|||BB‚¾¾¾ø#1:ÜÓÆ ³yóæ®]»BÊÊÊ¢££…B¡ø£Æß¨¸¸8::º¢¢BÚùùùC‡eí£ªÊñŠXÄýúE]]]]]"Ûá°}Óm/""bÒ¤I}úô!„dffêëëïÛ·Oþ#lݺuãÆ²÷ÉÏÏwqqqssc»¸À}O¥Ý=}ãÆ ¶Ch;hhdK=Ξ=›››Ëçó'OžqŒ700øè£\]]ÃÃÃçÏŸ?uêT•˜˜;;;iJ´kîøSçñß¿ èååË—/Y²¤ñ—/_Þ8k$„|ø¹sçâââöìÙÃçó…BáîÝ»Y|Á½{÷˜e‰XƲ2,71]ÒÒÞ+þÌ$goo/îÝ»7mÚ´V¹âxâXXX(1 ®–––¶¶¶®®.Û¡H¢ëG9÷Ä0¯öÂÔÔÔÂÂ"55•bgg'ñT‚6&>›]ã»°Œå6^¦ë1&;l¼Oã!­Ò–™ w^¿~mjj:gΜ}ûöµvY: nvU3 ³yóæ®]»BÊÊÊ¢££…Baÿ¹ÊÆÂ‚ˆ=KH¯˜0¢±}©¨¨þý÷ß)ŠÊÊÊš2eŠ©©é²e˘™Š@±Úùóç ú÷ïáÂf£‰‰ Û厷8FDDxxxŒ?~üøñùùùlÇ Iü'¸´}ÐÐØîDFF¾zõêòåË***„;wî49‡(DFFEQãÆ&F<‰×x^ñÜÜ\///==½îÝ»ûúú¾xñ‚í)Ž'Ž=zôHHHX¾|ùÀ ™ðÎ;ï´ø€uuuB¡°ººší’wðx¼ÜÜ\ñ-ç¤ÀˆÆv*))iîܹFFFôªƒƒÃ‚ ÙŽ €S***˜Vü   ÆUåĉ¿ëÉ“'³fÍêŒH$úüóÏëêêΜ9sðàÁK—.Íœ9“íÂ)nvUgggëééfggB¬­­™[ñóòò! ‡-..ŽŽŽÆ“‹@±?Cö*´#uuu;wßbddÔÐÐÀv\팫«k“Õ`“Û×™·49¯xFFFjjêŸþ) !3gÎ ‰D|>Ç[Ùš…›‰£——×ôéÓƒ‚‚¼¼¼šÜAbF4ylݺuãÆl— :Œhlï÷ìÙ³jÕ*zµ¼¼<::ºñ£P ………………%%%‰ÏIQÔ´iÓúõëG¯ZXXÐqÜLSSSUUU !éééŠ:¦¿¿¿¿¿ÿ­[·ÆÏvù€krss?K °hÑ"OOO‘H4a„ŒŒ SSÓ5kÖ°4ÁÖÖvÇŽ„çÏŸgff®^½z„ hn”ÀÍÄ‘yµººzff¦žž^·nÝ._¾üÛo¿ÙÚÚúøø´vVVV„„„¶? ’ŸŸÏvF®`ć9ÒIdnnîƒ:ø'ÓÞ™˜˜œ:uêÌ™3999:::Ó¦MswwÇ÷€’=ztJJЉ‰ÉîݻَEép3qd9sfÿþý‡ºk×.¶à8ióŠË–•••œœL/®^½úÕ«WIIIl—F¹p\PPpñâE¶‡7066>}úôÝ»wÝÜÜÆŽkll|æÌuuu¶ãR.¿9føðáçÎËËË …|>_(îÞ½ÛÅÅ…í¸0G#ÇáÖin“}å>zôH(ºººÒ«:::ššš%¥„Ï>pàÀK—.±—RãxâH155åóù©©©...vvvoÙIdoo¯TwLC;…›`8£ñßúöí{ãÆ fõÈ‘#L Юq>>YYY±±±~~~l‡  O“’’6lØ@N'„888,X°`ñâÅH¡aDc‡ræÌ¶C€V$qCL“×õµk׆þé§ŸþöÛoÌwp|øv]]Ä LFFF lÇÜ'>U‡x÷4F7p%¦ñ«¯_¿þâ‹/æÌ™³oß>dÀ1oqtttܳgϪU«èÕòòòèèhggg¶ã®i<ýuÂäŽâ¿BîЮ½q€òùóç ú÷ïáÂf£‰‰ Û±¼-Ž'Ž‹-òñññôô‰D&LÈÈÈ055]³f Ûq§4³(¾]"§”Ø"mö`PNA&M¥E7N|ãþýû'NœÈvøo‹ã‰£‰‰É©S§Îœ9“““£££3mÚ4www̯m@v³¢D‹ÅƒØŽš­ÉÙ¿ !AAAAAAlGÐ*8›8VWWgeeééé™™™3†"‰***ŠŠŠöïß¿`Á¶Ž“Ý®jnKNN–½CÐNaœ 7Ç»wïNŸ>ýùó焾}ûnÛ¶-"""))©¶¶–Âãñ8Bk§ß_<¿¿?³\SS#‰è±­"‘ˆ"Nž<ÉvŒÐ§Óèh¸™8®]»ÖÈÈ(&&F[[{Û¶mŸ}ö™ŽŽ½Q[[ÛÌÌŒíSdddî’_ncfmLLL\³fMDD„££#Ç»uëVXX˜Û‚b`Œ2t@ÜíwçÎI“&988X[[‡††OŸ>ý£> …VVVoùÔA Ìyñé9$¦ê1spئM›BCC]]]ÕÕÕÕÔÔœÃÃÃ?^ZZÊvhÐBôÏBfz¶.jfÆ€6ÆÍÇòòr@@/ÓshYYY±pú­@†ÂÂBñ-ZZZÚÚÚºººl‡-Çú%ÏT;x²´=n¶8Bpë4´¶Æó{H0`@LL Ó¾XVV- ñ7-&þc•nòÄŸ´%n¶8´¶ÆÓzãG?41iÒ$>}úB233õõõ÷íÛÇv\-ÄÙÄ1>>¾[·nÒVÙÚ+ÜæòëÑ£GBBÂÙ³gsssù|þäÉ“‡ ¦¦¦Æv\-ÄÍÄÑ‚¹«±ñ*Aâ-%1´ˆI:@uuu¡PhhhèââRSSƒ¬K|À ª hÜLÏœ9ÃvÀ5âlòUTÙÐXEEEppðï¿ÿNQTVVÖ”)SLMM—-[¦¥¥ÅvhÐ^59ÿ½ÐzS`à€7cªcñYu0 Þ(22òÕ«W—/_VQQ!„„„„ܹsgíÚµlÇí›ÄÌ_âÛ^/‰O<„JGÙ˜JSb;“;JÛ€’””4wî\zR0BˆƒƒÃ‚ ÙŽ @.sU"wÂÕ®j€–aºc$*Ç&ëJŒk„7ª««ëܹ³ø##£††¶ãh!´8B‡Æû7‰î‰ÉÒÈ¿3HdðFŽŽŽ{öì¡QM)//ŽŽvvvf;.à4BÛãf‹crr²ì\\\š{ÌúúúM›6;vLKKkäÈ‘sçÎÅåÚÞ‰g~ÿ7™Eiwð>´‹-òñññôô‰D&LÈÈÈ055]³fMkœ«®®ÎÅÅåÊ•+šššl—ÚŽD…_³ÐÚ¸™8úûû3Ë555"‘ˆnO¢÷ ‚“'O6÷˜QQQ'NœˆŒŒ$„|÷Ýwêêê³gÏf»  M>¿KZ*‰» A~&&&§N:sæLNNŽŽŽÎ´iÓÜÝÝ[ã¹VÅÅÅÑÑÑl—XÐzÕ‘Œ;¸¡ÃâfâÈÌÚ˜˜˜¸fÍšˆˆGGGwëÖ­°°0;;»æ°¶¶öСC¡¡¡„   ¨¨(<Ø$º§ß˜>²/´{÷î4hИ1c˜-ÕÕÕK–,Y·nϲuëÖ7²]Và&Ôx ãyϦM›BCC]]]ÕÕÕÕÔÔœÃÃÃ?Î<:VN÷îÝ«¬¬tss£WÝÜÜ^¼x‘™™Évù@1Þø0Ü= -³råÊ/¾øB¼‹£¾¾þ×_UìYüýý³²²<Èvq€û¸ÙâÈ(,,ÔÑÑߢ¥¥¥­­­««Û¬ãñx¶Cà”àààÅ‹ÿý÷ß ,PUe¿Ê¥k§¬¬,¶aº_ZŒýZ¬U 0 &&fóæÍ]»v%„”••EGG …ÂæÞÙP[[«©©ÉtLóù| ²²2iû+U¥lnnÎvJ ,Ò Òfjl3JõÉ(O0­”©·%///ggçY³f¥§§oܸQbvž¶§Tµ+w 3@~搜ˆˆ(((ððð?~üøñã=<<òóó#""š{]]ÝêêjfN ‘HTSSÓÜfKP*t²(þ€V"Ž?®¯¯?vìØ7Îù Ì8ÞâØ£G„„„³gÏæææòùüÉ“'6LMM­¹Ç144¤(ª¤¤ÄÐÐòâŠТ˜žkh_šìƒhU:::[¶lÙ¾}ûþó¶ch9Ž'Ž„uuu¡PhhhèââRSSÓ‚¬‘bii©¯¯Ÿœœn»µO„ Žã‰ãÊ•+555W¬XÁLŠQ__ÿ믿"qäiÅ»­Û¬ª ¥§§‡‡‡?~üXbû7Ø Ú1&™kí:Mü,â[ #ãxâH ^¼xñßÿ½`ÁLÙÍ ÒhK m”Øõ´½%K–¨««/[¶¬k×®lÇ!ÑåBZ¿Q•'ˆã~"ååååìì>þý÷ßg;à8t§@›é·‰‚ãÇëëë;699™íp@‘èÙÅØŽ iFFFÕÕÕlG\ƤŒŠšt¬ñT¸â:DâHÑÑÑÙ²eËäÉ“ÿóŸÿ° (3'-ÛȹbÅŠ³gÏ‹a;.à‰†Æ·ÏŧûÆô·Ð$ŽwUïÞ½[[[›^æñxß~û­Ý… ØŽ ZU´;¾¾¾"‘ˆ~ƽ8n?O¨kU­—Ïáj7Çììl===CCCCCÈ¿dddäííÍv€ /‰Œó~£Ž%—ÀvmJ¢ i+Á' ,âfâèåå5}úô   f Üþ¹ÏM>†í šá½÷Þ#„>|øÐÅÅ¥¦¦FCCƒí ZžP×–ÿœVàÑšÄÍÄ155•žy'==íX yš¬øÄçÙA¥íHEEEppðï¿ÿNQTVVÖ”)SLMM—-[¦¥¥Åvh,è Ó¶q1%v øÛf–h§¸ysŒ¦¦¦šš!dÒ¤IêÿVSS3mÚ4¶„¦IŒË&hh„v.22òÕ«W—/_VQQ!„„„„ܹsgíÚµlÇÕºš¼'·ƒÜuÁJ1ÅëL… /ÈÀÍǪªªØØXBHjjê† Ä_***ÊÉÉa;@øÙ3ÑÛ›|l Û¼ARRÒ† ŒŒŒèU‡ ,^¼xéÒ¥l‡ÖZ0™ð¿2p3q¬¯¯ÏÍÍ¥—™ŸÏ_²d ÛÂÿ“xv³‘ü;Y”ýTåTWW'ñÐ##£††¶ãjEßäÕÊÉ‘'KÄÉbBÇÍıK—.[¶l!„øùùÑ  Tš³(íqÒ'*c;|y9::îÙ³gÕªUôjyyytt´³³3Ûqµ.y.RN¦SÓDN:8nŽqdÄÅűü 3tFöèfŒ”Çî´½E‹ݼyÓÓÓS$M˜0ÁÝÝýÙ³gaaalÇʼn®ê Å„‹›-ŽŒôôôðððÇKl¿qãÛ¡u\Òr@§‰ø\bbbrêÔ©3gÎäääèèèL›6ÍÝÝÏçì/v“­ŠHáð5ÞAŠ ÇÇ%K–¨««/[¶¬k×®lÇÒA‰v²°°h²&E% “œœ,¾Ú­[·nݺÑË×®]#„¸¸¸°ck‘=;L¹Ì;H1¡câxâxÿþýøøø÷ß_Q¬««sqq¹r劦¦&Û…kä™™¶ñí/lG ð¶üýý™åšš‘HD½‰D„@pòäI¶clE¸Š8Œã‰£‘‘Quuµ¢ŽV\\]QQÁv±Ú‰NçÆsƒ!S®ú믿è…ÄÄÄ5kÖDDD8::òx¼[·n………ÙÙÙ± @ qv¨ -22rÅŠgÏž-(((Ó‚CmݺÕÕÕõرcl—©}cÒGdÐlÚ´)44ÔÕÕU]]]MMÍÙÙ9<<üøñ㥥¥l‡Ðoqôõõ‰DÛ[ð¬jÿ[·n?žíbqRFè uttÄ·hiiikkëêê²@Kp[§ÎÍÍåñx°3[|øÐÅÅ¥¦¦FCC£ ÎÛ‚ÍÖcnnÎÖ©OÖ¨T ,~2FN¬ÿÀxK“&MòððèÓ§!$33S__ß¾}lÇÐBO+**‚ƒƒÿýwŠ¢²²²¦L™bjjºlÙ2---Ùo<}úôܹséå“'O ¶‹¢ì¤%ˆÌ¬fEµ÷$ ¹zôè‘pöìÙÜÜ\>Ÿ?yòäaÆ©©©±@ qí‚x}Žæ œŸ|Ñ¢E7oÞôôô‰D&LpwwöìYXXX‹hooŸ••Õ1kü&Ÿ#±Œ™½dëÕ«Wmm-ÛQwðþMá§(JüfG4ÝÇ[MLLN:uæÌ™œœiÓ¦¹»»óùO—Y!‘G²€RxBLyyùÖ­[{ôèÑ1|B+¯rÑ(Hþù>’§ Z€›‰crr²øj·nݺuëF/_»v4ê?‚·„VF€&5£¦¦¶fͶãb‡xc•«‹Žöõ£•·¹Ð–Ñz¸™8úûû3Ë555"‘ˆnÉD„@pòäI¶clÿ†cpY4éüùó[ŒŒŒ:fs£DE¡Øz£qÕÄíJI|¾3ÔÀÒàci%Üì´ýëëÖ­355ýñÇÓÒÒÒÒÒöîÝkfffggÇv€í;ŠWU¨³d yïß^¿~=eʶãbŸGË5~ÍváZ—Œáæ '^ç#I7[›6m uuu¥WÃÃçN:þ|úѱÐ\5ðFUUU±±±„ÔÔÔ 6ˆ¿TTT”““#ÿ¡êëë7mÚtìØ1--­‘#GÎ;·q–°cÇñ³èé饤¤°ý@[È[£ZF=8ž8JÌã­¥¥¥­­­««ËvhíXGè xõõõ¹¹¹ô2³@ãóùK–,‘ÿPQQQ'NœˆŒŒ$„|÷Ýwêêê³gÏ–Ø'??èС'N¤WUUÛAÅŽ_žŠÂ4 TËÐ&ÚAýò6 ³yófº}±¬¬,::Z(bBCuðF]ºtÙ²e !ÄÏÏ^h™ÚÚÚC‡…††zxxB‚‚‚¢¢¢üýý%¦†ÈÏÏwqqqssc»Ü²H´)°逷Ðv´ò‚RáæGFDDDAA‡‡ÇøñãÇïáᑟŸÁv\íý£V_____ôèÑ÷îÝc;"eÇ,·à™U÷îÝ«¬¬d2B77·/^dffJì–ŸŸß£GšššŠŠŠÖ(…¢æ¤Ä(6ÂÆÃ¯9Œþ;NyAÙp]KK+::ÚÄÄÄÓÓSžãÔÖÖjjj2Ó|>_CC£¬¬L|ŸçÏŸóù|''§íÛ·×ÔÔ¬\¹rÆŒgΜ‘ÞÍÈÊÊ’¿ MÞÀ‹d #ãxâèèèØäö7n°šrÿ2oW`¶ß½{W(2÷§ëèèhjj>{öŒíÀ”ÑæÍ›===×®]K¡(ê§Ÿ~úæ›oæÌ™Cyýúõ¾}ûäLuuu«««E";ŠD¢šš‰{ûºuë–––Ƭ®^½zàÀÉÉÉrž Y8ž8nÚ´‰Y®­­½{÷î®]»|}}ÙŽKÙ1¹#“MöíÛW<Û>räHEE“G€¸Û·oÇÄÄÐËÙÙÙÅÅÅü1½joo¿ÿ~9chhHQTII‰¡¡!!äÅ‹E1=×MÒÑÑ122’èÎPŽ'Žôðð°²²š7ož¯¯oÇ|xƒœdÌì ‰¶lÙ2oÞ¼ùóç[[[³)€2ª¨¨PQQ¡—¯^½jllÜ«W/æÕÊÊJ9cii©¯¯ŸœœL III100âû$$$lݺuÿþý]ºt!„¼|ùòÙ³g½{÷VHA:à ËОÝâ8~sLc½zõª­­e; å%{>°œœœAƒ-Y²$66võêÕl  ¤ÌÌÌ’““éåsçÎ 8y)--í½÷Þ“ó8ªªªÞÞÞQQQééé©©©QQQÞÞÞô4ñññ „WW×§OŸÎŸ?ÿúõë7oÞ °³³“6J§po×^6ÃñÇÒÒRñÕòòò­[·öèÑÍä©®]»6|øðO?ýô·ß~“ÝYÐÁy{{¯[·ŽÇãåååݼysúôé„‘H”œœ¼}ûöÆ3xËPWW@ñòò¢JBöïß/>úè#C‡­^½:00PUUÕÝÝ}þüùŠý‚G¾Øaáî(hŒã‰£³³³Ä55µ5kÖ°;jkk µ´´è-¹¹¹IIIt†]\\l``Ðä{_¿~ýÅ_Ì™3gåÊ•l—@Ùy{{———=zôÕ«W3gΤ§ïž;wî¹sç¾úê«É“'Ë("±ýÌ™3̲¹¹ùöíÛÙ.4tOÏŸ?/±ÅÈȈ“Ío|$Ó'O/^\^^Îl‰DŸþ¹‘‘QiiéÅ‹¿ùæ›™3g9r¤ÉãŸ?¾   ÿþ.\`6ÚØØ˜˜˜°]t¥Ããñf̘1cÆ ñ+V¬6K@»ÀñÄ1$$äðáÃâ[ÊËË¿ýöÛ={ö°š"Iô4îJX¾|yãÇãfdd¤¦¦’Í™3g†‡‡34Þ™¢¨qãÆ‰oÜ¿?óx\Í‚íÞ7ǪªªØØXBHjjê† Ä_***ÊÉÉa;@E’gÄIXXXXXXRR’øÓlmmm§M›¶uëVzÕÂÂBMMMÚ‚‚‚‚‚‚Ø.+´ÆÃß1À¸™8Ö××çææÒËÌÏç7n{ëh$î›~þüyffæêÕ«'L˜Ðds#tLÈA7Ç.]ºlÙ²…âççG/pXsosÓÖÖ–ØyôèÑ)))&&&»wïf»4 ¼8Þ¼Ç,744¼Í¡ÊÊÊ-Zääääèè8sæÌ¼¼<¶ ×4I$ÝO]QQ!±=99ùùóçÞÞÞƒ ª®®f» ¤¸ÙâHÉËË;qâÄ'Ÿ|"jkk.\xîÜ9]]Ýo¿ý¶Ysa0BCCsrr¢¢¢ºtéãëë{êÔ©Î;³]PBþ= EZÖÈãñ®\¹">Æ1++«¤¤„~¸Ž¡¡áêÕ«7mÚ”””4lØ0¶ о]¿~]žÝºvíjiiÉv°ÍÀÍÄñÎ;'N´°°øä“O!ßÿýÅ‹§OŸ®¥¥mbbâééÙ¬VUU%&&nݺ•N¼bbb˜’’2tèP¶Ëú?²»ªéfȤ¤$ñIIIK–,yôè=®±´´T$)I* ЮýüóÏòìfii‰Ä±zã h\ÅÍÄqóæÍžžžk×®%„PõÓO?}óÍ7ô^¿~½oß¾æ&Ž………666B¡^ÕÒÒÒÐÐ())a» oFÏÒd½æååìïïïïï_UUfkkëààÀvÈíÞªU«ØZÑg@Sà‰è䦠<¸™8Þ¾};&&†^ÎÎÎ...þøãéU{{ûýû÷7÷€½{÷>~ü8³zúô骪*{{{iû[YYBè'ɲÈÂÂâÒ¥K¦¦¦< „Bòòò˜fŸ¸¸Õ«W4¨sçÎ...;vì(((h½xòóóÙý@L» @ùµÒƒøÄ‰ýòàfâXQQ¡¢¢B/_½zÕØØ¸W¯^Ì«•••->²H$Š_µj•ŸŸŸŒé|³²²Øý˜ wmõììlzãǽ½½7mÚ´téÒàà`¶K)]¿ hì62~ãɺZ7[½½½×­[ÇãñòòònÞ¼9}útBˆH$JNNÞ¾}ûìÙ³ßxOOÏ?ÿü“^ÖÒÒ"„üý÷ß¾¾¾~øá¶mÛôõõÙ.bÓ$fö€Ö $}ÇÍj˜PÎ&ŽåååG}õêÕÌ™3=<<!sçÎ=wîÜW_}%Ït<ªªª:::Ìj}}}@@À¤I“æÎËvá¤B} $^½z%^¼ån ¶ì®¥OѪg”HÑ”ʃ›‰#Ç›1cÆŒ3Ä7®X±¢eÕtRRÒÓ§OûôéÃô€B¡¡!Ûeý_y ”Æ”)S„Bá¤I“¤ Œ¹~ýúîÝ»MMM-ZÄv°\ÀÊ}$­}y&èh{ÜL›$ã^–7ºÿ>EQâׯ_?jÔ(¶‹…†F¥sèС;v|õÕWÖÖÖ½zõÒÕÕmhhxñâÅÝ»w¯^½ÚÐÐ0{ölf¶xî®}c)¸TXh/:Pâø6¦N:uêT¶£„†F央®>{öl??¿ÄÄÄ«W¯ž?þùóçêêêݺu0`@hh¨³³3:A!$î‰Á7´6$Ží~e(9 //////¶ŽÃw´%nNÇÃm<Y#M¢É M¹­ -Ží RF ¸ Í ql70¢@Ôm‰cû€†F`Æ8*;Œhh¿¾úê+‰-åååS¦La;.€B‹£RCÊÐUUUÅÆÆBRSS7lØ þRQQQNNÛ´G%…íW}}}nn.½Ì,Ðø|þ’%KØ …8*#44´k]ºtÙ²e !ÄÏÏ^àŒqT.ÑÀ%¶¶¶ÙÙÙlG 0hqT"H8æòåË€í@‰£RÀˆFNZ·nÝÂ… éGTkkk3Û Ù  %8² \åååEQÔßÿ-±=++‹íÐZ‰#›ÐÐÀm l‡ HHYƒ†FÎ+((±]CCcÀ€lÇÐ HY€†F€bÕªUt¯4=a‚H$âóùô«æææ?ýôÛ14Ƕ††F€Žã³Ï>Û»wï²eËœœœø|þ­[·–,Y_jÚ­T?D ‚i×Á´kÅÅÅtJwýúuwwwBˆ••Õ³gÏxŠ¢¢"gddD¯óx¼ââbiûwÀ晎VäŽv^vOÝ!qlž™3g¦¦¦®^½ZÚ>ôÆzö왘˜¨««{éҥɓ'B®^½jll¬ÀSÔÖÖjjj2¿céG–••5¹3j'xKèªnÚéÓ§­þ‘Íl?|øpJJÊ'Ÿ|âíí]SSÃv˜ ÔfÏž½mÛ¶?üÐÚÚÚÁÁ!66véÒ¥>>> <…®®nuu53¨Q$ÕÔÔèêê²]tà&Ì2Ø´úúúêêjzYKKëáÇ¥¥¥  ·ÔÕÕõë×oç΃ b;RPjùùùyyyB¡PSSóúõë ... <þÝ»wÇŽ›””dhhHyþü¹››Û‰'è™# -ŽMSUUÕùŸÏ¿uëV`` ó›¾¼¼\$ijj²&(;SSS777ººprrRlÖH±´´Ô××ONN¦WSRR ÛånBâ(êêê¥K—fee¥¦¦†„„[[[¶ã€ŽNUUÕÛÛ;***===555**ÊÛÛ[Æ´o]ÕòJMM]·n]FF†¦¦¦‹‹Kpp°‰‰ ÛAŠ¢Ö¯_úôiBˆ——×¼yóðäh%H@.誹 q¹ q¹ q¹ q¹ qT°ÇϘ1ÃÑÑÑÕÕõ»ï¾+--e1˜²²²E‹9999::Μ93//í‡ÔÕÕ …Bæ©**jРAÇŠŠR†YXÿLhJõ×¢T×Q{—’’bmmÍüµö%°cÇ+1l›óÒ~þùgOOO{{û3füðÀ€ã™5kÖˆ#._¾ü÷ßûúúzxxTVV²ÏóçÏ-ZdiiYUUÅV kÖ¬qqq¹xñâÅ‹¸yóf?%ùLhÊó×¢l×Q»V^^îáá!þÖÚ—@XXØ·ß~{ùÉÉÉms^Š¢8`kk{äȑ˗/úé§'NlƒS?þü²˜ÄÄÄ\¸p¡ Šüí·ßŽ1âÚµk×®]1bÄÌ™3Û ¼ Ÿ}öÙĉSSS/_¾<|øð+V´öy›¬'¥NaH«Ÿ›÷ qT¤{÷îYZZÞ¾}›^‹‹ëׯ_CC+ÁTVVZYYÑõEQeee}úôaVÛÞ–-[,ÿÁV’TSS3`À€cÇŽÑ«Guqqaë?HI>šRýµ(ÕuÔÞÍŸ?ÿ“O>aþÀÚàðõõݱc‡ÄÆ68oCCÃ!C¶oßN¯^»vÍÒÒ²   ¯úM›6Ñ¿sZû¼µµµ}úô9|ø0½zèС>}úÔÖÖ¶öy“““ûôéóüùszõÆýû÷¯ªªj½ó6YOJ;ÃV?7+E}ìJ]Õ 6nÜ8kkkzùÝwßeñÁ_………666B¡^ÕÒÒÒÐÐ())a+ÿ¬¬¬ƒ²!äÞ½{•••nnnôª››Û‹/233;ògBS¶¿幎ڵsçÎýùçŸóæÍc¶´Á%ŸŸß£GšššŠŠŠ¶þøczÕÉÉ)++ëwÞiË«þáÇñññaaamSd>Ÿß©S'zYCCƒÏç·Áyv¥‚ÄQ‘ÁòåËUTTJJJþüóÏ;vxyyÑsÛëÝ»÷ñãÇuuuéÕÓ§OWUUÙÛÛ³ý!±©¨¨ˆÇãÑ«ÆÆÆ<¯¸¸˜í¸Ø§T-Juµ_ÅÅÅ«W¯ÖÖÖf6¶ö% ‰ wíÚ5`À¡P8vìØ;wî´Áy !yyy***iii£F …ß|ó =N·-¯úèèèqãÆÑIUkŸW]]ýã?ÞµkWVVVVVÖ?þøÉ'Ÿ¨««·öy»uëöâÅ‹òòrz5;;›òâÅ‹6®]¥Ž­J¾C}¹ .n3gΜ8qbQQ‘Û±‘H´oß¾ øùùYXX°›jkk555™„Ïçkhh”••±—Qª¿¥ºŽÚ°°°1cÆ8::ŠolíKàùóç|>ßÉÉ)))éâÅ‹ï¼óÎŒ3^½zÕ—^ee¥H$Ú²eËüùóüñG__ßêêê6»ê³³³/]ºäëëÛ65!dáÂ…EEE£G=zô³gϾûî»68¯‹‹‹‰‰IHHÈ;w’““,XÀãñªªªÚ¸v•v:¶*ùõå‚Äñ­ˆßOGÿð¢>|8%%å“O>ñöö®©©a1˜‡z{{oÚ´iéÒ¥ÁÁÁ¬2ìÒÕÕ­®®‰DôªH$ª©©ašÙ€­¿iX¹Ž¸á§Ÿ~züøñþó‰í­} tëÖ----$$D__ÿwÞY½zõË—/“““ÛàÒÓÔÔ¤(jÕªUƒîׯßúõëŸ?ž””ÔfWý?þ8räH==½¶ù¨+**¾üòËQ£F%'''''üñÇ_~ùeEEEkŸWSSóǬ¯¯Ÿ{ö¬wïÞmpéõíÛW[[ûöíÛôjIIÉÓ§O{öìÙ6Wý… :uêäääÄliíóŠD¢úúzñ9ëëëE"QkŸ·¸¸Ø××—éG:w‘QÛü‹“v:¶*ùõå‚GEòððX½zõÒ¥K'L˜P]]½qãF@`kkËJ0IIIOŸ>íÓ§ó§LÌÝpªªª··wTTýû8**ÊÛÛwì%ûkQªë¨244dþïž?N±°° “ïV½\]]ÃÃÃçÏŸ?uêT•˜˜;;;GGG×Ú—^§N¾øâ‹ÐÐÐ%K–èèè¬_¿ÞÊÊÊÅÅEEE¥ ®ú«W¯0@üGrk×6C† ÑÑÑ™7oÞŒ3(ŠÚ¾}{—.]ÜÚç544,++ Ÿ;wî³gÏ6lØ0wî\ÒÊZd“•J¾C}¹p³Tl100øá‡Ö­[7~üxMMM—U«V©©©±Ìýû÷)Š ߸~ýúQ£F±ý9±)  ®®. €âåå5gζ#R Jõ×¢T×÷´ê% ££sèСիWªªªº»»ÏŸ?ŸÇãµöyi ,PUU]ºté«W¯\]]£££é„¦ N’’òå—_¶åGÝ¥K—½{÷®[·ÎÏÏÇã988ìÝ»·K—.mPÞÍ›7/Y²dúô醆†¡¡¡Ÿþy”·1i§c«’ï8_.<ŠÃOÅÅQ–Ág ä8€\8€\8€\8€\8€\8€\8€\8€\8€\8B³-_¾Üª)&Lxôè‘••Uiii›S^^^UUE©®®¶²²ÊÎÎnÖÛ逋‹‹Ûö#l"l¶"iFŽÙ¸¢»råŠxmÃ\ËËr0`@rrr‹#D½mO•í ýùæ›o>ûì3BHyyù×_½xñb{{{BHçÎÛ>˜ï¾ûÎÂÂ"((HUUuúôézzzl<- »¹ß7Ð>ÿüó‰'Šo133¯m˜kYb€«8B³½óÎ;ï¼ó!„nY477·±±¡_zôè[Q©©©µÇúš ›Å¤éÖ­S¿‰kµ €B «ïÞ½{ÞÞÞýû÷3fLzz:½ñÉ“'...îîî‹-ª¨¨ ·ùûû;;;ðÁ+V¬¨©©!„üðC;;»±cÇÒŸ†´°Ò>«óçÏúé§ýúõûðÃ<Èöÿ3@Å\¶âײø2‘~L›6ÍÁÁaôèщ‰‰>sæÌyóæ1«qqq"‘Hv &£vB}Š…ÄoÅŠAAAèÒ¥ËÒ¥K !µµµ>>>ššš;wîܰaÃǃƒƒ !¯_¿ž4iÒëׯwìØ±|ùòK—.…††Ò¡(já…Çÿä“O¤½=..nذaÓ§O?|ø0sö†††¯¿þúõë×qqq!!!GŽùñÇëêêf̘aee¿fÍš´´´ï¿ÿ^Zü S¦L)++‹]°`ÁÞ½{³²²d”WÆÁE"ÑÊ•+W­Z¯®®.-l†´ÂæççÒUüW_}‘™™Éö5Ç=þýôÓúúzùk0q¨O@áÐU ŠHÿØõññY²d !äÌ™3„U«Vñù|BHLLÌàÁƒ oݺURRòóÏ?ëèèBV®\9iÒ¤ùóçBD"ÑøñãÇŽK9qâD“o§{Ì%ü÷¿ÿ-,,<|ø°––Öûï¿_QQñèÑ£ÊÊʹsç~ùå—ššš„>ø ??_Zü.\(**:xð`×®] !Ë–-ûæ›od”WÆÁ)Šš5k–““!ä믿¦? Ù¤}Vyyy"‘èóÏ?ïÑ£Gß¾}{÷îÝ^t´_G=zô(³êããöÆwI»ŠoÞ¼YRRòÓO?Ñu‹ššÚÔ©S%Þ;tèÐÐÐД””Áƒܾ}{ݺuͪÁä‰õ ´GP¼ÿ¾µµ55Bìííù|~nnn=! ýö&Ǭ¬,+++---zu„ ôÝ1”•••™™yíÚ5WWWiñggg÷éÓ‡®Ù !NNN<OFyõôôdœ ›9 lÒ + íììFŽ9dÈ'''OOÏnݺµþ&@‡æïïØÜwI»ŠsssÅëGGÇÆu‹¶¶¶››Ûùóç|æÌ;;; ÒœLžHPŸ@‹!qÅÓÐÐØ¢££cooàÀ‰íׯ_o\oÒC !ÚÚÚ²ßÞ¤úúzUUÉ?ìììì‰'öéÓgøðáîîî–––¹¹¹ÒŽPWW'¾Êçó›Lkkkå9x§NšõéÉ(ì¡C‡þüóÏK—.=ztýúõ[¶l¿¨¨ˆ© !#FŒÐÑÑY°`AFFÆéÓ§øá}}ý§OŸ^¿~ýÙ³gGýùçŸKJJ˜åè#¤¦¦&%%-Y²„ddd¤¦¦öý÷ßçåå]¸pa×®]ôþÍ:8­qØo,lCCCLLÌòòòΞ=›––&Þý¬¿–™eiWñ°aÃôõõ™ºEÚpI--­Áƒ¯\¹ÒÝÝzøÆJFZí„ú‰#´>Ÿ¿k×.mmm??¿Å‹;;;/[¶Œ¢¦¦¶oß>÷õ×_/X°ÀÕÕ522Rþ·B¼¼¼’““çÌ™Ã쬮®¾oß¾ºººÉ“'¯^½ú‹/¾˜>}ú¸qãFŽ9kÖ¬/¿üòÞ½{?üðCAAÁ† šŒVCCcïÞ½|>ÿ›o¾YµjUpp0¤jjj®Y³ææÍ›}ôѼyó|}}éý›upia¿±°... .ܹsç¨Q£Ö®]ûõ×_ûøø°ý Ðщ_Ë̲ì¯S§Nß|óÍÔ©SA“‡9räË—/?ýôSzõ•Œ´Ú õ (¢(¶cPv غu«‹‹ ½J÷Ñ·74EQeeerÞ0×,¨ µáæ€fC¥ oƒÇãµFÖHP;AëCW5À›™››7¾U £AW5È-Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž@úôéÃû·^½z-[¶Œ¢¨SMMÇãUVV6~IGG‡Çã=}ú´‡-++ãñxjjj2 røða–>ÈV!ñ¿óÎ;ïL˜0¡  àŸ†¸/^TWW³]hß8Âÿ˜ššÚÚÚÚØØtéÒ%777<<<>>¾ÅG³±±±µµåóñ¦ôÿŽ©©iQQÑÁƒ¿øâ‹f¥õ_ýµ©©é¯¿þÊv9 }Ã÷:üÏúõëÓÓÓoß¾]RR2fÌBÈ™3gZ|´ÔÔÔôôtMMM¶‹ÅôÿÎãÇúé'BHJJÊýû÷Ù @^¾|9{öì~ýúikk÷íÛ788øÅ‹os@i-ñÿý7Ç0`€ü‡oï×ÔÔ´³³ o¹—ѵÂ`½½¿ªªjåÊ•¶¶¶ÚÚÚÇÿí·ßÚ&|8hÐ ñ-cÇŽ%„ØÛÛ;–N}nß¾MQÔË—/õôô!üñСCù|~×®]Ÿ={FQ”ªª*!¤¢¢‚¢(___BH×®]UUUy<!äÉ“'¥¥¥„UUUú,â«õõõ={ö$„ôïßèС***ªªª÷ïß—x‹ì‚ˆ“V„ƒB†NïÖ¯_?BÈåË—e¼…ŽÏç÷éÓ‡²mÛ6iÑRåããCÑÓÓspp Ë®¡¡!;$Ù…bš òóó%>¯¿þšb``0räÈ®]»B)Šºxñbÿþý !³fÍJOOgûÏ àÿÑWA¿~ýrrr(Šzüøñûï¿OY¸pa‹)­–¨¬¬ÔÔÔœ:uªü‡’¸ú®]»F_Y¿üò‹üñòò’V/µz4¹ªª*]½¼~ýzùòå„aƵAx ÝaBÉÎΖ]™+Ï!q„ÿ]Ûâx<ÞÚµkéWÓÓÓ !½{÷nhh (***Š2eÊŠ¢.]ºDéÑ£Gvv6EQëÖ­óóóKKK£ÄÇðù|UUÕ‡Rµzõjú²Ǽ¼¼aÆM˜0~ÉÕÕ•rìØ±–%Ž2ŠPQQѹsguuõW¯^=yò„ÇãõèÑC$Éx !dÆŒ¹¹¹555Ò¢½ÿ>ÇSUU}üø1EQ6l „Љ£Œã7Y(33³þýûÓé)!ÄËËKâËÊÊ"„èèèÐ碯¢¢RTTD¡æ¥ôèÑ#úïùÖ­[ÌÆÓ§O{xxÌš5‹^}ýúõŠ+lmmµ´´úõë·aÃú’‘ñ’øuQYYIÿjÚ¸q#EQsæÌùïÿK¿ýúõëC‡ÕÕÕ500ðôô¼~ýzãW)óçÏ'„|þùçôªø/ä&H_z´+VPuçÎ?þØÀÀ@KKËÞÞþرcâ1ÿ÷¿ÿµ··×ÖÖ:thnn.}–êêêàà`@ ­­íìì|öìYñí½zõÒÑÑñðð ñJHMM¥·Ó[ÊÊÊââââãã› OÚ1é544âãã{÷îmbb²`Á‚û÷ïðÁÚÚÚvvvMž]⬯¯§;L.]º$Q™Kûßl!°‰#üïÚfnŽéÔ©!dÈ!555E5y‹Lÿþý)Š*))éÞ½;½E øûû§¦¦ÒÇdêSú'æ!Cèí999ò$ŽE•••ýøãÓ¦M³··§ßrèÐ!ñ}è6]ùJKe¢¨¯¾úŠrâĉýû÷BæÎ+û-t <n[•íÑ£G !ƒ¦÷©¬¬dZe‡Ôø‡add4yòä’’‰OìСC„±cÇJ¼ñüùóGPJçΣyÊØGZ;ºŒ—˜ëB$}ñÅ„àà`‰ÃÊè-׸J¡+4æRe*:i”hï—Ý—Âãñ:wîlccCØùè£è³Ðí²ï¾û®»»»ªªªššÚÍ›7)ùz-ªªªzôèAÑÕÕýì³ÏV­Zuþüyºn§šêŽÝÓBQSS³±±¡—;uêÔ£GCCCBÈ{ï½×ø¿&œ„Ä$¯í—/_jiiB~ÿýwꟌÄÁÁa¿˜ãÇÓ;———ÇÅÅ3†©¢¢ráÂJ¬>ݽ{7!ÄÃÃ9¸DWµŠŠ ý’x=RVVfnnÞ©S'ÿC‡уŠ$ÇiÓ¦iüã§Ÿ~¢¤'޲‹ðóÏ?B¦M›6yòdBHJJŠì·4nõ”í¾}ûˆX—PQQ“8ÊIÆÿŽ8ñHè>÷Ï>ûŒyuÈ!„3gÎPHA)íܹ“¾ ¤í £]ÆKÌuNñöö‰DG–Ñ["®ñÕ÷ÇпßèU¦¢“q@ñ«Ov_ !ä矦(êìÙ³tªGQÔí۷錪´´”¢¨ððpUUÕyóæÉßk‘™™9f̺V§éèèìܹ“~U<زeËçŸNWvìØQýúW²42Š@9r¤®®îéÓ§ÏŸ?offæììüÆ·Hmß¾} !—/_~öì!äÀLÙ›u|yÐ?Êé›f²³³SRRø|>}Ÿ­¾¾¾•þfZ€n +..–¶Ã_ýE6l˜©©)!ÄÖÖÖÚÚº¡¡áöíÛ2^¢ß[__¿lÙ2Bˆ½½=ýcUœ­­m÷îÝ ¥¥åƒfÏžM¯”­¤¤„‰¼433;~üø°aæOŸ. “’’ˆØ…©¢¢òé§ŸB !ôÍ…t‰œœœtuu !¯_¿Þ°aCZZ!$''GEE…ÇãÍ›7ò÷ß7ŽÙÊÊêçŸ~ùòåÍ›7·nÝ:dÈW¯^͘1ƒ*Àxã1UTTè_¤ï½÷!ÄÃÃCEE¥[·nt´´æáÇ©©©yyyt‡‰ø-’oüVÄ(˜*Û€òªªª"„ØØØŒ=ú×_uww777ÿå—_ªªªèÄjjj6lزeËèÑ£ëëëé~ø¡øAœmmmo߾ݯ_?kkëk×®ñx<:ÒÐÐèׯ_jjª‹‹‹@ ¸wïó.úw|bb¢§§gzz:xQò݈·`Áf$%!dáÂ…_}õ•´"B:uê4f̘={öBèL²Kݘ´hííí=<<~ÿý÷÷ß¿wïÞ×®]cÞÒ¬ãËÃÚÚÚÇÇgÿþýýû÷wvv¾råJ]]]@@À;ï¼C¡ëoܸ±[·nÆ kƒ?€7²²²"„ÿüsú×,=>[œø½^½zÑMb®®®ÌLâ(〳gÏ&„8::ž?þÈ‘#tlÇ711¡[<(ûNÁ‘#GÒùܰaÃÔÔÔ444èÛDFMMIIa;và&$Žò7nœµµ5½üî»ïªªª²pܽ{÷*++ÝÜÜèU77·/^dffŠïSXXhcc# éU--- ’’¶cnBö#@°|ùrBHIIInnîŽ;¼¼¼øü¦Ón+++z!!!íÀÚ7sss¶C`SQQÇ322¢Wy<^qq±ø>½{÷>~ü8³zúô骪*{{{iǤ+¨¬¬,¶ íÇæ™9sfjjª¡¡áêÕ«eì†JÞ^mm­¦¦&ó•Ïçkhh”••5¹³H$Š_µj•ŸŸŸ……E“ûXYY¡v€·Ä±y>üòåËØØXooï+W®hhh°p–®®nuuµH$¢sG‘HTSS£««Ûxχ†„„ `Ò¤IëÖ­Ó××g;dà8tUËÅÃÃcõêÕK—.0aBuuõÆ­­-Ûq—©ªªz{{GEEõìÙ³¡¡!**ÊÛÛ›žÒ!>>ÞÀÀà£>JJJzúôiŸ>}˜ü’" Ù8‰£\ ~øá‡uëÖ?^SSÓÅÅeÕªUjjjlÇPWW@ñòòš3g½}ÿþýà£>ºÿ>EQâïZ¿~ý¨Q£ØŽ8ˆ×ä¬àmà¾EPN¨à-aŒ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#@©­­ÕÕÕ­¬¬d¶äææzyyéééuïÞÝ××÷Å‹lÇ Gà‰ir‡'OžÌš5«¼¼œÙ"‰>ÿü󺺺3gÎ\PP@w<çµøg°H$:vì!dîܹÖÖÖ„ccãÓ§Oß½{×ÍÍmìØ±ÆÆÆgΜQWWg»ˆRq|:žáÇŸ;w.//O(òù|¡P¸{÷n—ª¬¬lÍš5‰‰‰E988,X° gÏžl—¯=otlí¬‘9~“j“ÓðÒN KJJ¢Ç<Ð$:žttt4551€ÛèJ¬ÅÕWNNŽOVVÖ?üàççÇl8pà¥K—Ø.€¼¸ÙâX,FCCÃÚÚº²²²¸¸ØÂÂB ·à˜¡¡¡·nÝŠŠŠÚ¹sgmm­¯¯oUUÛmg˜¶½Ö;…DµÞd9= o“áB$'5I¢ãéÈ‘#☀«˜iwš•D^»vÍÞÞ^ Ü»wO]UUeoo/m+++BHBBÛŸDGôàÁfÙÂÂ"77W| £¨¨ˆrûöm¦/›Þ“Þž——'>#Fã©©©“&M>|ø–-[ôõõ›<¼=sss¶Cx[E7N|ãþýû'NœÈvhÍÆÍÄ‘QZZúý÷ßççç3[JJJ š›82D"Q||üªU«üüü,,,¤íÖÜ®pP‰A2Z !={ö”؇ٮ¥¥%mãëׯ‡ ˆŽ'hÌÕÕU¼b b;(Åàxâ¸dÉ’´´´>øàرc“&Mª®®NIIùá‡Zv´‡†„„vww?wî\sS__0iÒ¤uëÖ!kì€èŽ'¦ó:((ˆjY#pÇ[---:Ô»wo++«cÇŽùøøäååµ`þŤ¤¤§OŸöéÓ‡y=!D ²]Dh!‰AHoÜOçÏŸ?cÆ ++«Ñ£G/_¾|ĈOŸ>9rdssÿþ}Š¢Å7®_¿~Ô¨Ql¸ ¾¾~Ó¦MÇŽÓÒÒ9räܹs¥=×®®®ÎÅÅåÊ•+šššô–;vlذÙAOO/%%…í7q=oÞ<¶ãª««ëܹ³ø##£†††7¾ÑÒÒR__Ÿi&LII100sˆ„„„Ñ£G———Ó«/_¾|öìYïÞ½Û¦È%%%S§N500Ð××=zô½{÷Úæ¼Ê ¶¶VWW·²²RÎíÜÀñ1ŽçÏŸ—Øbdd„æFh ŽŽŽ{öìYµj½Z^^íììüÆ7ªªªz{{GEEõìÙ³¡¡!**ÊÛ=~`C89IDATÛ›žŽ1>>ÞÀÀà£>’ö^WW×ðððùóçO:UEE%&&ÆÎÎNÚ„-ÀÌCÞä•üüüîÞ½{àÀ==½Å‹{zzÞ¾}›wv‹Ï¾ÞdÁŸwïÞ2eÊŸþIo¬¯¯WSS‹‹‹ûæ›oš{.åY–(£ŒÏ!))ÉÍÍIéýy<Þ•+Wog½\Xn¥åˆ›]Õýõ½˜˜¸fÍšˆˆGGGwëÖ­°°0;;;¶jhhØ»wï‹/.\Hùæ›o233§OŸNßd­ ,--™eño>9—%º­ûöí+þ0…#GŽðx}úB233õõõ÷íÛÇv\…´Ñåœäìì¼uëÖõë×ÓwETWWÇÆÆ …B¶ãz+2Ú_¿~ýÅ_Ì™3gåÊ•l‡Ùv¥èà8ž8öèÑ#!!áìÙ³¹¹¹|>òäÉÆ SSSc;®A¼Ú•6œ€K–,Yòõ×_<ØÊÊJUU533SGG‡Ã¿TÏŸ?_PPпÿ .0mllLLLØ Z 7Çììl===CCÃììlBˆµµ53^;//"ç#@ð 8ÏÐÐð—_~ùïÿ›••U__?nܸ#F¨««³WkÉÈÈ (jܸqâ÷ïß?qâD¶C€ÖÂÍ/r++«éÓ§YYY5¹C«Î³ˆyiMΚËÉ¿7€ö¢eµSǼre”ºe/p7[SSSé§u¥§§³ üêSà¼ôôôðððÇKlŸì ]ãfâÈ<‰K]]=33SOO¯[·n—/_þí·ßlmmég‚Ak“׈¬8oÉ’%êêêË–-ëÚµ+Û±´ n&ŽŒƒFDDÄÆÆR5kÖ,¡P¸qãÆ²²²9sæ°Z‡€d:”û÷ïÇÇÇ¿ÿþûlÐZ8>c\\\PPÐСCÏ;gff¶k×®ÈÈÈ'N°p‘‘Q»žµà8ž8»¹¹B®_¿îîîN±²²zöìÛqEFF®X±âìÙ³ÅbØŽ @a8ÞUݳgÏÄÄD]]ÝK—.Mž<™rõêUccc¶ãòõõ‰DÛ1ÍpÇÇÙ³gnݺÕÎÎÎÁÁ!666&&fáÂ…lÇÿ•ÎHHH`;€ÖÅýRòóóóòò„B¡¦¦æõë×\\\ZõŒ˜ÇQNâ)#&ëNª­­Ý°aâE‹Øä0£BJy¡#ãx‹#!ÄÔÔ”Ï秦¦º¸¸ØÙÙihh°ü?‰g¢Â…v­´´ôûï¿ÏÏÏg¶”””(Oâð–8~sLEEÅ·ß~;tèЯ¿þš2eÊ”   ÊÊJ¶ãü.Z²dIbbb÷îÝ“’’,,,ºwï~ïÞ½˜˜¶ãPŽ'Ž‘‘‘¯^½º|ù²ŠŠ !$$$äÎ;k×®mñëêê„B!f܀Ʈ]»îììüÁ„‡‡‡††ž;wŽí¸†ã‰cRRÒܹsŒŒèU‡ $&&¶ìhÅÅÅK—.­¨¨`»X\ ñ\¨®®600 „X[[ÓC ÝÝÝ‘8—plØ0¶ãPŽ7óûì3z£¶¶¶™™ÛwtéÒeË–-„???z€«¸™8Þ¹sç»ï¾spp „„††º¹¹}ôÑGlÇ\—™™©§§×­[·Ë—/ÿöÛo¶¶¶>>>m0® µá¾ q³:+//ô2=û7s§3@+9xðà§Ÿ~zçÎ'OžÌš5ëùóç7nD$´k}ÓH›‰#!¤•~âÛÛÛgeeɘ‹:¬¸¸¸   ¡C‡ž;wÎÌÌl×®]‘‘‘'Nœ`;.€·ÂäŽÈp8qhcÅÅÅnnn„ëׯ»»»B¬¬¬ž={Æv\o‹Î‘5áêGBH|||·nݤ­² pMÏž=uuu/]º4yòdBÈÕ«WÙŽ @a¸™8ZXXüõ×_ÒV ÇösÏB»0{öìÀÀÀ­[·ÚÙÙ988ÄÆÆÆÄÄ,\¸í¸ã¯eõ‚&5ž{± Ìòóóóòò„B¡¦¦æõë×\\\Øêÿᑃ )uÇ|ä ‡‹ÍÂÍGàTU ä²³³õôô ³³³ !ݺuËÏÏ'„èééѯ2“<´wHAy5þKß܇T”Š——×ôéÓƒ‚‚¼¼¼šÜ]ÀH5âsƒ5™ 6Ne÷É>šŒw!…·‘ššªªªJIOOg;€Ö…ÄØ!FØzGcvCúo#55UöJ5Ìàmp3qLNN–½êqe#­Zâ¡Mæv-K:ÅߍÈ¡üýý™åšš‘HÄãñx<žH$"„‚“'O¶øàõõõ›6m:v옖–ÖÈ‘#çÎ+~Eˆ«««sqq¹rå žP­‡›‰c«ÖãÐÆÌ’cfûJLL\³fMDD„££#Ç»uëVXX˜ÝÛ<**êĉ‘‘‘„ï¾ûN]]}öìÙw+..ŽŽŽ®¨¨`ûÃŽãæ“cþúǺuëLMMüñÇ´´´´´´½{÷š™™½e=ÊF¢U€-›6m uuuUWWWSSsvv?~üxiiiËX[[{èС      Ð?€ÅmݺÕÕÕõرclÀ}ÜL ¯ÇAQ$²½·ï&fކg`Kaa¡ŽŽŽø---mmm]]Ý–ðÞ½{•••ôc !nnn/^¼ÈÌÌ”ØÍßß?++ëàÁƒlÀ}O^ƒѹ#í-S=Š¢˜£Éy(ñ³+$€ÄÄÄ0¿KËÊÊ¢££…Ba‹[Ä‹ŠŠx<ž‘‘½jllÌãñŠ‹‹ß&H++++++¶?*h¯¸9Æ‘A×ã›7oîÚµ+QD=Š¥Ø\­¹GC¦Š1iÒ$>}úB233õõõ÷íÛ×âÖÖÖjjjòùÿû…Ïçó544ÊÊÊÞ&HL* oƒã‰£Âëqizôè‘pöìÙÜÜ\>Ÿ?yòäaÆ©©©µø€ºººÕÕÕ"‘ˆÎE"QMM :L€EO^È ®®>jÔ(EÍÐТ¨’’CCCBÈ‹/(Šbz®ÚÇGBˆºººP(444tqq©©©AÖí…¥¥¥¾¾~rr2Œ¦¤¤àÉ×À"Ž'ŽÁÁÁ¿ÿþ;EQYYYS¦L155]¶l™––Û¡q\ËâTUU½½½£¢¢zöìÙÐÐåííM?Þ0>>ÞÀÀà£>b;FèX8~Wuddä«W¯._¾¬¢¢B ¹sçÎÚµkÙŽ‹ãè;”¸  Å>þøã€€€¹sçzyyÍ™3‡Þ¾ÿþÓ§O³t8Ÿ‚ÄÝÝ}Æ }ûö½{÷.!äâÅ‹‹/NJJj½“ZYYuäûÏkƒ™n ãÈÌÌÔÓÓëÖ­ÛåË—ûí7[[[æ¶hÖµ¬vꘗ°ŒR·ì¥öŽÃEƒfQ–ꬕÔÕÕuîÜY|‹‘‘QCCÛq|xTT¾Â¥‘ÈoÞxs ã‡" º‡(ÖÁƒ>|ñâů¾úŠíXZWGéºÕÑÑÙ²eËöíÛÿóŸÿ´ìQQQ'NœˆŒŒ$„|÷Ýwêêê³gÏf»X׸7V!9_;íäm§awööö2^}þü¹‘‘Û1(Ç[wïÞ­­­M/óx¼o¿ý6..ÎÇǧ¹Ç©­­=tèPPP‡‡‡‡‡GPPИyÅ¡=bZ.ÛÑ4@rvî[Ž9"¾ÚÐаk×®#F°€Âp³Å1;;[OOÏÐÐÐÐÐðÁƒâ/y{{7÷€÷îÝ«¬¬¤§ö%„¸¹¹…††ffföíÛ—í²*‰†±·Ìo$ú¦•*)ün›6Ó¾¢íhV¯^]SSCÏàxýúõeË–åççûûû³€Âp3qôòòš>}zPP3 „æNHQTTÄãñ˜þ&cccW\\ÜäÎ÷îÝkGX­Dâá1­qXe>&(JûJ”wíÚåççWRRòèÑ£S§N92..ÎÄÄ„í¸†›‰cjj*=óNzzºBX[[«©©É___Š¢öìÙ3pà@¶#P0nŽqÔÔÔTSS#„Lš4Iýßjjj¦M›ÖÜêêêVWW3ƒE"QMM®®.Ûö•Š111ùþûï)Šº}û6³‘톛-ŽUUU±±±„ÔÔÔ 6ˆ¿TTT”““ÓÜRURRbhhHyñâEQ¸S!ÎÎÎ7®[·Žy´)º €3¸™8Ö××çææÒËÌÏç/Y²¤¹´´´Ô××ONN5j!$%%ÅÀÀ@ °]P`ßùóçÙ p3qìҥ˖-[!~~~ôÂ[RUUõööŽŠŠêÙ³gCCCTT”··7`„÷Þ{O|õéÓ§¹¹¹ ½zõêÞ½;ÛÑ(ÇSŸ¸¸8E*  ®®. €âåå5gζ 혢žå J¥¦¦&44ôÔ©Sôt üqdd¤¦¦&Û¡(ÇçNOOüø±Äö7n´ÞI­¬¬0¤ d˜ç’ }äŠ+V\ºtiåÊ•ô³dRSSCCC]]]ÃÂÂØíZV;uÌÙæe”ºe/µw.4 ÇÿÆŽ«®®þõ×_wíÚU|»‹‹Kë‰cGÐâ&ÃÆ•/ªcÎøàƒ–/_Î<)€ríÚµ üþûïl‡ö?HRj$ŽÐ‘q¼«úþýûñññï¿ÿ>ÛÀ[‘§Y®50#ã\Šz4pIUU•ŽŽŽøªª*¶ãèÐÚòÛ¡#àæ<Ž ##£êêj¶£©ÄŸ¼,cŠ¢$ž=(mŸ7ūžÖ>´#B¡ðûï¿õê½ZYY¹yóf¶ãè¸ÚòÛ¡ƒàxcɵk×V®\9kÖ,[[ÛN:1Ûéé[ ºªå$‘5Ùtׂ}H+·¾ýé¤5X⎙ö®¨¨hÒ¤I%%%ÖÖÖ</33³k×®ûöí{çwØíÐU­R£«ºÁè …ãøÇ×·o_‘HÔ¸Œ­šØ!q”“¢’Âv—8’¦rDtsÃëׯϞ={ÿþ}BH¯^½FŒA?ÅJI qTH©‘8¶#LØ e8>Æ1!!í i/]ºáï ÏÛ² òÀ/`®RSSstt400 çqTª¬PÙ¾=Ž'Žôļ………>tqq©©©ÑÐÐ`;( ¤©lï-¯ç6û5)1J¦5ÎÅn* -†y”xuŠŽ Áñ›c***¾ýöÛ¡C‡~ýõׄ)S¦UVV²H’v=Ó×**jРAÇŠŠjòc”¶ÏŽ;¬Ä 8í8‹›]ÕŒÂÂB‰ùxµ´´´µµuuuÙ Ø'1ÆQþw±ØŽ™*¸®]»6ùÒ£G´µµå9HTTÔ‰'"## !ß}÷ººúìÙ³åÜ'??èС'N¤wSUåxÅ,âx‹ã€bbb˜öŲ²²èèh¡Pˆ†"¼µìg6ù^ñeü91:æ§áææ_[[+±½¦¦fÏž=ƒ zãjkk:äááááátàÀzL¶<ûÐÓ¹ý-ŽÐz8ž8FDDxxxŒ?~üøñùùùlÇÿÝ_<¬¥50ÿ¡¤96((¨¼¼|Ò¤I¿ÿþ{yy9!¤¼¼ü?þ˜8qbYYYppðpïÞ½ÊÊJ777zÕÍÍíÅ‹™™™rŸß£GšššŠŠ ¶? à8Ž÷hôèÑ#!!áìÙ³¹¹¹|>òäÉÆ ÃÌjJB¼Ï·ƒdóJ:Æ-Õ„ƒÝ»w¯\¹Òßß¿¡¡A]]½®®ŽÇã 2$::š™ L†¢¢"gddD¯óx¼ââbyö‰D………»ví ‰D}ûö]±b…´sYYYBðhŽ'Ž„uuõQ£F±4I,ÚÑl8¡¶—°ÛXGûLºwïþý÷ÿ×Þ½G5qæ}£%²ˆrÓUwµ”­\‰P,œªYµˆ‡Ó¢©âª-+UkXD©â®—ãQ±jÄûz¯«xÃëÑÖz<ºjP©j- àeñ‚\ä.ÉûǼ;oÞ„!„ÌLòýü53yÈüžgfžüxæ¶¥¤¤äÁƒeeennn èÓ§Ã?×h4b±˜~7P(trrª¬¬dR¦´´T(íØ±£¾¾~åÊ•qqq™™™—wÓ2@{ØyâØò”[·n±š£ãB¾epмM×8â•3Ð’þ»ÚÄÕÕµ®®N«ÕRy¡V«­¯¯7¸‡ÏT™ž={æææÒÅRRR† ¦V«år9ÛívÈÎÇM›6ÑÓæÁƒûöí›1cÛqûCŒ-×Þ¦x/‚yxxètºŠŠ BHyy¹N§£ÏJ3/Cqqqñôô48Í À#ŽöÞ±ó›c‚õ„‡‡Ïž=;%%eÇŽuuul‡ð¿¤R©››ý®Ôììlwww‰D¤LVVVdd$uS!äÍ›7¯_¿öñña»N–pÀ7ðŽ'Ž-}ðÁ-ŸšígÁ±õŸ†Ã…3×l‰D …B¥RýòË/wïÞU©T …‚zcZZõîSeBBBJJJ’’’nÞ¼ùóÏ?+•JSWép~xÁÎOU¼!¦ªªjÛ¶m}úô‹Å–}aCCCppðÕ«W-þ»dñÍ"è#(J¥²¡¡A©TB"""è×[ÌvÀšðæ‹Ype3@«¨=3gÙçˆcmmíöíÛ !wïÞ]¿~½þG/_¾|ôèQG@"§.iw ¨¨ˆšööö.**züø1ÛA=xÿý÷ÙŒ3¸Òƒ`pÀ1ØgâØÔÔDç1ôE(.Y²¤£p¨kõ_1GðãàxðØÇaŸ‰c·nݶnÝJ‰¥&Ú*###!!š>wîœÁÕ %䋎÷8,ûLi»w獵›››;uêÄðåryNN5íììÌv=Þ"ÀYÈ ÝÞóäÉ“ÔÔÔ‡B4MBB‚¿¿ÿðáÃÿõ¯1ùs‘Häò_Ô›ax‹á`pXö9âøë¯¿N™2ÅÛÛ›z^ã–-[.]º4sæLggç 6ôêÕK.—³#ÙÁcSpe6XÆÁσÙgâ¸yóf¹\þÝwßBt:ÝÉ“'¿úê+ê- @âÈ -Ï‚é?ØÅëãÏÿËì-üýÇÉböyöþýû'N¤¦>|XVV6nÜ8j6 Àà>ë6 ÈÏÏÇûm£åé0îôïx‚ô$8óãÈO’-ÙgâX]]Mßsýúu//¯>ø€þ´¦¦†í¡ è;=»þ•—܉  £ÙgâØ¯_?µZMMÿøãÆ £?ÊÍÍýãÿÈv€ÀœÑ¹Ûa¬À~pÿàÅÉ ÎrØbŸ×8*еk× ‚'OžüüóÏ3gÎ$„hµZµZ½cÇŽo¾ù†í¡m¸/€Ý0¸:“;×Àè3¸xŽ›A: ^ì<ÊnǪªªôôôwïÞÍš5+<<œ’ðã?Nš4é/ù Û›ôï çì?gsp¼Øy:ŽÕ¹¨¨ÈÓÓÓÅÅ¥£WäëëëP¯t@þï&ð—e½“™œïû¿eU³Aƒýv[Û–kïˆuYý;ù¾ó[Ì>Gòööf;°ú×5:fÇJÿ|(5á°i p%ŽV„GÎÑ?³áÆŽƒÓGm…Ä€‹ôOU³‹Â}ë–±Ïç8˜‡‡òZ#Ž`S8AÌ_qÛáÚ[[¹ q°_~ù¥»»»››[dddAAÛX Þ¼g—XÌ VkBâÀ'=-?½~ýú¡C‡²²²êëëåryuu5Û!X=F…ô‘ï8•Ÿ9ø;`,ƒkxàk3˜­®®>}úô™3gþüç?BŽ=êååuéÒ¥ñãdz8@»èïê9¹É7óGr5<\½­0âÀ­vmÏž=“Éd!!!Ô¬‹‹‹X,~ýú5ÛXrGjØ•§C°Ø||‡G;ñá‡Þºu‹ž=vìXuu5GpŸ~>aôß$Œ Ñx=«‚˜ðyÐÔ1aÄ€˜ÿΓ³¡Ú7œª`ŸA‡h´Ì?þñNwõêUý…:î¯ýëàÁƒ !‰‰‰'Nœpuumnn¦¯UBÖüb—22¿a¼ýôWÁ<µâþË÷Z†Äåóéö #ŽœÃüŸi??¿;wBJKKóòòRRR&Ož,âB®`% ³`@Žã/ߣk„³Õ¬Câ`"##³³³{õêõý÷ß³ ÁýDç àùDFad€s,è»Õjuii©B¡>|x]]Û5G'ÐcOë²@«gTm<ÇÛÊ<ý1Q$¸x>‘)HØG?\£­b~~¾Z­¦¦=<$ŽŒ¼xñbРA2™Œšuvvvrrª¨¨`;.p8!!!:ÎÙÙ™^2lذ+W®TUUy{{§¥¥õíÛ—íÁ¦ jjjBCC©ÙÐÐÐòòò¼¼>>'Nœ g322jkkL•·¿óköW#»¬”ýÕ(??Ÿí¸îåË—€~;¹———@ (++3Z¸   åªeKÚô‘A¾BZË,Ûº:ýïl¹®­šuƒ·VƒXÐV–}¡™%f&:®^m]Âä£V?u4HÛF«Õ¦¥¥­^½:66ÖÛÛÛhüÔ€Íh4±XL?õ](:99UVV-ltàÄà u¤#ïÒ0zOqÇ5N{^¾­jÙ¤-·/5aã› ±­;Gã222¨ésçÎI$BÈÓ§O,XðøñãåË—GGG³#quu­««ÓjµTî¨Õjëëë]]]™ƒþy½Žþ¹µñ›?lY5dðÀp£o´e$¶_¯cBâhœ\.ÏÉÉ¡¦©ëÉîÝ»7cÆŒ‘#GþóŸÿtssc;@BñððÐét„òòrNGŸ¹fÈ–?´ôo¼mVŠ¢Cq'5dž¶ÜcœH$rù/¡PØÔÔ¤T*§NºvíZdÀR©ÔÍÍ~|vv¶»»;u’„³lðg° @ ¼†GF®]»VRR2pà@ºw&„H$ê_|¶ˆD"…B¡R©ú÷ïßÜܬR© …H„¾::F u:]||¼þÂuëÖ?žíÐÀÑ)•ʆ†¥RI‰ˆˆ˜;w.Û€ÝÂGÀ®qF8#H€$ŽÀG`‰£Õ455©TªáÇ=Z¥Rñâvu&1›*³sçN_=Æ c»6VÒÐÐ “ÉêêêØÙʵ°›ÍTYY™œœ8kÖ¬'Ož°5Ÿp¤wâÂÞØòa¥q¸p¨š:¦lÜ ¦Â°}ƒüç?ÿ‰‹‹ Y´hÑÛ·oYiîÃs­F¥R>}zÕªU„E‹uéÒå›o¾a;(+ÄlªLqqñ'Ÿ|2eʪ78Ìp£”••mذ¡ººšíx­_ »ÙL‹/~ôè‘J¥êÖ­[jjêŒ3~øá‡®]»²;?p¤wb}o4zŒØ¾q8r¨š:¦lÜ ¦Â°qƒhµÚ¹s纹¹íÚµ«¡¡!99yéÒ¥7n$œ9|8DÖP__?dÈãÇS³éééÁÁÁÍÍÍlÇÕޘ͔™1cÆÎ;Ù®D{+¨Óé¶nÝ*ý¯ÚÚZ¶£¶r-ìc3ÕÔÔøúú^¼x‘𭬬8p = æq§wbwo4zŒØ¾q8r¨š:¦lÜ fm7HAAT*½ÿ>5»{÷îÁƒ777sçðᜪ¶Ž‚‚‚šššÐÐPj644´¼¼6Ó‹/ $“ɨYggg''§ŠŠ ¶cçîôNìîFÛ7GUSÇ”ÄÌ¡mû½eâĉ  ¦ÿð‡?PcœÜ9|¸‰£u¼|ùR xzzR³^^^ ¬¬Œí¸Ú³©2Z­öÅ‹ûöí2dˆL&‹ŠŠúõ×_Ù®%ä¾öÔÂn6“ω'\]]©ÙŒŒŒÚÚÚ€€¶cçŽÜܶqLS6nSaؾA$ÉŠ+:uêTQQ‘““³sçΈˆ¡PÈ‘=„S8Z‡F£‹ÅBáÿ¶§P(trrª¬¬d;®öÆlªLii©P( ºvíÚ¥K—z÷î÷îÝ;¶ëÔæ r_{ja›I«Õ8pàÛo¿õööf;v~àÈÀͽcpL±Õ a°Ø ³fÍš2eÊË—/cbbgöNáâ•ò|äêêZWW§Õj©ÝK«ÕÖ××ÓÿEq“˜M•éÙ³gnn.],%%eذajµZ.—³]­¶UûÚS ;ÛLOŸ>]°`ÁãÇ—/_Ívà¼Á‘›{£ƒ7NËcŠ•i‹{ËÑ£Gß¼y³}ûv…BqõêUŽì!œ‚GëðððÐétôEWååå:ŽÜæ&&13¬—‹‹‹§§'×Fïù¸Q:´¼ÞL÷îÝ‹ŠŠêׯßùóç‘5¶ 7ŽìŽÜ8F)Û7“CÛ òøñã;wîPÓ=zô˜?~MMÍíÛ·¹¹‡° ‰£uH¥R777µZMÍfgg»»»K$¶ãjo̦ÊdeeEFFVUUQËß¼yóúõk¶ëÔæ r_{ja7›©©©I©TN:uíÚµnnnl‡Ì39¸¹7:lã˜:¦lÜ ¦Â°}ƒÜ¾};>>^«ÕR³UUUZ­V,sdᜪ¶‘H¤P(T*Uÿþý›››U*•B¡àæ3ó˜Äœ––æîî>fÌSeBBB–.]š””ôå—_vêÔ)55Õßß?00í:µ¹‚lÇØ±µ°›ÍtíÚµ’’’ÒÝ7!D"‘xxx°>p¤wâæÞè°c昲eƒ˜ Ãö ž’’²|ùòÉ“'×ÕÕmܸQ"‘øùùqdᇮ¼u)•ʆ†¥RI‰ˆˆ˜;w.ÛYóÁƒ% •‘-ãââräÈ‘”””øøx‘H–””$Ø®%ä>‹ka7›©°°P§ÓÅÇÇëÿÕºuëÆÏvìüÀ…Þ‰³{£c6Ž™cÊ– b& 7ˆ»»û®]»Ö®]ûÅ_ˆÅâàààÕ«WwîÜ™pcáÎá_žLàG`‰#0‚ÄA⌠qF8#H€$ŽÀG`‰#0‚ĸnìØ±7nd; p8MMMÛ¶mûâ‹/d2ÙØ±cçÏŸÿøñcê£gÏžùúú¾}û–í q60°H UVVFGG§¥¥=zëÖ­_ýueeeTTÔùóçÙ €M"¶à•JõöíÛ3gÎxxxPK&L˜°fÍš%K–³k0â|õêÕ+¥R–œœ\]]M™5kÖ¼yóè2»wï×jµF ?{öìÃ?,**úì³ÏRSS !7oÞüüóÏýýý?úè#¥RIŸî)))ùú믣¢¢Îœ9ãëëûâÅ S1ß•——;vlÞ¼ytÖHQ*•"‘èðáÃÔìýû÷'Nœ(“É Å/¿üB-¼pá„ ,“ÉKKKçÎ;tèP¹\~ýúuú›ư0‰#ð’F£‰‰‰‹Å{öìY¿~ýÓ§OçÏŸO;vìåË—©b™™™&Lhll4Z˜¢Óé.\8zôèO?ý´¡¡!..Î××7--mÍš5¹¹¹[¶l!„477O›6M ìÛ·oΜ9k×®5ðÝ£G´ZmË‘E±XPPP@Í.^¼xúôé{÷îíÕ«×Ô©SËÊÊŠ‹‹ããã©”qÒ¤IË–-ËËË3³"­V»råÊÕ«W§¥¥uéÒeéÒ¥æknn>|øð÷ß¿jÕªÌÌL¹\>jÔ¨ƒzzz®\¹’.Ö203ý•~7ÈvÃè¸m̘1©©© O:5räÈææfjöõë×¾¾¾ÏŸ?÷ߕ+Wt:]qq±T*-,,4UøéÓ§R©ôäÉ“ÔòŠŠŠýû÷×ÖÖR³Ë–-‹‹‹ÓétçÏŸ¨®®¦–=zT*•>þÜÔײÝ`Ð^Ç4hÑV­ZMõÇŽ£666†‡‡oÛ¶íßÿþ·¯¯oqq1µüâÅ‹¯^½2µêK²²²¨ÙŒŒŒ¡C‡ÒËß¼yC-¿~ýºþò;wîPË Ebb"5}îܹ?ýéOt™–1ìZ…k—=zT\\ìççG/ÑétOŸ>  ½páˆ#233ýýý½½½Ož}!C† ¡öèÑ#22ò§Ÿ~ÊÏÏÏËË»qãFHH!¤  À×××ÙÙ™*F—7CïÞ½Ùnh—>}ú466VTT¸¹¹|ôêÕ«^½zQÓ}ô5!‰ §OŸîïï?vìØ?þ8((H.—÷ìÙÓüºè>¤{÷îLbëÛ·/5áêêª?­_¦e`555LºA€V!q^rqq 8tèPËÆ—’’²lÙ²¬¬¬¨¨(3…Ÿ={FùÝï~GÍ>|øpÊ”)=ztXX˜T*-**"„477 ú¯èi31¯ùøø‚ëׯGDDè/×h4wîÜQ(-ÿD(ŠD"±X|äÈ‘œœœ+W®¤§§¯[·nëÖ­#FŒ0³®÷Þ{Ï|0ÆÔGú]“)T` »A€VáGà%©TúÛo¿UUUQ³999“&Mª¯¯'„|òÉ'UUU?üðC^^Þ¸qãÌÖ—••Õ£Gýû÷ÇÄÄÖÕÕQË}||òóókkk©Ù{÷îµ𚇇Gtt´J¥ª¨¨Ð_¾iÓ¦úúúÉ“'S³999ÔDssó­[·$ÉÍ›7wìØ4þü³gÏÊd²³gÏZÝ·ÿüóû÷罹¦ººº>>ž’––æîî>fÌ&«öôôìܹó–-[fÏž]XX¸oß¾¶ß20gggôW`HÒÓÓÓÓÓéY™LvèС}ûö­X±"66¶S§N£FJJJ¢ Œ;öâÅ‹&L f…B¡™Â´‰'Þ¿Μ9]»v•Ëå»víúÛßþ¶~ýúäääýû÷/Y²„:‘½hÑ¢¯¾úª[·n ¿ø¨{÷îÇßµkWFFFjjª———ŸŸß©S§Þÿ}ª€X,ž7oÞ¦M›ž?îççwøða—ààà… îÙ³gõêÕ^^^Ó§O‰‰!„}úlÛ¶­¦¦†^E‡Äçó555.]º$#º¬ ­[·Ž¢(eeeBHqq±Œ£ˆ/ÅþóMMM77·´´´žBuuµªª*!äúõëRZ}Ǫ!´jH¡‰‰G‘HD)dâèããCéÞ½û?ÿüCo9mÚ4Bˆ±±qaaáGn/UÎÒ7è„””$ޝ´´´sç΄mmí¯¾újÆ —/_.//§×Ò¿2‡£©©ioo¯§§G±³³¯âr¹={ö$„ìÝ»—¢¨1cÆÐåÕ˜1cÔÕÕÕÕÕ=zDQTuuu—.]!}ûöussSRRRVV~öìEQÞÞÞtæjgg§¬¬LßI64qœ:u*!D__øðá:::„ùóçÓ«è>ùäeee•{÷îÕÏÕ«WûöíK™;wnBBõ¿‰c}G_¥öíÛ[ZZÒÍ Ã† ûà)ˆŸ%ÍÌÌ”*Ðê;Ví¡UCâMŒ.e:vìH9|ø0U+qüà°¸2€^¢¦¦Þ£G:,^¼øÙ³gƒÖÔÔ´¶¶× Ôy#^_––››«¤¤D‘¬Z¨©©¡ÿ—lÞ¼ù#·Ç :@sKLL=z´†††ø—Âãñ~úé'êß>!dÆ Eegg·k׎róæMñªY³f¥¥¥•——'$$BzôèAÿô„B!!dÊ”)Eedd 2d„ ôœœ!§NJOOçr¹ÊÊÊÏŸ?§(jãÆô>”8&%%Ñ1¿|ù’¢(: %%¥œœœGÑé×»wï(ŠZµj•²²òÂ… 닇ªuŸ)NeE|)~ÿýwŠ¢.]ºD'âõ‚©©iß¾}éÌ•âááAýo+ãXî„Ù‰#41º” ÕÔÔìܹsII‰Tâ(ûX²2@\´©¨¨XZZÒÓíÚµëܹ³!äÓO?¥ê¯¨/qüÏþCéСƒÔò   Bˆ¸\nôö¸Ah•••÷îÝ 4hýËzþü¹¸Ü7¼2„ràÀq5[nn.½*<<¼ö\}ûö¥×|XWW·¡ÇÖ@âÍeáÂ…Ÿ|òɦM›²³³Å é|nÈ!tbdeeeaaQSSC·ÎB8Î?üеkWÉRž®NøôÓO !®®®JJJÆÆÆtûouuµ©©ééÓ§‡ 2sæL@Cd–V¦¦¦„ɨ JKK?~L¯õöö÷‰>}úô·¯ó(ÏŸ?‹‹ËÈÈ oÐ9"µÁ/Ô©ªªjÉ’%³fÍzøð!½äÕ«WUUU„>Ÿ/ÞìäÉ“„ׯ__½z•Ò¯_¿Ú»¢oÌòóó'L˜0qâÄnݺÅÅÅBΟ?Ÿžž>xðàÝ»wýõ×⦙™!äï¿ÿ¦‡J 3*zÕþýûËþE?§XºI!:::''‡’’’rëÖ-.—kmmM·®üý÷ßïß¿'„¬]»–Çã-[¶¬¾xÄjz2ŽÒäyŽ…$’8BsQWWß°aCII ýØíƒw¥’•4ñ=1n…‘ÔÐqz„³œœœ›7oB***ÜÝÝÝÝÝÿúë/BH¿~ý¤ª >¸}GÁ :@3éÛ·ïW_}URR"¥¥e×®]ß¾};~üøîÝ»ÓÛp8œU«V999YYY•——3Fü¸‹$KKËQ£F¥§§»¸¸L™2eøðáÛ·oÿä“OÈ¿EMtt´»»û'Ÿ|B·ŠPåàà`eeU]]ݧOggçyóæIþŠëD·?ˆ8qÂÂÂÂËË‹.»FåààPYYéëëÛ©S§¾}û>¼´´´OŸ>C‡]·n]uuõ„ ꋇB?«³}ûöèèhÉãÊ8J“ÿQd«¾¡Ubº­ØFò™‘H$ņ~ÆñéÓ§„--­ììlŠ¢’““UUU¹\nVVVíG¥–,_¾œ²dÉzVMM’——÷Ë/¿ûVUUÑåTDD„Œ.ÌsæÌ!„ðùüøøxŠ¢V¯^M©§§G?þ1ÛËèG)’ŒKAýûHбcǘþ{(¢²²²­[·öéÓGKKKWWׯÆfÇŽtÇjñ¯ìÏ?ÿìÙ³§¡¡áôéÓKJJ¨z:Ìûúúšššòx<—ÿüç?ôòÒÒRºí“O>Y±bÅìÙ³ !³fÍ¢(êáÇtCA×®]8ðÁáx¤ìÚµ‹¢¨ÊÊÊ5kÖôêÕ«}ûö½{÷ …âáxÞ¿ïçç×µkWMMM''§¿þúKv<ñññÝ»wWWWß¹s'õ¿½ªë;ŠÔ¥QZÊY É>#©¡UCâMLª”¡Ý#c¼¼¼!FFF#Gޤëáüüü¨ºJ.9Ç_ý•ÞlèС:t Ö9~ü¸Œ¢0??ßÖÖ–ÌÀÀ€~Ή.‘322>r{ùËÙú.EQ¾¾¾„;;;úÑr“üƒ^}PEEÅÕ«Wë\UZZzûöí>5ñ´4UCórvvþæ›o$—!Ä‚®êsqq‰ŠŠb:.€Fbyâxüøñ/¿üòñãǯ^½š;wî›7o¶oß¾{÷îFì*((èþýûB¡ð§Ÿ~ª¨¨ðöö.--eúüZŸ6’2ÒÌÌÌ"""ÊÊÊÌÍÍé®Ö(: õbyâxàÀ77·¨¨(SSÓC‡Ÿ9s¦¡û)--ŽŽ^´h‘³³³µµuhhèëׯoݺÅôù´2m'e¤-Z´èÂ… 'Ož8pàÓ§O?ÿüó™3g2„鸉åÏ8æåå9;;BîܹãââB177ÏÍÍmè~²³³---=«¡¡¡¦¦VPPÀôù´¬œ±Nööö·oß.))ÑÑÑ ŒŒÔÓÓ;v,Óq4ËÇ.]ºDGGkkk_¿~}òäÉ„›7o5t?=zô8}ú´xöÂ… ¥¥¥666õmonnN‰ŒŒdú4 ÉÁDXƒ}'¥°gD¿g~L+Ðûc¨ªªªªªBø|>ŸÏg:€ÂòÄÑ××wþüùaaaÖÖÖ¶¶¶{öì ]²dI£w(‰ÂÃÃ7lØ0}útúßaØ÷>±®]»2NªõÑÇ×2¶öD³¾ÞÓwïÞe:4€Æ`yâ8tèШ¨¨ŒŒ @ÀårÁÏ?ÿìèèØ¸½=þ<000==}Íš5ß~û-Ó' ÐX9 wCíØ±C<]QQñäÉ“C‡y{{3@#±3qÌËËO«©©YXX””””””Ðu„yyy Ýçǽ½½?ûì³½{÷êéé1}ŠŠ«m>ÎX'©ÛTWWWssó… z{{«««3@ƒ±3qtrr’½AC›’«««ýüü&Mš´`Á¦O@q!eü îÝ»WTT0@#±3q¤ÇKkB111¯_¿îÙ³gll¬x!ŸÏoDÍ%+!e¬Ó»wï$g‹ŠŠÂÂÂ:wîŒêFh¥Ø™8~úé§õ­ª¨¨Ø¶mÛ²eË´ÃgÏžQ5þ|É…[·n9r$Óç À0¤Œ2888H-QQQÙ´iÓq4;G±wïÞíÚµKr˜’‚‚‚¬¬¬†&ŽÓ¦M›6mÓg pÐF¶Ú­†††¨n€Ö‹å‰ãÊ•+ããã|êÔ©I“&•••ݺuëÇd:.€V2H>Ó"%++‹Ôê4ÐZ°ÿܹsLÇÐ,WuYY™¾¾>!Ä‚îIíââÅt\­ýÈó²iÎÿ’Z+‰FŒñòå˳gφ……ýñÇþþþLŸ\Szð¯-[¶˜˜˜>>>>þÈ‘#¦¦¦ÖÖÖLÐH,OÍÌÌ"""ÊÊÊÌÍÍé‡222JKK™Ž  õ‘3e”ÜRL*w¼víÚƒ~ýõWww÷Ÿ~úé§Ÿ~båsÇŽAAANNNªªª***«V­:}ú´Tok€Ö‚å‰ã¢E‹.\¸pòäÉ>}úôóÏ?Ÿ9sæ!C˜Ž  5W46Õ“““éY{{ûââbV¾…/;;›ÇãI.ÑÐÐÐÔÔÔÖÖnÐ~*++AYYYk÷ïßo.¡ÿþLŸ7°ËŸq´··¿}ûvII‰ŽŽNxxxdd¤žžÞرc™Ž  uh¦0:uÊÍÍ}ûö­®®.!äñãDŽׯ_3}ºM¯_¿~¡¡¡;wîÔÑÑ!„†„„‚ÚÍ÷2äåå…„„×·Aff¦››ÛĉéYee–ìÀ ö—/ªªªªªª„>ŸÏçó™ uhÖNÓC† 111™4iÒš5kÞ½{÷ý÷ßs8‰QëµzõêI“&¹ººöìÙ“’˜˜¨§§wôèQù÷¶}ûvÙÛdff::::;;3}ºÀ~,Oëë=ÍÊF1€&ññ)c퇥öÖ¾}ûK—.Í›7ÏÍÍ­sçΫV­š4i’––Ó§Þô:wîyéÒ¥´´4.—;yòä!C†¨¨¨È¿Ÿû÷ï?¾¾m233;wî\^^^]]­©©ÉôI›±û&“’’¢««k``’’B±°°°°° WeddBš°õC$egg:tÈßß_$õêÕkݺu–––õmonnN¡G™h(–'ŽR£ìºººš››/\¸ÐÛÛ/oÔ’z¿~ýÚËË+44”Îo~ûí·Ž;ÊÈuZ™3gúûû{xxÔ¹AæmoÞ¼ár¹öööûöí+//_¿~ý¬Y³.^¼(Õ)§9 mËÇÚºwï^QQÁt ¤åßcllüöíÛÙ³g¯_¿>;;{éÒ¥ëׯgÓàqqqt•„„„æ>–±±q||¼xvãÆýû÷uwwgú2 ±Ÿ?lØ0±qãÆùóç+++»¸¸,Z´¨AŒȉ£xº¼¼\$ÑïL‰D„>ŸîÜ9¦chQHÑ¥K—èèhmmíëׯOž<™róæM##£†îÇÆÆFª7ôÅ‹ÅÓ]»vÝ·oÓç m;ßUýà_[¶l1119xð`|||||<ÝZdmmÍt€-Gü¦id-Ï××wïÞ½Ÿ}ö™………­­íž={Ö¬YÓ¬cš“OÇ·€Q£F-\¸ÐÕÕU¼$&&fÚ´i·oߦ_ÛÌÍÍY6RZzzz×®]™Ž'Õ˜3b¶L3Të’™™™‘‘!ÔÕÕïܹSSSÃà£2’ßLcÓ?ݱ³©Z,;;[j\ MMMmmm¦Ch^h›V&&&\.7..ÎÑÑÑÚÚZMMÁ`$_Ï#ùÝÀ4¦1ݸé6ˆMÕbýúõ æXXX"ðä8°Ú¦GqqñìÙ³ÝÜܦNJ™2eŠ¿¿II Óq4ËÇÕ«Wgee¹ººŽ?~üøñ®®®™™™«W¯f:.€f”QÑ¿ÿþÆô{q?~¼yóf¦ãh$–'Ž;wŽŒŒüá‡ú÷ï?`À€àààÈÈÈN:5z‡••• ¬¬Œé3Ö­[7¤ŒŠ&&&fÁ‚†††ô¬­­íâÅ‹£££™Ž  ‘ØùŒcJJŠ®®®AJJ !Ä‚^•‘‘AáóùØm^^^HHHqq1Óçð?èG/ÒÒÒ˜¤UVV¶oß^r‰¡¡aMM Óq4;G™3gúûû{xxÔ¹A#z=‡……mß¾é3ø’=`ÒÓÓ™¤ÙÙÙ>|xÆ ôlQQQHHHíW¡´ìLãâ┕• ! MµOŸû÷ï?žéó@§éÖaÙ²e^^^îîî"‘h„ OŸ>511Ù´iÓq4;GñÛ¨UUUuuuoܸqöìY++«}×ÜÜœÉô•h™™™L‡€“úݺu#ÿ6LKÖ2¶Þ3b±:œ?þâÅ‹©©©<oÆŒ...\.Ë.cgâ(vüøñÕ«WïÙ³‡¢¨¹sç ‚íÛ·Λ7¯Y˲À !­}fÖœ”ìg[ãÉÖzÛßËÊÊ’’’tuuMMMGM‰DÅÅÅ999ÇŽ[¼x1Ó4Ëo|8àïïïææejjzèСààà3gÎ0@ƒ‰‡Úa:ø°'Ož :tܸqîîîcÆŒyýúõœ9súöíkggçæævèÐ!¦€:¼yóÆËËËÈȨGèÇV'–×8æåå9;;BîܹãââB177ÏÍÍe:.€ÀãŒ­ÎæÍ› CCC555÷îÝûÕW_ñxй£ä’/^'''z–Çã©««ã!hÕè/¹T©(ùÍ8pàÏ?ÿ|âÄ ºfýñãÇþþþô( I¡‹¶&abbÒ­[·¸¸8BˆµµõGf666IIIâá~€õ¤êf꬞©óS ýˆøƒ„F|° cèÕ«×Ý»wõôôèÙ_ýµ¸¸XœG´Fâ4Q²T”¼_úöÛo?ùä“C‡(++Óã­*T[‚`ycqqq@@Àµk×(ŠJJJš2eЉ‰ÉÚµk544˜ Z†ÖÕ5®ïsœÕ.Úš5hBáááô“RuÎΟ?Ÿéå"‰vïÞ½páÂE‹‰_Ü ÀJíÛ·¿téÒ¼yóÜÜÜ ËÊÊTTT´´´˜ŽKá°ØTM133»té!dܸqÆÆÆ;wîÄ`µ±]`?vÖ8Šeggóx<É%šššÚÚÚ ÚONN‡Ã©addÄápòòòêÛÞÜÜœÉôh™™™L‡ ‡ÃIKKϦ§§ËØ8--Þž>©nݺÑKèU²?«àüÏÔf,_¾üáÇ‹/VVf¾È¥K§¤¤$¦€V‰ùR¬Yõë×/44tçÎ:::„ÂÂÂ@ÐÐ~-êêêâ†i.—«¦¦VXXXßöì+”»víÊtu£+ÅPyê éælñl·nÝXS˨°¦FkÕ©<ÍÃÃÃÁÁaîܹ Û·o—§å±¯t€–Äò¦êÕ«Wgee¹ººŽ?~üøñ®®®™™™«W¯nè~´µµËÊÊÄcjˆD¢òòò†V[Bó¡þ%ÿö’d:|`9>Ÿúôi==½1cÆ|pÌ`ÐáÇù|¾–––‡‡šqêÄòÇÎ;GFF^ºt)--ËåNžY²dÉĉÿúë/¦CV8,O !ªªªÀÀÀÀÑѱ¼¼¼Y#!ÄÌÌLOO/66väÈ‘„[·néëëóù|¦OLÜ{†m  ø~þùgMMMzšÃáÌž=ÛÚÚúÊ•+LÇÐIõž”š‰Dëׯ_½zõôéÓ !íÚµýôS¦W,,O‹‹‹®]»FQTRRÒ”)SLLLÖ®]«¡¡Ñ ý(++{zz …Â.]ºÔÔÔ…BOOOExÎ䇡v Å¤¤¤èêêHÝ¢zzz2 HKNNÎÌÌ7n=ëêêŠÿubyêüþýû7n¸¸¸B—/_¾yóæ5kÖ4tW~~~•••~~~„yóæ1}r /¤ŒÐÂ<<}jbb²iÓ&¦ã‚æ‚”AuuµømF’¯5"„p¹Ü•+W2 @%㿃––Ö?ÿü3hÐ BÈ›7o²³³ñŒcm,O;tèpþüù‹/¦¦¦òx¼3f¸¸¸ˆ_l‚”‡––ÖîÝ» !Ó§O§'PƒÞ·À2ÆqTSSûî»ï¾ûî»Ý»wkkk/Y²¤wïÞŸ}öÓ!+–'ŽGŽ0`ÀèÑ£ÅKÊÊÊV®\¹e˦Cƒ&ƒ”Ö˜¡R?™Ú½MXIvçBÈÖ­[•••}|| ‡¡¤¤ÄtÔ ‡å‰ãúõëÕÕÕ×­['£ººúÏ?ÿDâÈøŸŠ,!!aÕªU/_¾”Z~÷î]f“üÕÔîm Ð6q¹ÜÍ›7oÞ¼™é@ËGBH@@ÀòåË>|¸xñb ÙÍ&¨hÅ·råJUUÕµk×êèè0 @›öÁqANìO¤<<<æÎ›°}ûv ÈÄH¡µxöìYxxxïÞ½™ ­§‰âÿ ȧMtáóù§OŸÖÓÓ3fLll,Óá@ãq8ŒÎ­ˆ¡¡aYYÓQÔA²‹þ}BÛ!þR{GS›H !<o÷îÝ“'Oþþû )#´:ÁÁÁëÖ­»téRVVVžf£ÿã߉1}Zýµg:ŠVŒåMÕ?ÿü³¦¦&=ÍápfÏžmmm}åʦゆAÛ4´RÞÞÞ"‘ˆ~ǽ$Ex7 ~PЦԾGBúØ8ìLSRRtuu ÒÓÓ%Wzzz2 ÔKj-¤ŒÐªEFF2‚‡›;G™3gúûû‹Gá‘¢·ûP›ä¯hÀŸ~ú)!$;;ûùó玎ŽåååjjjLÐxìLãââè‘w˜ŽL²ËÓ±|”ââ €k×®Q•””4eÊ“µk×jhh0@›#õoÃÎÎ1êêê***„I“&©þ¯òòò3f0 ÔA¼aÃz¶¨¨($$ÄÁÁé¸Z7¤Œr’zµ «««¹¹ùÂ… ½½½ñö)hX>ø²eËîÝ»çîî.‰&L˜àââ’››»bÅŠFïÐÆÆ&))©-—ø’†êÞ½{EEÓQ4Ëk;tèpþüù‹/¦¦¦òx¼3f¸¸¸p¹,O—› *Jê 1EEEaaa;wnË7ŸÐª±3qŒ•œ566666¦§oß¾Mjµlô€ÞHªöƒ1***›6mb:.€Fbgâèãã#ž.//‰D‡ÃáˆD"BŸÏ?wîÓ1¶t-cZZûF–h—/_–ZbhhˆêFh½ØÙhûà_[¶l1119xð`|||||ü‘#GLMM­­­™°uÀãŒ)00ðÓÿUUU5eʦãh$vÖ8Šíر#((ÈÉɉžuppXµjÕ´iÓ-ZD¿:ê„Ç>Fiiéž={!qqqÛ¶m“\•“““šš*ÿ®ª««wìØqêÔ) áÇ/X° ö{®÷ïß/y]]Ý[·n1} €Xž8fggKã­¡¡¡©©©­­Íth )#ÀÇ«®®NKK£§Å4.—»råJùw% Ïœ9LYºt©ªªª¯¯¯Ô6™™™nnn'N¤g••Y^°ƒX^¾ôë×/44tçÎtýbaaaHHˆ@ ¨}ËLOœ8áéé)µðûï¿ a:vÅ¢¥¥µ{÷nBÈôéÓ鉯©¨¨ˆˆˆ ruu%„øûû …B©¡!233™>o`?–'Ž«W¯ž4i’««kÏž= !‰‰‰zzzGe:.Å"Né.DôÂÚ¤‹‹Kdd¤x¶¼¼|Ò¤InnnL‡ ¸8 ž®©©QRRjÐÇ“““KJJÄ¡³³sPPPbbb¯^½$7ËÌÌìܹsyyyuuµ¦¦&Ó' lÆÎÎ1b;wŽŒŒüá‡ú÷ï?`À€àààÈÈÈN:1WãL›6M___OOoÔ¨QÉÉɹCqñ„xVjË:|.áÁƒÆ 9r$Ó—@edd„††¦¤¤B***,X`mm=`À€#GŽÈ¿“œœ‡chhHÏq8œ¼¼<ÉmD"Qvvö¡C‡úõë'ÆŒóøñcû477777gúò@kÅòGBˆªªj+Jn$Óµ:[§OŸþäÉ“_~ùEWWwùòåîîî=j\ÃÇ<Θššº{÷î„„¦/€"züøñĉ»uëöÅ_BvíÚuõêÕ™3gjhh„„„tèÐÁÝÝ]žýTTT¨««‹¦¹\®ššZaa¡ä6oÞ¼ár¹öööûöí+//_¿~ý¬Y³.^¼(õx·XRRÓ—Z1–'Žvvvu.¿{÷.Ó¡Õ®ó«o–R\\|æÌ™?þøãóÏ?'„œ8qÂÈÈèêÕ« ÍŒk§Œµ%®ƒ¬sAAA3fÌèСÓ× @íܹÓÝÝ}óæÍ„Š¢~ûí·ï¾ûnÞ¼y„ªªª£GÊ™8jkk—••‰D":w‰DåååR}ûŒãããų7nìß¿ll¬œ‡h–'Ž;vìOWTTë«e¬},YããÇ/^¼(ÕWÄ=zJO§¤¤äåå1‚žµ±±9v옜û100 (ª  ÀÀÀ€’ŸŸOQ”¸åºN<ÏÐÐPª9 ©°ŸÏ—Ü&222,,ìØ±cZZZ„·oßæææöèуékìÄòÎ1µuïÞ½¢¢‚é(ä"£ÎO$íܹsÊ”)‹-²°°sW²³Fq¯jZ}—””œ:uj„ L_ÅejjKOGEEõïß_¼*>>þÓO?•s?ÊÊÊžžžB¡0!!!..N(zzzÒÃ4†‡‡Ó£899½~ýzÑ¢EwîܹwŸŸµµu}Oé|$–×8¾{÷Nr¶¨¨(,,¬sçΊYÝ(Ù^,c¤ÉÔÔT//¯¤¤¤={öLŸ>]ö>TÑ(Ïfþù§šš=ªÔÉÓÓsË–-'##ãÞ½{3gÎ$„ˆD¢ØØØ}ûöÕÁ[??¿ÊÊJ???Bˆ‡‡ý $!䨱c|>ذa</""bãÆóçÏWVVvqqY´h†ª€fÂòÄÑÁÁAj‰ŠŠÊ¦M›˜Ž«^âqpêËánß¾=tèÐ/¿üòìÙ³²uj¦wÀ\¾|ÙÑÑQjüaäééYTTtòäÉ÷ïßÏ™3‡¾ÑZ°`ATTÔ¸qã&Ož,ÿ®8N````` Ôò‹/Ч»víºoß>¦OÚ–'Ž—/_–Zbhh¨˜Õb2R½ªªªo¾ùfÞ¼yëׯ—±‡f}màÕ«W?XÍ ÐÆq8œY³fÍš5Kráüùó×­[Wß(9­ËÇÀÀÀ'NH.)**š={öáÇ™­1._¾œ••Õ·oß+W®ˆZZZJ‹#ãñÄ&‘žžÎôeh•ºuëÆt‹‰ciiéž={!qqqÛ¶m“\•“““ššÊt€ôôéSŠ¢ÆŽ+¹ðرc'N$Í\ÑÀÎıººZ<Ê Ôpƒ\.wåÊ•LØHþþþþþþµ—#e€ÀÎÄQKKk÷îÝ„éÓ§Ól…”Z ËûÆ8p@<]SSó1»*,,\¶l™½½½Ýœ9s222˜=5ñh‹È e°³Æ‘’‘‘qæÌ™/¾ø‚ÏçWTT,Y²$**J[[{öìÙ  C,(((55U(jii…††z{{Ÿ?¾}ûöŒœ]s÷€€qçÎy6ÓÑÑ133c:X€`gâøøñã‰'vëÖí‹/¾ „ìÚµëêÕ«3gÎÔÐÐ éСƒ»»{ƒvXZZæììL íß¿ÿ­[·ÜÜÜZøÔÐ6  ø~ÿýwy6333Câ­ ;Ç;wº»»oÞ¼™BQÔo¿ýöÝwßÑo\¨ªª:zôhCÇììlKKK@@Ïjhh¨©©´äI!eh-6lØÀtÍ‚‰ã£GBCCéé”””¼¼¼#Fг666ÇŽkè{ôèqúôiñì… JKKmllêÛÞÜÜœB¿IöãÑÿÑÝÃF133³åŠ“Â€¢agâX\\¬¤¤DOß¼yÓÈȨ{÷îâµ%%%Þ³H$ ß°aÃôéÓe ç›””ÔTç¢ 3víÚ•épRmñŒ0à<€Bag¯jSSÓØØXz:**ªÿþâUñññŸ~úé÷páÂ󥤤РŸ?îéé¹cÇŽ5kÖ4÷YˆûM3sþ;k===·lÙÂáp222îÝ»7sæLBˆH$ŠÝ·oŸ¯¯ï÷àîîþÏ?ÿÐÓ„‡z{{öÙg{÷îÕÓÓkÖøñ8#( Ö&ŽEEE'Ož|ÿþýœ9s\]] ! ,ˆŠŠ7nœ<Ãñ(++óx<ñluuµŸŸß¤I“,XЬ‘#e`÷ïßK ¹€â`gâÈápfÍš5kÖ,É…óçÏ_·n]ãŠé˜˜˜×¯_÷ìÙSÜNáóùM3AÊÀ S¦L“&MªïÁ˜;wîüüóÏ&&&Ë–-c:X€`gâX'}Y>èÙ³gEÍŸ?_ráÖ­[GŽÙ$±áYF6‰ˆˆØ¿ÿ¸qã,,,lmm»wï®­­]SS“ŸŸÿäÉ“›7oÖÔÔøúúŠG{hyô* …ÈùJÓ377—¿Wu«¨hLOOgew]–ûΨµŸTyyyttôÍ›7ŸŸé@šG€æ²eË–%K–Я¨ÖÔÔ/700`:4€Æ@âÐ\<<<(Šzøð¡Ôò¤¤$¦Ch $ŽÍ%22’éšG€æ’••%c¹ššZ¿~ý˜Ž 84— 6ЭÒôK¤D"—ËUSS£×víÚõ·ß~c:F€@âÐ\¾úê«#Gެ]»ÖÞÞžËåÞ¿åÊ•C† a:4€ÆÀ8ŽÍå×_]µj•³³³ªªª²²²½½ýŠ+BCC™Ž  ‘84—7oÞhhhH.ÑÐÐÈÉÉa:.€FBâÐ\ìííCCCß½{Gφ„„X[[3@#áG€æ²jÕª)S¦¸ººöìÙ“’˜˜ÈãñŽ9Ât\„ÄQ^/_¾\·nÝýû÷UUU ´xñb¦ƒ…fddtîܹ+W®¤¤¤TVVzzz~þùçâ^ÕM¥ººzÇŽ§NÒÐÐ>|ø‚ 8Ó§섦j¹ˆD¢yóæUUUýøã!!!wïÞ]µjÓA@+’’Ò§OŸ¹sçÚÚÚÆÄÄüúë¯"‘¨i! O:tòäÉÝ»w3}ÒÀZHåòìÙ³§OŸúûû÷íÛ×ÞÞ~üøñýõW“—þ kذaL‡€“j‹gÄ‚“:~üø—_~ùøñãW¯^Í;÷Í›7Û·ooÚÄ®¢¢"""ÂßßßÕÕÕÕÕÕßßÿ—_~i¥“¹¹9Ó! Ã’`ZGy;Ö‚žþä“O”•ÑÊpàÀ77·¨¨(SSÓC‡Ÿ9s¦ ‘œœ\RRâììLÏ:;;ççç'&&2}êÀNÈ~äÂçóøáBHAAAZZÚþýû=<<¸ÜzÓnö݈°ïŒXyRì;£Ö.//NéîܹãââB177ÏÍÍmÂCäääp8CCCzÖÈȈÃáäååÕ·½B}I ‚iÕÁ´MHfΜ9qqq7n¬oú c]ºt‰ŽŽÖÖÖ¾~ýúäÉ“ !7oÞ422jÂCTTT¨««‹ïcéWÖ¹1J'øHhª®Û… Ìÿ•’’"^~âĉ[·n}ñÅžžžåååL‡ Í××wïÞ½Ÿ}ö™………­­íž={Ö¬YãååÕ„‡ÐÖÖ.++?Ô(‰ÊË˵µµ™>u`'EQLÇ ˆª««ËÊÊèi çÏŸ¿{÷®_¿~ô’ÊÊÊ>}úüôÓO `:RPh™™™@]]ýÎ;555ŽŽŽM¸ÿ'OžŒ3&&&ÆÀÀ€òæÍggç3gÎÐ#G4-Ô8ÖMYY™÷/.—{ÿþýùóç‹ï鋊ŠD"‘ºº:Óa€¢311qvv¦‹ {{û¦Í !fffzzz±±±ôì­[·ôõõù|>Óç ì„ÄQ.®®®eeekÖ¬IJJŠ‹‹ äóùVVVLÇm²²²§§§P(LHHˆ‹‹ …žžžöš šªå·eË–§OŸª««;::tèÐé EQ[·n½pá!ÄÃÃcáÂ…xs 4$Ž 4U€\8€\8€\8€\8€\86±ÂÂÂeË–ÙÛÛÛÙÙÍ™3'##ƒéˆšLee¥@ ¿P§•ª®® … :t¨P(dͨìøëˆ±øwÔònݺeaaQû»Qßòæ÷ßwww·±±™5kÖ«W¯ æÝ»wK–,qtt0`ÀÒ¥Kß½{×1ìß¿ß\Bÿþýé匔TõÃÈï±¾`ÄZò ,#¿ÀLÁ ±M,(((55U(jii…††z{{Ÿ?¾}ûöLÇõ±òòòBBBŠ‹‹™äc …Â3gÎB–.]ªªªêëëËtP‹51¶þŽZÞû÷ï—.]Z;í¨oy süøñààà•+WvìØqëÖ­ÇŽc*˜¥K—¦§§oß¾²råÊeË–………5w™™™nnn'N¤gÅ#·3RRÕ #¿Çú‚¡µð¸¾`ü3‰‚¦SRRbnn~åÊz¶°°°gÏžâÙÖk÷îÝfÿ*--e:œÆ+//ïׯߩS§èÙ“'O:::ÖÔÔ0×GaÍ_GŒ­¿#F,Z´è‹/¾¨ýݨoyKSSS3hР}ûöÑkoß¾mff–••ÅH0={öVrrrII‰³³3=ëì윟ŸŸ˜˜Èt\…51¶þŽZ^TTÔ?ÿü³páB9—·p0¯^½1b=kooŸ””Ô©S'¦® —Ëm×®=­¦¦Æå¶ÄÿÇÌÌÌÎ;———K¶0URÕ S¿Ç:ƒ¡µü¸Î`ü3 ‰cSêÑ£ÇéÓ§µµµéÙ .”––ÚØØ0üWNN‡Ã144¤gŒŒ8N^^ÓqÁÿÀï¨Iäåå­^½zãÆšššò,où`222”””âããGŽ)¾ûî»–yx®Î`TUUGŒqèС¤¤¤¤¤¤ƒ~ñŪªªÍ‰H$ÊÎÎ>tèP¿~ýÁ˜1c?~L*©ê †‘ßc}Á&¾ÀõÃÔ˜qH›…H$:zôèâÅ‹§OŸÞ­[7¦Ãÿª¨¨PWWW$p¹\55µÂÂB¦ã‚ºáwô1V¬X1zôh;;;9—·|0%%%"‘h÷îÝ‹-:xð ’’’··w ôu¨ï ,Y²$''gÔ¨Q£FÊÍÍ]ºtisGòæÍ.—koosõêÕN:Íš5ëýû÷Œ”Tõ#Þ %2‚iù/p}Á0õfÓmå­ÛùóçÅ—%''Ó 322¾ýö[[[Û_ý•é›ì¤(Šºwï^kŠî¯¿þ277?*TSScnnþ×_1W`Á_GJkÿ1ëôéÓ_|ñýˆýèýݨo9#Á\¾|ÙÌÌìáÇôf………–––—/_f$˜÷ïß»¹¹ýðÃùùùùùùk×®2dÈû÷ï›ûâH***êÕ«×¥K—¡¤CÏ2û{Ãȸ¾`ù+ôªþ(îîîÿüó=­¡¡Ayøð¡··÷gŸ}¶wï^===¦lš“b Š¢ !ùùùE‰Ûƒ@q°àwĬøøø”””Þ½{‹—ôíÛwÊ”)•••u._¶lYË3|øpBŸÏ§jii6÷€&õÓ·oß÷ïß/[¶Œ®ç úóÏ?oܸAÙ2x<ž¡¡a^^^ß¾}/©ÄÁø=ŠƒINNnù/p}ÁôìÙ“´øX!0¹²JUUÕ Aƒè1·Ø‡uZUUUýû÷ÿóÏ?éÙ?ÿüÓÑѱªªŠé¸š þ:bìþµŒ7oÞ¤ýëÌ™3fff=ÊËË«o9#Á”——ÛØØÜ¹s‡Þ,??¿gÏž7nÜ`$˜³gÏöëׯ²²’Þ¬¢¢¢oß¾çÎkÖ`.^¼8räÈÂÂBz¶   gÏž·oßf¤¤’LËÿë †‘/p}Á0òV¨qlJ111¯_¿îÙ³gll¬x!ŸÏ§ïqÊÊÊžžžB¡°K—.555B¡ÐÓÓSjx0`~GÏÀÀ@|¹Þ¼yCéÖ­›ºº:½ªÎåŒóÍ7ß­\¹’ÇãmݺÕÜÜÜÑÑ‘‘` Äãñ.\8kÖ,Š¢öíÛ§¥¥5pàÀf ÆÉÉiÕªU‹-š6mš’’Rhh¨µµµ‡Ãiù’ª¾`®_¿Þò¿GW¦å¿À2‚iù/°"À¿Ì¦ôìÙ3Š¢æÏŸ/¹pëÖ­#GŽd:4ø/??¿ÊÊJ???Bˆ‡‡Ç¼y󘎤áwÔv,^¼XYYyÍš5ïß¿wrr QRRb$--­#GŽlÙ²eúôéÇÖÖöÈ‘#ZZZÍzP±qãÆùóç+++»¸¸,Z´ˆÃá&Jªú‚aä÷(ãÊ´<Á(θ%q(¶¼r š†ã¹ q¹ q¹ q¹ q¹ q¹ q¹ q¹ q¹ q¹ q„ûá‡Ìë2a„/^˜››¿{÷®Å‚)***--%„”••™››§¤¤4èãtÀyyy-{ 뛩H >ǯ]Ðýý÷ß’¥ø·,5-§~ýúÅÆÆ6:B”Ðò”™ZŸï¾û¾"„M:uùòå666„öíÛ·|0K—.íÖ­›¿¿¿²²òÌ™3uuu™¾< »¡ÿo |ýõ×'N”\bjj*YÚˆËRÓl…ĬS§N:u"„Ð5‹]»vµ´´¤W½xñ‚©¨TTTZcy-›ÁKõ166—o’ZciÐ$ÐT M/99ÙÓÓ³oß¾£GNHH ¾zõÊÏÏÏÑÑÑÅÅeÙ²eÅÅÅôòœœ‡Áƒ¯[·®¼¼œòâÅ‹^½z¥¥¥}ýõס¡¡õ}|úôéÑÑÑû÷ï7n\ee¥¸ñ(//ÏÏÏÏÁÁaàÀ[¶l©©©!„ܹsç›o¾±¶¶vppðóó“Ýžž››;wî\;;»#FüüóÏ£FŠ•jˆµ³³£§ëÜ9}·oßþì³Ï¬­­ÇŒC_ú«ïZ]¾|ùË/¿ìÓ§ÏgŸ}vüøq¦ÿÎm”øg+ù[–œ&õÿг²²f̘akk;jÔ¨èèèÚ;Ÿ3gÎÂ… ųpuu‰D²K0¥ÊhZH¡é­[·Îßßÿ—_~ÑÒÒZ³f !¤¢¢ÂËËK]]ý§Ÿ~Ú¶mÛóçÏ!UUU“&MªªªÚ¿ÿ?üpýúõ   z'E-Y²dèС_|ñE}?pàÀ!CfΜyâÄ ñÑkjj¦NZUUuàÀÀÀÀ_ýõàÁƒ•••³fÍ277ß´iS||ü®]»ê‹¿¦¦fÊ”)………{öìY¼xñ‘#G’’’dœ¯Œ‹D¢õë×oذ!<<\UUuÕªUõ…-VßÉfffΟ?Ÿ.âÇ·zõêÄÄD¦ÿÔ,÷æÍ›D ¯_¿–\+ù[–œ®ïW\YY9iÒ¤òòò}ûö-\¸pÓ¦Mô­²¤áÇÿõ×_UUUôìÅ‹¿üòËêêjùK0I(O É¡©šÞüùóé›]//¯•+WB.^¼HÙ°a—Ë%„„††80;;ûþýû¿ÿþ;Ç#„¬_¿~Ò¤I‹-"„ˆD¢ñãÇ3†ræÌ™:?N·˜KùÏþ“}âÄ Þ½{¿xñ¢¤¤dÁ‚ß~û­ºº:!dðàÁ™™™õÅåÊ•œœœãÇëèèBÖ®]ûÝwßÉ8_;§(jîܹööö„©S§ÒWC¶ú®UFF†H$úúë¯;wîÜ«W¯=z´–:Z¯“'Ož½páÂ?þhkk«§§÷úõë;wîäææžhÝ8™˜˜XYYYZZjii¥¥¥­Zµ*<<¼Ñ{³´´´²²ârñkô_ÇÄÄ$''çøñãß|óMƒÒú©S§š˜˜üùçŸLŸ´nø¿ÿµuëÖ„„„GŒ=šrñâÅFï-...!!A]]éÓb ú¯óòåËß~ûrëÖ­gÏž1@xûö­¯¯oŸ>}455{õ꟟ÿ1;¬¯&þáǧ_¿~òïJ²¾_]]ÝÚÚ: @²æ^FÓŠãõý¥¥¥ëׯ·²²ÒÔÔÔ××:tèÙ³g[&<4˜°G¦¤¤dmmMÑÔÔ¤—”——öèÑCKKkðàÁÿý·xã»wï~öÙg:::ŸþùÝ»wéå’åiUUÕ‚ :uêÄçó9"þ¬TÁ!5ûäÉ“/¾øÂÀÀ@SSS œ>}úcNª¾S=z4‡Ã ¥g9μyód|Dç£G¸ÿ~ÑVTTÌ›7¯C‡VVVgÏžUWW'Ó2®ª £FRUU%„äääH­ª®®^¿~}ïÞ½555ûöí+ E"!däÈ‘çÎ#„xzz®_¿¾™¿> ––Ö§OŸÝ»wÇÇÇ·k×îéÓ§Û¶mstt,,,d:´ÿG×÷%$$lÛ¶ÍÝÝ]¼Jž¦Æëû'Ož¼|ùò§OŸvíÚµªª*::zôèÑâGzZ <4˜° mž……!$""‚ž}þüù€$—Œ3†bcc3fÌ:õyôèEQoß¾ÕÕÕ%„Œ1ÂÍÍËåêèèäææR¥¬¬L)..¦(ÊÛÛ›¢££cgg§¬¬Ìáp!¯^½z÷î!DYY™>Šäluuu—.]!}ûöussSRRRVV~öì™ÔGdŸˆ¤úNáøñã„¡C‡Ò›õéÓ‡rãÆ ¡càr¹={ö$„ìÝ»·¾h)Šòòò"„èêêÚÚÚÒ箦¦&;$Ù'%®*ÈÌÌ”ºS§N%„èëë>\GG‡2þ|Š¢®^½Ú·o_BÈܹs˜þºü?úWЧOŸÔÔTŠ¢^¾|Ù»woBÈ’%K½ÏúJ‰’’uuõiӦɿ+©_ßíÛ·é_Öü!ÿN<<<ê+—Zý4¹²²2]¼TUUýðÄ!C†´@xRn0!„¤¤¤È.ÌçBmHá¿¿mIgóæÍôÚ„„BH=jjj(Š …„)S¦PuýúuBHçÎSRR(ŠÚ²eËôéÓããã)‰Ä1==Ëå*++?þœ¢¨7Ò‡8fdd 2d„ ô*'''BÈ©S§—8Ê8…âââöíÛ«ªª¾ÿþÕ«W§sçÎ"‘HÆGè!³fÍJKK+//¯/ÚgÏžq8eeå—/_RµmÛ6B8ÊØ'ejjÚ·o_:=%„xxxH]±¤¤$BÇ£Eï_II)''‡BÉ éÅ‹ô÷ùþýûâ….\puu;w.=[UUµnÝ:+++ >}úlÛ¶þÉÈX%ù»())¡ïš¶oßNQÔ¼yóþóŸÿпs玛››¶¶¶¾¾¾»»û;wjGX»HY´h!ä믿¦g%ïëÜ!ýÓ£­[·Ž¢¨Ç1B___CCÃÆÆæÔ©S’1ÿç?ÿ±±±ÑÔÔtssKKK£RVVÀçó555.]º$¹¼{÷î<ÏÕÕ•¾ã•Gß·çååÑK 8^gxõ퓎PMM-<<¼G:tX¼xñ³gϬ©©imm]çÑ¥.`uu5Ý`rýúu©Â¼¾¿fíqHá¿¿mqç˜víÚB T^^NQT]dúöíKQTAAAÇŽé%|>ßÇÇ'..ŽÞ§¸<¥o1 D/OMM•'q¤(ª°°ðàÁƒ3f̰±±¡?!¹ ]ÁF£ ßúG§@QÔ¸qã!gΜ9vì!dÁ‚²?BÇÀápèºUÑž!$;;›beeEÉÏÏŸ0aÂĉ»uëW\\L¹téÒÚµkõõõÿý÷üüü±cÇÖÔÔ\¹rErofff„¿ÿþ›îIGÿøéUíÚµãp8555t1!ùÁóçϧ§§÷í_ôMytt4Ýi&%%åÖ­[\.—îçD«®®n¦ï @#Ð5ayyyõmðàÁBÈ!CLLL!VVV555=’±ŠþluuõÚµk !666ôͪ$++«Ž;feeñù|33³ôôt___úñJÙ Ä‘7b‡¦¦¦§OŸ2dÈÌ™3ALL ‘øa*))}ùå—„;;;Bݹ>#{{{mmmBÈêÕ««ªª¶mÛOIMMURRâp8 .$„<|ø°vÌæææ¿ÿþûÛ·oïÝ»6hР÷ïßÏš5Kü¨€Ø÷©¤¤Dß‘~úé§„WWW%%%cccºº¾æùóçqqqtƒ‰dÉþ¡›â‹ML™é@q•––B,--Gõ矺¸¸tíÚõ?þ(--¥oˆUTT¶mÛ¶{÷îQ£FUWWÓ ?ûì3É888XYY=zô¨OŸ>·oßæp8tþ¤¦¦Ö§OŸ¸¸8GGG>ŸŸœœ,þ}íîîž@'^”|ñ/^,~’’²dÉ’qãÆÕw „víÚ=úðáÄú&Ùg][}ÑÚØØ¸ºº^»v­wïÞ=zô¸}û¶ø# Ú¿<,,,¼¼¼Ž;Ö·o_‡¿ÿþ»²²ÒÏϯS§N„ú^ûöíÆÆÆC† i/À™››B^¼x‘’’B߬BþøãéÓ§÷îÝ›~‘"™ö%&&VWWËX%^bmm¿nݺɓ'KZWW7))é×_=wî\tttXXؾ}û¢¢¢ÜÜÜdÇLÿŠ»wï.µ\ÎõíÛ7;;û»ï¾[´hÑÁƒéöz=f !D²›6}F555RGTRR"„ØÚÚ~ÿý÷â…µG@{ôèÑùóçMLL&Nœhccccc3mÚ´O?ý477÷É“'tþ'ÿ>ÅÒè¢ïƒ"""è'‚ê#Ï_ÓUžÀ¼ÚÍ1ß~û-!dôèÑôlqq±¯¯¯©©)Çsqq?]NQÔ‰'ú÷ﯣ££¥¥egg÷믿ÒË%Ÿøð!}Ùµk×ÐÚ¯^½¢Wõïß_CCÃÎÎŽ.@é–‹ÒÒRº í“O>Y±bÅìÙ³ !³fÍ’§sŒ”]»vÉ>Š¢Ä#VÒOÉ>ëÚ1Ô-EQãÇ×ÓÓëѣǩS§Úµk'îU-;$1©H*++׬YÓ«W¯öíÛ÷îÝ[(Š»ÄÇÇwïÞ]]]}çÎLÝþßÈ‘# !...ùùùEåääÐ?¥… RõôéSBˆ––Vvv6EQÉÉɪªª\.7++KÆ*ñ¸ïÞ½;v,!ä»ï¾“:nddd@@Ý.\QQAo¶lÙ2©Í¤~}÷ïß×ÓÓ#„œ9s†^".èdìni=vìEQ¿üò ù÷áŪª*ú¾Nê!êÚtm\ûö틊Š(ŠZ³f¦¦æÒ¥KéÚ¸®]»Ò ñ7oÞ 8|ø°Ô)Ü¿Ÿ¢¡¡!~=##ƒ~“îÉ.žŒ}JE¸|ùr"Ñù]MM"îSß”$¹CM©A q„–PZZzûöí}¤¢¢âêÕ«LþQÑœ9sæÜ¹sô,ݽ±GL  (’’’èäIII©k×®t‹g÷îÝÅOËÑZ9’Nwüüüd¯’ÌH’““•••¹\î?ÿü#yÜ+W®Ðcz7î믿¦ïféç³%I>¢×½{wºJÌÉÉI¼8q”±C___BˆÝåË—ýõW:¶¡C‡vèЮY<~ü¸ìž‚ǧó¹!C†¨¨¨¨©©ÑÝDFE8pàäÉ“µµµUTTjߊD¢¯¾úоÂ666½zõ¢Ïbüøñô’áÉØg³&޲ÿÐRã84—wïÞñxmÍáîÝ»«V­º{÷nii©©©©··÷Â… 鉠 ª¬¬¼y󦫫+Ó4G †ã¹ q¹ q¹ q¹ q¹ q¹ q¹ q¹ q¹ q¹ q¹ q¹ q¹ q¹ q¹ q”Waaá²eËìíííììæÌ™“‘‘ÁtDÀÕÕÕB¡pÀ€C‡ …EÕÞæåË—³fͲ³³srrZºté»wïèåû÷ï7—п¦ÏXK™éZ   ÔÔT¡P¨¥¥êíí}þüùöíÛ3°P(>>\îÿ7 ={öìéÓ§¿ýö›¥¥%!düøñ;wî‰D\.733ÓÑÑ‘.ššªå’mii)èY 55µ‚‚¦ã6HNN.))g~ÎÎÎùùù‰‰‰R›;Ö‚žþä“OÄ5‹™™™;w.///..fúT€åPã(—=zœ>}Z<{áÂ…ÒÒR›:7677§'"##™ uëÚµ+Ó!´„œœ‡chhHÏq8œ¼¼<Émø|þ?ü@)((HKKÛ¿¿‡‡—ˉDÙÙÙ‡ò÷÷‰D½zõZ·n]+Y'º€JJJbú¤ UBâØ0"‘(<<|Æ Ó§OïÖ­[}›¡PùUTT¨««‹¦¹\®ššZaaaÏ™3'..ÎÀÀ`ãÆ„7oÞp¹\{{û}ûö•——¯_¿~Ö¬Y/^äñxµ?knnŽÒ >Çxþüy```zzúš5k¾ýö[¦Ã–ÐÖÖ.++£X$„ˆD¢òòrmmí:7>qâÄÛ·o÷ìÙãééù÷ßÇÇÇ‹×nܸ±ÿþ±±±îîîLŸ°žq”×ÇÇŒcjjzéÒ%dЄ (Š?6ŸŸOQ”¸åš–žžþàÁzZWW7  ¤¤äþýûR»âñx†††RÍÜM‰£\ª««ýüü&Mš´eË===¦ÃV133ÓÓÓ‹¥goݺ¥¯¯Ïçó%·¹ÿþüùóE"=[TT$‰ÔÕÕ###GUTTD/ûömnnn=˜>'`'$Žr‰‰‰yýúuÏž=c%àžš„²²²§§§P(LHHˆ‹‹ …žžžt§éððpº›««kYYÙš5k’’’âââù|¾•••““Óëׯ-ZtçÎ{÷îùùùY[[ÛÙÙ1}NÀNœ:ßOR<¸iÓ&©…[·n9rdíñø94EQ[·n½pá!ÄÃÃcáÂ…‡2|øp>Ÿ¿cÇBH\\Ü–-[ž>}ª®®îèèСCBHzzúÆããã•••]\\-Z¤¥¥UçQP:ÀGBâØôP4€bBé MÕ $Ž $Ž $Ž $Ž $Ž $Ž ¸ ¦M›¦¯¯¯§§7jÔ¨ääd¦#hÓ8²Ù›7o¼¼¼ŒŒŒzôèXSSÃtDuàp8ô€çµMŸ>ýæÍ›¿üòKdddyy¹»»{qq1Óñ´]ÊLE²¨•Ë]$1¢}ûögÏž-,,ôõõ­ªª e:d€ÿGbtñÅáH¿“¢¸¸øÌ™3üñÇçŸN9qâ„‘‘ÑÕ«Wë|k´$Ž­˜T!+5{íÚµdeeB~úé§#F·oßžéÀþŸ¸à¢(Jª{ñâ…@ prr¢gy<žººznn.Ó!´]hªf­äädccc:k$„ØÛÛß½{—é¸þ«v£”^½zݽ{WOOžýõ×_‹‹‹Åy$´<$ެթS§ÜÜÜ·oßÒ³?&„¼~ýšé¸¤Õ÷€£˜H$Ú¹sç”)S-ZdaaÁt¼mšªYkÈ!&&&“&MZ³fÍ»wï¾ÿþ{‡ƒ‡Ê@qÔn›®Sjjª——WRRÒž={¦OŸÎtÔmj[1ºÌ¥§k¾íÛ·¿téRUU•››Û¼yó–/_®¬¬¬¥¥ÅtÔÿO\ŽÑ«k'‘·oß¶±±áóùÉÉÉȇÇÖM\æÖyËnffvéÒ%z:''§ªªÊÌÌŒéþ‡ŒzǪªªo¾ùfÞ¼yëׯg:L ‰# Ô×Êóúõk//¯ÐÐPKKKBÈo¿ýÖ±cGz U¸|ùrVVVß¾}¯\¹"^hiiÙ¡C¦Ch£8²–±±ñÛ·ogÏž½~ýúììì¥K—®_¿^II‰é¸ ª««wìØqêÔ) áÇ/X° v?’—/_®[·îþýûªªªƒ Z¼x±ŽŽÓ7§OŸR5vìXÉ…ÇŽ›8q"Ó¡´Q~*ÊÜÜ<))‰é(!$##cöìÙ111ÆÆÆË–-›6mÓ@ÃlÞ¼ùÌ™3ÁÁÁ„¥K—Nœ8Ñ××Wr‘HôÕW_éééùùùUVV.[¶ÌÒÒrûöíuîMqJ')òt‘E€G6ëÒ¥Kdd$ÓQ@#UTTDDD¹ººBüýý…B¡—ûÿýŸ={öôéÓß~û~eüøñ;wî‰D’Û4”, *99¹¤¤ÄÙÙ™žuvvÎÏÏOLL”ÚlìØ±â¡ ?ùäeeÔ@sAù  rrr8Ž¡¡!=kddÄápòòò$·áóù?üð!¤   --mÿþý2ªÍÍÍ !ŠÙ` Šý‰cbb¢®®®±±ñ7Ξ=keeååå…FP|êêêâòŠË媩©Ö¹ñœ9sâââ 6nÜ(cŸHàc°<:~üø—_~ùøñãW¯^Í;÷Í›7Û·oß½{7Óq|˜¶¶vYY™H$¢gE"Qyy¹¶¶vŸ8qâÖ­[_|ñ…§§gyy9Ó±;±_r›û÷ïÏŸ?_\+YTT$‰ÔÕÕ™Ž؉å‰c—.]¢££³²²®_¿>hÐ BÈÍ›7ŒŒ˜Ž àÔ••===…BaBBB\\œP(ôôô¤;M‡‡‡Óƒm¹ºº–••­Y³&)))...00Ïç[YY1;°Ë;ÇøúúΟ??,,ÌÚÚÚÖÖvÏž=¡¡¡K–,a:.¹ÐÃzûùùB<<<æÍ›G/?vìŸÏ6l˜¾¾þ?þ¸eË–ñãÇ«««;::nذAEE…éÀ€Ø?XfffFF†@ PWW¿sçNMM££c³QaßÍmœÂ–Nxs @kÁÎGÉqÎÔÔÔ,,,JJJJJJºuëF¯500`:F€V†‰£“““ì óž@‘±3q¼|ù2Ó!° ;ÇO?ý´¾UÛ¶m[¶lÓ1´2ìLÅÞ½{·k×®ÌÌLñ’‚‚‚¬¬,$Ž ÅòqW®\ݱcǘ˜˜nݺuìØ199944”é¸Z–×8Þ¾}{Ó¦M®®®/_¾!Ä‚îIíââÅt\­ËG33³ˆˆˆ²²2sssº«uFFFii)Óq´>,O-ZtáÂ…“'O8ðéÓ§ŸþùÌ™3‡ ÒèVVV ‚²²2¦Ï  M{óæ———‘‘Q=kjj˜Ž¨M`ù3Žööö·oß.))ÑÑÑ ŒŒÔÓÓ;vlãö–——R\\Ìôi°‡Ã!„Ôù:J‘H4bĈöíÛŸ={¶°°Ð××·ªª _[ËGBˆªªªªª*!„ÏçóùüFï',,lûöíLŸ @› ~ƒyéãµk×Þ²e˼¼¼ÜÝÝE"Ñ„ ž>}jbb"OGrrrII‰8ósvv JLLìÕ«—x›ììlKKK@@Ïjhh¨©©B233;wî\^^^]]­©©Éôeh!§Nš={ö_|all:mÚ4¦#jê®níúõë'ž.//‰Dô£"‘ˆÂçóÏ;×|G777G¯j€¶©¢¢ââÅ‹©©©<ÏÌÌÌÅÅE²Ö°>QQQ~~~Ož<¡7‰D½zõÚ¿ÿ AƒêûÈÙ³g/\¸Ð¥Kkkëž={>zôˆþàºuëêk°£G #Š7òC}Í‘øn(vvŽyð¯-[¶˜˜˜>>>>þÈ‘#¦¦¦ÖÖÖL,TSSsäÈ‘ÄÄÄ€€€Y³f;vlß¾}ò<ãXQQ¡®®.N1¹\®ššZaaa‹D¢£G.^¼xúôéݺu{óæ —Ëµ··‰‰¹zõj§NfÍšõþýûúŽ•””¤hY#´"ìLÅvìØää䤪ªª¢¢âàà°jÕªÓ§O¿{÷ŽéЀm„Báþýû?ýôSzÖÉÉéÈ‘#ò¼þÜÓÓsÇŽkÖ¬  „ÇÇÇêééuêÔiãÆoß¾•ñ¸ÀÇ`yâ˜Íãñ$—hhhhjjÖY"·Râ ä„ïL3ùóÏ?W¬X1aÂzvÚ´i+V¬øã?>øAŠ¢è !ùùùE‰‡õ{øðá˜1cLMM/]ºôí·ßÖ¹+ghh˜——ÇôÅ68qâ§– 00‰å‰c¿~ýBCCÅõ‹………!!!€ÿ5éß0EQ’ã]È€ïL³ª¬¬”zGb×®]ËÊÊ>øA333===q5á­[·ôõõù|¾ä6ÕÕÕ~~~“&MÚ²e‹žžžxyddä¨Q£ŠŠŠèÙ·oßæææöèуé‹­†dR(µÊÅÅ%R™3gx<ž››Ó!“ØÙ«ZlõêÕ“&MruuíÙ³'!$11QOOïèÑ£LÇÕdd¿ 6|gšƒƒCXXØÖ­[éw –••íÙ³GÜZeeeOOO¡PØ¥K—šš¡PèééIÇ®¯¯?lذ˜˜˜×¯_÷ìÙS²šÏç;99­ZµjÑ¢EÓ¦MSRR µ¶¶¶³³cúb@ë ÕõDj¶C‡:tÏ®^½zذa#GŽd:j`û;+UVV^ºt)--ËåöèÑcÈ!***ÍzÄ–éU]gG3ô>j=ð…iZyyyS§NÍÎÎ677WVVNLLäñxGíܹó?KQÔÖ­[/\¸@ñððX¸p!Ö>œÏçïØ±ãàÁƒµGöÙºuëÈ‘#ÓÓÓ7nܯ¬¬ìââ²hÑ¢ú^¼¦°c>à«Èˆ• ©©©ŽŽŽ ’©$#A³Øù÷HIIÑÕÕ500HII©s©6 ¦ÕbE³ì;E€Úðin555ÿùÏ’’’ª««»wïþù矫ªª2ÔÿCâ’Ä—½öDmãÆëÞ½;ýr#F‚Áο‡¹¹ùÌ™3ýýýŃ–IiÖ¢‰#(,|gÚ8$Ž …¾òL?~ìè蘖–f``ÀH„L_'øì|Æ1..Ž~<(!!éXš‘Ô3jøiÁá;Ó¬V­ZõòåK©åwïÞe:4€ºI– 2R´­[·Ž;¶å³FP@ìLÅo£VUUMLLÔÕÕ566¾qãÆÙ³g­¬¬¼¼¼˜°Éà?4¾3ÍgåÊ•ªªªk×®ÕÑl¸óû6IDATÑa:y‰ÇX¨¯p())9uê”<KA[ÀÎÄQìøñã«W¯Þ³gEQsçÎÛ·o/,,œ7oÓ¡Û<{ö,<<¼wïÞLÐ`2n)ÿüóO555WWW¦c…Àòq8àïïïææejjzèСààà3gÎ0°¡¡¡<£6´.—/_vtt”ç­ëаü{——çììL¹s王‹ !ÄÜÜ<77—鸀…‚ƒƒ×­[wéÒ¥¬¬¬< LÇðQ®^½êààÀt (XÞTÝ¥K—èèhmmíëׯOž<™róæM###¦ãòöö‰D~~~R˳#3€œÒÓÓ™ËG__ßùó燅…Y[[ÛÚÚîÙ³'44tÉ’%LÇ,ÉtÍ‹ýÃ#efffdduuõ;wîÔÔÔ8::6ëv¤4haÛ¶m[¶lÓü—–N«YŠ|ý9¶¶‰å5Ž„.—çèèhmm­¦¦ÆtDÀNïÞ½ÛµkWff¦xIAAAVV–â$މåcŠ‹‹gÏžíææ6uêTBÈ”)SüýýKJJ˜Ž XhåÊ•ÑÑÑ;vŒ‰‰éÖ­[ÇŽ“““CCC™Ž  É°ýüóÏgΜ9dȦãh2,ïåþêÕ+///BHff¦ÍÓ§OMLL:d``Ð|UØ/ ¹UVV–””èêꦤ¤DFFêéé;VEE…é¸þKaK' ¹Â,E¾þŠ[ÛÄþ¿GEEÅÅ‹SSSy<ž™™™‹‹Ks¿pSa‹fhVãÆ;qâ„ä’¢¢¢yóæ>|˜éÐþKaK'$ÌRäë¯È±µM¬DZ¬¬,))IWW×ÔÔtôèÑ„‘HT\\œ““sìØ±Å‹3 °Diiéž={!qqqÛ¶m“\•“““ššú1;¯®®Þ±cÇ©S§444†¾`Á‡#µMaaá¦M›¢££)Š¢»véÒ…é«ìÄÎÄñÉ“'3gÎ|óæ !¤W¯^{÷î]½zuLLLEE!„Ãá q€¦R]]––FO‹'h\.wåÊ•³s¡PxæÌ™àà`BÈÒ¥KUUU}}}¥¶ JMM …ZZZ¡¡¡ÞÞÞçÏŸ—êÐ$ØY=MþmnnÎtPÀrÇÿòË/?~üêÕ«¹sç¾yófûöí»wïnôsrr8ŽøFFF'//Or›=zœ>}Z[[›ž½pá]Yß>ÍÍÍQ@£±3q$„4w×i)ð÷÷wss‹ŠŠ255=tèPppð™3g½ÃŠŠ uuuqiÆårÕÔÔ ëÜX$=ztñâÅÓ§OïÖ­[}ûLJJRÌÖjhØÙ9 ååååÑÍÊwîÜqqq!„˜››çææ6z‡ÚÚÚeee"‘ˆÎE"Qyy¹¸rQÒóçÏÓÓÓ׬Yóí·ß2}%€µX›8†‡‡×7;þ|¦¶éÒ¥Ktt´¶¶öõë×'OžL¹y󦑑Q£wh``@QTAAý΂üü|Š¢Ä-×b>ôööþì³ÏöîÝ«§§Çôe6cgâØ­[·Ô7K8@3ðõõ?~XX˜µµµ­­íž={BCC—,YÒèš™™éééÅÆÆŽ9’rëÖ-}}}ñÜ´êêj??¿I“&-X°€é ìÇÎÄñâÅ‹L‡mÎСC£¢¢222—Ë?ÿü³££c£w¨¬¬ìéé) »téRSS# ===••• !áááúúúÆ ‹‰‰yýúuÏž=cccÅäóùÍúbUh³Ø™8´˜””]]]ƒ””Bˆ±±qff&!DWW—^+UGØ ~~~•••~~~„yóæÑË;Æçó‡ öìÙ3Š¢¤ZQ¶nÝJWR4-Œ«Ùôvˆ]hæææ3gÎô÷÷¯o˜Å)¶t ÏÌRäë¯È±µM¨qh[$ßtŒâ¸IÄÅÅÑÍÇ LÇм8´!R÷oqqq²7ø˜Ç ;GɇÄëÔˆr¼ººzÇŽ§NÒÐÐ>|ø‚ $kn ÍòññO———‹D"‡Ãápè— òùüsçÎ1#@Ó`gâØå¸P(øÁŠŠŠˆˆˆ   WWWBˆ¿¿¿P(ôññ‘ºË Û¾}{ígff:::Ò•ÍŠåuoëׯÿæ›oÎ;'^R]]ýçŸ2°ÐСC£¢¢8pøða.—+~þùgooï~099¹¤¤Dœù9;;ççç'&&Jmæãã“””tüøq©å™™™;w.//—ª‰hr,O !Ë—/_¿~}uu5Ó± ½xñ"++‹î„gbbâì쬮®N±··wtt”g999GüS###‡“——'ÏgE"Qvvö¡C‡úõë'ÆŒóøñcÛÓÏA2}Í µbâèááqòäÉ¿þúËËËëõë×L‡l3tèP777;;»'N4nêêêâ†i.—«¦¦VXX(Ïgß¼yÃårííícbb®^½Ú©S§Y³f½ÿ¾¾í“’’s(GhXþŒ#ÏçŸ>}zñâÅcÆŒY½z5Óá«?~œËåvëÖMKK«q{ÐÖÖ.++‰Dtî(‰ÊË˵µµåù¬±±q||¼xvãÆýû÷uwwgú µ‰Ä‘ÂãñvïÞ½oß¾ï¿ÿžéX€Ullld¬}óæ¸ º>EBòóó)Šúà§êÄãñ ålæh(–7UÿüóÏšššô4‡Ã™={ö¼¼¼˜Ž Xè×_•œ­©©9tèÐçŸþÁš™™éééÅÆÆÒ³·nÝÒ××çóùò422rÔ¨QEEEôìÛ·osss{ôèÁôÅvbgcJJŠ®®®Azzºä*CCCOOO¦Ú¸qcyy9=‚ã;wÖ®]›™™éããóÁ*++{zz …Â.]ºÔÔÔ…BOOOz8Æððp}}ýaÆÕ÷Y''§U«V-Z´hÚ´iJJJ¡¡¡ÖÖÖvvvL_ `'v&Ž3gÎô÷÷÷ðð¨s<MîСCÓ§O/((xñâÅùóç‡~àÀ:ÈóY??¿ÊÊJ???Bˆ‡‡Ç¼yóèåÇŽãóù2G±qãÆùóç+++»¸¸,Z´ˆÃá0}1€82^lÕz•••)++«¨¨TVVÖ¹ªªjóÝÜ܉)@Û”˜˜èííMQThh¨¾úOaK'‡ÿŒZ E¾þŠ[ÛÄÎgÕÕÕUTT!“&MRý_ååå3fÌ`:@`w:tè°k×.Š¢=z$^Èt€M†MÕ¥¥¥{öì!„ÄÅÅmÛ¶MrUNNNjj*Ó{888Ô^¸eËñ«M³’ Ø™8VWW§¥¥ÑÓâ —Ë]¹r%Ó{\¾|™éZ;G--­Ý»wB¦OŸNO4“O?ýTröõë×iii555Ý»wïØ±#ÓÑ4%v&Žb`:h+ÊË˃‚‚Ο?O¿¦¦¦fĈÁÁÁô««X€å‰cBBªU«^¾|)µüîÝ»L‡l³uëÖ„„„£GÒï’‰‹‹ ÚºuëŠ+˜  i°¼—û˜1cTUU§Nª££#¹ÜÑѱùª°^@³æÅ§ÚÚÚeeeô/!D$•——kkk3}ÆÐv±3qÛ±cGPP“““ªªªŠŠŠƒƒÃªU«NŸ>ýîÝ»Æí° xñþý{‘HÔµk×øøøÂˆˆˆÞ½{Ÿ9s†é¸Ø&''Ç¢ÎUæææ™™™Þ³EQôl~~>EQâ–k€–ÇòÄ1;;[j<^ MMÍÆÝ²çåå­Y³Fq¼¿6¦Î—ÇhhhH.ÑÑÑéСÃÇü€:éèèdgg×¹êÅ‹šššÞ³™™™žžžø¡í[·néëëóù|¦ÏÚ.–'Žýúõ ×/†„„‚:û ËæäätêÔ)¦ÏéP¤VB¬¬¬˜Ž€åœÃÃÃ+**¤–———>|xÀ€Þ³²òÿµwçQMœ{ÀŸ„I°ÈѾ·!±TA°QŽ *V+˜©rõˆKEE„ÖªÄHQ´ÞV¸.¸a±^½ˆ ףūâRÀÝ "²ÈäýczÓ”ÍAHf¾Ÿ?<™áIüÎdòä—g6žD"‘J¥·oß¾yó¦T*•H$<’’’Ò™àïFÇ/TXXP^^nggGÉÍÍ{öìéÓ§Ï»½ào¿ýöÅ_hÅ•Òêëë{÷î}ìØ±Q£FBJJJÆwíÚ5ê¶ÝÐUÊÊʾüòK“ 8::WUUݸq#!!áÕ«Wû÷ïW^Õá(Џ¸¸ôôtBÈĉCCC©ß½^^^¶¶¶ Ê–ZÔ;µ„kõ1‹ÍëŸÍÙº'Ý?Þ¼ysòäÉGq¹\›±cÇvæÊj4»fêããk×®ÍÌÌ\³f‘‘Qllìëׯ;Æl$€ù裘Ž@KQQQttôþ󟦦&}}ý7oÞp8œQ£F}óÍ7¬º Gh›×?›³uOx?:F»~ÓËåòˆˆˆ´´´ÊÊJÍ›7wfäÚW\\|ïÞ½ÒÒR@0`À€¾}û2¨9öôNÍ 8`›×?›³uOºyG¥–È \»v­ý'¦§§‡„„P?®¥G£s¹ÜØØØØØX¦ƒt ª÷`î7 j¢ã…£ê@2™ìÞ½{ÉÉÉo}¢§§gvv6õØÐÐéåøƒêù­ŽÆýøãK–,ÙºuëÿýßÿEDDøûûŸ;wŽéÔ #t¼plvkAwww‘HØÎ¾fBÇkvƵ³Y‚ûÍ‚šéxáØRÿþý[^5@QôU­q¿YP+¿ŽcÅ_={ölÛ¶m}ûöm¸€åÚº 1î7 j¥ã#ŽÃ† k6ç½÷Þ‹‰‰yçtttdç9‰Ð µÜUMÝovÍš5›6m255]³f§§ç½{÷Þÿ}¦Ã‚.ÐñÂñôéÓÍæXXX`¸ “¨á.ßÊÂÅTÝ7Ýê #u¿ÙäädBHJJJïÞ½O:õÙgŸ1tŽïª^¶lÙßþª¡¡aæÌ™LçÐbTáBU0ïpWm¡º˜Lgù e$:÷›íÕ«—••UAAÓ©AGèæˆcmmíöíÛ !7oÞÜ´i“êŸŠŠŠ>þþýû„™Lâàà0|øðÝ»w3 @‹©ž£Ã_êÝd1:J7wUß½{×ßßßÚÚz„ „­[·ž={vîܹ†††›7o¶²²òôôd:#€¶RŠc: @£t³pܲe‹§§gll,!D¡P¤¥¥Íž={Ñ¢E„†††={ö pèrÊs½u»Úî&‹Ù*ÝÜU}çÎ???êñýû÷KKK½½½©IGGÇfçY0®±±Q*•>ÜÃÃC*•¶úmÔV›üã"Ÿ~ú)ÓKÝ”òÊ—:|¦î³˜mÑÍÇêêjåy0—.]²´´ìß¿¿ò¯555Lø ©Tú믿®[·Ž²bÅ }}ý¯¿þšf›‚‚‚Ñ£GûûûSÍx<ÝìØåšíÓgçEXÌÎÓÍÇ?ü0++‹z|êÔ)Õßß999ûÛߘð'™LvàÀ°°0wwwww÷°°°}ûöÉåršm ]ÿ#Ž >ºY8J$’ŸþyûöíË—/¿~ý:uŠŒ\.¿xñâŽ;¦NÊt@€?åçç×ÔÔ¸ººR“®®®eee¹¹¹4ÛôíÛ·¾¾¾ººšéE Ýdïm7YÌ–ts†D"©ªªJMM}ýúõüùóÝÝÝ !!!!§Nš>}úW_}Åt@€?q8 jÒÒÒ’Ãá”––Òi#—ËŸ?žœœ&—˸víZ{{û¶þ/‘HDÁµf¡Ë5Ûi«ÃuU³ÅìVû©‰®Ž'(((((Huæâŋ׮]kddÄt:€¿Éd|>ŸËýc—Ë500¨¬¬¤Ó¦¤¤„Ë庸¸ìر£¾¾>:::((èĉmõu(A}”'‹°°œR-d;“My‘&v.¦èæ®êVY[[w«ªñàÁƒœBBB˜ÎÍ™˜˜ÔÕÕ)j”Ëåõõõ&&&tÚôîÝ;''gÙ²e OŸ>6lxõê•ò o £ )¶•SªçAwÉ©Ðì\LÍÐÍÇn…ú´Ü|ÝÜÜ222”“õõõ£Gf:/4gnn®P(ÊËËÍÍÍ !eee …B¹Wš~Bˆ‘‘‘……E³ÝÜ]¥8êjQùû©ÙO(++«q*nܸ1~üøI“&1š …@9Lxùòe333[[[:m222|||ªªª¨ù¯^½zùò¥ ÓËÀÝs‡²ú pÔnÊCûŸŠ$&&&$$0Ø®¼¼üïÿ»™™™@ ðññÉÏÏg:Q·Àãñ$‰T*½}ûöÍ›7¥R©D"¡.ǘ’’Bí:h«Íˆ#Š‹‹ÃÃï^½zýúõàà`ggg¦— €-T¼d:‹.@ÞõD"‘?oõ'T[¿«¦OŸÞ¿êºÁÐ͵„øÔ©SïÝ»÷Ã?˜šš~óÍ7ùùùwîÜéÙ³'Ó©uŸB¡ˆ‹‹KOO'„Lœ8144”z§¼¼¼lmm©_}mµyüøñ† rrrx<ž››[xx¸±±q«ÿK×öN]8Ãæ1!Öfcíúgá«Q/¢ü—tÅቬÝ0Ô­›.¶Zi¦p$-¶Ú¶6â»wïŠÅâGQ‡FAwÖþ6S]]mll|ôèQê†W¯^YZZ¦¥¥áÂQ—²±vý³óÕºüîÒ¬Ý0Ô »ªu_\\œŸŸªFx«gÏž9991‚š422âóù/_¾d:@guçó »ΪÖbÍ®)Ðê硦¦æðáÃGe:,0ï­¿xíÚ5åä¡C‡ª««•u$Fµ›ê…©Zmð¯ýËÀÀ€ºwtsô¯^&—Ë·lÙ2sæÌððð0Ø#Ž:îôéÓb±Xy· å¸c[<˜1cF^^ÞöíÛçÌ™Ãt^`Ô:îìٳÆ c:°…êU?[­¯\¹âèèhkk›ŸŸªšÁˆ£Ž{üø1Ó€uÚ:°¡¡¡aÚ´i‹-ŠŽŽf:#° GøÃéÓ§ œ™™©œioooeeÅt4`Žð‡ßÿ]¡Pøùù©ÎÜ»w¯¿¿?ÓÑ€ºéå+ÕJcè\\—²±vý³öÕXL»àä …#ЂÂhAá´ pZP8-(€Ž@ Gº*++###]\\œçÏŸÿäɦBHcc£T*>|¸‡‡‡T*íž%Í@áHWTTÔo¿ý&•JwîÜ)“Ékkk™Õ)"‘ˆéº9»sTI¥Òǯ[·.***55511‘éDŒáüÓq´ @G¡p¤¥¶¶öÌ™3ááá®®®ñññÅÅÅ—/_f:tw2™ìÀaaaîîîîîîaaaûöí“ËåLçbu 8U¬*ÑX  CP8Òòüùs{{{'''jÒÐÐÐÀÀ ¼¼œé\ÐÝåçç×ÔÔ¸ººR“®®®eee¹¹¹Lç‚?uÛ›ƒNâ1@;ØØØüòË/ÊÉôôôÚÚZGGǶÚkËþ5mÉ©EQ‘³kååå1튊Š8Ž……5iiiÉápJKK[mœŸŸßµc]]øj]òR-_DM/«3ÁÔñRl~5Œõv ÇŽ‘Ëå)))ëׯŸ3g޵µu«mðU#“Éø|>—ûÇî#.—k``PYYÙjcÝ÷j9°Çž¡¾fIØ  £P8¶.===$$„z|üøq[[[BÈÓ§O—-[öøñãÕ«Wûúú2€˜˜˜ÔÕÕÉårªv”Ëåõõõ&&&Lçbuì UQK¬*ÎT³±*@‡ pl§§gvv6õØÐÐrëÖ­ÀÀÀ1cÆüøã€é€„bnn®P(ÊËËÍÍÍ !eee …B¹çº»Qžw¶ʌµå,@Gáä˜Öñx<£ÿár¹ÁÁÁ7nDÕì! AVV5yùòe333j'I÷D¶Ìt íË@Fi¹xñbqq±²w&„ØÚÚR?ñ˜Âãñ$‰T*íׯ_SS“T*•H$<úvP t.´<|øP¡P,^¼Xuf\\ܤI“˜ŽÝ]ppð›7o‚ƒƒ !'N\´hÓ‰@gá] Ç8-(€Ž@ G …#Ђ±¥RéðáÃ=<<¤Ri;'¤¿yóÆÉÉ©®®Nuæ‘#G<==ƒ‚‚^¼xÁœééé¢Ö­[Ǩ„ŠŠŠˆˆ±X<|øð+VTTT°3gyyùÒ¥KÅb±‡‡GlllSS“úrv4seeedd¤‹‹‹³³óüùóŸ{öìÙ³g?ýôÓ-[¶´Ú¬¤¤$22R(ÖÖÖ*gîÛ·oРA‡ºpáÂäÉ“ýýýY˜³¤¤ä‚Š3gÎ 2$33“…Q żyóÆwåÊ•+W®Œ7nþüù,ÌÙÔÔ4uêTÿ›7o^¸pÁÃÃcíÚµêËÙÑÌ .7nÜ… ¨;jº»»×ÔÔhE¼V7 h Í XóÜiªªªrwwgÕ–¦Éo“ÑdŸLG«½k? Z…#]õõõC† 9|ø05™šš*‹›ššš5KLLþjõ0jÔ¨;vP“W®\ …………lËÙLBBBpp0;W©L&³³³;xð 5yàÀ;;;™LƶœYYYvvv%%%Ôäµk׬o :™kjjD"‘ò‡Aee¥Z'tU<:[/(ÑÜ€5Á-¾ððð &°gKÓä·I‡h²O¦£Õ^‚µŸí‚]Õtåçç×ÔÔ¸ººR“®®®eee¹¹¹Íš-X° //oÿþýª3ŸlË©êéÓ§)))ß~û-;W)!„Ëåöèуzl``ÀåªkcîLÎÇ›™™)oMéààP[[{ûömõ­Uú™Ÿ?nooïääDM”——«;[çã½uëU47`Ícp ¤éÔ©SÙÙÙ¡¡¡Lù“&¿M:Jc}2­ö¬ý,hŽtq8 jÒÒÒ’Ãá”––Òyî“'Oôôôrrr&Mšäää4{ölõÊÓ™œª6oÞìçç§Ö›qw&ª¾¾¾··wrrr^^^^^^RRÒ„ ôõõÙ–³wïÞeeeUUUÔäýû÷ !eeeê[«ô3ÛØØüòË/&&&Ôdzzzmm­£££º³±?žŽéª>¡Ë±ü-.--]µjÕ† zöìÉt–?iòÛ¤C4Ù'¿3Ö~´ Gºd2ŸÏWþ„âr¹•••tž[SS#—ËÃÃÓ’’ôôôÕt¨ugr*Ý¿ÿüùój\¡ŽQTTäãããããóòåË+V°0§X,¶²²Z¶lÙÝ»w³²²–/_ÎápjkkÕºb;šY.—ïÙ³gùòåsæÌ±¶¶Vw6öÇÓ1]Ò'¨;ßâo¿ýö³Ï>svvf:È_hòÛ¤£4Ö'¿3ö´ GºLLLêêêär95)—Ëëëë•¿•ÛÇçó ÅúõëGŽùÉ'ŸÄÅÅ•””\¼x‘m9•’’’¼¼¼LMMÕ¸B;µººÚ××wÒ¤IYYYYYYÞÞÞ¾¾¾ÕÕÕlËÉçó“’’¿úê«ï¿ÿ~Á‚zzzÀ ŸùéÓ§‰$!!aõêÕK—.Uw0­ˆ§cº¤OPv¾Åiiiÿýï—,YÂtæ4ùmÒ!šì“ßË? Ú…#]æææ …ByüMYY™B¡PŽx·ÏÌÌŒbkkKMX¨é ÉI©««ËÈȘ4i’ÚÖeD=þüëׯ###@ ˆŠŠª¨¨¸páÛrBúõë·sçÎëׯ§§§;;;766öë×%ëöÖ­[S¦LùðÃOž<éëë«îTÚOÇt¾OPÖ¾Å999÷ïßÿøãE"Q@@!dðàÁj½6Mšü6éMöÉïŒÍŸ-‚‘.¡P(²²²¨ÉË—/›™™)?½í8p`Ïž=ïܹCM–——«©zèLNJfff=\\\Ô¶.» ª\.ollT^±±±±±±Qù;’=9KKK©C !§N²°°°±±Qçz¥›¹±±1888 `ãÆ@Ý‘´(žŽé|Ÿ &l~‹¿þúëŒÿ‰%„¤¥¥1K£ß&¢É>ù±ö³ ]xLÐ<O"‘H¥Ò~ýú555I¥R‰DÂãñ!)))fffãÇoë¹=zô˜6mZTTÔÊ•+ŒŒâââD"‘X,f[NÊ¥K—† ¢â:uÔ¨QFFF¡¡¡AAA …bÇŽÆÆÆ#GŽd[NssóÊÊÊï¾û.$$äåË—›6m ÑÓÓcú½xñbqq±²%„ØÚÚªõŒ(­ˆ§cÚYÛÌbó[lnn®ŒQRRB±¶¶æóùLçÒè·I‡h²O~g¬ý,h¬¯~óæMpp0!dâĉ‹-¢æïÝ»×ÖÖ¶ý‚lùòå<oõêÕ¯_¿1bÄæÍ›ÕW=t&'!äòåËÛgôÎQwïÞ½qãÆ9sæp8œ¡C‡îÞ½ÛØØ˜m9 ![¶lY¹råܹsÍÍÍ£¢¢>ÿüs–¬Û‡*ŠÅ‹«>+..NG)°?žŽikm3 oñ»Ñä· }î“ß;? Ú…£Àýv€ã´ pZP8-(€Ž@ G …#ЂÂhAá´ pZP8ÛyyyýðÃL§€n§±±qÛ¶m_|ñ…“““——×Ò¥K?~LýéÙ³g"‘¨¢¢‚éŒÍ±6è ŽÍUVVúúú¦¤¤xxx$&&Λ7¯²²rÊ”)'Ožd:“xL`©TZQQqôèQsssjÎäÉ“cbbV®\)‹™NÀŒ8‚¶zñâEpp°X,vss‹ŒŒ¬®®&„ÌŸ??44TÙæçŸvww—Ëå­6~öìÙÀ=zôùçŸÇÇÇB®^½:mÚ4‡aÆ+w÷Ï›7ÏÙÙyÊ”)G‰DÏŸ?o+h»²²²C‡…††*«FJpp0ÇÛ¿?5yçÎ???'''‰DrûömjæéÓ§'OžüÉ'ŸŒ3FÙ²UTtåÊ•1cÆ888L™2…z‘f»›³²²œ•íýõW±XìääVRR²hÑ¢¡C‡zzz^ºtIùÊ­£Ù ´…#h%™L6cÆ >Ÿ¿sçÎM›6=}útéÒ¥„//¯sçÎ544PÍNœ81yò䆆†VB EDD„‡‡Ç„ Þ¼y$‰RRRbbbrrr¶nÝJijjš9s&‡ÃINN^¸páÆÛÏÚîÁƒr¹¼åÈ"ŸÏwttÌÏϧ&£¢¢fÍš•””deePZZZPP°xñbªdœ>}úªU«rssÛùäryttôúõëSRRôõõ¿ûî»öƒ555íß¿ÿŸÿüçºuëNœ8áéé9vìØ½{÷ZXXDGG+›µ ÖN¥Ú 2½âA(ØmüøññññÍf9rd̘1MMMÔäË—/E"Qaaáëׯ tþüy…BQPP  >|ØVã§OŸ …´´4j~yyù®]»jkk©ÉU«V)Š“'O:::VWWSó<( ÛzY¦WtÖáÇííí[ýÓºuë|}}©ÞãСCÔ̆†ww÷mÛ¶]¸pA$Pó333_¼xÑÖÿB½HFF5™žž>tèPåüW¯^Qó/]º¤:ÿÆÔ|‰DF=>~üøàÁƒ•mZ£Ù ¼Žq­ôàÁƒ‚‚‚Aƒ)ç(ЧOŸŠÅbWW×Ó§O9òĉÖÖÖiii­6îÛ·/!dÈ!ÔLSSSŸ3gÎäåååææ^¹reĈ„üü|‘HdhhH5S¶o+CŸ>}˜^=Ð)}ûömhh(//ÍþôâÅ +++êñ°aè<ÏÙÙùádzfÍrppðòò5j”‹‹‹§§gïÞ½Ûÿ¿”}H¯^½èdûàƒ¨&&&ªUÛ´ VSSC§x+Ž •ŒŒŒ÷íÛ×òOÞÞÞ6lXµjUFFÆ”)SÚiüìÙ3BHÏž=©Éû÷ïûûûÛÙÙyxx¸¹¹ …ÂGBššš8ŽòYÊÇíd­fccÃáp.]º4qâDÕù2™ìƉ¤åS¸\.ÇãóùÈÎÎ>þ|jjj\\\bbâÈ‘#Ûù¿zôèÑ~™LÖÖŸT»¦¶PÁhvƒo…cA+ …Âßÿ½ªªŠšÌÎΞ>}z}}=!dôèÑUUUÿþ÷¿sss½½½Ûo¬*##ÃÔÔt×®]3fÌpvv®««£æÛØØäååÕÖÖR“·nÝzkÐjæææ¾¾¾R©´¼¼\u~BBB}}ý—_~IMfggSššš®]»fkk{õêÕ;v¸¸¸,]ºôرcNNNÇŽ{· ʾåÞ½{}nË`诠«`Ä´@II‰êæ|>ßÍÍíƒ> )))‰‰‰±··700 „Ž92::ÚÍÍÍÔÔ”ÒNcU ¸¸øêÕ«ýúõ;wîÜ‘#G„B¡L&óôô”J¥Ë—/_¸paqqqRR!„ÃáÐ|YÐFaaa999>>>sçε³³+))9vìXVVVlll¯^½¨ ,..ÎÈȨOŸ>III¯_¿ž6mÚ;wâããMLL†ž———““³xñbBHJJŠ™™Ùøñãéü×ï½÷ÞÖ­[,XððáÃää䎆oÌÐÐýt Ž RSSSSS•“NNNûöíKNNþþûïçÌ™£§§7vìØððpe//¯ÌÌÌÉ“'S“\.·ÆJ~~~wîÜY¸páûï¿ïééùÓO?-Y²dÓ¦M‘‘‘»víZ¹r%µ#{ÅŠ³gÏ666¦ù² zõêuøðáŸ~ú)===>>ÞÒÒrРAGŽù裨|>?444!!¡°°pРAû÷ï722‹Å;wî\¿~½¥¥å¬Y³f̘AÙ»w¯­­-Í‘ÏçÇÄÄH¥ÒñãÇ÷èÑ#((¨Cµc«Á!诠Kp ÓXíÅ‹çÎóõõår¹„³gÏFFFfee1 tuÀ ŸÏg:ÀŸ0âðúúúëׯ¯¨¨˜>}ziié–-[š/ (…0âðvYYYqqq>´´´5jTDD‡]Ðí pZp9 …#ЂÂhAá´ pZP8-(€Ž@ G …#ЂÂhAá´ pZP8-(€Ž@ G …#ЂÂhAá´ pZP8-ÿ$1 ˜­¥IEND®B`‚statistics-release-1.6.3/docs/assets/anovan_1101.png000066400000000000000000001371261456127120000222250ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A€IDATxÚìÝw\÷ÿðOÂdÉÔ*A¨•)‚‚‹V‹Vm«¸‹uÔ…_\nÜ€Zg­›ªU[¿­[«"Žj)8 ¨,Q=r¿?îÛû¥ .9^Ï?xä.—»÷]¸OÞ÷ùÜçs<Š¢@}ølê‰#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#¨™²²²µk×:88èë뛚š<ø×_e+÷òåKÉ·ºvíÊãñNœ8¡ÔÞ¼y“““S^^NOjiiñx¼ÒÒR…¬œÞFûöíÇ—““C)**âñxZZZ ÔGP3“&MZ¶lÙãÇ­­­«««ãââFŒ¡ìüLe}õÕW–––¿üò =Ù½{w>_‘¿ï––––––yyyÇŽûâ‹/(Šjt„ Ö8‚‚Ñ—§£Fbæ|ÿý÷<ÏÕÕµ™#‘}5\]]½víÚ¾}ûuïÞý«¯¾ÊÈȱ6ù—Ç:€R½zõêôéÓšššIIIÉÉÉ………«W¯ …ûöí“\¸¢¢‚íx›[bbbrr²®®®×¹yóæäää/^üôÓO„[·n=}ú”í–P eooOÿk]½z•žC—æ...ÍÉ»wï!ššš’o2‰l›6mx<!ÄÀÀàìÙ³u®ªAËÓG€¹@§?Õ»wo¡P(#$1~~~„ãÇ7óAP}‰‰‰ô™XPP@Ï)**Ú·o_LL %râŸ?ÞÁÁACCÃÇÇ'''Gô­ääd//¯={öPU^^ܹsgŸëׯ3zøðáСCMMMõôôœœœN:EϯªªúÏþóÁtéÒåСCúúú„üü|ÉPéҠιººzÍš5zzz=zôزeKmm-ý’@ Ð××www¿xñ¢Œx貂¶fÍŠ¢455 !%%%2¶ÂŠß~ûÍÉÉI__À€õîBMM¶¶6!äÚµkbš´mIFj ‰#(“8:99 …BJ%ÇY³fB:wîüçŸÒKN™2…Ò¶mÛ¢¢¢&./VÎÒè„ôôt$ŽMWVVÖ¡CBˆ‘‘ѨQ£Ö­[wùò劊 ú]ú,ãñxúúúnnn&&&„WWWæ->ŸßµkWBÈîÝ»)Š9r$]^9RWWWWW÷ÁƒEÕÔÔtêÔ‰Ò³gÏhhhhjj>}ú”¢¨€€:suuuÕÔÔ¤¯$š8~õÕW„SSÓ!C†´iÓ†2oÞ<ú-:¤?üÐÛÛ[SSSKKëÞ½{Òâùý÷ß{öìI™={vrr2õïÄQÚV˜£ÔºuëîÝ»ÓÍ Ÿ|òI½»ÀÜKš-V IÛ–d„ Ö8‚‚Ñ¥Ì|@9tè%‘8Ö{ÌTÐstttbbbºtéÒ®]»E‹=}ú´ÿþúúúŽŽŽLÝ@âÒ²´W¯^ihhBD«jkkéß’76qy\ ([JJʈ#ôôô˜3ÅÀÀàûï¿§þ9ñ !ëÖ­£(*77·U«V„›7o2o͘1###£¢¢"99™Ò¥KúÔ‹ŒŒ$„Lž<™¢¨¬¬¬Aƒ7ŽÞ¢§§'!äÔ©S™™™|>_SSóÙ³gE­_¿ž^gƒÇÔÔT:æ/^PE‡¡¡¡‘——÷àÁ:ýz÷îEQË—/×ÔÔ\°`´x(‰ëL&q”±æPüüóÏE]¼x‘Nĥ킕•UÏž=éÌ•âççGý»Œ•±- WÂ܂Č.e¢££õõõ;tèPZZ*–8ʾ­ `Š6--­îݻӯ[µjÕ¡C333BHÇŽ)éÒÇß~ûÒ®];±ù¡¡¡„¦\nôò¸@hUUU÷îÝÛ¹sg¿~ýè3ëÙ³gL¹Á4¼4ˆ²oß>¦šíÕ«Wô[111’wpõìÙ“~·¨¨hÿþýÓ¦Msrr¢ß:~ü8݆Я_?z™'Ož0‰#}FÓè”NZâxüøqBÈÈ‘#™9ô’—/_¦ß2dˆäþÖ%=q”±úPhhhÐíB………ÒC˜F$š¹¹ù¤I“ ©'Ž2¶E!qätŽ¥h×®ÝâÅ‹srr¶lÙ":?--íàÁƒ‰‰‰çÏŸ¿~ý:!äÛo¿ÍÏϧ …ýúõËÈÈ-‚/_¾üàÁƒI“&B>úè£gÏž=xð€Ïç?þ¼¨¨(;;»K—.ãÆû믿®\¹Ò»wïššš¿þúKZlYYY„º©K]KJ¿Û”åi‹-êÕ«—µµõ°aÃ!~~~bkq(|||è›#ûöíëààÀö—  ZH±°° „ÔÔÔÔÔÔBjkkÅ>"-žÆm…ž¤;ð‰îŽ4LÎ÷êÕ«C‡7t[ÀHAY,Xðá‡nذ!77—™Içsƒ ¢#{{ûÚÚZºu†ÂãñV¯^mmm-ZÊÓÕ ;v$„øøøhhh´mÛ–nÿ­©©±²²:}úô Aƒ¦OŸîììOd–VVVV„Ѩ ËÊÊ>|H¿Àô‰>}út½Ë×¹•gÏž%&&feeÑè‡[ ÞCuª®®^¼xñŒ3þþûozN~~~uu5!D 0‹ÿüsæÄ´µµ%„ܸqƒ*Ψè·öîÝ[þú>Eiè&…¸¸¸¼¼|øðÌÌLooïÉ“'2dëÖ­~ø!ù§¨‰‹‹óõõýðÃéVŠ¢ÜÝÝjjjzôèáåå5wî\ѳ¸Ntûãĉööö&L Ë®áÇ»»»WUUÍ™3§}ûö={ö2dHYYY=¼fÍššššqãÆI‹‡Bß«³uëÖ¸¸8ÑíÊØŠÂ¿ÙÛ’!¨%¶ÛÊkDïé …Ì(6ô=Ž?&„æææR•––¦­­Íçósrr$oI›³lÙ2BÈâÅ‹éIBHAAÁ?ü@þéX]]M—SÇ—Ñ…yæÌ™„@””DQÔŠ+è MLLèÒ›²¼Œ~”¢!É8Ô?·=z”íï@•——oÞ¼¹G†††ÆÆÆNNNÛ¶m£;V3gÙ/¿üÒµkWssó©S§–––RR:Ì•””Ì™3ÇÊÊÊÀÀÀÛÛû·ß~£ç—••ѵh~øaXXØ7ß|C™1cEQÿý7ÝP`mm½oß¾z‡ãóí·ßRUUUµråÊnݺµnÝú£>ŠŒŒd†ãyÿþ}`` µµµ¾¾¾§§çü!;ž¤¤¤Î;ëêênß¾úw¯ji[;2JK9 4Ù{$!¨5$Ž `b¥ }ëé3aÂBˆ……ŰaÃèz¸ÀÀ@ª®’KÎÄñǤ}:!äêÕ«2>bbbróæÍÕ«W{zzVTT˜ššŽ1bݺuùùù{öìiúòr’q(¦OŸÞ¹s礤¤(ë»™´µµ}||ê|KWW×ÍÍMuâh6<ª!›PMUUU7oÞlz‘zïÞ½^½zÉÿŒ×†.ÊVTTÔ¦MMMMº» (G jJ@.H@.H@.H@.H@.H@.H@.H@.H@.H@.H@.H@.H@.H@.H@.HåõâÅ‹3f¸ººzzz.Y²äÝ»wlG@!EEEK—.usssuu9sfVVÛgñ(Šb;5  GebbXUUµtéÒîÝ»oݺ•í¸Èœ9sža„M›6ihhˆ½[\\|âĉñãÇOž<ùóÏ?WÔF…BaLL̺uë¦NZgÖH±µµmPéÔÐ_G,å[òò-dž9qâÄÛ·owíÚåïïãÆ ¶#•3räH'''iïN›6- àÑ£GŠÚâ³gÏBBB233W®\ùå—_²}€³Ð·C.™™™ýõýÚØØ888¸´´ôþýûlǪHFÖÈÐÔÔtttTÈæþþûï‘#GZYY]¼xY#(G¹Ü¿Þ¼yB¡ž,.. …ºººlÇ-]MMM``àĉ7mÚdbbÂv8Àqhª–‹ÏúõëW®\9nܸòòò­[· ¶ã€–.>>þåË—]»vMHH`f 333¶CBâ(SSÓï¾ûnÓ¦McÇŽÕÕÕõððX·n––Ûq@K÷ôéSŠ¢æÍ›':sóæÍÆ c;4à $ŽòêÙ³gLL ÛQüË”)S¦L™ÂvÐR qP°;wîȳX›6mlmmÙ 8(ØÏ?ÿ,Ïb¶¶¶H@½ qP°uëÖ±€R`8 GPQ2 ¬@â*‡Çãñx<<(@ÕàGP-HTj@Up²¢1%%ååË—„ëׯ/\¸ððáÃÌÃKÔGP tÊȱ¬ñرcŸ}öÙÇóóógÏžýúõë­[·îرƒí¸ ‰#°Œ“´}ûö 0àÒ¥KVVVˆˆˆ8sæ Ûq4îqÖÐý¦9™2Ò ¼¼¼!wîÜñöö&„ØÙÙ½zõŠí¸ 5ŽÀN¶M‹éÔ©S\\\NNεk×úõëG¹yó¦……Ûq4GP®õë×óD˜››‹¶MWVV•––²¦RÌ™3g÷îÝ´··wqqÙµk×Ê•+'L˜Àv\„¦jPΙ™™Ã† ›={6=ùÉ'Ÿ0‹åçç/[¶¬¸¸˜íð•eðàÁ—.]ÊÊÊrvvæóùÎÎÎôðð`;.€FBâM"š2ÖÙÇ%33sàÀü±Xr¹zõêððp¶ÃWŠ‚‚æµŽŽŽ½½}iiiii© ý®™™Û14Gh*&¤(J2wÌÌÌìÔ©Ç+**244d懅…………ÅÇÇÓÝG¸ÄÓÓSö©©©lÇÐH ñêFG(>yòÄßߟÏçõêÕkß¾}NNNl®\—/_f;¥@çP§¡¡¡££’ŸŸŸ••eeeåççWTTÄvhÊÕQº¶mÛ=z”í 5ŽÐxu¶MÓêœðàAssó+W®Œ5Ší؛ûwï¾ýöÛììlfNaaaNNÎÒ¥KY‰'--¾ÓT óM‰Ý‡ZçÂXËcyÒ‚!q€&¡sGÉÉ:ËV##£víÚåçç³u3 OJJêß¿ÿ©S§&NœX^^~ëÖ­ï¾ûŽ­xlmmeß^)ö­Õû‰å±|K^¾eBâM%Z¼ŠU4ž|˜ŸŸ?{öìׯ_oݺuÇŽXUhhèýû÷###¿ÿþûÊÊÊ€€€²²2¶÷@1DŸìB5(fêÔ©7oÞüá‡bcc+**|}}KJJè·òóóuttŠ‹‹KJJ$[vŒŒŒâãã)Š=zô˜1cÁÙ³g¥Ý9Ä=¶¶¶Ç///·³³£»Zgee¡è5FqÚ€öìÙCQÔ¡C‡üüü(ŠŠ0`@C×SZZjggwåÊz²¨¨¨k׮̤[[[¶÷ûÿedd°‚QÅ`*** ™TOtæƒÄJz8ëü‘ž,,,ÔÔÔüå—_(ŠZµjS˜ÐkS÷#£X·oßîÙ³ç¡C‡Þ¾}ëêêêëëÛ£GÅ‹³J•N Ž8~cAA=¶ð;wèÖ1;;»W¯^5t=¹¹¹Ý»wwvv¦'õôôttt ÙÞ?€:0õyÔ¿o=d^çååI>èOÚÓÿòóóçÌ™Ca”g`` ««ûêÕ+¦ 'ñV77·Û·o—––¶iÓ&&&&66ÖÄÄdôèÑlÇÐHO;uêgddtíÚµI“&BnÞ¼iaaÑÐõtéÒåôéÓÌäùóçËÊÊd blggG‰eûÑq@X‡`” ÝÊœ‘‘AOòx<úµ 3sûöí|ðý:++«uëÖ„ DEEÑ3sss !™™™ôÂÌü¢¢¢êêjBÈ/¿üRRR2uêTz™™™yyy¢kQÚÚÚÚÚÚ„@ Ø Iêyꃺ»|ùò¼yó„B¡££ãñãÇ÷ìÙ½xñ €Æ­P(ÆÄĬ[·nÊ”)ÁÁÁu.cgg§:ÏËÌÌ´¶¶f; ÓLÁˆõM¡'%;¬ðx¼7nxyy•””èéé1 Ї.ôÌ7²½j¯sçΕ••lGÐHÜLéñÒ(>>þåË—]»vMHH`f ‚FÔ\(%ñô?Ñ2ž(ÇÛ´iSHHˆ££ã•+W˜ùÝ»wo×®Û{¬êÞ½{':Y\\¼sçÎ: ºÔ7ÇŽ;J{«²²rË–-K—.mÐ Ÿ>}JQÔ¼yóDgnÞ¼yذalï+À¿ÈÈ ‘2ÒŸš;w.!dâĉ¢ï=ztüøñlﮪsww›£¥¥µaöãh$n&ŽŒwïÞ}ûí·¢cæää44qœ2eÊ”)SØÞ€æ#z[¤¿¿ÿ·ß~+£Ó´§§'·Çgh4ÉÖsssT7€úâxâž””Ô¿ÿS§NMœ8±¼¼üÖ­[ß}÷Ûq¨.ÒðêI%zO‹˜œœ"Ñi@]p}Z¬·5€ºàxâ¸páÂóçÏŸhÐ ¶ãP¨hTªÜÜ\Ñ9zzzúúúFFF ZOUU•³³syyyïîÝ»×NDïÞ½ÙÞohŒõë×óDˆ´_YYiddTZZÊv˜ÐÒqüG77·Û·o—––¶iÓ&&&&66ÖÄÄdôèÑlÇÀ¾Æ ë Ò«W¯èèèíÛ··iÓ†RTTåìì,Ï£ QQQ%%%ÒÈÎÎ0`3:’¦&Ç võÅ|ïužw™™™Ã† ›={6=©¥¥Å¼•ŸŸ¿lÙ²ââb¶÷€ë‰#!D[[[[[›"ÛᨴM7+VLœ8ÑÇǧk×®„””“#GŽÈ¿†;wnݺUö2ÙÙÙu>õT‡èIWç ˜™™9pàÀ?þXlþêÕ«ÃÃÃÙà8ž8Jë=}÷î]¶C`*›S‡bcc/^¼˜‘‘Áçó'Mš4hÐ Ñš¤zÍš5kÖ¬Y÷ïß;v¬´e²³³;tèPQQQSS£¯¯ÏöNCÄ2Eú!Ob§afff§NÊËË««« ™ùaaaaaaÒž ÐÌ8ž8nÛ¶y]YYùèÑ£° 26›ôôtccc33³ôôtBˆ½½½½½=ýVVV!D­B¡077÷ÀAAAB¡°[·nkÖ¬éÞ½»´åíìì!ô( :„BáóçÏ###Ç' {õêµoß>'''¶ãÇñÄQl”];;» àá  ¦Äò?9ÓA´M7'??¿éÓ§ùùùÕ¹€ó¶×¯_óù|77·={öTTT¬]»vÆŒ.\딣ŒMƒåååñù|ooï³gÏ–••ýç?ÿñóó{üøqCûQ(ÇGI;w®¬¬d; €ëHAçbwÙËHQÑØüé*ÉÉÉÊÞVÛ¶m“’’˜Éõë×÷îÝ;!!Á××—íÃÿO¬mZ²wT‡D{ÍŽ£û¿ <øüùó ,`;.¹HfÌdš(–;bXoUpìØ±Ï>ûìáÇùùù³gÏ~ýúõÖ­[wìØ¡ÀMÄÆÆ>œ¨åíÛ·¯^½êÒ¥ Û»u þ!ùÖÉ“'{ôèñöí[z²   //¯[·nl‡ Žã‰ãe wïÞýôÓOÙŽ  ÁÄòBÉß&MdRFd¬Û·o_PPЀ.]ºdeeuàÀˆˆˆ3gÎ4}ÍôÀ´„OOÏ—/_.\¸ðÎ;÷îÝ ttt”6 —N™2ÅÔÔÔÄÄdøðáiii¢ïªÝpÙ¾¾¾999“&Mºzõê7¾øâ 777ooo¶ãÇÍÄ1á9Ø@Y2ª”‚‚z•;wîÐI€Ý«W¯š¾æ£Gž?žb``püøqŠ¢æÍ›÷ŸÿüÇÊÊjïÞ½ `\5ñþMr©S§Þ¼yó‡~ˆ­¨¨ðõõeÆH§ëwÕk¸l##£øøxŠ¢F=fÌ@pöìY|À=ܼÇqÖ¬YÌ늊 ¡PH=B¡BŸlÇ •X‹³X(z›”Øï Ú¦UM§Nââ⌌Œ®]»6iÒ$BÈÍ›7-,,º'''±ÞÐ.\`^[[[ïÙ³‡í}U$±ÿdÉü©¤¤äÌ™3ÿýïéá²Oœ8aaañûï¿6L}‡Ë¶³³“ñÛäéé©Ô³[ô WTTXXXäææêééÉøHeee‹I›ÜÀÍÇ¿þ±iÓ&KKËýû÷'%%%%%>|ØÊÊÊÑÑ‘íêÀT®Pÿ&m>ù÷-S¨hTAsæÌÙ½{÷Àííí]\\víÚµråJ¥vŽá$Ék¤çÏŸ;;;{zzÒ“ºººtUnXXEQ7nÜ`;jÕ%Y‰+Z¼äååéèèëëë˨ò”V­«ŽÕ½Ð0§ 6ì÷ßsãÆ [[Û·oß*o£¶¶¶lï÷ÿËÈÈ`;S±“QòÜ”}ž*üDV#£jÁ4΋/®_¿^VVFQÔíÛ·oÞ¼Éb0Òþ¯Tÿµèß:—áñx?fæ3‰£ŠÄ¯"¯%‹±×«V­bŠ ’’ië[¬Þùª°ïJzÝq³Æ‘‘››+6 ®žžž¾¾>†TÖ‰Ö#fdd‰¡å\ Sj²´´´±±ILL$„8::Š=• ™ÙÚÚ2¯EÿmTíµ(Jdä)Éå…BáöíÛ555.\H?žGtæ®GÙ/•zͼ-FÂÂÂ!Òêk™ˆUëÖ;ŸÃ¯[ nÞãÈèÕ«WttôöíÛÛ´iC)**ŠŠŠrvvÆÇÀ.flêŸ68êßÃz˳ÒâË/ÕWRR|õêUŠ¢RSS'Ožlii¹jÕ*Üû%›h²(ã¤xòäÉ„ RSSwíÚ5uêT¶£VuÒî;ڔĸyDq¼ÆqÅŠ999>>>cÇŽ;v¬OvvöŠ+ØŽ Z4±RX¬D¦$†c[£í¨‘ˆˆˆ÷ïß_¿~]CCƒòðáÃ7²— þ¹»WÚ¿úíÛ·œœAZZ²Æ¦c®EÑådãxâØ¡C‡ØØØÕ«W÷îÝ»OŸ>±±±íÛ·oô «ªªœE  ’c4Ö9‚7RFõ?þ|ssszÒÅÅeÑ¢EqqqlÇ¥dü«WWWñÅsçÎ=räsxA6JÊó¥È?‡ºÎN3lG *‡›MÕéé鯯Æfffééé„{{{úÞBHVV!D 4bµQQQ¢7Í( S¦KkƒFÛ´:ªªªjݺµèssóÚÚZ¶ãR{—/_ÎÉÉéÙ³ç•+W˜™Ý»wo×®Û¡©4Jæs˜Éøøx///}}}8 ‰›‰£ŸŸßôéÓƒ‚‚üüüê\@lD4yìܹsëÖ­lïpSq(úAe4Z‹Ô”««ë¡C‡Ö­[GOGEE¹»»³—Ú£;P=ZtæÑ£GÇÏvhªNþ’µ$P'n&މ‰‰ššš„äädE­sÖ¬Y³fͺÿþرcÙÞ?Pob·üS•™™imm]ç¨hTkK—.0a‚¯¯¯P(7nÜãÇ---7lØÀv\j/(((((HÆÊ.›3PÂ@Cq3qÔÕÕ¥_hkk§¤¤·mÛöúõë¿þú«ƒƒC3Œ¾kggG¡Ÿ$Ë®ììl¶C@0ÿbccC¿ ‡à!„dffÖ ½$½Xff&ç 'µk×îܹs.\xòä‰Á´iÓ¼½½ù|Žß\jAr<¤ n&ŽŒcÇŽ­X±b×®]EÍž=ÛÙÙyëÖ­EEEsçÎUêvÑ®<Òª²Ló#Úâ,Öú, »mÓªó55gƬXååå©©©ÆÆÆVVV#FŒ „…Â’’’¼¼¼£G.Z´ˆíþ5¦£è½rÖ×J[ սܯñ ß}ûö 0àÒ¥KVVVˆˆˆ8sæ ÛqA‹#Ù]QZÇ:;SƒzyôèÑàÁƒÇŒãëë;räÈ—/_Μ9³gÏž®®® 8pàÛBK§:… ïߨêÇñÇ‚‚///BÈ;w¼½½ !vvvôóLšØpßèÃy7n477ŽŽÖ××ß½{÷¨Q£ è™úúúVVVl-Š ë-mÄ1v£Ù8ž8vêÔ)..ÎÈÈèÚµk“&M"„ܼyÓÂÂ‚í¸ ‘î»Î’÷qÉÇ—,YâââB õòò úä“OØŽ  ©8ÞT=gΜݻw8ÐÞÞÞÅÅe×®]+W®l†Î1õMmll0¬7—3ƒÅÒÃSÓæT3âw£oAãrËÄñÇÁƒ_ºt)++ËÙÙ™Ïç;;;Šš ¢8Dì”l- Çûý¹ºº:tH(Ò“ÅÅÅQQQîîîlÇÇܯà x‚dP»¡mD;ǰ 4+Ž'ŽK—.½w¯¯P(7nœ··÷«W¯ÂÂÂØŽ 8¨Î§f!eÙ˜k˦tOf%lÑkcµK|¡Ñ8ÞTÝ®]»sçÎ]¸páÉ“'Ó¦MóööÆøj p’DE#ÈItTµ(7$‡ãAçè–ƒ³‰cyyyjjª±±±••Õˆ#!B¡°¤¤$//ïèÑ£‹-b;@àÉëlÉÜQ-~ @Qd/€Ç.=D ÀvDÙ&wT¯JShn&Ž=š>}úëׯ !ݺuÛ½{÷Š+âãã+++ !<‰#(„h±±ùÈ[”Y³f1¯+**„B!}Aßo-Ξ=ËvŒ ZDkìØ¢ÂJ]*M¡Ñ¸™8nܸÑÜÜ<::Z__÷îÝ£F200 gêëë[YY± ¨=±”Qôš›ˆÜ玴ebFmŒ‹‹Û°aÊ+\]]y<Þýû÷ÃÂÂÙT‹BžÂÒM|| º…›wû=|øpâĉ...ööö¡¡¡Ó§Oÿä“OœíììšøÔAhᘤP¬ d2EŒRŒmÛ¶…††zzzjkkkii¹»»/_¾üôéÓïÞ½c;4P*Ò¿¤AÉ«hÌDâ(÷¸›5ŽÅÅÅ€~MþmggÇvP Þ$Û ëœ/¹´d¹¹¹¢sôôôôõõŒŒØ T…X¦Õü¹cÓ«qµÜ¢p³Æ‘‚®Ó @b¥dƒß2il‡ *¡W¯^ÑÑÑLýbQQQTT”³³3:MôæVjE›J±uÑJG}-7kšHFGiÑ~0L{ A ÔeÅŠ'NôññéÚµ+!$%%ÅÄÄäÈ‘#lÇ*„ŧ°ˆ ûÐÐÄQ´ÐCØrp6qŒ‰‰iÛ¶­´Éyóæ± ¨ÉBS¬$-[ESF‚Ö¢C‡±±±/^ÌÈÈàóù“&M4h––Ûq©Œ<Àú¾‹ !-iO7ëÜÆÍÄÑÆÆ†éÕ(9I8‚„:/µÅºN‹æ‘HANÚÚÚÎÎÎfffÈÅ`ìh¥’ÿ¨ÖÛ¥Z,SÛDã“36P)ÜL/\¸Àv N$›¡‰ôdC3‚üJJJ‚ƒƒ¯^½JQTjjêäÉ“---W­Z¥§§Çvh*Aò$lGÄ)Ò@ ­“¿ÊP´É¥%!Ú¸Õz@‹&z‡"3³ÎòTì5J:GDDÄû÷ï¯_¿®¡¡A yøðáÆÙŽKE!wT :“r±çb×ÙŠ"'ÑN ú¸ì¾† ú8B eccSgisÐi!>>~þüùô `„—E‹ÅÅű´8’M%¢¹#“MÊ¿BÑÏ6âã ¾8BË%6Œ3¿Î‡¢=¡ªªªuëÖ¢sÌÍÍkkkÙŽKEá,S¶:¯œ9Ÿ´›¼‘2¶4H¡%M eŒCAýÛQƒúquu=tèýˆjBHqqqTT”»»;Ûq© ±‡¦à,S…47ºzRv`øÞÕ 7;Ç$$$È^ÀÃã¡ë¬©©Ù¶mÛ©S§ôôô† 2þ|Ü–¡Žd<èEl´¶#.Xºté„ |}}…Bá¸qã?~lii¹aÃel«ªªÊÃÃãÆºººlïwà\S’:‡‡lz–Öôï‹Åq+A!¸™8Κ5‹y]QQ! é‹$úº_ œ={¶¡ëŒŒŒ_GG§¨¨HÚò*U([[[³‚Jcmm-vêÔ2âkª» ½Bøùù¹»»Ïž=;99yëÖ­b£ó4?•*@íp¼©zÅŠ999>>>cÇŽ;v¬OvvöŠ+º##£òòrfL ¡PXQQÑÐjK`—ä(ª“5· ‚Ó§O›˜˜Œ9²Þ1@Q˜‘žØ„S8^ãØ¡C‡ØØØ‹/fddðùüI“& 4HKK«¡ë133£(ª°°ÐÌÌŒòæÍŠ¢˜–kPquv¦¦Û©š‡ÁŽ;öìÙóŸÿü‡íX¸Olˆ ô}T Ž'Ž„mmmggg333ŠŠŠFd„[[[“„„„aÆBnݺejj*ØÞ9ErÀѧp  TßÁƒõõõé×<ï›o¾qtt¼rå ÛqpŸä±‘;*ÇÇ’’’ààà«W¯R•šš:yòdKKËU«Vééé5h=šššþþþ‘‘‘:uª­­ŒŒô÷÷W…ûÜA±¡Ò @éé鯯Æffffffb—(æææþþþlÜ'zÌv,À)O}"""Þ¿ýúuoooBHHHȲeË6nܸråʆ®*00°ªª*00âçç7wî\¶w¤ªó)‚H¡ÙøùùMŸ>=((ÈÏϯÎÐC”J´v 5m XOããã·lÙÂÜŒèââ²hÑ¢eË–5"qäñx!!!!!!lïÈE¬mZt>ÊPP¶ÄÄDºE"99¹Ù6êää„|´™©f­žX)×2[iÅöºåáx¯êªª*±Á/ÌÍÍkkkÙŽ ”…é@'ÚuZtÐo”Ð tuuéÛ©'Nœ¨ýoÓ¦Mc;@Pf”δfp¬2ý½0ãi°wp¼ÆÑÕÕõСCëÖ­£'‹‹‹£¢¢ÜÝÝÙŽ O¬¼cZ«UáÁ¬ÐÒ”••íÚµ‹’˜˜¸eËÑ·òòòž}úŒ1‚™S^^¾iÓ&¶C¼G¬¸DìÚ·oÛ!€²¨xß U‹8ƒã‰ãÚµkuuu׬Yà ŠQSSóË/¿ qäŒ:ë%»È°"99yùòå/^¼›÷î]¶CSu*˜Š‰írGÔ¼¨Aå.4ÇGBHppð²eËþþûïE‹aÈnî©óñ0(AE„‡‡kkk¯ZµªM›6lÇ¢êÔ±o2g ™5mC ÇýDÊÏÏÏÝÝ}öìÙÉÉÉ[·nÔ—X7@±·Pð*xúôiLLÌG}Äv ê§­b5¨áäÔ"º‰‚Ó§O›˜˜Œ92!!íp ©DÇåb^ӓ̰jlÇ@!æææååålG-ŽhÁ¨võ¸ âZDâH100رcǤI“þóŸÿ° 4O3‡ˆÔ8¢–TPDDÄš5k.^¼˜““S ‚í¸€ûĆ×Qê¶xÿÆö®ƒrq¼©úàÁƒúúúôk÷Í7ß8::^¹r…í¸@.Ò:M3å è½Œ(­@…Bú÷¢ðlÀ†RýînÊè(Ó¸û›ù*ZrÎfÛ4°‚›‰czzº±±±™™™™™Yff¦è[æææþþþl²ˆ••u>oZlUþ9–,66–í¸@ìúPÏwe Í£¦#¢K–ÉÜè{ n&Ž~~~Ó§O bFáƒË}Õ$V(–2ÊhpQ—"ZšŽ;BrssŸ={æááQQQ¡££ÃvPjFÚÿlÇõ¯Uêñƒ¬ íà¨NTÐÜLé‘w’““ÙŽF¬Èûµ\¾Î@E”””_½z•¢¨ÔÔÔÉ“'[ZZ®ZµJOOíÐÔI l mbŽ%Y*6´²¶Ñ•»2"W©Œ›ctuuµ´´!'NÔþ·ŠŠŠiÓ¦± È"ö¤i±KyÉŸ”D ²"""Þ¿ýúu BHHHÈÇ7nÜÈv\j¬…œìM¿b‚y-gçÑÙõ./*FFk ¸YãXVV¶k×.BHbbâ–-[DßÊËË{òä ÛÂÿ«ó²˜H Ð(Ö\%º €ÊŠß²e‹¹¹9=éââ²hÑ¢eË–­\¹’íÐÔ•jÖ8ÖÙN¢ÀÕ6:«³]þÈ™¿ŠvXTÔ¾ƒÊâfâXSS“‘‘A¿f^Ðø|~xx8Û‚¬ÇL‹]æ¢<õUUU%öÐssóÚÚZ¶ãR3õv˜c—’?¨"ýäl_®s´Ms7GCCÃ;vB¦NJ¿•"v-ö¨@tÁÎpuu=tèкuëèÉââ⨨(www¶ãR'’÷=«fÉ ¤¨ê]­² LÅÞm©šß47ïqdìÛ·í@^¢#å pÂÒ¥KïÝ»çëë+ ÇçííýêÕ«°°0¶ãR3Ì%¥ÊflanF”V+6¿q°‰ã{S"Ø>` Ü¬qd$''/_¾üÅ‹bóïÞ½Ëvhð?’•ŽlG 0íÚµ;wîÜ… žŸãWìÊ€’A’œÃ‰æŽòÆ:‡B“±]hi8ž8†‡‡kkk¯ZµªM›6lÇâ¤u‹A©ê.!!At²mÛ¶mÛ¶¥_ß¾}›âááÁvŒÐ‚4´Dmãü8ž8>}ú4&&æ£>RÔ «ªª<<¡PHgÏže;F€Æàxâhnn^^^®¨µDEE•””°½[ê ©!pÞ_ýE¿ˆ‹‹Û°aÊ+\]]y<Þýû÷ÃÂÂÙ¸@Úãšë}½E¿Õ&""bÍš5/^ÌÉÉ)шUíܹÓÓÓóÔ©Sl±±AÖ-ʶmÛBCC===µµµµ´´ÜÝÝ—/_~úôéwïÞ±pX·¡¦—®’Ý_D7!º! šÇk„Ba`` ØüF<«zÖ¬Y³fͺÿþرcÙÞ-µÄãñ222¬­­Ù ùäææˆÎÑÓÓÓ××722b;4PoLŸ/ÅEJ##]Õ{*7°‚ã‰cll,+Ûµ³³cq뢲³³ÙØØØB222T!‚Q‹`Ô]¯^½¢££·oßN÷Ï+**ŠŠŠrvvFU 4šhV§À&c±ÆÜVRpøÒ¥KïÝ»çëë+ ÇçííýêÕ«°°°F¯ÐÉÉ)55%¾(æÚWlZɧ΅٠Yuîܹ²²’í(X&:štƒ>(ÖvÑBÊ%µØˆå]ç&$g¶²q¼Æ±]»vçλpá“'O ¦M›æííÍçs<]V’:»E‹Î!ÿÎÅ:ÄH. ÀybOˆ)..Þ¹sg‡ZòÅgûv´Ì΢U}Íœ½!Y1ÜLD'Û¶mÛ¶m[úõíÛ·‰DûÔ«Î./¢•ˆbãŠI&—„<9ZÉc´´´6lØÀv\ê­eæ1LÆ,çî7´ZÚF‰D™-7ÇY³f1¯+**„B!Ü…BBˆ@ 8{ö,Û1ª½zK¦˜cJ(uÌ ¡._¾,6ÇÜܼ%W7JÂmsò“ÿ(Õ[­Û ÃŽoDq³Ñö¯lÚ´ÉÒÒrÿþýIIIIII‡¶²²rttd;@5#ÿˆ¯’Õ»Z²ŽÿV]]=yòd¶ãR!ÈNþC*:6$ÛQƒÚàf#cÛ¶m¡¡¡žžžô¤»»ûòå˧L™²páBúѱ ?ɤÒDo9bª .R¡+++Ûµk!$11qË–-¢oååå=yòDþUÕÔÔlÛ¶íÔ©SzzzC† ™?¾äoüÞ½{E·bll|ëÖ-¶,ÒîfFht;²œñRÒêhþV_OsssÅÆñÖÓÓÓ××722b;4uRg£FÃ4¢ „ÔÔÔdddЯ™4>Ÿ.ÿª"##Ïœ9AY²d‰¶¶öœ9sÄ–ÉÎÎ0`ÀøñãéIMM•.ØñÐQkbF´PT3´2žR#9âo½a€JQéò¥ézõê½}ûvº~±¨¨(**ÊÙÙ—¹òcÎjÉëNѧ=ÃÐÐpÇŽ„©S§Ò/§²²òøñã¡¡¡>>>„   ÈÈÈY³f‰ ‘íáááååÅö~7JŒ¦Kã¤å‹ ¼@Q7¤J†ÝL‡ ›÷82V¬X‘““ããã3vìØ±cÇúøødgg¯X±‚í¸Ôƒä¸Œ zÜ¿ Û¾}û˜×xfUZZZii)“zyy½yó&%%El±ììì:TTT”””°½ÇÿÒèñ¡‰˜§ËàRP8Ž'Ž:tˆ]½zuïÞ½ûôéÛ¾}{¶ãRubÃ1²€úÉÊÊŠŽŽNOO'„TVVΟ?ßÑѱOŸ>‡–%yyy<ÏÜÜœž´°°àñx¢Ë…ÂÜÜÜôêÕËÙÙyäÈ‘>”±N;;;;;»f8õŽ/ Õ \ì:_Q4b…¸~àŽ7UB´µµ‡ ÆvêDìŽ –ÐP>?~¼Í§Ÿ~JùöÛoÿý÷éÓ§ëééEEEµk×Î××WžõTVVêêê2 Ó|>_GG§¨¨Ht™×¯_óù|77·={öTTT¬]»vÆŒ.\»½›‘ššÊöá“ì›(úœf…ÔMx¼Î»$•6(ÇGWW×:çß½{—íÐTîShºíÛ·ûúúnܸ‘BQÔO?ýôõ×_Ï;—R]]}äÈ9G##£òòr¡PHçŽB¡°¢¢B¬o_Û¶m“’’˜Éõë×÷îÝ;!!AÎM€º»˜¯óµ’¶ÛèßiIaË|ügp}:!D(&$$ìÙ³Gro«ªª !~~~ô’„£G ‚O>ùÄÀÀàøñãëׯŸ7ož¦¦¦··÷Â… qà ǰR}ÛÄ'\‹†Š»ç¹„㉣»»»Ø--­ 6°;$ûljýºàr@!üýý‹‹‹Ož<ùþýû™3gÒÃwÏŸ?ÿÒ¥KcÆŒ™4i’ü«âñx!!!!!!bó/\¸À¼¶¶¶Þ³gÛ; ÊÕü…³›ÈñËÂ%O/_¾,6ÇÜܼ…T7J#ö¸<4@áx<ÞŒ3f̘!:sÞ¼ykÖ¬‘6JNKƒ*(U&ús€ Ãñ{CBB:þ[uuõäɓَ‹¢£13™  …@©lll5ÒDŸ/€KVvñþHŒÜ.º ~#€pµÆ±¬¬l×®]„ÄÄÄ-[¶ˆ¾•——÷äɶl&’ŠÒ†Ôb;Rh)DóŒÿÅ®:o|—„ßÅÍı¦¦&##ƒ~ͼ ñùüððp¶l>h•…[TGß¾ ÃÍÄÑÐÐpÇŽ„©S§Ò/Z,œð '¶ÆŒuÁñ{÷íÛǼ®­­mÊªŠŠŠ–.]êæææêê:sæÌ¬¬¬fÛ‹Æ=žþˆX…+€JA^¢:ð]€<¸YãHÉÊÊ:sæÌ§Ÿ~**++/^|éÒ%##£o¾ù¦Aca0BCCŸ•™™©ì@Ì;wäY¬M›6¶¶¶lÛÜðDÕQç=¦ø‚@6n&Ž>?~¼Í§Ÿ~JùöÛoÿý÷éÓ§ëééEEEµk×Î××·A+,++‹‹‹Û¹s§——!$::ºwïÞ·nÝ0`@sî—<7’ãŽFÖýüóÏò,fkkÛG‚J• Ç$47ÇíÛ·ûúúnܸ‘BQÔO?ýôõ×_ÓO\¨®®>räHCÇÜÜÜîÝ»;;;Ó“zzz:::………ÊÞ‘5 ePëÖ­c;¥àfâøàÁƒèèhúuzzzAAÁСCéI''§£G6t…]ºt9}ú43yþüù²²2'''iËÛÙÙBè'É6Ý'Zì>Å:[ŸmllèÅÄÞÍÎÎVàm"ƒ`@­q3q,))ÑÐР_ß¼yÓ¢sçÎÌ»¥¥¥^³P(Œ‰‰Y·nÝÔ©Smll¤-–ššªÀÝa6]çd½b˳ Á ˜ÁMº*…›½ª­¬¬è×—.]êÝ»7óVRRRÇŽë]Ãùóçíþ‘žžNÏ|ö왿¿ÿ¶mÛV®\Ü<ûÂ<\¡ÎûñÄh6ܬqô÷÷ß´iÇËÊʺwïÞôéÓ !B¡0!!aÏž=sæÌ©w ¾¾¾þù'ýZOOò÷ß 8p÷îÝ&&&͹;uæ…¸£ÔÓÑ¿bj‡³‰cqqñÉ“'ß¿?sæLBÈüùó/]º4fÌy†ãÑÔÔ}ªlMMM``àĉçÏŸÏö΂ѶTÛû÷ïåy,µœ‹pŒØ0sø9S/ÜLy<ÞŒ3f̘!:sÞ¼ykÖ¬i\1ÿòåË®]»2-à„@`ffÖü»Fp‰ Ú&Ožììì|xÕªUnnn|>ÿþýûáááÁÁÁƒ b;4€ÆÀ8ŽŠ—––†¬!?þøãòå˽¼¼´µµ555ÝÜÜ¢££ÙŽ  ‘8*ž­­-Û!€Jxýúµžžžè==½¼¼<¶ãh$$ŽÊâææýîÝ;z²¨¨(**ÊÑÑ‘í¸ ÷8(ËòåË'OžìããÓµkWBHJJŠÁáÇَ  ‘8ÊëÅ‹kÖ¬¹ÿ¾¶¶v¿~ý-ZÔ¦M¶ƒ•faaqöìÙ+W®¤§§WUUùûûüñÇL¯jE©©©Ù¶mÛ©S§ôôô† 2þ|f ?ÅBSµ\„Báܹs«««¿û¨¨»wï._¾œí @ ¤§§÷èÑcöìÙ...ñññ?þø£P(Tì&"##O:zòäÉ;v°½ÓÀYHåòôéÓÇõìÙÓÍÍmìØ±üñ‡ÂKeøä“OØÁ ŽÓÇŽûì³Ï>|˜ŸŸ?{öìׯ_oݺU±‰]eeåñãǃ‚‚||||||‚‚‚~øáU+ìììZÚ¦±]ÎošÅ]fGy=ÚÞÞž~ýá‡jj¢•ê±oß¾   \ºtÉÊÊêÀgΜQà&ÒÒÒJKK½¼¼èI//¯7oÞ¤¤¤°½ëÀMÈ~ä"V¯^M),,ÌÈÈØ»w¯ŸŸŸ/5íV© ƒ`Ô:µVPP@§twîÜñöö&„ØÙÙ½zõJ›ÈËËãñxæææô¤……Ç+((¶| ¬žii»ÜÒ¶Ëî¦[ $Ž 3sæÌÄÄD33³õë×K[†~Â@§Nââ⌌Œ®]»6iÒ$BÈÍ›7-,,¸‰ÊÊJ]]]æ:–~¤aQQQ £t€&BSuÝΟ?o÷ôôtfþ‰'nݺõé§ŸúûûWTT°&¨´9sæìÞ½{àÀööö...»víZ¹rå„ ¸ ##£òòræ¦F¡PXQQaddÄö®7á‘Êu«©©)//§_ëéé={öìÝ»w½zõ¢çTUUõèÑãûï¿ïÓ§Û‘€JËÎÎÎÊÊrvvÖÕÕ½sçNmm­‡‡‡×ÿèÑ£‘#GÆÇÇ›™™B^¿~íååuæÌzäHÅBcÝ455 þÁçóïß¿?oÞ<æš¾¸¸X(êêê²&¨:KKK///º¸pssSlÖH±µµ511IHH 'oݺejj*ØÞoà&$Žrñññ)//_¹rejjjbbbHHˆ@ ppp`;.hé455ýýý###“““###ýýý1ì( šªå•˜˜¸iÓ¦Çëêêzxx·k׎í EQ›7o>þƒŽŒŒT…QX?&4•úoQ©óH}ýüóϾ¾¾NNN3fÌÈÏϧgîÝ»×NDïÞ½¸Eчµ2"""ˆòO=›Vê.BÞ½{·xñb>}úˆþ»*{—¥mWÙû[XXìáá1xðà7ÖÖÖ6ÏþÊØ´òvY²|–¶›*øã¢$$V‘„BáܹsMLL¾ûªª¥K—._¾|ëÖ­lÅúäÉ“ÈÈHCCÃèè耀€sçεnÝš­x ¢¢¢JJJØ €yæÌúçdÉ’%ÚÚÚsæÌa1U8&4ÕùoQµóHM;v,"""<<üƒ>ؼysppðÑ£G !ÙÙÙ ?~<½˜b‡ wssûþûï™ÉÊÊÊúW\Ù§žŒM+u—éÝÉÌ̤ÿEÃÃ×.]ºsçÎfØeiÛUêþ …ÂiÓ¦éêêîÞ½ûýû÷«V­ª®® m†ý•±i%írå³´ÝTµ%¢@qÒÒÒlmmŸßªU+úµŽŽŸÏož]®s»ÊÞßÌÌLSSS333zÒÑѱ¬¬,99¹öWÚ¦•´Ëu–ÏÒvSÕ~\” ‰£" ‚Õ«WkhhþùçŸ{÷îõóócNæfÖ¥K—Ó§OÑ“çÏŸ/++srrbû ±)//Çã™››Ó“<¯  €í¸Ø§Rÿ-*u©©¬¬, ¤¤¤aÆ9;;ýõ×ôM«B¡077÷À½zõrvv9räÇ•CTTÔèÑ£éŸùf>õD7­ì]ÖÖÖ:tèRSSSSS÷ïßÿé§Ÿjkk+{—¥mWÙûÛ¶mÛ7oÞÓ“ééé„7oÞ4ÃW,mÓÍù_-m7[Ô Êb¥˜9sæøñãóòò&L˜Àv,D(9rdÑ¢ES§Nµ±±a;6UVVêêê2)ŸÏ×ÑÑ)**b;.¢Rÿ-*u©—ÒÒR¡P¸cÇŽ… îß¿_CC#  ¼¼üõë×|>ßÍÍ->>þ÷ßoß¾ýŒ3Þ¿¯ðÒÓÓ¯]»@O6ç©'¶éfØåÅ‹çåå >|øðá¯^½Z²dIóìrÛUöþzxx´k×.$$äáÇ ‹-âñxeeeͰ¿Ò6ÝlÿÕDú×Ú¢~\86‰h?>úê‡vâĉ[·n}úé§þþþ,óìÙ3ÿmÛ¶­\¹288˜õ#Ã.##£òòr¡PHO …ÂŠŠ ¦š Øúo‘†•óˆtuu)ŠZ·n]ß¾}{ôè±yóæ×¯_ÇÇÇ·mÛ6)))$$ÄÄĤ}ûöëׯûömBB‚ÂØ¿ÿ!CŒéÉæ<õÄ6­ì].))ùòË/‡ –0tèÐ/¿ü²¤¤DÙ»,m»ÊÞ_]]Ýýû÷×ÔÔLš4iõêÕ³fÍÒÐÐÐ××o†¯XÚ¦›í¿šHÿOnQ?.¸s¨I|}}ÿüóOúµžž^ffæ»wïzõêE166>räÈýû÷ûôéÓüÁBþþû€îÞ½ÛÄÄ„Å#Óœ›–ÁÌÌŒ¢¨ÂÂBº ëÍ›7E1 -‹ÿ-bØ=¸ÁÔÔ”"èICCCsssfD†¹¹¹ÂÔÊËËcccwíÚÅÌi¶SOrÓÊÞåk×®½ÿ~éÒ¥tmShhè/¿ürýúu+++¥î²´í2D©ûKéÔ©Óýõë×555:u¢;‚(û+®sÓbË(鿚&í?™î5ÒB~\PãØ$šššÿàóù÷ïߟ7osÍQ\\, uuuY ¦¦¦&00pâĉ›6mjþ<@,˜fÞº4¶¶¶&&&Ì•è­[·LMM™×–ŒÝÿ1ìžGÜЭ[7}}ýГ………/_¾ìÔ©SllìðáÙ»ÄÞ¾}ûêÕ«.]º(vëW®\iÕª•››3§ÙN=ÉM+{—…BaMMèX†555B¡PÙ»,m»ÊÞß‚‚‚€€¦éÒ¥Kæææ]ºti†¯XÚ¦›ç¿š&m7[Ô jÉÇÇgýúõ+W®7n\yyùÖ­[ƒƒ+ÁÄÇÇ¿|ù²k×®¢5ö€é’ÖijjúûûGFFÒ×Ç‘‘‘þþþè±KTì¿E¥Î#5ÕªU«/¾ø"444<<ÜÀÀ`óæÍvvveeeË—/_¸pá”)S444¢££]]]»õ›7oöêÕKôбÙN=ÉM{zz*u—ûõëg``°`Á‚3fPµgÏCCþ}û*{—¥m—Çã)uÍÌÌŠŠŠ–/_>þüW¯^mÙ²eþüù„eÅÒ6­ì¯X”Œ¯µý¸°=×üõ×_ãÆëÕ«WŸ>}‚‚‚òòòØŠäûï¿·•ðË/¿°{|îÝ»ÇB¡pãÆ>>>>>>›7o …ìU8&”êý·¨Îy¤¾jkk7nÜ8hÐ ww÷ 0£ßeddLŸ>½wïÞ^^^¡¡¡EEE ßtÿþýwîÜ)6³yN½:7­ì]ÎÊÊš={¶»»{ïÞ½çÌ™“••Õ<»,m»ÊÞßììì)S¦ôìÙsРAÌȅͰ¿26­¼]–,Ÿ¥í¦ þ¸( âîSq@Tåæ3PqH@.H@.H@.H@.H@.H@.H@.H@.H@.H¡ÁV¯^mW—qãÆ=þÜÎÎîÝ»wÍLqqqYY!¤¼¼ÜÎÎ.==½A§.((hÞCXGØlEÒ 2D² »qã†hiÜËb¯åÔ«W¯„„„FGˆršŸ&Û€úùúë¯GE)..þꫯ–-[æääDiݺuó³dÉ›   MMÍéÓ§³}xvCo |þùçãÇcee%ZÚ0ç²Øk®Bâ Ö¾}ûöíÛBèšEkkëîÝ»Óo=þœ­¨´´´Ô±¼fÂfñЀ4mÛ¶eÊ7QêXÚ(šªAñÒÒÒüýý{öì9bĈäädzf~~~`` ‡‡‡··÷Ò¥KKJJèùyyy³fÍrwwïß¿ÿš5k***!ÏŸ?ïÖ­[FFÆçŸ-íãS§N‹‹Û»wï˜1cªªª˜Æ£‚‚‚ÀÀ@ww÷¾}ûnÚ´©¶¶–rçÎ/¾øÂÑÑÑÝÝ=00Pv{ú«W¯fÏžíêê:tèЃ>!!ÁÕÕ•~]çÊ齸}ûöÀGŽI ia3¤«Ë—/öÙg=zô8pà±cÇØþžZ(æ´=—E_égqNNδiÓ\\\†'¹ò™3g.X°€™Ü·oŸP(”]‚É(Pž€b!qÅ[³fMPPÐ?ü`hh¸råJBHeeå„ tuu¿ÿþû-[¶<{ö,88˜R]]=qâÄêêê½{÷®^½úÚµk¡¡¡ôJ(ŠZ¼xñàÁƒ?ýôSiß·oß Aƒ¦OŸ~âÄ fëµµµ_}õUuuõ¾}ûBBB~üñÇýû÷WUU͘1ÃÎÎ.&&fÆ IIIß~û­´økkk'Ož\TT´k×®E‹>|855UÆþÊX¹P(\»víºuëbbb´µµ—/_.-l†´ÍÎΞ7o]Ä3fÅŠ)))lÕ÷úõë/_¾}Wô\}-í,®ªªš8qbEEÅž={,X°aÃúRYÔ!CþøãêêjzòÂ… Ÿ}öYMMü%˜(”' phªÅ›7o}±;a„ððpBÈ… !ëÖ­ãóù„èèè¾}ûæææÞ¿¿°°ðçŸ600 „¬]»vâĉ .$„…±cÇŽ9’ræÌ™:?N·˜‹ùí·ßrssOœ8¡§§÷ÑG•””<þ¼´´tþüù_~ù¥®®.!¤ÿþÙÙÙÒâ¿råJ^^Þ±cÇÚ´iCYµjÕ×_-ce¬œ¢¨Ù³g»¹¹B¾úê+úhÈ&íXeee …ÂÏ?ÿ¼C‡ݺuëÒ¥‹ºÜÐ  ¾Nž¿Îı²²Rž•·jÕªAGOÆÎ?~üÏ?ÿ¼víÚÉ“'7oÞ¼cÇŽ¾}û6ì»å“vÿù矢“<¯Î²eèСëׯ_±bEll,ÝêÒ Œˆ”N(O@áp#4[[ÛÇÓ“þùç˜1c***:w’RZZJÏOLL¬­­íܹ³œ¯s[ô:ËËËéÉýû÷ýõ×±±±ÆÆÆ‡š0a‚««+ónlllRRRŠŠŠèÉû÷ï …Bæ]&ŒGÑ/´òF«;wîìÙ³ÇÍÍ-88ø×_uvvþõ×_›ë €vwéÒEFÙÂ0`@qqñ¹sçRRR†Jä.d$K'”' pH¡9x{{[ZZΟ?ÿÁƒ¿ÿþû²eË,--utt>þøã6mÚ?zôèöíÛ¡¡¡C‡ýàƒäü8!„Ïççåå1Å"!äã?600X´hÑãÇÏŸ?ÿÝwß¹¸¸˜˜˜¼|ùòÎ;¯^½:yòäÏ?ÿ\XXÈ\”‹¡×˜˜˜Nßdnn®¥¥õí·ßfee]¹råÀôò Z9M2ìzw¶¶¶6::ú‡~ÈÊʺxñbRR’hó°Bô\f^K;‹ dbb”-Òn—ÔÓÓëÛ·ïÚµk½½½é[ë-d¤•N(O@á8BsàóùÐ×ן:uê²eËÜÝÝW­ZEÑÒÒ:räÇûꫯ-Zäéé!ÿÇ !~~~ sçÎeÖÖÖ>räHUUÕ¤I“Ö¯_ÿÅ_LŸ>}ôèÑC† ™={ö—_~™––öÝwßåäälÙ²¥Îhutt>Ìçó¿þúëuëÖÓIª®®î† îÝ»÷É'Ÿ,X° €^¾A+—v½;ëáá±xñâï¿ÿ~ذa7nüꫯ&L˜Àö ÐÒ‰žËÌkÙ%^«V­¾þúë)S¦¸¸¸‚:W;dÈ·oß~öÙgôd½…Œ´Ò å (¢(¶cPu½zõÚ¹s§‡‡=I·ÑÝŠ¢¨¢¢"9;Ì5J'P6tŽh0ÊÐ<OY#Aéʇ¦j€úY[[KvhiÐT rA#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#®]»òþ­sçΫV­¢(ªÑëÔÒÒâñx¥¥¥’oðx¼—/_6bµEEE<OKKKÆŽœ8q‚¥©bßNûöíÇ—““SïÑõæÍ›œœœòòr¶÷ÔGøKKK‡îÝ»fdd,_¾<&&¦ÑkëÞ½»ƒƒŸ0Å ¿KK˼¼¼cÇŽ}ñÅ Jë¿úê+KKË_~ù…íýõ†ßuøŸÍ›7'''?xð °°pĈ„ .4zm‰‰‰ÉÉɺººlïGÐß΋/~úé'BÈ­[·ž>}ÊvP ðöíÛ9sæôèÑC__¿[·nÁÁÁoÞ¼iÊ ¥ÕÄÿý÷ß<¯W¯^ò¯J´¾_WW×ÑÑ188X´æ^FÓ ƒõúþ²²²µk×:88èë뛚š<ø×_mžðÐ`ÂIHAœ†††££#!D__ŸžSQQÒ¥KCCÃþýû߸qƒYøîÝ»lÓ¦™™ÙÇ|÷î]z¾hyZ]]=þüöíÛ ‚Ç3Ÿ+8Ä&=zôé§Ÿš™™éëë;;;Ÿ>}º);%mFŒÁãñ¢££éÉ7wî\aâ|ðàAß¾}÷îÝ+#ÚÊÊʹsç¶k×ÎÁÁá×_ÕÕÕe’iGU†áÇkkkBòòòÄÞª©©Y»víG}¤¯¯ß³gÏÈÈH¡PH6lØÙ³g !þþþk×®Uò¿@dddôèÑcÇŽIII­Zµzüøñ–-[<<<ŠŠŠØíÿÑõýÉÉÉ[¶lñõõeÞ’§i…õúþI“&-[¶ìñãÇÖÖÖÕÕÕqqq#FŒ`néi†ðÐ`Â5´xööö„ãÇÓ“Ïž=ëӧ蜑#GBœœœFŽI§>< (êíÛ·ÆÆÆ„¡C‡0€Ïç·iÓæÕ«WEijjBJJJ(Š  „´iÓÆÕÕUSS“ÇãBòóóß½{GÑÔÔ¤·":YSSÓ©S'BHÏž=  ¡¡¡©©ùôéS±ÈÞQÒváØ±c„ÁƒÓ‹õèуrýúu¡càóù]»v%„ìÞ½[Z´EM˜0bllìââBï»ŽŽŽìdïSU-v4¾úê+Bˆ©©é!CÚ´iC™7oEQ¿ÿþ{Ïž= !³gÏNNNfûß àÿÑgA=žúè#BÈâÅ‹½Ni¥Dii©®®î”)Sä_•ØÙwûömúÌúïÿ+ÿJüüü¤•KÍ€¾›\SS“.^ª««W¯^M4hP3„'véBHzzºìÂ\u HBâÿ;·Eñx¼7Òï&''BºtéR[[KQTdd$!dòäÉE]»vÒ¡C‡ôôtŠ¢6mÚ4uêÔ¤¤$J$qÌÌÌäóùšššÏž=£(jýúõô&d'ŽYYYƒ 7ný–§§'!äÔ©SKeìBIIIëÖ­µµµß¿ŸŸŸÏãñ:tè  e|„Ž2cÆŒŒŒŒŠŠ iÑ>}ú”Çãijj¾xñ‚¢¨-[¶BèÄQÆúëÜ)++«ž={Òé)!ÄÏÏO숥¦¦B èmÑë×ÐÐÈËË£Pò‚Jzþü9ýÿ|ÿþ}fæùóç}||fÏžMOVWW¯Y³ÆÁÁAOO¯G[¶l¡Oo‰ž¥¥¥ôUÓÖ­[)Šš;wîo¿ýFüÎ; 022255õõõ½sçŽd„’EÊÂ… !Ÿþ9=)z…\ç éS¶fÍŠ¢>|8tèPSSS===''§S§N‰ÆüÛo¿999éëë0 ##ƒÞJyyypp°@ Ð××www¿xñ¢èüÎ;øøøÐW¼béëö‚‚zNQQѾ}ûbbbê OÚ:éuttbbbºtéÒ®]»E‹=}ú´ÿþúúúŽŽŽun]ìÖÔÔÐ &×®]+Ì¥}›’ë8ÂÿÎm¦sL«V­!ýúõ«¨¨ (ªÎ.2={ö¤(ª°°ðƒ> ç‚Y³f%&&ÒëdÊSú³_¿~ôü'OžÈ“8RUTT´ÿþiÓ¦999Ñ9~ü¸è2t.|¥%Ž2v¢¨1cÆBΜ9sôèQBÈüùóe„ŽÇãÑu«2¢=yò$!¤oß¾ô2¥¥¥L£ì$¿†¹¹ù¤I“ ÅŽØñãÇ !#GŽûàåË—)$Ž ’.]ºD_yÊXFZ=ºŒ·˜óB(~ñÅ„àà`±ÕÊh-%Y¤Ðsª2´ŠÕ÷ËnKáñx­[·îÞ½;}ÇÎ'Ÿ|Bo…®—ýðý½½555µ´´îÝ»GÉ×jQVVÖ¡CBˆ‘‘ѨQ£Ö­[wùòeºl§êjŽÝÒBÑÒÒêÞ½;ýºU«V:t033#„tìØQòëCƒ '!qñsûíÛ·zzz„«W¯Rÿd$...GEœ>}š^¸¸¸xß¾}#FŒ oˆÔÐиrå %RžŸO÷s¢ÕÔÔ(é èš°‚‚i üõ×_„AƒYZZBìííkkkøàƒœœ@`kk›™™9gÎúöJÙ ™È±B++«Ó§O4húôéÎÎÎñññDäÄÔÐÐøì³Ï!®®®„ºs!½GnnnFFF„+VTWWoÙ²%))‰òäÉ ·`ÁBÈßÿ-³ÝÏ?ÿüöíÛ{÷îíܹ³_¿~ïß¿Ÿ1cs«£ÞujhhÐW¤;v$„øøøhhh´mÛ–n€–VÂ<{ö,111++‹n0í"Yï­ˆ4P0M¶ÕUVVFéÞ½ûðáÃùåoookkëÿþ÷¿eeeô±––Ö–-[vìØ1|øðššzæÀEWâîîîààðàÁƒ=zØÛÛß¾}›ÇãÑù“ŽŽN==<<AZZó)ú:>..Î××799™N¼(ù:â-Z´ˆ¹“’²xñâ1cÆHÛBH«V­FŒqèÐ!B}“ì½–$-Z'''Ÿ«W¯~ôÑG]ºt¹}û6ó‘­_ööö&L8zôhÏž=ÝÝÝoܸQUUؾ}{B}­¿uëÖ¶mÛ4¨þyêeggGyþüyzz:}±Jùïÿ;uêÔ>úˆ¾‘"šöYXX¤¤¤ÔÔÔÈx‹™ãè蘔”´fÍšI“&µmÛVtÓÆÆÆ©©©?þøãÙ³gãââvîܹgÏžK—. 0@vÌôYܹsg±ùr®°¸¸¸gÏž¹¹¹_ýõÂ… ÷ïßO·×Óè1k!¢Ý´é=ª­­Û¢††!ÄÅÅå?ÿù3Sr´œ;wÎÒÒrüøñNNNNNNS¦L騱ã«W¯=zDçò¯“‰F}õ:~ü8}G4ò|› BØ®òöI6Ç|ùå—„#FГ%%%sæÌ±²²200ðööfî.§(êĉ½{÷nÓ¦¡¡¡««ë?þHϽgüï¿ÿ¦¯#­­­÷íÛG7jçççÓoõîÝ[OOÏÕÕ•.@é–‹²²2º íÃ? ûæ›o!3f̧sŒ˜o¿ýVö.PÅŒXIß9${¯%c-EQ………cÇŽ511éҥ˩S§ZµjÅôª–’Œo‡!IUUÕÊ•+»uëÖºuë>ú(22’éF””Ô¹sg]]ÝíÛ·³ýïðÿ† Fñöö~óæ EQyyyô©´`ÁŠ¢?~L144ÌÍÍ¥(*--M[[›ÏççääÈx‹÷àÝ»w£G&„|ýõ×bÛ ¦Û…+++éÅ–.]*¶˜ØÙwÿþ}BÈ™3gè9LA'c…tKëÑ£G)Šúá‡È?7/VWWÓ×ub7áPÿ>µéÚ¸Ö­[SµråJ}}ý%K–еqÖÖÖtCüÍ›7ƒƒƒ:$¶ ÷ïß'„èéé17 geeÑ·cÒ=ÙEÓ±N±—-[FD:¿ëèèB˜þ7Ò (ÑÊø6Å"U€ÄšCYYÙíÛ·ô‘ÊÊÊßÿíÀ›maaá™3gΞ=KOÒÝ»téÂv°ª"55•Nž444¬­­éÏÎ;3wËÑZYXX 6ŒNwe¿%𑤥¥ijjòùü?ÿüSt»W®\¡Çô3fÌçŸN_ÍÒ÷g‹½E¯sçÎt•˜§§'³“8ÊXáœ9s!®®®—/_þñÇéØÜ®];ºfñرc²{ 2„Îç ¤¥¥¥££Cw>|8!¤oß¾“&M222ÒÒÒ’¼þ …£F¢°““S·nÝè½;v,½€hx2Ö©ÔÄQö-!°‰#€²¼{÷ÎÀÀ€2k֬ݻwÓ·.[¶Œí¸TÈëׯ§OŸÞ½{÷Ö­[wëÖ-$$äíÛ·Ì»2êÑ¥½%–‘̘1C,Û£Ik-%Úˆ¡££Ó½{÷ ”••1 ˆ6­H[¡h}¿œm)b“ïß¿ ´¶¶Ö××÷ôôüã?èùr¶Z”——oÞ¼¹G†††ÆÆÆNNNÛ¶mc:V‹5GÈÙÒ¢ðÄ &jäw›€2ܽ{wùòåwïÞ-++³²² X°`}#´@UUU7oÞôñña;€FBârÁp< $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $ŽòzñâÅŒ3\]]===—,YòîÝ;¶#î«©©‰ŒŒìÓ§ÏàÁƒ###)Š’¶dUU•³³syy9Û!—i²€z …sçÎ511ùî»ïªªª–.]º|ùò­[·²p\ddä™3g"""!K–,ÑÖÖž3gŽäbQQQ%%%lÇ ‡ÄQ.OŸ>}üøñO?ýÔ½{wBÈØ±c·oß. ù|TÙ€²TVV?~<44ÔÇLJ9kÖ,±’gçθŽ€æ¼G^£G¶··§_øá‡ššÈ¹@¹ÒÒÒJKK½¼¼èI//¯7oÞ¤¤¤ˆ-6kÖ¬ÔÔÔcÇŽ±/p²¹‚Õ«WB 322öîÝëçç'­ºÑÎÎŽ~ËvàêÍÚÚšíØ”——ÇãñÌÍÍéI WPPДuÒTjj*Û;j ‰cÃÌœ9311ÑÌÌlýúõ2C¡ MWYY©««Ë\£òù|¢¢¢F¯ÐÎÎ¥4šªæÄ‰·nÝúôÓOýýý+**ظÌÈȨ¼¼\(Ò“B¡°¢¢ÂÈÈˆí¸ åBâ(—ÌÌÌ¿þú‹~mll\ZZzÿþ}¶ã.333£(ª°°ž|óæ EQLË5@óCâ(—û÷ïÏ›7¹î/.. …ºººlÇ\fkkkbb’@OÞºuËÔÔT °´\HåâããS^^¾råÊÔÔÔÄÄÄ@àààÀv\Àešššþþþ‘‘‘ÉÉɉ‰‰‘‘‘þþþô111è~ÍcäbjjúÝwßmÚ´iìØ±ºººëÖ­ÓÒÒb;.à¸ÀÀÀªªªÀÀ@BˆŸŸßܹséùGŸ|ò Û@Ë“ñ+hô[Õ„Ò šMÕ $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $ެY¿~=O„¹¹¹è»•••FFF¥¥¥l‡ ð?šlÀe<yMQ”Ø»™™™Ã† ›={6=©¥¥Å¼•ŸŸ¿lÙ²ââb¶÷@ý¬_¿~É’%̤™™Ùëׯ™ÉÊÊJ ‹ÜÜ\===¶#U?H•…Çã‰&‹b“„ÌÌÌ~üñÇb\½zuxx8Ûá¨(Ùõ2U3ʄđ5™™™:u*//¯®®644d懅…………ÅÇÇ{yy±#€j©·^† jF™¸cJJÊË—/ !ׯ__¸pááÇ…B¡²7*ùLQ”è’P(|þüydd¤¾¾¾‘‘‘““Óýû÷Ù>TjFìç•ÆT͈Õ,†……QuãÆ ¶£VcO;öÙgŸ=|ø0??öìÙ¯_¿ÞºuëŽ;”½]Éÿc±T2//Ïç{{{çççgeeYYYùùù±}ÀÔªf”Šã‰ã¾}û‚‚‚ péÒ%++«DDDœ9s†í¸H‡ÊËË7nÜhnnneeuðàÁ‚‚‚+W®°€z +h$›øP5£T¿Ç±  €¾SðÎ;ÞÞÞ„;;»W¯^5æÅ*ë¼{—addÔ®]»üü|–€Ê«ó¾F]5ÃL}YçÏ¡´eÞ½{·xñb>}ú,Y²äÝ»wlï ›P5£TܼDZ  €y­££coo_ZZZZZjccC¿kffÖÐu†††>yò$22ÒÐÐ0::: àܹs­[·–\2--®B¯³èŸ:uê£G~øáccãeË–¥¥¥=xð@__Ÿü{TROOÏz«ß€3"##Ïœ9AY²d‰¶¶öœ9sä\fÉ’%™™™[·n%„„‡‡/]ºtçÎlïkŒŒŒâãヂ‚F­¥¥5tèÐ7JÙDq‘m}ºÂÒÒR;;»+W®Ð“EEE]»ve&EB˜õKá÷ïßóx¼_~ù…ž,,,ÔÔÔ¤'E‡$-))a>RQQahh(:8¦¢¢¢W¯^§N¢'Ož<éááQ[[+Ï2•••]»v=qâ=ÿøñã]»v­¬¬¬sC(ýTWsÇÍÇË—/+v…¹¹¹Ý»wwvv¦'õôôttt Å£ïÒµ³³£')‘ŽÕô‹‡:;;{zzÒ3 tuu_½z•ŸŸŸ““C¹páÂ!CJKKéhâÉH-AZZZii)ó°(//¯ÐÐД”Ñ»²¤-Ó¥K>ŸßªU+z¾ŽŽŸÏñ{€EÜL;vì(í­ÊÊÊ-[¶,]º´A+ìÒ¥ËéÓ§™ÉóçÏ—••999I[žÎcccÉ?)cFF†M÷îÝ !EEEô€R¿üòKIIÉõë×§NJpýúõ„çÏŸ—––nß¾=**ŠžŸ••Ug³8·Y[[³BsÈËËãñxæææô¤……ǽåFÆ2ݺu:tèìíí !û÷ïÿôÓOµµµ¥m‹.RSSÙÞiPKÜLïÞ½ûöÛo³³³™9………999 MB¡0&&fݺuS§N¥ï˜¬“X¡LW=REáñx666µµµ;vì^¸páúõë<8mÚ´}ûöýñÇ„Ž;ZXXDFFFFFÒ­îÔ©] ÜSYY©««ËÔòù|±ñŠe,³xñâ!C† >œbbbrèÐ!ÛBÊMÁñðð𸸸>ø >>ÞÆÆæƒ>HKK‹ŽŽnÜÚž={æïï¿mÛ¶•+WK.@ý{Ðo¦‹ŒØ@Séééááá»ví¢« !_}õ!¤Ñ±€ú222*// …ô¤P(¬¨¨022’g™’’’/¿ürذa C‡ýòË/KJJØÞ'à&Ž×8Þ¾}{Æ >>>/^¼èß¿¿««k·nÝ.]ºäêêÚÐUýý÷ßܽ{·‰‰‰´Åè4Q4e”\†nãNKKcZ %333£(ª°°ðáÍ›7E‰•Ò–¹víÚû÷ï—.]JWF†††þòË/ׯ_2dÛ»ÄñÇòòrSSSBˆ½½=Ý@ãíí}éÒ¥†®§¦¦&00pâĉ›6m’‘5ÒD{U‹åŽÕÕÕ„¹sçB5ÍÖÖÖÄÄ$!!ž¼uë–©©©@ g¡PXSSS[[Kϯ©©©©©a*&‹ã5޶¶¶ÇïÒ¥‹Ý©S§&L˜••UVVÖÐõÄÇÇ¿|ù²k×®L©Mò)Ú½:"""..îÊ•+ôœîÝ»·k׎íC¬ÑÔÔô÷÷ŒŒìÔ©Smmmdd¤¿¿¿¦¦&!$&&ÆÔÔô“O>‘¶L¿~ý ,X0cÆ Š¢öìÙchhØ·o_¶÷ ¸‰ã‰ãÂ… g̘agg7|øðÕ«WüñÇ/_¾lD ÎÓ§O)Šš7ožèÌÍ›76¬ÞÏ2w7ŠŽ >hÐ f£GŽ?žíCl ¬ªª $„øùùÑí„£G ‚O>ùDÚ2†††‡Þ´iÓÔ©Sy<ž‹‹ËáÇ ÙÞ!à¦úŸ®îªªªJKKÓÓÓcccMLLè¡ä•·E;;»Fô[¤{OÇÅÅ 4¨¤¤„éCMÏÐ8+T“XÇSh¯q$„hkkÓCš ±{†@~O¥õž¾{÷.Û¡‰£N_ç|¶£.HKKc^‹ÖÖà5^«ãkQªC ÁñÄqÛ¶mÌëÊÊÊG8p €í¸¤Bš îrssŸ={æááQQQ¡££Ãv8ÿbkk˼-jð¯Õñµ(Uˆ¡…àxâèáá!:éããcgg·`Á‚€€]]]¶£N))) ¾zõ*EQ©©©“'O¶´´\µjnPÎàø8Ž’:wî\YYÉvÀAïß¿¿~ýº††!$$$„Yz'>IDATäáÇ7nd;.…áxâøîßž?¾sçÎ: º.>>~þüùÌØþ...‹-Š‹‹c;.…áxSµ»»»Ø--­ 6°pPUUUëÖ­E瘛›3ÏtàŽ'Ž—/_›cnnŽêFPWW×C‡­[·Žž,..ŽŠŠ’¼|P_ÜìR.ú`À:‰ušQ, ± Ð2åççO˜0’íääôøñcKKËÈÿlReCé\Ò‡Åa 7z¯^½˜×B¡Çãñx<¡PHgÏžUÞÖQ4´X•••.\xò䉭­­··7Ÿ¯B·’£t.AâÈ n6Uÿõ×_ô‹¸¸¸ 6¬X±ÂÕÕ•ÇãÝ¿?,,ÌÑё퀃jkk>üæÍ›Å‹B¾þúë”””éÓ§Ó¬8@….…•aÛ¶m¡¡¡žžžÚÚÚZZZîîîË—/?}úô»wïØ ¸&22rïÞ½;v¤'===>Ív\ ÃñÄ177×ÀÀ@tŽžžž¾¾¾‘‘Û¡×üòË/aaaãÆ£'§L™ößÿþ—í¸†ã‰c¯^½¢££™úÅ¢¢¢¨¨(gggÇvhÀ5UUUÖÖÖ¢s¬­­ËËËÙŽ @a8~ciNNÎĉ »víJIII1119räHûö핱9±|”ÛÇÄVWWoÞ¼™~Æ`yyù¢E‹ªªªvïÞÍvhÿƒÎ1À%èà îôªªª‹/fddðùü.]º 4HKKKbþƒ™¢¹ÑÿÓ¢ (ç¿ Î(((øê«¯rssíìì455SRR Ž9Ò¡C¶Cû$ŽÀ%HYÁ̓žžžnlllff–žž^ç@áUTâ(ö)œj¤¶¶ö·ß~KMM­©©éܹóǬ­­ÍvPÿ‰#p ~YÁ̓ngg7}úô   ;;»:PFÑ©ÄQò#81@Q8—à÷‘ÜÇ111QSS“’œœÌv,ÐR$''/_¾üÅ‹bóïÞ½Ëvh 0………ÁÁÁÿýï)ŠòòòÚ¼y³­­-ónee¥……Enn.}Ÿ+÷p3qdžF­­­’’bllܶmÛëׯÿúë¯ô3ÁŽ¢(æê‡¾I±WB¢+õ®­­½jÕª6mÚ°‹b¨T$-…ÉÜe^gQ!$??Ù²eÅÅÅl*%âfâÈ8vìØŠ+víÚEQÔìÙ³·nÝZTT4wî\elŽNû˜×^;6:ûV<}ú4&&æ£>b;úÉÓ¯9Ó zKNiÁ(6H±RWò2¾¤¤äÌ™3ÿýï?þøcBȉ',,,~ÿý÷aÆ­^½:<<¼Ž»8>Žã¾}û‚‚‚ péÒ%++«DDDœ9sFy[¤(ÊÖÖ¶)ÙžX%ý”íæ>pÐpæææj1j#1ê,aV¯^ýÁ|ÿý÷ÍŒh< FAŠ–Þ’ñ<þÜÙÙÙÓÓ“ž400ÐÕÕ}õê!$,,Œ¢¨7n(ûˆ°‹ã‰cAA——!äÎ;ÞÞÞ„;;;ú$Wž´´4Þ?½º %¨qPkÖ¬¹xñbNNN¶ãªGéZs¦A’¥œXù)-˜æÏÕºuëv÷î]zòÇ,))aòH€–€ãMÕ:uŠ‹‹322ºvíÚ¤I“!7oÞ´°°PÞy<ž­­-ÓoQ!«ÕŽBÚëÔN@@€P( ›¯²™U³´iúÍâÍpd„BáŽ;,X°páB{{{å…!:©‚_´@OçÌ™3oÞ¼;w:::º¸¸ìÚµ+::zñâÅJÝ(]ãØè3\ÝûLj¯Ö;ÐP±±±l‡Ð*ržJ†!­åºÙÂvdžûì×_577oÎØPœ‚*àxâH±´´äóù‰‰‰ŽŽŽ:::ͳݦt‹»ÎFI Þ½{÷í·ßfgg3s srrT-q$M+ ”‰(v3$)Zuuõ_|1wîܵk×6[<ÈA¥pMÂŒD¦‚¥GPP%aüøñÌžžžE)ªQ ã² âxâXUUÕºukÑ9æææµµµXÕÎ;===O:%c:mbj[æ©.V¤²@ó±µµ=~üxyy¹ÝåË— !YYYeeeõ~°²²òøñãAAA>>>>>>AAA?üðƒP(”g¡P¸{÷î¹sç~ùå—^^^K—.½{÷nnn®BöH±i’‚Q© 8㉣««ë¡C‡˜ò·¸¸8**ÊÝݽ«š5kVjjê±cÇd/Æ<99@K³páÂóçÏŸhРz?˜––VZZJ?­€âååõæÍ›””y–ÉÊÊÊÏÏ:t(=ßÍÍ-55µ}ûöl à&ŽwŽYºté„ |}}…Bá¸qã?~lii¹aÃeo×ÎÎŽ¨í nªÃÚÚšíÀÍÍíöíÛ¥¥¥mÚ´‰‰‰‰511=zt½ÌËËãñxÌM5<Oì‘3Ò–©©©ÑÐÐHJJš9sfnnnÏž=ÃÂÂ:uê$m[t餲c’€ŠãxâØ®]»sçÎ]¸páÉ“'Ó¦Móööæó•^ÏŠBÔF€jº1cÆœ8qB[[›"AqqñÔ©S:$ûƒ•••ºººLÑÄçóuttŠŠŠä\†~ŠÉâÅ‹ wìØpþüy]]Ý:·…Ò š‚³‰cyyyjjª±±±••Õˆ#!B¡°¤¤$//ïèÑ£‹-b;@"ùŒ äŽò+++Ûµk!$11qË–-¢oååå=yò¤Þ5•—— …B:/ …FFFò,SUUEQÔºuë !›7oîÓ§O||¼ùä¶ãj0ÑoÕ¦p²ÆÆÙ·o_JJб±qÛ¶m¯_¿þ믿:88L˜0¡Þûª555ýýý###;uêT[[éïﯩ©I‰‰‰155ýä“O¤-£©©ùÅ_„†††‡‡lÞ¼ÙÎÎÎÃÃíƒÜÄÍı¸¸˜¹X§›{莄êõ@ yò䯿þzñâÅ7*é‘t V:©Ty" 뱀ʣRpdXÁÍG®ÂIJ…ÿ®&*(( è¾s玷·7!ÄÎÎîÕ«WlÇ 0œMcbbÚ¶m+mrÞ¼yl(±ûñ» Ê:uêgddtíÚµI“&BnÞ¼iaaÁv\ ÃÍÄÑÆÆæ¯¿þ’6IÔ'q$HÔÇœ9sæÍ›·sçNGGG—]»vEGG/^¼˜í¸MŸŠ§À{@½dgggee9;;ëêêÞ¹s§¶¶V¥:8ãÇFÃ:• F¥àȰ‚›5ŽœÄ´Yã<P)éé鯯Æfffééé„¶mÛfggBŒéwÅFdP_HՃص8Aú 2üüü¦OŸäççWçh‚Î@âÈ‚†ÖŠÕÆc$p•’˜˜HÖœœÌv,Ê‚žš@CâØÜTê>hºÄÄDÙ ¨ÔmŽ ök…¯–Œ›‰cBB‚ìØ*Çë¬;”}ú¡r@ÅÍš5‹y]QQ! y<Ç …„@pöìY¶cP$<Ƭ%ãfâÈz9®*}Ñ{%_€Š`FûŠ‹‹Û°aÊ+\]]y<Þýû÷ÃÂÂÙ@a/Ÿí”â¯lÚ´ÉÒÒrÿþýIIIIII‡¶²²Rv9ž––F‰hJžÇœŸLÊHŸ´8oTжmÛBCC===µµµµ´´ÜÝÝ—/_~úôéwïÞ±€"!}lɸ™82š¿§ÓDiÉ¢XÙ s^ç*€ÊÊÍÍ500£§§§¯¯oddÄvhM"úã…V¯Žã‰c3—ãôédkk+£¢‘~‹©;”\í# Ö«W¯èèh溴¨¨(**ÊÙÙg4pó»†V¯ŽãµÍÓ¦M«¨¨Ø¾}{›6m!EEE­ZµÚ»w¯Â·Å$‚b/$Di1ʬM*.''gâĉ………]»v%„¤¤¤˜˜˜9r¤}ûöl‡ö?xrL#‚a‚Q‹`ZŽôæ,Ç™ÿ`;;»´´4f¾XòGDnX”ŠÕRpû›à†ªªª‹/fddðùü.]º 4HKK‹í þÇFÃ:£Á´Ü?èÍVŽ3õ‹ô¤´ºFiÉb½ 4‘:&ެ|˜ŸŸ?{öìׯ_oݺuÇŽlÇ¥®šòÄPŽ'Ž®®®‡b®ø‹‹‹£¢¢ÜÝÝ•´9º˜KKK“Ì ¥u”¬‡4û­<¨tPˆ}ûö 0àÒ¥KVVVˆˆˆ8sæ ÛqÕ'‚íXþEôÆqdª€ã‰ãÒ¥KïÝ»çëë+ ÇçííýêÕ«°°0åm‘¹ÇQ´Y¹Î[¼•QØ8(‘¢  ÀËË‹rçÎoooBˆÝ«W¯ØŽ«¢Í*x‰§­¨Ž÷ªn׮ݹsç.\¸ðäɃiÓ¦y{{óùÍ”.ËÙÈ"­˜–6”ªë@ëÔ©S\\œ‘‘ѵk×&MšD¹yó¦……Ûq( ÇÇÇ÷éÓgĈÌœòòòðððM›6){Ó²ôí#­ÃµXÓ¶GÁ«TÀ¥<€BÌ™3gÞ¼y;wîttttqqÙµkWttôâŋَKÉg¥bÐY㥃®®îš5küüüè9ïß¿wqq}v‚26J.Ï“`ê¬>Ä#dÔTvvvVV–³³³®®î;wjkk=<<ØêÿÕùäÑ¿„½GÆ“´š?$•*uŒZÓrp¼Æ‘¼lÙ²¿ÿþ{Ñ¢Ešš*·¿r¦’bóqª¨ŽçÏŸkhh|ðÁ|>ßÒÒÒÒÒ’žïææÆvh †;a@6ŽwŽ!„øùù}ÚÄÄdäÈ‘ [IMMMdddŸ>})£§ Ó«šüûñ0 *Ž™ÔgPqÇŽ;qâÄï¿ÿ>f̘F¯Dž¦Þenݺeoo_^^ÞЭKö\VÁ¡y@¨\Ó­’ìØ±cÏž=ÿùÏ·†ÈÈÈ3gÎDDDB–,Y¢­­=gαeèìÐÎÎŽž¬sØyˆuAñ  Êœœœd¼ûúõkæáU2ÈSÂÈ^æýû÷K–,iúE¦X§=\µ€(Ž×8L¿¾sçÎgŸ}¶uëÖo¾ù¦ÞÊSÂÈ^æÒ¥Kþùç‚ Ø>ÀqÜlªöóó›>}zPP3 ˜†Ç“——Çãñ˜ö& G禢Dï1gfÖÙQ¦é¹c3NÖ¨×5Ò¦NZXXøüùósçÎ 2dß¾}íÚµ«÷ƒò”02–)((X±bÅÖ­[å9\ô½4õ–¸@€:q3qLLL¤GÞINNVÈ +++uuu™GÎðù|¢¢"É%%Gê–s@GPw=zô8räH@@EQ‡êÝ»·œ”§„‘±LXX؈#\]]ïܹSï¶d§ŒýdãfSµ®®®––!dâĉÚÿVQQ1mÚ´†®ÐÈȨ¼¼œ¹H(VTTÕ¹°h¯j‚›„¸îˆvíÚ}ûí·E=xð€™Yïä)a¤-óÓO?½xñ¢ÑÝþêÔèá €ó¸YãXVV¶k×.BHbbâ–-[DßÊËË{òäICWhffFQTaa¡™™!äÍ›7EÉÓS’ỸÊÝÝ]ræ¦M›˜G›ÖÛ.,O #m™ß~û-==ý£>b–ìÙ³çäÉ“—.]Ú¸ÝAj›‰cMMMFFýšyAãóùááá ]¡­­­‰‰IBB°aÃ!·nÝ255ò|VòÁÓlP¤Ë—/7q ò”0Ò–™3gÎäÉ“ée’’’.\øÓO?Ésc¥œÄŠ,d“-7GCCÃ;vB¦NJ¿h"MMMÿÈÈÈN:ÕÖÖFFFúûûËóCiŰޜѱcGÑÉ—/_fddÔÖÖvîÜùƒ>g 2J˜˜˜SSÓO>ùDÚ2ffft$!äõëׄ]]]…ìZ´dÜLûöíSÔª«ªª !~~~sçέ÷#bÍÓ’I$ƒ¸¤¢¢"44ôܹst–ÚÚÚ¡C‡FDDÈ“ÆI+aŽ=*>ùäÒ¨RH±Ðu¸ÿªÅâxœœ¼|ùò/^ˆÍ¿{÷®ò6jgg—ššJ¯¢…¬Xokf&·¿€–cÍš5×®][»v-ý,™ÄÄÄÐÐPOOϰ°0¶Cûºtb&Å (É¢©9/wë ¦9”J•Ì* ë_ ™–ƒã}äÈ‘ÚÚÚ_}õU›6mDç{xx(o£LÑ,Yò‰+3üßpFÿþýW¯^ÍŒÑM¹}ûö¢E‹®^½ÊvhÿÓÄÄQ©åGu †¨Ì™J™–ƒãMÕOŸ>‰‰íoØüĆãÁ?:W•••ˆÎ100(++c;®Æ“¼ô`àç¬eâæ8Ž ssóòòr¶¶N—¹b-ÔÖ€«œ¿ýöÛ÷ïßÓ“¥¥¥Û·owqqa;®&aŠ,Ñái¡%ïX ÇñË…Û·o¯]»vöìÙ­Zµbæ3•A²1ˆHއÛÇ EÉËË›8qbaa¡½½=ÇKIIiӦ͑#GÚ·oÏvhÿÓЦji“Ê€¦j5 F´B„ÅðTêÈ´?èݺu …’ûØÐgU7ˆè=ŽDâ!„¢y$þé8¦ººúâÅ‹OŸ>%„tîÜùã?¦Ÿb¥"86"Ö©l0¬+§RG¦åàø=ޱ±±ì öàA±k5‚ÿ{nÑÒÒruu555¥ÇqT©¬@áðûÕqräHrrrrrò?üðøñãÍ›7³p‡h‡K…#Ól8ž8FDD¼ÿþúõ넇nܸ‘í¸€ƒ®\¹îêꪡ¡¡¡¡áìì¼råÊ+W®°pÓ<…º182ÍŒã‰c||üüùóÍÍÍéI—E‹ÅÅÅ5ÏÖ™–h±kú?ÔýqA¥¨r;óKÇÊÖUùÈpÇǪªªÖ­[‹Î177¯­­m¶(¢sEàNŽãª@Åk˜š‘æÏÛTüÈpÇ;Ǹºº:thݺuôdqqqTT”»»;ÛqÕqU„ÿ~u6qâDooo±qÙŽK‰ÄpJ —¨‚¿b!±¤Œâ¿T±Tî_P±òóó'L˜@ÉÎÎvrrzüø±¥¥åšmðzÿ_UdUPˆ5Ž£b‡ôÃ8޲ƒ©óéál#˜´eX?22þ¯ q8^ãØ®]»sçÎ]¸páÉ“'Ó¦Móöö¦GÊhõŽ×(98þ­ÔTrr²††F·nÝüüüòóó¿ÿþ{===•Ê«Îz&¶ƒâ2æ³>ì¶4lý~I™:‡4Eáf☠:Ù¶mÛ¶mÛÒ¯oß¾MñððPÞÖÓÒÒ$ÿk¥u…Á-½ê®¼¼<$$äòåË+V¬èÖ­!„ÇãݼyóðáÃ}ûöýöÛo›møXà6Õ¬\P…¨¤Õ8J>ã—õP9€›‰ã¬Y³˜×B¡ÎÛ„B!!D œ={VI›æñx¶¶¶©©©b…uÞÔÈöqRðŽ3{Êv,Íê»ï¾»wïÞÑ£G]]]é9mÛ¶=wîܽ{÷æÌ™óÝwßÍ;—íF²àÂ/1¨Nm¨´vsü—*7{UÿõM›6YZZîß¿?)))))éðáÃVVVŽŽŽJÚnCÛn¸QË(:Ø7ö AÎ;7sæL&kd8;;²þàS=Ó%ŸžÊvtÀ&µ-é£Bp3qdlÛ¶-44ÔÓÓS[[[KKËÝÝ}ùòå§OŸ~÷î]3l]v©*zK/3ü•šþOãV'hÉòòòìííë|ËÎÎ.;;›í•ˆ©gRñŒZ±.Y£âp¢W5´dyyyk×®ýí·ßjkkµµµ«ªªx<^¿~ý–-[Ö±cG¶£ûM¼Î±Æ86[0¬¦²_ÇfƒC©0ª8²8‚?¼|ùòÑ£G&&&ööö:t`;"qŠzrŒ2R•ÍHX§v‰c³Ý»Ä‘ÜÇ‘!9@íîÝ»ÍþYZÑg ´LÈØ8ã‰ã¶mۘו••=:pà@@@@³€NEn©¯ßæž÷u^¹reÁ‚·nÝÒÕÕUøÊ묱9÷—z šªŒ*Œ˜&ydX¼+©Þ¯IòÑÊ‹ MÕ¬àx£¤Î;KŽš¡(¬ôJ ƒo(’¦ÃAãŽãøîßž?¾sçÎ:4ºº±ªªÊÙÙ¹¼¼\Æ2¶¶¶ÿ×ÞG5uæÿ¨’"¢lõhgj’”ÊÐJQ9E2¸2œŠf\¦2zD\âjN­žES¬b«u§¢­¸´£E´õx¬UÔ¡Z;Q¬ ”EAY"$ùþq½¿4›W ynÂûõWîå’¼óäÞ'Ÿ}/^Ìq™ÌÌÌ[·n©Tªþýûçææ&%%}ýõ×/¾ø"í÷dvÛ¥c‡=­ÎŠ­ÑnNÉÉ·‡»wïÍñõõíÚpãöíÛ·lÙÂ<þñÇ­<‰ÑQDÖi4šˆˆˆÌÌÌ·ß~›røða•Jõý÷ß …Âg.ÓÞÞ²}ûö·Þz‹ÒÜܾmÛ6fÒˆ£ãh·ëÔš½Â9­ ÒlË^:מÁxuX!¯ÂôN¾«zùòå¿ÿ­ŽŽŽwÞy§ OµpáÂòòòƒÒ~OàlÔjuKKKTT3ÕÐÐPVVÆe™ 6L&“1óÝÝÝÝÜÜi¿§žgøÝOåÞ ´à7؃‘P9ç®êÖÖÖ?þ˜òã?nÞ¼ÙðOÕÕÕ·nݲu©TJ)**¢ÝŽíÕW_¥Áª««¯¯/3éçç'êëë¹,3f̘#Gް‹¶¶¶†„„Xz-¦wr‚½"visˆ»ó68+ç,;;;oß¾Íèp”;8:½^ߨØèããCihhÐëõì^ég.sýúõ¤¤¤˜˜˜O>ùÄËË‹ö»±£ë¼ G ÂiOŽ©¬¬ÌÍͽyó&!D£Ñ¤¦¦GFFþóŸÿäòï®®®¿2<±ñ™Z­üŠv3tÓ/rè·Àg‰ÄËË«¸¸˜™¼té’···ÑŽKËtvv*•ÊÙ³goڴɉ«F{FªFZœsÄñ§Ÿ~š9s¦¿¿ÿĉ !Û¶m;{öìüùóÝÝÝ?üðÃAƒÉår[gÀùnÀ‘«««B¡P©TC‡Õjµ*•J¡P¸ººBòóó½½½ãââ,-sîܹÚÚÚÀÀ@¶¦$„ˆÅbf` g9gá¸uëV¹\¾qãFBˆ^¯?zôèܹs—,YBéèèøì³ÏlT82cr‰¤¼¼%#p§T*Ÿ>}ªT* !“&Mbú+BÈþýûÅbq\\œ¥e***ôzýÒ¥K Ÿ-''gòäÉ´ß8!ç,n¢¢¢rssGŒAQ«Õ“'O.,,üÃþ@¹|ùrZZÚ… lñºL±È^bס/oZø¢ptŽ~ðž}Å®…±?î-ë0¼½¸C5ósãøäÉö<˜‹/úùù1U#£¥¥Å/ÊÞc€ãÂ[&²Å"ªÆ®éE­vûöm___=?» 2‡Ÿ³›±i S?ºz'Ûcúeü¼=›£œuaÏl{¶£|LV …c79爣YVnÞÚS ×B+càF;µ±â@OÁXKØ/_œXÝÎyr E†§![YÌðäÚ‘ºËð4UœQG Ž˜z&öÎCX?»¬8ÚNò€Þ »ÿxØF{ ÛiͰÃß0l¶†Â±'VЍ —Ãî»akGì„[CáØÃôz½D"Áv ½œSÞ¢ƒÏW8Ç÷ØŽq¤gu€³2½ÄíD=ü¦%„Þ #Žt8åoq³œ vD™À@áHÑoqÚqlÅÑëEpn¼=ð€ÏP8Òç¿Å¬p¦á:t×NƒÝõ‡oáç‚ÂÑ á'Ðet=p'¨j çxS½™Ñ'ˆÚ‘;œC_Ïv@¼ºÅ*ôZÎw=pÃÖ™}S¼=å‘î†èòÆlTžç¤ …#¶»WµÙŸPØ€:ª¬0êTƨ oAý=²1èž ÎÿSÑ™HFŸsò Çždtí~+«ÖHè=lW=P¬Ò,íÞáÃNO6 K¬¬`ØÅ ãØÃØ €ó¡ï ÎF_ÀÌ1”´®kfZ5 ©RìÿMËtBûœ~~{@0 Ã ÇÓ_'8|ø©Ç«ž\×̨þ |ê{yƒ·˜ö1­³Á ŽNÅðÇ7z.èÍl1üfÚ¿Ñäãma4ˆÀ>°ó÷‚áç–×<¼ôΚçÇ8:!¬îÀ7=[»‚Æî)æC×ÇϞ쀕`†¯nv7:»Z‰üöQ>ãŒ8ö£ãlxÒ‹PÇì !NÔ1š^¨’ÝéIý @ü¹Q™¥âÞðÜÔ#Ù‘î´<‡ÇžÄöŒNÓ9ô ìöڿ˵^ ÓK³>Kýj…¦§&7\†J<£$¦µc/ÿ~LjcÏcΪ¦€¿zd`ÉpœÏF/Ñåw§7@} ÍR6;çy®Wäá•IpBFÀ®ltƒ+³—ã&®ðlŸwg)Œ­3pÌf»»QXÏ@~{ø Ÿ/N}t–‡P8€ýØèWVnèB(î`v‡,•ZÍJBbߢÖè|&³5ÌÆÛº·Á컪¹jjjÊÈÈ MII©¬¬´²0¯vL€sëììT©T‘‘‘±±±*•ª~“q¯x D·Qÿl}W&[«ÑÝ‹méåì™Çô#Ó»¯Ñj(³çÄUü½v·5 G®233¯^½ªR©vïÞ­Ñh’’’Z[[Í.©V«VwÚÙÍ“J¥´#8[TäìÍQ)R©T‡^¿~}fffAAA^^íDœØ¡o´ò¶>“×tX‘b+L³Ùó4g££T ¿1ÍîîgN!°[íhöZöÕ™Þ‰Ïßò6‚‘“ÖÖÖo¿ývÅŠQQQÁÁÁ¹¹¹µµµ—.]¢ z;Fóù矧§§GGGGGG§§§8p@§ÓÑÎE‡¥¯p£òÈôâálEÒ#E€á凞Æô¯=ÆèÉ ùL›Îhw¿ýo¢ûÌSÔ Z 7'4„‘“ 6L&“1“îîînnn¦K ‰DB;/ôjµº¥¥%**Š™ŒŠŠjhh(++£Ë"£Ú¥GŽ«3[IX)¬ŒŸéMîâHéè£Z­¦ŠœÃI@@À‘#GØÉÂÂÂÖÖÖÓ%™ÕÝhÿow·ñ6˜ãFEΞU^^N;ßUWW ___fÒÏÏO Ô××›]X­V[)¤¬×X=òfë£#ÛºÆJ©ÁýßÍ>OO5¯ÂXivK¯n‡0¦/Ä“0V^´· @¢p|>:.???++kÞ¼yþþþ–cs$¿®^øòÑh4"‘H(ü»„B¡››[SS“Ù…{Û7œY¦ç_ÛÿZ0ìëò!ŒQ*–é±}v^ -ØæNÝÌÆ‡$ö‡ÂѼÂÂÂÔÔTæñ‰'Äb1!¤ªªjùòåwîÜY»vmbb¢¥ÿÅ=.Àn<==ÛÚÚt:S;êtºöövOOOÚ¹øËè *£GFw%¡Æ4•i*’¥KNòá‹•hAáhž\./))a»»»B®_¿ž””óÉ'Ÿxyy=ózóZvããã£×ë}||! z½žÝs fñª"áU£`ü Ó @prŒ%®®®¿ …J¥röìÙ›6mâR5؇D"ñòò*..f&/]ºäííÍì$ŽØ ÐЂ0à0âÈÉ… jkkÙÞ™"‹™Ÿø´¸ºº* •J5tèP­V«R© …«+úv° t.œTTTèõú¥K—ÎÌÉəٺâZê ¸÷ 6eÚáP fiS¥ÆÒJN÷#»téÒk¯½Æ~RTÂXÚÌiµÌ±cÇäryHHHrrrMM Ý0”é¡K²³³#""Ξ={öìÙððð­[·š]¬®®.##C"‘´¶¶:D¶÷Þ{oÁ‚çU\\̫؋-úÓŸþtþüyæÑÑÑ---<ÏF«IŸ™Y«ÕÆÇÇ'%%]»víòåË111J¥Ò>ÙºâZê 8ö 6e¶Ã¡ÌÒ¦jÿ0VVrŠYssstt´á'E%Œ¥ÍœJ˜:tèüùóñññ3gΤ†:Ž]ÑÞÞ>|øðÇ3“Z­Öh±¼¼<ɯìV8v3[RRÒÎ;ùÙ¤---R©ôÌ™3ÌdSSS`` ;ÉÛlTš”KfµZ-‘HnܸÁLîÚµë7Þ0]UxÖZê 8ö 6e¶Ã¡ÌÒ¦J%Œ¥•œîG¶bÅŠ‰'²Ÿ­0f7s*a´Zí˜1cvìØÁL^¾|Y"‘Ü¿Ÿ[ØUÝjµº¥¥%**Š™ŒŠŠjhh(++3ZláÂ…åååt l÷îÝ2dH{{û“'OøûÁƒÆ “Éd̤»»»››[cc#ϳQiRŽ«Á´iÓ^{í5æñï~÷;»Ý§®›ñh­¥ŠckÛ”Ù‡J0K›*­V2»’SüÈNŸ>]RR’––ÆÎ¡ÆìfN%LeeeMMÍ„ ˜É°°°òòòÁƒóaË¢…cWTWW ___fÒÏÏO Ô××ÓÎÕÝl:îÁƒ{÷î>|¸L&KHHøé§Ÿø; àÈ‘#žžžÌdaaakkkHHŸ³ÑjR.™Åbñ|àââÒØØXRR²sçÎI“& …öèºâZê xÛ_Q fiS¥ÆÒJNë#«¯¯_³f͆ úõëÇΤÆÒfN%Lee¥‹‹KiiéäÉ“e2Ùܹs™ãby»eÙ Ç®Ðh4"‘ˆýŠ …nnnMMM´su7[]]P( »páÂÙ³gœœœüøñc¾ÅÖétŸ}öÙ»ï¾;oÞ<>g£Õ¤Ï•9%%eæÌ™ÕÕÕ³fͲu°îÇ£¸–:(ÞöWtƒmªtíä´Â¼÷Þ{þóŸCCC gR ci3§¦¥¥E§Óååå­X±bÏž=...IIImmm¼Ý²lÍN{¦œŒ§§g[[›N§cÖN×ÞÞÎþ„uÜl/½ôRii);¹aÆðððââb¹\ΟØUUUË—/¿sçÎÚµkyÕ¤¦Ùh5és­_|ñÅÇ?þøc…Bñý÷ß»¹¹ñ§IMãQ\Koû+ŠÁL7Uº­d´’S sôèÑŸþyË–-Fó©„±´™S #‰ôz}VVVpp0!$'''22òÂ… ¼Ý²l #Ž]áãã£×ëÙ£ëôz=;^í4Ù<<<|}}í3ðÎ1öõë×^yå•S§NÙ§jìÙlvkR.™ïܹsíÚ5æñÀ—-[ÖÒÒrõêUž4)Çxö\Koû+ZÁÌnªTÂXZÉ©„)--½yóæÿøG©T:{ölBÈ›o¾¹~ýz>¬?ìfN%Œ··7!D,3“ýû÷÷õõ­©©áCËP±+$‰——Wqq13yéÒ%ooov­rÜlEEES¦Linnf&>|øË/¿ð$vgg§R©œ={ö¦M›¼¼¼xÕ¤–²ÑjR.™¯^½ºtéRNÇL677ët:‘HÄ“&µâZê xÛ_Q fiS¥ÆÒJN%ÌâÅ‹‹~µqãFBÈÑ£G“““©„±´™S óúë¯÷ë×ïÆÌdcccmmíСCy»eÙvUw…«««B¡P©TC‡Õjµ*•J¡P0gÃåçç{{{ÇÅÅ9b¶Q£F½ÿþû+V¬øÛßþæââ’››lt¼ ÅØ.\¨­­ d7TBˆX,öññám6ZMÊ%sttô† Ö®];cÆŒ¶¶¶-[¶ˆÅâ   [gëf¼€€Zk©ƒ²ÒÚ½0˜•nÄþa,­äTZÆÇLJíKëêê!þþþÌ/Iû‡±Ôs û‡éÛ·ïÔ©S333W¯^íáá‘““#•J#""\\\ø¹eÙíë9*N·qãÆèèèèè蜜NÇÌ‹‹[²d‰á’?üðƒ/Þl·oßž?~xxxTTTfffSSbïÞ½[bâ_ÿúϳÑjR.«Áµk×f̘1|øðÈÈÈôôôêêjûdëf<Šk©ƒ²ÔÚvfÚáØ?˜•M•J+YZÉé~dÌ¥ ÙOŠJK›9•0Z­vãÆãÆ9rdZZZ]]Å0Ô ô½ä9Ð=8Æ8AᜠpNP8'(€ŽÀ Gà…#p‚Â8Aᜠp¾?~ü–-[h§€^§³³sûöíùË_d2Ùøñã—-[vçÎæOwïÞ•J¥=¢ÑoƒÓ@á`¬©©)111???666//oÁ‚MMM §N¢ €&WÚxG¥R=zô諯¾òññaæÄÇÇggg¯^½:""‚v:j0⎪¦¦F©TFDDŒ;6##ãÉ“'„”””´´4v™]»vEGGët:³ ß½{÷õ×_¿}ûöÛo¿››K¹råÊÔ©SƒƒƒGŽ©T*ÙÝ=µµµ , MHHøê«¯¤Réƒ,eG×ÐÐpèС´´4¶jd(•JWW׃2“7nܘ6mšL&S(ÿùϘ™ß|óM||üo¼Ã.iÓ]¾|9&&&888!!y£ÝÍÅÅÅ¡¡¡ìò_~ùeDD„L&KOO¯««[²dɈ#ärùÅ‹Ùg6Œc7` GpHfÖ¬Y"‘h÷îÝ›7o®ªªZ¶l!düøñçÎëèè`;yòd|||GG‡Ù… !z½~åÊ•±±±'N|úôirr²T*ÍÏÏÏÎÎ.--ݶm!D«Õ¾óÎ;`ïÞ½‹-Ú´i“õ àènݺ¥ÓéLGE"QHHˆZ­f&333çÌ™³gÏžAƒÍž=»¾¾þÞ½{K—.eJÆéÓ§¯Y³¦¬¬ÌÊ étºuëÖeeeåçç÷éÓçý÷ß·L«Õ|83sàÀS¦LùöÛoËËËËÊÊ._¾jooŸ1c3YRRÂ<Ðjµÿþ÷¿Åbñ•+WvìØ¶lÙ²ãÇËd²ãÇw-Û·ü÷¿ÿ}Þÿ5 †þ z FÁÔÕÕ`.‰ÆŽûòË/§¦¦¦¦¦ÖÕÕegg6ÌÍÍâîî>zôèuëÖ;vàÀ„+ òòòª­­½råÊСCÏ;wìØ1‰D¢Ñhär¹J¥z÷Ýw-ZT[[»gÏBˆ@ àø´àˆÒÓÓKKK§L™2þüÀÀÀºººãÇoܸqÀ€L–““ãáá1xðà={ö<~üxêÔ©7nÜÈÍÍõôôŒŒŒ,///--]ºt)!$??ßÛÛ;..ŽËKûúú¾ð ۶m[¸paEEÅÞ½{Ÿ7¼i0wwwôWÐ#P8‚((((((`'e2ÙöîÝûÁÌ›7ÏÅÅeܸq+V¬`?~ü™3gâãã™I¡PheaÖ´iÓnܸ±hÑ¢_|Q.—úé§ÿûß7oÞœ‘‘±oß¾Õ«W3;²W­Z5wîÜþýûs|ZpD 8|øð§Ÿ~ZXX˜››ëççtìØ±W_}•Y@$¥¥¥}ôÑG÷ïß :x𠇇GDDÄÊ•+wïÞ••åçç7gΜY³fBöïß/‹9Ž"‘(;;[¥RÅÅÅõíÛ799ù¹jG³Á!诠Gôz=í ¼VSSsîܹÄÄD¡PH9{ölFFFqq1í\àä˜fD"í ÿFž¡OŸ>YYY=š>}z}}ýÖ­[Ž—°”ŒÀCqx¶ââ✜œŠŠ ??¿1cƬ\¹ÒÕ?º ×Aáœàr<À Gà…#p‚Â8AᜠpNP8'(€ŽÀ Gà…#p‚Â8AᜠpNP8'(€ŽÀ Gà…#p‚Â8AᜠpNþ´ÿEqÍÃIEND®B`‚statistics-release-1.6.3/docs/assets/anovan_1201.png000066400000000000000000001335031456127120000222210ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A€IDATxÚìÝy\õÿðÏ.‡ ¬Ü A¡(‡Š¨"‚A¤¤…¥ŠŠ摨˜¢X €¦xrh^y“–ZV¨˜¦"Þxp( r‰€rß;¿?æÛü¶…]„ÝáõüƒÇÌììì{fw>¼çóùÌgxE€Wá³($Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž dª««×¬Yckk«­­m``0räÈ?þøƒ­`Ç{öìYó—úöíËãñ~úé§  ¤¤$//¯¦¦†žUSSãñxUUUí²qzo¼ñƤI“òòò!eee<OMM­µ‚RCâJfêÔ©Ë—/ðàA¯^½ÆŽÛÑù™Âš>}º™™Ùï¿ÿNÏöïßßÖÖ–ÏoÏÿïfff¶¶¶fff‡úôÓO)Šjs„ Ô8B;£/O?þøcfÉ?üÀãñœœœä‰ô«á†††5kÖ >\GG§ÿþÓ§OÏÊÊ’²5Ù×Ç:@‡***:v옪ªjJJJjjjiié7ß|# ccc›¯\[[Ëv¼ò–œœœššª©©ÙŽÛÜ´iSjjêÓ§OùåBȵk×=zÄöŽK(€veccCÿ´.^¼H/¡KsGGG9GòòåKBˆªªjó—JKK™DVWW—ÇãBÁ‰'ZÜT«Ö§sN¿kèСB¡PJHb¼½½ !‡–óAP|ÉÉÉô™X\\L/)++‹‹‹£DNüS§NÙÚÚª¨¨xxxäå剾”ššêææöÝwßQUSS³dÉ’Þ½{ Ë—/3tïÞ½÷ßßÀÀ@KKËÞÞþèÑ£ôòúúú/¿ü²G}úôÙ·oŸ¶¶6!¤°°°y¨tiÐâ‰ÜÐаzõj[[[--­FFF655Ñ/Ñ!YZZjkk;;;Ÿ9sFJô©E™6mEQ999#FŒ˜4iý‰®®®„£Gfggóù|UUÕÇSµnÝ:z›­JÓÓÓ队>}JQ†ŠŠJAAÁÝ»wéôëåË—E………©ªª.^¼XR|˜2nÜ8f ½æ¹sçè—FÝ|[Œ‡’œ8JùúP¨¨¨ÐíB¥¥¥’C˜F$š‘‘ÑÔ©SKKK©ÿ&ŽR>‹BâÈ-¸9:D÷îÝ¿ú꫼¼¼ÈÈHÑå{÷îÉÉɧNº|ù2!dëÖ­………ô B¡ðí·ßÎÊÊ-‚Ï;w÷îÝ©S§B ðøñã»wïòùü'Ož”••åææöéÓgÒ¤Iÿý÷ùóç‡ÚØØø÷ßKŠ-''‡B7u‰¢kIéW_g}Ú²eËÜ«W¯1cÆB¼½½Å¶ åPxxxÐ#‡nkkËö—  XîÞ½»~ýú¸¸8555{{û¹sçž={ÖØØ¸±±ñþýûÌjÌmÅt;,]ïHQQQ122b¦ !ŽŽŽE¬X±‚R^^>hР¹s窩©yyyÑo)//ݸÝTMÆ¿¤ßÔLQ!„y#!ÄØØ˜ÒØØØØØHijj{‹¤xÚö)ô,}ŸèîHÂä|EEEûöíÓÓÓkígg q„޲xñâ7ß|sýúõùùùÌB:Ÿ1bÙÚÚÚØØ455Ñ­3„÷Í7ßôêÕK´”§«Þzë-Bˆ‡‡‡ŠŠŠ‰‰ ÝþÛØØhnn~ìØ±#FÌž=ÛÁÁ!11‘H-­ÌÍÍ !¢Q•––VWWß»w~ÕÏϹ'úرc¯\¿ÅOyüøqrrrNN}¾ÿ~±^y( E _}õÕœ9sþùçzIaaaCC!ÄÒÒ’YíÈ‘#„gÏž]¸p2xðàæ›¢/ÌJJJ&Mš4yòd ‹äääÊÊJBÈÉ“'³³³ßyçmÛ¶}òÉ'̉ieeE¹rå =TQÑ/íÚµ«æ_t?EIè&…„„„‚‚BHffæµk×ø|¾ݺråÊ•ŠŠ BȪU«App°¤xÍ =)ŸÒî_Š,Ÿ…$’8BGÑÔÔ\»vmUUÝmˆöÊ«RÑÊsML£[aDµöBœᬠ àêÕ«„ºº://///¯¿þú‹2xð`±jƒW®ßâ§à ƒ 4èã?®ªªrpppppèß¿¯^½^¼x1qâÄÞ½{Óëðx¼°°0WWW[[ÛÚÚÚqãÆ1Ý]DõïßÿÃ?ÌÎÎvwwŸ6mÚèÑ£7oÞüæ›o’‹š„„//¯7ß|“n¡(ÊÙÙÙÖÖ¶±±qàÀnnn ,=‹[D·?0~úé'___ºìúðÃëëëçÏŸÿÆo 4hôèÑÕÕÕ9räêÕ«'Mš$)BÝWgóæÍ ¢Ÿ+åSÚýK‘þY’"¥Äv[9phŸ¡PÈŒbC÷q|ðà!¤[·nùùùEedd¨««óùü¼¼¼æ]Å–,_¾œòÕW_ѳ„âââü‘ü{?`CC]N>|XÊ-ÌsçÎ%„XZZ¦¤¤PN©¯¯OwHõ¥ÜG)’”CAýÛ%èàÁƒlŸŠ¨¦¦fÓ¦MìÖ­›žžž½½ý–-[è«™³ì÷ßïÛ·¯‘‘ÑÌ™3«ªª( 7ÌUVVΟ?ßÜÜ\ ¸»»ÿùçŸôòêêjºíÍ7ß\±bÅ_|A™3gEQÿüóÝPЫW¯ØØØWÇ#fëÖ­EÕ×ׯ\¹²_¿~]»v0`@TT3OEEE@@@¯^½´µµ]]]ÿúë/éñ¤¤¤ôîÝ[SSóÛo¿¥þ{Wµ¤O;RJK 4é{$!(5$ŽÐÎÄJºë¹9Æ××—bllÂÛÛ{РAiii³fÍš={6!äâÅ‹RÞ¢¯¯õêÕo¾ùÆÕÕµ¶¶ÖÀÀ`ìØ±k×®-,,üî»ï^}I9³gÏîÝ»÷Ý»wÓÒÒ:껩ÔÕÕ=<>ží¨Inn®™™ÛQ Óv½zõb;„¶xüøñæÍ›¯\¹2`À€>}úèêê666–””îŸþñóó{÷ÝwwîÜ©¯¯ÏöÞ—!q”Éüùó§M›FO§¤¤ýòË/Ý»wg;.èì¦L™²hÑ"¶cîCâ(CCCCCCzúùóç„ I7ÇÈMbbâ³gÏúöí›””Ä,´´´dŠ,€v„Ä@‰=zôˆ¢¨… Š.Ü´iÓ˜1cØ 8‰c« 2D¡nš€ÎlÆŒ3fÌ`; è,8´3Yí"„èêêZYY±,@+ qhg¿þú«,«YYY!qå‚Ä ­]»–í:Ÿí@9 q™ q™ q™ qè@iiiÏž=#„\¾|9((hÿþýB¡í Ú‰#@G9tèÐG}tïÞ½ÂÂÂyóæ=þ|óæÍÛ¶mc;.€6BâÐQbcc===Ïž=knn¾gÏžˆˆˆãdz@!qEÄãñx<ÛQ¼®ââb777BÈ7ÜÝÝ !ÖÖÖEEElÇÐFH@áðx<Š¢(Šb;×Õ³gÏ„„„¼¼¼K—.½ýöÛ„«W¯³@!qBW4r e¤ÍŸ?çÎï¾û®££ãŽ;V®\éëëËv\m„G€B ¦9“2ÒFŽyöìÙœœ>Ÿïàà°wï^¶ãh#$ŽÀ>.Õ2BŠ‹‹™i ›ªªªªª* úUCCC¶ch $ŽÀ&NV4ºººJ_!==íÚ‰#°ƒ“)#íܹsl‡Ð!8€¼q8e¤½õÖ[’^ª««‹ŒŒ f;F€¶@ârűîŒÒ½|ùrëÖ­¹¹¹Ì’ÒÒÒ¼¼<¶ÇŒŒŒGÇd¾±œ^ÒPšXëcýN ‰#È ç+› MIIyçwŽ=:eÊ”šššk×®}ÿý÷lÅcee%½{¥Ø·óÊ/ ëcýμ~ç„Ä:\'Liׯ__¿~½‡‡ÇÓ§Oßyç''§~ýú={ÖÉɉíÐÚ‚û€§¥¥={öŒrùòå   ýû÷ …B¶ƒèD8ó˜6¨©©100 „ØØØÐU}îîîgÏže;.€6âxâxèС>úèÞ½{………óæÍ{þüùæÍ›·mÛÆv\ÇÓVVV‡®©©±¶¶¦oµÎÉÉ©®®f;.€6âxâèééyöìYssó={öDDD?~œí¸8ŽI;sÖH :uêÔ‘#G†þàÁƒ÷Þ{oöìÙ#FŒ`;.€6âxÇââb777BÈ7ÜÝÝ !ÖÖÖEEElÇÀe¼–QÔ!C®_¿^UU¥««¯¯¯?~üx¶ãh#Ž'Ž={öLHHÐÑѹtéÒÔ©S !W¯^566f;.nê´7ÁH¡®®®®®N±´´´´´d;€×ÂñÄqþüù .ܾ}»££ãŽ;bbb¾úê+¶ãऌ-’t÷ôÍ›7Ù  -8ž8Ž9òìÙ³999|>ßÁÁaïÞ½...lÇÀH¥Ø²e 3]WWwÿþý={öøùù±@q3q,..f¦544lllªªªªªª,,,èW ÙŽ€ ÐQ:±ËTkkëÅ‹ûùùijj²@«q3qtuu•¾‚ôg'À+¡¢±mz÷î]WWÇvmÄÍÄ‘/ :RFÙ½|ùRt¶¼¼|ûöí¦¦¦¨n%ÅÍÄñ­·Þ’ôR]]]dddpp0Û1(%´M·Š³³³Ø55µõë׳@q3qd¼|ùrëÖ­¹¹¹Ì’ÒÒÒ¼¼<$Ž­…ŠÆ6hÞúadd„êFP^OCCCSRRÞyç£GN™2¥¦¦æÚµkßÿ=Ûq(¤Œ­•””$饼¼<Òì¦eÁñÄñúõëëׯ÷ððxúôé;ï¼ãääÔ¯_¿³gÏJ\ Ä mº üýý™éÚÚZ¡PH?ƒQ(B,--Oœ8ÁvŒmÁñgU×ÔÔBlllè;©ÝÝÝÏž=Ëv\J€yÞ4Û(Ÿ¿ÿµqãF33³Ý»w§¤¤¤¤¤ìß¿ßÜÜÜÎÎŽíڈ㉣••ÕáÇkjj¬­­éÎF999ÕÕÕlǠИ”YãkÚ²eKHHˆ«««ºººššš³³sXXرcÇÄî¶POƒ‚‚N:uäÈ‘áÇ?xðà½÷Þ›={öˆ#Ú°©²²²ààà!C†899Í;7''‡íh<ÏÂÂ)c{ÉÏÏ¢K´´´´µµuttZµúúz‡ššš_ݵk—µˆ¡C‡²½ßÀYïã8dÈëׯWUUéêêÆÅÅÅÇÇëëë?¾ › yøðaTTT·nÝbbbüüüNž<ÙµkW¶w ÝеŒÙÙÙlƒމ‰ùöÛouuu !eeeÑÑÑôýF2*..ŽŽŽ®¬¬”´Bnn®§§çäÉ“éYUUŽìÀ"î—/êêêêêê„KKKKK˶m¤ºº:!!aûöínnn„˜˜˜¡C‡^»vÍÓÓ“íýhíxßt]]±±q~~¾––½¤¡¡!,,ì‡~ãÇ_³fM«Ò&¥>eʾ}ûBÒÒÒôõõ8 û¶oß¾yóféëäææº¸¸Ð¥@‡âxâ(éîé›7o¶j;ùùùýû÷wpp gµ´´444JKKÙÞ?€×Õª”‘Iø$­_XX¸|ùòòòrÑ…ÁÁÁû÷ïß½{7!ÄÏϯK—.aaalï·œ˜ššÆÇÇŸ9s&++‹ÏçO:uĈjjj²oÁßßßßßÿÎ;'N”´Nnn®©©immmcc£¶¶6Û; \ÆñÄqË–-Ìt]]Ýýû÷÷ìÙãçç×ÚíôéÓçØ±cÌì©S§ª««ííí%­ommM‰gûÑÁÏY‡`- ‹¬¬,Bˆhó´¤`˜• !<™f|ûí·ÑÑÑôtNNÝ‘£®®nÇŽaaaýúõ#„nܸÑ××—ÏçrëÌÌL===CCÃÌÌLBˆ sd!mnýhN(æççïÙ³'00P(öë×oõêÕýû÷—´>]:Ñ£L´ÕÉ$$$ØÙÙUWW·ííMMMû÷ïïÛ·ïÆ%­ceeÅö^þ¿¬¬,¶C@0ŠLóÓ¿¸¸xÚ´iFFFÓ§O/..[¿ùZÜò•+W!•••ôì7!¹¹¹ôìÓ§O !wîÜQØ#Ó.¬¬¬6mÚDO´¨µ¼}û¶••U‹Waaá€6lØPRR’——çïïïêêZ^^.)0¶ (7Ž×86×»wﺺº¶½÷ñãÇK—.ÍÎÎ^¹rågŸ}Æö®´‚X·BªY[óŒ3ÒÓÓþùçÂÂÂðððÏ?ÿüøñã¯ÿ¹OŸ>åñx=zô gßxã WXXÈöñèXÉÉÉô*©©©ýY&&&)))Ììºu놚””äååÅöaâxâ(6XZyyùöíÛMMMÛð¬ØþùÇÏÏïÝwßݹs§¾¾>Û{Ð ôíÒLwÆæ÷¦ÔÕÕ:ujûöíÙÙÙ‹/ž7o^]]]—.]^ó£kjj´´´˜†i>Ÿßµk×/^°}H:S¨««§¥¥éé陘˜\¾|ù?þ°µµõõõí¸FFFÅÅÅlà&Ž'ŽÎÎÎbKÔÔÔÖ¯_ßÚí466L™2eÑ¢Elï@[ˆ>†ÎÅ*ù|¾††=­©©)½¢ìO”Ñ×ׯªª …ô…BauuµžžÛÇCN:¾cÇŠ¢æÍ›çàà°yóæ²²² ´×GÄÇÇoß¾ýàÁƒÝºu#„¼xñ¢¨¨¨OŸ>lï:pÇGúi1¢ŒŒŒÚPݘ˜˜øìÙ³¾}û&%%1 --- ÙÞE€W ëýüü (ŠrssÛ´iýRVVV@@@bb¢††Æ›o¾¹aÆæååEFFúøøˆV7ŠÕSʘ5BºwïNQTQQQ÷îÝ !Ïž=£(Ši¹æ¼ØØØÀÀ@OOOúaƒ{öì9sæÌ† ^?qŒ‹‹3005j”««kXXXPPÐŒ3TTTbbbììì$ (𚸙8Цwbòòò!...­Úà£G(ŠZ¸p¡èÂM›63†í} ä¿]™¬N´múêÕ«?þø£žžÞòåË­­­+**„Bá'Ÿ|bddtúôéÚÚÚéÓ§gdd 8bddtþüy±=YekkKožúÏ?ÿ466–rÏ/ÇÓÃ+Þ¸qÃÝÝbmm]TTôú[>xð ¥¥å¨Q£ÁáÇ׭[·páBUUUww÷   Î3R&È7Gfº¶¶V(ÒÏÞ …„KKË'N´jƒ3f̘1cÛ»Ð2±†c¦G#½°²²’Ç㥧§5ŠYçÂ… ÉÉÉ·nÝrpp(//§SÉÂÂÂÜÜܽ{÷:;;ß¹s‡ný|jjjsæÌ ±²²jjj þâ‹/Z5¡RëÙ³gBB‚ŽŽÎ¥K—¦NJ¹zõª±±qk·coo/6€ÎéÓ§™é^½z}÷Ýwlï+´ CâÇps(µ¿ÿµqãF33³Ý»w§¤¤¤¤¤Ð­EvvvlÐnZìn(ºðÉ“'%%%ôH  ¨¨ˆ¢¨Y³fÑUŒ§OŸ®¯¯×ÒÒ222Ò××ß¼ysiii{ DºjÕª &|úé§&L˜4iRxx8ÛÇL~æÏŸ¿sçÎwß}×ÆÆÆÑÑqÇŽ+W®ìЛc@žè* )+Λ7¯ùø?üðÃîÝ»7oÞ»jÕ*¶÷ 5بc3æÂ… ¢K®\¹beeõâÅ‹ŽûP…)M¡†ÁC0¯L‹g®Øô+Ï븸8÷àÁfIQQQhh¨ŠŠÊœ9sè`jkkµµµ:ÄöQ¬¯©mž>}zùòezÆëׯ_½z•Å`¤ür0ÝÚiæ\“tVŠf„ôȦ„šš@@?H‰¢¨ØØXºZqö Ó­šî„¸YãÈÈÏÏ¢K´´´´µµuttØ  uèJDFózfI[ …ß~ûí´iÓ‚‚‚˜™B>üðCú?Ü£Gnݺ•’’2qâD]]]Ѧmh3333ºW!ÄÎήµ¬Û—••3Mý7ãÁt«¦EO7Ñ¿¢ë¬X±‚úwH|fyjjjEE…——½Î{ï½WTTtçÎÙ/L·vºâxâ8xðà˜˜f4Dz²²èèht(ÅÇûW‹¯Rÿ—‘i›–4PÎLJ ºcÇŽuëÖ‰¾”””ôüùó)S¦üõ×_£Fš1cÇ»pá‚®®.ÛÇ@éUVV~ñÅžžžÓ§O'„L›6-00°ªªŠí¸ZPRR2}útccc??¿’’¶#R&-^˵¨s‰\ÂñÄ1<<|ëÖ­cÇŽa ÀvQQQqùòeBÈÒ¥KïÝ»·aÃV‚áñx’~N3f̸víÚÏ?ÿüóÏ?'%%}þùç,7ëœCâ—pûŒj€òòåK¡PصkW¶÷žS-ZÄvGGÇeË–%$$È9 梂îݼ&›~tP`` ‡‡‡»»ûâÅ‹Ož<Ùæ§³vBmŸžílCâps8žÌÌL===CCÃÌÌLBˆ Ó£+''‡biiÉvŒ²¢þ[ç•íÑ-:wî\^^Þ AƒD‡fìß¿¿··÷’%Küýýýýý«««W¬XakkëèèHu í¢¾¾^,722jjj’$b=´š×;¶êÑA {Û´˜N>$>p7GooïÙ³gz{{·¸‚؈hJA´_£ìï¢o ?~¼èƒNž<ùÔ©SAAAnnnZZZžžž{öìQWWg{/9ÅÉÉiß¾}k×®¥gËËË£££›? •u]ºt™0aBTT=–üKãGÊÉ?þheeuþüù‚‚‚LŸ>ÝÞÞ~Ë–-ú¡Á´!I§¤üÏSE;2l‡ÐFÕÕÕÿýwNN³¤©©©¬¬,77wݺu¬„$¥Ø?|ø°¾¾~SSªžžÞO?ýÄJœœôÊÿ¹ôìôPá´Ù³g3&þ_çÏŸ—}›ãƳ¶¶Ž¿~ýúÈ‘#ÍÍÍ+**ššš 4räȤ¤$ú¹£Ÿ}öÛÇFQÿÞeÈv8Š‹ãuo±±±žžžôÃ÷ìÙsæÌ™ 6,X°€íР³c.j)в°° þý7 z éô#Í*©û÷ïÏž=ûùóç„~ýúíܹ3<<<11‘¾O™Çã-[¶LþQQemmÝbo¡PØÐÐÐØØHwrmhhhhh`îü…×!v"·xgÛ7ß|Úü½ÙÙÙï¾ûî{ï½×âf¥l³²²òøñã¿ýöýÞŸ~úÉØØXì õ„¹s熅… …BÜ %v )‘›A Ç+ÅÅÅnnn„7n¸»»B¬­­‹ŠŠØŽ :5¦šÆãñÄjEW`;Xh‹ 6ÅÅÅýöÛoæææüqvvö† ~üñÇßÿ~ŠŒB=z´ŽŽÎĉoݺuóæM<:¨}Q¯º¥½ù3fhÙÙÙ={ö¬©©ë6Ðb–#ºý„zWWWzV hjjŠ=¡žbaaî•ÐZO{öì™——wéÒ¥·ß~›rõêUúÁ ,’’¢¢‘îÝ»7eÊGGG›âââÙ³g5ÊÁÁÁÚÚšõFqèêêþùçŸE=úƒ>À£ƒP(|òäITTý˜\{{{Ñ'Jׯ_¿›7oêëëÓ³?ÿüsee¥«««­­í®]»TUUŸ?~ùòåuëÖMš4 ÕÐ*ÿ¹ÌŸ?çÎï¾û®££ãŽ;V®\éëëËv\ÿaaaA¤>ú”Kyy93X,}Cƒµµ5ÛA½‚¥¥å/¿üòüùó¢¢"<:Hðù|ww÷œœsssooï²²²VmDÊêß~ûí§OŸÎŸ?ŸíUD(Š¥àxÇ‘#Gž={6''ÇÁÁÏç;88ìÝ»×ÅÅ…í¸ ÓyåmzmÜjq€&Ö[NöÜÔÔ´¦¦†™Ý»w/=LÒÇ,c¼‡úúú¦§§ïرƒyÖ(-))©¸¸xÍš5Æ +((ÐÔÔdû8±L¬¹…°Ü/ÚÌÌÌèîÀ„;;;d ¢=Eo|i¾²Fî¡DØjó ®££Ó½{÷ÂÂÂæÛlq³²<¡~ݺu‰‰‰l!ö‰•Ò‘G Ž×8VVV.Y²äâÅ‹E¥§§O›6ÍÌÌlÕªUZZZl‡õ߇S•Ý«W/¶ã‚ögbb"iváÂ…lrÕ†|ñÈ‘#«W¯¾xñ"ý$ëâââ‚‚‚~ýúɲMæ õkÖ¬]ž˜˜úäɺFO¨—wUKÁñÄ1""¢¢¢âòåËô-ÕK—.]¾|ù† V®\Évhh á, ‹¿ÿþ[Ò,Aâ2ðòòš;wîÔ©SUUU—/_>dÈúÙ+µö õlï+(Ž'މ‰‰‘‘‘ÌhûŽŽŽË–-[¾|9GIMÒY#§>}ší@±ˆ¶0ÈøÄÄÄÀÀÀñãÇ«©©½ÿþû6l± O¨‡ŽÃñı¾¾^¬ÞÈȨ©©‰í¸ S½ßEôyÓY#@§!Ëà4WWW±—¬­­Oœ8цÅê[K´m×öÒqüæ''§}ûö1Ï?(//ŽŽvvvf;.à>Ñb7Ä <èT^98(<|AFOƒƒƒoß¾íåå% 'Mšäîî^TT´bÅ ¶ã‚Î…I"Q(,ѲàxSu÷îÝOžü'I*++—,YrñâEŠ¢ÒÓÓ§M›fff¶jÕ*---9GBÿb­¬¬èqñ‹•3Œã¨øÄ:¯#}”w´LôêS¬%Z´ÁÿƒAŠˆˆˆŠŠŠË—/«¨¨B–.]zïÞ½ 6È9 æ¾.zEÉ™è}uíuäyÿÅö.rXuÛá(.$Ž-hžŠþÓÃv° ¸-ZD Fqtt\¶lYBBÛqü4ïÓòúI‰h&Ú¾ùh'×¼ššãfS5@›‰Ö&‘6 Ü+ mP__ßµkWÑ%FFFMMMlÇâpWµŒPã@ˆÈ…&i);dîa;LP2NNNûöí£QM)//ŽŽvvvf;.'ÖôJ\I¸Y㘔”$}—Ön³±±qË–-GÕÒÒ=zô¢E‹ð«R^-~w¢Ý‘ÿ¶(áêÚ&88Ø×××ËËK(Nš4éÁƒfffëׯïˆÏª¯¯wqq¹r劦¦¦ØKb?f‚« 9…‰Âû^ð/^n&ŽþþþÌtmm­P(¤¯!èë~KKË'N´v›QQQLjˆ „|ýõ×êêêóçÏg{G¡u$=EZô:±awð_^G÷îÝOž|8$$ÄÃÃåïï*…æù¢XÿEÒÒÅ%€…×·ÿþaÆ;–YRSSºqãÆvü”íÛ·oÞ¼™í}y“2¬,´*†eÇñ¼gË–-!!!®®®êêêjjjÎÎÎaaaÇŽc+£ŒŒŒªª*777zÖÍÍ­¤¤$--íýƒWhq)˜Fó4´¯5kÖ|úé§¢M¿ÿþ{û~Š¿¿zzú¡C‡ØÞ]hY»Ç#Zd¡˜j/Ì3ÀPøKÇÍGF~~¾@ ]¢¥¥¥­­­££ÓªíðxŸ¯¡¡QVV&i}…*”{õêÅvì#V:÷êÕ‹.²-,,èåtÖ(Ú`ͼÄí#£DÁÈ-wï8ÞÞÞÎÎÎóæÍKMMݼy³Øè<ò§P¥(Ž7U‡‡‡çååyxxLœ8qâĉ¹¹¹ááá­ÝŽŽŽNMM 3¦†P(¬­­mmµ%ÈYóV¡EÊ4L Ñ:ˆ¥¥å±cÇôõõÇ÷Ê1^ O=q¼ÆÑÔÔ4>>þÌ™3YYY|>êÔ©#FŒPSSkív )Š*--544$„”””PÅ´\ƒâk~[Lvv¶âÔ«ç ‚mÛ¶}÷Ýw_~ù%Û±€\uÐ]í~§6€Œ8ž8BÔÕÕ ]\\jkkÛ5B¬¬¬ôõõ“’’ÆŒC¹v횥¥%Û;¯Ðâ°;r³wï^mmmzšÇã}ñÅvvvçÏŸg;.«JòP +8ž8VVV.Y²äâÅ‹E¥§§O›6ÍÌÌlÕªUZZZ­ÚŽªªªOTTTÏž=›šš¢¢¢|||¡Ÿ;¼’èˆlÇEff¦žžž¡¡¡¡¡¡X7M###¶yCùœÁñÔ'""¢¢¢âòåËîîî„¥K—._¾|Æ +W®lí¦êëë!ÞÞÞ ,`{çàÕ2+¼½½gÏžèííÝâ ¸C”ÇÇÄÄÄÈÈH¦3¢££ã²eË–/_ކđÇã-]ºtéÒ¥lï¼ìJNN¦[$RSSåö¡öööÈGå ½ ¡âø]Õõõõbƒ_555±ÈCûޏ ;MMMº;õ”)SÔÿ«¶¶vÖ¬Ylí@ì¾æW®Lc;jˆ÷_l‡£¸8^ãèää´oß¾µk×Ò³åååÑÑÑÎÎÎlÇ ª««wìØAINNŽŒŒ}©  àáÇl¯KìæhéÁ³ì_ó/”íˆÇÇàà`___///¡P8iÒ¤˜™™­_¿ží¸ ý‰=³¥3°¨±±1++‹žf&h|>?44”í¡IiÙÀ“c”¾&)8ž8vïÞýäÉ“§OŸ~øð¡@ ˜5k–»»;óà±ò¹#°®[·nÛ¶m#„Ìœ9“žàŽ'Žû÷ï6lØØ±c™%555¡¡¡7nd;4h’*ņûf;Lè¤bccÙä—©Ðyp7 1àn&ŽYYYô43Aãóù¡¡¡lØ©5ÿÕâCQÔÔ×׋=tÀÈȨ©©‰í¸àu±;w‹ƒ‘±}H ³àfâØ­[·mÛ¶BfΜIO€Ü4$ Ø ¢×è¸Í¸ÍÉÉiß¾}k×®¥gËËË£££ÙŽ ”žª láfGFll,Û!t.bãÜŠÎ6¿ž@‘|ûöm///¡P8iÒ$ww÷¢¢¢+VÈ9 ±¶iTPqžzòÇÍGFjjjXXØÓ§OÅ–ß¼y“íи y墌ý¨DÛ¦›/àŒîÝ»Ÿ³fÍrwwçóY¸bÇЧíNö>Ž\ÂñÄ144T]]}ÕªUºººlÇÂ5m.4ÅVFÕ#pORR’謉‰‰‰‰ =}ýúuBˆ‹‹‹œC¢Ï;kkëôôtd9¯OìÒÇ:Ž'Ž=Š‹‹0`Ûpì•‹¢oaVnq#œáïïÏL×ÖÖ …Bºç†P($„XZZž8qBžñ°{'‡áB'ÄñÄÑÈȨ¦¦†í(”›ìOµjñÒb %ÆÙÎàï¿ÿ¦'Ö¯_îääÄãñîܹ³bÅ ;;;¶.À#Ûþ=É‚ã7ÇDDD¬^½úÌ™3yyyÅ"ØŽKiˆÝÝòÊjEÑ¡n™^ÛÌÛé¡‘Z¼W€“¶lÙâêꪮ®®¦¦æììvìØ±—/_²(·ÖÎ ØÝœ8žRp¼ÆÑÏÏO(ˆ-dzªÛ†©Sl±r‘YGt!DèÌòóóè---mmm¶C%†žÝ9dÄñÄ1>>ží8KJ£3RFÚàÁƒcbb¾ýö[úþ¼²²²èèh9×gˆž­8=àupf̶£ Dd œªòÔü€·ËW€*Ú©Œ8~Wubbâ¢E‹ŒŒŒèYGGÇeË–%$$°—’©­­íÖ­[ee%³dݺu<†††8Íšs’@þ‘ÐÉŠ••îå ŒPÑîpHeÁñÇúúú®]»Š.122jjjb;.òÊÊÂÂÂÂåË————‹.ÌÎÎ3fÌüA‰GÓ@‹¶lÙÂL×ÕÕݿϞ=~~~r€@{áxâèää´oß¾µk×Ò³åååÑÑÑÎÎÎlÇÕn^³^]ì™ÑÍ7òÍ7ß„††6ã®]»Úü¡‡Ø£=<<¬­­/^ìçç§©©Évt­Æñ¦êàààÛ·o{yy …ÂI“&¹»»­X±‚í¸ÚAóÑJ[Ûü$Zå iÈÓ+VPuåʱÏíÓ§ÏáÇkjjÄj"@ºÞ½{×ÕÕ±ÈØXH¨ëeÇñÇîÝ»Ÿ³fÍrwwçó9’.·öiѯ.ò„B¡¦¦fTTÔ¤I“„BáàÁƒcccíííÙ> Gì 1åååÛ·o755•u£¤ûA˜ò)#p7Ǥ¤$ÑYzúúõë¤YûÈB[[›.õ ø|¾»»û‰'ª««¿üòKooïàabšwŒQSS[¿~½œÃí‘‚/Và˜gp3qô÷÷g¦kkk…B!Ý@  !–––'Nœ`;F¥ÁTN0wU›ššÖÔÔ0+ìÝ»×ÈÈèüùóü1ÛÁ(–sçΉ-122b«w#EQ^GmÅüý¯7š™™íÞ½;%%%%%eÿþýææævvvlØÄÚ¦ÛP‹ÀôŒd4ß½P´cs:::Ý»w/,,dû(œ¥K—¾õ_ Ó¦Mc;.€6âf#cË–-!!!®®®ô¬³³sXXØŒ3‚‚‚èGÇÊ®¬¬lýúõ EÑãAöìٓݽ{ýÑJ¥¼KJœ#Gެ^½úâÅ‹zzz„âââ‚‚‚~ýú±{4GuuõŽ;!ÉÉÉ‘‘‘¢/<|øPöM566nÙ²åèÑ£ZZZ£G^´hQóŠ»víý==½k×®±} €›8ž8æçç Ñ%ZZZÚÚÚmèòðá訨nݺÅÄÄøùùŸßâW’DEE?~<""‚òõ×_«««ÏŸ?_lÜÜ\OOÏÉ“'Ó³ªª/Ø€E/_óí·ßÒõ‹eeeÑÑÑ­½©°ºº:!!aûöínnn„˜˜˜¡C‡^»vÍÓÓ“í]lg²4yëèè$&&Ž?^MMíý÷ßß°aîÓ`tëÖmÛ¶m„™3gÒmSWWwøðáBH```TT”¿¿¿ØÐ¹¹¹...téС8ž8†‡‡O™2ÅÃãoß¾„´´4}}ý´v;ùùùýû÷wpp gµ´´444JKKÙÞ¿ö$¥¢ÑÕÕUl¹µµ5n0x¥ØØXfº©©IEE¥UoÏÈȨªªb2B77·´´4±ž!¹¹¹¦¦¦µµµÚÚÚlï4pÇGSSÓøøø3gÎdeeñùü©S§Ž1¢ ÏÇëӧϱcǘÙS§NUWWK¹ÐÚÚšÏö ¹¹¹¯\Ç‚üÛ –Ín0rƒ`”"å•““süøñ>øÀÒÒ²®®î«¯¾:{ö¬ŽŽÎ_|1uêT7RPPÀãñŒŒŒèYcccW\\,ºŽP(ÌÏÏß³gO`` P(ìׯßêÕ«û÷ï/i›té„{«_Ÿh3 FÛ΃ã‰#!D]]}̘1íµ5¡P·víÚ™3gÒùV‹ªPîÕ«—¤—ä?&­”`äÁ(~0z%ÓqîÝ»7yòd ‹>ø€²uëÖ .Ìž=[KK+::º{÷î^^^²l§®®NSS“i˜æóùeee¢ë<þœÏç2ä»ï¾«­­]³fÍœ9sNŸ>-Ö½›¡P¥“òëÕƒÑ1¡óàxâèääÔâò›7oJã©S§-ZDOŸ8qÂÒÒ’òøñã¥K—fgg¯\¹ò³Ï>c{ç^J:€òí·ßzyymذBQÔ/¿üòùçŸ/X°€ÒÐÐpàÀGšš¡PHçŽB¡°¶¶VìÞ>“””fvݺuC‡MJJ’ñ# ]Ðc\ D…΀ã‰ã–-[˜éºººû÷ïïÙ³ÇÏÏï•oôòòºuë=­¥¥EùçŸüüüÞ}÷Ý;wêëë³½g¯¿èPwïÞ‰‰¡§333‹‹‹ßÿ}zÖÞÞþàÁƒ2nÇÐТ¨ÒÒRCCCBHII EQLËu‹‘‘‘Xs6@{áxâ(öhAkkëÅ‹ûùùIxƒªªªhCOccc@@À”)S˜jH%…”@*++™û`®^½jllÜ»woæÕªª*·cee¥¯¯Ÿ””D÷·¹víš݈߾}ûÁƒ»uëFyñâEQQQŸ>}Ø> ª¡óàxâØ\ïÞ½ëêêZû®ÄÄÄgÏžõíÛWô)Ø–––t5€²@Ñ æææIIIƒ&„œ={vèСÌK)))o½õ–ŒÛQUUõññ‰ŠŠêÙ³gSSSTT”=Lc\\œÁ¨Q£\]]‚‚f̘¡¢¢cgg'©—´Ѷi F ÇÇ—/_ŠÎ–——oß¾ÝÔÔ´µÏŠ}ôèEQ .]¸iÓ¦v¼í¦C¡¢@ž|||6nÜÈãñrrrnß¾={ölBˆP(LJJúî»ïšà-E@@@}}}@@!ÄÛÛ›î(I9xð ¥¥å¨Q£ÁáÇ׭[·páBUUUww÷   ¤2rÀ<» E+t*¯‚¢ž¥¦¦¶~ýzúVÇŽûPŹoQ¡Êµììl…º]Á ˜BQÔ®]»Ž9RQQ1qâÄ/¿ü’²pá³gÏN˜0!44Tlo¹Q¨Ò ”ÇkÏ;'¶ÄÈȨµÕÊ‹Çãeee)ãÿ]¥ÆãñæÌ™3gÎÑ… .\½zµ¤Qr”;W½r³téÒ·þ«¡¡aÚ´ilÇÕáx<z4( d ì¸YãX]]½cÇBHrrrdd¤èK>d;À¤PmÓÀ%ÜLé葟¤Çàóù¡¡¡lØ!2€$Ìí2((àup3qìÖ­Û¶mÛ!3gΤ'8 Ó S>07Ǡ¶áxÇØØXfº©©‰íp:º3€|p³Æ‘’““süøñ>øÀÒÒ²®®î«¯¾:{ö¬ŽŽÎ_|1uêT¶£khrPL7nÜe5]]]+++¶ƒhn&Ž÷îÝ›´ ;fdd käúŸÛQ@çÂÍı²²REE…ž¾zõª±±qïÞ½™W«ªªØ°-2Àë (ÊÊÊ e7ˆÖ# wyâfâhnnž””DOŸ={vèСÌK)))o½õ۶X=rG'nöqôññÙ¸q#ÇËÉɹ}ûöìÙ³ !B¡0))é»ï¾›?>ÛÊ Ý@qp6q,//?räHEEÅܹs=<<!‹-:{öì„ ”b8¤ŒÊ«¢¢B–ÇR˸€âàfâÈãñæÌ™3gÎÑ… .\½zµRÓh˜PjÓ¦Mspp˜2eФŽ17nÜØ»w¯™™Ypp0ÛÁ´7ÇYXX°«¡¢€>¼k×® &ØØØ8::öîÝ[GG§©©©¤¤äþýûW¯^mjjš?>3Ú@«4ïÔˆÿ 7(qTpH8C]]}þüù3gÎLHH¸zõê¹sçž?®®®nbb2xðàgggÜÍÐyˆ~×íUÈãŸEG`¾)^)8*´Mp†††·····7ۛĊw”ö ƒäˈ›Ãñ( µÐy`èÅ$ö_“¨qd Ú¦@¹ qdj@é q”7T4€ü1ín(‚äŒnôDç9傯I ôq”ÑG‹² ÈÄ Ä–”——O›6MÎa0%ý¬jôß’3ú€£G»"ýŽð5I‡GyÀ%>@§R]]½cÇBHrrrdd¤èK>d;@7”ÿŠß‘Œ8v8\»t6YYYô43Aãóù¡¡¡lÐFH;*:§nݺmÛ¶2sæLz€ÐDZC ;#Blmm333ÙŽB|P:4ƒ@›¡Æ±ýedd PBÈåË—544,--ÙäÿsGdð:PãØþ¬¬¬ØÂÆÿüóÏ_ý5''§X+Á0wU³}TsW5Û(4Ô8toooŠ¢þùç±åééél‡ÿOìžTÌKÄ £ÄÇdzȤù³ª‘;¶‰#@GÉËË“²\CCcðàÁlÇÐ H:ÊÚµkéViºã”P(äóùô«½zõúå—_ØŽ 8t”?þxÿþý«V­2dŸÏ¿sçNhhè’%KFŒÁvhðÿðHqÙá®j€ŽòóÏ?‡……¹¹¹©«««ªª2dÅŠ111lÇâðHq¡Æ £<þ\KKKt‰––VAAÛq@ /Ê5ŽeÈ!111/_¾¤gËÊÊ¢££íììØŽ  PãÐQ¦M›æááÑ·o_BHZZš@ Ø¿?Ûq´ÇV»víÚôéÓÿþûoMMM¶c…fll|âĉóçÏgffÖ××ûøø¼÷Þ{Ì]Õí¥±±qË–-GÕÒÒ=zô¢E‹ðè è H[§¢¢â믿F7QffæÀ½¼¼._¾üÇ”••ùúúòùíÙM(**êøñㄯ¿þZ]]}þüùlï7pú8¶Îêիźº+¸Q£F±‚A0 ¦ :ôÑGÝ»w¯°°pÞ¼yÏŸ?ß¼yó¶mÛÚñ#êêê>èáááááøã? …B¶w]~¬­­Ù{Ôéöˆ«;% $Ž­pöìÙ[·n-^¼˜í@@9ÄÆÆzzzž={ÖÜÜ|Ïž=ÇoÇÈÈȨªªrss£gÝÜÜJJJÒÒÒØÞuà&4U˪¸¸8<<|óæÍ²´S+Ô…‚A0JŒR+..¦Sº7n¸»»B¬­­‹ŠŠÚñ# x<ž‘‘=kllÌãñŠ‹‹%­ÏÉ/—{;…=……ÄQV+V¬;v¬““Ó7¤¯I?a  gÏž :::—.]š:u*!äêÕ«ÆÆÆíøuuušššL§Iú‘†eee-®ŒÒ ^šª[vêÔ)ëeffþòË/OŸ>ýòË/ÙŽ ”ÉüùówîÜùî»ïÚØØ8::îØ±cåÊ•¾¾¾íø:::555L§F¡PX[[«££Ãö®7á¹:-kll¬©©¡§µ´´V­ZuèÐ!±u¦M›Ìv¤ Ðrsssrr455oܸÑÔÔäââÒŽÛ¿ÿþ¸qã !ÏŸ?wss;~ü8=r$@ûBâ(“ââ⊊ z:%%%((è—_~éÞ½»Û¡@§ÖØØ8|øðààà1cÆBþøãµk×^ºtIU=‘ ý¡d‘‰¡¡!}5Oyþü9!Ä€ëTUU}||¢¢¢zöìÙÔÔåãレ: åP__@ñöö^°`Ûg¡©d‚»ª@&H@&H@&H@&H@&HÛÙÓ§OçÌ™ãäääêêúõ×_¿|ù’Å`ÊÊÊ‚ƒƒ‡ âää4wîÜœœ¶©¯¯wpp`žÊ#QQQÆ 9rdTT”"Œ*Àú1¡)Ô¯E¡Î#¥Öü×¥€§ÀëïÔ®]»¬E :”íe%é¼SÞ¯IÒ)ïwD$—HÊû5½ŒãØž„Bá‚ ôõõ¿ÿþûúúúààà°°°Í›7³OHHÈÇ£¢¢ºuëãççwòäÉ®]»²Oqqqtttee%[B¢¢¢Ž?Aùúë¯ÕÕÕçÏŸÏb<ŠpLhŠókQ´óHyµøëR´S ]v*77×ÓÓsòäÉô¬.é¼SÞ¯IÒ)ïw$¥DRÞ¯éµPÐ~222¬¬¬îÞ½KÏÆÆÆ8°©©‰•`ªªª¬­­ÏŸ?OÏ–••õíÛ—™•¿mÛ¶Yý«ººš•jkk|ôèQzöÈ‘#...l}A rLh õkQ¨óHyµøëR´S ]vŠ¢(??¿]»v±]«I:ï”÷k’R’(éwDI.‘”÷kzMhªngãÇ·±±¡§ß|óM/ªòóóû÷ïïàà@Ïjiiihh”––²¿¿zzú¡C‡Ø €’‘‘QUUåææFϺ¹¹•””¤¥¥uæcBS´_‹âœGÊ«Å_—¢í²S„ÜÜ\SSÓÚÚZE¨¼—¤óNy¿&)%‰’~G´K$åýš^ÇödiiùÍ7ߨ¨¨”––Þºuk×®]ÞÞÞ|>;¹OŸ>ÇŽÓÑÑ¡gO:U]]mooÏöAbSAAÇ322¢gy<^qq1Ûq±O¡~- uq 'O¡P˜ŸŸ¿gÏžÁƒ;88Œ7îÞ½{l%Içò~M’öHy¿#"¹DRÞ¯é5¡,îsçÎ_CC£¬¬Œí¸ˆBýZê<âNžÏŸ?çóùC† ILL¼páÂo¼1gÎœŠŠ ¶ãj±óŽ_“Øqà;"ÍJ$|Mmƒ ×rêÔ©E‹ÑÓ'Nœ°´´¤§úé§/^ìØ±ÃÇÇçÊ•+lóøñã¥K—fgg¯\¹ò³Ï>cýȰKGG§¦¦F(Ò§ºP(¬­­e.Ž­_‹$¬œGÜÆÉSÀÄÄ$%%…™]·nÝСC“’’¼¼¼ØM&ÍÏ;eÿššï‘²G4±IÙ¿¦6Cãkñòòºõ¯Þ½{gggÿý÷ßôKzzzK–,©ªªºsç+ÁBþùçŸqãÆ™››Ÿ9sFÎy@ó`¡¡!EQL×½’’Š¢˜††NŽÅ_‹vÏ#në §€@ 022R–ÃÏ;¥þšd)I”ë;’T")õ×ô:8¾UUUÁ¿ø|þ;w.\( éWËËË…B¡¦¦&+Á466L™2eãÆúúúì9º$VVVúúúIIIôìµk× ¤6”]ìþZİ{q'Oøøø?ü°¼¼œž}ñâEQQQŸ>}ØŽëÕ$wÊû5IÚ#åýŽˆäIy¿¦×„¦êöäáá±nݺ•+WNš4©¦¦fóæÍ–––¶¶¶¬“˜˜øìÙ³¾}û2?kBˆ¥¥¥¡¡!Ûlj5ªªª>>>QQQ={öljjŠŠŠòññÁ»DÁ~- uq 'OWW×°°°   3f¨¨¨ÄÄÄØÙÙ999±׫I9ï”ôk’´GÊûÉ%'Ï&YpåÉÀÀàûï¿ß¸qãĉ555]\\Ö®]«¦¦ÆJ0=¢(jáÂ…¢ 7mÚ4f̶›êëë!ÞÞÞ ,`;"… P¿…:¸‡{§€@ 8|øðºuë.\¨ªªêîîÄãñØŽëÕ¤œwJú5IÙ#%ýŽˆÔII¿¦×Ä£:Çrà5)Jç3PpH@&H@&H@&H@&H@&H@&H@&H@&H@&H¡Õ¾ùæë–Lš4éÉ“'ÖÖÖ/_¾”[0åååÕÕÕ„šškkëÌÌÌV½¸¸¸X¾‡°…°ÙŠ$=ztó‚îÊ•+¢¥ s.‹MËhðàÁIIImŽåÈŸ*Û€òùüóÏ?þøcBHyyùôéÓ—/_nooOéÚµ«üƒùúë¯-,,UUUgÏž­§§ÇöáicØ­ýrðÉ'ŸLž8pà»ï¾{èÐ!¶¿g€NŠ9mEÏeÑi"ù,ÎËË›5k–££ã‡~˜Ð|ãsçÎ]¼x13ëáá! ¥—`RJ'”'о8Bû[½zu``à?þØ­[·•+WBêêê|}}555øá‡ÈÈÈÇ/Y²„ÒÐÐ0eÊ”†††]»v}óÍ7—.] ¡7BQÔW_}5räÈ>ø@ÒÛcccGŒ1{öìŸ~ú‰ùô¦¦¦éÓ§744ÄÆÆ.]ºôçŸÞ½{w}}ýœ9s¬­­ãââÖ¯_Ÿ’’²uëVIñ755M›6­¬¬lÇŽË–-Û¿zzº”ý•²q¡P¸fÍšµkׯÅÅ©««‡……I ›!igsss.\Hñ&LOKKcû«à¸çÏŸ§‰xöì™è«¢ç²è´¤³¸¾¾~Ê”)µµµß}÷Ýâŋׯ_O_*‹=zô_ýÕÐÐ@Ïž>}ú£>jll”½…òÚšª¡ý-\¸¾Øõõõ %„œ>}š²víZ>ŸO‰‰‰>|x~~þ;wJKKýõW@@Y³fÍ”)S‚‚‚!B¡pâĉãÆ#„?~¼Å·Ó-æbþüóÏüüüŸ~úIKKkÀ€•••Ož<©ªªZ´hÑgŸ}¦©©Iyçwrss%Åþüù‚‚‚C‡éêêBV­ZõùçŸKÙ_)§(jÞ¼yC† !„LŸ>>ÒI:V999B¡ð“O>155íׯ_Ÿ>}”¥C'€ò:räÈ‘#G˜Y__ß+V¼ò]’ÎâÛ·o—––þòË/tÙ¢¦¦6cÆ ±÷zzz†„„\»vmøðáyyywïÞݸqc«J0Y"Aym†ÄÚÓ%ˆ¹]æáǹ¹¹¶¶¶Ì:E=~üøÑ£G666tÖH±··çóùYYY¦¦¦„ÁƒK{‹‰czzºµµµ––=;iÒ$z‚nJOOOKK»~ýº«««¤ø333ûöíK—ì„!C†ðx<)û«§§'eãLØÌ¥“´³vvv£G~ûí·‡ âååebbÒñ_&@§æïï¿páÂÖ¾KÒYœ••%Z¶8995/[´µµÝÜÜÎ;7|øðÓ§OÛÙÙYXXÖ”`²D‚òÚ ‰#´? ±%ÀÞÞþÇ[~ãÆæå&Ý%‘¢­­-ýí-jllTUÿagffNž<¹oß¾#GŽtww·²²ÊÊÊ’´…úúzÑY>ŸßbâXWW'ËÆ»téÒª£'eg>|ëÖ­K—.9rdÓ¦MÛ¶m>|xë¾èx’Îâ[·n‰Îòx¼Ë–÷ßݺuáááñññt«K«J0"R:¡Ž VVV<(//§goݺ5a„ÚÚÚÞ½{§¥¥UUUÑË“““›ššz÷î-ãÛ[ü,z›555ôìîÝ»?ÿüóøøx==½}ûöùúú:991¯¶ÈÂÂ"--­¬¬Œž½sçŽP(d^e¸ÿ>=Ѫ·ùXݸqã»ï¾2dÈ’%Kþøã‡?þøC^_ ´‚¤³¸OŸ>Rʆ§§gyyùÉ“'ÓÒÒÞÿ}"s!Ó¼tByí‰#ȃ»»»™™Ù¢E‹îÞ½{áÂ…åË—›™™ihh¼÷Þ{ºººK–,¹ÿþõë×CBBÞÿý=zÈøvBŸÏ/((`ŠEBÈ{ï½'–-[öàÁƒS§N}ÿý÷ŽŽŽúúúÏž=»qãFQQÑ‘#G~ýõ×ÒÒRæ¢\ ½…€€€äääÄÄÄÐÐPº{‘‘‘ššÚÖ­[srrΟ?¿gÏzýVmœÖ<ìWîlSSSLLÌ?þ˜““sæÌ™””Ñæ'`…è¹ÌLK:‹GŒ¡¯¯Ï”-’ºKjii >|Íš5îîît×ÃW2’J'”'Ðî8‚<ðùü={öhkkÏœ9sùòåÎÎΫV­"„¨©©8p€ÇãMŸ>}Ù²e®®®²¿âíí””´`ÁfeuuõÔ××O:uݺuŸ~úéìÙ³Ç?zôèyóæ}öÙgßÿ}^^^ddd‹Ñjhhìß¿ŸÏçþùçk×®]²d ¤jjj®_¿þöíÛ£FZ¼x±ŸŸ½~«6.)ìW‹ËW_}õÃ?Œ3fÆ Ó§O÷õõeû‹èìDÏefZz‰×¥K—Ï?ÿ|ÆŒŽŽŽ–––-nvôèÑ/^¼øè£èÙW2’J'”'ÐîxE±€¢>>kÖ¬éàŸ@+dee 8pÛ¶m)))]ºtyðàAdd¤‹‹KYYÛ¡ý?º¾ßØØ855522ÒËË‹yI–¦Öëû§Nº|ùòôêÕ«¡¡!!!aìØ±L—9„‡®¡ Ó³±±!„>|˜ž}üøñ°aÃD—Œ7Žboo?nÜ8:õ¹{÷.EQ/^¼ÐÓÓ#„¼ÿþûžžž|>_WW·¨¨ˆ¢(UUUBHee%EQ~~~„]]]'''UUUG),,|ùò%!DUU•þÑÙÆÆÆž={B äéé©¢¢¢ªªúèÑ#±·HßQ’váСC„‘#GÒ« 8rùòe)o¡càóù}ûö%„ìܹSR´EùúúBôôôé}×ÐÐ’ôbª rssÅŽÆôéÓ !£GÖÕÕ%„,\¸¢¨ . 4ˆ2oÞ¼ÔÔT¶nÿ> øðáCŠ¢ž>}:`ÀBÈW_}ÕæmJ*%ªªª455g̘!û¦ÄξëׯÓgÖo¿ý&ûF¼½½%•Kr@÷&WUU¥‹—†††o¾ù†2bÄ9„'véBHff¦ôÂ\q 4‡Äþwn‹âñx6l _MMM%„ôéÓ§©©‰¢¨¨¨(BÈ´iÓ(Šºté!ÄÔÔ433“¢¨7Μ93%%…I³³³ù|¾ªªêãÇ)ŠZ·nýÒÇœœœ#FLš4‰~ÉÕÕ•rôèѶ%ŽRv¡²²²k×®êêê………<ÏÔÔT(Jy !dΜ9YYYµµµ’¢}ôèÇSUU}úô)EQ‘‘‘„:q”²ýwÊÜÜ|РAtzJñöö;bééé„@@½}•‚‚ %/(¤'OžÐ¿ç;wî0 O:åáá1oÞõh«W¯¦(êÞ½{ï¿ÿ¾–––½½ýÑ£GEcþóÏ?íííµµµ===³²²èO©©©Y²d‰¥¥¥¶¶¶³³ó™3gD—÷îÝ[ xxxÐW¼b’““éëöââbzIYYYlll\\\‹áIÚ&¡††F\\\Ÿ>}ºwï¾lÙ²G½óÎ;ÚÚÚvvv-~ºØlll¤L.]º$V˜Kú6›G¬Câÿ;·™›cºtéByûí·kkk)Šjñ™AƒQUZZÚ£Gz‰¥¥¥¿¿rr2½M¦<¥/1ß~ûmzùÇeI)Š*++Û½{÷¬Y³ìííé·>|Xtº‚F¾’G)»@QÔ„ !Ç?xð !dÑ¢EÒßBÇÀãñèºU)Ñ9r„2|øpzªª*¦ÆQzHÍ¿†‘‘ÑÔ©SKKKÅŽØáÇ !ãÆ{ã¹sç($Ž Îž=K_yJYGR=º”—˜óB(~úé§„%K–ˆmVJk‰¨æE ] 1§*SÐIÚ X}¿ô¶×µk×þýûÓ=vFE ]/ûæ›oº»»«ªªª©©Ý¾}›’­Õ¢ººÚÔÔ”¢££óñǯ]»öܹstÙNµÔ!½¥…¢¦¦Ö¿zºK—.¦¦¦†††„·Þz«ùׇNBââçö‹/´´´!/^¤þÍHŠ8vì½ryyyllìØ±cé‘***çÏŸ§DÊÓ½{÷B<<<˜‹5U«¨¨Ð/‰–#eee½zõêÒ¥‹¿¿ÿáÇéNEb‰ã¬Y³4þõË/¿P’Gé»ð믿BfÍš5uêTBȵkפ¿¥y­§¤h8@Dš„ ˜ÄQzHR¾Q¢‘Ðmîü1óêÛo¿M9}ú4…ÄÒ?ü@Ÿ’VR.å%æ¼ #„øøø…B±-Ki-Õüìû믿èë7z–)è¤lPôì“Þ–Bùõ×_)Š:sæ êQu÷î]:£zùò%EQaaaªªª‹/–½Õ"--mìØ±t©N?üðýªhx²´´ÐÿèÒÒÑѱ±±±°°îåIGØü¢Á„cps ˆÓÕÕµ´´$„äççBlmm !%%%“&Mš}Ÿ­±±±ƒ~3m@ׄKZáï¿ÿ&„Œ1ÂÌÌŒbkkkccÓÔÔt÷î])/Ñïmll\µj!ÄÞÞž¾XekkÛ£G¼¼"„899Bè› é=2dˆŽŽ!$<<¼¡¡!222%%…òðáC·xñbBÈ?ÿüÓBÝIú^7')Z{{{‹/0 OŸ>ׯ_gÞÒªíËÂÆÆÆ××÷àÁƒƒ rvv¾råJ}}}@@Ào¼A¡¯õ7oÞlbb2bÄ9üx^ÉÚÚšòäÉ“ÌÌLúb•òÛo¿Íœ9sÀ€tgDBˆhÚgllœ––ÖØØ(å%f‰]JJÊêÕ«§Njbb"úÑzzzééé?ÿüó‰'¶oßþÝwß={ÖÓÓSzÌôYÜ»wo±å2n°¼¼|РAùùùŸþyPPÐîÝ»éöz=f !Dô6mzšššÄ>QEE…âèèøå—_2 ›€v÷îÝ“'Oš™™Mž<ÙÞÞÞÞÞ~ÆŒo½õVQQÑýû÷éüOöm2Òè¢ï•>L÷’D–oÛUžÀ¾æÍ1Ÿ}ö!dìØ±ôleeåüùóÍÍÍ»»;Ó»œ¢¨Ÿ~úièСºººÝºusrrúùçŸéå¢}Æÿùçú:²W¯^±±±t£vaa!ýÒСCµ´´œœœè”n¹¨®®¦«ÐÞ|óÍ+V|ñÅ„9sæÈrsŒ˜­[·Jߊ¢˜+éžCÒ÷ºy ’¢¥(ª´´tâĉúúú}úô9zôh—.]˜»ª¥‡$åÛaˆER__¿råÊ~ýúuíÚuÀ€QQQÌm)))½{÷ÖÔÔüöÛoÙþ¹ü¿1cÆBÜÝÝKJJ(Š*(( O¥Å‹SõàÁBH·nÝòóó)ŠÊÈÈPWWçóùyyyR^bÆ=xùòåøñã !Ÿþ¹ØçÆÇÇ/Y²„n®««£W [Mìì»s玾¾>!äøñãô¦ “²Aº¥õàÁƒEýøãäß΋ ôuX'ê¿§6]×µk×òòrŠ¢V®\©­­ýõ×_Óµq½zõ¢â¯^½ºdÉ’}ûö‰íÂ;w!ZZZLôœœº;&}'»hxR¶)áòåˉÈÍï„æþIP”è¥|›b‚"@âòP]]}ýúõV½¥®®îÂ… lþZÑ–––?~üĉô,}{cŸ>}Ø@Q¤§§ÓÉ“ŠŠJ¯^½èÏÞ½{3½å譌njC§;Ò_ÍH222TUUù|þ­[·D?÷üùóô˜Þ&Løä“Oè«Yº¶(Ñ.z½{÷¦«Ä\]]™˜ÄQÊçÏŸOqrr:wîÜÏ?ÿLÇ6räÈîÝ»Ó5‹‡’~§àèÑ£é|nĈjjjôm"~ø!!døðáS§NÕÑÑQSSk~ý) ?þøcúÛÛÛ÷ë×Þ‹‰'Ò+ˆ†'e›š8Jÿ¢Å"Ö!qè(/_¾„ÿ;wÒÝ —/_Îv\ äùóç³gÏî߿׮]ûõë·téÒ/^0¯J©G—ô’XF2gαl&©µD”h#†††Fÿþý/^\]]ͬ Ú´"iƒ¢õý2¶¥ˆÍVTTôêÕK[[ÛÕÕõ¯¿þ¢—ËØjQSS³iÓ¦vëÖMOOÏÞÞ~Ë–-ÌÕbÍ2¶´´{âˆ%ò¿ÞfÐnÞ¼vóæÍêêjsss??¿Å‹Ó‰ ª¯¯¿zõª‡‡Û´G †ã™ q™ q™ q™ q™ q™ q™ q™ q™ q™ q™ q™ q™ q™ q™ q”UYYYppð!CœœœæÎ›““ÃvDÀ}QQQÆ 9rdTTEQÍ×AérƒÄQV!!!wîÜ‰ŠŠúá‡êêêüüüª««Ù 8.**êèÑ£!!!GŽÙ¶m[óuP:€ÜðZ¼~1ÕÕÕöööÛ·o÷ôô$„”——:tëÖ­ô,@G¨««sqq ùä“O!GŠŠºrå Ÿÿÿ×ü(@žPã(“üüüþýû;88гZZZ¥¥¥lÇÐÙÕÕÕéèèTUU1K‚ƒƒMLLúôé¬ÔׯUUUnnnô¬››[IIIZZšè:(@žTÙ@9ôéÓçØ±cÌì©S§è«üW¶¶¶¦'âããÙ@‰YXXÐ’’¿ÂÂÂåË————‹. Þ¿ÿîÝ» !~~~]ºt c{WÚ¨  €ÇãÑ³ÆÆÆ<¯¸¸XtV•Näß*==í¥„ıu„Ba\\ÜÚµkgΜÉüWk…2Àkâñþ¿#è4ã›o¾ [X[[ûÝwßmÞ¼ùƒ> „¬]»688xÅŠ¢m»J¤®®NSS“ žÏçkhh”••µ¸²,¥“µµ5J'xJY˜²åñãÇ>>>[¶lY¹rå’%KØ€³Ä2EŠ¢x<žØ:+V¬ (êÊ•+¢ SSS+**¼¼¼èÙ÷Þ{¯¨¨èŸþa{‡ÚHGG§¦¦F(Ò³B¡°¶¶VGG§ùš(@>8ÊêŸþ7nœ¹¹ù™3g>ûì3¶Ã€<}ú”Çãõèуž}ã7x<^aa!Ûqµ‘¡¡!EQL‡Å’’Š¢˜–kJ'$Ž2ill ˜2eÊÆõõõÙG”””LŸ>ÝØØØÄÄÄÏϯ¤¤„툠S«©©ÑÒÒmÛíÚµë‹/ØŽ«¬¬¬ôõõ“’’èÙk×®XZZŠ®ƒÒ ä }e’˜˜øìÙ³¾}û2%8!ÄÒÒÒÐÐíÐ:œhaó~f3fÌHOOÿùçŸy<Þœ9s>ÿüóãdz2pM‹}[¤¯¯_UU% éÜQ(VWWëéé±½m¤ªªêããÕ³gϦ¦¦¨¨(UUUBH\\œÁ¨Q£:séò‡ÄQ&=¢(jáÂ…¢ 7mÚ4f̶CëXbÿ°ÅfëêêN:µ}ûvBÈâÅ‹çÍ›WWW×¥K¶å&Ö©Qö!uºwïNQTQQQ÷îÝ !Ïž=£(Ši¹VFõõõ„ooï ÐË}šž@éò„Ä$zeû`—.]&L˜5pà@BHdd¤ªEjjjsæÌ ±²²jjj þâ‹/ÔÔÔØŽ €#8‚Dts¡ôÜ122²oß¾tâH×ô°5tv«V­ª¯¯ÿôÓO !“&M g;"P,uuuÆÆÆùùùZZZô’†††°°°~øA Œ?~Íš5͇AVÍKÒòòrggçI“&M˜0ÁÙÙYì1ÊÕÕ•¢(& „ðx¼õë×?~üøñãÇk×®EÐÙðx<)_zaaá¼yóš?mè‡~ؽ{÷æÍ›cccW­ZÅöN(.$Ž ]éH£(J¬öñôéÓeee111FFFFFF›7o.--Ń€¢%U‹¹ã7ß|Ó£G~øAt!ý´¡uëÖ}ðÁ|ðÁÚµk·oßÎ ºb8Â+Pÿjþ’P(lhhhll¤g¤À---1c†¾¾þ‡~˜‘‘A/ÏÊÊòööÖÓÓëÑ£žà¦¤ê´OèhH¡íF­££3qâÄ[·nݼysâĉººº£F’ϧKoš9sæÕ«WüñÇøøøÚÚZ//¯ÊÊJ¡PøÉ'ŸÔ×ן>}úСC—.]š;w.ÛGÚìƒ}ŠáØÓ†:n޶ÓÕÕýóÏ?—-[6zôh7|øð .èêêÊᣙtî(ö£²²òøñã¿ýöÛ{ï½Gùé§ŸŒ/\¸`aa‘œœ|ëÖ-BÈܹsØÁ¢€Z›ArìiC ‰#¼KKË_~ùEÎ*ú¡Å©'Ož888¸ººÒ³@SS³¨¨¨W¯^³fÍ¢ï'„XXX` neˆqìiC ‰#(½æÿ0úõëwóæMfö矮¬¬tuuµ±±Ùµk!äùóçiiiëÖ­›4iª¸¹Œl±!Bî=m Cá_&p™P(üöÛo§M›dccÃ,ÿðÃß~ûí§OŸÎŸ?Ÿí ÝÐÉ¢¤ûùZĺwï^aaá¼yóž?¾yóæmÛ¶±—Òåá~ÐIp€ÅÍ'Ç3Ó666UUUUUUô«†††lÇ d¸™8ºººJ_ó×Ü펛‰ã¹sçØ¡£ÐrAC È7Ç·ÞzKÒKuuu‘‘‘ÁÁÁlÇØj¢)#:ñ€üq3qd¼|ùrëÖ­¹¹¹Ì’ÒÒÒ¼¼ôùóç|>È!ß}÷]mmíš5kæÌ™súôi@ÐâúÜ(€-oªn®wïÞuuulG¡Ð< Ð*—/_VQQ!„,]ºôÞ½{6lxåuttjjj„B!=+ kkkuttdùP“”””¥K—êëë¿ñÆëÖ­{ñâERRÛ¸‰ã‰ãËÿzòäÉöíÛMMM;´º:§ÄÄÄE‹1-ÎŽŽŽË–-KHHxå )Š*--¥gKJJ(Šb¶Ó*ÀÈÈHÆfn€ÖâxSµ³³³Ø55µõë׳—ÒÀp<²«¯¯ïÚµ«è##£¦¦¦W¾ÑÊÊJ__?))i̘1„k×®È8 D||üöíÛ<Ø­[7BÈ‹/ŠŠŠúôéÃöÁnâxâH?-F”‘‘ª[É"€ŒœœœöíÛ·víZz¶¼¼<::ºùåksªªª>>>QQQ={öljjŠŠŠòññ¡‡cŒ‹‹3005j”¤÷ººº†……͘1CEE%&&ÆÎήmcG¼7G)ý{òòòH³›f^_pp°¯¯¯———P(œ4iÒƒÌÌÌdl⨯¯ „x{{/X°€^~ðàAKKK)‰£@ 8|øðºuë.\¨ªªêîî„ÞÉÐAäñÈcù¿OŸ>#FŒPSSëÐOì¸û17€"+..ž>}z~~¾µµµªªjZZš@ 8pà€©©)Û¡ý×ÄÍ,33SOOÏÐÐ033³Åd|$CÛt†¢ZÔÔÔô矦§§766öîÝû½÷ÞSWWg;¨ÿ×J'$ŽŠ›'˜µµõìÙ³­­­[\¡C‹ÎÎP4€2ê ¥G€ÅÍ>ŽÉÉÉôÓºRSSÙŽ:‹ÔÔÔ°°°§OŸŠ-¿yó&Û¡´n&ŽÌÓ¨ÕÕÕÓÒÒôôôLLL._¾üÇØÚÚúúú² ¼.±ûâQÁŠ 44T]]}ÕªUºººlÇÐ!¸™82:¾cÇŠ¢æÍ›çàà°yóæ²²2æ9° E{ΡXSWñèÑ£¸¸¸°@Gáø8ޱ±±žžžgÏž577ß³gODDÄñãÇÙŽKiÐÏø¦(ŠH1S4®mÓ ˜âããÙ c)bZоrsssrr455oܸÑÔÔäââÒ¡ŸÈ¥‘Қ߆Âù @;ª««‹ŒŒ f;ÿáRé$ Š)€ÅñGBˆ™™ŸÏONNvqq±³³ÓÐÐ`;"e"V·‡â@Š—/_nݺ577—YRZZš——§8‰#ÀkâøÍ1•••_|ñ…§§çôéÓ !Ó¦M ¬ªªb;®6â‰Û‡R"Ø>, éBCCzô葘˜haaÑ£GŒŒŒ˜˜¶ãúÌ´è¹Ã¥iQЦ¹=Ý q|¸¦¦ÆÚÚúܹs„œœœêêj¶ãh7OœœöíÛ' éÙòòòèèhggg¶ãj5+Õ¿7!ªcAA:uêÈ‘#ÇðàÁ{ï½7{öì#F°@»áøÜÂÂB___BHnn®½½ýƒÌÌÌöìÙchhØqÚA^ˆ¦GrK•v8&E{Ž6trõõõUUUzzz™™™ñññúúúãÇWSSc;®ÿÁp<𚸂ÕÕÕ>}úáÇÀÊÊÊÝÝÏïØzÖŽ+š™:?V²F¢`%2RFP4&Løé§ŸD—”——/X°`ß¾}l‡ö?Hà5qvÇšššôôt===ssó±cÇB„BaeeeAAÁÁƒ—-[Æv€mÒPŽ(ˆêêê;vB’““###E_*((xøð!Û´n&Ž÷ïߟ={öóçÏ !ýúõÛ¹sgxxxbbb]]!„Çã)iâ(g ûÈA…ÒØØ˜••EO34>ŸÊv€í†›iÁôéÓËÊÊBBB´µµwîÜyóæM@ðå—_ikk›››wèóc¸Ô$ÚŒ$@º™3gÆÆÆ²…4\*$AIС¸YãxïÞ½¯¿þÚÑÑ‘âææ8jÔ(¶ãR>¸X¤t?¼ØØØ´´4===“Ë—/ÿñǶ¶¶¾¾¾ݯ@n¸Yœ•——[ZZÒÓôèßÖÖÖl¥ÄíyƒÐ0ÏRä¡ Ä:tè£>ºwï^aaá¼yóž?¾yóæmÛ¶±@»áfâHÁ%>€òmmT¢KÆÆÆzzzž={ÖÜÜ|Ïž=Çg;.€vƒì  }»¹¹BnܸáîîN±¶¶.**b;.€vÃÍ>Ž„¸¸8I³ .d;@àšž={&$$èèè\ºtiêÔ©„«W¯³@»áfâhaañ÷ßKš%H[CΣŽ4§,÷ÉΟ?áÂ…Û·o·³³sttܱcGLLÌW_}Åv\íF9ŠcåÂ¥/ÄžsH>‚¼ˆujT–^nnnNNŽƒƒƒ¦¦æ7ššš\\\Øêÿq©t’DY.3”7k¡#(Ú Hd¹M‰¾ÙÌÌL===CCÃÌÌLBˆ‰‰Inn.!DOO~•ä@Ù!q‰ù‰ é#°ÎÛÛ{öìÙÞÞÞ-®ÀùJ>è<8*9w7TØGŠÕ¢Põ Ð %''«ªªBRSSÙŽ c!qTbÝ å–Ï)þÍ1 ›àB'‘œœ,}…êæð:¸™8&%%I_¡ åxccã–-[Ž=ª¥¥5zôèE‹ɳ¢K,1b%UBÅ@‹üýý™éÚÚZ¡PH?íF(B,--Oœ8ÑæË^òÔ××»¸¸\¹rESS“íCœÅÍı#Êñ¨¨¨ãÇGDDB¾þúkuuõùóçË×äߥOô³3wDu#°‹í+!!aýúõáááNNN<ïÎ;+V¬°³³{ËXòGGGWVV²}0€ë(N;wî܈#®\¹RWWW__íÚµ‘#G~ýõ×­ÝNmmíàÁƒ=JÏ9rÄÅÅ¥©©©Å•­¬¬Ú}Gľ/ù|wÍ?Bq~0ç7 Jd̘1.\]råÊ++«/^´mƒ2–<Û¶m³úWuuµ” vDé¤hP&t(Ž?rpË–-!!!®®®êêêjjjÎÎÎaaaÇŽ{ùòe«¶“‘‘QUUE?LŒâææVRR’––&·¡þ- Egåð¡ŠYÅHþûíXþ'??_ ˆ.ÑÒÒÒÖÖÖÑÑiÛe,yüýýÓÓÓ:Äö`AIIÉôéÓMLLüüüJJJØŽ€ã¸ÙTÍh¯r¼  €ÇãÑ³ÆÆÆ<¯¸¸¸Å•322:(ßÛ¬|²:V>€¦\ƒމ‰ùöÛouuu !eeeÑÑÑm>kZUòÈÈÚÚš(ÕAÒûç̘1#==ýçŸæñxsæÌùüóÏÙŽ€ã8ž8¶W9^WW§©©Éçÿ¯‚–Ïçkhh”••µ¸²••U»ÊÍ»ñɧc_ó¥\ÿÈä)<<|Ê”)}ûö%„¤¥¥éëë8p ÍlUÉ##%JÉ«Fl­««;uêÔöíÛ=<<!‹/ž7oÛ!pÇÇö*Çuttjjj„B!]‚ …ÂÚÚÚ67?µÅÒmÔͳUy \LMMãããÏœ9“••Åçó§N:bÄ55µ6oõ’‡]b#¶’– %:™¦§E“lè OÛ«744¤(ª´´ÔÐÐRRRBQÓ~$b=Qó €ÔÕÕÇŒÓ^[S„’G‘uéÒe„ QQQ$„DFFúøøìß¿Ÿí¸”^iié’%K~ûí7Š¢ÜÜÜ6mÚdeeEÉÊÊ HLLÔÐÐ5jÔ¦M› ØäûgêêêC† Y°`Á;ï¼Ó¶«+++}}}fxÈk×®Èÿù³r¾#D‘oŽè ¤äa”‚(22òéÓ§8p`~~~TTÛÁ* z”º_š9sæÕ«WüñÇøøøÚÚZ//¯ÊÊJ¡PøÉ'ŸÔ×ן>}úСC—.]š;w.Û;,àxceeå’%K.^¼HQTzzú´iÓÌÌÌV­Z¥¥¥Õªí¨ªªúøøDEEõìÙ³©©)**ÊÇLJ~È·¡š€ERJž¸¸8ƒQ£F±#›ÊËË'Mš´bÅ BȪU«œÙJ ˆvmÞú_YYyüøñß~ûí½÷Þ#„üôÓOÆÆÆ.\°°°HNN¾uë–ƒƒ!dîܹaaaL? è<8þ}GDDTTT\¾|YEE…²téÒ{÷îmذ¡ › xÿý÷-Zäíí½`Á¶wNN0ð ‹$•<ÔÚÚZ¹î[€ö’––¦§§gbbrùòå?þøÃÖÖÖ××Wqªd”´t’tkà¡C‡æÌ™S\\¬®®N©««344¬¬¬äöÿµ×ÔÚ1:~üñG__ßû÷ïÛØØÐKž?ž––èèè¸}ûv¶wäMQгR__ßµkWÑ%FFFMMMlÇtèС>úèÞ½{………óæÍ{þüùæÍ›·mÛÆv\œ5zôh‰'ÞºuëæÍ›'N¤G^Y¼² »P(üöÛo§M›Äd„?üðí·ß~úô)+ÏÝÖqø€Çã]¸pí Œw=>|øpذa¡¡¡;vìX·nèKIIIÏŸ?÷ññ6lXMM Û;òÆñÄ188øöíÛ^^^B¡pÒ¤IîîîEEEt7j€öU\\L?ðÆîîî„kk뢢"¶ãâ2KKË_~ùåùóçEEEÇŽëÓ§Û)&wl±ç(!äúõëööö–––3gΤ¦§§37ø®[·®¢¢¢Cû}bâø}ÁÝ»w?yòäéÓ§>|(fÍšåîî®8ý€Kzöì™ ££séÒ¥©S§B®^½jllÌv\â¤yò„þúòåK¡P(Ö :Žß³ÿþaƉ^ƒÖÔÔ„††nܸ±ã>TI»ŸÀk:wîÜÂ… …B¡ÝáÇ¿û˜˜¯¾úÊÏÏíÐþGIK§V=7KþÙRR’Ô©S§¼½½úé'}}}faÿþýù|¾Íøñãýýý«««W¬XQXXxûömúÎ$è<8~‚Y[[kjj®^½ÚÛÛ›^RQQáèèØ¡E§’Íðúrsssrr455oܸÑÔÔäââÂvPÿOIK'$ŽAÒŠŒŒ\²d‰ØÂƒNž<ùÚµkAAAÉÉÉZZZžžžëׯ733c{?@Þ8~‚Y[[¯X±bÓ¦MŸ}öÙ²eËTUU‘8@ûzò䉊ŠJ=¿Œ’–NH;´¢s¯ÏÛÛûÈ‘#ýõ—¯¯ï³gÏØ¸fäÈ‘žžžNNN?ýôÛ±€"ª««ÓÑÑ©ªªb–¬[·Ž'Ï%Âñ›ch–––ÇŽ[¶lÙ¸qãÂÃÃÙGÉà‘ƒÒ:tˆÏç[XXtëÖíX@á._¾¼¼¼\tavvö˜1cæÍ›GÏâ, D:EâHÛ¶mûî»ï¾üòK¶cQ&bmhÚhÎÞÞ^ʫϟ?G}‡I¿´þæ›oBCC›¿+;;ûÝwߥ  \8ÞT½wï^mmmzšÇã}ñű±±¾¾¾lÇôóÏ?‹Î655íٳɇÑ×ÒŒæk¯X±‚¢¨+W®ˆ-ÏÎÎîÙ³gMMXM$€âãf☙™Y\\L144ÌÎÎÎaddäããÃv€Êõ‹­²nݺýû÷ÓÓ7nÜøè£6oÞüÅ_°tˆ6—B¡ðÉ“'QQQÚÚÚ:::öööwîÜa{odÅͦjooïÙ³g2£ðˆQÆû åOʱÐÜž={fΜYZZúäÉ““'OŽ=:66¶{÷îlÇ«µådAAŸÏwww?qâDuuõ—_~éííýàÁ¶wàÕ¸™8&''«ªªBRSSÙŽEéÉòTS „ 8ðÀ~~~EíÛ·oèСlG¨Í—Ö¦¦¦¢xÞ»w¯‘‘Ñùóç?þøc¶÷ àÕ¸ÙT­©©Iߤ6eÊõÿª­­5kÛ*¦XDÕ#@‹^ŠèÞ½ûÖ­[)Šº{÷.³í¡£¼ò¡Ï²ÐÑÑéÞ½{aa!Û{ nÖ8VWWïØ±ƒ’œœ)úRAAÁÇÙP90å RF)œ›/ܸq#óhSôá°6Ô;9rdõêÕ/^ÔÓÓ#„ôë×í] 7ÇÆÆÆ¬¬,zš™ ñùüGEÃt“PðK—sçα(//¯¹sçN:500PUUuùòåC† qwwg;.™p3qìÖ­Û¶mÛ!3gΤ'  ps °Hô·§à¿Ã·ÞzKtöÙ³gYYYMMM½{÷îÑ£ÛÑÂÑÑÑILL ?~¼ššÚûï¿¿aÃô&—…²\Lr›BÇJJIŸ+ ó?[Áÿy—4ÿ±)Åϯ¶¶6$$ääÉ“ôC«›ššÞÿýˆˆMMM¶Cû%-üYÕJñãä@ØJt1Émܬqd¤¦¦†……=}úTlùÍ›7ÙMi0½¿q–H·iÓ¦ÔÔÔÐÏ’INN Ù´iÓŠ+Ø €SÐ Æ"Ž÷qãÆ©««OŸ>]WWWt¹‹‹KÇ}¨’^Ó(%­q|çw¾ùæ777fÉõë×—-[vñâE¶Cû%-P㈰•´Là$Ž×8>zô(..nÀ€l¢Ä¤?‰@”å?Duuµ@ ]"ª««ÙŽ €;”¥4à0nŽãÈ022gZë•Obèô¡,ÿ'¶nÝZQQAÏVUU}ûí·ŽŽŽlÇ ôðHq(M‰Ü6ׯ__³fͼyólmm»téÂ,744ì¸UÒÆ ‰ýÏV¨áèy Ц  `Ê”)¥¥¥666</--MWW÷Ào¼ñÛ¡ý’–NhªFØLÌÌ´ÒÏÊ÷»i•~ýú …ÂæûØ¡E§’ÍÍ)rŸÑ{½ JP gΜyôè!¤wïÞï½÷ý+¡¤¥G„­ìas Çû8ÆÇdz‚SØÛÖD£Bû(555'''zG…Ê^ÇGz`ÞüüüÇ»¸¸ÔÖÖjhh°”²RØüLa\èlG€×Äñ›c*++¿øâ OOÏéÓ§B¦M›XUUÅv\JCôúþ¶#P\Ì8Ž©©©©©©?þøãƒ6mÚÄv\í†ã‰cDDDEEÅåË—UTT!K—.½wïÞ† ØŽK))l#ª¹Š¹ha;Y?>44ÔÉÉIEEEEEÅÁÁaåÊ•çÏŸg;.h#¥+…ä€ã‰cbbâ¢E‹ŒŒŒèYGGÇeË–%$$°—ÒPÌáx”t¬hÑ›‚üð^ ã8BÛˆhlÇÿOô? ¾ÇÇúúú®]»Š.122jjjb;.å È9™h:Ëv,ÐþÄ®Xˆ’äŽÇÚ@1¯ÏA þ×08~sŒ““Ó¾}ûÖ®]KÏ–——GGG;;;³´‚²ü7]±bÅ”)SÜÝÝÅÆqd;.P\Š|}ÞÉá«‘„ãÇ¥°°Ð××—’››kooÿàÁ33³={ö`p)òàÀaŠ<†¨tDZ#pxGêÊrN±¶èhÁbÇk»wï~òäÉÓ§O?|øP Ìš5ËÝÝ)d„sX§Õ©©©***ýúõóöö.,,üᇴ´´*kE†VÑ` 7I¸™8&%%‰Îš˜˜˜˜˜ÐÓׯ_'„¸¸¸°£rÀÓY€ÍÛ¦ùçWSS³téÒsçÎ…‡‡÷ë×Âãñ®^½ºÿþáÇoݺÃÇ‚$bÙ 2…ÂDø'(Š›‰£¿¿?3][[+ éû¡„B!!ÄÒÒòĉlǨLp¶€ü1E¶âÿü¾ÿþûÛ·oÁº£fXX^^>eÊ”‹/–——BÊËËÿúë¯É“'—••-Y²ä•[ÈÈȨªªrss£gÝÜÜJJJÒÒÒd\'77×ÔÔ´¶¶í!ÐÑ”²ECv¦¦¦ñññgΜÉÊÊâóùS§N1b„FV³¶¶&„ S|ÇÉÎÎf¦³²²x<^VVÛAAûëÕ«Û!¼šÁÞ½{׬YãïïßÔÔ¤®®^__ÏãñÞ~ûíèèhf,0) x<ž‘‘=kllÌãñŠ‹‹eYG(æççïÙ³'00P(öë×oõêÕýû÷—ôYté¤PÀc°X%ÂñÄ‘¢®®>fÌ9¨BÊœÔ<ŸPŠ ¸ªG[·n}öìÙýû÷‹‹‹õõõmllLMMe|{]]¦¦&ól>Ÿ¯¡¡QVV&Ë:ÏŸ?çóùC† ùî»ïjkk׬Y3gΜӧO‹uïf(`é„O”ÇÇædÐnÞ¼)ý§NZ´h=}âÄ KKK¶w…(ÑxÈr†9  DŸ5Ð*:::555B¡Î …Bamm­Ø=|’Ö111IIIaV[·nÝСC“’’¼¼¼Ø>­Ãqèà È8ž8nÙ²…™®««»ÿþž={üüü^ùF//¯[·nÑÓZZZlïÇÿà±ÑÌqÀ ˜À%†††E•––BJJJ(ŠbZ¥e_‡"ŒŒŒÄš¹ÓTÝ™K6¥ÀñÄQìÑ‚ÖÖÖ‹/öóóÓÔÔ”v\TU%5ô°‚Å”Iѧ4;øOÊÎÊÊJ__?))‰îWsíÚ5±†IëÄÇÇoß¾ýàÁƒÝºu#„¼xñ¢¨¨¨OŸ>lïSá\Pp¿«º¹Þ½{75$#Ca¾Áà ìTUU}||¢¢¢RSS“““£¢¢|||èáãââèÛì$­ãêêúìÙ³   7nܾ}; ÀÎÎNR/€×ÄñG±'Ä”——oß¾ÝÔÔTzu£R„ÎãÈÏ:N@@@}}}@@!ÄÛÛ›y¼õÁƒ---G%i@pøðáuëÖ-\¸PUUÕÝÝ=((§*°HÛ© q¼xB”ššÚúõë?øàƒýÐŽ¸oQôA)òI"[üÖóW‚¦j€¶ê Ò©½H:—[uŽË¿@h—OTÒ°›o“ˆä‹ô8PJã5ŽçÎ[bdd¤tÕ4ÑÆbùüˆ›Ws*Èù£õ¯ÐœhÉŒ²š“8ÞÇqéÒ¥oýWCCôiÓØŽ«-”¢»¡Ü0¥€Üp³Æ±ººzÇŽ„äääÈÈHÑ— >|Èv€­&–É­»¡"|£PÁtròl ÅÇùKúÎÜ“›‰ccc#ó:±'ÑñùüÐÐP¶T&ð¬Ù‰u¿&(4Ú2f'¢)#WÓÇΰRp3qìÖ­Û¶mÛ!3gΤ' ƒ0ÿ81öB{‘Ã]&AôúAYbn­9¹§’p¼cll,3ÝÔÔÄv8m'V£hEÐü_&rÇöÂJ÷¤vŒ¼SåR gÇœœœ˜˜˜ÌÌLBHÝÿµwïQQœçÀß]PÙ"¢ÜêÑ´Rêî¥h@HQ8AP¥´rIÔTO<"¡€Q„jõx²Á(i­£ohŽ/‰ÇzE,Õ#¥- ¹Èe…ÝíÓîoËmXvw.|?Í; 3Ï;ûòîÃ;óÎ(ñññ®®®^^^'Nœ`:4=éL1Ùߤ@ ÓçØE;¡á÷8G…\ðÿ™ò¸LWü¼TýÏþsåÊ•NNNÔó:týúõõë×[ZZ~úé§S§N `:F}˜¾;fçãx`Œ3ê¤=VÝY8š^w,tàýëhì#ê\›æåY?ǃìß¿Ÿ¢V«óòò>üðCê- ½½½_}õGGƒ0R:ƒŽ¦7aÊžœÀà‘Œ…»ñLSGM›çýù?/U—––†‡‡SË?njj ¢Šnnn:ó¬`447ÏpýK”©Ÿõ§yd/1Dv2.ªš¸ŽühðúágâøêÕ+333jùîÝ»?ÿùÏ5?íììd:@nàÖíØ0Öh¦óµ§2lv¡ᱱpk&wñ3qœ1cFaa!µ|õêÕwÞyGó£’’’Ÿþô§LÈ%&¾0"Æ{ç2×õŸºÄ Ú¯Iö¿:â{Êøycdddzzº@ ¨®®þûßÿ¾~ýzBˆJ¥*,,<|øðG}Ät€œ‡ú iòÃæCýç=hQ{3¦OÀÈjÄ­˜¬Âñó ŽÜÂÛı½½=77·££#::Ú××—õêÕˆˆˆ>ø€é9ÀFý‡vÀ; 9==™»—òéŸgîÖ‘‹¸ÔúGééÓ§öööVVVÆ>T*-//gºººŒÚ;dÇ€{ÑzƒduÃfŠŸò<Òº~çFM ò!jfÖn¼ê˜þˆ,ÇÏÇ9991pؘÍLI;YÄ8" ¡Ä`ô>n[d3~Ϊ0ŽNOæ4¤Œ¬…G€a` €‚G€á!e H€&$Ž\‚wñƒ8‚( kkkí—€ïÛ·Oûe£öööLÇÀyš·êá‘×ÀLŽáÓß=ì‹¶êëë÷»ßµ··k¯¬ªªZ¶lYLL U7n#§ `\œï¢‰vØwñéw6tŽblšƒrëSË8r†vg²§ˆ ûÈþÝ»wïØ±£ÿ/VUUùùù-^¼˜Ù“07”0Î6ÁÎMsN þ0\ªæ4}8:ÆÛ·oW«Õ·oßÖY_UUåèèØÝÝ­3 ÀÚýW.ûj¿GÛdÇ2¯®| €Ä‘¸õ¯˜J¥zöì™\.Ÿ8q¢µµµ››Ûƒ˜ ࿸գ° G”ÞÿÿÕÕÕ …BŸúúúêêê3f·µµ1]!BL;tg¼Èû_\6Èlk#íé’¦9" îqäƒßMŸ·MŸ>½»»[SüòË/ííí¯]»ö«_ýÊôñðÉ€_:7 ’‘Ï5ÑÙ­Á§Ýô¿Ò¨GãAâÈ:ã¦ùÓ¤Œ£9¢µµõÔ©SëëëMqšÀ˜¸8 y@:ƒŽœ®‘¡nÔ>'ÆËMpD0*\ªæµÓ—þö¹¹¹sæÌyùò%Uljjª««›5k–)cƒÓ(âÁåEª[3}ÊfšsbŒØfŒzD0$Ž`xµµµ|ðÁ_ÿú×Û·o¯X±ÂÓÓÓÇLJé¸@:Ó1–…Øù‰ ©ð G0u.ÕðKtŒ¿wN眠ý‘që³£¶uêÈtàl‡Äq`ÅÅÅÔ²¥¥%!äÑ£Gk×®õóóûãÿhccÃt€„bgg§V«[ZZììì!ÍÍÍjµZsåZoÆËtf*˜ðT1l¤ïgÍGÆ¡°Gz¶¹XG¦`rÌÀÌÍÍ­þG(öõõÅÆÆ®^½:==Y#°‡D"±±±),,¤Š÷îݳµµ¥.’°–fú*Ó0Vw¦£@Øü©£éaÄ‘–;wî4448;;kzgBˆX,¦þÅ`й¹ydd¤\.wttT*•r¹<22ÒÜ};:Z*++Õju\\œöÊŒŒŒeË–1Œu±±±¯_¿Ž%„oÚ´‰éˆ€·¸t£+0÷8-H€$Ž@ G ‰#ЂÄQO}}}r¹ÜËËËßß_.—19ýõë×îîîÝÝÝœˆ­­­-99ÙÓÓÓÃÃ#::ºººšµ¡jÜ»wïÍ7ß4êeœùùùnnnQQQõõõ쌳µµ5))I&“yyymÛ¶­µµÕxq궉[&ÏÐo\Ô¿1󩾃µ|>Õ‘òý÷ßGEEyxxÌŸ?_»ÿáY5yB zIKK“Édׯ_¿~ýú;ï¼sðàÁ7kllLNN–H$]]]œˆ-&&fñâÅ·nÝ¢^±èëëÛÙÙÉÎP)ííí¾¾¾Æ>ã‰óÔ©S...çλuëVHHÈÊ•+Ùç† /^\TTTTT´xñâèèhãÅ©GØ&n™,**òóó‹¥~ħjòG}ôôô¼õÖ[çÏŸ§Š¹¹¹2™L©Têl–••%ù“%Ž£‰­³³S*•^»v*¶µµ9;;kЬ UcË–-K—.5êMœJ¥ráÂ…‡¦ŠEEE‰¤¶¶–mq* ggç³gÏRÅ3gÎ8;;+ #Ò‘†mâ–É34 ؘùTßÁZ>Ÿê¨V«+**$Iii)Uüâ‹/æÌ™£T*yVMÞÀ¥j}TTTtvvz{{SEooïæææ²²2Í6nÜX^^~úôi®Äöâŋٳg»»»SEKKK ‹––†J¹zõjqqqBBkOiuuu}}}PPUôôô,//Ÿ6mÛâ$„… &PËB¡‰::a›¸eò ͆ÁE6f>Õw°–ϧ:RÂÃÃß|óMjù'?ù õÎLþU“ðÊA}ÔÕÕ {{{ªèàà ššš˜Žk´±Íœ9ó믿Ö ºººÜÜÜX*!¤©©içÎPù®—ÑÄY]]mffVRRýâÅ‹¹sçnß¾ÝÑÑ‘mqŽ?>((èØ±cTß½téÒñãÇõÄÒÛÄ-“gØÜ_¡¾C¬å?yò„7u$„ˆÅâÝ»wBZZZž>}ú§?ý)88X(òé£äŒ8êC¡PˆD"ÍŒP(´°°hkkc:.ƒÅ¦R©¾úê«­[·®[·ÎÉɉ¡nß¾ý—¿ü¥‡‡‡‘Â3Hœ*•*++kË–-ÙÙÙfffk×®5Ò<žQžÏ¤¤¤ºººåË—/_¾ü‡~ضm›±O¬a›¦eò ›û+Ô—&–ÏË:B¢££W®\YWW·jÕ*ÂÓ’0â¨kkëîîn•JE5h•JÕÓÓcmmÍt\†‰­¦¦æã?®ªªÚµkWXX;CÍËËûþûï8`ܳ9ê8E"‘Z­NMMuuu%„dddxyyݹsgÑ¢E¬ŠóÕ«WaaaË–-Û¸q#!$+++,,,??âĉì9½&k™<Ãæþ õ¥£Ëç_)gÏž}ùòåþð‡ÈÈÈÛ·oóµš\‡G}ØÙÙ©ÕjÍ-VÍÍÍjµZ3œÎéØ=z:cÆŒ+W®û»y4¡–””<~üø¿ø…T*]½z5!dîܹ{÷îe[œ¶¶¶„±XL'Mšdooo¤'òŒ&Λ7ovtt$''ÛØØØØØ¤¤¤´¶¶ÞºuËqê¶)[&ϰ¹¿B}‡5`ËçY«ªª>|H-O™2eóæÍ<àY5y‰£>$‰Maa!U¼wïž­­­&9ànl}}}±±±«W¯NOO·±±as¨}ôÑåÿÙ¿?!$///**ŠmqΚ5kâĉ¥¥¥T±¥¥¥¡¡ÁH÷8Ž&N•JÕ××§T*©b_____ŸJ¥2Fœz„mâ–É3lî¯Pß¡ ÖòùTGBȃâââ4N{{»J¥‰D<«&oàRµ>ÌÍÍ###år¹£££R©”Ëå‘‘‘Ô,°œœ[[Û%K–p1¶;wî4448;;kþP !b±ØÎÎŽm¡ÚÙÙi¢jll$„899‰D"¶Å9a„+V¤¤¤ìرÃÊÊ*##C*•Êd2¶Å¹páB++«„„„¨¨(µZ}øðáI“&-X°Àq궉[&Ï q†y‰Oõ¢å󦎄__ß}ûöíÚµëý÷ßïîî>pà€X,vqqáÓGÉ'øôûúõëØØXBHppð¦M›¨õ'Ož‹Å &Ž£‰­²²R­VÇÅÅi¯ÌÈÈX¶lÛB5±ÑĹuëVssó]»vuttÌŸ?ÿÓO?533c[œ“&M:qâDzzúºuëÁ¼yóNœ81iÒ$–œ^Ó·Lžì óoê;DËçM !¶¶¶GŽIOOï½÷D"‘L&KMM7náÑGÉ'c?Êø÷8-H€$Ž@ G ‰#ЂÄhAâ´ qZ8-H€$ŽÀv`: súúú>ÿüó÷Þ{ÏÝÝ=00póæÍUUUÔž={&•J[[[™ŽQkÞ@â «­­-,,,''Çßß?++kÆ mmm¡¡¡W®\a:4&™3ëÈåòÖÖÖo¾ùÆÎÎŽZ’––¶cÇ™LÆttŒÁˆ#pU}}}ll¬L&óññINN~õê!$:::!!A³Í_|áëë«R©ÜøÙ³g³fÍzúôé¯ýëÌÌLBÈýû÷W¬XáêêúöÛoÇÆÆj.÷444lذÁÃÃ#44ô›o¾‘J¥/^¼,àºæææsçÎ%$$h²FJll¬¹¹ùéÓ§©biiixx¸»»{ddä?þñjå·ß~2gÎ???Í–¢º ¢¢"???WW×ÐÐPj':—› =<<4ÛÿùÏ–Édîî‰›6mš7o^@@ÀÝ»w5{00šÝ ÀÐ8')ŠU«V‰D¢£G~òÉ'555›7o&„Þ¸q£··—ÚìÒ¥K!!!½½½nLQ«ÕIIIþþþK—.}ýúuTT”T*ÍÉÉIKK+))9tè!D©Tþæ7¿ÇŽ‹‰‰IOO:àº'Ož¨Tªþ#‹"‘ÈÍÍ­¢¢‚*¦¤¤¬Y³&;;{êÔ©«W¯njjzþüy\\•2FDDìܹ³¬¬lˆ©Tª={ö¤¦¦æääŒ?þ÷¿ÿýÐ)•ÊÓ§Oùå—{÷î½téR@@À¢E‹NžñÀjv[²dIff¦ÎÊüü|???¥RIøá©TZ[[ÛÑÑáââróæMµZýüùs‰DRYY9ØÆ555‰$//ZßÒÒrüøñ®®.ª¸sçΨ¨(µZ}åÊ77·W¯^QëÏž=+‘HjkkÛ-Ó' Fëüùó³gÏðG{÷î £zsçÎQ+{{{}}}?ÿüó[·nI¥ÒçÏŸSë¯]»V__?ØQ¨\¾|™*Ì›7O³þåË—Ôú»wïj¯øð!µ>22211‘Z¾xñâܹs5ÛôŒf70,ÜãœôäÉ“çÏŸ»¸¸hÖ¨Õêšš™Læííýí·ß.X°àÒ¥K®®®NNNyyyn<}útBÈ[o½E­œ2eÊòåË¿ûî»òòò²²²¢¢¢ùóçB***¤R©¥¥%µ™fûÁb˜6mÓ§Feúôé½½½---666:?ª¯¯Ÿ:u*µüöÛoS æææ•••kÖ¬quu \¸p¡§§g@@Àüã¡¥éC&OžL'¶7ÞxƒZ°¶¶Ö^ÖÞ¦`tºA€a!qN²²²rss;uêTÿíÛ·oçΗ/_ bãgÏžB&NœH?~¼råJggg‰DòôéSBˆR©šßÒ,pÚÌ™3ÁÝ»wƒƒƒµ×+ЇFFFöÿ¡Phnn.‰Îœ9S\\|óæÍÜÜÜŒŒŒ¬¬¬  q¬ & ŒB¡ìGÚ]Ó`¨ÀhvƒÃÂ=ŽÀI‰äßÿþw{{;U,..Žˆˆèéé!„¼ûî»íííùË_ÊÊÊ‚‚‚†ÞXÛåË—§L™rüøñU«VyxxtwwSëgΜY^^ÞÕÕE=z4l Àivvvaaar¹¼¥¥E{ýgŸ}ÖÓÓóþûïSÅââbjA©Tþío‹Å÷ïß?|ø°§§çæÍ›/\¸àîî~áÂýbÐô-ÿú׿Fú»ýC†‚Gà€ÆÆFíÌE"‘Ïo¼ßØØ˜––6{öl Bˆ¥¥å‚ öìÙããã3eÊBÈk³±±ihh¸ÿ¾££ã7òóó%‰B¡Ëå[·n‰‰ihhÈÎÎ&„š».JLL,))Y¾|ùúõë/\¸PXX¸ÿþÉ“'SXFF†••Õ´iÓ²³³;::V¬XQZZš™™immíååU^^^RRGÉÉɱµµ]²d CÛÛÛ7îСC7n¬¬¬ù$99ùøñã;vì .doÛ¶íÃ?œ4iÍÝMž<ùüùóGŽ)((ÈÌÌtpppqqÉÏÏÿÙÏ~Fm ‰>ûì³ÚÚZ—Ó§O[YYÉd²¤¤¤£G¦¦¦:88¬Y³fÕªU„“'OŠÅbš‰£H$JKK“ËåK–,™0aBTTÔˆrÇ#„ ¿ƒ¨Õj¦c`µúúú7n„…… …BBÈõëד““ ™Ž xŽºaF$1ÀÿÁˆ#À0ÆŸššÚÚÚÑÔÔtðàAûåŒ)#°F†WXX˜‘‘QYYéàà°pᤤ$ssüÓcG ãZ8-H€$Ž@ G ‰#ЂÄhAâ´ qZ8-H€$Ž@ G ‰#ЂÄhAâ´ qZ8-H€$Ž@ G ‰#Ðò³¶$`Î…L–IEND®B`‚statistics-release-1.6.3/docs/assets/anovan_1301.png000066400000000000000000001277531456127120000222340ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A€IDATxÚìÝi\WÛà“°dSdS¨(q+*«,•ªÅVí"UQ±ŠV«ˆVQA«¸Z÷ÒºRm]êS7@l}TÄ¥*‚( *‹ ¢ û’y?ÌÓyÓ@bÀ„ “ÿõßÌd2sOÈœÜsΙ3<Š¢À›ðÙÚ$Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $ŽÐÎTUU­^½º_¿~ººº;w6lØÉ“'Ù FOOÇã5}©wïÞ<ï×_Uh/^¼ÈÏϯ®®¦g544x<^ee¥\6N£k×®ãÇÏÏÏ'„”••ñx< –FíGhg&Mš´téÒû÷ï÷èÑ£¾¾>11qôèÑŠÎϔ֔)S,,,þøãz¶oß¾ýúõãóåùûnaaѯ_? ‹ÂÂÂC‡}þùçEµ:Bh×8‚œÑ—§cÇŽe–üôÓO<ÏÉÉ©#‘~5\__¿zõêÁƒôíÛwÊ”)ÙÙÙR¶&ûú¸@P¨âââcÇŽ©««§¦¦¦¥¥•––~ÿý÷B¡0&&¦éÊ555lÇÛÖRRRÒÒÒ´µµå¸Í7¦¥¥=}úôøñã„«W¯>zôˆí–PrÕ«W/ú«uáÂz ]š;::¶q$¯^½"„¨««7}©´´”Id;vìÈãñ!zzz§NjvS-ZŸþ˜ tú]ƒ  …RBãããC9|øphÊ/%%…>KJJè%eee111±±±”ȉæÌ™~ýú©©©yzzæç狾”––æîî¾k×.Š¢ª««,XгgO===OOÏK—.1;JOO9rdçÎuttìíí=J/¯««ûöÛo»tébmm½oß>]]]BȳgÏš†J—ÍžÈõõõ«V­êׯŸŽŽNÿþý7mÚÔØØH¿D‡dcc£««ëââ/%º¬ ­ZµŠ¢(uuuBHEE…”½0ÅŸþioo¯««ëåå•ýÆChhhÐÔÔ$„\¼xQ¬@“´¯¦B»†ÄäŒIííí…B!¥”‰ã¬Y³!={öüûï¿é5§NJ155-++{ËõÅÊYú’™™‰ÄàíUUU™››B ÆŽ»fÍšsçÎÕÔÔЯÒgÇÓÕÕuvv644$„8991/ñùüÞ½{BvîÜIQÔ˜1cèòj̘1ÚÚÚÚÚÚwïÞ¥(ª¡¡¡{÷î„xyy©©©©««?zôˆ¢(:surrRWW§¯$[š8N™2…Ò¹sç#FtìØ‘2wî\ú%:¤wß}×ÃÃC]]]CCãæÍ›’âù믿 @™={vZZõïÄQÒ^˜O©C‡}ûö¥›A†þÆC`ú’æåå‰h’öÕ4Bh×8‚œÑ¥L—.]!ûöí£š$Žo¼f*è%ZZZ±±±ÖÖÖfff‹-zôèч~¨««kggÇÔ 4{!.)K+..VSS#„ˆV-466Ò¿%ëׯËõq h£GÖÑÑaÎ==½Ÿ~ú‰úçÄ'„¬Y³†¢¨‚‚‚wÞy‡råÊæ¥3fdgg×ÔÔ¤¥¥B¬­­éS/22’2yòdŠ¢rss‡:~üxznnn„£Gæääðù|uuõÇSµvíZz›-JÝÞÞž~éðáÃtÂ|@¯“••Å$ŽôM£S:I‰ãáÇ !cÆŒa–Ðkž;wŽ~iĈM·Ùx(ɉ£”½Ð…ššÝ.TZZ*©1„iD¢Oš4©´´”úwâ(e_GnÁÍ1 fffß}÷]~~þ¦M›D—?|øpïÞ½zzz)))gΜ¹té!dëÖ­Ïž=£W …|ðAvv¶h|îܹ»wïNš4‰òÞ{ï=~üøîÝ»|>ÿÉ“'eeeyyyÖÖÖãÇ¿}ûöùóç ÔÐÐpûömI±åææBè¦.Qt-)ýêÛ¬O[´hÑÀ{ôè1jÔ(BˆØ¤|žžžtçÈÁƒ÷ë×í&€r¹{÷îºuëbcc544ìíí¿ù曄„“†††{÷î1«1·Óí°t½#!DMMÍØØ˜™&„8::±lÙ2BHyyù€¾ùæ … z{{Óo)//ÝxçÎé¦jzGZÿ~S3EQ„æ„BHCCCCC!¤±±Qì-’âiÝ^èYú>ÑÑ„ÉùŠ‹‹÷íÛשS§–î 8‰#(Êüùóß}÷ÝuëÖ0 é|nèСtbÔ¯_¿^½z566Ò­3„÷ý÷ß÷èÑC´”§«ºuëFñôôTSS355¥Û,--;6tèЀ€‡¤¤$"µ´²´´$„ˆFUZZZUU•žžN¿êïïÏÜ}ìØ±7®ßì^?~œ’’’››K_ ïß¿_l…7~Ьúúúï¾ûnÆŒwîÜ¡—<{ö¬¾¾žbccìväÈBHQQÑ_ýE8p`ÓMÑf/^¼?~ü„ ¬¬¬RRR***!§OŸÎÉÉùð÷mÛöÙgŸ1'¦­­-!äòåËôP tFE¿´{÷îêÐý%¡› !™™™W¯^åóùvvvtëÊåË—_¿~MY¹r¥žžÞ’%K$ÅÃhZèIÙ‹Üÿ)²ì I$7 qEÑÖÖ^³fMee%ÝmˆöÆ«RÑÊsML£[aDµôBœᬰ°ðÊ•+„ÚÚZoooooïÿþ÷¿„ŠU¼qýf÷‚ t0`Àرc+++úöíÛ£G—/_~õÕW={ö¤×áñxaaannnýúõ«©©3f ÓÝETß¾}?ù䓜œÉ“'1bóæÍï¾û.ù§¨ILLôöö~÷ÝwéVŠ¢\\\úõë×ÐÐпww÷9s戞ÅÍ¢Û¿þúk¯^½&NœH—]Ÿ|ò‰‹‹K]]]```×®] 0bĈªªªþýû6lÕªU ãÇ—!„yóæÄÄDÑýJÙ‹Üÿ)Ò÷%)Bh—Øn+®íÓ# ™Qlè>Ž÷ïß'„èëëPõðáCMMM>ŸŸŸŸß´K¢Ø’¥K—B¾ûî;zVKK‹RRRòË/¿î¬¯¯§Ë©Ã‡K¹…ù›o¾!„ØØØ¤¦¦RNihhHwH›õ¥ÜG)’”‚ú§KÐÁƒÙþ(£êêê7öïß___¿S§Nööö[¶l¡o¬fβ?þø£wïÞÆÆÆÓ¦M«¬¬¤$Ü0WQQhii©§§çááñçŸÒË«ªªèZ´wß}wÙ²e3gÎ$„̘1ƒ¢¨;wîÐ =zôˆ‰‰yãptà&Z]eTRRòÉ'ŸlÞ¼™¢(??¿””mmíf×ôD\\ÛQ“¼¼< ¶£@0¦õzôèÁv­ñøñãÍ›7_¾|ù½÷Þ³¶¶îرcCCË/îß¿Ÿ““3a„©S§êééÉ}¿'Ož 9s挕•UÓWy<ž¤76û[€õ±>Ö—}}GY-[¶lôèÑNNNׯ_ãÊ<`;Þÿ§T¿»Á´HNNÛ!´Æ²eË233'Nœ¸aÃ555±WËËËýõ× &Lž<ù³Ï>“×N…Ballìš5k¦M›ÖlÖH±µµmQéÔÒ_G¬õUy}ÄQ&ÇúôéæÍ›ÙÚ1cÆØÛÛKzU__úôéþþþ÷îÝ“×?~’““³bÅŠ/¾ø‚í8 ‰£LRSS333ß{ï=fÉ€&Ož¼dɶC¥#%kd¨««ÛÙÙÉewwîÜñ÷÷2dÈÎ; Ù>zà2$Ž2 œÖ'* ‰#´*ßhùòå©©©~øáÑ£Gýüüª««¯^½úã?²­­­ôî•bÿÍ7þs±>ÖWåõUGh T4ÊâÚµkëÖ­óôô|úôé‡~èääÔ§OŸ„„'''¶Ch îž‘‘QTTD¹téÒÂ… ÷ïß/ Ù  ð޲«®®îܹ3!¤W¯^tUŸ‡‡GBBÛq´ÇÇC‡}úé§éééÏž=›={öóçÏ7oÞ¼mÛ6¶ãh¯Tùù­`kk{øðáêêj@@ßj››[UUÅv\­ÄñÄ1&&&88ØËË+!!ÁÒÒrÏž='Nœ`;.€ö­°páÂ3gÎ9rdðàÁ÷ïßÿ裆Êv\­Äñ>Ž%%%îîî„ëׯ{xxBAqq1Ûq´3H[ÇÙÙùÚµk•••;vŒ‹‹344üòË/ÙŽ  •8ž8vïÞ=11ÑÀÀàâÅ‹“&M"„\¹rÅÄÄ„í¸Ú Ü:ý–455555 !666666l‡ðV8ž8Î;wûöívvvŽŽŽ;v숎Žþî»ïØŽ  }@Eã[’t÷ô7Ø  58ž86,!!!77×ÁÁÏç;88ìÝ»×ÕÕ•í¸”*åbË–-Ìtmmí½{÷öìÙãïïÏv\­ÄÍı¤¤„™ÖÒÒêÕ«Weeeee¥••ýª‘‘Û1()ú4AÊ(b—©žžž`þüùþþþÚÚÚlGÐbÜLÝÜܤ¯ ýÙ *‹Çãegg÷èуí@8«gÏžµµµlGÐJÜLéñÒ@vLÛtNNÛ±pÇ«W¯DgËËË·oßnnnŽêFh§¸™8vëÖMÒKµµµ›6mZ²d Û1(Ü£ ...bK444Ö­[Çv\­ÄÍÄ‘ñêÕ«­[·æåå1KJKKóóó‘8ÐpŒB5mý066Fu#´_O—/_žššúá‡=zÔÏϯººúêÕ«?þø#Ûq(T4*Hrr²¤—òóóI“›fÚ Ž'Ž×®][·n§§çÓ§O?üðC''§>}ú$$$H\ @E ¢Q¡fÍšÅL×ÔÔ…BúB¡bccsêÔ)¶ch Ž?«ººººsç΄^½zÑwR{xx$$$°›èŠFdŠsû6l°°°øùçŸSSSSSS÷ïßoiiiggÇv€­ÄñÄÑÖÖöðáÃÕÕÕ€îl”››[UUÅv\ì ë½2¶™-[¶„††º¹¹ijjjhh¸¸¸„……;vLìnk€ö‚ã‰ãÂ… Ïœ9säÈ‘Áƒß¿ÿ£> :th+6UVV¶dÉggg''§o¾ù&77—íƒhT4¶½‚‚===Ñ%:::ººº-ÚN]]ƒƒCuuu³¯îÞ½[ bРAl7pÇû8:;;_»v­²²²cÇŽ±±±qqq†††_~ùe+6š••©¯¯íïïúôé:°}ˆo¦ˆµµµ&&&:::²,WMŒŽŽþá‡:vìH)++‹ŠŠrpp ÿ#2*))‰ŠŠª¨¨´B^^ž——ׄ èYuuŽìÀ"î—/šššššš„›Öm¤ªª*11qûöíîîî„èèèAƒ]½zÕËË‹íã¦)#ýÈAš¤7>{öléÒ¥ååå2.WYááá~~~žžž½{÷&„ddd8p@ö-lß¾}óæÍÒ×ÉËËsuu¥K'…âxâ(éîé7n´h;}ûöupp gutt´´´JKKÙ>>iZÑQ쑃Ínáûï¿_¾|yÓ÷JZ®ÊÌÍÍãâââãã³³³ù|þ¤I“†ª¡¡!ûfÍš5kÖ¬[·n}õÕW’ÖÉËË377¯©©ihhÐÕÕeû €Ë8ÞM^t4µÚÚÚ{÷îíÙ³Çßß_t°ŒV8yòdHHÈ™3gDëf€žˆ‹‹cû yyylG`Ú:ú›™ÝŠ7^¼xQ4++«f·sóæÍ/¾øâîÝ»b6$-oµöøàìÌÌÌN:eff6»BK[?èÄ1%%¥éàáB¡ÐÎήwïÞwïÞ …}úôYµjUß¾}›ÝS:Ñ£L´ÇkÅFÙõôôóçÏ÷÷÷oÝÄBallìš5k¦M›ÖlÖHSªBY©~wLó–÷M[XXˆÓll„îÝ»‹õe”´¼uÚ郳}||‚ƒƒ}||š]AŽEÄóçÏù|¾³³ó®]»jjjV¯^=cÆŒ³gÏŠÝ”£ˆ]€ âxâØTÏž=kkk[÷ÞLJ„„äää¬X±â‹/¾`ûPÄÉý&ŒÝÓ:)))ô*iiiŠÞ—©©ijj*3»víÚAƒ%''{{{³ý1q|8žWÿöäÉ“íÛ·›››·¢ºñÎ;cÆŒ±´´ŒGÖJH.£íPÅT¥·èÎ_¥­­MwdÔÔÔÌÎÎ~ùò¥¦¦æµk×–.]zøða…Þõ¬§§gll\RRÂögОÔÖÖTVV2KÖ®]ËallÌvŒÊ‚ã5Ž...bK444Ö­[×Òí444ùùùÍ›7íc'ߊÆììl!äåË—ÅÅÅÖÖÖl:€R½nÑ0999£Fš={6=Û¢{Ú¸ã‰#ý´QÆÆÆ­¨nLJJ***êÝ»·èÝ6666FFFl"¨:E´&#e”—˜˜˜àà`///úaƒ{öì‰_¿~ýÛ'ޱ±±;w>|¸››[XXØÂ… §Nª¦¦mgg'i@ •"V<¾q˜ˆÊÊJ¦svNNÎ!C<==10­n&Ž¢é˜üü|Ò䦙7zôèEQsçÎ]¸qãÆQ£F±}¬ ºP/¨üJJJèá¯_¿îááAÅÅÅo¿åƒÚØØ >\OOïðáÃk×®;w®ººº‡‡ÇÂ… ÑÍ€ÁœE5Í—-[6}úôéÓ§Ÿ:uJtyNNNÇŽgΜ‰iÅp3qm§¦¦F(Ò}„B!!ÄÆÆFìûñFS§N:u*Û‡ðÿpÛJ»Ð½{÷ÄÄDƒ‹/Nš4‰råÊ“–nÇÞÞ^ìnè³gÏ2Ó=zôصkÛÇ  ŒD‹Êf/¨š€V(æääÌœ9“žussûùçŸíííÙ>¥ÀÍ›cnÿcÆ ?ÿüsjjjjj*ÝZdggÇv€­G_±ž5º¹¹QÕ´ùFÒrÕ¸sçÎ!C†ôêÕËÑÑqÇŽ+V¬˜8q"Ûq¨ Ñ¢²ÙbsÙ²eEíØ±Ctaaa¡††FHH]ÍÔ­[7Ÿ²²2¶F)p3qdlÙ²%44ÔÍÍMSSSCCÃÅÅ%,,ìØ±c¯^½b;4€cRFÖ³FѰaÃbbböíÛÇçóöîÝëïïÏV<>d¦Ek_0iL‹N›››WWWoذ~Êü®]» ÏŸ?ßt}Äñı  @l\]]]¶Ch¤Œí”………••UJJ !ÄÎή¥¬åËÖÖ–™–TƒiLslšR§ÕÛÑ××÷ÝwŸ={ÖtÄñÄqàÀÑÑÑLýbYYYTT”ƒƒƒŠ_.@û¢$mÓÐ 3gÎôòòš2e !dòäÉÁÁÁ¢cÅ€¢Qÿ½ =räHÿþý_¾|IϾxñ¢°°°OŸ>lŠRàx➟ŸïééùÕW_}õÕWžžžyyyááálÇ +T4¶k¯_¿¾té’šš!$$$$==}ýúõlÇ D«ùííퟟ?iÒ¤Û·oB&L˜àììLŒOÍÍÍãââ¾ÿþûAƒ½ÿþûqqq]»ve;.€7CE#$%%Í›7yæ„££ã¢E‹ÙŽ @UP"š]áùóç'N !„¬X±¢±±‘b``””DQÔ²eË!ÖÖÖ§NB[%›‰cff&ýÄ­ÌÌÌÇ÷êÕkäȑÇ·¶¶ÎÍÍÍÌÌd;@€7h]E#saÍvøð?uuu:t]bllLÿ2@àý›Ø«B¡päÈ‘OŸ>ŒŒ$„ÄÇÇÓ/ ‚S§NÑwUoݺµS§Nlвàæ8Ž>>>ÁÁÁ>>>Í® 6"€òhvXoÑl¥¼Qt¸2TU*''§}ûö­Y³†ž-//ŠŠjú(TP„¦OŽ[áÂ… ·oßÎÏÏÏÊÊ"„ìØ±cìØ±b×{ Š›‰cJJŠºº:!$--íXZ iÂ'–GJzZLÓ‘;*ƒ%K–Lœ8ÑÛÛ[(Ž?þþýûëÖ­c;.UÔ´`|øð¡é?(Šª­­­¨¨¸qãÓ‘˜–íÀ• 7GæiÔššš:u255½téÒÉ“'ûõë‡ÑwA Iy~`ÓŒí`AVfff§OŸ>{ölVV–žžÞôéÓ=<<ø|nöhwºvíZ\\üòåKº%:==RTTÄv\JãåסC‡>ýôÓôôôgϞ͞=ûùóç›7oÞ¶mÛqü‹••næ˜êêê”””Ç¿óÎ;£G^°`ÁôéÓ QãÀЦí0C‡MOO÷õõ500èÓ§Off¦††.í¤ãf##&&&88ØËË‹~Øàž={âããׯ_?gζC 䟊Æììl¶yºwï^@@ÀóçÏ !}úôÙ¹sgxxxRRRmm-!„Çã-Z´ˆí¸ïM4t_Æøøxz¶°°°¾¾^tœ|hŠã‰cII‰»»;!äúõët—@P\\Ìv\ÿj›ÎÉÉ‘´šX§I=›–¨¿dÑúõ룣£uuuwîÜ9vìX===z¡®®®¥¥%Û¨Š7–„H[Šãõ±Ý»wOLLÌÏÏ¿xñâ|@¹r劉‰ ÛqªkÑh;’™Õtµ7ŽXm#==ÝÏÏÏÑѱW¯^¡¡¡%%%ÇwppZZZl„RTT4lØ0ºk#!D lÙ²ÅÎÎŽí¸”ÇÇÀÀÀ;w2¤W¯^ŽŽŽ;vìX±bn޵nXo¤ƒíKyy¹ =Mþ-Ø Ä™šš¾|ùræÌ™/^<|ø0!=ÙÞˆãMÕÆ KHHÈÍÍuppàóù{÷îuuue;.PMÓaª›R‡ ‰™+п ]8zôèÌ™3?þøcSSÓèèh¶Ãi8ž8B,,,ø|~JJŠ«««‰ Í0Ù¡èðÝb éi+++fã/´™îÝ»ÇÅűE{Âñı¢¢bÁ‚.\ (êÁƒ“'O¶°°X¹r¥ŽŽÛ¡Ç5ÍÿÄns»El9rÇö.66ÖÔÔTÒìܹsÙ 58ž8FDD¼~ýúÒ¥Kô-Õ!!!K—.]¿~ýŠ+Ø T‚hµbÓQ!˜ÜÃñpŒ••ÕíÛ·%Í$ŽÐnq}úìܹ3<<<))©¶¶–Âãñ8‚\0å‘X;5²F7kÖ,fº¦¦F(Ò½WéþÖ666§Nb;F…; ÄfÍÌÌÌÌ̘ÙðððáÇ5Ší¨ÛÑ °K;Ðì3àmp3q\¿~½±±qtt´®®îÎ;ÇŽ«§§G/ÔÕÕµ´´d;@àd‡ 3jcbbâºuëÂÃÜœx<Þ­[·–-[fggÇv€ ×¢³#++kÛ¶miiilG݈~°(‚ÞHÊ3 Õ¸ÙÛ/==ÝÏÏÏÑѱW¯^¡¡¡%%%Çwppxê ¼%ºöHtBÒíÒ â¶lÙêææ¦©©©¡¡áââvìØ±W¯^±š >}ºh$4K¬lA&ÔRøÄä‚›5Žååå666ô4=ú·@ `;(hßÄŠ›¦mpH¡©‚‚===Ñ%:::ºººl‡¦X²wóMOO?{ö,žÐ^p³Æ‘‚[§Aޤÿâ*$8p`tt4S¿XVVåàà "_æ0¥œA7nüòË/ŒŒØ¸ÍArÁÍG¹ëZÄv8Ð>„‡‡ûùùyzzöîÝ›’‘‘ahhxàÀ¶ãj ²Ü‘PYYyôèÑÿüç?lÛ>ˆÕ㢠z#±«zdrÁÙÄ166ÖÔÔTÒìܹsÙÚfùpå ²077‹‹‹ÏÎÎæóù“&M:t¨††Ûqµé§Éü¡¥¥åééÉv˜í†h&„"Hø”䎛‰£••sWcÓY‚ÄdF'ˆÒ¯ì‘D‚šššFFF®®®555*•5¾Ñ¹sç\]]ѳ¨EPÚ»¸™8ž={–í Ý“ÞĆë~EEEÅ‚ .\¸@QÔƒ&Ožlaa±råJ¶CS ýõ×´iÓØŽZ×yÿ¯é:RFÛÁ£¥á"""^¿~}éÒ%555BHHHHzzúúõëÙŽKYää䄆†²E;ÃDl* ‰#¨.^ͲÃäŽÈ¡¥’’’æÍ›G Fqtt\´hQbb"ÛqA{Å”KÌØ‚ÄT”••UÓ\PtDFúÕ„òòò¨¨(¶ãh%nÞ“œœ,}WW×–n³¡¡aË–-GÕÑÑ1bļyó^´/bãŸÑ5Ži"(Ò’%K&Nœèíí- Çÿþ} ‹uëÖ)b_uuu®®®—/_ÖÖÖfû¸€³¸™8Κ5‹™®©© …t%}ÝoccsêÔ©–n322òĉ„Å‹kjj²} ð’†~ešxÄn‚{à-™™™>}úìÙ³YYYzzzÓ§O÷ððPÄè3%%%QQQl1(PÓÀÑåÚ7GfÔÆÄÄÄuëÖ…‡‡;99ñx¼[·n-[¶ÌÎή¥¬­­=|øphh(=Pmpppddä¬Y³0ü˜2+a›²¢YcÓ àyðööïßÿþûï=šYR]]½|ùò 6Èq/Û·oß¼y3ÛÇ më8ž÷lÙ²%44ÔÍÍMSSSCCÃÅÅ%,,ìØ±cÌ£ceôðáÃÊÊJwwwzÖÝÝýÅ‹lȪiÊHDÙ^§ÙY€VX½zõçŸ.ÚÄÑÐÐðÇÈw/³fÍzðàÁ¡C‡Ø>Üf`àŽáf#£  @OOOt‰ŽŽŽ®®®A‹¶SXXÈãñ˜15LLLx<^II‰¤õ!$..Ží€äåå±B›ceeÅLgggçääˆÎŠþ€]¼x1''‡¾EFt5®~2í4X°`ÁÒ¥Kïܹ³hÑ"uuö‹\ºtzðà¢w$:„>UåMÕÀ:öK1…8p`ttô?üбcGBHYYYTT”ƒƒCK¯€kkkµµµ™†i>Ÿ¯¥¥UVV&iý6(”e×£G¶Ch£`šˆQt–™¦(*''Gu>™ö ë9ýÛóññqqq™={vZZÚæÍ›ÅFçi{mY:‰i…,ç-5;>UhcoªÏÏÏ÷ôôüꫯ¾úê+OOϼ¼¼ððð–nÇÀÀ ººšSC(ÖÔÔ´´ÚÚ“,Š âÍv\ ZlllŽ;fhh8f̘7ŽùÀ Hh¸Šã5ŽæææqqqñññÙÙÙ|>Ò¤IC‡ÕÐÐhévŒŒŒ(Š*--522"„¼xñ‚¢(¦å”AÓ*¦ #A/r`›žžÞ¶mÛvíÚõí·ß² @ëq>>sæÌaûà@RFP>>>ÁÁÁ>>>Í® T÷Ï)NC¹{ãð´ŠÆñÄ1))iÓ¦MLgDGGÇE‹-]º´‰#Ç aû˜@œØ¨?WÀ¶””ºE"--­Ívjoo¯"ù¨Êjö®j¶ƒ•Ãñ»ªëêêÄ¿066nlld;.æ‚[t(odÀ:mmmº;µŸŸŸæ¿ÕÔÔLŸ>íZ‰ã5ŽNNNûöí[³f =[^^åââÂv\ 7MŸ4 Àºªªª;vBRRR6mÚ$úRaaaVVÛ¨ t •;Ž'ŽK–,™8q¢···P(?~üýû÷-,,Ö­[Çv\ bOš&HAi444Ð%"„04>Ÿ¿|ùr¶„vIì®jtp|#éO…€Öáxâhffvúôé³gÏfeeéééMŸ>ÝÃÃy ´wèÑÊI__Û¶m„iÓ¦Ñr!Ú¯E_Ka<#¹àxâ¸ÿþ÷ßôèÑÌ’êêêåË—oذíР5šÖ)¢eÃvlB+¡"à“vqJ«Ù‚Ú¡PH?ã^”*<OÖ‰Ž¿ƒ*pyáf☙™Ù©S'#####£œœÑ—Œ}}}ÙPÕ‰a+iµflð íH\\Û!° ',° Õ rÇÍÄÑÇÇ' 88˜…GŒ*\î+­f+ÅVhº&š =êÖ­!¤  àñãÇ®®®555ZZZlío)|PòÅÍÄ1%%…y'--íX@VtjÈü%xF´ ,¸páEQ<˜”/Ü2¬ãx☖–öôéS±å7nÜ`;4î“”â‡T‡™™ÙéÓ§Ïž=›••¥§§7}út>Ÿ›w%ŠÁ‚Ÿ$°‹ã‰ãòåË555W®\Ù±cG¶cBðûª!99YtÖÔÔÔÔÔ”ž¾ví!ÄÕÕ•íÛ‚¤h¿8ž8>zô(66ö½÷Þc;UDÿT>|XìQ=<ïÛo¿ŠŠb;@E™5k3]SS# éGh …BBˆÍ©S§ØŽQ±&pÇGccãêêj¶£à>I}nÄîžÞ»woÇŽýüü¼¼¼Ø@nß¾MO$&&®[·.<<ÜÉɉÇãݺukÙ²evvvl BÐ?J¾8ÞÕ&""bÕªUñññùùù%"ØŽ‹;èzf˜nI£ÑÒ¯~ðÁ·oß>|ø¨Q£Ø -lÙ²%44ÔÍÍMSSSCCÃÅÅ%,,ìØ±c¯^½b;4ÅÂØÔ $˜_(ú׊íp¸€ã5ŽþþþB¡0((Hl9žU-GMh”tëôãÇ·mÛ†ç@‚ê(((ÐÓÓ]¢£££««k``Àvh '–;¢¾Úžèo.fä…ã‰c\\Û!¨¨f›6nÜ8}út333¶£h#ŒŽŽþá‡èûóÊÊÊ¢¢¢TáL캽u¸IK.8ž8vëÖRPPðøñcWWךš---¶ƒâ¾fÏÌôôô .ìÝ»—íèÚNxx¸ŸŸŸ§§gïÞ½ !†††`;.…ÃÏ3Wq}úìÙ³YYYzzzÓ§O÷ðð@ƒ©ìšmi¢+…B¡‹‹K‡Nž|(š‘;;;WTTܸqƒù!çÎ[bllŒêFh¿¸Ùh{û6l°°°øùçŸSSSSSS÷ïßoiiiggÇv€íL³CitíÚµ¸¸øåË—ôlzz:!¤¨¨ˆí`”HHHH·«¯¯Ÿ:ÔÂÂÂÏÏoÅŠ¯^½úöÛoy<^EEÛñ°¯ªªjÇŽ„”””M›6‰¾TXX˜••%û¦¶lÙrôèQ#FÌ›7¯é…ÜîÝ»E÷Ò©S§«W¯²ý7q}šÛýùD{46m¹îСC||üœ9s¼¼¼ÌÍÍÃÂÂüüüôõõÙŽ€} ÙÙÙô43AãóùË—/—}S‘‘‘'Nœˆˆˆ „,^¼XSS300Pl¼¼|844ÔÓÓ“9kÖ,±¡!òòò\]]éÒ @¡¸ÙÇ‘žŸŸïééùÕW_}õÕWžžžyyyááá-ÝNAAAß¾}èY--­ÒÒR¶O"Þ?$­ðìٳٳg———‹.ÌÉÉ¡ªwþüyêM·PTT4lØ0ºk#!äøñã]ºtéÛ·/Û‡ Dbbb˜éV<³êáÇ•••LFèîîþâÅ‹ŒŒ ±ÕòòòÌÍÍkjjÐWã5ŽæææqqqñññÙÙÙ|>Ò¤IC‡ÕÐÐhév¬­­;ÆÌž9s¦ªªÊÞÞ^Òú€ÇÊQ[YY1­cVVV¤IcÙ?üEOçææ2 î»wï[9''GÊŽž={6eÊ” -Y²dÁ‚Ož<‘²~^^+‚i¿Á´_¹¹¹'Nœøøãmlljkk¿û„ƒ™3gNš4IÆòxßÙÙy×®]555«W¯ž1cÆÙ³gźw32ÀÛàxâèääÔìò7nHã™3gæÍ›GOŸ:uÊÆÆ†òøñ㜜œ+V|ñÅlœÜÐ-ÚÚÚÚ‘‘‘ãÇ …Œ‰‰‘R«JéÞ½;[µªÊì‡~ðöö^¿~=!„¢¨ãÇýõ×sæÌ!„Ô××8p@ÆÄÑÀÀ ººZ(Ò¹£P(¬©©»·ÏÔÔ455•™]»ví Aƒ’““eÜ@‹p}Ø>€öÇ××wÆ </77÷æÍ›„¡P˜œœ¼k×®¦#xKTWWDñññ¡;JBŸ¿|ùr¶l ty-vøm ™|‰¶·â³m)¤ÚrÁÍÄQ__Û¶m„iӦѪ†9=ÚéÛ YH}d'Ö¯\p3qdÄÄÄ0Ó̼††!~ 厳‰cnnî‰'>þøc›ÚÚÚï¾û.!!ÁÀÀ`æÌ™“&Mb;:EA=<€2¸~ýº,«uìØÑÖÖ–í`EìVMÜÀÍÄ1==}„ VVVôx[·ný믿ttt¢¢¢ÌÌ̼½½ÙŽQÎPÑ <~ÿýwYV³µµåpâHþ]"á²€¸™8þðÃÞÞÞëׯ'„Puüøñ¯¿þš~âB}}ý8–8¢DP*kÖ¬a;–¡PRÜìâæ³ªïÞ½ûå—_ÒÓ™™™%%%#Gޤgííí¹t£1ý¸Rª@ô àÎXÁÍı¢¢‚¹æÊ•+&&&={öd^­¬¬d;@ù`J¶ø¤5Š VM€XÁÍÄÑÒÒ299™žNHH4hóRjjj·nÝØðm¡¢”OÊ+nàfG__ß 6ðx¼ÜÜÜ›7oB„Barrò®]»Ù°õp ´ (¦8‰³‰cyyù‘#G^¿~ýÍ7ßxzzBæÍ›—0nܸö;®Úڅׯ_ëééÉk5µ Ê€›‰#Ç›1cÆŒ3DÎ;wÕªUí´˜FE#@;2yòd???Ic®_¿¾wï^ ‹%K–°,´'x °Ž›‰c³¬¬¬Ø¡•p‰ о>|x÷îÝãÆëÕ«—££cÏž= _¼xqïÞ½+W®4662£=È?À.JÛ#T4´GšššÓ¦MKLL¼råʹsçž?®©©ijj:pàÀÐÐPÜ íGå…ŠF€vMKKËÇÇÇÇLJí@䉣2BE#(!$ŽJ œ8*T4€2Câ¨,PÑJŽ›l_ð<.®7nœØ’òòòÉ“'³@+¡Æ‘Mh›पªª;vBRRR6mÚ$úRaaaVVÛ´GÖ –€«²³³éif‚Æçó—/_Îv€­„Ä‘¨hà6}}ýmÛ¶B¦M›FOpú8¶5º¢Y#€*èׯ_ff&ÛQÈ jÛ*TÍ¥K—´´´lllØ@>8¶ôhPA6løî»ïèGTëêê2ËŒŒØ  58**T–EQwîÜ[þàÁ¶CƒöŠþM¡á—ÚGÅBE#€*‹‹‹c;à±ßüÄ@ÛCâ¨(¨h€üü|)˵´´ÈvŒÐn Me€ÄQ!pz!dÍš5t«4ý€(¡PÈçóµ´´èW{ôèqüøq¶ch$Žò÷ðáCd@;vìþýûW®\éììÌçóoݺµ|ùò  :”íÐZã8ÊŸ­­-Û!€Røí·ßÂÂÂÜÝÝ555ÕÕÕ—-[Ív\Ð.Q%zg 𶀍qP”çÏŸëèèˆ.ÑÑÑ),,d;.h¯DsGdÀ Ô8(г³sttô«W¯èÙ²²²¨¨(;;;¶ã‚vŒúÛ€ŠB#€¢„……Mž<ÙÓÓ³wïÞ„ŒŒ ==½ýû÷³@+!ql±«W¯N™2åöíÛÚÚÚlÇJÍÄÄäÔ©SçÏŸÏÌ̬««óõõý裘»ªå¥¡¡aË–-GÕÑÑ1bļyóD{ÂÈÇ–yýúõâÅ‹ÑF2ÊÌÌìß¿¿··÷¥K—Nž_žÝ„"##Oœ8AY¼x±¦¦f`` ÛÇ Ü„>Ž-³jÕ*±®îJnøðál‡€` G‚i…C‡}úé§éééÏž=›={öóçÏ7oÞ¼mÛ69¶öðáÃÁÁÁžžžžžžÁÁÁ¿üò‹P(dûÐÿE ¨Ú®±_ÎïšÅCfÇHHHøûï¿çÏŸÏv Ð>ÄÄÄ{yy%$$XZZîÙ³'""âĉrÜÅÇ+++ÝÝÝéYww÷/^ddd°}èÀMhª–UIIIxxøæÍ›ei§Vª ƒ`Úu0íZII Ò]¿~ÝÃÃ"Š‹‹å¸‹ÂÂBgllLÏš˜˜ðx¼’’Ië«`õŒª²ªí—Ý]« $޲Z¶lÙèÑ£œœ®_¿.}Mú cÝ»wOLL400¸xñâ¤I“!W®\111‘ã.jkkµµµ™N“ô# ËÊÊš]¥¼%4U7ïÌ™3‚dff?~üéÓ§ß~û-Ûq@{¸sçÎ!C†ôêÕËÑÑqÇŽ+V¬˜8q¢wa``P]]Ítj …555l:pXÔ¼†††êêjzZGGgåÊ•‡[gòäÉK–,a;RPjyyy¹¹¹ÚÚÚׯ_olltuu•ãöïÝ»7f̘¤¤$###BÈóçÏÝÝÝOœ8A _HeRRRòúõkz:55uáÂ…Ç733ëܹ3Û¡€Jkhh|I玢YÒ~}¼’NÏ6øKÚu›}ï^½Ú«W/æÛ¥„?(mã8Ê“P(œ3gŽ¡¡á?þXWW·dÉ’°°°Í›7³OhhhVVVdd¤¾¾~tt´¿¿ÿéÓ§;tèÀV<%%%QQQl@‰ŒŒšR}[”ê<âÿÝ»w·Í¾šýV·Í©'é„RèáK:w}ÈRÎY…¯¤Ó³ þÅRJ†¶ù†/\¸ðã?f¾]ÊöƒÒfÐT-g_~ùe¯^½èéwß}—ÅôíÛ×ÁÁžÕÑÑÑÒÒ*--e+žY³f=xðàСCl@yøðaee¥»»;=ëîîþâÅ‹ŒŒ UþLhÊömQžóˆòòòÌÍÍkjjÚ n»ÙouÛœz’N(…¾¤sGч,åœUô¿»ÙÓ³mþÅ’J†6ø†'$$üý÷ßóçÏg–(ÛJ›Aâ(O666ßÿ½ššZiiéßÿ½{÷n>ŸÙÚÚúرcôì™3gªªªìííÙþØTXXÈãñŒéYWRRÂv\ìSªo‹RG  öìÙ3pà@‡1cƤ§§·q ,žzŠ>|I玢YÒ~}¼’NÏ6øKÚu|ÃKJJÂÃÃ×®]«««Ë,TٔŠñÍ7ßL˜0¡°°pâĉlÇB„Bá-Z4mÚ4+++¶ÃaSmm­¶¶6“‚ðù|--­²²2¶ãR"JõmQªó¨ýzþü9ŸÏwvvNJJú믿ºví:cƌׯ_·e ,žzmvøbçN›²Ø~ÛìxÅN϶ü‹íº yÙ²e£Gvrr]¨º?(l·•·o§OŸfºÔ<|øPô¥ÒÒÒÕ«WÓ7÷±Lnnî_|áèèøÛo¿)Ã'sóæMûóý÷¿ÿL”ÆÆF@ðßÿþ—•`”ä3ÅÖ·Eж?8¯¼¼¼OŸ>ñññ ݋طº-O=é'”‚¿é¹Ó6‡üÆsV¡ÿnÑÓ³KW)%ƒÜùرcüqmm-EQ×®]c¾]ÊùƒÒPãøV¼½½ÿþGÏž=srrnß¾M¿Ô©S§ TVVÞºu‹•`!wîÜ3fŒ¥¥e||ü_|Áâ'Ó–»–ÂÈȈ¢(¦ëÞ‹/(ŠbT‹ß1ìžGœ§§§gllÜÆ jÊsê)âð›=wÚàe9gå~¼’NÏ68^K¹rjjjffæ{ï½'üüü! ˆˆˆPžouCâøVÔÕÕõþÁçóoݺ5wî\¡PH¿Z^^. µµµY ¦¡¡!((ÈÏÏoÆ †††ì~2m¼wIlmm “““éÙ«W¯vîÜÙÆÆ†í¸ØÇî·E »ç÷ÄÅÅ}òÉ'åååôìË—/‹‹‹­­­Û2O=E¾¤sGч,i¿Š>^I§gü‹%íZч÷õë×BŽ?>cÆ •ýAÁ½Šòäéé¹víÚ+VŒ?¾ººzóæÍ666ýúõc%˜¤¤¤¢¢¢Þ½{3_kBˆ‘‘ÛŸkÔÕÕ}}}###»wïÞØØéëë‹;v‰’}[”ê<â77·°°°… N:UMM-::ÚÎÎN¬·–¢±xê)úð¥œ; =dIûUôñJ:=Ûà_,i×ÖÖÖ =d###¦$|þü9!ÄÊÊŠ¾”UÍîa[êܹó?þ¸aƯ¾úJ[[ÛÕÕuÍš5¬óèÑ#Š¢æÎ+ºpãÆ£FbûsbSPPP]]]PP!ÄÇÇgΜ9lG¤”êÛ¢Tçèéé>|xíÚµsçÎUWW÷ððX¸p!Çkã0Ø:õ}øRÎ…²”ý*ôx¥œžŠþKÚµ††[ßpÕüAáQªñ„xKÊÒù ”G G G G G G G G G Gh±ï¿ÿ^МñãÇ?yòD ¼zõªÍ‚)//¯ªª"„TWW ‚ÌÌ̽¸¤¤¤m?ÂfÂf+dĈM ºË—/‹–6̹,6-£&''·:B”ÐöÔÙÚŸ¯¿þzìØ±„òòò)S¦,]ºÔÞÞžÒ¡C‡¶fñâÅVVVÁÁÁêêê:ubûãieØ-ý½€6ðÙgŸM˜0At‰¥¥¥hiÜËbÓ\…ÄZ¬k×®]»v%„Ð5‹=zôèÛ·/ýÒ“'OØŠJCC£=–×LØ,~t ‰©©)S¾‰j¥ €\ ©äïáǾ¾¾ =ztZZ½ðÙ³gAAA®®®K–,©¨¨ —Κ5ËÅÅåÃ?\µjUMM !äÉ“'}úôÉÎÎþì³Ï¢££%½}Ú´i‰‰‰»wï7n\]]ÓxTRRäââ2xðà 6466B®_¿þùçŸÛÙÙ¹¸¸IoO/..ž={¶““ÓÈ‘#÷îÝûÉ'Ÿ$''‹5Ä''';99ÑÓÍnœ>Šk×® 2ÄÎÎn̘1ô§!)l†¤ÏêܹsŸ~úiÿþý‡ rèÐ!¶ÿÏ*Š9mEÏeÑi"ù,ÎÏÏŸ>}º££ã'Ÿ|’˜˜Øtãß|óÍüùó™Ù˜˜OOO¡P(½“R:¡<ùBâò·jÕªààà_~ùE__ÅŠ„ÚÚÚ‰'jkkÿôÓO›6mzüøñ‚ !õõõ~~~õõõ»wïþþûï/^¼Jo„¢¨ï¾ûnذaü±¤·ÇÄÄ :4 à×_eöÞØØ8eÊ”úúú˜˜˜ß~ûí矮««›1c†@ ˆ]·n]jjêÖ­[%ÅߨØ8yòä²²²;v,Z´hÿþý«ÜÜ\¡PøÙgŸ™››÷éÓÇÚÚº½tèh¿Ž9räÈfvâĉ˖-{ã»$Å7oÞ,--=~ü8]¶hhhL:Uì½^^^¡¡¡W¯^ü÷ß_¼xñÈ‘#7nܶmÛàÁƒ[ö¿Å“tÿý÷ߢ³<¯Ù²eäÈ‘k×® ‹‹£[]ZT‚‘Ò å Èú8B[°µµ½ÿ~yy9=û÷ß7®¦¦¦gÏž•••ôò”””ÆÆÆž={Êøöf÷Eo³ººšžýù矿þú븸¸N:íÛ·oâĉNNN̫Ͳ²²ÊÈÈ(++£goݺ% ™W™0îÝ»GO´hã­þ¬®_¿¾k×.ggç œ¿°°) !}ô‘žžÞ¢E‹îß¿æÌ™üÑÑÑÑÐа¨¨èúõëÅÅÅGŽùý÷ßKKK™‹r1ô‚‚‚RRR’’’–/_Nw266ÖÐÐØºuknnîùóç÷ìÙC¯ß¢Óš†ýƃmllŒŽŽþå—_rssãããSSSE›Ÿ€¢ç23-é,:t¨¡¡!S¶Hê.©££3xðàÕ«W{xxÐ]ßXÈH*Pž€Ü!q„¶Àçó÷ìÙ£««;mÚ´¥K—º¸¸¬\¹’¢¡¡qàÀ7eÊ”E‹¹¹¹EDDÈþvBˆOrròœ9s˜•5558PWW7iÒ¤µk×~þùç_~ùåˆ#fÏžýÅ_<|øðÇÌÏÏß´iS³Ñjiiíß¿ŸÏçýõ×kÖ¬Y°`¤jkk¯[·îæÍ›Ã‡Ÿ?¾¿¿?½~‹6.)ì7¬««ëwß}÷ÓO?5jýúõS¦L™8q"ÛÿXU'z.3ÓÒK¼wÞyç믿ž:uª£££M³›1bÄË—/?ýôSzö…Œ¤Ò å È¢(¶cPvܾ}»««+=K·Ñ·7´EQeee2Þ0×"(@Ñps @‹¡P€·Áãñ‘5”N xhªx³=z4½U@Õ ©d‚G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G ½{÷æý[Ïž=W®\IQT«·©¡¡Áãñ*++›¾¤§§ÇãñŠŠŠZ±Ù²²2§¡¡!å@~ýõW–>H…ûïtíÚuüøñùùùoü4D½xñ"??¿ººší£€ö ‰#ü……E¿~ýúöí«¯¯ŸÛê­õíÛ·_¿~|>¾`òAÿw,,, :ôù矷(­Ÿ2eŠ……ÅüÁöq@û†ßuøŸ7¦¥¥Ý½{·´´tôèÑ„³g϶zk)))iiiÚÚÚlGÐÿ§OŸ?~œrõêÕG±€¼|ù200°ÿþººº}úôY°`Á‹/Þfƒ’jâïܹÃãñ(û¦Dëûµµµíìì,X Zs/¥i…Áz}UUÕêÕ«ûõë§««Û¹sçaÆþøc###]]]‡cÇŽ½ÍAI:„Ñ£Góx¼èèhz6$$„ÇãÍ™3GÊ[˜8ïÞ½;xðàÝ»wK‰¶¶¶vΜ9fffýúõ;yò¤¶¶6“LKùT¥øä“O455 !………b/544¬^½ú½÷ÞÓÕÕ0`@dd¤P($„Œ5êÔ©S„__ßÕ«W+øëÐÙÙÙýû÷ß¶m[jjê;ï¼sÿþýM›6¹ºº–••±Úÿ£ëûMLLÒÒÒ6mÚäííͼ$KÓ ëõý“&MZºtéýû÷{ôèQ__Ÿ˜˜8zôh¦KO„‡®¡@åõêÕ‹røðazöñãÇï¿ÿ¾è’1cÆBìííÇŒC§>wïÞ¥(êåË—:u"„Œ9ÒËË‹ÏçwìØ±¸¸˜¢(uuuBHEEEQþþþ„Ž;:99©««óx¿wïÞ„;wJŠ–¢¨‰'B:uêäèèH»–––ô¤SU——'öiL™2…Ò¹sç#FtìØ‘2wî\Š¢þúë¯BfÏž––Æö× àÿÑgAÿþý³²²(Šzúôé{ï½Gùî»ïZ½MI¥Dee¥¶¶öÔ©Seß”ØÙwíÚ5úÌúÏþ#ûF|||$•Km€îM®®®N/õõõßÿ=!dèСmžØH7˜B233¥æÊóBSHáç¶(·~ýzúÕ´´4Bˆµµucc#EQ‘‘‘„É“'SuñâEBˆ¹¹yff&EQ6l˜6mZjj*%’8æääðù|uuõÇSµvíZzÒÇÜÜÜ¡C‡Ž?ž~ÉÍÍrôèÑÖ%ŽR¡¢¢¢C‡ššš¯_¿~öìÇ377 …RÞBÇ@™1cFvvvMM¤h=zÄãñÔÕÕŸ>}JQÔ¦M›!tâ(eûÍ”¥¥å€èô”âãã#ö‰=xð€¢§§Gï‹Þ¾ššZaa!…’”Ò“'Oèïó­[·˜…gΜñôôœ={6=[__¿jÕª~ýúéèèôïßÓ¦Mô)#å%Ñó¢²²’¾jÚ¼y3EQsæÌùóÏ?é·_¿~ÝËËËÀÀ sçÎÞÞÞׯ_oaÓ"eáÂ…„Ï>ûŒž½Bnvƒô©G[µjEQééé#GŽìܹ³ŽŽŽ½½ýÑ£GEcþóÏ?íííuuu½¼¼²³³é½TWW/X°ÀÆÆFWW×ÅÅ%>>^tyÏž=õôô<==é+^1)))ôu{II ½¤¬¬,&&&66¶Ùð$m“ŽPKK+66ÖÚÚÚÌÌlÑ¢E=úðÃuuuíììšÝ»ØØÐÐ@7˜\¼xQ¬0—ôßl!°‰#üïÜfnŽyçw!|ðAMM EQÍÞ"3`ÀŠ¢JKK»téB/±±±™5kVJJ ½M¦<¥/1?øàzyVV–,‰#EQeee?ÿüóôéÓíííé·>|Xtº‚F¾’G)‡@QÔ¸qã!'Nœ8xð !dÞ¼yÒßBÇÀãñèºU)Ñ9r„2xð`zÊÊJ¦ÆQzHMÿ; ccãI“&•––Š}b‡&„Œ3FìçΣ8‚RJHH ¯<¥¬#©]ÊKÌy! ?ÿüsBÈ‚ Ä6+¥µDTÓ"….ИS•)è$mP¬¾_z[ ÇëСCß¾}é;ǧ÷B×˾ûî»êêê7oÞ¤dkµ¨ªª277'„Œ;vÍš5çΣËvª¹æé--„ ¾}ûÒÓï¼ó޹¹¹‘‘!¤[·nMÿ}h0á$$Ž ~n¿|ùRGG‡ráÂꟌÄÑÑñ ˆcÇŽÑ+———ÇÄÄŒ=šî©¦¦vþüyJ¤<Ý»w/!ÄÓÓ“Ù¸XSµššý’h9RVVÖ£GwÞygÖ¬Y‡¦;‰%ŽÓ§O×úÇñãÇ)ɉ£ôCøý÷ß !Ó§OŸ4i!äêÕ«ÒßÒ´ÖSR´ "MB………Lâ(=$)ÿQ¢‘ÐmîcÇŽe^ýàƒ!gÏž¥8‚Rúé§Ÿè³@Ò RêÑ¥¼Äœaaa„___¡P(¶e)­%¢šž}ÿýïéë7z–)è¤lPôì“Þ–Bùý÷ß)ŠŠ§S=Š¢îÞ½KgT¯^½¢(*,,L]]}þüù²·ZdddŒ=š.Õizzz?ýôýªhx²´´Ð¿ tiéèèØÐÐðìÙ3º—'aÓ &ƒ›c@\ÇŽmll!„~ýúB^¼x1~üø &XYY¥¤¤TTTBâããW®\Ù¹sçßÿýÅ‹_~ùeccãùóçE·fkkK¹|ù2}'}òÓ/½óÎ;<¯±±‘.&Dßxúô霜œ?üpÛ¶mŸ}ö]tŠÙ½{wõ?è«dI¤!dĈgΜ9w¥¥‹‹Ëß"FR´}úô!„\ºt©¸¸˜òË/¿0ÇÞ¢íË‚¾(OLL¤ošÉÌ̼zõ*ŸÏ§ïs¢544(è;Ð tMXII‰¤nß¾M:t¨……!¤_¿~½zõjll¼{÷®”—è÷644¬\¹’booO_¬Šêׯ_—.]òóómlllmmsrréî•Ò•––2‘·bƒ–––ÇŽ:th@@€ƒƒCRR91ÕÔÔ>ýôSBˆ““!„¾¹>"gggBHxxx}}ý¦M›RSS !YYYjjj<oþüù„;wî4Y üþûï/_¾¼yóæöíÛ?øàƒ×¯_Ϙ1ƒé*Àxã6ÕÔÔè+ÒnݺB<==ÕÔÔLMMéhI%ÌãÇSRRrsséÑ[$ßø–Ç äLí@yUUUBúöíûÉ'ŸüñÇ=zôøÏþSUUE_khhlÚ´iÛ¶mŸ|òICC½pÈ!¢qqqéׯßÝ»wû÷ïß«W¯k×®ñx<:ÒÒÒêß¿JJŠ«««ÍÇ™wÑ×ñ‰‰‰ÞÞÞiiitâEÉv#Þ¢E‹˜ž”„ï¾ûnܸq’òÎ;ïŒ=zß¾}„º“ô£nJR´öööžžž.\xï½÷¬­­¯]»Æ¼¥EÛ—E¯^½&NœxðàÁ¸¸¸\¾|¹®®.((¨k×®„úZóæÍ¦¦¦C‡mƒ/À BÈ“'O233é‹UBÈþóŸiÓ¦½÷Þ{tgDBˆhÚgbb’‘‘ÑÐÐ å%f‰]jjêªU«&Mšdjj*ºëN:=xðà·ß~;uêTbbâöíÛwíÚ•àåå%=fú,îÙ³§Ør7X^^>`À€‚‚‚¯¿þzáÂ…?ÿü3Ý^O£Ç¬!„ˆÞ¦MQcc£ØÕÔÔ!ŽŽŽß~û-³°éhwïÞ=}ú´……Å„ ìííííí§NÚ­[·âââ{÷îÑùŸìÛd"¤ÑEß>|˜î$‰,ÿMP"lWyûš6Ç|ñńѣGÓ³–––zzzLïrŠ¢~ýõ×AƒuìØQ__ßÉÉé·ß~£—‹ö¿sç}Ù£G˜˜ºQûÙ³gôKƒ ÒÑÑqrr¢ Pºå¢ªªŠ®B{÷Ýw—-[6sæLBÈŒ3d¹9FÌÖ­[¥EQ̈•tÏ!éGÝ4IÑRUZZúÕW_Z[[=zôwÞa’”ÿC,’ººº+VôéÓ§C‡ï½÷^dd$sAjjjÏž=µµµøá¶¿nÿoÔ¨Q„/^PUXXHŸJóçϧ(êþýû„}}ý‚‚Š¢>|¨©©Éçóóóó¥¼ÄŒ{ðêÕ«/¿ü’òõ×_‹í7..nÁ‚t»pmm-½Ú’%KÄV;ûnݺehhH9q⽄)è¤lni=xð EQ¿üò ù§ób}}=}]'Ö ‡ú÷©MׯuèС¼¼œ¢¨+Vèêê.^¼˜®ëÑ£ÝåÊ• ìÛ·OìnݺEÑÑÑa: çææÒÝ1é;ÙEÓ²M±—.]JDn~×ÒÒ"„0÷ßHúE‰nPÊS,BPH¡-TUU]»v­Eo©­­ý믿Øü­¢---=qâÄ©S§èYúöFkkk¶ƒP< “'55µ=zÐ-ž={ödzËÑZ™˜˜Œ5ŠNw‚‚‚¤¿$š‘<|øP]]Ïçÿý÷ߢû=þ<=¦÷¸qã>ûì3új–îŸ-J´‹^Ïž=é*1777f&q”²ÁÀÀ@Bˆ““Ó¹sç~ûí7:¶aÆ™™™Ñ5‹‡’~§àˆ#è|nèСZZZôm"Ÿ|ò !dðàÁ“&M200ÐÐÐhzý) ÇŽKÂööö}úô¡â«¯¾¢W OÊ6š8JÿG‹E¬Câ (¯^½ÒÓÓ#„Ìš5kçÎtwÃ¥K—²€yþüy@@@ß¾};tèЧOŸ—/_2¯J©G—ô’XF2cÆ ±l&©µD”h#†––Vß¾}çÏŸ_UUŬ Ú´"iƒ¢õý2¶¥ˆÍ¾~ý:((¨Gºººnnnÿýïéå2¶ZTWWoܸ±ÿþúúú:u²··ß²e scµXs„Œ--rOÑ`ÒŽü¯·(Â7ÂÂÂnܸQUUeiiéïï?þ|º#¨ ººº+W®xzz²@+!q™`8 G G G G G G G G G G G G G G GY•••-Y²ÄÙÙÙÉÉé›o¾ÉÍÍe;"x³ÚÚZƒÊÊJ—°¥¡¡!22òý÷ß6lXdd$EQMבT íÞ½[ bРAl p–:Û´¡¡¡YYY‘‘‘úúúÑÑÑþþþ§OŸîСÛq©.GO4ûKyöìÙÒ¥KËËËe\À¢ÈÈÈ'NDDDB/^¬©©(¶Ž¤R(//ÏËËk„ ôjêê(Ø@a(Aee¥@ 8þ<=[VVÖ»wofÚ˜ØW·Ù¯ñÊ•+™/yEEÅ—°¨¦¦fàÀG¥g9âêêÚØØ(ºŽ”RÈßß÷îÝl¨4Uˤ   oß¾ô¬ŽŽŽ––Vii)Ûq©.J¤–‘¢(¦ö‘±lÙ2Š¢._¾,ãr=|ø°²²ÒÝÝžuwwñâEFF†è:RJ¡¼¼vì3{æÌ™ªª*{{ûfWôD\\ÛsVNNΗB !¹¹¹b $-eÓ£G¶Ch ………<ÏØØ˜ž511áñx%%%¢ëH*…„BaAAÁž={‚ƒƒ…BaŸ>}V­ZÕ·o_Iû¢ ¨°}ÐÐ.!ql¡P»fÍšiÓ¦YYYIZ …²¢5Í'šÍ0 !Ý»w×ÑÑ‘e9+jkkµµµùüÿ5ñù|--­²²²fW+…ŠŠŠø|¾³³ó®]»jjjV¯^=cÆŒ³gÏêéé5}¯@ @éo‰c <~ü8$$$''gÅŠ_|ñÛá¨4Ç´V‹N´GÕÕÕB¡Î…BaMMAÓ5›–B¦¦¦©©©Ì k×®4hPrr²··7Û‡„>޲ºsçΘ1c,--ããã‘5²‹îŸËû²FhŒ(ŠbºM¿xñ‚¢(¦åš!K)¤§§gll,ÖÌ /HeÒÐÐäçç·aÃCCC¶ÃBþ}W5@»fkkkhh˜œœLÏ^½zµsçÎ666¢ëH*…âââ>ùäfx©—/_[[[³}LÀMhª–IRRRQQQïÞ½™’bcccddÄvhÐî©««ûúúFFFvïÞ½±±122Ò××—Ž166¶sçÎÇ—T ¹¹¹………-\¸pêÔ©jjjÑÑÑvvvNNNlpG™ø€råʶãh8ž8îܹsÈ!½zõrttܱcÇŠ+&NœÈv\Ê®¶¶ÖÀÀ ²²’Y²víZžccc¶c„¶Æñ¦êaÆ%$$äææ:88ðù|‡½{÷ººº¶zƒuuu®®®—/_ÖÖÖfûà€û¶lÙrôèQ#FÌ›7¯é aeeeëÖ­KLL¤(ÊÑÑqÑ¢EÝ»wg;pPvo|pë³gÏ–.]Z^^.º0''gÔ¨Q³gϦg544Ø>hkÜLKJJ˜i--­^½zUVVVVVZYYѯµn³QQQl¨ŠÈÈÈ'NDDDB/^¬©©(¶NhhhVVVdd¤¾¾~tt´¿¿ÿéÓ§;tèÀv젼жÕôá[ßÿýòåË›¾1''gÈ!}ôÛG¬áæƒÚôÛ‡,àfã¹sçä¾ÍY³fÍš5ëÖ­[_}õÛÇ„ˆ´³pòâ€òðáÃÊÊJzhBˆ»»{hhhFFFŸ>}˜u úöíëàà@Ïêèèhii•––²;´’òEI„Bá“'O"##Ç/ cooÏöq@›âfâØ­[7I/ÕÖÖnÚ´iÉ’% €®òŒ‹‹cû“à,++«ììlzšÇã1ÓÀ1=zô`;6ŠÞ`bbÂãñD»âB¬­­;ÆÌž9s†®ƒ”´MºtB½£*£(ª¥)#­°°Ïç{xxœ:uªªªêÛo¿õññ¹ÿ¾ÛÇm‡›‰#ãÕ«W[·nÍËËc–”––æçç+:qD¡¬PM‹<O/€«jkkµµµ™†i>Ÿ¯¥¥UVVÖìÊB¡066vÍš5Ó¦M£ûs7 ¥ИFÙ“HssóêêjfvïÞ½ÆÆÆçÏŸ;v,ÛGm‡ãÃñ,_¾<11±K—.IIIVVV]ºtyøðatt4Ûq<ÑWÏlG ÕÕÕB¡ž …555ÍÖî<~üØ××wË–-+V¬X°`Ûƒ²cž¹ÕºªGš™™Ù³gÏØ>hS¯q¼víÚºuë<==Ÿ>}úá‡:99õéÓ'!!ÁÉɉíÐÞÀÈȈ¢¨ÒÒRz ˆ/^PÕtä¼;wîøûû2dçΆ††lG íI‹²Æ#GެZµêÂ… :u"„”””Šö¸UÀñÇêêêÎ;BzõêE7Ðxxx$$$°ÈÓÛ\1(3[[[CCÃäädzöêÕ«;w¶±±]§¡¡!((ÈÏÏoÆ ÈA¡¼½½óóó'MštáÂ…Ë—/þùçÎÎÎôã|Aupùþûï?ú裢¢¢#F°¼-$‹ "‚‚‚êêê‚‚‚!>>>sæÌ¡—% Cì€rBéÄ"Ñæ:ƒ”ò°Ñ1·%-—oH2—FþP4€rË]0ÝfÓ¢߸>ù'A”q9¦YœVAoª–t÷ô7Ø ÞŠh¯U>ZÄÖÖ–™=q0ÝöÓ¢D—_¾|™yV,˦[÷ªŽ'Ž[¶la¦kkkïÝ»·g϶シ"vµ§â l ?~ìêêZSS£¥¥Åv8 \P^A{ÇñÄÑÕÕUtÖÓÓS ÌŸ?ßßß_[[›íè@>Zýø,ùª¨¨X°`Á… (ŠzðàÁäÉ“-,,V®\)ÇNiÐN5m§f;"€VâøpŽ)))êêê„´´4¶c…`î‰A©Ê#---,,ìéÓ§bËoܸÁvhòÁÍÄ‘yµ¦¦fFFF§NLMM/]ºtòäÉ~ýúÑσö)#(›åË—kjj®\¹²cÇŽlÇ ÜL‡ ß±cEQ³gÏvppؼysYYÙœ9sØ ¸æÑ£G±±±ï½÷Û( ÇÇqŒ‰‰ öòòJHH°´´Ü³gODDĉ'ØŽ ä€ý›í(þŸ±±1FmnãxâXRRâîîN¹~ýº‡‡!D ³¼-&eDúÊ#""bÕªUñññùùù%"ØŽ @n8ÞTݽ{÷ÄÄDƒ‹/Nš4‰råʶシ"z[ ²FPþþþB¡0((Hl9ndÎàxâ8wîÜíÛ·ÛÙÙ9::îØ±#::ú»ï¾c;.x[Ì1ôíÕT”A\\Û!(÷nóòòrss´µµ¯_¿ÞØØèêêªÐ=b¤4E£ÓD¦®OŽ¥U[[»iÓ¦%K–°Èÿ tbRVJ ´¯q$„XXXðùü””WWW;;;---¶#9-ïÐZ JâÕ«W[·nÍËËc–”––æçç+Oâ òüùóyóæ%$$èëë3fíÚµjjjl ¿9¦¢¢bæÌ™^^^S¦L!„Lž<988¸²²’í¸@xÿ Ó”ÃòåË»té’””deeÕ¥K—‡FGG³¼-žˆ¦¯ …‘#G>}úôäɓ۷oÿÏþÌvÈŠÂñÄ1""âõë×—.]¢/þBBBÒÓÓׯ_ߊM544DFF¾ÿþûÆ ‹ŒŒD¦¢455555¥g+**nܸAÀ1¯q¬««ëСƒèccãÆÆÆ–n§¶¶öðáÃÁÁÁžžžžžžÁÁÁ¿üò‹P(dûøT—hAS5([[ÛÇWWW ‚sçÎBrsse©y’±„Ù¾}»››ÛÑ£GÅ–çååÙÛÛ»ÿ5Žm¬k×®ÅÅÅ/_¾¤gÓÓÓ !EEElÇ OœœöíÛÇ”¿åååQQQ...-ÝÎÇ+++é±Ä !îîî/^¼ÈÈÈ`ûøT—h—#4Uƒ’X¸pá™3gŽ92xðàû÷ïôÑGC‡}ãe,afÍšõàÁƒC‡‰-ÏËË377¯©©«‰ù’TÎ :ÔÂÂÂÏÏïæÍ›çÏŸŸ}V­ZÕ·o_Ië ‚1É[Hl±¯e‡âããçÌ™ãååennæç积¯ÏvÔ ÁñÄÑÌÌìôéÓgÏžÍÊÊÒÓÓ›>}º‡‡ŸßâzÖÚÚZmmmæ|>_KK«¬¬¬Ù•mmmQ(+”XÁ¡È@IŒ7î×_ÕÔÔ$„ØØØØØØ”——O›6mß¾}Òߨ¢FÌóçÏù|¾³³ó®]»jjjV¯^=cÆŒ³gÏêéé5»>J§–}H•¤ÒÆÖÖ6>>žž.,,¬¯¯·µµe;p…àlâX]]ýàÁƒN:YZZŽ=š" +** <¸hÑ¢mÍÀÀ ººZ(Ò%»P(¬©©100`û(UÚ¦A©TUUíØ±ƒ’’’²iÓ&Ñ— ¯I7@/¦IDAT³²²Þ¸…·)aLMMSSS™Ùµk×4(99ÙÛÛ›í†S¤P•&ö¸j´V[ôõõ·mÛF™6m=ÑRoSÂÄÅÅmß¾ýàÁƒt§º—/_[[[³ý©¨–£GΜ9óã?655ŽŽž:u*Û( 7ÇôôôÅ‹;::BBCCÝÝ݃ƒƒ‡Þê ª««ûúúFFFvïÞ½±±122Ò×׃¥€¨˜˜˜ŒŒŒN:™šš^ºtéäÉ“ýúõ›8qâûUK)abcc;wî,¥ørss [¸páÔ©SÕÔÔ¢££íì윜œØþ0TK÷îÝãââØŽ -p3õ)//g.ÖéæúF·TWWDñññ™3gÛG ÿƒêFP‡ ß±cEQ³gÏvppؼysYY™,Å…¤æàÁƒ666RG==½Ã‡¯]»vîܹêêê .Dÿ Pnþâ ‚ãÇ3}“ÅfÛ`ï¸oQÑÄ~9ù5†vgÈ!ãÆ Ø¿ÿ‘#GNž<¿~ýúóçϳÚÿ tzr¹FUª ]¥ Ú nÖ8ç¡°%TRRBâ}ýúuúqs ¸¸˜í¸ä†³‰cll,óäЦ³sçÎe;@àšîÝ»'&&\¼xqÒ¤I„+W®˜˜˜°€Üp3q´²²º}û¶¤Y‚Ä 00pîܹ۷o·³³sttܱcGttôwß}Çv\rƒþ ò‡^D*+///77×ÁÁA[[ûúõë®®®lõÿP:½ ôq \­qh3™™™:u222ÊÌÌ$„˜ššæååB:uêD¿Š1_€38¼Ÿ€€€àà`ŸfW@%pGh—D‡ãAS °+%%…¬;--íX ‰#´?býrÐMØ•’’"}¥êæð6¸™8&''K_å8—àYÕÀ®Y³f1Ó555B¡Çãñx<¡PH±±±9uêÛ1È7G”ãÐf˜Ñ¾×­[îääÄãñnݺµlÙ2;;;¶>Û(ÄílذÁÂÂâçŸNMMMMMÝ¿¿¥¥%ÊqŽAu#(‰-[¶„††º¹¹ijjjhh¸¸¸„……;vìÕ«Wl‡ ÜL(Ç9‰n›¦§ÅZ À¢‚‚===Ñ%:::ºººl‡ OQŽs;Òu¨n%1pàÀèèh溴¬¬,**ÊÁÁ—7ÀÜìãÈ Ëñ~ø¡cÇŽå8‡0ÍÓô¿¹#(ƒððp???OOÏÞ½{B222 8Àv\rÃñÎaùùù~~~¥¥¥båx×®]·S<ÔKÑ0(­ºººøøøììl>Ÿomm=tèP ¶ƒú(Þ9@8Ÿ86ÊqÍŠÖ´°Cñ ”No‰#á|S5!DSSÓÁÁÁÈÈÈÕÕµ¦¦F©®þÚŽ'Ž ,¸páEQ<˜}úìÙ³YYYzzzÓ§O÷ððàó9ž.«Ô2‚êÞ½{bb¢ÁÅ‹'MšD¹r劉‰ ÛqÈ ÇÇýû÷¿ÿþû£Gf–TWW/_¾|Æ l‡o…i¡¦'pc5(ƒÀÀÀ¹sçnß¾ÝÎÎÎÑÑqÇŽÑÑÑß}÷ÛqÈ Çq¶¶öªU«|||è%¯_¿vttTè³ðlE}>5SõÈío2´yyy¹¹¹ÚÚÚׯ_olltuue;¨ÿ‡ÒémàÉ1„ó5Ž„ ,]ºôÎ;‹-RWçþñªÑG‚–k`Õ“'OÔÔÔºtéÂçó-,,,,,èåÎÎÎl‡ gÜïíçããsäÈ‘ÿþ÷¿'N¤ÇWn o©&¸h¶ 6ÌËËËÉÉé×_e;Åâ~âH±±±9v옡¡á˜1c’““ßfSuuuÕÕÕl“J{r Ûဪ;tèЯ¿þú×_7NîohhˆŒŒ|ÿý÷‡ )å ¥´UiºÕÓÓÛ¶mÛ®]»¾ýöÛVo¤¤¤$**ª¢¢‚í£ôh%boo/åÕçÏŸ3¯j…ÈÈÈ'NDDDB/^¬©©Øt5”NÐ68^ã¸wï^]]]zšÇãÍœ93&&fâĉ­ØÔöíÛÝÜÜŽ=Êö1€’úí·ßDg÷ìÙóÑGµzƒµµµ‡öôôôôô þå—_š>Ã¥´n&Ž™™™%%%„##£œœœLÆÆÆ¾¾¾­Øæ¬Y³}*¶üÆŠÛ©@ À}‹m€N¹ý†öeÕªU/^\½z5ý,™”””ÐÐP77·eË–±Úÿ tzriÜPª¥ Ú ŽiÆŒ£©©9eÊ”Ž;Š.wuuUÜNQ4¨¦?üðûï¿gÆë&„\»vmÑ¢E.\`;´ÿAé$ê×_mú<ˆo¿ý6**ªÙõ‘8Î7U?zô(66ö½÷Þc;hS-ý=‹ªª*±›êôôôªªªØŽK¥IóÕÃÃCô1 555~~~^^^l‡  Ô8ž8WWW³ÈŸôÀñ{¬pppغukdd$>VVVþðÃŽŽŽlÇ¥ºÄjÔÄfÍÌÌDŸë>|øpúv@gPŽWS_»vmõêÕ³gÏîׯß;ï¼Ã,§ES4)šôƒ¦ÂÃÃïÝ»÷Ûo¿±8p\aa¡ŸŸ_iii¯^½x<^FFFÇŽ8еkW¶Cû•*š– RÊŠ¬¬,WW×´´4)ˆl/MÕ¢)£ôôMÕÐ ÿÒôéÓG(6=F…*U4³Bî¿òR__ÿèÑ#BHÏž=?úè#ú)VJB¥J'ѱÄ&š7n\Ïž=#""dÙ \¢jƒãÛ,qDõ'—p¼©Z´½TShhèôéÓ‘5BÛÐÐÐprrêܹ3=Ž£ReªFögJ¥§§Ÿ={VìiíTÓCf÷ÙZ²WB{ÁñÄ‘˜·  àñãÇ®®®555ZZZlr&¥LäÒï(?EŒão‰é-¥ Ø¸qã—_~©Ð.Lm†Ie©gm³Dccû‚·Åg;Ū¨¨˜9s¦——×”)S!“'O®¬¬d;.x+²—>\ú=å·qãÆ´´´¤¥¥¥¥¥ýòË/÷ïß߸q#Ûq©.Š¢Þ˜4ü€’8þüòåËœœÔÔÔÔÔÔV¬Xqþüy¶ãiÍ£üñ‡–––§§'Û1Êó`éäLz ÙÆ‘ÐKX¯þ„·ÇñÄ1))iÞ¼yÆÆÆô¬££ã¢E‹ÙŽ ä€ú‡¤¸÷{Jã8¶GçÎsuu¥{p]0J/!Z‡S§JSuuu:t]bllÜØØÈv\Ð8ù{ÊŒÇñõë×ô,Æqlþúë/¶£à,å©þyáøÍ1NNNûöí[³f =[^^…2BEüõ×_Ó¦Mc; P!Ë–-óóóóððÇ‘í¸@šœœ¶Cà8voë¹ãøÿòÙ³g'N$„äååÙÛÛß¿ßÂÂbÏž=ã8*!ye-íeGÙw¤TÁ@{ÁñG33³Ó§OŸ={6++KOOoúôéh»¹KKKSSSëӧϳgÏ~úé'¥ÊÞ7ÇäädÑYSSSSSSzúÚµk„WWW¶cލ®® 9wî\xxxŸ>}!<ïÊ•+û÷ï}úæÍ›?þøãœ9sØŽ@>¸Ùh{û6l°°°øùçŸSSSSSS÷ïßoiiiggÇv€À§OŸþæ›o˜¬‘áàà„Ÿ—p3qdlÙ²%44ÔÍÍMSSSCCÃÅÅ%,,ìØ±c¯^½b;4àˆÂÂÂ^½z5û’@ ÈËËc;@¹áxâXPP 6¯ŽŽŽ®®®Û¡GtìØ±   Ù—ž>>;;›Ïç[[[:TÑ#«©fÑÜ–ÄÊ ¦EÒŸþéíퟟOÿ`_ºtiäÈ‘EEEbÏŸ—ÂÂÂÕ«Wÿù矚ššuuu<ïƒ>Xºti·nÝØŽîÿ©fé„ı]í7‡ã¥©©9jÔ(¶£jú<«‡ŠÞéìì\QQqãÆ ¶ƒnêÒ¥ËÖ­[‹ŠŠîÝ»WRRbhhØ«W/sss¶ãP,é?ÀIO›A»qãÛ¡uíÚµ¸¸øåË—:u"„¤§§BŠŠŠØŽ 8Nôr€óÞØøœÄñÄqË–-Ìtmmí½{÷öìÙãïïÏv\ OMK«¡C‡ZXXøùù­X±âÕ«Wß~û-Ç«¨¨`;RÎjÚøœÄñÄQìÑ‚žžž`þüùþþþÚÚÚlG­ôÆâ©C‡ñññsæÌñòò277 óóóÓ××g;p€öã‰cS={öl:j´;tîÈL7]ÁÖÖ6>>žž.,,¬¯¯·µµe;j¢¯äQݨ"8>Žã«{òäÉöíÛÍÍÍ[QÝXVV¶dÉggg''§o¾ù&77—íƒSuÔ?š¾TTT4lØ0ºk#!äøñã]ºtéÛ·/Û!HÔÐÐùþûï6,22²Ù/¶¤uvïÞ-1hÐ ¶T‚è<¨Ž×8º¸¸ˆ-ÑÐÐX·n]+6š••©¯¯íïïúôi LMM_¾|9sæÌÕ«W,^¼xõêÕjjjlÇ Qddä‰'"""!‹/ÖÔÔ ”q¼¼>¨{÷îqqq%%%ÏŸ?7n³|íÚµ<ÆÆÆlG @>|XYYéîîNϺ»»¿xñ"##CÆuòòòÌÍÍkjj0t(7[4ªªªvìØAIIIÙ´i“èK………YYY-Ý µµõ±cǘÙ3gÎTUUÙÛÛKZ_ BâââØþ$8ËÊÊŠ™ÎÎÎnvçÏŸoÚ´©¼¼<77—éTšš:dÈ???zVCC#''‡í£‰zôèÁvm¡°°Pô2ÆÄÄ„Çã•””ȲŽP(,((سgOpp°P(ìӧϪU«¤ôè¥K'|~ È7dž†&™Ë*ø|þòåË[½e¡P»fÍšiÓ¦‰æ.bP(+”,£Î~ÿý÷Ì?º{÷î:::ôtIIɰaÃZQë  8µµµÚÚÚ|þÿš€ø|¾––VYY™,ë<þœÏç;;;ïÚµ«¦¦fõêÕ3fÌ8{ö¬žž^³ûBéoƒ›‰£¾¾þ¶mÛ!Ó¦M£'ZêÌ™3óæÍ£§O:eccCyüøqHHHNNΊ+¾øâ ¶þ‡jnˆeË–-[¶,))‰iÚ£åäätïÞ½ººº¾¾#;‚’000¨®® …t^( kjj dYÇÔÔ455•YmíÚµƒ JNNöööfû°ä‰¾ ‡Â-8lãxǘ˜fº±±Qö7z{{ÿýž={Bîܹ3fÌKKËøøxdí”P(|òäIdd¤®®®½½ý­[·Ø €QÅt›~ñâEQbpeY‡¢§§gll,ÖÌ-G¢]„߸Æjy¡kèj|¯ØÅÙÄ1777:::33“R[[;oÞ<;;»÷ßÿþý²¼]]]]ï|>¿¡¡!((ÈÏÏoÆ †††lü‹ìÃ@òù|gÏžåææZZZúøøˆ5´=[[[CCÃäädzöêÕ«;w¦:Þ¸N\\Ü'Ÿ|R^^N/ùòeqq±µµµ"âd~¼™ŸðfW“eÙ‰òø^±Ž›MÕééé&L°²²úøã ![·ný믿ttt¢¢¢ÌÌÌZÚˆ“””TTTÔ»wo¦Ô&„ØØØ±}¬ªH´mºEŇ¹¹yuu53»wï^ccãóçÏ;–íc•¦®®îëëÙ½{÷ÆÆÆÈÈH___z8ÆØØØÎ;>\Ò:nnnaaa .œ:uªššZtt´““+‚Áü8›‰ã?üàíí½~ýzBEQÇÿúë¯çÌ™C©¯¯?pà@KÇGQ5wî\Ñ…7n5jÛǪ¢˜+ηù•200033{öìÛG@‚‚‚êêê‚‚‚!>>>tyE9xð ÍðáÃ%­£§§wøðáµk×Î;W]]ÝÃÃcáÂ…Š®yc‚ˆ ß+eÀÍÿ»»{tt´££#!äáÇ£F:sæ ÝUñÚµkóçÏOJJRÜÞî[TôÍ1ô]ÕGŽYµjÕ… :uêD)))éҥ˹sç<==ÙŽ -¼eé$ZÓOIx6±ØKÊðK/¯ä²6û@dÙQ›}2o¹£¦_'eø^©,nöq¬¨¨`ž/wåÊ:k¤UVV² °ÃÛÛ;??Ò¤I.\¸|ùòçŸîìììááÁv\íƒè­ R~¹™ðër!öÅÃ÷Š]ÜL---™Îˆ ƒ b^JMMíÖ­Û; ’’’(ŠúòË/ÇgccsêÔ)t²}k‘ÜKDtüºƒ¼à{¥<¸ÙÇÑ××wÆ </77÷æÍ›„¡P˜œœ¼k×®ÀÀ@¶„6âææ&VÄ‚S§N±°@´¦ hëp6q,//?räÈëׯ¿ùæºÛ¼yóÆ7iÒ$¶€6%ËSÇàTèSËÎÎ666–ô.9ÂÍ1 œäU:µ¯»ªqs 럌’ü 8Ê7k›%åÑÒÀaMïÈ–42H§B‰#€‚ óœ’kš&"kl$ŽoI{Áä÷O£Õ8÷1MÕÈìßGh—”¤u¸i‚ÎsJÿš·ÄÚåifÒĶy ž’¤Ë ²8´Ê“.ƒÊâæ#€ÃD&ºŽ®ðc+fïmÜŽÝ£Õ„ÄÚ™¦ ëuox’2¨$Ží SÁ‰<ÚGhèJGUËŸÐ6 ¬ÃÍ1Ð.µÁ-ÌJH´?¥J¸òËÝUí¿€Ä =Á8‘,júÉ«ÚÿMÕ $ŽðíÝ{TÌéðgÆ ‘¤+Çåì®mfDJ‘¢ê­¶³Ê gÙu6¡Z•(g•ã袌XÙ³…ÖY µáX ë8Ù¥ÐIÒR‘6B颋î5óûã{̯í2}»ÌwfÌûõ×<ßyÌçó<ßņ̃g¾ß _U!jåÀ€¨Û7ÔR( —?I¢èŒ”Q· LÕ°|DáÝÉûö iaªnº²aÓW%¨ùí(àÿø,Tó ›¾àv]¢Î7¶ãæèN~ŠÝ^¿Ñ@µ`ÇþSÀ¡’€¾`Ç!D"‘P{Òr…ò´/˜PfØqFu»ÆQF7¢N7ˆôÜôUŸ±ƒ ÁŽ#]/_¾ôôô´°°°¶¶ ª­­UtF„ÒÑÑ!‰,X`oo/‰”¼Ú ¶3»Þ”ÚkÂÒ§X,–¼wàX(zn˜Þô¥9-ŒÍÿÐc)Éyü¸¡p¤E,{{{···ÇÇÇý‘­Nò+ép‹7MrýžÃòâ]_g(/سb–ÓÀU GºÜÝݧOŸN=ž:u*‡ƒËC@ñŠŠŠmll¨¦MuuuAA¢ó¶Ñ):`Èð–hƒ«ùÔöW3æh`jjjž?abbÚk|¹0\ ‚²»víšÏãÇÙl6!D,Ϙ1#..nÑ¢E=;cû`©g…m³ñòòÊÍÍÕ×׈ˆè«>ê€1­­­\.—ª !l6[CC£®®®×Î*ô9×µÆeò{Rì9I1ö~ºÞB>è@=ÿØú ^ï:ðUuïÒÒÒ<}úTzüìÙ³YYYË—/ …---ŠNÔ¶¶vss³ô¢F±XÜÒÒ¢­­­è¼†ªëufrÒí–^T R]'GÞgAkкÊÁ½N·/¸ñ~è ÇÞ988dðù矗””€œ`'–®ÜÜܨ¨¨'Ožp¹\++«€€€‰'*:)"‘H¢££ÓÒÒ!ÎÎÎ~~~¸{ä…#Ђ¯ª€Ž@ G …#ЂÂhAá8"‘hÁ‚ööö"‘HÆ émmmæææÍÍÍ43+..NÐÅüùóå—C]]]pp°¥¥¥………——׿ÿþ+×!÷ŽÉ!¿|ùÒÓÓÓÂÂÂÚÚ:((¨¶¶–ùXïÓÊÊÊš>}z¿olyÄÄÕý™WªrZ{¾Q•|ª‡þ¹À˜¾Vu%Ÿau€_;"‘èÂ… aaa„   Q£Fmݺµg·ªªªƒ¾ÿžæqÆb•••-^¼xíÚµT³ß_<”víÚõìÙ3‘H4nܸ˜˜˜ 6\¾|y̘1 ‡clÈb±ØÛÛ[WW7>>¾­­-888$$äСC Çèx‡8픆††   :Ë·Ÿ_\\ÜWçÒÒR>ŸŸššJ¯©©9yòdSSÕ õôô”H$W¯^533{ÿþ=uüìÙ³|>ÿÕ«W}½¬¢' †*%%eæÌ™½>æææF­çΣ¶··ÛÙÙ=zô¯¿þeeeÔñ7n”——÷…z‘ôôtª™––6wî\éñwïÞQÇïܹÓõøƒ¨ãB¡ÐßߟzüÇÌž=[Ú§gb4—A€~áGPIÏž=+++311‘‘H$¥¥¥VVV666ׯ__¸pá•+WLMM§M›–ššÚkçÉ“'BæÌ™CÔÑÑY±bÅŸþYXXXPPp÷î]kkkBHQQ‘@ ÐÔÔ¤ºIû÷•äI“==0$“'Onoo¯©©ÑÕÕíöTyyùĉ©ÇóæÍ£p8 ‹âââõë×›šš:99-Z´ÈÒÒÒÁÁa„ ²cI×ñãÇÓÉmÊ”)Ômmí®»öé™Xcc#e _(A%iii™™™>}ºçSË–-‹ˆˆ MOOwuu•ÑùÅ‹„±cÇRͧOŸ®]»ÖØØØÞÞÞÖÖ–Ïç?þœÒÙÙÉb±¤ÿJúXF ÒŒŒŒX,Ö;wœ»omm}ðàP(ìùOØl6‡Ãár¹gΜÉÎξuëVrrrtttllìÂ… eÄ=z´ìdZ[[ûzªëÒÔ*1šË @¿p#¨$>ŸÿäÉ“úúzª™½jÕª––BÈâÅ‹ëëë/_¾\PP°lÙ2Ù»JOO×ÑÑ9yò¤‡‡‡……Ess3uÜÈȨ°°°©©‰j>|ø°ß@¥éë뻹¹‰D¢ššš®Ç>ÜÒÒ²fͪ™M=èìì¼ÿ>Ç»wïÞ/¿übiipéÒ%ssóK—. .éÚòøñãþÛž‰a½‚á‚GP•••]/0çr¹¶¶¶S¦LÙ¶mÛ¶mÛ*++###gΜ©¡¡AÑÔÔ\¸pá¾}ûlmmutt!2:w¥««[QQqïÞ½O?ý4##ãüùó|>¿µµÕÁÁA$íØ±cË–-'Nœ „°X,š/ ªÈßß?//oÅŠßÿ½±±qeeå¥K—233÷ïß?~üxª‹ŽŽÖÒÒš4iÒ‰'V®\™ŸŸ£­­½`Á‚¼¼<___BHbb¢žžž££#Ð#GŽxøà¾ÎáæsŽœ7×uƒ$I¨ŠƒÚ@ŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽP¤–Ú¨àæÍ›‹/>~üxVV–§§g«V­ÆXzAƒ:uÊê =<<8 vùê0H’¤v UAAAß¾}sss›7oÞ¼y󜜜ÄÄÄZµjmܸ±U«V–Õ:tèP\\PúkÝÜÜV­Z¥ö¨Cw#Ž111¹¹¹cÆŒyóÍ7å–-[¶L:õƒ>ذaƒÜRPPpëÖ­>}ú,^¼Xízl…îÎqxZŒvé78 ! ƒ§§ç¨Q£†úË/¿ÄÇÇ !jÕªåêêZvd±  @a¹ÎTÉK³\.ÍÑWp<þüÔ©S·oßnÕ"„¸zõªüÒÛÛûúõërR´HKK“©½hC%WO3ô¨Qú Ž...[¶l‰‹‹³jÏÈÈB4mÚT~a2™öïßoYA’¤½{÷º»»‡††ª½êÐWpôöö6 »wï¶4ž={vݺuõêÕkß¾½Ü2xð`‡?þX>¯Q±|ùò¼¼¼^xá‘GQ{#Ôa4wiÓƒ9yòä°aÃîÞ½Ú°aÃk×®?~\1þüçŸÞ²ÚÊ•+çÍ›çïï–žž~øðáààà•+W–½MOYF£‘«ª:§ä.ßÚ½¸nõº ŽBˆôôô%K–œ>}úêÕ«>>>-[¶;vlóæÍ­VÛºuë·ß~{òäI__ß:L˜0A¾#O•tÛ™° 8Ú%=Çš¦ÛÎ@iUæB‚£æèëGÜ7‚#Pv‡õŒàjD%7ú&5j”~ŸU jšœËfGR£F@Í"&Ú ¦ª ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠÔR»`ç †?¼”$µ Âý"8€d0X'E9Gµˆ©jPSʦF!„$ I²†„&@(75ZµˆàEŽ úU>Ü"8u0[­9G F%5‡àª£‰v‰àEŽ FT>èÈ<µ@M©(;’5ŠG€Tnv$5jÁÔ,b¢Ý`ªŠ ÁŠ ÁŠ ÁŠ ÁŠèñÉ1EEE7nŒÍÊʪ_¿~PPШQ£ºtéRzAƒ:uÊê =<<8 vùêÐ]p,))yùå—“’’\]];uêôÛo¿9r$!!aüøñcÇŽµ¬–‘‘áääPúkÝÜÜÔ.@5º Ž›6mJJJjÛ¶í_|áää$„8þüˆ#–.]Þ²eK!DAAÁ­[·úôé³xñbµë°º;ÇqÇŽBˆéÓ§Ë©QѼyó1cƘL&Ë4tFF†Âj¸@çtÓÒÒêÖ­Rº±yóæBˆÌÌLùezzº¢I“&j `Ct7UýÙgŸÕªe½ÕÉÉÉBˆFÉ/åà˜““’’âìì|¸Ú5Ø3ÍÇ/¿ü2;;»}ûö‘‘‘ßÿý‘#GÞ}÷]''§³gÏ®]»vøðáÓ§OW»F{¦™à¸ÿþ:uê|òÉ'...ááá]»vmÚ´içÎ…ÿüç?‡ Ò¼ysµË°[š¹8&''' ÀÅÅEáéééîî~úôiyÑàÁƒÝÝÝ¿üòKµk°gš ŽBˆÒ¤nܸqZZšü¹£££Ñhû¬ÚUØ-Í\³lÙ²ëׯÇÄÄXÝvÇßßÿ_ÿú—bçÎyyyJÞª¨¨hÕªUÏ?ÿ|ëÖ­ÃÂÂF}àÀ²«mÞ¼yðàÁ¡¡¡]ºt™6mZ~~¾Úû@M¶;âh%11ÑÏϯI“&e5jÔ¨I“&ééé’$Uù>%%%/¿ürRR’««k§N~ûí·#GŽ$$$Œ?~ìØ±–Õ>úè£O?ý´nݺíÛ·OOO‹‹;þüêÕ«œœÔÞêÐLpÌÏÏ7›Í’$ †²K ÜÝÝ===«|ŸM›6%%%µmÛö‹/¾SàùóçGŒ±téÒððð–-[ !RSS—/_îííëåå%„˜5kÖêÕ«.\ø÷¿ÿ]í= ÍLU·jÕª  à§Ÿ~*»(!!!???$$DÉûìØ±C1}útËØaóæÍÇŒc2™,Ö›6m2›Í&LS£bÊ”)®®®Û·o7›Íjï uh&8öíÛWñöÛooß¾½ô”ôÎ;'OžlY¡JiiiuëÖµJ™Í›7BdffÊ/;æààн{wË ŽŽŽÝºu»~ýú‰'ÔÞêÐÌTõ /¼°mÛ¶ &xzz †K—.]»vMù /(yŸÏ>û¬V-ë­NNNBÈ—ÝH’táÂ… 4hРô:AAABˆÌÌÌvíÚ©½3T ™à(„X´hQçΗ,Y’›››››+7úúúŽ7nÀ€ ß$88تåðáÃË—/¯S§Nÿþý…………&“ÉÍÍÍj5WWW!Ä7”|£ÑhÕ’ššªöþ÷£ìa]·´«º¸¸xÁ‚kÖ¬yôÑGÇ7zôèÒwg¬U«–««kÙ‘Å‚‚!„å:k „ÁPNL,·¶Ïvƒãûï¿/„øÇ?þ!Gùeå”G³Ùƺ´¬¬,!DQQÑéÓ§Ë.µ\X-„5j”§§ç·ß~»mÛ6__ß#FL˜0A}Õ‚ÙjÍÑLpÊ‘‘Ô¨Eš ŽíÛ·¿yófLLLvvvLLŒ¢[·nò¢•+WÞ¸qãñÇW»F`MΈr|d Që4sðìììÈÈÈ;wîÈ/Ÿxâ‰Í›7 †!C†üüóÏBˆ¯¾úªcÇŽj—)„Žo €NèöX¯™Gÿ7vïÞÝÇǧk×®‹/–ïÚ˜——çââ2wî\IöJ3#ŽÉÎÎöõõup°¡¬Û¿BÐ Ýë5s;‹›7ož>}:''ÇÏϯK—.uêÔ±©Ô`¯´¯_¿¾lÙ²ØØØ¢¢"!ÄÈ‘#»té2`À€9s渻»«] €=ÓÌXÝÝ»w_{íµ5kÖ¸¸¸ 0ÀÒîååµgÏž_|QN“¨!š ŽŸ}öYRRÒ3Ï<³cÇŽ¹sçZÚ7mÚôç?ÿùòåË«W¯V»F{¦™àxôèQGGÇÙ³g;;;—nwtt|÷ÝwãããÕ®Àži&8¦¤¤4mÚÔòÔÁÒêÕ«˜žž®vöL3ÁÑÕÕÕr÷ï²òóóëׯ¯vöL3Á1888''çäÉ“e¥¤¤dgg·lÙRíì™f‚ãСC äI“’““K·'''O˜0AÑ¿µk°gš¹c—.]þò—¿¬X±bàÀBˆ]»v¸:|þùççÎS{°7•ܬ‘IjT3†ñ`´óóócbb6lØ`2™,ŽŽŽC‡0a‚««kµ|I’Ìf³Á`ppøÃƒ¼…õë×W{7°O–çÄX5Õ€¼ˆj¢™àh2™^}õÕÄÄÄ:uêôìÙ³I“&ŽŽŽ—/_Þ³gÏ×_’’²nÝ:9Û= ôôô^½zuèÐÁê¹2‰‰‰BÇç4x8¦£ú1%j¥™à¸jÕªÄÄÄÖ­[ÇÄÄxyyYÚsssÇ—˜˜¸jժѣG?ø7 hÛ¶íÑ£G7oÞýôÓ‹/ÎÉÉÉÉÉ‘===ß|óͨ]Õ¼£™‹cJ»víÚåË—%I ðööV»kº=aPm¸q·mÓí±^K#Ž^^^^^^’$íÞ½{ÇŽO>ùdhh¨ÚEðÀb„mÓRpܽ{÷’%Kzöì9nÜ8!ÄŒ3bccåEQQQ3gÎ4”}Î+¶¼ÐÌUÕÇŽ{íµ×Ξ=k6›…gΜ‰uuu6lXÆ ׯ_¿{÷nµkàq•44E3#Ž+V¬$iúôéQQQBˆ;w !æÌ™qùòåÞ½{ýõ×j— € 1B›4Ï;çãã-¿Ž²“'O.]º499977×ÁÁÁßß¿M›6cÇŽmÒ¤‰Ú¥Àƒ*ûØT‰Íaˆú¦¥±º%K– <ø§Ÿ~ÊÍÍ­S§Î£>š™™ù¿ÿû¿}ûö]¿~½ÚÕÀ)=zeù(%¡®’„ Žûöí[¶l™££cttô®]»~þùçÄÄÄŸ~úiôèÑBˆ>ø ))Iíà~XIYrv$>ª‰¼”¢™à¸~ýzI’&Mš4}úôFÉ—Tûúú¾ýöÛï¼óNIIÉ—_~©vpŸ* $dup•4PÍÇäää:uêŒ9²ì¢#F899އ*ýÒÑÑqàÀqqqúÓŸh0ÒÒÒbcc333FcïÞ½Õ.`óx–4ðl÷‘ƒF£ñ^¿ÄFþ£ÛǸ?U(2âX ¸q7ª•nõ¶;âØ¯_?µK€‡Á2[]6Ò0:ö È‹@µ²Ýà¸`ÁµK€‡DN5V#‹ 4>B7P4sqL% âââþçþGíBàXžSɳdP®’j’íŽ8V©¨¨èÇüþûï÷ïß÷î]µË€j@Ô¹ 15O{Á±¸¸xÿþýß}÷Ýž={ŠŠŠäƺuëöèÑCíÒg1‘f‚£Éd:tèжmÛvîÜù믿ÊõêÕëÑ£GŸ>}ºvíZ§Nµk<,äE@ ¶%I:qâÄwß}·cÇŽ7nÈõë×ÿõ×_›7o¾eË–Úµk«]#à!bJPíÇäääï¿ÿþûï¿ÿå—_ä–úõ뇇‡Ëã‹­ZµªS§©ô‚!FÀØnp8p üI½zõ"""z÷îöÈ#¨]à!"/¶Ävƒ£¬iÓ¦ï¿ÿ~‡Ô.ðp1% ØÛ½£ŸŸŸ"--í¥—^zöÙgcbbÒÓÓÕ. Pø#`Ãl78îÞ½{Æ ÇoРAzzúÇüì³Ï2díÚµ–«dvÂ*/íKé;ÛËÐ(ƒdó?œ&“éàÁƒ[·nݵk×;w„ŽŽŽ&“©qãÆ«V­ò÷÷W»@kº}ð9ܦ¤íZ%Ïa×ôÿ¹nõŽ¿ýöÛž={¶nݺoß>Ë£bžzê©>}úôêÕKžÚ¶ºíLp¸êE*O‡šÎŽº=Ök)8ZìܹsëÖ­G5›ÍBƒÁкuë 6¨]š:îLP5ò¢žT µ›u{¬×dp´¸víÚ¶mÛ¶nÝzúôi!„üê¶3@e˜’Ö‚£ý±õÛñTÎËËëå—_~ùå—ÓÓÓ·nݪv9ð J_4 Ñj…›d'Û¥´ Q mG‹&Mš¼þúëjW÷¯ìxœ¶GèÈ‹€=²“àšVîØŒÜ¢½am^TIÒ`ïEUŽ ²Ê®š9ú2ÄèÁðÈ‹€ž÷…)iTE/Ü\Ð}4ˆàjR2 m[³Õ 1â^”{ª® õgÜ#‚#@ò"€eèÑòEp5)MTyx†9ETz} 8ÊÃ#€2Ž ¾JÆKOð=¤RdäETŸ²Ý˜þ¥QGPY%7ú~¨“ÔLI£f¨ß·Q}Ž`¬®°4Ö8†Qc*ùcĶîÅŽ`+êA”¼ˆ‡ÂžŠ„RŽ 3LI¸_GІñp1šh—Ž`×È‹°aÌVkŽƒÚ¨éÒ¥KF£ñçŸ.wéæÍ›Ú¥K—iÓ¦åçç«]/Ü ƒáßÇdù°=¤FÍÑup\³fME‹>úè£3f\¼x±}ûöõêÕ‹‹‹{å•WŠŠŠÔ.ª"çEKdTRî uzœª.((8wîÜÖ­[7lØPî ©©©Ë—/÷ööŽõòòBÌš5kõêÕ .üûßÿ®vùìÙý?Ï—)i5O#Ž‘‘‘ǯ(5 !6mÚd6›'L˜ §F!Ä”)S\]]·oßn6›Õ.€Ý*=±|£5LIÃVUÞ™§Ö"=Ž8Κ5ë÷ßB¬]»öàÁƒeW8v옃ƒC÷îÝ--ŽŽŽÝºuÛºuë‰'Úµk§ö°7åÞ!ÇrÐ-ÿàÊ#´ ÜnÌ-¡´KÁ±k×®ò'{öì)»T’¤ .4hРAƒ¥Ûƒ‚‚„™™™GÕ«’q—ržFH^„ÖXº±U ´HÁ±r………&“ÉÍÍͪÝÕÕUqãÆ %ob4­ZRSSÕÞ2Ç( ´LÓ=·ìa]·ŽÖäK§ëÖ­kÕ^¯^=!Ä­[·”¼ 1@µ1$!„Aã^@ËÊÖu% ŽÖÜÜÜ Caa¡UûíÛ·ÅÆ ºT8OýÇ)iƒA¨Žàh­V­Z®®®eG „–묠¦0% ÀVéñvئª@e•ܬ‘Ij6…à6¡ÜK§Il Ál1€#8¢1|€=!8¢¦pÂv†àˆQQ@´œÅE|Êb€#8¢úU>¬ÈÃÓ€r1HÀö@e• Ã3HÀ¦pp¨€AGÀJåƒô`#ލf̬`¯ލfV£‰Ã?J7.™’éØÎqD ²:"rªšFpD(7#ZÈ ÀBM¬ü*騦ªQý8Â`—ލ~òèHÙ³²ä3‰•hSÕ¨AVÙ‘È”«’›5rf0›BpDÍªäžÆ  ËÀVדñcÀ¦ÀV0HÀÆ¡ÆQ€Šð£À–qq aÄÕSûSö.§ü°)GÔˆŠ²#—ˆ©èG†Ÿ¶ƒ©ê mÞ¼yðàÁ¡¡¡]ºt™6mZ~~¾ÚiŒœ­>$IÕ.ÍÖì¢*Øß.ª( ÞßSªíoÿT;vQåØ?¨Á±|}ôÑŒ3.^¼Ø¾}ûzõêÅÅŽòÊ+EEEj×¥1òmÀK(«òaÅûËŽPŽåHMM]¾|¹··÷Ž;–/_}òäÉ… ª]€jŽåØ´i“Ùlž0a‚———Ü2eÊWW×íÛ·›Ífµ«PÁ±ÇŽsppèÞ½»¥ÅÑѱ[·nׯ_?qâ„ÚÕ°+J.a¶€ 8Z“$éÂ… 4hРAéö   !Dff¦Ú°+JB!×V°ÜŽÇZaa¡Édrss³jwuuBܸqCÉ›p=ZåØ?UbUɾvQjU›Så ÖìkÿÔvQåØ?(ÁÑš|étݺu­ÚëÕ«'„¸uëV•ïššªöFЃ¡ŠßU®SÕÖÜÜÜ Caa¡UûíÛ·ÅÆ U>[Í<5ÛÁˆ£µZµj¹ºº–Y,((BX®³€jdÉŽ¥3"OZ`kq,‡··÷õë×å¤h‘––&/R»:öI¾I¾Õ“–Hl Á±&“iÿþý–I’öîÝëîîªvuìOZ`ËŽå ç8@‚#!8@‚#!8@‚#!8@‘Zj`' têÔ)«F¨]šš.]ºÔ§OŸM›6=õÔSe—nÞ¼yÓ¦M.\pvv~æ™gÞzë-wwwµK¶¡]¤óNUTT´qãÆØØØ¬¬¬úõë5ªK—.V«é¶)Ù?:ïB7oÞ\¼xññãdz²²<==[µj5nܸÀÀ@«ÕtÛ…”ìw¡Ò®\¹¾`Á«EzëBÇê‘‘‘áääPº‘ç®Y³¦¢E}ôѧŸ~Z·nÝöíÛ§§§ÇÅÅ?~õêÕNNNjWýPU²‹ôÜ©JJJ^~ù夤$WW×N:ýöÛoGŽIHH?~üرc-«é¶)Ü?zîBÏ?ÿ|nnnóæÍ{ôè‘““³mÛ¶;wnܸ±U«V–ÕtÛ…î=w¡Ò$Izçwnß¾]v‘»„vëÖ­   7ÞxCíBlÅ­[·Ž;öî»ï%%%Y­pöìÙ-Z„……]½zUnùàƒ‚‚‚Þÿ}µk·•]¤óNµnݺ   ¨¨¨ÂÂB¹åܹs:thÙ²å™3gä=÷"%ûGç]Hî ~ø¡¥%...((hèС–=w!%ûGç]¨´•+WÊ¿«'Ož\º]Ÿ]ˆs«AFF†Âêo2=‹ŒŒ>|ø† *ZaÓ¦Mf³y„ ^^^rË”)S\]]·oßn6›Õ.ß&v‘Î;ÕŽ;„Ó§O·üÕÞ¼yó1cƘL&Ë™ž{‘’ý£ó.tèÐ!''§W_}ÕÒ2pà@Ÿääd“É$·è¹ )Ù?:ïBçÏŸÿè£Z´hQv‘>»Á±¤§§ !š4i¢v!¶bÖ¬YŸ|òÉ'Ÿ|Ò¹sçrW8v옃ƒC÷îÝ--ŽŽŽÝºu»~ýú‰'Ô.ß&v‘Î;UZZZݺuCBBJ76oÞ\‘™™)¿Ôs/R²tÞ…ÜÜÜÂÃÃ}ôÑÒuêÔ).....–_ê¹ )Ù?:ïB²’’’·ß~ÛÝÝ}Ê”)e—ê³ qŽc5ºrrr¢££SRRœƒƒƒÇŒSî!zеkWù“={ö”]*IÒ… 4hРAƒÒíAAABˆÌÌÌvíÚ©½*ï"¡ûNõÙgŸÕªeýÛ)99YѨQ#¡û^TåþºïBk×®µj9vìXFFFëÖ­åaZw¡*÷Ð}’ÅÄĤ¤¤¬\¹ÒÅÅÅj‘n»#ŽÕ@þÉ’%×®]ëÔ©“‡‡Çž={¢¢¢6mÚ¤vi¶¨°°Ðd2•=½ÚÕÕUqãÆ µ ´ :ïTÁÁÁò/_‹Ã‡/_¾¼N:ýû÷ºïEUî¡û.d‘˜˜8cÆŒáÇ9²qãÆóæÍ“ÛuÞ…ªÜ?‚.$DRRÒŠ+FŒQîÔn»#ŽÕ ''ÇÉÉiâĉÑÑÑrËÁƒÇŒ3{öì®]»úùù©] m)**BÔ­[ת½^½zBˆ[·n©] M SY˜L¦uëÖÍŸ?ßd2-Z´ÈÃÃCЋªÚ?‚.ô©©©±±±’$ !BBBj×®-·Ó…*ß?B÷]¨¨¨èí·ßnԨѤI“*ZAè² 1âX V­Z•””dùÑBtîÜù¥—^***Úµk—ÚÕÙ777ƒÁPXXhÕ.ßé@þ[ t*Ù‘#G"##gÍšåááñÅ_ôíÛWn§U¾]è?^|ñÅ”””„„„wÞy'>>>**Jî$t¡Ê÷Ð}š7o^VVÖüùó+º±Žn»Á±¦tèÐAqîÜ9µ ±9µjÕruu-û×XAAÂrmÊÒU§*..ž5kÖÈ‘#¯\¹2nܸíÛ·—ž-¢U¾*¢«.da0<==G5tèÐ_~ù%>>^Ð…ªÚ?ÑI:zôèúõëÿö·¿UrB§n»ÁñAI’d2™Ê^xïèè(„¨_¿¾ÚÚ"ooïëׯË?]iiiò"µ«SÊl6Oš4iõêÕ;wî|ýõ×Ëþѯç^TåþÑy:þüÔ©S·oßnÕ._‡~õêUù¥n»’ýCB|òÉ'Æÿ8p âÿþïÿŒFãóÏ?/¯¦Ï.Dp|PéééÁÁÁ#GŽ´jOLLBFµ ´E&“iÿþý–I’öîÝëîîªvuê£S­Y³fçÎÆ [ºtiE¸ë¹U¹tÞ…\\\¶lÙgÕ.ߘ°iÓ¦òKÝv!%ûGç]¨I“&Ïý‘|+ ??¿çž{®[·nòj:íBjßÜDEEmÚ´ÉÒrâĉ֭[wïÞÝò\}š>}z¹EÉÎÎnÑ¢EïÞ½ýõW¹åÓO? š?¾Ú%ÛÊ.Òs§2›Í={ölÛ¶mQQQ%«é¶)Ü?zîB’$EFFÆüÑÒ’’’Ò¦M›6mÚäææÊ-ºíB ÷λ•Ó§O—}rŒ>»A’$µ³«æ={vôèÑyyy!!!ÙÙÙIIIÎÎÎK—.íØ±£ÚÕ©iÆŒòÓßËž&²råÊyóæùûû‡……¥§§>|888xåÊ•z{ jE»HÏêÚµkaaaNNNÍš5+»tÀ€#FŒ?×g/R¸ôÜ…„'Ož6lØÝ»wCCC6lxíÚµãÇ !æÏŸo™gzíB ÷λ•äääöë×oÁ‚¥ÛuØ…ß{ï=µkÐ<ÈÈÈüüüsçÎ>}ºN:Ý»w_²dIË–-Õ.Me»wï>sæÌàÁƒ}||¬…††\½z5!!¡V­Z}úô™7o^Ù;¬Ú½Šv‘ž;Ujjj\\\IIɵò´hÑÂrˆ>{‘Âý£ç.$„ðöö~î¹çnܸ‘žž~òäIƒÁбcÇ?ü°S§N¥WÓgR¸tÞ…¬äæænܸÑh4>ûì³¥ÛuØ…q€"\EŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽlÅùóçU)..B|üñÇF£qݺu§°eË–=„o÷Ö[oÆŸ~úéál܇Zj`0¼½½ïõ«L&Ó3Ïù$<<\íÿ=Cp`[ŠŠŠÊ 4®®®ß|óMÙöððððððÿû¿ÿ+))™6mš¥ÑªeÏž=+V¬hܸñ¢E‹ž|òI!D^^Þ´iÓöîÝ»lÙ²3f!âââ¶mÛæââ2þüîÝ» †ôôôqãÆÅÇÇWRpûöí½¼¼233Ïœ9,7šÍæíÛ· !(¿óåË—ÃÃÃ.\X·n]!DAAÁk¯½vìØ±üqРA÷·¯”lÔÂ… ïܹóꫯŽ7ÎÑÑQ±zõêY³f-Y²„àà^1U À¶H’”]žœœœyÛyóæ !/^,,!„‡‡ÇâÅ‹½½½cccoÞ¼)IÒ’%K„ï¿ÿ~= ƒ¢I“&K—.•óVEž{î9!Dé|yüøñ«W¯†††>þøãBˆ’’’=zLžø ¤¤¤qãÆíÚµëÙ³g«V­ÒÒÒÞÿý{Ú“É$I’òB4lØpóæÍ‰‰‰ûöí;räÈéÓ§Oœ8±lÙ²Aƒ}ðÁån/T„àÀþ !œ-×Ê”•››+þ3Œg%--­Êoa Žo¼ñ†<m™§¾}ûö?ÿùÏÚµköÙg¥g½ùå—{Ý+W®˜Ífå%3 ò=€„ÅÅÅû÷ïŸ:ujlllxxxDDD ï{v…sØ?oooOOÏ‹/&''—n7™L/¼ðBXXX^^ž§§§¯¯ïµk×vîÜYzìììýû÷Wù-š4iÒªU«K—.:uêÇlÒ¤‰å&>§N2™LmÚ´±:WR¾l¥rV3Ú?üðÃ=mTvvvxxø!C,Kk×®!_Í“••¥ò ­!8°f³¹°°°¢–‰'šÍæ‰'¦¤¤È-·oßž:uêéÓ§CBB<<<„òõ"ï¾ûnBB‚¼Nffæë¯¿._SR%ù™éÓ§–¾ÃŽ···âìÙ³yyyr‹ÉdÚ°aÃÚµk…EEEå¾[ãÆ…kÖ¬±lÂáÇ—-[Vz*7Ê××÷×_ýùçŸ?ÿüsËPååË—÷íÛ'„°\‹ 1U À¸¹¹åççGEE5nÜ8&&¦lË€Ž=úÍ7ßôïßßßßßÝÝýÒ¥K………sæÌ‘ßdÀ€‡ÚºuëèÑ£ÝÝÝ]\\ä{åøúú*¹Pß¾}çÍ›—ššêèèØ¿K{```DDÄ?þø§?ý©mÛ¶’$¥¦¦æçç>|õêÕ[¶lùõ×_åë”Ö¿ÿ¯¾úêĉÁÁÁ×®]»pá‚«««Ïï¿ÿn)¸òrpp˜6mÚ”)S,XðÅ_4lذ°°ðâÅ‹’$EEE•~¦(Áˆ#{0eÊ”Æ_¼xñܹså¶ †¹sçþë_ÿ —ÜÒ´iÓ‰'~ûí·–·888,\¸pöìÙòœ²œŸ}öÙ*O"”yyyuèÐAæååUzÑ¢E‹Æïçç'ßß±[·nß~ûíôéÓ‡îèèXî5jôõ×_÷ìÙÓÁÁ!!!áܹsþþþ+V¬GeJ6jÀ€_}õÕ3Ï<ãäätöìÙÂÂÂ.]º|òÉ'3gÎTû? €ö,èJËÍÍ5 ¥ƒšZîܹsýúõFq4u SÕP„àEŽP„àEŽP„àEŽP„àEŽPäÿ{ä–¡­2;*IEND®B`‚statistics-release-1.6.3/docs/assets/anovan_201.png000066400000000000000000001265121456127120000221420ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A€IDATxÚìÝi@×Úð“°²ïX¹¢(QY‹¢ U‹ŠVÛZÑ ŠkEÄ*(*Š`뢴½Ôº[o낈uAĽ. ˆXD²ïdÞs›77@ ë„Éÿ÷if2™yNžœsæ ‡¢(ð!\¦€®‰#H‰#H‰#H‰#H‰#H‰#H‰#H‰#H‰#H‰#H‰#H‰#H‰#H‰#H‰#H‰#H‰#H‰#H‰#H‰#H‰#H‰#H‰#H‰#H‰#H‰#H‰#H‰#H‰#H‰#H‰#H‰#H‰#H‰#H‰#H‰#H‰#t1•••›6m²°°PUUÕÑÑ3fÌï¿ÿÎT0jjj'??¿ñKýû÷çp8ÇŽëÐ ß¼ySUUE¯*((p8œŠŠŠv98]>úhÆŒoÞ¼!„”””p8…–F]Gèb<==×®]ûôéÓ>}úÔÕÕ%$$Lž<¹£ó3©5{öl##£ß~û^8p ……—ÛžÿߌŒ,,,ŒŒŒòòòŽ9òå—_RÕê¡KCâíŒþyúùçŸ ¶üüóÏÇÖÖ¶“#ÿk¸®®nÓ¦M#FŒÐÐÐ8pàìÙ³³³³ÅMòýñ C½{÷îÔ©Sòòò©©©iiiEEEß}÷ŸÏ‰‰i¼suu5Óñv¶”””´´4eeåv<æöíÛÓÒÒ^½zuúôiBÈ­[·ž?ÎtA!@»277§ÿ´®^½Jo¡ks›Nޤ¸¸˜"//ßø¥¢¢"A"«©©Éáp!jjjgÏžmòP-ÚŸþ?Ðéw}üñÇ|>_LH"ÜÜÜ!Gíä @ú¥¤¤ÐWbAA½¥¤¤$&&&66–ºðÏŸ?oaa!''çììüæÍá—ÒÒÒüñGŠ¢ªªªüýýûöí«¦¦æì윘˜(8ÑãÇǯ£££¢¢beeuòäIz{mmí·ß~Û£G~ýú8p@UU•òöíÛÆ¡ÒµA“r]]ÝÆ-,,TTTÖÐÐ@¿D‡djjªªªjooñâE1ñÐumãÆEÉËËBÊËËÅœEðQüñÇVVVªªª...ÙÙÙ,B}}½¢¢"!äúõë"Zsçj!tiH¡ G+++>ŸOIeâèííMéÛ·ï½{÷è=çÌ™C100())iãþ"õ,ý’™™‰Ä í*++{öìIÑÐÐøüóÏ7oÞ|éÒ¥êêjúUú*ãp8ªªªvvvÚÚÚ„[[[ÁK\.·ÿþ„={öP5eʺ¾š2eв²²²²ò£G(Šª¯¯ïÝ»7!dÈ!...rrròòòÏŸ?§(ÊËË‹Î\mmmåååé_’-MgÏžMÑÑÑ7nœ¦¦&!déÒ¥ôKtHÿú׿œœœäååîß¿ß\ gggzpäˆ#,,,˜þ2¤Ë£G¶lÙ«  `eeµhÑ¢øøx}}ýúúú'OžvÜVL÷ÃÒ펄999===Á2!ÄÆÆæ°uëÖBJKK‡ ²hÑ"…•+WŽ;–~Kii©ðÁuttè®júDJÿS3EQ„Á !úúú„úúúúúzBHCCƒÈ[š‹§ug¡Wéø„‹ÓAÎ÷îÝ»hiiµô\ÀH¡£,_¾ü_ÿú×–-[rssé|nôèÑtbdaaannÞÐÐ@÷ÎB8Îwß}×§OáZžnNèÕ«!ÄÙÙYNNÎÀÀ€îÿ­¯¯766>uêÔèÑ£,X`mm””DÄÖVÆÆÆ„á¨ŠŠŠ*++?~L¿êåå%¸'úÔ©Sܿɳ¼|ù2%%%''‡þ~ðàA‘>øQ@“êêêV­Zµpá‡Ò[Þ¾}[WWG155ìvâÄ BH~~þ•+W!C‡m|(ú‡YaaáŒ3¾þúk“”””òòrBȹsç^¼x1jÔ¨¨¨¨/¾øBpaš™™BnܸAO•@gTôK?ýôSÕ?èqŠÍ¡»òòò!™™™·nÝâr¹–––tïÊ7ÊÊÊ!6lPSS[³fMsñ4®ôÄœ¥Ý¿IÎ…$’8BGQVVÞ¼ysEE=lˆöÁ_¥Â4ÁobÝ #¬¥?ÄéÎòòònÞ¼I©©©;vìØ±c¯]»F:t¨H³Á÷oò,øÐA† òùçŸWTTX[[[[[8°OŸ>ÿý÷ôéÓûöíKïÃápÖ¯_?|øp ‹êêê)S¦†»8pà¤I“^¼xáää4kÖ¬qãÆíرã_ÿúù§ªIHH;vì¿þõ/ºW„¢({{{ ‹úúúÁƒ;::.Y²Dø*nÝÿ pìØ1ssó™3gÒuפI“ìííkkk}||>úè£!C†Œ7®²²rðàÁcƌٸqc}}ýŒ3š‹‡BÕÙ±cGBB‚ðyÅœ¥Ý¿ñçj.Bè’˜î+¶ÓÃçó³ØÐcŸ>}JQWWÏÍÍ¥(êÙ³gŠŠŠ\.÷Í›7‡$ŠlY»v-!dÕªUôª’’!¤  à—_~!ÿÜXWWG×SGs ó¢E‹!¦¦¦©©©EÓAjkkÓÒÛ²¿˜û(…CóQPÿ :|ø0Óß'€4ªªªÚ¾}ûàÁƒÕÕÕµ´´¬¬¬vîÜIßX-¸Ê~ûí·þýûëééÍ›7¯¢¢‚j憹òòrccc555''§?þøƒÞ^YYI·¢ýë_ÿZ·nÝ7ß|CY¸p!EQ>¤; úôéóÁéxDìÚµ‹¢¨ÚÚÚtïÞ}РAááá‚éxÊÊÊ|}}ûô飪ª:|øðk×®‰'55µoß¾ÊÊÊ?üðõ¿wU7w‘BLm)a…&¾D"B—†ÄÚ™H-CÝ#B7ÇÌœ9“¢¯¯?qâDºÎ××—jªæ’0q<~ü8½Û˜1c éÁ:GŽSÚØØÐéêêÒãœè9''§ûK^Ï6÷QPåããC±µµ¥‡–€„$Ÿôêƒjjj®\¹ÒäK•••·oßî䢉‰ Ó «:–££ã—_~)¼eïÞ½!!!ººº—/_622 ˆˆhË)ÜÜ܆ R__Ÿžž>þü B®^½*æ-ÚÚÚ7oÞüî»ï†^]]­££3yòäÍ›7¿}ûöÇlûþóQ,X° oß¾=JOOï¨ïÄRTTtvvnò%eee;;;鉠Óp¨–|8eÊccã‹/¢^èP‡¢¨®ûs_LÖ( //oiiÙ.§Cí-Ž©¯¯÷õõõððX¶lÓ±°52E—Ú :G‰$%%åçç÷ïß?99Y°ÑÔÔTWW—éÐØƒîžFÖØ"¨ 3!q”ÈóçÏ)ŠZºt©ðÆíÛ·Oœ8‘éÐX ­ƒÚ :G‰Ì™3gΜ9LGÀNhhl ÔNЙ8“XÙÐxçÎIvÓÔÔ433c:X€@âÌ`qC㯿þ*ÉnfffH kAâ `eC£ÀæÍ›™ C`GèT‡Ãá\¾|™ËåVTT0´Z Ý?Úµ¹g¿RURRbiiÉâG¶BâíC¤÷¹qg´`‹¯¯¯ššÓñ@‹¡«:EQ‚Hº{šÎOŸ>˜˜ˆQ€]Z c 7=æçç/Z´èĉ²ÓOžž®¥¥e``˜˜øûï¿[XXÌœ9“ËÅvè’Py@é°ž?¾§§çÈ‘#™Ž«“9rä³Ï>{üøñÛ·o/^üþýû;vDEE1@+!q€öÑdß´pÖ¸ÿþììì72i牉‰ñóósqq‰766Þ·o_hhè™3g˜Ž  •8@»¡sÇæfö¾}ûöãÇ•””8޳³3!DUUuÙ²eLGÝ  !wîÜqrr"„ðx¼wïÞ1@+aŒ#´³æÆ/ûí·ôò;w<==ïß¿oddÄt¼¨wïÞ ׯ_÷ôô$„ܼyS__Ÿé¸Z ‰#´ñσ100000 —ß¾}Káñx***LGÝ|||–.]miiicc³{÷îÈÈÈU«V1@+!q€vÀâO·Å˜1câããsrr¬­­¹\®µµõþýû˜Ž  •8@[µâÁÓNNN,Î2 ËJJJæææ&&&ô«ºººLÇÐH õÐÐØ¤áÇ‹ß!##ƒéZ‰#´R+eÄ¥K—Ú÷€µµµ7nÜPVVnüjqqñ÷ßíÚ5‡ãää ©©Éôgì„ÄZ âõêÕ«¹—jjjÂÂÂÖ¬Y#ùÑ """ÊËË›ÛaõêÕ/^¼Ø±c!$((hÍš5ÑÑÑLÀNH eÐÐ(¹âââ]»v½~ýZ°¥¨¨èÍ›7’'ŽÑÑÑtFØœÚÚÚk×®ÛÙÙB¼¼¼BBBjkk™.=°&I žÃt ]FPPPBBB=’’’LLLzôèñìÙ³ÈÈHÉàíí‘‘qäÈ1ûp¹ÜnݺÑËJJJx6t´8€D2¶ÂíÛ··lÙâììüêÕ«Q£FÙÚÚ0 >>ÞÖÖ¶½N¡¨¨8~üø}ûö™››BöîÝ;aÂ1Í<àîh-öÿ0MOOÏÏÏ'„$&&®\¹òàÁƒ|>Ÿé ºd­SUU¥££C177§s5''§øøøö=˪U«òòò&Mš4iÒ¤wïÞ­^½ZÌÎÈ ÕXž89rä³Ï>{üøñÛ·o/^üþýû;vDEE1@—îé¶033;zôhUUÇ£oµÎÉÉ©¬¬lÇS”——O:uâĉÉÉÉÉÉÉãÇŸ:uª˜;iÚ‚å‰cLLŒŸŸŸ‹‹K||¼±±ñ¾}ûBCCÏœ9Ãt\]2"klµ•+Wž?þĉ#FŒxúôé§Ÿ~º`Á‚Ñ£G·ã)®_¿^VV¶fÍmmmmmíÀÀÀâââÄÄD¦‹ìÄò1ŽŽŽŽ„;wî899Bx<Þ»w @ÚaÂvaggwûö튊 MMÍØØØ¸¸8mmí¯¾úªOÁçóëëëè{bêëëëëë1 :ËÇÞ½{'$$hhh\¿~ÝÓÓ“róæM}}}¦ãjè›nGŠŠŠô­*¦¦¦¦¦¦íuØØØXWWב#Gª©©-_¾|áÂ…Eýøãêêê#FŒ`ºÜÀN,O}||–.]miiicc³{÷îÈÈÈU«V1€”BCcûjîîé»wï¶ñȇ655uuuUWW?xðà¶mÛæÍ›Çáplll<¨®®ÎtÑ€Øß®ðúõ뜜kkkeeå;wî444888tèy<ËnZ|ñâEŸ>}˜Ž…êðIaCcWÿš’““Ë555Ož<Ù·oŸ———··7#ñ°¯v€NÆÎÇ‚‚Á²’’’¹¹yEEEEE…‰‰ ýª®®.Ó1t¶cÇŽ¹»»‹lüöÛo#""ÐÐØAD~¦:;;óx¼åË—{yy5ùÔi)ÇÎÄqøðáâwÀonANNNqqq‚Õêêj)lhd±¾}ûÖÔÔ0@+±3q¤çK5tá€H:hhhhhh(X vuu4i²ÆŽS\\,¼ZZZݳgO¦šŸ={&òGBü ˆ´=7¹3öÇþØŸÈ0v&޽zõjî¥ššš°°°5kÖ0#@;311©ÎÄ4%fee…„„™¯;š½½½È…-[¶0™™™øþ‘¿‡þy`ì/ËûË&v&ŽÅÅÅ»vízýúµ`KQQÑ›7o8‚Œ355]½zuhh(Ó°\ãÞ===Œn€®‹å‰cPPPjjê¨Q£Nž<éááQUUuëÖ­ÿûßLÇÀºó…žùéXXKøfjoÞ¼!nšè*Xž8Þ¾}{Ë–-ÎÎί^½5j”­­í€âãã››\ €ÝèÎk///999Ì-Ðq„gÛ©®®æóùô#¿éº˜ššž={–éZƒåϪ®ªªÒÑÑ!„˜››Ó#{œœœâã㙎  ýeggsþ—ðÁ–ŠŠŠ“'OΘ1ƒéxÙìÏlÛ¶ÍÈÈhïÞ½©©©©©©466¶´´d:@€VbyâhffvôèѪª*G6ÊÉÉ©¬¬d:.€Aý/Áv:e¤·üöÛoJJJÎÎÎL+vîÜ8|øpEEE{{ûõëן:uJänk€®‚å‰ãÊ•+ÏŸ?âĉ#F<}úôÓO?]°`ÁèÑ£[}ÀÚÚZkk몪*¦K ‘ÆM—.]rppàrY~íK‰ÜÜ\555á-***ªªªL‡Ð,ãhggwûö튊 MMÍØØØ¸¸8mmí¯¾úªuG+((ˆˆˆ(//gºXir:ž+W®Ì›7éÐdÅСC###øáMMMBHIIIDD„µµusóÃH9–'Ž„EEEEEEBˆ©©©©©i«½cǦK ©æ&q|ñâÓ¡Éàà`ggçþýûBÒÓÓµµµ:Ät\­Äòı¹»§ïÞ½ÛÒCy{{{{{?xð`úôéL @L‡€B}€‰‰ a]CcMÝÜÜ,XàçççææÖäì«"@F°úˆéÒ ±3qôöö,WWWóù|úÁk|>ŸbjjzöìÙÖÙÊÊ ·C³5v!½{÷NHHÐÐи~ýº§§'!äæÍ›úúú’áƒ3Èæää¼}ûvüøñôªê(è8ì|^íŸÿضm›‘‘ÑÞ½{SSSSSSéÞ"KKK¦hÆž)çãã³gÏžO>ùÄÜÜÜÆÆf÷îÝ!!!í{sLNNŽœœ\jjêĉ­­­çÎKOÙGO4 Ð ìLvîÜ8|øpEEE{{ûõëן:uJänkéG§ŒÈ»–1cÆÄÇÇÇÄÄ8p€ËåZ[[ïß¿¿}ŸAPQQÁçó£¢¢V®\¹wï^999//¯ªªªæöÏÈÈ@“$´ËÇÜÜ\555á-***ªªªL‡ )44viFFF&&&)))„KKËv`­¬¬LQÔæÍ›GŒ1xðàíÛ·¿ÿ>))‰ér;±}útggçׯ_3À‡¡¡‘BCCËÊÊåää!+V¬xüøñÖ­[Ûñ PUU}ôè½ZTT”ŸŸß»wo¦‹ìÄòıgÏžqqqß}÷ÝÇ<""‚nàhwìLÝÜÜ,XàçççææÖ丩¤žÃ2¶¶¶ؼy3½ZZZÑøQ¨ÔxÙ .–¹\îŠ+V¬XÁtq€ýØ™8¦¤¤ÈËËBÒÒÒ˜Ž@RhhdŸ5kÖÌœ9sìØ±|>ÆŒOŸ>522Ú²e Óq´;GÁÓ¨ÓÓÓµ´´ ÿýw ‹ö} íÐÐÈV†††çλpáBVV–ššÚüù󜜸\–.cgâ(päÈ‘àààÝ»wSµxñbkkë;v”””,Y²„éÐþ ¬TUU•‘‘¡¥¥ell¦h%–·88::BîܹãääDáñxïÞ½c:.44²ÙÖ­[õôô"##UUU÷ìÙóù矫©©ÑUUU™ •Xž8öîÝ;!!ACCãúõëžžž„›7oêëë3È4Œhd½Ç¯^½ÚÆÆ†èèèèççGOÐ¥±¼«ÚÇÇgÏž=Ÿ|ò‰¹¹¹ÍîÝ»CBBps 03{Ë‚ÒÒRÁd±ôìß<é ÚË[ÇŒŸ““cmmÍår­­­÷ïßg*@ûyô¹˜¤°Éîiá·#¡d Ü: ¬ÄòÄ‘bddÄårSRR,--•””˜Ž¤W+r¸Æ¹ ˜ì°ÉíÂ1ð¤ËÇòòrÿ«W¯R•‘‘1kÖ,##£ 6¨¨¨0HŽËáš;ÒD‹500hnuéÒ¥LÐ,OCCCËÊÊé[ªW¬X±víÚ­[·†„„0H;Š¢ÚžØá>ÙdbbòçŸ6·J8@—ÅòÄ1))),,ŒœN±±± X»v-GèÌ;Û%7)$ü i6ayâX[[Û½{wá-zzz LÇ]€„)ü5¹¥oG ÒŒå÷ýÙÚÚ8p€ÏçÓ«¥¥¥öööLÇÒ¨q (ù…µtÂá÷2ýˆÃòÄqÍš5÷ïß;v,ŸÏŸ1c†““Ó»wïÖ­[Çt\ ¥è´¯ÕOÄ#€ÝXÞUmhhxîܹ .dee©©©ÍŸ?ßÉÉ ó«­Nû2ë±6q¬ªªÊÈÈÐÒÒ266ž|8 €éU5‚°äädñ;´ô1µµµ7nÜPVV³Û­[·fÏžýçŸŠß  ÕØ™8>yòdÁ‚ïß¿'„ 0`Ïž=ÁÁÁIII555„‡ƒÄÚ &ÜÆ¼½½ËÕÕÕ|>ŸÆ@·655={ö¬äG+((ˆˆˆ(//¿[YYÙêÕ«ñ§ЉãÖ­[õôô"##UUU÷ìÙóù矫©©ÑUUU™X Ð$Á¬ [¶l ¶µµåp8\QQQAAÁÞÞ~ýúõ§N*..–ðÞÞÞGŽ¿[||ü½{÷–/_.~7333Á²ð_/–±ŒåÖ-Ë v¶8–––šššÒËôìß<é €=2‚„rssÕÔÔ„·¨¨¨¨ªªjhh´ãY ‚ƒƒwìØ!ÉŸ%]fdd0ýÙ@—ÄÎGBn†Ž€†Fh‘¡C‡FFF ÚKJJ"""¬­­[7chsÖ­[7yòd[[[IvÎÈÈ@Ö­ÆÎG€Ž€”Z*88ØÃÃÃÙÙ¹ÿþ„ôôtmmíC‡µã)NŸ>ýêÕ+ ÇA´kÇØØXƒæV—.]Êt€Ð•àÖihž={ÆÅÅ]¼x1;;›ËåzzzŽ=ZAA¡O‘ššš™™9hÐ Á–!C†Ìš5kÍš5L—Xˆ‰£‰‰‰à®ÆÆ«‰#´¡-­­­uuuª««Û7k$„øøøÌš5‹^NMM]¹råéÓ§ ™.7°;Ç .0°²Fh‹òòrÿ«W¯R•‘‘1kÖ,##£ 6|pÞœŠÕÑÑquuÕÕÕÕÕÕ¥7ғך˜˜`pè ¸ƒ i¸Ú.44´¬¬,11QNN޲bÅŠÇoݺµíG>|øðùóç™.È$ŽM SFdÐFIIIË–-£'#„ØØØ$$$´ô8VVVÂíˆ.\عs§Ènvvv"»´/vvU´îƒvT[[Û½{wá-zzz LÇÐJhqøhh„öekk{àÀúÕ„ÒÒÒˆˆ{{{¦ãêTÙÙÙnnnZZZ=zôðòò*,,d:"õÇp¹ÜŠŠ ¦.€-ŽÉÉÉâwppphé1ëëëwîÜyòäI•qãÆ-[¶¬}§ðf¡¡:š5kfΜ9vìX>Ÿ?cÆŒ§OŸmÙ²…é¸Ú™ 2l|ñùü/¾øBOOïÂ… ÕÕÕsçÎ]´hÑñãÇ™Y†|°r+))ñòòBíbgâèíí-X®®®æóùôôï~SSÓ³g϶ô˜ááágΜ %„¬^½ZQQÑÇLJé‚BûÀM0ÐA Ï;wáÂ…¬¬,55µùóç;99±ì¹V—OãKééÓ§)))÷îݳ¶¶&„,Z´hýúõ|>Ÿe‚tNÅÔr¾¾¾"ƃ—îŸÿضm›‘‘ÑÞ½{SSSSSS}:11qóæÍLG ];G;w>\QQQAAÁÞÞ~ýúõ§N<:VBÏž=«¨¨ptt¤W ÓÓÓ™.´ F4BGÛ´iÓ—_~)ÜÅQ__ÿÛo¿1Wç±°°øé§Ÿäååß¿Ÿ˜˜øý÷ßϘ1Í@’ŸÄùùù‹-Ú¿¿ºº:ÓñB—ÁήjÜÜ\‘xUUU '//ÃáæÔÐ××çp8ÍíÏãñ!qqqLíãõë×L‡ÐþLLL²³³_¼xÁt 톕_ øûû¯]»öáÇòò,¯rŘ4iÒ­[· ÷ïßÏt,ð_óçÏ÷ôô9räµkטŽº –×bC‡ŒŒüá‡455 !%%%ÖÖÖ-½¯¥¦¦FYYYð+™Ëå*))•””4·FFÓEog}úôa:„vCûÙÙÙl*}%bAfïææfoo¿xñâ´´´;vˆÌÎÓÕÑ ’4Û'''lÚ´iذayyy˜l²£}ð«Ù¿vvö‰'˜Žº–÷¿yóÆÙÙyúôéÓ§Owvv~ýúupppK£¡¡QUU%ÔÈçó«««[Úl ÒÝÓÐùLMMO:¥­­=eÊ”ÎùÐåÐ Š€ÈÅ•‘‘!(²®®î÷ß_VV–””ÄtÔ2AüWsûöíÇ+))q8gggBˆªªê²e˘Ž¤Ë[{öìwñâÅììl.—ëéé9zôèV ÍÖÕÕ¥(ª¨¨ˆ~&laa!EQ‚žkè0á0HMM-**êÇüöÛo™Ž¥ý‰¹¬’’’‚‚‚þúë/ºÇ¦¸¸˜Ï糬ÙUš‰ùj‚ƒƒwîÜñôô¼ÿ¾‘‘Ó!ƒ´cyâHQTT´¶¶ÖÕÕupp¨®®nÝ }fffÚÚÚÉÉÉ'N$„ܺuKGGÇÔÔ”é¤pë40bÿþýªªªô2‡Ãùæ›o,--/_¾Ìt\ÇÍÍÍßßßÛÛÛÛÛ»²²rݺu666LÇÄÀÀÀÀÀ€^~ûö-!„Ç㩨¨0H;–'ŽåååþþþW¯^¥(*##cÖ¬YFFF6lhéµ!//ïîîÞ»w†ððpwwwYçÞ… ¡:_ff¦–––®®®®®®È0M===www¦ì<úúúçÏŸ_¹r¥£££ŠŠŠ‹‹Ë¾}û™Ž Z‰å©OhhhYYYbb¢““!dÅŠk׮ݺukHHHKåëë[[[ëëëKqss[²d Ó…ƒCC#0ÂÍÍmÁ‚~~~nnnMîÀ¾ûçÄøøã¯_¿Ît Ž““ªJËǤ¤¤°°0Á`D›€€€µk×¶"qäp8+V¬`Ó̽¬‡¬˜’’’B÷H¤¥¥1 @{bù]Õµµµ"£°õôô˜Ž :žÌRVV¦‡S{xx(þ¯êêêùóç3 @+±¼ÅÑÖÖöÀ‚‡)•––FDDØÛÛ3t ¤ŒÀ¸ÊÊÊÝ»wBRRR„_ÊËËËÊÊb:@€Vbyâ¸fÍš™3gŽ;–ÏçϘ1ãéÓ§FFF[¶la:.踤D}}}vv6½,X q¹Ü   –°¶¶ÖÁÁáÆMΛ]RR²eË–„„Š¢è9½{÷fú3vbyâhhhxîܹ .dee©©©ÍŸ?ßÉÉ Ie%44‚ôPWWŠŠ"„Ì›7^h‹‚‚‚ˆˆˆòòòæv ÌÊÊ WWWŒŒôòò:wîæJ€ŽÀòÄñàÁƒÃ† ›œ2eб±ñÅ‹§NÊt¡€ÍXÞU½ÿ~UUUz™Ãá|óÍ7–––—/_f:.h ¤ŒÐåxyyñù|ú÷ÂÚ±¿¸¾¾Þ×××ÃÃcÙ²eL؉cff¦–––®®®®®î‹/„_ÒÓÓswwg:@hÜ]T\\\966VGGÇÕÕ5)))??¿ÿþÂãpLMMuuu™.=°;G77· øùù¹¹¹5¹†‡w!­nh¤ÓM‚Œ˜Ó«W/BHnnîË—/ª««•””Úåȇ655uuu}þü9EQK—.~uûöí'NdºôÀBììû«ªª’——WPP¨­­mrEEÅŽ;;ÇcYbúâÅ‹>}ú´ñ ­h5¼¥uïìßdêÙ.…’*ì+ U^^îïïõêUŠ¢222¦M›fdd´aÃFâa_íŒ7Ç(+++((B<<<ÿWuuõüùó™P¶îh¤€¾KðÁ‚„oÉ[t^€vZVV–˜˜(''GY±bÅãÇ·nÝÊt\­ÄήêÊÊÊÝ»wBRRR„_ÊËËËÊÊb:@™#H㉠˜…Û…wFþ]NRRRXX˜žž½jcc°víÚ¦Ch v&ŽõõõÙÙÙô²`Æårƒ‚‚˜P†´t„¢øý%É;¤Gmm­ÈCôôô˜Ž  •Ø™8ª««GEEBæÍ›G/@—Ð^I¡H~‰\˜bkk{àÀÍ›7Ó«¥¥¥öööLÇÐJìã(Ãt²NÂþe gö–<Œ‰DÖ Z³fÍýû÷ÇŽËçóg̘áääôîÝ»uëÖ1|À±cÇ8`¦L)QXX8{öl}}}//¯ÂÂB¦#’-ìlqHKK[¿~ý«W¯D¶ß½{—éÐdˆHîØ8“Û}ð½âÏËtÑAÖž;wîÂ… YYYjjjóçÏwrrârYþ‹½«3c—“““ðœÕÕÕ...L‡,+ÄO¦6gΜŒŒŒãÇs8œ… Î;÷Ì™3L‡,CXž8)**nذASS“éXdZs9œ$óì ÿƒ.Gx.nBˆ½|ûömBˆƒƒÓ1Ê:ñ£Y «ÁÁÁ®®®˜³sˆ|5äÿ ÔÔÔœ?>::ÚÙÙ™²|ùòÅ‹×ÔÔtëÖéÀeËÇçÏŸÇÆÆ4ˆé@  èD¶òöö,WWWóù|º¯“ÏçBLMMÏž=ËtŒ2­É»š«Ž²²²¢¢¢ÒÒÒ˜ŽZ59؉Ëå &ÒWVVF~'cy⨧§WUUÅt vûóÏ?é…„„„-[¶ÛÚÚr8œ¬[·ÎÒÒ’é¡çÏŸ/Ü çƒ Ýºu›6mZxxøàÁƒ !aaaîîîhnìL,OCCC7nܸxñb á?,<Å•AhhÙ±sçÎÀÀÀáÇӫöööëׯŸ3gÎÊ•+1~¦Kxüøñ… D¦uƒŽ#Éœkaaaýû÷§G==½Ë—/3µlayâèååÅçó}}}E¶ã¡[Œ@C#ÈšÜÜ\555á-***ªªªL‡&Ó$Ÿvûöí_}õÚ¤Gii©½½ýŒ3èÙ 6lØ`ooÿàÁuuu¦C“,O…o‹f¡¡dÐСC###øáº}±¤¤$""ÂÚÚÏ@bœ$36TTTœ//¯Ž8Wmm­ƒƒÃ7”••™.7°ËG[[ÛlÞ¼™^---ˆˆ@×CÇAC#€0‘G :;;óx¼åË—{yyµozWPPQ^^Ît‰€åXž8®Y³fæÌ™cÇŽåóù3fÌxúô©‘‘Ñ–-[˜Ž‹ÐÐðA}ûö­©©ißcFGGïØ±ƒé’€L`yâhhhxîܹ .dee©©©ÍŸ?ßÉÉ ·Èud ¯–––FGG÷ìÙ³}›½½½½½½tèP+%ã^ ¡ bbbË rrrLGÐ&,O{öìwñâÅììl.—ëéé9zôh…Ž>/=áE\\Ó@û011¡»ÛØôäÖׯ_3JÄf999gΜ™0a‚©©iMMͪU«âãã544¾ùæOOÏŽ8£••î˜€ŽÆòÄ‘¢¨¨8qâÄN>)›ªo‡“ݧO¦iì+ûJÔE«<~üøë¯¿611™0a!d×®]W®\Y°`ŠŠJDD„¡¡áرc™Ž 5Xž8ÚÚÚ6¹ýîÝ»âßxþüùeË–ÑËgÏž555eº( tOwÑÞLùá‡ÆŽ»uëVBEQ§OŸž;wî’%K!uuu‡Bâ]ËÇ;w –kjjž//¯¾qìØ±÷îÝ£—UTT˜.p @«=zô(22’^ÎÌÌ,((?~<½jeeuøða¦h%–'Ž"tvvæñxË—/÷òò?£¼¼¼È<>²÷Á´Qyy¹à>˜›7oêëë÷íÛWðjEEÓ´;Ÿ#Fß¾}kjj˜ŽBzÑ ’d………³gÏÖ××700ðòò*,,d:viallœœœL/ÇÇÇüñÇ‚—RSS{õêÅt€­ÄòÇââbáÕÒÒÒèèèž={Êøs_šÔ¸¡Q|Óãœ9s222Ž?Îáp.\8wîÜ3gÎ0]©àîî¾mÛ6‡“““sÿþý Bø|~rrò?þèããÃt€­ÄòÄÑÞÞ^d‹‚‚–-[Z}@¶NxÑxD£`K“écMMÍùó磣£ !Ë—/_¼xqMMM·nݘ. óÜÝÝKKKOœ8QVV¶hÑ"ú2Y¶lY||ü´iÓ:h:€NÀòÄñÒ¥K"[ôôôÐÜ(¬É¼P8¤(ªÉíp¹\%%%zYYY™Ë•¹aÍ¡›á.\(¼qéÒ¥7n”ÙÁÓÀ,OW¬XqìØ1á-¥¥¥ß|ó͘M*Hxëtvv¶ÈžÝºu›6mZxxøàÁƒ !aaaîîîhnÃÄÄ„éÚŠ‰ceeåîÝ» !)))aaaÂ/åååeee1 Thã„;aaaýû÷§G==½Ë—/3] èXìLëëëéGäB 4.—Ät€ ké„;&&&";—––ÚÛÛϘ1cݺu„ 6ØÛÛ?xð@]]éÂ@Gag⨮®E™7o½’4467®QàÂ… %%%‘‘‘ôÐÆ;vÄÆÆÆÅÅ}õÕWL—: Ëohˆ‰‰,7440Ã8ŽäÝÓ”‘V[BŸÏ¯«««¯¯§Wëêêêêêø|>ÓE€ÄÎGBHNNΙ3g&L˜`jjZSS³jÕªøøx o¾ùF6çÂhßGŽ7NCCcúôé«W¯¦(jóæÍššš®®®L—@*ܹsG’Ý455ÍÌ̘ Ø™8>~üøë¯¿611™0a!d×®]W®\Y°`ŠŠJDD„¡¡áرc™Ž±ótÄ#555ÿøã€€€qãÆq8œ#F\¹rESS“é²H…_ýU’ÝÌÌÌ8@×ÂÎÄñ‡~;vìÖ­[ !E>}zîܹK–,!„ÔÕÕ:tHvÇömhfjjzúôi¦Ë 6oÞÌt‚c=z$¸K#33³  `üøñôª••Uã{¬Ô¢ÄÎı¼¼\NNŽ^¾y󦾾~ß¾}¯VTT0`‡£SFd]]}}}xxø°aÃÆŒÞäE]\\¼jÕ*‡aÆ­^½º¸¸˜é¨€µØ™8'''ÓËñññü±à¥ÔÔÔ^½z1`ÇBC#k„‡‡Ÿ?99ùÇôñña:ÀŽÒ÷ÁSjjjŽ=èììLñóó ÷öö~4|mmíµkׂƒƒíìì!^^^!!!µµµŠŠŠL‡,ÄÎGww÷… ž:uêêÕ«‹-¢ëÜeË–Í›7ÏÍÍ­Óñ {@J”••µËnÏž=«¨¨ptt¤W ÓÓÓEvãr¹‚'Å+)) §•í‹-ŽgáÂ… .Þ¸téÒ7ª©©1]‡”— ¡@jÌš5ËÚÚÚÃã¹1wîÜÙ¿¿‘‘‘ønå¼¼<‡£§§G¯êëës8œ‚‚á}Ç¿oß>sssBÈÞ½{'L˜ ¦¹‘ÇãB222˜þ KbgâØ$¦CèÑ mŽ=úÓO?M›6ÍÜÜÜÆÆ¦oß¾ ………Ož<¹yófCCƒ`¶‡æÔÔÔ(++ Z¹\®’’RII‰Èn«V­7nܤI“!ÚÚÚsL¤ŒÐ2”8²¤“¢¢¢Ï¼yónÞ¼yéÒ¥÷ïß+** :400ÐÞÞ^üãàiUUU|>ŸÎù|~uuµ†††ð>åååS§N8q¢··7!$**jêÔ©¿þú«ªª*Ó°Ç® RNIIÉÍÍÍÍÍ­ÕGÐÕÕ¥(ª¨¨HWW—RXXHQ” çšvýúõ²²²5kÖÐÉe``ào¿ý–˜˜8nÜ8¦?`!Œ¡îz0³7€Œ033ÓÖÖL.vëÖ-SSSá}ø|~}}}CC½Z_____Ïçó™ŽØ -Ž] RFÙ!//ïîîÞ»w†ððpwwwyyyBHll¬ŽŽŽ««ëÈ‘#ÕÔÔ–/_¾páBŠ¢~üñGuuõ#F0;°Ç®Y#€¬ñõõ­­­õõõ%„¸¹¹-Y²„Þ~øðaSSSWWWuuõƒnÛ¶mÞ¼yÇÆÆæàÁƒêêêLì„D¤ýñx¼v¿o‘Ùû`^¼xѧOFNBÉr‰ØZ(uDí2c»Ìì ÐEM›6MdKiié¬Y³˜Ž  •ÐU-ÕÄ44fggûúú&%%)))¹ººnß¾]GG‡éx€B*++wïÞMIII ~)///++‹éZ ‰£ô3ÍŸÏÿâ‹/ôôô.\¸P]]=wîÜE‹?~œé€Bêëë³³³éeÁËå1`ûcý´²]·€]7rP:!q”F"—Aã{bž>}š’’rïÞ=kkkBÈ¢E‹Ö¯_/˜%˜¥®®E™7o½ÀbÂõ+oàëº캑·¨Œì. Bž!uÿx¢(J¤õ‘¢¨ùóç<˜^511QPP`:peaa‘™™ÉtHdvãÊŠºn»nä’NYY@é„GéB_üë·°°øé§Ÿ!ïß¿OOOÿþûïg̘æFi“˜˜¨¤¤$2e·TA7Ÿx ¶c þ´.´ÀAAâ(-ZW}Oš4éÖ­[†††û÷ïgº jÛ¶m«V­¢Q-üðhú‚ÌéÇ$H¥‰pÚ‡¤ G© ¾^Ó™œœ\PP°iÓ¦aÆååå)++3]ønnnE=|øPd»”L¦ˆn¾¢?™NÎÛDÎØº‰dG†5ùC_¤o|ågdd988Btuu¿ÿþû;w&%%=šéÀÿ‹‹‹c:Iµ%;ÙÂtQÚÙ+d©Õu#G¥G&‰©¦Å_IIIAAAýõ=®±¸¸˜ÏçwïÞéÀÿxóæ˜íJJJC‡e:Æÿjuë”,ü·îºe캑£€R ‰#3Ú8¢ÈÍÍÍßßßÛÛÛÛÛ»²²rݺu666L þÇæÍ›é^i‡Ãápè9³”””èWûôésúôi¦ci‡g*¸—m„ ¾¾þùó矤&Ò_ H3´8vªv¼uñã?¾~ý:ÓqŽ?¾~ýzGGGzÕÎÎnݺu›7o–’áÈÈH¤¾ZH;~8Èš÷ïß«¨¨oQQQÉËËc:.€VBWu'AÖ ƒììì"##‹‹‹éÕ’’’ˆˆKKK¦ãh%´8v8̬ ³Ö¯_?kÖ,ggçþýûBÒÓÓÕÔÔ<Èt\­„ÄQR%%%[¶lIHH (ÊÆÆ&  wïÞ|d™¾¾þÙ³g/_¾œ™™Y[[ëîîþé§Ÿ D}}ýÎ;Ož<©¢¢2nܸeË–59S÷¯¿þº{÷î‚‚[[ÛCCC¦‹ì„®jI>xð <<ü矮©©ñòòª¬¬³?î†BHffæàÁƒ/^lcc“””tüøq>Ÿ/ùÛÃÃÃOž<xâĉ¨¨¨Æû9r$((hþüù;wîÌÏÏ÷÷÷gºÐÀ^H ¢¢‚Çã]¾|™^-))éß¿¿`U„™™Ë>X333¦C@¡d±D,(Ô/¿übffvùòå¼¼¼AƒÍž=ÛÊÊjçξ½ººzèС'Ož¤WOœ8áààÐÐÐ ¼OCCÃÈ‘#üñGzõöíÛfffoÞ¼iò€Rõy"ƒ`º"´8J$77wàÀÖÖÖôªŠŠŠ’’RQQQ“;?{öŒBC#ãçççââoll¼oß¾ÐÐÐ3gÎHøögÏžUTTfóqtt,,,LOOÞ'''çíÛ·ãǧWíìì222>úè#¦‹ì„1ŽéׯߩS§«çÏŸ¯¬¬´²²jrg333ÇtÈíŒ}%be¡ØW¢®®  €NûîܹãääDáñxïÞ½“ðíyyyGOO^Õ××çp8ÂûäääÈÉÉ¥¦¦.Z´(77wÈ!ëÖ­3[ªþH ‚éÒÁÈ&$Ž-Ãçóccc7oÞ>>{öìùä“OÌÍÍmllvïÞ2sæL ß®¡¡QUU%¸™†ÏçWWWkhh¬LQÔæÍ›GŒ1xðàíÛ·¿ÿ>))‰é¢;¡Å±icÇŽ½wï½L?øááÇ^^^Ÿ|òÉž={´µµ™º€1cÆÄÇÇçääX[[s¹\kkëýû÷;88Høv]]]Š¢ŠŠŠtuu !………E z®i:::„SSSzU]]]OOïíÛ·LØ ‰cÓäååÕÔÔ«õõõ¾¾¾Ë–-c:4èJŒŒŒŒŒŒèe;;»½×ÌÌL[[;99yâĉ„[·néèèrDÚ€TUU=zdkkK)**ÊÏÏ—d–Y€V@â(‘¤¤¤üüüþýû''' 6šššÒÍA^^ÞÝÝ=<<¼wïÞ áááîîîòòò„ØØXWW×nݺ}ùå—AAAjjjÛ·oçñx’7j´G‰<þœ¢¨¥K— oܾ};Ý ÐA|}}kkk}}} !nnnK–,¡·>|ØÔÔÔÕÕ• //RVV6|øðˆˆ999¦v£M@"¸«$‚Ä$‚Ä$‚Ä$‚Ä$‚ı•””¬Y³ÆÎÎÎÖÖvÑ¢E999LGÔnjkk­­­«ªª˜¤MêëëÃÃÇ 6f̘ððpÖÌ*ÀŽoG€Å׳nݺennÎÈ߉˜SÿôÓOxj¦>áÇ „††væ‡Ã8ÌãØÎ³²²ÂÃÃÕÕÕ###½¼¼Î;×½{w¦ãj«‚‚‚ˆˆˆòòr¦i«ððð3gÎÐ×ùêÕ«}||˜ª­Xóí°õ:bVYYÙêÕ«ù±$þÔ¯_¿vqqùúë¯éUz†óÎ!å§f0¼#GŽ„††õèÑcûöíþþþ‡–žS3õÉØÙÙýüóς՚šš+VtrBÏ< ÚOEEÇ»|ù2½ZRRÒ¿Áj×eöÊÊJ¦Ãi½êêê¡C‡žúè#é95ƒ_œÀË—/ccc×­[ÇTLAâØžúõëwêÔ) zõüùó•••VVVLÇÿ•——ÇápôôôèU}}}‡SPPÀt\ð?pµ»‚‚‚àààï¿ÿ^UUUÚNÍçósss÷íÛ7tèPkkë)S¦<~ü¸sb“òS3^NNŽœœ\jjêĉ­­­çÎÛiãŒ%95ƒŸŒ°ˆˆˆ¯¾úJWW·óOÍ,$Ž‚Ïç:t( `Þ¼y&&&L‡ÿUSS£¬¬Ìåþ÷ÏžËå*))•””04 ×Q{Y·nÝäÉ“mmm¥ðÔïß¿çr¹vvvIIIW®\ùè£.\XVVÖ ±Iù© ¯¢¢‚ÏçGEE­\¹rïÞ½rrr^^^sO•$§fð“ÈÌ̼~ýº——WgžTZ0ÝWÞµ;wN0¼ìÙ³gôÆœœœ©S§ÚØØ?~œéÛ­PEÝ¿¿«¢»víÇ jlhhàñx×®]c:®vÀ‚oGDW¿Ž¤Ç©S§&L˜PSSCý3b¬ÓþNZqêÒÒÒ\¼x±ó?()?ug†wéÒ%33³‡Ò«%%%¼té’tžš‘/nÕªUkÖ¬éÌ3JÜUÝ&cÇŽ½wャ¢¢Byøð¡——×'Ÿ|²gÏmmm¦lŸB±†®®.EQEEEtçBaa!EQ‚žk,¸Ž¤Gjjjffæ Aƒ[† 2kÖ¬5kÖHá©ÕÔÔôôô@"å§îÌðttt!¦¦¦ôªºººžž^çÌÈÓŠSwþWUU·{÷îN;£TAWu›ÈËË«ýƒËåÖ××ûúúzxxlÛ¶­ëþ·)Óá´'333mmíäädzõÖ­[:::‚ ¤;®#éáãã÷­[·BNŸ>½páB)9u\\ܤI“JKKéÕ¿ÿþûÝ»wýúõë„ð¤üÔ †7`ÀUUÕGÑ«EEEùùù½{÷–’S3øÉÐ._¾Ü­[7;;»N;£TaUZÀ¸¤¤¤üüüþýû' Á½ÒC^^ÞÝÝ=<<<---%%%<<ÜÝݽ3§FIà:j_ººº}þÑ£GBˆ‰‰ Ý®Ãà©cccãââ!ÇÏÏÏ_¹rå;wîß¿ïëëkiiÙ9Ã1¥óÔÒðÉtëÖíË/¿ ¼qãÆÃ‡—.]Êãñ˜=µ4|2´›7o:”e +’ÿÌöôüùsŠ¢–.]*¼qûöí'Nd:4ø/__ßÚÚZ___Bˆ››Û’%K˜ŽDá:’‡655uuuUSS;zôè÷ß¿téRyyy''§•+Wr8œNˆA:O- Ÿ !$ @^^>$$¤¬¬løðárrrÌžZJ>BÈ­[·¦NÚi§“6Š-\€%£ ­ÐRH@"H@"H@"H@"H@"H@"H@"H@"H@"H¡Å¾ûî;^Sf̘ñ×_ñx¼âââN ¦´´´²²’RUUÅãñ233[ôv:à‚‚‚Îý››©H 9ãÆk\ÑݸqC¸¶\Ë"Ë:thrrr«#D½Ožé ë™;wîçŸN)--={öÚµk­¬¬!Ý»wïü`V¯^mbbâçç'//¿`Á---¦?žV†ÝÒÿ7Ð ¾øâ‹¯¿þZx‹±±±pm#¸–E–Ø ‰#´ØG}ôÑGBè–Å>}ú 8~鯿þb**…®X_ Âfð£€æê7a]±¶h誆ö÷ìÙ3ww÷!C†Lž<9--Þøöí[___''§5kÖ”——ÓÛóòò¼½½íííGµqãÆêêjBÈ_ý5`À€ììì/¾ø"22²¹·Ï›7/!!á§Ÿ~š6mZmm­ ó¨  À×××ÞÞ~ĈÛ¶mkhh „ܹsçË/¿´´´´··÷õõߟþîݻŋÛÚÚŽ?~ÿþý“&MJNNéˆONN¶µµ¥—›<8]ŠÛ·oòÉ'–––S¦L¡?æÂhtéÒgŸ}6xðàO>ùäÈ‘#LÏ2JpÙ _ËÂˤù«øÍ›7óçÏ·±±™4iRBBBãƒ/Z´hùòå‚Õ˜˜ggg>Ÿ/¾S;¡>ö…ÄÚ߯ýüü~ùåuuõBHMMÍÌ™3•••þùç°°°—/_úûûBêêê<<<êêê~úé§ï¾ûîúõëôA(ŠZµjÕ˜1c&L˜ÐÜÛcbbF½`Á‚cÇŽ ÎÞÐÐ0{ö캺º˜˜˜+V?~|ïÞ½µµµ .äñx±±±[¶lIMMݵkWsñ744Ìš5«¤¤d÷îÝÌÈÈS^1çóù›6mÚ¼ysll¬¢¢âúõë› [ ¹Â¾~ýzéÒ¥t?mÚ´àààôôt¦¿j–{ÿþ}ºüü|áW…¯eáåæ®âÚÚZêêêüqùòå[¶l¡* 7nܵk×êêêèÕ .|öÙgõõõ’×`ÂPŸ@»CW5´¿¥K—Ò?vgΜD¹pá!dóæÍ\.—9bĈÜÜÜýúë¯jjj„M›6yxx¬\¹’Âçó§OŸ>eÊBÈ™3gš|;Ýc.â?þÈÍÍ=v옊ŠÊ AƒÊËËÿúë¯ŠŠŠeË–M:UYY™2jԨׯ_7ÿåË—óòòŽ9¢©©IÙ°aÃܹsÅ”WÌÁ)ŠZ¼x±!döìÙô§!^sŸUNNŸÏÿâ‹/zöì9`À€~ýúu•]׉'Nœ8!X9sæºuë>ø®æ®âû÷ï>}š®[æÌ™#ò^—ÀÀÀ[·n1âÍ›7=Ú¶m[‹j0I"A}­†ÄÚŸ`Hàv™¬¬¬×¯_[XXö¡(êåË—ÏŸ?777§³FBˆ••—ËÍÎÎîÙ³'!dèСâßÞd☑‘ÁãñTTTèÕ3fÐ tÇPFFFzzúíÛ·‡Þ\ü™™™ýû÷§kvBˆ‡ÃS^---1„-8 xÍÖÚÚÚÒÒrܸq#GŽ´³³;v¬AÇ™2ÍÛÛ{éÒ¥-}WsWqvv¶pÝbkkÛ¸nQUUutt¼téÒˆ#.\¸`iiibbBZRƒI êh5$ŽÐþ”””D¶¨©©YYYýòË/"ÛïܹӸޤ‡$BTUUÅ¿½Iõõõòò¢Ø™™™_ýuÿþýÇŒãäädff–ÝÜjkk…W¹\n“‰cMM$ïÖ­[‹>=1…=zôè½{÷®_¿~âĉíÛ·GEE1¢eß t¼æ®â{÷î ¯r8œ&ë–ñãÇÿý÷ÁÁÁqqqt¯K‹j0"T;¡>v‡1ŽÐÌÌÌž>}ZZZJ¯Þ»woÚ´iÕÕÕ}ûöMOO¯¨¨ ·§¤¤444ôíÛW·7y.ú˜UUUôêÞ½{çΧ¥¥uàÀ™3gÚÚÚ ^m’‰‰IzzzII ½úàÁ>Ÿ/xUÆ“'Oè…¼ÕŸÕ;w~üñG;;;ÿßÿÝÚÚú÷ßï¬/Z ¹«¸_¿~bê—ÒÒÒsçÎ¥§§?žH\É4®PŸ@»CâÁÉÉÉÈÈhÙ²e=ºråÊÚµkŒŒ”””>ýôSMMMÿ'OžÜ¾};00püøñ=zôðí„.—›——'¨ !Ÿ~ú©ššZ@@ÀÓ§OÏŸ?ÿïÿÛÆÆF[[;??ÿÎ;ïÞ½;qâį¿þZTT$øQ.‚>‚¯¯oJJJRRRPP=v‡Ä:—ËÝ·oŸªªê¼yóÖ®]koo¿aÃBˆ‚‚¡C‡8ÎìÙ³†*ùÛ !nnnÉÉÉK–,쬨¨xèСÚÚZOOÏï¿ÿþË/¿\°`ÁW_}5nܸŋO:õÙ³gÿþ÷¿ß¼yÖd´JJJär¹sçÎݼy³¿¿?¤*++oÙ²åþýû®®®Ë—/÷òò¢÷oÑÁ› ûƒ…uppXµjÕÏ?ÿ}ú4¾U@Ö «$‚GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG ýû÷çü¯¾}ûnذ¢¨VSAAÃáTTT4~IMMÃáäçç·â°%%%GAAALAŽ;ÆÐÙ!D¾>úhÆŒoÞ¼ùà§!¬°°ðÍ›7UUUL—º6$Žð_FFFTWWÏÎÎ^¿~}lll«6pà@ .`íƒþvŒŒŒòòòŽ9òå—_¶(­Ÿ={¶‘‘Ño¿ýÆt9 kÃÿuø¯íÛ·§¥¥=zô¨¨¨hòäÉ„ .´úh)))iiiÊÊÊL‹%èoçÕ«W§OŸ&„ܺuëùóçLÐþþûoŸÁƒ«ªª0Àßß¿°°°-l®%þáÇgèС’J¸½_YYÙÒÒÒßß_¸å^L׊ãíý•••›6m²°°PUUÕÑÑ3fÌï¿ÿÞ9á¡Ã„•8‚(999KKKBˆªª*½¥ººzÅŠýúõSWW5jÔ7;ß½{÷“O>ÑÔÔÔÕÕýôÓOïÞ½Ko®Oëêê–-[öÑG™ššuêT[ Õ\&OžÌáp"##éÕ+Vp8œ%K–ˆy‹ ÎG1â§Ÿ~mMMÍ’%K -,,~ÿýweeeA2-æScÒ¤IŠŠŠ„¼¼<‘—êëë7mÚ4hÐ UUÕ!C†„‡‡óù|BÈĉÏž=Kqwwß´iSÿù´@vvöàÁƒ£¢¢RSS»uëöôéÓ°°0‡’’¦Cût{¿¾¾~ZZZXXØØ±c/IÒµÂx{¿§§çÚµkŸ>}Ú§OŸººº„„„É“' †ôtBxè0a dž¹¹9!äèÑ£ôêË—/‡ &¼eÊ”)„++«)S¦Ð©Ï£G(Šúû￵´´!ãÇwqqár¹šššïÞ½£(J^^žR^^NQ”——!DSSÓÖÖV^^žÃáBÞ¾}[\\L‘——§Ï"¼Z__ß»woBÈ!C\\\ääääååŸ?.òñÖ\Ž9B3f ½ÛàÁƒ !‰‰‰bÞBÇÀårû÷ïOÙ³gOsÑR5sæLBˆ––– ]v%%%ñ!‰/” ©àõë×"ŸÆìÙ³ !:::ãÆÓÔÔ$„,]º”¢¨+W® 2„²xñâ´´4¦ÿÜþ} <8++‹¢¨W¯^ 4ˆ²jÕªV³¹Z¢¢¢BYYyΜ9’Jäê»}û6}eýç?ÿ‘ü nnnÍÕK€M.//OW/uuuß}÷!dôèÑžÈHw˜B233ÅWæÒóBcHá¿×¶0‡³uëVúÕ´´4BH¿~ý(Š '„Ìš5‹¢¨ëׯBzöì™™™IQÔ¶mÛæÍ›—ššJ %Ž/^¼àr¹òòò/_¾¤(êûï¿§O!>qÌÉÉ=zôŒ3è—†N9yòdëG1E(//ïÞ½»¢¢bYYÙÛ·o9NÏž=ù|¾˜·Ð1B.\˜]]]Ý\´ÏŸ?çp8òòò¯^½¢(*,,ŒB'ŽbŽßd¡Œ‡ B§§„777‘O,##ƒ¢¦¦FŸ‹>¾œœ\^^…š¤Ò_ýEÿ=?xð@°ñüùóÎÎ΋/¦Wëêê6nÜhaa¡¢¢2xðà°°0ú’ó’ðuQQQAÿjÚ±cEQK–,ùã?è·ß¹sÇÅÅECCCGGgìØ±wîÜiaã*eåÊ•„/¾ø‚^þ…ÜäéK¶qãFŠ¢?~<~üx++«“'O ÇüÇXYY©ªªº¸¸dggÓg©ªªò÷÷755UUUµ··¿xñ¢ðö¾}ûª©©9;;Ó¿xE¤¤¤Ð¿Û è-%%%111±±±M†×Ü1é•””bccûõëghhðüùóQ£F©ªªZZZ6yv‘°¾¾žî0¹~ýºHeÞÜ·Ù8B`Gøïµ-¸9¦[·n„‘#GVWWSÕä-2C† ¡(ª¨¨¨GôSSSooï””ú˜‚ú”þ‰9räHz{VV–$‰#EQ%%%{÷î?¾••ý–£G ïC7°ÑèÊ·¹ÄQL(Šš6m!äÌ™3‡&„,[¶Lü[è8ݶ*&Ú'NBFŒAïSQQ!hqRãoG@OOÏÓÓ³¨¨Hä;zô(!dÊ”)"o¼té…ĤR||<ýËSÌ>͵£‹yIp]ðùü/¿ü’âïï/rX1½%ÂW)t…&¸T]siïß—Âápºwï>pà@zÄŽ««+}º]ö_ÿú—“““¼¼¼‚‚Âýû÷)Éz-*++{öìIÑÐÐøüóÏ7oÞ|éÒ%ºn§šêŽßÓBQPP8p ½Ü­[·ž={êêêBzõêÕøëC‡ +!qÑkûï¿ÿVQQ!„\½z•ú'#±±±9,äÔ©SôÎ¥¥¥111“'O¦DÊÉÉ]¾|™ªO÷ïßOqvv\¤«ZNNŽ~I¸)))éÓ§O·nݼ½½=J*IçÏŸ¯ôÓ§OSÍ'Žâ‹ð믿BæÏŸïééI¹uë–ø·4nõl.ÚC‡¡.¡¼¼$1ߎ0áHè>÷Ï?ÿ\ðêÈ‘# !.\ 8‚TúùçŸé« ¹Ä´£‹yIp]¬_¿žâîîÎçóEŽ,¦·DXã«ïÚµkôï7zUPщ9 ðÕ'¾/…ò믿RuñâE:Õ£(êÑ£GtFU\\LQÔúõëååå—/_.y¯EzzúäÉ“éZ¦¦¦öóÏ?Ó¯ ‡'IO ý®-mllêëëß¾}Kò¤#lü¢Ã„eps ˆÒÔÔ455%„äææB,,,!………3fÌøúë¯MLLRRRÊËË !/^ܰaƒŽŽÎ¯¿þZXXøÕW_544\¾|Yøhfff„7nÐwÒÑ?ýR·nÝ8NCC]M¿ñܹs/^¼5jTTTÔ_|AW"~ú駪п’›#¦„qãÆihhœ?þÒ¥KÆÆÆööö|‹ˆæ¢0`!$11ñÝ»w„_~ùEPö_ôò„„ú¦™ÌÌÌ[·nq¹\ú>'Z}}}ýÍ´ÝVPPÐÜþù'!dôèÑFFF„ ss󆆆G‰y‰~o}}ý† !VVVôUa=zôxóæ©©©™™Ù‹/|||èá•â "oÅO:5zôè X[['%%¡ SNNî³Ï>#„ØÚÚBè› éÙÙÙihhB‚ƒƒëêêÂÂÂRSS !YYYrrrgùò儇6Ž™Çãýúë¯ÿý÷ýû÷£££GŽYVV¶páBÁPSNNŽþEÚ«W/Bˆ³³³œœœÝÝ\ óòåË”””œœºÃDøÉ~Ñíñ‡íLžé@zUVVB8iÒ¤ß~ûÍÉÉ©OŸ>ÿùÏ*++éÄ aaaQQQ“&Mª¯¯§7~òÉ'±···°°xôèÑàÁƒÍÍÍoß¾ÍápèüIIIiðàÁ)))¦¦¦Ïž=¼‹þŸ0vìØ´´4:ñ¢$»/ @0’’²jÕªiÓ¦5WBH·nÝ&Ož|àÀB=€I|©k.Z+++ggç«W¯4¨_¿~·oß¼¥EÇ—„¹¹ùÌ™3>}}ýôôôúúz1/ ¶XZZ¦¦¦nܸÑÓÓÓÀÀ@øÔZZZÇ?{ölBBBttô?þïââ">fú*îÛ·¯Èv XZZ:dÈÜÜܹsç®\¹rïÞ½t=ž³†"|›6]¢††‘3ÊÉÉBlll¾ýö[ÁÆÆ3 =zôèܹsFFF_ýµ•••••Õœ9szõêõîÝ»'OžÐùŸäÇDH£«¾:zô(="¨9’|› E˜nòæ5:u*!dòäÉôjyy¹±±±ššš“““`t9EQÇŽûøã555ÕÕÕmmm?No3þðáCúwdŸ>}bbbèNí·oßÒ/}üñÇ***¶¶¶tJ÷\TVVÒMhÿú׿֭[÷Í7ßB.\(ÉÍ1"víÚ%¾E f¬¤G‰/uãš‹–¢¨¢¢¢éÓ§kkk÷ë×ïäɓݺuÜU->$1ߎ€H$µµµ!!! èÞ½û AƒÂÃ÷¤¦¦öíÛWYYù‡~`úÏ àÿMœ8‘âääTXXHQT^^})-_¾œ¢¨§OŸBÔÕÕsss)Šzö왢¢"—Ë}óæ˜—óõÕW„¹s犜7..Îßߟ©¡w[³fÈn"W߃´µµ !gΜ¡·*:1¤{Z>LQÔ/¿üBþ¼XWWGÿ®„Cýï¥M·ÆuïÞ½´´”¢¨UUÕÕ«WÓ­q}úô¡;âoÞ¼éïïàÀ‘"}èϾ}û FËÑZéëëOœ8‘Nw|}}Å¿$œ‘<{öL^^žËåÞ»wOø¼—/_¦çôž6mÚ_|Aÿš¥Çg ¢×·o_ºIløðႉ£˜úøøBlmm/]ºtüøq:¶1cÆÒ-‹Gާà¸qãè|nôèÑ JJJôm"“&M"„Œ1ÂÓÓSCCCAA¡ñïO>ŸÿùçŸÓŸ°••Õ€èRLŸ>ÞA8<1ÇìÐÄQü-!0‰#@G)..VSS#„x{{ïÙ³‡n¸víZ¦ã"ïß¿_°`ÁÀ»wï>`À€+Vüý÷ß‚WÅ´£7÷’HF²páB‘lÖ\o‰0áN %%¥._¾¼²²R°ƒp×Jsnï—°/Edµ¬¬Ì××·OŸ>ªªªÃ‡¿ví½]Â^‹ªªªíÛ·lذ1cÆ„‡‡SÕxŸâââU«V988 6lõêÕÅÅÅLG ¬Åi²‚Æ|||²²²Ö®]«®®ùâÅ‹sçÎuïÞ鸀ͶnÝzæÌ™ÐÐPBÈêÕ«¿þúk‘}-ZôâÅ‹ 6B‚‚‚LLL¢££™Ø -Ž©¬¬LHHX¹r¥£££¥¥eddd~~þ­[·˜Ž ج¦¦æèÑ£~~~ÎÎÎÎÎÎ~~~¿üò ŸÏÞ§¶¶öÚµksæÌ±³³³³³óòòºzõjmm-Ó±;!q”HnnîÀ­­­éU%%¥¢¢"¦ã6{öìYEE…££#½êèèXXX˜žž.²—ËíÖ­½¬¤¤Äå¢b€Ž"Ït]C¿~ýN:%X=þ|ee¥••U“;óx}ú0“òòò8Žžž½ª¯¯Ïáp „÷QTT?~ü¾}ûÌÍÍ !{÷î0a‚¢¢bsǤ+¨ŒŒ ¦ ]Ç–áóù±±±›7ož7ož‰‰Is»¡R€¶«©©QVV´ r¹\%%¥’’‘ÝV­Z5nܸI“&B´µµ8ÐÜy<j'h ôh´ÀË—/ÝÝÝwîÜâïïÏt8ÀrUUU‚A|>¿ººZCCCxŸòòò©S§Nœ8199999yüøñS§N-//g:v`'$Ž’zøðá”)SŒ/^¼8uêT¦ÃöÓÕÕ¥(J0œº°°¢(AÏ5íúõëeeekÖ¬ÑÖÖÖÖÖ ,..NLLd:v`'$Ž©¯¯÷õõõððضm›¶¶6Óá€L033ÓÖÖNNN¦Woݺ¥££cjj*¼ŸÏ¯¯¯ohh WëëëëëëEî¼h/ã(‘¤¤¤üüüþýû jpBˆ©©©®®.Ó¡kÉËË»»»‡‡‡÷îÝ»¡¡!<<ÜÝÝ]^^ž«££ãêê:räH55µåË—/\¸¢¨üQ]]}ĈLÇì„ÄQ"ÏŸ?§(jéҥ·oß>qâD¦C6óõõ­­­õõõ%„¸¹¹-Y²„Þ~øðaSSSWWWuuõƒnÛ¶mÞ¼yÇÆÆæàÁƒêêêLì„'Ç´?Ü·Ò µ´Æ8€D8€D84ë?þàr¹L 8‚,âp8Gü>%%%^^^ €»ªAæp8ÿ½'ŒÎ›K }}}ÕÔÔ˜@Š Åd‹ k$„PEQT“M§OŸNLLܼy3ÓñH$Ž¢òóó-Z´ÿ~L† #²³³ÝÜÜ´´´zôèáååUXXØŽÇhi`$Ž¢æÏŸïéé9räH¦€v#fd3ŸÏÿâ‹/jkk/\¸päÈ‘ëׯ/Z´¨ÇÀhi`Œqøû÷ïÏÎÎ>qâÓ@»?²ùéÓ§)))÷îݳ¶¶&„,Z´hýúõ|>ŸËå¶ú˜- ,ƒG-ô Fa"ÕýíÛ·?~¬¤¤Äápœ !ªªªË–-c:ph%‘‘Íw (jþüùƒ¦WMLLÚxLFKûà‘ƒíõêÒòóó‹‹‹éå;wîxzzÞ¿ßÈÈH__ŸéÐÚJ6k§Æ¿o¡½ÿ>==ÝÏÏÏÆÆ&::ºÇÌÏÏ·´´Ÿß½{÷¶3888ý$„Ü¿õêÕLm…Ädš››[ee¥··wjjê­[·fΜiaaaccÓ–cðþÑ«W/BÇÃ=vÀH@¦éëëŸ?þÉ“'ŽŽŽS¦LÑ×׿pá‚¢¢"ÓqH#LÇÓþds ~2^;}ð®j)9&€4C‹#H‰#H‰#H„ý‰czzz~~>!$11qåÊ•̹’cyâxäÈ‘Ï>ûìñãÇoß¾]¼xñû÷ïwìØÅt\]Ëǘ˜???—øøxccã}ûö…††ž9s†é¸º–'ŽŽŽŽ„;wî899Bx<Þ»w  ëayâØ»wï„„„7oÞ\¿~}äÈ‘„›7obî~€V`yâèãã³gÏžO>ùÄÜÜÜÆÆf÷îÝ!!!3gÎd:.€®‡ýSÞ¿~ý:''ÇÚÚZYYùÎ; zF6H-¯ð䀶cg‹c%%%ssóŠŠŠ‚‚SSÓ‚‚¦éuìØ1N#Ë–-c:.æÉ3@‡>|¸ødù77B8½Ð¸©ÀÉÉ)..N°Z]]íáááââÂtÈÌcgâxéÒ%¦Cé%ܵԸ›ÉÐÐÐÐÐP°ìêê:qâD¦£`;Ç^½z5÷RMMMXXØš5k˜Ž˜!’)R%fˆRVVVTTTZZÓQHv&ŽÅÅÅ»vízýúµ`KQQÑ›7o8‚$çÏŸ/Ü ËØysŒ@PPPBBB=’’’LLLzôèñìÙ³ÈÈH¦ã‚.àñãÇ.\X¾|9ÓH –·8Þ¾}{Ë–-ÎÎί^½5j”­­í€âããmmm™ ¤‚˜~êíÛ·õÕWºººLÇ -XÞâXUU¥££C177§ï¤vrrŠg:.` =¨Q ¹¬±¢¢âäÉ“3fÌ`:^)ÂòÄÑÌÌìèÑ£UUU<¾Õ:''§²²’鸀I”æöùí·ß”””œ™@а<<|ذacÆŒ oî×ί¿þ:vìX++«… ¾}û–騀µX>ÆÑÎÎîöíÛššš±±±qqqÚÚÚ_}õUëŽVPPQ^^Ît± Ã]¹reÞ¼yLG@ÂÃÃÏœ9JY½zµ¢¢¢È>GŽ êÑ£ÇöíÛýýý>ÌtàÀN,O !ŠŠŠŠŠŠ„SSSSSÓV'::zÇŽL—:É‹/˜€ÔÔÔ=z4005áççîíí-ÜÎçó÷ìÙ³dÉ’©S§B=<))‰éB;±øF333mmíäää‰'Bnݺ¥££#2;Ä€TUU=zDß XTT”ŸŸ/fŒ#@[°ÆŒOŸ>522’°ëÃ××·¶¶Ö××—âææ¶dÉzûáÇMMM]]] !òòò!!!eeeLjˆ S´;Ž˜Çõv]C‡,WWWóù|‡Ãápè1榦¦gÏží¸³óx<Ü·Âjjj.\¸••¥¦¦fffæääÄÈ-e¼vâpÚÿ_^G@š±³ÅñÏ?ÿ¤¶lÙlkkËápSšôžw s°#jjjÂÂÂÖ¬YÓÉç•ñÚ ó8´Ë[ !FFF\.7%%ÅÁÁÁÒÒRII‰éˆ€It[£p‹#ê}èhÅÅÅ»vízýúµ`KQQÑ›7o:?qh#–'ŽåååþþþW¯^¥(*##cÖ¬YFFF6lPQQa:4`Œpš(È :NPPPjjê¨Q£Nž<éááQUUuëÖ­ÿûßɳgÏšü›nƒo¼Ê¦ý›Ü¡Çoü.é)/öïÐýeËÇÐÐв²²ÄÄDú–ê+V¬]»vëÖ­!!!L‡Rnqd: `¹Û·ooÙ²ÅÙÙùÕ«W£F²µµ0`@||¼­­m'Gbff&¾«Zä?âÿAv­ýw/´ýøâ»,ºÖçƒý[º¿lbùt}jdd´oß>]]ÝŽ;©ŒOxÑ%ˆŒ€èhµµµZZZ™™™qqqÚÚÚ_}õ•‚‚B'‡!㵦ãh;öÿÅ×ÔÔ\¸p!++KMMÍÌÌÌÉɉËíØvV¯š@Ä´iÓŽ;&¼¥´´tÉ’%èäHd¼vBâÐv¬½«ºªª*##CKKËØØxòäÉ„>Ÿ_^^ž——wøðက¦–«¬¬Ü½{7!$%%%,,Lø¥¼¼¼¬¬,¦h1v&ŽOž{üøñÛ·o/^üþýû;vDEE1@‹±3q$„à§<H‰˜˜???—øøxccã}ûö…††ž9s†é¸Z Ù@Ç*((ptt$„ܹsÇÉɉÂãñÞ½{Çt\-ÆÎ1Ž„ØØXƒæV—.]Êt€ +z÷î ¡¡qýúuOOOBÈÍ›7õõõ™Ž  ÅØ™8š˜˜üùçŸÍ­$ŽÐ‰|||–.]miiicc³{÷îÈÈÈU«V1@‹aö'ã^@c¯_¿ÎÉɱ¶¶VVV¾sçNCCƒƒƒCç‡!㵦ãh;v¶80.33SKKKWW733“b``ðúõkBˆ––ýª`ò€®‰#@‡pss[°`ŸŸŸ››[“;ÈrãtQH:DJJм¼‡Ãáp8|>ŸbjjzöìÙ¤E5Ï­[·fÏžýçŸ*++3]z`'v&ŽíR_‹?sæLhh(!dõêÕŠŠŠ>>>L¤—`°„„„-[¶ÛÚÚr8œ¬[·ÎÒÒR’ƒH^ó”••­^½wø@Ç¢XíÒ¥K£G¾qãFMMMmmí­[·ÆŒC×­-R]]=tèГ'OÒ«'Nœppphhhhrg333¦Ë RdâĉW®\ÞrãÆ 33³¿ÿþ[üó¬\¹r„ fff•••ÍPÆk§Žø—Çú£"XþÈÁ;w>\QQQAAÁÞÞ~ýúõ§N*..nÑqž={VQQA?4ŒâèèXXX˜žžÎtù  ÈÍÍUSSÞ¢¢¢¢ªªª¡¡!þ’×<ñññ÷îÝ[¾|9Óe–cgWµ@«ëkyyyGOO^Õ××çp8MîüìÙ3 h+:^‡ùÃ?hjjBJJJ"""¬­­?XQHXóïØ±C’‹ÇãÌ­ÅòıÕõµˆššeee.÷¿ ´\.WII©¤¤¤ÉÍÌÌP)€@pp°‡‡‡³³sÿþý !éééÚÚÚ‡úà%¬yÖ­[7yòd[[Û;wî|𘨠-Xž8¶º¾¡¡¡QUUÅçóéœÏçWWW·´ÙdSÏž=ãââ.^¼˜Íår===G­  ðÁ7JRóœ>}úÕ«W;vì`º” Xž8¶º¾¡««KQTQQ‘®®.!¤°°¢(Aÿ€xŠŠŠ'Nlé»$©yRSS333 $Ø2dÈY³f­Y³†éB ±>>³fÍ¢—SSSW®\yúôiCCC¦cvbyâX^^îïïõêUŠ¢222fÍšedd´aÕG^^ÞÝÝ=<<¼wïÞ áááîîîôÃÄ:ˆ˜š'66VGGÇÕÕUWW—n$„¼ÿžbbb‚ À ƒ°<õ -++KLLtrr"„¬X±bíÚµ[·n ié¡|}}kkk}}} !nnnK–,aºpÀ~ÍÕ<‡655uuue:@-vÌvÑ''§°°0›ûì³Ç¿}ûvñâÅï߿߱cGTTÓqtˆcÇŽqY¶lYÛ\XX8{öl}}}//¯ÂÂB¦Ë*‹Xž8ÚÚÚ8p€~D5!¤´´4""ÂÞÞžé¸@†ÄÄÄøùù¹¸¸ÄÇÇïÛ·/44ôÌ™3LÇÐ!œœœâ„œ9sFMMÍÅÅ¥íGž3gέ[·Ž?~üøñäää¹sç2]VYÄò1ŽkÖ¬™9sæØ±cù|þŒ3ž>}jdd´e˦ãRPP@?6ðÎ;ôxk÷îÝ;¦ãh=áçhˆtÖ ß×ìêê*ÉtTbŽI©©©9þ|tt´³³3!dùòå‹/®©©éÖ­Ó†layâhhhxîܹ .dee©©©ÍŸ?ßÉÉ©óÇ€,ëÝ»wBB‚††Æõë×=== !7oÞÔ××g:.€VÙ)f gVVVTTTZZZ»“~x½,üP%èL,O<8lذɓ' ¶TUUmÛ¶éÐ@Vøøø,]º4::ÚÒÒÒÆÆf÷îÝ‘‘‘«V­b:.€ÖhÑý@óçÏoÅÄ¢E‰œ¨[·nÓ¦M 7NCCcúôé÷îÝ»{÷îôéÓ555ñÔÍÎÇòÄqÿþýªªªô2‡Ãùæ›obbbfΜÉt\ CŽ?.¼ÚÐаoß¾O?ý”é¸:Е+WÚ÷qšššüñEQãÆ›0a‡Ã¹r劦¦&Ó•9ììªÎÌÌÔÒÒÒÕÕÕÕÕ}ñâ…ðKzzzîîîL2äû￯®®¦gp¼sçΆ ^¿~íííÍt\HäŸo»055=}ú4Ó%“uìLÝÜÜ,Xàçç'˜…G„,OHDèù²60bß¾}óæÍ+**ú믿Î;7nܸ˜˜˜VÌlÀ8v&Ž)))òòò„If«™"2‹„ ÎÁoðàÁ‡òòò¢(êÀü1Ó´;Ç8*+++((B<<<ÿWuuõüùó™Fýƒ4J%ÚK±CCÃ]»vQõèÑ#ÁF¦h1v¶8VVVîÞ½›’’’&üR^^^VVÓ“„›%ŸÉ ¥š¼3`Û¶m‚GžbÌ t9ìLëëë³³³éeÁËå1 °ß¥K—˜ ±3qTWWŠŠ"„Ì›7^׈æFè8½zõ^ÍÏÏÏÎÎnhhèÛ·o=˜Ž 5Ø™8 ÄÄÄ0H‘îiÜ­ºº:00ðܹsôdÈ ãÇ ¥] Ð…°ú¨“#‘ñÚ ]Õ]¢ì²ü‘v ,ÿz Àçó—±C«N¯š ±ººº‹/>þœÒ·oßO?ý”~ºU'“ñÚ ‰c—(»,¤]ËÇ8ÆÅÅ1QPP°µµÕÑÑ¡çqd$kh;–'Žô¼¹¹¹/_¾tpp¨®®VRRb:(-˜ÇXƒå7Ç”——óÍ7...³gÏ&„Ìš5ËÏϯ¢¢‚é¸@†æqLKKKKKûå—_ž>}º}ûv¦ãh1–'Ž¡¡¡eee‰‰‰rrr„+V<~üxëÖ­LÇ2äòåËAAA¶¶¶rrrrrrÖÖÖ!!!—/_f:.€cy☔”´lÙ2===zÕÆÆ& !!é¸@†`G` –'޵µµÝ»wÞ¢§§×ÐÐÀt\ C0#°Ëoޱµµ=pàÀæÍ›éÕÒÒÒˆˆ{{{¦ã²nÝ:'''‘y™Ž  ÅX>[ÒÛ·ogΜIyýúµ••ÕÓ§OŒŒöíÛ‡ À 3aGi€y»DÙeù#íXÞâhhhxîܹ .dee©©©ÍŸ?ßÉɉž ¤¥¥ÉÉÉ 0ÀÍÍííÛ·?ÿü³ŠŠ æq€.Љcrr²ðª½|ûömBˆƒƒÓ1ËUUU­X±âÒ¥KÁÁÁ „p8œ›7o!ÄÔÔôìÙ³LÇ,÷ïÿûþýû‡¶µµ¥·œ;wîþýû>>>ÿþ÷¿—,YÂtŒ-ÃÎNÛ?ÿ±mÛ6##£½{÷¦¦¦¦¦¦pàÀ°aÃ>x„ššš£Gúùù9;;;;;ûùùýòË/ôXmÊÊÊ„„„•+W:::ZZZFFFæççߺu‹éÒ;±//¯¾qìØ±÷îÝ£—UTT˜.È"]]]Š¢ŠŠŠtuu !………E z®>|èååõÉ'ŸìÙ³G[[›é¨€ÍXž8ŠÆQ8klhh`: ”Ưòùüºººúúzzµ®®®®®ŽÏç35óX›8æääDFFfffBjjj–-[fii9lذƒ2HµqãÆihhLŸ>ýÞ½{wïÞ>}º¦¦¦««+Óq0‰ããÇ'Ož|ýúuzu×®]W®\Y°`Áœ9s"""âã㙤—¦¦æüAQÔ¸qã&L˜Àáp®\¹¢©©Ét\ÌcçÍ1?üðÃØ±c·nÝJ¡(êôéÓsçÎ¥Ÿ¸PWWwèС±cÇ2#H/SSÓÓ§O3€Ôag‹ã£G·2dffŒ?ž^µ²²¹Ï$ÁÎı¼¼\NNŽ^¾y󦾾~ß¾}¯VTT0 @×ÃÎÄÑØØ899™^Žÿøã/¥¦¦öêÕ‹éºvŽqtwwß¶m‡ÃÉÉɹÿþ‚ !|>?99ùÇôñña:@€®‡µ‰ciié‰'ÊÊÊ-ZäììLY¶lY||ü´iÓ<==™ ë‘¡ùÙ³³³õôôÔÔÔ:úD2þlZ2^;áÉ1]¢ì²ü‘v ìlql’‰‰ Ó!taì¼9ÚGGGGGGGQÙÙÙnnnZZZ=zôðòò*,,d:"©€Ädç_âóù_|ñEmmí… Ž9rýúõE‹1/€”â‘æcvœÿÕ‡eºˆÐåÉГchÂϳjül«§OŸ¦ü_{÷UÙÇüÙuEVI›2vC‰’BqTñ‚1µJ)“L¢µ& q™æ¹(nhb©:‰¨¨äXˆ–Óˆƒ‹Æ”‹bÈE.‚Èe•=ûþqÞλqó¨ÇÎYø~þÚçð¸|çxžýíÙ W®”––* BHxxøæÍ›)Š‹ñ, àúœ>œü¥¸§qŸ¦¢±Ø¥œ Ûen«fZð‘¶3 Giú,šƒ¡ÿ–÷Þ{ïå—_¦‡S§N=z4ß©gö¦‡‰Ù¶C_}öÐ8üƒ««ëÞ½{ !MMM)))o¿ý6.7 †ÃNãÇø‘ö`ü´Ì]j\5}™€Ûû$]}öÐ8 ,00°¤¤ÄÑÑqÿþý|gœ§ñx9ƒÄáNÀ.5†½Á \GÇøI狈F£ijj öööîîîæ;5€1g·×9¿O“Ðç’v)‡žÆ§‚Fì'Ð8ÂÈb0èÕ™Ö Õjµ†¾mgg—’’ÒÑÑQ\\ÌwpÁ¡Ï&Âõ²‘üj5Ó;b—> Øœ@ã#‘áoýT\\¬T*)Š¢‡mmmE;–ïÈÂõ4ŒGì<]8v)W%3_BÄUרç>G`3ŠÆà–,YÒÕÕµnݺ²²²’’’U«V¹ººÎœ9“ï\ðȘk¶wÆ÷9ÒºF‚Æ ‡‚‚‚ßÿÝÇÇ'((ÈÁÁáôéÓfff|çà>U Ð׬Y³ŠŠŠøN 8¸â¬ qVÐ8+hÙjoo‹‹óôôôðð¿qã߉!¤··W­V{{{ûùù©Õêø1Oø× qd+>>þçŸV«Õ™™™:.44´««‹ïPÿ¹\Îw5+®EqN­V;v,)))>>>///##ƒïD0l¡qd¥««ë‡~ˆŽŽöññqssKOOoll,))á;Œt:îðáÑ‘‘sçÎ;wnddä¡C‡˜o°àGVêêê¦OŸ®P(è¡………¹¹ykk+ß¹`¤«¬¬ìììôññ¡‡>>>---|ç€á ßãÈŠ““ÓñãÇ™aAAAWW—»»û`ó‡ßëkï¢aYÔð«H«ÕòAèêëëE"‘½½==tpp‰DÍÍÍN®¬¬¤ÿT·Lå>M(êH¾OÓŠ:¡q|4Eåää$''¯Y³fêÔ©ÎÁCükt:T*‹ÿ÷ò‘X,677ooop2>7OãÀ 6nÜHßþöÛo !555›6mª®®þôÓO•J%߈µµuww7EQtïHQTOOµµ5ß¹`xBã80ÿÒÒRú¶……!äêÕ«¡¡¡óçÏÿòË/mmmù@!vvvƒ¡µµÕÎÎŽÒÒÒb0˜W®¸…Ç L"‘XþM,÷ööªTªmÛ¶¡káÉd¶¶¶†–””L˜0~‘€s¸âÈJqqqcc£‹‹ ³:Bœé§ø|‘H$ÁÁÁjµzÊ”)z½^­VK$XÛà©ÀâÂJUU•Á`ذaƒñÆ´´´¥K—ò F:•Juÿþ}•JEY²dɇ~Èw"¶Dø°÷8+h€4ŽÀ G`#°‚Æñ1õööªÕjooo???µZ=à‡Ó÷îÝ+72kÖ,¾SsY…ð«cY !$??ßßßßÝÝ=,,¬¡¡ïÔ\V1<SAA¼Ÿ¤¤$¾ƒ› –ÿ…x×ÞÞçéééáá~ãÆ ¾=\IIÉ‹/¾ØÝÝÍwA |}c´µµÅÄÄxyyy{{ÇÆÆ¶µµñ¨¯û÷ï+ ãcm*g·ð=ŽI­VóÍ7ôCWll¬™™Ù|ÐgNmmí¼yóV®\Iø•¼OR…ð«cY`nnnRRRBBÂ3Ï<“––uðàA¾ƒsVÅð8Lžžž™™™ÌP§ÓmÚ´I˜M°0±ù/$ñññׯ_W«ÕVVVééé¡¡¡ß}÷ÝØ±cùÎ5¨ŽŽŽØØX!· Â_ß±±±ÕÕÕ;vì „$$$ÄÅÅíÞ½›ïPÿ×ÜÜüÙgŸÝ»wÏx£©œY3À£ëéé™1cƱcÇèa^^ž———^¯ï3-44tïÞ½|‡}ZU¼:–êõú9sæìÙ³‡^ºtI&“ݺu‹ïìœU1<S;wîT©T|7±‡yÑÙÙ)—ËÏ;GÛÛÛ]\\˜¡0EGG/^¼X&“uuuñeÂ_ß:ÎÅÅåÈ‘#ôððáÃ...:Žï\ÿ“‘‘!ûs¬MåÌâ^ª~•••>>>ôÐÇǧ¥¥¥¢¢¢Ï´ÚÚÚÉ“'÷ôôôyŽ"OX…À«cYà7-ZD===µZí¤I“øÎÎYÃã0«©©ÉÉÉùä“Oøn2uó¥®®núôé …‚ZXX˜››·¶¶òkPgÏž---ˆˆà;È „¿¾‹ÅcÆŒ¡o›››‹ÅêOÖ­[§Õjsss7šÊ™Å9R__/‰ìíí顃ƒƒH$jnn6žCQT]]]vvöŒ3 EPPÐo¿ýÆwpΪ~u, ¼qãÆ¨Q£ÊÊÊ–.]ªP(Þ}÷]¡½­êIª6‡ÉØgŸ}¶|ùrü™xöuóÅÉÉéøñãÖÖÖô°   ««ËÝÝï\knnNLLLII7nßY%üõaff¶hÑ¢ììl­V«Õj³²²/^lffÆw®¡˜Ê™Å94ŽC§ÓI¥RæùX,677ooo7žÓÔÔ$‹===‹‹‹üñÇI“&………uttð›*„_Ë;;;)ŠÊÈÈˆŽŽÎÊÊ5jThh¨ Þçþ$U ›ÃĸvíZQQQhh(ß©MÉ#ía! (ê믿þøã׬Y3uêT¾ã ì“O>yýõ×=<<ø2á¯oÆbbbêëëoß¾Ëw¢‡0¹3‹+B|§¼ðY[[wwwSEÿ¡(ª§§‡y¢L›8qbYY3LII™5k–F£ñ÷÷ç;>7U¼:–J¥RƒÁœœìææFIKKóöö...^°`ßñ¹©bx&FVVV@@€ ß©MÉ#íaÞÕÔÔlÚ´©ººúÓO?U*•|Ç؉'þúë/úcB&üõqïÞ=¥R¹téÒuëÖB222”Je~~¾/èšÖ™Å!\q|vvvƒyóMKK‹Á``®WÈÒÒÒÞÞ^P±9¬B€Õ±,p„ „gggzheeeoo/¨o¬à° Ó=L´îîîÂÂÂ¥K—òÙÄ<ƙΗ«W¯=ÿüógΜl×H)++»víÚK/½$—ËCBB!¯¼òŠ¿Jøë£¨¨¨££#..ÎÖÖÖÖÖ6>>¾­­íÂ… |çŠ YÜBãø8d2™­­­F£¡‡%%%&L`NNZaaa``àÝ»wéá;wnß¾íääÄwvnª~u, œ6mÚ¸qãÊËËéakkkccã”)SøÎÎMÃæ0ÑÎ;7fÌOOO¾#›ö{˜_½½½*•*$$dÛ¶m¶¶¶|ÇÊ|Pø·­[·BNœ8Æw®¾„¿¾1(ŠêííÕëõô°·····—¢(¾s ÅTÎ,ÎJLLä;ƒé‹ÅÙÙÙ …¢¾¾>11Q©TzyyBrrrêêꜜœ&NœøÅ_”——;88444lÞ¼ÙÞÞ^¥R‰D"¾ãsP…£££À«cY D"immÍÌÌ|á…îܹ“`ee)œô=IÏ<óÌð8LôÌýû÷?WÕ{XP.\¸pøðᦦ¦Ú¿I¥R~ãØ±cmþv÷îÝüüüØØX+++¾sõ%üõáèèxüøñ+W®<÷ÜsIIIííí111Ì笅 ¾¾þøñãk×®=z413‹s"ƒ€¿¹TÈ CZZZAA!dÉ’%ôƒq@@€³³óÎ; !ÕÕÕ)))eee‰Ä××7::Zh+Ë“T!üêXHQÔöíÛÏž=ÛÑÑñÚk¯ÅÆÆ í»ORŰ9L„yóæ)•Êððp¾óšžÁö° dee¥¦¦öÙ˜––&ð§ —/_ ¹råŠT*å;Ë„¿¾1jjj¶mÛVZZ*‰fΜõüóÏóê~þùç·ÞzËøX›Ä™Å94ŽÀŠà®W€0¡qVÐ8+h€4ŽÀ G`#°‚ÆXA㬠qVÐ8‚ÐìØ±ƒï0âôööîÞ½û­·ÞR(QQQÕÕÕônÞ¼)—ËÛÚÚøÎØ—`ƒÁ°Æ ¯ööv¥R™““ãçç—‘‘±víÚööö   3gÎð €O¾ŽZ­nkk;yò¤½eÙ²e©©© ^^^|§à ®8‚©jhhP©T^^^¾¾¾qqq÷îÝ#„„‡‡GDD0s¾ú꫹sçR5àä›7oN›6íÏ?ÿ|ã7ÒÓÓ !—/_~óÍ7ÝÜÜ^}õU•JżÜÓØØ¸víZ   “'OÊåòºººÁ2€©kii9zôhDDÓ5ÒT*•D"ÉÍÍ¥‡åååË—/W(ÁÁÁ¿þú+½ñûï¿_¶lÙË/¿<þ|fæ€è%èÒ¥KóçÏwss ¢ï¤ÏËÍÆÃÙÿÍ7ßxyy)ŠÈÈȦ¦¦?üpæÌ™þþþ/^dîyÀ`,—A€¡¡q“¤ÓéV­Z%•J333·oß^SSE 8þüƒèi§OŸ^¶lÙƒœL1 111~~~‹/¾ÿ~XX˜\.ÏÉÉIMM-++Ûµk!D¯×¿óÎ;"‘(;;{ýúõÛ¶m:˜ºëׯSÕÿÊ¢T*uww¯¬¬¤‡ñññ«W¯ÎÊÊrtt inn®­­Ý°aÝ2®X±"11±¢¢bˆ_DQÔ–-[’““srrÌÌÌ6oÞ}ú´››ÛÔ©SOœ81àäÉ“'Bf̘Ao´±± üᇴZmEEÅ¥K—^{í5BHee¥\.·°° §1óË0iÒ$¾w<‘É“'?xð µµÕÖÖ¶ÏéÛ¯¾ú*}C"‘xxxTUU­^½ÚÍÍ- `Μ9žžžþþþ'Núw1kÈøñãÙd{öÙgéÖÖÖÆ·çôÖÙÙÉfx(4Ž`’,--ÝÝÝ:ÔÿG‹-JIIILL,,, bòÍ›7 !ãÆ£‡×®][¹r¥‹‹‹ŸŸŸ¯¯¯L&ûóÏ? !z½^$1ÿй=D0iNNN"‘èâÅ‹K–,1Þ®Óé~ùå—àààþÿD,K$©TzøðáÒÒÒ¢¢¢¼¼¼´´´ŒŒŒÙ³gñ»ÆŒ3tN7ØŒ—¦ÁÐÁX.ƒ…÷8‚I’ÉdüñÇÝ»wéaiiéŠ+zzz!óæÍ»{÷îwß}WQQ±hÑ¢¡'+,,´±±9pàÀªU«<<<º»»éíNNNZ­¶««‹^½zõ¡À¤ÙÙÙ)•JµZÝÚÚj¼}çÎ===o¿ý6=,--¥oèõúŸ~úÉÙÙùòåË{öìñôôŒŠŠ:uê”B¡8uêÔãe`Ö–ßÿýQÿmÿ`X¯€+¸â& ©©Éø æR©Ô××÷ÙgŸÝ¸qãÆ›ššRSS§OŸnnnN±°°˜={ö–-[|}}mll!CL6fkkÛØØxùòå)S¦œ?>??_&“ét:µZýñǯ_¿¾±±1++‹"‰XÞ-˜¢ÈÈȲ²²ÀÀÀ÷ßßÅÅ¥©©éÔ©SfëÖ­ãǧ;°´´4KKËI“&eeeutt¼ùæ›åååéééÖÖÖÞÞÞZ­¶¬¬lÆ „œœœ &,\¸Í¯¶··=zô®]»Ö­[WUU•ý¨áû³°°Àzœ@ã& /////*ŠC‡eggÿç?ÿY³fͨQ£,XÍL8wîܲeËè¡X,b2cùòååååëׯ;v¬¿¿ÿ¾}û>úè£íÛ·ÇÅÅ8p !!~!;66öÝwßµ²²by·`ŠÆìØ±}ûö¤§§;88¸ººæçç¿ð ô©T±sçÎ[·n¹ººæææZZZzyyÅÄÄdff&'';88¬^½zÕªU„ƒ:;;³l¥RijjªZ­^¸pá˜1c©w0!ëpBd0øÎ h çÏŸW*•b±˜òã?ÆÅÅi4¾sÀ0G¿aF*•òàÿpÅà!ÌÌÌ’““ÛÚÚV¬XÑÜÜüùçŸ÷y¿<ÀÓ€–WN£Ñ¤¥¥UUU988Ì™3'&&F"Á“.qÐ8+ø:`#°‚ÆXA㬠qVÐ8+h€4ŽÀ G`#°‚ÆXA㬠qVÐ8+h€4ŽÀ G`#°‚ÆXA㬠qVÐ8+ÿ- Y¸S„ ìIEND®B`‚statistics-release-1.6.3/docs/assets/anovan_301.png000066400000000000000000001361041456127120000221410ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A€IDATxÚìÝg@×Úð³K‘ŽtT,, Tª „ 6L4M,h0VDŒb¥6°RŒ=–h$š¨‰7‰`bT5*‚D#EŠHYÚÎûanæÝ»Àº 0ìðÿ}š¶³ÏÙröÙsΜáQE^‡Ïv 8€L8€L8€L8€L8€L8€L8€L8€L8€L8€L8€L8€L8€L8€L8€L8€L8€L8€L8€L8€L8€L8€L8€L8€L8€L8€L8€L8€L8€L8€L8€L8€L8€L8€L8€L8€L8€œ©®®^¿~½µµµ†††žžÞˆ#~ýõW¶‚ÑÔÔäñx………Mw 8ÇãýðÃÀ‹/òòòjjjèU%%%WUUÕ.'§‹ÀèÝ»÷äÉ“óòò!ååå<OII©µ‚\CârfÚ´i¡¡¡<èׯ_}}}bbâøñã;:?ë²¾øâ “_~ù…^µ²²²¶¶æóÛó÷ÝÄÄÄÚÚÚÄĤ  àèÑ£Ÿ~ú)EQmŽäGhgôßÓ?þ˜Ù²ÿ~çààÐÉ‘Hÿ7\__¿~ýúáÇkkk[YY}ñÅÙÙÙRÎ&ûñøƒÐ¡ŠŠŠNž<©¨¨˜–––žž^ZZºvíZ‘H´oß¾¦ …B¶ãíl©©©éé骪ªíxÎ-[¶¤§§?{öì§Ÿ~"„¤¤¤<~ü˜í‚K(€veiiI´.^¼Ho¡ks{{ûNޤ¬¬Œ¢¨¨ØtWii)“ÈöìÙ“ÇãB455ûí·fOÕªãéW€ùƒN?jذa"‘HJH¼½½ !ÇŽëä  ëKMM¥¿‰%%%ô–òòò}ûöÅÇÇSb_ü3gÎX[[+((¸»»çåå‰ïJOOwuuݳgEQ555K–,0`€¦¦¦»»ûåË—™'ºwïÞ˜1côôôÔÕÕmmmOœ8Ao¯««ûꫯzõêeffvèÐ! BÈóçÏ›†J×Í~‘ëëë×­[gmm­®®>xðà­[·666һ膆†““Óùóç¥ÄC×´uëÖQ¥¨¨H©¬¬”ò,ÌKñÇØÚÚjhhxxxdgg¿¶ ÊÊÊ„K—.ITh-=WÓA®!q„vÆ$޶¶¶"‘ˆê’‰£¿¿?!dÀ€ÿý7}äŒ3!FFFåååox¼D=KÿA'„dee!qxsÕÕÕ}úô!„hkküñÇQQQ¿ÿþ»P(¤÷Òß2§¡¡áè訫«Kqpp`vñùüBvïÞMQÔ„ èúj„ ªªªªªªwïÞ¥(ª¡¡¡oß¾„!C†xxx((((**>~ü˜¢(???:suppPTT¤ÿI¶6qüâ‹/!zzz£GîÙ³'!dáÂ…ô.:¤·ÞzËÍÍMQQQIIéæÍ›-ÅóçŸ2„2þüôôtêÇ–ž…y•ÔÔÔ¬¬¬ènQ£F½¶ÌXÒÜÜ\‰ ­¥çj!È5$ŽÐÎèZ¦W¯^„C‡QMÇ×þfè-***ñññfffÆÆÆË—/üøñû￯¡¡accô 4ûG¼¥,­¨¨HAA"Þ´ÐØØHÿ–lÚ´é Çt€Ž–‘‘1~üxuuu曢©©¹ÿ~êß/>!$**Š¢¨üüü=zB®^½Êìš3gNvv¶P(LOO'„˜™™Ñ_½èèhBÈôéÓ)ŠÊÉÉñôôœ}ú”¢¨ 6ÐçlU☙™IÇüìÙ3Š¢è0 îÞ½K§_eeeE…‡‡+**.^¼¸¥x¨&ÿ3™ÄQʳ0/ÅÏ?ÿLQÔùóçéD¼¥"˜šš2„Î\ !ÞÞÞÔÿÖ±Rž‹Â?anAâ팮ebcc544úôéSUU%‘8Jÿ,ÞÀTmJJJVVVôr=úô飯¯Oyûí·©–ZJÿøãBˆ±±±ÄöBS/·ùxüAèuuu7oÞܹsç{ï½G³ž>}ÊÔLÇ«§§'!dß¾}L3[QQ½+>>¾é®!C†Ð{ËËË80kÖ,[[[z×±cÇè>„÷Þ{>æÑ£GLâH£itJ×RâxìØ1BÈ„ ˜-ô‘¿ÿþ;½kôèÑMËÛlÿŸþ)//ÏÍÍ533›ÜÚÚší7 k¹{÷îÆããã•””lmmçÍ›—`hhØÐÐpÿþ}æ0æ²bº–nw$„(((0Ë„{{û#bÂÂÂ!C† ™7ož’’Ò²e˼¼¼è‡TTTˆŸ\OOŸHå_Ò/j¦(ŠÂ<bhhHihhhhh „466J<¤¥xÚö,ô*}ŸxqZÂä|EEE‡ÒÑÑiísg q„޲xñâ·ÞzkãÆùùùÌF:Ÿóôô¤#kkkKKËÆÆFºw†ÂãñÖ®]Û¯_?ñZžnNxûí· !îîî FFFtÿoCCƒ©©éÉ“'===gÏžmgg—””D¤ÖV¦¦¦„ñ¨JKK«««ïÝ»Gïõóóc®‰>yòäkoöYž>}šššš““CÿA?|ø°Ä¯}) Yõõõ+V¬˜3gÎ;wè-ÏŸ?¯¯¯'„æ°ãÇB ÿüóOBÈСC›žŠþcöâŋɓ'O™2¥ÿþ©©©•••„Ó§O?yòäý÷ßß±cÇ'Ÿ|Â|1ÍÍÍ !W®\¡§J 3*z×Þ½{kþESl Ý¥˜˜XPP@ÉÊÊJIIáóù666tïÊ•+W^½zEY³f¦¦fpppKñ0šVzRž¥ÝßYž I$7 q„Ž¢ªªUUUE¢½ö_©xcùOL£{aĵö8=ÃYAAÁÕ«W !µµµ^^^^^^ýõ!dèСͯ=¾ÙgÁt€2dÈ?þ¸ªªÊÎÎÎÎÎÎÊʪ_¿~/_¾œ4iÒ€ècx<^xx¸‹‹‹µµµP(œ0a3ÜEœ••Õ‡~øäÉ77·éÓ§=:..î­·Þ"ÿV5‰‰‰^^^o½õÝ+BQ”“““µµuCCÃàÁƒ]]],X þ-nÝÿÀøá‡,--§NJ×]~ø¡““S]]]@@@ïÞ½‡ 2zôèêêêÁƒ1bݺu “'On)B=V'...11Qüy¥¦G$1³ØÐc?//¯éD‰-¡¡¡„+VЫ***„’’’ï¿ÿžü{=`}}=]O;vLÊ%ÌóæÍ#„‚´´4Š¢"""è uuuééor¼”ë(ÅC’òRPÿ :räÛï'@WTSS³eË–ÁƒkiiéèèØÚÚnÛ¶¾°šù–ýòË/400˜9sfUUÕÂs•••¦¦¦šššnnnüñ½½ººšnE{ë­·ÂÂÂæÎK™3gEQwîÜ¡; úõë·oß¾×NÇ#aûöíEÕÕÕ­^½zРAjjjï¼óNtt43Ï«W¯ûõë§¡¡áââò×_I'--mÀ€ªªª_ý5õ¿WU·ô,/…”ÚRÆ Mz‰$"¹†ÄÚ™D-CÝ#bÇL:•bhh8nÜ8º.00j®æ’1qüñÇéÃFŒallLÖ9zô¨”ªðÅ‹öööt`úúúô8'ºFÎÉÉyÃãe¯g[z)(Š  „888ÐCË@F²OzõZµµµþùg³»ª««¯]»ÖÉE“@§AW5t,WW×O?ýT|ËV¯^­¯¯á“èè蘘˜7y ooï!C†444dddÌš5köìÙ„‹/Jyˆ®®îÕ«W×®]ëââ" õôôÆõüùó={ö¼ùñ2’òRÌž={À€wïÞÍÈÈè¨÷¤RVVvwwov—ªªª££c׉ Óð¨ÖÜn kª««»zõê›W©7oÞ:t¨ì÷xmíñÐÑÊËË{ö쩨¨H_.í ‰#È-% $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $޲zöìÙœ9s\\\V®\YVVÆvD„R^^ìèèèàà0oÞ¼œœ¶#ÎâQÅv r@$}üñǺººuuuÁÁÁVVVqqqlÇ@=zª¥¥ûäɓӧO«©©±p"ÛȇÇ?xðà§Ÿ~²²²"„Lš4é믿‰D|>šl€MÕÕÕ‰‰‰;wîtuu%„ÄÆÆ6,%%ÅÃÃíЀƒ8ÊêóÏ?·´´¤—ßzë-EE¼tðùùùW¯^½{÷nII‰²²²¡¡¡“““––V;>…•••½ª®®®¢¢RZZÊvÑ€›ÐUÝ:¥¥¥ÙÙÙ6l°¶¶Žˆˆhö záܹslÇÛ>rssMLLØŽ…êv%¢õë×íÚâéÓ§qqqW®\yçwÌÌÌzöìÙÐÐðâÅ‹>>**jæÌ™Íf„ssóVÕN­ýuÄñ8¾;ßM ql~øáåË—»víòññ¹råŠŠŠ Û@—3aÂ[[Û–öjiiÍš5ËÏÏïþýûíõŒOŸ>]ºté“'OV¯^ýÙgŸ±ýgáÚ™pà!ÄÏϯGááál¡¤¤„YVQQ±´´¬ªªªªªêß¿?½W__Ÿ­ØÞGèBx<“/òx¼ììl‰Ö®]»jÕ*‰B¡pÏž=qqqcÇŽ%„DEE‡……ñùìtª¸¸¸H? 33“•ÀÞGè*ijFZÿþý%¶„……………%%%ÑW+ÓÒÓÓ_½zåååE¯Ž9ræÌ™wîÜ:t(+ùý÷ßYy^€Ž†Äºº·š¢(¦ÛZºgÏžñx¼^½zÑ«½{÷æñxÏŸ?g+þ·ß~»¥]µµµ[·n f+6€7ĺ–¦íޝUSS£®®ÎtLóù|55µ—/_²]RVV¶}ûöÜÜ\fKiii^^[‰ãÇ›ÍÅŇ4]Åñ8Ç7{|÷„ĺ‰1Ž2>JWW·ªªJ$ѹ£H$ª®®ÖÑÑa»4dÕªUiiiï¿ÿþ‰'|}}kjjRRR¾ùæ¶â177—>¼Râñµ?8Çwçã»'$ŽÀ>ñ?úâWU?yòD–‡SUTTdllL),,¤(Šé¹fѵk×6nÜèîîþìÙ³÷ßßÁÁaРA l‡ÐÜŸÇ1##£°°rùòåeË–>|X$µá<åååÁÁÁŽŽŽóæÍËÉÉa»d\ÀãñèVFæÏ=õ/ÙObmmm``páÂzõ?þ044´²²b»p¤¦¦FOObiiI7õ¹¹¹%$$°@q|øƒFŽ9{ölOOO¶ãh#Žq,))¡'{»~ýº››!Ä¢¨¨¨µçÉÏÏ·²²²³³£WÕÕÕUTTJKKÙ.€œ‘¸h±Í\\\$NÂãñ6nܸqãF¶‹ø?¯]»VUUÕ³gÏøøøsçÎéêê~þùçlÇÐFOûö훘˜¨­­}éÒ¥iÓ¦B®^½jhhØÚ󘙙Ä'á —ˆ¾Û}'/yáeeeeeeBˆ@ l‡ðF8ž8,\¸pçÎ666ööö»víŠ]±bE›O(‰âã㣢¢fΜIÿ6‹{÷ëׯÛ! Pr\¢6LÍH“÷³¥«§oܸÁvhmÁñÄqĈ 999vvv|>ßÎÎîÛo¿uvvnÛÙž>}ºtéÒ'Ož¬^½ú³Ï>c»pr ½ú¦åÔ¶mÛ˜åÚÚÚû÷ïÆÑÑÑñÚµkUUU={öŒ?w®îçŸÎv\rÃßÄСCccc¿þúëž={BÊËËcbbìììèWUF%%%111•••-››ëáá1eÊzUQQ*öÚÚZCCÃüü|uuuzK}}}xxøþýû555?ÿüóõë×·êU€Î!õËRVVVVV&„@Àv8r)㛋ˆˆðõõuww8p !$##CWW÷»ï¾“ý ;w‹“~Lnn®³³³««+ÛÅý/ñ„¯ÙÏÏóçÏCCC+**Ä7>|øÀ„??¿=z„‡‡³]Äñı¥«§oܸÁvh]RÆöÒ§OŸsçÎ?>;;›ÏçO›6ÍÓÓSIIIö3øûûûûûߺukÒ¤I-“››Û§O¡PØÐР¡¡Án‘%FÁ6»víÚU«VIŸãã©€“²³³“’’TTTFµeËú:]nàxâ¸mÛ6f¹¶¶öþýûôóóc;.€. )c»ÈÊÊÒÑÑÑ××ÏÊÊ"„XZZZZZÒ»rrr!íØû!‰òóó<$‰ ´nÝ:++«–Ž·°° „гL´;Y® KJJo"MOOõê•——½:räÈ™3gÞ¹sgèС'À›Þ¦.‰>ù䃳gÏ …Â/¿ürÞ¼y?þø#ÛQ·Ž'Ž³ìº»»[XX,^¼ØÏÏ7o‡”±y{{Ïž=;((ÈÛÛ»ÙÚ1o+..æóùŽŽŽ{öì …ëׯŸ3gÎÙ³g%.Ê鈧nGÏž=ãñx½zõ¢W{÷îÍãñž?Îv\’š¶©“ÿ­9üðÔ”ccão¿ý–íXÚwRàfýÞÄ7è«öº ñ¹»éuÙgó–ñZŠ¢®\¹"¾ñáÇFFFtÖHqtt¬¬¬ì†³ìÛ·/((ÈÃÃ#!!ÁÔÔôàÁƒ‘‘‘§Nzó3ÓÓB\\\ —-[výúõ›7oÚØØ´4¡Dç`>l²?ÄÚÚÚÀÀàÂ… ôêüahh(å¶HôMK©$“““‹‹‹}||Þ}÷Ý–fï—GÜlqLNNniW^^irÑ ·5í:ìè‹`z÷î]TTôòåKº·ñÞ½{„ÂÂB¶_‰ÎVRRB_;|ýúu777Bˆ……EQQÑ›ŸùÈ‘#`Ô¨QšššÇŽÛ°aÃÂ… ÝÜÜ–-[&wSg+))Í™3'$$ÄÜܼ±±188xîܹœ!½Y=33³´´”N3ôõõ7lذmÛ¶¤¤$Îܵޛ‰£¿¿?³, E"ÝÄ"‰!à·ß~c;F€N%Þ1-{V!1dMvžžž&&&¾¾¾«W¯.++ûꫯx<ž”{ŸpUß¾}µµµ/]º4mÚ4BÈÕ«W [{[[[‰«¡Ïž=Ë,÷ë×oÏž=l—õM­Y³¦®®îÓO?%„Lž<9""‚íˆZ$¥VLJJZµjÕ?ÿüCk,++‰D\¥ÃÍ®êÛÿÚ¼y³‰‰ÉÒÒÒÒÒÒ>ljjjccÃv€ê o3Í$š²'‘jjjçÏŸ¯¯¯÷ððX°`Ahh¨¢¢"=¯[ ؽ{÷|`iiioo¿k×®Õ«WwèÅ1òÂÅÅ…¢(æ|BÇÛ¸qãÓ§OŸ>}%w¦4ooïêêjÿ´´´”””©S§Z[[ÛÛÛ³Wû¡8mܸqþù§ø–+W®˜››¿|ù²ãžÔÜÜœír·³ììl¶C@¡ÚR"æ;NþwØYNþÚê‚ãXYYÙìÞüü|BÈ;wÞ¼PrçÙ³g—/_®®®¦(êÚµkW¯^e1˜–> XÆ2–۶ܬäääáÇkjjOž<ùÙ³g‡p³«š‘ŸŸ/1 ®ººº†††¶¶6Û¡t,ñÖAªMºŠkí£ §NK_ßðÓO?õêÕ«{^ë`bbÂçóSSSmllTTTX ÆÜÜœYO±Œe,·m¹YÆ »téá(nvU3†ËÌæX^^cgg‡Nà0æ¢iñÌŸÅΉÁÈÈèåË—sçνtéÒ±cÇV®\¹råÊî38£²²rîܹ_|ñ!dúôéAAAUUUlÇÐFO#""òòòÜÝÝ'Mš4iÒ$ww÷ÜÜ\Œ¹®’}žNpâÄ uuõ±cdž††ÆÆÆ¶ãÌ…r$22òÕ«W—/_¦“æ¥K—Þ»woÓ¦MlÇÐFozŸ±®¯®®îüùóÙÙÙ|>ßÌÌÌÓÓóM¦x¨««svv¾r劔{ÏXXXtÍ»Á¶Ù“'OúõëÇv(”4\½Ó´¼¿Mnnn[·nµ··4hÐýû÷ !þùghhhRR+ñp¯v€NÆÍ1ŽYYY:::úúúYYY„KKKKKKzWNN!D ´á´%%%111ÝpJèʘ”ñÉ“'lÇ’êêê$¦á000hlld;.€6âfâèíí={öì   ooïfhÃî;wÆÅű]2€ÿÇÕVF.qpp8tèPTT½ZQQÓôV¨ò‚›‰cjjª¢¢"!$==½½ÎéïïïïïëÖ­I“&±]>èî2Ê‹ààà©S§zyy‰D¢É“'?xðÀÄÄdãÆlÇÐFÜL™ˆÊÊÊ:::FFF—/_þõ×_­­­;aö] B}'YÈÍÍe;ê¿ú÷ïOÉÎÎ&„HôMËi‰¸ÍØØøôéÓgÏž}ô葦¦æ¬Y³ÜÜÜèûIÈ#n&ŽŒ£GFDDìÚµ‹¢¨ùóçÛÙÙÅÅÅ•——wôžÜ~.×(È]¡ZšsQb’¦‡uÙµ™üܬ©©ÉÌÌÔÑÑ155?~kwÓ©›= ºˆû÷ï1bâĉ^^^&L(,,œ7oÞ!C<<<<Èv€mÄñÇ’’WWWBÈõë×ÝÜÜ!EEElÇÐ<‰ìI ¥7=Ò‡Ñý×ÐlÚ´ÉÀÀ 66VCCc÷îÝü±¦¦&½QCCÃÔÔ”íÚˆã‰cß¾}µµµ/]º4mÚ4BÈÕ«W ÙŽ àõÞð&À¢{÷î­\¹ÒÞÞžâêê4jÔ(¶ãxSïªؽ{÷|`iiioo¿k×®Õ«WwÂÅ1o¢KÝÚ ¢¢‚™,ÖÀÀ€ü{Á€¼ãx‹ãˆ#rrrìììø|¾Ý·ß~ëììÌv\-qð"ýù½Ž„“pé4pÇGBˆ‰‰ ŸÏOMMuvv¶±±QQQy“³ÙÚÚrïŠiè ÄÇ2¾¶“Zâ‚4L@çàxâXYY¹dÉ’‹/R•™™9}út“5kÖ¨««³À5½üE–DÉboddÔÒêÂ… Ù -8ž8FFF¾zõêòåËô%ÕK—. Ý´iÓêÕ«Ù 7€á¬þýûß¾}»¥U‚ÄäÇǤ¤¤­[·ÒƒÓ !öööË—/ E⬓˜R¸äìÙ³l‡Ð!8ž8ÖÕÕ©©©‰o100hlld;.èÖÐÐrŠã×ý988:tH$Ñ«111NNNlÇÝæÙ¹ÆñÄ188øæÍ›^^^"‘hòäÉnnnEEEaaalÇÝRFZqqñÔ©S ÍÌÌ–.]Ê¥. ÚÚZmmíªªªîPXè¶8ÞUmll|úôé³gÏ>zôHSSsÖ¬Ynnn˜_ ::¦¡jéc/‰ÆŒ£¦¦ö믿–——Ô××ÇÆÆ²oÛKÄxþüyhhhEE gÇšššÌÌLSSÓñãÇBD"QeeeAAÁ‘#G–/_Îv€À}-ýÒà^‚œ—œœ,ý߆@bFR‰ùÅ‹oß¾——GON´ÿþ1cÆDFFJ Fïj˜‚´ô¥^»víªU«$6Êia¤ãfâxÿþýÙ³gB ´{÷ˆ¤¤¤ÚÚZBÇCâGúí^$n ƒÜ‘“üýý™e¡P(‰è± ôxk@ðÛo¿±cb>ÕôLõâò‡1SZ:::VVVÞ¸qƒž1­k/‚ÄÜûŒ°°°°°°¤¤$WWW¹.,ÈBâ3Ðݪqn&Ž›6m200ˆÕÐÐØ½{÷Ǭ©©IoÔÐÐ055e;@à,‰ ‰úEâG´éÏ*p3kcbbâÆ#""x<Þ­[·ÂÂÂlllذ£¼öóÜ»w¢—/_êèèBîÝ»G),,d;ðVýkËÂBSMßýîVss´ß½{÷|}}ííí---CBBJJJfÏž=jÔ(;;; ‹7¼ë @Kš½ŒŒ÷›NÚ¶m[HHˆ‹‹‹²²²’’’““SxxøÉ“'ËÊÊØžžž&&&¾¾¾7oÞ¼páÂôéÓy<^ee%Ûq¡°²âfâXQQ!èezöo ¶ƒ.c.šf;èZòóó555Å·¨««khhhkk³Z‡xí?%55µóçÏ×××{xx,X° 44TQQQKK‹íÀ[Aöo: Ð7»ª !¸t:Gk/š–ãÈvøÐ±†ûõ×_÷ìÙ“R^^cggÇá·^"wlúÕ077?þ<½\PPP__onnÎvÔoT")ä®°¯…ì  ššQü7¦i3$}0ï_˜Ö‘ó"""òòòÜÝÝ'Mš4iÒ$ww÷ÜÜ܈ˆ¶ãêX”‰]………#FŒ GûB~úé§^½zYYY±rÛK$…œ¤“ø#Ñ ûš8ÛâÏ\ËÖtuáÂ…lrLz+#S­H9€í@'éӧϹsçΟ?ŸÍçó§M›æé驤¤Äv\¬122zùòåܹsׯ_ŸŸŸ¿råÊõë×+((° ­ ž;vÃúœ›‰cÿþý™«›®$ŽÐV2vLwêZ¢¬¬lgg§¯¯ïìì, »sÖH;qâÄܹsÇŽkdd;cÆ ¶#Ba¡Õºs%ÏÍÄñìÙ³l‡\ƒÀ@TVV.Y²äâÅ‹EeffNŸ>ÝÄÄdÍš5êêêl‡Æš¾}ûž;wŽí(:„‹‹‹DÁáÂB·…1ޝñˆÐf‘‘‘¯^½º|ù2ÝA¹téÒ{÷îmÚ´‰í¸Ú‰#€4HáM$%%-Z´ˆžŒboo¿|ùòÄÄD¶ãh#nvU¼9ôMÛ«««“¸1±Acc#Ûq´Z$¡oÚ‹ƒƒÃ¡C‡è[TB***bbbœœœØŽ  ¸Ù☜œ,ýggçÖž³¡¡aÛ¶m'NœPWW=zô¢E‹8<…o·…VFh_ÁÁÁS§Nõòò‰D“'O~ðà‰‰ÉÆ;â¹êêꜯ\¹¢ªªÊv¹€³¸™8úûû3ËB¡P$ÑmHôÿ~@ðÛo¿µöœÑÑѧNŠŒŒ$„¬\¹RYY9 €í‚Âÿrw‡7ÜÕ4•ìΓxìŒOŸ>}öìÙGijjΚ5ËÍÍ­#îkURRƒû @GãfâÈÌÚ˜˜˜¸qãÆˆˆwëÖ­°°0›Öž°¶¶öرc!!!îîî„   èèhÜØ°ë˜¾_âÎ~RvÑ Ì ]š}”DK¤”]â>üî»ïŽ?žÙRSS³jժ͛7·ã³ìܹ3..Ží²@·Àñ¼gÛ¶m!!!...ÊÊÊJJJNNNááá'Ož,++kÕy>|XUUåêêJ¯ººº¾xñ"##ƒíòÁar>:ík)¹$RóB¤Œ Åúõë?ýôSñ.ކ††_~ù¥}ŸÅßß?33óèÑ£l¸›-ŽŒüü|MMMñ-êêêÚÚÚ­:OAAÇcæÔ044äñx%%%-oaaAá̼¯¹¹¹l‡ðýû÷ÏÎÎ~òä ³%;;›Çãegg·´‹YßEaV%¶3[šž°Ùƒ;_×›º§%K–„††Þ¹sgùò劊ìW¹tí”™™Év —دÅ:ÔСCccc¿þúëž={BÊËËcbbìììZ{]Kmm­ªª*Ó1ÍçóUTTÊËË[:ž{•r¿~ýØAº£¹Ù&Öv=yò¤_¿~MïOÏ”´i‘é-MOØu^Ÿ.F;ê ùòöövrrš?~zzz\\œÄì<{µt&ŽwUGDDäåå¹»»Oš4iÒ¤Iîîî¹¹¹­=¶¶vMM 3§†H$ …­m¶ÖÑ£¥ìe–Åïa/±KÊ£š%Nž<©««;a„×ÎùÀ Ò¿kòˆ{%hŽ·8öéÓçܹsçÏŸÏÎÎæóùÓ¦MóôôTRRjíyôõõ)Š*--Õ××'„¼xñ‚¢(¦çº‰TOb„¢,»$Û¶  Yššš;vìØ³gÏW_}Åv,Kür±¦mórŠ).†àxâHQVV¶³³Ó××wvv …mÈ !æææºººÉÉÉãÆ#„¤¤¤èéé ¶ ÿ£ÙÚüµ}»ï`|ûí·ô2Ç›;w®Í… ØŽ«c1ߎfÇuÈñ"Hü …îIâ3 ïŸðÖâxâXYY¹dÉ’‹/R•™™9}út“5kÖ¨««·ê<ŠŠŠ>>>ÑÑÑ}ûömllŒŽŽöññé ãÜA ´ [²²²tttôõõõõõ%†iøøø°`Gá@šøZÜȆ¡Íš¾ûÝíóÀñÔ'22òÕ«W—/_vss#„,]º444tÓ¦M«W¯ní©ëêê !ÞÞÞ ,`»pÐ"¤ŒÀ.ooïÙ³gy{{7{®P9Åñ4ÙÍÍmëÖ­öööƒ ºÿ>!äÏ?ÿ MJJê¸'µ°°àد}2ÛQÈDö”QŽ %#î•H~ USS£¨¨¨¤¤TWW×ìÊÊʬÖ µ“”ùöå÷Jo-Ž¿ªº®®Nbò ƒÆÆF¶ã‚öÇÜ÷¥[}¡kRUU¥‡Sûúú*ÿ/¡P8kÖ,¶ì@ÌM˜$nÅ$¿¸W"€7Áñ®j‡C‡EEEÑ«111NNNlÇí ÓÐÕTWWïÚµ‹’ššºuëVñ]=b;ÀŽÅ½/#÷JmÖô©îöñàxâzôHSSsÖ¬YnnnÌ `@Nµ4)#@¡¥¥µcÇBÈÌ™3énàxâxøðáwß}wüøñÌ–šššU«VmÞ¼™íк5陟”½Ý¼ƒäξ}ûØ =q>>lÍç¸8æÜ¹sl‡Ðž¸™8z{{Ïž=;((ˆ™…Gþîw5H“Þ~ûmBH~~þÓ§O…B¡ŠŠ ÛA´7ÇÔÔTzæôôt¶c×@ÊVYY¹dÉ’‹/R•™™9}út“5kÖ¨««³@[póâUUU%%%Bˆ¯¯¯òÿ …³fÍb;@ äß‹¦)ŠBÖ\ùêÕ«Ë—/+((B–.]zïÞ½M›6±@q³Å±ººz×®]„ÔÔÔ­[·Šï*((xôèÛvwhe„n"))iëÖ­ôª½½ýòåËCCCW¯^ÍvhmÁÍı¡¡!;;›^fh|>ÕªUlØ}!e„n¥®®Nâ¦lÇÐFÜLµ´´vìØA™9s&½¬CÊ݃ƒÃ¡C‡¢¢¢èÕŠŠŠ˜˜'''¶ãh#nŽqdìÛ·íº#ñ9º™-ËÝPppðÍ›7½¼¼D"ÑäÉ“ÝÜÜŠŠŠÂÂÂØŽ  ¸ÙâÈHOOöì™Äö7n°ZW!qï–×ÎÈýÚƒ%fíFC#tgÆÆÆ§OŸ>{öì£G455gÍšåææÆçsü;pÇÇU«V)++¯Y³¦gÏžlÇÒ5›äÉx0‘z›i"–2âÓÐÝ$''‹¯ÑË×®]#„8;;³#@[p{«HLþäÉ“¦Çäææ6{0Ò%ØìÆ.…)gp¯D0tèÐØØØ¯¿þš¾>¯¼¼<&&ÆÎή¶R7puvv …***ð¼mhÑìâúõë'¾ÊE‰Bq÷JÔ•ÿ{È"""Â×××ÝÝ}àÀ„ŒŒ ]]Ýï¾ûŽí¸:Jwhã|¤ãxâXYY¹dÉ’‹/R•™™9}út“5kÖ¨««Kà™3g-ZD/ÿöÛo€í¢t!¨7dÔ§OŸsçÎ?>;;›ÏçO›6ÍÓÓSII‰í¸: 7êŠî ÈŽã‰cddä«W¯._¾ìææFYºtihhè¦M›V¯^-ý^^^ÿý7½üÚ,³ûàFC#@gRVV7nÛQtñÁМ©+8Y(h‰?ÝðOÇǤ¤¤­[·ЫöööË—/ }m⨨¨(1¤½›CÊÐÍnçöÍ«8YQp²PÐ6ÝüÇǺº:555ñ-lÇ%O2´Ù¶mÛ˜åÚÚÚû÷ï0)£¼_ À‰[ º»»[XX,^¼ØÏÏ“wŸÎãøàÁÁÁ7oÞôòò‰D“'Ovss+** kó mmm333嫯/..ž:uª¡¡¡™™ÙÒ¥KeipefóîΪ:€jkkÙŽ 8Þâhll|úôé³gÏ>zôHSSsÖ¬Ynnn|>Óå–:”E"ј1cÔÔÔ~ýõ×òòò€€€úúúØØØÖžÚ@â1;wîìÓ§|ýù`p3qLNN_522222¢—¯]»FšôÉ5ñT¯iÚwñâÅÛ·oçååѯÀþýûÇŒ)1ô“ eèMÆ())mܸ‘í¸Úˆ›‰£¿¿?³, E"Ý÷*‰!à·ß~c;Æö$~»?‰;R<|øPcÆŒeË–Ñ·Ž•w¯½¥§§§‰‰‰¯¯ïêÕ«ËÊʾúê+WYYIÐ7 Ðaª««wíÚEIMMݺu«ø®‚‚‚GÉ~ª†††mÛ¶8qB]]}ôèÑ‹-jzŸë½{÷Š?‹ŽŽNJJ Û¯pÇÇüü|‰y¼ÕÕÕ544´µµÙ­“¨©©?~Á‚}úô ÷õõýòË/¿üòK¤Œ¤¡¡!;;›^fh|>ÕªU²Ÿ*::úÔ©S‘‘‘„•+W*++H“››ëáá1eÊzUQ‘ã;°ˆãõËСCccc¿þúkº}±¼¼<&&ÆÎήé_vù%1®±i:hnn~þüyz™>òÎ;\ê¯èj´´´vìØA™9s&½Ð6µµµÇŽ qww'„EGGûûûKL ‘››ëìììêêÊv¹€û¸9Æ‘‘——çîî>iÒ¤I“&¹»»çææFDD°W;£ÄHì*,,1bĽ{÷豌۷oïÕ«—••Û!t ûöíc–ÛpϪ‡VUU1¡««ë‹/222$ËÍÍíÓ§P(¤G¡tŽ·8öéÓçܹsçÏŸÏÎÎæóùÓ¦MóôôTRRb;®Îcdd”˜˜hmmý×_åççÏž={ýúõ lÇÀq999§N;v¬@ ¨­­]±bEBB‚¶¶öܹs§M›&ãI x<ž½jhhÈãñJJJĉDùùù ‰Dƒ Z·n”?‡„ÌÌL¶_!KO !ÊÊÊãÆc; vÐÓOž<™;wîØ±cŒŒbccg̘Áv\wïÞ½)S¦ôïßìØ±„íÛ·ÿù石gÏVWW‰‰166öòò’å<µµµªªªLÇ4ŸÏWQQ)//?¦¸¸˜Ïç;::îÙ³G(®_¿~Μ9gÏž•ÞÍ@Êo‚㉣ƒƒC³ÛoܸÁvhNüjësçα@7òõ×_{yymÚ´‰BQÔO?ýôå—_.X°€R__ÿÝwßɘ8jkk×ÔÔˆD":w‰DB¡PâÚ>##£´´4fuÆ Æ KNN–ñ)Z…ã‰ã¶mÛ˜åÚÚÚû÷ï>>ÑÑÑééé©©©ÑÑÑ>>>ô4ñññô—ÂÂÂeË–]¿~ýæÍ›666-ÒxCoq,++_­¨¨Ø¹sgŸ>}¸Ô܈VF€®ÆÇÇgóæÍ</''çæÍ›³gÏ&„ˆD¢äää={ö4Á[ŠÀÀÀºººÀÀ@Bˆ··7=P’räÈ@0jÔ(MMÍcÇŽmذaáÂ…ŠŠŠnnnË–-ãÒTµÐ¥p5#@'ãfâØÐÐM/3 4>Ÿ¿jÕ*¶l5 gÖq3qÔÒÒÚ±c!dæÌ™ô‚üBÊ]ÇÇ8îÛ·Ynll|“S•——;:::88Ì›7/''§£ƒÇpFèR¸ÙâHÉÉÉ9uêÔØ±cAmmíŠ+´µµçÎÛª¹0!!!=ŠŽŽÖÒÒŠõóó;}ú´ššZGVF¹výúuYëÙ³§¹¹9ÛÁ´7Ç{÷îM™2¥ÿþcÇŽ%„lß¾ýÏ?ÿœ={¶ººzLLŒ±±±——W«NX]]˜˜¸sçNWWWBHllì°aÃRRR<<<Ú7r¤ŒðóÏ?Ër˜¹¹9G/ÜL¿þúk//¯M›6B(Šúé§Ÿ¾üòKúŽ õõõß}÷]kÇüü|+++;;;zU]]]EE¥´´´cFÊÀQQQl‡Ð!¸™8Þ½{766–^ÎÊÊ*))3f ½jkk{äȑ֞ÐÌÌìäÉ“Ìê™3gª««mmm[:Þ‚BßIöµú÷ïOþ½úûÉ“'l¿xÍÈÍÍe;ª;–ºn&Ž••• ôòÕ«W  Àì­ªªjó™E"Q|||TTÔÌ™3鄯Y2Þ›AŽZ9s÷nŠ{%ꚥº-n^UmjjšœœL/'$$ 6ŒÙ•––ööÛo¿ö gΜ±øWVV½ñéÓ§>>>Û¶m[½zõ’%KÞ$Âììl׳gOccc??¿/^°ýš¼7[}||6oÞÌãñrrrnÞ¼9{ölBˆH$JNNÞ³gO@@ÀkÏàååõ÷ßÓËêêê„;wîøùù}ðÁ»wïÖÕÕ}íèÖDÒ\ƒ"½kĈkÖ¬ …_~ùå¼yó~üñG¶_6i8›8VTT?~üÕ«WóæÍsww'„,Z´(!!aâĉ²LÇ£¨¨(~WÙ†††ÀÀ@__ßE‹½ö±>¿7 Ä2!äîÝ»ÖÖÖQQQôÕ6óæÍ ‰D|>7€º›W¯^Ér[jè:¸™8òx¼9sæÌ™3G|ãÂ… ×­[×¶j:))©°°pàÀL8!D èëë7{¼x+#EQ­wïÞ5kÖàÁƒéýû÷WRRbû5€v3}út;;;__ß–Æ\¿~ýÛo¿511 f;X€VàfâØ,)ײ¼ÖãÇ)ŠZ¸p¡øÆ-[¶Œ7îµmzŒµµõÞ½{ !ÅÅÅ6l˜Ÿ¿jÕ*¶h#$ŽíLKKkÇŽ„™3gÒ Ü€1ŽÅÚÚ:++‹í(Ú Z:ÊåË—UTTÛ´$ŽeóæÍ+V¬ oQ­¡¡Ál×××g;4€¶@âÐQ¼½½)ŠºsçŽÄöÌÌL¶Ch $Žåܹsl‡Ðž8t”¼¼<)ÛUTT†ÊvŒ­€Ä £DEEѽÒ<Çã‰D">Ÿ¯¢¢BïíׯßO?ýÄvŒ­€Ä £|üñLJ^³f££#ŸÏ¿uëÖªU«–,YâééÉvhmy:Ê?þîêꪬ¬¬¨¨èèèËv\m„Ä £«««‹oQWW/((`;.€6BâÐQcccËÊÊèÕòòò˜˜¶ãh#Œqè(áááÓ§Owww8p !$##CSSóðáÃlÇÐFHeõìÙ³uëÖݺuKYYù½÷Þ[¾|yÏž=Ù º4CCÃß~ûíÂ… YYYuuu>>>#GŽd®ªn/ Û¶m;q℺ºúèÑ£-ZÄãñØ.:pºªe"‰,XP__ÿÍ7ßÄÄÄܸq#<<œí @dee qâDdddHHÈñãÇwìØÁn‘yÿb7  :Nwþ< q”ÉãÇÅÇ«ªª\]]éUWW×/^ddd°R^ú•Y_–k…ꆹ0š~È»ÛçÙLÁÚµk !¥¥¥ÙÙÙ{÷îõööæó[L»9ö%âd¡¸W"yWRRB§tׯ_wss#„XXXµãSðx<zÕÐÐÇã•””´t|GHšž¿>–Ü+÷¾Ë\*—ÊÒH[gÞ¼y©©©úúú6lhéúc}ûöMLLÔÖÖ¾téÒ´iÓ!W¯^544lǧ¨­­UUUeþÇÒ·4,//oöàŽ®x<žÄS4Ý"w8Y(h3¼ûèªnÞ™3g,þ•••Ålÿá‡RRRÆŽëãã# Ùº´€€€Ý»wðÁ–––ööö»víZ½zõÔ©SÛñ)´µµkjj˜A"‘H(jkk³R^‰n;ÎtáIŠ3]ðÐM?äÝíóÐí ,£†††ššzY]]ýéÓ§eeeC‡¥·ÔÕÕ ¬ªªruu¥W]]]_¼x‘‘‘Áv\o„3ß#¶<}ú4>>>,,Œ’““óüùó1cÆÐ»333{÷îÍvŒoT(BŸÏïÑ£½¬¢¢ÂçËÍO[³‘ËuMÕl‰äýK-å–ð÷ß/^¼˜í;îgÚžÌÌÌNž<ɬž9s¦ººÚÖÖ–í¸à¿ x<ž½jhhÈãñJJJØŽ þ¾Gí+&&æóÏ?×××'„äää(((¤¥¥Í›7/??È!aaa}ûöe;Æ7*”²²ò˜1c…âmmíšš‘HD¯ŠD"¡P¨­­Ív\Ð yÿu=z´ŽŽ½ªªªJQTTTÔðáüeË–ââ⤤$¶Ã|£BUVV~öÙgãÆKNNNNN3fÌgŸ}VYYÉv˜¯×Räò[SI/äôKÝR¡~úé§gÏž}õÕWlØéØd)ßêëë+þE\NMM:tè’%K^¼xÁvtíV(ÚÍ›7å}ðï½{÷ÌÍÍ‹‹‹éÕ¢¢"ssóû÷ï³W;àÀ»#Žߣ® ººzÈ!ÉÉÉÌ–[·nI|NÜÝÝ¿ûî;¶#}£B>}ÚÁÁ©¬íííÏœ9Ãv¤¯×Räò[SIy/ä÷KÝR¡ÂÃÃÍ›X¿~=Ûñv8tU¿EEEMMMfµ¡¡!00Ð××wÑ¢El‡Ön…âsss]]ÝäääqãÆBRRRôôôÛqÁÿàÆ÷¨+¸páB=™-ƒ ÒÐи{÷®ƒƒ!¤´´´°°P¾Æ86-”H$jhhhll¤ûv˜æº®¬¥Èå·¦j©Drý¥n©PÓ§O§IKK[¶lÙO?ýdllÌv¼‰c{JJJ*,,8p`rr2³Q Ð#¸uŠŠŠ>>>ÑÑÑ}ûömllŒŽŽöññQTÄ· kÁ÷¨½\½zuèСâW€öèÑãÓO? Yµj•¦¦æ–-[,,,œÙŽô õÞ{ïijj.^¼xΜ9EíÙ³GKKkøðálGúz-E.¿5UK%’ë/uK…ÒÒÒbâ/..&„ôïß_¾† ·|åÈãÇ)ŠZ¸p¡øÆ-[¶Ðÿ¡+ ¬«« $„x{{/X°€íˆ@¾Gí%%%å³Ï>“ظ|ùrEEÅÕ«W¿zõÊÅÅ%&&FAAíHߨPZZZ‡Þ¼yóÌ™3y<ž½½ýáǵ´´ØŽôõ¤D.§5UK%’ë/µü~À:êN×@›áªj G G G G G G G G G Ghµµk×Z4gòäÉÿüó……EYYY§SQQQ]]M©©©±°°ÈÊÊjÕÃé€KJJ:÷%l&l¶"€–Œ=ºiEwåÊñÚ†ù.K,ËhèСÉÉÉmŽõt>E¶ùóå—_~üñÇ„ŠŠŠ/¾ø"44ÔÖÖ–¢¦¦ÖùÁ¬\¹²ÿþAAAŠŠŠ³gÏÖÑÑaûåicØ­ý½€NðÉ'ŸL™2E|‹©©©xmÃ|—%–¸ ‰#´ZïÞ½{÷îM¡[ûõëgeeEïúçŸØŠJIIIëk&l_:h‰‘‘S¿‰“ÇÚ ] «ÚßÇ}||† 2~üøôôtzãóçÏÝÜÜ‚ƒƒ+++éíþþþNNNï¿ÿþºuë„B!!äŸþ4hPvvö'Ÿ|ÛÒÃgΜ™˜˜¸wïÞ‰'ÖÕÕ1G%%%NNNÇß¼yscc#!äúõëŸ~ú©““S`` ôþô¢¢¢ùóç;88Œ3æÛo¿ýðÓ““%:â“““èåfON—âÚµk|ðÍ„ èW£¥°-½V¿ÿþûG}4xðà>øàèÑ£l¿ÏÝóµÿ.‹/“–¿Åyyy³fͲ··ÿðÛž|Þ¼y‹/fV÷íÛçîî.‰¤×`Rj'Ô'о8Bû[·n]PPÐ÷߯¥¥µzõjBHmmíÔ©SUUU÷ïß¿uëÖ§OŸ.Y²„R__ïëë[__¿wïÞµk×^ºt)$$„> EQ+V¬1bÄØ±c[zø¾}û<==gÏžýÃ?0ÏÞØØøÅ_Ô××ïÛ·oéÒ¥?þøãêêêæÌ™caa¿qãÆ´´´íÛ··ccãôéÓËËËwíÚµ|ùòÇgffJ)¯”“‹D¢õë×GEEÅÇÇ+++‡‡‡·6£¥Âæææ.\¸®â'Nœ‘‘‘Áö[ ÀqÅÅÅb Å÷Š—Å—[ú×ÕÕùúú …Â={ö,^¼xãÆô_eq£Gþ믿êëëéÕ³gÏ~ôÑG ²×`âPŸ@»CW5´¿… Òv§NºjÕ*BÈÙ³g !QQQ|>Ÿ;|øðüüü[·n•––þüóÏššš„õë×ûúú.[¶Œ"‰&Mš4aÂBÈ©S§š}8Ýc.á?þÈÏÏÿá‡ÔÕÕßyçÊÊÊþù§ªªjÑ¢EŸ}ö™ªª*!äý÷ßÏÍÍm)þ .=z´gÏž„5kÖ|ùå—RÊ+åäEÍŸ?ßÑÑ‘òÅ_Я†t-½V999"‘è“O>éÓ§Ï AƒÌÌÌäe@'€ü:~üøñãǙթS§†……½öQ-}‹oÞ¼YZZúÓO?Ñu‹’’ÒŒ3$ëáá’’’2|øð¼¼¼»wïnÞ¼¹U5˜,‘ >6CâíÄ\.óèÑ£ÜÜ\kkk抢ž>}úøñcKKK:k$„ØÚÚòùüììì>}úB†*ýáÍ&Ž™™™êêêôêäÉ“éºc(333##ãÚµk...-ÅŸ••5pà@ºf'„8::òx<)åÕÑÑ‘rr&læ„ÒµTX;;;›Ñ£G¿÷Þ{ŽŽŽ^^^FFFÿftkþþþ .lí£Zúggg‹×-Më WW×ßÿ}øðágÏžµ±±éß¿?iM &K$¨O Í8BûSQQ‘Ø¢©©ikkûý÷ßKl¿~ýzÓz“’HÑÐÐþðf544(*J~°³²²¦L™2pàÀ#F¸¹¹™››ggg·t†ºº:ñU>ŸßlâX[[+ËÉ{ôèѪWOJa;ö÷ß_ºtéøñã[¶lÙ±cÇðáÃ[÷Þ@Çké[ü÷ß‹¯òx¼fë–1cÆlذ!""âܹst¯K«j0"V;¡>v‡1ŽÐÌÍͽЪ“·ùµº~ýúž={—,Yò믿ÚÙÙýúë¯õ@+´ô-633“R·0<<<***NŸ>‘‘1fÌ"s%Ó´vB}í‰#t777“E‹ݽ{÷Ï?ÿ 511QQQ9rdÏž=—,Yrÿþýk×®…„„Œ3¦W¯^2>œÂçó ˜j‘2räHMMÍåË—?xðàÌ™3ß|ó½½½®®naaáõë×‹ŠŠŽ?þóÏ?—––2Ê%Ðg LMMMJJZµj=<ÈÀÀ@IIiûöí999.\8xð }|«NNkök ÛØØûý÷ßçääœ?>--M¼û X!þ]f–[ú{zzêêê2uKKÃ%ÕÕÕ‡¾~ýz777zèák+™–j'Ô'Ðî8BgàóùÔÐИ9sfhh¨““Óš5k!JJJß}÷Çûâ‹/–/_îââ)ûà !ÞÞÞÉÉÉ ,`VVVþî»ïêêê¦M›¶aÆO?ýtöìÙŸþùèÑ£çÏŸÿÙgŸ=|øð›o¾ÉËËÛºuk³Ñª¨¨>|˜Ïçùå—QQQK–,¡“TUUÕ7Þ¼ysÔ¨Q‹/öóó£oÕÉ[ ûµ…uvv^±bÅþýûÇ·iÓ¦/¾øbêÔ©l¿±Ýøw™Y–^ãõèÑãË/¿œ1c†½½½@ hö´£G~ùòåG}D¯¾¶’i©vB}íŽGQÛ1tuC‡ݹs§³³3½J÷Ñ—7´EQååå2^0×*¨ £áâ€VC¥ o‚ÇãuDÖHP;AÇCW5Àëõëׯé¥âÝ ºª@&hq™ q™ q™ q™ q™ q™ q™ q™ q™ q™ q™ q™ q™ q™ q™ q™ q™ q™ q™ q™ q™ q™ q™ q™ q™ q™ q™ q™ q™ q™ q2pà@Þÿ0`Àš5k(Šjó9•””x<^UUUÓ]ššš<¯°°° §-//çñxJJJR òÃ?°ôBv‰w§wïÞ“'OÎËË{í«!îÅ‹yyy555l—äGø/kkk+++--­ìììðððøøø6ŸÍÊÊÊÚÚšÏǬ}Ð‰IAAÁÑ£G?ýôÓV¥õ_|ñ…‰‰É/¿üÂv9@¾áwþkË–-éééwïÞ---?~[jjjzzºªª*ÛÅâúÝyöìÙO?ýDIIIyüø1ÛA´ƒ—/_ èÙ³§¾¾þÈ‘#oܸAo¯Oëëë-ZÔ»wo@pøða汇Äêýû÷ÇŽ«¯¯¯¡¡aggwòäÉ7)TKE?~<Ç‹¥W—.]Êãñ,X å!LœwïÞ>|øÞ½{¥D[[[»`Áccckkë_ýUUU•I¦¥¼ªR|øá‡ÊÊÊ„‚‚‰] ëׯçw444† -‰!ãÆûí·ß!>>>ëׯïà@+dggYYYEmÞ¼yæÌ™iii”XâøäÉ>Ÿ¯¨¨øôéSŠ¢6lØ@?…ôÄ1''ÇÓÓsòäÉô.Bȉ'Ú–8J)Bee¥ššš²²ò«W¯ž?Îãñúôé#‰¤<„Ž2gΜììl¡PØR´?æñxŠŠŠÏž=£(jëÖ­„:q”rþf ejj:dÈ:=%„x{{K¼b™™™„MMMú¹èó+((P¨y¡KúçŸèÏó­[·˜gΜqwwŸ?>½Z__¿nÝ:kkkuuõÁƒoݺ•þÊHÙ%þ½¨ªª¢ÿ5ÅÅÅQµ`Á‚?þøƒ~øõë×=<<´µµõôô¼¼¼®_¿Þ4¦UʲeË!Ÿ|ò ½*þ¹ÙÒ_=Úºuë(ŠºwïÞ˜1côôôÔÕÕmmmOœ8!óüakk«¡¡ááá‘M?KMMÍ’%K†††““ÓùóçÅ·0@SSÓÝÝþÇ+!55•þß^RRBo)//ß·o_|||³áµtN:B•øøx333ccãåË—?~üøý÷ß×Ðа±±iöÙ%^À††ºÃäÒ¥K•yKïfÓuHá¿ßmæâ˜=zBÞ{ï=¡PHQT³—È 2„¢¨ÒÒÒ^½zÑ[¿¿jj*}N¦>¥ÿb¾÷Þ{ôöGÉ’8RU^^~àÀY³fÙÚÚÒ9vì˜ø1t®|[J¥¢¨‰'BN:uäÈBÈ¢E‹¤?„ŽÇãÑm«R¢=~ü8!døðáô1UUUL‹£ôš¾; ƒiÓ¦•––J¼bÇŽ#„L˜0Aâ¿ÿþ;…处„úŸ§”cZjG—²‹ù^ˆD¢O?ý”²dɉÓJé-×´J¡+4æ«ÊTt-P¢½_z_ ÇSSS³²²¢GìŒ5Š~º]ö­·ÞrssSTTTRRºyó&%[¯EuuuŸ>}!ÚÚÚüqTTÔï¿ÿN×íTsÝÒ{Z!JJJVVVôr=úô飯¯Oyûí·›¾}è0á$$Ž ùÝ~ùò¥ºº:!äâŋԿ‰½½ý1'Ož¤®¨¨Ø·oßøñãé‘ .\ ÄêÓo¿ý–âîîΜ\¢«ZAAÞ%^”——÷ëׯGþþþÇŽ£I$޳fÍRù×O?ýDµœ8J/ÂÏ?ÿL™5kÖ´iÓ!)))ÒÒ´Õ³¥h¿ûî;"Ö%TPPÀ$ŽÒC’òîsÿøã™½ï½÷!äìÙ³Gè’öïßO Z:@J;º”]Ì÷"<<œâãã#‰$Î,¥·D\Óoß_ýEÿ£W™ŠNÊ Å¿}ÒûR!?ÿü3EQçÏŸ§S=Š¢îÞ½KgTeeeE…‡‡+**.^¼Xö^‹ŒŒŒñãÇÓµ:MSSsÿþýô^ñðdéi¡èÚÒÞÞ¾¡¡áùóçô(O:¦/ :L8Ç€¤ž={ BH~~>!ÄÚÚšòâŋɓ'O™2¥ÿþ©©©•••„óçϯY³FOOïçŸ~ñâÅçŸÞØØxáÂñ³™››B®\¹B_IGùé]=zôàñxt5!þÀÓ§O?yòäý÷ßß±cÇ'Ÿ|BWöîÝ[ó/ú_rK¤2zôhmmí3gÎüþû簾¦NNN¯}ˆ„–¢4h!äòåËEEE„ï¿ÿž){«Î/ úOybb"}ÑLVVVJJ ŸÏ§¯s¢544tÐg  è–°’’’–¸}û6!ÄÓÓÓÄÄ„bmmmiiÙØØx÷î])»èÇ644¬Y³†bkkKÿYgmmÝ«W¯¼¼<@`nnþäÉ“€€zx¥t¥¥¥Läm8¡©©éÉ“'===gÏžmgg—””Dľ˜ }ô!ÄÁÁB_\H—ÈÑÑQ[[›Q__¿uëÖ´´4BÈ£Gx<ÞâÅ‹ !wîÜi³……ÅÏ?ÿüòåË›7oîܹó½÷Þ{õêÕœ9s˜¡Œ×žSAAþGúöÛoBÜÝÝŒŒŒèè–j˜§OŸ¦¦¦æääÐ&â—H¾ön´3E¶€®«ººšbeeõá‡þòË/nnnýúõûÏþS]]Mÿ!VRRÚºuëŽ;>üðƆzã| ~'''kkë»wï<ØÒÒòÚµk<ΟTTTœššêìì,>|È<ŠþŸ˜˜èå啞žN'^”lâ-_¾œIIY±bÅĉ[*!¤GãÇ?tè!„À$½ÔMµ­­­­»»ûÅ‹ßyç33³k×®1iÕùeaii9uêÔ#GŽ 2ÄÉÉéÊ•+uuu½{÷&„Ðÿõãâ⌌Œ<==;áÃðZ„þù'++‹þ³JùÏþ3sæÌwÞy‡ŒHOû 322¤ìb¶ØØØ¤¥¥­[·nÚ´iFFFâO­££“™™ùã?þöÛo‰‰‰;wîܳgOBB‚‡‡‡ô˜éoñ€$¶ËxÂŠŠŠ!C†äççùå—Ë–-;pàÝ_O£ç¬!„ˆ_¦M—¨±±Qâ!ööö_}õ³±é hwïÞ=}ú´‰‰É”)Slmmmmmg̘ñöÛoÝ¿ŸÎÿd?'!®ú^ëØ±côˆ –ÈònBÂv“'°¯iwÌgŸ}F?~<½ZYY`jjª©©éææÆŒ.§(ê‡~6lXÏž=µ´´~üñGz»ø˜ñ;wîÐÿ#ûõë·oß>ºSûùóçô®aÆ©««;88Ð(ÝsQ]]M7¡½õÖ[aaasçÎ%„Ì™3G–‹c$lß¾]z(Šbf¬¤GI/uÓZŠ–¢¨ÒÒÒI“&éêêš™™8q¢GÌUÕÒC’òî0$"©««[½zõ AƒÔÔÔÞyçèèhæ2‚´´´¨ªª~ýõ×lÜþ߸qã!nnn/^¼ (ª  €þ*-^¼˜¢¨B´´´òóó)Šzøð¡²²2ŸÏÏËË“²‹™÷ ¬¬ìóÏ?'„|ùå—Ï{îܹ%K–ÐýµµµôaÁÁÁ‡I|ûnݺ¥««K9uê½…©è¤œîi=räEQßÿ=ùwðb}}=ý¿Nbõ¿_mº5NMM­¢¢‚¢¨Õ«Wkhh¬\¹’nëׯÝõêÕ%K–:tH¢·nÝ"„¨««3Ðsrrèá˜ô•ìâáI9§D„¡¡¡DìâwBsýMK/ 8ñJy7%"„®‰#t†êêêk×®µê!µµµþù'Û¿Q´¥¥¥§Núí·ßèUúòF333¶ƒè*233éäIAA¡_¿~t瀘Ñrô„V†††ãÆ£ÓÀÀ@é»Ä3’‡***òùü¿ÿþ[üy/\¸@Ïé=qâÄO>ù„þ7KÏ'>DoÀ€t“˜‹‹ s“8J9a@@!ÄÁÁá÷ßÿñÇéØFŒallL·,=zTú•‚£G¦ó9OOO%%%ú2‘?ü2|øðiÓ¦ikk+))5ýÿ)‰>þøcú¶µµ4h]ŠI“&ш‡'圚8J£%"Ö!qè(eeeššš„ÿÝ»wÓà CCCÙŽ   )..ž={¶•••ššÚ Aƒ–.]úòåKf¯”vô–vId$sæÌ‘Èöh-õ–ˆïÄPQQ±²²Z¼xquu5s€x×JK'oï—±/EbõÕ«WýúõÓÐÐpqqù믿èí2öZÔÔÔlÙ²eðàÁZZZ:::¶¶¶Û¶mc.¬–莱§¥ÝGt˜È‘ÿŽ6€ŽpãÆððð7nTWW›ššúùù-^¼˜HÝP]]ÝÕ«WÝÝÝÙ 8€L0ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ£¬ž={6gΗ•+W–••±pGCCCttô»ï¾;bĈèèhŠ¢šÓR-´wï^ 1Æ c»4ÀY¼f«' ‰>þøc]]ÝÀÀÀºººàà`++«¸¸8¶ãŽØ´iÓ©S§"## !+W®œ2eJ@@€øRj¡U«VO™2…>RQQ¹#tE¶?~ðàÁO?ýdeeE™4iÒ×_-‰ø|4ÙÀ›ª­­=vìXHHˆ»»;!$(((::Úßß_¼†‘R åææ:;;»ºº²]à>ä=²úüóÏ---éå·ÞzKQ97´‡VUU1™Ÿ««ë‹/222$k©ÊÍÍíÓ§P(¬¬¬d»(ÀqÈ~d"Ö®]K)--ÍÎÎÞ»w¯··wKÍô¹sçØ@¾õë×í:CAAÇ300 W y<^II‰ø1-ÕB"‘(??ÿàÁƒAAA"‘hРAëÖ­£[%›EWP™™™läÇÖ™7o^jjª¾¾þ† ¤†JdW[[«ªªÊüåóù***åååÍ,Q óù|GGÇ={ö…Âõë×Ï™3çìÙ³šššMkaaÚ Þºª[ç‡~HII;v¬P(d;àmmíšš‘HD¯ŠD"¡P¨­­ÝìÁµ‘‘QZZÚÒ¥Kuuu{÷î½aÆ—/_&''³]&à&$Ž2yòäÉíÛ·ée%K–TUUݺu‹í¸€ ôõõ)Š*--¥W_¼xAQÓsM“±ÒÔÔ400èæh/HerëÖ­… 2í"‘HUU•í¸€ ÌÍÍuuu™f””===@ ~LKµÐ¹sç>üðÃŠŠ zûË—/‹ŠŠÌÌÌØ.pG™¸»»×ÔÔ¬^½:33355uéÒ¥ÀÚÚší¸€ }||¢££ÓÓÓSSS£££}||苦ãããéËìZª…\\\ —-[výúõ›7oÚØØ888°]&è@µµµÚÚÚUUUÌ–úúúàà`###33³àà`ÌÐ ÇÈDOOï›o¾Ù¼yó¤I“TUU£¢¢”””ØŽ 8‚žÖ;00âíí½`Ázû‘#GÁ¨Q£Zª…”””Ž;¶aÆ… ***º¹¹-[¶ŒÇã±] h#æ½k)ù{þüyhh(ÓÆL >|øð!~~~=zôg»(ÀM¸sLûÃu‹Ð5¡vêâx¼ÿÿQ_f¬]»vÕªUôree¥ºº:!D(ÆÅÅùùùBöïß\PP€[T@GÀ§ €}™"EQM[ŽÃÂÂ(ŠºråŠøÆôôôW¯^yyyÑ«#GŽ,**ºsçÛnBâ Çž={ÆãñzõêE¯öîÝ›Çã=þœí¸€›8t!­¢ZSS£®®.>¼ššÚË—/Ù.pG€.A_MMíåË—lÇÕÙjkk;äîîîîîôý÷ßKtÙ?~üøÁƒAAAC† qttœ4iÒ_ý…n}è H £HôMË~#5]]ݪª*&û‰DÕÕÕ:::l¨³=|ø°ªªÊÕÕ•^uuu}ñâEFF†ÄaŸþ¹¥¥%½üÖ[o)*âªGè(H ѹ#Mö)uŒ)Š***¢W )Šbz®»‚‚g``@¯òx¼’’ñcÁÚµkJKKÿþûï½{÷z{{3µMYXXXXX°]2WÜO322 !—/_^¶lÙáÇÛÖ‰S^^ìèèèàà0oÞ¼œœ¶K ˜«ªeˆµµµÁ… èÕ?þøÃÐÐÐÊÊŠí¢t¶ÚÚZUUUñ.{•òòòfž7oÞ”)S ¦N*圙™™™™™l— äÇÇ£G~ôÑG÷îÝ{þüùüùó‹‹‹ãâ⚎.—EHHÈ­[·¢££÷ïß_[[ëççW]]Ívù¸IIIiΜ9!!!7nÜHII ž;w®’’Ûqu6mmíššñ.{¡P¨­­ÝìÁ?üðCJJÊØ±c}||„B!Û±7q}ú4**ªÙÉÃ9ÏÜÜ\WW799™^MIIÑÓÓâÇܺukáÂ…L«dEE…H$RUUe;và&Ž_|×·oßÄÄDmmíK—.M›6rõêUCCÃÖžÇÌÌìäÉ“Ìê™3gª««mmm[:ž{~îÜ9¶_ùÖ¯_?¶C`“¢¢¢Otttß¾}£££}||苦ãããõôôFåîî¾aÆիWOž<¹¦¦&..N X[[³;pÇÇ€€€… îÜ¹ÓÆÆÆÞÞ~×®]±±±+V¬hó E"Q|||TTÔÌ™3û÷ïßÒa{í"00°®®.00âíí½`Ázû‘#GÁ¨Q£ôôô¾ùæ›Í›7Oš4IUUÕÙÙ9**ªŽ€ÎÑŠ 2äTnnnNNŽªªêõë×Ûvª§OŸ.]ºôÉ“'Ë–-ûì³ÏZ:̉#tA¨äB«æ®èdÜlqŸçLEEÅÒÒ²ªªªªªŠn#,))Ñ××oí9ïܹãçç÷ÁìÞ½[WW—í"t6n&Ž...Òhí†ÀÀ@__ßE‹±]8vp3qüý÷ßÛ÷„III………d.o$„‚6´\È)n&Žo¿ývK»jkk·nÝܪ>~ü˜¢¨… Šoܲe˸qãØ.+@'áøܲ²²íÛ·çææ2[JKKóòò’’’:îI1üº&ÔNrÇ@WÆñ ÀW­Z•˜˜Ø«W¯¤¤¤þýû÷êÕëáDZ±±lÇ ¸ÙU͸víÚÆÝÝÝŸ={öþûï;88 4(!!ÁÁÁíÐä Ç[kjjôôô!–––t››[BBÛqÈŽ'ŽæææÇŽ«©©±°° /µÎÉÉ©®®f;.ùÃñÄqÙ²egΜ9~üøðáÃ>þܹsºººŸþ9ÛqÈŽ'Ž„eeeeeeBˆ@ l‡ ¯8ž8¶tõô7Ø @ÎpûÚjkk×ÔÔÐ]"„‘H$ µµµ›ùôéSŸmÛ¶­^½zÉ’%„##£´´´¥K—êêêöîÝ{Æ /_¾”2\àMp6..îÔ©SÛ¶mkll\´hÑ„  !ñññzzz£Fú믿æÌ™+Þa"zôèáéé9tèÐ3f(((ÄÆÆÖ××=z´Ù¿Ç¨äú— +ãþ§³®®îüùóÙÙÙ|>ßÌÌÌÓÓSIIéMÎæìì|åÊ)“A¢jèžJJJ¾øâ‹üü| EEÅŒŒ MMÍï¾û®OŸ>¯},EQ[¶l9sæ !ÄÛÛ{ñâÅtæ7zôh@°mÛ¶4ÙgË–-ãÆ{òäɆ ÒÒÒÝÜÜ–-[ÖÒè¨äGèʸùéÌÊÊÒÑÑÑ××ÏÊÊjö‰> •””ÄÄÄœ8q"55‰#4ÕØØøÇdff644 0`äÈ‘ÊÊÊlõÿP;É$ŽÐ•qs:ooïÙ³gy{{7{@ªÎ;wÆÅű]2èÒFŒ1bĶèÜü[SSS£¨¨¨¤¤TWW×ìmn¸uëÖ¤I“ÐâM¥§§‡‡‡?{öLbû7Øí¿Ä›²ºÔrvvö€zöì©¢¢2jÔ¨o¿ý¶ëÄÖùËäßO»H‰ºø/_ç,‹§DâÛE"Ñ'Ÿ|2bĈ5kÖ…Â/¿üR|²¡Î“õeæÂ¦.–¥,wCÜLGˆˆØµkEQóçÏ·³³‹‹‹+//ïè©=ڷűÙJºšÇÇÇÇ¿óÎ;lÒå´ÔŠF{ðàAjjêßÿM߉{Þ¼yááá"‘H–»5@'ãø×rß¾}AAA ¦¦¦ŒŒŒ[çOǃ)äWmmíÖ­[ƒƒƒÙä¿Xœ,L|˜D=–™™YZZÊÔ̵µµjjjçÏŸ÷ôôdï¥bªzèÊ8ÞâH111áóù©©©ÎÎÎ666***or6[[ÛN®v[ššºš²²²íÛ·çææ2[JKKóòòºNâÈ")íŽIII«V­úçŸèqeee"‘HMMí }\YY9wî\/¾ø‚2}úô   ªª*¶ãjæªj¶iV­Z•˜˜Ø«W¯¤¤¤þýû÷êÕëáDZ±±lÇÕÕy{{WWWûûû§¥¥¥¤¤L:ÕÚÚÚÞÞží¸ O###_½zuùòeBÈÒ¥KïÝ»·iÓ&¶ãºvíZDDDxx¸““Óûï¿’Àv\]¡¡á™3gîß¿ïêê:aÂCCógÏv©{|ƒã‰cRRÒ¢E‹ èU{{ûåË—'&&²pPMMžž!ÄÒÒ’Óâææ†ÄQÆ »téREEEAAA||¼‰‰ Û@ó8ž8ÖÕÕI ”100hlld;.à ssócÇŽÕÔÔXXXüþûœœêêj¶ãh7O:$‰èÕŠŠŠ˜˜'''¶ãZ¶lÙ™3gŽ?>|øðŒ9röìÙÝöÒ`à$Ž_óÿüùó©S§BrssmmmzôHSSÓÜÜÜÍÍ­£ïd…Ä {š8qâ?ü ¾¥¢¢bÁ‚‡b;´ÿBâ(ðBAWÆÙykjj233uttLMMÇO‰D•••GŽY¾|9Û¶æq¹Æùpuuõ®]»!©©©[·nßUPPðèÑ£79yCCömÛNœ8¡®®>zôèE‹5½a}yyùÆ)Š¢/ìÛ·/Û¯ p7Çû÷ïÏž=»¸¸˜2hРݻwGDD$%%ÕÖÖBx<ž%ޏs ȵîðnhhÈÎΦ—™ŸÏ_µjÕ›œ<::úÔ©S‘‘‘„•+W*++HòèÑ£èèh--­ØØX??¿Ó§Ocmèܬǿøâ‹òòò Ý»w߸qCSS󫯾200ÐÐÐ055}ÃûÇH׎AMh¹úÓ œÔÝ>À3gÎÜ·o_;ž°¶¶ÖÙÙ9$$ä“O>!„œ8q"::úÊ•+âãmª««mmmwîÜéááA©¨¨6lØöíÛéU 誖 x¡ +ãæUÕ÷îÝóõõµ···´´ )))™={ö¨Q£ììì,,,:4k€nkß¾}………„Ë—//[¶ìðáÃ̬mððáêª*WWWzÕÕÕõÅ‹âÇäçç[YYÙÙÙÑ«êêê***¥¥¥l¿ÀMÜL+**½LÏþmaaÁvPÀqGýè£îÝ»÷üùóùóçÇÅÅíØ±£Í',((àñxÌ- y<^II‰ø1fff'OžÔÖÖ¦WÏœ9C·A¶tN Ô‡ÐfÜL !}étç (ªé@xy!ñæ|ܾ}û‚‚‚<<<LMM<yêÔ©6Ÿ°¶¶VUU•©Íø|¾ŠŠJyyy³‹D¢ï¾ûnùòå3gÎìß¿KçÌÌÌÄ´Ðfܼ8†cÄz¹ý» Ü#ž;rþÓ[RRBw+_¿~ÝÍÍbaaQTTÔæjkk×ÔÔˆD":w‰DB¡i\÷ôéÓ¥K—>yòdõêÕŸ}öÛ¯pgÇøøx##£–V.\Èv€²âüo-p^÷ù ÷íÛ711Q[[ûÒ¥KÓ¦M#„\½zÕÐаÍ'Ô××§(ª´´”¾gÁ‹/(Šbz®wîÜñóóûàƒvïÞ­««ËöË\ÆÍıÿþ·oßni•ÈUâò" `áÂ…;wî´±±±··ßµkWllìŠ+Ú|Bsss]]ÝäääqãÆBRRRôôô˜Ü´†††ÀÀ@__ßE‹±ý÷q3q<{ö,Û!@·3bĈ„„„œœ;;;>Ÿogg÷í·ß:;;·ù„ŠŠŠ>>>ÑÑÑ}ûömllŒŽŽöññQTT$„ÄÇÇëéé5*))©°°pàÀÉÉÉÌA‡ÞXº-n&Ž&++KGGG__?++‹bdd”››KÑÑÑ¡÷J´¶J```]]]`` !ÄÛÛ{Á‚ôö#GŽ‚Q£F=~ü˜¢(‰^”-[¶Ð”í‹ã9²÷ªèV,,,fÏžÔÒ47]§BÀàr/tehqx#©©©t÷qzz:Û±t,$Žo$55Uúo2Ì Káfâ(>H¼Ym¨Ç¶mÛvâÄ uuõÑ£G/Z´Ss!ÄßߟY …"‘ˆÇãñx<úfƒà·ß~c;F€öÁÍı#êñèèèS§NEFFBV®\©¬¬Ð9ÅÁà ×8ÿffûJLLܸqcDD„ƒƒÇ»uëVXX˜ Û´.Ü—¯©ÛÿÚ¼y³‰‰ÉÒÒÒÒÒÒ>ljjÚ†z¼¶¶öرcAAAîîîîîîAAAßÿ=†v4z”4Íœ _ºÕxÛ¶m!!!...ÊÊÊJJJNNNááá'Ož,++c;4€öÁÍÄ‘Ñ^õøÃ‡«ªªè›‰B\]]_¼x‘‘‘ÑÑñãÚ:kÝ휟Ÿ¯©©)¾E]]]CC£Ù›È#nvU3Ú«/((àñx̾ y<^III³?|ø°›UšžŠÛm6À1oø–¯¼sèС±±±_ýuÏž= !ååå111vvvøÎgpÀ¾¾¾îîî$„dddèêê~÷ÝwlÇÐn8ž8¶W=®­­]SS#‰èÜQ$ …ÂNè~¢Ç„1?´ÜþÑîénà>}úœ;wîüùóÙÙÙ|>Ú´ižžžJJJlÇÐn8ž8¶W=®¯¯OQTii)}û×/^PÅô\w(ñë ¸ý£ œÔÝ>ÀÊÊʸ×pÇGBˆ²²²¾¾¾³³³P(lÛ¿sss]]Ýäädú'!%%EOOïMî?Û*Ýáç8 `ÎàxâXYY¹dÉ’‹/R•™™9}út“5kÖ¨««·ê<ŠŠŠ>>>ÑÑÑ}ûömllŒŽŽöññ¡o2ÐMp|:žÈÈÈW¯^]¾|YAA²téÒ{÷îmÚ´© § 3fL``à¢E‹¼½½,XÀvá:ÇǪ»¹¹mݺÕÞÞ~РA÷ïß'„üù矡¡¡III÷¤íuU5È—ŒŒ ##£Ë—/ÿúë¯ÖÖÖS§Ne&d`»µ篎j/x¡ +ë*ÕY©««SSSßb``ÐØØÈv\ÀAGýè£îÝ»÷üùóùóçÇÅÅíØ±ƒí¸Ú ÇG‡C‡1÷¬¨¨ˆ‰‰qrrb;.à }ûöyxx$$$˜ššŸogg÷í·ßúùù½ö>¬ªªb2?WW×/^dddHæï™yôèQ‰í¹¹¹}úô …-‘íŽã‰#!dÉ’%¡¡¡ëׯohh`;à þù'//¾ÏÄÄÄÕÕUUU•âèèèìì,Ë x<sSCCCWRR"ËcE"Q~~þÁƒ‡jgg7a„{÷îI9žÉökòŠû‰£··÷ñãÇÿú믩S§²p͈#<<<~øá‡¶¡¶¶VUU•é˜æóù***ååå²<¶¸¸˜Ïç;::&%%ýù矽{÷ž3gΫW¯Z:>33Í@›q|Œ#M œcccYXWWHñöö^°`½ýÈ‘#@J⨩©yìØ± 6,\¸PQQÑÍÍmÙ²e „›J×ÔÔ(***))ÕÕÕ5{€²²rÇ=»……S€î)##ÃÏÏ¢¨ØØØ.xë?vk'ÜÂ@Fx¡ +ãæGUUU%%%Bˆ¯¯¯òÿ …³fÍb;@àŽ21ÆÆÆÛ·o§(êîÝ»ÌF¶h7Ü쪮®®Þµk!$55uëÖ­â» =zÄv€ÀNNNM7nÞ¼™¹µ)º €3¸™8644dggÓËÌÏç¯ZµŠí€;~ÿýw¶Cè$ÜLµ´´vìØA™9s&½ÐAÞ~ûmñÕÂÂÂìììÆÆÆôêÕ‹íèÚ7Gƾ}ûØáMu‡ù“ÛºÏ öB¡0$$äôéÓô `ÇŒIߺ€¸yq #==ýã?vh‚í¸dE_['³l€|ÿ sþÓ»eË–ôôôï¾û.=====ýûï¿ðàÁ–-[ØŽ ººâââ©S§š™™-]º”íp@šÚÚZmmíªª*f‹ÄÛרØÈvŒ‹ã-Ž«V­RVV^³fMÏž=ÙŽ Û‘˜UDâÞëÜsáÂ…µk×2MíììV¯^½|ùò°°0¶C–Iiw‰DcÆŒQSSûõ×_ËËËØ¶ûzm÷ÈóçÏCCC™5‘æÞ¾úúúØØX¶‹Ò8ž8>~ü8>>þwÞi¯ÖÕÕ9;;_¹r}O ¡ººZSSS|‹¦¦fuu5Ûq›è\„IDšþwºxñâíÛ·óòòŒŒŒ!û÷ïï½÷ª««ÕÔÔØŽ½yíÛDY»vmÓ‹k›¾}ô¿}ïª600¨©©i¯³•””¬^½º²²’íb@Wdgg·}ûöW¯^Ñ«UUU_ýµ½½=ÛqËš¶»‹ï}øð¡‘‘vB !7nÜ`;ênGúÛD £(êÊ•+⛾}•••Ü~û8Þâ¹nݺùóç[[[÷èуٮ¯¯ßÚSíܹ3..®“ãg>»ôšÛÝ|ÀIÝêCæëëëææfiiÉãñ222zöìùÝwß±ti½{÷.**zùò¥ŽŽ!äÞ½{„ÂÂB¶ã™t÷㉣ŸŸŸH$¢oÿ*® óñúûûûûûߺukÒ¤IY&e$Ýà¢TàñO¯ø®êÕ«×Ù³gÏŸ?ÿøñcBȤI“FŽIßÅ  ¥?Qžžž&&&¾¾¾«W¯.++ûꫯ!èÚbKkÿë6}ûx<·ß>Ž'ŽçÎcåy-,,Ú÷ÙéiÌŸŽ_SYY9wî\/¾ø‚2}úô   ñé—ZræÌ‹eee±]˜ÇZB'"ͦ#………#FŒ ÇÆB~úé'Bˆ••Û!wGRÞ¦–4}ûzõêÅí·ã‰cddä«W¯._¾¬  @Yºté½{÷6mÚôÚzyyýý¯°].ü_{wÖĵþü$D$""«V½Õ*IÜ.­ (‹Âc…G”ji«Æª·Åz‹X…‹ µŠOËb¥Rµ¢R[P[¨ËcEÐr[¹EpA)ZeWEYÂ’üþ˜Ÿs¹l„0Éðýü•39 ï9Ã̼œ™9“ºmÛ6jÇÔÔT¶ã6bĈgÏž­Y³&--íØ±cAAA„ꜚ¯ãæ âöæãx☞žîççgffF§OŸ¾iÓ¦_ýõ¥?( ^ ®:tó8Bï$&&êëë/X°`ëÖ­Üž;š“Úm¾õë׳‘zq<%jjjj7 §™™ç_¬PÇ<Ž---2™ÌÞÞÞÅÅE&“us­©©ÉÚÚºg®…~3nܸäääÚÚÚ;wî¬ZµŠíp ;J¥R__Ÿ^2Ð6Çޱ±±9|øpXXU¬©©‰ŒŒœ1cÛq©cG™LvòäÉÐÐPBHPP®®n§¯¤+//ŒŒäö$   8>7oIIÉŠ+!EEEVVV·oß3fLlll/&gN"‘à©j†ÊÊÊüüüÎ;7lØ0ððp­¾=¨¹¹™žÇq„ *Îã(—Ëíìì¶lÙòî»ïBe2ÙüÑîþ™¶¯'ÈÎÎîæ!nvNj6xUš?À;Š]èü—âø¥ê‘#Gž9sfݺu«W¯vrr’Éd§NRkÖíð^èø•B¡˜?þ£GNŸ>½wïÞS§Nùûû³o/ݸqãÖ­[ƒ rww_ºtéóçÏõõõUœÇ1??¿®®ÎÑÑ‘*:::VTTäææ¶«¶víÚ¼¼¼£G²ÝÀ}ܼT‘‘ѶØö=’—.]"„ØÙÙ±#À€Ðýœº¿ÿþûõë×?~Lí¡¤&>lwk²†khhظqãùó烃ƒ'OžLµôâÅ‹ßÿý¬Y³vïÞÝëéc‹‹‹y<ýxŸ¹¹9Ç+//W%Zêõ¸*½ÃÍÄqíÚµôçÆÆF…BA x( BˆH$úå—_ØŽ€ûÚeŠíÞÍ@ÉÏÏoû­­íóçϯ\¹âääÄvì=“••gccC-1bÄ™3g²²²Ö­[Óë§,år¹P(¤/Lóù|==½êêjU¢EÊªàæ¥êë/ìÚµk̘1‡ÊÉÉÉÉÉùþûïÇŽkiiÉv€@!£Fzúôé³gϨ"5‰nii)ÛqõÌ™3g¼½½é¬‘fmmíãã£Ê«G ¨ÿx ! …¢±±ÑÐÐíÀÀÅÍÄ‘½eË]]ÝAƒ͘1cûöí?ÿüsUUÛ¡™;wî˜1cV®\™•••ššúÁðx<­{4¸¸¸xâĉ~%‘HŠŠŠz½fSSS¥RYYYI+**”J%}å ÿqlooßë5 ©T*“Énܸ‘-“ɤR©@ „ÄÇÇ«r w8ž8?~üØÙÙyÙ²eË–-svv.** f;.€DùBǯJKK]\\¨[ !Çå•W¦L™ÂvÈ=ãïï_SS³råÊßÿ½¦¦†RSSsáÂ…åË—WWW¨²rŸùóçûøøøùù¹»»ÓÏÙÄÅÅ%%%±Ýtp¸?ÑeSSSJJÊÝ»wù|¾……ÅܹsUœYí¥08sÓ§O …!!!Ož<ùøãCBB´ñM¯ÅÅÅ!!!ÿþ÷¿[[[uuu›ššx<ÞìÙ³·nÝúꫯ²Ýapap­€Î)tPßCâÀÜýû÷׬Y“žž>bĈ͛7kõ›^KKKoݺU^^nllúhýúõ„æææ~øÁÕÕµG+|òäÉ”)S¬­­©¢¾¾¾žž^ee%Û è?ÜLoÞ¼E}.(((//Ÿ?>U´²²Š‹‹ëé -,,~þùgº˜””T__oeeÕU}‰DBINNf»'´Ûk¯½Ævý¤¥¥%:::11Q__ßÍÍÍÏϯãÌÒ]ÕÙ¿ÛyÇŒŒŒp=Újû·Ä÷Üp¯EZ„›‰ãóçÏutt¨Ï/^477Ÿ0aým]]]¯×¬P(âããÃÂÂV¯^=~üø®ªååå±Ý Md2ÙÉ“'CCC !AAAºººëÖ­cX§¨¨hΜ9Ë—/§ª Ü<°CïÐïÔî´¨¸×"íÂÍ{ÇŽ›‘‘A}>wîÜÌ™3é¯rrr^}õÕ—®!))Iòõ„ !äÁƒR©4::zÇŽl·òÿݽ{×ÝÝÝÈÈè•W^ñôô¬¨¨`;"è¹\~ìØ1ggggggÿ#GŽ( †uŠŠŠ¬¬¬_h{ăn $Uxñc?ãfâ(•J8ðí·ßnÚ´)++kÁ‚„…B‘žž¾oß¾wÞyç¥kpuu½ú5ZùçŸzxxŒ;6%%eñâÅýÙ^í¾R(ï¾ûnSSÓÙ³g=š––æííÝŸ±€êòóóëêê©¢££cEEEnn.Ã:EEE£Gnll|þü9ÛM ÅÉÔŠ“Ò|ܼ¢!•Jkjjjkk½½½ !~~~çÎ[ºté?þñ—÷‹@```@[ZZ|||V®\éçç×Ïmé~LþöíÛÙÙÙW¯^¥ÜñööÞ¾}»B¡àó¹ù/'óx<333ªhnnÎãñÊËË™ÔQ(Ož<‰õ÷÷W(“'Oþâ‹/¦L™ÒÕï¢îÀÆí45ÇíAGÎ7PÓp3qäñx^^^^^^múúú~ñÅmÓAæÒÓÓKKK'MšD_'„ˆD"SSSu7¤ûýA©TþóŸÿ|ýõשâøñã ¤Ö ÏÉår¡PHÿ¿Ççóõôôª««™Ô)++ãóù¶¶¶ûöíkll ñòò:{ölWÇ:¤Œ=2Ç«m6ŒAÇþÇÍıSÝ<ËòR………J¥Ò×׷툈ˆ·Þz‹ÝFM:uÿþý„²²²ÜÜÜððð÷ßÃÚÅÐа¡¡¾V P( ™Ô1bDNN]-<<|æÌ™=t ¸ŠN°¸‘5Ò¢RFδH‹  ÄQ«V­ZµjÛQtgáÂ…™™™#GŽüî»ïØŽzÆÔÔT©TVVVR1***”J%}UšyBˆ™™Y»ËÜ„s9ž‰a †¦4Z»£›ÿ322ÊÊʤR©½½}CCÛ@ˆÅbcccúN˜ÌÌL‘HĤNrròÂ… kjj¨åÏž={úô©……ÛmnBâ¨é¨Ü±«« yyyô‰ÄÔÔ4<<¼¶¶6==í¨ T*•Éd7nÜÈÎΖÉdR©”šŽ1>>žz•@WuJKK/_¾œ••åããciiicc£J<]Mã JM-½ô!\ªÖÝ\_HOOß¶mÛǩ۞ªªª Å!CØzÆÇǧ©©ÉÇLJâîîN½"•'‰æÍ›×UƒcÇŽ…‡‡ûúú ''§ÀÀ@Uòž¶ÿ£vWóšZ¤ÝSÜh@âÈ®®Q$I¿=·øôéÓ‰'.Y²díÚµõõõŸ}öYIIIVV–®®.ÛÝç¥G§Žù_7aO_à¡ùÉe/^I¼Qê¨Ùë¦q:ЏT­ÝÌÍÍ“’’nݺåèèèááann~öìYd náüŠÇ/:Â¥j­7sæÌ´´4¶£NawxŒuœl@ŸÀˆ#ü?æcla4é#@Gq€ÿ¢3—>¼¦¶h› #kèFàP “R©|iæÄ¼¦¶ Û™ô-$ŽÀG`‰#0‚ÄAâŒ`:íCÏÔ·€sfr¥v-âX£X„Ä@Ë´f²¯¦œl›2rfKutÔ‡KÕÚ¤]Ô‡oñ¡WË7!STŒ8€i›¯ôÕY_ëä˜cQÙ0盩nH@S´;¯÷Éi^ëÔêh —ú‡Ûb .UÀ‹°êhºå¥>ö Œ8€F Ïëj:Ás)o ó¼>|ZëdWÛl˜K[Ÿ]qdêÑ£G^^^666AAAUUUlG@!---2™ÌÞÞÞÅÅE&“iïÙ±½8“@P­P*•}Øu¬“]t[8Ó"Ö!qdD¡P¬_¿¾¹¹9&&&22òÊ•+Û·og;(UI$¶CàZ¨ˆs ‡Ê"™L–˜˜ºeË–„„„={ö°‘J˜ñÚè¦Z»a'¶ÛÇ ;_M5Y§-qªGF oß¾íïïÿÆoØÚÚ.[¶ìÂ… …‚í¸` “ËåÇŽó÷÷wvvvvvö÷÷?räˆöèñ!&Y#UY,¿t¨’®À¥±4ÑOé¦ó©šÔ6bR“É:Yo{ÛF Àô‰#SK–,™8q"õùoû›@€ÛC€}ùùùuuuŽŽŽTÑÑѱ¢¢"77—í¸TÕçéòEè+í&Ñd;œþ†ì‡‘HôùçŸB*++ïÞ½»ÿ~www>¿Ë´[[®¯iKœZ*âì[yyyl‡ éŠ‹‹y<ž™™U477çñxåååVÎÏÏg>:¢ù5Û]€îÑ ¦Š5ÛÕé~(‘tØX*®“Ýæsæá¡ÞAâØ3ÞÞÞÙÙÙ¦¦¦ááá]ÕÁ©ú\. …ôÿ±|>_OO¯ºººÓÊ\:ÕqxvFÍǼóÕQS£Ú>áRuç’’’$/ÐËüñÇÌÌÌ H¥ÒÆÆF¶Ã€ÎÐа¡¡¾©Q¡P466²WÀ#/,bÞùê¨É¢v÷_À<‰cç\]]¯¾0a„{÷î]¿~úÊÈÈ(  ®®îÚµkl‡ ©©©R©¬¬¬¤ŠJ¥’¾rÍaô#ôClG4€0ï|uÔdçÌ Ç®ƒø|þµk×|}}éÿékjj …P(d;LèÄb±±±qFFUÌÌÌ411‰DlÇÕO4<Ãà6毎ššÐv­µÏ!qdÄÙÙ¹¡¡aÇŽyyyÙÙÙ7n‰DS§Ne;.èT*•Éd7nÜÈÎΖÉdR©Ó>€š ÄQÖÞÉÎÎÞµk×íÛ·…B¡]@@ÀÈ‘#Ù €(•ʈˆˆ¤¤$Bˆ»»û† 4ù1ÐjH€\ªF8#H€$ŽÀG`‰c´´´Èd2{{{™LÖÍéMMMÖÖÖ ô’êêêÍ›7ÛÚÚÚØØx{{ß¿_3ã|ôè‘———ƒƒCPPPUU•Æv)-33sâĉ~¥ qîß¿_ÒÆÌ™353NBȉ'\]]­¬¬¼¼¼JJJÔ§*¡¶}(-44T­Ñj;æ½­EúsÏR·Žû£¶o2v„}®«3¸¶o¦ÞÁ$±= “ÉNž×Õœ›©wp#SÅÅÅ<ÏÌÌŒ*š››óx¼òòr&?kaañóÏ?RŤ¤¤úúz+++M‹S$}þùç:::•••W¯^Ý¿¿»»;Ÿ¯®?UB%„”——‡‡‡:TMª§B¡xòäIllì´iÓ¬­­=<<þúë/ Œóþýû:::999o½õ–µµõG}¤ÖÛpUÜô´ÈÈÈ%K–˜ššª/Tè«ÞÖ(ý¹gõ?îm2­Þ^]Á¹·™BâÈ”\. …tÅçóõôôª««{´…BñÃ?lÚ´iõêÕãÇר8½½½—/_^\\¼bÅ uÙ'¡~öÙgo¿ý¶ú"T=β²2>Ÿokk›žžþÛo¿5ÊËË«¶¶VÓ⬫«S({öì µ°°Ð´8'Ož>>MMM>>>„ww÷õë×SËãââD"Q7§ºÂÂB¥RéëëÛvaDD„š.´õ:N“˜˜˜]»v-[¶L(ÚÙÙ……… 4H»´Ÿõ:NƒcÇŽ…‡‡ûúú ''§ÀÀ@§iqB6mÚ$vìØQ[[ëàà©£££]JÉÌÌTë-ÓUok¯~Þ³úÇ6™Vo¯nÎàÛL ñ”ã 9 "\èF8#H€$ŽÀG`‰#0‚ÄA⌠qF8#HAÓ¹¹¹}ýõ×lGNKKËÞ½{—-[fmmíææpïÞ=꫇J$’ªª*¶clOcÎ@âÐ^uuõâÅ‹ããã]\\öìÙ³fÍšêêj””¶C`“€í4ŽL&«ªª:uꔩ©)µdÑ¢E;wîܶm›ÛѰ#Ž ­JJJ|||ìì윜œ6oÞüüùsBˆ··÷† è:pvvV(V~øðáäÉ“ïÞ½ûî»ïFEEB._¾üÞ{ïYZZΘ1ÃÇLJ¾ÜSZZºfÍS§NI$’'Ožth»ŠŠŠŸ~úiÆ tÖHñññG¥Š7oÞ\²d‰µµµT*½qãµðüùó‹-zýõ×ß|óMºf§¨CÐ¥K—Þ|óMKKKj%í.7gddØØØÐõOž}*‘H?~\[[;uêÔ´´4¥RYTT$‹ »ªüàÁ±X|üøqjyeeåáÇëëë©bpp°———R©LII±²²zþü9µüÇ‹Å?îjµlw¨*11qÊ”)~ºxñbêèñÓO?Q ›››÷îÝûŸÿüG"‘QËSSSKJJºú-ÔJ’““©bRRÒôéÓéåÏž=£–_¼x±íòëׯSË¥R©¿¿?õù—_~yã7è:cxx)ÜãZéÎ;EEES§N¥—(•ÊØÙÙ9::ž?~Ö¬YgÏžµ´´?~üñãÇ;­Ï˜1ƒú lll ?üðCKKK77·Ù³gÛÚÚºººŽ1¢ûßEC†Î$¶1cÆP Û~n[§c`uuuLƒ/…Ä´’••Õ‘#G:~5þüðððàààäädn*?|ø2tèPªXPP°|ùòI“&¹¸¸899‰Åâ»wïBZ[[y<ýSôçnb­faaÁãñ.^¼èîîÞv¹\.¿~ýºT*íø#|>_ …ÂcÇŽ]½z5---!!!""bÏž=³fÍêæw <¸û`äryW_µ=4u… Œáaà¥p#h%±X|ûöíššªxõêÕ¥K—666BæÌ™SSSsæÌ™ÜÜÜùóçw_¹­ääd##£Ã‡¯X±ÂÆÆ¦¡¡Znaa‘——W__OÿüóÏ—ÆZÍÔÔtñâÅ2™¬²²²íòèèèÆÆÆ÷ߟ*^½z•úÐÚÚzåÊ‘Htùòå}ûöÙÚÚœ>}ÚÚÚúôéÓ½‹>¶Üºu«§?Û10¯ ¯`Ä´@YYYÛÌ…B¡““Ó˜1cüüüüüüÊÊÊvîÜ9eÊ===Bˆ¾¾þ¬Y³BBBœœœŒŒŒ!ÝTnËØØ¸´´ôòåËãÆ»pá‰'Äb±\.wuu•Éd›6múä“OJKK:Dáñx W ÚÈßß?''gáÂ…üñ¤I“ÊÊÊNŸ>‘‘ñå—_>œÊÀ""" FuèСÚÚÚ÷Þ{ïæÍ›QQQ†††öööyyy999¾¾¾„øøx“yóæ1ùÕfffƒ Ú½{÷Úµk ccc{|ÇÀôõõq¼‚>Ä´@BBBBB]´¶¶>räHllì矾zõj¹sçÒÜÜÜRSS-ZDù|~7•iK–,¹yóæ'Ÿ|2dÈWWט˜˜ýë__}õÕæÍ›>¼mÛ6êBvPPÐG}4lØ0†«m4|øðÄÄĘ˜˜¤¤¤¨¨(ssó©S§ž8qâµ×^£*… 6DGG?~üxêÔ©G500°³³ûôÓO<fnnþᇮX±‚'‰&ŽB¡pçÎ2™lÞ¼yƒöòòêQîØi`„¯ Oð”J%Û1h´’’’ .,^¼˜ÏçB~ûí·Í›7gdd°puÃŒP(d;€ÿˆ#ÀKèêꆅ…UUU-]º´¼¼ü›o¾iw¿<€: e „G€—ËÈȈˆˆ(,,477Ÿ={ö§Ÿ~*àŸ.p8#˜ŽA⌠qF8#H€$ŽÀG`‰#0‚ÄA⌠qF8#H€$ŽÀG`‰#0‚ÄA⌠qF8#H€$ŽÀÈÿÙoÿ"ë/PœIEND®B`‚statistics-release-1.6.3/docs/assets/anovan_401.png000066400000000000000000001351011456127120000221360ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A€IDATxÚìÝy@Myÿðï½-J]í z,i£&´HS¦„0Ã,$Y2Ö‡È(ƒl¥Œ}²k˜fÌ J2æaR&e)%-¤¢}¿ç÷Çyæüîs«Û-Õ¹÷ô~ýuιçžû9§{¿}Îw;<Š¢@Kølò‰#H‰#H‰#H‰#H‰#H‰#H‰#H‰#H‰#H‰#H‰#H‰#H‰#H‰#H‰#H‰#H‰#H‰#H‰#H‰#H‰#H‰#H‰#H‰#H‰#H‰#H‰#H‰#H‰#H‰#H‰#H‰#H‰#H‰#H‰#H‰#H‰#È™ÊÊÊÍ›7[YY©««ëèèŒ3æ×_e+@Àãñ^½zÕø¥òx¼ï¾û®C(**ÊÍÍ­ªª¢W•””x<^EEE»œ>F¯^½¼¼¼rss !%%%<OII©µ‚\CârfæÌ™k×®}üøqÿþýëêêâãã'MšÔÑù™Ìš={¶‘‘Ñ/¿üB¯ZZZZYYñùíùÿÝÈÈÈÊÊÊÈÈ(??ÿôéÓŸ}öEQmŽäGhgôíé'Ÿ|Âl9|ø0dz··ïäH$ß ×ÕÕmÞ¼yĈ–––³gÏÎÊÊ’p4é÷Ç :@‡*((8w¢bJJJjjjqqñW_}% £¢¢ï\]]Ív¼-99955UUUµ¹sçÎÔÔÔ/^üøã„¤¤¤§OŸ²}¢À  ]YXXÐ_­ßÿÞB—ævvvÉÛ·o !ŠŠŠ_*..fYMMMG.\hòP­ÚŸ¾Ì :ý®áÇ …B !‰ñðð „œ9s¦“/€ìKNN¦‰………ô–’’’¨¨¨èèhJä‡éÒ%+++WW×ÜÜ\Ñ—RSSùä“ÐÐÐ+W®TWWÓ¯Ò¿2§®®>lØ0mmmBˆ½½=óŸÏ8p !äÀEMž<™.¯&Ož¬ªªªªªúàÁŠ¢êëëûõëG2dˆ›››‚‚‚¢¢âÓ§O)Šòññ¡3W{{{EEEúN²µ‰ãìÙ³ !:::ãÇ×ÔÔ$„,[¶Œ~‰é_ÿú—‹‹‹¢¢¢’’ÒÝ»w›‹çÚµkC† !„,^¼855•úßı¹Oa®R÷îÝ---éfqãÆµx L_Òœœ±­¹Ïj!È5$ŽÐÎèR¦gÏž„ãÇSÇÊz‹ŠŠJtt´‰‰‰¡¡áêÕ«Ÿ>}:räHuuukkk¦n Éñæ²´‚‚BˆhÕBCCý¿dûöíï¸?nÐ:ZZZÚ¤I“ÔÔÔ˜_Š@ 8|ø0õÏŸJQT^^^·nÝ!7oÞd^Z°`AVVVuuujj*!ÄÄÄ„þé…‡‡BfÍšEQTvvöèÑ£½¼¼èOtrr"„œ={öÙ³g|>_QQñùóçEmݺ•>f«Çôôt:æ/^PE‡¡  ŸŸÿàÁ:ýzûö-EQÁÁÁŠŠŠ+V¬h.ªÑ}&“8JøæRüôÓOE]¾|™NÄ›;…¾}û2„Î\ !Ôÿ–±>‹Â0· q„vF—2êêê½{÷®¨¨K%ß‹V0E›’’’¥¥%½Ü­[·Þ½{ëêêBúôéC5_1Ð\âøÛo¿B ŶB˜r¹Íûã sÔÖÖÞ½{wß¾}|ðýËzþü9Sn0 ¯£G&„DEE1ÕlôKÑÑÑ{p 2„~µ¤¤äÈ‘#óæÍ³±±¡_:sæ ݆ðÁÐûdff2‰#ý‹¦Ñ)]s‰ã™3g!“'Of¶Ð{^¹r…~iüøñÏ·Éx¨æG ŸB_ º]¨¸¸¸¹Æ¦‰¦§§7sæÌââbêG ŸE!qä Žahhøå—_æææ†……‰nòäɱcÇArrò¥K—nܸAÙ³gÏË—/é„Bá|••%Z_¹råÁƒ3gÎ$„¼÷Þ{ÏŸ?ðàŸÏÿûï¿KJJrrrLLL¼¼¼þú믫W¯>¼¾¾þ¯¿þj.¶ììlBÝÔ%Š®%¥_}—ýi«W¯:thÿþý'L˜@ñðð;‚„KáêêJwŽ1b„••ÛLÙòàÁƒmÛ¶EGG+))ÙØØ,Z´(..N__¿¾¾þÑ£GÌn̰bº–®w$„(((èéé1Ë„;;»S"Ö­[G)--2dÈ¢E‹”””ÜÝÝé·”––Š\GG‡nª¦?Hå’5SEaÞHÑ××'„Ô×××××BÄÞÒ\½ååË—uuu„SSSf·~øòêÕ«k×®B†ÚøPôYQQ‘——×ôéÓ“““ËËË !/^|öìÙÈ‘#÷îÝûé§Ÿ2?L333BÈüAO•@gTôK‡ªúÝO±9t“B|||~~>!$###))‰Ïç[[[Ó­+üñGYY!dãÆ 00°¹x = ŸÒîi> I$7 q„Ž¢ªªZQQAw¢µxW*Z@cî‰it+Œ¨ÖÞˆÓ3œåççß¼y“RSSãîîîîîþŸÿü‡2tèP±jƒ÷oòSpƒÐA† òÉ'ŸTTTØÚÚÚÚÚZZZöïßÿÍ›7Ó¦M0`½Ç vrr²²²ª®®ž#±A®!q„v&VÊÐ]÷ˆÈàoooBˆ¾¾þ„ èz8???ª©’KÊÄñûï¿§w3fŒ¡¡!ÝYçôéӊ¢¢";;;:0]]]ºŸ]"ggg¿ãþÒ—³Í] Š¢–,YB±··§»–€”¤ŸôªE555×®]kò¥ÊÊÊ[·nuò©Iˆ Ó ©:–³³ógŸ}&ºåÈ‘#6lÐÕÕ½zõª‘‘Qxxø®]»Þå#<<<† R__Ÿ––6oÞ¼ùóçB~ÿýw oÑÖÖ¾yóæW_}åääT]]­££3iÒ¤ÐÐЗ/_}JQÔ²eËD7îܹs„ l‡„ıՆ &Sƒ¦ +›3gΜ9sØŽº $Ž ‹èÔ²²²Ø¤-¤™´‹¢©©iffÆv°­€Äd 2Ò3¨Éé<Ž?ýô“4»™™™!qù‚ÄdÇ…ÇY…††²@‡@â2A´¢dG`7*8‰#° r‰#°ò…ÏvÐñx¼.’5¦¥¥½zõŠrãÆ€€€'N…B¶ƒh#$ŽÐÙè”±+d§OŸþøã>|øòåËÅ‹¿~ý:22rïÞ½lÇÐFH ótŠFZTT”¿¿¿››[\\\ß¾}=ºeË–óçϳ@¡#t†®9¦°°ÐÙÙ™rûömBˆ¹¹yAAÛq´j Ãu¶i1ýúõ‹ÏÍͽ~ýú|@¹y󦾾>Ûq´Gè@]­mZÌ’%K80jÔ( ;;»ýû÷oذÁÛÛ›í¸ÚMÕÐQºrÊH3fL\\\vv¶­­-ŸÏ·µµ=v옣£#Ûq´Gh]³G#£°°YVQQ±°°¨¨¨¨¨¨066¦_ÕÕÕe;F€¶@âí NNN’wHOOg;F€¶@âí¦‹W42®\¹Âv‰#´T42úôéÓÜK555aaalÇÐHà]¡¢±9o߾ݳgONN³¥¸¸877—­ÄñÉ“'ôK ó·ûS6¹3öÇþØŸtaH í2J¶~ýú”””‘#Gž={vÆŒUUUIIIß|ó [ñ˜™™Iî^)ö§lñ/‹ý±WÞ¿kBâm„¶éݺukÛ¶m®®®/^¼9r¤½½ý AƒâââìííÙ  -¸?xZZÚ«W¯!7nÜ8qâ„P(d;(ùÖŧõ–^UU•ŽŽ!Ä‚®êsqq‰‹‹c;.€6âxâxúôé?þøáÇ/_¾\¼xñëׯ###÷îÝËv\r¬Ë>?° ÌÌÌΜ9SUUennNµÎÎή¬¬d;.€6âxâåïïïææ×·oߣGnÙ²åüùólÇ —PÑØZ—.]úá‡FŒñøñã±cÇΟ?ôèÑlÇÐFïãXXXèììL¹}û¶‹‹ !ÄÜܼ  €í¸äRÆ66lØ­[·***455£££cccµµµ§L™Âv\mÄñı_¿~ñññׯ_Ÿ9s&!äæÍ›úúúlÇ O0tú](+++++BLMMMMMÙàpßÖÖöرcŽŽŽlÇ PÑøîvïÞÍ,×ÔÔ>>lÇÐFÜL ™e ‹ŠŠŠŠŠ cccúU]]]¶c]HÛ‹Ømª«««¹¹ùŠ+|||TUUÙŽ Õ¸™8:99IÞAò³º2ccc¤ŒgÀ€555lGÐFÜLéùÒ UèŠÆ¬¬,¶Ꮇoߊ®–––îÛ·¯wïÞ¨n9ÅÍıOŸ>ͽTSSÈvŒ²…óìÙ3¶cá±-JJJÛ¶mc;.€6âfâÈxûöíž={rrr˜-ÅÅŹ¹¹HèÑØq·~èé顺äÇÇõë×§¤¤Œ9òìÙ³3f̨ªªJJJúæ›oØŽ @V`¶Ž˜˜ØÜK¹¹¹¤Ñ yÁñÄñÖ­[Û¶msuu}ñâÅÈ‘#ííí ×Üäj]*;ޝ¯/³\]]- é§5 …BBˆ©©é… ØŽ -8þ¬êªª*Bˆ……=’ÚÅÅ%..Ží¸XFW4"kì ýcÇŽFFFGŽIIIIII9qâDß¾}­­­Ù 8ž8š™™9s¦ªªÊÜÜœîl”]YYÉv\¬¡«¾2vŽÝ»w999)+++))988Ÿ;wNl´5€¼àxâpéÒ¥~øaĈ?;vìüùóG݆C•””6ÌÞÞ~Ñ¢EÙÙÙlŸ@ë0)#²ÆN“——'D·¨©©©««khh´ê8µµµ¶¶¶UUUM¾zèÐ!sÇgû¼€³8ÞÇqذa·nݪ¨¨ÐÔÔŒŽŽŽÕÖÖž2eJ”™™Þ£GˆˆŸ‹/vïÞíS jY1tèЈˆˆ¯¿þZSS“RRR²k×.[[[ºƒ©” wíÚU^^ÞÜ999nnnÓ§O§W9^°‹¸_¾(+++++BLMMMMMÛvÊÊÊøøø}ûö9;;B"""†ž””äææÆöù´ƒ`X2cÆ WW×BÒÒÒ´µµOž<)ýöíÛ)yŸœœGGGºtèPO›=}çÎV'//ÏÒÒÒÖÖ–^USSSQQ)..fûüZ€ŠFvõîÝ;66öòåËYYY|>æÌ™£GVRR’þ¾¾¾¾¾¾÷îÝ›6mZsûäääôîÝ»ººº¾¾^]]í“.ãxâ¸{÷nf¹¦¦æÑ£GGõññiíqLLLÎ;Ǭ^ºt©²²ÒÆÆ¦¹ýÍÍÍ !±±±l_":ù9ëLgcllLÉÊÊjí“`dêÊÈ©ŒŒ ---]]ÝŒŒ Bˆ……………ýÝ=ºÍ­ …¼¼¼£Gúûû …ÂAƒmÚ´ÉÒÒ²¹ýéÒ‰že µ8ž8ŠÍ²ëêêjnn¾bÅ Ÿ¶=¼A(FGG‡††Î;—þÇÜ$™*”û÷ïÏv¦³ƒyÇŠFÙ¹2rúüCùóçûûû{xx4¹C;¯_¿æóùÆ ;xð`uuõæÍ›,X#6(§#>º Ž'Ž 0 ¦¦¦mï}þüùªU«ž={¶aÆÏ?ÿœíShz4Ê‚äädz„JjjjG–AJJ ³ºuëÖáÇ'&&º»»³}HMM¾¾~^^žšš!ä»ï¾óôôÛçßÿþ÷®]»ØŽ¤ÅñÄQl²´ÒÒÒ}ûöõîÝ» Õ÷ïß÷ññ5jÔ´µµÙ>3€& G£Œ`Jeeå´´4---ƒ7nüúë¯VVVÞÞÞ÷Ñ@OO¯°°°COPtTxs_¹—/_®]»¶´´”Ùâââ"Ú§ººzÆŒb _8ž8:88ˆmQRRÚ¶m[kS__ïçç7cÆŒåË—³}NM@E£l:}útHHÈþýû)ŠZ¼x±­­mdddIIÉÒ¥KÛë#bcc÷íÛwêÔ©=zBÞ¼ySPP`bbÒq'%vÒäíÊW_}µ~ýz±††††††ÌjHHȸqã&L˜Ðq¡@»ãxâH?-F”žž^ª^½z5pàÀÄÄDf£©©©®®.Û§]RFYåïïïææF?lðèÑ£—/_Þ¾}û»'ŽÑÑÑ:::ãÆsrr ˜3gŽ‚‚BDD„µµusJtšuëÖ­[·.!!¡¹I‚233÷îÝÛ Mùо¸™8ЦwbrssI£A3-zúô)EQË–-ݸsçNÜ+»Ð6-ã éÌéöíÛ...„ssó‚‚‚w?ò©S§LMMÇ'Μ9³uëÖeË–)**º¸¸´j‚ñViü•£(ª ßà  yóæ‰V@€\àfâèëëË,WWW …BúakB¡bjjzáÂ…VpΜ9sæÌaû´þ*åB¿~ýâãã544®_¿>sæLBÈÍ›7õõõ[{±ÑÐ111Ìrÿþý<Ø9gÔ8MlCÖøðáØ˜˜¬¬¬Î‰Ú7ŸUý×?vìØaddtäÈ‘”””””ºµÈÚÚšíÞ 9-/–,YràÀQ£FYXXØÙÙíᨒ :8F.ìܹsÊ”)èê ¸™82vïÞää䤬¬¬¤¤äàà|îÜ9±ÑÖò‚®;GÊ(/ÆŒuüøq>Ÿokk{ìØ±6<ƒ ½\ÅñŸnHHHnn®««ë´iÓ¦M›æêêš““Âv\­ÐæŠÆæÚÛëB¡ðÓO?­­­‰‰9}úôõë×-ZD¿xøðá#GŽDFFFEEmܸ‘í«ÈŽ-[¶”••ݸqCAA²jÕª‡nß¾í¸ØtíÚµÆ3ì€¼àæ¨jFïÞ½ccc/_¾œ••ÅçógΜ9zôh%%%¶ãÊ» ~÷¡¯-áñãÇÉÉÉþù§­­-!dÑ¢EÁÁÁB¡°¶¶öàÁƒ‘‘‘}ô!$44400pݺu]°’)!!!,,LOO^µ³³[½zõÚµk7lØÀvhÁÉÉ©ñ·NNŸ?4n&ŽZZZººº„ ú¥ììlBˆ©©)Û1Hò޳ítD»vãyX(Šš7oÞàÁƒéUcccú®,55µ¬¬ŒyVòرcçÎ{ÿþý¡C‡vú…dYmmm÷îÝE·èéé544°@q3qôðð˜?¾¿¿¿‡‡G“;ˆÍˆ Sd³;ccVVV‡"„¼~ý:--mëÖ­^^^|>ÿÅ‹<¯gÏžôn½zõâñx/_¾d;^ØÛÛ?~<44”^---ݵkj@~q3qLNNVTT$„àyV _ätZï‰'&%%;vŒRUU¥¦¦Æ4LóùüîÝ»¿yó†í0Yèíííîî. ½¼¼?~ldd´mÛ6¶ãh#n&ŽÌÓ¨•••ÓÒÒ´´´ nܸñ믿ZYYaö]`—è|xmØØâKäŸfeæÕ¶UaжMKÎh 7oÞüþûïçççkkkWTT…B:w …•••ZZZl_x^¼x1&&&33S Ì›7ÏÅÅ¥ öõÎàxùuúôé?þøáÇ/_¾\¼xñëׯ###÷îÝËv\Ðu1C¤EgQ666&ÿÌÇd„b{J8H“$úm®Â=Bヤ§§3Ï…×ÕÕݺukYYYBB‚¡¡!EQÌ™_½zEQÓrÝETUU%''?þ¼[·n“&MZ¹rå¼yólmmóóóQãò‹ã‰cTT”¿¿¿››[\\\ß¾}=ºeË–óçϳ!"xYYYbiYãa(b e“/5ùïØð-á Ÿþ9ýxBÈÛ·o…Ba÷îÝ­¬¬ôôô®^½Joÿí·ßôõõ---YºÌ,xôèј1c¦Nêîî>yòäW¯^-Z´hÈ!ööönnnGe;@€6âfS5£°°ÐÙÙ™rûömBˆ¹¹9SÐÉOpC¡(Jt‚ɉ LñððX¹r¥¯¯¯¯¯oeeåºu묬¬ììì”””,XdffÖÐиpáÂ.5 ÖöíÛõôô"""ÔÕÕ8ðÉ'Ÿz£ººzß¾}Ù 8ž8öë×/>>^CCãúõë3gÎ$„ܼyS__Ÿí¸þ›DÒ ÁYYY·³`Ëôõõ/]ºàì쬦¦F×¥)++B6nÜX[[ûÙgŸB¼¼¼ºÚ¬û>\³f!$((ÈÙÙÙßßܸqlÇð®8ÞT½dÉ’Œ5ÊÂÂÂÎÎnÿþý6lÀà`‹h¿Æ[EsÇ&«*›|©“ >üúõ륥¥ùùùÑÑÑFFFLTÛ¶m{þüùóçÏCCCå"nG¥¥¥Ìd±ôìßææælª¸¸xΜ9:::ÚÚÚ'N|òä ½½}ŸÆYTT4{öl}}}Ñg~tŽ×8Ž3&...;;ÛÖÖ–ÏçÛÚÚ;vÌÑÑ‘í¸ ‹KøˆÈ¨gf;½El»X§FÒÒ¨j`†Nsžäßàܹs=zôí·ßjii­]»ÖÝÝýÁƒêêê'Nœ8rä!ÄÇǧ[·nÁÁÁmþ”9s椧§ÿý÷<oÁ‚_|ñ:ñCGãxâH122âóùÉÉÉŽŽŽÖÖÖ***lG]”„ªÁ¬¬¬þýû7Þ.!)D¾À"ÑŸsãŸvyyùùóçþùç±cÇB¾ûî;}}ýk×®3¦UOã”ü)555—.]Ú·oŸ««+!dÅŠ‹/®©©éÖ­Û—¸Œã‰cyyùÊ•+ÿýwŠ¢ÒÓÓgÍšedd´qãF555¶C.›õ°«5Ô!$::ÚÀÀ ¹ÕeË–± ´]“3ˆnùûï¿mmmœœèU@ ªªZPPЪ§q¶ø)„>ŸÏÔ†¨ªª¢ž:ÇÇ-[¶”••ݸqƒR½jÕªµk×nß¾}Æ l‡ÜÔd´„:à$ccã¿þú«¹U‚Ä‘ë tçÎfõûï¿///wrrzôèQ;>³[·nS§N §Ÿæéé‰êFèhOÂÂÂèÎé„;;»Õ«W¯]»‰#t±Ô™bÃv „BáÞ½{W¬X`aaq÷îÝÆOãLOOß»woBB‚ŠŠÊ¸qãvîÜ©££Cïxøða@0eʔ͛77>~XXØÀéÄQtòT€ŽÃñjíÚÚÚîÝ»‹nÑÓÓkhh`;.à>±‡õÑäež¬ñ@·Æ233ßÿ}??¿úúúmÛ¶ñx<æiœôôÓ8¿þúëÚÚÚ˜˜˜Ó§O_¿~}Ñ¢EÌ>|äÈ‘ÈÈȨ¨(>Ÿ/vZZZêàààååUPPPPP0uêT‡ÒÒÒ6Ÿƒí« 2㉣½½ýñãÇ™_iiié®]»ØŽ ¸Ll¶Ô8pŒØ#C›|ºÒ­[·lllnݺUPPÀ< ôÃ?lü4ά¬¬ÐÐÐáÇ»ºº.Z´èâÅ‹B¡°ººZ xxxxxx¼~ýZ__Ÿù_F‹‰‰)))‰ˆˆÐÓÓÓÓÓ‹ŒŒ,..ŽmÉ>Å”95¶/3È(Ž'ŽwïÞuww …^^^...ëÖ­c;.à2 ÏèCGÎ`Ò¬Æ/ÕÕÕ}öÙgK—.%ÿLäÉ{§¶¶ö_|A·5BŒég,ÑÃhrrrèxñâEAAÁýû÷E% ëêêêëë™­««K.Û|jl_]]ïãhhhxñâŘ˜˜ÌÌL@0oÞ<Œ; Þñ>[¬1ºñ*ÛçîÊ•+¹¹¹C† !„0i¢¥¥%] ˆ>sÉ’%tŸûׯ_§¥¥mݺÕËË‹Ïç¿xñ¢Åa4ãÇ×ÐИ6mÚš5k(Š ÕÔÔÄŠ £q6q¬ªªJOO×ÒÒêÛ·ï¤I“!B¡°¼¼|8cÆ ;;; ‹   ÂÂÂùóç7ÎÖÖÖÜÜO)5ù?Côß@ãWQÝ¢vïÞää䤬¬¬¤¤äàà|îܹ·oß²4¡ƒ~¿Ì%$$|þùç̈–·oß …ÂîÝ»[YY‰ £Ñ××·´´ìÐÓ—0ÜGú# wälŸÈ–¼¼<@ ºEMMM]]]CCƒíÐ@&xxxTVVúúú¦¤¤$%%y{{[YYÙÙÙ)))-X° ((èÎ;III .¤\°‹›MÕ„ †¶kW’<†43z€6tèЈˆˆ¯¿þš²PRR²k×.[[[vï1ÚÐ"ÙEt\åæ®¹¾¾þ¥K—˜y^¼x¡¬¬LÙ¸qcmm­è0Ùÿáɥ+àlâÐf¢_“#©%ì *$$dÆŒ®®®$„¤¥¥ikkŸŸ?sæÌÑ£G³Øàøäɱ|·kß "v…[¼æÍu˜‘Ù?“Ì„›‰£±±13ª±ñ*Aâ"Ä ñÆ«%#¼eee[[[]]]GGÇêêjtS1mÈÝ‘ñ‹¸™8ÆÄİÈ+±™Q4û(//_¹råï¿ÿNQTzzú¬Y³ŒŒŒ6nܨ¦¦Ævh +‚|Á€&Ðå8ŠrxG[¶l)++»qㆂ‚!dÕªU>ܾ};‹!‰6ƒb€N ÖôÜ.׉&°‰#Àÿ@E#´£„„„åË—Ó“‚BìììV¯^ÏVm⨯¯ÿå—_Ú÷S|}}ÓÓÓOŸ>ÍöéÈ+ѱGh€’Œ›5ŽŒ¼¼<@ ºEMMM]]]CC£UÇÉÏÏçñxÌœúúú<¯°°°¹ýÍÍÍ !±±±l_’““Ãv² Ý©Qt ³š••õìÙ³.{ed9X¹råÚµkïß¿¿zõjEEö‹\ºtJOOg;™€ŠƒÖb¿ëPC‡ˆˆøúë¯555 !%%%»ví²µµmíýDMMªª*Ó0ÍçóUTTJJJšÛ_¦ åþýû³‚ ÃÏž=c=Q¦Iì&ôíÂÃÃÃÁÁañâÅ©©©‘‘‘b³ót>™*@îp¼©:$$$77×ÕÕuÚ´iÓ¦MsuuÍÉÉ iíq444ªªª˜95„Bauuuk«-E˜5XdjjzîÜ9mmíÉ“'·8çt&´M·Çk{÷î{ùò嬬,>Ÿ?sæÌÑ£G+))µö8ºººEëêêBŠŠŠ(ŠbZ®AÆ!eÖ ‚½{÷Ÿ¿~ýz¶ìŸãwìÀaOׯ_¯¬¬¼qãFMMM¶cB)Bט˜(ºj`````@/ߺu‹âèèÈvŒmÁñÄñéÓ§ÑÑÑï½÷Ûº3BâëëË,WWW …Bºo†P($„˜šš^¸píڂ㉣žž^UUÛQtb“¯bFVè²þúë/z!>>~Û¶m!!!ööö<ïÞ½{ëÖ­³¶¶f;@hï{¥ÜÈÃÍó»ßäËÑÉBp¼«Í–-[6mÚtùòåÜÜÜBlÇÅAÌä«MNÁJoÌÊÊB ]ÊîÝ»ƒ‚‚œœœ”•••””‚ƒƒÏ;÷öí[¶Ci‰=°@òMî#Z<ÊxØâÉJÙ?YhŽ×8úøø…B???±íxVuG{J@×”——'D·¨©©©««khh°H¥¹HØAˆl?ºÅ“mÕdüd¡Í8ž8ÆÆÆ²B…MBÈСC#""¾þúkz|^IIÉ®]»lmmñ‘S-fBò›*ÉiØÐù8ÞTݧOŸ>}ú(**æææöéÓG__ŸÞÂv\òª¸¸xΜ9:::ÚÚÚ'N|òä ½½®®Žb```bb²|ùrG?cmöìÙø ]YHHHnn®««ë´iÓ¦M›æêêš““Âv\ÐFήв RâxcyyùÊ•+ÿýwŠ¢ÒÓÓgÍšedd´qãF555¶C“E¢¥F“…ãܹs=zT\\Lùõ×_SRR?vìÞ½›Y®©©yôèÑÑ£G}||ØŽ  8ž8ÚÛÛ?~<44”^---ݵk—ƒƒÛqÉœÆi¢„&¡P¸wïÞ+VÐ;œ:ujáÂ…ÌãwÃÃ㣣/^LÑÓÓ»zõ*Û'À±G ºººš››¯X±ÂÇÇGUU•íè Õ0½9Çû8Þ½{×ÝÝ](zyy¹¸¸¬[·Ží¸ä_¾ÿþû~~~õõõômm튊 úYj¥¥¥E>}º  `êÔ©¥¥¥l + PSSÃvИޜp¾ÆÑÐÐðâÅ‹111™™™`Þ¼y...L݈û4y/uëÖ-@pëÖ-Ñ} )Š*((044Œ‰‰yóæ !ÄÂÂBOO/222:::66vÊ”)lŸ ÄžSZZºoß¾Þ½{£º@î`¬›‰cbb¢èª½L'=bíG@“ü“¨««>|xãݬ¬¬è&ééÓ§ …Âêêj===KKKú-uuute$@Ô¸cŒ’’Ò¶mÛØŽ Þ•üNöþޏ™8úúú2ËÕÕÕB¡ž€Î`LMM/\¸ÀvŒòGYY™Çã}÷Ýw¢Ý--- ,Xdff¦§§WWW§««{ÿþ}Š¢BCC555ÇÇvìì¸råŠØ===T7€üâfâø×_Ñ ñññÛ¶m ±··çñx÷îÝ[·nµµ5Ûʺ {çÎ+W®kt>uêÔôéÓ7nÜX[[ûÙgŸBæÎ[PP0~üx7bĈk×®Ñ[è‚V­ZõÝw߉n)--]¸páñãÇÙ ÞI׬n$\M»wï rrr¢W‚ƒƒçÌ™ÐÚl¦¤¤dÛ¶mñññEÑóAöë×íóëptÊÈü6üýý›ÛmÛ¶mh€ UVVîß¿Ÿ’œœ&úR~~~ff¦ô‡ª¯¯ß½{÷Ù³gÕÔÔÆO?ÒSlŸC‡‰~Š––VRRÛ×€k¤ Ðp}:½ª¨Èñ‚€-øŸH8Ÿ8:4""â믿¦ëKJJvíÚekkÛÚQô•••ñññûöísvv&„DDD ><))ÉÍÍíSìbÐ*=zôØ»w/!dîܹôBÛÔÔÔœ9s&((ÈÕÕ•âïïîëë+65DNNŽ££#]:t(ŽOL’››ëêê:mÚ´iÓ¦¹ººæää„„„´ö8yyy–––¶¶¶ôªšššŠŠJqq1Ûç×j555ôêwß}Çk =IÛÁȽ¨¨(f¹ ϬzòäIEE“:;;¥¥¥‰íF?𳺺š~˜@ÇáxcïÞ½ccc/_¾œ••ÅçógΜ9zôh%%¥ÖÇÄÄäܹsÌê¥K—*++mllšÛßÜÜœÛigjll,ºÊ´Žåää0_¿~VZZšM7²÷ïßÿرc̳gÏ&„|óÍ7ôPiÑ`X‡`ä"ù•}þüù>úÈÔÔ´¦¦æË/¿Œ‹‹ÓÐÐX¸páÌ™3¥ÇÓÓÓ£Wõõõy<^aa¡è>B¡0//ïèÑ£þþþB¡pРA›6m¢çÃj]:¥§§³}…@.q|8}útccã>úˆ²gÏžk׮͟?_MMm×®]†††îîîÒ§¦¦FUU•i˜æóù***%%%¢û¼~ýšÏç6ìàÁƒÕÕÕ›7o^°`ALLŒX÷nRFxOííí›Ü~çÎÉo¼téÒòåËéå .˜ššBž?¾jÕªgÏžmذáóÏ?gûäšÕ䬤ëÖ­[·n]BBBãŽPtÆŒŒ GGÇÔÔT¶Ã{_ýµ»»ûöíÛ !Eýøã_|ñÅÒ¥K !uuu'Ož”2qÔÐШªª …tîHO°/6¶ÏÀÀ %%…YݺuëðáÃ¥ü€Váxâ¸{÷nf¹¦¦æÑ£GGõññiñîîîþù'½LWÎÝ¿ßÇÇgÔ¨QÐÖÖfûÌÚ “bN:uÞ¼y†††lG ÷ŸÏ<@…Ûè˜aÚ 7Ç=zìÝ»—2wî\z¡«aÚ¦Q›í…ã}£¢¢˜å††¶Ãé -öhhnÖ8B²³³ÏŸ?ÿÑG™ššÖÔÔ|ùå—qqq .lÕ\rDúy Cݾ}[šÝ455ÍÌÌØ¶‹êRf—:YèhÜL>|8}útccã>úˆ²gÏžk׮͟?_MMm×®]†††îîîlÇØÎPË ;~úé'iv333CâØùD³(ÎgT]êd¡sp3qüúë¯ÝÝÝ·oßN¡(êÇüâ‹/è'.ÔÕÕŽžžž;vìàñxÙÙÙwïÞ?>!D(&&&n>rP¾àù\5uêT±-¥¥¥³fÍb;.€6B#›PÑÀI•••û÷ï'„$''‡……‰¾”ŸŸŸ™™Év€m„Ä‘H8¬¾¾>++‹^fh|>ýúõlÐFHY€A0ÜÖ£G½{÷BæÎK/pú8v*‡¬ ë°²²ÊÈÈ`; €vƒÇ΃” «¹qã†ŠŠŠ©©)Û´$Ž=º¦;v|ùå—ô#ªÕÕÕ™íºººl‡ÐH;*º,Š¢îß¿/¶===íÐÚ‰cBE#@Ëví ‰cGAE#äææJØ®¢¢2tèP¶ch$ŽíïÉ“'È€J·JÓ3*…B>Ÿ¯¢¢B¿Ú¿ÿü‘íZÓñ´?333d@ùä“Oz÷î}øðá”””ÔÔÔ“'OöíÛwÇŽýõ×_ý…¬äG€Žòý÷ß;;;++++**6lݺulÇÐFH:ÊëׯÕÔÔD·¨©©åçç³@!qè(Æ ‹ˆˆxûö-½ZRR²k×.kkk¶ãh# Žè(ÁÁÁ³fÍruu8p !$--M œ8q‚í¸Ú‰c«%%%Íž=û¯¿þRUUe;iúúú.\¸zõjFFFmm­§§çرc™QÕí¥¾¾~÷îÝgÏžUSS?~üòåËéIdÚÇÖ)++[³f M€”222ìîî~ãÆ_ýµ¤¤ÄÛÛ›ÏoÏnBáááçÏŸß²e !dÍš5ÊÊÊK–,aû¼€›ÐDZu6mÚ$ÖÕ]Æ7Ží ‚áH0mpúôé?þøáÇ/_¾\¼xñëׯ###÷îÝÛŽQSSsæÌWWWWWWÿo¿ýV(²}êïÄÜÜœí¸ª¼Ä)G¡ÊKœí‰c+ÄÅÅýùçŸ+V¬`;QQQþþþnnnqqq}ûö=zôè–-[Ο?ߎñäÉ“ŠŠ gggzÕÙÙ¹¨¨(--íSnBSµ´ CBB"##¥i§–©ƒ`ä:¹VXXH§t·oßvqq!„˜››´ãGäççóx<===zU__ŸÇã6·¿¼üqå%N9 U^┯P» $ŽÒZ·nݤI“ìííoß¾-yOú cýúõ‹×Ðи~ýúÌ™3 !7oÞÔ××oǨ©©QUUe:MÒ4,))irg”NðŽÐTÝ´K—.™ÿ###ãÇ|ñâÅ¿ÿýo¶ãy²dÉ’Œ5ÊÂÂÂÎÎnÿþý6lðöönÇÐÐШªªb:5 …Âêêj ¶O¸‰‡ÂMª¯¯¯ªª¢—ÕÔÔ6nÜxúôi±}fÍšÈv¤ Órrr²³³mmmUUUoß¾ÝÐÐàèèØŽÇôèÑäÉ“tuu !¯_¿vvv>þ<=s$@ûBâ(•²²2z9%%% àÇ444ÔÑÑa;4èÒêëëGŒ8aÂBȯ¿þzýúuEEôD€ö‡’E*ºººôÝ™ú¶ÈÔïˆäåk/ óòòŽ=:tèP[[ÛÉ“'?|øí Z†ËÛfÍ;²vI›‹S/iç@YÜ!-Z4}úôüü|ooo¶c!B¡ðäÉ“«W¯ž;w®±±1Ûá°©¦¦FUU•IAø|¾ŠŠJII ÛqÉ™ú¶ÈÔïH~ÉË×þõë×|>ذa ×®]ëիׂ ÊÊÊØŽ«¸¼ïN¬Ø‘ÙK*§,_ÒŽÅv[¹|»xñ"Ó•äÉ“'¢/oÞ¼™ÔÆb0ÙÙÙŸþ¹Ý÷ß/ WæîÝ»,öçûÏþcnnÎô•ihh077ÿÏþÃJ02rMD±õm‘ óGÜ#›_û•––4èòåËl"Nì+³—WrÁ";—·q±#›—´ÅâQv.iGCã;qwwÿó xöìÙ_ýE¿¤¥¥µråÊŠŠŠ{÷î± !äþýû“'OîÛ·ïåË—?ÿüs¯Lg~´ºººE1]÷ŠŠŠ(ŠbDº8¿-bØýqœ~ížžž ¶ùŠÁå}M;2xI¥)eä’v$ŽïDQQQð>ŸïÞ½eË– …BúÕÒÒR¡P¨ªªÊJ0õõõ~~~3fÌØ±c‡¶¶6»W¦“?½9fffÚÚÚ‰‰‰ôjRR’ŽŽŽ©©)Ûq±Ýo‹vGÜ#/_ûØØØ‰'–––Ò«oÞ¼)((011a;®àò¶YsÅŽ¬]Òæâ”ÁKÚ90V±=¹ººnݺuÆ ^^^UUU‘‘‘¦¦¦VVV¬“ðêÕ«2??Bˆ©©©®®.Û׉5ŠŠŠžžžáááýúõkhh÷ôôĈ]"cß™úq€¼|휜‚ƒƒæÌ™£  ammmooÏv\-Àåm3 ÅŽL]Òæâ”ÁKÚ9dîË-×ttt¾ùæ›;vL›6MUUÕÑÑ144TII‰•`ž>}JQÔ²eËD7îܹs„ l_'6ùùùÕÖÖúùùB<<<–.]ÊvD2A¦¾-2õ;â¹øÚ ‚3gÎlݺuÙ²eŠŠŠ...<í¸Z†ËÛ6Š™º¤┵KÚ9xÛOò¹ +Ï@Æ!q© q© q© q© q© q© q© q© q© q„Vûꫯ̛âååõ÷ß›››¿}û¶Ó‚)--­¬¬$„TUU™››gdd´êítÀ………{ ››­H 9ãÇo\ÐýñÇ¢¥ ó[[–ÒСCÛ!Ê è|Šlòç‹/¾øä“O!¥¥¥³gÏ^»v­ !¤{÷îÌš5kŒýýýçÏŸ¯¥¥ÅöåicØ­ýàÓO?>}ºè–¾}ûŠ–6ÌoYl€«8B«õêÕ«W¯^„ºf±ÿþ–––ôKÿý7[Q)))ÉcyÍ„Í⥀æ0å›(y,mÚšª¡ý=yòÄÓÓsÈ!“&MJMM¥7¾|ùÒÏÏÏÑÑÑÅÅ%00°¼¼œÞžŸŸïëëëàà0räÈM›6UWWBþþûïAƒeee}úé§ͽ}îܹñññ‡š:ujmm-ÓxTXXèçççàà0bĈ;v444Bnß¾ýÙgŸY[[;88øùùInO/((X¼x±½½ý‡~xìØ±‰'&&&Š5Ä'&&ÚÛÛÓËMœ>‹[·n5ÊÚÚzòäÉôÕh.lFs×êÊ•+üñàÁƒGuúôi¶ÿÎ]ó³ý-‹.“æʹ¹óæÍ³³³›8qb|||ãƒ/Z´hÅŠÌjTT”«««P(”\‚I(Pž@ûBâíoÓ¦Mþþþß~ûm=6lØ@©©©ñööVUU=|øpXXØóçÏW®\I©««›1cF]]Ý¡C‡¾úê«ëׯÑ¡(êË/¿3fÌG}ÔÜÛ£¢¢F=þüï¾ûŽùô†††Ù³g×ÕÕEEE­Zµêûï¿?räHmmí‚ ÌÍÍ£££·mÛ–’’²gÏžæâohh˜5kVIIÉþýûW¯^}âĉôôt ç+áàB¡póæÍ¡¡¡ÑÑÑÊÊÊÁÁÁÍ…Íhîdsrr–-[FñS§N IKKcûO Àq¯_¿NñêÕ+ÑWEË¢ËÍýŠkkkg̘Q]]}ðàÁ+VlÛ¶¾U5~üøÿüç?uuuôjLLÌÇ\__/} & å ´;4UCû[¶l}³ëíí½~ýzBHLL !$44”ÏçB"""FŒ‘——wïÞ½âââŸ~úI B6oÞ­©©IÙ¸qã_|!á|%œ¢¨Å‹6Œ2{ölújHÖܵÊÎÎ …Ÿ~úiïÞ½ dbb"/:ä×?üðÃ?0«ÞÞÞëÖ­kñ]ÍýŠïÞ½[\\üã?Òe‹’’Òœ9sÄÞëææ”””4bĈÜÜÜìØ±£U%˜4‘ <6CâíéÄ —ÉÌÌÌÉɱ²²bö¡(êùóçOŸ>µ°° ³FBˆ ŸÏÏÊÊêÝ»7!dèС’ßÞd☞žnnn®¦¦F¯zyyÑ tÃPzzzZZÚ­[·œœœš‹?##càÀtÉN6lÇ“p¾ZZZ΄ÍP²æNÖÖÖÖÚÚzüøñ|ðÁ°aÃÜÝÝ :þ Ð¥ùúú.[¶¬µïjîWœ••%Z¶ØÛÛ7.[ÔÕÕ¯\¹2bĈ˜˜kkkcccÒšLšHPž@›!q„ö§¢¢"¶E ØØØ|ûí·bÛo߾ݸܤ»$BÔÕÕ%¿½IõõõŠŠâ_쌌ŒéÓ§8p̘1...fffYYYÍ¡¶¶Vt•Ïç7™8ÖÔÔHsðnݺµêêI8Ù3gÎüùçŸ×¯_ÿá‡vîܹwïÞ#F´îo¯¹_ñŸþ)ºÊãñš,[>üðí[·†„„ÄÆÆÒ­.­*ÁˆHé„òÚú8Bg033{üøqii)½úçŸN:µººzÀ€iiiôöää䆆†Hùö&?‹>fUU½zäÈ‘/¾ø"66VKKëøñãÞÞÞöööÌ«M266NKK+))¡WïÝ»' ™W™0=zD/´êàm¾V·oß>xðà°aÃV®\ù믿ÚÚÚþúë¯õ€VhîWlbb"¡la¸¹¹•––^¼x1--íÃ?$R2K'”'Ðî8Bgpqq122Z¾|ùƒ®]»¶víZ###•±cÇjjj®\¹òÑ£G·nÝ úðÃ{öì)åÛ !|>???Ÿ) !cÇŽ«W¯~üøñ¥K—¾ùæ;;;mmíW¯^ݾ}»  à‡~øé§ŸŠ‹‹™›r1ôüüü’““Ö¯_OwÒÓÓSRRÚ³gOvvöÕ«W=JïߪƒÓ‡ÝâÉ644DDD|ûí·ÙÙÙ—/_NIIm~Vˆþ–™åæ~Å£GÖÖÖfÊ–æºKª©©1bóæÍ...t×à ™æJ'”'Ðî8BgàóùGUWWŸ;wîÚµk6nÜHQRR:yò$Ç›={öêÕ«œœ¶lÙ"ýÛ !‰‰‰K—.evVVV>yòdmmíÌ™3·nÝúÙgŸÍŸ?Ê”)ãÇ_¼xñçŸþäÉ“o¾ù&777,,¬ÉhUTTNœ8Áçó¿øâ‹ÐÐЕ+WÒIªªªê¶mÛîÞ½;nܸ+VøøøÐû·êàÍ…ÝâÉ:::~ùå—‡ž0aÂöíÛgÏžíííÍö «ý-3Ë’K¼nݺ}ñÅsæÌ±³³355mò°ãÇóæÍÇL¯¶XÈ4W:¡è¿Ž‘‘Q~~þéÓ§?ûì³V¥õ³gÏ622úå—_Ø>oø¿ÿµsçÎÔÔÔOš4‰Óæ£%''§¦¦ªªª²}ZAÿu^¼xñã?B’’’ž>}ÊvPíàÍ›7K–,dÈððp¡PH™0aÂ… !žžž›7oîà¯@+dee >~Ò¤IL—žN &\CA—gaaA9sæ ½úüùó÷ß_tËäÉ“ !666“'O¦SŸPõæÍ---Bȇ~èææÆçó555 (ŠRTT$„”——SåããCÑÔÔ´··WTTäñx„—/_¾}û–¢¨¨HŠèj}}}¿~ý!C† qssSPPPTT|úô©Ø[$Ÿˆ¨æNáôéÓ„1cÆÐ» <˜rãÆ o¡càóù$„8p ¹h)Šòöö&„hiiÙÙÙÑ箢¢"9$É'ÅTäääˆ]Ù³gBtttƯ©©IY¶lEQ×®]2d!dñâÅ©©©lÝþý+{öŒÏç+**>þœ¢¨­[·Ò!9qÌÎÎ=z´——ý’““!äìÙ³mK%œByyy÷îÝ•••ËÊÊ^¾|Éãñz÷î- %¼…޲`Á‚¬¬¬êêêæ¢}úô)ÇSTT|ñâEQaaa„:q”pü&Oªoß¾C† ¡ÓSBˆ‡‡‡ØKOO'„ú³èã+((äççS(yA&ýý÷ßô÷ùÞ½{ÌÆK—.¹ºº.^¼˜^­««Û´i“•••ššÚàÁƒÃÂÂ蟌„—Dô]Sdd$EQK—.ýí·ßè·ß¾}ÛÍÍMCCCGGÇÝÝýöíÛ#l\¤B>ýôSzUô¹ÉÒ?=Ú¦M›(Šzøðá‡~¨£££¦¦fccsöìYјûí7uuu77·¬¬,úSªªªV®\ijjª®®îààpùòeÑí ®®®ô¯˜äädú¾½°°ÞRRRÝdxÍ“ŽPEE%::ÚÄÄÄÐÐpõêÕOŸ>9r¤ºººµµu“Ÿ.vëëëé“ëׯ‹æÍý5G¬Câÿým3ƒcºuëFùàƒª««)ŠjrˆÌ!C(Š*..îÙ³'½ÅÔÔÔ××799™>&SžÒ·˜|ð½=33SšÄ‘¢¨’’’#GŽÌ›7ÏÆÆ†~Ë™3gD÷¡+ØhtáÛ\â(á(Šš:u*!äüùó§N"„,_¾\ò[èx<]·*!Ú~ø2bÄzŸŠŠ ¦ÆQrHÿ: ==½™3g‹]±3gÎB&Ož,öÆ+W®PHA&ÅÅÅÑwžöi®]ÂKÌïB(~öÙg„•+WŠVBk‰¨ÆE ] 1?U¦ kî€bõý’ÛRx<^÷îÝ---é;ãÆ£?…®—ý׿þåâ⢨¨¨¤¤t÷î]JºV‹ÊÊÊÞ½{B444>ùä“ÐÐÐ+W®Ðe;ÕTs„ä–Bˆ’’’¥¥%½Ü­[·Þ½{ëêêBúôéÓøÏ‡NBââ¿í7oÞ¨©©B~ÿýwꟌÄÎÎsçÎÑ;—––FEEMš4‰î©  põêUJ¤<=vì!ÄÕÕ•9¸XSµ‚‚ý’h9RRRÒ¿ÿnݺùúúž9s†îT$–8Λ7Oå?þø#Õ|â(ù~úé'BȼyófΜIIJJ’ü–ƵžÍE{òäI"Ò$”ŸŸÏ$Ž’C’ð×% ÝæþÉ'Ÿ0¯~ðÁ„˜˜ ‰#ȤÇÓ¿‚ævP.á%æwLñôô …bG–ÐZ"ªñ¯ï?ÿù}ÿF¯2„Šþú$·¥B~úé'Š¢._¾L§zE=xð€Î¨Þ¾}KQTpp°¢¢âŠ+¤oµHKK›4i]ªÓÁáÇéWEÓ¦¥…þ¿@—–vvvõõõ/_¾¤{yÒ6¾€h0á Žqššš¦¦¦„¼¼þøcBˆ½½=!„\HŸÑ°aÃ444!!!!uuuaaa)))„ÌÌL·bÅ BÈýû÷ÇlnnþÓO?½yóæîÝ»ûöíûàƒÊÊÊ,XÀt`´xLúŽ´OŸ>„WWWºº¹æùóçÉÉÉÙÙÙtƒ‰èÉÿÐíñEƒv¦Èv »*++ !–––'Nüå—_\\\ú÷ïÿóÏ?WVVÒ7ÄJJJaaa{÷î8qb}}=½qÔ¨Q¢qpp°²²zðàÁàÁƒ-,,nݺÅãñèüIEEeðàÁÉÉÉŽŽŽ¦¦¦Ož\SS³Gööößÿ=½]´Ïøýû÷éûÈþýûGEEÑÚ/_¾¤_>|¸ššš½½=]€Ò-•••tÚ¿þõ¯uëÖ-\¸²`ÁiLjٳgäS (Š™±’î9$ù¬ÇÐ\´EO›6M[[ÛÄÄäìٳݺucFUKIÂ_‡!Immí†  Ô½{÷÷Þ{/<<œF’’2`ÀUUÕ¯¿þší¯Àÿ›0a!ÄÅÅ¥¨¨ˆ¢¨üü|ú§´bŠТ?~LéÑ£G^^EQOžÿÏ?ÿýÜ«W¯ÒszO:õÓO?¥ïféþÙ¢D»è 0€®srrbv`G \²d !ÄÞÞþÊ•+ßÿ=Û˜1c éšÅÓ§OK)8~üx:Ÿ=z´’’’ŠŠ =Ldâĉ„#FÌœ9SCCCII©ñý§P(üä“Oè+lcc3hÐ ú,¦M›Fï ž„cvhâ(ù-!°‰#@Gyûö­@ „øúú8p€în¸víZ¶ã!¯_¿ž?¾¥¥e÷îÝ ´jÕª7oÞ0¯J¨Goî%±ŒdÁ‚bÙ­¹ÖQ¢***–––+V¬¨¬¬dvmZiõýR¶¥ˆ­–••ùùùõïß_]]ÝÉÉé?ÿù½]ÊV‹ªªª;w<¸GZZZ666»wïfV‹5GHÙÒÒî‰#LäÈ{›@G¸sçNppð;w*++ûöíëãã³bÅ º#tAµµµ7oÞtuue;€6BâRÁt< $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $ŽÒ*)) 6l˜½½ý¢E‹²³³Ùޏ£¾¾><<üý÷ß3fLxx8EQ÷i®:t蹈ádz}6ÀYŠl 7‚‚‚233ÃÃÃ{ôèáããsñâÅîÝ»³pAxxøùóç·lÙBY³f²²ò’%KÄöi®ÊÉÉqss›>}:½›¢" vè(¼&ïkALee¥Í¾}ûÜÜÜ!¥¥¥Ã‡ß³g½ ð.jjjƒ‚‚>ýôSBÈÙ³gÃÃÃÿøã>ÿÿ…$”BsæÌqttœ7oÛç܇¦j©äååYZZÚÚÚÒ«jjj***ÅÅÅlÇ\ðäÉ“ŠŠ gggzÕÙÙ¹¨¨(--Mt ¥PNNNïÞ½«««ËËËÙ>à8´hHÅÄÄäܹsÌê¥K—è»ÿ&w677§bccÙ@¾õïߟí:C~~>ÇÓÓÓ£Wõõõy<^aa¡è>Í•BB¡0//ïèÑ£þþþB¡pРA›6m²´´lî³è*==퓹„ıu„Battthhèܹs›Û …2H¯¦¦FUU•i˜æóù***%%%Mî,V ½zõŠÏç6ìàÁƒÕÕÕ›7o^°`ALLŒ@ hü^sss”Nð.ÐTÝ ÏŸ?÷ôôܽ{÷† V®\Év8ÀUUUB¡^ …ÕÕÕ÷l\ ¤¤¤¬ZµJ[[»W¯^[·n}óæMbb"Û粨¦¦FCC£¢¢‚^ýî»ïx,_¾œí0A¦¡ÆQZ÷ïß÷ññ5jÔ´µµÙ¸CWW—¢¨ââb]]]BHQQEQLË5CšRH èéé‰5sCWÀãñ!¼¾|ùríÚµ¥¥¥ÌÑ.UÕÕÕ3fÌÀ O ‰£Têëëýüüf̘[1hwfffÚÚÚ‰‰‰&L „$%%éè蘚šŠîÓ\)»oß¾S§NõèуòæÍ›‚‚¶Ï :÷ß9RšK¿úê«õë׋m444444dVCBBÆG šƒÄQ* ¯^½8p h©©)]=ð.===ÃÃÃûõë×ÐÐîééIOÇ­££3nܸæJ!''§ààà€€€9sæ(((DDDX[[ÛÛÛ³}NÐy˜¬‘BQ;ŠY·nݺuë˜Áûb233÷îÝ›ššÊöÙ€¬Câ(•§OŸRµlÙ2Ñ;wîÄ´ ??¿ÚÚZ???Bˆ‡‡ÇÒ¥Kéí§N2557nœ„RèÌ™3[·n]¶l™¢¢¢‹‹K@@@“©ttîØÚIšƒ‚‚æÍ›'Z Ð$LÞþ0ndJ'Nm§[C×8–——«©©‰nøð¡££cVVšÑ EU Àm¨nܹsç”)S5‚4ÐT ÇDû5¶!k¬¨¨8{öìÏ?ÿÌöy€|@#€|£(ŠÎÛÐýì—_~QQQquueû$@> q躮\¹âèèÈ<¸@2|Qº®k×®988°È ôq蜜œ·e?{öŒí¸@ž Æ¤‚Ĥ‚Ĥ‚Ĥ‚Ä@\VV–‡‡‡––VÏž=}||ŠŠŠèíuuu&&&x\'t5U ]ý”…&3?¡Pøé§ŸêééÅÄÄTWWñÅ‹-úþûï !'Nœ8rä!ÄÇǧ[·nÁÁÁlŸ @çiõ³‰ EæææééélGÍbÉÕdúøðáC++«?ÿüÓÖÖ–²sçÎààಲ²ÚÚZ}}ýÈÈHBÈáÇóóó1k.È”NÜÖ†ç ´þçA×"Z°ÒébžñÊlœ7oÞàÁƒéUccc%%%BHjjjYY™»»;½}ìØ±÷ïßgû„:G€ÿaeeuèÐ!EEÅׯ_߸qcëÖ­^^^|>ÿÅ‹<¯gÏžôn½zõâñx/_¾d;^€Vxòä ³,zË„en,‹’…xºÂr„>ŽM›8qbRR’¡¡á±cÇ!UUUjjjLÃ4ŸÏïÞ½û›7oØ ÌÌ̘eÑ6M,scY”,ÄÓ–» Ô8B—&¡KPbbâëׯ===ßÿýªª*mm튊 ¡PH¿* +++µ´´Ø>€ÎƒÄººS#£ñéé鉉‰ô²®®îÖ­[ËÊÊ )Š*(( _zõêEQLË5@W€Äºê‰½šðùçŸ35‹oß¾ …Ý»w·²²ÒÓÓ»zõ*½ý·ß~Ó××·´´dûl:G€ÿáááQYYéëë›’’’””äíímeeegg§¤¤´`Á‚   ;wî$%%.\¸p ÐE`p tEL#uãG}}ýK—.8;;«©©¹¹¹=zTYY™²qãÆÚÚÚÏ>ûŒâååÂöyt*îOš––¦¥¥e``pãÆ_ýÕÊÊÊÛÛ»C'mÆ»2Nt@ æË….¥·¡@ƒNÀñ¦êÓ§OüñÇ>|ùòåâÅ‹_¿~¹wï^¶ãÖˆ¬'€æp>>77÷úõë|ð!äæÍ›úúúlÇl{rºH‰ã‰ã’%K80jÔ( ;;»ýû÷oذÁÛÛ›í¸€5ôÜÌàȤÇýœ999ÙÙÙ¶¶¶ªªª·oßnhhpttlóÑjkkÿøãUUÕæöÁ¸Eh/õõõ»wï>{ö¬ššÚøñã—/_Þx8WIIɶmÛâãã)в³³[½zu¿~ýš<J'nÃÍ0tnÎãXXXÈ,«¨¨XXXTTTTTTÓ¯êêê¶í°»ví*//gûü «?þü–-[!kÖ¬QVV^²d‰Ø>AAA™™™ááá=zôˆˆˆðññ¹xñb÷îÝÙŽ8ˆ›‰£“““äÚpϽoß¾ÈÈH¶Ï ºššš3gιººBüýýÃÃÃ}}}Eg¢­¬¬Œß·o=0""bøðáIIInnnl‡ÄÍÄñÊ•+í~L_____ß{÷îM›6íó€.áÉ“'tFHqvv JKK4h³O^^ž¥¥¥­­-½ª¦¦¦¢¢R\\ÌvìÀMÜLûôéÓÜK555aaa€¹¹9!$66–í+ ßú÷ïÏvlÊÏÏçñxzzzôª¾¾>ÇíŠC1119wî³zéÒ¥ÊÊJ›æŽI—NèémÃÍÄ‘ñöíÛ={öäää0[Š‹‹sss;:qD¡ ﮦ¦FUU•i˜æóù***%%%Mî, £££CCCçÎK÷çnJ'xŸŽgýúõñññ={öLHH066îÙ³ç“'O"""ØŽ XÆLÇÃv ’hhhTUU …BzU(VWWkhh4Þóùóçžžž»wïÞ°aÃÊ•+Ù8‹ã5Ž·nÝÚ¶m›««ë‹/FŽioo?hР¸¸8{{{¶CÖˆÎXÙ+@–éêêRU\\LOQTTDQÓr͸ÿ¾Ï¨Q£8 ­­ÍvÔÀe¯q¬ªªÒÑÑ!„XXXÐ 4...qqqlǬËéÉÀÙ  ifffÚÚÚ‰‰‰ôjRR’ŽŽŽ©©©è>õõõ~~~3fÌØ±c²Fèh¯q433;s按‰‰¹¹ùÙ³g½½½³³³+++ÙŽ  eŠŠŠžžžáááýúõkhh÷ôôTTT$„DGGëèèŒ7.!!áÕ«WdòKBˆ©©iÛf«Œã‰c@@À‚ ÌÍÍ'NœøÕW_;öÕ«WãÇg;.©øùùÕÖÖúùùB<<<–.]Jo?uꔩ©é¸qãž>}JQÔ²eËDßµsçÎ &°;p÷;xÕÖÖVTThiieddÄÆÆjkkO™2EII©ã>õ’etÃ4ú8Bׄ҉ÛP A'àx#!DYYYYY™bjj*Ö7º ºTeú5¢ÇÇæFOß¹s‡íЀMÈÚ€ã‰ãîÝ»™åšššG=zÔÇÇ‡í¸€³òòòž?îèèX]]­¢¢Âv8í‰ã‰££££èª«««¹¹ùŠ+|||TUUÙŽXƒ¦jèååå+W®üý÷ß)ŠJOOŸ5k–‘‘ÑÆÕÔÔØ  }p|ÇÆ PSSÃvÀú1Ô?0‰#´£-[¶”••ݸqCAA²jÕª‡nß¾í¸Ú ÇÇ·ÿëï¿ÿÞ·o_ïÞ½QÝØ•apè Ë—/gžìbgg·zõêøøx¶ãh7oªvppÛ¢¤¤´mÛ6¶ãª­­íÞ½»è==½††¶ãh7O¯\¹"¶EOOÕÐìíí?J¯–––îÚµ«ñí+€üâæd¡¢Þj’Ø ™ö…)veœè¹˜/ÚÑË—/½½½ !999666?622:zô¨ì<ý¥·¡@ƒNÀÍ/ÙСC™åêêj¡PH‰ …„SSÓ .tܧ£h–}U ¤¦¦&&&&33S ˜™™¹¸¸ðù2Ô•¥·!q„NÀͦê¿þú‹^ˆß¶m[HHˆ½½=Ç»wïÞºu묭­ÙX†²:BCCÉ'ŠŠŠ¾üòKBÈ_|‘––6þ|z5ÈЭpGؽ{wPP“““²²²’’’ƒƒCppð¹sçÞ¾}ËvhÀ5ááá‡êÓ§½êäätâĉˆˆ¶ãh7Oóòòè555uuu ¶C®ùå—_Ö­[çååE¯Î™3gݺu?ÿü3Ûq´Ž'ŽC‡ˆˆ`êKJJvíÚekk‹©û ÝÕÖÖöïß_tKÿþý«ªªØŽ  Ýp³##$$dÆŒ®®®$„¤¥¥ikkŸªº¼¼|áÂ…nnn³gÏ&„Ìš5Ëßß¿¢¢‚í¸@Vˆ ²xëׯïÙ³gBB‚±±qÏž=Ÿ9üIDATHHpp°ƒƒÃÈ‘#ƒƒƒƒ‚‚âââ¤y¯ô%Lmm­­­­è¼?‡21|øp¶¯pÇ›ªÂÂÂôôôèU;;»Õ«W¯]»vÆ ­=Txxøùóç·lÙBY³f²²ò’%KØ>?!UUU:::„ ‹ôôt{{{—={öµø^)K˜ÂÂÂ]»v•——‹nÌÉÉqss›>}:½J?p #p¼Æ±¶¶¶{÷î¢[ôôôZ{œššš3gÎøûû»ºººººúûûûí·B¡íóƒVm›æñxèKíÈÌÌìÌ™3UUUæææW®\!„dggWVV¶øF)K˜}ûö999={Vl{NNŽó?Pã‡ã‰£½½ýñãÇ™ò·´´t×®]­=Γ'O***è¹Ä !ÎÎÎEEEiiilŸ´;Ò)#²FhG—.]úá‡FŒñøñã±cÇΟ?ôèÑ-¾QÊÆ××7==ýôéÓbÛsrrz÷î]]]-V Ðî8Þ¢èíííîî. ½¼¼?~ldd´mÛ¶Ö'??ŸÇã1MÞúúú<¯°°°ÉŸüðÃ;wêèè°T;ëä>ŽÅÅÅ+W®üùçŸ)ŠrvvÞ¹s§™™!¤®®.88øðáÃ`Ê”)›7oÆh-.áf#@§ÉÈÈÐÒÒÒÕÕÍÈÈ „äääB´´´èW1çkçÍNçOsæÌIOOÿþûïy<Þ‚ ¾øâ‹óçϳ²¬c.i“ùèܹs=zôí·ßjii­]»ÖÝÝýÁƒêêê'Nœ8rä!ÄÇǧ[·nÁÁÁlŸ ´Ô8¶¿®|OЙ››ÏŸ?ßßß¿¹i¿d§@àpé$VÙ&¶ZSS£®®¾oß¾yóæB:´xñâòòònݺ±x^„w<ɹ¼¼¼G?ÿü3=ký›7oôõõüñÇ1cÆèëëGFFúøøB>˜ŸŸßâl¦ /Pã]‘äÛh€VINN¦'ëNMMe;–.Jš„‰Ï竨¨Ð˪ªªÈcZ$zI)Š»Èÿý·­­­““½*TUU RSSËÊʘG¥;vîܹ÷ïß:t(Û'í‰#t9¢Å¦=ƒw—œœ,y™êæØ5uëÖmêÔ©áááƒ&„„……yzzr¬º±“ 4èÎ;Ìê÷ß_^^îääôèÑ#׳gOz{¯^½x<ÞË—/ÙŽÚ 7ÇÄÄDÉ; ï²Ä2ÅÆ·Ñ­åëëË,WWW …BÇãñ„B!!ÄÔÔôÂ… lÇØUHø9‡…… 8NõôôdgVv×b ) ÷îÝ»bÅŠ€€ ‹»w睊©1º|>¿{÷îoÞ¼aû< Ýp3qD9†™í+>>~Û¶m!!!ööö<ïÞ½{ëÖ­³¶¶f;@î»lœë”––:88xyy­[·Ž²qãF‡{÷îõèуíØeT‹—”–™™éíížž¾ÿþ¹sçB´µµ+**„B!; …ÂÊÊJz p7;yüõ;v9r$%%%%%åĉ}ûöE9a÷îÝAAANNNÊÊÊJJJÁÁÁçÎ{ûö-Û¡qèfRœ˜˜˜’’’ˆˆ=====½ÈÈÈâââØØX¶£–i’/)!äÖ­[666¦¦¦Ož<¡³FBˆ¡¡!EQÌ“^½zEQÓr ÀÍÄ‘r$C;5´£¼¼<@ ºEMMM]]]CCƒíкú·Üä/Z(ÖÕÕÕ××Ó«uuuuuutH á’ÖÕÕ}öÙgK—.=yò¤žž³ÝÊÊJ´'Ào¿ý¦¯¯oiiÉö©@»áfS5å8ˆaî¡™U¶#î:thDDÄ×_­©©I)))Ùµk—­­-f?fÝøñã544¦M›¶fÍŠ¢BCC555ÇÇv\rìÊ•+¹¹¹C† í-jiiihh¸`Á‚   33³†††ÀÀÀ… *))±/´Ž'Ž(Ç¡1$‹ÐABBBf̘áêê:pà@BHZZš¶¶öÉ“'ÙŽ ˆ¦¦æo¿ý¶zõêñãÇóx¼#F\»vþ¿móøñcŠ¢¦L™"ºñÔ©SÓ§O߸qcmmígŸ}Fñòò a;XhOo§ËÍÍ1cFqq±X9Þ«W¯ŽûPO± ’ÕÖÖ^¾|9++‹Ï盘˜Œ=Z¦êZ8_:uñÎ'qú]ü’BcÜÿBt~9Îù¢äçK§.žå q„NÀñ¦jBˆ²²²­­­®®®££cuuµLÝýÈŽª.//_¸p¡››ÛìÙ³ !³fÍò÷÷¯¨¨`;.ব¬,--­ž={úøøÑÛëêê LLLå´*—ã‰ã–-[ÊÊÊnܸ¡  @YµjÕÇ·oßÎv\À2Þ?ÚñB¡ðÓO?­­­‰‰9}úôõë×-ZD¿xøðá#GŽDFFFEEmܸ‘í ÐO–/_ÎL1egg·zõêøøx¶ã–µ­¤hQZZÚ«W¯!7nÜ8qâ& Mt÷MZ«þ#H~ããÇ“““CCC‡îêêºhÑ¢‹/ …Âêêêƒnݺõ£>úè£BCC÷íÛ'åÇÇÚÚÚîÝ»‹nÑÓÓkhh`;.`ó›GúíëôéÓüñÇ_¾|¹xñâׯ_GFFîÝ»—í¸@œØ ésÇßHQÔ¼yóè§¢BŒéÁ©©©eeeîîîôö±cÇÜ¿Ÿí+ÑjOííí?Îdô¥¥¥»vírpp`;.`èo¾ 7šDEEùûû»¹¹ÅÅÅõíÛ÷èÑ£[¶l9þ<Ûq@ç±²²:t袢âëׯoܸ±uëV///>ŸÿâÅ Ç<}±W¯^<ïåË—lÇÛjUèíííîî. ½¼¼?~ldd´mÛ6¶ã*,,tvv&„ܾ}ÛÅÅ…bnnÎ<´dP›çjñ'NLJJ244>^CCãúõë3gÎ$„ܼyS__Ÿí¸@ÝÜôî)£„6«ÄÄÄÂÂÂÍ›7¿ÿþûùùùÚÚÚB¡NB„Baee¥––ÛW¢Õ8žB8qâÅ‹“&MZ¹rå‚ FŽYSS³jÕ*¶ãY¹m¡-Y²äÀ£F²°°°³³Û¿ÿ† ¼½½ÙŽ šÀtU¢û»Kù¿@´Óc^t‡ôôôÄÄDzYWWwëÖ­eee †††E1M¯^½¢(Ši¹–#O7oÞüÙgŸ]¸pÙR__ÿË/¿°°†ƒ‘1ÐîÆŒuüøq>Ÿokk{ìØ1¶ã€¦Ñ9_ãäOú76~)!!áóÏ?gW¼}ûV(vïÞÝÊÊJOOïêÕ«ôöß~ûM__ßÒÒ’íkÐjO !+W®\»víæÍ›ëëëÙŽdõ¿ØäÞßÿ››KÿŸ022rvvVUU%„ 6ÌÑÑ‘íè SyxxTVVúúú¦¤¤$%%y{{[YYÙÙÙ)))-X° ((èÎ;III .”ǧÙq¼#!ÄÃÃÃÁÁañâÅ©©©‘‘‘b³ó¼£1cÆBÔÕÕ¦NÊv8À&}}ýK—.8;;«©©¹¹¹=zTYY™²qãÆÚÚÚÏ>ûŒâååÂv°mÁñ^æææ·nÝÒÔÔ,++[½zurrrHHÈÒ¥KÓÓÓÛvÀÚÚZGGÇ?þøƒ®QhîCÛ||èL#5·¿ÿÐ9îÝ»Ççó{ôèÑ¯ß½{÷Ù³gÕÔÔÆ¿|ùòæºX t"]¾×rGœ>ç/iǪæ*î×8ÒÁÞ½{<øïÿ»Í),,ܵkWyy9ÛgïDl@\×üåC;²±±‘ðêëׯ™‡WµAxxøùóç·lÙBY³f²²ò’%Kï†Ò :Çû8;vL]]^æñx .ŒŠŠjÛ Ç}ûö999={–ís‚wÒæ§´èûï¿]mhh8zôèØ±cÛ|Àššš3gÎøûû»ºººººúûûûí·ŸQ†Ò : 7ÇŒŒŒÂÂBBˆ®®î³gÏ2Dèééyzz¶á˜¾¾¾ééé§OŸfûä@FmݺõĉôòíÛ·?þøãÈÈÈ… ¶ù€Ož<©¨¨ ''„8;;¥¥¥‰í†Ò dMçO[‰2: 7›ª=<<æÏŸïïïïááÑäÝËÇÜÜœËö•€&<{ö¬Å- #ú÷ïÏv­pôèѹsçÿý÷ß/^?~|TT”¡¡a›˜ŸŸÏãñ˜–n}}}Gß·]:q»§#°‹iØ¡3¹Žî$ú)è}Ô ¸™8&''+**BRSSY …²,366FGèƒ>yò¤EQÇ>|ø;°¦¦FUUUôe***%%%ïrL”NСD ÕNë $ö‰(Õ;7›ªUUU鹑f̘¡ü¿ª««çÍ›×â.]ºdþŒŒ ¶OÚ 3é« Á[†††{öì¡(êÁƒÌÆ6YCC£ªªŠéÔ( «««544Ø>ciutîˆb¼óq³Æ±²²rÿþý„äää°°0Ñ—òóó333[<‚»»ûŸþI/«©©±}BÐÎPÐ@;rpph¼qÇŽ;vì —Û\ɧ««KQTqq±®®.!¤¨¨ˆ¢¨w£ Ði:9¥CÙi¸™8Ö××geeÑËÌÏç¯_¿¾å뢨(Ø>W®\é #›™™ikk'&&N˜0’””¤££cjjÊöH«£ó9´Mw>n&Ž=zôØ»w/!dîܹô@éÓ§èê«W¯²²² гgÏw9²¢¢¢§§gxxx¿~ýÂÃÃ===éÜÑÑÑ:::ãÆcûìþ‡hÛtç¤tÌ'vÎXàfâÈˆŠŠb;è*ª««ƒ‚‚.^¼Hgihhøð÷lÙ"áQ.-òóó«­­õóó#„xxx,]º”Þ~êÔ)SSS$Ž ƒ:€3ê;Ç/tjjjppð‹/Ķ߹s§ã>”óõ€&mÚ´éúõë›7o¦Ÿ%“œœäää´nÝ:¶Cû/ΗN]<{©GÊKGy9AÙÁñÓžŽŽ~ï½÷Ød Ó§kþ졃TVVŠ ª•••lÇÐn¸9#COO¯ªªŠí(@¶Ð·‰Ì„Žl‡Üakk»gÏž²²2zµ¢¢â믿¶³³c;.€vÃñŠÖ[·nmÞ¼yñâÅVVVݺuc¶Ó“¢uÎ7ÉµÆ ]¶¹Ú]~~þŒ3Š‹‹-,,x<^ZZ𦦿ɓ'{õêÅvhÿÅùÒ©‹ÿœÑT-o”w?íAƒ …ÂÆçØ¡E'ç‹f¹†Ä:T]]ÝåË—Ÿ>}J0`Àرcé§XÉy/D›šüÙ¶ûϹÅOl÷7¾c´­ý¬Ž»¤H¹Šã}cccÙº%%%{{{zG™ÊåØÿéNø·ÝæOìüP;ù¡+ãxâHOÌ›——÷üùsGGÇêêj¶ƒ–‰Ž((¡uÄ<ŽÐœŽžº¯ VDa6DÇÇ”——/\¸ÐÍÍmöìÙ„Y³fùûûWTT°°†CC íhçΩ©©'OžLMMMMMýöÛo?~¼sçN¶ãâšNÓÖæ“£±wr*°Žã‰ã–-[ÊÊÊnܸ¡  @YµjÕÇ·oßÎv\À2fT5Û§\½zuýúõööö ¶¶¶6l¸zõ*ÛqqSç<¹3ßÈ:ÜKƒ48ž8&$$,_¾\OO^µ³³[½zu||<ÛqLËÌÌ455åóù|>¿OŸ>·oߦ·×ÕÕ˜˜˜¢„1˜Ç±C‰=¹s>´Í]îäç5· +—äÇÇÚÚÚîÝ»‹nÑÓÓkhh`;.`ÓTÝä«|ðÁßÿ½mÛ¶}ûö9²¼¼œxøðá#GŽDFFFEEmܸ‘íóÙ‚y;“ètN‹ó)­MþÚüÆÎ×É—8€ãƒcìíí?J¯–––îÚµËÁÁí¸€5LɬЕ•EEEùùù‹/^µj!¤ººzùòåqqq~øáÁƒ###?úè#BHhhh``àºuëèa„uëÖ͘1ÃÅÅElG¶ãâV‚ÛœQÉE*&¿mëÀ Ž'ŽÞÞÞîîîB¡ÐËËëñãÇFFFÛ¶mc;.`“hQÞxá‹/x<ž••½J?åüõëש©©eeeîîîôö±cÇÎ;÷þýûC‡eû„@VôìÙ3&&†™ÇqÚ´i²6#À;âxâhhhxñâŘ˜˜ÌÌL@0oÞ<TC† ñöö>xðàûï¿O &„¸¸¸zðàÁÓ§Ommm/^¼øÕW_ikkWTT…B:w …•••ZZZlŸ°ï›o¾¹{÷î©S§ìííé-/^¼{÷î’%K¾ù曥K—²#@ûàf£í_ÿرc‡‘‘Ñ‘#GRRRRRRNœ8Ñ·o_kkk¶6Iž<&&¦¨¨è§Ÿ~4hPFFÆ•+WŠ‹‹ccc )Š*(( w{õêEQLË5te/^\´h“52lmmýüüðàSàn&ŽŒÝ»w999)+++))988Ÿ;wîíÛ·l‡l’0x]]]YY™¯¯ïÉ“'õôôêêêêêê„B¡•••žž3™óo¿ý¦¯¯oiiÉö©ûòóó-,,š|ÉÜÜ<''‡íÚ 7›ªyyybóñª©©©««khh°ȨnݺQõûï¿ïß¿Ÿ¢¨Ó§O«ªªÚØØ())-X° ((ÈÌ̬¡¡!00páÂ…ú„MMͼ¼ÿkïN£šÈÒ>€ßTÒˆÈ*G{±UiZA*ÇÁæŒ(í2-êˆ+Žà í6Ž ŠìãÊ8Š´{ƒëxÔV@mQÚPe%’¼ê˜É!¤’âÿûTU¹UõÔ­âæáVÕÍÛF?zõêUÇŽ™@kXž8öë×/66vûöíÔ *ååå[¶lqqqÁ˜U Î«W¯!éééÔ{T”;wîðùüþ󟵵µãÆ#„Lœ8qõêÕL zÁËË+!!ÁÏϯC‡ÊËÅbñ¨×óØAßµo¡7oÞL™2¥´´ÔÁÁ’••eiiyðàÁ®]»¶ÞNAvv6Ó‡:RRR2qâDssó9sæ8;;wêÔ©¢¢"##cÛ¶m>|8räˆbTƱ£ujâçXZã—Z4Þ¦î6¦5B5”Ã×}œúÿ³@­„ý‡][[{áÂ…ÜÜ\.—Û«W¯aƵöíEv4Í@_AAÁºuëþûßÿJ¥ÒöíÛ×ÖÖr8œAƒýüóÏ_ý5ÓÑý;Z'$Žº ÕP‰£Î´ÑÃnUìhš ¹Þ½{÷øñãââbKKËÞ½{wëÖéˆT±£uBâ¨ËP åð‘8ê ËŸql8@åÎ;L‡l£ü[¬ÄòÄqÛ¶mŠi‰Dòøñãøøøàà`¦ã0<,OU~ZÐÛÛ[ „……óx<¦£€6GyX¶y¯ Ëdžzöì)‘H˜ŽÚ"•ãÚìsr`¸Xž8ªüBLEEÅÎ;»uë¦AwcyyyttôåË—åryÿþý—.]Ú½{w¦X¢¾¾~Û¶mIII¦¦¦~~~ .l8ܬº2»wïÞ¼y³¢˜……EZZÓìÄòÄqÀ€*KÚµk­Á¦"##Ÿ={&‰:uêüÛo¿}ñÅL"°H$:uêÔúõë !Ë—/oß¾ý¼yóh–ÉÏÏ2dȤI“¨bÆÆ,oØÙêk”ËåètÃÂòöåÒ¥K*Klll4èn¬®®¾|ùòÎ;½¼¼!±±±îîîiiiC† aúÀàI$’£GFFFz{{BÂÃÃE"Ñœ9s¸\.2ùùùB¡jÀ° kƒÃmù&ôÙâÅ‹¿þÿêêê~úé§ænçíÛ·}úôqqq¡fMMMMLLJKK™>>`ƒœœœªª*EæçååURR’••E³L~~~·nÝÄbqee%Ó‡Ÿ§x?~ †ˆ=ŽÕÕÕ¿üò !äþýûÊþB ž={ÖÜ öêÕë×_UÌ&''WWW;;;«+/!çÏŸgº&@sµµµýû÷OKK£H8wî\hh¨J™iÓ¦ýüóÏLGÊfß~û-Ó!èBAA‡Ã±±±¡fmmm9Nqq122™ìíÛ·ñññááá2™ì»ï¾û׿þÕ§Ouû¢Z' n ¨þE*eD_#"v&Žõõõ¹¹¹Ô´b‚ÂårW®\©ñ–e2YBB† f̘ѣGuÅÐ(ë3•ÿòm» ×­[WYYÙ½{wSSSBH`` ŸÏW‹ÅS¦Lùá‡ÚHf­J"‘ðx<Åi.—kbbR^^N§LQQ—ËussÛµk—X,^·n]HHHJJŠ™™Y£ûB뤨G™Ž@ìL;uêG™1c5Ñ\ÉÉÉ .¤¦Ï;gooOyùòåâÅ‹_¼x±fÍšÀÀ@¦4Ñp,Œ†eÖ®]Ûð¿ ;;;;;;ÅìêÕ«}}}ÇŒÃô˜››×ÔÔÈd2*/”Édb±ØÜÜœN™.]ºdff*ŠEEE¹»»§¦¦úøø0}XÀB,ÆqïÞ½Ši©TJEŸ»ŸôìÙ“òàÁƒ€€€o¾ùæÂ… ÈY£ÑÿûW¬X!—Ëÿýwuk={ö,..Nùw‰ZÂÚÚZ.—+›.))‘Ë劻ÒôËBÌÌÌlllTns°çÍÖB¯¶°6qÌËË‹}úô)!D"‘,\¸ÐÉÉÉÃÃã?ÿùÕÍ>ár¹õõõ¡¡¡S¦LÙ´i“¥¥%Ó ‹ŒŒüûßÿ®Ü Ð|>ßÒÒ255•šMKK³²²¢nt|¶ÌùóçÇŽ[QQA-ÿðáÃû÷ï{õêÅô1h •öÉ?¡Ÿ*¯…Ç´…·ª=z4iÒ¤=zŒ5вcÇŽ«W¯Îœ9ÓÔÔtË–-vvvͽ‰sóæÍwïÞ988(ZmBˆ½½½µµ5ÓÇ ºöèÑ£””•ggZÂØØ8((H$uïÞ]*•ŠD¢   j8Æ„„+++___ue<==W­ZµdÉ’iӦůÆ:99¹ºº2}LÚ¤üˆ‘ƃ_bÔL­`gâ¸}ûvŸ7Bärù‰'¦OŸ>þ|BH]]ÝÁƒ››8>þ\.—/X°@yaLL q38Ê ‡f/6ÆÄÄŒ?ÿ3€v…††ÖÖÖRoî=šj¯!‡²··÷õõUWÆÌÌìèÑ£QQQ ,066ãXYYiddDMߺuËÖÖ–Ê)UUUL £žwÑ`Å3gΘ˜˜P?Ý: òx"ýŒMã¡ ìL¿ùæÅÈ/^twwW|”™™ùõ×_3 ªK—. …Bå‚€Ö¦H››üi¼"¨ÃÎgƒ‚‚6mÚÄápòòòþøã™3gBd2Yjjê®]»æÍ›Çt€`¨®^½:cÆ ¦£hsðNŒž`mâXQQ‘˜˜øñãÇÙ³gS7.\xñâÅ &üíoc:@0žžž š/^0ó”o7+'ÓxEC9@ÖkC9xnn®ºŸáÒ"v<~ìÃŽÖ /Çè2Ô¦_:¡_†þŠZŒS÷ذ³Ç±QMü´4´ª6›i± žñºT†Âe7ÅØmmá`iBâtµ<‹2¸$ }¥Ê8@ó(’?úY aª¨Á¶mèGh9Å­j¶ŽªØ’Ÿ¥e=$Ž –îG]1”aPt§Ö »GUÄ£BâÓxðݯh(5c@{hžqZ4î€a}ÏMk ÒDÐH µ4+jSã¼h5ŒCâŸÑòáWèt˜bǤn6Äš¶BâÓxüå››ñ(¯¨·÷gYÆ jX/Ç€ZŸ¢X±¹kÆy1 šÑxw†R3Ànèq€¦PiŠf¯´p§zNãšiùN˜‚ÄhAâ´àGÐü×Õ4[Qñž‡În¼ÊÏÇé¾fš‰#@›¦œQ5ëÅ‹–¬¨(¬³÷‘ âׇu_3Í…[Õm"Aiîx¬¨’é`„Bå=ês*¦ûšÐG€¶Kãn-ÃíCBÐHÚ.åÁ5Û‚îWÔ˜¡ä‹†gk¸Ó±€ZxÆšÊ8 ±ÓÑ@Ãf=•ó‚Ó¤·8´i*Žô¿­5[±á¯¶v~ ²G½MGt_3@âÐÖiÜ}¨ÙмˆÝòÔñÙ§Ö5yúô©bù±cÇÒÒÒF$‹™Ú:ssóššÅC2™L,›››3—aP¼2BQÜ*eåDÖ-‡Ä±q>>>w?éÙ³ç‹/222¨,,,-ZTUUuïÞ=¦Ã€¶ÎÚÚZ.——––R³%%%r¹\qçèP¼tÌt ­~€,>FÐ$Ž3666û„ËåÞ»woÁ‚Šÿé+**d2Çc:Lhëø|¾¥¥ejj*5›––feeeooÏt\ÀNHiñöö®©©Y³fMvvöýû÷/^looïèèÈt\ÐÖ‰D¢?ÿüóþýû"‘(((Ã>@+ÁãtݿӦMOž<áñxB¡pÑ¢EvvvL@äryLLLrr2!dôèÑaaaxZ G ·ª€$Ž@ G ‰#ЂÄhAâØ õõõ"‘ÈÃÃcøðá"‘¨ÑÒ_¿~âêêêéé¹|ùò²²2•iii½{÷®©©a6˜“'Oúøø8;;‡„„2LYYÙ²eË„B¡‡‡G£5ÖÚ)hëÔh+€òòòˆˆ777WW×Ù³gçååéCmèònb§Ú½€Y¯YµÝÚvïÞ-PâîîÎHµµµ...ʃµÔ0FjI]›ÃHͨ †‘šQ÷ý¥WYº#Ú¢££…BáÕ«W¯^½êîî¾}ûv•R©Ôßß?888###==}èС¡¡¡Ê***¼½½ù|~uu5ƒÁ>|ØÑÑñøñã7nÜð÷÷Ÿ4iƒÁÌš5kĈéééééé#FŒ˜={¶.OYkœm0wîÜ#FܸqãÁƒÁÁÁÞÞÞUUUÌÖ†./à&vªõ ˜õè×¶¬X±bÖ¬Y7>IMMÕ} EEE*W2SµÔh0ŒÔ’º6‡‘šQŒîk¦‰ï/½úËÒ$Žt‰Åâ~ýú%%%Q³‰‰‰B¡P*•*—ÉÉÉáóù>¤f÷îÝûý÷ß+—Y²dɨQ£Zþ½Û’`¤Ré AƒvíÚE-OOOçóùoÞ¼a$‰DâààpìØ1jùÑ£G$‰ÎN™ÖO¶¨ªªW®\¡>-//wppPÌ2Uº¼€ÕíTë0ë5«¶u 88x÷îÝ VH\\ÿÅ•ÌT-5 #µ¤®Ía¤fšhu_3꾿ôí/Kgp«š®œœœªª*///jÖËË«¤¤$++K¥Øøñã{÷îMMõÕWÊ?üuñâÅ»w…1L^^^aaáÈ‘#©ånnnÙÙÙ]»veªf¸\n‡¨i.Wk×$ÍÀˆVO¶xûömŸ>}\\\¨YSSS“ÒÒRkC÷p£;ÕúÌzôk[7òóó»uë&‹+++ `Μ9ÙÙÙGŽчZj4FjI]›ÃHÍ4Ñ2rý4úý¥oY:ƒÄ‘®‚‚‡cccCÍÚÚÚr8œââbå2ööök×®522*--½{÷îîÝ»GMeBÅÅÅ«W¯ŽŠŠêر#³ÁäååeffŽ3ÆÅÅeúôé-|x®%Á´oß~äÈ‘ñññÙÙÙÙÙÙû÷ï5jTûöíuvÊ´~j´@¯^½~ýõWsssj699¹ººÚÙÙ™©ÚÐý¬n§Z¿€Yfmë†L&{ûöm|||¿~ý\\\=zÄt ¡–Qßæ0R3ê‚a¤fÔ}éÕ5£KHé’H$<OÑÆårMLLÊËË-<{öìI“&Lž<™Z²bÅŠ~øÁÕÕ•ñ`ªªªd2Y\\Ü’%KöïßoddÜ’wZX3Ë–-+((;vìØ±cß¿¿|ùr­TýÀ´{j´€L&;xðàÒ¥Kg̘ѣG¦‚aänt§Z¿€Y¯Y¡­­¨¨ˆË庹¹Ý¼yóêÕ«]»v ùøñ#Ó•„Zú•6‡ÙšQ †ÙšQùþÒ«kF—Œ[¾‰6ÂÜܼ¦¦F&“QW‰L&‹ÅŠÿ‡T;vìÇ¿üòKPPÐï¿ÿžœœüúõë­[·êC0<O.—oذÁÉɉãááqóæÍaÆé>˜úúúÀÀÀ1cÆÌ™3‡xòäI­tkÑ ìĉÚ=5Ú àåË—‹/~ñâÅš5k™ FëµÔ’`´~³^³þB[[—.]233³QQQîîî©©©>>>¨%}¨¥†mƒ5Ó0f¯•ï/½ºft =ŽtY[[ËårÅCf%%%r¹\ÑGMyñâEFF5maa±hÑ¢ªªª{÷îeff>}úô/ù‹@ ˜2e !¤oß¾ëׯg$+++Bˆ½½=õQ§NlllZ2 IK‚¹~ýúÇ#"",-----###ËÊÊnܸ¡³S¦õS£ÅŸïÞ½¢¢¢ÜON:E½ŸU\\ÌH0b±ØÙÙùöíÛÔò’’‡7n0ÌÙ³gûõëW[[K-—H$}ûö=wîœÎN™ÖO¶¨««4h50ãÁ0r«Û©Ö/`Ö£SÛ:“’’2f̘òòrj¶´´ÔÁÁ!==]÷‘üñÇÊ/23[K*Á0RKêÚFjF]0ŒÔŒºï/½úËÒ%ܪ¦ËØØ8((H$uïÞ]*•ŠD¢   êÕª„„+++___oo﨨¨5kÖLœ8±¦¦fëÖ­öööŽŽŽíÚµ³¶¶¦¶STTDéÑ£Çc*˜qãÆEFF®\¹ÒÌÌ,&&F …BF‚éÙ³§™™YXXXHHˆ\.ßµkW§N¨³Sfmm­ÝS£­®]»öîÝ;‡ÔÔTÅííí…u\º¿€›F»0ë5QÛºçéé¹jÕª%K–L›6ÍÈÈ(66ÖÉÉ©5ž0F-5×Í›7Õµ9º¯uÁ0R3꾿ôêšÑ)¦3WC"“É6nÜèííííí#“ɨ徾¾óçϧ¦322&NœØ¯_?ððð‚‚•PÃε|°À–#•J7nÜ8lذ„……1L^^Þܹs àîî>oÞ¼¼¼<Ÿ2­Ÿ­°oß>~Šm¬ ]^Àêvªõ ˜õÔÕ6#rssgΜéîîîåå©è=Ò1•N>fk©a0º¯¥&ÚÝ×LÁ0rý¨ûþÒ«¿,áÈÛÈ/ä@Ëàå ‰#ЂÄhAâ´ qZ8-H€$Ž@ G ‰#ЂÄôŸŸßÖ­[™ŽÚœúúú;wþøã...~~~‹-zñâõÑ«W¯AYYÓ1ªÒÛÀ€58¨*// LHH>|x\\ܬY³ÊËË.\¸ÀthL2f:½#‰ÊÊÊNŸ>mmmM-ñ÷÷ŽŽ^¹r¥P(d::Æ Ç Uaaahh¨P(|øpüøñ...AAAþù'µðÒ¥KþþþßÿýСC%E5AéééC‡urr  6¢r»955ÕÕÕUQþÔ©SB¡ÐÅÅ%<<¼¨¨hþüùýû÷÷ññ¹uë–bËF³hG0H‰dòäÉ<oß¾}›7o~ùòå¢E‹!~~~×®]«««£Š¥¤¤øûû×ÕÕ5Z˜"—Ë—-[6|øðQ£FÕÖÖ†„„‚„„„èèèÌÌÌ;vB¤RéO?ýÄápâããçλiÓ¦¦cC÷ìÙ3™LÖ°g‘Çã9;;çääP³‘‘‘S§NÝ¿¿Ý”)SŠ‹‹óóó,X@¥Œ&LX½zuVVV;’ÉdëÖ­Û°aCBBBûöíW­ZÕt`R©ôÈ‘#ÿþ÷¿×¯_Ÿ’’âãã3lذC‡ÙØØ¬[·NQ¬a`M´WÊÍ Ó†@ ß|}}cccUž~´~ýúÀÀ@ªõ8~ü8µ°®®ÎÛÛ{çÎ7nÜùùùÔò+W®ªÛ µ‘óçÏS³ÉÉÉýû÷W,ÿðáµüÖ­[ÊË322¨åAAAáááÔô¹sçúöí«(Ó00šÍ ÀgáG0HÏž=ËÏÏwttT,‘Ëå/_¾ …^^^—.]8p`JJŠ““S=Nœ8ÑhánݺBúõëG-´°°;vìåË—³³³³²²ÒÓÓ=== !999ÀÔÔ”*¦(¯.†®]»2]=Ð"ݺu«««+--µ´´Tù¨°°ÐÎÎŽš0`5allìêêúüùó©S§:99ùùù 4ÈÍÍÍÇǧK—.MïKцtîÜ™Nl_~ù%5ann®<­\¦a`UUUtšA€ÏBâÉÌÌÌÙÙùðáà ?9rdTTÔêÕ«ÏŸ?ÐDáW¯^B:vìHÍ>}útÒ¤IÇ Ï8‚AâóùOž<©¨¨ fïÞ½;a±XL2dHEEÅo¿ý–••5räȦ +;þ¼……Å&OžìêêZSSC-ïÕ«Wvvvuu55ûàÁƒÏÆÍÚÚ:00P$•––*/ß¶m›X,ž8q"5{÷î]jB*•Þ¹sÇÞÞþöíÛ»vírss[´hÑÙ³g]\\Ξ=«Y жåñãÇÍ]·a`h¯@[Ðã ¨¨Hùs7xðà/¿üráÂ… .,**ŠŽŽîÓ§‰‰ !ÄÔÔtàÀëÖ­_"‘øøøˆD¢¥K—Î;÷Ý»wû÷ï'„p8š›Cž™™9vìØ™3g:88={655uãÆ;w¦2°˜˜33³®]»îß¿ÿãÇãÆ{øðall¬¹¹¹‡‡Gvvvffæ‚ ! VVV¾¾¾tvmccÓ®]»;vÌ™3çùóçñññÍ ¾a`¦¦¦h¯@+8‚HLLLLLT̺¸¸>|8>>~íÚµ3fÌ0226lØ’%Küüü®\¹âïïOÍr¹Ü& +Œ?þáÇsçÎýâ‹/|||öìÙóücóæÍX¹r%u#{ùòåÓ§OïÔ©ÍÍ€!êܹsRRÒž={’““cccmmmOž<ùí·ßRx<^XXضmÛÞ¼yãèèxäÈ333¡P¸lÙ²}ûömذÁÖÖvêÔ©“'O&„:tÈÞÞžfâÈãñ¢££E"‘¯¯o‡BBBš•;6!íhG.—3€^+,,¼víZ`` —Ë%„\½z5"""55•鸀å¨fx<Óüz>£}ûö6l(++›0aBqqñöíÛUž—h HA¡ÇàóRSScbbž?nkk;hРeË–ãŸ.hs8-ŽhAâ´ qZ8-H€$Ž@ G ‰#ЂÄhAâ´ qZ8-H€$Ž@ G ‰#ЂÄhAâ´ qZ8-H€$Ž@Ëÿ©h¶ÆKMIEND®B`‚statistics-release-1.6.3/docs/assets/anovan_501.png000066400000000000000000001276401456127120000221500ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A€IDATxÚìÝg@Çßð¹£Ò;"¢‡Š¨TD%š ÑÅ.ŒˆÅŽVŠÆ+£&&± bLTDH4š€JQ¤ ·Ï‹ýçžËç{,ßÏ«-s»¿Y¼ñw3»³Š¢À»p™Ú$Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $ŽÐÎTVVnÚ´ÉÊÊJ]]]OOoĈ¿ýöSÁhhhp8œ/^4ÜÕ«W/‡sêÔ©V  ¸¸8//¯ªªŠ^URRâp8298]¡>ø`Ò¤Iyyy„ÒÒR‡£¤¤ÔÜ¡]CâíÌ´iÓV­ZõèÑ#ssó·oßÆÆÆŽ;¶µó3¹5cÆ SSÓ_ý•^íÓ§••—+ËÿßMMM­¬¬LMM Nž<ùÅ_PÕâ¡]Câ2Fÿ<ýì³Ï„[¾ûî;‡coo߯‘Hþ5üöíÛM›6 3fÌÈÊÊ’p4éËã:@«*,,<{ö¬¢¢brrrJJJIIɆ Á¡C‡®®®f:Þ¶–”””’’¢ªª*ÃcîØ±#%%åÙ³g?ýô!äöíÛ?fº¢À @¦,--éZüñ½…nÍíììÚ8’ׯ_Bî*))&²ÚÚÚ‡¢¡¡qþüùFÕ¬òôþ@§?5pà@@ !$1žžž„¨¨¨6¾hò/))‰þ&Ñ[JKK:I‰|ñ/^¼hee¥  àææ–——'º+%%ÅÅÅåÀEUUU-^¼¸Gnnn7nÜžèÁƒü±žžžšššÍ™3gèíµµµ_ýu—.]zöìyôèQuuuBÈóçφJ·~‘ß¾}»qãF+++55µ~ýú…††Ö××Ó»èx<žººº££ãåË—%ÄC·´7R¥¨¨H)//—pá¥øý÷ßmllÔÕÕÝÝݳ²²ÞY…ºº:eeeBÈõë×Å´¦ÎÕ0Bh×8‚Œ G@@ÉeâèëëKéÑ£ÇßÿM—œ9s&!ÄÈȨ´´ô=Ë‹µ³ôtBHFFG€÷WYYibbBÑÒÒúì³Ï6oÞ|åÊ•êêjz/ý-ãp8êê꺺º„{{{á..—Û«W/BÈþýû)Š7nÝ^7NUUUUUõþýûEÕÕÕuëÖÒ¿wwwEEÅÇSåííMg®öööŠŠŠô/Éæ&Ž3fÌ „èéé5J[[›@ï¢CúðÃ]]]•””îܹÓT<×®]ëß¿?!dþüù)))ÔǦÎ"¼J;wîÓ§= 2räÈwVAx/inn®XƒÖÔ¹FíG1º•éÒ¥ !äèÑ£TƒÄñ¿€…ô•ÈÈÈž={/[¶ìñãÇC‡UWW·¶¶ö 4úC¼©,­°°PAA"ÚµP__Oÿ_²mÛ¶÷,è­-55uìØ±jjjÂoІ†Æwß}GýûÅ'„lÞ¼™¢¨üüüN:Bnݺ%Ü5wîܬ¬¬êêê””BHÏž=é¯^XX!dúôéEåää >|Ò¤Iô !gΜÉÎÎær¹ŠŠŠOž<¡(jË–-ô1›•8¦¥¥Ñ1?{öŒ¢(: …‚‚‚û÷ïÓé×ëׯ)ŠZ»v­¢¢â¢E‹šŠ‡jð;S˜8J8‹ðRüüóÏE]¾|™NÄ›ª‚™™YÿþýéÌ•âééIý·•p. ¿„Ù‰#ÈÝÊDDD¨««›˜˜TTTˆ%Ž’‹v›6%%¥>}úÐË:u211Ñ××'„tíÚ•jºc ©Äñ÷ß'„‹m "„Ûå—Çt€¶Q[[{çν{÷2„þf=yòDØn^‡N9tè°›­°°ÞÙð®þýûÓ{KKK¿ÿþû9sæØØØÐ»¢¢¢è1„!C†Ðe233…‰#ý¦Ñ)]S‰cTT!dܸqÂ-tÉ+W®Ð»FÕ°¾ÆC58J8 })èq¡’’’¦C„ƒH4ƒiÓ¦•””PÿM%œ‹BâÈ.x8Z…±±ñòåËóòòBCCE·§§§9rDCC#))éâÅ‹7nÜ „ìÞ½ûùóçt@0dȬ¬,Ñ&øÊ•+÷ïߟ6m!¤oß¾Ož<¹ÿ>—Ë}úôiiiinnnÏž='MšôÏ?ÿ\½zuàÀuuuÿüóOS±åääBè¡.Qt/)½÷}ÊÓ–-[6`ÀssóÑ£GB<==ÅŽ áR¸¹¹Ñ7G<ØÊÊŠé?&€|¹ÿþÖ­[###•””lllæÍ›chhXWW÷ðáCa1ácÅô8,ÝïHQPP000.BìììNˆX½z5!¤¬¬¬ÿþóæÍSRRZºt©‡‡ý‘²²2уëééÑCÕô‰Tþ%ù¡fŠ¢!ÂB !uuuuuu„úúz±4OËÎB¯Òð‰V§)œ¯°°ðèÑ£:::Í=°Gh-‹-úð÷nÝšŸŸ/ÜHçsǧ#+++KKËúúzzt†Âáp6lØ`nn.ÚÊÓÝ ]»v%„¸¹¹)((Ñã¿uuufffgÏž>|¸­­m\\‘ØZ™™™BD£*))©¬¬|ðà½×ÛÛ[øLôÙ³gßY¾Ñ³«¨¨°µµµµµíÓ§¹¹ù«W¯&NœØ£Gº ‡ÃY»v­³³³••Uuuõ¸qã„·»ˆêӧϘ1c²³³]]]§OŸ>jÔ¨;w~øá‡äߦ&66ÖÃÃãÃ?¤GE(Šrtt´²²ª««ëׯŸ‹‹Ë‚ D¿Å¢Ç„N:eii9eʺí3fŒ££cmm­ŸŸß|пÿQ£FUVVöë×oĈ7n¬««›4iRSñBè{uvîÜ+z^ g‘ùEò¹šŠÚ%¦ÇÊmDïéÂYlè{=zDÑÔÔÌÏϧ(*==]YY™Ëåæåå5¼%Ql˪U«!Ë—/§WUTT!EEE?üðù÷yÀ·oßÒíTTT”„G˜çÍ›GáñxÉÉÉEÓAêêêÒ7¤¿Oy ÏQІ$áRPÿÞtâÄ ¦ÿžò¨ªªjÇŽýúõÓÔÔÔÑѱ±±Ùµký`µð[ö믿öêÕËÀÀ`öìÙTÌ•——ûùù™™™ihh¸ººþþûïôöÊÊJºíÃ?\½zõW_}E™;w.EQ÷îÝ£ ÌÍÍ:ôÎéxÄìÞ½›¢¨ÚÚÚuëÖõîÝ»sçÎ}ûö NÇóæÍsssuuuggç?ÿüSr<ÉÉÉ=zôPUUýæ›o¨ÿ>UÝÔYÄ.…„ÖRÊMrÄ"„v ‰#ȘX+CߺGDŽ™2e !ÄÐÐpôèÑt?œ¿¿?ÕXË%eâøã?ÒÅFŒallL߬sòäI Maqq±˜¾¾>}ŸÝ"çää¼gyéÛÙ¦.EQ~~~„{{{úÖr’ô“^½SMM͵k×ÝUYY™ÐÆU“@›ÁP5´.—/¾øBtË÷ß¿nÝ:}}ý«W¯ššš†………‡‡¿Ï)<==û÷ï_WW—šš:gÎBÈü!á#ººº·nÝÚ°aƒ³³suuµžžÞرc7oÞüüùó¼y)I¸>>>=zô¸ÿ~jjjkým@"eee77·Fw©ªª:88ÈO<m†C5çu“ò©¶¶öÖ­[ïߤ޹sgÀ€Ò¿ãµ¹å µ•––jkk+**ÒË€l!q© §¤‚Ĥ‚Ĥ‚Ĥ‚Ĥ‚Ĥ‚Ĥ‚Ĥ‚Ĥ‚Ĥ‚Ĥ‚Ĥ‚Ĥ‚Ĥ‚Ĥ‚ÄQZÏž=›;w®½½½³³óŠ+^¿~ÍtD„RZZºråJ{{ûyóæåää0°‡¢(¦chÁgŸ}¦««ëïï_[[»råÊ>}úìܹ“鸈ŸŸ_ffæªU«455#""²³³/\¸Ð¹sg¦ãRd:€öáñãÇ=úé§ŸúôéC™8qâ7ß|#¸\tÙ“*++ccc÷îÝëââB‰ˆˆ8pàíÛ·ÝÝÝ™ X‰£´ÆoiiI/øá‡ŠŠ¸tðùùù·nݺÿ~QQ‘²²²¡¡¡­­­£££¦¦¦ OѧO[[[zUMMMEE¥¤¤„éª;a¨ºyJJJ²²²¶lÙbeeÜh>ŸO/DGG3¯läææššš2*ÕájD377g:„–xòäÉÎ;oÞ¼Ù·oßž={jkk×ÕÕ?zô(;;{òäÉ3gÎÔÐÐùyûí·%K–\¼x±{÷î ÷r8œ¦>Øèÿ(ò(/}ùÝfÍ3oÞ¼¤¤$}}ý-[¶H(–––Æt¤2ÖNÿóîh•b_²³³™¡%V¯^‘‘1eÊ”íÛ·+((ˆí-++;uêÔäÉ“§OŸþùçŸËê¤ 22róæÍ³gÏn4k$„XXX4«ujîÿŽ(ò¹|ıyN:õêÕ«}ûöyyyݼySEE…éˆ@îŒ7ÎÆÆ¦©½šššsæÌñöö~øð¡¬ÎøäÉ“%K–dgg¯[·îË/¿dúkáÙ©dggÿóÏ?ô²ŽŽÎâÅ‹+**îÞ½Ët\ $dBŠŠŠÖÖÖ29ݽ{÷ÆgffvùòedЪ8JåîÝ»€^-++ªªªLÇ]]]¿¿ÿÔ©S·oß®««Ët8Àrª–Š››Û–-[Ö­[7iÒ¤ªªª;wòx<+++¦ã€Ž...îÅ‹½zõŠnäñxúúúL‡,„ÄQ*zzzß~ûíöíÛ'Nœ¨ªªêää´yóf%%%¦ã€ŽîñãÇEˆnܱcÇèÑ£™ X‰£´ú÷ïÉtÿ1sæÌ™3g2tHd,11QšbÚÚÚL Ð Hdì矖¦˜……Gh_8ÈØæÍ›™ U`: G G G G€V”ššúâÅ BÈ7–.]zìØ1áËKÚ$Ž­åäÉ“Ÿ~ú郞?>þü—/_îܹsÏž=LÇÐBHZË¡C‡ÝÝÝcbbÌÌÌ>rîÜ9¦ãh!$Ž­¥¨¨ÈÅÅ…’˜˜èêêJáóù………LÇÐBHZK·nÝbccóòò®_¿>dÈBÈ­[· ™Ž  …8´??¿ýû÷6ÌÒÒÒÎÎnß¾}ëÖ­›2e Óq´^9ÐZFŒ“““ckkËårmmm9âääÄt\-„Ä@ÆŠŠŠ„Ë***–––Ý»w§÷êëë3#@K q1gggÉÒÒÒ˜Ž %8ÈØ•+W˜ U q±®]»6µ«¦¦&44tåÊ•LÇÐHZËëׯwïÞ››+ÜRRR’——ÇT☞žÎápn§(Š^ ÷Š­¢<Ê£|£å;&$Ž­eÍš5ÉÉÉC‡=sæÌÔ©S«ªªnß¾ýí·ß2………äÛ+ÅþG|ç(ò¹|DŽĠµ$$$lݺÕÍÍíÙ³gC‡µ··ïÝ»wLLŒ½½=Ó¡´û'OMM}ñâ!äÆK—.=vì˜@ hÁqJKKW®\éàà`oo?oÞ¼œœ¦kò®ªªJOObiiIwõ¹ººÆÄÄ0@ ±úè#ŸáÇ3@ ±üÇ¢¢"BHbb¢««+!„Ïç6÷8ùùù}úô±µµ¥WÕÔÔTTTJJJ˜®›q8œ¬¬,¦£x/ ÚÚÚ‘‘‘ÑÑѺººãÇg:.€byâØ­[·ØØX--­ëׯO›6rëÖ-CCÃæ§gÏžgÏž®^¼x±²²ÒÆÆ¦©ò|>ŸÍô ÑÉDXƒ}•bSèWóµ÷¬‘¦¬¬¬¬¬Láñx<épÞ ËG??¿€€€½{÷Z[[ÛÙÙíÛ·/""bùòå-> @ ˆŒŒÜ¼yóìÙ³éÿÛž÷‰™››3*Õ!j$6Zvv6Ó½—¦žžþ믿˜  %Xž8Ž1"&&&''ÇÖÖ–ËåÚÚÚ9rÄÉÉ©eG{òäÉ’%K²³³×­[÷å—_2]9VKÙa×®]Âåššš‡>|ØÛÛ›é¸Zˆ‰cQQ‘pYEEÅÒÒ²¢¢¢¢¢‚î#,**Ò××oî1ïÝ»çíí=lذýû÷ëêê2]Eö`eÊHû™êææÆçó-Zäíí­ªªÊttÍÆÎÄÑÙÙYræ%×ÕÕùûûO:uáÂ…LW€=Xœ26¥G555LGÐBìLéùÒd(..îÅ‹½zõŠnäñx-è¹ÒaRÆ×¯_‹®–••íÝ»×ÄÄÝÐN±3qìÚµkS»jjjBCCW®\Ù¬>~ü˜¢¨€€Ñ;vì=z4ÓuhOè|‘t€”‘æèè(¶EIIiëÖ­LÇÐBìL…^¿~½{÷nÑiJJJJòòòš›8Μ9sæÌ™L× ë ]ŒbŽ~ »Ú/–¿9fÍš5±±±]ºt‰‹‹ëÞ½{—.]ÒÓÓ#""˜Ž € jjj´´´***îúý÷ß¹\.½‹Ãáp8Š¢Þ?k;ã©S§8 ÈÃÈñÿÊk ))IôŽ€ö…å=Ž [·nuss{öìÙСCííí{÷îÓÔäj@Ž)“&º Ÿ?¾jÕª²²²†»JKK½½½)ŠRWW'Òõ2¾ótžÑÕÕUtšýêêê©S§º»»3}ñˆ¯¯¯hT€Nj!„Çã?žéZ‚å=ŽUUUzzz„KKKúIjWWט˜¦ãkÂBšhVGÛ°aC—.]¾ûî»F?îïïÿôéSBHyy¹”Y£äÓ5uFccãDüóÏ?#GŽ”‡;ÿù×öíÛMMM¿ÿþûääääääcÇŽ™™™Y[[3 @ ±1=fÌ>Ÿ?dÈ?ÿü³-c~ðàÁ¥K—²²²ÚøZ½Ó€"""¾ùæmmmBHiiixx¸­­m£ÃñM)** ///oª@nn®»»ûäÉ“éUEE–7ìÀ ö·/ÊÊÊÊÊÊ„Çãñ˜ }æŽïL"ÕÕÕéGŽÉÊÊ:}útsÏ%–ª67m%„ìØ±cüøñr8!ppðÔ©SÝÜÜzõêEIMMÕÕÕ=~ü¸ôGØ»wïÎ;%—ÉÍÍurrrqqaººÀ~,O›zzú¯¿þb:4ù%LIÓÏ8 ûÌ„=a ŸO¡g™h.–'ŽNNN¢«nnn|>Ñ¢EÞÞÞxy@³¼óÕ/FFFFFFôòóçÏ !|>_MM­µ»r劓“—+Gúyzzúøøzzz6Z@†yÛË—/¹\®ƒƒÃª««7mÚ4wîÜK—.‰=”Ó§€ˆå‰cC=zô¨©©a: €öDÎßxíÚµÙ³g3Å$%%ÑO¨¤¤¤´ö¹ŒŒŒ’““…«[¶l8p`||¼‡‡Ó—Xˆå‰£Ødieee{÷î511Aw#€4$§ŒÎÎÎMíruumD³Ñ3fgg3|™¶0ÊÊÊ©©©:::FFF7nÜøí·ß¬¬¬¦L™Òz§ÖÐÐ000(**bú;±}z```EEÓq´ËÇàà༼<77·‰'Nœ8ÑÍÍ-77788˜é¸šG4á£(ê¹cÃò¸‘‘!!!oÞ¼¹qㆂ‚!dÉ’%<ضmÓq´ËG“èèè 6 8pРA!!!ÑÑÑ|ðA‹X[[kkk[UUÅtͤ"ìqDÊȈ¸¸¸… ЫvvvË–-‹e:.€bç=Ž:::úúú„KKKKKKzWNN!„Çãµà°EEEáááåååL×::º±©\Þ%š/âÞ ¦ÔÖÖvîÜYt‹A}}=Óq´;GOOOŸÀÀ@OOÏF ´à©ç½{÷îܹ“éš"Å3}ü¡?ùaooôèÑÍ›7Ó«eeeááá _… Ð^°3qLJJRTT$„¤¤¤È꘾¾¾¾¾¾wïÞ8q"ÓõƒŽH˜ Jè>ö2 oj$èndÔÊ•+§L™âáá!&MšôèÑ#SSÓ­[·2@ ±3q¾ZYY955UGGÇÈÈèÆ¿ýö›••U̾Ëçó !ÑÑÑL_ ÙÈÍÍe:„Ž^©¬¬,òo H/ggg‹èÞ½»è®w–‡¶all|áÂ…K—.effjhhÌ™3ÇÕÕ•ËeùÍåÀbìL…Nž<¼oß>Š¢æÏŸokk»sçÎÒÒÒ ´êyY68!¤½OÂÌŽJ5:ú,ìel8W6 F«Ûo¾[UU•––¦££cff6vìXBˆ@ (///((8qâIJe˘°qeeeÚÚÚÏŸ?¾qË–-+V¬ÐÓÓ+**b:ÌV¬ò©S§¼¼¼ÄÊ|ýõ×áááLG XþÃ÷СCîîî111fff‡ 9wîÓq¼/á˜dG=|øpĈ&Lððð7nÜ‹/æÍ›×¿{{{ww÷Ç3‡ÃIOO—pëBrr²½½½Ø?§ìììÑ£GŸ={–ΫŽ;ÆHð-®²ä©OVÙÕÕuÁ‚JJJ_ýõ¦M›ÌÍÍÜÝÝ™® €¼`ycQQ‘‹‹ !$11ÑÕÕ•Âçó ™Ž  å0½ŽüÛ¶m›ADD„ººúþýû?ûì3 z£ººº™™YÛ‡DÿÆ _ˆÚè³SÆ ûý÷ß~0;;{ذa¿üò‹Aaa!ÝÊ?±¯‰ôU644üùçŸ×¯_¿|ùrBHzzúÑ£GûõëÇt…äË{»uë›——wýúõ!C†Bnݺ%‚h_ÐÅØ^>>#GŽ´µµåóùmÿÖA±´©Ñ9ä¯^½JQÔ¾}ûĶggg^¿~}õêÕL\Ë–{çפÑ*§§§çææN˜0’™™yáÂ…‚‚‚®]»2]yÁòÄÑÏÏoÿþýÆ ³´´´³³Û·oߺuëÚàáÙBÊØ¾”•• '‹¥gÿ¦˜kwÁ“'O¾ùæ›§OŸÒwþ%%%1Ô»5ì_”æ}K´ôôt…ÄÄDkkëÞ½{kjj–••1]!9ÂòÄqĈ111‡:zô(—˵µµ=r䈷·7ÓqH )c;ÅŽG§ êëëû÷ïÿüùóS§NB¾øâ‹ÒÒR¦ãz‡†i¢ô3›¾yóF ¬_¿~þüùJJJÝ»w÷ð𨬬dºNò‚ M›d¦¦¦Ý»w§%[[[;99½ÏÑlllÒÒÒ„Óý´¤Œ +b‰”ôYÔ•+WzõêuãÆ ###BHqqñÕ«W™®P+RSS£(êðá÷oßž8qâéÓ§ bbb˜Ž @^°üá˜òòòÅ‹ÿñÇE¥¥¥MŸ>ÝÔÔtýúõjjjL‡Ð$<þ‘‘‘t¦Õèj@@@Ç#Ì›õV¡„„„ˆÞ”ùöíÛÝ»wöÙgm‹ë+\•òƒôMðææægΜùå—_´µµÛ×´¯­Šå‰cHHÈ›7onܸA? ¸dÉ’U«VmÛ¶mݺuL‡Ð¤Œìн{÷þù§©UÂDâH>U-ýGè§yŽ?®©©™˜˜8mÚ4ÿ¶¾eõmÁ§lll455wïÞ­¢¢âææöòåËüü| ¦k /Xž8ÆÅÅ…††Ò7§Bììì–-[¶jÕ*$Ž o2²É¥K—˜A6¾üòËåË—¯_¿>00¾µÑÎÎîÓO?e:®V¤¢¢2kÖ¬ˆˆˆÞ½{ÿõ×_Ë—/ïÛ·ï°aÃ˜Ž @^°üÇÚÚÚÎ;‹n100¨¯¯g:.€ÿ‡{AniiiÅÅÅQ5~üxú÷öÙ³gYÿöó;vГ¥{zzvéÒåÒ¥K L /Xž8ÚÛÛ=zT ЫeeeááᎎŽLÇíG„äÍý¸ØvÉï·h_}õEQ¢“ÝòùüóçϾ|ù’¢(¦clõ*s¹Üׯ_¿|ùò‡~½9Xž8®\¹òÎ;`Ò¤I®®®………ín[`а#Öp‚Ѧ†~\¬‹QÂ)ä Ëïq466¾páÂ¥K—233544æÌ™ãêêÊŽùÕ íщØ8$ìmôã72@»ÅÚıªª*--MGGÇÌÌlìØ±„@P^^^PPpâĉeË–1 t,®DѬ±©÷[ ³lïâãã%xÏ e˜ÂÎÄñáÇ>>>/_¾$„ôîÝ{ÿþýÁÁÁqqq555„‡ƒÄZ e)°—Qš4Y#;øúú —«««}}¿5Ç;þ<Ó1´;ÇmÛ¶DDD¨««ïß¿ÿ³Ï>ÓÐР7ª««›™™1 ´29±´¯Ñ’ÍJqƒ#kgmŒÝºukpp°½½=‡Ã¹{÷îêÕ«­­­™ …Øy·ßƒ¦NjgggiiTTTäãã3räHz2[Ñ· H |`Eø8KÃî}üEÂÇÝ,³k×®   gggeee%%%GGǵkמ={öõë×L‡Ðììq,++ãñxô2=û7ŸÏg:(h¯$'sb{>þòÎ\É"‹åççkhhˆnQSSSWW×ÒÒb:4€–`g#!NCC¯!44`À€ˆˆaÿbiiixx¸­­-nK€vŠ=Žm “ì@S‚ƒƒ§NêææÖ«W/BHjjª®®îñãÇ™Ž  …X›8FFFŠN÷/¶Àt€Ðî5:À(“èèèË—/geeq¹ÜiÓ¦ >\II‰é¸Zˆ‰c÷îÝ…O56\%Háý ‹¤§¬¬lkk«¯¯ïääT]]¬Ú5v&Ž—.]b:`'¤ŒÐ,ååå‹/þã?(ŠJKK›>}º©©éúõëÕÔÔ˜  %ð €Tðì ´@HHÈ›7onܸ¡  @Y²dɃ¶mÛÆt\íý}d:Šv\Ö\@™Ã•y'$Žï€”Z,..náÂ…ô¤`„;;»eË–ÅÆÆ2W;&6I*Óá´ËŠˆÍ2Ëô•#¸2Ò@âÐ$¤Œðžjkk;wî,ºÅÀÀ ¾¾žé¸Ú+±ïc{Ï©ˆèËв‰Â•‘G€F e™°··?zô(ýŠjBHYYYxx¸££#ÓqÃäç­ôí=ùn=¸2MaçÃ1ñññ’ 8995÷˜uuu»ví:s挚šÚ¨Q£.\ˆR¬„Ç_@†V®\9eÊ@0iÒ¤G™ššnݺµ5ÎU[[ëäätóæMUUU¦ë í†ü¤°òW¦)ìL}}}…ËÕÕÕ€î@¢÷óx¼óçÏ7÷˜aaaçÎ !„¬X±BYYÙÏÏ銂´$Ϲ(ú-ȱ±ñ… .]º”™™©¡¡1gÎWW×Öx¯UQQQxxxyy9Ó5n]t' ¾¤¬©t@ìL…³6ÆÆÆnݺ588ØÞÞžÃáܽ{wõêÕÖÖÖÍ=`MMMTTTPP››!$000,,Ì××/6lDh±ÆZ,eD/2ÈÖ±cÇ 4vìXá–ªªª5kÖlß¾]†gÙ»wïÎ;™®kûž¶ßÜ‹©Š°æÊ®Œ”Xž÷ìÚµ+((ÈÙÙYYYYIIÉÑÑqíÚµgÏž¾:VJééé...ôª‹‹Kqqqjj*ÓõƒwËE›ᨴð^FäŽ [›6múâ‹/D‡8êêê~ýõWÙžÅ××7--íäÉ“LW·P"˜Ž¥]V„5Pæpe¤ÁÎG¡üü| Ñ-jjjêêêZZZÍ:NAA‡ÃΩahhÈápŠŠŠš*Ïçó !ÑÑÑL_ÙÈÍÍe:„÷’-¶…γ²²ºwïÞpoÃ-íB{ÿ3±ÕâÅ‹W­ZuïÞ½eË–)*2ßäÒ­SZZÓ@»Ä|+Öª ñÍ7ßhkkBJKKÃÃÃmmm›Û«TSS£ªª*˜ær¹***¥¥¥M•g_£lnnÎt² ^ØË˜MooXµö[ÙöySÚi/ÊÓÓÓÑÑqþüù)));wî›§í±¯u€¶Äò¡êàà༼<77·‰'Nœ8ÑÍÍ-77788¸¹ÇÑÒÒªªªΩ!ª««›Ûm ŒŽ> 'tƒýÛÕ¡5ðx¼³gÏêêêŽ7îs>È3–÷8š˜˜DGG_¾|9++‹ËåN›6møðáJJJÍ=޾¾>EQ%%%úúú„ââbŠ¢„#× ÿšzªš^•üÌ5ÀûÓÐÐØ³gϾþúk¦ch9–'Ž„eee[[[}}}''§êêêd„ ]]ÝøøøÑ£GBnß¾­§§Çãñ˜®¼ƒ”“2"_„VräÈuuuz™Ãá|õÕWÖÖÖW¯^e:.€byâX^^¾xñâ?þøƒ¢¨´´´éÓ§›šš®_¿^MM­YÇQTTôòò ëÖ­[}}}XX˜———<ÜçMÁ<ÞÀ ŒŒ }}}}}}±Û4 ¼¼¼˜ …Xžú„„„¼y󿯮®®„%K–¬ZµjÛ¶mëÖ­kî¡üýýkkkýýý !žžž ,`ºrÐ8¤ŒÀ8OOOŸÀÀ@OOÏF à h§Xþ(€««khh¨]ïÞ½>|H¹víÚªU«âââZï¤|>Ÿeÿ+@–sÍJÛK¥¤Ç¾µßJUUU)***))ÕÖÖ6Z@YY™‘ÀØ×:@cùSÕµµµb“_Ô××3Èç_˜µ䄪ª*};õÔ©S•ÿ«ººzΜ9LÐB,ª¶··?zôèæÍ›éÕ²²²ððpGGG¦ãÙÀ¨4ȧÊÊÊ}ûöB’’’BCCEwdff2 @ ±T}äÈuuuz™Ãá|õÕWÖÖÖW¯^e:®¤ÑD°Ñb£ÌÀ:ÞÞÞ€~ǽ(¼÷Ú)v&Ž:::úúúúúúÙÙÙ¢» ¼¼¼˜°¡ûÿšÊqc"°[tt4Ó!È;GOOOŸÀÀ@á,~ü822²oß¾²:`mm­““ÓÍ›7UUU™®œ\@ÊЯ¯¯p¹ººZ Ð÷oBÇ;þ<Ó1¶W¬™´U4AiËŠ0u^ù‡+#%–'ŽUUU²:ZQQQxxxyy9ÓÕ’ øv4åŸþ¡bcc·nÝlooÏápîÞ½»zõjkkk¦lߨÔì0U6]CÙ•y'–ßj²qãÆË—/çåå‰hÁ¡öîÝëìì|æÌ¦ëÄ<<û ¥]»v9;;++++))9::®]»öìÙ³¯_¿f:4€–`y£···@ ð÷÷ÛÞ‚wUûúúúúúÞ½{wâĉLW‹1èeh–üü| Ñ-jjjêêêZZZL‡Ð,O£££9/ŸÏgðìï£{÷îô‚èÄé¹¹¹ôvzcvv¶äòíBnn.Ó! Fì7`À€ˆˆˆo¾ù†~>¯´´4<<ÜÖÖ·Þ@;Åòık×®„üüü'Ož899UWW«¨¨´Áy[У)ÄW$"÷¡7ÚËØÞo477g:ÔèD¥´GÁÁÁS§NussëÕ«!$55UWW÷øñãLÇÐB,OËËË/^üÇP•––6}útSSÓõë׫©©IþàÅ‹.\H/Ÿ?žÇã1]•¶F§Œt:ØèÞb™¢üLK ?LLL¢££/_¾œ••Åår§M›6|øp%%%¦ãh!–'Ž!!!oÞ¼¹qㆫ«+!dÉ’%«V­Ú¶mÛºuë$ÐÃÃãï¿ÿ¦—ß™e²CÃîF‚ÛÞ›²²òèÑ£™Ž@6Xž8ÆÅÅ…††ЫvvvË–-[µjÕ;GEEE±[ÚY¯áìh¸ à=ÙÛÛ7º/¯€vŠå‰cmmmçÎE·Ô××3—ÜiAcÃW80] ¹³k×.árMMÍÇ>ìííÍt\-ÄòÄÑÞÞþèÑ£›7o¦WËÊÊÂÃÙŽKŽˆ=û"šÿ½3‰dÍ+Z‰Ø«ÝÜÜø|þ¢E‹¼½½ñö)hX>øÊ•+ïܹãáá!&MšäêêZXX¸zõêÐÆÆ&---~£óxS"¤9H³ @=jjj˜Ž …XÞãhll|áÂ…K—.effjhhÌ™3ÇÕÕ•ËeyºüN˜Ç mˆ½!¦¬¬lïÞ½&&&ìøñ ;ÇøøxÑU######z9!!4?ê82´¥†7Æ())mݺ•é¸Zˆ‰£¯¯¯p¹ººZ Ðò€ÂãñΟ?ÏtŒm )#@Û»råŠØt7@ûÅÎAÛþµ}ûvSSÓï¿ÿ>99999ùرcfffÖÖÖLئ½—ÚÀ’%Kºþ×Û·o§OŸÎt\-ÄÎG¡]»v9;;Ó«ŽŽŽk×®9sæÒ¥KéWDzzQYY¹oß>BHRRRhh¨è®‚‚‚ÌÌLéUWW·k×®3gΨ©©5jáÂ… §¾:xð èYtttnß¾Íô5vby☟Ÿ/6·šššººº––Ó¡µ"L‘À¬ººº¬¬,zY¸@ãr¹kÖ¬‘þPaaaçÎ !„¬X±BYYÙÏÏO¬Lnn®»»ûäÉ“éUEE–7ìÀ –·/ ˆˆˆøæ›oèþÅÒÒÒððp[[[¶ÎV.Fy ©©¹gÏBÈìٳ酖©©©‰ŠŠ rss#„†……ùúúŠM ‘››ëäääââÂt½€ýØy£Pppp^^ž››Ûĉ'Nœèææ–››Ìt\²‡äСC‡„Ë-xgUzzzEE…0#tqq)..NMM+–››kbbR]]]^^Ît€åXž8š˜˜DGGoذaàÀƒ ‰ŽŽþàƒ˜ŽK–2È¡œœœˆˆˆŒŒ BHMMÍÂ… ­­­ tìØ1éRPPÀáp èUCCC‡STT$ZF äçç>|xÀ€¶¶¶ãÆ{ðà„còù|>ŸÏôå€öŠå‰#!DYYyôèÑ ,5j”’’Ó5¢¦¦FKK«¢¢B¸eË–-Âÿ9Dµ8elx:BÈÑ£Gy<ž¦¦¦§§gnn.Ó— {ðàÁرc¯_¿N¯îÞ½ûÚµk>>>3gÎ ‰‰‘ò8555ªªªÂi.—«¢¢RZZ*ZæåË—\.×ÁÁ!..îÚµk|ðÁܹsß¼yÓÔ1ÓÒÒÒÒÒ˜¾BÐ^±üG{{ûF·ÿõ×_mÃ;UyþüùªU«ÊÊÊD7fgg=zþüùôªX¾+ù^FÉ{=Ýþýû¿þúëÝ»wøá‡Ë—/Ÿb™=lذ>ú¨á‰t)c£%=@ Ø´iSppðìÙ³ !:u:tèÓ§O»víÚf €Mîß¿A/gdd}üñÇôªÍ‰'¤<޾¾>EQ%%%úúú„ââbŠ¢ÒÐÐ000ΖU;‰pssóõõݲe˪ªªÚàìb™"EQ Ÿæ^½z5EQ7oÞ۞ݭ[·ªª*a× ”Ó½kôtééé¹¹¹&L WÝÜÜ(ŠBÖÐbååå ôò­[· {ôè!Ü+v—ˆºººÂw¨Þ¾}[OOÇ㉖‰ŽŽ3fŒ°¡xõêUaaaÏž=™¾ÀN,OêÑ£GMM ÓQ¼ƒ@ xúôiXX=夔)c£=šÒHOOWPPHLL´¶¶ÖÒÒ9rdzz:Ó× 333f{111îJNN–þW™¢¢¢——WXXXJJJRRRXX˜——=Mcdddtt4!ÄÙÙùÅ‹K—.MLL¼s玿¿¿µµuSwé¼'–U¿~ýZtµ¬¬lïÞ½&&&rþ®Ø‚‚.—ëêꚘ˜H;vlBBBii©äyËéÍäŽoÞ¼ëׯ ÕÑÑY¿~½‡‡ÇÇ;wîÌô•h—¼¼¼¶oßÎáprrrîܹãããCñññh8ƒ·þþþµµµþþþ„OOOúFIBȉ'x<ÞÈ‘#544¢¢¢¶lÙ ¨¨èêêºtéR¶NU Œcyâèèè(¶EIIiëÖ­mÀ;ïql”©©)!dûöítùÒÒRƒ«W¯~öÙg­¤ššEQ‡vpp „DFFÅÄÄŒ;¶Í.›xyy•••>}úÍ›7óæÍ£§ï^¸paLLÌ„ ¦M›&ý¡8Î’%K–,Y"¶ýÒ¥KÂessó0]ièXž8^¹rEl‹A›u7Š>¤B¤{¡K£O´hii?þ\š3Šö4H™§B¬¬¬èUmmmcccÌÈÐbgîܹsçÎݰqãF±— ´/,¿ÇqÉ’%]ÿëíÛ·Ó§Oo˨½³¤ºº:]òôéÓýúõ{õê½½¨¨¨   wïÞÍ:ôcÖ666šššÿý7½úòåËüü| ‹¶¼J¬×½{wdÐÞ±³Ç±²²rß¾}„¤¤¤ÐÐPÑ]™™™LøÂ>BáëÂ<<<æÍ›7mÚ´ÀÀ@EEÅU«V988¸ºº¶R***³fÍš5kÖž={´´´–/_Þ·oßaÆ1}a@¾°3q¬««ËÊÊ¢—… 4.—Û載ŒLÇÅÅ _GKÑÒÒŠ‹‹ ?~¼’’ÒǼmÛ¶V½Û}ÇŽŠŠŠ¾¾¾¥¥¥#FŒˆŠŠN&@ká.íÅìÙ³:ÔÆ'åóùï|£—äy¼åMvv¶¹¹9ÓQ R®Fl­ƒ¤i$`ù=Ž¢Yc}}ýûª´´tåÊ•öööóæÍËÉÉiÙqZü‚if±s¨š’““sîܹO>ù„ÇãÕÔÔ,_¾<&&FKK뫯¾jÖ\BAAA™™™aaašššÞÞÞ.\hÖL‡í«—ZŒžõ´µµñ´/ìL>ž^މ‰8p pWrrr×®]ßy„‹/òÿ•‘‘Ao|ò䉗—×®]»Ö­[·xñâ¦>‹›–€•ØÙãèååµ}ûv‡“““sçÎBˆ@ ˆ?pà€ŸŸß;àáá!|Ÿšš!äÞ½{ÞÞÞÆ Û¿¿®®.ÓUhk¬MËÊÊNŸ>ýæÍ›yóæ¹¹¹B.\3aÂi¦ãQTT}«l]]¿¿ÿÔ©S.\Ètå@Þ½yóFš×RKY @~°3qäp8sçÎ;w®èÆ€€€7¶¬™Ž‹‹{ñâE¯^½„#à„§¯¯Ït]@îLŸ>ÝÖÖvêÔ©MÝ“˜˜xäÈSSÓ•+W2,@3°3qlTSϲHãñãÇEˆnܱcÇèÑ£™®Ȩ¨¨ƒN˜0ÁÒÒÒÎήGZZZõõõÅÅÅ>¼uëV}}½ŸŸŸp¶€ö‚åïªfûÞËÊ÷³¯Rì«Q{¯Tuuullì­[·>|øòåKeee##£¸ºº::: 'íjKìk u G€¶¤¢¢âéééééÉt 2ÃÎéx@æ8€T8€T8€T8´– &ˆm)++›>}:Óq´žª±ÊÊÊ}ûöB’’’BCCEwdff2 @ !q±ººº¬¬,zY¸@ãr¹kÖ¬a:@€Bâ cššš{öì!„Ìž=›^`ÜãÐZ¬¬¬222˜Ž@fÐãÐZnܸ¡¢¢Âãñ˜@68´–íÛ·/_¾œ~Eµºººp»¾¾>Ó¡´G€ÖâééIQÔ½{÷ͧ¥¥1@K qh-ÑÑÑL‡ KHZK^^ž„í*** `:F€f@âÐZ6oÞLJs8‡#¸\®ŠŠ ½×ÜÜü§Ÿ~b:F€f@âÐZ>ûì³cÇŽ­_¿ÞÁÁËåÞ½{wÍš5‹/>|8Ó¡´æqh-?þøãÚµk]\\”••V¯^Át\-„Ä µ¼|ùRMMMt‹ššZAAÓq´G€Öâààñúõkzµ´´4<<ÜÚÚšé¸Z÷8´–µk×NŸ>ÝÍÍ­W¯^„ÔÔT cÇŽ1@ !q”Ö³gÏ6nÜx÷î]eeå!C†,[¶L[[›é @®ž?þêÕ«µµµ^^^}ô‘ð©jY©««Ûµk×™3gÔÔÔFµpáB‡ÃtÕ€8JE ,X°@WW÷Ûo¿­­­]¹råÚµkwîÜÉt\ ï222úõëçááqãÆß~û­´´tÊ”)\®,o ;wî\HH!dÅŠÊÊÊ~~~ ‹ÑÙ$‡Ã¡(Šé«ÒD³çRe€6€{¥òøñãGöïßßÁÁaâĉþù§@ `:®62räH¦C@¥:bXP©“'O~úé§ŸßÆg¤ëÛ¡ªÜ1ÏÛ1«Ì,$ŽÒ?~¼¥¥%½üá‡**¢³ÞáСCîîî111fff‡ 9wîœ O‘žž^QQáââB¯º¸¸§¦¦Š–ëed$‘v@ö#·aÃBHIIIVVÖÁƒ===% 6±ï‡ûjÄÊJ±¯Fí]QQÒ%&&ºººBø|~aa¡ OQPPÀáp èUCCC‡STTÔTyá?’6þ×Ò–§KOO·°°­©……‡Ã±°°`k•;òy™=u„ıyæÍ›—””¤¯¯¿eË–¦ÊÐoèÖ­[ll¬––Öõë×§M›F¹uë–¡¡¡ OQSS£ªª*üK¿Ò°´´´ÑÂÂÖ‰Ãá°»¥ëdí8wv´6 U7îâÅ‹üedd·Ÿ:uêöíÛŸ|ò‰——Wuu5Óa€\óóóÛ¿ÿ°aÃ,--íììöíÛ·nݺ)S¦ÈðZZZUUU›Auuµ–––h±±idQÐbh>WWWWUUE/«©©=yòäõë×  ·ÔÖÖöë×ï»ï¾4hÓ‘€\ËÍÍÍÉɱµµUUUMLL¬¯¯wrr’áñ>|8nܸ¸¸8}}}BÈË—/]\\Î;GÏ)J˜;vfOU´ô86NQQQã_\.÷îÝ»Âßôeee@UU•é0@Þ™ššº¸¸ÐÍ…ƒƒƒl³FBˆ………®®n||<½zûöm===×°$õ/¦/I¡D0 { q”Š››[UUÕºuëÒÒÒ’’’–,YÂãñ¬¬¬˜Ž ::EEE//¯°°°”””¤¤¤°°0///Lû­CÕÒJJJÚ¾}û£GTUUœœ/^lllÌtP„¢¨;v\¼x‘âéé¹hÑ"̶­‰#HCÕ $Ž $Ž $Ž $Ž $Ž2VZZºråJ{{ûyóæåää0‘ÌÔÖÖÚÚÚ _¨ÓNÕÕÕ……… 4hĈaaa¬™U€!ÚÀ³gÏæÎkooïìì¼bŊׯ_7,sðàA¾ˆ¶jH·oß¶´´lƒŸNÔ6U–Ÿ³´ÙŸøçŸöðð°±±™;wîóçÏ[é,Òœ¨ ª,ú:b¡Ö«µÂ$±2”™™¦©©áíí}áÂ…Î;3×û*** ///g:÷vîÜ9ú{¾bÅ eee???¦ƒz_¬ùë±õ{ÔÁ‚ tuu¿ýöÛÚÚÚ•+W®]»vçÎbÅrssÝÝÝ'OžL¯¶ê„áoÞ¼Y±bEüH“|¢¶©²üœ¥m"9yòdHHÈš5kºté²cÇŽÅ‹Ÿ8q‚©µA•¾ûî;ájMMÍ’%KZûw—Ü¡@v***ø|þÕ«WéÕÒÒÒ^½z WÛ¯={öXü«²²’épZ®ººzÀ€gΜ¡WOŸ>íääT__Ït\ï…5!¶~ÚFzzº……Åýû÷éÕC‡õëׯá?rooMHK—.ýä“OÚàß§äµM•åç,mI}}ý!C8@¯&$$XXXäåå1u¢¶üWMÛµk—¿¿[žQ`¨Z–òóóûôéckkK¯ª©©©¨¨”””0×ûòõõMKK;yò$Ó¼¯ôôôŠŠ zÕÅÅ¥¸¸855•é¸Þ kþ:Blýµ™ñãÇ[ZZÒË~øaSÝQ&&&ÕÕÕ­ÝQó÷ß/Z´¨µkýεM•åç,mINNÎóçÏ?þøczÕÁÁ!--íƒ>`êDmö¯šöäÉ“ÈÈÈÕ«W·Á¹ä GYêÙ³çÙ³gµ´´èÕ‹/VVVÚØØ0üOAA‡Ã100 W 9NQQÓqÁà{ô>x<Þ† JJJþþûïƒzzzr¹ÿiêA~~þáÇ `kk;nܸ´F0EEEÁÁÁ[¶lQWWoÕZ¿óDmSeù9KÛD’““£  œœøàƒ¹sç¾yóFæ1¬^½zìØ±ööö­]Ùwž¨mª,?gi›H***Áž={–.]úý÷ß+((x{{·Æ#PÒœ¨ÍþUÓ222®_¿îííÝJÇ—kL•·o.\Þ^–žžNoÌÉÉùòË/íìì~üñG¦”Y¥(ŠºsçN{¿‹îÏ?ÿäóùÂû½êëëù|þŸþÉt\2À‚¿Ž˜öþ=’%%%›6m¢·—P¬¬¬¬wïÞ—/_–íÙÏž=ûÉ'ŸÔÔÔPÿÞ”ÖJÿ>[p¢Vª²Üž¥•"¹r劅…Ž{÷èÕÒÒÒ>}ú\¹rEæulÁ‰Zûâ/_¾|åÊ•­tp9‡§ªß‹‡‡ÇßÿM/«©©BîÝ»çíí=lذýû÷ëêê2 l*ÅúúúE•””Ѓ ÅÅÅE G®A~°à{Ä”ìììׯ_0€¢££³xñâãÇß½{wРAM}DCCÃÀÀ@æ÷l$''gddôíÛW¸¥ÿþÓ§O_¹r%ã'j¥*ËíYZ)===BÇ£W555 ZcFžœ¨U/~UUUttô¾}ûZãàòCÕïEQQQã_\.·®®ÎßßêÔ©Û·oo¿ÿÛ‰UŠépdÉÂÂBWW7>>ž^½}û¶žžž°19ÁŽïSîÞ½ èÕ²²2@ ªª*Z&::z̘1eeeôê«W¯ {öì)ÛHüüü¢ÿµmÛ6BÈO?ý4wî\™WYšµM•åç,mIïÞ½ÕÕÕïß¿O¯–””¼xñ¢[·n²=‹”'j›*Ó®^½Ú©S'‡Ö8¸ücUZÀ¸¸¸¸/^ôêÕ+^ž½ŠŠŠ^^^aaa)))IIIaaa^^^­:ƒ´¾GïÃÍÍ­ªªjݺuiiiIIIK–,áñxVVV„ÈÈÈèèhBˆ³³ó‹/–.]š˜˜xçÎkkk™ß‰¨¯¯oþ¯.]ºBºwïNwµÙ‰Ú¸ÊŒŸ¥ëÛ©S§/¾ø"((èæÍ›÷îÝ àóùNNN²=‹äµq•i·nÝ0`Ë:V¤‡ÿ2eéñãÇEˆnܱcÇèÑ£™ þÇßß¿¶¶Ößߟâéé¹`Á¦#qø½==½o¿ývûöí'NTUUurrÚ¼y³’’!äĉ<oäÈ‘QQQ[¶l PTTtuu]ºt)‡Ãa:vÙkã*3~–¶ÿ/[¶LQQqݺuoÞ¼qvvWPPùY$œˆ‘Õ·oßþòË/[ãÈí‡bË+× UuÐŽVh.$Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $ŽÐl6là7fÒ¤IOŸ>åóù¯_¿n³`ÊÊÊ*++ !UUU|>?##£Y§.**jÛKØHØLEM5jTÆîæÍ›¢­ð»,¶,¥ÄÇÇ·8B´Ðö™ÚŸY³f}öÙg„²²²3f¬ZµÊÆÆ†Ò¹sç¶fÅŠÝ»w TTTôññÑÑÑaúò´0ìæþmàóÏ?Ÿÿü󈈈¦>>{öìØØØƒN˜0¡¶¶V8xTTTäïïïèè8xðàíÛ·×××B¿øâ kkkGGGÉãé………óçÏ···ÿøã92f̘øøx±øøøx{{{z¹ÑƒÓµHHH6l˜µµõ¸qãè«ÑTØBM]«+W®|úé§ýúõ6lØÉ“'™þ;tP¯­èwYt™4ý-ÎËË›3gŽÝ˜1cbcc|Þ¼y‹-®:tÈÍÍM HnÁ$´NhO@¶8‚ìmܸ100ð‡~ÐÔÔ\·n!¤¦¦fÊ”)ªªªß}÷]hhè“'O/^LyûöíÔ©Sß¾}{ðàÁ 6\¿~=((ˆ>EQË—/1bÄ'Ÿ|ÒÔÇ:4|øpŸS§N Ï^__?cÆŒ·oß:thÉ’%?þøã÷ß_[[;wî\>Ÿ¹uëÖäääÝ»w7}}ýôéÓKKK÷íÛ·lÙ²cÇŽ¥¥¥I¨¯„ƒ ‚M›6mÞ¼922RYYyíÚµM…-ÔTesssè&~„ ÁÁÁ©©©Lÿ©XîåË—©"^¼x!ºWô»,ºÜÔ·¸¶¶vêÔ©ÕÕÕX´hÑÖ­[éŸÊ¢Fõ矾}û–^½téÒ§Ÿ~ZWW'} & í ȆªAöè»S¦LY³f !äÒ¥K„Í›7s¹\BHDDÄàÁƒóóóïÞ½[RRòóÏ?khhB6mÚ4uêÔ¥K—BÁĉÇG9wî\£§GÌÅüþûïùùù§NRSSëÛ·oyyùÓ§O+**.\øå—_ªªªB†š››ÛTüW¯^-((8yò¤¶¶6!dýúõ³fÍ’P_ §(jþüù„3fÐWC²¦®UNNŽ@ øüóÏMLLz÷îݳgÏörC'@ûuúôéÓ§O W§L™²zõêw~ª©oñ;wJJJ~úé'ºmQRRš9s¦ØgÝÝ݃‚‚nß¾=xð༼¼û÷ïoß¾½Y-˜4‘ =Câ²'¼%Hø¸Lfffnn®•••° EQOž|H/4ëà-¾V‰‰‰pppX¼xño¿ýfkkûÛo¿µÕš¡©oqÏž=%´-Bîîîeee.\HMMýøã‰ÔLÃÖ í ÈGh ®®®¦¦¦ .¼ÿþµk×V­Zejjª¢¢òÑGikk/^¼øáÇ AAAüq—.]¤ü8!„Ëå›EBÈG}¤¡¡±lÙ²G]¼xñÛo¿µ³³ÓÕÕ}ñâEbbbaaáéÓ§þùç’’ár1ôüýý“’’âââÖ¬YCßd`` ¤¤´{÷œ«W¯>|˜.߬ƒÓ†ýÎÊÖ××GDDüðÃ999—/_NNN~Fˆ~—…ËM}‹‡®««+l[šº]RMMmðàÁ›6mruu¥o=|g#ÓTë„öd‰#´.—{øðauuõÙ³g¯ZµÊÑÑqýúõ„%%¥ãÇs8œ3f,[¶ÌÙÙ9$$DúB<==ããã,X ,¬¬¬|üøñÚÚÚiÓ¦mÙ²å‹/¾ðññ?~ü¨Q£æÏŸÿå—_¦§§ûí·yyy¡¡¡F«¢¢rìØ1.—;k֬͛7/^¼˜NRUUU·nÝzçΑ#G.Z´ÈÛÛ›.߬ƒ7ö;+ëää´|ùòï¾ûnôèÑÛ¶m›1cÆ”)S˜þÃtt¢ßeá²ä¯S§N³fÍš9s¦Çkô°£FzõêÕ§Ÿ~J¯¾³‘iªuB{2Ç¡(ŠéäÝ€öîÝëääD¯ÒãDôãÍEQTii©”Ì5 Z'hmx8 ÙÐ(Àûàp8­‘5´NÐú0T ðnæææ èh0T RA#H‰#H‰#H‰#H‰#H‰#H‰#H‰#H‰#H‰#H‰#H‰#H‰#H‰#H‰#H‰#H‰#H‰#H‰#H‰#H‰#H‰#H‰#H‰#H‰#H‰#H‰#H‰#H‰#H‰#H‰#^½zqþ«Gëׯ§(ªÅÇTRRâp8 wihhp8œ/^´à°¥¥¥GIIIBEN:ÅÐ…lb>ø`Ò¤Iyyyï¼¢Š‹‹óòòªªª˜® ´oHáLMM­¬¬úô飩©™••µvíÚÈÈÈ­OŸ>VVV\.þÉý×155-((8yòä_|Ѭ´~ÆŒ¦¦¦¿þú+Óõ€ö ÿ¯ÃÿìØ±#%%åþýû%%%cÇŽ%„\ºt©ÅGKJJJIIQUUeºZ,Aÿuž={öÓO?Bnß¾ýøñc¦ƒW¯^ùùùõë×O]]½wïÞ‹/...~Ÿ6ÕïÞ=‡3`Àé%Ú߯ªªjmm½xñbÑž{ C+BŒ÷÷WVVnÚ´ÉÊÊJ]]]OOoĈ¿ýö[Û„‡VBâ⬭­ !êêêô–êêê%K–ôìÙSSSsèС7oÞþ믿† ¦­­­¯¯ÿÑGýõ×_ôvÑöôíÛ· .üàƒx<Þ±cÇ„Ÿk8ÄV>|øÉ'Ÿèëë«««ÛÚÚž={ö}*ÕTÆŽËáp"""èÕ%K–p8œ Høˆ0Îû÷ï<øàÁƒ¢­©©Y°`±±±••Õo¿ý¦ªª*L¦%\U ÆŒ£¬¬L)((ÛUWW·iÓ¦¾}ûª««÷ïß?,,L BF}þüyBˆ——צM›ZùŸ@3deeõë×oÏž=ÉÉÉ:uzôèQhh¨““Sii)Ó¡ý?º¿ßÐÐ0%%%44ÔÃÃC¸Kš¡Æûû§M›¶jÕªG™››¿}û666vìØ±Â[zÚ < ˜° ž¥¥%!$**Š^}òäÉ AƒD·Œ7Žbcc3nÜ8:õ¹ÿ>EQ¯^½ÒÑÑ!„|üñÇîîî\.W[[»°°¢(EEEBHyy9EQÞÞÞ„mmm{{{EEE‡Cyþüùëׯ !ŠŠŠôYDWëêêºuëFéß¿¿»»»‚‚‚¢¢âãÇÅ>"¹"¢šªÂÉ“' !#FŒ ‹õë×rãÆ ¡càr¹½zõ"„ìß¿¿©h)Šš2e !DGGÇÎÎŽ®»ŠŠŠä$WJØU››+v5f̘AÑÓÓ5j”¶¶6!$ €¢¨k×®õïߟ2þü””¦ÿ¹ü?ú[Я_¿ÌÌLŠ¢ž={Ö·o_BÈòåË[|̦Z‰ŠŠ UUÕ™3gJ(±o_BBýÍúå—_¤?ˆ§§gSíR ï&WTT¤›—·oßnذ2|øð6OìÒ&„ŒŒ ɹü\@h‰#üï»-ŠÃálÛ¶Þ›’’BéÙ³g}}=EQaaa„éÓ§SuýúuBˆ‰‰IFFEQÛ·oŸ={vrr2%’8fggs¹\EEÅ'OžPµeËú’ÇœœœáÇOš4‰ÞåììL9sæLËG U(//ïܹ³²²ò›7ož?ÎápLLL„Ð1BæÎ›••U]]ÝT´?æp8ŠŠŠÏž=£(*44”B'ŽŽßh¥ÌÌÌú÷ïO§§„OOO±+–––FÑÐРÏE_AA¡  €BË rééÓ§ô¿ç»wï 7^¼xÑÍÍmþüùôêÛ·o7nÜhee¥¦¦Ö¯_¿ÐÐPú+#a—è÷¢¢¢‚þÕ´sçNŠ¢,Xðûï¿ÓOLLtww×ÒÒÒÓÓóððHLLlaÃ&eéÒ¥„Ï?ÿœ^ý…Üèé¯mãÆE=xðàã?ÖÓÓSSS³±±9sæŒhÌ¿ÿþ»ººº»»{VV}–ªªªÅ‹óxô;#GޤÏB÷Ë~øá‡®®®ŠŠŠJJJwîÜ¡¤µ¨¬¬411!„hii}öÙg›7o¾rå ݶS GHi!„())õéÓ‡^îÔ©“‰‰‰¾¾>!¤k×® ÿ|0a%$Ž þÝ~õꕚš!ä?þ þÍHìììNˆ8{ö,]¸¬¬ìСCcÇŽ¥oˆTPP¸zõ*%Òž9r„âææ&<¸ØPµ‚‚½K´)--577ïÔ©“¯¯oTT}S‘Xâ8gΕýôÓOTÓ‰£ä*üüóÏ„9sæL›6rûömÉiØëÙT´Ç'"CBÂÄQrHþ:¢D#¡ÇÜ?ûì3áÞ!C†B.]ºD!q¹ôÝwßÑß‚¦ HèG—°Kø½X»v-!ÄËËK ˆYÂh‰¨†ß¾?ÿü“þýF¯ : ýöIK!„üüóÏE]¾|™Nõ(Šºÿ>Q½~ý𢍵k×***.Z´HúQ‹ÔÔÔ±cÇÒ­:MCCã»ï¾£÷І'ÍH ýÿÝZÚÙÙÕÕÕ=þœ¾Ë“ްáÄ€ Ëàá§­­Íãñ!ùùù„+++BHqqñ¤I“&OžÜ½{÷¤¤¤òòrBÈå˗ׯ_¯§§÷óÏ??¾¾¾þêÕ«¢G³°° „ܼy“~’ŽþòÓ»:uêÄápêëëéfBôƒ.\ÈÎÎ:tèž={>ÿüsºésðàÁªÑ¿’›"¡ „Q£Fiii]¼xñÊ•+fffŽŽŽïüˆ˜¦¢íÝ»7!䯅……„~øAX÷f_ôòØØXú¡™ŒŒŒÛ·os¹\ú9'Z]]]+ý›hº'¬¨¨¨©ÿüó!døðᦦ¦„+++KKËúúúû÷ïKØE¶®®nýúõ„úǪ(++«.]ºäååñx< ‹ììl???úöJÉJJJ„‘·à€fffgÏž>|¸­­m\\ùb*((|úé§„{{{Býp!]#---BHppðÛ·oCCC“““ !™™™ gÑ¢E„{÷î5Œ™Ïçÿüóϯ^½ºsçÎÞ½{‡ òæÍ›¹sç ozç1è_¤]»v%„¸¹¹)((ÑÐMµ0OžcÆŒùõ×_]]]ÍÍÍùå—ÊÊJú±’’Rhhèž={ÆŒSWWGo6l˜èA­¬¬î߿߯_?KKË„„‡CçO***ýúõKJJrrrâñxéééÂOÑ¿ãccc=<ÍÈÈ ¬B~ùå—Ù³g÷íÛ—¾‘"šö¦¦¦ÖÕÕIØ%Übmmœœ¼qãÆiÓ¦‰žZGG'--íÇ<þ|llìÞ½{8ãîî.9fú[Ü£G±íR°¬¬¬ÿþùùù³fÍZºté÷ßO×Óè9k!¢iÓ5ª¯¯;£‚‚!ÄÎÎî믿nl8Úýû÷/\¸`jj:yòd›™3gvíÚµ°°ðáÇtþ'ý1…Òè¦ï¢¢¢è;‚š"Í_äÓ]žÀ¼†Ã1_~ù%!dìØ±ôjyy¹ŸŸŸ™™™†††«««ðîrŠ¢N:5pà@mmmMMM{{ûü‘Þ.zÏø½{÷èß‘æææ‡¢µŸ?Nï8p ššš½½=Ý€Ò#•••tÚ‡~¸zõ꯾úŠ2wî\i޳{÷nÉU (J8c%}çäZ7Œ¡©h)Š*))™8q¢®®nÏž=Ïœ9Ó©S'áSÕ’C’ð׋¤¶¶vݺu½{÷îܹsß¾}Ä$''÷èÑCUUõ›o¾aúŸÀÿ=z4!ÄÕÕµ¸¸˜¢¨‚‚ú«´hÑ"Š¢=zDÑÔÔÌÏϧ(*==]YY™ËåæååIØ%œ÷àõë×ãÇ'„Ìš5Kì¼ÑÑÑ‹/¦Ç…kjjèb+W®+&öí»{÷®®®.!äܹsôaC'á€ôHë‰'(Šúá‡È¿7/¾}û–þ]'võ߯6Ý×¹sç²²2Š¢Ö­[§®®¾bÅ º7ÎÜÜœˆ¿uëÖâÅ‹=*V…»wïBÔÔÔ„7 çääзcÒO²‹†'á˜b®ZµŠˆ<ü®¢¢B>ÓÔ%z@ M±A q„¶PYY™Ð¬ÔÔÔ\»véÀß+Ú’’’sçÎ?ž^¥oìÙ³'ÓÁÈ‹´´4:yRPP077§G<{ôè!¼[ŽžÐÊÐÐpôèÑtºãïï/y—hF’žž®¨¨ÈårÿþûoÑó^½z•žÓ{„ Ÿþ9ýk–¾?[”è-z=zô »Äœ…„‰£„úùùBìíí¯\¹òã?Ò±1ÂØØ˜îYjjjœœœ‚‚‚>ÿüsBÈ™3gÂÂÂnÞ¼Éåþÿ „VhæÌ™NNNsæÌaºÀ~ª–J~~~Ÿ>}lmméU555•’’¦ã6HOO¯¨¨pqq¡W]\\Š‹‹SSSEËHh…rssMLLª««ËËË™® °F4¤Ò³gϳgÏ W/^¼Hÿúo´0ŸÏ§¢££™ }377g:„¶PPPÀáp èUCCC‡STT$Z¦©VH äçç>|800P ôîÝ{ãÆ}úôiê\t•––Æt¥ ]BâØ< 22róæÍ³gÏîÞ½{SÅÐ(€ôjjjTUU…Ó\.WEE¥´´´ÑÂb­Ð‹/¸\®ƒƒÃª««7mÚ4wîÜK—.ihh4ü,ŸÏGëï‰c3}¤)ïááñÛo¿ýúë¯b4Z^ ˜™™åææÎž=›Ò©S§¡C‡>}úôèÑ£ÂÂB›”hÁÁÁ#GŽì7)a¨à›–Æ‘#G²²²6nܸcÇŽ¡C‡2]¹&ÍðÎêÕ«)ŠºyófÃ]?ýô!dóæÍÒ”ÏÎÎŽŠŠâp8¢…båËËËéééé¢cÓnnnEuíÚUB0´ÌÌÌ={öìÚµ‹éKÛ8ü?:w’rä:!!áÁƒ***G޹pá!D]]½#Üéð>Zð[¾/ˆ¢©©)ÍñŸ>}FÑÒÒ²±±¹{÷®„Âééé „kkk--­‘#G¦§§KUPPМ9sD; Y ‰#ÀP"¤üHpppjjjhh¨ŽŽÎÑ£G !wîÜY±bÓUG-Þáp8ô}AÒ„Ëå&&&æä䘙™yzz–––Š•QWW§Þ¼y#!Û¶m‹‰‰QPPðð𨬬”|Š\ºtiÑ¢E ^Ò¶„Äà}ñùüû÷ﻸ¸˜™™Bø|¾¡¡!ÓqÈ/aîøÎáòòrzˆòÛo¿íرCšòôruu5EQfffGŽ)**ºzõjSÁ¨©©Q•0räHGGÇÈÈÈ‚‚‚˜˜ÉÙ±cÇøñãõõõ™¾¢m‰#€l\»vÍÑÑ‘é(Úᨎ”7‰q8777Òô}AÂNMÑOiii?þ\¬pyy9]lܸq„+++z»¶¶¶±±±è] UTTœ9sfÒ¤IL_Ѷƒ§ªší«¯¾úꫯÄ6fggÓ -žÓ £inƒ™ššJ/$&&N›6íÎ;¦¦¦M™Ãáôë×ï?þÐÑÑ!„ôîÝ»©ƒWUUýý÷ßC† !„¼|ù2??ßÂÂBB<¿þú«ŠŠ ÅvH }àóùôÝqÈçóÕÔÔ$”ÏËË›6mZ`` ¢¢âªU«\]]›*¬¢¢2kÖ¬Y³fíÙ³GKKkùòå}ûö6l˜„ã_¹rÅÉɉËí@ã·¨ªÐ¡ÄÅÅQ5~üø &ðx¼óçÏK~.gÇŽãÆóõõõôôìҥ˥K—è笛ÒoRjù«2 )|>?--é(Ä¡u¹ÒÜ÷uµjù÷yyX‡‚G ûÇÔÔÔ/^Bnܸ±téÒcǎѳ4@³°¶¶¶ôªšššŠŠJII Ó±;±3qìÚµkS»jjjBCCW®\ÉtŒïPPPÀáp èUCCC‡#z+!¤gÏžgÏž®^¼x‘îƒlê˜ô€ ú eØ™8 ½~ýz÷îݹ¹¹Â-%%%yyyH@þÕÔÔ¨ªª ¦¹\®ŠŠJiii£…AddäæÍ›gÏžMßÏÝ(¤Œð>X>Ïš5kbcc»té×½{÷.]º¤§§GDD0À»iiiUUU zU TWWkii5,ùäÉ//¯]»v­[·nñâÅL¬ÅòÇ„„„­[·º¹¹={ölèСööö½{÷މ‰±··g:4GbàFi`–¾¾>EQ%%%ôDÅÅÅE G®…îÝ»çíí=lذýû÷ëêê25°Ë{«ªªôôô!–––ô««kLL Óqü¢D4œ0 -YXXèêêÆÇÇÓ«·oßÖÓÓãñx¢eêêêüýý§Nº}ûvdÐÚXÞãhaaÕ³gO>ŸæÌ™)S¦äääTVV2È#ÌÅòFQQÑËË+,,¬[·nõõõaaa^^^ŠŠŠ„ÈÈH==½‘#GÆÅŽxñ¢W¯^Âü’Âãñ0[-´–'ŽK—.;w.ŸÏ3f̆ >úè£/^Œ5ªÅ¬­­urrºy󦪪*Ó•öó÷÷¯­­õ÷÷'„xzz.X°€Þ~âÄ 7räÈÇS ú©;vŒ=šéØ€…ØßÅR[[[QQ¡££“‘‘­««;~üx%%¥ª¨¨(<<üÌ™3IIIGL±Û~‰u:¢X­ÈLÞ±¼Ç‘¢¬¬¬¬¬Láñxb÷5ËÞ½{wîÜÉtm Õ‰Þ׈F@ËǦžžþ믿š{(_____ß»wïNœ8‘éjAkA¦ ËÇ]»v —kjj>|xøðaooïÖ>/ýn†èèh¦/@ûfnnÎtÍ–ŸŸÿäÉ''§êêj¦Ã%–'ŽNNN¢«nnn|>Ñ¢EÞÞÞ­út î"è€ÊËË/^üÇP•––6}útSSÓõë׫©©1€l°|džzôèQSSÃtÀB!!!oÞ¼¹qㆂ‚!dÉ’%<ضmÓqÈ ËÇ×ÿõôéÓ½{÷š˜˜`2¹¸¸¸…  ßìbgg·lÙ²ØØX¦ã–U;::ŠmQRRÚºu+Óq ÕÖÖvîÜYt‹A}}=ÓqÈ ËÇ+W®ˆm100@w#´{{û£GnÞ¼™^-++ oøó ýbgâ(úê-1yyy¤ÁC3ïoåÊ•S¦Lñðð“&Mzôè‘©©)†8€MØ9Oú€„ËÕÕÕ€Ãáp8@@áñxçÏŸo½³ãÝ VMMÍ¥K—233544,,,\]]¹\9º•­È¼9¦=bgã?ÿüC/ÄÆÆnݺ588ØÞÞžÃáܽ{wõêÕÖÖÖL,T__ìØ±âââåË—BfÍš•ššêããC?d ÀrôS¸5ìÚµ+((ÈÙÙYYYYIIÉÑÑqíÚµgÏž}ýú5Ó¡Û„……[[[¦ãö?CT[[{ùò嬬,.—Û³gÏáÇ+))µêñÜ"@ÇTTT4cÆŒüü|>Ÿ¯¨¨˜ššª¡¡qüøq¦Cû´N WðTu{ÄÎË”‘‘¡£££¯¯Ÿ‘‘Ñh×zgGÓ ÐaÕ××ÿþûïiiiuuu=zôøè£”••™êÿ¡u¹‚ı=bçeâóù>>>|>¿Ñ­Út¢iù„Ö ä Çöˆ÷8&%%)**BRRR˜Ž:Š”””µk×>{öLlû_ýÅth²ÁÎÄQø6jeeåÔÔT##£7nüöÛoVVVS¦La:@`¡5kÖ(++¯_¿^[[›éXZ;G¡“'OïÛ·¢¨ùóçÛÚÚîܹ³´´tÁ‚L‡lóøñãÈÈȾ}û2@kaù<އ tww‰‰133;|øpHHȹs瘎 XÈÀÀ³6»±¼Ç±¨¨ÈÅÅ…’˜˜èêêJáóù………LÇòKtrxÜ( ͲqãÆùóç[YYuêÔI¸]__ŸéÐdƒå‰c·nÝbccµ´´®_¿>mÚ4BÈ­[· ™Ž 䔨SuxÈšÅÛÛ[ øûû‹mǃÌÀ,OýüüöîÝkmmmgg·oß¾ˆˆˆåË—3È#¤‰ðž¢££™ u±ÿÊÜÜÜœœ[[[UUÕÄÄÄúúz''§V=#fJk§&ŽH%á=ÕÔÔ„††®\¹’é@þ­ÈÌãØ±¼Ç‘bjjÊår“’’œœœ¬­­UTT˜ŽäEQh8à}¼~ýz÷îݹ¹¹Â-%%%yyyò“8¼'–?U]^^þÕW_¹»»Ï˜1ƒ2}úôÀÀÀŠŠ ¦ãù%|8I$4ך5kbcc»té×½{÷.]º¤§§GDD0€Ì°yòdz•~á*@k`ycmmmçÎE·Ô××3°……ETTTUUŸÏ¿rå !$''§²²ò¬©©‰ŠŠ tsssss üá‡X±½{÷:;;Ÿ9sFl{nn®Ë¿Ð㭇剣½½ýÑ£G…íoYYYxx¸££#Óq -]ºôâÅ‹§OŸúè#ŸáÇ¿óƒéééôÛ !...ÅÅÅ©©©bÅ|}}ÓÒÒNž<)¶=77×ÄĤººZ¬'@æX>¢±råÊ)S¦xxx‚I“&=zôÈÔÔtëÖ­LÇ,äààPQQ¡­­­««;~üøw~°  €Ãáoª144äp8EEEÒœT äçç>|800P ôîÝ{ãÆ}úôiª<ŸÏ'˜“ZŠå‰£±±ñ… .]º”™™©¡¡1gÎWWW.—åý¬Àˆ &œ:uJYY™Âãñx<^YYÙìÙ³=*ùƒ555ªªªÂ¦‰Ë媨¨”––JsÒ—/_r¹\‡TWWoÚ´iîܹ—.]ÒÐÐh´Ÿ·@k8tèPjjê‹/!7nÜXºté±cÇΪӢ¢¢——WXXXJJJRRRXX˜——=#ý„Ï:;;¿xñbéÒ¥‰‰‰wîÜñ÷÷·¶¶¶··gúb;±3q,++þX§‡{è ZÏÉ“'?ýôÓ<þ|þüù/_¾Ü¹s§”}þþþü±¿¿ÿÂ… ===,X@o?qâÄÅ‹%|PCC#**Š¢¨€€€¯¿þÚÌÌìàÁƒÂ7gÈ;ß«Æçóúé'á„b«mpv<·Ð 6l„ >>>ÇŽ;}úôo¿ývùòåmÛ¶]½z•éÐþ­È•æ¾ÜµUËãM³Rbg#@Û+**¢'ñNLLtuu%„ðùüÂÂB¦ãv>C‰ŒŒ422jj5 €é€mºuë«¥¥uýúõiÓ¦BnݺehhÈt\2ÃÎı{÷îÿüóOS«‰#´??¿€€€½{÷Z[[ÛÙÙíÛ·/""bùòåLÇ 3Ñ—=ÜEÐaåæææääØÚÚªªª&&&Ö××;991ÔÿCër÷8¶Gììqh3:::úúú„##£ÜÜ\BˆŽŽ½WÊäG€÷âéééããèééÙhtòk qx/IIIôdÝ)))LÇк8¼—¤¤$Éäê6G€÷ÁÎÄ1>>^r´ãuuu»ví:s挚šÚ¨Q£.\ˆw3!Ä××W¸\]]-8‡Ã¡_6ÈãñΟ?ÏtŒ²ÁÎı5Úñ°°°sçÎ…„„BV¬X¡¬¬ìççÇtEAöDà ;†p¶¯ØØØ­[·ÛÛÛs8œ»wï®^½ÚÚÚšéd†oŽùç_Û·o755ýþûï““““““;fffÖ‚v¼¦¦&***00ÐÍÍÍÍÍ-00ð‡~ ÓP`z:!t*C³ìÚµ+((ÈÙÙYYYYIIÉÑÑqíÚµgÏž}ýú5Ó¡È;G!YµãéééôËÄ!...ÅÅÅ©©©L×d “xÁ{ÊÏÏ×ÐÐÝ¢¦¦¦®®®¥¥Åth²ÁΡj!YµãÇÀÀ€^544äp8EEENOOGOU;Õð‡?%³ÚW*?`À€ˆˆˆo¾ùF[[›RZZnkk‹EÀ,OeÕŽ×ÔÔ¨ªªr¹ÿë år¹***¥¥¥¶°°À´mí”X§#ú ¡Y‚ƒƒ§NêææÖ«W/BHjjª®®îñãÇ™Ž @fXž8ʪ×ÒÒªªªtî(ª««1üÄnÈ¡¹LLL¢££/_¾œ••Åår§M›6|øp%%%¦ã–'޲jÇõõõ)Š*))Ñ××'„S%¹Ö} Y#´€²²òèÑ£™Ž µ°}º©©éúõëÕÔÔšuEEE//¯°°°nݺÕ×ׇ……yyyÑ/è X>OHHÈ›7onܸ¡  @Y²dɃ¶mÛÖ‚CùûûüñÇþþþ .ôôô\°`Ó•hS,¿ýßÕÕ544ÔÎήwïÞ>$„\»vmÕªUqqq­wR>Ÿ§ª:¦ÔÔT##£7nüöÛoVVVS¦LNÈÀ8´N Wšû b«–Ç‘R’—欕ÔÖÖvîÜYt‹A}}=Óq |8$$äܹsLÇ 3,OW®\yçÎ@0iÒ$WW×ÂÂÂÕ«W3°PQQýbÒÄÄDWWWBŸÏ/,,d:.™aùsÁÆÆÆ.\¸téRff¦††Æœ9s\]]åç~#`“nÝºÅÆÆjii]¿~}Ú´i„[·n2€Ì°Wˆç:¬ÜÜÜœœ[[[UUÕÄÄÄúúz'''¦ƒúh@®à©êöˆå=ބŋ¯ZµêÞ½{Ë–-Ã”Ý sOŸ>UPPèÒ¥ —Ë555555¥·;880€Œ±ÿn?OOÏÓ§OÿùçŸS¦LyñâÓáÛŒ1ÂÝÝÝÞÞþÔ©SLÇк؟8Bx<ÞÙ³guuuÇÏt8À*'Ož`zzzEE=©8!ÄÅÅ¥¸¸855U¬˜¯¯oZZÚÉ“'™¾mOËà‘avU{zzúøø gრ)@æ><{öì’’’§OŸ^¸paÔ¨Q‡266nñ 8Žp¤ÛÐÐÃáпŠ[ŒÏç“öÙ"õ‘ \FxOìL“’’è™wRRR˜Ž:Š~ýú?~ÜÛÛ›¢¨£G8ð=XSS£ªª*|Ù—ËUQQ)--}ŸcÊOÊØ² ¦#ä=­QGº§–õ—Ú;‡ªUUU•””!S§NUþ¯êêê9sæ0 °ÇkÆÆÆ»wï¦(êþýûÂ->²––VUU•ð¦F@P]]­¥¥Åtß‹ØXó;³Ñòì¤nî•iÑ+‰$Z†=Ž•••ûöí#„$%%…††Šî*((ÈÌÌd:@`GGdž·oß.|µi‹;ùôõõ)Š*))Ñ××'„Sõ>ÏhË a†$eú",Ïú\§¹W¦¹§Œ¬Þ;Ǻºº¬¬,zY¸@ãr¹kÖ¬a:@_˜®šëÊ•+­td ]]ÝøøøÑ£GBnß¾­§§Çãñ˜®± 4wä´ã<ÓcÊhÙà}°3qÔÔÔܳg!döìÙô€4ÄÚkü.itíÚUtõÅ‹YYYõõõ=zôèÒ¥ËûYQQÑËË+,,¬[·nõõõaaa^^^ô Ü‘‘‘zzz#GŽdºöб°3q:tèÓ!@»4ÞSuuuPPÐ… èÇYêëë?þøãUUÕÓßß¿¶¶Ößߟâéé¹`Ázû‰'x<Ghc,ÿŸ2%%eíڵϞ=Ûþ×_µÞIù|¾ü<·Òk˜8"•„fÙ¸qãõë×7mÚD¿K&)))((ÈÙÙyõêÕL‡ö?rÕ:5÷ûÕq¾­ZS¹ºŒ­ýo YååêÊÈ3–_¦qãÆ)++Ϙ1C[[[t»““SëT®šfh UÃû:tè† „óuB–-[öÇ0ÚÿÈUë„Ä‘‘šÊÕeDâØ±|¨úñãÇ‘‘‘}ûöe:h:Èø C•••¢[444*++™Ž @fØ9£AUUÓQ@»A?Ï(œ®¿>¡YlmmwïÞýæÍzµ¢¢â›o¾±³³c:.™ayÇlBB¦M›æÏŸoeeÕ©S'ávzR´V"WƒAÐf ¦NZRRbiiÉápRSSµµµ?þÁ0ÚÿÈUë„¡jFj*W—CÕíË/SïÞ½AÃ:¶jÓ)WM3´¥·oß^¾|ùñãÇ„=z|ôÑGô[¬ä„\µNH©©\]F$ŽíËïqŒŽŽf:è@”””ìííõôôèyå*kx,Oé‰yóóóŸkÑóçϧL™BÉÍ͵±±yôè‘©©éáÇ18´Ìã(=ÌãÈHMåê2bÇöˆå=ŽÆÆÆ.\¸téRff¦††Æœ9s\]]é™2d(%%EAA¡wïÞžžžÏŸ?ÿî»ïÔÔÔä*kxìLãããEWŒŒŒŒŒèå„„Bˆ““Ó1KTUU-Y²äÊ•+ÁÁÁ½{÷&„p8œ[·n;vlðàÁ»wïÆô±ÀìL}}}…ËÕÕÕ€Ãáp8@@áñxçÏŸg:F`‰o¿ýöÎ;'Nœ°··§·]¸páÎ;~~~ß~ûí‚ ˜Ž@6Ø9hûÏ¿¶oßnjjúý÷ß'''''';vÌÌÌÌÚÚšé€=.\¸0oÞ¼ fVãóù„ÜðžÌÍÍ™áÝôôôŽ9²iÓ&__ßúúzeeåÚÚZ‡3dÈððpùÉÞËGBˆ²²òèÑ£Ûø¤òó›Ú@—.]vïÞýâÅ‹‡éêêZZZš˜˜0€Œ±þ<Çcº*ÐF„÷¿bÌšKô]¬ÄòÄq×®]Âåššš‡>|ØÛÛûôððøûï¿ée555¦ëmDô:ƒDú ÄòÄQìÕ‚nnn|>Ñ¢EÞÞÞžn!„(**ŠÍã¬'vg4EQ-xú€ÅX>OC=zôh8k¼Ë{ÅÞSVV¶wï^ÉÝm¬®®n×®]gΜQSS5jÔÂ… vx7UæàÁƒ¡¡¡Âb:::·oßfºBÀN,OŶ())mݺµÅ´±±ÁÓlEM‹ÝãÐ6ÂÂÂÎ;BY±b…²²²ŸŸŸ”erssÝÝÝ'OžLSTdyà byûråʱ-èn„¦ˆÞ׈Çb ÍÔÔÔDEE¹¹¹BÃÂÂ|}}¹\®4erssœœ\\\˜®°Ëïq\²dI×ÿzûöíôéÓ™Ž äõ/¦$==½¢¢B˜ù¹¸¸§¦¦JY&77×ÄĤººº¼¼œéªË±³Ç±²²rß¾}„¤¤$Ñ[!™™™Lðÿ 8޽jhhÈápŠŠŠ¤)#òóó>(z÷î½qãÆ>}ú4u.ú½V¸åZ†‰c]]]VV½,\ q¹Ü5kÖ0 Àÿ«©©QUULs¹\•ÒÒRiʼ|ù’Ëå:888p ººzÓ¦MsçνtéRSŠ!e€÷ÁÎÄQSSsÏž=„Ù³gÓ rKKK«ªªJ Ðy¡@ ¨®®ÖÒÒ’¦Œ‘‘Qrr²°Ø–-[ïááÁtµ€…X~ã¡C‡„ËõõõL‡Ð}}}Š¢JJJèÕââbŠ¢„£ÒÒ—!„hhhˆ sÈ kÇœœœˆˆˆŒŒ BHMMÍÂ… ­­­ tìØ1¦Cø ]]ÝøøxzõöíÛzzz<Oš2ÑÑÑcÆŒ)++£·¿zõª°°°gÏžL× Ø‰‰ãƒÆŽ{ýúuzu÷îÝ×®]óññ™9sfxxxLL Óü?EEE//¯°°°”””¤¤¤°°0///z:ÆÈÈÈèèh eœ_¼x±téÒÄÄÄ;wîøûû[[[ÛÛÛ3]'`'vÞãøÍ7ßxxxlÛ¶BQÔO?ý4kÖ¬ BÞ¾}{üøqÜýrÅßß¿¶¶ÖßߟâééI·W„'Nðx¼‘#G6UFCC#**jË–-ŠŠŠ®®®K—.ÅôõÐJ8¬œ¯ÎÅÅ%""ÂÎÎŽ’žž>zôè‹/öèу’°hÑ¢¸¸¸Ö;;ŸÏÇs‹ ‡äªu}QSk”o¿Zµ¦ru[ûß@³ÊËÕ•‘gìª.//WPP —oݺehhHg´ŠŠ ¦hØ™8š™™ o!‰‰8p pWrrr×®]™ ýaç=Ž^^^Û·oçp8999wîÜñññ!„‚øøøøùù1 @ûÃÚı¬¬ìôéÓÿ×ÞÝG5uÞq‰(oö ë”I© +)(5‚ ã¬Ve“SOR£U„SKG¥³¥]mzVE¥-j[ÆQŽŽÉdlZy‘w—(ÉÝwfo^„po’ïç¯×<ü¸/Itt´D"!„ìÙ³ç»ï¾ ýíoËv@Ýc@—‚Þ¾}ÛÖÖv¢¯ášAœºü@S«nŽaeK95¸9FéçÇq988°@‡éçÍ10ãP8#(€ºÆ˜So!“;¦4˜Sɵ=^Û3£Õ×çÔnŽÀG€)ëëëãóù|˜§ÁÚÚšíŒÏŽþoL=ñÔo¾5˜ÝoÊžj˜©n)wffªa¦9“3ûâ »pÄàÿ<õ/쪪*©T:êÙo¿ý–ÏçËd2[[Ûììl333¶·`Zžù§ŠŒ§†õ ,ôøÉ·S33kŸÚÃdfÀ@ pøÍ•‘^âG-”>>>ùË_Fý”J¥ª¨¨ðóóûýïOñòòzõÕWïÞ½‹/·ý0yÑÀ©zb–ÃpjfPÛÁìÀ©j€ñ»þQõÉ'ŸhvÖÕÕ  õõõI$Š¢P5‚ ÿ|š¼QHãÂÆgólã923LÂLóÅÔP8ü×3/»ôWq;vlÞ¼y––––––lo À´f²pjf´7ÛÏ03` P8L×½{÷!ÝÝÝyyy_}õ•@ J¥­­­lçxFš÷C0©F f·Â˜j˜©n)wffªa¦9“3ûâ »P8ü×3_º¾dÉBHaaahhhppð7”JeFFÛ0-t­À°b˜Ò`N%×öxmÏŒV_ŸS»87ÇüϨڑáriggGqqq¡›Ï?ÿ¼‘‘Ñ;wØÞ€†#Žÿ‡ÒÀðGŒŒŒŠ‹‹éfmm­R©twwg{SfŽ8LW``àœ9sBCC“““-,,öíÛgff¶{÷n¶sÌ0ŽÓeiiyóæÍM›6%$$PµlÙ²ÂÂBcc¼¹@ßàV©™'‰èÏgà”©®NSºvª÷Þju<°fJtzf ®qFP8#(€ŽÀ G`…#0‚‘©ÞÞÞÄÄDww÷èè膆¶BÈÈȈ\.÷òòòõõ•ËåøHÐŽL%%%ݼyS.—gee)ŠˆˆˆÁÁA¶CM‹H$b;‚¾EENCŽÊ"¹\~öìÙ”””¤¤¤üüüÌÌL¶!âi`;Ëìm,ÛAX€Â‘‘ÁÁÁ~øaïÞ½ÞÞÞ®®®mmmeeelçC§P(òòòâââ$‰D"‰‹‹;yò¤J¥b;úÓ³Õô¸¢¢ëEÍ-Õã GFš››—/_.‹é¦™™™©©iWWÛ¹ÀÐÕÕÕ x{{ÓMooïÎÎΚš¶sAÓïÚQój¼2_§Ëˆ££ã¹sçÔÍÂÂÂÁÁA77·‰ÆëÊù5]É©CQ‘sfáÛ;Ÿª¥¥…ÇãÙÚÚÒM;;;×ÑÑ1î຺º©þ:ŸÒx­¾8Âp<ÌØaL~Pg†f€%# …ãÔ¨TªÜÜÜÔÔÔ;v888Œ;¿ê`Ö( @Àçÿ÷ôŸÏ755íííw°ÁþªmõEÏzü½Ïz¼i ¡p_aaáž={èÇß|ó““!¤±±ñwÞ¹sçÎûï¿/•JÙÎ@,--‡††T*];ªTªááaKKK¶sÁQWTz|’š<9 ¯® °ŽDá8>??¿ŠŠ ú±™™!äÖ­[>>>üã­¬¬Ø@!666EuuuÙØØB:;;)ŠRŸ¹˜š%£ÞRšWpêýÆŽ…›cÆglllþŸÏ‘ÉdáááGEÕÜ! ­¬¬JKKéfYY™µµ5}’`–Ñ7³bö¶Ô@6vqdäÚµkmmmÎÎÎêÕ™âääDÿ‰Àccã°°0¹\¾téR¥R)—ËÃÂÂŒ±¶€V`qa¤¾¾ž¢¨]»viv¦§§oÞ¼™íh`èd2Ù£Gd2!dÓ¦M;wîd;è-ƒ»¨ž ®qFP8#(€ŽÀ G`…㌌ŒÈår///___¹\>î é½½½‰‰‰îîîÑÑÑ tOOOBB‚§§§——×þýû{zz¸“ùÞ½{‘‘‘îîòÊlf›f¼‰¦šk9ÕÊÊÊ^xá…¡¡!Îæ,((ðóósss‹ŒŒlmmÕ^ÎiFeëݤ»˜Ì¶~8~ü¸HÃêÕ«ÙN¤=‹Åš‹‰¾îâ±[j »˜Ó(`,--ÍÓÓ³¸¸¸¸¸xõêÕ~øáØ11116l())¡¿¢P"‘ PµaÆòòòòòò 6DGGs$³R© Žˆˆ¨¬¬,//÷ññ‘ÉdÜ™ÒIâM4Õ\ËIëëë“H$B¡ppp›óyòäI—3gΔ””oݺU{9§•­w“îb²vé‡wß}7**ªä‰ÒÒR¶ͼöööÄÄÄQ‹‰^îâq·Ôv1Ç¡pdjxxxåÊ•gÏž¥›ùùùžžžJ¥RsÌÀÀ€H$***¢›½½½ÎÎÎEEE …ÂÙÙùôéÓt^^ž³³³B¡àB溺:¡PX]]M7?ÿüó+VŒÃÁxM5×rªìÝ»700P«…ãtr*•ʵk×~úé§tyy¹P(¼ÿ>£²õnÒ]Lf[oDDD?~œíZ”™™)|B½˜èå.wK)ØÅ܇SÕLÕÕÕ x{{ÓMooïÎÎΚšÍ1ÍÍÍË—/‹ÅtÓÌÌÌÔÔ´««‹ÂçóçÎK÷›ššòù³1óL2B¶lÙò /Ðö³ŸÍÚ—•M'Þ$SÍ©œ´ï¾û®¢¢"66–³óÙÐÐÐÚÚ@÷{xxÔÖÖÚÛÛs0*aéݤ»ζ~hjjZ¼xñðððÇÙ΢o½õVmmí©S§4;õr»¥Äv1÷aÁeª¥¥…ÇãÙÚÚÒM;;;×ÑÑ¡9ÆÑÑñܹs–––t³°°pppÐÍÍÍÄÄ$ ''§¶¶¶¶¶6;;;00ÐÄÄ„ ™œœŒŒŒªªª6oÞ,‹ßxã ­^3:¨l½›t“ÙÖ*•ª¹¹9''gåÊ•b±8$$äŸÿü'Û¡fv1Ì&ŽL) @ ®¨ø|¾©©ioo︃U*ÕŸþô§}ûöíØ±ÃÁÁ’ÐÒÒôàÁƒýû÷s-sttôÖ­[[ZZ¶mÛÆÁ)(ÞØ©æZÎwß}÷W¿ú•»»;—çs``@¥ReffîÝ»7;;ÛÈÈ(""B{÷ñLsJYy7é®)ͶNkooçóù×®]+..¶··ŒŒìïïg;—Öa³Ë° pdÊÒÒrhhH¥RÑM•J5<<¬>⥩±±1,,ìØ±cï¿ÿ~||EQ©©©kÖ¬Y±bEzzz{{ûµk×8•­w“îšÒlë´E‹UUU½óÎ;VVVööö‡îîî.--e;—Öa³Ë° pdÊÆÆ†¢(õUtE©O ¨Ýºu+$$äç?ÿùåË—¥R)ÝyõêÕþþþÄÄD+++++«¤¤¤žžž’’.d¾sçNee%ýxáÂ…ñññ7oÞäÈ”NoÜ©æZΪªªüñ¿ø…H$ '„¼ôÒK)))\ËimmMqrr¢Ÿ²°°°µµÕÞ'òL'*[ï&ÝÅpíÒ?æææ¶¶¶zyÆvìb¶ƒŽL …B+++õ_6eeeÖÖÖê_´´‘‘™L~ôèQ+++u¿J¥Q*•êa###ê¿ÙÍ|óæÍ]»v©Ãôõõ©T*@À‘)(ÞDS͵œo¿ýö¥'Ž9B9þ|dd$×r¾øâ‹óçϯ®®¦û»ººÚÚÚ–.]ÊÁ)eëݤ»˜Ì¶~¸téRPPP__Ýìîî~ðࣣ#Û¹´»˜í\†Å(99™í ºÏç äääˆÅâ–––ääd©TêééIÉÍÍmnnvtt,))ÉËË oooozB 888œ;wîïÿûóÏ?ßÖÖ–’’ÒÛÛ› ¾3”ÅÌ‹-úâ‹/š››íí훚špà€……E\\œ–n“šNÔÅ‹³ònÒ]“̶žY´hÑ'Ÿ|R]]mgg×ÚÚúÞ{ïÙÚÚÊd2Çv´ÖÒÒrîܹ¨¨¨9sæ½ÞÅ£¶Ôpv1§±ýy@ºD¥R9rD"‘H$’ôôt•JE÷oܸqçÎEeee ÇøóŸÿLQTCCCLL̪U«V¯^ýöÛo744p$3EQ•••¯¿þúÊ•+½¼¼âââZZZ¸3¥Å›dª9•SýáˆZýðéäT*•GŽY¿~ýªU«bccÛÛÛµ—sšQÙz7鮉f[ÿܾ}ûÍ7ß\½zµ··wRRRoo/Û‰´âoûÛ¨ÅD_wñØ-5]Ìeúˆ¢T*÷»ßñx¼œœœ˜˜˜£GNžtÝO?ý¤R©ÆYnnnuuut3))iûöíÙÙÙÏ=÷\xxxGGGSSÓ®]»è’144499¹¦¦f’H¥R:t(55577×ÄÄä½÷Þ›<˜R©>>J¥’n>xð@$Ý¿¿¿¿ßÅÅåêÕ«E555 …Âúúú‰766 …ÂóçÏÓý]]]'Nœ¤›ÉÉÉ‘‘‘E]¾|ÙÍÍíáÇtÿéÓ§…Báýû÷'zY¶' ¦ëìٳ˗/÷©””©TJ¯gΜ¡;?~,‘H>þøã’’‘HÔÔÔD÷µ¶¶Nô¯Ð/réÒ%ºYXXøòË/«û»»»éþëׯköWVVÒýaaaqqqôão¾ù楗^RŒá2ðT¸ÆtÒO?ýÔÔÔäââ¢î¡(ª±±ÑÓÓÓÛÛûûï¿_³fÍÅ‹]]]Ο??îàÅ‹BV®\Iw.\¸0((è‡~¨­­­©©)//å•W!uuu"‘ÈÌÌŒ¦?Q{{{¶§¦eñâÅ?îêê²²²õTkkësÏ=G?^µjýÀØØØÝݽ¾¾~ûöí®®®þþþk×®õðððóó[´hÑäÿ–z Y°`“lK–,¡XZZj>Ö36ØÀÀ“eà©P8‚N277wss;yò䨧>œœœ|éÒ¥Iß½{—2þ|ºùã?nݺÕÙÙÙ××wݺuB¡ðöíÛ„¥RÉãñÔ?¥~ýôSøøø .ˆÅâ .<[õÚò¯ýkª?;6Ö+˜)8â: ½½]ós@°nݺ%K–ìÙ³gÏž=íííiiiË—/755%„˜™™­Y³æÐ¡CëÖ­[¸p!!d’Á𬬬ÚÚÚnܸ±téÒ+W®…B…Báçç'—Ë÷íÛÓÖÖ–Máñx _tQ\\\UUUPPЛo¾éììÜÞÞ~áÂ…ÒÒÒ#GŽ,X°€®ÀÒÓÓÍÍÍííí³³³ûûû_{íµêêꌌ KKK//¯ÚÚÚªªª]»vBrss­­­7nÜÈ䟶µµ3gÎG}ôÖ[oÕ××çääL5üØ`fffX¯`F pŸŸŸŸŸ¯nŠÅâ“'Oæääûì³Ý»wðÁ‰‰‰'Nœ8pà}"{ÿþýo¼ñ†……×]´`Á‚³gÏ~öÙg………vvv...Ë–-£‚ØØØcÇŽÝ¿ßÅÅåÔ©Sæææžžž YYY©©©vvvÛ·oß¶m!äË/¿trrbX8 ‚´´4¹\¾qãÆ¹sçFFFN©v7!ëÌEQlgà´ÖÖÖ+W®H¥R>ŸO)..NLL,--e;è9ú‚@Àv€ÿÁG€§011IMMíéé íèèøðÃG]/  (ƒpÄàéJKKÓÓÓëëëíììÖ®]›`lŒ?ºÀà pFðq<À G`…#0‚ÂAጠpFP8#(€ŽÀ G`…#0‚ÂAጠpFP8#(€ŽÀ G`…#0‚ÂAጠpFþЦ9¯ãåBIEND®B`‚statistics-release-1.6.3/docs/assets/anovan_601.png000066400000000000000000001264241456127120000221500ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A€IDATxÚìÝg@×û6à³K¤I×HDPXTD¥ˆÄ MEEc1ŠQlØ)Æšh¬DKüņˆÑˆbC¥(b¤IS¶”÷Ãü³ïfa×¥Î2Ü×§i;ûÌ2sxæœ3g8E€á2´ H@&H@&H@&H@&H@&H@&H@&H@&H@&H@&H@&H@&H@&H@&H@&H@&H@&H@&H@&H@&H@&H@&H@&H@&H@&H@&H@&H@&H@&H@&H@&H@&H@&H@&H@&H@&H )//ß¼y³¥¥¥ººº®®îˆ#.^¼ÈT0çíÛ·uWõêÕ‹ÃáüöÛo-@aaaVVVEE=«¤¤ÄápÊÊÊšeçô!}òÉ'“'OÎÊÊ"„s8%%¥†FmGhc<==׬Yóüùs“êêêÈÈÈ &´t~&·¦OŸnddôçŸÒ³}úô±´´är›óÿ»‘‘‘¥¥¥‘‘QNNΩS§¾þúkŠ¢!´iH¡™Ñ·§_~ù¥pÉáÇ9Ž]+G"ýn¸ººzóæÍƒÖÒÒêÓ§ÏôéÓÓÓÓ¥ìMöíqƒТòòòÎ;§¨¨˜˜˜XTT´qãF@pèСºWVV2ok‹OLLTUUmÆ}îܹ311ñÍ›7çÏŸ'„ÄÆÆ¾|ù’é†PÍÊ‚>µnݺE/¡Ks[[ÛVŽäýû÷„EEź«ŠŠŠ„‰l§N8!DCCãÒ¥KõîªAÛÓ¿€ðþÔ Aƒ”ĸ¹¹BNŸ>ÝÊ?€ü‹§¯Ä‚‚zIqqñ¡C‡ÂÂÂ(‘ ÿÊ•+––– ...YYY¢«œœ!¤G< ·œ1c!ÄÐа¸¸¸‰Û‹•³ô :!$-- ‰#@Ó•——wíÚ•¢¥¥õå—_nÙ²åúõë•••ôZú*ãp8êêêÔÑÑ!„ØÙÙ Wq¹Ü^½zB8@QÔĉéòjâĉªªªªªªOŸ>¥(ª¦¦¦{÷î„þýû»ºº*(((**¾|ù’¢(///:sµ³³STT¤ï$š8NŸ>¢««;zôèN:B-ZD¯¢CúôÓO•””>|()ž›7oöïߟ²`Á‚ÄÄD꿉£¤oþJ;vìÓ§Ý 2jÔ¨‚°/iff¦X&é»êFmGhft)Ó¥KBȱcǨ:‰ãG•ô•°°°ž={vîÜyÅŠ/_¾:t¨ººº•••°n ÞqIYZ^^ž‚‚!D´j¡¶¶–þ_²}ûö&nt€––œœ|øäÉ“éottt$„œ={öÕ«W\.WQQñõë×Emݺ•ÞgƒÇ””:æ7oÞPE‡¡  ““óôéS:ýzÿþ=EQëÖ­STT\²d‰¤x¨:÷™ÂÄQÊ·Š?þøƒ¢¨k׮щ¸¤C066îß¿?¹BÜÜܨÿ–±R¾‹Â0» q„fF—2!!!êêê]»v-++K¥ß‹V‹6%%¥>}úÐÓ:tèÚµ«žž!¤[·n”äŠI‰ã_ýEéܹ³Ør???Bˆ°\nôö¸AhUUU>Ü·oß!Cè+ëõë×ÂrCØð:|øpBÈ¡C‡„Õlyyyôª°°°º=¸ú÷ïO¯-..þå—_fÍšemmM¯:}ú4݆0dÈz›/^GúЦÑ)¤ÄñôéÓ„‰' —Ð[^¿~^5zôèºÇ[o<”äÄQÊ·Ð?…‚‚Ý.TTT$©1D؈DÓ××÷ôô,**¢þ›8Jù. ‰#»àáh;w^¹reVVÖ®]»D—§¦¦=zTCC#>>þÊ•+QQQ„={öäææÒ‚!C†¤§§‹Áׯ_úô©§§'!¤oß¾¯_¿~úô)—Ëý矊‹‹333{öì9yòäÇ߸qcРA555?–[FF!„nêE×’Òk›²=mÅŠ 0117n!ÄÍÍMlR~ ºsäàÁƒ---™þcÈ—§OŸnÛ¶-,,LIIÉÚÚzÞ¼y555Ïž=n&|¬˜n‡¥ë ! úúúÂiBˆ­­íIþþþ„’’’þýûÏ›7OIIiùòå#Gޤ?RRR"ºs]]]º©šþ"•I¨™¢(Bˆðƒ„BHMMMMM !¤¶¶Vì#’âiܷгô|¢‡#‰0çËËË;v옶¶vC¿ X‰#´”%K–|úé§Û¶mËÎÎ.¤ó¹áÇӉ‘¥¥¥……Emm-Ý:Cáp87n411-åéê„nݺB\\\ éößššccãsçÎ >|öìÙ666ÑÑÑDjiellLª¨¨¨¼¼<))‰^ëåå%|&úܹsݾÞoyýúu|||FF}ƒ~üøq± >úS@½ª««W®\9gΜ'OžÐKrss««« !fffÂÍΜ9CyûöíÍ›7 ! ¨»+úƬ°°pòäÉS¦L155/--%„\¾|ùÕ«WC‡Ý»wïW_}%¼0ÍÍÍ !wîÜ¡‡J 3*zÕO?ýTñ/ºŸ¢$t“BdddNN!$---66–ËåZYYÑ­+wîÜùðá!dÆ «W¯–PÝBOÊ·4ûE–ïBÉH¡¥¨ªªnÙ²¥¬¬Œî6Dûè]©heMxOL£[aD5ôFœá,''çîÝ»„>Ÿ?räÈ‘#Gþý÷ß„ˆU|tûz¿7è-¤ÿþ_~ùeYY™MŸ>}LLLÞ½{7iÒ¤=zÐÛp8œuëÖ9::ZZZVVVNœ8QØÝETŸ>}ÆÿêÕ+ggçiÓ¦=:44ôÓO?%ÿ5‘‘‘#GŽüôÓOéVŠ¢ìíí---kjjúõëçää´páBÑ«¸^tûƒÐo¿ýfaaáááA—]ãÇ···¯ªªòööþä“Oú÷ï?zôèòòò~ýú1bÓ¦M555“'O–!„î«)ú½R¾¥Ùÿ(Ò¿KR„Ð&1ÝVl#Ú§G G±¡û8>þœ¢©©™MQTjjª²²2—ËÍÊʪÛ%QlÉš5k!+W®¤gUTT!¿þú+ù÷yÀêêjºœ:}ú´”G˜çÍ›G133KHH (* €RGG‡îÞ”í¥ÿæÍ›õ®*//¿wï^+š”xZ šª¡e999}ýõ×¢K~ùå—õë×ëééݸqÃÈÈ((((88¸)_áææÖ¿ÿšššäääY³fÍž=›rëÖ-)ÑÑѹ{÷îÆ+++uuu'L˜°eË–ÜÜ܃6}{Iù)fϞݣG§OŸ&''·ÔߤRVVvqq©w•ªªêÀå'€VáòºIùTUUu÷îݦ©>0`€ìïxmèöÐÒŠ‹‹;uꤨ¨H?.Í ‰#È5% $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž kaaQQQÁt „R\\¼zõêÚÙÙÍ›7/##ƒéˆ€µ86̇V­ZEQÓü??¿G>|˜Ïç{yy•——3°džٴi“ššÓQüŸòòòÈÈÈåË—;99YYY…„„¼}û666–鸀™ -‰ˆˆxðàŸŸß¼yó˜ŽÚ€ììì»wï>}ú´  @YYÙÀÀÀÆÆÆÞÞ^SS³¿¢OŸ>666ô¬šššŠŠJQQÓ‡ìÄA««Œ ÆJQÔÔ©SãããUUUëÝ’ÇãÑáááLGM233ŒŒ˜ŽÁ ˜Æ311a:„Æxýúuhhè;wúöíÛ³gÏN:ÕÔÔ>þüÕ«WS¦L™1c†††F³ïÅ‹—-[våÊSSÓºk9ޤÖû¿Ûc{l/ûöíjeåïï?aÂ;;»¸¸¸nœ’’Ât¼ÿŸ\ýßE0¦A^½zÅtáï–æáá±cDZµ%%%¿ýöÛ”)S¦M›öÕW_5×— ‚°°°-[¶Ìœ9³Þ¬‘bnnÞ Ò©¡ÿ±=¶oÏÛ·Herþüù7oÞ„††2´'N´¶¶–´VSSsÖ¬Y^^^Ïž=k®o|ýúõ²eË^½zµ~ýúo¾ù†éX ‰£LÒÒÒúöí+\Ò¿ÿiÓ¦­^½šéÐ@îHÉ…­¬¬šå랟ÏtÄÎÄ‘/ š*êýû÷¢³%%%ûöíëÚµ+ª bgâØ­[7I«ø|þ®]»V¯^ÍtŒm RÆÆ±··[¢¤¤´mÛ6¦ãh$v&ŽBï߿߳gOff¦pIQQQVVG!elŠº­úúú¨n€¶‹å‰ãÚµk†zöìÙ©S§VTTÄÆÆþüóÏLÇÐ6 ;cãÄÄÄHZ•••Eê<4ÐV°´–'Ž’žž¾ÿ~ƒö“ݧOzVMMMEE¥¨¨ˆéãh$<4Ý:ºví~íÚµôôt.—ëéé9|øp%%%Ù÷0þüùóç?zôhÒ¤I’¶ÉÌÌìÚµkeeeMMºº:Ó lÆòÄq÷îÝÂi>ŸÿìÙ³#GŽxyy5t?={ö’¶§K'z” €†byâ(6Ê®‹‹ Ç[²d‰——Wã^Þ ¶lÙ2sæLSSSI›ÉU¡L÷W“†Ù`¤T4R%ÖZ-©>2;;›Ò½{w555Y–7E½™«üsss›={¶¯¯¯››[½4c‘ŸŸÏårxðàÁÊÊÊÍ›7Ï™3çêÕ«bå´ÄW@;Äòı®=zðùüÆ}öõë×Ë–-{õêÕúõë¿ù榠di›{8->>ž~B%11±¥¿ËÐÐ0!!A8»uëÖAƒÅÄÄŒ9’Á_€Ïçdgg‹ÝEHZmËG±ÁÒJJJöíÛ×µk×FT7>yòÄËËkذaÐÑÑaúÈd…OXÂ(++'''kkkFEE]¼xÑÒÒÒÃãå¾ZCCC__¿   å¾â£gTnnîš5k곩ÞåІ°>>VVV’”h:á%éÔò÷÷§(êÎ;2.€¶…5Ž111’Veee‘:Í|ÔË—/)ŠZ´h‘èÂ;wŽ7Žéc×ÒmÓŽŽŽõî\Òòö¬  €^1..ÎÙÙ™Âãñòòòš¾ç“'Oš™™5JCCãôéÓ[·n]´h‘¢¢¢³³óòåË4À¸ŒêÞ‡ÐTáЮ°3qœ?¾pº²²R е/€bffvéÒ¥ípÆŒ3fÌ`ú°>ÝåM÷îÝ###µ´´nß¾íééI¹{÷®AC÷cmm-ö4ôÕ«W…Ó&&&léc©›&"kh‡ØÙTýø_;vì022úå—_Ž?nllleeÅt€Íþ/ŽärÅÛÛûÀÆ ³°°°µµÝ¿ÿúõë[ôá€ÅÎÄQh÷îÝ~~~ŽŽŽÊÊÊJJJöööëÖ­;wîœØÓÖmº3Ê­#FDDD:tèØ±c\.×ÆÆæèÑ£xAsIMMN‹6gË8MW: Õ}Y¥¤&rY–cÓmqºbyâ˜-6 ®šššººº––Ó¡4áÿoY²F>Ÿ¯¥¥UVVVwÕ_ýÅårë]MddddjjO±²²jhëæenn.œ=gdŸ¦DHß^”,Ë1é¶8ݱ|ˆŠŠRPP „,[¶,))iûöíLÇÐH,O»ví¾qãÆAƒ}öÙgáááŸ|ò Óq4ÒG»3Ö}å4‘:„Þùó磢¢¶lÙÂô‘±SttôâÅ‹õõõéY[[Û+VDFF2W‹£Çfªû^AIË ­`çp±å~3‡°_cƒj%ïÝ»—””¤¢¢"\¢®®þÃ?øøø0ýƒ±GçÎ/_¾|õêÕ/^hhhÌš5ËÙÙ™Ëeyçr`1v&ŽB§N Ø¿?EQ ,°±± -..^¸p!Ó¡AûõÑ7üÖÛx-ýShÈøá‡è鸸8OOχa°˜fQQQ‘’’¢­­mllpà@@@@tt4ŸÏ'„p8$ŽÐF±pàÀ°aÃ,,,lmm÷ïß¿~ýz<­OúË]ÒÓÓ¥t^”ñUÔ ?JJJ„ƒÅÒ£óx<¦ƒh,¯q1bDDDDFF† —˵±±9zô¨ƒƒÓqügèt+d<: ¬ÄòÄ‘bddÄårãã㬬¬D` :/@[Äòı´´téÒ¥·nÝ¢(*%%eÚ´iFFF6lÀ›R)-ñæ@Caaa‡ÖëÎ.Z´ˆé ~%%%:uÊÍÍ>‘žžîããÍår‹ŠŠþùçŸO?ý”é0ÃòÆ”ÀÀÀ>DEE)((B–-[–””´}ûv¦ã‚öˆÃáÐÈYÏÔÔôñãÇáÿ› g:@€vŠ#¢Þ ìììDKi@ðÕW_UUU9s†~)];¿ñcycttô®]»èÎé„[[Û+V¬Y³fýúõL‡íjÛ›«W¯2ˆû諹† ö×_‰}êùóçñññ<ؽ{·¾¾~^^Þµk×A»íÇÌòêر£è}}ýÚÚZ¦ã‚vµŒÐ®äçç{xxôìÙsÙ²e(o¡ ¹qãEQû÷ï]HQÔ¬Y³ÒÓÓ£¢¢¶lÙB¡ëÛ-–¼Ý±cÇè¿4!¤¤¤$88ØÞޞ鸠]@E#°’”[ Œ3¦cÇŽ/^,..ööö®®® a:d€zê?úöWš¥¥åÆ­¬¬~þù猌 BÈ·ß~Ûn« ëÇÕ«W{xxŒ9R Lž<ùùóçFFFÛ¶mc:.`9¤ŒÀV¢¯Ä¬{†ßºuëñãÇYYYô“@‡3fL`` XË@ë«›&Ê>ºÅ¬Y³<==·lÙK™;w.ÓGÃ$–'Ž;w¾|ùòÕ«W_¼x¡¡¡1kÖ,ggçö|£MT÷=.bKD;\cÌ`ÑSºÞÚšÔÔTÑw 8°´´ôþýûô_Ú¢£G¦§§Ÿ9s¦C‡þùç_|áêêš››«ªªÊthÌ`mâXQQ‘’’¢­­mll{ölöìÙùùù„Þ½{8p ::šÏçB8Gh(±’²FBÈüùó…Ó•••€þC BÌÌÌ.]ºÄtŒÍ î}ÑðáÃŒŒ¦Nº~ýú÷ïßÿðç´´”éH?~ ônóX¯b{{û›7oÞ¼y“ËåÆÅÅyzzBf̘Áô¡0†¶Û·o××× ûßÿþgllüå—_¾zõjûöí¿þúëŸþÏt€Àb£3ÖÛùšé¡µ=þ׎;ŒŒŒ~ùå—„„„„„„ãÇY1`K騱ãµkת««]]].\¸fÍEEEMMM¦ã’Fxýâjm!:QÎMž<¹ªª*44”ÏçÓwA½{÷1bÓq1†5ŽIII«V­²µµ%„øùù999ùúúŽ5Šé¸€mêÖ¸4ºó5°ÒîÝ»ýüüéY{{ûuëÖ͘1cùòå:ub:º“¥¥ÏÜÜüÚµkôtNNNuuµ¹¹9ÓK$½%šŽE¢Á•+W–/_îä䤤¤Dùã?”••™Ž‹1ì¬q,))133£§éÑ¿y<ÓAAÛ&ö/³î­³èÓ¦L ò";;[CCCt‰šššººº––Ó¡5%¢îÚ·oߎ1‚îÚH9þ|—.]úôéÃtÔ 0wî\Š¢„ï$„ 4èöíÛ%%%………EÉó½P+`gâHÁ£ÓÐìèÜQ´mZl ù÷ߪØBh· òþý{z¶¸¸888ØÆÆ†­w†††ïÞ½›;wîíÛ·OŸ>½jÕªU«VÑo|…vHÒЉLÇMÂΦj€–PïèŒõ¦†È0uêT—^½zB’““uttNœ8Át\-èìÙ³sçÎ;v¬¡¡aHHˆü?C€§ÜZNS†N¹ÅÚÄ1,,L8–XÝÙvþ†rh( è Óµk×ðððk×®¥§§s¹\OOÏáÇÓݤت{÷îáááLG!+±î%¸Æ[ºñ° ;GSSÓÇKš%H¡!p‹ M¡¬¬lcc£§§çààPYYÉÂÞrDSFüÎìÀÎÄñêÕ«L‡l€Âš¨´´téÒ¥·nÝ¢(*%%eÚ´iFFF6lPSSc:4€ÖƒR”Mð @=ÄFghœÀÀÀ>DEEш,[¶,))iûöíLÇÐHHþ)#4£èèèŋӃ‚BlmmW¬XÉt\ÄΦj€ÆAwFh^UUU;v]¢¯¯_[[Ët\„GBD*™XÅÎÎîØ±cô+ª !%%%ÁÁÁöööLÇÐHì¬qŒ‰‰‘¾ƒƒCC÷YSS³{÷î³gϪ©©=zñâÅY€ð ´œÕ«W{xxŒ9R Lž<ùùóçFFFÛ¶mk‰ïªªªrpp¸s玪ª*ÓÇ ¬ÅÎÄqþüùÂéÊÊJ@@×'Ñ÷ýfff—.]jè>ƒ‚‚.\¸HYµj•²²²··7Ó #6Z[½¯ ”´2Kh„Î;_¾|ùêÕ«/^¼ÐÐИ5k–³³sK¼×ª   88¸´´”é#–cgâ(µ122rÛ¶mvvvçÑ£GþþþVVV Ý!ŸÏ?}ú´ŸŸŸ‹‹ !Ä××7((hþüùx±aR÷ýbï3]RïÈ¡¡Ž?þÙgŸM˜0A¸¤¢¢bíÚµ;vìhÆoÙ·o_hh(ÓÇ íËóžÝ»wûùù9::*+++))ÙÛÛ¯[·îܹsÂWÇÊ(55µ¬¬ÌÉɉžurr*,,LNNfúø@V²¼UL4/DŽÍbóæÍ_ýµhGMMÍŸþÙ¼ß2þü”””S§N1}¸À~ì¬qÊÎÎÖÐÐ]¢¦¦¦®®®¥¥Õ ýäääp8ᘧ  @Òö<"ïÝÊÌÌd:y æÕ«W¦¦¦„ôôtzâÕ«W¢p8œôôtzºîéé颰闑ç`X`éÒ¥kÖ¬yòäÉŠ+™/réÒ)%%…é@ Mb¾kQ  ùñÇ;uêD)..¶±±iès-|>_UUUØ0ÍårUTTŠ‹‹%m/W…²‰‰ Ó!ÈE0¦¦¦ÂzDŠ¢8ŽX0b5Žb´tS5þLõKîÛ"777{{û $&&†††ŠÎÓúäªt€6‡åMÕYYY...“&Mš4i’‹‹Kfff@@@C÷£¥¥UQQ!SC TVV6´Ú˜"å!I ñÈ<4#33³sçÎéèèLœ8ñ£c>È3–×8víÚ5<<üÚµkééé\.×ÓÓsøðáJJJ ÝžžEQEEEzzz„ÂÂBŠ¢„-× ·ê}ä…^òêÕ«ºMã©jh!{÷î=xðà?üÀt,ÇòÄ‘¢¬¬lcc£§§çààPYYÙˆ¬‘bnn®££3nÜ8BHll¬®®®™™ÓÕ;:£ôYY6h£Gª««ÓÓgîܹVVV7nÜ`:.€FbyâXZZºtéÒ[·nQ•’’2mÚ4##£ 6¨©©5h?ŠŠŠîîîAAAÝ»w¯­­ rww—‡~îP/ ÌJKKÓÖÖÖÓÓÓÓÓ릩¯¯ïîîÎt€ÄòÔ'00ðÇQQQÎÎ΄eË–­Y³fûöíëׯoè®|||ªªª|||!nnn .dúà x È77·Ù³gûúúº¹¹Õ»žP€6Šå‰cttô®]»„mmmW¬X±fÍšF$ŽgÙ²eË–-cú˜ ~HA~ÄÇÇÓ-‰‰‰­ö¥ÖÖÖÈG ¥±ü©êªª*±Á/ôõõkkk™Ž šý>IŠ¢5‚œPUU¥»SO:Uù¿*++gÍšÅt€ÄòG;;»cÇŽmÙ²…ž-)) ¶··g:.h6èÎr¨¼¼|ÿþý„øøø]»v‰®ÊÉÉyñâÓ4ËÇÕ«W{xxŒ9R Lž<ùùóçFFFÛ¶mc:.hh›¹USS#|ÉØÛ†¸\îÚµk™ ‘Xž8vîÜùòåËW¯^}ñâ…††Æ¬Y³œ…/€6 )#È9MMͽ{÷BfΜIO°ËÇãÇöÙg&L.©¨¨X»víŽ;˜ )#´-‡b:€æÄòÄqóæÍªªª›6mŠQSSóçŸ"q”sbop[Xw¶Þ½à½/À¸ÄÄÄuëÖ½yóFlùýû÷™  1Xž8B–.]ºfÍš'Ož¬X±CvË¡º9¢èó.õ&uëë]"e u¬]»VYYyÆ :ub:–æû1€vŽý‰”›››½½ý‚ CCCÅFçf‰åˆt5a½ÿ>ú/JúRö Ðr^¾|Ö·o_¦i¸€vñ˜ˆ™™Ù¹sçttt&NœÃt8ðÄþëˆ5. Gg$²½BZ¬!@èëëWTT0|ç_Lд‹Ä‘¢¡¡±wï^OOÏ~øéXàãÄô–Ò»@žnÚ´éÚµkYYY"˜Ž«yˆÝìµQÂÒ†‡#‡8"˜ŽšË›ª=ª®®NOs8œ¹sçZYYݸqƒé¸@I}¥lVw©¯œé#ƒvÇËËK Ðï¸ÅŽw²à²ª·Ý£­”\A÷öag☖–¦­­­§§§§§÷êÕ+ÑUúúúîîîL„Ô)£Ep©÷‰ÑŠ-üè§PT#ÂÃÙ¡9‰^³ÈÚ'v&Žnnn³gÏöõõŽÂ#†·û, Ú6$vß_wËz?.}ücfuëÖ’ýúõk‡ÊÊJ¦ƒjá5‹‹ >ªîÝêtY€‰c||<=òNbb"Ó±ÀÇ¡¶*--]ºté­[·(ŠJII™6mš‘‘ц ÔÔÔ˜­ñXvÁ"i9uÓDüÚ,À·cTUU•””!S§NUþ¯ÊÊÊY³f1 òßç¦X)00ðÇQQQ „eË–%%%mß¾é¸àÿŸ‰B‰Ôì„ÍJx8†ØYãX^^¾ÿ~BH||ü®]»DWåää¼xñ‚éÛ;4uA;½k×.}}}zÖÖÖvÅŠkÖ¬Y¿~=Ó¡Áÿ‡²¨åˆv@ÇïÌìLkjjÒÓÓéiáËå®]»–éÛ/ЮTUU‰½t@__¿¶¶–é¸ZÊ|6ag⨩©¹wï^BÈÌ™3é ¦¦¦(> ]±³³;vìØ–-[èÙ’’’àà`{{{¦ãh$vöq:tèÓ!!ÿvg«ý`½Õ«W?|øpäÈ‘`òäÉÎÎÎyyyþþþLÇÐHì¬qJLL\·nÝ›7oÄ–ß¿ŸéÐÚ Ñ¶i±15X¯sçΗ/_¾zõê‹/444fÍšåììÌå²üŽXŒå‰ãÚµk•••7lØÐ©S'¦ciwÐÚ­˜˜ÑYCCCCCCzúÞ½{„¦ch –'Ž/_¾ ëÛ·/Ó´ ¢Cy×»K8TXoþüùÂéÊÊJ@@÷Ö„33³K—.1#@c°¼ÅD__¿¢¢‚é(X.??ßÃÃÃáôèÑcéÒ¥DÂËI)ŠJOO™ÆtÔ-èñ¿vìØaddôË/¿$$$$$$?~ÜØØØÊÊŠé‰å‰c``à¦M›®]»–••U ‚é¸ÚáиuW ‚1cÆ„……ÅÆÆ¾|ùrç΋-}‘`]¨q„öc÷îÝ~~~ŽŽŽÊÊÊJJJöööëÖ­;wîÜû÷ï™  1XÞTíåå%|||Ä–ã]ÕB|>ßÀÀ ;;[ø´ôôtŸèèh•Q£F=zT˜êÕ}­Â­[·?~L4hEQQQQcÆŒ dú°äBvv¶†††è555uuu---¦Ch –'ŽáááL‡À$ÑN‡õn››»fÍš’’á@ðÕW_éëë_½zµ²²rèСß|ópmÝ΋©©©ôhÆô–––â¡uÚ€BBB~üñGúù¼âââàà`ôÖ€6Šå‰c·nÝ!ÙÙÙ¯_¿vpp¨¬¬TQQa:¨VBgx¯^½211©÷¬7n¬ûçÏŸÇÇÇ?xðÀÆÆ†^rùòe@Pï"ô??EEż¼<ú+’’’!...¢›‰¥›x,´S§NuqqéÕ«!$99YGGçĉLÇÐH,ïãXZZ:wî\WW×éÓ§B¦M›æëë[VVÆt\-N,9«·Ó¡¿¿?EQwîÜ]HQÔ¬Y³úõë'\¢¤¤Tïþé¯(++322š:uêƒ8n>|X,5¤055EÖíJ×®]ÃÃÃ7nÜ8hРÏ>û,000<<ü“O>a:.€FbyâøáǨ¨(BȲeË’’’¶oßÎt\òËÒÒò§Ÿ~RTTÌÏÏŠŠ"„Lž­¤¤¤©©Ywϧª™>D€V¥¬¬=kkk»bÅŠ5kÖ¬_¿žéÐäÝøñãccc;wî¼ÿþýû÷ —×ÍüÌÍͯ]»FOçääTWW›››3>€\°³³«w9ú@ÅòıªªªcÇŽ¢Kôõõé‡9Ú•F4ÇÄÄlÞ¼ùÈ‘#999ôÏXw'oß¾õðð éÓ§!äüùó]ºt¡§`÷îÝÂi>ŸÿìÙ³#GŽxyy1@#±9r¤@ ˜ÓQ4Ëk;wî|ùòå«W¯¾xñBCCcÖ¬YÎÎÎõŽ,477·¥K—Ο?ÿàÁƒ111þþþ¹¹¹¶¶¶R>Ò½{÷v>^&€$boˆ)))Ù·o_×®]QÝm;ǘ˜ÑYCCCCCCzúÞ½{¤Nû¼{÷îàÁƒ'Ntuu=r䈲²2Óq´Iu;Æ())m۶鸉‰ãüùó…Ó•••€wn533»téÓ1Ê GGGÑ¡¹ Þ% Ð|®_¿.¶D__ÕÐv±³Ñöñ¿vìØaddôË/¿$$$$$$?~ÜØØØÊÊŠéåŽp@odÍhÙ²eÝþ«ººzÚ´iLÇÐHì¬qÚ½{·ŸŸŸ££#=koo¿nݺ3f,_¾œ~u¬ìŠ‹‹·mÛIQ=d÷îÝ™>¾æ·¹4¯òòrzôÓøøø]»v‰®ÊÉÉyñâ…컪©©Ù½{7ýÚèÑ£/^\÷-P?ýô“è·hkkÇÆÆ2ý;±b`9–×8víÚ5<<üÚµkééé\.×ÓÓsøðáJJJ ÝOÏž=Ï;'œ½råJyy¹µµµ¤íy<!DF7ÌÌÌ555¥Î^½zÅx0ÌB0m"˜¶+##ãÂ… cÇŽ533ãóù+W®ŒˆˆÐÒÒš;w®§§§Œ;ÉÉÉáp8úúúô¬‡Ã)((ÝF dgg9rÄ××W ôîÝ{Ó¦MR^ûI—N)))LÿBÐ&±qℌ‰£––VEE…@  sG@PYY)ölŸ¡¡aBB‚pvëÖ­ƒ Љ‰‘ñ+„å‰ãîÝ»…Ó|>ÿÙ³gGŽñòòúèGŽùàÁzZMMòäÉ//¯aÆ8p@GG‡é#“ RFF<}ú4$$„žNKK+((3f =kmm}òäI÷£§§GQTQQ‘žž!¤°°¢(aËu½444ôõõÅš³š ËG±W º¸¸ðx¼%K–xyyIyƒ¢¢¢hCOMMÏÔ©S…Õò~¦¶ô´i¥¥¥ ôôÝ»w zôè!\[VV&ã~ÌÍÍuttbbbèþ6±±±ºººtˆPxxø¾}ûNž<©©©Iy÷î]^^^Ïž=™þ €Xž8ÖÕ£G>ŸßÐOEGG¿}û¶W¯^¢oÁ633£«ä *˜ell3`ÀBHDDÄ Aƒ„«ºuë&ã~ÝÝ݃‚‚ºwï^[[äîîNÓ¦««;jÔ(GGÇuëÖ-_¾|ÆŒ !!!VVV’zé4ËÇ÷ïߋΖ””ìÛ·¯k×® }WìË—/)ŠZ´h‘èÂ;w6ãc7Í)#€hhXž8^¿~]l‰¾¾~C«å^6 W8Μ9sæÌ™#ºpÑ¢E›6m’4J@›Àò7Ç,[¶¬ÛUWWO›6鸚ð50LajjЬÚ:vÖ8–——ïß¿Ÿ¿k×.ÑU999/^¼`:Àf€¶iheìLkjjèëB„4.—»víZ¦l¤ŒÀv&Žššš{÷î%„Ìœ9“ž` 4LSXÞÇñСCÂéÚÚZ¦Ãitgf±³Æ‘’‘‘qáÂ…±cÇš™™ñùü•+WFDDhiiÍ;·AcaÈ´M´-qqq²lÖ©S'sss¦ƒhv&ŽIIIS¦L155;v,!dÏž=7oÞœ={¶ššZpppçÎGŽÉtŒ2AÊÐýñDzlfnnŽÄÚv&Ž?þøãÈ‘#·oßN¡(êüùóßÿ=ýÆ…êêê'N´‰Ä ÓmÔ–-[˜ E°³ãÓ§O¿ýö[z:--­  `̘1ô¬µµµØsÖrÝ@±³Æ±´´TAAž¾{÷®A=„kËÊʘP"´M€Übg£±±qLL =1hР᪄„„nݺ1`=„µŒÈ@>±³ÆÑÝÝ}ÇŽ'##ãádzgÏ&„‚˜˜˜ƒz{{3 84L€ücmâXRRræÌ™>Ì›7ÏÅÅ…²xñ∈ˆï¾ûN®†ãAÛ4û|øðA–×R˸€ü`gâÈápæÌ™3gÎÑ…‹-Ú´i“üÓHØjÚ´i666S§N•Ô1&..îèÑ£FFF«W¯f:X€`gâX/SSS¦CøÿÐ6 Àb§OŸþé§Ÿ¾ûî; [[Û=zhiiÕÖÖ>{öìîÝ»µµµÞÞÞÂÑÚŠv”8Ê T4°ž²²²··÷Ì™3###ïÞ½{ýúõüü|eeeCCÃøùùÙÛÛÓE@ۂıõ ehWTTTÜÜÜÜÜܘ Ù ql H€8¶8tgv@âØ‚PÑl‚ıE eöaç+™•ššŠ7!ä»ï¾[RRR2mÚ4¦ãh$Ô86?sss¦C&•——ïß¿Ÿ¿k×.ÑU999/^¼`:@€FBâÐÌjjjÒÓÓéiáËå®]»–é ‰#@3ÓÔÔÜ»w/!dæÌ™ô; #@K±´´LKKc: €fƒG€–¥¢¢bffÆt ͉#@KÙ±cÇÊ•+éWT««« —ëéé1@c qh)nnnE=yòDlyJJ Ó¡4G€–ÎtÍ ‰#@KÉÊÊ’²\EEeÀ€LÇÐHZÊ–-[èVi‡Ãáp—ËUQQ¡×š˜˜œ?žé‰#@KùòË/?¾aÆr¹ÜG­]»véҥÇg:4€ÆÀ8Ž-å÷ß_·n“““²²²¢¢âÀýýýCBB˜Ž  ‘8´”üü|555Ñ%jjj999LÇÐHHZÊÀCBBÞ¿OÏ[YY1@#¡#@KY·nÝ´iÓ\\\zõêEINNÖÐÐ8~ü8Óq4Ç‹>}úãÇUUU™ŽäšÁ¥K—nܸ‘––VUUåîîþùçŸ Ÿªn.555»wï>{ö¬ššÚèÑ£/^Ìáp˜>t`'$Ž óáÇU«VQÅt Ð6¤¥¥õë×oäÈ‘QQQ/^,..öððàr›³›PPPÐ…  !«V­RVVööön¡ÃMIYS Š5G$Wä꜑«`Ú(ôql˜M›6‰uu—s£Fb:ƒ`XL#œ:uê‹/¾HJJÊÍÍ]°`A~~~hhèÞ½{›ñ+ø|þéÓ§}}}]\\\\\|}}ýõW@ЇÃáp(M¬×äñx-dãÊÜܼéGÔ\ää—i–`ä꜑«`Ú.$Ž ñàÁƒ%K–0´ ‡òõõuuuˆˆ066>räH``à… šñ+RSSËÊÊœœœèY''§ÂÂÂääd¦½m 3 á¬üäŽr MÕ²*(( •¥r[®nD ‚iÓÁ´itJçììLáñxyyyÍø999G__Ÿž500àp8’¶oô755ÕÜÜ\ôãæææÇÜܼÑÁËÙ&Œ¡î„ûì³VûCK:Õ)$ÃÈõøÑ/µ°°hÂJJ0­K †‘˜y4ŸÚÚÚ/¾øÂËËëñãÇ÷îÝ6l˜ƒñ,X°àóÏ?ŠŠzò䉗——‹‹KYYƒñäçç¯^½ÚÜܼ¼¼œ©¶mÛæààpóæÍ›7o4èÇdð‘“ß„&?g‹¼]GmW½gׯ¿þjiiùûï¿GEE}ñÅS¦La0˜¹sç~þùç÷îÝ»wïÞçŸ>oÞ¼VˆDÒ©ÎHá )F®Gé_ZRRâââÒj…•¤`9%ÃÈ Ì8$ŽÍ)55ÕÜÜüéÓ§ôì¡C‡úõëW[[ËH0eee<ïÆôlqqq¯^½„³­oïÞ½æÿb*Iª¬¬0`ÀÙ³géÙ3gÎ8880õ’“ß„&Wg‹\]GmW½gWmmí!Ca$B—ËíС=­¢¢Âå¶ø¿$I§:#…ƒ¤`¹¥iDDă–,YÒ¢1|4FN`)¿LëŸÀòÅqs233Û¸q#!¤¨¨(==ý§Ÿ~rsscêLêÙ³ç¹s焳W®\)//·¶¶fúGbRNN‡ÃÑ××§g 8NAAÓq1O®Î¹ºŽX&##CAA!!!aÞ¼yÙÙÙýû÷÷÷÷ïÞ½;#Á(++3æÈ‘#ôMÂ/¿ü2vìXeeåýRI§ú‹/Z¿pŒ©©ië_R ‚‚‚€€€ÐÐPªµ:…K †‘XR0ŒœÀòeq‹˜7oÞ”)Srrr<<<˜Ž…‚'N¬X±bæÌ™¦¦¦L‡Ã$>Ÿ¯ªª*LA¸\®ŠŠJqq1Óqɹ:[äê:b‡²²2@°wïÞåË—ÿòË/ ^^^ >˜µråÊœœœñãÇ?>//oÕªU­öÕb§:³…ƒ¤ëŽ‘ë±î—úûûO˜0ÁÎήu ³'pÝ_†Á˜IL·•·m—/_vÜIMM]UTT´yófúBƒÉÈÈøæ›olmmÿýwyøe>|È`¾¿ÿþ›Çã û-ÕÖÖòx¼¿ÿþ›‘`ää7ÅÔÙ"Eë_G,#vv]¿~ÝÜÜüÉ“'ôlqqqŸ>}®_¿ÎH0>|puuݸqcaaaaaᆠ†þáÇVˆ¤î©Î`á éºcäz¬û¥çÎ;v,ÝuîSØj…UÝ`<ëÃà Ì,$ŽMR]]]ò¯ÚÚÚôôôG ×òù| ‹èèhF‚¡(*>>~À€K—.-,,dö—.g6IJJJ277ÏÏϧgóòòÌÍÍŸ={ÆH0rò›1x¶ˆaö:b±³ëÑ£Gb'›‹‹Ë‰' æòåËvvv¢¹š­­í•+WZ:ŒzOu¦ I×#×c½_ºnÝ:ó:6oÞÌH0LÀõÃÔ Ì8ôqlEEE áì£GBCCoݺE·w”””UUUF‚©©©ñññ™:uêâÅ‹ÿe䄹¹¹ŽŽNLL̸qã!±±±ºººfffLÇÅ>>UUU>>>„77·… 2‘\«³E®®#öY±b…¢¢âúõë?|øàè謠 ÀH$šššÇß±cÇÌ™39Ž­­íñãÇ555[ôK¥œê­_8H †n1oåëQ® )Á´þ ,%˜Ö?凒ƒW®€üÃp< $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $ŽÐ`7näÕgòäÉÿüóÇ{ÿþ}«SRRR^^N©¨¨àñxiii ú8pAAAëþ„õ„ÍT$ ÉèÑ£ëtwîÜ-m„ײشŒ ÓèQn@ëSd:h{¾ÿþû/¿ü’RRR2}úô5kÖX[[B:vìØúÁ¬ZµÊÔÔÔ××WQQqöìÙÚÚÚLÿ< »¡ÿo |õÕWS¦L]bll,ZÚ¯e±i¶Bâ öÉ'Ÿ|òÉ'„ºfÑÄĤOŸ>ôªþù‡©¨”””Úby- ›ÁŸ$144–o¢ÚbiÐ,ÐT Í/55ÕÝݽÿþ&LHLL¤æææúøø8888;;¯^½º´´”^ž““3þ|{{û¡C‡nÚ´©²²’òÏ?ÿôîÝ;==ý«¯¾ ‘ôñ™3gFFFþôÓOß}÷]UU•°ñ¨  ÀÇÇÇÞÞ~ðàÁ;v쨭­%„ÄÅÅ}ýõ×VVVööö>>>ÒÛÓóòò,X`gg7f̘£GŽ?>&&F¬!>&&ÆÎÎŽž®wçôQÜ»woذaVVV'N¤ Ia Iú­®_¿þÅ_ôë×oذa§Nbúï ÐN /[ÑkYtšH¾Š³²²fÍšekk;~üøÈÈȺ;Ÿ7oÞ’%K„³‡rqqÒK0)¥Êh^H¡ùmÚ´É××÷×_ÕÔÔ\¿~=!„Ïç{xx¨ªª>|x×®]¯_¿^ºt)!¤ººzêÔ©ÕÕÕ?ýôÓÆoß¾íççGï„¢¨•+WŽ1bìØ±’>~èСáÇϞ=û·ß~~{mmíôéÓ«««:´lÙ²ßÿý—_~©ªªš3gÇ Û¶m[BBž={$Å_[[;mÚ´âââýû÷¯X±âøñã)))RŽWÊÎÁæÍ›·lÙ¦¬¬¼nÝ:Ia I:ØÌÌÌE‹ÑEüwß}œœÌôŸ€åòóó“E¼}ûVt­èµ,:-é*®ªªš:ujeeåÁƒ—,Y²mÛ6úVYÔèÑ£ÿþûïêêjzöêÕ«_|ñEMMì%˜(”'ÐìÐT ÍoÑ¢EôÍ®‡‡ÇÚµk !W¯^%„lÙ²…ËåBBBBœýèÑ£¢¢¢?þøCCCƒ²yóæ©S§._¾œ"&Mš4qâDBÈ… êý8Ýb.毿þÊÎÎþí·ßÔÔÔúöí[ZZúÏ?ÿ”••-^¼ø›o¾QUU%„ :433SRü7nÜÈÉÉ9uêT§N!6løþû說”Sµ`Á‚B¦OŸNÿÒIú­222ÁW_}Õµk×Þ½{÷ìÙ³­tèh»Îœ9sæÌᬇ‡‡¿¿ÿG?%é*~øðaQQÑùóçé²EIIiÆŒbŸuuuõóó‹}zóæÍ5kÖ©¨¨|þùç:uZºté³gÏîÝ»ççç7f̘.]ºÈøqB—ËÍÉÉ‹„Ï?ÿ\CCcÅŠÏŸ?¿råÊÏ?ÿlkk«££óöíÛ¸¸¸¼¼¼3gÎüñÇEEE›r1ô|||âã㣣£×®]KwÒ××WRRÚ³gOFFÆ7Ž9Boß Óê†ýу­­­ ùõ×_322®]»– ÚüŒ½–…Ó’®âáÇëèèËIÝ%ÕÔÔ¼yófgggºëáG I¥ÊhvH¡5p¹Ü#Gލ««Ïœ9sÍš5ööö6l „())8q‚ÃáLŸ>}ÅŠŽŽŽ²œâææ³páBáÆÊÊÊ'Nœ¨ªªòôôܺuë×_={öìo¿ývôèÑ ,øæ›oRSSþù第¬]»vÕ­ŠŠÊñãǹ\î÷ß¿eË–¥K—ÒIªªªê¶mÛ>|8jÔ¨%K–xyyÑÛ7hç’ÂþèÁ:88¬\¹òðáÃãÆÛ¾}ûôéÓ=<<˜þôw¢×²pZz‰×¡C‡ï¿ÿ~ÆŒ¶¶¶fffõîvôèÑïÞ½ûâ‹/èÙ2’J'”'Ðì8E1€¼0`À¾}ûèYºˆ~¼ ¡(Š*..–ñ¹Aé- Ç4 eh ‡ÓY#Aé-MÕgbbR÷Qq€öMÕ Ô8€L8€L8€L8€L8€L8€L8€L8€L8€L8€L8€L8€L8€L8€L8€L8€L8€L8€L8€L8€L8€L8€L8€L8€L8€L8€L8€L8€L8€L8€L8éÕ«ç¿zôè±aÊ¢½O%%%‡SVVVw•††‡Ãyûöm#v[\\Ìáp”””¤Èo¿ýÆÐÙ"Äþ:Ÿ|òÉäÉ“³²²>úkˆ*,,ÌÊʪ¨¨`úh mCâÿÇÈÈÈÒÒ²OŸ>šššéééëÖ­ kôÞúôéciiÉåâkô_ÇÈÈ(''çÔ©S_ýuƒÒúéÓ§ýùçŸL´mø¿ÿgçΉ‰‰OŸ>-**š0a!äêÕ«Þ[|||bb¢ªª*Ó‡Åô_çÍ›7çÏŸ'„ÄÆÆ¾|ù’é šÁ»wï¼½½ûõë§®®Þ»wï¥K—6e‡’jâŸ} ==½_¿~{÷îMHHèСÃóçÏwíÚåààP\\Ìthÿ]ßo``˜˜¸k×®‘#G WÉÒ´Âx}¿§§çš5kž?nbbR]]9aÂa—žV &lCA»gaaA9}ú4=ûúõëÏ>ûLtÉĉ !ÖÖÖ'N¤SŸ§OŸRõîÝ;mmmBȘ1c\]]¹\n§Nòòò(ŠRTT$„”––RåååEéÔ©“¢¢"‡Ã!„äææ¾ÿž¢¨¨H‹èlMMM÷îÝ !ýû÷wuuUPPPTT|ùò¥ØG¤ˆ(I‡pêÔ)BȈ#èÍúõëG‰ŠŠ’ò:.—Û«W/BÈ$EKQ”‡‡!D[[ÛÖÖ–>vé!I?(aUAff¦Ø¯1}útBˆ®®îèÑ£;uêDY´hEQ7oÞìß¿?!dÁ‚‰‰‰LŸnÿ}ôë×ïÅ‹E½yó¦oß¾„•+W6zŸ’J‰²²2UUÕ3fȾ+±«ïÞ½{ô•õ¿ÿýOö¸¹¹I*—ZÝ›\QQ‘.^ª««7nÜH>|x+„'öÒ &„´´4é…¹üü€PGø¿k[‡ÃÙ¾};½611‘Ò³gÏÚÚZŠ¢‚‚‚!Ó¦M£(êöíÛ„®]»¦¥¥QµcÇŽ™3g&$$P"‰ã«W¯¸\®¢¢âëׯ)ŠÚºu+ýÒÇŒŒŒáÇOž<™^åèèH9{ölãG)‡PZZÚ±cGeeå>äæær8œ®]» )¡c „Ì™3'==½²²RR´/_¾äp8ŠŠŠoÞ¼¡(j×®]„:q”²ÿzÊØØ¸ÿþtzJqssûÅRRR!ôwÑûWPPÈÉÉ¡Pò‚\úçŸèóùÑ£GÂ…W®\qqqY°`=[]]½iÓ&KKK55µ~ýúíÚµ‹¾d¤¬½.ÊÊÊ軦ÐÐPŠ¢.\ø×_Ñ‹‹suuÕÒÒÒÕÕ9rd\\\Ýë)Ë—/'„|õÕWô¬èr½;¤/=Ú¦M›(ŠJJJ3fŒ®®®šššµµõÙ³gEcþ믿¬­­ÕÕÕ]]]ÓÓÓéo©¨¨Xºt©™™™ººº½½ýµk×D—÷èÑCCCÃÅÅ…¾ãOß·ÐKŠ‹‹:Vox’öIG¨¢¢Ö³gÏÎ;¯X±âåË—C‡UWW·²²ª÷ÛÅ~ÀššºÁäöíÛb…¹¤¿fÝqHáÿ®máÃ1:t „ 2¤²²’¢¨z‘éß¿?EQEEE]ºt¡—˜™™ÍŸ??>>žÞ§°<¥o1‡ B/ñâ…,‰#EQÅÅÅ¿üòˬY³¬­­éœ>}Ztº‚F¾’G)‡@QÔwß}G¹páÂÉ“' !‹/–þ:‡C×­J‰öÌ™3„ÁƒÓÛ”•• k¥‡T÷¯#¤¯¯ïééYTT$ö‹>}š2qâD±^¿~Bâr)""‚¾ó”²¤zt)«„×…@ øúë¯ !K—.Û­”ÖQu‹º@^ªÂ‚NÒÅêû¥·¥p8œŽ;öéÓ‡î±3jÔ(ú[èzÙO?ýÔÙÙYQQQIIéáÇ”l­ååå]»v%„hii}ùå—[¶l¹~ý:]¶Sõ5GHoi!„())õéÓ‡žîСC×®]õôô!ݺu«ûçCƒ +!qñkûÝ»wjjj„[·nQÿf$¶¶¶'Eœ;wŽÞ¸¤¤äСC&L ;D*((ܸqƒ)O=Jqqqî\¬©ZAA^%ZŽ›˜˜tèÐaþüù§OŸ¦;‰%޳fÍRù×ùóç)ɉ£ôCøã?!³fÍòôô$„ÄÆÆJÿHÝZOIÑž8q‚ˆ4 åääGé!Iù누nsÿòË/…k‡ B¹zõ*…ÄäÒáÇé«@ÒRêÑ¥¬^ëÖ­#„¸»» ±=Ki-U÷êûûï¿éû7zVXÐIÙ¡èÕ'½-…òÇPuíÚ5:Õ£(êéÓ§tFõþý{Š¢Ö­[§¨¨¸dÉÙ[-’““'L˜@—ê4 ÇÓkEÓ¥¥…þ¿@—–¶¶¶555¹¹¹t/O:º? LXÇ€¸N:™™™B²³³ !–––„ÂÂÂÉ“'O™2ÅÔÔ4>>¾´´”ríÚµ 6èêêþñÇ………ß~ûmmmí7D÷fnnN¹sçý$}ñÓ«:tèÀápjkkébBôƒ—/_~õêÕСC÷îÝûÕW_ÑE§˜Ÿ~ú©â_ô]²$R2zôh--­+W®\¿~ÝØØØÞÞþ£#)ÚÞ½{B¢¢¢òòò!¿þú«ðØ´YÐ7å‘‘‘ôC3iii±±±\.—~ΉVSSÓBç @#Ð5a’6xüø1!døðáFFF„KKK ‹ÚÚÚ§OŸJYE¶¦¦fÆ „kkkúfU”¥¥e—.]²²²ÌÌÌÌÍÍ_½zåííMw¯”®¨¨Hy#vhll|îܹáÇϞ=ÛÆÆ&::šˆ\˜ _|ñ!ÄÎÎŽB?\HÑÀµ´´!ÕÕÕ»víJHH „¼xñBAAÃá,Y²„òäÉ“º1óx¼?þøãÝ»w>Ü·oß!C>|ø0gÎaW¡îSAA¾#íÖ­!ÄÅÅEAAÁÐÐn€–T¼~ý:>>>##ƒn0}Dò£èæ8Ñ ™)2ȯòòrBHŸ>}ÆÿçŸ:;;›˜˜üïÿ+//§oˆ•””víÚµwïÞñãÇ×ÔÔÐ ‡ &º{{{KK˧OŸöë×ÏÂÂâÞ½{‡ÎŸTTTúõëïàà`ff–šš*ü}9räÈÄÄD:ñ¢d{oÅŠž”„•+W~÷Ýw’Ò¡C‡ &;vŒBw`’~ÔuIŠÖÚÚÚÅÅåÖ­[}ûöíÙ³ç½{÷„iÐþeaaaáááqòäÉþýûÛÛÛß¹s§ªªÊÇÇç“O>!„Ð÷ú¡¡¡†††Ã‡o…“à£x<!äŸþIKK£oV !ÿûßÿfΜٷo_º3"!D4í300HNN®©©‘²J¸ÄÊÊ*!!aÓ¦Mžžž†††¢_­­­’’òûï¿_ºt)22rß¾}Œˆˆpuu•3}÷èÑCl¹Œ;,))éß¿vvö÷ß¿|ùò_~ù…n¯§ÑcÖBDÓ¦¨¶¶Vì!¶¶¶?üðƒpaÝО>}zùòe##£)S¦X[[[[[Ϙ1£[·nyyyÏž=£ó?Ù÷)ŒF}uúôiºG$²ü5AŽ0]å Ì«ÛóÍ7ßB&L˜@Ï–––z{{khh8;; {—SõÛo¿ 4¨S§Nšššvvv¿ÿþ;½\´Ïø“'OèûH“C‡ÑÚ¹¹¹ôªAƒ©©©ÙÙÙÑ(ÝrQ^^NW¡}úé§þþþsçÎ%„Ì™3G–‡cÄìÙ³Gú!P%±’î9$ý¨ëÆ )ZŠ¢ŠŠŠ&M𤣣ӳgϳgÏvèÐAøTµô¤üu„Ä"©ªªZ¿~}ïÞ½;vìØ·oß   ác =zôPUUýñÇ™>Ýþ¿qãÆBœ )ŠÊÉÉ¡/¥%K–PõüùsBˆ¦¦fvv6EQ©©©ÊÊÊ\.7++KÊ*á¸ïß¿ÿöÛo !ßÿ½Ø÷†‡‡/]º”næóùôf«W¯ÛLìê{ô葎Ž!äÂ… ôaA'e‡tKëÉ“')Šúõ×_É¿«««éû:±N8Ô/mº6®cÇŽ%%%E­_¿^]]}ÕªUtmœ‰‰ Ý÷îÝ¥K—;vLì=zDQSSv@ÏÈÈ »cÒO²‹†'eŸb®Y³†ˆ<ü®¢¢B>#é%ºC)M±A q„ÖP^^~ïÞ½}„Ïçß¼y“éÀ›mQQÑ… .]ºDÏÒ7öìÙ“é`äEJJ <)((˜˜˜Ð-ž=zôö–£´2007nîøøøH_%𑤦¦***r¹Üˆ~ï7è1½¿û¾úо›¥ûg‹í¢×£GºJÌÑÑQ¸0q”²CoooBˆÝõë×ÿýw:¶#FtîÜ™®Y;vìÝ»÷²eËÞ½{'\+¥]Ò*±ŒdΜ9bÙMRk‰(ÑF •>}ú,Y²¤¼¼\¸hÓŠ¤ŠÖ÷ËØ–"6ûáÃuuuGGÇ¿ÿþ›^.c«EEEÅÎ;ûõë§©©©­­mmm½{÷náƒÕbÍ2¶´4{∓6äÿz›@K¸ÿþºuëîß¿_^^nllìååµdɺ#´CUUUwïÞuqqa:€FBâ2Áp< $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $޲zóæÍœ9sìììW­Zõþý{¦#ö«©© úì³ÏFŒDQ””ccc-,,***˜ŽX ‰£LÁÂ… «««þùçàààû÷ï¯[·Žé €ý‚‚‚Ξ=èççwæÌ™½{÷JÚòÇ«V­’žY4G™¼|ùòùóç¾¾¾ýû÷8pà¤I“þþûo@Àt\Àf|>ÿôéÓ¾¾¾......¾¾¾¿þú«¤’gÓ¦MjjjL‡ ,‡ÄQVß~û­……=ýé§Ÿ***2°\jjjYY™““=ëääTXX˜œœ\wˈˆˆ,Y²„é€åýÈÄÌÌlãÆ„¢¢¢ôôôŸ~úÉÍÍË­?íæñxôDxx8Ó´m&&&L‡À¤œœ‡£¯¯OÏp8œ‚‚±Í BCCei§¦ ¨””¦Ú$$Ž 3oÞ¼øøx==½­[·JÙ …24ŸÏWUUÞ£r¹\•ââb±Íüýý'L˜`gg'}‡<¥4šªæ·ß~‹;v¬»»{ee%Óá›iiiUTT;5 ‚ÊÊJ---ÑmΟ?ÿæÍ›~øé` ]@â(“W¯^=~ü˜žÖÖÖ^ºtiYYÙ£G˜Ž ØLOO¢¨¢¢"z¶°°¢(aË5-!!!--­oß¾<oêÔ©„þýû2;°šªeòèÑ£ÐÐÐ[·nÑmF%%%@UU•鸀ÍÌÍÍuttbbbÆG‰ÕÕÕ533ÝÆÛÛ{Ú´iôtBBÂòåËÏŸ?ß¹sg¦cvBâ(—­[·®_¿~òäÉ¡¡¡fff–––LÇl¦¨¨èîîÔ½{÷ÚÚÚ   wwwzH‡°°0]]ÝQ£FééééééÑÛçççBLMMq[ -‰£Ltuuþùç;vLš4IUUÕÁÁaË–-JJJLÇ,çããSUUåããCqss[¸p!½üäÉ“fff£Fb:@h_8xÍ@³Ãs‹ ŸP:@áá G G G G G G G G€¶„Ïçkii•••ɸ !q œÿªw›ÜÜÜ ”””ȸ y!q`‡Ã¡þ«nî¸qãÆ.]º>|XÆå͉#@ÛàïïOQÔ;wd\Ðì8€L8ÈI½ä"ÓíÔHOPÅtPâ8È:S¤Ÿ’a:€ú¡©d‚Äd‚Äd‚>Žm‰££c½ %-hF¨q™°?qLNN~ûö-!$**jùòåÇLÐö°_KK«¬¬LÆår…å‰c÷îÝ###³²²nß¾=dÈBÈÝ»w ˜Ž Xˆó/IÐý%JJJd\ oXž8z{{8p`ذa¶¶¶û÷ï_¿~½‡‡ÓqÛЯ£Õ›;nܸ±K—.‡–q9€bÿ 1333322lllTUUãââjkk±ŸâââmÛ¶EFFRekk»bÅŠîÝ»×»%ÇKIIaú¸¡õÔ}±¬¤WÍFGG;99•––ª©©É² y¡tjð®jgì¼  @8­¢¢baaQVVVVVfjjJ¯ÕÓÓkè>ýüü^¼x¤©©âååuùòåŽ;2}¬­„‰££££ô zÏ]^^¹oß>úQ›AƒÅÆÆººº2}¬­„‰ãõë×›w‡ÙÙÙ}úô±±±¡gÕÔÔTTTŠŠŠ˜>P t¿F4-ë±3qìÖ­›¤U|>×®]«W¯nÐ{öìyîÜ9áì•+WÊËË­­­%mÏãñ!áááLÿÐJÒÓÓEŸ‰IOOõêUÝÍrrr!b$-¦C€ÿ‰£Ðû÷ï÷ìÙ“™™)\RTT”••ÕÐÄQH „……mÙ²eæÌ™tÉz¡ûy;$Kcvv6!¤{÷îbÁHZ WX>ÏÚµk###»témjjÚ¥K—ÔÔÔÆííõë×îîî»wï^¿~ýÒ¥K™>8€VÅòÇ{÷îmÛ¶ÍÅÅåÍ›7C‡µ³³ëÝ»wDD„]CwõäÉ//¯aÆ8p@GG‡é#hm,¯q¬¨¨ÐÕÕ%„XXXÐÍÇÎÎÎ ÝOMMÏÔ©SwìØ¬ÍÑÑ‘¢¨ºíÑ’–È–'Žæææ§OŸ®¨¨àñxô£Öååå ÝOttôÛ·o{õê#Bt´HÖcySõòåËçÌ™ÃãñÆ¿qãÆÏ?ÿüíÛ·£Gnè~^¾|IQÔ¢E‹DîܹsܸqL"°YMMÍîݻϞ=«¦¦6zôèÅ‹×}§å›7o6mÚôèÑ#eeå!C†¬X±¢S§NLìÄþÁ窪ªÊÊÊ´µµÓÒÒÂÃÃutt¾ýö[%%¥–ûF¼Ô šËöíÛ/\¸HYµjÕ”)S¼½½E7_~ù¥ŽŽŽOUUÕêÕ«ûôéZïÞP:µ äËk !ÊÊÊÊÊÊ„333333¦ÃŸÏ?}ú´ŸŸŸ‹‹ !Ä××7((hþüù\îÿïeôòåËçÏŸŸ?¾OŸ>„I“&ýøã@t€æÂòÄQÒÓÓ÷ïßg:4€HMM-++£ßtJqrròóóKNNîÝ»·èfß~û­……=ýé§Ÿ**²¼`±¼|Ù½{·pšÏç?{öìÈ‘#^^^LÇíNvvöëׯ*++UTTdùHNN‡ÃÑ××§g 8ŽØcyfff7n$„¥§§ÿôÓOnnnRªé÷Z¡Á‡å‰£ƒƒƒè¬‹‹ Ç[²d‰———ªª*ÓÑ@»PZZºtéÒ[·nQ•’’2mÚ4##£ 6|t&>Ÿ¯ªª*̹\®ŠŠJqqq½Ï›7/>>^OOoëÖ­Rö‰”š¢Ýu‚éÑ£ŸÏg: hG?|ø¥  @Y¶lYRRÒöíÛ?úA--­ŠŠ @@Ï ‚ÊÊJ--­z7þí·ßbccÇŽëîî^YYÉôA;±|ôdyÆçó¯^½úâÅ sssgggFèFéÔ& qyÆÎ¦jaWñÈÈÈmÛ¶ØÙÙq8œGùûû[YY1 @;"|·²¤ÿ…¹¹¹kÖ¬)))©»ª¸¸ØËË«­ÿ­­­=~üxaaáÊ•+ !ßÿ}rròìٳ釬Ú–?U½{÷n???GGGeee%%%{{ûuëÖ;wîýû÷L‡Ð.Ðu'4a)jãÆ]ºt9|øp½÷ññÑÐÐ`ú š*((è§Ÿ~êÖ­=ëèèxüøñ¦ãh0–'ŽÙÙÙbÿuÔÔÔÔÕÕ% „ÍH¬Å­ÞÜÑßߟ¢¨;wîÔýøùó磢¢„Ï”´]þù§¿¿ÿäÉ“éÙ3føûûÿïÿc:.€cyâ8`À€aýbqqqpp°M½5 ?Þ¾};oÞ¼£Gjjj2KSUUU™˜˜ˆ.111©¨¨`:.BáóùZZZeeeÂ%ééénnnÚÚÚ]ºtñòò*,,¬»Ð_ýÅårë]¬ÄÎ>ŽBS§NuqqéÕ«!$99YGGçĉLÇ1kÖ,OOÏ!C†üý÷ßLÇÒTöööûöíÛ¹s'ý|OEEÅþýûmll˜Ž ØO–Æ]ºt!„¨««ÓÛ‚¯¾úJ__ÿêÕ«•••ßÿ½———‹{!Cƒ° FÒÓÓûßÿþ·mÛ6GGG›µk׆‡‡wíڕ鸀å>z¹ùûûB„=Œéí)Šš5kV¿~ýè…³gÏÖÒÒº}ûvݳ¦24;kÝÜÜfÏžíëëëææVïíg$³¶S´¨Æx?üð=çééùðáC###¦¦ñFŒ1bĦvо‹»é%ÑÑÑõn–ŸŸŸœœ¼uëÖÉ“'×v”î…|æÌüsioØ™8ÆÇÇÓoåJLLd:–f ú(Oƒ.QÑb#ÊBbhhhhhHOçææBx<^Û<11qݺuoÞ¼[~ÿþ}¦Cö£ ÿzÿÐËEÇ4Ýlüøñ±±±;w>zôè»wïÄ>˦^ÈÐ ìL…o£VVVNNNÖÖÖ644ŒŠŠºxñ¢¥¥%ýBìjotþ'©à€–¶víZeeå 6têÔ‰éXdSPP°yóæÏ>ûìüùó¢«XÖ „‰£Ð©S§öïßOQÔ‚ lllBCC‹‹‹.\Èth2iJª‡4ÚGGGI§«³³s[?“_¾|Ö·o_¦vDtØT)ÿ„›©««Ó³)))EEE„==½­[·îÞ½[¬ùNØ Y¸D]]ý‡~fú¸¡Å±óá¡C‡ùúúºººFDD9r$00ðÂ… LÇ툾¾>Fm„ÖG¿±‰|¬ÝT]ZZJoýÍ7ßzíû÷ïA‡D?ü¯ãÇB>|¸jÕ*¦ZËÇ‚‚'''BH\\œ³³3!„Çãååå1Wkô†7he›6mºvíZVVV¦ã¨‡››[yyùüùóbcc=<<,---,,D·144äý‹~—&Ç300`:vh ,oªîÞ½{dd$=”€§§'!äîÝ»mèäë˜ØÐÖg±Ü±­·÷´Q^^^ÀÇÇGlyûÞÚƒ+W®,_¾ÜÉÉIMMÍÕÕõÈ‘#¯_¿f:.,ïwýúõE‹ ++«Ó§O}:!dÚ´i¾¾¾eeeLÇíÈÚµk###»témjjÚ¥K—ÔÔÔ¦ãh0–'Ž>|ˆŠŠRPP „,[¶,))iûöíÞaUU• FÖÙÝ»w/ `ݺuöööC‡]·nŸŸ_DDÓq4ËÇèèèÅ‹ëëëÓ³¶¶¶+V¬ˆŒŒlÜÞ Ö¯__ZZÊôa@[RQQ¡««K±°° »:;;#q€¶ˆå‰cUUUÇŽE—èëë×ÖÖ6bWûöístt<{ö,ÓÇmŒ¹¹ùéÓ§+**x<Þõë× !åååLÇÐ`,OíììŽ;&¿¤¤$88ØÞÞ¾»š?~JJÊ©S§˜>&hc–/_~åÊ•3gÎ <øùóçŸþùìÙ³‡Ît\ Æò'ðsss=<<!™™™ÖÖÖÏŸ?722:r䈞ž^ãvøèÑ£I“&ÅÇÇ«ªªJÚ†ÇãÑáááLÿm›‰‰ Ó!4ªªª²²2mmí´´´ððpo¿ýVII©•ÃÀpŸOáp8H ¥ÕÔÔ¤§§ÓÓ —Ë]»v-Ó4;ÇíÛ·ëë뇄„¨««8pàË/¿ÔÐРª««3 °Ÿ¦¦æÞ½{ !3gΤ'Ú:v&ŽIII«V­²µµ%„øùù999ùúúŽ5Šé¸ =:tèPrr²¶¶¶¡¡aTTÔÅ‹---=<}ðàÁ•+Wzyyµr$(Ú¼9äΕæ×ìE³ð´,Ñ›Wü­˜’™™™‘‘acc£ªªW[[ëààÐúa ql8‚>^QQ‘’˜˜Èt,͉#@‹ˆ—¾#Ýš‚‰cLLŒô ÚJy-Ö6-ú¤K#>‹–k€Ö4þ|átee¥@ àp8G BÌÌÌ.]ºôÑÔÔÔìÞ½ûìÙ³jjj£G^¼xqÝr ¸¸xÛ¶m‘‘‘EÙÚÚ®X±¢{÷îL=°;Çf)¯åÿ §[í³ÐD?¦'"##·mÛ`ggÇáp=zäïïoee%ËN‚‚‚.\¸HYµj•²²²···Ø6~~~/^¼ ÒÔÔ ñòòº|ùrÇŽ™þ€(V»~ýúðáÃïܹÃç󫪪bccGŒ±jÕªýRsss¦äȸqãnÞ¼)ºäÎ;æææïÞ½“þÁÊÊÊœ={–ž=s挃ƒCmm­è6eee<ïÆôlqqq¯^½„³bP:µ Íû¯Y–½±>€fÄòWîÞ½ÛÏÏÏÑÑQYYYIIÉÞÞ~ݺuçÎ{ÿþ=Ó¡@{‘­¡¡!ºDMMM]]]KKKúSSSËÊÊè×Bœœœ “““ÅvÞ§OážUTTŠŠŠ˜>h`'–'Ž.¯šË€BBB„÷«ÅÅÅÁÁÁ666íµœ““ÃápôõõéY‡SPP ºMÏž=Ï;',Ó®\¹R^^nmm-iŸ<Çã1ý“@[ÅÎ>ŽBtyýã?vêÔ‰4¤¼h.S§NuqqéÕ«!$99YGGçĉý ŸÏWUUårÿïŸË媨¨×»±@  Û²eËÌ™3MMM%íƒG@S°>>S§N]¼x1Óñû±ûl„ Â%k׮ݱcÓ¡@{áíí½hÑ¢}ûöYYYÙÚÚîß¿?$$dåÊ•LÇÐ`,ŠÇ㩪ªnÚ´ÉÍÍ^òáÃ[[Û}®Ï-€˜ÌÌÌŒŒ UUÕ¸¸¸ÚÚZ‡Ö¥S›€§ªAž±¼Æ‘²téÒ5kÖHwêÔ©ß~ûíæÍ›ß}÷Ó±còóó=<< zöì¹lÙ2 $ m]{iºÕÐÐØ»wïÁƒøá‡Æí!((èÂ… „U«V)++{{{·BäGt¶¡ «èǑ출&þ™X¬=ÿ2ÖÖÖRÖæççëëë3#4)Ŭ@ 3fLÇŽ/^¼X\\ìíí]]]ÂtÈÇòÇ£Gª««ÓÓgîܹ‡òððhè~ø|þéÓ§}}}]\\\\\|}}ýõWá¸â-‡î°,Jìßpƒ>Þ Ï‚ìšøgb1ü2´ßÿ]t¶¶¶öÈ‘#Ÿþ9ÓqA3^ÌÞºuëñãÇ¿ÿþ»½½ýÈ‘#>|øðáòòr¦£h_UUUøÊ.—«¢¢R\\\ïÆæææÍ5RZݨAõˆb£²…4ñÏÄbøehýúõ;qâ„——EQÇŽ4hÓAó Û¦¥œÒÇ722š:uêúõëß¿ÿÃ?p8œÒÒR¦h>~×®]¢«rrr^¼xÑÐêééQUTT¤§§G),,¤(ªužˆ¤‹!º`jè?ݦ|?µ$íù—±··¯»pÇŽÂWžâ%., <Ã%Ý™››_»vžÎÉÉ©®®677g:j€ÆcgâXSS“žžNO 'h\.wíÚµ Ý¡¹¹¹ŽŽNLL̸qã!±±±ºººfff­vDMùÛÞþ[3?µ$íó—¹~ý:Ó!@ë©÷$ûö­‡‡GHHHŸ>}!çÏŸïÒ¥ = ÐF±3qÔÔÔÜ»w/!dæÌ™ôD)**º»»uïÞ½¶¶6((ÈÝÝ/0)ºuë&:ûöíÛôôôÚÚÚ=ztéÒ…éè 5¾{÷nîܹ›7oÎÎÎ^µjÕæÍ›˜Ž  ñÚW—£¦ (jçÎW®\!„¸¹¹-Y²DÒá<-P TYYéççwùòeú»ÚÚÚ1cƪªª¶r$(Zˆ”þ»sçÎŽŽ644\½zõŒ3š²·æ­…¾ØåçJbbâºuëÞ¼y#¶¼E‡ÑBÑ ¢6mÚtûöíÍ›7Óï’‰÷óósttô÷÷oåHP:µÖOõšwoHAv,?W&Nœ¨¬¬<}úôN:‰.wpph¹/EÑ ¢†ºqãFá!÷îÝ[±bÅ­[·Z9”N-‰#´,ï¥÷òå˰°°¾}û2´_ååå¢K444ðÞ9h‹Ø9Ž£¾¾~EEÓQ@»fcc³gÏž>гeee?þø£­­-Óq4Ëk§ïÝ»·yóæ XZZvèÐA¸œޱ… 1DåääL:µ¨¨È‚Ãá$''wêÔéĉŸ|òI+G‚Ò©… ©Ú–Ÿ+½{÷u±E‹NÍ ¦ººúÚµk/_¾$„ôèÑãóÏ?§ßnÕÊP:µ$ŽÐ~°¼cxx8Ó!%%%;;;]]]zGF²F€¦cyâHÀ›ýúõk‡ÊÊJ¦ƒ€öE~Æqh"–?SZZ:wî\WW×éÓ§B¦M›æëë[VVÆt\ÐŽìܹ311ñĉ‰‰‰‰‰‰¿þúëóçÏwîÜÉt\ ÆòÄ100ðÇQQQô+ž–-[–””´}ûv¦ã€väÆk×®µ³³SPPPPP°±±Y¿~ý7˜Ž  ÁXž8FGG/^¼X__Ÿžµµµ]±bEdd$Óq@;‚q€5Xž8VUUuìØQt‰¾¾~mm-Óq@;‚q€5XþpŒÝ±cǶlÙBÏ–””ÛÛÛ3´#þþþS§NuvvǑ鸌åC7åææzxxB233­­­Ÿ?nddtäÈ ­ ã8²Æq„öƒå5Ž;w¾|ùòÕ«W_¼x¡¡¡1kÖ,gggzD €V˜˜¨  Ð»wo77·ÜÜÜÇ«©©aGh£Ø™8ÆÄĈÎÒÓ÷îÝ#„8880cp8z¢w„Mù,4EEEŲeË®_¿лwoB‡Ã¹{÷îñãǼgÏ + m;Çùóç §+++‡Ãáp8€bffvéÒ%¦c”•h BC[šòYh¢ŸþùáÇ'Ož´³³£—^¾|ùáÇÞÞÞ?ÿüóÂ… ™Ž aØÙhûø_;vì022úå—_Ž?nllleeÅt€²Ëö(ŠÖ 6TS> ²àü‹é@@^\¾|yÞ¼y¬QÈÆÆÆÇÇ/D€¶ˆ‰£ÐîÝ»ýüü••••””ìíí×­[wîܹ÷ïß3Z‹Cck¢mrG åääXXXÔ»ŠÇãeffʲ“ššš   Ï>ûlĈAAAR.ꪪ*›ŠŠ ¦ØŒMÕBÙÙÙbã©©««kii1°G½ÃÈÚ¡S§NÙÙÙõ®úçŸÔÕÕeÙIPPÐ…  !«V­RVVööö®»YAAApppii)Ó ,ÇòÇ„„„ë‹‹‹ƒƒƒmllÚJXõUƒÒT}0ËÉÉ),,ŒÏç‹-¯¬¬b`?–7UwíÚ5<<üÚµkééé\.×ÓÓsøðámnµ¦$|H[XÛ4rt éêê=ztóæÍóçϯ­­UVV®ªªâp8C† Ž&ENN‡ÃÑ××§g 8NAAAS¢âñx„ ÃòÄ‘¢¬¬{ö¬  @GGÇ¢k×®2~œÏ竪ª ßYÀårUTTŠ‹‹›RFh –'Žu ݿŸéЀm/‚$¢ï h--­ŠŠ @@玠²²ÏöƒXž8îÞ½[8ÍçóŸ={väÈ///¦ãø8===Š¢ŠŠŠôôô!………E [®ZËG±W º¸¸ðx¼%K–xyy©ªª2€4æææ:::111t›ØØX]]]333¦ã€ö‹å‰c]=zô¨;:€RTTtww êÞ½{mmmPP»»»¢¢"!$,,LWWwÔ¨QLÇí ËG±7Ä”””ìÛ·¯k×®®n¬ªªrpp¸sç*, øøøTUUùøøBÜÜÜ„¯·>yò¤™™Ghe,7„xB”’’Ò¶mÛÆŽÛˆ½Ñïf8{öl||¼”Ä‘Çãá¹EC(ZHóÂÕú{à b ;–×8^¿~]l‰¾¾~ã* ÷íÛÊô0†åoŽY¶lY·ÿª®®ž6mZ#v…w3@;ÇÎÇòòòýû÷BâããwíÚ%º*''çÅ‹-ÝDÎô/ж™˜˜0üìLkjjÒÓÓéiáËå®]»¶¥@/"`v&Žššš{÷î%„Ìœ9“žh¨+W®,^¼˜ž¾téNh.rûŽV¹ L~°3q:tèpº¶¶VAAAÆŽ9òÁƒô´ššÓÇÀ¢qËÕÝr˜\aíÃ1!!!iii„>Ÿ¿xñb++«Ï>ûìøñã²|\QQQã_ô[b ‰Ä2Š¢„•|¬M`gcRRÒ”)SLMMéñ÷ìÙsóæÍÙ³g«©©wîÜyäÈ‘LÇÐÆ°3qüñÇG޹}ûvBEQçÏŸÿþûïé7.TWWŸ8q‰#ƒä¶-Xn“ìl„}úôé·ß~KO§¥¥Œ3†žµ¶¶{κA¬­­SRRð¾A€Æm–Ÿ,M¬míÔ’°³Æ±´´TøÌÝ»w zôè!\[VVÆt€ FŸÁrru´>ÑäM, eÜU3~#Ñ¿$ýÛÊOÖ(ŒM>“+ì¬q466މ‰¡§#"" $\•Э[7¦l‡CŸÁë¨ËùÓÇÐxÂb°Ñ…aCwÕŒßuÑi™&gr˜ü`g£»»ûŽ;8NFFÆÃ‡gÏžM111ôööf:@YÕû—ì'´ØÈ´A-ZýÓÐr cmâXRRræÌ™>Ì›7ÏÅÅ…²xñ∈ˆï¾ûÎÓÓ“é[F+ùùùô¨©©9qâÄ­[·Ê>ª(´óEÑ6ä—íè2HOO××××ÐÐhé/âñxÍõÊÁºå”ì%WS> #©ZW ØÛÛwìØqûöíÅÅÅÞÞÞcÆŒ a:^hwš±tjM²«îDÓ÷&iW2n&¶qóo«í‘ÿrû/In“ì¬q¬—©©)Ó!k‰¦Œu [·n=~ü8++ËÐÐrøðá1cÆvìØ‘éÀÚ±¼­‰ÿ×E÷&½FÆÍÚv>Ãt'Jöâ# ´aK=[·W@jjª¡¡!5BXZZzÿþ}¦h3š÷qWáÞD¯ÜºÛȲ@{ƒÄQÞQÿÕÐÏŠfœ(ø˜òÉ'Ÿäåå½{÷ŽžMJJ"„¼}û–é¸äŸÏ×ÒÒ*+==ÝÍÍM[[»K—.^^^………LÇ kÞÇ]eÜŠM1HY®q'4¯áÇM:õáÇ7nܘ6m‡Ã)--e:®VòÑ1¡rss,XPRR"\"¾úꫪªª«W¯ž:uêöíÛóæÍcú8‰#@ËëØ±ãµkת««]]].\¸fÍEEEMMM¦ãj ¢ƒáÕ›>nܸ±K—.‡]øüùóøøø-[¶ 4ÈÅÅeÞ¼y—/_L €¼À½À$ŽM%KWTssók×®?{ölÈ!ÕÕÕæææLÞâêŽ UwŠ¢îܹ#º¢¨Y³fõëמ555URRbúhä‚hï#Œ³­‰#@3ÞõíÛ·#FŒ »6BΟ?ߥK—>}ú0µü²´´üé§Ÿóóó£¢¢¶nÝ:yòd.å!ÿ½Cî­¬ ÇÀCCÃwïÞÍ;wóæÍÙÙÙ«V­Ú¼y3—Åøñãccc;wî|ôèQ¦cÔ8´Š³gϪ©©;vÍš5!!! .d:¢ÖPwL¨†>§“ŸŸïîîþÙgŸUü¿öî<¨‰³ø&R$RDNµSê¤ ŒÂˆ0`© SÑTq*ÖÑUð‚qäPLÑŠmU¤NETðª 8ê8Ú"h©Œ”Z  b‘C H¸7ïÛ7//—‹‰Ù]ø~þʳ~üX*•úûû[ZZfeeéëë3 `¬ÃYní‹Å%%%L§è볓v¯ÌÒ\n¬ ÆH~íþ™ºÇÚ`,3Ž@ îãÚ¡þÄ·VNÚiqm¬ Æ9(@ ú^äÕð‚/U™iqm}WEhVðiñÏä"Žð¯~÷”êˆØ·›Oi¾6šùámøÝôUoióiø%Zÿ39…#Ä€#âP×Ý´uòFõ üݱvDÅ4©Ï°h>ƒ ybF“ó78¢JÚý.D-®µÁ¸…#üšGDÑ¡¯ßM¯Å•kòCÃkÓƒ†ÑJ0ŽÂ¥j„vï&8¨1øþ°ÑM‹ß…Ø·ÚÓâÚ4ÿd õ»cù+Q8A 8TÓ즭ÇhåˆÞ/ÿ<¨3N‹/Ô%š¶Ö¦Å:o,¿æÁ¥jº ETT”³³³““SHHÈÓ§O™N@ÑÓÓ#—Ë]]]===år¹†µ—úK‡YOßn†§ùŒŒ¬ BáHWttôÇåryrrrgggPPR©d:”FÄb1ÓF[TäËQ$—Ë322bbb¢££ÓÓÓ“’’˜Nô/^Lga×GƒµùYl´BáH‹R©¼yóæ–-[¤R©½½}bbb]]]^^Ó¹`¬ëììâóù …bÐκò™ššjffæííÍÅlsçÎݹsç–-[V¯^=nܸÄÄD{{{'''–ÄÎÉÉ©««³±±QÿÛ! ÍÍÍY›©!¥“ÙÝÝ=..n÷îÝË—/ooo?xð P(´³³{ÛÙ4ŒgmmÍÔ^ÊQÃŒ6'08/i¶…n s°àôø³Ó÷â*’$÷íÛçîîîîîž@’$µÜÛÛ;44´oÏßÿ]—÷qÔ0Û“'OÖ®];gΩT­P(Ø;99Y4ÀÏ?ÿÌòlL )Ý   `ùòå®®®555ºÉ¦a<÷RŽj´¹‚»[|àË­mÁªc}ÃLÈÜvâ©ð};@Þã´ pZP8-(€Ž@ G …#ЂÂhAá´ pZP8Ûùøø>>‘‘‘Ôž={&‹›››™ÎØkƒÁ¨Â ?…Bššêéé™””´nÝ:…Báïïýúu¦£0Ié¬#—Ë›››/_¾lnnN-ñóó‹ß±c‡‹‹ Óéƒ3ŽÀUµµµaaa...nnnQQQ¯^½""$$dÓ¦Mê>Çwww'IrÐÎÏž=û裞LDooï_|ÁãñRRR6lذÿþá3ו••‘$9ðÌ¢@ ptt,--¥šÑÑÑ«V­:qâÄ”)SV®\ÙÐÐPUUN•ŒË–-ÛµkWqqñ0OD’äÞ½{cccSSSõõõwîÜ9|°ÞÞÞ´´´ü1&&&++ËËËkáÂ…§N²°°Ø»w¯ºÛÀ`ÃÌW}§A¦¸@ÀnÞÞÞ‰‰‰ý^¼xÑÃã··—j¾xñB,?þ¼µµÕÎÎîîÝ»*•ªªªJ$•——Õ¹²²R$]¸pZÞÔÔtòäI¥RI5wíÚ¬R©®_¿îèèøêÕ+jùÙ³gE"ÑóçχZ-ÓšÊÈȰµµôG111ÔìqîÜ9jaww·»»û‘#G~ùå±X\UUE-¿uëVmmíPÏB­$;;›jfffΚ5K½üåË—Ôò{÷îõ]^PP@-—ÉdÔã«W¯~üñÇê>ƒÑœ^ ïqN*++«ªª²³³S/Q©T•••...R©ôÆóæÍËÊʲ··Ÿ1cÆ… ퟯ§§'Μ9“ŸŸ÷îÝôôô„„„¤¤¤yóæ ó\ãÇ>LggçP?ê;5 … Fsx-¼Ç8I$ýõ×_---T3??Ù²eA,X° ¥¥åÚµkÅÅÅ‹-¾s_ÙÙÙ&&&'Ož trrjoo§–[[[—””(•JªùèÑ£×fN377ËåMMM}—:t¨££cùòåT3??ŸzÐÛÛûÛo¿ …ÂüðÃÎÎΑ‘‘W®\‘H$W®\y³ ê¹åñãÇ#ýÝÁ0_¶àŒ#p@}}}ß7˜ 77·éÓ§oܸqãÆõõõñññ¶¶¶AΛ7oïÞ½nnn&&&A Ó¹/SSÓºººXYYݹsçâÅ‹"‘¨³³ÓËËK.—oݺuÆ uuu'Nœ ‚ÇãÑ\-pQDDDaaáâŋ׮]kccS__åÊ•ÜÜÜ}ûöMš4‰ªÀŒŒŒ¦NzâĉÖÖÖ%K–%&&»ºº–””†‡‡‘ššjffæííMç©-,,Þyçǯ_¿¾¼¼<%%e¤á344Ä|ZÂ8 =====]Ý”H$§OŸNIIÙ³gÏš5kÆ·páÂ-[¶¨;øøøÜºuËÏÏjòùüa:«-]º´¨¨hÆ &Lðòò:vìØ×_}àÀ¨¨¨“'OîØ±ƒº½}ûö/¿ürâĉ4W \4iÒ¤ŒŒŒcÇŽeff&&&ZZZÚÙÙ]¼xñƒ> :‚M›6:tèùóçvvviiiFFF...Û¶mKNN޵´´\µjU`` A§N …4 G@/—˽½½Ç<¢ÚqÐ`A`¾­à©T*¦3°Zmmí;wø|>A·oßŽŠŠÊÍÍe:ŒrÔfÓAþg^C__?66¶¹¹yÙ²e ß~ûm¿÷˼ (…pÆàõrssÊËË---çÏŸ¿mÛ6==¼è€1…#ЂÛñ-(€Ž@ G …#ЂÂhAá´ pZP8-(€Ž@ G …#ЂÂhAá´ pZP8-(€Ž@ G …#ЂÂhùô~ÎÍø&IEND®B`‚statistics-release-1.6.3/docs/assets/anovan_701.png000066400000000000000000001334151456127120000221470ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A€IDATxÚìÝ}\÷ÿðÏ9Ý(•t5uB ÝHjj°Å°ÜEš‘4…r—ÜÊ&7˽ƆÍos“Ä6¤0–rS¢2ÝKt£ÎõûãÚ®ïÙ©ŽSÊuºz=ÿð¸®ë\ç:ïëÊùœ÷õ¹»xE€×á³t H@&H@&H@&H@&H@&H@&H@&H@&H@&H@&H@&H@&H@&H@&H@&H@&H@&H@&H@&H@&H@&H@&H@&H@&H@&H@&H@&H@&H@&H@&H@&H@&H@&H@&H@&H@&H ƒ©ªªÚ°aƒ¥¥¥ºººŽŽÎ¨Q£~ýõW¶‚ÑÐÐàñx………_êß¿?Çûá‡Ú5€çÏŸçææVWWÓ«JJJ<¯²²²MNŸ£gÏžÓ¦MËÍÍ%„”––òx<%%¥–FGè`<==W®\ùàÁƒ>}ú¼zõ*>>~„ íŸÉ­Ù³gÿòË/ôêÀ---ùü¶ü}766¶´´466ÎÏÏ?zôè§Ÿ~JQT«#„ ‰#´1úötÒ¤IÌ–½{÷òx<;;»·‰ô»áW¯^mذá½÷ÞÓÔÔ8pàìÙ³333¥MöýqƒÐ®ŠŠŠNž<©¨¨˜’’’ššZRR²nÝ:‘HÝxçšš¶ã}Û’““SSSUUUÛð˜[·nMMM}úôéO?ýDIJJzüø1Û' ,¡Ú”……ý_ë÷ß§·Ð¥¹­­í[ŽäåË—„EEÅÆ/•””0‰l÷îÝy<!DCCãôéÓMªEûÓW€¹A§ß5lØ0‘H$%$ îîî„cÇŽ½å‹ ÿ’““éobqq1½¥´´4:::&&†ûâŸ={ÖÒÒRAAÁÅÅ%77Wü¥ÔÔT''§Ý»wSU]]½lÙ²¾}ûjhh¸¸¸\¹r…ù {÷î}øá‡:::jjjÖÖÖ'Nœ ·×ÕÕ}õÕW=zôèׯßÁƒÕÕÕ !C¥Kƒ&¿È¯^½Z¿~½¥¥¥ššÚ Aƒ¶mÛÖÐÐ@¿D‡dff¦®®nooþüy)ñÐemýúõE)**B***¤| s).]ºdmm­®®îêêš™™ùÚS¨¯¯WVV&„\¾|Y¢@kî³GGhcLâhmm-‰(¹L}||!}ûöýóÏ?é=?ÿüsBˆAiiéî/QÎÒ7脌Œ $Žo®ªªÊÈȈ¢©©9iÒ¤7^¸p¡¦¦†~•þ–ñx_QQñÉ“'E………ÑÇlQ☞žNÇüôéSŠ¢è0òóóïÞ½K§_/_¾¤(*88XQQqéÒ¥ÍÅC5ºÏdG)ŸÂ\ŠŸþ™¢¨óçÏÓ‰xs§`bb2xð`:s%„¸»»Sÿ-c¥|…;anAâmŒ.e"""ÔÕÕŒŒ*++%GéwÀâ•LѦ¤¤4pà@z¹K—.FFFººº„^½zQÍW 4—8^ºt‰bhh(±=((ˆ”˭Þ7èoG]]Ý­[·¢¢¢FŒA³žyòäîÝ»|>ÿï¿ÿ.--ÍÉÉéׯߴiÓþú믋/6¬¾¾þ¯¿þj.¶ììlBÝÔ%Ž®%¥_}“ýiC† éӧϸqã!îîîGr)\\\èΑï½÷ž¥¥%ÛLùr÷îÝM›6ÅÄÄ())Y[[ÏŸ??..N__¿¾¾þþýûÌn̰bº–®w$„(((èéé1Ë„[[Û#bV­ZE)++¨™¢(BóFBˆ¾¾>!¤¾¾¾¾¾žÒÐÐ ñ–æâiݧЫô>ñÓi“ó}cöüùóiÓ¦MŸ>ÝÔÔ499¹¢¢‚ræÌ™¬¬¬÷ßÇŽŸ|ò óÅ477'„\½z•ž*Ψè—öìÙSý/ºŸbsè&…øøøüü|BHFFFRRŸÏ·²²¢[W®^½Z^^NY»v­††F```sñ0zR>¥Íÿ(²|’Hn@âíEUUuãÆ•••t·!ÚkïJÅ+hÌ=1n…×Òqz†³üüük×®BjkkÝÜÜÜÜÜþøãBÈ!C$ª ^»“Ÿ‚t€v2xðàI“&UVVÚØØØØØ 8°OŸ>/^¼˜:ujß¾}é}x<^pp°£££¥¥eMMÍĉ™î.â8~üø¬¬,ggçY³f;622òwÞ!ÿ5ñññnnnï¼óÝ*BQ”½½½¥¥e}}ý Aƒœœœ-Z$þ-nÝþÀøá‡,,,f̘A—]ãÇ···¯««[¸paÏž=>^üs¥|J›ÿQ¤VsB‡Äv[9pxŸ‘HÄÌbC÷q|ðà!¤[·nyyyE=|øPYY™Ïççææ6î’(±eåÊ•„¯¿þš^UQQ!„ÿý÷äßñ€¯^½¢Ë©cÇŽIÂ<þ|Bˆ™™YJJ EQ!!!tÚÚÚt‡ô7Ù_Ê8Jñ¤\ êß.AGŽaûï ª««·nÝ:hРnݺiiiY[[oß¾XÍ|Ë~ùå—þýûëééÍ™3§²²’jfÀ\EEÅÂ… MLL444œ/]ºDo¯ªª¢kÑÞyçU«V}ùå—„oooŠ¢îܹC7ôéÓ'::úµÓñHøöÛo)Šª««[³fÍ€ºvíúî»ï …Bf:žòòr__ß>}ú¨««;::þñÇÒãIIIéÛ·¯ªªê7ß|CýwTusŸ"q)¤”–2hÒÏH"BèÐ8B“(eè®{DlpÌŒ3!úúúãÆ£ëá|}}©¦J.Çü‘ÞmÔ¨Q†††tg£GJ) Ÿ?nkkK¦««K÷s¢Käììì7Ü_ör¶¹KAQÔÂ… !vvvt×r‘ì“^½Vmmío¿ýÖäKUUUׯ_˧&%€·MÕоœœœ>ýôSñ-ûöí[³f®®îÅ‹…Baxxø›|„»»ûàÁƒëëëÓÒÒæÎ;oÞªl€MUUUñññQQQNNN„ˆˆˆaÆ%%%¹ºº²pGYMž<Ù‚^~çwqéà5òòò®]»v÷îÝââbeee}}}{{ûnݺµáG 8ÐÆÆ†^USSSQQ)))aûÔ€›ÐTÝ2%%%™™™aaa–––!!!Mî#è…ØØX¶ãm999ÆÆÆlG“êtgDëÓ§Û!´Æ“'O"##¯^½úî»ïöëׯ{÷îõõõÏŸ?ðàAVVÖôéÓ?ÿüs 6ÿÜ_ýÕßßÿìÙ³¦¦¦_åñxͽ±Éßìý±¿ìûw¨6k™ùóç'''ëêꆅ…IÙ-==íHÛXýñîl'Ž3ÊÊÊb;„ÖXµjUFFÆŒ3¶lÙ¢   ñjYYÙ?ü0}úôY³f}òÉ'mõ¡"‘(&&fãÆsæÌi2k$„˜››·¨tjé¯#öÇþyÿN‰cËüðÃ/^¼Ø¹s§‡‡ÇÕ«WUTTØŽäÎĉ­­­›{µ[·nsçÎõòòºÿ~[}â“'Oüýý³²²Ö¬YóÙgŸ±}€³0¶C&YYYýõ½¬¥¥µlÙ²ÊÊÊÛ·o³È#)Y#CQQÑÊʪM>îÎ;'N4119þ<²FhWHerûöíÅ‹‹D"zµ¬¬L$©ªª²tvõõõ¾¾¾3gÎܲe‹¶¶6ÛáÇ¡©Z&...aaakÖ¬™6mZuuudd¤™™™¥¥%Ûq@g—PXXØ¿ÿÄÄDf£™™™®®.Û¡!q”‰ŽŽÎwß}·eË–©S§ªªª:88lܸQII‰í¸ ³{üø1EQ‹/߸uëÖqãÆ±pGY <8&&†í(þãóÏ?ÿüóÏÙŽ: $ŽmìÆ²ìÖ½{wsss¶ƒh$Žmì矖e7sss$ŽÐ± qhc7nd;€véx@&H@&H@&H@&HÚQZZZaa!!äÊ•+Ë—/?tèóðR€‰#@{9zôèÇ|ïÞ½‚‚‚ <{ö,22rÇŽlÇÐJHÚKtt´ŸŸŸ««k\\œ‰‰ÉþýûCCCO:Åv\­„Ä ½;99BnܸáììLEEElÇÐJHÚKïÞ½ãããsss/_¾°°°°µµÝ¹sçš5kf̘Áv\­„G´—Q£FÅÅÅeggÛØØðù|›888°@+!qhcÅÅÅÌ²ŠŠŠ……Eeeeee¥©©)ýª®®.Û1´G€6æèè(}‡ôôt¶ch $ŽmìÂ… l‡Ð.8´±^½z5÷Rmmí¶mÛÙŽ 58´——/_~ûí·999Ì–’’’ÜÜ\¶LJòx¼ÆÛ)Š¢èW%V±?öÇþMîß9!qh/«W¯NIIyÿý÷Oœ81sæÌêêꤤ¤ï¾ûŽ­xÌÍÍ¥w¯”øE|í$öÇþyÿÎ ‰#@{¹~ýú¦M›\\\ž>}úþûïÛÙÙ 0 ..ÎÎÎŽíÐZƒû€§¥¥B®\¹²|ùòC‡‰D"¶ƒ€N¡ººZGG‡baaAWõ9;;ÇÅű@+q}ÊãñzôèA¯öìÙ“Çã°×ÿ47zúæÍ›l‡ÐOG—mccÃçómll8àààÀv\Ъ««ÕÔÔ˜†i>Ÿßµk×/^°×ÿlß¾Y®­­½ÿþþýû½¼¼ØŽ  •¸™83Ë***••••••¦¦¦ô«ººº-=fiié¦M›âãã)вµµ èÝ»7Û' À¯íãØ$mmíÊÊJ‘HDçŽ"‘¨ªªŠn–·©...`éÒ¥^^^ªªªlGÐbÜL¥ï ýÙ M zôè‘P(ìÖ­[DD„——×™3gºvíÊö¹txtšÈôk”}JCCCŠ¢ŠŠŠ !………E1-×ò©oß¾µµµlGÐJÜLéùÒÚPUUU|||TT=F;""bذaIII®®®lŸ+G´b FKKK==½‹/NŸ>réÒ%}}ý²}*ÿóòåKñÕ²²²¨¨(###T7@ÅÍıW¯^ͽT[[»mÛ¶ÀÀÀ0//oàÀ666ôªšššŠŠJII Û' Щ)))y{{™››744~ùå—r5fÙÞÞ¾qÌ›6mb;.€VâfâÈxùòå·ß~›““Ãl)))ÉÍÍmiâØ¯_¿“'O2«gÏž­ªª²¶¶nn@@‰eû´ ñ ÈÜ;)î‘,Ö®][WW÷é§ŸB¦M›ÂvDÿѸõCOOÕÐqq H$Љ‰Ù¸qãœ9sè¡6MjEJ9×§O¶CÀIuÆ3ÊÊÊ_utt”hÑæñx›6m’·:¼ÄÄÄæ^ÊÍÍ%ÍtO¯_¿¾iÓ&—§OŸ¾ÿþûvvv ˆ‹‹knr5éžûŒí“9åããÃ,×ÔÔˆD"úiŠ"‘ˆbffvúôi¶ch Ž?9¦ººZGG‡baaA×:;;ÇÅŵâPwîÜ™8q¢‰‰Éùóç‘5€ýkË–-ÆÆÆûöíKIIIII9t艉‰••Û´ÇGssócÇŽUWW º³QvvvUUUKS__ïëë;sæÌ-[¶hkk³}ZÐ1lß¾=((ÈÑÑQYYYIIÉÞÞ>88øäÉ“£­: Ž7U/_¾ÜÛÛ[ Œ?~ݺu£G.,,;vlK“PXXØ¿ñ®Kfff­˜H:¼¼< ñ-jjjêêêššš-:N]]ƒƒÃÕ«W›X³gÏžmÛ¶1«ZZZIIIlŸ:pÇÇ¡C‡^¿~½²²²{÷î111±±±ÚÚÚ“'Onéq?~LQÔâÅ‹Å7nݺuܸqlŸ"ȯ!C†DDD|óÍ7Ý»w'„”––†‡‡ÛØØ0³Ë¢¸¸8<<¼¢¢¢¹rrr\]]éÉ, !ŠŠ/Ø€EÜ/_”••••• !ffffff­;ÈçŸþù石}*ÐÁ„„„Ìœ9ÓÅÅ¥ÿþ„´´4mmíÇË~„¨¨¨ÈÈHéûäää888Ð'hWO›=}óæM¶Cî322Š=þ|ff&ŸÏ÷ôô9rd‹¦(÷ñññññ¹}ûöÔ©S›Û'''ÇÈȨ¦¦¦¾¾^]]í“.ãxâ¸}ûvf¹¶¶öþýûû÷ï÷òòb;.x=—™™Év­‘‘‘¡¥¥¥««›‘‘A±°°°°° _ÊÎÎ&„´ºõ£1‘H”——·ÿ~???‘H4`À€õë×Kyî"ýxîÍ5Ë%µµµúúúyyyjjjô–W¯^ïÝ»WCCcòäÉ6lhQo€6ÄñÄQb–]@°téR///<¼à 5þy [±b³ƒ®®î³gÏZqdúG‘¢(‰ À; ww÷yóæùùù¹»»7¹CæmÏž=ãóùC‡ݽ{wMM͆ ¼½½Ï;'1(§=>ZIøš{8{AAÁÊ•+ËÊÊÄ7:thß¾}„//¯.]º³}*ÐIqúˆ²qãÆÀÀÀU«VñùŸPäÇÿÛ½ü¯¿ÿþ;**ÊÈÈÕRÐ?i4ú‘';¬[·®G{÷î•Øž••åèè8ú_®®®-úPæsÙ¾oJUU•Nš•••333_¼x¡¬¬|ýúõ•+W;v¬]G=khhèéé³} @R“™¢„U«VQuõêUñ©©©åååÌÀèÑ£‹ŠŠîܹÃö A'ÅñÄÑþ¿FuöìÙ¥K—²@‡ÑäO]“?o„¬¬¬Þ½{WWWKÔDJÇ¥”QÂÑ£G?þøã{÷î,X°àÙ³g‘‘‘;vìhÈ?~}ší¸ÆÈȨººšY=pà€žžÞÅ‹'Mš$±ggHi½{÷Ž×ÔÔ¼|ù²§§'!äÚµkúúú-=޵µµÄhèsçÎ1Ë}úôÙ½{7Ûç ¯!Ñ6-ûÿCCCŠ¢ŠŠŠ !………E1-×o7û8þõ¯-[¶ïÛ·/%%%%%…n-²²²b;@¹ÆŒ‰az¶â ššš†††=±8ܱI .ܵk×|`aaakk»sçÎ5kÖ̘1ƒí¸€”ÙßeiiI߃ѫ—.]Ò××—2U'@»âfâÈØ¾}{PP£££²²²’’’½½}ppðÉ“'_¾|Évhr­¿pÇ4hÓõª¸¸8??À€ôjgKi£FŠ‹‹‹ŽŽ>xð ŸÏ·±±9pà‹Ï xøð!³,^û…ey^VRRòööž1cÆÍ›7“’’‹ŠŠ˜¹®ä'ÎÎ¹Ü q¿Ó¦Œ„ŠŠŠ/¿üÒÕÕuöìÙ„Y³fùùùUVV²È5GGGŠ¢˜2Bx<Þ¦M›ž]TT”——Ý™SFZhhhyyù•+W!þþþ÷îÝÛ¼y3Ûq´7GU3ŒŒŒbccÏŸ?Ÿ™™Éçó===GŽÙŠÇ €Œ:ψiY$$$lÛ¶MOO^µµµ X¹råš5kØ  5¸™8fddhiiéêêfddB,,,,,,è—²³³ !ffflÇÀ5H«««ëÚµ«ø==½††¶ãh%n&ŽîîîóæÍóóóswwor‰ÑàM elŽÝÁƒ7nÜH¯–••…‡‡ÛÛÛ³@+q3qLNNVTT$„¤¦¦² Çqû™o(00pÆŒnnn"‘hÚ´i<066Þ´iÛqœÊÌÌôõõMHHPQQ3fÌÖ­[uttØ à?¸™82O£VVVNKKÓÒÒ200¸råʯ¿þjii‰ÙwÚ*_ËÐÐðÌ™3çÎ{ô葆†ÆÜ¹s™‡C'$å[#‰>ùä==½sçÎÕÔÔ|ñÅóçÏÿñÇÙà?¸™82Ž=²sçNŠ¢,X`ccYZZºhÑ"¶CèÀ2¾Vuuuzzº–––‰‰É„ !"‘¨¢¢"??ÿÈ‘#l,`ªç›ü=xð 99ùÏ?ÿ´±±!„ÌŸ??88˜yD5€œàøÇèèh???WW׸¸8“ýû÷‡††ž:uŠí¸äÅ¥K—ø|¾ì3 vòÙ¼etÿþýQ£FM™2ÅÍÍmâĉ………óçÏ{öÌÃÃcøðáÕÕÕlG ÿXµjEQW¯^•Øž••Õ»wïêêj‰šH®âxâ8jÔ¨¸¸¸èèèƒòù|›xyy±Ëè^wèÖ­[“; e|Cha tÛ4£ñ7+===11‘^ÖÕÕ +//OHH`;pF$ýý÷ßB¡P]]]SSÓÚÚúöíÛlÕ¾¸_´›šš&''B¬¬¬ØŽ }Ñ¿OÒ÷™;w®§§çˆ#¿„” Pb¿šðÙgŸ‰D"zõåË—"‘HâÉC oòóóù|¾³³sAAAvv¶‰‰‰»»{ii)Ûqµ#Ž÷q¬¨¨X¶lÙï¿ÿNQTzzú¬Y³Œ×®]«¦¦ÆvhíH"w”ø•:pà@ffæñãÇ%Þ…¾Œm(&&ÆÀÀ ¹ÕÅ‹³ Èww÷eË–ùøøøøøTUU­ZµÊÒÒ’î) íM|¬R‹JB###ñîÐÓÓ»xñâ¤I“Ø>§öÂñÄ144´¼¼üÊ•+ôjÿ•+WnÞ¼yÍš5­;`]]ƒƒÃÕ«W™9Æä“”Rïúõë÷îÝSQQa¶¨««¤ŒmÇÔÔô¯¿þjn• q„¦èëëŸ={vùòåNNNjjjôÌMÊÊÊlÇÕY0÷ÛoRjjj°}6íˆã‰cBB¶mÛ˜I•lmmV®\ٺı¸¸8<<¼¢¢‚íÓx#!!!_}õ½|ãÆ OOÏ[·n³wœ;wŽí C6lØåË—ÙŽ¢ójEÊxüøñõë×ÿþûïZZZ„âââüüü°}*íˆã‰c]]D==½†††V****22’íht³)Óœ-Р¥ÜÜÜæÏŸïéééç秨¨¸råÊ¡C‡Òœ\ÅñÁ1vvvdú—••…‡‡ÛÛÛ·âP>>>éééGeûœÚ3æ÷ßg;€ŽJSS3!!¢¨É“'O™2ÅÌÌìôéÓ¯žØ¡É4ß[ÇUPP@ÏÚ˜““cmmýàÁccãýû÷ëêê¶î€·oßž:ujrr²”>ŽÌ„m±±±l_€¶‘““ývLgdjjJÉÌÌd;^YõéÓ‡í¸C ¤§§³t`oª644KKK½¼¼pk œMcbb自5¹ºxñb¶hh›–sFFF±±±çÏŸÏÌÌäóùžžž#GŽTRRb;.€ÿ¡ï<›[eøúúJô»€Î‰›‰£©©)3ª±ñ*AâD•RÆŽBYYÙÆÆFWW×ÁÁ¡¦¦Y#tD?ýôÓ•+W"##ÇÏv,À2n&ŽçÎc;€¶$^À šf;(x½ŠŠŠeË–ýþûïE¥§§Ïš5ËØØxíÚµjjjl‡@HSõ‹ô}©øÆÂÂÂùóç?~ÅŽàñyv0º¢C -//¿r劂‚!ÄßßÿÞ½{›7of;.€4.L§’sçÎõôô1bÛÁ‚\@âÐ1`jÆŽ(!!aÉ’%ô¤`„[[Û€€€øøx¶ãø&wl|GzàÀÌÌÌõë׳#È $Žr®e$ÿíΈ¦êŽ¢®®®k×®â[ôôôØŽ à˜FŒ&ïN¯_¿~ïÞ=çââBQWW_²d ÛQ·=ž¶c‘kHä”x9ÎëèàØ±ØÙÙ«®®ÎÁÁáêÕ«xB´!f2»‚‚Bˆ@ àüè®Æ#„€ÁÍÄÑÇLJY®©©‰Dt= }ßoffvúôi¶ch&ÙáCCÃ3gΜ;wîÑ£GsçÎuvvnçZ‡‡‡WTT°}ÆÀqÜL™Yããã7mÚbggÇãñnß¾½jÕ*+++¶øYžÙÔ¡C‡†>aÂfKuuõêÕ«·lÙÒ†ŸÉö¹÷9;;£ŒŽ÷qܾ}{PP£££²²²’’’½½}ppðÉ“'™Gǰ‹i AÇNÚ°açŸ~*ÞÄQ__ÿË/¿´í§øøø¤§§=z”íÓè¨Ä‹_t%—Žã‰c^^žÄ#’ÔÔÔÔÕÕ555Ù à(¡¸mÙ²e+W®Ü°aC}}=Û±Bˆ@ lG w¤ -qO‡ ÁÔ/–––†‡‡ÛØØ ^X×d …JGîqww?~üøü1cÆŒÂÂB¶Ã!éééééélG 2Ê‚ã‰cHHHnn®‹‹ËÔ©S§Nêââ’““Âv\ЩIy j9ÉÌÌìäÉ“ÚÚÚ'N|íœòŒ›ƒcFFF±±±çÏŸÏÌÌäóùžžž#GŽTRRb;.褤šF]#‡ihhìØ±c÷îÝ_}õÛ±´ÇGBˆ²²²®®®ƒƒCMM ²F`Es)£x¥#ê¹çÀêêêô2ÇûòË/­¬¬.^¼Èv\­Äñı¢¢bÙ²e¿ÿþ;EQééé³fÍ266^»v-ç'/ùñÚ©‘/rOFF†–––®®®®®nVV–øKzzzlMÀm¼,8ž8†††–——_¹rÅÙÙ™âïï¿råÊÍ›7¯Y³†íЀ#¤4âMÏè¼Ø©¸»»Ï›7ÏÏÏÏÝݽÉ0<@Þˆ—Ò(±¥àx☰mÛ6===zÕÖÖ6 `åÊ•HáÍIT%J:ô‚xу’¨óHNNVTT$„¤¦¦¾µµ¶¶F> Ð:å39(ÇGU×ÕÕuíÚU|‹žž^CCÛqG4.h¤L†©v:UUUº;õÌ™3•ÿ«¦¦fîܹlÐJ¯q´³³;xðàÆéÕ²²²ððp{{{¶ãÂc¦QUUµsçNBHrrò¶mÛÄ_ÊÏÏôèÛ´ÇÇÀÀÀ3f¸¹¹‰D¢iÓ¦=xðÀØØxÓ¦MlÇ\C×2J¯PDÃGçQ__Ÿ™™I/3 4>Ÿ¿zõj¶Ièã(#Ž'ކ††gΜ9wîÜ£G444æÎëììÌçs¼Þ‰™t4âÑHÝ©tëÖmÇŽ„9sæÐ Ï$ jdRp°ÉW1A´Zhhèúõë,X`iiÙ¥Kf»®®.Û¡´ÇǨ««ÓË<ïË/¿´²²ºxñbKS[[{ìØ±   BˆŸŸŸP(ôññÁÌ>ò¯ñƒI3Ï $M …aú54RCËyyy‰D"___‰íx6 tPÜL322´´´tuuuuu³²²Ä_ÒÓÓóððhé>|XYYéääD¯:99¥¥¥ 0€ís…×kü`@){Jd–HáMÄÆÆ²@‡$19.|ä7Gww÷yóæùùù1³ðHhéí~~~>ÇÓÓÓ£Wõõõy<^qqqsû ¡ߌœœ¶Cx#7ô椘WMMMé…ÌÌÌÆo‘ýÏÄI½zõ"„äåå=yòÄÁÁ¡¦¦FEE…í :‰‡,°üƒ›‰crr2=óNjjj›°¶¶VUU•i˜æóù***¥¥¥ÍíϽv¨>}ú°B[OoÿW¼‘ºãžlǼ91ƒWQQ±lÙ²ßÿ¢¨ôôôY³f¯]»VMMíÐ:ä‹rˆ›]ôTUU•””!3gÎTþ¯ššš¹sç¶ô€šššÕÕÕ"‘ˆ^‰D555šššlŸ(¼žDÛ´D{Ó‹‘ÉQNA -//¿r劂‚!ÄßßÿÞ½{›7of;.`O Û±´7k«ªªvîÜIINNÞ¶m›øKùùù=jéuuu)Š*))¡ÇB>þœ¢(¦åä\síGÀ k„¶•°mÛ6¦¬°µµ X¹råš5kØ Þ6ÌJÜÀÍı¾¾>33“^fh|>õêÕ-= ¹¹¹¶¶vbbâ¸qã!III:::ffflŸ(ÈJ¢€Æx;êêê$: §§×ÐÐÀv\À>‰Á7ÇnÝºíØ±ƒ2gÎzá )**zxx…ÂÞ½{744…B<À°#bRÆŽÞy:;;»ƒnܸ‘^-++ ···g;.€VâxêÝV‡òõõ­««£çcsww_´hÛ'-ƒÆhxûgÌ˜áææ&‰¦M›öàÁccãM›6±°ÕÐAq9)#°"11Q|ÕÀÀÀÀÀ€^¾~ý:!ÄÁÁí[Cúó9áµ?b Ãáxâøøñ㘘˜wß}—í@ 5.ˆ1g,°ËÇLJY®©©‰DôÈ}zJ/33³Ó§O³c‹aPp›ÀEƒŽŽã‰£žž^uu5ÛQ@»kr’¶ƒ‚Î믿þ¢âãã7mÚbggÇãñnß¾½jÕ*+++¶l Ð9q¼«MhhèúõëÏŸ?Ÿ››[,†í¸ ]ˆOå ¶oßäè訬¬¬¤¤doo|òäÉ—/_²@kp¼ÆÑËËK$ÑC¡Åqï‘€€”äP^^ž†††ø555uuuÌv\­„AÁÀñı¢¢bÙ²e¿ÿþ;EQééé³fÍ266^»v­ššÛ¡Áiüë…_2CFFF±±±çÏŸÏÌÌäóùžžž#GŽTRRb;®Öà  “ãxâZ^^~åÊgggBˆ¿¿ÿÊ•+7oÞ¼fͶCƒ–‘hïtÊÊÊô3î8€ã‰cBB¶mÛôôôèU[[Û€€€•+W"qìXèžUL-#úWAGagg×äöV<¼ @p¬¬¬d2B''§çÏŸ§¥¥Iì–““cddTSSSQQÁöȯÆSv klŽ'ŽFFF±±±ëÖ­6lØðáÃCCCccc{öìÉv\fó†Î&;;;"""##ƒR[[»dÉ++«áÇ:tHöƒäççóx<===zU__ŸÇã‹ï#‰òòòöïß?dÈ›‰'Þ»wOÊ1@ `ûòÈ:§‡_«æp¼©š¢¬¬}º©©éG}DùöÛoûí·yóæ©©©…‡‡º¹¹ÉrœÚÚZUUU¦ašÏ竨¨”––ŠïóìÙ3>Ÿ?tèÐÝ»w×ÔÔlذÁÛÛûܹsÝ»ééél_ÖHT:¢Ÿ}+p|XÆÄQSS³ººZ$ѹ£H$ª©©‘Ûg``’’¬†…… 6,11QÆèlð«ô†8ž8nß¾Y®­­½ÿþþýû½¼¼ØŽ‹ ðT@€æÜ½{7""‚^ÎÈÈ(..þðÃéUkkë#GŽÈx]]]Š¢JJJtuu !ÏŸ?§(Ši¹n’†††žžžDs6@[áxâ(ñhA@°téR///<¼¡= e „TTT(((ÐË×®]Ó××ïÛ·/ójee¥ŒÇ177×ÖÖNLL¤ûÛ$%%éè蘙™‰ïuäÈ‘nݺB^¼xQTTÔ¯_?¶¯pÇÇ4Ö·oßÚÚZ¶£à,  „˜˜˜$&&ÒËqqqÆ c^JIIéÕ«—ŒÇQTTôðð …©©©ÉÉÉB¡ÐÃÞ¦1&&&66–âèèXXX¸|ùò7nܺuË×××Êʪ¹^:oˆã5Ž/_¾_-++‹ŠŠ222juuc]]ƒƒÃÕ«WQaÙ¸mh[¶láñxÙÙÙ·nÝš7o!D$%&&îÞ½»ñ ÞRøúúÖÕÕùúúBÜÝÝ鎒„#GŽ˜™™3FCCãØ±caaa‹/VTTtvv^¾|9¾’ÐN8ž8ÚÛÛKlQRRÚ´iSëŽV\\Ž™ÒR†§tfeeeÇ///Ÿ?>=}÷’%Kâââ¦L™âéé)û¡x<ž¿¿¿¿¿¿ÄösçÎ1Ë}úôÙ½{7Û' ÇÇ .HlÑÓÓk]eaTTTdd$Û'$GР9<ÏÛÛÛÛÛ[|ãâŋׯ_ßÜ,9Çû8úûû÷ú¯W¯^Íš5«‡òññIOO?zô(ÛçÄ>Ìæ Ð ¦¦¦È £ãfcUUÕÎ; !ÉÉÉÛ¶m)??ÿÑ£Gíý`ºëzÇbjjJ/dff2srrÄ_¥_ÊÊÊb;Ø7œgpïŒ@Þp3q¬¯¯gòñˆÂçóW¯^ÝÞtÐg3HLèMÄZ¢é”‘cUŒ}úôa;œÑktôûŽáfâØ­[·;vBæÌ™C/´ÔÙ³g—,YB/Ÿ>}Zbâ´Î€ø‚¾Œ@ãfâÈˆŽŽf–˜)y_ËÍÍíÏ?ÿ¤—ÕÔÔØ>·¡ÉgºÓQë„Écvvö©S§>úè#33³ÚÚÚ¯¿þ:..NSSóË/¿”e. EEÅÎÖ½ÉyQÑÐ 7nÜe·îÝ»›››³,¼=˜¿ 8€›‰ã½{÷¦OŸnjjúÑGB¾ýöÛß~ûmÞ¼yjjjááᆆ†nnnlÇØ^Þ0ço˜Æ­óóÏ?˲›¹¹9ÇÎC¢U§ÉFùÇÍÄñ›o¾qssÛ¼y3!„¢¨Ÿ~úé‹/¾ Ÿ¸ðêիÇs5q”2º¥¥Çiõ{`ãÆl‡òN¼‘ áæ<ŽwïÞ/w.Añ 7Gçííííí-¾qñâÅëׯç|1Ý\©„”à­™5k–ÍÌ™3›ësãÆ²,@ p3qlý´åN)#À[vìØ±={öL™2ÅÂÂÂÖÖ¶oß¾ššš ÏŸ?¿ÿþµk×.\ÈÌöÐQt¢Ä±BÊÀ eeå… Ι3'>>þÚµk.\xö왲²²Á!C‚‚‚ìíí1N:"$ŽÜ„”€u***îîîîîîlÐf8r RFh'H93Ê@ûAâȨh€ö†Ä±ÃCÊo79ØIà™rnÊ”)[ÊÊÊfÍšÅv\­„Ç µŒò¬ªªjç΄ääämÛ¶‰¿”ŸŸÿèÑ#¶h%$Ž RFùW__Ÿ™™I/3 4>Ÿ¿zõj¶h%$ŽRF€Ž¢[·n;vì „Ì™3‡^àôqdYff¦»»»––V=¼¼¼ž?Þxôeè ,--322ØŽ Í ql_¼ÿ’xU$}òÉ'uuuçÎ;zôèåË—çÏŸßøíH:¨+W®\¼x‘í(Ú šªÛQãé¸%¶lbb²eË–¿þú믿þBÖÇv'%eÜ»w¯‘‘‘H$¢7¾|ùR$uíÚ•í müøãÁÁÁNNNÊÊÊŠŠŠC‡]µjUDDÛq´Ç·M¼–ÑÝݽªªÊÇÇ'%%%))iÆŒ–––¶¶¶lÇmãÙ³gjjjâ[ÔÔÔòóóÙŽ  •8¾=Û¬õõõÏž={ÿþ}''§‰'êëëŸ;wNYY™íH m :4""âåË—ôjiiixx¸••Ûq´Ǽ RFÆ 6ìòåËlí"88xÖ¬Y...ýû÷'„¤¥¥ihh:tˆí¸Z ‰£¬JKK7mÚOQ”­­m@@@ïÞ½_û.< 3Ó××?}úôÅ‹322êêê<<|hnn.þ^sssgnnÞN—®ýgî(¡6çÛÿ˶:TH[F$ÅÄÄlܸqΜ9¦¦¦MîC?a  wïÞñññššš—/_öôô$„\»vM__¿ ?¢¶¶VUU•Ïÿ§ùˆ~¤aiii“;¿IéÄ<@µÉUè¸ð—…ASuÓΞ=+øWFF½ñÉ“'Û·o_³fͲeËØŽäÝÂ… wíÚõÁXXXØÚÚîܹsÍš53fÌhÃÐÔÔ¬®®f:5ŠD¢ššMMM¶O¸ 5ŽMsssûóÏ?éeúÁwîÜñòòúàƒvíÚ¥­­Ív€ÐŒ5*...;;󮮠ÏçÛØØ8pÀÁÁ¡ ?BWW—¢¨’’]]]BÈóçÏ)ŠbZ®Ûİ TJqþ²Ð"H›¦¨¨¨¡¡Á¬Ö××ûúúΜ9sÉ’%l‡‰±±±±±1½/©|F%c`òüÑ£GCCCW¯^Ý£G­[·.[¶ìÈ‘#lõVÉÅŸ3ªªªâã㣢¢œœœ!Æ KJJruue;´7Õø‡§#ª­­=vìXPP‹‹ !ÄÏÏO(úøøðù¸ê3W¿GoÇãǬ¬¬dŠ!''§çÏŸ§¥¥±×áÌ_‡ÁÕïÑ[3yòd zùwÞi®.ÇÈȨ¦¦FÞ*ªãââþüóÏ¥K—²H‹“ÏK*ŸQɘŸ]PPðá‡Ò«C‡MOOïTY#AâØ¶úõëwòäIMMMzõìÙ³UUUÖÖÖlÇÿÈÏÏçñxzzzôª¾¾>Ç+..f;.ø|Þ„™™ÙºuëJJJþüóÏ={ö¸»»KT7ŠD¢¼¼¼ýû÷2ÄÆÆfâĉ÷îÝc;pB).. SWWg;––&Ÿ—T>£’10ù >;;[AA!%%eܸq666_|ñE'ìı]ˆD¢Ã‡Ì™3ÇÔÔ”íp൵µªªªÌ(ŸÏWQQ)--e;.h¾GobþüùÓ§OÏÏÏŸ1c†ÄKÏž=ãóùC‡MHHøí·ßzöìéíí]^^ÎvÈdÕªU&L°³³c;&Ÿ—T>£’10ù ¾²²R$íØ±cùòåûöíSPPðòò’ÃQ\í‹‚7pæÌó=|øÞ˜ýÙgŸÙÚÚþøãlØf'EQÔ­[·ÌÍÍ«ªªØ°õþøã@ÐÐÐ@¯644‚?þøƒí¸Úþ::ú÷H”””lذn/e·²²²œ?žÝhOž<ùÑGÕÖÖRuýúuùùÿÜŠÀää’vˆ¨d LN‚¿pႹ¹ù;wèÕÒÒÒ^¸pݨÞ2 Žy#nnnþù'½Lwš¾s玗—×|°k×.mmm¶l›“â ]]]Š¢JJJtuu !ÏŸ?§(Ši¹ùÁï[²²²^¾|9dÈBˆ––Ö²eË>|ûöíáÇ7÷ ===Öûl¤¤¤ddd¼ûî»Ì–ÁƒÏš5+00°Ã&'—´CD%c`r¼ŽŽ!ÄÌÌŒ^íÖ­›žž^g›‘MÕoDQQQã_|>¿¾¾Þ××wæÌ™[¶l鸿v'Åv8mÉÜÜ\[[;11‘^MJJÒÑÑaŠÜø±åöíÛ‹/‰DôjYY™H$RUUß'66vüøñeeeôê‹/ŠŠŠúõëÇnä .Œý×æÍ› !?ýô“··7»Qɘ|^RùŒJÆÀä3ø¨««ß½{—^-))),,ìÝ»7»Q½eœJ X—PXXØ¿ÿD1¬ß!CQQÑÃÃC(¦¦¦&'' …B9™ ø½ —êêê5kÖ¤§§'''ûûû›™™YZZBbbbbcc !ŽŽŽ………Ë—/¿qãÆ­[·|}}­¬¬XïY¨««Ûç_=zô „˜ššÒ™>}ºøñÒ†ù.K,pGh±ž={öìÙ“B×,öéÓgàÀôKÿý7[Q)))uÄòš ›ÅKÍ100`Ê7q±´hhª†¶÷ðáCÁƒO˜0!55•ÞXPPàëëëàààììXQQAoÏÏÏ÷ññ±··ÿý÷ׯ__SSCùûï¿ ™™ùÉ'ŸDDD4÷ö9sæÄÇÇïÙ³gÊ”)uuuLãQqq±¯¯¯½½ý{ï½·eË–††BÈ7>ýôS+++{{{___éíéEEE ,°³³ûðÃ80~üøÄÄD‰†øÄÄD;;;z¹ÉƒÓgqýúõ>øÀÊÊjâĉôÕh.lFs×êÂ… üñ Aƒ>øàƒ£G²ýw褘¯­øwY|™4ÿ-ÎÍÍ;w®­­íøñãããã|þüùK—.eV£££]\\D"‘ôLJé„òÚGh{ëׯ÷óóûþûï»uë¶fÍBHmmíŒ3TUU÷îÝ»mÛ¶'Ož,[¶ŒòêÕ«™3g¾zõjÏž=ëÖ­»|ùrPP}Š¢¾þúëQ£F}ôÑGͽ=::zäÈ‘óæÍûᇘOohh˜={ö«W¯¢££ýýýüñÇ}ûöÕÕÕy{{ ‚˜˜˜M›6¥¤¤|ûí·ÍÅßÐÐ0kÖ¬ÒÒÒ;w:t(==]ÊùJ9¸H$Ú°aÃÆcbb”••ƒƒƒ› ›ÑÜÉæää,^¼˜.â§L™’––ÆöŸ€ãž={–&¦°°PüUñï²ørsß⺺º™3gÖÔÔìÞ½{éÒ¥›6m¢o•Å;ö?þxõê½zîܹ?þ¸¾¾^öLÊhshª†¶·xñbúfwÆŒ«W¯&„œ;w޲qãF>ŸO‰ˆˆxï½÷òòònß¾]RRòóÏ?khhB6lØ0sæÌåË—BD"ÑÔ©S'NœH9uêT“o§[Ì%\ºt)//ï‡~PSS{÷Ýw+**þþûïÊÊÊ%K–|öÙgªªª„÷ß?''§¹ø/^¼˜ŸŸôèÑîÝ»BÖ®]ûÅ_H9_)§(jÁ‚C‡%„Ìž=›¾Ò5w­²³³E"Ñ'Ÿ|bdd4`À€~ýúu”×ñãÇ?άΘ1cÕªU¯}Wsßâ[·n•””üôÓOtÙ¢¤¤ôùçŸK¼×ÕÕ5((())é½÷ÞËÍͽ{÷î–-[ZT‚É Êh5$ŽÐö˜.AÌp™GåääXZZ2ûPõäÉ“Ç[XXÐY#!ÄÚÚšÏçgffB† "ýíM&Žééé@MM^6m½@7 ¥§§§¥¥]¿~ÝÑѱ¹ø322ú÷ïO—ì„¡C‡òx<)ç«¥¥%åàLØÌ¥kîdmll¬¬¬ÆŽ;bĈ¡C‡º¹¹´ÿ SóññY¼xqKßÕÜ·833S¼l±³³k\¶¨««;99]¸pá½÷Þ;w••©©)iI &K$(O Õ8BÛSQQ‘Ø¢¡¡ammýý÷ßKl¿qãFãr“î’HQWW—þö&Õ××+*JþÇÎÈȘ>}zÿþýGåììlnnž™™ÙÜêêêÄWù|~“‰cmm­,ïÒ¥K‹®ž”“=vìØŸþyùòåãÇoݺuÇŽï½÷^Ëþ6ÐþšûÿùçŸâ«<¯É²åÃ? ‰¥[]ZT‚±Ò å ´9ôq„·ÁÜÜüÁƒeeeôêŸþ9eÊ”ššš¾}û¦¥¥UVVÒÛ“““úöí+ãÛ›ü,ú˜ÕÕÕôê¾}û¾øâ‹ØØX--­ƒΘ1ÃÎÎŽyµI¦¦¦iii¥¥¥ôêíÛ·E"ó*Æýû÷é…¼Õ×êÆ»wï:tè²eË~ýõW›_ýõmý šû÷ë×OJÙÂpuu-++;sæLZZÚ‡~Hd.d—N(O Í!q„·ÁÙÙÙØØxÉ’%wïÞýí·ßV®\ill¬¢¢2zôèîÝ»/[¶ìþýûׯ_ úðÃ{ôè!ãÛ !|>???Ÿ) !£GÖÐÐxðàÁÙ³g¿ûî;[[[mmíÂÂÂ7n?~üçŸ.))anÊ%ÐGðõõMNNNHHX½z5Ý=HOOOIIéÛo¿ÍÎξxñâþýûéý[tpZã°_{² ßÿ}vvöùóçSRRÄ›Ÿ€âßef¹¹oñÈ‘#µµµ™²¥¹î’jjjï½÷Þ† œé®‡¯-dš+Pž@›CâoŸÏß¿¿ººúœ9sV®\ioo¿víZBˆ’’ÒáÇy<ÞìÙ³CCCe;!ÄÝÝ=11qÑ¢EÌÎÊÊʇ®««óôô ûôÓOçÍ›7yòä±cÇ.X°à³Ï>{øðáwß}—››»mÛ¶&£UQQ9tèŸÏÿâ‹/6nܸlÙ2:IUUUÝ´iÓ­[·ÆŒ³téR///zÿ¼¹°_{²_ýõÞ½{Ç·yóæÙ³gϘ1ƒí?,@g'þ]f–¥—x]ºtùâ‹/>ÿüs[[[33³&;vìØ/^|üñÇôêk ™æJ'”'ÐæxE±€¼2dHTT”ƒƒ½J·ÑÃZŠ¢¨ÒÒR̵J'hoÐb(”àMðx¼öÈ J'hhªx½>}ú4*ÐÙ ©d‚G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G ýû÷çýWß¾}×®]KQT«©¤¤Äãñ*++¿¤¡¡Áãñ [qØÒÒR§¤¤$åD~øá–.d»øëôìÙsÚ´i¹¹¹¯½âž?ž››[]]ÍöÙ@džÄþalllii9pàÀnݺeffÇÄÄ´úh´´´äóñ¬mÐccãüüü£G~úé§-JëgÏžmllüË/¿°}бáwþ±uëÖÔÔÔ»wï–””L˜0rîܹV-99955UUU•íÓâú¯óôéÓŸ~ú‰’””ôøñc¶ƒh/^¼X¸pá AƒÔÕÕ °lÙ²çÏŸ¿É›«‰¿sçÇ2dˆì‡¯ïWUUµ²²Z¶l™xͽ”¦ëõýUUU6l°´´TWW×ÑÑ5jÔ¯¿þúvÂCƒ '!qI VVV„uuuzKMM¿¿¿~ýºuëöþûï_½z•ÙùæÍ›|ðA÷îÝuuuG}óæMz»xyúêÕ«%K–ôìÙÓÌÌìСCÌ{% ‰Õû÷ïôÑGºººêêê666'Ož|““jî&L˜Àãñ"""èU·hÑ")oaâ¼{÷î{ï½·gÏ)ÑÖÖÖ.Z´ÈÐÐÐÒÒò×_UUUe’i)WUŠñãÇ+++Bòóó%^ª¯¯ß°aûᆱ®®>xð`¡P(‰!ãÆ;}ú4!ÄÃÃcÆ íüß 233 ´cÇŽ”””.]º¿ÿþ„]»v5-EQ3fÌ „hiiÙÚÚÒ箢¢"=$é'ÅTäääH\Ù³gBtttÆŽÛ½{wBÈâÅ‹)Šúí·ßLY°`Ajj*ÛÿÝþ‡þ 4èÑ£GE=}úôÝwß%„|ýõ×­>fs¥Dee¥ªªêçŸ.û¡$¾}ׯ_§¿Yÿ÷ÿ'ûAÜÝÝ›+—Þº7¹¢¢"]¼¼zõjݺu„‘#G¾…ð$. Ý`BÉÈÈ^˜ËÏ„Æ8Â?ßmq<oóæÍô«©©©„~ýú544P% !³fÍ¢(êòåË„##£ŒŒ Š¢¶lÙ2gΜ””J,qÌÊÊâóùŠŠŠOž<¡(*,,Œþé‰cvvöÈ‘#§M›F¿äèèH9qâDëG)§PQQѵkWeeåòòò‚‚gdd$‰¤¼…Žâíí™™YSSÓ\´?æñxŠŠŠOŸ>¥(jÛ¶m„:q”rü&OÊÄÄdðàÁtzJqww—¸bééé„ ú³èã+((äççS(yA.ýý÷ßôÿçÛ·o3Ïž=ëââ²`ÁzõÕ«Wëׯ·´´TSS4hжmÛ诌”—Ä¿•••ô]Sdd$EQ‹-ºtéýö7n¸ººjjjêè踹¹Ý¸q£q„‹”åË—B>ùäzUü¹ÉÒ_=Úúõë)ŠºwïÞ‡~¨£££¦¦fmm}âÄ ñ˜/]ºdmm­®®îêêš™™IJuuõ²eËÌÌÌÔÕÕíííÏŸ?/¾½oß¾...ô¯„äädú¾½¸¸˜ÞRZZÓdxÍ“ŽPEE%&&¦_¿~†††?~ÿý÷ÕÕÕ­¬¬šüt‰ X__O7˜\¾|Y¢0oî¯Ù8B`Gøç»Í ŽéÒ¥ !dĈ555E59DfðàÁE•””ôèуÞbffæã㓜œL“)Oé[Ì#FÐÛ=z$KâHQTiié¾}ûæÎkmmM¿åرcâûÐl4ºðm.q”r EM™2…rêÔ©#GŽB–,Y"ý-t <®[•íñãÇ !ï½÷½Oee%Sã(=¤Æ†žžž§§gII‰Ä;vì!dâĉo¼pá…ÄäR\\}ç)eŸæêÑ¥¼Ä|/D"ѧŸ~JY¶l™Äa¥´–ˆk\¤ÐóUe ºæ(Qß/½-…ÇãuíÚuàÀt1cÆÐŸB×˾óÎ;ÎÎÎŠŠŠJJJ·nÝ¢dkµ¨ªª222"„hjjNš4iãÆ.\ Ëvª©æé--„%%¥ÒË]ºt122ÒÕÕ%„ôêÕ«ñŸ &œ„Ä$¿Û/^¼PSS#„üþûïÔ¿‰­­í1'Ož¤w.++‹ŽŽž0aÝ!RAAáâÅ‹”XyzàÀBˆ‹‹ sp‰¦jú%ñr¤´´´OŸ>]ºtñññ9vìÝ©H"qœ;w®Ê¿~úé'ªùÄQú)üüóÏ„¹sçzzzB’’’¤¿¥q­gsÑ>|˜ˆ5 åçç3‰£ô¤üuĉGB·¹Oš4‰yuĈ„sçÎQHA.íÝ»—þ4·ƒ”zt)/1ß‹àà`Bˆ‡‡‡H$’8²”Öq¿}üñ}ÿF¯2”Šû¤·¥B~þùgŠ¢ÎŸ?O§zEݽ{—Ψ^¾|IQTpp°¢¢âÒ¥KeoµHKK›0a]ªÓ444öîÝK¿*ž,--ôï]ZÚÚÚÖ××н<é_@4˜p Ç€¤îÝ»›™™Bòòò!–––„çÏŸO›6múô馦¦ÉÉÉ„óçϯ]»VGGççŸ~þüùäÉ“.^¼(~4sssBÈÕ«Wé‘tô—Ÿ~©K—.<¯¡¡.&ÄßxæÌ™¬¬¬÷ßÇŽŸ|ò ]tJسgOõ¿è»äæH9BÈØ±c555Ïž={áÂ{{û×¾EBsÑ0€råÊ•¢¢"BÈ÷ßÏœ{‹Ž/ ú¦<>>ž4“‘‘‘””ÄçóéqN´úúúvú?Ð tMXqqqs;üõ×_„‘#GB,---,,îÞ½+å%ú½õõõk×®%„X[[Ó7«â,--{ôè‘››kfffnnž••µpáBº{¥t%%%Lä­8 ‰‰ÉÉ“'GŽ9oÞ<›„„"öÅTPPøøã !vvv„zp!}FC‡ÕÔÔ$„„„„¼zõjÛ¶m)))„G)((ðx¼¥K—BîܹÓ8f@ðóÏ?¿xñâÖ­[QQQ#FŒ(//÷ööfº 0^{LúŽ´W¯^„ºº¹æÉ“'ÉÉÉÙÙÙtƒ‰øÉ×þ¡Ûâ?´1E¶ùUUUE8pàøñãùåggç>}úüßÿý_UU}C¬¤¤´mÛ¶;vŒ?¾¾¾žÞøÁˆÄÞÞÞÒÒòîÝ»ƒ ²°°¸~ý:Ç£ó'•Aƒ%'';88˜™™=|øy}ïææ–ššJ'^”lñ˜ž”„¯¿þzÊ”)Í!¤K—.&L8xð !„îÀ$ý¬k.Zkkk—ßÿýÝwßíׯßõë×™·´èø²°°°˜1cÆ‘#GlooõêÕºº:__ßž={Bè{ýÈÈHƒ‘#G¾…ÿ<¯%!ÿýwFF}³Jù¿ÿû¿9sæ¼ûî»tgDBˆxÚ§¯¯Ÿ––V__/å%f‹••UJJÊúõë=== Ä?ZKK+==ýÇ<}út|||TTÔîÝ»ãââ\]]¥ÇL‹ûöí+±]Æ–•• <8//ï‹/¾X¾|ù¾}ûèöz=g !D|˜6}F Ÿ¨  @±µµýꫯ˜g@»{÷î™3gŒ§OŸnmmmmmýùçŸ÷êÕ«¨¨èþýûtþ'û1™itÑ÷ZÇŽ£{5G–¿&ȶ«<}›c>ûì3BÈ„ èÕŠŠŠ… š˜˜hhh8;;3½Ë)Šúᇆ Ö½{÷nݺÙÙÙýøãôvñ>ãwîÜ¡ï#ûôéM7jÐ/ 6LMMÍÎÎŽ.@é–‹ªª*º íwÞYµjÕ—_~Iñöö–epŒ„o¿ýVú)PÅÌXI÷’~Öch.ZŠ¢JJJ¦Nª­­Ý¯_¿'NtéÒ…U-=$)†D$uuukÖ¬0`@×®]ß}÷]¡PÈ #HIIéÛ·¯ªªê7ß|Ãö7€ÿ7n!ÄÙÙùùóçEåççÓ_¥¥K—RõàÁBH·nÝòòò(Šzøð¡²²2ŸÏÏÍÍ•ò3ïÁË—/'OžLùâ‹/$>766vÙ²et»pmm-½[`` Änß¾Û·okkkBN:Eoa :)¤[Z9BQÔ÷ßOþí¼øêÕ+ú¾N¢õ߯6]×µkײ²2Š¢Ö¬Y£®®¾bÅ º6®OŸ>tCüµk×–-[vðàA‰S¸}û6!DMM逞MwǤG²‹‡'嘮\¹’ˆ ~WQQ!„0ãoš»€âÄ(å¯)!È$Žð6TUU]¿~½Eo©­­ýí·ßØü¢-))9uêÔéÓ§éUzxc¿~ýØ@^¤§§ÓÉ“‚‚BŸ>}èϾ}û2½åè ­ôõõÇG§;¾¾¾Ò_ÏH>|¨¨¨ÈçóÿüóOñϽxñ"=§÷”)S>ùäún–îŸ-N¼‹^ß¾}é*1GGGf&q”rÀ… Bììì.\¸ðã?Ò±5ÊÐЮY}ÔÕÕÿøãz»Œ­ÕÕÕ[·n4hP·nÝ´´´¬­­·oßÎ ¬–hޱ¥¥ÍG4˜t ÿô6€öpóæÍààà›7oVUU™˜˜xyy-]º”îHP]]ݵk×\\\Ø •8€L0ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ£¬ž>}êíímggçèè¸bÅŠ—/_²pG}}½P(>|ø¨Q£„B!EQ÷i®Ú³g@̰aÃØ>à,^“ÅH‰D“&MÒÖÖöõõ­«« 8p`dd$ÛqGlÞ¼ùÔ©S¡¡¡„+VLŸ>}áÂ…â;H)…V¯^ýìÙ³éÓ§Ó{***"w€v¢ÈvÃãÇl‡ð6äççóx<===zU__ŸÇã‹ïÓ\)$‰òòòöïßïçç'‰ °~ýzºV²It•žžÎöI@‡„ıeæÏŸŸœœ¬««&e7Ê »ÚÚZUUUæ^”Ï竨¨”––6¹³D)ôìÙ3>Ÿ?tèÐÝ»w×ÔÔlذÁÛÛûܹsß+P:À›@SuËüðÃIII}ô‘‡‡GMM ÛáhjjVWW‹D"zU$ÕÔÔhjj6¹³D)d``’’âïﯭ­Ý³gϰ°°/^$&&²}NÀMHe’••õ×_ÑËZZZË–-«¬¬¼}û6ÛqèêêRURRB¯>þœ¢(¦åš&c)¤¡¡¡§§'ÑÌ ÐV8ÊäöíÛ‹/fêÊÊÊD"‘ªª*Ûq˜››kkk3Õ„III:::fffâû4W ÅÆÆŽ?¾¬¬ŒÞþâÅ‹¢¢¢~ýú±}NÀMHeâââR]]½fÍšôôôääd333KKK¶ã.PTTôðð …©©©ÉÉÉB¡ÐÃÃ4C³k®rtt,,,\¾|ù7nݺåëëkeeeggÇö97apY%''oÙ²åÁƒªªªË–-344lrOt?€–¢(jëÖ­gÏž%„¸»»/]º”ÇãBÆŽkff¶}ûvÒ|)”••–’’¢¨¨èìì¼|ùònݺ5ù)(à !ql{(š@>¡t€7„¦j G€ÎâáÇÌ2ÝŽe,cùM–;!$Ž…¹¹9³,ÞO ËXÆrë–;!$Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Žò«¾¾^(>|Ô¨QB¡¢¨Æû<}úÔÛÛÛÎÎÎÑÑqÅŠ/_¾d;jà,$ŽòK(ž8q"444((èøñã;vìØA$-Z´èÕ«Wß}÷]xxøÍ›7ƒƒƒÙŽ8 ‰#€œª­­=v옟ŸŸ‹‹‹‹‹‹ŸŸß÷ß/‰Ä÷yüøñƒüüüþœ¢(¦åš–••õ×_ÑËZZZË–-«¬¬¼}û6Û±7qúè£6nÜ…Á˜òÃÜÜ\[[;11‘^MJJÒÑÑ133ßçöíÛ‹/f¾¹eee"‘HUU•íØ€›8ž8öîÝ;>>>77÷òåË#FŒ „\»vM__Ÿí¸Ú52«M67¯ZµŠ¢¨«W¯ŠoLMM-//wss£WG]TTtçζOþ¡¨¨èáá! SSS“““…B¡‡‡=h:&&&66–âââR]]½fÍšôôôääd333KKK¶cnâøà˜… .^¼8**ÊÊÊÊÖÖvçÎ_ý5ÛqÉ…§OŸòx¼=zЫ={öäñxlÇÿãëë[WWçëëKqww_´h½ýÈ‘#fffcÆŒÑÑÑùî»ï¶lÙ2uêTUUU‡7*))±8pÇÇQ£FÅÅÅeggÛØØðù|›888´âP¥¥¥›6mЧ(ÊÖÖ6  wïÞlŸß©®®VSS°Ùµk×/^°üÇó÷÷÷÷÷—Ø~îÜ9fyðàÁ111lG 7GñyÎTTT,,,*+++++MMMéWuuu[zÌ   G …ÂnݺEDDxyy9s¦k×®lŸ+¡û52-Ô-×RhkkWVVŠD":w‰DUUUZZZlŸÈ)n&ŽŽŽŽÒwhéLfUUUñññQQQôP›ˆˆˆaÆ%%%¹ºº²}®„ü›;2Ë2¾ËÐТ¨¢¢"CCCBHaa!EQLË5€n&Ž.\hÛæåå 8ÐÆÆ†^USSSQQaæÈ­˜‚ÑÒÒROOïâŋӧO'„\ºtI__àÀlŸ È)n&޽zõjî¥ÚÚÚmÛ¶¶è€ýúõ;yò$³zöìÙªª*kkëæö§êEy”ùùù„ììl¦…}Ê”)êêê Ë—/÷ððÈÉÉa;L€ÿéÓ§Û!Àÿp3qd¼|ùòÛo¿O†JJJrss[š82D"QLLÌÆçÌ™C÷˜l’|>Ô+//Ò»wo555zËöíÛ»víJØôôô •2…8tr²¤è |}}SRRÞÿý'NÌœ9³ººúçŸþî»ïìììZq´'Ožøûûgee-_¾ü³Ï>kn7@ Ÿ‰#tr(à q¼Æñúõë›6mrqqyúôéûï¿ogg7`À€¸¸¸V$ŽwîÜñòòúàƒvíÚ¥­­Íö™¼mrLuuµŽŽ!Ä‚¾ÏvvvŽ‹‹kéqêëë}}}gΜ¹eËdÐ9q[$çq¼©zùòåÞÞÞ`üøñëÖ­=ztaaáØ±c[zœÇSµxñbñ[·n7nÛ§ð–p|p !¤®®®²²RKK+###66V[[{òäÉíú Wt?ù„Ò ÞÇk !ÊÊÊÊÊÊ„333333¶Ãè¨8ž867zúæÍ›l‡ÐÁpjÔ(¡PØdPZZ8tèP;;»ùóçgggÓÛ÷ìÙ#3lØ0¶¯¼%LáßdÉOš)ükjjvïÞöÑG}ôÑG7nŒŠŠ‰DlŸ t ¯q´··—Ø¢¤¤´iÓ&¶ãjKtÁÁ¬Ò%ˆÄ>«V­ZµjUBB‚“““øö¬¬¬Þ½{WWW¿zõª[·nlŸ @ÇVWW×µkWñ-zzz ²¼W(ž:u*44”²bÅ eeå… JìôèÑ#¡PØ­[·ˆˆ//¯3gÎtíÚ5''ÇÕÕuúôéônŠŠ/Ø&^ø7Yò“f ÿÔÔÔòòr777zuôèÑsæÌ¹sçÎ!CØ>'è8^¾ÐO‹§§§Ç±êÆV‰Dÿý·P(œ6mšH$2dHtt´µµ5ÛqtTvvvܸq#½ZVVÞøöµ±ÚÚÚcÇŽ¹¸¸Büüü„B¡Ÿÿ¿F¡ªªªøøø¨¨(:ˆˆˆ6lXRR’««kNNŽƒƒƒÄm!t6tî(KoŧOŸòx¼=zЫ={öäñxlŸt Ülªfž ˜ÛHrrrbb"ÛÊ…üü|>Ÿïìì\PPmbbâîî^ZZÊv\U``à­[·ÜÜÜD"Ñ´iÓœ‹ŠŠV­ZõÚ7>|ø°²²’Éüœœœž?ž––&¾O^^ÞÀmllèU555•’’BHNNŽ‘‘QMMMEEÛ×XÐd]£ÕÕÕjjjÌm ŸÏïÚµë‹/Ø>è¸YãèããÃ,×ÔÔˆD"ºÿ݇ÃÌÌìôéÓlÇØf$î2e/AŒŒŒÄG—8p@OOïâÅ‹“&Mbûœ:$CCÃ3gΜ;wîÑ£GsçÎuvv¯5lN~~¾ø´úúú<¯¸¸X|Ÿ~ýú+==Y#7ˆ‰‘=k$„RUTTD¯RÅ´\HÇÍÄ‘±}ûö   GGGeee%%%{{ûààà“'O¾|ù’íÐÚ3ªZö·?~|РALóDqqq~~þ€Ø>€ŽJ(îÙ³§W¯^ôª££ã¡C‡"""^ûFMMÍêêjfX«H$ª©©ÑÔÔl¼ç“'O<<<¶oß¾fÍšeË–B RRRüýýµµµ{öìöâÅ tÈé$˜b¿E…¿¥¥%ݾD¯^ºtI___J-5€8Ž'Žyyyâ[ÔÔÔÔÕÕ›,‘;77·ÜÜ\OOÏßÿýêÕ«Ÿ~úéСCéùç ~ùå—U«VM›6^ýüóÏW­Zõÿ÷¯}£®®.EQt‡EBÈóçÏ)Šjû¬ÉCihhèééI4sˆSRRòöö ºyófRRR``à—_~‰y|AFO‡ ÁÔ/–––†‡‡ÛØØ´´+1'ijj&$$P5yòä)S¦Ð]?qeZ­®®®OŸ>â[úôé#ËsªÌÍ͵µµ™j¤¤$333ñ}êëë}}}gΜ¹eËmmmf{llìøñã™é_¼xQTTÔ¯_?¶/ȵµk×N™2åÓO?2eÊ´iÓBBBØŽ:ŒôŠèˆrssgΜYRRÒ¿BHZZš¶¶öáÇ{öìÙ~*Ð… òõõ}õêÕÖ­[ÕÔÔ!ÕÕÕuuu»vízí{###O:µ}ûö†††%K–Lœ8Ñ××—£££3f̘?þøÃÛÛ;""B¼ÁÄÌ̬K—.#GŽ2dÈ矮  ñêÕ«£G6yˆÒ‰“ZÔÁà qÿ[]]Ýùóç333ù|~¿~ýFŽÙÞò(š:§âââÙ³gçåå EEÅ´´4 ǽö½EmݺõìÙ³„ww÷¥K—񪧯±cÍÌ̶oß¾oß¾Æ/غuë¸qã²²²ÂÂÂRRR—/_ÞÜ|þ(8 ‰#¼MÜüß–‘‘¡¥¥¥««›‘‘Ñäm@m E3@§ÕÐÐpéÒ¥ôôôúúú¾}ûŽ=ZYY™í þ¥'!q„·‰›ÿÛÁ¼yóüüüèËk×¢E3È'”Nœ„ÄÞ&nNžœœL?­555•íX ³HMM ~úô©Äö›7o²@ÛàfâÈŒˆˆ`;.€6ÃñÄ144´¼¼üÊ•+ „ÿ{÷îmÞ¼¹Õ¬««³±±ÁŒí‡#ñRHHHÚ¿:D¹uëÖŠ+Øàׯ_ ¶··ÿý÷ƒƒƒƒ‚‚âââØŽ  Íp'SæææÇŽ«®®.\ „dggWUU±@›áxâhggwðàA‘HD¯–••…‡‡ÛÛÛ·âP>>>éééGeûœ€Bœ)ŠÂóA®,_¾üìÙ³Çï½÷}Ø¡eêêê*++µ´´222bccµµµ'Ož¬¤¤Äv\ÿ˜œ{d™ ­p|:CCÃ3gΜ;wîÑ£GsçÎuvvæóÛ½žE3@'4eÊ”~øAYY™bfffffVVV6gΜƒ²@ÛàlâX]]žž®¥¥ebb2aÂBˆH$ª¨¨ÈÏÏ?räH@@ÛGTUUíܹ“’œœ¼mÛ6ñ—òóó=zô&¯¯¯ß¾}û‰'ÔÔÔÆŽ»dÉú‘îâJKK7mÚOQ=°wïÞl_à&n&Ž÷ïߟ7oÞ³gÏ! صkWHHHBBBmm-!„Çã!q€¶R__Ÿ™™I/3 4>Ÿ¿zõê79¸P(0gÎSSӿޙžžŽi Õ¸ÙÇàí+..¦›•oܸáììLEEE­> ¦¦fuuµH$¢sG‘HTSSÃT.Š{ò䉿¿VVÖš5k>ûì3¶¯pgǘ˜ƒæV/^Ìv€=ÿ f~­Þ½{ÇÇÇkjj^¾|ÙÓÓ“ríÚµ7yœº®®.EQ%%%ô3 ž?NQÓr͸s玗—×|°k×.mmm¶/p7GSSÓ¿þú«¹U‚Ä@6â)#ÒÇ×Z¸páâÅ‹£¢¢¬¬¬lmmwîÜñõ×_·ú€æææÚÚÚ‰‰‰ãÆ#„$%%éèè0¸iõõõ¾¾¾3gÎ\²d Û¸›‰ã¹sçØ€#˜L‘¢¨ÆSOƒ¸Q£FÅÅÅeggÛØØðù|›888´ú€ŠŠŠB¡°wïÞ B¡ÐÃÃCQQ‘£££3f̘„„„ÂÂÂþýû'&&2o433kõƒU¤àfâíÎQé(!##CKKKWW7##ƒb``““CÑÒÒ¢_•¨#l__ߺº:___Bˆ»»û¢E‹èíGŽ1333fÌãÇ)Š’hEÙºu+]I жðÐö-7H¤‰È›$æÍ›ççç×Ü47òS  tâ$|1ámB#ÀINN¦›SSSÙŽ }!q€fIôkD­F“’““¥ïð&Ýä 7GñNâMB9 #$‹¯åããÃ,×ÔÔˆD"Çãñè‡ š™™>}šíÚ7G”ãðÖ0³}ÅÇÇoÚ´)$$ÄÎÎŽÇãݾ}{ÕªUVVVlÐf¸ùÈÁ¿þµeËccã}ûö¥¤¤¤¤¤:tÈÄÄå¸<ã‰a;€–Ù¾}{PP£££²²²’’’½½}ppðÉ“'_¾|Évhmƒ›‰#åxÇB d w„Ž%//OCCC|‹šššººz“ èˆ8ž8¢ï@0£ttC† ‰ˆˆ`îKKKKÃÃÃmllp œÁÍ>Ž ºÿæ›oºwïNPŽ@{ ™9s¦‹‹Kÿþý !iiiÚÚÚ‡f;.€6Ãñ:žÜÜÜ™3g–””H”ã={öl¿Å»­†é¦¡£«««;þ|ff&ŸÏïׯßÈ‘#•””ØêP:qŠJx›¸ÿ¿íí—ã(š[® ¦ÿO¢(hs(8 ¥%¼Moª&„(++ÛØØèêê:88ÔÔÔÈÕÝ?H`RF‚éäÇÇTTT|ùå—®®®³gÏ&„Ìš5ËÏϯ²²’í¸Úg¦°¡‡T³°&33ÓÝÝ]KK«G^^^ÏŸ?g;"øÇÇÐÐÐòòò+W®(((BüýýïÝ»·yóf¶ãjctʈ)l =`fMhRþS‰D¢O>ù¤®®îܹsG½|ùòüùóÙŽþÁñÄ1!!aÉ’%zzzôª­­m@@@||<Ûqµ=¦Š¹#´!̬ÙRiii………„+W®,_¾üСCô«@œøÿ«Æÿ©{öìÊ•+aaaÓ¦Mãó9þkÐQpü«xëÖ-777‘H4mÚ4gg碢¢U«V±W[Âo9¼5¨Þ–®¸¸ØÉɉrãÆ gggBˆ@ (**’å½õõõB¡pøðá£F …R®s]]Muu5³eÏž=1Æ cûJÈäµ×øñãGŒñôéÓ… ²,üƒãÓñž9sæÜ¹s=ÒÐИ;w®³³3'ï\Å‹`ü´C[¡oKħI)z÷©yùòeOOOBȵk×ôõõey¯P(|ø°²²’Éüœœœž?ž––&±›OzzúÑ£G%¶çääÕÔÔHÔDÊ-æT“ÿµ>ûì3¦oúË—/E"‘Ä0Gèl^û3·nݺ=zìÝ»Wb{VV–££ã蹺º²}*ÇGBȲeËV®\¹aÆúúz¶ci¯¢íêï¿ÿÎÍÍ¥ccc'''ºQuèСtµÙkåççóx_EE¥´´T–÷>{öŒÏç:4!!á·ß~ëÙ³§··wyyysû§§§ËùãªõõõÏž={ÿþ}''§‰'êëëŸ;wNYY™í¸ ã‰Dÿý·P(TWW×ÔÔ´¶¶¾}û6ÛAuxïãH333;yòd@@ÀĉCBBZwúúúíÛ·Ÿ8qBMMmìØ±K–,AÅBŽ=ÊçóMMM»uëÖº#hjjVWW‹D":w‰D555ššš²¼×ÀÀ %%…Y 6lXbb¢››Û¦õ† vùòe¶£¹ÓÒ‰òóóù|¾³³óéÓ§«ªª¾úê+ww÷Èøå‚&uŠÄ‘¢¡¡±cÇŽÝ»wõÕW­;‚Œcß>ñq¯¤ã}Åðpèp¬­­¥¼úìÙ3¦ º9ºººE•””èêêBž?NQÔkßÕ$ ===›¹:ŠÖý̉O\uàÀ==½‹/Nš4‰íêÀ8ÞT}àÀuuuz™Çã}ùå—ÑÑÑ3fÌhéqè1~~~......~~~ßÿ½ü<‹ÎÅŸXÍvD­„ÜA‡öã?Н644ìß¿ôèѯ}£¹¹¹¶¶vbb"½š””¤££cff&Ë‡ÆÆÆŽ?žé¿õâÅ‹¢¢¢~ýú±}1ÚŒø/›üÌijj°}B7ÇŒŒ ú†[WW7+++CŒžžž‡‡GK(ã˜G1ÉÛ´&—†Ž.,,ìСCôò7>þøãÈÈÈ/¿üòµoTTTôðð …©©©ÉÉÉB¡ÐÃÞŽ1&&&66VÊ{ —/_~ãÆ[·nùúúZYYÙÙÙ±}1Ú3_ö·?~|РA/^¼ W‹‹‹óóó Àö©tlÜlªvwwŸ7ožŸŸŸ»»{“;´´ox‹Æ<>|øUe­ÓøºáJvrë^bÿþýsæÌ)))ùûï¿Ïœ93vìØèèhCCCYÞëëë[WWçëëKqww_´h½ýÈ‘#fffcÆŒiîÇŽ [¼x±¢¢¢³³óòåËñÅ „¸¹¹ÍŸ?ßÓÓÓÏÏOQQqåÊ•C‡¥Ÿê­ÆÍ:žêêjEEE%%¥ººº&whé½_ýuõêÕýõ³eðàÁëÖ­7n\ãœZ”[•ލƒ„'--ÍËË‹¢¨ˆˆ9|ôŸ\•Nø‚·•Îs%_{¦ NNNÌ“cÒÓÓýüünܸ¡¤¤ôá‡nÞ¼YKK‹íóèØ¸ÙT­ªªJÏ?sæLåÿª©©™;wnKÈŒy¤W[4æZDü‘¤(„Žî¥CCÃo¿ý–¢¨»wï2Ù ³ptt¤(ŠÉ !àôéÓEEE¹¹¹ß}÷²Æ7Çͦꪪª;wB’““·mÛ&þR~~þ£GZzÀ6óRˆ?Y#tööö7nÙ²…y´©üTò¼!n&Žõõõ™™™ô2³@ãóù«W¯né™1tÛt‹Æœšššššúý÷ß?xð`ëÖ­lÇÕLe3=$Ežƒ¹~ýú½{÷TTTx<ž‹‹ !D]]}É’%ìÆ ÀUOCCCËË˯\¹¢  @ñ÷÷¿wïÞæÍ›ÙŽ šF§Œò0 .^¼¸zõj;;;›5kÖ\¼x‘í¸Z‰õ|QÆ`BBBÒþuèÐ!BÈ­[·V¬XÁvÈÜÄñÄ1!!aÉ’%zzzôª­­m@@@||<ÛqA³˜ŸäŽÐápiÇÄÀÀ@ð/º{’@ Ð××g;.nâxâXWW×µkWñ-zzz lÇM«ø­Ðó8Ö×× …ÂáÇ5J(JùŽÔÕÕÙØØ`æZhWcggwðàÁ7Ò«eeeáááööölÇÕö0ô€uí1£P(|XTT4iÒ$zÕÍÍ­=Ö¸¹¹eeeužç 24oqˆþ&‚9«¯¯W©TÞÞÞ¾¾¾*•ªÉÿ…æÊìÙ³GªÅÓÓ“ëÖ´BgÎmüM?G+++™û`®_¿îààðþûï3¯VUUq À¯¨TªÓ§O¯]»–²lÙ2 ‹yóæ±,“››;nܸ™3gÒÅD"~ØgpªÚDñsÄqàÀ)))ôò… ´gddüîw¿ã:@h&³¥V«;-—Ëåryttô‘#G(ŠbY&77×ÍÍÍç-Œ8@Çágâ¨P(öíÛ·k×®%K–ܺu‹¾E†¢¨k×®íÞ½ûOú×BëðKÌGvvvUU•½êããS\\œ™™É²Lnnnÿþýkkk+++¹n ð?Ïh(Šòòò„„„ŠŠŠððp¹\N™?þ… ¦OŸþ—¿ü…ë¡i¼¹Ë Mòóó½½=½êàà ŠŠŠØ”¡(*///...::š¢¨!C†|ñÅC‡m®.ú¨F~ºð?G@¦½1**ê‹/¾°¶¶æ::h òE0CjµZ,3SÆ …BKK˲²26e …B¡‡‡ÇîÝ»kkk׬Y–””Ôܱ)#´?Ç&9::r@llljjj(Š¢óBŠ¢jkkmllØ”éÓ§OFFS,&&ÆÓÓ3%%…g“Ž@'ÁÏkLˆF£)))¡W‹‹‹5 sVš}Bˆµµµ½½½Îinh™à-®0H8&‘Hlmm™¹ RSS{÷îíìì̦Lrrò”)SÊËËéí¯_¿~õê•““×m2Ì<‚˜Ø€ $މD …B¥RÝ»wïÎ;*•J¡PÐÓ1ÆÇÇ'''·PfÔ¨Q‹/¾yóæ­[·”J¥«««»»;×m2 :³7 wh•]ãÐi)•ʺº:¥RI  ‘J9|ø°³³³¿¿se¬­­;%‰ÆŽ»xñbd?ÐA0UžáI¥RÜ·P[N:j[ß¼#‚aÞ³ñ‚ 1Řõ‹¼CË›n7NU+8U fJû¢FzcN-CâæËtÏPp§ª€$Žf!'''  W¯^¿ùÍoBCC‹‹‹¹ŽLGþhîÉE}øá‡uuuIIIG½zõjxx8×Á€éÁ5Ž| }Mwã+u~þùç;w¥Éd2BHxxøªU«˜'Þ°„Ä‘'˜d‘¾IPçYýë_‡ F¯:::víÚ•ëxLsn‡Íý4m* Ðù!q4y­Þ èââ²gÏBHaaafffLLÌŒ30ܤ} 3$){Z=üjÀt?ÀHÍÈ”)SRSSûöíûÕW_q ð‡NþÄï©môn„ ü€a'“Çþ`”’’RXX¨P(¼½½kjj¸À´µ|øåw f ‰#Ð/†Î¡*+++%%…^¶³³‹‰‰©¨¨¸ví×Qh?å™ëXŒÚjÒZjȤ•&Ú3‚_ã:œNÄÌ{‰#Oh´è¼tíÚµ   Š¢èÕÒÒRŠ¢ºuëÆuÈÀ8ËKtN¬ {™†žAâÈÕÕÕ©©©ÁÁÁ...#FŒà:.à!~‰2§w»3ÑÚƒŽ8s ü€Ä‘ÿpWµYðôô¼zõ*×Qo5žAø¡M»Õ¬¦2ÛÛ„r#¹0 ¼Îu&Ô3Щ qlšŸŸ_ZZ½leeE¹{÷nhhèøñãÿùÏÚÚÚr !„ØÙÙi4š’’;;;BHqq±F£aÎ\›!&e$&˜içv¼ÉutB¸9¦i"‘Èú-¡PX__¯T*CBB6n܈¬:‰Dbkk›’’B¯¦¦¦öîÝ›>IbÎL÷Ì]Õ\Ð4Œ8²ríÚµ‚‚‚Áƒ3GgBˆ³³3ý€+"‘H¡P¨Tªwß}·¡¡A¥R) ‘Çvè8¸°òøñcF¥½qÓ¦MøÃ¸ ÌR©¬««S*•„€€€ÈÈH®#Þ2¥ ‡€C¸ÆXA⬠qV8+H€$Žzª¯¯W©TÞÞÞ¾¾¾*•ªÉ›ÓËÊÊ–/_îáááîîþôéSã×µgÏ©OOÏŽ‹á—_~ sww5jÔ²eËJKK;´{›«Î˜Mf¤¦¦4¨¦¦Æøuª½,Ã0f÷6W—›l&Úô3ifòÙ¨««“ÉdÚ¾îâÆ-5“]Ü™aG=©TªÓ§O¯]»–²lÙ2 ‹yóæé”Y±bÅ£GT*U=bccCCCÏ;×­[7cÖ•››;nܸ™3gÒÅôž¸Õ(ŠŠŒŒ´µµÝ»wo]]ÝòåËW­ZµuëVãWg´&3***–-[Öž#u{ê2T{Y†aÌîm®.6ÙL°ÿ€™:sølmÙ²¥²²R{#/wq“-5‡]ÜÙi íjkk‡~üøqz5!!ÁËË«¡¡A»LUU•T*½té½ZVV6xð`fÕhu…††îÙ³ÇíÍÎΖH$÷ïß§W÷íÛ7lØ02Æ©ÎhMf,^¼xòäɉ¤ººÚøu¤½ìÃ0f÷6W—¡šl&Úô3u¼ÿlìØ±Còsàå.n²¥3ØÅNUë#;;»ªªÊÇLJ^õññ)..ÎÌÌÔ.“——7tèP™LF¯ZYYYZZ–””¹®ÜÜÜþýû×ÖÖêüh3x „iÓ¦ 4ˆ^þío«÷ÁvVgÌ&B.\¸––¶`Á®ê2H{Ù‡aÌîm®.C5ÙL°ÿ€ñï?YYYGÕÞÈË]ÜdK‰ìâΉ£>òóó½½=½êàà ŠŠŠ´Ë8998qÂÆÆ†^MLL¬®®vss3f]EåååÅÅÅ >\&“þôÓOÔ^ggçÏ?ÿ¼K—.%%%iii{öì  õù€µ§:c6™RTT´zõꘘ˜îÝ»ëQKûë2T{Y†aÌîm®.6ÙL°ü€ñ€Ù~6°‹Á˜8êC­V‹Åb&+ …–––eeeM¦(ê믿^²dÉìÙ³YWaa¡P(ôðð¸víÚåË—ûõëVQQÑ¡1„‡‡Ïœ93???88ØÝ«S‘›üüãü£»»»~-m]†j/Ë0ŒÙ½ÍÕeÀ&›‰6ýC™4³ýl`s—yÁU¥ú°±±©©©¡(ŠþG¥(ª¶¶–ðÓöìÙ³E‹=yòä³Ï> 2r]}úôÉÈÈ` ÄÄÄxzz¦¤¤øùùuP „o¾ùæõë×»víR(?üðƒ¥¥eÇ5¹quÆlòÉ“'ùå½o2H]†j/Ë0ŒÙ½-Ôe¨&›‰6ýC™4þ;˜ìbÞïâN#Žú°³³Óh4Ì‹ÅÅņ9MÀ¸{÷n``àÀÏŸ?¯_Öhغ¬­­íííõ8Á&†'Ož¤§§Ó˽zõZ¸paUUÕíÛ·;¨É,«ëÐ&gdd<|øð÷¿ÿ½T* !„|ðÁô]\Õ¥w{Y†aÌîeYW{šl&ôèm~0ŸÏv1ט$ŽúH$¶¶¶)))ôjjjjïÞ½µËÔ××+•Ê7ÚÚÚrRWrrò”)SÊËËéÕׯ_¿zõÊÉÉ©#b¸}ûvTTEQôjyy9EQb±¸ƒšÜ\uÆlò¼yó’ßÚ°a!ääÉ“aaaƬËPíe†1»·¹º Ød3Á¦·ùÁl?ØÅ\Çef¸¾­ÛTÅÆÆÊåòŒŒŒôôt¹\¾uëVzûáÇ“’’4Íþó©Tš””t]Kaa¡1ë*//÷ðð »qãFZZZppðôéÓ)ŠêˆŠŠŠFŒ±råÊÌÌÌôôôY³fMž<¹®®®ƒº·¹êŒÙdm7nÜÐ{:žöÔeÀö² ØÝÛ\]†m²™h®·yÆ|>·nÝÒ9àðuë´Ô|vqg†ÄQOEmذA.—ËåòM›61\ÿÈÈHF³ÿ~I#ÿú׿Œ\WNNΜ9s<==}||V¬XQVVÖAíÕh4ééé3fÌ>|¸··wttt~~~Çuo ճɌv&Ží©ËPíe†1»·¹º Ød3Ñ\oó™|6'Ž|ÝÅ[j&»¸3høò`"èP¸ÆXA⬠qV8+H€$ŽÀ G`‰#°‚ÄXA⬠q„Înâĉ[·nå: 0;õõõ;wîüóŸÿ,“É&Nœ¸páÂ'OžÐ/=þ\*•–––r£®NðG]eeeAAAñññ¾¾¾;vìøôÓOËÊÊÏŸ?Ïuh\q@§£R©JKK¿ûî;;;;zËÔ©Sׯ_¿råJ///®£à FÁT½|ùR©Tzyy;vùòå•••„ððð 0eöíÛ'—Ë)Šj²ðóçχ ’““óá‡ÆÆÆBnÞ¼ùÑG¹ººŽ9R©T2§{ >ýôSww÷ÀÀÀï¾ûN*•æåå5˜ºâââo¿ývÁ‚LÖHS*•"‘èèÑ£ôêýû÷§M›&“É Ž{÷è/^œ:uê°aÃÆÏ”l}ºqãÆøñã]]]é7Ñ9Ýœ’’âîîΔ?}ú´———L&‹ŽŽ.,,ŒŒŒ1b„ŸŸßõë×™wn20–‡A€–!q“¤V«ƒƒƒÅbñþýû7oÞüìÙ³… B&NœxåÊ•7oÞÐÅ’’’¦NúæÍ›& B4ÍÒ¥K}}}'Ož\WW&•Jãããׯ_Ÿ‘‘±}ûvBHCCÃÇ,âââæÎ»qãÆ–cS÷èÑ#Š¢,ŠÅb77·ììlzuÅŠ³fÍ:pà@ß¾}CBBŠŠŠrss£¢¢è”qúôé«W¯ÎÌÌl¡"Š¢Ö¬Y³nݺøøx ‹U«VµXCCÃÑ£G¿úꫵk×&%%ùùùM˜0áðáÃööökÖ¬aŠ5¬…ã•öaëŽS èÜüýýcccu6ž:ujüøñ ôê«W¯¤Ré‹/***\\\®^½ªÑhrss%ÉãÇ›+üìÙ3‰DròäIz{IIÉÁƒ«««éÕÕ«W‡……i4šóçÏ»¹¹UVVÒÛ¿ùæ‰DòâÅ‹æÞ–ë€ö:~üøÐ¡C›|iíÚµAAAôÑãÛo¿¥7¾yóF.—ïܹó¿ÿý¯T*ÍÍÍ¥·_ºtéåË—ÍÕB¿Irr2½š˜˜8bÄfûëׯéíׯ_×ÞžžžNoW(ÑÑÑôòÙ³g?øà¦LãÀXZ…kÁ$=zô(77×ÅÅ…Ù¢Ñhž={æåååããsñâÅÑ£G'%%¹ºº:::žœÞØ«W¯)S¦|ÿý÷YYY™™™7nÜ5j!$;;[*•ZYYÑŘòÍÅЯ_?®»Ú¥ÿþoÞ¼)))±µµÕyéåË—}ûö¥—GŽI/ˆD"ww÷ÇÏš5ËÕÕuâĉcÆŒñðððóóëÓ§OËu1Çž={²‰mÀ€ô‚ö²v™ÆUUU±9 ´ ‰#˜$kkk77·#GŽ4~iÒ¤I111«W¯NNN l¡ðóçÏ !Ý»w§W>|8sæÌÁƒûúúŽ;V"‘äääBóWÌr 1€Isrrׯ_ÐÞ®V«ÓÓÓ Eã? …"‘H,;v,--íêÕ« ›6mÚ±cÇèÑ£[¨ëwÞi9µZÝÜKÚ‡¦æÐ±< ´ ×8‚I’H$?ÿüsyy9½š––6}úôÚÚZBȸqãÊËËÏ;—™™9iÒ¤– kKNNîÕ«×ÁƒƒƒƒÝÝÝkjjèíNNNYYYÕÕÕôêÝ»w[Lš]PPJ¥*))ÑÞ¾mÛ¶ÚÚÚ3fЫiiiôBCCÃ?þèìì|óæÍÝ»w{xx,\¸ðÌ™32™ìÌ™3úÅÀ[ùä“=z°|[0E={ö<~üøÞ½{ccc\\\N:õÞ{ïÑÄbñ‚ ¶mÛöâÅ —£GZ[[{yy-]ºtÿþýëÖ­spp˜5kVpp0!äðáÃÎÎÎ,G±X¼~ýz•JåïïÿÎ;ï„……µ)wl20BŽW`FÃu ÚË—/¯\¹$ !—/_^¾|yJJ ×qÏÑ̈Åb®øŒ8´ÂÂÂbݺu¥¥¥Ó§O/**úòË/u®—èH¡ˆ#@ëRRR6mÚôøñc‡1cÆ,]ºT$Â.0;H€LǬ qV8+H€$ŽÀ G`‰#°‚ÄXA⬠qV8+H€$ŽÀ G`‰#°‚ÄXA⬠qV8+H€$ŽÀ G`åÿB:Vc—ø‚IEND®B`‚statistics-release-1.6.3/docs/assets/anovan_801.png000066400000000000000000001430121456127120000221420ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A€IDATxÚìÝg\WÛà³K¤#ÍHDPÀ‚¨T‰(ˆŠ%ØRì¢ÄÑ`+¨ Q¬5±%Fšø$DŒF‚(– X( ¨DéEØy?Ì“y7»ìºàÂìÿë¿™ÙÙÙ{†³÷œ9ç ¢(ð.|¶å€Äd‚Äd‚Äd‚Äd‚Äd‚Äd‚Äd‚Äd‚Äd‚Äd‚Äd‚Äd‚Äd‚Äd‚Äd‚Äd‚Äd‚Äd‚Äd‚Äd‚Äd‚Äd‚Äd‚Äd‚Äd‚Äd‚Äd‚Äd‚Äd‚Äd‚Äd‚Äd‚Äd‚Äd‚Äd‚Äd‚Ä”LUUÕ† ììì´µµ;tè0lذßÿ­`tttx<ÞË—/Å_êÑ£Ç;~üx‹ðêÕ«¼¼¼êêjzVMMÇãUVVÊeãô.0>øàƒ)S¦äååBJKKy<žššZS#¥†Ä”Œ¯¯ïêÕ«=zdiiùöíÛøøøqãÆµt~¦°fΜinnþÛo¿Ñ³½zõ²³³ãóåùûnnnngggnn^PPpôèÑÏ>ûŒ¢¨fGJ ‰#È}yúÉ'Ÿ0K¾ÿþ{çììÜÊ‘H¿~ûöí† ¨§§×«W¯™3gfeeIÙšìëã Ež:uJUUõÞ½{©©©%%%ß|ó@ ˆ‰‰_¹¦¦†íx[[JJJjjª¦¦¦·¹mÛ¶ÔÔÔçÏŸÿòË/„ëׯ?yò„í–PrÕ½{wú«uåÊz ]š;99µr$oÞ¼!„¨ªªŠ¿TRRÂ$²úúú<¢££sæÌ™F7Õ¤õé#À\ Óïêß¿¿@ ’BȱcÇZù (¾””úL,..¦—”––ÆÄÄ9r„:ñÏ;ggg§¢¢âéé™——'üRjjª»»û¾}û(Šª®®^ºti×®]utt<==˜zðàÁ¨Q£:tè ¥¥åààpòäIzy]]Ý×_ݱcÇnݺ:tH[[›òâÅ ñPéÒ ÑùíÛ·ëׯ·³³ÓÒÒêÓ§ODDDCCý’µµµ¶¶¶««ë… ¤ÄC—´õë×S¥ªªJ©¨¨ò)Ì¡øã?´µµ½¼¼²²²Þ¹ õõõêêê„«W¯Šh’>KÙ¸qãÅ‹kjjèW鳌Çãikk»¸¸Bœ™—ø|~=!{÷î¥(jüøñty5~üxMMMMMÍû÷ïSU__ߥKBHß¾}½¼¼TTTTUUŸõ"## !3fÌ (*''gèСS¦L¡?qÀ€„“'Ofggóù|UUÕ§OŸRµiÓ&z›MJÓÓÓ队?NQ†ŠŠJAAÁýû÷éôëÍ›7E…„„¨ªª.Y²DR<”Øu&“8JùæPüúë¯E]¸pNÄ%í‚……Eß¾}éÌ•âããCý»Œ•òY®„¹‰#È]ÊDGGkkkwêÔ©²²R$q”~,\Àmjjj½zõ¢§ÛµkשS'###BHçÎ)É’Ç?þøƒbff&²<88˜”ËÍ^è­£®®îöíÛ»wï4h}f=}ú”)7˜¯C‡%„ÄÄÄ0Õl………ôKGŽoÁÕ·o_úÕÒÒÒýû÷Ï™3ÇÁÁ~騱cô=„AƒÑë<~ü˜Ié3šF§t’ÇcÇŽBÆÏ,¡×¼xñ"ýÒÈ‘#Å÷·Ñx(ɉ£”O¡…ŠŠ }_¨¤¤DÒÍæ&ÍØØØ××·¤¤„úwâ(å³($ŽÜ‚Î1Ð"ÌÌÌV®\™——!¼<##ãàÁƒ:::)))çÎKHH „ìܹóÅ‹ô `РAYYYÂEðÅ‹ïß¿ïëëKéÝ»÷Ó§Oïß¿ÏçóŸ={VZZš››Û­[·)S¦üý÷ß—.]êß¿}}ýßÿ-)¶œœB}«K]KJ¿ú>ëÓV¬Xѯ_?KKËÑ£GB|||D¶ åPxzzÒ#hggÇö?@±Ü¿óæÍGŽQSSspp˜?~\\œ‰‰I}}ýǙ՘nÅô}XºÞ‘¢¢¢bllÌLBœœœ~²fÍBHYYYß¾}çÏŸ¯¦¦¶|ùroooú-eeeÂïС}«šþ HïÔLQ!„y#!ÄÄÄ„R_____Oihhy‹¤xš÷)ô,ÝOxw$ar¾ÂÂÂC‡4õ³€38BKY²dɇ~¸yóæüü|f!Ï :”NŒìììºwïÞÐÐ@ß!„ðx¼o¾ùÆÒÒR¸”§«:wîLñôôTQQ155¥ïÿÖ××[XXœ:ujèСsçÎuttLLL$RK+ BˆpT%%%UUU< _õóócúDŸ:uêë7ú)OŸ>MIIÉÉÉ¡/Ð>,²Â;4êíÛ·+W®œ7oÞÝ»wé%/^¼xûö-!ÄÚÚšYíĉ„—/_^¾|™Ò¯_?ñMÑf¯^½š2eÊÔ©S­¬¬RRR***!gÏžÍÎÎýôSæÄ´±±!„üõ×_ôP tFE¿ôÝwßUÿƒn§( }K!>>¾  €’™™yýúu>ŸoooOß]ù믿ÊËË !aaa:::AAA’âaˆzR>EîÿY> I$7 q„–¢©©¹qãÆÊÊJºÙíW¥Â•4暘Fß…ÖÔ qz„³‚‚‚k×®Bjkk½½½½½½ÿüóOBH¿~ýDª Þ¹~£Ÿ‚ t€Ò·oßO>ù¤²²ÒÑÑÑÑѱW¯^–––¯_¿žîîî_}õ•ðYÜ(úþãøñãÝ»wŸ6m]v3ÆÕÕµ®®náÂ…|ðAß¾}GŽYUUÕ§OŸaÆ­_¿¾¾¾~Ê”)’â!„Ðmu¶oß/ü¹R>EîÿéŸ%)BPJlß+®nÓ#˜Qlè6Ž="„èêêæççS•‘‘¡®®ÎçóóòòÄ›$Š,Y½z5!dåÊ•ô¬††!¤¸¸ø§Ÿ~"ÿô|ûö-]N;vLJæùóçB¬­­ïÝ»GQThh(¤¡¡!Ý ý}Ö—ÒR8$)‡‚ú§IÐ?þÈöÿ@UWWoÛ¶­OŸ>ººº;vì ;V3gÙo¿ýÖ£GccãÙ³gWVVR:ÌUTT,\¸ÐÂÂBGGÇÃÃã?þ —WUUѵh~øáš5k¾üòKBȼyó(Šº{÷.}£ÀÒÒ2&&æÃñˆØ¹s'EQuuuëÖ­ëÙ³gûöí{÷îÉ ÇS^^`ii©­­=`À€?ÿüSz<÷îÝëÚµ«¦¦æ·ß~Ký»Wµ¤O9RJK 4é{$!(5$Ž g"¥ ÝtuŽ™6m!ÄÄÄdôèÑt=\@@ÕXÉ%câøóÏ?Ó« 6ÌÌÌŒn¬sôèQ)Eá«W¯œœœèÀŒŒŒèvNt‰œ““óžëË^ÎJ:E-\¸âììL7-É>èÕ;ÕÖÖ^¾|¹Ñ—ªªªnܸÑÊ»&%€Vƒ[ÕвÜÝÝ?ûì3á%û÷ï_·n‘‘Ñ¥K—ÌÍÍ###£¢¢Þç#|||úöí[__Ÿ––6gΜ¹sçB®\¹"å-†††×®]ûæ›o PSSÓ¡C‡qãÆmܸñÅ‹ûöí{ÿõe$åPÌ;·k×®÷ïßOKKk©ÿ H¥®®îééÙèKššš...Š@«áQMyÜ$€bª««»víÚû©·oßîׯŸìÏxmêúÐÒJKKõõõUUUéî2 _H@&¨)™ q™ q™ q™ q™ q™ q™ q™ q™ q™ q™ q™ q™ q™ q™ ql²ëׯwïÞ½ººší@!¤´´4((ÈÅÅÅÙÙyþüù999lGœ…ıiÊËËW­ZEQÛüOppð;w"##¿ÿþûÚÚZ??¿ªª*¶ƒnBâØ4ëׯ×ÒÒb; €ÿ©ªªŠ_¾|¹»»»½½}ttôË—/¯_¿Îv\ÀMªl Lââânݺ<þ|¶c%ŸŸíÚµû÷ï«««›˜˜8::ºººêêêÊñ#zõêåèèHÏjiiihh”””°½ëÀM<Üu•Qqqñ˜1c¶oßNQÔôéÓSRR455]ÓÖÖ–žˆe;j’››knnÎvÁ4Ÿ¥¥%Û!4ÇÓ§O·oßþ×_õîÝ»[·núúúõõõ¯^½zôèQvvöÔ©S¿øâ ¹îï¿ÿ¾lÙ²sçÎYYY‰¿Êãñ$½±Ñ߬õ±¾ìë·¨q”Õš5kÆçì윜œüΕÓÓÓÙŽ÷ÿ)Ôï.‚A0M’ÍvͱfÍšÌÌÌiÓ¦mݺUEEEäÕ²²²ãÇO:uÆŒŸ~ú©¼>T 9rdãÆ³gÏn4k$„ØØØ4©tjê¯#ÖÇúmyý6‰£L~ùå—çÏŸoß¾í@@ Œ?ÞÁÁAÒ«ºººsæÌñóó{øð¡¼>ñéÓ§Ë–-ËÎÎ^·nÝçŸÎöÎBâ(“{÷îefföîÝ›YÒ·oß3f±()Y#CUUÕÞÞ^.w÷î]??¿!C†ìÝ»×ÐÐí½.Câ(“… Θ1ƒž¾wïÞòåËùå333¶ã€¶®¾¾> `úôé‹/f;à>$Ž2122222¢§‹ŠŠ!VVV’:Ç´šÄÄÄ—/_öèÑ#))‰YhmmÍYr„ÄÝŸ1++‹í@Ý“'O(ŠZ´h‘ðÂmÛ¶=šíЀƒ86™‹‹‹Bušàï#…)i¯êÖôÅ_|ñÅlGmGP tE£²‚!Ë ]„}}}¶ƒh$Ž (˜ŠFe÷믿ʲš GP.H€}ܨhdlܸ‘íZG`g*8‰#°†cœ‡ÄØŠF¥ƒÄZ*”Ÿí m¡+ÛNÖ˜––öòåKBHBBÂòåË>,Ø  ™8@+áñxmíöôÑ£GÇŽûàÁƒ/^,X° ¨¨hûöí»víb;.€fBâ­¡­U4Òbbb½¼¼âââ,,,8~úôi¶ãh&´q€–Õ–[4»»»B’““=<<!¶¶¶………lÇÐL¨q€Ô6+]ºt‰ÏËË»zõê Aƒ!×®]311a;.€fBâ-¢ ¶h·pá½{÷2¤{÷îNNN{öìY·nÝ´iÓØŽ  ™p«ä)#mذaqqq999ŽŽŽ|>ßÑÑñàÁƒnnnlÇÐLH@žÚr‹FFqq13­¡¡Ñ½{÷ÊÊÊÊÊJ+++úU###¶ch$Ž 7¨h¤ 0@ú ééélÇÐH@PÑ(ìâÅ‹l‡Ð"8ÀûBE£ˆÎ;Kz©¶¶6"""((ˆíš‰#4*¥{óæÍÎ;sss™%%%%yyyl%Žô¿Lóù‡6º2ÖÇúXŸ´aH ™PÑøNk×®½wïÞàÁƒOž<9}úôêêêëׯÿç?ÿa+éÍ+Eþ¡ïüÿb}¬ß–×o›8@“¡¢QF7nÜØ¼y³§§çóçÏìììܳgϸ¸8ggg¶Chîž––öòåKBHBBÂòåË>,Ø @‰µñ‡Á4Iuuu‡!Ý»w§«ú<<<âââØŽ  ™8ž8=ztìØ±|îܹC‡e;.€fâxÇââbwwwBHrr²‡‡!ÄÖÖ¶°°í¸” Z46›‹‹Ë7*++õõõ9khh8a¶ãh&Ž'Ž]ºt‰×ÓÓ»zõª¯¯/!äÚµk&&&lÇ 4poú=©«««««B¬­­­­­Ùà½pyòäôéÓ«««¯_¿þŸÿü‡í¸Ø‡ŠÆ–“””$饼¼<"Öi@Ypxð`ggçž={ÆÅÅI\  @Ec‹ò÷÷g¦kjjý˜o@@±¶¶>sæ Û14ÇŸU]]]Ý¡CBH÷îÝéžÔqqqlÇÀ:ƒAÖØ¢þþÇÖ­[ÍÍÍ÷ïßïÞ½{÷î>|ØÂÂÂÞޞ횉㉣ͱcǪ««mmméÆF999UUUlÇÀ:eDÖØjvìØ<`Àuuu555WW×S§N‰ô¶PO—/_~îܹ'N 8ðÑ£GÇŸ;wîСC›±©ÒÒÒ   ggçùóççää°½sM€ŠFVäççëèè/ÑÒÒÒÖÖÖÓÓkÒvêêê«««}õ»ï¾³Ò¿¶÷8‹ãm]\\nܸQYY©¯¯äÈ‘ØØXCCà &4cSÁÁÁ?ŽŒŒÔÕÕŽŽöóó;{ölûöíÙÞE€wS”qÓ¦M«V­bfŒŒŠŠŠŽ?>iÒ$‘5¿þú먨(¶ã•ƒ~ýúEGGûí·úúú„ÒÒÒ¨¨(GGGºg’ŒŠ‹‹£¢¢***$­››ëåå5uêTzVU•ã;°ˆû勺ºººº:!ÄÚÚÚÚÚºy©ªªŠß½{·»»;!$::ºÿþׯ_÷òòb{ÿ¤iå®ÓL>Ôè'fgg=zÁ‚ô¬šš!ÄÃÃ#66–Y§¦¦fúôéœ9³BCC§OŸîééÙ£GBHZZš¡¡á?ü ûvïÞ½}ûvéëäææº¹¹Ñ¥@‹âxâ(©÷ôÍ›7›´üüü^½z9::Ò³ZZZ%%%lï€4­\Ñ(üq~tvvö!C†.¼ÐÌÌÌÌÌŒ™ 1bÄèÑ£Y;jrÕ©S§ØØØ .deeñù|__ß¡C‡Ò³Œüýýýýýïܹ3yòdIëäæævêÔ©¦¦¦¾¾^[[›í.ãxâ¸cÇfº¶¶öáÇðóókêvºuëvêÔ)föܹsUUU’Ö·µµ%„×£°ExðsÖ!˜V ÆÊÊŠ’••ÕŒç6/+++‘ÿ茌ŒÑ£G?zôHR~óôéÓ;vÄÆÆ*ûc333 ŒŒŒ233 !Ý»wïÞ½;ýÝ<ºÙw?Ä ‚üüü ‚ž={®_¿¾W¯^’Ö§K'z” Pd‡Z¿~ýË—/ ´wï^ssséËZ ÕÆÄÇÇÛÛÛWUU5ïí ‡îÑ£ÇÖ­[%­cccÃö^þ¿¬¬,¶C@0­Ì{ž×ÒƒyòäÉǬ¯¯off6sæÌââb‘½téÇ£ä ¿±¡¡A]]ÝÅÅ…ÏçBúõëwûöm‘O˜0aÕªU-wdZͶmÛè‰F5uƒ·oß¶±±i´àzñâEïÞ½·lÙòêÕ«¼¼<ÿ”••I ŒícõïÊøFWسgO»víþóŸÿÄÆÆöíÛwРAÒ—´š6—8fggÛÚÚ6/qÌÉÉùüóÏœœ~þùg)«)TѬP¿»¦¥ƒyÿ«Aé¿g }ûö6lXRRÒåË—­¬¬>ÿüsæE½yó†~R¼x☛›«¡¡±lٲœœœqãÆuìØñÍ›7Ì ÷ïß×ÑÑ)**j‰#Óʪªªêêê(Šª• ©”’8Š(++ëÙ³ç… }U¡J§6KäÔ?×ÌÍÍ7nÜHÏ^¾|™òôéSIËÙÞ!h[8~«Zd°´²²²Ý»wwêÔ©ÏŠ½{÷®ŸŸß!CöîÝkhhÈöžˆzÿô²³³---Ýà£GRRRnݺE·÷?~HHˆ@  + !ôè3ÚÚÚ"ïíÔ©“ðh2466¾téÒ'Ÿ|B/Ù¶mÛ„ ŒŒŒØ>rÀ”0êêêiii¦¦¦ ¿ÿþ»Ý´iÓZî£uttŒ‹‹‹Ù>Ð|¹¹¹'N¤g===é³)--­Ñå­‰ãã8ºþÛ°aÃÎ;·dÉ’¦n§¾¾> `úôé[·nEÖЦ…Æh¤(JdÔŠ¢æÌ™Ó§OzÖÊÊŠéçA¯|øðáj¥ÐÓÓ333{ñâ=[YYyòäÉ)S¦°},åìèÑ£cÇŽ}ðàÁ‹/,XPTT´}ûö]»vÉñ#bccÇŒSVVFϾ~ýº°°°[·nlï:ÈJüDËÈÈPQQINN¶··×ÓÓ1bDFF†”å­‰ã‰ãE17oÞüøã›ºÄÄÄ—/_öèÑ#I®éA´æÃ`ììì¾ûî;UUÕ¢¢¢„„„M›6M™2…®n|ùò¥‰‰ÉŸþyåÊ•Fß{âĉ>}ú¼~ýšž-...((èÙ³'=ûÛo¿ihhxzz²}8å,&&&00ÐËË+..ÎÂÂâÀááá§OŸ~ÿ-ÓÓB ðòåËåË—'''ß¾}; ÀÞÞ^Ò€ €Ä¯úÊËËAXXØ–-[âââTTT¼½½«ªª$-g{ máæ­ê¤¤$I/åååBÜÜÜš´Á'OžPµhÑ"á…Û¶mãÌ ! Œš7F£ô¡EÖ”´Î˜1c®_¿nffvðàAzÉœ9s|}} ôçŸ6úooïùóçûúúªªª®^½ÚÅÅÅÃÃ~õâÅ‹nnnÌ-oÎ(..¦‡WLNN¦wÖÖÖ¶°°ðý·üã?Z[[1BGGçØ±c›6mZ´h‘ªªª‡‡ÇòåË›4À8´>æäjô?¥¥¥EQÔÇGŽÉ,Œ‹‹ûûï¿Å—Oš4é·ß~c{‡  áfâèïïÏL×ÔÔú^ž@ „X[[Ÿ9s¦Iüâ‹/¾øâ ¶w àÿ5ïÞ´ÈP‹äßé#}Ë,++ëÛ¡kÜ7lØðÑG?~<++ëĉRÞ¢§§—˜˜8aÂ55µQ£FmÙ²…ùÕ¼|ùòìÙ³Ù>¨ò×¥K—øøx==½«W¯úúúB®]»fbbÒÔí888ˆ  sþüyfÚÒÒrß¾}lï+ÈŠ>Ѥ\ÂÑßQ£FÐK|}}sss=<<"""þûßÿ¶k׎RSSóÉ'Ÿ|ðÁlï´1l÷ÎiY/^:tè_ýU[[[WWwýúõaƉŒ÷!w ÕoQ¡:¥"¹ó>g.yWwNêßy¤ˆ´´´k×®1³555|>ÿâÅ‹_~ù¥xÙòõ×_·ò‘Q@qqq=zô°µµýüóÏvïÞmcc³ÿ~¶âQ¨Ò©ÍzçiX]]­ªª:oÞT¡Šf…úÝE0ïÌû\쉿·Ñ­I æûï¿ïÔ©SCC=KwmILL|ñâEÚ?>L¹}ûöË—/[óÈ(¬çÏŸ'$$Ð#éܸqC8ón}ÂÿqL³5-ü—»¤§é¡R !—.]òôôìׯ½|ñâÅtϧ“'Oª©©ÙÙÙ)Î~µÍé6ˆk-ŠDäççÓƒƒ0´´´´µµõôôØ  iÞÙuš÷‘%rŒÁÇǧªªÊßßÿÞ½{ׯ_Ÿ6mš“““©©©í?èqmmm›qC–“ÌÍÍ­¬¬RRR!öööMm`-_666Ì´ðw Ó­6ÍœÅÌr‘“š¢(@PUUEŸ¼C† ¹{÷î–-[èÕ¶mÛ6~üø®]»N:ÕÚÚ:>>^Aö«ÍN·AOûõëÍŒæXZZåè舖ã \ÞÙušYúghwðàÁnݺÑécnn.ýÒÛ·oƒ‚‚LMMéz‹&•€&&&çÎ{øð¡»»ûøñãMLLΟ?¯®®ÎöáQ\_~ù¥——×Ì™3 !3fÌ ¬¬¬d;.e’••åããc``бcG??¿W¯^‰¬ðÇðù|e9ª”Øà;â„|>Ú´iôhù¾¾¾¥¥¥„>Ÿ¿eË–ÿþ÷¿êêêþù§©©)Û;mÛUž-+77wðàÁ}úô™4iÒ¤I“úöíëåå•——×¢Š[ÕFŽÁH9O¥œÈ„‘G“1ë¿ËØØ844TIŒRXµjÕ”)S {ôèAQÔÍ›7‡¾víZ¶âQ¨Ò‰!å÷HÊÊhÂ+b{?š°¿RfŽyóFMMíÔ©SÌ’™3gΚ5‹íý€6Šã5Ž:uŠýæ›oú÷ïÿÑG…‡‡ÇÆÆ¢( IÌmkæUñJô 6„††Îž={øðáQQQ„gÏžÕÔÔèèè036nܸ{÷nz´h ‰‰‰‹/666¦gœœV¬XÏv\ D¼²\ý°¢7öïßßÓÓsþüùgÏžþÆ2+R"Ô?½ªeº¿Œ–Ê‚›‰cff&=:wffæÓ§O»wï>jÔ¨#FtëÖ-'''33“íÞ¡Ñ_áVŒïü±y4!¤sçΩ©©åååÞÞÞôòáÇÞ½{—íÝ嬺ººöíÛ /166nhh`;.Eñδ‰’ü°"BÈ/¿ü’°qãF¶÷£É„ëoÄ_m›£åƒ²àæ8Ž>>>sçÎ ôññit‘ÑØeeeÕèrñ'þ1Ëßù‹K?šlìØ±OŸ>-++£¿óÏŸ?çñx;v¤×ùàƒx<S“rçìì|èÐ!&³)++‹ŠŠruue;.E õ¡Ñ+"„¥¥¥‰<¬hþüù'NœxçE”Òi›£åƒ²àf☒’¢ªªJIMMe;€w Çܶ´´N™ÛvÌO©H²Hý»{¦HêüqÚ´i“&Mb–x{{?|ø°ººZKK‹ùÉáóùíÛ·g*6@î‚‚‚¦M›æíí-¦L™òèÑ#ssóÍ›7³—òiÆÃŠ”WÛ-”7GMMMzB]]=--ÍÀÀÀÔÔ4!!á÷ß·³³›6mÛüüegg‹¤‰®Ì¼*ÒLü-ôÓoܸáââByóæ©©i\\œ¡¡aee¥@  sGzÔ¶g™™™={öüùó?ÖÑÑ™3gއ‡êŠ$‘òåoÆÃД𭭭¤'œegg³´i/¿Ž=:vìØ¼xñbÁ‚EEEÛ·oßµkÛqü }«ºwÜ$ݳ¦ÇP¤&„Ѓ çææš™™QÅ<+™£›¹s rT]]’’òôéÓvíÚ7néÒ¥sæÌqtt,((@#ãÝDÒÓÓ“’’èi##£M›6•——'&&Þ¸qãÁƒ<ní§­­½xñb¶w€û8ž8ÆÄÄzyyÅÅÅYXX8p <<œ®ŒPâ‡ntœQáZF¦zRRãz]]Ý[·nѳEEEùùù666vvvÆÆÆ—.]¢—ÿñÇ&&&½zõbûpÍLJ 6qâDooïñãÇÓ­ñúöíëìììååuàÀ¶T Ò»‰$&&~þùçL7ê7oÞ‚öíÛ‡††Š?¬hÕªUlïBÎÅÙŽ…#pH…qóV5£¸¸ØÝÝ’œœL·,¶µµeª[Ø%¥Q#SûÒhßêwÖMjhhÌš5kÖ¬Y»víÒÓÓ[¹reïÞ½‡ ¢¢¢2oÞ¼àà`›†††   /¿üR¸›*ÈÅ–-[Œ£££µµµ÷îÝûÉ'ŸèèèÐ µµµ-,,ØPiøøø,]ºÔßßßßß¿ªªjÍš5ôÊÔÕÕ™±¯éÞ]¶¶¶ZZZlÇË>‘òA–â¤Ã!ÁñıK—.ñññzzzW¯^õõõ%„\»v OB¶ˆ_­ŠÂ(œ>’W46©´Ú¶m›ªªª¿¿iié°aÃŽ;¦¢¢B «««ûì³Ï!S¦L eû¨pЃV­ZåääD vww 1bÛq)úaEË—/www×ÒÒ¢ëkñ°"h5HÅq»hÑ"¶nn6G.pHEp¼ÿ~BˆŸŸ_»víBBBØÞÒìñË@vïãìì|èÐ!æ©eeeQQQ®®®lÇ\Àüb ÿe^jt‰’þÈ€1Oœî}úÔÍÍmÇŽ666ÏŸ?çñx;v¤Wûàƒx<ýÄE×—ZgÇêêêôôt ‹qãÆBAEEEAAÁ?þ¸bÅ ¶%&ÒÇE¤s ÛÑû’’’¤¯€eÂcT5{ DyFK/.į0ËËËAXXXDD„AXX˜··÷Ç«««µ´´˜º>Ÿß¾}ûׯ_³½Or>8Dþm7LJÎ;·¨¨ˆÒ³gϽ{÷†††&&&ÖÖÖBx<Gh6ñÔ¨YþþþÌtMM@  Ge¢›£Y[[Ÿ9s†íHózR‹¼W¹Î>éCUkiiQuàÀòÏ  qqq†††•••€ÎAUU•ÈÑPäAmÞéýn‰Î1J}H厛‰ã–-[Œ£££µµµ÷îÝûÉ'ŸèèèÐ µµµ-,,Ø”ø˜Þ"+ 43jc||üæÍ›CCCy<Þ;wÖ¬YcooÏv€JL¤FJ/ؘá]™Y‘LLL!vvvô¬¾¾¾™™Ynnî€(Š*,,433#„¼|ù’¢¨Q£F‰ÜûæäàD2o —L´-RqÜlí÷àÁƒéÓ§;99uïÞ=88¸¸¸xîܹ#FŒptt´µµÕÐÐ`;@P2â%…ðãÛx!RìØ±#88xÀ€êêêjjj®®®!!!§Nzóæ Û¡)±z¬\ëï…¤sººº·nÝ¢g‹ŠŠòóómllìììŒ/]ºD/ÿã?!uuu™6H¼—툸‰›5ŽeeeÖÖÖô4=ú·­­-ÛARi½.i o€Fåççëèè/ÑÒÒÒÖÖÖÓÓc;4`™p£Ha¢¡¡1kÖ¬Y³fíÚµKOOoåÊ•½{÷2dˆŠŠÊ¼y󂃃mll‚‚‚!jjjâÛd íõ{ÂÑÇÍÄ‘‚®ÓðþDJvñá¾Ñ'¤ëׯ_ttô·ß~«¯¯O)--ŠŠrttÄU‡¼(ãÙ'¥[ cÛ¶mªªªþþþ¥¥¥Ã† ;vì˜ŠŠ !$,,¬®®î³Ï>#„L™2eÓ¦MÂïÏA•ñø(”ðâ8›8¼'IõâD™’„††NŸ>ÝÓÓ³G„´´4CCÃ~øí¸”gN:)CÏðùü-[¶lÙ²E|ß7oÞ¼yófzvãÆxÈCü‘ƒrÿž´ñ#LãlâHwC“4»hÑ"¶…&cÖÈ_/h9:uнpáBVVŸÏ÷õõ:t¨ð½Eh*‘dKéÎAñlæ=ë´Ä²×–˨–xä c(‚›‰£••Ó«Q|– q©¤4dDñM¥®®îèèhddäææVSSƒ¬Q.”÷Oß¿bL<e{/ÙÔ»ßÆ©n&ŽçÏŸg;PVâ …ǤåÌ=2hK—.½rå EQééé3fÌ077 ÓÒÒb;4%Æ5´Då…$©`&P¸C“„‡‡———'$$Ð=–-[öàÁñ†k ;ú4d(c›3‘Qx”wG mBâmO ³œ)Ü™¿È¡©/^L FqrrZ±bE||<Ûqq‡’¦\èÑÊ‹›·ªd!þ¤iñW *á=ÔÕÕµoß^x‰±±qCCÛqû;‚’B#´QVVV’ÒA‘§ß"k„fsvv>tèýˆjBHYYYTT”««+Ûq±I¤v¿Ñ%MÚÎÐ÷Ü…÷9€MÅÍǤ¤$é+¸¹¹5u›õõõ;vì8yò¤––ÖÈ‘#/^Œ³”K„kQ×ò4mÚ4ooo@0eÊ”G™››3ƒðÉW]]››Û_ý¥©©Éö~KÔh5[“Þì…ðûÇÏ'wƒÒáfâèïïÏL×ÔÔ: ¯û­­­Ïœ9ÓÔmFFFž>}:<<œ²jÕ*uuõ… ²½£ð^í:MCj 33³³gÏž?þñãÇ:::sæÌñððh‰çZGEEUTT°½ÇÒˆ?JøK%<ÐÛûÔ|"Á7;‰lÆxÜL™Qããã7oÞêììÌãñîܹ³fÍ{{û¦n°¶¶öرcÁÁÁžžž„ÀÀÀÈÈH<ØPIñx¼¬¬,+++á%íAÞ>üÑG7ŽYR]]½víÚ­[·ÊñSvïÞ½}ûv¶÷µU)ûé)þŒ¶#Çóž;v0@]]]MMÍÕÕ5$$äÔ©SoÞ¼iÒv222*++ÝÝÝéYww÷W¯^¥¥¥±½Ð|tÖøÎfŽïcÆ Ÿ}ö™ð-Žúúúß~ûM¾Ÿâïž~ôèQ¶w—5ÊØÈi#<†¼ÿÿQ¿ Ê…›5ŽŒüü|á%ZZZÚÚÚzzzMÚNAAÇcÆÔ011áñxÅÅÅ’Ö·µµ%„ÄÆÆ²}Hnn.Û!(\0tÊxõêUsssºê‘^HOв³³Ûà‘QÀ`8`éÒ¥«W¯¾{÷îŠ+TUÙ/réÒ)==½õ?ºÑG ¿ÿÃ…[úñÄ-D.a·ÂÓ™[ó€?5±í|” û¥X‹êׯ_ttô·ß~«¯¯O)--ŠŠrttlêµHmm­¦¦&scšÏçkhh”––JZŸ•BYKKK¶CP `˜½¹¹¹¥¥¥â4–býÈ(f0­œÁ·WW× ¤¦¦nß¾]dtžÖÇné$þØ_ù>XYù5¯q§”]f¦ÙÞ³÷"<¢E3ª åxTA Žßª ÍËËóôôœß××wèСjjjMÝŽ‘‘EQ%%%FFF„W¯^QÅܹEÖhÑCQTvv6g.ÓAñéèèìÚµkß¾}_ý5Û±(\(,Ž'Ž„uuuGGG###77·šššfd„CC䤤ѣGB®_¿Þ¡Ckkk¶wÞA¸•¤Ó(› åáááååå „eË–­^½zË–-ëÖ­kê¦êêê!>>>_}õÛ;‰?uš¹gÊ&‘qäÈÇÇgîܹ>>>® PýçZMË%1JšJÊýh({•Ûû?zQ^êƒO#""˜ÆˆNNN+V¬X½zu3G·lÙ²eË–±½Oð>FüeRžU ðžRRRè;©©©­ö¡m3)гäŽã½ªëêêD¿066nhh`;.h2úJ—¡Â£6È—¦¦&ÝœzúôéêÿVSS3gζ䠶<æ³ø¾3K5‚Üq¼ÆÑÙÙùСC7n¤gËÊÊ¢¢¢\]]ÙŽ äLÒ†ðƒE:Çp`€@PXUUU{öì!„¤¤¤DDD¿TPPðøñc¶d‡\F«nô‚Hs¶w´õ¼óh° kGƒ´½/C«áxâ4mÚ4ooo@0eÊ”G™››oÞ¼™í¸@n$¶#Üœ7k •Õ××3UÚ"uÛ|>íÚµlȹô·¿-Ÿì"ÿ-úØŽ±U¡ïc+àxâhffvöìÙóçÏ?~üXGGgΜ9Ì`@Ù5úƒ!|Fx5¶ƒ…6DWWw×®]„Ù³gÓÀËÉ(^«Ô–Ïqñ}yK›:8mjgYÁñÄñðáÃ}ôѸqã˜%ÕÕÕk׮ݺu+Û¡ÁûÉ…á¢DLL Û!@›ÖÖ²FhO7lØ ©©¹~ýzfPŒúúúß~û ‰£²ï:-Òœ± ^gƒJMM yþü¹Èò›7o²›D†lÆóâ™·àLheO !K—.]½zõÝ»wW¬X!»•šôÆ:"­yð[Š`íÚµêêêaaaúúúlÇ¢m›(Ü“C–ÓVü-mvàhñVŒmùh@ëà~"åãããêêº`Á‚ÔÔÔíÛ·‹ŒÎÊ¢Ñ6à’^b;X€ÿyòäÉ‘#Gz÷îÍv AüiŸÂKdìÉÑè[ÚòY/¥#@KhÝD¬­­O:ehh8~üø¤¤$¶Ã™ðþÕ8ŠßœBÖŠÉØØ¸ººší(”F3z·ÁŽÃìj‰#!DGGg×®]¾¾¾_ý5Û±À»É~£Y¸îY#(šðððõë×_¸p!//¯XÛq4ÇoU}ºú¿ÕÔÔÌ™3‡íÛ.&$bÕâ·œP¿Ê.<<¼¼¼sæ Û1rÊ®ÂVaq}êææVSS£¡¡ÁvPÊDúó]DN'ñË2‚v*ж…††NŸ>ÝÓÓ³G„´´4CCÃ~øí¸ ­PÞAm”7rÎãxâXQQ±téÒ+W®P•žž>cÆ ssó°°0---¶CSÒëçEž.-ý½mS§Nbcc/\¸••Åçó}}}‡ª¦¦Æv\ÐV(oQ¬ ‘#ÇñÄ1<<¼¼¼ÛaFa¤ ÏÉ€FuíÚµ¶¶–í(T3ž £ÔåðÀÝJ×Ú,Ž×8š™™={öüùó?ÖÑÑ™3gއ‡ŸÏñtY:ñr–iPÜh³bñ•¥l „‰Ÿ¿víZÙ7yúôéððpBȪU«ÔÕÕ.\(²Nnn®——×Ô©SéYUUÅ-Ø… y]‹¶Ä6AIá Ö ·|‘‹~ýúEGGûí·týbiiiTT”££cSÓTUUÅÇÇïÞ½ÛÝÝÝ¿ÿëׯ{yy±½‹-ç @SéêêîÚµ‹2{ölz¢yjkk;ìééI ŒŒŒô÷÷"77×ÍÍ.™Ha"Çv~ï|*´ø‚µŽLš——çéé9yòäÉ“'{zzæææ†††6u;ùùù½zõrtt¤gµ´´444JJJØÞ¿–…1ÞSLL 3ÝŒgVeddTVV2¡»»û«W¯ÒÒÒDVËÍÍíÔ©SMMMEEÛ{ÜÚPFA‹ÂLÇk;uê{áÂ…¬¬,>Ÿïëë;tèP55µ¦n§[·n§NbfÏ;WUUåàà i}[[[BHlllKïà©S§vîÜY\\ìââ²aÃ333‘åöööÌrÙYYYѷؤ´’lªÜÜÜ–> †cÁ(¯œœœÓ§OüñÇÖÖÖµµµ+W®Œ‹‹ÓÓÓûòË/}}}eÜHAAÇ366¦gMLLx<^qq±ð: ??ÿÀ gÏžëׯïÕ«—¤mÒ¥Szz:ÛG”ÇGBˆººúèÑ£åµ5@päÈ‘7Ξ=ÛÊÊJÒjò*”¥ª¸wïÞÕ«WïܹóÃ?\¹råÊ•+ÿüóO‘åK–,a–7éC[èËÒÒ²%6‹`¸Œ¯[ZÓƒ¦NjeeõñÇBvîÜyùòå¹sçjiiEEE™™™y{{˲ÚÚZMMMæÆ4ŸÏ×ÐÐ(--^§¨¨ˆÏ绸¸ìÛ·¯¦¦fÆ óæÍ;þ¼Hón‹)cKÜæÃ­C`à Ö:8ž8:;;7ºüæÍ›ÒßxîܹŋÓÓgΜ±¶¶&„<}útÙ²eÙÙÙëÖ­ûüóÏ[:xéc1 ‚ 6„††Îž=›Ò®]»Áƒ?{öÌÜÜ\xùêÕ«§L™òìÙ³Î;7õC y¾ýö[ooï-[¶B(Šúå—_fÍšõÕW_BÞ¾}ûÃ?Ș8êééUWW :w555"}ûLMMïÝ»ÇÌnÚ´©ÿþIII2~Dë“û4"ÏëC ÖÆá ÖÒ8ž8îØ±ƒ™®­­}øðáüüüÞùFooï[·nÑÓZZZ„»wïúùù 2dïÞ½†††-ù;ùfddäææNœ8‘žõôô¤_MKK^Þ¿¿åè: /÷ïßŽŽ¦§333‹‹‹GEÏ:88üøã2nÇÈȈ¢¨’’###BÈ«W¯(Šbî\7JGGÇØØXäv¶âh¡Ððkïã&ÄÓÓÓßßÓ¦Mûöí«®®–þFUUUðùüúúú€€€éÓ§oݺµ²FYddd¨¨¨$''ÛÛÛëéé1"##C|ùÌ™3éåÒÑY)Î ¹¨¨¨PQQ¡§¯]»fbbÒµkWæÕÊÊJ·cccchhÈ!„Çã-[¶lÙ²e"ËÏŸ?ÏL[ZZîÛ·í–uw„‹f\»Šoü»(kS×Ã8Ðú8ž8^¼xQd‰±±qS«Y$å„wppÐÕÕ½uëÖ Aƒ!EEEùùù666"ËKJJèåÂïEQТx<Þ¼yóæÍ›'¼pÑ¢Eëׯ—4JN[€’§¥‰ôÿh oã¸lÙ²ÎÿööíÛ3f°—hhhÌš5kÖ¬Yqqq7nܘ0aBïÞ½‡ "²|áÂ…ôrú]hÑÀ++«¶œ5+J‚Üq³Æ±ªªjÏž=„”””ˆˆá— ?~Ìv€ò±mÛ6UUUÿÒÒÒaÆ;vŒîÈ)¼ÜÍÍí?ÿù½)#@›‚b䎛‰c}}=ý¸þøcBÈÎ;/_¾>>Eݽ{Wdyzz:Û¡4ÇÖƒŠF€¶&66–íä ‰c+AE#@”——'e¹††F¿~ýØŽ  8¶8T4´Y7n¤ïJÓC(>Ÿ¯¡¡A¿jiiùË/¿°#@ qlY¨hhË>ùä“LJ……¹¸¸ðùü;wî¬]»véÒ¥C‡e;4€æÀ8Ž-c4ÀÏ?ÿâîî®®®®ªªêââ²fÍšèèh¶ãh&Ô8¶¤Œ@)**ÒÒÒ^¢¥¥UPPÀv\Í„GùËÈÈ@Ö„—èèè7oÞг¥¥¥QQQööölÇÐL¨q”?¶C…2cÆ OOÏ=zBÒÒÒttt>Ìv\̈́ıɮ_¿>sæÌ¿ÿþ[SS“íX@¡™˜˜œ9sæÒ¥K™™™uuu“&M>|8Ó«Z^êëëwìØqòäI--­‘#G.^¼˜Ì@î86MyyùªU«p'd”™™Ù§Oooï„„„ßÿ½´´tÚ´i|¾<› EFFž>}:<<œ²jÕ*uuõ… ²½ß­ŠI”Q8´4´qlšõë׋4uWp#FŒ`;ƒ`8L3=ztìØ±úhذa‘‘‘Š0ªëÇ„¦Pß…:”N£ß¨_ýÕÛÛÛÁÁaÞ¼y/^¼ ²{:ˆÄ)ü WFxx8ëq6zHß¼y³råJ77·>úHø+ªP‡”RRR²téR77·aÆmÙ²¥¡¡õ8%5’Bb+TéE¢ø¡fý[Úz(Ÿ†††±cÇúùùýý÷ß7nÜ2dH@@‹ñ,X°`øðá wïÞõóóóôô¬¬¬d1ž¢¢¢   ›ªª*¶bؼy³››ÛåË—/_¾Ü¿ÿo¿ý–Å¢ Ç„¦8ßE;”K£ß¨Ÿ~úÉÎÎîçŸNHH;vìÔ©Séå,žâq%‰ïׯߥK—ØSÒ!ýòË/‡~ãÆ7n >|þüù xH>ùä“©S§¦¤¤$$$ 6lýúõ¬Ç)©¨‘[¡J)ýJ(ÚKËAâ(O666÷ïß§gcbbúôéÓÐÐÀJ0•••¶¶¶t±KQTiii=˜ÙÖ·k×.›°•$ÕÔÔôë×ïäÉ“ôì‰'ÜÜÜØú)È1¡)Ô·E¡Î#åÒè7ª¡¡aРAûöí£goܸacc“——Çâé Ë7ÇŽô»§m£¡ÖÖÖöèÑãøñãôì±cÇzôèQ[[«h‡4))©GEEEôìÍ›7ûöí[UUÅbœ’ŠI!±ª”"±ÑC­h?.- ·ªål„ Ý»w§§?üðCü•ŸŸß«W/GGGzVKKKCC£¤¤„­xüýýÓÓÓ=ÊV„ŒŒŒÊÊJwwwzÖÝÝýÕ«Wiiimù˜ÐíÛ¢8ç‘riô•““óâÅ‹Q£Fѳ...ééé|ð‹§Ã;¿ùOŸ>=räÈš5kÛ§­¤Pù|~»víèi >ŸÏn¨Æ™Ý¡Cæy¹öööUUU©©©,Æ)©¨‘[¡J)=ÔŠöãÒ¢PË“µµõ7ß|C)))ÉÊÊúî»ï|||è¥õuëÖíÔ©SÌì¹s窪ªØ>Hl*((àñxÆÆÆô¬‰‰ Ç+..f;.ö)Ô·E¡Î#ÈÉÉQQQ¹wïÞüùóóóóûöí»fÍš.]º(òé5aÂ:ãQÀ8ÕÕÕGuàÀúòfÿþýü±ººº¢…jjjúêÕ«²²2]]]BHff&!äÕ«W***lÅ)©¨yüøq£!ÕÔÔ°jS‹DEû×·(”Å-bþüùS§N-((˜6mÛ±@ðÃ?¬X±böìÙVVVl‡Ã¦ÚÚZMMM&áóù¥¥¥lÇ¥@êÛ¢Pç‘òª¬¬»víZ¾|ùþýûUTTüüüª««ötÈÌ̼zõªŸŸ=«˜q®\¹²  `̘1cÆŒ),,\µj•†êææfff¶lÙ²$%%­X±‚ÇãUUU)Bœ"E¤XUÆ"‘õ8[Ç÷"Ü ¾˜£?~üúõëüñ¤I“jjjX æéÓ§“&MÚ±cǺuë–.]Êú‘a—žž^uuµ@  gAMMžžÛq) ¶¾-’°rq¦¦&EQ7n8p`Ÿ>}¶mÛVTT”˜˜¨°§ÃþýûGŽi``@Ï*`œŸþùèÑ£“’’’’’FõùçŸWTT(Z¨šššû÷ﯯ¯÷õõýæ›oüýýUTT´µµYS¼¨‘»¡Ê^$²~H[Ç÷âíí}ë]»vÍÎÎþûï¿é— –.]ZYYyçÎV‚!„ܽ{wüøñ.\øüóÏY<2­ùÑRQÅ4Ý{õêEQÌÍ…6ŽÅo‹vÏ#îéС!ÄÚÚšžÕÕÕ566~ñâ…bžÕÕÕ±±±£Gf–(`œW¯^-// 244444 ~óæMBB‚†Ú¥K—ï¿ÿþöíÛçÎsvv®¯¯ïÒ¥ »q6ZÔH ‰ÅP›T$*࿾å q|/ªªª:ÿàóùwîÜY´hsÍQVV&455Y ¦¾¾> `úôé[·n544d÷È´ò§Kbccchh˜””DÏ^¿~½C‡Ìj[Æî·E»ç÷ôìÙS[[ûþýûôlIIÉË—/»t题§Ã¥K—ÚµkçââÂ,QÀ8A}}½ð˜ˆõõõ@ÑB-..öóócîùÄÅÅwëÖÅ8%5’Bb+Ô¦‰Šö¯oQè#Ožžž›6mZ·nÝ”)Sª««·oßnmmmggÇJ0‰‰‰/_¾ìÑ£óU&„X[[3=ìÚ UUÕI“&EFFvéÒ¥¡¡!22rÒ¤Iè±KìÛ¢Pç´k×î³Ï> ^»v­ŽŽÎ¶mÛlmmÝÜÜTTTðt¸víZ¿~ý„¯6ð´4hŽŽÎ’%KæÍ›GQÔ¾}ûtuu¨h¡•––†„„,^¼¸°°0""bñâÅ***„¶â”RÔH ‰•P›Z$*Ú¿¾Eqs¯ØÒ¡C‡ÿüç?[·n{öìøøøï¾ûnâĉuuuÌÍ£ââ WW×nݺµ¡¡’œœüÙgŸÙÛÛ»ººH¿Ÿ^XX¸`ÁggçQ£FýôÓN:õìÙ³[·nÊÒ @y8qâĉÌì´iÓÖ¬YóÎwI:‹oß¾]RRòË/¿Ðe‹ššÚ_|!ò^//¯àààëׯ80//ïþýû[·nmR &K$(O Ù8‚ü1M‚˜î2?ÎÍ͵³³cÖ¡(êéÓ§Ož<éÞ½;5Bø|~VVV§N!ýúõ“þöFÇôôt[[[---zvÊ”)ô}c(===--íÆ fff=è’âââÂãñ¤ì¯”3a3”NÒÎ:::ÚÛÛ9rРA...ÞÞÞ¦¦¦-ÿÏhÓüýý-ZÔÔwI:‹³²²„Ëgggñ²E[[ÛÝÝýâÅ‹<þ¼½½½••iJ &K$(O Ù8‚üihhˆ,ÑÑÑqppøé§ŸD–'''‹—›t“DBˆ¶¶¶ô·7ª¾¾^UUô‹™™9uêÔ=z 6ÌÃÃÃÆÆ&++KÒêêê„gù|~£‰cmm­,o×®]“Žž”=vìØ­[·®^½zâĉmÛ¶íÚµkàÀMûß@Ë“tߺuKx–Çã5Z¶Œ5jÓ¦M¡¡¡±±±ô]—&•`D¨tByr‡6ŽÐlll=zTVVFÏÞºukâĉ555]»vMKK«¬¬¤—§¤¤444tíÚUÆ·7úYô6«««éÙýû÷Ïš5+66ÖÀÀàСCÓ¦Msvvf^m”••UZZZii)={çÎ@À¼Ê„ñðáCz¢Ioö±JNNÞ·oŸ‹‹ËÒ¥KÿýwGGÇßÿ½µþÐ’ÎânݺI)[^^^eeegÏžMKK5j‘¹/Pž€Ü!q„Öàááann¾xñâû÷ï_¾|yõêÕæææÇ×××_ºtéÇoܸÿÀÚÚÚ³gÏ^½zµ««kXX!DMMí‡~àñx3gÎ\±bÅ€ÂÃÃe;!ÄÇÇ'))髯¾bVVWWÿá‡êêê|}}7mÚôÙgŸÍ;w„ #GŽ\°`Á矞‘‘ñŸÿü'///""¢Ñh544>ÌçógÍšµqãÆ¥K—ÒIª¦¦ææÍ›oß¾=bĈ%K–øùùÑë7iã’Â~çκ¹¹­\¹òûï¿=zô–-[fΜ9mÚ4¶ÿ±mð¹ÌLK/ñÚµk7kÖ¬/¾øÂÉÉÉÚÚºÑÍŽ9òõë×cÇŽ¥gßYÈH*Pž€Üñ(Šb;Eׯ_¿Ý»w»¹¹Ñ³ô}"º{#@SQUZZ*c‡¹&Aé- cš …2¼×Y#Aé-·ªÞÍÒÒR¼«8@[ƒ[Õ Ô8€L8€L8€L8€L8€L8€L8€L8€L8€L8€L8€L8€L8€L8€L8€L8€L8€L8€L8€L8€L8€L8€L8€L8€L8€L8€L8€L8€L8€L8€L8éÑ£ïߺvíFQT³·©¦¦Æãñ*++Å_ÒÑÑáñx/_¾lÆfKKKy<žššš”9~ü8K²Eˆüw>øàƒ)S¦äåå½óh{õêU^^^uu5Û{Ê ‰#ü¹¹¹]¯^½tuu³²²BBBŽ9Òì­õêÕËÎÎŽÏÇL>èÿ޹¹yAAÁÑ£G?ûì³&¥õ3gÎ477ÿí·ßØÞPnø]‡ÿÙ¶m[jjêýû÷KJJÆG9þ|³·–’’’ššª©©Éönqýßyþüù/¿üB¹~ýú“'OØ @^¿~½páÂ>}úhkk÷ìÙséÒ¥¯^½zŸ Jª‰¿{÷.ÇëׯŸì›®ï×ÔÔ´··_ºt©pͽ”[+ Öëû«ªª6lØ`gg§­­Ý¡C‡aÆýþûï­n˜pG¥¢¢booOÑÖÖ¦—ÔÔÔ,[¶¬[·nºººƒþ믿˜•oÞ¼9dÈ}}}##£áÇ߼y“^.\ž¾}ûvñâÅ|ðµµõáÇ™÷Š"³>üøãŒŒ´µµO:õ>;%iÆÇãñ¢££éÙeË–ñx¼¯¾úJÊ[˜8ïß¿?pàÀï¾ûNJ´µµµ_}õ•™™™Ýï¿ÿ®©©É$ÓRŽªcÆŒQWW'„ˆ¼T__¿aÆ޽{kkk÷íÛ722R BF}æÌBȤI“6lØÐÂ_€&ÈÊÊêÓ§Ï®]»îÝ»×®]»GEDD¸¹¹•––²Úÿ£ëûMLLRSS#""¼½½™—d¹µÂz}¿¯¯ïêÕ«=zdiiùöíÛøøøqãÆ1MzZ!<Ü0á Ú¼îÝ»BŽ;FÏ>}úô£>^2~üxBˆƒƒÃøñãéÔçþýûE½~ýÚÀÀ€2jÔ(///>Ÿ¯¯¯_XXHQ”ªª*!¤¢¢‚¢(???Bˆ¾¾¾³³³ªª*Ç#„¼xñâÍ›7„UUUúS„gëëë»téBéÛ·¯———ŠŠŠªªê“'ODÞ"}G„IÚ…£GB† F¯Ö§OBHBB‚”·Ð1ðùü=zBöîÝ+)ZŠ¢¦M›F100prr¢÷]CCCzHÒwŠ©*ÈÍÍ93gÎ$„tèÐaäÈ‘úúú„E‹Quùòå¾}ûB,XššÊö× àÿÑgAŸ>}?~LQÔóçÏ{÷îMY¹re³·)©”¨¬¬ÔÔÔüâ‹/dß”ÈÙwãÆ úÌúïÿ+ûF|||$•K­€nM®ªªJ/oß¾ýæ›o!C‡m…ðD }Ä’™™)½0Wœâ8ÂÿÎma<oË–-ô«©©©„nݺ544PI™1cEQW¯^%„têÔ)33“¢¨­[·Îž=ûÞ½{”Pâ˜ÍçóUUUŸ>}JQÔ¦M›èž8æää :tÊ”)ôK „œe¤¼$|^TVVÒWMÛ·o§(ꫯ¾úã?è·'''{yyéééuèÐÁÛÛ;99YÙ¸qãÅ‹é²jìv„ô;-„55µ^½zÑÓíÚµëÔ©“‘‘!¤sçÎâÿ>Ü0á$$Ž zn¿~ýZKK‹råÊꟌÄÉÉéG!§N¢W.++‹‰‰7nÝ REEåÒ¥K”PyzðàABˆ§§'³q‘[Õ***ôKÂåHii©¥¥e»víüýý;F7*IçÌ™£ñ_~ù…’œ8Jß…_ý•2gÎ___BÈõë×¥¿E¼ÖSR´?üðº%TPPÀ$ŽÒC’òß& }Ïý“O>a^4h!äüùóGPHßÿ=}HZAJ=º”—˜ó"$$„2iÒ$@ ²e)wK„‰Ÿ}þù'}ýFÏ2” Ÿ}Òï¥B~ýõWŠ¢.\¸@§zEÝ¿ŸÎ¨Þ¼yCQTHHˆªªê’%Kd¿k‘––6nÜ8ºT§éèè|ÿý÷ô«ÂáÉr§…þ] KK''§úúú/^Э<éÅ n˜p :Ç€(}}}kkkBH~~>!ÄÎÎŽòêÕ«)S¦L:ÕÊÊ*%%¥¢¢‚ráÂ…°°°:üú믯^½š0aBCCÃ¥K—„·fccCù믿èžtôÉO¿Ô®];×ÐÐ@Âo<{ölvvöàÁƒwíÚõé§ŸÒE§ˆï¾û®úôU²$Rv2räH==½sçÎ]¼xÑÂÂÂÕÕõo!)Úž={B !?ýô³ïMÚ¾,è‹òøøxºÓLffæõë×ù|>ÝωV__ßB߀f kŠ‹‹%­ð÷ßB†jnnN±³³ëÞ½{CCÃýû÷¥¼D¿·¾¾>,,Œâàà@_¬ ³³³ëرc^^žµµµMvvöÂ… éæ•Ò•””0‘7cƒ§N:tèܹs‰Ð‰©¢¢2vìXBˆ³³3!„î\Hï‘‹‹‹žž!$44ôíÛ·÷îÝ#„<~üXEE…Çã-Y²„r÷î]ñ˜mmmýõ×ׯ_ß¾}{÷î݃ *//Ÿ7oÓT€ñÎmª¨¨ÐW¤;w&„xzzª¨¨˜ššÒ7 %•0OŸ>MIIÉÉÉ¡o˜w‘|ç?Z_43U¶ÅUUUEéիט1c~ûí7KKËÿþ÷¿UUUô±ššZDDÄ®]»ÆŒS__O/2dˆðF\]]íììî߿ߧOŸîݻ߸qƒÇãÑù“††FŸ>}RRRÜÜܬ­­322˜wÑ×ññññÞÞÞ©©©tâEÉÖoÅŠLKJBÈÊ•+'Nœ(i!íÚµ7nÜ¡C‡!t&é{-NR´žžžW®\éÝ»w·nÝnܸÁ¼¥IÛ—E÷îݧM›öã?öíÛ×ÕÕõ¯¿þª«« øàƒ!ôµþöíÛMMM‡Ú _€w²µµ%„<{ö,33“¾X%„ü÷¿ÿ={vïÞ½éÆˆ„á´ÏÄÄ$--­¾¾^ÊKÌ{{û{÷î­_¿Þ×××ÔÔTø£ ÒÓÓþùç3gÎÄÇÇïÞ½{ß¾}qqq^^^Òc¦Ïâ®]»Š,—qƒeee}ûöÍÏÏŸ5kÖòåË÷ïßO߯§ÑcÖB„»iÓ{ÔÐÐ ò‰***„''§¯¿þšY(>Úýû÷Ïž=knn>uêT‡/¾ø¢sçÎ………>¤ó?Ù·ÉDH£‹¾w:vìÝ"HYþ› @Ø®òö‰ßŽùüóÏ !ãÆ£g+**.\haa¡££ãááÁ´.§(êøñãýû÷××××ÕÕuvvþùçŸéåÂmÆïÞ½K_GZZZÆÄÄÐ7µ_¼xA¿Ô¿---gggº¥ï\TUUÑUh~øáš5k¾üòKBȼyódé#bçÎÒw¢(fÄJºåô½AR´E•””Lž<ÙÐа[·n'Ožl×®Ó«ZzHRþ; ‘HêêêÖ­[׳gÏöíÛ÷îÝ;22’éFpïÞ½®]»jjj~ûí·lÝþßèÑ£ !¯^½¢(ª  €>•–,YBQÔ£G!ºººùùùEedd¨««óùü¼¼<)/1ã¼yóf„ „Y³f‰|nllìÒ¥KéûµµµôjAAA"«‰œ}wîÜ144$„œ>}š^ÂtR6HßiýñÇ)Šúé§ŸÈ?ß¾}K_׉4¡þ}jÓµqíÛ·/++£(jݺuÚÚÚ«V­¢kã,--éñ×®][ºté¡C‡DváÎ;„---¦zNNÝ“îÉ.ž”mŠD¸zõj"Ôù]CCƒÂô¿‘t… oPÊS$BPH¡5TUUݸq£Io©­­½|ù2Û¿W´%%%§OŸ>sæ =KwoìÖ­ÛÁ(Šôôt:yRQQ±´´¤ïxvíÚ•i-Ghebb2zôh:Ý þ’pF’‘‘¡ªªÊçóoݺ%ü¹—.]¢Çôž8qâ§Ÿ~J_ÍÒí³… 7ÑëÚµ+]%6`Àf&q”²Á… Bœ/^¼øóÏ?Ó± 6ÌÌÌŒ®Y}úèêê888ìØ±ƒéX-r;BÆ;-rOqÃD‰ü¯µ´„›7o†„„ܼy³ªªÊÂÂÂÏÏoÉ’%tC"hƒêêê®]»æééÉv Í„Äd‚áx@&H@&H@&H@&H@&H@&H@&H@&H@&H@&H@&H@&H@&H@&H@&HeUZZäâââìì<þüœœ¶#hUHe|çÎÈÈÈï¿ÿ¾¶¶ÖÏϯªªŠí ”æM›xBŒ !Çç‰Y¼x1ÛÁ€Dªl ªªªâããwïÞíîîN‰ŽŽîß¿ÿõë×½¼¼Ø @!ðx]¶lYvvöºuë>ÿüs¶ÃPDâydAAŸÏ÷ðð8sæLUUÕ×_íããóèÑ#===z…œ?>++‹íØàЫZVwïÞ?~¼……Å… Z?kÌÊÊòññ100èØ±£ŸŸß«W¯DVøã?ø|~ee%ÛÇ Ú"¦gL£:uêT]]½eËccc ‹ƒ_ºt‰YaÛ¶m&L022b{?à8ʤ¾¾> `úôé[·n544”ûö…‡#U |úé§uuuçÏŸ?zôèÕ«WçÏŸ/¼Bii©ŸŸZ+(Š¢(Šù¿ó{¨§§gfföâÅ z¶²²òäÉ“S¦La{?àÝp«Z&‰‰‰/_¾ìÑ£GRR³ÐÚÚZ.u$"¿µâ?½=JII¹uëÝ­{þüù!!!€Ïÿ_Þ ££ÃöA‚6MJ¾xâĉõë×_¹rÅÀÀ€R\\\PPгgOúÕß~ûMCCÃÓÓ“í=€wCâ(“'OžPµhÑ"á…Û¶mk‰¡CèÊáŸaŠ¢æÌ™Ó§OzÖÊÊŠöË/¿$$$lß¾}̘1l'€Fx{{ÏŸ?ß××700PUUuõêÕ...ô«/^tssc®‚@‘¡Wµü5µßâ;;¥2ŠŠŠÒÒÒœœvïÞMyùò¥½½ý‰'(Šòôô¬¨¨ÐÒÒbûˆJOO LNNVSS5jÔ–-[èÚGBˆ¥¥åìÙ³ƒƒƒÙޱM@¯jxO¨qT8RZ‰3æúõëfff¤—Ì™3Ç××wРAþù'ÛHdkk{æÌ™F_ô±mª¯¯ß±cÇÉ“'µ´´F޹xñbI]ŽêêêÜÜÜþúë/MMMzÉwß}Á¬```pýúu¶w¸ ‰#û„ïMKïš””T\\¼aÆ>ú¨  àøñãYYY'Nœ`{à}EFFž>}šÉrÕªUêêê ._­¸¸8**ª¢¢Bxann®——×Ô©SéYUUìÐRЮH!0Réª"¯¦§§3rŒŒŒ6mÚT^^ž˜˜xãÆhhhðx<ºo¶¶öâÅ‹ÙÞhšÚÚÚcÇŽzzzzzzþôÓO@dµÝ»w0àäÉ“"ËsssÜÿÑ¿¶w8 ‰£B`*­qLLLüüóÏ™_‘7oÞ‚öíÛ‡††¦ýãðáÄ۷o¯ZµŠí½€¦ÉÈȨ¬¬tww§gÝÝÝ_½z•––&²š¿¿zzúÑ£GE–çæævêÔ©¦¦F¤&@î8²©hdÆÃYÁÇǧªªÊßßÿÞ½{ׯ_Ÿ6mš“““©©©í?:wîL±µµ511a{‡ i x<ž±±1=kbbÂãñŠ‹‹ey¯@ ÈÏÏ?pà@¿~ýÇÿàÁ)ëÓ%Û{ Ê ‰£ÂÏMLLÎ;÷ðáCww÷ñãÇ›˜˜œ?^]]íH@>jkk555™1‰ø|¾††Fii©,ï-**âóù...‰‰‰—/_þàƒæÍ›W^^.iýôôtt¬€fCjåпÿ«W¯JYÁÃÃ#+()==½êêjfT@PSSÃ<Ë[:SSÓ{÷î1³›6mêß¿RR’··7Û»„G…#ËCÛ€KŒŒŒ(Š*))¡g_½zEQsçºItttŒe¼Í ÐTHÙ'|oZúp<ÀI666†††Ìà ׯ_ïСƒµµµ,ï3fLYY=ûúõëÂÂÂnݺ±½OÀMH‚ôáx€ÛTUU'Mš™ššš’’9iÒ$z8Æ#GŽÄÆÆJyï€^¾|¹|ùòäääÛ·oØÛÛ;;;³½OÀMhã¨DGîÐÖÔÕÕB|||¾úê+zù?þhmm=bÄIoÔÑÑ9vìØ¦M›-Z¤ªªêáá±|ùrÜ»€‚ætò÷žÏªFGà¤C‡­_¿þåË—ƒ Ú»w¯¹¹9!äíÛ·!!!ßÿ½ŽŽÎ„ 6lØ€Œ§EáYÕðžPã¨p„Ÿ@ „³½F¿º{÷îýúë¯wîÜùᇮ\¹rêÔ©ôÓÕƒ‚‚>¼ÿ~BˆŸŸ_»víBBBØÞ Šü½g#A¥#(•wV™  ‹ ¬\¹’råÊ•Áƒ?}úÔÄÄÄÄÄdûöí~~~„ï¿ÿ>((¨  €Îä5ŽðžP@+d ÔÄG°ÏÈÈÈÍÍ8q"=ëééIQTçÎSSSËËË™á‡^XXx÷î]¶÷$BâÈ>¦K5Ó±šíˆˆð‘a;h¦ŒŒ •ääd{{{==½#FdddBž?Îãñ:vìH¯öÁðx¼/^°/H„ÄQ!0É"²Faï|Š7( ñ‹Ÿòòr@¶eË–¸¸8oo着ªêêj---áçìµoßþõë×lïH„Î1 ÃñÈ݆“ðÿ¥Ñä^KK‹¢¨¸¸¸BŽ9bjjghhXYY)üœ½ªª*¶w$B#û„“!dE Œ¤`obbB±³³£gõõõÍÌÌrssÍÌÌ(Š*,,¤—¿|ù’¢(æÎ5( $Ž ÷d%Au£"“òÐ#]]Ý[·nѳEEEùùù666vvvÆÆÆ—.]¢—ÿñÇ&&&½zõb{W@"ܪÅõÎ{  444fÍš5kÖ¬]»vééé­\¹²wïÞC† QQQ™7o^pp°MCCCPPЗ_~©¦¦Æv¼ ÷Ç´´4SSÓ„„„ßÿÝÎÎnÚ´iŠ#„L™2%44”íH@Žç(G ݳgOÏž=½½½ïÝ»7sæLæ9°-¡Cì¾óÁï€À{RÜŠ7¹ˆ‰‰š0EÅIDAT ôòòŠ‹‹³°°8pà@xxøéÓ§ÙŽK”ð 3lÇÐ8Ž'ŽÅÅÅîîî„äädBˆ­­-Ó‹dÇñıK—.ñññyyyW¯^4h!äÚµkôà  ,ðäÁñÄqáÂ…{÷î2dH÷îÝœœöìÙ³nݺiÓ¦±ÈDxh@ŒRÀ:Ž'ŽÃ† ‹‹‹‹‰‰9tèŸÏwttÇËÊÊžÎÎÎn¥ƒ¥À²²²„oà°´Am¡E#©ž"##CEE%99yìØ±OŸ>ussÛ±c‡¤ålïG‹àfâÈxóæÍÎ;…Û¨–””äååµtâØŒkzú’ΓðcÉ@#°B<},//aaaaaaÞÞÞ>”´¼}ûölï„üq³s cíÚµñññ;vLLL´²²êرcFFFtt4Ûq‰¢oO3½dР• ÿþ6úC¬¥¥EQÔFŒáêêzäÈ‘‚‚‚¸¸8IËÙÞ¡ÁñÇ7nlÞ¼ÙÓÓóùóçƒvvvîÙ³g\\œ³³3Û¡ý‹ð7ul¬`rÇF‹éˆØÙÙѳúúúfff¹¹¹.g{oZÇk«««;tè@éÞ½;}ûØÃÃC/D†ãAîÀ )?Áººº·nÝ¢g‹ŠŠòóómll$-g{WZÇG›cÇŽUWWÛÚÚ^¼x‘’““SUUÅv\¢„ŽÂ­j¤¡¡1kÖ¬Y³fÅÅÅݸqc„ ½{÷2dˆ¤ålÇÛ"8~«zùòåóæÍ³µµ3fÌ7ß|3|øð—/_Ž9’í¸D!YP|Û¶mSUUõ÷÷/--6lرcÇTTT¤,çîß­«««¬¬400ÈÌÌŒ544œ0a‚ššZË}b3Æq$Buã¸U -ã8È?ÄRp¼Æ‘¢®®®®®N±¶¶¶¶¶f;œw “H|e@qtèÐÆéÙ²²²¨¨(ñËWåÅÍ%))Iú "fä«€‹ÇÃÉÿ ·½xñbÚ´i„ÜÜ\‡G™››8pÀÈȈíÐþ€È¿ÂRpóÐôë×™®©©t¿@@±¶¶>sæLË}úû<9Fä)2 \jkkÏŸ?ÿøñc>_š’#qG)¸y«úï¿ÿ¦'âãã7oÞêììÌãñîܹ³fÍ{{{¶”­P^ ‡~õêÕÊ•+ !³fÍJKK›;w.WY m] ·„;v0@]]]MMÍÕÕ5$$äÔ©SoÞ¼a;´Ž¹#€2ŠŒŒüî»ï:wîLÏ0àðáÃÑÑÑlÇ 7Oóóóutt„—hiiikkëéé±Ú¿ Sà€ß~ûmÍš5S¦L¡g¿øâ‹5kÖü÷¿ÿe;.¹áxâØ¯_¿èèh¦~±´´4**ÊÑÑQÑ5JšV(©ºº:KKKá%–––ÕÕÕlÇ 7OCCCóòò<=='Ožý}†ã!@™544üñÇéééõõõ]»v>|¸ºº:ÛAý? ÇÊEüQ|‰··÷!CV¬X!e;¡¡¡>üù矛ý¹Ààf£Ïܹs}||]Aa‹NÔ;(5•aÆ 6Œí@ÚŠììì.]ºTWW¿}ûVWWW|…ÇïÚµ+55•íH9‚›9uuuµªªªššZ]]]£+´hžÐ6¥¦¦†„„<þ\dùÍ›7ÙíPãÊ…ù5Ÿ  MM;}ûÞºuK ôë×/&&ÆÁÁAx#'NìÚµkxxx3>Äq³Æ‘yµººzZZš©©iBBÂï¿ÿnggG?L¡0ø²(¯µkת««‡……éëë³ @›PPPÀçó=<<Μ9SUUõõ×_ûøø¯_¿¦g‹‹‹ zöìIÏþöÛožžžlï§püVu—.]âããõôô®^½êëëK¹v횉‰ Ûq‰¾=[ÕJÊÏÏO ˆ,Ÿþ(õõõ;vì8yò¤––ÖÈ‘#/^,éŽD]]››Û_ýÅ4òàuss«©©ÑÐÐhék^â(} (¾7oÞìܹ377—YRRR’———˜˜Ø¼ ¦¦¦~öÙgW¯^555%„¼xñÂÃÃã×_ešp »sçÎäÉ“‘8'!qT¿ñ_QQñå—_zyyÍœ9“2cÆŒÀÀÀÊÊJ¶ã’ßW%µvíÚøøøŽ;&&&ZYYuìØ1###::ºÙ,((àñxÆÆÆô¬‰‰ Ç{ÏÞ6¶¶¶¶¶¶l*PVOÃÃÃËËËTTT!Ë–-{ðàÁ–-[š±©úúúÈÈÈ>úhذa‘‘‘rÌíèûÔÂÃñ°}Ø 9nܸâêê:xðàààุ¸fo°¶¶VSS“¹1Íçó544JKKß'ÈôôtT:@³qŽ'ŽÎηb2¼²²²¨¨(WWצn'##£²²’KœâîîþêÕ«´´4yÅ)\ãˆÜ@I-_¾üܹs'Nœ8pà£G†>wîÜ¡C‡6{ƒ666†††IIIôìõë×;tè`mmÍöŽ@ÛÅñqƒ‚‚¦M›æíí-¦L™òèÑ#ssóÍ›77u;Mj¢ž‘‘ÑÔÌO|}äŽDÙZq¸¸¸Ü¸q£²²R__ÿÈ‘#±±±†††&LhöUUU'MšÙ¥K—†††ÈÈÈI“&©ªªBŽ9Ò¡C‡#F°½ÓжpzôhÒMÔQË ¼tuuéñ¹fÏž-ߺ 7ǬZµÊÉɉìîîø>¤4Q— áúET7(©˜˜˜´´4SSÓ„„„ßÿÝÎÎnÚ´iÍhW  ˜¸™8–••1Õô å÷Ä–¤&êr!\ãˆ[ÕJêèÑ£¡¡¡{öì¡(jÁ‚ŽŽŽÛ·o/--•oqÀ"n&Ž„¹_âKj¢.LGä‹Ê+&&&00ÐËËëðáøpá–-[8gp6qT.L#ÒGåU\\L?& 99ÙÃÃbkk[XXÈv\rÃÙÄñÈ‘#¦¦¦’f-ZÄv€Ãp<Ê«K—.ñññzzzW¯^õõõ%„\»vÍÄÄ„í¸ä†›‰£••Õßÿ-i–(^âˆáx¤@-,(‹… .Z´h÷îÝöööNNN{ö쉎Ž^¹r%ÛqÈ ù³µµmÆ“cH…á&>(—ÜÜÜœœGGGMMÍää䆆777¶ƒúM-D+ÿ,âWX nÖ8* ÇÓ(áC›ø °233 ŒŒŒ233 !¦¦¦¹¹¹„úU9Žù À.$Ž ÃñÈG“Ïܹs}||]•|ÀHªÓ”WJJ ý8€ÔÔT¶chYH‚pE*Õ$Á‘Å”’’"}…jæð>¸™8&%%I_AaËqÔ; ©ˆEÖŠÉßߟ™®©©<Çã Bˆµµõ™3gØŽ@>¸™8*]9.òäT­1p@ñ1£}ÅÇÇoÞ¼944ÔÙÙ™ÇãݹsgÍš5öööl 7r~.Ÿ‚øû[·n577ß¿ÿ½{÷îÝ»G?LËq¦^ 5ŽÊkÇŽÁÁÁ PWWWSSsuu 9uêÔ›7oØ @>¸™82”¥§„ º@Iåççëèè/ÑÒÒÒÖÖÖÓÓc;4ùàxâ¨,å8OzX(©~ýúEGG3×¥¥¥¥QQQŽŽŽ8£€3¸ÙÆ‘A—ãß~û­¾¾>QàrÉ"„††NŸ>ÝÓÓ³G„´´4CCÃ~øí¸ä†ãwEóòò¦OŸ^RR"RŽðÁ-÷¡Í{ä †ãà€ººº .deeñùünݺ :TMMí þ9J TÜ?4­_Ž¿Oâˆ'2@ËAâJ ‰£âàø­jBˆººº£££‘‘‘››[MMB]ý30(>Ž'ŽK—.½rå EQééé3fÌ077 ÓÒÒb;´Áp< ø8Þ«:<<¼¼¼tèsÅ_VVåêêÊv\¢ð䈉‰ ôòòŠ‹‹³°°8pà@xxøéÓ§ÙŽ @n8ž8ݾ}ÛÛÛ[ L™2ÅÃã°°pÍš5lÇ% OŽà€ââbwwwBHrr²‡‡!ÄÖÖ¶°°í¸ä†ã½ªÍÌÌΞ={þüùÇëèèÌ™3ÇÃÃÏW¸tYd8PF]ºt‰×ÓÓ»zõª¯¯/!äÚµk&&&lÇ 7¿+zøðá>ú¨[·nÌ’êêêµk×nݺµå>€´M/^\´h‘@ °··?vìØ¾}û¢££W®\éççÇvhÿ#ÜÓ˜V¢iÒØ8Ç-7-üWúúmÇwÞÖÖVSSsýúõ>>>ô’òòr''§}v9Ðfåæææää8::jjj&''744¸¹¹±ÔÿÓc@IáÉ1Šƒã·ª !K—.]½zõÝ»wW¬X¡ªª û+Ü®ýc”˳gÏTTT:vìÈçóÍÍÍÍÍÍéå...l‡ g ×ÚOî|||Nœ8ñçŸN›6_M¡7Œ$Â݆؎ qÆ óòòrvv>~ü8Û±´,î'Ž„kkëS§NŽ?>))é}6UWWçèèX]]-ß1O£èC!|dØŽ G=~üøåË—'NœÈv,-KAoÝÊŽŽÎ®]»öíÛ÷õ×_7{#ÅÅÅQQQrO8%Bî( Ž (&)¯1¯Pv¯qœí¸ä†›5Ž™™™FFFFFFÙÙÙÂ/Oš4©Ûô÷÷÷÷÷¿sçÎäÉ“å0S‘†áx¤@u#(¸M›6ÕÔÔÐ#8&''‡……åææúûû³€Üp3qôññ™;wn`` 3 ˆ–ÂÖÖ–+û[è7++ËÊÊJ$ÙmËx<^VV3‹#ÓÖXZZ²B8p`öìÙ%%%Ïž=;{öìÈ‘#cbbÌÌÌØŽ @n¸™8¦¤¤Ð#臘¦²@SS ÇÓ(áZX‚ŠXPx}úôùá‡üüü(Š:tèPÿþýÙŽ@Î¸ÙÆQSSSMM2}útõ«©©™3gÎ;·pîÜ9Ûdff¶tÀè/, Ž (¾7BÌÌÌvîÜIQÔýû÷™…l 7ܬq¬ªªÚ³g!$%%%""Bø¥‚‚‚Ç¿s ÞÞÞ·nÝ¢§µ´´Z:`áº4T72DŽ (&WWWñ…[·nemЇµgp3q¬¯¯gÆ ·#„ðùüµk×¾û¸¨ªêèè´ZÀŽG82 ˜.^¼Èv­„›‰£®®î®]»!³gϦ'’!åÕ¹sgáÙ—/_fee544tíÚµcÇŽlG OÜlãȈ‰‰a;„&C¥š$82 O†¤ÕÔÔzxxÌš5kîܹžžž‹/–ûƒ¦ mÊÊÊòññ100èØ±£ŸŸß«W¯DVøã?ø|~ee%Û‘*¨C‡Y[[ëêêúøøäææÒ ß¾}djjÚ­[·   üÄÈ‚›5ŽŒÔÔÔçÏŸ‹,¿yófó6èàà ÷æJÂw`Ûøï®8$‹ŠMQÛ¶mKMMýá‡ègɤ¤¤oÛ¶mÍš5l‡J@ÊàÓO?566>þ|MMͬY³æÏŸ/<à|ii)ÝŸí`‡ÈO§øqØ»wï×_½sçÎ?üpåÊ•S§NýóÏ? !AAA‡Þ¿?!ÄÏϯ]»v!!!lï¢ãx?~üxuuõ™3gêëë /wssk¹µµµmFr‰¡¿%Áp< ‰#cðàÁß|ó»»;³äÆ+V¬¸rå Û¡ýOóJ'hÂ'ŽøIôàÁ;;»[·n9::B¶mÛR^^Îçÿï¶áŒ3nß¾ýàÁƒŠŠŠVèÐÉîñyç«"³ÀÂÂbÁ‚+W®$„\¹reðàÁOŸ>511111Ù¾}»ŸŸ!äûï¿ *((àóùm¹{'Ž×8>yòäÈ‘#½{÷f;w`r#|YÅá€(—¶Ü‡©ªªJ¤SŽŽNUUÛq¢9eÄO"Š¢æÌ™Ó§OzÖÊÊŠrŽöË/¿$$$lß¾}̘1lï ÞYàdddäææNœ8‘žõôô¤×¿yófyy¹··7½|øðá³gϾ{÷n¿~ýØÞ'…Æñ6ŽÆÆÆŠßÀˆþÒ3p·”Z›Í !ŽŽŽ;wî,//§g+++¿ýö['''¶ã¥ggg÷Ýwß©ªª%$$lÚ´iÊ”)tuãË—/çÏŸðàA]]]¶Ãd™¤_ÏŒŒ •ääd{{{==½#FdddBž?Îãñ˜l|ðÇ{ñâÛû¡è8^ã¾~ýú ØÙÙµk׎YnddÄvhµå PRøÆÒÖ¬Y3}útîÝ»óx¼´´4}}ý~øí¸@i¼óT3fÌõë×ÍÌÌ¿}ûö¯_¿f{‡ÇG???@ ²­|äO†dtìØñüùó.\xòä !dòäÉǾ¥ ‰ô6ŽŒ¤¤¤âââ 6|ôÑGÇÏÊÊ:qâÛá³OJ‹/---Š¢8àââB9r䈩©i\\œ¡¡aee¥@  sG@PUUe``Àö®(:Ž'ޱ±±l‡Ðd¨¼e„/-MMMÍÙÙ¹C‡ô8޲gõõõ;vì8yò¤––ÖÈ‘#/^,~ßMÒ:ß}÷ð#² ®_¿Îö‘€&¾újô' ==½¤¤„îÖidd´iÓ¦;v$&&Þ¸qãÁƒÌšÚÚÚ_ýuTTÛûÔª˜ØèÑ311!„ØÙÙѳúúúfff¹¹¹  (ª°°ÐÌÌŒòòåKŠ¢0öê;qyå•W._¾œ••õòË/¯ZµŠ~uíÏŸª^¿~}MM͹sçD"!dÉ’%7oÞܰaÛqiS?X¹7¬×©S§V­Zåëë+‰D"‘Ïš5kN:ÕêóóóëêêÔ@”——çææÒ,SXXØ«W¯ÆÆÆÚÚZ¶Û,ÂÍÍ-33óÖ­[aaannnGŽ騱#ÛqYäää°°°9s愆†R÷"SYÁgŸ}1iÒ¤ˆˆˆ)S¦ÄÇdz©àyâxþüù… ºººR‹\¶lÙÉ“'ÙŽëo4¯M¨p£€Õjó8ŽÅÅÅ@}¦rsseeetÊ(•Ê¢¢¢ôôt///Ÿ°°°›7o¨K&“Éd2¶› Œ6xðà³gÏVWWgddè^ R©T¼ýÛtB¡pÆ wïÞ---ݽ{w÷îÝ©õ ))©      !!7tð}êîîÎv{´BkªUœ÷,ÎܶøP€~ö8ªÏ­”îÝ»«ï„½té!„F•;ÔßOü{`u–,Yrâĉøøø×_".\¸ðÝwß 6lóæÍ­kcc)—Ëûôé£P(ärydd$5cFF†³³óèÑ£õ•:tèêÕ«—.]úᇊD¢”””øúú²Ý*Ài*Ìm mÅÏãÆËËKýº±±Q©TRyJ¥’"‘H~ýõWËÕ.“ÉŒº÷\3eDú`uRSS÷ìÙ“ššª•®ýñÇóæÍ›2eÊüùó[݈J¥JNNÎÌÌ$„„††ÆÆÆRgƒ1cÆH$’ÔÔTeyùå—ÙŽîô%Ž,> _hMH-¶¾>Ýõlî@Ó˜G€ö©¤¤äÖ­[eeeNNNýúõëÕ«ÛiÓ=;Õ c ø…Ö„ÄÑÒa·ÚËnà©s ðüá}£àþþûïl‡|£9×€µÐº÷ ?–Ƣ߉ÅYVªf´Ü•¯xž8R£æRšššnݺ•žžÅv\\þ•6k±³ÊÀz²®PÉßÇ<&H1"^«xž8jM-,“Ébcc£¢¢Äb1ÛÑpÇÓ&Í4Ñì¡j^¤ær#°ŽçÃñèzíµ×tGÍ0Šfÿ¢2„óÙàÓ1 Ï{µfˆ©®®Þ²eK¯^½ÚÐÝXUU•””tòäI•J5pàÀeË–õéÓ‡íývпÄÏåë¿Ö¤%BÕÌþ­¨XÄóÄqРAZk:tè””Ô†M­\¹òîÝ»r¹ÜÁÁ!%%%**êðáÃ;wf{€5úæñ£ÓÉZé/—/Ô¶ª…6ðÿüsÍ?ß½{ר º»»ÿøãêÅÌÌÌúúzooo}åe2!äèÑ£l·€u{õÕWÙþ‡Ÿ‰cssóýû÷©×ê¡P¸jÕª6oY©Tfdd$$$Ìœ9³oß¾úŠaæà~&Žiii„™3gR/Œ•™™¹páBêõ¯¿þ*‘H!K–,yðàÁš5kÂÃÃÙÞKk²sçÎýë_%%%_ýuïÞ½ ¯‡öLßÃ<¸@iâ4-V4Ë‹… FiG·—* ‘HD³psssCCõÚÎÎN(^¿~=**jøðáË—/wrr2ð^ÌU íáyÀ¾þúë?þxóæÍ/½ôR\\œƒƒÃ™3g ¬ ÑwvbñQÃsëNÂÁß,Qž—¥Õy“Úš‰Ñš÷e³OHC'<ç³¶Ü#Û<ÃÏGBÈÇúé§qãÆI$’¦¦¦¸¸¸ãÇ;::Κ5ë½÷Þk½]llìííÕ‹ÍÍÍ111Ó§OWwC¥ÕŸv¥R¹nݺøøø™3gB:uêôüãÑ£G½{÷nqýË/¿Ìö>k¬eh³0j˜v•Êh}èígÇ­?Ç›7oN:µoß¾ãÆ#„lÞ¼ùôéÓ}ô‘ݦM›zôèbÔÏŸ?_RRâáá‘••¥^)‘H\\\ØÞWö>­çççFDDP‹ÁÁÁTùÜÜÜ×hiW9è›³ÛØ·«ÙÞ!ø~&Ž_~ùeHHȆ !*•êàÁƒ3f̘?>!äÅ‹ßÿ½±‰ã½{÷T*Õ‚ 4W&''?ží}àÝN”üü|‘Htùòå‰'øûû§¦¦J¥R}ëÙÞ`“ædÁ<în4%æ~mÞÁ´y|X)~ŽãxãÆÉ“'S¯ïܹSVV6vìXjÑÛÛ[ë9k:>üðÃ<È訩©Q*•Ÿ}öÙ† Ž?.‰BBBêëëõ­g;^à(î'L­ÒÊŒÚ#SÞË }sê´a &†¡Æv“ð?{kkkÕÏÁ\¸pÁÍÍíµ×^Sÿµ®®ŽíxK÷÷ÌÎÎN¥R¥§§ûùùB222ºwï~üøq}ëßyç¶wؤ;;ˆîÔ,ÖË”¹O¬hÞŽ|p¸êm üìq|å•WÔ7#?~|ðàÁê?åääàÖ{3¢~ÌÔt$ÜÜÜ!žžžÔb×®]{ôèQXX¨o=Û;ìÓ„ãy’‰{ÇÌ{YÜYcߢÙ[ÙæÔ“û鵕âgcddäÆÁÇÿøã>úˆ¢T*³²²¶nÝ:oÞ<¶àÃggooo‡ìììÀÀ@BHiiiQQ‘T*Õ·ží½–©sG³d~È Í‹·‰cuuõþýûkjjfÏžLY¸páñãÇ#""è Çæbkk;cÆŒ3f¤¥¥9::ÆÅŽñÆÇ‰D-®g;^m†y¦?cÞgt@­µéýû÷]]]5Gg´  E©TÆÅÅo¡^oJz¤Õ–æ†ÅëÅšÙóI¤ÕMÀÈèq€ÖÛ­¥;ÆžQo7W¦kuhÀV×3ÿÐ1“hö;òï‰òv ‰#¢5ä ¡ñóoø’tÛR¨6„a8°¶•Ñ7Y£‰Î<(ÜÁdËp©ZaÔ€2úÆØÓ} ÁØ¢ÍãÚЩš~xú akØîßÛÇï‰Úô8ÀÿÓº¾LZÊŸLéèÒ} ~`æÇpFh¸ ýõ–¾ƒ³Í-©³zS–‹Ó¨ã‡™´ªC.k,ô8!zæpÓLP4‹ÑÜ îʶ=РFЩšfxô1ïs0¦‡ª/~úóõ™$Í–a,$¢ñ(æ£K@GÐfÆo«¸&~ ßÍÁO„ù)qõ¼Íp©è^À%4~hµ:™Œíž41 } ‡¹òÝ0tïàä`fFgØ>Z†ùû x=Žð?†¯/ÓüÕW—¤Ÿ5j^¦4œüCs;š‘˜73І±{Í:Ʋ%ú-Ã@H¬ÜWÀ'H@ï˜Ø ü[n8ëoÖäsMhÊv8˜6q0$PÃ¥j Dÿµ`æ[­²Š˜Í5£±ÓríÚ1ó!q°¬zàÿµx=‘á¥Í»A:ÃÖ˜«Û¯ ±©ÍÕ!ªg[31ÒÝr®ª[º•¾Ðou÷pzàoîƒÑØO3Û3%xš1W·[´bÖ7M‹‰cZ{+!q€¿a~F»6 gmàÍM5 7+÷AšØÈ4?,³äâZ5¶ykú"ls#“8ûŒJG ÜÕ§•EéÛ,n‚4c?«îFÔ7¶ –É]&ç(2±"bîd”á‰m8 ‰#hÓ7Z¡.3^eŒfRÅpߪšf‹™¥ÓQs×43H­.ISrGcŸÂió^˜Bë€41Âç"oçëñp ]ýõWtt´¯¯ïСC—/_^YYÉvD„ÒÜÜ,—ˇ 2räH¹\Nç'΃MT¿WkÞ6fæpÓMû4+m5ÿÐýÕ×ÕIúžÏ0öI =ç¡ùAk5—‰£cÒü°ÚFsOÓeÝVUo¬÷ಉ#-J¥rþüù/^¼Ø¾}û¦M›~ÿý÷Õ«W³”©d2Û!ð-TÄÙžCe‘\.?pàÀúõëW®\¹ÿþ´´4ÃåM™X+Wk± “c©h欚{GSZoäBO’îpèôÓ­®bbB§¦ÖhêZÿ*hU§~‹QÍÇÞÙŒŸ‚¾?“Sgë…Ä‘–{÷îݾ}{Ñ¢Eo½õ–ŸŸß»ï¾{æÌ¥RÉv\ÐÞ555íÝ»wÑ¢EÁÁÁÁÁÁ‹-Ú½{·³“éƒèû5ex´m³ šMg¿Öb¾bT¢¯ÙUÜæAgtšo‘J¥†Ce&Ó2{-šI<ëT± ‰#]“'Oîׯõú¥—^²±Áí¡À¾üüüººº€€j1  ¼¼<77×uéæ4º¦™ùÕìÓLSÚܯÆ@ÌmÀñØÚªVNiÞîFb™4N÷ÞP.. @öC‹D"Y»v-!¤¢¢âþýûÛ¶m  õ¦ÝÖr}ÍZâ´¢P§yååå±× WWWjÑÍÍM ”••µX8??ŸèÉíô%ºùA«ï¢³)s½6°Hç-šWu-’YÞnâöÍÒ°†[ØØ–7PÒô‚þJóOºMa-ÏYGãÌž=ûÚµk...‰‰‰úÊà§ÓÔÔ$‹ÕÿÇ …B[[Ûªªª ë>jjìïŸV_ [·9ò›æÓ?ÔæŸçÕ:0Z\4ºåôí¦¾¦h'p©ºe™™™²ÿºsçŽzý¾}û.^¼8nܸÈÈÈÆÆF¶Ã€öÎÑѱ¡¡A}S£R©lllttt4ð­»µŒúu×z\C¥Û­bÝ´n`e­Gs´>V}ŸµfƒwÓpË´H[’ý_¯½öÚƒ®^½Jý©[·n‹/®««»rå Ûa@{çââ¢R©***¨Åòòr•J¥¾r­)Dh6r‹Ïd0ýÂl…Êå–á$Ž-³±±±ÿ/¡PxåÊ• ¨ÿ§¯®®V*•b±˜í0 ½“J¥NNNYYYÔâÅ‹% ÛqÙXWŽbE¡BÛ q¤%88¸¡¡aÍš5yyy×®][²d‰D"ñôôd;.hïlll"##årùŸþyíÚ5¹\‰aÀBøßŸl.×®]Û¸qãíÛ·Åb±¿¿ÿâÅ‹{ôèÁvPD¥R%''gffBBCCcccÛá ûÀ $Ž@ .U-H€$Ž@ G ‰#ЂÄÑÍÍÍr¹|È!#GŽ”ËåHþü¹OCCƒæÊC‡…„„x{{GGG?yò„›qVVVÆÅÅùûû2dùòå•••œjÞªªª+VøùùùúúΞ=ûáÇÜɘÍÒ†/^ìׯŸÖÑ˵Pû6ñýs‚éž^Cß1Ã@ÕýõWtt´¯¯ïСC5OžŒ5¾Ö7—z·mÛ&Ó0xð`&w¹Å“+‡z»£Ú’’’üýýOŸ>}úôéÁƒùå—-+--]±b…T*­¯¯W¯Ü½{·§§ç?üpîܹ‰'N:•›qΚ5kÔ¨Q—.]ºtéÒ¨Q£fϞͩæ;wî¨Q£Î;wýúõ¨¨¨àà຺:ŽÇÆd̦·auuupp°ÖQÁµP™ü6ñÍs‚µxza }ÇŒ¥«V('NŒŠŠºzõê¥K—†ÃØ^«Zúæ2Pï§Ÿ~:kÖ¬sÿ•••ÅXÕúNÌêíGº½¼¼8@-îß¿ßßß_¡PhKKK“þ—ú ¬P(·nÝJ-^ºtI*•>~ü˜kq655yxxìÛ·ZÜ»w¯‡‡GSSGš·®®N&“:uŠZ¬ªªòððP/r36&c6K.]ºtܸq–NM •Éo?Ð<'˜Q‹§ÂÐwÌ0Pu~~¾T*½qãµøÍ7ß¼ùæ› …‚±Æ×úæ2SoTTÔ¶mÛ´V2Pµ¾“ó‡zû„KÕtåçç×ÕÕP‹ååå¹¹¹ZÅæÌ™“——·gÏÍ•>|òäÉØ±c©E??¿¼¼¼ž={r-NBˆP(ìÔ©õÚÖÖV(dè¡vQQQÿþý}||¨E;;;[[ÛŠŠ .ÇÆd̦·áñãdz³³ccc¹Ü¤L~›øæ9ÁŒZ<½0†¾c†™˜!q¤«¸¸X ¸ººR‹nnn ¬¬ŒÎ{>|(‰rrrÆïãã3cÆ ËÝèfJœ;v;vlzzz^^^^^ÞŽ;Æ×±cGK·-ͰÝÝÝüñGGGGj133³¾¾ÞÛۛ˱1³‰mXVVŸ˜˜Ø¥K.7)“ß&~0åœ`]aè;f¨Z"‘¬]»V$UTTdggoÛ¶-44T(2Pu‹ß\êU*•EEEééé^^^>>>aaa7oÞd¦j}'Ž꼇𮦦&±X¬î …¶¶¶UUUtÞ[WW§T*ÓÒÒ–.]ºcÇ‘He¡‡L‰“W\\}úp-N¥RÙÜܬP(¨Åæææææf¥RiÁf5&ìæææ˜˜˜éÓ§oܸÑÉɉ¨LɘM‰sÞ¼yGÿkÆ „ƒFGGs0T&¿Mü`Ê9ÁºÂÐwÌ0Põ•+W,X >[VWW+•J±Xléªõ}sØå£GN˜0¡ººšZ|öìÙÓ§OÝÝݨZßI€#‡:ïáR5]666‘‘‘r¹¼OŸ> …B.—GFFRÏÍedd8;;=Zß{;uê4iÒ¤•+W®ZµÊÞÞ>99Y&“ùûûs-ÎÀÀ@{{ûØØØèèh•JµuëV‡aÆq¤yÏŸ?_RRâáá¡>/B$‰‹‹ gc»yó&c1›Ø†êJKK !}ûö‹ÅlRƾMü` µy†cÆÒU'&&®Y³fÊ”) _|ñ…D"ñôô´ô^øæZz—‡ºzõê¥K—~øá‡"‘(%%eÀ€¾¾¾ÀÒUëûI‰D\8Ôy j„˜˜˜çÏŸÇÄÄBBCCçÏŸO­ßµk—D"1B–-[fcc³fÍšššš¡C‡nÚ´I$q-N‡ï¾ûnãÆ3gÎüî»ï8Ò¼÷îÝS©T ,Ð|Wrròøñã9i)“1s¹ Í*“ß&~Ð×Ú< ÃÀ1c骷oß¾qãÆwß}W,ûûû'$$tèнÖÇÒõÚÛÛïÝ»711qÁ‚666AAAK—.Ìì²¾“Gu~¨0!Ѐ{€$Ž@ G ‰#ЂÄhAâ´ qZ8-H€$Ž@ Gàº1cÆ|ñÅlGíNssó–-[Þ}÷]Ÿ1cÆ,^¼øÁƒÔŸ=z$“É*++ÙŽQgÞ@â ­ªª*<<<##cäÈ‘iii³fͪªª ;vìÛ¡°É†í8G.—WVVþüóÏ...Ôš‰'&%%­ZµÊßߟíèXƒG°VOž<‰‰‰ñ÷÷ Z±bEmm-!döìÙ±±±ê2ß|óMpp°R©l±ð£G^ýõû÷ïÿóŸÿLII!„\¾|yÒ¤I 4hPLLŒúrOIIɬY³|}}ÃÂÂ~þùg™LVTT¤/°vååå?üðCll¬:k¤ÄÄÄØØØìÙ³‡Z¼qãÆäÉ“}||"##ÿüóOjå‰'&Nœøæ›o>\]²EÔ)èÒ¥KÇ0`@XXµ­ËÍYYY¾¾¾êò?ýô“¿¿¿Ï¢E‹JKKçÏŸ?pàÀ .¨·Üb`4Oƒ†!q«ÔÔÔ4mÚ4±Xüí·ß~þùç‹/&„Œ3æÌ™3/^¼ Š9rdâĉ/^¼h±0!D¥RÅÅÅ9rܸqÏŸ?ŽŽ–ÉdIII999›7o&„(Š÷ß_ ¤§§Ï;wãÆ†ckw÷î]¥R©Û³(‹½½½óóó©Å•+W~ðÁ;vìèÑ£ÇôéÓËÊÊ ,X@¥Œñññ¹¹¹*R*•ëÖ­KHHÈÈÈèØ±ãêÕ« ¦P(öìÙóïÿ{ýúõGŽ 1bÄ®]»\]]×­[§.¦˜ó•æií†k à¶Ñ£G§¤¤h­}úœ9sæÐ¡CR©´©©)$$D.—/[¶lîܹ%%%;vì „š›k´hÑ¢œœœ &|ôÑG¥¥¥¿üòKVVÖ† ºvíJe`ÉÉÉööö={öܱcGMMͤI“nܸ‘’’âèè8dȼ¼¼œœœ B222œGM§jWW×:lÞ¼yΜ9÷îÝKOO76xÝÀìììp¾³@âV`ÿþýû÷ïW/úøøìÞ½;==}íÚµ3gΉD#FŒXºt©ºÀ˜1cN:5qâDjQ((¬6yòä7nÌ;·sçÎ!!!Û·oÿøã?ÿüó+VìܹsÕªUÔ…ìå˗Ϙ1ÃÁÁæfÀuíÚõÀÛ·oÏÌÌLIIqssóôô}õêÕOŸ>íÝ»wuuullìøñã[;?k·fΜi``ðÇЫ 033ãr[òÿ»™™™ANNÎÑ£G¿úê+Š¢š!thH¡…Ñ?O¿øâ ñ–}ûöq8kkë6ޤñ_ÃÕÕÕ7n6l˜††Æ€fΜ™žžÞÈÑdß?ÐZU^^ÞÉ“'y<^bbbRRRQQÑúõëE"QdddÝ+++™Ž·­%$$$%%)++·à1·oßž””ôêÕ«S§NBnݺõüùs¦ ¡Z”©©)ý§uíÚ5z ]›[YYµq$oß¾%„ðx¼º/‰YMMM‡CQSS;{öl½‡jÒþô' þN¿kèС"‘¨‘¤¸»»BŽ;ÖÆ@û—@_‰ô–âââÈÈȨ¨(JâÂ?þ¼™™™œœœ““SVV–äKIII{÷î¥(ª¢¢ÂÏϯOŸ>jjjNNNqqqâ=~üxôèÑÚÚÚ***'Nœ ·WUU}ÿý÷}ôQß¾}<¨ªªJyýúuÝPéÚ Þ ¹ººzÆ fff***ƒ ©­­¥_¢Câóùªªª¶¶¶/^l$º® mذ¢(G)--mä,ââÊ•+ªªªÎÎÎéééï-BMM‚‚!äúõëRZCçª!thH¡…‰G ‘HDµËÄÑËˋҧOŸ{÷îÑ{~ûí·„}}ýâââÜ_ªž¥ BÒÒÒ8|¸òòò=zB444¾øâ‹M›6]ºt©²²’~•¾Ê8Žªªª––!ÄÚÚZü—Ëíׯ!dÏž=EM˜0®¯&L˜ ¬¬¬¬¬üèÑ#Š¢jjjzõêEêŸ Ÿ²iÓ&Š¢²³³ !7oÞ¿4oÞ¼ôôôÊÊʤ¤$BHß¾}éKO Bf̘AQTFFÆÈ‘#'OžLŸÑÞÞžrâĉ/^p¹\÷òåKŠ¢6oÞL³I‰cJJ ó«W¯(Š¢Ã““ËÉÉyôè~½}û–¢¨ÀÀ@·dÉ’†â¡êüÎ'ŽœEüQüþûïE]¼x‘NÄ*‚¡¡áàÁƒéÌ•âîîNý»Žmä\~ ³ Ghat-¦ªªÚ£G²²2©Ä±ñ_À’âªM^^~À€ô²¢¢b=ttt!={ö¤nh(q¼rå !¤[·nRÛýýý !âz¹Ùûã:@Û¨ªªºÿ~DDÄðáÃé+ëåË—âzCÜñ:räHBHdd¤¸™-//~)**ªî\ƒ¦_-..Þ¿ÿœ9s,,,è—Ž;F÷! >œÞçÙ³gâÄ‘¾¢itJ×PâxìØ1BÈ„ Ä[è=/]ºD¿äææV·¼õÆC5œ86rú£““£û…ŠŠŠê w"Ñtuu§OŸ^TTDý;qlä\GvÁàhݺu[±bEVVVHHˆäöÔÔÔŸþYMM-!!áüùóqqq„;w¾~ýšÞA$ ><==]² ¾téÒ£G¦OŸN8pàË—/=zÄårÿþûïâââÌÌ̾}ûNž<ùáÇ—/_:thMMÍÇŠ-##ƒBwuI¢[IéW?dÚòåˇ Ò»wï±cÇBÜÝÝ¥ŽÐÈGáääDß9lØ0333¦¿L€öåÑ£G[¶l‰ŠŠ’——·°°øî»ïbbbôôôjjjž‘Ò?ÔLQ!DüFBˆžž!¤¦¦¦¦¦†R[[+õ–†âiÞYèUzŸdq"Îùòòò<صkצž X‰#´–%K–|üñÇ[¶lÉÎÎo¤ó¹‘#GÒ‰‘™™™©©imm-Ý;Cáp8ëׯïÝ»·d-O7'ôìÙ“âää$''§¯¯O÷ÿÖÔÔž_¼ÛñãÇ !¹¹¹W¯^%„ 2¤î¡èf………“'Ož2eŠ‘‘QBBBii)!äܹs/^¼1bÄ®]»¾üòKñ…illLùóÏ?é©茊~éǬø}ŸbCè.…ØØØœœBHZZÚ­[·¸\®¹¹9Ý»ò矾{÷޲nÝ:55µU«V5XÝJ¯‘³´ø—"˹D²Gh-ÊÊÊ›6m*++£o¢½÷W©dcMü›˜F÷ÂHjêqz†³œœœ›7oB„B¡«««««ëÿû_BÈ!C¤š Þ»½gÁt€V2xðà/¾ø¢¬¬ÌÒÒÒÒÒrÀ€½{÷~óæÍ¤I“úôéCïÃápíííÍÌÌ*++'L˜ ¾ÝEÒ€>ÿüó/^8::Θ1ÃÍÍmÇŽü1ù§ª‰uuuýøãé^Š¢lmmÍÌÌjjj äàà°páBÉ«¸^tÿƒØ¯¿þjjj:uêTºîúüóÏmmm«ªª¼½½»wï>xð`77·òòòAƒ¹¸¸lذ¡¦¦fòäÉ ÅC¡ïÕÙ±cGll¬äy9K‹)Ÿ«¡¡Cbº¯ØFòž‘H$žÅ†¾ÇñéÓ§„uuõììlŠ¢RSS¸\nVVVÝ[¥¶¬^½š²bÅ zUII‰RPPðË/¿ÆVWWÓõÔ±cÇÂüÝwßBø|~bb"EQAAAtZZZô é²#ã(%Cj䣠þ¹%èÈ‘#LŸíQEEÅöíÛ ¤®®ÞµkW ‹ððpz`µø*ûã?úõë§««;{öì²²2ªs¥¥¥ÞÞÞ†††jjjŽŽŽW®\¡·———Ó­hüq@@Àüùó !óæÍ£(꯿þ¢; z÷îùÞéx¤ìܹ“¢¨ªªªµk×öïß¿K—.âéxÞ½{çããÓ»woUUU{{ûÿþ÷¿Ç“˜˜Ø§Oeeå~øú÷¨ê†Î"õQ4R[ÊX¡5^"©¡CCâ-Lª–¡oÝ#ƒc¦NJÑÓÓ;v,ÝçããCÕWsɘ8þöÛoôn...ݺu£oÖ9zôh#Uaaa¡••˜ŽŽ}Ÿ]#gdd|àþ²×³ }Ey{{B¬­­é[Ë@F²Ozõ^B¡ðêÕ«õ¾T^^~ûöí6.Z#ñ´tUCërppøê«¯$·ìß¿íÚµ:::—/_600¡¡¡r ww÷Áƒ×ÔÔ$''Ï™3gîܹ„k×®5ò--­›7o®_¿ÞÞÞ¾²²R[[{üøñ›6mzýúõÞ½{?|5òQÌ;·OŸ>=JNNn­ï¥  àääTïKÊÊÊ666í'€6ášò¸I€ö©ªªêæÍ›^¥Þ¿È!²?㵩û@k+..ÖÔÔäñxôphYH@&h)™ q™ q™ q™ q™ q™ q™ q™ q™ q™ q™ q™ q™ q™ q™ q”UqqñªU«lll¬­­¿ûŒ ¦#`¹üüü©S§êééõíÛwéÒ¥µµµLGÔN¡v€6ƒÄQVþþþ<ûöí …žžžåååLбqþQ÷%‘H4zôèW¯^9s&""â?ÿù¯¯/Óñ¶S¨ Íp(Šb:† ¼¼ÜÂÂ"""ÂÙÙ™RRR2tèÐ;wÒ«Ð Îÿ×?tî(Y]¹rÅÕÕ5++K__Ÿ7zôèÜÜÜ.]º0xû‚Ú Úé:†ìììXZZÒ«***JJJEEELÇÐQIf„Š¢¤ÚSSSõõõ鬑bccSZZz÷î]GGG¦co‚ììì›7o>zô¨  @AAAOOÏÒÒÒÖÖV]]½OÚ Ú G™ôíÛ÷äÉ“âÕóçÏÓ¿òëÝÙÄÄ„^ˆŽŽf:ð–‘™™i``Àt(ÛJôâÅ‹F¶ÈÉÉåææ&$$ <˜òøñcBHnn.ÓQËêåË—;vìøóÏ?Ø·oßÔÔÔFFFúûûO™2åÛo¿USSûð5©vª÷®Z½½OØûcÙ÷ï$86H$ŠŠŠÚ´iÓìÙ³ŒŒÚ-%%…éH[XïÞ½™…b[‰êF+¹eÊ”)ÁÁÁK–,Ù¶mÛÛ·o¿ÿþ{‡SZZÊtÔ2 HKK›:uê¶mÛäää¤^-))ùõ×_§L™2cÆŒ/¿ü²¥N*Kídllܤک©ÿ±?öïÌûwH›àåË—K—.}ñâÅÚµk¿þúk¦ÃèÀè¾i©{%uéÒåâÅ‹³gÏvvvîÑ£G``à´iÓZ°‡·UM˜0¡¡6?Bˆººúœ9s<==ŸŸ¯££Ãth줯¯ÿæÍ%%¥ììì•+Wnܸ±îý‚€Ú ÚG™<þœ¢¨E‹Inܾ}ûرc™  úúúž?žÃáŒ=zûöíÚÚÚ­zÆ'N̘1c̘1úúúaaaß~û-ÓŸA{„Ú Ú&oy&&&,UýâÅ‹Ž5\·sêÃKÔø‡ãÆKIIÙ³g‡Ã™7ož©©ééÓ§Û¡@ûj'hchqé·HÍÎM …çÏŸˆˆprr"„,Y²dÁ‚B¡PQQ‘éØÛ£;wîȲ›¦¦fGî@Câ„ü»•Qj®—ËURR¢—•••¹\ ­kÐï¿ÿ.ËnÆÆÆH cAâ裡¨8qâD@0hÐ BHHHˆ‡‡š²iÓ&¦ChH@&!!!ýúõ£G]]ÝË—/3´5t6!ÿ~vKÝ~ê’’[[ÛÉ“'çåååååMœ8ÑÖÖ¶¤¤„騠M!q€ÿMÄÍùGÝQÕ.\(.. ÓÕÕÕÕÕݱcGQQQtt4Ó@›BâÿÓÈs\D"QuuuMM ½Z]]]]]-‰˜ÚGx?777 I“&Ý»wïîÝ»“&MÒÔÔ5jÓquÉÉɹ¹¹„¸¸¸eË–:t 7t\Hàý455¯\¹BQ”››Û˜1c8ÎÕ«W555™Ž«½;zôè¸qã?~üúõë äççïØ±c×®]LÇÐLU 2áóù§Nb:Š&22Ò×××ÙÙùСC†††¸xñâÖ­[.\ÈthÍG€ÖRPPààà@¹s玣£#!ÄÄÄ$//鸚 ‰#@kéÕ«WlllVVÖõëׇN¹y󦞞Óq4G€Öâíí½gÏžO?ýÔÔÔÔÊÊj÷îÝk×®:u*Óq4îqh-...111–––\.×ÒÒò矶³³c:.€fBâРÄËJJJ¦¦¦eeeeeeFFFô«:::LÇÐHZ˜½½}ã;¤¤¤0#@s qha—.]b:€VÄ …õìÙ³¡—„BaHHȪU«˜Ž 98´–·oßîܹ333S¼¥¨¨(++‹©Ä155•ÃáÔÝ.~@9ýªÔ*öÇþØ¿Þý;'$Ž­eÍš5‰‰‰#FŒ8qâÄ´iÓ***nݺõÓO?1±±qã·WJýG|ï?Hìý;óþG€Örûöí-[¶899½zõjĈÖÖÖýû÷‰‰±¶¶f:4€æ`ÿàÉÉɹ¹¹„¸¸¸eË–:tH$1t ÚÚÚ„SSSº©ÏÑÑ1&&†é¸š‰å‰ãÑ£GÇ÷øñãׯ_/X° ??ÇŽ»víb:.èŒ;VQQabbBµÎÈÈ(//g:.€fbyâéëëëììchhxàÀàààÓ§O3t Ë–-;þüñãLJ öôéÓÏ>ûlîܹ#GŽd:.€fbù=Ž„;wî8::BLLLòòò˜Ž :›Û·o—••ijjFEEEGGkii}óÍ7LÇÐL,O{õê«¡¡qýúõéÓ§BnÞ¼©§§Çt\ÐY((((((Bø|>ŸÏg:€ÂòÄÑÛÛ{Ñ¢EæææVVV»wï [±bÓq@§ÐÐèé»wï2@s°B¡é(š‰‰#=_³Þ¾}+¹ZRRÑ£G47@ÅÎıgÏž ½$ CBBV­ZÅtŒÀ~¶¶¶R[äåå·lÙÂt\ÍÄÎÄQìíÛ·;wîÌÌÌo)**ÊÊÊBâÐþq8œôôt¦£ø u{?tuuÑÜËÇ5kÖ$&&Ž1âĉÓ¦M«¨¨¸uëÖO?ýÄt\ЇC¡(êÅ‹LÇÒñññ ½”••Eê šè(Xž8Þ¾}{Ë–-NNN¯^½1b„µµuÿþýcbbš\ Dç‹„Š¢˜Žåƒxyy‰—+++E"‡Ãáp8"‘ˆÂçóÏž=ËtŒÍÁògUWTThkkBLMMé‘ÔŽŽŽ111LÇÿBçUÔ?˜çC=üǶmÛ öïߟ˜˜˜˜˜xèÐ!CCCsss¦h&–'ŽÆÆÆÇŽ«¨¨011¡o6ÊÈÈ(//g:.øÉ”‘éXZ^xx¸¿¿¿½½½‚‚‚¼¼¼­­m``àÉ“'¥F[t,O—-[vþüùãÇ6ìéÓ§Ÿ}öÙܹsGŽÙìVUUYZZVTT0]2€Žó¶¦Œ´ììl555É-***ªªªM:Nã5Ï?þh"aèСL—X‹å÷8ÚØØÜ¾}»¬¬LSS3***::ZKKë›o¾iÞÑ BCCKKK™.@&øÂt maÈ!aaa?üðƒ¦¦&!¤¸¸844ÔÒÒR|7§,Þ[ódff:;;O™2…^åñX^±ƒØ_¿((((((Bø|>ŸÏoöq"""vìØÁti:*Ö |i’   iÓ¦999õë×’œœ¬¥¥uøðaÙ KÍ“™™iggçààÀtq€ýXž864zúîÝ»M=”—————׃&MšÄt±:’NÕÄ(¥GÑÑÑ/^LOOçr¹Ó§O9r¤¼¼¼ìG¥æÉÌÌìÑ£GeeeMMªª*Ó…6cyâ.^ …Ož<9pà€§§gkŸ×ÄÄ„ÍôÐ2$gPg öª–ÈÈȈBOâÝAgdlž´´´®]»êè褥¥BLMMMMMé—222!Òû!E$egg8pÀ××W$õï߯  hhºv¢g™h*–'ŽR³ì:99™˜˜,Y²ÄÓÓ³UÞÀ¾J¹wïÞL‡€Bu˜µ`¯tM7ÝÝÝçÎëëëëîî^ï-XEäççs¹\›½{÷VVVnܸqÞ¼y.\”Ó§€Nˆå‰c]}úô …LGÀN¹WZRBB=B%))©µÏ¥¯¯Ÿ˜˜(^ݼyóСCããã]]]™þ€…Xž8JM–VRRÑ£G<+ e!e”$®a’““»víª¯¯wæÌ33³©S§¶Þ©ÕÔÔtuu ˜þ €Xž8ÚÚÚJm‘——ß²e Óq°Dç+-»£GíÞ½›¢¨ XZZîØ±£¸¸xáÂ…-uŠèè興ˆ#Gލ««BÞ¼y“——×·o_¦‹ìÄòÄ‘~ZŒ$]]]47|841Ê"22Ò×××ÙÙ™~Øà.^¼¸uëÖO£¢¢´µµGeoo¸lÙ²o¿ýVNN.,,ÌÜܼ¡ %:¡P¨§§—­¢¢Ât,- ??ñâÅ111êêê&Lؼy³œœÓA4;Çøøø†^ÊÊÊ"uÍ€ŒÐÄØ$ôôŠwîÜqtt$„˜˜˜äåå}ø‘9ÂçóG¥¦¦vìØ±Í›7/Z´ˆÇã9::.[¶¬IŒ3â½H¯_¿^½zuII Ó‘¶L¡D"ÑèÑ£»téræÌ™ââbooïêêê°°0¦Ch2v&Ž^^^âåÊÊJ‘HD?ÜL$Bø|þÙ³g›wd ŒI„Î MŒÍЫW¯ØØX ëׯOŸ>róæM==½¦§nÍsáÂñrïÞ½÷îÝËtYe%õ‡D?vRjŸõëׯY³†éH[²P×®]{øðaVV–¾¾>!dß¾}£GîÒ¥ Ó±4 ;ŸUýðÛ¶m300Ø¿bbbbb"Ý[dnnÎt€Igx¨t+ñööÞ³gϧŸ~jjjjeeµ{÷îµk×¶êà˜á½HEýùçŸLGÚb…JMMÕ××§³FBˆMiii3EÀ8v&Žbáááþþþööö òòò¶¶¶'Ož”m uqþ”±Ù\\\bbb"##<Èår---þùç6xACRSSÅË’ÝÙm¹,‰þë¢_mhÉgá0s3Ê(^¥ºwïž——'ÞøøñcBHnnnû‰ËÍ[î„ØÙU-–-5 ®ŠŠŠªªª††Ó¡´_è•nA\.7!!ÁÎÎÎÜÜ\II‰Á`ŒÅË’ßo[.K¢³FúÕ†ö/--e<æf”Q¼J/Œ9ÒÀÀ`À€÷ïßûöí÷ßÏápÄEk1c¹yËË[‡ &n_,.. µ´´ìä?ê…&ÆWZZ:þ|ggç™3gBf̘áëë[VVÆt\ ce Üx¡ºtérñâÅêêjggç… ®^½šÇãÑ3(t,,Oƒ‚‚²²²œœœ&Mš4iÒ$''§ÌÌÌ   ¦ãh_$óE¤Œ-(88øÝ»wqqqôÄ+K—.}üøñÖ­[™Ž‹Iôߘ䯦#j¦Â™3gêéééëëÏœ9³   ñB_¼x±¸¸øÉ“'ǯ®®–lnW„B¡†††Ô/œƒòù|uuuww÷ÌÌL¦cư}šé¸Zž‘‘çß22åÉ“'...'Ntuu0aBnnîwß}7xð`kkkggç0 ¼ŸäœAu[æ.\¸P\\¦«««««»cÇŽ¢¢"f{¢?¼P ¡Ÿ®nffF¯jjjvëÖ 3òtZììª+(( ïð½s玣£#!ÄÄÄ$//é¸Z‡ÃIOO722oAÊÈ ­[·êêꆅ…©ªªîÙ³ç‹/¾PSS£7ªªª2 Ȥ‘‹H$UWW×ÔÔ(((Bª«««««E"Ó!P¡baa¡®®~ïÞ½áÇBòóó³³³qc§ÅòÇ^½zÅÆÆfee]¿~þ‹¿yó&ýã €5軌Œ:ÊÜx¬÷øñãiÓ¦YYY™ššúûûÌ;wÔ¨Q–––&&&Ì>uZ„›››††Æ¤I“îÝ»w÷îÝI“&ijjŽ5Šé¸Z…’’Ò¬Y³fÍšsûöío¾ùfàÀŸ~ú)Óq3Xž8z{{ïÙ³çÓO?555µ²²Ú½{÷Úµk18XC<‘/EQéééL‡ÿSRR"ž,–žýÛÄĄ頠%ijj^¹r…¢(77·1cÆp8œ«W¯jjj2WkÙ¾}û„ ¼¼¼ÜÝÝ?úè£ .´ý$”ÐN°¼«ÚÅÅ%&&&##ÃÒÒ’ËåZZZþüóÏvvvLÇð¡êNä í †N³ŸÏ?uêÓQ´Šº!q¹Ü­[·vò§eýU›‘‘QBB!ÄÜÜY#thõ|‘šÈ·C?ÿÚ3–·8–––úùù]»v¢¨”””3f¬[·NEE…éК¦ñé%sGdíATT”¾¾~C«‹-b:@€æ`yâüîÝ»¸¸8zHõÒ¥KW¯^½uëÖµk×2À{Hu@¿7LOOïÝ»7ÓQ!„=|ø°¡U‚Ä:,–'Ž7nÜ ¡oN'„XYY-_¾|õêÕH¡=«{Ï";– .0@«`yâXUU%õL$]]ÝÚÚZ¦ãx?q²ˆ±/ÐN°|pŒµµõÁƒÅ“²–””„††ÚÚÚ2@=Ä_È¿›¥Æ¾0…å‰ãªU«îß¿ïêê*‰&Ožìè蘗—Àt\ÐII>ì«îö†¦ïÆ(ih'XÞUÝ­[·sçÎ]¸páÙ³gjjjsæÌqttÄüjÀ©ü^m|¬4@»ÂÚı¢¢"%%¥k×®†††ãÇ'„ˆD¢ÒÒÒœœœ#GŽ,_¾œé¡S£óņš¥ú¦‘Vv8ñññï€ e ƒbgâøäÉ“¹sçæççBú÷ï¿gÏž   7n…BB‡ÃAâL‘ñ‰/H;4///ñree¥H$¢ïF ï·æóùgÏže:F€æ`gâ¸uëV]]ݰ°0UUÕ={ö|ñÅjjjôFUUUCCC¦j¼°n#î\d1ñ¬±±±[¶l ²¶¶æp8<077g:@€fbçÝ~?ž6mš•••©©©¿¿AAÁܹsGeiiibb¢¤¤Ät€ÐñÔ;¨EòUJ‚Ô‘#vZáááþþþööö òòò¶¶¶'Ož|ûö-Ó¡4;[KJJø|>½LÏþmbbÂtPÐQI_©›6”J½Qª{©dg­¦¦&¹EEEEUUUCCƒéКƒ-Ž„ †Ô¤$O²WºîšsXiÈ!aaaâöÅâââÐÐPKKKLÌ ;[š¤IC˜éžèºtKέƒ¾i M›6ÍÉÉ©_¿~„ääd--­Ã‡3@3±6qŒŠŠÒ××ohuÑ¢ELíE½Ó+ʾ?©3ðY#ˆõèÑ#::úâÅ‹ééé\.wúôé#GŽ”——g:.€fbgâhdd$ÕXw• q„R÷öG‚›áß,--uttììì*++‘5@‡ÆÎÄñÂ… L‡ƒ,­ƒõNÇ]oŽˆ”¤”––úùù]»v¢¨”””3f¬[·NEE…éК#H S“J ÙM<¢Eò¹ÒL‡í]ppð»wïâââäää!K—.}üøñÖ­[™Ž  ™8üÿà˜F’HÉ|)#ÈèÆ‹/¦'#„XYY-_¾<66–鸚‰]Õ²k¤ë™`ÚEø0UUU]ºt‘Ü¢««[[[Ët\Í„GBþ錖܂&FøpÖÖÖ¤QM))) µµµe:.€fbg‹c|||ã;ØÙÙ5õ˜555ááá'NœPQQqss[¼x1¦ðe+ ކ–²jÕª©S§ºººŠD¢É“'?}úÔÀÀ`Ë–-­q®ªª*;;»?ÿüSYY™érk±3qôòò/WVVŠD"ºõˆþÝÏçóÏž=ÛÔc ‚Ó§OBV®\©  àííÍtA¡%¡WZ\·nÝÎ;wáÂ…gÏž©©©Í™3ÇÑѱ5žkUPPZZZÊt‰€åØ™8ŠgmŒÝ²eKPPµµ5‡ÃyðàA@@€¹¹yS( ;æïïïääDñõõ^^^x°!; ‰ZÉ¡C‡>ùä“ñãÇ‹·TTT¬Y³fÛ¶m-x–ˆˆˆ;v0]VèXž÷„‡‡ûûûÛÛÛ+((ÈËËÛÚÚžæÖVµqãÆ¯¾úJ²‹£¦¦æ?þhÙ³xyy¥¤¤=z”éâû±³ÅQ,;;[MMMr‹ŠŠŠªªª††F“Ž“““ÃápÄsjèééq8œ‚‚‚†ö711!„DGG3ý´ŒÌÌL¦ChaFFFôBzz:!äÅ‹LGÔØ÷5±ƒŸŸßêÕ«ÿúë¯åË—óxÌW¹tí”’’Ât Ð!1_‹µª!C†„……ýðÚšš„âââÐÐPKK˦Žk …ÊÊÊâŽi.—«¤¤T\\ÜÐþì«”{÷îÍt-CÜ+ýâÅ ÖJŒ}%bANïîînkk»`Á‚¤¤¤;vHÍÎÓöØW;@[byWuPPPVV–““Ó¤I“&Mšäää”™™ÔÔãhhhTTTˆçÔ‰D•••Mm¶qþ^ih{|>ÿäÉ“ZZZ&LxïœíË[{ôè}ñâÅôôt.—;}úô‘#GÊËË7õ8:::EéèèB )Š÷\C{†/Ш©©íÚµkïÞ½ßÿ=Ó±4ËGBˆ‚‚‚¥¥¥ŽŽŽ]eee3²FBˆ±±±––V||üرc !·nÝÒÖÖæóùLƒ”÷óÏ?«ªªÒËgþüùæææ—/_f:.€fbyâXZZêççwíÚ5Š¢RRRf̘a``°nÝ:•&‡Çãyxx‚^½zÕÖÖ öpŸ;Ô…éqiii]»vÕÑÑÑÑÑ‘ºMSWW×ÃÃ隉å©Oppð»wïâââ !K—.]½zõÖ­[×®]ÛÔCùøøTUUùøøBÜÝÝ.\Ètá@ž7 í„»»ûܹs}}}ÝÝÝëÝ#T ƒâ°û_©££cHHˆ••UÿþýŸ¹ñ¼#¹'½ÚÎ Õ ì+QÇ-TEEÇ“——¯ªªªwFc_ímŒå£ª«ªª¤&¿ÐÕÕ­­­e:.h’¥eù ÄîŸIÐ~(++Ó·SO›6Máß*++çÌ™Ãt€ÍÄò®jkkëƒnÚ´‰^-)) µµµe:.øP’m‡´8J67´™òòòÝ»wBBBB$_ÊÉÉyöìÓ4ËÇU«VM:ÕÕÕU$Mž<ùéÓ§[¶la:.h‚ÆsĆz¢Å»!w„¶WSSC?”ˆüót"1.—»fͦh&–'ŽÝºu;wîÜ… ž={¦¦¦6gÎGGGñ` «›2J¥€RI!&25QWWßµk!döìÙô;°ŸöìY¦ch–'ŽºººLGÑIM¯Ãt8ÃÇé…ØØØ-[¶Y[[s8œ˜››3 @3±üV›ààà 6\¼x1++«@ÓquRMŒ˜ß ÂÃÃýýýíííäååmmmOž<ùöí[¦Ch–·8zzzŠD"©íxVu#¤RFŠ¢^¼xÑ»wo¦ãèx²³³ÕÔÔ$·¨¨¨¨ªªjhh0aåVª]ayâÍt¾´¸!C†„……ýðÃôø¼âââÐÐPKKKÜøŒ“êGbG·+ ÕÞ°räHyyy¦ãÆÊGZ³²PŒcyâüîÝ»¸¸8GGGBÈÒ¥KW¯^½uëÖµk×2“ÐÄÐfÆŽËtïÁÊ‹•…bËÇ7n„„„èêêÒ«VVVË—/_½zu§M‘2´%kkëz·ãáUЈó*6ÝtËÊBµ+,O«ªªºté"¹EWW·¶¶–é¸Úz¥.^ …Ož<9pà€§§'Óqý +ëVªeIfW¬ù”XY¨ö†å‰£µµõÁƒ7mÚD¯–””„††ÚÚÚ2WÛÁõÀ ©G :99™˜˜,Y²ÄÓÓSYY™éèùw_kª Vª•°ò“ae¡Ú–O¾jÕªû÷ﻺºŠD¢É“';::æåå0W«ãüƒ¢(\BíGŸ>}„B!ÓQüÔ`ì¨+XY(€öƒå-ŽÝºu;wîÜ… ž={¦¦¦6gÎGGG.—Íé2~^´ROˆ)))‰ˆˆèÑ£G;inh*v&Žñññ’«úúúúúúôòíÛ·Iþ#v@ÊÐÞÔ½1F^^~Ë–-LÇÐLìL½¼¼ÄË•••"‘ˆî·‰D„>ŸöìY¦cl1¸ Ýºté’Ô]]ÝöÓÜ(5Ë;F¡²²Pí;;mþcÛ¶mû÷ïOLLLLL}äÈ‘òòò­}^BHttt³`ddD$:¹^¼xÑFY}233<; ÕiKÔ¡eddœ>}z̘1|>_(®X±"&&FCCcþüùÓ§O—ñ 999GWW—^ÕÓÓãp8’ûˆD¢ìììøúúŠD¢þýûoذaÀ€ “®RRR9/[;@YY(I¬,´7,O ! cÇŽmã“6^)7®}öJ÷îÝ›éP¨ÎX"f25ÛãǧL™bdd4fÌBÈÎ;¯^½:wî\•ÐÐÐnݺ¹ººÊr¡P¨¬¬,î˜ær¹JJJÅÅÅ’ûäççs¹\›½{÷VVVnܸqÞ¼y.\º½[ìCj§ŽŽ}yú¦¡í±|XÆÄQCC£¢¢B$ѹ£H$ª¬¬”Û§¯¯Ÿ˜˜(^ݼyóСCãããe -±}„B!³1à‰/ìfhhO/ÇÄÄ :TüRbbbÏž=e<ÇóððIII ÀÃÞ¦1**Š~gooŸ››»lÙ²;wîÜ¿ßÇÇÇÜܼ¡»t¤42ʘ’ÀôÇÙ4¬,@ûÁòÇ·oßJ®–””DDDôèу©ç¾ W 3ðððضm‡ÃÉÈȸÿþܹs !"‘(>>~ïÞ½ugðn„OUU•!ÄÝݾQ’räÈ>Ÿ?jÔ(55µcÇŽmÞ¼yÑ¢E<ÏÑÑqÙ²e²ôòrè4+ Ю°—•…`ËÇK—.ImÑÕÕmËæF41tBgÞ¼yóæÍ“ܸhÑ¢ 6´öÍÓ­Šå÷8.]º´ç¿UWWϘ1£µÏ‹'¾€##£öœ5²²eŽ•…`;[ËËËwïÞMIHH ‘|)''çÙ³g­zöÔÔTTUÐαr”1+ Ю°3q¬©©?¬O¼@ãr¹kÖ¬iÕ³3ý¼+ó*V  ý`g⨮®¾k×.BÈìÙ³éø@,¿Ç122R¼\[[Ët8;[ !§OŸ3f ŸÏ …+V¬ˆ‰‰ÑÐИ?~“æÂhª;wîȲ›¦¦&îl€Ž…‰ããǧL™bdd4fÌBÈÎ;¯^½:wî\•ÐÐÐnݺ¹ºº2#°Öï¿ÿ.ËnÆÆÆH cagâøÃ?¸ººnݺ•BQÔ©S§fÍšE?q¡ººúðáÃH õlÚ´‰éZ;ïq|ôèÑ7ß|C/§¥¥Œ=š^µ°°g ²`gâXZZ*''G/ß¼ySOO¯OŸ>âWËÊʘ ãagâhhhO/ÇÄÄ :TüRbbbÏž=™ ãaç=ŽÛ¶mãp8÷ïߟ;w.!D$ÅÇÇïÝ»×ÛÛ›é:Ö&Ž%%%Ç÷îÝwß}çääDY¼xqLLÌĉ1´ªwïÞÉòXjwh?Ø™8r8œyóæÍ›7Orã¢E‹6lØ€jZÛŒ3,--§M›ÖÐ1wîÜùùçŸ V­ZÅt°MÀÎı^FFFL‡Â±cÇ~üñlj'šššZYYõéÓGCC£¶¶¶°°ðÉ“'7oÞ¬­­õööÏöÐQt¢Ä m(((x{{Ïž=;66öæÍ›—.]ÊÏÏWPPÐ××2dˆ¿¿¿­­-‡Ãa:L€&CâÐ*”””ÜÝÝÝÝÝ™ Å°s:hqH@&H@&H@&HZËĉ¥¶”””̘1ƒé¸š £ªZXyyùîÝ» ! !!!’/åää<{öŒéš ‰#@ «©©IOO§—Å 4.—»fͦh&$Ž-L]]}×®]„Ù³gÓ ì€{Z‹™™YZZÓQ´´8´–¸¸8%%%>ŸÏt --Ž@„B¡††FYY™äƃòù|uuuww÷ׯ_3#@‡´mÛ¶+W®üþû  ™ÐâÈr‡^ (ªÞ^¿~½zõê’’É{öìùþûïwîÜùñǯX±âûï¿¿}û6ÓEèxÜÝÝ)Šú믿¤¶§¤¤0@s qd3‡#Î%—ÅÖ¯__w€§H$Ú¸qcPPÐìÙ³ !ŠŠŠ#FŒøûï¿{öìÉt:˜èèh¦ChIHYK*S¤(ªnîpãÆ ñÆÔÔÔÌÌLñÄÅNNNéééÈš!++«‘íJJJC† a:F€&@âÒRSSåääîܹ3nܸ—/_ÚÙÙ-[¶¬wïÞLÇÐñlÚ´‰î•æp8G$q¹\%%%úÕÞ½{Ÿ:uŠéšƒc@Ú»wïD"Ѻuë¶nÝ#''7}úôòòr¦ãèx¾øâ‹=zìÛ·/111))éðáÆ††Û¶m{øðáÇ‘5@‡ƒÄ‘µè¾iñj½÷8ÖKEE…¢¨Œ5ÊÖÖ6***///&&†ét<¿ýö[`` ƒƒƒ‚‚dz±±  c:.€fBW5›IæŽ2f„===Bˆ™™½ª©©©««›™™Éti:žüü|É-***999LÇÐLhqd9겿ÅÂÂB]]ýÞ½{ôj~~~nn®±±1ÓEèxlllÂÂÂÞ¾}K¯‡††š››3@3¡Å¤)))Íš5kÖ¬Y»víÒÐÐX±b…©©é§Ÿ~Êt\O``àŒ3œœœúõëGINNVSS;tèÓq4GYoÙ²%66–¢(++«åË—÷êÕ«5N$ õôô²³³¥z¸ÚÒöíÛy<ž——Wqq±‹‹ËÖ­[åää˜  ãÒÓÓ;{öìåË—ÓÒÒªªª<<<>ûì3ñ¨ê–RSS~âÄ 77·Å‹KÞß Ð‚8ÊÊßßÿÙ³g@]]=,,ÌÓÓóܹs]ºt‘ý’Uy“žãÒÚìíí¥âár¹[·nݺu+½úâÅ‹¶Œ€MÒÒÒ äêêwæÌ™âââ©S§r¹-y›@ 8}útpp0!dåÊ• ÞÞÞL—Ø ÷8ʤ¼¼<66vÙ²eæææaaa¹¹¹·nÝ’ýô f±zÛÖ¯_ÿÑGíÛ·éâJ5jÓ! P±D,(ÔÑ£GÇ÷øñãׯ_/X° ??ÇŽ»víjÁS…ÂcÇŽùúú:99999ùúúþòË/"‘ˆé¢ÿ‹‰‰Ig;5ÎËúS3Xdf!q”Ivvö€,--éU%%¥¢¢¢–=K@@EQþù'ÓÅ€–éëëëììchhxàÀàààÓ§O·à)RSSËÊÊÄrpp(,,LNNfºèÀN誖Iß¾}Ož<)^=þ|yy¹……ECûKýIMM566–ÜhllÌápêª\QQAý€)<ÏÃÃC ôêÕ«¶¶V xxxðx¨Û U r‘ÉóçÏ)ŠZ´h‘äÆíÛ·Ó?ñäããSUUåããCqww_¸p!ÓkqÐy ²À¨j G G G G ÇV\\¼jÕ*kkëï¾û.##ƒéˆZLUU•¥¥eEEÓ|šš@ðÉ'Ÿ¸¸¸ÖÌ*ÀŽoGŒÅ×QÛ»uë–©©©øo£µ/üÑDÂСCÛæ¼´ßÿÝÕÕÕÂÂbÞ¼y¯_¿nƒSK>ŸV,88¸ ŠüöíÛ+VØÙÙ}òÉ'+W®|ûömÛ|ÔEEE~~~vvv...[·n­­­mƒóÖ­â:]ˆÑPÕ*{<,DA‹Z°`ÁgŸ}G?¢ÐÉÉ©¬¬Œé Z@~~þªU«ŒËËË™ŽåƒlÙ²ÅÎÎîêÕ«W¯^:tè?üÀtD-€5ߎ[¯£¶WRRâää$ù·ÑÚ—@@@Àüùóãþß6ç¥(ê—_~133ûí·ßâââÆ7eÊ”68u~~~œ„ØØØ!C†\¾|¹ Š<þüÏ>ûìöíÛ·oßþì³Ï¾ûî»6(ommí_|1eÊ”„„„¸¸8— 6´öyë­â:] †ÑPÕÚ¤x؉cK*++311¡« ТЋ‹ûõë'^í¸víÚeüšTVV2äĉôêñãÇíììjkk™Žëƒ°æÛcëuĈeË–3Fü·Ñ—€§§ç?þ(µ± Î[[[;|øð½{÷Ò«·oß666ÎÊÊjã«><<ÜÇǧ Š, ûõë÷믿ҫǎëׯŸP(líóÆÇÇ÷ë×/??Ÿ^½{÷îàÁƒËËË[ï¼õVq ®Ãh¨jmR<-õ±·+èªnIÙÙÙ °´´¤WUTT”””ŠŠŠ˜ŽëCyyy¥¤¤=z”é@>TjjjYY™ƒƒ½êààPXX˜œœÌt\„5ߎ[¯£¶sïÞ½%K–ˆ·´Á%™™Ù£GÊÊÊÒÒÒ¶>¾ .=eeeŠ¢6mÚ4lذAƒmß¾=??ÿÆmvÕïß¿ßÍÍ­k×®móQ—––~ýõ×cÇŽ=zô×_]ZZÚÚçUVVÞ¿MMÍôéÓׯ_ïåå%''§ªªÚƵkC§cª’ïTÿ\xLб¹ººÞ»w^VQQ!„Ѓ@?ýôÓ={öhii1`ËŠ5ttt(Š***¢û’ )Šw.@ûÁ‚ëˆY‰‰‰iiioŸO¯ª««ëêê¾~ýÚ¢ Š\QQ½{÷nñ–Ö®m®_¿þîÝ»U«VÑ­\þþþüñG\\œ¡¡ak—·W¯^ûöí£—óóókjjzõêEi³?­†>^zôFÛWòêŸ Z?ÇSû—Ë­©©ñññ™6mÚ¶mÛ:î;©B1NK266ÖÒÒŠ§Woݺ¥­­-þOí;®#fy{{GÿcëÖ­„S§NÍ›7¯µ/èèèÏ?ÿ\|Ü›7oòòòúöíÛ—^ÿþýUUU=zD¯åææöêÕ«m®úË—/+**ÚØØˆ·´öyE"QMMäŠ555"‘¨µÏ[PPàéé)‰‰ÑÕÕm›¯XRC§cª’ïTÿ\ÐâØ’nܸ‘››Û¯_?ñ_!„Ïç‹ ³x<ž‡‡‡@   WAû‚ëèÃéèèˆ?®üü|Bˆ‘‘‘²²2!¤U/{{ûÀÀÀeË–}ûí·rrraaaæææÖÖÖ§µ/=EEů¾úÊßßÍš5jjjÛ·o711±³³“““kƒ«þæÍ›C† ‘ü¥ÝÚµÍðáÃÕÔÔ–,Y2oÞ<Š¢öîÝ«®®>lذÖ>¯ŽŽNqqq``àâÅ‹óòòBBB/^,''GZùOKJ#Åd¤’ïTÿ\ØY*¦<þœ¢¨E‹Inܾ}ûرc™ þÇÇǧªªÊÇLJâîî¾páB¦#i¸ŽZU«^jjjÇŽÛ¼yó¢E‹x<ž££ã²eË8NkŸ—¶|ùr·víÚwïÞÙÛÛ‡††Ò MœúÖ­[_ýu[~Ôêêê‡Ú¶mÛìÙ³9Ž••Õ¡C‡ÔÕÕÛ ¼?üðÚ5kæÎ«££ãïïÿå—_¶AyëjètLUòçŸ ‡bñSq å°ê6h=H@&H@&H@&H@&H@&H@&H@&H@&H@&H¡ÉÖ¯_oRŸÉ“'ÿý÷ß&&&oß¾m³`JJJÊËË !&&&iiiMz;pAAAÛ~„õ„ÍT$Ð77·ºÝŸþ)YÛˆ¯e©e 2$>>¾Ù¢Þ€¶Çc:èxfÍšõÅ_BJJJfΜ¹zõj BH—.]Ú>˜•+Wùúúòx¼¹sçvíÚ•é§™a7õÿ ´/¿ürÊ”)’[ %kñµ,µ ÀVH¡ÉºwïÞ½{wBݲػwïÐ/ýý÷ßLE%//ßëkqØ ~tÐ}}}qý&©#Ö6-]ÕÐòRSS=<<<~üø¤¤$zãëׯ}||ìììW­ZUZZJoÏÉÉñòò²µµ1bĆ *++ !ÿýwÿþýÓÓÓ¿üò˰°°†Þ>{öìØØØüqâĉUUUâΣ‚‚[[ÛaÆmÛ¶­¶¶–rçί¾úÊÜÜÜÖÖÖÇǧñþô¼¼¼ X[[=úçŸþüóÏããã¥:âããã­­­éåzN—âöíÛŸ~ú©¹¹ù„ èO£¡°Åú¬.]º4nܸAƒ}úé§Geú{è¤Ä—­äµ,¹L¾Š³²²æÌ™ceeõùçŸÇÆÆÖ=øwß}·dÉñjdd¤“““H$j¼k¤vB}- ‰#´¼ 6øúúþòË/êêêk×®%„…©S§*++ïÛ·/$$äåË—~~~„êêêiÓ¦UWWÿøãëׯ¿~ýº¿¿?}Š¢V¬Xáââ2f̘†Þ9räȹsçþúë¯â³×ÖÖΜ9³ºº:22réÒ¥¿ýöÛþýû«ªªæÍ›gbbµeË–ÄÄÄ;w6mmíŒ3Š‹‹wïÞ½|ùòC‡¥¤¤4RÞF.‰6nܸiÓ¦¨¨(…ÀÀÀ†Âk¨°™™™‹-¢«ø‰'%''3ýU°\~~~²„ÜÜ\ÉW%¯eÉ冮⪪ªiÓ¦UVVîÝ»wÉ’%[¶l¡*Krssûïÿ[]]M¯^¸paܸq555²×`’PŸ@‹CW5´¼E‹Ñ?v§NºfÍBÈ… !›6mâr¹„°°°aÆegg?x𠨨è÷ßWSS#„lܸqÚ´iË–-#„ˆD¢I“&M˜0rúôézßN÷˜K¹råJvvö¯¿þª¢¢2pàÀÒÒÒ¿ÿþ»¬¬lñâÅ_ýµ²²2!dĈ™™™ Åùò圜œ£GjjjBÖ­[7kÖ¬FÊÛÈÁ)ŠZ°` !dæÌ™ô§Ñ¸†>«ŒŒ ‘Hôå—_öèÑ£ÿþ}ûöí(7tt\Ç?~ü¸xuêÔ©ï}WCWñýû÷‹ŠŠN:E×-òòòß~û­Ô{ýýýoݺ5lذ¬¬¬GmÛ¶­I5˜,‘ >fCâ-O|Kx¸Ì³gÏ233ÍÌÌÄûPõòåËçÏŸ›ššÒY#!Ä‚Ë妧§÷èу2dÈÆß^o☒’bbb¢¢¢B¯Nž<™^ ;†RRR’““oß¾mooßPüiiiýúõ£kvBˆ ‡Ãi¤¼]»vmäàâ°Ål\C…µ´´477wss>|¸«««¾¾~뙚——×¢E‹šú®†®âôôtɺÅÚÚºnÝ¢ªªêààpéÒ¥aÆ]¸pÁÜÜÜÈȈ4¥“%Ô'ÐlH¡å)))ImQSS³°°øå—_¤¶ß¹s§n½Iß’HQUUmüíõª©©áñ¤ÿ°ÓÒÒ¦L™Ò¯_?GGGccãôôô†ŽPUU%¹ÊårëM…B¡,WTTlÒ§×Ha;vïÞ½ëׯ?~|ûöí»ví6lXÓ¾h} ]Å÷îÝ“\åp8õÖ-£GÞ¼ysPPPtt4ÝëÒ¤ŒHÔN¨O ÅáGh ÆÆÆOŸ>-))¡WïÝ»7qâÄÊÊÊ>}ú$''—••ÑÛjkkûôé#ãÛë=}ÌŠŠ zuÿþý³fÍŠŽŽîÚµëÁƒ§Njmm-~µ^FFFÉÉÉÅÅÅôêƒD"‘øUqOž<¡štðfVwîÜÙ»w¯ŸŸß™3g,--Ïœ9ÓV_ 4ACWqß¾}©[ÄœKJJÎ;—œœSSS[¾|ùÓ§OÏŸ?ÿÓO?YYYiiiåææÞ¹s'//ïøñã¿ÿþ{QQ‘øG¹ú>>> 7nÜX³f }{®®®¼¼üÎ;322._¾|àÀzÿ&œV7ì÷¶¶¶6,,ì—_~ÉÈȸxñbbb¢d÷0BòZ/7t9RKKK\·4t»¤ŠŠÊ°aÃ6nÜèèèHßzøÞJ¦¡Ú õ ´8$ŽÐ¸\îTUUgÏž½zõj[[ÛuëÖBäåå>ÌápfΜ¹|ùr{{ûàà`ÙßNqww_¸p¡xg…ÇWUUMŸ>}óæÍ_}õÕܹs¿ùæ77· |ýõש©©?ýôSVVVHHH½Ñ*)):tˆËåΚ5kÓ¦M~~~t’ª¬¬¼eË–û÷ï5jÉ’%žžžôþM:xCa¿·°vvv+V¬Ø·oߨ±c·nÝ:sæÌ©S§2ýÅtv’ײx¹ñOQQqÖ¬Yß~û­••ŸÏ¯÷°nnnoÞ¼7n½úÞJ¦¡Ú õ ´8EQLÇÐÞ 2$""ÂÎÎŽ^¥û‰èáMEQTqq±Œæšµ´6 Žh2TÊð!8Nkdµ´>tU¼_ïÞ½ëèlÐU 2A‹#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#~ýúqþ­OŸ>ëÖ­£(ªÙÇ”——çp8eeeu_RSSãp8¹¹¹Í8lqq1‡Ã‘——o¤ ¿þú+Cd«úvºwï>yò䬬¬÷~’ ³²²***˜. tlHá ÌÌÌ  ®®žžžÕì£ 0ÀÌÌŒËÅXË ¿ƒœœœ£G~õÕWMJëgΜi``ðÇ0]èØðþgûöíIII=***?~ZBBBRR’²²2ÓÅb úÛyõêÕ©S§!·nÝzþü9ÓA´€7oÞx{{4HUUµÿþ~~~………rÀ†Zâÿúë/‡3dÈÙ%ÙÞ¯¬¬lnnîçç'ÙrßH׊ãíýååå7n433SUUÕÖÖvqq9sæLÛ„‡VBâÒäääÌÍÍ !ªªªô–ÊÊÊ¥K—öíÛW]]}Ĉþù§xç»wï~úé§ššš:::Ÿ}öÙÝ»wéí’õiuuõâÅ‹»wïÎçó:$~¯TÅ!µúäÉ“1cÆèè訪ªZZZžEã‰cFFÆÈ‘#'OžL¿dooO9qâDóÇFŠPZZÚ¥K…wïÞ½~ýšÃáôèÑC$5ò:BȼyóÒÓÓ+++Šöùóç‡Çã½zõŠ¢¨B86rüz ehh8xð`:=%„¸»»K}b)))„555ú\ôñåäärrr(Ô¼Ð.ýý÷ßôßóƒÄÏŸ?ïää´`ÁzµººzÆ fff***ƒ ¡/™F^’¼.ÊÊÊè_M;vì (jáÂ…W®\¡ß~çÎggg mmmWW×;wîÔ°n•²lÙ2BÈ—_~I¯JþB®÷€ô¥GÛ°aEQ?=z´¶¶¶ŠŠŠ……ʼn'$c¾r劅……ªªª³³szz:}–ŠŠ ???>Ÿ¯ªªjkk{ñâEÉí}úôQSSsrr¢ñJIHH ·Ð[Š‹‹###£¢¢ê ¯¡cÒ*))EEEõíÛ·[·nË—/þüùˆ#TUUÍÍÍë=»ÔXSSCw˜\¿~]ª2oèÛ¬!0‰#üïÚŽQTT$„ >¼²²’¢¨z‡È <˜¢¨¢¢¢>úˆÞÂçó½¼¼ècŠëSú'æðáÃéíÏž=“%q¤(ª¸¸xÿþýsæÌ±°° ßrìØ1É}è6]ù6”86RŠ¢&NœH9}úô‘#G!‹/nü-t ‡n[m$ÚãÇB† FïSVV&nql<¤ºßŽ˜®®îôéÓ‹ŠŠ¤>±cÇŽB&L˜ õÆK—.QH¡]Љ‰¡y6²OCíè¼$¾.D"ÑW_}Eñóó“:l#½%’êV)t…&¾TÅ]C”jïo¼/…ÃátéÒeÀ€ô;£F¢ÏB·Ë~üñÇŽŽŽ<O^^þþýû”l½ååå=zô „hhh|ñÅ›6mºté]·SõuG4ÞÓB‘——0`½¬¨¨Ø£GBHÏž=ë~}è0a%$Ž }m¿yóFEE…ríÚ5ꟌÄÊÊꈄ“'OÒ;—””DFFŽ?ž¾!RNNîòåË”D}úóÏ?BœœœÄ—ꪖ““£_’¬GŠ‹‹{÷î­¨¨èååuìØ1ú¦"©ÄqΜ9Jÿ8uêÕpâØx~ÿýwBÈœ9s¦OŸN¹uëVão©ÛêÙP´‡&]B999âıñùv$IFB÷¹ñÅâW‡N¹pá…ÄÚ¥}ûöÑWAC;4ÒŽÞÈKâë"00âáá!‰¤ŽÜHo‰¤ºWßÿû_ú÷½*®è9 äÕ×x_ !ä÷ß§(êâÅ‹tªGQÔ£GèŒêíÛ·Eòx¼%K–ÈÞk‘œœ<~üxºV§©©©íÛ·~U2$„Œ9ÒÀÀ€bfffjjZ[[ûèÑ£F^¢ß[SS³nÝ:Bˆ……ýcU’™™ÙG}”••Åçó_¼xáííMß^Ù¸¢¢"qäÍ8 ¡¡áÉ“'GŽ9wî\KKË7n‰ SNNnܸq„kkkB=¸.‘††!$((¨ºº:$$$11‘òìÙ3999‡³dÉBÈ_ýU7f“ßÿýÍ›7÷ï߈ˆ>|ø»wïæÍ›'¾U@ì½Ç”““£‘öìÙ“âää$''§¯¯Ow@7Tü|ù2!!!##ƒî0‘"ùÞ/º%þР…ñ˜Ú¯òòrBÈ€>ÿüó?þøÃÑѱwïÞÿùÏÊËËéÄòòò!!!»víúüóÏkjjèŸ~ú©äAlmmÍÌÌ=z4hÐ SSÓÛ·os8:RRR4hPBB‚ŸÏOMM¿‹þëêêš””D'^”lñ–/_.¾“’²bÅŠ‰'6TBˆ¢¢âøñã}¤¶ËxÀ’’’ÁƒgggÏš5kÙ²eû÷ï§ûëiôœ5„ÉaÚt‰jkk¥Î(''G±²²úþûïÅë΀öèÑ£sçÎL™2ÅÂÂÂÂÂâÛo¿íÙ³g^^Þ“'OèüOöcŠ#¤ÑUß{;vŒ¾#¨!²|›ÐŽ0Ýä Ì«Ûóõ×_BÆO¯–––z{{ª©©9::Šï.§(ê×_:t¨¦¦¦ºººµµõo¿ýFo—¼gü¯¿þ¢GöîÝ;22’îÔ~ýú5ýÒСCUTT¬­­é ”î¹(//§›Ð>þøã€€€ùóçBæÍ›'Ëà);wîl¼E‰g¬¤ïj¼Ôuch(ZŠ¢ŠŠŠ&M𤥥շoß'N(**ŠGU7R#ߎ˜T$UUUk×®íß¿—.](ÄÃûô飬¬üÃ?0ýçðÿÆŽKqtt,,,¤(*''‡¾”–,YBQÔÓ§O !êêêÙÙÙE¥¦¦*((p¹Ü¬¬¬F^Ï{ðöíÛo¾ù†2kÖ,©óFGGûùùÑýÂB¡ÞmÕªUR»I]}<ÐÒÒ"„œ>}šÞ"®è9 ÝÓzäÈŠ¢~ùåòÏÍ‹ÕÕÕôï:©›p¨_Útk\—.]JJJ(ŠZ»v­ªªêÊ•+éÖ¸Þ½{Óñ7oÞôóó;xð T}öìYz•ÞØ·o_¦ƒh/RRRèäINN®wïÞtgŸ>}ÄwËÑZééé;–Nw|||I2#IMMåñx\.÷Þ½{’ç½|ù2=§÷ĉ¿üòKú×,}¶$É[ôúôéC7‰ÙÛÛ‹w'ŽÐÛÛ›bmm}éÒ¥ß~ûŽÍÅÅ¥[·ntËâÑ£G)èææFçs#GŽ”——WRR¢‡‰|þùç„aÆMŸ>]CCC^^¾îïO‘HôÅ_П°……EÿþýéRLš4‰ÞA2¼FŽÙª‰cã_´T„À8$Ž­åíÛ·jjj„//¯={öз®^½šé¸Ú‘üüü¹sç0 K—.ýû÷_ºté›7oį6ÒŽÞÐKRɼyó¤²=ZC½%’$;1””” °dÉ’òòrñ’]+ P²½_ƾ©ÕwïÞùøøôîÝ[UUÕÞÞþ¿ÿý/½]Æ^‹ŠŠŠíÛ·4H]]½k×®áááâÕRÝ2ö´´x∓äw›@k¸{÷n``àÝ»wËËË ===—,YBßHPUUÕÍ›7œœ˜ ™8€L0ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ#ȉ£¬Š‹‹W­ZecccmmýÝwßedd0´üüü©S§êééõíÛwéÒ¥µµµLGEMM@ øä“O\\\EQR;œ?Þ¤Žàà`¦vâ1@‡áïïÿìÙ3@ ®®æééyîܹ.]º0´‡#^®ûY$=ºK—.gΜ)..ööö®®® c:jèÁéÓ§éDpåÊ• ÞÞÞ’;ØØØìÛ·O¼* —.]:tèP¦vâÔý7 u•——[XXDDD8;;BJJJ†ºsçNz:4ç_WÔ*!äÊ•+®®®YYYúúú„¸¸¸Ñ£Gçææâg´6¡Phggçïïÿå—_BNœ8!þüóO.·Á΢~øáÙ³g;vì`:v`'tUË$;;{À€–––ôªŠŠŠ’’RQQÓqAË£(J²’’ššª¯¯Og„›ÒÒÒ»wï2)°_jjjYY™ƒƒ½êààPXX˜œœÜÐþ/_¾ŒŠŠ `:p`-tUˤoß¾'Ož¯ž?žnƒ¬wgz!::šéÀA&/^¼hd‹œœ\nnnBB‚††!äÑ£G„¤¤¤ž={28ûõîݛ阔““ÃáptuuéU===‡SPPÐÐþ¡¡¡ß|óŽŽN#Ǥ+¨””¦ Ǧ‰DQQQ›6mš={¶‘‘QC»¡RîX$³“º]ÕS¦L ^½zõÚµkß¾}»jÕ*‡Ó¥K—NžÓ@ …ÊÊÊâŽi.—«¤¤T\\\ïÎiiiׯ_¿|ùr#411Aí]ÕMðòåKðððµk×úùù1´Œº}ÓRºtérñâÅêêjggç… ®^½šÇã©««38°Ÿ††FEE…H$¢WE"Qee%Ýò]×þýûÝÜܺvíÊtÔÀfhq”Õ_ýåééùé§ŸîÙ³GKK‹ép %IæŽõ366¾xñ"½œ““S]]mllÌtÔÀ~:::Eѽυ……E‰{®%UTTDGGïÞ½›é€åÐâ(“ššŸiÓ¦mÛ¶ Y#+Qÿ¨ûRnn®‹‹ËãÇéÕS§N}ôÑG `:d`?ccc--­øøxzõÖ­[ÚÚÚ|>¿îž—/_VTT´±±a:d`9´8Ê䯹¹¹ýúõ×à„>ŸßøMèÀúúúoÞ¼™?þƳ³³W®\¹qãF999¦ãöãñx W¯^µµµÀÃÃÇãB¢¢¢´µµGEïyóæÍ!C†42M@‹@â(“çÏŸSµhÑ"ÉÛ·o;v,Ó¡A[øé§ŸÜÝÝœœ¸\îСC'OžÌtDÐYøøøTUUùøøBÜÝÝ.\Ho?räŸÏ'Ž·nÝúú믙Ø€·<Œ[ìpr !dܸq))){öìáp8óæÍ355=}ú4ÓQ4j'ø@hq„Îî½OŽ …çÏŸˆˆprr"„,Y²dÁ‚B¡PQQ‘éØÚnˆø—zgç¡çÏ£—%çÕèTÐâðŠŠŠ'Nƒ "„„„„xxx ¹:!$ŽÿR·«šÒ¯_?:qÔÕÕmüál…7èìÞû䘒’[[ÛÉ“'çåååååMœ8ÑÖÖ¶¤¤„éÀÚG€ÿ厴ºÍ.\(.. ÓÕÕÕÕÕݱcGQQQtt4ÓQ´5$Ž„4úä‘HT]]]SSC¯VWWWWW‹ Ðy qx777 I“&Ý»wïîÝ»“&MÒÔÔO¼ Ðy qxMMÍ+W®Påææ6ḟsõêUMMM¦ãhkU ð~|>ÿÔ©SLGÀ0´8€L8€L8€L8€L8€L8€L8´_555à“O>qqqõ>܈òûï¿»ººZXXÌ›7ïõë×LG ¬…Ä ý'Nœö÷÷?~üø®]»êîsôèÑ5kÖÌ™3'<<<77×ÏÏ騀µ08@;% ;æïïïääDñõõ^^^\îÿÿæ‰D{öìY¸pá×_MQPP˜6mZvvv÷îÝ™X-ŽíTjjjYY™ƒƒ½êààPXX˜œœ,¹OFFÆëׯGM¯ÚØØ¤¤¤ k€V‚Ä ÊÉÉáp8ºººôªžž‡Ã)((Ü'##CNN.11qìØ±–––³fÍÊÈÈhä˜&&&&&&L— :*ö'ŽÉÉɹ¹¹„¸¸¸eË–:tH$1Àû …BeeeqÇ4—ËURR*..–ܧ¬¬L$íÚµkÙ²eû÷ï—““óôô¬¨¨hè˜))))))L— :*–'ŽG7nÜãÇ_¿~½`Á‚üüü;vÔ{w9@{£¡¡QQQ!þ­+‰*++544$÷QVV¦(jÓ¦MÆ 4hÐöíÛóóóoܸÁtìÀN,O###}}}cbb 8|úôi¦ãx?Š¢ŠŠŠèÕÂÂBŠ¢Ä=×4mmmBŸÏ§WÕÕÕuuu1#´–'Žô}åwîÜqtt$„˜˜˜äåå1ÀûkiiÅÇÇÓ«·nÝÒÖÖ爴þýû«ªª>zôˆ^-**ÊÍÍíÕ«W[Æ) 544ÊÊʘþÀ ~ùùùS§NÕÓÓëÛ·ïÒ¥Kkkk™Ž:0–OÇÓ«W¯ØØX ëׯOŸ>róæM===¦ãx?çáá!zõêU[[+<<_j4€N"55U¼L·Nɾ,¹ÚÔ÷b¹õ–¥¾ Š¢èWÅûtïÞ=;;ûÍ›7ôª’’!„ž¥®=ÄßÑ—;!vvUÛÛÛ7¾Z 266/K¶K5¾L§#⌤î>âÙd?&–[jYLª­Q¼úè#z Ø98FlÍš5±±±}ôÑ7ŒŒŒ>úè£ÔÔTÌ_„¾¾þ›7oæÏŸýúõcÇŽ­\¹råÊ•-5atB,oq¼}ûö–-[œœœ^½z5bÄkkëþýûÇÄÄX[[3@[8qâÄüùóÇŒ£¯¯öí·ß2t`,oq¬¨¨ äjjjJ¤vttŒ‰‰a:.ö°··§( “8¶[½zõŠŽŽ~÷îݳgÏ5Âbyâhll|ìØ±ŠŠ z¨uFFFyy9Óqt<,O—-[vþüùãÇ6ìéÓ§Ÿ}öÙܹsGŽÙìVUUYZZVTT0]2€¶Æò{mllnß¾]VV¦©©­¥¥õÍ7ß4ïh¡¡¡ô¼© ËGBˆ‚‚‚‚‚!„Ïçóùüf'""bÇŽL—€1,O=}÷îݦÊËËËËËëÁƒ“&MbºX `yâ.^ …Ož<9pà€§§gkŸ×ÄÄ„ÍôбõîÝ›éZLvvöË—/íìì*++•””˜ 9Xž8ÚÙÙI®:99™˜˜,Y²ÄÓÓSYY¹õÎKOý@)--õóó»víEQ)))3fÌ000X·n毀‡å£ªëêÓ§P(d: èD‚ƒƒß½{G?®céÒ¥?Þºu+Óq4ËÇ·ÿö÷ßGDDôèÑ£U›$ݸqcñâźººôª••ÕòåËccceyoMM@ øä“O\\\A½#þñÇM$ :”ék±¼«ÚÖÖVj‹¼¼ü–-[˜Ž :‘ªªª.]ºHnÑÕÕ­­­•å½àôéÓÁÁÁ„•+W*((x{{Kí“™™éìì>¾¡—²²²HA3­gÕªUS§Nuuu‰D“'O~úô©,]©©©eeeâŒÐÁÁÁßß?99¹ÿþ’»efföèÑ£²²²¦¦FUU•éâ›qê½c¦£2dˆx¹²²R$q8‡#‰!|>ÿìÙ³­wvŒªIB¡ðÂ… Ïž=SSS366vtt”j5¬WLLŒÏ“'OèE"QÿþýüñÇáÇ‹÷‰Dæææýúõ{ôè½Ã†  Pï9N½ÛÅÿè¤V±‡Ø¿¡;JüqÿΉ-Ž>¤bcc·lÙdmmÍápùùù\.ׯÆfïÞ½•••7nœ7oÞ… ÔÔÔêÐØØ¸ñŸµRÿÅICÿ)ëÝ¿©ÇÇþØ¿ƒîß9±|Tuxx¸¿¿¿½½½‚‚‚¼¼¼­­m``àÉ“'ß¾}ËthÐY‚ü±gÏžôª½½ý¡C‡ÂÂÂÞûF ŠŠ º«„"‰*++544$÷Ñ××OLL\ºt©––V÷îÝ7oÞüæÍ›Fn×ø,O³³³¥~v«¨¨¨ªªJÕ¼­ç?þ˜¼uë–¶¶6ŸÏ—Ü'::úóÏ?/))¡Wß¼y“——×·o_¦ ìÄòÄ1(((++ËÉÉiÒ¤I“&MrrrÊÌÌ b:.èDlmm#""ÊÊÊèÕŠŠŠÝ»w[ZZ¾÷<ÏÃÃC $%%%$$z𯍍¨èèhBˆ½½}nnî²eËîܹsÿþ}ssskkk¦ ìÄÎQÕ’ªªª.^¼˜žžÎårûöí;räHyyùV=#FU€¤‚‚‚™3gfgg›˜˜ðx¼ääd55µÃ‡÷èÑã½ï¥(jûöíçÏŸ'„¸»»/Y²„î0qssãóùááá„/^lÞ¼911‘Çã9::.[¶L]]½Þ£5¯vjdp ´øš m°óï,--­k×®:::iiiõî Õ×Ó²8€”ÚÚÚ+W®¤¤¤ÔÔÔôéÓç³Ï>SPPhû08vt………¾¾¾çÏŸçp8£GÞ¾}»¶¶6ý¾¦öF(êééegg«¨¨ˆ7>>‰‰‰#FŒ8qâÄ´iÓ***~ÿý÷Ÿ~úÉÚÚº#A‹c‡Ð¼_Së´8ËGU¿{÷...ŽNê—.]úøñã­[·2´Shq„Öpûöí   ÀÀ@[[Û#FúûûwÄÑ”,Ooܸ±xñb]]]zÕÊÊjùòå±±±LÇí=}#¦ãÖSQQ¡­­M155¥ü‘8@GÄòıªªªK—.’[tuukkk™Ž Ú—ºÏb:"`ccãcÇŽUTT˜˜˜\ºt‰’‘‘Ñ'þ`yâhmm}ðàAñl%%%¡¡¡¶¶¶LÇȲeËΟ?üøñaÆ=}úô³Ï>›;wîÈ‘#™Ž  ÉX~kçëׯ§NJÉÌÌ´°°xúô©ÁtttZï¤Ó±Hµ/bph UUUeee]»vMKK‹ŽŽÖÒÒúæ›oäååÛ8 Žé08¦Cè´8û‹- /\¸ðìÙ3555cccGGGzÎýփıc‘OÝiëh='Nüõ×_%·”””,\¸ðàÁƒm ljc‡Ði?pÖÎãXQQ‘’’ÒµkWCCÃñãÇBD"QiiiNNΑ#G–/_Ît€ÐŽHÞ׈Gh)ååå»wï&„$$$„„„H¾”““óìÙ3YRSS~âÄ 77·Å‹7rî­[·fΜùðáCeee¦KìÄÎÄñÉ“'sçÎÍÏÏ'„ôïßÏž=AAA7nÜ …„‡ƒÄ¤ S„WSS“žžN/‹h\.wÍš5²D œ>}:88˜²råJooïz÷|÷îý@¦Ë lÆÎÄqëÖ­ºººaaaªªª{öìùâ‹/ÔÔÔ說ª†††LíKÝÛ™ŽØ@]]}×®]„Ù³gÓ M% ;æïïïääDñõõ^^^õÞo³aÆV}´aë¨êÇO›6ÍÊÊÊÔÔÔßß¿  `îܹ£F²´´411ÁS -EFF&''çææBâââ–-[vèÐ!ñlHMM-++spp W “““ëîsïÞ½%K–0]V`9v&Ž%%%|>Ÿ^¦gÿ611a:(h¿ÄMŒxb5´†£GŽ7îñãǯ_¿^°`A~~þŽ;diƒÌÉÉáp8âGèééq8œ‚‚©Ý ‚‚‚6oÞ¬ªªúÞcš˜˜ >€fcgâHií¡ÓÀ2ôccú©¡DFFúúú:;;ÇÄÄ8p 88øôéÓï}£P(TVV×f\.WII©¸¸Xj·€€€ñãÇËøäë””LûÍÆÎ{šMŒÐª èîæ;wî8::BLLLòòòÞûF ŠŠ ‘HDçŽ"‘¨²²RCCCrŸS§N½zõjÇŽL—:Ö&ŽQQQúúú ­.Z´ˆé ³èÕ«Wll¬††Æõë×§OŸN¹y󦞞Þ{ߨ££CQTQQýÌ‚ÂÂBŠ¢Ä=×´ÄÄÄ´´´Š· |ØÐ*AâuHNÎt,À6ÞÞÞ‹-Šˆˆ077·²²Ú½{wXXØŠ+ÞûFccc--­øøø±cÇBnݺ¥­­-¾[|ð3fÐˉ‰‰Ë–-;uêT·nݘ.4°;Ç .0t$u'g:"`—˜˜˜ŒŒ KKK.—kiiùóÏ?ÛÙÙ½÷<ÏÃÃC ôêÕ«¶¶V xxxðxÔ¨QL—:ülyxVu‡#N¥ž[ ð!LLLæÎëëëÛÐô7m_QàYÕžUÝ!tÚ-Žÿß=Ý9kh% t·rRRÓ±´ $Ž„ e„VÐø²ÜæЮ°3qŒo|‡fÔ×555ááá'NœPQQqss[¼x1†P@#¼¼¼ÄË•••"‘ˆÃáp8úaƒ|>ÿìÙ³LÇÐ4ìL[£¾§OŸ&„¬\¹RAAÁÛÛ›é‚@û%ž,66vË–-AAAÖÖÖçÁƒæææLÐdì|.ßÃlÛ¶ÍÀÀ`ÿþý‰‰‰‰‰‰‡244lF}- ;æëëëääääääëëûË/¿Ði(@ãÂÃÃýýýíííäååmmmOž<ùöí[¦Chv&Žb-U_§¦¦–••Ñ #„888&''3]>è²³³ÕÔÔ$·¨¨¨¨ªªJ=< ýcgWµXKÕ×999Gü¤/===‡SPPPïΩ©©¸ý E°cÐÒ!CÂÂÂ~øáMMMBHqqqhh¨¥¥%* èpXž8¶T}- •••¹Üÿ5Ðr¹\%%¥âââzw666Æ<Ž 4mÚ4''§~ýúB’““µ´´>Ìt\MÆòı¥êk ŠŠ ‘HDçŽ"‘¨²²ÝL ‹=zDGG_¼x1==ËåNŸ>}äÈ‘òòòLÇÐd,O[ª¾ÖÑÑ¡(ª¨¨ˆ~&laa!EQâžk€Æ)((Œ;–é(>ËGBˆ‚‚‚¥¥¥ŽŽŽ]eeeó~åkiiÅÇÇÓUÿ­[·´µµeyÎ,k°Ít\MÆòÄqÕªU÷ïßwuu‰D“'OvttÌËË `:.h_¤ºª™ئ  €~`é;w !&&&yyy²¼·¦¦F |òÉ'... Þ®±W¯^Í›7ÏÚÚÚÞÞ~åÊ•x6´– îÖ­Û¹sç.\¸ðìÙ355µ9sæ8::¶ý}EÐÎIÞª‚ÄZ\¯^½bcc544®_¿>}útBÈÍ›7õôôdy¯@ 8}útpp0!dåÊ• ÞÞÞ’;ˆD¢… jiiýôÓOUUU«V­ ܱcÓ…–¢XíàÁƒiii’[ÊËËýüüZõ¤ÆÆÆL—š€ü»ÅQ¼ ¥ÄÄÄôë×ÏÄÄä믿®­­ˆˆ066Þ¿ÿ{ßXYY9dÈ'NЫÇ·³³«­­•Ü'55ÕØØøÑ£Gôjddä Aƒ¤ök^í„+¢5ïÇ×ÔÆ:íÎò¶·7~õÕWgÏžo©©©ùã?˜Ž Úñ%Ghq...111‘‘‘är¹–––?ÿü³§§ç{ߘššZVVFwsB “““¥vûæ›oLMMéå?þSÌ@ëaýâçç·zõê¿þúkùòå¨O¡^H¡5üý÷ßrrr}ô—Ë500000 ·ÛØØÈx„œœ‡#~º©žž‡Ã)((܇Ïç¯_¿žRTT”žžþã?º»»7rCމ‰ !S†@ó°¼Å‘âîî~üøñÿþ÷¿S§NÍÍÍe:hר:=×Íæâââììlmmý믿6ïB¡PYYYœr¹\%%¥âââzwþî»ï¦L™’““3uêÔFŽ™’’‚¬šý‰#!„ÏçŸ{ïµ´´Äý$·nÝÒÖÖæóù’û}>úè#¦£hv&Žb‘‘‘L‡íT²ˆÜZ\ee¥¿¿ÿ¹sçè‡ÖÖÖŽ=:88³-@‡ÃòÄ1)))00ðÕ«WRÛïÞ½ËthÐNa:hqÛ·oOJJ:|ø°……!$!!ÁßßûöíL‡Ð4,ÿ9aÂ…™3gjjjJn·³³k½“b:žŽÓñ@k1bÄúõëÄ[nß¾½|ùòk×®µq$˜Ž§CÀt<B§ýÀYÞâøüù󨨨2t¶.€ÖS^^®¦¦&¹EMM­¼¼œé¸šŒó8ŠéêêVTT0´k’h –––;wî|÷î½ZVVöÃ?XYY1@“±¼qåöíÛ7n\°`™™™¢¢¢x»ŽŽNë]Õ‘ä#™ŽØ&''gÚ´iEEE¦¦¦'99YSSóðáÃÝ»woãHÐUÝ! «ºCè´8ˋݿ‘HT·Œ­šØ!q)ÕÕÕ/^|þü9!¤OŸ>Ÿ}ö#“FâØ! qì:íÎò{£££™€ÈËË[[[kkkÓó82’5|8–'Žô¼ÙÙÙ/_¾´³³«¬¬TRRb:(è\0#°ËÇ”––Ο?ßÙÙyæÌ™„3føúú–••1t"ây“’’’’’~ùå—§OŸn߾鸚Œå‰cppð»wïâââäää!K—.}üøñÖ­[™Ž :‘Ë—/¯Y³ÆÚÚZNNNNNÎÒÒríÚµ—/_f:.€&cyâxãÆÅ‹ëêêÒ«VVVË—/e:.èD0#°ËǪªª.]ºHnÑÕÕ­­­e:.èD>dÇšš@ðÉ'Ÿ¸¸¸‚zGq¯ZµÊÆÆÆÚÚú»ï¾ËÈÈ`ºÄÀZ,cmm}ðàÁM›6Ñ«%%%¡¡¡¶¶¶LÇH@@À´iÓ¥æq”å½àôéÓÁÁÁ„•+W*((x{{KíãïïÿìÙ3@ ®®æééyîÜ9©ßÌ-‚å³½~ýzêÔ©„ÌÌL ‹§OŸ8p€@[jÞ<ŽB¡ÐÎÎÎßßÿË/¿$„œ8qB üùçŸôèlZyy¹……EDD„³³3!¤¤¤dèС;wî¤W¥`Çó8vögy‹c·nÝÎ;wáÂ…gÏž©©©Í™3ÇÑÑQ²ÎhUIIIrrrýû÷wwwýúõ¾}ûTTTdœÇ155µ¬¬ÌÁÁ^uppð÷÷ONNîß¿¿xŸìììXZZÒ«***JJJEEEL—؉‰c||¼äª¾¾¾¾¾>½|ûömBˆÓ1ËUTT,]ºôÒ¥KAAAtªÇápnÞ¼yèСaÆíܹó½ÓÊæääp8ñð>===‡SPP ¹Oß¾}Ož<)^=þ<ÝÙÐ1MLLH+?= XŒ‰£———x¹²²R$q8‡#‰!|>ÿìÙ³LÇ,÷ÓO?Ý¿ÿÈ‘#ÖÖÖô}}ýsçÎÝ¿ßÛÛû§Ÿ~Z¸paãG …ÊÊÊâN.—«¤¤T\\\ïÎ"‘(**jÓ¦M³gÏ622jè˜HàC°³Óöá?¶mÛf``°ÿþÄÄÄÄÄÄC‡š››3 °ß¹sç¾ûî;qÖ(fiiéãã#ËQ544***è_¼„‘HTYY©¡¡QwÏ—/_zxx„‡‡¯]»ÖÏÏé¢k±3q ÷÷÷···WPP——·µµ Ÿßª“Ž@§ÅòYˆ²²²¦M›VTTÔ¯_?BHrr²––ÖáÇ»wïÞ¼>xð`Ò¤I ÊÊÊ íƒy€RXX8yòd /// uuõ’’’‡†‡‡¿yóæèÑ£âÙAQÔöíÛÏŸ?Oqww_²d ý»×ÍÍÏ燇‡ï߿˖-RïÚ¾}ûرcë ó8v˜Ç±Cè´8û‹]UUuñâÅôôt.—Û·oß‘#GÊ8ƒZ½dLéYn~€FôîÝ›é>HNNÎÆ¯\¹R[[«  PUõíÝyTSgþ?ð'!"i”Í­ÇZ IQË(‹šQɵ:ÌeFÊÑ#®8€U–)eêˆ1R+Z[‘q*B—Žõx°EÔÒ©2ÔÜЃ,²H@–ÉýýqÍ7o¼YÞ¯¿îsy€7Ï}xòáÞ›K‡Ã™9sæ_ÿú×1cƼú<(Í G³`µná—ª !¶¶¶}þå= pÆ!#GŽÜ·o_]]Ý;wœœœÞ~ûíÑ£G³ @O^8ö~íÇìÿóòò"##éí³gÏjÝÀœæÿ 0k^8îÝ»W½­P(îܹ“‘‘öÒO”J¥ÅÅÅô¶@ `ûç`Ÿ…ŽZÿZP"‘ˆD¢¨¨¨°°°~nR$„ðx<­çøX9 Žcoo½õ–B¡`;€ù±ð3ŽZÿ!¦¥¥eÿþý£Gîÿt#ôfá…£¯¯¯ÖžAƒõ~æsÞÞÞxÇ4X' //^¼¨µÇÕÕ§ô`á÷8~øá‡cþWww÷|Àv.óc™gÛÛÛ8@¹uëÖîÝ»5?TSSsïÞ=¶˜Ë,{zz= @&“Qõ¢ž]]]b±¸££ƒíÈ`É,óŒãóçÏmllèík×®¹¹¹½õÖ[ê¶µµ±€™Lvúô餤$BHll¬­­í† zwkhhسgÏóçÏÙÎ Î2Ï8¾ñÆEEEôv~~þ´iÓÔ*))3f Û^N¡PdggGGGK$‰D}ìØ1•J¥Õmÿþýï¾ûnnn.ÛyÀòYfázèСlݺõ§Ÿ~¢ß"£R© <øûßÿží€/WQQÑÖÖæïïO7ýýýËÊÊ´º­[·®¼¼<++‹í¼`ù,óRuhhhKKKNNNkkëÚµk% !$222??É’%þóŸÙðr555ÇÕÕ•nº¹¹q8œ††C¾¦H$"„”——³ýÀY²Ì‘Ãᄇ‡‡‡‡kîÜ´iÓßÿþw{{{¶Ó0¢P(ø|>—ûÿ/ q¹\;;;¹\nÈ×DɆ°Ì±OãÆc;€;::T*];ªTªÎÎNGGG¶s€õ²Ì{,€‹‹ EQMMMt³±±‘¢(õ•k€W…#€‰ …NNNêgD\¿~ÝÙÙÙÃÃí\`½¬èR5€yáñx¡¡¡2™lìØ±J¥R&“…††òx²ÄÄá0Þp©€)…BáèèØÖÖ¦¹óÈ‘# ,¨ªªb;#›P˜&0 GÂÑð¢>µµµëׯoiiÑÜùÅ_„‡‡oݺ5''çÉ“'K—.eûG@¸T ÖŽÉ%›mÛ¶%$$híT©TÛ·oOLL\µj!dðàÁ¿ýío?~ùä“äääüü|©TÚÞÞÎöOÀ2ú7È’ÊJƒÅ%8L Ž`í4—Ö@@QTFFF`` ¯¯offfMMM~~>Û?ôÇÀ“R(J^ &“…7ÇüߣÓßnnn„‰'ÒÍ¡C‡Ž1Oä0eš—t½JkIWuM“)ÃGB¡¯nèô)ÞÞÞÅÅÅt³¾¾¾ººZ(²ý£X ]ïiÓ*)ô;)¥S]‚ûí“ÅAá ';;»•+W®\¹2??ÿÆ‹/~çwæÌ™Ãv.³¤ë‹÷+»§Mï»YÔ -©(±°ÃDÿ8–w˜.U3%—ËwîÜyéÒ%Š¢¦L™²uëÖ±cDz ^©îînBH[[›@  ÷¤¤¤ðx¼uëÖÉåò€€€ììl¶c‚ÕéééÙ»wonn®@  ŠŒŒ4»—@õù!=n1äÛ1¤ÇÝ,šßÂbliy‡I³³Å¦†3ŽLÅÇÇÿûßÿ–Édééé …",,Ì,Þ?+‰ØŽ`aþ瘣GBÔU#!„Ëå&''ß»w¯¾¾þرcÇ·°‘aI…1Y2™,777)))>>>'''--íDºÑª±˜œûѺŽ0» Ùûù…ÌCâ6;C“º§~‡‰ù`êw˜°Îè…##ííí—.]Ú²e‹¿¿¿——Wjjj]]Ýõë×ÙÎFÀäJʶmÛFŽ™žžÎvXm …";;;::Z"‘H$’èèècÇŽ©T*¶s ¬Þ¿ª Ë ­ç¾‚sf¬ŽËŒu˜:'Á«ŽŒTWWO˜0A,ÓM@`gg×ÔÔÄv.0>æÿ9ÀTTT´µµùûûÓMÿÆÆÆ²²2¶séC×2K¿[_Áó -û†9&+‡{qww?q℺™——×ÞÞîííý¢þ&uÞa^¦wª>svttB&MšÄåÿ/.ÓÖ•——³ÁÔÕÔÔp8WWWºéææÆápúì\QQ¡ß+¥~okÕ£³®E†Þ—ž_Á8¨Ï™™fx©3/Góõse¤°°ÐßßÿÖ­[š·9°K¡Pðù|õ3\.×ÎÎN.—÷ÙÙdo¼Ózµ6ÙœV‡  ÇÉËË‹ŒŒ¤·Ïž=ëááAyôèч~øðáÿýío!!!lgãÐ|'þÖ³ãèèØÑÑ¡R©èÚQ¥Ruvv:::²K7(AÌŽ/"•JÕv¦O/ݾ};,,lΜ9_|ñ…““ÛÁ˜ô{ˆ€)pqq¡(ª©©ÉÅÅ…ÒØØHQ”úÊ5€qáÍ1}ãñxö¿âr¹===Ë—/ßµkªF‹ô Þ_ 0„B¡““SQQݼ~ýº³³3}‘ÀèpÆ‘‘ºº:OOOõêLñðð ÿÄ` Ç •ÉdcÇŽU*•2™,44”ÇÃÚ‹ #÷ïß§(jÓ¦Mš;SRRÞ{ï=¶£€µ‹ˆˆèêꊈˆ „,X°`ãÆl'‹eO·€€{€ŽÀ G`…#0‚ÂAᨧžž™L6}úô€€™LÖç›Ó¿üòK‘†iÓ¦™H¹\7uêTŸµk×VVVšÂh\¿~ýí·ßîèè`7Ì©S§¤R©··wxxxmm-‹aš››cbbüüü¦OŸÛÜÜl`]ƒ}4ŒÀèØâ1m‹7 k²Yèêê‹ÅšË¬uÎÞ〹Ážã¨'™Lvúô餤$BHll¬­­í† ´úTUUÍž={éÒ¥tÓ¸ä5$@||ü½{÷d2™ƒƒCjjjXXØwß}÷Úk¯±8­­­±±±FY³ “•••”””0räÈ”””Í›7=z”­0±±±>üì³Ï! qqqû÷ï7||˜3úh+€Ñ'°Åc2ÚÖ`@×dÓ×ÐаgÏžçÏŸkî´Â¹Ñç8XùÜÐ ºëììœÆ `ô lñÎCk0pk²é[·n]yyyVV–æN+œ}Ž±î¹¡+Žú¨©©áp8®®®tÓÍÍÃá444höQ©TÕÕÕ“'O‹ÅÁÁÁ¿üò‹)pww?qâ„££#Ý-//¯½½ÝÛÛ›­ÑhhhHLLüôÓO‡ ÂîÈTVVÚØØ”””¼÷Þ{b±xåÊ•Þ|xþüù¶¶¶†Ã`F c0ú¶xLFÛ èšl¦07h˜:AᨅBÁçóÕg€¸\®\.×ìS__Ïår§NZXXxåÊ•Q£F…‡‡·¶¶šN•Jõõ×_oݺuÕªUãÆc+ÌG}ô»ßýÎÇLJõ‘ikkS©Tiii[¶l9|ø°MXX˜!oÖ1pdbbbjjj.\¸pá§OŸÆÆÆeˆ3úh=€±&°Åc2ÚÖ`@×d3…¹AÃÜÐ Û×ÊÍRAAH$RߢT*E"QAAA?ŸÒÒÒ2~üø .˜H€ÊÊÊ)S¦?~œÅ0'Nœ˜?>}ë}›÷8æâÅ‹B¡ðöíÛô~¹\>a„‹/²¦µµuöìÙÛ¶mklllllüä“OæÎÛÚÚjÈàèÌè£aÜFœÀOyh Œ»&›‹Ÿ~úIs™µÚ¹¡5Z¬sn0‡3Žúpqq¡(J}[Ucc#EQê³ý}²··wuu5Ö%ܾ};88ø7Þ¸páBHH‹aJJJîÞ½ûÎ;ïˆD¢åË—B&MšD¿¿ïÕ‡qvv&„xxxÐû\]] y!a®^½ÚÚÚçäääääßÜÜüý÷ßëF×`F #0î¶xzÌCk`Ü5ÙLanô s£(õ! œœŠŠŠèæõë×Õ¯p´óçÏ/\¸°¥¥…n>{öìéÓ§îîî¬èé鉈ˆX¾|ù®]»œœœØ ³aÆó¿JNN&„œëœ½Çsƒ9eÿ_ „{€ŽÀ G`…#0‚ÂAጠpFP8#(€ŽÀ G0uAAAŸ}öÛ)Àêôôôìß¿ÿü£X, Ú¼yóÇé=~üX$577³Q›É‹Â@›\. ÉÌÌ HKK[³f\.¾páÛÑØÄc;€É‘ÉdÍÍÍß~û­‹‹ ½gÑ¢E;wîLHHðóóc;kpÆÌUmmmDD„ŸŸß¬Y³âââž?NY»vmTT”ºÏ¡C‡$‰J¥ê³óãÇÇÿàÁƒ?üá©©©„›7o¾ÿþû^^^¾¾¾êË=uuukÖ¬ñññ þöÛoE"Quuõ‹2€¹kll<~üxTT”ºj¤EDDðx¼¬¬,ºYZZºxñb±XúŸÿü‡ÞyñâÅE‹ýæ7¿™3gŽºgŸè%èÆsæÌñòò ¦¿ˆÖ忢¢"uÿÓ§Oûùù‰Åâèèèúúú7N™2E*•^»vMý•û Æpè G0K …bÙ²e|>?==}÷îÝ=Ú¼y3!$((¨   »»›îvîܹE‹uww÷Ù™BQTLLL@@Àüù󻺺ÂÃÃE"QffæÎ;KJJöíÛGQ*•|ð‡ÃÉÈÈX¿~ý®]»úÏæîÞ½{*•ª÷™E>Ÿïíí]QQA7ãããW¬Xqøðá#F,_¾¼¡¡¡ªªjÓ¦MtɸdÉ’ÄÄIJ²²~¾‘J¥Ú¾}ûŽ;233mmm?þøãþƒ)•ʬ¬¬üãIIIçΓJ¥sçÎ=zô¨««ëöíÛÕÝzëg½Ò\Ùx0€i LMMÕÚyêÔ©9sæ(•JºùôéS‘HôäÉ“ÖÖÖ‰'^½z•¢¨ªª*¡Pxÿþýu~ôè‘P(xð€¢T*9Žú³ÔÛýd³æîîÎáp®]»¶`ÁÍý …âçŸ íý)\.—Çãñùüìììâââ«W¯æä䤤¤¤¥¥Í˜1£Ÿï5xðàþÃ(Š}Hsiz:Ãeà¥p#˜%¡Pøßÿþ·¥¥…n/Y²¤³³“2{öì–––ï¾û®¬¬lÞ¼yýwÖtþüùaÆ9rdÙ²e>>>ô~ww÷òòòöövºyûöí—f³æââ"“Éššš4÷ïÝ»·³³óOúÝ,..¦7”Jå?þèááqóæÍƒN:uóæÍgΜ‹ÅgΜÑ/ƒzm¹s玮ŸÛ;Ö+0œq3P__¯yƒ9ŸÏŸ5kÖ믿Y__¿sçÎ &ØÙÙBÁŒ3¶oß>kÖ¬aÆBúé¬ÉÉÉ©®®îæÍ›cÇŽ-((8uê”P(T(R©T&“mݺuýúõuuu‡&„p8†_ÌQtttIIÉÂ… W¯^íééY__æÌ™¢¢¢äää¡C‡ÒXJJн½ý¨Q£>ÜÚÚúþûï—––¦¦¦:::NŸ>½¼¼¼¤¤dÓ¦M„ÌÌLggçÀÀ@&ßÚÕÕuРAûöí[·nÝýû÷322t ß;˜@ ÀzFÂÌ@NNNNNŽº)‹;–‘‘±mÛ¶U«VÙØØÌ;wË–-êAAA—/_^´hÝär¹ýtV[¼xqiiéúõë_{í5©TúÕW_ýå/Ù½{w\\Ü‘#Gè Ù±±±+W®tpp`øeÀ :477÷«¯¾ÊËËKMMuss›8qâ©S§Þ|óMºŸÏŠŠÚ»wï“'O&Nœ˜••eooïç瓞ž¾cÇ77·+V,[¶ŒrôèQ†…#ŸÏß¹s§L& T£F… >÷Üsæ/š¿¿ÿæÍ›Ÿ|òIó_"„xóÍ7gΜi—Å!„‡Ü€5‚‚‚¼½½¥Ÿ333oß¾-„ÈÍÍ1bDttthh¨¼å¥¤¤´mÛV £¼¼<éç_~ùåùçŸONN~üñÇKY´»wïš™™™½zõJMM-W®\ék£ yוa¨€Kúúë¯õºuëÖ÷ßïåå%„xðàÁâÅ‹å®N¼ùæ›¦ÔøòË/;vìÞ½{W®\ùüóÏ~øa!DvvvïÞ½K_´ëׯ_¼xñå—_–¦_¾|yþüùe®‚&Ož,÷š *Gj+ýœššZð¡k×®5***êá‡~ä‘GzôèqäÈÓ£“&MÒét¦£ÓéîÞ½+ýj0V­ZÕ®]»Úµk{yyÕ®]»mÛ¶_}õÕƒJ)fûöí7n”~ž8qâ’%Küqww÷jÕª 4håÊ•ÒC)))gÏž-}¹jÖ¬¹dÉ’îÝ»K¿¾ÿþû¦ÚÀùª ÷ïß—~¨V­šibbbâ‹/¾xíÚ5é×;w¥}óÍ7cÆŒùè£ÊœgŸ>}Ö¬YcúõâÅ‹/^LJJÚ¸qãÚµkKz•©/X©R¥)S¦zô¹çžëÔ©Ó•+W„'Nœ¨W¯^™eŒ5ê›o¾BܸqcïÞ½;v”{eÐ(:Ž\ÞíÛ·—,YòÝwß !<<< $MÏÊÊzá…¤Ô=mÚ´>}ú¸¹¹ÆÙ³g/Y²Dñæ›o¦¦¦–/_^zÉW_}eúuÍš5RjÔétÑÑÑýû÷7]Œ²nݺÄÄÄ’êÙ·oŸôC\\œOÑ'lÚ´éèÑ£GíÑ£‡9 غuë‡zHúùàÁƒr¯oÚEÇ€KЉ‰):ÑÛÛû‹/¾hÒ¤‰ôëŒ3¤‹KzöìijFEE1B‘_¹råÊ•+»¹ýñWt5yäéç­[·J?Œ;vÖ¬YÒÏ‘‘‘‡B>|8::ºh <058CBBì²°:®jÕª/^B\½zÕ̵1zôè9sæ8x;Ð:ŽÔ£Q£F­[·6ýjJ~C† 1M|ùå—ÝÝÝ…/^,ý¾½{÷^±bÅŠ+F%MÉÊÊÊÎΖ~þí·ßŠ}UVV–éçêÕ«ÛkÑ*W®\tþàdt¸¤‚7 ÉÍͽzõªÑhûì³×^{í±Çóðð¸|ùr™•˜N©¼xñâÂ… =ºqãFSû°M›6æ,ÚÇ,ýP¡B…-Zȼ¢hÁ€dffN:UúÙËËKºœÙt­ñ¢E‹ŒF£ôóúõë+W®P§N¢',š{¿ÿþ»i ûÖ­[Ò‡.å.<&;w6½õÈ‘#ß~ûí_ýUšùòåË  =ôÈ#DDD”>««W¯:tݺuÒ¯/½ôRÁs(ÀÉ8Ç€Kêß¿¿é拹¹¹¿þú«éLÄÑ£G{xx!&MšôùçŸgffnذ!::ºM›6§NÚ´i“ô´±cÇš.ñóó“Nˆ|çwN:5jÔ(i¢ôu/:nëÖ­¥gŒÉìÙ³Ÿx≜œ£ÑøÖ[o½õÖ[™™™ùùùÒ¼¼¼Ö­[']ß]Ңݽ{WJœ’*Uª¼óÎ;r¯xÚfqòäÉ2ÿM‹ŠŠºsçŽé%ß~û­ŸŸ_ѧ½ú꫃Áô´¾}û|TšCÑï’ i×®ôó€J¯vïÞ½%ÝŽ§N:›6m²hÑ*Uª´ÿþ’^²}ûv¹7M`¨€Ësww ìСÃâÅ‹wíÚUð:å.]ºüôÓOƒnÒ¤IùòåCBBºwïž””4þ|NgzÚœ9súöíX¡B…FI§KΙ3çÑGB¸¹¹=þøãcÆŒ9zôh×®]¥—¬\¹²ôošnѢŹsçæÌ™Ó¦M›ÀÀÀråÊ………ÅÆÆÎ™3çÌ™3:u2g¹*UªÔ¼yóþóŸ)))O>ù¤Ük€Ö錞÷(äÁƒ7nBtïÞ]îZ@~G˜…¡j˜…à³`‚#ÌBp€YŽ0 Áf!8À,G˜…à³`‚#ÌBp€YŽeHKK ûé§Ÿä.@fÇ2,_¾\îÁCî*++ëìÙ³ß}÷ݪU«ä®@ŽÅëÒ¥ËÕ«Wå®@AŽÅ{ï½÷rss…+V¬HNN–»ù‹×²eKé‡;wÊ] €"í/,,Lîjr6EîP¼°za))ZÜ:G‡ÐæÎ¤daaý„+E™Ø.v£³ÇLŒB8a£èl®Õht`yv_Üb—À™œgå^y0EùJÆ(eit©Øg©¢ëÂö¥Õ ÐåÜÄò!8 „0#*!(˜ UËTh9h]Ô«&„{óG€–”’»·ŠDÔ‚µ KRp•±‚Šoލ‘®„ÿŒ%ÿçÔòt%þg4ú/¬^½¿~ÅŸJÚªp(‚#ÀÅY]›¹éhh&ÙÃâ'8jCÕЄ­[·Ê] c£(“ lG\ì`‡ªJ·Gtâx¦õ«„­­eG€‚¹JL¤SèäE¥a¨º ï¾ûnJJÊã?.w!  eŽ8;»óšaWE·?‚Ž#@Vι{йÅÐJ”“òû‹ÒýírswEÇàt¥ô] ­Dù¹VQÚM4‹Ž#À)r«½B=E-G6ÛÀ…£„°HRTåI£$G€]ÉIŠ æÒ-FNpG€(*,’É¥##LŽŠ&w °³””¹KOÆGÚŠ.‚Qi•!8*9CeÂÂÂØ¦P-¹²mE—¢²£4N-wò#8Ì#K^$,º •EÆ¿-š¶ïÅ#Ž€ÒÈrò"aÑe©82BBpÇùÀ” ‹.ˆÈ¨GÀ_‚C‚ÿøÉ9€æ¢ëÓBdäG¾rð×—¾éÓôÎøÒ·b¿â®¦à÷B#Ž mNû’àb¿®‰È¨Y U€&9íiÎ\T- L—¸ìš¿¤Z@sœsä'/ªŽf##'8DpmpN‹‘¼¨FšŒ(Šs¡P»w‰ ¨^½z÷îÝÏœ9#wE€ËrÂYŒœ¼¨^œËøÇz`œZAp„2>|8&&&==}„ 'N<þ|«V­®_¿n¯ùß¾}ûÕW_­U«–OëÖ­8PÒ3>Þö9gee={¶]»vº_tm0Š=Ó155µ\¹r?üðÚµk.\¸wïÞû÷ï;cæsPd$/j 7ô†™ª†Å ÃÈ‘####wìØáåå%„,$//¯¤çûúúKf檮€NNN¶qæAAAnnn…F¥322„5jÔ(úüêÕ« ”O?ý´âÔ©SŽÜò@qì~§0j§3šƒqêbÑq„Ť«›SRR5jdšxòäÉ’žoõPu¡™!ÜÝÝmœ¹‡‡Gƒ öìÙSpâîÝ»u:]Æ =9==}ãÆÑÑÑÛ«R{Ò^—xf±owˆ»êhF؈à‹5iÒ¤råÊsçÎíܹs¹rå„?ÿüóÚµkE ãÎÖ Uëçç·mÛ¶£G¾ÿþû 4B¬\¹òõ×_ùå—gÏž]ìÿüsÿ-[¶Lš4Izôþýû·nÝÊÉÉ)éå-Z´˜9sæ&Mš”˜˜8tèÐ;wªJSÒž/›†µH² ×h_ta¥¸¸¸B)ïٳǎóïÑ£G=Š}hÀ€<(å¬J!DŸ>}úôéã¸Å £[©Z¥œ€Æ!Ö"5Ê‚¬ÝÑq„ë¹wïÞÎ;‹ž³Øtx/z¤áºiXËÌo\G¸žýû÷‡‡‡¿øâ‹rÕÑÑh„eTæ—­@p„ëi×®]»víJztòäÉ~~~rפ+¡Ñ(¸V"5ʈ?÷„àµ2dˆÜ%À=ÂaR£ŒHŽCp yŦF;°©QFf~|§¶Á€¶:ÂÓh„ÍH2â>G#8Ъ¢·Ýá˜Ûð]‚P=‚#M¢Ñ{£Ñ(;þôs‚#íÑÑh„‘egÑ瘭Fp 1ð4a¤FÙñןÓhI¡ÔÈ¡6#5ÊŽ²3h†éO£vBj”©‘qj[hCÁÔHd„=eǧÙùÜä.Ô{#5ÊŽO³,ŽP¡Ý»wÇÄÄT¯^½{÷îgΜ‘»"ÈJ:Âëtg`:R£XýifœÚFG(]ëÖ­ÌþáÇcbbÒÓÓ'L˜0qâÄóçÏ·jÕêúõëöªgçÎíÚµ ¬\¹rË–-¿ùæ¹×JeJF#©¶“v(ö$yñ7 ŒŽP´£GîÛ·Ï¢—,X°À`0$&&Ž7näÈ‘IIIyyy+V¬°K=›7oŽŽŽ¾xñb¿~ý^}õÕ7nÄÅÅ}þùçr¯'”@'„ Ñ»¡Ñ¨| åÅÅ1P¢¼¼¼ÄÄÄäääyóæ ‹^{âĉ Ô¬YSúÕßß¿~ýúçÏŸ·Ka“&MªZµê‘#G|}}…“'OnРABBÂàÁƒå^g(BJa`'¤F% 5ÊŽŽ#¬´}ûö¨¨(Ÿ°°°øøøŒŒ OOϯ¾úÊ.3¿yófÇŽnܸaék322*W®lú577755µvíÚ¶W•››{êÔ©Î;K©QQ¡B…V­Z]¾|9''Ç>«öBj„]‘•ÀöÔÈ Ž¶£ãklÚ´)...,,lĈ×®][µjÕ¾}û,m –"((Èh4 !RRRêׯoÑkóóó=<<„F£ñÂ… “'O®Q£F||¼íU¹»»ÿôÓO¦)yyy'Nœxì±Ç¼½½íµì°R#ìŠÔ¨ô‚à‹ †‘#GFFFîØ±ÃËËK1xðàÖ­[Û18Ú.77Wª­bÅŠ+V¬(˜ö¬æááѰaCéçeË–¥¦¦nÚ´é×_ýÏþ#÷⢀?òa`¤F% 5*ÁQÙ¤ï·K Óäää´´´éÓ§KÉLÕ³gÏÕ«Wûü¼¼¼M›6•ô&]»vuDí‹/¾~ýzrrrllìóÏ?¿jÕ*Ýß×§-…½óÎ;©©©Bˆ:Øev Ó Á0ì‰Ô¨öJŒSÛÁQÙùÖ¹sç„ááá'6kÖ¬¤àx÷îÝnݺ•¼ˆYFwwwÓ+ Ó¦MëÝ»w\\œ½ ;wî\vvöþýûüä“Ož>}:00Ð s‘ao¤F% ×¨4\‹Ig’——WÒó}}}%sBÁ B$''Û·°òåË·oß~úôé¿ýöÛ† œ° (©öFjTR£Ñq„Ť‘Ù”””F™&ž|xhh¨ÜË¡ qqq….RÞ³gÝß%,,¬hSpÀ€<(å¬J!DŸ>}úôéc÷zt:]ÿþýû÷ïo÷9Ã\ÒI¤FØ{“˜>ÜöŸ3ãÔö£‰Žãœ9s¦NzþüùfÍšùøø¬_¿~èС¥ô«òóó 0kÖ¬ÌÌÌV­ZÕ¨QcÛ¶m]»v=tèÜ‹!„¸wïÞÎ;‹ž³õ“z¤FØ{“˜>ÜP8õÇ”””E‹mݺuÑ¢EÛ¶mëß¿ÿñãÇgÍšUÒKV¯^}äÈ‘gŸ}öûï¿ÿ÷¿ÿ½|ùò¥K— !¦N*÷Ò@!öïßþâ‹/Ê]œË4‚ÅqöÃÞ¤ O»õÇ5kÖ †Ñ£G›îÏ}úÝ»w6løè£Þ¼ysïÞ½6lxòÉ';tè`Îû¦¤¤È½è_pp°Ü%(]i«H§Fã_ë„0Š`Á*uuïºô]mÕ´Q ÜvÇá õÇ Ž6¿OÑÃzÑ‘F¨<8úùùétºìììBÓïܹ#þì;5~üøÃ‡Oœ8ñå—_–¦\¹rå…^3fÌ·ß~"÷bªVôfn +ÂNØ•dÇð´«Sù9޾¾¾E;‹YYYBÓuÖ]¿~}çÎuëÖ5¥F!DõêÕ_ýõ|óÍ7r/ jE/…áP;aW’©QT…AAA7oÞ”’¢‰tºCPPPÑçß¼ySQ§NBÓ¥Fã7ä^ @½ŠU8ÔÃNØ•dçüÔÈxAýÁ±}ûöùùù¿ Ïh4&%%ùûûGDD}~:uÜÝÝÏ;Wè›î¤óêÖ­+÷*Ej„ð+ÉŽ^£j¨?8öêÕËÍÍíÓO?•ÎkB,Z´(##£GžžžÒ”»wïêõzé²5ooïÖ­[§§§ÿûßÿ6Ý!üܹsóæÍ{衇ڵk'÷ªSðþÞMäPû`W’W±Ÿo¸.•_#„¨^½ú¸qãf̘ÛªU«ôôô4lØpÈ!¦ç$%%3&44tãÆBˆwß}·gÏžóæÍÛ¼ysƒ nÞ¼yøðaƒÁ0uêÔGyDîÔ…C ‰Ô(/?ߌS;ˆúƒ£">>¾J•*6lؼysµjÕúõë7zôhéŽ<Å ؼyó‚ öîÝ»k×.ÿ6mÚ¼öÚk>ú¨Ü‹¨KIGŽö°ö#yñW¡*éŒlU{ ³ô>ŽV¼¥Ø½{÷Ûo¿}ìØ±‡zè‰'žøàƒêׯïäئe#5*’^¯WÇ-Õ´¹âF‘=5:ºã¨ÙäÕŽ#\ÔñãÇ{÷î]µjUŸÈÈÈ9sæäåå™óÂÇÇÄĤ§§O˜0aâĉçÏŸoÕªÕõë×e/ £ÓéÓÒŠ›®¢£=äÃ~$#%œÔÈ8µãhb¨.'--­mÛ¶ùùùÝ»w¯U«ÖöíÛÇŽ»{÷ns`ÁƒÁ˜˜X³fM!ÄK/½²bÅŠ±cÇÊ[þ"UŠ~ G{Øû‘ŒdŒp4‚#”hìØ±·oß>pà@³fÍ„o¿ýö Aƒ–,Y²mÛ¶Ž;–þÚ'N4hÐ@JBÿúõëŸ?^ö Dqß ó×CíaìG2"5jCÕ°ÒöíÛ£¢¢|||ÂÂÂâãã322<==¿úê+»Ì<11±uëÖR8“ >\±ÿþ2_›‘‘Q¹reÓ¯¹¹¹©©©µk×–½0ó­0=ÄÑvÀ~$#R£FÐq„56mÚ6bĈk×®­Zµjß¾}¦Û^Ú(//oذa‘‘‘'¦§§ !Ê•+WæËóóó=<<„F£ñÂ… “'O®Q£F||¼ì…iG8©Q.¥ $ÈS'8:Á3 #GŽŒŒŒÜ±c‡———bðàÁ­[·¶Wpôððøàƒ Nùí·ß>øàww÷ž={š9“ÜÜ\©¶Š+®X±" @!…iTé©‘>lÆN$þ$Ô‚#,–œœœ––6}út)™ !¢¢¢zöì¹zõêbŸŸ——·iÓ¦’æÖµk×Òßn×®]C‡MMM?~hh¨™Ezxx,^¼øúõëÉÉɱ±±Ï?ÿüªU«tÒßŲ¦E¤F8;‘\HDpT4í³°AIÿœ;wN^pb³fÍJ ŽwïÞíÖ­[‰ïRò¿:/^>|øwß}º}ûöèèhó‹www}ºPp´TjjªâôéÓ§OŸ.ôPݺu»térÿþý[·nåää”4‡-ZÄÇÇÏš5kÙ²eUªT:tèôéÓmï–Y˜£V· 1?5Öbr>R#LްR\\\¡‹”÷ìÙc—9ÇÆÆ–Þ0`ÀƒJ9«RѧOŸ>}úØw‘Ë,LëHp<ö 'Sþðô_¥2Ní\U ×sïÞ½;w=gr"5Âñ؃œŒ«§QG¸žýû÷‡‡‡¿øâ‹r‚?1ŽÇ#5:“ 5ádG¸žvíÚµk×®¤G'Ožìçç'wZbfjä°°û8“+þ%È8µÓ¡6C† ‘»-!5ÂñØ}œÉS#œ‰àÀZ¤F8»Ó0< sX…¾Ôè4.ýfœÚ™Ž,gþA†#?¬Å¾ã4a‚# ‘áxì;ÎáÒFÈ‚àÀ¤F8ûŽÐh„uŽÌFwŽGjt5}”9ÁÑÉŽÌcÑ¡†ƒ? H4a#‚#3áì;¥¦F#äÂwU( ©NÁ¾ãPªLŒS;G¥"5Â)Øw‡áiØG¨ÐîÝ»cbbªW¯Þ½{÷3gÎÈ]‘ËReÊCjtéCÌçöBp„B?~¼wïÞU«Võññ‰ŒŒœ3gN^^ž9/<|øpLLLzzú„ &NœxþüùV­Z]¿~Ý.U=xðÀÃÃC÷wUªT‘{m9†¥©‘ƒ?¬ÂŽã :ÊÿôcœZ UC‰ÒÒÒÚ¶m›ŸŸß½{÷Zµjmß¾}ìØ±»wïþæ›oÊ|í‚ CbbbÍš5…/½ôRHHÈŠ+ÆŽk{az½>???***$$Ä4ÑÇÇGîæ¤F8;Žƒ¨;2BFG(ÑØ±coß¾}àÀfÍš !Þ~ûíAƒ-Y²dÛ¶m;v,ýµ'NœhР”…þþþõë×?þ¼] KMM•êiß¾½Ü+É‘8æÀ)HŽÀp(†ªa¥íÛ·GEEùøø„……ÅÇÇgddxzz~õÕWv™ybbbëÖ­¥Ô(>|¸bÿþýe¾6##£råʦ_sssSSSk×®m—¤àX·n]»®K…±"5rü‡åØkìÎ46­…ÔÈ8µ\è8›6mŠ‹‹ 1bĵk×V­Zµoß>ƒÁ`—™çåå 6,22²àÄôôt!D¹råÊ|y~~¾‡‡‡Âh4^¸paòäÉ5jÔˆ·Km©©©åÊ•{øá‡×®]ûÛo¿5lذyóæ=ôÝ×°lHp ö»cœÎAp„Å ÃÈ‘####wìØáåå%„øàƒ‚S~ûí·>øÀÝݽgÏžfÎ$77Wª­bÅŠ+V¬°Km©©©nnnuëÖÍÌÌ”¦„‡‡/_¾¼iÓ¦vZ»²"5Â)Øk싱i8ÁKNNNKK›>}º”Ì„QQQ={ö\½zu±ÏÏËËÛ´iSIsëÚµkéo·k×®¡C‡¦¦¦ÎŸ??44ÔÌ"=<</^|ýúõää䨨ØçŸ~ÕªU:éßW KMM5 ={öôôôüöÛonjӭ[·“'Oúúú:cí;ý 8©Ñ¾´ùÁeœZFGeÓÙ> ”ð©xð`éç„„„iÓ¦õîÝ;..ÎÆÂvíÚåååU©R%é×øøø{÷î 6lݺuƒ ²}•ËÆºƒb—±#Ç(›QÖÿJ AXH)7Yôõõ5–¬¤W­\¹²Q£F?þøãÂ… þùg‹Rc! B$''Û^XõêÕM©QòôÓO !N:eÏíîd¤F8»Œiç"( GXLºB9%%¥Q£F¦‰'Ož,éùVŒ÷Ýw/½ôÒóÏ?¿`Á‚Š+ÚX°jÝÝÝm,,==}ãÆÑÑÑ»­YYY¦uâ’Hp v{¡ÑÈ8µ¼ްX“&M*W®](8ZJºÉöéÓ§OŸ>]衺uëvéÒåþýû·nÝÊÉÉ)i-Z´ˆŸ5kÖ²e˪T©2tèÐéÓ§[×¼,düøñ<òȇ~¸bÅ //¯Ç{lË–-Ï<óŒÖ¹‘á,ì26Òé„ÁDF ãÔ²#8ÂJqqq….RÞ³g]æ#pÀ€<(å¬J!DŸ>}úôéãˆïÑ£G=1gça¸ ÎBj´‘ôaÕëõBË] WUÃÝ»woçÎEÏY„YlI¤X‚ýŦ#\ÏþýûÃÃÃ_|ñE¹ qA¤F8 û‹-ˆŒÅbœZ Žp=íÚµk×®]INž<ÙÏÏOî‰cœ…Ôh5.‚¡6C† ‘»E²15`6vëᎀá,ì,Öa< LŒS+ÁP;R#œ…Å 4áZŽ€ªÑÇ€³-Ed„+"8êe{j$ ŽÁßtaœZ9Ž€J‘áDì,æ£Ñ—FpØ„Ôh&"#T€à¨íF8 {Š™›¶ãÔŠBpTа°0¹K€Zá,ì)æ Ñ5!8*BJJŠÜ%¨œ^¯–» § ­g!5–‰Èõ!8*b—ÔH€ØMÊÄqvÁ8µÒµ 5ÂYØMJG£*FpT朅ÔX "£}ÑnT ‚#àúì•I( ûH)øó Z@p\©FhÁpe´8àDüqQ‘Ñq§V&‚#ÊÆ>R‘ÚDp\ƒÔpö‘BèõC³Ž€kâÀg!5D£Ñ9§V,‚#à‚ì˜ (;ˆ ‘GÀõá,ì "#`Bp\ #ÔpR£„Ïœó1N­dGÀuØ÷F.@ÉØ;F 8G@“È@ɈŒ@IŽ€‹`À ΢å?+ˆŒ²cœZᎀ+`άٽƒ¿Î€2¹É]€²p4ƒ³è„HÓëå®BŽ×ñ9ÌBp”ÍîG3Ú(6w Sd$5*ãÔÊÇP5 `¤F8‹w Ng¬@p”Š‘38‹ÖR#‘Q™h7º‚# ZK0Öö þ"lAp‰AjÀÞh4¶#8ÊCK΢‘?(ˆŒÊÇ8µ« 8 ãˆÔ¨‘t ia¿ 2öEp”„ÔgQý~Adàš£…ÔHdt!ŒS»‚# ´áêÞ)h4Ep” œBÅ©‘È8ÁP¥FgXE­{‘Ñ¥1NíZŽ€ÜH€µˆŒ€“Y1B gQÙŸDFu ÝèrŽ€©,#ÀfjÚ#ˆŒ€ŒŽ€|¤†S¨i GÈ‹àÈ„ œB5©‘F£ú0N튎€—U`êØˆŒ€rh%8®]»vÍš5©©©åË—oӦ͸qãüýýKɉ'.\xêÔ©;wî„……1â‰'ž{9  ôá*HDF@iÜä.ÀæÌ™3uêÔóçÏ7kÖÌÇÇgýúõC‡ÍÉÉ)å%‰‰‰}úôILL Œˆˆ8zôhÿþýå^ T*H °Wßtº?þÂ"5ªãÔ.JýÁ1%%eÑ¢EAAA[·n]´hѶmÛú÷ïüøñY³f•ô’Û·oO˜0ÁÃÃcùòå«W¯^´hÑÊ•+zè¡þóŸƒAî‚‹c(‘P2õÇ5kÖ †Ñ£GJS&Nœèëë»eË–’Ràúõë³²²^}õÕ¦M›JS{ì±gŸ}6##ãĉr/\ƒÔp ý#‚Ȩ´]—úƒã¡C‡ÜÜÜÚ¶mkšâîîÞºuë›7o9r¤Ø—ìÞ½[§ÓuëÖ­àÄ?ü0%%åñÇ—{ಚ]4)À\q_ 2®BåÇÆÔÔÔJ•*UªT©àôzõê !.]ºYôU'Ožô÷÷¯Zµê?þxôèÑ[·nÕ¯_?&&ÆÛÛ[î€Ò¸hj$/®BåÁ1;;;??ßÏϯÐt___!Äo¿ýVô%÷ïßÿý÷ßëÖ­;mÚ´•+Wš¦×¬Ysîܹ52ç}àMÙºu«Ü+CÓ._¾,oÁ!!ú´4¡×;fæÁú4½pȼHö¢>!ÁÁiz[w2gn—`!DšíE«Ê>,!Á!i®öoÖ3Ï<#w J¡òà(]:]¡B…BÓ}||„·oß.ú’ßÿ]‘ššzãÆ3f´mÛöÞ½{ëÖ­ûì³ÏFµqãFsúŽ)))r/: –í½u:a4:êíuBE°oél çFQ?zöX¥NØ.¿Ï»AÙTöaq¹Å)zX/Ú!Ò•Ÿãèçç§Óé²³³ M¿sçŽø³ïXˆ———ôÃôéÓ»uëæççWµjÕáÇwïÞýòåË›6m’{™àj‡ƒã¹Ð5§3j—Ÿ:eÇ>ú(55ÕŽ3ôðððõõ-ÚYÌÊÊB˜®³.¨B… ^^^ÞÞÞíÚµ+8=&&FqæÌ¹W\Š£S£ åh‘PeÇE‹=÷Üs=zôX¾|y±' Z!((èæÍ›RR4‘N¨ *ö%žžž:i(åOÒu^^žÜ+ þFù>ÕPVp|å•WjÔ¨qòäÉwß}·U«V¯½öÚ¶mÛîß¿oË<Û·oŸŸŸ¿gÏӣј””äïïQìKÚµk—••uöìÙ‚¥{÷Ô¯__î•×A»ާð½€Èˆ‚§VeDZcÇîØ±ã?ÿùOŸ>}|||GŽÙ¢E‹iÓ¦;v̺yöêÕËÍÍíÓO?•ÎkB,Z´(##£GžžžÒ”»wïêõzÓekÝ»wBL:ÕÔõûì³e¾]XXWU+^¯wêE|N¸ FÉ‘Á<ÎÞ(ªã ]Àöíò÷+¦aªù°¨©ã¨Ùc½roÇãáá½nݺٳg§§§üñÇÿþ÷¿›5kÖ£G.]º¸»»›3«øøø*UªlذaóæÍÕªUëׯßèÑ£¥;ò”ä•W^ X¶lYrr²¿¿ûöíGŒ*÷Z„jH°‘2w"#J¡¦Ô¨eÊí8 !233wìØ±uëÖýû÷KW¥T©RÅÓÓóÊ•+Bˆºuë~þùçÕªU“»ÌÂ4ûWˆ’9õïuÚæQMÅùºý­Û.DF‡RLJEeÁQ³Çz%v322¾ÿþûmÛ¶ûldddÁQé–-[6mÚ´y󿇒»d ŽŸpòÇ‚ )w€y¸ æüÔ¨Ó !‚Ù¯”DYÁqüøñr—( íF­rò–7uõz½.ÿívPÚª$spüú믅Í›7 5ýZº¾}ûÊ[3 íF8–3S#ÓÌ'sp|ûí·… Rp”~-ÁòsZj¤Ý¨INÛìDF–’98Ž1Bñè£J¿¾ùæ›r¯ ,ôáHÎIDF8ãÔj%sp>|xÁ_‡ "o=€‚Ðn„ØBYÇJÇ 5É¡›È§¡Ý¨b2Ç]»vYú’¶mÛÊ[3´‹Aj8’ãR#‘€½È_yåK_’’’"oÍ€ÃÑnÔms"#û’98ÆÆÆÊ½óÐn„Ã8"5!Æ©ÕMæà8sæL¹×`g¦FÚc÷ Ndà8\”…^#\‘²£Ý¨z|s  $´5Æ^œÈÀ9øæ T RÃa옉ŒœƒoŽJÆc—ÔH£ŠÂ8µðÍ1€2ÐnÔÛ·6‘€,Üä. 4wïÞ½ÿ¾ÜU@«h7Â1lL:Ýû&»'…v£F(ñªêãÇöÙg§Nºq㆛›[5š4i2lذڵkË]4ÃÉ©‘v£fز©é2â:Žüq¯^½víÚuãÆråÊyyy]ºté¿ÿýo§NV®\)wuÐzPºŒP8ÚÚ¡¬à¸{÷îùóç»»»÷ïßûöí?ýôÓÑ£GwíÚ5hÐ !Ä»ï¾{ìØ1¹kìv£fX±©‰ŒEYÁqåÊ•F£ñ7Þ˜2eJÍš5u:¢ZµjãÇŸ0aB^^ÞÒ¥Kå®jG»Žaij$2P eÇS§N•+WnÀ€EêׯŸ··÷ñãÇ宪æüÔH»Q,ÚÎDF¸Æ©5EYÁQQµjUb.Ù‘®’ÉÎΖ»@À~HÚ`þv&2P8eLjˆˆK—.eee}èîÝ»z½¾aÆr×õb`fj$2ÂEÑnÔeÇ^½zÆI“&åå圞ŸŸ?yòäüüüöíÛË]#TŠAjÈ„ÈÀ…È|Çýû÷üÕÝÝ=..nýúõ:tèÕ«WHHˆN§ÓëõëÖ­»téRXXØ3Ï<#oÁ`¾Òÿ:ྌpu´5Hæà8pàÀb§_¹råã?.41%%%***%%EÞš¡B´á¥ld"#%spŒ•{ @ó8µPRj$2pi2Ç™3gʽ§£Ý¨vÅna"#T†qjmRÖÅ1¥›0aBtt´ÜU@]h7ÂÞŠ¦F. 2w‹ÊÌÌܱcGzzz¡é999ßÿ½»»»ÜBEdI´U­Ðæ¥Ëµ¢Ý¨YÊ Ž×®]ëÓ§Ï/¿üRÒúöí+w€ HšAd JÊ ŽK—.ýå—_š5kÖ¥K—M›6ýðÃÿú׿¼½½Ïœ9³bÅŠ¾}ûN™2Eî¡ RÃÞ¤¿ ˆŒP=ÚZ¦¬à¸gÏžråÊÍ›7¯bÅŠÑÑÑ-[¶ ŽŠŠB„„„¼óÎ;Ï?ÿ|hh¨ÜeÂõ1H {Ó !tBGd jʺ8æ×_­S§NÅŠ…UªTñ÷÷?yò¤ôP¯^½üýý—.]*wP˜”¹ü€ê)«ã(„psû+ËÖªUK¯×K?»»»‡……?~\îáúh7Â~t:!¤A;¶/´qjSVDZjÕª.\¸{÷®ôkÍš5üñGÓ£:îòåËr×Ç©°é&;‚C(-QVpŒ‰‰ÉÉÉyóÍ7ÏŸ?/„ˆŒŒ¼xñâÞ½{…‡®Q£†Ü5•ɕi7ª ÷e„fÑn„²†ªû÷ï¿mÛ¶ÄÄD£Ñ¸`Á‚Ö­[{xx >¼I“&gΜÉÎÎîÔ©“Ü5ЮBWLó­QVÇ1 à믿;vì£>*„¨Q£ÆÔ©Sïß¿¿oß¾›7o¶oß>>>^îá²h7ÂE»ŒlXh íF¥u…¯¼òŠé×>}útéÒåĉAAA!!!rW@sн/#©€6).8t÷î]OOOŸ§žzJîZàÚ‚CBh7ÂR%ÝÊ›­ ¢Ý‰ƒãñãÇ?ûì³S§NݸqÃÍÍ­FMš46lXíÚµå. ®I§Ó§¥Ëð¾ä WUÊ·¿°Uh™²ÎqB|üñǽzõÚµk×7Ê•+çååuéÒ¥ÿþ÷¿:uZ¹r¥ÜÕP¹Ò¯˜&5Ð8eÇÝ»wÏŸ?ßÝݽÿþÛ·oÿé§ŸŽ=ºk×®Aƒ !Þ}÷ÝcÇŽÉ]#\ ×ÄÀ<Üd( ãÔ0QVp\¹r¥Ñh|ã7¦L™R³fMN'„¨V­Úøñã'L˜——ÇWÂ2Üîf032ò·(+8ž:uª\¹r (úP¿~ý¼½½ùÊA¸"†‹0¿ËÈ&…fÑnDAÊ ŽBˆªU«zxsÉŽt•Lvv¶ÜÂuÐnDÉ,˜&5€DYÁ1""âÒ¥KYYYEº{÷®^¯oذ¡Ü5ÂEȘIÊf鹌lOhíF¢¬àØ«W/£Ñ8iÒ¤¼¼¼‚Óóóó'OžœŸŸß¾}{¹kબ¸ü…ÔÉ|Çýû÷üÕÝÝ=..nýúõ:tèÕ«WHHˆN§ÓëõëÖ­»téRXXØ3Ï<#oÁp ´ñw¥Ü—@Ih7¢(™ƒãÀ‹~åÊ•?þ¸ÐÄ”””¨¨¨””yk†Òqj# °%2òW"spŒ•{ öCÐP»ŒlLhíFKæà8sæL¹×Ô…v#ì10Mj€b)ñ»ª…W¯^=}útzzúƒBBBÂÃëW¯.wQPýõ×_»»»Ë]&‰Aj­²ãÓ¤F@ÐnD©”¿üòË£G6nÜø“O> 4M¿qãÆˆ#Ž=úå—_4Hî2¡< Rk7Ù'SÖ À÷ìÙ£ÓéæÎ[05 !ªT©òñÇ»¹¹íÞ½[îÈÏŠ[y—=Oò?”EYÇ3gÎÔ®]»ZµjE zä‘GNŸ>-wPÚZâ .#›0NÒ)+8–+W.''§¤Gsrr¼½½å®€<70Mj3)k¨:<<üÚµkG-úÐÉ“'/_¾\¿~}¹k„ÂÐnÔG Lÿ5s¶!ð'Ú(“²‚£ôE2#GŽ,t.ãÞ½{‡.„èÒ¥‹Ü5BI¸’Zí©,¤¬¡êN:%%%mذaÈ!ÕªU«S§Ž"==ýÊ•+Bˆ.]ºtîÜYî?:‰+¦'£Ýs(+8 !¦OŸþÄOÌ;÷×_ýõ×_¥‰UªT3fL÷îÝå®JB»Q¥œIþ`)ÅGNwýúõ .Æ:uêÉ]FöÔHèpgvÙ€@A´a&eÇË—/ †Zµj ! ÝÍ€Z9y`šÔÖQVpìÔ©Snnî¾}ûä® F»Q]œ¼=Ùz@!´a>e]U*„8{ö¬Ü…pÓEÓÎ{GR#Ø@YÁñŸÿü§··÷üùóïÝ»'w-P*Úª Ó‰`ÇÝg§ø7eÓEÐn„E”5TøÑGýë_ÿŠ­U«VÅŠ =§mÛ¶r— ùÈža3ÓéŒz½^ˆ`¹ËX@YÁ±]»vÒŸ|òI±ÏIII‘»Lh=+È{kF6PíFXJYÁQúæ x²·‰Ö’ýnÞl:° eÇ™3gÊ]{’=2 R#PÚ°‚².Ž)äþýûÙÙÙrWe Ýèjý5Óæ–ÁvûQVÇQrîܹyóæ;vìêÕ«ƒ¡jÕª51bDýúõå. 2‘=5ÂJè2þQ ©(íFXGqÁñóÏ?ÿè£ ƒ¢\¹rîîîW¯^½zõjbbâØ±c‡ "wÐ$ˆy” @YCÕû÷ïÿè£t:]ÿþý·oßþÓO?=z4))iðàÁnnn³gÏÞ¿¿Ü5Âéh7º… L0íFXMYÁñ?ÿùÁ`7nÜ”)SjÖ¬©Óé„U«V7nÜäÉ“ ÃòåËå®Î¥„ÔHçªTÊŒŒl4peÇ'Nxyyõïß¿èC}úô)_¾ü‰'ä®À”©(íFØBAÁ1//ï×_ rww/¦P7·jÕª•v€‚CÑnT*ÅFFÁGRPpÔétåË—¿téÒ­[·Š>š••uáÂ…G}Tî2MSrd¤F ,´a#Gww÷¸¸8ƒÁ0a„ÜÜ܂ݿâĉ:nРAÖÍ|íÚµ½zõŠˆˆhÑ¢ÅäÉ“333Íí•+Wš6m:nÜ8¹×ÆÐnT…GFÁæÇSÖíx^|ñÅS§NíÚµ+&&¦GÁÁÁ:N¯×ÿßÿýßÕ«W;uêtçÎ]»v™žR«V­2g;gΜ T¨P¡Y³féééëׯ?wîܲe˼½½Ë|­Ñhœ0aÂ;wä^7£„Ôˆ”¿AH@™h7ÂvÊ Ž:u’~¸~ýúüùó =ºyóæÍ›7œòæ›o–ygÇ”””E‹­[·.00PñÞ{ï-[¶lÖ¬Yÿüç?Ë,éË/¿çË—/[RF°>M/ì_…¢…„ !ÒÒôB8b âR|ÍÁÁizç«!¶oØ%$8$Mƒÿ¨ÙÕ3Ï<#w J¡òà˜““#„¨P¡B¡é>>>BˆÛ·o—ôªñãÇ׬Yó7Þ°î}SRRä^tW¬„9;® úûÀ´SÜ–õüG¯QK[Êi4µÿ» 7 ÛÔFEëE;D¡òàèçç§Óé²³³ M—n¯#õ‹š1cÆåË—W®\iÎýz`7 ¤ÖÒØ§kËø·Ê5´•›0H ûRù9޾¾¾E;‹YYYBÓuÖT-„hß¾}JJÊž={ž{î9iŠÑhLJJò÷÷ˆˆ(úüÚµk›ž)¹}ûöÞ½{«W¯QµjU¹°žëŽMÿµ¤Fúƒc¯^½,Xðé§Ÿ¶iÓFº&fÑ¢Eƒöôô”žs÷îÝëׯ{zzþãÿhÙ²eË–- ÎáÔ©S{÷tÄm&!íF§,œëGF¡òMØíF8‚úƒcõêÕÇ7cÆŒØØØV­Z¥§§8p aÆ¿«0))i̘1¡¡¡7n”»^í!5:zÉT…š7¸ õG!D|||•*U6lذyóæjÕªõë×oôèÑR÷P1ÕDFAj,D»¢‰à(„èÒ¥K—.]Jz´S§N:u*éц r_FG¡Ýè RQd*Ü>઴PYd`Úp‚#äC»Ñî‹¢Œ5jç…RÏö—Gp„LT™qä£ÖF#©°íF8ÁÚæúÁD­‘Q¨aãÎFj„£!Úö âÈ(H HGh˜ËfuGFáÂ[íF8ÁNG»ÑªŒ‚Ô Fp„V¹`<ÑBävÁÍ(íF8ÁÎ¥…ìãZh4”à'RNjt¾–¦"£ël@Yh7ÂiŽ€Bi*2 R#`-R#œ‰àg¡Ýh~‹ŒÂ¶ @‚# 4Ê ØÎ[dR#`-Úp2‚#œB9iHÁ!EƒF¡è (ŒàÈO›‘QÛÐn„óáx´K©H«‘Q¬ÉåFp„ƒ)'5*Œ–##ÛÑn„,Üä.p%µ¥8­åÔ¨"M¯—» ÀU‘!‚#‰vc:kEQ`†ª¡ Á!Á²GƦÿX¤FÀ6´!#‚#†ÆÚŸˆŒ&¤Fpi UCtBŸ&ÛétœÎhBjlG»ò¢ãÇ ÝH£ñïH€íHG¨Åt ©QBju ãÐp»‘.cQ¤FÀ.h7B ް7E¥FçfE-:vGpì€FcIh7vA» Ap„])ªçæ”ÌBd,©°‹àR#‚à•rVj$2–„ÔêÃUÕ°-Å(¾9°t¤FÀ^tB—¦O“» àt¡FŽŒ-ŒM—‰ÔjEÇv¢þwg4©°#®‰ÒÐq„ê8&¹h Û©°#R#ˆà{PuªblÚL¤FP=‚#l¦¨Ôh×ðBd4©°/ÚP&‚#PÖbÍœŒàëÑh”©p2Ú€`¨Z‹ì÷ì3âUXm€“‘ GXÌn_ Cü± « p2R#`BpÔ›û„ OË‹Ô8©(ˆ¡jXÀž©‘d9Öàd¤F ­t×®]»fÍšÔÔÔòåË·iÓfܸqþþþ¥;}ú´Ü d-k£ŸNG¯Qf¤FÀùh7ÅRp\³fÁ`=zt`` 4eâĉ¾¾¾[¶l1 ždëÖ­Bˆ)S¦˜Z’¡¡¡¯¾új~~þ¾}ûä^ §’"£S#9Ȭ-ÀùH@IÔ:äææÖ¶m[Óww÷Ö­[ß¼yóÈ‘#žD¯×W¨P¡aÆ'††† !.]º$÷YŪž!FÙ‘ç#5¥Pù9ŽF£155µR¥J•*U*8½^½zBˆK—.EFF}ÕÂ… =< ¯™S§N !jÖ¬)÷29‰£R#QÈl¬*ÀùH@éT³³³óóóýüü M÷õõBüöÛožªAƒ…¦8p`Ñ¢EåÊ•ëÖ­›9ïVhŠ4ü-‹à}ZšÐëÍIHHpZšÞ’W˜]ŒvÈ|Ërùòeç¿©-B‚ƒ³Äå6ŠFhy»„‡¤éÓôBqŸ<-o…xæ™gä.A)Tsrr„*T(4ÝÇÇGqûöí2矟ÿõ×_øá‡ùùù}ôQ@@€9ï›’’"÷¢ÿMpp°™Ï,ð­0æ¾Ä:!Œ"Øs¶ëJݽF×)Øj.´Q4E›Ûå^£R]›E9ŠÖ‹vˆ4BåÁÑÏÏO§Óeggš~çÎñgß±?üðCBBÂùóç«U«öþûïGEEɽ@–³dÈÙ±'52òjÖà|ŒPfRypôðððõõ-ÚYÌÊÊB˜®³.êþýû3gÎ\¾|¹——׈# TÒMUƒKa”€Ô8©0ŸÊƒ£"(((555++«bÅŠ¦‰ÒÉcAAAžÄ`0¼ñÆÿûßÿbbbÞzë­Rò¥Ò™ž Df`%ÎGj,¢þÛñ´oß>??Ïž=¦)F£1))Éßß?""¢Ø—,_¾üÿûß‹/¾øÙgŸ¹pj4½F% 5ÎGj,¥þàØ«W/77·O?ýT:¯Q±hÑ¢ŒŒŒ=zxzzJSîÞ½«×ë¥ËÖŒFãŠ+~øá &È]»38#5’‰ÊœÔXAýCÕÕ«W7nÜŒ3bcc[µj•žž~àÀ† 2Äôœ¤¤¤1cÆ„††nܸñÆ/^ôööîÛ·oѹuïÞ½_¿~r/“ÿ„ô•€Ô8©°Žúƒ£">>¾J•*6lؼysµjÕúõë7zôhéŽR#`#õ_£E%gCR£B°nçÓ Ü%.Ž£†p)ŒBç£×ØÁQuJˆ‡ÎN„£âHíV àd¤FÀ^Žš@¯Q ÈÒ€,H€qŽ£º—eHD¤"X%€,H€}UŽ^£Y»#8ªH‘(Oj$%ýë©p‚£j‘•€õÈ‚Ô8ÁQ-þž¡VR# R#à8G’-5” `e² 5EpT…Q‘^£YG#8ªŠœ©‘¬ô'Ö R#àÜÜõý™I²ã‹a¹ç 8ª#Ô²#<r!5NCptq:0eN$&Ö Ð !H€Ó]½FÙ‘YÐhœ‹c\™2£æC“æW R# ‚£kSBtÔ2R# R# ‚£k“95j;7i{éÙqŽ£Ë’½Ù¨áÜÄmw¹y]’NÇ?œ²Ñp`äÄÔ€]N'Œ‚v#Ë hF@!8ÇÑÅÈ>@­e¤F@¤F@9Ž.Höð¨É¥É…äGj…¡jWòGbÔÉ[„æ—²à¤F@Ž.ãÏÔ(w»Qc´—“E Ñ(CÕ®A)qQc1Jc‹ (©P,‚£ ø+5Ê›5£4¶¸€R%c¨(©p>Nj”à¨t´¿ B+Ë (FÀ%M)§6j†fâ1 ,¤FÀU•ëo©‘v#K ¨ÃÓ€k!8¢,ÚÈSÚXJ@Yh4.‡à¨P R; '5ÎG£pQG%*œeL‘joÄ©}ù%¢Ñ¸.îã¨8 ê5ª=U©}ù%"5.Ž£â)(Hª ©p2†§ 8*‹‚R¢zƒ'5ÎG£P‚£‚“å ’ªN*]2@¡h4jBp„†'£Ñ¨ ÁQ)h7:THp°PábÊE£P%®ªVNmtô2¥éõª[,@¹¤F#©P‚£R)(Kº65&a@¹tBÇð4 b UËOAQ]!‹«§gblЂ#þ¤ºÔ¨¢¥”Ž.# G™ßnTPÒ%‘§¡Ñh ÁQN ʇj‰Z ONCd4ˆà¨<Γ*JªXÀ06 hÁQ6 j7º>€ÓÐh´Œà¨0´µ¸€k 2 8ÊC)íF×Ï\®¿€ 2•D)qÒ50< 8‘@AG(%ºr³Î•k\WÀ(„à¨NŽ“.›¼h4N@£@±ŽÎ¦ˆv£+§F×,p!Á!‚È nr˜EGjL't:¡KÓ§‘”„àèT%¶Ù‡tÁü%•ìjU.CŠŒFa$2(CÕãj©‘3‡â\F!8:üíFL.U/àJˆŒ¬@p„ÑhD÷ÇÇ‹ÈÀG'¡Ý¨ÆJWB‹€íŽÚà"YŒF#àDFöBpÔWHDFÀˆŒì‹àè òS+›+$[À•p"#!8ª²CFÀ¾h1p(‚£|œÐnTpj$2vD‹€sN¶áhe§F¥–¸ZŒœ‰à(GÇI¥F3€]Ðb ‚£)25Û‘È‹àèXÅ7ÚnT^j$2¶cH€á@DFÀF´( ÁQ]”ÔnTR-€‹!/P&‚£9{œZ1IF#`ò"…#8ª…2R#‘°y€« 8:—ƒÚ HDFÀ"¦°(È‹\ÁÑõɉŒ€ùh.piG'rD»QÖÔHdÌAs€j]™|©‘È”‰æ"õ!8:ŠÃ¿¢ZŽÔhj›pŠEs€ºžAÒé©‘#PÂ"í 8º ç¦F"#Pa€6ÂŽíFg¥FF¥‚ &EAX UG—â”ÔH‹$E(ÁÑñìÒntJš#2BËHŠP&‚£+pp£‘QihI,Eptˆ¿šŒ¶·–ɋДB1QÀrGes@j$/B ˆ‰àG¥²÷ù†äE¨UÑŒ(ˆ‰àGG²zœÚ~Fò"Ô„Œò"8*ŒäE¸´b¢ #€ÜÜä.@¹Ö®]Û«W¯ˆˆˆ-ZLž<933Ó²×[ÚnÔýÙh´öȨ+ðŸÑ¦9©Ð3Ï<#w øÐ…‡è„®ØÿŒÂXìrW­ |Xˆå 8oΜ9S§N=þ|³fÍ|||Ö¯_?tèМœG½Ÿµ‘±Ø°ÈѲ+)Œ†õÂêÀµ‹‘’’²hÑ¢   ­[·.Z´hÛ¶mýû÷?~üø¬Y³ÌyùÙ³)æ¶ †>³!£2aé-C¢!¸4‚c1Ö¬Yc0F(M™8q¢¯¯ï–-[ ƒY³(sœÚìe]‘ÿ‹°3S E‰\*Fp,Æ¡C‡ÜÜÜÚ¶mkšâîîÞºuë›7o9rĦYëÊ8—±ô˜HX„°*íÙ˜I„ WUf4SSS+UªT©R¥‚ÓëÕ«'„¸téRdddsÚ¿6TWÖa—òB”tU¯Þr!8–ŸŸïççWhº¯¯¯â·ß~3cFSê(’ˈ#ÊM+®.Ų,X/¬žÜ—(L„É]‚ý–%L=Ë¢&lb£@!Ž…I—NW¨P¡Ðt!ÄíÛ·Ëž…±ØK˜eJ‘»”‡s óóóÓétÙÙÙ…¦ß¹sGüÙwÐ ‚ca¾¾¾E;‹YYYBÓuÖZCp,FPPÐÍ›7¥¤h¢×륇ä®@Çb´oß>??Ïž=¦)F£1))Éßß?""BîêäAp,F¯^½ÜÜÜ>ýôSé¼F!Ä¢E‹222zôèáéé)wuòÐÍývzôhéŽ<ÚDp€Y8Çf!8À,G˜…à³`‚#ÌBp€YŽv³víÚ^½zEDD´hÑbòäÉ™™™rW¤!–®üœœœ/¿ü²sçÎ7nÕªÕ AƒöíÛ'÷B¨-Ÿˆ+W®4mÚtܸqr/„ÚX±QNœ81|øðvíÚ5kÖ¬_¿~?üðƒÜ ¡6–n”û÷ï/^¼8..."""::zÔ¨QçΓ{!4'---,,ì§Ÿ~’»ícΜ9S§N=þ|³fÍ|||Ö¯_?tèМœ¹ëÒKW~^^ÞÀ?øàƒëׯ?õÔSuëÖýá‡âãã?ûì3¹E=lùDÆ &˜¾)öbÅFILLìÓ§Obbb```DDÄÑ£Gû÷˜(÷¢¨‡¥%??À€³fÍÊÌÌlÕªU5¶mÛÖµk×C‡ɽ(Ú²|ùr¹K6;sæLýúõ[µjuíÚ5iÊ»ï¾[¯^½·ß~[îÒÔÏŠ•ÿõ×_׫W¯OŸ>ÙÙÙÒ”³gÏ6oÞ<<<ü矖{ÔÀÆOÄ’%KêÕ«W¯^½7ß|SîEQ+6Ê­[·"##üñüQšòÓO?5jÔ(***??_îR«ÿù5jÔƒ¤)ÉÉÉáááO?ý´ÜK£ ·oß>tèпþõ/éߨcÇŽÉ]‘ è8ÚÁš5k ÃèÑ£¥)'Nôõõݲe‹Á`»:•³båoݺU1eÊoooiJhh諯¾šŸŸÏ€µ]Øò‰8wîÜœ9sêׯ/÷B¨eýúõYYY¯¾újÓ¦M¥)=öسÏ>›‘‘qâÄ ¹H ¬Ø(GŽB 0ÀÃÃCšòÔSO…‡‡_¸pá·ß~“{Ô¯K—.}ûö]µj•܅ȉàh‡rsskÛ¶­iŠ»»{ëÖ­oÞ¼)}Èá8V¬|½^_¡B…† œ*„¸té’Ü ¤V"òòòÆïïï?qâD¹Bm¬Ø(»wïÖétݺu+8ñÃ?LIIyüñÇå^ 5°b£T«VMQ0#Æ[·n¹¹¹™¢$ç½÷Þ›7oÞ¼yó¢¢¢ä®E6ìg¶2©©©•*UªT©RÁéõêÕB\ºt)22RîU˺•¿pá¢ÿž:uJQ³fM¹—ÉåÙò‰øä“ONŸ>½dÉ’Š+ʽªbÝF9yò¤¿¿ÕªUüñÇ£GÞºu«~ýú111¦V=laÝFéܹó²eËÞ{ï½òåË7nÜ833sÞ¼y—/_îÝ»7Ÿ'hÙ²¥ôÃÎ;å®E6G[eggçççûùùšîëë+þþw!ìκ•ß AƒBS8°hÑ¢råÊj®À V"Ž;¶xñâ~ýúEEEI9öbÅF¹ÿþï¿ÿ^·nÝiÓ¦­\¹Ò4½fÍšsçÎmÔ¨‘ÜËäò¬û¤„……-_¾|àÀ4MìׯßäÉ“å^ hCÕ¶’.«P¡B¡é>>>BˆÛ·oË] šÙ¾òóóó—-[6xðàìììéÓ§ȽL.Ϻ’““3~üøš5k¾ñÆr/ Y±Q~ÿýw!DjjêæÍ›g̘ñÃ?$%%1â—_~5j·Œ°uŸ”¬¬¬éÓ§ß½{·aÆ/¼ðB‡¼½½7lØÀ¥îp:޶òóóÓétÙÙÙ…¦K7‘þv„ƒØ¸òøá‡„„„óçÏW«Víý÷ß×ò9+vdÝF™1cÆåË—W®\É0¨#X±Q¼¼¼¤¦OŸ-ý<|øð+W®¬_¿~Ó¦M={ö”{±\›uŸ”ñãÇ>|xâĉ/¿ü²4åÊ•+/¼ð˜1c¾ýöÛ¹ êGÇÑV¾¾¾Eÿ:ÌÊÊB˜®•ƒ#X½òïß¿ÿÞ{ï 0àÊ•+#FŒØ²e ©Ñ^¬Ø(\¹rå+¯¼Â%bÅF©P¡‚———··w»ví N‰‰Bœ9sFîeryVl”ëׯïܹ³nݺ¦Ô(„¨^½ú믿þàÁƒo¾ùFîe‚&í ((èæÍ›Ò§ÝD¯×KÉ]ÊY±ò Ão¼±lÙ²öíÛÿïÿ>|8].û²t£Hß{1oÞ¼°?ÅÅÅ !¾ýöÛ°°°Î;˽@j`Å'%00ÐÓÓS§Óœ(}Xòòòä^ 5°t£Ü¼ySQ§NBÓ¥Fã7ä^ hÁÑÚ·oŸŸŸ¿gÏӣј””äïï!wu*gÅÊ_¾|ùÿþ÷¿_|ñ³Ï>£%ì–n”Úµk?÷wÒ¥‹Õ«Wî¹çZ·n-÷©Ÿ”víÚeee={¶àDé61ÜhÓ.,Ý(uêÔqww?wîœÑh,8=%%EQ·n]¹Ú ÷ÈÕà—_~©_¿þ3Ï<óûï¿KS,XP¯^½?üPîÒÔÏœ•çδ´´K—.FƒÁÓ´iÓœœ¹kW-K7JQ'Ožä›cìËŠòóÏ?׫W¯W¯^7oÞ”¦?~<""¢Y³fr/X±Q^yå•zõêÍ;×ôå=gÏž}òÉ'5j”šš*÷iÈ”)S4ûÍ1\cÕ«W7nÜŒ3bcc[µj•žž~àÀ† 2DîÒÔÏœ•Ÿ””4f̘ÐÐÐ7Þ¸qãâÅ‹ÞÞÞ}ûö-:·îÝ»÷ë×Oîery–n¹ëÕ+6JxxøØ±cgÏžýÌ3ÏDFFfgg:tH§Ó½÷Þ{•+W–{ÔÀŠòî»ïöìÙsÞ¼y›7onРÁÍ›7>l0¦NúÈ#Ƚ@Ђ£}ÄÇÇW©ReÆ ›7o®V­Z¿~ýF-ÝUŽfÑÊ¿|ù²"''çäÉ“Eå{á¡@Vl”W^y% `Ù²eÉÉÉþþþíÛ·1b„ô5K° K7J@@ÀæÍ›,X°wïÞ]»vùûû·iÓæµ×^{ôÑGå^h…Îø÷S%€bqq ÌBp€YŽ0 Áf!8À,G˜…à³`‚#ÌBp€YŽ0 Á€¶Œ7.,,l×®]r">ýôÓ°°°¯¿þZîBÀ\G˜ÅCî@£ÚµkдiS¹ s@ 6lذ¡ÜU€ªÅÉÏÏðàÜU@aG®aêÔ©aaa3gÎ,4ýĉaaaQQQyyyBˆŒŒŒÙ³gwêÔ©I“&Mš4yî¹ç¦OŸ~íÚµ’f+]+³ÿþBÓ4hðä“Oœ²oß¾‘#GÆÄÄ4kÖ¬ÿþŸ~úi¡l÷Ë/¿¼õÖ[:ujܸqÛ¶m‡zèСR–hñâÅ/Ž‘*¹|ùò¢E‹žzê©FEFF¾ð ۷o/iGmРAëÖ­ÿýwÓÄ;wî´mÛ¶AƒÇ—{£P‚#×Ð¥K!ĶmÛ M߸q£¢[·n}ûö]¸pá•+WjÕªõüãÒ¥KK—.íÓ§Off¦-ï>kÖ¬AƒmÛ¶-///00ðÇüä“OúõëwóæMé çÎëҥ˪U«nÞ¼ùÈ#Ƥ¤¤—^z)11Ñ¢7Z¸páG}äééùÔSOùúú=ztذa[¶l)öɃ ºvíÚ|`šøá‡þú믯¿þúc=æì@íŽ\C³fÍ/]ºôóÏ?›& )TÅÅÅ !Ö¯_áÂ…èèè}ûömذáÛo¿Ý»wo³fÍ~ùå—;vXýÖ;wî\¼xqÍš5×®]»k×®M›6íÞ½»M›6ÇŽ›?¾ôœY³fݽ{÷µ×^KNN^¿~}RRÒ”)SŒFãÇlÑ{­Y³fèС{öìùòË/¿ÿþû !–-[VÒóGŽº~ýú={ö!öïß¿zõêG}ôµ×^“o[P-‚#×àææöÜsω¿7üñÇk×®EDDÔ­[W‘——×®]»7ß|³B… Ò*V¬(µ*ÓÓÓ­~ë3f!æÎkêáÌ;7((hݺu·nÝBœ9sFÑ«W/wwwé9}úôyýõ×cbb,z¯Ç{ì7Þpss“ùõ×_B\¸p¡¤ç{zz~øá‡S§N½~ýú”)S¼½½gÍše*ìˆàÀeH°à¸­4NÝ£Gé×aÆ-X°à‘G1=áÆ›6m²åM333õz}HHH¡+ Ë—/•““sòäI!„”\'NœxðàAélKOOÏQ£F1¢·{öÙg þêëëëîîn4KyIƒ † võêÕ®]»þòË/&L¨S§Ž£¶mãv<\FÆ ëÔ©sáÂ…”””°°°¼¼¼­[·z{{wêÔÉôœ_~ùe÷îÝ?þøã¥K—.^¼hã©Bˆ´´4éÿaaaÅ>á×_B$$$Œ=úàÁƒ/½ô’——Wƒ žx≧Ÿ~ºAƒ½Ý?þñ+Š|å•W¶oß~êÔ©æÍ›÷éÓÇ®kþBpàJºtéòÉ'Ÿlݺ5,,lÏž=·oߎ‹‹3 L¯\¹òÝwßÍËË«U«VdddLLL£FôzýÛo¿mÑ»äç盚|÷ïßBÔ¨Q£¤AçêÕ« !þñ¬]»öèÑ£»wïþá‡NžúèÀ¿øâ‹„„„¹sçʽ­¨ G.&00°yóæBˆV­Z|è£>9rdõêÕ¥û;¶nÝzÆ S¦LéÛ·¯»»{±_X³fÍÿüç?111nnn{÷î={öl5/^`zŽN§›>}ú¿ÿýïèèhƒÁpáÂ…ààà±cÇnذÁßß_zN÷îÝ¿úê«6mÚx{{Ÿ9s&;;»E‹óæÍ{ë­··*–/_¾ÿþ–-[šNôBŒ9²víÚ[¶lÙºu«¬ € éJ¿=hÇÝ»woÞ¼Y³fMó/‚M!8À, UÀ,G˜…à³`‚#ÌBp€YŽ0 Áf!8À,ÿèÌbYÒÐ,ñIEND®B`‚statistics-release-1.6.3/docs/assets/betafit_101.png000066400000000000000000001234351456127120000222760ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A€IDATxÚíÝw\×þ7ð3ì"PQš‚b£Ø"Å `{AQÐÄJì%&Fñ§^KÈsK,×$ÆKìÆh¸`AclQÄj,ñFÑX¢"RæùãÀ8ÌÎîΘ-Ÿ÷Ë›»;ÌΞ9gÊwO†eY Ü ó€À$Aà’ pI8€$@ŽædëÖ­Œ4?–;±&mÖ¬Y4£z÷î­ëgwïÞ½cÇŽ;vp W¬XA7غuk¹wÎÔ’ùz{üøñÈ‘#½¼¼”Je­Zµž={&w6èfþüù4ÓâããéÑCNÝnšÑ_ª.\¸ zé³³³óöö0`À¹sçª4’X †¤YuƒUtêá’hm”r'ÀÌ 8ðéÓ§„ƒÆÆÆÊäÃ?\µj}M‹Ï"©ÛM3Ú}ϯ—/_ÞºukÓ¦MÛ·oÿâ‹/FUÍ …¼i6ÇC p4'¯½öZ£F¸·………wïÞ¥¯===kÔ¨ÁýÉÆuÉÕªV­Z´h<<<äN ˆøùçŸé‹¨¨¨Þ½{óO3%zÈ©ÛMËÛ}>777{{{úúáÇ´½¥¨¨(%%%&&Æßß_îJbôkˆ¼%\-Gsýúuîí/¿üG_ÿüóÏM›6•;â®_¿îééigggâÛ4DRRRRR’Ü©09¦SLÜO¬éÓ§wíÚUîäè!§n7-o÷ù¾ÿþ{~E×Áƒ»wïþâÅ‹âââ•+W.^¼XîJbôkˆ¼%\-ê¥,VRRíbÂ?{»téBöìÙ“[N~üñÇÜÂgϞ͞=»cÇŽnnnnnnqqq3gÎ|ò䉿/å÷¡ù믿’““]]]ýüüÜÜÜ.\¨º¾”o‘¾Mu=xH—O:UCâËÊÊ6nÜØ¡CŸš5kúøøDGGóÍ7ÅÅÅt…?üa®¥/..ŽaÚ]L]‡]wðáÇ“'Onݺu­ZµBBB,XÀ}»:ÅÅÅË—/ŒŒôôôtttlÞ¼ùàÁƒÿýw]÷ŽŸ’~ýú]½z599¹Q£F 48pàùóç !ÇOLLlÔ¨Qݺu;tè™™©wÑ«º{÷îøñãÃÃÃkÕªõúë¯÷íÛ÷ôéÓúí,_AAÁ7ÊÊÊèÛGݸq£¤¤Dæ’’’O>ù¤AƒŸ|ò‰~ŧG¦©sóæÍÄÄDWWWww÷>}úüöÛoªë9u»©a÷%f»Ö\Òi Žp ç—NâââzôèA_çççK?Æ4'@ÊdÄ¥´ðz\”¨;wî <øõ×_÷ôôìß¿ÿ¡C‡Ô¹àZj —D=® `(ÌÖÁƒ¹rÌÉÉüuÍš5ôO¾¾¾ÜÂzõêÑ…tIqq1×Ê“™™Iž8qâõ×_W=Z6l˜••¥!I\裺…aÆñW–ø-Ò·É­Ù«W/þ 0€.Ÿ2eІ5û÷ï/zŽ$$$Ðf̘¡ú×§OŸ²,»|ùrú¶U«Vzï`tttPP`å~ýúiÈð/^´iÓFõ+†ùꫯøkjÝ;~JBBB\]]ù«Õ«Wï‹/¾°µµ| wÌXL¿üò‹›››ê^Lš4IåëÕ«—êG.]º$HÉ»ï¾K_üñÇúŸ™&ê·ß~swwç¤V­Z]ºt¡¯;wîLWrêvSÃîKÌv͹¤Ó4áÎ/U999Ü:TWècÆŒ‘~ŒiN€”3Ȉ*ñ€×é¢ÄDëÖ­Ƕ­­íòåË5Ÿ¤¬ÊµTöK¢~×0G3¦9p¼uë÷×»wï²,Ëoæ&„ܹs‡eÙ3gÎзEEE,Ë>þœëIY³fÍN:uéÒåµ×^£KÜÝÝŸ|8]âêêjx1Íœ9“.áWÞüûßÿ¦ ½½½uÚYQ¢¥ÆOs“&MÖ­[wüøñ«W¯ê]|ºfšª¯¾úŠ®S«V­ãÇÓ…&Lඦ!ÎP·›ê–KÌv ¹¤Ç´áêvA€8в··_¿~½®;«.Ò¯F,Pé¼Ä‹¿ h7P–eoÞ¼ùÆoNIé×Réß^—DC®  7ôq´dÜùsüøqBíXÓ¬Y3OOOBÈÉ“'¹…„·ß~›¾Ø³g}ñÁpÝSš7o>iÒ$Á (•Ê¥K—ÒQžžžÿú׿èòììì/^è÷-Z·iˆÄÄÄuëÖ­[·nüøñtÉ“'Ož?N_ÿý÷ߺnPlÖ¬Ù¸qãèëÆGEEÑ×7nÜP÷-………ôÅwß}·fÍ:â»ï¾ËÉÉÉÉÉIHHÐoïZµjE›ÒlmmûõëGº¸¸|ðÁ„îþñèÑ#Ë駟~¢/FŽÉ-:t(­7ºyó&“OâÎêáµ×^;pà@rrrÛ¶mýüüô+>C2³aÃú‚_w²hÑ¢úõëë½wêHÌv ¹¤ëô8ÂõÖ¬Y³öíÛë½³z_ )Ъ;àmmm¹“´aÆÜIºwïÞÒÒRcE¹ª¸$V]-8þú믤"FlÛ¶m«V­ˆJàÈ­|ùòeú¢S§Nü­q‘e^^××^fÍš5lØ{ËmŠeÙk×®é÷-Z·iˆN:%''wéÒåèÑ£S¦L‰mРÁÅ‹õÞ ;(èýõxjÈmnã—/_>|¸‡‡GË–-ÿýï?{ö¬iÓ¦\Ï*]÷Žß®Êuõôô䪫¹…ªô(¦+W®p+s39;::r÷°¼¼<é;«‡ÐÐPúkÊâ3$ÓT³‚›šR£F î{Hb¶kÈ%]· Ç.…››[£ 4Ãûí·–-[^½zU¿¤ è}}0¤@«î€oÚ´)¿ã—¶—/_þñdž”…UqI¬º, 8Z²èèh¥RI9qâDiié©S§/püí·ß^¼xA[|<==›4iByòä ÷ÔÁü[Ü}ñÅ‹ÜìêÎØ×^{ÍÙÙ™¾þ믿ôûÍÛ40¯^¾|9yòäúõë8ð³Ï>ËÈÈ())Ñ»šG¿ä" Ñ·¢RSSÇŽËÍwòìéÓ§çÏŸß¶mÛöíÛsrÐuïD¿Zâä ºÓ“'O´NI}ÿþ}é;«Á £ŸN™F=}úôÞ½{¢ÙÈÅBz¶kÈ%]· Ç.Å÷ß½Â;wîÝ»G#¡»wï6L¿¤ èw}0°@«î€$ÆÁÁ;IoÞ¼©÷f5¨¢KbÕeh€ÀÑ’999ÑgOž<Ù¹s'ò€ ïß¿¿sçN:µWÝèääÄ]Aþ÷¿ÿñ·Æ½­Q£×Í\Áù_XXÈM¸Ð¨Q#ý¾Eó6 Ì«ùóçþùç%%%~~~K—.ýý÷ߟtèÐ_ýexRõ;ƒ ,Ъ;à?á ¹ôx{{³0*TÑ9UuY p´pÜ á_~ù%!ÄÑѱI“&\Ÿî¥K—Òüvn4÷´ Á[Z‘©Á… îܹý=pà˲„5jÐ1†z|‹Ömr76A2Á%[—_}õÕûï¿ß¢E ¥Ryûöm½sÞ(Ù¨YQQÑÝ»wïÞ½[TTÔ¿ÿuëÖÝ»wïÀÜüÜÜlFß; ´“*®o~IIÉë<µk×vqqqqq±··—¾³FQ ŧJ¡PøúúÒ×û÷ïç–³,+eöG]IÉöªÞBáWôÒß-&U¿3È­Ò^p’ri«Q£ýugȵT£ŸSÕ|MG ÇU%fddBZµj¥P(êׯOVfeeB†á?w›`ìÿý¿ÿÇÍŽ›““³dÉúšßYG—/_¦¤¤¼|ù’ò¿ÿýoúôéty÷îÝiot=¾Eë6¹ÖŸ_ý•ëZ´mÛ6­×èþù‡k¨â.”§N¢™¦a5üÕ(Ù¨ÙÅ‹ÝÝÝÝÝÝ=<¿4xøð!7,·fÍštIå`ȤwêwÀKÌ´âââ””ÚÜô¿ÿý›ŽÑÀki5_«ùš|ø† †ùé§ŸDŸ áââB×ü¿ÿû¿ .Œ?^0óq³QZpwïÞ-))‰ŒŒìÖ­[:uþøã;wÒèStÚ;£Ð\Lª>üðÃU«V=|øpûöí111o½õÖ… ¸!–“&MªS§Ž‹‹‹”5–j(>QS§N¥“È@¤òŒ\Ô¯¿þJ¦ øøø>|XC’¸úíÛ·ô•Q*•ü'Hÿ¶ÉÍxÂñóóã*4Ì㘘˜¨úÁ:Ð×ï¾û.÷ÉÉÉüÕ4<&A×”2ešÀ±cÇÔ5±EGGÓyÚ¤ïhJÖ®]K6kÖŒ[xäÈ®t-&ÑoÙ¹s§hõÀèÑ£¹) %î¬(Íó8 rÞðⓘi¢† "øF®3‰çq”˜íšsÉ-ˆá¢ç—*­ó8BÂÃÃù—’Tu ~}0bJ?à%^”¸‚pqq ÛªQ£Æš5kDK‡¿Ëª×Réßnà9%zÀrM½¡©Úòq­Õ¤r£è T›6mÎ;7kÖ¬ØØX777WWט˜˜>úèüùó‘‘‘R¾´N:G9rd@@€››[ß¾}80jÔ(C¾EÊ6¿ýöÛùóç7oÞÜÁÁ!44ôƒ>8~ü¸`4¨¨´´´æÍ›“ЇLœ8ñÌ™3ܽ7lØÀµ×¤¥¥%''ׯ_ßÁÁ¡Y³f†ÍžZ½ùæ›ùùù³fÍjݺµ§§§­­míÚµ###W­Z•‘‘Á 6”¾w†“RLªºwïþûï¿1",,ìµ×^óóóëÝ»wVVÖ²e˸îVwÖXª¡øD­^½zìØ±ôuýúõ{ôèqðàAþ”„F$%Û«z ÒÏ/Q´+NÇŽW®\™™™É=EzRE`ȤwJ?àuÍ´èè謬¬îÝ»7hÐÀÃãÿþÜ$ç”ôk©Œ—Äj¾&Ű½= 7kÖ¬yóæBzõêõã?šì6EïÞ½›XhGUï]µ“•8yòäÿûßQ£F999É Äà3 }ÊÙÚÚZdÈh {gyZµjÅoÙx¡@Áb ©$Aà’ pI08$A#H‚À$Aà’ pI8€$@Ž G#H‚À$Aà’ pI8€$µ»sçNË–-§N*wBä„ÀQ –e§OŸþôéS¹ 3ŽZ¬]»öĉr§@~5ÉËËKKKkܸ±Ü GµJJJ¦M›V»ví3fÈù)åN€éú÷¿ÿ}ñâÅ5kÖ899Éù!pwöìÙ•+W4(<<üÂ… :}600Pîä@Õº|ù²ÜIG………Ó¦MkذáäÉ“õÛ‚uL¦,00…bjP(¦ åb‚P(&Èj+‰8ŠX´hÑíÛ·7lØ`oo/wZLÇ8qbÆ £F –;-&5ŽByyy„¥K—.]º”¿|çÎ;wîô÷÷ß½{·ÜiG!Ÿ®]»ò—<~üøÈ‘#žžž¡¡¡îîîr'@…"#####ùK.\¸päÈ‘V­Z-Y²DîÔÈ}Á*`@¢ B¡˜&”‹ B¡€é@à’ ©Z»¦M›â×j@Ž G#H‚À$Aà’`:ã ”;  Ì»'G€*k€¹À¯}éÐT ’ pI8€$@Ž G#H‚À$ÁàÕ‡ayÀ²¬Üyf 5ŽÕ‹•ïŸz©©© ÃtïÞ]õO‹-bæ÷ß—;㈯¯oïÞ½é먨¨ÐÐP£Å©S§†Ù´i“º,:zô¨êŸ:vìÈ0Lii)}{ãÆ †a†Ê­PRR²zõꨨ(''§”””;wîp+|ñÅŒFû÷ï×cwæÍ›çêêÚ¼ys£g”Qð Ôh8¨|}}ûõë'w«ƒ†S€rèС¸¸8WWWOOÏÞ½{_ºtIîô‚ PãåvïÞ½mÛ¶>}úÈí …B¡;’°,Û³gϽ{÷¶lÙ299ÙÎÎîÒ¥KË—/ÿÏþó믿6mÚ”6eÊî#ÿþ÷¿]\\Ì-iÔ¨‘®ß›››;kÖ¬ÈÈÈ1cÆÈU¨}ûö±±±³gÏ6|SüƒêäÉ“óçÏŸ7o- êwîܹùóçgee=}ú´qãÆÉÉÉ)))J¥œ·ìS§NÅÅÅùøøLŸ>ÝÎÎnÕªUQQQ.\¨_¿¾”ÛÛÛs¿¯(WWׂ‚w ô€ÀÊÙÛÛðÁ;v¬U«–ÜiÑ"33Sî$Hµnݺ½{÷N:uñâÅܳgÏFFF:ôĉ„¨¨¨¨¨(V­jذá’%K ùÞüü|BÈœ9sbccå΃ªræÌ™£GkùÕÝ»w·oß>aÂYöëÚµkÑÑÑ¥¥¥½{÷ööö>xðà¤I“:ôã?Ê’jùòåeee 6$„ <ØÏÏoݺu“&M’òñëׯ—––†‡‡ûùùq eÜ#ÐG(7kÖ¬™3g~üñÇ_|ñ…Ñ7þòåK¥RiccuÝchëvJJ aHHH¿~ý¾ýöÛ§OŸVѽ“ög­Y³fí—NJ뙌UI\RR’‘‘‘½téÒ²²²*ÚAMš4éñãÇÇoݺ5!dîܹÇ_³fÍþýû;uê¤ß6ËÊÊX–5¤Ο?ߤI5Bj׮ݸqã«W¯Jü8ý%3wî\ þ%c%¬î"êôëׯK—._~ùåÉ“'5¬vâĉ.]º¸»»{zzvéÒ…Ö™Q¾¾¾'NÞÞÞõë×ïܹó/¿üÂßΡC‡:vìX§N&MšL:õåË—FÏU3åää–/Z´èܹs5jÔ0dãêÊbèС½zõ"„DFFúúúª~°°°pÞ¼yAAA¯½öšÏˆ#þúë/)¥ SÒãáË/¿tqq©Q£FóæÍg̘¡.“5—߃:uê”ššªµ•3!!ÁÖÖöéÓ§ôí¦M›†iÑ¢·Â”)S†9sæ áTC‡íÖ­!$::šŸ{Gwuuõòòzÿý÷ÿùçuß{ðàÁððpGGÇÀÀÀaÆݿßÖÖö›o¾‘X¬íÛ·§Q#5nÜ8BȱcÇD××\^'N\±b…«««R©ôòò3f ?åÒOû÷ï×­[—{[TT”ŸŸïãã#q§hàøÆoH\Lj Ã0_}õUÓ¦Mß{ï½ß~ûM´rbÇŽ îîîdfË–-[¶léÙ³']áÖ­[:urvvîØ±#]²nÝ:…BñÑG)•ÊÏ?ÿ|8>>žrøðaBHNN΃h ”™™éîîÂÿÔäÉ“}}}gÏž½xñâ¶mÛÒ…çÎëÚµë;ï¼·cÇÚn»bÅ Õ/ݳgOŸ>}SRRîÞ½»qãÆ£GJ¯-));vl«V­ø oܸA±³³S]_kyþœþõÅ‹íÚµóóó+))yñâ…‡‡ÇíÛ·é_ïܹãééIÙ¸q£º,Ò ¤¤„®ùÇB† Â}öûï¿ýõ×éj5kÖŒ‰‰Y°`Áü¡®8\\\Zµj¥ùÓZÛ·o'„9rDõ³OŸ>U(ü>ÜÕÕõÎ;RJAzÒãaÁ‚ÜM:•²aÃ~j.) ™@GõΙ3GÝ ·oß&„L™2…¾mÞ¼9c¾mÛ6ºk666Æ S=¨vïÞMÉÌÌäöš²cÇú¶¤¤$((ÈÇÇGõKKKýüüÂÃà 钣GÒß`k×®eõòàÁƒ6mÚ(Š+W®¨þUkyB¶lÙBß–••5oÞ¼Aƒ4“u:5j÷âÅ z$;99íܹSú^ÄÇÇÛÛÛ×®]›;e‚‚‚Nž<©_ž7n«½×£©*™4iRóæÍgÍšuëÖ-ÁŸNŸ>}ýúõ &¸ººÒ%®®®&L¸ví7_‡‡ÇÇÌïúÖ¦M®Z¨C‡„ÚÚÚÒ%´ÃÓóçÏ !'Nœ8}ú47tôÁƒÜŸ¤Ø±cÇìٳnj3|øpBÈ™3gòòò¦NjooOW°³³KII¹víÚéÓ§OŸ>}ãÆI“&yyyq)ÿàƒ4Å€¦¨ðööÖü©¤¤¤üüüßÿ=--­cÇŽ'Ožœ9s¦ŸŸ sõ#¥,Ô±±±¡S Ñz,BȪU« <<<¤”‚ô¥©špàÀ¥K—òòò.\¸PRR"1Ù¹¹¹ƒŽŒŒLOO§KhuTRRRRR’`å›7oÒ{gË–-ù˵Π9nܸˆˆÁ³gÏÞ¼ySk [´hÑ¢E‹ &¼|ùrÇŽ'Nœ={ö›o¾ùöÛoëQLRÊB{{ûôôtÚ Û´iÓðððÎ;wíÚ•¶j-éJiÚ´)¿9ÒÁÁ!00P0¢BsIiÞ­âãã—,YòðáCZùIÇÌÌL¥R'e;ü·êF™Ðr â/lݺ573â³gÏh÷SQ,oŠþ›7oŽ7n×®]þþþŒ‰‰ýˆÖò¤œ;=¯\¹Bt? ň#èëÔÔÔ9sæ$&&ÆÆÆjÝ©ÌÌÌš5kÖ©S‡.6lØ‹/ÆŽ»eËúKÌj@èÍ7ß=zôöíÛU ô èFï ÅÅÅô­‹‹‹~_ZTTÔ½{÷¨¨¨}ûöùûûOž<ùâÅ‹ÎÎÎR>ûðáÞ={:;;oÙ²… \h¼²dÉ’ŸT´iÓ†ÖÐöÅ胾Ÿ>}Ú¯_?ÚŸŒS£F~ýúÑ®™{öìÑoËRÊBƒ±cÇþñÇ_ýu‹-öîÝÛ§OŸ-Zܽ{×RH©T F`h.)¿®sçÎeeeYYY‡ööööööîСùsç=z”™™)qï$ŽOj‘É9;;khäVÛ°aC³fÍNž<¹bÅŠÜÜ\uQ£”òR—rÃOwß}—’-e§<==¹¨‘¢?™.\¸ S‚ìPã"þõ¯ýøããÆ£÷ж”?þ­·Þâž;wŽhà79rdïÞ½éééãÇçJ©q,--0`ÀíÛ·>ÌnBS[«V-þ &¹¹¹çÏŸwqq¡£;O:Íý•Òa,û÷ï¿uëÖÈ‘#¢µt¯½öš~[6¤,û,11‘ÆOž<‰/..¦ýüü>ÿüó¤¤$Ú·¯  ÀèX2 “””´bÅŠyóæ}øá‡\ûæ³gÏfÏž­î1RR—/_Žˆˆøè£æÍ›G±±±¡¡ƒ­­­Þ¥ NAAAZZÚ´iÓèÛyóæ=yòDð¤AÍ%e`ØÚÚÆÆÆîÝ»÷æÍ›´I´U«VµjÕZ°`ÖŽzLV·nÝôôônݺÑAй¹¹›7o&•ÄZ›ªY–6mZÆ ¿ûî;­Ó.R^zœ'Nœ¸rå ×ö½uëVº­;eoo?eʔ֭[ÿòË/ôWDYYÙ’%K”J%7ý˜ Ž .11qíÚµ?ýô·ÄÎÎ.---111,,¬ÿþ,ËnÚ´éÎ;›7o(D':tppp9rdrr²——×±cÇ222êÕ«wäÈ‘}ûöÑéTTíÙ³ç³Ï> V(üéë‚‚‚ÂÂÂÒÓÓ{öìÜ¿ÿâââí۷ߺukãÆôárŸ~úiÿþýCCCmmm7mÚTO?KKKËÉÉ™5kÖÚµk[¶lI±=zôîÝ»3gÎ ×o³†”E«V­š5k¶páÂk×®5kÖìòåËûöí«S§ÎÀ …¥ ‡‡Ç¬Y³²³³ƒƒƒ;vàÀvíÚ½óÎ;üu”J¥†’2¼âããio]Zã¨P(¢¢¢öîÝÛ°aCuO¤ñë²eËîÞ½+:%:ŽŽŽsæÌIIIiÓ¦M§N>|¸iÓ&‡¢¢¢Õ«W‡„„ÐÛ¶pñâÅK—.q] 9}úôüÒÐﬡlmmu=Š‹‹cbbzöìtöìÙÿüç?¡¡¡ …BóNÕ¯_?55uúôéþþþñññ...û÷ï?sæÌ‚ š4ibxCµ’{X·²Ú!úÀ1ëéxø®]»FºÒéx¨ìììÎ;»¹¹¹¹¹uîÜù×_åþÄŸ1Gt m£ÓåP´Ò믿þbY6++‹N›üúë¯1¢  `ÕªUõêÕëÔ©«f:n(Œ7ËéÓ§»víêîî^»víèèèŸþ™Ÿ¼C‡ÅÅÅÑ;gggZ3¤a:ÑÙmèè Óñ<{ölùòåíÚµ«W¯ž­­­››[·nÝ>¬®8¤LÇ£µ,4LÇòì­[·† æããcggçíí””ÄͰ#½´(]9++ë­·Þrvvnܸñ”)S^¼x!zlh.)QZ§ãáv–R¯^=n }œã¨Q£ø«ñ§ã)++8p ““SXXMjBBåAƒ¹ººªûÆ­[·¶oß¾nݺÉÉɹ¹¹‘‘‘^^^ëׯ׺S¢c«©yóæ©®¯Sy±,;dÈî­ôS€Ndz~ýú°°0GGG__ßÑ£G?zôHëq¶lÙÒ¦MGGGWWט˜˜}ûöIÿlUÃt<Ò1¬¾  N``àåË—åNÈIÝ1À0 ‘ñ„cÎwuîܹS·n]ÃëMÏ××7$$DÞ',ƒDZO__ß7ÞxãÀr§´Jèqã¶Ú{=šª÷Àjá‰0H‚G€êž óOy`æÌ™†ÏŽ#@õAC°*K—.•; `4ªs‘‚uBS5H‚À$Aà’ pI8€$@Ž G#H‚'ÇT+†‘홃xn #@õa†È½1 ƒØ ¦j ©©© ÃtïÞ]õO‹-bæ÷ß—;Ä××·wïÞôuTTThh¨Ñ¿âÔ©S ÃlÚ´I]=zTõO;vd¦´´”¾½qãÃ0C‡åV())Y½zuTT”‡‡‡““SHHHJJÊ;w¸¾øâ F£ýû÷ë±;óæÍsuumÞ¼¹Ñ3Ê(øj 4T¾¾¾ýúõ“;ÕAÃ)@9tèP\\œ«««§§gïÞ½/]º$wzA ÜîÝ»·mÛ&w*$Q( …BîTH²lÏž=GŒQXX˜œœœ’’òúë¯/_¾< àÂ… t°°°)}ÆŒW¯^ŠŠºwïžYïèMÕPÎÞÞþƒ>èØ±c­ZµäN‹™™™r'AªuëÖíÝ»wêÔ©‹/æž={622rèС'Nœ „DEEEEEq]µjUÆ —,YbÈ÷æççBæÌ™+wÙµk×¢££KKK{÷îííí}ðàÁI“&:tèÇ4d³üƒêîݻ۷oŸ0a‚%í –/_^VV–‘‘ѰaCBÈàÁƒýüüÖ­[7iÒ$óÝ)Ðj Ü¬Y³þüóÏ?þ¸*6þòå˲²2¹wQ´u;%%…¿0$$¤_¿~§Nzúôi}/íÏZ³fÍ*Ú¾NZZZÊ5ånÒ¤I?>xðàÚµkçΛ=lذíÛ·ë× o‚ªbËÊÊ ,‚óçÏ7iÒ„F„Úµk7nÜøêÕ«2îÈ#”ëׯ_—.]¾üòË“'OjXíĉ]ºtqww÷ôôìÒ¥ ­3£|}}'NœxòäÉààààà`ºdüøñS§NurrªY³fÛ¶m÷ìÙSRRòá‡999uèÐ!77—ÛBZZZ‹-êÔ©Ó¶mÛï¿ÿ^4 :t ÝÑž={¦¹S`NNNŸ>}¼½½ëׯ߹sç_~ù…¿C‡uìØ±N:Mš4™:uêË—/ž«ôn““#X¾hÑ¢sçÎÕ¨Që+‹¡C‡öêÕ‹éëë«úÁÂÂÂyóæ½öÚk>>>#FŒøë¯¿¤”‚NJ‡/¿üÒÅÅ¥FÍ›7Ÿ1c†ºLÖ\R|íÛ·oݺ5·dܸq„cÇŽ ÖLHH°µµå¢óM›61 Ó¢E n…)S¦0 sæÌÂ;¨†Ú­[7BHtt4?÷Ž=ïêêêååõþûïÿóÏ?êRxðàÁððpGGÇÀÀÀaÆݿßÖÖö›o¾‘X¬ÒwPJyMœ8qÅŠ®®®J¥ÒËËk̘1ü”K?îß¿_·n]îmQQQ~~¾Oí˜,4U@9†a¾úꫦM›¾÷Þ{¿ýö›h'Â;v$$$¸»»8a˜-[¶DDDlÙ²¥gÏžt…[·nuêÔÉÙÙ¹cÇŽtɺuë ÅG}¤T*?ÿüó„„„°°°’’’Q£Fååå-[¶,))éìÙ³„9s椦¦ÆÄÄ$$$ýøãƒ rrrµCÙÙÙ­]»–{[VVöÉ'ŸÜ»wÞÏ8УGÄÄD›ü±S§NëÖ­0`!dÛ¶mýû÷¯[·îÀmllÖ­[·sçN£çj¿~ýV­ZÕ»wïáÇ÷éÓ'""‚ÖÖ¯_¿~ýú†lYCYLž<ÙÛÛ{îܹŸ~ú)ÿVÍ1bĆ âââúö훓“³víÚœœœãÇK)éJÙ¼yóŸþÙ¥K—àààãÇ/Z´èرc™™™‚y©4—_IIÉØ±c[µjÅ_xãÆ z0VŽßºuëáÇããã !‡&„äää>>·oߦ½s玧§'!dãÆê²Hƒ’’ºæüA2d÷Ùï¿ÿþõ×_§«Õ¬Y3&&fÁ‚üñ‡ºâpqqiÕª•æcLkYlß¾räÈÕÏ>}úT¡PðS8|øpWW×;wîH)éJ‡ p_4uêTBȆ øª¹¤Xmþøc›WÝ`Ú´iÓ¸qcúºC‡„ÚÚÚÒ%±±±GŽyþüy­ZµNœ8Q³fMZ«Ayðà!äùóçS¾cÇŽÙ³g3føðá„3gÎäåå­_¿ÞÞÞž®`gg—’’’””túôé’’’7n,Y²ÄËË‹þÕÃÃãƒ>˜1c††¯0`@ƒ  øá‡›7ojøTRRRRRÒ¹sç222222²²²222>þøãÙ³gòÉ'ú“”²PÇÆÆ†N-tãÆ Z5»jÕªU«VÑ¿j-éJS5yòdî³³gÏ^¶lÙ?üÀ¯JÔ\Rš÷%33ó½÷ÞËÏÏ_¶l™¿¿¿à¯^^^-Z´ÈÈÈ „<|ø0''gõêÕ)))YYY½{÷>|øpYYY—.]¤dx@@@=èk…BràÀÕÕ²³³¯]»¶páB®wixxxBB7ÁMIIÉž={Ô} Ws/q¥”—ŸŸ_ß¾}ék†aBCCiµâéÓ§õ8”JåÊ•+ïÝ»—Ý£Gþýûoܸ±´´Ô¸;¦ #T¢T*¿þúëððð>ø@0à1//B;/rh±¼¼ûðáÞ={:;;oÙ²… \h¼²dÉ’ŸT´iÓ†ÖÐöEòîéÓ§ýúõ£ýÉ85jÔèׯíš©¡žF3)e¡Áرcÿøã¯¿þºE‹{÷îíÓ§O‹-îÞ½kH)H¤T*#04—”èF6lØÐ¬Y³“'O®X±"77WCüѹsç²²²¬¬¬Ã‡{{{{{{wèÐáܹs=ÊÌÌŒŒŒ”¸wǧs5|üHÎÙÙYC# ®;(¥¼Ô¥ÜðSàÝwß%„dggw§ÀÄ¡ÆDüë_ÿúñÇÇGï mT:þü[o½Å-|˜?Ü„¦¶V­Z:uâæææž?ÞÅÅå7Þ „œ:u*::šû+7¤ÃXöïßëÖ­‘#G þDké^{í5ý¶lHYû,11‘ÆOž<‰/..¦ýüü>ÿüó¤¤$BHAAÁ_|aÜld&))iÅŠóæÍûðùöÍgϞ͞=[Ýc¥0¤,._¾ñÑGÍ›7bccCC[[[½KA‚‚‚´´´iӦѷóæÍ{òä‰àIƒšKJ°A–e§M›Ö°aÃï¾ûNÊÓƒlmmccc÷îÝ{óæMÚùµU«VµjÕZ°`ÖŽzÌ<V·nÝôôônݺÑñ¹¹¹›7o&•ÄZ›ªuÚACÊKSàĉW®\áÚ¾·nÝJ·c܇ÀÄ%&&®]»ö§Ÿ~â–ØÙÙ¥¥¥%&&†……õïߟeÙM›6ݹsgóæÍ†Ï©Ñ¡C‡‘#G&''{yy;v,##£^½zGŽÙ·oNEÕž={>ûì³àà`…BÁŸ¾.(((,,,==½gÏžÁÁÁýû÷/..Þ¾}û­[·6nÜH.÷é§Ÿöïß?44411ÑÖÖvÓ¦MFÏÆ´´´œœœY³f­]»¶eË–tëÑ£GïÞ½;sæÌððpý6kHY´jÕªY³f .¼víZ³fÍ._¾¼oß¾:uê 8P¡PèQ xxxÌš5+;;;88øØ±ch×®Ý;ï¼Ã_G©Tj()Á/^¼xéÒ¥   ®§§OŸ>¢x||<í­Kk ETTÔÞ½{6lØ´iSÑdÓøuÙ²ewïÞUHGGÇ9s椤¤´iÓ¦S§N>Ü´i“ƒƒCQQÑêÕ«CBBèÀm [Ðiõ;k([[[]Oââ☘˜ž={={ö?ÿùOhhhBB‚B¡0âN©“{X·²Ú!úÀ1ëéxø®]»FºÒéx¨ìììÎ;»¹¹¹¹¹uîÜù×_åþÄŸ1Gt m£ÓåP´Ò믿þbY6++‹N›üúë¯1¢  `ÕªUõêÕëÔ©«f:n(Œ7ËéÓ§»víêîî^»víèèèŸþ™Ÿ¼C‡ÅÅÅÑ;gggZ3¤a:ÑÙmèè Óñ<{ölùòåíÚµ«W¯ž­­­››[·nÝ>¬®8¤LÇ£µ,4LÇòì­[·† æããcggçíí””ÄͰ#½´(]9++ë­·Þrvvnܸñ”)S^¼x!zlh.)Ž ß-ß¼yóÔí,!¤^½zÜú8ÇQ£FñWãOÇSVV6pà@''§°°0šÔ„„þʃ ruuUW.[·nmß¾}ݺu’““sss###½¼¼Ö¯_¯µLuÝAÊ‹eÙ!C†¸¸¸po¥Ÿt:žõëׇ……9::úúúŽ=úÑ£GZ÷H¿R«f˜ŽG:†Õ·Ô ¼|ù²Ü©9©;†!2žq ÎwµîܹS·n]ÌEl\¾¾¾!!!x±YÐz øúú¾ñÆ¢“Y=nÜV{¯GS5¡óX-œ G€êUyò 3‚À ú ¥¬J||<}äX€™3gê=K+XŽP%–.]*wÀhTç"ë„'Ç€$@Ž G#H‚À$Aà’ pI8€$@Ž@RSS™Êœ[·n½jÕª²²2Ñulll7n}ºè:cÇŽuwwߺuë[o½µbÅ u›âëÖ­›ê—æææÎš5+((hæÌ™rç¯ iß¾}jjªQ6¥P( }}òäÉÞ½{_¸p¡:÷Eð¥üôTÝ·˜šsçÎ%&&º»»;::¶jÕ*--­¤¤DÝÊ?=z´···££cûöí¹ßfW¯^U÷«¬C‡2îÝ©S§ââânܸ1}úô3f\½z5**êÞ½{?^\\¬T*{T¯^=­=M.]ºÔ¯_¿ ¸¸¸DDDlß¾]Æœ±HJ¹¦bܸqÜÛ»w†¦¥¥M™2ÅÍÍMtK—.õêÕëý÷߈ˆhÖ¬™ºMiŸŸO™3gNll¬Ü`*Μ9sôèQceHff&÷úîݻ۷oŸ0aBuîŽàKù驺o1)×®]‹ŽŽ.--íÝ»···÷Áƒ'MštèСüQuå'Ož´jÕêæÍ› ®®®[¶léܹóÿûßÐÐPGGÇAƒ Ö/,,ܺu«¯¯¯Œ;¸|ùò²²²ŒŒŒ† Bìçç·nݺI“&Iùøõë×KKKÃÃÃýüü¸…ŽŽŽš?%zš\¹r¥uëÖ666ƒ rrrÚ¹sgïÞ½W¬XñÞ{ïɘ?#€™`²åÿ­nnn HKKËÉÉáGƯ[·®uëÖÿ÷ÿ§_3˲„š5kVÏNiõòåK¥Ric#©5¦´´”b¬ú³’’’ŒŒŒììì¥K—r=¬„NÙnv&MšôøñããÇ·nÝš2wîÜáǯY³fÿþý:u¬üùçŸççç¯]»öÝwß%„Œ?¾eË–“'OÎÈÈpssûî»ïëO:ÕÃÃcÉ’%z'¯¬¬ŒeYCãóçÏ7iÒ„F„Úµk7nÜøêÕ«?N=Î;WÊ%ͧɂ ž={vöìÙ-ZBæÌ™Ó¢E‹™3g"p4"Ëæ'Nœ¸bÅ WWW¥Réåå5fÌ~éKÏ¢û÷ïóPTT”ŸŸïãã#1hàøÆoHYYóirñâEOOOî\°³³‹ŽŽ~ðàÁýû÷%&´cÁØäNÈÌ8Ç!ª dΜ9„#GŽðÞ»wÏÓÓÓÆÆæÎ;êÖ¡ÆŽK¹víšæÕT?þ“O>!„|úé§YYY,Ënß¾]©T6hÐ`„ 'Nlذ¡R©Ü¾};]¿Q£F}ûö­S§Ž¯¯ï{ï½§ºÁ¤¤$†a:vìøÑGõìÙS¡P´mÛ–þiöìÙ„˜˜˜ÔÔÔ™3gBvîÜÉm¹N:õêÕ›;wî‚ \]]kÖ¬Þ¦M›´´´1cÆ0 Ì­ìååEéҥˇ~H»—µoßžÖÜ4jÔ¨W¯^tÍŸþ¹fÍš¾¾¾S¦L™6mš¿¿¿B¡Ø°aƒæl¡ æÌ™£n…U«VBöîÝËφaîß¿O—´lÙÒÝݦ':::$$„æ6í¶xñbšÛ5 pvvNIIùôÓO£¢¢!¢«u_Ôå¼ê—réÑ5Û5” ê·hNíÖ­[ EýúõÇŒ3nÜ8ww÷€€BÈÆUw|÷îÝÜσ¡C‡ÚÛÛØØØ¬]»VÊA^\\>>·oߦ½s玧§§hTTZZêçç^XXH—=z”¶êJ U=xð M›6 …âÊ•+‚?]¹r…2qâDþƒBV¬X!XyáÂ…ööö·nÝR÷EZyBÑ–••5oÞœÆX:e[8¾xñ‚žì´s¡ô ‰···¯]»6w¹ :yò¤æO‰ž&ùùù 6lРÁÿýßÿ}ñÅQQQ5jÔÐúSEਠôq¨Fz ‹Öü6¨­s$¿K©T~øá‡RF0*É0`@ƒ øKè]J³Ó§O_¿~===ÝÕÕ•.quu¥U¿ÿþ;méóððøøãE;ÃÙØØ0 sôèÑ7nÐf²U«VÑÊ9Bȉ'jÖ¬©T–_ôýôÓäää×^{-++kìØ±íÚµ;qâ„ AoÌ?L¤c«MÉï¿ÿN;&¼—,Q©¿¤¡ 7@ÇÅÅEÃÆŽÛ·oßÝ»wÿ÷¿ÿÝ»wï×_˜••åââÒ§OŸ½{÷¶nÝúí·ßîÑ£G»víÂÂÂŒ˜ J¥òÙ³gü%4lZ²d‰êÜæMš41ðë:wî¼hÑ¢¬¬¬ììloooooï:Ìœ9óÑ£G™™™‘‘‘«j$Žg׺/êr^Ýx|]I/AÍ©=tèQ9ÌÔýáªëøøá—³³3+áW܆ Fåèè¸bÅŠaƉn–âææfcc#öAvp•„/^¬Y³¦OŸ>‚!)9¦®ôiò$f‘¨wß}wΜ9ÙÙÙ}úôÑš?´œïí·ß&„è:+gNNÎúõëÇǵtïÞÝÖÖ6>>~åÊ•‚)iAoÌD•U4èôéÓ‡îß¿¿º{¡t´åîüùóo½õ·ðܹs„ÀÀ@­ðàA~~~@@Àˆ#FŒQVV¶téÒ”””åË—GFFîÝ»7==}üøñÜúz çäææsõa………/^ŒŽŽVÝZµjñ§\ÉÍÍ=þ¼æðWŠˆˆ''§ŒŒŒ'N´oßž]VV¶k×®3gÎÐ^§F¤y_4ä<Ÿa¸#GŽH/AÍ©¥£wO:Å/¯³gÏŠnж¼_¾|™?MiNN? Z›bwíÚ5xðàþýû/_¾\Ð - T*›4irøðaþÂC‡1 Ó´iSnÉ?üð÷ßk®Ó)ÇtÊ"Qô‹ …Öü¹qãÆîÝ»cbbøÕº´’Uú¸lêï¿ÿ&„¼þúëü…ô­ ¡ ÀÀpÓ7šX]c^^Þ Aƒ†áz",,ÌÛÛ;---99™ö”ÿûï¿?ÿüs)©»|ùrDDÄG}4oÞû,11‘FŠOž<‰/..NHH00¯lmmccc÷îÝ{óæM@´jÕªV­Z ,ÐÚÁQI"5ïËùóçÕå¼!_Ê'±é·hNmXX˜ŸŸß矞””äááAKó‹/¾ýÞ°°°ºu릧§wëÖÍÎÎŽ’››»yófRQA®µ©šeÙiÓ¦5lØð»ï¾“2WâÈ‘#Ç¿{÷n:Áн{÷¶lÙÒ±cGþ JëׯwvvÖü´CŽy²ˆ:qâÄ•+W¸¶ï­[·ÒíhÍ{{û)S¦´nÝú—_~¡LYYÙ’%K”JeÇŽµ&•¯eË–ööößÿýûï¿O ‹²zõjBˆ~p@GÓ&¨häÂÇjœ œoÙ²etøjQQQNNNvvöË—/—.]ʯћ]ZZZbbbXXXÿþýY–Ý´iÓ;w6oÞÌÝ4hÕªU³fÍ.\xíÚµfÍš]¾|yß¾}uêÔ8p B¡ppp9rdrr²——×±cÇ222êÕ«wäÈ‘}ûöÅÇÇëšTY³fegg;vìÀíÚµãæÞ£”JezzzÏž=ƒƒƒû÷ï_\\¼}ûö[·nmܸÑ(s†ÇÇÇÓY]h£B¡ˆŠŠÚ»woÆ ùµS|4ŠZ¶lÙÝ»wùãx´Ò¼/rÞ/åëСƒæ|‹†Ô*ŠO?ý´ÿþ¡¡¡‰‰‰¶¶¶›6mR7w¦££ãœ9sRRRÚ´iÓ©S§‡nÚ´ÉÁÁ¡¨¨hõêÕ!!!t„¸†”_¼xñÒ¥KAAA\ÿ?NŸ>}ºwï¾hÑ¢… þë_ÿ=z4!dÈ!kÖ¬INN;v¬‹‹ËÚµkŸ?ΰ^aaaVVVll¬æ¶c­9¦á³¶¶¶Ò³ˆ*..މ‰éÙ³gPPÐÙ³gÿóŸÿ„††&$$( ÍùS¿~ýÔÔÔéÓ§ûûûÓrÜ¿ÿ™3g,X@{AòG‡¥K—:´iÓ¦}úô©Y³æ¡C‡²²²úôé£:J ô'÷°n dµCôcvÇ€”Éóì0 ”””­ë¦øøÓñPÙÙÙ;wvsssssëܹó¯¿þÊý‰?E¢¨[·n 6ÌÇÇÇÎÎÎÛÛ;))‰›ê%++‹Îáüúë¯1¢  `ÕªUõêÕëÔ©“ê–i«ÜªU«¸%´.í¯¿þâVÎÊÊzë­·œ7nhÌÎ;wêÖ­+¥JÛjiÍ"__ß7ÞxCt"'s¡ÇEÛj¯óhªë¥:¤EÀ‡gU€$¨qÐM||¼”áX‰™3g>Ø ŽºYºt©ÜI0!#GŽ”; P}ÐT ’ pI8€$@Ž G#H‚À$Aà’ pI8IMMe*svvnݺõªU«ÊÊÊD×±±±iܸñàÁƒ?®ySœŠ~û¼yó\]]›7o.w6‡¯¯oïÞ½åNÅ+QQQ¡¡¡ê’Ú¯_?ÓIŒN:Å0̦M›äNˆéÒœE‡Š‹‹suuõôôìÝ»÷¥K—äN/TŽ&Š!Œ”FüÆL™2eÊ”)“'OîÞ½ûÕ«WGŽ9}útÑuÆŽëîî¾uëÖ·ÞzkÅŠê6Å×­[7Õ/ÍÍÍ5kVPPÐÌ™3åÎrù;w.11ÑÝÝÝÑѱU«Viii%%%nS¡P( úúäÉ“½{÷¾páBuî”àKù驺o15ú•lûöíSSSùKŠ‹‹•J¥à'Y½zõäÝ»S§NÅÅÅݸqcúôé3f̸zõjTTÔ½{÷ª?!eee_~ùepp°££cãÆ/^\\\,oþX¥Ü µXÂj^Á¸ã¸qã"""¸·wïÞ MKK›2eŠ›››è:—.]êÕ«×ûï¿ѬY3u›Ò ??Ÿ2gÎœØØØ*ÏPÓvíÚµèèèÒÒÒÞ½{{{{}úåË—W¯^-oYŽ ÎÍÍmÀ€iii999\à(иqãuëÖµnÝúÿþïÿôkæcY–R³fM¹w·ÜË—/•J¥¤Ö˜ÒÒRBˆ±êÏ&MšôøñããÇ·nÝš2wîÜáǯY³fÿþý:u’;cª–NÙnvt*Ù’’’ŒŒŒììì¥K—rE8ô‡ÖܹsøC«¬¬ŒeYCãóçÏ7iÒ„F„Úµk7nÜøêÕ«ÕŸ?ß~ûíž={¾þúë‘#GÒ%‰‰‰kÖ¬™1c†¿¿¿±rÌÊYæY FA£:Í =­ZµŠˆˆØ¶m›ªC‡íÕ«!$22Ò××—.O9|ø0!$''çÁƒôþ™™éîî"Èm__ßÙ³g/^¼¸mÛ¶tá¹sçºvíúÎ;ïÄÅÅíØ±ƒ¶9ªvZÕº/êr^ôKù¤g»†Týͩݶm[ÿþýëÖ­;pà@›uëÖíܹSÝQºgÏž>}ú¦¤¤Ü½{wãÆGU­ëRG§’%„¸¹¹Ñl—/_nܸ±à¯ùùùvvvµjÕÚ¼yóßÿÝ´iÓ6mÚÔ¨QCô«µó\ºtéÈ‘#7n¼oß¾eË–¯\¹R×,*--U*•„–eÿøã™3gzyy 6¬šó§¨¨èäÉ“‰‰‰%%%'OžÌÉÉñõõ wppXX Æ w@fF9«ýô”²ŽsæÌ!„$''Ϙ1cƌӧO2d A>øàþ:GŽQýøÂ… !¿üò ·šªÈÈHѯ޾};·Ù¢¢"__ßFпøøøøùù±,Û¨Q#BHjjjii©ê¦ž>}ªP(† Â->|¸««ë;wX–õóó (..¦zôè‘R©3f }Û¨Q£5j\¼x‘¾]¼x1!$88øåË—tIdd$!äÉ“'\2,XÀ}ÑÔ©S !6l íÕ«ÝÿÐÐÐçÏŸÓÕ^¼xÑ®];??¿’’­…òàÁƒ6mÚ(Š+W®þtûömBÈ”)SèÛæÍ›Ó1éÛ¶m£»fcc3lØ0ú×èèèúz÷îÝ„ÌÌLn¯ !;vì oKJJ‚‚‚|||T£y_4ç¼àKùéÑ)Û5— ÿ[4§öÅ‹>>>·oߦ½s玧§'!dãÆ‚/--õóó /,,¤KŽ=J[u×®]«µu-Y>:0yΜ9ü…ñññöööµk×æÎ¬   “'OŠnAë1OÙ²e }[VVÖ¼yó Ðì’žEtSqqq/^¼ IrrrÚ¹s§~™cHþ\¿~òÎ;ïð+/½½½E¯Zz\´­ö^G(ÇoÆR*•~ø¡”Ñ‚j6BÈ€4hÀ_BïRš>}úúõëééé®®®t‰««ë„ &Nœøûï¿Ó›‡‡ÇÇ,ÚÎÆÆ†a˜£GÞ¸qƒ6“­ZµjÕªUô¯'Nœ¨Y³&­!„ø`ÆŒª›ÊÎξvíÚÂ… ¹n¸ááá \Þ’’’={ö¨Û;®¦\bÉj•ŸŸ_VV–ššJ»+ìܹsâĉ½zõÊÉÉqvv¬¬5ÇüüüúöíK_3 J«OŸ>-=‹8J¥råÊ•÷îÝËÎÎîÑ£Gÿþý7nÜXZZZmùóøñcBÈ·ß~Û»wïo¾ù¦aÆYYY#FŒèÛ·ïÅ‹ùÑ6#@µÒi´”•¥oPëí#GŽH -pëÖ-B˜§ôQÕ|yyy„AË8íº———G#­ÀÀ@uC(ìííÓÓÓi«eÓ¦MÃÃÃ;wîܵkWÚW»víììì\ºt)//ïÂ… ‚N™\´J¡‹êNÓ¦Mù탂ѴF$)))))IÔ›7oª oÞ¼9nܸ]»vùûû}úðáÃýû÷×û^È¡-SçÏŸë­·¸…çÎ#„jýøƒòóóFŒ1bĈ²²²¥K—¦¤¤,_¾<22rïÞ½éééãÇçÖ7dníÜÜÜââb®>¬°°ðâÅ‹ÑÑѪ»S«V-þ”"¹¹¹çÏŸ wíÚ5xðàþýû/_¾ÜÉÉIs"""œœœ222Nœ8Ѿ}{BHtttYYÙ®]»Îœ9C{‘æ}Ñó³gÏ6JŽ9"½5§–I>u꿼¸aO´åýòåËüiJsrrøiÐÚ«SÉjpãÆÝ»wÇÄÄðk@Ÿš7o!ÄÆÆ†ÞölmméhþívË–-Ïž=“R"ª   --mÚ´iôí¼yóž"X⾜?^]Îò¥|K~‹æÔ†……ùùù}þùçIII´4¿øâ Ñï «[·nzzz·nÝè ßÜÜÜÍ›7“Š r­MÕº–¬öööS¦Liݺõ/¿üB󶬬lÉ’%J¥Ru’CŽy²ˆ:qâÄ•+W¸¶ï­[·ÒíTgþBÞ}÷ÝÔÔÔC‡Ñ_Seee .´±±Á󌣸G¥§§Ÿ}úpó§ðÅÇÇÓGkÐ{¤B¡ˆŠŠÚ»woÆ ›6m*šlE-[¶ìîÝ»ªSi y_4ä¼!_ÊסCÍ%(ø ©U(Ÿ~úiÿþýCCCmmm7mÚ$:) !ÄÑÑqΜ9)))mÚ´éÔ©ÓÇ7mÚäààPTT´zõê:B\Cʵ–ì¢E‹.\ø¯ýkôèÑš3¡~ýú©©©Ó§O÷÷÷§»¼ÿþ3gÎ,X°@µóƒÖÓðE¶¶¶Ò³ˆ*..މ‰éÙ³gPPÐÙ³gÿóŸÿ„††&$$(ŠjËBȘ1c6oÞܱcÇäää ìÛ·ïäɓӦMÓ:§è@îaݦèñãÇ]»v0aBbbb@@@“&MΟ?/åãV;D8f:æI+óì0 ”””­ë¦øøÓñPÙÙÙ;wvsssssëܹó¯¿þÊý‰›éF[·n 6ÌÇÇÇÎÎÎÛÛ;))‰›ê%++‹Îáüúë¯1¢  `ÕªUõêÕëÔ©“ê–i«ÜªU«¸%´.í¯¿þâVÎÊÊzë­·œ7n>^ʃp¬ÄÌ™35O° –£&gΜٺuëõë×Ïœ9ãíí½hÑ"‰TsÎ:{BX¤¥K—Êb e‘2•¬•@à¨ÉåË—éà‰ÊÆ´~Pî´€q¨ÞÖ­6”ÄàM pñâÅ#GŽLŸ>}ÿþý¤9°Bµ`¦^½zÆ KLLü믿öïß/wŠäÀQ(//ïÃ?Ü·oŸ`9}ÃÝ»wåN €<8 999mÛ¶>g“ïæÍ›„___¹ ŽBnnnGŽÉÈÈà^ºtéûï¿wttlݺµÜ FU‹˜7o^RRÒûï¿Ú Aƒ{÷îŽ G#H‚À$Aà’ pI8€$@Ž G#H‚À$Aà’ pI8€$@Ž G#H‚À$Aà’ pI”r'À’1 £ßY–•;íBª˜ žÑ&@ÕBS5H‚À$AS5¨…þyÀ‡À4Bÿ<¨€¦j#H‚À$Aà’ pI8€$@Ž G#H‚À$Aà’ pI8€$@Ž G#H‚À$Aà’ pI8€$@Ž`uX¹`¦8‚%cÉ«2ÒW°RÁB°Œx˜(XÈ2„!*a"¢F 8‚ÅbÂHo–fY‘h%RîT9ñk…:Bàæ‰aûª:‘«\TVBOGnSZ£ÉÊß `UÐT fˆ†w êïÚXiõÊ‘/Þd_ý—¾ ÿøoUCITU€µB#˜§ŠN êE+ CXúñŠTËw!R „ p³Æhk¤æÐ¿VŠ2¹ÚD~Ó³jŒ(hÅ­ƒ°Á䩿èÿq!#?‚ä^«¬f‰„®ŠDÑ?¡ã#XŽ`h¬¦18 áȘò˜’T4U¿ú0S鋸פrØÊïþ(ø Í€Àà0m4 ãþËõJdÂ¾Š i€(ˆi(ɰ¯bJþëJÁ7,FCU"?üT7€µ@#˜.t«ÜTMÄz:ªš|-ˆùøAªºïTIX Ž`bÔõ,­ê£ïøƒ[Ô ”!bmÙj#?A»³æ$q•Žèø–MÕ`Jø›`VE¢2ü™Q;¼Y‡' ŠR­†$ê»<ò+ )€EC#˜~‹°ê Škª®Š™q4TCR)I‚„ –`â°8ÁT æYTs‘Ž®Îô¨¦XC0O8X>Ž`2µt‚j<5x†¶JK¤Z ©Zã(H6]‹Âÿ#š²Àœ¡#ÈŠŽVæOs#˜õÆôÛ|#i*¿fÄ``¦PãríS(:!Ž âOåÈo¼æÕ;jx("€yAà²R}`´JàUiM“z@‹èàëÊý2Y4O€AS5ÈD0‹ ¿ºŽ[.`vóÝTÔ8’ŠzGµó˜Ô8‚|TçÙ6¯¸Pó®ñ‚EÁ[TI€¹@à&€?€š˜óWTëM†ð¥ÍX6×÷À\ p9ˆŽ•ÝÆìˆÍ4É£ú‚ ÒÌG¨.¢rMpŒDb æ÷kä^#Rs„Àª—è¢Vš]È(?ޤõŽ.æ#TÁƒ§‰ØÓ¨-[ùù1üŽ‚·& #T/îI}V5 Ú¦é(¢q¨5ª À4aGƒ¥‹ÂÝeE^ó§uäF[—/”;Á¢8BµPíÂÈ µESmƒ„ŒüÂLG¨zü‘?Ó!ÿ1VL||Œuç ˜&ŽP-ø3ïðŸhvO4V~ðæqÔ5² ú8€‰BàÕH]×F«ŒIåXc^0}U U@äŒüzGë¦ZÑøj!#6;ºÕçÈ#TÕ§N‹NßhÅã`TÇÊB¬dº"0#hª†ªÁûÂ1Ó V‹JÓôÊ£ˆÊÿ€–lG¨züèQ£zÂêFDŠ`b8BãžC iñj¨uùûÊ}C‘{ 7ŽPõôè¢|:n‚tä˜ Ž#{UK&ƒØQ‚W£ªùTgPõ4ý@õAàÆ$œ‰PÖ ÊѨÒPkg Fƨ6^T#4Uƒ‘½jfEXc Áãv¸×È^ jL\‘êì˜õŽP­8‚AmÓ•úçñ{ã!¸1„ Ÿ(,¢Ï(T/Ž`þ#O(–M=ó@?¢mÖÕ #ª|êAFø=´¢†çÇÆÐT%Ž`LtB– j4ÕG~k^NP¿ U#Ù«§ž v4œh :8 ÆÊTLÇFSÞÙ‘ |©2‚±Õ‚‰Á©@CàÆTÞÍ8ª”jìHCFDPÅÐT F XMzÚUÕ#Ù Ê ÆôÇŸÄ‘A Rý0§#T/Ž`áJõ£Á"×<ª GÐ7q£È ŽPÕøã`¸Þ\$¢I¨èã`nýÕň˜ÜŒ #è@]§ÆJËåN¤ÕL™)a9zÀxÐT : Á"ÃVŠùoÑf-;ªÎу¨Œ #è†a_Õ/ º9"j”“†gÌ GÐ?vS¤nrGà#èŒÖ/"v4-Ü=šW0GÐÂGÓ" ¹>ŽZcJiÐT úàz7r]AÊOP¡ˆ'Ê€±¡Æt¦ZшªGùiÜQµÒ-× #Ž 3ÑGÅ`HµiÑ0¹#:;€¾ÐT ’ BÑüˆökDÔ@£¸ÂÂÂM›6mÙ²åöíÛµjÕ 6lXDD„Üé’7˜•‹fƒ«wT@裈’’’!C†œ={ÖÙÙ¹]»v/^¼øõ×_9òÁŒ;VîÔHÆ‹¢«-:”dôÄZn†G?üðÃÙ³g[¶l¹zõj{{{BH^^Þ Aƒ¾ú꫘˜˜   ¹XݸºFT7š%uQ£ÅÓ5 ´†<0 ú8Šøé§Ÿ!}ô !þþþ£G.--=zô¨Ü©«. Ã’ò`±|AÅ´;Ü?0\µ"p …É@G¨qqýúu‡¦M›òúûûBnݺ%w꪿~‘_݈¨Ñ<¨V¹Ñ`ñ"裈+V(•œ¹pá!¤aÆr§®º°,Ã0¢mÓh°6K¢“8brGÐGMš4,9~üø×_mgg׫W/)[ ,¹|ù²Ü»¥n5,"j4W\Œ(˜Í“;h£z[·Zµ(--ýþûï/^\ZZúÙgŸ¹ººJù”™†‰`áø1"‚D©ÞÖ­6”Dà¨É¯¿þšššzõêU „‡‡Ë¢êÆU7Ô5ZA$€6Ž|ùrÉ’%ß}÷]Íš5SRR†ΰ¶64jä·S#‚´Ü4=ª'ƒÀQDYYÙäÉ“þù縸¸Ù³gׯ__îÉŒ ¹ÚG0{\ÔȃÑÖ Gß}÷ÝÏ?ÿœ””4{öl¹Ó"3ÕHu憆ü‘1@2L.IJìºuëjÕª5}út¹ÓP¸™Àùo1+8H€G¡‚‚‚›7oÚÛÛ'''«þµwïÞƒ ’;ÕÝ- ÿ"?FôtT÷°b…nß¾M),,ÌÉÉQý«¬KÆŸ”‡ðfêáÞð p Ã,Œ4€`Ñ£ÑðcGLî¡#¨@=“µQí׈¨Ä p5ÄV ƒc@=Ž µMÖ‰?8rG„’@AG D¥mº¢Î‰%„ðÝ"˜´T‚É&€AehmÅB†a0h%3;"|!šª¡÷ÌbÁbDÖ@4:ä­FÇG „ Æ^ႃŠz&LÇc¥Ôň˜Àê!p€Ê´Î ލÀZ¡©*ã*†!„Eû¤uâw]àWE#j°n¨q„ \CdEdÀ¢[›Ð0_'[ñWú‚¥ƒì+ÖgAXŽÀSy Cgä‹§®˜ «/¯{®XUÑÖ MÕPAlR ޱZ\¼ø*jD¼`õ8€8n2&†û ž Ö#ˆ‹ô-Ë–!ˆ¬ú8B ˜Õ*F‘vj•U`Ù8€vügU ”á‹ÜÄ=`ÑÐTmõ*?-@ˆ ÃV‡-˜!,G„ÆŽ4||5¡#~rXŽÖÞõ1<¤ÁôLV#BÐ; $áz:–.‚Ÿø`é08ÆÊ¨»µó—#ˆõ¸¦juÕÖ£UŒ‡U  Fyk57°ša^ux{øX4U[:úUC½#îú žHG0Ö5ŽVIµfóð®ø??Ô½&8¨, GëÆqƒ~~¨þö@6€ÅASµÕãî÷èݺâ6‚CQ#€%B£CȆ㎠U`)Pãh•øµD„àyq`(î@BE#€ECàh•D#EÜïÁt^‚YÁ,šªÀ`ª£dT_€ùC£µB“"…jFú!#€%BàÐÚí£¯,šªÀxÔÍȃ‡¡XŽV íÔPETgTI¢öÀœ¡©ŒJݬàtØ5~±˜3Ž`lªýU«À !p´&Ü4{¸CµÁà ‚ÀÑÊàÕ‰ß<Ío³ó„ÀÑj ¢ª =ظæiÕH±#€yBàh}>B5àÿPAïFKéx,—ºJÁrÜÑÁèD*®ê½ÌGËÅ¿OS‚Öj4^CõP UcGë;½¢gÖú2 L G‹Æ JÜlTŸ/ PÕÔÍ nµôŒ ©ÆÄ°åÿÓ%™¦W`Õ8ZÁÃ<¸…ÕCÝ"Kµ·ÔØ‹­ÕјRëB «œ­`*8Z4Iƒ)Œ³ý=cdÒëçÊC[Ú\EõŽj¢IAˆ~5÷$žWicM€8Z Ìþ ¦ÃØãcDB=M‡9[飦H{ E£[ãF“è… ª8Z~§Ft“y‰Ž­–ü“FÇê@)õyfAR¨êrCCI]£@\^,GK§z“ÖÐá  êê¼U«ÀÅŽIéa¢än…–Cu—UÃDÑ…zCàhéÔ…‰ˆ¡úñ:ÉõßZ㪎ùÛý.Õ…r…­“‡Pô†Àª…¶YÁÂiqñ0•^°â1" ³ UÍhøb$R¢êjè – #T·J [±LKXAý¢¾A$£æ-[ñZ¤¡Ñ)]FUWa4©®E۸ߖ £@wF0=,#œ¼R@Ã0Œ^Ç,##²jÞš,ÕQÕÆœ¢\j5¤éçT;ŽP…ÔŽÿ¥U{ÿ5á~êHŠ¸í ª ³‰%©5$ˆ”8°FƒÀÀé1…^5ÏŸ'5…¼K¡ r±¢ƒã«·Z¾šÐÐælb•]ô´ö¤Ô)Oté‚iuY Ž–íÔfÊôçÏO¡X2¸Qk cꃂM|T5©C$OÊ#‰ª~ ÕV #‹º8CýäÕj~Øð+ÏŒ18F5IbKÔŒªÖ@]4&},s•ÆaüêX#+R·¿N¬GБ òéx)ïøHÿŸeCÇËTA"^5š«¹_JõÃ0ê×2~4)èý©Ë3¯UÇ}[Ìóx@g-Ú©¡jRâB–°ü8Rú¢Ce¤I’›û:ªšˆŒ"Ò £v «SH 棅ÂcÁ´©ÍÖ‘–ÏJ`¦‹ÔhRúµGó§7×·’Q­µÅˆlK…Àt§~Ön Ñ>àWô!K$>ŽYcC°9ªÔO”¨‘cH4iX5$XŽ »ò:&ÕyªÕ­MC$ÕE½ê\Q1"˜l 1 !j"o‰Ñ¤ÄW|Šÿ uDšªñ`C‹„ÀÑÑ®h­9ñ?Ve‰šÏTž ‘‡®ÔE“R`­i«Üç´®ÆkªÆŒâD¯ YIµÏÉ  Ž–BÝå©R3.F`$Ú‡K y›äm”a–?V‡®AŒ4Ó$¿L-ìÁ 1”áoFôØɤö Õ§RÓG¤Of‰Zd3‚ÀÑ‚°¼êîF‹ P!† ájžô­\¬H‰à!„„a*:GVÞ2‚Hƒ©1#\Èhý! Z)ü"ÁöÑ~ `î8ZÑ®¸Ë‚z7lô±öÈâUL©qØ„0žàG‡üC­xF")€ÓmìZ ~ìÈkg`ûµØ-ý‰ˆ82Œ#€Rw{yk¶7SÌ n…øµ¼ƒ\ÊCŒPa `-Ú©-ôzîo’žÌ­\~6æj‘}Ç k3§Sû5¯d„ÀÑü1¸zZ*­õ(üé°­în*˜\¸ULæCbûµàØæuÞÅ0j€êƒÀÀÜ1åÿáOs(åqmæOðÌA¥#Ë0 ªá­÷3+níó‹î Pu8˜;zócxïµ<¨Úbz4r Ö,ƒ:(K ËïáY ¶Â^lþ£™£]ÑZma¸ ÕB‰k™Ì”ß?*=tUÃG02ŽfH]˜È_Ž:³V^9":ç¿IŽyõ_^œuV¥¨Æ‹ ˲•O´\[T:T Žfˆ«bäß¹×n 7&ØIDAT^mÉTï…¯Êk€³ÈVi­Df¯ˆiøˆ¨ÑÊ¨éø¨í'–už>Ò!p4OlygJ1¢j4 –…«‰êÌŽCd,‹0ÔÓÒ©C¬ã£ÆŸXÖY[ Žæ>âip'Ó;2-ŽHœWÞÇQótßèø`L-š§-L¥z•0ÜGPYBó8ªôqD(iõpŽ £Ù⧦/¸ÿ‚…`5¾%•ºp8š3~§FLÊ@á*™W#chE#ÿ¿r§ŒH´4Õ?®š!,˪›´²‘;`Áý·CÃKx ´ÙQ™eB¨AÐjÍ–èí÷H“A«.T&(ÖqšÞ‚Õ!Õ‚D¥ ‘¥5£µ‰ˆ#¤Cà`šÔ<0 tÄÅ…ª³9¢ÙÚ¢©éøXy¿³£Nk‚ÕBàhÎ0@#~§FAGDM}ÇGÞ02AOG];>"vë„ÀQNŒ^ÃY0xÖpzä<²ÝLq“ò0,ËŸ Q#°„Å8­8ÊM×›.kF¡kР-ÐTÛ¼e´Ž`~˜¨:¿#j4@à`¢Í[ ŽÁ}Ëøh¼ˆYÁ­˜°£ºY1h@Žf $ãŒÑ0Â,KôqT7k£ ×#FÌp8€åSmªV7h€£:暣t¢$X ŽºQw{0æmsï•jP¨Zõ :>Pt¦unDâÉ1&HÝìßå˹¿¢Ò:èô¸jÄŽ£¹BGs`ð“cÀøDgs,Ë0,AÈhED£@Í5O.qâh‹ƒÀÀÈÐÕÉÄ©ÎìXÞrM5‚¦ ×qš,ýæ&˜×Öº!p0¦òYxÐTmÚ3—Ç‘¨i,jªp=B@t¶n4àz¼išûMtèeùB4U›-ú9ó„ÀÑÌ –Iöh¬ü'BPZ¦K0¹cyìÈUç³,ªöA:uUŒø5¿RÀŒ!pпBÝS%ÐÇÑ4 ¢ÆJÕüx‘¿A$H€^`ñ8š4AÛ4­Ý"D¥niFÀhZ.68· Ãp“ŒÐØQ4|k%ýqÕˆÁ²!p4i\¤XiÀ'ÿ~†Ñ˜D[”* ŽAÈh‘4=gHîø(:O8€…AàhêhÈHÃVþîgÕ ã`,CcGZ×H_à,½Tž'#fÀ¢ p4O¸ŸU; ã`bJËC£F>œt #Þ<áÂßý1æ £9yÕåu!ÕŒ%êÆÁt‡·<4d¤g™`¬ N:ÐæÃËa#wLݵk×ÿýw¹RŽ!èªoŒÊ? ‘åV b†w^k5€FLùo‹ò¢K!„°¨P‹G-¾ûî;¹“P^Ñ(¬nCim<â·1!í¿B‘aͯ€¨ ¥ñ7!KÄ›­Ì GqOž<¹råÊ®]»6nÜ(wZá ‘)‡ö2cþtP UcGœ‰ þ¯Põ#fx“¡ ˜ Žâºwïþ×_ÉŠr•V£Ê£:0Â×¼K¹èÌmr'ª†êTŽ˜Ü ¥®êQ|ò/SƒÀQÜüùó‹ŠŠ!ëÖ­ËÎΖ;9P^ÅÀ«(»”#L´\ý"‚ £dÀ0bÌGq‘‘‘ôÅÿû_¹ÓÆV1Bìo¸”àA2˜Ü4âÍ¿ój!DåjÃV\jpÁóƒÀ±J –\¾|YîDA…òk5[yÁE´À䎠šÁ1¬ÚÕqÙ1ª·u«…À±J=Lyr ²Tp¡!ÆVC•àw]×Þ£š SµLToëVJ"pà:ª3jþôêRŽK¶5âBFî5¿ÍšA â¶f5÷¨ÆˆG°f‚QýÌŽ—r°F‚ÉEE=ŽVDúãªLG°ZèZð£F~ÈÈ{Mk‡^ý‡T"z@¨{\5¢I0uxä @G#c+ý€T4ˆ¤#¬¹€’eB¶ü$Å© †aù}LjÁøôèô…†`0ê'wÄ<0†°,‹ØLG¨ºFòŒ.`4¾PCerGn €±Ð)!EÃG µy!pë¤~ €VüéU†Ë êŒ‹b¨5ÈcE/00Pâ<ŽsÃjQé>ÄT_«®Ää©|LŸGývJÏ¢sàXÍ)4ý<´òrÓñp_Å{¦<‘ØÓ±óP?ŒÓ›#…RS(5ÔcËïÜ#hÄGýjõÉ@‚Y&ÊI¿×[Ô8š:Ô^¨Ã½£FƒUêÝX)`Xœ¶ •ú¡Ö¼°Œ›>VïÐÀè0ªÌRùeí3 –ßzHHE]#@Uy 6€LPãÖ —`0@åɹ7üŠFA‰ H0;J1ƒJ¨"MZ»ªrŒ„>u/rs:º<hÃÅŽ‚ Ð¸4CàhÒ;˜>† ò;8âüÝ1‚ ÀÕÕ/"(¹ p4Qå}¡Ñ  `øg+÷Q#è¨|ŠPþàuU‰ˆA.Á ¨íÓƒË&˜îW¿ê‘ Ž£BìrAàh*ÔU. »ØËÎê§é7·þó8T –_d…§+T# µY p4ªs¿‰¿ÅUÂpxL ¹s–‹KPéÆETK8!j(ÁpMˆº®Qhç0}‚Ÿyü×¢sôà7 H¡÷ãªUÛjP= FÀÑ´¨ÆD-…&È0 ¢')¿ƒ#QY¨#ZA¨®÷º0G¢²ªb†÷ç`Lx2!GQÅý’­ÔÈ‚§€E´SÓ.4R¤±#¢F¨ èÞÆ…ÀäEÇÆ°·LÑN9j»xã> f…?¹#Cm§Fk5T5 µ#Bঋ»Ì©› =»ÁìTž3å·S“ŠPRî4‚ÅUMÔ<ÿÇ!ˆCàhrÐÁ‘Âj°l,)oªFìF¡ÇS­+~{³"ŸP#˜"ôæKÅò~q!#¿ÍZGH!qH5oJ(\`AOxV5˜\ÔÀ²q­ Ër•‹ˆ¡Ú 1 G¨Œ¦å¬°=Eó k³ÆX-Ö¶¨R鈖k0:ÄŽ 7ŽPmD»Ñ¼U-:Å7jÁÂð{0ssñð'å!˜£ªKXÁÝ!p4-V;2CaÀjq½ùSóð‡È`¸ èMûãªé2ÑŠÀqÁ°˜â¬šhì` Õëªp¢\†!,[#²•VÄPkPƒc@v¨gk'¨hä÷qÄ ¨,âB#È‹AÛ¥n:ÌÑÕ±#H‚¦jbA¥÷˜!„0üQÕ¨~ë¤ÚB­:18!„Ðÿ¢-ª‹ó G06µÏ!`Õ.©xV5ÆPƒuRíÔÈÕ2Ò?•¯@ÏÔ>BB½#hÀª®Jj©ÎÑS)¬,Í §J­:ô;!D§¡Ö¼6"üÔ·B¡šqÔŒ³~õöU=="HЕp¢ÜW£ªui&âµɽC Ž&Áj&aEェzäδVCuP¦£ªM‰¥ŒŒQ»¸èëìˆóª‹.  5Žòc+žšbAiË+Þ²hòñ*d䪹j:JFZ0É †ô‡¡ÖP GbAÓñ¨@-ºAe @%šTÍ¡†óH3 Ñ&”C½#¼‚ÀQ& C*´ñƒE~½£¥‘¸ÜèL2–•!„­˜—‡°,Ê€ñHœ|W8ªZ´±C­-G™°lyëmtâ…4v´ ¨?UŒ ¼Áš ¹`Qõ€nDõ-EgÞE¿#‹‡Á1òaYVe<5 -+jã¨ü$–pqä«5pφª†cÌÚ!p”“EŸˆªêAhˆ¶våÄa µ¥@ÔP•h]#­näža8ªƒöh«†>Žòã:5róòXDS5£ñ-èìÕìß\§F.j,_ƒÕaœ5€¾èJîT€<8ÊŒ?ÆBfsdTïU¨€0Ñ@/b¨5T ÄŽV £œè¨jÁ<–;@þãê‰Ê|àj F fŽmÓñ`ŽˆÀÑäXD;5T.dä^`¨5ú9zxl`**@xk`Ž ‡Á1–BÐÇÕPõh›5BCëÀÀœ ÆÊðÛ¯ªKXty´hª–™ÉŽ¡f£gú@¨6ünŽ\ÈÈ.ÃV®2Ík˜;ÄŽV5Ž ¢¼“Š~W€ò) þ@•áž[Ío˜fùÝÎ^=’ Q#TŒ€±¨q0g‚^Œj†Zógþ2Ù†0•FU±/jmÙ8XÁPkB/jÐWùÏþ¨juc¨1ÔÚR¡©ÀâðÇS³*3òc¾X¨bèïhÁ8ʉE#¨:´¦7p‹P;Z*4UX"ÞÔ<ÜïS®w£j¥#~ĂѱåGŽ-‹‚ÀÑÚ©ûE¨ÿt<` xMÕünŽüØ‘ðBIŒ˜ª€zG˃ÀˆhŸe–° ƒØÀT¡b`µj°ˆVlЛô1Ô`8ʇÁ³@ [iv½‰6CKC9zÌGë"Ú<ͯ‰¨"˜£Ç põp °8壘Wo ¯ê‘ßf8ÆÊXLÇâüð°8‚‘1¤rk5},!*¡ê`¬Œ@àêáþ`)hÈ(¹,S©’®É¢'6bGs‡¦j™Ð)Öªý¢,±{2mJÀ¨j‹!ZÈõkä­F#T5ÄŽf £Õô/ô8ÁÉ `µ}´:€^ÔÅ…ª uªËÀ^©è4ØÀºðÇÄTò‚Öj†Å-´S7=°Ö…¢KäÞ¨}«}z¬éÁ`7kðV×ý‘°,ýWñS¼|ùB\hv8!ˆ¬•`*ÇJ#f*­Æpá#bG0"4s™4UËÄ”š{èIË?uË_›PÀø´Œ˜áňh¡†ªƒùÍ ÇêÅ ¦¦/ªô«Ôü†ÓÚï˜;1ªÀÊ ªi½#jÁè;šŽUOÝE–aXRþp†*šÿBkOdœ¨ ýùXþšwÈÐÖ1Ôh³6 «­b\XÙò*=V¾YÓpŠ€*:ªº¼ßËŠÖ2òÇÊ0ëÈp0i¢•¢c¨%ÎÚƒZ¹ p¬Ü\ßük«ÜQ#º$€¨òëRy{HyÔÈ5[«Fr§,‡ Íº¼Ç#²£ñÀcñK¦Ê p¬.\ìÈ«}”ër‹jPGõ×,?däGŠ\‰JG0.áMJäÐÒ8N?fª¦ã±:ˆÀüiªÄLj« ÿáÔÍÖ,#ÏÏ"tFˆ¶Jó›°_ý•¿âKÐbG“…À±q±#½˜/h4|æÍ½é ~#5òå“Ep?’ À–aq ™ŽÕHu`µñ®­RfÞ‘{ÿÀŒñ›§=¹ªÇò¨@2­sô€©AàX]¸ZFþÅ·º¾c¨Àª#fÊ_ó8%:Ö9z˜òCHôæÅˆoªGˇöh¨ \#õ«GË"œzLµ]¡$è‰ä0b1"*GªFU[8DP¥„ñ^Ó†bšŽ– Q#T©J#c^-e üªk¤­ÁPˆMšª-œ _#º9€Q¨Îø]>ªš&ò›­ùJ ˆ=±j©¡ú p¬FF¹\²RÇ ig  7æWíæ(X‚8t€zG™!p4?˜yL†¹ÆTÇÍÈô(0Y¯îb,©‘µD?J*Õ° ºÄè8Z̼ráæPF‡êZ®ùÔÒãþŽëœ%ªTòj:uc¨Å†Z3哊4µU ޱ(8C@f‚q0‚‘7£±y iÐl-Ô8ZD /ña ü§d©¾ „ÐgÏ }`¸LuCcu©â„ˆÀÔñ›ª#² aXÂpíÛ,*A:Ô;V+Ô8Z­3ï ²Ðx‘?êÛŠæi„Œ ÄŽÕ£ùÁÌ;`fD{=òf|¤-D,óªRõ-X髆ª…ÀÑü`æ0'¢½tø¹e•ŽÜQû„5]Õµ®<á1Úߌ £ÃÌ;`®øñT„ü`‘ YFø_-¢a:Ü4 „À±ZTÁÈ4F€yã]iS5 u"E–¢òäC°zè'[µ8š%D`öX~¯µ·{~$Aã5HÁ†Å]²ª p4?´š]s“¦mpn  }Á¯Œ¬ ŠëÝ wB,Gó£Ú]çXÕIy¸~ü?½êßͲlåÖêŠÚ¸*Z;Œ¨"«žq;8b†|°\ü9ÀIå†i®ê‘¨4X³ âë¤fŽ qU#˜Õq0ªUªÍÓLå6 }€ae,ÆÐX õsô0 ‹â®2«~Fµ‘š{Ë¿Ær!#£Ò~ Æ‚ÀL”`Hµ Æ‘ëãX±2Sù³Â˜¡$€áläN€ECu#€aí×ü±ÕKX"Ö`­=LÄ%@w¨q47èó VCtöïJ+÷kdxO¾û Ã}ôƒG£bÂ]˜øƒ©éÛŠ¿roôÍ–°‚rï6@µ*ŸÖ±¢fQ) ê¹*I†eiëvÅVTž—Í]Ã@ Ô8wâ_¶ø¯¹¾8ÏÊBÔ +ÕÖj® #}!(CøÑdåÇdƒÅÁtò{C’Ê G|R–XŽU†aKŸ°N/=„ÿTMæÕB0>á˜Õ§rˆ¸QsE#ÿ¯¢#²¬Ç*ÃýÆ%Â_«t2‚QÕUFtp¦üWþøã«W¯¶nÝÚÑÑqëÖ­ï½÷^aa¡~[£!#¢F CÃD~@I_sã¹xQ]ó4ý¯ š|Vú2m7Á§h˜(º©ÊiÐjªn4zdVyƒ:µ¤#v¬E\¾|ù믿vssûé§Ÿ¾þúëýû÷¿óÎ;çÎûôÓOõØ*,­eTÅòµ+"³ò^Œ¼*FµÓ7òûÆ¿ú2-! pV mß C˜J ç'Œ†°ú÷}”MêÒÆmhh F…ÀQÄ?üPVV6a„úõëÓ%3fÌpvvÞ·o_YY™®[CÔ`mÑ$ a墆áÕÜ£Ë׫Mò`#˜HCm%ﳌúØpq­ aâÃwDë557¦s‰Ñ㑆‡¶`Ž"~ûí7›èèhn‰B¡hß¾ýƒNŸ>­Ó¦hc…`.žW¯RX†U·œU}Ë&YF¥Ÿ¢”‘ѢѤ ÂRÛѸPMgARÑz.H*SnVú.~ˆ¶ötA|É%FMÐ)Z'JxMÒ’B[A“=ÂMà pbY6??¿N:uêÔá/ „ܺuKç b:«§Z·§:x™a+†Öð§Ô#ªNK.%«­dxÝ+ /:Ƹ Tøi8F0A¦`!÷9AÌÊëJ4þI¸)þ¡ñÚ0 žb,ðìÙ³°°°7ÞxcÏž=üå›6múä“O¦M›6|øpuŸ¥Ý1VÀâ]¾|Yî$Èó8 Ñ¡Ó‚åŽŽŽ„ÇkÝ‚æ# ce@7ꆒáÓ±Ë_¨Î)úEþ þÕýU°šÖĨN9©ÓB£o5eÆ€¦j!†až?.XþôéSBˆ³³³Ü +£aäµêjª¿D¬í› ­øÃk W}þ¡j´`S‚…D%Õ°ÿW¢2’FsïOÍ ÆQH©T:;;«Ö,>yò„³VφÙ¨ 1o¹î’üTrÝE;\ªÖkª†kü”}ª‹DE£CþFT_Ñ~Ÿ‚ ¢®ÑxPã(ÂÍÍíÁƒ4Rä\¿~þIÃã`Ôý“{ÿÀjH¬­$:Vaj^ÈmJk$*Z'ªºÁgEjØ ê£ˆØØØÒÒÒÇsKX–ÍÊʪ]»vhh¨Ü©¨.RâKé Ug5'bá©èW‹®&q¡º‰$AwEôë×ÏÆÆæË/¿¤ý !_ýõýû÷ûöíkkk+wê,‹Ö¨±ê‚Ž0¸5kÖ,Z´ÈËË+**êÆÇoҤɚ5k\\\äN€<8ªµk×®íÛ·Ÿ;wÎÃãM›6&L 3òX'Ž ú8€$@Ž G#H‚À$Aà’ p4šÍ›7÷ë×/444""bæÌ™>”;EVD×Ì/,,\»vm·nÝBBB¢¢¢†~ôèQ¹wÂÒrFܹs§eË–S§N•{',…rþüùqãÆuèСuëÖƒ úõ×_åÞ K£k¡¼|ùråÊ•}úô ‰‰?~|^^žÜ;au®]»øûï¿Ë p4Ž´´´?þøêÕ«­[·vttܺuë{ï½WXX(wº¬‚®™_RR2dÈýë_÷îÝk×®Ýo¼ñ믿6쫯¾’{W,‡!g˲ӧOçžÆ¢G¡ddd 80##£~ýú¡¡¡gΜyçw222äÞË¡k¡”––¾û~úéÇ£¢¢¼¼¼öïßß³gÏß~ûMî]±.ß}÷ÜI »téRãÆ£¢¢îÞ½K—Ì›7/ `îܹr'Íòé‘ùßÿ}@@ÀÀŸ?N—\¹r¥M›6AAA¹¹¹rï%0ðŒX³fM@@@@@À”)SäÞË¡G¡ùäz:{ö¬Ü)’jà‡~(++›0aBýúõé’3f8;;ïÛ·¯¬¬LîÔY8=2ÿ§Ÿ~"„|ôÑGöööt‰¿¿ÿèÑ£KKKÑ`m†œyyyiii7–{',…²uëÖ'OžŒ=ºeË–tI‹-âããïß¿þüy¹wÈèQ(§OŸ&„¼ûî»J¥’.i×®]PPÐüñ÷ß˽C–¯{÷îÉÉÉ7n”;!rBàh¿ýö›Mtt4·D¡P´oßþÁƒô$‡ª£Gæ_¿~ÝÁÁ¡iÓ¦ü…þþþ„[·nɽC–@ï3¢¤¤dÚ´iµkמ1c†Ü;aiô(”C‡1 Ó«W/þÂÅ‹_¾|988Xî²zЇ‡!„#²,ûèÑ#.”„ª3þü¥K—.]º4<<\î´ÈÇ™¡X–ÍÏϯS§N:uøË!·nÝjÕª•Üi´XúeþŠ+T¯°.\ „4lØPî}2{†œÿþ÷¿/^¼¸fÍ'''¹÷âèW(999µk×vww?yòä™3g=zÔ¸q㸸8®ª ¡_¡tëÖíÛo¿?þk¯½òðáÃ¥K—Þ¾};11gM5ˆŒŒ¤/þûßÿÊÙ p4ÔóçÏKKK]\\ËIåß…`túe~“&MKŽ?þõ×_ÛÙÙ *W@zŸgÏž]¹rå AƒÂÃÃiÆ¢G¡¼|ùòŸþyã7æÌ™³aÃnyÆ ÓÓÓ›5k&÷>™=ýΔÀÀÀï¾ûnÈ!C† á4hæÌ™rïX 4UŠspp,wtt$„<~üXîZ2Ã3¿´´ôÛo¿1bÄóçÏ.\èêê*÷>™=ý ¥°°pÚ´i 6œ÷béÒ¥úôéCÙ¹sg```·nÝäÞ!K Ç™R¿~}[[[†aø éÉRRR"÷Y] åÁƒ„F –ÓŠÆ‚‚¹w¬G#ˆ---=|ø0·„eÙ¬¬¬Úµk‡††Ê: §Gæ÷Ýw?ÿüsRRÒW_}…*᪠k¡øøøt­Œ]ôôôìÚµkûöíåÞ!K Ç™Ò¡C‡'Ož\¹r…¿Nƒ‰6B×BiÔ¨‘B¡ÈËËcY–¿üòåË„7ÞxCîë ÷ ä–àÏ?ÿlܸqçÎÿùçºdùòå‹/–;i–OJæ?}úôÚµk·nÝbY¶¬¬,..®eË–………r§ÝbéZ(ªrrrðäãÒ£Prssúõë÷àÁºäܹs¡¡¡­[·¾ÿ¾Ü;d ô(”Q£F¤§§sï¹råÊ›o¾Ù¬Y³üü|¹wÈŠ|ôÑGVûä Ž1OOÏ©S§.Z´¨GQQQ7nÜ8~üxÓ¦MGŽ)wÒ,Ÿ”ÌÏÊÊš8q¢¿¿ÿîÝ» nÞ¼iooŸœœ¬ºµÞ½{4Hî}2{ºŠÜéµ zJPPФI“>ÿüóÎ;·jÕêùóç¿ýöÃ0óçϯ[·®Ü;d ô(”yóæ%$$,]ºtïÞ½Mš4yðàÁ©S§ÊÊÊ>þøã×_]î«€ÀÑ8† V¯^½íÛ·ïÝ»×ÃÃcРA&L ³*@UÓ)óoß¾M),,ÌÉÉQý+†È ΤG¡Œ5ÊÕÕõÛo¿ÍÎή]»vlllJJ }Ì…®…âêêºwïÞåË—9r$33³víÚo½õÖûï¿ß¼ys¹w¬ÃVî* ƒc@Ž G#H‚À$Aà’ pI8€$@Ž G#H‚À$Aà’ pI8€$@Ž G#H‚À$Aà’ pI8€$@Ž G#H‚À$Aà’ pI8€$@Ž G#H‚À$Aà’ pIþ?ž ®Ÿü(¹IEND®B`‚statistics-release-1.6.3/docs/assets/betainv_101.png000066400000000000000000000724631456127120000223140ustar00rootroot00000000000000‰PNG  IHDRhŽ\­AtúIDATxÚíÝy\”åþÿñkWH@3…DD­DÁS˜¨hYîkfš .uJsÉ-óœ´UÓ´Ne.¥'µãþÍŸ»¥˜šæ’;Šà^*ˆ’‚(Ìüþ¸mYg¿·×óÑãÜ3sÏu/ãýæs]×=“É$€’xÈݨÁV!8À*GX…à«`‚#¬Bp€Uް ÁV!8PºcÇŽ S¦L™Ç{ìå—_>|ø°}k^»víÿûÿïÿý¿ÿwíÚ5ÇÛ9{öl©aÑÑÑùÊÉÉ™5kÖóÏ?_­Zµ²eˆ……µmÛö³Ï>ËÎζfc½¼¼þñüë_ÿ*ØÔ¢ö¥Ñ£G»éhÐ4‚#µº{÷î… –.]Ú¸qãÙ³gÛ±†ž={vêÔ©S§NvGOkìß¿¿N:ÿüç?þùçË—/çää$''¯_¿~Ô¨QaaaëÖ­+q yyyééé{÷îýðÃÃÃÃ÷ìÙãºÖ@1¼änØ ((¨\¹rÒÏ7oÞBäää :4...,,Lƶ=òÈ#5kÖBT­ZÕ¼0))©yóæ·nÝ2/ñòòÊÍÍ•~¾téÒK/½”˜˜øÔSO³±·oß6322ºwïžœœ\¦L™â÷%÷ Í â@M~øá‡Ô¿Ý¸qãçŸ.[¶¬âÞ½{sçΕ·m¯¼òŠÔ°Õ«W›Ž5Êœû÷ïèС;wî\¾|ùÛo¿}ä‘G„YYY=zô(~c¯^½zþüùþýûKË/^¼øÍ7ß”¸,?^Þ@ŽT¬U«V:t~NNN¶|èÊ•+Æ ‹‰‰yä‘Güñ®]»8pÀüè;ï¼c0Ì‘®U«VƒáöíÛÒ¯F£qÉ’%-Z´¨Q£FÙ²ekԨѼyóï¿ÿþÞ½{Å4¦àÇÍ›7¯]»VúyܸqóæÍ{ê©§<==«V­:`À€Å‹K%%%:uªø-­^½ú¼yó:wî,ýúñÇ›[ nCW5u»{÷®ôƒeqBBÂ+¯¼råÊé×[·n¥¤¤üøã#FŒøì³ÏJ\gÏž=—-[fþõüùóçÏŸß¶mÛÚµk—/_n}ÛÌuÁŠ+¾ûî»ùmÛ¶m›6m._¾,„8räHíÚµK\á°aÃ~üñG!ĵk×vîÜÙºukö8£â@­nÞ¼9oÞ¼5kÖ!¼¼¼  -ÏÌÌ|ùå—¥Ô7qâÄž={zxx˜L¦éÓ§Ï›7O1jÔ¨äääòåËK/ùþûïÍ¿.[¶LJƒ!..®OŸ>õë×—ž¶bÅŠ„„ë[¸k×.é‡.]ºøøø|ºuëýä“OõÒ«2226mÚôÛo¿6l¸råJ||ü¶mÛ233-ošX¨´´´b½{÷î;ï¼óŸÿüÇ|·ÅråÊ^½zÕ¦¦–.]: @z¯³gÏúœ›7oJïR¶lYoookVkî¡ *qÿ€sÑU @Å>þøcéçíÛ·ÿùçŸ*T0—ú~úé§äÂôìÙ³˜u~ôÑGÓ§OÏÍÍ 9sæï¿ÿž™™Ù¾}{;š#ý°fÍšBoåS§N€€€€€€Y³fY³Â;wšg‘7nÜXž@ÇŽÔÍ<ÁEü=ì¯V­ZÒ¯¹¹¹[ð÷÷÷óóóóó+ô»UÌfΜ)ýðõ×_ÿóŸÿ|òÉ'½¼¼.^¼hGÛ̃,ÏŸ?_ðK×®]k.6kÖÌš~ñÅÒÞÞÞMš4q뎂#UËÈȘ0a‚ôsÙ²e¥ÉËæ™ÅsæÌ1™LÒÏ+W®¬T©R@@@Íš5 X4—ñþúë/sGö7¤öïßoÓ]xÌÚµkgnÌ[o½õþûïÿñÇÒÛ-\¸°oß¾ÒC?þxdddñ«úóÏ?¼bÅ é×W_}Õr %¸c¨IŸ>}Ì7_ÌÉÉùã?Ì#‡îåå%„xçw¾ýöÛŒŒŒU«VÅÅÅ5kÖìØ±cëÖ­“ž6räHód???i@ä|pìØ±aÆùøøøøøH ¥/w1 7n,þ;cŠ1}úôüãÙÙÙ&“é½÷Þ{ï½÷222òòò¤'”-[vÅŠÒŒï¢6ööíÛRâ”T®\ùƒ>ûPÐ%(ÛÑ£GKü§,&&æÖ­[æ—¬^½ÚÏϯàÓ^ýu£Ñh~Z¯^½,•ÖPð›£CCC[´h!ýÜ·oߢÚi§e¹|çÎEÝŽ§fÍšëÖ­³ic+V¬¸{÷î¢^²yóf¹-£«€Zyzz>÷ÜssçÎýå—_,g%·oßþ÷ß8p`Æ Ë—/Ú¹sçmÛ¶}óÍ7ƒÁü´3fôêÕ+00ÐÛÛ»~ýúÒpÉ3f<ñÄB§žzjĈìØ±£ô’Å‹—ø½Òù4iÒäôéÓ3fÌhÖ¬Y```™2eÂÃÃ;tè0cÆŒ“'O¶iÓÆš-­X±bãÆÿõ¯%%%=ýôÓrï{:e0ý= ¹wïÞÚµk…;w–»-  GX…®jX…à«`‚#¬Bp€Uް ÁV!8À*GX…à«`‚#¬Bp€UŽ%HII ÿý÷ßån€ÌŽ%X¸p¡ÜMP/¹ P™™™§NZ³fÍ’%Kän €" ×¾}û?ÿüSîV(Á±p}ôQNNŽbÑ¢E‰‰‰r7@~ÇÂ=ûì³Ò[·n•»-Š@pt¾ððp¹›¬rêT’UÏ3,«^;)ɺj ÁÑ%ôy2)Yxx8Ei8(ÊÄqQ г …,4™ ‚#pŸ|1Ñ Â`5ÅDƒã«P-ºª€«5ÓÙrü¢âƒ" 8ç(ñ†8†¿Ÿa",ªÁØ)_R,¦—Y*1’ÕŽà¬bǶꒆú19¢à,›&;K¯1?U3 ú“IÅaK¿sq+¡Ä¨iGôÈéßìÌ(F= 8  N)(¾f"£nÐ § EFpG´ÁuÅÂßNg‘‚#êãž‚báoMdÔ1‚#*àæ‚bámÐwd¤ŸZP¦I1D™’âƒÆè;2ÂŒ€ EÝm;%5EÆÔhyo€Š#2q¢µ-¤Êh~j ÁwP Ek›JdDޏ„Š’âƒ6Q,‚#ΡƤø ñDÆ¢ÑOmFpÀNªNŠmˆÈ«°–f’âƒ-¢Ð[(’ö’âƒM#2Z‡~jKGÐpR|°DFØ‹àÐ5=$Ҷ—ጶ Ü˜Á /zKŠ6œB#Fphœn“âƒ=@d´ 寂Ž ² ‹:LŠ–è›†Z@Y± Ž ÜX(‚#@•HŠÅ£ÐW 8TƒhkPht寢ÊEYÑVáRG€‚íF¡ÑY(7ƒàÐŽ£Ð÷ 8ܲ¢Qht.ÊÅ#8ܲ¢+Ph„›.AYÑ¥(4ºåÆNCYÑ=(4º©ÑG€C‹îD¡ò"8lC´\(4ºåF+%£¬(;R#”€à(aQ!BCCÝÓ®D¹Ñzr7 a 5ƒôŸI˜ÌÿÉÝ4ý2DJJ*©ÑuH6!8€®™c¢”SRS‹ÊA÷4”†®jÐú •ÙÓîA¹ÑVT@òU)+*™Th$5ºšý©Ñ`°ïu@Å4‹Ê¢Ñ= %#8€¦Õ‹îiw¢“Ú>GP=¢Pht'R£ÝŽ J„E-!5º©ÑGP ¢öÐ= u!8€¢5ŒB£ûQntÁ‡°¨¤F÷#5:ŽàŠ@XÔR£û‘‚à²!,ꃡjGp7s^$,ê …F¹Pnt‚#¸ÅEåBjt"‚#¸ af¤F¹‹àÎDXD> j”©ÑéŽà [D¡(4ʈÔè r7ÔÊ æÿLÂ$ý'w£  ¤FmÒ÷q¥â¶¡¸kè;]Èr£‹ dŒ\„MHò"5ºÁ GX„˜ #;R£Kà!ôDÃneGjt5‚#P\„eGjt‚#ý¢¸g!5ÊŽÔèGºC^„s‘eGjt‚#] 3.Bj”©ÑŽ´Œâ"\‡ ÔJ@jt3‚# "/ÂÕ(4*©ÑýŽ4‚Îh¸ ©Q H² 8P7Š‹p3R£åBp JäEȂԨr¦FÝŸGjB^„ŒtŸZ£¼Ž”ŽÁ‹PR£eGp P¡¤F% 5*Á€²¡4¤F% 5*Á€"¡@Üâ[!HÊAp 'ò"‹B£B…à@a!B¡T¤F… 5*‡Ü  #aþ3 SJj ©ÊDjTR£QqàrôGCEH AjT&‚#W!/BuH ¡ÐÔÈùApàtäE¨©@!š!„ 8pò"TÔ¨¤F…#8py@jTR£ò؃¼Í 5*©Q¸Û˜ï§#ý'ws‡•À ºÔh»ò¡âÀ*”¡=¤F%PYdÔ=‚#€â¡U¤F% 5ªŽ^‚ãòåË—-[–œœ\¾|ùfÍš=Úßß¿˜çß½{÷ûï¿ß°aCjjª¿¿ÿO<1dȰ°0¹·pò"´Ô¨*Kœ4BŒqœ1cÆ„ Μ9íãã³råÊÁƒgggõü¼¼¼¾}ûN›6-##£iÓ¦ÕªUÛ´iSÇŽ÷íÛ'÷¦®eù•€ a„V”@e©Ó~pLJJš3gNPPÐÆçÌ™³iÓ¦>}ú>|xÚ´iE½déÒ¥xñÅþùçÿüç? .œ?¾b„ ro à*äEè©Q Hê¥ýà¸lÙ2£Ñ8|øðÀÀ@iɸqã|}}7lØ`4 }É„}ûöõòºß•ÿÌ3ÏDDDœ={öúõëroàLùJŒr7p-R£ìÔ7Ó~pÜ·oŸ‡‡GóæÍÍK<==cccÓÓÓ¥€XPÕªU…–Ñd2ݸqÃÃÃÃ%U£K:Dj”9ª¦ñàh2™’““+V¬X±bEËåµk×B\¸p¡ÐWµk×®lÙ²}ôÑîÝ»³³³/_¾ü¯ýëâŋݻw¯P¡‚ÜÛ8„¼}"5ÊŽB£6h¼~–•••——ççç—o¹¯¯¯x¸¦h)<<|áÂ…ýúõëׯŸyaïÞ½Çoåû†‡‡ç[²qãF¹w†®]¼xQî&È,4$Tú!%5E‘*RånE¡4y\BCCRRRSå?ëí¤ƒ¢æ# ^xá…$‹‹{’H’»E²Ñxp”¦N{{{ç[îãã#„¸yóf¡¯ÊÌÌœ"#à\¤Fw¢ÐXÝj‚#àLDFÀéHî¤û\„ç 2®@jt'RãC8ù CpEd\„ ·ÛÐ= +û×!5º …FXà؃ȸ©Ñ=(4ÂVGÀ6DFÀÕHîA¡±8œ…E 8Ö"2Ð R#ìCpJFd܆B«Ñ= Gâw"5º…F‡°ûŽ@QˆŒ€›‘]ŠB£ 8‹Fpò#2îǕڥ¨”ÁYŽÀDF@¤FסÐç"8Bù]‡B#œŽà½#22"5º…FûqR‹àý"2òâí"á:Gè”AˆŒ€ŒH®@¡®Fp„îPhdGjt ®ÅþB¡+DF@ HNG¡Ñi8;KBp„.„†„ "#-¢wò»€Ë„!%5…Ô('2ávGh™A˜(©Ñ‰¤ÈÈît&NP+ÐU mb8# 4\”…ÁZCdˆÔè,ôM˃ýþ7‚#4…Ži@HNA¡Ñµ8M­Cp„FPh”‰Ë±SPð‚B¡e"5:Î „ a/B!˜U ucÞ4 X¤F™ï¶“’š*w[€û¨8B­è› aôM»åXàU¢Ê(b»1 FqHñŽP €ò‘íFD¡&å#5Ú‡B£l8emAp„:PhTK°ˆŒP‚#T€B#  ¤F;Ð7­t¡‡¡hµ 5ÚŠB£"pâÚˆàå¢Ð¨_[QÆ‚J¡D!5Ú„B#TàÅ¡Ð@“ˆŒŠÃ=¶#8BA(4ªÃ•×JôM«‡­‚#”‚B# :¤FkPhT(N_»!? €qÙµ+h Á2£Ð¨©±D¡IGȉÔ¨©±xDF°æ$¦\\‚#äA÷4 R¤Æâ6 mGÈ€B# R¤ÆbPh„án¤FCdTú©@p„ûÐ= ¨åÆB0 +G¸ …F@ÕHQhT%NeÇá¤F@Õ¸ÔæCd„náZtOjGj̇¾i³òlæà¢Ð¨©Ñ…F€àW!5jGj4#2‚#\‚Ô@ˆŒÚA?µ3á|¤F@(7 "PÁÎÄT@Hµ†sÚIŽp €6èü KdÔ5ŠÌ%!8Â9H€6„††è<5êxëµKç 9•‡Ü €m0DJJªÜ­iÛI€¨8ÂQ¤FªFß4îãO+Pq„CH€fè°7Ï\eÔÙvëŒÏlW¢â;1Ð^[©.v 8Â-Ñ[j¤oZG¬?¹ùKÂ:GØŒÔh‰®R#‘pÁ¶!5Z¢ŸÔHdÔ#Ê.@p„ H€–è*5êcC—#8ÂZ¤FªC¡Q¿ôó‡‘{aR# 1š¿ªa-*Ò¶ 8¢d¤F@c´‰ŒÐø).+‚#J@j4FÛ—TŠG° gŒŽ(©Ð §F ¸OÃg¹Q$R# 1Z½ža'ʶ#8¢p¤FÊGdD~ZýóH1Ž(©Ðí]O©îGpD~¤F@{4–)4¢p6èüåa‚#Bj´GK©‘ÈÈ‹àˆH€öh&5QÊnApÄ}¤F@{´‘‰Œ(™6Îu5 8BR#¥¢0çã¬rÁ¤F@›Ô^‚¡Ðk©ý\W‚£Þ‘MRõ•”È¢Üè½ÇåË—/[¶,99¹|ùòÍš5=z´¿¿ñ/9räÈìÙ³;vëÖ­ððð¡C‡þãÿ{;œŒÔh’zS#‘6Sïé®Nr7Àf̘1a„3gÎDGGûøø¬\¹rðàÁÙÙÙż$!!¡gÏž ‘‘‘ìÓ§OBB‚Ü›%PéeÔðw%H…m‡zPnt˜öƒcRRÒœ9s‚‚‚6nÜ8gΜM›6õéÓçðáÃÓ¦M+ê%7oÞ;v¬——×Â… —.]:gΜŋ—.]ú_ÿú—Ñh”{ƒœ†r# =êMDF؃[ð¸öƒã²eËŒFãðáÃ¥%ãÆóõõݰaCQ)påÊ•™™™¯¿þz£F¤%O>ùä‹/¾˜––väȹ7È9H”ÀÀÕvSéßI*§ýà¸oß>æÍ››—xzzÆÆÆ¦§§8p Ð—lß¾Ý`0têÔÉrá§Ÿ~š””ôÔSOɽAN@j4I]—Qú¦áVüâ$Ÿc2™’““+V¬X±bEËåµk×B\¸p!**ªà«Ž=êïï_¥J•ß~ûíàÁƒ7nܨS§N«V­Ê•+'÷9©Ð$¥FfÀÀ TtÆk‹ÆƒcVVV^^žŸŸ_¾å¾¾¾Bˆëׯ|ÉÝ»wÿúë¯ZµjMœ8qñâÅæåÕ«WÿüóÏëׯoÍû†‡‡ç[²qãF¹w†B„†„¦¤¦¤ŠT¹ân/^”» ȃâD¡¡!))©©Îød»ô¸„†„!RRS…Ðß?CàÃRPˆÖŸñ!¡!^ú^xá¹·X)4¥©ÓÞÞÞù–ûøø!nÞ¼Yð%ýõ—"99ùÚµkS¦LiÞ¼ù;wV¬Xñõ×_6líÚµÖÔ“’’äÞô"…„„ÈÝ6÷qPœâïÊ‹Óv¦+ŽËCUFŽ»íø°<Ä`&“M{ÄÁXð²^°B¤ãèççg0²²²ò-¿uë–ø»î˜OÙ²e¥&OžÜ©S'??¿*Uª 2¤sçÎ/^\·nÜÛd?:©È‚±Œp&[;©ÝèTÊ Ž‡.þ Ötþzyyùúú¬,fff !Ìó¬-y{{—-[¶\¹r-Z´°\ÞªU+!ÄÉ“'åÞ1v"5š¤ð^Lš†Ì8ÿœM¹Áñå—_þꫯòòò >”‘‘1|øðaÆY³ž   ôôt))šI#‚‚‚ }I```©R¥ ƒåB©‡:77WîcR# IJNLš†K(ù¤×åÇÀÀÀ/¿ü²GgÏžµ\¾iÓ¦¶mÛnذ¡FÖ¬§eË–yyy;vì0/1™LÛ¶mó÷÷ŒŒ,ô%-Z´ÈÌÌùä‰'ž°r=ÁÁÁ£Gž2eJ‡š6mzîܹ={öÔ«WoРAæçlÛ¶mĈaaak×®BDDDŒ9rúôé/¼ðBTTTVVÖ¾}û ÃG}T©R%¹wŒm(7Ú£ÀÔÈ­ár”•A¹ÁQòÌ3Ï,Y²¤cÇŽ{÷îB4lØpÁ‚æJ¡•âãã+W®¼jÕªõë×W­ZµwïÞÇ—îÈS”×^{- `Á‚‰‰‰þþþ-[¶:thXX˜ÜûÃ6¤FnÀŠÃIé2“Òþn}ØŽ;&L˜ðçŸÖ«WïÚµkW¯^mÖ¬Ù|PÔ¼%WÂ}I–RSS¹ šÒpPìãêr£MÇ…B£{ðaQ`¹Q!×z÷SîÇ¿þúküøñLKK6lØòåË×®]ûâ‹/nÛ¶­mÛ¶+W®”»ànÊé¤f8#ÜGy©QÏ”¥t¶|ùò7ÞxÃÓÓÓ××÷óÏ?Ÿ6mšÁ`?~ü€än£rQn´G!©‘ÈE#5º˜rƒcZZÚàÁƒüñǺuëZ.oß¾ýš5kžyæ™;wÊÝF…"5Ú£„ÔHd„ l:õI®§ÜÉ1?üðCQ÷Y¬R¥Êüùó.\(wÀdOŒe„|¸Ðç$%%ÉÝL°ŸsS#‘jBjT'åÇ:ÈÝ…¢Ü "#´ŒÔ¨$Ê ŽS§N•» JDj4ÃYåF®ªPëÏ~Îo…Qnp sJj¤ÐU"5ª™‚‚ã?ü „hܸqXX˜ù×âõêÕKîV»åF@ODF¨©Qåßÿ}!ĤI“¤à(ýZ<½Gà`j$2BÅHê§ à8tèP!ÄOR£Ö)78ž:uªJ•*}úô‘~ýõ×_K—.Ý´iS!DÍš5üñ””¹Û…(xé$2BH: Ü®ê7nH?çææ?~¼~ýú¥K—––”/_>--Mî6ºýÔ€Jå»tÒ1 ½ 5êƒrƒcppðÅ‹óòò„¸sçÎ?þñé!£ÑxñâÅÊ•+ËÝFxˆå¥“È!5ê†rƒcttô7¾üòËK—.}ùå—BˆØØXé¡yóæ]¿~½V­Zr·ÑU(7jGd„ŽõD¹c¼fÍšo¾ùæ›o¾B<ñÄÒ½_zé¥ßÿ]/wàéêÉpF ?R£†(·âX­Zµ¥K—6oÞ¼J•*Ï>ûìçŸ.ݵ1--­B… “'O~úé§ån#Üg0a¢Ðý)ñ†¥¤FmQnÅQ6{öì| .\XµjUåF^ÑO ¨ŽAÁç:TbjäS¡9ŠŽ’7n=zô?þnÒ¤I™2e4œ¨ ÓÐ/R£.):8¦§§óÍ7+V¬ÈÎÎBôíÛ·I“&;w®W¯Þ'Ÿ|âïï/wr# †¿ÿWâ¬@ƒHz¥ÜÒݽ{÷Þxã… V¨P¡sçÎæå[·n}ùå—¥4 nÆ}v w¤FSnpœ={ö¡C‡š5k¶qãÆÉ“'›—/[¶¬cÇŽgÏž]°`Üm /ù"£57!´¦˜óž©0: Üà¸wï^OOÏ?þ¸|ùò–Ë===ÿýï—/_~Ó¦Mr·ÑÉè§«`•‘Ô=*>5R‡×åÇ'N„„„˜¿uÐ’Ohhè¹sçän#í+´cšÔ=*15B”;9Æ××÷öíÛE=š‘‘ñÈ#ÈÝFg¢Ü(P¡WCR#ô¨¨óž; èŒr+ŽuëÖýã?>\ð¡'N\ºt)""Bî6Ð,k“éžÖåÇ=z †·ß~ûرc–Ë;6|øp!D§Nän# *~Ò4åFèNñ©:£Ü®ê&Mš 8pîܹ]ºt BlÞ¼911ñÌ™3F£±sçέ[·–»NC?5 %ö¹‘¡;¤F×)4ÂFÊ ŽS§N•» K`ËÔÈç6Rnp€¢¸"2Rn„.H':uÁ^ Ž¿üò‹­/iÞ¼¹Ü­àn®¨’¡}†¿Ó"…F8@AÁñµ×^³õ%IIIr·ÚN pìà¢* ©Úg.4rªÃ1 ŽÅ̆ s®ëX#5Bû  pGfÃ(ˆ±X€C¤ÔÈGN¢Ö¯;vl\\œÜ­àB~g UoA¹Úf¤F8—‚*ŽeddlÙ²åܹsù–gggÿüóÏžžžr7ÐN pŠçž*#©ZF­®¡ÜàxåÊ•ž={^ºt©¨'ôêÕKî6p2·]ìHÐ2ƒ‚S.¡Üà8þüK—.EGG·oß~ݺu¿þúë¿ÿýïråÊ#„ ýàƒ^z饰°0¹› À ˜î 8Êð÷ÿø«®¤ÜÉ1üñGÍš5+T¨ „¨\¹²¿¿ÿÑ£G¥‡ºwïîïï?þ|¹Ûh8– nO”¡A÷?EœÜp9åV…ríc=–šš*ýìéé~øða¹À~¡!!Âí…FR#´ÆÜ7ÍÉ ·PnűJ•*gÏž½}û¶ôkõêÕûí7ó£ƒáâÅ‹r·€=¤*cJj*©°ŸÁ¢ÐÈÉ wQnplÕªUvvö¨Q£Îœ9#„ˆŠŠ:þüÎ;…iiiû÷ï¯V­šÜm`7Üš±È·æÂ -1¤3›“î¢Ü®ê>}úlÚ´)!!Ád2Íš5+66ÖËËkÈ! 6ÿôéÓBˆ™3g†ÿ­K—.BˆÕ«W‡‡‡·k×Nî œI¥‘Q¡(6EFÎ]¨™Æ»ª…-[¶LJJÚ±cGÛ¶m¥%&“iÛ¶mþþþ‘‘‘Ÿ_£F ó3%7oÞܹsgpppddd•*UäÞ À9TÝ1Í•JaÓ‰ê§ýàØ½{÷Y³f}õÕWÍš5“æÄÌ™3'--màÀ¥J•’žsûöí«W¯–*UêÑG}öÙgŸ}öYË5;vlçÎQQQ|W54C±ß4mUã¹øB lýÛ‹š ýà|¸T}ôCí‘™}!þÖ¶è"8 !Ú·oß¾}û¢mÓ¦M›6mŠz´^½zoàd=îÅÙi&2r †<쎌‚B#´F/ÁÐ'ÍDFAj„,ìþq¾B£Ž€f©zLþmá* 7s$2 Ð,‚# AZ*4 R#ÜÌ‘Ï'+´ŽàhŠÆ"£àB wr02 Ð>‚# Ú‹Œ€›Øq‡ükàïèÁÐ- g|h»¸Ã¥ÿ{‹B#t†à¨›† ¤F¸S>9œ£Ð‚£kqG¸Ž†#£àŠ ×qVd¡GG@}´©.â¬O'(tŒà¨ŒV‡3>Ø@.Êp.Çç¾$RÅ›ÔØ‚ปÎ#£ ‡Ű̋.Œœ…€]èªÜGç}Ó÷w×käêQŒÞˆ¾iÀ!GÀˆŒ@áÜùÙà¯ÀaGÀåt{«‚¸pã>·•ï¿…FÀ9Ž€ Qh´Dj„nÿT§"8.AḋԨwn.1ÞSN;ÀÉŽ€óÑ7—o]“å¯( €k]…/ªÖ' ‘uJ–£ 2®EpœƒÈX(R£Éøaà„\Œà8}Ó€l%ÆûïN¡p‚#à Å ú£ò~ ˆŒ€;‹GjÔ>yKŒB¶È.ÓÃU’’’än‚j{Ð7]>>±±±{öì)ê™÷îÝóòò2<¬råÊrï!M¡«Ú% Â`Râ¿Óx}Óv#5*𒻤4’sH;fÍše4ªW¯.„xõÕWCCC-Z4räHÇWž™™uþüùnݺ¬X±â…^غukdddÁ'§¦¦æååÅÄÄ„††šúøøÈ½‡4…àb ´FyQ0œQƒŽ9R·n])5 !üýýëÔ©sæÌ§¬|úôéÉÉÉÿýïûöí+„6lX£FÞ~ûí„„„‚ONNNB¼ÿþû-[¶”{¯h]ÕЩÑ1”ДŠì!Œ5•¾iÙlÞ¼9&&ÆÇÇ'<<<>>>--­T©Rßÿ½SVž––V©R%ó¯999ÉÉÉ5jÔpÊÊ—,YRµjÕ>}úH¿†††vëÖmÛ¶müñGÁ'KÁ±V­Z®ÞŸzFp„Ž(y¸—ZD-yQe¶nݺ¶mÛÞºukèСMš4Y²dI“&MŒF£³ÖŸ——çåå%„0™L©©©ýúõ«V­Z||¼ãkÎÌÌ>þÎ;o¾ùæŠ+ àô}®OŒq„f1 ÆYH2PÑ”—‡š­÷±ŒÒ¦Ëò_Q¤Ñ‡ùäææõ|___SѬÜÒ èÄÄDWäáᑯW:--MQ­Zµ‚ÏÎ(Ÿþy!ıcÇ\yØõ…Š#´‰Èè,¤F·Rc}ñ~Ëõ[eT8ivsRRRýúõÍ =ZÔóíîªÎ·!„§§§ƒ+÷òòª[·îŽ;,nß¾Ý`0Ô«W/ß“Ï;·víÚ¸¸8ËòªTžtÖo‚#´‡Ûz;©Ñ}Ô{â•­aÆ•*UúüóÏÛµkW¦L!ÄñãÇ—/_.Šèw¶¯«zïÞ½§Nª]»¶ôëÊ•+¥·v|åƒ 6lØÚµkÛµk'„¸zõêŠ+ž{ʕ+7jÔ¨èèè-[¶”*UJa4§NêååõÜsÏÉ{´„àM¡Ð•Qo‰QÕÁÇÇgâĉC‡mܸqëÖ­322–.]êíí““óÝwß5hРAƒ–Ï—z“m}—{÷îÅÅÅuìØ1""âСCóçÏŒŒìÖ­[¾§Ù±ò~ýúÍ›7¯W¯^o¾ù¦ŸŸßÿû߬¬¬I“&IN™2eòäÉŸ|òÉ믿8iÒ¤±cdž……½øâ‹~~~›6m:xðàÇ\·n]¹ƒv0ÆÁˆF§£ÜèB*Âø ýz˨.C† Y¹r¥ŸŸß¼yó¶oßÞ¡C‡;w>û쳩©©'NœpÊ[4iÒdêÔ©{öìyçw¼uëÖ‚]Õv¨P¡Â¶mÛzôè±bÅŠ©S§ÖªUkÛ¶mO?ý´ôè;wnܸ‘““#ý:f̘+V-Z´èÛo¿õ÷÷ß°aÃ;ï¼#ÓŽ×&ƒX xááá§’Nñ]ÕîTbdLMM aVµ-ÜõxPÔP_,á¸Pe"<<<))IîV(HHHH­Zµ~þùg¹b?;Ž©nOºª¡nê¦dÔL yÑŠ­ 2 8BÍè›vR£Óh#/ "#€ŽP% .BjtÍäEAd„UÆïçç'w+à&G¨…F!5:DKyQaƒAƒÉݸÁjB¡ÑuHvÒX^"$4T"#€Âq;¨†A÷-QR£ÍÔ~?Â7Ê †Ô”ÎE!8B¸G£K‘m É¼(¸/#kÑU ¥#2º©Ñ*šë¶Ø4Æ2°ÁÊňFW#5–@ÃyQ؃à…¢ÐÙè!/ "#{¡8݃rc~Ú΋‚#' 8º_Tm7 îAj|@óyQ8 Á BjtR£úÈ‹‚ÈÀÉŽPº§ÝFï©Q'yQ¸÷q„ü¸³·Ûè75jõþ‹…o,7e„šlß¾½U«VÁÁÁ;w>yò¤Ü-BqŽwöv'=¦F]åEAd„<îÝ»çååexXåÊ•­yíþýû[µjuîܹ±cÇŽ7îÌ™3M›6½zõªÓ;iÒ$¹w•ÐU ÙÝI_©Q?ýÑ÷·—;ì@N©©©yyy111¡Ò !„ðññ±æµ³fÍ2 Õ«WB¼úê«¡¡¡‹-9r¤[xðàÁ]»vµlÙRî]¥GȃÔèNzIzË‹‚ŒP„ääd!Äûï¿oG2;räHݺu¥Ô(„ð÷÷¯S§Î™3gœÒ°ÜÜÜ„„„ÄÄÄ™3gF¹÷“FÐU w£{ÚÍ´ŸõÖ}«é•† 6oÞãã㟖–VªT©ï¿ÿÞ)+—‚c­ZµìxmZZZ¥J•Ì¿æää$''רQÃ) KOOoݺõ¤I“®]»æ”Báf̃q3-§F}æEAd„ÍÖ­[×¶mÛ[·n :´I“&K–,iÒ¤‰+pÉÉÉeÊ”yä‘G–/_>{öì;wÞ½{×Ê׿ååyyy !L&Sjjj¿~ýªU«™L&“ÉÄ„'¢«n wÜO›©Q‡ýѶŽiØÌh4¾õÖ[QQQ[¶l)[¶¬bàÀ±±±Î ޵jÕÊÈÈ–DDD,\¸°Q£FV®!''Gj[… -Z ÷nC‘Žpú¦ÝOk©‘¼(ˆŒ°GbbbJJÊäÉ“¥d&„ˆ‰‰éÖ­ÛÒ¥K }~nnîºuëŠZ[ÇŽ .LNN6“&MêÖ­[©R¥V¯^=bĈN:=zÔ××ךFzyyÍ;÷êÕ«‰‰‰:tx饗–,Yb0Ÿùö6 ®@p„Ë‘ÝO;©QÏyQPbTƒ08¾ûõU·§OŸBDDDX.ŒŽŽ.*8Þ¾}»S§NE¾Kagã/¿üR¶lÙŠ+J¿ÆÇÇß¹sçÍ7ß\±bÅ€¬i¼§§çÀ¥Ÿ'Mš4qâÄ=ztéÒÅÁ†ÁãbŒ,´u;~ñÁ` £*™î3þ+ªIÒÂ|rss‹z¾¯¯¯©h…¾$88Øœ%Ï?ÿ¼âرcvìþ}û !o\Š#\…È( u§F×½Òp>i†rRRRýúõÍ =ZÔómí>wîÜÚµkãââ,‹š™™™æ·¶•j===l\„à— 5ÊB­©‘¼(蕆«4lذR¥JŸþy»víÊ”)#„8~üøòåËEÝ»¶ö—+WnÔ¨QÑÑÑ[¶l)Uª”Âh4N:ÕËËë¹çž³¦…{÷î=uêTíÚµ¥_W®\)5ÛÁ†ÁEŽp2fOËEu©1$4äþOªj¶óáJ>>>'N:thãÆ[·n‘‘±téRooœï¾û®Aƒ 4°|¾Ô#lýú'Mš4vìØ°°°_|ÑÏÏoÓ¦MüøãëÖ­+„X¼xño¼Ñ¿ÿéÓ§º†{÷îÅÅÅuìØ1""âСCóçÏŒŒìÖ­[¾§ÙÚ0¸cáLܦQ.jJ_LMIÕûéÂ@F¸Å!CV®\éçç7oÞ¼íÛ·wèÐaçÎÏ>ûljjê‰'_ÿ˜1cV¬X´hÑ¢o¿ýÖß߯ ï¼óŽôèÝ»woܸ‘]ÔË›4i2uêÔ={ö¼óÎ; ƒÞºukÁ®j(G8 ÝÓ(’åLSóY’*w«äÂ@F¸]—.]òMRÞ±c‡×ßµk×®]»úPß¾}ïÝ»W̨J!DÏž={öìéºÍ§Zé,Tá¤F)·ÜXpr´2Ûé¾bQbTè1œìÎ;[·n-8f*EÅŽbP£¼”˜™ìR¡W»wˆxå•Wänœƒà‡Ph”—²R#y± z¥¡{-Z´hÑ¢EQŽ?ÞÏÏOî6Âz ŽË—/_¶lYrrrùòå›5k6zôhÿbžŸ½téÒ+V\¼xñ‘G©]»v|||“&MäÞe!5ÊK)©‘¼X(JŒ€ $w`]Ç3fÌš5ËÛÛ;::úܹs+W®<}úô‚ Ê•+WèósssûõëwèÐ!__ßgžyæÎ;¿þúëÎ;ßzë­7ß|Sî­Qº§e'j$/…È@»´?9&))iΜ9AAA7nœ3gΦM›úôésøðáiÓ¦õ’eË–:t¨Q£FÛ¶mûæ›oæÏŸÿã?úùù}ýõ×N¹sÚqÏÙÉ™ù2À¢H_¸½MÓ~p\¶l™Ñh>|x`` ´dܸq¾¾¾6l0…¾dãÆBˆwß}×\’ {ýõ×óòòvíÚ%÷ÉŒîiÙɓɋÅ`®4ÝÐ~pÜ·oŸ‡‡GóæÍÍK<==cccÓÓÓ8PèKRSS½½½ëÕ«g¹0,,Lqá¹7HN¤FÙ¹;5’‹A‰€þh|Œ£ÉdJNN®X±bÅŠ-—K߉yáÂ…¨¨¨‚¯š={¶—Wþ=sìØ1!DõêÕåÞ&Ùeç¦ÔXèͺa‰QŒôJãÁ1+++//¯àT___!Äõë× }•ôõš–öìÙ3gΜ2eÊó ë–ÂÃÃó-‘º¿U*4$D‘’šªÞoú¸xñ¢ÜMpThhHŠ+ù›£SS,ÞÕ‡\u%$4Tú!5%E!Tü(ŽêŽ àÅÿóú /ÈÝ@¥Ðxp”¾ÓÛÛ;ßr!ÄÍ›7K\C^^Þ?üðé§Ÿæåå}öÙgÖ¼oRR’Ü›î4 !!r·Å!!jnÿßµFlBÉÑ!®x—"¨æ <\bTI£í§šã8Oñ§}ÁËzÁ ‘Nh<8úùù †¬¬¬|Ëoݺ%þ®;ã×_4iÒ™3gªV­úñÇÇÄÄȽAîF÷´¸¤‡š›éX‰^i° ñàèåååëë[°²˜™™)„0ϳ.èîÝ»S§N]¸paÙ²e‡:`À€¢nú¨a¤F%prj$/Z‰o|€Âh<8 !‚‚‚’““333+T¨`^( e *ô%F£ñí·ßþé§ŸZµjõÞ{ï“/µŠû{+„ÓR#yÑz” hÚ¿OË–-óòòvìØa^b2™¶mÛæïïYèK.\øÓO?½òÊ+_ýµ>S#÷]Q'¤Fn¦c=î­VÐ~pìÞ½»‡‡ÇW_}%kBÌ™3'--­k×®¥J•’–ܾ};55UšKh2™-ZôÈ#Œ;Vî¶Ë€îi%0{_O^´·ïdµ}ûöV­ZwîÜùäÉ“r·ÅÑ~WuppðèÑ£§L™Ò¡C‡¦M›ž;wnÏž=õêÕ³übõmÛ¶1",,líÚµ×®];þ|¹råzõêUpm;wîÝ»·ÜÛä*¤F%°?2ÒmF1.Û²eË÷Þ{ÏÊçïß¿¿U«V5jÔ;vl™2e¾ýöÛ¦M›;vÌYÝ}[·n}ÿý÷;–——ñöÛowîÜYî¤nÚŽBˆøøøÊ•+¯ZµjýúõU«VíÝ»÷ðáÃ¥;ò$Õ³³³=ZðQ O¬&5*Í©‘›uÛQŒ€ktèÐ+W®,Y²d×®]¶–‹d2™„IIIuêÔ±éµyyy^^^B“ÉtöìÙñãÇW«V->>ÞñVyzzþþûï–ß÷–››{äÈ‘'Ÿ|R‡7fv"‚£~QhTˆ"S#yÑ>äEÀ‚Ñh|ë­·¢¢¢¶lÙR¶lY!ÄÀccc—““#µ­B… ‹-²òÛ}‹çååU¯^=éç $''¯[·î?þøßÿþ'÷æªÁQ§H QHj$/ÚY/—Áàø:ìWÄ™Ÿ˜˜˜’’2yòd)™ !bbbºuë¶téÒBŸŸ››»nݺ¢Þ¤cÇŽ®h»——×ܹs¯^½š˜˜Ø¡C‡—^ziÉ’%†‡÷§# ûàƒ’““…Ï=÷œSúÁõŒà¨G¤F…x(5’íF‰ ¡È3ðôéÓBˆˆˆË…ÑÑÑEÇÛ·owêÔ©èMtÉ6zzzš'¬Lš4iâĉ=zôèÒ¥‹³vúô鬬¬Ý»w8ðé§Ÿ>qâ„¿ÝÃY˜£;¤F…¸Ÿ™ïâf½%‘Fæ“››[Ôó}}}MEsCƒûöí+„HLLtnÃÊ—/ß²eËÉ“'_¿~}ÕªUnØ­¢â¨/¤F¥0“àxØ‹#`5©g6))©~ýúæ……Þ¨X"KWu¾!<==lغuë:uê´hÑ¢=z˜úûû —ÕMu‚à¨#¤ùÑíò"`»† VªTéóÏ?o×®]™2e„Ç_¾|¹("?¹¿«zïÞ½§Nª]»¶ôëÊ•+¥f;ذüãBˆùóç¿ôÒKæá’Òˆžyæ§o…~õ‚Ô('‹¼èЗPë³^{ùøøLœ8qèС7nݺuFFÆÒ¥K½½½srr¾ûî» 4hÐÀòùR°°xñâ7Þx£ÿþÓ§O/ô ÷îÝ‹‹‹ëرcDDÄ¡C‡æÏŸÙ­[·|O³µaï¾ûî¤I“¢££[·nm0~þùç½{÷>üÉ'ŸtÏÎ×$Æ8ê©QÆ/’m# a4b`—!C†¬\¹ÒÏÏoÞ¼yÛ·oïСÃÎ;Ÿ}öÙÔÔÔ'N¸úÝïÞ½{ãÆbî¹Ý¤I“©S§îÙ³çwÞIHH}úôéãô5ëG#5º‰¡¸ùÑæªJÀ,i@sîܹ³uëÖ‚c¡RTµŒÔèrVLv!2–Œ# ]»wˆxå•Wänœƒà¨Y¤F²zr4©±!¡¡÷bÚÕ¢E‹-Zõèøñãýüüän#l@pÔ&R£KØx3Rc‘ !DjJJHHˆÜM §AƒÉÝ؆1ŽDjt2»¾Ü…ÔXfI€ÊQqÔR£Ó8p³nRãCÂZApÔR£8üå.¤ÆûÈ‹ 9Gí 5:ÄI_Hj¼¿y4ˆà¨¤FûI‘Ñ»Oï©‘#hÁQ HöpR‰ñþÊô\b#/€nUÔh§æÅû«Ôg¡‘¼úCpT7R£•BBÿ¾_ ³÷—îR#ytŒû8ª©±dß‚15%Õú[0Ú°z]¥F¾Htà¨V¤ÆâØuËn›ßD'©‘»vþFpT%RcáÜ’ï¿•æSc¾¼¨ñ­ ›íÛ··jÕ* 88¸sçÎ'Ož”»E(ÁQ}Hù¹1/ ‹[m"/°ÝáÇ{ôèQ¥JŸ¨¨¨3fäææZóÂýû÷·jÕêܹscÇŽ7nÜ™3gš6mzõêUÙ†¢09ªå‚ùÑ%¿§V##S^Ø+%%¥yóæyyy;w~ì±Ç6oÞ±\rýúõO>ùÄÓÓ³[·nV®$''Gj[… -Z †¡ ‚£ è+5*#/Þo‹ÚS#yp/ƒã«°WQòÄÄÄ”””É“'KÉLÓ­[·¥K—úüÜÜÜuëÖõ.;v,¾¿üòËàÁƒ“““¿ùæ›°°0+ïåå5wîÜ«W¯&&&vèÐᥗ^Z²d‰ÁðÐa(ˆàÅiÊK‘ÍQoj$/2QàGîôéÓBˆˆˆË…ÑÑÑEÇÛ·owêÔ©È ,ú_•óçÏ2dÍš5aaa›7oŽ‹‹³¾‘žžž”~ž4iÒĉ{ôèÑ¥KÙ†‚˜£tÚ/7Ê:å¥ÈF©152å@ÒÂ|й—¡¯¯¯©hE½jñâÅõë×ÿí·ßfÏž}üøqGÂYß¾}…‰‰‰Jk$TMË©QI]ÒµKu³G¨/(š4C9))©~ýúæ…G-êùvô¯Y³æÕW_}饗fÍšU¡B,…ZOOO¥5 ‚£ri65*¬Kú¡¦©¨ÐH^`…† VªTéóÏ?o×®4›øøñãË—/EtïÚÚ#l2™ÆŒS½zõ… L{ÖØ»wï©S§j×®-ýºråJ©Ù²7 …"8*”S£RKŒ¨ŠÔH^` Ÿ‰':´qãÆ­[·ÎÈÈXºt©··wNNÎwß}× Aƒ X>_ê¶~ý'Nœ8yòdDD„y¢Y—.]Ú·o¿xñâ7Þx£ÿþÓ§O/t ÷îÝ‹‹‹ëرcDDÄ¡C‡æÏŸYpâ³ÓæÖà!G¸˜âó¢PE÷4y€½† üÅ_Ì›7¯R¥J:tx÷Ýwœššzâĉ|ÁÑVÉÉÉBˆ'Nœ8q"ßCµjÕjß¾ýÝ»woܸ‘]Ôš4i?mÚ´ T®\yðàÁ“'Ov¼FXbÃ\µ»µŽà¨D)7*¸Kú¡f*¹ÐH^à ]ºtÉ7IyÇŽNYs‡Š/öíÛ÷Þ½{ÅŒªBôìÙ³gÏžÎÝäû0«ZqTŸ9KºÈÆ*352?€VܹsgëÖ­Ç,B¥¨8ÂyTRb|Ð^¥¥Fê‹4g÷îݯ¼òŠÜ s•E•åF5ŒbÌßdE j$/Ю-Z´hÑ¢¨GÇïçç'wa‚£‚¨/5ª­Äx¿Õ )4’èÞ AƒänlCpT 5¥F–ï7\öB£åW¯’jCp„-ÔYb¼ßv š@pT¥—U[b4 ‘!³‘ÚÂíxä§èÔhycå¶²Ø-0ƒA¤¤¤ºû-¹™@sŽ(ŒªîÅXÜvܘÜÈ‹­£«ZfŠ+7ªycþMqÏ Fú£ºApÄß´…«ƒy ?G9)¥Ü¨¡È(\Zhäf:}#8ÊFþÔ¨þ¹Òù7ÈE…FŠ‹!Ž:¥­ãýmrz¡‘¼ÀØU-ÙÊš˜+› NMLŽ7Ú¾}{«V­‚ƒƒ;wî|òäI¹[„âuC‹‘Q8ñ†;äE°×áÇ{ôèQ¥JŸ¨¨¨3fäææZóÂýû÷·jÕêܹscÇŽ7nÜ™3gš6mzõêU§´êÞ½{^^^†‡U®\Yî½¥ntUËÀÝåF-vL §Œhd² 8,%%¥yóæyyy;w~ì±Ç6oÞ>>rï0u#8jšF#£ppD#ƒÀyFŽyóæÍ={öDGG !ÞÿýÌ›7oÓ¦M­[·.þµGŽ©[·®”…þþþuêÔ9sæŒS–œœ,µ§eË–rï$í «ÚÝÜQnÔÊ÷¾¾qvh¤3€^mÞ¼9&&ÆÇÇ'<<<>>>--­T©Rßÿ½SVž+¥FÉ!C„»wï.ñµiii•*U2ÿš“““œœ\£F §4L ޵jÕrê¾Ô;*ŽÚ¢Ýãýí³#2 BˆA}€N­[·®K—.áááC‡½råÊ’%KvíÚe4²òÜÜÜ7ß|3**Êrá¹sç„eÊ”)ñåyyy^^^B“ÉtöìÙñãÇW«V->>Þ)mKNN.S¦Ì#<²|ùòëׯ׫W¯qãÆ¥K—vúÖ‚£[¹°Ü¨ƒÈ(¬Ï~/¦¦¦†È½ à~F£ñ­·ÞŠŠŠÚ²eKÙ²e…ŒuVpôòòúä“O,—\¿~ý“O>ñôôìÖ­›•+ÉÉÉ‘ÚV¡B…E‹8¥mÉÉɵjÕÊÈÈ–DDD,\¸°Q£FNÚ»zDpÔùo&îʳ>22x€¼ ޝÂ^Eü³—˜˜˜’’2yòd)™ !bbbºuë¶téÒBŸŸ››»nݺ¢Þ¤cÇŽÅ·â—_~~üøòåËEÝ»¶ö›L¦1cÆT¯^}áÂ…Óž5öîÝ{êÔ©ÚµkK¿®\¹Rj¶ƒ +W®Ü¨Q£¢££·lÙRªT)!„Ñhœ:uª——×sÏ=çŽ]¯QGwpB¹Q‘QX&C¾Öæãã3qâÄ¡C‡6nܸuëÖK—.õööÎÉÉùî»ï4hРAËçK=ÂÖ¯ÿĉ'OžŒˆˆ0R4ëÒ¥Kûöí/^üÆoôïßúôé…®áÞ½{qqq;vŒˆˆ8tèÐüùó### Îȶµa“&M;vlXXØ‹/¾èçç·iÓ¦ƒ~üñÇuë֕ÁQ 4=iZ䋌À©† üÅ_Ì›7¯R¥J:tx÷Ýwœššzâĉ|ÁÑVÒM¶Oœ8qâĉ|ÕªU«}ûöwïÞ½qãFvvvQkhÒ¤I||ü´iÓ,XP¹råÁƒOž<Ù¾âe>cÆŒyüñÇ?ýôÓE‹•-[öÉ'ŸÜ°aà /¼à†}®aGeÓz¡ñ~d”¶óþÆjwk@&]ºtÉ7IyÇŽNYs‡Š/öíÛ÷Þ½{ÅŒªBôìÙ³gÏž®Øð®]»víÚÕkÖ-fU»œýåBMOšBƒÁ$ &a1-šÔÚrçέ[·³•¢â¨HÚ.4Ò º±{÷ˆW^yEî†À9Ž £ÕÈh1ÓÅ lß P±-Z´hÑ¢¨GÇïçç'wa‚£kÙÖO­½I0ÅEó m"Ànƒ ’» ° ÁQ14“ ÜFÇ`ÊŒr7 8†à¨Úèž.läbqßÔ†àèBVÕU]h,úÝDF´‡à(+•¦Æb§EÐ*‚£LT×=mÅÐ6‚£«WLTQ¡Ñº{.Ђ£Û)?5ZQ\Ì÷D"#z@pt/ŦF«Ã¢åÓÉ‹ô)<<\î&ò 8º‘S£í5C"#KJJró;¦¦¦†„„Ƚ݀G)$"*'5ÚX\Ì÷""#ºEpt %¤F{£%F !8ºžŒ©Ñ®âb¾—€„à¨9„EA^E#8º˜ÛÊŽ%>ò"(ÁÑ•\+. ò"°ÁÑ%\Ë‚¼ìBptç–‘õÈ‹ÀGsjqÑu!„‡Ü P®åË—wïÞ=22²I“&ãÇÏÈȰáÅv— †ÿ™Lþs÷:´æ…^» ȃ¢Lâ @9¨8nÆŒ³fÍòööŽŽŽ>wîÜÊ•+OŸ>½`Á‚råʹäýîE¦²\Šc!’’’æÌ™´qãÆ9sælÚ´©OŸ>‡ž6m𵫰&ºZ´šå«©,7 8bÙ²eF£qøðáÒ’qãÆùúúnذÁh4:´j²^1I‘°Ü€àXˆ}ûöyxx4oÞܼÄÓÓ3666==ýÀ6¯Îö°˜/#’€ó3™LÉÉÉ+V¬X±¢åòÚµk !.\¸`튊‹…†Ââ3"I(“còËÊÊÊËËóóóË·Ü××Wqýúu«Öb0Ìã =R»vx‰¯/ù)°Y8»Uy8(ÊÄqQ  ‚à˜_vv¶ÂÛÛ;ßr!ÄÍ›7K\CRR’(nzL’Ü›`ºªóóóó3 YYYù–ߺuKü]wÐ!‚c~^^^¾¾¾+‹™™™Bó<00PZ2nÜ8__ß 6F¹[§qvìü7 !Þ}÷ÝråÊIKÂÂÂ^ýõ¼¼<:¬Â‘OÄéÓ§g̘Q§N¹7Bkì8(+W®ÌÌÌ|ýõ×5j$-yòÉ'_|ñÅ´´´#GŽÈ½AZ`ÇA9pà€¢oß¾^^^Ò’gžy&""âìٳׯ_—{ƒ´¯}ûö½zõZ²d‰Ü ‘ÁÑ öíÛçááѼysóOOÏØØØôôtéC×±c秦¦z{{׫WÏraXX˜âÂ… roØý‰ÈÍÍ3fŒ¿¿ÿ¸qãäÞ­±ã lß¾Ý`0têÔÉrá§Ÿ~š””ôÔSOɽAZ`ÇA©ZµªÂ2#šL¦7nxxx˜£$\ç£>š9sæÌ™3cbbän‹l8Ïe2™’““+V¬X±bEËåµk×B\¸p!**Jî6j–};öìÙÿ…=v옢zõêro“ê9ò‰øòË/Oœ81oÞ¼ *ȽšbßA9zô¨¿¿•*U~ûí·ƒÞ¸q£N:­Zµ2—êáûJ»ví,XðÑG•/_¾Aƒ3gμxñb=øÔ¸Á³Ï>+ý°uëV¹Û"‚££²²²òòòüüüò-÷õõÿ]§³oç×­[7ß’={öÌ™3§L™2ùŠ+°ƒÝŸˆC‡Í;·wïÞ111Rއ³ØqPîÞ½û×_ÕªUkâĉ‹/6/¯^½úçŸ^¿~}¹·Iõìû¤„‡‡/\¸°_¿~ýúõ3/ìÝ»÷øñãåÞ è]ÕŽ’¦¿y{{ç[îãã#„¸yó¦Ü Ô2Çw~^^Þ‚ ˜••5yò䀀¹·Iõì;(ÙÙÙcÆŒ©^½úÛo¿-÷h寿þB$''¯_¿~Ê”)¿þúë¶mÛ†zéÒ¥aÆqËÇÙ÷IÉÌÌœíf©©©ÒCr·NãìØùF£ñí·ß^°`AË–-úé§!C†Pår.[Šô½3gÎ ÿ[—.]„«W¯o׮ܤv|RK•*e0,J–ÜÜ\¹7H l=(éééBˆš5kæ[.¯]»&÷AŽNвe˼¼¼;v˜—˜L¦mÛ¶ùûûGFFÊÝ:³cç/\¸ð§Ÿ~zå•W¾þúkJ®`ëA©Q£FÛ‡ISƒƒƒÛ¶m+÷iŸ”-Zdffž:uÊr¡t›n´é¶”š5kzzzž>}Úd2Y.OJJBÔªUKî ‚>È}r-¸téR:u^xá…¿þúKZ2kÖ¬Úµkúé§r7Mû¬Ùù·nÝJII¹pá‚Éd2­ZµjÔ¨Qvv¶Üm×,[JAGå›cœËŽƒrüøñÚµkwïÞ===]ZrøðáÈÈÈèèè´´4¹7H ì8(¯½öZíÚµ?ÿüsó—÷œ:uêé§Ÿ®_¿~rr²Ü¤#ï¾û®n¿9†É1N>¾råÊ«V­Z¿~}ÕªU{÷î=|øpé® p5›vþÅ‹…ÙÙÙG-ø(Sdœ…O„ÙqP^{íµ€€€ $&&úûû·lÙrèСÒ×,Á)l=(ëׯŸ5kÖÎ;ùåÿfÍšýóŸÿ|â‰'äÞè…ÁôðP  PLŽ€Uް ÁV!8À*GX…à«`‚#¬Bp€Uް ÁV!8À£Gß½{·ÛVõÕW_…‡‡ÿðÖ¯úå—_ }äEp5Ù¹sç¶mÛänò’» k-Z´hÔ¨‘•Ž5*33óøñãr7€@NõêÕ«W¯ž}€›ÑU @•òòòrssånè Á€jHGΜ9óÁDEEÕ«W¯yóæC‡Í7EzÚåË—:Ôµk×'Ÿ|òâÅ‹æGׯ_ÿúë¯7kÖìé§Ÿîׯßwß}———Wð½vîÜ9lØ°ØØØØØØþóŸÛ·oÏ÷„´´´éÓ§·iÓ¦aÆ 6lÛ¶íäÉ“¯\¹bëªæÎ[ÌôËG?ýôÓðððŒŒŒ¼¼¼ðððÈÈÈñãLJ‡‡/Z´(ß«¦OŸþÙgŸÉ}Äh Á€Ê¼û-ºsçN5222~úé§øøøo¿ý6ßÓNœ8ѯ_¿£GæääF!„Éd;vìˆ#¶nÝj2™|}}÷ìÙóé§ŸöêÕ+##ÃòµkÖ¬8pàO?ýT¶lÙ7n$$$ <ø‹/¾0?!--­W¯^³gϾ|ùòc=öè£^¸paþüù={ö´uUÖ‹ŠŠêÛ·o™2e Cß¾}_yå•6mÚ!6mÚdù4“É´víZ!DÇŽå>V´†à@e<ؼyóÝ»wÿôÓO7nœÁ`øì³ÏNŸ>mù´ÿûßO<ñÄüùówíÚõØc !~üñÇU«V.Y²dûöí›6mÚºukƒ <øå—_Z¾våÊ•-[¶üõ×_¥·3fŒ‡‡ÇÌ™3>l~ÂÙ³gãââvíÚµjÕªÕ«Wïܹ3::úÒ¥K[¶l±iUÖ‹‹‹?~|ùòå=<<Æ?zôègžyÆÏÏï·ß~KKK3?íÀ—.]ª_¿~­Zµä>V´†à@eÿóŸÿøùù !<==û÷ïß«W/£Ñ8sæL˧y{{Ï;7&&& @ZòùçŸ !>úè£ÈÈHiIÕªU¿üòË2eÊ,Y²äÏ?ÿ4¿688ø‹/¾¨P¡‚ÂËËkÀ€½zõB|ýõ×Òrss[´h1jÔ(oooiI… Ú·o/„8wîœe3J\•#<==Ÿþy£ÑøóÏ?›®Y³FÑ©S'¹ "8P™®]»–)SÆrIŸ>}„‡²\Ø¡C‡²eËš½zõê•+WªV­kù´ÀÀÀæÍ›çåå8q¼°{÷î^^^ßâØ±cÒ¯o¾ùæ¬Y³üqó®]»¶nݺ‚­-qUzñÅ…Eounnî† ¼¼¼Ú¶mëÂc@¯¸• É·äÑG-S¦ÌŸþy÷îÝÒ¥KK ¥îi³³gÏ !jÖ¬Yp…5jÔW CCC }‹k׮ݾ}[ª2^ºtiûöí¿ýöÛ… Ο?Ÿoh£M«rÄ?þñŠ+îÝ»7##Ãßßûöí7n܈‹‹«X±¢Ëý¡â@e CÁ%žžžF£Ñò=Rï°™Éd*j…žžžBˆ{÷î•ø¥J•B,^¼øù矟8qâáÇüñøøøùóçÿûßÿ¶¾µæU9ÈÓÓ³uëÖyyyÒØJú©¸G*“šššoÉŸþ™••U¥J•òåËõ*©Ö˜o¢D*FZ– ¾Åü‘••U½zõÒ¥Kߺuëƒ>(]ºôìÙ³Ÿ}öYËfXÓZËU9e‡¼øâ‹‹/Þ¸qc›6m*T¨Ð¢E gïu‚Š#Õù¿ÿû¿»wïZ.Y¸p¡¢~ýúż*((¨råÊ—/_Þ¹s§åòk×®mݺÕÓÓ3""¼pÅŠùnî(½EÆ …GŽÉËËkذ¡ejBœÜò™ááá7nüùçŸCBB.]º”íåå5aÂiMhhhË–-·lÙòÜsÏ5jÔÈd2%%%eddôêÕkÁ‚ÿ÷ÿ÷×_M™2ÅšUÙÁÏÏ/##£gÏž=ö˜ùö“mÚ´ùßÿþ—]£F È}ˆhÁ€ÊtìØ±W¯^ß}÷Ý‘#G|||žyæ™W_}õ™gž)ñ…Ó¦MkÞ¼ùš5kNžúèÌ™3wîÜ1/lÔ¨QåÊ•¯]»F¹€KŠ™iŠ2zôèÕ«WÏž=»yóær·EYŒFcË–-ÿøã-[¶T«VMîæÐ,Æ8€ê%&&^¾|9::šÔÀ¥Ž nÙÙÙ3fÌBtíÚUî¶Ð8Æ8€ŠEGGß¹sçîÝ»µjÕ’¾,\‡à@5Ú´iS»ví‚_â§gU«V=þ|llìû￟oŠ8“c`Æ8À*GX…à«`‚#¬òÿqãÑ’í®IEND®B`‚statistics-release-1.6.3/docs/assets/betapdf_101.png000066400000000000000000000710631456127120000222640ustar00rootroot00000000000000‰PNG  IHDRhŽ\­AqúIDATxÚíÝy\TeÿÿñkS7Ì´r¯p)ÑR+•4Ë-4os×·¾wb¥–•vw—[Z.ÝîwýRSKqGÓRËEF\2EÉ%f~›YÎÌÙ^χp83seÎõžÏuΓÕj@I|”n´à‡à‚#Bp€CŽpÁ!8À!G8„à‡hÆ‘#GLE)]ºô<ð /üöÛo®=óÚµkÿßÿûÿïÿý¿Ë—/{®åË—oҤɠAƒÎ;Wâü~~~!!!>úèÿýßÿn•½—Èï7ÞPhCÐ-‚#Í»sçÎÙ³g—/_Þ¼yó9sæ¸ð ½zõŠ‹‹‹‹‹s9z:âÆû÷ïŸ7o^½zõ~üñÇâgÎËË»råÊÞ½{ß}÷ÝÈÈÈ={öxt€#ü”n¸¢jÕªþþþÒÏ™™™×¯_Bdgg><666""BélgNNÎ… ,‹âæÍ›ƒ :|øp¹råìÍóæM[¡133óùçŸOMM-]ºtñ«"¿àà`¥—€ÞPq I_ýµùo×®]ûñÇË”)#„ÈÉÉ™7ožÒ­+¢çλ~ýzBB‚4ýôéÓIIIÅÌéÒ¥3gμüòËÒôsçÎÍš5«ÄU‘ß„ ”^zzCp íÚµëܹ³ôsjjjþ?]¼xqäÈ‘111åË—ðÁ»wï¾ÿ~Û_Ço2™nܸa{“ÉtóæMéW‹Å²lÙ²6mÚÔªU«L™2µjÕzòÉ'.\˜““ãB#þýï—*UJúõøñãÅÏ_³fÍ tíÚUúuÊ”)¶†€"ŽtâÎ;ÒÕ«W·MLJJzä‘Gþõ¯íÞ½ûÆiiiÿýï›6múÚk¯9òœ½zõêÕ«×Ö­[Ïœ9“}æÌ™mÛ¶õïßÿÅ_t­‘þþþ•+W–~¾zõª#9r¤ôÃåË—wîÜ©ÐÚ!Žtàúõë ,X³fÂÏÏoÀ€Òô¬¬¬^xáâÅ‹BˆØØØI“&õêÕËÇÇÇjµ~üñÇ ,B¼þúë©©©eË–•²páBÛ¯+V¬X±b…Âd2ÅÆÆöíÛ·AƒÒl«V­*r ¹D×®]“Ú#„pðDÌÖ­[ßwß}ÒÏ{÷îUze04‚#M’Æ”%AAA ÈËËó÷÷_´hQãÆ¥yÞÿ}éú’øøøÍ›7¿ýöÛÿùÏ>ùä鯉‰‰BˆJ•*=øàƒ>>w†5jÔxðÁM&“bÆ ÒÄ1cÆlÞ¼yáÂ…‡jÒ¤‰4ñ—_~qªÁ¹¹¹ÇïÝ»w^^ž4¥aÆŽ<Ðd2U«VMúù?þ(~UØŒ=ZéM@‡¸ª€~4hРuëÖ¶_mÉï•W^±M|ùå—G•——wæÌ™ß~ûíᇶ÷l={ölÛ¶­ÂöœYYY·nÝ’~vp ¹]»vENïܹ³-à–¨R¥JgΜ‘ Ìš!Á€Få¿MvvöüaµZ÷íÛפI“]»v=øàƒBˆ'NH3´oß¾È'9yòd1ÁQzTffæÆþùçìÛ·ïÏ?ÿt¿ñ 4°>qåÊé‡ *¿*l*V¬(ÏŠ€|Ž4é믿–Ê’ŒŒŒ¾}û®_¿þâÅ‹ Û¶mËÊʲ]+mOFFF1½sçÎøñãÿõ¯åææJSüýý«T©réÒ%ÇÛ™?ÕùùùEGGÇÄÄŒ9Rºyƒl#ÔU«V-qU€çèAHHÈ”)SÖ¯_/„ؾ}ûüQ­ZµòåËKÂ~ø!<<¼ð£l8é½÷Þûøã…áá᯿þz‹-¢££<þ|Çæ~ªÛ¹s§í‚ñæÍ›{{Í@>G:a»ÀE‘••U­Zµ:uê8p@‘››+ ^K®^½jµZ…E~áŠÍçŸ.ýðÙgŸuèÐAú¹À×L{mP»\¹r-Z´ðò«@~\U @233ßzë-éç2eÊHõEÛ…)sçΕ’¢bõêÕ•*U ©]»vámµ½?ÿüÓ6}íÚ5é‡_~ùŵ»ð¸æ?þ4hЪU«¤_ûôéS¾|yo¯YȇŠ#MêÛ·¯íæ‹ÙÙÙ.\°‰8jÔ(???!Äøñã¿øâ‹ÌÌÌo¿ý666ö‰'ž8räȺuë¤ÙÆŒc»‚$((H:!òwÞ9räÈÈ‘#¤‰ Xºt©ÉdÚ°aƒkßãÂrݼyóÂ… ¶é•+W~çw”^댎à@“~ÿý÷"§ÇÄÄØJÁÁÁ .ìÛ·ïµk×¶nݺuëVÛlƒž4i’í×'žxâ믿BìÞ½{÷îݯ¾új©R¥ž}öÙåË— !nݺõÝwß !ÂÃÃkÕªµeË!DþTçéåªX±âwß}¢Èª†ªhž¯¯o•*Užzê©yóæmݺµ\¹r¶?uêÔé×_8p`ãÆË–-Þµk×mÛ¶Íš5KºË·dÆŒ/½ôR•*UÊ•+× AétÉ3f<ôÐCBŸGydôèÑèÒ¥‹ô¥K—Ún÷ã¡…ªX±bóæÍÿïÿþ/%%å±ÇSz5€0ÙÎû““³víZ!D×®]•n (à‡0T ‡à‚#Bp€CŽpÁ!8À!G8„à‡à‚#Bp€CŽpˆŸÒ ð†Û·o/_¾|ÕªUçÎ+_¾|ݺuZ´hQÌCâãã:T`bHHÈ®]»”^eè?8æææöïßÿàÁƒ?þø_ýõÓO?íܹsĈC‡µ÷¨3gÎøûû×®];ÿÄ   ¥—@1úŽ+V¬8xð`“&MæÏŸïïï/„8yòdïÞ½?ûì³ØØØ¨¨¨ÂÉÊʺ~ýzÇŽgΜ©tóÔBÿç8nذA1qâD)5 !"""œ——goÜùÌ™3BˆåFƒÓp4›ÍåÊ•«_¿~þ‰Bˆ³gÏùôôt!D­Zµ”n;€Šè¨zΜ9~~óÈ‘#Bˆš5kù)8^¸p¡o߾ǎ+[¶lttôàÁƒy䥗˜„É*¬J·B½L&aeõÅd5ÞŠÙ³gÏСCsrr’’’BBB Ï0~üøÿþ÷¿Bˆ°°°ºuëž?þÈ‘#>>>“&MêÑ£G‰ÏYü 'N¤Ô­YâóxMʉ‘uë*Ý €—œH9Q7’Ã~qé©SRR”n¦ô_qÌ///ï믿þàƒòòò>úè£"S£âÂ… þþþcÆŒéÛ·¯4%99yðàÁS¦LiÙ²ehhh‰/TüÎd2©noKÑûg«ÈÈHµ­s°QÔ‰í¢B²o“0±•‹WbO]b‘H¯ôŽ£ÍO?ýÔ©S§÷Þ{/$$dþüùÏ<óŒ½9¿ú꫃ÚR£"&&¦OŸ>·oßÞ´i“ÒË  CÇ;wî¼÷Þ{ýúõûý÷߇¾~ýú˜˜gŸ¤yóæBˆ'N(½4žaµ “IéF<޳áýU[,–×^{í‡~h×®ÝÛo¿]¥J•âç·Z­‹Åd2ùøÜ“ª}}}…åË—Wz”¡ÿŠãâÅ‹øá‡_|ñ³Ï>+15 !ÒÓÓ£££ûõëW`ú„¾Ïi èŠ¥óàhµZ—,YR¾|ù±cÇ3ÛÍ›7Ífó¹s焵k×nÒ¤ÉÞ½{W®\i›áÀ , mß¾½ÒËäÙõEvöèüv<—.]jÕª•¿¿ÿƒ>Xø¯]»víÝ»·âûï¿=ztDDÄÚµk…Ç0`@FFFýúõÃÃÃÏŸ?ðàÁ²eË~öÙg=öX‰/Zâåoª¾‚YÕsÙl Sº¸EØ.*$ãFáG•Øöþ:?ÇQ*"Þ¾}ûðáÃ…ÿjï™zõê}óÍ7}ôÑîÝ»OžZI²#À0Žp†ŠŽÚJ²#ÀŽ€ÈŽT‰!/‚#œäÑ¢£Ë6dG8`ûöííÚµ íÚµëñãÇ•n8àÕÐtj”Q¬_~ù¥]»vééécÇŽ7nÜ©S§ZµjuéÒ%¹žÿúõëƒ~àZ·n½gÏ{sæääøùù™îU¹re¥×µã»ªá|Xz‰à÷¸“ ’¨ÈŽ…({‚¯½½õäÉ“Bˆ¨¨¨ü›5kf/8Þ¼y3..Îþ«ØÝä¾¾¾”~NLLœ4iRÏž=»uëæÎ“KeË?ÿü3ÿĬ¬,!DÅŠ ?ÃÖ­[Ë”)cûSBBÂ_ý5tèÐU«V 0@öu@78Ç€·Y­Jþ³G:û°€ÜÜ\{óZíspUHW@'''»ùäU«Võññ)0*‘‘!„¨Q£FáùCCC ʧŸ~ZqäÈOnyxãÔð*Žp›kEGCá(:jtusJJJƒ l>lo~—‡ª <‰Â×××Í'÷óó‹ŽŽÞ±cGþ‰Û·o7™Lõë×/0szzúÚµkcccó—W¥ò¤\—xÐ+‚#”`ÀEvT½ÆWªTiæÌ™Ï=÷\éÒ¥…G]¹r¥°3îìÚPõÞ½{Oœ8Q·n]é×Õ«WK/íþ“¿òÊ+#GŽ\»vísÏ='„¸téÒªU«žzê©°°°súûû¿þúëÍš5Û¼ys©R¥„‹eúôé~~~O=õ”²[€Ê!®’qÙQÝ&Mš4|øðæÍ›·oß>33sùòååÊ•ËÎΞ?~Æ 6l˜~i4ÙÙWÉÉɉíÒ¥KTTÔÁƒ¿üòËFÅÇǘͅ'ïß¿ÿ‚ ^z饡C‡}õÕW·nÝJLL”þúþûïO›6mêÔ©ƒ®R¥JbbâØ±c#"":vì´qãÆL™2%::Zéí@Õ8Ç2qü¶ŽFOÜÜQ݆ ¶zõê    lß¾½sçÎ;wîlÙ²¥Ùl>vì˜,/Ñ¢E‹éÓ§ïÙ³güøñIIIƒ Ú²eKá¡jT¨PaÛ¶m={ö\µjÕôéÓëÔ©³mÛ¶Ç{Lúë_ýuíÚµììlé×7ß|sÕªUU«V]²dÉ_|¼~ýúñãÇ+´â!3Np„ç˜\øÄŒâEFF¦¤¤”8›+t.’ÁÑl6°SŒa¢³ƒïã «S§Î?þ¨tC\Ç6U„³G0‚£;ìÊ û^ âù8Rt4Lf@Žð"R£„kC¹ÅÅ1WÉ8ˆ e i„ AAAJ·\Gp„ÜìeGrRdGãyå•W”n¸…¡j8„à(|• ¥µ"q²#Yq‚£›8ÙªDGx†ã·u48²#@;Žð<ÊÅ#;4‚à¨ý—äô¿„ "ŒSà Žð0ÊŽ èЂ#<‰sŒGv¨Áž$•°@Ž€jPtà*Np„wá1¶³¹JÆqdG€Šà‚#<£ÀÅÔGÑvlß¾½]»v!!!¡¡¡]»v=~ü¸Ò-‚Z0N ¯!8Â[ÈŽŽ#;êTNNŽŸŸŸé^•+Wv䱿üòK»víÒÓÓÇŽ;nܸS§NµjÕêÒ¥K²7²uëÖ‰‰‰J¯**å§tÀ(Ìfs^^^LLLxx¸mb@@€#={¶ÅbIJJªY³¦¢OŸ>áááK–,3fŒŒ-¼yóæíÛ·ÏÌÌ\¾|y¹rå²³³çÏŸß°aÆ æŸ_vüù«T©’˜˜8vìØˆˆˆŽ;mܸñÀS¦L‰ŽŽB,]ºtÈ!/¿üòÇ\ä3äääÄÆÆvéÒ%**êàÁƒ_~ùe£Fâãã ÌælÃÀqœãEq¦£S8ÙÑÆ ¶zõê    lß¾½sçÎ;wîlÙ²¥Ùl>vì˜ûÏÿæ›o®ZµªjÕªK–,ùâ‹/‚ƒƒ×¯_?~üxé¯wîܹvíÚíÛ·í=¼E‹Ó§Oß³gÏøñã“’’ ´eË–ÂCÕà9T¡4¬¡&ݺu+p‘òŽ;d|þîÝ»wïÞ½È?õë×/''§˜³*…½zõêÕ«—ç?22’j¥V0N EPq„BõŠŽúõ×_mÙ²¥ð9‹ G¨Ö€»wŠzñÅ•nØÅP5Ü&K¹‘kÇq•ŒNµiÓ¦M›6öþ:a„   ¥Ûµ`œJ!8Dv4žW^yEé&CÕP¬P7‚#ÜCÝK)\%ð:‚#Ô„¢#”„¡ ‚#T†ìè8ŠŽ ®ÏtÁn`œZqdG€F}­¬°ƒqj(‹àWy´ÜHvtEG€·à‚#ÔŠ¢£ã(:ÆÀ85Gp„K¸,FmÈŽÏ#8BÅ(:ùlß¾½]»v!!!¡¡¡]»v=~ü¸Ò-`8G¨ÙÑq5¥uëÖ‰‰‰ŽÏÿË/¿´k×.==}ìØ±ãÆ;uêT«V­.]º$W{¶lÙÒ¦M›*UªTªT©eË–ß|óÒk€á<Æ©÷8p`×®]N=döìÙ‹%))é7Þ1bĶmÛrss—,Y"K{¾ÿþûØØØ3gÎôîÝ{ðàÁ—/_îÖ­Û_|¡ôzÂ=8Ájà§t€’HEGîèï+±^Õrss“’’’““?ÿüs‹ÅâÔc:]³fMé×àààzõê:uJ–†?¾Zµjû÷ï BL˜0!:::11qàÀJ¯3êBÅZÀ€5¼eÓ¦M111‘‘‘ ¥J•Z¸p¡,O~åÊ•öíÛ'&&^¾|ÙÙÇfddTªTÉökvvvjjj­ZµÜoUvvö‘#Gž{î9)5 !Ê•+תU«sçÎݾ}[žÕ @/¨8ÂI´TŽ¢£Ö­[×­[·ÈÈÈáÇ_¼xqÙ²e»vír¶4XŒªU«Z­V!DJJJ½zõœzl^^žŸŸŸÂjµž>}z„ 5jÔHHHp¿U¾¾¾¿þúkHHˆmJnnî¡C‡~øa¹–nbœ*Ap„F0`í8²£K,ˈ#š6mºyóæ2eÊ!غukƒ£û²³³¥¶U¨PaÉ’%ùÓžËüüüêׯ/ý¼hÑ¢ÔÔÔuëÖ]¸pá?ÿùÒ‹ @u޼NÙì|üHNNNKK›6mš”Ì„111ñññË—//rþÜÜÜuëÖÙ{‘.]ºx¢í~~~óæÍ»téRrrrçÎ{ôè±lÙ2Ó½ëÓ†½óÎ;©©©Bˆ§žzJ–qp@¨K8Žà¨<-•Ò”­ciiM)MåEGUnÄ“'O !¢¢¢òOlÖ¬™½àxóæÍ¸¸8û‹è‘eôõõµ]°’˜˜8iÒ¤ž={vëÖM®†ÒÈlJJJƒ l>lo~E†ª 4@áëëëfÃÖ­[·dÉ’ž={Ú& ÕMhÁSI aÀžÑ¸qãJ•*Íœ9ó¹çž+]º´âèÑ£+W®vò“÷‡ª÷îÝ{âĉºuëJ¿®^½Zj¶› {ôÑG…_~ùe=l§KJw züñÇe_ 8Ë$Liæ4¦t;!ÁšDvtEGgLš4iøðáÍ›7oß¾}ffæòåËË•+—=þü† 6lØ0ÿüÒˆ°Œ Xºté!C^~ùå?þ¸Èrrrbcc»téuðàÁ/¿ü²Q£Fñññfs¶a!!!'NLLLlÖ¬YûöíM&Ó?þ¸wïÞQ£F=üðÃÞYù´‚sà®aÆ­^½:((hÁ‚Û·oïܹóÎ;[¶li6›;æéW¿sçεk׊¹çv‹-¦OŸ¾gÏžñãÇ'%% 4hË–-…‡ª]ðöÛo/\¸Ð××wÖ¬Y³gϾï¾û–-[6cÆ O/2Í¡âX´Û·o/_¾|ÕªUçÎ+_¾|ݺuZ´h¡t»”£¶ÂEGQttR·nÝ \¤¼cÇÙ_%22²pQ°_¿~999ÅœU)„èÕ«W¯^½doÉdêÛ·oß¾}ef:Cű¹¹¹ýû÷Ÿ:uê¥K—üñ:uêüôÓO Ÿ}ö™ÒMC>\aí );Bõþúë¯-[¶>gFÆÆ@m¨8aÅŠlÒ¤Éüùó¥oÜ:yòdïÞ½?ûì³ØØØ·yYìÞ½;**êÅ_Tº!`Ç"lذA1qâDÛ÷´FDD <8//o×®]J·N ªë¤èè ŠŽZЦM›·Þz«ÈÛI !&L˜0hÐ ¥ÛÀè¨8Ál6—+WÎöå­’ˆˆ!ÄÙ³g•nîÅÉŽ0†W^yEé&ÀÛ§† ‹0gΜÂú9"„¨Y³¦Ò­\ÂU2PŠN!8!::ºÀ”={öÌ;·téÒÅÜV7¿ÈÈÈS¤áoûÂÌf³ÒËm¿qênžHK 3™ÌiiÅÌrîÜ9¥[©<µoGh{‘÷„Ý]ÛÁ<¬äcc‡”n¤ZK——÷õ×_ðÁyyy}ôQHHˆ#JIIqêU¬Va2…©ôI«Sý·„……¹9ƒþYE˜)Œ¢#ÜÄ[É;îŽSÿ½²YíUâê-Ü­®Á±8?ýôSbbâ©S§ªW¯>eÊ”˜˜¥[;8ÓÏ#8íÎ;Ó§O_¼xq™2e†>`ÀÛÖP)²£#8Óà‚c,Ëk¯½öÃ?´k×îí·ß®R¥ŠÒ-R!¼Žë©¡ZÇ",^¼ø‡~xñÅß~ûm¥ÛgPttEG€«¸xAV«uÉ’%åË—;v¬Òmó¸%¸#¸8À%T º|ùò™3güýý_zé¥ÂíÚµkïÞ½•n#@·§†š ’n—uûöíÇþ«±.¬Öè€&ÖŽ`Àà<‚cA7vö.ŒP²#ôhûöí“'O>xðà}÷Ý÷è£N:µ^½zJ7 €±pŽ#`Tœé¨„ß~û­gÏžÕªU hÚ´éŒ3rssyà/¿üÒ®]»ôôô±cÇŽ7îÔ©S­Zµºté’â ƒ¼§†ÊQq„ZǤèõIKK{òÉ'óòòºvíúÀlÚ´i̘1Û·oÿæ›oJ|ììÙ³-KRRRÍš5…}úô _²dɘ1c”m itÎ"8ª9G~¬Óq¦£w3æúõë{öìiÖ¬™bòäÉ X°`ÁÆÛ·o_üc:-¥F!Dppp½zõN:¥xà CÕð?›6mЉ‰ ˆŒŒLHHÈÈÈ(UªÔÂ… eyò¤¤¤Ö­[KáL2lØ0!ÄîÝ»K|lFFF¥J•l¿fgg§¦¦ÖªUKñ†AFŒSCý¨8B×(:–ˆ¢c>ëÖ­ëÖ­[ddäðáÃ/^¼¸lÙ²]»vY,Yž<77wèСM›6Í?1==]Qºtéž——ççç'„°Z­§OŸž0aB5oC!8¢(zJRvLKSºP;‹Å2bĈ¦M›nÞ¼¹L™2Bˆ¶nÝZ®àèçç7uêÔüS®^½:uêT__ßøøxŸ$;;[j[… –,Y¢’†0‚#`x…B$''§¥¥M›6MJfBˆ˜˜˜øøøåË—9nnîºuëì=[—.]й­[·4(55uÖ¬Y6ÒÏÏoÞ¼y—.]JNNîܹs=–-[fº÷Û’iƒ 8¬Ö0¬UFÁÙÛNž<)„ˆŠŠÊ?±Y³fö‚ãÍ›7ãââ쾊ýýíÌ™3Æ [³fMDDĦM›bcco¼¯¯ïÀ¥Ÿ'MšÔ³gÏnݺ)Þ0¸¡ \ƒBôX|2§¥ñÖÅñú=­Êý³G:ƒ°€bîehµÏÞ£–.]Ú AƒŸþyΜ9Gu'œõë×O‘œœ¬¶†Ð1*Ž „ÒÊ))) 4°M,ò«G%.Œ¯Y³¦OŸ>=zô˜={v… Ül°j}}}ÕÖ0:Fp„ap…uñ ¦cãÆ+Uª4sæÌçž{NºšøèÑ£+W®v†w¶Z­o¾ùfÍš5/^\8í9bïÞ½'Nœ¨[·®ôëêÕ«¥f+Þ0¸qjhÁFBv„}“&M>|xóæÍÛ·oŸ™™¹|ùòråÊeggÏŸ?¿aÆ 6Ì?¿4"ìøó;vìøñãQQQ¶“mºuëÖ©S§¥K—2äå—_þøã‹|†œœœØØØ.]ºDEEüðÃE‹U®\yРAÓ¦Ms¿FXbÃ<µºhÁQE(‡ykÅêÖ­[‹”wìØ!Ë3wîܹøB`¿~ýrrrŠ9«RÑ«W¯^½zÉ»È%6 žÆ854„«ªagԃર{÷¨_|Q醀] U#ãœßÆ€u1 ¦£RÚ´iÓ¦M{0aBPPÒm„ü§†¶aTdÇbÕç•W^Qº ÀP5CpÄß Xaâ*™bp• àyŒSCsŽ06²##8°ƒ¢#ýâ,w×Õ…ú—Xé”À85´ˆà!„!OpÌìhEG@>G8„à!(:ÚGÑðÆ©¡QGàodGŠEp„áOpD‰(:„Gà¡bÛ·oo×®]HHHhhh×®]?®t‹à"Æ©¡]Gà^dÇ"Qt”Éo¿ýÖ³gÏjÕª4mÚtÆŒ¹¹¹Ž<ð—_~i×®]zzúرcÇwêÔ©V­Z]ºtI–Våääøùù™îU¹re¥×ÕñSº`iiiO>ùd^^^×®]xàM›63fûöíß|óM‰={¶ÅbIJJªY³¦¢OŸ>áááK–,3fŒû 3›Íyyy111ááᶉJ¯0ÀS¸û·ËŽª#¼¼·Cs‚caÞÞaeoqט1c®_¿¾gÏžfÍš !&Ož<`À€ lܸ±}ûöÅ?öСCÑÑÑRjB׫WïÔ©S²4,55UjOÛ¶m•^IúÇ854¡j ( XÕ¦M›bbb"##222J•*µpáBYž<))©uëÖRj” 6L±{÷‘Q©R%Û¯ÙÙÙ©©©µjÕ’¥aRp¬S§Ž¬ë€Qqà0½×­[×­[·ÈÈÈáÇ_¼xqÙ²e»ví²X,²=a„5j$$$ÈÒ¶ÔÔÔÒ¥K—/_~åÊ•W¯^­_¿~óæÍï»ï>Ù×0­#8v0`m0‹eĈM›6ݼys™2e„lݺµ\ÁÑÏÏoêÔ©ù§\½zuêÔ©¾¾¾ñññ>Ivv¶Ô¶ *,Y²$$$D–¶¥¦¦úøøÔ©S'33Sšµxñâ&MšÈ´vqãÔÐ:‚#`Ù±0ý“““ÓÒÒ¦M›&%3!DLLL||üòåË‹œ?77wݺuöž­K—.Å¿ÜÖ­[ ”šš:kÖ¬ˆˆéçç7oÞ¼K—.%''wîܹGË–-3Ý{Z… KMMµX,‰‰‰ñññ¥J•úî»ïFwøðáÀÀ@o¬}Ap46&¨²§ÚÙçOž<)„ˆŠŠÊ?±Y³fö‚ãÍ›7ãââ쾈ýÏgΜ6lØš5k"""6mÚëxÛ}}}(ýœ˜˜8iÒ¤ž={vëÖÍ͆mݺµL™2+V”~MHHøë¯¿†ºjÕª¸¿ÊèÇÅâ*™ÂÜ¿§£UÑvHgPÌM­öÙ{ÔÒ¥K4hðóÏ?Ï™3çèÑ£N¥Æúõë'„HNNv¿a¡¡¡¶Ô(yúé§…GŽqoKãŒSC¨8%aÀÚ¤+”SRR4h`›xøða{ó»0"¼fÍš>}úôèÑcöìÙ*Tp³ÁR¨õõõu³aééék×®Í_mÍÊʲ­°!8pžÏtlܸq¥J•fΜùÜsÏI—9=ztåÊ•ÂÎð®³#ÂV«õÍ7߬Y³æâÅ‹ §=GìÝ»÷ĉuëÖ•~]½zµÔl7æïïÿúë¯7kÖlóæÍ¥J•BX,–éÓ§ûùù=õÔSÞXõÆ@¹Q=(¸ƒà¨F^ªpé®ã÷ ŠŽ0iÒ¤áÇ7oÞ¼}ûö™™™Ë—//W®\vvöüùó6lذaÃüóK#ÂŽ?ÿ±cÇŽ?e;IѦ[·n:uZºté!C^~ùå?þ¸ÈgÈÉɉíÒ¥KTTÔÁƒ¿üòËF¾"ÛÙ†U©R%11qìØ±;v Ú¸qã¦L™­Ü FGÀ1dÇôXt6lXhhè'Ÿ|²`Á‚J•*uîÜyâĉƒ 2›ÍÇŽ+%ÝdûرcÇŽ+ð§:uêtêÔéÎ;×®]»}û¶½ghÑ¢EBB‡~¸hѢʕ+4hÚ´i®/ xóÍ7|ðÁ>ø`É’%eÊ”yøá‡×¯_ß¡C/¬sÚBpFv4€nݺ¸HyÇŽ²Ž€Û¸%¸}‘‘‘J7PãÔ*Ä¡Ú}Gõ"h [ëîz¸§¤’’R̼f³9,,Lé£ ¶ €b0T ‡ †=‡«d$œé0N ý"8ò!;tà@nal”¡cG@VúEpäFv¨·¾ÁQÕdN \ã5dGÀ¨§†¾xEGЂ#àºCp<†ì ãÔÐ=‚£ap‚#¼ÑjЂ#àI@¸¤Z.Gµ#xhžÁ7!EGãÔ0‚#àyÏŽ½ 8ð0ŠŽ0Ê0‚£1peŒâ(:´àx‹‘³#EGЂ#naœZ帤ZFG 0r¡JoŒ¼-):€öï2rvhÁѸ2Fm ›):B§†¡à‚# ŠŽ€.Pn„Ñ…6;€qIµ¼ŽÚ@Æ€~PtÍ"8êWƨ-cœDpeÌìHÑ´‰à(͘Ù A~J7€!YE˜)ŒQ>hãÔ0&*ŽšAYJÏØºà\R-;‚£®qeŒ†/;šÓÌœé¢ÜÃ"8ªa¼ìЂ#åpy5h ÁPŠŽ€ê1N ##8*c´ìHÑ€gpeŒ'ëv^ÆyŠܨEz‰Q*Ž€–ivÀÚ$„ +¹Ý½å5Ȱ0Á*`G@ã4UwÌ_bL3›•nŠf6S€`G}¡6µ’"ˆ+»'EG%8 Ò€«Ÿqj HG Óì(%ä¦â]k/´NÚplGh‚Z„ºBptA}ÙQÎJEG¥­I¹°‡àè…j²£A²…1å/@²‰R×Å1}ôQjjªÒ­à¢ü÷֎心CQWpœ;wî³Ï>Û½{÷Å‹_½zUéæhÀ=Ô2–å®°öxd´RTG¯ñ‘qjRLj‹þ©+8þãÿ¨Q£ÆáÇß}÷ÝV­Z½úê«7n¼sçŽÒí´ÃëÙ‘*£Áé5>(’ºÎq3fÌèÑ£÷ïß¿fÍšõë×'%%%%%U¨PáÙgŸ‹‹kذ¡Ò ´À[';zûD7.‘Q1ÝœûH¹(žº*ŽB“ÉÔ¤I“I“&íÚµkÖ¬YÏ<óÌ;w–.]Ú³gϧŸ~úóÏ??þ¼ÒmTÏÃuGªŒ(ÕG@÷Tmüüübccg̘±{÷î‰'úûû§§§òÉ'mÛ¶íÓ§Ï·ß~›——§tUASßÍS82r¦£á}œàè5êª. 33sóæÍ6lؽ{wnn®¢råÊ¥J•Ú»wïÞ½{çÍ›÷Å_T¯^]éfª$÷€µF!áMZ¼fœ(‘ƒcFFÆ?þ¸qãÆ½{÷JeŧŸ~ú™gžiÒ¤‰"99yÆŒ‡þç?ÿ9oÞ<¥Û«œû…ÂdÊŽêêû9ÓQS´C]ÁqÉ’%7nüùçŸ-‹¢bÅŠíÛ·ïØ±cÓ¦M}}}m³µlÙ²I“&Í›7ß·oŸÒMÔͽìHYh">RnÔ.Æ©½I]ÁñwÞB=ýôÓ;v|ôÑGóçÅüüýýË”)Ã8µÄʉ_›ªûxŠŽÚ¤‰ø xê ŽÝ»wæ™güq{y1?Ê€Cœ/:’Êà9¶ø¨ª}Œr#à u]U½~ýúÝ»wÛKÇoß¾½Òm4ÈákïMêëÑí,Uvmã²k@£Ôoݺ•““cïOgΜá&ŽÅà¦<(NIÙ‘[3Â˸kdÁ Ž^¦üPõ¶mÛ^}õUÛ¯‹-Z²dIáÙ,‹Õj}à”n¯*™(ÀÀvƬµzÎg:ê‚F®§§|pôõõ­P¡‚ôsffæ}÷ÝW¶lÙ"ç 7nœÒít…è5°j÷ `0ÊÇ–-[îÙ³Gú922ò…^˜0a‚Òt*_ÑQý4EGQêškÊšÆ8µ÷)ó0`@Ó¦M•n…VÉýE!Ð)«U˜L&+{ ÔH #׊¡®àøæ›o*Ý@çLB«Õª›õÈk#×”g)¿þúk!DóæÍ#""l¿綾^R¶ÍªC¯ ÇÜÓS †ºQzD‰8†)Báà8yòd!Dbb¢¥_‹Gp,aö蹦è¨_\4¨ÂÁqøðáBˆ‡zHúõõ×_Wz…zc·ßås´Às¥GÆ©(‡ –ÿ×W^yEÙö:SBw«›ìHÑQï(=¢}º´H]ÇfµZ“’’Î;÷ðÃ7jÔHéæh€n’Üäh/Ë·ôH¹pê‚cRRÒ'Ÿ|Ò®];iû­·ÞZµj•ô§^½z½ýöÛ&¾Y(‰s«>²#EGc ô(K]ßU½oß¾!C†?~Üb±!Ž=ºjÕªÀÀÀ_|ñþûï_ºtiRR’ÒmTzJÂN}³ºý«”—©«â8oÞ<«Õ:qâÄ^½z !~øá!ÄÔ©SÛ¶m{úôé:üç?ÿiÛ¶­ÒÍT;}Ôà×+1úØi(: ¥G#ÓÁáJ»ÔOœ8Q­Zµ¾}ûJ¿þôÓO÷Ýw_«V­„µk×~ðÁÓÒÒ”n# RîF&}dG ÷z¼O]CÕ×®] ‘~ÎÍÍ=zôhƒ î»ï>iJÙ²e322”n# :&¹úN);jš›C˜Ð ëßo1N­u|ÂU–º‚chhè¹sçòòò„û÷ïÿ믿}ôQéO‹åܹs•+WVºÚ ƒ™þ>åKì:Ð ÷Ïzà uÇfÍš]»víÓO?=þü§Ÿ~*„hݺµô§ \½zµN:J·PéŠ@‚0*G¶<åFÀMê:ÇqРAkÖ¬™5kÖ¬Y³„=ôtïÆ=züúë¯Bˆ„„¥Û¨&¤óàeœìÍâŠÝãà¤8uUkÔ¨±|ùò'Ÿ|²Zµj-[¶œ9s¦tׯŒŒŒ *L›6í±ÇSºšÁ£ŽÉ<<]˜Ö÷ŠŽV̰5åFÀ}êª8 !"""æÌ™S`ââÅ‹«W¯î㣮˜ (ÂK…fêŽÐ2nÍxˆê‚c‘jÔ¨¡t4‰®_g¼=§éˆà`x†­)7ê€vHz¢ºà¸~ýúE‹>}ÚjgïØ³gÒm@ œÅÙ©+8nÚ´iÔ¨QÒϾ¾¾J7P Åz>ŠŽÐ>Nyd¤®àøÅ_!ú÷ï?dÈÀÀ@¥›£nŽõˆšî÷!Ôp‰(ûô€ÏšÇqH%ÔSSSï¿ÿþ±cÇr ÔÓ×i7;RtÄ߸S 峜œœ?ÿü³fÍš¤FyiýÎ*†¥®ÀÃnͲ]ÃÌh—F?ºê’Š"šO``àÉ“'-‹Òm¦®Ô(Ñhv$)à^ì€;T}}}˜‘‘1cÆ ¥Û(ƤÎÔ¨i$+ò.<ì€ËÔuŽã3Ï.—¡¢Ûñ!rrr† ²xñâ *tíÚÕ6½J•*[¶lyá…¤4 而Fïìp|œ:?î”H]ÁqΜ9|â‰'6lØ0mÚ4Ûô+VtéÒåôéÓ‹-Rº*àFâ £W =¤F‰æv)rJÂ>¢ ‘©“º‚ãÞ½{}}}§L™R¶lÙüÓ}}}ÿùÏ–-[vãÆJ·p—~R£DsÙzçZ¹1?²#`º‚ã±cÇŠ¼& <<<==]é6j½¼²ô–%ÚÚ«p»‰²(7ª–º‚c``àÍ›7íý533³|ùòJ·p>S£D[Ùúå~¹Ñ†ì¦®à}áÂ…"¿3æØ±cçÏŸŠŠRºz@ï}|µºàöEPnT3uÇž={šL¦×^{íÈ‘#ù§9rdÔ¨QBˆ¸¸8¥Û8Íô÷Õš:Ç'(MÆr£õï~„ÚîãØ¢E‹Λ7¯[·náááBˆM›6%''Ÿ:uÊb±tíÚµ}ûöJ·Qi2•­¸§£×«Ð¨¡‹{:Âa|«µ7iåbXê ŽBˆ×_½I“&ï¿ÿ~ZZšâüùóBˆÊ•+3&ÿM0bO£¡ì}ñD¹1?>kB…ÁQѦM›6mÚdff¦¥¥Ý¹s'<<¼jÕªJ7J‡èß=͸}ŒVö-‚œÄ.ãiš8rœƒ£$88¸I“&J·p‘Ñ{­dGè…§Ë6dGœÂÁñ믿vö!/½ô’²mÖ:w¡_B#»)Îc¯ñõ0 Ž“'Ovö!G¨= àe^+7ÚaX Gé&;ù;vlãÆ¾¾¾-[¶¬]»¶¯¯¯ÙlÞ±cGnnnõêÕ'L˜ lƒõGU! ¡/¹‡&v/"\ÂŽ#/õ* Q88¾úê«ù=sæÌâÅ‹###?û쳚5kÚ¦Ÿ?~ذaG]³fÍÓO?­l›•ÄQJÝØ>EÐDv„–y¿ÜhCv„©ëà³fͺråʧŸ~š?5 !jÔ¨ñ¯ýKñÃ?ddd(ÝL½á¶Í² ÿ°Ký{_W±ïÈ‚O—¢®àxàÀÐÐÐZµjþSÍš5¥éVv.¨©±êÏŽÐ&Ë6dG7‘µE]·ãÉÌÌ´X,V«ÕTT“••\¹re¥›©C 'ºƒÔè•ïd : ì>0uU4h••µuëÖÂÚ¹sgfffýúõ•n£nQr ½…ØÉ +5”m¨;ºFÍ'Q$uÇgžyFñæ›o®_¿>ÿô?üðúë¯ÛfT‚Ô¨+ôüp{Œ@]CÕÝ»wß¹sç÷ß?jԨʕ+‡‡‡›L¦´´´K—. !:uêÔ½{w¥Û¨χ•%ª ©Ñ*ßÉq„{؃œ¢æƒìQWpB|ôÑG111Ÿ|òÉåË—/_¾,M¬^½úðáûvíªt뀻è\§òìPÕ8u~dGè›ê‚£ÏóÏ?ñâE³ÙìççW»vm.ˆñútGÐ+¸KÚÏÒÒ”nG‘mcÃ]ìDŽ ¯Ñ(ÕG‰ÉdªV­ZµjÕ”nˆ‘‹G «5Œý ®Rm¹Ñ†ìX<ÞýÚ¥®‹c•£'‘9-M¥YsäÀ~]"8¢Ü5¥H¤Fù±«Áyê/7Ú‹D¹QÓŽ(z¤FOQç®F‡™°+@jÔ:‚£F[ÅêTBCåF²#ô„à»ÔY ò>R£Ç©sW£·‡|Ø›$”u€àˆâ¨³C÷&R£—°«ÁZ,7ÚIú@pì"5z• ³#]½šh:5JØ¡ G”@…½¹w`ؽ †aØìH¹Q7Ž(™{sR£bÔ¶·¶ŸW”m ¸O‘õ„ਤïb}+LmÙ›¡²#©QgŽpˆqºrR£*¨j‡3T'¯Jz*7Ú°[A£Ž%HKK‹ŒŒüõ×_•nˆòTÕ•{©QETµÃÑÉÃŒ°[QnÔ‚c /^¬tTDU]¹ìHª£ïŽÑe¹ÑFßÙ‘Ô¨K~J7@¥²²²Nœ8±fÍšeË–)Ýx©%°²—À#ôºg‘õŠàX´N:ýñÇJ·B¤ÎºªPh„=GµÒuòDo®ë7x9;Rt„wyb#5¢G(CÞޜԈâÕ‡r£ŒäÝãH(ÁŠ‘ë”GR#JƘ5tM–ìÈ¥0pÁJrÿ”GR#åÍìHѱX”=ÁÍŽKaà ‚#”G1^®¦¤F¢ÐÇ¡ ® [Sn„Ó¼–):Âë\Øéž†³ŽP g‡­IpuGåPnô4§²#ÃÓpÁQ• œ‰ìÓ ¼† ïdGŠŽP‚#û…F¸ŒàÕ)qØšÔ½Žr£×¿ßQh„;ŽP£b†­I cÖ0 pÁêÅw[Ãã¼): !(7z]áýŽB#dAp„ª(=Rn„ü¨;z©Q¶ìH¡2"8Bî–IðOgGŠŽPˆ´ëQh„ŒŽÐ«° F®á1dG¡Ü¨”»…Fãîzð‚£úPX+ĶJÜÿŠBÀ.ö-èg4ÂCŽÐ.š§x4;²òC¹Ñû ŸÑhÈ]žâ§t€Y•މRÏGjÈIÊŽìUr 5zY1‡D+£Y ÁªVü‘Žøð\v¤÷†g8rdïƒ,ŽP/qÄGÈìè6ÊÞáÔ¡Ï0{<ˆà•röèf‹dGȃ1k7½€OËPÇ@W¸nròе2\ª·¹|Ñ4{ÜDÅQeEB¸·¹†œ¨;:r£G¹pcÀî 8Bud9¢!OdGºn8ÉVû–eOd„ËŽPyeùâc˜ AÂedG‡Qn”t“ýð¥ÓÇ9ŽÐ?«U¤¥™9ýná{e@j”—íVÞiif¥ÛÜEÅ*â鿌_Ã-²×©ùÀï¦Øá‚#ÔÂkÇ/â#\ǵ2öQn”…—MdG8‹àUðþ‘+|$H8NÞ쨗~›Ôè&EzÙá%G5á½ëu¶c4H8ìùpð¶¡<5tš áƬó¡ÜèUmøðÇ¡0U­(@ 2fG-÷Û¤Fg©óð¢å}^Ep„’T{œ¢ ‡á0õOØá‚#`W¤PñŠ1ö˜5åÆqô€Î¡ }´%A¢8reG >:¢Ñcû JDp„24zl"A¢h†¬;Rn,LG²#ŠGp„tpT"A¢ Y²£v:mRc~:;hg7„ŽªÁÛT›HøƒeGð®‡ámzíIÂ(cÖF.7ÚÞàB×ïq>¿À‚#¼ÊG¢Â R躃AAîgGuwÚÆLü@¨îÝŠ!8Â{Œv ÊßÁ"EÊŽÂM§­¼mÙ QÁð†"C¤1»"£°ÝD^_›ÙåFÞ¡@1Žð>¶Ú0–m î [«¯Ú£ãÔÈ›Ñõí†PÁÞÀq§HöƲ]—žèår¥FÞqŽ#;"?‚£:èúM©ë…“M~‹ú‡®¸œé±eÅÛ pÁP#Š‘z£ñì¨Ñr#﹨c7„*áYkÜG1R'4;f­¡ÔHRô²#$GxGO(¦)è)UεìHmIÑ›Ø!Ž€¦î&éGÕNkÙQmåFöp@YGx LQ̸v‘3@Ú³V<5²« EGáYT¢Ä’¤ 'V„ _-£÷»ðž)Ø9UIï{"J@p„ü8¦¨™#QRÐa{ _-ãÝÛsåFv9@»Ž*@΂¢Šì°‹ìÚ½»ìÔ:l-Wj$#êEG##8BfMôÁ^×N ”ŸSÙÑ+=¶³©ÑÞ^!Ø1ô‹ìhXGȉãˆî9(‹îR_v,ŒtˆÈŽÆDp ƒâ£ƒÌæàà Aé1ëÿm#k¸0Y o1¶!„Ò €~ðÑöX­EüKK3Û~6™ý§g¶K­KžSft|­J‘ÕjÂjJ3§¹½€ÂÛ¡+T!R#Üáx.q3;ª=ª;7@l*¡Ïvva¥SͬôZ€–0`m4GÈ€£¼ÆÍä§…š¥Õj2 !LÂZÂòªñjl:Gp` IZV!„µÄSe-õ(þ%1Ð.ŠŽ†Â9ŽJÓþ»MûK¨’#§<ÊtŠ©nâdGã 8Â-¤FÀƒ¼˜ÀGP1Ç/µvåFÈ‚0Ap„ë(7ÞPbvt£Ç&5BFdG# 8ÂE¤FÀ{l÷º´;ƒ+=6©²#;êÁ´Àv«t™¸€àWPn”QLv¤Ôu`OÔ7‚#œFj”$Gv¤Ü";êÁQQD0.poÌšÔÀeG8‡¬ ¨‚½ËeJ*õáõŠà'±w¹ =6Ô=Q—Ž eÎdGÊÜDp„£(7*åØ)¤FxEGý!8Â!¤F@Õ gÇ{{lR#”BvÔ‚#èBáËeþî±IäBpDÉ(7ÚPør«&Aj„²(:ê ÁQ9‰ci&€¿ÉúÍ„€,ÈŽºApÝù;;š„‰€ŒŽ(åF@«¬VaúûÔF²#T€ÝPް‹Ôh—I˜î¹\†N*Àn¨GЛÿ]FmïÛeÀ%~J7ÀKV®\¹bÅŠÔÔÔ²eË>ñÄo¼ñFppp1óÇÇÇ:t¨ÀÄ]»v)½(^B¹Ш"n¾#eG«•76g¥Ñ8CÇ3fÌž=»\¹rÍš5KOO_½zõÉ“'-Zäïïoï!gΜñ÷÷¯]»vþ‰AAAJ/Š—ð®ôÆVwä–ŽPÙQÓôSRRæÎ[µjÕU«VU©REñÞ{ï-Z´èÃ?ü¿ÿû¿"’••uýúõŽ;Μ9S鿀л׷Õ*„&nÀuú?ÇqÅŠ‹eÔ¨QRjBŒ7.00pýúõ‹¥È‡œ9sFQ Ü(3ÚRqÓÇ¡Hhåý åq•Œvé?8îÛ·ÏÇÇçÉ'Ÿ´Mñõõmݺõ•+Wöïß_äCÒÓÓ…µjÕRºí 5åD!‘N*Àn¨Q:ŽV«555µbÅŠ+VÌ?½nݺBˆ³gÏù()8^¸p¡o߾͚5{â‰'^}õÕ_ýU饀¢9=ü,uÚ\m ÀI:?ÇñÖ­[yyy…/j B\½zµÈGIò“O> {üñÇÏŸ?¿eË–mÛ¶Mš4©G޼nddd)6lÈÿk˜3›ÍJ¯ž‚ÂÃÂÒTØ,9œ;wNé&  6Š\ÂÃÂÓÌifáä{7M„…[…ÉdNKË?™í¢BzÝ(iB˜ÂÂÒ´ÐítèÐAé&¨…΃ãíÛ·…åÊ•+0= @qýúõ"uáÂÿ1cÆôíÛWš’œœ}nß¾½iÓ&¥— îr÷é»·EÉ÷3€wq¦£æè<8úùù®,fee !l×Y;¢yóæBˆ'N(½LÁ51€AÙ²#_0…µEçÁQQµjÕ+W®HIÑF:‘¯jÕª…ç·Z­yyy…ïÔãëë+„(_¾¼Ò $?R# E²ÝÑÖo“”DÿÁ±mÛ¶yyy;vì°M±Z­Û¶m nÔ¨QáùÓÓÓ£££ûõëW`ú„\ç4Ô¸Gæ»xçËŽaááJ/ ‡¢£†è?8>ÿüó>>>ÿþ÷¿¥ó…sçÎÍÈÈèÞ½{©R¥¤)7oÞ4›ÍÒekµk×nÒ¤ÉÞ½{W®\i{’,X° 44´}ûöJ/̱€æxô»_Ìiiœòï#;j…ίªB„††¾ñÆï¿ÿ~çÎ[µj•žž¾gÏžúõë¿òÊ+¶y¶mÛ6zô興ˆµk× !þùÏ0à­·ÞZºtixxøùóçŽêÈkêh…—˜ÍfMÜ*ÌPØ(ÎòljÌ÷2_„Ò£Ò õfÑJßTr_¯S†¨8€Öy)5 aN3,ûpµ5€¿ J+é/¦Æ» 2l oaÀZåŽFDj4ÄÛ©Ñno!;ªÁÑëHm¦Xj´×u“c#8ÁÐ …kÅgGâ#<‰¢£j…Ôh…*F¨‹ÉŽ”C"8€ê¨"5JŠ©üPz„'QtT'‚£Pn4AE©QR|v¤ô!;ªÁTDu©QR|Nv ƒàh”õSij”8’‰EGµ!8©P?U§FG0l Ï ;ª Á”§ÔèHNéÐ5‚£w)Qú£Ü¨œ6R£ÄÁìHé²¢è¨GP’–R£ÄÁ>œÒ# GG£Ü¨™öR£ÄñìHé2¡è¨G=#5j¦ÕÔ(q¼§ô™Õ€à Ðvj”8•)=º@pÔ-Ê€:™„I©QâT ˆì·QtTœŸÒ €GuÒOd´±:sıeG«¾V`TÀKt˜%ÎÖ9ën è¨,‚£y« H¹P!ݦF‰³9g= dGÀãtž%.tæ”­!8ê åF@m ‘%®eGJpEG¥u…Ô¨R£ÄµþœÒ# Gð]ÝvÇ).gGJpEGEõƒr# Rd4bj”¸Ü¥Sz„3ÈŽÞGp™´ÐX€;Ù‘Ò# VG Ü¨©ñÜ)Qz„c(:zߣ¤F@ LÂ$„ 5Þéï•)øX«‚ošT…Š£·î]3úIÅp³"ÄÈ5JBÑÑ›ŽšG"Çðt ÜïØ¹F±ÈŽ^ÃP5¸…ÔèwƬï>#×€ò¨8jåF@AƽS£kd) 1r ;(:zG #5 "2ºÂýºãÝç±RzAÅœFjt\u![é‘ê#þFÑÑ ŽZE¹PÃÓ2±{gä÷";zCÕà("£lä³¾ûlŒ\^BÅÑ+ä.Rn¼Ô(3yKCŒ\ão=ŠŠ#”€¯„ñyëŽ"ß-{(=žApÔÊ€7Qhô,[uHÞøÈȵ±Éþ‘6Gáx …F/‘V°‡J‚øhPdG!8@(4z›'úyâ# 7.ŽÑ><ÞAjT†‡.jຣâ*O âÿÃð´Â<7¾Èu3€ŽšA¹ð4 ªà‰Ëeþ÷ä\7c,œé(;‚£6°ßE¡Q]EGy5€=ðƦÕÎÓ}>ñÑÈŽ2"80" šáÑSï¾ñpÁQíøÈŽB£Æxô”Çÿ½ ñQÏ(:Ê…àÀ@(4j˜wz~â#P,‚£ªññ ‘Q¼0l}÷…ˆ:DÑQGõbÿäÂØ´~xgØúîk‚ŽôŒB£>y³vD|ÔŠŽî#8ª{6à&"£ÎymØúîËu‚ìè&‚£‡±{^Gd4 o[ß}Eâ#ŒŽà¨F¤MÀ5DF#òréQ5¢£;Žt‚+`ŒËû¥GA|„AU‡A€³(4B%J‚ø¨U]FpTöcÀ)DFÜC‘Ò£ >Â@Ž4‰È»)= â£ÆPtt ÁQE؃GQ2¥JâÞø(HªFvtÁ€fá¥J"_^¤ }!8ªz€bá"KwÀøµªQttÁÑ“Ø÷˜îÖ‹ˆŒp‚¥Ç» `ü:ApT&P%FÈÌVzJÇGAR](::…à@]ˆŒð 5ÄGÁø54Œà¨<>è"#¼Dñï6ƒñkµ èè8‚£ÂØSNd„2?ññn3¿†–(†#¦’‘뻡©$ŠŽ"8*‰}Æt·ÄFd„:¨0> ;:‚àÀ{ò—Íf³SºA€ªâ£¸§&HP ¥`\|¬q˜„IúgVªŒP5ëßu'“ûÏ%K{¬Âj5§¥ýýRI³t˪š-¯ZT=†`Ããªh•Úª‚!l¨ÁQ¤Jèy:¡Âø(¸†Æã8Ó±xG²á*ièšã£ AÂÛŽ ࣠ôÄ”ïŒ "#t+|j:ˆ“ =€¢c1Ž\Áx4ŒÈ¶³«­)Hð‚£·ñ!šF^„PqR åAÑÑ‚£W±B£È‹@Ô\€$HxÁ@Ñ8yp”𠢍)‘%£èX$‚£÷°ÿAý‹€ë  …úúùÃ"eH #8z;´ƒ°ÈLåCØwÉ@6\Apô’$T…°xC!l¡Êž€ìbQt,€àaPFþw›jG±…lAˆÄ=ŽÞÀ‡(ÂtO¡ƒ°¨€úσ¼Û*Bd¾…¦χàèIЌ R¨5›"‘ÁÑãø˜Ï!)šWä@¶PkÏaÔIÑцàhF˜(HŠ€ÎØ ‘iJ7¬èÖÚ ‘Bÿ9ÒÈŽžÅ¸Œ˜Z¾·{˜)¬Èé*R )ê±IÑQâ£t“0þgÖÿ”n&e˜ÓÌÂ*îþ3ÝûOòº Û qG»V®\ùüóÏ7jÔ¨E‹&LÈÌÌtâÁV!øh¢&:tPº BØ ˆEfD#ÄD•lÀvQ¡{6ŠõÞ&ÕGÉǶ‡@í°ªr{CÕE›1cÆìٳ˕+׬Y³ôôôÕ«WŸ©Ñ°Lö,Fˆƒ¼ªðAÅäØlŠ5¸PS gG½ŒnëÇ"¤¤¤Ì;·jÕª6l˜;wîÆûöíûÛo¿}øá‡J7 ʳW5,¾|h""åY‹úgRqm²ðÁ²Èƒ«:Pt$8aÅŠ‹eÔ¨QUªT‘¦Œ7.00pýúõ‹Å‘g Ü¨9%ÆAGr!é€J9ž&Õ+‹<¸Ú;*ûŽEØ·oŸÏ“O>i›âëëÛºuë+W®ìß¿_éÖÁ®bÒÞ‰”nÆAr!½±ûÏäØ?ïµÖê\ ôX¬4xÑ‘àXÕjMMM­X±bÅŠóO¯[·®âìÙ³=‰ÒK¡8Ç x2þ+&íÕ¬K'Xûç`¾tüŸÓí,öèîlOâðº1,.Ž)èÖ­[yyyAAA¦ !®^½êÈ“˜ ýiD!êFÖõþ‹FŠÈâþéð3ÁKØ(êÄvQ!õn¹ö)¦YŸÏÉŒçxï­@/§ Ç‚nß¾-„(W®\éBˆëׯ—ø ))òîôÚÄ:èWŠQû9†ª 2™L·nÝ*0ýÆâïº#€ òóó ,\YÌÊÊBØ®³0‚cªV­zåÊ))Ú˜ÍféOJ·@Ç"´mÛ6//oÇŽ¶)V«uÛ¶mÁÁÁ5RºuÊ 8áùçŸ÷ññù÷¿ÿ-×(„˜;wnFFF÷îÝK•*¥të”a²òEY°`Áûï¿_£FV­Z¥§§ïÙ³'::zÁ‚…oÓ`G»Ö¬Yóí·ßþöÛoÕ«WoÞ¼ù¨Q£¤;òÁáG8„à‡à‚#Bp€CŽpÁ!8ÊfåÊ•Ï?ÿ|£FZ´h1a„ÌÌL¥[d ήüÛ·oõÕWÏ=÷\Æ [µj5`À€]»v)½zãÎ;â÷ßoÒ¤Éo¼¡ôBè åСCÆ kÓ¦M³fÍz÷îýÓO?)½zãìF¹sçμyóºuëÖ¨Q£ØØØ‘#GžûLéEÑwÞV«uìØ±¶oЇ\\Ø(III½zõJJJªR¥J£F8зoߤ¤$¥E?œÝ(yyyýúõûðÃ333[µjU£F7véÒeß¾}J/б,^¼Xé&(Ç ·?~¼^½z­Zµºxñ¢4åÝwß­[·îäÉ“•nšþ¹°ò¿þúëºuëöêÕëÖ­[Ò”'N4oÞ<**êèÑ£J/¸ùŽX°`AݺuëÖ­ûúë¯+½(úáÂF¹víZÓ¦My䑟þYšò믿6hÐ &&&//OéÒ—_#GŽÌÉÉ‘¦$''GEE=ýôÓJ/!\¿~}ß¾}ÿüç?¥cÔÁƒ•n‘¨8Ê`ÅŠ‹eÔ¨QUªT‘¦Œ7.00pýúõ‹EéÖéœ +Æ Bˆ‰'úûûKS"""œ——Ç€µ,ÜyGœ;ÂCÜ\ù?ýôSbbâ©S§ªW¯>eÊ#Ÿ³"#×6Êûï¿îܹ¥K—2 ê .l”2eÊH?L›6-66Vúyذa¿ÿþûêÕ«×­[¯ôbi›kï”7ß|ó—_~7nÜË/¿,Mùý÷ß_xá…Ñ£G÷ÝwáááJ/ôŠ£»üüü :ÌÊÊBØ®•ƒ'¸¼òïܹóÞ{ïõë×ï÷ß>|øúõëIrqa£ìÝ»wéÒ¥ÿøÇ?¸äÂC\Ø(åÊ•+S¦Œ¿¿›6mòOo×®âøñãJ/“æ¹°Q.]º´eË–:uêØR£"44tÈ!999ß|óÒËC 8Ê jÕªW®\‘Þí6f³Yú“Ò­Ó9V¾Åbyíµ×-ZÔ¶mÛ~øaذaT¹äåìF‘¾÷âóÏ?ü[·nÝ„ß}÷]ddäsÏ=§ôé ï”*Uª”*UÊd2åŸ(½Yrss•^ =pv£\¹rEQ»víÓ¥BãåË—•^ ÁQmÛ¶ÍËËÛ±c‡mŠÕjݶm[ppp£F”nι°ò/^üÃ?¼øâ‹Ÿ}ö%aOpv£ÔªUëÙ{I—.†††>ûì³­[·VzôÀ…wJ›6m²²²Nœ8‘¢t›n´) g7JíÚµ}}}Ožø@é¦éŸ#+ÿÆiiigÏžµZ­‹¥]»vMš4¹}û¶Òm×-g7Ja‡æ›cäåÂF9zôhݺuŸþù+W®HS~ûí·F5kÖ,##CéÒ6Ê?þñºuëΜ9Óöå='Nœxì±Ç4hššªôÈĉ ûÍ1\#ƒÐÐÐ7Þxãý÷ßïܹs«V­ÒÓÓ÷ìÙS¿~ýW^yEé¦éŸ#+Û¶m£GŽˆˆX»víåË—Ïœ9ãïïÿÒK/~¶®]»öîÝ[éeÒþøã:4mÚôÖ­[ûöí3™Lï½÷^¥J•”^ =pa£¼ûî»ñññŸþù÷ß}åÊ•_~ùÅb±¼õÖ[>ø Ò C 8Ê#!!¡råÊß~ûí÷ß_½zõÞ½{5Jº«<Í©•îÜ9!ÄíÛ·>\ø¯\"#Þ*äÂFùÇ?þ²hÑ¢äääààà¶mÛ>\úš%ÈÂÙòý÷ßÏž={çÎ[·n ~â‰'^}õÕ‡zHéEQ˜¬÷ž*‰‹cà‚#Bp€CŽpÁ!8À!G8„à‡à‚#Bp€CŽŒå7ÞˆŒŒÜºu«Ò ÿþ÷¿###¿þúk¥Ž"8À!~J7 ªM›6!!!Mš4Qº!à(‚#(£~ýúõë×Wºà†ª@uòòòrrr”nDp  o½õVddäôéÓ L?tèPdddLLLnn®"##ãã?~æ™g7nܸqãgŸ}vÚ´i/^´÷´Òµ2»wï.0=::ú±ÇË?e×®]#FŒh×®]³fÍúöíûïÿ»@¶;þüÛo¿ýÌ3Ï4lØðÉ'Ÿ4hо}ûŠY¢yóæå¿8FjɹsçæÎûøã7hРiÓ¦/¼ð¦M›ì=⣣[·nýçŸÚ&Þ¸qãÉ'ŸŒŽŽþí·ß”Þhô†à@:uê$„ظqcék×®BÄÅÅùùùedd¼ôÒKsæÌùý÷ßxàûï¿ÿìÙ³_~ùe¯^½233Ýyõ?üpÀ€7nÌÍÍ­R¥ÊÏ?ÿüé§ŸöîÝûÊ•+Ò 'OžìÔ©Ó²eË®\¹òàƒZ­ÖmÛ¶õéÓ'))É©š3gÎG}TªT©Ç<00ðÀC‡]¿~}‘37jÔhÀ€/^œ:uªmâ|páÂ…!C†<üðÃÞÞHôŽà@š5kV¥J•³gÏ=zÔ6Ñb±H¡ª[·nBˆÕ«WŸ>}:66v×®]ß~ûíwß}·sçÎfÍš?~óæÍ.¿ô–-[æÍ›W³fÍ•+WnݺuݺuÛ·oâ‰'<8kÖ,iž?üðæÍ›¯¾újrròêÕ«·mÛ6qâD«ÕúÉ'Ÿ8õZ+V¬4hÐŽ;¾úê«ü±ÿþBˆE‹Ù›Ĉ«W¯Þ±c‡b÷îÝË—/衇^}õUå¶Ý"8ПgŸ}VÜ[tüùçŸ/^¼Ø¨Q£:uê!rssÛ´ióú믗+WNš¡B… R©2==Ýå—~ÿý÷…3gδÕðBBBfΜYµjÕU«V]»vMqüøq!ÄóÏ?ïëë+ÍÓ«W¯!C†´k×Ω×zøá‡_{í5i‘‡ "„8}ú´½ùK•*õÁøùù½õÖ[—.]š8q¢¿¿ÿ‡~hkȈà@3¤˜ÜV§îÞ½»ôëСCgÏžýàƒÚf¸|ùòºuëÜyÑÌÌL³Ù^à è²eËÆÄÄܾ}ûðáÃB)¹Ž7nïÞ½ÒÙ–¥J•9räðáÃz¹Ž;æÿ500Ð×××jµóèèè¡C‡þñÇ]ºt9þüرck×®í©mÀظͨ_¿~íÚµOŸ>’’™››»aÃÿgžyÆ6Ïùóç·oßþóÏ?Ÿ={öÌ™3nžÚ(„HKK“þŒŒ,r† .!GµwïÞ>}ú”)S&::úÑG}úé§£££z¹ûï¿ß…FþãÿØ´iÓ‘#Gš7oÞ«W/Y×:üÁ€–têÔéÓO?ݰaCddäŽ;®_¿Þ­[7ÛÀôÒ¥Kß}÷ÝÜÜÜx iÓ¦íÚµkРÙlž>þÝwß5™L¾ô}÷ÝçÂj¹qãÆåË—…iii×®] òü¦`DGZb Ž#GŽ”Æ mãÔ7nÜxçwî»ï¾9sæ´lÙÒö?þøÃÙWùý÷ß-‹ôsxx¸¢lÙ²&L(þQ&“IºâÎ;;vì?~üªU«bccÛ¶mëÑÕòöÛo_ºt©qãÆû÷ïŸÛ< „X¼xñ­[·¤){öì±ÝdG2fÌ‹Å2f̘cÇŽISnܸ1~üøÃ‡ׯ_?$$¤zõêþù篿þúÅ_ØJ•§OŸÞ¾}»£÷Süã?&Ož\¾|ùwÞy§T©RS§NõõõMLLtÿäN(Œ¡jóÌ3ϼÿþû)))¾¾¾qqq¶éááám۶ݼyóSO=Õ¤I«Õš’’’™™ùÒK/-Z´è¿ÿýïŸþ)ÝX'¿¸¸¸… îß¿¿mÛ¶ÑÑÑ—.]JMM ¬V­Zvv¶4O×®]÷îÝûÍ7ßÄÅÅÕ¨Q#888--íÖ­[µk×–î¼íãã3a„qãÆMŸ>}þüù÷ßÿ­[·N:eµZ{õêÕ¨Q#­ «Õ:nܸ¬¬¬)S¦H¹ù¡‡êß¿ÿüùógΜ©ô¶ 7ThL•*Uš7o.„hÕªU•*Uòÿé£>1bDhh¨tÇÖ­[ûí·'N|饗|}}‹üÀš5kþç?ÿi×®ÏÎ;Oœ8Q£Fyóæ…„„Øæ1™LÓ¦Mû׿þk±XNŸ>6f̘o¿ý688Xš§k×® .|â‰'üýý?~ëÖ­-Z|þùço¿ý¶çVÅâÅ‹wïÞݲeKÛ‰žBˆ#FÔªUkýúõ6lPtCÐ!Sñ·ã¸yóæ•+WjÖ¬éøEÐ`(G8„¡j8„à‡à‚#Bp€CŽpÁ!8À!G8äÿDY¶³e@IEND®B`‚statistics-release-1.6.3/docs/assets/binocdf_101.png000066400000000000000000000702471456127120000222660ustar00rootroot00000000000000‰PNG  IHDRhŽ\­ApnIDATxÚíÝwX×ÂÇñ³€ J¼(¢±@d×EÑD£[b‰ÆFŒ%êUSŒ%v%^c‰Æ ñUõÚð¦ØcÅMìFQ±+`! Š,óþ1ÉfÝ,Ì–ïçññÙ=;g÷ÌœýqæÌŒF’$dÇMíÀ1 ÁŠ ÁŠ ÁŠ ÁŠ Á@A8sæŒÆ’"EŠ”/_þí·ß>yò¤ñò .”¨[·®Úm·,×-?~¼\±}ûöÙ.üäÉ“ ¼öÚkeË–õôô iݺõ—_~™––¦d {xxøûû¿ôÒKãÇOLLTRÅĈ#ÔÞÒìÁ€šÒÓÓ¯^½ºzõêzõê-\¸PíæØ—ßÿ½råÊýúõÛ¶mÛ7ž}jò¶=š0aBóæÍš5k6f̘””ãe ïyñâÅnݺU¬XñùçŸïҥ˩S§„‡êܹsÅŠÿõ¯5nÜx÷î݆ºç8fff®ZµªqãÆ*Tðôô¬P¡BDDÄwß}gÞ¼¬mß¾}Æ òãÑ£G/^¼¸fÍšîîî}úôY¹r¥üRllìùóç³~«råÊ-^¼Ø0ŸròäÉ=R³¿82UP_zzºü@Éaßû÷ï¿òÊ+gÏž•Ÿž8qâĉÇ_³fa™#GŽtéÒåâÅ‹†’;vìØ±cùòåË—/7yϸ¸¸—_~9))I~ºjÕª;vŒ7nøðá†Ì·{÷˜]»v½úê«ÖÚÖ¥Kãf\¹råÊ•+1116lX»v­ò 2þ|ùA‰%ÆŽkòjëÖ­[µjuãÆ !Ä©S§´Zm¶oøÑGýðÃBˆÄÄÄ}ûö½þúëyî4®ˆGjzðàÁâŋׯ_/„ðððèÓ§O¶UvïÞ}öìÙ *¼ôÒK†cÜk×®=räˆü8--í­·Þ’S£§§ç믿ުU«¢E‹ !®^½Ú¹sç?ÿüÓä=?~÷îÝš5k–(QB.ILLü裞>}Z¥J•²eËÊ…’$Mœ8ÑZÃÖ¬Y#§FFÓ¤I“=zT¯^]~)::zçÎÊ7Ëþýûå:tðöö6_`ãÆÇŽ;vìXÇŽ•¼axxxáÂ…åLJ¶Mçp=G­Y³f†«½øúúöéÓG¯×{yy}ÿý÷µk×Vòsçν|ùò¡C‡Ž;fÈŽ†à8}úôË—/ !Š/¾gÏž-[¶lܸñСCþþþBˆ[·nMž<Ùü=ׯ_üøñ[·n5iÒÄP8{öì?þøãÊ•+†D+¶hË–-òƒ¡C‡îرã»ï¾;uêT:uäÂßÿ]áöyúôéíÛ·åÇÁÁÁ6Ùæ¦téÒòã[·neÝ)C† ±É§pGv¡zõêæG­-9`ÀùqåÊ•5j$?NHH®S3hÐ ÃÄ5j :Ôdƒ°°°V­Z ! *)úúú4HáææööÛoË…÷ïß·Ö°Î;ˇÂ?úè#¹$%%%55U~|÷î]…›Âx"f™2elµ…ÿõ¯™¿?äs4ã+¿~üøöíÛÆ¯š¼‰Ì8Y*‘žžþñÇõÕW†«-zyy•*UêÎ;9zŸÂ… ûûûËgêÈÇÜÍ=xð@þOOÏbÅŠ)y[ÃꀀóWM:,âP5•ùûû&îÙ³Çâ <åŠ/îãã#?¾yó¦ñK†§… .Y²¤ÍWäóÏ?Ÿ9sfFFFppð¼yóNœ8‘’’Ò¦M›\¼Uƒ äëׯ·x)ŸÊ•+ûûûûûû/X°@ÉîÛ·Ïpêz½zõl¾î\Á€úŒÇöò>O§ÓÉ~ùåãrÃÓÛo™7ožüà›o¾éׯߋ/¾èááqíÚµ\¼Õ»ï¾+?¸råŠù7lØ`ˆ×Y\ÈØœ9säÅŠ{å•Wl¾î\Á€ÊîÝ»g¸™Š§§gÞÏ#–OsB|õÕWG•Ÿ>}zúôéòã–-[Ú|-þüóOÃe 'Ðüþûï9º Áo¼Ñ¬Y3ùñ Aƒ>ýôSy¸4==}Ù²e={ö”_zá…BCC³~«[·n½÷Þ{ÑÑÑòÓwÞyÇx%äs´=zÈWUB­;¡‘$Ií6€“xúô©<ÀÙ¾}{µÛ¶Gp€"ª€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"G(BpàÌ4š©"r\'U#Ó)t½=* {íG‚c6.]º¤ÓéNœ8¡vCgc¿¿¨%;ý>°ÏXcŸ­Ê\ô|ÁT±Ó$dŸ­B>#8fcÙ²ej7pi®üEc·™Ì!ªØkþϯu·ßçLU „‡Ú °S)))çÏŸ_¿~ýªU«Ôn à<4!I9«"I–keñV¹¨¢IHÊËmX%‹å%!Q%¿«XÝ-²Ú]lTÅúò’(ýž*9þM‘ó®w:GËÚ´isëÖ-µ[8 …¿6sñ‹Úb­l?.§U,Ž¬Ò†ªd½ÿüó'Ož!–/_~àÀµ›Ø£Üý¶ÌÅïvC­}î_U$’¢x6£d›iò^EÉòö_Eùºç¥Šœü²¯"IFÙñïOшœ¥å{d®«äâ/-;¬¢|Ý©J.ºÞ¹-kذ¡ü`×®]j·°S¹>¹úÝn¨•£ßÒ’$49úˆ¿cÂL“Ç* —·ÿ*Ê×=×U„ò*gÇ¿ªd›j ‘ó=2wUr¶Ûq•ÿ@:E•\t½!8ÚžN§S» @Ñj…F«Õꄈ•÷üóçcµZ ?çÏÇšW7üî5zC]ÖUL–·\åŸñ¦¿PþUåïògªÄž·ü)Æg'h¤WB«Óf]ÅüˆœV1^Þ™ªÈË›uã_U åV7—$$ñ’‹Ÿ{Þr?ïa)ª<»碊NûÌvš*J¶°=Wq…Ip̱±±y8Nçš]¯ÑÄ !bccÿþó[ÑF°2À›íòfä›W‘4’æïððÏ1k韡4ëŸòwÈxfpKÊyë5ä‘3Ëc{9­b}KXaqº§MªHM2x¦ŠFI²ÐVÎ5=·ZÊ¢e/j´{e³;ç´Š¼ïšíú¹¨’ÕÏXU~ ]«Šp‰¤h‚ËñÈ«MŽ’=é”-oxs%µþ †ö^eñ)Gã©x¶­bœ–¨’}ù¸³¡JÝ(I†Ï,#?5¼jµeïa¹Ø)VÉéNLû¯¢|oq"G9&O2þg±<‹ê9úEmI³­¥Ñ˜Î>̾ʳ`JbMN«˜ÏÒ£J¶ULæ“)úüƿsg6]i²‡åb§T´Gæb'¦ŠÝWq½ìÈ¡j9f~1 aý\Ö~Qçôºi–/¦fÈÒ3Iá¯ò¿ ^çÏÚE³®buÅ­¼• V1¾8Žå*ËcÙ&åÿJ–úÑäl˜Ε±Ö2K{X.vÊ,ªäh'¦ŠÃUq±£ÕG(?îl29*늹øE£ßÉæWU´XžmÅlË•¼g—w¶*Y\IÑÂÒ–þ4Ùï –Ï¡Îz¿Ìiy.ªäî²UTqŽ*N‡CÕ„ÈíÍ·rzœ'¿usT=ÿú”œ§"““ˆóéS쳊Òå­íÊ +šÜš·è–óÔä$â|ú;­bŸ­*¨*¹éz§@plfË–-j7!÷rñµž‹áÃ\,–;¹˜°˜ÝõÇ|'ËvdÛîç“Ñõp5GÉé׺Ý´Éb¢ÚMsy9ºø{S ~[#8fcÒ¤I±±±5kÖT»!@AÈÝ=]„}GçbÂ" Žò«7ÙpÊ áäÏÈŽÇìaQ}ÖstË çØÇGp hv#_ÜÈ¥¼\½ €!8xæëÛʽÇìBWU„cÈÑÕ›Øæ8øG.n¾(•‹»t°3G±Ï¯uN…vy¼zû@p „­[»ŒÒ^pqÀ•aß_ëæÙ‘ÉŽŽÍž÷6Y"8°ÀÞ¾Ù³#©Q}ªÏ` Ϊ`§²8Bmü!RÖNˆæ,iÀÙØ)óD(çE’¢]0ÏŽ¤FÀp¨€c0¤FN‹±¹¾C%‡Åˆ# Ïk4ÎŽŒ;ª#‹» ¿DˆœÁ€½3‰dGÕXœ×(HŠ€«àP5»f- ’í‚ñ͸‚#àüú;€h¿¸C%àzŽ!ÒŽØç*ä3‚#à„øúF¾³Ï;TÈgGÀ Yú!Pò‚à8'óìÈ…ö/Ø«WBpœ—gØ×qœù@£y9! GÀÙ˜„B.Ï °UÎÌp„šÓbyGpœ—gØÁpN\ž`sGÀ Y;‡š™ŽÈ^°Žà8!"r€¤@1‚#àüÈ‘È 7 Á\7  ÁÀ†(Bp!Œ²#©€Ü9\˜’ÙäH#8€ 3…òjXÇ¡j7 Á\7  Á\7 Á\€bG€r$ëŽP„àEŽP„à@ÁÕ^ÀÁÂ"84‚#€‚# Ébv$P€C 8(PæÙQ#4’à0àŽ šqv$5€!8PIàX<Ôn—`m£I99ìÁ@A0I„r^”YÀQp¨@A3‹ÖγØ!‚#€e>ÄHvGApPp¬˜æh58‚#€‚C@‡Fp B$8‚#à`4̨„à΋¿3ØÁp¿ý‰€Fp€$™ÆDFHL„EüI ßÇ`œIÈŠùß‚4 À6Ž€Ã0äR#²a’ùS€p¯jÀ®)™ÝH$€†ìHj`;GÀ®ãË€AGX–ÅÁhã—ØuäÁp ÆÃFr|$àæ;„!/²¯°æ8À<&Z<ÿø‡a§a_`;GÀÞY\d V™ì4dG6Bpì9cñO ²#[ 8†‰lXÛEØuäÁŠÀy1ÊÀ¦ŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽPÄCíµk×®Y³&..®hÑ¢¯¾úêˆ#üüü²X>==ý»ï¾Û¼ys||¼ŸŸ_5 ¢öz¨Æ%FgÍš5nܸ‹/Ö­[×ÛÛ{ݺuï½÷^ZZšµåõz}Ïž=g̘qïÞ½F•-[vëÖ­o¾ùæ‘#GÔ^Õ8pŒŠŠ زeKTTÔÖ­[{ôèqòäÉ3fX«²zõê£G¶lÙrÛ¶m_}õÕ²eË–,Y"„7nœÚk çŽkÖ¬ÉÌÌfÌ…Ÿ«ÓéLJ¶lÙ¢öÆ@¾»víšÚM€:èz—E×»ˆ-Z¨Ý{áäÁQ>uºX±b&åÞÞÞBˆX¬•’’2uêÔGU«V­FÉÉÉûöíûñÇ_~ùåæÍ›+ùÜØØXµWê R» P]ï²èzW`þµn>Bä"œ<8úúúj4šÔÔT“ò‡Š¿ÇÍ9ò÷ß=zô¿ÿýo¹äÆo¿ýö!C~þùçàà`µW €KÒh„$©Ý.ÍÉç8zxxøøø˜,¦¤¤! çY»sçή]»*UªdHBˆ2eÊ|øá‡OŸ>ýá‡Ô^'u8ypB$''ËIÑ >>^~É|ùääd!DÅŠMÊåÆÄÄDµW€+ÑhÔnüÃùƒcÓ¦MõzýÞ½{ %’$ÅÄÄøùù…††š/_±bEww÷ .HÏ’ç7TªTIíàJ$ÉBv$MP‰óÇÈÈH77·¯¿þZž×(„ˆŠŠJJJêØ±c¡B…ä’GÅÇÇË'Çyyy…‡‡'$$|õÕW†+„_¸paÞ¼y… nܸ±Ú+ÀŘdGf:P“Ÿ#„(S¦Ìˆ#¦M›Ö¶mÛF%$$:t¨Zµjï¾û®a™˜˜˜!C†„„„lذA1iÒ¤N:Í›7oÓ¦MU«VMNNþý÷ß333Ç÷ /¨½B\!;’¨Êùƒ£¢wïÞ%K–üñÇ7mÚؽ{÷ÁƒËWä±ÈßßÓ¦M ,Ø·oßîÝ»ýüü^}õÕ~ýúÕ¨QCíUà2¬6.'D(X‰ß;¶¦Ó鸎£kŠçŠn®© ºÞù¥mOø©wY.û]ïüsÀáŽP[øàƒ:uêÈ%/¾øbË–-“’’N:¥ö ¨Ãùƒã‘#GÜÜÜ""" %îîîáááÉÉÉGµXeÏž=¦]»vÆ…_|ñElllÍš5Õ^!u8ùÉ1’$ÅÅÅ•(Q¢D‰ÆåZ­VqõêÕ°°0óZ§OŸöóó+]ºôo¿ývìØ±û÷ïW®\¹Y³f^^^j¯€jœ<8¦¦¦êõz___“r!ÄÝ»wÍ«¤§§ÿù矕*UúÏþ³råJCy¹råfÏž]½zu%Ÿ«ÓéLJ¶lÙ¢öÆ@¾ ºt)^íV@×®]S» P]ï"Z´h¡vì…“GùÔébÅŠ™”{{{ !>žSk]]ï²\ö»Þ~/ÇãááѤI“&M𤦦FGGÏœ93!!aΜ9_}õUݺu;vìØ¦Mwww%oÕ»wï’%Kþøã›6m ìÞ½ûàÁƒå+òXóþûïûûûÿý÷ðóókÚ´éÀCBBÔÞ*°Sòjãÿ©`ýŽ8 !îÝ»·cÇŽ-[¶+¥dÉ’… ºqㆢR¥J‹- T»™¦\ö¯—eHŠæ…’‰ŒäÈ,0ìä²èz—å²ßõö8☔”´mÛ¶­[·>|X¯× !üýý_{íµV­ZÕ©SGqàÀY³f>}ú“O>ùöÛoÕn/\šÅŒèpãŽÆ¡CÕkì+8._¾|ëÖ­¿ýö[ff¦¢D‰¯¿þzË–-ÃÂÂŒJ7lذN:õêÕ;räˆÚM†«³–(53>FŽdG€}ÇÏ>ûLáëëûÚk¯µlÙò¥—^²6‹ÑËËËÓÓÓSŽË<&’Æì+8vìØ±U«Võë×WrÖ Ã°7—.Šᨳ¬DR#ÀÀ¾®ã¸yóæƒZK|ýõ×Õn#àœˆy¬v  ØWpLMM}úô©µ—®\¹rýúuµÛ¸r$Àœú‡ªcbbúõëgxúý÷ß/_¾Ü|±ÌÌLI’Ê—/¯v{@aýªKŽuF=ä„úÁÑÝݽxñâòã{÷î.\¸hÑ¢—ôõõ=z´Úí!„•«.‘85õƒcÆ :$?Öéto¿ýö˜1cÔn(`’IœúÁÑXŸ>}ÂÂÂÔn(&gGAjàì+8Ž9Rí&@v4šìË ‘œ‘ÊÁqÅŠBˆzõê…„„žf­[·nê¶€«3Ÿ×h±œŽÊÁñÓO?BLœ8QŽòÓ¬Øùµñÿà¼TŽBÔ¨QC~:|øpµ7(f’ÉŽœÊÁqÀ€ÆOß}÷]uÛJŸdGN;îÃZ:$5p^*8îÞ½;§U"""Ôm3˜ˆ¿t)Hí6@P98¾ÿþû9­«n›\“ÊÁ±mÛ¶jo(¢rpœ>}ºÚ[Špr áÎ1P„;Ç@îE¸s ±ë“c=z”žž®v+ „ê#Ž>¾Zµjj·ÀEÙWpŒŒŒ”$éã?ÎÈÈ0.×ëõcÆŒÑëõM›6U».Jåë8}Z~)22ÒÏÏoÉ’%j·ÀEÙWpB¸¹ýÓ¤òåËÇÇÇËÝÝÝu:ÝÉ“'Õn €‹²¯àXºtéË—/?zôH~Z®\¹ß~ûÍðªF£¹víšÚmpQö›5k–––6|øð‹/ !®\¹²oß>!DRRÒï¿ÿ^¶lYµÛà¢ìëä˜=zlݺuçÎ’$-X° <<ÜÃÃcÀ€µk×>wî\jjj«V­Ôn#€‹²¯Gÿ+V :´FBˆ²eËŽ7.==}ÿþýÉÉÉM›6íÝ»·ÚmpQö5â(„ð÷÷ÿý÷ O»téÒ¦M›S§N«Ý:×ewÁÑØ£G *äíí]¿~}µÛàêì18ž]í-Eìñ^ÕBˆ[·n={6!!áéÓ§ÁÁÁUªT)S¦ŒÚpivïÝ»7wîÜU«VéõzC¡»»{çÎìãã£v\”}G½^߯_¿cÇŽ)R¤Y³f*Tpww¿|ùò®]»þûßÿž={vÅŠîîîj7ÀÙWp\ºté±cÇjÕª5wîÜR¥JÊxìØ±¥K—öéÓGíf¸"ûºøÞ½{5ÍìÙ³S£¢dÉ’sæÌqssÛ³gÚmpQöÏ;W¡B…ÀÀ@ó—^xá…³gϪÝFe_Á±H‘"iiiÖ^MKKóòòR».ʾ‚c•*Unß¾}ìØ1ó—NŸ>}íڵʕ+«ÝFÎN£Q»`§ì+8Ê7’4hÉ\Æ}ûö 0@ѦMµÛà¢ìë¬êV­ZÅÄÄüøãï¾ûn```ÅŠ… 7nÜB´iÓæ7ÞP».ʾ‚£bêÔ©/½ôÒìÙ³oÞ¼yóæM¹°dÉ’C† iß¾½Ú­à¤4!I9(—dwÁQ£ÑtèСC‡wîܹ|ù²$I+V P»]œš$YȈ¤Fx–}Çk×®eff–/_^QªT)“«9@>2ÉŽ¤F0c_Á±U«VOž<Ù¿¿¿¿¿Úmàzäì(H`™}U"„8þ¼Ú à24šgþe[.̾‚ãøñã½¼¼æÏŸÿøñcµÛÀ5HÒ3ÿ²-f_‡ªK•*õå—_~òÉ'mÛ¶mÛ¶mùòå‹/n²LDD„ÚÍà¤ä#ÔÆÿŒØWplܸ±ü ))iîܹ—‰U»™œ‘IR$;€û Žòc  Ÿ¤Fx–}ÇéÓ§«Ý.‰Œ Ø×É1&ÒÓÓSSSÕnCˆ+ìkÄQváÂ…yóæ?~üÖ­[™™™¥K—®^½úÀ+W®¬vÓàB˜Þ€ » Ž‹-úòË/333…EŠqww¿uëÖ­[·vîÜ9tèÐwß}Wí¸(û:T}ðàÁ/¿üR£ÑôèÑcûöí'Nœ8vìXLLLß¾}ÝÜÜfΜyðàAµÛgfí2Ï\þaoÁñ¿ÿýoffæˆ#ÆŽ[®\9F#„(]ºôˆ#ÆŒ“™™¹lÙ2µÛgf¸áœ1ŽY ³¯àxêÔ)OOÏ=z˜¿Ô¥K—¢E‹ž:uJí6ÂÉ™dGR#v322nÞ¼àîîn¡¡nnßáȆìHjÀ˜GFS´hÑ«W¯Þ¿ßüÕ”””Ë—/רQCífÂ9i4Ïü³X€‹³£àèîîÞ¡C‡ÌÌÌQ£F=yòÄø¥ôôôÑ£Gk4š>}úäîÍ×®]úÊ+¯Œ3æÞ½{ÊëÞ¸q£N:#FŒP{ !IÒ3ÿ,–àâìër<]»v=sæÌîÝ»›5kÖ±cÇ   Fÿ¿ÿýïÖ­[­ZµzøðáîÝ» Ë—/_>Û·5kÖ‚ Š+V·nÝ„„„uëÖ]¸páûï¿÷òòʶ®$I£Fzøð¡ÚÛG>Bmü?ö[µj%?¸sçÎüùóM^Ý´iÓ¦M›ŒK†ží•ccc£¢¢¢££K•*%„øüóÏ¿ÿþû3fŒ?>Û&-]ºôðáÃjo“¤HvÀÀ¾‚cÛ¶ms´|¥J•²]fÍš5™™™ƒ–S£bôèÑ?ýôÓæÍ›ÇŽëæ–ÕÁú .Ìš5«råÊçÎS{Û  ẌdGdö§OŸnó÷>¾X±bÕªU3. B\½zUíP‡“Ïq”$)..®D‰%J”0.×jµBˆ«W¯†……™×Z¸p¡‡‡é–9s挢\¹rj¯àÂeU9ypLMMÕëõ¾¾¾&å>>>Bˆ»wïZ¬UµjU“’C‡EEE)R¤]»vJ>×|š­|øÎíÚµkj7ê ëGŸÅ«-Z´P»öÂɃcZZš¢X±b&åÞÞÞBˆdûz½~ÅŠ_|ñ…^¯ÿòË/ýýý•|.çô¹¬   µ›uÐõ€CËúGØükÝeOÄvòàèëë«ÑhRSSMÊ>|(þw̯¿þ:qâÄ‹/Nž<¹Aƒj¯€jœ<8zxxøøø˜,¦¤¤! çY›KOOŸ>}ú²eË<==اOk}pN…qqq)))Å‹7ÊS,VÉÌÌ6lØ/¿üÒ¬Y³ &d‘/\‡ó_ާiÓ¦z½~ïÞ½†I’bbbüüüBCC-VY¶lÙ/¿üÒµk×o¾ù†Ô sþàéææöõ×_Ëó…QQQIII;v,T¨\òèÑ£øøxù¼HI’–/_þÜsÏ5Jí¶''OžìܹséÒ¥½½½ÃÂÂfÍš•‘‘axõÁƒ|ðAùòå½½½ÃÃÃ:¤v{³§¼ÍOŸ>õððÐ<«dÉ’j¯csþCÕeÊ”1bÄ´iÓÚ¶mÛ¨Q£„„„C‡U«VíÝwß5,3dÈ 6$&&^¹rÅËË«[·næïÖ¾}ûîÝ»«½N€å wG¿téRDD„^¯oß¾}ùòå·oß>tèÐ={öüðÃBˆ”””°°°+W®têÔÉßß?::ºE‹»ví²v8Îä¨Íñññz½¾AƒÁÁÁ†Bù²*È5çŽBˆÞ½{—,YòÇÜ´iS```÷îÝlmבÇÓÒÒNŸ>mþ*'VòCff¦$Iîîî6|Ï¡C‡>xðàСCuëÖB|úé§}úôY¼xñÖ­[_ýõ™3gÆÅÅ-]º´gÏžBˆ>ú¨N:Æ Û¹s§òÐëõBÛ6; 9js\\œ¼ÖM›6-˜æ¹ ¶¦ÕjÕnÔqéÒ%µ›uÐõöÆ¿¿!­=λŠ+«\¹²——WùòåûôésóæM›¬QŽÚÍt<}úttttÇŽ…ýû÷¯Y³¦MîRëáá1eÊã’»wïN™2ÅÝݽS§N·oß–$Éä²tò…D•¼ÿõë×'OžüñÇËOGŽ9}úôÕ«W·iÓfõêÕ={ö\²d‰üRß¾}úé§›7oæerÚæ¸¸877·J•*Ý»wO.©R¥Ê²eËêÔ©“÷Í벎XewÌ¿óc‚ƒƒåÔ(„Ðh4¡¡¡?ÿü³ùb7n´ö&o¾ùfÖŸ²{÷î÷Þ{/..nþüù!!!'NœB_áXü}Cµääd%Íö÷÷6l˜áé„ æÏŸ¿fÍš7ß|S£Ñìß¿?!!¡B… BˆE‹-Z´(ïk$ßNy›ãââ233'NœØ©S§B… ýüóÏC† i×®ÝéÓ§³½u¬!8ð ó#Ôæå6 ‘Z­Öø©››åYd=Ê d½AW®\0`ÀúõëCBB¶oßÞ¤I!„¿¿¿âÏ?ÿ4^R¾­Z‰%”4»Zµj… 6<-V¬˜N§»xñ¢——×ìÙ³‡ T­Zµ ´hÑ¢uëÖÆ çnrÚæÝ»w{zz^êÝ»÷ãÇû÷ïݧOŸ÷„®pGrD’žùg±Ü†<==•,æãã“Å) Öj­\¹²zõê¿ýöÛÂ… ÿøã95 !ÜÜÜLŽð&%% !Ê–-›»ñðð'öïßÿòåËQQQ/¾øâ¦M›:tèðâ‹/Þ¾};k”Ó6—)SÆ$P¾öÚkBˆ3gÎØ Û\#ŽX%¡6þ_-¹8T½~ýúwÞyç­·ÞZ°`É^ªU«ßVM±gÏFS­Z5%íùã?ž>}j¸•FZZÚÙ³g#""’““ãââ´Zmß¾}ûöí›™™9oÞ¼.X°`„ yY£µ9!!aÆ Mš4©R¥Š¡Pž” #wŽXf’ÕÍŽ9=°+IÒÈ‘#Ë•+·lÙ2‹×Y|÷Ýw?úè£ 6¼ñÆBˆ;wîDGG7oÞ<((HI{gÍš5räHùé¤I“RRRÚ·oûÊ+¯Œ;vÒ¤IB77·ˆˆ!„!bæzrÔf//¯áÇ׭[wÇŽòGgffNŸ>ÝÃãyóæùÞ[΋à€3¢ŠÙQ>°«|ù³gÏž;w®J•*}ûö5y©C‡mÚ´éÕ«×âÅ‹»uëÖ¿__ߥK—¦¦¦Nœ8Q^fåÊ•~øá¿ÿýï™3gZ|ÿÀÀÀñãÇ8p fÍšܶm[ýúõ{ôè‘‘‘Q½zõ©S§^ºt©zõê±±±›7o.Q¢D—.]ò¸FBˆ¬Û(UªÔĉGÒ²eK__ß­[·;vlòäÉU«VU¡ÿœÁ ¬EG¹÷ |ß”³gÏž={Öä¥J•*µiÓ¦xñâ111#FŒˆŽŽ¾wï^ýúõW¬Xa¸w_zzúýû÷ÓÒÒ¬½ÿK/½4dÈO>ùdΜ9ÇŸ4i’››[áÂ…7oÞ={öló—‚‚‚jÕª%ßóÚ äb·qÙ=³ª€©ÇïÚµ«víÚj7ö…àL}õêÕmÚ´Y½zuÏž=—,Y"¿Ô·oߟ~úéæÍ›yY£¼´yΜ9×®]ûì³Ïò¾a]Á޼á$è08øcþý™,§F!„F£ ýùçŸÍËÈÈØ¸q£µ7yóÍ7³þ”Ý»w¿÷Þ{qqqóçÏ 9qâ„¢xñâÆËøøø!’““•4Ûßßذa†§&L˜?þš5kÞ|óMF³ÿþ„„„ *!-Z´hÑ¢¼¯QjjjîÚœ””4eÊ”Áƒ?ÿüó9ë˜!8Â18MÞp¹!Æ,8M§Âé(™ÝhÃd­VküÔÍÍò,²GeqÀW²þuåÊ•¬_¿>$$dûöíMš4Bøûû !L&S¦¤¤!J”(¡¤ÙÕªU+\¸°ái±bÅt:ÝÅ‹½¼¼fÏž=lذ   jÕª5hРE‹­[·6^8wk”ë6O›6íñãÇÇÏI·À2æ8Âñ8tÞ°8kJØzº=€¼xö”<Éb¹ ?ÎÓÓSÉb>>>Yœëj­ÖÊ•+«W¯þÛo¿-\¸ð?þS£" ÀÍÍÍäoRR’¢lÙ²¹[ùü˜þýû_¾|9**êÅ_Ü´iS‡^|ñÅÛ·oçqr׿Ç/^¼¸C‡ 1²Æˆ#PÐLfM †!;&ÿxÿ¯VKrq¨zýúõï¼óÎ[o½µ`Á“#¼U«VÝ»w¯qáž={4MµjÕ”´ç?þxúôi¡B…ä§iiigÏžˆˆHNNŽ‹‹Ójµ}ûöíÛ·offæ¼yó¸`Áùb:¹^£ÜµyÍš5wïÞíÓ§O¾ôŠë!8*0þ"5vËäÇSÝì˜Ó»’$9²\¹rË–-sww7¯òî»ï~ôÑG6lxã7„wîÜ‰ŽŽnÞ¼¹Âëc'&&Κ5käÈ‘òÓI“&¥¤¤´oß>66ö•W^;vì¤I“„nnnBCÄÌõå®Íÿýï}||¸[Œ­‚cr<Úð4Ÿ&NÈ ‹QÅì(ØU¾üÙ³gÏ;W¥J•¾}ûš¼Ô¡C‡6mÚôêÕkñâÅݺuëß¿¿¯¯ïÒ¥KSSS'Nœ(/³råÊ?üðßÿþ÷Ì™3-¾``àøñã8P³f̓nÛ¶­~ýú=zôÈÈȨ^½úÔ©S/]ºT½zõØØØÍ›7—(Q¢K—.y\#!DÖmž6mÚÔ©S§L™òÁÈ%iii111M›6µ6s9Ep ŽÉ—œIŠ€}²ö³é(?³qqqBˆ³gÏž={Öä¥J•*µiÓ¦xñâ111#FŒˆŽŽ¾wï^ýúõW¬Xa¸w_zzúýû÷ÓÒÒ¬½ÿK/½4dÈO>ùdΜ9ÇŸ4i’››[áÂ…7oÞøàƒòåË{{{‡‡‡:tHíffOy›Ÿ>}êáá¡yVÉ’%Õ^Çæ¡v8>9;’áÄ÷7nܯ¿þúòË/JRRR®\¹Ò©S'ÿèèè-ZìÚµ+44TíÆZ•£6ÇÇÇëõú  ½½½Õ^ ÇFpsÖf1š”;ø-P233%IrwwÏ7ß¶mÛôéÓ=<žùÒŸ9sf\\ÜÒ¥K{öì)„øè£êÔ©3lذ;w*g½^/„ȧf›ËQ›ãâ℟~úiÓ¦M ¦y®€CÕrN’žùg(4y p\ò zþ 2dÈÂ… ýýý=<<Ê–-ûá‡þùçŸ6üˆÛ·o¿óÎ;}ûö}þùçËW­ZØ£Gùippp§NbbbnÞ¼©°Ù_ýµ¯¯oáÂ…kÔ¨1zôèôôtùÕ´´´I“&U©R¥hÑ¢*TèÛ·ï­[·l².9j³+Uªdà ‚#€¼1>„gíC´E®q¨@˜Oü’¿kn„s0ÙŸógß>}úttttÇŽ…ýû÷¯Y³æ–-[lõæÓ§O‰‰9tèPÑ¢EËoß¾-IR@@€qa©R¥„‰‰‰JÞùúõë“'Oþøãå§#GŽœ>}úêÕ«Û´i³zõêž={.Y²D~©oß¾?ýôÓÍ›7ó².9ms\\œ››[¥J•îÝ»'—T©ReÙ²euêÔ±ÕæuAG¨ŒŒáÀ¬u= gbwÌ·ßVÁÁÁrjBh4šÐÐПþÙ|±ŒŒŒ7Z{“7ß|Ó¼ððáÃãÆ›>}z­ZµL^JMMB/^ܸÐÇÇG‘œœ¬¤ÙþþþÆ 3<0aÂüùó׬Yóæ›oj4šýû÷'$$T¨PA±hÑ¢E‹å}rÚæ¸¸¸ÌÌ̉'vêÔ©P¡B?ÿüó!CÚµkwúôi¹rà ·ˆpVJNÿ²Ýþ¯ÕjŸº¹YžEöèÑ£,øJfíIIIéÒ¥KóæÍ d¾¼¿¿¿Âd2eJJŠ¢D‰Jš]­ZµÂ… ž+VL§Ó]¼xÑËËköìÙÆ ªV­Zƒ Z´hѺukã…s·F9móîÝ»=== /õîÝûñãÇýû÷ŽŽîÓ§OzFŽPµ¿Û}t`ôœ‰ÉþlÈ‹ù³Ÿ{zz*YÌÇÇGÊI.\xéÒ¥víÚ}ñÅrɃôzý´iÓÊ—/éææfr„7))IQ¶lÙÜ­ˆ‡‡Ç£G„ýû÷ïØ±ã† víÚµiÓ¦¨¨(Ncr”9§k£6—)SƤäµ×^Bœ9s&w+Ap„*,΂#5°Gòï&ãÿU’Ó»ò‰ 3gÎ4.¼wïÞèÑ£#""ºtéRµjÕ½{÷¿ºgÏFS­Z5%íùã?ž>}Z¨P!ùiZZÚÙ³g#""’““ãââ´Zmß¾}ûöí›™™9oÞ¼.X°`„ yY#åmNHHذaC“&MªT©b(”‡'åèÈ% ¶¦ÕjÕn‚c÷>ãÿÝ¥K—ÔnÔA×Ûÿ6ün2`#+Vl×®qI¯^½|}}Í—¼ÿ~¿Í+V¬øòË/žÎ™3G±~ýzùéíÛ·^{í5…o%„˜6mš¡d̘1Bˆ%K–ìß¿_1vìXÃK§NB|þùçy_#åm¾}û¶§§g£FÒÓÓå½^ÿöÛo{xxœ9sÆdá\ì6.û]ψ#T“ÿ3Î ZpP°$œbM+¿›ÔwÌéÝlõêÕkñâÅݺuëß¿¿¯¯ïÒ¥KSSS'Nœ(¿ºråÊ?üðßÿþ·É˜¥A``àøñã8P³f̓nÛ¶­~ýú=zôÈÈȨ^½úÔ©S/]ºT½zõØØØÍ›7—(Q¢K—.y_£¬Û(UªÔĉGÒ²eK__ß­[·;vlòäÉU«V-˜.sJ\ÇJ¾¤®á_¶å k™Æ9þÒ¢xñâ111;wŽŽŽž>}z¥J•bbb ÷$LOO¿ÿ~ZZšµê/½ôÒ¶mÛîß¿?gΜ«W¯>|×®]nnn… Þ¼ysÏž=8ðé§ŸîÞ½»yóæû÷ï Êï6?~üøþýûOž<‘ŸŽ92::: `ùòå‹-òóóÛ¼y³áúAÈmÿ|B§ÓÅÆÆªÝ ÇÏ3Î d„Æ0Êhí1œ^||¼M¾‘wùõØiŽŒäÄ¢E‹NŸ>mråpYPPP­Zµ~øáµÛh¹Øm\ö»žG¨Æð{Ø¡ï6" I#L[Ojœë¥ÆÇïÚµ«víÚj7ö…àu˜üõîLÙ‘ÔÀ >>((Hí• ‡ª‘WÖfr„SMyßúäH€‚#l€ŽØâ< aÎqÃkw|qÈ;Áç¶Fp„Í®ýç¸áÄâÝx²£sÄy€Ýàä䞵Þ&åŽWLîh©1GЫv‰àˆÜ³v›:GÛ2Œ;ÚcjTBÉìF‡î!€JŽÈŠò(/i·Ù1Û¨pv£:92§[Óxa“Ž ŽxFŽ8PP1I„†¼˜ïIQá-.–m]óû:P—ì'Ǹ%WbÉÅU\ þ†# ÏqÎõ)Òò𤤱|®L‚‚ƒóksqŠ4÷ØÁѪµk×FFF†††¾òÊ+cÆŒ¹wïžÂбçÏçøÃrñužó*’² dœ.ä*YGã—~D^WDY ãØg¨¢ä˜µñ9ÍŽyZå¬7EŽN‘æþ«E‹j7ê ëájŽ–Íš5kܸq/^¬[·®··÷ºuëÞ{ï½´´4µÛ•c9NeÈéU\ $õænøÐ$öå45Z|¥ë’Å:Zù³¶¡5šþ¿­I¹ùG`kG bcc£¢¢¶lÙµuëÖ=zœÄj¥\Üq¤@ªX>‡úÙ“¦}ŠM;%«WI§Cp´ iÓ¦z½~ïÞ½†I’bbbüüüBCC-×ÉEzÈa°¯’“³5ÉEvq¸*¹ØÂ¶ë _ÁÑ‚ÈÈH77·¯¿þZž×(„ˆŠŠJJJêØ±c¡B…²¯ïpÙˆìvEì¶ ŽC#ñUgÉâÅ‹§M›V¶lÙF%$$:t¨jÕª‹/6¿L€‹ 8Zµ~ýúüñäÉ“õêÕùä­V«Õj?n²;ƒSZ±b…V«íÒ¥Kjjª\rþüùzõêU©Rå?þKèz§$wâÌ™3 %ëÖ­Ójµ;w6”ÐõNoñâÅòïüáÇ—»f×3âhkÖ¬ÉÌÌÐëõ†Öt½S:xð ——W¿~ý %:t(]ºô™3gôz½\B×;· .Ìš5«råÊæ/¹f×màÈ‘#nnn†ww÷ðððäää£GªÝ:ØÒçŸ>oÞ¼yóæ5hÐÀâì N)>>¾X±bÕªU3. B\½zU~J×;%__ß&Mšxzz)R$=====]~J×;±ŒŒŒ‘#Gúùù=ÚüU×ìzµàð$IŠ‹‹+Q¢D‰%ŒËµZ­âêÕ«aaaj·6Ó°aCùÁ®]»Ì_egpV .ôð0ýmyæÌ!D¹rå]ï¼–/_nRräÈ‘+W®ÔªUK~¦ëÛܹsÏž=»xñââÅ‹›¼ä²]OpÌ«ÔÔT½^ïëëkRîãã#„¸{÷®Ú DÁagpVU«V5)9tèPTTT‘"EÚµk'èzpìØ±uëÖÅÇÇ;v¬|ùòÓ¦M“Ëéz'vüøño¿ý¶{÷î 4ÿP4æ²]OpÌ+ùä©bÅŠ™”{{{ !AŠ®w¦dÉ’½{÷îܹó­[·¶nÝ*èz'uøðá•+W¾ÿþû5kÖ´¶ŒËv=ÁÑ’““å}Å >>^~IíÖ¡@±38¥ÌÌÌaÆ}ÿý÷M›6ýå—_ `>A×;Ÿ .|üñÇ›7o6)—ϯ¿}û¶ü”®w>.\BÌ›7O÷·:!~þùgN÷ÆoÈ‹¹f×m iÓ¦z½~ïÞ½†I’bbbüüüBCCÕn ;ƒSZ¶lÙ/¿üÒµk×o¾ùÆÚ@]ï|Š/þ¿ÿýoݺu&åW®\BÉOézçS¡B…ÖÏ’/©Q¦L™Ö­[‡‡‡Ë‹¹f×m 22ÒÍÍí믿6Ü(***))©cÇŽ… R»u(Pì ÎG’¤åË—?÷Üs£FÊb1ºÞùètº}ûöíܹÓPxîܹ+Vx{{×­[W.¡ëOÆ g>kèСBˆ°°°™3gŽ9R^Ì5»ž“cl L™2#FŒ˜6mZÛ¶m5j”pèСjÕª½ûî»j7 Áù$&&^¹rÅËË«[·n毶oß¾{÷î‚®wR“&MêÚµk¿~ýBCCŸþù;wîüöÛoBˆ/¾øB>¡^Ðõ.Ì5»Þý?ÿùÚmp¡¡¡+V¼}ûö¾}û<<}úÉ“'æ¹J&IÒ¨Q£† ²k×.I’|||:ôÅ_tëÖMÞgÂÂÂzöìéáááááѳgÏ®]»Z|[íŸþù‡~¸}ûvÿ'NŒ=zÔ¨Q9]&ï{¬’5²ÕÏEhhèýû÷Ïž=›ÓÝ p*ÛÑëõ 6ÔjµgΜ1.lÔ¨‘V«½pá‚$I ,Ðjµ|ðÁÇå}ºuë&„øæ›o”w‡¬X±bß~ûmƒ üýý­µsöìÙBˆÏ?ÿÜp :00pîܹEŠYµjÕ­[·®¯Mv€3fÈ©R¥Š\2xð`!DLLŒòel²Çf»€ .‚ƒƒ…±±±Ê·à|Ž€ÉÐø°©|œºcÇŽòÓþýû/X°à…^0,˜˜¸qãÆ¼|è½{÷âãッƒM΀.Z´hƒ ÒÒÒNŸ>-„“ëèÑ£>,϶,T¨ÐG}4pàÀ}\Ë–-Ÿúøø¸»»KYÎýªZµjÿþýoݺõæ›o^¿~}Ô¨Q+VÌbyù0¢ŸŸŸ­`QXX˜ñSùã,š¼ydd¤‡Ç3W¥èÑ£‡âÌ™3Ê»CÖ¶m[OOÏ,yçÎÛ·o†‡‡——*U*""B¯×+?xš÷àîÝ»—/_.S¦Lƒ ŒËßxãmÛ¶õë×Oá2¶Úc³^À¶?¾¾¾Bˆ¤¤$…Û pJ\ް±jÕªU¬Xñòå˱±±:.##cË–-^^^­Zµ2,sýúõ={öüöÛoW¯^½råJ§6 !.]º$ÿ¯Óé,. _»xâĉƒ>|øð;ï¼ãééYµjÕ—^zéµ×^«ZµjŽ>.wW$yÿý÷·oß~æÌ™zõêuéÒ%ë…å¯g6ÀœaÐ7‹BFc¾Œ<ødÒ¤"EŠ$&&>zôHawÈÊ—/Ÿu#å‘T‹9[‘U>P÷ >>^Q®\9“òÂ… VDÉ2¶Úc³^À¶?rpLLLT¸­§Dpl¯M›6sçÎݲe‹N§Û»wïƒ:tè`ˆ#+W®œ4iRFFFùòåÚ5kV½zõøøøO?ý4GŸ"Ïð“§§§ !Ê–-kí˜c™2e„Ï?ÿüÚµk;¶gÏž_ýõôéÓG?~§N&Mšd1!Ydíú8Y{øð¡ü¥{éÒ¥û÷ïË_ÃÖxyyÖË& 0Þ\yg¾­4»»»››[¡B…v‡L>Þ…,š-ZU~M¢ÜíÆ›îÉ“'BˆB… eñ)J–±Õ›õ¶ý¹ß-ëáaÀéÛ3Ç>úH>m8NýðáÃÏ>û¬pá .lذ¡¡Šòij7nÜ0œ„+€-Zt̘1Y×Òh4ò5€„ééé{÷îýøã£££›4iÒ´iÓ|Ý,&L¸sçNíÚµ=ú駟Μ93‹…ÿõ¯ !ò>kqså<¨fìæÍ›©©©åÊ•+\¸°òîPBk´8¬(Fšf!;€ñ¦ B\¹rÅd™'OžlÚ´é¹çžkÖ¬™’el¸Çf±€ãòÄÄÄ]»v¹»»N@Éšò ‹MWºtiÿ+W®üþûïÆËÄÄÄŒ=zýúõ —±É›í¶ý¹{­téÒ9ÛWçBpò…|ŠÌرcSSS;uêd(—óйsç ÑA¯×¯ZµJ¾#EZZšÅw“g†-[¶,55U.9tèÐüùó—:thffæÐ¡C §J<|øðã?>}útµjÕüýýÿüóÏ'N,Z´È0€tùòeùÊÕY\O1ïnݺõé§Ÿ>÷ÜsŸ}öY¡B…¦L™âîî>qâÄ,‹/bò}¯’Í•GW¯^:tè£G„™™™ßÿýwß}çááÑ¿…Ý‘£2dˆbܸq†³jnß¾=pàÀÇwîÜÙøÀw”ìÙn:F#ŸýñÇ_¸pA.LHHïã,ßRÉ2J6Q¶ V²F6ü¹øã?„Ù¹S€«áP5/Zµj5mÚ´ØØXww÷víÚʃƒƒ›6mºcÇŽæÍ›×©SG’¤ØØØ{÷îuëÖíûï¿ÿßÿþ÷çŸÊ1Ö®]»ï¾ûîèÑ£M›6­Zµê;wâââ|||J—.-Ï'B´oßþðáÃ?üðC»víÊ–-ëççwéÒ¥ÔÔÔŠ+ÊWÞvss3fÌèÑ£§OŸþÿ÷Ï?ÿ|jjêÅ‹%IêÒ¥K÷É#I’F’’2yòd97רQC¾ñÉĉå ÍXÔ Aƒï¾û.!!ÁÚEy¬Q²¹òH§ÓmÙ²eÛ¶mAAAׯ_OKK“/6dhj¶Ý‘#íÛ·?xðàúõë;vìøüóÏ{yy]¼x133344TŽhJ(Ù”lºŽ;þúë¯ëׯoÓ¦Mùòå===/^¼˜‘‘ѦMÃ`J–±É›í6ü¹8~ü¸F£1¹ƒàjqòE©R¥êÕ«'„hÔ¨Q©R¥Œ_úòË/ T¦LùúŽááá?þøãرc»uëæîînñ€åÊ•ûïÿÛ¬Y377·}ûö?¾lÙ²ß~û­ñÀ•F£™:uêW_}Õ¤I“ÌÌÌË—/ :ôÇ4\Ô¦}ûöß}÷Ý«¯¾êååuîܹÔÔÔW^yeÞ¼y&LÈ¿M±lÙ²ƒ6lØÐ0ÑS1hР *lÞ¼yË–-Ö*FDD!Ìo—-%›+–,YòÉ'Ÿ¼üòËIII~~~-Z´X±b…ñ©âJºC977·3f|ùå—wîÜ©W¯ÞÈ‘#W¬XaíÄs‹²Ý”l:¹13fÌhԨѣGîܹS³fÍ/¾øÂøN›J–±É›í¶ú¹$éÈ‘#Õ«W—gß.KcÃÓ €G%''—+WNùIÐJ’¤-Zøûûî” ®³¹lŽMgìÈ‘#Ý»wŸ6mšñÀ1â8˜bÅŠ•/_Þ¾Ë5Í;ï¼óûï¿çåÄ×Ù\6Ǧ3öã?úûû_pMGö«cÇŽeÊ”ùî»ïÔn\ZRRÒÆûõë—»+˜΄àÀ~yyyýç?ÿYµjÕ7Ôn \×¼yóBBBºvíªvCõصðððaÆÅÅũݸ(½^ïåå5yòd77¾1NŽ€2üýEŽP„àEŽP„àEþÌ4JæÚ5ªCIEND®B`‚statistics-release-1.6.3/docs/assets/binofit_101.png000066400000000000000000001053771456127120000223170ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A€IDATxÚíÝy\TÕÿøñsaP$qc)@ÜÄ Ñp+±Ì]-sûh*îæR¦øUËû~ÊÌŸùñ[V.XVй¤â–©á¾%i¨Y†+©¨,÷÷Çý|îgša†Ë° ̼ž5sæÎ½g¹3óæÜsΕdY@A¬”ŽÐ„Àš8@GhBàMKÏÆ%mîÝ»gíÌ–i3fÌP*ª{÷î…}ïæÍ›¿þú믿þ:##CMü裔6mÚÔÚ…+ëŠRù»wïÞ°aÃjÖ¬©Óé*W®üàÁkWCáÌ;W©´ØØX%%ßSÎT1ËQñóý|Ó~•ýϦÅ9,ÊGI㥑ÆoÅúìó\î謠Tõë×ïþýûBˆ;w¶oßÞÚÙ&Ó¦M[¹r¥òXi>›dª˜å¨ø|¾Ê#ë¶çL¹CàXz*Uªäïï¯>ÍÊʺqã†ò¸F*TP_rp '¸TU®\Yi___kçùؾ}»ò uëÖÝ»w×ÿ°”Sùžr¦Ši{Å/bE•)e$‡Åž ë–«ŒÔ*òEàXzbcc/_¾¬>ýþûï;tè <Þ¾}{ýúõ­Áü]¾|¹F+V,ãû,Џ¸¸¸¸8kç¢Ì);ͤþ‰5eÊ”^xÁÚÙ)ùžr¦Ši{Å×®ì6ËH‹=Ö-W©U䋞­2*..Ná¡ÿáéܹ³’صkW51**JI|ë­·ÔÄÌœ9³cÇŽ>>>>>>:t˜>}zff¦ùƒêaùã?ú÷ïïííèããóî»ïo¯å(Ú÷ijM¿~ý”ôÉ“'›É|^^ÞÚµkÛ¶mëçççìììççóÿ÷ÙÙÙÊÓ¦M“$I½ÒסCI’”áb¦ÆÓ¶€wîÜ™8qbÓ¦M+W®Ü¸qãyóæ©G7%;;{ùòåÑÑÑ5jÔpsskذá+¯¼râĉ–N?'½{÷þå—_ú÷ïïïï_«V­~ýú:uJqèС¾}ûúûû?õÔSm۶ݳgÅMoìÆcÇŽŠŠª\¹òÓO?ݳgÏÔÔTË «/###===//Oyz÷îÝôôôœœƒ<çää¼ýöÛµjÕzûí·-k> *Í”+W®ôíÛ×ÛÛ»zõê=zô8räˆñ6§œ©bš)¾Æj/°– µ3g¸™Ï—yׯ_å•Wž~úé5jôéÓgïÞ½f*J{~Jí4È÷ÛCËV; Î(EŸ8 ¾µ´šÆ/ó²ðlÁ—„ +Ù¹s§Ú §OŸ6xuÕªUÊKjbÕªU•D___%%;;ÛÅÅEIܳg’xøðá§Ÿ~Ú¸­k×®’’b&KjèÙ®];ã= }úä{†÷êÕKÙ`êԩƯ޿_–ååË—+O###-.`LLLhh¨Áƽ{÷6Sá=jÖ¬™ñ!$Iúàƒô·,°tú9iܸ±···þfU«V}ï½÷œœœ Ž¢ž3El¦ï¿ÿÞÇÇǸ&L° °úºuëfü–óçÏädàÀÊã·Þz˲泠ÒòuäÈ‘êÕ«ë¿¥råÊ;wVwêÔIÙÌà”3UL3Å×Xíæk©P{0†›ù|™ùªiÚ´©A3999-_¾\ÝÒø³Y¨O\)œù~{êkðW,g”ÆO\¡¾µ·šÆ/s«'[ö¥G«18^½zU}õƲ,ë_æB\¿~]–åcÇŽ)O]]]?~,ËòÇÕ‘”ÎÎÎÏ?ÿ|çÎ+Uª¤¤T¯^=33ÓT–ôû,…ÕªUkÓ¦›››š²uëVeKíGѾϢŽëÖ­S?ðíÚµ{õÕW4h âûï¿—eùæÍ›iiij&ÿïÿþ/---//OÎïKÊâúùù5oÞÜÙÙYM9|øpîââÒµk×øøøæÍ›+):îܹsÚKg‡°°0///ƒ/ÄÐÐК5kªOÛ¶m[ôfºwïžú'M»vífÍšÕ¯_?uœîÇ\¨ÂÐ8ÖªUK}I ‰,k¾ÂVš±Çûùù©…jÑ¢…þ°fQ¬ca«Ý¸– »óg¸™Ï—ƯWWWå©££ã™3gò­¨B}âJç40Îaa?°fG‹Ï(Ÿ¸B}+jo5_æVÿN¶ìK ŽVc>p”e9$$DyõÛo¿•eyÆ Ê7‘’øõ×_˲üÿþßÿSžvîÜYyWBB‚’âîî®~‹84HI™8q¢úÆ&Mš(‰ ,PÕ`hçÎj¢ñ—”eüç?ÿ©$ž;wNýž2ó—k«V­”mæÌ™£&vìØÑ`oK§Ÿ“-[¶È²üäÉ“víÚ©‰K—.•e977wÈ!JŠ··wÑ›iúôéJŠ~oÊ?ÿùO%±N:…*l¾òm5ý<׫WoÍš5‡úå—_,n¾ÂVš±>ø@Ù¦råʇRǧîÍÌϼ©bšJ×XífjÉ‚=x†›*‚ý}véÒE9ß®\¹òÌ3Ïœ]æÃóù)ÓÀ8‡…ýÀš ‹rFiÿÄiüVÔÞjڿ̵½$¾“‹ò¥dÏãXv©§ï¡C‡„ʸ– Ô¨QCqôèQ5QñÜsÏ)¶lÙ¢<3fŒ::¤aÆ&L0ØÀ N·lÙ2eVD5Þyç%ýàÁƒ=²ì(î³(úöí»fÍš5kÖŒ;VIÉÌÌ|øð¡òøöíÛ…Ý¡lРÁèÑ£•ÇuëÖmݺµò8==ÝÔQ²²²”Ÿ~úéªU«”9Ÿ~úééÓ§OŸ>Ý«W/ËJ©\ÉrrrêÝ»·’èéé9fÌ!„ƒƒƒúõ}÷îÝ¢7Ówß}§<6l˜š8hÐ GGG!Ä•+WNž<©½°¨T©ÒŽ;ú÷ïß¼yóÀÀ@Ëš¯(•¦úâ‹/”ú]óçϯV­šÅ¥3Ecµ›©¥ÂîÁ‚3¼@NNNêùV»vmõ|KNNÎÍÍ5ÿÞóc­Ó ¿ŽŠrF•Ü'®(­f±’øN.¹*²mŽe—8þøãâ?1bóæÍ###…Qà¨n|áÂåÁóÏ?¯¿75²¼xñ¢:ÖÞ” Ô®][}ªîJ–åK—.Yv”÷YÏ?ÿ|ÿþý;wî|àÀI“&µoß¾V­Zçγx‡Ð`ðz©ËLm«;¿páÂ!C|}}›4iòÏþóÁƒõë×W6¶túÔÔ!°5jÔP»«ÕDc4ÓÏ?ÿ¬n¬.bïææ¦þ„\¼xQ{a-®ü5U”æ+J¥W…º,³¢B… êq‹‘Æj7SK…݃gxêׯ¯ ]­·'Ožüúë¯æß[`~¬uã×QQΨ’ûÄ¥Õ,VßÉ%WE¶À±ìЉ‰ÑétBˆÃ‡çææþôÓOB/p-„¨Q£F½zõ„™™™ê]g –¿R¿=z¤®îaŠÁ¦R¥JÊã?þøÃ²£˜ßgëêÉ“''N¬V­Z¿~ý/^¼k×®œœ‹»y,+ úÓ’ïÓ|%$$Œ5J]ïF–åÔÔÔ¹sç6oÞ¼M›6ê} [º|­qqÐÂ6SfffKRß¼yS{a-`0›¡Xš¯P•¦¸ÿþŸþ™o5êÇâÅB{µ›©¥ÂîÁ‚3¼@åêꪞoW®\1ÿ^óù±Öi Šï먈gTÉ}âŠÒj–)¡ïä’«"ÛFàXv¹»»+¾233¿ùæeÅ5p¼yóæ7ß|£¬, v7º»»«àßÿ]oêÓ *¨#âM1øøeee©ëøûû[vóû,b]Í;wÉ’%999Ë–-;qâDfff—.],®ùb©Æ999½ÿþûëÖ­ëß¿•*UÔ—öíÛ§.?T¼¥3¯°Íäîî^¹reåñöíÛÓòÓ¯_?í…µ€ÁïA©5Ÿuinõ÷^Qì7Õ^ífj©°{( dee©uU§N"V‘UNQ|Ø"žQ%÷‰+¹V3¥„Z³äªÈ¶8–iê áï¿ÿ¾ÂÍÍ­^½zê ëeË–)ô/[¨³Ô»M< R:2Í8sæÌõë×Õ§;vìeYQ¡BeŠŸG)pŸê›Áà!ƒoÌ|©UñÁ¼þúë5Òét×®]³¸æ‹¥Í{üøñ7nܸñøñã>}ú¬Y³æÏ?ÿܱc‡º<„º4Z±—ÎŒ›É˜:4>''çi=UªTñôôôôôtqqÑ^ØbQ ÍgÌÑÑ1 @y¼mÛ65]–e-«?––j/é=Áù¦Ö[… Šþ÷¤UNQ|Ø¢œQ%ú‰+°ÕŠòenJ±·f))ÙÇ2MíJܵk—"22ÒÑѱZµjÊ_u)))BI’ôïï©®ïõ¿ÿû¿êB¾§OŸ^¸p¡òX¬Œ)Ož<‰òä‰â÷ߟ2eŠ’Þ¥Keà¼G)pŸêÅ—üQÙóå—_øù×_©×ÔÔ著~úI©43e4ój±T£yçΫ^½zõêÕ}}}ùå!„N§ëСƒ:mÓÓÓÓâÒY¬Àf2¦þy³bÅ %ÊBlܸñ©§žòööö÷÷ÿ믿4¶¸”BóåK¹`pÜyóæ={¶Ø¥¥ÚKzf˜ÿ|©²³³ããã•+'¿ÿþ»º°Ÿ™óM;«œÅûµøŒ²ìW\­fÙ—y)'—ò—’-á–ƒeZ‹-*W®¬~}«³ê"##Õ¡$5Ò_Â÷7Þø×¿þ•žž~ïÞ½èèèöíÛ;::îܹSYŽß××wÆŒZýå—_„††9rD¹Xéàà0{öì¢Åü>ÕžÔ¬¬¬ðððððð›7oª¢ÍpsssssSl 2ä‹/¾$é»ï¾Ë÷& žžžÊ–ÿó?ÿsæÌ™±cÇ,í[¼Õh†Òp7nÜÈÉÉ‰ŽŽ~ñ޼¼~ýõ×o¾ùFÙ@¹éB¡JW,Ì7“±iÓ¦­\¹òÎ;›6mj׮ݳÏ>{æÌu†ã„ ¼¼¼<==µ¶¸”BóåkòäÉŸþ¹,ËwïÞmÙ²eóæÍ322Ο?_ÇÒRí%½c?_ú”ó­nݺ‡V¾ëçÎ[ô*²ÊiP¼X‹Ï(_/ŠboµB}™[ë;¹PU„¿±öz@ö«Àu/¾ø¢ºÙ—_~©$Λ7OMÔ_Kñã?*ËmðóóÛ·oŸ™,©Ë_µiÓÆ`¨ŠN§Ó¿1€ö£jŸêRªÀÀ@µ_ÄÌ:Ž}ûö5~cÛ¶m•ÇTÑ¿ýÍÌÜ¥ °Ô²b™~øÁÔÕÀ˜˜e™4í¥Ë7'«W¯V4h &îß¿_m‚Â6S¾Gùæ›oòýë|ĈêÐ ›/óë8æ» ^QšOc¥åëµ×^38¢«««:˜¤×qÔXíæk©({È÷ Ï÷óeLݧ§§§ÁÔ“ *¬ZµJÝÒÌj‚ZòS §q‹ò-Æ3Jû'Nã·¢öV“5™k?z[3ß3¤(_JöŒKÕezµZü½Ç1ß Íš5;yòäŒ3Ú·oïãããííÝ®]»7ß|óÔ©SÑÑÑZêååuàÀaÆûøøôìÙsÇŽÇ/ÊQ´ìó“O>™;wnÆ ]]]ÃÃÃÇŒsèÐ!ƒÙ ùJLLlذ¡øÏ]ÆìØ1õŽÞ_|ñ…z¹$11±ÿþÕªUsuumР™ù’E¯ÆµhÑ"--mÆŒM›6­Q£†““S•*U¢££W®\¹k×.u®ŸöÒ–f2Ö¥K—'N :4""¢R¥JÝ»wOIIùðÃÕÑN [\J¡ùòõñÇ5Jy\­Zµ—^ziçÎmÚ´)‰ci©ö’ÞƒíŸ/ELLLJJJ—.]jÕªåëëÛ§OŸ]»v© hUNƒâýÀZ|FiÿÄ•D«iÿ2·âwr))Ù IþÏÐ`ÆŒsæÌBtëÖí«¯¾*³ûÌWvvöæÍ›…^_(éÒ•Z3Ù‰£GîÞ½{øðáîîîÖÎ ¬ Ø?°œQ(;ãáääd“!£=”ÎöDFFê_€½)ö,gÊ.U@GhBàM˜Mèq€&ŽÐ„Àš8@GhBàM  #4!p€&ŽÐ„Àš8@Gh¢³vJɆ Ö¯_Ÿ––V©R¥gŸ}vòäÉUªT1³}VVÖºuë’’’®]»V¹råàààÁƒ·jÕÊÚå°I–ekç¡Ä%&&._¾ÜÕÕ5222==ý×_mÔ¨Ñ'Ÿ|âââ’ïö999ýû÷?~ü¸‡‡G“&M=ztäÈ‘ììì1cÆŒ5ÊÚ¥°Û/\¸Ð­[·ªU«&%%U«VM1wîÜO>ùdÀ€3fÌÈ÷-ŸþyBBB“&M>þøc%¸¼xñâ€þúë¯7†††Z»LV`ûcׯ_Ÿ——7nÜ8%jBL:ÕÃÃcëÖ­yyyù¾å»ï¾B¼ùæ›j—dPPЈ#rss8`íX‡íŽGŽqppˆ‰‰QSÛ´isëÖ­ÔÔÔ|ßrùòeWW×úõëë' !®^½jíX‡OŽ‘e9--ÍËËËËËK?=88XqõêÕÈÈHãw}ôÑG:aÍœ9sFQ»vmk— À:lø€¨@aûcïÞ½Þÿ}e\£bÅŠ7oÞìÙ³§“““’òàÁƒË—/_»vM!Ëòš5k*W®×Ö±#€Âáë€áObí¸T M  #4!p€&ŽÐ„Àš8@GhÂàŠ$IV<º,ËÖ®° ô8(&²Õþ™ [$IêÒ¥‹ñKóçÏ—$éĉÖ®8н{wåqëÖ­ÃÃËý?ýô“$IëÖ­3UE0~©cÇŽ’$åææ*OÓÓÓ%I4hºANNÎÇܺuk___ww÷ÆÇÇÇ_¿~]Ýà½÷Þ“ÌÚ¶m›Å™3gŽ··wÆ ‹½¢Š…~ƒ–fNª€€€Þ½{[;ƒ(Oèq`û6oÞüå—_öèÑÃÚ)˜££££££µs¡‰,Ë]»vMNNnÒ¤Iÿþý+V¬xþüùåË—ÿë_ÿúñÇëׯ/„ˆˆˆ˜4i’ú–þóŸžžž¯¼òŠšâïï_Øãž={vÆŒÑÑÑ#GŽ´v” 6mÚ´oß~æÌ™Eß•þIuôèѹsçΙ3Gi ²ãÞ½{S¦LINN¾}ûvDDÄ‚ Z´haA-egg»¸¸¨í(¼½½322¬]DAàÀö¹¸¸Œ3¦cÇŽ•+W¶v^ °gÏkgA«5kÖ$''Ožý­·Þzï½÷Š}çOž<Ñétv7òG¹º¯ŸØ¸qãÞ½{òÉ'÷ïß/¡_keH«³³s •«P ªôlW'qNNή]»<¸lÙ²¼¼¼*`Ño©…K–,IKK[½zõÀ…cÇŽmÒ¤ÉĉwíÚUØZRþ®˜={¶ ÿ]a]v÷MÀõîÝ»sçÎï¿ÿþÑ£GÍlvøðáÎ;W¯^½F;wVúÌãÇ?zôhXXXXX˜’2vìØÉ“'»»»;;;7oÞ|Ë–-999Ó¦M uwwoÛ¶íÙ³gÕ=$&&6jÔÈÕÕÕËË«yóæŸ}öY¾yhÛ¶­ÒËòàÁóƒOŸ>Ý£G:uêT«V­S§Nßÿ½þ~öîÝÛ±cG//¯zõêMž<ùÉ“'Å^«Jôpúôiƒôùó矼ÿþûžžž*ThذáÔ©SMU²ù–ÒwëÖ­çŸ>!!¡À몽zõrrrºÿ¾òtݺu’$5jÔHÝ`Ò¤I’$;vLèTƒ zñÅ…111úµwàÀØØXooïš5k¾þúëýõW¾5_jó5oÞÚµk}}}_}õUåi```¯^½RRR~ÿý÷ÂÖ’8>óÌ3B“QÜ‚ƒƒ­ ¤˜:½…°æä3_e³fÍB¤¥¥]¾|¹R¥Jááá999ÊKï¾û®âøñãÊÓM›6étºZµj7nüøñµk×Öét›6mR^õ÷÷ïÙ³§——W@@À?þñ%ÅËË«jÕª³gÏž7ož···³³sTTT³fÍGŽ)IRXX˜òve V»ví¦OŸ*„øæ›oÔwëÖMyÓ¸qcY–³³³WëYµjU­Zµ*T¨pîÜ9Y–·oßîìì0iÒ¤7Þx#((ÈÑÑñ‹/¾Pv²qãFGGÇjÕª9rôèÑÕ«WB¬]»ÖTíß¿ßø¥:!Ôûõ×_…¯½öšòT a+V¬8räÈ;wfeexþxzzFFF¸™™¶8uêÔÛo¿-„X´hQJJŠñ{ãââ$IêØ±ã›o¾ÙµkWGGÇæÍ›klí êïï_³fM!DçΧM›Ö¶m[!D›6mòòò Ô|K™rþüy!ĬY³Lm°råJ!Drr²òtÔ¨QBI’nÞ¼©¤4iÒ¤zõêJ~Ô“êÔ©S Bˆ (µçïïìáá¿hÑ"e\r†3_j35oÞ½{÷$IŠ‹‹ÓOüüóÏ…_~ùeak)>>¾bÅŠ·nÝZ¿~ýòåË÷íÛ÷øñãó`Á·ÝþÖ8?»=™`Êoà(Ëòüù󅉉‰ÊKúããÇüýý322”W322üüü•_eGBBBnn®²¿¿¿ÆÉ²¬Œó {ò䉒-„ÈÌÌ”e9000888;;[yéîÝ»:näȑꮌG³gÏB¬\¹RÉmPPPxxøÃ‡•W=zÔ²eËÀÀÀœœœGùùùùúú^»vMyõúõë5jÔ08ša*p”eù³Ï>{ú駕͜۵k7oÞ¼_ýÕTsh  l‹M›6™Štïß¿ïè訟Ã!C†x{{_¿~]K+hoPå|˜7ožz É“' !”ˆPmPó-e¦ ¯]»&„˜4i’ò´aÆÊs%Òº{÷®ƒƒÃàÁƒOªÍ›7 !öìÙ£–Zñõ×_+OsrrBCCýüüò=¨™R›¯yó~þùg!ÄøñãõwîÜ)„øè£ [K±±±...UªTQOàÐÐУGšÏ£v\ª`/&L˜Ð°aÃ3f\½zÕà¥ÔÔÔË—/7ÎÛÛ[Iñöö7nÜ¥K—Ôõz|}}ßzë-ý¡oÍš5«[·®òXé}éׯŸ“““’¢ ±zøð¡âðáé©©:Ý¿‡•ߺuK}I‹¯¿þzæÌ™#GŽ2dˆâرc/^œaÂ¥sHÉù˜1cÌâå—_žd¤N:æß—––vâĉÄÄÄŽ;=ztúôéJ˜k-maŠƒƒƒ²´Pzzº’²råÊŒŒ ___-­ ½A•\Mœ8Q}ïÌ™3ÝÜÜÖ¯_¯Ÿó-eq !jÖ¬Ù¨Q#eà;wNŸ>=~üxWW×””!ľ}ûòòò:wî¬eWÁÁÁ/½ô’òØÑѱqãÆ<0µ±©R›©ùœœœ¯MS«ÔÝÝ]ÿ@jJZZZ^^^BBÂõë×322>þøãß~û­[·n÷îÝ+J…CÅäöB§Ó­X±"**j̘1_}õ•þK/^B(ƒUʈ±‹/6mÚTb0aBl„Jxaœ¢¨R¥ÊÁƒwìØqþüù‹/ž9s&''Gc¶Ïž=ûÊ+¯DGG/]ºTIQ:Zââââââ 6¾råŠ2î­I“&úé® 9zôèV­Z$?~üÊ•+æ°Q£F57nÜ“'O¾þúëñãÇÏœ9³E‹Ï=÷œͤ¥-LqqqYºtéĉêׯÕ©S§^xApY`+hoP!DýúõõÇqººº†„„üòË/úÛ˜o)óe)PllìÂ… ïܹ£t¾¶oß>::Z ÷ìÙ£Ó锑R†1¨ÌOy1Uj35ÿàÁeXj¾dYV*Ù``eff¦ÂËË«°Õ²gÏgggõƒ~ôèѨQ£’’’”¿»PDŽìH‹-FŒñá‡*]*Y–…Ñýo”_Ðììlå©§§§e}üøq=’““›6múÜsϽôÒK-[¶ŒˆˆÐòÞ;wîtíÚÕÃÃ#))I \”_î… ¯€]¯^½½{÷—¥Ø'}ß¿РAÏ=÷ܰaÃÔÄ *ôîÝ»J•*;vܲe‹e£–¶0cÔ¨Q={öܼyóîÝ»“““W¬X’’’âééiq+h¤Óé úêÌ·TשS§ùó秤¤å<)”ÎK??¿’¨;ÄGöÅÃÃcéÒ¥×®]ûàƒÔĈˆˆ:uê$&&Þ¹sGI¹}ûö’%KüüüŠ~@eƒþ/YRRÒƒä‚n±=eÊ”íÛ·ôÑG‘‘‘úé7 Y¼xñÝ»w•”ÌÌÌØØØñãÇWªT)"""00pÉ’%êR&ž€¥2 öÇœ3gŽþ]:²,¯[·îúõë6l¨X±b×¶m[WW×aÆõïß¿fÍš?üðî]»ªV­ºÿþ­[·ÆÆÆæû®-[¶,^¼8,,ÌÑÑQ¹ÁÐÐЈˆˆ¥K—víÚ5,,¬OŸ>ÙÙÙ›6mºzõêÚµk•›Ë-Z´¨OŸ>ááá}ûöurrZ·n]IÜo-11ñôéÓ3fÌX½zu“&M”yܸqãÆôéÓ£¢¢,ÛmQÚ"22²Aƒï¾ûî¥K—4hpáÂ…­[·zyyõë×ÏÑÑÑ‚V0Ã××wÆŒ ûá‡vìØÑ²eKu%B…N§3ÓREo‚ØØXe´®8:::¶nÝ:99¹víÚ¦úꔞÎ?üðÆ/¿ürq•:''ÇTÍ{xx¿öÚk«V­êß¿ÿ¨Q£<==W¯^ýðáCeå !Äüùóß}÷ÝwÞygĈæ÷S­Zµ„„„)S¦ÅÆÆzzznÛ¶íØ±cóæÍ+úØ(èq`–-[¦NtUôèÑcïÞ½uëÖý¿ÿû¿O>ù¤^½z03¨_»:uê$''תUëŸÿügbb¢‹‹ËÉ“'ßyçÌÌL3Ê:Æ'Nœðw_|ñ…¢S§N‡jذáš5k>ùä“€€€mÛ¶õéÓGyo÷îÝwíÚÕ°aÃO?ýtñâÅýõך5kн]\\¶oß¾|ùòjÕªíÞ½{Ù²eû÷ܻwïœ9sвg‹Û¢B… [·n8pàÁƒgÏž½gÏžŽ;8p À²V0£yóæ;vì¸{÷î{ï½wõêÕI“&íÞ½Ûx,©ù–*"%Þ­Zµªz_™ n¦»1**ª_¿~Û¶m³ìƦJm¦æµìÖÝÝ=%%¥oß¾III .|æ™gRRRÔ{U?zôèîÝ»?Ö²«7Þx#))ÉÇÇgÍš5+W®¬R¥ÊÖ­[§M›V,!„dq/=L ¹pႵs”S§·$IŠß%’à«Ì”ëׯ?õÔSEï7…¾€€€ÆÌÍ·y6\j ~¸íö·žKÕ`ËŒ'™€Å¸T MèqPL¤¢ïÂB\§F)‹Uî¿gWì³Ô0@à ºÁ®,[¶ÌÚY Ô°.U@GhBàM  #4!p€&ŽÐ„Àš8@î H’õn8È}k ´8(&Ö‹Þ$I"v€RÀ¥j¶,!!A’¤.]º¿4þ|I’Nœ8aí<Š€€€îÝ»+[·n^ì‡øé§Ÿ$IZ·n©*:pà€ñK;v”$)77Wyšžž.IÒ AƒÔ rrr>þøãÖ­[ûúúº»»7nÜ8>>þúõëêï½÷ždÖ¶mÛ,(Μ9s¼½½6lXìU,ô´,0sRôîÝÛÚDyBàÀömÞ¼ùË/¿´v.4qttttt´v.4‘e¹k×®C‡ÍÊÊêß¿||üÓO?½|ùòààà3gÎ(ÛDDDLÒS±bEýÿÂ÷ìÙ³3fÌ >}ºµë øõOª£GvïÞ]m ²ãÞ½{#FŒ¨S§Ž››[›6m:djËììlNgðHÕªU-Ø,À¥j¶ÏÅÅe̘1;v¬\¹²µóR€={öX; Z­Y³&99yòäÉ ,P?=hРÇ !Z·nݺukõÕ•+WÖ®]{áÂ…E9nZZšbÖ¬YíÛ··v³K—.ÅÄÄäæævïÞ½N:;wîœ0aÂÞ½{¿úê«¢ìVÿ¤ºqãÆ¦M›Ægí²þMfffddä•+Wzõêåíí””Ô©S§Ý»wçÛQzùòåÜÜܨ¨¨ÀÀ@5ÑÍÍÍ‚]ÁŽlߌ3¦OŸþÖ[o½÷Þ{žó'Ožèt:»»€£\ÝŽ×OlܸqïÞ½?ùä“û÷ï«¿åÅKÏêìì\Bå*Tƒ*×ñ‹«“x„ ÷îÝ;tèPÓ¦M…³gÏ2dȪU«¶mÛöüóÏ—Py-P¼¥B,Y²$--mõêÕBŒ;¶I“&'Nܵk—ñÆÊ_³gÏÎ÷/‡Bí °»o:v¨wïÞ;w~ÿý÷=jf³Ã‡wîܹzõê5jÔèܹ³Òg¦?~üÑ£GÔ”±cÇNž<ÙÝÝÝÙÙ¹yóæ[¶lÉÉÉ™6mZhh¨»»{Û¶mÏž=«î!11±Q£F®®®^^^Í›7ÿì³ÏòÍCÛ¶m•®‘˜xúôé=zÔ©S§Zµj:uúþûïõ÷³wïÞŽ;zyyÕ«WoòäÉOž<)öZU¢‡Ó§O¤ÏŸ?ÿäÉ“*T(ÊÎMµÅ Aƒºuë&„ˆŽŽ0~cVVÖœ9sBCC+Uªäçç7tèÐ?þøCK+ªA•óáý÷ß÷ôô¬P¡BÆ §Njª’Í·”¾]»vµiÓF‰£GBüðÃ[öêÕËÉÉéþýûÊÓuëÖI’Ô¨Q#uƒI“&I’tìØ1¡wR 4èÅ_BÄÄÄè×Þbcc½½½kÖ¬ùúë¯ÿõ×_ùfÏ|©Í×¼yk×®õõõ}õÕW•§½zõJIIùý÷ß7VÇgžy¦è»‚%d·àà`kg()¦NoåÛÄjÿL•Íš5K‘––vùòåJ•*…‡‡çää(/½ûî»BˆãÇ+O7mÚ¤ÓéjÕª5nܸñãÇ×®][§ÓmÚ´IyÕßß¿gÏž^^^ÿøÇ?”//¯ªU«Îž={Þ¼yÞÞÞÎÎÎQQQÍš5KLL9r¤$IaaaÊÛgΜ)„h×®]BBÂôéÓCCC…ß|óºónݺ)cbb7n,Ërvvöj=«V­ªU«V… Î;'ËòöíÛ&MšôÆo9::~ñÅÊN6nÜèèèX­Zµ‘#GŽ=ºzõêÁÁÁBˆµkךª¢ýû÷¿Ô¡C!„Zc¿þú«âµ×^Sž*!lÅŠG޹sçά¬¬ÏOOÏÈÈÈ73Ó§Nzûí·…‹-JII1~o\\œ$I;v|óÍ7»víêèèØ¼ys­ ½AýýýkÖ¬)„èܹó´iÓÚ¶m+„hÓ¦M^^žAƒšo)}ÙÙÙS§NMJJÒOT.RÏ›7Ï`ã•+W !’““•§£FBH’tóæM%¥I“&Õ«WWò£žT§NJHHB,X°@©=ÿàà`øøøE‹)ã ”3ܘùR›©yóîÝ»'IR\\œ~âçŸ.„øòË/·¯X±â­[·Ö¯_¿|ùò}ûö=~üز]©,øá¶ÛßzÇâg·'ìAù eYž?¾"11QyI?p|üøq@@€¿¿FF†òjFF†ŸŸ_`` ò›¤ÌáHHHÈÍÍU6ð÷÷WÃ8Y–•q~aaaOžœššªÓý{Xù­[·Ô—´øúë¯gΜ9räÈ!C†!Ž;vñâÅÉ“'»¸¸(T¬X1>>þÒ¥K©©©©©©ééé&LP:‡”œ3Æü!^~ùåIFêÔ©cþ]qqqiii'NœHLLìØ±ãÑ£G§OŸ¨„¹–ÑÒ¦888(K ¥§§+)+W®ÌÈÈðõõÕÒ ÚTÉÕĉÕ÷Μ9ÓÍÍmýúõúù1ßRæË²gÏž-Z9räƒ> 2xµfÍš5RÆíݹsçôéÓãÇwuuMIIBìÛ·///¯sçÎZ*<88ø¥—^R;::6nÜøÁƒ¦66Uj35Ÿ““óµij•º»»ëÈÃÃCm#iiiyyy ׯ_ÏÈÈøøãûí·nݺݻw¯°»‚˜À^ètº+VDEE3Æ`šêÅ‹…ÊàE•2bìâŋʘ³ƒ jd#„P ãE•*U<¸cÇŽóçÏ_¼xñÌ™3Ú×X9{öì+¯¼½téR%åüùóBˆ¸¸¸¸¸8ƒ¯\¹¢Œ{kÒ¤‰~zSJGݪU+ƒÄãÇ_¹r¥À6jÔ¨Q£FãÆ{òäÉ×_=~üø™3g¶hÑâ¹çž³ ™´´…)...K—.8qb@@@ýúõ£¢¢:uêô /(. lí *„¨_¿¾þ8NWW×_~ùEó-eª,W®\=zô·ß~´sçÎvíÚå»YllìÂ… ïܹ£t¾¶oß>::Z ÷ìÙ£Ó锑R†1¨ÌOy1Uj35ÿàÁeXj¾dYV*Ù``eff¦ÂËËËø-{öìqvvV_~ü¸GÉÉÉM›6}î¹ç^z饖-[FDDhyï;wºvíêáá‘””¤.Ê/÷Â… WÀ®W¯ÞÞ½{ËR쓾ïß¿?hРçž{nذajb… z÷î]¥J•Ž;nٲŲÀQK[˜1jÔ¨ž={nÞ¼y÷îÝÉÉÉ+V¬ IIIñôô´¸4Òét}uæ[*ß|ñÅÇwssû裬öëÔ©ÓüùóSRRû¬šxòäI!DHHH¸ÿþäää¥K—Ž;VMÔÒ㘛›ûòË/_»vmß¾}ÕªU3ÈmåÊ•õ—h9{öì©S§<==•Ù¦?ýôSLLŒúêñãÇ‹·]]]·mÛvõêUýÀQ¡t UªTɲ=¥-nݺ•––>~ùòåÑÑÑ–µ‚)gÏžÍÎÎV£ù¬¬¬sçÎé×¹(¨¥Œ÷ùí·ß¾òÊ+}úôY¾|¹ÁõVc­Zµrwwßµk×áÇ۴i#„ˆ‰‰ÉËËûöÛo;¦ á-v¦Jm¦æß|óÍ-[¶˜Úa×®]u:]½zõöíÛ§Ÿ¾wï^I’êׯo°}zzúæÍ›Ûµk§ÌmR(}Š~~~…Ú,ÃGöÅÃÃcéÒ¥×®]ûàƒÔĈˆˆ:uê$&&Þ¹sGI¹}ûö’%Küüüоn°2Aÿw.))éÁƒæ»a„S¦LÙ¾}ûG}©ŸÞ¸qãŋ߽{WIÉÌÌŒ?~|¥J•"""—,Y¢®?’‘‘Qì X*sWüñÇ9sæ¨÷$B\í~ÎËË[¸p¡N§ëرc¡vËÐãÀîôíÛwõêÕß}÷šR±bÅÄÄľ}ûFDDôéÓG–åuëÖ]¿~}Æ +V,âáÚ¶mëêê:lذþýû׬Yó‡~صkWÕªU÷ïß¿uëÖØØØ|ßµeË–Å‹‡……9::ê/7±téÒ®]»†……õéÓ';;{Ó¦MW¯^]»v­rs¹E‹õéÓ'<<¼oß¾NNNëÖ­3¸xW,OŸ>=cƌիW7iÒD™Ç}àÀ7nLŸ>=**ʲÝ¥-"##4hðî»ï^ºt©Aƒ.\غu«——W¿~ý-h3|}}g̘qðàÁ°°°~øaÇŽ-[¶T—Tèt:3-e°ÃsçÎ?>44tèС/õèÑ#ß@<66V­«ŽŽŽŽ­[·NNN®]»¶©6¥§óÃ?¼qãÆË/¿\\¥ÎÉÉ1UóF篽öÚªU«ú÷ï?jÔ(OOÏÕ«W?|øPY9H1þüwß}÷wÞ1bDµjÕ¦L™ëéé¹mÛ¶cÇŽÍ›7O¹úo~W(ÖžÖmƒìvŠ>ìA¹^ŽGߥK—”‰®ê:޲,>>>>>:uúñÇÕ—ôWÌÉ7E¹¬,—£˜3gŽâ?þe9%%%**ÊÍÍíé§Ÿ:thFFÆÊ•+«V­úüóÏË&–ãQ§ÂPW`IMM}á…ªW¯^¥J•˜˜˜íÛ·ëgoïÞ½:tP–,ñððذaƒ(îueY~ðàÁòåË[¶lYµjU'''Ÿ_|qß¾}¦šCã:ŽæÛÂÌr<²,_½zuðàÁ~~~+V¬S§N\\œºÂŽöV(°A•SRRž}öYºuëNš4éÑ£Gùžæ[Je0îVßœ9sLVQµjU5E¹ãðáÃõ7Ó_Ž'//¯_¿~îîîJV{õ꥿ñ€¼½½ó=œùR›©y-îÞ½;lذ   ooï.]º¤¦¦ª/)§èÒ¥KÕ”¤¤¤fÍš¹¹¹y{{·k×nëÖ­we Ëñh'É–öÒÔ .X;@‰0uzK’$¬øe"ñUfÒõëןzê©¢÷›B_@@@ãÆ‹x érdžKmÁ·ÝþÖs©l™ñT°#€bò÷õS¶‡À@1àJ1ìJll¬rÿ=»bŸ¥†G gÙ²eÖÎ¥†u°Ž#4!p€&ŽÐ„Àš8@GhBàM  #4!p€&ŽlYBB‚ôwM›6]¹re^^^¾Û888Ô­[÷•W^9tèù]©úõë—ïÑçÌ™ãííݰaCkWCñèÞ½»µsñ_­[·7•ÕÞ½{—üXÑO?ý$IÒºuë¬ØîU Àú$!ÉB.¹ý¿üò˵jÕBȲüÇ$''6ìÂ… .4ÞæÑ£G§NÚ¸qãúõëÿ÷ÿwøðáùîJ_ãÆzöìÙ3fDGG9Òj5[ö´iÓ¦}ûö3gÎ,ú®•ÇG;wîœ9sêׯ_je18¨~~Jî(åŽ{÷¦L™’œœ|ûö툈ˆ ´hÑ¢ÀwŸÙÙÙ...¹¹¹ú›y{{gddX»ˆvŠÀ€í=zt«V­Ô§7nÜOLLœ4i’O¾Ûœ?¾[·n¯¿þz«V­4h`jWf¤¥¥ !fÍšÕ¾}{kW@YqìØ±W…ìÙ³G}|ãÆM›67®4‹cpPýü”ÜQÊ…ÌÌÌÈÈÈ+W®ôêÕËÛÛ;))©S§N»wï6ß#›ïéqùòåÜÜܨ¨¨ÀÀ@5ÑÍÍÍÚE´_ެLén,éNG}>>>/¿ürbbâéÓ§ÕÀÑ@ݺu׬YÓ´iÓÿùŸÿ±ì2Ÿ,ËBggçÒ)Tž• „(Q]vv¶™m"##[µjõå—_æäävÿƒ êÖ­›"::: @I<|øpçΫW¯^£FÎ;>|XÝ> `üøñG 3ÞaVVÖœ9sBCC+Uªäçç7tèÐ?þøC}511±Q£F®®®^^^Í›7ÿì³Ïô÷T6{ôèQË–-srrÌ4Gãµkׄ“&MRž6lØP™“®wïÞupp|ØÙÙY§û÷÷ù­[·„>TßÞ¬Y³ºuë*•^¥~ýú999))íÛ·ß¿ÿÇ+W®¬dlâĉê{gΜùᇮ_¿þå—_V;vñâÅÏ?ÿÜÅÅEI©X±b|||\\\jjªRËÔ¬Y³Q£FÊH¸;wîœ>}úã?ŽOIIéÞ½û¾}ûòòò:wî¬eWÁÁÁ/½ô’òØÑѱqãÆ;vì0ÞÌ|Y4h`¦æÍÓ^í¶ ÆÜæä䤧§/\¸PéGTNª1cÆL:ÕT&M5w×®]M<''gË–-¦vصkW%çîîîúéjÑ %---///!!AÆðÍ7ߌ?¾[·n§OŸVö‰RFà X6¯Å`BLÉÍÙ¿¿Æ©Ð®^½*„ПΩ}Vµ¾‹/ ! /*C÷.^¼¨DZ!!!¦¦P¸¸¸,]ºtâĉõë׊ŠêÔ©Ó /¼P¡B!D•*U<¸cÇŽóçÏ_¼xñÌ™3ƒ2ÕhU¡.Æ)ªúõë+»U¸ºº†„„üòË/úÛ(=CqqqqqqY½råJQG!DllìÂ… ïܹ£tÖ¶oß>:::%%E±gÏNסC-ûQ.ѪLÍü(°,fjÞ<íÕ^` jÌ­26´I“&úéæ'2›jn3§Üƒ”ñ»ù’eY)¦ÁˆÒÌÌL!„———–¶Ó·gÏgggõƒ~ôèѨQ£’’’† Rؽ¡èÀ¤'N(‹¸Y–…Qÿ¥ʨt<==ÍìaÔ¨Q={öܼyóîÝ»“““W¬X’’’âééÙ£Gäää¦M›>÷Üs/½ôRË–-#""бt:݃ôS”PcáÂ…Æk›×«W¯ˆ‡ëÔ©ÓüùóSRR}Ôkˆ Bœ:uêÙgŸUOž<)„ )ðí·nÝJKK :tèСCóòò–-[¿|ùòèèèäää¥K—Ž;VÝÞ‚iળgÏfgg«ýaYYYç΋‰‰1.NåÊ•Ÿþyý7ž:uÊ|ø«E«V­ÜÝÝwíÚuøðá6mÚ!bbbòòò¾ýöÛcÇŽ)£N‹‘ù²˜©ùbYÃ\±ÿ~í-h>·ÊÔãŸ~úI¿½Ž?næè¦šÛLÁß|óMó—ªu:]½zõöíÛ§Ÿ¾wï^I’ »†yzzúæÍ›Ûµk§LR(—Êt”>–ã`MJ¤¨„Œ ”,9/^0`€$I3fÌ(úÞ"""êÔ©“˜˜xçÎ%åöíÛK–,ñóóÓr“º .´hÑbñâÅÊS%2prrRf“èÿ¬&%%=xðÀ|Ÿ‰‰‰êÓ9sædffÜi°qãÆ!!!‹/¾{÷®’’™™;~üøJ•*±®œœœÚ·oŸœœœššªŽ‘‘‘•+Wž7o^-X$Ò|YÌÔ|QªOc *G1ŸÛˆˆˆÀÀÀ%K–¨«Þddd¼÷Þ{fŽnª¹Í\¹Tmвý°aÃ~ýõWeZâÏ?ÿLJJêØ±£þbIZ¸¸¸Lš4iøðájÇ|^^ÞÂ… u:]ÇŽ‹Rí°=ެCíhTž*¬;~øá‡ÊïÜãÇOŸ>}ðàÁ'Ož,[¶Lÿ¶1«X±bbbbß¾}#""úôé#Ëòºuë®_¿¾aÆŠ+øöÈÈÈ ¼ûî»—.]jРÁ… ¶nÝêååÕ¯_?GGGWW×aÆõïß¿fÍš?üðî]»ªV­ºÿþ­[·ÆÆÆ6«¾¾¾3fÌ8xð`XXØ?ü°cÇŽ–-[ª ò)t:ÝÒ¥K»víÖ§OŸìììM›6]½zuíڵŲˆtllìW_}%„PGGGÇÖ­['''×®]ÛT—•ÒÓùá‡Þ¸qCOÌ—ÅLÍå úÚ¶mk¾ Žb&·ŽŽŽ‹-êÓ§Oxxxß¾}œœÖ­[g~íLSÍ““cªàþYòÚk¯­Zµªÿþ£Fòôô\½zõÇ•u…„óçÏ÷Ýwßyç#F˜ßOµjÕ¦L™¤TŶmÛŽ;6oÞ¼¢Š€…¬=­ÛÙí}؃rwzkY|Ñ`I’‚ƒƒãââ|¸þfúËßäååõë×ÏÝÝ=""BÉj¯^½ô70`€···©#š)‹™š78¨Ár<Ú«Ý| ¥Àšß»wo‡”õk<<<6lØ L/Çc¦¹Í\‹»wï6,((ÈÛÛ»K—.©©©êKÊGiéÒ¥O¤¤¤fÍš¹¹¹y{{·k×nëÖ­Ú³¡Ëñh'É–^΀)!!!.\°v.€ÁémÛ7n¬ôö¡¼»~ýúSO=e¦K›æVYðÍf·_†\ªÀÏGŠŽÉ1ЄGÀ¿ÅÆÆj¹lÍ 8þmÙ²eÖÎJÍ p©&•µuõ€u8@GhBàˆüéßÎÚye“cð_¦bDýtõqÀÞ8â¿”þEƒÐP}jü°+ŽøõÚt¾¬;`MŒq„¡|D¢F@àMaH˨š¹Õ@8"_ƒ‰Q~%$$HçááÑ´iÓ•+Wæåå廃ƒCݺu_yå•C‡™ß•ª_¿~ù}Μ9ÞÞÞ 6´v5€€€îÝ»[;ÿÕºuëððpSYíÝ»wÙÉýôÓO’$­[·ÎÚ`r òaÐÅH#Š—Æ“©ÇÕ¾üò˵jÕBȲüÇ$''6ìÂ… .4ÞæÑ£G§NÚ¸qãúõëÿ÷ÿwøðáùîJ_ãÆzöìÙ3fDGG9²TêµL;yòäܹsSRRîß¿_·nÝþýûÇÇÇëtEú rtttttT=ztîܹsæÌ©_¿~©Êà úù)¹£”÷îÝ›2eJrròíÛ·#"",XТE‹|·ÌÎÎvqqÉÍÍÕOôööÎÈÈ(ì®P aÈx9âA±+ð|*Þ¿TFݪU+õé7ÂÃÃ'Mšäãã“ï6çÏŸïÖ­Û믿ުU« ˜Ú•iiiBˆY³fµoß¾D+³ì»téRLLLnnn÷îÝëÔ©³sçÎ &ìÝ»÷«¯¾*Ên÷ìÙ£>¾qãÆ¦M›ÆWšå28¨~~Jî(åBfffddä•+Wzõêåíí””Ô©S§Ý»wçÛ#{ùòåÜÜܨ¨¨ÀÀ@5ÑÍÍÍ‚]¡8°;>>>/¿ürbbâéÓ§ÕÀÑ@ݺu׬YÓ´iÓÿùŸÿ±ì2Ÿ,ËBgggk÷ߞܹsçêիרQ£sç·V·?~üÑ£GÃÂÂÂÂÂŒw˜••5gΜÐÐÐJ•*ùùù :ô?þP_MLLlÔ¨‘«««——WóæÍ?ûì3ý=;vòäÉîîîÎÎÎÍ›7ß²eKNNδiÓBCCÝÝÝÛ¶m{öìYýl¼ÿþûžžž*ThذáÔ©SŸÝ£G:uêT«V­S§Nßÿ½©ÚصkW›6m”¨Q1zôh!Ä?ü`°e¯^½œœœîß¿¯<]·n$I5R7˜4i’$IÇŽB´mÛVév4hЋ/¾(„ˆ‰‰Qk[qàÀØØXooïš5k¾þúëýõ—©š)‹©š7>¨šŸÂV»™Ì·hæk~ïÞ½;vôòòªW¯ÞäÉ“M5_Ímþ”3oíÚµ¾¾¾¯¾úªò400°W¯^)))¿ÿþ»ñÆJàøÌ3Ï}W( 2Š[pp°µ³PTB¦À>Ëé­åd*®nÖ¬YBˆýû÷ë'þùçŸ5jÔppp¸~ýº©m£FB\ºtÉüfÆN:õöÛo !-Z”’’"Ëò¦M›t:]­ZµÆ7~üøÚµkëtºM›6)Ûûûû÷ìÙÓËË+ àÿø‡ñãââ$IêØ±ã›o¾ÙµkWGGÇæÍ›+/Íœ9SÑ®]»„„„éÓ§‡†† !¾ùæuÏ^^^U«V={ö¼yó¼½½£¢¢š5k–˜˜8räHI’ÂÂÂÔkÖ¬)„èܹó´iÓÚ¶m+„hÓ¦M^^žòj·nÝ”-·oßîìì0iÒ¤7Þx#((ÈÑÑñ‹/¾0ÎyvvöÔ©S“’’ô•‹ÔóæÍ3ØxåÊ•Bˆäädýú—$éæÍ›JJ“&MªW¯®ä'&&¦qãÆJm'$$!,X Ô¶¿¿pp°‡‡G||ü¢E‹Z·n-„È·b ,‹©š7>¨šŸÂV»™4>ŠùÜnܸÑÑѱZµj#GŽ=ztõêÕƒƒƒ…k×®5.¸ùæ6sÊ™wïÞ=I’âââô?ÿüs!Ä—_~i¼}|||ÅŠoݺµ~ýúåË—ïÛ·ïñãÇ–íÊb|³ÙÀo½eˆŠŸ œLŽ0¥œŽýû÷Ÿ:uêÔ©S§L™òÚk¯=õÔSBˆ1cÆèo“oDøî»ï !¾ÿþ{u3cÑÑÑùzÓ¦Mên?~àï‘¡¼š‘‘áçç¨üFúûû !rsswuÿþ}GGÇ×^{MM2dˆ···øggg+/ݽ{W§Ó9Ryêïï_¡B…sçÎ)O,X „ {ò䉒-„ÈÌÌT³¡ÏMžzôÈÏÏÏ××÷Úµkʫׯ_¯Q£†™ÀÑTs›/¸y?ÿü³büøñú‰;wîB|ôÑGÆÛÇÆÆº¸¸T©REýL…††=zÔ‚]YŒÀQ;Æ8B¦È \Ó¿t«ÓéBBB¦M›¦e¶$Ò0žU­üúš—ššzùòå¥K—z{{+)ÞÞÞJ×ã‰'”k¸¾¾¾o½õV¾ƒá$I:pà@zzºŸŸŸbåÊ•JçœâðáÃÎÎÎê å[·n !>|¨¾½Y³fuëÖU+½JýúõsrrRRÚ·o¿ÿþ‡V®\YɨĉÕ÷Μ9óÃ?\¿~ýË/¿¬&;vìâÅ‹Ÿþ¹‹‹‹’R±bÅøøø¸¸¸ÔÔTýKÒÆöìÙóü#--íÃ? 2xµfÍš5R†¯Ý¹sçôéÓüq|||JJJ÷îÝ÷íÛ———×¹sg-üÒK/)7n¼cÇãÍÌ—¥AƒfjÞ<íÕ^` jÌmNNNzzúÂ… •~Då¤3fÌÔ©SMeÒTswíÚÕTÁsrr¶lÙbj‡]»vUrîîîáá¡Í@ZZZ^^^BB‚2Pá›o¾?~|·nÝNŸ>]Ø]¡8Â",S¨a°Z6Ö¾ÃÏ×ýû÷kœ màêÕ«BýÉžÚgUë»xñ¢Â`ð¢2tïâÅ‹J¤bj …‹‹ËÒ¥K'NœP¿~ý¨¨¨N:½ð *TBT©RåàÁƒ;vì8þüŋϜ9c0(SV…Jàbœ¢ª_¿¾²[…««kHHÈ/¿ü¢¿Íùóç…qqqqqqY½r助ÀñÊ•+£GþöÛoƒ‚‚vîÜÙ®]»|7‹]¸pá;w”ÎÚöíÛGGG§¤¤!öìÙ£Óé:t蠥ΕK´*S3? ,‹™š7O{µØ‚s«Œ mÒ¤‰~ºùÙǦšÛÌ)÷àÁeün¾dYVŠi0¢433Sáååeü–={ö8;;«/ <øÑ£G£FR&PjW(ŽŠ‡ö¿6$mËñ”…?_Nœ8¡ L,â~dYFý—J(£NÐñôô4³‡Q£FõìÙsóæÍ»wïNNN^±bEHHHJJЧ§g=’““›6múÜsϽôÒK-[¶Œˆˆ(ÆJÐét<ÐOQB… ¯m^¯^½|wòÅ_ >ÜÍÍí£>}úÝ»w÷ìÙ­t8Hã|öËbªæMÍÇ/¬ÇkoAó¹Ý»w¯0:Í ;¡[mn3WÎgS|||ÔU7oÞB¨]¡ú”‹éúž{î9!Ä™3gX¨]¡8B+®VÃÞ¤¦¦îÛ·¯OŸ>E\§Z¡\“=uêÔ³Ï>«&ž>~ùòåÑÑÑÉÉÉK—.;v¬º½ÓÀUgÏžÍÎÎVûò²²Î;c\œÊ•+ë/¦söìÙS§Nåþ~ûí·¯¼òJŸ>}–/_npÙÑX«V­ÜÝÝwíÚuøðá6mÚ!bbbòòò¾ýöÛcÇŽ)£N‹‘ù²˜©yeFKÑíß¿_{ šÏ­21ù§Ÿ~Òo¯ãÇ›9º©æ6Sð7ß|Óü¥jNW¯^½}ûöé§ïÝ»W’$ã5ÌÓÓÓ7oÞÜ®];eJBéSôóó+Ô®P:XŽòqñâÅH’4cÆŒ¢ï-""¢N:‰‰‰wîÜQRnß¾½dÉ???-ë_¸p¡E‹‹/Vž:88(‘“““2›DÿG7))éÁƒæû„ÌÈÈÈHLLTŸÎ™3'33ÓàNƒ7 Y¼xñÝ»w•”ÌÌÌØØØñãÇWªTÉ`‡²,¿ñƵk×þôÓO Œ•Bµoß>99955U ###+W®\ízÏËË[¸p¡N§ëرc¡v…Òa =Ž6lX¿~}ZZZ¥J•ž}öÙÉ“'ëOÎ2ãÒ¥K±±±ëׯ7^5­W¯^§N2Hôöö>pà€µ‹[²èS„ÝúðÕ§ÇŸ>}úàÁƒOžÙÙÙ›6mºzõêÚµk‡ž;wîüùó¡¡¡C‡5x©G]ºt1ÎCll¬²^8:::¶nÝ:99¹víÚ¦ú™”žÎ?üðÆúóx d¾,fj¾(Õ×¶m[ó-hp3¹utt\´hQŸ>}ÂÃÃûöíëää´nÝ:ƒë¼›;''ÇTÁ=<< ü³äµ×^[µjUÿþýGåéé¹zõê‡*ë !æÏŸÿî»ï¾óÎ;#FŒ¨V­ZBB”)S‚‚‚”ÂnÛ¶íØ±cóæÍS† ˜ß¬ÀÚÓº‹jÉ’%ÁÁÁáááÆ {î¹ç‚ƒƒ{õꥮS`Þ¬Y³‚ƒƒ?nüRÓ¦MúþÝÀµì¶\OÑ/pÙÖå±såt9ó‹/¬³#IRppp\\ÜÁƒ »+}úËñ(<Ø©S'ŸN:ýøãêKúK$æëêÕ«ƒöóó«X±b:uâââÔ¥^RRR¢¢¢ÜÜÜž~úé¡C‡fdd¬\¹²jÕªÏ?ÿ¼ñž• —+W®TSæÌ™#„øã?ÔSRRž}öYºuëNš4éÑ£Gùf255õ…^¨^½z•*Ubbb¶oßžoοþúkS?@sæÌ1UX!DÕªUÕå®âÇ×ßLù›¼¼¼~ýú¹»»GDD(YíÕ«—þÆ ðöö6U½fÊb¦æ j°öj7ß‚G)°æ÷îÝÛ¡C¥ÅÃÃcÆ Âôr0`€™«K™™™?ÿüó·ß~»víZ!„qcfffÓ¦Mccc—.]jA®BBB.\¸`íº±P=ŽtIÚ¹b9½5N—æ<+}7.â-¤QF\¿~ý©§ž2Ó¥Ms«,øf+׿õEQ¾Ç8®_¿>//oܸqJÔ(„˜:uª‡‡ÇÖ­[Í :éÒ¥Kÿþý•¨1_W®\ÚÖf³1Z‚Bn?ˆ¢“µýP5jÔÐ2(”ò=ÆñÈ‘#êˆ]…££c›6m¾ýöÛÔÔÔÈÈÈ|ß5wîÜÇ !Ö¬YsðàAã ÒÓÓ…Ê’§0…®GìM9eYNKKóòò2XTYôõêÕ«¦GåFOBˆÝ»wç»8þþûﯾúê¹sç*UªT¯^½#FÏ¡±sÄŽ€‰µÃ‹-v‹æ†ÊqàøðáÃÜÜ\ã5Ôµaoß¾mñž•qÙï½÷^@@@Ë–-ûí·Ý»w§¤¤Ìš5«OŸ>Zö`¼0›-„Ptäš5`c–-[fí, ôÐÜÚiYoÕN”ãÀ1++Káêêjîææ&„¸wïžÅ{þý÷ß]\\&L˜ ®@qðàÁ#FÌ›7/::Úx{cå1L¤û€|ÿ¬Ûm(YŽ'ÇxzzJ’d|xåfïI•¯Õ«W?~\ݲ¨¨¨W^y%++kçÎÖ.·uHBÒÿ§$*ŽÆéÀ&•ãÀQ§Óyxx÷,*·*RçY—fÍš !~þùgk—Û:”ÎHYÈê?%LTŸªÛ[UŽG!„Ï­[·”HQuùòeå%Ëö)Ërnn®ñj>Êí*W®líB[Ú¿hü—¹°å;plß¾}nn®þíÏeYNII©R¥Š–Û¿æ+==½^½z4H?v옰Ý1 #?ý¾ÆÂ¾”wå;pìÝ»·ƒƒÃû￯ŒkB¬X±âæÍ›={öTï@ÿàÁƒË—/+w‘×Âßß¿I“&‡VnÓ¤8vìØªU«jÔ¨ñüóÏ[»ÐÖQŽgU !jÔ¨1yòäùóç¿ôÒK­[·NOO?tèPýúõ‡ ¦n“’’2~üø   Í›7kÜíÛo¿=dÈ·Þzë‹/¾ üí·ßŽ?^©R¥wÞyÇÅÅÅÚ…¶2ý…xèkÀ®”ïÀQ1xðàªU«nÚ´)99Ù××wÀ€ãÆSVä±Xݺu¿úê«Å‹ÿðÃ/^¬]»v·nÝÆŒãëëkíâZ$ýçò´,$ñŸ‹Õ²`&µ²Õ€I²LQ1+_7>W'G°™$™ß„®G€ý(_¿õŨ|qDO¡DÔ€] p´wÄ|@#GhRî'Ç P ®M+ó£—f¤#p´/ú· 4H,¯ÌâRµÝÉ÷î/‚¨„ÀB5 !„Þ%lSíšzç@kg”LޱGúñ¢:-ÆÚ™e£2ˆà Ä¥j{D˜,@àˆ"# À>8@GhBàM  #4!p´_ÜŸ #4!pD‘Iܱ»@àM  #4!p€&ŽÐ„Àš8Ú)Vÿ…Eàˆb ™¥°yŽÐ„Àš8@GhBàM  #Š+ò`ó  £=â¶1ÀŽÐ„Àš8@GhBàMQlXÊÛFàM  £Ýaõo`GhBàM  #4!pDqb)Gl#4!p€&ŽÐ„ÀѾ°ú7°#4!p€&Ž(f¬È€­"p€&ŽÐ„Àš8¢D0ÌÛCàMQ"˜[ €í!p´#Ü6…ÎÚ€-0è\T»Ó­S`9G5RÔ ÕÇôt`¸Tâ! 9ßqDØ G” ¢Fl #Js«°%Ž(~ùÎŒå#Š/*—§énÀÆ0«ÅÉ`D#°%ô8Ú‹R˜§B˜€m#pD‰à:5¶‡Àš8@GhBàM  #4!p€&Ü9ÆIR~ (ÊÿN—e–é– p´Q²‰ÄR\“[YœÛÉ`3¸T M  #4!p€&ŽÐ„Àš8@GhBàh‹ds/IB’Jsp`+íLéFŒÊÍc¬]fP<¸å -’Lw:Ê‚{ËÐãhgèþ–"p€&ŽÐ„Àš8Ú&ÆK8Ú&ÇK8@G”,ÖÀf8@GhBàM  #4!p€&ŽÐ„Àš8@G”8n€m p€&ŽÐ„ÀšØKà¸aÆ޽{‡‡‡·jÕjúôéwîÜÑøÆK—.…„„œ8qÂÚ%°2»ßzë­_~ù¥iÓ¦nnn7nüÇ?þ‘••¥å½Ÿ~ú©µ³P&è¬wáÂ…+Vøøø$%%U«VM1wîÜO>ùdÑ¢E3fÌ0õ®ÌÌÌŸþùÛo¿]»v­µKP&Ø~ãúõëóòòƧDBˆ©S§zxxlݺ5//ÏÔ»ºtéÒ¿¢F•í÷89rÄÁÁ!&&FMqttlӦͷß~›šš™ï»æÎûøñc!Äš5k|˜››ëééiîáá!„¸}ûv 7$$Ä åÂ… Ö® ` ãŸu»eã£2uÚÕÕÕ ÝÍÍMqïÞ½:.a"6ÃøgÝnCIŸãéé)IÒÇ Òïß¿/þÓï-lš›%#™ 2Yâ6À!ôâÅæP›Š%:.aû¸T ÀßÈ\¼L pØ IiV5±#/GÛÁ$ePüûZ³™kDz¬jdr  cöç?÷ª63œÑ Óñß™þûF#¬FYÊÑÚ¹`kŠýö€òþ[@/&`èqØ ¢Æ#ABE@Eà°Dæ·—ôVy ¶AÒûï¿ßxD¹®€å# ÐÞç÷ßu¼ÍÜ«ºðX Ž€òÂÜKåš²,„ĬjØ7fU@G@ùVª£YŽöÀPŽ1g(Mް&ÖPD@)#p´ܨ”4G@¹Dw#PúXŽ“ Ó°ì# ü)îFãCï¢â@¹Ã¥jhBàh ˜˜ À®0º°.UÊÉÄc¥†ÀÑv°"¦~»•ÝîFYÎ7œ-£¹,BàX.\›V—Ñþwz¹ú–R2OÈ  Ü“$ÙhÞ =£°1Žå˜A°¥>eÈ#[Uv»ûÀä˜rI²©›õIÄ d8–cúW¨•îF®ù°ae½»‘õa¸T °>I2w­D&&ÊGA_#€rÏtt(ýýAý²“ò›Ø.U—cJ°¨\­Vç&3€­‘$%“ËlÈØ ÇòM¿£‘¨€­*ë£ÿCfýØ:ÇrL™[m>¥\ ä \ p”m Ê GŠ W«aÛ˜U (Û$©|,‘¨w¯jbGØ*GŠƒÞj<åe6PX\ª.÷XÁ”GŠ#a«  #4!pD™Ààl W«a“˜U (Ûô–¹`]Ž€²Mo™›òEf]Ø.U@z(~Zî"Cg$ÊGŠ™þj3W«¹r‡KÕå·¥†À€ĺ<°%ŽÐ„Àek€°Ut:Âf8@GJް ,Ç(=&ƒ§òyoÀÞ8Âj$ÉèDþob9½Ã€åûÙ¦7(aU²‰~CØn] ÀÇrŒÕ¿ØI!ñ÷"P8@.UPü¤B¦å#Àš$[\ªÆÌ("†9¢\ãR5¥Çö¢dØG€ÕÐý”/\ªF™$ ýûV3y€²€G”IÒƒE¢F6†«Õ(¿èqDÅ*•€Íã:5Pî8J•”ïc;»Ë(w‘A9EàX^Ñ! --­R¥JÏ>ûìäÉ“«T©RÄ·ôêÕëÔ©Sïòöö>pà€µ‹kGˆ(SÊ}à˜˜˜¸|ùrWWצM›¦§§oܸñâÅ‹Ÿ|ò‰‹‹KQÞråÊý7zzzZ»¸€rO2ñØ:£ *ßã… V¬Xáãã“””T­Z5!Äܹs?ùä“E‹͘1Ãâ·dffÞ»w/66véÒ¥Ö."Ø®S ӳ˅^:P•ï1ŽëׯÏËË7nœ !¦Nêáá±uëÖ¼¼<‹ßråÊ!„Aw#J¿*ìSdP¾”ïÀñÈ‘#111jŠ££c›6mnݺ•ššjñ[ÒÓÓ…~~~Ö.غr­޲,§¥¥yyyyyyé§ !®^½jñ[”Àñ÷ßõÕW›6múì³Ï¾þúë'Nœ°v‰¬©q|øðann®ñ„!ÄíÛ·-~‹A¾÷Þ{-[¶üí·ßvïÞ’’2kÖ¬>}úhÉ[HHˆAÊ… бìÜ6l·,ûŒÖíV9³²²„®®®énnnBˆ{÷îYü–ßÿÝÅÅe„ ¯¾úª’rðàÁ#FÌ›7/::ºFæ­xÃD° „G(§ŒÖí6”,Ç—ª===%Izøð¡Aúýû÷Å:-{ËêÕ«?®FBˆ¨¨¨W^y%++kçÎÖ.7”i’éÂè)L‘AyQŽGNçááaܳ˜™™)„P'Mñ-ªfÍš !~þùgk—Ê:ÙÄ?ñ÷ÇÊr8 !|||nݺ¥„}ªË—/+/YöY–sssWóqttBT®\ÙÚ…¶7ªl שP¾ÇöíÛçææîÛ·OM‘e9%%¥J•*ááá–½%==½^½z4xã±cÇ„i”I’$I’$ýç±$IÿMÊ’ò8öîÝÛÁÁáý÷ßW) !V¬XqóæÍž={:99))<¸|ùòµk×4¾Åßß¿I“&‡Þ°aƒz cÇŽ­ZµªFÏ?ÿ¼µ åÝe!Ëÿ} >ÊI.ççåªU«æÏŸ_³fÍÖ­[§§§:t¨^½z«V­R×ÜINN?~|PPÐæÍ›5¾åüùóC† ¹yófýúõûí·ãÇWªTéƒ>hÑ¢EY )éYÕæ—ã‘$Éä‹’°¬ÅKŸB,9”GùƈƉ)’$™Œ“$ ªÊì> Ñ‹hi>QÒJá·¾l*ß=ŽBˆÁƒ/Z´( 99ùöíÛ øä“OŒWj,Ô[êÖ­ûÕW_uëÖíæÍ›Û¶m»wï^·nÝ6oÞ¬%jÀ<Ã9C\FùÁŸ2ÅÇbÙ'=Ž@9U`çb¾‰e¶w°œî%G”vrÛYÈL¬ L!p” ¦Å¶„Àš8@G@Iá:5`ctÖÎÀ¦È_§P2½€r‡ÀPÌÔ GÀÆp©e+òåQ#`{  c9c'«(ïènlc(«d™ÙE(S(»ò ý káR5 ˜q°UŽ(Ó˜X À®I߀(S  # 8q°aŽ”]2SaP–0«Ph’¶Wézl #À¦–‰Ñ¿Q5Ã¥êò„ÛÆ€âj5ÊG”u¬È”L‹l#eŽ(#Å€îFÀ09€²J–õ;ét„Õ8PVI’,ÿ·'—n]X—ªEE@Ø G”L¬Á”Ž€"¡»°Žå]nÀºËnvޫհ.fU—Jw#·Pv°L `‡…¦þ ËÇÒ'Sí°Ç2ÊÔˆFýtzXá `oË(eýÐÐø©µóhå ¥ŒÀ±ì2*)!#!ØíãJù…@ !p,ÓÔ…¯Õ0ÑÎ{Ýì¼ø@™Âuj«Ð2ºÔ¾.H¡t±O9 *q€`]X cù .ÇcíŒXq3PFÐÝØ'.U—úW« ›€µ8–ijȨƋvÕå¦eM"ÁôoHmðWš$ý7Œ4(e™?ê¬IfhJc™F¿ë2‚˜Š%º&­Fc1?*( Gl„™~b5( &Ç \b5G pÅ€GhBàÈÝåëò „8@&Ç”]L©6Õ"*°GJÝ€Yyĺ<( Ž`¿LEÒßç瀂Àð7tSÙu‘vI–ÿ¶¸¦,K’Ä"í°#¶H Q|˜ƒrŒÕ(MŽ€ÿâ:53Ë(æ €²†1Ž€£»±¼ûïØÆ5¢dÐエ±ü“õþým&5P|Q¾1?€RCà »€&ŽÐ„É1eSª”ÉÄcØ2Y6ÓÖüöÀ<G”{Ê0GBm °ôïFÍçÇ®˜¹G9`—ªÀ®5ÐŽG+“ò]1AÜ„¾°”¹Õô;…BÔhøA8–rþ‰|´]• ø®±+23ÀRް¬æ˜af@›üŸ ca ÔëÔ„ …Ì °=Ž(¯Lňúé yLáJ% ÐãˆòJ e!+ÿÔDýÇÖÎ#PF5BÐé‹8¢S®M\§VÖt$j€;¢°Q¾ …Ew#‹8ÂF0-,@§# …É1(ß” Óê- ž0@w#ò½W5±#4"pD¹g&Òõ˜BÔ!„ÈïîœЈÀåž~ÔÈRŽ€)D0EÒû¯yœB pDù–ï%i®S@¡¨÷2óíÉåLŽí¡Ó0Fw#´`¢ D£5IB2÷]. &y(P¿ôÚ/D€yŽÖT`ßQ#-Ì_^”éq„fœ-0KÕÖ&YôÌâj5XŒ Ö0ƒÀl]GŠ#lŽQ#,F§#LaŒ#lŠ$é}×É*„ñš·€­"jD1Øù"p„Í‘M<æÏg( bG#p[Ã=Š‹Á5kÉì–°Ž`SˆQÌ÷>rEÇ~8€í0øiÿï0_Y6ò+õ =—‘a7ø‰D¹¥ýG=¿{·Ë†þý"ü›ùoGIïNÖ’©Ó†?Bì#”Zî ”,I"@£µñ,E+;rGGØ bG¥ƒÀvCúïˆ.IHD°1’Þÿ‹þ!ÅŠÀÑš$¥ Œ/öÒEÔ[¢ÿbüu"qm@±"p„Ý… j„máO”æGJp¢Ú GØ IH2cÀPvIÚ^•õžòcŒ²Ãüü-Ø G«Qº¾$>P¥†ßX”yfVWÖéh`-ÖÎPZÑaˆX£u0ÒÎ*”:§—å—§Q–ñÅj'¸T]Ú­Kõ[FAÙÇJ°¢ŸxfgèËFÛHÆ{0ý^”ޥо®2B]J$J™ew¤£Öõß@ÐÌêNÒWÊÕMaœ’Ï[­]@ £пUèÇŽúUà…Q?Ò‘#é¥e]ã¶À±´1“ºì -P–éw4šYâ(ƒÔ?$³käû8ß]¡ì p,YÆ7GVRþ›Îg¢Ôå{Çjƒ ’ÞGXƲ‹ÑÆ Â6È‚BÁ%ÊÇÒ`…¨Oéî² 5F4˜(cjÞŒ ŽÄßiüÜÊù½Q6»õÂ4'l†þX '6³jÊ2Ç’•o,¢ø÷à’ĉ_úôÛ…¾F+¹Ð°€ÃI’$„eåÿ;·œFyVØ;™éŒä·u8–ƒy‚ù1e Ó«íöÆ6åcœÏ]ÕèÐ L”89Q¶ÉùßÑÕ Ñ‚?«ò?Úöc&¬,ÊQøy6ƒÀMÚ°aCïÞ½ÃÃÃ[µj5}úô;wîX;G6"$$ÄÚY0dpåZ óí’´Ï**kŠ¥ŠdÓÿ„Þƒb§?б„ŽÂ)T àà`kg¡L+ô)$If>G'¹¬ùýûãðwjŠe™7>ºñçÚüÇf8æ/11ñ­·Þúå—_š6mêææ¶qãÆüãYYYEÜ­”0Ÿ·ŒPZĸ9ôÃGýãt@#ƒY/…û}’e‰‰°9²øOoº,ÿíŸ(`±qXc>.\¸°bÅ Ÿï¾ûnÅŠÛ¶m{õÕWOž<¹hÑ"Ëv¨†&j÷Á‡Õ©¼Á¬jõ©þõkõûLÝ(ô÷Ç‹fúWôºs{AìX&8æcýúõyyyãÆ«V­š’2uêT­[·æååY¶OýAjë2ží®Dª¾òªšbí\£Œ’ôúÕ\ÿ,§\³þû?Xc>Ž9âàࣦ8::¶iÓæÖ­[©©©ì0ßH‘ĺÌ×ÿßVäQ‡ÚH†q,‚ƒrÊ8:ÔïP,éÁ‘@¹#™þ' &„™`𘩠ßÅ¥†ÀÑ,Ëiii^^^^^^úéÊHê«W¯Z;ƒ(UÿT`j45Ê)?"¿Ñ÷’ÙÐP?:ü÷xWõÁßwk.3ùíVÒö ”/rAsPþ;Ʊ0ûF§©1¥™¯©—PXkƒxðàADDÄ3Ï<³eËýôuëÖ½ýöÛo¼ñÆ!CÌïùŒØ¼ .X; VÀ:ކ”©Ó®®®énnnBˆ{÷î¸û<“lŒñ c¸…Œ1¿£ù•ͼªq‰Gî ˜¿Ó e@Ádzä8òôô”$éáÇé÷ïßBxxxX;ƒ(%ÆSg˜ -ŠeýaÀH½ë"p4¤Óé<<<Œ{333…ê³— ,År<ù[µjÕüùókÖ¬ÙºuëôôôC‡Õ«WoÕªUžžžÖ΀u8šôí·ßnÚ´éäÉ“¾¾¾Íš57nœ²"€}"p€&Œq€&ŽÐ„Àš8@GhBàM ‰ÎÚ°6lX¿~}ZZZ¥J•ž}öÙÉ“'W©RÅÚ™²²K—.ÅÆÆ®_¿>,,ÌøU{®±¬¬¬uëÖ%%%]»v­råÊÁÁÁƒnÕªU¤º{÷îÒ¥K=zíÚµªU«6hÐ >>>00*2výúõ.]º´k×náÂ…ÔªW¯^§N2Hôöö>pàU¤8uêÔG}tæÌ™û÷„ÄÇÇ7oÞÜ`û¬Ÿ¬¬¬Æ›z5((hóæÍv[EŽÅ#11qùòå®®®M›6MOO߸qãÅ‹?ùäkgÍš>ýôSS/ÙsåälÎn ºIDATä¼öÚkÇ÷ððhÙ²å£G~üñÇýû÷3fÔ¨QT‘"33óÅ_ÌÈÈ jÛ¶íï¿ÿžœœ¼}ûöuëÖ5hЀ*Ò'Ëò”)Sîß¿oü’×Ï•+W\\\üýýõ nkÏU´k×®1cÆäåå5lØ0((èÀ¯¾úê‡~Ø®];êG’¤ÐÐPãô'OžüòË/v]E2ŠìüùóuëÖmݺõ7””9sæÏž=ÛÚY³Ž{÷î9räí·ß>~ü¸Áv^cŸ}öYppp¿~ý>|¨¤üüóÏÍš5 ={ö,U¤vÉ’%jÊÆƒƒƒûöí«¦Øy©V­Z¥|Ð&Mš¤ŸnçõsïÞ½ààà±cÇšÙÆž«èîÝ»‘‘‘aaaGURNœ8Ñ Aƒ¨¨¨ÜÜ\êǔŋ‡††ž:uÊž«ˆ1ŽÅ`ýúõyyyãÆ«V­š’2uêT­[·æååY;wVÐ¥K—þýû¯]»ÖÔv^cß}÷âÍ7ßTÿ$ 1bDnn®zÍΫè‡~pqqyýõ×Õ”=zT¯^ýÌ™3¹¹¹T‘êâÅ‹‰‰‰uëÖ5~ÉÎëçÊ•+BƒîFªHµqãÆÌÌÌ#F4iÒDIiÔ¨QllìÍ›7Õëûö\?ù:þüÊ•+‡®^÷°Ï*"p,GŽqppˆ‰‰QSÛ´isëÖ­ÔÔTkçÎ æÎ»lÙ²eË–EEEå»×ØåË—]]]ëׯ¯Ÿ$„¸zõ*U$„ðôôl×®³³³~bÅŠŸýé§Ÿ9r¤šhŸUÄÇ¢’e9--ÍËËËËËK?=88XqõêÕÈÈHkç±´EGG+vïÞmü*5öÑGét†½3gÎ!j×®M !Ö¬YcräÈ‘+W®4nÜX馥Єÿüç?Ï;·jÕ*wwwƒ—¨%püý÷ß_}õÕsçÎUªT©^½z#FŒP£";¯¢Ó§OW©R¥zõêG=vìØÝ»wëÖ­Û¡Cõ2ˆ×±Ï>ûìÌ™3ÿú׿œœœì¼Š‹êáǹ¹¹®…ÊàÙÛ·o[;ƒe5V¯^=ƒ”C‡­X±¢bÅŠJU¤:vìØÆ/_¾|ìØ±:uêÌŸ?_I§ŠŽ?þÿþßÿ0`@TT”òW‡>êGé¼ï½÷Z¶lùÛo¿íÞ½;%%eÖ¬Y}úô±ó*zòäÉ_ýõÌ3ÏÌš5ë‹/¾PÓk×®½téRå:¬=×±,[¶¬Y³fú—Ñì¶Š‹*++Káêêjîææ&„¸wïžµ3XæPcúrss?ûì³ äææ.^¼ØÛÛ›*ÒwáÂ…¤¤$Y–…õëׯP¡‚’nçU”••õÆoÔ®]{âĉ¦6°çúBüþûï...&LxõÕW•”ƒŽ1bÞ¼yÑÑÑ5jÔ°ç*ú믿„iiióçω‰yôèQRRÒ|0vìØÍ›7»¸¸Øsýû׿þuçÎ &è'Úm1Ʊ¨<==%Izøð¡Aº²:†þ¤}(¨1Õ?þØ¥K—¹sçz{{üñÇ;w¦Š ¼üòËçÎÛ¿ÿ”)S¶mÛÖ¯_?¥켊æÏŸíÚµ ˜ZòÃÎëG±zõêãÇ«Q£"**ê•W^ÉÊÊÚ¹s§W‘:zøÝwßíÖ­›§§gõêÕGݽ{÷k×®mÙ²ÅÎëÇÀ_ýµjÕª¦M›†‡‡ë§Ûm8•N§óðð0þÛ"33S¡Î´‚ŠBøàS•Ús¹»»ùå—7n4HWVæ °ó*òóó{áï”u jÔ¨ñ /´iÓÆÎëG‘žž^¯^½¤;vLBµmÛ633Sé|U)+Ȩ˂Úsý¨.\¸pæÌ™víÚe´ß*²ö ä¶à·ß~«[·n§Nþúë/%eùòåÁÁÁ ,°vÖ¬ìÍ7ßÌ÷Î1ö\cyyy:thÒ¤IVV–™Í칊dYîÒ¥KHHÈ÷߯¦œ;w.""""""##ƒ*2púôiã;ÇØyýôë×/88xýúõjJjjjãÆcbbÔ;6Ùs={688¸wïÞ·nÝRRNž<Þ´iÓ›7oR?ª>ú(88ø‹/¾È÷Uû¬"I–ekÇ®¶`ÕªUóçϯY³fëÖ­ÓÓÓ:T¯^½U«VOÔ·+o½õ–r÷wãÁXv[cþùgëÖ­]\\ž~úiãW»wï>`À;¯"!ÄÉ“'ãââ²³³ÃÃÃkÕªõçŸ=zT±`ÁõR¬W‘¾3gÎôèÑ㥗^Z¸p¡~º=×Ïùóç‡ róæÍúõëþöÛoǯT©Ò|ТE ªHñÑG-Y²ÄÃÃ#22òáÇGŽ‘$iáÂ…±±±ÔjàÀ‡Ú¼y³rcvXE޳fͲvlAxx¸¿¿ÿ7öï߯ÓébccçÏŸo¼*¯½Ùµk×Ù³g{÷î]½zuƒ—ì¶Æ.\¸°qãÆœœœ?óS·n]u–ŒÝV‘ÂÇÇç…^¸}ûvzzúÉ“'%IjѢŒ%KZ¶l©¿™=W‘¾ŒŒŒuëÖ…„„<÷ÜsÔÂÛÛ»K—.wîÜùùçŸOŸ>]±bŘ˜˜÷Þ{/44”*RDFFÖ¨QãÒ¥K§OŸ~üø±òkÞ¼9õ£zôèÑìÙ³]]]§L™b0Ôž«ˆGhÂähBàM  #4!p€&ŽÐ„Àš8@GhBàM  #4!p€&ŽÐ„Àš8@GhBàM  #4!p€&ŽÐ„Àš8@GhBàM  #4!p€&ŽÐ„Àš8@GhBàM  #4!p€&ŽÐ„Àšü.â÷dë$ÕŸIEND®B`‚statistics-release-1.6.3/docs/assets/binoinv_101.png000066400000000000000000000704541456127120000223260ustar00rootroot00000000000000‰PNG  IHDRhŽ\­ApóIDATxÚíÝg\çþ÷ñkQ)†"XAb‹•€hlÁ^‚4Hcï5šäXcb9F±õˆÆ†IŽÅcAMìŠ(‚4Ñ‚‘ݽÌùïÍ5+¢3°Ÿ÷‹;×ÌÎþ®Ê—i—J«Õ àïÉ]Ê‚#ôBp€^ŽÐ Áz!8@/Gè…འ‚#ôBpð]½zUõ,+V¬U«Ö|péÒ¥Â˯Y³FZ E‹r×þl%®ð‹/¾ÞØ»wï¬üÉ“'«W¯~ï½÷ªW¯^©R%WW×îÝ»÷Ýw¹¹¹úls[[ÛwÞyç‹/¾¸ÿ¾>o)bÊ”)ro{ò#8A~~~rròŽ;Z¶l¹f͹ËQº?þø£~ýúŸ}öÙ¡C‡îܹóäÉ“¸¸¸}ûöMž<ÙÕÕõ—_~ùÛ5¨ÕꌌŒ3gÎÌ;×ÝÝ=::Zî>(“Lä.€¡ppp033“^gff>|øPñäÉ“1cÆtèÐÁÕÕUQ¥J•:uê!å®÷Ù^k…Ï\yll¬Ï_ý¥k111)((^§¦¦0àäÉ“7.¾BÝ6üø±î@cfffÿþýãââ*V¬ø‚·accó¦¶1ÓÀksåÊÝo›Ã‡žuèСJ•*I³¦L™"w¥¯Ý¬Y³¤ÎöêÕë¥Þøþûïë¶áG}táÂ…‚‚‚;wî¬_¿¾J•*R»»»»nùçm󤤤>úH7kéÒ¥û(‚SÕäѱcÇ=zH¯ãââ¤Å/ò+|i`ffæ¤I“Z´hQ¥J•&MšÌŸ?ÿéÓ§EVûøñã9sætêÔÉÁÁÁÁÁ¡cÇŽ3fÌÈÎÎ.¼Œnýû÷¿uëÖàÁƒëÔ©S£F€€€Ë—/ !¢££X§N·ÞzË××÷èÑ£º÷>ó2DF³}ûv__ßÚµkWªT©víÚ>>>ÿþ÷¿‹—÷bÅW~øðá½{÷J¯§OŸ¾aÆÆ;::>|Û¶mÒ¬ØØØ7n¼xå5kÖܰaƒî Ëùóç?~üX®½ ŒâT5ÙäççK/ô9훕•Õ¶mÛ˜˜iòâÅ‹/^¼páÂÎ;uËœ={6 àÖ­[º–_ýõ×_ݲeË–-[¼½½‹¬3..®U«VéééÒäöíÛýõ×Y³fMž¯¶€€€Âe$%%%%%EEEíÝ»w×®]¯²‰BBB¤U«V9sf‘¹Ý»wïÖ­Û;w„—/_vssûÛŽ7î§Ÿ~BÜ¿ÿøñã;w~•òŽ8ÁÇ7lØ.„011>|øß¾åèÑ£111µk×~çwtç¸wíÚuöìYéunnÔX©R¥Î;wëÖÍÜÜ\‘œœ|¸Z­633Û¼ysÓ¦MõYÊ+nß¾}þüy]vÔÇŋ߾}[aiiyìØ±ˆˆˆ_~ù%::ÚÖÖVq÷îÝùóç_gxxø… îÞ½Û¡C]ã²eË®]»–””¤K´Ò)ìgŠˆˆ^Lœ8ñ×_ý÷¿ÿ}ùòåfÍšIüñG‰·ØÓ§OïÝ»'½vqq)•½ R©ªU«&½¾{÷î‹w“΄ JåÓ”uGrjذañ3ÈÏ[rôèÑÒëúõë·oß^z˜˜(½Ð=•fìØ±ºk5j4qâÄ" è4oÞ¼[·nBˆ *ôïß_j´¶¶;v¬ÂÈÈèƒ>³²²žWØÀ¥SáãÆ“Z²³³srr¤×<(ñÆ)|i¦““Simó·Þz«øú@\ãà )üœ—'OžÜ½{W«Õž={¶Y³f'Nœ¨[·î‹ß^dÝÉeF#½ˆ•^¹nï½÷Þ›1c†âæÍ›ÆÈèÿÿì;-„ÐÕæää¤R©Š4¾€ôq™™™øý÷ßÏŸ?öìÙâ§ÅK@wÓ´¢øS»K,##CzaiiY|î3Ç£ÛÚ ÁÀ²uëV???Ýdzzz``àþýûïÝ»õâ·ëÂÜ3'³³³¥CŠb·ÚèÒa^^Þ½{÷ Ï-²Iád©üüüÏ?ÿüŸÿü§îÙŠffföööþùç+n1SSS[[[éÞé,|q>”>·R¥J•+WÖgµº3ÔÅçÙMP§ªÈÃÖÖVwÑá±cÇžy½þ,--­¬¬¤×iii…gé&MMMíììJ½#óæÍ[²dIAA‹‹ËªU«.^¼˜íïï_*+oÓ¦ô"<<ü™÷©_¿¾­­­­­íêÕ«õYáñãÇu7³·lÙ²Ô·€òà@6…í½úõvîîîÒ‹ƒn×Mºººš˜”þi–U«VI/V®\ùÙgŸ½ýöÛ&&&)))¥²ò?þXz‘””T|lƽ{÷ê÷ žTØòåË¥•+WnÛ¶m©o åÁ€<233uƒ©TªTéÕï–nsBüóŸÿ “&?üðÃÂ×P€>¸ÆÀ(=UQñäÉ“´´4ÝEãÇõcS§NݸqcbbâÇÛµkçççgll|øðai|GGÇ/¾ø¢Ô;eaaaaa! $- å¢R©"""^v̘X²dÉ;3››«ÕjçÌ™3gÎ[[ÛÌÌLµZ--P©R¥°°0ccãlóÇ>ƒogg÷ü£Ô·€ràà ‘8)®M›6ºC¯ÂÌÌlçÎñññ¹¹¹º‘ú„µk×Þ²eË3o"~E*•ª{÷î;vìBäääìÙ³GáââR»víÈÈHQì‚ËhԨѡC‡  Û€ºcœBˆ:uê¬\¹²I“&Ï|ï3·yÕªU÷ìÙ#=Þ^ §ªÈÀØØØÞÞ¾S§NëÖ­;zô¨ž·ÿ­–-[^ºté‹/¾ðóóspp°µµíСÃÌ™3/_¾Ü®]»×Ô—¥K—6jÔHaddÔ¸qã &œ?¾gÏžÒÜmÛ¶ýí(Ò«mÛ¶7oÞ\ºté»ï¾koo_±bEww÷=z,]ºôúõëºsô/ÞàU«VmÙ²å_|ÛªU«×´5”o*­V+w P¶=}úT:ÀÙ»wo¹k€×ˆà½pªz!8@/Gè…འ‚#ôBp€^ŽÐ Áz!8@/Gè…འ¹ AVVÖ²eË~ÿý÷””;;»† Ž3ÆÅÅ¥Èb»víÚ¹sg\\œ¹¹ù»ï¾;eʹkJ«ÕÊ]Õݭ[·û÷ﻺºººº¦¥¥?ÞÄÄdÇŽ 6Ô-¶téÒÕ«WW®\¹y󿉉‰·oß~ûí·7oÞlff&wäap§ªW¬Xqÿþý#FìÝ»wéÒ¥Û·o_°`AAAÁܹsuËÄÆÆ®]»ÖÁÁ!""bíÚµ ¼téÒ·ß~+wù²1¸àxêÔ)33³Ï>ûL×Ò§OŸjÕª]½zU­VK-;wîÔh4ãÇ···—Z¦OŸneeµÿ~F#wäapÁÑÚÚºC‡•*U*ÜX±bÅüüüüü|iòìÙ³FFF>>>ºŒ½½½322Î;'wäap7ÇlÙ²¥HËÙ³g“’’š4i"]¿¨ÕjãââªV­ZµjÕ‹¹¹¹ !’““›7o.w'd`pÁQçüùó»wïNHH8þ|­Zµ-Z$µçää¨Õjkkë"Ë[YY !mÚ´üõ×_Bkkk•J•““Sdyi®tÜÀnpB¨T*;;»   Þ½{÷ÀB++«âG³³³…ºû¬ aÇ›7o~þùçû÷ï/Òîéé)„¸wïž4éàà‘‘!%E„„i–܇aGKKËüq÷îÝEÚ“’’„ÎÎÎÒ¤ŸŸŸZ­þí·ßt hµÚ¨¨(///¹; à ŽîîîÇ?r䈮ñúõë[·nµ°°hÑ¢…ÔÒ¿##£ï¿ÿ^º®Q±víÚôôô¾}ûV¨PAîNÈÃàÆª¾téÒ Aƒž>}êååU£F?ÿüó÷ßB|óÍ7ï¿ÿ¾n± 6,Z´¨zõêíÛ·OLLŒŽŽnРÁ† Š?¦§8nS „„Ýe(;E™Ø/ ÄNQ•ŠÇñŠ·ß~û—_~Y¾|ù•+WbbbªU«öÞ{ï5ÊÕÕµðbAAAvvv?ÿüó¾}û‡ 2~üxé‰<†Éà‚£¢víÚK–,ùÛÅüýýýýýå.@) ëG”Áz!8@/Gè…འ‚#ôBpЛJ%wr"8¼ ®¹0‚#ôBp€^ŽÐ Áz!8@/Gè…འ‚#ôBp€^ŽúQ© y¼AAp€žŽÐ Áz!8@/GèÅDîO¥’»E 8èÁ°Ä#áT5À üãuŽÐ Áz!8@/Gè…འ‚#ôBp€^ŽÐ Áz!8@/Gè…འ‚#ôb"wŠ¡RÉ]¢ Ñjå®@¹8U ½ ‚#ôBp€^ŽÐ Áz!8@/Gè…འ‚#ôBp€^ŽÐ Áz!8@/G!„*•Ðjå.BÑLä.à5S©ä® œ 8À¡ÄÒÀ©jè…འ‚#ôBp€^ŽÐ Áz!8@/GèÅGŽÉÍÍݱcGXXXJJJ•*UÜÜÜ‚‚‚Ú¶m[x™~ýú]¾|¹ÈmmmOœ8!wùàe0ué1¸àXPP0lذ .XYYµnÝ://ïôéÓÇ;vì¨Q£t‹%%%™™™Õ©S§ð{­­­å.@6wîÜyáÂ…fÍšýë_ÿ233BܼysÈ!+W®ìСƒ‡‡‡";;ûáÇ]»v]¶l™Üõ(…Á]ã!„˜9s¦”…®®®#FŒP«ÕºÓÐIIIBˆ"‡ œÁÇ„„„Ê•+{zzntuuB$''K“‰‰‰BˆÚµkË],€‚Ü©ê5kÖ˜˜íõÕ«W…5kÖ”&¥à˜––cnnÞ Aƒ#F4nÜXîòdcpÁ±AƒEZ¢££×®][±bÅ^½zI-Ò¡ÇåË—;;;·nÝ:555222**êË/¿0`€>Ÿâîî^¤E:E¹¤¤¤È]Šb§(ûE y§8»¸”Êz^åí]ºt‘{K(…ÁÇÂÔjõÖ­[¿ùæµZýÝwßÙÚÚJíiiifff'N ”ZNž<9bĈùóç·k×ÎÉÉéo×+wçP”³³³Ü% (vŠ2±_È wJi,wáò0Äà˜ŸŸ?oÞ¼¡C‡Þ¹sg̘1û÷ïoÓ¦Íß¾«eË–Bˆ7nÈ]>†w+ÁªÖh4“&M:xð`ÇŽçÌ™coo_d­V«ÑhT*•‘Ñÿ¤jccc!D•*Uäî€< îˆchhèÁƒ ´råÊâ©Q‘˜˜Ø Aƒ¡C‡i?þ¼0àk +8jµÚ-[¶T©ReÚ´iÏ[¦N:Íš5;sæÌ®]»tçÏŸß°aƒ““SçÎåî€< ëTõýû÷¥A¨\|nïÞ½‡ "„˜={öðáÃgÍšµmÛ6—ÔÔÔ .˜››/X°@7Þ €¡1¬à(= +77÷Ê•+Åçên‘©_¿þO?ýôÝwß:uêæÍ›5kÖìիר±cåî€l +86mÚTÏ',ÚÛÛ/Z´Hîzİ®q@‰ ‚#ôBp€^}sŒV«‰‰9yòdlllzzúýû÷+UªdggW­ZµæÍ›·jÕê­·Þ’»FC¡Ðà˜’’²eË–Ÿ~ú)++ë™ üðÃ*•ªaÆC† éÖ­›©©©Ü%”sŠ Žiii .)ë]hhè×_½wïÞààà⩱8•JÕ¢E‹yóæ>|¸Q£F?ÿü³Ü= œR©Þô”GYG#""ŒKðF[[ÛÙ³g«Õj¹{@y¤R ­Vî" ?eÇ¿MZ­öÈ‘#)))o¿ý¶——×˾%¦¬àXÜ‘#G–/_Þ±cÇ1cÆ!fÍš&Í ˜3gŽŠCÙo„²®q,âìÙ³#G޼~ýºF£B\»v-,,ÌÊÊjРA5jÔØ¶mÛ‘#Gä®ÀP(úˆãºuë´ZíÌ™3„Ò3z,Xàççwûöí.]ºüðÃ~~~r— `oܸQ­ZµÀÀ@iòôéÓ¦¦¦íÛ·BÔ©S§nݺñññr×`(}ª:++ËÖÖVz]PPpíÚµ† ê‰177OOO—»FC¡èàèää”’’"=dçܹsyyyï¼óŽ4K£Ñ¤¤¤ØÙÙÉ]#€¡PtplÑ¢EVVÖŠ+RSSW¬X!„ðöö–fmذáÁƒõêÕ“»FC¡èk?ùä“ððð!D£F¤g70àâÅ‹Bˆ   ¹k0Š>âX½zõ;vøøøT«V­]»vË–-“žÚ˜žžnii¹páÂV­ZÉ]#€¡PôG!„««ëš5kŠ4†††:::):õ”3JŽ’¬¬¬+W®¤¥¥999µmÛ¶bÅŠ¤F€7LéÁ1###$$$,,,77W1tèжmÛöîÝÛÓÓsÁ‚666r`(}ÜîéÓ§#GŽ µ´´ìÝ»·®ÝÞÞ>22òƒ>Ò$ÞEÇ5kÖ\¸páÝw߈ˆX¸p¡®}çÎ={ö¼}ûöæÍ›å®ÀP(:8ž9sÆØØxþüùæææ…ÛgÏžmnn~àÀ¹k0оÆ1&&ÆÙÙY7ê`a...·oß–»F^™Jõ‚™ÎrWè(:8ZYY=~üøys333«T©"w”­öysœIPEŸªnРAZZÚ¥K—ŠÏЉ‰IMMõðð»FC¡èà8pà@•J5iÒ¤«W¯n¿zõêøñã…½zõ’»FC¡èSÕmÛ¶ ^·n]Ÿ>}\\\„‡>yòä­[·4MïÞ½;wî,w†BÑÁQ1yòäfÍš-Z´(>>^‘šš*„°³³›8qbá';àuSzpBøúúúúúfffÆÇÇçç绸¸888È]€Á)ÁQbccÓ¬Y3­V{äÈ‘ˆˆˆ·ß~ÛËËKî¢ ˆÒƒã‘#G–/_Þ±cÇ1cÆ!fÍš&Í ˜3gŽê…Ͼ@iQô]ÕgÏž9räõë×5âÚµkaaaVVVƒ ªQ£Æ¶mÛŽ9"w†BÑG×­[§ÕjgΜ „8xð bÁ‚~~~·oßîÒ¥Ë?üàçç'w™AÑÁñÆÕªU ”&OŸ>mjjÚ¾}{!D:uêÖ­+Ýj €7@ѧª³²²tU\»v­aƦ¦¦R‹¹¹yzzºÜ5 EG''§””µZ-„8wî\^^Þ;ï¼#ÍÒh4)))vvvr×`([´h‘••µbÅŠÔÔÔ+V!¼½½¥Y6lxðàA½zõä®ÀP(úÇO>ù$<<<$$$$$DѨQ#éÙ ¸xñ¢"((Hî …¢8V¯^}ÇŽ>>>ÕªUk׮ݲeˤ§6¦§§[ZZ.\¸°U«Vr×`(}ÄQáêêºfÍš"¡¡¡ŽŽŽFFŠN½åŒÒƒcÒƒ))) 9­œ ¦ÕÊ] ¥G†<a xã}¶—!”CÑGr@9rð *ç©Y(úT5C(‡¢ƒ#C(‡¢ƒ#C(‡¢¯qdÈAåPôG†PEq 9 JŽ’¬¬¬+W®¤¥¥999µmÛ¶bÅŠ¤F€7LéÁ1###$$$,,,77W1tèжmÛöîÝÛÓÓsÁ‚666r`(}ÜîéÓ§#GŽ µ´´ìÝ»·®ÝÞÞ>22òƒ>Ò$ÞEÇ5kÖ\¸páÝw߈ˆX¸p¡®}çÎ={ö¼}ûöæÍ›å®ÀP(:8ž9sÆØØxþüùæææ…ÛgÏžmnn~àÀ¹k0ŠŽ111ÎÎκQ ³°°pqqILL”»FC¡èàheeõøñãçÍÍÌ̬R¥ŠÜ5 EÇ ¤¥¥]ºt©ø¬˜˜˜ÔÔT¹kP©JëËÙÅ¥×öº¾ÈDÑÁqàÀ*•jÒ¤IW¯^-Ü~õêÕñãÇ !zõê%w 7•Jhµ¥õ•_Šk{_ä èç8¶mÛ688xݺu}úôqqqB>|øäÉ“·nÝÒh4½{÷îܹ³Ü5 EG!ÄäÉ“›5k¶hÑ¢øøx!DjjªÂÎÎnâĉ…Ÿì€×MéÁQáëëëëë›™™ŸŸŸïâââàà wQ§ G‰M³fÍä®Àp)úæÉÑ£G¿úê«?ÿüSš<|øð¸qãöíÛ'w]†EÑÁQ£ÑL™2åÓO?ýá‡òòò¤ÆGEDDL˜0aòäÉZn¬xSÿóŸÿìÙ³ÇÁÁaÁ‚ÕªU“»uë¶bÅŠêÕ«‡‡‡ïÙ³Gî …¢ƒãŽ;ŒŒŒþõ¯õéÓÇÔÔTj¬X±â{ï½·qãF“;vÈ]#€¡PtpŒwvvvuu->«víÚuëÖ•žÑ€7@ÑwUWªTIwicqyyyÆÆÆ%XmnnîŽ;ÂÂÂRRRªT©âææÔ¶mÛ"‹íÚµkçÎqqqæææï¾ûî”)SllläÞ$²QôÇF¥¦¦ÆÄÄŸuóæÍ¤¤¤ ¼ì: † ¶`Á‚?ÿü³uëÖõêÕ;}útPPÐÊ•+ /¶téÒY³fݺu«E‹»wïþä“OrssåÞ$²QtpìÓ§bäÈ‘'Ož,ÜþÇŒ5J«ÕöèÑãe×¹sçÎ .4kÖ,***$$dãÆ?ýô“µµõÊ•+u 566víÚµk×®=pà@``à¥K—¾ýö[¹7 €lýüüïܹóÑGùúú>¼S§Nƒ JLLô÷÷÷÷÷ÙuFDD!fΜiff&µ¸ººŽ1B­VŸ8qBjÙ¹s§F£?~¼½½½Ô2}út++«ýû÷k4¹· €<}£bæÌ™-[¶üöÛooß¾}çΩÑÖÖvüøñ}ûö-Á *W®ìééY¸Qºÿ&99Yš<{ö¬‘‘‘ncccooïðððsçÎ5oÞ\î­ ¥G!D§N:uêôàÁƒ„„„'Ož8;;W«VM¥R•lmkÖ¬11)Úë«W¯ !jÖ¬)„ÐjµqqqU«V­ZµjáeÜÜÜ„ÉÉÉG`˜Ê@p”Or%Sü~šèèèµk×V¬X±W¯^BˆœœµZmmm]d1+++!ăôùww÷"-Ò)rÈ%%%EîPTéîg¹;$§„„„ÒZ?, ÄN‘]—.]ä.A)Ê@p|¨ÏšcccåÞl(ÊÙÙYîPT)t¿¹ùaQ vмŠÿY/~„È@(:8j4šiÓ¦Iã ~ôÑGR£4VuDDÄ‘#G/^\âsÖ§OŸþꫯnݺåèè8þü6mÚHíÖÖÖ*•*''§Èòýõ—ø¿ãŽHÑÁQ7Võøñã U]¹rå… †‡‡·oß¾gÏž/»ÚüüüÅ‹‡††VªTi̘1Ç×Ýa-„011±²²*~d1;;[¡»ÏÀÐ(úq<¯c¬jF3iҤ͛7ûùùï𡟟ŸZ­þí·ßt-Z­6**ÊÆÆÆËËKî­ EÇR«Z«ÕnÙ²¥J•*Ó¦M{Ábýû÷722úþûï¥ë…k×®MOOïÛ·o… äÞ*òPô5Ž5:|øpLLŒ‡‡G‘YÒXÕíÛ·©Þ¿?))ÉÌÌlðàÁÅçöîÝ{È!B''§)S¦,Z´¨GíÛ·OLLŒŽŽöôôüøãåÞ$²QtpìÓ§ÏáÇGŽ9oÞ<Ý]ÏBˆ?þøãóÏ?/ÁXÕÒ£°rss¯\¹R|ná ²³³ûùçŸ÷íÛçèè8dÈñãÇKOä0LŠŽÒXÕ›7oþ補œœjÖ¬Y¡B…¤¤¤¤¤$!D ƪnÚ´©þOX,ÙXØå•¢ƒ£x cU d”EiU €’)ÁQRZcU d[µjõ·ËDGGË]&€APtp,2v‹B«Õj4éuµjÕlmmå®ÀP(:8^»v­H‹Z­¾sçΡC‡BBBžâX½zõ;vøøøT«V­]»vË–-“žÚ˜žžnii¹páÂV­ZÉ]#€¡PôG!„««ëš5kŠ4†††:::):õ”3JŽÏT½zu¹K08e28¥Œ+À0¨D ák9‚àü>Ã@|\&½ ‚#ô¢¬àèãã3vìXݤ——×âÅ‹å. B(-8þõ×_ÑÑÑ©©©ÒdNNÎÓ§Oå. B(í®ê6mÚ8p C‡æææRËÖ­[wíÚõ‚·œ?^îª ‚²‚ãœ9sLLLΜ9óøñc¹kÀÿPVp|ë­·–,Y¢›tww¼yóærW!§N*½¸{÷nLLLbbâÓ§O]\\<<<œœœä®À°(:8 !233W¬X±}ûvµZ­k4668pàøñã­¬¬ä.ÀP(:8ªÕêÏ>ûìüùó+VìØ±cíÚµoß¾ùÃ?ÄÄÄlÝºÕØØXî2 ‚¢ƒã¦M›ÎŸ?ߤI“+VØÛÛëÚïß¿?f̘óçÏoÚ´iøðár— `”õð"~ûí7•Jµlٲ©Qagg·|ùr##£cÇŽÉ]#€¡Ptp¼~ýzíÚµ‹Ïrpp¨[·nLLŒÜ5 EÇŠ+æææ>onnn®™™™Ü5 EG{÷î=sPÁ+W®¤¤¤Ô¯__î¡•Jö/g—- Õʽ |’ÿÀÿ~iE)üÂW©äÞ¬òQtpìÑ£‡bìØ±E®e<~üøèÑ£…þþþr×ýhµò~%ÄÇ¿hÀk#ó€ÿý’{c”yо«º[·nQQQ?ÿüóÇìèèX§N!Dbbâ;w„þþþï¿ÿ¾Ü5 EG!ÄÂ… ßyçeË–¥¥¥¥¥¥Ivvv&LèÝ»·ÜÕ¥G•JÕ§OŸ>}úüù矷oßÖjµuêÔqpp».ð7JëšB(‡Òƒ£Ž½½}‘§9àMRôÍ1P‚#ôBp€^ŽÐ ÁzQtpLIIIJJ’» ¡ðÇñtëÖíÉ“''Nœ°µµ•»C§è#Ž®®®Bˆ7nÈ]”¿øâ 33³¼¼<¹k0tŠ>UmooÿÝwßÍž=»G=zô¨U«–¥¥e‘e|||ä.À (:8úúúJ/ÒÓÓW¬XñÌebccå.À (:8öèÑCîÊ•Jî À ¨Déý¾u–»3ø?üUtp\¼x±Ü%”GZ­Ü€AЊÒù}›àìLxT 鯨»»ÜuÈDÑÁQ'++ëÊ•+iiiNNNmÛ¶MOOç=o˜ÒƒcFFFHHHXXXnn®bèСmÛ¶íÝ»·§§ç‚ lllä.•Š“vÊ~ÏÓ§OGŽjiiÙ»wo]»½½}ddä| ¥I¼ŠŽkÖ¬¹pá»ï¾±páB]ûÎ;{öìyûöíÍ›7Ë]#€¡PtptÓ¦M.\Ð¥F!D›6m>üðÃÜÜÜÇ˽Iä¡èàèå啜œœ]|ÖãÇ<==ßX1-[¶BܸqCî­ EÇþýûkµÚÏ?ÿ¼   p»Z­ž1c†Z­öóó+õÕjµjµZ£Ñi766BT©RE† Áƒ»€(ëÇS§Nž466îÓ§ÏîÝ»;uêÔ¿•J•–œœìîîÞ¥K—R¯!11±sçÎ-[¶,2®Ìùóç…_Ó ¬à8lذg¶ß¹s§øÝÓ±±±mÚ´)õÛPêÔ©Ó¬Y³3gÎìÚµ«ÿþRãùóç7lØàääÔ¹sg¹7€<”{ôè!w B1{öìáÇϚ5kÛ¶m...©©©.\077_°`™™™ÜÕ@ ©„êÅ·TÀ‹)+8.^¼Xî„¢~ýú?ýôÓwß}wêÔ©›7oÖ¬Y³W¯^cÇŽutt”»4Ù(+8¾asçÎ;wî3gÙÛÛ/Z´Hî¤ Ç¤¤¤hŸs[1Ã¼ŠŽ™™™“&M:qâÄ –y-c´ EÇï¾ûîĉÆÆÆ 6´±±Q©TrW`¸¥Ô¸eË–¦M›Ê] €¡SôÈ1=jÒ¤ ©@ 4h““#wBáÁñ½÷Þ»~ýú‹oŽÀ›¡èk|íÚµ#F6oÞ¼råÊÅ—iÙ²¥ÜeEǬ¬¬¸¸¸üüüõëׯ_¿þ™Ë”áÇñp“8 ŒJüï÷¼³Ü(øsú&):8.[¶ìâÅ‹&&&M›6µ±±‘»œ×@Ë ±0,…JNHHpv&<(ü9}cÏœ9cjjºcÇŽ È] €¡SîÍ1 7&5(rƒ£F£©P¡ÂÇå.B(98šššúûû߸qãÈ‘#r×e_ãtãÆÑ£G8ðyãñññ‘»Lƒ èàØ½{wéÅ?üðÃ?|8aÂ-›¼e,8ê´jÕª^½zÉÉÉÉÉÉr×`ÊjpBØÛÛ !Þzë-¹ 0e58æää\»vÍÖÖö™ã Ô)úæ˜S§N=³=33344ôÁƒ;v”»Fý¨TÏhäê̲@%T¯¾(TŠüÈŸÓ7IÑÁqذa/˜[¥J•qãÆÉ]£Þø¾.³xˆ èð×ÌÀ):8¾`¬êZµjõêÕ«fÍšr×`(«@9ÊêÍ1xÃ}ÄQ±ÿþÍ›7ß¾}ûyúf¬j€7CÑÁñðáÃãÇ—^Ë]€AStp\¿~½bذa#GŽ´²²’»ƒ¦èàW£FiÓ¦q-&€Ì”Èž>}úèÑ£š5k’”@¹™ÌÈÈÈÊÊêæÍ›FîZ ààhllœžž¾téR¹k€²¯qìÖ­[rròÚµk£££»víZ£F SSÓ"ËøøøÈ]&€APtpôóó“^\ºtéÒ¥KÏ\&66Vî2ÿŽJÅО Ptp|ÁXÕxëòR •Vp´€ÿRîÍ1Peǰ°0µZ]²÷Þ¹sçØ±cr÷ ÜRVp\¹re·nÝÂÃÃóóóõWJJʼyó:wî/wþ—J%T*¹‹xmûo÷ÊÆ—‹³K Þ%÷6 hoìW˜‹‹³ü¿FUÜê !”vã¾}û–-[6mÚ´¯¿þº[·n:ujܸq•*Už¹pbbâ©S§ÂÃÃÿøã''§•+Wz{{Ë݃bÊõYºþ/!!ÁÙÙYî*”7oæw<¿Á Ê ŽfffŸþy¿~ýþýïÿüóÏÛ·oW©TõêÕ«]»¶••U~~~fffFFÆÕ«W>|(„¨S§Î¬Y³úöíkff&wù噲‚£ÄÕÕuîܹ“'OÞ¿ÿÉ“'£££oÞ¼Y|™^½zùøø´nÝZ¥ÌÓÁÓ勃£ÄÚÚ: @£Ñܽ{7###==ÝÌÌì­·Þrpp°´´”»@âÜà¨cddääääää$w!MYwU@±ŽÐ Áz!8@/Gè…à½(:8^ºtéÅ DDDÈ]#€¡Ptpüàƒ¾ÿþ{µZ]|VffæøñãÇ'wJ%Teh jP*íííW¬X1pàÀÛ·on?pà@÷îÝ÷ïß_»vm¹k0ŠŽ{÷î8pàåË—{õêµmÛ6!DVVÖĉÇŽ›••5|øð={öÈ]#€¡Pôƒ_ýu×®]gΜùå—_îÛ·/>>>==ÝÕÕuÁ‚5’»@¢èà(iݺõöíÛ{öìyæÌ!DÓ¦M7oÞ\¡B¹ë’“J¨ä.@Ù¦zîog¹K \Š>U-ùí·ßú÷ïÿàÁOOO{{ûsçÎ5êÞ½{r×õB*•о®{G¤Sdÿ’{xUÏüÙŽOÿ÷KÙù ¢ƒã£Gf̘œžž>nܸ]»víÝ»·k×®QQQÝ»wß½{·ÜEG)ºººîÚµkäÈ‘ÆÆÆVVVË–-ûöÛoU*ÕŒ3†.w†BÑÁ1==ý“O>ùé§Ÿ4hP¸Ýßß?<<¼uëÖÇ—»FC¡è›c¶nÝêååõÌYÕªUÛ¸qchh¨Ü5 Eq|^j”¨TªÀÀ@¹k0ŠŽP‚#ôBp€^ŽÐ Áz1èàïîî~ñâÅgÎݵkWÿþý½¼¼Ú¶m;cÆŒÌÌL¹ë“¢Ÿã(„Ø¿ÿæÍ›oß¾­}Θ ÑÑÑ%^ù ¹téÒÕ«WW®\¹E‹‰‰‰»wï¾yóææÍ›ÍÌÌäÞ$òPtp<|øðøñã¥×ÆÆÆ¥µÚììì7n„‡‡oß¾ý™ ÄÆÆ®]»ÖÁÁ!,,ÌÞÞ^1o޼͛7ûí·_|ñ…Ü[@ŠŽëׯB 6läÈ‘VVV¥µZÿ»wï¾`;wj4šñãÇK©Q1}úôÿüç?û÷ïŸ9s¦‘‘AŸßKÑÁ1..®FÓ¦M+ݬ6oÞ¼'Ož!¶lÙròäÉâ œ={ÖÈÈÈÇÇG×bllìíí~îܹæÍ›Ë½ad ÜàøôéÓG5lذÔðµk×NzY|®V«‹‹«ZµjÕªU ·»¹¹ !’““ ŽÊ:•J<çºqxåG###++«›7oj4š7yv8''G­V[[[i—Ε?xð@Ïõ¸»»žŒˆˆ(<éâìò*E&$$¼± R>¤¤¤È]ŠzÞNqqq–»4ƒð¼_#ü°(;Ev]ºt‘»¥Pnp466þî»ï–.]:iÒ¤7ö¹¹¹¹BˆÊ•+i·°°B<|øP¯µhµ±»ˆx…ÿ÷ùÃúòœÙjŠó¼ÂÁ°7â¹?ü°(;E^±±Eÿª9â¸nÝ:­V;sæÌ€€!ÄÁƒ… ,ðóó»}ûv—.]~øá???¹Ë0ŠŽ7nܨV­Z`` 4yúôiSSÓöíÛ !êÔ©S·nÝøøx¹k0Š>U••ekk+½.((¸víZÆ MMM¥ssóôôt¹k0ŠŽNNN)))jµZqîܹ¼¼¼wÞyGš¥ÑhRRRìììä®ÀP(:8¶hÑ"++kÅŠ©©©+V¬Bx{{K³6lØðàÁƒzõêÉ]#€¡Pô5ŽŸ|òIxxxHHHHHˆ¢Q£FÒ³ pñâE!DPPÜ5 Eq¬^½úŽ;|||ªU«Ö®]»eË–IOmLOO·´´\¸pa«V­ä®ÀP(úˆ£ÂÕÕuÍš5ECCCŒzÊ¥GIVVÖ•+WÒÒÒœœœÚ¶m[±bER#À¦ôà˜‘‘–››+„:thÛ¶m{÷îíéé¹`Á¹ 0Š>n÷ôéÓ‘#G†††ZZZöîÝ[×nooùÁHiR±TBÅè‚ ÜPtp\³fÍ… Þ}÷݈ˆˆ… êÚwîÜÙ³gÏÛ·ooÞ¼Yî …¢ƒã™3gŒçÏŸonn^¸ÝØØxöìÙæææ»FC¡èàãìì¬u°0 —ÄÄD¹k0ŠŽVVV?~ÞÜÌÌÌ*UªÈ]#€¡PtplРAZZÚ¥K—ŠÏЉ‰IMMõðð»FC¡èà8pà@•J5iÒ¤«W¯n¿zõêøñã…½zõ’»ÆgS •J¨ä®B~*•R¾\\œßÌi¹P~)ú9ŽmÛ¶ ^·n]Ÿ>}\\\„‡>yòä­[·4MïÞ½;wî,wÏŃx$ R ÎÎÎrW@Ù¦èà(„˜}zöìÙfffׯ_ß²eËàÁƒgΜ)w†BÑÁñ·ß~«X±âªU«,--;tèЮ];ggç6mÚ!\\\þñ 0ÀÕÕUî2 ‚¢oŽIKK«S§Ž¥¥¥ÂÎÎÎÆÆæÊ•+Ò¬þýûÛØØlܸQî …¢ƒ£ÂÈèÿWX«V­„„éµ±±±»»û¥K—ä.ÀP(:8V«VíöíÛ?–&kÖ¬ùûï¿ëæªTª””¹k0Š¾Æ±cÇŽkÖ¬™kÖ¬üüü'NdddøùùÉ]#€¡PôÇ‚‚[[ÛO?ýT×àïïùòe¹ 0 Š>âèííýÍ7ßÄÅÅn´°°hݺ5©à StpÌÈÈø×¿þÕ½{÷>ø`×®]ºÛ«Q„J%´Z¹‹å¢ƒcXXذaÃΟ??kÖ¬¶mÛ~þùç…ŸÈSÖ©T¥óð(úÇF5jÔhÚ´i¿ÿþûÞ½{#""~üñÇü±víÚýúõëÕ«—½½½Ü5¾*Ž€²BÑGÿ[¢‘QË–-¿þúë“'O®^½Úßßÿþýûß}÷OáûfðZ•à¨cbbâëëûí·ßnÞ¼ÙÝÝ]­V=zTî¢ …¢OU/þïH¤ÜEŠ2¯]»vàÀýû÷'&&J- 6ô÷÷ïÖ­[9¸Æ ¬Pô©êÅ‹wìØ±wïÞ«W¯NLL¬S§Î˜1c<¸{÷îaÆ‘x±K—. 8°ZµjÍ›7_ºtiAAnîÇGŒQ«V- ooïèèh¹ëý{ú×üôéSÕÿ²³³“»e›¢8®_¿^aooß½{wOOO¹+ Ìˆ÷ññQ«Õ½{÷®U«ÖáÇ'NœxìØ±Ÿ~úI‘ݼy󤤤~ýúÙÚÚ†……uéÒ%22ÒËËKîŸë¥jNHHP«ÕmÚ´)‰‹‹ quu½xñ¢ÂÒÒ²ð2VVVBˆŒŒ }ʶµµ4i’nrΜ9!!!;wîìÙ³§J¥:qâDbbbíÚµ…ëׯ—îv}Ååää¼TÍqqq櫯¾êׯ_… öìÙ3a„^½z]¹rEzJ€àølIIIfffuêÔ)Ühmm-w]€’(tnSZí‹æº¹¹ž|Þ•ý?~Á _íó?#))iôèÑááá®®®‡îСƒÂÖÖVQäbÊììl!DÕªUõé”§§§©©©n²råÊîîî·nÝ233[¶lÙ¤I“œ===Û´iÓ¥K—îÝ»^¸d=zÙš=Z©R%ݬ   ¼¼¼Q£F……… >\Ÿ>¢8‚ã3dgg?|ø°k׮˖-“»@)xqt“W¥J•ôYÌÊÊJûòÝØ¶mÛ§Ÿ~jaa±fÍš   “ÿþÝwpp022*r†7==]Q½zõ’uÄÄÄäñãÇBˆQ£FõíÛwïÞ½‘‘‘ûöí[»v­»»{TTT‘³Ì/Û£—­ÙÉÉ©HË{ï½'„¸zõjÉ:Ap|¦¤¤$!D‘ÃȨ§ªÃÃÃ?üðì^½ºÈ^“ üöÛo…;¦R©ô|jòµkמ>}Z¡Bi2777&&ÆÇÇ'###..ÎÍÍ-88888X£Ñ¬Zµj̘1«W¯–¦Sâ½T͉‰‰{÷îíСƒ‡‡‡®Q:<)@GÉŸAºéìuc©TŠþ (/{bW«ÕN:µfÍš¡¡¡ÆÆÆÅßòñÇ7nïÞ½ï¿ÿ¾âÏ?ÿ ëÔ©“³³³>õÜ¿éÒ¥S§N•&çΛݻwïØØØ¶mÛΜ9sîܹB###!„.b–¸G/U³™™ÙäÉ“[´hñ믿J­Ñh/^lbbÒ©S§×¾·Ê/‚ã3HÁ1---000&&ÆÜܼAƒ#FŒhܸ±Ü¥ Ô˞؉‰¹~ýº‡‡Gppp‘Y}úôñ÷÷6l؆ kpww—^ܸû‚Åäî«¡HII‘»ÅNQ&öK¹!=þ:&&&&&¦È¬zõêùûû[ZZFEEM™2%,,,33³uëÖ[·nÕÝ—ŸŸŸ•••››û¼õ¿óÎ;&L˜={öòåË'Ož›½½ý¢E‹ä®@A8â½ ‚#ôBp|¨”'Gè…འ‚#åÖ¥K—X­Z5 ‹æÍ›/]º´  @7÷áÇ#FŒ¨U«–………··wtt´Üõþ==k¾uë–ê9|}}åîDÆÀ_ •Jî />>ÞÇÇG­V÷îÝ»V­Z‡ž8qâ±cÇ~úé'!DvvvóæÍ“’’úõëgkkÖ¥K—ÈÈH///¹ .ýk¶°°2dH‘ÆÜÜÜÝ»w;;;ËݲL‹ÒæææÆvUšøøx¹K@Qìe*ëûÅÍÍMîJH­V”î:{öìiddtæÌ]KPP"""B«ÕΙ3G±iÓ&iÖ­[·¬­­}}}_ê# J½ìxÅš'Ožìè蘞ž^¤½ß6e÷;íqªÙ8;;O˜0aÍš5¶¶¶&&&Õ«W9rä£GJeåGŽñöönÑ¢…®eôèÑBˆS§N !¶oßîèè(Írqqéׯ_TTTZZšžeÿý÷ÖÖÖ¦¦¦5š>}z~~¾4777wîܹæææµk×¾{÷n©ôèUj>yòäÒ¥K7lØðÖ[o•J1†‰à€œ>ëOMM?þçŸ.MN:uñâÅ;vìð÷÷ß±cÇСC7nÜ(Í þÏþ“––æèèø*=z•š—/_ž’’òüãÕ7¬#8 ')5 !T*•——מ={Š/VPPðË/¿‰‹‹ quu½xñ¢ÂÒÒ²ð2VVVBˆŒŒ }ʶµµ4i’nrΜ9!!!;wîìÙ³§J¥:qâDbbbíÚµ…ëׯ_¿~ý«÷(''§d5§§§/X°`üøñ5jÔx¹}ƒbŽ€òO%ä|Ú…V¼hüY77·Â“FFϾŠìñãÇ/8á«}þ·III£Gwuu=|øp‡„¶¶¶Bˆ"Sfgg !ªV­ªO§<==MMMu“•+Wvww¿uë–™™Ù²eË&MšäìììééÙ¦M›.]ºtïÞ½ðÂ%ëQ‰k^´hQ^^ÞäÉ“õé^ŒkåŸVheüzqm•*UÒ§ VVV/¸×õyïÚ¶m[Æ ÿý÷5kÖ\»vMJB##£"gxÓÓÓ…Õ«W/ÙF611‘î5jÔíÛ·×®]ûöÛoïÛ·¯OŸ>o¿ýö½{÷^±G%«9//oÆ }úôÑ3ãÅ8â@P‚SÕááá~øá€V¯^]ä ¯‰‰Iƒ ~ûí·ÂÇŽS©TžžžúÔsíÚµ§OŸV¨PAšÌÍ͉‰ñññÉÈȈ‹‹sss Öh4«V­3fÌêÕ«¥‡é”¸G%«yçÎ<>|økÙ+†‡à@ð²'vµZíÔ©SkÖ¬jll\ü-üñ¸qãöîÝûþûï !þüóϰ°°N:éù|ìû÷ï/]ºtêÔ©Òäܹs³³³{÷îÛ¶mÛ™3gÎ;Waddäãã#„ÐEÌ÷¨d5ÿðÃVVVŒSZŽ”Ò‰]ý—‰‰¹~ýº‡‡Gppp‘Y}úôñ÷÷6l؆ ***//ÏÛÛ[î½Q~¨^6ìão¹»»ß¸ËvU”„„'UvŠ2•õýâîî+wåÄúõë¯\¹²lٲⳜ›4i"y]”àÛÆ`¿Ó8r ŠÊËË‹ŒŒlÚ´©Ü…@YŽ ¨S§Nyxx 4HîB ,\ãŠòõõ}ÁÈ]»v­S§ŽÜ5BGðrV­Z%w §ª ‚ãkÁ-Õ ü!8@/Gè…འ‚#ôBp€^ŽÐ Áz!8@/GÊ¿§OŸ¶jÕªuëÖ…>|8bĈZµjYXXx{{GGGË]æßÓ¿æ§OŸš˜˜¨þ—Ü=(ÛLä.¼v³fÍ:}út«V­t-ÙÙÙÍ›7OJJêׯŸ­­mXXX—.]"##½¼¼ä.ö¹^ªæ„„µZݦM]£………Ü(ÛŽÈO£ÑhµZccã×±òC‡-^¼ØÄäþè/Y²$..nÓ¦MC‡BŒ7®Y³f“&M:räˆþkV«ÕBˆ×Tvq/Us\\œâ믿öóó{3åNU ggç &¬Y³ÆÖÖÖÄĤzõê#GŽ|ôèQ)~Ľ{÷>üðÃààà5jnß¾}»££c`` 4éââÒ¯_¿¨¨¨´´4=Ëþþûï­­­MMM5j4}úôüü|innnîܹs=<<ÌÍÍk×®|÷îÝRéËKÕ,Çzõê•âÆÁ9>|xìØ±ƒ Z±bE“&MBBB&NœXZ+×jµ666Ë–-+Üž}ãÆ ___•J¥kìСƒF£ÑóJÇ]»v3ÆÛÛ{Ú´ivvv‹-êÔ©“V«BÏž=»fÍš'NôòòÚ´iS¯^½^½//[s\\\ÅŠ«T©²k×®5kÖ?~\mQbœª@NW®\ ëÛ·¯bÔ¨Q7Žˆˆ(­•/^¼8***::ÚÜܼpû½{÷´Z­ƒƒCáF{{{!Äýû÷õYsjjêüùó?ÿüsirêÔ©‹/Þ±c‡¿¿ÿŽ;†ºqãFiVppðþóŸ´´4GGÇWéËËÖgddT¯^½ÌÌL©ÅÃÃ#44´Y³f¥µy Á9¹¸¸H©Q¡R©¼¼¼öìÙS|±‚‚‚_~ùåy+éÙ³gñÆ3gÎÌš5kñâÅMš4)2+''GaiiY¸ÑÊÊJ‘‘‘¡OÙ¶¶¶“&MÒMΙ3'$$dçÎ={öT©T'NœHLL¬]»¶býúõëׯõ½lÍqqq櫯¾êׯ_… öìÙ3a„^½z]¹rEzJ€à0…NnÊ@«}ÁL77·Â“FFϾŠìñãÇ/8á«-öÙÙÙ:u;vlñåmmm…E.¦ÌÎÎBT­ZUŸ>yzzšššê&+W®ìîî~ëÖ-33³eË–Mš4ÉÙÙÙÓÓ³M›6]ºtéÞ½{á…KÖ£—­ùèÑ£•*UÒÍ ÊËË5jTXXØðáÃõé#Š#8 À £›¼*Uª¤ÏbVVVÚ—éÅš5kâãã{õêõÍ7ßH->T«Õ‹-ªU«VÿþýŒŒŠœáMOOBT¯^½d111yüø±bÔ¨Q}ûöÝ»woddä¾}ûÖ®]ëîîUä,óËöÈÁÁá¥jvrr*ÒòÞ{ï !®^½Z²B(^öÄ®t#È’%K 7fffNŸ>ÝÇÇ'  Aƒ¿ýö[á¹ÇŽS©TžžžúÔsíÚµ§OŸV¨PAšÌÍ͉‰ñññÉÈȈ‹‹sss Öh4«V­3fÌêÕ«çÌ™ó*=211Ñ¿æÄÄĽ{÷vèÐÁÃÃC×(ž”N £„´(mnnnr—€¢âããå.E±S”©¬ï—2÷¸N:½zõ*Ü2lØ0kkëâKfee½â_ó:uê´jÕJ7¹|ùr!Dxx¸4yïÞ=‡÷Þ{OÏU !-Z¤k™1c†bãÆ'NœBÌœ9S7ëòåËBˆyóæ½zô¯ùÞ½{•*Ujß¾}~~¾Ô¢V«?øà“«W¯Y¸ß6eî;­´pÄ€2àeOìþ­aÆmذaðàÁ£F²¶¶Þ´iSNNÎW_}%ÍݶmÛÈ‘#?úè£"Ç,u¿øâ‹“'O6nÜøÔ©S‡jݺu```AAAÆ .\ß°aÃØØØýû÷W­Z5 àÕ{ôâš-Z´pá Œ1ÂÞÞþ«¯¾š6mš««k×®]­­­8pþüùùóç7hÐàÍì²r‰ç8`ˆ,--£¢¢¶xñâzõêEEEéÆ$ÌÏÏÏÊÊÊÍÍ}ÞÛßyçC‡eee-_¾<99yòäÉ‘‘‘FFF¦¦¦û÷ï:tèÉ“'¿þúë£GvêÔéĉÎÎί»æ¼¼¼¬¬¬'OžH“S§N sppزeËúõëmllöï߯{~JFUºÿ¾@áîî+wø ¥ò; ¥ˆ¢Le}¿ð¸­_¿þÊ•+Ež.qvvnÒ¤ÉO?ý$w¥£ß6ûÆGPT^^^dddÓ¦Må.ÊBpE:uÊÃÃcРAreáæP”¯¯¯¯¯ïóævíÚUº±††à^ΪU«ä.òàT5ôBp€^ŽÐ Áz!8@/Gè…འ(WÜÝÝå.(·Ž€ò#66VîJ_BB‚³³³ÜUBpªz"8@/Gè…འ‚#ôBp€^ŽÐ Áz!8>×®]»ú÷ïïååÕ¶mÛ3fdffÊ]J®K—.r—€¢Ø)ÊÄ~Q v ”ƒàølK—.5kÖ­[·Z´haaa±{÷îO>ù$77WîºdCp|†ØØØµk×:88DDD¬]»öÀ—.]úöÛoå. @6Çgعs§F£?~¼½½½Ô2}út++«ýû÷k4¹«ÁñΞ=kddäãã£k166öööÎÈÈ8wîœÜÕȃàX”V«‹‹«ZµjÕªU ·»¹¹ !’““å.@&r 8999jµÚÚÚºH»•••âÁƒú¬ÄÝÝ]î~ (vбS”‰ý¢@ì(Á±(éÖéÊ•+i·°°B<|øðo×+w'J§ª‹²¶¶V©T999EÚÿúë/ñÇ Á±(++«âG³³³…ºû¬ Áñ222¤¤¨“ Í’»:yŸÁÏÏO­VÿöÛoº­Veccãåå%wuò 8>CÿþýŒŒ¾ÿþ{éºF!ÄÚµkÓÓÓûöí[¡B¹«‡J«ÕÊ]ƒmذaÑ¢EÕ«Woß¾}bbbtttƒ 6lØPü1=‚àø\ááá?ÿüó¥K—[¶l9~üxé‰<†‰à½p#ôBp€^ŽÐ Áz!8@/Gè…à½KÍ®]»ú÷ïïååÕ¶mÛ3fdffÊ]‘yÙŸ››»iÓ¦÷ß¿I“&íÛ·>|ø‰'äîDyó*?wîÜiÖ¬Ù”)SäîDyS‚rùòåÑ£Gûúú¶hÑbÈ!§OŸ–»åÍËî”üüüuëÖõéÓÇËË«C‡ãÆ»yó¦Ü08ñññîîî/^”»KÇÒ¥KgÍšuëÖ­-ZXXXìÞ½û“O>ÉÍÍ•».ƒð²¿  `ذa ,øóÏ?[·n]¯^½Ó§O­\¹Rî®”¯ò¡Õj§M›¦)¥¥;åÈ‘#Gޱ··÷òò:þ|``à‘#GäîJùñ²;E­V:ôÛo¿ÍÌÌlß¾}õêÕ8гgϳgÏÊÝÃ*w òÑâ•]¿~½~ýúíÛ·¿wïžÔ2wî\77·¯¿þZîÒÊ¿lü­[·º¹¹äääH-7nÜhÙ²¥‡‡Çµk×äîPyðŠ?6lpsssss›ÝÊÊjÿþýFîêʹlüˆˆ!ÄÌ™3ÍÌ̤WW×#F¨ÕjNX—ŠWù‰¸yóæÒ¥Këׯ/w'Ê›ì”Ý»wggg1¢Y³fRËÛo¿Ýµk×ôôôË—/ËÝ¡ò ;åܹsBˆ¡C‡š˜˜H-­[·öðð¸}ûöƒäîPùçïï?xðàíÛ·Ë]ˆœŽ¥àìÙ³FFF>>>ºcccoo 釯O 6~BBBåÊ•=== 7ººº !’““åîPyP⟈‚‚‚©S§ÚØØLŸ>]îN”7%Ø)ÇŽS©T½zõ*ÜøÍ7ßÄÆÆ6nÜXî•%Ø)ŽŽŽBˆÂQ«Õfeeé¢$^Ÿyóæ­ZµjÕªUmÚ´‘»Ùð}öª´Zm\\\ÕªU«V­Z¸ÝÍÍM‘œœÜ¼ys¹k,·J¶ñ׬YSü7ìÕ«W…5kÖ”»OeÞ«üD¬X±"&&fÆ –––r÷£\)ÙN¹råŠMµjÕ~ÿý÷óçÏgeeÕ¯_¿cÇŽºCõx%Û)ï¿ÿþæÍ›çÍ›gnnÞ¤I“ÌÌÌU«V¥¤¤ 8Ÿš7 ]»vÒ‹ÈÈH¹k‘ ÁñUåää¨Õjkkë"íVVVâÿ/D©+ÙÆoРA‘–èèèµk×V¬X±ÈÁ”@‰".\¸°nݺ!C†´iÓFÊñ(-%Ø)ùùù=ªW¯Þ—_~¹mÛ6]{Íš5—-[Ö°aC¹ûTæ•ì'ÅÝÝ=44tذaÆ Ó52dÆŒrw†‚SÕ¯Jºý­råÊEÚ-,,„>”»ÀòìÕ7¾Z­Þ¼yspppNNÎÂ… mmmåîS™W²’››;uêÔš5kNš4Iî”C%Ø)=BÄÅÅíÛ·oÑ¢E§OŸŽŠŠ3fLjjê¸qãxdÄ«+ÙOJvvöÂ… ?~ìééùÁtêÔÉÌÌìçŸæVw¼1q|UÖÖÖ*•*''§H»ô0éG¼&¯¸ñOŸ>ýÕW_ݺuËÑÑqþüù†|ÍJ)*ÙNY´hQJJʶmÛ8 ú:”`§TªTIz±páÂ:H¯G}çÎÝ»wÿòË/ýúõ“»[e[É~R¦NúÇLŸ>ý£>’ZîܹóÁL˜0aÏž=...rw åG_•‰‰‰••Uñÿ³³³…º{åð:”xãçççÏ›7oèСwîÜ3fÌþýûI¥¥;åÌ™3Û¶mûôÓO¹åâ5)ÁN©\¹r¥J•ÌÌÌ|}} ·wìØQqýúu¹ûTæ•`§üù矑‘‘õêÕÓ¥F!„““ÓÈ‘#Ÿ>}úÓO?ÉÝ'‚c)pppÈÈÈ~Úu¤YrWWΕ`ãk4šI“&mÞ¼ÙÏÏïàÁƒ£Gæ(WézÙ"{±jÕ*÷ÿÓ§O!Äž={ÜÝÝßÿ}¹;T”à'ÅÞÞ¾B… *•ªp£ôÃRPP w‡Êƒ—Ý)Bˆ:uêi—4Þ¿_îÁ KŸŸŸZ­þí·ßt-Z­6**ÊÆÆÆËËKîêʹlüÐÐЃ4håÊ•~^v§Ô®]»ûÿ’n]trrêÞ½»···Ü*Jð“âëë›}ãÆÂÒcbxÐf©xÙR§Nccã›7ojµÚÂí±±±BˆzõêÉÝ!¹Ÿ@^¤¦¦Ö¯_¿K—.=’ZV¯^íææöÍ7ßÈ]Zù§ÏÆÿ믿âãã“““µZ­F£éرc³fÍrss宽ÜzÙRÜ•+W9¦t•`§\»vÍÍÍ­ÿþRË¥K—¼¼¼Z´h‘žž.w‡Êƒì”O?ýÔÍÍmÙ²eºÁ{nܸѪU«† ÆÅÅÉÝ!2sæLƒ9†›cJ““Ó”)S-ZÔ£GöíÛ'&&FGG{zz~üñÇr—Vþé³ñ£¢¢&L˜àêêºwïÞû÷ï'%%™™™ <¸øÚz÷î=dȹûTæ½ìN‘»^ƒP‚âáá1qâÄ%K–téÒ¥yóæ999gÏžU©TóæÍ{ë­·äîPyP‚2wîÜ~ýú­Zµjß¾} 4ÈÈÈøã?4ͬY³êÖ­+w‡`Ž¥#((ÈÎÎîçŸÞ·oŸ££ã!CÆ/=U¯ÛKmü””!Dnnî•+WŠÏå™ÒÂO„•`§|úé§¶¶¶›7o>yò¤ŸŸß˜1c¤a–P*^v§ØÚÚîÛ·oõêÕÇ?zô¨Í»ï¾ûÙgŸ5jÔHî®ÀP¨´ÿ{©ðLܽ ‚#ôBp€^ŽÐ Áz!8@/Gè…འ‚#ôBp€ÿoÊ”)îîî§Nzc«úþûïÝÝÝ·nÝZø]G}æ\ÁÊ’ãÇGEEÉ]e"w`Ð|}}mmm›5k¦çÜÉ“'ggg_»vMîÂ"‚#ÈÉÓÓÓÓÓ³dsà ãT5€2I­VÈ]‚#€2CºqäÖ­[ÿøÇ?š7oîéééãã3f̘"7 H‹Ý¹sçÂ… }ûö}ûí·SRRts÷íÛ7bĈwß}·U«VÆ û׿þ¥V«‹ÖñãÇÇçíííííýÙgŸ;v¬ÈéééK–,éÖ­[Ó¦M›6mÚ½{÷… Þ»wïeWµnݺÜþRxî7ß|ãîîž™™©V«ÝÝݽ¼¼f̘áîî¾eË–"ïZ²d‰»»ûwß}'÷PÞ”13gÎܲeK^^^íÚµ333<´~ýú"‹ÅÄÄ 6ìÊ•+Ož<Ñh4B­V;mÚ´ &DFFjµZ++«èèèo¾ùfðàÁ™™™…ß|ðàÁJ•*eee9rä“O>Y¾|¹nôôôÁƒ¯Y³æÎ;µjÕªQ£FrròÆ^vUúkÞ¼ùСC+V¬¨R©†:hРnݺ !8Px1­V»wï^!DÏž=åÞWÊ‚#€2æüùó>>>§N:xðà¹sç¦OŸ®R©¾ûî»›7o^löìÙ5Ú¸qã‰'jÕª%„øé§Ÿ~þùg{{ûíÛ·;vìÀ‘‘‘Mš49þüŠ+ ¿w÷îÝ~~~§OŸ–>bêÔ©FFF«V­ºté’nÛ·owèÐáĉ?ÿüóž={Ž?Þ¢E‹ÔÔÔ_ýõ¥V¥¿:̘1ÃÜÜÜÈÈhÆŒS¦Liݺµµµõï¿ÿžžž®[ìܹs©©© 6¬W¯žÜû @yCpPÆØÛÛÿóŸÿ´¶¶BôÑGƒÖh4«V­*¼Xåʕ׭[צM[[[©eÙ²eBˆyóæyyyI-ŽŽŽ+V¬¨X±âöíÛïÞ½«{¯““ÓòåË---…&&&Ç>>jµ:&&Fר¿“âqõêUirÔ¨Q«W¯®[·®nû÷ïÿòË/Å«ýÛU½¢®]»ŠBg« öïßobbÒ½{÷׸*Ç Œqvv.ÒR£FŠ+Þ½{7??ßÔÔTj”NOëܾ}[Q§Nâ+¬]»¶øß#…...Ïüˆû÷ï?~üX:ʘššzìØ±ßÿ=999))©È¥/µªWñÎ;ïT­ZõÌ™3™™™666ÇŽËÊÊêСCÕªU_ûž`x8â ŒQ©TÅ[Œ5MáôHg‡u´ZíóVhll,„xúôéß~„‘‘Q… „Û¶m{ï½÷¾üòËK—.Õ­[7((hãÆ³gÏÖ¿Zݪ^‘±±qçÎÕjµtm%穼VqPÆ$$$i¹{÷nNNNµjÕÌÍÍŸ÷.éXc‘ %ÒÁȇ‹DZZZNNNÍš5MMMÿúë¯ü㦦¦kÖ¬i×®]á2ô©¶ðªJeƒtíÚuÛ¶mݺu;r䈥¥¥¯¯oiou‚#ŽÊœü1??¿pKhh¨¢aÆ/x—ƒƒƒÝ;wŽ?^¸ýþýû‘‘‘ÆÆÆºÆ°°°"w”>¢iÓ¦BˆË—/«Õê¦M›NBˆëׯÿܯªT4oÞÜÖÖöÔ©SaaayyyÝ»w/­H E”1wïÞ?~|vv¶B£ÑlݺuÓ¦MFFFcÆŒyñ'L˜ „˜5kÖ•+W¤–{÷î3&//oàÀNNNº%“““'Nœøøñcé#6oÞüïÿÛÄÄdÔ¨QB!Äõë×uÁQ«ÕÛ·o—Ä››[øC_¼ª’Ñh4999ºIéÞê‚‚‚%K–ÎSx8U  ŒéÖ­ÛÁƒ[µjU§Né´¯‘‘Ñĉëׯÿâ7öîÝûÔ©Sááá}ûö­Q£†™™Ù­[·4——×øñã /éîîqèÐ!ggçÔÔÔÜÜ\“Y³fI·Ñ¸¸¸øùùýúë¯:ujÖ¬™V«ÍÌÌ}ú¼yónݺ•——§klÖ¬™Ýýû÷9ÜàµR½àNCP”)S¦ìÙ³gÍš5>>>r×¢,ÆÏÏ/--í×_­^½ºÜå(·¸Æʼ“'OÞ¹s§E‹¤F¯ÁʶÜÜÜ¥K— !úöí+w-Ê9®q€2¬E‹yyyùùùõêՓˀׇà ÌèÖ­›››[ñAü ™££cRR’··÷×_]ä(uܽp#ôBp€^ŽÐ Áz!8@/ÿ[„sc?Œ?£IEND®B`‚statistics-release-1.6.3/docs/assets/binopdf_101.png000066400000000000000000000702671456127120000223050ustar00rootroot00000000000000‰PNG  IHDRhŽ\­Ap~IDATxÚíÝy\TåâÇñg½(âÅ`)¹äЏ•Ë555sï§æ5Ms×R3Ë%ÓRoæ–×Ì媈·n˜¨¹„{Úu)7APsR0e8¿?NMã,pfæÌòy¿|ùbž9ÏÌsžç0çËs–ÑH’$€‚x©Ý¸‚#!8@‚#!8@‚#!8@‚#!8@‚#!8pÓ§OkÌ)Q¢DõêÕ_{íµŸþÙpùeË–É 4hÐ@í¶›gu §N*WìÚµka»«L™2õêÕ2dÈ•+W \ÞÇÇ'00ð…^˜:uê­[·¾…¡ñãÇ«ÝÍœÁ€Ê=ztùòå76lØpÙ²ej7ÇÙÝ¿ÿرc_|ñÅ3Ï<óý÷ßç¿°N§ËÌ̬vó¸6µÀùúúÊ?ß¹sçÞ½{Bˆßÿ}Ĉ­Zµ B”)S¦fÍšBˆàà`µÛkžÃZ¨ï®Ç_»v-//OñàÁƒ!C†œ:uªtéÒ––ðà~¢ñÎ;=zôHNN.Q¢D>oa¤\¹rïWNL‡8uê”þ“gçΆO}ÿý÷%K–”Ÿ?~¼Ú-µ»)S¦È+Û¥K—Âv×o¿ý6pà@ýSß~ûmþ˧§§ÿßÿýŸþ©ùóçø` ‡ª¨¯M›6/¿ü²üsrr²üƒé„†§Þ¹sgìØ± 4(S¦LݺugÍšõøñc£—}ðàÁ´iÓÚ¶mÔ¦M›wß}7++ËpýköèÑãâÅ‹}úô©Y³fÕªU{õêõË/¿!>ܳgÏš5kþíokÙ²å?ü ¯köǼ¼¼ 6´lÙ²F%K–¬Q£FLLÌW_}eÚ<ëøùù-Z´¨X±bòÃsçÎå¿|µjÕV®\©?™rÖ¬Yóýðɉ‰{öìiÑ¢…¥¶õêÕ˰ééééé鉉‰[¶lÙ´i“MúÊ××·B… ¿þú«âöíÛJª¼ýöÛ_ýµâÖ­[û÷ï饗lÒž†G*»wïÞÊ•+ããã…>>>ƒ *°Ê?üpöìÙ5j¼ð úcÜ›6m:zô¨üsNNΫ¯¾*§Æ’%K¾ôÒK:t(Uª”âòåË={öüí·ßŒ^óĉ·oß®S§Nùòåå’[·n½ýöÛ?®U«V•*UäBI’¦OŸn©a±±±rjÔh4­Zµêß¿íÚµå§âââvïÞm“»{÷î7äŸåóA ]¼xqùç#GŽØ¤<Á€ Ú´i£¿áK@@À Aƒt:¯¯ïêÕ«Ÿþy%¯ðÙgŸ]ºtéðáÃÇ×gG}pœ;wî¥K—„eË–Ý»wï¶mÛ¾ûî»Ã‡ !®_¿>kÖ,Ó׌?qâÄõë×[µj¥/\°`Á™3gÒÓÓõ‰V>„mÖ¶mÛäÆŒ³k×®¯¾úê—_~©W¯ž\ø¿ÿý¯ˆý–››{îܹ¾}ûêt:¹¤nݺJ*j4šJ•*É?_¿~=ÿÑ=zt ÀÍ8‹Úµk›A¶´ä[o½%ÿüÌ3Ï4oÞ\þ9--Mþá»ï¾“9r¤þÄgŸ}v̘1F èÕ¯_¿C‡BˆbÅŠõèÑC. 9r¤ÂËËëµ×^“ ïÞ½k©a={ö”…¿ýöÛrIVVVvv¶ü³ÂÃʦô©®X±bµjÕÒ7þå—_V˜³…ûÛßôM²®À9ŽT`xó—ßÿýúõë’$=z´^½zxê©§ò¯n´€þà²|Ÿ!DRR’üƒÑÉ|/¾øâ»ï¾+„¸páB^^ž—×_<ëF !ôm«\¹²F£1*̇üvwîÜÙ¾}ûO?ýtüøñ£Gš·‰Úµk/\¸Pùò™™™òeË–5}Öìíxô 2‚#¬[·®uëÖú‡ýû÷OHH¸qãÆÀó¯®sffeeÉ7†&—ÚèÓáÇoܸaø¬Ñ‹È “¥=zçwþùÏæææÊ%¾¾¾+V¼yófQºË0ÕùøøDDD4iÒäí·ßÖ£WB„:((ÈôY£³8T @}ú“÷îÝkö$<åÊ–-ëïï/ÿ|íÚ5çô‹/^¡B›¯ÈÌ™3?ýôÓÜÜÜÐÐÐÅ‹Ÿ½^½zÿú׿äpyáÂ…¾}ûþöÛo›7o®U«–"++«AƒíÛ·_°`Ú«à,\ûÇØØØ¼¼¼Q£FÉ©Q1iÒ$ÿ„„„¼¼<³U¶mÛ&„˜}ZQ­Z5ù¡¯]»Ö¿ÿ³gÏ–*U*""bèСuêÔQ{¥TãÂÁ1;;[§Ó™^°âïï/„¸}û¶ÙZF%‡^¾|y‰%ºté"—ÈS . iܸñÕ«W÷ìÙ“˜˜øþûï¿úê«6,<<\í¾ö•””¤vTàÂÁ1''GQºti£r???!Ľ{÷ |N·nݺ?þX§Ó}òÉ'rùµk×|}}njӿ¹äàÁƒC‡5kV³fÍ*W®\à+{æÆ„ððp†Þ31ô‹¡÷X;IäÂç8h4šììl£òû÷ï‹?çóñã?vêÔiæÌ™ÿú׿:tè jÕªU'NœÐ§F!D“&Múõë—““³sçNµ×@.}||üýýMg³²²„úë¬M=zôhæÌ™ øõ×_GŒ‘ФI“ß®aÆBˆóçÏ«½ÞêpáCÕBˆ   ää䬬¬²eËê SSSå§ÌVÉËË;vìŽ;Ú´i3mÚ4Ó|)IR^^žF£ñòz"U{{{ !Ê”)£öJ¨Ã…g…­[·ÖétûöíÓ—H’”˜˜X®\¹¨¨(³UÖ¬Y³cÇŽÞ½{þùçfg%ÓÒÒ""" `T~üøqáÁç4¸vpìÑ£‡——×¢E‹äó…Ë—/ÏÈÈèÖ­[±bÅä’¤¦¦^¹rE!IÒÚµkË”)3qâDK¯Y³fÍzõê9rdÓ¦MúÂãǯ\¹²råÊ/½ô’Ú+  ×þÊA!ÄÊ•+çÌ™S¥J•æÍ›§¥¥>|8""båÊ•úÛôlݺuôèÑaaa[¶l¹yófóæÍ}}}Ÿzê)Ó—êÚµkß¾}…çÎ4hPFFFdddhhèÕ«WOœ8QªT©Ï?ÿ¼Q£F6‰‹ì|ø°Úí-˜ò6?~üØÇÇGó¤ *¨½®ïª $µQx)))111:®k×®Õ«Wß¹sç˜1cöîÝûõ×_ !²²²êׯŸžžÞ½{÷ÀÀÀ¸¸¸víÚíÙ³'**Jí†[T¨6§¦¦êtº&Mš„††ê ýüüÔ^ 'ÁÖ´Z­ÚM€:RRRÔnÔÁÐ;;};`o©Óérssmûš;wöòò:r䈾dàÀBˆmÛ¶I’4mÚ4!ĪU«ä§.^¼вeËB½Enn®Í›Bµù»ï¾Bìܹ³À—µb³ñØ}=‡ª0C£)\¹uBBBF½lÙ²ÀÀ@Ÿ*Uª 6ì·ß~³É‹ïÞ½;::ºAƒú’·ÞzKqèÐ!!Ć ‚ƒƒû÷ï/?Ú½{÷ÄÄÄk×®)lö¢E‹Š/þì³ÏNš4éÑ£Gò³9993f̨U«V©R¥jÔ¨1xðàëׯÛd Õæääd!ÄÓO?m“·†Œà€’d&#Úã˜õÎ;GŽÙ»wïÏ>û¬nݺK–,3fLÑ_677wøðárRÔKKKB”(Q"++ëüùó-[¶Ô¬d«V­òòòžé¸iÓ¦#FDGGOœ8±B… sæÌiÛ¶­$IBˆÁƒ¿÷Þ{ÕªU3fLTTÔªU«ºtéRô5*l›“““K”(Q¦L™M›6-[¶lÿþýúh «qŽ#æÉÙQŸít¦ã©S§âââºuë&„>|x:u¶mÛVô—õññ™={¶aÉíÛ·gÏžíííݽ{÷7nH’d¸@ÅŠ…·nÝRòúW¯^5kÖ;ï¼#?œ0aÂܹs7nÜØ©S§70àË/¿”Ÿ}z÷îÝ‹+öí·ßŽ=ºK—.§N’kÁ Gž äìF†H­VkøÐËËüYd<È瀯d¹Aéééo½õV|||XXØÎ;[µj%„ BL™••%„(_¾¼’fGFF/^\ÿ°téÒááá/^ôõõ]°`ÁرcCBB"##›4iÒ®]»Ž;.lݶÍ?üðCÉ’%õO 8ðáÇÇ‹‹4hP¡Ç BÎqÀˆ$=ñÏl¹ •,YRÉbþþþù\ëj©Öúõëk×®ýÓO?-[¶ìÌ™3rjByyyáÍÈÈBT©Rźñññ‘O">|ø¥K—–/_þÜsÏmݺõ•W^yî¹çnܸQÄ5*l›+W®l(_|ñE!ÄéÓ§m0lžŠG,’Pþ¯+UÇÇÇ÷ë×ïÕW_]ºt©Ñ^Ÿˆˆˆ}ûöîÝ»W£ÑDFF*iÏ™3g?~\¬X1ùaNNÎÙ³gcbb233“““µZíàÁƒœ——·xñâ#F,]ºT¾™ŽÕkT¨6§¥¥mÙ²¥U«VµjÕÒÊÓ“òtX‡à€yFIQÝìXØ»’$M˜0¡ZµjkÖ¬ñöö6­òÆo¼ýöÛ[¶lùûßÿ.„¸yóf\\\Û¶mCBB”´çÖ­[óçÏŸ0a‚üpÆŒYYY]»vMJJjÚ´éäÉ“g̘!„ðòòЉ‰Bè#¦ÕkT¨6ûúúŽ7®Aƒ»ví’ß://oîܹ>>>mÛ¶µûh¹/‚#f˜Íˆ*fGùÀ®òåÏž={îܹZµj <Øè©W^y¥S§N¯¿þúÊ•+ûôé3|øð€€€U«VeggOŸ>]^fýúõÆ û¿ÿû¿O?ýÔìëO:õàÁƒuêÔ9tèÐ÷ß߸qãþýûçææÖ®]û£>JII©]»vRRRBBBùòå{õêUÄ5Bäßæ9sæ|ôÑG³gÏ:thÅŠ§OŸ>qâݰ°öíÛlß¾ýøñã³fÍŠˆˆPaüÜÁ3,EWùîAùö×gÏž={ö¬ÑSO?ýt§NÊ–-›˜˜8~üø¸¸¸;wî4nÜxݺuúïî{ôèÑÝ»wsrr,½þ /¼0zôè÷Þ{oáÂ…ÁÁÁãÆ›1c†——WñâŦM›¶k×®ÿüç?AAAmÛ¶:uªÂ‰Ìüåßæ‡Þ½{÷÷ß—N˜0á©§žúøã×®][²dÉçž{.!!¡]»vjŒkÓ6ì£@áááIIIj·*HMMµÉ'#\Cï<ø¶¡+Vœ:ujÁ‚¦O…„„Ô­[WþÎk7`Åfã±[WUc>ܳgÏóÏ?¯vCà\ŽÀØ¡C‡jÕªÕ»woµçÂ9ŽÀXË–-[¶liéÙöíÛ׬YSí6BGP8‹/V» P‡ª ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ Á·õóÏ?÷ìÙ³R¥J~~~õëן?~nn®þÙ{÷î :´zõê~~~ÑÑчV»½SØæ‹/j,hÙ²¥Ú+áÂ|ÔnÎN#4’ÔnE¡¥¤¤ÄÄÄètº®]»V¯^}çÎcƌٻwï×_-„ÈÊʪ_¿~zzz÷îÝãââÚµk·gÏž¨¨(µn‘ò6ûùùõíÛר0''góæÍ!!!j¯‡+“`kZ­Ví&@)))j7ê`è‡>…d÷Ý¥N§ËÍ͵íkvîÜÙËËëÈ‘#ú’ !¶mÛ&IÒ´iÓ„«V­’Ÿºxñb@@@Ë–- õ¹¹¹6ov>ŠØæqãÆgdd•[±Ùx쾞CÕ˜¡šB•['$$dôèÑË–- ôññ©R¥Ê°aÃ~ûí7›¼øîÝ»£££4h /yë­·„‡Blذ!88¸ÿþòS¡¡¡Ý»wOLL¼víšÂf/Z´(  xñâÏ>ûì¤I“=z$?›““3cÆŒZµj•*UªFƒ¾~ýºMÖ¨(m>xðàüùóW®\ù·¿ýÍ&ñLGÌ„dšíqÌzçÎ#GŽìÝ»÷gŸ}V·nÝ%K–Œ3¦è/›››;|øp9)ꥥ¥ !J”(‘••uþüù–-[j4­c«V­òòòžé¸iÓ¦#FDGGOœ8±B… sæÌiÛ¶­$IBˆÁƒ¿÷Þ{ÕªU3fLTTÔªU«ºtéRô5*J›>|øúë¯÷ëׯ]»vEo‰'ãGÌ“³£>)ÚéLÇS§NÅÅÅuëÖM1|øð:uêlÛ¶­è/ëãã3{ölÃ’Û·oÏž=ÛÛÛ»{÷î7nÜ$)((ÈpŠ+ !nݺ¥äõ¯^½:kÖ¬wÞyG~8a„¹sçnܸ±S§N7n0`À—_~)?5xðàÿþ÷¿×®] .Ê¥Í .¼råʇ~XôŽõpG,ÒÏ;Úïú˜ÐÐP95 !4MTTÔ·ß~kºXnnîwß}géE:wîœÿ»üðÃC† INN^²dIXXØÉ“'…eË–5\Æßß_‘™™©¤ÙcÇŽÕ?œ6mÚ’%Kbcc;wî¬Ñh8––V£F !ÄŠ+V¬XQô5ÊÎζ®Í³gÏ5jTÕªU 760Apà JÎn´aˆÔjµ†½¼ÌŸEöàÁƒ|øÊLjÍJOOë­·âããÃÂÂvîÜÙªU+!D`` Âèdʬ¬,!Dùòå•4;22²xñâú‡¥K—¿xñ¢¯¯ï‚ ÆŽÙ¤I“víÚuìØÑpaëÖÈê6Ï™3çáÇãÆ+̰À<Îqà ’ ÿ™-·áÛ•,YRÉbþþþù\ëj©Öúõëk×®ýÓO?-[¶ìÌ™3rjByyyáÍÈÈBT©Rźñññ‘¯>|ø¥K—–/_þÜsÏmݺõ•W^yî¹çnܸQÄ5²®Í>\¹rå+¯¼¢0#Ì8`‘|„ÚðµZbÅ¡êøøø~ýú½úê«K—.5:Âëãã±oß>ý{÷j4šÈÈH%í9sæÌãÇ‹+&?ÌÉÉ9{ölLLLfffrr²V«]^fýúõÆ û¿ÿû¿O?ýÔìëO:õàÁƒuêÔ9tèÐ÷ß߸qãþýûçææÖ®]û£>JII©]»vRRRBBBùòå{õêUÄ5Bäßæ9sæ|ôÑG³gÏ:t¨\’“““˜˜ØºukKgŽ¢°Ž˜a)ºÊw&'' !Ξ={öìY£§ž~úéN:•-[611qüøñqqqwîÜiܸñºuëôßÝ÷èÑ£»wïæääXzý^xaôèÑï½÷ÞÂ… ƒƒƒÇ7cÆ //¯âÅ‹'$$L›6m×®]ÿùÏ‚‚‚Ú¶m;uêT›|Ñ_þm~øðáÝ»wÿýwýò‰‰‰>ŒŽŽV{4܇¦°a OJJR»PAjj*_ê™zça§O`ý®ê"Z±bÅ©S§,X`úTHHHݺuåï¼vVl6»¯gæ€x`j|øðáž={žþyµçBpÆ:T«V­Þ½{«Ý8ÎqÆZ¶l™Ï•ÈíÛ·¯Y³¦Úm„ Ž p/^¬v U@‚#!8@‚#!8@‚#!8@‚#!8@‚#!8@‚#îïñãÇ5jܸ±aá½{÷†Z½zu??¿èèèÇ«ÝÌ‚)oóãÇ}||4OªP¡‚ÚkàÚ|ÔnNO£’¤v#ŠdÊ”)?þøc£Fô%YYYõë×OOOïÞ½{```\\\»víöìÙ¥vc-*T›SSSu:]“&MBCCõ…~~~j¯„k#8 ¾¼¼øàƒÖ­[;¦yž€CÕ˜£Ñ8àMBBBF½lÙ²ÀÀ@Ÿ*Uª 6ì·ß~³á[ܸq£_¿~ƒ®Zµªaù† ‚ƒƒû÷ï/? íÞ½{bbâµk×6{Ñ¢EÅ‹öÙg'MšôèÑ#ùÙœœœ3fÔªU«T©R5jÔû¬nݺK–,3fŒíVBêß¿¹rå,X`Xž••uþüù–-[j Ö¨U«Vyyy ÏtÜ´iÓˆ#¢££'NœX¡B…9sæ´mÛV’$!ÄàÁƒß{ï½jÕª3&**jÕªU]ºt)úº¶ÍÉÉÉ%J”(S¦Ì¦M›–-[¶ÿ~}´…Õ8T €rvÔŸÝhŸ3O:×­[7!ÄðáÃëÔ©³mÛ6[½øÜ¹s>\ªT)Ãò7nH’dXX±bE!Ä­[·”¼òÕ«WgÍšõÎ;ïÈ'L˜0wîÜ7vêÔiãÆ øòË/å§üßÿþ÷ÚµkÁÁÁEY—¶999ÙËËëé§Ÿ¾sçŽ\R«V­5kÖÔ«WÏVÝëŽX¦Ÿw´Ûõ1¡¡¡rjBh4š¨¨¨o¿ýÖt±ÜÜÜï¾ûÎÒ‹tîÜÙ´ðÈ‘#S¦L™;wnݺužÊÎÎB”-[Ö°Ðßß_‘™™©¤ÙcÇŽÕ?œ6mÚ’%Kbcc;wî¬Ñh8––V£F !ÄŠ+V¬XQô5*l›“““óòò¦OŸÞ½{÷bÅŠ}ûí·£Gîҥ˩S§äZ°Á€'Y:mXn»©Õj zy™?‹ìÁƒùð•LÚ“••Õ«W¯¶mÛŽ9ÒtùÀÀ@!„ÑÉ”YYYBˆòåË+ivdddñâÅõK—.~ñâE__ß Œ;6$$$22²I“&íÚµëØ±£áÂÖ­QaÛüÃ?”,YRÿÔÀ>|8|øð¸¸¸Aƒb„`€àÀ“Œ"‹>/ÚgƱdÉ’Jó÷÷— Ó€eË–¥¤¤téÒåã?–KîÝ»§ÓéæÌ™S½zõ=zxyyáÍÈÈBT©RźñññyðàbøðáݺuÛ²eËž={¶nݺ|ùòðððÄÄD££Ì…]£   Bµ¹råÊF%/¾ø¢âôéÓÖ­ Á€üÈG¨ ÿWIaìÊ‚|ú駆…wîÜ™4iRLLL¯^½"""öíÛgøìÞ½{5Mdd¤’öœ9sæñãÇÅŠ“æääœ={6&&&33399Y«Õ€+I°5­V«v Ž””µ›u0ôÎÃÆŸÀú½¤é6R³fÍ.]º–¼þúë¦KÞ½{·ˆ{óš5k6jÔHÿpáÂ…Bˆøøxùá7‚‚‚^|ñE…/%„˜3g޾äÝwßB|ùå—BLž}ú >< `ÕªUÙÙÙÓ§O—Ÿ]¿~ý°aÃþïÿþÏhÎR/88xêÔ©¬S§Î¡C‡¾ÿþûÆ÷ïß?77·víÚ}ôQJJJíÚµ“’’Ê—/ß«W¯¢¯Qþmž3gÎG}4{öì¡C‡V¬Xqúôé'N kß¾}@@ÀöíÛ?>kÖ¬ˆˆÇ ™[â>Ž˜c)Ó¸øwê•-[611±gÏžqqqsçÎ}úé§õßIøèÑ£»wïæääXªþ /|ÿý÷wïÞ]¸páåË—Ç·gÏ//¯âÅ‹'$$ 0ààÁƒ|ðÁ?üжmÛ„„„Ø»Í>¼{÷îï¿ÿ.?œ0aB\\\PPÐÚµkW¬XQ®\¹„„ýýƒ`mÿ|"<<<))IíV@©©©6ùd„Ëa臽>]ÿ»ª­°bÅŠS§NÝ9\R·nݯ¿þZí6Ú†›Çîë=åPõ¦M›bcc“““K•*Õ¢E‹ñãÇ—+W.Ÿåsrr6nÜwåÊ•2eÊhµÚ6mÚTíõ¨ÁóRãÇ÷ìÙóÒK/©Ý8ŽóçÏ_ºtiéÒ¥4h––¶yóæ .¬^½Ú×××ìò¹¹¹¯¿þú‰'üýý7nüðáÃüqÿþý#GŽ>|¸Úk€Ý:t¨V­Z½{÷V»!p.î“’’–/_'1ÑÌ™3W¯^=oÞ¼©S§š­{âĉzõêýë_ÿ’Ãå… úöíûùçŸ]Ø€[jÙ²eË–--=Û¾}{ùÂjx÷¿8&666//oÔ¨QrjBLš4Éßß?!!!//ÏlùKB'Ož¬Ÿ’ :t¨N§“ï2€'[¼xñ„ ÔnTàþÁñèÑ£^^^111úooïèèèÌÌÌcÇŽ™­’ššZºti£»‰†…… !._¾¬ö ¨ÃÍUK’”œœ\¾|y£o±”¿ôòåËõë×7­µlÙ2ãž‘¿¡¨Zµjj¯€:Ü<8fggëtº€€£r!ÄíÛ·ÍÖ2½5èáÇ—/_^¢D‰|¾ŽÝPxx¸Q‰|øîíÊ•+j7ê`èW—šššÏ³íÚµS»ÎÂ̓£|çÒÒ¥K•ûùù !îÝ»Wà+ètºuëÖ}üñÇ:î“O> Tò¾žyo'!¸™ŸÇbè—–ÿ¯°énÝt†ÈC¸yp Ðh4ÙÙÙFå÷ïßÎ;æãÇœ>}úÅ‹ƒƒƒgÍšÕ¤IµW@5n}||üýýMg³²²„úë¬M=zôhîܹkÖ¬)Y²äˆ# dé¦Â̓£"(((999++«lÙ²úBùT†   ³UòòòÆŽ»cÇŽ6mÚL›6-Ÿ| à9Üÿv<­[·ÖétûöíÓ—H’”˜˜X®\¹¨¨(³UÖ¬Y³cÇŽÞ½{þùç¤F™ûÏ8öèÑcéÒ¥‹-jÑ¢…|MÌòåË322\¬X1y™ܼy³X±bU«V•$iíÚµeÊ”™8q¢ÚmšÇ^µ8€ûÇÊ•+?~Μ9/¿üróæÍÓÒÒ>ùÆoè—ILL=ztXXØ–-[nݺ•žžîëëÛ§OÓWëÚµkß¾}Õ^'€y¾©Ejj*Ôã¸pB 8°B… ß|óÍÖ­[ƒƒƒûöí;jÔ(yöÑ”|?¶œœœS§N™>Ë…ÕÀci$IR» î&<<œû8z&æ<Cï±zå±ûz÷¿86Ap€"Gfh„Fí&œÁŠÁ#@‚#!„„d6;(zG0ÍŽ¡‘wìüàà/†Ù‘Ô0âß ¦£ ³£¾ 8žÎ4Êy‘¤0¡jOС沀‚#€¿ž×hé:k€Ç"8øƒéÕ0dG€!‚#€?˜=©‘3zG(Bp`SG(Bp€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"G(Bp`¡Q» »#8@‚#+1Ëž†àÀJ’ÌfG%¸+‚#ë™fGÐHBR»]» 8(ÃìHj÷æ£v÷"yFjÊçµáS„Hp3G…fšå¼HR÷Æ¡j H4šÂ•»%}jä²poG H$ÉLFÔh„‡³Ož×Hv÷FpŠÊ(;zljü£7Ȏྎ€ è³£‡§Æ?zƒ3ÀMqq `%%g7ºwˆ$ €§!8V2 …ú¼èÞaÑB$xU6 ?BmöZÜÁ(*£óÉŽwEpŠÄìÕ0dG€["8EbéŒFÏ<ÓàÞŽ€Í¤¤¤ªÝìˆàEŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽ€ûÓÚM¸‚#à†HŠ{ 8nH’ÙìH ÁpO¦ÙQ#4’ÔnÀ…·e˜I€¢óQ»lÌt¢Ñ´œ °Áp7F¡P΋$E@Ñq¨pgú#Ô\(:‚#`žÆ!AË®ïbx^£¥ë¬PŽà¸'Ó«aÈŽ€""8±4ÿgÛyA¼‹¥k¨9ÓPGà/’d&½i4B²iÜrÀ»ö@pž`”êlžù.½9` GÀ˜>ÕÙ5Ï9æ]°!îã¡ì¼Ã¢Ç;Ǽ vBp„0‰kú$gó³ð.Ø ‡ªcúcÇf¯bq­wÀ†ŽÀŒÎ8´SªsÌ»`[Gà/f¯S±yªsÌ»`sGà/–Î5´ë™ŽvzlŽà˜GŒÀÁPñàBŽP„àEŽP„àEŽP„àEŽP„àE|Ôn€ lÚ´)66699¹T©R-Z´?~|¹rå”TLIIiß¾}lll:uŒžêÞ½û/¿übTxàÀµW@.çÏŸ¿téÒÒ¥K7hÐ --móæÍ.\X½zµ¯¯ou׬Ycé©ôôt__ßš5k¨½ºªqíà˜””´|ùò   ¸¸¸Š+ !fΜ¹zõêyóæM:ÕR­¬¬¬óçÏÇÇÇoذÁÒ÷îÝkß¾ý‚ Ô^EgáÚç8ÆÆÆæåå5JNBˆI“&ùûû'$$äååYªÕ©S§>}úXJBˆôôt!„Ñt#€‡síÇ£GzyyÅÄÄèK¼½½£££ããã;V¿~}³µfΜùûï¿ !Ö®]{ðàAÓÒÒÒ„5jÔP{ýœˆ GI’’““Ë—/_¾|yÃr­V+„¸|ù²¥àجY3ù‡={ö˜]@Ž×®]ëß¿ÿÙ³gK•*1tèPÓkh<‡ ÇììlNgzÁŠ¿¿¿âöíÛV¿òåË—… . iܸñÕ«W÷ìÙ“˜˜øþûï¿úê«J^!<<ܨdÛ¶mjwìîÊ•+j7ê`è=Cï!Úµk§vœ… Çœœ!DéÒ¥Êýüü„÷îݳú•¯]»æëë;f̘þýûË%:tè¬Y³š5kV¹rå_!))Iíî:BBBÔnÔÁÐ{,†Þ˜îÖMgˆ<„ _ Ñh²³³Êïß¿/þœw´ÎªU«Nœ8¡OBˆ&Mšôë×/''gçÎj¯7€:\88úøøøûû›Î,fee !ô×YÛJÆ …çÏŸW{½ÔáÂÁQ”™™)'E½ÔÔTù)ë^S’$Ngz7ooo!D™2eÔ^iu¸vplݺµN§Û·oŸ¾D’¤ÄÄÄråÊEEEY÷šiii 0*?~ü¸ðàs\;8öèÑÃËËkÑ¢EòyBˆåË—gddtëÖ­X±brɃRSS•_øV³fÍzõê9rdÓ¦MúÂãǯ\¹²råÊ/½ô’Ú+  ¾ªZQ¹råñãÇÏ™3çå—_nÞ¼yZZÚáÇ###ßxã ý2‰‰‰£G Û²e‹Â—}ï½÷ 4eÊ”õëׇ††^½zõĉ¥J•š={¶’¯ÀpK®=ã(„8pà¼yóBBB¶nÝzûöí¾}û®^½Úô掅òÌ3Ï|ýõ×]ºtÉÈÈØ¾}û½{÷ºté²eË–F©½ºªÑH’¤vÜMxx8÷qôL©©©ÜÑÍ31ô‹¡÷X»¯wùG8ÁŠ ÁŠ ÁŠ ÁŠ ˆã‚ã'Ÿ|’œœ¬öúÀJŽ ŽË—/ïØ±c·nÝÖ¬YsûömµW…ã¸àøü£J•*§Nš1cFóæÍß|óÍíÛ·?zôHí€">{§1cÆŒ=úرcñññ »wïÞ½{wÙ²e;vìØ¥K—ºuëªÝÈF’$Ç¿knnîÞ½{ãããwïÞýðáC!D5ºtéÒ¹sç*Uª¨Ý'Ež””¤v+ ‚ÔÔÔµ[0ô‹¡÷X»¯WçªjŸV­ZÍŸ?ÿСC“'OöõõMKK[¸paëÖ­ûõë÷Í7ßèt:µ{OpÜ¡j#wîÜÙµk×¶mÛ:”››+„¨P¡B±bÅŽ9räÈ‘/¾øbÅŠÁÁÁj÷þàèà˜‘‘ñý÷ßoß¾ýÈ‘#ò´b``à‹/¾Ø¡C‡zõê !<8þüS§N½÷Þ{_|ñ…Úý€?8.8®]»vûöí?ýôS^^ž¢|ùò/½ôRûöíëׯïíí­_¬Y³fõêÕkذáÑ£GÕîüÅqÁñÃ?B¼øâ‹íÛ·á… ó¢!__ß’%KrœÀ©8.8vëÖ­C‡7¶” 1ÝàlwUuBB¡C‡,¥Æ#F¼ôÒKj÷,r\pÌÎÎ~üø±¥§ÒÓÓ¯^½ªvoÀ"ûªNLL|óÍ7õW¯^½víZÓÅòòò$Iª^½ºÚ½‹ì½½½Ë–-+ÿ|çÎâÅ‹—*UÊì’“&MR»7`‘}ƒc³fÍ>,ÿþÚk¯½ûî»j¯2¬á¸«ª T¿~}µ×Vr\pœ0a‚Ú+ À‰h„F’Ú­‚ƒãºuë„ 6 Ó?Ì_Ÿ>}ÔîvDX—fÇàøÁ!¦OŸ.GùaþŽ€{“„d6;(À%Ø18Ž1Bñì³ÏÊǧöÊPŸiv$5€«°cp|ë­· ¾ñÆj¯,§ gGùgR#¸Ç]cJ’¤Ý»w_¹rå¹çž‹ŠŠR»+8ŽœIàZwïÞ½páÂ6mÚÈG±§L™'?Õ«W¯iÓ¦i4µ;€]è§ó/'G€3sÜwU=ztذaçÎËËËBœ9s&..Îßß¿wïÞU«V]¿~ýîÝ»Õî ö" ÉðŸ¾Ðè)µ› Èãf¿øâ I’&OžÜ«W/!ÄŽ;„³gÏnݺõ¥K—Úµk÷ïÿ»uëÖjw»“PËs–®³8!ÇÇóçÏWªT©ÿþòÃü±xñâÍ›7BÔ¬Yó©§žJIIQ»7ØiL$;€«pÜ¡ê»wïÊ?çææž9s¦víÚÅ‹—KJ•*•‘‘¡vo°/KÑÕScHh¨ÚMGp\p¬\¹ò•+Wt:âØ±c>|á…ä§òòò®\¹R¡Bµ{€}¹z@ç¸àØ Aƒ»wï~öÙgW¯^ýì³Ï„ÑÑÑòS+W®¼}ûöÓO?­vop—‘Ü€çqÜ9ŽC† ‰_²dÉ’%K„Ï>û¬|ïÆW_}õäÉ“BˆªÝ ˜$ FHOÆ_Óp#Ž›q¬R¥ÊÆcbb*UªÔ¬Y³ ÈwmÌÈÈ([¶ìG}Ô¨Q#µ{ CÎŽz¤FîΡ7 [¶l™Qáš5k‚ƒƒ½¼aÀfôÙ‘ÔÀ¨ù•ƒ²*Uª¨Ý( Kg7•“#¸‡Ç„„„Õ«W_ºtI²ðyzøðaµ; bz^£Ùrp;Ž Ž;wî5j”ü³···Ú+¶ ¡6üÜ—ã‚ãŠ+„¯¿þú°aÃüýýÕ^q(2£¤Hvàî“““«V­:qâD®ƒàÌfD²#·æ  ÷øñãß~û­Zµj¤F¨‚[5Ãö,¥CR#÷å çåååïïáÂ…¼¼<µWpm„`€Z½½½œ‘‘1þ|µWžÂm–Û¬ˆË(|§¦¤8à]@uŽ;DZC‡—/_^¾|ùáÇ۷o_µjÕâÅ‹-£v‡À}X:ÙÌåÎ@s›¸:ÇÇÖ­[Ë?üüóÏ?ÿü³Ùe’’’Ôî¸ÓÈå¢aËmVÄyYêPÛv´cÞìÆqÁñå—_V{eበ¿LØ¥÷ΆÙÑ¥WÄI™×µyG;æ]ÀnçΫöÊÂCÉ;k7Ø;ëC°«¯ˆ“2JuvÚbó.`*|WõÝ»wO:uíڵʕ+7mÚ4###00Pí~€[q§o6».®¸"®AŸÍíšçó.` Ž™™™K–,‰‹‹ËÉÉB 0 iÓ¦]»vŒŒœ={v¹råÔî ¸ ³ß$ì¢7f6=¯‘IGSòwFÑ»Û1ïvæ¸Ûq?~üxذakÖ¬)[¶l×®]õå+VܳgÏk¯½&§IÀ¶ âáùŽ.ÇmVÄéHÒÿÌ–»Ê»€9.8.[¶ìĉ-Z´Ø¶mÛG}¤/íܹó¥K—V¯^­voÀݘN1ºhär›qvú޶kÿ:æ]À9âíí=kÖ¬R¥J–{{{¿÷Þ{¥J•Ú¾}»Ú½·béÀ´ËÍì¸ÍŠ8;£Ž¶SªsÌ»€}8.8ž={6$$Äìu0~~~¡¡¡iiij÷ÜŠÛä*·Y§f6žÛ<Õ9æ]Ànýýý(l‚#ùµáÿj·àYìå›ì:{öìöíÛ½½½›5kV³fMooïÔÔÔ}ûöåææ¿ûî»j÷༌’"Ùàxv Žo¾ù¦áÃôôô5kÖ„‡‡þùçÕªUÓ—_½zõ­·Þ:sæL||ü‹/¾¨v‡ÎÈlF$5Ìq7_²dIffægŸ}f˜…UªTùç?ÿ)„رcGFF†Ú8#2"À8.8?~¼råÊ5jÔ0}ªZµjr¹ÄW)!DÔâ¸Ûñܹs'//O’$ÆÌíE²²²Ê•+W¡Bµ;æ9nƱvíÚYYY?üðƒéSû÷ï¿sçNdd¤Ú½‹;tè „˜0aBBB‚á!é;vŒ7N¿œ“ãUwëÖmÿþý[·n5jT… BCC5MJJÊÍ›7…:uêÖ­›Ú½‹ú•ƒŸ|òI“&M.\xëÖ­[·nÉ…ÁÁÁ#FŒèÚµ«Ú]€ü848zyyõèÑ£{÷î7nÜHMMõññ©Y³&ĸ‡G™F£©T©R¥J•Ô^w‚ã.Ž€K#8@‚#!8@‚#·fî;N]•;­ ×Dp€"GnÇÒÌœ+ÎØ¹Óºp}GnG’Ìä*FH’Ú-óìuàúŽÜ‘QÞré¤åNëÀŸ)}Þrƒ¤åNëÀ•©ð•ƒ`/ Ït‰ì¥d]\bE¸O™qÜ´iS=¢¢¢š6múî»ïÞ¹sGaÅ”””ððð“'Oª½¤'þXîÌ”¬ 8–GÇùóçO™2åâÅ‹ 4ðóóÛ¼yó!Crrr”Ô]³fÚÍ`ýQ]³×—¸wZ®ÌýU'%%-_¾<(((..®bÅŠBˆ™3g®^½zÞ¼yS§NµT+++ëüùóñññ6lP{ žÑ¹€rÞrÑ):wZ.ÎýgcccóòòF%§F!ĤI“üýýòòò,ÕêÔ©SŸ>}H€K2›«\t®ÎÒº€ÜÆñèÑ£^^^111úooïèèèøøøcÇŽÕ¯_ßl­™3gþþûïBˆµk×…Bw°'‚#ç&IæÃ É,º €=8=Ó0¤ÑIR»YΊî`7G®À0 ƒ Dw°‚#!§bBúìHw°µX:-Ϩœ`¤§äìFº @8+£ˆ£Ÿ?cÒÑÃn‘{‰IG6Å¡j®À0,Zºpztû 8pz¦SŒ„¡|Ð]ì†àÀ¹Y:0ÍáW³è.öDpàÜH<…Bw°'‚#×A**,z €M Á®‡³ü ‹ØÁŠá~‡ôè€ÍáÌÞ‡Ž/ɇ¥ÀjG¸ £$Dj,=°-‚#\‰> ‘r³Ó¦L@M>j7(€Â³Ý ÙD>£ Ÿ¢»V 8ÂÙE}ú!ú˜eÚ-®Þc¡‘„¤¼`?ª†+Ño5{åL¹AIB2=BMjUá2ŒÎÒsÝ$ä0nÓcFÙ‘Ôj!8Â5˜½¶Ãu“¸Yé³#©TÄ9Žp –ÎÏsÑóöÀ zÌÒ5ÔFåäHp‚#'e”õy‘¤jáP5\ Í™9 7è1ýj³×ʃàÀÙ×Hvµ85³WÃ@GNÍÒœéŽGp€"G@Mo-f@]G(BpŠ)F€ë"8eér`%ÀùG3ÍŽ|ÿ2À%fGR#ÀUð]Õ€ã˜N4š–"N‹à8ŽQ(”ó"Ià*8T ¨C„šËb®‚à¨Àð¼F¾và*Ž€£™^ Cv¸‚#àhfOjäLG€ó#8@‚# &&.„àEŽP„àEŽP„à@%n]é”– Á€YšÍb–K]fûŸA`‚àÀ$ÉLÑh„Äý,Ue:. sŽË(£Pœ„á¸0(, 8p8}F! 8ý¸0(,ðQ»<ƒÂ³‰,ŽÄ ($‚#‡0 úhB(Q‘é 0é _ªàpú#Ôf¯•* O`\X@pàXFç5’QœéɦŒ sŽÈìÕ0duYºD‰£ÕL8¥,BFQ@1‚#•WÀÕô,#8@w¸ã¦M›bcc“““K•*Õ¢E‹ñãÇ—+W®ˆUºwïþË/¿Õ Ç1666//oÔ¨QrBLš4Éßß?!!!//Ïê*éééB£éFçÚÁñèÑ£^^^111úooïèèèÌÌÌcÇŽY]%--MQ£F µ×À‰¸pp”$)99¹|ùòåË—7,×jµBˆË—/[]EŽ×®]ëß¿ƒ Z´hñæ›ož|8""båÊ•ú{îlݺuôèÑaaa[¶lQXåܹsƒ ÊÈȈŒŒ ½zõê‰'J•*õùçŸ7jÔ¨À&…‡‡sUµgJMMåúJÏÄÐ{,†Þcyì¾Þµg…œ7o^HHÈÖ­[o߾ݷoßÕ«W›Þ©±PUžy景¿þºK—.Û·o¿wï^—.]¶lÙ¢$5¸+—ŸqtBûW˜{ðX ½Çbè=–Çîë]~ÆŽAp€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"G¨L£Q»0‡q˜"8°’¦ÇbèOBp„ ,íhØ©Ëlÿç7( ˜ÇbèOEp„ $ÉÌ~G£’¤vË<›é¸0(fR*<Cx*‚#Ôa´ß!5: ÃqQ4(…›p =à‘ŽP~¿ÃîÆ©èÇEé :lÂ]0ô€çñQ»ð, ÏndäH69@<Cx‚#Êhç¢&ìtTd:(O:ò€ÇbèÏFp„jôEÿ?Tg8ù‹Ù¿HOÀОs¡£½Œ¥k4áH¦»~Eãb6á!zÀó¡³sìwÔei¨€Y$+Ã&\Cx$‚#T`)‹p¤KEÖt¾•a®¡<Á€µH ‹¡<Á*s§PhH¨ÚM°™B‹; $ …¡< ÁŠ"ÑM¡Êp]G H$!™fDÐH‚ãwwCpŠÊ(;’îŠàØ€>;’nŒ¯¬¤äìFB¤êˆò`CGÀJFqDŸ‰)wÅ¡jÀôÓZf¯•ƒ1`'G ¨Œ†’Ugi("‚#P$fO¡#;ªÎt8ÙŠŽà‰¥,BFQav$5€M›IIMQ» žN#4†ÿô…FO©ÝLpU\U À}˜N+Ê1‘éF° f¸-}jd–l‚àÀ=ž×Hv› 8pC¦WàèŽÜ¥k¨9ÓŠˆàÀÝÀNŽÜ!lˆàEŽÌÑp 솭 pYGBöå°360À-!„$ó»vö÷° 60À-üÉt׮щ‹K`#l`€ë#80`¸kg§›c\ÁÀ“ô»vvê°y»"5®ÉGípJN>c7ëX:‹‘ pAGOî³å© &a+F[‘~ÓbÒpAª`Àp_né2XÀjl`€‹#8ø“é »vØàúŽ„–/Và`"l‚ p GBöß°360À-˜ÃnöÃÖ¸,‚#l‰³•<Cž€àEŽ(*¦š<Cž†àˆ¢²t? R…ÛcèÀÓa¦‚¯„ð =x‚#lÃ0@< Cžƒïª†õò9Liø”‹& ÐHÂ5›nî=ôKްži,CqÁí1ôà™8T ›ÑG×½6B#4…*‡Ì †ÎŽm pG؆áÉm® $!™fDw8fmÏñp¡(Ap„ ˜^áºÂ(;ºjjtTï»ÓÐÃé°%Î‡àˆ¢²t!­ëžî¦ÏŽ®š…ƒn±è~CçÂBçÃÅ1(*÷H JÎnt±)ït ‡ÇÖ7Ëq¡‡S³ÿf  Pް%×ý<7 …ú¼èbaÑx­ vºvÞݺîÐÃÙq§PÀ™còjÃÿÕnQaW@cþ!·X„«àN¡€³"8O0JŠ.™ö¦Üb.‡;…Ί‹c€¿˜ÍˆfïÑã2 U.Š;…NƒàüÅÒÌ¢‹Í8êq‹E«¸ðß n‰Íp&GÀGÀÕXqœŽ°nòm“îÊŠm˜#Ú€‘>xa?N¸u¹Ã·M€=qGx—Ï–Nöâ‹4ŠÌ ¿mÒ“ñ›Ø3Ž0–ÏW6@5f¯$uÁ}¡¥ IÅ L’á?³åª5…å.¿)€Ó"8˜é¯‹~êºÛõ°F㚣âä»uýÌ´kßõÝùÅo à´Ž0Ãðƒ×u?u-íû]8èÆuGʼnwëf¿mRíFÁ*nñ›8'Îq„yú^—þÔ5ý¦i§;Ù±À›’ƒ»®6HN¸[ÏçÛ&kƒ%6ùMqž-pVGüAáÉg.÷¡j8oä’!À¨Çõãáj#á䘻}Û¤r—ßÀÉñÓO]÷˜tfG'JVÏjèGEÿ¿ë°ÉnÝ1+í,Û ¬V¨ß.Ä ƒs=ˆò W ?0ð‹a <óLމ†ÿÌ–Û¼a!¡¡Š–³t…HkõänÌ F1ýª¸òJñ¦äÐv«(q´$Éèþu¯ài¦@£^¶ú¸³Ù– ¢ßóäVOR Å‹ÙËöÊóY£IJ%ë^”*ÊϹ´®J¡ZeE»w—F#$ɏХíÌŠßzÃ<Ão±Ñˆ‚·Hñ×F©(5>Y¥pŸÞvøÀ/j»íRU¨âF¸¸±ììlN`Tîïï/„¸}û¶qg<„kµ†Ï$?_Ø*’0_ÅðZ–ðp‹ï".oÐ^ÃwQÒª¢W‘,Ô0úû>\^à»Hò‡¼&,Œ‘Ñ@ˆðp³/œtþ|¸VûÇÿq-#Z­þu’„׿¦A9Œœ?Ÿ¤Õ†Ÿ?Ÿ®Õ &I«5ÓW¦þ|’ÂhaÃn–0eô›mø OTùãÐHƒ™+£w<Ÿd~›4ü…Ô>ù+l«*F‰±Š’V¹X9ÇšVù³ÜÒ»Œ¼4ýœ¥qÝÝLÿ÷ŒA¹öÉ_|³Ÿ`ù|âYª’ß'^á«8fáÚU<#Dr;cM›6­S§Nll¬aùwß}7f̘üãcƌɯ¾~RÞ±…¬òÇjeU4ú«a þ Tô7Ò“U ±"Ra¾Ô¤0UŒ¯†‘Ï[vPôë®p]ô˘þ ð½/³ýªpd„U›¤P¶±üu5Œ¤‘?M•ß‹çwQ>>þþþ÷îÝ3*ÏÊÊB诳6ÊË YÅÌÕ0ùV1N æ”UÌüAo‡¶&ZÊ/$B±®#‹¾I¸¼é5Ôúì˜ß»<9ÍV¨ ©°J¡o_ê:UìÑ]ÖT1¹†ú¯ìhñ=Œ/m)8;š^ ãŪU±Ç¾Ãª¸‚£AAA™™™rRÔKMM•Ÿ2_ÇŠÀa©J>‹‹ÂU±f®ÆµªX×ÃöK„E;+âñ;n_ž°V@sg {ûü«X:þë6UòOuޝ¢?U±€*掀ÿqŽù ®¡vÎbÇT±ù¾cª¸‚£­[·ÖétûöíÓ—H’”˜˜X®\¹¨¨(óu¬… ’Tø\bEŽq¹*Vô0ñÎÝ9íöeŗʶŠÞBõ*ùß.ѵªX^yÉŠ*…[Þ«Øø’ÝŠ5ŽfôèÑÃËËkÑ¢EòyBˆåË—gddtëÖ­X±b×w¹_ErÚqÎî‚ý9íÆârq͵ZåÌUœx£daç*n«ªÍ[¹råœ9sªT©Ò¼y󴴴ÇGDD¬\¹Òô6=‚àhQ||ü7ß|óóÏ?7lØpÔ¨Q~~~j7 @5G(Â9ŽP„àEŽP„àEŽP„àEŽP„àh3›6mêÑ£GTTTÓ¦Mß}÷Ý;wî¨Ý"ØQJJJxxøÉ“'Í>ËÆà~rrrV­Zõ÷¿ÿ½nݺ͛74hÐLcèÝÏÝ»wßÿ}yèÛ¶m;zôè””ÓÅz÷ö믿֫Woüøñ¦OyÚÐmcþüùS¦L¹xñbƒ üüü6oÞ{öì›7o6nÜøé§ŸþñÇøùçŸ.ÆÐ»Ÿ¬¬¬¿ÿýïëׯB´lÙòoûÛÖ­[;uêtêÔ)ÃÅz÷&IÒĉïß¿oú”'½„";wîÜ3Ï<Ó¼yó7nÈ%3fÌÐjµ|ðÚMƒÝ»wïèÑ£ï½÷žV«Õjµ'Nœ0Z€Á-­[·N«ÕöêÕ+;;[.9þ|Æ kÕªuæÌ¹„¡wKò ~úé§ú’Í›7kµÚž={êKz··råJù3ܸq†åž9ôÌ8Ú@lll^^Þ¨Q£*V¬(—Lš4Éßß?!!!//OíÖÁ–:uêÔ§OŸ 6XZ€Á-mÛ¶M1yòd___¹$,,lèС:NÀš¡wK‡òõõ}óÍ7õ%¯¼òJ¥J•NŸ>­Óéä†Þ½]¸paþüùÏ<óŒéSž9ôG8zô¨——WLLŒ¾ÄÛÛ;:::33óرcj·¶4sæÌÅ‹/^¼¸I“&f`cpK©©©¥K—ŽŒŒ4, B\¾|Y~Èл¥€€€V­Z•,YÒ°°D‰=zôè‘ü¡wc¹¹¹&L(W®Ü¤I“LŸõÌ¡÷Q».O’¤äääòåË—/_Þ°\«Õ !._¾\¿~}µÛ›iÖ¬™üÞ={LŸecpWË–-óñ1þ´<}ú´¢Zµj‚¡w_k×®5*9zôhzzzݺuåég†Þ½}öÙggÏž]¹reÙ²ežòØ¡'8Uvv¶N§ 0*÷÷÷Bܾ}[íÂqØÜUDD„QÉáÇ—/_^¢D‰.]º†Þ?~|óæÍ©©©Ç¯^½úœ9sär†Þ8qâ‹/¾èÛ·o“&Mä? yìЋJ¾xªtéÒFå~~~Bˆ{÷î©Ý@8ƒ'ÐétëÖ­ûøãu:Ý'Ÿ|(z””'I’"22²xñâr9Cï®rrr&L˜P­Zµ±cÇZZ@xäЋ* @£Ñdgg•Ë×íËyÀC°1¸½üqúôé/^ ž5k–þTW†Þí½öÚk={öÌÈȈŸ7oÞ±cǾûî;???†Þ]Í™3çÊ•+ëׯ×_gÄc‡ž‹cŠÊÇÇÇßßßôo‹¬¬,!„þJ+x67öèÑ£™3g0à×_1bDBB‚áR ½'Ðh4*T8p`Ïž=¯_¿¾}ûvÁл©#Gެ_¿þÿøG:u,-ã±COp´   ÌÌLy[ÑKMM•ŸR»up(6·”——7vìØÕ«W·nÝzÇŽo½õ–é$Cï~.\¸ðÎ;ï$$$•Ë××߸qC~ÈлŸ .!/^þ§W^yEñí·ß†‡‡ÿýï—óÌ¡'8Ú@ëÖ­u:ݾ}ûô%’$%&&–+W.**JíÖÁ¡ØÜÒš5kvìØÑ»wïÏ?ÿÜÒDCï~Ê–-ûŸÿügóæÍFåéééBˆù!Cï~jÔ¨ÑñIò-5*W®Ü±cÇèèhy1Ïz‚£ ôèÑÃËËkÑ¢Eúï#Z¾|yFFF·nÝŠ+¦vëàPl îG’¤µk×–)Sfâĉù,ÆÐ»Ÿ   ðððýû÷ïÞ½[_xîܹuëÖùùù5hÐ@.aèÝO³fÍ>}Ò˜1c„õë×ÿôÓO'L˜ /æ™CÏÅ16P¹råñãÇÏ™3çå—_nÞ¼yZZÚáÇ###ßxã µ›Gccp?·nÝJOO÷õõíÓ§é³]»víÛ·¯`èÝÔŒ3z÷îýæ›oFEEU­ZõæÍ›?ýô“âã?–/¨ ½óÌ¡÷~ÿý÷Õnƒ;ˆŠŠªY³æ7öïßïããÓ¾}û9sæ˜Þ/nc÷îÝgΜéÑ£G¥J•Œžbcp3III›7oÎÍͽiÎ3Ï<£¿J†¡w?AAA;v¼}ûvZZÚÏ?ÿ¬Ñh5jôé§Ÿ6nÜØp1†ÞíݺukãÆááá/¾ø¢a¹½F¾+?Îq€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"GÀ?><<ü‡~P»!bÑ¢EáááëÖ­S«999-[¶Œ‹‹S»'þ Í¡C‡Ônˆ™™™#Gެ_¿~LLŒÚmq:®mÛ¶«W¯V»!€S 8pj ,(^¼x×®]Õnˆ ˜9sæöíÛ½¼¼ž{î9µÛâ>¼½½GŽ9þük×®©Ý@}GùiÙ²åôéÓ6l¨Ê»_¸paÍš5o½õ–···Ú=áŽ9"„øúë¯ÿùϪݷұcÇààà>úHí†êóQ»œZddddd¤ZïþÕW_•.]ú¥—^R»\ÃJ•*U¥Jµân¼¼¼^yå•O>ùäÊ•+U«VU»9€š˜q`%N÷øñcû½þÝ»wããã;tèP¼xq»6àÑ£G¹¹¹ö[¸—_~Y±víZµ¨ŒàØÒ”)SÂÃÃçÎkTþË/¿„‡‡7iÒD(Ÿ~úi‡žþù矾cÇŽ}ôÑ7,½¬¥ 2"""5jdXràÀ‘#G¶iÓ¦Aƒýû÷_´h‘Q´ºzõê´iÓ:tèP·nݘ˜˜!C†=z4Ÿ5úâ‹/ /Ž‘[råÊ•åË—7nܸvíÚõë×íµ×vîÜiéŽ?ýÛo¿é ïß¿ñóÏ?[ª˜ððáömÛšvEþ PÒ]ò2ÉÉÉï¾ûn½zõj׮ݾ}ûiӦݹsG’¤µk×öïß¿~ýú-[¶œ2eÊ;wL›·ÿþ·ß~;:::::úÍ7ßÜ»w¯é2ù‡Ü†_ýõĉݺu{î¹ç®\¹’ÏXlݺuèС-Z´hÔ¨Ñ믿þ¯ýK§ÓÉO}üñÇáááÙÙÙÙÙÙáááQQQ–^$ÿ @ù–¶k×®áÇGGG7lØðµ×^ûúë¯óòòŒj)Y¦è[¬’MºèïR±bźuë~ýõ×’$ Àƒ[êÔ©“bûöíFå[¶lBtéÒÅÇÇ'##£OŸ>Ë–-ûõ×_«W¯^µjÕË—/ùå—½zõ2P”›7oÞ Aƒ¶oßž››[±bÅŸ~úé³Ï>ëÛ·off¦¼À… :uê´aÆÌÌ̧žzJ’¤ÄÄÄ~ýúíÞ½»Po´lÙ²O>ù¤X±b7ö÷÷?~üøðáÃÌ.5hР7nÌž=[_øñÇ_»vmذaù\ÆqðàAFS§N"6 “&MÚ¼ysÍš5ëׯåÊ• 6üãÿ˜}úÈÛLýúõ àããããã3`À€Þ½{›}[m3gÎ6lØÎ;}||Ož<9iÒ¤‰'v™¢o±JÖÈV¿QQQwïÞ={öla73À­HlG§Ó5kÖL«Õž>}Ú°°yóæZ­öÂ… ’$-]ºT«Õ:ôþýûò÷îÝëÓ§V«Ý´i“\2nÜ8­V+§ýý]­Zµ^xáùçÝ»wkµÚ6mÚœ¡Õjk×®½ÿ~¹ðÿû_­Zµ´Zmff¦Q† vïÞ=I’?~¼bÅ y1}ç+ù¥š4iÒ·oßܺuËRolÞ¼Y«Õ6kÖìØ±crɯ¿þúꫯjµÚéÓ§ë«[·nݺuóÙ> Ü”tÝŽ;´ZmLLÌ™3gä’óçÏË[¸~‹U²ŒM¶Ø°áïŶmÛ´Zí_|!ŒGÀ–¼¼¼:vì(žœtüé§ŸnܸõôÓO !rss[¶l9nܸҥKË ”-[VžªLKK³ú­çÌ™#„X°`~/00pÁ‚AAAqqqwïÞBœ;wNÑ£GýEʽzõ6lX›6m õ^Ï=÷ÜØ±c½¼¼äU6l˜âÒ¥K––/V¬ØÇìãã3eÊ”›7oNž<Ù××wÞ¼yù\+}ýúõ¬¬¬5jؤ–ôìÙ³U«VòÏÏ?ÿ¼¢ÿþM›6• ŸþùÚµk !Œ"W®\yáÂ…eË–Bøøø 4¨OŸ>BˆÏ?ÿ\ùpÈJ—.ýÅ_4iÒ$00ÐR;,X „˜9s¦þtppðgŸ}V¢D‰ 6\¿~]áúÚd˜7ožÜ˜ZµjÉ%aaa£FB$&&*_Æ&[l Øð÷"44T‘””¤¼¯÷CplLŽ€†‡MåãÔݺu“>|éÒ¥O=õ”~[·n}÷ÝwEyÓ;w¦†††]]ªT©&Mšäääœ:uJ!'×I“&9rD>Û²X±bo¿ýöˆ# õvíÛ·7|èïïïíí-å{îWDDÄðáï_¿Þ¹sç«W¯Nœ8±fÍšù,/F,W®œ­`Výúõ Êog¶ÐèÅ{ôèáãóÄ])ú÷ï/„8}ú´òá½üòË%K–̧‘7oÞ¼qãFppptt´ayÅŠcbbt:òƒ§Eßnß¾}éҥʕ+7iÒİüïÿû÷ßÿæ›o*\ÆV[lþ Øö÷" @‘‘‘¡°¯·Äíx‹ŒŒ¬Y³æ¥K—’’’ÂÃÃsss·mÛæëëÛ¡Cý2W¯^Ý»wïO?ýtùòåôôô"žÚ(„HII‘ÿ7»€|ïâéÓ§5êÈ‘#ýúõ+Y²dDDÄ /¼ðâ‹/FDDêí¬»#É?þñ;wž>}ºaƽzõÊay÷ìïïoØÒOúæS¨ÑhL—‘'ŸŒšT¢D‰[·n=xð@ápȪW¯ž#å™T³9[ž‘U>Q]ô 55UQ­Z5£òâÅ‹ëWDÉ2¶Úbó_À¶¿rp¼uë–¾ÜÁ°½N:}öÙgÛ¶m ß·oß½{÷^yå}Y¿~ýŒ3rss«W¯^¿~ý6mÚÔ®];55õƒ>(Ô»ÈgøÉ??zôHQ¥JKÇ+W®,„¨Zµê¦M›Ž?¾wïÞüñÔ©SÇŽ[²dI÷îÝg̘a6!™eéþ8ù»ÿ¾¼ÓMII¹{÷®¼¶Ä××W¿^6i€awi_i4ooo//¯bÅŠ)™|¼;ù4[>´ªüžDÖm†]÷ûï¿ !Š+–Ï»(YÆV[lþ Øö÷B~µü§‡·GplOß~ûmù´þ8õýû÷?üðÃâÅ‹/[¶¬Y³fú*ÊOSÓûõ×_õáÊ`¥J•z÷Ýwó¯¥Ñhä{ !=z´oß¾wÞy'..®U«V­[·¶k·L›6íæÍ›Ï?ÿü±cÇ>øàƒO?ý4Ÿ…ÿö·¿ !Š>k¶»ŠNžT3tíÚµìììjÕª/^\ùp(!Ï5šV”'#M§?óaÅ`Øu!!!Bˆôôt£e~ÿý÷­[·–)S¦M›6J–±á›Ïòù©¶ú½·Æ *}L×Å9Ž€íÕ¨Q£víÚ)))¿üòË®]»jÔ¨¡?mî—_~ÑétÏ?ÿ¼ajžžŸ?£õý÷ßë ªP¡ÂÅ‹åsìôt:]·nÝš7ož‘‘qõêÕV­Z½úê«úg‹/Þºukùjžüï Xtñññ -Z´X½zuXXØwß}gzÓ"CAAAâÏ3­“Ow]\\œþв5kÖ!ää¡d8”¿—üj¿þúëþýû ËoݺµgÏoooý(ùS¾äÓu•*U LOOÿßÿþg¸Lbbâ¤I“âãã.c“-¶Àlû{!Z¥J• ·­î…àØ…|‰ÌäÉ“³³³»wï®/—óйsçôÑA§ÓmذAþFŠœœ³¯&Ÿ¶fÍšììl¹äðáÃK–,1\f̘1yyycÆŒÑ_*qÿþýwÞyçÔ©S‘‘‘ÁÁÁ¿ýöÛÉ“'W¬X¡Ÿ@ºté’|çê|î§Xtׯ_ÿàƒÊ”)óá‡+VlöìÙÞÞÞÓ§OÏgB±lÙ²aaaFû{…”tW]¾|y̘1<Bäåå­^½ú«¯¾òññ>|¸Âá(ÔÛ=Z1eÊýU57nÜ1bÄÇ{öìixà;J6€»N£ÑÈG¿óÎ;.\ ÓÒÒäïq–¿RÉ2Jº¨À+Y#þ^œ9sF˜\;xUvÑ¡C‡9sæ$%%y{{wéÒE_Úºuë]»vµmÛ¶^½z’$%%%ݹs§OŸ>«W¯þÏþóÛo¿É71Ô¥K—¯¾úêØ±c­[·Žˆˆ¸yófrr²¿¿¥J•äóÉ„]»v=räÈ×_Ý¥K—*Uª”+W.%%%;;»fÍšò·½¼¼Þ}÷ÝI“&Í;÷_ÿúWÕªU³³³/^¼(IR¯^½òù®‘"’$iÒ¤IYYY³fÍ’só³Ï>+ñÉôéÓå͘դI“¯¾ú*--ÍÒMy,QÒ]E¾mÛ¶ï¿ÿ>$$äêÕ«999ò͆ôM-p8 ¥k×®‡ŠïÖ­[ÕªU}}}/^¼˜——%G4%”lJº®[·n?þøc|||§NªW¯^²dÉ‹/ææævêÔI˜’el²Å¸€ /Nœ8¡ÑhŒ¾Að4Ì8vQ±bņ  !š7o^±bEç>ùä“‘#GV®\Y¾¿cttô7ß|3yòä>}úx{{›ýÀjÕªýûßÿnÓ¦——×þýûÏŸ?_¥J•/¾øÂpâJ£Ñ|ôÑGÿüç?[µj•——wéÒ¥1cÆ|óÍ7ú›ÚtíÚõ«¯¾jÑ¢…¯¯ï¹sç²³³›6mºxñâiÓ¦Ù¯+Ö¬YsèСfÍšéOôBŒ9²F Û¶m³T1&&FaúõwRÒ]Eôå—_¾÷Þ{5ÊÈÈ(W®\»víÖ­[gx©¸’áPÎËËkÞ¼yŸ|òILLLnnîÍ›76l8a„uëÖYºðܬ7%]'7fÞ¼yÍ›7ðàÁÍ›7ëÔ©óñÇ~Ó¦’el²Å¸€­~/$I:zôhíÚµå³o¥±áe†àÁƒ™™™ÕªUS~´‹’$©]»vúoʶ‚çt—ÍÑu†Ž=Ú·oß9sæ@<3Ž€‹)]ºtõêÕ=a_®Ñhúõë÷¿ÿý¯(îxNwÙ]gè›o¾ 4¼+à™ŽœW·nÝ*W®üÕW_©Ýx´ŒŒŒï¾ûîÍ7ߴ;!8p^¾¾¾ï¿ÿþ† ~ýõWµÛϵxñâ°°°Þ½{«Ý@}GN-::zìØ±ÉÉÉj7J§ÓùúúΚ5ËË‹=&ÀÅ1P†¿Ÿ ÁŠ ÁŠ Èÿá8xØðòíIEND®B`‚statistics-release-1.6.3/docs/assets/bisacdf_101.png000066400000000000000000000707051456127120000222540ustar00rootroot00000000000000‰PNG  IHDRhŽ\­AqŒIDATxÚíÝy|L×ÿÇñ3ÉA%!K- ¢Úéb "Tµ{c)ÕØZDh5-m•ÒE•P”(µ”_í-!Öµ| ‘ØK$E*‰l3¿?n;M³N’™¹wf^ÏGßïÌ™;÷~îàÝϹ÷ŽJ«Õ  86ró@p€^ŽÐ Áz!8@/Gè…འ‚#ôBp€^Ž€9¹pႪ åË—¯[·îÀÏž=›{ùeË–I øøø°Œwß}WZm¯^½ä>$ó×_}üñÇþþþ 4¨P¡BÍš5}||>üðÃøøx¹K+Þܹs¥OäÕW_•»–edd,]º´sçεk×®P¡‚‡‡G·nÝ>ûì³ôôô€¥!8Âßß¿GÒ㸸8éAþssŸž˜ýÞ{ï=ýôÓï½÷^ž—yòda»vïÞ½‰'¶jÕê©§žjРAŸ>}NŸ>{"~„YYYK—.mÓ¦M­Zµ*W®Ü¬Y³¡C‡þþûïEÏ}ûöíØ±Cz²råÊçž{ÎÖÖ¶fÍš#GŽ\¿~½ôRllìåË—‹^U:uV®\©;€}ôQjjj±(ãaª°™™™Ò='¦GõÝwß !´Zmîñ‡¶nÝúâÅ‹ÒÓßÿý÷ß?sæLþSýnß¾íëë{õêUéé¦M›¶mÛöÕW_½ñƺes¿ñÆ7nÜˆŠŠÚ±cǦM›J½³qqq/½ôRRR’ôtÆ û÷ïŸ5kÖ;ï¼£KZŒŠŠ:pà@»víŠXÕ“'O¤.\Ðjµ*•J÷R@@€.zæ>JFÚ)}Žü©S§îÞ½+=ݺuë¾}ûÚ¶m›m‘‘‘ƒ ºwïžôôñãÇñññ[·n33³oß¾RjT«Õ/½ôRýúõÿúë¯]»våYUJJÊÀ¥Ôèçç÷þûïÚØØhµÚ… ®\¹²Øß‡9sæH©ÑÞÞþµ×^ ~ñÅ¥C:qâÄK—.¶G•ôîÝ»råÊùعsgLLLLLLŸ>}ô9,¾¾¾åÊ•“ç²Là˜+ÝmGGŽ™““coo¿fÍšæÍ›ûö[·nyyyEDDDGGëN#Óùꫯ®]»£K0N‰HͶ‹/6lØP‘““£ë3íÙ³Gz0eÊ”ýû÷÷ÝwçÎkÑ¢…4¨›#.íÛ·Ÿ9sæîÝ»~~~ºÁÏ?ÿüÿûß7téYšÂ.´iÓt=ÚÓ§O¿óÎ;/¿üråÊ•½¼¼FŒ±qãÆÜy{§Š>ò+V¬¸~ýºâ©§ž:räÈñãÇ&Mš”=óæÍ“®,éÛ·ïþýûgÏžýý÷ßñÅÒ«ùÃtþ߇H/Íœ9sÛ¶m_~ùettt§N„ÙÙÙûöí+°þ¬¬,]ÓÝݽ,‡BG¥RÕ¨QCz¬kµæ–ûÏ‚ÎäÉ“ ²u¹‹òÌ3Ïøúúê³dÅŠùå—Áƒ¿øâ‹yþæ™gÞzë-éqãÆuÓ RdÉÍÎÎnÉ’%Ò…®uêÔùøã¥ñ]»våää! 1qâD饔””´´4é±îBæRhÙ²e×®]¥úõë' :::N˜0Aacc3pà@iðáÇE¯ªZµj¿ÿþû¨Q£¤ë6$æâÅ‹ß}÷Ý€7n¼wï^ÝKÆÛ©b¼îA]ÿO1oÞ<—<«Ò¥ÛÑ£Gë_ýu©ozãÆ<·üÌÿû »ÛâÚµkW®\)ÅÁµk×JÖ}ûö-pRRRt¥K‹ ¢Zµjù×Àô8Ç0W¹oA"ÝwP«Õž&&Fz\½zõåË—óÍ7ÑÑÑÑÑÑgΜ9yò¤îÒÛ·o÷éÓçÿû_ݺu…ÆÛ©b¼®¤Ü7ú.W®\çÎ#""r¿W·dag^¹råÙgŸÕ=ÍÿûðÊ+¯HWÒÄÆÆŽ9R¥Ry{{¿úê«=zôxá… Û…Üá;ÿ]»KMºì]Q¥J•ü¯x;ÝÑ`@GÀ\­[·®cÇŽº§IIIÆ Û½{÷½{÷‚‚‚¢¢¢Š~»³³sa/å¾:$ÿÓÜtˆ’J•*988Hw”¼qãFƒ 233g̘ñå—_êîágooïââ’˜˜XÆÝ/°*›2Í¢¨Õê6mÚ´iÓFzzûöíO>ùdñâÅBˆÔÔÔµk×JSð&Û©|¸ˆoókÕª•ô`ûöíÞÅ©qãÆÎÎÎÎÎÎK—.ÕgÇ9¢»c@ÍN&@p,Gî~›iN»pá‚t_‰îDÀråÊIßX³dÉiä믿7nܳÏ>«V«oݺ•g=ºÔ’ç|IJ÷ðt† v÷¿¤Ë;Ôjõ‡~8jÔ¨Q£F}ûí·ùßX±bEéA½zõ¤rí”­­­››[žC-„ÐjµùoW)]¨$„ÈÎÎn‹“““£££££c_µ¢“‘‘qïÞ½{÷îeddôïß?"""11ñ—_~Ñå¶ü7ìÔÑUyãÆü_€¹cÇÝo}›$Ý5=•*UÒåx² 8âÁƒ³fÍ’W¨PÁP´-+++88Xê*ýñÇ!!!Òx@@€­­í_ý¥›Õ…§ß~û-ÿ kt3­¿þú«îä¼üQŸÛwëÉÞÞÞõ¿t×[´oß^z0oÞ¼uëÖI—õ!²³³—-[¦«VÊLòîTË–-¥_~ù¥îVÞ}ô‘îþG:þþþÒƒððpÝ(·lÙR­Z5gggé&>ElèâÅ‹5jÔ¨Q£FÍš5¥ûtªÕjÝµêŽŽŽ…½·{÷O˜0áƒ>øã?„™™™k×®>|¸ôRƒ ¼½½‹Þß»wïŽ3fóæÍÒÓ¡C‡æ>‡€éqŽ#`®† ¦k†eddüñǺSî&Mš¤V›èO÷?þèææÖ¸qã'NHYÄÖÖvîܹBˆÊ•+W®\Y:ÙNúÊ•JµgÏžüÓ—º{Ù¤§§{{{{{{'%%ÅÆÆšfÞÿý;v$''gdd 2dÒ¤Iîîî*•*..NwMF§N¤«LäÝ©©S§~ÿý÷Z­öáÇ/¿üò‹/¾xÿþýo©8cÆŒ+Vû¬««ë½{÷²³³Û´iÓ½{÷ªU«^»vM÷Ý•y¾'… ¾øâ‹éééZ­vöìÙ³gÏvvv~ðà.”W¨PaóæÍº[cæ¦ûÅNMM•§¤zõê~ø¡?w¥@pÌUî9âÜZµj¥k=›££cJJÊíÛ·oß¾-”+WnéÒ¥žžžB•JÕ­[·~øA‘––&eww÷zõêI÷ÔÅ‚æÍ›8pÆ Ò’Ò¤ÝÝÝÝÝÝ »_ Õ¯_Ë–-ƒ ’iRRRž G|}}øá)åÈ»SÏ=÷ÜðáÃW¯^-„ÈÌÌ<|ø°øg÷çŸν¤““Ówß}7lذ‡*** àé§Ÿ®Y³fÿþý###sßN|Ñ¢EÍš5BØØØ<÷Üs“'Oމ‰yíµ×¤Wׯ_¯›Ã]³fÍܹs›5kV©R%ooï &DGG›,(´k×.>>þ믿îÚµ«——W¥J•ªW¯îãã3hРDEEå¾4DÞúöÛoÇ/=vqqéѣǾ}û ¼yg@@€tÊæÍ›W¬XÑÝݽW¯^QQQß|ó>—F½ôÒKqqqï¾û®O­Zµìì윜œÚ´i³bÅŠÈÈHéæEhݺõ•+W-ZÔ®];—òåË{zzöèÑcÑ¢E—.]’îÁY4[[ÛªU«¾ð ï¾ûnllìK/½d¸@)©ò|G-VVVÖŽ;Dq“›æEö:uêÔÞxãïkFBp€^˜ª€^ŽÐ Áz!8@/Gè…འ‚#ôBp€^ŽÐ Áz!8@/Gè…àXŒøøxOOÏßÿ]îBdFp,ÆÚµkå.@Ôr P)))—/_Þ¾}û† ä®@Ž ¸{÷®ÜU(Á±`sçÎÍÈÈBDDD;vLîräGp,X›6m¤»E 8ž§§§Ü%€¢\¾[–·7jä[¦5˜)‚£QXç/<=­ôïðÑ[->z‰J%w%§Õ–éíVÛ#"8`±LéÊÂ`FŽ(‹Ó‘†EpÀXJI{P,‚#úÊc‹Ž†D@X¾r¡Réõ£Õþç§Q#Ï<#y~ CÇ0˜={öÈ]äÁG¯|ÅN—.äñÑÃÚ–€)cÀ˜ª.Æœ9sbccŸ{î9¹ !ôDfÊ0:Ž%*¬ƒH dDpȉ€˜‚#ÀtòÇD"`FŽ£(°•HLÌÁ`y’"°<G@i0é X!‚#@/4#)ȃàøWî°HRÁ¬mEú#8€Õ¡­ tŽ`‹ÊŽà–L— ‹ÊŽà–†æ"#!8€… ¹ÀØŽ`Æh.0%‚#˜š‹dAp³A^ /‚#(y€B@¡È‹”†àÊB^ XGP )2’(ÁdF‹€¹ 8€<È‹ÌÁL)ifÊFîÀЍTB¥Z-©0W*¡R UÙ×c¦Ž`tR^$2fDõïÜÿüh…V+¬÷1SÕ`DÌJÊW`ÑšÓaŽ`DF@ȈeDp#2J@F4‚# ‘ÑdŽPVîînÒ"#`ldDyqU5”žt™e||—KÆPØEÍy~ä.ÓŠ 4¸½`XEÜû†Œ¨LU@‰I‘@©åŸq&š‚#”—¿¥@L´GÐ ‘Ð1Ñ‚ DF ÄD«Bp€Büò$Eb¢U!8@ˆŒ€„†"r#8@^\4 kFCE 8À¿h4 ‘¡?‚#Ad„Õ`êeApæ¦aÉh(€ެFX’"Œ‡àÀzÑh„ÅÈIŠ0‚#kD£掶"dAp`uh4‘¡GV„F#ÌI Dp`-h4Bù8U Gp`ùh4BÉ‹0#GŽF#”†9h˜/‚#KFj„BÐV„e 8°LLOCv„EX‚# D£r!,²X01NX„U!8°4aÿ†E7’"¬‹Ü€aaT*¡Òýh…Vú‰Oˆ—».À¤è8°¤F‰®¹HgG掓ap\à†àÀŒÑh„¡}˜+R#ʈ°”Á€Y"5¢Ô8m(5‚#3ÃI(š‹€A˜(š‹€a˜ R#ôAs0‚#ó@jDÑh.&@p`H(ÍEÀÄŽ”ŽÔˆù$55µiӦ͚5KNN>räȶmÛ^zé¥N:é³ÝØØX¹wòpss“»™ý3ImuÇAÞþ?÷Ö±ºc/3þÔ[ƒüÿ¬çïY ŽŽŽŽ*•*---ÏøãÇÅ?}Çü¦M›öÛo¿…„„¼þúëÒÈ;w8yòäŸ~úÉÝÝ]îÝŠSMŒÛw01 ?ÇQ­V;88äï,¦¤¤!t×Yç–˜˜xàÀ† êR£¢V­Zo¾ùfVVÖÖ­[åÞ'@¡H¦Ä…/daáÁQáêêšœœ,%Eéô+WW×üË''' !êׯŸg\j4Þ¿_Ôh2\ø@F–;v옓“søða݈V«ŠŠrrròööο|ýúõmmm¯\¹¢ýï?ƒÒù 6”{‡X#®• –ûõëgcc³xñbé¼F!DxxxRRRŸ>}ìì중ÔÔÔ„„éâ8{{{__ßëׯùå—º;„_¹reÉ’%åÊ•ëСƒÜ;(íF£bV€rXøÅ1BˆZµjM:uÞ¼y=zôhÛ¶íõë×£££›6m:zôhÝ2QQQ“'Oöððرc‡bΜ9}ûö]²dÉ®]»¼¼¼’““ûí7F3kÖ¬ ȽC€²ç?×J€X~pBU¯^}Û¶m»víªY³æ!C&Mš$Ý‘§@ÎÎλvíZºté‘#G<èääÔ®]»qãÆ5kÖLî]”…Ôh$DFʤÒò·¾¡yzzrGë”`Uwt#5êð£'2škûS«ý·Þ*:Ž |DFÊGpP´ …›x0#G%Fj4ZŒÌÁ@ÉËŽÈÀLÀtˆŒÌšå߀Ñn,5¾÷0W*U?ÖŠà@_¤ÆÒ!2æ$FÔj ø±VLUÐ ©±˜˜­ÀÆ!Ó‰à†Gd'L$#–Á@ñh7êÈÈV¢ÑƒÔ¨'"# Z‰&DpPR£>ÜÝÜ‘0 b¢¬¸ªJOºê2>!žÔ^÷ÁágYŠvc¸É``ÜÇ0U  `¤Æ"H‘Qî*sÆŒ³y"8@ p PÄDKApPÚù}-Á@^¤Æ<ˆŒ@1ò$Eþ±\G(‘( E+Fpð´%DFàoÄDäBpð/R£„‹¦a½ˆ‰(ÁþE£V‡ÓQG³òv#‘V†"ʆà@ëNDFX2Š0(‚#«ÆéŒ°(4adGVÚn¤ÑK@C¦Ep¬¦F"#ÌI²"8°.ÌMÃÌ¡$GÀªYU»‘F#Ì')BÙŽ€õ²žÔHd„rÑP„Y!8°pÌMCYHŠ0gGÀJYC»‘F#¤ Bp¬‘ŧF"#äDR„å"8°4ÌMÃÔHаGÀêXp»‘F#L䟤è&ýŸ¥þ‰ò±‘»0 ©ÑHj„±¨Tÿþh¥ß5mB|<©V…Ž#`],²ÝH£FÁ4Á°"–—‰Œ0$’"P‚#sÅE0(+’"PBGÀZXR»‘F#J/wX´˜?€©˜(ÚŠ€á«`íFÐmEÀ8Ž€å³˜ÔHdD¡h+&Ap t4Q0ÚŠ€É gîíFømE@nG E£BÐV”…àX2óm7Òh´j„E@©Ž€Å"5Âl0 ˜ ‚#azÚŠÐVÌÁ°LæØn¤Ñhù‹€™#8FKFX,Á°@æÕn¤Ñh‹€…"8 F‹BX¬Á°4æÒn¤Ñh ‹€•!8…Ô£#,VŒàÀ¤˜ž6K„EB‚#`I”ßn¤ÑhN‹ò!80R£ ,(Á°Jn72=­h„Ez#80.JDXP*GÀ(¶ÝHjT]^Tæ¯ Å#80 ¦§•‚æ"Ã!8fOíF2#,0‚##5ʆ™hFFpÌ›¢ÚLOË€æ""8fLi©‘Èh"„E2!80R£)0 @nGÀ\)§ÝHj4"š‹”„à ô8©ÑXh.P$‚#`–”Ðn¤ÑhxäEÊFpP¤Fƒa2€ù 8æGöv#©Ñh.0CG%ÀIeBs€™#8fFÆv#ÆR¢¹ÀRè…ÔXbäE‡à˜¹Ú¤Æ /°\GÅ 5ËÍÝýß'äE–ËFîèK–v#©±(*•ô“/´Ú¿ÀrLÊD¤Æü“ ‹¬ SÕ€y0q»‘ÈXN^`õŽò"5þyþApÌ€)ۤƿ‘ ‚#€‘É‹P‚# t&k7Zuj$/€ެø¨É‹PG@ÑLÐn´ÆF#yJ…àX5ëJäE(n(—±ÛÖ’¹_7ÃQ ¡*ûZÌÁ°R–ŸÉ‹JB¥ßVXö_Å`ªP(£¶-952 à¿ôlòW†>Ž€Õ±ØÔ(EFò"`5H„¦g-ÁqÓ¦M7nŒ‹‹«X±b»ví¦NêääTô[Î;·lÙ² .<~üØÓÓ388øÅ_”{?`-Œ×n´ÀÔH‹°8$BŲŠs-Z4kÖ¬«W¯úøøT®\yË–-cÆŒIOO/â-‘‘‘‘‘‘...ÞÞÞ111Æ ‹ŒŒ”{W€2±¨ÔÈ)Œ€yÒÿ<Âb`z–cccÃÃÃ]]]÷ìÙ¾wïÞaÆ={vÁ‚…½åÑ£GÓ§OW«Õk×®ýá‡ÂÃÃׯ__®\¹wß}W£ÑȽC@)YHj$/ f¨PŲüà¸qãFF3iÒ$i$$$ÄÁÁa÷îÝ…¥À-[¶¤¤¤Œ;¶E‹ÒȳÏ>ûꫯ&%%;wNî‚å3ø<µµÌ>5’Y !¬!8žzw7·b—‰/îÏ‘ü1“U—.]ä.A),<8J—NWªT)ÏxåÊ•…=Êÿ–¿þúKwÿþýyóæµoßþÉ“'›7oþúë¯'Nœ¸cÇ}úޱ±±rï:äá¦ÇßàEø§ÝX¦•ü½*©×h€5™Ê[ŒfT¸¤Œ=Ì—±?zÃ4 ùý,›üÿ¬çïY ?ÇÑÑÑQ¥R¥¥¥åüø±ø§ï˜G… ¤Ÿ|òIÏž=kÔ¨ñÖ[oõêÕëÖ­[;wî”{Ÿ€â™Ù 5W½ÀŠ•ýÌBÀ””?û쳸¸8®P­V;88äï,¦¤¤!t×YçV©R¥ *ØÛÛwèÐ!÷¸¿¿¿âÒ¥Kr$X,CÝh6©‘«^`È…°0Ê ŽáááݺuëÓ§ÏÚµk <±\]]“““¥¤¨#CæêêZà[\\\ìììTªÿÌH3ÔÙÙÙr$ (æ‘i1ÂR¸»¹‘ aU”ßxãÚµkŸ?~Μ9mÛ¶7nÜÞ½{333˲Ύ;æää>|X7¢Õj£¢¢œœœ¼½½ |K‡RRR._¾œ{PºwOãÆå>H°Li7*=5Òb„*:Æ'$ aU”§L™²ÿþï¿ÿ>00°råÊ‘‘‘&Lhݺõûï¿æÌ™Ò­³_¿~666‹/–ÎkB„‡‡'%%õéÓÇÎÎNIMMMHHÐ]׫W/!ĬY³t]ÏsçÎ}ûí·:u’û Stj¤Å¥*ãT2`mTZ¥þ%ž}èСíÛ·GFF>yòDQ¯^½ž={¾öÚkµk×.ѪV®\9oÞ¼Úµk·mÛöúõëÑÑÑ^^^+W®Ôݦg×®]“'Oöððرc‡4²lÙ²… :88´lÙ2--íäÉ“*•jþüù¯¾új±›óôôäªjë”Pºë+ËÞnThj´š{1–ú£‡ }Ur5ùè­–Õþ[¯ÜÛñ¨Õj?????¿´´´Í›7/\¸ðúõë_|ñÅ—_~éããÓ§OŸ€€[[[}VT½zõmÛ¶íÚµ«fÍšC† ™4i’tGžÂ¼ñÆÎÎÎkÖ¬9v옓“SÇŽƒƒƒ=<<ä>*@”˜¥Èhéy aÔh 7åv…<Ø¿ÿž={Ž?.]•R½zu;;»;wî!6l¸bÅŠš5kÊ]f^Vû_!¥ã¨¬Ôh5-Æz«eµÿÖ+±ã˜””ôË/¿ìÝ»÷ĉ999BggçÎ;wíÚµE‹BˆcÇŽ-Z´èüùóï½÷ÞòåËå®( I´Qf4åSVpŒˆˆØ»wï©S§4¢jÕª¯¼òÊ«¯¾Ú²eËܳÒmÚ´iѢŠ/¼pòäI¹Kd£”ÔHd„Þˆ†€¹SVpüðÃ…ŽŽŽ;w~õÕW_|ñÅÂÎb´··¯P¡‚ç©)u»QþÔh­³Ò(–2甄²‚cŸ>}ºvíúòË/ësÕ íFX-™S#-Fk¥¬û8îÞ½ûøñã…¥ÆàààW^yEîƒ)]»QÎÔÈí»­LéînÀ‚)«ã˜–––••UØK7nܸ}û¶Ü5r’'52+mÑèПüÁ1**jܸqº§kÖ¬‰ˆˆÈ¿˜F£ÑjµuëÖ•»^À0JÑn”!52+m)H‡ Bþàhkk[¥JéñƒÊ•+W±bÅ—ttt ‘»^@¦NDFóTX@äƒ`òÇ6mÚDGGK===*wQ€²˜45Í€,ä޹9²eË–rW]‰æ©M”9‘Qy˜_ 4Ê ŽÓ¦M“»ÀúÐb”íCæBæà¸nÝ:!Ä /¼àáá¡{Z´ÁƒË[3PF j7M‹€XéOr#¹Ë‰ÌÁñƒ>B„……IÁQzZ4‚#¬‡S#‘ÑÈ Ìˆn@ª²¯"éO²§Ü;%™ƒcpp°¢Y³fÒÓwÞyGî—þíFc¥F"£Aýýï‘›[žqŽ/`† |ü4™ƒã[o½•ûéèÑ£å­P£¤F"cÙÑDLHHpË—ëEà³\ʺ8€0Fj$2–g"ª$óñ§ÅrÉ<ÿKC† ±··?{ö¬Ü5úÊ?O]|»Q×h4M…VÒP4Ƈ€URÜ9Ž5jÔP« ¨JºJ&))IîR*&5šätÆ<çÚ™wþÑÿÄAóÞOPeu½½½oÞ¼™’’’ÿ¥ÔÔÔ„„„¦M›Ê]# —<}âR£1Og4Ë©gºƒ TÊ ŽýúõÓjµ3fÌÈÎÎÎ=ž““š““Ó±cG¹kJ¬˜ÔhÐȨô¤hÀD09™§ª?žû©­­mïÞ½·lÙÒ©S§~ýú¹»»«Tª„„„Í›7ß¼yÓÓÓ³K—.ò ”T¡©Ñ@sÓ š}Ögî˜ÀæLæà8bĈÇïܹóÅ_äŒmÕªUll¬¼5Å*æú–²EFy’"¡ {pìÑ£‡ÜG0¢¼íÆREFS$Åbs!¡ {pœ?¾ÜG00]»±€Ô¨wdÌä “ÙŠŽ†äB€”uqLѦOŸîçç'w€^þ“õ¸;cׇè¿ÉÒ_q€wÇìß¿ÿúõëyÆÓÓÓùå[[[¹ Š÷oj,rnºÄmEº†Y)+8Þ»w/00ðöíÛ…-0xð`¹kŠ¢R ¡Í•ÿõ:[±ˆtH4ÈJYÁqÕªU·oßöññ عs篿þúÞ{ïÙÛÛ_ºt)""bðàÁ3gΔ»F@¹·I‡3¤¬àxøðáòåË/Y²¤J•*~~~mÚ´qsskÕª•ÂÝÝýÃ?ìß¿¿‡‡‡ÜeswwZ•V%Tÿ4µªBr é`†”uqÌüQ¿~ý*Uª!ªW¯îäätþüyé¥~ýú999­ZµJ„P ­4M-´Z•~¸`I”ÕqBØØü›eëÖ­› =¶µµõôô<{ö¬Üº2Å¬Ò ­J¥Z#|Ý4J¡¬Žc5®]»–šš*=­S§Î©S§t¯ªTª[·nÉ]#¬F!7µQåúù§}¨’.„‰O»hŒHYÁÑßß?==ýwÞ¹zõª¢eË–7nÜ8räˆ"))é·ß~«]»¶Ü5ÂéqãÿÃbž g=nЀÅPÖTõ°aÃöîÝ©Õj—.]êëë«V«ßzë­æÍ›_ºt)--­k×®r×3Wà\³¶øe XäŸÈ¨*¡Òjµ"†#À¢)«ãèìì¼nݺ)S¦4kÖLQ»víY³feff=z499¹cÇŽAAAr׳¢ç¨ò¦BÉÕhÌû½‚X.eu…ÎÎÎo¼ñ†îi```@@À¹sç\]]ÝÝÝå®Ê–¿›¨w¢+Á—¸äš›&5¬Šâ‚cn©©©vvv•+W~ùå—å®ÊS†˜˜ú}ã_ÁßÈYŽ+¡ÄàxöìÙ¯¿þúÂ… ÷ïß·±±©]»vóæÍÇ_¯^=¹Kƒ¬ôú¾’­¦ë(àûi7¬‹²ÎqB|ñÅýúõ;xðàýû÷Ë—/_¡B…›7oþßÿý_×®]ׯ_/wu0­¢OO,íÊJ¼Ž‚.Ö¥FÚ롬àxèСo¾ùÆÖÖvذaûöíûý÷ßcbb<8räH!Äœ9sΜ9#w0&ƒ&Å<«,åj¤`H¯¥Çõë×kµÚ·ß~{æÌ™uêÔQ©TBˆš5kN›6múôéÙÙÙ|å ¥1BR̳âÒ¯Œ{4ð_Ê Ž.\(_¾üðáÃó¿4dÈ{{{¾rÐ')æYwYWYP£ñŸMüÛn$X¬Š²‚£¢Fju—ìHWɤ¥¥É] JEU–s K°zì¸ð<È$5Àš)+8z{{ß¼y3%%%ÿK©©© M›6•»FèÍÈaQÊFY7?|ø°J¥úüóÏs§F!DõêÕ¿øâ ›C‡É]£eÉs³n‹Ýf‰S#“Ô䧬Žã¥K—êÕ«W³fÍü/¹ºº6hÐàâÅ‹r×h)¬¡Åøï† –éZ¬™²‚cùòåÓÓÓ {5==ÝÞÞ^îÍŸµEFÁ=w0 eMU7iÒäÞ½{111ù_:þü­[·7n,wæL†bY¶©Ûvɾ{úŸ‚™¤ `Ê ŽÒÉL˜0!ϹŒGŽyë­·„r×hž¬-2ŠRN*™§X9eMUwíÚ5**jÛ¶m£G®Y³fýúõ…ׯ_¿sçŽ"  {÷îr×hn¬jbúß Ÿ€²‚£â“O>yñÅ?ÿüó?þøã?þ«W¯>yòä^½zÉ]Y±ÎÈ(ŒÕ¤Ý€â‚£J¥êÝ»wïÞ½¯]»¦Õjëׯïêê*w]fÅš#£(å¥0´(–²‚ã­[·4Mݺu…...yîæ½¨dˆorl3¥o ’Ї²‚c×®]322Ž=êìì,w-fÈjÂèÉÌS ”vUµ‡‡‡âòåËrb†¬í¢éÿ”R¦XG»=)+8¾ûî»öööß|óÍ“'Oä®Å|¨L=U¬ È(H˜Ž²¦ª]\\>ûì³÷Þ{¯G=zô¨[·n•*Uò,Ó¾}{¹ËT“Ÿ]¨ˆÓÿ­ÆSÈÌS QVpìСƒô ))髯¾*p™ØØX¹ËT “7…rR£!¾Kv#%¢¬à(}s ôbòÔ¨ „eˆ ž©‘v#:Ê ŽóçÏ—»3a§¬F£ Ê e]“GfffZZšÜU(Œi/…QÐE0d˜ÔÈ$5¥ ¬Ž£äÊ•+K–,9sæÌÝ»w5M5žyæ™àààÆË]šÜ¬¹Ñ(dH47ÈMqÁqÅŠŸ}ö™F£B”/_ÞÖÖöîÝ»wïÞŒŒœ2eÊèÑ£å.P>&o4* !¹)kªúøñãŸ}ö™J¥6lؾ}û~ÿý÷˜˜˜¨¨¨Q£FÙØØ,\¸ðøñãr×(R£R#“Ô”š²‚ã÷߯Ñh¦N:sæÌ:uê¨T*!D5¦NªÑhÖ®]+wr0U”3ù­Äõ,KžÔH‹€<”Ï;W¡B…aÆå)00°bÅŠçΓ»F‹¥¸ë`þ.‹ø€R((8fggÿñÇ®®®¶¶¶jcS³fM­f“ô•ØhNLRPF Ž*•ªbÅŠ7oÞ|øðaþWSRR®]»Ö¬Y3¹Ë4ñA1z Sèô´95Òè ?G[[ÛÞ½{k4šéÓ§gddä~)333$$D¥R9²t+ß´iS¿~ý¼½½[·núàÁýß{çÎ-ZL:ÕÔGÄ$©Q‰ÓÓ‚à€)ëv<ƒ ºpáÂÁƒýýýûôéãææ¦R©~üñÇ»wïvíÚõñãÇÔ-ïîî^·nÝbW»hÑ¢¥K—VªTÉÇÇçúõë[¶l¹råÊš5kìíí‹}¯V«>}úãÇM},L••ÈЩ‘v#¡¬àصkWéAbbâ7ß|“çÕ]»víÚµ+÷È;ï¼SìcccÃÃÃ]]]7oÞìââ"„˜;wîš5k,Xðî»ï[ÒêÕ«Oœ8!÷1H·nÝ2Ê‚âñÑ[->z+Ñ¥K¹KP ŽéééBˆJ•*å¯\¹²âÑ£G…½kÚ´iuêÔyûí·K·ÝØØØÒ¼M%„V¸ 7cŠ¿{nFYyÙ*S ­Öàeý=I]ÂõþÓ÷,}9n <Â0 >z«ÅGo òÿ³ž¿Cd%,<8:::ªTª´´´<ãÒíu¤¾c~óæÍ»uëÖúõëõ¹_Y`†”…Ÿã¨V«òwSRR„ºë¬s;qâÄúõëßxãçž{Τµ-ÜYajä<ƒ…G!„««krr²”u¤“Ø\]]ó/åÊ!Ä’%K<ÿÑ»wo!ÄO?ýäééÙ½{w¹w¨dH ¨ aáSÕBˆŽ;ÆÆÆ>|¸[·nÒˆV«ŠŠrrròööο|½zõtKJ=ztäÈ‘Zµjy{{רQÃ(U'ßYajÆcùÁ±_¿~K—.]¼xq»ví¤kbÂÃÓ’’Fegg'-“ššš˜˜hgg÷ôÓO·iÓ¦M›6¹×páÂ…#GŽ´lÙÒ·™4ëL´0Ë޵jÕš:uê¼yózôèѶmÛëׯGGG7mÚ4÷wFEEMž<ÙÃÃcÇŽ2”h„ˆg©•åG!DPPPõêÕ·mÛ¶k×®š5k2dÒ¤IR÷Ñ"Ymj䚌J¥¥ýchžžž%¸£¡SžrS£Pè$µëJHHàŽnÖ‰ÞjñÑ[­’ý[oA,ÿªj«bµ©˜Á&Á$5æà(+ƒv•ÛnTvj¤ €žŽÂjS#0‚£| —õ¬952I €Éa4æÐk4‡P ‚£ÙSn»ÑûN»Ó!8š7å¦F&©°8G™"ñYsj´¦2P ‚# Í$qŒv#¦Gp4W m7ÒÄÀrå ÐÐg6 Òn$âPRG³¤ÐäIÀ¢Í•§FÚÈ…àC0«ÔJ‡àhrek*±ÝHûë@p„Ù0T»‘  @éÍ íF #‚£Ù°òÔÈÙÈŽàhZJL¥Þ³ì5šgÕ(ÁÑ–‰à¨\ j7»ÁÑt•ŽIj”‰à¨P Ê™æßn4ÿ=@Ôre3yæ¢ÝÀô<==å.rŠ•»³Ap„…£Ý@DkæééÉ/€ž˜ªV"¥ÌSÓn¹ ‚£I(¥…X¢š-¡ÝÈ<5DpTE„LȇàEàìF”à¨,´Ù‹àˆÿ’#mÑnÀ,!3R#æ‚ਠòÏS[Ðä®í JAp„œh7@©:tÈßßßÙÙ¹V­Z½zõºté’ÜÁòñzt`>~ûí7ÿëׯOŸ>=$$äêÕ«mÛ¶MLL4ø†|}}ÃÂÂäÞÝ=zôhìØ±uëÖ­\¹²¯¯otttaKfee©ÕjÕU¯^]î=0o|WµñÉ?­O‘uM €Å[ºt©F£‰ŒŒ¬S§ŽbèСîîîS¦L1àVbbbŽ=Ú±cG¹w÷o)))-[¶¼qãFß¾}7oÞÜ¥K—x{{ç_8!!!''§U«VîîîºÁÊ•+˽æà¨f/ qîÜ9///)5 !œœœ7n|õêUƒ¬<;;;22òرcK–,Ñh4ú¿155µR¥JÆÛë… ÆÅÅ­^½zøðáBˆ‰'¶hÑâí·ßŽŒŒÌ¿p\\œâƒ>PNðµLUÃÒÚ` ’’’ªU«¦{š‘‘W¯^=ƒ¬<99ù•W^ »ÿ~‰ÞعsçjÕªmذ!÷à¶mÛT*Õ?þXöÂ6lØP³fÍaÆIOÝÝÝûöíõÇä_X Ž 64È1„àKÃ<5k““£V«…Z­6!!aĈµk× 2ÈÊ]]]µZ­V«-é73f̨X±bppð“'Otƒ«W¯®V­Z÷îÝËXUJJÊåË—;tè R©tƒ~~~¦À3ãââÊ—/ÿÔSOmÚ´iÙ²eGŽÉÌÌ4Èñ±fLU+‚œóÔ´ÀleddT¨PAQ¥J•ˆˆgggyëéÞ½ûµkׂƒƒ·nÝ(„HLLܵkר±cË•+Wƕ߻wO«ÕºººætqqBØ‹‹³±±iذფ‘&Mš¬]»¶E‹ò%³FpÀ\©ÕêåË—'&&;v¬Gýû÷ß°aC";;{çÎ…­áµ×^3lIC‡ Y±b…×­[—••5bĈüK–´°´´4!D•*Ur:88!’““ó¯!..N£Ñ„……õíÛ×ÎÎî§Ÿ~šU½~ýz''§¢¿¢fàÀNNN¦ÀËbJ]؈#ž{î¹Áƒ‡††~úé§íÛ·OKKÓ}#â¼y󜜜–.]*„pqq ;|ø°‡‡Ç¸qãf̘ѲeË 6|ðÁ^^^r~lfŽàhdÊüBKl7Zâ>@QZ·n=þüèèè3fDFFŽ3æÀù§ª .33óáÇéééE,cooߥK!D·nÝ ¸é*UªDEE 0`óæÍóçÏoذaTTÔK/½$½úäÉ“‡fddHO§M›¶yófWW׈ˆˆ+V899íÞ½{ÆŒÆ>>–©j™)3XgOi7€Jw½1OOÏüÍ¿áÇgee?¾è÷–/_^!MƒƒCxxx/Íž={öìÙ¹GúôéÓ§Oã+DÇÑúК”Á“'O8Pàv`ñŽ0c· Ã`2ÇoҤɠAƒä.2`ªÚʰÀ"„††:::ʲé:tèСØÅ<<<Ú´i#K…0‚£œ¬äGÎnƒ=z´Ü%#44444Tî*``LU[ m7Zèn 8GíF,ÁÑjЗeCp„™ ÝHÀd޲1é•1Ä+PfG g7`aŽVÀrÛ–»g(ÁFA»ËCp4&%Üà›¦0‚£<”)¹w¦h7‰01‚#féСCþþþÎÎεjÕêÕ«×¥K—ä®–àhÑähÊÑnøí·ßüýý¯_¿>}úô«W¯¶mÛ611Ñàòõõ “{wÍ©0ËFpÀü,]ºT£ÑDFFN:u„ QQQÙÙÙ†ÝJLLÌÑ£GåÞWs*Ìâ©å.Fc¹íFÀ¹sç¼¼¼êÔ©#=urrjܸñÕ«W ²òìììÈÈÈcÇŽ-Y²D£ÑèÿÆÔÔÔJ•*o¯K] …Ž£ ,ûÊ`ž’’’ªU«¦{š‘‘W¯^=ƒ¬<99ù•W^ »ÿ~‰ÞعsçjÕªmذ!÷à¶mÛT*Õ?þ(ca0‚£…¢Ý-''G­V !´ZmBBˆ#j×®d•»ººjµZ­V[Ò nf̘Q±bÅààà'OžèW¯^]­ZµîÝ»ËX …©jÌUFFF… „UªT‰ˆˆpvv–·žîÝ»_»v-88xëÖ­BˆÄÄÄ]»v;¶\¹rr-ÁÑYt»‘yjÐQ«ÕË—/OLL>ÞÝÝ}ÕªUÍš5kÞ¼yþ%M\ ‚s(”Vheü)Q©Ã‡B;v,ϸƒƒƒ¶pÆ8hãÆÓjµ+W®<}úô¹sç^ýõ3}a(;:ަfôKª™§«”-„°µµÍ?nâáæÍ›ûøø¬Zµ*99Y­V<¸°‚™ª6;GÌÒ‰'._¾Ü¨Q#éé–-[„ù'…e™7n\PPPxxx@@€‹‹KË0UmŽ˜ª¶,Ýnä–••åçç7~üøÅ‹5*44ÔÛÛ»oß¾y3øŒðúõ뜜¦L™RÄ2trrÒh4^c¤Â`G˜ æ© ·Ö­[ÏŸ??::zÆŒ‘‘‘cÆŒ9pà@þ©jƒËÌÌ|øðazzzËØÛÛwéÒEÑ­[7¹ ‰©j B»¬L`` t×#ñôôÌßü>|xVVÖùóç‹~oùòå…vvv&+ &@Ç”À“'O8Pàv`ñŽ(=S¶™§…8~üx“&M $w!SÕ&eÄ{ñ¬Àš„††:::ʲé:tèСØÅ<<<Ú´i#K…0k Ž›6mÚ¸qc\\\ÅŠÛµk7uêT''§"–OOOÿá‡6oÞ|ëÖ­§žzªQ£FAAA­[·–{?„v#ÈhôèÑr—PŒÐÐÐÐÐP¹«€YEp\´hÑÒ¥K+Uªäããsýúõ-[¶\¹reÍš5ööö.Ÿ=bĈ3gÎ888¼üòËOž<ùõ×_92a„ñãÇ˽7!Xã³üscccÃÃÃ]]]÷ìÙ¾wïÞaÆ={vÁ‚…½eãÆgΜiÑ¢ETTÔ7ß|³jÕª­[·:::~ýõ×/^”{‡‹©°B–7nܨÑh&Mš¤»s}HHˆƒƒÃîÝ»5MoÙ³gbæÌ™º–¤‡‡ÇرcsrrŽ=*÷YÚ©(„åÇ“'OÚØØ´oß^7bkkëë뛜œ|úôéß’P©R¥¦M›æôððBܼySß ýK©u2u°¢Ý€u²ðsµZm\\\ÕªU«V­š{\úfÏ›7o¶lÙ2ÿ»–-[¦Vç=2.\BÔ©SGî}‡…Ç´´´œœœü7,pppBüù矾ËËË+ÏHtttxxxùò勸:öÜ<==cE¬§§§nDšþnn †ÝG7! ¾Îb7i²-º»»ÅÇ›zÿJíÖ­[r—yðÑæ®èi¤¯O„°øà(}“f¥J•òŒW®\YñèÑ£bד“³nݺO?ý4''ç³Ï>svvÖg»±±±B%bccsþ=wíæfÈ=T©„VkÐ5·AižÚ„›t3ì£Z=`ÖŠþ#œçt!DîÞU±ðàèèè¨R©ÒÒÒòŒ?~üXüÓw,¯¿þvõêÕš5k~ôÑG­Zµ’{‡dcáÁQ­V;88äï,¦¤¤!t×Yç—™™9þüµk×V¨P!88xäÈ‘…ÝôQN–~Y ×S (…®®®qqq)))UªTÑ J§2¸ººøFóöÛoÿüóÏþþþ³gÏ."_XË¿OÇŽsrr>¬ÑjµQQQNNNÞÞÞ¾eíÚµ?ÿüó Aƒ¾þúkR£íF¬œåÇ~ýúÙØØ,^¼X:¯Qž””Ô§O;;;i$555!!Aº.R«ÕFDD<õÔSÓ§O—»ö"¬Àº:tÈßßßÙÙ¹V­Z½zõºté’ÜÁòYþTu­Zµ¦N:oÞ¼=z´mÛöúõëÑÑÑM›6ÍýõðQQQ“'OöððرcÇýû÷oܸaoo?xðàükëÕ«×!CäÞ'pÓoP”ß~ûÍßß¿^½zÓ§O/_¾üŠ+Ú¶m{áƒO”ùúúvìØqöìÙrïñßΞ=;wîܨ¨¨Ç7nÜxðàÁÁÁÁùï¾ #±ŠT½zõmÛ¶íÚµ«fÍšC† ™4i’tGžü¤¾czzúùóçó¿Ê…Õ¦A;жtéRF)}3ÅСCÝÝÝ#""¦L™bÀ­ÄÄÄ=z´cÇŽrïîßâããÛ·oŸ““Ó«W¯ºuëîÛ·oÊ”)‡Úºu«Ü¥Y «ŽBˆ€€€€€€Â^íÚµk×®]¥ÇÍ›7Ï»&Å1m°¢ÝJsîÜ9///Ý÷™9995nÜøêÕ«Yyvvvddä±cÇ–,Y¢Ñhôcjjjþ{'Д)S=zíãã#„øàƒF޹råʽ{÷¾òÊ+ÆÛ.t,ÿG…0Ù7W¬ARRRµjÕtO322âââêÕ«g•'''¿òÊ+aaa÷ïß/Ñ;wî\­Zµ 6äܶm›J¥úñÇË^Xdd¤¯¯¯”%o½õ–âøñãÙq‹àÅažŠ•““#اÕjFŒQ»ví   ƒ¬ÜÕÕU«ÕjµÚ’^p3cÆŒŠ+?yòD7¸zõêjÕªuïÞ½ŒUegg?^JŠ:ׯ_B”/_Þ ;ŽbYËTµEaž „"##£B… Bˆ*UªDDDèù½¸ÆÓ½{÷k×®oݺ500P‘˜˜¸k×®±cÇ–+W®Œ+W«Õüqî‘?ÿüóã?¶µµíÛ·¯¼;n=ŽPÚ”E¥’mÓzüm¨V«—/_ž˜˜xìØ±=zôï߯ ªÿÖœ½sçÎÂÖðÚk¯¶ê¡C‡†„„¬X±B ŽëÖ­ËÊÊ1bDþ%ËXØÁƒÇŒ÷Í7ßxxxv/P‚#ŠB»€µSöËÚÚÚŽ5Jzöþûï0 wïÞ¹—IMMíÙ³gáûgàtpp üöÛoãããÝÝÝW­ZÕ¬Y³æÍ›ç_²Ô…ݸqã­·ÞÚ¾}»‡‡Ç¾}ûüüüŒqlQ Îq47tä>|¸âرcyÆ´…3F%ãÆÓjµ+W®<}úô¹sç^ýõ+]aëׯæ™gN:µlÙ²ÿýï¤F£ãˆB™¾ÝH*€RËÎÎBØÚÚæ7åTµ¢yóæ>>>«V­JNNV«Õ~¡Fé Û¾}ûСCû÷ï¿téÒ*Uªç@¢(GÌÒ‰'._¾Ü¨Q#éé–-[„ù'…M1A+.33óáÇéééE,cooߥK—õë×wëÖÍPÛ‹‹B\¼xñâÅ‹y^jذ!ÁÑ4Ž(íF0 Ò]oŒÄÓÓ3SpøðáYYYçÏŸ/ú½ÒM¹íìì UL=Œ4±ýqUµÑüwÛ¢;r½s`Qž}zHHÈÕ«WÛ¶m›˜˜hð ùúú†……ɽ»ËÊÊR«Õªÿª^½ºÜuYµÜ pÄ+@!–.]ªÑh"##ëÔ©#„:t¨»»{DDÄ”)S ¸•˜˜˜£GvìØQîÝý[BBBNNN«V­ÜÝÝuƒ•+W–».+Bp´j\L fêܹs^^^RjB8995nÜøêÕ«Yyvvvddä±cÇ–,Y¢Ñhôcjjj¥J•Œ·×qqqBˆ>ø@9YÖÚ0U S£‘ e—””T­Z5ÝÓŒŒŒ¸¸¸zõêdåÉÉɯ¼òJXXØýû÷KôÆÎ;W«VmÆ ¹·mÛ¦R©~üñDz&dž d7Q GÌONNŽZ­BhµÚ„„„#FÔ®];((È +wuuÕjµZ­¶¤Ü̘1£bÅŠÁÁÁOž<Ñ ®^½ºZµjÝ»w/{aqqqåË—ê©§6mÚ´lÙ²#GŽdffò°¢8LU+•ñûr\æ.##£B… Bˆ*UªDDD8;;Ë[O÷îݯ]»¼uëÖÀÀ@!Dbbâ®]»ÆŽ[®\¹²¯?..ÎÆÆ¦aÆLOO/b{{û.]º!ºuëfÀMO›6móæÍ®®®+V¬prrÚ½{÷Œ3Œ½ËÐaªÚºÐnK(ÝõÆH<==ó7ÿ†ž••uþüù¢ß[¾|y!„4§l@}úôéÓ§ñvE£ã££Ý–äÉ“'(ð;°xGPÇoҤɠAƒä.2`ªZaŒÙcž,Fhh¨£££,›îСC‡Š]ÌÃãM›6²Tã!8¸˜§c=z´Ü%#44444Tî*``LU[ Ú ŒŽ0"ÚX‚£’-gÑneGp„±ÐnÀÂ-íF`G۬eí ‚àhT*!£v#0‚# v#‰à½•Á8=:Yæ©i7`©Ž˜¥C‡ùûû;;;תU«W¯^—.]’»"X>‚£Å¢Ýì·ß~ó÷÷¿~ýúôéÓCBB®^½Ú¶mÛÄÄDƒoÈ××7,,LîÝÕ·°G;¶nݺ•+WöõõŽŽ–»LKCpÀü,]ºT£ÑDFFN:u„ QQQÙÙÙ†ÝJLLÌÑ£GåÞW} KIIiÙ²åªU«Ú¶m;räÈ«W¯véÒ%&&Fîb-ŠZî`”6íF°lçÎóòòªS§ŽôÔÉÉ©qãÆW¯^5Èʳ³³###;¶dÉF£ÿSSS+Uªd¼½.º°… ÆÅÅ­^½zøðáBˆ‰'¶hÑâí·ßŽŒŒ4^IÖ†Ž#æ'))©Zµjº§qqqõêÕ3ÈÊ“““_yå•°°°û÷ï—è;w®V­Ú† rnÛ¶M¥RýøãÆ.lÆ 5kÖ6l˜ôÔÝݽoß¾QQQüñ‡A ÁÑ"Ñn‹—““£V«…Z­6!!aĈµk× 2ÈÊ]]]µZ­V«-é73f̨X±bppð“'Otƒ«W¯®V­Z÷îÝZXJJÊåË—;tè R©tƒ~~~†3 ˆ©jÌUFFF… „UªT‰ˆˆpvv–·žîÝ»_»v-88xëÖ­BˆÄÄÄ]»v;¶\¹rFÝô½{÷´Z­««kîA!DIû¦(ÁQn†îÔÑnCR•}ePÜ_­jµzùò剉‰ÇŽëÑ£Gÿþý7lØ»å&„ÈÎÎÞ¹sgakxíµ× [òСCCBBV¬X!ÇuëÖeee1"ÿ’†-,--MQ¥J•܃BˆäädÃî£5#8P8eÿW±­­í¨Q£¤Çaaaï¿ÿþ€z÷î{™ÔÔÔž={º†þï~‡ÀÀÀo¿ý6>>ÞÝÝ}ÕªUÍš5kÞ¼yþ% [˜Ômý믿r¦¤¤!ªV­jØ}´fœãhQh7€Õ’.%>vìXžqmáŒQɸqã´ZíÊ•+OŸ>}îܹ×_½ÀÅ [˜«««MžY餤$!DíÚµsÈ­G” ©";;[akk›Ü”SÕBˆæÍ›ûøø¬Zµ*99Y­V<¸°‚ X˜Z­öòò:|øpîÁC‡©Tª¦M›|­ÁQV]²´r9qâÄåË—5j$=ݲe‹"ÿ¤°‰§ª%ãÆ ®PÉÏà…=zâĉ;vì®àNLLܼys§NÜÜÜŒ±Ö‰©j”íFQVV–ŸŸßøñã/^xð L«+y@3v»Q¥"5X—.]ä.òࣷZ|ô°6Ç‚-Z´hÖ¬YW¯^õññ©\¹ò–-[ÆŒ“žžnš­«„Ê¨©QI@ÇÄÆÆ†‡‡»ººîÙ³'<<|ï޽Æ ;{öì‚ J¹Æ’tö¤Èh¤ÔHd¥Fp,ÀÆ5ͤI“\\\¤‘‡Ý»wk4£nÚxF"#(#‚cNžúN:Mž<9>>^î¢`jwîÜiÑ¢ÅÔ©Så.ÄÔކ±hÑ¢Y³f]½zÕÇǧråÊ[¶l3fLzzºÜuÁtÖ®]+w 0ììì#F|üñlj‰‰/¿ürÆ ýõ×   ¯¿þZîÒ`\)))Ý»w_¿~½¢C‡ÕªUÛµkW@@Àùóçå. ¦£Õj§OŸþøñc¹ ‘Zî,Alllxx¸««ëæÍ›]\\„sçÎ]³fÍ‚ Þ}÷]¹«ƒq¥¤¤\¾|yûöí6l»˜ÎÆÏœ9Ó¢E‹o¿ýÖÞÞ^qåÊ•!C†|ýõ×~~~Mš4‘»@ËW_}uÿþý±cÇNžqâ„ÜUÈƒŽ£lܸQ£ÑLš4IJBˆ‡Ý»wk4¹«ƒq <˜0¬Íž={„3gΔR£ÂÃÃcìØ±999LX[¶ãÇÛÛÛ7N7Ò»wï5j\¸p!''Gîê` W®\Y´hQãÆå.DG8yò¤Mûöíu#¶¶¶¾¾¾ÉÉɧOŸ–»:×ܹs—,Y²dÉ’V­ZÉ] L'!!¡R¥JM›6Í=èáá!„¸yó¦ÜÕÁˆýüü*T¨{°|ùò™™™™™™rW£ËÎΞ6mš““SHHˆÜµÈƒ©ê²ÒjµqqqU«V­ZµjîñF !nÞ¼Ù²eK¹k„µiÓFzpàÀ¹ké,[¶L­Îû÷ç… „uêÔ‘»:QDDDž‘“'OÞ¸qãùçŸ×µŸaÁ¾úê«‹/®\¹²J•*r×"‚cY¥¥¥åää8::æwppBüùçŸrÀð¼¼¼òŒDGG‡‡‡—/_¾gÏžrWSˆ‰‰Ù²eKBBBLLLݺuçÍ›'wE0º3gÎ,_¾|È!­Zµ’þCÑ ËJºtºR¥JyÆ+W®,„xôè‘Ü0®œœœuëÖ}úé§999Ÿ}ö™³³³ÜÁbcc7oÞ¬Õj…M›6-W®œÜÁ¸ÒÓÓ§M›V§N·ß~[îZäDp,+GGG•J•–––g\ºJ_ê;°T¿þúkXXØÕ«WkÖ¬ùÑGqª«õ8pà€’’’¶oß¾`Á‚Ó§OïܹSjÀ"Í›7ïÖ­[ëׯ·òs¸8¦¬ÔjµƒƒCþÎbJJŠBw5 “™™9wîÜáÇ߹s'88x÷îݤFk£R©ªW¯4`À€»wïîÝ»WîŠ`,'NœX¿~ýo¼ñÜsÏÉ]‹Ìè8€««k\\\JJJîSe¤—䮀ái4š·ß~ûçŸö÷÷Ÿ={6ÿ‰h%®\¹²råJ__ßW_}5÷¸t}ý½{÷ä.ÆråÊ!„tÜã?ýôÓO?ýäáá±cǹk4‚£tìØ166öðáÃݺu“F´ZmTT”“““···ÜÕ0¼µk×þüóσ š={¶ÜµÀtªT©òã?Þ¿?Op¼qã†ÂÍÍMîa,õêÕÓý/yôèÑ‘#GjÕªåíí]£F ¹ 4‚£ôë×oéÒ¥‹/n×®t‚KxxxRRÒ¨Q£ììì䮀iµÚˆˆˆ§žzjúôérדruuõôôÿ«\"cÙž}öÙ;w~ñÅçÏŸ¿xñb5:wî<~üxé{ƒ‹§’îAÛñ@/Gè…འ‚#ôBp€^ŽÐ Áz!8@/Gè…à½X—©S§zzz¹wï^a«•®•9~üxžq//¯—^z)÷ÈÑ£G'L˜àïïïãã3lذŋçÉv·oßž={v×®]ŸþùöíÛ3æäÉ“EìÑòåËs_#UrëÖ­ððð—_~ù™gžiÙ²åÀ÷íÛWØbbb¼¼¼|}}ÿúë/ÝàãÇÛ·oïååuöìY¹?4–†àÀ<!öîÝ›g|ÇŽBˆž={ªÕꤤ¤Áƒ/[¶ìÎ;uëÖ}úé§oÞ¼¹jÕªÀÀÀ”eë ,9räÞ½{³³³]\\N:õÕW_ 2$99YZàÊ•+6lHNNnРV«ŠŠ:thddd‰6´lÙ²Ï>ûÌÎÎîå—_vppˆ‰‰?~üîÝ» \ØÛÛ{äÈ‘÷îÝûøãuƒŸ~úéüñæ›o>û쳦þX:‚#óàãããââróæÍÿýïºAF#…ªÞ½{ !¶lÙríÚ5??¿£GnÛ¶í§Ÿ~:räˆÏíÛ·÷ïß_êM8p`ùòåuêÔÙ´iÓÁƒwîÜyèСvíÚ9sæ›o¾‘–Y°`Ajjê¸qãŽ;¶eË–¨¨¨™3gjµÚ/¾ø¢DÛÚ¸qã˜1c>¼zõê_~ùeĈBˆ5kÖ¶ü„ <<<¶lÙrøða!ÄñãÇøá‡fÍš7N¾Ï €Å"80666ݺuÿm:ž:uêÞ½{ÞÞÞ 6BdggwèÐáwÞ©T©’´@•*U¤Våõë×K½éyóæ !>ÿüs]ÏÙÙùóÏ?wuuݼyóÇ…—.]Bôë×ÏÖÖVZ&00ðÍ7ßô÷÷/Ѷž}öÙ·ß~ÛÆÆFÚå7ß|Sqíڵ–·³³ûôÓOÕjõ¬Y³gΜioo¿`Á]`@GfCŠ€¹çm¥yê>}úHOÇ¿téÒ è¸ÿþÎ;˲Ñ$$$¸»»ç¹ºbÅŠ­ZµJOO?þ¼BJ®!!!'NœÎ¶´³³›8qbppp‰6÷ꫯæ~êàà`kk«Õj‹x‹——×øñãïÞ½ûÚk¯Ý¾}{úôéõë×7ÖgÀºq;f£iÓ¦õë׿víZll¬§§gvvöž={ìíí»víª[æöíÛ‡:uêÔÍ›7oܸQÆS…ñññÒÿzzz¸Àü!„ ›4iÒ‰'†Z¡B//¯_|±sçÎ^^^%ÚÜÓO?]Š"ßxã}ûö]¸pá…^ 4èQ€˜“€€€¯¾újÏž=žžž‡~ôèQïÞ½uÓëׯŸ3gNvvvݺu[¶léïïÿÌ3Ï$$$|ðÁ%ÚJNNޮɗ™™)„¨]»va“εjÕB<ýôÓ›6mЉ‰9tèЯ¿þzþüùÓ§OóÍ7}ûö3gŽJ¥ÒsÓåÊ•+Åayüøñýû÷…ñññ>ttt4þGÀ˜]pœ8q¢4­›§~üøñ‡~X®\¹eË–µiÓF÷–»wï–t+wîÜÑh4Òcwww!DÅŠCCC‹~—J¥’î$„ÈÌÌ<|øðŒ36oÞìçç×±cG£–Ù³g'&&6oÞüôéÓ|ðÁÂ… º9V‹s˜“zõê=óÌ3ñññçÎÛ¿½zõZ¶l)½tîܹœœœæÍ›çNâŸËVŠ–gFû—_~Ñ=vuu­^½úÕ«W/\¸{™œœœ>}ú´mÛ6))éöíÛ~~~ýû÷×½Z®\¹Ž;JWóܺu˨Çdûöí»wïn׮ݚ5k<<¿ÿþ{ƒ Æ÷óÏ?ß¼y3555&&fÇŽo½õ–»»ûöíÛ }…ÌÌÌÄÄÄ#GŽÌ™3ÇÃÃ#**Jîu lä.@1¹¸¸ØÙÙI·ïÝ»÷àÁ!Djjê„ |}}ÝÝÝ…O=õTݺu…Õ«W—»^åºzõê Aƒþúë/én½zõªT©róæÍk×® !222lggçïï/w¥ªݱcÇGFlll222¤Û7nÜ0`À¡C‡š6mšû¹†ûñãdžFã½{÷ú÷ïS®\¹ž’ƒ£££Ü[Ð:Ž€Z­_¿>ö÷ïßÿùçŸmmm…ééé+V¬–yòäæÍ›+W®|ê©§„ÉÉÉÌó¹†;>>þêÕ«¯¼òŠ4~ýúõ¥K—ü”‚‚‚äÞ€ÖðóóëÙ³§t;&&Fº‘ûÇì‡'fdd¼ûî»O?ýô»ï¾›ã¡{÷î½ùæ›ÞÞÞO=õÔsÏ=÷ÑG¥§§çùsoÞ¼9lذgžy¦F Ø¿Ž²²²ÂÂÂ|||êÔ©ckk[§NŽ;~óÍ7Ù_0¿ƒ&r¬fX²ÿþ—.]2dHݺuŸ~ú退€Ó§O !¢¢¢X·nÝ*UªøøøìÛ·¯ÐM÷ûï¿K7† –ý`ÐV­Z-\¸Pº}âĉ¬¬,s¯”‘[þêÕ«trrªV­ZŸ>}Ž=šßªÝ¹sgÒ¤I­[·~ê©§žy晾}û?~<ûìBˆôôôeË–µmÛ¶F+Vlܸñ°aÃN:Uðöüå—_¶mÛ&Ýž1cƪU«š6mjmm]½zõQ£FmذAz(::úÂ… ¿T­ZµV­ZeØ€}ôÑãÇ }C˜SÕ€v¤¥¥I7Œœ˜=zô7ß|#„ÐëõÙÇï߿ߦM›sçÎIwO:uêÔ©“'Oæ>ÔïÆíÛ·¿té’twÓ¦M[·nýòË/_{í5Ã2ÙŸxõêÕ«W¯FFFnÛ¶mÓ¦MÅ^Ù˜˜˜^x!!!Aº¶gÏž·ß~û­·Þ2$­}ûöEFFîÝ»·C‡¼Ô“'O¤gÏžÕëõ:Îð¿¿¿!zfßJfZ)c¶ü±cÇüýýoß¾-ÝݲeË/¿üÒ®]»Ü¯1xðà;wîHw=ztùòå-[¶¼ñÆŸ~úiîåsì©©©íÛ·?räˆa3gΜ9sfýúõ‹/þßÿþ—ßZú‚•+Wž5kVŽG»wïÞ­[·›7o !NŸ>]¿~ýB7ˤI“¶lÙ"„¸{÷îÁƒ_|ñÅboa%DÇЂ¬ZµêÇBØØØŒ5ªÐ§;vLJ ¹íÛ·ïܹsuêÔiÙ²¥4ý-„Ø´iSîÎÖÑ£G/]ºäììܾ}û *!ÒÓÓÇÿçŸJ lܸQ =:Î××700ðÙgŸ• ˆˆ(ö*Ÿ--­_¿~Rj´±±yá…êÖ­ûðáÃ;väx©¤¤¤AƒI©Ñ××÷½÷Þ °²²Òëõ .\µjU¡ûÜ9s¤Ôhgg÷òË/O˜0¡eË–Ò&4iÒùóçó[‹_ýUºÑ§OŸŠ+æ^`ûöí'Nœ8qâDß¾}Ù,íÛ·/[¶¬t;{PúŽ€Zùùù.;âàà0jÔ¨ÌÌL;;»µk×6k֬Ч_¿~ÝÓÓ3444**Êp™Á—_~yåÊ•¨¨¨'NLžS¢þþþR³íܹsõêÕBdffúL»ví’nL™2eÏž=ß|óÍéÓ§›7o. 戋çÇûúë¯K·4h`˜•"KveÊ”Y²d‰t¢k­Zµ>þøci|ÇŽ™™™Bˆ††††††Nš4Iz()))99Yºm8‘¹Z´hÑ­[7©†þýûKƒ'NBXYY 4H¼ÿ~Á/U¥J•S§N=Z:oC’••uîܹo¾ùfàÀ 4ؽ{·á!ó­T¡[Þp€ ¡ÿ'„˜7ož³³sŽ—2¤Û1cÆ_yå©ozõêÕ—ü̽?®¶¸nݺU«VIqpݺuÒ„u¿~ýò\…¤¤$ÃméÔ"“¨R¥Jî×Pú8ÆP«ì— ‘®;¨×ë=Ú¼yó_ýõ™gž)øé^^^ù}®çx®a.8ûÙ!’F=ýôÓ†»†«O§¥¥]¹rå™gž‘G»wïÞîÝ»;vâĉ£G>|ø°ä«o˜ŒB¶C5 G(æ¸>ËòåËÇŽ›}ä¹çž;qâ„t»jÕª+V¬XºtiTTTTTÔÉ“'=j8uãÆ}ûöýóÏ?k×®-„0ßJºå %e¿ÐwÙ²e»téšý¹†%ó;"ðâÅ‹Mš41Üͽ?¼øâ‹Ò™4ÑÑÑ£FÒét^^^/½ôRÏž=ŸþùüV!{øÎ}Õîb“N{BTªT)÷£y^ŽÇ°õ˜ÁP«õë×wêÔÉp7!!!00pçÎwîÜ9rddddÁOwrrÊï¡ìg‡ä¾›aQR¡B{{{銒W¯^}æ™gÒÒÒfΜùÅ_®ágggçìì_ÂÕϳ*+«Í¢ØØØ´mÛ¶mÛ¶ÒÝ7nÌ;wñâÅBˆÇ¯[·Nš‚/µ•Êq÷Ñ£G†‘cËתU+ûݤ¤¤Óë¹Î+’äÞ‚ƒƒ“’’V®\™šš*„ÐëõÇ?~üø‡~Ø®]»Í›7W­Z5÷Ë–-[ÖÉÉIzñ+W®äù£pà@ßæ×ºukéÆ?þ˜çUœ4hàäääää´lÙ2cVüàÁƒ†+ÐìP Ž€vd﷕Ρ`gÏž•®«"1X¶lYék–,Y"|õÕWãÆkÒ¤‰Íõë×s¼Ž!µä8±ä=<ƒÀÀÀÛÿ%ÞaccóÁŒ=zôèÑ_ýuî'–/_^ºQ§Né†\+emmíêêšcS !ôz}îËUJ'* !222žÉÆÑÑÑÁÁÁÁÁ!ϯZ1HMM½sçÎ;wRSS ÿóÏ?r[î vŽª¼zõjî/Àܶm›áï‚/“d`8§§B… †@G@#îÝ»÷öÛoK·mmmMuBkÁÒÓÓ'L˜ u•nݺ5cÆ iÜßßßÚÚúádžùPCxúý÷ßs_°Æ0ÓúÛo¿Îûþûï¹|·‘ììì\þËp¾EÇŽ¥óæÍ[¿~½tZ"##cùòå†j¥Ì$ïJµhÑBºñÅ_.åýÑG®dàçç'Ý 1\róæÍUªTqrr’.âSÀ:wî\µjÕªU«V½zué:666~~~†sÕò{n= ?}âĉï¿ÿþ­[·„iiiëÖ­>|¸ôÐ3Ï<ãååUðúÞ¾}ûÕW_ —î6,û1”JÇ8jhh†¥¦¦ÞºuËpÈÝäÉ“mlJé·ûûï¿wuumРÁ‘#G¤,bmmýᇠ!*V¬X±bEé`;é+Ct:Ý®]»rO_®e“’’âååååå•]:«ðÞ{ïmÛ¶-11155uèС“'OvssÓét111†s2:wî,e"ïJM:õÛo¿Õëõ÷ïßoÕªUË–-ïÞ½›ç%gΜ¹råÊ{÷îmݺÕ××·C‡gϞݾ}»ôè”)S >w¤I“&...wîÜÉÈÈhÛ¶m=*W®|åÊÃwWæø:œ.\زeË””½^?{öìÙ³g;99Ý»wÏÊmmmÃÃà —ÆÌΰc?~üXJœ’ªU«~ðÁ&|ßÁP«ìsÄÙµnÝÚÐz47‡¤¤¤7nܸqC)[¶ì²eË<<<„:®{÷îß}÷"99YÊnnnuêÔ‘®hˆÍš54hPXX˜´¤ti77777·ü®hBuëÖݼyóàÁƒ¥MšãÄ‘öíÛ÷ÝwRÊ‘w¥š6m:|øð5kÖ!ÒÒÒ8 þ™Àýé§Ÿ²/éèèøÍ7ßÞ¿ß¾}ÙÛœcÇŽ}ï½÷ þAVVVRâLII¹}ûöÊ•+³?Ú±cÇiÓ¦ðôÆÿüóÏ 0ì¥Ù7iݺu¿úê+Ãu×sÈsÇ®\¹ò?üPÀ]JSÕ€X[[;;;wîÜyÅŠûöí3òLÕ’ëØ±cdd¤¿¿ÿÓO?]½zõDDDd¿œø¢E‹7n,„°²²jÚ´éo¼qâĉ—_~YztÆ †9ܵk×~øá‡7®P¡‚——×ĉ£¢¢J-(tèÐáòåË_}õU·nÝ<==+T¨PµjUooïÁƒïÝ»7222û©!ò®Ô×_=~üxé¶³³sÏž=ùå—5ÍI'tDFJFpJºS#‘Ñœh4P‚#PJTœ‰ŒæDd "G 4¨55ÍŒ¹iêBpµ¦]u Ñ@Ž€Ù©/€Ñh43TŠà˜—*S£Ê*VTà˜‘Ê2F3£Ñ@펈ŒfG£€6sQM»Q5…ªFšApÌB5aL5…ªFCp,ÓÓfF£€öÓSAO%ª©€&Sz$Óé\Fó"5š¤Ëv»¾ÜÅÈÅJî”"Nèõ±—/Ë]‡f鄎ÔhŒîŸúlÿ,GÀ”ÝnTtqZ@d4#{s‘ßê쎀É(:˜)º8- 5jGX4ÁÐ:Ξ6?7W7R# F„Å¢âGÀ4ÚÑ“ÊRbeÚ¡ºË±6 ¨ ‡-ÁÐ.…†YíàT@EtyåESÕ€ (1¡)±&M!2ª`˜Œæ×Õ$Ž€‘ÍŒÔ(G.šÁ()Å…4Ť5¤F@™h.–‚#P"Ê iœ@m~¤F@iÈ‹¥‰àh…²2¬6‘…`2Z.G øÕTŠf‘ÙÑ\”ÁP?R£ù‘‘•ƒà“RÒšRêÐ2R# ò¢5#5š©(eäE%#8Å¡ˆÀ¦ˆ"4ŽÔ”ò¢*u"5š©(äEu!8*Dj4?R#`VäE•"8E&sl#5š©0ò¢ÚU!5š©0)2ò«¥vG hHnÚFjL‹£Æõ ´P ò¢V"3¹‘Ív#PrLIkÁPR£ù‘’ Åh!Ž€±d o¤Fó#5ÅC^´4G@ÙHæGjŠ)iËDpŒÔh~¤F Hh1Z8‚#`"©ÑüH€ñh1B@h1";‚#P8ÚšD»(-FäFp”‡Ôh~¤F DFä‡à( ©ÑüH@ž˜•F¡Ž@!J5È‘ÍÔäF‹F"8`¹ˆŒ(‚#PÚC»0+â!8Ê@j4?R# h1¢dŽ€ÍÔQrG _Ä9Úàæê*ˆŒ0+¹ ,ùÔüh7Âbé„Ð q96–_˜Á©ÑüH°@ºþéi4¤˜ªòF¢ Fȳ"8ò!œšíFX"#JÁ ©ÑüH°DF”‚#³‡:R£ù‘a ˆŒ(eGÔ‡ÈYRG»Ñüh7BÈŒÁÈɼ¹ŽÔh~¤Fh‘²#8 tDF(Á(E´Ív#4†ÈE!8ÿA´S5R#´„È"8¥…L À8DF(Á(¤Fó£ÝmС`Gà_¤;2¢Ñå#8æG 5?ÚP5"#Ô‚à˜©ÑüHP/"#Ô…àü€ 4¡FGÀœH£æG»ªCd„zYJpÜ´iÓÆcbbÊ—/ß¡C‡©S§:::°|ZZÚ7ß|³sçÎØØXGGÇÆ¿þúëîîîr¯€ÿ 5Bu8iªf%w¥aÑ¢Eo¿ýö¥K—¼½½+V¬¸yóæW_}5%%%¿å333‡þÉ'ŸÜ»w¯]»v5kÖܽ{÷Ë/¿|ôèQ¹Wæb–Î íFÙèHP?íÇèèè—]»v…„„ìÞ½;00ð?þøä“Oò{Êwß}wüøñ—^zéçŸþâ‹/Ö­[·zõj!ÄÛo¿-÷Ú@=HæG»jaˆŒì¯P;íÇ7feeMž<ÙÙÙY™1c†½½ýÎ;³²²ò|ÊñãÇ…Ç·±ù{*¿U«V 6¼råÊ_ý%÷ TƒÈÑ~p&&¦råÊ•+WÎ>^¿~}!ĵk×ò|V=lmm?üðÃǧ¤¤Ü¼yówÞ¹~ýzÿþý+Uª$÷:”ŽÃ¡UïŸ%''gff:88ä···ÿí)fçáá±nݺ#FŒ1Â08tèР  #®‡‡GŽ‘]»vɽ1Tìúõëfþ ®±±±&{-7·ØË—…é^ÐäÌ¿=ÍÎÍÕírìåX¡”¬Mª4êݤn®®BˆË±±B(fUóöTˆ®]»Ê]‚Rh<8J§NW¨P!ÇxÅŠ…<ÈóYIIIsçÎ}üøq£F7nœ˜˜xðàÁ­[·¾ð ;w6æçFGG˽êZãêꪢ×7wµ–Paþž¤Vبz“*“7é¿]Få¯Æí©¹?Öswˆ,„ƃ£ƒƒƒN§KNNÎ1þèÑ#ñOß1·iÓ¦ýþûï3fÌxå•W¤‘›7o4è7Þøá‡ÜÜÜä^-˜’‰GäèFÀ"qMoXãhcccooŸ»³˜””$„0œg]||üÞ½{ëÕ«gHBˆ5jüïÿKOOß²e‹Üë#5šçÄ@i8oEãÁQáââ’˜˜(%Eé€6—ÜË'&& !êÖ­›c\j4Þ½{Wî(‘–FûÁ±S§N™™™0ŒèõúÈÈHGGG//¯ÜË×­[×ÚÚúâÅ‹úÿ¶Ž¤ãêÕ«'÷ Á”LÙ"¤Ýh~´¡œ7 ˤýàØ¿++«Å‹KÇ5 !BBBúöí[¦LiäñãDZ±±ÒIgvvvíÛ·‹‹ûâ‹/ W¿xñâ’%KÊ–-ëãã#÷ äÄÜ4,™ÆOŽBÔ¨QcêÔ©óæÍëÙ³g»víââ⢢¢5j4fÌÃ2‘‘‘o¼ñ†»»û¶mÛ„sæÌéׯߒ%KvìØáé陘˜øûï¿gee½ýöÛÏ<óŒÜ+E¢Ýh~´¡taá´…#GެZµêÖ­[wìØQ½zõ¡C‡NžèRJBj”€©j€¢qP# G /´ÍŒyj‰F# (LUCû€J‘¥!8¹4ÍŒv#ŒAjˆ©j€²è„®®¤F@è8(U´Q0©Ñx96VîBäà+ò´3óÔ€|˜žŽà ôÐnDH€òqŒ# íF@\©P ‚#@N4aª@)až¹‘u!8BËŠ6óÌ<5PºH€ê”ÚÈÔ¨Ç8BÚ@éáT@½ŽÌŽv# h4ªÆT54‹" 4¤F@íŽ( ¤F@ŽÌ‹yjR# G€y‘Í 8Ââ1OmN´Aj´„³ª¡M¤A@v\vЂ#,Óœh7Z2€&1U 01R# UG€)‘ #8‚1OmNÌS[&R# mGh©Ð<‚#Ó£ÝhH€% 8ÂRÑ–L‡ÔX‚# DH€åà:ްH´͉yjËÁ%¾KCp„Ö ÒA£°@LU0%Ú‚ÔX&‚#,=I dH€Å"8Š€ÔX2‚#“ažZóH€…#8BS Ÿ…fž(.R#‚#Ӡݨm¤F‚à(©€„àKÂ<5Pt¤FG&À<µV‘dGp„vÐOL‹Ô ‚#,¹( R#€ÜŽJŠyjí!5ÈÁð¤Fù!8Â20Om6´5†Ô GhÉ(9R#P8:¹kÁ ©0†ô{bÁ¿*6r˜ÝH³ažZ3H@!¤.£ÅÿžÀÒ‘‚³!8€E#5á7俎Ð:æ©Í†yj à3ÈƼ¡„C H@ÞˆŒù#8(ÚjGjòÆïFŽÐ4Z‘@^ødò@£ÑG°,¤F '"£ÑŽŠŒyjõ"59ñ[QG¨^¾ÓÑÌSÿÅç#ð4‹ŽàÔü¿ÅBpP4ÌS«‘À¿h4–ÁÅ<5ðR#ð7"c‰@ËHÀßøe0K Ž›6mÚ¸qcLLLùòå;tè0uêTGGÇ‚ŸrúôéåË—Ÿ={öÑ£G&LhÙ²¥ÜëÈŒyjuჂF£)YÉ]@iX´hÑÛo¿}éÒ%ooïŠ+nÞ¼ùÕW_MII)à)ÎÎÎ^^^'Nœ Œˆˆ{USÞ3ÒÌS¤F@"ý&ðË`"ÚŽÑÑÑ!!!...»ví Ù½{w``àüñÉ'Ÿä÷”LŸ>ÝÆÆfݺuß}÷]HHȆ Ê–-ûÎ;ïdeeɽB€lh7ª©:~LOûÁqãÆYYY“'Ovvv–Ff̘aoo¿sçÎüRàæÍ›“’’ÆŽÛ¼ysi¤I“&/½ôRBBÂéÓ§å^!(Ÿ•°t:æ¢ýàxôèQ++«Ž;F¬­­Û·oŸ˜˜xüøñ<Ÿ²ÿ~N׫W¯ìƒóçÏŽŽnÚ´©Ü+„Â0O ËFj„¥#2š“ÆOŽÑëõ111•+W®\¹röñúõë !®]»Ö¢E‹ÜÏ:s挣£cµjÕŽ;vâĉû÷ï7hÐÀÏÏÏÎÎNîdÃ<µ*aÑ8 Æü4“““333rŒÛÛÛ !þúë¯ÜOIKK{øða½zõÞ{ï½ 6ÆkÕªõÙgŸ=ûì³Æü\#»ví’{c¨Øõë×ówss½|966ö?ƒ®BäÂå·= áʆÍW17©©¹¹º^ÖÊ›¤Mª–°=]Ý\c/Ç !„~ºví*÷ú)…ƃ£têt… rŒW¬XQñàÁƒÜOyøð¡"&&æîÝ»óæÍëØ±ã“'OÂÃÿúê«I“&m۶͘¾ctt´Ü«®5®®®FëtB¯w5æ-[~ÛÓϲ²oœ¿{r—aB²oRÑòöü§Ñè*ÌµŽ¹?Öswˆ,„ÆqtppÐétÉÉÉ9Æ=z$þé;æ`kk+ݘ;wn¯^½ªU«öúë¯÷îÝûúõëÛ·o—{0O @¡8¢±t)+8~úé§111&|A{{ûÜŤ¤$!„á<ëì*T¨`kkkggçãã“}ÜÏÏOqþüy¹7äÄ¡°D\mGÊ Ž!!!Ý»wïÛ·ïºuëò<±\\\¥¤h äââ’çSœË”)£Óé²J3Ôro$ø>:a‰h4ÊDYÁñµ×^«Y³æ™3gæÌ™Ó®]»qãÆíÞ½;--­$¯Ù©S§ÌÌÌFôz}dd¤£££——WžOñññIJJºpáBöAéÚ= 4{#!\ˆÇ<˜§V2R#,FY)+8N™2eÏž=ß~ûm@@@ÅŠ#""&NœØ¦M›÷Þ{ïäÉ“Å{Íþýû[YY-^¼X:®Q’зoß2eÊH#?Ž5œtÖ»wo!ÄÛo¿mèzž>}ú믿¶··ïܹ³Ü #%|zÂâÐh”›N¯ÔÏÞŒŒŒýû÷ÿøãOž<BÔ©S§W¯^/¿ürÍš5‹ôR«V­š7o^Íš5Ûµkåéé¹jÕ*ÃezvìØñÆo¸»»oÛ¶MY¾|ùÂ… ííí[´h‘œœ|ôèQN·`Á‚—^z©ÐçááÁYÕ¦›û|À<‚#YÒ8ynÏÐq,TQ7©Ih;5ʲI5L ÛSa×h´ØÏzå^ŽÇÆÆÆ×××××7999<<|áÂ…qqqŸþù_|áííÝ·o_kkkc^jäÈ‘U«VݺuëŽ;ªW¯>tèÐÉ“'KWäÉÏk¯½æää´víÚC‡9::vêÔi„ îîîroäÔh¤FeÒvjrbW åv…÷îÝÛ³gÏ®]»>,•RµjÕ2eÊܼySQ¯^½•+WV¯^]î2s²Ø¿BÌǨŽ#ÁÑhEê=QÊíKø ÕB‡LIT¼=Öh4°ØÏz%v~þùçÝ»w9r$33SáääÔ¥K—nݺ5oÞ\qèСE‹9sæÝwß]±b…Üõ@鱄ÔüÝ]y”CCCwïÞ}ìØ±¬¬,!DåÊ•_|ñÅ—^z©E‹Ùg¥Û¶mÛ¼yóçŸþèÑ£r— e Ýh´•†QX ¥6¡¬àøÁ!ºtéòÒK/µlÙ2¿£íììlmm8OÒAPÍâ/$SVpìÛ·o·nÝZµjeÌY/´³¢Ý¨4|˜Bûh4*ž²®ã¸sçÎÇç—'L˜ðâ‹/Ê]#È€Ôíãj ¬Žcrrrzzz~]½zõÆr×åaÞZGj„ÆÑhTùƒcddä¸qã w×®]š{±¬¬,½^_»vm¹ë,óÔÊAj„Ʊ‹«ŠüÁÑÚÚºR¥JÒí{÷î•-[¶|ùòy.éàà0cÆ ¹ë€ÒÃG*´ŒF£ ÉÛ¶m%Ýöðð4hPPPÜEAÑþ35Í<5´‹Ô-cÿV'ùƒcv£FjÑ¢…ÜU–Žyj%àSšE£QÍ”§M›&w ?R#4‹[ådŽëׯB<ÿüóîî2dˆ¼5CA˜§!5ªŸÌÁñý÷ßBKÁQº[0‚#`VÌSËŽÏVhÓÓZ!spœ0a‚¢qãÆÒÝ·ÞzKî ¥£Ém#5BƒØ­5Dæàøúë¯g¿;fÌyëññ ­¡Ñ¨9Ê:9(zfÀ<µŒHÐöi-’98îÛ·¯¨O騱£¼5€Éñ M¡Ñ¨]2Ç×^{­¨O‰ŽŽ–·f0-R#4…ZÓdŽ={ö”{ @˜§6æ©”©QëdŽ ,{ €œøœ…F0=m89jBŸCj„F°+[ ¾9€ÌSËZhF Ã7Ç@…h|xjgg÷ÇÈ]# )ÌSÈÓÓÈEYÁQQ­Z5›¡2\¦F98Ž1"Ïñ›7o~þùç9£££[·n-oÍh èÀ82Çž={ʽÀôø†š°¿Âh2Ç Ƚ zÁŽ&Æ<µùð) Õ`zE¤¬“c 6}út___¹«€ ÜÜ\å.0©ªÁÙÓ(:™;Ž¹Ý»woÏž=qqq9ÆSRR~þùgkkk¹ €|‘¡ì¬(eÇ;wîܸq#¿† "wóÔ&Ç<µ9ðA u`z% ¬à¸zõê7nx{{ûûûoß¾ý·ß~{÷ÝwíììΟ?:dÈY³fÉ]#ªÅß7(eÇ”+WnÉ’%•*UòõõmÛ¶­««këÖ­…nnn|ðÁ€ÜÝÝå.râã*ÀnŠSÖÉ1·nݪ[·n¥J•„U«Vuttíâââææ&wu€ºI×ýŽœÉQR|.C¡¸¸7ÌLqÁ1»Ç—)S¦bÅŠ­Zµ’»”?h`~J ŽüñÇW_}uöìÙ»wïZYYÕ¬Y³Y³fãǯS§ŽÜ¥Az½àR'P>¡Dì—(Ê:ÆQñùçŸ÷ïßß¾}wïÞ-W®œ­­íµk×þïÿþ¯[·n6l»:”.p4)¾ŸÚ$øt†±_¢´(+8îß¿éÒ¥ÖÖÖ¿üòË©S§Nœ8±oß¾Q£F !æÌ™sòäI¹k`¹øt†âpÍ”.eÇ 6èõú7ß|sÖ¬YµjÕÒétBˆêÕ«O›6múôé|å ¹ðé Å‘vJöK”"edzgÏ–+Wnøðá¹:t¨_9hAt:¡ç‡þ””…ÕªU³±Éã”é,™ääd¹ T‰KˆÏh(ÓÓ²‚£——×µk×’’’r?ôøñãØØØFÉ]#J=G(ŸÑP¦§!+eÇþýûëõú™3gfdddÏÌÌ ÊÌÌìÔ©“Ü5°,¤F(»#ä&óu>œý®µµuŸ>}6oÞܹsçþýû»¹¹étºØØØðððk×®yxxtíÚUÞ‚QJ¤f£Nî2´‚yj@ HP™ƒãˆ#ò¿yóæçŸžc0::ºuëÖÑÑÑòÖ ÀrðI Eà‹¡2Çž={ʽ o¤F(;"”Dæà¸`Á¹· qÌSÖPvD(Œ¿«ZqûöísçÎÅÅÅ¥§§»¹¹5lذFr…Ò¢Ó ½žSªX4¦§¡HŠ Ž÷îÝûòË/ÃÂÂ233 ƒÖÖÖœº<» ”JYÁ133sܸq'Nœ(W®œŸŸ_:u¬­­¯\¹²wïÞo¿ýöܹsëׯ·¶¶–»L@5˜§.>²!3vA(˜²‚ãš5kNœ8ñÜsÏ}ùå—ÎÎΆñ»wïN˜0áĉkÖ¬5j”ÜeÐ,>²!3vA(›².~àÀN÷ÙgŸeOBˆªU«~þùçVVVû÷ï—»F˜Ç6B>|dCN|‘ Ô@YÇóçÏשS§zõê¹rqqyæ™gÎ;'w€j0O ¨‘*¡¬Žc¹råRRRò{4%%ÅÎÎNîhÜ ;ÔCYÁ±aÆwîÜ9qâDî‡Îœ9sýúõ È]#JóÕ(e|pC6ì|PeGé‹d&Nœ˜ãXƃ¾þúëB¹k„9!>¸!j„ )ëÇnݺEFFnݺu̘1Õ«W¯[·®"..îæÍ›Bÿ=zÈ]# à(‘꤬à(„˜;wnË–-?ûì³[·nݺuK¬Zµêo¼Ñ»wo¹« 5||CìvP-ÅGN×§OŸ>}úÄÇÇ_¹rE¯××­[×ÅÅEîºhß»ÔLYÁñúõëYYYµk×B8;;縚#4ŽM‡yjcðñÒÆ×OCý”»uë–ššú믿:99É] dC€ Aü¥MPÖYÕîîîBˆ .È]ãC¥ŠZ¡¬àøÎ;ïØÙÙ-]ºôÉ“'rרóÔ…âC¥Š¢¬©jggçO?ýôÝwßíÙ³gÏž=k×®]©R¥ËtìØQî2aÌOÐj„æ(+8úøøH7¾üòË<—‰ŽŽ–»L*F÷¥„] Z¤¬à(}s €bcžº`|”£”°«A£”,X w 4‹r”v5h—²NŽÉ!---99Yî*`~ÙpäXGêFj„¦)«ã(¹xñâ’%KNžÍavœ   ¸à¸råÊO?ý4++KQ®\9kkëÛ·oß¾};""bÊ”)cÆŒ‘»@@¹8À1?¤F˜;,ƒ²¦ª>üé§ŸêtºÀÀÀ_~ùåÔ©S'NœˆŒŒ=z´••ÕÂ… >,wT†t˜;,†²‚ã·ß~›••5uêÔY³fÕªUK§Ó !ªU«6uêÔ   ¬¬¬uëÖÉ]#L£¨©–DYÁñôéÓ¶¶¶¹ (_¾üéÓ§å®P(æ©óÄg:ÌHÇ‹£ à˜‘‘qëÖ-kkë< µ²ª^½ºžÖ”¦Ñ|„iñ™3’v/ö0XGNW¾|ùk׮ݿ?÷£IIIW®\iܸ±ÜePR#ÌˆÝ –JAÁÑÚÚºOŸ>YYYÓ§OOMMÍþPZZÚŒ3t:ݨQ£Š÷â›6mêß¿¿——W›6m‚‚‚îÝ»güsoÞ¼Ù¼yó©S§Ê½…€|1O ”R#,˜².Ç3xðà³gÏîÛ·ÏÏϯoß¾®®®:.66öûï¿¿}ûv·nÝ=z´oß>Ãònnnµk×.ôe-Z´lÙ² *x{{ÇÅÅmÞ¼ùâÅ‹k×®µ³³+ô¹z½~úôé=’{Ûh“Ó0>Ùa.ì[°lÊ ŽÝºu“nÄÇÇ/]º4Ç£;vìØ±cGö‘·Þz«Ð+;FGG‡„„¸¸¸„‡‡;;; !>üðõk×~òÉ'ï¼óN¡%­Y³æÈ‘#roEÀ';Ì‚ë{J Ž={ö,ÒòõêÕ+t™7feeMž4~Œ£½½}îÎbRR’ÂpžuvGŽÙ°aÃk¯½Ö´iS¹Ë×4i„éð)Sbò§ñà(„pqqILL”’¢t”‹‹Kîå/^¼(„X²d‰Ç?úôé#„øá‡<<U-„èÔ©Sttôºwï.èõúÈÈHGGG//¯ÜËשSǰ¤äÁƒ¬Q£†——WµjÕä^!ÿÁ=L† (Œöƒcÿþý—-[¶xñâ:HçÄ„„„$$$Œ=ºL™2Ò2?Ž/S¦ÌÓO?ݶmÛ¶mÛf…³gÏtèÐÉ“'KÝG€E#5EaÁQáïïïïïŸß£ÝºuëÖ­[~6jÔˆë2JÃÇ=L€Ý("íŸU @{ø¸‡ °Eg)G(8š8ÅÇ©0@q!?’$Š„>J„(¦ª¨ ú(v  dŽ€úXì<5ú(v  ÄŽ(]LK©0‚#uàsÅÇÞ˜'Ç*c™óÔ|80)‚#@£øƒ05¦ª!3zD¡øôGq°ßf@pD)"$¢èøôGq°ßæApÔÄÒpäÓÅÁ~˜ Á !¤FÀœ89€BP4œ@ ˜Á¥…KÌ¢æ©I(ö T0U 9&˜©(-GŠC @°»¥ˆà¨ƒåÌSPì.@éâG” æ¤abŒÅ©0€޵á/ @&LUP ŒŽȇ਀%àH€QØQYa~ùàÈqІÔÈà@~ä޽PNŽ”NóóÔ䂨Š8Œ?,%aª€œH(û 0G˜§À”Œ¶ç©I(û <Gȃ< R àêæÊþ(Á 0:{9Vî"äà(—†ç©i7"o:v@Ñ8«æÄ„4òB0@ÞØ3Å#8@ÖÔèáá!÷úCNÑÑÑr— G¥Š¦ò €Ý‚è`É<<<ØŒÄ1Ž€BiòGÄ(» G˜Mþ8rè#€¿‘U!8(%$äÄ>¨ Ç8J¤½yjþC'„`ŸÔ‡à(]ü¨SÕÌŽœ€±7jFp„ypþK hlžšœ€±7*GpDi#RZrþÅÞ¨Á`~¤F@Ž€²hižš¨!„б+˜ËþýûýüüœœœjԨѻwïóçÏË]´à3`6DH¤ý€]Á ~ÿýw??¿¸¸¸éӧϘ1ãÒ¥KíÚµ‹7ùjß¾}pp°Ü«û¯Œ;¶víÚ+Vlß¾}TTT ïÝ»×ÇÇÇÙÙ¹J•*m۶ݲe‹Üå«Á`üõ`NË–-ËÊÊŠˆˆ˜:uêĉ###322BCCMûSNœ8ñ믿ʽ®ÿJJJjÑ¢ÅêÕ«Ûµk7jÔ¨K—.uíÚõĉy.¼cÇ__ß«W¯:tìØ±wïÞíÓ§ÏÊ•+å^ uã:Ž€‚hfžšÀvs;}ú´§§g­Zµ¤»ŽŽŽ 4¸té’I^<###""âСCK–,ÉÊÊ2þ‰?®P¡‚ùÖzáÂ…111kÖ¬>|¸bÒ¤IÍ›7óÍ7#""r/>~ÇŽcÇŽ-[¶l _üÎ;z½ÞÅÅ%û ³³³"wgÔÆÆ¦Q£FÒíµkׯÄÄlß¾ýÖ­[ß~û­¼›H펀RhàGR£Eã헃͊+âãã:Ô³gÏ„……eoÈ !222¶oßžß+¼üò˦-iذa3fÌX¹r¥ׯ_Ÿžž>bĈÜKµ°ääd!D¥J•²J3щ‰‰”ôÁÄÄÄ!:wîlªÙ|‹Ep`Ä‹¦Ý·ÿ¿¬´zlµµµáTààà÷Þ{oàÀ}úôɾÌãÇ{õê•ÿ0ñ;gooðõ×__¾|ÙÍÍmõêÕ7nÖ¬Yî%‹Z˜ÔO}øðaöÁ¤¤$!DåÊ• (éâÅ‹ÉÉɇ=zô /¼pîÜ9©O‰bàG@Éh75 !ôz9ÿ‰t¢ñ¡C‡rŒÛÛÛëógŽ6nÜ8½^¿jÕªãÇŸ>}ú•W^És±¢æââbee•cV:!!AQ³fÍ‚K*_¾|§NæÎû×_mݺÕkm!è8¤8ù¥¸Ô>O­éä€ñÞ+FFF†ÂÚÚ:÷xiNU !š5kæíí½zõêÄÄD›!C†äWp‘ ³±±ñôô}úŒ3.]ºÔ®]»øøxS½þü1pàÀjÕªU¬X±E‹‹-ÊÈÈ{¥…âÁƒcÇŽ­]»vÅŠÛ·oUÀÂ{÷îõññqvv®R¥JÛ¶m·lÙ"wùªGpDÉ µ‹P¡eһˬfË–-ËÊÊŠˆˆ˜:uêĉ###322BCCMòâ—/_îØ±ã®]»ºví:eÊ”²eËN™2¥ÿþr¯´HJJjÑ¢ÅêÕ«Ûµk7jÔ¨K—.uíÚõĉy.¼cÇ__ß«W¯:tìØ±wïÞíÓ§ÏÊ•+å^ •ÓÃÔêׯ/w ¥Èˆ]¨ä{ÙåË—å^OSz™ïŒÜžüßÁx*ÛEÕðÖ–ò&Uãÿ·[¶lÙ¸qãì#/¼ðÂÿþ÷?“¼øË/¿leeuäÈÃÈÈ‘#…»ví*ø‰=2ëZÏž=[±fÍéî¥K—|||ò\¸I“&ÕªU»ÿ¾¡¶Úµk?ýôÓ¹—,Æ Æ}Æ$è8ÈíFÍâ­ÕŠ„„„*Uª¦ÆÄÄÔ©SÇ$/Ѿ}{oooÃÈ믿.„8|øpÁOìÒ¥K•*U²nݺU§Ó}ÿý÷%/,,,¬zõêÒ]77·~ýúEFFÞºu+Ç’©©©gÏžíÑ£‡½½½4R¡B…víÚ]¿~=%%Å$[É2äD´Ð,ÞZ ÉÌÌ´±±BèõúØØØ#FÔ¬YSê –PFFÆøñ㥤h'„(W®\ÁÏ9sfùòå'L˜ðäÉÃàš5kªT©Ò£G–””táÂNgôõõÍÊÊÊ}¤£µµõ©S§æÌ™“}½NŸ>ݤI;;»’o%‹Å7Ç 8À±è8Ÿ²!5jQjjª­­­¢R¥J¡¡¡NNN%M›?þ8ûÈ_ýõñÇ[[[÷ëׯàçöèÑãÊ•+&LزeK@@€">>~ÇŽcÇŽ-[¶l »sçŽ^¯wqqÉ>èìì,„¸{÷nîµhÔ¨‘t{íÚµ111Û·o¿uëÖ·ß~[òMdÉŽ0/²¥ê.4ˆo Ö.›+VÄÇÇ:t¨gÏž  ËÞBdddlß¾=¿Wxùå— þûöí{õÕWcbb–.]êîî^hIÆ ›1cÆÊ•+¥à¸~ýúôôô#Fä^²¨…%'' !*Uª”}Pš‰NLL, ¤>ø &&FѹsgSÍæ[,‚#€‘5ˆ7µdtBWò)¶B'(¬­­G-Ý~ï½÷اOŸìË<~ü¸W¯^ùþˆüÿ¸¿zõê믿þã?º»»ÿòË/¾¾¾ÆÔlooðõ×__¾|ÙÍÍmõêÕ7nÖ¬Yî%‹Z˜ÔO}øðaöÁ¤¤$!DåÊ• (éâÅ‹ÉÉɇ=zô /¼pîÜ9©O‰bàG ô(|žš€¡A¼©%¦zÿ©ÔáÇ !:”cÜÞÞ¾€“dó{µ 6<ûì³ÇŽ[¾|ùŸþidj”Œ7N¯×¯Zµêøñã§OŸ~å•Wò\¬¨…¹¸¸XYY嘕NHHBÔ¬Y³à’Ê—/ß©S§¹sçþõ×_[·n-énaÁè8€F‘-ŒtnkkëÜãEªþñLJ 6`À€eË–å˜6F³fͼ½½W¯^˜˜hcc3dÈü .Ra666žžžÈ>¸ÿ~Ng8œÑ`ûöí½zõ 8p aÐÑÑQØdE¡Ž(.Ž^Ô2†ÖðŽZ€#GŽ\¸p¡~ýúÒÝÍ›7 !rO uFX¯×O›6­V­ZëÖ­ËC4nܸ‘#G†„„øûûç7/\Œ9ô1cÆLš4iÛ¶mÒ9Úñññááá;wvuuͱdË–-…«W¯0`€á Ïo¾ùFѪU+Ó½ ‡à”%ÏS“14…Sa,Fzzº¯¯ïË/¿Ü°aÓ'O®^½ÚËË+÷‰ÏÒŒ°ñ/{îܹóçÏ7lØÐpô¤AŸ>}üýý7lØð¿ÿýï•W^Y¸pa~/2hР7ß|óÞ½{yžS¼Â„#FŒXµjÕ!CÆïàà°fÍšäääàà`éÑyóæÍ;÷ã?;v¬““Ó¬Y³‚ƒƒ½½½_|ñEN÷óÏ?9rdòäÉMš4)·G£Ž0#š’@iãKÒ¦M›‘#G~òÉ'k×®­Zµê«¯¾:wîÜb÷ ¤Ï;wîܹÕ«WÏßß?--íþýû_FÛÎήk×®6lèÞ½» W¹R¥J‘‘‘S§N ¿wï^«V­Ö¯_ïåå%=úäÉ“û÷罹¦JwgÏžíææöÕW_-]ºÔÊʪaÆaaaÙg®Q GÀÒ‘4´ƒ÷ÒòHW½1¡ž={Ü>|xzzú™3g ~éjáeÊ”1myööö!!!y>4{ölé; %:.00Ðð530 ΪF±ÐK,"ÅÎS“4´ƒ÷¥åÉ“'{÷îÍó ;Ð<‚#`¹HÚÁ{‰Rtøðᆠ##cĈ'Ož´··oÕªÕ“'O~ûí·ƒNœ8qüøñr¯w€#‡A*yC x”:íãâââ²k׮ݻwþñÇŸ|òI~OÙ¸qãÉ“'›7o¹téÒÕ«WoÙ²ÅÁÁ᫯¾Ê}m©€´7nܘ••5yòdÕëg̘aoo¿sçά¬¬<Ÿ²k×.!ĬY³ -Iww÷±cÇfffþúë¯r¯TFóÔn®®Ê*EEj íÇ£GZYYuìØÑ0bmmݾ}ûÄÄÄãÇçù”ØØØ *äøâKwww!ĵk×ä^! DtB\Ž•» —ŽÔ@N?ÆQ¯×ÇÄÄT®\¹råÊÙÇ¥oö¼víZ‹-r?kùòå669·ÌÙ³g…µjÕ’{䯡‹E¡´v£9ˆjEd 7ÇäääÌÌÌÜ,°··Büõ×_y>ËÓÓ3ÇHTTTHHH¹rå ø:öì<<wg1))Ia8Ï:·´´´ ¬[·ÎÖÖv„ £FÊ…Õ‰à¡V|+ …ÑxpB¸¸¸ÄÄÄ$%%UªTÉ0(Êàââ’çS²²²Þ|óÍŸ~úÉÏÏoöìÙäK0ò>åÑþåx:uê”™™yàÀÈ^¯ŒŒtttôòòÊó)ëÖ­ûé§ŸüÕW_‘Q<Ê™§&~¨oEÒ~pìß¿¿••ÕâÅ‹¥ã…!!! }ûö-S¦Œ4òøñcé¦z½>44ô©§žš>}ºÜµ«ÚÊAüP%Þ6gÿþý~~~NNN5jÔèÝ»÷ùóçå®Ú§ý©ê5jL:uÞ¼y={öl×®]\\\TTT£F²=|ddäo¼áîî¾mÛ¶»wï^½zÕÎÎnÈ!¹_­wïÞC‡•{dBTâ‡úpP#Œöûï¿ûùùÕ©SgúôéåÊ•[¹re»víΞ=kò‰²öíÛwêÔiöìÙr¯ñßtèÐÉ“'KWäÉMê;¦¤¤œ9s&÷£œX c(gžjBÒGQ,[¶,+++""BúfŠaƹ¹¹…††N™2Å„?åĉ¿þúk§Nä^Ý¿%%%µhÑâêÕ«ýúõsrr ïÚµëÞ½{ó<ö,66633³uëÖnnn†Áü>ýa$‹ŽBÿüíÖ­[·nݤÛÍš5ÓöUa!!*Æ":}ú´§§§áûÌ4hpéÒ%“¼xFFFDDÄ¡C‡–,Y’••eü?~œûÚÉ&´pᘘ˜5kÖ >\1iÒ¤æÍ›¿ù曹މ‰B¼ÿþûÊ ¾ ýc DQÞ0]BBB•*U wSSScbbêÔ©c’OLL|ñŃƒƒ‹:«Û¥K—*Uª„……eܺu«N§ûþûïK^XXXXõêÕ¥»nnnýúõ‹ŒŒ¼uëVî…¥àX¯^=“lHŽ08MöyjBˆšèxÃPL™™™666B½^;bĈš5kŽ9Ò$/îââ¢×ëõz}QO¸™9sfùòå'L˜ðäÉÃàš5kªT©Ò£GV•””táÂNgôõõÍÊÊŠŠŠÊ½|LLL¹råžzê©M›6-_¾üàÁƒiii&Ù>–ÌR¦ªQjH˜€±ˆŒ(±ÔÔT[[[!D¥J•BCCü^\óéѣǕ+W&L˜°eË–€€!D||üŽ;ÆŽ[¶lÙ¾ø;wôz}Žk0K'åÙ‰‰±²²ªW¯Þ½{÷¤‘† ®[·®yóæòn%U#8¦D»Æâ­R‹lÍ­ÒfÄ_á666+V¬ˆ?tèPÏž= ¦ûoÍÛ·oÏï^~ùeÓV=lذ3f¬\¹R ŽëׯOOO1bDî%‹Z˜ôÂÙ¿ÎCüóíÁ‰‰‰¹_!&&&+++88¸_¿~eÊ”ùá‡Þxã^½z9s¦ÐïF~Ž€vETƒ·JE”=‡bmm=zôhévppð{ï½7pàÀ>}úd_æñãǽzõÊýL¼‚ööö_ýõåË—ÝÜÜV¯^ݸqãfÍšå^²¨…IýÔ‡f”¾C¸råʹ_aß¾}¶¶¶†‡FŽùäÉ“ñãLJ‡‡5Ê´km98ÆF`úY ˆ"êÀA0éDãC‡å···×çÏ•Œ7N¯×¯Zµêøñã§OŸ~å•Wò\¬¨…¹¸¸XYY嘕NHHBÔ¬Y3÷ò5jÔÈ(»té"„8{ö¬ÙÞí£ã˜ŒìóÔP:"#Ì)##Camm{¼4§ª…Íš5óöö^½zubb¢Mž_¨QŒÂlll<==³‡°bÿþý:®Q£F9Ž‹‹Û¶m›¯¯oÆ ƒR{ÒTçž[&‚#L‰Ö¤\$*À›S;räÈ… êׯ/Ýݼy³"÷¤p)OUKÆ7räÈÿü¾Ì¦…3fÒ¤IÛ¶m“ÎÑŽïܹ³««kŽ%íììÞzë-ooï={öHß0œ••µ`Á›Î;›c•-SÕ€êHT€7 fžžîëë;~üøÅ‹=:((ÈËË«_¿~93ùTõ†  þŠšAƒ9::feeåyZL± 1bDÓ¦M‡ 4þüŽ;&''KΛ7ÏÑÑqÙ²eBggçàà฻»7næÌ™-Z´ {ÿý÷===å|ÛTŽàˆÂÐE4Ž\óÔ¥ã F˜M›6m,X5sæÌˆˆˆW_}uïÞ½¹§ªM.--íþýû))),cgg×µkW!D÷îÝMø£+Uª9pàÀððð Ô«W/22Òð]ÕOž<¹ÿ~jjªtwÚ´iááá...¡¡¡+W®tttܹsçÌ™3ͽ}´©j0"#Ì, @ºê™xxxänþ ><==ýÌ™3?·\¹rBišØ„ìííCBBò|höìÙ³gÏÎ>Ò·oß¾}ûšoûX :Ž€ ÐnDx{ QOž<Ù»wožWØæÑqÔŠX¢\ÒÕ—y{ Q‡nذáàÁƒå.2 8¢@E9À‘ƒ!K©Q¹xoP*‚‚‚dùÑ>>>>>>….æîîÞ¶m[Y*„ù’âòø©¥e̘1r—Pˆ      ¹«€‰qŒ# >„…â ut•!œ(«›«¼1´Ž#òÇA‹F(åyjR£éDìåXÞ–€àÓ d–R£ñ®°$LUÅÇi1kî°<G@hl) ï‹ÄT5òÁܳ’R”…÷€¥¢ãS©ÍS“R„éi–à ;i>¤FáÍ`ñ˜ªF^H‚…á´‹Cj‚# ddEÐñN@¡öïßïçççääT£FÞ½{Ÿ?^}G@¡È*Š ½ ¼PžßÿÝÏÏ/..núôé3f̸téR»víâããMõú{÷îõññqvv®R¥JÛ¶m·lÙ"÷ÿíÁƒcÇŽ­]»vÅŠÛ·o•ß’ééé666ºÿªZµªÜk n㈒²ÀiíR˜§&5Êó` lË–-ËÊÊŠˆˆ¨U«–bذannn¡¡¡S¦L)ù‹ïر£{÷înnnC‡µ³³ ïÓ§ÏŠ+F-ïZ'%%µhÑâêÕ«ýúõsrr ïÚµëÞ½{½¼¼r/›™™Ùºuk777Ã`ÅŠå]µ#8" L‚ Cj”ïïôéÓžžžRjB8::6hÐàÒ¥K&yñ™3gV«VíøñãöööBˆ   OOÏàààBƒããÇ+T¨`¾µ^¸paLLÌš5k†.„˜4iRóæÍß|ó͈ˆˆÜ ÇÄÄ!ÞÿýN:™¯$KÃT5P4æn7’XäÇ{5HHH¨R¥ŠánjjjLLL:uJþÊ©©©gÏžíÑ£‡”…*Th×®Ýõë×SRR ~n—.]ªT©–}pëÖ­:îûï¿/ymaaaÕ«W ”¹õë×/22òÖ­[¹–‚c½zõJþsa@p€p Ô#33ÓÆÆF¡×ëcccGŒQ³fÍ‘#G–ü•­­­O:5gÎÃHFFÆéÓ§›4ibggWðsgΜY¾|ù &>~ÇŽcÇŽ-[¶l »sçŽ^¯wqqÉ>èìì,„¸{÷nîåcbb¬¬¬êÕ«wïÞ=i¤aÆëÖ­kÞ¼yÉ·’Å"8⿊x€#ÇCš¹E6œƒüéJþ%Pè^icc³bÅŠøøøC‡õìÙsÀ€aaaÙrBˆŒŒŒíÛ·ç÷ /¿ür¯ÿÁH¾;w6r|ذa3fÌX¹r¥ׯ_Ÿžž>bĈÜKµ°ääd!D¥J•²Jó鉉‰¹_!&&&+++88¸_¿~eÊ”ùá‡Þxã^½z9sÆ0 ¢"8Š@j” ›RøÞammm8a%88ø½÷Þ8p`Ÿ>}²/óøñã^½z廂þõñâÅäääÇ=ú…^8wîœÔá+€½½}@@À×_}ùòe77·Õ«W7nܸY³f¹—,jaR?õáÇÙ“’’„•+WÎý ûöí³µµ5<4räÈ'OžŒ?><<|Ô¨Qæx;,Ç8Æ2ß<5ÑE6lzhˆt¢ñ¡C‡rŒÛÛÛëóWèË–/_¾S§NsçÎý믿¶nÝjL%ãÆÓëõ«V­:~üøéÓ§_yå•<+ja...VVV9f¥„5kÖ̽|5rÊ.]º!Ξ=[joŠöÐqD6L<Ëè"¦§¡9BkkëÜãEšÞ¾}{¯^½BCChttt…µ' š5kæíí½zõêÄÄD›!C†äWp‘ ³±±ñôôùdíÚµU«V}õÕWçΛ{ªºfÏžíææöÕW_-]ºÔÊʪaÆaaa†™ë´´´û÷ï|1p;;»®]»nذ¡{÷î&\åJ•*EFFN:5<<üÞ½{­ZµZ¿~½áûŸ<==ýÌ™3¿H¹rå„Ò4± ÙÛÛ‡„„äùÐìÙ³gÏž}¤oß¾}ûö5ùö±dLU…0G»‘ÔXª¤ÍÍLäÉ“'{÷îÍó ;Ð<:Ž(&”ÅFj,=438|øpÆ ,w!ÁBb`¾LÞn$5–¶54-((ÈÁÁA–íãããããSèbîîîmÛ¶•¥B˜Á(=$™RB£`̘1r—Pˆ      ¹«€‰|™¶ÝHj,%lh0‚#Š3OÍÌvQfJF03‚#7¾*FeÈæ`~GÀìˆ4æE£J ÁÑâ1뜶IæÅö€RDpD‘5Gª1#PêŽ@N¦j7’Í…È2!8fAj4¶,ȇàhÙ˜uÎÅ$íF²YÐh¹Q4DÍB‘MÈÊ`%w€‚”¼ÝHj4=i›²Y\öïßïçççääT£FÞ½{Ÿ?^}G FóÐÔH&¦c›ùúý÷ßýüüâââ¦OŸ>cÆŒK—.µk×.>>Þ$/žžžncc£û¯ªU«Ê½ÒBñàÁƒ±cÇÖ®]»bÅŠíÛ·ŠŠRãZ¨SÕÀßJØn$á˜sÓ@a–-[–••Q«V-!İaÃÜÜÜBCC§L™RòÍÌÌlݺµ›››a°bÅŠr¯´HJJjÑ¢ÅÕ«WûõëçääÞµk×½{÷zyy©h-Tàˆ" G™R£)±5#œ>}ÚÓÓSJBGGÇ \ºtÉ$/#„xÿý÷;uêT¤'>~ü¸B… æ[ë… ÆÄĬY³føðáBˆI“&5oÞüÍ7ߌˆˆ0áZ LU[*2à•¤ÝHÎ1榣%$$T©RÅp7555&&¦N:&yq)rÕ«W¯¨OìÒ¥K•*U²nݺU§Ó}ÿý÷%/,,,¬zõêÒ]77·~ýúEFFÞºuË„kR£è8 (šÌÌL!„^¯1bDÍš5GŽi’‰‰)W®ÜSO=µiÓ¦åË—<<|Ô¨Q—dooðõ×__¾|ÙÍÍmõêÕ7nÖ¬Yî%‹Z˜ÔO}øðaöÁ¤¤$!„¡TS­òÃ1Ž–‡yêìëUôv#§¤80éDãC‡å···×ç/Ï—ªQ£FŽ(Ö¥K!ÄÙ³g©dܸqz½~ÕªUÇ?}úô+¯¼’çbE-ÌÅÅÅÊÊ*ǬtBB‚¢fÍš&_ 䉎#,©±´17 ˜SFF†ÂÚÚ:÷x‘f„ãââ¶mÛæëëÛ°aCÃ ÔØ3ò¬ífÍšy{{¯^½:11ÑÆÆfÈ!ù\¤Âlll<==8}pÿþý:®Q£F&_ ä‰à‹ÔX|DFÀ Ž9ráÂ…úõëKw7oÞ,„È=)\Ôa;;»·ÞzËÛÛ{Ïž=eÊ”Bdee-X°ÀÆÆ¦sçÎFÖ6nܸ‘#G†„„øûûKç¯äVŒ9ô1cÆLš4iÛ¶mÒ9Úñññááá;wvuu5ÇZ 7¦ª- óÔ†•*b»‘ÔXL\g0›ôôt__ßñãÇ/^¼xôèÑAAA^^^ýúõ˱XQg„ƒƒƒ8àîî>nܸ™3g¶hÑ",,ìý÷ß÷ôôBlذÁÑѱ௨4h££cVVVž§Å¯0!Ĉ#š6m:dÈ   ùóçwìØ199988XztÞ¼yŽŽŽË–-3f-PY»vmÕªU_}õÕ¹sçæžª.†iÓ¦=óÌ3óçÏ µµµmÒ¤ÉÎ;»ví*=š––vÿþý”””^ÁÎήk×®6lèÞ½» W¹R¥J‘‘‘S§N ¿wï^«V­Ö¯_oø¾Á'OžÜ¿?55Õ˜µ@ñ-‰&;‡fF£±8ˆŒ@i ®zcr}ûöíÛ·ož ><==ýÌ™3¿B¹rå„Ò4± ÙÛÛ‡„„äùÐìÙ³gÏžmäZ x˜ªF!´—6o7’‹Œ‰iÀ>>>>>….æîîÞ¶m[Y*„ùQ¥McÚ4E¾d5f̹K(DPPPPPÜUÀÄŽ–Ac°xÛ€Ôh*DF°TGX„BS#YÈ(l&°lG PÜv£fڔƤFM¬¨Ùp #@Ap„…£ƒV6 ‚£ÖÑnÌ¿ÝH£1_´y!8BËòKôÑòŦäà¨i–Ýn, 5ªåL#ÀGhSž©‘nZNäEàr—¨ÁQ»,¸Ý˜;5³susýû[B-w æëêêZò׬ä.0±;vìØõë׫V­úì³ÏN˜0ÁÍÍMîº4âæÍ›þþþ¾¾¾ ,»µêׯßéÓ§s :99ýúë¯r—¦b§OŸ^¾|ùÙ³g=zäáá1a„–-[Ê]T©"8šÆ¢E‹–-[V¡Boo︸¸Í›7_¼xqíÚµvvvr—¦zëÖ­“»ÕËÈÈ1bÄÉ“'ííí[µjõäÉ“ß~ûíàÁƒ'N?~¼ÜÕ©RRRR=îÞ½ëîîîããsëÖ­;vüôÓOß}÷ݳÏ>+wuª§×ë§OŸþèÑ#¹ Q·«W¯ÚÙÙÕ­[7û _œ['NÌÊÊjܸ±»»û¯¿þ¸téR___¹K+Ez”Øùóç4hЮ]»;wîH#sæÌ©_¿þûï¿/wi*öàÁƒ£G¾ûî»õëׯ_¿þÉ“'å®HÅÖ¯__¿~ý€€€äädiäÂ… Ï?ÿ|Æ ÿüóO¹«S%éw|áÂ…†‘Í›7ׯ_àÀr—¦«V­’~ñßzë-¹kQ«Ô¯_Ò¤Ir¢÷ïßoÑ¢EÓ¦M;&œ:uêÙgŸmݺuff¦ÜÕ•Žq47feeMž<ÙÙÙY™1c†½½ýÎ;³²²ä®N­üýý‡ &w!Z°k×.!ĬY³ -pww÷±cÇfff2iU<‡¶³³7nœa¤OŸ>ÕªU;{ölff¦ÜÕ©ÛÅ‹-ZÔ A¹ Q·«W¯ !r´Q›7oNJJ;vlóæÍ¥‘&Mš¼ôÒK ¹ Ð0‚£ =zÔÊʪcÇŽ†kkëöíÛ'&&?~\îêÔêÃ?\²dÉ’%KZ·n-w-ª[¡B…FetwwB\»vMîêTÉÁÁÁ×××ÖÖ6û`¹råÒÒÒÒÒÒä®NÅ222¦M›æèè8cÆ ¹kQ·¸¸8!D:uä.D;öï߯Óézõê•}pþüùÑÑÑu>Ç8–”^¯‰‰©\¹råÊ•³×¯__qíÚµ-ZÈ]£*µmÛVº±wï^¹kQ½åË—ÛØäüe?{ö¬¢V­ZrW§J¡¡¡9FŽ=zõêÕçž{Ž#›KâË/¿ûÌ¢N‰#8–TJJŠ¢B… 9Æ+V¬(„xðàÜÿ‘™™¹~ýúùóçgff~úé§NNNrW¤nÑÑÑáááz½^ѨQ£²eËÊ]‘Z¥¤¤L›6­V­Zo¾ù¦ÜµhÁ­[·ììì¦L™(:thìØ±}ôQÛ¶mkÔ¨!w*óðáC!DLLÌÝ»wçÍ›×±cÇ'Ož„‡‡õÕW“&MÚ¶m›åô9Ʊ¤t:]rrrŽqéBRßPˆß~ûÍßßÿÃ?trrúú믻uë&wEª7hРsç΀ÍjÍš5'Ož4¤F!DëÖ­‡ –’’òË/¿È]úhž;wn¯^½ªU«öúë¯÷îÝûúõëÛ·o—»ÀÒCp,){{ûÜŤ¤$!„á/^B,Y²Äã}úôBüðÃ=zô»@•Ñëõ™™™¹¯gmm-„xê©§ä.P•œË”)£Óé²Jÿ/ÍÈÈ»ºÒÃ1Ž&ЩS§èèètïÞ]Ñëõ‘‘‘ŽŽŽ^^^rWˆuëÖýôÓOƒž={¶ÜµhA¥J•¾ÿþû»wï¾ôÒKÙÇ¥+繺ºÊ] úÔ©SÇðÿOɃ”F–-[V¿~ýùóçË]šÌš5‹oŽ)‰¬¬,??¿æÍ›§¤¤È]‹vøûû{xxìÙ³Ç0rîܹfÍš5kÖìîÝ»rW§gΜá›cJ"  ~ýú7n4Œ?~ü¹çžëر£á¤P$þùgýúõû÷˜(üñÇ^^^ÞÞÞ rWWzè8š@5¦N:oÞ¼ž={¶k×....**ªQ£FcÆŒ‘»4@ܽ{WúÊÚ!C†ä~´wïÞC‡•»Fõ™3gÎàÁƒÇçååõôÓOÇÇÇ;vL1þ|NT‡¼ûFzûí·7lØàæævãÆ“'O–/_þã?æH•âiذá”)S.\صk×-Z$''=zT§Ó}øá‡UªT‘»ºÒCp4‘#GV­ZuëÖ­;vì¨^½úСC'Ož,]‘×õë×…)))gΜÉý(§ÈO“&M¶oßþù矟9sæÜ¹sÕªUëÒ¥Ëøñã¥ïãd× Aƒ-[¶|ú駇¾xñb­Zµzõê5qâÄêÕ«Ë]šŠ½öÚkNNNk×®=t裣c§N&L˜`i¿õ:½^/w PΪ€QŽ0 ÁF!8À(G…à£`‚#ŒBp€QŽ0 ÁF!8°,S§NõððØ·oŸÜ…ˆÅ‹{xx¬_¿^îBÀXGÅFîÀBùøø8995oÞ\îBÀXGG£F5j$wPLU€âdff¦§§Ë]äDp o¿ý¶‡‡Ç‚ rŒŸ>}ÚÃãuëÖBˆ„„„… vëÖ­Y³fÍš5ëÞ½ûܹsïܹ“ßËJçÊ>|8Ǹ§§ç /¼}ä×_8q¢ŸŸŸ··w``àâÅ‹sd»7nÌž=»[·nÏ=÷\ÇŽ_}õÕ£G°F+V¬È~rŒTÉõë×CBBZµjõì³Ï¶hÑbРA¿üòK~¯pâÄ OOÏöíÛ?|øÐ0øèÑ£Ž;zzzþñÇr¿i´†à@üýý…»wïÎ1¾mÛ6!D¯^½lll† ²|ùò›7oÖ®]ûé§Ÿ¾víÚêÕ«îÝ»W’ŸþÉ'ŸŒ5j÷îÝÎÎÎÇŽûòË/‡š˜˜(-pñâEÿ°°°ÄÄÄgžyF¯×GFF6,""¢H?hùòåŸ~úi™2eZµjeooâĉñãÇïܹ3Ï…½¼¼FuçÎ?þØ08þü[·nýïÿkÒ¤Ii¿I´Žà@¼½½¯]»ö石²²¤PÕ§O!ÄæÍ›¯\¹âëëû믿nݺõ‡~8xð ··÷7öìÙSì½wïÞ+VÔªUkÓ¦MûöíÛ¾}ûþýû;tèpòäÉ¥K—JË|òÉ'?7nÜ¡C‡6oÞ9kÖ,½^ÿùçŸégmܸñÕW_=pàÀš5k~þùç#F!Ö®]›ßò'Ntwwß¼yó„‡þî»ï7n3ô𜜜>ûì3—ðððû÷ï !Ο?/„èß¿¿µµµ´L@@Àÿþ÷???¿"ý¬&Mš¼ùæ›VVVÒ*ÿïÿB\¹r%¿åË”)3þ|›·ß~;>>~Ö¬YvvvŸ|ò‰¡ 0!‚#Õ"`öy[ižºoß¾ÒÝñãÇ/[¶ì™gž1,p÷îÝíÛ·—ä‡Þ»w/66ÖÍÍ-ÇÐåË—oݺuJJÊ™3g„Rr1cÆ‘#G¤£-Ë”)3iÒ¤ &éǽôÒKÙïÚÛÛ[[[ëõúžâéé9~üøÛ·o¿üòË7nܘ>}zݺuÍõ°l\Ž€j4jÔ¨nݺW®\‰ŽŽöððÈÈÈØµk—]·nÝ ËܸqcÿþýÇŽ»víÚÕ«WKxh£âòåËÒ=<<ò\àÖ­[BˆàààÉ“'9rdذa¶¶¶žžž-[¶ìÒ¥‹§§g‘~ÜÓO?]Œ"_{íµ_~ùåìÙ³Ï?ÿ|@@€I·:ü‹à@Müýý¿üòË]»vyxx8pàÁƒ}úô1LLoذaΜ9µk×nÑ¢…ŸŸß³Ï>ûþûïé§dffš|iiiBˆš5kæ7é\£F !ÄÓO?½iÓ¦'Nìß¿ÿ·ß~;sæÌñãÇ—.]Ú¯_¿9sæèt:#tÙ²e‹±Y=zt÷î]!ÄåË—ïß¿ïàà`þ·€%"8PCpœ4i’4m˜§~ôèÑ|P¶lÙåË—·mÛÖð”Û·oõ§Ü¼y3++Kºíææ&„(_¾|PPPÁÏÒétÒ5€„iii˜9sfxx¸¯¯o§N̺YfÏž߬Y³ãÇ¿ÿþû .4ë`±8Æ€šÔ©SçÙgŸ½|ùòéÓ§÷ìÙS§N-ZH>}:33³Y³fÙS£øç´•‚å˜ÑþùçŸ ·]\\ªV­zéÒ¥³gÏf_&33³oß¾íÚµKHH¸qㆯ¯ï€ –-[¶S§NÒÙ<ׯ_7ë6ùñÇwîÜÙ¡C‡µk׺»»oß¾=÷E‹À$ŽTF:EfÖ¬YÉÉÉýúõ3Œ»¸¸!Ο?Ÿ dff†………†† !RRRò|µÚµk !Ö­[—œœ,DEE.²#™2eJVVÖ”)SÎ;'|xêÔ©•+WZ•W®\Ù¿¿¬×S¼}ûöûï¿ÿÔSO}ðÁeÊ”ùøã­­­ƒƒƒK~p'äÆT5•éÖ­Û¼yó¢££­­­{õêewssëÔ©Óž={:wîܼys½^}ïÞ½!C†¬]»öûï¿øð¡taìzõêõÍ7ß?~¼S§Nžžžñññ111öööÕªUKMM•–éÝ»÷‘#G¶lÙÒ«W¯š5k:::^¾|999¹nݺҕ·­¬¬‚‚‚f̘±`Á‚¯¿þúé§ŸNNN¾té’^¯ðòò2Ó¦Ðëõ3fÌHJJú裤Üܸqã#F|ýõ×ÁÁÁŸ}ö™Üï­¡ã@eœŸþy!D»v휳?ôé§ŸNœ8±FÒõÛ·o¿uëÖY³f 2ÄÚÚ:Ï/¬U«Ö·ß~ëççgeeuðàÁ .Ô¬YsÅŠNNN†et:Ýܹs¿øâ __߬¬¬+W®¸ººN™2eëÖ­ŽŽŽÒ2½{÷þæ›o:tè`ggwþüùäää6mÚ,Y²döìÙæÛëÖ­;|øpÛ¶m z !&NœX§N;wÛö]§jIDATîÚµKÖ7 €é ¾<XŽÇ'&&ÖªUËø“ À¢`¦ª`‚#ŒBp€QŽ0 ÁF!8À(G…à£`”ÿé¿´êiÈØIEND®B`‚statistics-release-1.6.3/docs/assets/bisafit_101.png000066400000000000000000001561311456127120000223000ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A€IDATxÚìÝyXGÿðY.AÎp#(—Ê)x (§‚Vñ@N­VQ¬h¥Š¥VD…¾öõDÅ·hѢŠ_Å"‡¢¥Šx¼ýQ¤‚œÉïyß}Ó„l6ŒÂ÷óøø$³›Ý¹6fgf ‡GNÖŸh8Z áh†# Ž€h8Z>Ɔã±cÇzÞ¾}‹ŠÇo§N*ë¸òº’™§OŸ>qâĉ'jjjÈÀÝ»wã:;;Ë:q;™Ôä·oß.X°ÀÈȈÉdöïß¿±±QÖÙ ™o¿ýgšŸŸé´Ê‰Jæ'”üN¯/awîÜéôÛRQQÑÄÄ$88øöíÛüû÷ÐÚ+¿–ÿúë¯ï¾ûÎÛÛ{àÀJJJÎÎÎß|óÍ£Gd5ñ„¯”ÍË™&š?I=TW{ñ"SÖ½GHHÈ»wïB.\ðòò’ut-«W¯NKKïqñõJ¢’ù %¿‹×WkkëóçÏ9’ýý÷ß/\¸PÖ úÄ\¸p!((èÍ›7dÈË—/_¾|yíÚµ 6:t(00PÖq#ÛŸ¤^üƒø16ûõëgffF¾}ÿþ}uu5~mhh¨  @n’“û{L¿þýûãÒ400u\@'Ο?_¸¹¹M:•ÿúúDuZåD%³÷%ŸŸžžž²²2~]WW‡oÑ´´´DEEyzzš››#¸BéyöìYpp0Ùj4h¶¶vUUÕóçÏBííí¡¡¡ÊÊÊ“&M’uL{›n¯Ÿ²­ð½ãrûŽ~~~?&ßþúë¯ÞÞÞøõùóç‡ "ëv›Ç***~äÇìŠÐÐÐÐÐPYÇâ£óñùWÙªU«&Nœ(ëètƒN«œ¨dö¾äó;tèWÇ… &MšÔÜÜÜÖÖ¶wïÞÍ›7#¸BéIOO¯­­E±X¬œœò>ã•+Wªªª:::¡áØíº½~ʶÂ÷ŽË­·õؽyó&&&fذaªªªöööà¦"ÿP†ööö¯¿þÚØØøë¯¿&w¨®®^¶l™‹‹Kÿþý8}úôÒÒRá³ÐÜÿ©_¾|Æb±8ŽžžÞ¦M›„÷oll\·nžžžžžž··÷š5k¤;¦¨1!!!8|åÊ•‘çr¹™™™¦¦¦JJJ¦¦¦îîîlkkÃ;¬^½š òNŸ··7Ax¸˜¨!’&°®®.&&ÆÙÙ¹ÿþööö7n$Ï.J[[Û®]»\]] UUUmllfÍšuëÖ-ISÇ“3f<|ø0,,ÌÌÌÌØØ8$$¤¬¬ !tõêÕ   333mmmüü|©‹^ºúF3±üjjjž>}ÊårñÛúúú§OŸ¶··#WŠDÅ'E¦‰òìÙ³   ‹¥¯¯?mÚ´ßÿ]x*'*™ɧ™í]ÿ>¡YÃ)®/‰x{{Ož<¿®¬¬ì4»¨Ó%Ý%YUU5kÖ¬ ì Ñ5(öK¬'*Þõë×ñ‹Y³fñ•5jÛ¶møõ7ÈêÔs‰¢™ót®)j©p=—â›G¢Hvú "ö¤Rü$Ñ©«4ËëcøAìJ¹ˆÇûè]¸pŒmyy¹ðk×®Å[ÝÝÝ­¬¬¸mÛ6á=§L™2{ölüzíÚµx믿þª§§'ðq‚ V¬XÁ:š»‰Š¤§§çÀ>>oÞ<þKJJ„÷A 0   @Šcò'œÿDÁÁÁ8<66–bOQcwðqqqÂ[ß½{ÇãñvíÚ…ß:99I@wwwkkkg̘A‘áÍÍÍÇ>Aÿüç?ù÷›:þ˜ØÛÛ³X,þÝttt¾ÿþ{yyy³äççwK1Ñ©oôËoÊ”)¹ÿ¾Ø+EÒâ“"Ó:õûï¿ëëëó¤ÿþ&LÀ¯}}}ñnUNT2)’O3Û»þ}B³†S\_ÂÊËËÉ}.\¸ ªÐ#"":Í.êtÑ¿$É=j‹¼¼ü®]»¤¾é‰uWÅãñxãÆÃ;7ŽËåòojllÌÿ¯öööžN/CšWJ×ë¹tß<]¹œižT¢Ÿ$úu•fyÉü±+åBG¯j8bÇÁÁÁ`à·ŠŠŠ---{“ûã àíÛ·:::8ÄÓÓsýúõ!!!äÊ}ûöá#ÐÜMl$uuuÇŒ£ªªJ†œ={ïÙÔÔDñTRR?~ü„ úõë‡Côõõ$=fWŽGŽ!뜧§ççŸ>tèPò¿þú+Ç{ýúuee%ɃVVVâ¯WáëDêšššŽ1BII‰ )))›áÊÊÊþþþQQQ#FŒÀ!L&óÞ½{ôS'999;;;---kÒÚÚÚÈȈ|ëááÑõb¢Yßh&V†£ð•"]ñIšiÂZZZLMMÉD9’$4êÖ†£¤Ù.õ÷ ÍNq} Õp¬¯¯ß·oþbd2™×¯_ï4»¨ÓEÿ’ì´Ú«¨¨à· ãÎ;Ò]ƒô¿Äº¥âa_~ù%¹³££ã–-[®\¹ÒÔÔ$jÿMuÎÓ¿Rº^Ï¥ûæéÊåLó¤ý$ѯ«4ËKæ?ˆR— M½­áøý÷ßãÀŒŒ 2ðæÍ›Â{<8##ãêÕ«>äñxkÖ¬Ááünß¾š˜˜àš»QGò³Ï>knnæñxÿ÷ÿgii‰G÷LHHÀ!jjjd=¸}û6ù§s\\œ¤ÇìJÃqîܹ8$&&†üà°aÃpàæÍ›É@²1Äÿs%|H—ÀíÛ·ãÀ{÷î‘— ÅO£GÆû$&&’>>>G£™:þ˜œ9s†Çãµ¶¶zzz’©©©<¯££cþüù8„Åbu½˜hÖ7š‰íT§¥Fq¥HW|’fš°þóŸxŸþýû_½z._¾œ<Å/¨dŠ §™í]ÿ>‘¨†‹J‚þ†c§”••>Lq…R¤‹~„ù÷Ä+y<Þ³gÏ $PÉ%½%jcu½âa¯_¿žÍ ''gmm={öì#GŽüõ×_üû÷h¢¨sžþ•Òõz.õ7OW.gú'¥ù“D¿®Ò//úgï‰Ä®ü"ÐÑ«Æ8Z[[/]º¿ö÷÷g2ÿ3õ§¢¢B`Ï~ýúåææ†……1‚Ãá „þýïãM , w›;w.þýÙ³gxñ3š»Q`2™;vìÀ³" ¿ûî;^\\ÜÜÜŒ:sæ Yºt)9 ÂÆÆfÅŠø5¹ýcvEPPPFFFFFƲeËpHCCCSS~Í¿8MR$pèСK–,Á¯­¬¬ÜÜÜðë§OŸŠ:Ëû÷ïñ‹üqÿþýxÄ?þX^^^^^ ]ꜜœðÍyyù3fà@ \ñäääÈoúúú®ÍúF3±R¾R¤(¾®dé§Ÿ~Â/øÿzNJJÒÕÕ•:u¢Hz™Ký}B’¢†KmèСcÆŒ¡³§pº¤ˆ°¼¼ûqátIá!C†ðßâ$‹¯µµõÉ“'¨¾aH’V‰2 {÷îÝ«W¯:ÍFþ¶x·â2—îû„"‹èÔp::ôø¿ªªª^½z… «««çÍ›'öãé’.Â奢¢BV{ÜÌêÞo±±êâê¿L&ÓÕÕ5666##ãÁƒ/^¼ û~üñGüúƒ%Jà-ý+¥ëõIûÍÓÅ˹ç¾îÄÖÕn×C?ˆ=—EX¯j8Ò'Ñjjjä ˆóçÏWv&$$„ænÔ§¨ïß¿'§Ü›™™©©©‘5õÏ?ÿäß“|«  @Žh¦sÌ.æÕ·ß~»mÛ¶ööv‡³cÇŽ[·n544H½\™t ”‚¼¼ü?üPSSsäÈ‘°°0MMMrSQQ¹ÈE÷¦Žš¤ÅD¿¾ÑL¬„¯”S|”••É¥¹ÉŸŒüÚí.R\æÒ}Ÿto´é`±X7nį ÅþUÙ-íW³¼ÿž,2ôa¯Aé´··ïû/„‘‘ÑöíÛÉ!eä"G²Jý+¥ëõIûÍÓÅ˹ç¾îÄÖÕn×Cߨ=—EXm8 #‡Á¶··䣩©©¡¡¡¡¡ojÐÜÂ;wªªªÈ·¹¹¹<!¤  €g™‘s&ÈgZ¼577'‡oÒ<&yÁ å¸h;µcÇüâŸÿüçâÅ‹mmm™Læ‹/¤Îj)(©–––êêêêêê–––ÀÀÀŒŒŒW¯^åææ’+«su{ê(ˆ-&atêýÄv‹P| ›ÍƯùG’ñx<:‹ðIªë—y×ÐCøûÛV‰ë!Õž,>ü÷Ík°+_b4}þùç/ÿOÍd2™ß|óMxxxxxø¾}û„?HÎ%/dY%J¢+¥‹µTêož®\Î=úu'¶®öD%ìöoÔð‹ Çÿ N³gÏÞ× ?v옶¶6‹Å233û믿èïF¡µµ5**ªµµ!ô矮Zµ ‡Oš4 I&²úÇ?þA.ÄZ^^žœœŒ_ ?¢^ì1Éþÿß~û\rüøq±Wé_ýEÞ­ /•ëׯçååQ§‘b« ”Ô½{÷ôõõõõõ ðX.&“éííMN¢ÔÐÐ:uR[LÂèÔ7š‰í. ø:åää$|Þ7Þ½{·ÛÏÕõ˼ëG @}}Q¨««#'f*)) Ìwé!mmmQQQxuâ?ÿü“\âW{ú× Ô_bô)++ëý¶¶6ÞäîîŽ_$%%:tˆØÞÞ¾{÷n2¶ø·Y¶‰¢¥t±–vå›GêËYº“Ò¼d¨ëªÔåõ?À/ÂÇøÈA™X½zuZZZ]]]vv¶§§çرcïܹCÎfZ±bJs7jÇg³ÙÖÖÖ¿ÿþ;þ£_NNnÆ xë—_~yàÀ§OŸ¾}ûÖÕÕÕËË‹Á`\¸p¯;o``/é1Ée Þ¿ïàààààðúõkrL.UUUUUU<fþüù?ýôAÿþ÷¿;}D„††Þó›o¾¹sçβeËÚíJ%bkk«§§W]]ÝÞÞîêêúÙgŸiii=yòääÉ“x¼î¿D©ëÔÅ$ŒN}ÓÐР“ØîòНS+W®Ä‹ÈÔ××5jĈ555÷ïßï‰suý2ï–/ 4¯/~Ÿþ9ÙÖÒÒò矒ÆY¾|y·w ‹‚«½••UII n‹0Œo¿ýIr Jý%Ö-Ö¯_úôéÚÚÚ–––™3g._¾œÃáQYY‰EˆòññÁ“d›(úWJk)ͯÙ.F²+'•â’¡¨«’–—¬~»R.tuq9Ÿ€þ:ŽK+‘ãÆ233©÷ÄNž<ÙiK|Ñ¢EükíÒÜMT$ÇŒ#0Z‚Éd âÚµk/^\¸p¡ššš¬ãºG¯ü†‘y¢>‰+哈$cxòòò½é ½O¥®÷qrr"GÖƒÞ¡W^ƒ2OÔ'q¥|‘àV5 Ž€h8Z`r  z-Ðp´@ÃÐ G@ 4-Ðp´@ÃÐ G@ 4-Ðp´@ÃÐ G@ 4-Ðp´@ÃÐ G@ 4-Ðp´@ÃДuz!KKKYG=ëÁƒ²Ž‚ @ñGôÍÊ,--¡èû&(ú> оÏê³Dp«Ð G@ 4-Ðp´@ÃÐ Gº L®ì³ èû,(zÐ×@ÃÐ G@ 4-Ðp´@ÃÐ G@ 4-Ðp´0ez!KKKYG€`-wš á@€ï øTÀ_ûôÁ­j@ 4-Ðp´@ÃÐ G@ 4-Ðp´@ÃÐ €ðá!Ûðx}üøñiÓ¦É:"â1 ƒ!ëXÐÂãñüýýsrr† ¦¨¨xÿþý]»v8pà·ß~2dBÈÑÑ166–üÈöíÛ544fÍšE†˜™™IzÞ»wïÆÇÇ»ººFDDÈ:zИ1c¼¼¼Ö­[×õCñWªk×®}ûí·‰‰‰¸€$rýúuoooSSÓU«V)**¦¥¥¹¹¹Ý¹sGWWW†©“¹·oß®Zµ*''çÍ›7ŽŽŽ›7o9rd§{¶µµ)++“‰a,«¦¦FÖ‰AÃ@RVV^ºt©Oÿþýe1òóóeº222rrrV®\¹yóf2ðæÍ›®®®sçÎ-))A¹¹¹¹¹¹‘[ÓÒÒ œœÜ•óVVV"„Ö¯_ïåå%ë<è)7nܸ|ùrw%¿RUWWggg/_¾\ŠãìÚµ‹Ëåæåå 0!4kÖ,‡“‘‘±bÅ ¦N¶œœœž={Àb±²²²|}}/^¼ØiïãÇ;::\\\8¨ªª*ëD€ÿ€†#à?âãã׬Y³víÚï¿ÿ¾ÛÞÚÚÊd2åäúÜð|w;**Š?ÐÞÞ~ÆŒÿú׿޽{×C¿ˆx<«’’R¥K¢ŽGÝÕIÜÞÞž——W\\¼cÇ.—ÛC ”ZYYÙàÁƒq«!¤©©ieeõðáC¦ŽËåòx<©ó¿±±QEE¥+ضm[eeezzúìÙ³BË–-6lXLLL^^žðÎøož 6ôŽFsïÓç¾Ä¢Ì˜1c„ ?üðõk×(v+))™0a‚¾¾¾¡¡á„ pŸÆf³£££¯]»fggggg‡C–-[¶råJ555%%¥#Fœ9s¦½½}õêÕÖÖÖjjjwïÞ%’’bkk«¢¢¢¥¥5bĈC‡uÜWÑØØH=(°¼¼|Ú´i&&&ººº¾¾¾¿þú+ÿq }||´´´¼råÊÖÖÖnÏUÜf*//OJJº}û¶‚‚BW.ª,æÎ;eÊ„««+›Íþàû÷ï­­­ûõëgjjþòåK:¥ QâúðÃ?hhh(((ØØØÄÅʼnÊdê’âW[[;~üø„„±÷.äååß½{‡ß9r„ [[[r‡ØØX‚ nܸø*Õܹs?ûì3„»»;î]¾|ÙÏÏÅb-^¼ø¯¿þêô¤¯_¿ÖÖÖ&ß¶´´TVVšššÒ,Sú©£SXÑÑÑ»wïf±XL&ÓÈÈ(""‚?Ú4ëÿ¸qã´µµ333ù³³³ ‚8~ü8Hfff|þùçø-‡Ã (((øóÏ?…wÆ ÇAƒÑÌ1ð¡ñ@w³°°u€Œ‰ªHÖ“cDExýúõ¡ÊÊÊÇ÷ë×ÏÁÁ¡½½oÚ´iBèæÍ›ømvv6“É466^¾|yttô€˜Lfvv6Þjff6}út---6›ýÅ_à--- 6lܸ‘Åb)))¹¸¸ ><%%%""‚ ;;;üq<–ËÓÓ3!!aÍš5ÖÖÖ¡“'O’Ÿ2e ~íîînooÏãñÚÚÚÒùìß¿ßØØXAAáÞ½{<ïüùóJJJl6;66öË/¿477g0?ýô>ȱcÇ †®®nDDÄ’%Kôõõ-,,B™™™¢²èÒ¥K›¼½½BdŽ=yò!4gÎü7a#"".\¸ðþý{±õGCCÃÉÉIìneQVVöõ×_#„¶lÙRPP üÙÐÐP‚ |||¾úê+ƒ1bÄš¥@¿@ÍÌÌŒŒŒB&LX½zµ‡‡Bh̘1¸Œ¿@©KJ<édýúõ¢vHKKCåääà·‘‘‘!‚ ^¿~C† ¦¯¯ãCVª²²²„„„ÐæÍ›qî™™™YXX¨««GEEmÙ²+À5\˜™™™··7Çãr¹= ¶³³«©©[ ’¦ŽNa :TAA!22rûöí&L@…‡‡ã­ôëÿ©S§ŒY,íõ÷÷×ÖÖnii›·oßÊxøða„ÐñãÇ…÷ŠŠRTT¬­­=zôè®]»ŠŠŠèœ¥‹¤øáõÐpì~}¶2Ò§ÛpäñxIII¡””¼‰¿áØÒÒÂf³ÍÌÌÈ_ÁššSSS‡ƒ¿ÙñŽ„„„ŽŽ¼ƒ™™ÙŒãñxxœŸ]kk+quuE544ðx<‡caaÑÖÖ†7Õ××3™ÌˆˆòP G6l@¥¥¥áØš››;88455á­ÍÍÍ£Fâp8íííÍÍͦ¦¦/^¼À[«ªª ©ŽD5y<Þ¡C‡ˆwSRRòôôܸqã“'OD†£Ø²ÈÎÎÕÒ}÷îƒÁàáüùóY,VUUR _ ¸>lܸ‘<ÑÊ•+B¸EH(uIQd‚ئՋ/B±±±ø­ žcŽÛ+õõõrrróæÍ®T§OŸFåçç“©F8q¿moo·¶¶655íô¤¸áØÜÜŒK\MMlÉI„NÃQla!„²²²ð[.—kcccllŒsX¢ú¿}ûv„ÐáÇñÛêêjyyù¨¨(: ùã?BÑÑÑü.\@íÞ½[x???eeeMMMòâ²¶¶¾víšyH4éƒ[Õ€¿Y±b…M||üóçÏ6•––>~üxùòå, ‡°X¬åË—?zôˆ\¯ÇÀÀ`íÚµüC߆nee…_ã>§yyy‚‡1555!„JJJJKK™ÌÿŒ½®­­%7ÑqâĉuëÖEDDÌŸ?!tãÆŠŠŠ•+W*++㣢¢=zTZZZZZúôéÓ+Và.1ó¥K—RŸ"888Vˆ‰‰ õ§BCC+++oݺ•’’âããsíÚµ5kÖp8ÜÌ•²ENN/-ôôéS’––VSSc``@§è(ŽULL ùÙuëÖ©ªª=z”?>Ô%%u!„ŒŒŒlmmñ@ººººòòòèèh•‚‚„PQQ—ËÅýpbYXXLž<¿f0öööû3™Ì½{÷~ûí·nnn“'O âñxííí'D“"b ‹ÃáLŸ>¿&ÂÁÁ߸—´þÏš5KEE÷à"„:ÔÖÖ6g΄ØDáø¨©©ñP]]Œ°€ÊÊJ.—›PUUUSS³oß¾ÿû¿ÿ›2eÊÛ·o»R@wÉ1€¿a2™{öìqqqYºté/¿ü¿©¢¢!„/’ðˆ±ŠŠ ggg„¥¥¥À„ ²eƒÂÍ áLSS³¸¸877÷þýûwîÜioo§í»wïΚ5ËÕÕ555‡à›ÐÐÐÐÐPŸ={†>‡ Æ.vmÈ%K–Œ=Z ðæÍ›Ïž=C[[[[[ÛåË—·¶¶ž8q"::zݺu#GŽ7nœÅD§,DQVVNMM‰‰a³ÙC† qqqñõõ8q"p)¶è(BhÈ!üã8UTT,--fŠP—uZÄòóóKNN®««Ã¯^^^®®®¸á˜ŸŸÏd2ñH±ðm\’؉& #<<¿NHHX¿~}PP——{Ú)žäëó‹-,h“×&î¤_ÿÕÕÕCBBöíÛ÷èÑ#‡sàÀGGG„Pcc#u¢põÚÐЀÒÒÒþH~~¾’’¹iÞ¼yÍÍÍ‘‘‘YYYøoB [Ðã4räÈE‹egg ô‚à6çßà_ж¶6üVCCCº“¶´´Lš4ÉÍÍíìÙ³æææ111÷îÝÃÝbÕÕÕùûû«««gee‘ Ü^INNþ·áÇãN´tû¤ïwïÞ͘1cïÞ½ü 3fÌHOOG9sFº#Ó) ‘‘‘Ož<Ù³g­­mNNδiÓlmm«««»R 41™LIÔ%ÕÅÓùúúr¹Ü‚‚‚¢¢"Û·o×××çç绺ºÒL]Wæ§ã©ÄÅÅÅêêêw%=,Âm)êÿâÅ‹y<ÞþýûKKKËÊÊÈ%îÅ&JOOONNN`®ÏëׯBd'?CCC%þãêÎ;RèFÐãèÄwß}÷Ë/¿,Y²ÿæaæææ¡²²²±cÇ’·oßFYZZvñŒ—.]ÊÉÉIMM]¶lH§Ç±££#88øÅ‹EEEük,ãØöïßüøñdàÝ»wËÊÊ444ðœÍëׯ»»»“[o޼ٽ٨¢¢rîܹçÏŸ/X°@`î†éׯŸtGîJYÔÖÖVVVZXX„‡‡‡‡‡s¹Ü;vDEEíÚµËÕÕUºRåîÝ»mmmdkþýû÷÷îÝãÏs$®¤ºX£GVSSËËË+))3f BÈÝÝËåž:uêÆxoOÃÈ`0ÚÛÛ)þTð÷÷—è°R_2è¿s–%ªÿŽŽŽÎÎΨ­­e2™aaaä©Åd2\TTÄ^XXH„ðúêOŸ>=}ú´§§'žèƒáîIú3ÓA‚†# êêê©©©ÁÁÁÿüç?É@GGG“”””°°0×9zõêUVV–ðZQÊÊʱ±±ÎÎοþú+þ{ƒËå&''3™LéŠt/h8:”žžþïÿ› QTTLII rtt äñxGŽ©ªªúù矻x:• „……]¹r%//OGGçÒ¥KgÏžõóóëôSgΜٺu«ƒÁà_ÁÎÚÚÚÑÑ155ÕßßßÎÎ.00°­­-;;ûùóç™™™øár[¶l tpp ’——?räHO<Ó,%%¥¼¼<>>>==}ذaxëåË—«««×¬Yãââ"Ýa»RNNNC‡Ý´iÓ£G†úàÁƒ³gÏjii…„„0 )J‚A|||qq±Ý•+WrssGE®ç‡1™LŠ’êzøùùáѺ¸Ç‘Á`¸¹¹åää 0@ÔqûuçÎÕÕÕÁÁÁ’ž±­­ÍÓÓÓßßßÚÚúæÍ›ppp`0R7Á…IwÉ`òòòRÔÿààà˜˜˜ºº:<-÷ª©?8gΜýû÷‡……EFFjhh¤§§755á5BIII›6múî»ï-Z¤««›°jÕ*sss??? sçÎݸqcãÆƒ]c"íØ±ƒœèŠM›6­°°ÐÊÊêàÁƒÿú׿|ùòeŠþúLLLrrrŒ·oßž’’¢¬¬|ûöíï¾û®¡¡¢#¯|ëÖ­™÷ÓO?!„|}}¯^½jcc“‘‘ñ¯ý‹ÍfŸ;w.00vêÔ©yyy666?þøãÖ­[ÿú믌ŒŒnÏCeeåóçÏïÚµKWW÷âÅ‹;vì¸té’““Saa!îð“šÔe¡  pöìÙÙ³goذ!??ßÇÇçòåËl6[ºR 0bĈÜÜÜúúúï¿ÿþùóç±±±/^KG]R]„›P:::äM|<œ¢»ÑÅÅ%$$äܹsÒ=øqôèÑÉÉÉW¯^]½zu^^Þ_|qñâÅnºz KŠú¯¬¬ìë닚8q¢DQUSS+(( ÊÊÊJNN4hPAAù¬êæææúúú––üöË/¿ÌÊÊÒÓÓËÈÈHKKÓÔÔ<{öìêÕ«»7÷€Ôˆnüë`––– ê? Žbüøã²ŽÀG&Çt®¡¡á?þ8uê”ÀcÝè"¢ë‡àáç營z×§¬Y³¦ë«}´ÌÍÍñS%AŸc;7vìØ—/_’o=*ð„ }vÜ A€OŒq¤z;÷í·ßâ^ÅÅŲŽ€ìAñsdWüÅ‹e€4{„ð#¿úf‡6Ð tý©ª½4{4€^Cøg½Ï6%a9@ 4-Ðp´@ÃÐ G@ ̪àƒ"™=t ‹ áÀ‡C’]ã ࣺnU‹‘˜˜øàÁúªàS”@ĤI“„7%%%qëÖ-YDZÙì©S§â×nnnÝ~ŠëׯqäÈQYtùòeáM>>>Atttà·OŸ>%bîܹäíííûöísss300PSS³··ŠŠªªª"wøþûï JçΓ"9‰‰‰,ËÆÆ¦Û3ª[ðèÇ€¢R±Ùì3fÐ?Taa¡··7‹Å244œ:uêýû÷e8Z(ê?$h8þãôéÓÇ—u,ha0 CÖ± …Çãùûû‡‡‡¿ÿ>,,,**jàÀ»ví²°°¸sçÞÇÑÑ1–¢¢¢žžˆ™™™¤ç½{÷n||¼µµõš5kdÝïöíÛAAAúúúªªªNNN)))ííí]<&¥ºvíÚÔ©SÉ’Èõë×½½½Ÿ>}ºjÕª¸¸¸‡º¹¹½zõJ¶©“¹·oß.Z´ÈÄÄDUUu̘1W¯^¥ØùâÅ‹ºººÚÚÚ®®®¿üò‹¬£þnUþCYYyéÒ¥>>>ýû÷—u\ÄÈÏÏ—uèÊÈÈÈÉÉY¹råæÍ›ÉÀ›7oºººÎ;·¤¤!äæææææFnMKK0`@rrrWÎ[YY‰Z¿~½———¬ó ›=zôÈÝݽ££cêÔ©&&&.\X±bEaaa›ü•ªºº:;;{ùòåRg×®]\.7//oÀ€¡Y³fq8œŒŒŒ+VÈ0u²ÕÐÐàääôìÙ³€€‹•••åëë{ñâÅN»xsrr&NœÈápfΜ©¬¬œ••5mÚ´½{÷†‡‡Ë:!èqâããÿïÿþoíÚµ=qðÖÖV.—+ë$ʾ»Åhoo?cÆŒëׯ¿{÷®‡Î‹Ç³*))õÐñ%*ÐŽŽòV~×­X±âíÛ·.\HOOß°aCqqñ¼yó²³³¥»¡ßíÊÊÊŒ[!MMM++«‡Ê0u\.·+ùßØØØÅ<Ù¶m[eeåž={:ôý÷ßÓéΫW¯Ö××/--ݶmÛ·ß~[ZZjbb’ÐÅ8€î GÀ̘1c„ ?üðõk×(v+))™0a‚¾¾¾¡¡á„ pŸÆf³£££¯]»fgg‡G³ÙìeË–­\¹RMMMIIiĈgΜioo_½zµµµµššš‡‡ÇÝ»wÉ#¤¤¤ØÚÚª¨¨hii1âСCÆÁÃÃ÷U466R ,//Ÿ6mš‰‰‰®®®¯¯ï¯¿þÊœÂÂB--­Áƒ¯\¹²µµµÛsÿ`——— „'%%ݾ}[AA¡+UsçÎ2e BÈÕÕ•Íf ðýû÷‰‰‰ÖÖÖýúõ355 ùò%R¨@q}øá‡444lllâââDe2uIñËËË3fŒ³³3²dÉ„Е+Wö ——'[çGŽ!ÂÖÖ–Ü!66– ˆ7n ¾J5wîÜÏ>û !äîîΟ{—/_öóóc±XFFF‹/þ믿:ÞëׯµµµÉ·---•••¦¦¦4Ë”~êèVttôîÝ»Y,“É422Šˆˆà6Íú?nÜ8mmíÌÌLþÀììl‚ hnÉÌÌ400øüóÏñ[‡PPPðçŸ ìÙÒÒrçÎÏ>ûL]]‡¨¨¨¸¹¹½xñâýû÷4óô,èn²Ž1Qu!„x²û'úz_¿~=B¨²²òñãÇýúõspphooÇ›6mÚ„ºyó&~›Íd2—/_=`À&“™·š™™MŸ>]KK‹ÍfñÅ8DKKKGGgÆ 7nd±XJJJ...ÇOII‰ˆˆ ÂÎÎ|ݺu!OOÏ„„„5kÖX[[#„Nž|!tüøqá(//ùò%ˆ­­­­­- ”š?Ü}ö·ŽÝ¯ÏV&@útŽ</)) !”’’‚7ñ7[ZZØl¶™™ù+XSScjjÊápðïžÃ‘ÐÑÑw033#›q<ó³³³kmmÅ!®®®¡††Çáp,,,ÚÚÚð¦úúz&“AJ¸á(`Æ ¡´´4[sss‡¦¦&¼µ¹¹yÔ¨Q§½½½¹¹ÙÔÔÔÀÀàÅ‹xkUU•¡¡!uÑ‚¨†#Ç;tèÐÀñnJJJžžž7n|ò䉨â Óp[ÙÙÙ¢ZºïÞ½c0ü1œ?>‹Åªªª¢S ô ×þÏÊ•+B¸EH(uIñÄ©­­>|8ƒÁøã?6½xñ!‹ßÚØØà9渽R__/''7oÞ<áJuúôi„P~~>™j„Љ'ðÛöövkkkSSÓNノÍÍ͸ÄÕÔÔÈ–œ(RG§°Bd3”ËåÚØØã–¨þoß¾!tøðaü¶ººZ^^>**ŠNþøã„Ptt4à… B»wï¦øàÁƒãããuttrss¥ÎC: áHLŽüÍŠ+222âãã§OŸNŽÓÂJKK?~œššÊb±p‹ÅÂÝ]·nÝÂ7× Ö®]+'÷¿a0Ç·²²Â¯qŸSHHˆ¼¼<ñòòºtéRSSSÿþýKJJ”””˜Ìÿ|/ÕÖÖ"„šššhÆüĉëÖ­‹ˆˆ˜?>BèÆ‡VVVÆ;(**FEE…††–––¶··?}ú499w‰á˜/]º4..ŽâÁÁÁÆÆÆG}öìŧBCCCCCoß¾—————WPP——·víÚuëÖá~A)Ð) QäääðÒBOŸ>Å·PÓÒÒpçBHl)Ð/P+þ¡lëÖ­Û¹sçÑ£GƒƒƒÉ@ê’¢NK~~þ_|QYY¹sçNsss­FFF¶¶¶yyy¡ºººòòò}ûöEEEL:µ¨¨ˆËåâ~8±,,,&OžŒ_3 {{ûÜÜ\Šý™LæÞ½{_½zU\\((ÈËË =ío}~š©[XÑ&¯MÜ H¿þ«««‡„„ìÛ·ïÑ£GçÀ666ŽŽŽ¡ÆÆFêDáê!0$´¡¡!¤¥¥E‘‡MMMW®\ 9rä½{÷tuuéèQ09 häÈ‘‹-ÊÎÎ>qâ8þaxj"þmkkÃo544¤;iKKˤI“ÜÜÜΞ=knnsïÞ=r€<µºº:uuõ¬¬,²á‚Û+ÉÉÉÿ2|øpÜI#&o×½{÷nÆŒ{÷îåTPP˜1cFzz:Bˆ¢«†² ùäÉ“={öØÚÚæääL›6ÍÖÖ¶ººº+¥@“ɘ„A]Rä§Ÿ~:tèµk×vïÞ}÷î]Qí*„¯¯/—Ë-(((**211111ñðð¸}ûv}}}~~¾««+ÍÔue~úìÙ³BÅÅÅêêêw%MÂm)êÿâÅ‹y<ÞþýûKKKËÊÊÈ%îÅ&JOOONN®¦¦†ÿh¯_¿F‘ý¢ôë×ÏËËkÓ¦MoÞ¼Á£/€ÌA# ß}÷Ý/¿ü²dÉü›‡á›eeeecÇŽ%oß¾²´´ìâ/]º”“““ššºlÙ22NcGGGppð‹/ŠŠŠø;$plû÷ï?~üx2ðîÝ»eeeƒ B]¿~ÝÝÝÜzóæÍîÍF•sçÎ=þ|Á‚›p7L¿~ý¤;rWÊ¢¶¶¶²²ÒÂÂ"<<<<<œËåîØ±#**j×®]®®®Ò•‚(wïÞmkk#[óïß¿¿wïž#q%%|ÌS§NÍš5+00p×®]7@…=ZMM-//¯¤¤d̘1!www.—{êÔ©7nà!¼= g ƒÁ{WW¢ÔI}É „¤¨ÿŽŽŽÎÎΨ­­e2™aaaä©Åd2\TTÄ^XXHÄ!Cö?sæÌ”)S222‚‚‚È@MMMô÷Y CÐã脺ºzjjê‹/þùÏ’ŽŽŽ&&&)))uuu8äÍ›7Û¶m355íúñ<<-ËÊÊjllûk±jÕªóçÏïÞ½ÛÉɉ?ÜÞÞÞÒÒrëÖ­õõõ8¤¡¡ÁÏÏ/::º_¿~ŽŽŽgÛ¶mä‚ 555ßÿ}÷f#žLúÛo¿%&&ò/¤×ØØ¸nÝ:Qy¤£+eñàÁƒ‘#Gnݺ¿•““íyyy©KA”ššš””òmbbbCCƒÀ“©KJà€<ïË/¿0`À?þ(¶Õˆååå•““SZZŠŽNNNýû÷߸q£ØŽR¯|ØÑÑQUU•Íf/Z´¨¾¾žNJš:‰ ‹ÇãÍ™3GCCƒ|K¿þ“ð¬jrõ%úêëë,X`nnÎb±&MšTZZJnÂWjj*™ù>|¸¦¦&~V5u”º,ÇCÁƒAÝÍÒÒòÁƒ²Ž%Qu€ $Ã Ž€AB"UUUikkw½ßðc³ÙöööŸôC–¥Kõ Aƒ¨ëùØÐ¯ÿsçÎMOOï}ß$Rüp÷Ùßz¸U /} @ßõÐ G>,¢ë‡dŽ|8½ïþüüüðSïú”5kÖH½šéÇÏÜÜ?UôY0ƱûõÙq€u>!0Æ‘>XÇÐ G@ 4-Ðp´@ÃÐ G@ 4-Ðp¢"à9'øh8Zà‘ƒ|8„¬{páIQºzx<ÄãÁÝên†sU&ÿDKHH bÒ¤I›’’’‚¸uë–¬3±Ùì©S§â×nnnÝ~ŠëׯqäÈQYtùòeáM>>>Atttà·OŸ>%bîܹäíííûöísss300PSS³··ŠŠªªª"wøþûï JçΓ"9‰‰‰,ËÆÆ¦Û3ª[ðèÇ€¢R±Ùì3fÐ?Taa¡··7‹Å244œ:uêýû÷e8Z(ê?$h8ô¿¦!Ô(<´QT8è]NŸ>}üøqYÇ‚ƒÁ`0d Zx<ž¿¿xxøû÷ï⢢¸k×. ‹;wîà}cù(**êééñ‡˜™™IzÞ»wïÆÇÇ[[[¯Y³FÖyÐý.^¼èáá¡«««­­íêêúË/¿tý˜ü•êÚµkS§N% H"ׯ_÷öö~úôéªU«âââ>|èææöêÕ+)ÕÖÖ6räÈQ£Fõd^~ oß¾]´h‘‰‰‰ªªê˜1c®^½J‘j&“)ð·“ŽŽŽ¬SþnU>dÿ"ïù÷A‚ÞKYYyéÒ¥>>>ýû÷—u\ÄÈÏÏ—uèÊÈÈÈÉÉY¹råæÍ›ÉÀ›7oºººÎ;·¤¤!äæææææFnMKK0`@rrrWÎ[YY‰Z¿~½———¬ó ›åääLœ8‘ÃáÌœ9SYY9++kÚ´i{÷î ïÊaù+UuuuvvöòåË¥8ή]»¸\n^^Þ€B³fÍâp8+V¬ôPk×®ýí·ßFŽÙÃ9Ú㜜œž={Àb±²²²|}}/^¼ØiïãÇ;::\\\8¨ªª*ëD€ÿ€†cŸ‡›ƒd£ÿÏß³ØikôFñññkÖ¬Y»ví÷ßßíomme2™rr}î.¾»Åhoo?cÆŒýë_ïÞ½ë¡_D<žUII©‡Ò%QâûøÝÕI¼zõj}}ýÒÒRuuu„К5kœÐņcw)++|(éqrss“““™Ìnø™ær¹<OêüollTQQéJ¶mÛVYY™žž>{öl„вeˆ “——'¼3þ›gÆ ½ïožÞ¡Ï}‰ºFÅA«±˜1cÆ„ ~øá‡k×®QìVRR2aÂ}}}CCà &à>3ŒÍfGGG_»vÍÎÎÎη,[¶låÊ•jjjJJJ#FŒ8sæL{{ûêÕ«­­­ÕÔÔ<<<îÞ½K!%%ÅÖÖVEEEKKkĈ‡ê4¸¯¢±±‘zP`yyù´iÓLLLtuu}}}ýõWþãúøøhii û !äîîΟ{—/_öóóc±XFFF‹/þ믿:áëׯµµµù#\YYijj*QÉVWWÏš5+<<ÜØØ˜zOêÂŠŽŽÞ½{7‹Åb2™FFFüѦYÿǧ­­™™É˜MÍÁ-™™™Ÿþ9~Ëáp þüóOáqÃqРAåøpx »YXXÈ: ’Àu€¬ ýçùš+ GTÀ—œ 'LjŠðúõëB•••?îׯŸƒƒC{{;Þ´iÓ&„ÐÍ›7ñÛììl&“ill¼|ùòèèè0™Ìììl¼ÕÌÌlúôéZZZl6û‹/¾À!ZZZ:::6lظq#‹ÅRRRrqq>|xJJJDDAvvvøãëÖ­Cyzz&$$¬Y³ÆÚÚ!tòäIòàS¦LÁ¯ÝÝÝíííy<^[[[:Ÿýû÷+((Ü»wÇã?^II‰ÍfÇÆÆ~ùå—æææ ã§Ÿ~Â9vìƒÁÐÕÕˆˆX²d‰¾¾¾……B(33ST]ºtIx“··7BˆÌ±'Ož „æÌ™ƒßâ&¬¢¢bDDÄ… Þ¿/¶þhhh899‰Ý¢,ÊÊʾþúk„Ж-[ „?J„ÏW_}åïïÏ`0FŒA³è¨™™™‘‘Bh„ «W¯öðð@3w€ñ(uIñkkk+//ùò%ˆ­­­­­­ðÎiii¡œœü622!DÄëׯqȰaÃôõõq|ÈJUVV–€Ú¼y3Î=333 uuõ¨¨¨-[¶àq¸† 333óööæñx\.÷Ñ£GÁÁÁvvv555b ”ÄårÇgeeÕØØhff6räHQ{Š-¬¡C‡*((DFFnß¾}„ ¡ððp¼•~ý?uê”±±1‹Å⯽þþþÚÚÚ---b“óöí[‚ BCCù>Œ:~ü¸ðþQQQŠŠŠµµµGݵkWQQ³t‘?ÜŸØo}÷A÷û*Ù:äoIðòo‚¶£ä>݆#ÇKJJB¥¤¤àMü Ç––6›mffFþ ÖÔÔ˜ššr8üÍŽçp$$$tttàÌÌÌÈfÇÃãüìììZ[[qˆ««+B¨¡¡Çãq8 ‹¶¶6¼©¾¾žÉdFDD‡n8 ذaB(-- ÇÖÜÜÜÁÁ¡©© omnn5j‡Ãiooonn655500xñâÞZUUehhHÝp¤ ªáÈãñ:4pà@¼›’’’§§çÆŸ§yyyâååuéÒ¥¦¦¦þýû—””())‘ƒºjkkBMMM4c~âĉuëÖEDDÌŸ?!tãÆŠŠŠÃ‡+++㣢¢BCCKKKÛÛÛŸ>}šœœŒ»ÄpÌ—.]GqŠàà`á[‡G}öìŧBCCCCCoß¾—————WPP——·víÚuëÖá~A)Ð) QäääðÒBOŸ>Å·PÓÒÒpçBHl)Ð/P«˜˜ò³ëÖ­Û¹sçÑ£GƒƒƒÉ@ê’¢HË7ß|ƒokúøøtz/ØÈÈÈÖÖ¤«««+//ß·o_TTTAAÁÔ©S‹ŠŠ¸\.î‡ËÂÂbòäÉø5ƒÁ°··ÏÍͥ؟ÉdîÝ»÷Õ«WÅÅÅ“'O ÌÌÌìèè8s挨øûûãü_»vmrr²½½½ØX‰-,‡3}útü𠇓'Oâú#QýŸ5kV\\\ZZZHHBèСCmmmsæÌAµ··S' ÇGMM?4ÀPYYÉårðHƒ“'OFGGO™2¥¼¼œŸdŽ}ÛQà…@›–rìc˜Læž={\\\–.]*°ÊIEEB^$ácøÞÒÒR`ÂÙ²Aáæ…p¦©©Y\\œ››{ÿþýŠŠŠ;wî´··ÓŒöÝ»wgÍšåêêšššŠCðây¸Ñ&°ó³gÏð¸·aÆñ‡‹]rÉ’%£G¼yó&uÑÌ([[ÛåË—·¶¶ž8q"::zݺu#GŽ7nœÅD§,DQVVNMM‰‰a³ÙC† qqqñõõ8q"p)¶è(BhÈ!üã8UTT,--fŠP—EZ***ššš®\¹>räÈ{÷îéêê ìãçç—œœ\WW‡;_½¼¼\]] BùùùL&4 ߯%‰hÂ`0ÈÉ: ëׯ òòòÂcO;ÅãñBBB|||–.]J'Vb K Ú䵉{é×uuõ}ûö=zôˆÃá8pÀÆÆÆÑÑ!ÔØØH(\=†„644 „´´´„?’ŸŸ¯¤¤Dnš7o^sssdddVVþ›ÈLŽéÃDµ;“cú’‘#G.Z´(;;ûĉüá< =ÿÿ‚¶µµá·Ò´¥¥eÒ¤InnngÏž577‰‰¹wï͆ºº:uuõ¬¬,²á‚Û+ÉÉÉÿ2|øpÜI#–nŸôýîÝ»3fìÝ»—?PAAaÆŒééé!Š®jtÊ‚Bddä“'OöìÙckk›““3mÚ4[[Ûêêê®”ML&S`uIQ­_¿~^^^›6mzóæ ¾;/À××—Ë噘˜˜˜˜xxxܾ}»¾¾>??ßÕÕ•fêº2?O%...VWW§¸ˆÚ½{÷£G¬¬¬6oÞœ”””””ôöíÛÿû¿ÿKJJúé§ŸK§°DE[Šú¿xñb·ÿþÒÒÒ²²2r‰{±‰ÒÓÓ“““«©©á?ÚëׯBd'?CCC%þãJºe5A·ƒÇ>ŒþºŒÂÝ ·ûî»ï~ùå—%K–àß<ÌÜÜ!TVV6vìX2ðöíÛ!KKË.žñÒ¥K999©©©Ë–-#éô8vtt¿xñ¢¨¨ˆ¿Ã ǶÿþãÇ'ïÞ½[VV¦¡¡çl^¿~ÝÝÝÜzóæÍîÍF•sçÎ=þ|Á‚›p7L¿~ý¤;rWÊ¢¶¶¶²²ÒÂÂ"<<<<<œËåîØ±#**j×®]®®®Ò•‚(wïÞmkk#[óïß¿¿wïž#q%%pÀ3gÎL™2%###((ˆ Äãáx}G=ZMM-//¯¤¤d̘1!www.—{êÔ©7nà!¼= g ƒÁ{W7©·mÛÆ^WWçîîŽo“¤¾dÐç,KTÿ8P[[Ëd2ÃÂÂÈ3R'ŠÉd<¸¨¨ˆ?¼°° ˆ!C†ìÿôéÓÓ§O{zzâ‰>îž”tf:è!ÐãØ·á‡Áàv!Ü|ÔÕÕSSS_¼xñÏþ“ ttt411III©««Ã!oÞ¼Ù¶m›©©i׈ç1ðÿZdee566òÄýŲjÕªóçÏïÞ½ÛÉɉ?ÜÞÞÞÒÒrëÖ­õõõ8¤¡¡ÁÏÏ/::º_¿~ŽŽŽgÛ¶mä‚ 555ݾ€%žLúÛo¿%&&’Ï$D566®[·NÔcéèJYaE^^ÞËË+''§´´7œœú÷ï¿qãF±¹\®t©.))Á÷‚±cÇŽá"ÃwuEA}õÕW=vä䘋/ œ¥+…%]ý_¼xqUUÕž={&NœHþ‘&6Q¡ |ØÑÑQUU•Íf/Z´¨¾¾žNvz4Šåx$*,7gÎ ò-ýúO·ËÉ՗諯¯_°`¹¹9‹Åš4iRii)¹ _\©©©dHVVÖðáÃUUUY,–§§çÙ³g¥Ë=ú`9út/u7KKËÈ:´Ñïb„ÎHÚDÕB¶yHÀõ.RUU•¶¶v×ûM?6›moo/07¿×c³Ùƒ ¢^¬çcC¿þÏ;7==½÷}“HñÃý‰ýÖw¸U hƒ)2 ÷ÂKÐ7AýôAñoƒ†à‡“|² á¤-N©ô¾û;PðóóÃO½ëSÖ¬Y#õj¦?sssüTIÐgÁ˜§î÷){¢ý×éÓeÀß}Juú<ãH¬ã$G¶З@ÃH:€¾ Æ8öa-ÄC'Ú”@¯ G@ƒÀ Fþ‡Í!Ðjz;¸U èáÔ(0ÀZ@ß=Ž€6[£ÎºÐ{AÃüÁ×(r&þp˜[ ô%p«º¯º¿L!üOüg<ès á$„[œ¸Ñ mG /†# MxD#4€¾Ž€6²£Ql øÔ$$$§®®îì윖–Æår;ÝGNNÎÊÊjÖ¬YW¯^¥>)$$¤Ó³'&&²X,YgC÷`³ÙS§N•u,þÇÍÍÍÁÁATTg̘ññÄG†®_¿NÄ‘#G:ÝZXXèííÍb± §Nzÿþ}YÇ÷C£ÎЧ@ÃH fÆ|x=œáÁÁÁ±±±±±±111“&Mzøðá‚ V­ZÕé>‘‘‘úúúÇŽ;vìîÝ»EŠßgŸ}&|Ò»wïÆÇÇ[[[¯Y³FÖùû3fLBBB·ŠÁ`0 üúÚµkS§N½sç·L‹ÀIùãÓsgéFׯ_÷öö~úôéªU«âââ>|èææöêÕ+úGxûöí¢E‹LLLTUUÇŒ#ð·–€{÷îM›6mÀ€FFF3fÌ(..¦¿õE?ÚÚÚ˜L¦À_¤:::R H fU÷I°ò"èÌ’%KFM¾­®®vppHII‰ÕÓÓëtŸû÷ïO™2eñâÅ£G:t¨¨CQ¨¬¬D­_¿ÞËËKÖð±¸qãÆåË—»+CòóóÉ×ÕÕÕÙÙÙË—/ÿÉ8)|zî,Ýh×®]\.7//oÀ€¡Y³fq8œŒŒŒ+VÐùxCCƒ““Ó³gÏX,VVV–¯¯ïÅ‹;ív-**òññÑÐÐ a0GŽñññ9uê”§§§Ø­Ÿ(‰òçñãÇ...‡ TUU•âP@jÐpà›û°Ñ¯§§œ’’R^^N6XYYedd8;;óÍ7ÒÝÆÂ ?)))}˜D‰ÕÚÚÊd2åähÝéèè@uWÿY{{{^^^qqñŽ;È}„DÙþ••• <·BšššVVV>¤ùñmÛ¶UVV¦§§Ïž=!´lÙ²aÆÅÄÄäåå ìÉãñæÏŸ¯®®~ëÖ-|Å­]»vذa+W®¼~ý:õV©SÇåry<žÔu¸±±QEE¥+ÙK?ÐÿÎܰaC§VIt( µñ*|$p«®­­b''§Ñ£G?~¼½½]ÒãÏ;wÊ”)!WWW6›KJJ&L˜ ¯¯ohh8a„’’r6›}íÚ5;;;;;;á¾ÿ>11ÑÚÚº_¿~¦¦¦ááá/_¾$·¦¤¤ØÚÚª¨¨hii1âСCüG^¶lÙÊ•+ÕÔÔ”””FŒqæÌ™öööÕ«W[[[«©©yxxܽ{—??üðƒ†††‚‚‚M\\\kkk§i,//Ÿ6mš‰‰‰®®®¯¯ï¯¿þ**7jkkÇŸPSSCoòòòïÞ½Ão9B„­­-¹Cll,A7nÜ@yxxà—¹sçâÑîîîdn#„._¾ìççÇb±ŒŒŒ/^ü×_‰:/EZDå¼ðIÉøHší%ØiÒ¨s¾°°ÐÇÇGKKkðàÁ+W®U|¡×¯_kkk“o[ZZ*++MMM=™™™Ÿþ9~Ëáp þüóO=?~\QQ1þ|òï4 èèèÒÒÒÛ·oSoíôÔÔ>::z÷îÝ,‹ÉdEDDð=Íü7nœ¶¶vff&`vv6AÇïÞüAÿm84¨ë‡Òãîfaa!ë(ˆÓY¹£ÿ.âÈ“¨b@êLÔœÕ=“áëׯG]ºt‰?ðÕ«W†††rrrUUU¢öÁ"##B=¢ÞMXYYÙ×_Ú²eKAAÇËÎÎf2™ÆÆÆË—/ŽŽ0`“ÉÌÎÎÆû›™™MŸ>]KK‹ÍfñÅ %ÂÇÇ端¾ò÷÷g0#FŒÀ›Ö­[‡òôôLHHX³fµµ5Bèäɓ䑵´´ttt6lذqãF‹¥¤¤äââ2|øð”””ˆˆ‚ ìììÈŒŒB&LX½zµ‡‡Bh̘1¸óÆÌÌlÊ”)xÏóçÏ+))±ÙìØØØ/¿üÒÜÜœÁ`üôÓOÔÙ‚ç^¬_¿^Ôiii¡œœþü'âõë×8dذaúúú8>îîîööö8·ñ¸ÉÍ›7ãÜ633³°°PWWŠŠÚ²e‹››B¨ÓŒ›Q9/|R2>’f;E Ÿ…:¶ÇŽc0ºººK–,Ñ××·°°@eff 'ÜÌÌÌÛÛ›Çãq¹ÜGÛÙÙÕÔÔЩáoß¾%"44”?ððááãÇ ìŒo⧤¤ð;v !”‘‘A½UøÔb+üСC"##·oß>a„Pxx¸¤ùsêÔ)ccc‹õþý{2Ðßß_[[»¥¥¥{ó‡ÇãEEE)**ÖÖÖ=zt×®]EEEäY$=”)¾´?ßúž¿úÝï¨LÐpìaÝSøJäoùÜi`×àÖ^XXX\\\\\ܪU«æÌ™ƒ{Y–.]Ê¿O§-ÂM›6!„~ýõWr7a®®®ž:;;›µØ ÊÊÊÂo¹\®±±1Î+‰ògûöí¡Ã‡ã·ÕÕÕòòòQQQÝž?<ÏÏÏOYYYSS“üb±¶¶¾v횇 Gú`Œcß3c>ä2™å%*¼Ëøïd1™LKKËÕ«WÓ™m@M÷666æÁ?TÔJKK?~œššÊb±p‹ÅÂ]·nÝrvvF¬]»¶ÓÁprrrA\¾|ùéÓ§øNbZZîœC•””())1™ÿùÒ«­­E555‘>|¸••~;CBBäååqˆ——×¥K—šššú÷ï#C~vݺu;wî=+++)) ·û<¸sçN„PCCõV᳋Í.‡3}útü𠇓'O"„JKK%ÊŸY³fÅÅÅ¥¥¥áõ¶:ÔÖÖ6g΄P{{{7æB¨²²’Ëå&$$àÑ'OžŒŽŽž2eJyy¹¤‡Rƒ†#–Kêˆúˆ¤‡×мtéͩО?ŽâŸçHV5¿ŠŠ „ÀàE,¦¢¢bii)0aw†††††† DõÙ³g]i8"„üüü’““ëêêpg­———««kAAB(??ŸÉdz{{Ó9¾I5IBlZ(ržýl[‚4c‹Ç†6Œ?\ìÄ[ƒŽ_'$$¬_¿>((ÈËË ÒíÇÃi6ŠÛyZZZÂÙ¹sg}}=îøÇIŽ_¿~½†††Ø­Äf—@Ñ“—Ÿ?êêê!!!ûöí{ôè‡Ã9pà€££#B¨±±±{ó'??_II‰Ü4oÞ¼æææÈÈHpà@mm-“É #ÏØùóôéÓÓ§O{zzâ‰>îS455•4«Ô`9>ñ¿u?¦öTTTÌœ9“ ˆøøø®ÍÑÑÑÄÄ$%%¥®®‡¼yófÛ¶m¦¦¦t–ð}ðàÁÈ‘#·nÝŠßÊÉÉá_>yyy<›„ÿ÷&++«±±‘'mû»¦¦&%%…|›˜˜ØÐÐ ð¤A{{{KKË­[·Ö××ㆆ??¿èèè~ýúu1¯äåå½¼¼rrrJKKqÃÑÉÉ©ÿþ7n;ÀQŠE"©ÓB‘ó]9)?š%ˆÏB[GGG‡³mÛ6r•–šššï¿ÿžâì%%%ø.†ç2;::â[±¢à,XðäÉæcê©´àf"YjäÌÙ¹s'þ^nii)///..nmmݱcÿcc¤¦¨¨˜’’äèèÈãñŽ9RUUõóÏ?+**Šý¸““ÓСC7mÚôèÑ£¡C‡>xðàìÙ³ZZZø1*** , 322ºråJ^^žŽŽÎ¥K—Ξ=ëçç'iT âãã‹‹‹íìì®\¹’››;jÔ(r9ŒÉd¦¦¦úûûÛÙÙ¶µµegg?þ<33³[Ö ÷óóûå—_B¸áÈ`0ÜÜÜrrr  ª‹…*W]]Í?G,ê´Pä|WNÊÏÃúÎB[ƒ±eË–ÀÀ@‡   yyù#GŽP¯ÙÖÖæéééïïomm}óæÍ8880 ±M±9sæìß¿?,,,22RCC#==½©©‰|ždRRÒ¦M›¾ûî»E‹!„6lØàçç7bĈ©S§¶µµ=zTYYùÿøÞ™z«DÙEayyyIó!SWW‡§Å`boUK”?ººº «V­277Ç%~îܹ7nlܸ— >è6²žÖÝ }ÔSôE—8’n9¬ÈÓ‰ºt†Îâ‹ëìaaaZ\\,顸ñ/ǃûúúêéééééùúúþöÛoä&þ%;õüùóyóæ™šš***š˜˜„††’K½¸¸¸¨ªª80<<¼¦¦&--MGGgüøñÂGÆ7æÒÒÒÈÄÄD„ÐË—/É ÆŽ«®®neeÛÜÜÜi$KKK'Nœ¨¯¯¯©©éîî~þüy±y"v92±!2$99!´páBþÝø—¿ár¹!!!jjjŽŽŽ8ªü;Ïœ9“Åb‰:#EZ(r^à¤ËñÐÏvê8‹Øœ/,,ôööÆ »¨««ÿüóψr9žÃ‡;::ªªª²ÙìE‹Õ×׋-GR}}ý‚ ÌÍÍY,Ö¤I“JKKÉMøzIMM%CΟ?“ibbN®ÍIg+?‰*<Ç›3gކ††ùCÂ'K)õPþdee >\UU•Åbyzzž={–桨Ár<ô<èên–––©/077Lj½Œqì~鸲DZ'Æ8"æø7iÐãHô8ö^÷¦ñ€áÐÔmÐpì횆O®  ޽¹R´p·¢ÀšÒ4À#{;ò5‰|ÞqOŸ½ 4û ˜¼€®é+·ªþùç£GVVVöë×oìØ±+W®ÄOR¥µµõàÁƒgÏž}üø±¦¦¦Í’%KÌÍÍeŽ®!û{® 7Á€Þ«Oô8¦¤¤¬]»öáÇÎÎΪªªÇŽûâ‹/Þ¿/jÿŽŽŽÙ³goÙ²¥®®ÎÍÍÍÈÈèܹsþþþ¿ÿþ»¬“"9ÜF$Ûsp7Òêý ÇìÙ³GOOïßÿþ÷ž={Î;÷ùçŸß¾}{Ë–-¢>räÈ‘ÒÒR??¿ÜÜÜüã?þøãBk×®•uj¤Â߿أmGèhzµÞßp>þÅ‹3fÌPSS“uš>2¸ó÷bòß'ßÂýëOABBñwêêêÎÎÎiiidǼÀ>rrrVVV³fͺzõ*õ¡H!!!ž=11‘ÅbÙØØÈ:º›Íž:uª¬cñ?nnn¢¢:cÆŒ'>2týúu‚ Ž9ÒéÖÂÂBooo‹ehh8uêÔû÷ïË:¾uþ€>¥—÷Ÿ555utt?Ÿ^]]ý½O‘Ÿ¥¥å?þ8gΜ9sæ3gÎ\³f ÍóZZZ „ôæ'ZòO¾!Áôê.#­ÎZê¶L666Fñx¼—/_æää,X°àÁƒÉÉÉÂû477—••;vìèÑ£ÿøÇ?.\Øé¡øÙÛÛ ŸôîÝ»ñññ®®®,o?Z·oßþöÛo Þ½{geeÕÅ ƒÁ`à××®]ûöÛo‡ òÁ%pRþøôÜYºÑõë×½½½MMMW­Z¥¨¨˜––ææævçÎrø}cÆŒñòòZ·nÅ>÷îÝûꫯ~ÿýw.—ëââíââBsë'êíÛ·«V­ÊÉÉy󿣣ãæÍ›GŽ)jgêk¤çòGøg½ïâõj5553fÌ?}ú´……ÅÖ­[;ýÔÛ·oCBB,,,¦Núõ×_GFFÚÙÙ9::ž?žÎI-,,dîΈ+k„ï¿ÿ¤©äGð‹Þ^µ¨uK@<ñyHg:Ö¯_ºtéàË—/  ÆË—/EísïÞ=KKK‚ ÊÊÊ(Eáĉ¡ .tKB>fffS¦L‘âƒ>ÔÔÔTSS›={v||ü¨Q£BÒJ”Ó§O#„òóóɨôt†œôã<˵k×B™™™Â›ÂÃà ƳgÏðÛ7oÞhhhˆúù PZZ*''·~ýzŠ} õôô–/_cllܯ_¿_ý•ÎÖE‘?]ôöíÛAƒ)((„††.]ºÔÐÐP]]½´´´Ó©¯‘®ä_Úéo}Ïëå=ŽA455 „¿{÷ý·ßQØ—_~yýúõ¸¸¸¹sç⪪ªàààèèè“'Or8Y'ë##{==½ààà”””òòr==½N÷±²²ÊÈÈpvvþæ›o¤»ÅãñBJJJ²Nî´¶¶2™L99ZÃx:::BÝÕ¶bÅŠ·oß^½zÕÙÙ!´aÆùóçïß¿ÿܹsãÇ—uÆô,‰²ý+++{öl„вeˆ “——'¼3Å52nܸžÈ ìc¼J»“ÉTWWûö­@xCCB¨Ó ¯^½ºxñâ AƒÈV#BÈÐÐ0""¢­­í—_~‘uš>Jäj‘üȆFä§·êÚÚÚ(öqrr=zôñãÇÛÛÛ%=þܹs§L™‚ruue³Ù8°¤¤d„ úúú†††&L())!÷g³ÙÑÑÑ×®]³³³³³³>àû÷ï­­­ûõëgjjþòåKrkJJŠ­­­ŠŠŠ––Öˆ#:ÄäeË–­\¹RMMMIIiĈgΜioo_½zµµµµššš‡‡ÇÝ»wù£ñÃ?hhh(((ØØØÄÅŵ¶¶všÆòòòiÓ¦™˜˜èêêúúúþú믢r#//o̘1ø[²d BèÊ•+{ÈËËã?€BGŽ!ÂÖÖ–Ü!66– ˆ7n „<<<ð˜Â¹sç~öÙg!www2·B—/_öóóc±XFFF‹/þ믿DÅ"-¢r^ø¤d|$ÍvŠì4iÔ9_XXèã㣥¥5xðà•+WŠ*>„ÐëׯµµµÉ·---•••¦¦¦´ª8BµµµãÇOHH¨©©¡ÞóñãÇóçÏ'ÿNÓÐÐˆŽŽ.--½}û6õÖNH]ᣣ£wïÞÍb±˜L¦‘‘QDDÑÓÌŸqãÆikkgffòfggqüøq:ù“™™i``ðùçŸã·'    àÏ?ÿÞ™â‘"€tzyÃ!¤§§W[[‹[ФÇãMÂû×ÖÖ"„ÌÌÌÂqG£Ø+ÿ#õž7øÁV‹JMMÍÑ£Gåää:m¢ñ³··ooo5ÛŒBLLÌ×_Ú²eËÁƒB'Nœ=ztYYYHHHpppyyùèÑ£ñílìùóçãÇÿ믿:þõ×_0`ÅŠééé¸aŠZ¿~ýŠ+tttV­Z…›G3gÎ>><¡«,77×ÙÙùæÍ›AAAsçÎ}ôèÑøñã~e±öööÈÈHü+Hzúô)BHQQQ`g??¿ööö¢¢"ü¿(//Ç__¡üü|}}}A¥111 ¡Í›7ãÜFݾ}{âÄ‰æææ«W¯8pà®]»bcc;-,ê´ˆÊùNOÊ~¶S” ðY¨c{üøqOOÏÛ·o‡„„xyyeddðhÐÑчÐñx¼ÇÏ™3ÇÈÈhÞ¼y4+¹žž¾Á'vJ ¾‚z4 BeeeÔ[…&¶Â_¸paéÒ¥¡¡¡Û·o···ß¹sçŠ+$ÍŸÕ«W÷ë×/**ª¹¹™ LOO×ÖÖÆMyj üñ‡‡‡Á÷“áééÉårfÝ!q׈¤ù¤'ë{å=.55ÕÂÂâôéÓd3;bĈÖÖVáý›šš¬­­}||p>é_ÿú—……ÅÞ½{Åžñc÷@£ QWÆ8òï/0رOúDÇ8†……ÅÅÅÅÅÅ­ZµjΜ9¸—eéÒ¥üût:xqÓ¦M!<–ï&ÌÕÕµÓSggg“‡miia³Ùfff555xkMM©©)‡Ãiiiáñxø/º„„„ŽŽáC½{÷ŽÁ`Ì™3‡ ™?>‹ÅªªªâñxÇ¢­­ oª¯¯g2™ø­™™™‚‚½{÷ðÛÍ›7#„ìììÈo WWW„PCC7’'Z¹r%Bè§Ÿ~âñqlii177wpphjj»5775ŠÃá´··‹-”ÚÚÚáÇ3Œ?þøC`Ó‹/B±±±ø­ ž“~üøqÞ×›7oÞêîînoo_ qD8q¿moo·¶¶655Ž uZ¨s^à¤üñ‘(Û©Kÿ,Ô±mnn655500xñâÞZUU…[Žá333óöö&Fjjj'Ož[|ÂpÑbŒ#ÛIÉÉÉÔ[…&¶Â#„²²²ð[.—kcccllŒóJ¢üÙ¾};BèðáÃømuuµ¼¼|TT<ùã?BÑÑÑü.\@íÞ½[ìÇù¯IóGŒq¤¯—qÄÕh×®]?üðÃØ±cUUUB{öìyýúuxx¸¼¼<Þ§±±ñÕ«WòòòÆÆÆÊÊÊcÆŒ¹xñâ?þñ¨¨(<榢¢bÇŽ ²NÐG‰¿£…¼g Sª?5üw²˜L¦¥¥åêÕ«—/_.öƒ„P³ð¬já^|a¥¥¥?NMMe±X8„Åb-_¾<::úÖ­[øþ”ÁÚµk; '''GÄåË—Ÿ>}Šï$¦¥¥¥¥¥á­%%%JJJäìKÜ9Ç?zøðáVVVø5¾ÒCBBÈo //¯K—.555õïßG,&&†üìºuëvîÜyôèÑàà`2ðƇVVVÆ!ŠŠŠQQQ¡¡¡¥¥¥ü·Û„åççñÅ•••;wî477Øjdddkk‹ÕÕÕ•——ïÛ·/**ª  `êÔ©EEE\.w„ t ÝÂÂbòäÉø5ƒÁ°··ÏÍÍÞ:-C‡¥Èyjô³]l ÒŒm{{ûÓ§O“““ŒŒðVƒ¥K—ÆÅÅQÄ“ÉdîÝ»÷Õ«WÅÅÅ“'O ÌÌÌìèè8s挨øûûÓÉ’žžÞôéÓ³²²’’’p»ÿàÁƒ;wîD544Po>šØìâp8Ó§Oǯ ‚ppp8yò$B¨´´T¢ü™5kV\\\ZZ^oëСCmmm¸‡²½½:p|Ö¹ÃÓÈîsQ„¯‰òH­÷7 W®\™””4yòd77·§OŸ^½zuÈ! , ÷)((ˆŽŽ677dz&&&ìØ±#''gðàÁµµµ×¯_çr¹k×®8p ¬>a4WØ‘húÇ»pÏ¥K—F-EºðM"þycK–,‘âP!;ãxè^EEniYZZŠšB¡¬¬œššÃf³‡ ââââëë;qâD„¦¦fqqqnnîýû÷+**îܹ#0(“l­"„pÃE8„4dÈ|XLEEÅÒÒR`Âîa å¿Ç={öLTÃñÙ³gK–,9uꔹ¹ù… <==;ÝÍÏÏ/99¹®®wÖzyy¹ºº „òóó™L¦··7<NjڒDM’›Šœ§F?ÛÅ– ÍØâ±¡Ã† ã»´$ƒÁǯÖ¯_äååEŽ…Æ“üç;wÖ××ãŽœäøøøõë×ãE娷 ›]EO^V¸~þ¨««‡„„ìÛ·ïÑ£GçÀ666ŽŽŽ¡ÆÆFêüÁe-0¬·óV_(ÄN¯‰òH­÷7BóæÍÓÑÑÉÎÎÎÉÉ100˜9sæòåËqïc§X,VNNή]».]º”ŸŸ¯©©9vìØÅ‹÷šЬH´æ"±ûÓÙç¸uë“É^¸QâüáñPÿ%nÊt¨"##§OŸ~úôé‹/æääìÙ³ÇÒÒ²  @CCcÚ´i999ÎÎÎãÆ›»Ø´ˆÊyQóñ%ÕÒÒB¿©c[XXˆ„ª™DºgÏž½~ýúâââiÓ¦IÑ:¤ ££“››{õêU<5ØÕÕÇÖÄÄDìVI³KTÑãZ'Qþ,^¼8--mÿþýÓ¦M+++Û¶mWWW§Î===999ɯ_¿F‘ý(®úùº¢O4B“&Mš4i’¨­&L¸­Ó¯_¿+V#…¢”––výœø~SYYÙØ±cÉ@<#’Î껵µµ•••áááááá\.wÇŽQQQ»víruuÍÉÉIMM]¶l¹¿ÓÀIwïÞmkk#ûÃÞ¿ïÞ=þG›’Ééß¿?ÿb:wïÞ-++ë´ù{êÔ©Y³fîÚµKìCªF­¦¦–——WRR2fÌ„»»;—Ë=uêÔ7ð¨ÓnDŠœ§^ìš¾K—.Ñ/AêØ4!týúuþòºyó&ýÈàó2 ±·b%Mæ­[·ÔÔÔF…W(Dýúë¯AàU¬©·J]¤ÈGGGggçÔÖÖ2™Ì°°0òŒÔùÃd2LNó ‚èt!wêk„~þ€®è+ G@O¨¨¨˜9s&Añññ]?𣣣‰‰IJJJXX˜¦¦&BèÍ›7Û¶m355¥óºŒ=ú«¯¾JLLD‘©———dzI¬­­É³²²¥î.ª©©IIIùòË/ñÛÄÄƆ' ÚÛÛ[ZZnݺ5((·üüüÚÚÚÈãñ¾üòËüøãtÕ“——÷òòÊÉÉyöìÙüùóBNNNýû÷߸q£ØŽÔ« vŠ:-eee¢r¾+'åG³ñY¨cëèèÈáp¶mÛj``€Kóûï¿§8{IIÉüAÞÛ=vìBÈÑÑQì­XI“¹páÂ;wî>>ü+F‘ûS_#ôót4Aà_Óô.;wîÄC[ZZÊËË‹‹‹[[[wìØ1tèЮ\QQ1%%%((ÈÑÑ100Çã9r¤ªªêçŸ^’F˜““ÓСC7mÚôèÑ£¡C‡>xðàìÙ³ZZZ!!! CEEeÁ‚aaaFFFW®\ÉËËÓÑѹtéÒÙ³gýüü$ªA|||qq±Ý•+WrssGE®E‡1™ÌÔÔT;;»ÀÀÀ¶¶¶ìììçÏŸgff ÿìÝ»wïþýûÖÖÖä@:Ò´iÓ:½aâçç‡W–Å=Ž ÃÍÍ-''gÀ€¢K\yL\IDAT»G•«®®æŸÇ#uZ(r¾+'åçááA]‚g¡ˆ-ƒÁزeK`` ƒƒCPP¼¼ü‘#G¨—Zkkkóôôô÷÷·¶¶¾yóæ FoU'%%mÚ´é»ï¾[´hBhÆ ~~~#FŒ˜:uj[[ÛÑ£G•••ÿñà©·J”]Q’———4BÁÁÁ111uuuü ÷ˆ½Uš3gÎþýûÃÂÂ"##544ÒÓÓ›ššðâJù#ö¡Ÿ? Kd=­»ú§è÷ôr o·á>]Ð"à€pÔ €€ÞÿÈAÐ- Çô ˜z/???:½Ú5k`i:ÌÍÍñ#"Aïc»ßG7î^®›Ç8Ò>o¯ôÑÕ¢ÁGúàV5 Ž€h8Z áz ž€ÞŽ€h8Z áh†coׇS@÷‚†#èI0?èE áh†#%$$§®®îì윖–Æår;ÝGNNÎÊÊjÖ¬YW¯^¥>)$$¤Ó³'&&²X,YgC÷`³ÙS§N•u,þÇÍÍÍÁÁATTg̘ññÄG†®_¿NÄ‘#G:ÝZXXèííÍb± §Nzÿþ}YÇ÷C£ÎЧ@ÃðÁÁÁ±±±±±±111“&Mzøðá‚ V­ZÕé>‘‘‘úúúÇŽ;vìîÝ»EŠßgŸ}&|Ò»wïÆÇÇ[[[¯Y³FÖ {/^ôððÐÕÕÕÖÖvuuýå—_º~LƒÁ`0ðëk×®M:õÎ;2Q'åOÏ¥]¿~ÝÛÛûéÓ§«V­Š‹‹{øð¡››Û«W¯¤8T[[ÛÈ‘#GE±ÏÛ·o-Zdbb¢ªª:fÌ?Ì$:Ô§‚f’qª™L¦À_¤:::R H)ëè"êщNK–,=z4ù¶ººÚÁÁ!%%%66VOO¯Ó}îß¿?eʔŋ=zèС¢E¡²²!´~ýz//¯™™¡œœœ‰'r8œ™3g*++geeM›6mïÞ½ááá]9l~~>ùººº:;;{ùòå2]'åOÏ¥íÚµ‹Ëåæåå 0!4kÖ,‡“‘‘±bÅ IµvíÚß~ûmäÈ‘¢vhhhprrzöìY@@‹ÅÊÊÊòõõ½xñ¢p­ØC}*è'!ôøñ㎎‡CªªªJq( 5h8‚†çÇ|ô3» Dk¯g[nÔ1D¼žo;òÓÓÓ NII)//'ެ¬¬222œ¿ùæéncñx<„’’Ò‡J–­­­L&SNŽÖÝ˜ŽŽ„PwõŸ­^½Z__¿´´T]]!´fÍšÁƒ'$$t±áøI(Û?°²²²ÁƒãV#BHSSÓÊÊêáÇ’'77799™É¤úÙݶm[eeezzúìÙ³BË–-6lXLLL^^ž¤‡¢‰Ëåòx<©ëpcc£ŠŠJW"@3Éþ;sÆ þ)Ñ¡€Ô>Æ«™à!õ?YGPyÂã!„ÚÚÚ(öqrr=zôñãÇÛÛÛ%=þܹs§L™‚ruue³Ù8°¤¤d„ úúú†††&L())!÷g³ÙÑÑÑ×®]³³³³³³>àû÷ï­­­ûõëgjjþòåKrkJJŠ­­­ŠŠŠ––Öˆ#:ÄäeË–­\¹RMMMIIiĈgΜioo_½zµµµµššš‡‡ÇÝ»wù£ñÃ?hhh(((ØØØÄÅŵ¶¶všÆòòòiÓ¦™˜˜èêêúúúþúë¯îÖÒÒrçÎÏ>û ·B***nnn/^¼xÿþ½ÀÎòòòïÞ½Ão9B„­­-¹Cll,A7nÜ@yxxà—¹sçâÑîîîdn#„._¾ìççÇb±ŒŒŒ/^ü×_‰*/Š´ˆÊyá“’ñ‘4Û)J°Ó¤Qç|aa¡––ÖàÁƒW®\)ªøB¯_¿ÖÖÖæ/©ÊÊJSSSIj:ª®®ž5kVxx¸±±1Ån™™™Ÿþ9~Ëáp þüóOI…ÄUøèèèÝ»w³X,&“iddÁ_ô4ógܸqÚÚÚ™™™üÙÙÙA?~œNÎÐI2 7 ÔõCéñ@w³°°uøÐ.b„ï¿ÿº¹b| Õ ñÄG’Î>X·×$âuwY¿~=BèÒ¥Kü¯^½244”““«ªªµ‰zôèõnÂÊÊʾþúk„Ж-[ x<^vv6“É466^¾|yttô€˜Lfvv6ÞßÌÌlúôéZZZl6û‹/¾>`hh(A>>>_}õ•¿¿?ƒÁ1bÞ´nÝ:„§§gBBš5k¬­­B'Ož$¬¥¥¥££³aÆ7²X,%%%—áǧ¤¤DDDaggGîldd„š0aÂêÕ«=<<BcÆŒÁ7fffS¦LÁ{ž?^II‰ÍfÇÆÆ~ùå—æææ ã§Ÿ~Žy[[[yyùË—/ùClmmmmm…wNKKCåääðç?A¯_¿Æ!Æ Ó××Çñqww···Ç¹€Ú¼y3Îm333 uuõ¨¨¨-[¶¸¹¹!„:ÍX±i•óÂ'%ã#i¶S” ðY¨c{ìØ1ƒ¡««±dÉ}}} „Pff¦pÂÍÌ̼½½y<—Ë}ôèQpp°]MM ýë‹ËåŽ7ÎÊʪ±±ÑÌÌläÈ‘îööí[‚ BCCù>Œ:~ü¸D‡¢Sᇪ  ¹}ûö & „ÂÃÃ%ÍŸS§N³X¬÷ïß“þþþÚÚÚ---bs†N’ùEEE)**ÖÖÖ=zt×®]EEEäY$=”)¾´?®ßúèøEÿä|\• Ž4ã(âZø_¦ˆûÇÿ©O´á·jÕª9sæà^–¥K—òïÓi‹pÓ¦M¡_ý•ÜM˜««k§§ÎÎÎ&ÛÒÒÂf³ÍÌÌÈ_åššSSS‡ƒÌÌÌB ‡z÷îƒÁ˜3g2þ|‹…¾Ç¢­­ oª¯¯g2™ø­™™™‚‚½{÷ðÛÍ›7#„ìììZ[[qˆ««+B¨¡¡ŒÆÆÉ­\¹!„Û%dñ¥¥ÅÜÜÜÁÁ¡©© ïÖÜÜ#uZ¨s^ठGúÙN]‚üg¡Žmss³©©©Á‹/ðÖªª*CCCê†css3®Éjjjd󋦤¤$EEÅ7nࣉjíýñÇ¡èèhþÀ . „vïÞ-Ñ¡Äf.ú¬¬,ü–ËåÚØØã¼’(¶oߎ:|ø0~[]]-//E'gè$™ŸŸŸŸ²²²¦¦&ùÅbmm}íÚ5)%ŽôÁÇ^íS\øñ#oRˆuÚæIéŒk칑Žüw²˜L¦¥¥åêÕ«éÌ6 „–y¸†¨¨•––>~ü855•Åbá‹…»oݺåììŒ200X»vm§ƒáää䂸|ùòÓ§OñÄ´´4Ü9‡*))QRR"‡…ÕÖÖ"„šššÈ>ÜÊÊ ¿Æˆ!!!òòò8ÄËËëÒ¥KMMMýû÷Ç‹‰‰!?»nݺ;w=z488˜ ¼qãFEEÅáÇ•••qˆ¢¢bTTThhhii)NN§¾ùæ|KÎÇǧÓ[¢FFF¶¶¶xäV]]]yyù¾}û¢¢¢ ¦NZTTÄårq’X“'OƯ †½½}nn®ðnÔi:t(EÎS£ŸíbKflÛÛÛŸ>}šœœŒ»q¥Zºti\\E<™LæÞ½{_½zU\\?¦Ï·b¥n]4BÄ›û—.]¢9ZÀóçÏBüóéϪæWQQ¼ˆ‡îUTTà––¥¥¥¨)ÊÊÊ©©©111l6{È!...¾¾¾'NTPP@ijjçææÞ¿¿¢¢âÎ;ƒ2ÉÖ*B7\„CHC† Á‡ÅTTT,--&LàÕþBCCCCC¢úìÙ3ІcEEESSÓ•+WÂÃÃGŽyïÞ=]]]}üüü’““ëêêpg­———««kAAB(??ŸÉdz{{ÓÉs| ’$j’„Ø´Pä<5úÙ.¶iÆ 6l¸Ø‰· ƒœ¥”°~ýú   ///??ßÕÕ•œdCæ|v±i•ó¢æãKª¥¥…~ RǶ°° U3‰&tÏž={ýúõÅÅÅÓ¦MãQþ=¼{÷îGM™2ß…G½}û¶££#))ÉÄÄD`I|===99¹ššþÀׯ_#„ŒŒŒ$:ìUô¸“R¢üY¼xqZZÚþýû§M›VVV¶mÛ6®®®N?ÔIÞß1ç7nÜ8„Ð;wfÏž-Ñ¡€Ô áØÛð_íOáOf]y÷™â5@•––v}qsss„PYYÙØ±cÉÀÛ·o#„,--Å~¼¶¶¶²²ÒÂÂ"<<<<<œËåîØ±#**j×®]®®®999©©©Ë–-#÷—b8éîÝ»mmmdØû÷ïïÝ»çîî.œœþýû?žÿƒeeeÂÍß3gÎL™2%###((ˆ Äc¹:ýé=z´ššZ^^^IIɘ1cBîîî\.÷Ô©S7nÜÀ£N»uZ(rOÑèºK—.Ñ/AêØâ9¹×¯_ç/¯›7oÒ >/ƒÁ{+OF&RX]]]\\œ»»»@kÉd<¸¨¨ˆ?°°° ˆ!C†Üºu‹þ¡$Ê.R䣣£³³ójkk™LfXXyFêü¡N²ÀþOŸ>=}ú´§§'žèƒá>ESSS‰º–ãé…øç¸éàÆ"n/ò@nGöèXÆÎ¢!²y]¸ñÝ***fΜID|||׿èèhbb’’’RWW‡CÞ¼y³mÛ6SSS:Kø>xð`äÈ‘[·nÅoåääð/Ÿ¼¼<žMÂÿ{“••ÕØØÈ“ö/™ššš””òmbbbCCƒÀ“ííí---·nÝZ__Cüüü¢££ûõë'pÀ#F „8À¥ƒ"„:}:ˆ¼¼¼——WNNNii)n8:99õïßãÆb8’‘¤:-9ß•“ò£Y‚ø,Ô±uttäp8Û¶m#Wi©©©ùþûï)Î^RR‚oàbÇŽC9::â[±¢ „¾úê+‰䌖‹/ ŸhÁ‚Ož<Á}B¯^½ÊÊÊòñña³Ùª+^ŠüA-^¼¸ªªjÏž='N$GVˆÍê$ œBYY966váÂ…äý.—‹×³ôññ‘èP + Çô ‚ þQv@ w1â·8·ûläÎ;ñ÷rKKKyyyqqqkkëŽ;ø#5EEÅ”””   GGÇÀÀ@wäÈ‘ªªªŸþYQQQìÇœœ†ºiÓ¦G :ôÁƒgÏžÕÒÒ a0*** , 322ºråJ^^žŽŽÎ¥K—Ξ=ëçç'iT âãã‹‹‹íìì®\¹’››;jÔ(r9ŒÉd¦¦¦úûûÛÙÙ¶µµegg?þ<33Sx(!‹ÅúꫯœÇODnnnIIÉòåËùhäçç營IˆŽ ÃÍÍ-''gÀ€¢ºXpOçÎ;«««ùçñˆEŠœïÊIùyxxP— ÀY(bË`0¶lÙèàà$//äÈ[œÚÚÚ<==ýýý­­­oÞ¼yàÀ‡€€ƒ!õßXRRÒ¦M›¾ûî»E‹!„æÌ™³ÿþ°°°ÈÈH ôôô¦¦&¼ÒP÷fÅgååå%Í„PpppLLL]]žƒ‰½U-6Éüù£««›°jÕ*sss\âçλqãÆÆñx‰îÊ= †¬§u÷B²¢V‰‘êƒÝS1ÂÿV¸}äz: ëð¿µpH·Ô:Ô]™HgñEuv‚°°° -..–ôPüø—ãÁŠ‹‹}}}õôôôôô|}}ûí7rÿ‰zþüù¼yóLMMMLLBCCÉ¥^ \\\TUU^SS“––¦££3~üxá#ãsiiidHbb"B¯³ˆw.((;v¬ººº••Ulllsss§‘,--8q¢¾¾¾¦¦¦»»ûùóçEEžËå𩫪ªÒÖÖ¦èÒf³Ùƒ êt•¢¾@lþæÎ›žžþ‰6*¤øÒ–ío½ Á­jГȅxH²žC±#¾ MÞŒ{œžž4óI~û𩞨 øAþÐpÖG<·šú ÛñOˆ>ZÐpîwüX›Œ[ÒûÃJ=}“ŸŸá€ÞaÍš5Ô«‡ÌÜÜ?"ôn0Ʊû}h8ÐU4Wð>uÐp𲎽´ôÐp}ܧ$ Gºt:èõ`pз´í ©Ð GЇˆZå»OÖÒÒRÖɺ4Á‡õ?«º‘€a”zã@w‚‘Žz1h8‚¾:)À­j¤'ªs:ôJÐp}Nwu7Rz4ôJÐpÜG3?†øûclxA”€Œq}ï¿ÿºù¨0E@/ GзÀMd@jÐp´@Àw«ô>09ÈBÏ¡n±A{4AïÔé@FþŽ ùÈÿèj €†#ÝL IJÑB…6%€O 4A_ñ!;ÿøû5Eî˜øäÀäzL‘Л@ÃÐ G #xbõ‡"ÃI*Ðé ×€†# ޽ LÓ@†#=îVè áz?X…èÐpì]>àt“nðaçÇ ‹ áÀ‡w«ôðä˜O§ÝßûðxäV^Ÿ»QKÿ¹  ŽŸ>ÜXÕ4üø›Œ‘—:KøF4Êä¡¢Ž íWŸ4h8ö dGãß[`ħ²:O´eˆb"LÓðIƒ1޽E/jxàã ÇÞ¢wuÚà#·ª{‘Oeiáx ¯ËÓKÁxn5Ü­ð‰‚Ç^„Çho}¤ÍI[2¯» ´Ò€n=޽Eg­wrL§³yúÀÝv‚ ÿí^åõöôèe ÇÈÿâ§r“½ÛÒþѶè*Ðp²Ö×ZÀ' Ž@Fðiòöt4a€#н ád‡Pc5Ð]úÊ䘟þùèÑ£•••ýúõ;vìÊ•+555©?RVV¶{÷î;wî¼{÷ÎÒÒ2**jĈ²N‡8ññNˆ&05¤v>)}¢Ç1%%eíÚµ>tvvVUU=vìØ_|ñþý{Šäåå…„„äååéêê:88ܸqãóÏ?ÏËË“uRzþV£ˆG&~´ˆ¿“ut€„èõ ‚}šN¿#4eë#ààÓ$ü³Þg›’½|Œ£††AMMMáïÞ½Cÿíw ¤¤„_lÚ´iÊ”)úúúK–,™:uê‹/Μ9#ë4ÈF/o82™LuuuážÅ††„9ÏšŸŠŠŠ’’’²²²‡‡¸··7Bèþýû²Nè=xˆs¨|BzyÃ!¤§§W[[‹[ФÇãM~DWWW^^^`ag|‡º½½]Ö Þßpôòòêèè(**"Cx<^AA¦¦¦ƒƒC§ñððhhhøã?øñÚ=VVV²NPï>n½¿á8cÆ 99¹~økDíÙ³çõë×Ó§O———Ç!?~ñâ~;uêT„ÐÚµkÉi×eeeûöíSWW÷ññ‘u‚€ŸÖ̸[ àÒËgU#„ W®\™””4yòd77·§OŸ^½zuÈ! , ÷)((ˆŽŽ677?}ú4BÈÚÚzÅŠÛ¶móõõurrjjjúý÷ß ‚øöÛoµµµe ð?¢š\áŸP;ø˜õþ†#BhÞ¼y:::ÙÙÙ9993gÎ\¾|ùÿ·wÿ±R•wÇŸ0¡Þ{Y¡Kjvå¢PkY I±ø£¸MšcmI»õ†ºj«k‹b\(±fÝn¶]©îÒ¤Öâ5a[܆–”X èí²¢iYVeí eaÙ¬Š—F¹÷Ù?ÎyÎsžs晟ç×û¢÷ž™3sÎÌ™ÏÔ$µ,ÛiÏ ]¤ªTÉå®Èlás)…RRÊð•B¸?¿MïØâ¾ñSp½®spLjq”R í¸z¬šÜQO±ÁŽî ȉÌ>ë³V‰GFËëÇ)u©ZޤYPG ‹¤°6U)ï*¬ü³ªÐG {åÁNŽÈ™Öa¤ Ep€‚# säÁNŽpBpäÛú1Ö¾ÝB÷özgÄü@nQ`,ñ @7ÑU 'G8!8–…à@äEyyFpD.yócš]Bt“c€\Г™ýÈÁY’Ñ6Eeô¶»ÕåÅŸRmÒéý4EGpDÆÂD·49GpD^(!ìƒÌ #Gä…ô²£ž õ~j¦5fU#O’&SW,5R”OGäL< ÖKL ;ŽÈ=¯dàˆ¼òÂbU##½Õ€"8"g¼¨”ßC]Õì@Þ‘?ad 9@pDÎXc"Ù€ 8¢ØJ<¥šaŽ€¼¡x)”¸Ì¡órÕE—”ÉŽ€ü 8ÙKj4-q{* ˆèªò‹Þj@®à„à'Gä^ò’ƒ  ›Ž@®1Ì̪FáI­=RU pY¡Å¥ ü’…­è‚#wôVr‚àˆ"Hžº†àˆ¢bJ5]Fp€‚#P säÁÁ0G²Fp,>)Å @çà„•cwµ±}Jˆè8?ÿ¢j´·zÙHÈÁà§%­S^PRʲ¦©ø„˜¤)2J@QÞü˜Š èÔaR‹#®ÝÁG 0(ÊÈÁNŽ(æˆ ‚# …2àd‡à Ã"8À åxPL«Ë#õú 7 _hq Bÿ$…Ù 8À ]Õ(­£V*¡ddzµ´¿Ð Ç‚«ÆP?©â¿–v}jóܽT¬Ÿ¬Ò¶ÐEGä]­Ö·”Boq~n–²´!2<÷È9J¡”¢ : ûãˆâÛV)@Ž(ް_žÔ@Ž( â#KȲ@pD‘Döè.‚#ŠCŸ?î s¬ÀŒròƒàˆ‚#;Ð-G ¨æè2‚#œà„àˆÂ¢ 8ÝEpDa°È^ÃÝDp€‚#œ‹Œ Ø s¤·ÐEG8!8Àɸ¬p”jƒÑ=Ô[̓h#‚# N)%+:ÎQ…Ö`ÍØG@{ÑU 'G8©JpÜ´iÓ’%KæÎ{ÕUW=ðÀ'Ožtß÷رcóæÍ[±bEÖ'$¢(  *׬Yóàƒ¾ñÆ ,˜8qâæÍ›¿ò•¯œ={Öe_¥Ô׿þõ3gÎd}H$…PD&:¯üÁqhhhpppêÔ©Û·o|öÙg—.]úòË/?úè£.»ÿð‡?|饗²> €ì•?8nܸqtttùòåS¦Lñ¶¬Zµª§§gÛ¶m£££éû8p`Íš5—]vYÖ'QuÔâ Ê÷ìÙ3f̘k¯½6Ü2vìØ«¯¾úĉ{÷îMÙñܹs+W®ìëë[µjUÖ'ÔÇ0G@§•<8*¥<8iÒ¤I“&éÛûûû…GŽIÙ÷{ßûÞk¯½öÿð^xaÖç:¤b˜#WòàÃÃÃ###½½½Æöžž!Ä[o½•´ã¾}ûž|òÉ… îß¿¿Ñû5k–±ehh(ë4#þ±^Y%ŽÞÔé &Û'Nœ(„8uêTÒ^+W®œ1cÆý÷ßßÜý³Rñ^o5ãA ½âë•’%޽½½RÊááac»W^ÇkwŒ[½zõÑ£G7lØ0~üø¬Ï ™”B‘"ªÖ[4¢‘‘Ž€)yp7n\OOO¼eñôéÓBˆpžµî¥—^Ú°aÃÝwß}å•Wf}øÂyJuÕ†9&=&´8:§ä“c„S§N=qâ„—C‡ò.Š_ÿÀBˆÇ|Vàæ›oB<ýôÓ³fͺᆲ>!¤‘BY¥üÃÜj@甼ÅQ±xñâ¡¡¡çŸþÓŸþ´·E)µcÇŽ¾¾¾¹sçÆ¯ÿÁ~0¼¦çÔ©S;wîœ>}úܹs/¾øâ¬O)…7®QZ¶ûèРMÊ—,Y²víÚÇ{ìšk®ñæÄ ?~üŽ;î8ï¼ó¼ë¼óÎ;o¾ùæyç÷ÇüÇÿøÇ?þñë·°ÿþ;wΟ?ÿ‘GÉúl`„Ç «ZOŠÕn} ½Ê§OŸ¾bÅŠÕ«Wßxã‹-:|øð®]»æÌ™óå/9¼ÎŽ;î»ï¾™3g>óÌ3Y/¡”BI?F†9zÛhn }Ê…·ÝvÛE]´eË–­[·N›6m```ùòå^ëcQU¾!MF¯~q•##Ey"U…?_;dÖ¬Y¯ã˜Üœ&e-AI!ܟߦwìôZ3¹£ðƒ£’B(奔B»•†;ç; £ºñYŸKåŸU]fhwl(Õú©½ìÚª]Õe`Ä 01}8hnô{«¥PDFz«Ap,k÷køk壒9Æ‘G:€àXIC÷ª=Dhåx"ªý˜Ð ÇB‰gÇ2¥Fe_dÙØX¿ûÕyrL¹Ñ[ h;‚#rÄ2{:}XL€ 1«º˜Â™1¥ÌGƒ¹B‹c¡è3©½®Øò¦F7Ç¢1òb©[›WáaŽFo~Jç>­¹€F Åš„*Âj ˆŒ41ŽpBpDIщï= BѸh‚#œ‘SÔâ oŽ@ÉÑ[ h‚#Ê‹aŽ´ÁN¨ãˆq/^†x½ÕŒ´ˆàˆÜB©ú•«@VèªFµ-52Ì€ö¡Å(›¤.~ºþ-"8”¬OݰÊЂ#ª¡ýÔu–´†àˆÜa(ùÄä””Þ1í s¬ä`Giœ2ÐZQR^ß´R‘NêðWc{¹©à½Õ€ÖQ^^£ÑäV™º<´Á¥fÄJöSÐ^G”ZؾHj Ð[ hÁ9"¥ô&sÈ6æ<¯·šø@ËŽÈÕi¿ú„ñ€¦Qjñy0•šO€Þj@s¨ãT†z^LÊŽT_$!8 ÕdZV¯ª0&-ÏCK$ ]Õ@Ñ[ hÁNލ*Ð,‚#PQôVEp€‚#œQ= s Ð[ hÁNŽpBpDnts=z«ôVܱä P!I‘ìpAp*C •°NwÒÒÕèèªFU)¥„PR(ÚÚpCp,)…¢Ydƒà€)2'Gä‚T"«Ü"½Õ8ar *&¡ Ò/b<6´8¢bÂP¨jíŒR ^TÕÔHo5 .‚#ªG©°xØOí·8V55à‚àH¤bŒ#ªE½È´×[M%p@‚#*Gi?HoX£RUÕ®jchcÊHG2%TÁ]e†¥ýÞõL¢JÅ‘ž“›˜:#csØU%£9”ÁÝÉ(Rª`†ŠÑÆÀ.ò§Èi:AT%# Ø˜'Gt$!8BxãéH ÁNŽÅQÒb1áÚ-Ù –“½Õ+‚#œPŽ'§ŒxT¿C—±Š ŽÇüRÁ?t½Õ$#8À Á€uŠLR{¬ Ϧ‘©·È!Æ8"Sù™R];$åO`/é4v˧Ρ/êÚxG™zQ݃`|0tÁÝfd©ìWÊÅèÎ*eÇÈyû½ŸkSd¼§%þäÈÚ•]Ÿ·ô]TòM9ÝEø¬1bÚŠàˆ®Š¶8J‘°(¢Ž¥Öñ|ÞxìN9¤0¶Z/¹ùó€cŒ#€LçҘߑF:#½éQO¹ OtÚEJ)„ ˆº×O¾/@»Ðâáå˜xûb¼Ñ±D=×2µG¸-·oöõ×{ô,ãí"eÝ–HÑbï6ÀÁ™‘"GËÚÕ²…>š´ËÆ÷íÛ7oÞ¼;vüà?øçþçŸþô§½½½ßÿþ÷_{íµ¬Oç49º6x1ÖÕ.m×ÑÎÜ qÆF N¯Ö:»[ NÊöÏzäRënNìwNNùI©×ò(c7^wX$]Û*¢üÁqãÆ£££Ë—/Ÿ2eŠ·eÕªU===Û¶mµî²}ûv!Ä7¾ñ°IræÌ™wÝu×ÈÈÈ /¼õ ¡ëò6ÒQJk¦©_t'anŠ1äQËmÁ?éÿ“Y=2žV#€5íÙƒäë觯¢jÚ¡Õ«‚™§?hUùƒãž={ÆŒsíµ×†[ÆŽ{õÕWŸ8qbïÞ½Ö]:4a„9sæègΜ)„8räHÖ'„*³Çžøüè$ñJ®©+œNTR;eì°ãí”éŽq/áúÐè ²J>ÆQ)uðàÁI“&Mš4IßÞßß/„8räÈüùóã{=ñÄãÆ™Ìþýû…3fÌÈúœ…®tLoÇÒ3JÇ 1,ñLs¹mTeÝÕ®SV±ú‘"¶=éf“îºÄÏ€+ypéíí5¶÷ôô!Þzë-ë^³gÏ6¶ìÚµkppð}ï{ßM7Ýär¿³fÍ2¶ eý`äH89)bÁ¢–mRÚ½ÌiË‘)&õ&/»Ñ§W…cs£´õƒÇNß~›aÝæÓåÿX¯¬’dzgÏ !&L˜`lŸ8q¢âÔ©SuoaddäÇ?þñw¾ó‘‘‘üÇœ €â*9žÅ‹ŒŒ<ÿüóá¥ÔŽ;úúúæÎkÝå©§žzî¹ç¾øÅ/~ÿûßÏCjT©k²( 8¼†¨v$2ëÔeû9~ AqœÌ*LæqÅÈ6Ÿ`ZÑŸ”@uˌ׭ìcUæÇ@q”?8.Y²d̘1=ö˜7®Q188xüøñÏ~ö³çwž·åwÞ9tèÐÑ£G…J©ù—yÿûßÿõ¯=ëcG>ÈZlÿW!„J %íkœ¸KšMÛR¡¥—ÿÕ%YŸ@þ•¿«zúôé+V¬X½zõ7Þ¸hѢÇïÚµkΜ9_þò—ÃëìØ±ã¾ûî›9sæ3Ï<ó»ßýî¿ÿû¿ÇË-·Äoí3ŸùÌÀÀ@Öç„î²õPK%DØîØ\{p¬—9©ëÓ¼ enwO™zeë3¬‹X—§]Ú>Ÿ&íÙw˜OSÅç@Ê…·ÝvÛE]´eË–­[·N›6m```ùòå^Ež8¯ÝñìÙ³¯¾újüR&VW”RRJ³ºŠÞüê?³õIåudøaqè~"Ꭽ³ÞI]îk«æ2\|>>VUDžkÿ^ÜçÓtGƒŸ:p0kÖ¬Öë8ê1EˆÚ´ôe#­JMïØè¾z•±£{ÅÁlwBH¥ÇFä°¾N$ºi¹!áAÍG£Žc»vŒ<‰ÉŽÒÈ3Äܤ`r¸£v¾®TüSk#ã¿.kËg}U¢Åh»¶Lމ´ÿ¥Çÿ •kÛ+–öö&ë u×§±n¤$$€¶#8¢«Š;$ÎÒÆã<¯8öù‹€Enø¯òHdžXþT¢Ï{‹ëÓ@fx©ÑéšI“aca1íöŠœ,!’¦¼¸uާ¯O£ß…µœc"´QùËñmaMuÒù³WËŽÁ4}Œc0€2±p ”yî§.}MǬ8®£ÝÜO€&Ðâ4É¥«:áƒß¾S*MÙ›°ë®Oc]œFD)“æÓ@£hqš×ðȾòNp¡Ñ±UR¶¸>¾—ph†L)>IŽèžªM¡p]?PSÚ\‰¶’Á"FR˜«N†í‹ÖÅi­ÚZCW5Ð)„ ¦8¸-û¡Œÿ ‘ØMY,L¯n»Ä¿ oÔ©øâ4ƥ̧Ђ#Ð^‚ gÆJÛ(´H9ÆV€AÔ+Ÿx‘J)lã ÀÁ‘4Ü­œÃà¼Å¬•r+ËWæ™ 4:vù§k®®;´Ñ¸f&RC,¤óî– Ž @&ÕÚyl ªðãY%+vnNÏý²ÖŸõ /témˆŽn´nT±ª‰àˆ.)_+T­Ž£6>1ln¬õ_—QݧR6°"#Ú©ÅG<^2ý™f> P5G y‘p¤”ÞèJs‡’æÈÈc<RHáw„†§_»´Lß"â¿YIŸOcöqýƒ‹ôj>ŠFG òŽ@c¤Šôéù££ÃÃiî+e>r•ed渨Æ+aKd8Ê0—äí_f´Y5Žóiâ³p˜OT Áh•%•к§ËÛI"ª%¿Ø¬š†‚]R‚li(.‚#ЯY1h¹ñ?þ”±v‡wyå?•P² u͑ȘáÕÐ|šŠ¿:€â"8¢Ê73F;· &*åwÅJÒŠÁX0åjIåÄ“ªBÖ6z#7ÂÜÑ¡À.÷ WŽ€«p8£÷›ƒ‹j×ó²cãý€%$½ªE•~ òÌqÆ´õ¢¤[³W…ô^ ú,"Ûíó• È?‚#п#NZ—œf€c ö…T÷9K^k3Èœ–Sr½Y™“õ¡77ú½×Z+‰”*(Y¢‚ŸÍë!“ÿ ·ÖA%¢üÑitX§çE^B@NÐâˆN1J®”£‹ {Üê6‰s««4ÏZšA™V¤â©[²é›Õ§I¹ói€|"8¢#Œ5©“fÆä9MêŸRRú¼’úµRâ`eëòXª¶~‰ExšžOR 7U¿zyã÷ íŽ€…¥vqdfLC·TvНéù4I7¾ÖôiÚÖFGæÓy@pê–ˆIø„²¶)Ưìë©Ý\?ð” ¬c©ÕO¶uuT¼u¿Á›¥kè&‚cžDkUD~N`žsE¬àhÔ.Íõ³F—ÚJùÕ쪟¤ªxpgùÓ6*UÕ£Ro-ž2ÛØ ÀÁ1OÂM¥¤”‘7ÇÚœ Þ3àU±ç=ë¢=•æ%2¬ý˜õYuÞÄêÿêlMÞJ²,(ëÓ_äм‚CeŸº¯•”•²´Á1gber} )moÏðÿòÑ+Ùž=ë³djÃKL&=8RHoá´FÇ<Ï—B«¾}%=åIëӸ̧ÑoÁ:,²ô/D C¨ã˜KÊ–DHÝÕæN.æÇ”P¤ÃŠÒ jBTRk¥m£Òþ«×• S¦ôÊAI_Öç ” -Ž@‘™žžæ;¼ÂN:>½€¦8N¯–±—^Ò°HæÓÍ!8æ’”åxÿ*ÂÌËxÃv>øú)…>Ʊ”PEøÛ@7È. E‡‘4ùwUw´%ApÌ-ÿ™™1–ò±¡¼5cšh84¦”ÆnAI)+ù´’‹ÅèóUmú£mn}š^0ª2¾KC‘a‘@ˆ1Ž9e,áJdìˆÚ’ÓA8oû¸Æ()„ÔÊñ4YQÈ„7Í«+ïEaÚke¥l!j£*E½ãE¸Xs)e–.:D)•žÛ×4¨gGÙô‚4ÅgÌ’ §20§fñZmVHO“vƒÁ^P©íh½¨ºªÑ)9ïˆô»žõ*Ýé;Ü;Àì°6fÌ6-þi$÷ѯàØùÀ°HTÁPÉÅkô:Ž ‘Æ‚@²ösØ„YèÅZÄ`G4¤î°Hiž”ðê®ŰHÀ@W5ªHë >/:Ù9ª¢]]R ©„ Æ8Joü~øQW¥Ô’BZ>ÒÃNEEapÔÑJ³ŸÑ®‰t¹G†E¢Rލ0•Á¾7ÀÑãà®1SY2þkð9ÎÇ2ÈøTB¥\†3Z{«Ãôy9Žo ‹D‰ÑUŽÈ[çc¤°R~œèÇ®U²OŽ©BdLo8¬À€Î©½Àc«c»Tö±Þ uÁCaÛΰHTÁ1§xOi£ø;µŸ³>0ý`²>Š.PÞ§¸åð²´”üݣ훓–´6$Uö1Â%Ã"QbG´Ÿ—¼`Ö®BÁm£”H. Øå–€ð0üñŽúcE½w š«1î›tkʬûýÏÉ+EDpDäiÄx|{Nš÷"³ª­‡Dv:¬ée¬«ZhM†Fc¤KFLYD›–Hä Á•c¯ã­MÀètK€?3F?¤°"Iè–<´Þ`'†E¦\™fKtÁe×¾ùjÄúÅ]ëU—Ö×Þ½{Ù1ü/€.’ÚLµ††EFvŒŽåmhÁC]/’ÑeG4¯6C6©^J0‹6óÖN]Ez¥îî¶üE €‡?hÙÑûk²yAUêd‘ÑÙÆ…iï$õJ±ZÛ Ý;:âŽéå”è‚#Z¢Dð ;ØoÆËªt³}Ì×`mÌÓ>0²:ÔZ»c쪕ýE[fGÿ¢•ù×TJÂ_aý?Âôuk„møŠKø³^Í}t&Ð(‚c.IYà×v–Çm‰…y$õ®ê°·Ú?‡ŠwZû7­‘eÐM‰£/X#G¦5 J)´â`a§Q·<>»•)á@+X9å”ò}ݯþOa÷tøCÕgÌäcr>ζ\Œå?™´clÕ(cÄøMW¶L¶³I‰°u—X<G”†Bês…ÿ¶m›£ªX$›¾häžþR•ÒXöÚøµ ñu´E4M&íÕ–,H „Ž®j”Pݲgµ%óƘOíýœÃãlûy iÿå]\ÄuÇ8&UüõšEò<Q‚ïÛè<‚#ÚIf6¬¦öÕZ¥ô ¿)׌ÁRÆé…òÛÛÞ¸pŠ•í£ÌúéͲ¢í…“^-²-cQôÌoƒlñ-9%ÂR™¼šŽ(— ¦ŒaLÏ¡è`)ÿ Ã²áò§ÙåN‡©mŠ~­MZD;IJ¼‹àIšgÓ®ïþ´\–Á1(þÜ(¥µJ¯õm+Þö #ŽümzE¡*Íž ³£>™ÚœX]§x3 ~h‹ö0Ô}ûj¢O9½èOºæz·Í&ÏèÇY—«ä¢íŽhóó¼swdß\Ò¶¸°ÑÑ›|<Â^WµªRjôh»c¼ Rû$.ãߪ¡îº5Öí)í…z-[a+l®_³õ/Þæh÷XÔoõQLA£¬¬•<  W,Ñ[¯«Z*? mÕÄôσ²¢Ï%V·¹± ŽólDlŒx£½ÛM$²(Ž(K2ÝPöð$…JÙ'†W&;v«uÈÙø¥²Áî½¹¾‰Þmýv,YПèÆR7FpD{ø-aÝ»?mZ±L¨m(e™=þ™`˜£6Я64¶" ͨ`ï¬è’ÈCãeí 64:ÏÆ¸»xéŸø½¸¯‘˜rwI»7ºEpDój­>Þ0<Ë"-mîR´,öZ‘”䟬?«:,Ç㕱‰·2æ}æx[ÑmŠÒgÕ$\¥N´Jhÿ«»oÊÜm½œdRK§{ïvúR7"u/tÁ- [}ÂæÆÈ`Ùñ tf9Cý·BO¯Žò;ŒÂ }VµÐ²£R)!Åä31Zõ_õé2A!ñ°‚º½I’ ‰êˆ-?•XHߥÑɆÖi×–{lðFšÛ.ÊòΟOÇœ©Ìµ&sô¼V7¿Å1òÕÕ¬mQñ’<æ¬êp…kïÑ®Y+Y<ö§2ÞÄ™j]ûÖ¯.ôn£:,MƒõfUë[Zìz¶Ü¸UÝ—ºi⢔FJ‚f‹X«#ÃåJ·€Js†¿&¡RáÇj>"L—]V»îâÚ2¹Úµ‘R»G¡M¾Ñ×ÝNéÝîÜv¸£Å­’iÁ1¾#¯yå×Ä×¶ŽéZ‰ÍŒ ï,«œöi¢Šd—º±C‡)UtÖ‘ª·Y5‘_.¨ƒFÇÒ‡¢dzoµÖîèQéÔ¥®Ï q)é*åWÑŽÞíð¬q-)PZ¨Ô ýãUÒFFFòiÓ#Z6G´Dv¨1+úB¯æw¾Ææ‹;¬TéOÁö®žõÙu˜Ù02·&º#»´o éq3á ªëR7Ú–¤@)â™2z.-‘*6Û2}YÅþª¾_‘kÊ%5FWŽ)ת:ú¬ja~Q—œñf˜•ÃKÙèX;ùÚLš”U ƒG‚nn I©ßY›y]ÉÔìhlÑOŠHÃaÐݬ_¡-Ë*V“cò¤Üá 0[ÎxPÒxÝÓc™¯MXI¡ŒéD…ý{ó¹­ÿ¼‹kZ²Î¤©Éú´€¢R ÿlWUñy0ÖZâþÏÑWhú«T¥^NëÑïÝø!òÑ£u|©Øûª²m¯ZQ_zO´7¡ãÊÒÆG+F±5ÀæØÀC&eÎß“ 1úSµT¤­6 šö½*U-è"Kû_0â0}Äd-PÆF6\»1ú 9eTäîlW€‡à'ö®½°êr }|µz„á] ÿ›eÊ´½Tau+и1ê8*} ¶°MÄ.f3dýÇ¡î`ܰ+[X*‡S3g´Ê·X%×q Ž~)ÅzÒŠ¥§ŠþœžqFÇþp¯Š}ÑU\о'å¼õ+ϼYÕÆ &i … ;»c½Þ%£„J[áºÖ¢¡¼>îð_ÖäCøšèÜ=è=ÝÆúXéàMÕntùd‰žTKŠZѤö,,L×^•…~—7ZX ›ýåv”ÑÖû(¥ô—ÆŽ*dzRº–@Ù4S`²ÞœnwM¬|XJGäMBoCÅ^™Žà©-u­‡EÛìmu0i.]p~ÓcòÀO§ >º¥“ëq‡·É'K£ŽhF[šÕ}%-©“C~‹£¨3±ZY+o&õ²#׎&Ñ,OOÔþ´¡Š‰ÝÓúÌIó–êTðJ k-®Ç|»–[ ÑQs¤ì³iõWÃâ‚©*õÊì£f¸Rú"4þHÀ¢õé*/[†·;|Õ‘aèTõ®hL'Ö¨ÊàH {±•cDÊœîR · Á k¢¹1þE-Üí Û¸ŠVŠH aÖ s¤RÞG ‹ G©Ëð LÄvùVТ¶VaTÂaÁk½12RH‹ª=eMKlň¶à4ÔHY¦ fU£1í™ãßTmrŒa·µ¬ë\§¢,$ãƒ~ÜfJª¤‰Ø¶e²Í],ÇÑÖhÕÎ?”— æ?¯¦©¿WR•r2%PÉ=Fåp½¨xÑqñ"ûµªªR&\·uÈ{Ç fUûÏšRAcš¬M¦‰Íªñvôþ‰`ÇÄø˜°½åÝíÎ(ûd†Pa_½kÚ êø„»[ úh÷|è()ü²®‹ã´XNéÐUy˜¬ínnJiÐ#™¾ÒŒwoÈŸ0 F»ª…6ÕRÇGhµÚŽY|¦Ù¡À‰S[ôÚõÒÞçœM«£=ãSmŒá˜¼*äÁ5µ”­À~j6ñÙiŒkôï¨þ9HÒ•d,ØV Ç)úÏ>Ø1š#É"aÙH{˜JkWU¶HtsÍÖª“í¥'¿öµÖfÕ÷vMËšmÐ ÇÈO“”cÔzëd<ÛyŸyAeéxa½•‘»Ü²¦|½áЯ㣷“©Xµv[óylaIË=z¿ûã)ßQlŽi/žÎÔ+ˆLŽi5Æó“Tb ý×øœnëCÅœn@pÌ|—ã‰~h)ýXòV޶´÷ }qD¯}ÐÄê¢È„ßèhUåý%xÉO%uj7Áá®ÓvŒo4ÏP4Ùþ'½¥U÷†*ÖzÕ¥Â:Û~ •ƒÒ‘A„ŽYhp¢@“wÒÀ'Ÿß¦d$¿Úð6¡¬;è[£ jªØŽúÅ^â¬Ý]½ÑfÈDŠôM‘õ #Å £ô®êxŽ´|×Ðfä4´PM8œÂ¼}÷¬üÕ ç±À¤uÔzØcó-ÃWçÕ—ò>ôÇŸtQ°½nƒe0¦SÅÏ1¾Käç¦gðødÇ÷%O£šމ6mÚ´qãÆƒ^pÁ×\sÍŠ+úúúâW‹¿³ô‹þ„·› 5YÇß K/^-Ò™—&÷ú*K_8ÉAÅú¼¼‹üÏ\-*&«[§;Úk©϶|oºýýýYBGÔùà5fxĆú³j¼¯aÙÈ ~¥eG£ZSXHZ_,þ¾áaÔ/®ˆÜ»”¶í¶ÝkÿŸÕ߯b'£„ ³¦‘#ë È´N”ñNª¡94M ƒÑv1jUÖZUµplœ£Cƒxjvǧî⿉­ªI×"ÜÅ5§° ÞŸ¼?„Ø.ú“(„èŸÕÿúÐëEÊÇìØ¦­ŸõUø:A9»5kÖ<øàƒo¼ñÆ‚ &Nœ¸yóæ¯|å+gÏžµ^9Zt#œ¤/ôJáS­N‡ 7zŸŽ^S‡·1.±®‡ŠÝ‹ðßà‚Ýeý?⤩(A°K x‘½‚ý®ÌjÕ´ª<¥d(öÄ+çE®ƒ¢?þ·oq Kÿè#,µšMfn3Å1þ9Ä©xAQ~–4þéyCð’cZJއ·’p¬ ¿â:•^V©M‡Tg륩»4ñ^÷çQÔÞÞk%Yüwxiy—6¶k]-®»èoøaÝ+ãã&ñ¦´]¼dÔð.98Çô]ºvŽÆ!U!2zŽCCCƒƒƒS§Nݾ}ûààà³Ï>»téÒ—_~ùÑGmú6½~·H3†µƒ/ò)˜ô6­Tƒeð:h°–±ÿµ ÿ£Ý²ß–)¥÷/,ñ{TÉgçŸxÐT¾»°–Oxï–»IOíÖ2ònçÙÖÄ96½Q£û%p»tá›ßÄpä&ÎÑz/];G‘Rz]Gp´Ø¸qãèèèòå˧L™âmYµjUOO϶mÛFGGSv Ge…-ˆF9kÿNÕš(­}ØÖ›² nª‰]‚ÿZA®óÚí£¯(K‹bÒ‹'òeLImß*¾Ú*F•Aõ´ùÙ¿,Œ›ÑïÑEk„ðÿ´”Ù?®ü·e$kêǧÿC<§Æï4Øî·>ªÚ-ȰÑ?it£~$Ú×UÔ⩈&×ø½„/#¯TªØ]D? õdŸüœ¥%ݶí>Œ™|èvç›~XÚ(çX+»Qâ§¾Ž{öì3f̵×^n;vìÕW_}âĉ½{÷ZvˆèëÿJtF ¦:ý¯ÐhAñÙ›õ6¿¤¬SûôHßÅï"´}Û×¢žRNB±p]¾©þgЬNIÅä5¼>\cBV­ÁÉ»ÖòŸÚ· ASex/aùŸ8k7í²Ž¶DF^‘ZÛ¤°eÐ`¦­‚¥ˆ¥UýíÚÊ;1ÿ¶jYÓˆ³µöXKÒ•a»f⣪½³… Àþy:ìUÑp\wãé0äp¬®Ú½'~y°p0AÊüH9àpã€ëcð=ÇðÔv1ÎEº=,œ£Ö±ÐèÃRçwéÆ9GUG“RêàÁƒ“&Mš4i’¾Ý›÷päÈ‘¤¥Ù)4°Q2¸Ž4¯}¡Ij“¯ÿ÷ëDNkÞ/–Ö⦻ÚëÁüøª«2/$4 )2 !¢í–1ŽÚ·ÿ0zI-ÿ…‰³ÖÃeý‘ ^ô~Öú¸£¡So,—Z ÖÒ/„Ò[´¯ÙÏmÁ·7ûw'ãã?Üè)-æê¯Ê`½…Òh°Œÿt*(—¬i¶qºÄSïÄm±5e—ð/Dªf“sügím¶±8®ÿWRvIø3nlý€µÿ:î"Œ]òyŽÚ–6Ÿcê.‘ïi]8Çä¯Áe%UÅN¸®wÞyçÏþìÏ.½ôÒŸÿüçúöŸüä'ó7³råÊÛo¿]ß^›Ê| Ìš5+ë“544$D­‰Wš%åD9“7uz„ Æö‰' !N:eÝËoQJIa¥ïòX´p ¡¥8ޱ‹¾=¾KC7岋²ýõ'Ü»«ò¿’‰x•ÞÄ‹Â_ÃKÃöHccü¿ñÛ4¶§ü }¢¸œPäõ(k=2¡à¢ùs°KúÂ3í¿÷&v±ýÜÄ.:Ƕ<,m:Ç\?,ù8Ç\=,ÍO¬),ºªM½½½RÊááacû™3g„===õo"ÖÁdn¯¤T#Û›¸©„~‰²ð¿ÑþÆh= Zw›Jýt„µ“(žÃkÆG€©Ø€c}èR¸1¼H¿‘ðÒ0#3ǵíú¤ìZøŒ£k;2jOZIÄ.ŠÜ\ê.V)CµZÙ%>ê I£œrãíÝÅñ€[Ù%ó‡¥îq–àÛþ°Toê -ަqãÆõôôÄ[OŸ>-„çY뤑ýŒÚ¥‘íB•7ÉäíÊùÊ)—&ï⺌5RŠ06tl@6’¬Ûõ¡ñ‘L)Û‹Œ!•zÂÌpÁ^ÊøìÑšHÍ•œ´†~oÀ¿PÆ­é·o´}FO9ö6eßEOØmßEjï+)Vw{øè¹ß{s»øOX'wÉüa)Ð9¥ß{g–Ê}ôÑâh1uêÔ'NxI1tèÐ!ï"û>FKF0ªWk ¶‡¶—¿ÒcYC7•²KÊ•]ZKáž¾=a*@䇸v·xª7L¦&k?«ÈöȯJ»S£?åà㻤œ¯qk)7Ôuw ï"|ÄÜw1ÿ†Î1ýévÙ¥K‹çè²K»Î±£KCçX±æFAp´Z¼xñÈÈÈóÏ?nQJíØ±£¯¯oîܹ±«‡IÐþc«ªXgþ'¶=¶[/;¶›ò¾7-¡‘þhmzµñ¢‘¸ TW[2hÂEÆb.ÿŒ[Ïõ¶–ÄÐzÛã·VÿI¿BݨÚèM5ºKzwgVÖô5½÷¤sÌðaIùbÓÜ9Šv<õI/Þò"8Z,Y²d̘1=ö˜7®Q188xüøñÏ~ö³çw^üúRøÅ£K…‰xüR*Ñj»„7kÛÝ%i»ý¦ÂkÚ#hYJ£‰¬Ùæxª·}Z³fthuŸÓ“nvI9àNï’”æ»vŽ=,ú½'>,Y<õÆuª€rðE‹>|x×®]³gÏ^·n]oooÖ‡ ‚c¢Ÿýìg[¶lyùå—§M›öÑ~tùòå^E€j"8À cà„à'G8!8À ÁNŽpBp€‚cÛlÚ´iÉ’%sçνꪫxà“'Of}D膳gÏþð‡?¼á†>ò‘,Z´èöÛoá…²>(tÛ±cÇæÍ›·bÅŠ¬]òÊ+¯|ík_»îºë,X000°{÷î¬Ýðî»ï>ùä“7ß|óܹs?ñ‰OÜ{ï½Èú ºàí±fÍšµk×N˜0aþüù‡þíoûáxýúõãÇÏúÐÐAçλå–[öíÛ×ÓÓ3oÞ¼?üá{öìyï½÷î¹çž¯~õ«YºD)µtéÒ—^zéÆo|ä‘G²>tÜ/~ñ‹{î¹gttôŠ+®èééyá…Î;÷ƒüàŸøDÖ‡†Ø»wïôéÓ¯¸âŠ“'OîÙ³g̘1?úÑ,XõÑu‘BË~ó›ß\vÙe‹-ú¿ÿû?oËßÿýß÷÷÷ÿÝßý]Ö‡†ÎúñÜßßÿñÃÃÃÞ–×_ý£ýèå—_þ_ÿõ_Yºdݺuýýýýýýý×õ± ãÞ~ûíùóç_yå•¿úÕ¯¼-ÿùŸÿù¡}háÂ…###Y:È{ÿ÷Þ{ß{ï=oË‹/¾xùå—ò“ŸÌúÐºŠ®ê6ظqãèèèòå˧L™âmYµjUOO϶mÛFGG³>:tÐöíÛ…ßøÆ7¦å™3gÞu×]###tXWÄÖ¬YsÙe—e} è’Í›7Ÿ>}ú®»îš7ož·åÃþð§>õ©ãÇ¿òÊ+Y:hïÞ½Bˆ/}éKãÆó¶|ìc»üòËûÛß¾õÖ[Y]÷ÛÀk¬¾öÚkÃ-cÇŽ½úê«Oœ8áý¡¬:4a„9sæègΜ)„8räHÖG‡Ž;wîÜÊ•+ûúúV­Z•õ± Kþýßÿ]JyÓM7é¿óï ]yå•Y:hÚ´iB=#*¥Þ~ûí1cÆ„Q² *tª¢”:xðà¤I“&Mš¤oïïïB9rdþüùY#:å‰'žˆ¿_ìß¿_1cÆŒ¬÷½ï}ïµ×^[·nÝ…^˜õ± K^}õÕ¾¾¾‹/¾øW¿úÕüǼýöÛ—]vÙõ×_ψöÒ»á†Ö¯_ÿ­o}ë‚ .øÈG>ròäÉÇüèÑ£Ÿÿüç+õ@plÕðððÈÈHoo¯±½§§GD¿š |fÏžmlÙµk×àààûÞ÷>£Aå³oß¾'Ÿ|r```áÂ…Þ·”Þ»ï¾ûûßÿþÒK/ýÛ¿ýÛ 6„Ûg̘ñÝï~÷CúPÖˆš5kÖSO=uë­·Þzë­áÆx ëCë*ºª[uöìY!Ä„ Œí'NBœ:u*ëD—ŒŒŒ¬_¿þŽ;î~øá‡'Ožœõ¡ƒÎž=»råÊ3fÜÿýY ºç÷¿ÿ½âàÁƒ[·n]½zõîÝ»wìØ±lÙ²ÿùŸÿ¹÷Þ{½”ÕéÓ§~øáwÞygΜ9_øÂþüÏÿ|üøñ[¶lùÅ/~‘õ¡u-Ž­êíí•RÛÏœ9#‚vG”ÞîÝ»¿ùÍo¾ñÆÓ¦Mûö·¿½pᬵzõê£GnذÊJ9ÿüó½~øá°øÎ×¾öµcÇŽmÞ¼ùç?ÿùç>÷¹¬²råÊ_ÿú׫V­úË¿üKo˱cǾð…/Üwß}O?ýôŸüÉŸd}€]B‹c«Æ×ÓÓoY<}ú´"œg²z÷Ýw¿õ­o}éK_:vìØ²e˶mÛFj,½—^ziÆ wÞy'“!ªf„ çŸþøñ㯻î:}ûõ×_/„øÍo~“õ¢SÞ|óÍ_þò——^zi˜…Ó§O¿ûî»ß{⦅þô§Y`÷ÐâØS§N=xðàéÓ§õ᱇ò.ÊúèÐA£££÷ßÿsÏ=wýõ×?ôÐC|O¨o­ˆÇüñÇ×·?ýôÓO?ýôÌ™3Ÿy晬2eÊ”·ß~[J©oôžÏ;—õÑ¡SNœ8!„¸ä’KŒí^Cãï~÷»¬°{Žm°xñâ¡¡¡çŸþÓŸþ´·E)µcÇŽ¾¾¾¹sçf}tè §žzê¹çžûâ¿øÐCe},èž~ðƒá‹ÝsêÔ©;wNŸ>}îܹ_|qÖˆºîºë~ô£½þúë^é Wyrž%vÉ%—Œ;öÀJ)ýkÃÐÐâÒK/Íú»‡%ÛàØ±c‹/¾ä’K6mÚä͉yâ‰'þéŸþéŽ;î`íÚSJ}ò“Ÿõ©¬ tüøñÏ}îsÿû¿ÿ{É%—Ìž=ûĉ¿þõ¯GGG|ðÁ[n¹%ë£ëºªÛã¶Ûn»è¢‹¶lÙ²uëÖiÓ¦ ,_¾Ük}DY=zTqöìÙW_}5~)Sd€²ºóÎ;'Ož¼~ýú_|±¯¯oñâÅË–-ó–ŒB‰MžçŒJ«Õ  4Nre 8À(G…à£`‚#ŒBp€QŽ0 ÁF!8À(G@Μ9£2¤R¥JO<ñÄ!CNž<©¿þ¢E‹¤,XÆ»ï¾+m¶_¿~r{÷îÇÒ¨Q£Ê•+שS' àƒ>HII‘»´ÒÍž=[zG^|ñE¹k)éS—““³páÂnݺիW¯råʾ¾¾={öüüóϳ³³ ­ið£®V«=<<ž}öÙwß}÷Ö­[Æ<¥É“'˽{;Ap,77÷êÕ«ßÿý3Ï<³hÑ"¹ËQž_~ù¥aÆÑÑÑ¿þúkJJJNNÎ_ýuäÈ‘÷Þ{ÏÏÏï‡~»@{pôèѦM›Ž7î矾qãFNNNRRÒ¶mÛÞ~ûm__ß­[·–º…‚‚‚ŒŒŒC‡}øá‡~~~ r p\j¹ P6^^^...ÒíÌÌÌ;wî!rrr¢¢¢‚ƒƒ}}}…=öXÆ …uêÔ‘»^ÛuåÊ•!C†üý÷ßÒÝÆ»»»ß¸qãêÕ«Bˆüüü¡C‡º¸¸„††Ê]©2üÔ%&&véÒåŸþÑ-Q«ÕùùùÒíëׯ4(>>þ©§ž*ºAÝGýÞ½{ºFcffæÀ“’’*UªTÂS qss“{÷öB Àæ>}Z÷;ûË/¿è?ôóÏ?W®\YzhòäÉV-cÆŒÒ õíÛWî]b111Òp<<<:¤[_·n]é¡gžyFî2Kòá‡JuvïÞ]îZ ëÕ«—î£;räÈ'Näçç߸qcéÒ¥=ö˜´ÜÏÏO·~qõ+W®Œ9R÷ÐüùóK} k`ªP¶Þ½{K·“’’¤E6Ó?<1??ÿ½÷Þ{üñÇß{ï½Beff¾õÖ[=öØÓO?ýÑGååå|Ý7n 6¬Q£FuëÖ4hо}û ­ Ñhbccƒ‚‚4hP¹rå téÒå»ï¾Óß`qM†……:4M·æÀ“““ÃÃÃ6løøã‡……:uJ‘0xðà† º»»íÙ³§Ô]wôèQ鯰aÃôËkß¾ý¼yó¤ÛÇ×h4Ö”‘{þÊ•+ƒöðð¨]»öK/½tøðáâ†vóæÍ &tèÐá±ÇkÔ¨Qÿþý;¦¿B Ÿ!D^^ÞÂ… ;uêT·nÝjÕªµjÕjذaüñGÉû³è§î—_~Ù²e‹t{Ú´iË—/ê©§œëÔ©3jÔ¨µk×J%&&^¸p¡äׯ_ùòåº]úÑGÝ»w¯Ô·€Å1U (^nn®tÃȉéÑ£G÷ÝwB­V«¿üöíÛ;v}úôé5kÖ|õÕW¯½öšñãúæ›o¤5kÖ|çw =Ú³gÏ=zܸqCqêÔ©&Mš”ºÁ &lذAqëÖ­ýû÷¿ð &ïs¦¡ã(Ø;w–/_¾yóf!„Z­5jT©O9r䈔ŠÚ³gϹsç4hðì³ÏꦿüñÇ¢­Ã‡'''{zzV­ZU‘——7~üø³gÏJ+üðÃRèQ©TÁÁÁÇoÙ²¥ôкuëâââLò‰'þþûï§žzªfÍšÒ’[·nM˜0!//¯Y³fõêÕ“jõf¢‹óôÓOK7víÚÕ¶mÛÏ?ÿ¬;Qãúõëýû÷?{öìOù¤înÑÏà /¼ I“˜˜8jÔ(•Jåïïÿâ‹/öîÝû™gž1~Púq¼èU»M–‘‘!ݨ^½zÑG ^ŽG·?˜à(Ìš5kºvíª»›žž>|øðíÛ·ß¼y322rïÞ½%?ÝÃ㸇ôÏ)zWŸnºPRµjUWWW銒W®\iÔ¨QnnîôéÓÿûßÿê®Øçâââéé™––fæð VåädÖä‰Z­îÔ©S§N¤»×¯_ÿä“O¾úê+!Ľ{÷V­Z%MÁ—Û  ÝýçŸt/QhÏׯ__ÿnVVV¡éõ¢tçIŠ~bbb²²²–.]š““#„ÐjµÇŽ;vìØìÙ³;wî¼~ýúZµj3¨Š+zxxH/wéÒ%ƒëܹsGÚ™•+W––-•n†ÚË˫装~;XSÕ€²yxx|ôÑGÒí}ûö<ðK_ qÐx…^%;;[JB©97{öìyóæåççûøø,X°à?þÈÊʲ©+iççç/ûŸ+W®è?T¯^½/¿ü²cÇŽÒ]ÝEŽä”‹‹‹îŒB!U·Û%Õ«W×õùvíÚ•dHXX˜þSŠ~*T¨ðÕW_ݺuëûï¿׿töo¿ýV¦ïîëСƒtcóæÍ¯ëÔ´iS… ³Áýû÷ë®!P¦ö'K!8Чßo+Ÿ¿Îœ9#]EE¢;°bÅŠÒw‡,X°@Zòõ×_7îÉ'ŸT«Õ×®]+´]j)t<¢ù=<áÇÿõ(éôµZýÁŒ=zôèÑË–-+úÄ*UªH74h ÝkPÎÎÎÞÞÞ…vµB«Õ½\¥t¢’"??¿‘77·5jÔ¨QÃà«èäääܼyóæÍ›999ƒ Z½zuZZÚÏ?ÿ¬KiE/ØYÝq–W®\)ú•˜[¶lÑý ¤ä 'éèÎò©Zµª.Ù(OG@Ù233u_èR¹reK¾Z²¼¼¼¨¨(©‡ôçŸN›6MZêìì|÷î]Ý|¨.<=z´èkt3­¿ÿþ»î༟~úɘËwÉÅÅÅëQº³+ºté"ݘ3gΚ5k¤Óz„ùùù‹-ÒU+e&yÕ¶m[éÆÿû_Ý¥¼?úè#ÝõtBBB¤‹/Ö]rýúõîîîÒE|Jx¡sçÎÕ®]»víÚuêÔ‘®Ó©V«CBBtçª×¨QÃø²{õꥫç7Þ˜5kÖŸþ)„ÈÍÍ]µjÕˆ#¤‡5jäïï_ò¦þúë¯1cƬ[·Nº;lØ0ýc(”ŽqføðáºfXNNΟþ©;änâĉju9ýRÿôÓOÞÞÞM›6=tè”EœgÏž-„¨V­ZµjÕ¤ƒí¤/Q©T;vì(:Y©»–Mvv¶¿¿¿¿¿zzzbbbù aæÌ™[¶lÉÈÈÈÉÉyùå—'Nœèãã£R©’’’tg`<ÿüóÒY&òjòäÉÿ÷ÿ§Õjo߾ݾ}ûgŸ}öÖ­[/©8}úô¥K—fffnܸ188ø¹çž;sæÌÖ­[¥G'MšTò™"O>ù¤——×Í›7óóó;uêÔ«W¯š5k^ºtiÓ¦MÒ …¾§TóæÍ{öÙg³³³µZíûï¿ÿþûï{xxdffêbzåʕ׭[§»X¦>ÝGýÞ½{Râ”ÔªUëƒ>0g0ÁPý9b}:tе­­FYYYׯ_¿~ýº´¤bÅŠ .ôóóB¨Tªž={~ÿý÷Bˆû÷ïK™ÃÇǧAƒÒ5u! uëÖC† ‰•Ö”®íãããããcüõMÖ°aÃõë×:TÚ¥ééé…N üþûï¥L#ï žzê©#F|ûí·BˆÜÜÜß~ûMüoºv×®]úkº¹¹}÷ÝwÇ¿}ûöž={ôÛœcÇŽ9sfÉ/äää$%Îììì¿þúkéÒ¥úvéÒeÊ”)eª¼U«V?ÿüó AƒtŸ[ýܰaï¿þZw%öB ~ÔkÖ¬¹iÓ¦Îñ`ULU æìììééùüóÏ/Y²dÏž=Fž—j¾.]ºìÝ»744ôñǯS§Î Aƒâââô/'>þüV­Z !œœœžzê©7ß|óøñã}úô‘]»v­nwåÊ•³gÏnÕªUÕªUýýýßxã„„„r‹Ï=÷\JJÊ×_Ý£GæÍ›W­ZµV­ZC‡ݽ{÷Þ½{õO ‘wPË–-?~¼tÛÓÓ³wïÞ¿üò‹Á‹w†††J×§lݺu•*U|||úõë·wïÞo¾ùƘS£Úµk—””ôî»ïÔ­[·B… nnn:uZºti\\œtñÎ2騱ãÅ‹çÏŸÿÜsÏyzzVªTÉÏϯwïÞóçÏ?þ¼tUÎ’9;;׬Yó™gžy÷ÝwÛµkgΞ`U¡/«‹ÈËËÛ²e‹(ûä¦-“}PGŽÙ½{÷«¯¾jð*†`mG…©j…à£`‚#ŒBp€QŽ0 ÁF!8À(G…à£`‚#ŒBp€Q:8¦¤¤øùùýñÇýñÇèïïß±cÇèèèÌÌL¹ë“CÇU«V÷Ðüùóg̘‘œœP­Zµõë×3&;;[î’d£–»dee]¸paóæÍ±±±WHLL\¼x±——׺uë<==…³gÏ^¹rågŸ}öî»ïÊ]>€<±ã^\jBüðÃfâĉRjBL›6ÍÕÕuûöíFîòäáˆÇÙ³gçää!V¯^_t…Ç;99uéÒE·ÄÙÙ900póæÍÇŽkÛ¶­Ü##ÇN:I7vïÞ]ôQ­V›””T³fÍš5kê/oÒ¤‰âêÕ«GŽH%„Vî£Q©„ÖæÞ%•Piø³ãˆÁ±d÷ïß/((¨Q£F¡å®®®Bˆ¿ÿþ»Ô-øùùÉ=°°D‘hOÿs»˜ØÄžÆc§móOjâêå.EǤS§«V­ZhyµjÕ„wîÜ1f#Žùa²e~~~¼)¶†7Å6û¾¨ìêÿl*EýÚAYT*¡ÕÚà°UB•˜hWÿŽ*G<9¦d5jÔP©T÷ïß/´üŸþÿë;€caZåÏö&©!ŽE©ÕjWWעŬ¬,!„î>~Á‚Æø'Þ»w¯jÕªÖõ¼yó’’’¾ýöÛ#F!&L˜Ð¦M›·Þz+..®èÊIIIBˆY³fÙNð˜O%TŽœ™ª†)ÒÓÓÝÝÝuwsrr’’’4h`‘gdd¼ð 111·nÝ*Ó»uëæîî«¿pãÆ*•ê§Ÿ~2¿°ØØØ:uê >\ºëãã3`À€½{÷þùçŸEW–‚cãÆ-²OÀþqJµaŠ‚‚µZ-„Ðjµ©©©õêÕ‹ŒŒ´Èƽ¼¼´Z­V«-ë 7Ó§O¯R¥JTTÔƒt ¿ýö[ww÷^½z™YUVVÖ… ‚‚‚T*•napp°F£1x¤cRRR¥J•{ì±üqÑ¢Eû÷ïÏÍ͵Èþ@.LUÃt999•+WBT¯^}õêÕòÖÓ«W¯K—.EEEmذ!,,L‘––¶mÛ¶±cÇV¬XÑÌß¼yS«Õzyyé/ôôôBìŒ&%%9995nÜ833SZÒ¬Y³U«VµiÓFÞ½8&N©,‚àÓ©Õê%K–¤¥¥ÅÇÇ÷îÝ{РA±±±ú 9!D~~þÖ­[‹ÛBŸ>},[Ò°aæM›¶téR)8®Y³&///""¢èše-ìþýûBˆêÕ«ë/tuuBdddÝBRR’F£‰‰‰0`@… 6mÚôæ›oöíÛ÷ôéÓÒ³P‚£M{4ƒ•·R5qvv=z´t;&&fæÌ™ƒ~饗ô×¹wï^ß¾}‹ ·\]]Ö-[–’’âãã³bÅŠV­Zµnݺèše-Lê§Þ½{WaVV–¢fÍšE·°gϞʕ+늌Œ|ðàÁøñã×­[7jÔ(ËŽ€òÁ1Ž6M«•ó§L¤ããã -wuuÕÏ;mܸqZ­vùòåÇŽ;uêÔÈ‘# ®VÖ¼¼¼œœœ ÍJ§§§ !êÕ«Wtýºuë ”ݺuBœ9sÆ£eãÌ… ãËÈÏÏB8;;]^žSÕBˆÖ­[¬X±"##C­V‡‡‡Wp™ S«ÕÍ›7ÿí·ßôîÛ·O¥RµhÑ¢ÐÊ—/_Þ²eKppp³fÍt ¥ö¤¥Î=ÊxÁ&:tèÐ… š4i"Ý]¿~½¢è¤p9OUKƹxñâÐÐPéü•¢L(ì•W^™0a–-[¤s´ÓÒÒÖ­[÷üóÏ{{{ZÓÅÅåí·ßøõ×_+T¨ „Ðh4sçÎU«ÕÏ?ÿ¼5† @9`ª&ÊËË ?~üW_}5zôèèèhÿZÍâSÕk×®uss+ù+j† âææ¦Ñh žcraO=õTxxxttô§Ÿ~Ú¥K—û÷ïë¾qΜ9nnn .BxzzÆÄÄüöÛo¾¾¾ãÆ›>}zÛ¶mcccgÍšÕ¼ys9ß6À!Ñ9,…àuìØqîܹ Ó§O‹‹3fÌîÝ»‹NU[\nnîíÛ·³³³KXÇÅÅ¥{÷îBˆž={Zð¥«W¯¾wïÞÁƒ¯[·nîܹ7Þ»wo»ví¤GaŠ‚‚µZ-„Ðjµ©©©õêÕ‹ŒŒ´Èƽ¼¼´Z­V«-ë 7Ó§O¯R¥JTTÔƒt ¿ýö[ww÷^½zÉXö©j˜.''§råÊBˆêÕ«¯^½ÚÃÃCÞzzõêuéÒ¥¨¨¨ 6„…… !ÒÒÒ¶mÛ6vìØŠ+ʽ·z83F™Ž6M%T2¾º¶´cãÕjõ’%KÒÒÒâãã{÷î=hÐ ØØX•ꑚóóó·nÝZÜúôécÙš‡ 6mÚ´¥K—JÁqÍš5yyyE×,ç”3Nï¬àhÓJnòrvv=z´t;&&fæÌ™ƒ~饗ô×¹wï^ß¾}‹ ¥ÿ¹éêê¶lÙ²””Ÿ+V´jÕªuëÖE×,ç°ãË1b„">>¾ÐrWWWmñ¬Qɸqã´ZíòåË;vêÔ©‘#G\­ü @éè8Â2òóó…ÎÎÎE——óŒpëÖ­V¬X‘‘‘¡V«ÃÃË+˜©jÊ„à:tèÂ… Mš4‘î®_¿^QtRX–áqãÆEFF.^¼844ÔÓÓÓà:LU€l83F±˜ª†‰òòò‚ƒƒÇÿÕW_=:::ÚßßÀ€…V³øŒðÚµkÝÜÜ&MšTÂ:C† qssÓh4O‹±RaØ=‚#LÔ±cǹsç&$$LŸ>=..n̘1»wï.:Umq¹¹¹·oßÎÎÎ.a—îÝ» !zöì)÷~Hù'$+€bª¦ “®zc%~~~E›#FŒÈËË;}útÉÏ­T©’¢B… åVvŽ#æÁƒ»wï6x…€p€£’¡0lÖ¬ÙСCå.‡ÃT5L]£F Y^:(((((¨ÔÕ|}};uê$K…Ø+‚#LñÊ+¯È]B)¢£££££å®»ÂT5À®pJ5`=GP^83FáŽ0 ÁF!8À(GÀ¿¼}¼9µ0H%TZ‡ÿõ 8ì§TÛ4ÎŒQ>‚#ŒBp€QŽ0 Á&Ú·o_HHˆ‡‡Gݺuûõëwþüy¹+ÖEp„)Ž=rùòå©S§N›6-99¹sçÎiii¡ÀÀÀ˜˜¹‡û¯“'O<¸víÚÕªUkÛ¶íüùóóóóå. ”€3cìÁ¦X¸p¡F£‰‹‹›ûlåÊ•µjÕ3fÌ'Ÿ|R­¸ÜÜÜÛ·oggg—°Ž‹‹K÷îÝ×®]Û³gOK½nRR’âܹsçÎ+ôPãÆ Ž€¼83(GÃrss¿ûî»íÛ·§¦¦º¹¹µjÕêõ×_çª+…„……IW½±??¿¢MÁ#Fäåå>}ºäçJå®P¡‚¥ŠéÝ»·•&ÖÀžq€£}á¬j FŒñÙgŸeffvîܹ^½z;wîìÓ§ÏáÇå. âÁƒ»wï6x…`Ut øþûï;öâ‹/~öÙgÒ딚šZPPСCý‹ÀW«VMîºÀÆp€£ý"8§NjÞ¼¹”…nnnM›6MNN¶ÈÆóóóãâââãã,X ;±Ý÷îÝ«ZµªõF””$„˜5k–ídYÊSÕ0Ezzº»»»înNNNRRRƒ ,²ñŒŒŒ^x!&&¦¬—[ïÖ­›»»{ll¬þÂ7ªTªŸ~úÉü¤àȵ<‹àS¨Õj!„V«MMMˆˆ¨W¯^dd¤E6îåå¥ÕjµZíùóçËôÄéÓ§W©R%**êÁƒº…ß~û­»»{¯^½Ì/,))©R¥J=öØ?þ¸hÑ¢ýû÷çææZr·`Û˜ª†érrr*W®,„¨^½úêÕ«=<<ä­§W¯^—.]ŠŠŠÚ°aCXX˜"--mÛ¶mcÇŽ­X±¢ùÛOJJrrrjܸqff¦´¤Y³f«V­jÓ¦¼ÂŽvàÓ©Õê%K–¤¥¥ÅÇÇ÷îÝ{РA±±±*•Jüüü­[··…>}úX¶¤aÆM›6méÒ¥Rp\³fM^^^DDDÑ5M(,))I£ÑÄÄÄ 0 B… ›6mzóÍ7ûöí{úôiWWWëîkÀª”yr²2«”àhÓTæo ¥þÙÙÙyôèÑÒ혘˜™3g<ø¥—^Ò_çÞ½{}ûö-ö%,ý¯RWW×°°°eË–¥¤¤øøø¬X±¢U«V­[·.º¦ …íÙ³§råÊ5kÖ”îFFF>xð`üøñëÖ­5j”e€ âG›¦•õ§LFŒ!„ˆ/´ÜÕÕU[OBŽ0ÅÑ£GCBB._¾>¾wïÞƒ ŠÕo¹ !òóó·nÝZÜúôécÙ’† 6mÚ´¥K—JÁqÍš5yyyE×´la÷ïßBT¯^]¡«««"##òc,†©_eDp´m*ó7a†Òþ¢8;;=Zº3sæÌÁƒ¿ôÒKúëÜ»w¯o߾ž‚¥Žquu [¶lYJJŠÏŠ+ZµjÕºuë¢kZ¶0©Ûz÷î]ý…YYYBˆš5kZvŒ`8ÀÑ!qŒ£mÓÊúSÒ©Äñññ…–»ººj‹g}6nÜ8­V»|ùòcÇŽ:ujäÈ‘W³la^^^NNN…f¥ÓÓÓ…õêÕ³Æ0GC{°taùùùBggç¢ËËsªZѺu뀀€+Vddd¨Õêðððâ ¶`ajµºyóæ¿ýö›þÂ}ûö©Tª-ZX|ŒÈ‚à:tèÂ… Mš4‘î®_¿^QtR¸œ§ª%ãÆ‹ŒŒ\¼xqhh¨t†JQ/ì•W^™0a–-[¤3¸ÓÒÒÖ­[÷üóÏ{{{[cŒ '‡™§V •–f·¦ªa¢¼¼¼àààñãÇõÕW£GŽŽŽö÷÷0`@¡Õ,>U½víZ77·I“&•°Î!CÜÜÜ4ÁÓb¬TXDDÄSO=ýé§ŸvéÒåþýû¶ù}‰˜†àuìØqîܹ Ó§O‹‹3fÌîÝ»‹NU[\nnîíÛ·³³³KXÇÅÅ¥{÷îBˆž={–Û©^½úÞ½{¼nݺ¹sç6nÜxïÞ½íÚµ+·°6¦ªaº°°0éª7VâççW´ù7bĈ¼¼¼Ó§O—üÜJ•* !*T¨Pn… !\]]/^l½€¼è8Ba+wQ`Ÿˆµ€"Ðq4,...,,,..ÎÓÓÓßßÿøñãÇ‹‹“».ÙÐq4àÎ;S§NU«ÕË–-kÓ¦âäÉ“áááï¾ûn—.]œœHÛ;Â<5ŒF2`ýúõYYYcÇŽ•R£âÉ'Ÿ|ñÅÓÓÓO:%wuÀ*¸O©ŽìÛ·O¥RõíÛWá§Ÿ~š˜˜øÔSOÉ]Øp”‚©jNŸ>íææV»ví#GŽ?~üöíÛM›6 qqq‘»4,Šyj”Á±°ÜÜÜ»wï6nÜxæÌ™k×®Õ-¯_¿þ_|ѲeKc6âççWhÉŽ;ä™C»víšÜ% 0Þ”ræ-¼SSSK]Mž÷ÅÛ¨Ú–Ußo!Øùÿò6¼7ºwï.we¶B¥åßÊÈÈèСƒÂÕÕ5::ºK—.}:$„hݺõÊ•++T¨`ñzõÕW=<þøã+V,´N—.]ä.[B»¥˜àصkWéÆÉ“'Ožéïï/w9vNIÁ1..î?ÿùOHHˆtmð3f¬[·Nz(,,ìý÷ßW©Tr×l8šC1SÕ‡~íµ×Ο?¯Ñh„gÏž]·n««ëСCüñµkׯÅÅÉ]#À¦ÍË óÔ°>Åt—,Y¢Õjßyç°°0!Ä®]»„üq×®]/]ºÔ½{÷ÿû¿ÿëÚµ«ÜeØ-ÅÇ .Ô®]{øðáÒÝßÿ½bÅŠ;wB4lذQ£F)))r×€Lh7¢\(fªúöíÛÒíüüü³g϶lÙ²bÅŠÒ’*Uª¤§§Ë]#°iàh&ÅǺuë^»v­  @qìØ±<ûì³ÒCæÚµkµjÕ’»F° ¶tP¡-Õb¿h7¢¼(&8ܾ}ûË/¿¼~ýú—_~)„ ”Z¾|ùßÿݸqc¹k°gŠ9Æq̘1›7oþæ›o¾ùæ!D«V­¤k74è?þBDFFÊ]#€=SLDZ^½zßÿ}—.]j׮ݩS§/¾øBºjczzzõêÕ?ùä“víÚÉ]#åŽyj£q€£ùÓqBøúú.Z´¨ÐÂU«VÕ©SÇÉI1 8vFIÁQrûöíÓ§OÿùçŸuëÖíØ±c¥J•HE»åKIÁ1##ã›o¾Y·n]vv¶bĈ;vìׯ_‹->þøc777¹ °gŠéÕååå½öÚk«V­ª^½z¿~ýtË===wïÞ=dÈ)Mà(h7–8Z„b‚ã¢E‹Nœ8ñÜsÏíØ±ã“O>Ñ-ÿá‡úôéséÒ¥•+WÊ]#Ø›9®Ðf `1Рއrvvþ裪T©¢¿ÜÙÙù½÷Þ«R¥ÊÎ;宀òB»rPLp;F»¶Á‚£ÂÓÓSáîî.w!àÐÈ®°ÌS[ƒ=Çû÷ïŸ={ÖÃãjÕªr×€…yûøÐn„PÌÉ14¸<33sÕªUÿýwHHˆÜ5Ø3ÅLjˆˆ}ì±Ç&L˜ wXšJ•š’â-wŠÃ<µ•(&8öîÝ»¸‡žx≾}ûÖ¯__îÀ¡q€#`÷çÎ+w ”/édêÔT¹ë²‡“ct˜§¶Ûí8îÙ³§¬OéÒ¥‹ÜU€L˜'¶?\»¶Çvƒã«¯¾ZÖ§$&&Ê]58(‚+líF«²ÝàXÂÙ0Ø9Ú°I¶9à H°UvrrÌÔ©Sƒƒƒå®óÔ°ÌS[›ív‹ÊÌÌüõ×_/_¾\hyvvöÏ?ÿììì,w˜v#l˜b‚ãÍ›7î_¿^Ü ááár×2¡ã \(&8®X±âúõë¡¡¡[·nýý÷ßß{ï=—óçϯ^½:<<üwÞ‘»FÌC»Ñ ÌS—ÅÇß~û­R¥J ,¨^½zppp§N¼½½;tè „ðññùàƒ äëë+w™àphwŽC1'ÇüùçŸ 6¬^½º¢V­Znnn§OŸ–8p ››ÛŠ+ä®3Ðn4íÆò¡˜à(„prú·Ú'žx"õßÝéìììççwòäI¹ °gР޵k×¾téÒ½{÷¤»õë×?räˆîQ•JuíÚ5¹k‡Ã<µÅÐn4íÆr£˜à’ýöÛo''' !Ú¶m{åÊ•ýû÷ !ÒÓÓ=Z¯^=¹k°gŠ99føðá;w‹Ójµ . T«Õ¯¿þzëÖ­ÏŸ?ÿþý=zÈ]#ȦŸ Ý…PLÇÑÃÃcÍš5“&MjÕª•¢^½z3fÌÈÍÍ=pà@FFF×®]###å®”7æ©Ë“b:Žùùù¯¾úªnIXXXhhè©S§¼¼¼|||ä.½NË ÝåPLÇ100ðÓO?MJJÒ_X­ZµöíÛ“JEj4íÆr¦˜à˜‘‘±lÙ²ž={2äÇÔ^ €ò¡˜à¸nݺˆˆ//¯ãÇϘ1£cÇŽÓ§O׿" <1Om´ÍC»±ü)&8¶jÕjúôé{öìYµjÕàÁƒ+V¬øÓO?…‡‡wëÖmñâÅiiir`ç–ëäôÌ3ÏÌš5+>>~áÂ…¡¡¡·nÝúüóÏ»té¢Þ 8 ú~ÊE»Ñ<2¶U*¹/…GµZôÙgŸ­\¹ÒÏϯ  `Ïž=r`Ïs9žBwìØ±cÇŽ””ñ¿N¤•^ëÆ¡¡¡ÁÁÁsçΕ{Ü`htš‹v#”IaÁñìÙ³;wîܾ}ûåË—¥%-[¶ íÑ£‡§§§5^Q«ÕN:õŸþ‘{è{Aj4§ÅÈE1Áqîܹ;wî¼zõªt·aÆ¡¡¡¡¡¡ 4°êë~ûí·‡’{ôòSLp\ºt©ÂÓÓ³gÏž¡¡¡-Z´(‡½xñâüùó›6mzþüy¹wØ æ©ÍB»Ñl´e¤˜à8pàÀÐÐЀ€'§r:¡'??Ê”)nnnÓ¦M‹ˆˆ{@$8åK1ÁñÃ?,çWüòË/Ï;·|ùòêÕ«Ë=z€] Ýh6ÚòRLp,g'NœX²dÉË/¿Ü¡C‡3gΔõé~~~…–ìØ±Cî19´k×®É] ãM1Ÿ·ðNMMµì6z_¼-ÿºŽÀÛÇ'5%E”}×ñËòoQþ¿îÝ»?º Qî½ ‚£ÙÙÙS¦L©_¿þ[o½eÚ÷#e³¼½½å.…ñ¦˜Ïû°äm>œç½3‰Éï¿,’‡íÆrß…þ¬;òÀ ŽÌ™3çÚµkk×®uqq‘»€]`’vA©ßc=‡Z»ví«¯¾úÔSOÉ] xˆ£mÇÂ.^¼(„X°`Á‚ ô—oÚ´iÓ¦M¾¾¾[¶l‘»F§q›ˆv£ÙH6‚àXXƒ zöì©¿äÎ;û÷ï¯[·®¿¿íÚµå.„„8å 5ÂŽ ëÔ©S§Nô—œ9sfÿþým۶廪(´mÇ8ŒB‹Ó´a_ŽÀvÑn´)LU—®E‹\—Pf´awè8JÇ‚#À Ìc÷©…ŽŠÔhR£"8€ƒrôyjR£yHމàÊÆqR#ÿ¾(„à6Ìj]AÚÄ“9NjDQG€ƒ!5šÔèàŽGBj4ƒ£¥F>,EÀá8î<5AÀ Ž–aZî(¤FS©„JAj„ 8€írÜÆ Må°F>21U Ž…8 ã9ljDqŽ{GïÈ$¤FEpâˆíFR£I<5ò©)Á`¿øûoO(Ál’#ö-ÔhR#œpV58 ÇÊ¢üñ/;.»ƒRv‡ÔXv4î>;%bª‚µùË_v¤F‰à°#¤Æ²#5êðñ)SÕ`{,Ýt”v#öˈƒQVGÆBøw‡1˜ªØþì—©¦¡ãvÎ!æ©IFczÚ >AF"8€qˆ gQüÍ7Fƒø©j°göŸBù›o4R#ÌGÇ X¤Fã0=]>DeBp»eçíFþà‡F#,ˆ©j€‘Cj,Ÿ£²¢ã¶ÄΛ„Â_{#0=]*>G& 8€}²ÛÊ_{#Ðh,Ÿ#ÓÊÁ_ûÒÐh4Ÿ#“ÀÙg»‘¿ö¥¡Ñk#8€Í°Ï¸g!¤ÆÑh4%sÀÞØaþäO}‰h4’™ŽÛÆŸúâÑh,>Jæ#8€]±«v£J%„àO½ADƲ"5ZÁ`“ø;_<æ¦ËŠO“¥À6X¢Uh?íFþ΃F£ ø4YÁ`cø;_ &àÓdYG€-áï¼!4MçÉâŽ`'ìažš¿óE¨„JxMÁ§Éœä.`¡ÏüÀßù¤¹é”Ô¹ Q•ŠO“µÐq{ øäÉßùG17m2>JVEpÈ?õzˆŒæà£dmGP<·¹Ä·"£9ø(•‚#ÈMÁ¹ÏÌÓzˆÈh&>Jå†àÊ¦ÔØÉŸzi7ÍC£±œåŽÔ(í.èm>GåàhXvvö÷ß¿nݺk×®=öØcMš4‰ŒŒìر£ÜuÀ#Ùnä¯=F³Ñh” ÁÑ€üüüˆˆˆ'N¸ºº¶oßþÁƒ¿ÿþûþýûßxãñãÇË]û¢ÈègÎx=5Íçð"9 øá‡Nœ8ѦM›eË–¹¸¸!.^¼øòË/ýõ×ÁÁÁÍš5“»@Bq™Óá{DDFó9ü‡H~|sŒ;vìB¼óÎ;RjBøúúŽ;¶  àÀrW $õˆõ¾J¨¤ÃI&Ó}Œ£~ˆlGRSS«V­Ú¢E ý…¾¾¾Bˆ«W¯Ê]¡¬v£Ï,Òe4]F›Bp4`Ñ¢Ejuá=sæÌ!Dýúõ宀QRú3yŒš‰Œá¨ÛEp4 yóæ…–$$$,^¼¸R¥J}ûö5f ~~~…–HÓß˵k×ä.…ñ¦!¼…wjjª OôñöN1홥±àûâíã#„HMIV©Ôvùxû!RRS„©ÂcwÌ_o!DŠ•>èeÔ½{w¹K°ÇR¬Y³æÓO?-((øüóÏ=<<ŒyVbb¢Ü…£0ooo¹K@a¼)¦í„‡mJ«í=˼/ÿë9Ô{üH—Ñ¢#w¨_–Gç¦mbàEÿ¬í9‚cI~ÿý÷˜˜˜äää:uê|ôÑG:t»"vÄŽç©l~QÊ‹‚‰ió¨îE‡úì(ÁѰÜÜܹsç®ZµªråÊQQQ£FÒa 2R@Út¤ÔÈŒÁé/ Bp4@£Ñ¼õÖ[»ví yÿý÷===å®”À‘þþ-‘>2v‚àhÀªU«víÚ5tèÐ÷ß_îZà_6Ýnt˜F#‘Ñ"ˆŒ Ep,L«Õ®^½ú±Ç›:uªÜµ°_6MŽý§Fd´dT:‚ca·nݺr劋‹KxxxÑGûõë÷òË/Ë]#Gd£QÓG´-Â>)àX˜t¹¬ìììÓ§O}”«à_öÞh$2š£!8Öºuk®ÂÀÖØb»Ñ~S#³Òæ#/Ú+‚#”»2Æ@›Kö;éH‹Ñ|öûé€G@ÙØi£‘Èh&ZŒ‚à6͆ÚöØJbVÚLäEGCp€òeCI°LeÛU£‘¼h&ò¢Ã"8€í²‰i_F¦¤M¦ ‹Â~>(3‚# xöÒh¤Åh2š‹ÐGp€rT–¢ÌíF{i4Òb4 yÀÉŸžh1š€Éh”Šàø—· N äŲ",¢Lœä.P˜líF•*5%E‰ñA%TÒVh¥¹+²uªÿí2­öß TG(/ÆåAyR£.D( yÑxº°¨Ÿ2aªž##SÒÆÐŸ†ÌDÃŽ`Cʻݨ´S§É‹¥â˜EXÁÊ…‘P†Ô¨dA^,aå†àŽG!Fòbq˜ƒ†\Ž`ʩݨ„ÈH^4ˆ¶"lÁ¬¯´TX~©Ñ†y±½¤è-‹° \Ž€­^mGïú0\Rç‘Ëåè_1'%%ÕöÞ:8(:Ž 3ë¶mrnšæâÃýÀ¡ŠP‚#XY‰ÁЊ©Ñö"#y‘¤¥#8€=²¥‰i‡Í‹…b¢ )BùŽ`Måßn´F£., ‡É‹ÄD8‚#ÈÃò©Ñ"£C5™w†"8€òɤ¹HCG°¢â›Šk7Êí»¹HL "8@y³dj,ß8c—ÍÅ¢Qb \Y&5–c£ÑÎÂ"­DÀG°C Ñ©±\"£}„EZ‰€Å@!¬UB%¼…P`X$#åƒïª+°l»Qÿ«‹-_é#ß’šb㩱Ð:úZgýGÇʃ‰©Ñ:]FEÌDl"Zag(‚#X)©ÑÒ‘Ñ–Ã"Í€RÀÒ͉eN–‹Œ¶i"JGp›avdÔOŠB¾°H@ìÁ,Ê„v£.g™¬dl+GCpk)=5šÚb,ç°H@ !8€åèEÅRRc#c9ÌAÿ/z}ˆ€@ÂuÀòJJF_”±ÐõL/LUì´é””T.ˆ 8tÀ §F#d´T[±¸™eAï€yŽ`!*!´†Rc‰³Ò&­H:PþŽ`1…S£¡ÈX¦¶"é€M!8€%HÇ!>¼ýȬtÉI±„h(H‡l Á,C+Æ@Õ¿iO%½ÿ¿EzÏ"P‚#˜M%¤ÆâÈøhR$°G(]á e­J÷_•V«ãáÈHR`§ŽPʆBü› ÝSiµZ£¾UìÁ€C(ë9(ŞѢw¢4‰€£!8°¥¶ K>ÐPUø”•"WÉ)rù‘ðÀ‘(€™¹ÐÀ¼˜b1_÷B\à˜Žägñ\Xxû¥6‹+ÈÐ ÿ›É Á€Õ“ ½u·,{Áš2ÇÄ¢…–ôuÒ¤FŽËIî(žJUÊVkà'%%UwÛÜ}Á¢¯fìJ+ˆ¬ÀÁÑqP’Ò¯SSî¸6½¡XÜØŒ€êá éÝ'Bp<GÀ¡YûàB Th©˜XtÌF”‚#`·l°YXJÁÂ@ÅæÆÄ¢»£Œc6 ’ÁP*Ûo–ÌÇÛ§pÁÖˆc¦æÅ‡Ï&5€NŽlQ©§›wƉþM):‚”Ô”²ÂbÚ4uw¨ˆˆPG@Jo–2:ãfœSEª¥_XïuÍÛƒÅFF²$ÇFp,LqGš5X«•hlfMF© #8ecßÍÂRÆnñœM/ÅbÍÅG( `Áx„#çÂGöƒ-´ ”eáæâ£C.qx´€àGC.,Ä`@¶ÿ-Ñ*ÍÅGw‚4ä×°™ý2"8®Ÿ ~-²£åB}6ÚD4\«ÕÃâÃ×y¸J[É&w”?.Ç%1ù 5º¯EvwÁ}#w¥úEóFZq/ -™Ê‚Ž#lóÈe¥€‰æRPNÅÂ/+½ ‘«*d_@9 8¢\• É…%PÒDs)#y8o!Ã[^¶ó¦Ið(‚#,Œhh&Å7 éÑýïCššê]Î…”)’ ‚#LQB:$Éâ#ÓgºØr¤BÊôù«›CpD±H‡açñßqn+ÊΔkz“ GmæO¿28J@üwÀ6šÿ-PªË„§ÙÜPÀVÑ|Å¥CaÇñßÁÛzRü·R©@Óži»ÃùíÑ|×>4¼“Ö««ÔäçÛú@fGe3˜mþï»­pèö¡AJKŠÿ.Õkæ&3\ ÁQIŠÆDåüe—“J¨„¡ë¾8h:Ô±‹Ï“e"£¹›GÁWÚ´R¿O:%|¡VhSRSlúÛöÊcñýŒÊ¡úß¹ßÈ×@YÐq´-Š*,'L.Ë.º‰†¥¥6g{ÊÁQf$Å¢H‡eãºZx>™éi0 ÁQº¿õv÷÷Ýè=@:4¶‹®n”–ݨ=ï3°"‚c¹r´¼H:4‹c´ Œ[¸ÖØ´ýïB°‚cy°ï¼H:4Þ”vƒnÜÖ{ÇÚ£`yGë’"Ò¡e8j±8Vl.}ÇÝÍ`1G+’.x¢ ¤CËP»ö°Ž÷Ž··Õw‘,Šàh-¶œù>=Ë`ŠÙh;‹©©©ÂÛÛ„­•áõx+À¢ŽVa ©‘ö¡”Ð;ÄR”Ó4´ÁWåë 8*íC³ -¤è~,×}G‹ÊÁÑ*¬”7 fDb)T*!D±¢DCSú,ʳÉ‹P¾ø®jUÜw.;ú.ØSªR~´Z¡Õ¦¦¤Úy¿÷Œ¦*ò£}ôGžjäyyp\tmBÑV"‰°”IdŸE·ÓåßËò2 xÁQŽI„6ÀvbqUÚVeà ŽåD?,ÚmL$Ú˜Þ}lâÀI@±ŽÖ¥Ë‹J ‹FfÁ‡ƒTæ«Ô÷ÆÆßoŸ"ç,ÙxÅàð89¦X?þøãÀýýý;vì™™Y¦§:EîÑèÊ*íTCg–ûcúwï.w ÆRý£-íÇV3¿&~¶Z±CSÐ/‹ãàMí ãhØüùó.\XµjÕ€€€Ë—/¯_¿þâÅ‹+W®tqq1æéRd,BËÔ4Ë[ß!ŸJgqCò“»l@Ñq4 11qñâÅ^^^;vìX¼xñÎ;‡~òäÉÏ>ûÌÈ-˜ž­Ú$5–‘ñÍ?“›‚¶Û&,Ó.PÒ¦#8ðÃ?h4š‰'zzzJK¦M›æêêº}ûvFcâF ‚V`|€»˜X>±Ïæ"Sù$_€c 8pøða''§.]ºè–8;;fdd;v̨M˜œm•ù½7küàšøùÙDì³å}D"”†c ÓjµIII5kÖ¬Y³¦þò&Mš!®^½Ú¶m[c¶"L:¾MΗü¥Ír—g¦D‘hï‡Ò÷#À± »ÿ~AAA5 -wuuBüý÷ßFmE%„ÒB‚_NU°>öñ£üüØ#¶ˆ÷Åñ¦ÀF ËÎÎBT­ZµÐòjÕª !îܹSêå„)…"Ëå†c «Q£†J¥ºÿ~¡åÿüóø_ßÀ S«Õ®®®E;‹YYYBÝyÖŽ†àh€——WFF†”uRSS¥‡ä®@GºvíZPPðÛo¿é–hµÚ½{÷º¹¹ùûûË]€<Ž 8ÐÉÉ髯¾’ŽkB,^¼8==½ÿþ*T»:y¨´6|Ñi-_¾|Μ9õêÕëܹóåË—š7o¾|ùò¢—épÇbmÞ¼yãÆ'Ož¬S§Î3Ï<3qâDéŠ<މà£pŒ#ŒBp€QŽ0 ÁF!8À(G…à£-æÇ8p ¿¿ÇŽ£££333å®È”uçgggûí·½zõzúé§;wî|x\\œÜC±e}S FŒñÙgŸeffvîܹ^½z;wîìÓ§ÏáÇåŠcYµj•Ü%ÈG ³?¾iÓ¦;w¾yó¦´äÃ?lҤɬY³ä.Íþ™°ó׬YÓ¤I“°°°û÷ïKK.\¸ðÌ3Ï4kÖììÙ³rȘù±|ùò&Mš4iÒäí·ß–{(öÄ7åöíÛmÛ¶}ê©§Ž9"-ùã?Z¶lÙ¡C‡‚‚¹dLþßׄ òòò¤%ñññÍš5ëÖ­›Ü£qwîÜ9|øð{ï½'ý?êĉrW$:ŽðÃ?h4š‰'zzzJK¦M›æêêº}ûvF#wuv΄¿cÇ!Ä;ï¼ãââ"-ñõõ;vlAAÖaÎoÄÅ‹çÏŸß´iS¹aoLxSÖ¯_Ÿ••5vìØ6mÚHKž|òÉ_|1==ýÔ©SrȘð¦;vL1bĵZ--iß¾}³fÍ.]ºô÷ßË= û+w!r"8ZÀáÇœœºté¢[âì옑‘!ý’ÃzLØù©©©U«VmÑ¢…þB___!ÄÕ«Wå=0ù7"??Ê”)nnnÓ¦M“{öÆ„7eß¾}*•ªoß¾ú ?ýôÓÄÄħžzJîÙÞ”:uê!ô3¢V«½}û¶“““.JÂzfÏž½`Á‚ tèÐAîZdÃçÌ\Z­6))©fÍš5kÖÔ_Þ¤I!ÄÕ«WÛ¶m+wvË´¿hÑ¢¢ÿ‡=s挢~ýúrIñÌùøòË/Ï;·|ùòêÕ«Ë=»bÚ›rúôi77·Úµk9räøñã·oßnÚ´iHHˆ®Us˜ö¦ôêÕkåÊ•³gÏ®R¥ÊÓO?™™¹`Á‚k×® <˜ßšrЩS'éÆîÝ»å®E6GsÝ¿¿   F…–»ººŠGÿ]‹3mç7o޼В„„„Å‹WªT©Ps&0ù7âĉK–,yùå—;tè åxXŠ oJnnîÝ»w7nùÄÃÃCî1)žioJvvö”)SêׯÿÖ[oÉ=;d›r÷î]!DRRÒ¶mÛæÌ™óûï¿ïÝ»7**êúõë&Là’æ3í7%++ë“O>¹wï^‹-† òüóÏ»¸¸lܸ‘SÝQnè8š«F*•êþýû…–K‘þí+1sçÿþûï111ÉÉÉuêÔùè£ù˜ 2íM™3gεk×Ö®]Ë4¨5˜ð¦T®\YºñÉ'ŸK·_ýõ7n¬_¿~ëÖ­ {XÊfÚoÊ”)SŽ=:mÚ´‘#GJKnܸ1dÈ7ß|sÓ¦M>>>r öŽ£¹Ôjµ««kÑfee !tçÊÁLÞù¹¹¹³gÏ1bÄ7¢¢¢¶oßNj´Þ”C‡­]»öÕW_å” +1áM©ZµjåÊ•]\\‚‚‚ô—‡„„!Ο?/÷˜Ï„7%--m÷îÝ7Ö¥F!Dݺu_{íµ¼¼¼ 6È=&8‚£xyyeddH¿í:©©©ÒCrWgçLØùæ­·ÞZ¹re×®]wíÚõúë¯Ó岬²¾)Ò÷^,X°Àï^zé%!ĦM›üüüzõê%÷€ì ¿)žžž*TP©Tú ¥_–üü|¹dÊú¦ddd!6lXh¹Ôh¼uë–Ü‚C 8Z@×®] ~ûí7Ý­V»wï^777¹«³s&ìüU«VíÚµkèС_ý5-ak(ë›Ò Aƒž’N]¬[·nÏž=å=0á7%(((++ëÂ… ú ¥ËÄp¡M‹(ë›Ò°aCggç‹/jµZý剉‰BˆÆË= 8¹¯@n®_¿Þ´iÓîݻ߽{WZ²páÂ&Mš|úé§r—fÿŒÙùÿüóOJJÊÕ«WµZ­F£ iÓ¦Mvv¶ÜµÛ­²¾)E>}šoޱ,Þ”³gÏ6iÒdàÀÒ’“'Oúûû¤§§Ë= {`›òꫯ6iÒä‹/¾Ð}yÏ… Úµkײeˤ¤$¹ä@Þyç‡ýæNޱ€ºuëNž}ºè£œ"c)üFØ Þ”W_}ÕÃÃcåÊ•ñññnnn]»vŠŠ’¾f QÖ7ÅÃÃcÛ¶m .Ü¿ÿž={ÜÜÜž{î¹qãÆµjÕJî¡ÀQ¨´*ÄÉ10 ÁF!8À(G…à£`‚#ŒBp€QŽ0 ÁF!8À(Gø×äÉ“ýüüpàÀÆ7mÚ´ÿþ€€€ëׯÿúë¯eÚ”ñ‚ƒƒ£££«T©âää=yòäöíÛרQãÈ‘#éééºÕŽ;výúõ–-[6nÜXî÷ €½!8POOÏÿþ÷¿5jÔB8;;92<<\£Ñ,X°@µªU«.Y²¤C‡Ò’/¾øB1{öliI:u¾üòËJ•*ÅÆÆþõ×_ºçÖ­[÷?ÿùOõêÕ…jµzÔ¨QáááBˆ¯¿þZZ!???((èí·ß®Zµª´¤zõê¡¡¡BˆË—/ë—Qê¦ÌáììÜ­[7FóóÏ?ënÞ¼YÑ·o_¹ß(vˆà@aú÷ï_©R%ý%ÇBœ8qBaïÞ½+W®¬»›––vóæÍ:uêê¯æééÙ¥K—‚‚‚sçÎé8P­V}‰3gÎHwÇ¿páÂFéV¸uëÖÖ­[‹V[ê¦Ìôâ‹/ ½ÙêüüüíÛ·«Õêž={Zñ=ਸ…ñöö.´äñǯT©Ò_ý•››[±bEi¡4=­séÒ%!DÆ ‹n°AƒâÑN¡Á—¸uëÖ½{÷¤.ãõë×÷íÛwäÈ‘«W¯^¹r¥Ð¡eÚ”9ž}öÙš5k:t(33ÓÍÍmß¾}·oß®Y³¦Õß Ž‡Ž#…Q©TE—8;;k4ý ôH³Ã:Z­¶¸ :;; !òòòJ} ''§ *!Ö®]Û­[·™3gžáááË–-;uêTµjÕÚ·o?lذöíÛ—úD''§Ï>û¬K—.›7o>þ|ZZÚ3Ï<!£³bÅŠ;vüúë¯gΜqss{î¹çFŽ©È>ÿüóåË—oÛ¶íÈ‘#?þx``àÈ‘#}}} 6oÞ|øðaã7UVÓ¦M›={vrròƒt Û´iS«V­[·nÑn`UªÎ4›2yòäM›6-Z´¨K—.r×b[4M×®]ÿüóÏ_ýµ^½zr—ÀnqŒ#(^||ü7H¬ŠàÊ–=þ|!Dÿþý宀ãGP°€€€äææ6nÜXú²l°‚#ÅèÑ£G“&MŠ~‰Ÿ#«S§Î•+WgÍšUè°8NŽ€Q8ÆF!8À(G…à£`”ÿ*g‡ía IEND®B`‚statistics-release-1.6.3/docs/assets/bisainv_201.png000066400000000000000000000727171456127120000223220ustar00rootroot00000000000000‰PNG  IHDRhŽ\­Au–IDATxÚíÝy\TÕÿÇñ30.¨‚K. ˆKj¨äN‚K–â¾!.ˆKš™fiŠ–bYj¥ý¾•¹kŠI…éÃÝ55÷\rCp71Ùa~ÜoóaÀa˜áÎy=þ1sæÎsîqÞ|νwTFÏb'w  G„àƒ`‚# Bp€AŽ0Á!8À G„à(À… Tú”+W®víÚC† 9{ö¬îòË—/—ðõõ5a7Þÿ}iµ}ûö•{“˜ÌãÇ?ùä“.]ºÔ«W¯|ùòÕ«W÷õõýðÃãââäîڳ͟?_Ú#¯¾úªÜ})ê]—™™¹lÙ²nݺլY³|ùò^^^=zôøüóÏÓÓÓó-©÷­®V«]]][·nýþûï?xðÀ§ä3mÚ4¹7`%Ž€‚eeeݺuëûï¿饗–/_.ww”ç×_­[·nXXØo¿ý—™™ù÷ߟ8qâƒ>ðööþá‡äî 58yòdÆ 'L˜ðË/¿Ü½{733366v×®]ï¾û®——×Î;Ÿ¹†ÜÜܤ¤¤cÇŽ}ôÑGÞÞÞG•{L€íRËÝÅãîîîàà ÝNNN~ôè‘"33sÒ¤I^^^Bˆçž{®nݺBˆêÕ«ËÝ_ËuóæÍ!C†<|øPº[¿~}—»wïÞºuK‘““3tèP‡ÀÀ@¹{ª zßu—/_îÔ©Ó?ÿü£mQ«Õ999Òí;wî 4èðáÃÍ›7/¸Bí[ýÉ“'ÚBcrròÀcccË•+WÄSòqvv–{óÖBÀâ?^û™ýõ×_uúå—_Ê—//=4mÚ4³vcöìÙÒ õéÓGîMbáááÒp\]];¦m?|øp5¤‡^zé%¹»Y”>úHêg÷îÝåî‹~={öÔ¾uGuæÌ™œœœ»wï®Zµê¹çž“Ú½½½µËöV¿yóæ¨Q£´-Y²ä™O`LUÊÖ¥K—^½zI·ccc¥6Ó=<1''çƒ>xþùç?øàƒ|%''¿óÎ;¾¾¾Ï=÷Ü‹/¾øñÇgggë}Ý»wï>¼^½z5jÔ4hÐò-——éïï_§NòåËשS§S§Nß~û­î ;h2(((ß¡iÚ%xíÚµàààºuë>ÿüóAAAçÎB=ztðàÁuëÖuqqñ÷÷ß¿ÿ37ÝÉ“'¥Ç×=,¯mÛ¶‹/–nŸ>}://Ï܃2pËß¼ysðàÁ®®®ÕªUëׯßñãÇ Úýû÷'OžÜ®]»çž{®^½zýû÷?uê”îE¼„ÙÙÙË–-ëСC5*UªÔ´iÓáÇÿùçŸEoÏ‚ïº_ýuÇŽÒí3f¬Y³¦yóæöööÕ«W=zô¦M›¤‡._¾|åÊ•¢W^«V­5kÖh7éÇüäÉ“gîb&ÇT5 xYYYÒ '¦ÇŒóí·ß !4n{JJJûöí/^¼(ÝýóÏ?ÿüóÏ3gÎ<ÔïÎ;~~~×®]“îþøã[·nýòË/_ýuí2AAAºO¼yóæÍ›7cbbvìØñã?=ØØØØ6mÚ$&&Jw###ûí·Ù³g¿ûî»Ú¤µÿþ˜˜˜}ûö½üòËE¬*##CºqáÂF£R©´j£§îV2Ó  Ùò'Nœ üûï¿¥»[¶lùõ×_;vìXpmÑÑÑC‡½ÿ¾t÷Ÿþ‰‹‹Û²eËÛo¿ýùçŸ\>ßû!33ÓÏÏïØ±cÚΟ?þüù7~õÕWo¼ñ†áãúæ›o¤UªT™5kV¾G{ôèñÚk¯Ý½{Wqîܹ åĉRJ(hÿþý/^¬S§NëÖ­µÓß?þøcÁÊÖñãǯ]»ææææççW±bE!Dvvöĉÿúë/i~øA =*•* `Ĉ/¼ð‚ôPTTTtt´ÑC>sæÌÇ›7o^¥J©åÁƒ“'OÎÎÎnÔ¨QÍš5¥FÎLta^|ñEéÆÏ?ÿܪU«Ï?ÿüèÑ£Òy¾*Txù_öööæÔ3·|VVÖ€¤Ô¨V«Û´iS·nÝÇïÚµ+ߪRSS‡ "¥Æ€€€¹sçÙÙÙi4šÅ‹¯Y³æ™ï‡>úHJ½{÷ž4iRëÖ­¥M:yòäK—.>®ßÿ]ºÑ¯_¿J•*\`çΧOŸ>}útÿþý Y¡ŸŸ_Ù²e¥ÛºÑ@©!8 Ó¥KíEF*W®­M0z§D¥bÛÅ‹ëׯ/„ÈÍÍÕV•öìÙ#ݘ:uêo¿ýöí·ßž;w®eË–R£vŽØ8Û·o?sæÌßÿ müâ‹/þú믛7ojÓ³4…]„éÓ§kk´§Nz÷ÝwÛ¶m[©R¥Æ‡„„üðú§t˜{PEoùU«VݸqCñÜsÏ:tèÈ‘#ñññS¦L)¸ž… Jç‘ 0à·ß~›3gÎwß}÷ÿ÷Ò£ÃtÁ÷þ}û¤‡fÍšµuëÖÿüç?GíÚµ«"''ç×_5pDÙÙÙÚª§§§gI6Ž–J¥ªV­št[[|Õ¥ûéÐzûí·MòêÁ°/¼ð‚ŸŸŸ!KV¨Pá—_~ nݺu¾¯ó^xáÍ7ß”n7lØP; *E]eÊ”Yºt©tZk­Zµ>ùä©}×®]¹¹¹BˆÁƒGDDDDDLž 8Pj¬\¹ò[o½%„°³³2dˆÔ˜’’Rôª\\\þüóÏ1cÆhÏÒBäåå]¼xñÛo¿••uýúõzõêIŸ%''ïÝ»÷ĉ§OŸ>~üøãÇK>|íd´B»jÔ¨¡=B1ßÕX–/_>~üxÝ–_|ñôéÓÒíªU«®\¹ò›o¾9zôèÑ£GÏœ9süøqí‰wîÜéß¿ÿ_ýU»vm!„ùõÌ-¯í’˖-Û­[·ˆˆÝçj—,ìø¿«W¯6kÖL{·àûá•W^‘Τ¹|ùòèÑ£U*•Ï«¯¾Ú«W¯—^zÉðAéÆñ‚Wí6ZRR’tÃÑѱà£z/ǣݞJŽà(ÌÆ;w›˜˜8bĈݻwß¿?444&&¦è§»ººöîÙ!ïêÒNJ*V¬èää$]QòæÍ›õêÕËÊÊš9sæþóíûÜÜÜJ8|½½²³+Ñä‰Z­îСC‡¤»wîÜY°`ÁW_}%„xòäɆ ¤)øRT¾»ÿüóö%òmùZµjéÞMMMÍ7½^ö¼"IÁ÷CxxxjjêªU«233…æÔ©S§Nš?~ÇŽ7oÞ\µjUCU¶lYWWWéå®_¿®w™GI³|ùòÒÁ²Ï¤¡vww/øh¾O“cªP6WW×?þXº}àÀ½~é*".ß«¤§§K©Q!çæÏŸ¿xñ✜OOÏ¥K—þù矩©©u%휜œÕÿºyó¦îC5kÖüòË/Û·o/ÝÕ^äH®A988hÏÉRµ›]âè設óýüóϱúé>¥àû¡L™2_}õÕƒ¾ÿþûàà`ÝKg±B… Ò:uêH7䔽½½‡‡G¾M-„Ðh4/W)¨$„ÈÉÉ©§ÃÙÙ¹råÊ•+WÖûÃ*Z™™™÷ïß¿ÿ~ffæ Aƒ"""~ùåmJ+xÁÎ"h³¼yófÁŸÄܱc‡ö/¢/œ¤¥=˧bÅŠÚd 4eKNNÖþ KùòåMuújѲ³³'Mš$ÕîÝ»7cÆ ©=00ÐÞÞþñãÇÚùPmx:yòdÁ ÖhgZÿøãíÁy?ýô“!—ï6ƒƒƒûÓ´gWtêÔIº±páÂ7J§õ!rrr–/_®í­”™äT«V­¤ÿùÏ´—òþøãµ×?ÒêÒ¥‹tcÅŠÚ+PnÞ¼ÙÅÅÅÕÕUºˆO/tñâÅjÕªU«V­zõêÒu:Õju—.]´çªW®\Ùðn÷ìÙSÛŸ·ÞzkÞ¼y÷îÝBdeemذaäÈ‘ÒCõêÕóññ)zUÿý÷¸q㢢¢¤»Ã‡×=†@©áG@aFŒ¡-†effÞ»wO{ÈÝ”)SÔêRúPÿôÓO 6räÈuëÖ !²²²<(þ®ýùçŸu—tvvþöÛoGŒ‘’’²ÿ~Ý2çøñãçÎ[ô ÙÙÙI‰3==ýï¿ÿ^µj•î£:uš>}z±zÞ´iÓ_~ùeРAÚ÷­îF®[·î×_­½{>zßêUªTÙ¶m[çx0+¦ª³··wssëÚµëÊ•+÷ïßoày©%שS§˜˜˜ÀÀÀ矾zõêƒ ŠŽŽÖ½œø’%Kš6m*„°³³kÞ¼ùÛo¿}úôéÞ½{KnÚ´I;‡»~ýúùóç7mÚ´bÅŠ>>>o½õÖÑ£GK-¼üòËqqq_ýõk¯½Ö¸qãŠ+V­ZÕ××wèСûö틉‰Ñ=5DÞA­^½zâĉÒm77·^½zýúë¯z/Þ(]Ÿ²E‹*TðôôìÛ·oLLÌ7ß|cÈ©QmÚ´‰}ÿý÷}}}kÔ¨Q¦Lggç:¬Zµ*::Zºxg±´oßþêÕ«K–,yùå—ÝÜÜÊ•+çííÝ«W¯%K–\ºtIº*gÑìíí«T©òÒK/½ÿþû—/_nÓ¦MI¶$€’Påû±Z0‰ììì;vˆâOnZ2Ùuâĉ}ûö½þúëz¯bæFp€A˜ª€AŽ0Á!8À G„àƒ`‚# Bp€AŽ0Á!8À GĦƒc\\œ··÷Ÿþ©÷ÑüqàÀ>>>íÛ· KNN–»¿r²éà¸aÆÂZ²dÉìÙ³¯]»æëë[©R¥Í›77.==]î.ÈF-wdššzåÊ•íÛ·GFFê]àòåË+V¬pwwŠŠrssBÌŸ?ýúõŸ}öÙûï¿/w÷äa‹ÇÀÀÀàààÂR£â‡~ÈËË›2eŠ”…3fÌprrÚ½{w^^žÜ݇-VçÏŸŸ™™)„ˆˆˆ8|øpÁŽ?nggשS'm‹½½½ŸŸßöíÛO:ÕªU+¹G [ Ž:tnìÛ·¯à£&66¶J•*UªTÑmoРâÖ­[GÌN%„Fî>Xzd`‹Á±hiii¹¹¹•+WÎ×îää$„xøðá3×àíí-÷ P¶Ëâ²Å}Ÿ^~ªK—/_–»C2 8æ':]±bÅ|í•*UB>^zHîÞȃà¨GçÎsss<¨mÑh4111ÎÎÎ>>>r÷@G=hgg÷ÕW_IÇ5 !V¬X‘˜˜Ø¿ÿ2eÊÈÝ;¬óÔ–³ªõ¨Q£Æ´iÓ.\Ø«W¯Ž;Þ¸qãèÑ£Mš4;v¬Ü]ƒ‘öìÙ#w;Å2±_,;–ƒà¨_hhhÕªU·nݺk×®êÕ«6lÊ”)Òy€YPn´x6?úè£>ú¨°Gåî#°dZÁ1ކPÉÝK@p€yj% 8À G 7Ê Ap€AŽ@V”•æ/Çc9¼½½åîätùòe¹»À³-ÑÁfñg›¦r£BºivLUÀ G„àd°Ò`‚#åF"8À GPê(7*Á!8€ÒE¹Q±Ž0ÒºtéâêêZ£F¾}û^ºtIîó"8Â'OžìÒ¥Ë7Þ{ï½3f\»v­cÇŽ &!??¿ððp¹‡û?=?~|íÚµ+UªäççwôèÑ"Þ·oŸ¿¿¿›››‹‹K‡¶lÙ"w÷ÀPnT2‚#Œ±lÙ²¼¼¼èèèiÓ¦½õÖ[111999¦}•Ó§OÿþûïrõRSS[µjµvíÚŽ;Ž=úÚµkÝ»w?}ú´Þ…wíÚpóæÍaÆ?þÁƒýúõ[µj•܃Àxj¹;E:wî\ãÆkÕª%Ýuvvnذáµk×L²òœœœèèèÇ/]º4//Ïð'>yò¤bÅŠæõâÅ‹ccc×­[7räH!ÄäÉ“[¶lùÎ;ïDGG\xæÌ™ÕªU;uꔓ““",,¬qãÆááácÆŒ1_ÀÒQnT8*Ž0Fbb¢‹‹‹önffflll:uL²ò¤¤¤W^y%<<üÁƒÅzb·nÝ\\\"##u·nݪR©~úé§’w,22²zõê#FŒîzzz0 &&æÞ½{ù–ÌÌ̼páBÏž=¥Ô(„¨X±bÇŽoß¾žžn’­@é#8¹¹¹jµZ¡ÑhâããCBBjÖ¬j’•»»»k4FSÜnfΜY¡B…I“&eddh×­[çââÒ³gÏö*55õÊ•+þþþ*•JÛ——WðHG{{û?ÿüó£>Ò¶äääœ;w®Y³f&ÙJ <”•©j/33³|ùòBGGLjˆWWWyûÓ³gÏëׯOš4iË–-AAABˆ„„„]»v?¾lÙ²%\ùýû÷5»»»n£›››¢`eT­V7iÒDº½~ýúØØØ;wÞ»wï»ï¾“wŒ@âÕ"8ÂxjµzåÊ• ‡îÕ«× Aƒ"##u rBˆœœœ;w¶†Þ½{›¶KÇŸ1cƪU«¤à¸qãÆììì‚K·ciiiBGGGÝFi&:))©ˆ.}øá‡±±±Bˆ®]»šj6”‡ðeŽíé VÚ4Ïú„ÛÛÛkOõŸ;wîàÁƒûõ맻̓'OúôéSøK˜ø''§   Õ«WÇÅÅyzz®]»¶iÓ¦-Z´(¸dq;&ÕS?~¬Û˜šš*„¨R¥J]ºzõjZZÚ‘#GƌӦM›‹/JuJ‡c-šF#ç¿b‘N4>|øp¾v'''Má̱Ñ&L˜ ÑhÖ¬YsêÔ©sçÎ5JïbÅ혻»»]¾YéÄÄD!DÍš5‹îR… :wî¼`Á‚‡nݺÕ£‹F¹ÑZPq„iäää!ìíí ¶—æTµ¢E‹¾¾¾k×®MJJR«ÕÁÁÁ…u¸XS«Õ7>xð nãT*•öpF­;wöéÓ'""bðàÁÚFggga†"+¥†à#;vìÊ•+ 4înÞ¼YQpR¸”§ª%&L ]±bE```aóÂFtlìØ±“'OÞ±c‡tŽvBBBTTT×®]=<<ò-Ùºuk!ÄÚµk ¤=èóÛo¿B´mÛÖCËE¹ÑŠ0U #eggLœ8ñ«¯¾3fLXX˜Ï€ò-fò©êM›69;;O:µˆe† âì윗—§÷´£;Ò¼yóààà°°°E‹uêÔ)--Mû‹ˆ .tvv^¶l™ÂÕÕuÖ¬Y{÷îõõõ5kÖìÙ³[·nýÝwßM™2¥Y³frî6J€à#µoßþÓO?=zôèÌ™3£££Ç·oß¾‚SÕ&—•••’’Rôe´ºwï.„èÑ£‡ _ÚÑÑ1&&fðàÁQQQŸ~úiýúõcbbÚ´i#=š‘‘‘’’’™™)Ý3gηß~kooÿÍ7ß,[¶¬lÙ²‘‘‘K–,1÷öËB¹Ñº0U ãIW½1ooï‚Å¿‘#GfggŸ?¾èç–+WNQ¦LÓvÉÉÉiÅŠzš3gΜ9s´wU*Õˆ#´?3€ â…ÉÈÈØ·oŸÞ+ì, åF«Cp„Â9r¤Q£FC‡•»#ئªaŒ°°°Ê•+ËòÒþþþþþþÏ\ÌËË«C‡²ô åFëDp„1ÆŽ+wž!,,,,,Lî^`U˜ª¦fEåF+Š `‚#0)jtÖ‹àL‡ÔhÕŽ0Á˜åFkGp€AŽÀ(7Ú‚# Bp%F¹Ñ6@ÉmÁF:pà@—.]\]]kԨѷoßK—.ÉÝ#`^GãäÉ“]ºt¹qãÆ{ï½7cÆŒk×®uìØ1!!ÁTë?{öìàÁƒ«U«V©R¥V­Z-Y²$''GîA !Ä£GÆ_»víJ•*ùùù=z´ˆ…÷íÛçïïïæææââÒ¡C‡-[¶ÈÝ}0«.7ZõàŒAp„1–-[–——=mÚ´·Þz+&&&'''""Â$+‹‹ëÔ©Óž={ºwï>uêÔ²eËN:uàÀrZ¤¦¦¶jÕjíÚµ;v=zôµk׺wï~úôi½ ïÚµ+ àæÍ›Ã† ?~üƒúõë·jÕ*¹@ h`j 4(…§È«uëÖM›6ÕmiÓ¦Ío¼a’•÷îÝÛÎÎîØ±cÚ–ÐÐP!Äž={Š~â?ÿücÖQÏ™3G±nÝ:éîµk×*W®ìïï¯wáfÍšU«V-%%EÛ·Úµk?ÿüó—TÜÞ7•¸¸8¹»=Ø/È¢wеçˆÂÆg³ÿuSq„1]\\´w333cccëÔ©c’•GGGûùùùúúj[Þ|óM!Ä‘#GŠ~b·nÝ\\\"##u·nݪR©~úé§’w,22²zõê#FŒîzzz0 &&æÞ½{ù–ÌÌ̼páBÏž=œœ¤–Š+vìØñöíÛééé&ÙJ ?æqmÁÆÈÍÍU«ÕBFR³fM©.XB999'N”’¢Ö7„åÊ•+ú¹3gάP¡Â¤I“222´ëÖ­sqqéÙ³g ;–ššzåÊ•J¥m ÈËË+x¤£½½ýŸþùÑGéŽëܹsÍš5spp(ùV@j¹;ËÌÌ,_¾¼ÂÑÑ1""ÂÕÕµäëT«ÕŸ|ò‰nËÇ?ùä{{ûýÜž={^¿~}Ò¤I[¶l B$$$ìÚµküøñeË–-aÇîß¿¯ÑhÜÝÝuÝÜÜ„<(8Š&MšH·×¯_»sçÎ{÷î}÷Ýw%ßD`(7Ú$‚£ES UÉWb4ͳþKP«Õ+W®LHH8|øp¯^½ ©[Bäääìܹ³°5ôîÝ»è—Ø¿ÿ¸qãbcc¿ùæ//¯göyøðá3fÌXµj•7nܘRpÉâv,--Máèè¨Û(ÍD'%%Ñ¥?ü066VѵkWSÍæ ‚£E{ft“—½½ý˜1c¤ÛááásçÎ}  ¦ÐÞ¼yóÍ7ßܾ}»——ׯ¿þ`H—œœœ‚‚‚V¯^çéé¹víÚ¦M›¶hÑ¢à’Åí˜TO}üø±ncjjª¢J•*EtéêÕ«iiiGŽ3fL›6m.^¼(Õ)@Á(7Ú*Žq„iŒ9Rqøðá|íNNNEœœUØÚ6mÚô /œ8qbùòåýõ—©Q2aÂF³fÍšS§N;wnÔ¨Qz+nÇÜÝÝíììòÍJ'&& !jÖ¬Yt—*T¨Ð¹sç <|øpëÖ­¥¸[À H6ŒŠ#LCº@·½½}ÁöâNUoß¾}øðრZ¶lY¾©aC´hÑÂ××wíÚµIIIjµ:88¸°«cjµºqãÆÔm}úDDD ?~¼««ë¬Y³ÂÃÃ}}}_yå•JõË/¿;vlÊ”)Íš5+Ýæ@’²yG©}ûö¡¡¡Ÿ}öÙúõë«V­:nܸ ]#Ô’N@¾xñâÅ‹ó=T¿~ýÀÀÀ¬¬¬”””¢/£íààн{÷M›6õèÑÄCvttŒ‰‰™6mZTTTrrrÛ¶m7nÜèãã#=š‘‘‘’’’™™)Ý3gާ§ç×_ýÍ7ߨÙÙ5jÔ(22RwæÅ!8ÂxAAAÒUoL¨W¯^EGŽ™}þüù¢×#]-¼L™2¦íž““ÓŠ+ô>4gÎé7 %*•jĈÚŸ™Å£ÜΪ†âdddìÛ·OïvæBj„‚àÅ9räH£F†*wG°9LUÃaaa•+W–å¥ýýýýýýŸ¹˜——W‡dé!XÊøÁÆ;v¬Ü]x†°°°°°0¹{ÊGj„¦ªò#0ëEp… =áiG ©`‚#(€r#ô!8€§‘Q‚# Bp:(7¢pGð/R£‚ÍP8‚#B—ðlGéÀ]ºtquu­Q£Fß¾}/]º$w€yaŒ“'OvéÒåÆï½÷ÞŒ3®]»Ö±cÇ„„“¿ŸŸ_xx¸ÜÃýŸG?¾víÚ•*Uòóó;zôhaKfgg«ÕjÕÓªV­*÷ ”aµÜ€"-[¶,///::ºV­ZBˆáÇ{zzFDDL:Õ„¯rúôéßÿ½sçÎr÷¿RSS[µjuóæÍ¸ººFEEuïÞ}ß¾}>>>ŽÏÍÍm×®§§§¶±R¥Jrô!5Â0Gãܹs7–R£ÂÙÙ¹aÆ׮]3ÉÊsrr¢££>¼téÒ¼¼<ßøäÉ“Š+šoÔ‹/Ž]·nÝÈ‘#…“'OnÙ²å;ï¼]páØØX!ļyó,'øPBLUɉ‰...Ú»™™™±±±uêÔ1ÉÊ“’’^yå•ðððë‰Ýºusqq‰ŒŒÔmܺu«J¥úé§ŸJÞ±ÈÈÈêÕ«1Bºëéé9`À€˜˜˜{÷î\X Žõë×7É63¢ÜƒaŒÜÜ\µZ-„Ðh4ñññ!!!5kÖ 5ÉÊÝÝÝ5F£)î 73gάP¡Â¤I“222´ëÖ­sqqéÙ³g {•ššzåÊ•J¥m ÈËËÓ{¤clll¹råž{î¹üqùòå‡ÊÊÊ2ÉöS"5À&)SÕ0^fffùòå…ŽŽŽ®®®òö§gϞׯ_Ÿ4iÒ–-[‚‚‚„ »ví?~|Ù²eK¸òû÷ïk4wwwÝF777!„ÞÊhll¬]ýúõ“““¥–Fmذ¡eË–òn%ø"ЉàhÙtŠ[2Ð<㿵Z½råÊ„„„Ç÷êÕkРA‘‘‘ª§ûœ““³sçÎÂÖлwoÓvyøðá3fÌXµj•7nܘRpÉâv,--Máèè¨Ûèää$„HJJ*¸†ØØØ¼¼¼ððð”)SfÛ¶mo¿ývŸ>}Ο?/= Å!8Z¶gE7yÙÛÛ3Fº>wîÜÁƒ÷ë×Ow™'OžôéÓ§ðñ™x€NNNAAA«W¯Ž‹‹óôô\»vmÓ¦M[´hQpÉâvLª§>~üX·155UQ¥J•‚kØ¿ùòåµ…††fddLœ81**jôèѦ5ƒr#Šca҉ƇÎ×îää¤)œ9z2aÂF³fÍšS§N;wnÔ¨Qz+nÇÜÝÝíììòÍJ'&& !jÖ¬Ypù5jä ”ÝºuB\¸pÁl; Fj„Q¨8Â4rrr„öööÛKsªZÑ¢E __ßµk×&%%©ÕêàààÂ:\¬Ž©ÕêÆ}zTT”»»{DDĪU«œwïÞ=sæLso( ±%ÃTµ~YYYß~ûíîÝ»ããã›6múæ›ozyyÉÝ/Ë$]õÆL¼½½ ÿFŽ™}þüù¢Ÿ[®\9!„4MlBNNN+V¬ÐûМ9sæÌ™£ÛÒ¿ÿþýû›oû@ñQbTõÈÍÍ9rägŸ}–œœÜ±cÇš5kîÝ»·wïÞÇ—»kûöíÓ{…@¡H0*Žz|ÿý÷§NzõÕW?ûì3é‡õŽ92zôèÙ³gïÝ»WîÞÙº#GŽ4jÔhèСrw›CpÔãÔ©SBˆ‘#GJ©QѶmÛF?þáÇz¯ölkÂÂÂ*W®,ËKûûûûûû?s1//¯:ÈÒC°8”a"G=ªW¯.„xøð¡¶E£Ñ¤¤¤ØÙÙi£¤;v¬Ü]x†°°°°°0¹{€Ôh06Õ3qŒ£={ö,_¾üüùó9’žž~÷îÝ÷ßÿöíÛÌ÷SÅX4¢LŠú™ÞÞÞ6l ѽ à°aà ¯`y{{çkÙ³gÜÂ劗» 2¸}û¶Ü]€ì dôNñðôˆ‹¶øŒ±<<ôþ‡,]â ‚à¨Wjjê‚ ž}úÉ“'g̘1jÔ(©åîÝ»C† yûí··mÛæéé)wdÀ1Žù%$$ìÛ·¯~ýúÚÔ(„¨Q£Æo¼‘½e˹;À³ph#̃à˜_RR’¢nݺùÚ¥Bãƒäî E"5…Íf‚c~uëÖµ··¿zõj¾»“Žo¨_¿¾Ü pĘÁ1???¿7nüç?ÿÉËË“¯^½ºtéÒ²eËréiäAj„™qrŒ}ôÑ€–.]ºk×®Æ'%%ÜÓÓ3""Â$5Ú]»võèÑÃÓÓsذaQQQýúõ[¹rå˜1cäujjj«V­nÞ¼9`ÀWWר¨¨îÝ»ïÛ·ÏÇǧàÂñññ¹¹¹íÚµÓ½b|¥J•ä+DjD)"8ÂçÎkܸ±”…ÎÎÎ 6¼víšIV>sæÌjÕª:uÊÉÉIÖ¸qãðððgÇ'OžT¬XÑ|£^¼xqllìºuëFŽ)„˜úHÛ’““sîܹfÍš988ýÜ™3gV¨PaÒ¤IÚÆuëÖ¹¸¸ôìÙ³„KMM½r势¿¿J¥Ò6äååé=Ò166¶\¹rÏ=÷Ü?þ¸|ùòC‡eee™`Ó€„Ôh:lKÃ1U ãeff–/_^áèèáêêZòuªÕê&MšH·×¯_»sçÎ{÷î}÷ÝwÏ|nÏž=¯_¿>iÒ¤-[¶ !víÚ5~üø²eË–°c÷ïß×h4îîîºnnn¢¢Œµ³³«_¿~rr²ÔÒ¨Q£ 6´lÙ²ä[ €­#é@&GO­V¯\¹2!!áðáýzõ4hPdd¤nAN‘““³sçÎÂÖлwï"Öÿá‡J¾]»v5p|øðá3fÌXµj•7nܘRpÉâv,--Máèè¨Û(ͧK¿ožOlll^^^xxø€Ê”)³mÛ¶·ß~»OŸ>çÏŸ×΀1HÁÑ¢©J¾ŠxæÿKöööÚVÂÃÃçÎ;xðà~ýúé.óäÉ“>}úúš¢^äêÕ«iiiGŽ3fL›6m.^¼(UøŠàää´zõ길8OOϵk×6mÚ´E‹—,nǤzêãÇuSSS…UªT)¸†ýû÷—/_^ûPhhhFFÆÄ‰£¢¢FmÜR#äÅ1ŽM#ë¿b‘N4>|øp¾v'''Máž¹Ú *tîÜyÁ‚>ܺu«!=™0a‚F£Y³fÍ©S§Î;7jÔ(½‹·cîîîvvvùf¥…5kÖ,¸|5òÊnݺ !.\¸P’·›Fj„ܨ8Â4rrr„öööÛ‹5#¼sçÎ>}úDDD €lˆŒP>‚#ŒqîܹÆK©QáììܰaÃk×®™då±±±BˆyóæuîܹXO|òäIÅŠÍ7êÅ‹ÇÆÆ®[·näÈ‘BˆÉ“'·lÙòwÞ‰ŽŽ6á(X'R#¬SÕ0Fbb¢‹‹‹önffflll:uL²r)rÕ¯_¿¸OìÖ­›‹‹Kdd¤nãÖ­[U*ÕO?ýTòŽEFFV¯^}ĈÒ]OOÏÄÄÄÜ»wÏ„£`…Hƒ]QBG#77W­V !4M|||HHHÍš5CCCM²òØØØråÊ=÷Üs?þøãòåË:”••eÈgΜY¡B…I“&eddh×­[çââÒ³gÏö*55õÊ•+þþþ*•JÛ——§÷HG£GÀÚU`E˜ª†ñ233Ë—//„pttŒˆˆpuu5ÉjcccíììêׯŸœœ,µ4jÔhÆ -[¶,ú‰={ö¼~ýú¤I“¶lÙ$„HHHصk×øñãË–-[Â^Ý¿_£Ñ¸»»ë6º¹¹ !}Ο?ïääTt—†>cÆŒU«VIÁqãÆÙÙÙ!!!—,nÇÒÒÒ„ŽŽŽºR’’’L; V‚ÔhaØ!%Gp´lª’¯¢žõñ²··3fŒt;<<|îܹƒîׯŸî2Ož<éÓ§O¡¯ Ñóû÷ï/_¾|•*U¤»¡¡¡'NŒŠŠ=ztÑ]rrr Z½zu\\œ§§çÚµk›6mÚ¢E‹‚K·cR=õñãǺ©©©BmWM5 Ö€kÄ1Ž–M#ë¿âN4>|øp¾v'''Máô®ªFù¢X·nÝ„.\0¤'&LÐh4kÖ¬9uêÔ¹sçF¥w±âvÌÝÝÝÎÎ.߬tbb¢¢fÍš&e#5ÂJQq„iäää!ìíí ¶kFøÆ;vìhÔ¨‘¶Q*ìxÖv‹-|}}×®]›””¤V«ƒƒƒ ëp±:¦V«7n|ðàAÝÆ¨Tª&Mš˜|ŒÔh‘Ø-&Ap„‘Ž;våÊ• Hw7oÞ,„(8)\Üa‡wß}×××÷·ß~+S¦Œ"//ïÓO?U«Õ]»v5°o&L ]±bE`` tþJAFÌ¡;vòäÉ;vìÎÑNHHˆŠŠêÚµ«‡‡‡9F@y¤ã‹ˆ'°^LUÃHÙÙÙ'Nüꫯƌæãã3`À€|‹wFØÍÍ-<<üàÁƒ^^^&L˜9sf«V­"##ç͛׸qc!ĦM›œ‹þ‰š!C†8;;çååé=-Æ¸Ž !BBBš7o¶hÑ¢N:¥¥¥…‡‡K.\¸ÐÙÙyÙ²e†Œ€Rsœ ,Ta¤öíÛ‡††~öÙgëׯ¯Zµê¸qã,XPpªÚÓ§O¯W¯Þ¢E‹"""Ê—/߬Y³Ý»wwïÞ]z4+++%%%==½ˆ5888tïÞ}Ó¦M=zô0ácbb¦M›•œœÜ¶mÛ7jo0###%%%33ÓQ°6̃Z6ö©a¼   éª7&׿ÿþýûë}häÈ‘ÙÙÙçÏŸ/z åÊ•BHÓÄ&äää´bÅ ½Í™3gΜ9Ž€U!•Àf0U …ÉÈÈØ·oŸÞ+ì€ H°%G(Ì‘#G5j4tèP¹;¤Fe`/™SÕ0FXXXåÊ•eyiÿg.æååÕ¡CYzÀ&p5lÁÆ;v¬Ü]x†°°°°°0¹{ÀJQ‚­bª€â 5* »Ë´ŽŒÛFpÀ0¤FØ<‚# 5*;Íä89€"q5ð/‚#…£fè`ª€B•Œ½gT-…···Ü]è w-ÂåË—åî‚•‹÷ð𻂃•Øo&Gt8€ÂqŒ#ÿ"5E"8 „ 5Zö¤ù0U °yÔ†à°m”§¬ ûÓ¬˜ªØ0RPT6‰éi øŽÛC¡ÑJ±cÍ©j€!\Æ¢â°LO[5þ"(G€m V%ÆT5À­{¸tPqX5¦§Ó!8¬e(ÛÀ~.5LU¬i05*Ž«Ãô´-á„ÒDpXr`6LU¬©ÑưÃKG€U`z0?‚#@ù¨;Ù$v{é#8”ŒB#PŠŽÅ¢âdÃØù² 8ˆB# ‚#@i¨5Ù<Þrár<E!2ò¡âP¦§!„àoYJ@X,Á`Ù(4BAÈ‹à°`ÄÀ’‰B# àïÙ–‡€€xSX‚#À’Ph,Á`1¨)¡¼5,Á`(4J@pÈjŠÄÄr uîܹåË—_¸páŸþñööž4iRëÖ­åîX €¢ð[ÕúEGGEGG»¹¹ùøøœ>}zĈÑÑÑr÷ ¬ˆTG"5¢H”- G==zôÞ{ï©ÕêÕ«W·lÙRqöìÙààà÷ß¿S§Nvv¤m( 0 ©ÑÒôؼysjjêøñã¥Ô(„hÖ¬Ù«¯¾š˜˜xîÜ9¹{J¦¢Ð(ÁQ¨Tª>}úè6.Z´èòåËÍ›7—»w XDFåF ÄTµçÏŸwvv®V­Ú‰'NŸ>’’Ò°aÃ.]º888ÈÝ5P&æ¦QL¤FËDpÌ/++ëñãÇõëן;wî¦M›´íµjÕúâ‹/^xáCVâíí¯eÏž=r̦ݾ}[î. ?vŠe2Ç~ñðôˆ‹Bˆx¹‡§L6úañðˆ·”wL÷îÝåî‚¥ 8æ÷øñc!Dllìƒ.\Ø©S§ŒŒŒ¨¨¨¯¿þzòäÉ;vì0¤îxùòe¹Çü<<<äîòc§X&Sî— ‚}]"¶öaùo¹ÑbF]ðk½`…ÈFpŒc~åË——n,X° OŸ>•+W®V­Ú›o¾Ù·oßÛ·oïܹSî€BpD#ŒÂ$µ%SLp<{ölÑ ˜j.¸bÅŠåË—wppð÷÷×mïÒ¥‹âÒ¥Kro °x*¾ü뤘à8dȯ¾ú*77·àCÉÉÉS¦L™”ZÎ;·zõj''§®]»Ê½%Àò07 ØÅœU]©R¥yóæ½úꫳfÍš;wî®]»âââ½¼¼>ù䓦M›šðµ5j4uêÔÅ‹wïÞ½U«ViiiÇW©TóçÏwqq‘{K€%á0þôPÅGIÛ¶m###{÷î}ìØ1!D‹-Ö¯__¦L“¿Ð믿îêêº~ýúÇ;;;wîÜyÒ¤I^^^ro°$|ÕÃDx+)…‚ãÁƒ¥ä&Mš€õâ¼i˜ï)ÅQÌ1Ž7nôññÑûPµjÕÖ®]»aùûÖˆÃa¤F%RLp,,5JT*Õˆ#äî#X¾ÛèPLp”* 0'þ$Q(‚#àiDF˜©Q¹Ž€ÿñðôà+fEjT4ÅœU 0/•*/w?`ÍHJGp›Ç5½†©j°aΈRD¹Ñ ()8îÞ½{ýúõׯ_×hô¿ñŽ=*w@9øG)âífýõ×)S¦H·íííåî(…F”.R£ÕPLp\µj•"$$ä7Þprr’»; LDF”:R£5QLpŒ}þùçß{ï=;;Nè€â#2B¤F+£Œ–ýøñãZµj‘ Ø8i€‰(#‡ÙÙÙ999]½z5//Oî¾€¢!ÊÖGÁÑÞÞ~̘1‰‰‰K–,‘»/ *¾·!'Þ}VI1Ç8¾öÚk·nÝZ±bÅÑ£G_}õÕ矾lÙ²ù–éÔ©“ÜÝ ÀጩÑZ)&8vîÜYºqöìÙ³gÏê]æòåËrwdEd„ 5Z1ÅÇ^½zÉݰ`DFXR£uSLpüôÓOåîX$"#,©Ñê)&8ôà‹ƒ7£-°Üà¸qãF!ÄK/½äå好[´àà`¹{ ¥…B#, ©ÑFXnpœ7ož"<<\ ŽÒÝ¢Ø"#, ©ÑvXnpœ4i’¢iÓ¦ÒÝwß}Wî€ÜˆŒ°<¤F›b¹ÁñÍ7ßÔ½;vìX¹{ò!2Â"‘måG€DFX.R£ "8€¥"2‚‘mÁ,‘–Ôh³Ž`IˆŒ°x¤F[Fp‹Á2,oRGp @¡J@j„‚ƒ£F£‰ŽŽ¾}ûv³fÍ|||äî…È… 5B(+8FGGÿßÿý_—.]¤kƒÏž=;**Jz(((hΜ9*•Jî>€ÁˆŒPR#$vrwÀPÇã7.]º”——'„øë¯¿¢¢¢œœœ†úüóÏoÚ´)::Zî>€aTÿ~óU % 5BK1Ç•+Wj4šY³f !~þùg!Ä'Ÿ|Ò¹sçëׯwïÞý»ï¾ëܹ³ÜÝ€"Qe„¢ð†E>Š ŽW®\©V­Úˆ#¤»üñGÙ²e;vì(„¨[·n½zõâââäî#Žo`( …F¤˜©ê””WWWévNNÎ_ýõ /”-[Vj©P¡Bbb¢Ü}}˜˜†‘¡—b‚c5nß¾››+„8uêTFFFëÖ­¥‡òòònß¾]µjU¹ûO#2B™H(Œb‚£¯¯oJJÊ—_~yçÎ/¿üRáçç'=´fÍš‡Ö¯__î>À¿ˆŒP,R#Š ˜cÇ·}ûöo¾ùæ›o¾B4mÚTºvã AƒþüóO!Dhh¨Ü}Že„²‘Q4ÅTkÖ¬ùý÷ßwêÔ©Zµj:tøâ‹/¤«6&&&:::.X° M›6r÷€m£Ê%S‘aÅT…^^^Ë—/Ï׸aÆêÕ«ÛÙ)&°BT¡pDFHIÁQ’’’rþüù{÷îÕ¨Q£}ûöåÊ•#5 ‘ÊGj„ᔓ’’¾ù曨¨¨ôôt!ÄÈ‘#Û·oß·oß&Mš|òÉ'ÎÎÎrw€-!2Â*Q,Š©Õegg¿ñÆ6lpttìÛ·¯¶ÝÍÍmß¾}C† ‘Ò$˜Ç2Â*pP#Œ ˜à¸|ùò3gμüòË{öìY°`¶ý‡~èÝ»÷õë×ׯ_/wX;"#¬odG1Áñرcöööüq… tÛííí?øàƒ *ìÝ»Wî>°^DFX 0šb‚ãÅ‹=<<´¿:¨«R¥Jžžž7nÜ»¬‘V„éi“Pý÷g[¤˜“cœœœž}úÈÝG Ǭ4¬ÓÓ0!ÅLU·oß~̘1+W®ìׯŸ§§§â×_=|øðµk×òòòúöíûÊ+¯ÈÝGŠÅEa¥ˆŒ0-ÅG!Ä»ï¾Û²eË… ÆÅÅ !îܹ#„¨ZµêÔ©Su¯ìÅ@d„õ"5Âä”…þþþþþþÉÉÉqqqYYYžžžîîîrw €2a½xwÃL%ÎÎÎ-[¶”»‹/UX5 0ÅÇ6mÚ‘¶„÷;䥘àRÄ£Ï=÷ÜäÉ“åî#€RÄéÒ°1DF ¡*Ðx o¹;"ÅÇ^½zöPíÚµûôéS«V-¹û Tðý ÛÃÜ4,„b‚ã§Ÿ~*wÈÈÛ£Bxx𮇅°’³ªX9N—†M’Þõqññrwø/Ë­8îß¿¿¸OéÔ©“ܽ`jTa“xãÃ2Ynp|ýõ׋û”Ë—/ËÝk¦Ã7'lo|X2Ë ŽEœ Àšqº4l'ÁÀÂYnpälÀæPi ãíE°’“cÞ{ï½€€¹{ÀXœûÆÛ b¹Ç‚’““ûí·7näkOOOÿå—_ìííåî €â£ÌÛÆÜ4”E1ÁñþýûAAAwîÜ)làà`¹ûÀ`*á!<„à;¶‹?š DŠ Žk×®½s环¯o``àÎ;ÿøã>øÀÁÁáÒ¥KÁÁÁ³fÍ’» ðï·e||¼‡‡‡Ü½d@dT.é÷åî…œà”j‰b.Ç“ÏåË—÷ìÙ³gÏž¸¸8ño%ÒL¯u÷îÝÀÀÀ€€€O?ýTîqæÄOKOã3䣰àø×_íÝ»w÷îÝ7nÜZ^xá…ÀÀÀ×^{ÍÍÍͯ¨ÑhÞ{ï½þùGî¡æÄ5耧ñ™ôRLpüôÓO÷îÝ{ëÖ-énݺuëÔ©cÖ×]·nݱcÇä=`6|=Oã3A1ÁqÕªUB77·=z6iÒ¤^ôêÕ«K–,iذá¥K—äÞ€I1@dDa8ÀQK1ÁqàÀ¾¾¾vv¥tBONNÎôéÓg̘"÷L„ïF >€?úè£R~Å/¿üòâÅ‹kÖ¬qtt”{ô€)ðÝÀÇ(ÅÇRvæÌ™•+W6¬]»v.\(îÓ½½½óµìÙ³Gî1Ù´Û·oËÝÙxxzH7âãâ…"^îýË–wŠ%³ýâéá!„ˆ‹ô±ÐÏvvŠåòxê›ý²ÜÝ‘ÁQôôôéӧתUëwÞ1n —/Ûò›ÊByxxÈÝ…R÷t-ÅCXܰŢV¿_žúd(d°V¿S,ÙpÔýb·á €õX¸páíÛ·7mÚäàà w_£0ýÀ)a@É)õ—cÌçØ±c›6mzýõ×›7o.w_€âã.€øÅuÀT¨8æwõêU!ÄÒ¥K—.]ªÛ¾mÛ¶mÛ¶yyyíØ±Cî>PKô¡øŽâB<ùó«S§N=t[=ztèС5jøøøT«VMîOã‹ЇO`Çü:tèСCÝ– .:t¨U«VüV5, _Œ@ß³"8JÃ# IÁ䘧.ˆà(_Œ€>|2€RCp|¶&Mšp]FÈŒ/F Šï0+Êz Æ# Ir!8‰/F þ’dÇÀ ü¸‚7JYQóÔ*•ÐØîÛŠ#`¨¥úP|, Á_Œ@ü%qZLŽ€|ˆŒ@|,KFpJµ >°”‹FpJµàiäE@YŽ@© 2Oã3 D¹ñ™Ž€™ñõè Ä‹Ej4Á0¾§ñ7`Ž€©ñõèào((åFÓ!2ÿ"/BAH†#8%Æ7$ ƒ? +FpJ€oHà_ü…¢ÜX,GÀ(DF@A^„‘‹‹à‘ /Â*“U*¡±éw=Á0 ß“€‚?`-¨5‡à< ß“:ÁºFp Gd„Í#/ÐEpô!2¶‘aÅ(7–ÁÐÁ·%l›Jáá!øÀz‘KÈNî–A%„JÍ¿ÿ[¢ÒùÄÅÇó €µ"5–GØl …F"8ÂöPf­â½dÊÔhóWÿGØÊ,°IäEØ,j&Gp„Mððô‚¯MØò"l©Ñ8«ÖN%„JÄÇÅó¿lêéS¤¹Hl“J¨HfBp„õÒýò¬ZÁ°È»6KŠŒ¤F3aªV‡ù9Ø Þì€.®¹S ް"œûÛ@^ 2ûÜ4§T !ްDFØò" …ÆÒDp„ÂaíÈ‹@8 ¦”¡XDFX5ò"P4 ² 8BˆŒ°^äEà™ˆŒ2"8BQˆŒ°F*Û¼»¢17-/‚#”€" ¬ïk Xä,4rJõ¿ްl”auÈ‹@q17m9ްTDFXò"`"£¥!8Âòa-8x0‘Ñ2aIˆŒ° ’°¸ÈÈŽ:ް DF(y(!‹‹Œ(€à¹¡dLF%§ú÷“Dd´|GȇÈÅ¢¸˜%FÅ!8BDF(ÅEÀT”TbäǧQºˆŒPŠ‹€ QbT:‚#J ‘ÊAq0-%•Q$‚#ÌÈ… ¸˜œ²KŒÌS@p„9añ(.æ@‰ÑZaDFX6Š‹€9­Á¦Fd„¥¢¸˜‰uæEæ©õ!8ÂtˆŒ°H3±Î¼ˆ"a DFXŠ‹€ùmÁ%¦â›–‚â"`&*?Çl"/2O]‚#J€B#,ÅEÀ|(."‚#ŒBd„¬‹€ùØ\qQÏ& ÜX(‚#ЉÈù0 ˜ÅE‚àƒ!Š‹€ùP\Ôƒrc‘Ž0‘¥Žâ"`&„E”ÁÏÂIÓ(-3!,Šrã³Q8 0?Â"`&„E˜ÁúaNÿý6óð¼Ë“",–åFØÉÝXÕ¿sÓ|v`jª§ß_qññ¼Ë€’S •öŸFh´ÿäî¬GèàpF˜3рɩžú`QY4ʆ!8BÁÜ4L‰°˜sÐæEj4ÁÑæa „EÀ´ž*+za)8ÆÑ¶q8#J&ßa‹¼›£éª˜ïhŸø8¹{gÕ(7G[E¡Æ¢¸˜‡*B‰Ž6‰“`PL„E äHŠ–ˆrc1m …FŒ°”IÑÒ‘‹àh3ˆŒ0a( ’¢’Bp´ ÌM£HÚï:Þ&€áòÅDARTR£±8«ÚÚ©HÐO¥ïœhE(âÄg~¬Å¦¨T%_‡RQq´jDF<™hÀp­åÆ 8Z)ŽhÄ¿‹€!ˆ‰¶‚ÔX2GkD¡Ñæ¢m©±ÄŽV‡Ôh«‹@aˆ‰‚ÔhG+Âô´Mâ„h@WÁŒ(ˆ‰¤F“!8Z ¶„â" ¡”ƒM‡àhH6€°G)F"5š×qT8.ÓhÕô^j‘½ [z/šHjij™!5Úx¥â¨dDFkDe¶†R"ÌÅÆ#žy‹ÔhE‹°dD”é§]Hf@pT Ξ¶ „EX72"dC¡ÑœŽJC¡Qá¸z¬„ÔhfGE!5*ÅEX½Qa!Jezš\JpTR£¢¡h¡0ºÒBpTR£¡8z¢‡dD(çÁ”.®ã¨¤F Æ¥¡/‹XØÅãâãHP ©ÐHj,ETõKOOÿþû¢nß¾ýÜsÏ5hÐ 44´}ûö2t…Ôh‘8Ç‹YfØ9 ̇ ‚£^999!!!gΜqrrjÛ¶mFFÆüqèС·Þzkâĉ¥ÚR£%a&…SU`»Hpò!8êñÃ?œ9s¦eË–«W¯vppB\½zuذa_ýu@@@£FJ£\¬Ñ2!;"ð?Ñ(7ŽqÔcÏž=BˆY³fI©Qáåå5~üøÜÜÜßÿ½4z â@99qØ"J_aÇ öͤFØé!ßT9%Tõˆ¯X±b“&Mt½¼¼„·nÝ2ûË3=-[D) |UFKBpÔcùòåjuþ-sáÂ!D­ZµäîL‰™h˜ 0 Ë(ôYF/,ÁQÆçk9zôèŠ+Ê•+×§OCÖàíí¯Ešþ~&Oø¸x/÷&°:·oßÖÞöôðÐÞŽ‹ÿß¶f«—2Ý¢Pžž…=§·Ýò?ÞV°_¬mîOO!D|\œˆ·„OGÁovÛDp|†ÜÜÜ7.Z´(77÷óÏ?wuu5äY—/_6æÅTBh„‡ð0æ¹(’nX|êF¶¶œ<²ý)*cd…ô]!ûŦØÖNÑ™›¶„aÿ[n|ê›Ýfs$Á±(üñGxxøµkתW¯þñÇ·k×ÎŒ/Æ¡f ý¶‹·­ÿvQ|…¥CÁü2P:Tÿ~™¶`Gý²²²>ýôÓ 6”/_~Ò¤I£GÖžam¤FÓÑ{Ø¢%ÌsÀBpô!`q,øôŽṅà¨G^^Þ;ï¼óóÏ?wéÒeΜ9nnnæ}=R£)pN4tQ>”Á‚#£ 5êCpÔcÆ ?ÿüóСCçÌ™cö#5–çDÛ8Ò! `–©±Çü4MDDÄsÏ=÷Þ{ï™ýÅHÅGX´AL.ÖƒŽà˜ßƒnÞ¼éàà\ðѾ}û6Lî>Ú"f¢­åCÀÊY|‰1_gÒÓÒFpÌOº\Vzzúùóç >jÊ«)7> ÅEëóT:|ú4wÒ!`”VbTT¾•Á1¿-ZyÆb!5Žâ¢ÒX;ŒçI€SZ^ÔöZQý•Áâ¢â0³ @?Å–ìH† 8Êrã¿(.Z8Ò!C)³Ä¨Û}ev¼´K©‘¼hy8m€‘ž…‚+¤ò 8¢”0-;ʇLFùyQ;… ´K—í•).–2Ò!sQéü÷¢ü´E¡Ñ8ÇRdK©‘¼hnL.(%ÖR\Ì7 kMi#8”ȋ¦Eù€l¬./ "£)K‹õ–9x±„H‡,…uMF™uIG‰âbq1¹ ÀYoXÖY6•Á±TXQ¹‘¼øLD `푊£™aòb>Ì/P«..梕ŽO~G…¼Hù€‚©žþÌzÃy±ÔÍOóÔ6˜ ˆ¬„ ” ŽÕÚjAŽxŠô´î ÞŒH@ `6m`¬–ˆàhf )7Ze‰ñ©€èñ¿›dDŠg3sЇkícµtvrwrRýûOóï?%R •Þ¡Ñþ‹‹ÓÞ–»¿`Ýÿá4š§þY£Â† yQq´EÊ­/2Ë À†ü[gû „&*‹–Š£9YÞ<µ‚ê‹Ï,"RA`mòýŸ÷ïÿsñqqV£¨,* G›`á%Fêˆl”ªhöG+gigI“Ø4Û MªÿëÛÀ ­ÁÑ:YH‰±`L$#°!6šl/Û‚£ÙÈt€£Œ%Fb"›FL´•AÛ4‚£õ(åÈHL`ël¬¶¦Ò÷[Ö>häGpT¼Ò™•&&°u¶T[##¢0G3_‰‘˜ÀÖÙLL$#¢XŽŠdòȘ/)ØÛˆNzGi…yÍÃlgƘ*2’Ø(k/%aVGÅ(ad$)°9V]J$ BG0:2ê†E’"kfQgLV78(¿UmÑtZÚ°å ýeg¹‡&¢Ò÷Sö}?e¯zG“oLqqñʬGËeàq’”X'k™‹-lÊ lÁÑ27­Í‹„EЧ䉿¢s¡rÆ„àhYŠŽŒ(›‹ˆäB@ÁÑ<Œú¤°¹iŠ‹F!ñ™¡Ðòº ÈŒàhôÉ‹,¥DC¡tP‚£üòÉ‹,ŽÅD! /‚£ÌtS£É‹ä¡R ½ ¥ÄH„€"pGÙh¯Ñ˜ï²‹r÷ €U{ÖeããâLxAÄ"^Íë0rñBÀÒPq”‡Nd¤ÄÀÔŠ(ß•8|X4Ñ«°,G¨„DF%dºtøôš<Š^˜,Ø2¦ªK›”™•`ã&w‹3GœoMzÝŽÉb*Ž¥J›åî‹aØÒéYвPꎥçߨùï°1EFCUÑÿ'üûT‚ K@p,%*#`ÅŠ µAÿ(Á±4¨È€rè šL óá`5Žf'¥F¾9YzYi\¨ÿÓʇŽæFjL¥X—ÔúßÇϰsPE 8š©(L?nW˜g|– Ë…*Ÿx6‚£¹H?!hT‰P£ ñññgG•ªèƒ É…P ŽfÄ1P–’ΛõµÉ…`Ž€u2"š1›éëÍSÅFr!(ÁÑ,8º&$g!ÐT]Ô×›âMU,Á(U–U4Uù+ lÁ(‘âA‹‹X\0ÁÑLø²U*ÅÁâÆ¢°,GX¹³“¡ÇÒ))GQ,”.‚#”§XEA);)ï< Š…ËCp„¥0<ZC^¢XP ‚#ÌÎÀDh=I‰b!ÀJÍÂFBÍ%B‡mm࿎(”$6ÏFp´]6ltؘÁÑÊ“¬3 2àÿPmà4ØÉݘ†J¥ÿŸFSè?E*lœÏp|\œ’‡ €E â¨0…U­$1 €#8Z´‚9JñÁ©èh¨øá`ÍŽÄJb"Ñ+Ep”™nÊRR¦²¹“nÁQŠ ‹¤C ƒàXz´1ÌâB—•ŸqLƒàX¤`& # € 8š—<‘‘€Ì€àhFÒå¨Íþ€ÍÅ,©ÑJ.؉àh&Kù’"1ȇàhaHŠÀRÍ¢y¤‚à(˽¨#€~ÇÒE^ŠEp,äE |G3³”()‚£9•ÆÀJ‰Ü°^¤F`]ŽæAjV‡àƒ̓r#°:G„àƒ`‚# Bp€AŽ…úñÇèããÓ¾}û°°°ääd¹{ãuïÞ]î. ?vŠeb¿X v ,ÁQ¿%K–Ìž=ûÚµk¾¾¾•*UÚ¼yó¸qãÒÓÓåî€lŽz\¾|yÅŠîîî{öìY±bÅÞ½{GŒqöìÙÏ>ûLî®Ȇà¨Ç?ü——7eÊ777©eÆŒNNN»wïÎËË“»wò 8êqüøq;;»N:i[ìííýüü’’’N:%wïäApÌO£ÑÄÆÆV©R¥J•*ºí 4BܺuKîÈC-w,NZZZnnnåÊ•óµ;99 !>|hÈJ¼½½åòc§X vŠeb¿X v ,Á1?éÔéŠ+æk¯T©’âÑ£GÏ\ÃåË—å€é1U_åÊ•U*UZZZ¾öþùGü[w°AÇüÔjµ““SÁÊbjjªB{ž5€­!8êáîîž””$%E­øøxé!¹{ ‚£;wÎÍÍ=xð ¶E£ÑÄÄÄ8;;ûøøÈÝ;yõ8p ÝW_}%×(„X±bEbbbÿþýË”)#wïä¡Òh4r÷Á­Y³fáÂ…5kÖìØ±ã7Ž=Ú¸qã5kÖ¼L€ 8jûöí[·n={ölõêÕ_zé¥)S¦HWä°MG„c`‚# Bp€AŽ0Á!8À G„àh2?þøãÀ}||Ú·o–œœ,wlHq7~zzúºuëzöìùâ‹/vìØqôèÑ¿ÿþ»Üƒ°6%ùDܽ{·eË–Ó¦M“{ÖÆˆrîܹ7ß|Óßßß××wذaüñ‡Üƒ°6ÅÝ)YYY+W®ìׯŸO@@ÀäÉ“¯^½*÷ lN\\œ··÷Ÿþ)wGd@p4%K–Ìž=ûÚµk¾¾¾•*UÚ¼yó¸qãÒÓÓåî—M(îÆÏÉÉ ùä“OÚ¶m[¿~ý?þø#44ô믿–{(Ö£$ŸFóÞ{ïi)¦bÄN‰ŽŽ ŠŽŽvssóññ9}úôˆ#¢££åŠõ(îNÉÍÍ9rägŸ}–œœÜ±cÇš5kîÝ»·wïÞÇ—{(¶eÆ rwA>”Ø¥K—6lرcÇû÷ïK-}ôQƒ æÍ›'w׬ŸãÆ 4 JKK“Z®\¹òÒK/5jÔ诿þ’{@Ö „Ÿˆ5kÖ4hРAƒï¾û®ÜC±Fì””””V­Z5oÞüĉRËŸþù /´k×.77WîY£ÿûšþ:sæŒÜ=’Gøá‡òòò¦L™âææ&µÌ˜1ÃÉÉi÷îÝyyyr÷Îʱñ÷ìÙ#„˜5k–ƒƒƒÔâåå5~üøÜÜ\&¬M¢$Ÿˆ«W¯.Y²¤aÆrÂÚ±S6oÞœšš:~üø–-[J-Íš5{õÕWÏ;'÷€¬;åÔ©SBˆ‘#GªÕj©¥mÛ¶5º~ýúÇåõ ŽŒŒ”»#r"8šÀñãÇíìì:uê¤m±··÷óóKJJ’>ä0#6~|||ÅŠ›4i¢Ûèåå%„¸uë–ܲF"rrr¦OŸîììýäÉ“3fÌ5j”Ôr÷îÝ!C†¼ýöÛÛ¶móôô”{X°~TKJ­V;99üë055U¡=Wæ`ôÆÏÊÊš?þÈ‘#ïÞ½;iҤݻw“MňrìØ±M›6½þúëœra&F씊+–/_ÞÁÁÁßß_·½K—.BˆK—.É=&Å3b§$$$ìÛ·¯~ýúÚÔ(„¨Q£Æo¼‘½e˹Ǜ@p4ww÷¤¤$éÓ®/=$w﬜?//ïwÞY¿~}çÎþùç7ß|“*—iw§H¿{±téRïõë×O±mÛ6ooïž={Ê= k`Ä'ÅÍÍ­L™2*•J·Qú°äääÈ= kPÜ’””$„¨[·n¾v©ÐøàÁ¹›@p4Î;çææºhÑ"ooïäääÜÜ\oooŸ°°0ooˆ|ÏZ¼x±··÷çŸ.÷`mŽfÖ¬YuêÔINNþùçŸCCCW­Z•o±‹/†„„œ?>333//O¡ÑhÞ{ï½·ß~{ß¾}ÆÉÉéèÑ£‹- NNNÖ}îöíÛÇŒóóÏ?—/_>%%%::zܸqÿ÷ÿ§] 11188xùòåwïÞ­]»öóÏ?ëÖ­µk×wU†kÕªÕÈ‘#Ë•+§R©FŽ9tèÐ×^{M±wï^ÝÅ4ÍŽ;„½{÷–{_°6G súôéN:9räçŸ>uêÔŒ3T*ÕçŸ~õêUÝÅ>øàƒ¦M›®]»ö÷߯]»¶bË–-[·nuss‹ŒŒ}úË/¿Ô}îæÍ›;wîüÇH/1}út;;»¥K—ž={V»Àõë×~ÿý÷­[·nÛ¶íСC¾¾¾wîÜùí·ßе*Ä……U¨PÁÎÎ.,,lÚ´imÛ¶­\¹ò‰'µ‹:uêÎ;/¼ðBýúõåÞW¬ Á€Â¸¹¹ýç?ÿ©\¹²ÂÞÞ~Ô¨QÁÁÁyyyK—.Õ]¬bÅŠ+W®l×®«««ÔòÅ_!æÏŸïãã#µT¯^ýË/¿,W®\ddäßÿ­}n5þïÿþÏÑÑQ¡V«G,„øú믥rrrüýýß}÷ÝŠ+J-ŽŽŽBˆ7nèv㙫* {{ûnݺåååýòË/ÚÆíÛ· !úôé#÷Ž`…ަÿþåÊ•Óm1b„âÌ™3º½zõ*_¾¼önBBÂýû÷«W¯îçç§»˜››[§Nrss/^¼¨m8p Z­.ø.\îNœ8qÙ²eõêÕÓ.ðàÁƒ;wìí3WUB¯¾úªÐ™­ÎÉÉÙ½{·Z­îÑ£‡÷[Ååx(Œ‡‡G¾–矾\¹rÿýwVVVÙ²e¥FizZëúõëBˆºuë\a:uÄÓ•BOOO½/ñàÁƒ'OžHUÆ;wî8pàĉ·nݺyóf¾C‹µª’hݺu•*UŽ;–œœììì|àÀ”””€€€*Uª˜}O°=T(ŒJ¥*ØbooŸ——§{ivXK£Ñ¶B{{{!Dvvö3_ÂÎήL™2BˆM›6uëÖmîܹgÏž­W¯^hhèÚµk?øàÃ{«]U ÙÛÛ¿òÊ+¹¹¹Ò±•ÌS0+*Ž&>>>_Ëßÿ––V­Zµ *ö,©Ö˜ïD‰TŒÔ- |‰{÷¥ÕªU«lÙ²ÿüóχ~X¶lÙåË—wèÐA·†ôVwU&Ù ¯¾úê¦M›öìÙóÚk¯EGG;::úûû›z«€T(ÎO?ý”••¥Û²aÃ!Ä /¼PijÜÝÝ«V­z÷îÝC‡é¶?xð`ß¾}ööö5Ò6FEE廸£ô-Z´Bœ;w.77·E‹º©QqéÒ¥‚¯[ôªL¢U«V®®®GŽ‰ŠŠÊÈÈèÑ£‡©")äCp 0ÿý÷”)SRSS…yyy7n\·nݤI“Š~âÛo¿-„˜={öùó祖û÷ïOš4)##cðàÁ5jÔÐ.yëÖ­©S§>yòDz‰õë×ûí·jµzâĉBwww!Ä¥K—´ÁÉÍÍŒŒ”.Äžž®û¢E¯Ê8yyyiiiÚ»Ò¹Õ999‹/ÌS0'¦ª(Ìk¯½öóÏ?·iÓ¦nݺҴ¯ÝÔ©S6lXôûöí{äÈ‘íÛ·÷ïßÿùçŸwpp¸víZ^^žÏ”)St—ôööÞ³gÏ/¿üâááqçÎôôtµZ={ölé4OOÏÎ;ÿöÛo]»vmÙ²¥F£¹|ùrrrrppðúõëúé§Ç/\¸ÐU¡råÊÉÉÉAAAµk×Ö^~òµ×^ûî»ïÒÓÓëÔ©óâ‹/ʽ‹X-‚#…éÝ»wppðêÕ«Ï;W©R¥¶mÛ>¼mÛ¶Ï|¢ÝgŸ}Ö©S§íÛ·_ºt)!!ᥗ^òóó ‘ÎÑZ»víž={~ûí· .8;;¿üòË£FÒ dŸþùš5kvíÚuâĉçŸÞÏÏoÔ¨Q^^^¹¹¹Û·o?~ü¸á«*®3fÌŸ?ÿÚµkÚÆ–-[V­ZõÁƒ”˜•ªˆ3 À¢L›6mÛ¶mË—/ïÔ©“Ü}±,yyy;w¾wïÞo¿ýV³fM¹»ÀjqŒ#(ÞáÇïÞ½ëëëKj`VGP¶ôôô%K–!ú÷ï/w_X9ŽqóõõÍÈÈÈÊʪ_¿¾ôcÙ`>GŠñÚk¯5hРàøÙ²êÕ«ß¼yÓÏÏoÞ¼yùNñ“ãä„c`‚# Bp€AŽ0ÁùÀÇ9¨)¹ßIEND®B`‚statistics-release-1.6.3/docs/assets/bisapdf_101.png000066400000000000000000000720751456127120000222730ustar00rootroot00000000000000‰PNG  IHDRhŽ\­AtIDATxÚíÝy\TÕÿÇñ3,*n€"(j ‰(f…K‹ *š¹á¾á.if¹¤"Ö×(­LËJ3Å5—4—ò—{ Šš’šZjŠ"¸¶ ¸€²Ìüþ¸5̘™;wæõ|øè1sæÞ™Ï½åÝ9÷œÑèt:ÅIé GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBpÔäìÙ³SÊ–-ûÈ# 8ð×_5Ü~éÒ¥ÒÍ›77co¼ñ†ô¶½zõRú”˜Íßÿýî»ïvèÐáÑG-W®\5š7oþöÛo'%%)]ZÑæÌ™#]‘Î;+]K?¥•*UjÚ´é˜1c®_¿^äö...^^^O?ýôo¼qóæM™ahêÔ©JŸ À{}íÚµ/¿üò©§žZºt©Òå¨Ï÷ß_·nݨ¨¨~ø!))éÁƒþùçñãÇÿ÷¿ÿnÚ´IéíÁ½{÷Nœ8±lÙ² |÷Ýw…oœ———––vôèÑÙ³gÆÇÇ+]>!„pQº%äãããææ&=¾}ûöÝ»w…<˜0aBhhh@@€¢R¥JuëÖBÔ¨QCézm×Õ«WxëÖ-éi½zõªV­úûï¿_»vM‘››;hÐ 77·°°0¥+UýOiNNÎü¡Õj…cÆŒ9sæL…  Ú>##CßÑxûöí~ýú%&&–-[¶ÈÇÓÓSé£ì=Ž€Z­_¿>ù_wîÜùî»ïÊ•+'„ÈÉÉY¶l™´Í Aƒ¤ ¾ùæ¥ëµ]«W¯NKKBxyy=zôâÅ‹ñññW¯^=|ø°¯¯¯"//oöìÙJ—©JúŸÒëׯ߽{7""Bj¿|ùrlll!Û§¤¤\½zõ…^Ú¯_¿þÙgŸþùDEE)}ô€"8v¢C‡Ý»w—'&&JŒïq4¼=177÷ÿû_­Zµþ÷¿ÿå{éöíÛS¦LiÞ¼y¥J•ž|òÉwÞy'''ÇäçþþûïC‡}ôÑG}}}û÷ïàÀ|hµÚ7¶k×®N:åÊ•«S§NÛ¶m?ÿüsÃ7,è¦Éððð|÷«é·ìׯߥK—\·nÝZµj…‡‡Ÿ>}Z?`À€ºuëV­Zµ]»vû÷ï/òÔýüóÏÒƒ¡C‡Þ úì³Ï~øá‡Òã“'OJ½e=(™gþêÕ« ðòòª^½zïÞ½;VСýõ×_¯¾új‹-*Uªôè£öéÓçĉ†òó „ÈÉÉY²dI«V­|}}+V¬Ø¸qã¡C‡þòË/%û­X±â¢E‹\]]¥§çÏŸ/|ûÚµk¯\¹RöÞy猌Œ’}4sa¨°ÙÙÙÒ™Ó£FúüóÏ…:ΰýÎ;-[¶øàƒøøø¬¬,!DùòåÛüËÙÙÙÒUä™ÏÎÎîÛ·¯”]\\žy智uëþý÷ß»víÊ÷Vééé”Rchhè›o¾îää¤Óé>üðÕ+Wùó0{öl)5º¹¹õèÑc„ O?ý´tJ_}õÕ"û MºsçŽ>ÈJ·á)$$¤L™2Òcà @G@­:tè _yÄÃÃcäÈ‘yyynnnkÖ¬iÒ¤I‘»_¿~=((hݺuñññú;Éô.\xùòåøøø“'OêŒÉ!Ѱ°0©³íܹsõêÕBäååÍœ9SzuÏž=҃ɓ'ÿðßþùéÓ§›6m*5êLjKfûöí§NúóÏ?CCCõ}ôÑo¿ývõêU}z–†° 1mÚ4}í‰'^{íµgŸ}¶bÅŠAAA#FŒØ´iÓ½{÷ ··èA~æ—/_~åÊ!D¥J•:täÈ‘äää‰'¿Ïܹs¥É%}ûöýá‡fÍšõÅ_|üñÇÒ«ÆaÚøçaß¾}ÒK3gÎܶmÛ'Ÿ|ÿÜsÏ !rss¿ÿþûbWnnîùóç‡ ’——'µèózá4MõêÕ¥Çú~VC†ô&MšTš«  Uvå±Ç ‘³eùòå¿ûî;iò‡ñ›¼üòËÒã ´nÝZZÿüóš5k®X±B?Hj¹ƒ*òÌoذAz ïÿBÌ;÷‹/¾HII1|+}º=z´¾ñ…^˜8qb^^ÞÕ«Wýõ×ǼŸ©ÏU±víÚ5jtíÚÕÇÇgíÚµÒíU«V•sD:t0ÙÞ½{w9ÿ{£¿@W¯^•Îs‰Ï-³ 8je¸ ‰´î N§;vìXÓ¦MüñÇG}´ð݃ƒƒM¦F!D¾}õcÁ†³C$5ªU«–þ©~õéìììË—/?úè£Rغ}ûöÞ½{?~òäÉcÇŽéÃYi装úóàëë«¿C1ß-K—.;v¬aË“O>yòäIéqµjÕ–-[öÙgŸÅÇÇÇÇÇŸ:uêØ±c.\^½qãFŸ>}~ûí·GyDa¹ƒ*òÌëK2\è»L™2;v\·ná¾ú- º)ðâÅ‹†ÁÑøçáù矗fÒ$$$Œ9R£Ñwîܹ{÷îO=õTió±ÇÓ÷}Ê!ÍyBT®\ÙøU“ËñèOó"8jµ~ýz©ßK’šš:lذݻwÿõ×_qqq…ïîååUÐK†³CŒŸÒ!J*T¨àîî.­(yõêÕG}4;;{ÆŒŸ|òInn®´›››··w¾î±0Y•“S©n¿qqqiÕªU«V­¤§7nÜxï½÷-Z$„ÈÈÈX»v­4oµƒÊ÷ôÞ½{úÈwæk×®mø4===ßðº1ý¼"‰ñÏCtttzzúòåËpà€É»Á åË÷)YYYRjBHssæÌùðÃsssýýý/^üË/¿¤§§ÛÔJÚ¹¹¹+þ%‡êÕ¬YsáÂ…-[¶”žê9Rê ÜÜÜôÓDò…Týi—T®\¹R¥JÒão¿ý6Ñ”ððpÃ]Œ\]]-ZtóæÍ/¿ürðàÁ†ëi}z±Rã¡C‡ôË”²§@éÑãØÃþ¶ôôô|R–pöìÙßÿ]?Ĺwï^éA™2e¤o¬Y¼x±Ôòé§ŸvêÔIzœï«Š…AjÉw?béûðô† Ö³gOÃé¿o¿ý¶táÿþ÷?ãY#åË——Ô©SGz ÔA9;;ûùù%$$H§ºE‹R»N§3^®²^½zÒ@|nn®áø­[·¤ÕvL~ÛŠÞƒ¤²û÷ïß¿ÿÜÜÜýû÷Ïœ9SšÚl¼`§…èµ+T¨ ñ”B#`'nß¾ýúë¯KË•+çïïo…ÍÉÉ™0a‚´nâü)µ‡……9;;ÿý÷ßúñP}xúù矬ѴþôÓOú›ó¾úê+9ËwËäæææó0ýô޶mÛJæÎ»~ýzý´ßÜÜÜ¥K—ê«•º»”=¨fÍšI>ùäýRÞï¼óŽ~ý#=ý¬”˜˜ý ”[·n­Zµª———´ˆO!tîܹêÕ«W¯^½FÒ:...:tÐÏU÷ðð0×¥)ÈŸþ9f̘-[¶HO‡ªïF zµ6l˜¾3ìÁƒüñ‡þ–»‰'JÝiVðÕW_ùùù5hÐàèÑ£Rqvvž3gŽ¢bÅŠ+V”n¶9rä† 4Íž={Œ¿ E¿–MVVVppppppjjªÔµfo¾ùæŽ;ÒÒÒlذ;wîì߿߰›sìØ±o¾ùfáäää$%ά¬¬?ÿüsùò冯¶mÛvÚ´i–¸&ª«T©òÍ7ß2 €Õ0T Øgggooïçž{nÙ²eû÷ï—¾ÄÅ Ú¶mV«V­5jôïß?66Öp9ñ 4nÜXáääôÄOLš4éäÉ“=zô^ݰaƒ~ wÍš5sæÌiܸq… ‚ƒƒ_y啸øx«e…6mÚ$%%}úé§]ºt ªP¡BµjÕš7o>hР}ûöÅÅÅN Qö V¬X1~üxé±··w÷îÝ¿ÿþ{“‹w†……ýòË/£FjÒ¤Iùòåýýý{õê÷ÙgŸÉ™õÌ3Ï$&&¾ñÆÍ›7÷õõuuuõôôlÕªÕòåËccc¥Å;-ÇÙÙ¹J•*O=õÔo¼‘ðÌ3ÏXôãȤÉ÷µ`^999;vìÜt̃:~üø¾}û^|ñE“K€… CÕ…àYŽ…àYŽ…àYŽ…àYŽ…àYŽ…àYŽ…àYŽ…àYŽ…àYŽÅEéìP```A/%\H¬ÿß«ê¼1°Y J— ‚£EøÃ¤yè%£þØÙ«ÀÀ@.¨câÒ;,.½Ã tÔ~†ª Á² Á² Á0›={ö(]”Á¥wX\z8‚#d!8@‚#d!8@‚#d!8@‚#d!8Z—NÒ5”ˆ‹Ò ¼ÀÀ@¥K€’”.AŽGHnpdüoƒ| U@‚#d!8@‚#d!8@‚#d!8@‚#d!8@‚#ªtàÀ:xyyùúúöêÕëüùóJWûGp@}~þùç:\¹reúôé‘‘‘—.]jݺuJJŠÙ?($$$::ZéÃýÏÝ»wÇŽûÈ#T¬X1$$$>>¾ -srr\\\4«V­šÒG nŽõ]ÕIII;wÞ´iÓO7UJMM­ZµªþéƒëÔ©c–7OKK{þù磣£oÞ¼Y¬;vìXµjÕ76nÛ¶M£Ñ|õÕW¥/lãÆ5jÔ6l˜ôÔßß¿oß¾qqqüñ‡ñÆRp¬W¯žYÎ $ÜïçXŽ‹/.X° AƒJÉËËsqqBètºäää#FÔ¬Y3""Â,oîãã£Óét:]q'Ü̘1£|ùò&L¸ÿ¾¾qõêÕU«VíÖ­[)«JOO¿páB»ví4šÿz]BCCµZ­É;Ë–-[©R¥Í›7/]ºôСCÙÙÙf9?ŽÌ!†ªçÌ™óàÁ!ĺuë>,s¯ÜÜÜiÓ¦yzzFFFŽ1Béƒ ¿”+WNQ¹råuëÖyyy)[O·nÝ._¾Ü½{÷þýûoܸѰCN‘››»sç΂ޡGæ-ièС‘‘‘Ë—/—‚ãúõësrrLö¿·°ÌÌL!D¾_ÊîîîBˆ´´4ãwHLLÔjµÑÑÑ}ûöuuuýæ›o&MšÔ³gÏ3gÎH{¡"8–À©S§–-[6dÈ-Zœ={¶¸»ækÙ³gôÀOø%''ÿ÷‚ßÃO¡fׯ_Wº(ƒKoÇ4ÊÝŠ®Ó½³³ó¨Q£¤ÇÑÑÑo¾ùæ€z÷îm¸MFFFÏž= þSîîîááá+V¬HJJò÷÷_µjUãÆ›4ib¼eq “úSÿþûoÃÆôôt!D•*UŒßaÿþýåʕӿqÿþýñãÇoÙ²eäÈ‘ù6.üwq§NÌ{–Ô‹àhBVVÖ´iÓj×®=eÊ”’½CBBB!¯úùùòªÆÕtX\z{eîXeAÇóÍ7>œ/8º»»›=nܸqË—/_¹reïÞ½OŸ>ýᇚܬ¸…ùøø899å•NMMBÔ¬YÓx{__ß|-;vB˜ì*ü¯°ñ¯uã"Ap4aîܹׯ_ß°aƒ›››Òµ Knn®ÂÙÙٸݚCÕBˆ&Mš4oÞ|ÕªUiii...ƒ.¨àbæââtðàAÃÆh4šFåÛøÊ•+;vì mذ¡¾Qêž4×ÜsÇDpÌïèÑ£6lx饗еH8VvôèÑ .Ô¯__zºuëV!„ñ °•‡ª%ãÆ‹ˆˆˆ‰‰ “æ¯+Aa£G~õÕWwìØ!ÍÑNIIÙ²eËsÏ=gÜ_èææöÚk¯5oÞü‡~puuBhµÚy󿹏¸<÷Üs–8dáËñËÅ‹…‹/ü—ÔçÿÍ7ß–~5Ì"'''44tüøñ‹-5jTTTTpppß¾}óm&¤ôelذÁÓÓ3ß7Ö 8ÐÓÓS«Õ²,I 1bÄO<1xðਨ¨÷ß¿mÛ¶™™™úoDœ;w®§§ç’%K„ÞÞÞÑÑÑ 7nÜŒ3š5k¶qãÆ·Þz+((HÉ˦rô8æW§N®]»¶Ü½{÷СC¾¾¾ÁÁÁÕ«WWº@„¢eË–óçÏ_³fMµjÕÆŒóÞ{ïU[Zvvö;w²²² ÝÜÜ:uê´aÆ|¿RK©råÊqqqS§NݲeËíÛ·Ÿ}öÙõë×ë¿oðþýûwîÜ‘àBL›6íÑG}ÿý÷×­[W®\¹Ç|÷îÝLs)%‚£Bddd¤¤¤¸ººÖªU«U«Vúå{$gÏž=tèP³fÍø®j€M —V½±ÀÀÀ"{%‡ž““sæÌ™|íeË–BHÃÄfäîîcò¥Y³fÍš5˰¥OŸ>}úô±Üùq@ U !D\\\§NÆŽ«t!¨Ìýû÷÷íÛgrÁØ‚#(¹#GŽ4lØpРAJkp¬¡êÙ³gÏž=Û¸½K—.]ºt)h¯F¾.#Våáá¡tBÑ®]»víÚ·ä»õ vÀ±‚#öaôèÑJ—P„¨¨¨¨¨(¥«€™1T YŽ…àYŽ…àYŽ…àYŽ…àYŽ…àYލÒ:tèàåååëëÛ«W¯óçÏ+]ìÁõùùçŸ;tèpåÊ•éÓ§GFF^ºt©uëÖ)))fÿ èèh¥WM…Ù7‚#ê³dÉ­V;uêÔW^y%...77wݺuæý”“'OþøãJ«š ³{.JŠíôéÓAAAµk×–žzzz6hÐàÒ¥KfyóÜÜÜØØØÃ‡/^¼X«ÕÊß1##£B… –;ês¡ÇõIMM­ZµªþéƒëÔ©c–7OKK{þù磣£oÞ¼Y¬;vìXµjÕ76nÛ¶M£Ñ|õÕW s!8 >yyy...BN—œœÜ½{÷þýûoܸQ£y¨æÜÜÜ;wô=zô0oÍC‡ŒŒ\¾|¹ׯ_Ÿ““3bÄã-­\Ì‚à@ŠŒnÊrvv5j”ô8::úÍ7ß0`@ïÞ½ ·ÉÈÈèÙ³g¨3󺻻‡‡‡¯X±"))ÉßßÕªU7nÒ¤‰ñ–V. fÁ=ŽØƒáÇ !>œ¯ÝÝÝ]W0KT2nÜ8N·råÊ'Nœ>}ú…^0¹™õ CéÑã€=ÈÍÍB8;;·[yD¸I“&Í›7_µjUZZš‹‹ËàÁƒ *˜¡jÕ!8 JG½páBýúõ¥§[·nB +2"Üÿüúë¯ ¨^½zÅŠ›5k¶`Á‚ÜÜ\¥‹r GÔgÉ’%Z­666vêÔ©¯¼òJ\\\nnîºuëÌû)'OžüñÇ•>Öÿ$%%µmÛvÏž=:uštèÐþýû/Y²¤råÊ–9‘( ÁU:zôè… êׯ/=ݺu«ÂxPØÊCÕ’qãÆEDDÄÄÄ„……y{{›Ü¦¸…étºiÓ¦Õ®]{íÚµÆùÖAp@•rrrBCC{ôèѰaÃS§N­Zµ*88Øx~±4"lÆÏݰaÃK/½ô /|øá‡m3pàÀ)S¦Ü¾}Ûä´˜’vîܹóçÏ7lØP[§^ïÞ½ÃÂÂÌxŒ(ÁUjÙ²eDDÄüùó׬YS­Zµ1cƼ÷Þ{VèŠËÎξsçNVVV!Û¸¹¹uêÔiÆ ]»v5×ç&&& !Î;wîܹ|/Õ«WàhŽ“’’:wî¼iÓ¦'žx¢ð-³²²¾üòË-[¶\¿~½R¥Jõë׈ˆhÙ²¥ÙJ±íizU—V½±ÀÀ@ãNÁáÇçääœ9s¦ð}¥E¹]]]ÍUL÷îÝ-4°ù+8®]»VÎf¹¹¹#FŒ8uê”»»û³Ï>{ÿþýŸ~úéСC¯¼òÊøñã•>”tÿþý}ûöñÝÐŽÉ!‚czzú… ¶oßžïÛ3 ²iÓ¦S§N5mÚtÅŠnnnBˆ‹/2äÓO? mذ¡¥ •Väá§6ìÈ‘# 64hÒ…@ÃÂÂþüóOùÛïÙ³G1sæL)5 !ÆŽûÞ{ïýøã ŽÈåáá¡ÈG·k×®]»vEnЪU+E*„å8Dpœ3g΃„ëÖ­3^ÕXrrr… 5jdØ(}ѵk×Ì^žNt3ä=z´Ò%!*****Jé*`fõÿdzoß>9Û/]ºÔÅ%ÿ™9{ö¬¢víÚJ €2"8WPPP¾–øøø˜˜˜²e˲T©¡ÀÀÀ|-Òð·ÄOø%''?ô²ß?-~Bä êqýúu¥K€2¸ô€ÚþË·S§NJh+ŽEÈËË[¿~ýû￟——÷ÁxyyÉÙ+!!¡ð üüü j1~ *ÂåsX\z@Õ ÿ+lükݸ‡ÈA óÓO?EGG_ºt©Fï¼óN‹-”®@1GÓ²³³çÍ›·víÚråÊM˜0aäÈ‘úÖ–ÅŠ<ÀVMÐjµS¦LùöÛo;tè0kÖ¬‚¾À¡MX»ví·ß~;hРY³f)] €­ 8 !DFFFJJŠ««k­Zµt:ݺuë*Uª4}út¥ë°!G!„ˆ‹‹›4iR@@ÀŽ;nÞ¼yõêU77·ÁƒoÙ«W¯!C†(]/€ŽùIë±eee9sÆøU&V‡¥Ñ1×Ü‹XÇÑèj`Vµj%''³˜ŸcâÒ«]ÑÿnÛ¤¼õÖ[§N*S¦ÌÓO?ýî»ï6hÐ@é¢T©?*ý™)='¥ ÅöóÏ?wèÐáÊ•+Ó§OŒŒ¼téRëÖ­SRRÌþA!!!ÑÑÑJî?rrr\\\4«V­šÒu9†ªmK9вdÉ­V[»vm!ÄСCýýý×­[7yòd3~ÊÉ“'üñÇöíÛ+}¸ÿHNNÎËËkÑ¢…¿¿¿¾±bÅŠJ×å@ލÏéÓ§ƒ‚‚¤Ô(„ðôôlРÁ¥K—Ìòæ¹¹¹±±±‡^¼x±V«•¿cFFF… ,wÔ‰‰‰Bˆ·ÞzËv²¬£a¨Úê4¥+¨^jjjÕªUõO\qøðá|íîîYâ¤7N§Ó­\¹òĉ§OŸ~á…LnV‚Â|}}õ©QÒ±cG!ÄÙ³g-q 0F#ö 77WáììlÜnÍ¡j!D“&Mš7o¾jÕª´´4—ÁƒTp± »råÊŽ;BCC6l¨oLOOB˜k:9ŠDp´I¬(ÊÑ£G/\¸P¿~}ééÖ­[…ƃÂVª–Œ7."""&&&,,ÌÛÛÛä6Å-ÌÍÍíµ×^kÞ¼ù?üàêê*„ÐjµóæÍsqqyî¹ç,q0ÆP5ª”““:~üøE‹5****88¸oß¾ù63ûPõ† <== ÿŠšzzzjµZ“ÓbJV˜··wttôÁƒÆ7cÆŒfÍšmܸñ­·Þ Rúj8 ‚#ªÔ²eËyóæÅÇÇϘ1#66v̘1ûöí3ª6»ììì;wîdee²››[§N„]»v5ãGO›6mË–->>>ëÖ­[¾|¹§§çîÝ»g̘aéC†CÕ¨Uxx¸´ê…wþ ><''çÌ™3…ï[¶lY!„4¦lF}úôéÓ§å…£ÇÃýû÷÷íÛgr…Ø=‚#(†#GŽ4lØpРAJ0T €úDEEyxx(òÑíÚµk×®]‘›´jÕJ‘ a9G› BSüµ^kôèÑJ—P„¨¨¨¨¨(¥«€™1Tm«¤¥lÁ²• L¨ Á² Á² Á² Áц±8°%GTéÀ:tðòòòõõíÕ«×ùóç•®öà€úüüóÏ:t¸råÊôéÓ###/]ºÔºuë””³PHHHtt´Ò‡+·°»wïŽ;ö‘G©X±bHHH||¼ÒeÚ‚£ui4B§Sº€ê-Y²D«ÕÆÆÆN:õ•W^‰‹‹ËÍÍ]·ny?åäÉ“?þø£ÒÇ*·°ôôôfÍš­ZµªuëÖ#G޼téR§NNž<©t±vÅEé@±>}:((¨víÚÒSOOÏ \ºtÉ,ož››{øðáÅ‹kµZù;fddT¨PÁrG]xa~øabbâêÕ«‡.„xõÕW›6m:eÊ”ØØXË•ähèq@}RSS«V­ªúàÁƒÄÄÄ:uê˜åÍÓÒÒžþùèèè›7okÇŽ;V­ZuãÆ†Û¶mÓh4_}õ•¥ Û¸qc5† &=õ÷÷ïÛ·o\\Üüa–ÓAp@òòò\\\„:.99yĈ5kÖŒˆˆ0Ë›ûøøèt:NWÜ 73fÌ(_¾ü„ îß¿¯o\½zuÕªU»uëfÑÂÒÓÓ/\¸Ð®];Á‚$¡¡¡Z­–;͈¡jÔêÁƒåÊ•BT®\yݺu^^^ÊÖÓ­[·Ë—/O˜0á믿B¤¤¤ìÚµkìØ±eÊ”±èGÿõ×_:ÎÇÇǰÑÛÛ[QÜ~S‚àhÛ¤¥™O0ÅÅÅeÙ²e)))‡îÞ½{ÿþý7nܨyx àÜÜÜ;wô=zô0oIC‡ŒŒ\¾|¹ׯ_Ÿ““3bÄã-Í[Xff¦¢råʆîîîBˆ´´4ó£##8P0e¿‡¡¨~ggçQ£FI£££ß|óÍôîÝÛp›ŒŒŒž={ø æî›pww_±bERR’¿¿ÿªU«7nܤIã-Í[˜ÔÛú÷ß6¦§§ !ªT©bÞctdÜã@ÁtŠþ)i*ñáÇ󵻻»ë f‰s6nÜ8N·råÊ'Nœ>}ú…^0¹™y óññqrrÊ7*šš*„¨Y³¦%Ó1Ñã€=ÈÍÍB8;;·[s¨ZѤI“æÍ›¯Zµ*--ÍÅÅeðàÁlÆÂ\\\‚‚‚º]»víÚµ+r³€€€V­Z)R!,‡à€úŒ=Z銥t03†ª Á² Á²Õ€¥€ 8@‚#daGD`` Ò%*@p,BRRRçÎ7mÚôÄO(] À"J¶crr²ŸŸŸÒåÖÃPuÖ®]«t 6GÓÒÓÓ/\¸°}ûö7*] €M 8šöçŸ*]€ !8š6gΜ!Ö­[wøða¥ËPÁÑ´V­ZIöíÛ§t-Bˆ××é”®8.‚£E/ë°gÏ!„ŸÉÉÉB‘$ü4~ÉIÉmäç÷Ï«¦ü·/lÕõëו.ÊàÒ;,.½ƒèÔ©“Ò%Ø ‚£E²²ƒá Ƌ8¾¬‹>Ø>®‘ÃâÒ;,.½#0þµî° ²d!8Z7)5#8@‚£ Ñ ¡Qº€‚ÕCZ‘@!GÈBp€,Ç"Ìž=;!!á‰'žPº… Á² Á²U…¥€rŽ…àYŽ…àYŽ…àYŽ…à¨6,åBp€,GÈBp€,GÛ¢‚€m"8@‚#d!8ª+ò% Á²¸(]`N&Çðu:¥ËÀ.aôyÑdF,üU Áê&…¡þU9€‚¡bMñR ´qq÷&Ǩ+ò”"ÿI'ÏáÏÅFpT_/X ¥ì5ÔéÈÞÁêc®±f²#ÅBp„ʘ÷E²#ò¡&–˜×Bv@&‚#TÃr³¡™.€G¨ƒ¥×ÐaŠDpT-FXÍ3 @áŽP«-ÙMv G›ÃòŽùXù‹^ÈŽ„àäGvÀ$‚#lšRß+MvÀÁ0ì@>G5³÷h£Tw#0‰àÈÞ“9ÅCp„²‘îF²#zGØ"I²#‚£µØTB1‘GÈd[Áñƒ>HLLTº (Ì6;gétÀ¶‚cLLL×®]ûôé³víÚ[·n)]Žg¬ˆ“ pp¶_|ñÅš5kž9sföìÙ­[·7nÜÞ½{³³³•® Öc›Ý@á¢t™]ºtyöÙg Ê‹†ŠÕݸyóæM›6%&&–/_¾M›6S§Nõôô,dûìììÏ?ÿ|÷îÝÉÉÉžžž7~ùå—”>C°-dG€C±­YÕ»wï>räHA©q„ Ï?ÿ| ÞvÁ‚¯¿þú¥K—š7o^±bÅ­[·Ž3&++« íóòò†>þüÛ·o·nݺfÍš{÷îíÑ£‡ùGÆ¥›ÔÀ¶‚cfffNNNA/]½zõÆÅ}Ï„„„˜˜Ÿ={öÄÄÄìÝ»wذa¿þúëüùó ÚåË/¿ùdíÚµ«V­B¼þúëJŸ!û¤êN;¾‡à8”ªŽ‹‹7nœþéš5kÖ­[g¼™V«Õét<òHqßÓ¦MZ­vâĉÞÞÞRKddäÿýßÿíÞ½{æÌ™NN&¢ó‰'„Çwqùçü<ûì³ 6=z´Ù?¢}ûö ìÚµ«Ô¢Óéâââ<==ƒƒƒ·¯[·®³³óÅ‹u:Æ`egéþ†zõê){Æ”b[ßcL§ÓýðßþùÉ“'KöýúõsrrZ´h‘t_£"&&&55µOŸ>®®®RKFFFrr²49ÎÍÍ-$$äÊ•+Ÿ|ò‰V«•6¸xñââŋ˔)Ó®];¥O lß%°W¶5«ZûñÇwèÐAÅ~ýõ×·lÙ"½>kÖ,M1'ûúúN:uîܹݻwoݺõ•+Wâãã5jdØ»7iÒ¤€€€;v!fϞݷoßÅ‹ïÚµ+(((--íçŸÖjµ¯¿þú£>jó }‹µx2ž €êØVã±cÇ^zé¥óçÏK]}¿ýöÛ–-[ÜÝÝ T«V­ 6ÄÆÆ–àm#""æÏŸïçç·k×®[·n 2dÍš5Æ‹;êyyyíÚµëÅ_¬P¡Âþýû¯_¿Þ¦M›M›6k^Ž»d[=ŽË–-Óét3gÎ B|ûí·Bˆwß}·}ûö—/_îÔ©Ó_|Ѿ}û¼sXXXXXXA¯véÒ¥K—.†-åË—Ÿ%ÅÁ¼ `I¶/\¸P½zõaÆIOúé§2eÊ´nÝZQ·nÝG}4‰ïtƒJãöǶ†ªïܹãåå%=ÎÍÍýí·ß{ì±2eÊH-åË—OMMUºF˜ƒ$*¬vƶ‚£¯¯ïõë×óòò„'Nœ¸ÿþÓO?-½¤Õj¯_¿^­Z5¥kpP¶›7o~çÎ… Þ¸qcáÂ…Bˆ饕+WÞºu‹e¡.t:ì‰mÝã8f̘íÛ·öÙgŸ}ö™¢qãÆÒÝýû÷ÿå—_„J×hÛÔpcÍL³­Çš5k~ùå—mÛ¶­^½z«V­>úè#iÕÆÔÔÔÊ•+¿÷Þ{Ï<óŒÒ5ÅC§#ÀnØV£" `éÒ¥ù×®][£F ''ÛŠ¹Åæ‚£I5kÖTº äÔpE³¹à¸{÷î5kÖ\¾|YWÀ¯Ùøøx¥kDÉ9l~";ì€mÇï¿ÿ~âĉÒcggg¥ËQ' ° Û ŽË—/BŒ1⥗^rwwWº«Ð ¡BW¬W JDz€ÚÙVpLLL¬U«ÖôéÓ™c—ˆM¨š 峜œœ¿ÿþ»víÚ¤FØ+–樚 E4'''ww÷‹/jµZ¥k@~6G•ššº`Á¥k,…NG€zÙÖ=Ž]ºt¹víZLLL|||çÎkÕªU¦L™|Û´mÛVé2mžMΰ½Š@ñØVplß¾½ôà×_ýõ×_Mn“ t™@©Ød° h¶»wï®t 0Ͷ‚ã¼yó”.°:jd[ÁQïÎ;gΜùã?|}}[¶l™ššêåå¥tQªbcÁÄ–j±6v‰(šÍÇ´´´Ï>ûlË–-YYYBˆáÇ·lÙ²W¯^5z÷Ýw===•.ÀAÙÐr‡Úµk×ĉ«U«æïï¯Ñh’’’RRR„aaa}úôQºFPpÔ˜1kì˜mG!Ä|ТE‹?þøæÍ›7oÞ”kÔ¨1a„^½z)]jYñ޹ûÉŽfÀŽ›bsÁÑÉÉ©_¿~}ûöý믿’““]\\êÖ­Ë„uÑ FGvÀÞØ\p”h4šêÕ«W¯^]éBÔÇFŠ5„Fó¡Ó`;lkr 쓬͈Y2ApTó|Û´ÕÓÙ;Cp´+¶0Nmˆìh.t:lÁ–EvÀnafÆ39ÈŽfA§#@qGÛ`žÛ‹ü¢(9‚£ý°µ Ñéh$€²ް²#jGp„õKNG€‚ŽÆÂ¹£Èï8!; ^G;aË78¼èt(ÅF¿«Úì6oÞ¼iÓ¦ÄÄÄòåË·iÓfêÔ©žžž…ïrúôé¥K—ž={öÞ½{&Lxúé§•ª_šumÁPêt$æ :Ñã¸`Á‚×_ýÒ¥KÍ›7¯X±âÖ­[ÇŒ“••UÈ.±±±ááá±±±ÞÞÞÁÁÁ'Ož6lXll¬Ò‡b'°.%:аÿà˜ããã³gÏž˜˜˜½{÷6ì×_?~A»Ü½{wúôé...k×®ýòË/cbb6lØP¦L™7ÞxC«Õ*}@¥f±ÐQä ŽUAv,²#Àúì?8nÚ´I«ÕNœ8ÑÛÛ[j‰ŒŒtwwß½{wA)pëÖ­ééécÇŽmÚ´©ÔòøãwîÜ955õôéÓJ *ù%; .ö;æääÔ¶m[}‹³³sHHHZZÚ‰'LîràÀFÓ³gOÃÆ÷ß?!!á‰'žPú€€Ðé°2;Ÿ£Óé«T©R¥JÃöúõë !®]»Ö¬Y3ã½Îœ9ãééY½zõãÇŸúè±Ç“ó¹†O„HNN.|?áWÄ6~oàWôûíQì]ä¼k Þ3I$iü4IÉIæ.Fׯ_·ò'&% Æ/)Éì—ÅcýKÁ¥w:uRº[açÁQš:]¡B…|í+VBܽ{×x—¿ÿþ[‘˜˜xóæÍ¹sç¶mÛöþýû[¶lùôÓO_}õÕ;vÈéwLHHxè¹FãççWä^EncrƒzìŠ~ûb\±üÛƒY’÷Ô ÆÏNúÍ{VmùC‘WÁaqéAþ_ëF=DŽÃÎïqôððÐh4™™™ùÚïÝ»'þíw̧\¹rÒƒ÷Þ{¯gÏžÕ«Wùå—{õêuýúõ;w*}Lö‰‰2%ÆŽ«±óàèâââîînܳ˜žž.„Ðϳ6T¡B…råʹ¹¹µk×ΰ½C‡BˆóçÏ+u,Òàæ{;â(;ŽBŸ´´4))êI·âùøø˜ÜÅÛÛÛÕÕUóp®’F¨sss•> »E§c‰ñë°ÿàØ¾}û¼¼¼ƒê[t:]\\œ§§gpp°É]Úµk—žž~áÂÃFiíž XªP3÷(ªÙ±ÄÈŽ+°ÿàØ¯_?''§E‹I÷5 !bbbRSSûôéãêê*µddd$''ë'ÇõêÕKñúë¯ë§]Ÿ>}zÅŠîîîÏ=÷œÒôR­ec¾¬aƵ}ÈŽØ,;ŸU-„ðõõ:uêܹs»wïÞºuë+W®ÄÇÇ7jÔhôèÑúmâââ&Mš°cÇ!DÆ 'Ožüá‡vêÔ©Y³f™™™ÇŽÓh4sæÌ©ZµªÒdÿXܱdlfuN€Ý²ÿà(„ˆˆˆ¨V­Ú¶mÛvíÚU£F!C†Lœ8QZ‘§ /¾ø¢——ך5k>ìééÙ¾}û &(}(ŠÑèè 0·ÀÀ@ãueuiDá½lƯ—¶gÎL=T–èèRc§crr²â+ºÑé¨[¸ôP—Þa™ø]ïìÿGƆ§Tp³#¶†à¨&ù&^ÛHŸœåº¸ÈŽ%`Ãÿ/P=‚#lÙÛAptx6ßCEv,.›¿¤µ"8vˆì°‚#T€NGlÁêèž";—®*@eŽje÷Sª‘PÁjBv,:æEp´%ùÖi,á&%ûhÕD ²#J!8öL=ÿGP‚#Ô‡NÇb!;Ì…àˆ?_XsfLþbÉŽXÁQ•ldJµ²ÈŽòÑé0 ‚#TŒì€5a@…SdG™Txm6‡à¨>:ý „ ;`-G‚#ìÙ³ 8ª••|´—þ(²c!ìå",ŽàGAv ”Žp dÇ‚Ðéƒàh{ „Vf-ûÊdÇ‚Ø×uXÁÅ£®)Õ&‘(‚#d°»Î(²£IvwfFpT1+M¬¶SdGŠ‹àyì±3Šìh̯3ÀlŽphdGcdG@AŽ(;˜cŒì€LGȦÓéì4`‘ó¡Ó`ÁQ5L.âÈüs!;æCv#8¢4žÓÙ€Âm‰ !;¢ÓÁÅdïi‚ìhÈÞ¯6 xŽË.§T›DvÀ$‚#ŠÏº¡ÈŽzpµrUû!-„ì@>Gu0¹’£ŠìøÏypˆ« (Á( ÙñŸó@vQr%ÈŽHŽÅq¦T›$eGó €mUqæ¼(6?Æ‘¢„Nèèzt¤ 0àˆÒq°(Av82‚#P<žìÿq”à¸yóæ~ýú·lÙ2**êöíÛò÷ýý÷ß›6m:uêT¥ÂV9^” ;:ØüÃ!‚ã‚ ^ýõK—.5oÞ¼bÅŠ[·n3fLVV–œ}u:ÝôéÓïÝ»§ôAU§%ostð™1&9xv8&ûŽ 111>>>{ö쉉‰Ù»wï°aÃ~ýõ×ùóçËÙ}õêÕGUölnõocÙåÈÙÑ!/8À‚ã¦M›´Zíĉ½½½¥–ÈÈHww÷Ý»wkµÚÂ÷½xñâ‚ 4h ôAÀF9ò2=dGp@ö;æääÔ¶m[}‹³³sHHHZZÚ‰' Ù177wÚ´ižžž‘‘‘J„8jŽpäezõš€ã²óà¨Óé«T©R¥JÃöúõë !®]»VȾ .ñÄJ—¯N|§ã?'Àñ¦Z;ü5GaçÁQáãã“––&%E=é><ãí/^¼(„X¼xqà¿z÷î-„øæ›o»uë¦ôÆV¦Ó8|ŽpÀ©ÖÍÀ!ØùPµ¢}ûö ìÚµ«Ô¢Óéâââ<==ƒƒƒ·¯S§Ž~KÉÝ»w:äëë\½zu+×ϸ§z9Ú°µ”¹Ùì˜ýÇ~ýú-Y²dÑ¢EmÚ´‘æÄÄÄĤ¦¦Ž5ÊÕÕUÚ&###%%ÅÕÕµV­Z­ZµjÕª•á;œ={öСCÍš5›7ožÒG£„é48XvØ7û޾¾¾S§N;wn÷îÝ[·n}åÊ•øøøF=Z¿M\\ܤI“vìØ¡t½Ó ¢©£TÙì(†Ǭ!>rÍÀ¾ÙpBDDDT«VmÛ¶m»víªQ£Æ!C&Nœ(õ>Úé6G~qÛ)2:H×#Ùì˜FÇ?ðæ˜oÇRý-~ 4cp4Cp¤‘œœ\øŠn’éšÿ£ÈK{Å¥wXù×; ûŸU …1ÛÖ€ƒ¬ÔÃ5{Ep¬ÊAVê!;€]"8Ú![YÍñ¿‚ù‘jDpDÌy§!ˆƒ [ì ÁѦi„ÆöúKŠìhÄ¹æ`gŽöÉnÒ¦# ;Ô‚à+"DÀ¾‡­¹ì`7ް.BDì~Ø`Ž0Í‚k8“ f¯]\s°G»ÅmŽ*e¯]dG°G5°¿ Hˆ( Ù`ƒŽP!¢(v9lÍeU#8Ú3[ï©$DÅ^‡­*Ep´]¡Ñ ÍO±dGì¬ë‘kêEp„ œRmŒ!ƒu=rÍ@¥ŽvÎÖG«QöÔõHv5"8ª„}@B„löÔõÈeÕ!8Â6"ŠÃžº*Bp´ªé¬$;‡¾ëQÕñ‘kêBp„-!G“Œ\sÍ@EŽÈϪSª‘#ŠOí]\sP ‚£z”bÈY5£Õÿ”KŽ(6µw=rÍ@ްIäˆQu×#×lÁÑÂJ:îkö¯QY§£ G”ª'ÍpÍÀÆaÃÈ%¥ö‘k€m"8â! ÏŒ1Fv,5v=rÁÀ–U¥tãÍê­þ§n¢DÉ©qäš 6‹à5 J”Žêâ#lÁѱ¨µÓQ%Ì@]7>rÁÀ¡R” M”ŽŠºÉŽ`kŽj£â>C³¾Ž4Qz*¹æj€M!8:œB’§ÍM©.ðHf –øÈÕÛAp„:‘&ÌDñ‘« 6‚àh‹Ìþµ1ùØÉp7iÂ|l?>rµÀUÈNrŸ90]Ƭl<>’@qGe?á“é2榮U{ÖDpÄ?T33Æ$²£¹Ùf×#×”Ept\öÓéøÏñ)ÌÌ6G®¹Î  ‚£:Ù[è3ny´ŒdGPŠ‹Ò@IRþTﵩCÒ ¡öqw[$Mó×gG‹Îú—UŽ‹ 8Â黤Hf¥Ï‹R‚T6>’ÀúªV-3VÛí 7³­-ÉFƯ¹Â`eGaÇC»ÜõhI¶ÉŽ`MG›cé¯1¦vvŸc¾Ã£ëѲ\^°îq„cà®G 3œ=cý{¹¼`ô8ª™ïO´¥V,‡®GËS°÷‘Ë V@#þa‡Kó˜>Nú¦,NÁµ{˜j Ep„ãý¢Õ¯õ(ˆ¤ÔÚ=dG°†ªUά«éØíÒ<¦–¡M+±þø5,„G<ÄQ¬ÿ;`F®­ÄÊã×ô;€%áð¹¶"kŽ_“ÀìŽêgîNB‡ëtüç°‰VeH²#˜Á&8hvÄGk³B$Ù̈àh[Jøµ1¥züN5A95ÖbÑH²#˜ Á¦9n§ã§€y3Öf¹H.&˜…£ÇÍ›7oÚ´)11±|ùòmÚ´™:uª§§g!Ûgee}ùå—[¶l¹~ýz¥J•êׯѲeK¥ÃªÈŽ\ B‡õX¢’~d(=‡Ž ,X²dI… š7o~åÊ•­[·^¼xqÍš5nnn&·ÏÍÍ1bÄ©S§ÜÝÝŸ}öÙû÷ïÿôÓO‡zå•WƯôÑÀ2)ì(„A^¤Ïʺ,Ñɰ5”†ý/žããã³gÏž˜˜˜½{÷6ì×_?~A»lÚ´éÔ©SM›6‹‹ûì³ÏV­Zõõ×_{xx|úé§çÎSú€ ýšá¬.m]†Kˆ—~q–€³ÿà¸iÓ&­V;qâDooo©%22ÒÝÝ}÷îÝZ­Öä.{öìBÌœ9Sß%0vìØ¼¼¼üQé*Xñ¿øEN׋c}ŒÄG…èþ9õfHdG(ûŽÇŽsrrjÛ¶­¾ÅÙÙ9$$$--íĉ&wINN®P¡B£F „×®]Sú€@v4ø¨³$H®”€ßã¨Óé«T©R¥JÃöúõë !®]»Ö¬Y3ã½–.]êâ’ÿÌœ={VQ»vm¥IÜìhZ¾Ù3IIJäXJy$Óe ¸ì<8fffæååyxxäkwwwBܺuËä^AAAùZâããcbbÊ–-Û³gO9Ÿ(=Hø÷±4ü]4?‘œœ\òN~¿ä$ùïà'ÿã’„Ðøù%•¦<{õo^ôó÷B$­.I$ !4~ÿ$ø¤äb\‚¤$¡Ñø%ão ׯ_Wú@\zÑ©S'¥K°v³²²„*TÈ×^±bE!ÄÝ»w‹|‡¼¼¼õë׿ÿþûyyy|ð———œÏMHHøç‘FóßcyüüüJyÔÅz‡bm¬BãçGïLA’“’üüüü˜|­ÿ: ýŠ·ŽN'4¿R^±ÒÿÍ…Jqéñ¯r}‘£±óàèáá¡Ñh233óµß»wOüÛïXˆŸ~ú)::úÒ¥K5jÔxçwZ´haÑjKøµ1ùÈTf„ÎRXýQiù†°…ŒÉ á ‡GwwwãžÅôôt!„~žµ±ìììyóæ­]»¶\¹r&L9rdA‹>:nv”+ßê‚H¢€b%Hny€"ÙypBøøø$&&¦§§W®\Yß(ÝØçããcr­V;eÊ”o¿ý¶C‡³fÍ*$_Ú( ‡;²cñ°~¸ Ÿ Y! aÿËñ´oß>//ïàÁƒúNçéélr—µk×~ûí·ƒ úôÓOÕ—­‚zJÂp–QˆñR>Æ«ù°RÄþƒc¿~ýœœœ-Z$Ý×(„ˆ‰‰IMMíÓ§«««Ô’‘‘‘œœ,MŽÓétëÖ­«T©ÒôéÓ•®½,ŸìÈŽ%¤Ó‘ mî¿+ab=Hý%²ÿ¡j__ß©S§Î;·{÷î­[·¾råJ|||£FF­ß&..nÒ¤I;vì¸yóæÕ«WÝÜÜlün½zõ2dˆÒÇdfŒÓgG†õJ‚› mFAÙ̘€|ì?8 !"""ªU«¶mÛ¶]»vÕ¨QcÈ!'N”Vä1&õ;fee9sÆøUKO¬6'«ÜŠ(½=·<– Òf˜H:`Æ üK£ãŸCs 4\ÇQþ/ó,Çcô¦&ßÒì¿ÉŽBˆäädó¬èF‚´_ü3n¶KµáÒ;¬‡~×;‡èq„0Õڜ胴†aQþª`¯ŽöÎT ³Ð¸ÙÑüŒ¤ D*FÊ‹ÐèduC€ý!8Ú ‹ŒS[Óe,Å0,Ò ©(Nh4ÿLúnH?$‡`ÿËñÀÊ çèX©ÇÒŒôaÙë2\¬GºIÉI…, vƒGÇ`õQd†­­nHEå[¬ÇäÝ‚±lö…àè0ÊŽ‚øhÜ ©ý×[ ágx² ‘ìCÕÇš+Ò1l­Ž±l+ÓéDRRrAçØäWÔ0œ @¥èqt$ …8ºcr,[Ðir¾f†žHjGpt0:¡S(; îzTVA!R#ÍF?r-çŒ"¨ÁÑáh„Ð)”àèz´:£…= z ÅW‚o¸&DP ‚#¬Jßõ(ˆ¶ƒÎHs3˜4SìSXPˆäH6€àèXþDStØØJ@èŒ4ŸÒÄÇÞáá¿"tFPÁÑ&(ðµ16°Ð"#×*PHg¤ JÊR¬‹x+:#(àèÀl#; â£ZƵe+ÁE¼!‘”@ptl6ñQ½ ×äÈüJ?r]Ø›Ó À*ŽÄô`™mdGA|´…çHA”üïX(>þówF r$€Ò!8Z’5¿¤¥4l&;Š‡ã£°•¢P"Em Ç’Vˆÿ}9€ù!„°¹‰*ú*l©(”QÒÔ±Z'>þ÷¡äH¥@pÄ¿lr: íQR¡øøß§“#ÁÑQÈ6·¥akâþ9ЇŸÂɉ’ÂÓ¤²ññ¿2 Í‘‚( 8<‚#ŒØdvÔ—&è€t4&c”¦I‰ÿÕcô—Œ.IÀÁ•§ÀêßE²±[«“ —ü4)l#‚ÿàl'>>T]’€c#8¢6y裃 ’‚B–:¥a|´Ùb‹ì’DIÀ¾BÉײí®GÃ2ÿ9R£@ÕR_‹mv@š(˜( Ø5‚#Š¢†®Ç|Å $ä(n J7[¿.¢rQR&• 8B•t=Ö+јj SH.+ Sú +¥9UŒ_}¦þ.Ò1 ¨Á²©ó; +%D¢´ HjÉÉÉ~Vì§TÝøµ¬ƒ¢cP‚£ý3óª3>Ö. ŽÀ¸(¡â÷SÊÚWÆ~jï€,ðèäuL Ò$`EG”ˆšã£áƒã0nÌ£È@Wx²,jw»ì€,ð`I“€¢Ž ³ÅEåS|4<ap4&_,¥ð¬Wd‡å¿ï`ß…½ì4)”@é휙ǩM²—øhx4zäH(OÎßaƒpùßÖšâ¿)( (Ò 8ÂLìôÛÉ‘P‡BCá?CØrz.‹z+;@ Jƒà³Ê· ŽÝý{[xŽ~~vwİÿFA¬Ql™ùRØ[Ä$Prí™5Æ© b§&R/99YãçWø6€‚òM£&³Ÿü5#b(ýб `ް$Çû"ããÓÈÛ °&Y Rþ»I~Ä,y5Ö&¥Ãääd?£ÿ],¨“R)¡~GX…‘‹É£$MÂF˜'AÊÿ™T4 I‡…dJA¬„a]&W¾q¼*å§Iሧ 0NBÁ–cÇ™Xâ sª ŽöîF¨ƒ5J­û[ËOÈèsâ/©?SúÉÙ×ÙýÉpÐUYŽGæCjL(îê8¥û“œ”¬ü<Öÿã`L.Ê’””\øÊA,$;Cc6oÞ¼iÓ¦ÄÄÄòåË·iÓfêÔ©žžžJ•©Ñ¦têÔ)!!Aé* Y—Þþþªƒîl–u…e¯1Í¿í°MGÓ,X°dÉ’ *4oÞüÊ•+[·n½xñâš5kÜÜÜ”.í?¤FJâß!‹û¿‹:™É‘\nãõ&G†ªMHHHˆ‰‰ñññÙ³gOLLÌÞ½{‡ ö믿Ο?¿ôon®qjR#¨’%ïš0à Ö½ÍCÅÁÑ„M›6iµÚ‰'z{{K-‘‘‘îîî»wïÖjµJW'©`J1¾2¯€?rîÔ,ÙØ‚£ ÇŽsrrjÛ¶­¾ÅÙÙ9$$$--íĉ¥yçÒw7JýHK(}ô´~$%ÅZÁ1?N—˜˜X¥J•*Uª¶×¯__qíÚµ¿s‰S£áϺô×u±\$U$Å:,&Çä—™™™——çáᑯÝÝÝ]qëÖ-9oxA'òßÛ¬‘{Kt>õëÿ·\T Ã®¥\!GÅ¥wX\z5ªï¨S[Jà˜_VV–¢B… ùÚ+V¬(„¸{÷n‘ïPà »’÷²Â PCÕùyxxh4šÌÌÌ|í÷îÝÿö;8 ‚c~...îîîÆ=‹éééBý}ú¸ºº*]€24:V4eåÊ•sçέY³fëÖ­¯\¹´råJãezÁ±@Û·oß¶mÛ¯¿þZ£F§žzjâĉҊ<މàY¸Ç² Á² Á² Á²ÍfóæÍýúõ nÙ²eTTÔíÛ·•®V•””øË/¿(]¬$++kõêÕݺu{òÉ'[·n=räÈüQé¢` wîÜyóÍ7¥KÿÜsÏMš4)))Ié¢`m¿ÿþ{Ó¦M§Nªt!ÖFp4 ¼þúë—.]jÞ¼yÅŠ·nÝ:f̘¬¬,¥ë‚õ¬]»Vé`=¹¹¹#FŒx÷ÝwSRRž}öÙzõêýôÓOŸ~ú©Ò¥Á²ÒÓÓ»uë¶aÃ!D»víªV­ºk×®°°°3gÎ(]¬G§ÓMŸ>ýÞ½{J¢¥ ° 111>>>[¶lñööBÌ™3gÍš5óçÏã7”®–•žž~áÂ…íÛ·oܸQéZ`=›6m:uêTÓ¦MW¬Xáææ&„¸xñâ!C>ýôÓÐÐІ *] ,eáÂ…7oÞ;vì¤I“¤–¯¾újÆŒ³gÏæDZzõê£G*]…2èq4ƒM›6iµÚ‰'J©Qéîî¾{÷n­V«tu°¬°°°Áƒó ÃÑìÙ³G1sæL)5 !ÆŽ›——Ç€µ};r䈛›Û¸qãô-½{÷®^½úÙ³góòò”®ÖpñâÅ 4hÐ@éB”Ap4ƒcÇŽ999µmÛVßâìì’––vâÄ ¥«ƒeÍ™3gñâÅ‹/nÑ¢…ÒµÀz’““+T¨Ð¨Q#ÃÆ€€!ĵk×”®äááZ®\9ÃÆ²eËfggggg+],.77wÚ´ižžž‘‘‘J×¢ †ªKK§Ó%&&V©R¥J•*†íõë×B\»v­Y³fJ× jÕª•ô`ß¾}J×ëYºt©‹Kþ?Ïž=+„¨]»¶ÒÕÁ‚Ö­[—¯åرcW¯^}òÉ'õÝϰc .øà///¥+‚5$$$lÙ²E§Ó !5jT¦L¥+‚eeeeM›6­víÚS¦LQº%KËÃÃC£Ñdffæk—féKýŽìÕO?ý}éÒ¥5j¼óÎ;Üêê88`À€ÔÔÔíÛ·ÏŸ?ÿĉ;w `—æÎ{ýúõ 68ø= LŽ)-wwwãžÅôôt!„~ž5;“=gΜáÇÿþûï&Lؽ{7©ÑÑh4šjÕªEDD 0àÏ?ÿÜ»w¯ÒÁRŽ=ºaÆ_|ñ‰'žPº…Ñãh>>>‰‰‰éé醷Ê&''K/)]óÓjµS¦LùöÛo;tè0kÖ,þÑA\¼xqåÊ•!!!;w6l—æ×ÿõ×_JK¹xñ¢BZCðý›o¾ùæ›ovìØ¡tVBp4ƒöíÛ'$$>¾Q£F£GVº4æwóæÍ«W¯º¹¹ <ØøÕ^½z 2Déa)³gÏ4hиqゃƒkÕª•’’rüøq!Äûï¿Ï„z8‚£yDDDT«VmÛ¶m»víªQ£Æ!C&NœÈô:À.]¿~]‘••uæÌãW™"cßüñ;w~üñÇgΜ9wî\õêÕ;vì8~üxé{ƒ»§‘Ö  Çr<…àYŽ…àYŽ…àYŽ…àYŽ…àYŽ…àÀ±L:500pÿþýJ"-Z¸~ýz¥ ¹ŽÅEéÀAµk×ÎËË«iÓ¦Jr@5jÔ¨‘ÒU@10T 6'///''Gé* ?‚#uxýõ×çÍ›—¯ýôéÓ-Z´ÈÍÍB¤¦¦~øá‡]ºtiÒ¤I“&MºvíúÞ{ïýõ×_½­4WæÈ‘#ùÚƒ‚‚žyæÖüñ•W^éСCóæÍ‡ ¶hÑ¢|ÙîÆ³fÍêҥ˓O>Ù¶mÛ1cÆ;v¬#Z¶l™áä©’ëׯÇÄÄ<ûì³=öX³fÍøý÷ßô'Ož ùûï¿õ÷îÝkÛ¶mPPЯ¿þªôE`oŽÔ!,,L±wïÞ|í;vìBôìÙÓÅÅ%55uðàÁK—.ýý÷ßyä‘Zµj]»vmÕªUááá·oß.ͧϟ?äÈ‘{÷îÍÍÍõöö>~üøÂ… ‡ ’––&mpñâ۰°7¦¥¥=úè£:...nèС±±±Åú ¥K—~ðÁ®®®Ï>û¬»»ûÉ“'Ç¿{÷n“9ò¯¿þz÷Ýwõï¿ÿþüñÒK/=þøãÖ¾HìÁ€:4oÞÜÛÛûÚµk¿ýö›¾Q«ÕJ¡ªwïÞBˆ­[·^¾|944ôÇܶmÛ7ß|sèСæÍ›ß¸qã‡~(ñGïÛ·oÙ²eµk×Þ¼yóþýûwîÜyàÀ6mÚœ:uê³Ï>“¶™?~FFƸqã>¼uëÖ¸¸¸™3gêtº?þ¸XŸµiÓ¦1cÆòññÙ²eË;w„çÏŸBôë×ÏÙÙYÚ&<<ü¥—^êСC±>ëñÇŸ2eŠ“““tÈ/½ô’âòåËmïêêúþûﻸ¸¼þúë)))3gÎtss›?¾¾ 0#‚#Õ" á¸­4NݧOééøñã—,Yòè£ê7¸yóæÎ;Kó¡·oßNNNö÷÷Ï7º|ùò-Z´ÈÊÊ:sæŒBJ®‘‘‘G•î¶tuu}õÕW'L˜P¬ëܹ³áSwwwgggNWÈ.AAAãÇÿóÏ?{ôèqãÆéÓ§×­[×R×€cc9ªÑ¨Q£ºuë^¾|9!!!00077wÏž=nnn]ºtÑosãÆ?~üÚµkW¯^-å­Bˆ¤¤$é¿&7øã?„ÑÑÑ'Nûì³¾}ûΞ=[£ÑÈüè2eÊ”à´Ü»wïæÍ›Bˆ¤¤¤;wîxxxXþRpDGj¢ޝ¾úª4­§¾wïÞÛo¿]¦L™¥K—¶jÕJ¿ËŸþYÜOùý÷ßµZ­ôØßß_Q¾|ù¨¨¨Â÷Òh4Ò@BˆìììƒΘ1cË–-¡¡¡íÛ··èi™5kVJJJ“&MNœ8ñÖ[o}øá‡ý8‹{¨I:u{챤¤¤Ó§OÿðÃuêÔiÖ¬™ôÒéÓ§óòòš4ib˜Å¿ÓV —oDû»ï¾Ó?öññ©V­Ú¥K—Ξ=k¸M^^^Ÿ>}Z·nššzãÆÐÐÐþýûë_-S¦Lûöí¥Ù<ׯ_·è9Ù¾}ûîݻ۴i³fÍš€€€;w/ZfAp 2Ò™™3gffföíÛWßîãã#„8þ|jjªÔ’——·qãÆuëÖ !²²²L¾Û#<"„X»vmff¦Ô¯_dG2yòd­V;yòäsçÎI-÷îÝ›1cÆ™3g5jäååU£F¿ÿþû—_~Y¾|¹¾«òòåËBXt=Å?ÿüó­·ÞªT©ÒÛo¿íêêúî»ï:;;GGG—þæN0ÆP5•éÒ¥Ëܹsœ{öì©o÷÷÷oß¾ý?üðÜsÏ5mÚT§Ó%$$ܾ}{ðàÁkÖ¬ùꫯþþûoiaC={öüüóÏOœ8Ѿ}û   ”””ÄÄDww÷êÕ«?xð@Ú¦W¯^Gýúë¯{öìY³fMOOϤ¤¤ÌÌ̺uëJ+o;99EEEEFFΛ7oÅŠµjÕÊÌ̼té’N§ ¶Ð©Ðét‘‘‘éééï¼óŽ”›7nýÎ;ïøøølß¾]îZž_ýµ~ýúãÇÿþûïÿüóÏÌÌ̸¸¸}ûö½ýöÛÞÞÞ{÷î}æ;äææ¦¤¤œ>>111r¡”»ŠÉÝÝÝÁÁAzœššúðáC!DffæÄ‰½½½…*T¨]»¶¢Zµjr÷×|ݼysРA÷ïß—žÖ­[·råÊþùç­[·„999ƒvpp ’»§#66¶C‡?Ö´(•ÊœœéñíÛ· püøñ&Mšèî«ùÆ~ò䉦ИššÚ¿ÿ¸¸¸2eʲK...rŸ ÀÚPq,ÕÖ­[þñàÁƒï¿ÿ¾lÙ²BˆìììuëÖIÛ þ¼"&&fàÀµk×®\¹r@@ÀO?ýôÌS÷믿J† ¦}1hË–-—/_.=>{ö¬J¥2öAéyæoÞ¼9pà@WWתU«öéÓçÔ©SÚÝ»w'OžÜªU« *Ô©S§oß¾gΜÑÞ ï!Dvvöš5kÚ´iãááQ¾|ùF 6ì·ß~+ü|þðÃ{öì‘Ïš5kÆ Mš4±··¯V­Ú¨Q£¶mÛ&½{åÊ•ÂߪfÍš6lМÀ÷Þ{ïÉ“'Ïü‚0†ªë‘••%=Ðs`zôèÑ_|ñ…B­Vk·?xð uëÖ—.]’žþöÛo¿ýöÛ¹sçt/õ»}ûv»ví®]»&=ݱcÇîÝ»?ýôÓ×_]³Mpp°öŽ7oÞ¼yófttôž={vìØQ샋‹{饗’““¥§‘‘‘?þøãܹsß~ûmMÒúé§Ÿ¢££>ܾ}ûBÞêéÓ§Òƒ‹/ªÕj…B¡y)((H=µÏ’‘JŸ3úôé   ¿þúKzºk×®~ø¡mÛ¶ºïvèСÁƒß½{Wzúøñãøøø]»v½õÖ[~ø¡îöy¾233ÛµkwòäIÍ.\¸páÂÖ­[W®\ùÆotšº`¥J•æÌ™“çÕîÝ»wëÖíÏ?ÿBœ?¾^½zÏ<-“'OÞµk—âÞ½{ÇŽ{ùå—‹}†”GÀ<|øpÆ ß~û­B©TŽ5ê™»œ>}ZJ º~úé§K—.ÕªU«E‹Òð·bÇŽº•­S§N]»vÍÍÍ­]»vŽŽŽBˆììì &üñÇÒÛ·o—BB¡ >|øóÏ?/½uèСbò¹sçî߿ߤI“J•*I-÷îÝ›§¥]»v¥K—–kY¦Gp,U§N4ËŽ8;;5*77×ÁÁaóæÍM›6}æî‰‰‰¾¾¾111šËÈ4>ýôÓëׯÇÄÄœ={V“`ò ’Šm—.]ª[·®"77WSg:pà€ô`êÔ©?þøã_|qþüùfÍšIš1ââùöÛoÏ;÷×_j?úè£?þøãæÍ›šô, abÆŒší™3gÞ~ûí–-[–/_Þ××wäȑ۷oמäaìƒ*ü̯_¿þÆBˆ *;vìĉ S¦LÑ}Ÿ%K–H3Kúõë÷ã?Λ7ïË/¿üøã¥Wuôî÷ÃáÇ¥—æÌ™³{÷îO>ù$&&¦sçÎBˆœœœ~ø!ßþgggkjœ^^^%9 …¢jÕªÒcM©U›öÏ‚Æ[o½eO àX•矾]»vúlY®\¹ï¿ÿ~È!-Z´ÈóþùçŸóÍ7¥Çõë×× ƒJ‘E[©R¥V­Z%Mt­Y³æûï¿/µïÛ·/77W1pàÀˆˆˆˆˆˆÉ“'K/¥¥¥¥§§K5™‹¡yóæÝºu“úп©ÑÙÙyÒ¤IB;;»AƒI<(ü­*W®üÛo¿=Zš·!Q©T—.]úâ‹/X¿~ýƒj^2ÞA=óÌk.ÔÔÿ„K–,qssËóVšt;fÌMãk¯½&ÕMoÞ¼™gÉOÝïÍj‹[¶lÙ°aƒ·lÙ" X÷ë×/ßCHKKÓ<–¦DåÊ•u߀éq#`©´— ‘ÖT«Õ§NjÖ¬ÙÏ?ÿ\§NÂw÷óó+èïzž}5cÁÚ³C$ 6¬Q£†æ©fõ鬬¬ëׯשSGº-55õàÁƒ§OŸ>{öì©S§=zTòÃ× F !4çÁÃÃCs…bžõYÖ®];nÜ8í–^xáìÙ³Òã*Uª¬[·nõêÕ111111çÎ;uê”fêÆíÛ·ûöíûÇ<÷ÜsBãÔ3ϼ¦KÚ }—.]ºK—.Úûj¶,èŠÀ«W¯6nÜXóT÷ûáå—_–fÒÄÆÆŽ5J¡Pøùù½òÊ+={ö|ñÅ :íð­»jw±IÓÞ…+VÔ}5ßåx4g€KµuëÖŽ;jž&''>|ÿþýwïÞ ‰ŽŽ.|wWWׂ^Òž¢ûT›fQâèèèää$­(yóæÍ:uêdeeÍž=û“O>Ѭáçàààææ–””TÂÃÏ·Wvv%EQ*•mÚ´iÓ¦ôôöíÛ‹/^¹r¥âÉ“'[¶l‘†àMvPyž>~üXóyÎ|Íš5µŸ¦¥¥å^×¥™W$Ñý~ KKK[¿~}ff¦B­VŸ9sæÌ™3‹-jÛ¶íÎ;«T©¢û¶¥K—vuu•Þüúõëù~ôÇ¥SW¶lYéÒØgÒŒP»»»ë¾šçg€ñ0T X WW×÷Þ{Oz|äÈ‘|/ÓVHÔ_žOÉÈÈR£B*Î-Z´hùòå999^^^«V­úí·ßÒÒÒÌj%휜œÏÿqóæMí—ªW¯þé§Ÿ¶nÝZzªYäH®ƒrppÐÌÉR5§]R±bEMåï»ï¾‹ËOpp°ö.ºß¥J•Z¹rå½{÷¾úê«!C†h/¦}ôèÑBîæ×ªU+éÁ·ß~›ï*Nõë×wuuuuu]³f>~ìØ1ÍŠ…;˜Á°Úõ6Ó\ vñâEi]‰æBÀÒ¥KKw¬Yµj•ÔòÙgŸ?¾qãÆJ¥2111ÏûhRKžëK^ÃÓ>|ø_ÿ%MïP*•ï¾ûîèÑ£GýùçŸëîX®\9éA­Zµ¤r”½½½§§gžS-„P«ÕºËUJ•„999u´¸¸¸8;;;;;ç{«ÌÌÌ»wïÞ½{733sÀ€IIIßÿ½&·é.Ø©¡¹ªòæÍ›º7Àܳgæ¿7 _&IC3§ÇÑÑQ“ãÈ‚àX‰ÔÔÔ¹sçJË–-k¨ ­…ËÎΞ8q¢TUºsçάY³¤ö   {{ûGiÆC5áé×_Õ]°F3ÒúË/¿h.Îûúë¯õY¾[Oîÿ¥™oÑ¡CéÁ’%K¶nÝ*MëBäää¬]»VÓ[)3É{PÍ›7—|òÉ'š¥¼ß{ï=ÍúG:u’„‡‡kV Ü¹sgåÊ•]]]¥E| ù K—.U­ZµjÕªÕªU“ÖéT*•:uÒÌUwvv.hß=zh>}Ò¤I ,¸sçŽ"++kË–-#FŒ^ªS§ŽŸŸ_áÇû×_;6**Jz:lØ0ík(˜×8–jøðášbXffæ;w4—ÜM™2E©4ÑO÷×_íééY¿~ý“'OJYÄÞÞ~Ñ¢EBˆòåË—/_^ºØNºeˆB¡8pà€îð¥f-›ŒŒ ?????¿ää䨨XÓÂüùó÷ìÙ“’’’™™9tèÐ)S¦xyy)Џ¸8ÍœŒÎ;K³Lä=¨éÓ§ùå—jµúÁƒ-[¶lѢŽ{÷ò]RqöìÙëׯOMMݽ{w```ûöí/^¼¸wï^éÕ©S§>w¤qãÆîîîwïÞÍÉÉiÓ¦M=*Uªtýúuͽ+óÜ'åË—·hÑ"##C­VÏ›7oÞ¼y®®®©©©šP^¶lÙ¨¨(ÍÒ˜Ú4ߨOž<‘§¤J•*ï¾û®¿îŠàX*í1bm­ZµÒ”ÍÙÙ9--íöíÛ·oß–ZJ—.½fÍ!„B¡èÞ½ûW_}%„HOO—2‡——W­Zµ¤55± iÓ¦ƒ ŠŒŒ”¶”Vöòòòòò*h½@ª]»öÎ;,Òäää<GÚµk÷ÕW_I)GÞƒjҤɈ#6mÚ$„ÈÊÊ:zô¨øg÷»ï¾ÓÞÒÅÅå‹/¾>|øƒ~úé'í2ç¸qãæÏŸ_øÙÙÙI‰3##㯿þZ¿~½ö«:t˜1cF!»7jÔèûï¿0`€æ»Tû”Ö®]û³Ï>Ó¬»žG¾ßØ•*Uúæ›o ™ÑÀ4ª¬½½½››[çÎ×­[÷ÓO?é9Sµä:tèT£FjÕª 0àСCÚˉ¯X±¢Q£FB;;»&Mš¼õÖ[gÏž}õÕW¥W·mÛ¦Ãݼyó¢E‹5jäèèèçç7iÒ¤˜˜“…öíÛÇÇÇöÙgݺuóõõutt¬R¥Š¿¿ÿàÁƒ>­=5DÞƒúüóÏ'L˜ =vssëÙ³ç?üïâAAAÒú”M›6-W®œ——WïÞ½£££W¯^­ÏÔ¨—^z)..îÿûŸ¿¿¿‡‡G©R¥\\\Ú´i³~ýúC‡I‹w¢uëÖW¯^]±bEûöíÝÜÜÊ”)ãããÓ³gÏ+V\¾|YZƒ³pööö•*UzñÅÿ÷¿ÿÅÆÆ¾ôÒK†û‚(&Ež{Ô€aeggïÙ³G|øð믿žïº†`$Gè…¡jè…འ‚#ôBp€^ŽÐ Áz!8@/Gè…འ‚#ôBp€^ŽÐ Áz!8@/Gè…འ¥Ü°B>>>rwWll¬Ü]ÁÑ(ló›Éx|||8¥Äù48N©ÁqJ ‹óip6[$b¨z!8@/Gè…འ‚#,Àäî‚Uá|§Ôà8¥†Åù„¡ ‚#ôBp€^ŽÐ Áz!8@/Gè…à½(åîòóññ‘» Sll¬Ü]° G€­óññ!7Ø2þ³A U@/Gè…འ‚#ôBp€^ŽÐ Áz!8@/G,Ò‘#G:uêäêêêááÑ»wïË—/ËÝ#X?‚#–ç×_íÔ©Ó7fΜ9kÖ¬k×®µmÛ6))ÉàÔ®]»°°0¹÷_>7nÜsÏ=W¾|ùvíÚÅÄIJñáÇÜÜÜ*W®Ü¦M›]»vÉÝ}‹g[Á1>>ÞÇÇç·ß~+Ò^þùg³fͦOŸ.w÷øÛš5kT*Õ¡C‡¦OŸ>iÒ¤èè蜜œˆˆÃ~ÊÙ³gþùg¹õ_iiiÍ›7߸qcÛ¶mGuíÚµ®]»ž={6ß÷íÛxóæÍ¡C‡Ž7îÞ½{}úôY¿~½ÜaÙ”rwÀ¤¶lÙRÔ]ÔjõÌ™3?~,wßø×ùóç}}}kÖ¬)=uqq©_¿þµk× òæ999‡:~üøªU«T*•þ;>yòÄÑÑÑxG½|ùò¸¸¸M›61B1yòäfÍšM›6íСCºÏž=»jÕªgΜqrrB„††úúú†……=Úx=´z6QqLKK;}úô¼yó¾üòË¢î»iÓ¦“'OÊ}üGrrråÊ•5O333ãââjÕªe7OIIyùå—ÃÂÂîÝ»W¤»téR¹råÈÈHíÆÝ»w+Н¿þºä‹ŒŒ¬V­ÚðáÃ¥§^^^ýúõ‹ŽŽ¾sçNž-333/^¼Ø£G)5 !Û¶m›˜˜˜‘‘a³d›l"8 2$Ï÷±>®^½ºbÅŠúõëË}üGnn®R©B¨Õê„„„‘#GV¯^=$$Ä oîîî®V«ÕjuQ'ÜÌž=»\¹r'N|úô©¦qÓ¦M•+WîÑ£G {•––våÊ•€€…B¡i T©TºW:ÚÛÛÿöÛo .Ô´äääœ?¾qãÆ9K¶É&†ª-Z”™™)„ˆˆˆ8~ü¸ž{åää̘1ÃÅÅeÖ¬Y#GŽ”û È+33³lÙ²BˆŠ+FDD¸ººÊÛŸ=z\¿~}âĉ»ví B$%%íÛ·oܸq¥K—.á›ß½{W­V»»»k7º¹¹ !t+£J¥²aÆÒãÍ›7ÇÅÅíÝ»÷Î;Å{„6›ŽmÚ´‘>|Xÿ½>ýôÓK—.mذ¡bÅŠrùP*•ëÖ­KJJ:~üxÏž= ©]BäääìÝ»· wxõÕW Û¥aÆ͚5kýúõRpܺukvvv¾õ—¢v,==]‘ç²4’’RH—Þ}÷ݸ¸8!DçÎ 5šo³l"8ùsçÖ­[7tèÐV­Z]¼x±¨»ûøøäi9pà€ÜÇdÁåî‚Uá|§ÔàÌç”þ7ƒ™”Zýìmìíí5S=ÂÂÂæÏŸ?pàÀ>}úhoóäÉ“^½zü)z|LQ899þùçñññ^^^7nlÔ¨QÓ¦Mu·,jǤzê£G´ÓÒÒ„•*U*¤KW¯^MOO?qâÄèÑ£_zé¥K—.IuJm …¼C×®] {–,Á13f̨Y³æ´iÓŠ÷±±±r„µñôô”» V…óipœRƒ3“SjèXeD#FŒ˜?þñãÇóG'''ƒ§ÃÂ?~ýúõ6lèÓ§Ïùóç—/_žïfE혻»»]žQéääd!DõêÕ ß·\¹r;v\¼xñ AƒvïÞ=vìØ<þý¦ûg]·Bd#ŽùX²dIbbâ¶mÛ¸~`)rrr„öööºí¦ªB4mÚÔßßãÆ)))J¥rÈ!u¸HS*•¾¾¾GÕnwÛ¶m...S§N-d›Aƒ¹¸¸¨TªB–%)FÇFŽÙ¤I“!C†„††.]º´C‡éééš;".Y²ÄÅÅeÍš5BWW×9sæ|xìØ1??¿ªU«ÊÝA«"¥F );Rw}´nÝ:$$dÙ²e›7o®R¥Êرc/^¬;TmpYYY<(|m‡®]»nÛ¶-ÏŸÔªX±bttôôéÓ£¢¢RSS[¶l¹uëV???éÕ§OŸ>xð@Z€O1oÞûlõêÕvvv 4ˆŒŒÔ¹F1…âÉ“'III¥J•ªQ£F›6m4Ë÷H.^¼xìØ±æÍ›ðÁr÷Ôª „‚ƒƒ¥UoŒÄÇÇG·ø7bĈììì .¾o™2e„¥J•2l—œœœÂÃÃó}iÞ¼yóæÍÓŽ0fÆ€9r¤S§N®®®½{÷¾|ù²Ü=‚õ#8`y~ýõ×N:ݸqcæÌ™³fͺvíZÛ¶m“’’ õþ¿ÿþûÀ«V­Z¾|ùæÍ›¯X±"''GîƒBˆ‡Ž7î¹çž+_¾|»víbbb ÙøðáÃnnn•+WnӦͮ]»äî¾Å#8`yÖ¬Y£R©:4}úôI“&EGGçääDDDäÍããã;tèpàÀ®]»N:µtéÒS§Níß¿¿Ü-ÒÒÒš7o¾qãÆ¶mÛŽ5êÚµk]»v={öl¾ïÛ·/00ðæÍ›C‡7nܽ{÷úôé³~ýz¹©ahõêÕ“» fªØßn|ŸV||¼Ü]°6œRƒ3ñ)µÄßÛ-Z´hÔ¨‘vËK/½ôÆoäÍ_}õU;;»“'OjZBBB„(|ÇÇõ¨çÍ›'„Ø´i“ôôÚµkÎÎÎùnܸqãªU«>xð@Ó·çž{®Fº[ãÀ¿g ‚Š#–'99¹råÊš§™™™qqqµjÕ2È›:t¨]»vþþþš–7ß|SqâĉÂwìÒ¥KåÊ•###µwïÞ­P(¾þúë’w,22²ZµjÇ—žzyyõë×/::úÎ;y¶ÌÌ̼xñb=œœœ¤GGǶmÛ&&&fddä,Ù&‚#L„™1`@¹¹¹J¥R¡V«FŽY½zu©.XB999&L’¢Æ7„eÊ”)|ßÙ³g—+WnâĉOŸ>Õ4nÚ´©råÊ=zô(aÇÒÒÒ®\¹ ÐZn#00P¥Ré^éhooÿÛo¿-\¸Pû¸ÎŸ?߸qc‡’Ÿ%›¥”» ˜233Ë–-+„¨X±bDD„««kÉßS©T¾ÿþûÚ-÷ïßÿý÷íííûõëWø¾=zô¸~ýúĉwíÚ,„HJJÚ·o߸qãJ—.]Žݽ{W­V»»»k7º¹¹ !îÝ»§{ 6”oÞ¼9..nïÞ½wîÜùòË/K~ŠlÁ€)„œkɪÅ3Fj”Jåºuë’’’Ž?Þ³gÏDFF*þ»þmNNÎÞ½{ z‡W_}µðøé§ŸÆŽ·zõjooïgöyذa³fÍZ¿~½·nÝš=räHÝ-‹Ú±ôôt!DÅŠµ¥‘è”””Bºôî»ïÆÅÅ !:wîl¨Ñ|›Ep„ˆOP(<é`zÏŒnò²··=z´ô8,,lþüùìÓ§ö6Ož<éÕ«WXðïÖ›7o¾ùæ›ß~û­··÷?ü¨O—œœœ‚ƒƒ?ÿüóøøx//¯76jÔ¨iÓ¦º[µcR=õÑ£GÚiiiBˆJ•*Ò¥«W¯¦§§Ÿ8qbôèÑ/½ôÒ¥K—¤:%Šk°#FŒB?~$$$<<<((¨ qábŒ¡3fòäÉ{öì‘æh'%%EEEuîÜÙÓÓ3Ï–-Z´BlܸqÀ€š‹>¿øâ !DË–- ÷E°9GXµš²%üGvvv``૯¾Ú AƒsçÎmܸÑÏÏOwâ³4"¬ÿÛ^ºtéòåË 4Ð\=©Ñ§OŸ   mÛ¶½ñƯ½öÚòåË z“AƒM›6-555ßi1Åë˜bäÈ‘6l2dÈ„ œ7mÚ”žž&½ºdÉ’Å‹¿ÿþûãÆsuu3gNXX˜¿¿ÿË/¿¬P(¾ÿþû“'ON™2¥qãÆ¦øòX)‚#©uëÖ!!!Ë–-Û¼ys•*UÆŽ»xñâb×5¤ È—.]ºtéRž—êÖ­”••õàÁƒÂ—ÑvppèÚµë¶mÛºwïnÀC®X±bttôôéÓ£¢¢RSS[¶l¹uëV???éÕ§OŸ>xð 33Sz:oÞûlõêÕvvv 4ˆŒŒÔ¹F1°TÁÁÁÒª7Ô³gÏ #FŒÈÎξpáBáï#­^ªT)ÃvÏÉÉ)<<<ß—æÍ›'Ý“P¢P(†®¹Í ‚YÕ ž>}zøðá|WØÕ#8Âè¸6¬É‰'4h0xð`¹;0T ‹ÁüÐ uvv–壞¹™··w›6mdé!Œ‡à€å3fŒÜ]x†ÐÐÐÐÐP¹{c¨z!8@/Gè…àK"Ͳ 8¸˜ €Õ 8@/Gè…འ‚#, « Á‹täÈ‘N:¹ººzxxôîÝûòåËr÷Öà#b-0’_ýµS§N7nܘ9sæ¬Y³®]»Ö¶mÛ¤¤$ƒP»víÂÂÂä>Ü=|øpܸqÏ=÷\ùòåÛµkSЖÙÙÙJ¥Rñ_UªT‘û,›Rî€"[³fJ¥:tèPÍš5…Æ óòòŠˆˆ˜:uª?åìÙ³?ÿüsÇŽå>Ü¿¥¥¥5oÞüæÍ›ýúõsuuŠŠêÚµëáÇýüüt7NHHÈÍÍmÕª•———¦±|ùòr„e#8`yΟ?ïëë+¥F!„‹‹Kýúõ¯]»f7ÏÉÉ9tèÐñãÇW­Z¥R©ôßñÉ“'ŽŽŽÆ;êåË—ÇÅÅmÚ´iĈBˆÉ“'7kÖlÚ´i‡ÒÝ8..N±`Áó ¾V€¡j,OrrråÊ•5O333ãââjÕªe7OIIyùå—ÃÂÂîÝ»W¤»téR¹råÈÈHíÆÝ»w+Н¿þºä‹ŒŒ¬V­ÚðáÃ¥§^^^ýúõ‹ŽŽ¾sçŽîÆRp¬[·®AÎ $GX&V@nn®R©B¨Õê„„„‘#GV¯^=$$Ä oîîî®V«ÕjuQ'ÜÌž=»\¹r'N|úô©¦qÓ¦M•+WîÑ£G {•––våÊ•€€…Ö߀ÀÀ@•J•qqqeÊ”©P¡ÂŽ;Ö®]{ìØ±¬¬,ƒœ[ÆP5–*33³lÙ²BˆŠ+FDD¸ººÊÛŸ=z\¿~}âĉ»ví B$%%íÛ·oܸq¥K—.á›ß½{W­V»»»k7º¹¹ !ò­ŒÆÅÅÙÙÙÕ­[755UjiРÁ–-[š5k&ïY²hG &ïdzV¦P*•ëÖ­KJJ:~üxÏž= ©øoŸsrröîÝ[Ð;¼ú꫆íò°aÃfÍšµ~ýz)8nݺ5;;{äÈ‘º[µcéééBˆŠ+j7:99 !RRRtß!..N¥R………õëׯT©Rß|óÍ[o½Õ«W¯ .H{¡Ž̼³··=z´ô8,,lþüùìÓ§ö6Ož<éÕ«WÁÇgàtrr þüóÏããã½¼¼6nÜØ¨Q£¦M›ênYÔŽIõÔGi7¦¥¥ !*Uª¤û?ýôSÙ²e5/…„„<}út„ QQQ£F2ìQÛ®q„±°ˆ#˜’4ÑøøñãyÚœœÔ3FOƯV«7lØpæÌ™óçÏ¿öÚkùnVÔŽ¹»»ÛÙÙå•NNNBT¯^]w{<²K—.Bˆ‹/í‹`ý¨8Â"Ióc¦ ‘““#„°··×m7åPµ¢iÓ¦þþþ7nLIIQ*•C† )¨ÃEê˜R©ôõõ=zô¨vã‘#G EÆ ól|ãÆ={ö6hÐ@Ó(•' 5÷Ü6°H'Ož¼råJ½zõ¤§;wîBè ›x¨Z2~üøððð   iþŠ®btl̘1“'OÞ³g4G;)))**ªsçΞžžy¶tppxûí·ýýýüñÇR¥J !T*Õ| T*;wîlŒC¶ U`‘²³³'L˜°råÊÑ£G‡††úùùõë×/ÏfªÞ¶m›‹‹Ká·¨4h‹‹‹J¥ÊwZL±;6räÈ&Mš 2$44téÒ¥:tHOO×ÜqÉ’%...kÖ¬B¸¹¹………=zÔÛÛ{üøñ³gÏnÞ¼yddä‚ |}}åü²Y8‚#©uëÖ|ðALLÌìÙ³:4vìØÃ‡ëU\VVÖƒ222 ÙÆÁÁ¡k×®BˆîÝ»ð£+V¬=pàÀ¨¨¨>ø nݺÑÑÑ/½ô’ôêÓ§O}úË/¿;vlÒ¤I&Lû ÓÓ§O>üòË/ËÝÈÀ&‚£t“¢o¿ý6ÏÝ3 ²}ûösçÎ5kÖìóÏ?wppB\½zuèСŸ}öYžùYØš'N4hÐ`ðàÁrw2°‰àô×_é¿ý„sæÌ‘R£ÂÛÛ{ܸq‹/þùçŸ Žú0ÁZ9¬ÈÀ–…††:;;ËòÑÏÜÌÛÛ»M›6²ôÆcÁqÑ¢EÒ¥²º+£êJHHptt̳(”···âÖ­[r b̘1rwáBCCCCCåî Ì&‚£æ¿x>¬Ïök×®U*óži¡ùš5kÊ}4ò°‰àXTº+<ÅÄÄ„‡‡—)S¦¥Jµùøøäi‘†¿m‰gBB‚¡Þ+11ÑŸb; >Ÿ(&N©ÁqJab…ÿ5‘–‚ 8>SnnîÖ­[—.]š››ûá‡JwX¦ØØX¹;.?Ýuüñn†ýÛÁy38N©ÁqJaJ…¿éþY×­Ù‚ca~ùå—°°°k×®U«Ví½÷ÞkÕª•Ü= Á1YYY|ðÁ–-[Ê–-;qâÄQ£FifXÃ|0±S"8æC¥RM›6í»ï¾ëÔ©Ó¼yó º;;€M!8æcË–-ß}÷ÝàÁƒóܹÀ–…âÉ“'III¥J•ªQ£†Z­Žˆˆ¨P¡ÂÌ™3åî—¥bø«DpBˆèèè·ÞzËÛÛ{Ïž=÷îÝ»y󦃃Ã!Ct·ìÝ»÷СCåî/€ ŽyI‹‡edd\¸pA÷U&V›e[ÁqáÂ… .ÔmïÖ­[·nݤÇM›6eF ÂÄj6ëÈ‘# ,8wî\éÒ¥[´hñþûïׯ__îNÁÊÙÉÝPd¿þúk§Nnܸ1sæÌY³f]»v­mÛ¶III†zÿǸ¹¹U®\¹M›6»ví’ûˆÿöðáÃqãÆ=÷ÜsåË—o×®]LLLA[fgg+•JÅU©REî#°l¶UqÀ:¬Y³F¥R:t¨fÍšBˆaÆyyyEDDL:µäo¾oß¾îÝ»{yy :ÔÁÁ!**ªOŸ>ëÖ­=z´¼G––Ö¼yó›7oöë×ÏÕÕ5**ªk×®‡öóóÓÝ8!!!77·U«V^^^šÆòåËË{–Žà€å9þ¼¯¯¯”…...õë׿víšAÞ|öìÙU«V=s挓““"44Ô××7,,ì™ÁñÉ“'ŽŽŽÆ;êåË—ÇÅÅmÚ´iĈBˆÉ“'7kÖlÚ´i‡ÒÝ8..N±`Á‚Ž;¯K¶†¡j,OrrråÊ•5O333ãââjÕªUòwÎÌ̼xñb=¤Ô(„pttlÛ¶mbbbFFFáûvéÒ¥råÊ‘‘‘Ú»wïV(_ýuÉûY­ZµáÇKO½¼¼úõë}çÎÝ¥àX·nÝ’.4ŽXžÜÜ\¥R)„P«Õ #Gެ^½zHHHÉßÙÞÞþ·ß~ÓžKš““sþüùÆ?ógÏ.W®ÜĉŸ>}ªiÜ´iSåÊ•{ôèQÂŽ¥¥¥]¹r% @¡PhU*U¾W:ÆÅÅ•)S¦B… ;vìX»ví±cDz²² pêmCÕXªÌÌ̲eË !*V¬áêêZò÷T*• 6”oÞ¼9..nïÞ½wîÜùòË/Ÿ¹o=®_¿>qâÄ]»v !’’’öíÛ7nܸҥK—°cwïÞU«ÕîîîÚÒmïÝ»§»}\\œ]ݺuSSS¥– lÙ²¥Y³f%?K6‹à3ýâ8¬ÈÀf)•ÊuëÖ%%%?~¼gÏž ˆŒŒÔ.È !rrröîÝ[Ð;¼úê«…¼ÿ»ï¾+ øvîÜYÏqðaÆ͚5kýúõRpܺukvvöÈ‘#u·,jÇÒÓÓ…+VÔn”ÆÓSRRtß!..N¥R………õëׯT©Rß|óÍ[o½Õ«W¯ .hFáQTG ¤(ù[”À3ÿ‹ØÞÞ^3a%,,lþüùìÓ§ö6Ož<éÕ«WQèv_½z5==ýĉ£G~饗.]º$Uø áääüùçŸÇÇÇ{yymܸ±Q£FM›6Õݲ¨“ê©=ÒnLKKBTªTI÷~úé§²eËj^ yúôé„ ¢¢¢FU¼¯¸Æ€©eýW$ÒDããÇçiwrrRì™o[®\¹Ž;.^¼øþýû»wïÖ§'ãÇW«Õ6l8sæÌùóç_{íµ|7+jÇÜÝÝíììòŒJ''' !ªW¯®»½‡‡Gž@Ù¥K!ÄÅ‹Kò-aã¨8` rrr„öööºíEÞ»wo¯^½"""¨itqqÏ*Oj4mÚÔßßãÆ)))J¥rÈ!u¸HS*•¾¾¾GÕn}ðàAff¦ôtÆŒuêÔYºtiDDDÙ²e7n¼ÿþ®]»ãka;ް¬ÈÀ6K«Þ–B¡>|¸æ-yŒ1";;ûÂ… …¿I™2e„Ò0±999…‡‡çûÒ¼yóæÍ›§ÝÒ·oß¾}ûüüØ2†ª@<}úôðáÃù®°«GpEpâĉ  h!„xøðá¸qãž{î¹òåË·k×.&&ÆÂr)åî(²5kÖ¨TªC‡Õ¬YS1lØ0//¯ˆˆˆ©S§–üÍrss[µjååå¥i,_¾¼Ü-ÒÒÒš7o~óæÍ~ýú¹ººFEEuíÚõðáÃ~~~tà€å9þ¼¯¯¯”…...õë׿víšAÞ<..N±`Á‚Ž;iÇ'Ož8::益/_·iÓ¦#F!&OžÜ¬Y³iÓ¦:tÈ€GB0T €åINN®\¹²æifff\\\­Zµ òæRäª[·nQwìÒ¥KåÊ•###µwïÞ­P(¾þúë’w,22²ZµjÇ—žzyyõë×/::úÎ;< ‚à«ÂŠ<lDnn®R©B¨Õê„„„‘#GV¯^=$$Ä oW¦L™ *ìØ±cíڵǎËÊÊÒgÇÙ³g—+WnâĉOŸ>Õ4nÚ´©råÊ=zô(a¯ÒÒÒ®\¹ ÐúE¨R©ò½Ò±ØGB0T €¥ÊÌÌ,[¶¬¢bÅŠ®®®yÛ¸¸8;;»ºu릦¦J- 4زeK³fÍ ß±Gׯ_Ÿ8qâ®]»‚ƒƒ…IIIûöí7n\éÒ¥KØ«»wïªÕjwwwíF777!Ľ{÷ x(ÁK¥T*×­[—””tüøñž={0 22Rñß‘—œœœ½{÷ô¯¾úªnc\\œJ¥ ëׯ_©R¥¾ùæ›·Þz«W¯^.\prr*¼KÆ ›5kÖúõë¥à¸uëÖììì‘#GênYÔŽ¥§§ !*V¬¨Ý(õ'%%ŰG‚(˜¼W¿<ëv\ööö£G–‡……ÍŸ?àÀ}úôÑÞæÉ“'½zõ*ðò»å×O?ýT¶lÙJ•*IOCBBž>}:a„¨¨¨Q£FÞ%''§àààÏ?ÿ<>>ÞËËkãÆ5jÚ´©î–Eí˜TO}ôè‘vcZZšBÓUC Â5Ž0 Ùï7F¡–õ_QH?ž§ÝÉÉI]°|ßÊÃÃ#OëÒ¥‹ââÅ‹úôdüøñjµzÆ gΜ9þük¯½–ïfE혻»»]žQéääd!DõêÕ ~ÈG¬ANNŽÂÞÞ^·½H#Â7nÜØ³gO```ƒ 4RaOÏYÛM›6õ÷÷߸qcJJŠR©2dHA.RÇ”J¥¯¯ïÑ£Gµ9¢P(6lhð£@¾ŽX¤“'O^¹r¥^½zÒÓ;w !t…‹:"ìààðöÛoûûûÿøã¥J•B¨Tª>ø@©TvîÜYϾ?>$$$<<<((Hš¿¢«cècÆŒ™}zTTTjjjË–-·nݪ¹ßàÓ§O|8ßv`õŽ Nœ8Ñ AƒÁƒËÝÈ€¡j,Ohh¨³³³,ðÌͼ½½Û´i#Ka<G,Ϙ1cäîÂ3„†††††ÊÝ CÕÐ Á`nËßH+òÃ"8@/Gè…འ‚#ôÂ:޹»X‚ã3ÄÇÇ¿òÊ+Û·ooÒ¤‰Ü}AH+ò˜Õ"AÌVll¬Ü]0®„„OOO¹{kÀPõ3lÙ²Eî.˜*ŽùKKK»råÊ·ß~)w_ÌÁ1AAAýõ—ܽ0#Çü-Z´(33Sqüøq¹» ?‚cþÚ´i#=8|ø°Ü}1wÌAÀFBwY‡ÈÝ)ãñLHH0ê$&&šgÇ,TqÏ' Ä)58N©aq>K¨k×®rwÁ\ÂêWvÈë<ã#Ôj¡PxR Í s§Ôà8¥†Åù, Ý?ë6»ð'Ëñ@/Gè…འ‚#ôBp€^ŽÐ Áñ.\Û¤I¹;‚âP«…B!w'°Gè…àˆáFÕØ‚#ôBp€^ŽÐ Áz!8Âʱ"†Bp€^ŽÐ Áz!8@/Gè…à½aýX‘ƒ 8¢ø ¡VËÝ `*Gè…འ‚#ôBp€^ް ¬È@É ¥Ü€ÕÉSÙc¥G¬Á†#EÆ}Z¥R !*UªôòË/¿òÊ+Í›7···×lÖ¦M›fÍš½øâ‹§N’»Ë¶ÈI’)2˜ó Žï¾û®ÂÙÙ¹K—.¯¼òJ‹-´ó¢6‡²eË2N `2æûöíÛ­[·–-[”µ©Ü¸cÇŽíÛ·ÇÅÅ•+W®}ûöÓ§Owqq)dû¬¬¬/¾øbÿþý ...5zóÍ7½½½å>C¶„¢#fƼfUïß¿ÿĉ¥Æ‰'¾üòËÅxÛ+VÌ;÷ÚµkþþþåË—ß¹sçØ±c322 Ú>77wĈË–-KMMmÛ¶mõêÕ<øê«¯Úâȸ•F7æmP æÓÓÓ³³³ zéæÍ›ÅXÄ1666<<ÜÝÝýÀááá>|øï¿ÿ¾lÙ²‚vùꫯΜ9óÊ+¯|ÿý÷Ÿ|òÉ–-[6nÜ(„˜;w®Üg@6òUGGG?^ótóæÍº›©T*µZýÜsÏõý·oß®R©¦L™âææ&µÌš5ëÿþïÿöïß?gÎ;»|¢ó™3g„#FŒP*ÿ>?-[¶lРÁ… îß¿_©R%¹Ï™Í`´s"p´··¯X±¢ô855µtéÒåÊ•ËwKggçY³fõýO:eggסCíOl׮ݷß~{æÌ™æÍ›ëî"͹¹ÿ¾¦E­V?xðÀÎÎN%lü1¨M›6111ÒcŸAƒ…††êÍÕju\\\¥J•ò” ëÕ«'„¸uëV¾Á±G›7o^´hQ¹rå^xá…ÔÔÔU«V%&&8P“qm‚9Tû¤¢c|¼Üç˜ApÔ6jÔ¨|“\±¥§§çææ:;;çiwrrÿ­)jóññÙ²eËÈ‘#GŽ©i:t¨þ‰ÖÇÇ'OËŒzêŒÁSˆ„„„|_) ÝXÝHLL4Æ›ò(ÌŠqΧMã”§Ô°8Ÿ%ÔµkW¹»`.Ì+8Θ1ðo(MvttÌÓ^¾|y!ÄÇóÝ+--mñâÅOžÞ“ €ÜdŽo¾ù¦öÓ1cÆü#:vì{ôèÑîÝ»K-jµ:::ÚÅÅÅÏÏOwûÚµkÛÛÛ_½zU­V+´î."]ßP·n]yÏ€\ÌëÎ1ºÔjõ?þøÅ_œ={¶xïп;;»•+WJ×5 !ÂÃÓ““ûöí[ªT)©åÉ“' Ò¤3‡víÚݸqã“O>Q©TÒW¯^]µjUéÒ¥ä>%2£ð€Í2¯YÕBˆC‡}üñÇ:u’F±çÎ%½Ë(š×ý€ü˜×5ŽcÇŽýöÛoW¯^½zõj!D£F¤5º ðÛo¿ !BBBäî#䯔db^ÇêÕ«õÕW:t¨Zµj›6m>úè#iÕÆäääŠ+.^¼ø¥—^’»6ʼ*ŽBooïµk׿iܲeKµjÕììÌ+æÂ P¾@fóU½zu¹»sBÜ@f÷ïß¿yóæëׯ« ˆ111r÷ѪÈ@Ì+8þðÃS¦L‘ÛÛÛËÝäEªÀ–™Wp\¿~½bäÈ‘o¼ñ†“““ÜÝc´“3¯àW£F™3g2ÀܘQ>ËÎÎ~ôèQÍš5IfÈŒ"š““ÓÕ«WU*•Ü}%0Ðí¹‹!z2£àhoo?zôèäää+VÈÝ[ÅUƒ `æuc·nÝnݺóÊ+¯Ô¨Q£téÒy¶éСƒÜÝ„Ù`Š &d^Á±cÇŽÒƒßÿý÷ßÏw›ØØX¹» `‹Ì+8öìÙSî. æ?øà¹»KÃh5¦b^ÁQãÁƒ.\¸s率‡GëÖ­“““]]]å#~€B™]pLIIY½zuTTTFF†bĈ­[·îÝ»wÆ ßÿ}¹;+DÕ}˜Ñr}úxyy !~øá‡ãÇ_»vM¥RõîÝûå—_–»€<´3¢Z¨ŸÙ€Á™WpB¼ýöÛÍš5[²dI||¼âöíÛBˆ*UªL:U{eG Vº· …º!’ø0³ ŽBˆ€€€€€€ÔÔÔøøø¬¬,///www¹;È ¨APÚ’ø0s Ž—fÍšÉÝ @6 ¡(^ø#>ŒDæà¸uëÖ¢î2dÈyûl…¬ix×ZF«‹ÿ=ÿÄG²#ÀPdŽ ,(ê.G‰™dNÃV ÕBMvŠÌÁQZdGÛ¥K—«Y³¦¦ýöíÛo¾ùæüñí·ßvéÒEÞ>ÃÜ™Iå°èŒWdØ`æµøêÕ«SRR>ýôSíÔ(„¨^½ú'Ÿ|"„øî»ï’““åî&`‘4¥GŠÇ¼‚ãÙ³g=<>>'NlÑ¢…Üǘ·±äaÇ+VÌ;÷ÚµkþþþåË—ß¹sçØ±c322 ÙåСCÁÁÁ‡rssóóó;{öìðáÃ:$÷¡ d­¶èìÅ€5@›õÇØØØððpww÷„‡‡ ”…DJÀÊ'ǨÕ길¸J•*UªTI»½^½zBˆ[·n5oÞ\w¯ .¸¸¸T­ZõôéÓgÏž}ðàAýúõ;uêäàà ÷2`– @båÁ1===77×ÙÙ9O»“““âþýûº»dee=zô¨nݺóçÏß¶m›¦½fÍš}ôÑóÏ?¯Ïçúøøäi9pà€Ü'ã?<…HHHÐó¢llx‰‰‰rxIÚËÓ+>!>AÈyêòUŒó/➊ø„x¹ûn¦ ø- §Ô°8Ÿ%ÔµkW¹»`.¬<8JS§ó´—/_^ñðáCÝ]=z$„ˆ‹‹»wïÞ’%K:tèðôéÓ¨¨¨Ï>ûlòäÉ{öìѧî+÷¡?›§§§‘6–½·…Q«=õ¾¾³ä*ûy3lÇÌöpÌ'Çà8¥†Åù, Ý?ëº"aå×8:;;+Šôôô<í?ÿÔó([¶¬ô`ñâŽzõrvv®Zµê›o¾Ù»wïÄÄĽ{÷Ê}L¦f³³hJx=¤õí2K`åÁQ©T:99éVÓÒÒ„šyÖÚË–-ëàà ÝÞ©S'!ÄåË—å>&”SdŠ‹ì6Îʃ£ÂÝÝ=%%EJŠÒµkîîîùîâææVªT)ų…4B““#÷ÁX_¹a Á±cÇŽ¹¹¹GÕ´¨Õêèèh??¿|w HKK»råŠv£´vOýúõå> C°Ùág”EG°eÖû÷ïogg·råJéºF!Dxxxrrrß¾}K•*%µGà¿­ G@/yò$ãÔú èV†àè è@~ŽŒˆ¢#X‚#PdŒSlÁÈ£Õ†CѬÁÐa`ãŽ6ƒå¼‹ª€œÈ8u1Ptë@p` dG°Gè…àLw´ZÍ8uñQtKGpDþ¸$äAp ¥StdbuIPt‹FpôÅ|j€#80)ŠŽ`¹޶+K‚…¿B=1Nm@ÀB=¨Õj…æ!õG ;€%"8@/GàÙBA¥Ñà(:€Å!8@/G²¡è–…à<ÿó©ÿ­fÔ`›Ž6€EaÆ(:€!8"DÍQlØ0‚#PÖý6ŠŽ`)Ž@Qt4²#X‚#P¤G€ "80 Àüx#õF€M"80ÀÌbQ«ÕD€!8Z;–d,.}âa¼Úà(:€9#8ÅEÑ`cŽÌ EG0[¶wìØÑ¿??¿Ö­[‡††¦¦¦ê¿ïŸþÙ¬Y³éÓ§Ë}0=o£L¯6 ²#˜'›Ž+V¬˜;wîµk×üýýË—/¿sçαcÇfdd賯Z­ž9sæãÇå>˜#.Øëޱ±±áááîîî?xðàðáÃÿý÷eË–é³û¦M›Nž<)÷A˜Ói`(:€²þà¸}ûv•J5eÊ777©eÖ¬YNNNû÷ïW©T…ï{õêÕ+VÔ¯__ùb´`;¬?8ž:uÊÎήC‡š{{ûvíÚ¥¤¤œ9s¦srrf̘áââ2kÖ,¹&¥çŽ06ŠŽ`n¬<8ªÕ길¸J•*UªTI»½^½zBˆ[·n²ï§Ÿ~zéÒ¥÷ß¿bÅŠrGq1êlÜ`”rwÀ¸ÒÓÓsssó´;99 !îß¿_ÐŽçÎ[·nÝСC[µjuñâÅ¢~®Ož–˜þð=…HHH(Æ~ÅÚˈMúyžE8oññB¡ðTóTËÃÔç³âE¼ÂSŸ/wGžÁ‚N©¥à”糄ºví*wÌ…•Giê´££cžöòåË !>|XÐ^3f̨Y³æ´iÓŠ÷¹±±±rúß<==M¶—H1ü=N]ÔOS«=-ª¾k†_bKï­EtÒ²pJ ‹óYºÖu+D6Âʃ£³³³B¡HOOÏÓ.-¯#Õu-Y²$11qÛ¶mr`ë¤+¹êÌ•_ã¨T*œœt+‹iiiBÍBˆo¾ùÆÇǧGrŒ¨x•-#ÀFXùPµ¢cÇŽ±±±GíÞ½»Ô¢V«£££]\\üüüt·¯U«–fKÉÇ;æáááççWµjU¹fLŠ–s¥£aÀÌõÇþýû¯Y³fåÊ•íÛ·—æÄ„‡‡'''=ºT©RÒ6Ožj…P+ x  '‚#„` «cãy1_êÿÖ› ‘P GëB,”9ŽSk¢èH^,œö,™ÿ#µ·ˆà—i¦MKчÐóLùΰ&D€žŽ€Ù(zƤÄhp„H(Á¶Â¬Ç©5ôÎŽ”‹Mÿe ‘Á°0DÆ’+Æ’à„HGÀŠ6]ðÖDF3‘OˆôôäëÀ°8`~t–׬ÝM:1µ–Wÿ³¦ºâ?ë€u¢â›`8æßs!È‹ÆaØ{Xç;–Í€•!8Zq4cEž0­VMÀ°ÙQëmÿÆÕ¬ ÁN³óodäkcá(C°2GX?˧V,LËHEÇü>èo”!X.&Ç&¢3ã%/…nj|æ>0CM”ÑûãþýÇ|–…Š# ¿Â.g4Í- mžÉêŽ:Ÿû7²X‚#¬œùS36 A‚`!ªL'ÏȳBÏÔÈ€µI˜xÀºànäÅ–¿Oð*Ž€<ŠVhdÀÚ$ä°. 3ÿ¢ ÀL­©"?æþÛ+!HæÊ¬²£V¯þF‚ /†ªÓR ¡(Ö_}¬Átlr#8&¢ï… ;š„™\ìø¬Nr)$0Tmë¬xˆÛ¬ 6uš‹MÂ<¬ èê¿È`lT£Ë“©Z‹¨;êô™lÆEpŒÈÃÓºž¦b‰ÙñŸž“ CÕ€±qeo¬¡¦c0,[ Ž;vìØ¾}{\\\¹råÚ·o?}út—B¶ÏÈÈøê«¯¢¢¢+T¨P¯^½Ö­[Ë}З쨞 üÈŽ&aA;>ë@þ¦È¯ôdÁqÅŠkÖ¬qttô÷÷¿qãÆÎ;¯^½ºyóf‡|·ÏÉÉ9rä¹s眜œZ¶lùôéÓ_~ù娱c“&Mš0a‚ÜG“„91Ý2dG“°šìøÏáü‹2$€¢²þkcccÃÃÃÝÝÝ8~ðàÁáÇÿþûïË–-+h—íÛ·Ÿ;w®Y³fÑÑÑ«W¯Þ¸qã®]»œ?ûì³K—.É}@0kŠ®-ƒ5±Ü‹Ÿu\\  h¬?8nß¾]¥RM™2ÅÍÍMj™5k–““ÓþýûU*U¾»8p@1gÎMIÒÛÛ{ܸq¹¹¹?ÿü³Ü„g“«>T¤‹ 3Å…‰2¦b­ÙñŸ£#AЋõÇS§NÙÙÙuèÐAÓbooß®]»”””3gÎä»KBB‚££cÆ µ½½½…·nÝ’û€ ‰qN2âT˜Â‘Mź³ã?ÇȺâ cå×8ªÕ길¸J•*UªTI»½^½zBˆ[·n5oÞ\w¯µk×*•yÏÌÅ‹…5kÖ”û˜`vŠ}Q£Á®QäbGS±²ë =Òq)$ +Žééé¹¹¹ÎÎÎyÚœœ„÷ïßÏw/__ß<-111áááeÊ”éÕ«—>Ÿëãã“§Eþ6O!Š·kqw4©ÄÄDý7öòôŠOˆO&:./OÏø„!ŠýyúÄÇ{* ññúl[¤ó‰¼<óùq³îSªù®RxzþÝbüßÖ}JMóYB]»v•» æÂʃcFF†ÂÑÑ1O{ùòå…>|æ;äæænݺuéÒ¥¹¹¹~ø¡«««>Ÿkâ#õüçºÉv4ç4ÙAý=<]²3XoÕjO½ëŽ–òu7Cj¡VxæSt´…Súïš>Zk¼2¤-œRSâ|–„îŸuÝ ‘°òàèìì¬P(ÒÓÓó´?~üXüSw,Ä/¿üvíÚµjÕª½÷Þ{­Zµ’û€`F rQ#ƒÌ–Èv¬ >ÿb °)V•J¥“““ne1--M¡™g­+++ëƒ>زeKÙ²e'Nœ8jÔ¨‚}”¹C‹ÉþœË6¦päPS!;jŠ¿‘ [`åÁQáîî—––V±bEM£t‰’»»{¾»¨TªiÓ¦}÷Ýw:uš7o^!ù6Èàë{8ì‘M…ì˜7§lõ/ÇÓ±cÇÜÜÜ£GjZÔjutt´‹‹‹ŸŸ_¾»lÙ²å»ï¾}ú’%KzöìÙ¶mÛ7nÄÄÄ4lØp̘1šm¢££ßzë-ooï={öÜ»wïæÍ›C† Ñ}·Þ½{:Tîc2 Æ3‹Ä¨©Ñ(ÃËŒY›JAó¬ÍB±3–ÑŽFÏì„„„Âfà®KÆ:@ÀºYpB„„„T©Re÷îÝûöí«V­ÚСC§L™"­È£Kª;fdd\¸pA÷U&VÛ&Kª5j#;šJ|B¼ ÙQŸðd~_|ÃÌÈ.ùq#zšßÉLÏ&‚£"(((((¨ W»uëÖ­[7éqÓ¦MM¿ #JÎxãÔ¦IÆÊxdGS1Ê\™ÂÃåUåœOSŒÑ3kZþ×(„­G«E&02K­5j#;šJñ³cA‰Äf¾hù”!==ÍîèõìùVÍú'ÇÀ©ÜhâÔhÄ -Ì•1•gÌ•)hª‡º€6I:ôø„K £Öïß3gf‰Š#?k¨5j£îh*ÿÖù¼ýå{5¤°š³øÌÃxfv´’ Cpò2øßú3nº#;§×æÿþ]ÿæLŽ-Þä°„ÉÒÊÏdÃP5,žaÇ©-c‰ïbcÌÚPþ;ª˜Ÿ ;ië;š|{mQQ†Âó®‹ ÁÑFQxÊ—9 O=Ú©Õž^^r¥*üªÄüXíÚàfCMˆ,Ä¿Eóþ· —W¢¸ŽÀßÌ!5šFB|še"#¥G³Bˆ”™Ò¢m‘u˜Jø××ÌS£©Iß–þa!ö¶6[„H³C¦4?GØ"KI¦F¶ÄakËüóNv4„HsG¦” ÁÑbYÜx³a)©Q‘­âÏ8ÙÑ‚"…Z52¥1a‘Šý×âR£ AÎl³£ÕÝ¢˜é2–(Ï—Ê*þ+Æ–)KŒ;ÇÀ†X\j””Íáî2ù޻Ŋ¨…š»ËX4n{h=Šz+[Ep„å)^¹ÑrS£Ñï^]ЧÊóÁBˆnôg½ÈŽÖ¡¤Ë–oš´U UÛó„4úQ[ø¹l£Ç¦ü`ÛócØÚÊ0¢ kEp„…)F¹ÑÒS£ÌŒ½Ê£Õ]¹Xl¬òhŘ^«Ap´L¶Y6,«IrNY1Æ*äÅ0ÛÚêRŒü@Àìaµ¤_ÇÖô[XæéÎ)=’õÀ°µMaP–…àK¢%Æj æ¥x¥GþÃÖ6‹Am˜9‚#¬§F³XcQÏÒ#ÅÅ£ôhãÔ†"8Úù3GI:¯_õÅŠS£Ä\²£(àû‰¼hP”¡QxŽüÌÁ$ް*VŸÍ‹v鑼hL”¡K÷[’$L€àhä/7ÉqÐzT\l'5šEÑñŸ¾!ý½2—Y+Jx¦ÂJ’žž|ßÀ ¸s ¬„í¤F‰Œwu"ß;»ÈÛ![!•¹Í ô¡}—“ø„ â àåéUx•ÅÖR£D†ºcáãÑÆ^*B­Ò£`äEÁÐ6 ‚à‹g›©Ñ¤ô¿~Q3iF‹‘k”³mP UÛ³¹*®ˆÝŠø„ø‚_µé_mÆÖÖ¿[Rϼ62F®a@jŒnCGKc¡éÏ8l<5J ?`m¨ùÑTM‚‘kÏ3G·¿„mG˜µBFâH«;¯¾øÌÎQ}4>µPS}„ èS•ä[кQq„å±¾›P—\‰êŽ&X‚‘ê£IP}„éåû}FaÒŠa¾ò-7Rh,H‘³£é—ì&>šñ²ÓgŒ[ðËÜ2m…u\Ij,œ^ÙQ!<…§òJâ£IaVô,L ~É›=®q´(Ö‘þôAþSɵ&Áµ0gj.š´@TaHúûOÝÑÌo!­]} …ê#,ˆþµIa®¿Ø¬Áæ(O¹Ñ‹»¬‘þydö4y‘ñkcÒŽ‚ ‹RÐ7+Òôª¶ –5Ä­¥AŠø„¹;e!þ»d·åïh_3„mê¿Ï2ã×°ꢌwóínGËaYéÏ GlÐõ­Y·x1î}eŒG­æ HÐŽ$HX™¢J~ôÇP5Ì‹¦ÜÈEϦÇõ‹†¿¯Œ)q¤ñiU÷¹Ö¯ïoE±ö²ATaF¤Ô¨ 5®ˆ·¶øÊ]ž¤‰Y£ §.bÒf­Ÿeœž.Pó¢6Mî²l$HãËs$ ¤I›Ep´–•þŠwˆBÁ`d>Jó°øÒ£ö‘äIÖpTæ… _\ã³À*,ygýÅ.ô´’s­}\ iy.‚\ Ø6*ŽVÎ"*• Oÿ{" W_,D||‚é(C™n ’2$`ƒ¨8Z‹HÅ;²ÿß:°HgÁ”çÀšïoÒ S6ÚGÊ€­!8B6Š¿g«)lôOŽÜ Кã£öJò ­ó€MMw ["«Fp´ff[©ÔÜ ÏæR£vt1›ã¶þø¨}œ# *ß2¤îK,ÁÑì™mú+ÞÑ!þ‰L¶’Í2,겕ø˜ç€%# *ÏÏ5ÅHÀš­–Ní+­<5ZHXÔesñQû°5tgÕØÐ¹0<Š‘€5!8Âò…UþÁ°Ø°¨ËÖoõ§{ÀùNж¹ób…#óÝ€¹!8š·â– ͧܨ…õ­(,êÒ| Ùn‚Ô=Ú´Ò¤gá[¢º¿ þ’žn@F¬ã£È³á?–Ÿ¬¶há‡U8VHÌŸæ¼¨Õ ññùœ#ÎWÑiÎi|B¼î²‘,! ÈŽàX ;vôïßßÏϯuëÖ¡¡¡©©©¦îe–ó]¾ZúE_ìÔØµkW™'ߤh±a±ØçS+)ŠþãßSª}Ž :_dJ=hNi'”@Y4rþ…ua¨:+V¬X³f£££¿¿ÿ7vîÜyõêÕÍ›7;88ÈÝ53UТ„–wEcž¿;–ÓqcRrÑrRôÉŽœSýV)<;ZÒï"À,QqÌGlllxx¸»»ûÂÃÃ<8|øðßÿ}Ù²e¦ë„…” ¹Cž¦Êh¾¿©ùý³Šš¢‰=³¸†ÂT¤Ô³`ÉéÎs: =•zžD¹0_Ç|lß¾]¥RM™2ÅÍÍMj™5k–““ÓþýûU*•)zP¬ô'ýÂ3AjTè‘Í+2*ôˈ$EÑ?ö@_ú„Ëâ¥Lû’èy‹qîä>2ÀDŽù8uê”]‡4-öööíÚµKII9sæŒÑ?¾¸©Qú…g”=kBˆöoOÍo^£Ÿ¨Bº¨O@$#šP ЦH)Ó€¡ÓоÅ8w†=YrŸ @\㘗Z­Ž‹‹«T©R¥J•´ÛëÕ«'„¸uëVóæÍòÁE_òÄP·L{æ¯(퀘ïöˆ‰…v"VÄ>£—¤@ˤç÷­ "×þͨ'¢(_ÈØ"n/»O\ñ.:2xvŒ5Â{êÇ\†ž` ǼÒÓÓsssó´;99 !îß¿¯×»çÇS]Ô}ó,¤[lúÿLïçß§žOÉö7R¿¬–%²zõŒþ ElÉÞ Ö¢BŽ\l1@¨‹õa]gÊJ6Lð‹É,óÊÈÈB8::æi/_¾¼âáÇÏ|‡ØØþ²E±‚“À*YWÄ?lö×8æåìì¬P(ÒÓÓó´?~üXüSw°AǼ”J¥“““ne1--M¡™g `kŽùpwwOII‘’¢FBB‚ô’ܽÁ1;vÌÍÍ=zô¨¦E­VGGG»¸¸øùùÉÝ;yóÑ¿;;»•+WJ×5 !ÂÃÓ““ûöí[ªT)¹{ …šåËò³aÆ%K–T¯^½mÛ¶7n܈‰‰ñõõݰaƒî2=6‚àX o¿ýv÷îÝ¿ÿþ{µjÕ^|ñÅ)S¦H+òØ&‚#ôÂ5ŽÐ Áz!8@/Gè…འ‚#ô¢”»ÖcÇŽÛ·o‹‹+W®\ûöí§OŸîââ"w§¬A||ü+¯¼²}ûö&MšÈÝ –‘‘ñÕW_EEE%&&V¨P¡^½z!!!­[·–»_ìÁƒ}ôÑéÓ§«T©òüóÏOœ8ÑËËKî~Y‰?ÿü3(((00ðƒ>»/–ª_¿~çÏŸÏÓèêêúóÏ?ËÝ5 vþüùµk×^¼xññãÇ>>>'NlÑ¢…Ü2)‚£a¬X±bÍš5ŽŽŽþþþ7nÜØ¹sçÕ«W7oÞìàà w×,Þ–-[äî‚ÅËÉÉ9rä¹s眜œZ¶lùôéÓ_~ù娱c“&Mš0a‚ܽ³Hiii=zô¸wïž··w@@À;wöíÛ÷Ýwß}õÕWÏ?ÿ¼Ü½³xjµzæÌ™?–»#–íæÍ›µk×Ön䯹%qèСI“&©TªFy{{ÿüóÏÇ_½zu`` Ü]3!5JìòåËõë×oÛ¶íÝ»w¥–… Ö«WoÁ‚rwÍ‚=|øðÔ©Sï¼óN½zõêÕ«wîÜ9¹{dÁ¶nÝZ¯^½àààôôt©åÊ•+/¾øbƒ þøã¹{g‘¤ŸñåË—kZvîÜY¯^½ÊÝ5k°aÃéÿí·ß–»/–êáÇõêÕ›-µüöÛoÏ?ÿ|«V­rssåîép£lß¾]¥RM™2ÅÍÍMj™5k–““ÓþýûU*•ܽ³TAAAC† ‰ŒŒ”»#ÖàÀBˆ9sæhJàÞÞÞãÆËÍÍeЪxNœ8áàà0~üxMKŸ>}ªV­zñâÅÜÜ\¹{gÙ®^½ºbÅŠúõëËÝËvóæM!Džr#JbçÎiiiãÆkÖ¬™ÔÒ¸qãW^y%99Y÷’+Fp4€S§NÙÙÙuèÐAÓbooß®]»”””3gÎÈÝ;KµhÑ¢U«V­ZµªU«Vr÷Åâ%$$8::6lØP»ÑÛÛ[qëÖ-¹{g‘œË–-«ÝX¦L™¬¬¬¬¬,¹{gÁrrrf̘áââ2kÖ,¹ûbÙnܸ!„¨U«–ܱGŽQ(½zõÒn\ºtill¬M]‚Ï5Ž%¥V«ãââ*UªT©R%íözõê !nݺռys¹ûh‘Ú´i#=8|ø°Ü}±xk×®U*óþ°_¼xQQ³fM¹{g‘"""ò´œ:uêæÍ›/¼ðW6—ħŸ~zéÒ¥ 6T¬XQî¾X6)8Þ¹sgøðá—.]*W®œ¯¯ï¸qãl*âÖ… \\\ªV­zúôé³gÏ>xð ~ýú:u²µy‚cI¥§§çææê^nìää$„¸ÿ¾Ü„¯¯ož–˜˜˜ððð2eÊäù¯gÕÙ³gwîÜ™pöìÙçž{nÉ’%r÷È‚;wnݺuC‡mÕª•ô6(6i0áã?öôôlÙ²åíÛ·>=þüÈÝ;Ë“••õèÑ£ºuëΟ?Û¶mšöš5k~ôÑG65%ŽàXRBGGÇ<íåË—B<|øPîÿ‘››»uëÖ¥K—æææ~øá‡®®®r÷È²ÅÆÆFEE©Õj!DÆ K—.-w,UFFÆŒ3jÖ¬9mÚ4¹ûb îܹãàà0uêÔáÇK-Ç7nÜ{ï½×¦M¹;ha=z$„ˆ‹‹»wïÞ’%K:tèðôéÓ¨¨¨Ï>ûlòäÉ{ö챺#×8–”³³³B¡HOOÏÓ.-$!Õ3ñË/¿-Z´ÈÕÕõóÏ?ïÖ­›Ü=²xƒ ºtéÒ±cÇfΜyðàÁàà`‘)ž%K–$&&.]ºÔvþÕ¦M›Î;§IBˆV­Z 6,##ã‡~»w–GsAóâÅ‹{õêåìì\µjÕ7ß|³wïÞ‰‰‰{÷î•»ƒ¦Cp,)¥Réää¤[YLKKBhæYòÊÊÊZ´hш#þüóω'îß¿ŸYG†¢P(ªT©2pàÀ¿þúëàÁƒr÷ÈòœÈÓ~þüyŸV­Zåää!’““—/_Þ­[·¦M›6mÚ´{÷î‹/¾{÷nAo+Í•9qâDžv__ß—^zI»å矞4iR§Nüýý‡¾råÊ<ÙîöíÛóæÍëÖ­Û /¼Ð¡C‡±cÇž:uª#Z·nöä©'‰‰‰ááá-[¶|þùç›7o>hР~ø¡ w8{ö¬¯¯o»ví=z¤i|üøq‡|}}ÿýw¹¿h¬ Á€e BvìØ£GnÚ´éûï¿9r¤bóæÍm?iÒ$ooï;w=zTqâĉ¯¾úªQ£FãÇ—ïkÀjX;;»îÝ»‹ÿOŸ>}÷î]??¿ºuë !rrrÞ~ûmGGGiƒŠ+J¥Ê7nû£—,Y"„øè£45úÈÝÝ=**êÁƒBˆË—/ !ú÷ïooo/müÆotêÔ©HŸÕ¸qãiÓ¦ÙÙÙI‡üÆo!®_¿^Ðö¥J•Zºt©R©œ;wnRRÒœ9s–-[¦éÁ€Å" ö¸­4NÝ·o_éé„ Ö¬YS§NÍ÷îÝÛ»woI>4555!!ÁËË+Ï èråʵjÕ*##ãÂ… B)¹Îš5ëäÉ“ÒÕ–¥J•š>^ú_Ÿ|7¸sçŽ",,lÊ”)'Ož6lXÙ²e}}}[´hÑ¥K__ß"}\5ŠÑÉ×_ý‡~¸xñâ‹/¾lгÿ"8°$AAAŸ~úé|||Ž=úðáÃ>}úh¦·mÛ¶p᜜œçž{®yóæ:uzþùç,XP¤OÉÍÍÕù²²²„Õ«W/hÐÙÃÃCQ£F;vœ={öÈ‘#¿üòË… Μ9³zõê~ýú-\¸P¡PèùÑ¥K—.Æiyüøñ½{÷„ñññ T©Tׯ_÷ôôœ:uêîÝ»]\\¤mz÷îýÅ_´oßÞÁÁáòåËééé­[·^µjÕ¼yóŒw*¶lÙrâĉ6mÚh.ôBLš4©V­Zû÷ï?pà€¬_(VHQøò``;žyÄ#RG3ßï_“3g&çÄ„ùùÌÌ3‰d2àÛTËôøiŽDŽDŽDŽDŽDŽÀÞ4{öì+®¸¢   N: 48öØc/¹ä’¹sçþk>|x"‘H$]»výþ÷¶mÛ¶Çü˜cŽiРAnnnûöío¼ñÆÏ?ÿ|÷·ºí¶ÛRk8ûì³÷ʦžxâ‰Ô¶oßþ»Þö;-fêÔ©/¾øâ‹/¾¸qãÆ½²r *©‘éUDqqñ/ùË矾üà;ï¼óÎ;ïŒ=ºk×®£Gnذa¦—ùÝìØ±ãŒ3Θ5kVzä½÷Þ{ï½÷ž|òÉ·ß~»   Ó Üû.¼ð­[·†f̘qòÉ'gz9À‹#ŽÀ^ðü£K—.嫱ZµjÕ«WO9mÚ´³Î:뫯¾ÊôJ¿››nº)U999=zôèÕ«WNNNá‹/¾¸à‚ ~ȕԩS§Y³fÍš5kÒ¤I¦*@öŽÀ^ðŸÿùŸ‹-J]îҥ˛o¾¹yóæ’’’¢¢¢óÎ;/5>wîÜaÆez¥ßA2™|æ™gR—'Ožüâ‹/Nœ8qÚ´i©‘¢¢¢?þø[ÌE]´jÕªU«V½ôÒK™þÁÙK8ß×_ÿú×±cǦ._pÁ¯¿þúñÇ_§N}öÙ§M›6Ï>ûì%—\’ºöÙgŸMߪü ïvîÜyûí·tÐA·ß~{êÚ²²²ñãÇŸxâ‰M›6Ýÿý›6mz '<óÌ3_ýu…ï¾fÍšóÏ?¿aÆxà9çœóî»ï~Ó:7lØpíµ×vêÔ©N:?ûÙÏÎ=÷Ü ìf_›6múâ‹/BõêÕ;í´ÓRƒÇ|ê caÅŠ1?ŸÏ?ÿ|ðàÁíÚµ«]»öQGõ‡?ü¡òg½~ëÚ¾é5Ž+V¬8ûì³4hЬY³þýûüñÇ·ÜrKjæm·Ýö“ºaêyêÂ)§œ’H$¾üòËÔ—_ýõã?^XX˜ŸŸ_»víÿøÿ¸øâ‹Óÿ·d‹$À÷sÕUW¥þ=Ùÿý×­[WyÂúõëñOŸ~úijpèС©[õìÙ3]–C‡M]›>NYA¯^½Êßó»ï¾{à–ŸP§N3Î8#uùç?ÿyzæë¯¿Þ¸qã ÷–H$®¿þúoÚ×?þñ±cÇŽ;vòäÉéÁôQÆ5j¬_¿þ›n›ÞÝ 'œpØa‡Uø¾÷ßùÉ1k{üñÇSãG}tzpΜ9^6Ú¢E‹ô.ýÃŒ\ÌÍ7ß\ù¾uëÖd2ùÕW_uèСòµ‰DâÑGÍô/ ðÃŽÀ÷•n‘ .¸ þVéš9è ƒÒ!’jôÉD"qÒI'õë×ïˆ#ŽHÏyýõ×S÷°}ûö¦M›¦3îØcmÖ¬Yù¬I‡ã–-[8à€ÔàI'4lذ /¼°Zµÿ÷”ËSO=³à’’’¿üå/Ç|êVC† ‰Ù]ºçÚ¶m›~Ñç~ûí·}ûöï´¶ÊáXRR’ŸŸŸÜwß};uê”þò›Âq÷‹Ù´iÓŠ+jÖ¬™æ™gV¬XQVVVþrrrÎ:묫¯¾ú˜cŽIÿä—,Y’éßAà"塞¬, ¿ùÍoâoX¾fZµj5vìØyóæ}øá‡Édò—¿üej|ðàÁéùíÚµK Þ}÷Ý©‘G}45R§Nyóæ¥ T9o½õÖÔHù–?üpjðCùÖÕVx[ϵ×^›*ª˜Ý=ôÐC©Áôú!„¢¢¢ï´¶Êáxÿý÷§Frss,XL&KKK/½ôÒ݇ãî“L&k×®œ1cFz°sçΩÁ;î¸#=xê©§¦~øá½þ{ü8y#ð½lÞ¼¹´´4uùC)Õ}÷Ý—¨dΜ9î¡fÍš¯½öZŸ>}Ž9æ˜-Z„Î?ÿüÔsÄ×^{mjNqqñ¶mÛR—ÓçP7n\êBù`#FŒhÔ¨Q…oñÊ+¯¤.\vÙeéÁ_þò—©ä]³fÍ_ÿú×ï´ë§žz*ýÝwïðÿæškR—Ï:ë¬5þßIЖ/_þ=×6a„ԅ_ýêWmÛ¶ !T«Víw¿û]åíÇ/æ›”””¤.Œ3æé§ŸÞ°aCêò|ðÁôêÕë;ýô€Ÿ.á|/ég6C{vÊè¶mÛVxŽõôÓOïÓ§Ïgœ1gΜn¸áä“O>è ƒ–,YRá†Ë–-K](¢ï}÷Ý7ýF–Ê3O?ýôtÂÖ®];¼ßZNûî»ïâÅ‹_}õÕN:…¶nÝÚ¯_¿Ý¼'­eË–é˵k×þ·û·Ôåô·Þ㵕¿az0''§ü—ßu1ß$}ŸK—.0`@“&MÚµk÷ðÃùå—­[·®ð2S  ŽÀ÷²ß~û¥_¢W¡íêÖ­ÛìŸÊ÷e•Ï ¾cÇŽÁƒ7jÔè /¼ï¾ûÞxã;wV8¶uëÖO?ý4u¹B¸|ðÁå¿,..N¿Sø›lÚ´i÷‰D«V­N=õÔ?ÿùÏ©'ÍKKK{ì±oýù¤_­˜¾Ÿ½²¶âââô‘× Ù]aûñ‹Ùßþö·W]uÕ~ûí—ú2™L.X°`øðáÇsL—.]|Æ dá|_'tRêÂäÉ“Ó1B¸ì²ËR§\¾|y^^Þ7ݼr¾ >üþûïß¹sg‹-{ì±E‹wïÞ½üœœœœ}÷Ý7u¹ü7 !lÙ²¥ü—uëÖ­S§Nêò«¯¾ºbW.¼ðÂÊ [¿~}êÃ÷ÊrLõêÕÏ:ë¬Ôåô1¿=¶Çk«S§Îþû\¡,SÏ#ï]ûì³Ï#<²qãÆgŸ}¶OŸ>õêÕK_õÖ[o 2d¯GàÇI8ß× AƒR‡²¶lÙríµ×îܹ³Â„'žxâ;+;}$ïÑG½òÊ+<òÈ5j|ôÑGåçT¯^½yóæ©ËÓ§OO'“É7ß|³Âþû¿ÿ{êÂÎ;VN½zõòòòòòòÒ§f,ïã?îÙ³gÏž={÷î,wæÅô1½ò!.{¶¶D"‘ÞþÌ™3Óã;wî|ã7¾ÿªÊÛ¾}û† 6lذ}ûöóÎ;oìØ±Ÿ~úék¯½–>AÏŸÿüç½û-á|_Ç{ìW\‘º<~üø.]ºüùÏNÕÕ¢E‹®¸âŠ_ýêWñ÷öü#}móæÍ© ùË_*÷ÐÑGºð»ßý.}ºì;ï¼óoû[…™§œrJêÂÈ‘#Ó 8iÒ¤ 4lذY³fÿøÇ?*¯¤U«V©w¨lܸ1ýæ÷ßäÈ‘©ËmÚ´ùþ?½=[[!}b ûï¿ÿïÿ{!™Lþú׿^µjÕ÷_UaÇŽ© K–,9ðÀ<ðÀ&Mš|øá‡!„5jœrÊ) HMØÍád Š©‘éUÁ]wÝõÊ+¯¤’åí·ß>þøã«U«¶ï¾û¦ÏbÓ±cÇ·ß~;æ®j×®]»víTw0`ܸq‰Dâ•W^©ü™1C† ùŸÿùŸd2¹yóæŽ;sÌ17nL%T·ÜrË“O>ùÅ_Lž<ù¤“N:þøã/^ü§?ý)uíõ×__¿~ýÊ·ÊÉɹæškxà 7Üðøãçåå-Z´(µ’ ”?÷ÍÛ³µ¥nøôÓOïØ±cãÆíÚµ;æ˜cV¯^½råÊ﹞¼¼¼Ôÿÿïÿ½xñâk¯½öÈ#lܸñ† vîÜYXXØ­[·úõëÿŸÿóÒ~xöÙgÿŸðÓéóUÄ'Ÿ|r 'ìòß™=z¤_x7{öìÔüòŸSá®Î?ÿü ÷ТE‹O<1uù’K.IÏüÅ/~Qaf­ZµÒïª.ÿÉ1/½ôÒ.Œ 8p7gdܶm[êmÔÔ­[wÊ”)»ùi|ÓîÒ§(?~üwZÛ.?9æ÷¿ÿý>ûìSþ&µk×Nÿ *ŸÇ1f1}úô)‡©OŽyûí·wùŒyá„Nøê«¯2ýÛü@}5jT«V­#Ž8"õêÕc=vÅŠ·Ýv[ûöíóóó÷ÙgŸzõê>ùä“o¼ñFúÝÖ@•—H–{Å7ÀÄ×_=uêÔ÷4è{ï½7sæÌ+®¸¢nݺ™^xæ]rÉ%£G!ü÷ÿ÷À3½ JŽ?I—_~yê ä:uJúâÖ­[=ôÐõëׇfÏžþ¨@€½Â›c~’òóó‹ŠŠBEEE|pïÞ½7oÞ|ã7¦ª±uëÖéwì-Ž8ü$•””œvÚi³gÏ®|Uƒ fΜ™z(À^$~ª¶oßþì³Ï>óÌ3+W®\¿~}ê¼§vÚ Aƒ¼ÜøWŽDq:¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢ÔÈôþUV®\Ùµk× &´iÓ¦ÂU½zõzÿý÷+ 6lØpΜ9åG&Nœ8a„+VÔ¬Yóøã2dH½zõ2½-€Œ©²á8f̘oºjÍš5999Íš5+?˜——WþËxàñǯU«VûöíW¯^=iÒ¤åË—=:'''Ó;ÈŒªŽÅÅÅË–-›2eÊøñã¿i–-[ºvíúàƒ~Ó,]ºtäÈ‘7~î¹ç5jB>|øèÑ£ï½÷ÞÛn»-Ó[ÈŒªöÇîÝ»÷éÓ盪1„°fÍšB…ÃL˜0¡¬¬lРA©j !Ü|ó͹¹¹Ó¦M+++Ëô2£ªq>|øöíÛCcÇŽ;wnå «W¯!4mÚt7wòî»ïV«Ví„NHT¯^½K—.S¦LY°`ÁÑGé]d@U ÇÂÂÂÔ…™3gîrB*ׯ_߯_¿%K–Ô¬Y³U«VL¿‡&™L®X±¢~ýúõë×/ÃC=4„°víZád§ªŽßjíÚµ!„‡z¨yóæ;v\·nÝÌ™3gÍš5lذóÎ;/„°mÛ¶ÒÒÒ ï• !äææ†>ÿüóoý™Þ%ð/´téÒL/!3².ׯ_Ÿ““sýõ×÷ë×/52wîÜÞyç………ùùù%%%!„ZµjU¸aíÚµC[¶l‰ù.Yûû”å ü§‡¬â¯>keíúªöæ˜o5jÔ¨¢¢¢t5†:uêtñÅ—””̘1#„———H$¶mÛVá†[·n ÿ<î…².w©C‡!„eË–…jÔ¨‘››[ùÈbqqq!ý>k€l“]á˜L&KKK+ŸR§zõê!„:uꤾlܸñgŸ}–*Å´U«V¥®Êô&2#»ÂqõêÕ­Zµºä’K*Œ/\¸0”{SËÉ'Ÿ\ZZúÖ[o¥'$“ÉY³fÕ«W¯mÛ¶™Þ@fdW86kÖ¬]»vóçÏŸ8qbzpáÂ…O?ýt~~þé§ŸžéÝ»wµjÕyä‘ÔëC#GŽÜ´iӹ瞻Ï>ûdz™‘u諭ýöÛ 0tèÐqãÆµhÑbݺuEEE5kּ뮻ҟCŸŸ?dÈ#FôèÑã¸ãŽ[½zõ¼yóZ·n}Ùe—ezùü¨eç;ì ›ù«'Ûd×ÇÂa‡ö /ôìÙsÓ¦MÓ§Oß²eKÏž=§Nzì±Ç–ŸÖ¿ÿ{ï½·yóæ/¿üòçŸÞ·oßÑ£GW>¹#@öH$“ÉL¯¡ªÉÚs;@–ÈÚÇú¬;âÀžŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽD©‘éÀB"ñC|—d2Óû„ïA8@{”t‰„$»xª€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(U6W®\YPP°hÑ¢ÝOûøãÛµk7dÈ ã½zõ*¨¤sçΙÞ@ÆÔÈôþUÆŒó­s’ÉäM7Ý´uëÖÊW­Y³&''§Y³fåóòò2½-€Œ©jáX\\¼lÙ²)S¦Œ?þ['5jþüù»¼“-[¶tíÚõÁÌô†~,ªZ8vïÞý“O>‰™¹|ùòxà°Ãûûßÿ^áª5kÖ„*nÈrU-‡¾}ûöÂØ±cçÎûMÓvîÜyã7Ö«Wïæ›oþÅ/~QáÚÕ«W‡š6mšéÝüˆTµp,,,L]˜9sæn¦=üðÃK–,yúé§ëÖ­[ùÚT8®_¿¾_¿~K–,©Y³f«V­ئM›Lï cªZ8Æ(**úýïß·oßN:-^¼¸ò„µk׆zè¡æÍ›wìØqݺu3gΜ5kÖ°aÃÎ;8oQPPPadéÒ¥™Þ7°'*?¬g­¬ Ç’’’o¼ñàƒûlÁ‚™Þ"@fTµ§ª SfΜ¹›i?üð’%Kž~úéºuëV¸*™L®X±¢~ýúõë×/?~衇†Ö®]{ôÑGgz—PÕÂ1FQQÑïÿû¾}ûvêÔiñâŮݶm[iii^^^…ñÜÜÜÂçŸó- *Œ,]º4ÓûöDå‡õ¬•uáXRRrã7|ðÁƒþ¦ !„ZµjU¯]»vaË–-1ßE&@•Qùa=kS2ëÂqĈ}ôѸqãrrrv9!///‘HlÛ¶­Âxê¬=©ãŽY¨ª½9f÷æÏŸ?nܸ+®¸¢M›6ß4§F¹¹¹•,‡Òï³È6ÙŽË—/!<öØcÿtÎ9ç„^z饂‚‚nݺ¥¦5nÜø³Ï>K•bÚªU«RWez™‘]OU7mÚôÌ3Ï,?²eË–Ù³gççç·mÛöÀL ž|òÉK—.}ë­·Ò““Éä¬Y³êÕ«×¶mÛLo 3²+ ÓçëIY¼xñìÙ³>úè{î¹'=Ø»wïÇü‘G9þøãSï‰9rä¦M›.½ôÒ}öÙ'ӛȌì ÇHùùùC† 1bD=Ž;î¸Õ«WÏ›7¯uëÖ—]vY¦—1Âq×ú÷ïÀLž<ùå—_nÒ¤Iß¾} ”:úÉd2Ók¨j ~êçqL$‚ß ~0~ßøéòÛ›µªÀcýžÉ®wU°Ç„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#QjdzDI$2½vÅ—¡d2Ó+¨º„#ÀO†‡CøVRþ_ÊSÕDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽD©‘éðc” ‰Èô"È"ÉL/€(‘]H„dÒC9?ÿ—ðá©j¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢ÔÈôþUV®\Ùµk× &´iÓ¦ÂU›7o~ðÁß{ï½>úè€8âˆ#®¾úê-Z”ŸÓ«W¯÷߿ 6l8gΜLï 3ªl8Ž3f—ãÅÅÅݺuÛ¸qcË–-O<ñÄõë׿üò˯¾úê³Ï>{ÄG¤§­Y³&''§Y³fåo›———émdLU ÇâââeË–M™2eüøñ»œððÃoܸqàÀ×]w]jäù矿å–[î¸ãŽôMŠ‹‹·lÙÒµk×|0Óø±¨jáØ½{÷O>ùd7Þ~û휜œ+¯¼2=rÎ9ç<ôÐC‹/.--­^½zaÍš5!„ ‡²\U ÇáÇoß¾=„0vìØ¹sçVž——w衇î¿ÿþå÷Ûo¿;vìØ±#'''„°zõêBÓ¦M3½€‘ªŽ………© 3gÎÜ儱cÇVy÷Ýw׬YsÔQG¥ª1ü3ׯ_߯_¿%K–Ô¬Y³U«V¬ü>€ìQÕÂ1ÞÂ… 'Mš´jÕª… rÈ!#FŒH_µvíÚÂC=Ô¼yóŽ;®[·næÌ™³fÍ6lØyçsçF–.]šé{¢òÃzÖÊÞp\ºtésÏ=—L&C­[·Þwß}ÓW­_¿>''çúë¯ïׯ_jdîܹ¼óÎ; óóócî<ÓûöŽÊëY›’Ù{ð .¸`É’%³gϾ馛¦OŸ~á…nݺ5uÕ¨Q£ŠŠŠÒÕBèÔ©ÓÅ_\RR2cÆŒL/ 3²7C‰Dâ€èß¿ÿùçŸÿÉ'ŸLŸ>}7“;tèBX¶lY¦W ÙŽË—/¿å–[¦M›Va¼uëÖ!„ 6„’ÉdiiiYYY…9©3õÔ©S'ӛȌì Ǻuë>ÿüó“&Mª0ž:qcóæÍC«W¯nÕªÕ%—\RaÎÂ… C¿¦ »Â±qãÆ³gÏ~ã7ÒƒÿûßÿøÇ?Ö®]»}ûö!„fÍšµk×nþüù'NLÏY¸páÓO?ŸŸúé§gz™‘u諭ãŽ;.ºè¢+¯¼²mÛ¶tЧŸ~úÞ{ï…î¾ûî† ¦æÜ~ûí :tè¸qãZ´h±nݺ¢¢¢š5kÞu×]és=d›ì:âB8òÈ#ÿô§?y晟þùk¯½¶aÆÓN;íÅ_ìÖ­[zÎa‡ö /ôìÙsÓ¦MÓ§Oß²eKÏž=§Nzì±Çfzù“HȽ¨  à§~ÇD"ø½àã÷-’ÄøaþRªÀcýžÉº§ª‰”HdzÀŒpdÕØ3PµeÝkØ3€(€(€(€(€(€(€(Nß.þstbf:I8?Q¾Ԁà©j" G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢TÙp\¹reAAÁ¢E‹*_µyóæaÆuëÖí¨£Ž:õÔS¯»îº•+WVž6qâÄÞ½{·mÛ¶sçηÞzë_|‘é=dR• Ç1cÆìr¼¸¸¸[·nãÆ !œx≠4xùå—»wïþÁ”ŸöÀ :ôÃ?lß¾}íÚµ'Mštùå——””dz[S#Ó ØËŠ‹‹—-[6eÊ”ñãÇïrÂÃ?¼qãÆ^wÝu©‘çŸþ–[n¹ãŽ;Ò7YºtéÈ‘#7nüÜsÏ5jÔ(„0|øðÑ£Gß{ï½·Ýv[¦·Uíˆc÷îÝûôéóMÕBxûí·srr®¼òÊôÈ9çœsà.^¼¸´´452a„²²²Aƒ¥ª1„póÍ7çææN›6­¬¬,Ó[ÈŒªvÄqøðáÛ·o!Œ;vîܹ•'äååzè¡ûï¿ùÁýöÛoÇŽ;vìÈÉÉ !¼ûî»ÕªU;á„ÒªW¯Þ¥K—)S¦,X°àè£Îô.2 ª…caaaêÂÌ™3w9aìØ±FÞ}÷Ý5kÖuÔQ©jL&“+V¬¨_¿~ýúõËO;ôÐCCk×®Ž@vªjáoáÂ…“&MZµjÕÂ… 9ä#F¤Æ·mÛVZZš——Wa~nnnáóÏ?¹ó‚‚‚ #K—.ÍôŽŸ¶dH„D¦?ɽ~•Ö³Vö†ãÒ¥KŸ{î¹d2Bhݺõ¾ûî›O½uºV­Zæ×®];„°eË–È;Ïôþ€ª&Rÿb»õ/øÿ«ÊëY›’UíÍ1ñ.¸à‚%K–Ìž=û¦›nš>}ú…^¸uëÖB^^^"‘ضm[…ù©kSDzPö†c!‘HpÀýû÷?ÿüó?ùä“éÓ§‡jÔ¨‘››[ùÈbqqq!ý>k€l“]á¸|ùò[n¹eÚ´iÆ[·nBذaCêËÆöÙg©RL[µjUêªLo 3²+ëÖ­ûüóÏOš4©Âøš5kBÍ›7O}yòÉ'—––¾õÖ[é ÉdrÖ¬YõêÕkÛ¶m¦7ÙŽ7.((˜={öo¼‘üûßÿþÇ?þ±víÚíÛ·OôîÝ»Zµj<òHêu!„‘#GnÚ´éÜsÏÝgŸ}2½ €ÌȺwUßqÇ]tÑ•W^Ù¶mÛƒ:èÓO?}ï½÷Bwß}wÆ Ssòóó‡ 2bĈ=zwÜq«W¯ž7o^ëÖ­/»ì²L/ c².<òÈ?ýéO=ôÐ|°dÉ’<ð´ÓN»êª«Z¶lY~Zÿþý8à€É“'¿üòËMš4éÛ·ï AƒRgäÈN §Ûë œÇØë‰àløV?Ì_JÖ>Ög×kØc€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(52½€••+WvíÚu„ mÚ´©pUIIɳÏ>ûÜsÏ}ôÑGuêÔ9ôÐCû÷ïß¹sçòszõêõþûïW¸aÆ çÌ™“édF• Ç1cÆìr|çοøÅ/ŠŠŠrss;vìøÕW_½óÎ;³gϾæšk®ºêªô´5kÖäää4kÖ¬ümóòò2½-€Œ©jáX\\¼lÙ²)S¦Œ?~—&L˜PTTÔ®]»§žz*'''„°|ùò¾}û>úè£'tÒᇞº“-[¶tíÚõÁÌô†~,ªÚk»wïÞ§OŸoªÆÂ+¯¼Bøõ¯ªÆBË–-XZZš~zÍš5!„ ‡²\U;â8|øðíÛ·‡ÆŽ;wîÜÊV­ZU«V­Ö­[—lÙ²eaíÚµ©/W¯^BhÚ´i¦wð#RÕ±°°0uaæÌ™»œðÄOÔ¨Qq׋/!|ðÁ©/Sá¸~ýú~ýú-Y²¤fÍš­Zµ8p`å÷ÙdªŽßªU«VFæÍ›7räÈýöÛ¯gÏž©‘ԡLJz¨yóæ;v\·nÝÌ™3gÍš5lذóÎ;/æ»TYºti¦·ì‰ÊëY+ë±¼ÒÒÒ?þñwß}wiié}÷Ý×°aÃÔøúõësrr®¿þú~ýú¥FæÎ;pàÀ;ï¼³°°0??ÿ[ïY&@•Qùa=kS²ª½9&Þ;ï¼Ó½{÷áÇ7lØð©§ž:ãŒ3ÒW5ª¨¨(]!„N:]|ñÅ%%%3fÌÈôÂ2#8îØ±ãž{î3fÌþûïõÕW0 ýëÝèСÓO>¹lÙ²L/È^‰D¦Wd·¬ Dz²²Áƒ¿úê«§œrÊo~ó›FU˜L&ËÊʉDµjÿßáØêÕ«‡êÔ©“éY*™Ìô ¨$‘ðß…ì’uOU3æÕW_½è¢‹}ôÑÊÕBX½zu«V­.¹ä’ ã . Yüš€ì Çd29vìØ:uêÜtÓMß4§Y³fíÚµ›?þĉÓƒ .|úé§óóóO?ýôLo 3²ë©ê7¦>„ºOŸ>•¯=ûì³ûöíB¸ýöÛ 0tèÐqãÆµhÑbݺuEEE5kּ뮻b^ P%eW8~ôÑG!„’’’>ø òµ:uJ]8ì°Ã^xá…ûî»ïí·ß^¾|ùÁܳgÏk®¹¦I“&™Þ@Æ$’^Ö»·8#@6ðæ˜¬•µõÙõGö˜p Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp J• Ç•+W,Z´¨òU%%%£FêÖ­ÛQGuÜqÇ 0`Μ9•§Mœ8±wïÞmÛ¶íܹó­·ÞúÅ_dzO™T#Ó øW3fÌ.ÇwîÜù‹_ü¢¨¨(77·cÇŽ_}õÕ;ï¼3{öìk®¹æª«®JO{àüñZµjµoß~õêÕ“&MZ¾|ùèÑ£srr2½3€Ì¨jáX\\¼lÙ²)S¦Œ?~—&L˜PTTÔ®]»§žz*UË—/ïÛ·ï£>zÒI'~øá!„¥K—Ž9²qãÆÏ=÷\£FBÇ=zô½÷Þ{Ûm·ez‹™QÕžªîÞ½{Ÿ>}¾©C¯¼òJá׿þuúØaË–-XZZš~Âz„ eeeƒ JUcáæ›oÎÍÍ6mZYYY¦·Uíˆãðá÷oßB;vìܹs+OXµjU­ZµZ·n]~°eË–!„µkצ¾|÷Ýw«U«v '¤'T¯^½K—.S¦LY°`ÁÑGé]d@U ÇÂÂÂÔ…™3gîrÂO}úT¾öì³ÏîÛ·o!??È!#FŒèÑ£ÇqÇ·zõêyóæµnÝú²Ë.Ëô2&»Âñ£> !”””|ðÁ•¯M¿±:„пÿ8`òäÉ/¿ür“&Múöí;hРÔy²S"™Lfz UMAAó8dƒD"xÍNYûXŸ]¯q` G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢ÔÈôàG!‘ø!nå³­ùIŽ‚¤ƒžª Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp J• Ç•+W,Z´hÏæôêÕ« ’Î;gz[ü¨dz ÀÊ_=Ù¦F¦ð¯2f̘ï3gÍš5999Íš5+?˜———émdLU ÇâââeË–M™2eüøñ{<§¸¸xË–-]»v}ðÁ3½!€‹ªŽÝ»wÿä“O¾çœ5kÖ„*nÈrU-‡¾}ûöÂØ±cçλgsV¯^BhÚ´i¦wð#RÕ±°°0uaæÌ™{<'Žëׯïׯߒ%KjÖ¬ÙªU«¶iÓ&ÓûȘªŽ{ÅÚµkC=ôPóæÍ;vì¸nݺ™3gΚ5kذaçw^Ì=xŸ]ÖòŸ²¿z²ŠpÜ…õë×çää\ýõýúõKÌ;wàÀwÞygaaa~~þîo¾téÒLï`﫲çqü>FUTT”®ÆB§N.¾øâ’’’3fdzu™!cuèÐ!„°lÙ²L/ 3„cEÉd²´´´¬¬¬ÂxõêÕCuêÔÉô2C8V´zõêV­Z]rÉ%Æ.\¼Èb±¢fÍšµk×nþüù'NL.\¸ðé§ŸÎÏÏ?ýôÓ3½@€Ìð®ê]¸ýöÛ 0tèÐqãÆµhÑbݺuEEE5kּ뮻rrr2½:€ÌpÄq;ì°^x¡gÏž›6mš>}ú–-[zöì9uêÔc=6ÓKȘD2™Ìôø pÄ€(€(€(€(€(€(€(ÂöÄ!C 6lذ›9]tQ«V­2½R`w.ºè¢#<2Ó«€Ÿ á@á{âºë®{ñÅ4hé…À§F¦?Iùùùùùù™^ü q„]ûòË/ï¸ãŽnݺµoßþÒK/}óÍ7ï¾ûî‚‚‚Å‹‡†Zþ5Ž]tQ×®]KKKïºë®víÚ=ùä“•ïpæÌ™—\rIçÎÛ¶m{ÖYg=º´´4Ó»B¡´´ô¾ûîëÙ³g»ví.ºè¢1cÆ$“Éò¾üòË»îºëœsÎiÛ¶m=n¿ýöÏ?ÿËÉÉ©]»vj¤nݺcÆŒ5jT…§Ã€Œ¸æškRÕBÈÏÏÿÍo~BøŸÿùŸ¦M›¦NÚ²eËÿüÏÿLÏ?ï¼óŽ=öعsç._¾|ß}÷=ñÄW¯^:B˜1cÆW_}uÖYgþT9Â*úðÃKKK;wîœH$Òƒ999mÚ´Ùý ;tè°ËñD"qúé§oذáŒ3θ÷Þ{gÍšµeË–ŸýìgmÚ´©^½z¦· „ã?¾ü—:t¨U«ÖÊ•+C«V­J&“Çw\ùB©ÿKLÍ©ðlõÔ©S‰D·nÝ‚?ªá}ôÑG!„8 Âxå‘òªU«Ö¸qãoºöÎ;ïüõ¯]·nÝßÿþ÷—_~yÇŽûôé3oÞ¼Lï‰D"õ$ryMš4Ù¸qcá“O> »úóOý½üñÇ!„ãŽ;®fÍš©pܼyóœ9sÚ·oŸ>ñ‚?ªá¥6mÚTaü³Ï>ÛÍ­‰Än^®´Ï>ûôë×oòäÉsæÌyä‘G.¼ðÂÅ‹÷ïßÿ¯ýk¦· Ù.õlr…ÁO?ýô ƒ !xà!„TDV˜þùÏÅ~ûíwâ‰'.[¶lõêÕÓ¦MÛ¹sgêyêþT%Â*úÙÏ~Bxûí·Ë~õÕW{ü¯üÚµkï¾ûîÔш† žzê©·ÝvÛàÁƒKKKßzë­LoþóŸËùÞ{ï§^õؼyóœ9s*¼$qΜ9áŸÿ\„>[ýꫯþéOÚwß}O;í´Ô¸?ªá5hÐàÌ3ÏüÛßþö‡?ü!5’L&ï¿ÿþÝqÜœœœ§žzê¿þ뿊‹‹Óƒ©'Ä9äLo¿ûÝïV­Z•º¼~ýúaÆ…ú÷ïBhذá™gž¹téÒ‘#G¦çO˜0aîܹ:t(((HtéÒ%''g„ ï½÷Þ‰'žX·nÝÔ¸?ª§ã]¸á†,Xð_ÿõ_S¦LiѢŒ%K>ûì³ãŽ;î­·ÞJ¿52^Æ Ï=÷ÜI“&zê©©Ýÿío[ºtéGqÊ)§dz¯íêÔ©³yóæ³Ï>ûè£N$ùË_¾üòË‹/¾¸mÛ¶© 7ÜpCQQÑý÷ß?uêÔ‚‚‚•+W.^¼¸aÆ·ß~{úNößÿN8aÚ´i!„òÏSûó§ŠqÄv!??òäɽzõ*..ž7oÞá‡þì³Ï¦NÇ“››»w8lذ[o½µI“&óæÍ{íµ×‰Ä Aƒžy晜œœLï²]Ó¦M_zé¥SO=uíÚµEEEGqÄÝwß=tèÐô„üüü—^z©_¿~Õ«WŸ1cÆ×_}þùçO™2%}Ÿ”Ô³Õ¹¹¹]ºt)?îÏŸª$áK0å6mÚÔ¹sçB"‘xì±ÇN:é¤L¯þ…„#ì¹’’’{î¹góæÍçœsÎ.?­ªá@/ó Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Êÿa¦Âª*=mIEND®B`‚statistics-release-1.6.3/docs/assets/boxplot_201.png000066400000000000000000000444451456127120000223530ustar00rootroot00000000000000‰PNG  IHDRhŽ\­AHìIDATxÚíÝy@Tåâÿñç°¨,²‰l-.)˜ZJ‚åF(Zj®™âmÑLÛÉ2Í´º}Ã{5—[©eêÕDÍÄ4—4r µpISå¢å *£‚Ãùýqnç7wðÁ3̼_Í<ç™™ç9sçÃsÎyFQUU×âbtP; …à)GH!8@ ÁRލfP®å¶Ûn3º™U7iÒ$­¼™Ÿ[XX8räÈ[n¹ÅÍÍ­~ýú—/_¾æK¶nÝ:jÔ¨ˆˆˆúõë7hÐà¾ûî{â‰'¶oßnغ³K¶_è'Ÿ|¢•DGGëÕV¯^ýÍ7ß|óÍ7gÏžµ|y¹å徃ݒï¯Q¿|³kHRR’öY½zõ2ºßÿ£¢Í¨9nF7€”7Þxã³Ï>Ó_ºt©òÊ&“é©§žZ±b…eáŽ;vìØ‘’’Ò«W¯”””ÀÀ@£ûT› 2D[í7nŒ‹‹»fymç¨ýr0|M¸ùލAÁÁÁ¶å!!!F7­öY¿~½ö K—.¬S§NE5/^¼³wï^½ÄÅÅEQ³Ù¬=]»vmÿþý¿ÿþûzõêÝ-{T¿~ýÆ !BCCz‡ÚÕ_š 8‚#jТE‹jõ?Á¹¹¹aaauëÖ5º!BqúôiíÁ¸qãzè¡Jj>÷ÜszjŒ‰‰y÷Ýwï¹çžzõêýöÛo“'O^ºt©bûöíï¼óÎ?ÿùO£»õÿÝ„µ-ùC‡:tè|пÃÍd`koäK¯]+p\ãÃlܸQ¿êqüøñZá¥K—µÂ¨¨(}¬¬¬lÉ’%]»vmÔ¨Q½zõ5jûå—_þùçŸúê`ÅÇÇ9r$!!¡qãÆ·Þzë!C~ýõW!DFFÆàÁƒ7nÜ Aƒ®]»þðö¯8pà©S§›6m,™®NŸ>ýòË/wìØ±~ýúwÜqÇ Aƒ233e^xùòå·ß~»GÁÁÁÁÁÁÝ»wŸ0a‚ÉdÒ+œ={6//¯¬¬L{záÂ…¼¼¼«W¯–ûnûöí[¸p¡öø±Çûþûïï¿ÿþúõë»»»·iÓæ«¯¾zâ‰'´¥_}õU¹Ý¿zõê[o½uë­·¾õÖ[ò_7dÈ­|ìØ±Õ²¶ÿüóϹsçvîÜ9,,ÌÛÛû®»îúÛßþf9ÂzƒauñÜo¼¡(Š~y@÷îÝE¹|ùrE墼Ëï,ÛsþüùW_}5::º~ýúmÛ¶úh¹ð#<¢×ÑŽ‚Bˆ¶mÛZ]À×°aÃ>øÀÝÝݲPQ”~øÁêµÝºu»ãŽ;¬>eøðá¶Ÿ2`À½ðûï¿¶z•¢(cÆŒ©| ìܹÓöã„·Ýv[zzºVgÀ€¶:Tî>ÿüóZ…zõêýñǶNž<ùä_Μ9cÛ)=YNœ8Q¾‘­UU{ì1­üµ×^»ÞµmëÊ•+íÛ··mŒ¢(³g϶mL¾Ð¹sçj%QQQªªêÿÕXºtéREå¶ï`ù)±±±wÞy§Õ«âãã-û¸mÛ6« ¸iÓ¦ú. /V>ÿüs­B“&Mô† j…¡¡¡ZÉŸþ©_@¢mÿ’ýµêE‹-¬ê̘1£’/t™ý½’•\îf,¹“îÚµËêZšúõë÷îÝ[{ܳgÏr{·víZ­‚»»»ÉdÒËGŒ¡•?üðÃ×ÕŒõë×Ù®§Ÿ~Z«PÉ×Tµ}ÖjIîhpBGT³ë ާOŸö÷÷×*'&&šL¦€€ý©^MS¥[·n?þxëÖ­õOùþûïµjúA!„‹‹K›6môwÓÝyç·Ür‹þ´k×®¶¯BÅÄÄx{{ë%k×®µª©çŒÂÂBýðÜ­[·wÞygÈ!..ÿΟ7o^EÝ/**Ò.ÒBÔ«WïÁìÝ»·§§§V¢®+8ê‡óÇ{Lþ[Ó;uë­·ê¡?$©V)8^smWÒTþýû¿øâ‹÷Þ{¯VâæævðàÁÿB­I~~~NNŽÞå/¿ü2''§¬¬¬¢rµÒL£iԨѽ÷ÞkyéÎ;µšÅÅÅaaaZa:u:vì¨?µü^l?~\¯súôiUUsss-_xâÄ UUwïÞ­=õòò*))‘ï¯m/š6méêêª=­[·®ö†•q×üF$÷÷JV²íf,¹“–””4jÔHßœî»ï>}ã×TKKKõ?e+W®ÔËõ—ÿûßÿ–o†e5??¿AƒYd.X° ò¯© û¬í“ÜÑà„ލf–Á±"ú8ŸªªŸ~ú©þîÙgŸÕÿŠ]¼xQ¯óÔSOi対úª^Ø®];­pêÔ©Z‰å‘éÛo¿UUµ´´´[·nzá¿þõ/UUÍf³> hûÚ>}ú\¹rEUÕ?þø#""B+ìÔ©“UM=gL˜0A+±ù裴ÂÛo¿½¢uõ÷¿ÿ]«ããã£ç†}ûöé£MãÇ×+ë‡ØJâxYY™~ûí·å¿5Ëî·lÙráÂ…G޹®FV-8V¾¶muêÔI«óÞ{ïé…=zôÐ ?úè£ÿBmI%ë¿Üòʃ£ÞȃêÙQÅ™1c†Vâëë›™™©m±O?ý´Õq½\zïÒÒÒTUMMMB(Š¢~óÍ7ªÅ×»wïëí¯e/>øà­P¿4B±gÏ™m¬òoDr¯|%[mÆ’;éìÙ³µ’úõëgddh…‰‰‰úÛV-›=jÔ(­äÈ‘#ZIݺu 囡WkÔ¨ÑÙ³g­ cbb*ÿšª°ÏÚ®1É Nˆka°#FtîÜYqåÊ•?þX+œ5k–åPÄàÁƒ.\¸pá—_~Y+1™LEEEÚãsçÎY½gTT”vjÉÝÝ=>>^+ôóó{饗„...z”¹pá‚ÕkÝÜÜæÌ™£]­öüC+ß¾}û•+WÊíÂwß}§=9r¤^øÔSOiîØ±cûöí+÷…ß~û­öॗ^үӺ뮻ƌcUAÒ… ô«Bo¿ývËEÓ§O·PsÛ¶mVïàéé¹aÆ„„„{ï½·iÓ¦5ÑÈ\ÛÅÅÅÚƒ |þùçÚ=C ,Ø¿ÿþýûyä‘ÿˆÕºuë^xA{Ü¢E‹.]ºhóòò´ÚÝKBˆ^x!22Ráââòᇖ{âÒŠ~\ÏÈÈBhçµnÝZ³üùçŸõB!Äø`BBBïÞ½·mÛöÚk¯ÅÅÅÝzë­¬ès-OFë—s………éC/åN¤iݺµåüä>ø ö@UÕ£G–û’Çë•õLæíí­ÿq¯èhš••eõ)ýˆž­ß#C?%„¨Ú„À‘‘‘V'F«½‘7¸¶õ:YYY#FŒ m×®ÝG}tùòåV­ZÙÎôT…¨QVWžéWSèëÐrsÒ«yxxX­ÿréÁqÇŽ⯌xï½÷FEE ›à¨W®‚æÍ›ë½½½õ=®ò@£¹æ7r½û»-ÛÍXr'Õ«YNô]§N™§­ÎËË;tè°ŽzÌ’lFNNŽöTöB„„„ìÞ½{÷îÝú‰…rUaŸµ]c×»£ÁyQƒ-Z”[ý_yMË–--ÿ.[žÒ”––¾úê«AAAC† ™>}ú¦M›®^½ZÉ€-éUÎꢧ§§¯¯¯öøÔ©S¶õM&Ó5§ãÎÏÏ/÷…………Úc«‰èôÃð•+WôYxdÔ­[W¿4Êê@ëãã£wË|iÅꞌšhä¬m!Äßÿþ÷çŸ^ŸÀEUÕÌÌ̤¤¤{ï½7&&Æ6.Wá#j”ÕÆiõÔd2é#jVr™ß[ŠÕÿvîÜi6›ùåawíÚuåÊíb’°°°–-[V¹V{S¹{\E®ù\ïþnËv3–ÙI/]ºtæÌ™r)³òÝÝÝõË‘µë57oÞ¬•÷íÛW¾–;ŸŸŸ|¯õÎVaŸµý9€ëÝÑà<Ž0ÞŽ;ô{…ú:º¤¤¤3f\½zµiÓ¦sæÌÙ»w¯ÉdÒþW;«¿§ÅÅÅúV—Ék|||êׯ¯=^¿~}Ny† Rî õãåÉ“'-éOëÔ©£AIú5+W®Ô‚Bˆ‘#Gj©=;;»’£‘U¨¡FVym !ÜÝÝgÍšuöìÙ¯¾ú*!!A¿#A±eË}ÆŸùÕ¯__·úC&ûøøhwšL¦U«Vi=Õƒc~~þªU«´mnd¸ñ]ó¹ñýÝv3–ÙI=<<ôyõ-÷!„Å*§_óÝwßíß¿_{}$R²õë××ÿµ+((¸ÞÕ[µ}Ö6ú_ïŽçAp„Á®^½úÌ3ÏXž7ùᇾøâ Ë:sæÌÑÌž=ûÙgŸ½ûî»ÝÜÜ~ÿý÷šhÏNœ8¡?ݰaƒªªBˆ:uêè·[ZiÖ¬™Þ—;,øûûûùùùùùUtf\¿-@ÿU«§Í›7ׯ“”˜˜¨¾üò˶Ó=~òÉ'–¼&ùFêÇ«+G­ŽÁ7²¶KJJNŸ>}úôé’’’G}táÂ…gΜٰaƒ>oÈ?þxƒa,EQš4i¢=ÖÆ«4W¯^Ý´i“Ì;tïÞ]{0kÖ,!„··wË–-õ;Kô]éF.p¼A×üFjb—ÙI]]]õ•¯_e(„PUÕrÎ×ÊW¾°ÒÓÓÓÒÒ´BËËeš¡(Š~=ƒvÉæÔ©S:tèСC×®]+¿8äÆÿ°TaGƒó 8Â`Ó§O×®÷ññÑ'ž}íµ×ôS!/^Ô‡^ôDòË/¿HG¯Wiié‹/¾XZZ*„8yòä¸qã´ò¾}ûVt]‘~¨NNNVÿšyùòå 4 lܸñÅ‹Ë}¡>9܇~¨Ï¼ÿþ÷ß_{ly¡•¤ûî»oÔ¨QÚã%K–ÄÄÄüøãÚ ²½{÷Ž5J¿3C’|#õÓy;vìЯåZ±bE%Ýë]Û ÕnYussëÞ½»~›¼í`j¾ÐÊio%_~½î¿ÿ~íÁŒ3´KåTU}óÍ7­æÖ©ˆ>”¨í QQQ®®®AAAÚÍRéééBEQäÒ©ºúeù†•|#5´¿Kî¤ÚЬøß­}òäÉ¿ýö›Ì§èg«KJJ¦OŸ.„puuµ¼b[²ú60}útý‚Š™3gfdddddÔ­[×öÂ˯éÆÿ°TaGƒ1ú¶n8ËéxšU@f8räˆ>÷î»ï^¹rE Ú–••éwX{zzöëׯÿþ–¿QVùt0óçÏ× [·n­nݺU+tss³z­Þò¸¸8íFH!„‹‹Ë*ú”sçÎéçqbccß~ûíGyDï×[o½UѺ***Ò½<<<úôéÓ¿///­$44T›ÂC#3æÂ… úÀ‰Þ~Ë’:tè =غuk%«îz©]Q§S:uÒG>4ÍãXÉÚ¶b6›õÉ“CBBž~úé×_ýÑGÕ{÷î»ïÞøZîô4úDw:txÿý÷KKK+)¯|njËÙÎU”——§Ÿ0õôôìÚµ«v—«®’éxTUýóÏ?õó¡BˆqãÆiå?ü°^ئMË—È÷·¢^è'ý—,YRQÃ$¿ùý]~%Ëï¤{öìÑÎëÔ©Ó¥K«yÎ+™ŽGcùã.Bˆ¸¸¸*4ãôéÓúš :t¨eÐ_µjUå_“ü>[Ñ“ßÑà„ލf2ó8Š¿æÈÕÏ—jsÒ&''ëuÖ­[§½çàÁƒ­^Þ´iS}FÜ'žxB«V-Á1&&Æj"77·¹sçê¯-÷SV­ZUî¿à£GÖ¦ä­ÈŽ;¬b¦Q£F[¶l±¬)UU=uêTlll¹k¾_¿~úEf2Áñº©Ç ËoJe± Ž×\Û¶~úé§ŠNýÇÆÆj³ÞàZnÒåH£ÿDG¹å7UUýôÓO­~åÈÛÛ[ßà+ŽªªöéÓGáŠ+´ÂÉ“'ë…–Ÿu]ý­–àxÍoDr¿®à¨Jï¤O>ù¤U///ý/Õ5ƒ£åLàBˆ?þ¸jÍX±b…~©¢¥ &X¾[E›¥ä>[É“ÜÑà„8U Ã,Z´H¿ææ7ÞІIžzê)ýïݳÏ>«Í%6sæÌ»îºKüõ{0¯¼òÊîÝ»õ@‹/ÖOŒÞ¸€€€mÛ¶92<<<88xРA6lÐOþV¤oß¾{÷î}úé§ï¹çOOϦM›80==ýã?®ü†ÓöíÛïÛ·oÒ¤IqqqÁÁÁݺu{óÍ7ýõWmz˪ Þ¼ysZZÚàÁƒo¿ýöºuë6hÐ &&fþüù+W® ²ýѳjidJJJRRÒ]wÝåååùÒK/eddØÞ°y#kû¾ûîËÉÉ™4iRtttXX˜»»»¿¿çÎ?ûì³M›6YMÝÈjkæÌ™ AAA^^^­[·ÖÏVT~#ž~úé7>üðÃaaa·ÜrËÃ?¼mÛ¶rÿ­\–7¾è3è'a…Ü15Ñ/Í5¿‘Úß%wÒyóæé¿ÛÔ¯_¿7ÆÄÄH~Šå½Õ...V¿Û.ߌþú믣FŠŽŽööönܸqŸ>}~üñGýGY+ÿšnüËõîhp"F'W@JiiéŠ+ôá“jWùXª×MXÛŽ÷…>þøãZl±j…ëúFjz¿¦]»vM:ÕòZšë»a0Š»»»íÿî€ãyæ™g´9º;vì¨ÿÞ¥K—6lØ =ÖFã›áû{TT”å-ÁìHXXØž={„{öì¹í¶Ûâãã/\¸ðúë¯k“ðµjÕŠ@À@\ãvdܸqúUho¼ñF³fÍ¢¢¢´Éh4h°xñb./` FÀŽxxxlܸñ«¯¾úòË/=zòäIm†¿x 11QŸ¥ ¡¨ÍA T‚SÕBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)=±wï^ÛE¥¥¥Ÿ~úéÃ?Ù­[·—_~9;;Û¶Zjjj|||ddd§N&L˜pþüy£û`$‡ Ž ,(·Ül6?ñÄÓ¦M;þ|—.]n¹å–uëÖõïß×®]–ÕfΜ9qâÄ#GŽDGG{{{/_¾ü™gž)..6º[†q3ºÕÌd2>|8--mÉ’%åVøê«¯233{õê5mÚ4777!ÄO?ý4bĈ‰'®[·N«“•••œœ¼lÙ²   !DRRRJJÊ´iÓ&MšdtŒáh#Ž}ûöMHH¨(5 !233…O<ñ„–…:t¸óÎ;ÿóŸÿœ;wN+YºtiYYYbb¢–…ãÇ÷õõ]»vmYY™Ñ]0†£8&%%•””!.\¸}ûvÛ ¡¡¡B=# !TU½pá‚‹‹‹%wíÚåââ«×quu‰‰IKKËÌÌŒŠŠ2º—p´ÇÎ;ÇÅÅÅÅÅÝrË-åVèÓ§O½zõ’’’~úé§âââ'NLš4é÷ß÷ññB¨ªš““`ùÂððp!ÄñãÇî"€1mÄñš""",Xðä“O>ùä“zá°aÃ&L˜ =.**2›Í~~~V/ôõõÿ;TYÉGÝKPƒ²²²Œn‚1œ.8šL¦þóŸ—/_nÕªÕ]wÝUPP°uëÖ•+WÞwß}=zôBh·N{yyY½ÐÛÛ[QXX(ó)N»=ÕˆˆV)ì›(ì›hµsÚUêtÁñõ×_ÿå—_ÆÿÔSOi%'Nœxì±Ç^yå•U«V5mÚÔÏÏOQ”¢¢"«^ºtIü5îà„íÇÊ9sfóæÍÍš5ÓS£",,ì¹çžûóÏ?¿þúk!„›››¯¯¯íÈ¢ÉdBè÷Y8ç ŽBˆÆ[•7mÚTqöìYíipppAA–u¹¹¹Ú"£;` ç Ž7vuuÍÎÎVUÕ²\»L¡Y³fÚÓ¸¸8³Ù¼e˽‚ªªéééþþþ‘‘‘FwÀÎ=<üðC}*ïììì9sæÔ©S§k×®ZI||¼‹‹Ë¬Y³´ë…ÉÉÉùùùƒ rww7ºÆpº›cÞ{ï½GydΜ9kÖ¬iÙ²eAAÁ/¿üRVV6qâÄ;î¸C«6vìØ)S¦ôëׯK—.yyy­Zµ9r¤ÑÍwRÎyçj6QØ96QT§ ŽkÖ¬™;wîÖ­[øáÿûï¿ÿÙgŸ½ë®»,« >¼aÆ+W®\³fMhhè°aõyœ“buµnœÓÎ퀓pÚc½s]ã€*#8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@Š›Ñ ÕCQªò*U5ºÝ¨=Ž8ˆŠ" ¢Q=8U )GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRÜŒn@M9zôh¯^½–.]Ú¦M½°¸¸¸mÛ¶½¤yóæ«W¯ÖŸ¦¦¦.]º4''ÇÓÓóþûï;v¬¿¿¿ÑÝ0ŒÃÇ Ø*ŠrçwÚ–—––9rÄ××W/™9sæÜ¹s½¼¼¢££óòò–/_ž’’âááatÏŒáhÁÑd2>|8--mÉ’%¶KëÕ«·råJÛò3füç?ÿyã7´§YYYÉÉÉÁÁÁË–- B$%%¥¤¤L›6mÒ¤IFwÀŽvcß¾}ÊM9tèÐgŸ}6jÔ¨Ö­[k%K—.-++KLLÔR£büøñ¾¾¾k×®-++3º‹Æp´Ǥ¤¤’’!ÄÂ… ·oß~Íúf³y„ wÜqÇsÏ=§îÚµËÅÅ%66V/quu‰‰IKKËÌÌŒŠŠ2º—p´àعsgíÁæÍ›eê/Z´èÀ_|ñ…»»»V¢ªjNNN@@@@@€eÍððp!ÄñãÇ ŽÀ99Zp¼.—/_ž3gNûöí;v쨙Íf???«ÊÚ­3çΓy爈«’¬¬,£» ªÂö°î´œ:8~ñÅçÏŸ3fŒeaqq±ÂËË˪²···¢°°P扉8 ÛúÓFIG»9FÞÅ‹?ÿüóèèèÈÈHËr???EQŠŠŠ¬ê_ºtIü5îà„œ78®^½úòåË´*wssóõõµY4™LBý>kgã¼Á155ÕÃãgÏž¶‹‚ƒƒ ´¤¨ËÍÍÕÝpc8ipÌÊÊ:pà@·nÝl¯eBÄÅÅ™Íæ-[¶è%ªª¦§§ûûû[×pNÓÓÓ…íÛ·/wi||¼‹‹Ë¬Y³´ë…ÉÉÉùùùƒ Ògíp6NzWõ¶mÛ„íÚµ+wiXXØØ±c§L™Ò¯_¿.]ºäååedd´jÕjäÈ‘F7À0ί\¹’™™éããÓ¬Y³Šê >¼aÆ+W®\³fMhhè°aõyœ“¢ªªÑmp4Ìã°Š"8ÚW/§=Ö;é5ޏ^GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)nF7{¡(F·€®]'U5ºN†àÀi)DQ„ª:hÎr Š¢’o>NUð?TU( ‘Ä~)ŠJj4 #ŽXÓ³#Cö†Èh,F(‡ª2ôhwH†#8P!²£àô´ 8P²£á´ÈHj´G®AËŽÄGC0ÐhWŽ\—<‚ÔhoŽÈ";Þ4\ÔhŸ˜Ž€ëÀL=7‘Ñn1âÀõá´u"5Ú3‚#UAv¬vœž¶GªˆìX˜s§VàGªNËŽªàzG8‚#U§(Ü%S=T¡pžÚþqª€*"5ÂÙ¨ RcµSUEaÚ7‚#°dG;Gpàº1ÜXsÈŽöŒàÀõ!5Ö4²£Ý"8pH7ÙÑ>Ej„“#8 …Ôx“1èh‡Ž\©ÑdG{Cpö‹ìhWŽ\ÃÆ";Ú‚#•!5Ú²£ 8P!R#`‰à@ùHv…AG{@p ¤F;Dv4ÁÔdGc°Æp£=#;ˆàÀÿ 5Ú?²£QŽü¤ÆÚ‚ìh‚#ÿEj*Gp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)=±wïÞr—þúë¯/¼ðB×®]£££‡ ¶cÇÛ:©©©ñññ‘‘‘:uš0aÂùóç68.X° ¢E›6m2dȦM›‚‚‚"##wïÞýøãoڴɲÎÌ™3'NœxäÈ‘èèhooïåË—?óÌ3ÅÅÅFw À0nF7 š™L¦Ã‡§¥¥-Y²¤Ü ………ãÆsss›7o^»ví„ûöíKHH˜4iRll¬‹‹‹"+++99988xÙ²eAAABˆ¤¤¤”””iÓ¦Mš4Éè.ÃÑFûöí›PQjB,_¾Üd2=ZKBˆ»ï¾»W¯^ùùù¿þú«V²téÒ²²²ÄÄD-5 !Æïëë»víÚ²²2£»` G ŽIIIsæÌ™3gNÇŽË­ðã?*Š2`ÀË©S§feeµiÓF{ºk×.—ØØX½‚««kLLLAAAff¦Ñ]0†£ªîܹ³ö`óæÍåVØ¿¿¿¿HHÈÏ?ÿ¼{÷î .´hÑ¢{÷îZUUsrr,_.„8~üxTT”ѽÔUŠ¢Ý À~9Zp¬\iiéÅ‹›5köÎ;ï,^¼X/¿í¶Ûþõ¯µnÝZQTTd6›ýüü¬^ëëë+„8wîœÌEDDX•deeÝ{Àµ©Ž˜Å1ûuÓØÖ–sÇ‹/ !rrrΞ=;eÊ”ØØØ+W®,[¶löìÙ/¿üòêÕ«=<<´[§½¼¼¬^ëíí-„(,,”ù b"Ãö°î´QÒÑ®q¬\½zõ´ÿüç? àççò / 8ð÷ßÿöÛo…~~~Š¢Y½öÒ¥Kâ¯qG'ä\ÁÑËË«^½z]»vµ,ïÞ½»âСCB777___Û‘E“É$„Ðï³p6Î…AAAîîXjwÆ\½zU{\PP %E]nn®¶ÈèÃé‚c×®]µIÂ- µIvZ´h¡=‹‹3›Í[¶lÑ+¨ªšžžîïïitŒátÁqàÀBˆ‰'ê÷Gÿúë¯óæÍóõõíÑ£‡Vïââ2kÖ,íºF!Drrr~~þ AƒÜÝÝî€1œë®j!ÄwÞ9f̘3fôìÙ3**ª¨¨h×®]Š¢$%%5hÐ@«6vìØ)S¦ôëׯK—.yyy­Zµ9r¤ÑÍ0ŒÓG!ĨQ£SRR¶oßîïï÷â‹/6oÞܲÎðáÃ6l¸råÊ5kÖ„††6,11Q›‘À9)*S‚V·ˆˆæqØ&¯vN{¬wºkP5GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@Š›Ñ Õ@Qª²TUn7j‚#Ž€ˆ›€SÕBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ð[Õ0ž¢Üè;ð ­ÜGïš±OQˆ†SÕBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GHq3ºP+)J…‹TÕèÆ@ÍpØàxôèÑ^½z-]º´M›6V‹yä‘_ýÕª000pÛ¶m–%©©©K—.ÍÉÉñôô¼ÿþûÇŽëïïot·Ø Ët¨(„ENÁaƒã‚ *ZtìØ1Æ[úùùY>9sæÜ¹s½¼¼¢££óòò–/_ž’’âááatÏŒáhÁÑd2>|8--mÉ’%U(,,ìի׿þõ¯ŠÞ$+++99988xÙ²eAAABˆ¤¤¤”””iÓ¦Mš4Éè.ÃÑnŽéÛ·oBBBE©QqìØ1!„Õp£•¥K—–••%&&j©Q1~üx__ßµk×–••ÝEc8ÚˆcRRRII‰báÂ…Û·o·­——'„hÔ¨Q%o²k×.—ØØX½ÄÕÕ5&&&---333**Êè^ÀÑ‚cçε›7o.·‚Ož<ùøã>ÞÅÅeÖ¬YÚuBˆäääüüüAƒ¹»»Ý c8Ý]Õo½õÖˆ#&Nœ¸xñâ¦M›þñÇ{öìñôôüÇ?þ¡ÿuXXØØ±c§L™Ò¯_¿.]ºäååedd´jÕjäÈ‘F7À0Î5â(„hÑ¢Å×_=`À€üüüuëÖ0`õêÕ÷ÝwŸeµáÇO›6­I“&kÖ¬9wîܰaÃRRRl'wpŠªªF·ÁÑDDD0cõRÁv {Æ& 8§=Ö;݈#ª†à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)nF7j„¢8ìÇ©êMí莓ª Eªzsóc S•ÔÀ@œª€‚#‡¥ªBQg€ŽáF†#8pd“IìÁRŽœ :2ÜÀN8¾ZIìÁRŽœB-td¸€]ap{t“ñ¢V`X"IT–kÑ”à¤Fö†àh§jѱ 7Ym68NUp"µè„5Ãì#Žœ‹ª a÷úŠ 5°GGNGv¥£}·€ÓâT5ç¢(µàbUU¸! €"8@ Á€©ÃØ!‚#¤8‹Z4ܨaЀ½!8@ Á€S¨uÃ`‡Ž`¿8[ À® …àÀñÕêóÔ :°GH!8ppµz¸Qà#;Ap€‚#GæÃØ‚#¤8,‡n;á°ÁñèÑ£{÷î­¼Ú‰'Úµk7vìXÛE©©©ñññ‘‘‘:uš0aÂùóçî§ÆÙj†sØà¸`Á‚kÖQUuܸq—.]²]4sæÌ‰'9r$::ÚÛÛ{ùòåÏ<óLqq±ÑÝ0Œ›Ñ ¨f&“éðáÃiiiK–,¹fåùóçïܹӶ<+++99988xÙ²eAAABˆ¤¤¤”””iÓ¦Mš4é&ôBU…¢¨œbƒ-EQUÕèFÔyžZU¶r´Ǿ}û&$$ȤÆììì™3g¶hÑÂvÑÒ¥KËÊʵÔ(„?~¼¯¯ïÚµkËÊÊnNG´ìx×À58ZpLJJš3gΜ9s:vìXIµ«W¯¾þúëþþþãÇ·]ºk×.—ØØX½ÄÕÕ5&&¦   33Óè.Ây1Ô0–£ªîܹ³ö`óæÍ•Tûè£<øùçŸûøøX-RU5''' À²<<<\qüøñ¨¨¨›ÓNXé`8G Ž2öìÙóé§Ÿ6¬cÇŽ°ZZTTd6›ýüü¬Ê}}}…çΓùˆˆˆ«’¬¬¬*4•ì © d{XwZN‹‹‹_ýõÛn»íÕW_­¨‚ÂËË˪ÜÛÛ[QXX(ó)U‹‰å";‚ÔƲ=¬;m”tºà8eÊ”ßÿ}ñâÅåVðóóS¥¨¨Èª\›µGw¼ÉÈŽÀ8ÚÍ1•Û¹sçâÅ‹GÕ¦M›Šê¸¹¹ùúúÚŽ,šL&!„~Ÿ5ps0ܰÎ5â˜-„Ðn»¶,_µjÕªU«š7o¾zõj!DpppNNŽÉd²¼u&77W[dHËttN¤ÆÄœVP½œ+86jÔ衇²,),,ܺukXXXdddHHˆV—••µe˽²ªªéééþþþ‘‘‘F5žìèlH7èf®=E¹©Fq®àعsg}¾Í¶nÝõþûïë…ñññsçÎ5kÖý÷߯Ý“œœœŸŸÿôÓO»»»Ø~²£ó 5ìsGIaaacÇŽ2eJ¿~ýºté’———‘‘ѪU«‘#GÝ4²£S 5ìÁ±|ÇoذáÊ•+׬Y:lذÄÄDmôÑpdG`F6ª_DDD5ÎãX.EGGÅpcmÄ5Ž€³¹ Çzûä\Óñ8 mÐÑèV ú‘öŒàX[‘©`ç޵ÙÑ‘öàX»‘©P+k=²#¸9Ž€ÁnÔGGÀ cíEjÔ"GAv¬H€Ú…àè8ÈŽµ ©Pë Ù±¶ 5j#‚#¤ ƒŽöáF@-Ept@dG{FjÔ^nF75BU…PŒnl(‚ԨŎŽIQÅ©BaÄÑa(J…OùŠ8*‚£R¡ªŒ7Ú)U%;:¾DNˆk›MU…`¨…ŽŽ†áFPCŽ…ÔX[0è¨ŽŽƒÔX»µÁÑAk#²# v!8:RcíEvÔ"GÀ`dG@mAp¬õn7Á±v#5:µÁ±#5:²#Àþk+R£ã!;ìÁ±V"5:*²#ÀžûBvØ-‚cíÃp#0Á±–!5:ö‰àX›Ù`‡޵©ÑÙö†àX;Ù`WŽBp¬ntf :ìÁÑÞ‘AvØ ‚£]#5BCvØ‚£ý"5ÂÙ`8‚#PkÆ"8Ú)†€½!8Ú#R#* #À@GH!8@ ÁRŽBp€‚#¤ …à)nF7åPU¡(ªÑ­øG;¥’-( +ãqªRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ ÅaƒãÑ£G#""öîÝk»èÂ… ï¼óNŸ>}Ú¶mÛ£GW^yåèÑ£¶ÕRSSããã###;uê4a„óçÏÝ'#9lp\°`A¹å&“©OŸ>‹/BtíÚµAƒkÖ¬éÛ·ïþýû-«Íœ9sâĉGŽ‰ŽŽööö^¾|ù3ÏuêÔºuë„nnn¾¾¾¶#‹&“I¡ßg àlœ+8fgg¿ñÆk×®µ*oÕª•âôéÓÚÓààà‚‚-)êrssµEFwÀÎ}||V¬X±|ùr«òcÇŽ !š4i¢=‹‹3›Í[¶lÑ+¨ªšžžîïïit'Œá\Á1888""bëÖ­›6mÒ :´hÑ"ooïèèh­$>>ÞÅÅeÖ¬YÚuBˆäääüüüAƒ¹»»Ý c8Ý]Õï½÷ÞСCŸ}öÙÈÈÈ[o½õÌ™3?ÿü³bêÔ©Z°°°±cÇN™2¥_¿~]ºtÉËËËÈÈhÕªÕÈ‘#n>€aœ.8Þ}÷Ýß~ûí|°ÿþƒ†„„<ðÀÏ?ÿ|óæÍ-« >¼aÆ+W®\³fMhhè°aõyœ“¢MdˆjÁ<ŽÕKQÛ)À~8í±Þ¹®q@• …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@Š›Ñ €³S”j¨¦ªFw'@p„ÁÈ|Ôœª€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤8lpmÛ¶íҥˈ#¶mÛf[-555>>>22²S§N&L8þ¼Ñ}r^F7¨ ›(ì›(ª‹›Ñ ¨) ,(·üêÕ«O>ùäž={|}};tèpåÊ•;vlݺõ¥—^zþùçõj3gΜ;w®——Wttt^^Þòå˳³³SRR<<<Œî€1-8šL¦Ã‡§¥¥-Y²¤Ü K—.ݳgO»víæÍ›§¥ÀìììaÆ͞=»[·nwÞy§"+++99988xÙ²eAAABˆ¤¤¤”””iÓ¦Mš4Éè.ÃÑNU÷íÛ7!!¡¢Ô(„øî»ï„o¾ù¦>vؼyóÑ£G›Ífý„õÒ¥KËÊʵÔ(„?~¼¯¯ïÚµkËÊÊŒî"€1mÄ1))©¤¤D±páÂíÛ·ÛVÈÍÍõòòjÕª•eaóæÍ…ÇמîÚµËÅÅ%66V¯àêê“–––™™et/ àhÁ±sçÎڃ͛7—[á“O>qs³îõ„·Ýv›BUÕœœœ€€€€€Ë:áááBˆãÇ€sr´àxM-[¶´*ÉÈÈHNN®[·î€„EEEf³ÙÏÏÏªš¯¯¯âܹs2ŸÂýkÕŽU ;Ç& ;Ç&ŠjátÁÑ’Ùl^´hÑÔ©SÍfóôéÓ…ÅÅÅB///«ÊÞÞÞBˆÂÂÂk¾mVV–Ñ=¨~ÎwìØñ÷¿ÿýÈ‘#¡¡¡“'OîØ±£Vîçç§(JQQ‘UýK—.‰¿Æœ3ÇÒÒÒ÷ßÁ‚õêÕ{ñÅGŒa9;£›››¯¯¯íÈ¢ÉdBè÷Y8§ Žeee¯¾úêúõë»wïþöÛo—ƒƒƒsrrL&“^˜››«-2ºÆp´y¯iÁ‚ëׯ:tèìÙ³+>Œ‹‹3›Í[¶lÑKTUMOO÷÷÷ŒŒ4ºÆp®à¨ªêÂ… ëׯ?nܸJªÅÇÇ»¸¸Ìš5K»®Q‘œœœŸŸ?hÐ www£;` ç:U}öìÙcÇŽyxx$$$Ø.8pà°aÄaaacÇŽ2eJ¿~ýºté’———‘‘ѪU«‘#GÝÃ8Wpüý÷ß…ÅÅÅû÷ï·]ªßX-„>|xÆ W®\¹fÍšÐÐÐaÆ%&&j3ò8'EUU£Û€ZÀ¹®q@• …à)GH!8@ ÁRŽâ\€£-[¶ìÍ7߬¼Î3Ï<óꫯÝR!„X³fÍ+¯¼bUÖ¼yóÇ{¬[·nF7Õ¯vm¢–>ûì³÷ß_ñÞ{ïÅÇÇÝÔ”Zº‰nß¾}Ù²eû÷ï?}ú´Ïí·ßÞ³gÏÇ{ŒŸäuGTQHHH—.]ô§§NÊÎξå–[š6mª6nÜØèfþÐÐÐfÍši¯^½zòäÉôôôôôôW^yeôèÑF·Õ¬6n¢šo¾ùF{°jÕ*‚£«u›èÕ«Wß|óÍ•+W !|}}[·n}þüù={öüüóÏ .üꫯüüüŒn#jž T‡ÔÔÔððð)S¦Ýò}ûí·áááo¿ý¶UùÖ­[[·nݺuëüü|£Ûˆše盨îàÁƒáááýû÷ïÔ©SDDÄÉ“'nnûßD'Nœ·{÷n½ðäÉ“Ï=÷\xxøOùäo¿ýÖ¬Y³ûï¿ÿøñãË—/OOOŸ7o^‹-„#GŽTUõÞ{ïmРÁüñý÷ßoÙ²E;q£½IAAÁÈ‘#CCC‡zðàÁÍ›7>|8<<<33³{÷î5úî»ï&NœÚ¹sgù¶íرcÇŽáááwß}·Ñë †±ŸMô§Ÿ~:sæL—.]4h|èСìììæÍ›½’`${ØDׯ_/„èß¿¹-ìß¿E‹à`ލq~øáo¿ý6~üø§žzJ+Ù°aÃK/½4}úôO?ýTñïÿ»´´455UOoÚ͆6lÐÿäöìÙsÆŒ®®®Bˆ#Flݺµ¤¤dÕªU!!!BˆèèèwÞy'==½’£rzzº~ÌŸþyêÔ©œœœèèèiÓ¦iãŽpNö³‰®ZµJüulV¥gÏž_~ùeZZÚ˜1cŒ^I0’á›hqqqAAA`` §§§Ñ+ã`‰še2™/^|Ï=÷èï„=zôèÓ§Ï?þxìØ1!DïÞ½§OŸn9æ§Ýû|îÜ9Ë·3fŒö÷NѱcG!DBB‚ö÷N¡ÝœXPPPIcNœ8±ù/[·nÍÉÉBäååíܹÓèõÃØÏ&Z\\¼~ýzOOÏîÝ»k%úÙjUU^O0Œ=l¢gΜB½2`qâÄ»ï¾úöÛo½ÂP³ލYÚ©^xáÅ_,·BQQÑ#ùä×_=kÖ¬^½zùûû[.*))Y¸p¡âº&µ@-ÅÍ1¨Y}úôÙ¹s§ögEóý÷ß¿ûî»;wîôõõÕNX^Ž}ñâÅéÓ§ !ÌfsM7¯´´tòäÉBˆ{ï½×èUcØÉ&ªÏûm»H»ˆ‚ –l¢-Z´x衇 h™bóóóÇŒsôèÑöíÛ÷èÑÃèµ…Lj#jÜ믿¾oß¾ÿû¿ÿ[ºtiDDDAAÁO?ýäéé9eÊ!D»ví5j”ššzøðáÈÈÈsçÎ¥§§GFFÖ©SgÆ 5²¼‘ðYNÇ#„(**:tèPaaaXX˜åêp6†o¢GŽ9pà@Æ ;tè`»´_¿~³fÍÚ´iÓåË—½¼¼Œ^[0€á›¨fòäÉ%%%7nüÛßþæããa2™rssKKK›5k6eÊæ5s|ǨqÁÁÁß|óÍðáÃÝÜÜ6lØ——׿ÿo¾ù¦eË–Bùóç÷éÓçĉ+V¬8uêÔĉ?ùä“gŸ}Öl6Wïï­YNdzyóæŸþ¹aÆ?þø7ß|cû[p†o¢úôúT)–5jt÷Ýw_¹reÆ F¯*ÃðMTS¯^½Ù³güñÇÝ»w÷ööÞ·oßÅ‹£¢¢Þ|óÍU«VqÁ“P˜ 2q€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRþsŒ"Ì—ÆaIEND®B`‚statistics-release-1.6.3/docs/assets/boxplot_301.png000066400000000000000000000357631456127120000223570ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A;ºIDATxÚíÝy”Õý7àj…†ÅŒl‘€ ¸ F\¢ˆwQãD;1¨‘îÄ1.qDQQÜЄ¸¢q &l*?A@£ :3ôûG'ýNf;=ÕÝó<Çãé¹tU«ºªúÓ·êV'’Éd›³MÜG‚Ž"8Dp ˆàX_Ì;7±9íÛ·»ÌÌ]ýõ©¥èׯßÖ|ÝÕ«W_pÁßÿþ÷ ŠŠŠ¾ùæ›M>bĈTÙG}tªåÁLµì»ï¾›}•Z¾úÖôüóÏÿùÏþóŸÿ¼jÕª­ùºqm9*|ó«ò™µQy_Ø¢ Uå¹¶–œÞ ãÚ‹É*q¹íꫯ~øá‡S×®]»•_eë¼z8óÌ3S¾öÚk‡~xÜåP9´™…³AfÀJ#ë§Ö­[VnoÓ¦MÜ¥åžI“&¥|ðÁýúõÛn»íj9⢢Ž;FQÔ¶mÛ;J¿:õ\øæWå3³S• ÙOp¬Æ—Ó_/^Ü®]»† Æ]HEÑŠ+R† vì±ÇÖ~†ýû÷ïß¿à«Ôù«“Ͷ–¾ùUùÌì”C¥Bös#½öÚk髯ºêªTãÚµk‹‹‹S½zõ*++Kµoܸñ‰'ž8ì°Ã:tèШQ£:zè¡?þø† Ò3L_Óó“ŸüdÑ¢E èØ±ãŽ;îxæ™g~ðÁQM™2åôÓOïØ±ã÷¾÷½Ã;ìÍ7߬ûì³ï¼óέ[·¾å–[BgÅŠ—]vYïÞ½‹ŠŠvÙe—SN9eæÌ™!~óÍ7Ç?âˆ#Z·nݺuë¾}û^sÍ5kÖ¬I?aÕªUK–,Ù¸qcêϯ¾újÉ’%¥¥¥›˜çÇ|úé§·iÓæä“Ož>}zåçT¸«ºWÙì«ovÁ˯ÛÒÒÒn¸aÇw¼á†2›Ã—_~9dÈ}÷Ý·¨¨¨{÷î7ß|sz¸ú꫉Dúgß¾}‰Ä¦/Ç\¹råe—]và6oÞ¼cÇŽG}ô‹/¾˜Á{T›÷w³«hÆ <ðÀAÔ®]»¦M›î¹çž?ýéOß{ï½Í¾tÈ„5Ýò·óÍ®ØÀÍ/ªþÇÀJBö… ú÷ïŸzÅò)ð˜cŽI5žxâ‰éÆÞ½{§¯»îºÊ¥nÿþ÷¿‡ Ò³gϦM›vïÞýÑG ù…ÞÀM7ð%jt€­r+ ™CHå›]iµ<àd¼7ƒ$õÜ9sÒoúk¯½¶é'0 õÌÆöÙgÉdrĈ©– ̘1#ýÌÓN;­ÊíêÔSOM?'u쎢¨{÷îÅÅÅ埶Ã;ÜsÏ=Ûn»mùÆD"ñæ›oV˜¶OŸ>»ì²K…W9÷Üs+¿ÊI'”nüë_ÿÚºuë S%‰+®¸bÓk`Ú´i•_.Š¢öíÛ¿õÖ[©çœtÒI•Ÿðá‡V7ÏéÓ§W¸ ¨¨è˜cŽI=þñœzÚþøã .ܸqc•+ªüK·hÑâ”SN9ì°ÃÒ33fLÞ£*7Œ ¦­¼ŠÒÿTXXxâ‰'ôÐC©ÆF 4(½Ãýõ×éçüìg?Kµ2$ÝØ³gÏTãm·Ý–j) |á…’Éäúõëûôé“n¼ûÉdYYÙyç—j)..®<íqÇ·nݺd2ùé§ŸvéÒ%ÕxàVxf:\sÍ5©–òß­ï»ï¾Tã~ðƒêÖÕ7Þ˜zN³fÍRÑ'™L¾ÿþûéîÒ«®º*ýäôgù¦ãøý÷ߟzZQQÑ”)SR—_~yåË*;rª{•*Û¼üºíÖ­ÛØ±c§L™²hÑ¢Ìæpß}÷¥çÍ›—ÎŽå{ WTú¥;tè°jÕª ‡rHMߣÊFÓV^Ex`ªý¦›nJÄGTX•N¾å¾Y+6|ó«üÌÀJÂ÷…ÊÒ‹ÿ—¿ü%™L>ýôÓQ%‰TãŸÿüçd¹c×1ÇSÓ…*¿Úï¹çžTãØ±cÓ³gÏ®å¦þ`+l¥s¬<¹Å8ïMÄBp¬/j7nÜxÐAUxŸþô§òó|ùå—ÇŽ;vìØ?þ8Õ²zõêô)ËÊŸ¾åÚøÃR-Z´Hw>½úê«©Æ‚‚‚ Ó¤_%™L>û쳩öD"QRR’¬*ì³Ï>©–W^y%=áÚµkÓ_îß{ï½*×Uú¤IútOÊÍ7ßœjßsÏ=Óy(½2¯¹æštãwß}—>=T‡Á1pÁÓk¬qãÆŸ~úiùÙÖt{ì±GùÉÓGü¡C‡ÖtE¥?ÕÊZ,_¾¼{÷îÝ»wßÿýKKKkôUÞ02˜v«¨K—.<òHꊎÏ>ûlΜ9sæÌY¾|yu 8aø–øf®ØÚÇÀJÂ÷…Ê~ñ‹_¤žsíµ×&“É¡C‡¦Þ¯víÚEQtýõ×'“É /¼0õœÔ7Ò-TzµwíÚ5Ýøõ×_üg éÓO?]ËM7ü%jz€­¼•Î!°òä–?àÔto"FU×GÕÝŽ§üIÆD"ñàƒvïÞ=} õ‰'žXþòó(ŠŽ:ê¨(оüòËW^yeÆŒ³fÍš>}ú×_]Ýë–?. ]»véƒ*«JÙc=Êߟ<õÒQ%“Éýë_ݺu«<ÉG}TáÉ,X°`¯½öªÜ>þü*'<òÈ#Sß­,X°qãÆô¹˜ébÊßÜx»í¶;òÈ#Ëw6Ô‰š.x=RŸ»Ï¡ÂExéKÒƒ*Â-\¸0õ Ý EQ›6mÒçSjóe0måUtÔQG¥®ýŸ?þyç—H$zôèqôÑGŸp U^­•ñ„›Ýò߬À[•Ôf_8âˆ#~ÿûßGQ4uêÔ(ŠRCjößÿ•+WNœ8qÆŒéÆÔ“3^–N:¥7mÚôûßÿþ’%K¢(J ¬¬¦kx³/QÓl•[iÈj¹mÔþ€“ñÞD,Çú(ðv<ݺu;òÈ#_xá…ÔŸåÏ%¥¬_¿þꫯ¾÷Þ{Óƒy [µjµråÊ*g˜ˆåƯ —Ò7nܸyóæ«W¯Ž¢è³Ï>«׬Y³Ù;þùç•׬Y“šmTé®oéà»nݺ+V„ßníÚµéuRaAêü×z2Xð #–2˜C…w¶Ê7:°øôÊoÑ¢EÈÓjúe6m…UEÑ7Þ¸fÍš‡~ø»ï¾‹¢(™LΜ9sæÌ™#FŒ8øàƒ'L˜¾ê«–nzËßqÇCÞ¬À[›M-÷…C=´   ´´tÚ´ieeeï¾ûnEûï¿ÿòåË'Nœ8}úôuë֥ή´k×®Êï“*—6»Ig°†7û5=ÀVÞJCæPËm£öœ¨{±p;ª5uêÔ—^z)ýgúʰ´#FÜy祥¥;ï¼óÈ‘#ß{ï½5kÖüñ[¢˜ôäRJJJÒwN©pe}J³fÍŠŠŠR'Mš´°*gžyf•6oÞ<õxùòååÿ)ýçvÛmW£YaaaúÖÜúéCv]É`Á+|be¼êj¯¨¨(}õý_|±‰eÌø=ÊlÚÊêÛn»íïÿûU«V=ùä“ H&‹¢èoûÛ•W^Y]ñ5pÓ[~à›¸bk#°’Zî Íš5KuA­Y³fâĉ©U±ÿþû÷êÕ+Š¢Ï?ÿ|âĉ©“$µénÌÀ–XÃ5=ÀVÞJCæPËÊkÀ‰j±7 Á‘ª•––^xá…åO5¾ùæ›>úhùçŒ92õàþûï4hÐ^{íUPP°téÒ-QÏܹs—-[–þóÕW_M&“Qm·Ývéšìºë®éeÙ¥œ–-[¶hÑ¢E‹ÕO_€ŸþÁŒ vêÔ)}ARˆ ì´ÓN©Ç¯¼òJº=™L–¿ie]ÉxÁëp™I$é³Þ©s‘)Ÿ}öÙpÀvØa©m²6ïQíßßï¾ûnÅŠ+V¬øî»ïN;í´±cÇ®\¹òÕW_MŸV{ûí·ëjÂÍnù!oVøŠ­Jj¿/ôíÛ7õ uκiӦݺuK_¥—>(y䑵\œÙk¸öØ9Ô¾òZ.2Þ›ˆ‹àHÕî¸ãŽ÷ß?Š¢fÍš¥ïÑú«_ý*ýÛö_ýuúÄW_}•zðî»ï¾þúë[¢žõë×} vé˜Q£F%ÿ{[Ý &|ï{ß+..îØ±cuW ¥ï'wï½÷¦ïa;gΜÛo¿=õ¸üµYR="æyóÍ7ÿóŸÿ¬óu•ñ‚×á6!õ&VçG?úQêÁwÜñÙgŸ¥ßu×]S¦L™2eJÆ S'øjóÕþý7o^›6mÚ´iÓ¶mÛE‹EQTPPзoßômª;å—Á„›Ýò߬À[•Ôr_Hw%¦5½zõjРA«V­~ðƒDQôÖ[oEQ”H$ÂkÓd¸º]õ?À†Ï!ƒÊ˯´Z.2Þ›ˆMÜ£sØJʪn׮ݮÕHõg,Z´(ýñ7¿ùͺuëÒ— 0 5Ã7¦GØ5nÜø„N8ñÄËÿÚ&L&{ì±Tcù¹“'ON5VU®üðÃoÖ¬YêÏm¶Ùfîܹսʿÿýïô)C=tøðá§žzjz¹n¸á†êÖÕ·ß~›îÅ,,,<î¸ãN<ñÄ&Mš¤ZÚ¶m»zõêô“ Ïž=;}‚f»í¶;øàƒ+Üû·GU.x•ïKÌáŒ3ÎHµÿêW¿J7¦oÞvÀÜ~ûíëׯ¯rE­X±"ýþ¶nݺÿþåÀĉkúUyÇŒ§M)++Kßî¸M›6çŸþСCO;í´ôð²ßüæ7U.]ø„á[~à›¸bk3ª:°’ð}¡J6lHŸ¢hذa©ö“O>9ݸ÷Þ{—Ÿ¤Ê…ªrƒ¬îO_óÄOTWXà|‰Z`k4‡ÀÊ«[iµ<\d¼7Á±¾¹Oôßî¤Ïò§n†f̘F <ø¼óÎK°¨ŸÇ*lܸqÈ!“&MêÛ·ïðáÃ[µjwEñ«0f̘I“&õïßøðáq×÷gª$8V”L&ÇŽ[TT4lذ¸k‰k üÿÇîò¤ Ž­Zµêã?.,,0`@åíׯßÀã® ‚cEK—.¢¨¤¤dΜ9•ÿÕÀj Þ+ÚgŸ}Ü… 2¿U @=Ž u Ž u 8U @Á€ ‚#AG‚Ž"8Dp ˆà@Á€ ‚#AG‚Ž"8Dp ˆà@Á€ ‚#AG‚Ž"8Dp ˆà@Á€ ‚#AG‚Ž"8Dp HAÜÀ”HTјLÆ]ä&Á‘|–Έ‰„¼µåT5AG‚Ž"8Dp ˆà@Á€ ‚#AG‚Ž"8Dp ˆà@Á€ ‚#AG‚Ž"8¤ î ¯$90Ïdr«¬ òŽàu,™Üá±î$b#rª€ ‚#AG‚Ž"8Dp ˆû8ä0÷š¶&Á ·ey*Ëêa5äT5Aô8?çÜ!'èq ˆà@Á€ ®qÌ+.¶Á1$Q2™í7¾H$ÄF€œQç}:#ràT!‘ˆ¢,ïбչƀ ‚#Aœª†-+oF,åÍ‚1Á¶¼,O3Áé-ËcYx ‚2#8õSv_òŸíß6€zÊ5Ž"8Dp ˆà@Á€ ‚#AG‚Ž"8ÄoU“[àg„ë|žI?& @=#8’­’[ <Ö¡„Ø@½ãT5AG‚ŽÄÏEÃY(™tY ްy¢mÖI$½)[ŸàTM§#Žù#™ŒÙ½{'|;ª—ÍLJl®­žòÁ€-%!rå>Ž”'8æ•lîtÔÝ[B2e÷-Ok¼8°y>Pâ#8°EäMwc~,Em×@¶öJ°• Žù&;;u7–£Ó‘É쀜EÙÑJ¬GêžîFÈK‚cʶNGÝ@äú#ÛÂu¸\ñw:ú@‰›àó²ílµîƬå›<µ$8æ§ìù¾ë ÔCÙs®ó劳ÓÑJ(ˆ»ê@2%Q6|ªÖIwcjqâ•¥N¾É'£D\ýÛqoD‘à˜ÇRßw“É8w4Ý@½• á:—HDq~;É«u™«G€<‘ Žuxuc2ÅÕ똈|éÍJÉ„þˆØ Žù,Þï»vo 6‰(ÆÞ­D"ßNU×þ˜œHDQ~u ’Á±°›C½o§cÞ ¦®+yy¶:f:ã&8Ö1~†[]¬wæÉ«Ïó|êtÌ«îFÙ1V‚c>K$¢¿é&íÛ‡üH;±©®+:É3îã?âßh–-%?'¯ºS’‰üxkr‘Çj=ýôÓO=õÔÂ… 7nü£ýèÊ+¯lÙ²eÜEÕ@¼Ý):óÉ.žón²ååY&ÐéH>ÑãXµ»îºëºë®[´hѾûîÛ´iÓ &\xá…%%%q×P­ØïÅétÌGY×ݘ¢Ó1&‚cæÏŸ?jÔ¨Ö­[¿üòË£Fzå•WÎ:ë¬÷ßÿw¿û]Ü¥…Ê†îÆ”¤};dÃyTGohÞÈÚm¬Ö ϵ<í“¥©‘øŽUxê©§6nÜxùå—·jÕ*ÕrÕUW5oÞü¥—^Ú¸qcÜÕT!ºSò¯Ó±n$cú/阈ƒàX…éÓ§o³Í6‡zhº¥Aƒ‡rÈ_|1sæÌ¸«Ë=:ÙÒt7æìßà‚º"8VíÜsÏÝa‡þô§?½øâ‹mÛ¶8pàå—_žº#d&ÿîËEQ2JĺòkUäÁ±ZÇüñÇwõÔúœåÙBê®›0c'Y¾múòŠóÔä+×8BÍ9×EQ܃šëjtNV‘-ÅjIp$K%“Q”È·sCd¨†¯"yEw#yLp„ÊõîÆ:ê&̧{(êt¤^ÑéHmްUét¬Cyp/I€Übp Ù+‡ÈènLÍ&ºSbôùµ2<&8B ’1u”eñÏg¨®î%sÏeÞq _ Ždµlìt¬ ‰øbBícVþu7È5ެ.ÎSçß=ÀcWû+‰(î+O Vrƒà@Á‘l—-7tÌõa1iµëŸËÎóÔµétÌ‚îÆÿ’ Ul’à[óÔä4Á‘-Žy#Óþ¹ììnüÏ2e´PYÓÝøßr²§€ªŽÀ°¡žªyÿ\6w7f&˺ÿ[T¶UPŽû8’rý‡=t7GrCÌÁ+ï:ÛÈÊîF€lçT5ÔWµ¾o6[†³Õ@ö!@²VŸåÎSgݙɉD”?Wt:f)Ž@–aËÒÝ@ÞÉvÙÒÝX»³ÕÙK§#ÁG‚¸K&uñ29!™Œ~î•ÿ%8’Õ²å<5d±,ßC|×ÊiuûöåßPÕC‚#Ô„NG²Lo>ÚMp#ÙKw#dÁ€ ‚#Y*{»óõ¾<°9®q€:–僑]ÆJÆǼ’凪üaˆ P=#–Èc‚cþ؇•¸ŽVÙ{žê1×8Dp ˆSÕÄÏuô8Dp ˆà@Á€ ‚#AG‚¸P?¹S @ Ž@d2JäËÏ@ºe @fG TÝf#a ç¸Æ€ ‚#AG‚¸Æ¶¼|S@='8–e/yéj‚Ž"8Dp ˆà@Á€ ‚#AG‚Ž"8Dp ˆà@Á€ ‚#AG‚Ä]T#‘Œ»àŽd£d]‡ÆD¢îç õSÕ"8Dp ˆà@Á€ ‚#AG‚Ž"8Dp ˆà@Á€ ‚#AG‚Ž"8Dp ˆà@Á€ ‚#AG‚Ž"8Dp ˆà@Á€ ‚#AG‚Ž"8Dp HAÜù,‘¨âq2wYdDp¶ 1Ÿ8U @Á€ ‚#AG‚Ž"8Dp ˆà@ÁØ*Êÿø ¹Ip ˆà@‚¸ ÈR%%%O>ùä3Ï<³téÒ¢¢¢Î;Ÿ{î¹x`ÜuÄFp¬Biié9çœ3{öìæÍ›pÀëÖ­›:uêäÉ“/½ôÒK.¹$îêâ!8Vá©§žš={vÏž=yä‘ÂÂÂ(Š,X0pàÀûï¿¿OŸ>]»v»@€ºTaÄBêÏd2î²€ìãÇ*¼üòËQ]{íµ©ÔEQ§N.¾øâ²²²wÞy'îêêX2YÅP‰ÿù¯r‹qÖ¹Fc/^ܤI“Ýwß½|c§N¢(úä“Oâ®rD…¯ ‰„/%¹Np¬Âƒ>XPPqÍÌ;7Š¢öíÛÇ]@<Ç*tëÖ­BË”)SFÕ°aÓN:)d]ºt©Ð2þü¸ ÈDåõzKpÜŒ²²²qãÆÝvÛmeeewÜqGqqqÈTb"äÊëõ6JÖëàXZZúÐC¥ÿlРÁ…^Xþ S§N½ñÆ-ZÔ¶mÛ›o¾¹wïÞq— ›z7lØp÷Ýw§ÿlذa:8®_¿þöÛo3fL£F|Þyç¥GX™02&÷ÕëàXXXXå9å72dÒ¤I}ûö>|x«V­â® ~õ:8Vg̘1“&Mêß¿ÿðáÃã® [Ž%“ɱcÇ 6,îZbSþ†¬~CH+ZµjÕÇ\XX8`À€ÊÿÚ¯_¿Æ]ã÷ÿc¢›µÿ%8V´téÒ(ŠJJJæÌ™Sù_ ¬Èf•O˜DΙ@Ý+ÚgŸ}Ü… GɈ°Emwä=ŽŒX v‚#ä1€Ø Ž”S¾S«ºFùê+Á‘r*‡B·ãþËà‚Ž"8Dpd“ŒŒþKp ˆà@Á€ ‚#Aür @†Êÿgú±e@2$#õSÕÑãÙ¨òµ:¹‰àÙHL$ 9U @Á€ NU[•[Øä.Áتò3#&yº`ÿéj &åûÈ‚#AG‚ŽbT5@ U9¬§B£AÖ@>­¥rުܒy«r‘nÇÔ‚#°µTˆVÂ@®q#AG‚Ž"81ɧ‘1ù´,Õ!×TyAØòG‚Ž"8Dp ˆßª†ìVåê îÀV!8Bv«  I€X8U @Á€ ‚#AG‚C>+?ø8ý8ç–äü«Gò™ˆuÈ©j‚Ž"8Dp ˆàHýPþÆ<@FG‚Ž"8Dp ˆßª&U9†ºB£ß±€ÉG•Ca"!)@- Žä£ÇH§cܤy€\#8’ô8À`p AG‚Žq#°µTŸdÄ@N©Ä‘lPá]0b ×8U @Á€ ‚#AG‚Ž˜R kG‚Ž"8Dp ˆà@Á€ ‚#AG‚Ž"8Dp ˆà@Á€ ‚#AG‚Ž"8Dp ˆà@Á€ ‚#AG‚Ž"8Dp ˆà@Á€ ‚#AG‚Ž"8Dp ˆà@Á€ ‚#AG‚Ž7oÙ²e={ö¼òÊ+ã.$]ºt‰» ’·Ë’7 bY²SÞ,H>-KÞ,H}&8nF2™6lØÚµkã. f‚ãf<öØcÓ¦M‹» €ø Ž›²`Á‚»îºk·Ýv‹»€ø ŽÕ*--:thË–-¯ºêª¸kˆ_AÜd¯ûî»oÞ¼y£GnÖ¬YܵÄOp¬ÚìÙ³zè¡öîÝ{îܹ5<ŸŽåͲäÍ‚äÓ²äÍ‚X–ì”7 ’OË’7 Ro ŽU()):thûöí‡ ’ÁäóçÏ{ ê^½Ž¥¥¥=ôPúÏ \xá…QÝzë­K—.?~|aaaÜ5d‹z7lØp÷Ýw§ÿlذá…^8mÚ´ñãÇÿüç?ß{ï½ã. ‹$’ÉdÜ5d—qãÆýæ7¿©î_;uêôüóÏÇ]#@ êuc•:tèpì±Ç–oY½zõäɓ۵k×£G6mÚÄ] @<ô8nÞܹsO>ùäN8áöÛo»€Ø¸8AG‚8U @=Ž"8Dp ˆà@Á€ ‚#AüV5Õú׿þuôÑG?õÔS{ï½wܵd¢¤¤äÉ'Ÿ|æ™g–.]ZTTÔ¹sçsÏ=÷ÀŒ»®L|õÕWwß}÷Œ3–.]ºÃ;ì±ÇƒÞyç㮫V–-[vüñÇ÷éÓ'GÌóÔSOýàƒ*4¿óÎ;q—–‰>øàÁœ;wîÚµk»té2xðàý÷ß?î¢j ¤¤¤{÷îÕýk§Nžþù¸k¬™õë×?þøã/½ôÒâÅ‹[¶l¹çž{þâ¿èÔ©SÜuÕXiié¨Q£Þxã tÐAW^yåöÛow]dHp¤ZcÆŒ‰»„Ì•––žsÎ9³gÏnÞ¼ù°nݺ©S§Nž<ùÒK/½ä’Kâ®®fÖ¬YsÜqÇ­ZµªS§N‡vØòåË_|ñÅI“&=ùä“{ì±GÜÕe(™L6líÚµq’¹?þ¸°°°cÇŽå[´hw]™xýõ×/½ôÒ7î¹çž:uzçwÎ:ë¬?üá}úô‰»´P‰D¢k×®•Ûׯ_¿hÑ¢æÍ›Ç]`Í”••}öÙ3gÎl×®ÝÁüå—_¾òÊ+¯¾úêã?¾ï¾ûÆ]] ”””ôïßÿŸÿügûöí=ôÐÅ‹?ûì³ï¿ÿþã?^\\wud$ ÿkõêÕÓ§O¿á†:wîܹsçÙ³gÇ]Q&Æ×¹sç3Ï<óÛo¿Mµ|ôÑGûí·_×®]ÿùÏÆ]]ÍÜtÓM;w¾óÎ;Ó-&Lèܹóé§Ÿwi™=ztjûÕ¯~w-™X½zuçÎ/»ì²¸ ©_}õU¯^½öÞ{ï3f¤ZÞ{ï½=öØ£wïÞeeeqWW[wÜqG×®]?øàƒ¸ ©™Ôì²Ë.Û°aCªåïÿ{×®]<òȸK«™#FtîÜyøðᥥ¥©–±cÇvîÜù—¿üeÜ¥‘!×8RÑñÇ?`À€'žx"îBjåå—_Ž¢èÚk¯-,,LµtêÔéâ‹/.++˹3‰ÿøÇ?  ”n9ùä“Û´i3wîܲ²²¸«ËÄ‚ îºë®ÝvÛ-îB2÷ñÇGQT¡»1GM˜0aÍš5_|qÏž=S-{íµ×ÑGýùçŸW>Ÿ[>üðÇ~ø¢‹.ʹ¾ù™3gFQtöÙgüçÄàеk×ÿû¿ÿû÷¿ÿwu¡’ÉäÓO?]\\|õÕW7hÐ Õ8`À€Þ½{¿öÚk_ýuÜ’ Á‘ŠFŒ1räÈ‘#GöîÝ;îZ2·xñâ&Mšì¾ûîåS—}òÉ'qWW3-Z´èÓ§O£FÊ76lØpýúõëׯ»º+--:thË–-¯ºêª¸kÉÜ’%K¢(êСCÜ…Ô·ß~;‘HœtÒIåo»í¶ùóççèõÍ)eee×\sÍ.»ìòóŸÿ<îZj¬mÛ¶Q•ψÉdò«¯¾Úf›mÒQ2û-]ºôÛo¿íÖ­[Æ Ë·ï·ß~ß}÷]Î}‡'%g¶?¶šƒ:(õà7Þˆ»–Ì=øàƒ•¯sç΢¨}ûöqWW3cÇŽ­Ð2}úô?þ¸{÷îéþÔrß}÷Í›7oôèÑÍš5‹»–Ì¥‚ãòåËÏ:ë¬yóæ5nܸ[·n_|q.&­9sæ´lÙ²M›63f̘5kÖW_}µÛn»õíÛ7·®òÆ7wîÜG}tÛm·»–;î¸ãþøÇ?Ž1¢qãÆÝ»wÿòË/G޹téÒÓO?=‡vœm¶Ù&Š¢’’’ í©o¼+W®Œ»@2!8’ŸºuëV¡eÊ”)£Fjذa…ž•2kÖ¬ &,^¼xÖ¬Y?øÁn½õÖ¸+ª±Ù³g?ôÐCìÝ»w*Çç¨T¿õ=÷ܳÓN;pÀŸ~úéo¼ñÖ[oýú׿>í´Óâ®®Ö¯_ÿõ×_ïºë®¿þõ¯ÇŸnoß¾ýÝwßsgxÓ¾ù曑#Gî·ß~9zæ¤K—.cÆŒ9çœsÎ9çœtãÀ¯¹æš¸K«víÚÍ™3gåÊ•­ZµJ5nذaÒ¤IQ­Zµ*îÉ„SÕ俲²²?þñçŸþ·ß~{Ë-·äîP¾ùóç?óÌ33fÌ(++Û}÷Ý·Ûn»¸+ª™’’’¡C‡¶oß~È!q×R[Ë—//,,¼öÚk_~ùå{ï½w„ £G.((¸ùæ›—-[wu5ºÎláÂ…/¾øâ­·Þ:uêÔ·ÞzkðàÁŸ~úée—]V¹¯(W<úè£_~ùåW\w!Z³fÍ-·ÜòÍ7ßì¾ûîgœqÆGQXXø§?ýéõ×_»´H$\pAIIÉ AƒÞ{ï½’’’yóæ 4háÂ…Q­[·.îÉ„GòÜÔ©So¼ñÆE‹µmÛöæ›oÎÑ3Î8ãôÓOÿüóÏÿò—¿üîw¿›9sæ /¼Ð´iÓ¸ë uë­·.]ºtüøñ¹~4Š¢Ç{¬BKïÞ½úÓŸ>üðï½öÚYgw¡Ò×ÎÞrË-é›ïüâ¿X¶lÙ„ ^xá…SO=5îkì믿=zô¾ûîÛ£G¸kÉÐСCß}÷Ý«®ºêg?ûYªeÙ²egœqÆ/ùˉ'æÐ=\Ï?ÿüÿû¿ÿ{öÙgÓ=ñíÚµ;ÿüó~øá¢¢¢¸«#zÉ[ëׯ1bÄÙgŸ½lÙ²Áƒ¿ôÒK9S‰Ä;ìpî¹çž~úéŸ}öÙ+¯¼wE¡¦M›6~üø‹.º(¯ ´ß~ûEQôÑGÅ]H 4iÒ¤Q£F………‡vXùö¾}ûFQôá‡Æ]`&žþùo¾ù¦_¿~q’¡•+W¾ñÆ»îºk:5FQÔ®]»Ÿÿüç6lxî¹çâ.°4hðÛßþvüøñW\qÅYgõÛßþö¹çžûÞ÷¾EQêÿä=Žä§72dÒ¤I}ûö>|xúòšœ³`Á‚Ñ£GrÈ!G}tùöÔ€ñ+VÄ]` $Š¢Ô€ýòí'Nœ8qbný°G2™Ü¸qc"‘H]ûŸ–ºáHÎõ£´jÕꫯ¾J$åS½Â¥¥¥qW—‰§Ÿ~º°°ðÇ?þqÜ…dè‹/¾ˆªºÙSª£1/ ÜgŸ}öÙgŸôŸ©SÕ{î¹gÜu‘ Á‘ü4f̘I“&õïßøðáq×R+Íš5{öÙgW­ZU!8¦î#¸ÓN;Å]`¨:{ì±å[V¯^=yòävíÚõèÑ£M›6qXK–,9ꨣöÛo¿ ¿®4kÖ¬(Šºtéw5sØa‡=þøã}ôQçÎÓ©ûæâ½6çÏŸ?wîÜc=¶I“&q×’¡Ž;6hÐ`Á‚Éd²| Ÿ?~E»îºkÜÖÀ7Þ¸dÉ’Ûn»-}qùºuë^yå•âââÊCÉ NU“‡’É䨱c‹ŠŠ† w-µÕºuë.]ºLž<¹üEñ~øá¸qãš6mšC?>vÐAÝù¿Rzõêuçw:4îk cÇŽ={öœ6mÚÓO?nœ5kÖèÑ£ÛµkwÔQGÅ]`ͤNé^wÝué»~ðÁ<òHóæÍ8∸««±·Þz+úïe9ª°°ðCY²dɽ÷Þ»qãÆTã‚ F޹ÝvÛU¸¨ ˵hÑâwÞ¹óÎ;S–••]{íµk×®ýéOšC7¤¤nܸLµ<òÈLÉĉ3%}úô©ðYªùìÙôÄO<öØc=öØêÕ«³ù¼I½1ê¨ð·_©÷¬Ž’Ÿ…ì+ç<Ù AƒîÝ»6ìí·ß.kó™3gŽ5ª{÷îÍ›7ßi§¾ûÝïžzꩯ¾újø5iÒd·Ýv;餓Þy笽jŸÊ×(é @½òë_ÿúî»ïÎÜ^¿~}–Ÿ%;Ï^#N>ùäL Ÿþù&]*¡½ÍjO:~ÿý÷ßÿýéÓ§?öØcÅÞÃëÖ­ûÙÏ~öÈ#-œ3gΜ9s&Ož|ä‘GNž<¹M›6>Ë–-[>þøã|ðÑG½í¶ÛF•ôëÁ‘(j×®]AAAÉòöíÛ']µºgÆŒ™‡vØÐ¡C·Ûn»j>`óæÍ»téEQ‡*|–vò\øÛ¯Ô{Ö'EÏ“[·n]½zõW_}Eц F=oÞ¼øž_~ùe¿~ýжD6hÐ •JfþùôÓO}ôÑ/¼ðÂöÛo_þ}ñÅk×®¢è«¯¾:ï¼ó еkפ÷y/M^š?~üxþùç“®NµüûßÿÞ¼ys±Â+®¸"óêŽ9æ˜lVf‡vÈ<ïO¼M›6{ì±G»ví®¿þú—³råÊ .¸ààƒnÞ¼ùž{îyÜqǽùæ›!nذaìØ±GqD»víÚµk7hРË.»lݺuñV¯^½téÒmÛ¶eþ¹fÍš¥K—nݺµœÇüè£N<ñÄ6mÚ´oßþØc}ýõ×KÞ§ØÐ±²ž¥Âg¯ð…Ý·[·n½êª«vÝu׫®ºªjðÅ_Œ=ºOŸ>Í›7?à€®»îºø=ðë_ÿ:•JÅ]œƒ J¥RåÇ\µjÕ\pÈ!‡´lÙ²K—.GyäSO=U…cTã[á.úúë¯ï¼óÎC=´cÇŽ;ì°Ã~ûí÷ÓŸþ´œp± +ûÎ|ŸW¸cß~QÙckòY(UÈ9§:G§,M›6=ûì³ã®X±"sãwÞ™2eJæöI'ô /|ï{ßkÞ¼yãÆ÷ßÿ|ðÔSOÍüõÁ y¢Aƒ 2$s{É’%¥ÞçôÓOÏìüþýû-Ÿ:uj¦¼iÓ¦™Xàî*¦¬Q'Ÿ|r¦üâ‹/®ìA¯ñ#Bö$\IF¥Z‡ž¹gÓ¦M?ýôÓt:=nܸLIÆ çÎß³è÷颎?þøø>ñ×Ù8 Ø(ŸwÞù¶ÛnkܸqÑÂT*õÒK/ÛvÀ€{î¹g±g9rdÉg)ú¥ù…^h×®]±­R©Ô/ùËò÷Àk¯½Vòé¢(êÔ©ÓË/¿œ¹Ï1ÇSòï½÷^Yùúë¯ мyóýèG™Ûq+ËwÞ™)éÝ»w9ÏRþ³‡¼ð¢{,¾¶]qÅUx„Ã?¼GÅî| 'dîý(jýúõeí¨3f´mÛ¶ä&gœqFeQYoŒ*l[lmÞ¼ù ƒ*ù©TêŽ;î(ç­¸aø;?ü}²cß~%ïY©š~JrΩòÑ)ÿ<ù÷¿ÿ=þkÜâxî¹çfJ¶ß~ûO>ù¤äc®X±â´ÿµjÕª'ŠwûÏþóRëùôÓOgîиqãuëÖÅå§Ÿ~z¦üØc ß]%?#eµAÆm®¿úÕ¯*uЫ|DÈ‚cžªTp\¹reëÖ­3w¾ð ׭[·ãŽ;ÆÿŒïN¥R 8å”SöÝwßøY^xá…ÌÝâsPE 4ØÿýãG‹õèÑc—]v‰ÿÙ¿ÿ’ÛFQÔ¶mÛ~ýúÅgQ=ýôÓÅîŸéÖ®]»óÎ;g  põÕWŸ|òÉ |Óè~Ï=÷”õò7nܘ¼•¹üà?øÑ~Ô´iÓLIûöí3gêJǯ¾úªsçΙû4jÔè»ßýnüÅ.–ÕŽ/<Þc»îºkü™TTÙGÈèܹów¾ó¢£¸^{íµt:ýÙgŸ-Y²$ÞþóŸ—,Y²mÛ¶RwTѧnÕªÕqÇW´Måþûï¯Ô1*õQ…mKî¢øOG}ôyç÷ï|'>¾ .,ëݸaø;?ð`îØêÇÀš„Jªì9§²G§œóäÆO<ñÄb/9Nïµ×^™Â“N:)¬¬'Z³fÍ=÷ÜÓ°aÃLUßxãR7ß²eK|Š~ôÑGãòxOþÏÿüOvW‚ceÏ•="äÁ1O=O•%nçK§ÓwÝuW|e=çœsâËç—_~ßçg?ûY¦|ôèÑqa¯^½2…7Þxc¦¤è%ðÉ'ŸL§Ó[¶l0`@\xë­·¦ÓéÂÂÂøër›6mJn{ÔQGex}òÉ'Ý»wÏrÈ!ÅîŸé.»ì²LIÑïÖ·ß~{¦p·Ýv+k_]sÍ5™û´hÑ"}Òéô;ï¼7—^zé¥ñ‡îÝqÇ™»5oÞ|öìٙ /¼°äŲԆœ²ž¥ÔòÀ^tßî½÷ÞS¦L™={v¦¥ pûí·g .\gÇ¢m ;*~êÎ;¯^½ºXa¿~ý*{ŒJ¾1ª°mÉ]tÈ!‡dʯ½öÚ¸òGqD±½QRà†áïüÀƒ¸cÃß~%ïX“ðÏBIçœ*¢çÉŽ;~ëí¾ûîñW‹víÚ-X° sÿmÛ¶eB^EcÇŽM«ð„\PP îŠQ£FeJ>øàƒLI“&MÖ®]¾»ªz•¹@pÌS• ŽÛ¶m;ôÐC‹Ý¡èWÛt:ýÌ3ÏL™2eÊ”)}ôQ¦díÚµq—eÉ«oÑKÑÿøÇLa«V­âƧçž{.SبQ£bÛ6jÔ(~–t:/{‘J¥6mÚ”.íLwàfJž}öÙxÃõë×Ç'ú·ß~»Ô}w©Äý¶×]w]¦|¿ýö‹ óP¼3/»ì²¸ð«¯¾Š»k08¾ðx5mÚ´X[eaß}÷-ºy|=3fLewT|U+z-Y±bÅpÀ|ç;ßÙºuk¥ŽQÉ7F¶-guïÞýž{îÉŒèøôÓOçÏŸ?þü+V”õ7 ç¬À[àX“ðÏBIçœ* Ï“{íµ×Ê•+ãûþùçñŸŠubüîw¿+¹ùÌ™3Ÿ¨OŸ>Ë–-+ç“÷VwîÜ9S2iÒ¤LÉàÁƒ+µ»ªz•¹Àä¢víÚu)MÑNÆT*5qâÄ¢£>úè£>ºèãüà?>|ø~ô£Y³fýêW¿8pà®»îºpᲞ·hgt¼üDÇŽS©T±Â’öÝwߢë“ÿà?ÈÜH§Óÿþ÷¿KÝäý÷ßïO÷Ùa‡â™=‹/.uÃE‹{–Œïÿûñ†ñt@qeŠ.n¼ÝvÛÅYƒ*ûÂ{öìÙ±cÇêå¬lUÙ +|ç¬À[5©Îg!ðœSå£S¡÷Þ{oÀ€_~ùeæŸq3dEU^Ù¾è ¹C‡™óá믿ޫW¯¸±¤fz«—.]úÞ{ïEQô /dþtüñÇWjwUGàA¯½#BŽD<ðÀ‡¥‰dì½÷ÞEOåEû’2¶lÙ2zôè¶mÛž|òÉãÇÿûßÿ¾uëÖRGßgı¨x4LùŠYš6mÚ²eËÌíO?ý´äý×­[WáJÅŸ}öY©fÖQ‹J,PßÍ›7¯\¹2|‡¯_¿~ÕªU¥¾ÿµž*¼ðb3–ªðÅŽl©:°òñÎoÕªUÈÝ*{Œª¶mÉ¥›¯¹æšsÏ=·I“&™¦Óé7ß|sܸqßùÎwúõëWN†¨ì†å¿óVàŽ­ŽÀšTó³xΩòÑ)ªhóê† ¦Nš9Y-X°`âĉ™û4iÒ$áW,µhÑ"ŽƒEóeIEOÈË—/_µjU&R¯\¹räÈ‘emÕ¸qãxjfÀë‹/¾˜)|xZôyæ™™,¸xñâJ…õ6mÚÄ£&^yå•R¿gœp ™Ï<óÌüùó3Ï·D†ï®* ?WÔø!›G‚lݺõ¬³Î*Úa÷ÒK/ýéO*zŸ &dnÜqÇçœsη¿ýíF-[¶¬6ê³`Á‚åË—Çÿ|î¹çÒétEÛm·]nk¹å–[fÏž={öì&Mšd®©Õ9FÕ?¾ .lß¾}ûöí;tè…Ö¨Q£AƒÅË”ÕÂT… +|ç¬À[5©òg!ðœSå£S¡Í›7gn]¾þ»ßýnü‹ÒùË_úõë÷Ê+¯d:pß~ûíQ£Fý⿨Գ|ñÅñÜ”í·ß~=ö(ëžqoõW_}5~üø(Š6lD¯Î):60gΜxã#ºY³f™’:d–ºÈœ,½²Ç¨Ôu«¼mFaaa¼âqûöíÏ8ãŒ1cÆüä'?‰§—ýæ7¿)õÕ…oþθœIFÑ•À£(úãÿX…ÝUêû¼èsÇÛÆí‹E?Ú!½ÊG„\ 8æ©ðàÿîjEãÇÏlþõ×_ÇÚ=öØcãÆétzùòåûí·_ô¿¿sÑE­]»öÖ[oÍÜm»í¶[´hQº†‚ã1ÇóñÇŸyæ™Ýºuk×®ÝqÇ÷â‹/}e]ã—.]zÆgxàM›6Ýc=†Zô7åʱ~ýú+¯¼ràÀíÚµkӦ̀.¿üò¢¿î• ã_'kÛ¶í!CþùÏ^{íµ™’š Ž!/¼üàXG(58®ZµjøðámÛ¶mÖ¬Ù¾ûî›y •å£>5jTŸ>}vØa‡.]ºuÔQ¯¼òJÕŽQY•¬Î¶Ÿ|òÉ•W^Ù§OŸŽ;6nܸuëÖ‡zèÝwß]þw’À Ãßù+pÇV38Ö$ð³PRà9§ÊG§üà8yòäø¯™Ÿ-(æñÇ?ñÄwÛm·&Mšì´ÓNýúõ»ï¾û2Ϙir«086lذmÛ¶GqÄ]wÝUV«|1ñ*ß 4ȬXÙÝUêû|Ë–-ãÆÛo¿ýš5kÖ³gÏóÏ?ÕªU¥~´z•?/$.•þßQP}_ýõO<EÑСCkãñ¯¼òÊÌåä˜cŽùÛßþ–ôË­sçÎ}ñÅG÷BIõï_RÕ> µ}Ωgì.ª¯SA¡B7v>ª”Þ½{Ç“ ŸUí³àœS)vÕgV5AG‚Ž19€ Z"8Dp ˆà@Á€ ‚#AG‚Ž"8Dp ˆà@Á€ ‚cÅ–/_Þ«W¯‹/¾8éŠ$Ip¬@:¾ä’KÖ¯_ŸtE&8Và¾ûî{íµ×’®@òÇò,^¼ø–[nÙk¯½’®@òÇ2mݺu̘1­[·¾ôÒK“® @ò%]Üuûí·/\¸ðÞ{ïmÑ¢EÒuHžàXºyóæÝu×]#FŒ8øàƒ,XP©m»wïžtõ€Z´hÑ¢¤« Á±›6m3fL§NF]µGÈ©÷S÷îÝÕ§nUI}ê\•Ô§ÎUI}êV}r°J¹VŸ¬Kqà 7,[¶lêÔ©I× W˜SÜk¯½6uêÔQ£Fí¿ÿþI× ‡hq,nñâÅQM˜0a„ E˧OŸ>}úô®]»>ñÄI× ‚cq;wþñ\´díÚµ3gÎìØ±cÏž=Û·oŸt’!8w衇zè¡EK,X0sæÌÞ½{ßtÓMI× 1©t:trÝ‚ Ž=öØ!C†Ǽiy"o¯õ&ÇDWuÅöÙgŸüüVP”G‚Ž"8Dp ˆà@Á€ ‚#AG‚Ž"8Dp ˆà@Á€ ‚#AG‚Ž"8Dp ˆà@Á€ ‚#AG‚Ž"8Dp ˆà@Á€ ‚#AG‚Ž"8’u©TÒ5ªBp ˆà@Á€ ‚#AG‚4JºÔw¥Î¡.Y˜N']Q ‚#µ¬d"L¥ÄD¨‹tUD‹#µ¯dÇ´®j¨ƒGj_±P¨«ê&]Õ"8Dp ˆàHÖ™ãJýí$8Dp ˆà@Á€ ~rò[©s¨KZÁò]ÉD˜J‰‰”JW5Ygy0¨›G‚Ž"8ÿÍÌÊ 8Är<Ô2˃@}!8RË,õ…®j‚Ž{¬‘@N"89OWLn"8’u¦T@Ý$8Ä:Ž4k¤PGŽ4k¤PGŽ@Ž éŠñ; ‚#ctÅä*“c"8Dp ˆà¹Ç8 Y~ß2Ž€œ§+&7Ž"8Ä/Ç@~ ù}¿È(C¢Hp€|ç÷ý¦«€ Z ¿Õ‰®j ¹Ap€ü¦«š`ºª¢ÅrïúP;Šõ¾úœAe Žä‹8)úvU£«€ Z€ÿ–x{lÈDïÄ+™—G ǘè«tUD‹#$­N,½ Õ¤¹êÁ’¦G€:BW5A´89Ƭê\%8@bd¡ÒÓ«GHL& EÔ‚#5ªÔNÆHÛÔ‚#$-‡‡òäF-rš]TŠR÷‚&5¨GHZåщV!»È+‚c}¦-€:)‡»bòœàXŸi  Rr%›åpWLž:#W.iPiq |‚#PgÄW2W5€DøÉAÈ=29I‹#h¿‚eG¨¿Gj”u©9E¾n¤#o¢ 89ÊÈæ\cŒ#AG‚èª.ݦM›|ðÁ¿þõ¯Ë–-kÞ¼y·nÝFŽyÈ!‡$]/€ÄŽ¥Øºuëi§6oÞ¼–-[öíÛwóæÍsæÌ™9sæùçŸî¹ç&];ªÍ/Y@•Ž¥x衇æÍ›×«W¯{î¹§   Тŋ1âŽ;î0`@=’® Õã—¬ û|Ä ^0ƱÏ<óLE—_~y&5FQÔµk׳Ï>»°°pÖ¬YI× ZKñá‡6kÖlŸ}ö)Zصk×(Š>þøã¤kP—¢Ùê:Á±'NlÔ¨øžY°`AE:uJºvuI&,õƒàXн÷Þ»XÉìÙ³'MšÔ¤I“cŽ9&äºwï^¬dÑ¢EI¿, *J^Öó–àXÂÂÂxàÆo,,,?~|›6mB¶K•»—s¨*䜒—õ¼’‚cyæÌ™sÍ5×|ðÁ:t¸îºë>øà¤kT·é±€:Mp,Ý–-[nºé¦ûï¿ûí·?ï¼óN?ýôx†5@~K±mÛ¶Ñ£GϘ1cРAcÇŽmÛ¶mÒ5HžàXŠûï¿ÆŒÆ ;vlÒu!¿äî0PKJ§ÓS¦LiÞ¼ù%—\’t]È;†ËÇâV¯^ýÑG >¼ä_‡:bĈ¤ëÁ±¸eË–EQ´iÓ¦ùóç—ü«‰Õ@Þ‹;ðÀ­ÂPRƒ¤+@Ý 8Dp ˆ1Žõ‡¥@Z%8Ô–j•®j‚Ž"8Ääò—ù§P)‚#ù+NЦ @]Õ"8Dp ˆà@Á€ ‚#AG‚Ž"8Dp ˆà@Á€ ‚#AG‚Ž"8Dp ˆà@Á€ ‚#AG‚Ž"8Dp ˆà@Á€ ‚#AG‚Ž"8Dp ˆà@Á€ ‚#AG‚Ž"8Dp ˆà@Á€ ‚#AG‚Ž"8Dp ˆà@Á€ ‚#AG‚4Jº@ö¤RÙÞ0Nú5PsGÈ©T4wú¨¬?éDÙ ÞÐU @Á€ ºª fTy4pu¶5„l ÆLïðx6ŸnÈŠÁåü5‘ ɲõšàXgø" @eeJ\ï!“~ÑÔ"Á±.™>=«_d£(J¥ËŽ@†É1"8Dp ˆÉ1ß°vÔªê|γ¹OY þÏ'ŸôÎæÓí²Ëܤ_q&…ÔEæ^“åg\Ñ{lÒ/º^©"ëʉ›~Öàê?H¥ ™”íeÑ §ŽTÃY˳ýŒ“:&ýš  ŽÑ5 Ž@2¤:I?ä7Áj‹)º2L n¡MïÕqôCVd{¢yÅࢫ GY-È5‚#@îš>=ÛËMb¤,P&]Õ"8Dp ˆàÔ–ÞC&šŸ PŸŽ/Òé¨÷‰I×€:Lp ˆàÔ ýÔõàyDo5Õ!8REétMê˜Õ§œÔQ $Hpj^í§N§£]v™›µ§Ûe—¹uq/ùLp¤þH¥ªø_5·­[ôVPe’®uX:¥R£³–gãÉ*ê§N¥¢ég Îò2éñ,?#$H‹#ÀÿÉZoµ~jê¥::L…p‚#PÃ\9 GšB©–,Í­6ŸºF¹–P5‚#@¶é§¦^ÒÛG &Õƒ+G–å¡ÊÒiÔ*–S= ét´¢÷ؤkAµ˜UM™† ’j}nµ~êZNGQjRíéJåèŠ<•ímȹ¶OÕ¤£Tí,˜•S¶ó–àXº[n¹åÎ;ïlÖ¬YŸ>}–.]:mÚ´Å‹Ož<¹   éªåœZì§Î8ky*U‡ÛòÓÜé£R)‹ºU—/Š s ”S«·úì×Q‚c)-Z4iÒ¤víÚýõ¯mÛ¶mEãÆ›öØcO?ýôå—_Þ ¡äœšS?Ôj?uFnöVûÒX–úÑOƒRQº6Z;DפR¾+Ö¨¯¿þzƒ ?üð¸¤aÆýúõûÏþóæ›o&]»Üú ™Zï§Î0·º†ds€£¹Õ5"§>ïÅ*–SËþû ™:'•ŠôS×EZ‹K§ÓK–,ÙqÇwÜqÇ¢åݺu‹¢èã?îÝ»v›"’¥É¡ö ^QK¿âì€U@?u-±ìùÒé(Jåʧ¾¶¿4V¹·š:Gp,nãÆ………­Zµ*VÞ²eË(Š>ÿüóéÞ½{±’E‹%ýÊHØã¦×Êã®Hú…Õ/Yè§ÎMUøÒ˜'ËþW¹Ÿ:•ЦûÔ'¤ÃÜî­.yYÏ[‚cq›6mŠ¢¨Y³fÅÊwØa‡(ŠÖ®]ò µsä‹l–ú©)×ô§RA—ü\^ˆ'çW†sÌ͹յ¼ì'Ç žôDW'¥êz»~~öë\?uÉËzÞFIÁ±¸V­Z¥R©7+_¿~}ô¿íމK¥¢éÓkç‹l-ÅÑê«Ë‹ò¤RQ~N©Î…Þ+ýÔ!êÍ•ÇÏ:ª6vH*Ê©ýþu1›ráó^T7:’!8רQ£–-[–lY\·n]Eñûì¸ãŽkܸqÒµƒRäæU„zÉê­ÒO]ßë:]Õ¥èØ±ãÅ_|à 7 2ä°Ã[ºtéìÙ³÷ÙgŸ3Ï<3éªeCxo5rýÈõcŒ|ެ¥›ôS—E?uýøøçÁ±t#GŽÜyç}ôѧžzªC‡#FŒ¸ð 3+ò5K Dˆ|\KråæàæòçVû°×‚c™Á±.É‘‹GÎJ§£!“ì V„,Ê£ŸšzOpÈw:€@‚#¥s!)Ÿ~ê:§îöVëj(G>÷SC"Ç:ÃÅ#„ÞêºÅÚ¹ÃwE „àArð·!ËGʤ¢,ú©ë¨ºØ[­«È)‚#õÞêºB?u®©sß p„ì¡r47’5š\#8Dp¤Ò[ USçz«,k”t ¶ žôDm<¬~jò–àH½õøYGÕøc™ô¸Ü@ÞÒU •`7ò™àH=d‘¨ ‚#TŽFGò–à@Á‘úF?5ÔÁ*Mo5ùIp ˆàH½¢ŸjÀ¡*¦Ÿ58•zܯÈTÊŠÞc“®Õ"8ÙP/Û©”_|Í ºª©?ôS@­¡ŠÌ­ ߎ1Æ‘zB?5@I½‡LÌò3‰X¿ ŽP‹†¬eÄT9Ù‰BYG¨-NÙÔ3‚#AÒé(•ê˜ý'r‡à@(íèçGÈ#Ù&@}"8B¾ÐVY`Jõ›à5Ã×3ê= €Dp ˆà@Á€ ‚#AG‚Xާ.2Äò`@bÇ:#—›”í_­$8RE¹d¡ÞÉ~?ƒ'PÁ GùzäÁàÿì²Ëܤ«»G€ohá(Ÿåx¢ÅHF:¥Rc“®• 8‰Ñ5 P·èª ˆà@Á€ Æ8P'¥ÓQ*õxÒµ€ü"8PW™_Y¦«€ ‚#AtUS ™d´Ô"Á‘z¢:ÕŒv€ºª"8Dp ˆà@Á€ ‚#AG‚Ž"8Dp ˆà@Á€ ‚#AG‚Ž"8Dp ˆà@Á€ ‚#AG‚Ž"8Dp ˆà@Á€ ‚#AG‚Ž"8Dp ˆà@Á€ ‚#AG‚Ž"8Dp ˆà@Á€ ‚#AG‚Ži”t€\‘Jý×t:é ‘cGà’"åÓU @ÁrH*õM÷PÜ[¹CW5äDä2-Ž"8Dp ˆà@³ªK·iÓ¦|ð¯ýë²eËš7oÞ­[·‘#GrÈ!I× 1‚c)¶nÝzÚi§Í›7¯eË–}ûöݼyóœ9sfΜyþùçŸ{î¹I× ‚c)zè¡yóæõêÕëž{î)((ˆ¢hñâÅ#FŒ¸ãŽ; УG¤+ÊOŽB¾ñ©j•1Ž¥xæ™g¢(ºüòË3©1Š¢®]»ž}öÙ………³fÍJºv•Nÿ×@½çSO=“ù=-?©•;´8–âÃ?lÖ¬Ù>ûìS´°k×®Q}üñÇI×ò…ï?¹Fp,Åĉ5*¾g,XEQ§N’®@2ÇRì½÷ÞÅJfÏž=iÒ¤&MšsÌ1!н{÷b%‹-JúeUQò²ž·Ç >ðÀ7ÞxcaaáøñãÛ´i²•˜õFÉËzÞFɼŽ[·n½ë®»â6lØð¬³Î*z‡9sæ\sÍ5|ðA‡®»îºƒ>8é*$&¯ƒã×_}ë­·ÆÿlÒ¤I·lÙrÓM7ÝÿýÛo¿ýyçwúé§Ç3¬òS^Ç‚‚‚Rû”·mÛ6zôè3f 4hìØ±mÛ¶Mº¦ÉËëàX–ûï¿ÆŒÆ ;vlÒu¨ÒQ*Š,¬užÀ‹K§ÓS¦LiÞ¼ù%—\’t]rˆÇâV¯^ýÑG >¼ä_‡:bĈ¤ëH}—JYô€$8·lÙ²(Š6mÚ4þü’5± \üqi_ˆ ^‹;ðÀ­ÂP#þ/)JP/ã@-ŽÔ¨¸ºür-P ŽÔ¨RaÎŒpŒãkæFnT ê Á’Vj󌶨>LuUÎ|÷Ès‚#$­ä©Ðù€œdr AGHL*õÍÈ”øFNÈ¡ª[tU@b K¡nÑâ@í“ ^Ðâ¹Ç%Ès–›ÈU‚#c,7‘«GÈ{%[øJ–ÈmŽ@ñP¨y2˜@Á€ ‚#ótçÁ€ ‚#AGà¿é¦ –ã!¯Åë”en8U@9GòZŽ&E+¨•­hÖ·“²Lpêa AÆ8Dp ˆà@cÉS˜ë‡ €¢G²Gì(]œÎÊ)Lhß9dÔÓà¡^!i%¯¦¹v‰Íµúc"8Dp ˆàü·R'íÉ1‹ÌD¡®Ëáµ€êÿrÉ\õ)Wî¯kìêÁ18Q).ù”ÁG‚hq€¼Wr8Š*”Fp¨ºo~Å;J¥RéÈ…•º«Ø{×Ê 8TÝ7×VY ?Ž{|×§®³Où¬]@%8Ö;ÎGÔ¸|·ÈÖ9ÎÜüòÙ?ÔYfUD‹c½ã‹,P;G€J2€zϘ2Ž•¤]ÈW‚#$Í|&ò70Ô ‚#$MóU…t äÁÈy²5@n°Op}j‚àPm¾žùAW5d—)qÔY‚#d—a»ÔYºª!÷¸~TÈ.H‚àT¤Ôn5òà@Á€ ‚#AG0†jŸOYùÌ÷¢Ž°PBÉk¼æR …V˜ Š"]Õ"8ÄGòO©³;‹ÒUVÖjŸ2¨ûÇ<`fC1%÷†]5¨ÔO“OÔ ºªŠ¸ÞE‘à@ Á€ ‚#AG0†‚˜U]5‰J@v9ç@½ 8Ö;Öšj‡®j‚Žê²~ô zG‚Žó€)Õ@M"8Äàuœß‹²Ep¨ãü^-ºª"8Dp ˆà@Á Þ13¨‚#AG‚Ž"8Dp ˆà@Á€ ‚#AG‚Ž"8Dp ˆà@Á€ ‚#AG‚Ž"8Dp ˆà@Á€ ‚#AG‚Ž"8Dp ˆà@Á±bË—/ïÕ«×Å_œtEª¨{÷îIW!§ë“ƒURŸ:W%õ©sURŸºUŸÜ¬R~+N§/¹ä’õë×']€„ ޏï¾û^{íµ¤k<Á±<‹/¾å–[öÚk¯¤+<Á±L[·n3fLëÖ­/½ôÒ¤ë¼FIW wÝ~ûí .¼÷Þ{[´h‘t]’—J§ÓI×!Í›7oذaÆ »âŠ+,Xpì±Ç2䦛n ÙÖÌ/¨÷-Z”t Å±›6m3fL§NF]…ÍóóÔ{y·nÝz×]wÅÿlذáYgEÑ 7ܰlÙ²©S§$]G€\‘×Áñ믿¾õÖ[ã6iÒ䬳Îzíµ×¦NúóŸÿ|ÿý÷Oº‚9ÄÇâxàßüæ7eýµk×®O<ñDÒuH@^·8–ªsçÎ?þñ‹–¬]»væÌ™;vìÙ³gûöí“® @2´8V¬²³ªê% €Dp ˆ®j‚hq ˆà@Á€ ‚#AG‚Ž"8Ösÿþ÷¿»wïþöÛo'[M›6Ýwß}GuÔpØa‡~úé³fÍJ¶JkÖ¬¹úê«3U:âˆ#.ºè¢ÿûßÉV)¶|ùò^½z]|ñÅ Öáøãï^Â!‡’ìžy÷Ýwñ‹_ôïß¿OŸ>#FŒ˜3gN"ÕØ´iS÷²uÔQ‰ÔjË–-wÝu×±ÇÛ³gÏ\pÁ‹/N¤&±­[·N˜0á„NÈ|ðýë_þùçÙ¯Fù§Á‡~ø„NèÙ³ç!‡rÙe—}ñÅÉÖ'ü>Y¨OR§îrª”˧î<Ñ(é P»î¿ÿþ¤«mݺõ´ÓN›7o^Ë–-ûöí»yóæ9sæÌœ9óüóÏ?÷Üs©ÒºuëŽ:ê¨Õ«WwíÚµÿþ+V¬xê©§f̘ñàƒî»ï¾Éî®t:}É%—¬_¿>Ùj|ôÑG]ºt)ZتU««ô÷¿ÿýüóÏß¶mÛ~ûí×µk×Y³frÊ)üã 嚤R©=z”,ß²eË|вeËìïœÂÂÂSO=õÍ7ßìØ±ãa‡öÅ_<ûì³Ï=÷ÜŸÿüç>}úd¿>QmÚ´iذaÿú׿:uêtøá‡øá‡<òÈ;ï¼óç?ÿ¹M›6Ù¬I9§Á[n¹åÎ;ïlÖ¬YŸ>}–.]:mÚ´Å‹Ož<¹   ‘úTê>µ]ŸOÝeU)—OÝy$M}´víÚ×_ýª«®êÖ­[·nÝæÍ›—`exànݺ|òÉ7nÌ”¼ÿþûtP=þõ¯%R¥k¯½¶[·n7ß|s\2mÚ´nݺx≠{ï½7sÔ~õ«_%U‡µk×vëÖí‚ .HzgüŸ5kÖôîÝ{ÿý÷Ÿ;wn¦äí·ßÞwß}>øà¤k÷ñãÇ÷èÑãÝwßÍþSg>e\pÁ×_)yõÕW{ôèñýï?©½1nܸnݺ;vëÖ­™’)S¦tëÖí¢‹.ÊN*< ¾÷Þ{{íµ×a‡¶råÊLIæÌð›ßü&‘úÞ'kõÉþ©»Â*åò©;hq¬Ÿüé§Ÿ&]‹o<óÌ3Q]~ùåñ—ø®]»ž}öÙ×_ý¬Y³Jm¹©mÿüç? Î9眸äØc½í¶Û,XPXXذaäöÕâÅ‹o¹å–½öÚë½÷ÞKªQ}ôÑGQknLÖ´iÓÖ­[wÑEõêÕ+SòíoûÈ#|ì±ÇÞ}÷Ýý÷ß?é Fï½÷ÞÝwß=jÔ¨DZ>Þ|óÍ(ŠN=õÔF¾9«÷íÛ·GóçÏÿüóÏwÜqÇ,×'N?üðÃmÚ´ùõ¯ †þüóÏ?ÿüó_~ùeóæÍk»žzè¡mÛ¶]xá…mÛ¶Í”\zé¥=öØÓO?}ùå—7hPÃC¹BNËÙþøãDªÔªU«nݺm¿ýöE ›4i²eË–-[¶Ôj/U9¶nÝ:f̘֭[_z饧vZ"uÈXºtiE;wN°żòÊ+©Tê˜cŽ)Zxã7ÞxãIW-Š¢¨°°ð²Ë.ÛsÏ=þóŸ'R:DQTta:^³fMƒ â(™MË–-Û¸qcïÞ½›4iR´ü ƒzõÕWgÍšõÃþ°¶ëPáiðõ×_oРÁᇗ4lذ_¿~?þø›o¾Ù»wï,×'ð>Y«OöOÝV)7OÝùFp¬Ÿ=ôÐÌ_|1éºD'N,yéZ°`AE:uJ¤JS¦L)Vòúë¯ôÑGp@‚§žÛo¿}áÂ…÷Þ{o‹-’ªCF&8®X±â”SNY¸paÓ¦M÷Þ{ï³Ï>;Á†½ùóç·nݺ}ûösçÎ}ë­·Ö¬Y³×^{ 4(G.<ðÀ‚ þô§?5nÜ8‘ uÔQ“'O7n\Ó¦M8à€/¾øb„ Ë–-;ñÄy;ešë6mÚT¬|Ë–-Q­Zµ* u(ÿ4˜N§—,Y²ãŽ;kŽíÖ­[EüqÇÓr6OÝ>WöOÝV)7OÝùFp¤Öí½÷ÞÅJfÏž=iÒ¤&Mšk@ʾ·ÞzkÚ´i~øá[o½µÛn»Ýpà IÕdÞ¼ywÝu׈#>øàÌ©9A™æ„Ûn»m÷ÝwïÛ·ï'Ÿ|òâ‹/¾üòËW_}õO~ò“ì×gË–-_~ùå·¾õ­«¯¾zêÔ©qy§Nn½õÖÄÅoذa„ tÐÁœTºwï~ÿý÷ŸvÚiEÛªGŒqÙe—%RŸŽ;6oÞ|þüù«V­Š;‚¿þúë3fDQ´zõê¤vTlãÆ………%ç{eæ6%2û;×8uS*ËñU………“'O>ãŒ36nÜxýõ×gyreI‹-úë_ÿ:wîÜÂÂÂ}öÙg»í¶K¤›6m3fL§NFìÉX±bEAAÁå—_þÌ3Ïüþ÷¿Ÿ6mÚ½÷ÞÛ¨Q£ë®»nùòåٯϗ_~EÑ’%Kžzê©n¸aΜ9/¿üòyç÷É'Ÿ\pÁ%›µ²ìOúÓ_|ñË_þ2Á:¬[·îúë¯ß°aÃ>ûìsÒI'qÄ>úèßÿþ÷Dê“J¥Î<óÌM›6sÎ9o¿ýö¦M›.\xÎ9ç,Y²$Š¢Í›7'¸¯22o›fÍš+ßa‡¢(Z»vmÒÌ-NÝÄ´8’=sæÌ¹æšk>øàƒ:\wÝu 6ÏÄN:é¤O<ñ³Ï>{üñÇ÷»ß½ùæ›O>ùdæÊ‘M7Üpòe˦Nš#½-÷Ýw_±’ƒ>ø§?ýéÝwßýüóÏŸrÊ)Y®O<¤éúë¯ßùÅ/~±|ùòiÓ¦=ùä“Ç|RûêË/¿¼÷Þ{ûôéÓ³gϤêEј1cÞxãK/½ôg?ûY¦dùòå'tÒE]4}úô=öØ#ûU:ãŒ3þßÿû<òHÜJݱcÇ3Î8ãî»ïÎÂ̘ µjÕ*•Jmܸ±Xyf%¬DÖTÊYNݥőlزe˸qãN=õÔåË—ŸwÞyO?ýt.œz2R©ÔÎ;ï}úôé]»v}â‰'²YŸt:½mÛ¶T*Ul9’ÌRIµµmÛvÍš5©Tªha¦vëÖ­‰T)ãá‡.((ÈÂárüç?ÿ‰J[>)ÓИì€Â<ðÀŒÿ™éªÞo¿ý¬R¬]»vK–,Y·n]ÑùC~øaæOI×.yNÝ”J‹#µîþûïŸ1cưaÃî¸ãŽÄO=QµhÑâ‘G™6mZ±òÌâ…»ï¾{–ëÓ¹sçÿ·ÌÔÂŽ;þøÇ?îׯ_–ë³téÒ½÷ÞûÔSO-VþÖ[oEQÔ½{÷,×'£ÿþëÖ­+ÖÞ™Y¼p¯½öJ¤JQ-Z´hÁ‚ (9T.›ºtéÒ°aÃÅ‹§ÓébÕ‹¢è[ßúV"µºæškFŽùÙgŸÅ%›7o~öÙgÛ´iSrÖE"XXXøü#.I§Ó/¿ürëÖ­“x#œº)•àHíJ§ÓS¦LiÞ¼ù%—\’t]¾Ñ®]»îݻϜ9³è¼÷Þ{ïØa‡²ÿûl‡zèÍÿ-3Í¢wïÞ7ß|ó˜1c²\Ÿ.]ºôêÕëµ×^{øá‡ã·ÞzëÞ{ïíØ±ã~ðƒ,×'#Ó|ÅWÄÓ]ß}÷Ý{î¹§eË–GqD"UŠ¢èå—_Žþ·?Aýúõ[ºtéïÿûmÛ¶e /^ûì¸ãŽKjY¥ÜáÔMYrâÓK=¶zõê̯>¼ä_‡:bĈì×êÚk¯6lØ9çœÓ³gÏ]wÝuÕªUsç΢èÆoL|¶`.¸êª«N?ýô+®¸bêÔ©{ì±Ç'Ÿ|2oÞ¼¦M›þö·¿MjúN=~ùË_Þ|óÍ?üá{÷î½qãÆ×_=•J7.Ás³fÍŠ¢(þ1›]{íµÇü„ žzꩽ÷Þû?ÿùÏo¼±mÛ¶+®¸bÏ=÷L¤J§Ÿ~ú“O>9mÚ´÷Þ{¯S§No¿ýöŠ+¾ûÝïžyæ™Iï­otìØñâ‹/¾á†† rØa‡-]ºtöìÙûì³OîÔ0ANÝ”Ep¤v-[¶,Š¢M›6ÍŸ?¿ä_“gýíoûÉ'Ÿ¼í¶ÛæÏŸ¿páÂöíÛÿûß?÷Üs3?ŠÀ^{íõ·¿ýmüøñÿüç?/^Ü©S§cŽ9æüóÏÏüõÔS:t1bÄ…^hrnäÔMÙRÅÆÄ@©Œq ˆà@Á€ ‚#AG‚Ž"8Dp ˆà@Á€ ‚#AG‚Ž"8Dp ˆà@Á€ ‚#AG‚Ž"8Dp ˆà@Á€ ‚#AG‚Ž"8Dp ˆà@Á€ ‚#AG‚Žòÿ qÚPq2ùIEND®B`‚statistics-release-1.6.3/docs/assets/burrcdf_101.png000066400000000000000000000770421456127120000223110ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A}éIDATxÚíÝy\TõþÇñï*¨‰xPÅDÜןîi&æ†e"–{¹[æn‘)*šÚâž ¸]•«Wq+7\ÂÒT!wÍ IA 8¿?NÍEÖa˜™sfæõ¼>îΜ9ó9ç ¾û|Ï÷$I(ˆÒÀ< ‚#tBp€NŽÐ Á:!8ÐIll¬&7%J”ðððx÷ÝwÏž=«t"22ò¿ÿýïÿûßû÷ï+]Kv÷îÝ+[¶¬|ÐÊ–-ûèÑ£¬¯N™2E{H¿ûî;ñòß¿¿¼Z® óñâÅ‹eË–½ñÆîîîööö^^^o½õÖ‚ RSS³­™ëùµ³³svvnÚ´éôéÓsÒ¼~$²š0a‚Ò€AI ƒóçÏçÿˤD‰Ë–-S¶ÈÒ¥KËÅìÛ·Oé–‹o¾ùF{¸&Nœ¨]~óæMyy£F222¤—¸vwr]˜—“'OV©R%דåîî™uåϯ““Sttt¡Þ"„øä“O”>ê ‰Ž#€Bsuu­òGGGyá‹/FuåÊ¥«S¯?ü°~ýúò×ß|óÍÝ»wå¯g̘!·mll–-[fcc€ßÌqqqmÚ´ùý÷ßµKììì´_ߺu«OŸ>gΜÉõ½Úó[¾|yíÂÇûûû¿xñ"ÿ·dãää¤ä`hG…¶nݺÄ$%%ýôÓOöööBˆ¿þúkåÊ•JWgH‰‰‰yE%=ØÚÚ~÷ÝwF‘’’òå—_ !Ο?¿fÍy…‘#G6lØÐ ŸõÉ'Ÿ<}úTþúƒ>ˆ‰‰yþüùíÛ·W­ZõÊ+¯È¼óÎ;¹¾W{~ÿøãëׯðÁòò›7o.]º4ÿ·d3eÊC=j@pPT:tèÖ­›üu||¼üÅôéÓå«Üzôè‘uå¾}ûf»ú-ëšééé3fÌxõÕWg̘‘ÿKÙLžúöí+qóæÍ¬Ów~úé'ù‹5jÔ©S'ë[’““[¶l¹~ýú‡ !ž}ºW¯^ºlÐ××·xñâò׿þú«¡ê`vŽ MÖÞYfРAaaa 4Ð{³7oÞ¬U«ÖÚµk?®Ï-ð%Ù¿þõ¯×^{M;­ÄÝÝýµ×^Óh4¶¶¶Ú@¦ Ž’$i;Ž9ƒ£¢k׮ׯ_ŠŠŠ‹‹óöö–Ê—$ !æÎ+ß›¦wïÞû÷ïÿì³ÏÖ¯_¿xñbùÕ   ÷tذaY¯e´··—oÁcýõ—j…U«V5È65›››üµvNOVY$´Æg¨ G†Q§N__ߢl¡dÉ’?ýôS¿~ýš6mš-ñäóRÞ}÷]ù‹ŸþùñãÇBˆÓ§O?xð@Q³fÍÚµkg[ßÎÎnÉ’%%J”BT¬X188XûöçÏŸ !´­Ç!C†hßõÁØÚÚ !®_¿^à--mll>üðCí·5zíµ× u"’““µ_W¬XÑP›ý׿þ•sû¬ Á@¡e½÷J… äiÂ'NœhذáÕ«WõÞ¬O^A'Ÿ— Ô¼ysyfLFF†ŽY=yòäáÇ>Ô}Š´v„Z{ÍhV¹ÞŽgúôéÙ#êApPTÎÎγgÏ–¿>|øp®×ÀéBî\ö%]hG«wïÞýçŸÊsGr§Bh/”¥¦¦jg«T©R¦LmKïÇŒÏv*w®âããµÃßÇ/V¬˜âÆŸþyQö1«æÍ›Ë_ìØ±ã¯¿þʹB5œ—-[¦Ë=ª8ߤICÕ Àì@Ö‡È1Kõ’’’²®ùǘ¾¼† V«VMqÿþýùóçË(×qj!DllìíÛ·µßþôÓOò €Š/^¹re!„¼)!DzzúkY899•-[¶lÙ²Úçæê£>’¯•¬T©ÒÂ… ‡./_¼xq^r),íŗׯ__¾|y¶W###µá¾uëÖºlP;õ§T©R-Z´0H‘ÌÁ@Q=~üxÚ´iò×öööòäíe‚¿üò‹vXö?ÿùÏ¡C‡LP’¶=¦¥m:Ο?_þ"¯à˜––6jÔ(y wîÜ™8q¢¼ÜÏÏOžþÒ¡CyÉŠ+´7•Œˆˆø×¿þåìì\¥J•?ÿü3¯Â6nܨÐýÅ_ØÛÛOŸ>]na¦§§6L¾xuíÚU[äèÑ£¿øâ‹;wîÈ»>`Àù¥×^{ÍÇÇ'ÿMݽ{wèС[¶l‘¿íß¿Ök(X¥– À<ÈW‘U¬X±Ú?*Uª”õ!È“&M’×ÿí·ß´ K–,Ù¢E í}mdŸ|ò‰¼¦6tvïÞ=Û‡æóR®^}õUyýfÍš…„„¤¥¥åZ¿¢V­Zy}–vÛ·o¯bcc+¯ùèÑ#í#˜Û´ióÙgŸõîÝ[Ûeœ1cF^å=yòD{ƒô:uêdddÈ˳>0fÙ²e9 Þ·o_> suöìÙlOggg9øÊìííOŸ>ÿùÍv;÷òåËß¿?×·ä_ ‹AÇ@¡Ý¾}[{=ß7ÒÓÓååÍ›7ׯ¯ h›|)))ÇŽ‹‹‹«Zµª¶f Ú×èèè &dí;Ö®];ëbòj7 !|}}=<4¥+BQ½ºÒ(ƒà€…RIÆ2,IRº!„t€>ŒœÏâôþ•d,Ó3A`¶Ò†#Á`aLßf3r>3ïkizš 0[iÑà0=£f;«m³éَͨ³aYް {öìQºdÇIQ§ü΋ÓÙ®0r9)†zœ èŒàVC‡äç™Ïk¤=*LòóÌyZ8PˆÒ¨Ý—_~÷úë¯+]üC£Ñó$ø'1!!ÏW‘“Fß?R!þ$&$f_(„Ž#(­°CÀd8ã)ì0§V†àÆ¡{$›îqSä‹à…¤c"$š€Ž‰SÁ^V`.$š†.¡S˜“cX™¢Ï Adú`ZÚßJ¢:Ž,Q>]C’Ÿ)åóÏ+ç&aØ'ýóƒëm­Ž!80[¤C• Â8 ’ù$~ Šà@õò ˆ¤CËëqÎòPÄäGæS!‚#5É5#MŒ€ˆ,ŠþH~–‡à@žU«æ²”Œhb9"§ðäßzK¥_$ü!+fU0¾Ü&/çþh;n3—•.:Ñã¡“?q2·?Jï¨òrý«cµè80´œÃ͹&ÂDŠ1åü— nùµ=sYF¤Ó›Až+i¥sª ŽŠJǘ£"&ªR¡††ó ‚‰‰‰žžžºoÊ * ò—£(Ž )[R$&š1QQºÇAš‚EÄ3ÆUˆà  $EÅeû÷“3`4º„Bâ`ÑñŒqóEpIQq$ECÓ±MH(,"¡Å#8 )ªI±h Ì…$Bƒ(0r”-Á°VYÃ"IÑôHŠ…A.4 r! Dp¬mEÅe=þ—å É…A.DÑ‹F[Qq„Å M ÿhÈ!FÑ‹CXTœ‡Å|Ò!ÑÐ ˆ†PÁ°Ú¼HXT„5…EÒ¡±e?¾YîþÍñ…²xV5`β>‡–Ç=›^^}¶ú=òXéªÍ‰&ï?Ù!ž˜hY?\0ct3DsQYÚvEþìíÃz[¤@CÉ«=Ëñ…9¢ã˜š‹ ʵdVtl&$&Ð;ÔŽíCóüñþFÇP7fº(Ë<›‹¹^ƒH4:ˆ°fG@•ŒV–ùäE2¢Qåš9¸°fG@eäÈH^T„ºó"ѨȈ€.Ž€:ÐbT*óbΘHF42" 7‚# (ò¢‚T“i%U΃ˑôFp”@^TÒy‘V¢ñÐJŒà˜—0*Hަ=öÄDã¡•˜Á0 ZŒ 2m‹1[R$& 1P‚#`d´•b’¼HCÑx²Y+ GÀhˆŒJ1æ4 E#¡¡˜‚#`hŒJ+È‘‘¤h$4sDp ‡£R :*MR4’"`Ž€!•bˆ#IÑHHŠ€å!8ECdTJÑ"cÖ°HR4’"`ñŽ€¾ˆŒJÑ+2ÒV4’"`mŽ@áQø i+I°r6J˜Fh4B’H&¥B#„ôÏŸüVÔdý#ý}ª$RcQh²ü‘^þ˜;¾”.\1tÝÐeT„£Ò´!뿊S˜ýœ¤ïouooo¥÷XG  DFEä ‹÷¿êé)‹Pš)PïˆB!8ù’¦abš\’ aÑàrm+&&&zzz*],Maƒ )PµŽ@h4*"G£Q› ‹Á4 ‚ hµŽ@DFEd‰Œ4 ΠÏÖ"BGGàeŒM›žF!4aÑÀh.B÷8H„ŽŽÀ?h4š^–ÈHX4¢5 BAG€È¨ÐHU%¤á&‹EGX´ ÄA˜n«Ç ½ME{_n¡’FJLH$2E®7å† éxCi)o Y¿Uz‡`Õè8ŠÑh4‰—¦Eg4¨tefˆæ¢ªèØ#$êÁ’a­˜cd¹ÜFGCØÑs¢MO—PH"„"8ÂúÐh4¦Üo»¨Ã“‘yÑH…€Þް24#¿ÛtÓh,$òb˜ …€Þް&¤FC+à±.4uÆÅ‹º# "8Â*xV­*ÃÓ£Óci4ê€æb®ò†äB@AÜŽV@£ILH 5ö~:Òßw0’òZÔ˜¿œwÒ±*E¹1 ©PGX:yx:‘[¿èO§þb–µ­.éÌzú‹´ KEp„åböt‘É‘Q×ÛtsEc,5/擉†€¥"8ÂB1¦ ×büç=–‹ Á²4é@VGX"R£^ôÉ‹ÿ¼Ó¼Ã‘¡™]‹‘t@GLŽÅ!5žNS^òx'©QKåS^tœŒÂc‘䃎#,5’þ-ÆÞ¯ºp¤µõój’Á–‚FcanÖK›PKPRŽ‚—02¸ @GXR£Î …U§F·s͈¤CŠ 8Âü‘uPÔQé,"2é0Ä @ýŽ0s¤Æ‚ Å˜e[Ö™ Ûb$ 0_G˜3Rc¾ …•¦Æ"¶e`aŽ0[¤Æ<lTúåZUjÔ£ÅHF` Ž0O¤ÆÜ¸ÅøÏF…°¢Ô¨Ëî’X-‚#Ì©1£DFa]Ƽ"cΘHF`µŽ07¤Æ—+2 kIYG¥5¹õ‰‰ Ep„Y!5faÄÈ(¬"5fK‰2"„àóAjü‡q#£°ÌÔȈ3Áf‚Ô(cGFa!©1¯˜heS}ÀÀŽ0¤FÓDFa®©Q—n"‘ŠŽàÕ³úÔh¢È(Ì)5fKŠù:ÀPŽP7ëN¦‹ŒBÕ©QïˉŒ`X6JäÍŠS£Fh4B# É:S£æeRºì¼OjÚ-fF£ÉóÕ"8B­¬;5š.2 U¤Æü“ba÷†È@wù¤CIÊóÕb¨ªd­©Ñ¤cÓBÉ¡ÜB]¤¨ú½ vùô­ò_ýÑq„úXej4õØ´0uÎÊÙSLHHЯ§˜ë®Ðe ½C££ã•±¾Ôhê.cVF½¤zй|ŠÑ÷€åÕA´²@@p„šXejT&2áºFÓ$Ŭ{ ˆŒ€¥# ª ÁP†’FåƬaÑdOð#2–‡€h.ŽP «i7*EQS£‰ÛŠ9kDFÀœÍÁê`M©Q±È(ôLŠ´s.ˆŒ€ù Z*‚#TÀ:R£ÂFQ¸Ô¨†°¨WáL-׌¨ô¯  ÁJ³šÔ¨dd‡/eÇ ó©ZÕ #ÂZ‚ãæÍ›7mÚ_²dÉÖ­[O˜0ÁÉÉ)ŸõÓÒÒBCCwïÞ˜˜èääT·nÝ‘#Gzyy)½0?Ê7Ež©QUmÅœ% "# 2"re7_¸pá´iÓ®^½Ú¸qãÒ¥KGDD :4555¯õ322 0þüÇ·jÕÊÝÝ}ïÞ½o¿ýö‰'”Þ‹cÑíFîéGY??¯'û)}´r)Y]5–K÷;f–ãââV¬XáêêºgÏž+VìÝ»700ðìÙ³óçÏÏë-ÿþ÷¿O:õæ›oþôÓO_ýuxxø?ü „˜6mšÒ{cY,=5*ÅÿR£úâ¶^®hŒ‡Œˆ"²üà¸iÓ¦ÌÌ̱cǺ¸¸ÈK&Mšäèè¸{÷îÌÌÌ\ßrêÔ)!Ä€ììþÊoÖ¬YÍš5ÿý÷G)½C–ÂrS£¶Ñ¨t!B£ÑhDö¼¨tQyWK£0(2"ŒÁòƒã‰'lllÚ´i£]bkkëëëûðáC9 æT¡B!DÖŒ(IRRR’6J¹R¼Ñh#ѹ”MdŠ€Œ“±ðà(IR|||¹råÊ•+—uyõêÕ…7nÜÈõ]]»vµ··Ÿ5kVtttjjêíÛ·§OŸ~óæMÿ2eÊ(½OÁBÛ 6s ‹fÛ ‹ŒYxÿ,%%%##£lٲٖ;::Š—{ŠYy{{‡‡‡¿ÿþûï¿ÿ¾va@@À”)Stü\ooïlKöìÙ£ôÁP ϪUDb¢)?ôæÍ›FÝ~UϪBˆ„Ä„DaºýªZµªöë„„ù‹ÄÄD!„gUOÓÖ¢WýžžBˆ„ÄD!T^©u1ö_JÕªžB!<³.LHÈþ7Æ´¿P­QçΕ.A-,<8ÊS§K•*•myéÒ¥…Ož<Éõ]ÉÉÉsæÌyöìYíÚµëÖ­ûðáãGnÛ¶íÿþïÿ:vì¨ËçÆÅÅ)½ëj¥ÑIò,úv ÏÓÓXû¿F£IvL{< 5BHÂÓ4Õè½B$$&zzz £èÍxY¿œwÀ‘ÿ–'ÊYþ‡dj9ÿYÏÙ!²Ë–-«ÑhRRR²-úô©ø§ï˜Ó§Ÿ~úÛo¿Mš4éƒ>—ܾ}ûÝwß7nÜöíÛ³¶y`åLvÆBÜpQõã¾Ú4Ò"•Ë+&jfá×8ÚÙÙ9::æì,&'' !´ó¬³úã?ú믿¶nݪô>™3˺´Ñó` =ÍÅR#“``t¹0P? ŽBWWׇÊIQK¾ÌÕÕ5çú>BT©R%Ûr¹Ñxÿþ}¥wÈlYbj4ÖÆ5zÝCGÝ©‘I0°*ÄDX*ËŽíÛ·ÏÈÈ8räˆv‰$IQQQNNN>>>9ׯR¥Š­­í•+W²ýk-_ßP­Z5¥w 3ÞmõÌ‹æ€F#,1ÖÃòƒ£¿¿¿Í·ß~+_×(„X±bŃzõêU¬X1yɳgÏ幄¾¾¾×®]ûú믵w¿råÊ’%KŠ/Þ¶m[¥wÈUe4†§¡Z$EÀPŽ0sn7êwQ£‰òâ?%ª*£©¬X5õ=æ‹àã0óÔ¨_d´Î+†i4Bq4“!8/)Tj4i‹ñå*U’ÔTS¬ IP ÁF`¶íFS£byñŸ*UÖTS,IP ‚#ð7]R£òCÒêk Oò†E’" Gšy¶óO ·UFÙˆ¶" ~G”Å¥Få[Œ/ªxdSA °$EÀìaÕò¹íŽº"£PEdSA 0{ @fàÃ1·vc®FF¥sÅEÐmEÀ’a¥r¦FÕµ_.WÁÔF£…E[°TGˆYµ³¥FUGFAj„ ­X ‚# ÁlS£Ú#£ 5B½h+Vˆàë¢MfÅEÈa°rG™ù´5Úÿ™KdT¨ãG£Yha-̯ÅHj„r‹rEpDјC»Ñü"£rHÖ쟰è)‹ò`£t€i4F#$‘ t-…-]Gj´BÍÿþH’$‘Hj‚#Š@ÅíF92J’$$!‡t@j´9âü ÄP5,Ðß‘1߇P«šiC¨­×,0‚#ô¥ÊvcÖËIêû4˜a€Áa!²Í€1×ÔhZ¤FËCX`TGèEMíÆœ“¦Í85š0Ê‘-a€ÉaÆr½Ï©QecÑæEÂ"“!8¢ðTÐnÌëÖŒfœMˆÔh¾h.PÁæG;i:ûr³N¦Js¤FsDs€JQHжóyŒy§FS!5šš‹TˆàóÿcÍ>5š$БÍÍEjFpDa(ÔnÌklÚB­ÍEæ‚àUË¿Ñø÷:æÞn4>R£:Ñ\`vŽÐ™ÉÛº4Í>5?Ó‘Õ†¼À|¡Fº4…¤Fã#5ªƒÑ,Áº1a»QÇ+-!59Ö‘Gs€…!8BEtl4 ËHFFjTy€¥"8B&i7ê>uÚBR£1“©QäEàåéÞh´¤F B^`=ŽPXaïÑh!íF£!5š y€"8¢ F§Ö£Ñh!©ÑháŽÔhäEÖŒàeèñ0 IFCj4*ò"‚# `œv£U§Fãä;R£‘ +‚#LÊçÁ©ÑàÈ‹+‚#òfèv£Æ¿ßH»Ñ¤›´^äEÈÁ&Bj4R£A@GGäÁpíÆ¢ O[Tj4tÊ#5y ‹àãÒ»Ñ(H&Ýž!/€ÞŽ0¢¢¤FäƒÔ¨92ò# z#8"7†§.bj¤Ýh’YZŒ`(G©ÑHHº#/€Á‘CÑÚE¿S£¥¥F²žÉ1$ FBp„!qQ£QAóG‹Œàƒ1Hj¤Ýhü-Y ZŒ`G¼LßqjR£Q‘sE‹LŒà`„:wŠ{¤ÆlÈ‹ ‚#²Ð«Ýh¨ÔH»1W¤Æ¬’eQ$¤Æ|v©è;DjÔ"2€¡?R£Q‘£Ò 2Gü£ãÔ\טB_‘Ñb"8BL´seµÉ“#¨Á…Fj,p¯Š¸OÖ™i1€ú!„(Ä85#ÔÆf…©‘Èæ‚àˆB0lj¤Ýhèw›™ªU=å/ˆŒ`.l”.* [»‘ÔCÑh„F#%‰Ôæ„à0B­Úî£æïÿNá§ ÌCÕ(˜ÁS#íÆœ,>5r!#X‚£Õ+hœšÔhœ¹½X‚#òÃu!è›þ,55ÒbËCpDžŒ‘i7Z"#X*‚£uË{œš^cáÐn”w‡Èàˆ\)5ÒnÌÆ’R#‘¬Á&bÉ©Q¯h1©‘ÈÖƒàhÅò§f:"2€µ!8â% Rë±oVØn$2€u"8âè5š†Y§F"#X3‚£µÊ1Nm¼ÔH»±hïP "#€à!HÈ‘ #8ú²‚v#‘ÁÑ*½}úÔÛÛ{Ô¨QM›6Uz?ôdìv£å§F]ƒÂGF#À¨l”.À.\8mÚ´«W¯6nܸtéÒC‡MMMÍç-èÛ·ï\\\|||NŸ>xàÀ¥wEÜÇh479Õã±üà·bÅ WW×={ö¬X±bïÞ½gÏž?~^oyòäÉĉíììÂÃÃÿýï¯X±bÆ Å‹Ÿ>}zff¦Ò;¤c^ZE»Q‡^¢‚íF"#À4,?8nÚ´)33sìØ±...ò’I“&9::îÞ½;¯‘œœ<|øð† ÊKêÕ«÷æ›o>xðàܹsJïPáÐn4 ¥R£¶Ñ€ X~p|xêÔ©\ßrøðaFÓ½{÷¬ çÍ›÷úë¯+½CêB»Q±¢›˜œ…OŽ‘$)>>¾\¹råʕ˺¼zõêBˆ7n4jÔ(ç»ÎŸ?ïäääæævòäÉÓ§O'%%Õ¨Q£C‡JïPáüÝn¤%ed¦–œR€",<8¦¤¤ddd”-[6ÛrGGG!Ä£Gr¾%--íÏ?ÿ¬V­Ú矾aÃíòJ•*-Z´¨N:º|®··w¶%{öì1ñ¾W­Z5!!!11ÑSˆÄÄD£|„gÕ„Ä„Da”ÖÍ›7õ~¯§ðÌçVõôL0ÒñÍõãªz !Lù‘FS”“ãἨ'Eq;wVºµ°ðà(O.UªT¶å¥K—B”“¢–|˜««k®oqqq)V¬˜F~ Ç?äêôôt¥RÁh7Z UQWp6l˜»»ûùóç¿üòËV­Z}øá‡{÷îMKK+Ê6Û·oŸ‘‘qäÈíI’¢¢¢œœœ|||r}KÛ¶m“““/_¾œu¡|ïž5j(}  &h7Òh¨º‚ãøñã÷ïß¿~ýú¾}û–.]úÀ£GnÑ¢Å矣ß6ýýýmll¾ýö[ùºF!ÄŠ+|xÇŽxþü¹¢råÊÝ»wûí·ÝÝÝ µ©Õ«WÏ;×ÝݽU«V×®];~üx­ZµV¯^­½MÏ®]»Æçåå)/Y¾|ùW_}åèèØ¨Q£”””'Nh4š7ß|³ÀóööVpV5Á1W‰‰‰…ž“˜wp4j¤´žÈ¨ÏIñq^Tˆ“¢BÊþ[¯ õÞŽÇÎή]»víÚµKIIÙ²eËW_}uíڵŋýõ×7îÕ«—ŸŸŸ­­­.›8p`ùòå·mÛ¶k×® *Œ;V¾#O^† æììöóÏ?;99µoß~Ô¨Q^^^J•ð€AƒQ"5ÊWÕrª¥êœñøñãýû÷ïÙ³'::Zž•R¾|ùbŊݾ}[Q­ZµU«VU¨PAé2³Sð¿B²G#4¯Ì±Ý(ôøïu“Gëi4jÑDQ'΋ qRTˆŽ£Š}èСAƒ !¾üò˘˜¥kT%NaýÓf̫ݨÑpPÈN]ÁqÆ ’$}üñÇS§N­T©’F£BT¨PáÓO?8qbzzú?ü tË:Ç©s%GFR#Ù¨+8ÆÆÆ–(QbÀ€9_ ppp8{ö¬Ò5*€qj#ɵÝH£€¼¨+8 !ÜÜÜììr™²#Ï’IIIQº@Ëd]íF©€BSWpôññ¹qãFrrrΗž={–˜˜X»vm¥kTÂŽp ÈŸº‚£¿¿¿$I“'ONOOϺ<##cÊ”)íÛ·WºFScœÚr¶IHáû8FGGgýÖÖÖ¶gÏž;vô÷÷¯ZµªF£ILLܲeË7¼½½;wî¬lÁÉ Ç©³/#5 …ƒãû￟ëòÛ·o/^¼8Û¸¸¸æÍ›ÇÅÅ)[3Ì]¶èHj@G Çnݺ)}Tqjc#5 ;…ƒcHHˆÒGÀÌ9øXÛ8uÖ½%5P(êš“¿‰'¶k×Né*` x0 zP¸ã˜ÓãÇ÷ïßíÚµlËSSSúé'[[[¥ 4ŒS[W»Q!„D£}©+8Þ»w¯oß¾·nÝÊk…~ýú)]#Ì–Fh$!HèK]Áñ‡~¸uëVãÆýüüvîÜùË/¿Ì˜1ÃÁÁáÒ¥Kk×®íׯßÔ©S•®æŒÔ@¨+89r¤D‰K–,)S¦L»víZ¶léééÙ¼ys!DÕªUgΜ٧O///¥Ë4Æ©‹6æjãÔÖµ»˜º&Çܹs§J•*eÊ”B”/_ÞÉÉéüùóòKþþþNNN?üðƒÒ5Â,yVõ´² €á©+8 !llþW’‡‡Gbb¢üµ­­­··÷Ù³g•.æG£Qº,‚º‚£››Ûï¿ÿþìÙ3ùÛJ•*H’F$&$*] fO]“c÷îÝ{àÀI’–-[æëëkgg7räÈ \ºt)%%¥K—.J׳!§FŽŠº:ŽÎÎÎëÖ­?~|ݺu…îîîÓ¦MKKK;vìØÃ‡Û·o?pà@¥k´Ö0N­mÈJ$G D]G!„³³ó°aôßöíÛ×ÏÏïܹs®®®U«VUº:S0Ác,ž650 ÕǬž={V¬X±Ò¥K7kÖLéZ`6¸ø#Qcp<{öìwß}{ÿþ}ww÷ Œ1¢råÊJ—¦EG–=NõÀh§À Ôu£bñâÅþþþ‡ºÿ~‰%ìííoܸñßÿþ·K—.6lPº:¨½FŒJ]ÁñðáÃK—.µµµ Ü·oß™3gNŸ>}èСAƒ !¾üò˘˜¥k4.c_àhÙíÆ—÷Ô:öRWpܰaƒ$IüñÔ©S+Uª¤Ñh„*TøôÓO'Nœ˜žžÎ#‘Ú›º‚clll‰% ó¥€€9ˆ\eK·é:`Pê ŽB777;»\¦ìȳdRRR”.Pôí­Yê85½FLC]ÁÑÇÇçÆÉÉÉ9_zöìYbbbíÚµ•®Ñˆ¸ƒ£r¦FúŒ‰º‚£¿¿¿$I“'ONOOϺ<##cÊ”)íÛ·WºF¨H~½Fò#†¦ð}£££³~kkkÛ³gψˆˆŽ;úûûW­ZU£Ñ$&&nÙ²åÆÞÞÞ;wV¶`óeyãÔ¹¦Fâ"Æ£pp|ÿý÷s]~ûöíÅ‹g[×¼yó¸¸8ek†p]#¦§ppìÖ­›ÒG@-t½À‘Ä”÷1ø_»‘Æ#F pp QúÀÌœPŠŸU-„¸{÷îÅ‹¯]»ö×_U­ZµfÍš+VTº(3f18æ“i2`lª Ž?þæ›o6nܘ‘‘¡]hkkûÎ;ïŒ;ÖÑÑQé¡zDHŒC]Á1##ãÃ?<}út‰%:tèP¹re[[ÛßÿýàÁƒëׯ¿xñâºuëlmm•.Ó𸃣.h7 ,uÇ5kÖœ>}º~ýúß|ó‹‹‹vùýû÷Guúôé5kÖ 4Hé2•£×õ}–1NÍ¥(N]7?räˆF£Y´hQÖÔ(„(_¾üâÅ‹mll>¬tP@!R#½GŒF]ÁñÒ¥K•+W®P¡BΗ\]]_{íµ‹/*]#L­ÀÔHVÀ4ÔK”(‘ššš×«©©©J×hfÌ}œšjÔC]Á±fÍš÷îÝ;}útΗΟ?óæÍ5j(]£á13&/º¤Æ—Úô0&uGùA2£GÎv-ãÑ£GGŽ)„ðóóSºF+¥®YÕ]ºt‰ŠŠÚ¶mÛ!C*T¨P¥J!ĵk×nß¾-„ðóóëÚµ«Ò5*§ð£¶f=N]èv#02uG!Äœ9sš6mºhÑ¢;wîܹsG^X¾|ùqãÆõèÑCéê`"ú\ÚHŠÀÈT5MÏž={öìùÇüþûï’$U©RÅÕÕU麌¸¿\à˜Ž©‘ €‰©+8Þ¼y333ÓÃÃCáââ’ínŽ(3§f5ª¥®àØ¥K—/^;vÌÙÙYéZ ÝScöv#íGŒO]³ª½¼¼„—/_Vºõ¡”¦®à8}út‡¥K—>þ\éZ`jú·€I¨k¨ÚÅÅeÁ‚3fÌèÖ­[·nÝ<<<Ê”)“m6mÚ(]¦ÁofŒÙ]àX¤Ž*A“PWplÛ¶­üѾùæ›\׉‹‹SºLãð˜uGùÉ1@>h/ uÇ¥K°æ5NM»s¡®É1Ù¤¥¥¥¤¤(]… Xn¶*ìžåÒn¤ €©¨«ã(»råÊ’%KbbbîÞ½›™™éææV§NQ£FÕ¨QCéÒ ‰gÆXnÀ2©.8®ZµjÁ‚™™™Bˆ%JØÚÚÞ½{÷îÝ»?~ü!C”.PíÌeœZÔHoe©k¨:::zÁ‚&00pß¾}gΜ9}útTTÔàÁƒmll¾úê«èèh¥k„š%0!uÇõë×gffN˜0aêÔ©•*UÒh4B77· &L™2%333<<\éa´0Gê Žçγ·· ÌùRß¾}K–,yîÜ9¥k49‹»Ðâvk¡¢à˜žž~çÎWWW[[Û\ µ±©P¡‚•Ï&)ú/p4dj¤ €i©(8j4š’%KÞ¸q#)))ç«ÉÉÉ¿ÿþ{ݺu•.Ó`;KÖ5PQp´µµíÙ³gffæÄ‰_¼x‘õ¥´´´I“&i4šAƒé·ñÍ›7ûûûûøø´hÑbÊ”)?Öý½·oßnذᄠ”>BfAjÌšºnÇóÞ{ïÅÆÆ:t¨C‡½zõòôôÔh4‰‰‰ÿùÏîÞ½Û¥K—§OŸ:tH»~ÕªU=<< ÜìÂ… —-[VªT©Æ_»v-""âÊ•+aaa¾W’¤‰'>}úTécS0•Sëso7Ò„ÀäÔ»té"ñÇ,]º4Û«»víÚµkWÖ%Ÿ|òIwvŒ‹‹[±b…««ë–-[\\\„³fÍ ›?þôéÓ ,iÍš5¿þú«Ò@yê ŽÝºu+ÔúÕªU+pM›6effŽ;VNBˆI“&ý÷¿ÿݽ{÷Ô©Smlò¬¿råÊÂ… kÔ¨qéÒ%eŽˆ¥ î¸Ý” ®àbðmž8qÂÆÆ¦M›6Ú%¶¶¶¾¾¾;vì8uêT£Fòzczzú§Ÿ~êää4iÒ¤÷ß_éccÆ Ÿ~‰“(AE“cŒA’¤øøøråÊ•+W.ëòêÕ« !nܸ‘Ï{¿ù曋/—)SưUcJµj/p´”ž)PYÇÑàRRR222Ê–-›m¹£££âÑ£Gy½1&&fåʕ͛7-ìçz{{g[²gÏž¬ß&&&ê²Oמ:¯ijžzVÕÓ3!·7{~›7oÞTú8 ;NŠ:q^Tˆ“¢¸Î;+]‚ZXxpLMMB”*U*ÛòÒ¥K !žýôÓJ•*}üñÇú}n\\\þ+xzzê¸)c¬i2ÿ´õ/,¯ÒcgUx|ÀIQ'΋ qR”•óŸõœ"+aáÁ±lÙ²&%%%Ûrùö:rß1§¹sçÞ¼ysÆ ºÜ¯y)â už×1r# ±ðkíììsv“““…ÚyÖYýúë¯6l6lØë¯¿®põ:'/Õ^à,‰…G!„««ëÇ夨%_!çêêšsý+W®!–,Yâýž={ !¶oßîííݵkW¥wÈ<«Ý”cáCÕBˆöíÛÇÅÅ9rä­·Þ’—H’åäääãã“sýÊ•+k×”=yòäèÑ£+VôññqssSz‡Ì€gR“(PŽåGÿeË–}ûí·­[·–çĬX±âÁƒƒ.V¬˜¼Î³gÏþøãbÅŠ½úê«-[¶lÙ²eÖ-ÄÆÆ=z´Q£F¹Í¤1îÅ`–+V¬8a„¹sçvëÖ­U«V×®];~üxíÚµ³>«0**jܸq^^^‘‘‘J×[hj»À±èíFºŠ¨“åG!ÄÀË—/¿mÛ¶]»vU¨P! `ìØ±r÷†eÜÛ}“(P”UG!„ŸŸŸŸŸ_^¯véÒ¥K—.y½Z»víïËhxÖúÄÂ!ªeù³ª-›ªÆ©­5ë`-Ž0 ƒ¤FÚ¨Áf‚P €Ò¬åG•°Ô{ñ0H @GVû„_¨œ“ÌÁÑŒ©äGC¥FZŠ€•à_h¨ ÿ=£;†ªU‰^6„JT€àˆ"¡Ý€õ 8B4F°*Gs¥’  ´/ùî ÝHÔà=ÑnÀÚMÇ’îÅCjÀ ¡0Æ©0GõÑ¡›§ìŽ´°NG(‰~"f„àˆÂ¡Ý€Õ"8¢LiHPZff¦———‡‡Gpp°Òµ˜OOO¥«€±ÍÅÜÁ‘X@ý’’’ê×¯ïææ6eÊ”uëÖõ³|}}ƒ‚‚”Þcó¨JÍ…Y6‚#tÅ 5+T®\¹Í›7ÿòË/:u 1Þ>}úرcJï®yT¥æÂ,žÒÀJÜn¤! @54͸qã:wî|èС6mÚpËéééøù矗,Y’™™©ôŽªº*5f=Ž&¢ëÝ¿ÕÚÖSk]`"éééBˆ•+W68>|ø°S§Nz¿=&&fúôé¿þú«F£iҤɗ_~Y¯^=Å«ÒÊÌÌ0`ÀúõëÃÂÂúõ맞 7†ªÍŒ"8’ 44T±uëÖ'Ožp³®®®’$I’téҥ¾wß¾}Íš5‹ ˆŽŽnÕªÕÕ«W•­JK’¤Aƒ­_¿~õêÕI†* EAp„§`^’’’¶oßþÁ¼xñbÓ¦MJ—#„cÆŒqwwÿí·ßBBBæÏŸ‘œœ¼xñb¥KBI’† ºråÊ(] †¡j€v#ÓÐh”üôüÑmܸñÅ‹cÇŽMHHX³fÍ!Cr]-==}çÎymäí·ß6`Á111.\X¼x±“““¼Ä××÷ûï¿/S¦Œ‚UÉ$I1bÄÊ•+˜×j¦/ EGp„©ÑL+5ÿ7jhh¨··w½zõüýýGŽyùòåêÕ«ç\íÙ³gÝ»wÏ{ ¹‡—/_BÔ­[7ëÂ\Sš)«’EFFJ’äîî1sæL\W3}a(:†ª‘ÚpåÊ•ãÇ¿óÎ;Bˆ^½zÙØØÈ×;æäèè(åͰU¥¥¥ !ìì n™²*™$I›7oöìÙ˜1cÔSŠŽŽ£šÓ,æÖßz’TDމrptssóõõ ›9s¦Möæ‹)Ç^å–ç… Zµj¥]8gΜäääÙ³g+U•¬k׮ݺuB¬]»622²k×®9Wc¨Ú‘'c´Ʉ̋$IáááuêÔ©U«–¼¤OŸ>}ôÑþýû;vì˜meS޽úøøxxx,Z´¨oß¾òu AAA9÷gúam¤^°`AddäèÑ£Û·oïàà xa(:†ª‘;©@qðàÁëׯ÷éÓG»¤gϞŊ>|øôéÓ³­lð±× 6899?>çKööö‹-ŠoذáäÉ“§L™Ò¢E ;;»3f(XU6...ÁÁÁ‰‰‰³fÍÊù*CÕæˆàh ºÞýÛÒéÔn¤' @M„Yƒ£««kppðÓ§OÏœ9cìßíiiiIII©©©¹¾Ú£G¨¨(OOÏU«V­^½ºI“&ǯV­š±IþUe3tèЦM›†„„pçEË@ 1räÈ;vxyyíÛ·¯]»vßä…¡j=D–çÊ•+Ççw„½zõ²±±‘¯wÌÉÑÑQÊ›a«JKKBØÙÜ2eU2I’6oÞþìÙ³1cƶ° 6Ô©Sçäɓ˗/¿pá©ÑÄè8*Í´ @µɘ̄åàèæææëë6sæL›ìÍS Ë-Ï .´jÕJ»pΜ9ÉÉɳgÏVª*Y×®]»uë&„X»vmddd×®]s®¦Ga;vìèß¿Ÿ>}–-[–sP&@p O’$…‡‡×©S§V­Zò’>}ú|ôÑGû÷ïïØ±c¶•M9(ìãããáá±hÑ¢¾}ûÊ*!!!(((çݰM?T­Ô ,ˆŒŒ=ztûöíŠX˜$IŸ~úi¥J•ÂÃÃmmm ^6tÁPµ1v»‘"ËsðàÁëׯ÷éÓG»¤gϞŊ>|øôéÓ³­lðAá 6899?>çKööö‹-ŠoذáäÉ“§L™Ò¢E ;;»3f(XU6...ÁÁÁ‰‰‰³fÍÊùja »xñâ¥K—üÁËvìØ¡ÇŽ@tUŠgÆ€„…… !²GWW×àààyóæ9sF’$ƈ“ÁÓÒÒ’’’RSSs}µGQQQŸþùªU«lmm›6m:{öìjÕªû˜ä_U6C‡]³fMHHH@@@5Šò¹ñññBˆ‹/^¼x1ÛKÕªUóóó3öŽC¡Æ» š;oo︸8ùë‚ïã˜GÐàÁQ]íF“7'===Mú‘('EŒ}^²þ†„.V­ZuþüùE‹)]ˆT¥7=~,­ö'™¡jTêùóçlР҅˜AU0 ‚£UPÑdj€Î¢££kÖ¬ùÞ{ï)]ˆTÓàG€ÊÇ©ÀLµmÛ¶mÛ¶JWaUÁ4è8*Ê$8ÒnAp€NŽFTð”jSÔ`ôv#ãÔX ‚#tBpD‘Ð@ÀzUÇ€3cT7-†˜ €9#8@'G‹¥ºi1ÀÌ•£ºdcï/1óFp´L´€ÁÕŰό0 ‚£²¶1p0žÌÌL///àà`¥k1žžžþþþJWc!8B…§f`€yJJJª_¿¾››Û”)SÖ­[gÔÏòõõ RzÕ^ÕÁƒÛ¶mëââò¯ý«eË–[·nUº"ëBp Oåʕۼyó/¿üÒ©S§ã}ÐéÓ§;¦ôª]»vµk×îúõëÇ¿ÿ~Ïž=W­Z¥t]VÄNé``L‹ƒÓh4ãÆëܹó¡C‡Ú´icÀ-§§§8pàçŸ^²dIff¦Ò;ªêª„“'Ovss;uꔣ££bÊ”)µjÕ >^ѱcÇÊ•+|‚£±h4I9®h;E`<*þêíí]¯^=ÿ‘#G^¾|¹zõê9W{öìY÷îÝóÞ?CîàåË—…uëÖͺ0×”fʪd‘‘‘’$¹»»GDDÌœ9ÓÃÃ#×ÕŠRØ•+WRRR¢££üÿ÷/^tqq1øŽ '†ªÕÂbgÆ€™»råÊñãÇßyç!D¯^½llläësrtt”òfتÒÒÒ„vv7€LY•L’¤Í›7‡‡‡?{öl̘1F*¬dÉ’íÛ·Ÿ3gΣG¶mÛfŒANt-ãÔ`$rL”ƒ£›››¯¯oXXØÌ™3ml²7_L9(,·}ôÑþýû;vì˜meS ûøøxxx,Z´¨oß¾òu AAA9÷gú¡jm¤^°`AddäèÑ£Û·oŸsâsa kÚ´©â‡~èÓ§æŸ+båX߬Y3ƒïrÅPµ%Pi»ÌßÁƒ¯_¿Þ§Oí’ž={+VløðáÓ§O϶²Á…7lØàää4~üøœ/ÙÛÛ/Z´(>>¾aÆ“'Ož2eJ‹-ìììf̘¡`UÙ¸¸¸'&&Κ5+ç«…-ÌÙÙyêÔ©{÷îmܸñÔ©S§M›Ö´iÓõë×;¶^½zzìô@p„ÑТ`þ„Yƒ£««kppðÓ§OÏœ9cìÒ´´´¤¤¤¼înÝ£G¨¨(OOÏU«V­^½ºI“&ǯV­š±IþUe3tèЦM›†„„\ºt©èýÙgŸ…††ÚÚÚ.]ºtÙ²eÅ‹߸qãÂ… ½ËвÀ™¿ŠóööŽ‹‹ËoVunB½'ǘ¦Ý¨OTSpLLLôôôTº ¼„“¢NÆ>/òoH¥÷Òœ¬Zµêüùó‹-Rº3¨JozüXZíO2GU`J5 §çÏŸ}*þé;æã—_~ ºzõj… fϞݼys¥wHõ§ÀrYxp´³³sttÌÙYLNNBhçYç”––noo?jÔ¨AƒåuÓÇ"Rí”j ÈÆÂƒ£ÂÕÕ5>>>99¹L™2Ú…ò¥ ®®®¹¾%33óã?þñÇ;tèðÙgŸå“/¡Þi1À¢YþíxÚ·oŸ‘‘qäÈíI’¢¢¢œœœ|||r}Kxxø?þøÞ{ï}÷ÝwjKªF—‹fùÁÑßßßÆÆæÛo¿•¯kB¬X±âÁƒ½zõ*V¬˜¼äÙ³g‰‰‰ò\BI’Ö®]ûÊ+¯Lœ8QéÚs¡Þ§Å€%ÊÌÌôòòòððVºóàéééïï¯t0˪®X±â„ æÎÛ­[·V­Z]»víøñãµk×2dˆv¨¨¨qãÆyyyEFFÞ¿ÿúõëýúõ˹µ=z(½OIJJª_¿þµkצL™âáá‘ë? †âëëÛ¾}ûÏ>ûLéBˆ³gÏΚ5+**êéÓ§5jÔèׯߨQ£rÞäXAª:\ÖCE?Æ3pàÀòåËoÛ¶m×®]*T;v¬|Gžœä¾cjjêùóçs¾ªãÄjF#åÚ|¹a¨Î™1z¶éR°Dåʕۼy³$Io¾ùfHHˆñ‚ãéÓ§;Ö¾}{¥÷X!Ú´i“‘‘Ñ£G}ûö?þðáÃ[·nUº´¿©êpY«ŽB?????¿¼^íÒ¥K—.]ä¯4h×ýÇ´P„F£7n\çÎ:”õ¶E—žž~àÀŸþyÉ’%™™™Jïè߯ÿäÉ“ãÇ7nÜXñÅ_ 4hõêÕ{÷îíÔ©“‚…©ópY˿ƀ¢KOOB¬\¹Ò°›}øða§N‚‚‚îß¿¯ÇÛcbbüüü\]]ÝÜܺuëvöìYƒTuàÀ___95ÊFŽ)„ˆŽŽ.Ôv233û÷ïokk»nÝ:5.Á/aœr*„غu«.OÓ«««$I’$]ºt©°ïÝ·o_³fÍbcc¢££[µjuõêÕ"–”žž>bÄ9)j]»vMQ¢D Ý·#IÒ AƒÖ¯_¿zõjC ñåpÁ ŽfƒqjPJRRÒöíÛ?øàƒ/^lÚ´Iér„"##c̘1îîî¿ýö[HHÈüùó#""’““/^\Ä-ÛÙÙ÷êÕK»äÑ£GÁÁÁ¶¶¶½{÷Öq#’$ 6,44tåÊ• PúhÁ`¬åG肾!i”ûèõmܸñÅ‹cÇŽMHHX³fMÖûrd•žž¾sçμ6òöÛo°æ˜˜˜ .,^¼ØÉÉI^âëëûý÷ßg}Ú…Aª:tèÐСCããã—.]êåå¥Óñ”¤#F¬\¹200pàÀy­fÊÃC!8*¦PSªUÝn$o05ÿ" õöö®W¯ž¿¿ÿÈ‘#/_¾\½zõœ«={ö¬{÷îyî A_¾|YQ·nݬ sMizWuýúõ‘#GîØ±ÃËËkß¾}íÚµÓ±¶ÈÈHI’ÜÝÝ#""fΜéáá‘ëj¦<\0†ªÈÏ•+WŽ?þÎ;ï!zõêecc#_£££”7ÃV•––&„ÐåÆŠúUµaÆ:uêœ}–-[–sì»@]»víÖ­›" `íÚµ‘‘‘]»v͹CÕæˆàhBúŽ73N J‘$)<<¼N:µjÕ’—ôéÓç£>Ú¿ÇŽ³­lʱWE‹õíÛWÎv AAA9÷Wت$IúôÓO+Uªnkk«GmÚH½`Á‚ÈÈÈÑ£G·oßÞÁÁAÁÃCa¨Bÿ ¼~ýzŸ>}´KzöìY¬X±áÇOŸ>=ÛÊ{ݰaƒ““Óøñãs¾doo¿hÑ¢øøø† Nž¥Ú4ãÔßïÄÄDOOO¥«ÀK8)êdìóâíí­ÚǺªÓªU«ÎŸ?¿hÑ"¥ 1ƒªô¦Ç¥Õþ$3T 3Š`]ž?~ðàÁ (]ˆTÓ 8ªšª§ÅŒ,::ºfÍšï½÷žÒ…˜AU0 ®q´vú·iT€‘µmÛ¶mÛ¶JWaUÁ4è8@'Gõ2Á85íF ;‚£ õ”j• 8š ó\€™#8ªãÔ@mŽÐ ÁÑJÑ4…EpT#U_IäÀZ ‚£©©á^>>‹-êÛ·¯|]cBBBPPPÎÇý¶ª¦M› !~øá‡>}úh4_y*§çfÍšéR›6R/X° 22rôèÑíÛ·Ï9#›¡jsÄP5y:xðàõë×ûôé£]Ò³gÏbÅŠ >|úôéÙV6øØë† œœœÆŸó%{{ûE‹ÅÇÇ7lØpòäÉS¦LiÑ¢…ÝŒ3ŠX•³³óÔ©S÷îÝÛ¸qã©S§N›6­iÓ¦ëׯ;vl½zõò¯*—àààÄÄÄY³få|•¡jsDpDÞh7°zaaaBˆ¬ÁÑÕÕ588øéÓ§gΜ1v¾IKKKJJÊë¶Û=zôˆŠŠòôô\µjÕêÕ«›4irüøñjÕªýs?ûì³ÐÐP[[Û¥K—.[¶¬xñâ7n\¸p¡.Ue3tèЦM›†„„\ºtÉ¨Ç ¦¡!ÔœFóòQýg:¯k§6ÄÄDOOO¥«ÀK8)êdìóâíí§ô^š“U«V?~Ñ¢EJbUéMK«ýI¦ãˆÜÃãtéÒ¾¾¾ÇÏkÍ¿þúËÎÎNó²òåË+½BqöìÙwÞyÇÍÍ­téÒ5Z¸pazzºÒE™7;¥ °|¹Þ‹`Ê•+·yófI’Þ|óÍ~ýúéƒNŸ>}ìØ±öíÛ+½ÇB‘œœÜ¨Q£ëׯ÷îÝÛÙÙyË–-;w>xð OΕ322š7o^µjUíÂÒ¥K+½"!!¡M›6=zôðððØ·oßøñã>¼uëV¥K3cGcú»µ¨1úçÐncÒh4ãÆëܹó¡C‡Ú´icÀ-§§§8pàçŸ^²dIff¦Ò;ú·¯¾ú*>>~Íš5 BŒ3¦aÆüñr®/„øâ‹/T’zµÆÿäÉ“ãÇ7nÜX®pРA«W¯Þ»wo§N”®Î\1T @Áä!Ε+Wv³>ìÔ©SPPÐýû÷õx{LLŒŸŸŸ«««››[·nÝΞ=kª6nÜX¡B…ÀÀ@ùÛªU«öîÝ;**êÎ;9W–ƒcµjÕŠø¡™™™ýû÷·µµ5Ô%ðõõ•S£läÈ‘Bˆèèhƒlß:MÍà8Òn BlݺõÉ“'ܬ«««$I’$]ºt©°ïÝ·o_³fÍbcc¢££[µjuõêÕ"–”œœ|ùòå¶mÛj4ÿ1k×®]fff®W:ÆÇÇ—(Qâ•W^Ù¼yóòåË=š––VØ•$iРAëׯ_½zµA®HOO1b„œµ®]»&„(Q¢DÑ·oµª IIIÛ·oÿàƒBCC7mÚ4dÈ¥+cÆŒqww?qâ„“““¢[·n­[·^¼xñ×_]”-ß»wO’$WW׬ ]\\„¹¶EãããmllªU«öøñcyIÍš5ÃÃÃ6l¨ã'J’4lذÐÐÐU«VɃãEggg—m"ü£G‚ƒƒmmm{÷îm°NGóF»€ÅÈÚß2=)ßÁ 7¾xñbìØ± kÖ¬É+8¦§§ïܹ3¯¼ýöÛ,8&&æÂ… ‹/–S£Â××÷ûï¿/S¦L«JIIBdÛŽ£££âáÇ9·Ÿ™™Ô»wïbÅŠmß¾}ܸqÝ»w?þ¼ü®üˆ#V®\8pàÀ¼V+â±=tèÐСCããã—.]êååeÀamŽ&Åc /’Š?†††z{{׫WÏßßäÈ‘—/_®^½zÎÕž={Ö½{wÓìàåË—…uëÖͺ0×àUتœ…þùgÖ…ÉÉÉBˆråÊåÜ¡C‡ìííµ/ 8ðùóç#FŒØ²eË Aƒ Ü‘ÈÈHI’ÜÝÝ#""fΜéáá‘ëjzÛëׯ9rÇŽ^^^ûöík×®!¿õâGã2ê½xh7€ \¹råøñãï¼óŽ¢W¯^666òõŽ99::Jy3lUòu„vv7€ [•«««M¶Qé!ÜÝÝs®_±bÅlò7ÞBÄÆÆê²#’$mÞ¼9<<üÙ³gcÆŒ1Ô^È6lØP§N“'O._¾üÂ… ¤Æ¢£ãh•H 39&ÊÁÑÍÍÍ××7,,læÌ™66Ù›/¦ª–[ž.\hÕª•váœ9s’““gÏž]”ªìììjÕªuäÈ‘¬ >¬Ñhj×®måk×®EFF¶k×®fÍšÚ…r{²råʺìH×®]»uë&„X»vmddd×®]s®¦Ç±Ý±cGÿþýûôé³lÙ²œ#øÐ“CûßQBH"Ërƒ~Šbo6K J—€ì8)êdìóR½zu¥w±p233=<<êÔ©£]²dÉ!Ä?þ˜s夤$½ÿÁ•gUþùç:–ššêááQ£F'OžÈK®^½jooß¿ÿ¢Wµxñb!ÄŽ;äoïÝ»çêêúÆoä\óÞ½{ööö­ZµJKK“—ddd¼ûî»vvv±±±îE•*Uz÷î­ÝTÙ²e===SRRŠ~l333kÔ¨Q¥J•ôôôËÐãÇÒì~’ …¡jÃËõÂÃbLãàÁƒ×¯_ïÓ§vIÏž=‹+6|øðéÓ§g[ÙàCÕ6lprr?~|Ηìíí-Zß°aÃÉ“'O™2¥E‹vvv3fÌ(zUï¿ÿþ믿ޯ_¿)S¦Ì›7¯M›6)))ÚÇ!Î;×ÉÉiÙ²eB—   #GŽxyy}øá‡“'OnÔ¨ÑÆ¿øâ‹Zµjå¿ Ù¸¸¸'&&Κ5+ç«…Ý‹‹/^ºtÉÁÁaðàÁ¼lÇŽ†úñ°B U§°°0!DÖàèêê|('E­ÄÄDù%¥«PÁ1íÛ·ÏÈÈ8räˆv‰$IQQQNNN>>>JW  ‚c.üýýmll¾ýö[ùºF!ÄŠ+pàÀ-Z(]—µKJJZ´hÑÉ“'oÞ¼Y¾|ù:uêŒ5ªjÕªJ×…¿Ý¾}ÛÏϯ]»v!!!J×bÕz÷î}îܹl ;¦ti¦Cp4Œ… .[¶¬T©R7¾víZDDÄ•+W”. "<<\é „éééï¿ÿ~LLŒ££c³fÍž?þË/¿=ztôèÑ#FŒPº:땜œÜµk×û÷ï{yyµmÛöÎ;»víúñÇÿýïשSGéê $Iš8qâÓ§O•.âúõëUªTɺÐÚžELp4€¸¸¸+V¸ººnÙ²ÅÅÅE1kÖ¬°°°ùóçOŸ>]éê¬WrròåË—wìØ±qãF¥kBlÚ´)&&¦aÆßÿ½üßTW®\ øî»ïÚµkW³fM¥ ´Rß|óÍýû÷‡>nÜ8yÉþóŸÉ“'ùå—üÝQƒ5kÖüúë¯JW‘œœüäÉ“7ß|sÑ¢EJ×¢$®q4€M›6effŽ;VNBˆI“&9::îÞ½;33Sé꬗ŸŸ_¿~ýø—O=öìÙ#„˜:uª¶ïåå5|øðŒŒ «èQ›èèh‡?üP»¤gÏžnnn±±±JWgí®\¹²páÂ5j(]Äõë×…ÙÚVˆàh'Nœ°±±iÓ¦v‰­­­¯¯ïÇO:¥tuÖkÖ¬YK–,Y²dIóæÍ•®B‘˜˜XªT©Úµkg]èåå%„¸qã†ÒÕY¯²e˶k×ÎÞÞ>ëÂ%J¤¥¥¥¥¥)]UKOOÿôÓOœœ&Mš¤t-×®]BT®\YéBÆPuQI’_®\¹råÊe]^½zu!Ä75j¤tVªeË–òTº!ÄòåËíì²ÿΉBTªTIéê¬×Úµk³-9qâÄõë×ëׯÏUÚÊúæ›o.^¼¸zõê2eÊ(] þŽwîÜ ¼xñbÉ’%kÕª5|øpk›vIp,ª”””ŒŒŒœ×Æ::: !=z¤t€ZÔªU+Û’ãǯX±¢D‰Ý»wWº:ˆÓ§OGDD$&&ž>}ÚÃÃcîܹJWdÕbbbV®\мysù¿¯ ,y`dñâÅžžžÍš5»uëÖÁƒ£¢¢>ÿüó>}ú(]é‹*55UQªT©lËK—.-„xòä‰Òj”‘‘±nݺyóæedd,X°ÀÙÙYéŠ âââ¶lÙ"I’¢víÚÅ‹Wº"땚šúé§ŸVªTéã?VºüíÎ;ãÇ ”—üüóÏÇŸ={vË–-+V¬¨t&Â5ŽEU¶lYF“’’’m¹|ë¹ï «_~ùÅÏÏoÖ¬YÎÎÎßÿ}—.]”®Bñî»ï^¼xñèÑ£'NÜ»woß¾}¹ŒRæÎ{óæÍyóæqµ€z¬Y³&&&F›…Í›7ïß¿jjê¾}û”®ÎtŽEeggçè蘳³˜œœ,„Ðγ „HKK›5kÖ€nß¾=jԨݻw3uIU4MùòåøÎ;ïܽ{wïÞ½JWd~ýõ× 6 6ÌÚ.ž3GMš4B\¾|YéBL‡¡jpuuONNÎzýrbb¢ü’ÒÕj‘™™ùñÇÿøã:tøì³ÏøÏ*5¸råÊêÕ«}}}ß|óͬËåÉï÷îÝSº@ktåÊ!„|Sˆ¬Ë·oß¾}ûv//¯ÈÈH¥k´:’$effj4›—:n¶¶¶BˆW^yEéM‡àhíÛ·‹‹;räÈ[o½%/‘$)**ÊÉÉÉÇÇGéêµÿñÇß{ï½Ï>ûLéZð·2eÊüç?ÿ¹ÿ~¶à(ß²ÎÓÓSé­QåÊ•µÿšÈžzôèÚµk'/¼téÒºuëJ—.ݸqc¥ ´F-[¶ÔÞML{ôèÑFñ¬j¥T©R¥aÆ¿þúëæÍ›ýýýå…§OŸ^½zuÅŠ;uê¤t¦Cp4€Š+N˜0aîܹݺukÕªÕµk׎?^»ví!C†(] ÷ïß—óÚ¯_¿œ¯öèÑ# @é­Ô—_~ùÞ{ï}øá‡>>>¯¾úêüqòäI!ļyó˜íh͘1cРAÓ¦MÛ°aCÕªUoݺS²dÉàà`«šÃDp4Œ–/_~Û¶m»víªP¡B@@Àرcåî#!ÄÍ›7…©©©çÏŸÏù*SdT¯^½;w.^¼øüùó/^tss{ã7FŒ!?Ô€¬F[·n]°`Attô•+W*UªÔ½{÷Ñ£GW¨PAéÒLJ#ß² È·ã€NŽÐ Á:!8@'Gè„à ‚#tBp€NŽÐ Á:!8°.&Lðöö>tèÒ…ˆo¿ýÖÛÛ{ݺuJº"8@'vJVªmÛ¶ÎÎÎ 6TºÐÁ”Q»víÚµk+]CÕ :ýõ—ÒU@vGæaÚ´iÞÞÞ!!!Ù–Ÿ;wÎÛÛ»yóæéééBˆ|õÕW]ºtiРAƒ Þzë­9sæÜ»w/¯ÍÊse¢££³-¯U«Öÿýßÿe]rìØ±Ñ£GwèСqãÆß~ûm¶lwëÖ­Ï>û¬K—.õë×oÓ¦ÍСCOœ8‘Ï­\¹2ëä¹’›7o®X±¢Y³fuêÔiԨѻᄏoß¾¼¶púôéZµjùúúþùçŸÚ…OŸ>mÓ¦M­ZµÎž=«ôI`iŽÌƒŸŸŸbïÞ½Ù–GFF !ºwïngg÷àÁƒ~ýú-_¾üöíÛ¯¾úê7~øá‡¾}û>~ü¸(Ÿ>þüAƒíÝ»7==ÝÅÅåäÉ“ß|óM@@ÀÇå®\¹âçç·qãÆ‡¾öÚk’$EEEõïßÿÀ…ú åË—/X° X±bÍš5stt<}úôˆ#vïÞëÊ>>>ƒ ºwï^pp°vá¼yóîܹóÑGÕ«WÏÔ' €¥#807vqq¹qãÆ… ´ 333åPÕ³gO!DDDÄï¿ÿÞ®]»cÇŽmÛ¶mûöíGmܸñ­[·öï߯÷GüË/¿œ?þÔ©SK—.íÝ»÷—_~©ÑhtüèâÅ‹ëqXž>}zÿþ}!DBBBRRRÙ²e*X#‚#s¢ ŽcÆŒ‘Ç µãÔOŸ>9sfñâÅ—/_Þ²eKí[îÞ½[ØO¹}ûvff¦üuÕªU…%K–œ2eJþïÒh4ò=€„iiiGŽ™ûì?þhРÁ©S§¾øâ‹¯¾úʨÀjq#sR¹rå:uê$$$œ;wnÿþý•+WnÔ¨‘üÒ¹sç2224h55Ц­ä/ÛˆöO?ý¤ýÚÕÕµ|ùòW¯^ͺNFFF¯^½ZµjõàÁƒ[·nµk×®OŸ>ÚW‹/Þ¾}{y6ÏÍ›7zLvìØ±{÷îÖ­[‡……yyyíܹ3çM‹À ŽÌŒ|XaÔû)Þ½{÷‹/¾xå•WfΜY¬X±àà`[[Û   ¢_Ü 91T ÀÌtéÒeîܹqqq¶¶¶Ý»w×.¯Zµjûöí÷ïßß±cdž J’÷øñã~ýú………ýç?ÿùóÏ?åëdÕ½{÷ÐÐÐS§Nµoß¾V­ZüñG||¼£££››Û‹/äuzôèñ믿nݺµ{÷îîîîNNN )))UªT‘ï¼mcc3eÊ”I“&…„„|ÿý÷¯¾újJJÊÕ«W%IêÛ·¯‘…$I“&MJNNž={¶œ›ëÖ­ûþûïÿý÷AAA‹-Rú\°4t˜—&Mš!Zµjåââ’õ¥ Œ=ºbÅŠòý}}}·mÛ6uêÔ~ýúÙÚÚæúÀJ•*­_¿¾C‡666G½|ù²»»ûÊ•+µëh4š9sæ|ýõ×íÚµËÌÌüý÷ß===Ç¿mÛ6'''y=z„††¶nÝÚÁÁáÒ¥K)))-Z´X²dÉgŸ}f¼CݲeKí…žBˆÑ£GW®\y÷îÝ{öìQôD°@šüoÖãÙ³g>¬T©’î“ Àª †ª ‚#tBp€NŽÐ Á:!8@'Gè„à “ÿ“¿¨/IEND®B`‚statistics-release-1.6.3/docs/assets/burrfit_101.png000066400000000000000000001526341456127120000223400ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A€IDATxÚìw\W×øï²K“*.]—bhŠ4 Š€ Š¢‚ÁQL”¢1±¡¢¨ >ßä±b„'$Š-¨ˆQAš! (*¨‘¥D¥-;¿?îûÎoŸ]vvvA×r¾>|vîܹåœ{gΜ[†AqÈɺÀûŽ-Àph†#@ 0Z€áÐ GANž<É G[[B(>>úùùɺìï=ýfNNÎéÓ§OŸ>ÝÜÜLîß¿'8vìXYWî]G&-¹­­mÉ’%†††,KMMíÕ«W²ƒdlݺ ÍÛÛ‡ôÙäDUó=ª~ŸýK˜Û·o÷y·TTTäp8sæÌ¹uë–¬«B·.2¡©©ISS MSSóÅ‹üg×®]KŠôßÿþ7úo_¾|Gë3>4[u¤-œàºÿÀsáMÀ’u`` yùò%BèÒ¥KS¦L‘uqZ¬Y³&-- ÿÆêû UÍ÷¨úýì_ÝÝÝ?ÎÊÊÊÎÎÞ½{÷_|ñþÖ墫«›˜˜jkkÛ±cGRR>õǤ¦¦âßcÆŒY¶l™¬ K ÙJû]Öõû Ž‚ 4ÈØØ˜<ìèèhjj¿ ÈSrrà¯}×QSSÃÚÔ××—uY€>¸xñ"þáâââççÇß¿ÞSúlr¢ªùáUŸ]]]eeeü»¥¥ÑtuuEGGOž<ÙÌÌLÖ|GY¶lÙ¡C‡ªªªBß~ûmLLŒžžBhÆ !99¹}ûö½ÍЀßHe{g†çB?ÃQoo‡—/_ž:u*þ}ñâÅ‘#Gʺ€ÆÃ‡ ßñ4ûChhhhh¨¬KñÎñ|+ûú믧M›&ëâ }69QÕüðªÏÏ?þÈïã¹té’¯¯ogggOOÏÁƒwìØ!ëÛ¡˜Læ¿ÿýoggg‚ ^¿~˜˜øÝwßÕÔÔ¤§§ãQQQ£G~›ð©lïÌð\è'à3H^¼x±råÊÑ£G«ªªÚÙÙ>|˜ÿ‹Žüs8¸\î† †ºaÃ2BSSÓŠ+œœœÔÔÔ†>{ö슊 á\hFã‡?ëgÏžÍ;—Íf›ššêêê’ã ü¼zõjãÆººººººS§N]»vm{{»tiŠš¼‚ÃW­ZEQxwôèQwww###%%%###77·ŒŒŒžžaÍš5 ƒé›:u*ƒÁÀÓÅDÍe‘´‚---+W®;v¬šššÝ¶mÛÈÜEÑÓÓ³oß>gggUUÕQ£FÍŸ?ÿæÍ›’ÖŽ¿$÷ïߟ;w®±±ñСCCBBª««B×®] 6662dˆ»»{AAÔª—®½Ñ¬,?ÍÍÍ=âñxø°µµõÑ£G\.Ñè)©O ¡‰¢±±188˜ÍfëééùûûÿöÛoÂqšœ¨jRTŸ¦Øû?¡ÙÂ)ú—DL:uÆŒøwCCƒpø# ß(ê+V$¢êŽS6lü?þøƒœ,XSSƒ$ïPRÜ®BNNNaaaø÷>|øõ×_ãÖ¢¯¯¿eËI…O­#¶×KqgÆ<}útþüùÇ700 ºzõ*ÿYšmæ]x.Hqc|? J.]ºDʪ¦¦F8ÂúõëñY777KKKñ~óÍ7Â1gÍšõÙgŸáßëׯÇg/_¾¬««+p9ƒÁøòË/ù³£MT!'Ož<|øpË-ZĹ¼¼\8Bhذa………R¤É_qþŒæÌ™ƒÃãââ(bõÙtp„Õ«W Ÿ}ùò%AûöíÇcÆŒ‘º‚nnnVVV‘)ÞÙÙ9nÜ8á,ð”vþ˜bkÇ_;;;6›ÍM[[{÷îÝòòò¹ ˆšè´7ú•ågÖ¬Y—ܹsGlO‘T}R­O~ûí7«¢¢‚™LæíÛ·%j32.Hwc|/ÃQ Ž»wïÆ™™™d`UU•pÌ#Fdff^»víþýûA¬]»‡óû™¾ýö[ÈáppÍhÔ…œ>}zgg'Aüñ‡……œ8q"Ž™€CÔÕÕÉpëÖ-Òg³zõjIÓìáHŽ×¬\¹’¼œß³cÇ2¼wóß(…oÒUðÛo¿Åuuuä=‚â­qâĉ8Nbb"èáá!ÍÚñ—äܹsAtwwOž<™ LMM%¢··wñâÅ8„Íf÷_M4ÛÍÊöIŸZ£è)Ò©OR¡ ƒ·>A©©©]»v ÆÄÄ©QQVVþé§Ÿ„uMÿæ \_ŠSô[]TTtqqÁ!<lWäÍŸ~‡’úvMÒÛÛË?—QII©¡¡Bà’ŽýiÕô{=Í;3¿`ñ\X‚ ?ùäB¿ÍÐÏýM<úsc|Ç9ކ••ÕòåËñï™3g²Xÿ»ð¨¾¾^ æ AƒòòòæÎëèèhjjŠúå—_ð©%K–ÑÂÂÂð zcc#ÞüŒf4 X,Öž={ð$nƒíÛ·ãðÒÒÒÎÎN„йsçpÈòåËÉù£FúòË/ño2ý4ûCpppfffffæŠ+pH{{ûëׯñoMÎè E­­­É‡Š¥¥¥‹‹ þýèÑ#Q¹àÅ¡~øáûï¿Çk ~øá‡šššššš€€éj7fÌ<Š$//ˆ555qÓ““#o­­­ýWÍöF³²R ÜS¤P_„FräÈüƒßmœœ¬££#uíD!i7—ú~B"E —kkkWW×þ¤ \_:§ÄB6ƒÒÒÒ––„Peeåßÿ²²²^)¶Cõÿv-''Ç¿çΘ1cúK•šþ´ê7×ëåååIÁ6ŒlnnnooïVŸŸ7ñ\xs"’9`8ü»K¨ªª’C`ÂmÝÞÞÞÀÀ€?äÞ½{ø‡§§'9[UU•¼[Ÿ4£Q`mmÍ?ûÛÓÓÿ âÁƒ¡»wï œÂ|úé§däŒ~šiöOOϹsçúøø”””ÄÅÅM™2eèСuuuR'(EnÖ䈧@4b“Ù-^¼X__ôèÑß~ûí«W¯FŽIN*’´vüãªäF' C P)ÔD³½Ñ¬¬÷)Ôס ‹‚Ü!¤  @æ;€HÚÍ¥¾ŸHÑÂé ««küèëëcÿöÛo£G¾ÿ¾ÔÉ ×—Î)±899áÒÛÛ‹·I"7Kês"²ØÕÿÛuWWÿÚóâââììl©å&LZõ›ëõ#GŽäŸr@–­»»û÷ßÀêóó&ž oND2 ÇC`W-ò±$ŒÀTýööv±{ÿþý÷ß4£QGh¬ƒ ÒÐÐÀ¿Ÿ={ÖÞÞŽ÷ZCB\‘OßÎÎNr:iöSªÝÝÝ+W®ÔÑÑ ù׿þ•ŸŸÏår¥vóHWAURh–$!!!22’Üžƒ ˆŠŠŠ­[·:::ººº’ß0´v}fMs;7IÕD¿½Ñ¬¬÷”þ«O"¡a^¾|ù×_õ)FE¸ýGŠn.Ýý„BDtZ8~üñLJÿÇÓ§Oÿúë/l455-Z´HêdêKó”X Fpp0þ››‹ø GÒQÍØ{iÿo×ÉÉɤm‡Y¾|ù@mßÏVýæz½@aTTTHÁ666HÝxCÏ…7'"™†£ haêêêjjjø÷Å‹ú"$$„f4꬚~GG¹×€±±±ºº:ÙEÿüóOþ˜ä¡‚‚9ã›Nšý”ÕÖ­[¿ùæ.—kjjºgÏž›7o¶··ûúúJ—št”yyùï¾û®¹¹9++kîܹäêH„PQQ¹ÃÈÀÖŽIÕD¿½Ñ¬¬÷”·£>”••É­¹Ég-†|Þ Rtséî'[l:°ÙìmÛ¶áßW¯^•ú­’®í§ÉKŽVŸ?þŸþ)))A"Æ©{i?µÐÐÐ@ŽÒ.]ºoðøñãM›6õ§Ž$ýlÕo®× 4ŒŽŽ²<g@ê.Àº±¼9É0ß Èù¿\.w8ƒÖÔÔÔÔÔÄ£i4£Qpûöí§OŸ’‡yyyA „ðò:rŠ7ù¶-phffFNߤ™&y7˜C&p·êr]á¿ÿýïeË–ÙØØ°X¬'OžH-j)*()]]]MMMMMM]]]AAA™™™ýõW^^¹5¹-ـ׎±j†N{£_Ùá-¨O&“ibb‚_¸p '‚Îî’ÒÿnÞÿÞüŽ^lfõçæ0àŒ=‹®¹¹y×®]ÝÝÝHÄ85¢Ñ¡ú©…ˆˆ>»0¹\î_|ÑÏé§©[µt½žfËééé‰ŽŽÆ;iÿùçŸävŒý| ¼åçÂ[¾1¾eà“ƒïkÖ¬IKKkiiÉÎΞ 7 hö/~,X@î„×ÕÕõ矒ŸÆ‰‰‰Áþ©oý¢.sæÌILLDáÍ FŒ1bÄQéPw(©µÐÞÞN.æµ¶¶^°`BH[[û«¯¾ÂÍû×_=xðà_|ÑO9HݪiÞâÄJ›Z°–––åå娼f2™[·nÅg%j3²z.H$¢÷Yïô®CG=¥ÈycG¥Ž‰9sæLŸ¯ K—.åßk—f4Q…tuu˜&Âb±ø7å'â×_ís' ##£¢¢"éÒ$ßãILMMÉ7rŠ}Ééêüº»»ãߟ}ö™Åܹsù£Q|!@Ò ÒÙ-L€²²2QãPnnnx‹2úµë³$ä‡k­­­ÉÀââbR’ª©Ï\è´7š•íê}ûì)ýQM¡õÉÂ… rTQQ!]à>Ž4ÅÞÿû‰D-¼Ïþ%ŒØ}BNNNü—K}s Ù`„¡® ÿ&ü›6m•ûžt·kr“„PNNþêÕ+r醦¦fSSÑï/ÇHݪé÷zšwfR°šššk×¾ÿþû>›(u›¡Ÿ;ñž ý¹1¾ãÀPõ»‚¯¯ïÍ›7ÃÃà djjêççWXX¸wï^þß4£‰BKK«¤¤dÉ’%æææººº³gÏÎËËxs7nÜ­[·âãã§L™¢««Ëf³'Ož¼nݺêêjgggéÒüÏþ³uëÖQ£F©¨¨ØÛÛ/_¾üÚµkt–@¦¤¤Œ5 ýßÇ?bcc+++gΜ‰Ï9r„ªHII™;w®ŽŽŽŠŠŠµµ5ŲYI+(ãÇohhˆ;v¬¼¼üàÁƒÓÒÒòóóÉuvôk×è¨I:ífeŠ· ¾>9tèPdd$þ­££3cÆŒK—.õsKÂþˆýM§ ýþÕ'L&SGGÇÃÃãàÁƒäAP?nRC]~£¤ÏõÔ:J -ܸqƒœúìêê:mÚ4òÔ AƒÈ}ª[[[I¯dºUÓïõ’¶77·ÂÂB__ß¡C‡êëëåçç“ßJÀÐo32|.¼åã[EÖ–+ð6ô\ViöIww÷©S§N:õÆÅ$ ÞtíÞšš>~ûí·;v´µµÉº À›¢´´w™#FŸý ;´j@"`Ž#ð®#//ÿ~Oùˆk÷á1fÌrIðARVV†ˆZóá­0€‚ öïßÿøñão¾ù‡|<†#HŽÀÇÇãÿ0´¿¿¿•••¬ ï"`84h—Ë6lؼyóÖ¬Y#ëâÀ; ƒø¿I€ØŽ Ž-Àph†#@ 0Z€áÐ G€`8´Ã Ž-Àph†#@ 0Z°d]€w”ÖÖÖÔÔÔëׯ?yòD[[ÛÚÚ:::ÚÔÔTÖå ‚ d]†wŽöövŸææf33333³?ÿü³²²’ÅbeeeY[[˺t²†ªûàÛo¿mnn^ºtiNNNJJÊÑ£G·oßÎåre]4™Ç>˜>}ú“'O®]»¦¤¤DNš4éÅ‹UUUL&SÖ0DZ455ÍÍÍù­F„¢¢bwwwww·²²²¬  ÀpìƒÌÌLß~û­±±ÑÎάF>ZÀp¤¢²²òäÉ“>¬¬¬äp8ÉÉÉt®²°°uÁx³Ü½{WÖE`8Rq÷îÝ'Nài #GŽTPP ¡¬Ëü ”w PÊ» èå”òòÑ:‰`U5sæÌ©««+..þúë¯/\¸òòåKY @6€á(ƒ¡­­½hÑ¢àààgÏž]¸pAÖ% `8 R__¿fÍšóçÏ „9!ÔÔÔ$ëÈ0QWW?uêÔÉ“'ÂB&&&². €lÃQ]]] ‹âââüü|2ðÎ;?þø£ªªêرce]@Ù_Žéƒ[·n…††öôôØÛÛ:ô¯¿þº~ý:BhÇŽÓ§O{9,€›öYÇ>°±±9wîÜ´iÓ^¼x‘——×ÔÔôé§Ÿž>}šŽÕð¡û8ö‘‘Ñ7ß|#ëR¼C€Ç Ž-Àph†#@ 0Z€áжãd†………¬‹!ôqîæ-`8²:* sÀ‘Aªh†#@ 0Z€áÐ G€`8´Ã Ž-`pàƒÁ`ȶAÈZð.Gà]„Ý Ã××WøTrr2ƒÁ¸yó¦¬%‡LLLüüüðo{{ûÏâÆ #++K”ˆJJJ„Oyxx0ŒÞÞ^|øèÑ#ƒFFàr¹‡rqqÑ××WWW·³³‹ŽŽ~úô)a÷îÝ J.\¸ EuÙlö¨Q£\P¿Bß(•‰‰I`` Dx<ž™™‡ÃÙ¾}»¬+ôQ@Ñgék 0`8€däääœ:uJÖ¥ “Éd2™².-‚˜9sfxxxGGÇܹs£££‡¾oß>ssóÛ·oã8q|(**êêêò‡Kšommm||¼••ÕÚµke-ƒ7ˆ««kBB€$Åߨ®_¿îççG*ˆ>­­­vvvzzzk×®ýñÇ¥+É•+WÜÝÝutt† âììüóÏ?‹ŠÙÓÓÃb±^3´µµD Ôܺu+88XOOOUUu̘1)))\.÷-äû6¡_G*@`¨$CYYyùòåjjj².‹ d]ºdffæææ®ZµjÇŽd`UU•³³sXXXyy9BÈÅÅÅÅÅ…<›––6lذ;wö'߆†„ЦM›¦L™"k¼)*++KJJª‚üª©©);;;&&FÒD´´´Ž?N„··÷Î;çÎ+i ¹¹¹Ó¦M3557ož²²ò‰'üýý<.ùáǽ½½NNN¦¦¦d ªªê€„‚¸¹¹õööúùùq8œK—.}ùå—W¯^¥°qß;$ª£¬ ,`8€dÄÇǯ]»výúõ»wïðÄ»»»Y,–œÜG7€G·£££ùíììÿóŸÿ¼|ùò =]ð|V%%¥7T/‰ŠÇñÊIÌåróóóKKK÷ìÙÃãñÞPûƒÁˆõòò*((pss“èÚ5kÖèééUTThhh „Ö®];bĈ„„„> Güz°yóæ·üzðå—_¶µµ]»vmìØ±¸‹/þþûï/\¸àéé9 Yðx<‚ d8° Qe¥``ùèžOÐO}||¾ûî»ëׯSD+//÷ññÑÓÓ300ðññÁ>3Œ‰‰Illìõë×mmmmmmqÈŠ+V­Z¥®®®¤¤äèèxîÜ9.—»fÍ+++uuuww÷ÚÚZ2…””---GGGQƒ}îîîx:Ú«W¯¨'ÖÔÔøûûs8//¯Ë—/ó§sõêU--­#F¬Zµª»»{À¥Šm¦ššðäää[·n)((ô'qQº ›5kBÈÙÙÙÄÄDøÂŽŽŽÄÄD++«Aƒ…‡‡?{öŒŽ$R(nß}÷¦¦¦‚‚¨Q£V¯^-JÈÔšâçùóçžžž ÍÍÍÔò ——ùò%>ÌÊÊb0666d„¸¸8ƒQYY‰øUXXØôéÓBnnnüÒ+))ñööf³Ù†††Ë–-ûçŸ(²Æcš”H¡]]]·oßž>}:¶B***...Ož<éèèŽí•O>ùD¢\Hªªª|}}uuuõôôf̘qëÖ-šæç绺ºb‹ …*++£s9u‹Ý¿?›Íf±X†††ü¢–®Ïòx¼ùóç3™Lúó$ªc?¼#€Ç$ƒÁ`üûßÿ9räçŸþÛo¿õù®úô退==½ƒqâĉ‰'ž8qbæÌ™8ÂãÇ===544<<>>¶¶¶×®]KNN.+++((Øa€ZSèêêbêÝ»w---)Däíí}òäÉ¢¢"ooo„PQQB¨¦¦æùóçC† AèééÙÙÙñ_µråJ“7îØ±ÃÑÑÞºukÚ´i ,˜:uêéÓ§÷íÛÇãñöïß/*댌 „ÐÏ?ÿÜÖÖFZba2™7oÞd³Ùd—Ë­®®¶±±QVVŽßÐР¨¨¨¦¦vüøñ/^Œ9rܸq4ßF.]ºäë뫯¯¿`Á‚ 222\\\***†N}!—ËŒŒ3f à£GBŠŠŠbóÛÀ.]º´gÏž%K–XZZž?~ïÞ½===Ø—®Ï±xñâŸ~úéûï¿§9y@Ò:öGÀ; 4æææ².Âû(A!Y¯ªUàM›6!„‚HNNF¥¤¤àSIII¡ªª*‚ ºººLLLŒ›››ñÙææf###SSÓ®®.‚ ðŽ„„„ÞÞ^ÁØØXAA¡®®ây~¶¶¶ÝÝÝ8ÄÙÙ!ÔÞÞN„©©©¹¹yOO>ÕÚÚÊb±"""ȤfÍš…»¹¹ÙÙÙ WdóæÍ¡´´4\Z333{{ûׯ_ã³&L055år¹FFFúúúOž<ÁgŸ>}j``€:zô¨(QÀårqÌßÿ!´páBòÚü‘|+))Mž¹\®•••‘‘‘¨|[ZZÃÂÂäää8@HEFFF||¼ƒƒƒ¶¶v^^^Ÿq¼½½•••L¶C++«ëׯ‹MœËåŽ1bøðá/^¼À!………¡èèh)ŠúüùóqãÆ1™Ì{÷î‰,¶!„Nœ8y<Þ¨Q£†J„¤}ÖØØ8 €Çã-Y²„Á`:tH:EЩ£ÔŠx HñàþhŸõàqiøòË/333ãããgÏž=lØ0þS>LMM%="l6;&&&66öæÍ›Ø³¥¯¯¿~ýzþ©oãÆ#ÝBîîî¡yyy2eÊ”âââׯ_«©©•——+))±XÿÛyŸ?Žzýú5Í’Ÿ>}zãÆ‹/FUVVÖ××ÿôÓO¤«FQQ1:::44´¢¢‚Ëå>zôhçΆ††ø¬¾¾þòåËW¯^M‘Åœ9s†*xìØ±ÆÆFŠ«BCCCCCoݺ•ŸŸŸŸŸ_XX˜ŸŸ¿~ýú7nذA:5ÑÑ…(äääðÖB=®ٴ´´´´4|V¬è+—jåÊ•äµ7nÜ»wï±cÇø]‰Ô𢮠5†††666ùùù¡–––šššC‡EGGúùùñx<:I™››Ï˜1ÿf2™vvvyyy¢"=z´««+&&æÁƒéééK–,Áá\.÷ܹs¢®"Ýö˜-[¶àP¬&ax<^BB”?sæLllì¬Y³jjj¨ÝœUUUµµµ»wï&mWW×C‡©««KTH„PAAÁçŸÞÐаwï^333±’ÛÀLMMgÏž3 {{{ìV¬¨¨´ÏyðàÁ ,Z´ˆ ð:J­à G‹uàÀ''§åË— ¬¬¯¯GáÉ‹$xÆX}}=~À[XX,˜àwÃæ…pfðàÁ¥¥¥yyywîÜ©¯¯¿}û6ý >jkkçÏŸïì윚šŠC°; m‘ñ¼·Ñ£Gó‡‹Ý2**jâĉUUUÔ†#)(›˜˜˜îîîÓ§OÇÆÆnܸqüøñŸ~ú©j¢£ Q(++§¦¦âÙ‘#G:99yyyM›6 ¬‰Õ}…"„FŽÉ?`§¢¢baaqÿþ}þ8Ôšêራ›[ZZ°óuÊ”)ÎÎÎØ»VPPÀb±¦NJ'sssþCêE666QQQ÷îÝ׿zõ Ï=íâ¿÷篯¯ýúuYYYxxøøñãëêê„ç6())iiiáÃE‹uvvFFFž8q¿>‰âÞ½{!=>±iÕÖÖF³QQQgÏž533»téÒäÉ“éHRl5y?Áe–¨ÏæääahhxòäÉ-[¶p8N_4ë(µ"€w XR2~üø¥K—fggŸ>}š?ßOf§á'hOO>ÔÔÔ”.Ó®®.___—óçÏ›™™­\¹²®®ŽæËzKKËÌ™3544Nœ8A.Ø^Ù¹sç/BŒ7;<ê2à‹¾_¾|(°BBAA!00Oͤp{PCGDFFþþûï°±±ÉÍÍõ÷÷·±±ijjêhÂb±4PkªŸÙyyyñx¼Â¢¢"‡ÃápÜÝÝoݺÕÚÚZPPàììL³vô×§×××_»v-88!4{öl999<ß!¤¡¡A1L&œÔ Aƒ¦L™’””ôâÅ <÷@ÒXÁà÷±;Pbn?~hòÈ‘#ÖÖÖׯ_ß¿mm-M«‘N%j)ú,AÇÿá‡^½zµbÅŠ7WG©¼S€Ç¤gûöí?ÿüsTTÔgŸ}Fâ1šêêêI“&‘x%¦……E?s,..ÎÍÍMMMå¿¿Óñ8öööΙ3çÉ“'EEEü.\Z555þ½3jkk«««555ñúÇ7nðï–B.é(TTT.\¸ðøñcr°’{é $]ÊýÑÅóçÏÌÍÍÃÃÃÃÃÃy<Þž={¢££÷íÛçìì,DQ[[ÛÓÓCZóuuu;ÔPkªŸ*˜8q¢ººz~~~yy¹««+BÈÍÍÇã={¶²²OáX°™ˆ G===WW×ÿüç?[¶l‘““;BzîܹY³feffâË1x4Yز|ôèQNNÎäÉ“­¬¬ÈÀööv„¨¡mìÕ«­­åß@4))©½½}óæÍb‡qÏž=;þü   }ûö©««ÓŽÔÝýßše‰úìôéÓñƒyóæeffæääàõòt†ªé×±?ŠÞ-d=Éòä£0+)ïõâ’£G¢ÿó âÅ1ÇÔÔ”œPÿüùsccc##£ÎÎNâ¿×¯`Bð]/^Á$&&"„ž={†=p.\ O?~!ôÙgŸ 'Å¿ŽO¡ËÈȨTOO………™™YKK ikkãp8úúú\.·»»ÛÔÔÔÀÀ¯!⯿þÂó)Çô¹ÖuŠZóÅ_ „¶lÙ¿ÎãåË—3fÌÀ …¤³8F¬.(Çà­%×­[G†TWW#„¶nÝ*‘¨JüßB‡äädò,þŒÍáÇù“¢Ö…Ä.ŽÁøùù >\^^¯Sár¹jjjxšfMM MxqL~~>Y뀀þ4çÍ›Çf³…óâñxÇÚÚš Ù³gBèâÅ‹A´¶¶R?³š››Y,–§§'ÞŃGðoÞ¼)WSS“’’’‹‹ ¹2 ¿D±X¬Û·oSˤ££ƒÃáXZZ¶µµáû÷ï+))ÍŸ?_l!y<ž¥¥¥±±1µvúDÒFÄÂ… 555 ‚´Ïòk­©©ISSÓÄÄ/ÀØ:öGoXCð8@¿NOOÿå—_ÈEEÅ”””àà`‡   ‚ ²²²ž>}züøq:ÛpPãî¢²dÉ’¹sç–••åççkkkŸ?o§"̹sçþõ¯ÙÚÚ ìÐfeeåààšš:sæL[[Û   žžžìììÇ=z\n×®]AAAöööÁÁÁòòòYYYb÷”‚”””šššøøøôôôÑ£Gã5¡%%%MMMk×®urr’.Ùþèb̘1ÖÖÖIII<°¶¶¾{÷îùóçµ´´BBB˜L¦Z @__?>>¾´´ÔÖÖ¶¬¬,//o„ ,àÃb±(4Õx{{ãÙºØãÈd2]\\rss‡ 6räÈ>/ÁïK{÷îmjjêsK Q\¹r¥±±¯îÇøûû¯X±béÒ¥¡¡¡[¶l!ú’&a³ÙëÖ­KHH;v¬§§'ƒÁÈËË+//‰‰ÁX““““’’¶oß¾téR„„„¯¿þÚÌÌÌÛÛ[SSóÂ… •••Û¶m1bBèÈ‘#aaaß|ó@FJJJ©©©AAA£G`0‡f±X6lÀø…¬««»s玕••ðžäþþþ¾¾¾ùJ×Í1òòòR÷YíÛ·/[¶lëÖ­‰‰‰ý¯£DŠÞdm¹~€|´o!’òax ‚xðà^èŠ=Ž˜ÒÒR///]]]]]]//¯_ý•<Õ#A………NNNªªªÃ‡onnNKKÓÖÖöôô$DxÉ¥0;°TTTL›6MOOoðàÁnnnØñCrõêÕ©S§â¡@ ìüX#A¯^½Ú·oß„ ´µµåååuuu§OŸ^TT$Jt<ŽbuAáq$âñãÇ‹-222RTTäp8¡¡¡ä;ôµ V¡8raaá¤I“444,--ãââ°CT8)jMõ MããÇBÚÚÚdþœã_|ÁßãÈãñBBBÔÕÕI<ŽxjÇ;wøwíÚ¥££ãëëËïGÇËÈÈ7nÜàÁƒñ·ªù$n‡©©©dȉ'ƧªªÊf³'Ož|þüyòvï-]ºTT^%%%l6[WWwÆŒüþW ¦>󓘘(6_‰ÁçqÄÐï³ZëííuttäßLª?u”H²<Žôa”ï€XXXܽ{WÖ¥x%(ƒ!ÃFÉèkš€yúôé!Cúï7ø111±³³û¾_üÞ‘––VSS#êýê½Îú,M¤xp´ÏzXU ] à |`tvv^¹rÅÁÁáƒÌú,0à€á|¼”••YYY ïŽù¡æ ýÇï"Œþ'ï ÞÞÞxa5 ÜÝÝñ§}>’| Ÿ€á¼sÀCà£ïDð^CÕ-Àph†#@ 0Z€áÐ G€`8´Ã Ž-àË1À»ƒ!³Âwk@`8ï ÉÎxc0`;@ŸÀP5Ð%!!Á`øúú ŸJNNf07oÞ”u‘‰‰‰ŸŸþíââboo?àYܸqƒÁ`dee‰QII‰ð)ƒÑÛÛ‹=zÄ`0ÂÂÂÈ\.÷СC...úúúêêêvvvÑÑÑOŸ>%#ìÞ½›AÉ… ¤¨Nbb"›Í5jÔ€ j@àWè»E£211 ¤“Ç333ãp8Û·o—u…ÞW(º!}E€€á’‘““sêÔ)Y—‚L&“Édʺ´ bæÌ™ááásçÎŽŽ>|ø¾}ûÌÍÍoß¾ã888Äñ¡¨¨¨««Ëbll,i¾µµµñññVVVk×®•µ ž[·nëé驪ªŽ3&%%…Ëåö3MþFuýúu???RAôimmµ³³ÓÓÓ[»ví?þØÏ"¹ºº&$$¼öÁ•+WÜÝÝutt† âììüóÏ?¿µ¬ß>oY¶À{ U€d(++/_¾ÜÃÃCMMMÖeCAA¬‹@—ÌÌÌÜÜÜU«VíØ±ƒ ¬ªªrvv +//G¹¸¸¸¸¸gÓÒÒ† ¶sçÎþäÛÐЀÚ´iÓ”)Sd-ƒæÁƒnnn½½½~~~çÒ¥K_~ùåÕ«Wûièð7ª¦¦¦ìì옘IÑÒÒ:~ü8AÞÞÞ;wîœ;w®Ô婬¬,))ykêËÍÍ6mš©©é¼yó”••Oœ8áïïðàÁððð·S€·É[–-ð¾GŒøøø?þøcýúõo"ñîîn'ë*Ê<ºÍhggxãÆ—/_¾¡|ñ|V%%¥7”¾D ííí%‡òûÏ—_~ÙÖÖvéÒ¥ôôôÍ›7—––.Z´(;;[ºý7ƒÁˆ½yó¦o8\.÷âÅ‹›6mòôô|›]fÍš5zzzß|óÍÖ­[+**8ÎÀúäx<Þ6)•l÷0@2}||¾ûî»ëׯSD+//÷ññÑÓÓ300ðññÁ>3Œ‰‰Illìõë×mmmmmmqÈŠ+V­Z¥®®®¤¤äèèxîÜ9.—»fÍ+++uuuww÷ÚÚZ2…””---GGGQƒ}îîîx:Ú«W¯¨'ÖÔÔøûûs8//¯Ë—/ó§sõêU--­#F¬Zµª»»{À¥ŠŸ”555áÉÉÉ·nÝRPPèOâ¢t6kÖ,„³³³‰‰‰ð…‰‰‰VVVƒ 222 öì-H¤Pܾûî;MMM…Q£F­^½Z”©5ÅO~~¾««ëرcɨ¨(„PYY™@Ì€€yyyÒ:ÏÊÊb0666d„¸¸8ƒQYY‰øUXXØôéÓBnnnüÒ+))ñööf³Ù†††Ë–-ûçŸ(Tƒ‡Î<(©NŸ?îéé™ÐÜÜ,E“¨ªªòõõÕÕÕÕÓÓ›1cÆ­[·è\ÕÕÕuûöíéÓ§khhà—'OžtttÐIºÍÄÆÆîß¿ŸÍf³X,CCȈ~éI× y<Þüùó™L&ý)ý”-ðáC¹¹¹¬‹ð~ JP!DÈîOt§Ø´iB¨¡¡ááǃ ²··çr¹øTRRB¨ªª fgg³X¬¡C‡ÆÄÄÄÆÆ6ŒÅbeggã³ÆÆÆ³gÏÖÒÒ211ùüóÏqˆ–––¶¶öæÍ›·mÛÆf³•””œœœÆ—’’Á`0lmmñå7nDMž<9!!aíÚµVVV¡3gΉϚ5 ÿvss³³³#¢§§'ï¿ÿ~èС uuuA\¼xQIIÉÄÄ$..¾233c2™GŽÁ‰œûôéSjÑQ†#A?þøãðáÃq4%%¥É“'oÛ¶í÷ߥ:†£X]dgg‹²t_¾|Éd2ùK¸xñb6›ýôéS:Z ¯PÜøí¹U«V!„°EH*”ZS„8ž?>nÜ8&“yïÞ=SOž}r¹\+++###QEjiiQTT “““;pà€Ø*ô‰¤Æ —Ë1bÄðáÃ_¼xC BÑÑÑ囑‘ïàà ­­——Gç±m!DÚú<oÔ¨QC‡%BÒnˆ G·dɃqèС·#Û÷0é‹c@¾üòËÌÌÌøøøÙ³g6ŒÿTEEÅÇSSSÙl6a³ÙØÝuóæM»qãÆñãÇúé§R¨‰Ž.D¡¬¬œššºråJ“‘#G:99yyyM›6 O¸«ú E9’§ŠŠŠ……Åýû÷ùãPkJT]£¢¢Îž=kffvéҥɓ'÷ ¯nniiÁÎ×)S¦8;;cW\AA‹ÅÂ3 Ä‚ÇOI¨wƒÊÈȰ°°°±± ŒŠŠºwï¾üÕ«WxîiŸýÛŸÿÞ½{!m;±iÕÖÖF?ßúúúׯ_—••…‡‡?¾®®NGG‡:k±mF@zä-—Y¢n˜““C„¡¡áÉ“'·lÙÂáppø•-ð‘‹c@JÆ¿téÒìììÓ§Oó‡ã›¯ÀWñ´§§jjjJ—iWW—¯¯¯‹‹ËùóçÍÌÌV®\YWWGNÕ§¦¥¥eæÌ™'Nœ l¯ìܹó!Ƈ½#u0yûÏË—/VH(((¦§§#„(|$ÔÐÑ‘‘‘¿ÿþûlllrssýýýmllšššú£š°X,ÕÔšê3‘#GŽX[[_¿~}ÿþýµµµ¢¬F„——Ç+,,,**âp8ÇÝÝýÖ­[­­­ÎÎÎ4kG}z}}ýµkׂƒƒB³gÏ–““ËÈÈÀ§444(†Éú)X,UÒíǤù4hÊ”)III/^¼Às( ÓfDIOŠnHÄñãÇøá‡W¯^­X±Bê:€0àqéÙ¾}ûÏ?ÿõÙgŸ‘x(°ººzÒ¤Id ^¶iaaÑÏ‹‹‹sssSSSùt<޽½½sæÌyòäIQQ¿k—VMMÍÓÓ“ ¬­­­®®ÖÔÔüä“OB7nÜpss#ÏVUU ¬UTT.\¸ðøñcr°’{é $]ÊýÑÅóçÏÌÍÍÃÃÃÃÃÃy<Þž={¢££÷íÛçìì,DQ[[ÛÓÓCZóuuuü2Gâ4%œæÙ³gçÏŸ´oß>uuuêLœ8Q]]=??¿¼¼ÜÕÕ!äææÆãñΞ=[YY‰§ð,ØLĆ£žžž««ëþóŸ-[¶ÈÉɽÑáTìÕ«­­åß4))©½½}óæÍÔùž;wnÖ¬Y™™™¸Ø<ä-Öê’ºç"„¤è†Ó§OÇsæÍ›—™™™““ƒ—ÀÃP5ÐÀpéÑÐÐHMM3gοÿýo2ÐÁÁÃᤤ¤Ì;?T^¼xñÍ7ßõÿ€x^‰9qâÄ«W¯Ä>·¾þúë‹/fddŒ3†?ÜÎÎÎÂÂâ_ÿúWpp0¶?ÚÛÛ½½½{zzLMM¿ùæ›ÐÐP}}}„PssóîÝ»VŒ #44tÿþý‰‰‰kÖ¬!Ç7_½zµqãFQŸy¤Ctq÷î݉'®[·.11!$''‡ÛòòòRkAÍÍÍ)))_}õ>LLLlooøÒ µ¦$⫯¾6lØ?ü@çëAòòòS¦LÉÍÍmllÄ“_ÇŒ£¦¦¶mÛ6±¥Øê ˆ~øÁÚÚzĈ8$(((""âòåËot8ÕÞÞžÃᤦ¦†„„`{úÁƒ bóuttD>|8((ˆôÿa x„ Ôùö§ÍHÑ Iä¿þõ¯œœœåË—O™2EYY†ªþ†#ô‹àààôôô_~ù… QTTLII vpp ""++ëéÓ§ÇWTTìgvîîî***K–,™;w®¡¡aYYY~~¾¶¶vqqñùóç½½½û¼êܹsÿú׿lmm¶s³²²rppHMM9s¦­­mPPPOOOvvöãÇ=Š?.·k×®   {{ûàà`yyù¬¬¬7±»[JJJMMM|||zzúèÑ£ñÒ’’’¦¦¦µk×:99I—lt1fÌkk뤤¤X[[ß½{÷üùóZZZ!!!L&S -P ¯¯_ZZjkk[VV–——7a„ ðÇa±XšH°®®îÎ;VVVÂ_4ñ÷÷ïÓ÷ööƳu±Ç‘Édº¸¸äææ6läÈ‘}Û¯{÷îmjjâ_Ç#–+W®466âÕýd©V¬X±téÒÐÐÐ-[¶ôÓ‚9räHDDDXXØ7ß|#pJII)555((hôèÑ ãðáÃ,kÆ x—"Y6›½nݺ„„„±cÇzzz2Œ¼¼¼òòò˜˜|xxxxsssZZš¶¶¶§§'!b;r)Œä,Ó¦MÓÓÓ}:dÈþûM~LLLìììúù i@€´´´ššQ¯Lïu¾Ð ßR<¸?Úg=¬ª€.ð¸Þ}:;;¯\¹âààðAæ Ý-0Çx'aô? >RÊÊʬ¬¬„7¼üPó€· ŽÀ;ŒÞÞÞøssÀ@áîÖó‘ä o0dÉž={d]ºÀG€`8´Ã Ž-Àph†#@‹b;žŽŽŽ¬¬¬'N/Á†ãŸþ¹`Á‚±cÇNš4iÙ²eï‚M¼ äääœ:uJÖ¥ “Éd2™².-‚˜9sfxxxGGÇܹs£££‡¾oß>sssÜ[Bq|(**êêêò‡H1JP[[oeeµvíZYË`à¹r劻»»ŽŽÎ!Cœþùçþ§Éߨ®_¿îççG*ˆ>­­­vvvzzzk×®ýñÇ¥+I[[ÛÒ¥K9Žªªª««ëµk×DÅìééa±X¯ÚÚÚ#eJnݺ¬§§§ªª:f̘””.—ûò}›¼‰f¼Ë|øsGŒ!ríÚµ(**Κ5«ÏK°'r÷îÝ&&&&Løã?®\¹RXX¸iÓ¦   :™ZXX„ܽ{WÖ’eeååË—{xx¨©©Éº,b(((uè’™™™››»jÕª;vUUUÎÎÎaaaååå!òlZZÚ°aÃvîÜÙŸ|B›6mš2eЬe0ÀäææN›6ÍÔÔtÞ¼yÊÊÊ'Nœð÷÷?xð`xxx’åoTMMMÙÙÙ111’&¢¥¥uüøq‚ ¼½½wîÜ9wî\IShoo3fLccc@@›Í>qâ„——ו+Wúô†>|ø°··×ÉÉÉÔÔ” TUUHq÷ŃÜÜÜz{{ýüü8Î¥K—¾üòË«W¯~H¦Õjfï Âõâc‚ËåfddŒ9ÒÒÒòܹs¢¢}öÙg¶¶¶dHIIɨQ£lmmÿøã±¹˜››Ëº¢ï¢…Û¥ ‡ªExÓ¦M¡mÛ¶!„–/_Î*)) !TUUÕO™tuuõööö'ccãY³f½)Aׯ_G=zT”ˆŠ‹‹…OM:!Äårñáï¿ÿŽZ¸p!>üâ‹/BW-\¸PNNîŸþNPSSs̘1ý¬Kvv¶¨)”Ëå’ò!‘Z¡666zzz­­­øðåË—gèСX»œœ„PAAYÔ€€‰RÀsЯ\¹"iÖ7nD¥§§ãÃû÷ïkjjº»»÷ùܹs¡K—. `Ýé0sæL99¹òòr2dÑ¢E¡_~ùe ²èíín3ÂPôY)´ÆÏ[hfo)Üí³þê&ùõ×_}}}·nÝÊf³:äãã#*fzzzUUÕ‚ È''§ùóçwtt\ºtIÖõdL`` Ïwß}‡ïÅ¢(//÷ññÑÓÓ300ðññÁ>3Œ‰‰Illìõë×mmmmmmqÈŠ+V­Z¥®®®¤¤äèèxîÜ9.—»fÍ+++uuuww÷ÚÚZ2…””---GGGQƒ}îîîØóêÕ+êI555þþþGGGÇËËëòåËüé\½zÕÃÃCKKkĈ«V­êîîp©â¹555áÉÉÉ·nÝRPPèOâ¢t†‡œMLL„/ìèèHLL´²²4h‘‘Qxxø³gÏèhA"…âöðÝwßijj*((Œ5jõêÕ¢„L­)’®®®Û·oOŸ>]CC‡¨¨¨¸¸¸ùD⦃B¨ªªÊ××WWWWOOoÆŒ·nÝ¢ya~~¾««ëرcɨ¨(„PYYË©XllìþýûÙl6‹Å244Œˆˆàµt}–ÇãÍŸ?ŸÉdÒœ? Q3>dm¹¾ ººº-,,lmm¿ýöÛׯ_K‘HAA¹¹ùºuëÄÆühßB$å=õ8644<|øpРAööö仾€Ç1;;›Åb :4&&&66vذa,+;;Ÿ566ž={¶–––‰‰É矎C´´´´µµ7oÞ¼mÛ66›­¤¤äää4nܸ”””ˆˆƒakk‹/Ǿ–É“''$$¬]»o)uæÌ2qÒAåææfggGDOOO:ßÿýСCêêꂸxñ¢’’’‰‰I\\ÜW_}effÆd29‚9yò$“ÉÔÑщˆˆˆŠŠÒÓÓ377GíqÄ&¬¢¢bDDÄ¥K—:::ĶšG ]TWWoذ!´k×®ÂÂBákCCC †‡‡ÇºuëfΜÉd2ij¾B B>>>kÖ¬qwwG¹ººòx<…RkŠŸžžžšššgÏžñ‡ØØØØØØGNKKCåææâC¼Á-ƒÁøûï¿qÈèÑ£õôôpyÈFU]]€Ú±c–ž±±±¹¹¹††Fttô®]»ð¼ÜÂE—e(++“.+:´µµ1ŒÐÐPþÀŸ~ú !têÔ)áøÑÑÑŠŠŠÏŸ??vìØ¾}ûŠŠŠºººhæ•——GÊ|åÊ•l6[]]½¡¡Aì…===«W¯>qâ ¤Þ¶m›ØËÅ60kkk…ÈÈÈo¿ýûAÂÃÃñY‰ú,éqäñxØÁOúqéÔ‘~3{Ç#}>|ñ··7**ÊÜÜ<""¢©©Il|Çår…G—ŠŠŠÌÍÍ“’’ĦðÑ6&Iy G‚ ’““B)))ø¿áØÕÕebbbllÜÜÜŒÏ677™ššâÇ^Ñ@63cccÒŒ#Ïó³µµíîîÆ!ÎÎΡööv‚ LMMÍÍÍ{zzð©ÖÖV‹A&%l8 °yóf„PZZ.­™™™½½=ùBÕÙÙ9aÂSSS.—ÛÙÙidd¤¯¯ÿäÉ|öéÓ§Ô†#¢ G‚ ~üñÇáÇãhJJJ“'OÞ¶mÛï¿ÿ.Jt G±º ª~ùò%“Éä/áâÅ‹ÙlöÓ§Oéh¾Bq{à7&V­Z…Â!©PjMQ!###>>ÞÁÁA[[;//O8“'OBqqqøpÔ¨Qx96ÂZ[[åää-Z$ܨ„‡ªB§OŸÆ‡\.×ÊÊÊÈÈHTÁZZZÃÂÂäää8@ÐæÞ½{¡ØØXþ@<´ÿ~áøÞÞÞÊÊʃ&Û¡••Õõë×ÅfÄårGŒ1|øð/^àÂÂB„Ptt4ýÒ’<þ|ܸqL&óÞ½{b#‹m`!Ò*åñx£FÂÄ’öYl8òx¼%K–0ŒC‡IQ5‚F3{ÇÑ>þâ˜~øáâÅ‹¡¡¡øN,=òôô7nÜ?üÀއi`z,€ùòË/333ãããgÏž-°<¿¢¢âáÇ©©©l6‡°Ùlìîºyó&·Ò××_¿~½œÜÿŸ+2nÜ8KKKüûœBBBäååqÈ”)SŠ‹‹_¿~­¦¦V^^®¤¤Äbýoç}þü9Bèõë×4K~úôé7FDD,^¼!TYYY__ÿÓO?‘***FGG‡††VTTp¹ÜGíܹ»ÄpÉ—/_¾zõjŠ,æÌ™3tèPÀcÇŽáREzëÖ­üüüüüüÂÂÂüüüõë×oܸû¥€Ž.D!''‡·zôèÞœ+-- ;çBbµ@_¡¸T+W®$¯Ý¸qãÞ½{;6gÎ2ZSuÙ²e «õððès—1CCC›üü|„PKKKMMÍ¡C‡¢££ ýüüŠŠŠx<ÅÜ~ÌÍÍg̘3™L;;»¼¼Ü°a›Í^¿~½¿¿\\\HHHhh¨œœÜöíÛÉw}?~üÒ¥K³³³OŸ>ÍŽï§_ ÁOОž|(õwÏ»ºº|}}]\\Ο?off¶råʺº:j¯ IKKËÌ™3544Nœ8A.Ø^Ù¹sç/BŒ7;<ê"`òöŸ—/_ ¬PPP LOOGQ¸=¨¡£ "##ÿý÷ØØØäææúûûÛØØ455õG 4a±X ¨5EÚ Aƒ¦L™’””ôâÅ <:/€——Ç+,,,**âp8ÇÝÝýÖ­[­­­ÎÎÎ4k§¤¤D³‚õõõ×®] FÍž=[NN.##ŸÒÐР&CéêêÊÉÉ577ó'ø÷ß#„H7?%~»%VéöãGl!1Gޱ¶¶¾~ýúþýûkkkiZt˜(QKÑg ‚8~üø?üðêÕ«+VHZG±Í ø0øÀ=ŽxîNGG‡ðjM„““SŸWYZZþüóÏÿú׿ÊÊÊêëë‡ 6kÖ¬åË—ëëë˺BÀ»ÅöíÛþù稨¨Ï>ûŒ ÄãPÕÕÕ“&M"ñJÌþOu(..ÎÍÍMMMå¿¿Óñ8öööΙ3çÉ“'EEEüž\Z555~ozmmmuuµ¦¦&^ˆzãÆ 777òlUUÕÀŠQEEåÂ… ?&+I°oiРAÒ¥Ü]<þ¼¡¡ÁÜÜ<<<<<<œÇãíÙ³'::zß¾}ÎÎÎÒiAµµµ===¤5ßÑÑQWWÇ/s$NS ž;wnÖ¬Y™™™Ø2ÃàñÖ>ù'NTWWÏÏÏ///wuuE¹¹¹ñx¼³gÏVVVâ)¼ 6qñôôô\]]ÿóŸÿlÙ²ENNNì)‹Å1bDQQøÕ«W †ÀGÂB=ÊÉÉ™—Ëíîî655500À+B‚øë¯¿ðüÅ7±ã–-[ø×y¼|ùrÆŒx¢¡p‚tLjÕÅâüáDþª««B[·n•H Ô %þo¡Crr2yÆæðáÃüIQkJ ðÍÍÍ,ËÓÓ/…Æà1î›7oö)+??¿áÇËËËãu*\.WMM OÓ¬©©!£ /ŽÉÏÏ'k-°#à¼yóØl¶p^<ÃáX[[“!{öìA]¼x‘ ˆÖÖV±Ï¬Ý»w#„Ξ=‹›šštuu?ýôSá¼ššš”””\\\È•Iø%ŠÅbݾ}›ºýtttp8KK˶¶6rÿþ}%%¥ùóç‹-$dz´´466¦³Ï¢’60‚ .\¨©©I„¤}–_kMMMššš&&&x–Ø:JÑÌÞY`q }>p#¼i‚ƒƒÓÓÓñ>ÆEEÅ”””àà`‡   ‚ ²²²ž>}züøqEEÅ~fçî¢²dÉ’¹sç–••åççkkkŸ?ÞÛۻϫÎ;÷¯ýËÖÖV`‡6+++‡ÔÔÔ™3gÚÚÚõôôdgg?~üøèÑ£øãr»ví ²··–——ÏÊÊ"RRRjjjâããÓÓÓGׄ–””455­]»VÔà€Xú£‹1cÆX[['%%=xðÀÚÚúîÝ»çÏŸ×ÒÒ a2™Rh}}ýøøøÒÒR[[Û²²²¼¼¼ &ðo%‹b±XšHÍf¯[·.!!aìØ±žžž #//¯¼¼<&&†ƒF~¼½½ñl]ìqd2™...¹¹¹Ã† vãaðûÒÞ½{›ššø×ñˆåÊ•+xu?ÆßßÅŠK—. ݲe !Î_µpáÂï¿ÿ~îܹ‘‘‘šššééé¯_¿ÆÛ!„’“““’’¶oß¾téR„„„¯¿þÚÌÌÌÛÛ[SSóÂ… •••Û¶mÃß;räHDDDXXØ7ß|#‹’’RjjjPPÐèÑ£ ÆáÇY,Ö† ð0.E ëêêîܹcee%ü ___Š|¥ëæyyy©û¬ŽŽÎöíÛ—-[¶uëÖÄÄD±u”¢™²¶\?@>Ú·Iù0<ŽA󓘘(6_‰ÁçqÄÐï³ZëííuttäßLŠI›Ù; xéà `"Â@caa_¦¦ƒ(A1 $ÃfÉ€N!’§OŸ2¤ÿ~S€;;»éûÅïiii555¢Þ¯Þë|¡ÏÒDŠ÷Gû¬ÿÀWU0€ÀøÀèìì¼r劃ƒÃ™/ôY`À9ŽÀ;Éï%ð†(++³²²ÞóCÍú ŽÀ;ŒÞÞÞxa5 ÜÝÝñ§}>’| Ÿ€á KðN4ï0Ç Ž-Àph†#@ 0Z€áÐ G€`8´Ã Ž-Àpº$$$0þ ±cǦ¥¥ñx¼>ãÈÉÉYZZΟ?ÿÚµkÔI‘„„„ô™{bb"›Í5j”¬Å00˜˜˜øùùɺÿ{{{QE |wÊ#CnܸÁ`0²²²Ây<ž™™‡ÃÙ¾}»¬Ë $¢4ŽdÔ/€w0ã&?gΜ¸¸¸¸¸¸•+WúúúÞ¿É’%_ýuŸq"##õôôNž<9iÒ¤ýû÷‹JŠŸéÓ§ gZ[[oeeµvíZYË÷ÂÕÕ5!!a@’b2™L&ÿ¾~ýºŸŸßíÛ·ßf]2å/Ï›Ëe hmmµ³³ÓÓÓ[»ví?þ(]"W®\qww×ÑÑ2dˆ³³óÏ?ÿL窞žžñãÇO˜0?°­­méÒ¥GUUÕÕÕUàµíÍqëÖ­àà`===UUÕ1cƤ¤¤p¹\Q‘© )QRï)ÕQTó¸ÿ¾¨—pwwwYWñ…sssYáýàM êµêM›6!„Š‹‹ùŸ={¦¯¯Ïd2Ÿ={&*N]]……ƒÁ¨®®¦HЂӧO#„.]ºô†ªöö166ž5kVR¨¨¨““Û´iÓ€—-''!TPP@5 àM D Ów3—ëׯ#„Ž=ÚçYçééikk+EÊçÎC™ššÆÆÆ®]»ÖÜÜ!tðàA±~õÕW¡ñãÇ“!mmmŸ|ò‰‚‚BhhèòåË 444***Þ¨` ‚¸ÿþàÁƒÕÕÕ?ûì³øøxlËŠjäÔ…”(©7 …ÆûÙ/$ª#EóxöìÙ¼ÿ¾¦¦¦»»{äF‡™3gÊÉÉ•——“!‹-BýòË/‘© )QRÒÑÛÛ+Ü+…ys†£Du”´yÄÅÅéëëÿý÷ßôˆ#}`¨ú A¡žžŠ8cÆŒ™8qâ©S§¤o ›5kBÈÙÙÙÄÄ–——ûøøèééøøø”——“ñMLLbcc¯_¿nkkkkk+œ`GGGbb¢••Õ AƒŒŒŒÂÃß={FžMII±±±QQQÑÒÒrttäy411Y±bŪU«ÔÕÕ•””Ï;Çår׬Ycee¥®®îîî^[[Ë_Œï¾ûNSSSAAaÔ¨Q«W¯îîî555þþþGGGÇËËëòåË¢¤ñüùsOOÏ„„„ææfj¹ÈËË¿|ùfee1 2B\\ƒÁ¨¬¬D¹»»ã9…aaax¶€››)m„PII‰··7›Í644\¶lÙ?ÿü#*_Šºˆ’¼p¦dy$;…û¬µä¯^½êáá¡¥¥5bĈU«V‰R nÞD’ÐÕÕuûöíéÓ§khhà—'Ožtttˆºª©©iþüùáááC‡å?zô¨¾¾þ‚ ð¡©©i@@@aaáŸþI§0UUU¾¾¾ºººzzz3f̸uëÍZäç绺ºŽ;– ‰ŠŠB••• G¦.¤DI CÝ…ccc÷ïßÏf³Y,–¡¡aDDc–Tã7þ|&“I¢ý:JÚÚ·Iù0<Žýõ—œœÜÓ§O JWbdd$BèÁƒ„„Çêêê 6 „víÚUXXHDvv6‹Å:thLLLllì°aÃX,Vvv6Žoll<{öl---“Ï?ÿ\8ÁÐÐPƒááá±nݺ™3g2™LGGG| ;B&Ožœ°víZ+++„Й3gÈ”µ´´´µµ7oÞ¼mÛ66›­¤¤äää4nܸ”””ˆˆƒAŽT"„|||Ö¬Yƒç¹ººòx<â¿=Ž/^TRR211‰‹‹ûꫯÌÌ̘Læ‘#G¨ÅrçÎDéqLKKCåææòËŸÁ`~ˆÑ£Gëééáò¸¹¹ÙÙÙaiãy“;vìÀÒ666677×ÐÐˆŽŽÞµk—‹‹ B¨OÁŠ­‹(É gJ–GR±ShP8êÒž­F„²²rjjêÊ•+MLLFŽéäääåå5mÚ4„ÐàÁƒKKKóòòîܹS__ûömI™¤µŠ†‹pÉÈ‘#q² ‹û÷ïóÇÁŽÃÐÐÐÐÐP¢666öÇpDy{{ïܹ³¥¥;k§L™âììŒÝH,kêÔ©tÒÁv$¢6Ê[ ÉSC_ìb5H³´xnèèÑ£ùé·–ÌÈȰ°°°±± ŒŠŠºwï–Û«W¯ð$Ý>!þ»ÇÕ×׿~ýº¬¬,<<|üøñuuu:::üÚÛÛCBB<<<–/_.JP3PÛÛÛBZZZÔBÆŽ@­R±=ÔÖÖF³ QQQgÏž533»téÒäÉ“¥.$¤„Û3y£ÀÕ—Hã999Až¡júu¤Ù<Ž;öâŋŋÓ %²ždùòÑN˜•”ÿ:˜]CBg)tŸqîÝ»geeÕŸ ÀùÇtvvr8SSSr ÿóçÏŒŒ:;; q[$–”” „Ö­[G†TWW#„¶nÝšžžŽºpáyêøñã¡Ï>û  ¤Œ*iiidHbb"B¯Äó5“““ɳø³7‡æOª§§ÇÂÂÂÌ̬¥¥Gkkkãp8úúúý\ƒñóó>|¸¼¼<^®ÁårÕÔÔð|Ášš2šðâ˜üü|²ÖûÕÍ›7Íf çE] É g*°8†¦ØÅj?êÒvww›ššàµ;Aüõ×_Ø_.¼T‚Çãq8kkk2dÏž=¡‹/ÑÚÚJý jnnf±Xžžžx…; ß¼y“ÿâ‚ vïÞ:{ö,>ljjÒÕÕýôÓOŦÓÑÑÁáp,--ÛÚÚpÈýû÷•””æÏŸ/¶ <ÏÒÒÒØØ˜ÎæˆÔ…”4)~$íÂA,\¸PSS“ ‰4Nüw¿hjjÒÔÔ411Á ­V\4›‡§§§†††ÔÂâú€Çø€ ß>É•12ò>îÝ»?¡»ººjjjJKK»»»÷ìÙcmmÝÿÄSRR‚ƒƒðŽâYYYOŸ>=~ü¸¢¢¢ØËÇŒcmm””ôàÁkkë»wïž?^KK+$$„Édª¨¨,Y²dîܹ†††eeeùùùÚÚÚÅÅÅçÏŸ÷öö–´¨úúúñññ¥¥¥¶¶¶eeeyyy&L ÷®Ã°X¬ÔÔÔ™3gÚÚÚõôôdgg?~üøèÑ£òÍ=ooo<‚†=ŽL&ÓÅÅ%77wذa¢\PØÓ¹wïÞ¦¦&þu¢®®îàà@Hâq[ É d*ÇQ¬r+ù«W¯N: jhh`÷•°ÿé³Ï>Cݹs‡?p×®]:::¾¾¾üŽ"Qðx¼ŒŒŒqãÆ <Œ˜?Ü_RSSû¼VÀãHDkkë’%KÌÌÌØl¶¯¯/ÿ÷±OnéÒ¥¢JRRRâááÁf³uuug̘Áï–¦´Oû¬‚¨BŠMŠº ua‚Ïã(‘Æ ¡~ÑÛÛëèèÈ¿oÔŠ‹ºyqþüyôßã’Gú0ˆwo6ØûŽ……ÅÝ»we]Š÷Ô‡‰‰‰9_x¯yúôé!C踴ß}ÒÒÒjjjRSSe]wº ’Æé Åóè£}„SƒÁ‡aCtvv^¹re`÷ ø «ðÁhpÀp>ÊÊʬ¬¬„·®|øª¼×ÀâÞÞÞÞt>„owwwüé÷—  À{ ޼ð†,À‡ U´Ã Ž-Àph†#@ 0Z€áÐ G€`8´Ã Ž@—„„Æ£¡¡1vìØ´´4×g999KKËùóç_»v:)’>sOLLd³Ù£F’µ???Y—âÿãââboo/ª¨ïNydÈ7 FVV–@8Ç333ãp8Û·o—uD”Æ‘Œúð.†#ð~Ã@ :˜ãœ9sââââââV®\éëë{ÿþý%K–|ýõ×}ƉŒŒÔÓÓ;yòä¤I“öïß/*)~¦OŸ.œimmm||¼••ÕÚµke-rÙsëÖ­àà`===UUÕ1cƤ¤¤p¹Ü~¦Éd2™L&þ}ýúu??¿Û·o¿ÍJ dÊ_ž7—Ë@ÑÚÚjgg§§§·víÚüQºDÚÚÚ–.]ÊápTUU]]]Þµ¨««ó÷÷6l˜¡¡a```ii)¿ÿ¾¨W2ww÷—§W®\qww×ÑÑ2dˆ³³óÏ?ÿLç*WWׄ„„þHã=e@4.@OOÏøñã'L˜ ëÊ}Ȱd]è/"¨# ¬á5qâDò°©©ÉÞÞ>%%%..NWW·Ï8wîÜ™5kÖ²eË&Nœhmm-*) B›6mš2eÊè»ÍƒÜÜÜz{{ýüü8Î¥K—¾üòË«W¯Ò|H‹¢  €üÝÔÔ”ó6ë%)yÞ\.…––ÖñãÇ ‚ðööÞ¹sçܹs%M¡½½}̘1l6ûĉ^^^W®\éÓíZTTäáá¡©©Âd2³²²<<<Ξ=;yòdUUÕyóæ Äïèè8yò¤‰‰É›)Innî´iÓLMMçÍ›§¬¬|âÄ ÿƒ†‡‡S\UYYYRR"Я%’Æ{Ê@i\ æúõëýõ×ñãÇ˺~40И››Ëºï"(DˆoÃtâÐaÓ¦M¡ââbðØØX„Ð¥K—(âüöÛo¡   ê¤D‘-Qü7MWWWoo/ÍÈ\.—Ëå Ïš5KЬgΜ)''W^^N†,Z´!ôË/¿ TírrrBdQV€b3í‰Ä.u.\¿~!tôèQQ~ùå„Е+W$MyãÆ¡ôôt|xÿþ}MMMwwwá˜xX\GGçÙ³g8¤¥¥ÅÔÔÔÁÁATâqqqúúúÿýwD'==½ÖÖV|øòåK‡3tèÐ>#÷ôô\¸paãÆÚÚÚ¡M›6I' ©éííî•ÂPh¼ŸýâMhüâÅ‹ ƒÅb?^ÒòHñ<úhŸõ0T ý… „POOEœ1cÆLœ8ñÔ©SR ª†……Íš5 !äììLzMÊËË}||ôôô |||ÊËËÉø&&&±±±×¯_·µµµµµN°££#11ÑÊÊjРAFFFáááÏž=#Ϧ¤¤ØØØ¨¨¨hii9::ò<š˜˜¬X±bÕªUêêêJJJŽŽŽçÎãr¹kÖ¬±²²RWWwww¯­­å/Æwß}§©©©  0jÔ¨Õ«Wwww÷YÇšš‡£££ãååuùòeQÒÈÏÏwuu;v,…*++ˆ //ÿòåK|˜••Å`0lllÈqqq £²²!äîîŽ]aaax¶€››¿ª¤¤ÄÛÛ›Íf.[¶ìŸþUBŠºˆ’¼p¦dy$;…û¬µä¯^½êáá¡¥¥5bĈU«V‰R nÞ¤Õ²ù8zô¨¾¾þ‚ ð¡©©i@@@aaáŸþ)óáÇõõõ‹/&üššš±±±·nÝN¹´´4%%åûï¿2d’TUUùúúêêêêéé͘1£Ï4…éêêº}ûöôéÓ544pˆŠŠŠ‹‹Ë“'O:::„ã?þÜÓÓ3!!¡¹¹¹?Òèê.»ÿ~6›Íb± #""ø³¤Çðx¼ùóç3™Lú\ãMMMóçÏ:t(Í2R"kËõä£} ‘”Ããø×_ÈÉÉ=}ú” t%FFF"„ýôSKKËW¯^ƒÇñ†ãÀóÑ6&IyO ǹsç®^½zõêÕ_ýõÂ… ±cùòåüqú´“’’B—/_&£ ãììÜgÖüCÕ]]]&&&ÆÆÆÍÍÍølss³‘‘‘©©iWWAÆÆÆ¡„„„>‡5_¾|Éd2ù¥‹/f³ÙØð555577ïééÁ§Z[[Y,VDD>466VPP¨««Ã‡;vì@ÙÚÚvwwãggg„P{{;Y ~{nÕªU!l—†cWW—™™™½½ýëׯq´ÎÎÎ &˜ššÒJ{þüù¸qã˜Læ½{÷N=yò!‡G…פã'Skk«œœÜ¢E‹ðY~CMx¨!túôi|Èår­¬¬ŒŒŒ„ C]jÉ d*`8Ò;µùs¡.mgg§‘‘‘¾¾þ“'OðÙ§OŸPŽ---ŠŠŠaaarrr«;’{÷î!„bccù/]º„Ú¿¿@dì£ äÄ^ç;w DNJJRVV~üø1bp¹Ü#F >üÅ‹8¤°°!M¿.AdddÄÇÇ;88hkkçååQG6%’†0b»0Bˆ|õâñx£FÂãé’jŽ<oÉ’% ãСCôE4àONNVTT¬¬¬ÄÃñ‹c@2øÇbX,–……Åš5kè¬6`0×èÌ™3G`TßÖ©©¨¨xøðajj*›ÍÆ!l6»oÞ¼‰Çpõõõׯ_/'×Ç\999ƒQRRòèÑ####„PZZvÎ!„ÊËË•””X¬ÿ½3<þ!ôúõkòòqãÆYZZâߨ‰"//C¦L™R\\üúõk555\°•+W’×nܸqï޽ǎ›3gXYYY__ÿÓO?)++ãEEÅèèèÐÐÐŠŠ þ!ia >ÿü󆆆½{÷š™™ œ544´±±ÉÏÏGµ´´ÔÔÔ:t(::º°°ÐÏϯ¨¨ˆÇãa‹XÌÍÍg̘3™L;;»¼¼<áhÔu±¶¶¦<5ôÅ.Vƒ4KËår=z´sçNì6Æjùòå«W¯UÈ£GvuuÅÄÄaÂrŸçË—/3 '''2αcÇ^¼x±xñbúÒî¸ÚÚZ¼þ “””ÔÞÞ¾yófê*œ;wnÖ¬Y™™™X<ä-‘ʼn’TüHÔTã¡éÓ§ã)óæÍËÌÌÌÉÉÁËöߦÆïÞ½‹úæ›oøã·´´¬^½ÚÍÍ Ç7‚¬'Y~€|´f%å=]C½ºÏ8÷îݳ²²b0ÕÕÕô“â‡qLgg'‡Ã155%§ð?þÜØØØÈȨ³³“·EbII BhݺudHuu5BhëÖ­ééé¡ .§Ž?Žúì³Ïð¡@Êø¡’––F†$&&"„ðÚR<_399™<‹?{søðaþ¤zzz,,,ÌÌÌZZZp´¶¶6‡£¯¯/¼8†ÇãYZZÓY7ƒñóó>|¸¼¼<^®ÁårÕÔÔð|Ášš2šðâ˜üü|²ÖûÕÍ›7Íf çE] É g*°8†¦ØÅj?êÒvww›ššàµ;Aüõ×_Ø_.¼T‚Çãq8kkk2dÏž=¡‹/ÑÚÚ*ö´{÷n„ÐÙ³gñaSS“®®î§Ÿ~Ú§NUUUÿøã|X[[«¦¦6}útþ8žžžm{ÙÑÑÁáp,--ÛÚÚpÈýû÷•””æÏŸ/¶ ÍÍÍ,ËÓÓ/ÒÇà97oÞ¤ÈTxqŒ¤ÒàGÒ.LÄÂ… 555 ‚HãÄ÷‹¦¦&MMM¼ÐJ&ç/,Žy£€Çž½{÷â'tWWWMMMiiiww÷ž={ø?#5ŠŠŠ)))ÁÁÁxGñ¬¬¬§OŸ?~\QQQìåcÆŒ±¶¶NJJzð൵õÝ»wÏŸ?¯¥¥…?É ¢¢²dÉ’¹sç–••åççkkkŸ?ÞÛÛ[Ò¢êëëÇÇÇ—––ÚÚÚ–••åååM˜0ܹ Ãb±RSSgΜikkÔÓÓ“ýøñã£G O%¬««»s玕••ð×8üýý}}}…ËàííGаǑÉdº¸¸äææ6L”ÿ{:÷îÝÛÔÔÄ¿ŽG,Ôu¡|2åÇÝÝZƒ¹P”–ÉdîÚµ+((ÈÞÞ>88X^^>++«ÏMBW®\illܼy3¿:V¬X±téÒÐÐÐ-[¶â¼n .üþûïçΩ©©™žžþúõkòC|ÉÉÉIIIÛ·o_ºt)BhóæÍÞÞÞŽŽŽ~~~===ÇŽSVVþŸÿù2µŽŽŽÂÂÂ)S¦´9r$""",,LÀG…RRRJMM =zt@@ƒÁ8|ø0‹ÅÚ°aƒØ±W6›½nݺ„„„±cÇzzz2Œ¼¼¼òòò˜˜<ÿX  ý‘EÄ6ŠLåååék\íÛ·/[¶lëÖ­‰‰‰tFöVãÀ[EÖ–ëÈGû")°Ç‘„Á`˜››‡††–––Jš?Â_Ž)--õòòÒÕÕÕÕÕõòòúõ×_ÉSb?ÊòøñãE‹)**r8œÐÐPr«—ÂÂB'''UUÕáLJ‡‡777§¥¥ikk{zz’{gÍšUXX8iÒ$ KK˸¸8ìNª¢¢bÚ´izzzƒvssÞ*aNŸ>-êV–˜˜(ª²!mmm2dçΡ/¾ø‚?¿‡Çã…„„¨««ãOSÐ÷8Š­ …ä2•Îã(Vƒ¹ˆ•üÕ«W§NЇ\544°ûJØÿôÙgŸ!„îܹøk×.___~'­­­K–,133c³Ù¾¾¾ä)Ü_RSSÉ‹/âjr8œððp¯Âœ?ý··›ûä–.]*ª%%%l6[WWwÆŒünijx<^FFƸq㌿UÍ/(á*`úô8RKƒº ua‚Ïã(‘Æ ¡~ÑÛÛëèèÈ¿oÔÛÔ¸@ÁÀãøFaN¿Äbaag]Ô ˆ h.—~Ç|l˜˜˜ØÙÙõóÒÀ;ÂÓ§O‡ BÇ¥ýî“––VSS“šš*낼ÓUø4N)žGí³>9¼ßˆ ó'ëbÀûÁ‡aCtvv^¹re`÷ ø «ðÁhpÀp>ÊÊʬ¬¬„·®|øª¼×ÀâÞÞÞÞt>„owwwüé÷—  À{ ޼ð†,À‡ U´Ã Ž-Àph†#@ 0Z€áÐ G€°xßtttdee8qâÉ“'jjjæææ‹-š8q¢¬Ë 3Àpì.—»p᪪* &tvvþúë¯ÅÅÅË—/ŒŒ”uéd U÷Á±cǪªªF]XX¸wïÞÇÿüóÏšššÿþ÷¿ëêêd]:@f$$$0þ ±cǦ¥¥ñx¼>ãÈÉÉYZZΟ?ÿÚµkÔI‘„„„ô™{bb"›Í5j”¬Å00˜˜˜øùùɺÿ{{{QE |wÊ#CnܸÁ`0²²²Ây<ž™™‡ÃÙ¾}»¬Ë $¢4ŽdÔ/€w0ûà—_~A­[·NYY‡˜™™-]º´···¤¤DÖ¥dÌœ9sââââââV®\éëë{ÿþý%K–|ýõ×}ƉŒŒÔÓÓ;yòä¤I“öïß/*)~¦OŸ.œimmm||¼••ÕÚµke-ÙsåÊwww!C†8;;ÿüóÏýO“Éd2™Lüûúõë~~~·oß~›•È”¿|¨¢¢2räHþ@333„ÐãÇe]:@ „ˆ7™~TTÿlצ¦&{{û”””¸¸8]]Ý>ãܹsgÖ¬YË–-›8q¢µµµ¨¤(hhh@mÚ´iÊ”)oS˜ï ¹¹¹Ó¦M3557ož²²ò‰'üýý<ÞŸd ÈßMMMÙÙÙ111o³^™ò—çÍå2Phii?~œ ooï;wÎ;WÒÚÛÛÇŒÓØØÀf³Oœ8áååuåÊ•>Ý®>ìííurr255%UUU¢UVV–””¼ý.C'ߢ¢"MMÍ&“™••åááqöìÙÉ“'‹=ûa QG¦nƒ¸Þ-@ˆÛ·oß½{W pß¾}æææ{¹¹¹¹¬kð~ð&…øþ8›6mB „ÇÆÆ"„.]ºDç·ß~CQ'%Šììl‰â¿iºººz{{iFær¹\.W ÐØØxÖ¬YRdmcc£§§×ÚÚŠ_¾|Éáp†:€µËÉÉAE XŠÍ´O$»Ô¹Ppýúu„ÐÑ£GEEÀÃ5W®\‘4å7"„ÒÓÓñáýû÷555ÝÝÝûŒ|îÜ9²Ç ÓÓÓsáÂ…7bä¦M›ú#1úÐÏìëèè<{ö ‡´´´˜šš:88ˆ=;Pôöö ÷Ja(4ÞÏ~!QG¦h%.)žGí³†ªû`Ĉæææü!×®];pà€¢¢â¬Y³è¤`!„¬ë¼A‚@õôôPÄ3fÌĉO:Åår%M?,, 7ܼ<(IG¡£Gêëë/X°šššþùçŸÂ‘±þ“O>é3©çÏŸ{zz&$$477KZ „PUU•¯¯¯®®®žžÞŒ3nݺEóBúù>|ø°¾¾~ñâÅä…¦¦flllEEÅ­[·¨ÏÒ) uŽÝ¿?›Íf±X†††üYRcx<Þüùó™L&͉ udDÙ<ú/.šÀcýÿ#kËõ]‡ËåfddŒ9ÒÒÒòܹst.ùhßB$eÀ…Dü(útþõ×_rrrOŸ>%(]‰xIþƒ =ŽÕÕÕ6l@íÚµ«°° ˆììl‹5tèИ˜˜ØØØaƱX¬ììlߨØxöìÙZZZ&&&Ÿþ¹p‚¡¡¡ ÃÃÃcݺu3gÎd2™ŽŽŽø~³Ÿ500 0[ZZÃÂÂäää8@ÐæÞ½{¡ØØXþÀK—.!„öïß/ßÛÛ[YYyðàÁdDZ²²º~ýº@4I G.—;bĈáÇ¿xñ‡"„¢££é×…N¾ØÍÈ…Ú¹s'õY±¹‹í¡'NàC7jÔ(<@,©Æ±áÈãñ–,YÂ`0:$‘”HÄvdêæÑOq‘€áHXÓ7ÝÝÝ;wîüᇔ””¢££/^L®°ÞMÖÄol• ÿX ‹Å²°°X³f Õ C dΜ9C‡åÁ·uj***>|˜ššÊf³q›ÍƮǛ7oŽ;!¤¯¯¿~ýz9¹>æ¢ÈÉÉ1Œ’’’G!„ÒÒÒ°s!T^^®¤¤Äbýïáùóç¡×¯_“—7ÎÒÒÿÆNÄyyy2eÊ”âââׯ_«©©á‚­\¹’¼vãÆ{÷î=vìØœ9sÈÀÊÊÊúúúŸ~ú‰ìbŠŠŠÑÑÑ¡¡¡¸:}²eËB¨¥¥¥¦¦æÐ¡CÑÑÑ………~~~EEE<{\Äbnn>cÆ ü›ÉdÚÙÙååå G£®‹µµ5…ä©¡/v±¤YZ.—ûèÑ£;wb·1nTË—/_½zµ¨B=z´««+&&æÁƒéééK–,Áá\.ÏJì“™3gââ©««ó‡ãAL\~x<^BBžpæÌ™ØØØY³fÕÔÔCŸRPUUU[[»{÷nÒ$uuu=t躺ºØ*H”‘®®îìÙ³Oœ8‘œœŒ_]222öîÝ‹joo§>+6q± ÀÔÔtöìÙø7ƒÁ°··?sæ B¨¢¢BRyðàÁ ,Z´ˆ —H\b;2uó觸)ñx<ÞÊ•+/^¼8uêÔ7êèèȺDŒ»PФÄÚšÅÅÅÒ}C/Éç_JU5?õõõ!É‹xê^}}=¶´,,,ú´BÊÊÊ©©©+W®4119r¤“““——×´iÓBƒ.--ÍËË»sçN}}ýíÛ·&e’Ö*B.Â!$#GŽÄÉbTTT,,,î߿ϻgBCCCCCŠÚØØHa8Ö×׿~ýº¬¬,<<|üøñuuuÂ]/òmiiÁÎÚ)S¦8;;c7RAA‹Åš:u*™ LzµQŽØºPHžúb«Aš¥ÅsCGÍN½µdFF†………M```TTÔ½{÷°Ü^½zE1;œ \i£ø©¯¥¥%|IAA’’yjÑ¢E‘‘‘'NœX¼x1…ö öl l•Ší¡¶¶6ê*Hš×Þ½{[[[ñØBhðàÁñññ›6mÒÔÔ{–± @ 1“7 \}‰4ž““C„¡¡áÉ“'·lÙÂápp¸XóŠíÈb›GÄHŽ}ðÃ?\¼x144OÞ2R¸ E9ßôÖ<qóæM<1±ŸéàÛ®€ÿ›2äê;fddäìÙ³srr®\¹’››{àÀ ‹ÂÂBMMMÿÜÜܱcÇ~úé§3f̘0a‚ƒƒÃ Åb½zõŠ?›M;wîÞÛ|ĈÔ© 4hÊ”)IIIsæÌÉÎÎþüóÏ"xyy%''–––r8‡ãîî¾víÚÖÖÖ‚‚gggš*%%%:ÑÄÖE”äÉyýý¤««‹¾©K{õêU$ÔÌD½ „êëë¯]»†'ãΞ={ùòå[·nEihhP›VºººrrrkJþþûo„éýâŸòóé§Ÿ"„ú¹?%^Búêø[IÁò׮]»y󦮮®³³38¶½¨ÏR@§ˆj̸âô5Ž"âøñãjjj“'O^±b¹£¤â¢îÈb›‡Ô⤠GA‚ÈÌÌTSSØÒúCEEEQQQPPPŸ%‰À[ŠVWWOš4‰ Äëé,ô{þüyCCƒ¹¹yxxxxx8ÇÛ³gOttô¾}ûœsssSSSW¬XAÆ—b8ImmmOOéëè訫«sss®Žššš§§'ÿ…ÕÕÕÂæï¹sçfÍš•™™LâÅ>T'NTWWÏÏÏ///wuuE¹¹¹ñx¼³gÏVVVâY§u]($?Pï¨ÅÅÅô5H]Z¼fùÆüúªªª•uFFBëEOOÏÕÕõ?ÿùÏ–-[äääÄ\²X¬#Fñ‡_½z•Á`ì§‹zôèQNNÎäÉ“ñ² ö?õ9ÐI슫­­ÅëŸ0IIIííí›7oÀ¡j„ÐÍ›7ÕÕÕ'L˜0aÂrùòeƒáää$ö,5$Õ8Bhúôéx Ǽyó233srrð²}±—¨#‹mR‹ YO²|çhjj277·µµõï‹~øAl í„YI(A¡~œ•:K¡ûŒsïÞ=+++ƒQ]]M?)~øÇtvvr8SSSr ÿóçÏŒŒ:;; q[$⯭[·Ž ©®®Fmݺ5==!táÂòÔñãÇBŸ}ö>H?TÒÒÒÈÄÄD„^,‰çk&''“gñgo>ÌŸTOO………™™YKK ŽÖÖÖÆápôõõ…Ç477³X,OOO¼ƒGZoÞ¼Ùg}ýüü†.//—kp¹\555<_°¦¦†Œ&¼8&??Ÿ¬µÀ~uóæÍc³ÙÂyQ×…Bò™ ,Ž¡)v±äÏ…º´ÝÝݦ¦¦xíAýõö— /•àñxÇÚÚš Ù³gBèâÅ‹A´¶¶Š}íÞ½!töìY|ØÔÔ¤««ûé§Ÿ ¹©©IIIÉÅÅ…\ÔÛÛ;g΋uûömþ˜’.Žéèèàp8–––mmm8äþýûJJJóçϧS‰òuttTUUýã?ðamm­ššÚôéÓ霥@Ò.LÄÂ… 555 ‚HãÄ÷‹¦¦&MMM¼ÐJ¬¸$íÈÔÍCjqñ‹cèGAðJÌŽŽŽššá³ðÐaïÞ½ø ÝÕÕUSSSZZÚÝݽgÏþÏÆH¢¢bJJJpp°ƒƒÞQ<++ëéÓ§ÇWTT{ù˜1c¬­­“’’ñüóÏ»?*»(Ë‘#GV®\9eÊ”3Ï<óüóϿꪫܩ^ºººæÍ›7vìØw¿ûÝ×]w݉'~ò“ŸLžõ©sÎ9g„ —]v™S© 544ô³Ÿýlîܹ&Lp–¸™VÐ9Y™ògéôÊÀ) ÕŽ™%4UÀÁFŽ0Bp€‚#Œ`„à#GapØÔÑÑaû€)‚#¬ééé±} 4UÀÁFŽ0Bp€‚#Œ`„à#G!8ÀÁFŽ0Bp€‚#Œ`„à#G!8ÀÁFŽ0Bp€‚#Œ`„à#G!8ÀÁFŽ0Bp€‚#Œ`„à#G!8ÀÁFŽ0Bp€‚#Œ`„à#G!8ÀÁFŽ0Bp€‚#Œ`„à#G!8ÀÁFŽ0Bp€‚#Œ`„à#G!8ÀÁFFÙ>€¦zõÕW/^¼iÓ¦÷½ï}ñ·¼âŠ+^|ñE߯I“&=óÌ3¶OÀŽ|ÇxÀð–‡nii™:uªwãøñãmŸ€5¹Žýýýû÷ïüñÇ~øaÃÛ÷õõ-^¼xýúõ¶ )r—,Yòú믛ßþðáÃ"â+7ä\.‚ãš5kþþ÷¿‹Èƒ>¸k×®²·ïíí‘)S¦Ø>p€ÉEpœ?¾óÍŽ;LnïÇãǯX±bß¾}£Gž5kÖªU«Ê©Ȱ\ÇJ9rDDî¹çžiÓ¦]|ñÅÇŽÛ±cGWW×wÜqå•WšÜCGG‡oKOOíÓÕ^Ös‹àâøñã---7ÞxãŠ+œ-»víZµjÕwÞ9þüööö²÷@L 3‚—õÜFI&qÿý÷www»©QDæÍ›wõÕW <õÔS¶À‚£©¹sçŠÈþýûm€G?­õàààÐÐoûÈ‘#Edܸq¶À‚£_ooï¬Y³®¹æßö½{÷JŽû4EDÞzë­C‡=zTD¦NzÑEíÞ½{óæÍî öîÝÛÙÙÙÞÞ¾hÑ"Û `£ªEDºººn¸á†éÓ§oݺUDn¿ýök¯½ö¶Ûn{衇.¸à‚cÇŽuww=ú;ßùNKK‹íƒ°ƒŠcˆ™3g>öØcK—.=yòäöíÛûúú–.]ºuëÖ}èC¶ À¥µ¶} YÓÑÑÁ<ŽdXn¯õT`„à#G!8ÀÁFŽ0Bp€‚#Œ`„à#G!8ÀÁFŽ0BpL%¢l@ÁFŽÉ¢D´ˆ¦è’‡à#ÇqÊŠŽ iŽ0BpL o¹Ñ©5Rt‰BpLÂ"H&‚c"xË^@r“ˆ¼ˆàh_T¹ÑAˆ ApL(ò"HšQ¶ ï”翾¾o´á=4ÁѲ`t3"a$ MÕÉEk5H‚#Œ`„à˜,¾~´V€ä 8ÀÁ1é(:€„ 8ÀÁF˜<4“£fJ…tyК§ G /|!‘¾³€JÓ¡¢¢#µ%ÐÇŒòÅDEu ÔŠàÔA³«¼J %d@Ó1ª:5˜Ð1átéWy”iCpL†NçHí©‘Ü h:‚#`‰ÖU†?Ú©–Ó„Öj`ƒc€j9õBÃ⟯¸èìå+:ÆÜUðfÁ‚esËÌú9DpLV‘I+7çù¢•óϲ­ÏÎîÕíÛ¸s*ý'åpÈ<‚#òÈNµÌÍyÇdrÜ‘Û)õàˆœªµZæfµ²¡-˜ö¼·Ø=2Úúnï=Œ¨ß¢”„U©µw/r'ÀÁ1}h­¶&ºàË¢Vñq2_h´{Þý$6­ï¡\ S…&Q¢ Eu4,¥bÚ¾Ý@YEhóî[Ñq†ÞžÔ¨Á1•(:Úá«öU1 £¯YÅTŽÞ};4 Á'L5ÏŸŠ’2‡à˜ÁÔŽVª‚?_Ù&fó}+Ý=æ\j¿+@JԳ셳È_\:†¦üAÒ-rŒà˜V´V7›·Êè|Ÿv[o &H1È‚#PN aºð_OˆLcžŠüàá ‹IOP#‚#!¦éÖ»¥ê2M>›Ð˜X¶‚è¾ãN!$¢ÈŽ?Ç£µºQâÛ CçëÎð"b,yfÏàxd Ûb£¥¤Â h„¶5ÑU¬•—sJ•YèñŠR50¤Á9ãôÏ lVîO)79íÔîdãJE¯ŠÈ2‚c"(å,D<ÌöeZXèÑB u,ϰ˜¨oÊTmÝÐ H-‚£}Êvà\˜+Œ/´VWG¬bo«¶na’€YÄàä¥ÅÊT·."# sŽYÀ¼< Öd¾é0}­ÕÄJHšª‘'ÞŽz¡?EyûDJi‚ôn¤GäCi³i°@KɶQŠ£°E„Z#¤Á1#"Ç .ñˆ2Æäár4Ug ÓÊø¦F4·îËÈkH!*Ž™’Ó| Õ›îßÂ7V†¿¤ Á1S”; 3Wb„„ðEÃà@1‹üA hªÎˆüŽí]„‘¡ÃØÓ‰Ïƒ¦m°Šc¦0D†¦Ï‹©>²\!$Ç2^}õÕŽŽŽßÿþ÷¶$NæË%«xû¾<7þ' #½ «¨8–ñÀ4üwP32íbT(íÔ™áËŽÁ¢#hh.‚c¸þþþýû÷?þøã?ü°íc)#óåÆP%c€|óK&2À͈QK|ËÅ“ÌóBvÌ÷ÏJQ€ànþüùÎ7;vì°},ˆœPãû0àŽ›áÏ 6¢££Ã·¥§§§A¿+Ÿ­o…Ôà  ÂÍ0ßǃ ¬ FÁËzn¢q1Ñ'ô²™£E-*‚ ¹‚—õÜFI‚cå <ÅMǃÔòƒÖn}ѳɹÿŸüé )ŽA)¥ƒ[BapÅBJÐGéGË54KZ¦„Q@°\!4G¤$T X}äiuGpDâ)•ëyÎQ…ˆŠ£aâO¨MÕH6Ì¢ ÏUî€xƒQƒŽŽóy }}UÓßEÕû­)žHÈxÛÐéx*yˆ¸ÃÞ¡‘@}Tt­Ï*ŽH†`Û"µF†àˆ 5¢is 5 8"yH¨‡às¨™²ªEpD2¸‹Ñ0ÃO,wÆG@%˜Ž6ø.ØnRt³£0ˆµ ÎâämÃZ…P!‚#lp.ØÁ«µwá8  LÖ*¤ EG›œŠHöR’ K~þyU|ÙÑýž‹4š/æ¹ÇÇð #B—~EÜ(Я‘Ô‹¢ÍÐЍ8Â6Â"’äårŒàۼ在¾@Ó¸ÏFo|ôyŠÈ+šªa·šéQn(ô Õrž¢BjkTaUèˆÀ._[jPDÅ–D5IsaFÒPk€"‚#l ##RÄíìÈB…ràˆ¦#5"-œ¤¿E|WôqDs‘‘ ¾y|ÙQx&È)‚£5*ffìºã T*8rË÷O¦{?4U£‰(Ò -Lž¨îR1-×4jÈ‚#š…ÔˆL*;)Ù@†ÐTfÐRRÂQbt)ÕMlÌjÚríXéGpD3x;t*Q&‰Ð0\IÁ:×r€à˜J)mùR¦†¥&áp€0YçZˆ•RŒàˆfáZ‰”SaÎ%¼ ÖîB1@vÀ”/ô…I‘À:×NŽ$2H?FU@½yK¤FBÅuÒ¬K£*þ’øÑ3ŒÈ†MÞŠ£w¾â#€”#8æ…nÂZ5ÕfGo4 |:,3êʧûËŽÇ7J†ø µŽv4u½Á¦«èÔ|³óTùtɽÉÌ‹Â:×RàˆzðNt¬”y,ÎéèþS‰¢pˆT æB_^¤ô µލVpj’âåÐäbè„Âø†éá©Y|é}÷H¹ z(LH‚#j\`Í™n¼Ì^^Qž…g´”»w %ʶ\“$ Óñ䈮oW@ïXÑÀ/*£¶ãЊNÈw¶pH<*ލ;hÔ3ÿHù>ŽºÞŸ)Ê Õ‚-×Þ~ÃGÔC¥ jJê¼Vµ¥s7"Å|ë\;Xç@ÂÐTÚøVæÒø‹ŸÞH §ï‡HȈì¨@ÓQqD=”®Ìë_Ï·“‹³#uG¤Xi¯á-BjÇ|©W„®íy§î–ð»nf%º#RÏÍŽ&Sö@s-ÈÆ²1ZtT×Fw:¥E7=Å‘‘)n?²#€ 8¢!:ÕbȆiÓfäSQ³YW)¤Á@2Q­˜H±Ð؈øX¸gñ¯U¦MvDòù;þçyqWò¤å@0ª:wê6 xÄ¥KÕ{ŠÆΔ6k¤“oqÂà?™ß€%GÔSÒŠ|dG¤OèG²à=ñ`± €Æ 8¢r¤¤¥FÙÙä– ˆšˆàˆ E¤Ndjt‘YÄGÍÅàÔA’S£ÃŸuHtoðsü¼Ë[‡~uBpÌ£ê§OóuÈÍŽZ´;Óäð™Ia\6µI¤’;ø:t»#µ/^ÉAS5Œ¥°‘:ˆfkd“ûÚôÍÚÃ:×ꊊ#rG‹V¤GdO°Ú÷#¨Á±Ù¸Þ`øò¾+M&Êþã&;"Ãèæ Ž‰Z¾bøßþk·Á7¤vWz’äd¦ÉŽÈ6›ÐÇœª`|LDÅB£WØ ]ªº~Biv,T^uáÍ…©ã¼Zݤèþ“¥®Ô Á¹V’ÝKj¡L£ÈŽHï'=ïâ„TÔÁ±¢;H¥µwc€“+ƒŒ.NügÙøHÏHŽˆ–›‹G!;i§up¬[Há<>>² €hGT#3åF KBg¶3ìÚí ¥˜<¿Ê4Ïæí²A‘ùÄR×*AÅ!´Äõ¢Üdow`w;€|#8"œ¯§”ÛM*í©±0뤦Âùfðq[ŠmÙÅ)[Uñæ)~P#‚#B()ã1+!˼á]Á¸"·B—+,Ê,¾¨Á±©’µÞ`qZàà!i¾>xœör##ÁÕ®@D“kZk¥CVÝs·äz’š<Ÿ;rŽyÂD 8BB+ŽJûScîÊ*ln ó¼K@)‚#G‘œõ¸mÐNRôŽŒ ËŽå?;’8L#8Â¨Š˜»r#CZ—4OGõc) ÉŽ@v8‘æ=™3È1‚cÞ9ãcB¶«’å¹ÜHvüœÚd0>æmÅ) ˜Ž!’5mP8Ù1Ïé5k«ÎÙEp̽ˆ òÍùË۾IJö,E£©N"o¼kϸ[Ô l!8¦bêŽîR4¹žùùä[±PH@–›'‰e»â„mJkMWw´Y!BW,Z¨ bpLŽQ ¨ ce€2Üi}ø8 dÁ¨Ùðó–½G&î²…¦ê¼¢ÜXÚ¬?oG_kµaã5kd‰——à¸yóæM›6ÜÒÒ2uêTïÆñãÇÛ>•:QJ´§±U‹ˆRZ³luE(:ÂY04z ÄG …²{zz6lØÐÖÖ¶eË–³Ï>[DÖ¬Y³qãÆuëÖ}ó›ß Ý¥¿¿¿¯¯oñâÅëׯ·}ø ài¤Ö…̨ta™ÂØjæ”1Dvª½½$É”@Rep̦M›†††V¯^í¤F¹õÖ[[[[·mÛ644ºËáÇEÄWnÌEå± ”ªäL\º0t;Û²_xá…#F\vÙeî–‘#G^z饧NÚ³gOè.½½½"2eÊÛÇÞ±åµRŠú•Ë÷RÞ@ |= Ýî„>¼# “ñਵ>xðàĉ'NœèÝ>cÆ 9räHè^Np<~üøŠ+æÌ™³`Á‚믿þ÷¿ÿ½í³iVÌ«† ißW¥l"HÎ0')zKŒ4X‰”ñ>ާOŸ jimm‘7Þx#t/'PÞsÏ=Ó¦M»øâ‹;¶cÇŽ®®®;î¸ãÊ+¯4ù½¾-===¶Œ¸7bgåg|Œr× C©øµª%Ø7´ôŸÎ=¶O°)ô”öfGaè ’(xYÏ­ŒÇ3fŒoûرcE¤¯¯/t¯ãÇ·´´Üxã+V¬p¶ìÚµkÕªUwÞyçüùóÛÛÛËþÞ`L´¿Þ ÙÇw­.¾5šµªC¾—HhôÏ"ؼ¬ç6Jf¼©züøñJ©Ó§Oû¶¿ùæ›R¬;ÝÿýÝÝÝnj‘yóæ]}õÕO=õ”ísj€Ò…ª5-D5 ysÞs|£aÜžŽæCdh*/ãÁqÔ¨Q­­­ÁÊb¿ˆ¸ã¬MÌ;WDöïßoûœªáÌ´âN½йMÕnW_‚,I@Sd<8ŠH[[Û©S§œ¤è:tèó£àíµÖƒƒƒÁ™zFŽ)"ãÆ³}BÓ±ã2” ¿áªVö›ÖSMóøñ­::xÙøHÿl ñ²/¿üòÁÁÁ§Ÿ~ÚÝ¢µîêêš0aÂìÙ³ƒ·ïíí5kÖ5×\ãÛ¾wï^ÉnŸ¥Ë ¦V¶9ñx„C1kÌ7µ4Qöƒã²eËFŒqï½÷:ýEdÆ 'Ožüìg?{Æg8[Þzë­C‡=zTD¦NzÑEíÞ½{óæÍîìÝ»·³³³½½}Ñ¢E¶O¨2ñS3ÆÖÅJè¶"… i¼ã¯Ý/ï 4Ì4L.æéìì\»ví;ßùÎK.¹¤··÷¹çž›5kVgg§;MÏO}ëÖ­"òÊ+¯\{íµ'Ož¼ð /¸à‚cÇŽuww=ú?øÁ‡>ô¡²¿®£££¢QÕ*8¥¶y[¼wXŽaw¨ |cu7¿QRѺCŒ½§_rþJ*:A wXá}6çk|Vp‡ÜaÖîÐU#!ïQ!ú ½ÖçAö+Ž"²råÊuëÖM›6í‰'žxã7–/_¾qãÆà䎮™3g>öØcK—.=yòäöíÛûúú–.]ºuëV“Ô˜(åV‚Ѻ8ËŒVÃ_"n˜¤§€ó¦Fo‰Ñ;+$€ºÊEűÉ,Wî‡ÃzGÞ¡qŽ¢âXŸ;4àΙôJwÈ&ã;-yƒ¢Öˆ¦ÈmÅ1ã€çN%z V‹ˆLZW,a¬Ì,â<æ@U¼Ãõ ³U™¿0Cpl†¦¶ø:³y—i¤† J”VšÖ ~œfióƒg–Ÿê-}EIDŽaÇÆÐ¢)+u¤ã·.?ãd Ç”ó½Óy>U{Wäí09taer9ÐáŸz)@uBpL9çSriÇpgpŒ³£Šø$].¾DMÖƒZ‘z‰‹‰1Û£Š‹ÑÅ8ŽéÑ ¼Ü\<°‰ìØäû8í¼Uú†fóþ „¡c&x?Fkñ©‘Ôbý›ÜwH_Hß:4JQqÌœbót=*Ž´V7uGÀ&·ãciH%þ6k&<\T3¤Ø`]öް’Ô›¼ÅÅâb3ºôËèN‘Ü 8fBéPAU:¤ºÆ»f^žF#;–y—+ 4²ðxÑT>* ïkžR£ÓT¾;åÆä!;Öx‹ŽáP?Šk¹;GäÁ1•L¦Ÿ`Huâèò‹ ëæ ÆA­%°šöðmb¦ ÎŒdÁ±áÕÖ[U.áݰN”Q{²#Ð$¡¯Gg`aüíM¦ämEpÌ‚DeSÔˆfk éÜúb0)†5j‡ô/"V"µŽ0@LsiÑŠô$™wåƒB£w+¯l¤£ªs„6Ð4Q¢ø[Iæ›ÇÇ­8V4P†©|6T„Òì_„äSÐTޙý!Rb‡Ñ)GpÌ Êi¤•ˆˆŠèöèí&EÃ6`Gèt<¥Ãhʼó2"©BpR@é1PJ)ºØ6¹ÏÛNí›ßÇy©zvr6yo ˆl¤Á14í˜é¦éò$MÔlŽUìîýž.H6Ç)ÁÕH>£¹Zÿ)ÿȘ`Á²ü}ñ¾€f£â˜Š™ A¼ýi¤FªÓ‡÷ÈïÐ슆cSn„ ÇÆJ@¥Ï9Þ_ y|+ÍÇÊÄ'HFd£éŽi£TÂ(’A3ËNn}ÑWnŒIBC6à˜*¡†Åî@ÈÌ2%Zk²#J¾˜õÆ3àÚ ˆp‰&"8é1;8€ ÊÇp/7&ªáÀ¨«h³¦Ua:žôHÔ‹<9G‚âbƒÄG ?¦ž.YB¦LgYφô˜r¡ì ×îbTJ‰¯Üw!‹‰›H6‚c"¨b/¥µVJ¹eHƒÈÒYmx­ê¦¢¿cê)Ñzx¹B÷¿á·-NALwI G‚s@F\ª|£mtL1²Òr#EG«Žéæ’-¡‚¯ÃæHEdL¶BáP›> X®@¤`áа^è |Þ½‚©BpLç3YE/ •¤ÔFƒuÒ ·;«Ï1Ow¹B‰­;È‘ÐxW]æ‹É‘"‘Û]Q·GB­‚c£Tšå†Û©µ¥´YAÞú´‰‰¬hoõ‘ø Üæiï5Îw¥ äEö#]E³5Ù±fÇ)¤ÆÂ?R6[[÷ÔN—ÍT<âÔÊW ‰¿Frdð}§âyëÊŽì‚c‚¨˜Agá··<šÕWnLR›9êø &Þœg]aÏ?o]£ëˆi˜ä¤9Žie=5†ÒÅON³»íÃAý ÇG팔,ùiÉÂEfo°dP êØ?2t÷`¯ÇÐkPp;Y°BÇD(i¤N‰¨â¢–N‘9ÚyÎGôŒ ÀÑñtL .Êõ’ /vrµªÁ1•’YnôŸ­):æ³ì5‹_H_12¬Yè%Y²SÄ™·kfî³&kU7DEq©â]R£.sÄDƼañkb8)O”°%¶ÝÑœÞ/ÿì’¡kpWº0wæPqDUâÛÖu!ÙRtÌ»¼2PZ‡ÎD[®‚[/Tîü>ßò}Ž/mT¢‚粪ìÙ§Ó+LG9óP:_ôwL5Uò¡»äK´(]®…Z‰;‹8Øá ¨l±Ð[˜t›§ƒ_9¾´¨üÕ2O>²cziÿ;hÉ—(Ñů²w27Í"©ŽK®äQ¦¼3k-æõï^n”Ì÷|Ç:SÅÿºOJPë4Î]¢sÏ}Ó5}N§É¸ä †*œ&¹â;Ìú86»p³¿g†RU,””ÒÔ螳蒅¬ƒºâÞ*H!ïsØÉŽé~bH¾°‹KeËU”ÌP[ù:‡ÙBűžX7%VéÃìG‚œqò¢[†”²=& É¼+k»ëkçdžОoÂnÎU¹Ñ{¢™µ>…Õh<3Š‹óª¦2=Ü®CžjÞ&òL¼¦4X°™;ßÙ‘àX7+7f%5φìˆhÎP›ÈIÅ gmó$QßÞnîdl €ò±RbÊÑTÝxaÅZrþ´ «¶æúA„`´Ó>°‰Šc}Pn¬ð¬rݳ8Gêžó”h­ÝûlÄ«#î€=mßöWoŽÍàÌe计R2Y()¬~äÝ¡äêå|ŸÁøèUjŽlQ ,_h‰.6hT—û9›bÛ7ƒxäÁ±j-7ª@Cm1D¹šç€P¾çNñãüLB†¥y†Î(%Ì• c}(Ï—ÿŸZW·tJ6©£1dµs§øqÖ¶Qºä˹EqeÌú÷/‰_ç†odÇ:ð]}:J·‡vh_OÄ—b½_œe?ìEÇáyˆb“e®>LH ‚cBå­Üè.Ê$êp„Þªq´Mðé¥D%fœ‹Óa3¾éúè£_úÒ—¢nï{2¾Wâ{v®:n©jxÝ3UòxgÏós4œvÇâ5.pƒø÷¦[¨‹‰µúwÏöMåDé*%§¼Zh)½ÒNLSÛ)7Œ žcð¬ä” MÎÛW黓øs¶ˆ'jûnÓØÓª-B%ñ/epÊUîÍá)£^Ž!zzz6lØÐÖÖö›ßüfÆ Û·o_±bÅþð‡uëÖEîã{çqßBK;ê…]rŠåᯰwvTF"ºoñPZ5u\¶ÅÐç¼íV÷Î[{VNÝ)WÓ«ÄÓŽ\ùBÕÅço©zŸ²ó®å–yJ¾¤$‰JiÔL½U[7Œz1qî4*w†‡QϽ¹§¬ŠÜïóÇ.qÕ¯‹´¾¦ÒyÊ)=ì"8†Ø´iÓÐÐÐêÕ«Ï>ûlgË­·ÞÚÚÚºmÛ¶¡¡¡ð}†«ºd£ó.VysbÇÁDÑ¥…]7Jÿ.Úý ÿE¥†·{’_Ó‹ŽžRkz>v+Ï_!E§\Ía7ŸiO/ŠÔ|ôΟÓW®ä¥eüp«¶:âó\LAÔ·Q†›æ‹ÓuÈ+?¶u^¤°±YEWPduÿéÝÞŒ¿T±Í¤ŠÏ½µ½­ñž2EG‹Ž!^xá…#F\vÙeî–‘#G^z饧NÚ³gOänNšÀX˜ËÍéÌ¢ 1|5QÊûåùañË©ÒÞ"KÕ¬—¥xú]lê••StÊ6ŽÖ}”½qI®üêT²‡ç”«ªóhØ+,¶u>ø½¨@‘5â=J>!øsdx‘Ud8h–ü•E“®»]<¹Ö³S  æZÿ=W•ã;FIX©êþÊU«å,¥ï~CpôÓZðù—ùõ¯íÝþÈ#Ü~ûí7ß|óµ×^ëÛe¸  ”h]áXQ>û{ö'¼óI#0£Ÿ3tz̘1¾ícÇŽ‘¾¾¾²÷г¿x'©öL¯•ÃgXÒÄ·—mG޹ItÔm½oÔÍlí›ÒSNéa<«Ý®] #øtÝ÷-–©â;|vÀöu·Çÿ¥â÷Méaçð”}Ø’?G¿ñãÇ+¥NŸ>íÛþæ›oŠHkkk™ý½ŠÜ^”uSB7²¢ÍÞ¿Úä|kÙ×¢vÕûz.:ânu#ö•ÂuW‡õq~ZeÓqþʼ¦ÒrÊ)=ì$#8ú5ªµµ5XYìïïwœu¸`@4ÿ‹&¨ñ¥^îê[ýý—Ý7æ§I~ «å°-žrJ;u§:ãä.G"‘ï°:¾TäõÓdþ¡Ê?Ú Ú7¥§ŒF`pLˆ¶¶¶S§N9IÑuèÐ!çGßåÆ$Qå¾÷{“VntÄ¿óÖ²¯E9<ìžrÔL=¾1ÎUí;<%ê°%l4†w¬qL.»o¹-f÷$þ¥,>9SzØ Gp qùå—>ýôÓî­uWWׄ fÏžmûèP=mö*f´oˆ´DßCuû– É| «å°-žrJ;‡§\ˇ±Z»lè,Û²_vßè{ð ˆË1ç:Ë<*ªÌîá‡ím]yÞmøa7hß #8†X¶lÙˆ#î½÷^§_£ˆlذáäÉ“ŸýìgÏ8ãŒÐ]âŸ^9’eƒaèÔµí¥êB©aÞ­eߪ³rÙf5Ûð°sxÊ&¿ºA§œÞ¿T ï@Ú`÷¸S6ø½ñ¿½‡ݱÆÃÎ,¦ã ×ÙÙ¹víÚw¾ó—\rIooïsÏ=7kÖ¬ÎÎÎñãÇÛ>4;Ž‘üñ_þò—øÃÎ=÷ܹsç®^½Ú™‘ ŸŽ0BG!8ÀÁFŽ0Bp€‚#Œ`d”íÈŽÍ›7oÚ´éàÁƒ£G^°`ÁM7Ý4aÂÛ‘W_}uñâÅ›6mzßûÞgûXòn``à‘GÙ²eËÑ£GÇ7cÆŒ•+W~øÃ¶}\y÷׿þuýúõ¿ûÝïŽ=:yòä÷¾÷½_ýêW/¸àÛÇ…‚×^{mÉ’% .üîw¿kûXríŠ+®xñÅ}'MšôÌ3ÏØ>´æ!8ÖÇÝwß}ß}÷3fΜ9½½½>úè6nÜØÒÒbûÐ <ð€íC€ˆÈ?þñÿú¯ÿêîînmm½øâ‹ÿö·¿=ÿüó;wîüÚ×¾ö•¯|ÅöÑåWÿ¿ÿû¿Ÿ8qbúôéùÈGŽ?þÄO<ùä“<òÈ{ßû^ÛGÑZßrË-o¾ù¦í>|¸¥¥eêÔ©Þy[‹˜àX===6lhkkÛ²eËÙgŸ-"kÖ¬Ù¸qãºuë¾ùÍoÚ>ºüêïïß¿ÿã?þðÃÛ>ˆˆlÚ´©»»û¢‹.úéOê|¦:pàÀòåËðƒ,\¸ð=ïyíÌ©ïÿû'NœXµjÕ 7ÜàlùÅ/~ñ?ÿó?ßþö·yí$Áý÷ß¿{÷nÛGéïïïëë[¼xñúõëm‹Môq¬ƒM›6 ­^½ÚI"rë­·¶¶¶nÛ¶mhhÈöÑå×’%K¾ð…/påKŽßüæ7"òo|íÄOŸ>}ÕªUƒƒƒ¹jèIšgŸ}¶¥¥åúë¯w·üÇüÇ9çœóòË/Ú>º¼;pàÀÝwß=sæLÛ9|ø°ˆøÊ9Dp¬ƒ^xaĈ—]v™»eäÈ‘—^zé©S§öìÙcûèòkÍš5?üáøÃΛ7Ïö±@DäСCcÆŒ¹ð ½§OŸ."Gޱ}tù5~üø… ¾ãïðn<óÌ3ß~ûí·ß~ÛöÑåÚ?þñ›o¾y„ ·Þz«ícôööŠÈ”)Slˆe4U×Jk}ðàÁ‰'Nœ8Ñ»}ÆŒ"räÈ‘~ðƒ¶1§æÏŸï|³cÇÛÇ‘ýèG£Fùßs^~ùe9ï¼ól]~=øàƒ¾-/¼ðÂáÇßÿþ÷ÓKÛ®ïÿûûöíëìì<묳l Áñøñã+V¬Ø·oßèÑ£gÍšµjÕª¼ »$8ÖêôéÓƒƒƒÁ¾±­­­"òÆoØ>@ )fÍšåÛòÜsÏmذáÌ3Ï\ºt©í£ƒìÝ»÷ÑG=tèÐÞ½{Ï?ÿüµk×Ú>¢\ëîîþñ¼|ùòyóæ9Ÿ¯`—Ó0rÏ=÷L›6íâ‹/>vìØŽ;ºººî¸ãŽ+¯¼ÒöÑ5Á±V"2fÌßö±cÇŠH__Ÿí’hppðç?ÿù]wÝ588ø½ï}oÒ¤I¶ÒÓÓ³eË­µˆ\xá…ÿôOÿdûˆòk``àæ›o>ï¼ó¾þõ¯Û>?~¼¥¥åÆo\±b…³e×®]«V­ºóÎ;çÏŸßÞÞnû›„>޵?~¼RêôéÓ¾íÎÔ NÝ€×óÏ?¿dÉ’5kÖLš4é§?ýé'?ùIÛG‘ÿüÏÿÜ·oßÎ;o¹å–íÛ·þóŸg [Ö®]{ôèѻÞÉqÿý÷www»©QDæÍ›wõÕW <õÔS¶®y޵5jTkkk°²Øßß/"î8k"òöÛo¯Y³æšk®yíµ×¾úÕ¯nÛ¶¡K‰¢”šùÑ~ô[ßú«’àÀ—^zéâÅ‹½ÛÁïúÓŸl`8p@DœI!¼Ûõ«_ýêW¿š>}úÖ­[mcîh­‡††”R#F”TÜFŽ)"ãÆ³}€ÍCp¬ƒË/¿¼§§çé§ŸþÔ§>ålÑZwuuM˜0aöìÙ¶HŠxàÉ'Ÿ¼êª«¾õ­oÙ>œuÖY¿øÅ/Nœ8á ŽÎ”uÓ¦M³}€y4eÊ÷jâèëëÛ¹sg{{ûìÙ³Ï9çÛ˜G½½½‹-š;w®o)²½{÷ŠHGG‡íl‚c,[¶ì¾ûî»÷Þ{,XàŒ‰Ù°aÃÉ“'¯»îº3Î8Ãöщ µ~ðÁÇwË-·Ø> kkkëèèØ¹sçoûÛ… :_y啟ÿüçcÇŽ3gŽíÌ£ùó绳‰9^~ùå;w~ðƒd­j[¦NzÑEíÞ½{óæÍË–-s6îÝ»·³³³½½}Ñ¢E¶°yŽuÐÞÞ~ÓM7­]»öÓŸþô%—\ÒÛÛûÜsÏ]xá…_üâm'Nœp–yý¾üég>ó™åË—Û>Æœúö·¿}ÕUW]ýõ³gÏ~×»Þõç?ÿùw¿ûˆÜu×]Œv\·ß~ûµ×^{Ûm·=ôÐC\pÁ±cǺ»»Gýï|'Wc˜Žõ±råÊÉ“'ÿò—¿|â‰'Î=÷ÜåË—¯^½Ú©>‘£GŠÈÀÀÀK/½ü)Cd,ú×ý×_ÿú×÷ÜsÏK/½´oß¾sÎ9çãÿøW¾ògQŽ™3g>öØcßûÞ÷ž}öÙœwÞyK—.ýÚ×¾vî¹çÚ>´¦RΔ]@<¦ã€‚#Œ`„à#G!8ÀÁFŽ0Bp€‚#Œ`„à#G!8ÀÁFŽ0Bp€‚#Œ`„à#G!8ÀÁFŽ0Bp€‚#Œ`„à#G!8ÀÁFŽ0Bp€‚#Œ`„à#G!8ÀÁFþ ’Ÿ@™ºÌIEND®B`‚statistics-release-1.6.3/docs/assets/burrinv_101.png000066400000000000000000000740241456127120000223460ustar00rootroot00000000000000‰PNG  IHDRhŽ\­AwÛIDATxÚíÝy\TõþÇñï¹§b¨‰‚"î‰kj’h¥¥˜»©¸›ZZ*­bZhŠkâífFn75û)šûR*X–hn(Bâ–¹!¥(óûãØ„Ã63ÌÌYæõ|øègΜùœsf:o>ßsÎèôz½Šã$wP‚#LBp€IŽ0 Á&!8À$GE9yò¤® ¥K—öòòzå•WŽ?.w"..îÿþïÿþïÿþïúõër×bìÚµk•+W–6ZåÊ•oݺ•÷ÑÐÐPÃ&ýì³ÏÄ£|÷îÝÒlNÌoÙ²eÒ<­Zµ2zèÁƒK—.}á…jÔ¨Q¦L__ßnݺ-\¸033ÓhÎ÷¸‹‹‹››[›6m¦M›–#ö&ÉëwÞ‘{W°‚#Kdee]¼xñÿû_ëÖ­—-[&o1ìÙ³gÏž=•bxxx|üñÇÒÏwîÜ™7ožá¡Ë—/GDDH?·lÙòµ×^³Q ?ÿüsýúõ_{íµ;w^¹råÁƒÉÉÉ[·n}ûí·}}}·lÙRìrrrnÞ¼ùã?~üñÇ~~~ ònUrq‘»ªáááQ¶lYéçÛ·oß¹sGñàÁƒ7Þx£S§N¾¾¾r¨P¯½öÚ—_~™˜˜(„øôÓO'Mšäéé)„˜>}ºÔðsrrZºt©“SIÿ’üñÇk×®-„¨V­šabRRRÇŽÿúë/×ììléçË—/÷ïßÿСCO=õTþöøÝ»w ÆÛ·o÷ë×/99¹téÒE<ň«««\Û€Ñq`ªU«V¥þ#==}çÎeÊ”Büý÷ß‘‘‘rWgM©©©<°ÖÒœ?ûì3N'„¸wïžÔ€>>sæÌÉÿŠ×®]›8qb»víüñ:uêôéÓç—_~)v[µk×κ¾øâ‹ÔÔÔ÷Þ{/77WQ­Zµ™3gZeä?Çq×®]qqqÒÏï¿ÿ~TTÔSO=åìì\­ZµQ£F­Y³Fz())éìÙ³E/¼fÍšQQQ†Ý:{öì»wïZ¥l*Bp`¹¬¬,釼c£=zôÌ™3/_¾¬×ëM¨”~¸téRÞwîÜ)ýP¿~ýÆç}JFFÆ3Ï<³zõê›7o !îܹ3eÊ”Q£FågÏž=O=õÔþóŸøøø¿þú+%%å›o¾iÙ²å[o½UlIsæÌ‘†kÿþûï¾}ûnݺUš¾xñâŠ+Zi‡3ô«T©2uêT£G»uëöÒK/5kÖ¬Y³f¿þú«) œ8q¢ôÃõë×8`£²(Á€%îܹµyóf!„‹‹‹QÀ2Ë‘#G¢££Í}HòöÛo'''—+WNú5::ZúµcÇŽÒDCDBìØ±Cú¡ÿþF‹Ú³gÏùóçÝÝÝ*T¨ MŒŠŠÚ¶m›ôsFFÆ+¯¼ríÚ5!D§N>úè£:99éõúO>ù$**ªèÕ¬Zµê¬Y³¤Ÿ MÊ.]ºôë×Ïê{ÇààÁƒÒ½{÷6¬T^[¶l9zôèÑ£GûôécÊJ•*%ýüã?Ú®rÊDp`*i Øpg™Q£Fåää”-[6&&¦yóæ/öÒ¥K 6\¹reBB‚a<·Ø‡$O<ñD:u —•Ô¨Q£N::ÎÙÙÙÈ ÁQ¯×:Žùƒ£¢{÷îiiiû÷ïOJJòóó“&®‰ž;w®tHß¾}wïÞýᇮ^½zñâÅÒ£aaaŮ騱cóžËX¦Lé<6ò÷ßK1Wáããc•eêt:éÊ!Äï¿ÿž†¼oƒÉ“'Ûn5ØÁ@‰4nÜ8  $K(W®ÜÎ;ܦM£|SÄCÅzå•W¤:tûöm!ÄÑ£Goܸ!„hРA£FŒæwqqY²d‰t¥põêÕÃÃà O¿ÿ¾ÂÐz|õÕW Ï1b„³³³"--­Ø›999å½çNË–-ëÔ©cÅ}a$##ÃðsõêÕ­µØ'žx"ÿò8‚#SyxxÔþGµjդ˄úé§-Zœ?ÞâÅúûûkŠx¨XíÚµ“®ŒÉÉÉ‘F¨‹§B4nÜ8ï•4]ºt‘~Ðëõ)))BÃå#]ºt1ôÒ*T¨““#M?wî\Ñ%=xð ï}8ðí·ßZ¼ÝŠ%]4-±â­Ñ¥s@…žš™÷MbP¥JÛ­&{"80UÞ;­\¹rå?þxñÅ…×®]9r¤Å‹uss³à¡bét:Ã]f¤ÑjCp,ð´Bì¤\¹r•*U’~þý÷ß322òÞ ±@R;³sçÎ5ºxùÍ7ß,v±+Uª”aþöÛoÎsçΛ7oÞ¼yÓôK¤ #Ô†³Hó*ðv<Ó¦M³Ñ:°3‚# ¹¹¹Íž=[úùûï¿/ðŒ7SHKs2…a´ú»ï¾ûóÏ?¥+E §BN”dff†bk×®]±bECoÇŽÉ1\Ê] äädÃð÷¸qã{ì1!ÄÅ‹?ú裒¬cÑÚµk'ý°yóæ¿ÿþ;ÿ õë×wsssss[ºt©) ø@ú¹L™2ÒÅ+†Ó>l–ýæ›oöíÛg‡’ Í0CÓqÁ‚Ò…Ǭ¬¬7ÞxCZÂÕ«Wß{ï=izPPtùËsÏ='Mùâ‹/ 7•ܰaÃO<áææV»ví?ÿü³°ÂÖ®]k¸ {ÆŒeÊ”™6mšÔÂÌÎÎ;v¬t3p«ëÞ½»¡ì7ß|sÆŒW¯^•V666vذaÒCuêÔñ÷÷/zQ¿ÿþû˜1cÖ¯_/ý:dȼçPp|W5S :ÔpÇÄ\½zÕð•Ç“&MrqqBn7“™™éïïïïïãÆ¤¤$›V¹reéLÁ™3gž{úé§‹}ºÃ^i¥d©©©ÞÞÞrWG°S”‰ý¢@%Ü)Êì8Ú9~Öq4õªjÃó¹ªZ~ýú7nìÙ³ç7¶oß~çΞ={ÆÅÅ™’´Š€ÌÝÝ}îܹrW  tÐ,ŽSCÕŽÀ~dùÚX Á8"³¿oG˜ˆà“€–ñµ1VÄíxo2„9æ½m-á’jXÁQ)8HCQøcCÕ0 Á&!8À$G4ˆ+c¬mJpvÃ÷ ªÁ&!8À$G Y|mŒuЮ ÃÑ ž^¤ùŽ0[nn®¯¯¯——Wxx¸Üµ¨ƒ··w¿~ý䮀’"8ÂléééÍš5óôô ]µj•M_+ ,,Lî5VGUJ.   G˜­J•*ëÖ­;|øp—.]æÏŸo»:zôèÁƒå^]uT¥äšá"wP+N7yòä®]»îÛ·¯cÇŽV\rvvöž={:´dÉ’ÜÜ\¹WTÑU)¹0ráÊØÁ–ËÎÎBDFFZ78Þ¼y³K—.?=11qÚ´i?þø£N§kݺõÇÜ´iSÙ«2ÈÍÍ6lØêÕ«cbb¬œÂãŽ>y0T ËEGG !6nÜxçÎ+.ÖÃÃC¯×ëõú3gΘûÜ]»vµmÛöäÉ“C‡ ŽïСÃùóçå­Ê@¯×5jõêÕQQQVIÖ* ì€ïÔ‚#,”žž¾iÓ¦#FöºfÍWW×ü•)S&"""99¹E‹S¦L mß¾½‹‹ËôéÓe¬Êˆ»»{xxxjjê¬Y³ò?ÊP5@ÉŽ0[LLŒ"opôððÿ믿Ž;fë|“•••žžž™™YࣽzõÚ¿¿··÷òåË£¢¢Z·nP·n][o“¢«22f̘6mÚÌŸ?Ÿ;/°.®Œ1‘NèôܨÇ"ÜŠÓúüüü’’’lýG¶|ùò'NDDDÈ]ˆ ª²˜Þ“©©©ÞÞÞr¯(Œ±_Èô¢ðàhç€qGó‚£aAy¶¯Ã¸é8Beîß¿¿wïÞæÍ›Ë]ˆ ªÀºŽP™øøø  4HîBTP(ß7¨ \U • ”» uT€uÑq@ ~‚#´à“`‚#LBp€IލWÆ)âîß( ‚#LBp€IŽÀ¶øÚÍ 8¢:='@ZŠà€ºqeŒ q•Í£Ž0[nn®¯¯¯——Wxx¸Üµ¨ƒ··w¿~ý䮀’"8ÂléééÍš5óôô ]µj•M_+ ,,Lî5VzUÇ0`€§§g… Z¶l¹hÑ¢ììl¹‹hÁf«R¥Êºuë>Ü¥K—ùóçÛî…Ž=zðàA¹WWéU¥¤¤tìØqÛ¶m]»v )UªTHH NŽŒáeÛq‘»¨•N§›>¾C‡çÏŸ—·*½^?jÔ¨Õ«WGEE <¸äUegg?^JŠ.\B”.]ºäË /‚#,”žž¾iÓ¦#F}œœœ¤óó«T©’¾pÖ­*++KáâRüŸCö¬J¢×ë×­[{÷î݉'Z·°5kÖ4nÜøÈ‘#Ë–-;uê©€#ã^<6EÇ–b¢===bbbfΜéädü§ˆ=…¥–ç©S§:tè`˜8gΜŒŒŒÙ³gËU•¤{÷î=zôB¯\¹2..®{÷îùg³ °Í›72¤ÿþK—.Í?(€a6½^Û¸qㆠJSú÷ïÿúë¯ïÞ½ûùçŸ7šÙžƒÂþþþ^^^”"TJJJXXXþ»aÛ¨Ú©.\÷æ›ovîܹlÙ²%,L¯×¿ûî»5kÖŒuvv¶zÙ 1:¡Sòi`ÊÇP5̶wïÞ´´´þýû¦ôîÝû±Ç7nÜ´iÓŒf¶ú ðš5k\]]CBBò?T¦L™ˆˆˆäää-ZL™2%44´}ûö...Ó§O—±*#îîîááá©©©³fÍÊÿ¨¹…>}úÌ™3eË–=zôˆGmÞ¼Ù‚ ta¶˜˜!DÞàèáá>oÞ¼cÇŽéõzΆƒgee¥§§gfføh¯^½öïßÿÑG-_¾ÜÙÙ¹M›6³gÏ®[·®­·IÑU3fÌŠ+æÏŸ\¿~ý’¼nrr²âôéÓ§OŸ6z¨nݺAAA¶^q2âÊØWÈ[ŸŸŸ_RR’­ŸâÈ–/_~âĉˆˆ¹ QAU³Ã{255ÕÛÛ[î…1ö‹¶SÔí|;ž¢/Ž1{¨Ú°¸G7·Ã¸ª†ÊÜ¿ï޽͛7—»T€u¡2ñññ 44hÜ…¨ *p4Ü‹ÇÖ8Ç*(wê¨ €†1N YÐq€IŽaä;‚#LBp€IލŒZ®ŒQ¾o°äŽ@ 8#ÑŽ0 Á&!8 &*:Á‘»kÁ&!8À$G˜-77××××ËË+<<\îZÔÁÛÛ»_¿~rW@Ia¶ôôôfÍšyzz†††®ZµÊ¦¯&÷+½ª½{÷º»»?ñÄÏ<óÌÆå®€­¨èG;ã^<öAp„ÙªT©²nݺÇwéÒeþüù¶{¡£G}ú899Iç;æW©R%}á¬[UVV–ÂÅ¥ø?‡ìY•D¯×¯[·.66öîÝ»'N´QaåÊ•ëܹóœ9snݺõí·ßÚbEŽŒŽ#,!ÅD)8zzzÄÄÄÌœ9ÓÉÉøO{ K-ÏS§NuèÐÁ0qΜ9³gÏ–«*I÷îÝ{ôè!„^¹re\\\÷îÝóÏfna[¶léÙ³çÊ•+¥}!‘Fê9µÐuà­"8Âlz½>66¶qãÆ 6”¦ôïßÿõ×_ß½{÷óÏ?o4³=…ýýý½¼¼"""(ט’’–ÿëþì?TmˆÔ .Œ‹‹{óÍ7;wîœÿÂgs kÓ¦⫯¾êß¿¿îŸ3b¥Xß¶m[«¯ÀÁ1T ³íÝ»7--­ÿþ†)½{÷~ì±ÇÆ7mÚ4£™­>(¼fÍWW×ü•)S&"""99¹E‹S¦L mß¾½‹‹ËôéÓe¬Êˆ»»{xxxjjê¬Y³ò?jnannnS§Nݾ}{«V­¦NúÁ´iÓfõêÕ“&MjÚ´©+@Ž0[LLŒ"opôððÿ믿Ž;fëÒ¬¬¬ôôôÂînÝ«W¯ýû÷{{{/_¾<**ªuëÖ uëÖµõ6)º*#cÆŒiÓ¦ÍüùóÏœ9Sò—þð㣣?ÿüó¥K—–*UjíÚµ‹-²õ*€Bpõ³=q¥â]¹r%((¨S§N&~/³ŸŸ_RR’Y/aÁSÙòåËOœ8!w!*¨ÊbvxO¦¦¦z{{˽¢0Æ~Q ÔÔToÕ®ívGƒ£Ùßc´ÜGO2uØ7Çbèõú÷Þ{ﯿþ’»¢¢6‡ÅMµsa!N7yòä®]»îÛ·¯cÇŽV\rvvöž={:´dÉ’ÜÜ\¹Wô¡;wî$$$´jÕJ1cÆŒQ£FEEEmß¾½K—.2¦ÌÍ „8ÁÊDÇ–“j###­»Ø›7ovéÒ%,,ìúõë<=111((ÈÃÃÃÓÓ³GÇ·JU{öì R£d„ Bˆøøx³–“››;dÈgggkò—ps€¶q÷oë"8ÂrÑÑÑBˆ7Þ¹sÇŠ‹õððÐëõz½þÌ™3æ>w×®]mÛ¶=yòäСCƒƒƒããã;tèpþüù–”=~üx))\¸pAQºtiÓ—£×ëGµzõꨨ¨Áƒ˾¹@¥l{e ×ÝŽà ¥§§oÚ´iĈ<øúë¯å.G!rrr&NœX£FŸþyþüù ,ذaCFFÆâÅ‹K¸d—ððð>}ú¦Üºu+<<ÜÙÙ¹oß¾&.D¯×;6:::22rذaro-ÌÆ9ŽŠ¦“õÕ‹þskíÚµ<˜4iRJJÊŠ+^}õÕgËÎÎÞ²eKa yùå—­Xpbbâ©S§/^ìêê*M øòË/+V¬hݪöíÛ7f̘äääÏ?ÿÜ××פ©×?>22rèС#GŽ,l6{n.ŠÅ ŽP,‚£¢)ùÿÑÑÑ~~~M›6íׯ߄ Ξ=[¯^½ü³Ý½{·gÏž…® Uÿ×xöìY!D“&MòN,0¥Y\UZZÚ„ 6oÞìëë»k×®N:™X[\\œ^¯¯Q£Æ† fΜéååUàlöÜ\˜‹¡jXâܹs  BôéÓÇÉÉI:ß1¿J•*é gݪ²²²„..Åÿ9dYUkÖ¬iܸñ‘#G–-[vêÔ)ÓS£B¯×¯[·.66öîÝ»'N´naØGXBЉRpôôô ˆ‰‰™9s¦““ñŸ"ö{•Zž§NêСƒaâœ9s222fÏž]ª6oÞ66¶qãÆ 6”¦ôïßÿõ×_ß½{÷óÏ?o4³=Ç^ýýý½¼¼"""(e»”””°°°ü·é6·*½^ÿî»ïÖ¬Y366ÖÙÙÙ‚Ú ‘záÂ…qqqo¾ùfçÎË–-+ãæ Lœà%c¨fÛ»woZZZÿþý Sz÷îýØc7nÚ´iF3[}ìuÍš5®®®!!!ù*S¦LDDDrrr‹-¦L™Ú¾}{—éÓ§—°ªÓ§OŸ9s¦lÙ²£Gñ¨Í›7]•ww÷ðððÔÔÔY³f唡j€’Ñq„Ùbbb„yƒ£‡‡Gxxø¼yóŽ;¦×ëu:^ž•••žžž™™YࣽzõÚ¿ÿG}´|ùrggç6mÚÌž=»nݺ%|Ñääd!ÄéÓ§OŸ>môPݺuƒ‚‚Š®ÊȘ1cV¬X1þüàààúõëÛn[€ƒãîßVÇJZŸŸŸ_RR’­ŸâÈ–/_~âĉˆˆ¹ QAU³Ã{255ÕÛÛ[î…1ö‹¼ §VÑNQÚ9ŽÇü/oÇ8웡j¨Ìýû÷÷îÝÛ¼ys¹ QAU =\#/‚#T&>>¾Aƒƒ ’»T0É´Hœã• ”» uT€uÑq@Ô~#ûœày`‚#PÎ?”Áù©}œZËØ7y€q÷o[ 8À$G˜„à€Ì4pîÅÕ1J@p€IŽBºšÅ#8 ' ŒSÃqa¶ÜÜ\___//¯ððp¹kQooï~ýúÉ]¨­@… 8ÂléééÍš5óôô ]µj•M_+ ,,Lî5~hïÞ½îîîO<ñÄ3Ï<³qãF¹+2¦¨Í2â&Ž6Bp„ÙªT©²nݺÇwéÒeþüù¶{¡£G4eÊOOÏ_~ù¥R¥JBˆÐÐІ †……=ZÞ”¹¹˜ˆ¡.ta¹ììl!Ddd¤u{óæÍ.]º„……]¿~Ý‚§'&&yxxxzzöèÑãøñã%/éÁƒ'OžìÞ½»”…åË—ïСåK—233ÍZTnnî!Cœ­5Ê_ÂÍ%g‡›8B!è8ÂrÑÑÑBˆ7Þ¹sǨJÎÃÃCúPRRRýúõÍzî®]»‚‚‚ªU«6tèP½^Ý¡C‡_~ù¥N:%)ÉÙÙùرcnnn†)ÙÙÙ¿þúkÓ¦MË–-kúrôzý¨Q£V¯^5xð`Ù7¨WÆ(GX(==}Ó¦M#FŒxðàÁ×_-w9B‘““3qâÄ5jüüóÏóçÏ_°`Á† 222/^\Â%»¸¸4jÔÈÃÃC3}úô6mÚ\½zuáÂ…¦/D¯×;6:::22rذaro-òcœªCÇQÙt²¾z‘ÿ;[»víƒ&Mš”’’²bÅŠW_}µÀÙ²³³·lÙRØB^~ùe+Ö›˜˜xêÔ©Å‹»ººJS¾üòËŠ+Z±ª™3g&'' !žþùZµj™º-õúñãÇGFF:täÈ‘…ÍfÏÍxM•MÁïàèèh??¿¦M›öë×o„ gÏž­W¯^þÙîÞ½Û³gÏB×ϪkŸ={VѤI“¼ Li%©êܹs÷îÝ‹=zôÓO?}úôiww÷bk‹‹‹Óëõ5jÔØ°aÃÌ™3½¼¼ œÍž› ´Š{ñØCհĹsç  „èÓ§“““t¾c~•*UÒκUeee !\\Šÿs¨„U•+W®sçÎsæÌ¹uëÖ·ß~kJmz½~ݺu±±±wïÞ8q¢  "ŒS›ˆ> ¢Ðq„%¤˜(GOOÏ€€€˜˜˜™3g:9ÿ)bϱW©åyêÔ©:&Ι3'##cöìÙ%©jË–-={ö\¹r¥´Êi@ÜÄ<×½{÷=z!‚ƒƒW®\×½{÷ü³1T P2‚#̦×ëccc7nܰaCiJÿþý_ýõÝ»w?ÿüóF3ÛsìÕßßßËË+""bàÀÒy)))aaaù¿îÏܪڴi#„øê«¯ú÷ï¯Ó=<óTJÏmÛ¶5¥6C¤^¸pa\\Ü›o¾Ù¹sçüWd3T @u¸Ca¨fÛ»woZZZÿþý Sz÷îýØc7nÚ´iF3[}ìuÍš5®®®!!!ù*S¦LDDDrrr‹-¦L™Ú¾}{—éÓ§—°*77·©S§nß¾½U«VS§NýàƒÚ´i³zõêI“&5mڴ誌¸»»‡‡‡§¦¦Îš5+ÿ£ U”Œà³ÅÄÄ!òGððð¿þúëØ±c¶Î7YYYééé…Ýv»W¯^û÷ï÷öö^¾|yTTTëÖ­êÖ­[ò×ýð㣣?ÿüó¥K—–*UjíÚµ‹-2¥*#cÆŒiÓ¦ÍüùóÏœ9cÓm@±8ÁÑDœà¨4´—­ÏÏÏ/))ÉÖOqdË—/?qâDDD„Ü…¨ *‹Ùá=™ššêíí-÷ŠÂûÅ>Ì Ž ß)6ª¶,8ZxUua/VÐÞrØ7G¨Ìýû÷÷îÝÛ¼ys¹ QAUXÁ*ß AƒAƒÉ]ˆ ª LŒSÛ”ÚŽŒ«ª¡2rW¡Žª@Õ8ÁQè8 q/GCpÀ~ù„ª`‚#PNpT&‚#vÂ85ÔŽà4ÂÊ÷âA>G ,9Å"8`Ú§æ^<ˆà“`‚#6§½qjÛáG%#8Âl¹¹¹¾¾¾^^^ááár×¢AÞÞÞýúõ“» P /©†9Ž0[zzz³fÍ<==CCCW­ZeÓ×  “{ºsçθqã¼¼¼*T¨PØœÿý·‹‹‹îQU«V•{ „âøñã ðôô¬P¡BË–--Z”-wQup‘»¨O•*UÖ­[§×ë_|ñÅùóç<ØF/tôèуvîÜYî5BˆŒŒŒ–-[¦¥¥õíÛ×ÍÍmýúõ]»vÝ»w¯¿¿þ™SSSsrrÚµkçããc˜X¡B¹WB¤¤¤tìØ1''§W¯^^^^»ví ùþûï7nÜ(wi€–1N­h ›ƒà étºÉ“'wíÚuß¾};v´â’³³³÷ìÙsèС%K–äææÊ½¢}òÉ'ÉÉÉ+V¬6l˜bâĉ-Z´xë­·öìÙ“æääd!ÄŒ3’z BBBîܹ“ЪU+©ÂQ£FEEEmß¾½K—.rW@Mlt/RœÂ1T ËICœ‘‘‘Ö]ìÍ›7»tévýúu žž˜˜äáááééÙ£GãÇ[¥ªµk×V«VmèСү>>>}ûöÝ¿ÿÕ«WóÏ,Ǻuë–ðEsss‡ âììl­SöìÙ ¥FÉ„ „ñññVY>@Ûް\tt´bãÆwîܱâb=<<ôz½^¯?s挹ÏݵkWÛ¶mOž<9tèÐàààøøø:œ?¾„%eddœ={600P§Ó&vêÔ)77·À3“““K—.ýøã¯[·nÙ²eÈÊÊ2÷Eõzý¨Q£V¯^e•ó²³³Ç/%Eƒ .!J—.]òå(ãÔІªa¡ôôôM›61"::ú믿~õÕWå®HäääLœ8±F?ýô“«««¢GÏ>ûìâÅ‹ÿóŸÿ”dÉ×®]Óëõy'º»» ! l‹&'';99Õ­[÷öíÛÒ” ÄÆÆ¶hÑÂÄWÔëõcÇŽŽŽ^¾|¹48^r...FÂߺu+<<ÜÙÙ¹oß¾Vy ( Æ©•à¨hyû[öWôÉ+k×®}ðàÁ¤I“RRRV¬XQXpÌÎÎÞ²eKa yùå—­Xpbbâ©S§/^,¥F!D@@À—_~Y±bÅVuïÞ=!„Ñr*Uª$„¸yófþ%$''çææ†……õíÛ÷±ÇÛ´iÓäÉ“{öìyâÄ éYÅnùñãÇGFF:täÈ‘…ÍVÂm»oß¾1cÆ$''þùç¾¾¾VÜ`6¹íâ|ŽŠ¦äöóókÚ´i¿~ý&L˜pöìÙzõêåŸíîÝ»={ö´Ï ž={VѤI“¼ ^æVåææ&„øóÏ?óNÌÈÈBT©R%ÿöíÛW¦LÃC#G޼ÿþøñãׯ_?jÔ¨bW$..N¯×רQcÆ 3gÎôòò*p6‹·mZZÚ„ 6oÞìëë»k×®N:Ycó(ÁCéhrš‰sa‰sçÎ%$$ 0@ѧO'''é|Çü*Uª¤/œu«’Î#tq)þÏ!s«òððprr2•¾qㆢFùç¯^½ºQ |á…„'Ož4eEôzýºuëbccïÞ½;qâDk­…dÍš57>räȲeËN:Ej`[\RM„S:ް„¥àèéé3sæL''ã?Eì9T-µÅÐÃÚêÕ«g‡§È(77×ËË«qãÆ†)K–,BìØ±#ÿÌééé¿ý¤«ª?úè# ËÌÌôòòª_¿þ;w¤)çÏŸ/S¦Ì!CJ^ÕâÅ‹…›7o–~½v횇‡Ç /¼Îk×®•)S¦C‡YYYÒ”œœœW^yÅÅÅåäɓŮEíÚµûöíkXTåÊ•½½½ïÝ»Wòm›››[¿~ýÚµkggg[†Þ“)))¶~ X€ýbEÖ:Æ*p§Ø"?”p‰Â²ý¤ÂWS]n+b¨fÛ»woZZZÿþý Sz÷îýØc7nÚ´iF3[}¨zÍš5®®®!!!ù*S¦LDDDrrr‹-¦L™Ú¾}{—éÓ§—¼ªáÇ?õÔSƒ 7o^ÇŽïÝ»gø:Ĺs纺º.]ºTáîîöÃ?øúú¾öÚkS¦LiÙ²åÚµkg̘ѰaâWÁˆ»»{xxxjjê¬Y³ò?jîZœ>}úÌ™3eË–=zôˆGmÞ¼ÙZo€†1T ³ÅÄÄ!òGðððyóæ;vL¯×Ûôb𬬬ôôôÌÌÌíÕ«×þýû?úè£åË—;;;·iÓföìÙ%¿·¢bÅŠû÷ïçwÖ¯_ûöí¶mÛ®ZµÊð}ƒ÷ïßOOOðàôë»ï¾[§Nyóæ­\¹²L™2M›6ýî»ïºvíjÊ*3fÌŠ+æÏŸ\¿~ý’¬‚t[òÓ§OŸ>}Ú衺uë•|+€eJx‚£M.©FAlò}AÎÏÏ/))ÉÖOqdË—/?qâDDD„Ü…hyìðžLMMõöö–{EaŒýb-V¼žZ;ÅêÇÈ‹~áÂ÷¢Ã¸ª†ÊÜ¿ï޽͛7—»‡^ŽÌFßR-Çšp!·ÙŽP™øøø  4HîBzÀŠÈo*Â9ŽP™ÀÀÀÀÀ@¹«pôUP4îû ­¢ã“°&Úf)ù85—TÛÁ&!8SqIµƒ#8`5ŒS›…ð¦:G˜„àÝã‚°’†Y¬2NÍ%ÕvÆ À•ÂÏÏOîp œ\i)‚£"8æ¥ÛSjjª···ÜU€ºiç’jXŠ¡j¬€qj³ÐòS)‚#LBp ¤h7Ê‚+cìàìJæqj†ÉK€à“pUuÁÒÓÓ#""Ž9réÒ¥ªU«6nÜø7Þðññ‘».€â8È85—TCÐq,PFFF÷îÝ׬Y#„ |â‰'¶nÝtâÄ ¹K@Ý(V5‚c>ýôÓëׯ7...nÑ¢Ek×® ÏÎÎþøãå.  ,ÒnT ®Œ‘Á±ñññeË–}íµ× Sz÷îíééyòäÉœœ¹«@­äo7Ê_ºqŽc*W®\¯^½2eÊäXºt鬬¬¬¬¬²eËÊ] € ŽX¹r¥Ñ”Ÿ~ú)--­Y³f¤F€ãԚŮ-Á±(GݰaCjjêÑ£G½¼¼æÎkâýüüŒ¦lÛ¶Mîµqh—.]’»c§(ûÅLÞ©©©¶~ %쟔””®¬·wI‘—·°`aÞ¦í2oñÈ»víj­ªÕŽàX”¤¤¤õë×KwhÔ¨Q©R¥L¢ÜµÃ˜···Ü%À;E™Ø/&ú§'eÍ¥„b•¬µ"¯Œ±ha&Öw¶ü‡õü"ÁÅ1Eyå•WNŸ>}àÀ÷Þ{oûöíü믿ä. X„+cJLSÁñøñãEÏ`Áx±N§«ZµêÈ‘# ðûï¿oß¾]îµ@}ÈlÚ ©àøÊ+¯ü÷¿ÿ-ðŽ9·oßž4iÒĉ‹]ȹsç¦L™òÝwßMoÔ¨‘âÚµkr¯%@~\;Ǥ©àèîîþé§Ÿ0à·ß~Ë;}ûöíݺuûî»ïjÕªUìB*V¬øÍ7ßlذÁhzZZšPÆY&ØSÉ¿lv£fh*8ÆÅÅ 0à×_íÙ³§ô…ééé!!!o¾ùfzzú¨Q£6mÚTìB<<<üüü8°gÏÃÄ3gάZµªB… ­Zµ’{-2£Ý(/ ¿3†ôj šºªºB… 3fÌxñŧNúÑGmݺ5%%対¾¾áááMš41q9üñ Aƒ^{í5ÿ'Ÿ|ò?þ8räˆbÞ¼ynnnr¯%€<4Õq”´mÛvíÚµUªTùñÇoܸѼyó7šž…M›6ݲeK·nÝnݺµsçÎk×®½ð ÿ÷ÿ×½{w¹W•¡Ó§%šê8J~øá‡>øàÖ­[5º~ýú/¿ü2~üø™3gzxx˜¾Zµj}òÉ'r¯ @q§†#ÓTÇñÏ?ÿ =zô7&Nœ¸nݺ¸¸¸_|qÿþýݺu˽ °)¥´•R‡êi*8JéÐ××wݺu¯¿þº³³s¥J•""",X ÓéBCCG%wsÀvcÉ/©¶r=–]+ÑTp¼qãÆ˜1c6nÜØ°aüӃ‚‚6oÞܶmÛÈ]#P6üûÀdš:ÇqÕªUþþþ>äééùÕW_ÅÆÆÊ]#Ž‚ñaíÑTDZ°Ô(ÑétC‡•»F€ZчR+¬õh*8… ­iÁ€â9f»‘+c`„ଌv£V(†c¶5‚ kUG`MD5 #8àG%ÐÔ}…ß}÷]LLÌo¿ýVØÉ¼ r×P‡§VÚ•1PMÇ]»vMš4IúÙÙÙYîrp8ʧVV5Z ©à¸|ùr!ÄðáÃ_ýõJ•*É]@õ¶Ýè¸ØåEÒTpLNN~òÉ'ß{ï=''ÎÝÀÞl×àãG…ÐNÀúûï¿ÿüóÏš5k’VAïIݧ¶íd,''§J•*;w.77WîZP7 ®Œ!§9íGggçÑ£G߸qcÑ¢Er×P=Ú@~š:Çñ¥—^ºxñâ_|‘ðâ‹/>ùä“¥J•2š§cÇŽr— €Ö(®Ý¨¸‚4BSÁ±sçÎÒÇ?~üxó$%%É]&0WÆ(‡¦‚c=ä. ŒS›…îžãÐTpœ?¾Ü% z|g £‹c° ÚfQb»Q‰5i„º;Ž«V­B´nÝÚ×××ðkÑ,wÕÀTœà¨(êŽ3fÌB„……IÁQúµhG@h7šEk­=vqÔßxã !D“&M¤_ß~ûm¹+²ÒZ˜UuÇ &äýõÕW_•»"€ŠÑoæ\CBs@\Š•†à€´ͤÐv£BËÒ‚#LBp€vãC&žàhŸ¾žÙãÔ´mà“ŽŽv£Yèë92uߎ§Xz½~Ïž=—.]jÚ´©¿¿¿ÜåÛ(yžåh-8îÙ³gñâÅÏ=÷œtoð>ø`ýúõÒCüðÃu:Ü5„´`»µ¹2ij¨ú§Ÿ~zýõ×Ïœ9“››+„8uêÔúõë+Uª4hР'Ÿ|rÍš5{öì‘»FªØ+c¤†¦:Ž‘‘‘z½~êÔ©BìØ±CÞ¹sçß~û­k×®«W¯îܹ³Üe”‚v£FiíESÁñìÙ³žžžC‡•~=|øp©R¥:tè „¨]»v:uRRRä®U"›Ahl¨:==ÝÍÍMú9;;ûÔ©S7.Uª”4¥\¹r7nÜ»F€RÐnT,óNp$ÒÚ‘¦‚cõêÕ/]º”““#„øå—_î߿ߦMé¡ÜÜÜK—.U­ZUîP¢¢Op$›A¢©àتU«ôôôO?ýôòåËŸ~ú©" @z(**êÖ­[uëÖ•»F€"Ðn, ©sÇŒ³yóæÏ?ÿüóÏ?B4iÒDºwcÿþý;&„9r¤Ü5 2vn7Ê3NÍ_¦ÑTDZFÿûßÿ:vìèééùÌ3ÏDDDHwm¼qãFÅŠçÌ™óôÓOË]#@~„Ó1H¼4ÕqBøúú.[¶ÌhblllµjÕœœ4•’pt¤Z»ÓZp”¤§§Ÿ8qâêÕ«Õ«Woß¾}éÒ¥I íÆü »2†`#Z Ž7oÞüüóÏׯ_Ÿ™™)„6lXûöí{õêÕ¨Q£ððpWWW¹ …â›NS}¸¿ÿþûõ×_­X±b¯^½ ÓÝÝÝ÷îÝûÊ+¯Hià°h7šNéíF¥×§Mš ŽË–-KLL|öÙg·mÛ6gÎÃô¯¿þúå—_þí·ßbbbä® •¡@š Ž?þø£³³óìٳ˕+—wº³³óôéÓË•+·}ûv¹kȆvcоõ·]+1}œš`+MÇÓ§O{{{¾u0¯ *øøø\¸pAîP:‡KeüIa2MÇJ•*ݽ{·°Goß¾ýøãË]#@d© 5ª DÍÒTplذáÕ«W?žÿ¡Ó§O_¾|¹Aƒr× ÀõÔª ©à8`ÀN÷Ö[o77·W¯^]ºt‘»FµÒTpB¼ýöÛ-Z´˜;wnJJŠâòåËBˆªU«†„„ä½³#ÀqÐn4‘Œ½>¾Àé·oߎ½uëÖsÏ='wÛ" ˜B!'8Bu4‡^Ä£?þøÄ‰å®™éä.ÀŒB · £©àØ£GÂòòòêÙ³gÍš5å®`C´‹%…1%dGîû­Fš ŽóçÏ—»` ´ÉQ.ŽhíÆb=l7r‚#,¥îŽã¾}ûÌ}JÇŽå®`}¤Æb)ª…WÌ8µ}jåMc>uDZcÇšû”¤¤$¹«ÀÞ•5T«ÃQwp,âj€ã sd:Æ©QêŽ\ @±”ÖÂ+jœZiµâQtqÌ{ï½×©S'¹«XíÆ¢©)‰©©V¥îŽc~·oßÞ½{÷… Œ¦gffîܹÓÙÙYîÖDj,š“·oT5MÇk×® 8ðòåË…Í0xð`¹kÀNò§FEŸàhçËßÑTpüꫯ._¾ÜªU«   -[¶>|xúôéeË–=sæÌÊ•+þ¼¢eË–iiiBܸqã矮Q£†Ü5JŠƒ~aÔ—ÕW±£ÓÔÅ1C‡ݾ}ûž={ôzýÒ¥K\\\&L˜Ð¼yó3gÎÜ»w綾^’»F@‰ StSâ85©Q…4Õqtss[µjUHHH“&M„5jÔøàƒ²²²¹‹˜‡vc~ªìÜ)¤hÞO%£©ÛñIJJÚ¶mÛ¶mÛRRRÄ?HŸ›™™ù¿ÿýoýúõ—.]züñÇëÕ«7räÈöíÛ˽NàX8Êç§fZ©ÿ´UT4ФÁàxêÔ©íÛ·÷Ýw.\¦4nÜ8((襗^rww7e ÙÙÙÇOLL¬T©RÛ¶mïß¿øðá¼ùæ›ãÇ—{ýŽËܦˆë©I¢©à8þüíÛ·_¼xQúµvíÚAAAAAAµjÕ2k9_ýubbb‹-¾üò˲eË !Î;üÙgŸuêÔ©Aƒr¯(8ÚFÔÀ¶ÕU4Š£©à¸|ùr!„»»{·nÝ‚‚‚5jdÙr¶mÛ&„˜:uª”…¾¾¾ãÆ›3gÎÁƒ Ž`¤F#ª `ª,EÑTpìׯ_PPP«V­œœJtÑOjjjùòår§¯¯¯ÂÐÎÀn, `òŽSëx95Ž”˜¦‚ãÇl•å,[¶ÌÅÅxËœÞÞêÛô5JSÁÑZ6lh4%!!á‹/¾(]ºtÏž=MY‚ŸŸŸÑiør¹té’Ü%À;E™”°_||¼SRRSSå®C|¼½¿ÿá‡Ô'Ÿ´ìé²lGoo^—’šbÿ—.¦0K7H×®]å®])ŽÅÈÉÉYµjÕ¼yórrr.\èææfʳ’’’ä.Ƽ½½å.ÆØ)ʤ„ý¢„”@jÛ¥>ù¤D¶qjÐI£ÔŠÜ‡–½µòÖówˆÁ±(‡ ;þ|µjÕfϞݮ];¹+cÚ@•ƒ½J.š÷–5 –••5þüØØØ2eʼñÆ£F2\a °ŽìJ`EÍw jÁ±¹¹¹o½õÖŽ;ž{î¹?üÐÄÛ†J‚Ôh ÞÔÍ#8 66vÇŽƒ úðÃå®àX¬Àì}‚ã?EÓnÔ¼ÝïP“ôzýÊ•+üñ÷Þ{OîZÀQÐn”¨²m§Š¢y‡Y Gcׯ_OKK+[¶ìàÁƒó?Ú«W¯àà`¹kMá˜.QE+¢hÚŽ€àhLº‡Yffæ‰'ò?Ê…Õ`]¤F‰S£ýÆ©UuQ"GcÍ›7ç.Œ{Re{´hÚ‚à íFBý©QéxŸYÁ Žæ¶H_ö§ÎW7íFÇÁUÕÕÕ³Sݰ‚#öf£ôeóvcAu+½ÝÈß(VÅP5ÀÞüP®ÊžZOÆ„•vEjTßÚ^´ÒÛ°6‚#À~95Úºgg«qjR#ò 8`sªl4ª¸nCýü—Šmpq ÀNö ®ÖôUdÝ´G€=mû*Ö§æR‚à°9ÇLjM_&D]u´ómgcG€m9æá[“ÃÓÁ+³sú²Î8µÉ Ru´aG€ 9`»Q•=;“‹VMjtÀwž]¶âhÇnYNj´B»Q•Qò 8lÂS£úV×̨«šv#l†à°>R£ ¨²hÈŒà°2‡JòÞsÇÂqj‹ŠVS»Ñ¡Þ‚öEpÀBªìÙYT´šR#l‰à°&éõ¨òæÞª,Ú‚ÕtŒ· LŽ«qC¶BæS— hÚ0 8¬ƒÔ¨PÒh„]Và©QQÌÔvc‰s®ÊÚŽðF”ÁPRŽp°vÌF£ÊR#là(ͧFE55Z1Tƒà°œ#¤F®_QãÔÖ«X}íFÍ¿€à@Ô×¶³jÅêK° ‚#ÀBîï(³Ñø°¶üíFõ…\¨Á` ­¦F•e0Û”«Êv£Vß‘ Cp˜M«Çh%7íV®*S#ì…à0&S£ZÇ©mV®ZS£&ß”ŠDp˜A“h€‰ŽSi/5ª¥Ñ(Õªæ|9µE¯ Êv#ìˆà0‰ÆR£Š"£·÷ÃZu6Ý ªM{k*›“ÜT@c‡fi°W+¤B'RSR…Þä/§l‰à(†–R£N-§êìoi7ÂD UŠ¢™ã²jƦ *Ô¦íF§FØÁP(-¥F¬‡ÙVÝ©Q3oPõ 8 ¦ƒ²:ê¨ 8 ¢Ô¨Ž0fB•>>>6§Vw»r 8Œi#5*} 䶪Ox›ªÁðµŽåÎcV.Q§Ó¥¤¤Ø •§FÈ„àø—·zS£Æ"£-«PjTûß7ªÅ}ét"%%Uî*,ª\á÷ôÖYX"7ý†ÒB¨¶ƒ£ŽÈ¨WP‰´Q UÔz Vô0%•¶E»Q ©²"8€£ScjTƹ‚…W¦Èâ4’Õø~Õ‚#84Õ…•­T™ÕÛIÁ—ºR£ƒDFÛ¨•Ô¨®·¬ÀA©è¬Ð`f³Qi.¦†bÀ©%5*:2*®¬ÂŠ¥Ý«!8€ÃQÅñW‰ÙÌ.¾X·ÝHj„uÀ±(ÿø«ÜȨ¬šL©Z+©ŠAp¢ðÔ¨¸xf÷{ëX±Ý¨©Ô¨ð7®#!8€£PòÁWY‘QÁ÷b4y 4”¡$GpŠM ŠŒrçEkµµ–ûÞuHGÐ8N¡Ä#¯â"£"J)ùªh+5BaŽ eÊlÖ(%§ÉÝb|¤k´5˜•ùv`GÐ,s•”­ºZ¤FØÁ´IQÇ\ED5EQHi%n7j05B‘Ž AÊIò·œ­·ŠZLÊy#‚#hB¸2GFõäŶI°'‚#h‡B. –32ª'/Ziuµ˜¡`GÐ%ôhd‹ŒªÍ‹%i7j65*á­ŒB@ ä=ÔÊÛT›–Oj„Ú@õdLò´Už­±´›i7*ÁÔM®ã¬½#£.ÏϚȷIÁÔJ–KaìÝìsøæ¢R#äEpU²ÿAÖ®-F­çEËÚZNP ‚#¨S£"£æ£­Kã©‘v£J@eìv„µS×OëÍÅÖØüv#© ApÕ°ÛIöh1:^^|¸Þæ§FoR#‚àê`‡Ã«Náí-l—åŒ6ŸNèRRS„·ÜuB!œä.P<[§F:!ôB¤¤¦ZùutyþéóüsHfµuB§ñjA»Q}è8€ÒÙîØjÃábG‰¶íGFAjT%‚#(—íNj´ÉYŒŒDÉôv#©ŠEp…²ÅÕú}@¢iHЂ#(‘uS£ ó" Ǫ%5ÒnT-‚#(‹u‡§­9$MsÑR¦´uB'„ 5BᎠ Ö:¤Z­!HX,1S£CDFAjT=‚#(EÉ©ÖÉ‹„Eû"5BEŽ ¿’O—tHúŸ°è-¼$ÃØGÑíFž¤Fàà 3éxjÙ!ÕèÖÚ>9Ï­¹SSRåÞÚQljÔ =©êBÇdcq£Ñò!i†¡•Á†§©QSŽ  ¦æE¢Šh7’¡^G¹SóNaÔ=ú+Gm»+,5:ÖI‚Ô¨AG°+³†§Íh1ÒVT<Çj4 R£6À~L<’šš ‹Š”¿ÝèpFAjÔ,‚#؃)Æâó"cЊW`jt¬È(HZFp›+ú0ZL^¤­¨¤Fi+5Œû8#%%ÅÏÏïØ±cr@•tºB£ùn¡XÐcyæX¬*:¡#5B{è8#66Vî¨UÇЂû‹ŒA«_Þv£#FFAjtÇ‚eddœ={vóæÍk×®•»ê“ÿŒFã¼HRÔCjtÄë`þÙ¤FG@p,XPPÐï¿ÿ.wT)ïô‘¼ÈÙŠ•75:bd¤FBp,جY³òXªEK”•fö‹}øøø¤¤¤ˆT‘jË­Øâí㓚’"RUøF7S×®]å.A)Ž6‘””$w 0æíí-w 0¦Ö¢3þÍÐpñê\£G©u¿Ø—Nè„NèíÕlSÜNùç´ …•e+ùëù;D‚àÅ1JŠz!„Ðÿ3FÇ(²sjT†§ÁòÉw¯œ¼GK‘QWÜ÷B“ ÁèŒß%ƒÔèØŽPð] ¼yŽ)_9 MÊ{Ýtþ¯t¤F‡Gpà ¿ÿvßÍAÓaå½A£ƒ¦Fþf‚‚àÀQ÷M-EäEÁAÓÝ ÑqS£®5 Bp Q&|§Ÿ)ßäBdtXùïéMjŽ´ÂäoÖ?Ë?srÄtH~ Œ#¦FþlB>Nr tüqRRÒSO=%w!òÑ=úOÿè¿Âç-d–Gçב”t:#÷YúçvS¿ð(:ŽÔÃäžbþg˜~ô£Éâ°Šø¾iÇj7ò@áŽÌü¤hô<³}.V‘Q8`jtœ•…ùŽ”ÄÒ¤(L»Ò¥¨§s¸tHEGFáP©‘¿œ`‚#Y• )ЇŇ áp銌ÂÑR£ƒ¬)J†àÀŽò=oá-„…qϲ‘è–CdtH¦DFá8©‘ÌÁUÕl©ð ŸSSR͉6ë²èb–¦ãšQG¤:/šv ÔÈÇæ ãÀªJ6ô\Äò¬ud£½â˜Lì2>œÙR#ŸX„à tù¦Xã0d•3 ^2çq9³"£p„ÔHdD ˜ÃÚ Ål‹ÇJdnd’µ½‚°1‚#€"Ù,)-Þv‡2"£² 2 ͧF> °‚#€GÙ8)þû ÞÞ¶Y|žâ@éx,‹ŒBÛ©‘O¬‡«ªǦf}ã³U^GZpJjªM»Œ\-êhL¿bº€çj;5òI€õÐqŒíо”ÝŽZôVÅ]ƇO×jjäà 8ZgǤhô‚v>^q”t4ºÞkGF¡ÕÔȇ6Cp´Å6÷Ç1ëeí°â(éhJØbüw9ÚK|`cG@åìÞP,ð•å:Lq”t4ÖŠŒB{©‘ì‚à¨|IQ(#,>¬„£¤#±Ê¨ô# ÔRjäÃ;"8Ê&ÓÐsa%(áÐÄQÒ¡X±Åøï25“ù0ÀÂÈÚP,° å”8J:EF!„R#È„àÈMIQ(5,Š‘‚£¤c°ú¨ô¿KÖF£‘ÈY»SLR ‹ËãéHlÑbüwáH| GÀÆp’bÉ]KáErˆt¶k1þûªN:·ôƒzWÂWÖVô7øÉwÎb)ßè8ò~I ©±ÀÒ¥CjJ Ÿ(G Ä”4ô\X]Š)ªÈ‚é2:;´¾z/…áÃ¥"8æSjR* ‹Ëæ(éì–¾œ\Å#8&PpRª ‹‚£¤Ã°éU/¿¢êR#,@F> P9‚#†J’¢ÐPX|¸:4V4Mö¼(ÔÒhä“M 8B»òä/oá­ð¦±°øp¥8Pj—òâÃJÞh¤ÅmáàЖBîsš’*we¦«zÒM‹¹‰·&ý³om~×nSëQlj4ú(³HÀ|t¡rê€Î_¯â‹5íh1j”rú‹ÿ–¤Ìáiú‹Ð:‚#ÔFmIQh=, Ž•Ú¥À¼ø°0¥5ù Àa¡jK^* ·–®)-F-Rl^Jk4’áxŽP$&/µ…Û’­,‡K-z˜½•˜V¨F#80‚#C…ÉK…%—x•i1jŽQ155U÷eWD£‘¼!3&/–lµæˆ©-ºy±à‚el4òî Bp„í©3v©³jë­>CÒZ¡®æâ¿eËuy>÷¼û‚aêŒ]ê¬Úª[€&‹V¨®¹øHñv›æ}˜ŒàëQgìRgÕÖÞ75A¥ÍÅGVÁnFš‹€EŽ(uÆ.uVm}äEmPusñßµ°OdäM” ÁæSaìòñ~äþ"*©Ú†8…Qí4Ð\üw]li.Öã$wPÝ?ÿôyþ)˜.Ï¿”ÔT•Tmãm¢{øO¯çª>ºw Nÿpê5õz½õS£NgüvçMXGImÍÅÂêM•»0y1:§^Zê,¯šÕtÛ#8¢ †ÿýªáÿ½j ·öC^T) ‡Å‡+hÅÈHXì‹àˆ¨*©ªX{#/ª‘æÃâÃÕ´Jd$,ò!8:<õ4 ‹E#/ªŽƒ„Ň+[ÂÈHX”àè¨T’ ‹Å"/ª‹C…Ň«lqd$,ÊCpt0jË‹Ê.SNäEqÀ°øpÅÍŒy“¢àÍ (ÁѨ¤k§’2eF^TÝ#ogÇ ‹·€é‘‘¶" *GM“þ‡¬àÿMD^T>‡m+>²þy§i+jFpÔ"eôMG^T2ÚŠyÕb$)BpÔçE¢é¸S2ÚŠùIŠ€vÕO yQy¥)ÍEe¢­X„#£ôÍ~¼‰í"8ª™"Oa¤¹hò¢Ò‹õÿüÎÛpGuRXd$,š…ÖŒ¢M¢Ó‰¼ÿãá 8*‚£ª(lèWaå(ÍE… )ïÑ“ÿý¤óÞÁQ%Ób¤¹h.ò¢ìHŠÅx4&z‹‡oV“î­ÀÁO‘‘æ¢YŒ–I±E^õœššêSÂï• ]G“;2Ò\4 aQF$Å¢ÅDQè”#€bIÖÈHsÑ,ŒDÛŸQL$żLމyžñH^LMM•{(ÁQadŠŒ4ÍBsÑÎh(,Ff¼#é/°ÁQItöNm4ÍBsÑ>h(ÌüVb!‹!/°ÁQìÛh$/šŽæ¢­ P²Vb!‹$/°‚£Ø«ÑH^4aÑv‰‰ÞBm]%5űR£NWÀ¿¼ï6+½ítyèÿ!÷ÊÐ:Žò±qd¤¿X,:‹ÖÅ ó¿lÜG,ä5i.°9‚£Ll–É‹E#,Z 1QˆB¢°ß{K—§ò"; 8Úm®ƒ!/A§ϧ#,Z$FŽåˆùÊ¡¹@œãh_:+ŸfÈù‹…1:‹,%%•sMTô‰‰†r—i£•×™q&¢}ßOœ¹@ è8Ú‘U‡§åþ>B%bÚ\ŽÛJTX±ð2‰ ,G{±RjdHÚaÑDšUóÔûèwä(µN‹àhÖH´%FI€k~— K‡BïÚŠT„à¨t´mÅÂ9PFTy:|tUh+P+‚£íYÚntä#mE#D¡½Œ¨¡t˜oÍh+Ђ£Y”32ÒV|¸´ÝD̳›½ XO­¬&mEEpT‡ŠŒÞVÔl±ˆ®¡xd7§¦¦z{{»L)zÝ?ÿ)$ùé O„²FëÆ,{*0Òùùù%%%É]êFp4vïÞ½œœœÊ•+M¯T©’âÖ­[¦,äßÔ¥3üÇ|²F7)(«‘ŸŸŸYÓ!#vŠ2±_ˆ… 8ËÌÌB”/_Þhz… „wîÜ)v t¶€&qqŒ±Ê•+ëtº{÷îMÿ믿Ä?}GDp4æââR©R¥üÅŒŒ !„á:kGCp,€‡‡ÇÍ›7¥¤hšš*=$wuò 8 sçÎ999?üðƒaŠ^¯ß¿¿«««¿¿¿ÜÕȃàX€~ýú999ý÷¿ÿ•ÎkB|ñÅ7nÜèÓ§Ïc=&wuòÐqãEEEÍ;·F:t¸páBBBBÆ £¢¢òߦÀA µyóæo¿ýöøñãÕªUkݺõ¤I“¤;ò8&‚#LÂ9Ž0 Á&!8À$G˜„à“`‚#LBp´šuëÖõë×Ïßß¿}ûö¡¡¡·oß–»"bîÆÏÌÌ\±bE÷îÝ›5kÖ¡C‡Q£F|Xî•ÐswJVVVdddïÞ½ýýý;uê4qâÄsçÎɽ'%%ÅÏÏïØ±cr"‚£u,Z´èƒ>8þ|«V­*T¨°aÆ1cÆdffÊ]—C0wãggg><<<ü?þhÛ¶mݺu>ûLîUÑŽ’|"ôzý{ï½gø¦xX‹;eÏž=ܳg»»»¿¿ÿÑ£G‡ºgϹWE;ÌÝ)999Æ [°`ÁíÛ·;tèP£FíÛ·¿üòË?ýô“Ü«âXbccå.A>z”Ø™3gêׯߡC‡k×®IS>þøãzõê͘1CîÒ´Ï‚¿jÕªzõê 8ðÞ½{Ò”³g϶nݺAƒ§N’{…´ „Ÿˆ¨¨¨zõêÕ«Wïí·ß–{U´Ã‚’žžÞ²e˧žzêÈ‘#Ò”cÇŽ5nܸ]»v999r¯Xü¿¯‰'þý÷ßÒ”C‡5hÐà…^{mÂ;w~úé§éÓ§KÿJLL”»"Ðq´‚¯¿þ:77wÒ¤IîîîÒ”÷ß¿R¥Jß}÷]nn®ÜÕiœÛ¶mBˆ©S§–-[Všâëë;nܸœœ¬­¢$ŸˆsçÎ-Z´¨~ýúr¯„ÖX°S6lØ‘‘1nܸ-ZHSš6múâ‹/Þ¸qã×_•{…´À‚òË/¿!† æââ"MiÛ¶mƒ ~ûí·[·nɽBÚ4xðàµk×Ê]ˆœŽVðÓO?999uìØÑ0ÅÙÙ9 àæÍ›Ò‡¶cÁÆOMM-_¾|£FòNôõõB\¼xQîÒ‹?ÙÙÙï¾û®««ëûï¿/÷Jh;åûï¿×ét={öÌ;qÞ¼yIIIO=õ”Ü+¤ì”jÕª !òfD½^Ÿžžîäädˆ’°Y³f-Y²dÉ’%íÚµ“»Ùð>+)½^Ÿœœ\¥J•*Uªä^¯^=!ÄÅ‹[¶l)wšeÙÆ_¶lYþÿÞU±bE¹×CS,Û)'NœpuuõôôúhÍš5†é5kÖŒˆˆhܸ±Üë¤z–}Rüüübcc‡>|øpÃÄàààÐÐP¹WŽ‚¡ê’’.+_¾¼Ñô *!îܹ#wZVòŸ““3zôè{÷îÍ™3ÇÍÍMîuR=ËvJffæ»ï¾[³fÍ·ÞzKî5Ð vÊŸþ)„HNNÞºuëܹs>¼ÿþ7ÞxãòåË'Nä–%gÙ'%##cΜ9wïÞmÔ¨Ñ+¯¼òüóÏ—-[öÛo¿åRwØ Ç’ª\¹²N§»wïžÑtéf"Òߎ°‘nüLJ……?¾Zµj³gÏväsV¬È²2wîÜK—.­Y³†aP[°`§”)SFúaΜ9:u’~ž0a•+W6lذeË–¾}ûʽZêfÙ'åÝwßýùçŸßÿý#FHS®\¹òÊ+¯Lž>>r¯´ŽcI¹¸¸TªT)ÿ_‡Bõr°‹7~VVÖ¬Y³† våÊ•7Þxã»ï¾#5Z‹;åÇ\³fÍØ±c¹äÂF,Ø)åË—/S¦LÙ²eóNî¹ç„gΜ‘{TÏ‚òÇìÝ»·nݺ†Ô(„¨^½ú믿þ÷ßoܸQîu‚C 8Z‡‡ÇÍ›7¥O»AjjªôÜÕiœ?77÷­·ÞЉ‰éܹóŽ;&L˜@—˺ÌÝ)Ò÷^,Y²Äï½{÷BlÚ´ÉÏϯ{÷îr¯XðIqwwì±Çt:]Þ‰Ò‡%;;[îÒswÊÍ›7…µk×6š.5¯_¿.÷ Á!­ sçÎ999?üðƒaŠ^¯ß¿¿«««¿¿¿ÜÕiœ?66vÇŽƒ úì³Ïh Û‚¹;¥V­ZÝ%]ºX½zõnݺȽBZ`Á'%000##ãìÙ³y'J·‰áF›VaîN©]»¶³³ó¹sçôz}ÞéIIIBˆºuëʽBp rß\ ._¾\¿~ý®]»þùçŸÒ”¥K—Ö«WoÞ¼yr—¦}¦lü¿þú+%%åâÅ‹z½>77÷¹çžkÑ¢Eff¦Üµk–¹;%¿'NðÍ1ÖeÁN9uêT½zõúõëwóæMiÊñãÇýýý[µjuãÆ ¹WH ,Ø)cÇŽ­W¯^DD„áË{Ξ=ûôÓO7nÜ899Yîr S§NuØoŽáâ+¨^½ú;ï¼3wîÜ=ztèÐáÂ… 5zõÕWå.MûLÙøû÷ïŸ dÁN;v¬››[LLÌ¡C‡\]];wîüÆoH_³«0w§¸¹¹mݺuéҥطoŸ««ë³Ï>ûÚk¯5iÒDîU£Ðé=U(ÇÀ$G˜„à“`‚#LBp€IŽ0 Á&!8À$G˜„à“à_ï¼óŽŸŸ_||¼Ýõßÿþ×ÏÏoÕªUyŸµoß¾y@M8°ÿ~¹«à \ä.Z`` ››[‹-L|ôí·ßÎÈÈ8uê”Ü…pDGS£F5jdÙ£`g UP¥œœœììl¹«ÇBp Ò…#çÏŸŸ9sfË–-5jÔ±cÇ7ÞxÃèi¶+W®$&&öéÓ§iÓ¦—.]2<ºuëÖqãÆ=ûì³O?ýôðáÿüòËœœœü¯uàÀ‰'¼öÚkßÿ½Ñ 7nÜøä“O^zé¥æÍ›7oÞ¼[·nsæÌ¹víš¹‹ŠŒŒ,âò—¼Î›7ÏÏÏïöíÛ999~~~þþþ¡¡¡~~~+W®4zÖ'Ÿ|âçç·páB¹÷­!8P™©S§®\¹òþýûµjÕº}ûöŽ;F޹|ùr£ÙNŸ>=|øð'N>~ÇŽ¿üòËû￯Óé.\xîܹ¼³MŸ>½I“&_}õÕÁƒ½¼¼„7nüöÛoÝÝÝ×®]ûý÷ßoß¾}ï޽͚5;zôè§Ÿ~š÷¹6lèܹóáÇ¥—x÷Ýwœœ–,Yrüøqà ¿ýö[§N<øí·ßnÚ´éÀ­Zµº|ùòîÝ»ÍZ”é:uêZ®\9''§ÐÐÐwÞy§mÛ¶•+W>räÈ7 ³ýòË/—/_nܸqݺuåÞW´†à@eÜÝÝÿóŸÿT®\YáììýôÓÒ¥K¯]»ö÷ß7<·zõê‹/®X±¢ÂÅÅeÔ¨QƒB|öÙgÒ ÙÙÙo¿ývùòå¥)+V B\¸p!oÅ.ª$œ_xá…ÜÜÜ;w&nÞ¼YѳgO¹w "8P™>}ú”.]:C‡ !óNìÑ£G™2e ¿þñÇ×®]«V­Z@@@ÞÙÜÝÝ;v옓“súôiÃÄ~ýú¹¸¸ä‰“'OJ¿Ž?~éÒ¥uêÔ1Ìpýúõ-[¶ä¯¶ØE•Ћ/¾(òŒVggg÷Ýw...ݺu³á>ਸ•ñöö6šòä“O–.]ú÷ßÏÊÊ*Uª”4Qž6øí·ß„µk×οÀZµj‰G;…>>>¾Äõë×ïÞ½+u/_¾üý÷ß9räâÅ‹iiiF§6𵍒hÓ¦M•*U~üñÇÛ·o»ºº~ÿý÷ééé:uªR¥ŠÍ÷ÇCÇ€ÊètºüSœsssóÞ G6Ðëõ…-ÐÙÙYñ÷ßûNNN=ö˜bÍš5/¼ðÂG}tüøñ:uêŒ9ò«¯¾š>}ºéÕUBÎÎÎ]ºtÉÉɑέdœ€MÑq 2©©©FS~ÿý÷{÷îyzz–+W®°gI½F£%R32ok0ÿK\½zõÞ½{5kÖ,UªÔ_ý5sæÌR¥J-[¶ì™gžÉ[†)Õæ]”U6È‹/¾¸fÍšmÛ¶½ôÒK{öì©X±b`` µ·:AÇ€ê|óÍ7YYYy§ÄÆÆ !7n\ij<<<ªV­zåÊ•ä~ýúõ½{÷:;;7hÐÀ0qýúõF7w”^¢yóæBˆ_ý5''§yóæyS£âÌ™3ù_·èEYEË–-ÝÜÜâããׯ_ÿþýnݺY+’€‚#•ùý÷ß'M𔑑!„ÈÍÍ]µjÕŠ+œœœÞx㢟8yòd!Ä|pâÄ iʵk×Þxãû÷ï0 zõê†9/^¼r÷î]é%bbb¢££]\\Æ/„ðððBœ9sÆpœœœœµk×J7âÎÌÌÌû¢E/Ê2¹¹¹÷îÝ3ü*][ýÉ'ŸÆ©ØCÕT楗^Ú±cÇÓO?]»vmiØ×ÉÉ)$$¤~ýúE?±W¯^ñññ›7oîÓ§Ï“O>Y¶lÙóçÏçææúûûOš4)ïœ~~~Û¶mÛ¹s§··÷åË—333]\\>øàé2ŸÎ;ïÞ½ûùçŸoÑ¢…^¯OJJº}ûöàÁƒcbb¾ùæ›?ÿüsîܹ¦,Ê•+W¾}ûöÀ½¼¼ ·Ÿ|饗V¯^™™Y«V­f͚ɽ‹hÁ€Ê¼üò˃þòË/ýõ× *´mÛvÈ!mÛ¶-ö‰NNN ,èØ±ãæÍ›Ïœ9óÇ´nÝ: `øðáÒõ1_}õÕ¶mÛvïÞ}òäIWW×gŸ}vĈyÙÂ… £¢¢¶nÝzäÈ‘'Ÿ|2 `Ĉ¾¾¾999›7oþé§ŸL_”¹ÞÿýY³f?þþýû†‰-Z´¨Zµêõë×i7°)]W€¢¼óÎ;›6mZ¶lYÇŽå®EYrss;wî|õêÕÝ»wרQCîrhç8€ê:tèÊ•+­Zµ"5°)‚#¨[ffæ¢E‹„}úô‘»Ç9Ž b­Zµºÿ~VVVݺu¥/ËÛ!8P—^z©^½zù¿ÄÏ‘U«V---- `ÆŒF—ø€Õqq LÂ9Ž0 Á&!8À$G˜„à“ü?ßÁþç»z%IEND®B`‚statistics-release-1.6.3/docs/assets/burrpdf_101.png000066400000000000000000000734341456127120000223270ustar00rootroot00000000000000‰PNG  IHDRhŽ\­AvãIDATxÚíÝ}\åþÿñkM¼C<¨Ib"ŠæÉû¼#o*ͣ潙w'-³45:RÓ"S,õ¨çTf_ïŽ7Ç~‰©eÞT YÇ»¼C õ˜© äM"0¿?F·u—…ÙÝÙ™Ý×óáã˜ṵ̀áÛÏ5sI’$”ÇOë` G(Bp€"G(Bp€"G(Bp ÔÑ£GM¥¹çž{"""ž|òÉÇk]£HKKûÿïÿý¿ÿ÷ÿ.^¼¨u-Ö.\¸P£F ù¤Õ¨Qã×_µ|uÚ´iæSúþûï‹»Oø—_~)¯VêB[ö~XÕªUkÕªÕ¸qãΞ=[îú!!!íÚµ›1c†íù´· K¯¼òŠÖg€šŽ\UXXxæÌ™ÿûßmÛ¶]ºt©¶Å 6¬_¿~ýúõÓCеööÛoË_ççç¿ûî»æ—Î;·hÑ"ùëÖ­[?ÿüónªáêÕ«û÷ïOLLlܸñ_|QöÊÅÅÅ—/_Þ·oßÛo¿‘‘¡õ) ±­ `Haaaò×W®\ÉÏÏBܼyóÅ_ìÖ­[TT”ÖêÔóÏ?ÿñÇú補œœW_}UîÖ®]{Ö¬YnýIU­Zõ½÷Þ«P¡‚üí‰'Ê^¿^½zIIIæŸàœ9s®]»æÖ èÁ€: å/j×®íÊvžyæ™Y³f;wN’$å/•aذaògÏžµ¼ðÑ|…_ãÆ›5kfù–‚‚‚N:­ZµêòåËBˆüüü©S§Ž;Ör;vüùÏþç?ÿ™žž~õêÕìììÿüç?­[·~ùå—Ë-iîܹòî­[· ôÙgŸÉË/^\½zu•~ vÖªUKþÚê{&Ož,qñâÅo¾ùÆÝÐ-‚#Wåçç'%%mÚ´I`°òý÷ß''';ú’ìoû[VVVåÊ•åo“““åo»té&/4G4!ÄçŸ.1dÈ«MíØ±ãÇ ­Zµª¼0))iëÖ­ò×O>ùä… „ݺu{óÍ7‡ æçç'IÒ?þñ¤¤¤²³V­Z³gÏ–¿67){ôè1xð`Õ:¶òòòäÊ… ¯F­X±¢üõ¾}û"Fp šfÍšÅÆÆº²…Ê•+ñÅÇo×®]ƒ ¾T®'Ÿ|RþbïÞ½W®\B8pàÒ¥KBˆ&Mš4mÚÔjý€€€>ø@¾}¸N: æ·ÿþûïBsëñÙgŸ5¿ëé§Ÿö÷÷Bäææ–;ŸŸŸåœ;­[·¾ÿþûUüYX2§º *4iÒdóæÍòò¾}û*OùúÓŸä/ ÜT'ý#8pFXXXý;j×®-ß&üÝwßµjÕêÇtz³-Z´¨S§Ž£/•«C‡ò1ÅÅÅòuãÔBˆfÍšYÞIÓ£Gù I’²³³…'Ož4¿dn°U­ZÕÜÉ;uêTÙ%ݼyÓrÇo¾ùæ“O>qú¼9¡Y³fæ©òåžBˆR¯Â´ü<˜Õ¬YÓ“GÀ˜Ç€3V®\Ù½{wó·—.]5jÔ–-[.\¸0f̘ݻw;·Ù'^*—Éd:tèüùó…Ÿ}öÙСCÍÁ±ÔË Íò²Ê•+ÉsUþüóÏ÷Þ{¯ùÞm{ävfÞyçsú”Mš4é‘G1_R©"ËIbbb:tè0yòdy%…Ì#Ôæ F-Y}x+‚#„„„Ì™3gË–-Bˆ¯¾úê矶Ê^ ÉKG_RâÉ'Ÿ”ƒã–-[~ûí·={ö;ãÔBó½#²7n˜Çgëׯ_½zõjÕªýöÛoBˆÏ?ÿ¼ÔqsómË¥ÊÊÊ2?þã?¾uëÖ™3gÞ|óM¹Hu¹žê¾ùæó]ómÛ¶U½BFÁP5uX>ìDŽY樗——g¹æ/¿üâùòZµjÕ°aC!ÄÅ‹çÏŸ/Ç RÇ©…Gýßÿþgþö‹/¾'ªX±â}÷Ý'„7%„(**ºßBppp5jÔ¨QêcTÌ^xáùZÉzõê-\¸püøñòòÅ‹:tÈó'§\æAí*UªtìØQërh†à@W®\yýõ×å¯+Uª$7áÌ— ~ûí·æaÙÿüç?»víò@Iæ™™ùsWÏ^p,,,|ñÅå-œ?þÕW_•—÷éÓG¾ýå‘G‘—|ôÑGæI%7lØð§?ý)$$¤~ýúr?²TkÖ¬1ßÐýÖ[oUªTiƌժUB=÷Üsòdà:ñóÏ?7nýúõò·#GŽ”Kà›ªàŒQ£F™gL¼yóæùó狊Šäo§L™ „0O7sãÆ-Z´hÑâÒ¥K™™™n-¬Fòˆ³fÍ:zôèäÉ“ÍOIyòÉ'åùt®_¿.„ˆ‰‰‰‰‰±·ÿüç?‘‘‘Mš4ùî»ï䪟Ÿß[o½%¿:uêÔeË–]¹rå“O>éÖ­ÛÃ?|ôèQóÝÊqqqöî )((ˆ‹‹“¿nÖ¬Ù¨Q£„µjÕúûßÿ>cÆ !Ä·ß~›˜˜øÜsϹõ,•ÍüývíÚùóçÍËkÕªåîÛÐ9:Žœñ¿ÿý/ëŽ3gΘSc‡Ì­Ç–-[š›|ׯ_ß³gOfffƒ Ìí:wxøá‡å/ÒÓÓ_yå˾cÓ¦M-Ÿc¯Ý(„ˆˆˆøßÿþ÷å—_Ê©Qž Ç4ƒƒƒ“““kÔ¨!„صkW||üúõëoܸ!„?~ü›o¾ioËÓ§O7G±¹sçšÇ÷ãââÌOÜyíµ×4Í73ÿp-ScÍš5?ýôSWnQàŽ\åïïúè£&&&îÚµ«J•*æ—RRRfÏžýÀT©R¥E‹“&MÊÈÈpkøX¸páðáÃCCC«T©Ò¬Y3Ë+/…Åhµ°s?µ¬fÍš{öìyöÙg5j6pàÀ/¾øÂª اOŸC‡=óÌ3-[¶¬\¹rƒ ú÷ï¿{÷î%K–Ø»ç¿ÿýï| û—¿üÅüRåÊ•ÍÓ†çåå™»’Úò÷÷¯Y³fÛ¶mg̘‘™™ùÐCi]™zä+Zzzz‡„111GµzuÆŒòXv¿~ý6nܨu± ;tøôôtù‹2Æ©öps ï'IÒÒ¥KÏœ9óüC^Bp'x¿’’ËC0 I“&ZÆCpà*W®\TTT¯^½#FL:UërÀ¸9Šps !8@‚#!8@‚#!8@‚#!8@‚#!8@‚#!8@‚# кºqãÆ¿ÿýïõëן={¶Zµj53fLÇŽµ® @3&I’´®AwŠŠŠ†~ðàÁ   V­Zýþûïß}÷Ý­[·&Mš4a­«ÐÇR¬]»öàÁƒ­Zµúøã…§N1bÄûï¿ß­[·&Mšh] €¸Æ±[·nBLŸ>]NBˆ¨¨¨ñãÇïÙ³Gëê´Ap,ENNN•*Uš6mj¹0**JqæÌ­«ÐCÕ¥Xºti@€õ™9zô¨¢^½zZW  nŽQ$##c„ ·nÝÚ±cGHHHÙ+GGG+ÜìÉ“'5jdïÕÌ“'£í¿ 4”™™©u  8–£¸¸xåÊ•ï¾ûnqqñ‚ zõêUî[LÂ$ EgÕd*óü›L‚ŸŽBˆèèhßüïÓM8Ÿªã”ªŽSª.Χê|ö”2T]–o¿ý6>>þǬ]»öœ9s:tè uEš!8–®°°pÞ¼y©©©•*UzñÅÇŽk¾ÃZE’$•ÓtÐ ‚c)JJJ^~ùåÏ?ÿü‘Gyã7BCCz{£èF¦L¥£ÕFAp,EjjêçŸþÔSO½ñÆZÖ!I\æôƒy­I’´bÅŠjÕª½úê«Z× #t­]¼x177700pøðᶯöïßĈZ×èsägù@-œOÕqJUÇ)Uçj!8Z;{ö¬âÆGޱ}•«€Ï"8ZkÙ²¥oÎÌP6®q€"G·„d&­«PÁŠõMžÊ@ŽP„àE˜ŽàQÑÑÑZ—Xc&>…ŽÏ‰ŽŽæohè ÿ˜QŽ¡jwaFàeŽP„àEŽºÇTŽ@ŽP„àEŽP„àèFÌȼ ÁŠ Á»JJJ¢¢¢"""´®Å"##¬up‚£0•#h$//ïÁ Ÿ6mÚÊ•+ݺ¯ØØØøøx­ØUé¹0ïFpÔ˜$I&B!èUÍš5×­[÷í·ßöèÑcÞ¼yîÛÑöìÙ£õá£*=æõ´.ÀËÉ7VKBÒº€óL&ÓK/½Ô³gÏ]»vuéÒEÅ-íØ±cïÞ½|ðAII‰Öªëªô\˜ï 8P¾¢¢"!Dbb¢ºÁñòåË=zôpúíœ1cƾ}ûL&SÛ¶mß~ûíæÍ›k^•YIIÉèÑ£W­Z•’’2|øpý§1T @ù’““…7nÌÏÏWq³aaa’$I’tâÄ Gß»}ûööíÛ=ztÔ¨Q#FŒHOOïܹó?þ¨mUf’$;vÕªUIIIª¤Fµ ƒ+Ž”#//ïÓO?}úé§oÞ¼¹víZ­ËBˆâââÉ“'×­[÷¿ÿýï¼yóæÏŸ¿aÆ‚‚‚Å‹k]šBH’ôÜsÏ%'''&&Ž=Zër †ªº á‚Ry¢¯Y³ææÍ›S¦LÉÎÎ^¾|ù³Ï>[êjEEE›7o¶·‘'žxBÅšjµ²'Ç^[´h±hÑ¢aÆÉ×5fggÇÇÇÛ>îÏó#ÂæH½`Á‚´´´I“&uïÞ=00PóÂà:†ª°kçι¹¹C† 1/0`@… Æ?cÆ «•U{]½zuppp\\œíK•*UZ´hQVVV«V­¦N:mÚ´Ž;Ìœ9Sꬄ††&$$äääÌž=ÛöU†ªˆà€])))BËà–põêÕC‡¹;ßæååݸq£ÔWû÷ï¿{÷îÈÈÈeË–%%%µmÛ6##£aÆî>'eWeeܸqíÚµ›7o3/z¡^uÑÑÑ™™™–KʾÆÑdRöS0™t}Ï¡;åääDFFj]…÷à|ªŽSªœíoH”mÙ²eGŽY´h‘Ö… *§9ñ±ôÙO2Gtê÷ßß¹sgË–-µ.ÄUÁ3Žž ßX­uƒIOOoÒ¤ÉSO=¥u!¨ žÁ]ÕÆ!Oåè«£ÕàƒºvíÚµkW­«0FUð :ŽP„àEŽP„àEŽP„àè!ÌÈŒŽàEކ"Oå ‚#!8jO’$}D {G(Bpôn¬Ã)))‰ŠŠŠˆˆHHHкcˆŒŒ|XU™•””Œ9Òßß_­Qþ;vÄÆÆÊ©Q6qâD!Dzzº*ÛG¹Ž”/99Y±qãÆüü|7&I’$I'Nœpô½Û·ooß¾ýÑ£GG5bĈôôôÎ;ÿøãÚVe&IÒØ±cW­Z•””4|øp׫***š0a‚œÍNŸ>-„¸çž{\ß>” 8z7V€ååå}úé§O?ýôÍ›7×®]«u9BQ\\'eWeeܸqË—/Ÿ7oÞˆ#7nìÊ~³²²„Ç?~ü¸ÕK 6ìÓ§»B“›.ŒõeÑÑÑ™™™e¬`&«›M&>vcNNNdd¤ÖUxΧê8¥Ê•ûV–-[väÈ‘E‹i]ˆªršKŸý$3T €Nýþûï;wîlÙ²¥Ö… *xÁJOOoÒ¤ÉSO=¥u!¨ žÁ5ŽèT×®]»víªuƨ žAÇQ*ÜX-OåàAG(Bp€"G]p÷L`®#8@‚£6xð 0‚#!83òÏ"8@‚#!8@‚£f¸±ô¯¤¤$***"""!!AëZŒ!22rðàÁZWw!8`W^^Þƒ>>mÚ´•+Wºu_±±±ñññZ±Þ«Ú¹sg×®]CCCÿô§?uêÔiãÆZWä[ŽFÆÕàf5kÖ\·nÝ·ß~Û£Gyóæ¹oGسgÖ‡«÷ª>ûì³nÝºåææŽ1büøñ/^0`À²eË´®Ë‡h]zg2™^z饞={îÚµ«K—.*n¹¨¨hÇŽ{÷îýàƒJJJ´>P]W%„˜:ujxxøþýûƒ‚‚„Ó¦M‹‰‰‰æ™g´.ÍWÐq |EEEBˆÄÄDu7{ùòå=zÄÇÇ_¼xщ·aaaááá}ûö=|ø°ª2+))9r¤¿¿¿*£ü7oÞ}j×®=jÔ(I’’““;wî¼ÿþûï¿_êÌ$I;vìªU«’’’†îú¹ò÷÷?tèPHHˆyIQQÑ?üмyóÀÀ@×·%è8j‰«Àòòò>ýôÓ§Ÿ~úæÍ›k×®Õº!„(..žzß}÷©~°‡àЇ2£›¶’““£££›7o>xðà‰'ž(¼zõêààุ8Û—*Uª´hÑ¢¬¬¬V­ZM:uÚ´i;v ˜9s¦†UY MHHÈÉÉ™={¶í«Ž2}úômÛ¶µiÓfúô鯿þz»víV­Z5eÊ”æÍ›;q pÁ»RRR„–Á1,,,!!áêÕ«‡r÷iaaa^^ž½Ù­û÷ï¿{÷îÈÈÈeË–%%%µmÛ6##£aÆî>'eWeeܸqíÚµ›7oÞ‰'\ßõo¼‘œœìïï¿dÉ’?ü°bÅŠkÖ¬Y¸p¡»f&. P]tttff¦òõÍCÕ&“S?“IÏ·"ª"'''22Rë*¼çSuœRåý ‰eË–9rdÑ¢EZb€ªœæÄÇÒg?ÉtЩßÿ}çÎ-[¶ÔºTÏ 8jÏÕçÇ0#x©ôôô&Mš<õÔSZb€ªàÜU €NuíÚµk×®ZWaŒªàt ÁŠ ÁŠu«€þ ÁŠ ÁŠõB’Ö%”…àEŽÞ‚y€›°«¤¤$***"""!!AëZŒ!22rðàÁZWw!8ê‰$Lt @Oòòò|ðÁðððiÓ¦­\¹Ò­ûŠ×úˆo;|øðСCÃÃëV­Úºuë… i]Ô]tuº|ÁQG¸?ô¦fÍšëÖ­ûöÛo{ôè1oÞ<÷íèÀ{öìÑúpoËÎÎîÒ¥ËÖ­[{öìW±bŸ¸8]õuuº|J€Ö w&“饗^êÙ³ç®]»ºté¢â–‹ŠŠvìØ±wïÞ>ø ¤¤Dë½-...???##£M›6Bˆ·ÞzkìØ±IIIÛ¶mëÑ£‡†…éótù:Ž”O¨MLLTw³—/_îÑ£G||üÅ‹xûÁƒûôéÞ·oßÇ«RÕŽ;bccåÔ(›8q¢"==ݡ픔”Œ9Òßß_­Q~O\Gpô"ÜX n“œœ,„ظqc~~¾Š› “$I’¤'N8úÞíÛ··oßþèÑ££F1bDzzzçÎüñGK***š0a‚œÍNŸ>-„¸çž{”oG’¤±cÇ®Zµ*))iøð᚟.¨‚à@9òòò>ýôÓ§Ÿ~úæÍ›k×®Õº!„(..žüðCÛ±ïrõîÝ»oß¾Bˆ#F¬X±"--­wïÞ¶«1TmD¾³³³üñµk×þùÏ.{ÍAƒýðÃV CBBô>ݨ|c5ÿP•H’”ššÚ¬Y³˜˜yÉ!C^xá…/¿üòÑGµZÙ“c¯-Z´ˆˆˆX´hѰaÃäl—o;M·£UI’ô÷¿ÿ½^½z©©©þþþNÔfŽÔ ,HKK›4iR÷îÝ5<]P‹o U§¦¦*\377700°ÉÝ^ì"IH&¯ܶsçÎÜÜÜ!C†˜— 0 B… ãÇŸ1c†Õʪ½®^½:888..Îö¥J•*-Z´(++«U«VS§N6mZÇŽfΜébUÇ?qâD``à3Ï<óôÝ6mÚTvUVBCCrrrfÏžmû*CÕFäÇ‚‚‚“'OnÚ´iÍš5 ×ÏÏÏüñÇ-Z¤uí-¥¤¤!,ƒcXXXBB»ï¾{èÐ!I’Lîœ@·°°0//ïÆ¥¾Ú¿ÿÝ»w¿ùæ›Ë–-ó÷÷o׮ݜ9s6lèâN³²²„Ç?~ü¸ÕK 6ìÓ§OÙUY7nÜòåËçÍ›7bĈÆ»ï\Á3|"8öéÓççŸV¾~nn®¢~ýúZÐØòåË—/_nµðå—_~ùå—ÕÝQtt´m›môèÑ·nÝ:r䈽wuèÐáóÏ?W·’¾}û–Ýð+»ªœœËoýüü222Ô­ÐÞ邸Dpœ={öÍ›7…+V¬Ø»wo¹ëËóãßwß}Zði¿ÿþûÎ;µ}<´Qª‚gøDpìÔ©“üÅÎ;•¬/ÇóçÏ5êøñã•+Wމ‰?~|¹·Ô ¢ôôô&Mš<õÔSZb€ªà>uæÌ!ÄâÅ‹###Û·oîܹ;wÊבX^æR†èèh«%[·nU¸÷œœœl‘mŠ4eçd;S}vv¤É”“íÔ{õêìÙ³Z—àU8Ÿªã”ÂMºvíÚµkW­«0FU.²a·Ò³gO­ Ô ‚c)Ο?7jÔ(yÉÞ½{Ç?gΜN:Õ©S§Ü-dff:·kù:kùºÈÈH§Á•÷ê“÷‘¶8Ÿªã”†Vö¶­Ûvˆ|„oMÇ£ÐòåË3zôh«å¼¦çǽ!8 !ĵk×rrräû"ëׯߪU«}ûö­[·Î¼Â’’’êÔ©cŒi«ä'V¨Š»ª…b÷îÝ/½ôRTTTZZšbæÌ™cÇŽ}ýõ×W¯^Ý AƒsçÎâÛvîÜÙµk×ÐÐÐ?ýéO:uÚ¸q£ÖYÓÕéòG]cpÐVÍš5×­[÷í·ßöèÑcÞ¼yîÛÑöìÙ£õáÞöÙgŸuëÖ-77wĈãÇ¿xñ‖-[¦u]ÐÕéò)Ìã@9L&ÓK/½Ô³gÏ]»vuéÒEÅ-íØ±cïÞ½|ðíÓnµ2uêÔðððýû÷ !¦M›ÿÌ3Ïh[˜>O—O¡ã@ùŠŠŠ„‰‰‰ênöòåË=zôˆ¿xñ¢o?xð`Ÿ>}ÂÂÂÂÃÃûöí{øða×KºyóæÑ£G{÷î-§F!D•*U:wî|öìÙ7n8´©’’’‘#Gúûû«5Êïâé‚ëè8êŽ$I–S9ô 99Y±qãÆüü|s¢r]XX˜ü ?33³qãÆ½wûöí}úô©]»ö¨Q£$IJNNîܹóþýûï¿ÿ~WJò÷÷?tèPHHˆyIQQÑ?üмys‡Ÿ&IÒØ±cW­Z•””4|øpÍOTAÇÑ{qc5¨$//ïÓO?}úé§oÞ¼¹víZ­ËBˆâââÉ“'×­[÷¿ÿýï¼yóæÏŸ¿aÆ‚‚‚Å‹»¸å€€€¦M›†…… !RRRfΜٮ]»óçÏ/X°@ùF$Izî¹ç’““G­õÙ‚jè8ê|Œ“ÏÑöŸºeþ–]³fÍÍ›7§L™’½|ùògŸ}¶ÔÕŠŠŠ6oÞlo#O<ñ„Šõxðà‰'ž>ÞöqŽVÕ®];!Äÿýßÿ 2Ätç&K9=·oß^ImæH½`Á‚´´´I“&uïÞÝöŽl†ªˆ¡jìÚ¹sgnnî!CÌK P¡B…ñãÇϘ1ÃjeÕÇ^W¯^gûR¥J•-Z”••ÕªU«©S§N›6­cÇŽ3gÎt±ªéÓ§oÛ¶­M›6Ó§Oýõ×Ûµk·jÕª)S¦4o޼쪬„††&$$äääÌž=ÛöU†ªˆà€])))BËà–põêÕC‡¹;ßæååÙ›v»ÿþ»wŒ\¶lYRRRÛ¶m3226lèú~ßxãäädÿ%K–|øá‡+V\³fÍÂ… •TeeܸqíÚµ›7oÞ‰'Üz®àL4­¾èèèÌÌLW¶`;¸ó3òxÅPuNNNdd¤ÖUxΧê8¥Ê¹þÒ×,[¶ìÈ‘#‹-ÒºTå4'>–>ûI¦ã€Nýþûï;wîlÙ²¥Ö… *xÁÑäûc´®àQéééMš4yê©§´.ÄUÁ3¸«ÚÛqc5V×®]»víªuƨ žAÇŠõH’$óÔY:Ap4 .sÚ"8@‚£ïp ÁŠ„Ë€†ŽP„àE޾ûc€ËŽP„àh0ÜžTRR‘ u-^(22rðàÁZW°+//ïÁ Ÿ6mÚÊ•+ݺ¯ØØØøøx­ø¶üüüñãÇGDDT­Z5666##ÃÞš·nÝ 0Ý­V­ZZB>|xèСáááU«VmݺõÂ… ‹ŠŠ´.ÊØ´.ýªY³æºuë$IzüñÇçÍ›7|øp7íèÀ{öìéÞ½»ÖG,„­[·ÎÍÍ4hPHHÈúõë{öì¹sçÎ-ZØ®œ““S\\Ü¡C‡ ˜V­ZUëƒÙÙÙ]ºt)..îß¿DDÄöíÛãââ¾úê«7j]š(‡Édz饗zöì¹k×®.]º¨¸å¢¢¢;vìÝ»÷ƒ>())Ñú@oûÇ?þ‘••µ|ùòÑ£G !&OžÜªU«—_~yÇŽ¶+gee !Þzë-¤^³¸¸¸üüüŒŒŒ6mÚÈŽ;6))iÛ¶m=zôк:£b¨Z§$I2Ù¹ÚÉ˹±\ q&&&ª»ÙË—/÷èÑ#>>þâÅ‹N¼ýàÁƒ}úô ïÛ·ïáÇU©jÍš5µk×5j”ümƒ  ´{÷îóçÏÛ®,dž º¸Ó’’’‘#Gúûû«uIÀŽ;bccåÔ(›8q¢"==]•íû&‚#åKNNBlܸ1??_Å͆……I’$IÒ‰'}ïöíÛÛ·oôèÑQ£F1"==½sçÎ?þø£‹%œ}ZqÏ=÷¸¾}ŸÅP5åÈËËûôÓOŸ~úéäääµk×>ûì³ZW$Š‹‹'Ož\·nÝï¾û.88XÑ·o߇~xñâÅÿüç?]Ùò… $I ³\*„(µ-š••åçç×°aÃ+W®ÈKš4i’ššÚªU+…{”$é¹çžKNN^¶l™<8€«áýõׄ„ÿAƒ©² ßDpè‚IÓËi$I*ãÕ5kÖܼysÊ”)ÙÙÙË—/·‹ŠŠ6oÞlo#O<ñ„Šxðà‰'žÿüsÛ•óòòœþ W¾«úÍ7ßTXØ7"""7nœŸŸ//ùñÇ+Uª4räH׫Z¼x±bÓ¦Mò·.\ {ì±Çl×¼páB¥J•:wî\XX(/)..~òÉ'Ž=ZîQÔ¯_РAæMÕ¨Q#22òúõ뮟ے’’Æׯ_¿¨¨¨Ü2œøX†ªŠ‡V€ìܹ377wÈ!æ% ¨P¡Âøñãg̘aµ²êCÕ«W¯Ž‹‹³}©R¥J‹-ÊÊÊjÕªÕÔ©S§M›Ö±cÇ€€€™3gº^Õ_ÿú×?ÿùÏÇŸ6mÚ»ï¾Û¥K—ëׯ›‡øÎ;ïøá‡BˆÐÐÐøøø¯¿þ:**êù矟:ujë֭׬YóÖ[oÅÄÄ”}VBCCrrrfÏžmûª£Gqüøñ'N>óÌ3OßmÓ¦Mj}<|CÕØ•’’"„° Žaaa ï¾ûî¡C‡$ûkPEaaa^^Þ7J}µÿþ»wï~óÍ7—-[æïïß®]»9sæ¸>·¢zõê»wï~å•WÖ¯_åÊ•öíÛ¯\¹Òü¼Áßÿ=//ïæÍ›ò·ÿûßï¿ÿþwß}wÅŠ•*UjÞ¼ù–-[zöì©ä¬Œ7nùòåóæÍ1bDãÆ]9yZòãÇ?~Üꥆ öéÓÇõ³ä›LÎýeˆŽŽÎÌÌt};&S9?'o¬6™„Ñ~è999‘‘‘ZWá=8Ÿªã”*§ÖoHß±lÙ²#GŽ,Z´HëB¼ùœøXúì'™¡jtê÷ßß¹sgË–-µ.ħ–ŽÆeŽàÝÒÓÓ›4iòÔSOi]ˆO,q£~É—Îp-ø¬®]»víÚUë*|ý`‰Ž#!8úžœBp46.sCp€"G(BpôI\æGp4<.sžAp€"LðœÌÌÌèèh­«à$‚£7G«%Á3f@fff¹ëäääDFFj]©÷à|B- UëšüÔA7mšûc€CŽP„àEŽ^‚Iy€» Áчq pÁн—9·"8@‚£oã2G ÁŠõΡ§r™#p‚#!8@‚£·qx´šûc€2G(Bp€"G(BpôB\æÜàEŽP„àèx„ PÁÑzê €›!„àþP>‚#!8z-.sê"8@‚#îà2GP&‚£7c´¨ˆàEô,X••¥u(…¾‚ãG}ô—¿üeàÀ©©©¿þú«ÖåèˆÓs€;6ZÍeŽÀ>}Ççž{®nݺGŽyûí·;wîüüóÏoÛ¶­°°Pëº ´.à.qqq/½ôÒþýû7mÚ´eË–;vìØ±£zõêùË_úõë÷àƒj] €ïÒWÇQa2™Zµjõæ›oîÙ³gÉ’%½zõ*,,\½zõСC{ì±>øàܹsZ×h0Ü[ T¡»àhЭ[·… ¦§§OŸ>=00ðôéÓ‹/îÞ½ûÈ‘#?ùä“ââb­kôF\æìÐ×Pµ•+W®|ùå—[·nMOO/**BÔªU«B… ûöíÛ·o_bbâ²eËj×®­u™>AÁñÒ¥K_|ñŶmÛöíÛ'·CBB{ì±^½zµjÕJ±wïÞ… 9rdæÌ™‰‰‰Z× àôW¬X±mÛ¶ï¿ÿ¾¤¤DQ³fÍ=z<þøã­[·ö÷÷7¯Ö©S§V­ZµmÛö»ï¾Óºdc/s”„¤u!ÀÀôgÍš%„¨Q£Æc=öøã·k×Î2/Z ¬T©ãÔn!_æ(‘2À]ôØ«W¯öíÛÛË‹–|­Ý(Ï.‘ç€FôuWõ–-[ÒÓÓí¥Æ_|±GZ×hTLÊ\¤¯àxýúõ[·nÙ{)77—I´¢ýPõîÝ»Ÿþyó·)))+V¬°]­¤¤D’¤ˆˆ­ëõ \ælhýýý«W¯.}åÊ•Š+V®\¹Ô5kÔ¨ñÚk¯i]¯qo5p…öÁ±S§Nò×ÑÑÑO>ùä´iÓ´. Ö´Ž–ÆŽÛºuk­«@)ôÿþ÷¿k]‚—s`´šËÀÝ4Ž+W®B´mÛ6**ÊümÙ†®m;IãàøÖ[o !âããåà([6_ŽÌ4¤qp|ñÅ…<ð€üíßþö7­Oˆ÷ãÞjàƒãĉ-¿}öÙgµ­wá2G`A_7ÇØ’$iÇŽgÏžmÞ¼y‹-´.Àwé.8îØ±cñâÅ<òˆ<Šýú믯_¿^~iذao¼ñ†ÉÄ—]Åh5p‚¾žUýÝwß½ð 'Nœ())B;vlýúõAAAO=õÔ½÷Þ»zõê;vh]#€ÒWÇ111Q’¤éÓ§6LñùçŸ !ºwïþÓO?õìÙsÕªUÝ»w׺L_ÂeŽà}Ç“'O†‡‡5JþöÛo¿­X±bçÎ…õë׿ÿþû³³³µ®ÑK0Z ¥¯¡ê¼¼¼ù뢢¢cÇŽ5kÖ¬bÅŠò’Ê•+_ºtIë5&Oå¨uÀé+8Ö©SçìÙ³ÅÅÅBˆýû÷ÿþûïíÚµ“_*))9{öl­Zµ<\Rvvvttô¡C‡´>7ÓWplÓ¦M^^Þ¿þõ¯sçÎýë_ÿBÄÆÆÊ/%%%ýúë¯ 6ôpI©©©ZŸw‘G«¬' zœ@o×8Ž7nÓ¦MK–,Y²d‰âçn2dˆÜó3fŒg*)((8yòä¦M›Ö¬Y£õYÐ}Ǻuëþûßÿž?þ‰'6l/_ÏwéÒ¥êÕ«O›6í¡‡òL%}úôùù矵>:¢¯à(„ˆŠŠZºt©ÕÂÔÔÔÚµkûùyn`}öìÙ7oÞB¬X±bïÞ½ZŸwQzo5“òÇRÕ­[×Ã{ìÔ©“üÅÎ;µ>z]Ð]pܲeKJJÊO?ý$Ùéoeddh]cù¢££­–lݺUÅíçä䨶­HE[‹Tw§:{ö¬V»öJœOÕqJUÇ)UçÓE={öÔº½ÐWpܾ}û”)Sä¯ýýýµ.ÇI'OfºuPWžÊQRi’L‘ŠfŒŒtãQé{ïÞ‡ó©:N©ê8¥êâ|º"33Ój‰m‡ÈGè+8.[¶Lñ׿þõ…^ Òº'5jm2¹7;j€Ëðyú ŽYYY÷Þ{﫯¾êÉû` „ŽòÙ­[·~ûí·zõêyAj4ÖœÙJg¾MGÍÏÏ/((èÔ©S%%%Z×k: ŽþþþÏ<óÌ¥K—.\¨u->GQÓÑX}T 6}]ãØ«W¯3gÎ|ôÑG?þø½÷Þ[±bE«uºté¢u™Šp3 ð2ú ŽÝ»w—¿8|øðáÇK]Çö–x¤îŒ<Jè+8öíÛW묽ýöÛo¿ý¶sï5VÓQÑãuH@Uú ŽóæÍÓº”N_ÁÑ,//ïÈ‘#çÏŸ¯S§NÇŽ/]º¢uQΠC¼†î‚ãåË——,Y²~ýú7n!FݱcÇþýû7mÚ4!!!88Xë½£Õ  :šŽGqëÖ­^x!55µzõêýû÷7/ ݹsç“O>)§Icaàô—.]zðàÁ‡~xëÖ­sçÎ5/_»víO<ñÓO?¥¤¤h]£—ã)2À}Ç}ûöùûûÏ™3§råÊ–ËýýýgΜY¹råmÛ¶i]£^È3òh]ð!ú ŽÇŒŒ,õ>˜ªU«6hÐàôéÓZ×è o­ö¶ãŠè+8]»vÍÞ«W®\©V­šÖ5z?F«@©ôcbbΟ?_ê3cŽ?~îܹ&Mšh]£“hÒ£ÓWp:t¨Édzùå—=j¹üèÑ£S¦LBôë×Oë!„ à‹ô5cÇŽŸyæ™ÄÄÄ4hÐ@±}ûö½{÷þøã%%%ýû÷ïÑ£‡Ö5:Ï@ *šÐø}G!Äßþö·V­Z½óÎ;ÙÙÙBˆsçÎ !jÕªg9³#Ä«%CDQ`|º ŽBˆ®]»víÚõÊ•+ÙÙÙ……… 4 Óº(uxUÓÑ@Ô Çà( nÕª•ÖUà6ƒãÊ•+}Ëðáõ­ÙEôé€Aißzë-Gßbôàh Ü",iåIv,?~|Û¶mþþþ:uª_¿¾¿¿NNÎ×_]TTT»víiÓ¦i[°*¼§éè=Gʧqp|þùç-¿ÍÍÍMMMŽŽ~ÿý÷ëÕ«g^~îܹ‰';vlÓ¦M=ö˜¶5ûšŽÀL_€/Y²äòåËÿú׿,S£¢nݺÿüç?…Ÿþù¥K—´.SjÍŸ-ÏÈ£õÑŸ ¯àxàÀ:uêÜwß}¶/Õ«WO^δ…VΣ«y„ >C_Óñ\¹r¥¤¤Ä^­   88¸V­ZZ—©®Æ¢¯Žc³fÍ víÚeûÒ7ß|såÊ•¦M›j]#€ÒWpìÕ«—âïÿû–-[,‡¤?ÿüó¿ýío漆Q†y­BoCÕüæ›o>ûì³)S¦ÔªU«Aƒ&“);;û—_~BôéÓgàÀZ×à£ô… ,èСÃâÅ‹/^¼xñâEyaíÚµ_|ñÅþýûk]ú\¿ÒQ¾$ÔÝ÷ 1/Ð]pôóó@wÁQf2™ÂÃÃÃÃõ.Ä]Àôus ô¬œ[d€·#8ê‚7Ü—ì ÇÊBpô{ð MG|ÁQ/hØ#8Â1e5 ¿x5‚£Ž»€žét:Ÿeˆ©y˜ \…ÿà,ŒƒàU"ùºeXTxœx !8êŽsÑË3DéÌáωÓ/©´Üàg0Z}›õÔ: æí ºÄÍ1zdì»dŒ]½b&!LBHîÉvÒ?&Å×Jà~tá$ßm:ªÛe,›äñ=`G2vÛÎØÕÛçÖ.cè>ôàè=<öàÁ?öèSO Ô$2Z">´FpÔ/om۹ѨÄG€vŽº¦ÿìh·é¨ÿÒÒ¼ÑX*s|ÀƒŽ€}úi4–ŠÖ#À³Žz§ÿÎw^騫áé2ÐzxÁÑ«xþþ˜²«Ñ{æµGŸÃÓe õð‚£è?€yUÓÑF[´îGp4ýgG/aÐÔhFv¸Áê(½éh¬ÀkôÔ(cØà6GÃ0V3ïH2†­îApô6Þcণ7¥F3²#@mG#1D3¯L2†­ª"8ŒÎ³£ñn¯öâÔ(cØ ‚#ÜO·i×ëS£Ù ‚£ñ”ôÜxMGAv¸ŒàhHºmá©bßi7š‘®!8B}h:ú`j”‘.к8InáI¾™~\䳩Q&‰HS¤ü¡ãh`:þý£6Û¦£NÊõñÔ(„"';‡Ö#À Gï¤íý1úEj´Dv8ˆàhl:éâ•^›n›Ž0#;Ap4<˜R´KEv(Fp„éèöjRcÈŽeŽÞ Ô¦£N/sÔ¤AJj,Ù ÁÑKèvÀZGMG”ì(ÁçáK»Q9²# LGïAÓ±¤FG‘ö½ŠUvÔÏeŽ X Ù`ÁZðLw”v£ÓÈŽ€Ò½ Ö·‘]DvØ 8z!ÝfGVéÛÈŽ€»½“9•éç2Gáɦ#íFµŽÐŽ›šŽ¤Fu‘w½–>‡‚¹½ÚÈŽ!ÁÑ»ÉÙQW£ÕÂÝÙ‘v£›GhLݾ(©Ñ­ÈŽàóŽ^Žk¨‰ì¾àèý$7áÔʶ´=ƒì>Œàèôv™£P½éHjô$²#ø*‚£ÑYt´ÈŽúPGÈŽà“Ž0>Úš ;€ï!8úöõh:Ù| ÁÑWÈ—9za<£Ý¨-²#ø‚£ÏÑ[vt©éHjÔ²#øŒ­ ngGÉÁ hr9±9U#âÀ'}ÈÑjéΣµ.¨´˨Ì*#J&! ›eoPë£76²#ø‚£Ò[v,£éhBDF 7d« šì¿EÈŽàí¸ÆÑwéôbÇ;e™îü‘„ÈÎɱN#n(’Å“Å8€ëÀ«Ñqô-æÑê;ßê«ï(3I’кoe¹wSi a}Gð^t}~úŽòÕräʮɳ¹Ä¶ ‰rÐw/EÇÚ“3†ôÇ·&©ìµ5êfYTx×·(}GðFt}Ž’À˜Ž(‡ÙÑM½F“×e ŸŽdG0 ‚£O+w´úÎjJ³£‹·Â”²9ó¶$I2yav¾ÉŽ`4G(¢$;ªt+ŒòÑøHvC!8ú:…MGQ^vTxÚv‹ÞÛtüã}0>’À8Žp€½ì蹨} ; ‹øè+|ëhÀÀŽpŒmvtKj,s£’¼>; _k=’ÀŽp`´úÎúdG &ktÓ³´uÉ·F®ÉŽ {G8CoîJ ¶ë#MÇ;ë3ñ‘ìúFp„Ž7…’†·OK’0™|*; ߉dGÐ1‚#œ$·Õ4v¤ékÙQøÈ}3Þ„`TG8Üî4»àðÎŽ}0; _h=’@—ޏMùhµUOPÍìèÐU“¾t—L)Gïõñ‘ìúCp„cJv·ï•Ñè¯yßl:Þ9v¯ÎWÞ|l`HGü¡Ü¦c AIr¹èÄMÚ¾=`ýÇiðâÖ#Ùô„॔ä: GÉŽ^ÉŽ Zà!ëÖ­[»vmVVVåÊ•~øáW^y%88¸Œõ ôÃ?X- Ù³gÖ‡¢wrvtx²§ç„´ØŸœ%OI®ò‘›,¾ö’&sͬùDp\¸pá‡~X¥J•6mÚœ>}zÆ §NJII ´÷–ÜÜÜÀÀÀúõë[.¬Q£†Ö‡âvòhµd“ûœ¸kÅs=’­Î‡Âû‚ÙtÀûƒcffæG}¶~ýúÐÐP!ÄìÙ³SRRæÏŸ?cÆŒRßRPPŸŸÿøã/Z´HëòuÁé‹•fGHÞ×z$;€Ö¼ÿǵk×–””L™2ENBˆ×^{-((hË–-%%%¥¾%77WaÕnôV·È¸8†ì±¢Í;óñ‹-yá…\ïšòþàøÝwßùùùuéÒżÄßß?66öòåËû÷ï/õ-§OŸBÜwß}Z×®=û;в£Z=$²£Þ6eW Œ—GI’²²²jÖ¬Y³fMËå5Bœ9s¦ÔwÉÁñüùó£FjÓ¦ÍÃ?üüóÏ:tHë£ñ']mSÚLñHv´âU­G²#hÄ˯q¼~ýzqq±íM-AAABˆ_ýµÔwÉrñâÅ‘‘‘íÛ·?wîÜÎ;wïÞýæ›o2DÉ~£££­–lݺUë“á0“Ù999.o';[!L¦ÈìlëE6ˆÌÉÎåíãìÙ³ ÷i2åÈû"[d›"MÙ9Ùž>qz%ŸSd¤ˆŒÌVá«ñÁDš"s²õrJ?¢PŒSª.Χ‹zöì©u záåÁñÆBˆ*UªX-¯Zµª"??¿Ôw?>000..nÔ¨Qò’½{÷Ž?~Μ9:uªS§N¹ûÍÌÌÔúÐ]&IÂdŠTïÖh{Û‹ŒŒTòv…« IŠ´¸+G’)Ò×o²¶" ‘““Ó 2Òð'E‘¦Hýül•~D¡§T]œOWØþµnÛ!ò^>T]£F “Étýúu«åW¯^wú޶–/_~ðàAsjBtèÐaäÈ‘7nÜØ¾}»ÖÇä nºuÕú’GÜ!˘u©¼däš1kð,/ŽAAA¶Å‚‚!„ù>k%Ú¶m+„8yò¤ÖÇä9*^éh±M÷_ïh³²c©¼äžk²#x—G!DXXØåË—å¤h&_¹f»¾$IÅÅŶ3õøûû !ªU«¦õ¹»û€·s[w£á£Æâ#Ù<Åûƒc÷îÝ‹‹‹¿þúkóI’vïÞÜ¢E ÛõOŸ>3zôh«å>pMƒUœsGÓQˆÛ— z2ÚÑt,›á§ì1|øcðþà8xð`??¿÷Þ{O¾®QñÑG]ºtiàÀ*T—\»v-''G¾é¬~ýú­ZµÚ·oߺuëÌ9pà@RRR:uzôè¡õy“’›Û‚ X;ÎØéËðá ÀËïªBÔ©Sç•W^yçwúöíÛ¹sçÓ§Ogdd4mÚôÙgŸ5¯³{÷î—^z)***--M1sæÌ±cǾþúë«W¯nРÁ¹sçÍÑÔèRÓÑÁ©ßz$;ªÄxñ‘ì*!8B×ÈŽºe° T+è—¯LÇ[Î R;95 #â’$L¦H!Ü6O¸¼æèqŠ‘¦ì1R­ St}”+—6zækKÙÙ9ªµíoˆ¾£sŒ4rm°6)èÁî§Ò 8ªÝ1S^v$>:Á`ñÑU€}‘ëAÎóMÇ;ûUéªÇ2³#­G§¦£gŒ*@wŽp37Ì÷ãÇ[“]aŒÖ#ÙGpô9j9­šŽwöîrë±¼÷“]aŒ‘k²#8ˆàè[Ômÿ•ŸÝ<½¸«­G²£› >ê½>Ђ#ŒÍÕÖ#ÙÑýô sa&hàèCÜÑþ+«éèÁ§ºÔz$;z„Þã™®‹½ 8ÂUÚ^ìhQ† ñ‘ìè)zo=ê´2Ð ‚£¯pkû¯”ìèÁvãÝ•¨ý”Bó–™âQ%º¹&;@™ŽðBδäM¦xT‘~ã£NË] 8ú´ÿt2`mQãñQY¯’ì¨"ÆG½_ š!8z? ÿ‘5§.­$G®ÉŽZÐo|ÔWA =‚#¼Ÿc­GG²#ñQEzŒdG¸ÁÑËy¸÷w»é¨vãÝ…9gGZªÓ]|ÔW5 1‚#T& }]ìxWmÊã£ân²£;è+>rÉ#ÜApôf\jh’qúÍŽBù…dG­é+°é¨Ð Án¡óì(^øè`v$>ºƒ¾Zº¨4 up­Ú"IBˆÛÉP’ì¯d2ÙÙbE! !LÂ$ë,|BM_kYŠ.êmÐq„»è¿éx§ÎòºŽÌèðµûèåÂG} €G½“NÚFÉŽ¢Üøèxv$>º‰Žâ#?a¾‡àè…t5bl ì(ÊŽfGZn¥‹ø¨}àiG¨¡Ì¬j¬ì(ʈŽ=…†Ö£Ûi¶àc¸9ÆÛèªÝh&gGIÁ-&úQú­3Šï•¹½:w̸Ÿö·ÎH"ÒÉO€/ ã—)˪†ë;Þ)Û¦ûè`ßQpÇŒGXv=®s²s¶à Ž^EŸíF3ƒfGaÍŽÄGw“4¿fØ€ 8Â5fUãfGaÊŽ´=FËøHë€÷"8z·Í …e|gGAëѳ´‰´x/‚#\àlV5zvæø($arøPh=z˜fñ‘Ö#¯CpôFi7šyAvòÝÖ’$ Sù½¶}/­GÏÒ >ÒzàuŽp–ËYÕ;²ãí#¦rž[Xêûî´‰£M|äÇ À[½áÚfÞ”…ÉTþc¯K}+#×çé¹{¶à-˜NQ/«qnp{G"FùXÌÙQá‘™³#S…{ŒùD{bòpó4åüxÁÑð¼ào"¯ÊŽBÈ–1õ³gÊx7™Ñˆçž=#iûˆpÁŽsCVõžì(¬KhùèB¡ AÒzÔŠe|î‹vÚ?!œGp46/h7šyqvyQIÒÜzÄGóÐø5#׌‰à¹ó¯:ïÎŽæÅBY’ø¨-Ot¹`4GóÊn…ù>koˆæÇÚ‰BA’ µåöñkZ …àGx䯷;w%{EëÑâv™²_·ü¶”Õ¸ðQSn¿¦õÀ ŽFåõ _¶¶|]VF‚däZÜØ€ä¦F@p„bϪ^˜E9÷Å”;„M|Ô76 ¹ oGCÒà¯þ&ó¶K…(»õh»®å·¼J|Ô‡?º„‘‘BÅÿD¹ W;lmû>a“ ‰ú¡þŒ\Ð ‚£Áøf»ÑÌ«fêåßm]ö[e– ’ø¨+j6 ¹ç€>a<ÞÖztpØÚv2‹I|Ô«¤p%øhàh$>Þn´äU­Gg‡­KÝŒø#AJ’D|ÔÕ†°¹ð€vŽ00Zö¶$“ÏÂ$uD!l.| ‚#ì3BKÃÜz^Uj=ZmOa2uG…!lF®xÁÑ0Œâ4ãm#×*µ-7)ÿ¿¯}Œ”¿1þ¹ò ®&Hâ#bpØaÀ *\{ÃTá–³~«¾m!eçd›g÷‚³å5¤»§ývì'Äá<‚Ž£10Åiƒ‘k6çòG“Ât§'iðsæœïAÒ}àfG”ÆàA•‘k6oq÷Œ¸s5¤yÏЖ“ ’øÀmŽ`ð§ï¹çÚÜzîâîhlo­8“ ‰Ü€à^T¹vx'Ïž’u‚„H­9œ ‰TEpÔ;O§8/JfÞÝÙz¼½sRXŸ4B¤N8– ‰TBp„¯ðžøèþ‘ë?veÙ€BºûÌ"õÀ6A {áP͇gðQG]£Ý¨:â£3»²j@Þù–©+–g½¬p¨Ú£ø"‚#|ñÑɽÙ4 ­ ‘"5§h ›ñkŽ#8êíFw³ŒÂÐ R‹ø(ì$HAˆÔ“ò²‰Ap„¯3çEÃ7 =…‚)ì‡HOÕˆÛÊÈæòGÊ!„ðÅv£-/¿öx|ʤm94#µb· ÉåÊCpÔ)9R£â£K»U– -k¼½>ÍH-ØmC2~ À‚#P /¹üQ£ø(L¢Ìf¤Çk÷Q¥´!ïÜ e½FpÔ#Ú:auù£0h‚Ô.> ǤeÉfäHO²nCÞù^¢ @?­ @ºÃd2™¬RŒQHÒí§ÎhT¿t»Ét»ʤ»þ˜LwýûHL’0IB˜îüà“è8êíF=3ü¶$ !"5ê>Þ.Á©¤ÍAü~¤gHÿg27 ¿CßBÇч‘eÕ€4\2';û®ÆFl{µ!ÿØN™ýH£ýpŒáö 4·[‘·ÿÀ™|G}!Ë‹±/‚4—ªiRÜÝqtº i{Xl“–¤[IBX4 M’åbÞ†à諈¨ªò†iŽWšVn;-\‘¥mÒ@?+ý²º‡Æ"AÞý:c#8j2p‚ÔMòv9¥µ!…Ë!R(hIêàèÌ&Aš/‹´Y€ñuÄsM@Úîgø©äíÜ"í"QRwÏ iùdB$`\GßCjô,Û) "uÖ€ü£.U/ˆ,÷èÿØQÒi6s‹ßõÐ ;ëÐ'‚£^缞eX4RR È?J+í‚Há†)Ê’‘öVÃlŸNcó£úã¤FF ~+úÃt<>†|ª¶úè}NÛÙnôäî y\ßÇÑS"I";;ÇÞd@:;Uúp÷T>–?%ó+Ù99–¯3Ý tuÁCqŽÔ¨?¥¶!…ž;‘VCØBM6w_YÖ®KÛC©ÙQ§M ¥õ K}Ýj­R_àG@/ " …ý)<’#oïˆ4Y.›)"m>äH@sGíÑn„-#…Hƒ$Ha“=ÜŒ´.Fqšú=£npçHsrr"M‘V í¬{9ð‚£o 5™aB¤qäíêtÐŒ´.ÉÎn}4PÚd‹²~••#¿5#±"…®r¤Ñ¤(³)´Ë‘àãÒòpOiû"QpÁQcžhÒnôRVIQ9Ò6A c„çÈ?*ñÁ@YjˆTv\DIÀuGoGjôºÎ‘wÍøl˜6äå—™#…Ù"[ëï.ØÁ@)ŒôÓ°,Ú|`¥-tdfDI lG-êà>úÍ‘†mCþQ¬Í¸¦H¶$­+·_WÙóMêýçco,[8üK–( ”àèÕH¦¸Ã2)æääØÎ7®A”,µ )ôRJ‘“iþÖ¶%©Û(ùG…eh¤XYÆ=2NÕ©$J:»mÀxŽšq{¨#5Â>Û˜¨qKÒ‹B¤(µ%iÀ(yWµÆ•NÝX£|“¥n[:EpôR¤F8¨ì¡íR×q_)–u”¾Üh¼/JÞU¹ ±²Ü·«Z¨eYö_ryÛöv¢Ò®-”¢ÔŒ¨Á·7†ÈÛG  J #§É?¡¼#°“,#•oÁ©²¬Š°ÿ’z;±Ý•ö ¸ÁQîmÒn„{”;Àmo5µvo¹c»/V©Ñ[Óä]‡SÚÑäää˜/-·g)\ÿ¸³YÆ®ìíÓm;\Epô:¤FxÂÆ¤P=MZmÍ»š‘w¨¯¦É»MÁ‘©.µx½M(¡7G ¸1Ú‘¡ÊÓ¤P+Pz{3Òúp§IáÕò®ÃT)\–²µro«vç v4Pº¹€àÀ#ìDõeÍHá9òö‘Ù >(ï:dÅGìXÄÔb¦Ç2ö`ç’ÑHŸûyÃ=ŽžF»°äh Žfʲs¤ðæ(yûø”Žs1bJw/üãɈž™– ´…999&‹©F¾ °Epô¤Fx—2Ò¡©ÌvP9±ÒöUß‹’·ÒÁ@)È”¥Qòaù#GZœZ%=M•/ .óU“ ï…O!8zR#|IÙÑÐáXI”´:Vû¿MÈ”N*íÜH ¸•˜ßÞ€Ú³šÿQ‰ ï…—!8z”[©°àJ¬¼ýv¢¤ÎeJA¬,•‚GJ±_ïe~ºË§.o/®ÄJzGp48R#àˆr¯,7YÞÞÈÝ«EÞyAëãÓLÙÑÐT^´ Y ¡Âtáe|-çÅ,e'¶6­öXîOѸ¼“%ÀÓŽž£~Æ#5jSrçÝpiõ¼ï;[Ôú˜´Wn.,%YF:¶¯å‘éÂþ:8m÷K¸4 ?­ ƒ‘ldggÛ.4 a¤€Ö¤=IHV²s²-¿5 “’?Z‡çÎWéLvþ¸¯É¥?–?<¡à²µà^t=„v#àkÊi^ZäE‡²£ÛŸ®K ;Ž ³£×ö/íOiïGMÏ„ëŸåRÿÓ1)߬×>sÊŽÆDjŒÎ⯩»þk.#DJ’p0eÞyŸ¯ü¾P7_*ß ÞIö¯q4ø#h\üh›+·\©Q#­^#G"5^¬Œ¿ M&aï¿~×î%·_‹wþ®Qþ6dÊtø4 ÞhŽÄ]½Ìh­«×ÁÑÔLz¤FÀg•—)í¿ÏÉß®\é¡Ó¡,èÄE–ºÎšÌÁSæ1ùjn$8 ©@©_OéÐ\ jÝôc êD tú†í'sðø*‚£Û©öäÿùo €”d/gÃ¥ýu]ú…e¾&OÝ»ÎõCÎ'N‹ë=:•ìDáAèë‡æëŽF@£€»©.•oMé–Ôüõç¾É<I –7Ǩ2o‘:éSá6”×Ëß•îGpt/"©€N(ÏFå3F.÷Å;ÍÇéú!¨’ùTœ5³üzœš^Gá¾á(‚£¾‘‘CᦴÈYö[t6â,<ØqÔpÆxé®9¤T¼çS½#’,¿TÒDwu/>ˆà¨W\ÔÀG”¹Ê~¶²KºÓ_èt°|gê/ç|*£·§•}*åQ§> ’<+ó8Buη i4@\ ª¤ƒ§OgZ_G­U•#i#_MŽG¡Ñn¥JúqGdÑY,Ó?mƒlt´Îäè§uúµnݺÁƒ·hÑ¢cÇŽÓ¦M»råŠCow¦ihºó zÜ­gÏžZ—àU8Ÿªã”ªNï§T’Ôÿc2¹ïOdƒn »ð=tK·páÂ?ü°J•*mÚ´9}úô† N:•’’è–ýÑhçÎþYtttff¦öÙ‘®ªñK‘™™ùÑG………­_¿>44T1{öì”””ùóçϘ1Cåž¡ynÓ<¹*§ù¹Ò+†ªK±víÚ’’’)S¦È©QñÚk¯mÙ²¥¤¤DÉʧ6ÝùÃØ4ÀG¸cˆßMʽÀWKñÝwßùùùuéÒżÄßß?66öòåËû÷ïwiÓVy‘È€•›,}ÁÑš$IYYY5kÖ¬Y³¦åòF !Μ9SîNffÞõ2‘€7àGkׯ_/..®Q£†Õò   !į¿þZØÑ,îØ÷Ñ›÷U೸ çSuœRÕqJÕÅù„*ŽÖnܸ!„¨R¥ŠÕòªU« !òóóËßÄÝ ÅL‘©õ1¨€¡jk5jÔ0™Lׯ_·Z~õêUq§ïàƒŽÖ‚‚‚l;‹Bó}Ö¾†àXа°°Ë—/ËIÑ,''G~Iëê´Ap,E÷îÝ‹‹‹¿þúkóI’vïÞÜ¢E ­«ÐÁ±ƒöóó{ï½÷äë…}ôÑ¥K—X¡B­«ІIòáI,Ë””ôÎ;ïÔ­[·sçΧOŸÎÈȈ‰‰IJJ²¦ÀGíÚ´iÓ'Ÿ|røðáÚµk·mÛvÊ”)òŒ<¾‰àE¸ÆŠ ÁŠ ÁŠ ÁŠh]€÷X·nÝÚµk³²²*W®üðÿòÊ+ÁÁÁZeŽž·AƒýðÃV CBBöìÙ£õ¡Cvvöã?¾víÚ?ÿùÏZ×b$ÊÏQ§Ý¸qãßÿþ÷úõëÏž=[­ZµF3¦cÇŽZ×¥wNœ7>¥ÎÉËË[´hÑ÷ßöìÙZµj5kÖìÅ_lРÖuyÁQ .üðëT©Ò¦M›Ó§OoذáÔ©S)))Z—¦kNœ·ÜÜÜÀÀÀúõë[.äQÊ¥¦¦j]‚!)?o|DSTTô׿þõàÁƒAAAíÛ·ÿý÷ß¿ýöÛo¾ùfÒ¤I&Lк:ýrî¼ñ)uBAAAïÞ½/^¼Õµk×óçÏöÙgŸþù¿ÿýïfÍši]IpÙ‰'7nܹsç .ÈKÞ~ûíF½õÖ[Z—¦kNœ·üüüFMž$$dçÎÆ [»v­ÖÁGÔ111ò¿Í222>úè£{î¹§_¿~ZW§_Nœ7>¥.:pàÀ믿>|øðÑ£GGDD¼óÎ;ZWäQt]uãÆ !D•*U¬–W­ZU‘ŸŸ¯u:åÜy;þ|```\\ܨQ£ä%{÷î?~üœ9s:uêT§N­ ¾Ž¨*Š‹‹W®\ùî»ï/X° $$D늌AáyãSê¢ÌÌÌõë×K’$„hÚ´iÅŠµ®È£è8ºªF&“éúõëV˯^½*îôÏ`˹ó¶|ùòƒšÙ !:tè0räÈ7nlß¾]ëcøˆªàÛo¿íÓ§ÏìÙ³CBB>þøã^½zi]‘1(?o|J]ôä“O?~ü›o¾yõÕW·mÛ6lØ0ùo.AptU@@@PPm‡¬  @a¾_VT ø:>¢®())yùå—?ÿüóGyä7Þà_Ý 9zÞø”:çÔ©SIII±±±?þ¸årù~ö .h] çÐqTA÷îÝ‹‹‹¿þúkóI’vïÞÜ¢E ­«Ó/GÏÛéÓ§cbbFmµüÀBˆèèh­¾Ž¨+RSS?ÿüó§žzêý÷ß'5*çèyãSêœêÕ«ÿç?ÿÙ°aƒÕryRÌÈÈH­ ô‚£ ìçç÷Þ{røè£.]º4pàÀ *h]~)9o×®]ËÉÉ9{ö¬¢~ýú­ZµÚ·oߺuëÌ9pà@RRR:uzôè¡õÁñU…$I+V¬¨V­Ú«¯¾ªu-F¢ð¼ñ)u]XXXttô7ß|³cÇóÂ'N¬\¹²jÕªmڴѺ@Ï1É·ÁEIIIï¼óNݺu;wî|úô錌Œ˜˜˜¤¤$ýY¶rÏÛgŸ}öÒK/EEE¥¥¥ !Nœ81vìØK—.5mÚ´AƒçÎ;xð`åÊ•ßÿý‡zHë£1†×_}ݺuk×®eÎ6‡Ø;o|DUñË/¿tîÜ900ðþûï·}µÿþ#FŒÐºF=RxÞø”ªâðáÃO=õÔ­[·Z´hqï½÷þòË/ßÿ½âÝwßíÝ»·ÖÕy×8ªc̘1µjÕúä“O>ûì³Úµk1bÊ”)òÌ2(ƒ£ç­qãÆ7n\°`Azzú©S§êիׯ_¿I“&Õ®][ëC„à#ê,¹vãÆ#GŽØ¾Ê-2ö8wÞø”:§yóæ›7o^¼xñ‘#GŽ?þØcM˜0A~Nï ãE¸ÆŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠø–W^y%::z×®]Z"Þ{ï½èèè•+Wj](Ep€"Z>ªk×®!!!­ZµÒºPŠàÚhÚ´iÓ¦Mµ®ÀP5èNqqñ­[·´®¬Ã믿=oÞ<«å?üðCttt‡ŠŠŠ„—.]úÇ?þÑ«W¯–-[¶lÙò/ùËܹs/\¸`o³ò½2éééVËcbbzè!Ë%{öì™4iÒ#<Ò¦M›Q£F½÷Þ{VÙîܹso¼ñF¯^½|ðÁ.]ºŒ7î»ï¾+ãˆ-oŽ‘+9{öìG}Ô¾}ûfÍšµnÝúÉ'ŸÜ¾}»½-8p &&&66ö·ß~3/¼zõj—.]bbb>¬õ €·!80†>}ú!¶mÛfµ<--Mѯ_¿€€€K—. >|éÒ¥ÿûßÿ"""î½÷Þ3gÎüßÿýß°aî\¹âÊÞçÏŸ?vìØmÛ¶…††~ÿý÷ÿú׿FŒqùòey…S§NõéÓgÍš5—/_¾ÿþû%IÚ½{÷È‘#wìØáÐŽ–.]º`Á‚ *´oß>((èÀ&LزeK©+·hÑbìØ±.\HHH0/|÷ÝwÏŸ?ÿ /4oÞÜÓ?$ÞŽàÀÚ´izæÌ™cÇŽ™–””È¡jÀ€Bˆ 6üôÓOݺuÛ³gÏ'Ÿ|òé§Ÿ~óÍ7mÚ´9wîÜ—_~éô®wîÜ™˜˜X¯^½uëÖíÚµkóæÍ_}õÕÃ?|ðàÁ%K–ÈëÌŸ?ÿÚµkÏ?ÿüÞ½{7lذ{÷îéÓ§K’´xñb‡öµvíÚqãÆ}ýõ×Ë—/ÿâ‹/þú׿ !RRRì­?iÒ¤¨¨¨ 6|ýõ×Bˆôôôÿûß<ðÀóÏ?¯ÝÏ €×"80??¿¿üå/âî¦ã÷ßáÂ…-Z4lØPQTTÔµk׿ýíoUªT‘W¨^½ºÜª<}ú´Ó»~çw„‹-2÷ðBBB-Z¶~ýú¼¼‹kÉ}÷Ý׬Y³ììì~øáË/¿¼ï¾ûZ·n-¿ôÃ?·lÙÒ25Š;·­”ÍjDû‹/¾0V«V­üñèÑ£–ë8°sçΗ.]:wî\·n݆ b~µbÅŠÝ»w—ïæ9{ö¬[ÏɦM›¶lÙòð礤DEEmÞ¼ÙvÒ"PÁ€ÁÈ·ÈLŸ>ýúõëƒ 2/ Bœ8qâÒ¥Kò’âââ5kÖ¬X±BqãÆR·!„HMM½~ýº¼$##Ã<ÉŽ,..®¤¤$..îøñãò’«W¯N:õÈ‘#M›6 ©]»öo¿ývèСeË–™[•?ýôÓW_}%„pë|Š?ÿüó[o½U­ZµY³fU¨P!!!Áßß?>>Þõ‹;ÀCÕ ¦W¯^ï¼óNff¦¿¿¿~ýÌË4hн{÷/¿üòÑGmÕª•$I™™™W®\>|xJJÊþóŸß~ûMžXÇR¿~ý’““÷ïßß½{÷˜˜˜_~ù%+++(((<<üæÍ›ò:ýû÷ß·o߯ûõëW·nÝàààìììëׯׯ__žyÛÏÏoÚ´i¯½öÚ¼yó>þøã{ï½÷úõë?þø£$IÆ kÑ¢…›N…$I¯½öZAAÁœ9säÜüÀüõ¯ýøãããã-Z¤õÏ €·¡ãÀ`BCCÛ¶m+„èܹshh¨åK ,˜4iR:uäùccc?ùä“éÓ§>Üßß¿ÔÖ«WoÕªU<òˆŸŸß7ß|sòäɺuë&&&†„„˜×1™LsçÎýç?ÿÙ­[·’’’Ÿ~ú)222..î“O> –×éß¿rròÃ?xâĉëׯwìØñƒ>xã7Üw*RSSÓÓÓ;uêd¾ÐS1iÒ¤ûî»oË–-[·nÕôÀ ™Êž |ǵk×._¾\¯^=å7A€O!8@†ª ÁŠ ÁŠ ÁŠ ÁŠ ÈÿȪ„i™¦fâIEND®B`‚statistics-release-1.6.3/docs/assets/bvncdf_101.png000066400000000000000000001360411456127120000221170ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A€IDATxÚíy¼WÓþÿß§M(u#I"Ã¥Ae¸Eäºæî½®ârM‰º¤$)JÊ5 ¹%C“o©(®’âFdÊp*ŽÔÏ%óAIÃùý±jµÛÓgí5íµ÷çõ|xx|Χ½÷gíÏéœÏ³×{½×*©¨¨ Q)í€lqB@€G ÄqB@€G ÄqB@°Ê|PÆ®»îºß~û{î¹ï½÷ž÷ø‡zˆpä‘GÚ§ÊëΞ={æÌ™3gÎüúë¯õ¾c½zõòýéÆùŸ>ôÐC6ß"uÌF~ÆgˆÜ>§J•*{íµ×ÑG=xðàà›ló{|-‘›’ t`iýtPÌ@p‚ß~ûmÍš5“'O>ꨣ2'@>Î;>={öìÙÓ'Áê<ù䓯¿þzÚ÷—>[¶lùöÛoßxã[o½µE‹K–,Ñuesß»¼ €b£JÚ x©_¿~µjÕØãï¿ÿþÇ$¢7^yå•]ºtiÖ¬í±Çûï¿?5hÐÀæØÒzÝx***úöíûÚk¯•””¤=–àa~ùå¼}ÿý÷guÖªU«vÝuWöŒÍï]ºOÜü[ @¾Aâ@j<ñÄeÛùá‡^|ñÅÝvÛˆ6mÚôðócÎ?ÿ|vÀ³Ï>ksli½nA–,YòÔSO¥=ŠtàaÖ­[÷ùçŸÿíocϯ]»öà‡ÙüÞ¥û÷ÄÙ¿¥äˆ#®p 'œvÚiìñªU«Øß,®Þ½{³/;wîì=÷©§žbÏW¯^ý—_~!¢­[·>ýôÓ;wnܸñn»íÖ¸qãã?~„ ›6mâgy§£mÞ¼ù¦›njÔ¨ÑM7ÝD³Ç ^ó†n())ùùçŸù•””°ñ0¾úê««¯¾úØcÝc=š6mzæ™g.[¶,éõÏþsýúõûå—_† râ‰'Ö¯_¿~ýú'œpÂÀËË˽ÇļüÎ:ë¬O>ùä‚ .Øÿý5jtÞyç½ÿþûD´dÉ’sÎ9gÿý÷ßsÏ=;wîüòË/{¯,òþ«°ï¾ûŽ?žÏ#1bŸC¿w›6mzðÁÛ·oß°aÃÝwß½M›6þóŸß}÷]~@Ì÷.éßÎ_|ñç?ÿ¹iÓ¦ 6<ûì³_y啨7ßûüyçÇžïß¿üÀ¢^=é·þûï¿¿öÚk<òÈ=öØã°Ã1b„®où¥jâ·ß~c¢JoguÖøñã‰èÕW_ýé§ŸöØcöüK/½ÄtëÖ­FDtÞyçM™2…ŸøùçŸþùç .œ={öÔ©SƒWîÓ§Ï„ ˆ¨¢¢"jxI¯écþüùçŸþW_}žüùçŸ?ýôÓÿû¿ÿ»æškî¼óN‘÷§eË–üñÚµkGÍÄ%Š¥K—žwÞyŸ|ò 楗^z饗&Mš4iÒ¤Ž;Š¿«V­:æ˜c¾ùæöåÓO?ýÒK/ 4èºë®ãzñòË//\¸pÁ‚:uÒò^ rõÕWÿßÿý}ýõ׋/>ùä“CÛ¸qcÇŽßxã þÌòåË—/_þÄOÜ{ï½ÿøÇ?Ä_Qäï ãÿý¿ÿ×±cGþ-˜:uêŒ3î¹çž¿ÿýïºn?”¤ßú~øá¸ãŽûè£Ø—ï¾ûî»ï¾ûÎ;ïx¿}GœàÇ?~ü¬Y³ˆ¨J•*½{÷=¬k×®uêÔ!¢M›6ÍŸ?Ÿ?ÏÅñOúM™2…}ì•””téÒå/ùKëÖ­ÙÓ¦MóžÈxóÍ7™ Ä rÍë®»nÕªUÕ«WgÏO˜0Y^^~î¹ç2kìÒ¥ËÍ7ß|ÞyçUªT©¢¢b̘1̆ rÓM7ÕªU‹ˆFŽùÿþßÿ‹:lÆ gŸ}6S‡ÝvÛíä“OîÞ½;Æš5kÎ9真~úIüxçw¾ûî»C=´nݺ왯¿þúꫯ޴iÓAô»ßýŽ=YQQ1tèPñ÷J ;vÜe—]Øc¯ú¸õÖ[ÙŸV«VíôÓO¿òÊ+>úh6櫯¾úã?ŽÿÞ‰¼KA–.]úÉ'ŸÔ«W¯cÇŽì3›6mºüòË?üðÃD÷(20ŽÄ·þå—_þè£7n|ôÑG³¹"D4uêÔ¥K—êú6' ޤ+º1j׮ݻwï-[¶T«Vmâĉ‡~xè)U«VíÙ³'{üüóϳŸ~úégŸ}FD»îºë)§œBDsçÎeÔ¯_¿—^zi„ ï¿ÿþGÁž|ë­·|—]»víÁD®¹çž{6mÚ´R¥m¿X~÷»ß5mÚ”5²Œ9’õsüéOz饗† òä“Oþë_ÿbGr劧^½zƒ&¢õë×_ýõQ‡ÝqÇì ©Y³æ+¯¼2wîÜ9sæ,Y²d¯½ö"¢/¿ürĈ‰ÞY³f½óÎ;_~ùe—.]ø“wÝuׇ~øùçŸsËg%l‰÷_š’’’}öÙ‡=þòË/£[°`{pã7Θ1ãî»ï^²dɉ'žHD›7oþÏþÿ½|—‚ôèуå¬}ôÑHD[¶l¹ñÆÝ£ÈÀ8ßz"ºçž{>ûì³%K–¼ýöÛÜ!Ž„qÀ-Z·nZHåœ}öÙì·7žtÒI5kÖ$¢sÎ9‡殾újöGååå|^àwß}ç»fõêÕ_|ñÅ .¸àè£>à€B_7é5}ðÑ^|ñÅüÉ¿ýío•+W&¢Ï?ÿ\p™•+¯¼’)ÈO<µ4Ïœ9s؃«®ºŠÏ~kÓ¦M¿~ý|ˆ¼íÚµëÞ½;U­Zõ¬³ÎbOÖ®]ûª«®"¢J•*{î¹ìÉ~øAË{•ˆ=÷Ü“¿DÔ16l`üññãdzÜ÷ñÇgk–R‹ ò÷„SµjÕû￟õzï»ï¾·Ýv{þ¹çžÛ²e‹ÆwÀ‹Ä·¾uëÖW\q{ܲeË:°Ç«W¯64H2 æ8Þåx6nÜøå—_VTT,]ºôˆ#ŽxõÕW›6mz«Vÿý÷«W¯þøã[¶lé«S›ëöý÷ßÏ›7ïÍ7ß|ûí·—.],ÒqÚ¶mÛ°aÃøÑ&½¦+Vx¯dåÊ•‡rHÁëì²Ë.£GîÙ³'[š‡gi^JKKC_뤓N8p {­­[·ò+þàÅh"â߯† òЋ?©ë½JÄ·ß~˰3„ròÉ'³&¤ÒÒRÖ_Õ¶mÛnݺvÚiGu”øk‰ü=á´jÕªQ£FüËnݺ±¿ýöÛgŸ}õ×[‰o½o$|BÂÖ­[MŒ€¬ƒÄ€Ôð.ÇóÅ_¬[·Ž}¸~õÕW]tQÔY¾juEE“§ªU«öèу=ÿÛo¿]{íµõêÕ;ï¼óî¼óÎùóçoÞ¼¹^½zQ×d…¼x’^ÓKyy9wŸäôÓOg%ãÐ¥yÊËËÙŠ˜è1â øë¯¿ò‚ï@hUÔkzß«¤ð uýúõ£Ž:tèå—_Îz¬¨¨X¶lÙðáÃ>úèŽ;Šoð#ò÷„ÃkèŒ5j°ù©Dôù矛x+ä¾õ¾ïoq. €8G\a¯½öâ°^y啘)k¼`:wîÜåË—¯[·Ž<}3D4|øð1cÆlÞ¼ù€¸ÿþûß}÷Ýòòr®•AD>,“^ÓKÍš5yø /¼°*ŒóÎ;Oü½;v,S7#ù^‹ Êÿþ÷?ïñ/wÙe—½÷Þ;é; ŽÊ{•ˆÅ‹óNü˜ì°jÕª÷Þ{ï×_=yòä .¸€ÿ=!¢E‹±UoDHô.ùþoذ[Ý~ûí§ý­ Ùo= G›cÅLY;á„ØgÿÂ… Y#6yêÔDtÿý÷³÷Ýwße—]vÈ!‡T©ReíÚµ*cS¼&›˜HD›7onê¡N:µk×®]»v°àÃ!‡Ò§OŠèiÑ¢{ð /xŸç_6kÖ¬JƒuL¼ÿ¡ðî¢5jwÜq¡Çlܸñ«¯¾úꫯ6nÜxöÙgOš4iݺu/¾ø"MßòŠºøàƒ¾øâ þå¼yó؃]vÙ…m÷Â5”Ï e°É‘ú·€ÜqÀ¾ÿþûAƒ±Ç»í¶[Ló¯Voܸ‘­€X¹råÓO?ýéO?ýÄ˾ü#ù­·ÞRYFîš< #¢N8=7n_púôé{î¹ç^{íµÿþû'8lذ¨Y}¬—…ˆî¾ûn¾ÀøòåËï¸ãö˜Ï·3‰÷?È—_~yÉ%—L›6}ùç?ÿ™gº>>úè£}öÙgŸ}öiР[§¦J•*'œpo¯]»vð,ï÷NŽM›6]yå•l©Ëÿýï¼ ¾G¬#jß}÷eϼþúë| ì3Ï<ã[J=ÑÀÒýÖP à^¤Æ_þò¾ÝÆÿ÷¿ÿmÞ¼™}Ù·oßø\䬳Îzì±Çh{‹îñÇÏçŸí¾ûî»ï¾;›SØ»wo¶©ÌܹsU6ÃHtÍÚµk³#‡ öÁ\}õÕU«V½á†yä‘ï¿ÿ~ÆŒ]ºtéÔ©Ó|À[\ûõëÇ›©W¯Þ Aƒ ü£<öØc«W¯þñÇÛ·oßµk×Ê•+ÿç?ÿaÛ4hЀ­écï?ƒÿ…ùå—_¼¥Ø½÷Þ{ذaQgrÈ!õë×ÿꫯ6oÞܾ}ûSO=µnݺŸ}öߦϻqKè÷NzÀÏ<óL“&MZ¶lùÆo°T®\yøðáìOùúD6lhÛ¶mÛ¶m¿ùæÞÝâCp`é~ë(8_|ñŸá·fÍnÇ{,£àÕj†·N]RRÂVs$¢õë×?ûì³3gÎüÝï~Çw)ôMÿ!Ñ5ùî)ÿýïû÷ïÏ"¢:uêL˜0…[/¿üòСC§M›Æ–‰¹ôÒKo¾ùf‰7ðꫯmέV­Ú”)SXd»aÆٳgÏœ9“©CãÆ§L™Ó€¬Ž‰÷ŸÁÿÂx¯P·nÝgŸ}6¦m¥R¥J3fÌ`3¾üòËGydÔ¨QS¦Lùõ×_‰èøã÷Êwè÷NŽÚµkWªTéÿý¿ÿ÷ÒK/1kÜe—]~øa^M>üðÃùJFëׯõÕWKKK8àN{XºßzŠˆ#NP¹råzõêxâ‰?üðË/¿ÌvÚˆÁÛ[]©R%ßn¿cÇŽmÓ¦ û£C=ôšk®yûí·y-û©§žâ•Aqį9vìØ .¸ ^½z5jÔhݺ5Ÿ¸Ù£Gwß}·OŸ>‡~xõêÕ8à€3Î8cáÂ…<ð€\oÊ.»ìÂK>Ž:ê¨÷Þ{oðàÁ]»v­_¿þ^{íÕ¥K—o¼ñý÷ßoß¾½o ä{%GåÊ•ëÖ­{ÔQG <¸´´ô˜cމ?þ˜cŽYµjÕàÁƒ<òȆ V­ZµN:íÛ·ä‘GæÏŸÏ»­)ú{'ÁñÇ¿páÂ=z4jÔ¨AƒgŸ}öüùó}ˆOœ8qøðámÚ´©Q£FÛ¶m¯ºê*¾Xwð-XºßzrOIÁýFYdÓ¦M³gϦ ‘^3¯à½äˆ#¥j ÄqB@€G ÄqB@€G ÄqB@€G ÄqB@€G ÄqBTI{”(++#¢·Þzëˆ#Ž ¢&Mš¤="@n8@ö`²È`¦¸víZö€ýô`ˆ#dƒ ,†}˜âî"(‹A @À9¸/*:ŸWÕ¯%i€|¸HD%%%üqÌouE Ž*²È`ʸåÍø3•¬$è#À G°–ÚqP½@&€8€ ÔÃE¯JG)£è#@/G0….YdÄGŒ1꣖Aò Ä4£Ýä•ÑKA}$€B@@zÃEŽed0qä ~ â’’EF¢¹Œ1p_ô]Ó@ Fe‘Á”ñ§/öc_îÑðsR˜Ú"ôˆ#ÆNûˆO½$ÒGe }âáX91Ê襠>&UÆà¹h¾Äq€Ø”E† 2z êcÔDF Ð| ˆâédiÊè…é#CcÛ5»ô ÄP¤Ø9ŠÊÈ`âøÓûIwÏp¢ ÜÐG€ˆ# ˆHQz•1ødR}ï¼&tÏ Ž€bÀ…®¾.£Š5†*cð€‚ú(7'Í׈# Ÿ¤.r˜2~µ¶!û²~£/(¹>TÆàÁ¡R¨Òví½š¯(N Ž€üàŽ,rJJJ¸2z×ÇDÊ<‘;¢º2rDŠ×„€<qd7#._ÐJ¼>J+cð"d óšÐ=@ñqdÃEŽˆ2z ê£e¤@ç5)ècL` } x€82ƒË²È‰ªM„é#C£2†>Ÿt7B‘S*7XYðú@Ö8œÆ+‹ä¶s$ ƒhqG‘´RD%æDŠDäêÔ€G€‹„ºEYY™›ª¡K½Wh¾NZàŽÒGÅ6A}$dˆ#À V¢GÊüÓ‚.¨2'Ò«Ú;¯¡ä ˆ# MM[tM¥§32â•1xd¨:ØyMÛ­‘7å@È UÒ Éú,74.ÿ¼¡¸üù¨ßè ñ³Ø‘>GÔ¨Œü"º–çdJJ ‡ìoôÇAâ°„zO´#‰cIIÉòÏwr¾Öû%ÐGi×ôžNf6¼öþ‘D[ Z“Rðú€³@Ñ»€Ž â´FNA}TTFïäö-dF•‰¶½N´b"}$$.qèÇÐG~ºâÈËÓñ‡Eéc¢Út(Á+$M%ªÛ·½–Û 1ÑGHÜâЃ…Õ¹Sǘ 1¯>j ãˆq8Å ‘ÁÎk•«QÂè‘>à hŽÈ“‰­\ }°ãy"¨8£±àé¡Ý3 -=4ìtéˆ1ê‚ì½ÔGtÏàG@bŠ'þI4za¡£× é£Ä)A}Ü£áçZ<ÏÄ5iûz="=×è#éqQ ᢹ ‘Óz¿/¼ç&ÕG• ‘1é£ÁëðÕÕKÕ”d½/ÐGÒ∤Ød‘£+hô!¢z'Dªï(z.%.zÖO_ì—Ôig}¤"û+ @Z@;Q´²ÈÐ4†¥&zhäôQðøD•k_ÄzµDS9üo)H,q!¶!"cAc(>}4±XG\%BÄ‚•kñkÊ•­9¨_`,Ç@ñ’¹pÑèr<,îb$ÕG‘ 1æ\þXÎE•Q ÷èš¶èÛQîšÁ…“~롉#ÅEædÑ%%%o|Ö˜Ùz¿Õ$¦IƒÆàéÞs“V«uu^“Ž6ïÕ/(7åÑ ÒG q (@%: 4z­‘YPÕƒFß鉚¯Ý鼿pkTGzÊ£è#Ú8[.Ä4úˆ×GEkŒ9· >ºÓyÍañI}¹GÅ)4_ Ìq Wä[õÎqŒ·FGí¿CUÊÓIÏõí|­®ŒUÖoô…ʪ=Q‚«kùñO?ýT×·$*@ÈE’¦hÇDÖÈñê£Ò!%o QWF*´„¤ êñªtü]3þ…ô~ZA¥j²J¾ÃEs„Njçϳâ5%4H•Ò6{­Öû}!=¯Q$ª¬\ÇDŒ1×”ë­&¢²5û°/ÕkÖ^0ý98%Š\ÕG¹ ‘¶g¾sH½×¾âuAäªÛ¡Ia"e ^0i–É•‘Ódß/M|fAâ@(’J´Èû ò¨Xc̉ñú¨½óÚûGF;¯Éc{*ʼZ(1¾èÅ;~Ê‣y¸ŠŠ8²Fïa´³äé £Ž!c×z¯ã½Zhï‹^̹#$1@pÈb<ÒâhÚ½ÇÓöùˆÖv/ôµÎèUFæsMöýR—;ÒöèQ0b Å´;ô€Ð@Êxe‘ðA¥éV˜ÐIñ.ý(‡„qòã5¦ƒõ}áõ¹²5ûè÷hø¹„/ÚÝ3„q B'Tù$(b-hôžH}AõÒ6;]}^#…¥€ì-g÷Ødß/¤Ý±lÍ>z›¬£€>à¥jìQ°­wëü‘èý)))™¼êˆs|‹‡*Öz¢Hóµâb=Š×Œ(eô!Q¶fW¾ ­÷“wG²R°ö}€ Ž˜&Ñ´Eˆc<âï³Fþ¥¸>j·FïÝ"bç5 +#§É¾_&ºrü~ßrGBó5(z ŽAîÓâàûã³FNA}4gÞ#É#Rév^3|Óʼn *£w„ÙrGHPœ@ІzO4Ä1‘÷'Ê9¡ú(× #}";‹tÌhLt¼Ïó’AB£Gqeô/‹îHÐGP|@PBï:Çx ¾?­‘ãÕG AcðDþXÂUö¼ö.Ù£«¯™EQÅÇ–Qw$è#(&ÐU € ˜çä âÖHDìÈ£öKúåT¬qAY3þeëýV’­ÎkÖsMú”‘S¿‘Rs[&ú¬CAó5( Žˆ‚Õ¹]&‘5zñ¤¸ê²F"b_Šè£bçµ÷ MöÕ£¬TÍ®©><9wdcpè#( ŽÄYÌrÖxÎoñ³é£Fkäxõ‘ R}½ïeÕWR$¢&û~é’â~9¯î}ë)†Ž;æÑGÂï ;ÒÿÀAÒú¥9Žñ„¾?êÖü#ŠÐGéŠµÆ ›ì ËÓ+r3 ½A£øk‰6~HìÕ£ÞÌÎMV:õ¹†ä ˆ#Ûp!\„8Æ|´[£÷ÚÙ[aÄ­‘ãÕG9D¤“#¨1Êè½  w Cß4?×  7@AQã‚,úÆãÂ0œÅûþ°M¨ Y£÷`"zã³Æ&ÊÓñ0k\PÖLZ œ`Î'ÞÄ£Ë}Ñ÷Ö¹ùÑ}9âŠ×dÑ76׆äüý‘n…Id޳؉õ¥­Ñwbç&+“®Ú˜TÝ¢¢ÇDÊ轚zVJRI-9ìŽ}Í1 XÀ\õÜ`ßùY‰š¯5Z#-(k&¸p´±;f䔑_Mn$LÙ;ÀÒÖœæki Ž Ï¸.9R´Fn¾–žÔHÖÈY¸Gך8ü±â¥ÄÇ£1ß+:¬c@ó5È(Nÿ\ A¦e¥êxÊÊÊ–n=+éY¬Ð¬}6dTóµtÐH±Ö<’v;õækï¥Ø´N]WéΉé’Vy?ÝÿŒc?õ AV€8‚œ¸Cc`Ý0ŒDÝ-FJŸ>ª·ÂHœ¥qEæpÞÛ1çŽâ£´;fHùcÊø/1{Pª&Óá"HDIIɨNæ_žsà<ÐGÓÖH­ µ—§ãa=×ÜÀaA£÷™7>kÜz? îèSÛøˆQ#î¬}`ú#pŸ,ýD@y—E$Ž¡ø¬‘3 Uœ>ª4P«t^K¤†ZJÛ‰Ú®}ø‚FsG¹·Hý]rù“.ê§ú܉#Èù¨D½0› Mµ´ÂÈØ¹IƒÔe”¤íÚK¼22ÔsGö*³?i}jÓå*Ùª…ÒÐ=ÜâÜ%ßá"$*näõ1Ek$Â2ƒŒéù …Òvè¹¼íZ¼‘Ypi!iwäÊ(q›ºÈ\ÁÚ ¦?×ÈêÏÈ+E.‹(Uû(h>â‹×1˜«k³c‚«yí¼.¸ÙŒHÐ$QÍ:J¥CGõ÷ÍÍÏ»D?õÐG:HAú¹,‚(’Z#cÔ'³ô‘„ ÒhBÉŽñ¦¦­‘ EâA£ÁÜ1>eœýIëÎMP°–Ý3 u Ž 50wÄ aZÍc§ðEš¯íÔµƒú(ARg Îz” ½Ä»£ …é˜w#»kÐG"9ù)Yáb<(U3T¬1ô(BS™ Z¼ŽGeB$y6îSQF/ÁšuReL¥`ífµZñ§ú,qÆñÉ"Ü(¼9¤Û½ÇÐÎú˜n¸>ªgµ‹#yÜQ:e„;2´üÔ£€¬Qì¥êO?ý´[·nS¦L9ôÐCÓKÞÀ/2 ܼF|Í×éZ# ¯µX#·º£ö_®ËYÍš\-LßöàÞ;ç¦`íÍ×ÀÅ.Ž?þxÚCȨDä¬Q$näxõ1)&:¯ãõQ¯5ÑìOZkqÇ£ö_MÛý[ú"ºd¼¾¨xËYÓiŠTËËËW¬X1kÖ¬§Ÿ~:í±dÈ"Ђkô’¨ùÚ~ç5©mÊÇ®ŒÝ‘+#ù©Mß’ ¹c¼/æ5tô}æ(RqìѣǗ_~™ö(² *Ñ@#ö­‘’4_g¨óšá }H»ãQû¯–«ÔÛ¡óÅx ÀE*ŽÃ‡߸q#Mš4éµ×^K{8™á"0A*Öè%fëB²ÞCÃÆÐ¹É[*##À¤îè }£M7tä_Šûb1„Žè#ÐK‘ŠcûöíÙƒ ¤=×,£¤nœP}L«‡†¹#I­Ú#èpÌ©P«uŒ2rRqG9e,Z°ó5ÐE‘Š#(~¿g1a‰é>ôîy-®"A£v|Lô(^›¶æŽÁzô-ñïQÐ| Ô8‚ \–)))IzŠQkäŒúàd¶îcR Ô¸^ƒëc¼TIX#'´l-4Ú$fþâ½w¾¢å‚¤¡cQU«ƒ ~ ¤8;E%%%W,;ˆ´zŠ<­*1H( ÞOµ[#'¦r¨<…×¥•ÑPèÈnÅh@Çb²R‡[# ꣜5ª'”‚Í׿¬‘Z¹V }ð)*)£FwLÔ"ÐQè#HıˆÀ´Eà^käxõ‘™–5z‰i¾6moåZ£5Ñ©M—?¶âØ¿5O• DŒ©€î Ä1ç \îÀÿ6­‘ÃÿÈ@º`œ >Z³F¯\ë‚Y#=¶âØs|-•ÐñÔ¦ËiûìR kDè¨tÏ€‚@sd¸CðochÜ$éôG¦{hâ—~,Hü>„"§3Ï;µékŠ¡#Ó5v5]$rG6’ú.s ~ ¢€8攀#ÄüÓEÐ9W,;ïÞßb Îâba§óš1ꃓ“ê£ÊÚàÌ8¹ç=¶âXwäA£õБÄÜ‘GŒ¾çG}pò-::ô8f„‹À þÓ%©5ѽ‡?Z¼ŽÁš5ò³¥ŠÖêy§6}6VÇZܱà«#bÌ ÐGàÿÌÊY—Ų²²,Û™{sÄÿ6*Z£÷IŠvŽÔgC²pT{ç5EX£—¿5CƒÆÐ *ºã9î:&ªJËÍt”Hù‰i}fë§ú Ž™!7•èlý–´L&Þ‰ºè²F^Iݽ¾Îk°FFAwL:£Q—;JDŒrâH²îqL:fö s#ê Tí4YAžþ¨ÐnÖ|íŽ5’ÖÎk¶F*4åQ0hÔΩM—K|k¤g:Ê™Ž‰@óu1qtÈ"p‡Tþ6´F/¾Õáxç5CÜQSå¬Qe²#ëãá›7ZC®EÈéEÄ11-Z´(--Õ~Y$ÿÀôÊ¢Dܘ.š‰Öîq¼óš‘Ô¾•zÜ‘pG®ŒüöåÞ:„ŽYúXT@SZZÚ¢E ö@ñR;˜ø§‹‰"u âúèxç5CÎ9RBƒ„,w0ú·ÑŽ5O)¨ö­‘#¨¾Å3A¼2"t, ¹â(÷Å‚$d¸ƒ¿iY#'jçkérsRDö¼uGÅ ‘Á¶œf/ô·æóŒ†ŽŽ¤Œ>:¦ ×ǵk×6jÔ|yÿ´ÒFP1m1”,®=a CoŽýº$G½Öz0{àNç5…­Ú£Ë}¯> •w¤ÀêkTwG6oòæ÷{ÜÜf–ôE,#:2Ydœ¿¤=yÌ#i=·@³Ä€¬âÚ$Ú’’’î ¯¼÷ð{ȳ³Kðƒ¡C[Ëä†|·*úæ¸/‹´=n >ÿ\§ðÒk =žlu^S˜5z¹¹MáèQ®F°É:^on#:J¿]¤Ð^íýR0_|ò˜Gì|>æûWb¢»C™ 8à(úWx”5ÒΤÊÄDkS!¯Xv^¢­ ÉŒ5Òöè1Æð¤¨ErGom:»'/—Aý:@p‹ ù"#Æ9>}´ÜFô”D;_²FFLÙÚܲ;‚µi—g:‹ÑÍ.¨V§ôÑq ޤŒ·M¹þEé›þ(ŽÑ "¢F­‘ì˜l…‰'*tÌtÐ3yñü%}ž<æ‰Ðú’ÐGgÁ?§ôƒ9Žñä{BO¢÷=ð¾™{sDâF/Ïuº‡5÷1ˆ ³!Cç>Z°F/|A£w²£\Œ 3›£åÄ‘Ít4ª/™û©·w™«Ãä$ŽØ#m.âH[# 7_»`–>ZÛóšcbE–;òëËJº`­ˆÍÅtÐü›.ü GéGÌ’3Yä$µÆPøB»g±FN¢¹¡HÇDts›YÞù h5M»¨¥Rž–›éÈ6ø¾¢å‚¤¾(]­æ@_Rõk€8 Ÿ¼Ê¢ Þ¸1ˆ–æk—;¯I“5Ñ€wþ¤Ë´š7à?:lšÊE섎ÌÉúÎ.¡-2ЗtÁûŸ.G´Q<•,•"u ⋇kÁZç5鳯mWSvGæaÛ"Ìwþts›in†Ž>_ä¨Ç‡ê@_ÒïZ@P¢ÃE-Eêº/¼’µÎ$;g;¯I·5ªÃ‚ÆžQsG¡#SF½j(§›ñëò@_Òï¿} Ž$¦e‘#a‚qcèñ‚ÅëtgCÜöÚ„5J‡ŽAkL_è1:ô%]нd,Ç£,ÇOvמ°ð[Éý7ÇP‘:þx@R„A:ÕCã[¸ÇtÖ8ê°îè-OG]M¥`-½4—EJè‹Ò+ì$=+ÑöƒIQ¸ÿS¯B*wƒ7 Gâ(æp1ˆikŒ"&€tÊiçô‘º•+Ôâ¹£kA£w`ìËc¢]dÐ|:€qÀd1ÓSI@4Õ·.´s ›ôûh^£ˆ; Z£Í™ŽÜÿøêeDôÌqH¿]Î}I¼ÿ†€8° ̉ÁòÔÆx¤·.´Æ½‡?Õ{é_‰èæ6(aî(Ñ ãŽËÓÁK™î°fCb¾Èùã«—=yÌv–f´Ü‘ }I¼ÿÚ8‚¢á¢!ÌY£—î ¯L´ô£µ„’Y#q}T1éêPw´_žŽC•1+$ªV¾¤ Þ 9F?hމ'õ™à.ËbêoN(¦6*ЦÈÎ×ö­ÑË£GŽÕWÞá½2IƒÆàu4vÉøªÒ1sÜùKuU«ƒ ýJ¼ÿâ@A†A%Ú^k$"öXDűOŠ7_klˆ‰§÷Ò¿²Ž-ø¬±÷Ò¿Ž:L5t/Xû”Q›ëò8ô%]°u¡G1.¦HŒ>¦8µQä%õÑš5Ñ£GN`¢3ê°GÔ›©ƒcÐâŽѨŒöqV7¡/é‚î™x Ž @-ã‹}õѵ"uÔññúh¡¢ÍáÖHDç/é#펣›FÛ[¶M:TÆ?¾zªÕ*@_Rp(Gà.øw*Ä[#G¥xn<ºv…†˜äܱà¤FC¡£é”1Ç»ÈÈ}I¼ÿ> ŽÀ-.f‹Cgz÷Ô[yÿ²ˆÞ9Òyµv8êEj/IÝQ°Fݽ¡cReDè¨èKºàýç@Aú@ÝA0nä¼{ê­Þã µ»/¼’u^S}Ôk qw´Ü@ÍÜ‘œŸË˜‰øPèKºàý'ˆ#HT¢]CÑÉ@óµåxR0}4a 掻FORkT Ù4J²krÕj9²¨›Ð—táïq¾ùG`ö›¿ï$©5Æ¥Žw^“Xóµ9kdÄ·ZËeÒî8ê°iüýyæ¸{$Ü1—Õê'y„ˆìW«} ù¤ÄÇW‰.Ú¥åŒ`ÜèçŽLm9>FM[#'´lm³BÍ‚FÓ⃃ :2_$¢ƒg !¢{MëÍñ‚æk`™œˆãÔ©S§L™²jÕªêÕ«wêÔ©ÿþuêÔ‰9þ·ß~›0aÂóÏ?_VVV§N6mÚ\qÅÍš5Kû>ò¦-f õ"u^}4Šöx2éÊá1$µF†Ï­1Qèè Õq?tŒÑM.‹´Ýõk`‡<ˆãرc|ðÁ5jyä‘«W¯ž>}úÊ•+'NœX­ZµÐã·lÙò׿þuÙ²e 6ìСÃ÷ß?oÞ¼_|q„ GydÚw“mP4É"æ¬ÑË¡³q},(%îÄ“¾µ{$ÔMÎÜ­e1Ac÷…WÊU«³ˆ/\ åàCR¯V>Ód^KKKÇW¿~ýiÓ¦Õ«Wˆ†>qâÄÑ£G<8ô”É“'/[¶¬[·n£G®R¥ ý÷¿ÿíÝ»÷ AƒæÍ›—ö e„‹ .š‚;_;ÛymçíòÁÜQ‹5Æ‡Ž©×¦ƒØ_Бéx¸Xè#0GæÅqÊ”)[·níÛ·/³F"ºþúëgΜùüóÏßxã•*U ž²lÙ2"úë_ÿʬ‘ˆ~ÿûßtÐAË—/ÿî»ïêÖ­›ö=eÈbn07†¯qëB‰ST^âÑ#ï¡$¹£JÜÈxò˜Gþøêeù€Qw¬MK‡Ž.W«óä‹> À™Ç¥K—VªTéøãçÏT®\¹cÇŽ³fÍZ¶lY»ví‚§4hЀˆ¾ûî;þLEEÅ?üP©R%®’ T¢s†"uZÖîIeÏkA}ÔeFïÎÁ Ñ‹¡Ð1T%š]ܬVû@ó5ÐK¶=©¢¢bÕªUuëÖõń͛7'¢5kÖ„Šã©§ž:qâÄáÇW¯^ý°Ãûþûïï¿ÿþµkמsÎ95kÖLûžœá"FD4}Ý3ŽLmŒ‡ëcŒ;êµFC¡£DL¦CÇø™‹ÏòaÏ¡9 9h¾ºÈ¶8®_¿~Ë–-µk×ö=_«V-Ú9SôÒ¢E‹Çü /¼ð ù“½zõ8p`Ú7ä Åb •"ulëB"bS `zE³ûÂ+£¢GY£vw$‡ƒF½ˆtº¨_E²-Ž6l ¢5jøžß}÷݉èÇ =«¼¼üöÛoÿå—_ZµjÕ¦M›o¿ývñâÅ3fÌ8æ˜cN<ñÄ´ï)MPË(œ²FŽ`÷ÌöcÒï¼­\›«PërÇGLÇåBGé]dìøb&ªÕA @šl‹cíÚµKJJÖ¯_ï{þ矦í¹c¼õÖ[×_ýßþö7öÌ_|qî¹ç^sÍ5Ï>ûìömYá"pŸhœþèTçµ·ríø¼F¦Œ]æ_CDÏu+÷º¼.W%êÎù®V> ²-ŽUªT©U«V0Y,//'"Þgíeݺu ,8ðÀ¹5QÆ ÿñ 2äÿþïÿ®½öÚ´oË8Å"ǵ¸1êx][Ê’^¹V¡ 5ª„Ž9)cæ(:¢­ô$"ÛâHDõë×_µjUyy¹·¯…ýÔ¯_?xü·ß~KDûï¿¿ïy4~ýõ×ißAP‰äž5D½ùÚ¦hv™͓nj• ³F9w Zc—ùרõ¶È8Òì’Ñjµ4_A2/Ž]»v---]´hÑ)§œÂž©¨¨X¸pa:uÚ¶m<~ÿý÷¯\¹òÊ•++**JJJøó¥¥¥Dtà¦}CšA¸¼$µF Ц´>Z³Æç:ÝÃÌLÎÍU¨½åé|`4_,¶jµ4_ƒ‚d^Ï:ë¬|ðÞ{ïíÔ©ë‰7nÜ7ß|Ó§OŸªU«²c~ùå—uëÖU­ZµQ£FÕªUëØ±ã‚ î¾ûî+¯¼’­¾råÊûï¿—]véܹsÚ7¤È"ˆ5/ êcZEêm](¢52˜;‘ >&µFñÐ1¾<¡Ð‘U«Ù㢵:› ~ ¢È¼86lذÿþ#GŽ<í´Ó:tè°zõê%K–´jÕêâ‹/æÇ,\¸ðšk®iÖ¬ÙìÙ³‰èÖ[oýÓŸþtÿý÷?÷Üs|ð·ß~ûÖ[omݺuРAM›6Mû†$,‚‚”””4yb{üî©©>:h ñæk S)` öŒHô(—5Џcv'5zyæ¸øcg›]òQ­}A2/ŽDtÑEí½÷Þ3fÌxî¹ç4hЫW¯¾}û²ô1”½öÚë¹çž{ðÁ/^üòË/שS§S§N—]vY›6mÒ¾•Ä`> ÄkDÄ‹è£;E3¾~íBMÁ²µJ…:Þ­1•ÐQî‹^í³fÅ\­}^ò ŽDÔ£G=zDýi÷îÝ»wïî}¦zõêýúõëׯ_Ú—á"ÐEŒ>º7ƪö§6F㎆æ5º?©1¦Zê‹ÀÐ=9ÇÜY*øâFA}Ì5r›¯ Y##tÊ£k †Ž-O›óET«õ‚îqtüÛ¨oœ,¯ƒøv¾6Š 52|S5f^w”³Æt[d˜2 ŠM Dµ:Ô¯‹ˆ£s \)Òä‰e d×$f.ġNj§rum9EcÑ£Þ 5sGr»<íƒùâ3Ç=9Ë4ÐÇ"☘-Z°E5Y†Œ9e ô_0€tͽê£Îk£0 S±F›¡#móiCWüiˆkDµÚ4ÐÇ¢☘ÒÒÒ-ZðÇ*—B%8…Ï©PýZû&1êXè¼&Ù¸‘sÜ‹ýŸ9î]¡ã3Ç=päó7Ñü.·¹œ8òYŒÍ§ å>ì™ØQ­vèc‘q”û"3ÈDúˆpX#iÜ…®é®u^Ë¡bó»Œ=îÅþ¤Ï¹5ªc.t䣖qÇñ5_ƒüqT‚)cA}„,û(©ƒøôÑå"u>}´6µ‘Á­‘¡îŽ>k<òùœ ƒcŠ ZmþI·hÑ"Â_¾€8j JQ‰Y¡ 5r¼úèâ¢i³óšã³Fu4f•ÐÑ76óET«sO£Fš4i‚úuž€8jëø!颫HC“'Fp},hl®Å“פ7FY£tèe)†Ž¬ZÍ»1§ÀôÇ<qÔ kÁH‹m¿šµ©£ŽÜùÚ5kô"®Š 1QH¸£‰¬‘#:>×ér[Q­Nèc>¨”öª”yhÒ¤É`ðµÂ,³É#š<1âÝSoå @r²Òy}èìAÏuº‡ÙOSƒ÷b>° ­ñÈço˜ße¬¹w/ôÍy®Ó=ͧ e+ì$=½ù´¡öL¬›ÌmÞ&ÐE“&MXñ 4‰#™$ªãJ{OŒ8Zš¯ì¼6j ÁÜÑhÖÈÝOÕÁ4GC`çëìq KÄÿž5m"Çûºgœ-RGÁõQ½G$QCL¼;²HRÐ-Ìt̨2¢ZíØù:‹@pG–sJd™lëBJâvŠÚ‰:¯yÛµÞ†˜¢ÜÑNÐè%*tä¥ü(edÕê¤B)×[ ò¦?fˆ#."!‹)©£PI b:ždkUÑü.c“º£ÆÅwä¬Q{èè`ĈEyòô1@p ¹_š.©£Ži¾v¡H| î ó» µ³Æ/t´Ÿ5qPU€ºôÑq ޤŒ¯µÐÁ_”º,3ª{Æ©"u(Ï2¿ËP+[+ÆÜ­Q1tdÕjJ®Œ¨V30ÍQ裳@H¨J´Üú©cPo¾¶OzãFû²`ô¨¥HÍÜ1ݬ‘­éãxЈjuîAóµƒ@°‡‰_.©cÖÇT¬‘âÇ(wÔ5µñÕï8xƥ݆*º£\èÈ”±éä[‰hÅŸ9îŽÀ3š¯â€Y鉶t³É³L£[š ªl­×Óº»ù]Æ2eTÕjªÕÚAýÚ ŽèÇš,–””$˜á¸QÁ­ %Ð7r‚ekÖh9tôÂÍj5vµ1 ô1] ŽèÁ~²XRR²ÿÝ£‰¨ì‚ëH`jGŠÔ1ÇÇׯÓ-RIÔ1#‚¡¬± ;Æ(cÓÉ·¢Z-÷EöƒIDŸ]u]Ú÷š[ iq@ fm'ÒGSïƒ>Ë ÕGËëï£Gõ¸1Ôµ„Žñh©M)žjµ7\ä¾è}Õj£ {Æ>Gã´E7r¼úHƒt³HƒbóµµÙöÚ|ÚÐWO¢âަç5††Ž‚µi÷CGûÕêxYöA÷ŒM Žá‚,r‚ÖÈáÏ{H÷‹ÔQøöžÄt‘šÃ¬‘ˆÔÝ1 ¡cF§3êEB7™/~Øs(dÑYP¿¶Ä€8²[ñæ°f™Ú[g8rÖèCÚ Æz»d Õ¦CßT«}áâgW]—ÔQ­¶ôÑ(Gü8.‰‰ƒ°:J¢k©©£ÔGËEjï3îhyñ9k,Âju°Í…)Ꭰ †€8@ä¼,Jãýéžq§Hu¼¯xísDûEj‰ÜQÜÕCÇ¥ÝnkòĈ² ’ý‘ ­áÓM£3¡/i}ÔÄ5™«D'Š}¤Þ|­½óš”ë×z­‘!èŽ6³Ffv^KËÕê¨pQ/ЗtAóµF Ž èÈn¸˜ÔCkj1Íי뼦BdZtG k” —v»tü;!gÕj•pQ¢Zͧ9B_ÒÍ×Z€8‚¢ »²(Müg[°~í~‘:^„MTª67rbÜQ:kLêŽÁ ±É#>9g Í~j§ZdBÃEûs}úìƒXˆ#È3yú—½J‘:;Í×,³ñ„ÛØãwO½Ä¶½6gŒPw´V¡ÎVyÚ.¯¹Èõ¥¬¬,¿£2ôQˆ#ȹ µ©ãÙÿîÑâÓ](RGÁ 2^-X#ÃçŽêÖ(:ê*OûÈVµÚÎÌEqâåiÒ¤ ô%- I8‚Ä·¾¤ š¯ã8‚ P<á¢eD>bUÈTŠÔQ4žp‹“¢h&ð…Žî÷Áh¬V;2yÑ‚¡B_Rp(Gà(E²^¤Ž]ö³«®3— Úi¸i<á¶{Þ@DÖÖ—fq#é ™;²Ç6­1•jµéÎh—sJ‚¾¤ ÞGà¨ÎpÒ*R<^°ùÚ…"µ—Õ½ÏþÿaÏDNK‘š©½`-ýg¢Z½âOÛú£“®¶í²J}I¼ÿˆ#H„‹öQ±L}tªHŠHô¨×õòaÏ¡'ÜVvÁ Ž©9âÕjæ‹äɹÓ{8*[ÈH¿(ô%]|ÓO‹ˆ#HÈb<î©£H·ù:)ò*ÑÒ¸Ö“–ô”]0œ)^ÇÇ^¼•kÓÖ(:j·ÆTªÕI}ÑåøÐ©±Aò ŽcÇŽ}ðÁkÔ¨qä‘G®^½zúôé+W®œ8qbµjÕ¢N™?þUW]µuëÖ6mÚ4kÖìÕW_ýË_þòÀtéÒ%í»É6˜sc™‹ÔIÓ-R‡ÒxÂm«ÿzƒÄ¢ƒ ñ¬1©;FYcVªÕîç‹NY 4ÐG`šÌ‹ciié¸qãêׯ?mÚ´zõêÑðáÃ'Nœ8zôèÁƒ‡žòã?þóŸÿ¬R¥Ê£>zÄGÑ{ï½wÁ <øøã¯T©RÚ÷”1.jä€H{;P´Ì‚ÅkGŠÔ>¸k®øÓ IÝÑP…š­bhèÞ-„޾–;r沚¨Vû€>sd^§L™²uëÖ¾}û2k$¢ë¯¿~æÌ™Ï?ÿü7ÞjÓ§O///¿æšk˜5Ñ!‡Ò­[·™3g¾ÿþû‡zhÚ÷” ‹&())i>l ­¸ª{&þcÏ©"u)6_KÄÞSO¸-‘;JX£Hè(Ržv3tÔ1:nÎŽ Í×À™Ç¥K—VªTéøãçÏT®\¹cÇŽ³fÍZ¶lY»ví‚§¼òÊ+%%%={öô>9jÔ¨Q£F¥}7NY´ÓGÚnZ>“Ò-jëשƒ§$uG âÝ1£­0)®ª£ˆË( š¯^²-Ž«V­ª[·nݺu½Ï7oÞœˆÖ¬Y*ŽË—/¯S§Î>ûìóæ›o¾ýöÛ?üðCË–-O8ᄘ9‘Å þµj7zñ¾3§>ÞÄã ±S¤EÐM©Y£J訫Z-1Z“³\Z  ¨_-d[ׯ_¿eË–Úµkûž¯U«}÷ÝwÁS~ûí·Ÿ~úéÀ¼ù曟zê)þü¾ûî{×]wµnÝ:í{r„‹– µFNP]뉑`ÿ»GK¬Ý#ˆ–¸‘ÃÜ‘¢[­­14tÌVÖh!btÙSÙBFè#P$Ûâ¸aÃ"ªQ£†ïùÝw߈~üñÇà)?ýô­Zµê믿9räñÇÿ믿N›6í¾ûî»úê«gÏž]´¹#dÑq|ÓÅqÍ2ùñ‚K?¦R¤öÓ.£%kô¹£}k” ?9g{Üô99\6T@4Ùî ®]»vIIÉúõë}ÏÿüóÏ´=wô±Ûn»±·ß~{Ïž=k×®½Ï>û\qÅgœqÆÚµkçÌ™“ö=Ù¦l;M<¤=¨â">nôÁtd_uËÜÿîÑûß=ºì‚lõG)©ƒ4žp¯Æ2R¯Pû†úšà“s}rΠ&cîl2æN‰Ó™œY§µÊ(ì>ûH{, 3d;q¬R¥J­Zµ‚Ébyy9ñ>k/5jÔØm·ÝJJJ:wîì}þ„N˜>}úÇœö=Ùá¢;$²F"Z1¸Ÿ¯u†bK„©C‘ÞxƇ‰¸Ñ‹¹v:’±ewtÁRF9_^R¬Vû@ó5HD¶Å‘ˆêׯ¿jÕªòòòš5kò'Ù@ýúõCO©W¯Þ?üPRRâ}’U¨7oÞœö ™²˜?´7_§^ԶΤ^¤ÂÝÑܾ‚Òm‘I]]."»<6AÐ| Év©šˆºvíºeË–E‹ñg***.\X§N¶mÛ†žÒ¹sçòòò+VxŸ\¶lµlÙ2íÒ *Ñ.£7zi>lLóac>»ê:_UΩO²D×üÈÕ½!í‡ÀjÖz­±ì‚Ç9º"X|aºÉ˜;%ÊÁ.‘]›P¿ñd^Ï:ë¬J•*Ý{ï½l^#7î›o¾9óÌ3«V­Êžùå—_ÊÊÊÖ®]˾<ãŒ3ˆhРA¼íúý÷ßôÑGkÕªuâ‰'¦}C(óYÌ QÖÈñécêñ¡:Ì Wÿõ}´7î8qÜ( ¹567JÑ•õÎtTœËè.[ «V§=Šp  ŠÌ—ª6lØ¿ÿ‘#GžvÚi:tX½zõ’%KZµjuñÅóc.\xÍ5×4kÖlöìÙDtÐAõë×o̘1øÃÚµk·~ýú¥K—–”” >|Ï=÷Lû†$A%:s$‘k¾vÍ2½Ço[è¯×QtåÚ¦5rUvÁõÜѬÑ[­N½0ŠËa—Ç& š¯AÌ‹#]tÑE{ï½÷Œ3ž{î¹ ôêÕ«oß¾lEž(þþ÷¿ïµ×^'N|íµ×êÔ©Óµk×+¯¼²Y³fißJb09£è*RÇÐ|ØÁ­ M£Å2EôÑ,ndÕÝ1hÇZý×)Þ£„26sgÙU׿əriÒ@—<ˆ#õèÑ£GQÚ½{÷îÝ»ûž<óÌ3Ï<óÌ´.ÂÅb#©5òã»g,RGªö‹ÔºnÇPÖ(Ý"ÃkÜv‚Fl!“-Ð| 9ÇÜY̆ŠÔ1Äl]˜ŠÚ^}¤ä¤^k”c¬Ñ~èÈ”‘ùbY¿k­½®.[ Ü2i:h¾Gw,æÓEê˜ãCõÑ©ÏàDƒá»/&Aõ©A$ÜÑô¼FñÐÑ«Œ* Z]l ~]´@… ˆeúºgRUà×ÿì¯×™Îçâ‹Ô‰ÜÑn˜² •±É˜;Ëú]‹jµix¯÷W]çÂ2àr@‹ˆcbZ´hAD¥¥¥¯‰p±H°Ð#È6}ÜOüÓÔ…"uÔñûß=Z¤oÆèÔFAw´Fõju|è¨+hL-PïÂ@­¯Ûñ£íÈ2Ò@‹ ˆcb˜2ªë#d±ØH±H¼#Í׊l»v¡!Æ…¬Ñœ2æ¯Z-APj£d1 {¦H€8J"­ø¡&P±L‘æk—ãF/é®Ú:&µFí-2âʈjµúظ/æ[ƒøºg@þ€8*!¨;Eꢚ¯³bœ >Z‹£Ü1•¬Ñ[­ÎôÂeñ³«®Kä‹­¯“õjuöaÇ6Æ_ž€8j T!‹@kEêP4®Ý“.êé£\‘:èŽÒÖ¨%t´9ÑZµÚiŽ¡•è壓mÝ”c5jĶ.$|戣6¼úÈ6‰N{DÀì/܃ eJëcêq£f’‹„Ëf„^wLq^#ßöZÂsY­Ö8¶¢­DËî™<qÔLiii‹-ðƒ8®õÄ$¢ù°1¬óšÄôÑ5kd§l[×ú¯×ÚŸõ¨nÒ¡ãê¿ÞÐtÔDôɧô¶‰¢¡O›‹! ùâ€C¤[¤Ž?>‹Í×܉Eh½–ÄÊÖêÔ,tL1kdÖ˜cìä”LÙÿÅe±õuc–î‡iŽ¡ ù:ëTJ{ä™’’"Z1؉ OŠ–Ù|ØößgW]ç^8Æ>šŒ¹³É˜;y7 ëמּd€úEUpÌÞÁû¬±é¨;åvdÕj‰³BÿzÄÃ,Pý½ÒûKÎz\˜ÿ!bÔK“픕•¡ÿ:[ qÀ%%%múnû°yp?ò,|ŠSEê´l]h³HíƒEQ¹£.k\}É9ñRzÑ"‰É)Q‰NÔ¯3Ä0ƒÑGAR/j;Þ|eŒDek ˜5n{¡K®U7Ñ‚3Y$YlÖ¨¥ZíN›KñT«ƒ@3Ä#xãFNŒ>¦†">ßÞ3‚¸°çuhÇŒ–¸‘[#!-î÷Š…‚Ʀ£îüDªEZ®·Úý-d,„‹Óô1@ÐO¨5r‚ú˜z|¨NóacÓÇ‹ÔA¼ekÖ¨‘ÐÐ1OA£…fi_„Úúè8GÒÁ«‰pÍ2ùñŽì|-n ^¶V'Ê …Ž˜ÑHº™­º‹¹ZíÍ×Îq@3ñq£6}ǼW¿6}Çhœþ¨‚ºeÆï|íB‘:ˆý.9¼¡cRk,¶jµ 3‘SªãÛùúèGt’ȉˆY# wÏ8X¤Ž"•q#£¬ßµÛÖÊVÈã‹ÔCÇ<•§}¸¼@7,0]P¿vˆ#¯Î©cP©_KÄ“*ÖH,–“Ò;sSC‘³FéÐÑ},,Ð \úèXmHÇ>ÚôӦû9²rx(‰,“)¾ÈsZ›7ugÒU»­±É˜ÄW¾Ð·¥à:6W„/ÐÍÖè&Ó …jÒSØÆ ¬ž.HЃ.kä»gRi1d •š)^«ÇœD¹£¬‘g*Öh™øjuº3‘S:ºgÒ…ÿÉ»cï™»ú‰» EjßñÌILí©}ºcRk”›éè ¼m̪ýŠªZmÂaùÝ3ö8¯,²ßSÚãÆ¨ã]h¾V±FNŒ>¦U¤ö!=ß1ž¤î˜Vy:dØv{«uºä̱(˜þh ˆ#Be‘cÍI¬ùÚÁ"u^}$Ùúµö¸Q Eê(kT ‡ù"Ÿ¹˜r&µŽ}´Ä€Hbd1]4n]h³H?@bú£QkŒ U¬Q0t4”5ºY­ö£í,Ð-¡t°ÀL}4 Ä?‰f[ÛŒ}¸S¼ŽBÄ}´2ÆP÷Œ¡îh:kt³ÆDµZãäÅœ)ªÕê@ q€H6\LÑ9¾æk§âF9xýZdÛk EjŸ;j±Æ˜ÐQ0hÌtµÚ…m]l’3©Íh¾ÖÄ/ÎV¢%ئwm[úQDï\(R{)ºÓñ£G›S¹;ZÈ-iU«Å}ÑeÓryl 4_kâŠ]ÿôt!nŒ:>õúµ¢52´¯û¨ÒÃÜQã[ “Z£ýÐQ®ZMÉwv±,°Ø@ýZˆ#( ´‡‹.[# Lt³HJ¨>ÊÅ®áuGG–ÝÑßlÆšœ¹lr8˜æhè£ G[òT‰–#J/R‡â[¸Çþú;Ÿ ¸vÛ¾ÛýúéuÖTZaŒV«™2* \Î,8ôQˆ#È&A;7úp¼ùZÄ9Ûôqh¿¤S]ÖhiktªZí­GX`‘}L Ää›áb¶¬‘ÜùZÓqcR¸h–êNþ¢ðYcóact…Žeý®m1dLéPkÑ:Šø"ªÕÒ·ƒjµÐ|-ÄdT¢%hÓw MÁÒ…"uÔñ-†Œ)í×ÊÖê›ÄøÐâŽÌ·ÝÈ ý²8ÁQKI:†üY`žn'— ùZˆ#Èéþ‹°¤¤$ÑñŽÄÁã¯_ £GŠÖG7‹ÔÜÕIeAGÓÊhl!| ~ÄdGÂÅ’’’vÞIDoÞµ­¶/mÎZ#'^]޽˜«\ÇX£Jè¨ÑIZ­æ¾(áL¨VKßô%- ¡@£8"‹¡0}¤í™ÈÞ$T]³Æ‚„V®UâÆ‚Y£œ;†Z£bµÚtè˜Ñ®‘“Ú8 ¢¢ú’ÐGGà.Ë"½xHŸ>º7úp¼x`Éží2§}j£:îdâ¦0_D|hlЗtÁûÏ8‚ôq¿‘-Ô9A}LÝ¥÷ê£xè˜V‘:=ª 8µ1QèoiµÈDU«MÌb„ª}I_óuqqéàr¸(‡oúcÖ S/RQ\ã&QCŒ ;šÎ5V«sÐøâ²jÙBkǤK‘ë#Ä؃ÿ˜•••eè7]|Üè£Ý…w¾ùïk)IÈçNÜ<Þ…úµ„h–íwÐcˆè£ä.e¢ZÐÓ]—'éDFT«SÖŽ©qÆñý³8ÇÖHDoþûZ_ë Åvϸlœ}tªHÍOaÖHDÝ8F“:Z›×¨:–õ»ÖŽýÀM€ú5°INÄqêÔ©S¦LYµjUõêÕ;uêÔ¿ÿ:uêžûÅ_ôèÑ£K—.wÜqGÚ÷‘òW‰– ÷Íשƒ0w$"£’Ž£ÜÑñn˜O\KÛ—…O{,šÉ®r–ÞñM9æœÑ·>;äAÇŽûàƒÖ¨QãÈ#\½zõôéÓW®\9qâÄjÕª<·¢¢âŸÿüçÏ?ÿœöMäüÉ¢JÜè%ªù:q£é­ %PŒ9‚ekíEj k´V­æÊhú…´ ¿î‹Çœ3ZââÐG`šÌ‹ciié¸qãêׯ?mÚ´zõêÑðáÃ'Nœ8zôèÁƒ<ýßÿþ÷o¼‘öMd›¼NÐÖeŸ>º`ÒÇóŒŠõ ˆè‘å"uø²µº5úBÇT²F‘ju¨2¶é;æ}‡×ô¶FZ[ÈøÂEõA÷ 0GæÅqÊ”)[·níÛ·/³F"ºþúëgΜùüóÏßxã•*UŠ9wåÊ•cÇŽmÙ²åÇœö}dŒü…‹ÖÈSó5—÷ éc*Eê Qî¨+käî¨bæBGGRFtÕ0’Ê¢HµÚºg€ 2/ŽK—.­T©ÒñÇÏŸ©\¹rÇŽgÍšµlÙ²víÚE¸yóæÔ©Sçú믿ð Ӿ PT²¨=n ÒîÂ;Åç>:7ßV¿N ¢=näXh—Iw^chèèˆ2ªà¸Š£=\õk ‘l‹cEEŪU«êÖ­[·n]ïóÍ›7'¢5kÖĈã=÷ÜóÑG?¾fÍši߇Óa±Ã´5òãw¾vÜ9Qú˜z‘Ú‡ÏM¬¿£ˆÞÐñ“׊|Q­–¦à›*‹K&_gyœÐG …l‹ãúõë·lÙR»vmßóµjÕ"¢ï¾û.êÄwÞyçá‡îÕ«×±ÇûÁ¤}ÎQTᢤ֨N>›¯õ¥&à­Ö¤u}ʃûüÏ1Žte‚³A£Ëº©kl&’E‰juè#P$Ûâ¸aÃ"ªQ£†ïùÝw߈~üñǨ³ °ï¾û^{íµißC³,ª 7 m¾ÎJÜèCZMÇœƒnóÑp†Ç¬‘ˆþç˜SÓɪÕä¤2Zƾ¡Š÷DsÎè%“¯³V­ö}Òd[k×®]RR²~ýzßóly–;9räÚµkŸzê)‘õzò dчµ"u ‚õëP±F/múŽ×GkÖ¨nº®V¯ºAæo?Ååjµ³9%“Eöÿ´DP4_ ²-ŽUªT©U«V0Y,//'"Þgíå7Þxê©§þñzè¡i?5ðk"ûEê¶é㿯•p5×p³xýÑðmª÷áà~ŠÕê 5¦:®ºaÛß÷ôvÖǬDÛ‰µT«} ù$"ÛâHDõë×_µjUyy¹·Ç…ýí¯_¿~ðø•+WÑý÷ßÿý÷{ŸöÙgŸ}öÙf͚͞=;í{2ÂE혈CœûèZܘ´óÚfÜÈ­‘˜ä)»£ …Ž,hôn2žƒrhA¯¡*®Îí#ÝjuÔ¯™Ç®]»–––.Z´è”SNaÏTTT,\¸°N:mÛ¶ ߸qc~$ãÇ\¼xqÆ Û¶m»Ï>û¤}C:,ŠãB‘:êx‘âµãÖÈÑÕyM𬑡âŽQEjk¡£OAµ:ˆ`›‹k( ôÄ“yq<묳|ðÁ{ï½·S§N¬'fܸqß|óMŸ>}ªV­ÊŽùå—_Ö­[WµjÕFµoß¾}ûöÞ+|ðÁ‹/n×®]nöªF%:)VmT'OÍׯåÜQûÔFCG^›Î".W«Iw¸¨Õê ÐGEæÅ±aÆýû÷9räi§Ö¡C‡Õ«W/Y²¤U«V_|1?fáÂ…×\sMŽËЄpÑmôÆ“ÁúuVâF*ú¨1n”¦ 5  ¨VsÄ Õ+‹Öæ,ºœSBAÌ‹#]tÑE{ï½÷Œ3ž{î¹ ôêÕ«oß¾,}Ì7E-¸\¤Ž!ÑôG/ŽX£—D×dÌ…ަ³ÆxŒÅV­Ö¸à¢ã( š¯—<ˆ#õèÑ£GQÚ½{÷îÝ»Gýi«V­JKKÓ¾ƒà§W#%%%‰Ž7mIiwá¬óšP¼Ö ;Š[£zèè«VëÑX´ˆÈ¢Ëh§ZíÍ×€‘qÌ=MPRRÒþôQD´øß×’gaЍˆ©ÈÒ®Å{^›.RtÇ´²F et¿Zmyš£›Ó]6ÔPP¿.r ŽîY´†W)Ú )RG_°{Æqkäp} º£©1î(aºBG›þçxµ:\—î‡9‹>-Gç@%Úf%nôâ«\§»» Š5J‡Ž¥CûzŶ³Þ•*:UµZc› ¿H‘ćР{¦¨€8&†)£º>BG°~Š;EmßâႸ`¯>J ½þŽ7tL+käÖh¹jµ}ÄeÑe tylâ {¦H€8J"§Eˆ}´?}Ôâ™(‰«¹YÔnwáY/^zŘw‡' WmÔ¸a¢Ð‘•§uY£ÍÐÑæ4G¦ŒÊV>,P_ rÄQ A}D€ï‰¬‘ˆÏà›ûHi÷_K‹©ÈÖ…äXÜÈOa•ȵ¬õÍÜÑfÜ4zŹjµû`né±¹0Í1 öy·hÑ"Âg_¾€8j T.:HRkôß=Ãp§Hu||óµËÖÈ`îHDvæ;~8R[oŠHè˜nyÚ‡#Õê"Y Û屩ШQ£&Mš x' ŽÚðêcYY~Br€7nôÕ=ãf‘:Šì6_3µŠµÄŽÜ¦qïŽ4:ê-OûÈbµºàš‹.›–ËcK4_ç ˆ£fJKK[´h Q)R‡b¿ùÚ„˜ Ö¯C±7z‰‰õZã¶×ÒáŽQ¡£`Иûjµ÷w¬Ëe t¼ZíÍ×ùâŠíÖÈ‘ÖG§ŠÚlëBJâvéZ#C$z”Ãk¦qª<íÃNµÚæ†.Ž[ ³cÓš¯³N¥´€q§6 ÒþôQoþûÚ7·7ÐÄãfQ»Ý…w¶»ðÎ÷ïê÷~Âå{ÒåÐ+Æ|4|Ç€ÕãÆPk<ôŠ1Zæ;üÏ1|MïÒ¡ý’Zã¡WŒ‘ûî°jµúøEƇ¡,ÝýwÌ9£ål‰™–›ÊÓØ¡I“&lú#ú¯³GüˆÇ¾ãU–~Ô‹Š˜Š¯]ˆ½ð²5¥²‘´.F‰Ê]ÎÛ[†ªÕA0ý1s@AÎ1W¤Ž¢`óµSEê¨ãcš¯]³FÆ¡WŒy÷^ ‰ZL‘ZïLǬX£–jµö=]TpÜ›Q âòŒkŒ9%tú£kÖXûÍ×ÖÈi{阷ÜÎÎÔFÅ’·t‹ŒýÞjþ¥9rÙ´\››@3Ää SED3•¯ÅMi}´f*ïÞÛ¯í¥cHÁE¬Q1tdÊxxŸ1D´ìÞÌ„ŽI‘nvqÙ´[¦«Õ>Ð|í8hŽ`ÒSEhú(Ö=“hHÆ“‰ºgì©ÉcŒ¶—&ndÏ¥»d>Ùïð>c˜5f‹6}-5»XÃåΗÇf“&ÛA÷Œk@A>±?µQð%Ä›¯S/RGa®ùZ‹52¹£… 5³Fï3‡÷‘Ÿ”éToµÏ¹2Z —MËå±eè£k T rˆ#Eê¨ãi¾VÓ‚ÅkkEê(ç;Æ´`´Æ|ÀbHÇÃE Z"˜þèG7$¬Ñh‘:Šøæk׊ÔQÇklÑ7rDÜÑtÜhÈ-ï"ãí­6º^·59sÜ[º@]¥jPìX°ÆøS‚õk׬± ÁâµÄ’=Ú­‘_³–¶FÁ™ŽñÖ¨R­–F¥ZZ’ŽÕjÇÇ–QP¼N$Ž W”””Ñâ™ÈéÅ`mjcÁÃ|õk§0Ýymš¨ÜQ1kŒ/X{¨3×2‘9›27ÍwµÚš¯ÓâòCIII—Î#ø—ó…õQÓñdûÓG1ëŒ'Û]xg"}47r‚îh´B-^ž>¼ÏéuyLW«™2z%)gEdg-P|l<ËìÚþV"ziñ ´nì|mˆ#È >k$"öeŒ>¦2µQü%D–~L½H…xúhÁ^wÔe¡¡£û­0ñ+óˆQ‹QÁµÍ[øf¾Ó-qy hœ(}L}jcÁã]h¾6Ýy-‡„52ÌõYsÜ·Æ‚#’Š¡ Êb×ö·Uµ:ôÑGPøôÑ©‰ ]+RKt^«ì.(sG/ê å¬1õjµxĘ¿øÐýœ’=F²˜è£Q Ž óÄÄ>¼ú˜Hì\ˆ'}[ºf ꣵ"µ—·ÔßÅÌÜ‘2Õ ãí­6­M°ÀDcóµ`'UF„ŽtÏⲸ5z)8ýÑ‹Sñ¤³Í×ר[£¹}¢U¬ÑrèhMóŠvCªDa³‹vÐ=£ˆ#È0Ö8Á@~Šˆ>ÚŸÚ(HûÓG‰tÏ0\‹'YbJDï¸(¸5’š¨y÷Þ~í.¼óÍG20»Ñ7‹QÂ~ò¦•SŠL[ìÚþÖ—BZ ¨_ëⲊ¢5r¥±O vϤ^¤Ž‰7…N1nô¡ÅÙòÝZÞ.½.$ÝÆ—Ü[ øØø—ætÕê ê@A&ÑeœP}tajcÁã-ßcEÑlwáoÞÛˆâIW‘Z#,hÜéFR ã«Õè•6A"CÅ:®}T⊂xkäxõ‘t/Do<éëžaOºV¤=eÛÄÇh}4d*!ŸÏDd"£\>—¿øÐÄ …ʢĜET«Í}”ⲇ\CŒ8]:˜¿` %Ùºœ‰'UV´\¤öÁõQo¹6>k”sGCÖ¨«ZífÄèrY#ñ èX³@T«ÅAóuR Ž ch/RGÁO™þèTç5Im](‰x2X¹V‰-T¨ýƒOµZÍç^ÎⱟSš®D#t´š¯Å8‚,aÇ}§hߺPâéÎkžûèN7zÔÛJ¢œÏt…Z:tdm:¶„jµÜ qY\2ù:7•¡£¨_â2C*ÖÈÑØ|m9ž)^§2µ1=J#7 Ꚉ5Ú™2{æDôšÛµàT«}•h‰ ña&€>Æq€ýô~úé§}z?-~–FkäõÑ‘©O·ùZ:ž<ª×o<(:&-RtG»a¼Ê¼è5Ô˜J´Í9‹ÐMû@C8GáS•‰¨I“&¦b(‰hê]ú1íb¬_»S¤ö½ÊQ½î$)wÔ>µ1‘5*†Žâñ§.eDµ:ˆÑi‹h‘ÉÐGGà>Yä­5Ä$¥Kç‰Öî±3µQ„DÓ½X(R“ljÜQÚ£ŒÍµ¬1&h<öÌ;P­V{ì`¶‡Ð1]Ð|Í8‚ô‰ÿQLwjcAÄ›¯]ë¼f$ÚºP]ñ$sG"2Ú+tG9k4:¢6-ޏ¡zÃEJ®Œð¹¢Â×|]œ@A:D…‹>JJJ(¡ÕÙ±Æà)ñõkg;¯)Iúh§¨í‹9ìÉøèQo‘ڬѴ2[µ:¦³9‹¨V¢I“&EëŽG`þcVVV&’ó—””œtøöø…ÉïE‘–5rtM´ßsSP-OmŒ"¦l­ÅyÚ§hºBǤʈju †*Ñh‘EĘ%˜,JX#±Çñú˜º5r|úèÎÔÆ‚/¡²ñŒõ©Q„º£Æ¬‘I› Y£Æ˜"Ä·4799sÑ^r"ŽS§N2eʪU«ªW¯Þ©S§þýûשS'æø 6LžŠcZ4};_›ÃPç5yH×:¯}B½ì‘~Çœ3z‰ò-¨„ŽË±=1OÕj•žhćēq;vìƒ>X£F#Zh£VMñæk§âI_iÁ¸‘c¨]†Y£…ûñw~z w,Úju°ýÒâAvîº Š‡Ì‹ciié¸qãêׯ?mÚ´zõêÑðáÃ'Nœ8zôèÁƒ‡ž2eÊ”wÞyçˆ#ŽxôÑG™\®\¹²W¯^÷Ýw_—.]:è ´ï)Kè’E ¼úHÉHË¢)Ø|íòrââÍ׿ŠÔ>x»Œ®¸Ñk©„ŽËégz–BΈ×,´È€,R)í¨2eÊ”­[·öíÛ—Y#]ýõµjÕzþùç·nÝzÊܹs‰èÆoä‘d³fÍ.½ôÒ-[¶¼úê«ißP6(ÛNZ®\0nôÁ>éð!ó œ¿]" bs½]:èÒyÄâ™JØn®×Ãiú¨ö§zóß×¾@Úé¡á¼1éÚcÎÍR:EÒÍ—=Ò/híOõÚôþW;öÌ;|ÓûDN 4w–ÞZ2ù:ö_×ö·òÿt½ó9 w”ËáÜ“ùÄqéÒ¥•*U:þøãù3•+WîØ±ã¬Y³–-[Ö®]»à)eee5jÔhÕª•÷Éf͚њ5kÒ¾!w±.&µF"zaÙPîŽ$6ýÑ…-ÍשēÒ+‡Ç 7Òvk$¦j;D‡Z£ÐÑ[›.$ªÕÌÙÿÅ5Edö>Zȶ8VTT¬ZµªnݺuëÖõ>ß¼ys"Z³fM¨8>ôÐCUªøoüƒ> ¢}÷Ý7í{r ›•hkäÔG¬‘“tú£—tãÉ(}´V¤&5ª“bÖèZmÚÁ]¼3­™Yþt³kû[8à€ŠŠ è#P$Ûâ¸~ýú-[¶Ô®]Û÷|­Zµˆè»ï¾ =ëàƒö=³dÉ’qãÆíºë®={öLûžœÀþ®JZ¬‘£±ùÚ‚hvé<‚Ù›ÜüÚD<éÓG›ÖD:tŒ·Fs¡£`ÐØþôQî·ÈX[ ÛñT/º‰—"ÙÇ 6Q5|Ïï¾ûîDôã?¼Â–-[žxâ‰Q£FmÙ²åÎ;ïÜk¯½Ò¾§ÔH±ÍE¯5r‚Ý3Žw^oûR@‹¶óš7J¸cZY£kAc*u3ë t;Ž·E;/i²-޵k×.))Y¿~½ïùŸþ™¶çŽ1¼þúëC‡ýä“O4h0bĈc=6í²MвÈ1dßÞ3‰HE4 Nt°óš‘tÛkEjõÉŽá×Ô×ñ#1£Q:t”¿_‹Õê¤k.f"Õsó…‚øv^†>²-ŽUªT©U«V0Y,//'"Þgä·ß~»ãŽ;üñÝvÛíÊ+¯ìÝ»wÔ¢¹ÄeJX£Ü5Åë×)v^S´>ºÙyÍOI´íµ¡©âî(7ª»#«V“Ý&—«Õ†ÂÅ(ògz_õk N¶Å‘ˆêׯ¿jÕªòòòš5kò'Ùßþúõ뇞²uëÖk¯½ö…^8ᄆ ã—yÂ…pчœ5&Šƒ§ê£#=4êÍ×év^G™–é†w´\¤fkyy:4\D™œYÐúDȼ8víÚµ´´tÑ¢E§œr {¦¢¢báÂ…uêÔiÛ¶mè)?þø /¼pþùçb#ëJe‘“Š5râõÑkäHëcê×zWíID¼;JX£Jèøæ¿¯Ý&ӲߑLW«µ‡‹MõR^¢u¡ žÌ‹ãYgõàƒÞ{ï½:ub=1ãÆûæ›oúôéSµjUvÌ/¿ü²nݺªU«6jÔ¨¢¢bÒ¤I{ì±Ç?ÿùÏ´Çn—e‘“®5rtm]h­¨Ý¥ós[ÊOhåÚÚú;Qîh3kL=hL±Zm¹]"ÔMî‹hy½÷y‘]d  ŠÌ‹cÆ û÷ï?räÈÓN;­C‡«W¯^²dI«V­.¾øb~ÌÂ… ¯¹æšf͚͞=û믿þüóÏ«U«vÁ¯vÆgôêÕ+í{’Ái‹"¸`¾ÁH´Î0,‹¦àÖ…˜M_ÛµÍUƒî¨bICG4zß 1pº$õEw4+Ýáéz!o¸èóE Ð| ‚d^‰è¢‹.Ú{ï½g̘ñÜsÏ5hРW¯^}ûöeécµk×ц –/_üÓl5Vg"\ôQRRBÉÅÑœ5r¶é㲡d¸™Z—hÆ×¯ì¼fÎ$÷¦éZëÛrÖ¨=¾µ¹ c¢juÒÎhu ›Þò>#"‹hy}¢­«Ñ| ¼äA‰¨G=zôˆúÓîÝ»wïÞ=>üðÃKKKÓ¯.˜HíôЄ.Ù#=j)R/™|]ûÓG-ÖÔ#:µF´T«}Ñ)ÍJqx_(•p± ÐÇ¢âèy’EN¨5z ­_k µœÔG­ÑwŠ`ú˜–5zÇ=j´FöræÜ1Q÷t¶ªÕvòEÇuÓü}H$‹hy½Dè¨ècqLL‹-ˆHïDÉT¢£(hñúuFëÚ*Í×öEÓPóµ ݉ŠõZ£QlÖªÕŽÔ£ãÉb|óÅ—²`*Õjh¾.* މaʨ®¹ }ˆ[#‡ýÓ™’[ Ù'>„%¾u¡E3¦ùÚòÔÆ’Îz$hÚCGïøa?t¬V}Ñåf9\ÓM_¸˜Vv¨š¯‹ˆ£$rúX ²È‘°FÚy–·xúh¿‡F|çk ×[¦[¤Å=ªÇQY£Fw¤”Vö6:º/•nÆT¢åÜQú,]¡£_ rÄQ },*Yä¨[# tÏ0Òê¼&}´¶©Œ*;_ÛM=²F,™|Ýñ'Ýþ²BjèBè(â‹Eås¦‡µ•K.aŸw‹-¢búì+ Žðê#§˜g{h±F/1«?¦hœ(}t³‡¦Kç¬óš„õÑæî…‹gèØ}ä+&wÉS™5ž,ä‹r>çZYI}1¡#§Q£FMš4Añ:O@µÁÇE‹•••íOˆvkäõ1õõz¼»g´Fß)Ú÷-T„Y#©¸£HÜ(íŽL¹¸5*†ŽÒ¨T«—L¾ÎÙ|NuSb7—|ƒî™<qÔOŸ>}2½9 欑#±÷ŒÓ ¥ôÖ…©Ä“"k÷ØŒ½È¹£Ñ"µö ÑZµúµéýÙƒàu"8ÊabxQÉ¢ÍøÐÁБƒî™|qÚ°`^þÐòú¤úh­®MIºg(í¢vLi¿Hí}&©;&²Æ¤¡c”5::2etÖÞ‚dN7Ý\Ûq°úc¦8=Ø´F~V¢¥S™ ™H’tëB¹0L£52ÄÝQ"kwGs“ …ŽÞˆQË3çsFI*‹–ãC—CG/ÐÇŒqHÅ9"Í×éöÐÄë£Sר_[ Ê"î˜n…:­Ð1”‚£MÇÊ“n"Y4ô1s@%%%$õkT—5z‰šþèBç5E裛׌.G$êž‘KÎâ­‘ïŽ*Ö:úZa !:z«ÕÚ#ÆqJ7C§-ºf%tä@3ÄÈSRRò‡ý®&"¶×‹øï)ÖÈñé£#ÖÈñ5_»iüñ¥ÍY#ƒ¹#ù$O=kŒrÇDåéCG‰YŒ6›]ly.ÂÅ´@óu&€8I¸5‘W©Ð¯Z£ÖÈñMǨ5rä¶.L+ž,¨vZƒ™bz£GsêL¬Ô¸xûtGÂ9Ø×ÍD²˜‰ø0s¡#Í׎q2x­‘߉ íX£ï,éµ{Q 5n]¨÷•gB½ð²µFkô…ŽrÖ¨:&ªVû|Qbyiœ*"k{÷^Z<É¢ƒ ~í&G˜PkôU¿NÅ)I󵺶ÄÖ…M-Û^“¬52˜;êÍ™;²ÇÎfLµx[1·ÈÃE^-'ñavCG/ÐG×€8‚lk…‰µFޝ~Mi÷Ðl¾¶¹Êc(1úh´ZÅôQʼnè•çþÉw´×©•Ñ\裌®i™.ôÞ¦-fè£;TJ{ 3° QÐ9I÷b(¡üCËëÿÐòú– }Á3Òš“rÒáCæ/8{MêEêºt±8áÂ=ŠÖ¨òÒñ£êÒyÄË/8§‹gX|Öȉ ¥3ª'”‚Í×Ö¬QbëÂt7¡áú3QO£5òUqÇ`Ö˜¢;ª(£ûK3šˆE‘,$^7}²˜ö`%ÁôGË@A$*A# èf°ù:Ek$åâu º&Pjo¾–³Æø³¢*×&¬ÑûŠr=:&ZŽäªÕ‹g8ñè[ˆèÅ×oÒ>¤ìÔM‘6—<&ØQö‰–ÅL„Ž^ Ö€8‚pt•§ "·÷ÌŽ—Ó]׎ ÓZ¯ÇK”>Úé¼–^²Ç5òWLäŽ,Û‹3Q‹¡# ³Fû¸Æ“³pѾÚîôLfÃÅ‚@-q!X³F/Øïj;[ ž\<<õõz¼øôÑÁÎk¯>µÆ¤ ½†Ž¡ÊxâÑ·¼(ådùk‘ᲈºåP¬Dg.tä@q;abR£ø‰‰ÒG;um•½g,̆ôêc"«³¹^Ïü_yîŸrî(n‚¡£ 5šÓM]&´ºZ‰žûå}E厄ækc@ÁJJJNÞóbž¤ÈIz¼ï\߉"Í×Ò“I¶Ôõ‡–×'ÒÇTzh§?Úì¡™¿`à¶ñ’»cÒ¬± ;ZÈ9Q¡£ˆ2Z]8+g•hû ÿ°Ïårî˜uÐ|­ˆ#Ø·F"òê#2B• 1æâ1Í×6·.ôžhtëB¹³|§ˆtÏØÜ„†[#1cHâŽrêwLjÚCG¤Œ>Äwsq-Òsä,;=Ñ™½ ~­ ˆ#ØVžæÖÈáÏÄžzyº ¾úuZÖ¸c<¶.”;+êwš¯}ÁsG˜ò¨2¯1Ômf:J(£tè(G* t#\”ƒý2œûñíIeQ:tÌ;ôQ9ù«à-Z´(--M{¢xƒÆxæ}û0í¬¬1x"%ÿ¼1Z×f‡í(§mÁÃÈ£ÖŠÔAkôòÒâAñî¨Þ3Á@ï,ÒW›¿` JèÈö0”K_|ý&9q”–9sg©/ÐMvK ® ¥ëÎr'Îýò>9[(++sÖÏõÑå[3 Çâ%*hŒÂ7ý1k”X»ÇæÖ…r ÔF›µ}[º`T¨l­·Z1kT)X¿üÂõ'}‹ôºŒ–CG`æ¢ ñ•hËsó:rÐ=#GÞþ¸@&Gñ 1‹)y7ŒÞšS0£?“ì×µ)¡>Z[âç…íS3v^“€5r˜UøôQ£5Î×T¬—½A㋯ß$=¯1‹¡£àÌE×"=wÎY{Û‘Y3Ë% 3tkzAâXt$ }Ìûöa‘¹A´÷ÐÄo]HÖïSòôÑÜ*1/d®óš’X#mßXÏ=êµF•´ÏK¢Ð1X›fÃÈ}O ÂEEÄ}‘ƒÐQ/˜þ(Hžÿ¤…ˉ£zÐ<]$€´P×öML=càQj˜îlHßÜÇ đæƀÄQ?&Ž*å騠1þøuä”:¯)¡;š$¼ÓS·ÆÐ#‰oh׉è¥Åƒ˜Zi‰ƒ~f4tì›¶:Jo?ub|1ÚÁHϳËÐöç,ZsËEécnM$ŽùÇPÐE¢ÅÃCÑÕC#Þ|máE±ùÚtâÒêÖH,–S[œ<*kT¿2E„ŽQµéð1Ø µl]­XŒ.f$ÂEûs±¬£h¾öqÌ3Û‚Æ=.Lš2$¬ÑËÉ{^<ïÛ‡“‡{h‹×–;¯“n]H;¯Ù¨’ê£kd¨ž‰ µ¯;ª,ИûëòHtºdhÃsgùJö™P@¬ÁÖ…ˆc>áÊȾdÄõQN4ƒç&MMÔµãÈTªW‰ÒG›ëõ°³xú("p­‘ÁÜ‘Ÿ­QKèÈVF÷CGä‹r„V¢ç~yŸÄ¥²¢€Å:zñEH‘~ã’îGŸ2™÷Ó¿Ùƒ(/T ãÏ î=ãÅÎlHoóµ 3¥â›¯Ýï¼Ök^Ä'&Šgê“ÙÚ*³œéÚì’îÆžîŸ%R‰ÎМŤ'2-ñ‡OÌñ­ÅƒÄ1W”””Ä(#ƒŒU‚F0NßÞ3Þ?²ÖC#±÷ÌN/§û³*¦ù:õšø‰F­‘„3B jþBì=áK©KàT{uL=Úf-8C$¶˜•9‹¢·ïÉPÙçHцŽEÄ1' ƒøê׊A# gpëB²ÞC³í¥ê£Ñ„ÃW¿NÝ9Š}3AD¬‘QГZ£tÁzþ‚ü]:éð!/8# V«\©ÛÙ9‹ ö‹bîÇ·çF½÷ÅàçËÉ{\w,BŠW§N:eÊ”U«VU¯^½S§Nýû÷¯S§NÚƒ’AB½œ¼Ç…ó~ú7_Ä[9ãŒIEÐÒC“(}´SóêcR¬íyÝ¥óé¸QÜQª']2Nꎆ"WÝöNT´ÆDç2Ëܦq¶6¼öžÈ'ÝÄÌœkú¦?Z¶Fv.s²yïߪÅ€tÔçµF6N§BÇЈ1HQ…Ž"•hR@C'*N[TÌ¥ËŠŠŠÇr9¾µxŠ.q$¢®]»–––.Z´è”SNaÏTTT,\¸°N:mÛ¶MeHz•‘})‘>ªLˆ”˜þèu©s·.$}º)Þ|m§óšî=ãE‹5ÑÉmÍKž 2m2²‹{­qÛ8ݵGŒA2:&¶˜§9‹&‹*ùŸýsYèøé§ŸJ¼(p™bL¿øâ‹®]»î¿ÿþS§Ne=1=ôИ1cúôéÓ¿õë‹'ŽÞuU¬Ñ§Œ1ǘ˜ÃO'Ïo7J¨€ZJÛÞôQí!åŽõƒ">˜íÇ6"{ÏxÑeœyïßJÂóE‚Fß+Š‹©/hô 2­Ð‘ç‹”\s:J,ͽãÜ,ÏYäÄDíì•Jv˜èDX0òªE›8£8ÑøñãGŽù»ßý®C‡«W¯^²dÉÁ<~üøÚµk«_\Dƒ£ˆüIzV¨>êZ¬'ø$‰é£ÞÒ¶¸>-m‡.ß“ú%"Å_½ÖÈ)['µFþº‚ý%1Ã#ew”GÁªtrâHi×CáùL¾¬+ ø‰‰*Ñκ#÷EßGÒ ŸÌ¥i@‹ŽY³f͘1ã½÷ÞkРÁQGÕ·o_–>ª/ŽñUi&v$à‚r¢é=wǺŒÆ:¯©Póµ¹Òv|óµµ®‰Vßé Z?ªãõÑœ52âÝQÎù«Ç_¹àØø­¹£¯*=÷“Ñ6ÝѦ8R¡¿.fQÅKÌ)wĽábÁõ†sæE+ŽÅ8ǑѣG=zØ|E‘‰ŒüOc¼PEù«¼°ñIEk<=¦ùÚhMLóµÍ‰½gvzEÝŸî1Íצ­‘b§<ªX#Å6Y‹[£#F]ØÜЇøÌŬÌYLpï;Ëb*s¥á/*(‹^Øaè³Îø.êÇ—8ò‰ŒªçsDueŒº¦µïzãXë¼&Oý:•ÎkÞôMIôÑÎx*× Akä§<*Z#FhorRk4:l|Éqè(±:÷¶s:ÆL[t';9‹=Pœ‘Ÿë(ÚÄâ¨.ŽZz¥)IýZä:1)&‰M¯9¬àHJÕKÛ$[¡Ö¥›‚[<åx)è;ÜIDAT&êD‰mèH¡…9©5rxÙZ‹5òÁpiS UÜ1T{¥-‹#Y\ [%ÌsJÅO¯D»ìŽ¡áâ Ÿ„;Äh¤E‹+V¬ ÊHuU&5Šœ@jŸ™´ùZWi;ióµ‰2¦ùÚ~Ç+{ ו¢RfÑ£ÞEpøÂãŠÓ:JT¥s:Æ„‹U@ñ³¼_&mCNes—˜_õŒ˜éøpGˆ#¥E‹D$Ýþ"N¨íɵQ+n]H&w/ÑG» n]H†{h´l](}âÜo÷6gPÂU{çšGõIêîHR³³:Ь¡“!LZOçÍãÏ•˜¶w„8‚dÄè#+UKë£HaZ°x­þƒÍݽbë׿v/ô”<›³! ®þXàtekÜñ¤˜>j±Æm:ß®±Tͯ©><¹QñÈSº÷%C¡£ÄÌEÇPüÄ(Yt*;9‘=0]ËŠ:=Óq2„ꣷ9&QgŒÄaÔ)Ûh*¿•$VŽå[’­Ÿ>¦¸{¡Ä$E]Ö¸ãOcõQK…ڷƤúâÛ´spk?tô¥ŒJþçv訲@7¹§€â' &‹Ž»c0\TTÜ‘2»LÄÈÃô‘¶¤¯«zÑ¢EDÔ±cG*´|£âÏÿ r©¨ñ$m¾Ö³ÖÉ 1æDJu÷Bñæk¥5 ÕGukŒZÏO¥%tª¨5w -LKûŸÊ¹æBÇÐp1» ˜è¬ø­\BqÍ V¢áŽ@¼É|‘ˆ:tèÀðÕ¯uµKk¼T¼wŠ4_kì¡‘ÓGõÒ6C¢Ü¬Q7 ê£ÒlÈ$R2÷“Ñ\ž Y#˜\ƒNÌ Öñss::µ@·ô‰g)N[L¥î<7Q%Ú²;òO“JþDDÿ©˜–98 0qœ;wîþð‡‚Ý3¤»í:ôKé눬wM²¨+$ÚºPðȨÓ}ë“S¢=4QúhÍ·õÉhöÀœ5òá%êΡBnm.tiÉhè˜hæ¢û (~b¨,º–<Ñû¥D[¤QwôNb¾èå?Ó(SÑ#ÄHÂSFÚy²£…æk]»Ë(º¦·)ÏÜî…W4ÔCS°xma6¤oú£ek$8’¬;ŠX#¤`uX°š¯=tLÔ1­Ð‘=pynécÎ*X‰vß}¾HjŸôºc¼,ÉPôq ˆ’Ũ#µë£ ê¬_kœitÃëƒw–<£»òÃ( –{h’î=³Ó¹ Öè=qî'£%öbIÚ{Q°@œh]î(·ÈŽËîè Én³‹ô‰Z^.Q%Ú‘ºsèìAhdŠîèýRD}d%z„8! Š ÜY‚Åk鉌QÍ.'DJo](qyôQ}/™Dçzõ1­Ý %ôQ—5ò'I8zLj|ÀqâäçZ–œ´ìÒçǨp1‹ ˜è,þØÚ&«*熞(¾à¢zÊÜ GB½¸=Bq|ÍסDÚ—×1ÔC#¾u!iZTœ¬Q±´bç5%l¾6a<£Çà²;É^=àŽ‰‚FߥT¶d¤åœ Í­ÑílÁÚ'‹Îf‡ñ'J¬ÎͰÐïS‰þOÅ4uw$‡£Gˆ#°G¢úµedhÇDUòø ‹º—h¾ÖRږغ0Ññ"' 5_S–˜èQ.h ÞÛЭrA wÜ&¾Þ¥=­wºHŸËÅ1éÝÎ*`¢³b¦-º“ŠœÅ¤µPNÔéâÓ™ùå5z„8ÛXÛº4•ª¥O .abB¤ >j/m ê£Ñºv¨>n[åÑ|ÐŒµX£÷.H!¹ô^J¼¼NQ› ¥Ò%­Ðï~|¨ëåÄ+Ñ.»ch¸˜â"‹ÞÓ} 舓×èâÒÁ¨> 6Ǽ¾–õÉëD$&ñõks=4ñÍ×vfCzõQ:h$)SñF­‘9½TAqŒRÆmWp>tôúbV²CÅùã¤;T¹ãŽ"•è´Ü1iOtÒÑ#;‘ã”±@‹‘O?ý´[·nS¦L9ôÐCÓ‰®îNRÕ‹_ÙGãúäÖ~YûHk»Èt:¯SòÒ$yÛ.¸]¥—˜ ^0Êã•qÇœ £òÅl) ø‰Š«s3Ò]dGbÚ¢ú?གྷ«ž®¢³àŠ<ÁxÿÈo8#C‡}òÉ']G†HËvÁRå—‹®µÄ ^SFՖõ¼{¡Ê4 =× wˆIzJø4žo0æÜQPw\Áw©Gg´îzì›ý’!wTŸ¶h®WZ¤­«èzî‹_Â},Zq¬’öR ¼¼|ÅŠ³fÍzúé§ÓËNð­®½_ú`?*A}Ô²å o"‹‰Îkö埨;+nE³íRREjéÒ6_'Héòèæ¶ƒ„]P%hÜqö¢ÊÅåÐ:ûš^'½òùN×iyýÜ÷oåî8ïý[åÞê´ð.Æ.§hF‘.‘‡ž(’,ªÌ‘>7щÁpÑ·lM"NÚõ|iwä¯Üö–ÄÒÄJþ¤=ò ùƒDðÉ>S×Ç"¤ÇN:}ùå—üKwGâõk2ÐC£1¹,xdÔ¼½"5_k,m'j¾V )¾ó:va Acpit •kÉYè˜4hôßõ.iöÀ©Pï‰ü¬‚[¹qms—‚•èû]´L[T‰åd1æjiiLÑ&ŽÅ(Ž‹/Þ¸q#Mš4éµ×^sVvš¯ã×eÔ2W²àYþåu4-Öü#*d„&v/ÑG×aåNÕ cZI®RN…òQ]âH²Ê¸ãÖ¬ˆãŽ]·¯•-Lt l¿|¬ËU¢-»£¯m´èu°w‰¿¸}™8#ƒ š:uªãâÈ0§"ª'R¼VŸ©Þ@CÂÒ5÷ÑtMLóµÕÎëíâbÎwŒMxï»»?+,*NÊÿì¸5cîèóENVÄQðÄPYtÁÿ’žËKü›Ù¨;Ƈ‹ú]§-ª[,¥¡Çb$CâÈÐØ|-7‘1ÔõöÐHï|-—SzHAcüñÜ`Èn {ERß Eà¥EÜ1éâAîš2¦åŽ1â¸ma£Ø…ŸTÀD'¬D»ïŽ>Y´¿¹Ÿ÷ôÐ_È Áf½Ñ£\%ZÅb}Kö-},Zq,Ææ˜ìR°{†ÿ´Ä*¿§|ÓM´]{»g,ÌpÚ¶4†­Åzv¼îž“š2’²÷Ú|;Á—þÃ~WÇ´ËÈ­Rž´QfîÇ·;Õó‡¦×ùÞù¨ˆQç‹*¬ì¨N¢J´ž‰s£*ÑzV’ž®¸C´–~—ÿTLº%ÑÇx=EߌQ8f)qô‘´~mb÷BõÚtÁò7Å~Òhœ)·uaÒS|§óþëDf£Rî¼ßFâ´Oúu{Û¨FžYfü•nÁš?Nú·Î‘ì°àY;n0y)À‘M¥Å+Ñöû]¼Óµ‡[Âð¦ÚwÌue™7-¼ªcÇŽdR‹6q„8fXÚGËZr=7¡¿ÐµOˆ×G½¥mq}TqŸ5n{òËûH|ÕEÍòl ¬¸ź£xŒ}wTÏ]vG_%ÚýºsðDéi‹Ü1¦­îm"W(hoõÑ·dÄ5ê#ıɇ82L7_ÇGŒI×ßQYåGñÓˆQP:ãõÑ\i» >j·ÆZH­‘t(ãN£ ݤ;Ñ‚ÞVÄ1è‹ÒÿöG2Ó(.fÅÕWç&3î˜hÚ¢‰èQbÚ¢¢>ê]²Ç>B‹‘<‰#Ä>&•B20·2xC‹õd|Ѡ隨ækÕUt!JµX#™G¹éŒ¦Ý1¦åž;ê Å+ÑîÔCáuÍêÑåŽ"[¹„¢«ß…cg¹G£Kö}„8#ùG†®âµôoO[RØúä’=ÔÒ-Û{^¬hr[îØBPǤF¡S<µÂă¼KáèvGÅÕU£Ü°Û)I+þ²ïŽüqÒCÝÙP°J¯´–Õ¹IA¶‚ʦ—{_²GË{ÂQ—ˆc1’WqdÄo]È õn9¨~*´>9 /ܨ^Ý&Ù µzNiÍ·¸]t!é©&wÔ¨¶ZÜ1éF÷CGõÕ¹)mw”›¶h§ß%J­õ»Ä×…5.²¨¸d%×ǨÒ’>B‹‘|‹#G¼~­½íZýš‚§Çz'D&m¾Ö5!R®ùZeù]î%dZÊÖs?Í÷©34NñÓÙ›»¢uÇÐÊENdR¯;‡þ{P03=Š7hÜßEðUÆ#þBŠúq9ÇÎÖ…¤o‘péSBö§60!RPµOˆÔGñIá§³™ŽÛO—v2‘ »Ê2Ú¾{LËU”‘áNÁZ$\t܃ábŠCûN—«DkŒUìMNƒzjhÕ•æk¹]g Ž (0ª‚ë2 Ƈê àd~÷˜úµÑEÅãõQ=h õ‰¤F%.aIÝ1¨Œ*ãT6{ Þ%­r®º8JT¢]sÇ‚•èÝQË´E]«˜[d1é+º–bRr}„8‚"B¯>&Ës¼Æ­h*å­¤sÿIŸ@ðB’Úy­Ûù‘ðʈ‚Gî4l±…$)6Iµ#ŽìõvI«œ+玷þ+ð¢,²“¨m¹WÚW‰¶°1´ïHþØD‡²–%{äÆúBºî‹’è#ÄêÍ×ç/𨽤š¯?ÕØƒ4;¯5•§c+\z–îã)´¨àŠBF'eR¡ï¯Šÿ™.XÃEײC‘sùc¹¶esS® †‹¦û]¬u(“¾%{Ç#rkdÄ Ä)rÍ×&ÚhÌ]D°ùZׄH‰­ IGi›Ô¬QüܘèÑЂˆƒÆÛÑêŽ1cCÇøpÑ…ì°àÁü±ÊÆÐ ½§'­DkïwQéPV¯}K¼®ø;£’bŠŸs<ÿ£PS‚8‚bG<€$ʨkÍH‘ƒCw¶ Ý"飊jxO—ÓGù­Dj¥gM;&UƨáÉ c{ˆKRÿ HÝÍ\tÓc*Ñ©»#,í^º–$´³ÜcÁ%{G¢ýÖH¬£\äU¢š¯!ŽYi¾Ö5ÇQÑ5½«»™ë¡)¨Z‚ÆðÎkñ}b«Ûû]­4ú/»ÝkÓ1ÃSY—‘¾/”ž;òÇî/Ðz®x%Ú¾;z§-êÚEnzŸ7n4×ï’Ôá´tðhœê•º’ú¦?BØ!}LÔUMÆæVz/¢¢Œ$ü‘¥º‚ƨ?¥‚}$ ZÆ/Bš ßé²jó5wÜ ìÚ:<ÁMÅ¥§º2ÌãÏõ~™´Å´;Æ„‹vú] êŽöÕmTÖµI4;·¦·óš<úqÀ®­ IVõ¢š]4.6)­Ò×´}ëBÒ4ƾ¼Žk䂥˹·I¯2ã¿MÙµuø˜ÖêŒâ{šÓÎ Ô;’ŠœÂÛßÜŸ³%‰-Ž­=z”p½}!r·fº©œ]ªyóæ1Ÿ9â £eeeìÁ@±[êšNdt}òDË k¨nÛï¼ö,Ú§æùnAe_Ä—ýü_¾kZpÇ‚Ui×Ü‘û¢S t ž%‹©¯³ÈÿI¶VƽˆÜäFóŠzSL/ænMü ÔRRgîT0^É%G o¾ž;w.Ò—Ò{ë×ÚÛ®ê*²”F ‹š&DJècº×4†¾„Ê3¡Õ|sî(8‘Ñ…‚uÒJ´Sî(˜,¦âŽZVçfÈE&:”µ,ÙC›ÎšÓ}ï„*S±é#Ć[#ÇÂÖ…¤¯Tô¬ÐRqÃkŠýL,:+ê ¬Ø SpäKS¡ÀO»;&í}I1tdäfS¤¸@£\ÚŽ;FÉ¢µ~ ʺ–ìI: )¦âíÞ]AY "²¶]>€8‚Hb~ L7_‹¬Ëhz¯®¦;¯©>*péU{ÄWŸY((ͺúxo¦Mwôú¢SÙ¡ÈYìµ ZÄO©DíwI”é²XñW¹šúÒ6ÒïpðU ™(CEr@BÁNxÃÅ‚ïµëc¢9‘ñëݽP±c4ÙìI}Í+IWí‘PŸ}”Èü—æIz ¡c°Óì¢1í¶°@c0\´¼¹_Ìér•hÑ£µ¨ÏwâF]‚L1¥-0Q™ØÜž×á¢9ÖGˆ#؆ôßr-Í×êÑ ï£BïV4r[&=e§•;¯IXVâ…LxÞ‹¨w(ké ‘x]ññعµx%Õ^R‡ähâ bNETO×1"#!+»l¾V—3½âèUFútG¹ö óGÙš]DÎ SwGþX:ÜÒÕ?a§ümaÉ·F::¯ån²h ˆcÞ˜:uê”)SV­ZU½zõN:õïß¿N:éI¯>Ê¥‰d~n%)ìœèÜ >jq2ßE õ‘h±[ò¸£ÊDLC]Ò"õhwÜQ¼mß½Óu5ÏʹˆÞe]M!ZÊĆ–¶Qì(¿AßV.ÀÇ\1vìØ|°FíÚµ[½zõgŸ}vÈ!‡Lœ8±ZµjiMCóµú¤uneÔúä‰PE7÷¼XWÐÕð+=]Òh2ª2<]# ]“2Òï"·à¢…uvâÃE ý.‚Êû]TÖµ¡$ÎWðÖ켦B%õ¬;Ì?üp×]w½ùæ›k×®Ý{ï½[·n}å•W²]|â˜JKK{öì¹÷Þ{O›6­^½zD4|øð‰'öêÕkðàÁinÍ׺ڥ5^Jd}r‘º³–ÎkÒ1©Q×NÍ‚2§gqJ6_0½åuˆDÓ‰<Ý®;*¶¹p´¯³“¨m"z”^ÿÅíø´/mãTç5åK9åååÝ»wÿú믛5kÖ¬Y³ÿýïo¿ýv•*U&OžÜºuë´G Ä1? 6lÒ¤I·ÝvÛÿøGöÌ–-[~ÿûßW©ReñâÅ•*UJ{€;¡eõGqt­õ˜tÓŠnvÑØF#çOâ‰È‘Ió? c ôÒrG6`+~+ºc”,¦>g‘gÿ$Û/âB0æÚv|Ûh Iü ÔRRÏ¥«°pçÒK/½æškØ3Ï<óÌ 7ÜжmÛ§Ÿ~:íÑEq̧vÚÊ•+_}õÕºuëò'¯»îºY³f=ñÄíÚµK{€!Xh¾.¸.£¡¹•¾wZ^'Õ=¯·/åmz«Ïâgñˆ1ò ±åŽ\^}–JÑ9æt‘Jt*î¨eun†œ;šèPÖ²dOÁë$½5Óebõ-mDn$ߊrê©§®]»vÉ’%»í¶²S§Nß}÷Ý;ï¼S¹rå´Ä1'TTT´jÕªN:¯¾úª÷ùqãÆÝyç·ß~ûgœ‘ö#1¡âUé‚F¨q+=«‚Ëîy½í…©Ás'4¶xeôÞ¸Qw õE/i¹£÷\‰J´wŒ’Eký.v:”µ,Ù“t<SL]·&};‚7X<²è¥W¯^õêÕ3fŒ÷É“N:iõêÕï¼óŽ Í ¡@sÂ/¿ürøá‡xàsæÌñ>?yòä›nºiÀ€½{÷N{ŒÐU¼VY”‘š]4Nˆ”ÖGõ=¯Iß‚8̱ô^-ôùDï• w,è‹^RtGñA†Û; V¢Íõ»$2'½[M1½Ð¸OF±N é€Ð{®¡9‹TL²ÏÒ¥Kÿüç?zè¡“'ON{,‘@sÂ7ß|sÜqÇzè¡S¦Lñ>?gΜ~ýúýýïïׯ_ÚcBdËì¨R£ç1 õÐ$ÒGõ=¯·}©©—™t/è¼`ReôÞ²wLä‹^¬¹£/\Ôµà€ôéÁV62¼^ÔíMÂb -Ù¼”J‚(®"¯¢±¤a¼ýöÛÓ§O/++{ûí·5j4nܸý÷ß?íAEqÌ ›7onݺõ8{ölïóJ½$m¾Ö¾{!Ãè'±ˆ>:Òy½Ó¿}Xe;Äø+oªâœ?åý8 tGÍÙM¥ßE×´EéèQïܾDkR¡©.tðp¢ôѶ×Åxž~úé›o¾™½3Ý»wïᨒ ÓT$ÇüpôÑGï²Ë.‹-ò>ùðÃ=zôèÑ=zôH{€2ØÙºô•ªåÖ'7Ñyí½ˆzGA –+“&k”RÐÕ ,•ºµŒ\bi}oÒfAÚ¼Gú kÛ"8¤wTð…t™\%n'Ñ BQQQñÍ7ßÌš5kôèÑ{ï½÷œ9svß}÷´Ä1?œvÚi«V­Z²dIÍš5ù“œ>}úã?~ÔQG¥=@yŒê£®æ•ÔÓDç5–­!Åž3M;‹«‡¬âCâKêÿ(]wô~)Q.7çŽÃEíC‡^¿àK˜XÝÆt…[óÝŽé’zóæÍã'P†úä“OŽ1âÌ3ÏL{,á@óÿþõ¯ûï¿̘1§œr {¦¢¢¢}ûö[¶lY´hQÕªUÓ *ÚõQ×r}úôïß?íÑiCKóµâ¢Œ¤{n¥–ÎkN+¬Ú“d‰r>*´®vw”˜Â¨¸EJ¢þ'rlnþØô>x1§« éHìlÇgíÖ,l{ YT䫯¾êرc‡yäïócÆŒy衇îºë.ŸPºÄ1WŒ?~äÈ‘¿ûÝï:tè°zõê%K–|ðÁãǯ]»vÚCÓŒÄÖ…d`÷Bs×±°íu”çI75S!wLte]îÈÛ_­&ÆEfß½¾È°¼F·¹åБØÜiÐwk&ÊÄêJš¨¤yPç´ÓN[±bÅý÷ßߥKöÌÇ|ÁѼyóöÚk¯´Ä1oÌš5kÆŒï½÷^ƒ Ž:꨾}û:;ÁV â$ؽP}^£–Îë‚Ç8wçXNÏôʰ%J·ê3’Že•t¹cÒ!YXg'>\´Ðïb¹CÙ+X¦w´“bêí¼¦h}gÀ4òÞ{ïþù›6mjÛ¶m£FÖ­[÷æ›oѨQ£N=õÔ´G Ää;Í×ñé ¡¹•d¸óšvN¿Ô¯Æ¯ÉÜQ%¿$)w Ê™bt§xõžLDâûD›èw‘îPv|;>¹[“ÙøÎk-7È.Õ¼yó+VÀ̱zõêýë_Ë—/ÿꫯöÙgŸƒ:èòË/oÖ¬YÚãŠâòƒ9}OnLìjã=Wcç5gÇZš.转.¯œ¸Ifº¤%®à¡>±A‹;ªÌ\Ô=ʽºï"º¶ã3±йæëDo zI»È¦  ¨€8‚¼¡Q%æDêJ%㯯W}Û~èR=n*ZF[°UÜô‡"WˆSéwѵ:7ɺH°CÙèv|”$uÓÕÁcni›D·#}ƒ"•hè#à@A>Ql¾Ö2·Œ4¥MÁ!© YŒl©¯A軬Ê}W™/HÆÜQüÖÜ1´mz‘Eß  q¾ë¨Ä™ºRLí·&w;‚7(7múâòDóµ‰Ý ]Øóš#’ÏI\9þ²Ý‘?Ne¾ ÷ rß_sî(.šëwI”éÚŸZü¥Çcai›¨W1WRWùè‡>9GPhYýQŸê).©KòKºÞ++Î,Lz5]¯Up$)vº(€Â²g†Ñ}ðB/¢¾ŒÊò&¶ã M1-,mC…\_åî må},Z Ž ˆ0Ý|AéÚ¨&æxÅY€‰.+qM•ˆ”twI'|è¾ÌºäOútRNìÔw®SƒàHì–ø %½`T™ØÂn1„t€n Ž è0¡â kkì˜sƒÕ5Kã5“n©b¨KZä"ñ~¦èŽIï".ZXdÑwd軡w‘E‘WÔuSñ/”¹ÎkÈ"°Ä)ºôQÎóBÏÒÛFÃÐRy×~Íxw,Iky»Ô×84êŽ+Ѧû]u(;Õ"¾ð¸Hة͚è¼ö^–tW¢ˆâŠšP},++ã8àö TòHyq>ÒÚy­ql¦¯tG¹)Œºš]¤—­aÛzû]’V¢õFÖ¢>߉¾è,û)f¼’jß-âÀ2Gv4_Ï;—ˆš4i<†ÎJ^ðRZÖÖ~MßÅOÞãBõÚwº“IÓ”GŽ.“àéºÞ ‘‹ØÙŽÏÚ­Éu^'d8Ä5¾õzìl]Hº…,þ\ÅtxT.%·­‹·Ùž;ú|‘L£Ž¾êàBM!â/áàÒ6¾ ‹‰nGâƒ[¹.GPtpY¤G4ªz%OcSNÒ#5š®Nhv!寅D;….…hmn_Ìa†Kî‚ã>ÅfŒˆ§˜Ö:¯µ¼KÁQå)\ܰaÃäÉ“§M›¶víÚ=öØ£yóæ]tÑqÇ—ö¸€<GP”ŨS4ê£^u“Îõ6tËõÚ’1~¥t®!ª[EÌ ÃD¿‹\¹VW_ˆúíP´>Ú¹5 Û^çI9›7o¾à‚ ÞyçZµjqÄ¿þúëÒ¥K7mÚtÕUW]~ùåiHq u}”.ÈÚö:xºbÉXp!‘ëë¥ç/j,[§;þØÎrìŠë£®[£B±«à«¨7åò³øÉ'Ÿ:tèGñè£V«VˆV®\Ù«W¯Ÿ~úiúôétPÚ2@(Œœ>êMÑôö5k_²'f]Ë;òñÇ©,ŽMZMâ &–€,svå{¡O?ýT°x-qw*ÆH4åû#ø/ùË믿þÌ3Ï´jÕŠ?ùØcÝ~ûíýû÷ïÓ§OÚ2@¥àÎ×|ßB†ƒ×¦¯©²‰³ol.4»T5So7†Èˆt(ÚŽOâ¥w@ñ">÷QåUߨЗ(žÝ:üòË/Ë–-ó>¹xñâÞ½{Ÿ{î¹C‡M{€@ˆ#‰±Ü|íg—×Ñ{5š]¨r 6šRØDÙ˜kÛñi_ÚÆ©Îk Ìò,ÎÚ?ü°J•*Í›7÷>ùÐC3‰cv8‚Œñé§ŸvëÖmÊ”)‡zhº#1§">¤}y¹¡úÌG£îh³Ù%ô I«™VÑÞ$Fz³&VíQ© ÉÎž×ØÊ%†%K–\~ùå›6mš?þ^{í•öp€ G1†úä“Oº Ž ½úè‹c×ÇDÝÜŽtð„É‘F‰(C{‡²–%{D®“èÖLLXô½Šº1‹Ü>UCÙ²eËO<1jÔ¨-[¶ÜyçÝ»wO{D@ˆ#Èååå+V¬˜5kÖÓO?MDîˆ#CQU”(ê²r -âXðH½ë„Ûo4¡íÁò¼É(q1´F·µ£^H1qŒz õ œ*@ÅB¼þúëC‡ýä“O4h0bĈc=6íy Ž têÔéË/¿ä_º&Ž Áî™àR8Z>Ø´ï4³¡‰Õ+£^‹×1µøDÒôÈ„´Å CÜÞ´oylmáq KÛ§£\ýÖ|£B%:¿ýöÛwÜñøãï¶Ûn}úôéÝ»7[—dˆ#È‹/Þ¸q#Mš4éµ×^sS9ñ¤·ùZËGƒžiìtÑ%£âÑcü®*ê´‰˜FÍRìPVŒQI_„IúRÌD£ŠÿÆii¾F¸(ÇÖ­[¯¾úê^xá„N2dH½zõÒÐÄdŒAƒM:Õqqdˆè£‰,ÄÍU{DºsDÞG¤Mãô>;åo‘%{Ô#òBZîζ×Eu&L˜0bĈóÏ?È!ihâ2F†Ä‘aNãçÀiYµ‡Û•‰“dç/:%mrý´s,gaí@£ à–—¶Q¹¬xIŽŠTTTœtÒIßÿýâÅ‹wÛm·´‡´q#sâÈЫâ+ÈuIG<Ú7­±¹¹KPn,ìªBböf"íS¹`ÒÓZçµ–w‰bKêøLÔźuë:tèP­Zµ¦M›ÿôŒ3ÎèÕ«WÚc2TI{ì`óæÍ?ü0ÿ²råÊ—\rIÚƒÒSÆ(}dŸUõ1QNÆŽIÚ%uåDW+ø*âwƒ‰vU ©¥í&ê"ß,ÇÒ˜ÉÅ'iŠ)wk¦û“Ø_„‹FY»v-mذaùòåÁ?EcuvAâbÆ ‡vÿr×]w}ï½÷|Çd4qôß|ªê+«¯¤]ðjQD½Š¹ÀÏÎÖ#¡IôºŠƒ‰¿M×RÌ‚CJô]Sï¼æŸ}×Òx8‚Œ‘qäÄ|bù¶½Öõñïë’V”›‚‹8Š ^ã:;¶‰:‹¿®F]Sïþ–¾©à Yè¼6·ŽH%ºàZZÄdŒ<‰#£ >šX²G—Ĭõ¨wʦÈMi¹¯¤k=Ý&›v.õJߣË)¦Æ«….'N +Ñ ˆâ2FþÄ‘aTM¯ÛwÒ®ç«ïï’(zŒß}ÄÂN!¶É¶³ŸÜ}I )¦óZï 2?Ú Dq#¯âÈЫÖR±˜W‘¸šz{Þmf,ÔR Þ£‰J±–Ê>‰}¿ ¾Š–’ºö­\ 8‚Œ‘oqd¨ëc¢Ò¤úÖ#*—’„â¸Vþ&‚•‰¥mHAµåJêøÀ&G%f¶~”>Ê}`ëÚÛ-Ñ¥_Hâv|×q¤ü¼ŽµMkL/m£x;â7YÀ ޏNTÉõQËD±‡Hz}¼N•¿¥oJâå¬Ý—Ê­ZSÝ7*s•h€G²AA}Ôò*¡¼Ò (‘ŠŠÄÒJûB_nÜ'£8à§î+Ñ­Yž.à,G²„}ÔØèªkÁgÓ¾Dk†¬KíLÇ´°í5d€Lq {Äè£z;ˆ¹šcè I_'é}‘îº)V°_BNc–¶Ñ>a1Ñ툿QÁׇ™â@V ÕǤѣ…%{D^(ÑuÔÓ>CM<Ò×ÔGñpï¼Îk¸øé§ŸvëÖ-ßk>q Û„6_ÔG;ÛÖ9žöiiâñÞ â}…ê£\%ÚÁÎë¼Ê¢—¡C‡>ùä“Go Žä„`ÔGŵ¬ e$íK4ž˜[Óu_\UnJdH‰”Tq‚åW‰¨¼¼|ÅŠ³fÍzú駉âò Ä€\¥ £KÀØI1}¯¥~SÇ#!XêKiFg¯*R°¤N¹öEN§N¾üòKþ%Ääˆ#9D$}”&tɹ‹;µ@·w<ê÷%xbü ¹ÙyzƒÅ&‹^/^¼qãF"š4iÒk¯½qùâ@n1§Ö–ì-½[oM1“jœÆÎk]oTð%ðQBű!*Grïž™;wn“&MHAƒ^•ƒºí,m£¾Áˆ>ÚY[¹DqÅÄDR^^~Ê)§¬[·îÌ3Ï1bDð€Ç{ìöÛo¯^½ú¬Y³5j”öxÁ¸,’'qô‚‹>Џˆ–½I_à'žbŠæÔÒ6ñ×v‹!„‹Ñ@A1qq¼üòËÿû߉h„ ÇsŒ÷Ö®]{ê©§nذaذagŸ}vðÜ[n¹eÖ¬YK—.Mû&Š…PYŒ:Œ=Z[ÚÆÜ~Ç1óðŒ¦˜–¶!­ÓEJêø¤âŠ*i8ÍñÇÿÇ?þñ™gžýµ×^«Y³¦¯„½qãÆÕ«W¿ùæ›=öXyyyÍš5Ó~þ‘ûh×GiâÅ(‘•ª,nB°BoMÎJ“êcÌû¦+£å/ñŸŠi1 T óÊ+¯\|ñÅ•+Wž:uj«V­¾ùæ›nݺ•——=ºGÞ#¯ºêªyóæñ/kÖ¬‰Rµû¯“bî‚bª·óZË¥«óZäöc^Z@©HAa:vìxæ™gNŸ>}РAÓ¦M»å–[ÊËËO>ùdŸ5QÏž=;ì0"Ú°aÃÝwßöÀÞô‘U'ÕõQcSˆ`Š)ò**ù\hG¹‰zºô;ÆN)Ø|] [¹ÌÄñÓO?õèÑãÿû_§N.\¸çž{Ι3§N:QÇÿðÃG}4Ç,ÂȤúhy¿ãÐJz)ñP´ì—cú¦¢ná¢8‚b‰#b=ö¸õÖ[{÷î½páB"ºå–[b¬$eÆ “'Ož6mÚÚµk÷ØcæÍ›_tÑEÇw\*ƒá¤`úh¡)Ä÷B_N„¨!%­Ë-ýÿ*z›¯›7o^Q Yè‰#eÆ ]»výöÛokÖ¬ùòË/רQ#æ`$ŽâlÞ¼ù‚ .xçwjÕªuÄGüúë¯K—.Ý´iÓUW]uùå—§;¶¨ôQežŸ–m)kKÛH¼ŠbIÝû»=¸‡Èq¢ 6lÒ¤IìñÙgŸ=lذ˜ƒ!Žâ<ùä“C‡=âˆ#}ôÑjÕªÑÊ•+{õêõÓO?MŸ>ý ƒJ{€~}$à t',-; è]?’"ÊÄæzƒ+ÑÐG€:G Ä’%K.¼ðªU«Ž;öšk®ùí·ß~øáŽ;Fqç/ùË믿þÌ3Ï´jÕŠ?Évåéß¿Ÿ>}Òà6¤ç>Fµ´ôú;Z6Âq°óš •Ôý‡>TÀGP˜Ÿþù†n¨¨¨¸âŠ+N8á„Ë.»ì_ÿú×7Þ8gάԨNYYY5¼ÖHDÍš5#¢5kÖ¤=ºxç>ÑV¨ [©QË6ƒ.t^G½ŠÕØãâm¢'$ !GP˜#F|ñÅ-[¶dé×%—\2wîÜÒÒÒ[n¹eôèÑi.ó<ôÐCUªø?øà"Úwß}ÓßÎ×rúhaiï(ÒKÛhÙóZ½nb+ï÷î¥jP€ \zé¥|õoöäûï¿Î9çlÙ²åî»ï>ù䓃g¡T­Â’%K.¿üòM›6ÍŸ?¯½öJ{8q0}\±bé[ÚÆ‘õ#cF%­¤r%uü–¸ÄÄñã?žrÊ)_ýuŸ>}ø~ƒŒÛo¿ý±Ç«[·îìÙ³÷ÜsO߉G9¶lÙòÄOŒ5jË–-wÞyg÷îÝÓ‘Qú(7Õ/©>f´ó:j´ üf¸ ÄÄѯ_¿9sæ4nÜøÙgŸÝm·Ý¼´aÆ=z¬Y³æÄO¼÷Þ{}'BƒlÞ¼ùá‡æ_V®\ù’K.ñðúë¯:ô“O>iРÁˆ#Ž=öØ´‡œ ¯>2Ô³CÅõ#/Uð%HS‹tÌõ ²ÈGɼyó®ºêª’’’‰'uÔQÁþûßÿ^xá…DtÇwœvÚiÞ?‚8Ù°aÛ‘±ë®»¾÷Þ{ìño¿ývÇw<þøã»í¶[Ÿ>}z÷îÍÖåÉ"âÅkBWÌñ>#})Å#5.fŽ_€ q e¶nÝzõÕW¿ð 'œpÂ!CêÕ«—öˆôТE -úhaiéW‘Þ-¿xâ@ÊL˜0aĈçŸþ!CÒ‹~¤õ14ö34gQñš‚ë™ã—- @H“ŠŠŠ“N:éûï¿_¼x±oižÔGÁØOW™˜/Ùcn·Ê‹/N:uÊ”)«V­ª^½z§Nú÷ïÝêÍQ^^~Ê)§¬[·îÌ3Ï1bDð¶A@õêÕgÍšÕ¨Q£´Ç Š ˆ#i²nݺ:T«V­iÓ¦Á?=ãŒ3zõê•öµªÒ•hé2qÔ áKê9û½:vìØ|°FíÚµ[½zõgŸ}vÈ!‡Lœ81»3qÝçå—_þûßÿND&L8æ˜c¼´víÚSO=uÆ Æ ;ûì³ùóo½õÖøñã—/_þÃ?ì»ï¾­ZµúÇ?þѸqã´oä ˆ#i²lÙ²óÎ;/êO/¹ä’k¯½6í1j†ë#Ãܶ×I•Tq·˜¼þ.---íÙ³çÞ{ï=mÚ46wøðá'NìÕ«×àÁƒÓ]ž¹á†žyæ™ýöÛoÖ¬YÞrÄßþö·×^{­C‡<òò¸ë®»ˆ¨Zµjûí·ß矾aƪU«Þ~ûí§žzjÚ·rĺZg¡eb•mZKê·rq–aÆMš4é¶ÛnûãÿÈžÙ²eËïÿû*Uª,^¼¸R¥Ji0·üôÓO§œrÊW_}å]Fwúôé¬Y³æœ9sx#ÝŠ+N?ýôŠŠŠAƒ{î¹UªTÙ´iÓ}÷Ý÷ÀT¯^ýÙgŸup*]°å ¸o•””Évé¤DíX áb(K—.­T©ÒñÇÏŸ©\¹rÇŽgÍšµlÙ²víÚ¥=ÀܲÇ{Üzë­_|ñc=Ö½{÷V­Z}óÍ7·ß~;ÝtÓMÞåf̘±uëÖÓN;Ïl©Zµjß¾}?ú裗_~ù…^èÝ»wÚwòÄ&LÂ$ô1ª­]½ã,6***V­ZU·nݺuëzŸoÞ¼9­Y³âh”Ž;žyæ™Ó§O4hдiÓn¹å–òòò“O>¹GÞÖ/_NDݺuóÞ¡C‡—_~ù£>Jû>@®€8ÒGPE¦-ª¬‹ªÏúõë·lÙR»vmßóµjÕ"¢ï¾û.íæŸn¸áµ×^ûðÃ/»ì²… î¹çžC‡õÓ¡C‡–-[¶jÕÊ÷ü?þHÛ¿Yèâp¯>’Çù$,Ðw®øn1T¬áb(6l ¢5jøžß}÷Ýi»—£°‚uïÞ½.\HD·ÜrKp!¤‹/¾8xâ÷ßÿôÓOQ§NÒ¾ + Ž·`ÞÖ¢E‹ÿ¬Ð°1tÔœE‚, P»ví’’’õë×ûžÿùçŸ Q–-Ž8âˆ=÷ÜóÛo¿­Y³æïÿ{‘SV®\Ù¯_¿uëÖuîܹcÇŽißÈG€‹°1k¾þOÅ4ís ²(@•*UjÕªLËËˉ(7Ûc:ÎèÑ£¿ýö["*//¿ýöÛ‡ sð÷ßÿý÷?ùä“›7oîÒ¥ËØ±cÓ>ÈXIà.¥¥¥ÿ©˜æÓ¾DxO¯ØNÚ7— êׯÿí·ß2S䔕•±?J{tùgÉ’%O<ñÄ.»ìrß}÷í²Ë.S¦Lyå•W¢ž>}úI'4qâĽöÚkôèÑ<ð@Ž÷£iqd }d³ÿ*<¤}+£k×®[¶lY´h¦¢¢báÂ…uêÔiÛ¶mÚ£Ë9?ÿüó 7ÜPQQqÅWœp —]vÝxã>'¢õë×÷îÝ{àÀDôÏþó…^ðu^  ˆ# 3ˆè#dQ/guV¥J•î½÷^6¯‘ˆÆ÷Í7ßœyæ™U«VM{t9gĈ_|ñEË–-ûôéCD—\rI‹-Ö­[wË-·xÛ´iÓ?þñÅ‹wíÚuîܹ]tÑ®»îšöØAnÁÎ1€Lâ]»m.F?~üÈ‘#÷»ßuèÐaõêÕK–,9øàƒÇ\¦hdÁ‚—^ziåÊ•§NÊ—Úyÿý÷Ï9çœ-[¶Ü}÷Ý'Ÿ|2{ò©§žºùæ›»térß}÷a/`ˆ# “´hÑ‚?.òÕ-0kÖ¬3f¼÷Þ{ 48ꨣúöíËV䆸ñÇO9唯¿þÚ»ß ãöÛoì±ÇêÖ­;{öì=÷Ü“ˆN=õÔ•+WΜ9³eË–iäˆ# Kp_ôÊbè“d—~ýúÍ™3§qãÆÏ>û¬¯ÁeÆ =zôX³f͉'žxï½÷þú믇vXEEEåÊ•C/uÁÜxãißÈXŽà:ÃEþ$;ú2ͼyóæÌ™SRRrë­·Û¢«U«6lذ /¼ðÅ_|öÙg>ø`mÙ²%ôj[·nMû†@®@âp9„>€! Ž€|}í@yú8!°à]ÕƒüðÃwÝu×›o¾¹víÚ½÷Þ»uëÖW^yåö¸È€R5ÀåååÝ»wÿú믛5kÖ¬Y³ÿýïo¿ýv•*U&OžÜºuë´G 1(ULqÏ=÷|ýõ×—^zéìٳǎûôÓOßvÛm›7o¾õÖ[Ó ŽSü÷¿ÿ­V­Úe—]ÆŸùãÿ¸Ï>û|ðÁQ‹»É§Ÿ~Ú¢E‹wß}7í@Ê`Ž#Àµk×nÞ¼¹oë‹]wÝõ·ß~ûí·ßªU«–öEyüñÇÓ8Ä`ŠI“&ùžYºtéçŸ~Øa‡eÂËËËW¬X1kÖ¬§Ÿ~:í±€@Æyûí·§OŸ^VVööÛoï·ß~#GŽL{DBôèÑãË/¿L{àG€qJKK§M›ÆÖphÕªÕ.»ì’öˆ„>|øÆ‰hÒ¤I¯½öZÚÀô8TÙ¼yóÃ?Ì¿¬\¹ò%—\â=àÜsÏ=çœs¾ùæ›Y³f=zÙ²esæÌÙ}÷ÝÓxÚ·oÏ,X° í±€@ªlÚ´é®»îâ_îºë®>q$¢’’’½÷Þû¢‹.Z³fÍ“O>9oÞ¼3Ï<3íHÄ JµjÕJKK}O®\¹rüøñ;vìÖ­›÷ùV­ZÑW_}•ö¨$â0BÍš5Ÿy景¿þÚ'ŽŸþ95iÒ$ín£`â0Býúõ[´h±xñâùóçwéÒ…=ùñÇ?ñÄ»ï¾û‘G™ö·!RgÀ€8Lqë­·žþù—]vYÛ¶m5j´nݺ7ß|“ˆFµ×^{¥=ºm„ÖÙ„‚-¦8äCæÌ™sÊ)§|÷Ýw/¾øâW_}uÒI'Íœ9óÔSOM{hd@â0HãÆÇŒ“ö(è‰#â„(a›€G ÄqB@€G ÄqB@€G ÄqB@€G ÄqB@€G ÄqB@€G ÄqB@€G ÄqB@€G ÄqB@€G ÄqB@€G ÄqB@€G ÄqB@€G Äÿ^Ým ÒŠIEND®B`‚statistics-release-1.6.3/docs/assets/cauchycdf_101.png000066400000000000000000000647661456127120000226240ustar00rootroot00000000000000‰PNG  IHDRhŽ\­Ai½IDATxÚíÝy\TõþÇñï.(9@≤f…K嚨y÷­rIImQsI3Qó×ÍÛ¢×…ÌrASÒ ¯bys/7Ô’²Ü½Š"ˆ˜¹€ ˜2ÌïCã8lÌÌ9sÎëùðqïð3g>ç–wŸï9gtF£QÅq‘»8‚#¬Bp€Uް ÁV!8À*G2û믿/^Ü©S§5jT¬X1((¨k×®sçÎÍÎΖ»´<Ó§O×ét:®wïÞÊÙ'OžÔåãæææããóì³ÏNŸ>ýÚµkּĤI“äÞß”ËMîhÚï¿ÿÞ¯_¿óçÏ›F·lÙ¹dÉ’®]»Ê]£3í ƒÁžžžžžþ믿~ñÅ[¶lyî¹çäÞ,êAp ›„„„víÚݹsÇ4âææ–““#=þã?^|ñÅŸþù©§ž’»R¥ï ???www!Dff¦©ÑxãÆþýû'&&V¨P¡ˆ—Xðòò’{OP.¦ªÈæwÞ1å¤W_}õÈ‘#wïÞ½téÒ²eËyä!DVVÖK/½$w™N°7V¯^œœœœœ|õêÕ .¼úê«ÒøÅ‹-ZTôK,L:Uî=@¹Žä±cÇŽM›6I#""–/_þÔSO¹ººúûû><&&Fz*!!áÌ™3¦Wåææ®Y³&44´N:+V¬S§N»ví¾úê«û÷ï›–)ì”ÄxßÕ«WÇתU+½^_·nÝ.]ºlÙ²¥°²¯_¿>qâĦM›zxx<ýôÓ+V¬0}pëˆ#¤õתUËü%üñ‡é Â'NØpo¨V­ZË—/7mûÇœ™™)Ûa .LU‡©æíí=mÚ4‹g»vívéÒ%!ÄñãÇëׯ/0`íÚµ¦Å.\¸páÂ…¸¸¸M›6­[·®eüøãƒ¾zõªôeFFFJJʶmÛFŒ±téR‹…oÞ¼ÙªU«Ó§OK_=ztذa7oÞ|ûí·¥Ú¾üòK!ÄÅ‹;öä“OšÞBzðøã?ñÄ6ÜE7nÜwß}'„¸víÚþýûÿñØúÐ"‚#yüôÓOÒƒ>}úxxxä_`óæÍ#k×®•R£N§ ­Y³æ¡C‡¤^llì®]»Ú·o_¢222 $èééÙ¡C‡ëׯïÞ½[±lÙ²çŸ~ðàÁæËïÙ³G¨×ë;f0„S¦L=ztùòåÛµkçççwåÊ!Ä–-[LÁñ‡~¼øâ‹6ÜEkÛ¶mùòåïÝ»'„øõ×_ Žl‚©j2¸ÿ¾°„V¾jÛ¶mÒƒ &ìܹ󫯾:~üxÓ¦M¥Áßÿ½¤eÌš5KJuêÔ9{ö¬”>M'ùåï8 !æÏŸîܹC‡}õÕWÒÈ_ýuêÔ)!„««kÿþý¥AÓd·Ñh4u Ž¥ÛEÓétÕªU“_¾|9ÿ;vÌ/©u …!8AFF†éqõêÕ­|ÕK/½ôõ×_ýõ×ãÆ3­'++Kz|ýúõ’–±}ûvéÁ;ï¼ããã#=3fÌÓO?ýôÓOÿõ×_ROѤAƒcÇŽ•÷ìÙÓÍ-oÒæìÙ³Òƒ—_~YzðóÏ?߸qCqøðá´´4éµ5²áÞ(Ö£>šýPLUt™°$ÿ}ª #Í·Þ¸qcûöí¿ýöÛáÇ3ÝÝÐÝÝÝ×××tiK‰dddܺuKzìééiÍK\\š¥Ñét ètº—^ziΜ9Bˆ-[¶˜GÓ,¶­öF±L3Ô~~~ùŸ]½zu‡J±ßhSÕäѲeKéÁÆÍo¦còøãûøøøøø,^¼Xùè£æÍ›—““¸pá£GfddtïÞ½t<òÈ#•*U’›šsegš­ÞºuëíÛ·¥«^Š˜§.õÞ(Úþýû¥+c„Ï<󌭶€ÆÈãµ×^“\¸paÉ’%ÏnÚ´ÉÔ0{þùç¥ .”|ñÅ#GŽ|òÉ'ÝÜÜ.^¼hñZS#ðæÍ›æãIN÷ØcIùåÓøåË—[´hÑ¢E‹ÐÐÐÜÜÜ’nWÓ¦MëÕ«'„¸víÚœ9s¤ôVÄ>>®®®¦/+V¬xøðaiáÜÜ\Ó +UªÔ£Gž={š sDD„´¤ù}y*UªÔªU«àà`ówyçw¤%¯\¹bºpÄÏÏoàÀæ§ý}ÿý÷Òbï½÷ž4Ò«W/óúëÖ­+¯Y³Æ|Üâãa6lhó½añ.Õ«W¯W¯^½zõüýýÍ×PµjÕk×®ø’;vÈ}ü8:ŽdÓ¸qãüÑü4iii¦+”ëÖ­»~ýú§Ÿ~ZúR§ÓuíÚUzœ••õý÷ßÿ÷¿ÿ­Q£Fhh¨4(µè„Mš41õü²²²~úé§„„„ÀÀ@SKÏÄ××7::Z¯× !®\¹òÍ7ßìܹSzjêÔ©¥>{²Q£FæŸSl»±{ÃÂ¥K—M;Aáííýý÷ß›n3eGp §V­Z={622òùçŸ÷õõ­P¡Bppp="##OŸ>f¾pdddãÆ…...O=õÔÛo¿}øðáž={JÏÆÄĘ&¦W®\ùÑG5nܸråÊ!!!cÇŽ/0BõîÝûøñão¼ñFóæÍ=<<êÖ­Û­[·½{÷~ôÑGeÙ.SrE^O]–½Q WWWooïgžyfúôé Ï=÷œýŽ ÒF¹kkݿӦMBˆÞ½{Ë]KQ8 ](ݰaÓ'OÊ]Ø÷qàLÊ•+§ðÈ(9pà€ôÀÊyjp G°£Ñ¸dÉ’ÔÔÔyóæI#GjÂT5ØŒÁ`0}€µ¢OŸ>ëׯ—»(°:Ž`K•*UÊÉÉ©U«ÖàÁƒ§L™"w9`Kt`nÇ«`‚#¬Bp€Uް ÁV!8À*GX…à«`‚#¬Bp€Uް Á±IIIÁÁÁG•»™‹±jÕ*¹KP7¹ P¨ŒŒŒ3gÎlܸqÍš5r× Ç‚uïÞýòåËrW  Ç‚}ôÑGýõ—â믿þùçŸå.@~Ç‚µnÝZz°{÷n¹kP‚£íË]°£„„¹KÁÑ.Tóý¬šmQ ŠqPˆƒ¢@j:(jÚ–áv<° ÁV!8À*GX…à«Q”mÛ¶É],qPˆƒ¢@â ¨ÁV!8ãÃ?LHHxê©§ä.@fGX…à«`‚#¬Bp€Uް ÁV!8ÒéJùO³Ž@ J‘ÿŒÆRþÓ,7¹ (X‰z{ZÎsCpe}$ * ÁØL‘¡0@ú?â óâG`•2ž5˜””¬ñU€Ž#ÈSô$2™G4„hX ’Þ`§¾ÜË…à€Ú‘U KwÅ’î•`¹7S.GœUaQMé°¤APE›®DG”NM‘ èÔŽ(HQùѪ8 ‚NŽÛñ ëog#g‘Öý3Zñ/)9™Ôèìè8àù[‰²'Bkõ`Žà€íÉ­ …$B”Á€²rpL,6 a'œã@‰{bbY×_¶ aæÇ\îZdCp xE'ÅÒ¬° ÑvRôq›s¹+• SÕÌ|ºÔé°0Úr+¢_¨åDh%‚#y,NU´2,’ˆth'G€¦YßV,,‰CdTX@$Ú Á 9E‡E¢‚àЄüaQÈŸGH"2" *Á fyyñá«‘McQ‘€¨pG€ªä…‘€€¼¯¦ÿœtB'!#:#îãpbùï€(tÂ(DRr27>”Ka7ALJNâVˆÎŽŽ#Àix>¢éäżË\$Ž•Æ™P¨bG€B}ÙŠ”uvþThX &jÁ V^ÝlÙ_„=aàA)n‚#EFò¢]Y$Eb",Ž`‘­Ï#´퇆"JŠà°‹R'ż—“퀆"ʈà°2&ÅëaJÚ¦ÌÃ"IeDp”žyX,{$!2ÚmEØÁP¶j+>´Nf¥Ë†¤‡!8ŠaÛ¶âCk¦ÅXZL@CG@ìóÖOd,9Â"dGpä±wXÌ{"cI¡(GÐ4DŽż÷"2Z‡°Å"8€æ82,æ½#‘±8„E8‚#h…)˜88•ètDÆB™ò"aNàjæøæâCïN£± 4Ἆ Br5@ḋæ"T€à*!osñ¡J˜›6C^„šÀ¹ÉÞ\|¨Ò~`2*Ep§¤¨¼(ˆŒÒN ¹µ#8€3QZ^Ì«JÛsÓäEh‡‹ÜЧûûŸñï ¡Ói75êò¶^gFéŸÜÁ!¤Ã®UGP.ſżòty‰IkȋڢÓ=ôO›ßôcª”Hjh(ù¯“LIkBþn¢Ö¾Ñ‹DpQæ)Œ–Ejì:ò¢ÊY$Eí|g— Áäçy1¯T-5¥ÈH^T’b@NÊŸ’~¨Zm¤FZŒjCR´‚#ÈÀ‰ZŒjÖ@j¤Å¨$E»!8€C9W‹1¯fµŸÔH‹Ñé‘…à⌑Q¨½ÑH‹Ñ‰™‡E* ÁìËg¥¯ÞÔHdt>´€àöâ¤-Æõ«45 mE…!8€í9{djLœÈèh+*ÁlI‘Q¨.5ÒbT:ڊ΃à¶¡ŽÈ(Ô•‰ŒÊEXtNG(«À€¡ŠÈ(T”‘Qa|¡Žï3íq‘»pb:!tB$%'«ão :R£NètB—”œDjTÎô/9)IyÿàœŽPRd4ª¥Ñ(T‘¥x"¹kÑ6³°ø ):û·„LU@I©æ\Ƈ6ÊÉS#ç2ÊsµàÖRedªHDFÙ˜ò¢SÁjG°ŠN‘Q8yj¤Ñ(š‹Fp€b¨µÑ(œ95e@sG(‚Š#£pÚÔHdt(š‹xÁ  îÈ(œ95æ" ApKj=Ñ©Ñhtò"ŠCp€TßhÌÛL§j7í‹Éh”Áòh¤Ñèt©‘Èh4Q*GÐJ£Q8Uj¤ÑhäE” Á€Öi¤Ñ(œ-5m‰¼!8Ð.í4F["/ÂÖŽ4J;Ƽíu†v#FÛ /ÂnŽ4GƒFå§F6@^„ýh‹ÖNFcYI‘‘¼û#8Ð 6ó6\ÙíFRcéÑb„Ãh‚fJNLO—yò!8P?ͦF%£ÑXLICnGj¦Ùéé¼ÍWj»‘ÔX2´¡Z ŽëÖ­[»vmbbb¥J•žþùI“&yyy±ü½{÷¾úê«­[·&''{yy5nÜø­·Þ ’{;”€ÆÊLLO—yÊã"wŽùÞ{ï;w®yóæëׯýõ׳³³ [Þ`0 :tΜ97nÜhÓ¦M5¶oßÞ³gσʽ)¬¥ñÔ¨LR£‘ÔX<./øKÿÅPpLHHˆŠŠòóóÛ¶m[TTÔöíÛ‡ rìØ±9sæö’ÿüç?‡êÒ¥Ë?þøÙgŸ­ZµjÅŠBˆ÷Þ{Oî­`R£ÛLOOÊ‹¦È(úƒãÚµksssÇïëë+DDDèõú­[·æææø’C‡ !†êæ–7•ߢE‹ œ?þúõëro€¢èH¤FgD‹NBýÁñàÁƒ...íÚµ3¸ºº¶mÛ6==] ˆùùûû !Ì3¢Ñh¼y󦋋‹)JP )2òWWQ¤©±P´áTTFcbb¢······ùxýúõ…©©©¾ª[·n+Vüè£8}éÒ¥éÓ§_¼x±ÿþUªT‘{›ŒF£DQíFNj,³ÒpN*ïŸeee OOO‹q½^/î)š ^µjUxxxxx¸ipðàÁS§Nµò}ƒƒƒ-F¶mÛ&÷Î(‹/Ê],qP ”œœ,Ó»+ì È·'˜”œ”,ä)Faå€À@!DrRRÞ×Ê8XŽ¡ØƒR¬Î;Ë]‚R¨<8J—NW®\ÙbÜÃÃCqëÖ­_•‘‘1sæÌÌÌÌF5nÜ8==}ÿþý6lxî¹ç^xákÞ7!!AîM·™€€¹K€%Š…¼^£¬»E!åïv£üÅäMOËZˆBÊf·ïVXeŽ£¸ƒbüÖówˆ4BåÁÑÓÓS§ÓeeeYŒß¹sGüÝwÌïÝwßýý÷ß#""^}õUiäÒ¥K/¿üòÛo¿ýý÷ßʽY`†ÚD9“ÔœÔønÇQù9Žnnnz½>g1##CaºÎÚÜÕ«WwïÞ]¯^=SjBT¯^}Ô¨Q÷ïßÿî»ïäÞ&ˆÔø×JCuT…~~~éééRR4‘NòóóË¿|zzº¢nݺãR£ñÚµkro!¸íN> i7’ópá TJýÁ±C‡ƒaß¾}¦£Ñçåå’ùºu뺺ºž={ÖøðO»t~C½zõäÞ ÜvG¡HB¡rêŽýû÷wqqùüóÏ¥ó…QQQiii}ûö-W®œ4’™™™œœ,]íåîîÞ¶mÛ”””Ï>ûÌt‡ð³gÏ.\¸°|ùò¡¡¡ro u4óSB»‘ÔHd„¨üâ!DõêÕ'Mš4kÖ¬=z´iÓ&%%%>>¾Q£F¯½öši™¸¸¸·ß~;((hÓ¦MBˆ?ü°_¿~ .ܲeKÆ ÓÓÓÿý÷ÜÜÜ÷Þ{ï±Ç“{ƒM#5*“ÖS£ÙåÒ€º©?8 !† VµjÕ 6lÙ²ÅßßðàÁãÇ—îÈS Ÿ-[¶,^¼xÿþý{öìñòòzþùçGŽÙ¸qc¹7Ð4Rcdo7j:5¡1:#ßšû8&'';é=·TL³EÉ©QÞƒ"opTlj´ûA!2–œš~}©éo}‰h¢ãÀÙ)95Ê‹Ô(Çf¡]GJGjT&-¦F"#4à@ÑHE±Ý¨¹ÔHd„GJFjT&m¥F"#`†à@¡HE“«Ý¨¡ÔHdò!8¬¥•ÔHd Ap D´‹&K»Q©‘ȉà@qH ¤þÔHd¬@p ,¤Æb9¾Ý¨‰ÔHd¬@p  ¤FRyj¤Ñ”Á€RHÍ©‘È”Á€"­äÈ9U•§F"#PrGò#5Âqh4e@p 3R£õh7–m“ˆŒ@Y–Ô–‰Œ€ȉv£õÖnTaj$26Bp R£©*5Òhlà@¤FRSj  $26ç"w´ˆÔXRL·–€N'tºä¤$¹ëTˆàB5íF)b“²û`ª€£ÑnT 5¤FÎhìàÀ¡H¥`ïyj§ODFÀQއÔÛãôOÀŽ h´ /F#àhGB»Qœ;5‡ãªjŽ@jT R#€’¢ãÀîH¥F@²Äô4 +‚#h‘S¶Éр܎ì‹v£9_j¤Ñ(Á€‘Ë‚þZv \ÚâdíFR# $tØ íFr¦ÔÈô4 <GvAj,#{4Úœ,5å!8”„F# `G¶G»Qœ£ÝH£P6.Ž`c¤Æ²³y|"5° ‚#@H€3`ª€-ÑnT ¥·9©pG6Cj´ mµÞ´µµ€ÓcªÔLÑíFR#àlè8° Ú ¤ÜÔÈô4àœŽl€Ôh+šèÁib#ubªÔI¡íFR#àÌŽÊŠv£‘ØÁ”Bå±Jå›hç8(Ú ¤¸v#—ÂjApPz¤FF# "LU€"Ø*_)«ÝHjÔ…à ”h7*©€]v@jÔˆs”íFRJ»‘Kaõ"8(1R£Í©§=§ž-P¦ª@ Ñn$5jGpP2´Q0R# GYÙ—üíFR#  G%@»QH†à(R# %G֢ݨ@2·I€Æ@NN½œ¸t¥Ä}X…v£ÉÖnä߀VÔˆh4ÆT58%yÚ¤F@ÛŽŠA»Ñ~œ,†9Y¹làÎG†v#©Á@Ñh7BR#€<GG©Ã˜£Û¤F#8(íF˜#8€3qh»‘ÔàaG£Ý¨@¤Fò"8€ ”žÊ”^y€v£9®ÝHjP‚#À ©@áŽ,ÑnT µIŠDpGShÙ¥K—´´´ãÇ˽AÔÉ6íFR#{Rpþøã;vtww—{ƒ`žZh7p *ŽYYYƒÁÓÓÓb\¯× !®_¿žÿ%÷îÝ»}ûv½zõþùÏÆÄĘÆkÕªõé§Ÿ>ñÄÖ¼opp°ÅȶmÛäÞ¥qñâE¹K€%”€€ääd¹·CU¬8(ÅíóQƃ˜œ”$8²ã×—9ïAéܹ³Ü%(…ʃ£tétåÊ•-Æ=<<„·nÝÊÿ’Û·o !¯]»6kÖ¬víÚݽ{766ö‹/¾7nܦM›¬é;&$$Ƚé6 w °T–ƒ’×nä°ÚZ±¥ˆòÚe9&:09¨øõ¥@NzPòÿYÏß!Ò•Ÿãèéé©Óé²²²,Æïܹ#þî;Z¨X±¢ô`æÌ™½zõòôô¬V­Ú[o½Õ»wï‹/nÞ¼Yîmàdì>Ì 5GQVpœ;wnbb¢ Wèææ¦×ëów322„¦ë¬ÍU®\¹bÅŠîîî¡¡¡æã;vBœ>}Zî”g7ª©€)+8FEEuíÚµoß¾«V­*ðÄRðóóKOO—’¢‰t.‘ŸŸ_/ñõõ-W®œN§3”f¨srräÞIT¥L—Å8–²‚ão¼Q£F'N|øá‡mÚ´9räöíÛïÝ»W–uvèÐÁ`0ìÛ·Ï4b4ãââ¼¼¼BBB |IhhhFFÆ™3gÌ¥{÷<þøãrï$ ”h7ª ©€Ã)+8N˜0açÎß|óÍ€<<+ݺuë¦M›>óÌ3”»d(Ò´Iä¦¬àø¯ýKáééÙ©S§.]º<ûì³…Åèîî^±bEÎSJC»QF¶Lz¤F  ¬àØ·oß°°°-ZXsÕ íFNŠ»ðpRʺãÖ­[8PXj3fÌ?þñ¹k‡£Ý@”³²²îß¿_ØS.\øã?ä®p&ÌS+P‰Û¤FŠ!ÿTu\\ÜÈ‘#M_®\¹ò믿οXnn®Ñh¬]»¶Üõ€Ul“÷H”DþàèêêZ¥Jéñ7Ê—/_©R¥—ôôôŒˆˆ»^ÀiÐntz¤F #plݺu||¼ô888øå—_ž:uªÜE€]”`žšÔ@yäŽæ†Þ¬Y3¹«@”ß}÷]¹KT‚yj¢ÝÀÙÉW¯^-„xæ™g‚‚‚L_mРAòÖ Å*Sð#5P*™ƒãŒ3„|ð¥/‹FpŠE»Ñ‰‘(˜ÌÁq̘1BˆÆK_¾óÎ;rï° «æ©I”MæàøÖ[o™ùÚk¯É[ ´©€â)ë“c@•øpjê sÇqÏž=%}I»víä­ŠVšÖ!íFÎ@æàøÆo”ô% òÖ (óÔ T|»‘ÔÀIÈ{ôè!÷Y‘8™ƒãìÙ³åÞ€zÐnt>¤FN…‹cÀޏ,€šðÉ1`K%è!Ònàløä@%˜§V ¢Ú¤FNˆOއ#5pN|r  ´ ©€ÓRôÅ1™™™÷îÝ“» (‚ç©Iœ™ÌÇ;vì‹/¾8yòäµk×\\\jԨѤI“Ñ£GשSGîÒ (ÄBꦸŽãüùóû÷ï¿gÏžk×®U¨P¡bÅŠ©©©ÿýïÃÂÂbbbä®P"橈v#URVpÜ»wï¢E‹\]]‡ ²cÇŽ£G>|xÏž=ÇB|øá‡GŽ‘»F(R#秬àc4'Nœ8mÚ´Zµjét:!„¿¿ÿ»ï¾;yò䜜œ+VÈ]# ,´©€*(+8ž zÊ Ž!!!©©©ùŸÊÌÌLNNnÔ¨‘Ü5 Â<µÑn bÊ Žýû÷7S¦LÉÉÉ17 S§N5 :t»F°©€ºÈ|ǘéêêÚ§OŸõë׿ð ýû÷ ÔétÉÉɱ±±©©©ÁÁÁ;w–·`@9h7*©€êÈÃÃà ¿téÒüùó-Z¶l™ oÍP˜óÔ¤Fj$spìÑ£‡Ü{l@ Š:¹Ë»’98Ξ=[î=8%橈v#ÕSÖÅ1E›>>«W¯ž0aBãÆ…5jÔxï½÷îÝ»÷ÓO?¥§§wèÐaذar×Bîõ @‹”ÕqBøøø¼ñƦ/ н{÷ãÇûùùÊ] >-FYH4IqÁÑ\fff¹rå<<\ñá‡9rDîh§6Ð6eǘ˜£Ñ8qâÄiÓ¦ÕªUK§Ó !üýýß}÷ÝÉ“'çääð‘ƒÐ ÚJAj yÊ Ž'Ož¬P¡ÂСCó?5xð`www>r€0O @›”…ÕªUss+à’é*™¬¬,¹  IµiAÐeÇÔÔÔŒŒŒüOeff&''7jÔHî‡bžZNˆ´h–²‚cÿþýFã”)SrrrÌÇ ÃÔ©S C‡ä®€ÆÐW€¿É|ǘéêêÚ§OŸõë׿ð ýû÷ ÔétÉÉɱ±±©©©ÁÁÁ;w–·`À‘h7ÊÔfdŽáááŽ_ºtiþüùƒ -[¶LHH·fZQàyÌSÐ0™ƒc=äÞPô"hÌÁqöìÙrï@¡˜§–íFÈG‰ŸU-„¸|ùò©S§RRRî߿ؠAƒêÕ«Ë]Í Q\p¼qãÆ‚ Ö¬Yc0Lƒ®®®/½ôÒøñãõz½ÜŽ@»QN¤F(„²‚£Á`9räáÇ+T¨Ð±cÇ:u긺ºž?~÷îÝß|óÍ©S§V¯^íêê*w™Ô«ðÔÈ<5(+8FGG>|øé§Ÿ^°`¯¯¯iüÚµkcÆŒ9|øpttôðáÃå.€ÖÑ” Mʺø¾}ût:ݧŸ~jž…U«V?¾‹‹ËÞ½{å®°;æ©eC»Ф¬àxúôé:uêøûûçÊÏÏï±Ç;uê”Ü5P)ºˆPeÇ *dggölvv¶»»»Ü5öE»Q¤F°‚²‚cƒ ®\¹røðáüO8qââÅ‹?þ¸Ü5PâR#óÔ QVp”>HfìØ±ç2îß¿ÿ­·ÞBtïÞ]îhÝI𥬫ªÃÂÂâââ6lØðÚk¯ùûû×­[W‘’’réÒ%!D÷îÝ»uë&w€1O-Ú`5eG!ÄÌ™3Ÿ}öÙO?ýôÏ?ÿüóÏ?¥ÁªU«¾ýöÛ½{÷–»:êBóJBqÁQ§ÓõéÓ§OŸ>W¯^=þ¼Ñh¬[·®ŸŸŸÜuvG»ÑÑHPBÊ Ž/^ÌÍÍ­]»¶Â×××ânŽ`3Ö¥Fæ©Àœ²‚cXXØ_ýõÓO?ùøøÈ] àP´ª ½FÚ”´LYWU !Μ9#w!@»,)+8NŸ>ÝÝÝ}Ñ¢EwïÞ•»*EÏJKYSÕ¾¾¾sçÎý¿ÿû¿=zôèÑ£víÚUªT±X¦]»vr— ØóÔŽcuj¤Ýù)+8†††JÒÒÒ,XPà2 r— À9•¹×H³€Æ)+8JŸh íF!ô@™)+8Ξ=[î¨Q S#óÔP e]cáÞ½{YYYrW!”Öq”œ={váÂ…G޹|ùrnnnµjÕžxâ‰1cÆ<þøãr—ØóÔŽ@»lDqÁqÙ²esçÎÍÍÍBT¨PÁÕÕõòåË—/_Þµkׄ ^{í5¹ àTlwj#'I€²¦ª80wî\N7dÈ;v=zôðáÃqqq#FŒpqq™7oÞä®°ÚvGÖ›RVpüæ›orss'Mš4mÚ´Zµjét:!DµjÕ&Mš4uêÔÜÜÜU«VÉ]#'QªÔÈ<5AYÁñøñã+V2dHþ§ P©R¥ãÇË]#`´í‹^#Ø‚‚cNNΟþéçççêêZ@¡..þþþFþ°ÚP4GNW©R¥ÔÔÔ›7oæ6##ãüùó7–»LŠg‡v#LŠ Ž®®®}úôÉÍÍúhåÊ•sæÌ™>}z±%EGGÿúë¯rï¨ íF{!5€)+8öèÑ£DË׫W¯ØeÖ®]›››;~üx)5 !"""þûßÿnݺuÚ´i..EMÖŸ={622òñÇ?}ú´Üû@‘Ê–™§k(+8Ξ=Ûæë ëÍò"8°š2yµÐn‡cª(íÆ©‘v#ÈŽàXÒtjTdd(SÕ„JO¶m7*{[@¹ŽÀC4ÚnTv’b’‚©jà-¦FŸÔP‚# aÊn4æÕhëv£3l4(SÕ@͵!@1I ŠBÇBk©‘éi@©q†Fc^¥vh7:ÏրʹªÑÈ$5(ÁZ§¡Ôè$‘ X\h€³¥F;µm7€âÐq„¦©¿ÝèTÓÓy%3I JEp„vi"5:Ud¤FP6‚# FNØh´7'LѰ½àà`¹K€%$$È]‚Ó 8B£ÔÜntÚˆD»@D@~ÁÁÁ|cX‰à-RmjtæF#©”àÍQsjtÎÈèì° ‚#àüœ¹Ñ˜·´À¡-*l7:3ÍÞ©Ñù÷(Á¢¶ÔèüFA¯œ ÁZ¡ÂÔèä‘àtŽ€“  Âé´ Ø`C|V54A=íF.9)IQˆIjp:G¨ŸJR£N§¦î©œSÕP95¤FU\óÐ9*5ª(i€"Ðq„š©$5jŠ?ô[¹uëÖ›o¾Y»vm¶mÛÆÇÇ;ËÊSØýû÷ÝÜÜt«ZµªÜ[àÜè8Bµœ>5ª®Ñè`´¡nÍš5»páB¿~ý|||bcc;wî¼{÷î…¯Üa…%'' †–-[J× !„ðððwœž¶V¿~}¹K°™¤¤$¹K(='þæÂXøÏ¦“ÇGþzsꃢV5ý~~ÿý÷…ÑÑÑÒ—çÎóôô •wåwîÜQÎVoÞ¼Y±cÇŽbW[Šo 5}/•SÕP''n7ªnnúÁ–9p’šv#T`óæÍ:îã?6Ì;W§ÓmÚ´I±fÍÿ!C†HOöë×/..îÏ?ÿ,û[—zå:uzôÑG׬Yc>¸aÃN÷í·ß:¸°ÄÄD!D½zõÊþ¾0!8B…œ55ªëºiËãÔF „ºví>cÆŒS§N !Î;7}úôaÆuëÖ-##ãÌ™3¡¡¡:éœ!„íÛ·ÏÍÍ-ûɈeYù”)S*Uª4f̘»w££}ôÑnݺ9¸°ÄÄÄ *<òÈ#ëÖ­[²dÉþýûïÝ»WÆ@p„Ú8ej4EFR#3‘‘‘>>>#FŒ0 #FŒðõõŒŒB\¹rÅh4úùù™/ìëë+„¸víZß´,+ïÖ­ÛäÉ“ÓÒÒ¾ûî;iäêÕ«[¶l8p`ùòå\Xbb¢‹‹K½zõ^|ñÅ7ß|³M›6O?ýôï¿ÿ^Æ24Ž‹c *Η5pŒãS£zû¶ÐOOÏ¥K—†……½ð qqq;wî¬R¥Š"++K!=6ÑëõBˆôôt‹•äääHgû¨gÏž#%Zy~¯¼òJDDIJeË  „X½zõýû÷ÃÃÃó/iïÂsss?øàƒ~ýú•+Wîûï¿ûí·{õêuâÄ éU(‚#ÔÃÉR£"£ ×ça6ùéhEÿèÒ¥KxxxttôÈ‘#CCC¥A!ÄíÛ·Í—ÌÈÈBx{{[¬!33³W¯^…¿»åÛ—håùéõú|ùå—III+V¬hܸq“&Mò/iïÂöìÙS±bEÓSÆ »{÷îèÑ£ccc‡níáÁت†J8_jTïÄôƒ­”#5ÒnDéH?‘²ü+®0cJJŠâèÑ£¹¹¹Ò ŸŸŸ‹‹‹ÅülZZš¢FkÐëõE\$›ÿK´ò9Òh4._¾üСCÇõÕW \ÌÞ…U¯^Ý"PvêÔIqòäɲÃhG¨3¥Fm4ØÊ‚ öìÙ3nܸùóç/X°`ܸqB77·† îÛ·Ï|ɽ{÷êtºFY¬¡¤3Â%Zyš4iÒ¼yó+V¤§§»¹¹ 4¨ÀÅìZXJJʦM›Ú·oß AÓ Ôž¬S§ŽmŽ6É}? RÓ½œâîtNóM\äÝ­çÅèØ[6>xS™¾œå hŠ:îã˜àîî.5ðºwï^©R¥sçÎIOÍŸ?_±qãFéË+W®øùùuêÔ)ÿJnÞ¼YÒ`ýÊ ³|ùr!„‹‹KÏž= [Æ®…]¹r¥bÅŠmÚ´¹wïž4b0^~ùe77·“'OZ,Ì}­ç4sˆš¾™”ÿçÐ9¾ƒm%Ê?(F™R£‘à3*Ž999Ï=÷\Íš5oݺe4SSSyä‘ÐÐÐÜÜ\£ÑxëÖ­§žzªJ•*S¦L™5kVƒ y䑨䭋^ù7ß|ãééùöÛo±†¬¬,///!Äwß}gÃ}Rta3gÎôôô\´h‘ôå¬Y³„uêÔyóÍ7#""¤O—ùøãó¯–àh=Îq„s‚jµßg§à–é‚În„ÊÌž=;>>~ñâÅÒuÄ5kÖœ9sæîÝ»£¢¢„UªT‰‹‹{饗bccgÏž]¯^½¸¸¸çž{Î&o]ôÊïÝ»wóæÍììì"ÖàîîÞ¹sg!D×®]m¸OŠ.ìîÝ»7oÞü믿¤/ß}÷ÝØØX??¿¯¿þzÙ²e^^^[·n2eŠm“ÖèŒü¢µµààà„„¹«°ää䀀¹«(˜ÒS£ÝÎeTòA²^F-cpTøAѦŠš~?ËkÙ²e'NœøôÓO‹XæÕW_•>Pîb‹WŠo Í~/Ñq„S’ï¾Ö§Å.cÞ¦k25Zs÷îÝÝ»wx‡¨WUÃù(·×¨í+¦¹e# hРÁÀå.2 8ÂÉ(45j;2 ¹S#íFÀ‘BCCM·"/BPPPëÖ­å.6¦•©êuëÖõïß?$$¤U«VS§N½qãFÑËgggGGGwëÖíé§ŸnÓ¦ÍðáÃúé'¹7ŠLž˜~°è5ÈgêÔ©÷\„ h¢ã¹xñâÊ•+7oÞ<%%eýúõgÏž]¹r¥»»{Ëçä䄇‡9rD¯×·hÑâîÝ»¿üòËþýûÇŽ;zôh¹·F»—5ßeÌÛ r§FÚà0êï8&$$DEEùùùmÛ¶-**jûöíC† 9vìØœ9s {ÉÚµk9Ò´iÓ¸¸¸E‹­X±â»ï¾óôôüâ‹/N:%÷i”‚R£ÔbÔ|—Q!íz êŽk×®ÍÍÍ?~¼¯¯¯4¡×ë·nÝjúÐO Û¶mBL›6ÍÔ’ zóÍ7 Ö²PJj4ϋڎŒâïF£ì©‘v#8’úƒãÁƒ]\\ÚµkgquumÛ¶mzzú¡C‡ |IrrråÊ•->ø2((H‘šš*÷iŽ"R#-ƇÑhmRù9ŽF£111ÑÛÛÛÛÛÛ|¼~ýúBˆÔÔÔfÍšåÕ’%KÜÜ,÷ÌÉ“'…µjÕ’{›´EþÔȉŒù('5ÒnSypÌÊÊ2 žžžãz½^qýúõ_Õ°aC‹‘øøø¨¨¨ *ôêÕËš÷ ¶‘¦¿ÎÅ‹e|÷À€€¤ääd™Þ= 0P‘œ”$„²UQ¹J`RrR²‡$Éøýñ0y ÄAA‰ýÛDúøDÕGé“4+W®l1îáá!„¸uëV±k0 «W¯þ÷¿ÿm0æÎëããcÍûªécˆäú µ¼^£ãß]÷÷§ÒBe~Šœ|EgFåìE}ÊŸ¢Š„ƒëýÝ’ÿÏzþ‘F¨<8zzzêtº¬¬,‹ñ;wûŽEøå—_>øàƒsçÎùûûüñÇ-[¶”{ƒ4A n2Ì@2+]$åÌP &©@&*Žnnnz½>g1##CaºÎ:¿{÷îÍž={ÕªU+V3fÌðáà »é#lK†“n1"?Ð !”“rQypBøùù%&&fddT©RÅ4(ÊàççWàKrss'NœøÃ?tìØñý÷ß/"_¶i1ZAQƼ’h7€LÔ;ž: óO=2qqq^^^!!!¾dÕªU?üðÃÀ¿øâ R£Ã8.5ro«‘æÔû÷ïïââòùçŸKç5 !¢¢¢ÒÒÒúöí[®\9i$33399YºÏh4~ýõ×<òÈäÉ“å®]+tKÜÁ»$˜˜»uëÖ›o¾Y»vm¶mÛÆÇÇ;ËÊm¢mÛ¶|ðÜUhŽú§ª«W¯>iÒ¤Y³fõèÑ£M›6)))ñññ5zíµ×LËÄÅŽýöÛAAA›6mºvíÚ… ÜÝÝ ”m½{÷øÝwß !Ö¯__öÂ._¾lžaþùÏÚdW—âù¾—lHýç8Bt;[¯WÇYŒ¥&í;Åö™¤†uíÚ5<<|ÆŒ§NBœ;wnúôéÆ ëÖ­[FFÆ™3gBCCu¦Sq„hß¾}nnnÙOF,ËʧL™R©R¥1cÆÜ½{×4ýè£vëÖ­ìûÄÏÏOŠ/§OŸ¶Ã.GñŽp4ÛOO“ËLŠŒŠM€fEFFúøøŒ1Â`0Œ1Â××722RqåÊ£ÑhqS9é6 ×®]+ã›–eåݺu›·ŠPàÎ{Ý4©P¾4hÐ`àÀrQzÅGF&£åàŒ]ƼÊI€3 5ÝŠ¼AAA­[·–»XØSÕ(¥B¯›æJù8éÜt^ñ¤F@]¦Njq3H¨G”XÁFš‹²rÞ¹é¼úIà Ž(ËÈÈ™‹ àì‘QÀya•‘‘°¨*ˆŒ‚ÔN…àˆbäEFf¢•D‘QÀÙQNg4Š€£é(€NèD€"£ 5€âªj˜ùûjh:£Ñ(DRr2ÛÂtÅtRr’ܵØbsHà„è8jÞÃç,Zu7o8–j&¦l©œÁQ“ ºÀ…Ȩ@ꋌ‚ÔΌਠæIQX^àBdT UFFAj'GpT/+î›CdT µFFAjçGpT‘"ÛŠ-hZDî’a¢ûû°¨22 R#¨WU;¹?ºð»çèÌ>cš?â aº\Zú'w9öÙFR#`·nÝzóÍ7k×®íááѶmÛøøxgYyY;v쥗^ªV­š‡‡G³fÍ"##srrä.JCè8:«ÛŠ½È´¸ÜåÜŠg¥ÚLR#`Íš5»páB¿~ý|||bcc;wî¼{÷î…¯¼,’’’Úµkg0z÷î]»ví;vL˜0aïÞ½ß}÷¼…iGÅ3ï)Z×V|èÕ´•Çt8UÜbÌÛR©°—yóæ%&&FEE­^½zþüùûöíÓét'N”wå™™™vÝê &ܺukÇŽÑÑÑ3fÌøù矇 ¶aÆíÛ·Ûõ}aBpTž²%żu<¡Z˜•~°±|äP6›7oÖétü±idîܹ:nÓ¦MBˆ5kÖøûû2Dz*00°_¿~qqqþùgÙߺÔ+ïÔ©Ó£>ºfÍóÁ 6ètºo¿ý¶ì…íÚµ«mÛ¶Í›77¼õÖ[BˆØb—£xG¹YÄÄÒ&Åë£Å¨<Úi1>Ød@™uíÚ5<<|ÆŒ§NBœ;wnúôéÆ ëÖ­[FFÆ™3gBCCufç/µoß>77·ì'#–eåS¦L©T©Ò˜1cîÞ½kŒŽŽ~ôÑG»uëVÆÂrrrF-%E“””!D… l¸çQ‚£ÃKûÇ–£YäEíDFR#`+‘‘‘>>>#FŒ0 #FŒðõõŒŒB\¹rÅh4úùù™/ìëë+„¸víZß´,+ïÖ­ÛäÉ“ÓÒÒL'^½zuË–-,_¾| sssûä“Oúöík¹~ýú'Ÿ|âêêÚ¯_?Ûíu…‹cìÌâZaíå,Ö®Þ´V¹7&ª¿±NQÛNdlÊÓÓséÒ¥aaa/¼ðB\\ÜÎ;«T©"„ÈÊÊBHMôz½"==Ýb%999›7o.ì-zöìi1R¢•ç÷Ê+¯DDD,[¶lÀ€BˆÕ«Wß¿?<<<ÿ’%-Ìž={^ýõÄÄÄE‹ÙçÀÁÑöΜyíóW”¼¨L¹JºÐÍ'5©åÿï|‡)ò'§K—.áááÑÑÑ#GŽ •}||„·oß6_2##Cáíím±†ÌÌÌ^½zþæ–ï^¢•ç§×ë ðå—_&%%®X±¢qãÆMš4É¿dI 3¹páÂ[o½µqãÆ   ;v´oß¾¬‡VcªÚö‚ë×/ã¼satœÂ¨H<…Ñr0= ÈâÃþS—Q:ïèÑ£¹¹¹Ò ŸŸŸ‹‹‹ÅÄqZZš¢FkÐëõÆÂåÇ­¼@#GŽ4Ë—/?tèÐñãÇ_}õÕ+ia’˜˜˜'žxâ·ß~[²dÉÿþ÷?R£ƒÑqtô•IËSÒí"#`O ,سgϸqãæÏŸ¿`Á‚qãÆ !ÜÜÜ6l¸oß>ó%÷îÝ«Óé5jd±†’ΗhåjÒ¤IóæÍW¬X‘žžîææ6hР+ÅTõÆ_yå•_|qñâÅ“ép#l­~ýú6Yé?Fe”””$ëû+΃f¯|GF9EÚ0*é À¤Àƒb«ßÏ“àîî.5ðºwï^©R¥sçÎIOÍŸ?_±qãFéË+W®øùùuêÔ)ÿJnÞ¼YÒ`ýÊ ³|ùr!„‹‹KÏž= [¦¤…åææ>þøãuëÖÍÉɱí~.Å7†Ó}/ÙŠÎH¯ÀÖ‚ƒƒJýrEõ“““ä®B~Šj.*á H'ƒñËÃD  <(eüýì`ƒ¡uëÖ/^}útïÞ½Ôk.Å7†s}/ÙSÕJ¡¨¼‰¢ò¢r07 8ÆìÙ³ããã7mÚ$ÍÉÖ¬YsæÌ™£GŽŠŠzã7ªT©7iÒ¤ØØØ7n´hÑbõêÕ¶úHÀ¢W~ïÞ½›7ofgg±ww÷Î;ÇÄÄtíÚÕV;$11QqêÔ)鯖æêÕ«W–àëåd~ ˆBgvXÈ‹h4Ža>2jÔ¨Q£F™¾ÔëõQQQvz÷"V>tèÐû÷ïŸ8q¢è5H7å.W®œ­JêÑ£Ó¤²ãªjä¿8šŸÙå¿Y7©ÑœùíêhÜÝ»wwïÞ]àv zt„æ¢Ñ\´]F8РAƒÊ]d@p´#¢­GdP ÐÐPӭȋԺuk¹‹…1Um{g˜‰VóOg&ÚLL(»©S§ZÜ *@p´½úÁÁ„EÙK‡È(SÕP¦¡Ë‚‰i@±Žpn„Ų#2¬Dp„“Ñ=tÑa±LˆŒ€!8BéHŠ6§û{%Bp„âí‡# ,ŽIÑÞh1l‚à†#À†ް;‹˜(HŠöG‹`GØ1QFäE€]Q&ÄD% /ƒD ˜Ž_þOóã3ýÌtL{€¦ÜºuëÍ7߬]»¶‡‡GÛ¶mãããíúvÇŽ{饗ªU«æááѬY³ÈÈÈœœ¹÷ÁCÚ¶mûÁÈ]…ÊÑqDÁòZ‰ ’ e§Ó ÓQ!)Z–‘‘ѬY³ .ôë×ÏÇÇ'66¶sçλwï ±ÇÛ%%%µk×Î`0ôîÝ»víÚ;vì˜0aÂÞ½{¿ûî;¹÷DžÃ‡ÿôÓO:t»•£ãˆúˆ¦VbRrÝD%0o.&%%Ó_0oÞ¼ÄÄĨ¨¨Õ«WÏŸ?ß¾}:nâĉvz» &ܺukÇŽÑÑÑ3fÌøù矇 ¶aÆíÛ·ýÂÌÌL»î‡œœœ~øáŸÿüç?þñÜÜ\»¾ÁQkŠÈˆÌ8+ùAb2Р͛7ëtº?þØ42wî\N·iÓ&!Äš5küýý‡ "=د_¿¸¸¸?ÿüÓÅìÚµ«mÛ¶Í›77¼õÖ[BˆýÂN:=úè£kÖ¬1ܰaƒN§ûöÛoË^Xzzú?þñ>øàÚµköØpX 8ªS‘Œ¨|†Eò" M]»v Ÿ1cÆ©S§„çΛ>}ú°aúuë–‘‘qæÌ™ÐÐPîÁŠíÛ·ÏÍ͵ǙŽ999£G–’¢IJJŠ¢B… E¿vÊ”)•*U3fÌÝ»wMƒÑÑÑ>úh·nÝÊ^›ŸŸŸÑh4§OŸ¶ù†#?‚£s+Q@$#*a@a"##}||FŒa0FŒáëë)„¸råŠÑhôóó3_Ø××WaÆ›››Û'Ÿ|Ò·o_ÓÈõë×?ùäWW×~ýúýÚnݺMž<9--Ít6äÕ«W·lÙ2pàÀòåË˽ƒQb\ãòßòÆ„,è¤ÌzdD…òôô\ºtiXXØ /¼·sçÎ*Uª!²²²„Òc½^/„HOO·XINNÎæÍ› {‹ž={–´ª={ö¼þú뉉‰‹- *vùW^y%""bÙ²e B¬^½úþýûáááù—´y©°9‚£RÕM÷ðá%,J£+û*J«èß]ºt ŽŽ9rdhh¨4èãã#„¸}û¶ù’Booo‹5dfföêÕ«ÐwÏ÷ûèܹsõêÕ3}=tèPéñ… Þzë­7íØ±£}ûöÖl ^¯0`À—_~™””¸bÅŠÆ7iÒ$ÿ’%-ŽGpt]‘¿—H‡*CRœ‹bFF£t6áÑ£Gsss]\\„~~~...³ÒiiiBˆ5jX¬A¯×—(rùùù}ýõצ/[´h!=ˆ‰‰yã7<<<–,Y2lØ07·Dˆ‘#G.[¶lùòå}úô9~üø¼yó \¬¤¥Âñ޶w&áL‘h¨n$Eö°`Á‚={öŒ7nþüù ,7nœÂÍÍ­aÆûöí3_rïÞ½:®Q£Fk(éü¯‡‡Ç Aƒ,7nÜøÊ+¯¼øâ‹‹/¶˜"·F“&Mš7o¾bÅŠôôt77·üë/]©p<‚£íÕ®Ÿ w°;’"{;sæLDDÄ›o¾ùé§Ÿ&%%M:µ{÷îBˆ×^{mܸq›6m’®M¾zõjllì /¼`±’²ÏÿÆwß}·V­Z«V­ruu-ݶŒ9rذaQQQÝ»w—®ãÉ©jå#8VÑåk"ó €] †¡C‡>úè£3gÎB,\¸°aÆ#FŒØ¹s§N§ _¾|ù AƒFíéé••Uàî•}þ÷Ô©S§OŸnРÁˆ#,žêÓ§O÷îÝcbbFõꫯ6-„xùå—'NœxãÆ/‹±U©°7‚#Pb"ÙÍž=;>>~Ó¦MÒÔpÍš5gΜ9zô訨¨7Þx£J•*qqq“&MнqãF‹-V¯^m§ÏLLLBœ:uJº£¤¹zõêuïÞýÞ½{7oÞÌÎÎ.b%îîî;wމ‰éÚµ«Ü»¥Gpˆ‰”("""""Â|dÔ¨Q£F2}©×룢¢PI=Šn:ôþýû'Nœ(z=ÒÝÂË•+g"ƒƒƒéV:7‡¶xÃôü·JXïîÝ»»wï.ð;P:ŽP']!÷>"€Í8p Aƒ”»ØÁ΀² 5Ýœ¼AAA­[·–»X” SÕp:]¡ÿŒ…|,7@i¦NjqïI8:ŽP ]á¬C@ Žp]‘ŸK:@áް™¢s¡ àäŽ(^±‰PB.@ÝŽšfE" $B „àªjõ)âdë/I6ýKJJ&5 G¥³ršØ„œì„àè8%€‚ P‚£í9“P`F$€ì‚ƒƒå.pbGÛ«_?8!!Aî*–øå,¯ää䀀¹«@™pq ¬Bp€Uް ÁV!8À*GX…à«`‚#¬Bp,Ôºuëú÷ïÒªU«©S§Þ¸qCîŠdйsg¹K€%ŠqPˆƒ¢@ 8,22ò½÷Þ;wî\óæÍ=<<Ö¯_ÿúë¯gggË]€lŽHHHˆŠŠòóóÛ¶m[TTÔöíÛ‡ rìØ±9sæÈ]€lŽX»vmnnîøñã}}}¥‘ˆˆ½^¿uëÖÜÜ\¹«Á±tqqi×®iÄÕÕµmÛ¶éé釒»:y-ÆÄÄDooooooóñúõë !RSSå.@nr 8YYYƒÁÓÓÓb\¯× !®_¿nÍJ‚ƒƒåÞ›QÓ¶¨E8( ÄAQ г#8Z’.®\¹²Å¸‡‡‡âÖ­[Å®!!!Aî°=¦ª-yzzêtº¬¬,‹ñ;wûŽDp´äææ¦×ëów322„¦ë¬´†àX??¿ôôt))š$''KOÉ]€<ŽèСƒÁ`Ø·oŸiÄh4ÆÅÅyyy…„„È]€<Žèß¿¿‹‹ËçŸ.×(„ˆŠŠJKKëÛ·o¹råä®@:£Ñ(w J´|ùòY³fÕ¨Q£M›6)))ñññ 6\¾|yþÛôhÁ±P7nܰañcÇüýýŸyæ™ñãÇKwäÐ&‚#¬Â9ް ÁV!8À*GX…à«`‚#¬Bp„U.]ºÔ´iÓI“&É]ˆÖeggGGGwëÖíé§ŸnÓ¦ÍðáÃúé'¹‹Ò®uëÖõïß?$$¤U«VS§N½qã†Üi? ÇŸp“»8£Ñ8yòdÓ'wC.999áááGŽÑëõ-Z´¸{÷î/¿ü²ÿþ±cÇŽ=Zîê4'22rñâÅ•+WnÞ¼yJJÊúõëÏž=»råJwww¹KÓ(~@Ž?%ê@pDñ¢££ýõW¹«€X»ví‘#Gš6múå—_JéäìÙ³ƒþâ‹/Ú·oß A¹ Ô„„„¨¨(??¿ØØX___!ÄG}´råÊ9sæLŸ>]îê4Š…ãO‰:0Ubœ={622òñÇ—»ˆmÛ¶ !¦M›fêi½ù曃ù8[»vmnnîøñã¥Ô(„ˆˆˆÐëõ[·nÍÍÍ•»:âDÉøS¢G%''çÝwßõòòŠˆˆ»ˆäääÊ•+7jÔÈ|0((H‘šš*wuÚrðàA—víÚ™F\]]Û¶m›žž~èÐ!¹«Ó(~@‹?%jÂT5в`Á‚S§N-_¾¼J•*r×±dÉ77ËŸÙ“'O !jÕª%wub4½½½½½½ÍÇëׯ/„HMMmÖ¬™Ü5j? ŠÅŸ5¡ãˆB9rdéÒ¥ƒnÙ²¥Üµ@!6l(E“øøø¨¨¨ *ôêÕKîê4$++Ë`0xzzZŒëõz!Äõë×å.P£øQ&þ”¨ ÁËÎÎ~÷ÝwkÕª5qâD¹kA ÃÊ•+GŒ‘••5sæL¹+Òììl!DåÊ•-Æ=<<„·nÝ’»@ð¢ü)Q¦ªµ.''géÒ¥¦/]]]_ýu!ĬY³.^¼ýE¯°ƒbòË/¿|ðÁçÎó÷÷ÿøãùïxóôôÔétYYYãÒ}F¤¾#dĈrð§D}ŽZwÿþýO?ýÔôe… ^ýõ_ý5&&fÔ¨QO=õ”ÜjQEz|ïÞ½Ù³g¯ZµªbÅŠcÆŒ>|8¿ŽÏÍÍM¯×çï,fdd!L×YÃñøQþ”¨’Îh4Ê]gõêÕ3fÌ(ìÙ   M›6É]£åææŽ7î‡~èØ±ãûï¿O@‘Q=ãããÍOöŸ:uêúõëW­ZõÌ3ÏÈ] ñ¢4ü)Q%:Ž(@:uºvíj>rëÖ­ýû÷W¯^=$$¤Zµjr¨Q«V­úá‡øþûïË]‹ÖuèÐ!!!aß¾}¦Ÿ£Ñçåå"wuňÒð§D•è8Â*'OžìÓ§O=fÏž-w-e4;uêtãÆýû÷W¬XQîr´îÒ¥K:t¨[·îºuë¤kb–,Y2oÞ¼#Fð9¼²àÄ)ð§Dè8ÎáÚµk.\pww4hPþg{÷î=xð`¹kÔêÕ«Oš4iÖ¬Y=zôhÓ¦MJJJ|||£F^{í5¹KÓ(~@Ç 8ÎáâÅ‹Bˆììì'Nä–ëFoذaU«VݰaÖ-[üýý<~üx©ûÇãp ¦ª`n«`‚#¬Bp€Uް ÁV!8À*GX…à«`‚#¬Bp -“&M Þ³gÜ…ˆÏ?ÿ<88xõêÕrÖ"8À*nrêããÓ´iS¹ k@5jÔ¨‘ÜU@ 0U Šc0îß¿/w`‰àÀ9¼÷Þ{ÁÁÁ³g϶?~üxpppË–-srr„iiióæÍ kÒ¤I“&Mºví:sæÌ+W®¶ZéZ™XŒ7lØð¹çž3ùé§ŸÆŽÛ±cÇæÍ›2äóÏ?·ÈvüñÇûï¿öôÓO·k×îõ×_?xð`[´téRó‹c¤J.^¼Õ¢E‹'žx¢Y³f/¿üòŽ; [ÃáÇ6lضmÛÛ·o›ïܹӮ]»† ;vLîƒ@mŽœC÷îÝ…Û·o·ß´i“¢W¯^nnniiiƒ Z²dÉ¥K—j×®]³fÍÔÔÔ+V 0àÆey÷9sæ >|ûöí999¾¾¾¿ýöÛ‚ œžž.-pöìÙîÝ»¯Y³&==ý±Ç3qqq¯¼òÊ®]»JôFK–,™;wn¹råZ´h¡×ë>>>Ÿ~ú©ŸŸ_llìÍ›7…§OŸBôïßßÕÕUZfÀ€£FêØ±c‰ÞëÉ'Ÿœ8q¢‹‹‹´É£FBœ?¾°åË•+÷ïÿÛÍÍí½÷Þ»zõê´iÓÜÝÝçÌ™c*lˆàÀiHÐ|ÞVš§îÛ·¯ôåèÑ£/^üØc™¸víÚæÍ›Ëò¦7nÜHNN ´¸ºR¥J-[¶ÌÎÎ>qâ„BJ®¿þú«t¶e¹råÆ7f̘½]—.]Ì¿Ôëõ®®®F£±ˆ—4lØpôèÑ—/_îÙ³çü1yòäºuëÚëÐ6nÇÀi4jÔ¨nݺçÏŸOHHÎÉÉÙ¶m›»»{XX˜i™?þøcïÞ½¿ýö[jjê… Êxj£"))IúßàààøóÏ?…|ðÁøñãýõ×W^y¥bÅŠ 6|öÙg;uêÔ°aý]Íš5KQäo¼±cÇŽ“'O>óÌ3 °é^€ŽœI÷îÝ,X°mÛ¶ààà}ûöݺu«OŸ>¦‰é˜˜˜?ü0''§víÚÍš5ëØ±ãO<‘œœÿüó+W® Ú¼ysþ›€M8é™iÓ¦eeeõë×Ï4îçç'„8}útZZš4b0Ö¬Yóõ×_ !²³³ \[íÚµ…«V­ÊÊÊ’FâããM7Ù‘L˜0!77w„ §N’Fîܹ3eÊ”'N4jÔÈÇÇÇßßÿöíÛG]¶l™©Uyþüù½{÷ !ìz?ÅË—/Ϙ1ã‘Gù׿þU®\¹O>ùÄÕÕõƒ>(ûÉSÕœLXXجY³\]]{õêe ìСÃÎ;_xá…¦M›Æ„„„7n 4håÊ•ß~ûííÛ·¥ë˜ëÕ«×W_}uèС:4lØðêÕ«‰‰‰z½¾Zµjýõ—´LïÞ½ýõ×ï¾û®W¯^5jÔðòòJJJÊÊʪ[·®tçm—©S§FDDÌž=ûË/¿¬Y³fVVÖ¹sçŒFã€BBBì´+ŒFcDDDFFÆÇ,忯‡‡‡ùå—|ðÁ§Ÿ~*÷± 6t8__ßgžyFѦM___ó§æÎ;vìØêÕ«K÷wl󦒠 ¦M›6hÐ WW×?°V­Zß|óMÇŽ]\\öïßæÌ™5j,]ºÔÇÇÇ´ŒN§›9sægŸ}Ö¾}ûÜÜÜóçÏL˜0aÆ ^^^Ò2½{÷þꫯžþyww÷Ó§OgeeµjÕjáÂ…ï¿ÿ¾ývŪU«8кukÓ‰žBˆ±cÇÖ©SgëÖ­Û¶m“õ@P!]Ñ·íÈÌÌLOO¯U«–õA€¦`¦ª`‚#¬Bp€Uް ÁV!8À*GX…à«`•ÿÈ|áBHÄšôIEND®B`‚statistics-release-1.6.3/docs/assets/cauchyinv_101.png000066400000000000000000000615651456127120000226560ustar00rootroot00000000000000‰PNG  IHDRhŽ\­Ac|ø‹/¾Ø¼ys›6mäÞ-ªGpàlÉÉÉ;vüý÷ß K<<< ¤Ç—/_~ùå—8ðä“OÊ]©ÃU®\¹aÆBˆZµjÙåøøùùyzz !îܹch4fgg÷ë×/%%¥|ùòe¼ÅDµjÕä><‡©jÎöÎ;ïRÑСC;v÷îÝ+W®,]º´råÊBˆ¼¼¼þýûË]¦3 80=====}ýúõv9>«W¯–6xýúõ‹/:TZž‘‘ñå—_–ýS§N•ûðP‚#§Ú¾}ûÆ¥Ç111Ë—/òÉ'ÝÝÝkÕªõÚk¯ÅÇÇK/%''Ÿ;wÎ𮢢¢5kÖ„……5hРB… 4èØ±ãþóŸû÷ïÖ)í”Ä”xÒÞõë×Ç×¾}{ooï† vïÞ}óæÍ¥•}óæÍ &´lÙÒËËë©§žZ±b…áûZ‡ &m¿^½zÆo¹|ù²á|Á“'O–¸Ùâç8Zw|JT¯^½åË—ŽÆôéÓïܹ#Ë Ð ¦ª8•¡ïU½zõwß}×äÕððð=z\¹rEqâĉ   iù€¾þúkÃj/^¼xñbbbâÆ¿ùæ+Êøá‡ týúuéinnî… ¶lÙ2lذ%K–˜¬œ““Ó¾}û³gÏJOùå—èè蜜œ·ß~[ªmÙ²eBˆŒŒŒãÇ?ñĆ4nÜøñÇwèñ)øqãÖ®]+„¸qãÆ¾}ûžþyÛ€K#8pªýû÷K^|ñE//¯â+lÚ´ÉdÉ×_-¥FNV·nÝ#GŽH=¼„„„;wvêÔÉ¢rss###¥S«V­Ú¹sç›7oîÚµK±téÒgŸ}vРAÆëïÞ½[àíí}üøñÂÂB!Ä”)SÆŒS®\¹Ž;úùù]»vM±yófCpܶm›ôàå—_vèñ)[hhh¹råîÝ»'„8|ø0Á€-˜ªà<÷ïß—–" ÀÌwmÙ²Ez0~üø;vüç?ÿ9qâDË–-¥…?ÿü³¥eÌœ9SJ 48þ¼”> §ôï8 !æÍ›—ššzäÈ‘ÿüç?Ò’?þøãÌ™3Bww÷~ýúI “Ýz½ÞÐq4?8Zw|ʦÓéjÖ¬)=þí·ßŠ¯Ð¥K—â÷⑚©`‚àÀyrss k×®mæ»ú÷ïÿÕW_}õÕWãÆ3l'//Oz|óæMKËØºu«ôàwÞñññ‘;ö©§žzê©§þøã©§hФI“7ß|SzÜ«W/s5çÏŸ—¼òÊ+Òƒdgg !Ž=š™™)½7$$Ä¡Çç¡jÔ¨Q|û`¦ª8tQ°¤ø]©K#Í®fggoݺõ§Ÿ~:zôè?þxûöm«ËHII‘´oßÞ°°fÍšG-qýÀÀ@Ãc//¯:uê\¸pAaÈ—íÚµ«W¯Þ¥K— ·mÛÖ¿ëæ©­;>•••%=¨R¥JñWK¼OõêÕíõé´„àÀyÊ•+çãã#µâŒïnmìÖ­[Ò= +T¨P©R%!Ľ{÷¦L™òÿ÷†{zzzúúú.m±Hnnî­[·¤ÇU«V5ç-nn›œÑét&+ètºþýûþùçBˆÍ›7GÃ,¶ãŽÏCf¨ýüüŠ¿ºzõêÎ;[q$¸ ¦ª8U»ví¤6l0¾™ŽAãÆ}|||||.\(-ùä“OæÌ™SPP°`Á‚_~ù%777""º*W®\±bE鱡g;Ãlõ÷ßûöm鋿©­>>eÛ·oŸteŒâé§Ÿ¶×þpMGNõúë¯K.^¼¸hÑ"“W7nÜhh=ûì³Òƒ H¾øâ‹Q£F=ñÄ&ï54srrŒ—›4&u:Ýc=&=>tèaùo¿ýÖ¶mÛ¶mÛ†……Yº_-[¶lÔ¨‘âÆŸþ¹”Õ,š§¶úø”mÞ¼yÒƒJ•*OÍ€ŽœªgÏž]ºt‘¿ùæ›Ó¦M»zõªâÞ½{«V­2dˆôÒc=Ö¼ys!ÄíÛ·¥©[a”þùç;wšlÙpÿíC‡nŽýÝwßI7Ó1fˆ\³gÏ6ä°ØØØ¤¤¤¤¤¤òåË›ÌM›ÉÐt”欅UÁÑÒãS†ß~ûmøðá ÒÓW_}ÕøJ°†œëøñã&Wcøøø¸»»žV¨PáèÑ£ÒÊEEE†ÛV¬Xñ…^èÕ«—ñw.ÇÄÄHkß—§bÅŠíÛ·6þ”wÞyGZóÚµk†ËDüüüh|’ßúõë¥ÕÞ{ï=iIï޽뗾]Z±fÍãå&_Ó´iÓ‡ Ãts«V­¬;>&Ÿ[»víF5jÔÈøË¯…>úè7J|ËöíÛåþ‰ t8[³fÍ~øáãÛÍdff®Pnذá·ß~ûÔSOIOu:]xx¸ô8//oýúõÿïÿý¿:uê„……I ¥†œ¢E‹†ž_^^Þþýû“““ <__߸¸8ooo!ĵk×þûßÿîØ±CziêÔ©VŸ=bü 1V´­8>&®\¹’’’’’’b8,BˆêÕ«¯_¿Þpã!°Á€ Ú·oþüùØØØgŸ}Ö××·|ùòÁÁÁ/¼ðBllìÙ³g{ôèa¼rlll³fÍ„nnnO>ùäÛo¿}ôèÑ^½zI¯ÆÇÇ&¦W®\ùÉ'Ÿ4kÖ¬R¥JÍ›7óÍ7“’’J L}úô9qâĈ#Z·níååÕ°aÞ={îÙ³ç“O>±e¿ ÉUXx=µ-ǧDîîîÕ«Wúé§ßÿýäää6mÚØkì¸2^¯—»xˆû÷ïoܸQѧO¹k)ËÁƒ¥Ë¢›6mzêÔ)¹Ë;ã>ŽTà‘GQxd”:¡³éí6½Ûuéôz½Ü5hMpp°Ü%à$ÉçÎ9ùCÏ%Ÿ zØ:ÉA¥ü‹|î\rP­ÿX''';y¯•€àhÁÁÁ®ùäd Š1(Êĸ(ÒE§NÏ:¡Ó ýÃÖ)u ÛKVú 8 SÕÀZr¤FÛ©°d¥ 8× ŽV#8À,G˜…à¬"Ó Žæ\!8Â%lÙ²Eî`ŠAQ&ÆE(Áf!8Ë©óF<°Áf!8­)ãkc` ‚#°|óÔ¶_RÍ»-Ž0 Áf!8À,r!„–»(Qrr²Ü%@1œ$èÂŽJAD@qÁÁÁü`”ƒ©j |KµìŽÀlÌS»6‚#ÌBp€YŽÀ<ÌS»<‚#Д2¾¨šèk#‚#P.©V‚#0Í:`&‚#ÌBp„ýݺukäÈ‘õë×÷òò MJJRËÆSØýû÷=<ºìß»w/'''??¿Œ-xzzvëÖMnÇcRvawïÞÍÉÉùã?¤§“&MJHHðóóûꫯ–.]Z­Zµï¿ÿ~Ê”)ö&°óÔ(F§çgÂÞ‚ƒƒ“““ý”héÒ¥'Ožœ;wnë :Tún@¹‹}8mÿ`¤§§ûûûË]L1. $Û (#8Zz/çÜÇQÛ?—Ž#´ãîÝ»»ví*ñ;Ë(#5²CJCp„v„^¯ŸŽ¥š?þ™3g–/_.}#3pNpT&‚cÉŽ;¶dÉ’Aƒµk×îÔ©S–¾=88ØdÉ–-[äÞ'¨RzzºÜ%8JFF†Ü% Œ‹9mPüÒÓÒ„BþÚñ·ø/Àÿ´RßãoË_§Ýºu“ûp(Á±ùùù“&MªW¯Þ„ ¬Û‚k~ñ9Áßß_îØ;—ø(ÓEQ£oE1e¼Å–]+þÏzñ‘‹ 8–`æÌ™ñññžžžr×€Sp ÌÀÅ1¦>?bĈ'Ÿ|RîZ„àhêüùóBˆ ÿéÅ_B¬_¿>88¸gÏžr¨·nÝ9rdýúõ½¼¼BCC“’’Ô²q» ýøãå®TŒ+c‹©jS 47^rëÖ­}ûöÕ®]»yóæ5kÖ”»@¥ËÍÍmÕªÕÅ‹ûöíëãã“Э[·]»v5oÞ\á·‹£Gîß¿¿sçÎr–`žæ!8šêСC‡Œ—œ:ujß¾}­Zµš5k–ÜÕ©Àœ9sRRRââ↠"„7n\Ë–-'L˜°sçN7~çÎJ•*9n¯ vîÜyàÀ 9"ÛSհئM›t:ÝôéÓ KfÏž­Óé6nÜ(„X³fM­Zµ,½зoßÄÄÄ«W¯ÚþÑVo¼k×®5jÔX³fñÂuëÖétºï¾ûÎö²²²žþù?þøÆö<Öà+˜à‹…‡‡GEEM›6íÌ™3BˆÔÔÔ÷ß?::ºgÏž¹¹¹çÎ Óét†õ;uêTTTdûɈ¶l|Ê”)+V;vìÝ»w ãââjÔ¨a—óVýüüôz½^¯?{ö¬9¸NpT2‚ãÃ…„„$''3Om,66ÖÇÇgذa………Æ óõõB\»vM¯×ûùù¯ìëë+„°½gËÆ{öì9yòäÌÌ̵k×JK®_¿¾yóæ–+WNîà òÑJ»Q'›ÎÀ9ްFÕªU—,YÒ£Gçž{.11qÇŽÒ3æåå !L¾¤ÑÛÛ[‘••e²‘‚‚‚M›6•ö½zõ2YbÑÆ‹{õÕWcbb–.]:`À!ÄêÕ«ïß¿U|MK ÀEM't¶oÄjeÏtïÞ=***..nÔ¨QaaaÒB!ÄíÛ·×ÌÍÍBT¯^Ýd wîÜéÝ»w©Ÿ^ìÿ€-ÚxqÞÞÞ X¶lYZZZ@@ÀŠ+š5kÖ¢E‹âkZZÀ^˜§V8¦ªM/ô2þyHmzý… „¿üò‹á:b???777“‰ãÌÌL!D:uL¶àíí­/]ñO´hã%5j”^¯_¾|ù‘#GNœ81tèÐW³´0P+­ÌSÃiè8ÂJóçÏß½{÷¸qãæÍ›7þüqãÆ !<<<š6mºwï^ã5÷ìÙ£ÓéBBBL¶`錰E/Q‹-Z·n½bÅŠ¬¬,ÈÈÈWcª4ƒllgzØ[PPÞ"¯äädOOO©Q±bÅÔÔTé¥yóæ !6lØ =½v횟Ÿ_×®]‹o$''ÇÒŸLó7^šåË— !ÜÜÜzõêUÚ:Vf ]UýÑGÙå8«îÃ"iiir—€0. ä¨AQdz+«*ímÚKmÿý\¦ªa±ÂÂÂ!C†Ô¨QcÆŒBˆ ¸»»6L¯× !¢¢¢ž|òÉÈÈÈ©S§~öÙg;vÌËË+ñ+ø¬˜.{ãñññÕªU?~|Å¿òÊ+ÕªU+***ñ²« ØŽ•à‹Íš5+))iáÂ…ÒÎuëÖ1cÆ®]»/^,„¨R¥JbbbÿþýfÍšÕ¨Q£ÄÄÄ6mÚØå£ËÞø½{÷rrròóóËØ‚§§g·nÝ„&_, ®…\X…sa±˜˜˜˜˜ã%£G=z´á©···"¡Œ2äþýû'Ož,{ åË—B<òÈ#Ž(/88˜®$87qt:ŽÐŽ»wïîÚµ«Ä;ìþB»Ö"8B;<ؤI“Ê]Àbœà¨ LUC; ·"/C```‡ä.dâJíFWÚW'¡ã—3uêT“›AspJmÁ1O­G˜…à³p J§¶u·¸‰£€œ8ÁQEޏ¶Ùc'#8À,G´NÁÍ7æ©Õ…à³Ð4·¡:G´KÙ©‘yjÕ!8Âþnݺ5räÈúõë{yy…††&%%©eã¶8~üxÿþýkÖ¬éååÕªU«ØØØ‚‚¹‹+í&ŽÊÌ*æ!wКÜÜÜV­Z]¼x±oß¾>>> ݺuÛµkWóæÍ¾q[¤¥¥uìØ±°°°OŸ>õë×ß¾}ûøñã÷ìÙ³víZy àÒHO°7:ް³9s椤¤,^¼xõêÕóæÍÛ»w¯N§›0a‚¼¿sçŽC÷züøñ·nÝÚ¾}{\\Ü´iÓ8½nݺ­[·:ôs@½˜§V#‚#,¶iÓ&N7}útÃ’Ù³gëtº7 !Ö¬YS«V­ÁƒK/ôíÛ711ñêÕ«¶´ÕïÚµk5Ö¬Yc¼pݺu:î»ï¾³½°;w†††¶nÝÚ°ä7ÞBeÊ”Š+Ž;öîÝ»†…qqq5jÔèÙ³§…Œ3FJŠ.\B”/_ÞŽGyaØØXŸaÆ6Ì××766VqíÚ5½^ïççg¼²¯¯¯âÆ6~¨-ïÙ³çäÉ“333 '^¿~}óæÍ,W®œ…yxx|úé§/½ô’aÉÍ›7?ýôSww÷¾}ûÚ切Ùßntè<µâ÷^Ÿ8Ö¨Zµê’%KzôèñÜsÏ%&&îØ±£J•*Bˆ¼¼f̘ªU«ÆÅÅeddlÛ¶­M›6¶tÙ=zôСCçÌ™SÚòóóëÔ©“½víÚ2Nd´ÈéÓ§CBBš4iòüÃä¥_|1""Âê-«ëÃRéééþþþrWSŒ‹Y0(jh7ÚqžºÄss ´ý÷s˜ª†ÅfÍš•””´qãFiN¶nݺ3fÌ3fÌâÅ‹GŒQ¥J•ÄÄĉ'&$$dgg·mÛvõêÕöúJÀ²7~ïÞ½œœœüüü2¶àééÙ­[·øøøððp{””!Ä™3g¤[kÔ¨‘-Á, †Ôµ#8Âb111111ÆKF=zôhÃSooïÅ‹;èÓËØø!Cîß¿òäɲ· Ý”û‘G±WI/¼ð{€+àªjhÇÝ»wwíÚUâv@ãTÒntô<5àí8xð`“&M(w!hSÕÐŽ°°0íÈËØ¡C¹‹ûq½v£Ê„ŠÑq„Ë™:uªÉÍ @ÅÈJp"‚#ÌBp@µÔÓnäkµà´@=)ZÅލ“z‚’ÝÛÜ‹G.GTH=©ZBp€YލªÚ\£%GTEU©Ñi8*ÎApŽB»Qcލ5.©–Á•P[j¤Ý¨=G njKÔ*Fp„ýݺukäÈ‘õë×÷òò MJJrèÇ?~¼ÿþ5kÖôòòjÕªUlllAAÜÇàoBCC?þøc¹« r„#(Áv–››ÛªU«+V<óÌ3¯½öZjjj·nÝŽ=ê KKKëØ±ã–-[ºuë6~üøråÊ?¾_¿~r†¿=ztÿþýrW@åT˜™§Ö$‚#ìlΜ9)))‹/^½zõ¼yóöîÝ«Óé&L˜à ?~ü­[·¶oß7mÚ´DGG¯[·nëÖ­e¿ñÎ;=Û¶mû裞þù¢¢"‡~ÎAp„Å6mÚ¤Óé¦OŸnX2{ölN·qãF!Äš5kjÕª5xð`饀€€¾}û&&&^½zÕÅìܹ344´uëÖ†%o¼ñ†âàÁƒe¿±k×®5jÔX³fñÂuëÖétºï¾ûÎö²²²žþù?þøÆŽØq®Ã? €v£Ñ–M·«Ân¬Ša±ðð𨨨iÓ¦9sF‘ššúþûïGGG÷ìÙ377÷ܹsaaa:ΰ~§NŠŠŠq¦cAAÁ˜1c¤¤hpáÂ!DùòåË~ï”)S*V¬8vìØ»wïÆÅÅÕ¨Q£gÏž¶×æçç§×ëõzýÙ³gí¾ã\ˆN—ž–&wÀGX#66ÖÇÇgذa………Æ óõõB\»vM¯×ûùù¯ìëë+„pDãÍÃÃãÓO?}饗 KnÞ¼ùé§Ÿº»»÷íÛ·ì÷öìÙsòäÉ™™™k×®•–\¿~}óæÍ,W®œÜTŒ³5ÌCî JU«V]²dI=ž{î¹ÄÄÄ;vT©RE‘——'„x{{ !²²²L6RPP°iÓ¦Ò>¢W¯^–Vµ{÷îáǧ¤¤|ùå—]ÿÕW_‰‰Yºt逄«W¯¾ÿ~TTTñ5í^*˜Eš…MO—»à‚£¢élß„ Êþ¿ÅîÝ»GEEÅÅÅ5*,,LZèãã#„¸}û¶ñš¹¹¹BˆêÕ«›láÎ;½{÷.õÓ‹±’ššÚ¨Q#ÃÓ¸¸¸!C†H/^¼øÆolذ!00pûöí:u2g½½½ °lÙ²´´´€€€+V4kÖ¬E‹Å×´´T°už»çäv£:’ŠMÉ¿ z½^:›ð—_~)**rssBøùù¹¹¹™ÌJgff !êÔ©c²ooo‹"—ŸŸßW_}exÚ¶m[éA||üˆ#¼¼¼-ZíáaÁOõ¨Q£–.]º|ùò_|ñĉsæÌ)q5KK[ˆ HGXiþüù»wï7nܼyóæÏŸ?nÜ8!„‡‡GÓ¦M÷îÝk¼æž={t:]HHˆÉ,ÿõòòŠŒŒ4Y¸aÆW_}õå—_^¸p¡É¹9Z´hѺuë+Vdeeyxxß¾u¥€krt»‘o©–ÁÖ8wî\LLÌÈ‘#çΛ––6uêÔˆˆˆ€€!Ä믿>nܸ7J×&_¿~=!!á¹çžó÷÷7Ùˆíó¿z½~Ò¤IõêÕ[µj•»»»uû2jÔ¨èèèÅ‹GDDH×ñÇT5§¢Ý¥"8Âb………C† ©Q£ÆŒ3„ ,hÚ´é°aÃvìØ¡Ó颢¢–/_9f̘ªU«ÆÅÅåå啸…{¶Ïÿž9sæìÙ³Mš46l˜ÉK/¾øbDDD||üèÑ£‡ZÚ´â•W^™0aBvvv‰—ÅØ«T0—jS£ó/¦Ví¡R1‚#,6kÖ¬¤¤¤7JSÃuëÖ1cƘ1c/^>><<\îC €¢a±˜˜˜˜˜ã%£G=z´á©··÷âÅ‹PÉ /¼Pv#pÈ!÷ïß?yòdÙÛ‘îþÈ#8¢Èàà`º•Ì¥Ú÷ntÜZv÷îÝ]»v•x‡PÕ¦Fç0¹2†£% ‚#´ìàÁƒMš48p Ü…Àè9ÑntLUCË 7'/C```‡ä.€ Ssj„K¡ãˆ©S§šÜ{`&YÚ$m¹•šC“Ô®†à€|ԜႎÈDå©Ñ™íFãKªU~ØÔà€ˆ?P!‚#°g7º&‚#NG»êDpÀ¹ÔŸel7ªÿà©7WŠàà`¹K8žúƒóS£É— BFGEHNN–»KOO÷÷÷—» .Oý©Q^?Ù1U €Sh"õpMŒ‹#8³ApÀñ4Ñn”…áG¡p0MDÚG‹Ô !8à0šHJÀT‚#Ž¡•°C»G€ÔhŸOzíK- 8`o$hÁ»ÒPjd’&ŽØ©ÑîehçˆjßU]²üüüÿýï •+W ŠŽŽnß¾½ÜuLCG!©JCp,AAAATTÔ±cǼ½½Û¶m{÷îÝC‡íÛ·ïÍ7ß3fŒÜÕIC©Q!tBªÂKðõ×_;v¬eË–Ë–-óôôBœ?~РA_|ñE§Nš4i"w…ÑVj¤ÝˆÒpŽc ¶lÙ"„x÷Ýw¥Ô(„ 9rdaaáþýûå® 0¤F‡ÑÐqÕ‚c ÒÓÓ+Uªb¼000PqéÒ%¹«( ©®„©ê,Z´ÈÃÃôÈœ:uJQ¯^=¹«(†¶R£¢H'8b•†àX‚¦M›š,IJJZ¼xqùòå{÷îm΂ƒƒM–HÓßKFF†Ü%Àƒ¢LŒ‹ùüÒÓÒDzº£?Èiƒà–ž–.¾Gfñ÷OKKwüÑ5K·nÝä.A)ŽQXX¸zõêÏ>û¬°°pöìÙ>>>æ¼+99YîÂaÊßß_î`ŠAQ&ÆÅ,:Ðëv¤œ0(&©•4øÊùQ,þÏzñ‘‹ 8–åСCüqjjj­Zµ¦OŸÞ®];¹+(€æf¨•vj£ŽIj¥"8–ìÞ½{³fÍZµjU… ÆŽûÚk¯®°¸4R£(® <@p,AQQÑ„ ¶mÛÖ¥K—?üÐ××WîŠÊ@jtBI´ŒàX‚U«VmÛ¶màÀ~ø¡ÜµCs©°÷q4¥×ë¿úê«Ê•+Ožƒ ’»F€si1Î(652S­dGSÒí²òóóOžާÓ\*ÑRdŽéÓnÔ‚#À¹´57­½È(4éagG€³h+•h,2 ­Ez8ÁàJ%šŒŒÂ‘‘žyjÍ 8LCF"#\œ›ÜXéøñãe¯°e˹k—§Ó=h4ª?˜è„NúͤF§ íF-Qkp|å•Wþýï);;û­·Þ7nœÜ5€k#2*˜VΦÖàèëë;þüþýûÿúë¯ÆË·nÝþý÷ß7hÐ@îÀUzYj¦{°ŒŒêÈF­ÁqãÆýû÷?qâDïÞ½ããã…999ãÇóÍ7srr^{íµõë×Ë]#¸MÌMçEMFFgóÔ£Ö‹c¼¼¼¦M›Ö½{÷wß}÷£>Ú¼ysZZZfff``à§Ÿ~Ú¬Y3¹ ×£þF–ö®}y°_\;QkÇQÒ¶mÛ5kÖT¯^ýðáÙ™™-Z´X»v-©œMýÓŸšœ•r·€i7jºƒãÞ½{ûõëwóæÍ__ß#GŽŒ3æÚµkr×.CåsÓZ=‘Q¨~d Pj Ž·oßž:uê°aÃ233Ç÷Í7ßlܸ±{÷‰áááß~û­Ü€Ö©<˜hûDF%Œ íFMRkp”Òa``à7ß|3zôhwwwooï¹sç~þùç:nêÔ©¯½öšÜ5€v)!˜XW¸k´U82PµÇÌÌÌáǯ]»¶iÓ¦ÆË#""6lØÐ¶mÛ}ûöÉ]#h‘jOgÔj‹Q(²ùK»Q«ÔzUõêÕ«›7o^âK5kÖ\±bŪU«ä®´E—æJJ í^+-Ô7&P1µÇÒR£D§Ó lذÌÌÌØØX¹kSL—QKÍEãÎ"·Ñ«QeÇQÑ£GK—.-^¼8))©{÷îuëÖ-W®œÉ:;v”»L‰2ºŒšé/ºÚ9‹æ£ÝèjÔ;wî,=8~üøñãÇK\'99Yî2Àé䎌†°(Tž ‹@qj Ž/¼ð‚Ü%€òÈw7o 4“¢ ,šv£ Rkpœ5k–Ü%€’ÈÔhTu^$)–Rkp<àôȨÞÉh’¢ÑntMª Ž«W¯B<ýôÓ†§e‹ŒŒ”»jp$çFF56IŠBjtYª ŽÓ¦MB|üñÇRp”ž–à@³œU×\$)¥šà8vìX!D³fͤ§ï¼óŽÜ€UMb¢ ):íFW¦šàøÆo?}ýõ×宜ËÁ‘ñA^ôWtX¤¡(;R£‹Så7Ç€kqØÀÿÂè´ô4¹÷Öt¿KûhR#à|ªé8€+r@—Q±3ÑÌ;+íF@‘ì•‹gDûí+"8€ÂØ/2*ä:´µv#ÁÄ‘QÞæ"­D­"5BBp°-2ÊɈ€ ÒNpÔëõ;wîÌÈÈxâ‰'š7o.w9`k#£3Ã"ÑÅÑn„ŠƒãÎ;çÍ›×¥KéÞàï½÷^BB‚ôÒ€>üðC]‰Õ€BXü‹/$#º2R#Œ©õ>Ž?þøãèѣϞ=[TT$„8}útBB‚··÷ÀëÖ­¿sçN¹k€RXr_Æâ·Z”þØ« “?iié&÷J$5º2R#L¨58.Y²D¯×¿ûGBlÛ¶Mñé§Ÿ~øá‡Ë–-Óétÿýï宊1/2Ú7,–‹ßL›Œà¡Ô:U}îܹš5köØcii¶~ùÁ7ß|óõ×_§¤¤T¬XñÙgŸ8qbµjÕäÞoªõ°‰i»LCs2"ìˆv#ŠSkÇ1''ÇÇÇGz\PPpúôéǼ\¹rÒ’Š+fffÚ²ýØØØ÷Þ{/55µuëÖ^^^ß~ûíðáÃóóóåÞo*Tz—ÑêÎ"MD8©%Rkp¬]»vFFFaa¡âÈ‘#wïÞýÇ?þ!½TTT”‘‘ñè£Z½ñäääÅ‹ûùùmÙ²eñâÅ[·n}zÅŠ—»»»ðÁ+Vܺu«ÕïܹsaaáÞ½{ Kôz}bbbµjÕ¤›þPïƒøð›r¡Q¤FXD­ÁñÌ™3þþþ†o4æååpá«7Þ¯_?77·ÿûßÒyBˆÅ‹gff¾ôÒK<òˆÜ»¸4;Þ(ÛÜop!2B»H°”Z/Žñöö¾sçNi¯fggW®\Ùê×®]{âĉ3gÎ|á…žyæ™ .$%%…„„¼þúërï7àBJ¼NÅÆðfz‹9¡Q¤FXA­ǦM›^½zõøñãÅ_:sæÌåË—›4ibËö£££?ÿüsÿÍ›7ß¼ysРA+W®,~sG¶³¨‰hÍö-ùnè¿ÕD—ÚEj„uÔÚqìß¿ÿ¶mÛ&L˜0wîÜÃòS§N?^Ñ»wo?""""""Bî4åïMÄ·‹sD6³¬³X¼Dò"”D­Á±}ûöÆ [²dÉ‹/¾ „ؾ}ûRSS‹ŠŠúôéóüóÏË]#àÒ:Ñœžžnß[ [+&2ÂÐn„ÕÔ…ï¼óNË–-gΜ™––&„¸|ù²âÑG?~¼ñ8š#NF4÷£m ‹Æ;@d„k 5Â*ŽBˆ°°°°°°ììì´´´{÷îpŸEÀ¡d̈+C¾ñÏÆ‹eˆŒp-¤FØHÝÁQR­Zµ–-[Ê] AÅc¢ŒË>ÍE“}#2•a;µÇ6mÚ@!„^¯/**’׬Y³Ä{ƒ(ª•hZ›#¢ñn+gWg!5Â^ÔOŸ>m²¤°°ðÊ•+?üð×_~ùÇ|ôÑGr×(…’câ_EÚë´Å2wpØ›‹Adþ†ÔçPkpTAmÅû"osñ¯:ˆŒ€)R#œF5Áq÷îÝ–¾¥cÇŽrW W¤¥°(”“‘(ôûÉoœF5ÁqĈ–¾%99Yîªá*4…¢ò¢ 2%£ÑçSMp,ãj@‹B!yñAY:_À®H…j‚#WÃ@ ´…Òš‹«ŒF#P2R#ä¢Í¯œ/"£Üå<´\ÐéÒÓÒä®P.)2*þ—.G­Á±fÍš¿þúë;w¤§õêÕûé§Ÿ ¯êtºŒŒ ¹k„Rèt" Àßò¢Z"£Ö†°+P2µÇ.]ºäçç¿óÎ;©©©BˆV­Z]¼xqß¾}BˆÌÌÌŸþ¹N:r×™÷ÓÒÒµTÔ—‘0 F(œZ/Ž(]»£ØF¨‹Z;Ž¡¡¡Ÿ}öYJJŠñB//¯¶mÛ’]-F…Òê¨öF£ª£Öà˜••µlÙ²ðððW^yå›o¾1\^ ¡Õ»êU݈±¤ê‰Œ€Y¸t*¥Öà˜åççwôèÑ÷Þ{¯}ûöS¦L1¾#´J«ÉDÝ-Æû ÅìMG£j¦ÖàØ¬Y³)S¦ìÞ½{ÕªUýû÷/W®Üwß}Ùµk×Å‹_¿~]îaÚŽŒjm1>؇?Ç@鈌еÇÕ»¹=ýôÓÓ¦M;pàÀÂ… #""nܸ1{öìŽ;_7µs…È(w-VïƒFǰ7"#´AÝÁÑÀÃÃ#,,ìóÏ?_¹repppaaáîÝ»å. v ÉX¢…Yé{¢¹±€Ó¡%j½‰äää-[¶lÙ²%--MüÙ‰”»(ØD“÷rQñ½uL÷D‹ÃØ·Úö¨;8ž>}zëÖ­ßÿý… ¤%?þxDDD=|}}å®VÒd&!2.…È­Rkpœ5kÖÖ­[/]º$=mذaDDDDDDƒ ä. ÖÓd&ÑNd‚+`€‡"2BÛÔ—.]*„ðõõ ˆˆ ‘»"ØJ{™Dk‘Qh.ÔvEd„+Pkpìׯ_DDDëÖ­ÝÜ4r}+ÓX&Ñ=øçƒÈ¸ "#\‡Zƒã¿þõ/¹K€h,“hªÅø`—4×ìŠÈW£Öà ÐR&Ñfd õ€½ášŽ–2 ‘p5DF¸2‚#œMcFMEF¡­áìÈáàw(ŽàÒ@,Ñrd4¿¡Å<Á¡X¢Á‹¦ì˜ú=`WDFÀLGØŸb FÀ0+ XŠà;S{jÔldêÀ~h1Ö!8žԞL´<7-h4´[a7ªN4m£ÅØÁö¡êpB£Ð*ZŒ€}a+U‡€VÑbà›¨:œÐh´‡#àPGXO½©‘F# 1äEÀ9ް’zó‰fBÍ£X…¼8ÁÖPi>Ñx£Q0= Â)Œ€,ް˜zS£6#£Pí–£ÅÈ‹à˨1¢è„NøÓhTŒ¼(„›ÜŽ%5ÓÒÓä.Äû¦z=©¦ûóþÏ?äEÇP]»‘éi@è/ŠEp„¹ÔT¸Pò" |G˜Eu©Q›‘Q¨m$3!8âáÔ•UH€òéŒó3 ¨Á¡®¬Bj”Œæ" vG”EEY…“Å"/šAp„Ðhˆ¼hÁ¥RKb!5ÊÁÉ‹€¶Q2µ$ͦF¦§¡*4ApD Hrï˜J®æ"à‚ŽP%_ Cj„‚Ñ\\Á¦”Ÿ[4Ûhj8úpI4HŽøåçR#à44˜ 8BM4›¹ŠàïoxÌO$nrQxÃKË©Q¯Wô¡‡ÖéŒþ¤¥§ë…Г”„àˆH2혲;4ÍõF  LUCH€½p™ [!„² ©°a€½¡èCj¬CXàG(—6S#PÃa‹àèêÛùÒljTæá†šq·ENCp„‘²Ñ\ ‚£KSf’!5%",ÁÊBjŒ( ÁÑu)0ÌAX `Ç’åççÿïÿKHHÈÈȨ\¹rPPPtttûöíå® jCj„y‹TàX‚‚‚‚¨¨¨cÇŽy{{·mÛöîÝ»‡Ú·oß›o¾9f̹«³æ ¶x”¡$„EªCp,Á×_}ìØ±–-[.[¶ÌÓÓSqþüùAƒ}ñÅ:ujÒ¤‰Üj©.‚°@ÕÜä.@‰¶lÙ"„x÷Ýw¥Ô(„ 9rdaaáþýûå®Î”iHÐ6ѽÑP:Ž%HOO¯T©RHHˆñÂÀÀ@!Ä¥K—ä®NkHÐ$:‹4‰àX‚E‹yx˜™S§N !êÕ«'wu¶RTª!5BK‹4àX‚¦M›š,IJJZ¼xqùòå{÷îm΂ƒƒM–HÓßÊàŸžž.w †Z„sŠÉÈÈpÆÞ¤§¥ å^esΠ8Z€¿¿áqšÑЫ÷‡@ã¢1 Šìºuë&w JAp|ˆÂÂÂÕ«WöÙg………³gÏöññ1ç]ÉÉÉr^²?Ûaþ6oÉÅHíFgÕâïïàOÒé„^¯ˆ#«Ç(µ³¨ÎÝ)N¥ã¢m мŠÿ³^¼Cä"\:8,Y²ÄðÔÝÝ}øðáÆ+:tèã?NMM­U«ÖôéÓÛµk'wÉÚ¡µIjf¨µŽih.ïß¿?wî\ÃÓòåË‚ã½{÷fÍšµjÕª *Œ;öµ×^3\a­^ÊÉ6¤F¨aL¸tpôôô,qN¹¨¨h„ Û¶mëҥˇ~èëë+w¥šBj„’  .K³jÕªmÛ¶ 8ðÃ?”»»!Þ8‡U‹`&‚£)½^ÿÕW_U®\yòäÉr×¢Ašj7’ÕŒ°V 8šºqãÆÅ‹===###‹¿Ú§OŸAƒÉ]£Å’pHalDp4%Ý.+??ÿäÉ“Å_åÂj«‘! Â"ØÁÑT‹-{F(©Qñ‹à GíSBÎÑN»Q G%!,€áp¤F8aœŒà¨qD»áP*adDp„ci¤ÝHj”a‚àÒHj„L y‘Ÿ!P‚£–Ñ&³Ž£Ñ\%#8ÂQ4Òn$5:aÔ‚à‡ 5â¡üý¥bP 7¹ €£ylÅtÑŸ´ôt=©T…àûÓB»‘Ôh?ÆaQoô :LUk±Ç&>{àšhЂ#ìL íFX‹Ë\@Ûް'-¤FÚ–£¹.‚à¨A$ëqì,A^WCp„ݨ¾ÝHj4“ÑàÊŽ€‚Ôø4‚à{Qw»‘ÔX ò"ÀÁQkˆ@°“Ñ€Òa´5€æ"à¡ް©QÕÈ‹ó5ÅåS…\øx‘V 8Â&ên7ºò"ÀG¸*Wj7’vApÔç!·]#5’öEp„ëÑzj$/„à+©¸Ý¨]RddTBp„‹Ñb»‘#À9Žáä8¤Öv£¶R#yàdG¸ ­¤Fò"@.GXL­íFõãF€¼Žp þêm7Òb(„›ÜÀœ9«Êv£N—ž–&wV.„NýŸG@qh1”‰Ž#, Òv£Š&©i1”ŒŽ#4M%©‘#@Žª§’h„’q¡4@EŽ0—úæ©•©‰ŒÕ!8B£”𙕍ÁfQ_»Qyh1ÔŽà¨nJm«ÉMaÇ…ÈЂ#NeíF%¥F"#@KŽ€CÚCp„¶( ÝHdhÁQÅœ“‘T6O-+"#@ÛŽÐùÚDF€+ 8¢,jj7Ê”‰Œ×Ap¬Dd¸‚#4Á¹íF"#À5ÕÊ II5óÔNLDF€+#8f!2@pDÉh7þýh¨âXàXG ,40 8BÍÙn$2`‚à¨JŽžžUÍ<µ£v_"#Å¡ZŽ‰ÏœÎ@iŽP'¤F”àS®9OM£€‡"8B…ìÚn¤Ñ€™ŽêãÜo×Ó2"#!8âoT0Om§àÌÜ4–"8ÂåÐhÀ:G¨ŠÍíFXÍMî  *˜§¶u5½{8G¨‡ íÆAjÀ6tU†Kª­ "-=ÀŽx@éóÔVEfÓÓØSÕÐ,"#öEÇj`y»‘Ô€Ý!„òç©-Þ í ŠÁT5Ï’v#7÷ÀqŽjÂ%Õe£Ñ€C1U eÏS›–I8ÁZ@jÀ ŽP0óÚ¤Fœƒs¡b\ €3]rOp|X»‘F#NÆTµjpIµ1R#ÎGp„"•“IÈ‚àèÒ”;O]VÍj«­ 8ByJo7’ÁªAj@^G(L)íFR#²#8º.àHj@ Žêà*÷â)i?I(ÁŠFj@9Ž.JóÔ¤F…àÅøû<5©¥!8B‰H(ÁÊ`Ôn$5 LGW¤äI(Áñá®\¹Ò²eˉ'ÊU€öïÅóç’P2‚ãCèõúÉ“'ÿþûïr¢}¤FŽàøqqq‡–» í#5 |Dzœ?>66¶qãÆrbOŠ;ÁQû3ñhÁ±T“&MªV­ZLLŒÜµhíFTÁCî”kþüùgΜY¾|y•*Uä®E»t:ž~#ê@p,Ù±cÇ–,Y2hРvíÚ:uÊÒ·›,Ù²e‹ åø§§§Ûmßü…=·f›½>Í)ÕdddȽ¯0Å (ã¢@ Šìºuë&w JAp,A~~þ¤I“êÕ«7aÂë¶œœlß’üýýí²'8Úgc¶#ôB;íÚCÙëÂŽeb\ˆA‘WñÖ‹wˆ\„KÇ‚‚‚%K–žº»»>\1sæÌŒŒŒøøxOOO¹kÔì¥#:!ôZÝ74Ê¥ƒãýû÷çÎkxZ¾|ùáÇ>|8>>~ôèÑO>ù¤Ü(ˆKGOOÏâÍçóçÏ !,X°`Áãåëׯ_¿~}``àÆå.\õh7 F.KÔ Aƒððpã%·nÝÚ·o_íÚµ›7o^³fM¹ T=n¾€JMuèСC‡ÆKN:µoß¾V­ZÍš5Kîêl¢„[?H´P!n³áäü½N>w.8H†Ï@ÉÉÉr— ‚#ÌÂT5ÌBp€YŽ0 Áf!8À,G˜…à³`‚#ÌBp€YŽ0 Áf!8À,G˜…à³íæ›o¾éׯ_óæÍÛ·o?uêÔììl¹+r!–üüüü¸¸¸ž={>õÔSÏ<óÌk¯½¶ÿ~¹wBklù¸råJË–-'Nœ(÷Nhƒrâĉ7Þx#,,¬uëÖƒ :tèÜ;¡5–ʽ{÷–,Yòâ‹/6oÞ¼S§NãÆ;þ¼Ü;árÒÒÒ‚ƒƒùå¹ ‘ÁÑ>bccß{ï½ÔÔÔÖ­[{yy}ûí·Ã‡ÏÏÏ—».—`éÁ/((ˆŠŠúôÓO¯_¿Þ¶mÛF:t(::ú‹/¾{W´Ã–ß½^?yòäßÿ]îÐ+eçÎ عs§¯¯oóæÍ=:xðà;wʽ+Úaé 2äóÏ?ÏÎÎ~æ™gêÔ©³uëÖ^½zýøãrïŠkYµj•Ü%ÈG›={¶qãÆÏ<ó̵kפ%ÿú׿‚‚‚¦M›&wiÚgÅÁ_½zuPPЀòòò¤%çÎ{úé§›4irúôi¹wH lüX¾|yPPPPPÐ;ï¼#÷®h‡ƒ’““ÓªU«'Ÿ|ò§Ÿ~’–üòË/?þx»ví åÞ!-°ú¯¯qãÆÝ¿_ZràÀ&MštíÚUî½q ·nÝúñÇ?øàéï¨cÇŽÉ]‘ è8ÚÁ×_]TTôÖ[oùúúJKbbb¼½½¿ÿþû¢¢"¹«Ó8+þ–-[„ï¾û®§§§´$00päÈ‘………LXÛ…-¿çÏŸmܸ±Ü;¡5V Ê·ß~›››;räÈ–-[JKžxâ‰îÝ»gffž8qBîÒ+åÈ‘#Bˆ!C†xxxHKÚ¶mÛ¤I“_ýõæÍ›rïöEDDDFF®Y³FîBäDp´ƒüÑÍÍ­cÇŽ†%îîî¡¡¡YYYÒ/9ÇŠƒŸžž^©R¥ã…BˆK—.ɽCZ`õoDAAÁ¤I“ªU«#÷Nhƒ²gÏN×»woã…Ÿ}öYrrò“O>)÷iƒR«V-!„qFÔëõ999nnn†( Çùä“O,X°`Á‚víÚÉ]‹lø9³•^¯OII©^½zõêÕ— !.]ºÔªU+¹kÔ,ëþ¢E‹Šÿ {êÔ)!D½zõäÞ'Õ³å7bþüùgΜY¾|y•*UäÞM±nPNžõÔSÙÙÙ ,ÈÈÈèß¿?¿5NСCéÁ®]»ä®E6G[åååV­ZÕd¹···øûÿÂî¬;øM›65Y’””´xñâòåË›4W`«#Ž;¶dÉ’Aƒµk×NÊñ°+åÞ½{·oßnÔ¨ÑG}oX^¯^½¹sç>þøãrï“êY÷›¼jÕª¨¨¨¨¨(ÃÂAƒM:Uî‚«`ªÚVÒåo•*U2Yîåå%„¸uë–Üj™í¿°°påʕÆ ËËË›1c†Üû¤zÖ J~~þ¤I“êÕ«7a¹÷@ƒ¬”Û·o !RRR6oÞ>žiPG°bP*T¨ =˜1cF§N¤Ço¼ñÆ•+W¾ýöÛM›6õíÛWîÝR7ë~S&MšôóÏ?ÇÄÄ :TZråÊ•W^yåí·ß^¿~}@@€Ü»í£ãh+ooïâÿw˜››+„0\+G°úàß»wï“O>2dÈ•+WÆŽûý÷ß“íÅŠA9|øp||üˆ#¸äÂA¬”J•*U¨PÁÓÓ3,,Ìxy—.]„gÏž•{ŸTÏŠA¹~ýú®]»5jdHBˆÚµk=úþýûk×®•{ŸàŽvàçç—••%ý¶¤§§K/É]ÆYqð‹ŠŠ&L˜°råÊÎ;oÛ¶í7Þ Ëe_–Šô½ ,þÓ‹/¾(„X¿~}pppÏž=åÞ!-°â7Å××÷‘GÑétÆ ¥_–‚‚¹wH ,”¬¬,!DÆ M–KÆ7nȽCp G;èܹsaaáÞ½{ Kôz}bbbµjÕš7o.wugÅÁ_µjÕ¶mÛøÅ_ÐvK¥Aƒá']ºX»víðððÐÐP¹wH ¬øM ËÍÍ=wîœñBé61ÜhÓ.,”† º»»Ÿ?^¯×/ONNB4jÔHî‚kûäZpùòåÆwëÖíöíÛÒ’… }öÙgr—¦}æüßÿ=--íÒ¥Kz½¾¨¨¨K—.-[¶ÌÏÏ—»vͲtPŠ;yò$ßc_V ÊéÓ§ƒ‚‚úõë—••%-9~üxóæÍ[·n™™)÷iƒ2bĈ   ¹sç¾¼çܹsmÚ´yüñÇSRRäÞ!òî»ïºì7ÇpqŒÔ®]{âĉ3gÎ|á…žyæ™ .$%%…„„¼þúër—¦}æüÄÄÄ·ß~;00pãÆ7nܸxñ¢§§gdddñ­õéÓgРArï“êY:(r×묔&MšŒ?~Μ9ݺukÕªU^^Þ?þ¨Óé>ùä“5jȽCZ`Å üë_ÿêÛ·ï‚ 6oÞÜ´iÓ¬¬¬Ÿþ¹¨¨è½÷Þ{ì±ÇäÞ!¸‚£}DGG?úè£ëÖ­Û¼ys­Zµ ôÖ[oIwU€£Ytð322„ùùù'Ož,þ*—ÈØ ¿ dÅ Œ1ÂÇÇgåÊ•¨V­ZçÎÇŽ+}ÍìÂÒAñññÙ¼yóÂ… ÷íÛ·{÷îjÕª=ûì³£FjÖ¬™Ü»W¡ÓÿýT  D\³`‚#ÌBp€YŽ0 Áf!8À,G˜…à³`‚#ÌBp€¿Lœ8188øàÁƒNÛÔ¿ÿýïàààÕ«W¿k÷îÝ%¾ ò"8€šìÛ·/11Qî*¸(¹ —æããÓ²eK3_}çwrssOŸ>-wá\ÁäbÝ«àdLUP¥Â‚‚¹«×Bp Ò…#©©©ÿüç?[µjÒ±cDZcÇš\€"­våÊ•cÇŽ½ôÒKO<ñDFF†áÕÍ›79òÙgŸmÓ¦MTTÔ²eË ‹Ö¾}ûÆ:jÔ¨={ö˜¬™™9gΜ=z´hÑ¢E‹ááá3f̸v횥›Z²dI—¿¿úÙgŸggg7oÞ|êÔ©ÁÁÁ_}õ•É»æÌ™<{öl¹G €Ö¨Ì»ï¾ûÕW_ݽ{·AƒÙÙÙÛ¶m‹ŽŽ^ºt©ÉjgΜ‰ŠŠ:yòäüQTT$„Ðëõ“'O~ûí·wíÚ¥×ë½½½“’’>ûì³ÈÈÈììlã÷nذaذaÛ¶m«P¡BNNÎÎ;‡>oÞ<à ™™™‘‘‘‹-ºråJýúõëÖ­{éÒ¥+V 0ÀÒM™¯U«VC† )_¾¼N§2dÈÀ{ôè!„غu«ñjz½~ãÆBˆ^½zÉ=V´†à@eŽ=Ú±cǃnÛ¶íÈ‘#111:nöìÙçÏŸ7^íƒ>hÖ¬ÙŠ+öïß_¿~}!ÄÚµk×­[çëë»fÍš={ölݺu×®]O=õÔÑ£GçÏŸoüÞo¿ý¶sç·’>bÒ¤Innn ,8~ü¸a…_ýµS§Nû÷ï_·nÝúõë÷íÛ׺uëË—/ïØ±Ã¢M™¯S§NS§N­X±¢››ÛÔ©S'NœØ¶mÛªU«þôÓO™™™†ÕŽ9rùòåǼQ£Fr­!8P__ßÿû¿ÿ«ZµªÂÝÝ}èС‘‘‘EEE ,0^­R¥JK–,i×®´dîܹBˆO>ù¤yóæÒ’ZµjÍŸ?¿|ùòkÖ¬ùí·ß ï­]»ö¼yóªT©"„ðððxíµ×"##…_|ñ…´BAAAXXØ;ï¼S©R%iI•*U"""„.\0.ã¡›²…»»{×®]‹ŠŠ~øáà6!z÷î-÷@Ð ‚#•y饗ʗ/o¼dðàÁBˆcÇŽ/|á…*T¨`xzýúõk×®ÕªU+44Ôx5__ߎ;ž9sư°_¿~Å?âÔ©SÒÓ1cÆ,\¸ð±Ç3¬pãÆM›6¯ö¡›²Q÷îÝ…ÑluAAÁ÷ßïááîÀ1સ•ñ÷÷7YR·nÝòåËÿöÛo÷îÝ+W®œ´Pšž6øõ×_… 6,¾Á ˆ¿w Jüˆ7nܹsGê2^¾|yÏž=?ýôÓ¥K—.^¼hrj£E›²Å?þñêÕ«>|8;;»Zµj{öìÉÉÉéÔ©SõêÕ>\G*£ÓéŠ/qww/**2¾A4;l ×ëKÛ »»»âþýûý77·GyDßµk×>úèøñã=öXttôŠ+>øàó«5lÊFîîîÏ?ÿ|aa¡tn%óÔŠŽ#•IOO7YòÛo¿åååÕ¬Y³bÅŠ¥½Kê5šœ€(‘𑯭ÁâqõêÕ¼¼¼zõê•+Wî÷ßÿç?ÿY®\¹E‹uèÐÁ¸ sª5Þ”]H÷îÝããã·lÙÒ£G;wV©R%,,ÌÞG„ ã@u¾ûî»{÷î/Yµj•âñÇ/ã]~~~>úè•+WöíÛg¼üÆ»vírwwoÒ¤‰aaBB‚ÉÍ¥hÑ¢…âĉ………-Z´0NBˆ³gÏÿܲ7e­Zµòññ9xð`BBÂÝ»wÃÃÃíIÀÁ€ÊüöÛoo½õVnn®¢¨¨hõêÕqqqnnncÇŽ-ûo¿ý¶â½÷Þ;yò¤´äÚµkcÇŽ½{÷nÿþýk×®mXóÒ¥KãÇ¿sçŽô+W®üÏþãáá1fÌ!„ŸŸŸâìÙ³†›à®Y³Fºw~~¾ñ‡–½)ëåååžJ×VÌ™3G0O À‘˜ª 2=zôضm[›6m6l(Mûº¹¹?¾qãÆe¿±OŸ>ܰaÃK/½T·n]OOÏÔÔÔ¢¢¢æÍ›¿õÖ[ÆkoÙ²å‡~ð÷÷¿|ùr~~¾‡‡Ç{ï½']Fйsç;v<÷Üs-[¶ÔëõÉÉÉÙÙÙ‘‘‘+W®üî»ïnß¾=sæLs6e…ªU«fgg0 ~ýú†ÛOöèÑã¿ÿýo~~~ƒ žzê)¹‡€f¨L¯^½"##—-[vâÄ //¯¶mÛ¾úê«mÛ¶}èÝÜÜ>ÿüóŽ;nذáìٳׯ_úé§CCC£¢¢¤ëc V¬X±eË–;vœ:uªZµjÏ>ûìСCÙìÙ³—/_¾yóæŸ~ú©nݺ¡¡¡C‡ ,,,ܰaÃ?þhþ¦,óÉ'Ÿ¤¦¦Þ½{×°°eË–>úè7h7p(]W€¢Lœ8qýúõ‹-êØ±£Üµ(KQQQçί^½ºcÇŽ:uêÈ]ÍâGP½\¹r¥uëÖ¤FEpuËÏÏB¼ôÒKr×@ã8ÇT¬uëÖwïÞ½wï^£F¤/ËÇ!8P=zÿ?WV«V­‹/†††N›6Íä°;.Ž€Y8Çf!8À,G˜…à³`–ÿlj‰ê^ïIEND®B`‚statistics-release-1.6.3/docs/assets/cauchypdf_101.png000066400000000000000000000664671456127120000226410ustar00rootroot00000000000000‰PNG  IHDRhŽ\­AlþIDATxÚíÝ{| ÷þÇñï&q a“ˆÄµ$G¤Zqi«A•wm]ªŠªKÕ¥U¡õk9­R—Ô¡E(u8Dëwu JJêRB$ QE"$J’ýý1ºÝînb6ÙÝ™Ý}=}ô±™ýÎÎîÌÛç;óN§Àã¸)Ý8‚#d!8@‚#d!8@‚#d!8PØï¿ÿ¾xñâŽ;Ö¬Y³|ùòÁÁÁ]ºt™;wn^^žÒM{dêÔ©F£ÑôìÙÓFoqöìY9•*UjÚ´éðáÃÓÓÓ;¿‡‡‡ŸŸß³Ï>;uêÔ›7oÊ| C'NTúàjGJúßÿþ÷ä“OŽ9ò»ï¾ûõ×_ÿý÷ääämÛ¶½ûî»ÁÁÁ[·nUº »{÷îñãÇ—.]úä“O~÷ÝwÅÏ\PP™™yôèÑ?þ8$$$11Qéæp6J7€ëJJJjÛ¶íÝ»wõS<<<òóó¥ÇW¯^}饗>üôÓO+ÝR» ðôôB<|øðÚµk………Bˆ{÷î >üÌ™3+V,jþ{÷îé YYY}ûöMNN.W®\1oaÄÇÇGéµ jT(æÝwßÕ§Æ×_ýäÉ“÷ïßÿõ×_—-[V©R%!DnnîË/¿¬t3ímÍš5©©©©©©éééÙÙÙC† ‘¦ÿòË/{÷î-fþ7n\¾|ùõ×_—¦§§§/Z´¨ø·02eÊ¥×€ª(c÷îÝ[¶l‘ÇÄÄ,_¾üé§Ÿvww¯^½úСC×®]+=•””táÂý« ×­[Y§NòåËשS§mÛ¶ÿüç?>|¨Ÿ§¨SûõëgöL¾7nŒ;¶eË–Z­¶nݺ;wÞ¶m[Q;uëÖ;ï¼Ó´iS//¯Æ¯X±BãÖaÆI˯]»¶áK®^½ª?‰ðÌ™3}J^^^ .,S¦Œôçùó狟¿víÚË—/ׯøŒ3îÝ»g—í À%(C_ óõõ}ÿý÷žíÒ¥KTTTãÆ7n|úôiýô~ýúõë×oÿþý—/_þý÷ß/_¾œ0xðàþýû—¬ß}÷]£Fþñ>|8'''--mÇŽ]ºtyã7Lg¾}ûvË–-çÍ›wüøñ{÷îýôÓOC† ùüóÏõm“¤§§Ÿ:uÊð-¤O>ùdÆ -m¡§§gÕªU¥Ç·nÝ’ó’±cÇJnÞ¼yèС’o$ø+‚#e|ÿý÷Òƒ^½zyyy™Î°uëÖ'Nœ8q¢wïÞÒ”õëׯ_¿^¡ÑhÚµk7hÐ }‹7Û[¼œœœܸqCáííÝ»wïÈÈHé©eË–}ýõ×Fóïß¿ÿüùóAAAáááîîîÒÄÉ“'?xð@ѶmÛ€€i¢aÍr×®]Òƒ—^z©ÔíÛ·¯_¿.=–󒈈ˆ²eËJ=Z² ¦ŽððáC} ’ùª;vH&L˜°gÏžþóŸ§OŸnÚ´©4ñÿûŸ¥Í˜5k–t5I:u.^¼(¥Oýy~K—.5}Éüùó/]ºtüøñþóŸÒ”ßÿýܹsBww÷¾}ûJõÁQ§Óé+Ž–ÇüüüóçÏ8°  @šÒ¸qc9/Ôh4ÕªU“ÿöÛo¦3tèÐÁt,žñãÇ[úp5\U @999úÇ5jÔùª—_~¹}ûöBˆˆˆýrrss¥Ç2»q íܹSzðî»ïúùùIÇŒ#žßÿ½  @_YB4hÐàí·ß–wïÞ] øÅ‹¥K¿_yå•…  !>œ••åããsâĉŒŒ éµaaarZÕ¡C³Ó»uëÖ¤I™«V¥J•Ë—/}ÔPJG .š–˜U]”_|Q‘••µsçÎüñĉÇŽ»sçN‰›‘œœ,=hÙ²¥~bµjÕNœ8av~Þb//¯š5k¦¥¥ !ôÁ矾víÚW®\)((صk×Ë/¿\Ê~j½† Ο?_þü™™™ÒƒÊ•+›>kv8__ßÒ´€+ 8P@Ù²eýüü¤RÜ/¿übvžììl©žW¾|yiðÂLž<ùÿø‡~¬GOOOé$EKåäädggK½½½å¼ÄÍí/§÷h4£4ÍË/¿ùä“yóæåçç}ùå—?ýôSNNNtttÉP©R¥ *Hõõ¹Ò{å•W¤Û·o¿sçŽt ü~jñ×A/^¼øŸÿügÒ¤I¥ÆC‡I×ë!žyæk­(C?ÞÍåË——,Ybôì–-[ô5³6mÚH¾üòKéÁ_|1räȧžzÊÃÃÃè&ΠxûömÃéF…IFó·¿ýMzüÃ?è§ÿöÛo-Z´hÑ¢Edd¤t׋4mÚ´^½zBˆ›7oΙ3G p¥ì§¶”¾S»bÅŠ†½ðPJGÊèÚµ«þ*·ß~{úôé×®]B§ÆÆÆ&&&&&&–+WΨoZ&}ÑQê³v Ž¿ýöÛðáÃããã¥?_}õUÃÓI ”8Ç€bæÍ›÷ì³Ïæååétº?üðÃ?ôóóËÊÊÒ_kR¾|ùøøxéºf//////é…Ò­e4ÍŽ;L»¹õôäåå…‡‡‡‡‡gdd$%%™6`êÔ©«V­ÊÉÉIMMmܸqûöí¯_¿¾gÏéÙÑ£G—l½^yå•?þX!]ñj»qРARŸû½{÷¤ð-©ZµêßÿþwÛ½/DÅ€b5jôÝwßÇ“‘‘¡OuëÖݸq£~äBFÓ¥Kéqnnîÿûßÿüç?5kÖÔÙ­ÏLMš4Ñ×ürss¿ÿþû¤¤¤   ÓanüýýW®\©Õj…ׯ_ÿ׿þ¥OS¦L)ñÙ“aaa†wˆ±u¹ñ×_MNNNNN6L¾¾¾ÿýïõc €U(©eË–/^ŒmÓ¦¿¿¹råBBBºuë{þüù¨¨(Ùccc5j$„pss{úé§ÇâĉîÝ»KÏ®]»Vß1½jÕªO>ù¤Q£F+V ûí·ͦ¨ž={ž>}úÍ7ßlÞ¼¹——Wݺu»vízàÀO>ù¤4ë¥O®Â’ë©KÉÝÝÝ××÷™gž™:ujRRÒsÏ=gŸ÷à:4:Né6€\>ܲe‹¢gÏžJ·¥8GŽ‘. ={ö¬ÒÍëàGޤL™2*Œ’#GŽHì|=5ØÁ¬F§Ó-Y²äÊ•+óæÍ“¦8ºªÀj <<þüy¯^½6nܨt£Àj¨8€5U¨P!??¿víÚœ>¾S§Nûöí WùÂíÖ°ÔÔÔ‚‚‚çŸ>((H?ÑËËKÙUpx:X[ýúõ•n‚Õ¤¤¤(Ýc£¨E…ÌngÚ?øá‡Bˆ•+WJ^ºtÉÛÛ;22RÙ…ß½{W=k½uëV!ÄîÝ»»Ø|1œé»dºªP£­[·j4š3fè§Ì;W£ÑlÙ²E±nݺêÕ«4Hz*((¨OŸ> ×®]+ý[—xá;v¬R¥Êºuë 'nÚ´I£Ñ|óÍ7vnXrr²¢^½z¥_èP£.]º ýú믛ÍÒ†A ¨8€õI×ÇpìCé-X°`ÿþýcÇŽ?þ‚ ÆŽ+„ððð =xð áœÐh4aaaFK°´GØ¢…›Õ¤I“æÍ›¯X±"33ÓÃÃcÀ€fg£«Ú!é`mõë×Wº V“’’¢t`Œ¢,³{M³…ý«²Ìn‡Û?'%%yzzJ¼èèè *\ºtIzjþüùBˆÍ›7K^¿~=  cÇŽ¦ ¹}û¶¥1@þ‹²|ùr!„››[÷îÝ‹š§ Ó“®ªþ裬ò9—à‹ápß%k¡«5*((xíµ×ªT©2sæL!Ä—_~éîî>lØ0N'„>>………f/‹)qà8‚#j4{öìÄÄÄÅ‹K8תUkæÌ™ûöí‹‹‹BT®\9!!áå—_ŽŸ={v½zõž{î9«¼uñ ðàÁíÛ·óòòŠY‚§§g§N„]ºtQúƒ„5¹Ê9Ž6lX¿~}rrr… Ú´i3qâDŸâ_rúôé%K–œ={öîÝ»!!!cÆŒyöÙg•^€«ˆ‰‰‰‰‰1œ2jÔ¨Q£FéÿÔjµRˆ´…bþÚk¯=|øðÌ™3Å/¡\¹rBˆ2eÊØ¢y!!!T%áÇØØØ>øàÒ¥KÍ›7÷òòÚ¸qãðáËÿ§ÒÞ½{ûõë·wï^ÿððð'N 4hïÞ½J¯ %Yt½ ÷³ºÿþ¾}ûÌŽ°§çüÁ1)))... `ÇŽqqq;wî4hЩS§æÌ™SÔK²³³'Mšäáá±zõêÿûßqqqk×®-[¶ìÔ©S¹¥:ÀÅ9r¤Aƒýû÷Wº!P€óÇõë׎7Nº]’"&&F«Õnß¾½¨¸qãÆœœœ#F4mÚTšòÔSOuîÜ9##ãôéÓJ¯JŠŒŒüàƒ<<s¶[ppp«V­”n,¬Ìùƒã±cÇÜÜÜÚ¶m«Ÿâîî‘™™yüøq³/‘F«2Îþ³Ï>KJJzúé§•^!À”)SŒƒ„pò‹ct:]rr²¯¯¯Ñ]’êׯ/„¸råJ³fÍL_uæÌŸjÕªýøã'Nœ¸}ûö“O>Ù¡COOO¥W@1Nsss ¼½½¦K7k¿uë–éK8J—NW¬XÑhº———";;Ûô%ÒmÝ“““oÞ¼9kÖ¬¶mÛÞ¿?>>þ‹/¾;vì–-[äÔ“’’”^u« Tº 0ÆFQÄ—T›ÿð‹Ú(l,ñáC¾â¿-¦‡uÓ ‘‹pòs½½½5Mnn®Ñô»wïŠ?êŽFÊ—//=˜9sf=¼½½«U«öÖ[oõìÙ3==½˜»j€Fäàdœ<8zxxhµZÓÊbNNŽBµ¡Š+–/_ÞÓÓ322Òpz‡„ÒÍ1\“G!D@@@ff¦”õ¤S̾Äßß¿L™2š¿ ¤êüü|¥W@ÎÛ·o_PP`8"€N§KHHðññ 7û’ÈÈÈœœœ .N”ÆîyòÉ'•^!e8pìÛ·¯››ÛÂ… ¥ó…qqq½{÷Öß@óÞ½{©©©úKðzöì)„øàƒô—]Ÿ>}ú«¯¾Òjµ/¼ð‚Ò+  '¿ªZQ£F‰'Κ5«[·n­[·NKKKLL {ã7ôó$$$Œ?>88xË–-Bˆ L˜0aÞ¼y:ujÖ¬Ynnî±cÇ4Í'Ÿ|R¥J¥W€,ºK58+çŽBˆ!C†T­ZuÓ¦MÛ¶m«^½úÀÇ'ÈS”7ß|ÓÏÏoÕªU‡öññiß¾ý˜1c‚ƒƒ•^Fº°šÐ À9¸DpBDGGGGGõlTTTTT”ÑÄÞ½{÷îÝ[醨…óŸã€SÊÎÎ1bÄO<áå员˜è( /S§N½üòËÕªUóòòjÖ¬Yll,žØ“«Tp&999Íš5»|ùrŸ>}üüüâãã;uê´oß¾¢ QÏÂK#%%¥mÛ¶={ö|â‰'vïÞ=a„|ûí·Ê6ÌuPqÀñÌ›7/999..nÍš5óçÏ?xð F£yçw”]ø½{÷lºÖ&LÈÎÎÞ½{÷Ê•+§OŸ~øðá!C†lÚ´içÎ6}_èP£­[·j4š3fè§Ì;W£ÑH€¬[·®zõêƒ ’ž êÓ§OBBµk×JÿÖ%^xÇŽ«T©²nÝ:É›6mÒh4ß|óMé¶wïÞˆˆˆæÍ›ë§¼õÖ[Bˆ#GŽXã#ÇãP£.]º |8xð`Ó9-m˜‘ýû÷><99yÑ¢E ´l7G„0è–µ·bÿUѹsçÁƒ¯\¹räÈ‘‘‘‘ÒD???!Ä;w çÌÉÉBøúú-áÞ½{=zô(úÍßÝ¢…›ÒjµýúõûꫯRRR‚‚‚V¬XѨQ£&Mš˜ÎiiÃô._¾üÖ[omÞ¼988x÷îÝíÚµ+í&€ltU „N§Øi—N:ï§Ÿ~*,,”&¸¹¹ugdd!jÖ¬i´­V«+šé;Z´p³FŽ©Óé–/_~üøñÓ§O¿þúëfg³´a’µk×6lØðÇ\²dÉÏ?ÿLj´3*ލׂ öïß?vìØùóç/X°`ìØ±BÐÐЃÎyàÀFf´K{„-Z¸YMš4iÞ¼ùŠ+233=<< `v¶tUoÞ¼ùÕW_}饗/^lÔ™;ÑÁÚêׯ¯t¬&%%Eé&ÀÅþ»§|ìFa_kf7ŠÃퟓ’’<==¥^ttt… .]º$=5þ|!ÄæÍ›¥?¯_¿бcGӅܾ}ÛÒ áEY¾|¹ÂÍÍ­{÷îEÍcià Ÿ|òɺuëæçç[÷s.ÁÃá¾KÖ¢Ñq¶µ…„„$%%)Ý ëHMM Tºø 6Šý=öÒ–Çn.ޱ?³űöÏ­ZµJOO?{ölåÊ•ÓÓÓCCC›5k¶gÏF“““‘šš:zôhooï•+W¦§§ïÚµë¹çž+ý[¿ðµk׎5êõ×_Ÿ7o^QKÈËË«Y³fVVÖ·ß~[̉ŒùùçŸÃÂÂ4hðì³Ï=Õ«W¯èèè/¹_ Çú.Y]ÕP2”2{öìÄÄÄ-[¶H}²µjÕš9sæèÑ£ãââÞ|óÍÊ•+'$$Lœ81>>>++«E‹kÖ¬±Ö-‹_øƒnß¾——WÌ<==;uê´víÚ.]ºXëINNBœ;wNØÒP½zõJ!ÁlŽyP111111†SF5jÔ(ýŸZ­6..ÎFï^ÌÂ_{íµ‡ž9s¦ø%Hƒr—)SÆZMêÖ­ݤŠãªj`û÷ïïÛ·Ïì;pzG`#GŽ4hРÿþJ7  «X 22R?y1‚ƒƒ[µj¥tcaeT€õM™2Åh0H8‚#d!8@‚#‰1tÀÁìAÊÁ² Á² Á² Á²ÀúèÅ_,,,´é{AP§­[·j4š3fè§Ì;W£ÑlÙ²E±nݺêÕ«4Hz*((¨OŸ> ×®]³EcöîÝѼysý”·ÞzKqäÈ‘â_رcÇ*Uª¬[·Îpâ¦M›4Í7ß|Sú†eff¾øâ‹Ó¦M»yó¦-VFލQ—.]<}úôsçÎ !.]º4uêÔ!C†tíÚ5''çÂ… ‘‘‘ƒÓfÛµkWXXh‹3óóóG-%E½´´4!D¹råŠíäÉ“+T¨0f̘û÷ïë'®\¹²J•*]»v-}Ût:N§;þ¼ÕW¦ލTll¬ŸŸß°aà † æïï+„¸~ýºN§ 0œÙßß_a‹Â›‡‡Ç§Ÿ~Ú»woý”[·n}úé§îîî}úô)þµ]»v4iRFFÆ·ß~+M¹qãÆ¶mÛú÷ï_¶lY¥?`XÌCéó¼½½—.]õ /$$$ìÙ³§råÊBˆÜÜ\!„ôXO«Õ !233’ŸŸ¿uëÖ¢Þ¢{÷î–¶jÿþýÇONN^´hQppðcçõÕWcbb–-[Ö¯_?!Äš5k>|8xð`Ó9­ÞTXÁÌ`GW£ì@IÅ|×:wî}zÞ¼yfg³´©°?‚#êµ`Á‚ýû÷;vþüù ,;v¬ÂÃÃ#44ôàÁƒ†s8p@£Ñ„……-ÁÒþ_//¯Mܼy󫯾úÒK/-^¼Ø¨‹\Ž&Mš4oÞ|ÅŠ™™™¦Ë/YSaGTêÂ… 111#FŒøüóÏSRR¦L™$„xã7ÆŽ»eËéÚä7nÄÇÇ¿ð F )}ÿ¯N§{ï½÷j×®½zõjww÷’­ËÈ‘#‡ -]ÇcŠ®jõ#8 F¯½öZ•*UfΜ)„øòË/CCC‡ ¶gÏF3xðàåË—0`ôèÑÞÞÞ+W®ÌÍÍ5{ýÒ÷ÿž;wîüùó 46l˜ÑS½zõŠŽŽ^»ví¨Q£^ýõ¢ú …¯¼òÊ;3••eö²k5¶Fp@fÏž˜˜¸eË©k¸V­Z3gÎ=zt\\Ü›o¾Y¹rå„„„‰'ÆÇÇgeeµhÑbÍš5ááá¶hIrr²âܹsÒˆ’†êÕ«ýàÁƒÛ·oçåå³OOÏN:­]»¶K—.J´(9‚#jc8eÔ¨Q£FÒÿ©ÕjãââìÐ’nݺ_|íµ×>|xæÌ™â—#^¦L[42$$„j¥08(•û÷ïïÛ·Ïì;p2GP*GŽiРAÿþý•nlŽ®j0ÆP‹€E"##õƒ“#88¸U«VJ7¥BÅìJpAS¦L1{‡àYŽ…àYŽ…àYŽ…àYþ‚Ñ¿[HHˆÒMÁìMœxjIIIJ7Á¥¥¦¦*Ý ” ]Õ…àYŽÅUÎqܰaÃúõë“““+T¨Ð¦M›‰'úøø3Ÿ>}NŸ>m4ÑÏÏïûï¿WzU”áÁ166vñâÅ+VlÞ¼yZZÚÆ/^¼¸jÕ*OOÏ¢^rùòeOOϺuëNôööVzUãüÁ1)))... >>Þßß_ñÉ'Ÿ¬ZµjΜ9S§N5û’œœœìììÎ;þùçJ7@-œÿÇõë׎7NJBˆ˜˜­V»}ûöÂÂB³/¹|ù²¨Üàâœ?8;vÌÍÍ­mÛ¶ú)îîî™™™Ç7û’´´4!D:u”n;{cxE(†“GN—œœìëëëëëk8½~ýúBˆ+W®˜}•¯]»6hРæÍ›·iÓfäÈ‘?ýô“ÒkÀyHc€€cqòssss L/jÑjµBˆ[·n™}•(çÏŸØ¢E‹«W¯îÛ·/!!á£>z饗伯é-­vìØ¡ô‡QéééJ7ÆØ(6˜ššjékJºQJò^‰_Š 9îFéÔ©“ÒMP 'ŽyyyBˆŠ+M÷òòBdgg›}Õµk×<=='L˜0hÐ iÊáÇGŒ1cÆŒV­ZÕ¨Qã±ïëLwµâöP*ÄF±©’}¼ö|dâãU!Ý(¦‡u—½é¹“wU{{{k4šÜÜ\£éwïÞÔM­\¹òäÉ“úÔ(„xþùç_}õÕ¼¼¼Ý»w+½NÊpòàèáá¡ÕjM+‹999BýuÖr<óÌ3Bˆ .(½NÊpòà(„ÈÌÌ”’¢žt^Q@@€éü:®  Àt¤www!D¥J•”^!e8plß¾}AAÁÁƒõSt:]BB‚Oxx¸éüiii¡¡¡¯½öšÑô'N>§Àùƒcß¾}ÝÜÜ.\(×(„ˆ‹‹ËÈÈèÝ»w™2e¤)÷îÝKMM•®öª[·nÓ¦M=ºaÃýBNœ8±|ùò5j¼øâ‹J¯€2œüªj!D5&Nœ8kÖ¬nݺµnÝ:---111,,ì7ÞÐÏ“0~üøààà-[¶!þïÿþoèС|ðÁÚµkƒ‚‚®^½zòäÉ *|úé§ÅÜÞÀ¹9ÅQ1dÈ9sænÛ¶íÖ­[\µj•éàŽzO>ùä·ß~Û£GŒŒŒ;wfgg÷èÑcË–-Ï=÷œÒ«À†¸m Ïù+Ž’èèèèèè¢žŠŠŠŠŠ2œâïï?kÖ,¥[ À™I7!ªp .Qq@é Á² Á² Á²@FÿŽ i ppGÈBp€,GÈBp€,GÈBp€,GÈBpFÿYŽ $Æà@Ž…àYŽ…àYŽ…àYŽ…àÀÕ1ú7ÈDp€,GP7à(Ž…àYŽ…àYŽ…àYŽ…àÀ¥qÛàÊc pàYŽ…àYŽ…àYŽ…àYŽ\£€EŽ  Œ@ýŽ…àYŽ…àYŽ…àYŽ…àÀE1ú7XŠàjÁàTŽàYŽ…àYŽ…àY\%8nذ¡oß¾ááá-[¶œ2eJVV–ü×þúë¯M›68q¢Ò+ $—ޱ±±|ðÁ¥K—š7oîååµqãÆáÇçååÉy­N§›4iÒÝ»w•^ …9pLJJŠ‹‹ رcG\\ÜÎ; têÔ©9sæÈyùÊ•+=ªôJ°2Fÿ€pþà¸~ýúÂÂÂqãÆùûûKSbbb´ZíöíÛ ‹íÅ‹cccŸ|òI¥W€«` pjæüÁñرcnnnmÛ¶ÕOqwwˆˆÈÌÌ<~üx1/ÌÏÏï½÷|||bbb”^ å9ypÔétÉÉɾ¾¾¾¾¾†Óëׯ/„¸råJ1¯]°`Á¹sç>ýôÓÊ•++½ÊóPº¶•››[PPàíím4]«Õ !nݺUÔ Ož<¹téÒ>ÿüógÏžµô}CBBŒ¦ìرCé£$ÒÓÓ•nŒ±Q¬$055ÕZ˲öF±fÛ\¿rÜÒ©S'¥› N¥K§+V¬h4ÝËËK‘]Ô«Þ{ï½Úµk¿óÎ;%{ߤ¤$¥WÝj•nŒ±Q¬Âº£š—æ²øUÈA7ŠéaÝ´Bä"œ<8z{{k4šÜÜ\£éÒð:RÝÑÔ¬Y³ÒÓÓ×®]ëéé©ô¨…“Ÿãèáá¡ÕjM+‹999BýuÖ†Ž=ºvíÚ7ß|óé§ŸVºù*¢®à8wîÜäädë.3 33SJŠzÒùC¦ó_¼xQñå—_†ü¡W¯^Bˆÿþ÷¿!!!]»vUúCPZ â%£®®ê¸¸¸¸¸¸† öèÑ£K—.F—B—Lûöí“’’<Ø¥KiŠN§KHHðññ 7¿N:ú9%ÙÙÙ‡ªQ£FxxxµjÕ”þ89i(G¢-RWp|óÍ7·lÙræÌ™3gÎÌœ93""¢G‘‘‘eË–-ñ2ûöí»xñâ… ¶iÓFº&&...##cذaeÊ”‘æ¹wïÞ7Ê”)S«V­V­ZµjÕÊp gÏž=tèP³fÍfÏž­ô' uÇ &Œ?þøñã›7oÞ¾}ûÞ½{÷îÝ[¹rå.]ºôèÑ£qãÆ%Xf5&Nœ8kÖ¬nݺµnÝ:---111,,ì7ÞÐÏ“0~üøààà-[¶(ý¨”º‚£B£Ñ4mÚ´iÓ¦|ðÁ6oÞ¼wïÞµk×®]»¶N:=zôèÞ½{Íš5-Zæ!CªV­ºiÓ¦mÛ¶U¯^}àÀãÆ“ªI£Sýy4¹¹¹ñññóæÍ“eÔh4Í›7ïÝ»wtt´»»»Ò­3#$$ÄiÆqLMMuÐ1·œ¥ô¬~¡Õ7 ç8–¿r¦âLÇz‹¨®âh(++kÏž=;vì8räH~~¾¢jÕªeÊ”9zôèÑ£G—.]ºlÙ²êÕ«+ÝL— Æà˜‘‘ñÝwßíܹóèÑ£B??¿Ž;FEE5mÚTqøðáØØØ3gÎüßÿýßÒ¥K•n/€KPWpüúë¯wîÜùã? !|}}_|ñÅÎ;7kÖ̰WºU«VM›6}æ™gŽ;¦t“\…º‚ãßÿþw!„··wÇŽ;wîüì³Ïu£§§gùòåé§`)N€SWpìÝ»wTTT‹-ä\õB¹€³b p꤮[nß¾ýÈ‘#E¥Æ1cƼøâ‹J·ÀE©+8æææ>|ø°¨§._¾|õêU¥Û࢔ïªNHH9r¤þÏU«V}ýõצ³êtº'žxBéö¸(僣»»{åÊ•¥ÇYYYeË–­P¡‚Ù9½½½cbb”n/€‹R>8¶jÕ*11QzòÊ+¯L™2EéFÀ˜òÁÑÐСC›5k¦t+`†º‚ã{ï½§t83Ƹ€ÒP88®Y³FñÌ3Ïëÿ,Þ€”m3ØC9P!…ƒãôéÓ…Ó¦M“‚£ôgñŽŠP88Ž3FѨQ#éÏwß}Wéæ)ßzë-Ã?ßxã eÛ€¢¨ëâS:nïÞ½éééO=õTxx¸ÒÍp]ª Ž{÷î?~‡¤^ì>ø >>^zª_¿~~ø¡F£Qº®H]÷ª>vìØ¨Q£ÎŸ?_XX(„øùçŸãããµZmÿþýkÕªµvíÚ½{÷*ÝF¥®ŠãÒ¥Ku:Ýûï¿ß¯_?!Ä®]»„Ÿ~úiûöíùå—N:ýë_ÿjß¾½ÒÍàÝJI]ÁñÂ… ÕªU4hôç?üP¶lÙÖ­[ !êÖ­û·¿ý-%%Eé6¸(uuUß¾}ÛÏÏOzœŸŸÿóÏ?7lذlÙ²Ò” *ddd(ÝF°i pPuÇ5j¤§§!Ž?~ÿþýgŸ}Vzª°°0==½jÕªJ·ÀE©+86oÞüöíÛ ,¸zõê‚ „ÒSË—/¿uëV½zõ”n#€‹R×9ŽÃ‡ß¼yó¢E‹-Z$„hÔ¨‘4vãK/½ôÓO? !† ¢t\”º*Ž5kÖü÷¿ÿݶmÛjÕªµjÕêóÏ?—FmÌÈȨ\¹òÌ™3Ÿ{î9¥Ûà¢ÔUqB/Y²ÄhâêÕ««W¯î榮˜ àRTͪY³¦ÒMàØÄJOuÁqûöí«V­úå—_tEìã•n#؉4"‘€J¨+8îÞ½{ܸqÒcwww¥›€?©+8.[¶L1xðàQ£FiµZ¥›€?©+8&''תUkÒ¤I\ 6*Êg>¼sçNíÚµI*¤¢ˆæææ¦Õj/^¼XXX¨t[`LEÁÑÝÝ}ذa±±±J·ÆÔuŽcTTÔ•+Wâââ;wî\«V­²eËÍÓ¶m[¥› ÀÁ0¢ X…º‚cûöí¥§N:uê”Ùy’’’”n&ØC9PuÇnݺ)ݘ§®à8{öl¥›óÔõnß¾}æÌ™k×®Õ¨Q£eË–~~~J7 À¥©.8fff.Z´(>>>//OñÚk¯µlÙ²gÏžaaaŸ~ú©Ò pQ*ŽGñðáÃQ£F­^½ºråÊ={öÔO÷÷÷ß·oß+¯¼"¥IØŸº‚ã’%KNž<Ù¦M›;vÌœ9S?}ýúõÝ»wÿå—_V­Z¥t\”º‚ãÑ£GÝÝÝg̘Q¡BÃéîîîÿ÷ÿW¡B…;w*ÝF†±lÀZÔÏ;hö://¯   ´´4¥Ûö& åŠSWpÔjµ÷îÝ+êÙ¬¬¬J•*)ÝF¥®àzíÚ5³÷Œ9wîÜÕ«W4h t\”º‚ãË/¿¬ÑhÞyç³gÏN?{öì¸qã„=zôPº.J]ã8¶lÙrذaK—.íÕ«WPPb÷î݇¾téRaaaÏž=_|ñE¥Ûà¢Ô…ï¾ûnÓ¦MgÍš•’’"„¸zõª¢jÕª&L0Ùv¦ºà(„ˆŒŒŒŒŒÌÊÊJIIyðàAPPP@@€Òà‹¬HÁQâããÓ´iS¥[ª ÈC ,…ƒãš5k,}É€”m3 ”Gù !Èê¡(„:6 g§ppœ>}º¥/!8ÂÕè~–RIjjj`` ÑDØŸæ-£º?6ÊŸS”nØ„ÂÁQdÇйsçvîÜéîîÞªU«ºu뺻»§¦¦4BóØD(Í gNp,ê|Ñ¢E™™™ ,0LBˆš5kþãÿBìÚµ+##Céf6'Aù¡CgУ ÑEYP't6 碮àxâĉ5jÔ©SÇô©ÚµkKÓu\UgW²ò!ÙÑ”/C–"£¥D²#'£®áx²²² u:FcfW›““ãããSµjU¥› ØPi:uôYÛFi:¥ìh•>kFä 8uU6l˜““³ÿ~Ó§:”••¦t*}ì£î¨BÔ8 uǨ¨(!Ä{ï½·}ûvÃ.é]»v½ûî»úJ`Æ }ûö oÙ²å”)S²²²ŠŸÿöíÛ}ôQ×®]7nü /Œ?^º"`;Ö*’­Ë*õB²#ç ®®êÞ½{:thÛ¶mãÆ«ZµjPPF£III¹qã†"::ºwïÞ%XlllìâÅ‹+V¬Ø¼yó´´´7^¼xqÕªUžžžfçÏÉÉéÚµëÍ›7ƒƒƒ###¯]»¶mÛ¶]»výûßÿnذ¡ÒðxôY[‹¯Œ¶bŸ5(E]ÁQ1wîÜçŸ~þüù7oÞ¼yó¦4±zõêcÆŒéÙ³g ˜””ïïï/„øä“OV­Z5gΜ©S§š}É‚ nÞ¼9bĈñãÇKS¾ùæ›É“'üñÇëÖ­Sú‚s²zÎ#;–žÕsÙ€£S]ptssëÛ·oŸ>}®_¿žššêááQ·nÝÒ\³~ýúÂÂÂqãÆI©QóŸÿügûöíï¿ÿ¾››™Îú#GŽxzzŽ1Ù«W¯ùóçŸ={¶  ÀÝÝ]é Ά„§B$<0¥ºà(Ñh4ÕªU«V­ZéuìØ177·¶mÛ꧸»»GDDlÞ¼ùøñãÍš53}‰··wýúõË—/o8±\¹ra‹^¢Bèš%ª{m¿QtšÀ’5ùUÊÄ¥BºQLë¦"¡®q­ÎÛÛ[£ÑäææM¿{÷®ø£îXŒW^yåܹs‡š4iÒÎ;ûõë'½° :‘UÈn' 2²#GääÁÑÃÃC«ÕšVsrr„ú묋¡ÑhªV­:dÈ—_~ù·ß~Û¹s§Òë'aÏÔÈà«pòà(„ÈÌÌ”’¢žt†P@@€éü/^œþøãþýû92<<¼V­Z7nÜøñÇ…Ÿ}ö™ŸŸŸÒ+‡G¹Q…,72$8âüÁQ1dȪU«nÚ´iÛ¶mÕ«W8pà¸qã¤yÌzê©§¶nÝ:þü3gΜ;w®Zµj;v=ztpp°Ò«” ãJÃ%‚£":::::º¨g£¢¢¢¢¢ §Ô©SgÞ¼yJ·NˆÜ¦BŠü(:pÎŽ# jHœé(1‚#gcÑ%Õ*)õ14‡@pìD åF EGGÇ…Õ”BpàºTRn”Pt ~GÀÔSn”Pt”Á€‹RU¹QBрʛS[¹QBÑ`)‚#W¤Âr£„¢#5#8®Ë)‹ŽÅ°Á°-uöS»8Õ–%rŠŽŒÈ@GÀ¥9eÑ`#GÀ†(7ªÊËÎt NGÀÕQtÈDpl…r£ 9D¹T‹àÀyŠŽÎtI5½ÕTˆàØåFr²r#V°?‚#!œ¨èèL(:P‚#`}”N‰ààç.::h?5EGªBp¬Œr#ÀY8‰b.©vÐr£„¢#õ 8ø“s÷V;.¬`gGÀšè§V!‡.7J(:P ‚#€¿ è( Á°Ê*äåFP‚#cUˆÞjj@p¬ƒr£²œé.ÕáúöDpà´œ¬Ÿš¢#ŘAo5ÀÁ°ú©UÈÉÊŠŽ”Ep`EG€‚#PZ”gzeŒS–@qGE¢è¨B¦½Õ\X ÀnŽ@©Pn¸‚#gãôýÔ\"@)GÅ¡· GpJŽ~j50º2ÆéËŠŽApðÕëcØÁ(!Ê*ä"åFP ÁÀãQtT!z«ØÁ( ÊDp ‹ú‹Ž.ØOMÑ€80Ó› º,®`GÀbôS« –%ØÁ€\êï­ØÁ° åFrÙr#ØÁ€(:ª½Õì†àX€r£ªpeŒ®`kG–Q[Ñ‘~jAÑ€½¹(7\Á€£Ü¨GÑ€XL ½ÕœàöGpd¡ŸZ…(7šâú6EpPj(:½Õlà<åFÁ@‰)\tÔÑOm†N*;€mǠܨBœÆŠ 8p@”‹Æ™Žl‡à ä¸D\ Á(ýÔ*¤‘ÆáA14Ø„‡Ò °“ 6¬_¿>99¹B… mÚ´™8q¢O1óçååýûßÿŽOOO¯T©Rýúõ‡ Ò²eK¥×Pñš¡¿@.ccc/^\±bÅæÍ›§¥¥mܸñâÅ‹«V­òôô4;~~þàÁƒOž<©Õj[´hqÿþý~øáСCo¿ýöèÑ£•^ØåFÒ0ì· :õF6áü]ÕIIIqqq;v숋‹Û¹sç AƒN:5gΜ¢^²~ýú“'O6mÚ4!!aÑ¢E+V¬øöÛo½½½¿øâ‹sçÎ)½B€êp¦£Ñ[ Àœ?8®_¿¾°°pܸqþþþÒ”˜˜­V»}ûöÂÂB³/Ù±c‡âý÷ß×—$ƒƒƒGŒQPPðý÷ß+½B°ÊqþàxìØ177·¶mÛ꧸»»GDDdff?~ÜìKRSS+V¬f8188XqåÊ¥WP#û饶ãò°:'?ÇQ§Ó%''ûúúúúúN¯_¿¾âÊ•+Íš53}Õ’%K<<Œ?™³gÏ !j×®­ô:Á(7ª–FÕ1²ètBÃ÷€µ9ypÌÍÍ-((ðöö6š®Õj…·nÝ2ûªÐÐP£)‰‰‰qqqåÊ•ëÑ£‡œ÷ 1š"u;œôôt¥› ÀÀÔÔT¥ažj7JŠšÀÀ›}nAA)©)AB¨pÓ¨u£¦¤¦h5)©)J·DjÝ(.Íq7J§N”n‚Z8ypÌËËBT¬XÑhº———";;û±K(((X³fÍgŸ}VPP0wî\???9ï›””¤ôª[M`` ÒM°·Ge¯¸š7ŠMÛ&-\«¯æV©³mv[}¨ŠƒnÓúi…ÈE8ypôööÖh4¹¹¹FÓïÞ½+þ¨;ã‡~˜6mÚ¥K—ªW¯>cÆŒçŸ^é\g7–˜t¦#Ÿ«pòàèáá¡ÕjM+‹999BýuÖ¦pàÀqãÆI#ò˜’êŽyyygΜ1}– «åF¢ÜXJ\Àº\"8 !¢£££££‹z6*****JzܤIg…P„­/¯F p‰ €Òsþs9H9*Dʵ!8° ë^^Mk‰=ºiµô˜Kd”Á Ü¨F”@…Žl…1Uˆ¢#€Ò 8ÂÕQn@&‚#*YÑѨŸšKÉð4GAÑ@)áÒ(7 Á€mYZtä²; è dŽp]”ýÔ G6'¿èH¹ÑFŒNs”Á.Šr£ ‘@åŽì1Uˆ¢#KáŠ(7ªÙr#'8Z‘io5XŠàÀN(:ªEG!8ÂåPnT!În‡@p`?é§¶ŠŽä#8µPnT!ÊvSÔiŽdG2Øg:€ã"8Â…PnT!Ê*AÑ€Gö&§èÈ Ž6 <JƒàWA¹Q…(7ª EGEp„K 5ª g:€#òPº\V‘y^]ýÔ2zvå,G5«$õV›mŽTt¤  (Táü(7Â2Í_þÓéû_jJÊãg3Z,gp@T(@_ÖRK¬7Œq6* š.ÖoZ‚fRtP4‚#œœZr ŸKìÚO­nŠä6Ã7µoKŠé­€b(I§H¸W6/šÿ þh‰ ÚFÑ@QŽpf”UHÉD¢‚LöxêHdGfá´HŽÂ°èh“þS‡È‹f>Û&Hz«”Á€ýUIJU‡µ¹=%H{­EG¦ŽpN”UÈ~)ÄAKŒ%­Ž³®G@p  ŠŽ¥ÌBÎQb,žõ í­¦èÀÁNˆr£ Ù<¸Bd4bX€´ÙŠ“"8ÂÙ”Tú*ÉæsÁÈhÈ.ñ$G6'¿deÙU2¤%½’ÆG9×VSt Gp„S¡Ü¨B6ÉDF³lV}$;(ϰèõ˜¢#‘ñ±,Œ è@>‚#œåF*Y™Ê|v$2ZÄÚÕGŠŽÁNƒÔ¨BVËDÆãÒVEp 0³ý¤ŠŽ$«x\|”Ù[MÑÁ΀r£ •6ah4:!4:2£õX£úHv\ÁÔ¨Bò³…™BUF›ÒÇÇ¿~Â\"@7¥¤ðòG~‘:¬a}RNÔ”äÓ•ŠŽJ¯ePq„c£Ü¨B%ìÊ,¢ÐhÙà¯=×tX.‹àFžP!‹òÄ£¾Qú¦du:½ÕŠGp„£"5:ÐÍã##EG›û#>ê„ùISt\ç8°Ë’Ä_Og,';Úƒ´9dŸøÈÉŽ€ "8Â!QR! R£F#4 ÛP•4‚ëfÈŽ€«!8Âñ˜”Ht:°x„FŠŽö¡Ó Еæ²kNŒsXÁãËÖ¸†“íªˆçâdGÀ•Pq„ƒ!7¨¬Ôhp:ci.Ý¥îho2JtX®ƒàGBjT¡Ç¤Æ?ú¦•n&,`|…Œîñ=×dGÀEÐU ‡Ajt06‘keXãV×G%Wd¹±è¡v¬R¤ÃÚÖŠ–§è!{(:®€àÇ@…I…̧F{õM“•TDÏ5ÙpztUÃUÈLj”щÉéŽD ‡En¯"z®¹ÈpnG¨©Q…Œ“Bç½q²£òä ÙÀiÐU U#8Ùw´Eº ÃÚ¦äÞ€ð¯=×tXNŒŠ#ËüYnTǶÔUá¯=×tXΊàõ" ¨Ð£4`yd´ig&ÙÑvs¦£éÜâQ|ÔéÈŽ€"8B¥È*¤Faq´Ã)pdGù#>’çã*ç8nذ¡oß¾ááá-[¶œ2eJVV–̦¤¤„„„üôÓOJ¯k!¨Ð£Ô(ïtF8¹g:š{™N#8ßp&.ccc?øàƒK—.5oÞÜËËkãÆÃ‡ÏËË“óÚÕ«W+Ý|—CjT#Í©±$/µSÔäBÛ)yvÔétQ¢P#çïªNJJŠ‹‹ ˆ÷÷÷B|òÉ'«V­š3gÎÔ©S‹zUNNÎ… 6oÞ¼nÝ:¥×ÀµUGWÀÈD‡µIÖõEPç¯8®_¿¾°°pܸqRjBÄÄÄhµÚíÛ·õªèèèíŒC¾ºh4B£ÑèJu°·ÿÔm¤„EGéµB÷è‹dî~3ˆóW;æææÖ¶m[ýww÷ˆˆˆÍ›7?~¼Y³ff_õÉ'ŸüþûïBˆ¯¿þúðáÃJ¯„K 5ªÈ_ŠCŽw˜§î¨BèaÀpÀÁ9ypÔétÉÉɾ¾¾¾¾¾†Óëׯ/„¸råJQÁ±U«VÒƒ}ûö)½.üŠÔKyI¬‚ñ€ìh – ÍcúrýàŽº’Œè@ œ<8æææx{{M×jµBˆ[·nÙè}CBBŒ¦ìرCé£$ÒÓÓíð.A)©©©J¯¬£°ÝF B¤¦¤ˆÔT!DP`PJjJª(á– LQt»¦¡ L±K ìóKQ‡ÀÒlÔ‘¢ Ô¤¤¦ˆ”!D F#¤¯œ ¸ÒFqŽ»Q:uê¤tÔÂɃ£tétÅŠ¦{yy !²³³mô¾IIIJ¯ºÕÚtùÊB6~'cýbPþ‘ý¨2Tº÷±õ—ç±tBhíSÔR|eíC§M`i …:¡ÓþQÉ–¾r6«>ºÈFq,ºQLë¦"áäÁÑÛÛ[£ÑäææM¿{÷®ø£î¸4sÇìÒÚ¬žsØè³¶ºRvX Ã>ký…ƒ]¿¸,'ŽZ­Ö´²˜““#„Ð_g EH×\p”PLÇigJ²£ ™¹™5ñpÎ?O@@@ff¦”õ¤st”në’ä”! ‰bî0Îzƒ8Æè±®Ò ÍóçB„ÎÌMet:FíÔÌùƒcûöí <¨Ÿ¢Óé|||ÂÃÕn‹¢ü£˜¢#£°RjT[¹Qìh]6ÌŽ‚ø¨—óǾ}ûº¹¹-\¸P:¯Q—‘‘Ñ»wï2eÊHSîÝ»—ššê¸W{9R£2ŠŒÂÙS£„ì¨BEfGA|ÔÈÉÏqBÔ¨Qcâĉ³fÍêÖ­[ëÖ­ÓÒÒÃÂÂÞxã ý< ãÇÞ²e‹Òíur¤F<î¤1é°í”=Ô¦8ßÑŠJ•̣嘞ïhô6Bõÿ(\†óG!Ä!CªV­ºiÓ¦mÛ¶U¯^}àÀãÆ“Fä=qÀ¶7×Xñ¤FG9²“­ÈºÙQóîq‡øžNê@ÁzBBBœfÇÔÔTk¹Å¡ÚZdmy—¦º`j4Xwk~!­øKqDVÜú²¾“ò¾Þ.¾QÔÉ™6Š3ë-âG(ŽÔh?²G3qÖ ¨eÒ1 ”*=¦ÛúÑL Ü(†à›#5Ú‰%ÇQë¦F‡+7Jt> ¾Ÿ¥e­ëGK““ñPÁ6DEÇN,²$lyŒ 6.4 R£<úÒ£à—"›­³£Ð÷\ZõgB‚„Ü«E‘î:’šªtCŠþƸ:Ý£ÿ¬»x¡ÑMJj ©QUtB¤¤¦j¸Éµl¶¸Ÿµñ[]JjŠô“±~ë¥ÿ¸6\ÁÆ4œ¼ErËÆyQü¥¥ÛaUH% 3è¼ÆcÙ!; !¤ŸŒMâ£0I€k «â„-ËØ¥ÇÊWÀ®‘±”8ñQ>}v´õ·Îú×͘®‰ÉŽü༎‚CEìu†“=#£ 5ZÏŸ'>ò›z}â²ÃwÏú×͘] çAÂy]‡7¹ìx$°d´Ëj¹â£|v¸\æÏ÷²âˆÅ¯’„ §Cpt]Òd±ï~ßΑQPh´1â£Lvë¶í¹$HÀBGWÄaì1”8WÉþ‘Qí…ø(‡=»­…ÁoÍN?=Ó)‘pHGס«8 •”ŠŒv_QWg?Ã"سôøèm}éŒéêQ†„"8ºŽUERô_ÿŠDFA¡QQúžÅÅÎ¥ÇGojçøh¸ª‚2$ ÁÑÉqp2Cé}´N®*zÕ90©ý×ųéQØùôG£µÕ£ u#8:-HÆT°;VªÄ(ˆŒjEÿu1 ‡G´|Jý`)CBݎΆ#Ð_¨cÏ«`‰Qÿ1pÜQ3ú¯‹¡HÏõ£·Vªi¸æuìÊAptäÅGŒnü¥ôVÁ£áç¡ôǹ(@E‘žëGo­lR¿þz„H(Šàèð(Q¨p7ªx‰Q™QR¸øüJõ\ÿÙe F„DeÿT†+ 8:*W?¢¨/, 5Q¤f Ò”Jâ£PÉïÝè#PåŽN†àè`\÷ø¡âX«âø!µ„Èè¤HFBm ÒðsyÔ,õî3áÐŽŽÁªßë©èh¡ôvC‚4¤†ø(Ô™ E±ÅHÁÎ%GpT/Ã_¹KüÄd¿¦ªcƒ †‚2Hz*‰Bµ òQSÈ‘°‚£ê¸ÐaÀqö\ƒ¯’#“PÓ)\aïaú9ÄG¡ôOÃ4A Õì:þh 9%DpT—Øã현Ú÷MªÝã µxP€á7Â…þýiô!üeðì@Å&†»5–!ÿlh±9R°ÇÁŸÜ”n€ëÒü§3øÏyh4ùO§3þO•ô-6l«ÒÂàãLIIU뇵ÐïO ÷3.E§))©ú_è÷'†{F¥UT[Mv×Fûs¸0*Žvå´•E³ûÇI7ª-. s]o©©J· ŽÃlR8Ùþ§˜Õ7¹{ŸvKfËB};Ÿ¿6š’$!8ڜaô}î¯Uuœƒspå©Î)Š‘B•û%ƒÆ™´ÍÁËàhN³S 23Õ1÷ñ/{µÕଊ ‘ÂÁwY_qµ&Ha²_rˆ]–Aë͵Ð$Mr‚¶àGë»”äç,¢Ñ&5%ÅQÎM4³B]µ³ø—¦šœ Øî¯ÿi\ãÌHÓ“÷ÔÆp—e´7Sºiò×Áøð‘š’böX£tCa‚£õÕ Qº cöwk-¿“ÕÉ‹PWË‘êOâ¯!Òs䣕1w¬!M:ºªW1¿:gI(ŽtJ¾Íêë Šaô=uâ~mÓ^l¡Ößi1ÚÂAö„&«$«§»¸™a/GÇç2?-ÓX;ÊþQýÇ!@¦âs¤pŠ(YÔ ŸUûã->G ÇÙUš¬XÍv²ˆš„‹ýNÌv¾8о»0ÀE˜~µ,J"…Šצ»J牒Z_tã]ìX©‚£j>‡Sãc§æ• ÀÖäDIá˜i²˜¡ Uþ“—%…cîxMÖ¡D™R¨~ª ÁÑ^{ž¯ |k‹:‰ÛA÷VŽR~”eö—áiÒ‹‘¶Ð܇í´iòÑš»"£e#8Z_Ò… N0Dv)9ßÈå7)`MòÓ¤p„@é÷U‘Ÿ&…ƒïÏÍ­ÏãVÇt£Ö¯¯t£•Áp<ÖR¿¾£k#“Æü f†ÂQç€8Å­šŒÑŠX—®ˆÿ4Eÿ§NrF›qfwæ¦C9ðð@r?ŽPqDq‚ƒŠyÖ±²`Q¸Q rÅü‹ ))J7û/« ã}޵Û)fÿ_\v t’‡+#8ººâÿu˜’š¨t­·²dDÀ¹—)·ïRö§/ónÏÂ÷QÅDÃÔÔTM ¦d¯…JÐUíÌŠéJ(¾OÙ;—ÿ²âE¬­ã߀\)©©º¢»¿‹ïW¤+¼¨qQ;4UüAGÎaKé5puT’Ì_Žã&¿ÇŒ« täì'd†›îr\jl9‡-Ž€Ê"8ª‚¥ÿ„r…ßÑ€âdîi,Úƒ[kïUâ! …ƒïBe9°ÚÁÑú.$]àûZ<9,½_àR,Ú]•¬«Õ¢·(ÁØ2%XˆÊYz`µôÀ]_¸èp<Gë«R?))IéVØ›E'Ü8úþJ¬dû¿RžÙgô¦rv®¶W·4h†ˆ¥›¬ ‚#Ì0Ø_Ƚ¤Ú ö Z¥ÜÅ–$wêdN‚”ùç1…£†ƒ"8:§R^p§ÿ=§¦¦:Óp<àš¬ÒŠ<¶XþY“Š^#r§BާH6lèÛ·oxxxË–-§L™’••e»÷züðþ§Ó•ê?½N:)½`Œ¢Blb£Ø‚®tÿÕ )æY‹–%g4¥ÇÿçøÃÙGóbcc/^\±bÅæÍ›§¥¥mܸñâÅ‹«V­òôô|ìk/\H²ô+È¿œ.ÎþGBÁ[Z]ôÒ*Žf%%%ÅÅÅìØ±#..nç΃ :uêÔœ9sä¼¼~ýWø€}”¦z겎f¬_¿¾°°pܸqþþþÒ”˜˜­V»}ûöÂÂB¥[  ‚£ÇŽssskÛ¶­~Š»»{DDDffæñãÇ•n€2ŽÆt:]rr²¯¯¯¯¯¯áôúõë !®\¹¢t”ÁÅ1Ærss ¼½½¦kµZ!Ä­[·ä,$$ÄyÆu¦uqlb£¨E…Ø(ŽŽàh,//OQ±bE£é^^^BˆìììÇ.Áo\]ÕÆ¼½½5Mnn®Ñô»wïŠ?êŽ.ˆàhÌÃÃC«ÕšVsrr„úë¬\ ÁÑŒ€€€ÌÌL))ꥦ¦JO)Ý:eÍhß¾}AAÁÁƒõSt:]BB‚Oxx¸Ò­PÁÑŒ¾}ûº¹¹-\¸P:¯Q—‘‘Ñ»wï2eÊ(Ý:ehtÜðΜåË—Ïš5«fÍš­[·NKKKLL ]¾|¹é0=.‚àX¤Í›7oÚ´éÔ©SÕ«Wæ™gÆ'ÈàšŽ…s Á² Á² Á² Á²üúë¯M›68q¢Ò quyyy+W®ìÚµkãÆ[·n=tèÐï¿ÿ^éF¹® 6ôíÛ7<<¼eË–S¦LÉÊÊRºE®ŽˆÊq(qJ7@§ÓMš4Içn(%??ðàÁ'OžÔjµ-Z´¸ÿþ?üpèС·ß~{ôèÑJ·ÎåÄÆÆ.^¼¸bÅŠÍ›7OKKÛ¸qãÅ‹W­Zåéé©tÓ\?•ãPâŽx¼•+W=zTéV@¬_¿þäÉ“M›6ýꫯ¤trñâÅ~ñÅíÚµkÐ Ò t!IIIqqqñññþþþBˆO>ùdÕªUsæÌ™:uªÒ­sQü@TŽC‰s «qñâÅØØØ'Ÿ|Ré†@ìØ±CñþûïëkZÁÁÁ#FŒ((( ?ÎÎÖ¯__XX8nÜ8)5 !bbb´ZíöíÛ •n‹â¢fJœÁÅÉÏÏï½÷|||bbb”n DjjjÅŠà' !®\¹¢të\˱cÇÜÜÜÚ¶m«Ÿâîî‘™™yüøq¥[ç¢ø¨‡gBW5г`Á‚sçÎ-_¾¼råÊJ·bÉ’%ƿٳgÏ !j×®­të\ˆN§KNNöõõõõõ5œ^¿~}!Ä•+Wš5k¦t]?ÕâPâL¨8¢H'Ož\ºtéÀŸþy¥Û!„ •¢‰^bbb\\\¹råzôè¡të\HnnnAA···Ñt­V+„¸uë–Ò tQü@Ô‰C‰“!8¼¼¼¼÷Þ{¯víÚï¼óŽÒm«V­6lXnnîÌ™3ýüü”n‘ ÉËËBT¬XÑhº———";;[邈Zp(q>tU»ºüüü¥K—êÿtww>|¸bÖ¬Yééék×®elû+j£èýðÃÓ¦M»téRõêÕg̘Á¿ãíÌÛÛ[£ÑäææM—Æ‘êŽP?õàPâ|Ž®îáÇŸþ¹þÏråÊ >üèÑ£k×®5jÔÓO?­t]‘Ù"=~ðàÁìÙ³W¯^]¾|ù1cÆ :”ݱýyxxhµZÓÊbNNŽB5숪p(qJN§t :kÖ¬™>}zQÏoÙ²Eé6º¢Â±cÇîÚµ«C‡~ø!EAݺuKNNNLL4<ÙÊ”)7n\½zõ3Ï<£t]?µáP┨8ÂŒ:uêtéÒÅpJvvö¡C‡jÔ¨^­Z5¥è¢V¯^½k×®þýûøá‡J·ÅÕµoß>))éàÁƒú_ŠN§KHHðññ Wºu.ŠˆÚp(qJT!ËÙ³g{õêÕ­[·Ù³g+Ý¥Óé:v옕•uèСòåË+ÝW÷믿¶oß¾nݺ6l®‰Y²dɼyó† Æ}xÁÄ!p(qTÇpóæÍË—/{zz0ÀôÙž={8Pé6º5jLœ8qÖ¬YݺukݺuZZZbbbXXØo¼¡tÓ\?À>Ž€cHOOBäåå9sÆôY®µ¿!C†T­ZuÓ¦MÛ¶m«^½úÀÇ'Uaü@û «²08d!8@‚#d!8@‚#d!8@‚#d!8@‚#d!8@‚#d!8p-'N Ù¿¿Ò  . Y³fÒ ¹ŽÅCé€‹ŠŒŒôóókÚ´©Ò ¹Ž Œ°°°°°0¥[ «T§  àáÇJ·Œ8†>ø $$döìÙFÓOŸ>òüóÏççç !222æÍ›Õ¤I“&MštéÒeæÌ™×¯_/j±Òµ2GŽ1šúÜsÏNùþûïß~ûí:4oÞ|РA .4ÊvW¯^ýð㢢7nܶmÛáÇ;v¬˜5Zºt©áÅ1RKÒÓÓãââZ´hѰaÃfÍš½òÊ+»wï.j 'Nœ ˆˆ¸sçŽ~âÝ»wÛ¶mzêÔ)¥7gCpࢣ£…;wî4š¾eË!D=<<<222 °dÉ’_ýõ‰'ž¨U«Ö•+WV¬Xѯ_¿¬¬¬Ò¼ûœ9s†ºsçÎüü|ÿüqÁ‚ÌÌÌ”f¸xñbttôºuë233ÿö·¿étº„„„W_}uïÞ½½Ñ’%KæÎ[¦L™-ZhµÚ'NŒ=zûöífg:tèõë×?ýôSýÄÏ>ûìÚµk£Fzꩧ콑8;‚#Çмysÿ+W®üüóÏú‰………R¨êÕ«—bãÆ¿üòK»ví¾ÿþûM›6ý÷¿ÿ=tèPóæÍ¯^½ºgÏž¿õ¾}û–.]Z»ví 6ìß¿ëÖ­hÓ¦ÍÉ“'-Z$Í3gΜ{÷î9òðáÃ7nLHHxÿý÷u:Ýüùó-z¯õë×>üàÁƒ+W®üî»ï,„XµjUQó¿ýöÛÁÁÁ7nóððøàƒnܸñþûï{zzΙ3Gß °"‚#‡!E@Ã~[©ŸºwïÞÒŸ£G^¼xñßþö7ý 7oÞܺukiÞ4+++555((Èè è *<ÿüóyyygΜBHÉ5&&æèÑ£ÒÙ–eÊ”;vì˜1c,z»Î;þ©ÕjÝÝÝu:]1/ =zôo¿ýÖ½{÷«W¯Nš4©nݺ¶Ú\ÃñpaaauëÖýå—_’’’BBBòóówìØáé饟çêÕ«øñǯ\¹rùòåRžÚ(„HII‘þbv†k×® !¦M›6nܸ£G¾úê«åË— }öÙg;vìjÑÛÕªU«|óÍ7wïÞ}öìÙgžy¦_¿~VýÔàOGŽ$::zÁ‚;vì 9xð`vvv¯^½ôÓk×®ýøãóóóŸxâ‰fÍšuèСaÆ©©©Ó§O·è] ôE¾!jÖ¬YT§s5„µjÕÚ°aÉ'8ðÃ?œ9sæøñã‹-êÓ§ÏǬÑhd¾uÙ²eKð±Ü½{÷æÍ›Bˆ”””Û·o{{{Û~SpEGŽDÇŽ+õAëû©ïÞ½û÷¿ÿ½lÙ²K–,iÕª•þ%¿ýö›¥ïò믿Jƒ‚‚„*T˜2eJñ¯Òh4Ò@Bˆ½gÏž:uê4kÖLzêôéÓMš41LâËVŠgÔ£ýÝwßéT­ZõÒ¥KgÏž5œ§   wïÞ­[·ÎÈȸzõj»ví^zé%ý³eË–mß¾½t5OzzºM?“Í›7oß¾½M›6«V­ Þºu«é E`GFºDæý÷ßÏÍÍíÓ§~z@@€âüùóÒ”‚‚‚uëÖ}ýõ×Bˆ¼¼<³K{â‰'„«W¯ÎÍÍ•¦$&&êÙ‘L˜0¡°°p„ çΓ¦Ü½{wòäÉgΜ óóó«^½ú;w~úé§eË–éK•¿üòË„6Oñ·ß~›>}z¥J•þþ÷¿—)SæÓO?uwwŸ6mZéOîStUp0QQQ³fÍJJJrwwïÑ£‡~zPPPûöí÷ìÙó /4mÚT§Ó%%%eee 0`ÕªUß|óÍ;w¤u õèÑãŸÿüçñãÇÛ·ozãÆääd­V[­Zµßÿ]š§gÏžGýöÛo{ôèQ³fMŸ”””ÜÜܺuëJ#o»¹¹M™2%&&föìÙ_}õU­Zµrss/]º¤Óéúõën£B§ÓÅÄÄäää̘1CÊÍ577·eË–_~ùå‡~h»bõêÕGŽiÕª•þDO!ÄÛo¿]§NíÛ·ïØ±CÑ À iŠ \ǽ{÷233k×®-ÿ"hp)GÈBW5d!8@‚#d!8@‚#d!8@‚#d!8@‚#dù™~øÆ'¤ý™IEND®B`‚statistics-release-1.6.3/docs/assets/cdfplot_101.png000066400000000000000000000336231456127120000223120ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A7ZIDATxÚíÝ}œTeÝ?ð³°(+È>¬ ¦¨ ‘’b¡ò`h*ˆAD–ò+ƒ´¬4 4È4QQŒÐp+K4n)µ^IŠ’h(éÆê†©°È",†îÎï¹››v¼„YÎîÌûýêášsÎ~Ïqšù¼Îu¾çä$‰ÞO‹¸  y"8Dp ˆà@Á€ ‚#ÿûß3fÌøä'?yÔQGµnݺ¤¤dðàÁwß}÷®]»ê,¹nݺœzrssÛ·oÿ±}lÒ¤I›7oY¥ŽqãÆà.Lš4)¹©aÆíÇê‹-úÍo~ó›ßü¦~ýû­ªªêŠ+®8ꨣrss?üð;w¦kËQåÆ]žyæ™Ï|æ3ÿøÇ?R#ååååååK–,™6mÚ}÷Ý7xðà}o¡¦¦¦²²²²²òé§Ÿ¾çž{–,Yòñ<îÝú`>ÿùÏïØ±#Š¢ßÿþ÷LË6o¸á†ŸýìgÉ×ɤ‘àleee Ø3Öäææ¾÷Þ{É×ÿüç??ûÙÏ>ñħœrJýu‹‹‹óòò¢(Ú¹sgêDÝ[o½5bĈòòòC=t«ÔQXX÷‘H¿Ç{,ù¢o߾Æ ;äCâ®È(¦ªƒíúë¯O¥Æ/}éKÏ=÷Ü;ï¼óÚk¯ýìg?;üðã(ª®®¾ä’K\wöìÙo¾ù櫯¾ú¥/})9¾iÓ¦Ÿüä'û^¥Žo¼1¼æŠŠŠÿûßq¹÷÷Æo$_Œ?þÚk¯mÕªUÜEpªßÿþ÷‹-J¾ž0aÂý÷ßÊ)§´lÙ²S§N£G~衇’o•••ýýïß÷¦Ž9æ˜ûï¿?u}ám·Ý––Kúö¼rñõ×_¿ì²ËÚ·oüñÇßqÇ![عsçM7ÝtÞyçŸ{î¹7ÞxãöíÛS Üpà 999©ô|î¹çæääì»ø÷ÝææÍ›7lØP[[›üç¶mÛ6lØ:[ç?AêBÏ &$wìØÑ¾}ûäàé§Ÿ^SSsàGÈ@ €ƒèÓŸþtò˧¨¨èí·ß®¿À AƒN=õÔSO=uÞ¼yÉ‘^x!õ•õûßÿ¾ÎòüãSï.[¶,d•}›8qbrÅO|â'œpBïÌQ£FÕ_rèС©Á§Ÿ~ºþZQsÌ1+V¬H.“Šk{Ú±cÇÞJ ÙæÐ¡Cë/ðÒK/5¸ÁË.»,¹Àa‡öúë¯'‰É“''GZ¶lù—¿üåà0€fÁGà úóŸÿœ|ñéOºmÛ¶õX¼xñ³Ï>ûì³Ï>ꨣN8ᄜœœÙæ#<’H$R7yž5Us;v¼óÎ;“¯g̘1~üø­[·FQtôÑGï{ßKË # ŽÀÁ³ç5y;wN×f8âˆúÛ?p¹¹¹÷Þ{o²S»sçηß~{rü‰'žxçw\eñâÅÉ×\sMïÞ½“¯{öìyÝu×ÕY \cl3Š¢Ñ£GŸ}öÙQ½óÎ;©¾¢éÓ§7x IpždÓtRïz]YY™|Ñ®]»úïWOQQÑûnöÃþð1Ç“úçù矟|‘H$^yå•W)++«³pÒ'?ùÉä‹õë×§úW5Æ6£(ÊÉɹï¾ûöl»þÔ§>õ©O}êƒnÈ*îã<‡rHûöí·lÙEÑžwÿÞSUUU²¸uëÖmÚ´ Ùlj†º¸¸¸þ»³gÏÞ¿Ûk§fÀ“;ì°üüüªªªä_ìÞ½{å·oßž|7Š¢N:íùÖQG•|ñÎ;ï¼ñÆuÞÝ‡ÆØfJ÷îÝ?ùÉO¦NXŽ3f?ŽUœqª3Ï<3ùbáÂ…ï¾ûnýN:é¤öíÛ·oß~ÆŒ!\¹råîÝ»“¯Ï8ãŒ4–šº3i×®]©©ðãŽ;®þòíÚµËÏÏO¾þ׿þµç[©rÈ!:t¯¡1¶™òÔSO-]º4õÏ›o¾9GÈH‚#pP]qÅɯ¾úê}÷ÝWçÝE‹¥Nöïß?dƒ?üá“/Ú´isÖYg¥±ÔuëÖ½öÚk©þîw¿K$QrÈ!Ç{lƒ«¤šQROp©óÏ’’’ÜÜ6ÕÓÛŒ¢è½÷Þ»òÊ+÷œãþãÿø‹_ü"È<‚#pP]tÑEçž{nòõ5×\sË-·$ÏœíÞ½{Ö¬Y_üâ“op ½zõÚ÷¦^ýõ+¯¼rÞ¼yÉþ¿ÿ÷ÿö¼†òÀíÞ½ûꫯNžÎü׿þ5~üøäø!CZ¶lÙà*ƒ J¾øÑ~´fÍšäë^xá®»îJ¾¾ð üCû(cÿ¶ù¾î¾ûîµk×FQÔ®]»ï|ç;ÉÁ믿>מ(îIYgíÚµuݾ}û=£XëÖ­Ÿ}öÙÔò{ÞÍ»sçÎ'žxâ‰'žXç’¾:lÞ¼¹ÁUöûà©¿8pàÀTÛM‹-Ö­[WgÉÔ À«««S'#óòò.ºè¢O}êS©+5;uêTUU•úCG}tr¼OŸ>wÝu×îÝ»¬çm³Îíxöæå—_Ný'¸å–[ÞyçTÐe—]÷hºG +W®ÜÛíxŽ;î¸Å‹ï¹ðž)°AEEEO>ùäÞVÙïàØ¯_¿}èC{þ¡ÜÜÜ3fÔ_rÏ'Ç<õÔS Þ¢òØc}üñÇ÷üC©Ç·$íãÉ1áÛ Ž©ŽìöíÛoß¾=‘H”––¦6ûè£ôOÐ<èªbpÖYg­_¿¾´´tÁ‚/¾øbUUÕqÇ×­[·sÎ9窫®JÞ:qßZ¶l™ŸŸâ‰'žþù×\sMònØéUTT4{öì[n¹eÅŠUUUgŸ}ö7¾ñì{­3Î8cíÚµS¦Lyâ‰'^xá…ššš|ä#}úô?~|™ôiÓ¦EQô»ßýnçÎ]ºtIÝü@¶böìÙ©ë#o¸á†ä¾ô¥/ÝqÇÉÛ ]uÕU/¼ðB³ÂQå$‰¸khB&Mš”|6ÌСCy䑸ËhB4ÇDp ˆà@Á€ šcâŒ#AG‚Ž"8Dp ˆà@Á€ ‚#AG‚Ž"8Dp|¯¼òJ·nÝþú׿Æ]@ÌÇ÷1kÖ¬¸Khrã. ‰Ú¾}ûßÿþ÷… >üðÃq×Ð$Ž 2dÈ믿wMˆàذɓ'ÿûßÿŽ¢èÁ|â‰'â. ~‚cÃÎ>ûìä‹?üáq×Ð$Žé×­[·¸KWYYYÜ%Ä@plÙùaj<ݺusHÓÈñL;‡4íÒôj²Ç3gìòÄÝŸˆ»Šý‘µ'‰ÜŽ€ ‚#AG‚¸ÆØ9c—Ç]àfÚàÂ~0UM3°lÙ²¸KÈ(ŽgÚ9¤i禗ãIºŽßÇ­·ÞZVVvÊ)§Ä]@Ì\ã|ºa²™à„j¾Ïz!-LUDp ˆà@Á€ šc q56䊸 ŽÐèâíD®¨¨èÒ¥KÜÇ€L`ª€ ‚#AG‚¸Æ‚ìw‹G­1G%’åLUDp ˆà@Á€ ‚#¼¿œ±ËuÆ€à@Á€ ‚#AG‚xr ìË~?i2àïC?5$™ª ˆà@Á€ ®q€†i‹:GØ+m1°'SÕ"8Ä5Žð¿tÃÀ¾ ŽðtÃÀ>˜ª ˆà@Á€ ‚#A4ÇùÛ¥uÆÀ¾ Žd¡œ©j‚ŽâG2™§B Žd8m1.¦ª"8Dp ˆà@Á€ ‚#AG‚ŽâÉ1d O„Æ 8™'Ÿ|ò?þñ­[·Æ½CñÈüà¸zõê-Z 0 5Ò²eË~ýúUVV&b}:uŠ¢hÏŒ˜H$¶mÛÖ¢E‹T”È6‰DyyyQQQQQÑžã]»v¢hãÆ ®uÑEµnÝzòäÉO>ùä®]»^{íµI“&mÚ´iĈíÚµ‹{Ÿâ‘áçϪ««kjj êŒçççGÿ}NqOݺu›5kÖå—_~ùå—§GŽyã7þÝnݺÕY¶lYÜ£Û´iSÜ%dÇ3íÒ´KÒã§WDQTQQw9Ížèºà‚ â.¡©Èðà¸k×®(ŠÚ´iSg¼mÛ¶QUUU5¸ÖöíÛï¸ãŽ;wöèÑ£gÏž•••+W®\°`ÁÇ?þñóÎ;/äï–••Ž뙦K—.q—QÏ´sHÓ®K—.QT¡3&]|DDýŸõúgˆ²D†Ç‚‚‚œœœêêê:ã;vìˆþsÞ±¾o}ë[Ï<óÌ„ ¾ô¥/%G^{íµÏ}îs×^{íoûÛã?>î݈A†_㘛››ŸŸ_ÿÌâöíÛ£(JõYïéÍ7ßüÃþpâ‰'¦RcE;wþÚ×¾öî»ï>òÈ#qï@<2<8FQT\\\YY™LŠ)É+fŠ‹‹ë/_YYEÑqÇWg=y]cE¥¥¥[¶l>|x«V­’#;w¨H6åååõë×oÆ ?úÑRw_¿~ý½÷Þ{È!‡œsÎ9qï@†Ë»üøé9c—댦&Ûc¢(êܹó¸qã¦L™rñÅ÷íÛwÆ «V­êÑ£ÇW\‘ZfÅŠ×^{mIIÉ¢E‹¢(ºõÖ[?ó™ÏÜ{ï½K–,éÞ½{eeå3ÏôPI‚#ïO5™ª à@Á€ ®q .Ý0@ƒG ¨ÏT5AG‚Žq#@¶Ó Ð 1U @Á€ ‚#AG‚hŽÈ.õ{¨uÆG€¬#)ûÇT5AG‚Žq#@¶ðhAà ŽYD[ p LUDp ˆà@Á€ ‚#@VÈ»\g p€G‚Ž"8Ä“c2§ ApÈLz¨´3U @Á€ ‚#A\ãQ´ÅGpÈ4Úb€Fbª€ ‚#AG‚Ž™Cg Ш4Çdˆœ±ËµÅÊG‚Ž"8Ds @s¥‡8ÈG€fL5p0™ª ˆà@Á€ ®qh~’m1.p2gš%©8øG‚Ž¢9 yðœ v‚#@³¡!ˆ—©j‚Ž’-×8Î;wΜ9ååå‡vXÿþýÇWXX¸ïUžþùûî»oݺu;vìèÖ­ÛÕW_ý±},îýˆMVÇiӦ͘1£M›6½{÷Þ°aÃüùóׯ_?sæÌ¼¼¼½­²|ùòk®¹¦¶¶¶gÏž%%%þóŸ¿ð…/üä'?ùÄ'\™4.ÝÓ@“•ùÁ±¬¬¬´´´¸¸xÞ¼y;vŒ¢hòäÉ3gΜ:uê¤I“\¥ªªjüøñ¹¹¹?ÿùÏO;í´(ŠÖ®]{Ùe—Mš4iÀ€-Z˜ß—îi iÊü 4gΜÚÚÚ1cÆ$ScE&LÈÏÏ_ºtimmmƒ«ÌŸ?ûöí_ýêW“©1Š¢|ä#^xá–-[žþù¸w ™W¯^Ý¢E‹¤FZ¶lÙ¯_¿ÊÊÊ5kÖ4¸ÊŸþô§œœœ¡C‡î9xçw–••rÊ)qï@<2|ª:‘H”——í9Þµk×(Š6nÜxúé§×_ë…^(,,<òÈ#ÿò—¿<ûì³Û¶m;餓Î=÷Ü}\ ñ2<8VWW×ÔÔÔÏÏÏ¢hëÖ­õWÙ½{÷Ûo¿}â‰'~÷»ß}衇RãÇsÌ~ðƒøÃ!·[·nuF–-[÷ÁhÆ6mÚw ÅñL»tÒã§W$_TTTĽO1ó)M/Çó]pÁq—ÐTdxpܵkWEmÚ´©3Þ¶mÛ(Šªªªê¯òöÛoGQT^^¾yóæ)S¦ 0àwÞ™7oÞ=÷ÜóÍo~sÑ¢E!çËÊÊâÞõLÓ¥K—¸KÈ(ŽgÚ¥éVh‹Iñ)M/Çó@ÔÿY¯†(Kdø5Ž999ÕÕÕuÆwìØýç¼c­[·N¾¸ãŽ;†ZPPpä‘G~ãß6lئM›/^÷>Ä#Ãcnnn~~~ý3‹Û·o¢(Õg½§6mÚ´nÝ://ïœsÎÙsüÜsϢ襗^Š{Ÿâ‘áÁ1Š¢âââÊÊÊdRLI^?T\\Üà*;vlÕªUNNΞƒÉê÷Þ{/îˆG†_ãEÑÀËÊÊüñÁƒ'G‰ÄŠ+ {õêÕà*çœsÎ<ð÷¿ÿ=Ù|”¼wÏI'÷Âb€f'óÏ8Ž1¢E‹Ó§OO^×EQiié–-[†ÞªU«äÈÎ;+**RMgÆ ‹¢hâĉ©¶ëçŸþç?ÿy~~þyç÷™#q÷'êü/îŠö%óÏ8vîÜyܸqS¦L¹øâ‹ûöí»aÆU«VõèÑãŠ+®H-³bÅŠk¯½¶¤¤dÑ¢EQ|òÉ×]wÝ÷¿ÿý .¸àôÓO¯®®^½zuNNÎäÉ“8∸w ™£(5jT‡,X°dÉ’N:9r̘1É;òìÍW¾ò•öíÛÏœ9ó‰'ž(,,8pàÕW_]RR÷®Ä&+‚cEC† 2dÈÞÞ4hРAƒê >|øðáqÐTdþ5ޤE¶œqh"4SÍ—àp°éžš)SÕ"8Ä5ŽNC G€ƒAC LUDp ˆà@×8¤Ÿn # ŽB7 yLUDp ˆà@Á€ ‚#AG‚Ž"8DpH³œ±Ë=6ÈH‚#AG‚ŽÉ»€ÿ’H$^|ñÅ'žx¢¬¬lË–-›7onݺu‡Ž<òÈÓO?ýãÿøGwYª©ÇM›6=øàƒ<òȶmÛ\àW¿úUNN·?üá‘#G4èC‰»d€ºrÆ.»€Fpü׿þuÇw<öØcQzꩽzõ:å”SŽ?þø‚‚‚‚‚‚Ý»w¿õÖ[[¶lùÛßþöÜsÏ­^½züøñwÝu×UW]u饗¶haªhZôS,æà8sæÌiÓ¦uêÔiìØ±_|qÇŽë,ЪU«6mÚ}ôѧžz꥗^šH$þò—¿,X°`êÔ©¿ùÍon»í¶’’’xw KÄ|ÆnÖ¬Y·ÜrË¢E‹¾üå/×OõåääôîÝ{òäÉ¿ÿýï{öì¹`Á‚xëÈ1Ÿq\¶lYË–-÷cÅöíÛç;ß©©©‰·~€ìóÇ:©qíÚµû^~Ù²eûX€ÆÓ´šK>÷¹ÏMŸ>½Áóˆo½õÖ˜1c¾ùÍoÆ]#@Ãÿüó_yå•xëÈ1Ÿq\²dÉ~ðƒñãÇßrË-ƒ :ï¼óN9å”Ã?¼Á…7lØðä“O.\¸ð™gžéܹó=÷Üãt#ÀAspÌËË»á†>ó™Ï<ðÀ ,xøá‡srrN<ñÄc=¶°°0??÷îÝo½õVeeåºu몪ª¢(:î¸ã&Nœ8|øð¼¼¼¸@iÍ1%%%·Þzëõ×_¿téÒ'žxbÕªUëׯ¯¿ÌСC ЧOŸœœœ¸KÈ:M"8&|þóŸÿüç?_[[ûúë¯WVVnÙ²%//ïˆ#Ž(..n×®]ÜÙK?5@Ô¤‚cJ‹-:wîܹsç¸ ø?ú©bîªÞ½{÷ê§ .1Çž={žwÞyqÞ_ÓzVuÒ°aÃ>þñÇ]ÿ¥)^ãXUUõÖ[oÅ]€ž€ÿÒƒ#@Ó¡' ¥)NUÐ ŽâG€ÿ£`G€ÿ¢`oâŽo¼ñF¯^½öÙµkWEuSž}öÙ¸KÈFñÇD"Q]]]¼ÁAâsp\´hQÜG€ 1Ç’’’¸A⟪h ’ýÔ:cöÁ}þ—Ô°o‚#AG‚ŽÑdÏØ?‚#ôÁìSÕ"8Dp ˆàd—œ±ËuÆìÁ€ ‚#AG‚Žñä +xÌ Àl¡™à™ª ˆà@Á€ ‚#AG‚Ž"8$[‚ãܹsGŒÑ«W¯³Î:ëÆo|ë­·Â×}íµ×N;í´qãÆÅ½À~òØ€´ÈŠà8mÚ´‰'¾üò˽{÷nÛ¶íüùó¯¼òÊ]»v…¬›H$Æ¿cÇŽ¸w8 pà2?8–•••––/[¶¬´´ôÑGý¾°víÚ©S§†¬þË_þòé§ŸŽ{'â—ùÁqΜ9µµµcÆŒéØ±crd„ ùùùK—.­­­Ý÷ºëׯŸ6mÚI'÷NÄ/óƒãêÕ«[´h1`À€ÔHË–-ûõëWYY¹fÍš}¬øÞ{ï}ë[ß*,,œ0aBÜ;¿ މD¢¼¼¼¨¨¨¨¨hÏñ®]»FQ´qãÆ}¬ûãÿøÅ_¼ýöÛÛµk÷~Ä/7îWuuuMMMAAAñüüü(жnݺ·Ÿ{þô§#GŽ<óÌ3×­[÷Aÿn·nÝêŒ,[¶,îƒÑŒmÚ´)î2JöÏã§W$_¼ò.÷‡²ç4iz9žè‚ .ˆ»„¦"Ãc²uºM›6uÆÛ¶mEQUUÕÞÖúÖ·¾uÌ1ÇŒ;vÿþnYYYÜ»žiºtéw %kŽgÅAk¦ÎšCzð8¤éåxˆú?ëõÏe‰ Ž999ÕÕÕuÆ“·×Ižw¬oÊ”)›6mz衇òòòâÞ€¦"ïqÌÍÍÍÏϯfqûöíQ¥ú¬÷ôôÓO?ôÐC_ùÊWN9唸ËhB2<8FQT\\\YY™LŠ)ɫЋ‹ë/¿~ýú(Šî½÷ÞnÿñéO:Š¢ßþö·Ýºu»è¢‹âÞ!€xdøTuE,++{üñÇœI$+V¬(,,ìÕ«Wýå=öØÔ’IUUU+W®ìܹs¯^½Ž<òȸwØOh<™GŒ1cÆŒéÓ§÷ïß?ÙSZZºeË–/ùË­ZµJ.³sçÎ7ß|³U«VG}ôÙgŸ}öÙgï¹…uëÖ­\¹òôÓO¿ë®»âÞàýyº @#ÉüàØ¹sçqãÆM™2åâ‹/îÛ·ï† V­ZÕ£G+®¸"µÌŠ+®½öÚ’’’E‹Å]/@•ùÁ1Š¢Q£FuèÐaÁ‚K–,éÔ©ÓÈ‘#ÇŒ“<û@ ¬ŽQ 2dÈ!{{wРAƒ ÚÛ»=zôp_F€l Ž@ÆÓÐØG sh‹hT™GÒBp ˆà@Á€ ‚# ´T‚#!´T46Á€ ‚#AG‚xr мi‹8hG ÙÓpp˜ª ˆà@Á€ ‚#AG‚Ž"8Ä ÀfÆ£bâ"8ÍIÎØåžSÕ"8Dp ˆà4ú©â%8͉–j€ Ž"8Ä“c€&J+ @S#8M—V€&ÅT5AG‚ަHg @$8M”΀¦Fp ˆà@Á€ ‚#A<9ˆÓÞº§uÆ4A‚#3 ¹0U @Á€ ‚#AG‚Ž"8Dp ˆ€ÏÞž@³ 8IÎØåЬ™ª ˆà@Á€ ‚#A4ÇN35@fƒA?5@0U @Á€ ‚#AG qéŒÈ‚#ÐètÆdÁ€ ‚#AG‚Ž@#ÒI<9h,9c—k‹È$Î8Dp ˆà@Á€ šc€ý¤c ÛŽÀþÓ4 ULUDp ˆà@ÁØ:c²àì'1ÙFp ˆà@Á€ ‚#AG‚Ž"8$7î’¹sçΙ3§¼¼ü°Ãëß¿ÿ¸qã ÷±ü®]»~ýë_Ï›7oÓ¦M‡~x×®]GuÖYgŽ±ÉŠà8mÚ´3f´iÓ¦wïÞ6l˜?þúõëgΜ™——×àòï½÷Þå—_þÜsÏåçç÷éÓçwÞyê©§V®\yÍ5×|ýë_{o f6µ2?8–•••––Ï›7¯cÇŽQMžUH$ÊËË‹ŠŠŠŠŠöïÚµkE7n<ýôÓë¯uß}÷åæÖ=2ëÖ­‹¢è˜cމ{Ÿâ‘áÁ±ººº¦¦¦   Îx~~~E[·nmp­îÝ»×YµjUii顇:tèпۭ[·:#ÉéoöϦM›â.!£ì÷ñ<~zEòEEEEÜ;Ñ´øˆ¦Cš^Žçºà‚ â.¡©Èðà¸k×®(ŠÚ´iSg¼mÛ¶QUUU½ïjjjfÏž}çwÖÔÔÜ}÷ÝíÛ·ù»eeeqïz¦éÒ¥KÜ%d”ý=žÚböÆG4íÒôr<DýŸõúgˆ²D†Ç‚‚‚œœœêêê:ã;vìˆþsÞqžzê©›o¾ùå—_îÔ©Óm·Ývæ™gƽC±Éðà˜›››ŸŸ_ÿÌâöíÛ£(JõY×·{÷î»îºkÖ¬Y­[·¾úê«G½·›>d‰ ŽQ———oß¾½]»v©ÁäZÅÅÅ ®R[[;vìØÇ{ìÜsϽ馛ö‘/²GæÇ–••=þøãƒNŽ$‰+VöêÕ«ÁUfÍšõØc]zé¥7ÝtSÜåCÌ<'€”ÌŽ#FŒ˜1cÆôéÓû÷ïŸì‰)--ݲeË—¿üåV­Z%—Ù¹sç›o¾ÙªU«£>:‘H<øàƒ‡~øøñã㮚 1$e~pìܹó¸qã¦L™rñÅ÷íÛwÆ «V­êÑ£ÇW\‘ZfÅŠ×^{mIIÉ¢E‹6oÞüꫯæåå]vÙeõ·6lذ‘#GƽO1ÈüàEѨQ£:tè°`Á‚%K–têÔiäÈ‘cÆŒIž}¬/y³«]»v½ð õßÕX d­¬ŽQ 2dÈ!{{wРAƒ J¾þèG?ê.Œõeþ³ªH‹l9ã|Pú©¨CpöJ?5{2U @Á€ ‚#A\ãÔ¥-€ Ž@´ÅPŸ©j‚ŽâGàé‰`ßGàÿè‰`LUDp ˆà@Á€ šc i `?Ž¥4PðA™ª ˆà@Á€ ‚#dã§WÄ]Í’àÙHg ûAp ˆà@Á€ nYÄc8‚#d‹œ±Ë“=1ºªØ¦ª"8Dp ˆà@Á€ ‚#AG‚ŽâÉ1ÐŒy„ “àÍ[ò)‚p˜ª ˆà@Á€ ®q„æGO ±¡YÒÀÁgª€ ‚#AG‚ŽÑ1Ð @s$8B<´EÐ옪 ˆà@Á€ ®q„F¤ €L"8BãÒ@Æ0U @Á€ ‚#A\ãB[ ™Gp„Æ¢-€ cª€ ‚#AG‚ŽÑi–ì§Ö@æqÆÒOj # Ž"8Dp ˆà@Á€ ‚#AG‚xr Ù"ù@`¿ Ždt€aª€ ‚#AG‚ŽÑC&ÓI i$8’átR@º˜ª ˆà@Á€ ®q¤Ièb©ˆ»FÈv‚#MÅ>ºX***ºtéwíLUDp ˆà@×8îÕܹsçÌ™S^^~Øa‡õïßܸq………qõdÒCS.¸à‚²²²¸«ÈŽgÚ9¤i禗ãIºŽ ›6mÚŒ3Ú´iÓ»wï 6ÌŸ?ýúõ3gÎÌËË‹»´ÀCS€42UÝ€²²²ÒÒÒâââeË–•––>úè£_øÂÖ®];uêÔ¸KˆàØ€9sæÔÖÖŽ3¦cÇŽÉ‘ &äçç/]º´¶¶6îêâ!86`õêÕ-Z´0`@j¤eË–ýúõ«¬¬\³fMÜÕÄCp¬+‘H”——í9Þµk×(Š6nÜwñÐSWuuuMMMAAAñüüü(жnݲ‘nݺŽQtÑOšDi’IûÒ8žiç¦Cš^Ž'i!8Öµk×®(ŠÚ´iSg¼mÛ¶QUUU½ïšÐ-în2•ÍŸ©êº rrrª««ëŒïر#úÏyG€,$8Ö•›››ŸŸ_ÿÌâöíÛ£(JõYdÁ±ÅÅÅ•••ɤ˜RQQ‘|+îêâ!86`àÀ555?þxj$‘H¬X±¢°°°W¯^qWÁ±#FŒhÑ¢ÅôéÓ“×5FQTZZºeË–áÇ·jÕ*îêâ‘“H$⮡)ºÿþû§L™rÔQGõíÛwÆ «V­êÞ½ûý÷ß_ÿ6=YBpÜ«… .X°`íÚµ:u:ãŒ3ÆŒ“¼#@vâG‚Ž"8Dp ˆà@Á€ ‚cšmÛ¶í»ßýîE]tê©§žwÞy×^{í+¯¼wQÍÛ®]»~ùË_&iß¾}Gýç?ÿ9î¢2Ä+¯¼Ò­[·¿þõ¯qÒ\Í;wĈ½zõ:묳n¼ñÆ·Þz+îŠ2„OfZøòL;?ñ‘à˜^Û·o¿è¢‹zè¡(ŠÎ9çœ#Ž8bÉ’%C† yá…â.­¹zï½÷.¿üòÛo¿ýÍ7ßìӧω'žøÔSO5êž{´L0kÖ¬¸KhƦM›6qâÄ—_~¹wïÞmÛ¶?þ•W^¹k×®¸ëÊ>™ΗgÚù‰ÿ_ ÒçÖ[oíÚµë÷¿ÿýÔÈüùó»vízÉ%—Ä]Zs5{öì®]»~þ󟯮®NŽüýï?ãŒ3N>ùä¿ýíoqW×\UUU­^½ú;ßùN×®]»víúÜsÏÅ]QóóÒK/tÒI}ûö}ã7’#ÉÿûßrË-q—ÖŒùd¦‘/Ï´óŸäŒc:=ùä“yyyW]uUjäÓŸþô‘G¹nÝºššš¸«k––-[EÑ·¿ýí¼¼¼äHIIÉW¿úÕššs.ûmÈ!—]vÙÃ?w!ÍØœ9sjkknjӱcÇäÈ„ òóó—.]Z[[wuÍ•OfùòL;?ñI¹qQ ºvíÚºuë==ôÐÝ»wïÞ½;õÿ^ÂUTT´iÓ¦G{–””DQ´qãÆ¸«k®&Ožüïÿ;Š¢|ð‰'žˆ»œfiõêÕ-Z´0`@j¤eË–ýúõ[¸páš5kN?ýô¸ l–|2ÓÈ—gÚù‰OÓéÁ¬3²zõêW_}õÔSOÍžTzÝwß}¹¹u?¥ëÖ­‹¢è˜cމ»ºæêì³ÏN¾øÃþw-ÍR"‘(///*****Ús¼k×®QmܸQpÜ?>™iäË3íüÄ' ŽâÙgŸ?~EEųÏ>û¡}hÊ”)qWÔ\uïÞ½ÎȪU«JKK=ôСC‡Æ]Yªººº¦¦¦   Îx~~~E[·n»@ðåÙˆ²ü'^pleeeóæÍK$QõèÑãC‰»¢LPSS3{öì;ï¼³¦¦æî»ïnß¾}Ü‘¥’­ÓmÚ´©3Þ¶mÛ(Šªªªâ.þ‹/ÏôÊòŸxÁq¼÷Þ{?ýéOSÿlÙ²å•W^¹çŸûÜç.¹ä’-[¶,\¸pêÔ©kÖ¬Y¼xqòG…½ï!}ê©§n¾ùæ—_~¹S§N·ÝvÛ™gžwÉMÝûRö[AAANNNuuuñ;vDÿ9ïM„/Ï´ËòŸxÁq¼ûî»?øÁRÿ<ôÐCëÿ$çäätèÐaÔ¨Q7nüÕ¯~õè£><î›®}ÒÝ»wßu×]³fÍjݺõÕW_=zô謺šd¿…|JÙ?¹¹¹ùùùõÏ,nß¾=Š¢TŸ5ÄË—gãÉæŸxÁqäåå•••Õ\¿~ýý÷ß߯_¿ /¼pÏñdSÛo¼wÕMZƒ‡4Š¢ÚÚÚ±cÇ>öØcçž{îM7Ýä'9ÜÞ)iQ\\\^^¾}ûövíÚ¥+**’oÅ]øòL3?ñ)îã˜6íÚµûŸÿùŸùóç×õÕW£(êÒ¥KÜ6K³fÍzì±Ç.½ôÒ{î¹ÇMÇÀkjjüñÔH"‘X±bEaaa¯^½â®|y¦™ŸøÁ1mŠ‹‹»uë¶råÊåË—§_zé¥Ù³g·mÛ¶wïÞqØü$‰|ððÃ?~|ܵÀ1bD‹-¦OŸž¼®1Š¢ÒÒÒ-[¶ >¼U«VqWG¶óå™v~âSLU§Ó­·Þz饗^uÕU½zõ:úè£ß|óÍ¿üå/QÝyçºØöÃæÍ›_}õÕ¼¼¼Ë.»¬þ»Ã† 9rdÜ5’¥:wî²xñâþð‡/¼ð‹/¾xä‘G~ò“Ÿüú׿ž¼Y?Ô¦M›¢(ÚµkWƒ×H¼FÕ¡C‡ ,Y²¤S§N#GŽ3fLötVÒ”ùòl ~â“r’7"€}s#AG‚Ž"8Dp ˆà@Á€ ‚#AG‚Ž>˜gŸ}¶{÷îýúõ{ûí·Sƒ;vì0`@÷îÝ×®]wEpø`zõê5zôè7ÞxãöÛoO Þyçÿú׿¾öµ¯}ä#‰»@€Æ’“H$â® ™y÷Ýw‡ ¶~ýúŸýìg}ûö}òÉ'/¿üòž={þú׿nÙ²eÜÕ4Á`üío1bDûöíçÎû¹Ï}nëÖ­ ,8î¸ãâ®  ™ªØÝ»wÿú׿þúë¯êSŸúç?ÿ9~üx©ÈxÎ8ì§ššš#F¬[·îŒ3Θ5kVÜå4:göÓŽ;6oÞEÑ+¯¼²mÛ¶¸Ëht‚#À~ºé¦›Þ|óÍ~ô£[¶l¹å–[â. Ñ ŽûcáÂ…K—.íß¿ÿÌ™3KJJ/^üè£Æ]@ãr#Àöúë¯2$‘H,^¼¸¸¸øù矿ä’K /^\XXwuÅG€&‘HL˜0aûöí7ÜpCqqqE={ö¼üòË+++o¾ù渫hD‚#À3kÖ¬'Ÿ|òì³Ï>|xjðšk®9öØc—.]ºlÙ²¸ h,¦ªâŒ#AG‚Ž"8Dp ˆà@Á€ ‚#AG‚Ž"8Dp ˆà@ÿ;ÕV@ªfIEND®B`‚statistics-release-1.6.3/docs/assets/chi2cdf_101.png000066400000000000000000000716111456127120000221600ustar00rootroot00000000000000‰PNG  IHDRhŽ\­AsPIDATxÚíÝy\TÕÿÇñ3,*j"ˆ ⩸Q¡Xn˜k‹åžj–Ù^ši¡~K³ï7sË·úZ*enåÏ\ÓÌ5Í÷E5RÑTLæ÷ÇÍùެ3ÃÌœ»¼ž>àÎvî=gæ¾ùœ{ï˜Ìf³Jâ!»Ð‚#lBp€Mް Á6!8À&Gv»yóæ¬Y³zè¡råÊÕ«Wï±Ç›2eÊ7òÝsìØ±&“Éd2õìÙ³øçœ={¶rÏæÍ›Ë^?õúàƒ”­ô裖xgÛ»éÈ‘#¦¼¼¼xà±cǦ§§Ûò|F%{ƒp2/Ù  1{÷î}â‰'N:eY’”””””´zõêiӦ͞=û±Ç“ÝF8¡›rss/]ºtéÒ¥]»v}þùç«W¯nÑ¢…ìÕ Á€ÛµkwýúuË//¯œœåç?þø£oß¾¿þúë½÷Þkï3ßu×]uêÔBË^KÍ+M7ùøø!233-…ÆË—/÷éÓ'))©lÙ²Å<$???Ù[€“1U Ào¾ù¦%Ž [¯^½5jôïßÿàÁƒ,ê@̘˜˜‚Çêååå}÷ÝwíÛ·¯]»v¹råj׮ݮ]»yóæÝºuËrë'ÌÉÉù׿þU£Fýë_–;œ?þõ×_oÕªÕ]wÝu÷Ýw÷îÝ;!!¡`ãOŸ>ݯ_¿€€€jÕªõêÕk÷îÝnè&k5kÖœ;w®e³üûßÿÎÌÌtpôЦªØÊRpò÷÷=zt¾[{ì±.]º¤¥¥ !:T¿~}ë[¯\¹ÒºuëcÇŽ)¿8pàÙgŸ½råÊo¼ao3nÞ¼Ù¶mÛ]»vY–>|øðáÃß|óÍgŸ}öÊ+¯X–oÚ´©wïÞýõ—òëÂ… ×®]ûàƒ–f#ÄÄÄ,^¼ØòëéÓ§OŸ>½yóæ•+W.Y²¤àýŸ{î¹yóæ !,)yãÆýû÷?þ¼òëõëד““øá‡7ÞxcÊ”)–îÙ³§k×®çÎS~ýá‡6lØíÒn*Ô믿þÃ?!ÒÓÓ·mÛöð×fÐ4‚#[mß¾]ù¡W¯^+V,x‡U«VõØM›6 !ÂÂÂ|}}<˜››+„xçw^}õÕ2eÊØÕŒ &(©ÑÇÇ硇ªU«Ö®]»~ûí7³Ùüúë¯wèСAƒBˆÌÌÌ'Ÿ|RI^^^QQQééé'Ož\¾|¹Ã[`ñâÅJj4™LíÛ·¯Q£FBBÂáÇ…K—.ݸqc‡¬ï¿gÏž³gÏZ/ÉÈÈxòÉ'•c;tèжmÛÄÄÄE‹åååM:µqãÆÏ>û¬";;û‰'žPR£ÒøsçÎ:ujõêÕ.í¦BµmÛ¶L™2ÙÙÙBˆ]»v#cª€Mnݺe)’………9ð Ó§O?yòdBB‚RBܼyóèÑ£ö>Ï/¿ü¢ü0zôèåË—òÉ';wîìܹ³"''gÆ –—S\©R¥íÛ·ïØ±#))©”GÝ­]»VùaĈ?ÿüó¼yó:Ô¬Y3eáÞ½{óÝÿìÙ³5Šß¹s§r°àĉ•ÔøÄOüüóÏï¾ûî·ß~;}útåþãÆS~øòË/SSS…wÝu×¶mÛvìØ‘’’2|øp7tSA&“©ZµjÊÏ– ¨µN:¼µdêGÅ€M222,?W¯^ÝÞ‡7lØpذaÊÏÝ»w·œä{âÄ {OÁ¶\†pÁ‚ÁÁÁ=öXPPЂ .^¼(„¨R¥Šr«¥²8tèÐûï¿_ùyüøññññ§OŸvl#ôëׯcÇŽBˆ¶mÛZ6KVV–ò³eNÜ¢|ùòëׯ·Þ\–èùüóÏ[xðà=÷Üc9qèС<ð€òóĉ¿ýöÛ .¸®›ŠR¥Je£Y??¢âÀ&ÊÙ¸Š‚—ƒ.Q½zõ,?W¬X1$$DùY™³.Èr®ŒEdd¤r“eª411qÈ!ÁÁÁÍš5ûôÓO3337nl©YÎü°¾V¶§§§’üóðÃ0 K—.Û·oóÍ7;vìX£FbЦ‘‘‘ùÒ›¥U?ü°eÕ*V¬hÙ'Nœ(ªñeÊ”y衇\ÚME¹té’òC¥J• ÞT§g½:õ âÀ&eÊ” PªzÖ—•¶võêU¥ŽX®\¹ *XßäáqÇŸ©&“Éá–Œ7.##ãË/¿¼yó¦Âl6'$$$$$|ðÁÑÑÑË–-«ZµjFFÆÕ«W•û[¢¤¢4u¸ìììwÞyç“O>±\ÑÇÇ'00°¨*`@@€õ¯Ö×V,ÔÅ‹¯_¿nyÂ|¯Y³fñ/e7Å2CTðÖo¾ù¦4q€†Pq`«V­Z)?üøãÖWŸ±hРA@@@@@À¬Y³\× ooïÏ>û,==}Ñ¢E °¾ÊôÖ­[•KçTªTÉr^ˆå˜?EñS½Åûàƒ¦Nš““6cÆŒdddtíÚµ¨ûçËÇ•*U²Tú駤ÂÄÄÄøøøXNÊ×ZK.†Ó»iÛ¶mÊ™1Bˤ?c"8°•å°¼Ó§OÏž=;ß­+W®´Ô¥JyÉ!Ä AƒÎÝI9ëåæÍ›çÏŸ?þüÍ›7ûöíáÂ…õë×[Í–-[”êÖ­«üðÓO?Yž6//Ïrn…%Þ]¹rÅzyÁˆ9cÆ å‡Ï?ÿüå—_¾çž{¼¼¼ò7]>>AwRÎz9zôhµjÕªU«|òäI!„——W§N† ¢<°råÊÊ–ïbž>}ú¾}û”Ÿßÿý¤¤¤|¯e™ÿýí·ß,~ÿý÷ùRÚµk×”)`a1÷îÝ»qãFÛ×˲çÌ™c¹²ã²e˪T©P§Nk×® !¢¢¢”›>ùä˵Áÿýïÿþûïîì¦sçνð K—.U~}ê©§¬¡`@ãÀS§N}ànܸa6›ß}÷Ýwß}7 àòåË–s;Ê•+·téROOO5àž{î :þ|NNN›6müqÿS§NY¾¨Ðò5'#GŽüì³Ï®^½zåÊ•–-[>ðÀ.\°\Üšåz:7n܈ŒŒŒŒŒ¼xñbbbb¾»U¬X±bÅŠÊAŠÊW°˜L¦µk×:\”wÞyçË/¿¼|ùòòåË;tèðàƒ9rÄraÅ#F(甌5êÛo¿5›Í–Ƨ§§Úx§wÓ AƒÊ—//„ÈÌÌT§¢jÕªï¿ÿ¾‹º€f˜ÀÛ¶m+êü’:uê¬ZµÊúÎcÆŒQnêÑ£‡õò:uê(Ë¿ûî;e‰åx»¨¨¨â°cÇŸBЮ]»¿ÿþÛrÏü1ß°Ë•+÷ÄO(??òÈ#–{>ùä“ùž*,,ÌR·{óÍ7•»ü~ç°°°öíÛ+??ýôÓůµbÅŠ–²¨µ—^z)//Ïr·gžy&ß*T¨`9«Úºñ¥ï&åæÅð÷÷ß±cGQÙ°aƒ»G!I˜ª`ŸÖ­[Ÿ8qbÚ´i>ø````Ù²eÃÃûuë6mÚ´cÇŽuéÒÅÕ hÑ¢ERRÒØ±c›7o^½zuooo??¿6mÚ|ùå—7n,[¶¬åž?þøöíÛ³eË–ûàsΟ?ÿƒ>ˆˆˆ¨P¡Bddä°aÃvîÜ™ïœh!Ä´iÓ"""„÷Þ{ïo¼±oß¾îÝ»+·.\¸°ÄoBtíÚõÀÏ=÷\Ó¦MË—/Ö³gÏÍ›7Ïœ9Óúdšÿþ÷¿¯¾úªòs```·nÝ6lØ`¹~¤ºÉÓÓÓßßÿþûï;vlbbb‹-\ݳÔÏd¾} Á| Tyä‘5kÖØûð[·n­\¹RX͉»Ôž={~ùå—_|±Ð (€›qŒ#ØÁÛÛÛ=‘Qe9Q¤cª6!8À&GØ„“c`*ް Á6!8À&GØ„à›`‚#lBp€Mް Á6!8À&GØ„à›Kœœ~àÀÙ ŒàX‚ Èn€*xÉn€Jedd?~üÇüî»ïd·@Ž…ëÚµë¹sçd·@EŽ…ûàƒnÞ¼)„ˆÿõ×_e7@>‚cáÚ´i£üðË/¿Èn €*/<<\v€k%&&Ên‚G—0æ`Bxx8]oLt½aÑõ†eØ"—ãFa29çŸaQq.§’°e6;çyŒZp$8`lî‰tÎJl‹à€f¸"äé`;‚#îà”ÌGȃ\GÀiÖ®]+» ƒ®7Žá/Ñö8HæƒpV5Àˆ;—Öl¾ã_rrJ¾%Åüt€àX‚ &$&&Þ{ï½²(N)# á6RFìVHÃT5@½˜†K9ÍÂ,„½Á ‰8Ø•ÛNfK($Â^ÄA5 8ìV|4$Â.6&Bâ ù•X2$Âv%æB¡†À ŠI‡äBØŽ\h(GÐ3Ò!J‰\kGЃ¢"é¶(&’ aàZB@„ÃH‡(=‚#¨T¡‘€ˆâ‘áRGŒ{I‡p)‚#¸v! BUŽà*dDØŽ€M 8€sŒ‰dDªÐŒH@„&ÀAVI1TQ2¢ÞXÞöõëËnвÚ`2åÿg6ÿó/99…ÔS!cÄdþß0ùß?Ù-…mL¦âÞöFEÅ —oêÙÀ{ âŸRbèÿ–5Œã‘mFÅ„(¶ hìú„(¬š¨Œ‹ä”dêˆS|‘÷|I¨80( Š(JÁÉ…šDÑŽ Äz?Âî b¢Np]· 8Ð3ÊŠ((_R$&j1Q‚#½¡¬kõ€˜¨GšGYÖ((j1QÅŽ4‰²",HŠÚFLÔ‚#Í ,BARÔ6æ´Œà@Õ‹$EM£ ¨/GªCX„¸3,’µ„‚¢®¨…ewÎƘ(+jIÑHŽd¢¸hp”5‰¤h`GP\4,ÊŠšDRÄmGnBqѰ(+jIE 8p-Š‹ÆDXÔþ¶ƒ Ž\‚¼h@„E¡¬û8  ",j ïR”Á@iQ\4 K^$,jaÎCpà ò¢ÑP\Ô æ á2Gö!/ aQ3(+Â-ŽlB^4f¢µ°·#8(²ob¯¤{µ°©u‰¼¨RLFKÅa‹îDpt…b‡.‘UÊd U~àýæveá›càë^ô‡/wQ)«/tIINæýæ6|‰‹Pq4Yi¡¾¨RÔó%a&ZUŽ€†uF‰ŒäEu!/ÊÀL´jM"2ê %F5"/Ê@qQýŽ€Æuƒ¼¨FäEÈ‹Bp4ƒÈ¨LI«yÑ혌Ö(‚# DF} Ä¨:äE·£¸¨uG@ÕˆŒú@‰Q]È‹nG^Ô ‚# RDF Ä¨.äE·#/êÁP"£PbTò¢Û‘uŒà¨‘Që(1ªyÑíÈ‹F@pTȨu”U„·“{‘ …àHÆ>NëLÂ$B‰Œ*@‰Ñ½È‹Æä!»€¡™LÂlf7§I&aRþ™…99%Yvs Ìt»+”÷o'3Ýþg¾ý†BŃB£v1+­¼‹Üˆú"GÀÝØÙi‘Q˜’v#ò"ò!8n¥Ì§AsˆŒò‘݈¼ˆ¢7¡Ð¨E\^Gxó¸ y%"8.Ç^O‹(1ÊG‰Ñ]È‹°Áp-æ¦5‡È(l¹‹ÙаÁpö}šCd”Œ£»Pb„ÃŽ€ó5‡È(ï· /¢ôŽ€“17­-DFɈŒ®G^„§ 쵃È(³ÒnÁ!Œp:¾rp“I$'§°ÔËW’%àë]/ß·NDpJ˲„úe²ŽŒp ¾E®ÆT5P*DF­`bZf¥]£á6GÀAÓ¯DFix“¸G1ÂÍŽ€#(4j‘Q"£‹Qb„,GÀn¤Fõ#2JCdt1JŒ‹àØ}¢úåà@F£Ä• 8¶¢Ð¨~ÊÓ²[a0ü9åb”¡*G dìÕB£¼1\‰#Ô‰à”€B£Ê% 2º%F¨Á(©Q͈Œ]‰Èõ#8…cÿ¨fDF xK¸ ³ÒЂ#P jÆ0îFdtJŒÐ‚#©Qµ(4º‘ÑeˆŒÐ(‚#pR£:ÝÈèÌJCëŽÀ?ØQª‘ÑÝx'¸%FèƒQ‚ã’%K/^œ””T¾|ù|pÔ¨Q~~~ÅÜ?;;{Þ¼ykÖ¬IIIñó󋈈xíµ×êÕ«'{=à*Õ‰ÃÝŠÈèDF艇ì¸Ã´iÓÆŒsòäÉæÍ›W¬XqÙ²e/¼ðÂ7ŠºnnîÓO?=yòäË—/GGG‡„„¬[·®{÷î»wï–½*p R£ ™„‰Ôè>&Ó?oÞ NeÂ$„™ÔÑpLLLœ3gNPPÐÚµkçÌ™³nݺAƒúèúõë?ùä“ |õÕWBˆ1cÆÈ^8©Qm,‘‘ÔèDF0¡_úŽ‹/ÎËË>|x`` ²$66Ö××wÍš5yyy…>$!!AñôÓO{yý3•ß²eˆ ž:u꯿þ’½BpËêAdt"£ XçE6+tIÿÁq÷îÝíÚµ³,ñôôlÛ¶í¥K—”€XPpp°Â:#šÍæ+W®xxxX¢$´Ž=¦Ú07í>DF ÄƒÐyp4›ÍIIIþþþþþþÖËëׯ/„8sæL¡züñÇË•+÷ÁìØ±ãÆiiicÇŽ={ölŸ>}*Uª${àÕ†B£›]€ÈCÑyý,+++77·råÊù–ûúúŠ;kŠÖÂÃÃ,XðÌ3Ï<óÌ3–…Œ‹‹³ñuÃÃÃó-Y»v­ì„……&'§¤¤8ÿ™Ïž=+{å´',4L‘œ’œ"\Ð%î¢þ® B¤$' !„+F¿!……†ŠÐÐä”!´<|aƒGyDvÔBçÁQ9uºB… ù–W¬XQqõêÕB•‘‘ñá‡fff6nÜ8""âÒ¥KÛ¶m[¾|y‹-:wîlËë&&&Ê^uîv­1ÔEÏêªgÖŸ;.Шýͦޮ·ºÈŽZ›¨=–+줤¤¨·ëá<wë+D¡óàX¹re“É”•••oùõë×ÅíºcAo½õÖÞ½{ccc¬,IKK{òÉ'ßxã+V„……É^-8ˆjõàpFwຌ.ÀEap:?ÆÑËËË××·`e1##Ca9ÏÚÚ… ~ùå—ºuëZR£¢zõ꯼òÊ­[·~øáÙëGpµzpŒ›p,£³q,# t…AAA—.]R’¢…r€[PPPÁû_ºtIQ§N|Ë•Bczzºì‚ÝØª'Á¸'9‘°ÐpìØ±cnnîÖ­[-KÌfóæÍ›ýüü"## Þ¿N:žžž'Nœ0ßù±«ßP·n]Ù+û°U îÀIÓÎFdòÑpìÓ§‡‡ÇgŸ}¦×(„˜3gÎÅ‹{÷îííí­,ÉÌÌLIIQ΋ôññiÛ¶mjjê'Ÿ|b¹Bø‰'f̘Q¦L™öíÛË^!ØÔ¨]ŽÈèlDF P:?9FQ½zõQ£FMœ8±[·nÑÑÑ©©©;wîlܸñóÏ?o¹ÏæÍ›ßxãzõê­\¹R1a„'žxbÆŒ«W¯nԨѥK—öîÝ›——7f̘»ï¾[ö ÁV¤F5¸ãÔi¸gÀ8§¿ÅÐpB<ûì³U«V]¾|ùêÕ«ƒƒƒ8|øpåŠ<… X½zõ¬Y³¶mÛ¶iÓ&??¿|ðå—_Žˆˆ½*°©Q ˜›v9ºS™Ì|è8[xx8×q”KÖΔ+ºY­Ð(¡ë)4:•Ñ‘w½av_oˆŠ# …Œt]‹ÈèTT»¡+¤F¹ŒVht7"£S¡¤F¹(4ºãÛyˆŒ€ÃŽÐ öªr‘]ˆB£óR"8BH1=íBDFç!2NAp„æ‘%¢ÐèBŒl'!2NDp„¶±o•…B£ Qht"#àtGh©Q ®Bdt"#à"Gh©QR£«0¦È¸ÁšÄV ¦§]…B£“˜ˆŒ€‹¡=¤F)(4º Ú(4îá!»€}ØÉJAjt “‰]z¦Û…F¶#ÜÄtû/C"8BKØÉºŸI˜HÎg‰Œ èR 2ÂÝsLUCCHîGdt †r©11 wcÌÝFp„6°«u?R£óqŒ3p ÜŠÈx'‚#4€Ôèfœ=íŒãRc·bÀ†ààBc©±‡[1àŠFp„ÚQ¦q'R£ó1‚K‡=8ÜŠW‚#T}®;‘ŒBc©q8#܇Èh‚#Ô‹Ôè6Ôè| ßÒa'÷a´Ùƒà•b·ë6ŒBcé°‡û0ÚìGp„‘݆ÔèdŒÝÒannBdtÁªÃž×mHÎD¡±tØÃMj¥Cp„º݆ÔèD¡aa \‡±‡›0Ôœïª ‡¯Ÿv&“I˜L)ÉɲۡU†ÿâ_¸ß1í<G¨åF7P"#©Ñ9”!˨uˆ‰#áDFgcªjAjt NÃ¥À„!ÜqæG¨©Ñ HNÃx-ªŒp9"£+!{a7 5:…ÆR`o—c¹ÁÐ9¾ÆiøÇQìÍár 2w!8B2öÅ.E¡Ñi©Žbn®Edt/‚#db_ìR¤Fç`zÚQìÐáZŒ0ކÔèR¤Fç`˜:ŠB#\ˆÈ(Ár°;v)R£s0LÂ>.Äð’àè ©Ñ ˜žvût¸ÃKŽ€:Žë€êæ¦á*DF5!8ÂÝØ)»—Ýq a·Wal©ÁnEjt NÀèt…F¸ cK•Ž€æ‘€Ôh?ŠApÆ–Šá>ìš]ÔXZLO;„b\‚ȨzG¸ ©ÑH¥Å¸´{v¸K#Žpöή@j,-Æ¥ý(4ÂùˆŒšBp4‰ÔX*LOÛ;œQ¥AG¸e§#5– #Ò~á|Œ*m"8µØG;©±T‘v¢$çcTiÁÐRc©íDINFdÔ>‚#\ˆÝ´s‘ÇAvbÿ'cHéÁ®Bjt.R£ã‹v¢Ðg"2ê ÁÐR£ãHö`'ã¯Ý!8Â%ØY;©Ñq D{°‹‡3ñWˆNá|쬈Ôè j´»x8ãI׎€z‘Äß.ö Ð§!2ÁNÆ.ÛYHbÚƒÔ§a0ÁÎÄ.ÛYHbڌڜ†Ád$G@uHŽà F{P‚s‡à§¡Öã¤FG0ølÆŽNÃ߆Dp„s°ãv R£#|6cGçàï#8jAjt©Ñf¤F8‘ÑðŽpöÝ¥Gj´5ÚŒ}=œ€a!Á¥Gj,=R£Ýv6£Ð'`á6‚# ©Ñn¤FÛP!‚0Œp'‚#J…=x)‘íÆ˜³ "”‘…!8ÒíFj´ ©¥ÅBŽp;ñÒ 5ÚgŠD(-ÆŠEp„ƒØ‰—©Ñ>œ@mŠD("#l@pÜÔhþF± ©¥Â‚mŽp»r‡‘íÃP³u"” ö 8îCj´©ÑÔ‰P* ؉à»±7w ©Ñ>Œ3°Ó‡ã(4Â!G؇½¹cHöaœ•„>ÇèA)¨ ©±$á8FJ‡à;°Cw åF[qٰ߇ƒ(4ÂŽ€k‘mÅß%%a¿1tà<G؊ݺH¶bx•„B#ÄÐSW!5ÚŠÔXvýp…F¸Á6aÏn/R£­[%!5ÂŒ¸Á%cÏn/R£­[Å¢`G0nàJGÀÉH¶"5‹‚Á¸‹Qvîv!5ÚŠU,öþ°…F¸Á€Û‘‹ÆÞvcÐÀŽ(ûw»„…†Qn,—ø.…FØA÷òÝ@'L”œ’,»ê¦ü!Bj,ö11h ÁE¢Üh;m,ã©XØG1 ¸SÕ@i‘KFj,ǧÁ>ŒHEpDáØÑÛˆÔX2SÑ(4Â>ŒÈFpGj,©±hdØB#ÔàˆB°¯‡s0’ŠFj„.P ‚#à Ê% 5ÊìÀpÊ‘»{[KÀ0*•#Øáõ!8v#5–€ÔXblE¡jEpÄØã—ˆÔXÆPH°c*f”à¸dÉ’Å‹'%%•/_þÁ5j”ŸŸ_ñ9tèÐìÙ³9rýúõððð¡C‡>ðÀ²×’‘K@j,I6¡ÐÕ3Ä7ÇL›6m̘1'OžlÞ¼yÅŠ—-[ö /ܸq£˜‡lܸ1&&fãÆ‘‘‘ûöí4hÐÆe¯Šk±ÓG©0€ Ã×ÂÁV| ´@ÿÁ111qΜ9AAAk×®3gκuë tðàÁÉ“'õ«W¯¾ýöÛ^^^ ,X´hÑœ9s.\X¦L™±cÇæååÉ^!HC¹±8¤ÆÂ`þ¼€vè?8.^¼8//oøðáÊ’ØØX__ß5kÖ•—-[–‘‘ñÒK/5kÖLYrÏ=÷<úè£/^>~ݺu{öìÉËËBøûû?üðÃ>úhTT”õ¬t›6mš5kvÿý÷ïÞ½[v“¡¤ÆBïD0@á(4ÂHÔßÿ}!DåÊ•zè¡G}ô(ê(FŸråÊ©pžZÈù Á(¹©… edÀPÔ{÷îÝ¥K—–-[ÚrÖ åFÀUHV('¡H&‘’œÂ·NÃPÔuÇ5kÖìØ±£¨Ô8tèЇ~Xv5HåÆü"V¸ ÇeýÇÈn#t…Ô˜©Ñ Á…cdÀÀäÇÍ›7¿üòË–_çÏŸ_ðnyyyf³¹V­Z²Û«m¤k¤ÆüVÈ(.ÀðäGOOÏJ•*)?_¾|¹L™2åË—/ôž•+WŽ•Ý^@§HVH(ÃPCplÓ¦ÍÎ;•ŸÃÃß|òɸ¸8Ù‚þQn¼©Ñ ñ…`XB5GkC† ‰ŠŠ’Ý Ý"XïÀȰB<@~LOVÔßzë-ÙM †Ôh…ÔˆüÀ$Ço¾ùFqÿý÷׫WÏòkñ  ·ÍE<° Üø? ‹Û(*!?ÆPÉÁqüøñBˆqãÆ)ÁQùµxG”©ñH·QTB~Œ  ’ƒãСC…ʯo¾ù¦ì =#5¢ òcLE“_{í5ë_Ÿþy¹íÑ+JKÈ1¡l¬1= ”D]'Ç®C¹ñHÊf !À°äà¸iÓ&{Ò®];¹mÖB‚ 5Zc@(›k À6’ƒã‹/¾hïCå¶Ð0R£² °`z°‡äàØ­[7Ù[úG¹ñ¤Fe3`Áhì$98Nš4IöÐ9¢©ñ e3`ÁhìÇÉ1Ð3Rã?HÊf '@Áô4à(¾9FÏH ‚qp{3 `(¥À7Ç@·(7 Aj¼½ˆ P0€Òá›c O¤F!HB0' †à |sŒn‘ŒŽ@u  ÀI>>”ÝF@­H¤0= ¸˜º‚£¢Zµj^^…œ²£œ%“••%»P)£—I¤0×SWpŒŒŒ}Ìfó;3““c½<777...77·cÇŽ²Û@] FÇô4àF’¯ã¸cÇë_==={õêµlÙ²Î;÷éÓ',,Ìd2¥¤¤,]ºôÌ™3ááá<òˆÜC…(7¹ÜHj4:Fà^’ƒã3Ï}üüü¾úê+ÙmT#CÅ ã– ÕÍùVä`L|%  >ê ŽBÿ5©V­Z)))ÊÏžžžááá”Ý@@R#Œ†ŽTI]Á±Zµj§NÊÌÌT~­Y³æž={,·šL¦³gÏÊn#d2h¹‘ÔCáš;€Š©+8vêÔéÆo¾ùæÉ“'…QQQ§OŸÞ¶m›ââÅ‹{÷î ‘ÝFÕ1N¨ 5 áÁˆ˜žÔM]'Ç 4hݺu7n4›Í³fÍjÛ¶­——×k¯½Ö´iÓcÇŽeeeuéÒEv¸©Ñˆèu@õÔUq øæ›oFŒ!„ 3fLvvööíÛ/]ºÔ±cÇgŸ}Vv!åFC!?½hº*ŽBˆ€€€_|ÑòkLLL×®]:&»uªc\Aj4òƒápÍ@;T­effz{{W¬X±eË–²Û¸©A—š¢ÆàxðàÁÏ?ÿüÈ‘#ééé!!!M›6}õÕWk×®-»iÀˆåFR# ‚.´F]Ç8 !¦OŸÞ§OŸM›6¥§§—-[¶\¹rgΜù¿ÿû¿.]º,\¸PvëÔŨéúD„0®¹h“º‚ã–-[fΜééé9hР 68p`ß¾}›6m2dˆb„ û÷ï—ÝF¸åFƒ B ×Ü4K]ÁqáÂ…f³yäÈ‘£G®Y³¦ÉdB¿õÖ[o¿ývNN_9h(¤Fƒ 5 ý h™º‚ã‘#GÊ–-ûôÓO¼iàÀ>>>|å ôŒÔÝ£¿SWpBT«VÍË«Sv”³d²²²d7P-tŸ1 WnÔ}ºÒ¤ãà F@Ô###Ïœ9“‘‘Qð¦ÌÌÌ”””ÆËn#à¤Fè5z¡®àاO³ÙüÎ;ïäääX/ÏÍÍ‹‹ËÍÍíØ±£ì6 Wn4R£ÐÙ€ŽH¾ŽãŽ;¬õôôìիײeË:wîܧOŸ°°0“É”’’²téÒ3g΄‡‡?òÈ#r¬ú®O.5ê»; ]c‚„qÐÙ€¾HŽÏ<óL¡ËÓÒÒ¦OŸžoabbb«V­å¶p&R#ôŠ/ôHrpìÖ­›ì-u1V¹‘Ô½¢§’'Mš${ hñ†N¯#ÉFAOCÿLBÔ—Ý9Ôø]ÕBˆsçÎ=z455õÖ­[aaa 6¬^½ºìFÁåŒUn4²„QÐÓÐ9ËAá²["‡ê‚ãåË—?ýôÓï¾û.77ײÐÓÓ³_¿~Ç÷õõ•Ý@¸Š±R£ÁÊd Cà Fèf* ޹¹¹/¿üò¾}ûÊ–-Û©S§Úµk{zzž:uê—_~ùöÛo=úÍ7ßxzzÊn¦LË:e°^äƒÖèfèýC]Áñ믿޷oß}÷Ý÷é§ŸZ–§§§:tß¾}_ýõ!Cd7Îg r#©úC7CψŒwP×À·nÝj2™>þøcëÔ(„¨ZµêôéÓ=<<¶lÙ"»@)¡?t3ôŒo=ÊO]ÇcÇŽÕ®];88¸àMAAAwß}÷Ñ£Ge·Îg r£‘' n†nQh,œº‚cÙ²eoܸQÔ­7nÜðññ‘ÝF™tY®2PjÔeÿµ®|Üê{UèŸaER×TuÆ ÏŸ?¿oß¾‚7>|øìÙ³ 4ÝFÀ!¤Fè ÓwÐ-ŸaÅSWpT¾HfذaùŽeܶmÛk¯½&„èÚµ«ì6™ŒRn$5BOècè•L]SÕ]ºtÙ¼yóòåËŸþùààà:uê!RSSÓÒÒ„]»v}üñÇe·Q#e}1RÏ‘(ô>†>qì…­Ô…~øá<ðñÇÿùçŸþù§²°jÕªo¼ñFÏž=e·Îd”r£a(tŽ+t‹O/;¨.8šL¦^½zõêÕëÂ… §N2›ÍuêÔ ’Ý.À!†)7ò¹«st0ô‰¿‡ì¦®àxöìÙ¼¼¼Zµj !ó]Ízbˆr#©ú@C‡ˆŒRWpìÒ¥ËÍ›7·oß »-ꢳBj4ƒÔbX;N]gU׫WOqüøqÙ `+>€õŒÞ…ÞpµÒRWp;v¬ÏÌ™3ÿþûoÙm«PnÔ>€u‹Ý+tˆ«í8º¦ª§L™ò¯ý«[·nݺu«U«V¥J•òݧ]»v²› ‹Ô­£k¡7Ñè4ê ŽíÛ·W~¸xñâ§Ÿ~Zè}e7ÓÝô”Cô_nÔSo¿¢|ë] ½aL;“º‚£òÍ1TŽaÝ¢k¡+O]ÁqÒ¤I²›Ò}¹14,ÌåF¢…>±‡…ÞðYåê:9&Ÿìì쬬,Ù­lc2¥$'Ën„ë×’Ob]âœè çv¹º*ŽŠ'N̘1cÿþýçÎËËË«V­Z“&M†Ú AÙM“@7‡Ìé¼Ü¨ôSJŠìv¸x-ù$Ö%úºÂ€v-ÕÇ/¿ürÊ”)yyyBˆ²eËzzzž;wîܹs7n1bÄóÏ?/»p„!R£Þña¬Oô+ôƒã-ÜA]SÕ;vì˜2eŠÉd4hІ 8°o߾͛7?÷ÜsS§Nݱc‡ì6FDºÐ'ú:aâx ·QWpüöÛoóòòF5zôèš5kšL&!DµjÕF———·`ÁÙmt+}T²(7jéB‡8 úAdt+uÇC‡•+WnРAoЉ‰)_¾ü¡C‡d·°Bj„±Ÿ…Nð* Ž999þùgPP§§g! õð6ë}'­?z.7’¡Et*t‚?€äPQp4™LåË—?sæÌ•+W Þš‘‘qêÔ©ˆˆÙÍÍ"5B(4ʤ¢àèééÙ«W¯¼¼¼·ß~ûæÍ›Ö7eggÇÆÆšL¦!C†8öäK–,éÓ§OdddëÖ­ãââ._¾lûcÓÒÒš5k6jÔ(7oÔ³(7jÌzCB(4J¦®ËñôïßÿÈ‘#›6mêÔ©SïÞ½CCCM&SJJÊ÷ßîܹ.]º\¿~}Ó¦M–û‡……ÕªU«Ä§6mÚ¬Y³*T¨Ð¼yóÔÔÔeË–8qbþüù>>>%>Öl6¿ýöÛׯ_—½m &¤Fh W)0ŽUA]Á±K—.Ê.\˜9sf¾[W¯^½zõjë%o¾ùf‰WvLLLœ3gNPPÐÒ¥K…|ðÁüùó'Ož\IBˆØØØÿû¿ÿ[³fÍèÑ£=<Š›¬?qâÄ´iÓ4hpìØ1ÙÛp>žu…î„æQhTuÇI“&9ý9wïÞíááÑ®];ËOO϶mÛþøã QQQE=0''ç­·Þòóó‹}æ™gdo¡Ü¨QÄ ]¡;¡y bÕQÑÉ1®`6›“’’üýýýýý­—ׯ__qæÌ™bûé§Ÿ=zô?ÿùO¥J•Üßr½çmÒ{¯ð ­+t'´S§UJ]G§ËÊÊÊÍÍ­\¹r¾å¾¾¾Bˆ¿þú«¨îß¿ÿ‹/¾8p`«V­Ž9bï놇‡ç[²víZ;Ÿ#4%%EÊF+½°Ð°ä”ä¡Õö*4,,%9YÛ)gÏž•ÝLÇ……†&kwÌɦª® Bèî-¨RªêzÝ KIIBÕ âGyDvÔBçÁñÆBˆ *ä[^±bE!ÄÕ«W‹zÔ[o½U³fÍ‘#G:öº‰‰‰¥o|hh¨;·•³ü3I­É¶—À–Ñl¯ ³B›W µtýíM¨.ß„ª¤–®×‰ŽhTÛF-¸[/X!2ÇÊ•+›L¦¬¬¬|Ë•Ëë(uÇ‚&NœxöìÙ… Úr½‚®'©™ ÒúÚÆÖãèåååëë[°²˜‘‘!„°œgmm×®] .|ñÅï½÷^YÍÖnJÑç91Úí[VŽÏiÝ /¡aѨ:ŽBˆ   K—.)IÑB9”+((¨àýOœ8!„˜1cFøm½zõB¬X±"<<üñÇ—½B€Óð9­ô%4Œ/ƒÑOU !:v옘˜¸uëÖÇ{LYb6›7oÞìççYðþµk×¶ÜSqõêÕmÛ¶U¯^=22²Zµj²WH½(7p‘;hÃW{ôûôé3kÖ¬Ï>ûìÁTΉ™3gÎÅ‹Ÿ{î9oooå>™™™.\ðöö®Q£F›6mÚ´icý GŽÙ¶m[TT”+.3 UÓuj¤D¥ô"´ŠÈ¨UúŽÕ«W5jÔĉ»uëššºsçÎÆ[WáæÍ›ßxãzõê­\¹Rv{µšUtXnÔhOظr|`ë½­bìj˜þƒ£âÙgŸ­ZµêòåËW¯^¹5.„öð·ŽQ*”5È¡yt!´‡Q«OGà6R#Ô‰.„ÆPhÔ3‚#§·r# B¤Fh CVçŽ*¢Ó‚—Fètëó®aTm 1 YC 8ÂAº*7’¡6t4†!kG©jCçAK(4 ÁŽÐU¹QFçAK¯†Cp„±é±Üȹ†ÑyÐ EpT ý”5´Ñm_'>ȵ‹Îƒf0X‹àèŸåZEíšÁ`5:‚#ìC¹QµHZEÏA3¬ 8˜t—¡U숡 ñ‚#ì “r£S#ñC“è68*<<ܽ/X_yYÙëíB‰‰‰²›  GUÐc’û?4‰nCétœÈíA\Ãõç=”Õ¿•íZˆæÐgtà.Fj G”€r£ÚB4† #œ½#5BN  ;GGóåFR#d¡·èSÕ’é+ØÀ…È!ZBoÐ)‚#ôKG©œ¢%ô`ƒ½{÷šL¦E‹)¿N˜0! ""Bv»P‚#ФíyjR#¤ ·ûýþûïcÇŽmذa\\œsŸ¹mÛ¶ãÆ“½~ºBpT¢&z pPRR’â½÷Þ‹‰‰qâÓîÛ·oûöí²WNo89…£ÜØ.4,T»o@:³Ù,„(W®œSž-''gãÆ¿þúëŒ3òòòd¯œÞPq”‰xã:Ú¬°´Á$R’Sd7P»-[¶tîÜÙßß¿Q£F£FÊÎÎV–<¸GBˆ6mÚ„††–þ….]ºôðÃ7.==]öJëGBÛåF½ 5jƒÒOäF Xßÿ}ß¾}«T©ãáá¿bŠ妑#GÖªUküøñ“'OnÞ¼yé_+((H)a&&&6hÐ@öªë Áú¢—r#©Qè'¨ŒÉ$óÕ‹úô½yóæˆ#wïÞ"„ˆ‹‹‹ŠŠRnmÒ¤ÉÉ“'…-Z´hݺµÌ€ ŽÈOÃåFR#܉~‚ú¨ó#0!!!55uÒ¤IJjB6,66¶ÄÇæää¬Zµª¨[»wï.{å ‡à¨ iDø.AÀÇB4kÖÌzadd¤-ÍÌÌTŽ€,”YIY×ޏåFÉ+AQ?: °“———Âtç<º‡‡M§çúúú’U…à(.rŽjèbkH4€NìW·n]!ÄÞ½{ÛµkgY¸ÿ~[ËTµÚñ?Z-7ê"5BH€Cš6m6uêÔþýû !ÒÓÓ§OŸnËc™ªV‚#  dµ£‡ "&!êËnƒ¼½½'OžÜ·oßÈÈÈ~ýúy{{/Z´ÈÆ‹,2U­6\ÿ Ü(s%È$*GA-´úÕ–={öܸqcDDÄ‚ ¦L™ríÚµøøxÙ‚#¨8BËHp5N †ŠhûÓ"::zýúõBˆ´´´*Uª”-[ÖRJìÞ½»+ÊŠáááT+ŽàȤíý€îÑ=P ]ýS½zuÙM€ãŽr¨­R¦ÉyjµmDÖ@7û]¢{ ŒE¨ÁÚDj„KÑ=P]¡Gh³Ü¨qÄU£{  D¨Á¤ýr#Ô‹5ä£Ðõ"8öÊÚO$•bg ù…P;‚#àV¤F•¢c £@p”@=%3Êîn>»u¢c …FhÁÚAj„+Ð1Œ!-!8îÀžA¥èÈD¡ÚCp4.ÍSk¹ÜH8Q#vÙŒhÁZ åÔ5b— ™ø«æ!»CcåF-#¢¨]™”ñÇ{÷î5™L‹-R~0aB@@@DD„ìv¡G¨ž–ËDÕ¡K ‰ñW”ßÿ}ìØ± 6Œ‹‹sÊ€›0Ô€;uNåF­a7"}w Ð‚à©´Vn$±ÈGÀ刌@‘އÔ»°7‡;ðFŠCpÔ3æ©¡ìÍárüi”ŒàI(7Âvl}¸ƒ ° ÁQ·T]n$5Âvl}¸…FÀG7ÑZRÂÿ[dbëÃ…ˆŒ€ÝŽp;M…hr‹4ìÓáZ¼¹GõI½óÔ¤FØ‚MâÀq²¨ÑE6=\Åt{x1ÂäÛ»w¯ÉdZ´h‘òë„ """d· % 8êåFh©®BdT¯ßÿ}ìØ± 6Œ‹‹sÊþòË/íÛ· ¬R¥J›6m~øáÙ«¨G¸‹¦R#éEÛ.ÂØR»¤¤$!Ä{ï½Súg[½zu‡NŸ>=pàÀ—^z)==½W¯^_~ù¥ìµÔ Žqòc#®ÂØÒ³Ù,„(W®œSžíwÞ©V­ZBB‚¯¯¯"..®Q£FãÆ{î¹çd¯¨PqÔ•ÎSk§ÜÈNF6:\‚B£ºlÙ²¥sçÎþþþ55jTvv¶²|ðàÁ=zôB´iÓ&44´”¯róæÍ#GŽ<þøãJjBT¨P!::úìÙ³7nܽ ô€Š£;h'5}ýÙÉHÀF‡óqÞ´ê|ÿý÷}ûö­R¥JLLŒ‡‡G||üŠ+”›FŽY«V­ñãÇOž<¹yóæ¥|!OOÏX–äää:tèž{îñññ‘½ô€à¨+*-7jF6:œÏØ£Êd’ùêEÔnÞ¼9bĈÀÀÀÝ»w‡„„!ââ⢢¢”[›4iròäI!D‹-Z·n]Ê&xyy5nÜXùyþüùIII«V­úóÏ?¿ýö[™[FGŽp1”½«‘’œQ%Ôùy›šš:iÒ$%5 !‚ƒƒ‡ [âcsrrV­ZUÔ­Ý»w/æ±ï¿ÿ¾rÚMçÎk×®-{3èÁQ?(7:ŒÔènlq8‘QÕŽ?.„hÖ¬™õÂÈÈH[›™™©Y(s±AùĉYYY;vìxî¹çZ´hqôèÑÀÀ@ÙCóŒrrÌ’%KúôéÙºu븸¸Ë—/ÿ7n|ýõ×?þø}÷Ý=dÈíÛ·Ë^ ÒH¹nEj„“qFµóòòB˜îœF÷ð°)øúúš‹VâÃË—/ß±cÇ?üð¯¿þZ¾|¹ì-¡†¨8N›6mÖ¬Y*ThÞ¼yjjê²eËNœ81þü¢Ž“ÍÉÉyæ™göïßïëëÛ²eË¿ÿþû·ß~Û¶mÛ°aÃ^}õUÙk£IÄ·bsÙ(4jCݺu…{÷îm×®eáþýûmy¬½SÕ«V­êÑ£G|||¿~ý, ýüüDIåIØHÿÁ111qΜ9AAAK—.UjÔ|ðÁüùó'OždíÚµBˆÑ£G[J’õêÕ{饗rss™°¶•ʤF÷a.ÎÄxÒooïÉ“'_¸p!22òõ×_óÍ7›6mšžžnËcíª=zôºuëš7o>zôè1cÆ<ðÀß~ûíðáÃï¹çÙ[BôwïÞíááa]÷ôôlÛ¶í¥K— }HJJJ… ,çó+êÕ«'„8sæŒì*„êʤFXc[Ãi¸¦·VõìÙsãÆ ,˜2eʵk×âãã]ôZï¾ûî¼yó<==gΜ9kÖ¬2eÊ|÷ÝwÓ¦M“½ tBçSÕf³9))Éßßßßßßzyýúõ…gΜ±\GÊÚìÙ³•#y­9rDQ³fM{Û …e8ìy܇m ç`nZ󢣣ׯ_/„HKK«R¥JÙ²e-%ÃîÝ»;ñD“É4hРAƒÉ^c}ÒypÌÊÊÊÍÍ­\¹r¾åÊ7ýõ×_…>ªQ£Fù–ìܹsΜ9eË–-æH káááV¿%†‡‡+Óß®*RRR\øüvµ%,,%9Y¨¦=……†&»f{={VöÊ©HhX¨"%9E¨w,8 ]ï:¡¡aBˆ””d!„Pß`¢ëP½zuÙM(Dñ»…GyDvÕBçÁQùbÊ *ä[^±bE!ÄÕ«WK|†ÜÜÜo¾ùæ£>ÊÍÍ2eŠõ·#11Ñò³ÉtǯN÷Ï>þ®»îzûí·e·½*š§Vw¹‘}‘˱‰Q*&þò´BÿSÕÕ«W5jÔĉ»uëššºsçÎÆ?ÿüó–ûlÞ¼ù7Þ¨W¯ÞÊ•+ÓÓÓOŸ>íãã3`À€‚ÏÖ³gÏÊ^'•!5›Žãø@cô…Ï>ûlÕªU—/_¾zõêààà>\¹"OAJÝñƇ.x+'Vk ‘ƵØé£TxƒÚcˆà(„èÚµk×®]‹ºµK—.]ºtQ~nÚ´©/»èºbœZæ©U\nd§äZl_8Ž¿9­2Jp„K¨85µHp‘Ð6‚£&©¥Ü¨bWa¿1t=ÐÿYÕp—I®Â™¯pCùíÝ»×d2-Z´Hùu„ ²Û…áR£±eá®Îˆ’ýþûïcÇŽmذa\\œsŸùÖ­[-Z´hÙ²¥ìUÔ‚£ö0O] vP®Â–…ݸ:#l•””$„xï½÷bbbœûÌcÆŒùí·ßd¯Ÿ®pŒ#ì§Ör#ÙÆ%82 vcÐÀ>f³YQ®\9ç>íúõë'MšäåEÔq&*Ž#¿ÜHj4 F°UFiË–-;wö÷÷oԨѨQ£²³³•åƒîÑ£‡¢M›6¡¡¡Îz¹óçÏ?õÔSÏ=÷\5d¯º®á¤F—`³Â>Œéûï¿ïÛ·o•*Ubbb<<<âããW¬X¡Ü4räÈZµj?~òäÉÍ›7wÊË™ÍæAƒùùù}üñÇ7–½öºBp„=TYndgå|Ì4Â>Œµ0I}õ¢FÀÍ›7GŒ¸{÷î!D\\\TT”rk“&MNž<)„hÑ¢EëÖ­Ò’I“&mÞ¼yçÎåË——ºItˆà¨%’ç©IÁ6…ˆŒê¢ÎžHHHHMM4i’’…ÁÁÁÆ ‹-ñ±999«V­*êÖîÝ»\¸k×®1cÆLš4é¾ûê:Dpt!U- X¤FØŠÈ[?~\ѬY3ë…‘‘‘¶<633S9²Pæ{ÙŒŒŒ˜˜˜Î;6LözëÁ¶Qe &ä81¶b¬À>ÊyÍ&Óé6žëëëk¶gï3{öìäää=z|ôÑGÊ’«W¯æææNœ8±V­ZN¿Ü5CþùÔ*Cjt&¶&lBd„#êÖ­+„Ø»wo»ví, ÷ïßoËcíªVNÖž:uªõÂË—/ÇÆÆ¶k׎àXzGØ@}åFrŽ3±5a Ô´iÓ°°°©S§öïß?88X‘žž>}út[kïTõèÑ£Gm½$44´Zµj;vì½t‚ਠ2ˤF£~›0PP*ÞÞÞ“'OîÛ·oddd¿~ý¼½½-Z”žžnËcíª†«qph ©Ñi¸N3Jƽá={öܸqcDDÄ‚ ¦L™ríÚµøøxÙ‚#¨8¢X*+7’†M‰Pe„“EGG¯_¿^‘––V¥J•²eËZJ‰Ý»ww]Y1%%Eöªë ÁQ¤ÍS“u‰<€0DàZÕ«W—Ý8Žàm 5:ÛÅ!2(ÁEPS¹‘´ãlG‰ÈÀ&Gµ“3OMjÔRŠÄà`‚# wDoŽÈÀnGU£ÜHæ)‚ŠÄ{ €#Ž®¢¦ô¥Õv³g+6 ÇßGp„J{J…͇B”ÁQ½$ÌS«¦ÜHìqÙ…`Xp‚#n#5êÛù8ÁêBòqñù1&8ÁQ¥Ü=O­Žr#©ÑAl8ÜÈÀUl/£#2Â6&©¯^Ľyóæˆ#wïÞ"„ˆ‹‹‹ŠŠRnmÒ¤ÉÉ“'…-Z´hݺu)›ðçŸfgg›L¦6mÚìÞ½[YX«V­o¿ý¶ôOApT7ÍS“5„À`tŒØC•#%!!!55uÒ¤IJjB6,66¶ÄÇæää¬Zµª¨[»wïžoÉÕ«W…óçÏïÙ³ç¼yójÖ¬¹yóæçž{®wïÞGõóó“½14àw#5ÚehDFèÄñãÇ…Íš5³^iËc333•# e.P¹ë®»„wß}÷wß}W¦L!Äc=6iÒ¤§žzjéÒ¥–Óeà0‚£ñH-7„lEf04ººâåå%„0™î˜G÷ð°éô\___³=û¬   !DëÖ­•Ô¨P&©=*{KèÁÑ%Ëf&5j[Ê ,»UººR·n]!ÄÞ½{ÛµkgY¸ÿ~[kïTu… ÂÂÂÒÒÒ¬¦§§ !jÔ¨!{KèÁnB² •&ƒ¢ã¡gM›6 ›:ujÿþýƒƒƒ…éééÓ§O·å±öNU !ž~úéqãÆmÙ²¥mÛ¶Bˆ¼¼¼?üÐÃãcÇŽ²·„D^¹‘Ôh6“¡ÞÞÞ“'OîÛ·oddd¿~ý¼½½-Z¤TKdïTµâ•W^Y²dIçÎ P£F5kÖìٳ筷޺÷Þ{eo =ààjáòyjR£šñ­ÓFÄu¼a ={öܸqcDDÄ‚ ¦L™ríÚµøøx½V@@ÀæÍ›¼k×®éÓ§—)Sæ›o¾™8q¢ìm TáZÄ¡’± ‡*#Œ(::zýúõBˆ´´´*Uª”-[ÖRJìÞ½»½eÅâùûûÏš5KöëÁÑ$•ID% ? ç¾BQ½zuÙM€ãŽªàÚyjR£ …þ G¸©±8l!2Ђ£|ú+7’‹ŠDŠ0 f¥èÁQ×HªÂ¦1þ8 gGý"5ªYÂèfúGp”Ì_3è¾uÑËš8YBÿLBˆÐPA70.®Sn/7’ ÁÕuîWðNII–Ýp*ŽzDj”ŽB£žqâ ã"8ʤyjR㈌zFï0:‚£î¸·ÜHj´ÊæÐ#JŒðŽqÔR£,&!L"%9Ev;à\&«#Uì@p”ÇùóÔ¤F)Lœ£?&úpµ½{÷šL¦E‹)¿N˜0! ""Bv»P‚#ìf"5æÛl 0Qb¤øý÷ßÇŽÛ°aø¸8§<áÑ£G{õêU³fÍ>}úüú믲WQ?8ÆQ/ÜUn$2þ³BOèQ@¦¤¤$!Ä{ï½×±cÇÒ?ÛÖ­[;wî\¹r嘘OOÏE‹uîÜùÇìСƒìÕ‚£Nž§&5º[A?8ëP³Ù,„(W®œSžjÈ!¾¾¾ BŒ3¦Y³f£FÚ»w¯ìÕ¦ªµÔè6LÒëSÒ€[¶léܹ³¿¿£FF•­,p#ŒIu>!!!55uÒ¤I!!!Ê’àààaÃ†ÅÆÆ–øØœœœU«Vuk÷îÝó- êÝ»÷Ò¥K'Nœøì³ÏšÍæyóæÍœ9S‘‘‘!{KèÁQ³\ŸœŒ»æú@^ÔåøñãBˆfÍšY/ŒŒŒ´å±™™™Ê…2¶œ9sæ•+Wbcc•`êçç7vìØ÷Þ{¯råʲ·„ÝM+ßOmÐB#‘QÃÈ‹€Jyyy !L¦;æ²=}út[ëÀTõ‹/¾xäÈ‘ÄÄDådê£GÆÇÇ?öØcʯ(%‚£[9ažšÔèܵ†Za /Úãíí=yòä¾}ûFFFöë×ÏÛÛ{Ñ¢Eééé¶<Ö©êñãÇ?úè£<ð@Ïž=oݺµxñbŸO>ùDöfÐ .ǃëâÖ\›EK¬/öÁ%»MêÙ³çÆ#"",X0eÊ”k×®ÅÇÇ»èµz衵k×ÖªU뫯¾Z½zu¯^½~ÿý÷Ò_Z *Žšâ²r£±"£0ÎÚjÅE@W¢££×¯_/„HKK«R¥JÙ²e-¥ÄîÝ»Û[V,^çÎ;wî,{õ‰àè>¥§&5–~=…AVUÓÈ‹€Îq¬¡¦5Â5©ÑQŠ¢Öé Ÿ@½ŽZà²Ô¨ó]´!r±¦ê@cŽnâø<5©Ñ±Õú^Cí¢¸Fp4=g* XêE߀ÕÍÙåFÝõ‡µ‹â"è ÁÑœ§&5Ú²J ½­˜v@ÏŽjåÔÔ¨ÃzœWI»‹`GUrvjÔÏΜ£ZÀˆŽ.g÷<µóR£®ªrºZ-2Ýù+=H.» 0"‚£Ê855êaßN‰Q&ÊŠ€J%&&Ên Šà¨Cz¨Í‘å ¬(Áѵ웧.u¹Qó‘‘¼èn$E€ŽªáŒÔ¨ÕÝ>yÑ}HŠÇÕ¡t©Q“…FŸs’"ÀiŽ.dë›  cÇB,^¼8//oøðáÊ’ØØX__ß5kÖäåå9òŒJd,:5Ìi®eûÄ©žÙ‹ŸP6Ê–@Ap,ÄîÝ»=<<ÚµkgYâééÙ¶mÛK—.%$$”üx³ÕûL9®Q1gΜ‹/öîÝÛÛÛ[vëä0™mûêd£™;wîĉCBB¢££SSSwîÜÙ¨Q£¹sç¼L€A‹ôã?._¾üàÁƒÁÁÁ÷ßÿðáÕ+òÁ6áGØ„à›`‚#lBp€Mް Á6!8:Í’%KúôéÙºu븸¸Ë—/ËnÜáÆ_ýõã?~ß}÷EGG2dûöí²wKKKkÖ¬Ù¨Q£d7nrèС×^{­}ûöÍ›78pào¿ý&»Ep‡ììì/¾ø¢W¯^‘‘‘:txýõ×Oœ8!»QîÆÀcÚ´i³fͪP¡BTTTjjê©S§î¹çžùóçûøøÈn\(''gÀ€û÷ï÷õõmÖ¬Ùßÿ½{÷î[·n 6ìÕW_•Ý:¸‰Ùl4hЮ]»ºuë6iÒ$ÙÍËmܸqذayyy¾¾¾Û·oÏÉÉ™9sf‡d7 .”››;pàÀ„„„êÕ«GDD\¾|y÷îÝóæÍkÞ¼¹ìÖ¹‘¥vìØ± DGGŸ?^Y2a„úõë?^vÓàZß|óMýúõcbb²²²”%Ç¿ÿþû6løûï¿ËnÜdîܹõëׯ_¿þ›o¾)»-p¹+W®DEEÝ{ï½{öìQ–8p I“&­ZµÊÍÍ•Ý:¸òÿúë¯ßºuKYò믿6lØð¡‡’Ý4·bªÚ /^œ——7|øðÀÀ@eIll¬¯¯ïš5kòòòd·.´víZ!ÄèÑ£-¥åzõê½ôÒK¹¹¹LXĉ'¦M›Ö AÙ ›,[¶,##㥗^jÖ¬™²äž{îyôÑG/^¼xèÐ!Ù­ƒ %$$!ž~úi///eIË–-6lxêÔ©¿þúKvë܇àèJ±º]»v–%žžžmÛ¶½té’2ΠW)))*Thܸ±õÂzõê !Μ9#»up¹œœœ·ÞzËÏÏ/66Vv[à&[¶l1™L=zô°^øÑG%&&Þ{ï½²[ BXgD³Ù|åÊK”4­ª‹˜Í椤$ëåõë×Bœ9s&**Jvá*³gÏ.øyqäÈ!DÍš5e·.÷é§Ÿ=ztîܹ•*U’ݸÉáÇýüüªU«¶gÏž}ûö]¹r¥Aƒ:uâˆvÝ{üñÇçÏŸÿÁ”/_þ¾ûî»|ùòŒ3Ξ=Û¯_?C}K++++77·råÊù–ûúúŠ;ÿ4þ4jÔ(ß’;wΙ3§lÙ²ù Пýû÷ñÅlÕª•ò×t/;;ûÚµkuëÖ}ï½÷.\hY^³fÍ?þ¸I“&² _°`Á3Ï<óÌ3ÏX80..NvÓÜŠ©êÒºqㆢB… ù–W¬XQqõêUÙ „›äææÎŸ?ÿ¹çžËÊÊúðÃd·.tãÆ·Þz«fÍš#GŽ”Ý¸ÏµkׄIII«W¯ž8qâo¿ý¶yóæ¡C‡þñǯ¿þº²;€^edd|øá‡™™™7~òÉ';wîìãã³|ùò7Ênš[Qq,­Ê•+›L¦¬¬¬|˯_¿.nס{¿ýöÛ¸qãNž<üïÿ»U«V²[ך8qâÙ³g.\È¥¡”+WNùáÃ?´\|çµ×^KKK[¶lÙªU«žxâ Ùm„«¼õÖ[{÷îúóÏ?_yå•{î¹ÇÝ@¡yóægΜùý÷ß- óòò”PÕ«W/!IJeËN:Õ¡C‡íÛ·/_¾|ÅŠÛ¶mkÞ¼ùüñóÏ?;üÒ¿üòË_|Q³fÍ%K–lÚ´iÕªU[¶lyðÁ÷ïß?sæLå>“'OÎÌÌ|ùå—ýõ×eË–mÞ¼yôèÑf³yúôév½ÖâÅ‹_xá…­[·~ýõ×ëׯæ™g„óçÏ/êþÆ «W¯Þ²e˶nÝ*„رcÇ¢E‹"""^~ùey}@·Ž´ÁÃÃã±Çw÷ìÙsþüùÈÈȺuë !rrrÚ·oÿæ›oV¨PA¹C¥J•”RejjªÃ/=qâD!ÄÇl©á|üñÇAAAK—.½råŠâرcBˆ>}úxzz*÷‰‰‰yå•W:uêd×kÝsÏ=#GŽôððPVù•W^Bœ:uª¨û{{{ôÑG^^^cÆŒ¹páÂèÑ£}||&Ožli8Á€f(ÐzÞV™§îÝ»·ò뫯¾:kÖ¬»ï¾Ûr‡ôôôU«V•æE/_¾œ’’–ï èòåË·jÕêÆ‡B(É566v×®]ÊÑ–ÞÞÞ¯¿þúСCíz¹G}ÔúW___OOO³Ù\ÌC5jôꫯž;w®{÷îüñÇÛo¿]§NWõcãr<4£qãÆuêÔ9uêTbbbxxxNNÎÚµk}||ºtéb¹Ïü±eË–={öœ9sæôéÓ¥<´Q‘œœ¬ü^èþüóO!ĸqㆾk×®§žzª\¹r5zàzè¡FÙõr5jÔp ‘/¾øâ† Ž9rÿý÷ÇÄÄ8u«ÀÿhI×®]?ýôÓµk׆‡‡oݺõêÕ«½zõ²LL/\¸p„ 999µjÕŠŠŠêÔ©S“&MRRRÆo׫俿ZŠ|ÙÙÙBˆ¢&«W¯.„¨Q£Æ’%KöíÛ·eË–ß~ûíðáà 3gÎ|â‰'&L˜`2™l|é2eÊ8°Y®_¿žžž.„HNN¾råJåÊ•]ߌˆà@K,Áñõ×_Wæ -óÔׯ_ÿý÷Ë”)3{öì6mÚXrîÜ9{_%---//Où9,,LQ¾|ù¸¸¸âe2™”k !²³³·nÝúÎ;ï,]º´C‡;vtéfy÷Ýw/\¸Ð´iÓ„„„ñãÇO:Õ¥/À°8Æ€–Ô®]»I“&ÉÉɇúùçŸk×®¥ÜtèСÜÜܦM›Z§Fqû´•âå›Ñ^¿~½åç   ªU«žøàüùóëÕ«·jÕª‚-§ 8Ðå™Ñ£Ggee=ñÄ–åAAABˆcÇŽ]¼xQY’››ûÝwßÅÇÇ !nܸQè³ÕªUK±`Á‚¬¬,eÉÎ;-ÙQŒ1"//oĈGU–\¿~ýwÞ9|øpãÆ‚ƒƒ¯]»vàÀ/¿üÒRª]9J=ôPQßSÌ‘t¼ã}ú¤¤¤”)S¦˜§ä(ûðPKÕJö /ØÂÇ!CöîÝû÷ß§§§üñÇ·Ýv›âúõëýúõsá•û÷––––¶jÕ*Ù{©o…Iw:néÒ¥Ê þù矧N2dˆ²ýÌ™3|ðAñOÉ'66Vöá ‚#€üðÃß}÷òõ„ >ýôÓ»îºË××7$$dذaË–-SJNN>zôhÁ§_¼xqܸqÍ›7¯P¡ÂÝwßýÙgŸÙÿ¥S§®q¼yóæÂ… ÛµkW½zõ *DDD<ñÄ¿ýö[ÁïLII:thýúõkÖ¬Ù¿ÿ}ûö¼L°¨ 1cbb ^™———÷Å_tèСN:eË–­S§NttôâÅ‹oÞ¼iûûÌÉÉyå•WjÖ¬ùÊ+¯Ø¾áܹs£GnÓ¦Ím·ÝvÇwôîÝ;))©`ãO:Õ¯_¿   jÕª=ú裻wïv¤› I7;Î^­Zµ>ýôSÛzã7®]»æÂX w,U(­¼T¹rå‰'æ{´[·n]»vMOOBìß¿¿Aƒö^ºt©mÛ¶GŽQþûÛo¿ :ôÒ¥KÏ?ÿ¼³Í¸qãFTTÔ®]»l[8pàÀ¥K—¾÷Þ{Ï<óŒmûO?ýÔ»wï‹/*ÿ]¶lÙºuëî»ï>wBLLÌ—_~iûï©S§N:µyóæï¾û¾*øýÇ_¼x±–’ú÷ïîÜ9å¿ýõWjjê7ß|óüóÏÏ™3ÇöÄ={ötïÞý?þPþûÍ7ßüðÃíÛ·÷rÇjôèÑß|ó"##cëÖ­<ð€;‡€”`Û¶mÊ>úh…  ~Ú5kŠzîO?ý$„ Ø·o_nn®âå—_~öÙgK—.íT3^ýu%5úûûßÿýµk×Þµk×Î;­VëèÑ£;vìØ°aC!ĵk×üq%5úùùµhÑ"##ãøñãß~û­ËGàË/¿TR£ÅbéСCÍš5“’’8 „X±bEBBBÇŽí¿Ïž=gΜ±ßråÊ•Ç\¹R°cÇŽQQQÉÉÉË—/ÏËË›;wn“&M†*„ÈÎÎ~ì±Ç”Ô¨4þ?þ8qâÄÚµk½Üq…ŠŠŠ*]ºtvv¶b×®]GÀ„XªPœ›7oÚŠdaaa.¼Âüùó?ž””¤Tà„7nÜ8|ø°³¯³iÓ&勉'~ûí·ï¼óÎŽ;ºté"„ÈÉÉùá‡l?NipÅŠ·mÛ¶}ûö””7¯±[·nòÅØ±cüñÇÅ‹ïß¿¿yóæÊÆÄÄÄ|ßæÌ™ÆÇÇÇïØ±C¹4pæÌ™Jj|ì±Ç~üñÇW_}õóÏ?Ÿ?¾òýS§NU¾øøãOž<)„¸í¶Û¶nݺ}ûö´´´1cÆH鸂,KµjÕ”¯m5Q{;w.øY<.T—hGŹråŠíëêÕ«;ûôF5JùºG¶[z;æì-ضŒ‹‹ éÖ­[ÕªUãââΟ?/„¨R¥Šò¨­²8räÈ{î¹GùzÚ´iñññ§Nrí ôëׯS§NBˆ¨¨(Ûa¹~ýºòµmMܦ\¹r7n´?\¶èùŸÿüǶqÈ!cÆŒÉÍÍ=uêÔ¾}ûî¼óNÛu‡#G޼÷Þ{•¯gΜùùçŸÿùçŸNµÙÍŽ+J•*U”Ãhÿú̃Š#€â(÷Þ* ~øs‰êׯoûºB… 5jÔP¾VÖ¬ ²Ýáa©Ñßß?88¸¨*`PPý¯\¹bÿIŠ…:þü_ýe{Á|¯U«–³mv³ãŠb[¡®ZµjÁG—.]êN@ }T” M›6Ê«W¯¶ÿô›† -\¸ÐsÍ(UªÔ{ï½—‘‘±|ùòئôÏ?ÿ¬|tNÅŠmwØ®ðS8»ÔkoúôésçÎÍÉÉ [°`Áo¿ývåÊ•îÝ»õýùòqÅŠmõ¿ 6¤&&&ÆßßßvÃP¾ÖÚÒ°ST︭[·*wÆ!l—0‚#€Ø.Ë;uêÔ¢E‹ò=úÝwßÙªPn~äbРAÜJ¹ëåÆçÎ;wîÜ7úöíÿçŸnܸÑ_¶lÙ¢|Q¯^=å‹ 6Ø^6//Ïvo-Þ]ºtÉ~{Áˆ¹`Áå‹÷ßÿ¿ÿýïwÞéçç—ï¾éâÙZ•““s‡ÀÀÀJ•*UªTÉßßß××744Tù¶õë×ÛžkµZ•›Ó¥wœínžòåË·mÛÖ…&Ð;‚#€<üðÃ;wV¾5jÔ´iÓ~ÿýw!Dvvv\\Ü“O>©|¸ZµjÕªU 9~ü¸ÂÏϯsçÎÆ SžX©R%å Û_^ž?þ¯¿þª|ýÚk¯¥¤¤äûY¶õß;wÚ..\¹re¾”võêUeÁWØEÌÄÄÄ„„Ç÷Ëv?üðCÛ';~ýõ×UªT ª[·îÕ«W…-Z´PzçwlŸ þÆo:tHnÇýñÇO=õÔŠ+”ÿ>ñÄö×P0®qP²¹sçÞ{ï½YYYV«õÕW_}õÕWƒ‚‚233m÷v”-[vÅŠ¾¾¾jÀwÞYµjÕsçÎåää´k×îᇮ\¹ò‰'l^ÏöGMÆ÷Þ{ï]¾|ùÒ¥K­[·¾÷Þ{ÿüóOÛ'Û³}žNVVVdddddäùóç“““ó}[… *T¨ \¤¨üÁ‹Å²nݺB‹òòË/üñÇ™™™ß~ûmÇŽï»ï¾ƒÚ>FqìØ±Ê$ãÇÿüóÏ­V«­ñ…6Þ 7hРråÊ !®]»¦$NÅí·ßþÚk¯y¨£hG%‹ˆˆÈ÷ù2çÏŸ·…ºuë~ýõ×wß}·çàããóí·ßúûû !þøã?þø­·ÞúòË/ÿþûo!Dttô‹/¾¨|g```||¼r¥ã7¶lÙräÈ‘²eË>öØcù^³Y³f?þ¸òõõë×·mÛ–œœf«Ò),‹­ŠyýúõU«Vý¿ÿ÷ÿjԨѡCe£}¨*J``àâÅ‹•²èO?ý4uêÔ+V(0ôôÓOO™2Eù¶»îºËVÌÎÎþùçŸ9R¾|yîªv¿ãÒÓÓ•ë/íw°råÊ«V­Êw÷ó 8pHÛ¶m;6oÞ¼ûî»/88¸L™2ááá<òȼyóŽ9ÒµkWO7 U«V)))“'OnÙ²eõêÕK•*Ø®]»?þ8!!¡L™2¶ï|øá‡·mÛ6pàÀÐÐÐ5jÄÄÄlÙ²¥Ðx´dÉ’éÓ§GDD”/_>22rÔ¨Q;vì(˜ŠæÍ›!„ðññ¹ë®»žþù_ýµGʣ˖-+ño= !ºwïþÛo¿ >¼Y³fåÊ• ëÕ«×æÍ›?øàû›i>ùä“gŸ}Vù:88ø‘Gùá‡lŸ)¥ã|}}+W®|Ï=÷Lž<999¹U«Vžêcšg±]m6}úôI“& !|ðÁï¿ÿÞÙ§ß¼yó»ï¾vkâµgÏžM›61¢ÐKY¸ÆJVªT)ïDFE‹-l7Ê€v°T ‡à‚#ÂÍ1pG8„à‡à‚#Bp€CŽpÁ!8À!G8„à‡à‚#Bp€Cüd7@£²³³/^üý÷ß§¥¥FDD<÷Üsõë×—Ý.i,V«Uv4'77wàÀIIIÕ«WˆˆÈÌÌܽ{·ÏâÅ‹[¶l)»ur ñùçŸO:õ¡‡š={¶ŸŸŸbûöíÆ «U«Öúõëe·@®q,DRR’âÉ'ŸTR£¢uëÖ5:qâÄÅ‹e·@‚c!BBB„öÑjµ^ºtÉÇÇÇ%̆àXˆ‡~¸lÙ²Ó§Oß¾}{VVVzzúäɓϜ9Ó§OŸŠ+ÊnuYd7FİrŒg“ÅÅ—·Ý.W_Ò8¸Æ±pûöíÚ ˆ3ÃÑ£É þíÙääd¯$m!8âÊ•+O?ýtbbb“&M""".\¸°uëV__ß3ftéҥħ‡‡‡›s0i¢A苜óÓ@¿èŸÚ#ËÀâÙ7¡Å"œ9a±Ý(ÛK¸SŠÇ{…xñÅ'L˜0dÈeKzzúã?þüóϯZµ*,,Lv¸ÔÏ`d9Lƒ©%âÇüþüóÏM›6Õ«WÏ–…Õ«Wæ™gnÞ¼ùÍ7ßÈn ÷1·Ã3Y0:‚c~.\BÔ­[7ßv¥Ð˜‘‘!»ÜÄÜÈÇûP§ŽùÕ­[×××÷رcù®þT.e¨W¯žìp³<†Á 8æçïïuòäÉwÞy'//OÙxìØ± ”.]ºC‡²ÀeLìð—¦p£ÇpWu!Ο?ÿØcýþûïuëÖmܸñ… óòò&Mš4`À€ŸnÚ;­´,---44Tv+p ¯w »Cx³¸ÂÃËxâñw£Á‘»ª‹GűAAAk×®1bDùòåúé§3gÎÜwß}_~ù¥#©€&‘@|OáÊ•+7vìØ±cÇÊn÷‘áIŒ/'qÀtŠ#cc’‚'1¾`2GƬOb|i“ç/p43‚#£bV4‡·¥ÞÓ<Œ!S"80¦txCÌ%6 80æ&xCL˸ÑÃø8M—ÝC1燲BÁ”cˆÁÜŽZAÖQ‘i?Ðßô˜Òíâýi ,U0f%x£ ¦Gp`Ìçð7''gÍš5E=Ú£GÙ;-`‡w1âTÅá46‚#œvôèQ!DóæÍí7FFF:òÜk×®)W@ʪͤ ¯bÒw1âôŽ ½‹à§ùùù !,·®£ûø8t£U@@éEc‡w1â'á´zõê !£££m÷îÝëÈsYªFјÃá]Œ8ÐéAåCGp„Óš5k6wîÜþýû‡„„!222æÏŸïÈsYªFt:Ý@·qÆÀ:µ×á´R¥JÍž=»oß¾‘‘‘ýúõ+UªÔòåËüE–ªQæpÀx'›WôêÕ+!!!"""..nΜ9W¯^—Ý(ès ¼ŽAçQÜTPq„‹Ú·o¿qãF!Dzzz•*UÊ”)c+%öèÑÃeÅððpª•†Ã¯cÐyÇÕ$ŽpWõêÕe7ºÆDo#Ý 5@Xª …%--Uv`2¤FáКÁ€÷1ËÀët€޼Œ ^Ç ó$9GW½uj>ÄÑ)\ãÀk”¿6Ä ôŠàÀ;¨ù@†ž'qt͆¥j^ÀäIz€ªŽ<©’0ôˆG6‚#ÔgµZ…eË–UåÕÆŽ{ùòå;v´lÙR1mÚ´aÆ}úé§ëׯàdï+ì‘!£Ï[8Ò&ÇR5\´eË–.]ºT®\¹qãÆãÇÏÎÎV¶2¤gÏžBˆvíÚ…††ºÿƒ¢¢¢”Ô¨xî¹ç„Û·o—} `Ùò0úo¡âW¬\¹²oß¾UªT‰‰‰ñññ‰_µj•òиqãj×®=mÚ´Ù³gÛ§=×äää<ûì³-Z´°ßxòäI!D™2edØ0oCFŸI>Øj¯SóY<. 8jšEX$þô¢ÞN7nÜ;vlppðîÝ»kÔ¨!„ˆµe»¦M›?~\ѪU«¶mÛºÙ??¿7ß|Ó~ËÅ‹ß|óM__ßÇ{LâÁæmÈÃ輋à¨iÚüM())éäÉ“³fÍRR£"$$dÔ¨Q&L(ñ¹999kÖ¬)êÑ=zÿôŸ~úé©§žJIIùàƒêׯ/ûH@0oC&FŸwq¼!ŽpÁÑ£G…Í›7·ßéÈs¯]»¦\Y(kÑk§Nzî¹çV¯^]¿~ý~ø¡cÇŽ²ódbô™ ÷Sk7ÇÀi~~~B‹å–et‡ÆR@@€µhE=kÙ²eM›6ݳgÏ¢E‹:DjÔæmÈÃèó:9Tá´zõê !£££m÷îÝëÈs]Xª^½zõO<Ñ·oß… V¬XQöÞCˆ.½e$D@‚#œÖ¬Y³°°°¹sçöïß?$$D‘‘‘1þ|GžëìRµÕj}ñÅkÕªçëë+{×!˜´!PùG]ö:µìŸ¯!G8­T©R³gÏîÛ·oddd¿~ýJ•*µ|ùòŒŒ Gž«,U;þ³>|äÈ‘F ><ßC>úh÷îÝe ³‘?}ÀÔ€PŸÅã‚#\Ñ«W¯„„„iÓ¦ÅÅÅeffÄÇÇ÷éÓGõ¤üõÂÇ>|8ßCõêÕ#8z“6¤bJ‡=‚#\Ô¾}û7 !ÒÓÓ«T©R¦L[)±GN•‹ñÈ#¨õRps¤bšëÄZBp„»ªW¯.» ð4&mHÅ”‡c|ø8Åcâüƒà ¤FÈÆ”GÇžuj!8(Š&f ˜cPc{n©vÁ@¡Œ=k@ƒ€öÄŒ ÙƒRiåð³N­=GùheÊ€y1­"8°ÇŒ Ùƒ²Ñ(Á€ ódc †ujM"8P0cC6Æ ˜¡¸¥ÚG“´1¨tJDpÀdكȇuj­"8B‰‰‰‹eùòåÊ_ýõ   ˆˆÙíB‰˜±!cPè8‚àõ:thòäÉ5ŠUå7mÚÔ¡C‡ààà*Uª´k×î›o¾‘½‹†ÁLÙƒ€®¡¾””!Ä”)Sbbbܵµk×vìØñÔ©S|úé§322}ôÑ?þXö^ê…ò15C[]Á:µ†ùÉn Èjµ !Ê–-«Ê«½üòËÕªUKJJ BÄÆÆ6nÜxêԩÇ—½£ú¥­9&Å0„ ÜRí&*ŽpÑ–-[ºtéR¹råÆ?>;;[Ù>dÈž={ !ÚµkêæO¹qãÆÁƒ~øa%5 !Ê—/ß¾}û3gÎdeeÉ>:Åt `j ½Q<  ö¨8Â+W®ìÛ·o•*Ubbb|||âããW­Z¥<4nܸڵkO›6möìÙ-[¶tóùúúþöÛoAAA¶-999û÷ï¿óÎ;ýýýe=b‚€0 µDs½ALÓ6‚£¶Y,2zoÝ7nŒ;688x÷îÝ5jÔBÄÆÆ¶hÑBy´iÓ¦ÇB´jÕªmÛ¶n6ÁÏϯI“&Ê×K–,IIIY³fÍï¿ÿþùçŸË<2z¥¹ fÄ0ôŒà¨mšü­+))éäÉ“³fÍRR£"$$dÔ¨Q&L(ñ¹999kÖ¬)êÑ=zóÜ×^{M¹í¦K—.uêÔ‘}t‡éÀ0ÔÍuåFÍ#8ÂiGB4oÞÜ~cdd¤#Ͻvíšrd¡¬Åž/Ž;výúõíÛ·>¼U«V‡–}0ôBs³̈aè7ÇÀi~~~BË­Ëè>>¥€€kÑJ|z¹rå:uê4cÆŒ‹/~ûí·²„^0]C†ÚcÂ>á–j÷Qq„ÓêÕ«'„HLLŒŽŽ¶mÜ»w¯#Ïuv©zÍš5={öŒïׯŸmc`` (©<‰™pj€ö0 µG‹}Â:µá´fÍš………Í;·ÿþ!!!BˆŒŒŒùóç;ò\g—ªï½÷^!ÄgŸ}Ö·o_[sñâÅBˆÖ­[Ë>Ú§Å©¦Ã0 „à§•*UjöìÙ}ûöŒŒìׯ_©R¥–/_ž‘‘áÈs•¥jÇVPPÐĉ§NÚ²eËxÀb±lܸq×®]cÆŒ¹óÎ;e cº†0 5‰n˸Æ®èÕ«WBBBDDD\\Üœ9s®^½õꫯ.^¼Ø××÷ƒ>X¸paéÒ¥¿øâ‹yóæÉ>Ǽ `j’F»…uj âµoß~ãÆBˆôôô*Uª”)SÆVJìÑ£‡Š Z,–Aƒ 4HöëˆFç˜ ÃÃ1ª 8Â]Õ«W—ÝØcº†0 µJ£=C¹Q?XªŒD£“Ì…aÁ0 ¦khÃPÃè¸à34€a¨aÚíÖ©u…à€vg˜ÃÆ1j!8zÇt `j›vû‡r£ÞpW5 kÚ`Ê_tbj§ wló!8:Åt ’&CpôˆéÀ0ÔM÷Õ<âG@w4=À,†z@/)¸3FEG@_˜  C¸r£>aº†0 u‚Ž‚'¡ŽÄÄD‹Å²|ùr忯¿þzPPPDD„ìv ³4€a¨Zï(ʺEp„ú:4yòäFÅÆÆªûÊ7oÞlÕªUëÖ­eï¢÷i}€)0 Ó#8B})))Bˆ)S¦ÄÄĨûÊ“&MÚ¹s§ìýó>¦khÃP?è+{Ü£.‚#ÔgµZ…eË–U÷e7nÜ8kÖ,??³}†S4€a¨:è+Ö©õŒàmÙ²¥K—.•+Wnܸñøñã³³³•íC† éÙ³§¢]»v¡¡¡jý¸sçÎ=ñÄǯY³¦ì]÷&L0>†!€™­xu¬\¹²oß¾UªT‰‰‰ñññ‰_µj•òиqãj×®=mÚ´Ù³g·lÙR•gµZ øöÛo7iÒDöÞ{ Ó54€a¨+:è.Ê:GpÔ4‹ÔŸ^Ô;ûÆcÇŽ Þ½{w5„±±±-Z´PmÚ´éñãÇ…­ZµjÛ¶­*-™5kÖæÍ›wìØQ®\9©‡Ä›tpþ‡ñ1 u…î‚5M›§€¤¤¤“'OΚ5KIBˆQ£FM˜0¡Äçæää¬Y³¦¨G{ôèQpã®]»&Mš4kÖ¬»ï¾[ö®{ çhêóz¹‘;cTGp„ÓŽ=*„hÞ¼¹ýÆÈÈHGž{íÚ5å ÈBY œP®\¹Ó¥K—Q£FÉÞo¯aº†lÊbÃPW8qÀ;Žpšr_³ÅrËBºC7ZXùusÑ¢E©©©={ö|ë­·”-—/_ÎÍÍ9sfíÚµUÿ¸ àäÉBÃBƒºÃ‰ÃC¸ ³ ‚#œV¯^=!Dbbbtt´mãÞ½{y®³KÕÊÍÚsçεߘ™™9a„èèhÃGNþÍ"ÒRÓB…jŸ‡/Ð͉ƒfG8­Y³faaasçÎíß¿HHˆ"##cþüùŽ<×Ù¥ê‰'Nœ8Ñ~KhhhµjÕ¶oß.û0¨N7'–2Ód7P 8zÁN+UªÔìÙ³ûöíÙ¯_¿R¥J-_¾<##Ñç:»Tm¤FÈÆÔ'ÝôåF£àÀáŠ^½z%$$DDDÄÅÅÍ™3çêÕ«ñññ²¥_º9óðƒúD¿Áû¨8ÂEí۷߸q£"==½J•*eÊ”±•{ôèá¹²bZšÁÒ8óC6Æ dc ê–žºŽr£±)ôtÚ‡11u‹®ƒD,Uiÿþý‹-:xðà_ý>räÈ{ï½Wv£` œö!^C¹Ñp¨8.!!!&&&!!!88822ò×_4hPBB‚ìvÁHJ€ŒAÝâ ¹¨8âòåË/½ô’ŸŸß'Ÿ|¢üEæ}ûö 0`òäÉÑÑÑþm= 0œó!PçtÖòÊÜã9d B|ýõ×W®\yúé§•Ô(„¸óÎ;zè¡óçÏïß¿_vë _:;çÃh€:GB Ž…Ø²e‹ÅbÉ÷—ñÞzë­äää»îºKvë Sœó!^¦ÿ«õ¿ÁRu!8X­Zµ={öüú믗.]jذaçÎýýýe7 :Ť ©€úGB#Žùegg_½zµ^½zS¦LY¶l™m{­ZµÞ~ûí¦M›:ò"áááù¶¬[·Nöž™K¾?0sæÌY- KKKÂ`ðF;ÅTBÃBÓRÓ€ô‹……†¦êê¯f…†…¥¥¦ IM Kujн¶£þàƒJÙ "8æwõêU!DJJJFFÆÌ™3£££ÿþûï+V¼ÿþû£Gþî»ï©;&''ËÞ³ -q‹WX„°ÊùÉz ©SÌÄ"„U„ çŽ3ý¢)!RÓÒt×)r¬ÖO·½NÁi½`…È$¸Æ1¿²eË*_̘1£gÏž•*UªV­ÚsÏ=׫W¯3gάY³Fv¡#,.A ’pm ¡ó+_¾|Ù²eýýý;tè`¿½sçÎBˆ#GŽÈn F%&&Z,–åË—+ÿ}ýõ׃‚‚"""d·K"&mÈÇ5çh Á±ÁÁÁ¥J•²X,ö•ꜜÙ­ÓC‡Mž<¹Q£F±±±ª¼`^^Þ{ï½w×]wU¨P¡aÆo½õÖÍ›7eïeñ8ÛCFŸQè²'e—ùGO#8¢C‡W®\9zô¨ýƤ¤$!DÆ e·NRRR„S¦L‰‰‰qÿÕòòòyä‘Q£FÝqÇÏ=÷Üí·ßþÒK/=ýôÓ²÷²º<Ûà }FAOB›Ž…èÕ«—bÒ¤I/^T¶ìß¿ÿ“O> èÒ¥‹ìÖé€ÕjvW‹ºiÉ’%kÖ¬Y´hÑÊ•+g̘ñóÏ?÷íÛ÷ÓO?=vì˜ì-g{ÈÃèƒ\²Ëð‚c!5j4vìØß~ûíÁ|æ™güøãgggO:µJ•*²[§[¶léÒ¥KåÊ•7n<~üøììleû!C”ÏNo×®*÷µ}ôÑGuëÖ6l˜mËòåË­Vkýúõeƒ‚˜·!£Ï@èL×°Ní|OáFŒ´dÉ’_~ù%00°S§N#GŽÔdR‘cåÊ•}ûö­R¥JLLŒO||üªU«”‡ÆW»víiӦ͞=»eË–nþ 7nìÙ³§_¿~999{öì9pà@hhh›6mÊ—//ûÄ©’(×c3úŒB¯§Êæ@p,RïÞ½{÷î-¹÷_ Eœnܸ1vìØàààÝ»wרQCÛ¢E åѦM›?~\ѪU«¶mÛºÙ„ßÿ=;;Ûb±´k×n÷îÝÊÆÚµkþùçªôzª‡î1ôŒ…þ„ƵM“礤¤“'OΚ5KIBˆQ£FM˜0¡ÄçæääóY˜=zôÈ·åòåËBˆ%K–ôêÕkñâŵjÕÚ¼yóðáÃ{÷î}øðáÀÀ@ÙCÁ©’0ôŒEÇýi¸r£ávH5G8M¹ß¼yóæö###yîµk×”+ e-ð6½í¶Û„wÜqÇ_|Qºti!D·nÝfÍšõÄO¬X±â?ÿùìƒ!t}ª‡¾1ô;\àèG8ÍÏÏO‘ïs.}|ºÑ* ÀêÌ/qU«VB´mÛVI e‘úðáò„`ê†4 =ÃÑq—R3‚#œV¯^=!Dbbbtt´mãÞ½{y®³KÕåË— KOO·ß˜‘‘!„¨Y³¦ì#¡ãó<ô¡g8t)ô‚à§5kÖ,,,lîܹýû÷ BdddÌŸ?ß‘ç:»T-„xòÉ'§NºeË–¨¨(!D^^ÞŒ3|||:uê$õ0pž‡ Ü@mDú>›Pn4‚#œVªT©Ù³g÷íÛ722²_¿~¥J•Z¾|¹R,‘³KÕBˆgžy櫯¾êҥˀjÖ¬ùý÷ßïÙ³çÅ_¼ë®»ä}Ÿç¡WŒ;#¢WUÁŽ^ÀýzõJHHˆˆˆˆ‹‹›3gÎÕ«Wããã=ô³‚‚‚6oÞ0âŒÎ8=¬½ÔÈ:µ,U6Æ9ÃC¸¨€Qq„:-ËòåË•ÿ¾þúëAAA²Ûå8R#¼HnŒ8£3ÎiE{åFöU‚#ÔwèСɓ'7jÔ(66V•<|øð£>Z«V­5jôéÓç—_~Q»ÉÆ9½Cnæ@?{ëÔ²°T õ¥¤¤!¦L™Ò©S'÷_íçŸîÒ¥K¥J•bbb|}}—/_Þ¥K—Õ«WwìØQ¥örz‡1ÜÌÁPýL vŽPŸÕjB”-[V•—6lX@@Ào¿ýVµjU!ĤI“š7o>~üøÄÄD5k¨Ó;´Žáf†êgR#nÅR5\´eË–.]ºT®\¹qãÆãÇÏÎÎV¶2¤gÏžBˆvíÚ…††ºùSÒÒÒŽ;6lØ0%5 !*UªôüóÏ'%%íÛ·Ïí0Ôéšfa¸™ýì¬SKDÅ®X¹reß¾}«T©ããã¿jÕ*å¡qãÆÕ®]{Ú´i³gÏnÙ²¥›?èôéÓBˆàà`ûÕ«WBìß¿ÿÎ;ïtãµ9½Ã[k¦a´®¦Üˆ¨8jœEê¿ÂݸqcìØ±ÁÁÁIIIï¿ÿþ»ï¾›””ô×_)6mÚ´Y³fBˆV­ZEEE¹¹ÿ 6Bä»fÓ¦MBˆßÿݽËÙ^ÁX3 ºf@ÅQã´xJJJ:yòä¬Y³jÔ¨¡l 5jÔ„ J|nNNΚ5kŠz´Gù¶T­ZµwïÞ+V¬˜9sæÐ¡C­VëâÅ‹?øà!Ä•+W\ÝNïðÆši°«)7¢0G8íèÑ£BˆæÍ›ÛoŒŒŒtä¹×®]S®€,”µ°“Ô|péÒ¥ &(Á400pòäÉS¦L©T©’KÍ7àéZÄç{C×4œ¹ÀQ.‚#œæçç'„°XnYËöñq貇€€«“'£Ûo¿}ãÆ;vìPn¬n׮ݖ-[„µk×v¾í¤FxÍdèpÃÐp`Ö ‚#œV¯^=!Dbbbtt´mãÞ½{y®³KÕBˆß~û­bÅŠ­[·nݺµ²åÇ´X,mÚ´q²áœÛá 4“1`‡k8=Qn”Žà§5kÖ,,,lîܹýû÷ BdddÌŸ?ߑ纰T=bĈƒ&''+7S>|8>>¾[·nÊf¼s;´È€!Å1`‡k85B ŽpZ©R¥fϞݷoßÈÈÈ~ýú•*UjùòåŽ<×…¥êiÓ¦=ôÐC÷Þ{o¯^½nÞ¼ùå—_úûû¿óÎ;μ†%--ÕíÏ”ŠÅEæcÀÔ”„ã+zõê•7gΜ«W¯ÆÇÇ{ègÝÿýëÖ­«]»ögŸ}¶víÚG}ôСCÎ|´8çvxž2ÊhfbÌ3‹¶Ë¬SkG¸¨}ûö7nB¤§§W©R¥L™2¶Rb=œ-+¯K—.]ºtq驯<·C[eæcÌ>×vj„Fá.§®5ŒÆ˜ Å¡ÏafG§wx5š’aO+š/7²N­G•aOïÐÆ—)ÑíÆ¦ùð¬ Ü£âÝ!>˜’‘»Ä‡ÀFŽ(’‘»]©‘ují`©ÃEfeäÔ8‰à ;˜•Á{^åFh KÕPƒgÉà=¯“ÔÈ:µ¦ XÏ(’Á{^'©ZÃRµV„‡‡Ën€[qQ£‰<5êåF­!8jBrr²ì&è§wx#ËÄŒßù” à8ˆ¥jèšñOebÆï|"Ü@ÅúeüÓ;$`yÚÜ8­h ëÔDp€‘ÌÍýO¹îa©:eŠ3<¼Š1en¦èR#ÜFp„™â ¯bL™ý¯A¬SkKÕÐÎðP5šžYÎ)”¡‚#ôÅ,gxx ÊôÌ2ô–½\nÔÛᑉ¥jèˆYÎðð”é™e‹ *ŽÐ ³œáá ,Oƒs à‚#t3<ÔÃh‚©FËÜ£e,UCûLt†‡Ç1š`ªQ ÃÔ#80 åÉD£@Ÿ©‘r£Æ±T 3ÑIÄEBpBÜFp„–q’‡GB˜m Pntü‡êòPIÃR54Ë\'yx ãB³ ¢<†Š#´É\'yxËÓø—¹N(¤FxÁd®“<<‚A„1ô‚Ûbt¥jh 'y¸A„™n,Pn„‡Qq„¦˜î$•±< ;¦;¡è95RnÔ ‚#£0]L@qL7ôœ¡#,UC;Lwž‡š>°ÃpЉåFò¶³¨8B#8ÏÃU,OãVf<›à-GhÏóPcvLúK„ÎS#W7ê ÁÒ1óÃUŒØ1épÐyj„î!—IOõp—I+K(’IO%¤FxÁ™ôTw1pp+F„~±N­;ÜU @Wȸ•yGåF·q]`¨à¸oß¾â¿aݺu²Ûóžíá" £ù™wD"òPnÔ#CÇÇü½÷ÞËÍÍ-øPffæ˜1cF-»P˜÷l)C†Q;æ="5B§ ƒƒƒß}÷Ý~ýú8qÂ~ûúõë»uëöý÷ßשSGv!Ì|¶‡‹2(À¼ƒÂ(©‘r£N*8~÷ÝwýúõÛ¿Ïž=—-[&„¸téÒØ±cGuéÒ¥aÆ­ZµJvaÞ³=\Áò4 cÞAa”Ôý2Ô]Õ*T˜6mÚC=4qâÄ)S¦¬]»655õüùóõë×óÍ7#""d7æ=ÛÃŒÀ1ƒÊ„pתâ¨hݺõ_|Q¹rå]»v?¾Y³fß|ó ©ÐR# 0û•®$h€ƒãÏ?ÿܧOŸ‹/6iÒ$888))éÙgŸ=wîœìv ǰ<˜}P(5j¡Ü—*8^½z566vøðáçÏŸ=zôW_}õÝwß=ôÐC›7oîÖ­Û×_-»ffös>eöš gò3HhX˜aR#ôÎPÁQI‡õë×ÿꫯžyæ__߀€€·ß~{öìÙ‹%66vذa²ÛhN&?çÃaŒÆìãÂbIKM•Ýõö†r£Î*8ž?þ©§žúæ›o7nl¿½{÷î«W¯nݺõÖ­[e·Ñ„Ì~·CXžFÌ>. ´B c0Ô]ÕK—.ŒŒ,ô¡jÕª}öÙgqqq²Û ³GލG;åF¹Ë ‹J ‹Å2hÐ Ùm4JÂAaBn E† ŽÐÎü(NhX¨Œ‚s‡LÚ)7†ºÆZ™Ųˆ´Ô4Æ âÜ!„S# ƒàOàÌb1@P††ÆL” ƒ¥j^Äý(©Qc¦F­á»ƒàÕqòG(¿Püà‰†r£‘¡.¢ŠÀÐ@ÿ0hj„Á-8~ÿý÷K–,9qℵˆ·ßŽ;d·ÑÀ8ÿ£0T“P4Îÿ0nj¤Üh0† Ž?üðØ1c”¯}}}e7Çl8ÿ£0Œ Ññã¦F¡‚ãÇ,„㬛7o^½zµV­Z¤F¯cÀ­”Á @a8_ܸ©FeœŒåããpìØ±¼¼<Ùm1fر0"PFÇ- )7•q‚£¯¯ïðáÃÏŸ??oÞ<ÙmL‰B#ŠEj¼…¡S# ÌP×8víÚõôéÓ~øáŽ;z衚5k–.]:ß÷DGGËn¦‘0à_ŒK^ó3zjÔl¹ÑèÞ ;uê¤|±oß¾}ûöú=ÉÉɲ›i$!(gŠü/Ð3CÇGyDṽ¹BJÀÉÏ©Q³åF¨ÂPÁqÖ¬Y²›˜ ¡Åb€äGj„þ*8Â[˜Låi‹R¤F£T¡ïà¸téR!Ä=÷ÜS¿~}Û‹7`ÀÙ­Ö;R£é1P,H!Ì‘Y(7š¾ƒã´iÓ„S§NU‚£òßâÝÃŒ`z ‹Rs¤F˜„¾ƒãÈ‘#…Ê_xáÙ-Œ‹ÕG‹R8Ó¤FÊ&¡ïàøÜsÏÙÿ÷?ÿù쥣óQ,HáL“aúŽð"æ³¢Ž„’pv(œ™R£öËfê Ï"8ÂÌ fEÏ£$Œ‘™)§h?5BEGE  X£‹d¦Ô³!8¢DÄó! $œŠd²ÔH¹ÑlŽ(³ƒùÐç( c¤H¤FM2Y·xÁÅ`v0úÅ¢]â LÀàÁÑjµ&$$œ9sæÎ;Œ”Ý@ÃH( ¿VÇ|©Q/åF¨ËhÁ1!!aþüù;wV>|Ò¤I+V¬PЉ‰yõÕW-‹ì6ês„™ÐÛ( c¤8æK0-Ù PÓîÝ»Ÿyæ™#GŽäåå !:´bÅŠ€€€þýû׬YsÙ²e ²Û¨ÌfBo£XÆHñL™uTn4eÿx¡*Ž}ô‘Õj8qbLLŒbÆ Bˆ7ß|³S§N'NœxðÁ?ÿüóN:Én& ,O£$DƘ2•è(5Bu†ª8=z´Zµjƒ *Uª”bçÎ¥K—nß¾½¢nݺwÜqGjjª /›žžÞ¼yóñãÇËÞ?¯a¦0¥ŸéjsA L™ar† Ž—.] R¾ÎÉÉ9tèPÓ¦MK—.­l)W®Üùóç}M«ÕúÒK/ýõ×_²wÎk˜)L€¥G”„1R2³¦FÊ&g¨àX½zõ3gÎäææ !’’’þþûï{ï½Wy(//ïÌ™3·ß~»³¯ù¿ÿýo×®]²÷ P…F”„1R2R£N˜µ£<ÈPÁ±eË–—.]z÷ÝwÏž=ûî»ï !¢¢¢”‡>ýôÓ‹/Ö«WÏ©ø cÇŽ»v튈ˆP>»±oß¾³fÍB :ÔñWËÉÉyñÅ'L˜ {ϼƒLah,=¢$ÊIMK“Ým3qjÔ]¹ž`¨àX£FåË—GGGW«V­]»vo¿ý¶ò©çÏŸ¯X±âŒ3Zµjåø«½û~óÍ7+V¬({Ï÷°ôˆ’0FJf±e·òêãx„õë×_´hQ¾qqq!!!>>N¤ä½{÷~ôÑGlÓ¦ÍÁƒmFxxx¾-ëÖ­“}lŠ–––*„a+ gΜ‘ÝiBÃBÓRÓ4Ø·fî­ MMû§ÒH¿*4,,Mù\YMtJ¨HÓ[5:,,45UV?øàƒ²÷F+Œ—.]:pàÀï¿ÿ^½zõ¶mÛ–)SƩԘ••õâ‹/ÖªUkܸq®5 99Yö1pŠEkh¨ìVxX¨á÷° ?¦1ThtßÍØ)óåi×ôK~‹°Zå¹òO¹Q‡ãB­ãVpZ/X!2 £Ç .|ðÁ+V¬ÈÊÊB<ùä“mÛ¶íÕ«W“&MÞ|óÍÀÀ@G^dæÌ™gΜY¶l™¿¿¿ì\Å( cÄ!&^žþç°H ;†ºÆñæÍ›Ï<óL\\\ÅŠ{õêeÛ¼iÓ¦Ç\I“ÅÛµkײeËFŒq×]wÉÞ!ï`î0îƒAI#Ž2}jÔ/ºÎC -Z´wïÞûî»oݺu3f̰mÿòË/{ôèqâĉ%K–”ø"ÇŽB,X° ü_>ú¨bÕªUááá?ü°ì½Ts‡ápJÂqуr# 0ÔRõ®]»|}}ßxãråÊÙo÷õõ}å•W6nܸ~ýú#Fÿ"uêÔéÖ­›ý–Ë—/oݺµzõê‘‘‘ÕªU“½—@ÑøE%aŒ8ŠÔHjDa >jû«ƒö*T¨vâĉ_¤]»víÚµ³ßrðàÁ­[·¶hÑBù0Ha1ÿ»Ç(cÄ ¤FR#Š`¨àpíÚµ¢ÍÌ̼í¶Ûd·Q;HBg¢$Œ'õ>ôC]ãØ¸qãßÿ}ß¾}:|øðÙ³g5j$»€ÚH(÷Á8ÁÜñ}Ë‘ Üˆ"*8öë×Ïb±Œ7.ßGv|øG}ô裆…… !~øá‡_~ùåøñãyyy½zõzàd·Q Ȇ@7¢$Œ'Phü—R#éQ† ŽBˆ^x¡yóæ3gÎLMMBœ={Vqûí·;Öþ“㔄1â‚à0£G!D‡:tè™™™šššVµjUÙÒj:G¢$Œçí ÜO3`pT6oÞ\v+U‘P, N#5Ú1Fj¤K=ÍPÁ±U«V%~ÏŽ;d7S"r‡n‘PÞÞαX„D c¤Fx¡‚ã•+Wòm±Z­yyyÊ×ÕªU+ô³ÁMƒiE·è:‹_+œFU p•¡‚ã¡C‡òmÉÍÍMOO߸qã|pãÆ)S¦Èn#à$R#ŠÅq©±Êpœ¡>DZ __ßZµj :ôÝwß½|ùòóÏ?o5éù‚ÉE‡ø˜F‹â RcFJt¯<8Ú´jÕª^½z§OŸ>}ú´ì¶àƒ›Q,ˆ+ˆ)5Â;Ì…ÁÁÁBˆ*UªÈnˆ÷Q•Ðz Åb€8¿%¨ÄP×8ãúõë‡ *_¾¼ì¶xSŒ®p›ŠÅq‘±+7ÒÏÞa¨à¸}ûöB·gffÆÅÅ]¼x±sçβÛb1@\Aš(‚ÁR#¼ÆPÁqðàÁÅß»h†LüŽà5† ޳fÍ’ÝMaºÑz E£Ðè"Bà1† ްCÑýÉÁ—^z©cÇŽ²[³" F‡;H€wé»âXPffæ?þxòäÉ|Û³²²6nÜèëë+»žÆ¤=,@¢ ·pQ£cŒ]näï3Tp}?ûì3Ùm„ (Ñ€ÓnÅM0îRbIÁfHÅPG!„ÏÿEáÚµk§¥¥)_ûúú†‡‡ïÛ·Ov=„ùH(4¢¼EÝEqÉa¤Fx”¡*ŽÕªU;qâĵk×”ÿÖªUkÏž=¶G-Ë™3gd·ÆE¡…¡Ðè.‹…Ôè8ó¤F…,† Ž;wÎÊÊzá…Ž?.„hѢũS§¶nÝ*„8þ|bbb5d·Ñ˜•4€N@aømÂ],O;Ã<©j©zРAëׯOHH°Z­ .ŒŠŠòóó{î¹çš5kväÈ‘ëׯwíÚUva8,O£0Œ PSBªâ´téÒ±cÇFDD!jÔ¨1iÒ¤ìììmÛ¶]¸p¡S§NC‡•ÝFÕQé’Š‚ °0.ÜÇò´ó(7Â; UqÌÉÉ 1b„mKLLL÷îÝ÷ïß_µjÕ°°0Ù „±ÚQƒBDFç‘á5†ª8FEE½õÖ[)))ö+T¨Ðºukƒ¦F&)I¸ß0(T@¡Ñ%fKŒ¹ /\¸ðÉ'ŸtëÖíñÇÿꫯl·Wjb0(TÀ}0.1[j„t† Ž+V¬Ý»woÙ²¥Qoúaó00þÅoª¡Ðè¶°Ð03§FhŠ¡‚ã믿.» Ð3R#þÅXP •"·Y„%5-U„Ên‡Ä#À Ò£Væ'‘ „àUÄ'{«Áä+ÔÐ CUŽéÌ3X’„‚ ."£H‚¡¤=G˜iB‚Џ¢Q%¤FhÁQ/˜×<€ƒ ê¢:¤R#4‹àS",€Q . ê!5Úð›ˆuʘª8œ`¨‹é]=¤FhÁ&C^0= j¢Ð¨*R£=~Ñ&‚£ö‘tTB^0=†€Ê˜ØUEj„.a ¡a¡œMŽßÀÔD¡QUaBíñ[‰fñà0‹HKM“ÝHÃgz«L™Ò™ÕU¢IÐ ‚£Æ1ß¹Chb¶ÈÈP Fm,OŠQ¦e,Uø¸¢ÍÜø•AeLæj#5BŽZÆÄ瞉ñ+ƒÊ¸¢ÑHEá7#8ˆHfEdTÓ¸¡_G©Ñ¬èy•Qhô Rc1ø=EûŽšÅ$è<ÊMfEÏ« Ü3HÐ;‚#Œ‚¤mJDFÕ…†… A¡Q}|Xc‰ømEø8m"9‰f>|ÔŽú,a±¤¥¦2{«Žk,©Q/ŽÐ9>ÜÙ”ˆŒêãc½=†åi KÕÐ3"£ù°6­>n‚ñ$R£#(7êÁQƒHCŽá8™ ‘Q}DF#5ÂxŽÐ'R£™=‚"'q+Œã‰úBp„Þ"L†ßÔG¡ÑÃ(4ÂÀŽZÃ,Y,™ð;‚GPÞñ0R£SºCp„~MƒÈè=ÔÃ#8j ɨhÓ «ÕGdô R£³(7êÁz@”0 ÁäìyÜ ã¦N¡mD s Ÿ=‚B£WPh„©µƒªZ 2z‘Ñ[H®¡Ü¨_Gh©ÑèÂBCì ÌÉÞBj„ ñ·ª¡I¤F£³‘š–F'«Ìb!5z‡EXH.cêÁQ#Jÿ²p0 Žö[ddBö<%2’]CjÔ;–ª¡% CãrFàrFï¢Ð“#8B3HÆEdôª7^Ägî¸kG- 1q ŒŒ¾õ ÞE¡Ñ}¤Fc 8BHE¡Ñ#ˆŒ^GjlŽÔhDDF 2zËÓj¡ÜhGéLœ›FD¯z ¯×QhT ƒ×HŽÄÄÙ¨ˆŒžB¡QR#P(‚#d 5]êDFXžVåFƒ!8ÂëˆÆB¡Ñ#ˆŒ’PhT©ÑxŽr™/C™o ŒÈè)L¶2PhAp„‘‚Èè)%¡Ðè üdHGxAÃ(èIO!2ÊCjôR£Q%2MýÍ4;jxô¤GåaypÁFÖ0 Ad”ŠB£çPn40‚#<‰Ô¨DFOaj•‡B£G1´à!5ê‘ÑS(4JE¡Ñ£H†Gp”Åè©ÊèûglDFO!2JE¡pÁ@jÔ3zÏ#ˆŒ²QhôÊf@p„ª(Ué½çDFÙ(4z©Ñ$ŽP¥*Ý"2z‘Q(4z©Ñ<ŽR1aqŸÌ€ÈèDF  ÐxÁj 5ê‘Ñ#ˆŒÚ@¡Ñ›(7š Án#5ê ‘ÑS˜?5€B£—1ê͆à÷õ†ó Ú@¡ÑËH&Dpô>MÜÚ3 ÐèDFm Ðè}¤Fs"8ÂU¤Fý 2z‘Q3(4^Cp„KH:Adô"£fPh”…r£iá"£öPhÔR#ìQR£öÕGdÔ"£¦‘Á…!5j}¢2"£öµ†Ôˆ‚Ž(€„¢1UFdÔ$.gÔR# EpôÄ14Ó$ˆŒ*#2j…F "5¢(GØ!5j‘QeDFM"2j©Å 8â_¤Fm 2ªŒÈ¨IDFÍ"5¢xÇÂeee-_¾|ÅŠgΜ¹í¶Û4h0tèжmÛÊn—Ç5€È¨2"£Vq9£f‘Q"‚c!rrr¼wïÞ€€€Ö­[ÿý÷ß;wîܺuë¨Q£ž}öYÙ­óR£lDF•µŠB£–‘á‚c!¾üò˽{÷6oÞü“O>ñ÷÷B;vlàÀï¿ÿ~ÇŽ5jäüKj8ši¸if@dT‘Q«ˆŒGj„ƒ|d7@‹Ö­['„˜8q¢’…õë×úé§sss·mÛ&»uª"5J¥~z@Ë?S³ŸÆX„EY›&5j©Ž£âXˆ´´´òåË7iÒÄ~cýúõ…§OŸ–Ý:…F5QeÔ*ªŒº@j„SŽ…X´h‘Ÿ_þ#sðàA!D­Zµd·N=”e 2ª‰È¨aÜ£ ¤F8‹àXˆÆçÛ²cÇŽ?ü°L™2={ötäÂÃÃíÿ›œ,ÒÒÒdïÖ-BÃBÓRÓ„¶åAgΜ‘Ý*„HMKÂ<¾8.wJhX˜òEZjªBhìÍ¥wî¿YÂBÄ©¦:Åx˜‡Î`aa¡©©Z›4êÁ”Ý­ 8– 77wéÒ¥o½õVnnîœ9s‚‚‚yVrrò­,¡¡¡²wž9BXE¨ÐR“‚£!zÜ@¡ÑE:t‚ÈhT¤FHApÔ?R£«ˆŒ."2êåŸNd4 Þ‚ˆà3"2ºˆùJ(1…FÈEpÔ9ÊN"2º‚ u‚Èhx¤FHGpÔ3R£3ˆŒ® Ä¨DFÃã½ 8ê©Ña¡¡-ç0Mé‘Ñ ÂÂBy/B#ø[Õ08å/M§¦¥ÉnˆNð§¥uâß~âLŸÅ"RS9ƒA+ŽžãÉ’ åFXþ=N*‡ØçE"£†ÙçE"£±ÙÞ”€v°T­C¤Æ’p9£sX•Ö V¥M…Èm"8ê ©±XDFçu‚Èh*¼/¡eG‘Ñ |¼ŽNð!Þ&D¡GpÔÊEàÀ8ŠR†NPb4!ÞЂ£~Ž C¡ÑQLJ:Ad4' Ð ‚#ôŠÈèV¥u‚UiÓâw:è ÁQ'(7Ú!2:„éH'(1š…FèÁQHÿ"2:„Ȩ”MŽ·)tŠà¨y¤Æq$JÀª´NPb…FèÁ:@¡±Ô.t‚ÈÞ¬Ð;‚£¶™¾ÈFd,³°* Á›FAp„F‹Ãª´NPb„‚µiÁÑCÔ(šµÜHd,U = ÄÞ²0‚£V™85šr¿KB‰Q'(1†ÈC"8B+(4ŽÉG(1"Ö¦aTGM2YÙÈX8"£PbD>¼qalGí1Sj$2‚Ui= Äˆ‚ˆŒ0‚#¤1SBv ÓŽæ‘Q(Þ»0‚£Æ˜#LQh¼%F=`IEárF˜ Á^Ed¼e ͣĈbð† µÄèåF£ïŸ3˜p4#ŠÁ;¦Ep„7Phü«ÒšG‰Å#2Â䎚aÐr‘ñÌ6ÚF^D‰x‚àÏ!2 A‰QX’F‰ˆŒ€ ÁQ Wn4ܹp˜j4#Áûȇà¨Æ Y™j´Œ¼ñ> Ep„jÌY•Ö0ò"GdŠAp”Í(åF£ì‡k;Ï<£QäE8…·2P"‚#ÜeÞB#%F ã–8…È8ˆà(•ÎËtfŒL2ÚC‰ÎâÝ 8…àé<ôº¶Ï”5м=Äȧ"3™a4‰¼×ð†\Fp”G‡%;ÓEFJŒšD^„ˈŒ€›Žp”ƒ®;{Ëô¢9äE¸Œßµ%ÑU 3W¡‘Ȩ1äE¸ƒ74 .‚#J «ˆëÎ~R‘Ðò"ÜDd<à(ƒN²˜Y L/ZB^„ûxOžCpD!L)1j yîã= xÁÑë4_nÔ|ÝßCÊZA^„*xO^CpÄÿ1x¡‘r„fü“CÉ‹p‘ð2‚#þaäB£Å*˜[äËW_LKK¡²Û}â×@@Ù 0M¦3‹FÛåþŽYþùgµ¦¥¦ÊnyýÛ «°*ÿd·:öï{úŸ¼ŒŠ£Ù62 j’qý"TD‰Ð‚£yóŠF"£läE¨ˆ¼h ÁÑ‹´TÜÓR[TÙ¦ÉÈ‹P¿ÚDp4£™^¤"/B]ühÁÑ\ŒShdz‘Çyêáw@@ŽÞ";²§ÐÈô" ÅEx¿úBp4Ù©U•}`z‘ƒ¼Oà èÁÑøtŸ)1Ê@^„'½#8z…¤ì¦ïåif¯ãâExïfÀ0ކ¥ãB#%F!/ÆCp4 ‰Œ^D^„‡#8zžwKº,42Ïx ‹ÑðÞÇ€ E©‘£WP\„çS!8„Ζ§™j<â"<Š71`NG#ÐS¡‘£‡Q\„G‘“#8z˜ç3>R#³'Q\„§ñ  8ê˜>–§)1z ÅExy@>G½ÒA¡‘Èèáiaa¡¶¯yûÈÇGvà M§F‹åŸV+ÓŽZþ=¦ë?‡ÕJj„ºloÜÔÔ4Û €|Žžä™|§ÝÔhŸ™sÜfù¿©ÜBX„'X,ùÑã  x,Uë‰v/jdUZ=\¹OãÊE.#8ê† Ì?*áÊExšåÿ†ïW®#8êƒæR#%F·áür@]GÐPjdra^@q€ç=F¥¸§•ÔH‰Ñ \¶O#,ð‚£¦i"5]BqžFXà}G’5«ÒÎ#,ÂÓ‹ä"8j‘äB#%Fgái„EÚApÔ™©‘Èè0.[„GhÁQ[¤¥F"£(.£‹´à¨!R#2–„°",Ђ£g8Ÿ½)1°ϱOŠ‚· ½!8j‚WS#‘±0„ExeE†Ap”Ï{©‘Èx+Â"<„²"£"8Jæ¥ÔHdüaž@R`G™<ž¹÷E9 Â"Bÿ=„E¨¤Àœ|d7ža±‹EX­ÿü3Ë?‡Àb«°¦¦¥*ÇBv» WË-ÿlï-³¾Ã˜Gi„®#8jƒ†##eEîY!ŽåP¹Q“‘‘²¢iQDƒà(•f.g¤¬h*E¥CA@‹àè)%”eIІG:¨Žà(ƒ¤B# ÐÆC:xÁÑ»¼[h¤¬hÅDCA:xÁÑ# _§ö|¡‘¤¨GDC€^½Å3©‘¤¨}ÅçBA4èÁÑóÔ^žæREí(1 r!À@|d7@»¾úê«>}úDFF¶mÛ666633Óñçþ_TP îe‹°Øÿ³þóŠVR£ã|ðAÇ¿ÙbqôŸÕZò?Å©N×Ð/D§@;¨8nÞ¼y .,_¾|Ë–-Ož<ùõ×_;vlÉ’%þþþN¼Š«ËÓ,@{‚#ÕAi€BQq,Drrò‡~XµjÕuëÖ}øá‡ëׯ4hо}ûfÏžíÄ«8“‹©)’ åxQPùwôh²#ÕAj„ƒàXˆ/¿ü2//o̘1ÁÁÁÊ– &|ÿý÷yyy½DI©‘¤øÏqp2ÿ9µFlÿ¯AƒpÙû €î ±{÷nŸèèhÛ__ߨ¨¨ .$%%¹öšFJŠ.§=÷óEA$"8ægµZSRR*W®\¹reûí 4Bœ>}ÚÁWñNRT1Ãy!í‘ÿÐ5nŽÉïúõë¹¹¹•*UÊ·= @qñâEG^Ä",Âb½u‹GHY ×çªo¸NÛmhtŠ6Ñ/D§@#Žùeee !Ê—/Ÿo{… „—/_.ñ’““…ÞZNöîáæÅRu~•*U²X,ׯ_Ï·ý¯¿þÿÖLˆà˜ŸŸŸ_@@@ÁÊâ•+W„¶û¬̆àXˆªU«^¸pAIŠ6iiiÊC²[ Á±:uÊÍÍýùçŸm[¬VëæÍ›###e·@‚c!úôéãããóÞ{ï)×5 !>üðÃóçÏ÷îÝ»T©R²[ ‡ÅʇéæÓO?9sf5Ú·oòäÉ;v4nÜøÓO?-ø1=&Ap,ÒêÕ«¿ýöÛ}ûö…„„ÜsÏ=cÆŒQ>‘ÀœŽp×8À!G8„à‡à‚#Bp€CŽpÁQ5_}õUŸ>}"##Û¶m›™™)»E&âìÁÏÊÊúßÿþ÷ðÃß}÷ÝíÛ·6lضmÛdï„ѸóŽHOOoÞ¼ùøñãeï„ѸÐ)û÷ïî¹ç:tèвeËîܹSöN³’ýÑG=ú裑‘‘;v=zô±cÇdï„餦¦†‡‡ÿöÛo²"ÁQóæÍ›4iÒñãÇ[¶lY¡B…¯¿þú©§žÊÊÊ’Ý.Spöàçää <øÍ7ßüóÏ?[·n]¯^½;w:ôý÷ß—½+ÆáÎ;Âjµ¾ôÒK¶¿µ¸Ð) 111 ÁÁÁ‘‘‘¿þúë AƒdïŠq8Û)¹¹¹O>ùäìÙ³333Û·o_£Fõë×÷èÑc÷îݲwÅ\âââd7A+ÜväÈ‘† ¶oßþܹsÊ–×_½AƒÓ¦M“Ý4ãsáà/]º´Aƒ111ׯ_W¶=zôž{îiԨѡC‡dï¸ùŽøôÓO4hРAƒ^xAö®‡ réÒ¥-ZÜu×]{öìQ¶üöÛoM›6mÓ¦Mnn®ì2—O_£G¾yó¦²å—_~iÔ¨Ñý÷ß/{oLáòåË»wï~å•W”sÔÞ½{e·H*Ž*øòË/óòòÆŒ¬l™0aB@@À÷ߟ——'»uçÂÁ_·nbâĉþþþÊ–úõë?ýôÓ¹¹¹,X«ÂwıcÇæÍ›×°aCÙ;a4.tÊ×_}åÊ•§Ÿ~ºyóæÊ–;ï¼ó¡‡:þüþýûeï¸Ð)IIIBˆ'Ÿ|ÒÏÏOÙÒºuëF8qââÅ‹²wÈøºwï>`À€/¾øBvCd"8ª`÷îÝ>>>ÑÑѶ-¾¾¾QQQ.\PÞäð~ZZZùòå›4ib¿±~ýúBˆÓ§OËÞ!#pù‘““óâ‹/N˜0AöN ²eË‹ÅÒ³gOûo½õVrrò]wÝ%{‡ŒÀ…N BØgD«ÕzéÒ%[”„çLŸ>}Á‚ ,hÓ¦ì¶HÃ8s—ÕjMII©\¹råÊ•í·7hÐ@qúôé-ZÈn£a¹vð-ZTð {ðàA!D­Zµdï“î¹óŽx÷Ýw>üé§ŸV¬XQö~ŠkràÀÀÀÀjÕªíÙ³ç×_½téRÆ ;wîl+ÕîuÊÃ?¼dÉ’éÓ§—+Wîî»ïÎÌÌ\°`Á™3gúõëÇ»Æ Úµk§|±iÓ&Ùm‘†àè®ë×¯çææVªT)ßö€€qëï…Pk¿qãÆù¶ìرãÃ?,S¦L¾â \àò;bïÞ½}ôÑÀÛ´i£äx¨Å…NÉÎξzõj½zõ¦L™²lÙ2ÛöZµj½ýöÛM›6•½OºçÚ;%<<<..nðàÁƒ¶m8p`ll¬ì‚Y°Tí.åö·òåËçÛ^¡B!ÄåË—e7ÐÈÜ?ø¹¹¹K–,>|øõë×g̘${ŸtϵNÉÊÊzñÅkÕª5nÜ8Ù{`@.tÊÕ«W…)))k×®9sæÎ;7oÞ%aOp¶SêÔ©ÓíVÊ­‹Õ«WïÖ­[TT”ì2Þ):t¸råÊÑ£Gí7*ÃmªÂÙN©[·®¯¯ï±cǬV«ýöääd!D½zõdïÌAö'ÁÙ³g6løàƒ^½zUÙ²pá ¼õÖ[²›f|Žü¿þú+55õôéÓV«5//¯sçÎÍ›7ÏÊÊ’ÝvÃr¶S :pà9F].tÊ¡C‡4hЧOŸ .([öíÛÙ²eËóçÏËÞ!#p¡SFŒÑ Aƒ·ß~ÛöÇ{Ž=ÚªU«¦M›¦¤¤ÈÞ!™8q¢iÿr 7Ǩ zõêãÇŸ9sæ#<Ò¾}û“'OîØ±£I“&ÿùÏd7Íø9ø›7o~þùçëׯÿÝwßeddœ:uÊßßÀ€_­W¯^”½Oºçl§Èn¯)¸Ð)5;vìܹs|ðÁ-Z\¿~}÷îÝ‹eúôéUªT‘½CFàB§¼þúë=öØ‚ Ö®]Û¸qã .$&&æååMš4éŽ;î½C0‚£:†zûí·ûí·k×® 8pà˜1c”OU€§9uðÏœ9#„ÈÊÊ:pà@ÁG¹EF-¼#4È…N1bDPPÐ’%K~ùå—ÀÀÀN:9Rù3KP…³´víÚ… nݺõ§Ÿ~ ¼ï¾ûþûßÿFDDÈÞ˜…Åzë¥@¡¸9!8À!G8„à‡à‚#Bp€CŽpÁ!8À!G8„àÿgüøñáááÛ·o÷ÚK½÷Þ{áááK—.µÖO?ýTè£ ÁôdëÖ­›7o–Ý &å'»`j:t jÞ¼¹ƒ¾ð W®\9tèì†0#‚#ÈÔ¤I“&Mš¸ö(xKÕt)777''Gv+À\ŽtC¹qäøñ㯽öZ‹-š4i=räÈ|7 (ß–žž¾wïÞÞ½{ßyçgΜ±=ºvíÚ§Ÿ~ú¾ûîkÕªÕàÁƒ?ùä“ÜÜÜ‚?këÖ­£GŽŠŠŠŠŠúïÿ»eË–|ßpþüù¹sçvíÚµY³fÍš5ëÖ­ÛŒ3Î;çìK}ôÑGÅÜþbÿè[o½ž™™™››ŸïYsçÎ Ÿ3gŽì`4G:3qâÄøøø¿ÿþ»N:™™™6l:tèÇœïÛ>Ù¿… Z·nýÄO´nݺÄ'úøøÌž=;::zõêÕGŽùóÏ?ï¹çž¨¨¨Áƒ+÷ÇØ|öÙgëÖ­ûñÇ<xß}÷ 2Ä>Í™3çÓO?]»víž={jÖ¬5dÈúõëçææ®^½z÷îÝŽ¿”³&L˜0}úôãÇÿý÷ß¶Í›7¿ýöÛ322(7ð(K1w€¦Œ?~ÕªU‹-ŠŽŽ–ÝmÉËËëÔ©Óï¿ÿþã?Ö¨QCvs×8€îýòË/ééé-[¶$5ð(‚#è[VVÖ¼yó„½{÷–ÝÇ5Ž c-[¶üû￳³³ëÕ«§ü±lð‚#ÝèÚµkƒ þ?3 9uêTTTÔ´iÓòÝâªãæ8„kà‚#Bp€CŽpÁùÿ¢dþdzË*IEND®B`‚statistics-release-1.6.3/docs/assets/chi2pdf_101.png000066400000000000000000000704261456127120000222000ustar00rootroot00000000000000‰PNG  IHDRhŽ\­ApÝIDATxÚíÝy\TeÿÿñkXTÔdApIH%q)DÊÜmÑÌ-5Ô¬Ôö4Ó,Ò¼]²Åܲ,·¾Þ·J™[ùs7ËrKsÁ%7ÁÝÜP18¿?ŽŽã0Àfæl¯çƒÇ}gæÌ\×wŸk‹$I(ˆ‡Ú €> ÁŠ ÁŠ Á@QܸqcêÔ©O<ñD¥J•J•*U£F¶mÛŽ?þúõëv6l˜Åb±X,;vÌÿ9§M›&?2&&Fíþi×'Ÿ|"_¥§Ÿ~:¯ÇìÛ·ÏâÈ}÷Ýýꫯžúè£Ã† KKKSø¶¬öÕàdG…¶cÇŽ|ð7ÞX³fÍéÓ§oܸ‘œœ¼bÅŠ÷Þ{¯FË—/W»pìêÕ«‰‰‰3fÌxðÁ׬Y“ÿƒ³³³ÏŸ?¿uëÖÑ£GGDDlÙ²EíæPŸ—Ú  3III-Z´¸zõªõˆ——WVV–|ûÔ©S]»výóÏ?zè¡Â>ó}÷ÝW­Z5!DHHˆÚ½4Žàà`!Ä­[·Îœ9“““#„¸víÚ«¯¾ºwïÞ2eÊäõøk×®Y /^ìÒ¥KrrrÉ’%óy ;þþþj÷€“QqP8ï½÷ž55¾üòË»víú÷ßOŸ>ýÝwßÝwß}BˆÌÌÌnݺá™»wïžšššššºdɵ{ißÿ½|UOž>~æÌ™=ô§§gHHHŸ>}æÎ+ß•””tèСܧ_¸paРAÑÑÑeË–}øá‡ÿûßÿÚ~êi¡æ8ÞºukêÔ©Mš4 -[¶lݺu_xá…Ý»wç~drrrïÞ½kÔ¨Q¹råîÝ»ïÙ³'÷4Á¼&bÆÅÅåž®—““óã?>þøã÷ß©R¥î¿ÿþ-ZÌš5ëÖ­[ÖÇØ>aVVÖþóŸÊ•+ÿç?ÿ±>àìÙ³ï¼óN£Fî»ï¾x sçΉ‰‰¹üøñnݺV¬X±S§NÛ¶m+ÎÛW¶lÙÉ“'{{{Ëßùdq@ר8(„M›6É7:uêT¶lÙÜX¾|ùÎ;wîÜÙ¹sg»»þøãƒ†‡‡GEEyzzÊ?üðÛ7o¶£G–S£Oûöíûõë÷è£ !$Izçw¬ÙôÚµkÏ?ÿ¼¼¼¼6løÀ\¼xqñâÅE¾óçÏ—S£ÅbiÙ²e¯^½êÔ©#ßµpáÂ܃¿Û·o—S£UFFÆóÏ?/§Æ–-[Ž1"..ÎÃÃC’¤ &Ìœ9S~ØÍ›7Ÿ{î995ʯV­Ú•+WV¬XQœwðÒ¥KÖÀZ£F %§4kÖ¬D‰òmÛ°À„Ž”ºuë–5s„‡‡á&MštäÈ‘ÄÄDk–ºqãÆ û<¿ÿþ»|cèС‹/þꫯ¶lÙÒºuk!DVVÖ¯¿þj}9¹Áåʕ۴iÓæÍ›“““‹9ñnÕªUòþöÛo³fÍúûï¿£££åƒ;vì°{üÉ“'###¶lÙ"Ï3fŒ¼èä¹çžûí·ß†þÃ?Lš4I~üÈ‘#åß}÷ݱcÇ„÷Ýw߯7oÞœšš:`À€"·<++ëàÁƒ={öÌÎΖ<üðÃJN´X,+V”o[ËŸ¶Zµj•{/ž"’hCÕ”ÊÈȰÞ -ìéµjÕêß¿¿|»}ûöֵ؇.ìlën‘sæÌ iÛ¶mppðœ9sÒÓÓ…åË——ïµVûõë÷È#È·G•püøñ¢]„nÝºÅÆÆ !š5kf½,™™™òí܃¿¥K—^³fíå²FÏW^yÅzðå—_0`@vvöñãÇ÷ìÙS¯^=ë„Qk=U1f̘~øáܹsÊܪU+‡ÇŸ}öÙúõë+|’òåËËWÌög€ Qq ”¼hZ–{GèÙŒ–-[¶R¥JòmkÌŽu­ŒUTT”|—uš]RRRŸ>}BBB¢££¿þúëk×®Õ®]ÛZ³.бÝ+ÛÓÓSN~Eóä“OöèÑ£M›6›6mzï½÷bcc+W®œOÑ4**Ê.d[[õä“OZ»V¶lYëu8|øp^/Q¢ÄO¡]ã«T©R¨Ûn²èååÙ¨Q£wÞy§T©RÊŸÄ:BœûÞï¿ÿ¾8Y€ŽPqP5’o,]ºÔv÷«|000000pêÔ©®k†··÷äÉ“ÓÒÒæÍ›×£GÛ¦7lØ oS®\9ëòëÔLY¡†zí|òÉ'&LÈÊÊ ÿöÛowïÞ‘‘Ñ®]»¼o—Ë•+g-ÜþòË/ÉŽÄÅÅùøøXףص֚†²ÝdñðáÃÿïÿý¿>ø P©qãÆÖLÖæDpPÖiyÇŸ6mšÝ½Ë–-³–¦Š¹å¢W¯^ÿÜK^õrãÆ³gÏž={öÆ]»vMHH8wîÜš5k¬™fýúõòêÕ«Ë7~ùåëÓæääX×ÖXYãÝ¥K—l玘ß~û­|ã›o¾yã7êÕ«çååe÷ÑÏù³¶*++ëþþþ~~~~~~>>>žžžaaaòÃV¯^m=W’¤?þø£˜¶°¬ƒÚeÊ”iܸ±›_€¦Â3Ïb‘ùøøßK^õràÀŠ+V¬X1$$äÈ‘#B//¯V­ZõéÓG>ÑÏÏO¾Ñ¶m[ùƤI“vîÜ)ßþøã“““í^Ë:þû×_Y'þôÓOv)íÊ•+òH½°‰˜;vìpø,y±^ÀéÓ§[wv\´hQùòåå=w„ 4ïúꫯ¬{ƒúé§û÷ïwÒ›Y°þùçÕW_]¸p¡üí /¼`;Ï€ 1Ç@áL˜0áÑG½~ýº$IÇ>|x``àÅ‹­k;J•*µpáBëNNW¯^½ààà³gÏfee5iÒä™gž 8zô¨õƒ ­Ÿt2hРɓ'_¾|ùÒ¥K=öØ£>zîÜ9‡—bÝOçúõëQQQQQQéééIIIv+[¶lÙ²eåIŠò'åX,–U«V9µÏˇ~øÝwßÉÛI¶lÙ²yóæûöí[¾|¹|ïÀåe%ƒþá‡$I²6>--­ÀÏz)¾^½z•.]ZqíÚ5ù¿ d*Tøøã]ýê4ŽŠ#€Â©[·®Ýþ2éééÖÔX­ZµE‹)Ü °h<<</^,/øøçŸ¾ûî»/¾øbþüùÿþû¯¢E‹ï¿ÿ¾üHÿ„„y¦ã7Ö¯_ðàÁR¥J=÷ÜsvÏY¿~ýçŸ^¾™™¹iÓ¦¤¤¤ððp»½l,‹µŠ™™™¹dÉ’ÿ÷ÿþ_¥J•üqù mÒÊ‹¿¿ÿ¬Y³ä²èü1räÈ… Ê ½þúë#FŒöÐCY+¸7oÞܰaÃÁƒË”)ã”UÕù8}ú´<ÕÒ¶/K–,±[èÀ„Ž ­qãÆ‡ž8qbóæÍƒ‚‚J–,ñì³ÏNœ8ñàÁƒmÚ´qu6l˜œœù裄O=õÔÊ•+ {ú­[·–-[&lÆÄ]jûöí¿ÿþûk¯½æpEp'æ8@áx{{»'2Ê4h`](êb¨Š Áа8ŠPq€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"^j7ÀM,X0þüäääÒ¥K7oÞ|ðàÁþþþù<þ¹çžûûï¿ínÚ´Ií®¨ÃÁqâĉS§N-S¦LLḺcÇ-ZtøðáÙ³gûøøäuÊñãÇ}||ªU«f{ÐÏÏOí®¨Æ"I’Úmp­¤¤¤:T¨PaáÂ…AAABˆO>ùdöìÙ={ö6l˜ÃS222bbbž~úé/¿üRíæh…ñç8Ο??''gÀ€rjBÄÇÇûúú®\¹2''Çá)ÇBØ•LÎøÁqÛ¶m-Z´°ñôôlÖ¬ÙùóçžrìØ1!Äý÷߯vÛ4ÄàÁQ’¤ää䀀€€€Ûã5kÖBœ8qÂáYrps³fÍFŽ©vÿ …àÔ”œœ,„1bD\\œŸvçΛ6mR»sFã¥v€©I’$„(Uª”Sž-++kíÚµþùç·ß~›““£vçŒ†Š£»¹b´š=À·~ýúÖ­[DFF<øæÍ›òñ—_~¹C‡Bˆ&Mš„……ÿ…Ο?ÿä“OŽ92--MíNGàZ?ýôS×®]Ë—/çáá‘°dÉù®AƒU­ZuÔ¨QãÆ‹‰‰)þkË%̤¤¤|Pí® ÁƒPwôI’¿qãÆÀƒ‚‚¶mÛV©R%!Ä!C4h ß[§N#GŽ!6lظqc5;Ž*G«%!ÿ©°’4ù‡%11ñرccÇŽ•S£"$$¤ÿþñññž›••µ|ùò¼îmß¾½Ú3‚#p¡C‡ !¢££mFEE)9÷Úµkò H‡$m&eC#8òòòBXîG÷ðP´<×××—t¨)Gu0Z 0‰êÕ« !vìØÑ¢E ëÁ]»v)9—¡j­!8ª_¿~xxø„ ºwï"„HKK›4i’’sªÖ‚#p!ooïqãÆuíÚ5**ª[·nÞÞÞóæÍS¸É"CÕZÃàªás«&ѱcǵk×Ö­[wΜ9ãÇ¿råJBB‚ÚBQPq4ùÃcø¯2€65mÚtÍš5BˆÓ§O—/_¾dÉ’ÖRbûöí]QVŒˆˆ ZétGà>¡¡¡j7EÇPµš­:Bp€"G(BpT£Õ@/ŽP„àEŽêc´èÁÑ8ä=À\„àEŽšÀh5Ð>‚#!8wÛ±c‡Åb™7ožüíèÑ£ëÖ­«v»P‚£V0Z 0§ýû÷6¬V­ZC† qÊîÙ³§[·n+V,[¶lƒ &Nœ˜••¥v/ ÂKíSKNNBŒ1"66¶øÏ–’’Ò¢E‹ìììŽ;V­Zõ×_8pàúõëþùgµ;jG ‘‹Ž’Ônî#I’¢T©RNy¶^¾|yË–-111BˆQ£FõéÓgæÌ™«W¯~òÉ'Õî«î1Tm(låЦõë×·nÝ: 22rðàÁ7oÞ”¿üòË:tB4iÒ$,,¬ø/´víÚf͚ɩQööÛo !6oÞ¬ö50*ŽÀµ~úé§®]»–/_>..ÎÃÃ#!!aÉ’%ò]ƒ ªZµê¨Q£Æg›öŠ&++ë­·ÞjРíÁcÇŽ !J–,©öe0‚£¶0Z (2uYæõÇëÆ Ú¶m[¥J•„C† ±f»:uê9rDѰaÃÆ³ ^^^Ÿ}ö™í‘ .|öÙgžžžÏ=÷œŠÇ0Ž„6뉉‰ÇŽ;v¬œ…!!!ýû÷/ðܬ¬¬åË—çuoûöíó?ý?þxõÕW“““§L™R£F µ¯„€ :tHm{0**Jɹ׮]“g@:$¯ªqèøñão¿ýöÒ¥KkÔ¨ñ믿¶lÙRíË`,ŽÑ6t‰———ÂrïâME Ä××WÊ[^gÍ;·N:Û·oŸ6mÚþýûINDŸPõêÕ…;vìhÑ¢…õà®]»”œ[„¡ê¥K—¾ð ]»v:uj¹råÔî½Ñ€ Õ¯_?<<|„ Ý»w B¤¥¥Mš4Iɹ…ª–$éý÷߯R¥Êœ9s<==Õ¨8k«å­%-N˜‘··÷¸qãºvíÕ­[7ooïy󿥥¥)9WªVþZ8xð`­ZµúöíkwW§NÚµk§öÅÐ=‚#p­Ž;®]»vÔ¨QsæÌ¹xñ¢¯¯oBBB—.]œþBò§8pàÀvwU¯^àX|GàrM›6]³fâôéÓåË—/Y²¤µ”ؾ}ûB•óñì³Ï:ë©àÁQ£Ø `H¡¡¡j7EÇv<P„à¨]lè4…àEŽP„à¨iŒVí 8¼8€s ÁQë­Ap€"G è´€àEŽÀÝvìØa±XæÍ›';zôèÀÀÀºuëªÝ.€à¨…­fG€^ìß¿ذaµjÕ2dˆSžð÷ßüñǃ‚‚Ê—/ߤI“ŸþYí.Á¨)99Y1bĈ¸¸¸â?ÛŠ+Z¶lyüøñž={¾þúëiii:uúî»ïÔî¥Ax©Ý`j’$ !J•*å”gûðÃ+V¬˜˜˜èëë+„2dHddäÈ‘#ûöí«vG€Š£n°¶ _ëׯoݺu@@@ddäàÁƒoÞ¼)ùå—;tè „hÒ¤IXXX1_åÆûöí{æ™gäÔ(„(S¦LÓ¦MOžŸs?þøcyÙMëÖ­ï¿ÿ~µ/ƒA€ :tHm{0**Jɹ׮]“g@:$å”>œ™™¹yóæ¾}û6lØðÀAAAj_ ÝcqŒÎ(_"ÃVŽ-ðòòBXîý›äá¡(øúúJy+ðôÒ¥KÇÆÆ~þùç.\X¼x±ÚW¨8ª^½ºbÇŽ-Z´°ܵk—’s ;T½|ùò:$$$tëÖÍzÐßß_Tž„BGàBõëן0aB÷îÝCBB„iii“&MRrna‡ª}ôQ!Äÿûß®]»Zkœ³fÍB<öØcj_ # 8êk«:âíí=nܸ®]»FEEuëÖÍÛÛ{Þ¼yiiiJΕ‡ª•¿V``àСCGŽóä“OZ,–5kÖlݺuÀ€õêÕSûJs€kuìØqíÚµuëÖ3gÎøñã¯\¹’à¢×>|ø¬Y³<==§L™2uêÔ%Jüøã'NTûG]¢èЗ¦M›®Y³FqúôéòåË—,YÒZJlß¾½' Z,–^½zõêÕKíÁ¸Ohh¨ÚM@Ñ1TmdìÈœˆà¨WÊ7tp ³Ç téÒ%**ªqãÆC† ¹xñ¢òsOŸ>=xð`µ; &Slj'~ôÑGGމ‰‰)[¶ì¢E‹^}õÕëׯ+9W’¤>øàêÕ«jwÂQÛ(:72~pLJJš>}zppðªU«¦OŸ¾zõê^½zíÙ³gܸqJNÿßÿþ·uëVµ; >ãÇùóççää 0ÀúÑæñññ¾¾¾+W®ÌÉÉÉÿÜÇOœ8ñÁT»ê3~pܶm›‡‡‡íçczzz6kÖìüù󉉉ùœ˜••õþûïûûûÇÇǫ݉<1Z ÜÆàÁQ’¤ää䀀€€€Ûã5kÖBœ8q"Ÿs¿þúë|öÙgåÊ•S»ŹìÈœÃà€gfffggûùùÙ÷õõB\¸p!¯wíÚ5cÆŒž={6jÔhß¾}…}݈ˆ»#«V­rQSDŠ%Ì’’š’÷CÂRSS]ôê°uòäIµ›uðÖ›o½aäÿ‡ò©§žR»Zaðà(/.S¦ŒÝñ²eË !._¾œ×Yï¿ÿ~•*U T´×MJJrsOÊ|/œˆKmZ¼õ¦Å[o ù¿¹ÿ¬ç®™„Áƒ£ŸŸŸÅbÉÌÌ´;.o¯#×s3fÌÉ“'çÎëãã£v´Âàs½¼¼|}}sW322„ÖuÖ¶¶nÝ:wîÜ×^{í¡‡R»ùJ±D /;vì°X,óæÍ“¿=zt```ݺuÕn `ðà(„>þ¼œ­ä© ÁÁÁ¹øða!Ä·ß~qG§N„K–,‰ˆˆxæ™gÔÿþaÆժUkÈ!Î}æ[·n5lØð±ÇS»‹Æað¡j!DlllRRÒ† Ú¶m+‘$iݺuþþþQQQ¹ÿý÷[)»|ùòÆCCC£¢¢*V¬¨v‡“‹Ž’Ôn…“œœ,„1bDll¬sŸù£>ú믿6l¨vÃøÁ±K—.S§NþòË/wèÐAѤI'.Q?{öì /¼Ð·oßÊ•+«ÝuC1E ïÝ»w… /^¼bÅŠž={0@®> £Õmúé§ŸºvíZ¾|ù¸¸8„„„%K–Èw 4¨jÕª£F7n\LLŒS^N’¤^½zùûûùå—µk×V»÷†bŠà(„h×®]»víòº·M›6mÚ´ÉëÞÚµk»_F KÝý5òª[ܸqcàÀAAAÛ¶m«T©’bÈ! 4ï­S§Î‘#G„ 6lܸ±SZ2vìØuëÖmÙ²¥téÒª^2Kp4 ŠŽ`fÚü×?11ñرccÇŽ•S£"$$¤ÿþñññž›••µ|ùò¼îmß¾}îƒ[·nýè£ÆŽûðëÝu"8:tè"::Úö ÃMr»víš<Ò!)×ÂÏŒŒŒ¸¸¸Ö­[÷ïß_í~Á¸¼®Ùb¹g ÝÃCÑò\___©0Û‚L›6-%%¥C‡_|ñ…|äòåËÙÙÙcÆŒ©Zµj\\œÚC÷ŽFãp´šyj©^½ºbÇŽ-Z´°ܵk—’s ;T-/Öž0a‚íÁ‹/ÆÇÇ·hÑ‚àX|GàBõëן0aB÷îÝCBB„iii“&MRrna‡ª‡:tèPÛ#aaa+Vܼy³Ú—Á ŽÄ€vx{{7®k×®QQQݺuóööž7o^ZZš’s ;T W3þà@];v\»vmݺuçÌ™3~üø+W®$$$¨Ý(GàrM›6]³fâôéÓåË—/Y²¤µ”ؾ}{וSSSÕ‰Ñj€6…††ªÝCÕP„àhXrÑñî·’°¨ûYT@çŽP„àEŽFf7Z PG(Bp48ŠŽÀYŽ&ÂÂjPGã£èœ‚àEŽP„àh ŒV4eÇŽ‹eÞ¼yò·£G ¬[·®ÚíBŽ@Mû÷ï6lX­Zµ† â”'ÌÉəۿÿxàí·ß®P¡Â|ðú믫ÝKƒðR»ÀÔ$IB”*UÊ)Ï6{öìåË—OŸ>ý•W^‘tëÖmæÌ™ñññ5jÔP»¯ºGÅÑD˜éPËúõë[·n9xðà›7oÊÇ_~ùå:!š4iVüš1cFµjÕúôéc=2oÞFPt  Á·Qt¸ÍŽ;,˼yóäoGX·n]µÛ…€šöïß?lذZµj 2Ä)OxàÀN:U©R¥R¥J]ºtùóÏ?Õî¢qx©Ýhˆ\t”„¤vC&’œœ,„1bDlllñŸmÆ ­[·öóó‹‹‹óôôœ7o^ëÖ­—.]Ú²eKµ;jG &I’„¥J•rÊSõéÓÇ××w÷îÝÁÁÁBˆ>ú(::zðàÁ;vìP»£FÀPµ©Ù.¬¾}„™ŽX¿~}ëÖ­"##|óæMùøË/¿Ü¡C!D“&MŠù*©©©‡îÓ§œ…~~~ï¾ûnbbâž={Ô¾F@ŸÖO?ýÔµk×òåËÇÅÅyxx$$$,Y²D¾kРAU«V5jÔ¸qãbbbŠùB'NœBÙ Büý÷ßõêÕSûJèGØ£èºeQõ˱7n 80(((11ñ›o¾ùú믯^½*ß[§Núõë !6lجY³böÿÁBØ­†ùý÷ß…gΜQûÝ1*ކW7&&&;vlìØ±•*U’„„„ôïß?>>¾Às³²²–/_ž×½íÛ··;ܹsç… Ž3¦wïÞ’$Íš5kÊ”)BˆŒŒ µ¯„€ :tHm{0**Jɹ׮]“g@:$¯ª±3eÊ”K—.ÅÇÇËÁÔßßذa#FŒðóóSûJÁÑìäõ1v¿zìËp///!„åÞŘŠ&Ëùúú:L‡ù¨P¡Âš5k¶lÙ"/¬nÒ¤Éúõë…U«VUûJÁ¸PõêÕ…;vìhÑ¢…õà®]»”œ[Ø¡j!Äîݻ˕+÷Øc=öØcò‘ß~ûÍb±4jÔHí+aG8FÑàõëן0aB÷îÝCBB„iii“&MRrn†ª_{íµ}ûö%%%É‹©8жm[ù[Á¸··÷¸qãºvíÕ­[7ooïy󿥥¥)9·CÕ£Fzúé§}ôÑŽ;Þºukþüù>>>_}õ•Ú—Á ØŽyb_€StìØqíÚµuëÖ3gÎøñã¯\¹’à¢×zâ‰'V­ZUµjÕÿþ÷¿+V¬èÔ©Óþýû‹¿µ8dTáx} NÔ´iÓ5kÖ!NŸ>]¾|ù’%KZK‰íÛ·/lY1­[·nݺµÚ=6&‚#òÃLG€s1×Pת€"G€™Ž@Fp€"Gqg}Lž÷RtG(Dp„"ÁŠ¡EGLŽ ÀqŸ:¡v`FG$Z””¤v`R U@‚# ‡™Ž˜ÁŠqWþŸs÷a0%‚#!8¢((:`BG(BpDQtÀlޏ‡Âõ1À„Ž(:ŠŽ˜ ÁŠQ,0‚#ì1Í8DpDqQtÀ$ŽP„à' è€ Áa} EG ÏKí¸É‚ æÏŸŸœœ\ºtéæÍ›<Øßß?ŸÇ_ºtéË/¿Ü¾}ûÉ“'+T¨P§N~ýú…‡‡«ÝÕ˜¢â8qâÄ>úèÈ‘#111eË–]´hÑ«¯¾zýúõ¼Ÿ‘‘ñÌ3ÏÌ;Wñøã—/_~ÅŠíÚµÛ»w¯Ú]Ñ4ŠŽ›ñƒcRRÒôéÓƒƒƒW­Z5}úôÕ«W÷êÕkÏž=ãÆË딯¿þ:--íõ×__¶lÙĉüñÇÏ>û,++kôèÑj÷@5ÆŽóçÏÏÉÉ0`@PP|$>>Þ××wåÊ•999OÙ¼y³Ïo¼a=Ò©S§Š+îÛ·/;;[í¹IѶ§è€?8nÛ¶ÍÃãE‹Ö#žžžÍš5;þ|bb¢ÃSüüüZ¶lYªT)Ûƒ%K–¼yóæÍ›7Õî€: ¾8F’¤ää䀀€€€Ûã5kÖBœ8q¢Aƒ¹ÏJHH°;²mÛ¶ãÇ?üðÃ>>>j÷Ië䢣$$µœÌàÁ1333;;ÛÏÏÏ¯¯âÂ… ùŸ¾sçÎE‹¥¦¦îܹ³jÕªcÆŒQøºvGV­Z¥öÅ(‚°ÔÔÔ"'Šx¢ÎûlÓ¦M;¶eË–Úµk¿òÊ+ÖǬ[·îÝwß­Q£Æ²eË„£GîÞ½ûo¼U¹råsçÎmß¾]ñÅ_ªÝ!u?8 !z÷î]¡B…Å‹¯X±"$$¤gÏž wäq¨^½zË—/Ÿ4iÒÞ½{8P±bÅ'žxâ­·ÞªQ£†Ú]ÑöÀ0,R¶éC¾"""Œ±£ÌbÅü1OpLMMe¬9ñÖ›o½iìo½rÆŸãˆb*æ4GÁLGŒ‚àEŽpŠŽÁŠQ°âOsÐ?‚#!8Â}(: kG¸Ùý"8B§Lsº¦­à8~üøäädµ[×¢è€Ni+8NŸ>½mÛ¶;wž3gÎ… ÔnîÒVp|íµ×*Uª´wïÞÑ£G7mÚô7ÞX½zõÍ›7ÕnœŒ¢#zä¥vî1pàÀwß}711qéÒ¥+W®\»víÚµkË•+×¶mÛ:<üðÃj7ÐÔäiŽ’¤v;€J,’Vƒ@VVÖúõë—.]ºvíÚÿýWqÿý÷wèС}ûö•*UR»uù‰ˆˆHJJR».áÜàhIhôǯhRSSÃÂÂÔnTÀ[oZ¼õ¦eà¿õùÓÖPµ-//¯–-[Nœ8qóæÍC‡õññ9vìØ¤I“bcc_xá…Å‹ggg«ÝF Öè‹¶†ªí\¼xñ·ß~[µjÕæÍ›³²²„*TðööÞºuëÖ­[g̘ñÝwß…„„¨ÝLa´3ÓbpLOO_³fÍêÕ«·nÝ*—Ÿxâ‰6mÚDGG !þüóω'îÝ»÷?ÿùÏŒ3Ôn/ŠN.:lÀ£ÒVpLHHX½zõöíÛsrr„O>ùäÓO?Ý AOOOëÚ4iýÈ#lÛ¶Mí&˜…¶‚ãÇ,„ðóó{â‰'ž~úéG}Ô6/Úòññ)UªãÔ@ѽÐVpìܹs›6m{ì±¼ò¢-ʪ`š#¦¥­UÕ+W®Ü¼ys^©±_¿~O>ù¤Úm„ó±¼]ÐVpÌÌ̼uëV^w?~üÔ©Sj·.Av@ûÔª^·nÝo¼aývöìÙ ¹–““#IRÕªUÕn/€I©===Ë•+'ß¾xñb‰%J—.íð‘~~~ñññj·®šæÈ*4NýàØ¤I“-[¶È·#""žþù!C†¨Ý(ØS?8ÚêÓ§Oƒ ÔnTCÑ-ÓVp|ÿý÷Õnqݦ|¸ÅÂÓ¨@[ŸU½mÛ¶7ß|óàÁƒ999Bˆýû÷/\¸Ð××·{÷î•+Wž;wîÚµkÕn#î’G«]øü|€5Z¢­ŠãŒ3$I:th\\œâ—_~B|öÙg±±±G}ê©§~øá‡ØØXµ› `FÚ Ž‡ªX±b¯^½äoÿúë¯%J4mÚTQ­Zµx %%Eí6­˜é€vhk¨úÒ¥Kòí¬¬¬ýû÷שS§D‰ò‘Ò¥K§§§«ÝF¸Öh„¶‚chhèÉ“'³³³…‰‰‰ÿþûï£>*ß•““sòäÉ *¨ÝFÜÃÕÓ€vh+8ÆÄÄ\ºté믿>uêÔ×_-„hÖ¬™|×Ì™3/\¸P½zuµÛPt@ ´5ÇñÕW_]ºté”)S¦L™"„¨[·®¼wc×®]wïÞ-„èÝ»·Úm0)mU+Uª4oÞ¼-ZT¬X±I“&_~ù¥¼kczzz¹rå>ÿüó† ªÝFØsÏh5EGT§­Š£¢FÓ¦M³;8gΜmÅ\¸+¬P—æ‚£C•*UR» f§¹à¸råÊÙ³g=zT’–¶lÙ¢vaO­–\_ ¤è€Š´ýõ×È·===Õn´ˆì€Z´¿ûî;!ÄK/½ôæ›oúúúªÝÜ¥­à˜œœ\¹rå>ø€u0ºã¶ÑjAÑ•h(ŸÝºuëÊ•+UªT!5h†"š‡‡‡¯¯ïáÇsrrÔn ´Žmp? GOOϾ}û¦§§Oœ8Qí¶ (Üü¹ÕdGÜL[sÛ´isâĉéÓ§oÙ²åé§Ÿ®\¹r‰%ìÓ¢E µ› `FÚ Ž±±±ò={öìÙ³Çác’’’Ôn&´‚U2¸“¶‚ã³Ï>«v LcÒ’ù»`Ñ5Ù·ÑVp;v¬ÚM@ÞlÃbÞ0¿MyrÇM÷ìßœA[ÁÑêÒ¥K{÷î=sæLhhhãÆÓÓÓÕn”YYÓ^ñC^îgPF xVŠŽ¸…æ‚ãùóç§L™²páÂëׯ !^|ñÅÆwìØ±víÚŸ}ö™¿¿¿Ú 4 'æÅ|Ø>y1^‘ì€hh;!Ä­[·Þ|óÍ9sæ”+W®cÇŽÖãAAA¿ÿþûóÏ?/§I¸–År{¼Yþ*¤¢oÊc}E¹îÜÚ( ­à8mÚ´]»v5oÞ|ÕªUŸþ¹õøüùóÛ·oôèÑÙ³g«ÝFC³Œ**R‚d[G\M[ÁqëÖ­žžžŸ~úiéÒ¥m{zzþç?ÿ)]ºôêÕ«Õn£A952:m'ðB&H²#.¥­9Ž s¸¦lÙ²áááGU»F”ßBhm°6OÎŽo-¥­àèëë{íÚµ¼î½xñâ}÷ݧvEw9LnjÞÍf• ®£­¡êÈÈÈ3gÎ8ü̘œ:uªV­Zj·Ñ@\9ѵŸ[ïø5Ö¸ˆ¶‚c·nÝ,Ë AƒöíÛg{|ß¾} BtèÐAí6…ö‡§ d7¸˜¶†ª7nÜ·oß3ftêÔ)<<\ñ믿þùçŸGŽÉÉÉ騱ã“O>©võOwÃÓÊ5~Í€5® ­à(„xï½÷¢££ÇŒ“’’"„8uꔢB… ´ÝÙEäÆB£\ t_@½7>’p:ÍG!Äã?þøã_¼x1%%åæÍ›áááÁÁÁj7Ê 0<] {â£ÚÀX´eþþþÑÑÑj·Â@Ì­äk‹E3õS98~ÿý÷…=¥Gê¶Y—TJî­Îýòˆs:P‰ÊÁqÔ¨Q…=…àXh¦ª5æ&Ia‘ˆ›ÊÁQÞdÇÖV¯^íééÙ¤I“jÕªyzz¦¦¦nذ!+++$$dÈ!ê6XLž­¬ÕG®E¥rp|ã7l¿=~üøœ9s"""¾ùæ›*UªXŸ:uêí·ßÞ¿ÿÒ¥KŸxâ uÛ¬'ÈI*VËm°®°¶îK®öe@´µø”)SΟ?ÿõ×_Û¦F!D¥J•¾úê+!Ä/¿ü’žž®v3¡?w?N†=Ã(*mÇ;w†††Þÿý¹ïªR¥Š|\¢V¤ê…>-#>PxÚÚŽçâÅ‹999’$Yý9ÏÈÈð÷÷¯P¡‚ÚÍÔ-¥F-ŒV ‡'ÃÄG C[Ç:uêdddüñǹïÚ¸qãÅ‹k×®­võ€$”‡»Ö÷¥ô€"Ú ŽmÚ´B¼ÿþû+W®´’þå—_Þ{ï=ë ;ÖE)ªË3;(ˆ¶†ª;wî¼qãÆ+V 0 B… ááá‹%%%åܹsBˆvíÚuîÜYí6jåÆ"cÃpò¥­à(„?~|£F&Mš”–––––& éׯ_ÇŽÕnæ‘p0Ùñž»™ø€cš Ž]ºtyî¹çΞ=›ššêååU­Z5Ä(¢í¬£‘%2·“v‚ÈMsÁQf±X*V¬X±bEµ£ôÀ½´µ8EG¾)$Ç«d<ŽE3ÜFp4¤Fí¬­¾ÝåÙ‘øÁ&§4; ›ø€YõO'åF™î£¥G€‰av…(:Þ>Ò#À¤Ž:§«r£f:; J3"8ÂÝ´Y­+bvÔfgp ‚£žQnÔJÓÐèà(˜žS£¦>Eæn« ü8™|ú#„°XŸ402*ŽÀ]E°¾{²”š’Bé``G}Ò`½®4;9°XÙQ0r 02³ U/X°`þüùÉÉÉ¥K—nÞ¼ùàÁƒýýýóyüõë×çÍ›·pá“'OÞwß}5kÖìÝ»wãÆÕîô€¹”)‚ãĉ§NZ¦L™˜˜˜cÇŽ-Z´èðáógÏöññqøø¬¬¬—^zi×®]¾¾¾=öØ¿ÿþû×_mܸ±ÿþo½õ–Ú½!‘¸\Ñ';Þó,wjª¼Y£0þPuRRÒôéÓƒƒƒW­Z5}úôÕ«W÷êÕkÏž=ãÆËë”ùóçïÚµ+::zݺuS¦LùïÿûóÏ?ûùù}óÍ7P»CÆ¡ÙÑjQükkµÜI ÉøÁqþüù999  ’ÄÇÇûúú®\¹2''Çá)«V­B :ÔZ’¬Q£Æë¯¿ž½iÓ&µ;7qNvÌz‡ñƒã¶mÛ<<¢ø´ùÑÕötEvü÷@O …ÁÁÁÉÉÉåÊ•³”'Õ;<%''gРA¿üòK«V­†žO¾tâ…QQzè‡ñ·ã‰ÍÎÎÞ°aƒõˆ$IëÖ­ó÷÷ŠŠrxÊœ9s~ùå—îÝ»óÍ7šH& ‹Íjœ¶;OîÎë¢ÿÓ3~pìÒ¥‹‡‡ÇäÉ“åyBˆéÓ§§§§wîÜÙÛÛ[>ríÚµÔÔTyqœ$I ÷Ýwß| vÛ¡9®ÊŽ‚}Â:`ü¡êÐÐÐÁƒ3æÙgŸmÚ´é±cǶlÙR»víW^yÅú˜uëÖ½ûî»5jÔX¶lYZZÚñãÇ}||zôè‘ûÙ:vìØ³gOw÷ÁãÔº˜é(\1ÙÑö³¼Ý=2~pBôîÝ»B… ‹/^±bEHHHÏž=  ïÈ“›\w¼~ýúÞ½{sß«òÂjhƒ ³£`Ö#@»,œœ-""™û8š©þ¤£¾: Ž©©©ÎÜÑMG—ÃôœüÖC?xëMËÉëõÃøs¡#:Z"âÂÉŽv—C/W`G ˆÜ”u”¦FGpÔ6ó Vê+&¹#; J­ 8Åâ¾ì¨¯L 0"‚#4GwÉMÙQPz¨Œà¨aæ§Ö/·fGÝ%k€Q¡ED£pj0Åà@‘&Iá…ßÍ­è%eö ¸G­2ý8µûkjG_Ra¾RRS…°êK_J¯¥G€Qq„yÙ.§äôÂ~a^³(~$¥G€Û¡]r"rn² d.ÊYNù$ëÜ'çsåkdú*5ÀÕŽšDp*7„E;NÉŽ¹ž3ÏNݾ—Ò#ÀŎдâ­ÑJ•åŠìxïó;êì+Er¸ÁF£n^´åêìxïk9¾Z¸à 8jãÔ÷R^t”Ó×NX/‚Å"$‰ p‚#tO;%ÆÜÜYttôò’°XnOBhûZ´àȫ訋£úÙQÜ-c[APGaœZ]DF+•³£p°àÚ¶)”! ¡Ö¢£¾"ãÝök!; Çÿe’» ©»Ë p‚#ôCºý€:¥~vìõÈ@6 G耵ÊhÑurÔNvLŠ` àÁQK˜à˜‹N¦ó¡‰ì( ±ËÙ+‚#4ÊadtŧW»Ÿ¶²£Pú…$HÁš“•‘ìèÔvûÎ †°À¨¨8BeÊ ¶(:º¬AÅ*=Þé5H0&*ŽÚ`Öqj BS“ï¶©X¥G›®ÝÆ$H0*ŽPM1S£aŠŽBƒuGáœÒ£M)@€Pq„ ¨?å¦Åº£pZéñNoc$èG¸›åNý©øŒTtÚ¬; '—ïôôž$@/Ž`¦ ŽNŸÔHvtWË$a±8ýZ3„ úÂP5Ü„ái…4:f-Šø13ʺ|?$ qTáNžÎÍ`EG¡åº£pUéñNÇ)@€¦Qq„˱çNh·î(lJÂ9‹frõý6ÖЀÖPq„k¹'5¯è(4^w.Y4“ë °†´…à¨6C¯Œqg­‘ì¨R]8rmsÂM 8ÂU¡v }dG·Äv  :‚#\B•ÔhÈ¢£ÐEvn*=Þ¹ ÄGPÁÎG­Ñét“ÝÞ¿÷cUµª 7ÁQõ}øäÜb¬‹z§kw²£F—Zßm¨3?¥PÁe¹MõŸ=0‚#œF#…FcgG!„v·é¹ÛPWmžßk !ØÁ\Œ¡j8‡FR£ècØZ¸uÖãÝ×d$¸ÁN µÔhÔU2w;¨£ì¨Ò›Á Hp‚#ŠKk©QFvÔ5J·_™$8sÕcˆ‰xÚL&¡é%´o«k?¥°à×B°€ŠŠ# ËðEG¡¯º£Psäúöë3~ ÅCpDÑi¿ÜHvÔ"õF®o¿>ã×PTG‘öS£yè2;j Ô °Ž( ¥F ä·tSwÙQ¨_z¼Ý Ư@1‚£Jô¼2FG©QFvÔ.kéQíwˆñkP‚àˆÂÑ]j4]fG¡•‘ëÛm!>@ÞŽ(ý¦FÍÄ×÷THaÑk|Ô@éñv[¿GØÇJé75Ê üÖö=ÕËGZ;hºÊÛ=Ú7çÎ 6€G(¢÷ÔhBz¶Ú¹¾Ý"Ư@ApT‡I _Ú£±4âúþê7; m\ßnã×Làˆ‚©ÜHvÔí•믘sQ#¥F™y&;Þ>ÒÚq$íÌz¼ËrÏ a¹š­v À¨8"?ÆKæ¤ã¥Ö·;àìí-Åþ’îùJMIµHÂ"å*Hÿ ´„Š#òdàÔh¶¢£ÐõRë»}¸³æºÀw®À¼å‚k Ù¼²äÄ—P’uû–Ђ#LÊ„ÙQ`ØZÜ;rW¨R¯¶ñÑ9 Qò–b?(Cpt;¤—­ÈŽzrO6’îÑèûçî óKQO€\ŽpÀ ©ÑÌtsgÇÕ亙\­Vyÿð|^ØRÈÇ0=‚#ì™*5š³è(l¶éÑD|TöDñÄGõ8üÚ¹-³Cš7‚#ÌÎÌÙQ¨µ\Æ.šÿõµ¹eO½Ôú’&äàˆ{˜ªÜheÚì(Ü9lm›<\ñjûœëüZjs=4ÝÐܶSœR1}"8â.s¦F¸0;º:,:èŒF®o·T¡ÍñëÂöÁQ0:‚£{iøï™ÉS£™‹ŽÂ¹ÙÑýaÑAt0r}»¥wnè¬Y`¬œ>-€ªŽÀmdÇ¢/—ÑBX´ïnF®o·Wa˜ø˜»cV”$#8BÓ—­ÈŽBùr †E]Òq|¾®Åí¡-J’€®Aj¼‡É³£(pØZ¡F?o·÷Î  óé­mŸóº€ÚŽì9¶Öc^´ï•n&>Þm²Â×¾Ð}¶"GCp4;ʹQtrdÔÅ`táz¥³‘ëÛ­¾sÃȼ:o{ òº€ëÝH{a„Ô˜SgÇ{ \ZÿpÂ"Ðg|^@SØK`EŽÜŽà8fºì˜Ç€¨¶>œÐ‰ …ÉÃ9p;‚£yQn,)²£‚¢æ‡ºšÞÖÍÜmø¦.@ÚÉ'Gr'!8š©Q!#gÇB&÷}8¡ûépÝÌݶ !ˆÙ^Š‘€“-;cŒÓ°ÃÖBÇ#×·›/„`ü:#'!8šåF3rR¦0ò°µ0H| D1(*‚£é‹@ßEG„#[ ÝÇGA²P(F…Aptç¡ÇìèâÔ`äaëÛ=4H| …b$/‚£¹Pn,ÝdGwŃ[ßî¤î㣠Yd#\Ž&Bj,>­gG5*K¶¾ÝI½îÚsO'îÜ YDŽŠ‘a"ŒK SñP»€ÎXwnÑË/I8 gG‹ÐÚuqz?%a±hïí/|?„l~jPÒí¯Ô”Ô»—’«  âh”HCuGÍÔŽL1l- 2r}»+wnhæ‡H·˜ 3!8E¡~vÔä_{㯘¹ÝOãÄGÁ HçbZ$ŒŽ¡jS Üè êŒY«=*] IHÖøhp’d˜Ákqwè•W§’r]Y®/tŽŠ£ñ‘]Ç­uGM–ób–Ò£¸]q 3JõQP€t¼F´¹ÄÐ*Žn¡• qp>wÔµ]bÌ‹‰JB¤¦¤©ú((@º•Hè–Y‚ã‚ ºtéÕ¸qã!C†\¼xQá‰)))»wïV»ED¹Ñ \˜õm™eÁõíÞjðúvŸX‚íj„HèŠ)‚ãĉ?úè£#GŽÄÄÄ”-[vÑ¢E¯¾úêõëוœ;gε›p~vÔd´2UéQ#ÇG .Gˆ„æŽcRRÒôéÓƒƒƒ.\$„øä“OfÏž=nܸaÆåuVFFÆ¡C‡–.]úã?ªÝƒ¢£ÜèN’$,–0'LIÐÕ\FåL4ëñv‡ µòún·„Ì€t¢Ï‰4pÒä'N}Ư8Ο??''gÀ€rjBÄÇÇûúú®\¹2'''¯³Úµk×£GR# %%%µX5&U2]éQ³ú((@º‰MÉQ²ù~IÆýRÒý|¾àƯ8nÛ¶ÍÃãE‹Ö#žžžÍš5[ºtibbbƒ žõÉ'ŸÜ¸qC‘ðçŸªÝ èF×Y´ÊèéJ°ÕGA²ˆ&—Ót«³‹ÙÉÂfGS\ÓÂ2xp”$)999 ÀöxÍš5…'NœÈ+86iÒD¾ñû→݉¢ Ü¨¢ÂeG3EF+³|ÌŒ}· …Iœs+08ï ±ÅOáí¿éóRSíî¨ÃàÁ1333;;ÛÏÏÏ¯¯âÂ… .z݈ˆÛo“„HMMukÏÃÂÜýŠâäÉ“ò”a±„¥¤ä÷„…‡ !Råǘò½J)–0‹"%5Eí¶—õ­WÐíqgßÇÔÝwܾsB!,aa·¿5è¿Baaá6·íïM-øçÙ5—ÅæeÃ,w›•šbÌwÁ-î^Ó§žzJíÆh…Áƒ£¼tºL™2vÇË–-+„¸|ù²‹^7))éî7‹¤°¢?Y¡Ý.7†¹ó5q[ØËžßZ›²L˜0õÛt»ôf„‘ë°BýÆnÛð{:wç†5A궇yœîv(55Õî­×Ä?½6WÜ6Dê÷PÝ=Ö…¹*Dæaðàèççg±X233íŽ_½zUÜ©;.â`Ìš‘ûlÓ¦M;¶eË–Úµk¿òÊ+ÖǬ[·îÝwß­Q£Æ²eËÔnoÑQnÔ<ÞŒ"nnVÖE3ÖÛ¦cÜ­ïéåyO‚´ä}\‰9‘ÈÅøÁQÑ»wï *,^¼xÅŠ!!!={ö0`€¼#aµ¢ å£dÇÂ2ïšë»—Àà‹¯ïvôöÿ5‰ !„ɸÿ©%"""÷>Ž®~Q‚£ú ³ãÙ±´\z̽™Ÿ+/„ñ vIQ²»CË]uë[¯Mf ‘öëMÃøsÍ€Ô¨²;3¬”B󋀉w.„¦?æ?=Ѧ¯n]…"aN¤É˜b¨ZMT– ¯¨±Ýšù)F®ï\}M̳¦¨¨¯¹žEû6)†³M€à¨{”USìQ4ëŸ~üÝ×óîn!4;ý±XI1Ïîæzvítö‘Ep Ï©¯X.S4¬¹¶¹Zøì—$Å<{|﫚ûí×B¤õr£ \pÑÉŽEF|¼÷r¸yüZý ¥3„2„H#8й²¸Á”Çâ >Þ{9\7~íÖ²b!zœ«}ZiòGˆÔ!‚£ŽQnt·Œ‡1屘ˆ÷^g_ëéï9 RÇò ‘‚wQ[Ž@Aܛж.&–]Û+ÊøµžÂ¢ãNçê‰.»aZvï–î …à¨W”ÝA¥‰÷dÇâcÙµ½‚ǯùÇ™iŒhk ÁȃªÙœ)ÅÇȵöã×÷ܧvã\Üõ;7HúFˆTÁQ—(7º–6vø`Ê£Ss±‰Œw3”‰® Ò8‘j 8ºóõHc©œÒ£S˜>>æñGõn†2ã ÒP‘îBpÔÑF¡17JÎb²øX˜?žÚýw A !Ò•Ž€Byœ3ÎbèøX¼?’šø5‘ ˆélG˜žV ¹1líDÆŠÎÎ9æ.@ ¤Q±U¤3uFóu1]ÑOd´bØÚ¹ô]_<1}R Œ­"‹Šà³Òs§ôè\ú‰*ýq3}R mÅŽz¢ç¨£%:,4æFéÑélã£ÐV‚ÔFV±+@ ¤Bˆ°0¡ûNp/Bd¾<Ônà^rú6Êï¿\z´XŠÿL¸M’üe‹PñÊZl¾$mýÔJw.’¹øä·$%5U²y«`4’Í—åÞ/³"8êåF'0âE´þ‡s©s‡E ÿÈÚÆGsÿæŽ0 I¿—®ÆP5ÌÁÃÓù`Ö£‹¸kú£6£‹†!lL…„áõÁˆ•272Çå³]À`â?Ü.ášøh¸ÉS$H¹¤0ÈÛ ³#8ÂÐŒ^hÌE3®ã¤Õ3&(E± ‡ -L}E sG0G½ÌL|á¹vk^,dÒ”™}|îÅ@6 €Å1.CÍGES§F‹f\MÁê ¯Œv'»UØüPæ±NÐ*Ž0ÓGF[”]íöøu˜mõ‘rR˜™ ÙÐ*ŽZG * ް㞤¤¦Èƒ²Öi}ü 懤#”!¡ TaDÆ|±æÚe,âÞO‘ôñé…Ú@ ÒÊÐ2*ŽšFRŠ+¥ Ä~òbjjŠíݶÓUýøý ™ÊÐ*ŽÐ9óm¸S|L|,ªÂUŠºþÚܨAæ2$4‚à¨]Ñ Æ5**F® £¸¦´¤É óÆîâPÁúD¡ÑˆùrrY‡d‘ óæ° )ø§®Dp„Qht*âã½\> H²ˆr'HÁì]ŒeÃ=ŽE4rŒB£Ë˜>>ºûO­]R •³ý¥ écÙp‚#ôƒ4ízæ‹ê—fÂ.²óÅX6œŽà¨E$¸(nd‚ø¨~^Ì!ìb!A„ § 8BóžV‰ã£ó¢†°‹‹© "QdGÍ¡²v.‡Ú us#AS!•!D¢PŽÐ0R£fè3>ê2/æF‚tÊÊ"Q ‚#4‰áiMÒI|4H^Ìe4N@R1B$"8º†ÅR´‰(±q´Ï6> ýÍ5l^Ìe4ÎAR1B$¬ŽÐ úa÷7W½¿¶&Ê‹vÂv‡eHAˆtŒirG 1{¡Íìý×+•Ư͛sË !²ÈË.Œ¼B¤à7Ó¸ŽÐR£Î¹+>’óc)C:cÙ…aw](FÁjcxÚ@\6ý‘¼Xh d;cÙ…G1Ò¨ŽZaÒŠ›I»mpΛþH^t¤“Ý"Ãǽ(F‰‡Ú €‰‘N’„$ ‹åö—b–;_Ò/8tû ‘î¼!…xKà˜$¥¦¤Øÿ ægÝœ$›/˽_Ð>*Žš`ºÅð´™(.@R_tÓ¸ÃÙEB1RwŽp;ÓÅdÜ–Ç Hò¢jXLã*„È¢bf¤öáF‘+/Z,Lµ€2¤«"‹*Ÿb¤à/‰zŽê3KÎ,ýDþìë‹òÜ0ëm¨Ž2¤ "‹©G¸©ÑìòÖ̇ÐÀeHÊ+D ~!Gª…à¨2ã*†§M­póµú)Øp\†„Hg±ûY§YxäH·!8•ŒŸ‹áP±Ö»äþ´þtj !Òå(F9ÒuŽpR£é8y}4 Rû‘.—O1Rð+¡Tþ9RðǪ0Žj2l²bxÚ\\¾Ÿ R‘îÀ ¶3ä¾R”$•#8ÂÙ ‡aG…ýs'HÁŸKM"Dº ƒÚNÂжrG8…FSÐÄ~Ýÿ\ò‡R›‘n ¶ó0´‚£jŒV˜3Z`GyÑ!²u$¯)È‘NGŽt‡CÛ5Õn•ZŽpR£ai7/æÆ@¶¾Ø%EŠ‘®•ŽüªŽ$D„ÚmP ÁQÆ Z O“žòbn dëÅH·Êýû@IÊQ ÆÉ¿é;/:DR(Fª€’$”!8¢H(4Šóbn|J°~QŒT%Iäà¨Ý×ét߈{— šîí$DêW>ÅHAŽt)J’BQ8uÏÅÅB!Dê9R5–$¿EÆDp„buŒ¼¨!RïòÏ‘‚(éRDIs 8º›^Ó—^ÛmräÅ¢ã#9 wL¤$éVJ¢¤à7JgŽÎ—tè¡~ žÖò¢“ñùÀ†AIRea(Lê Áù¢Ð¨¦^ìâfŽŠ‘a¹ï‚öX’DI7 0©+j7À\ôÃ,új®iYlÞ*ëÜG’„$‰””Tù†ÅrÏtGºý–Þý²Ø¿«¼¯®'I¾,_p;*Žp„Ȩu FkŸl<T%Ã?Χp˜[ð›æZTq/ ÚeqT_„¦å_1NÙ¾«)©)«’&ÝDym’_9'¡âè>:Èc:h¢ Q\4vP6*‡G¦Kª&¯_¤¼²#¿x…Ap„‚¥ÓZÃJSàCÝŒMÉÊ›¼ — P:ÁÑM´[Ë#2jÅE³£$ilyD‡’4é>ÊÂ`Ž£¹Y˜)§:f."O¬+5 GÓô¤<¦éñ~»‘à ”ÖßC³"8š‹`TÆ6:( …+`yd¥Èo…Y1TíšKhškI0s.ÁöɦR¨ñnÁ7œàh2Ìht7Â"T |Ã;A 4ŠÂJA¦D‘MƒÈè>„Eh Ì)Ÿt˜ÿ7±]NÚh„±Y„aw>¯XíÆ…@ 4­ü£!±±8ÆèXãBö ¢SSS¸Ö0ŒüW”²¾Ûð¤<ò[£Ãbãâh\ŒM»ÃÐ0»|*ŽùgGJ•FR`űÀìHÍR§Ž®¥N±ÈèLvÿöqY<å ‰•¦Rüd©äIà~Gc!2:eEÀùŠ+ <º£$*ò&bº ÁÑ(ˆŒÅBYPY¹PÉJÂ¥Á(ƒDL·!8º›Æ©‰ŒEARtFI(T¸@‡|i<®ˆ˜…}f“ 8ꑱHŠ€ñ)L„…ZNÊ4˜ÂÁ¼‚fMQSí®¨ƒà¨ODÆäþ=çb¸­PY° ”VÌç‡Æå4#D„ÚMSû8ºŠ«Æ©ïn¨v5Ä’ëKÊõE!廟aJJj¡¶ºdLèGý ÊxÕDšV´Šcñ³#•N¸Ç<-X° K—.QQQ72dÈÅ‹Õi‡ÅÌUF‹¾ª‰O=õ”ÚM€:xëMˉo}þ¥M%_E«tRþD¡PqtlâĉS§N-S¦LLḺcÇ-ZtøðáÙ³gûøø(9Ý ãÔÖß[ å"×Éë_)StœÂ‰G—fG*£ºFÅѤ¤¤éÓ§¯Zµjúôé«W¯îիמ={Æçò×Î]V3‹â"¢;zQüò§{*£”QÝàèÀüùósrr $‰÷õõ]¹reNNŽK^Ò yÑRÐÌÎ¥©ÔmÕ´ŽlÛ¶ÍÃãE‹Ö#žžžÍš5;þ|bbb§[$eex‹^òbq°À\¨éîÌÀ¹1Ô´Žö$IJNN°=^³fM!ĉ'Šò¤¦,'SõœÉ…˜‹cìefffggûùùÙ÷õõB\¸p¡Àgr/õpo¦Šˆpîvö&Ýã´h""¸\&Å[oZ¼õ0‚£½ëׯ !Ê”)cw¼lÙ²BˆË—/+x•koIIê¾>0&†ªíùùùY,–ÌÌL»ãW¯^wêŽ&Dp´çåååëë›»²˜‘‘!„°®³0‚£ÁÁÁçÏŸ—“¢Ujjª|—Ú­PÁÑØØØììì 6XH’´nÝ:ÿ¨¨(µ[ ‚£]ºtñðð˜;vìXµ›—[»vmÿþýsrrêÖ­ëëë»iÓ¦¬¬¬)S¦´lÙRí¦Á…²³³{ö왘˜Z·nÝ‹/nÛ¶ÍÃÃcÖ¬Y111j·Î$ÛÁƒ|ðÁ¦M›ž={V>2zôèš5kŽ5Jí¦Áµ¾ÿþûš5kÆÅÅeffÊG:ôÈ#ÔªUkÿþýj·n2sæÌš5kÖ¬Yó½÷ÞS»-p¹K—.5hÐࡇÚ¾}»|d÷îÝuêÔiÔ¨Qvv¶Ú­ƒ Éÿà¿óÎ;·nÝ’üù矵jÕzâ‰'Ônš[1TíóçÏÏÉÉ0`@PP|$>>Þ××wåÊ•999j·.´jÕ*!ÄСC­¥å5j¼þúëÙÙÙ X›ÄáÇ'NœøàƒªÝ¸É¢E‹222^ýõèèhùH½zõž~úéôôô¿ÿþ[íÖÁ……/¾ø¢———|ä±Ç«U«ÖÑ£G/\¸ vë܇àèr±ºE‹Ö#žžžÍš5;þ¼üs£JMM-S¦LíÚµmÖ¨QCqâÄ µ[—ËÊÊzÿý÷ýýýãããÕn Üdýúõ‹¥C‡¶¿øâ‹¤¤¤‡zHíÖÁ…BBB„¶Q’¤K—.yxxX£¤˜¨«."IRrrr@@@@@€íñš5k !Nœ8Ñ AµÛW™6mZî/öíÛ'„¨R¥ŠÚ­ƒË}ýõט9sf¹råÔn ÜdïÞ½þþþ+Vܾ}ûÎ;/]ºôàƒ¶jÕŠí†÷Ì3ÏÌž=û“O>)]ºôÃ?|ñâÅo¿ýöäɓݺu3Õ¿ÇâÊÌÌÌÎÎöóó³;îëë+îýOOdd¤Ý‘-[¶LŸ>½dÉ’v Ï®]»f̘ѳgÏFÉÿµÃ»yóæ•+WªW¯>bĈ¹sçZW©RåË/¿¬S§ŽÚ „ EDDÌ™3祗^z饗¬{öì9dȵ›æV U×õë×…eÊ”±;^¶lY!ÄåË—Õn Ü$;;{öìÙ}ûöÍÌÌüüóÏÕn\èúõëï¿ÿ~•*U ¤v[à>W®\B$''¯X±b̘1ýõ׺uëúõëwêÔ©wÞyGþs£ÊÈÈøüóϯ]»V»ví矾uëÖ>>>‹/^»v­ÚMs+*ŽÅåççg±X233íŽ_½zUÜ©;Âðþú믑#G9r$$$äÓO?mÔ¨‘Ú-‚k3æäÉ“sçÎe€ÒTJ•*%ßøüóÏ­›ï¼ýöÛ§OŸ^´hÑòåËŸ{î9µÛWyÿý÷wìØÿòË/ËGNŸ>ýüóÏ¿ûî»K–, W»nBű¸¼¼¼|}}sW322„ÖuÖ0ª›7o~òÉ'/¾øâéÓ§ûõë·råJR£ámݺuîܹ¯½ö‹!̦L™2¥J•òññyüñÇm·jÕJqðàAµW9wîÜï¿ÿ^½zukjB„††¾ùæ›·nÝúùçŸÕn ûPqt‚àààää䌌 Û鱩©©ò]j·.”““3hР_~ù¥U«VÇç¿LBþ¬ˆo¿ýöÛo¿µ=¾dÉ’%K–Ô¨QcÙ²ej·®téÒ%‹Åb{P.Šˆˆ;v¬Ýñ¿ÿþ;""¢Q£FYYYBˆôôô &´iÓ¦~ýúõë×oÛ¶íçŸ~öìÙ¼žV^+³yóf»ã‘‘‘ 6´=²iÓ¦þýû·jÕ*&&¦W¯^“'O¶Ëv§N>|x›6m~øá-Z¼úê«Û¶m˧G3f̰]#·ääɓӧOì±ÇêÔ©Ó AƒçŸþ×_ÍëvîÜÙ¬Y³+W®X^½zµE‹‘‘‘{öìQûM`4GúЮ];!ÄêÕ«íŽ/[¶LÑ¡C//¯ôôô=zL›6íôéÓU«V­\¹ò‰'þûßÿÆÅÅ]¼x±8¯>nܸ>}ú¬^½:+++((hûöí_ýuÏž=ÏŸ?/?àðáÃíÚµûñÇÏŸ?ÿÀH’´nݺ^xaíÚµ…z¡iÓ¦?ÞÛÛû±Çóõõݹsç[o½µråJ‡ŽŠŠêÓ§ÏÙ³g?ûì3ëÁ/¾øâÌ™3o¾ùf½zõÜý&0:‚#}ˆ‰‰ :qâÄþýû­srräPÕ©S'!Ä¢E‹Ž=Ú²eËM›6-^¼xÉ’%7nŒ‰‰9uêÔo¿ýVä—þý÷ßg̘Q¥J• üñÇË—/_¿~}óæÍwíÚ5eÊù1ãÆ»víÚo¼ñçŸ.Z´hݺuC‡•$iÒ¤I…z­ùóç¿úê«6løßÿþ·fÍš—^zI1{öì¼ß¿ÿ5j,Z´hÆ BˆÍ›7Ï›7¯nݺo¼ñ†zïÃ"8жmÛŠ{‹ŽÛ·o?{ölTTTõêÕ…YYY?þø{ï½W¦LùåÊ•“K•ÇŽ+òK3Fñå—_Zkx_~ùeppðÂ… /]º$„8xð ¢K—.žžžòcâââÞ|óÍV­ZêµêÕ«7hÐ ¹Ëo¾ù¦âèÑ£y=ÞÛÛû‹/¾ðòòúè£Î;7tèPŸqãÆY›NDp r´·•Ç©;wî,ûÖ[oM:õ°> --mùòåÅyÑ‹/¦¦¦†‡‡Û­€.]ºt£F®_¿¾wï^!„œ\ããã·nÝ*϶ôöö~çwúõëW¨—{úé§m¿õõõõôô”$)ŸS"##ßzë­þù§}ûö§NúàƒªU«æª÷€¹±ݨ]»vµjÕŽ=š””‘••µjÕ*Ÿ6mÚXsêÔ©õë×oß¾ýĉÇ/æÔF!DJJŠü¿pæÌ!ÄÈ‘# °uëÖ^x¡T©R‘‘‘>úèO<Y¨—«\¹rùÚk¯ýúë¯ûöí{ä‘GâââœzÕà.‚#=i×®Ý×_½jÕªˆˆˆ 6\¾|¹S§NÖé¹sçŽ=:++«jÕª 4hÕªU:uRSSGU¨WÉÎζùnÞ¼)„¨T©R^ƒÎ¡¡¡BˆÊ•+/X°`çÎëׯÿ믿öîÝ›˜˜8eÊ”çž{nôèÑ‹EáK—(Q¢—åêÕ«iiiBˆ”””K—.ùùù¹þ­`FGzb Žï¼óŽ<m§¾zõêÇ\¢D‰iÓ¦5iÒÄzÊ?ÿüSØW9}útNNŽ|;<<\Qºté!C†ä–Åb‘÷BܼysÆ ~øáÂ… [¶lëÒË2|øðsçÎÕ¯_?11qÔ¨Q&LpéË0-æ8Гûï¿¿N:)))ÿý÷o¿ývÿý÷7hÐ@¾ëï¿ÿÎÎή_¿¾mjw–­äÏnD{Íš5ÖÛÁÁÁ*T8räȾ}ûl“ݹsç¦M›¦§§Ÿ:uªeË–]»vµÞ[¢D‰ØØXy5ÏÉ“']zM–.]ºråÊæÍ›Ïž=»FË—/Ͻi8Á€ÎÈKd†š™™ùÜsÏY !<˜žž.ÉÎÎþñÇ„ׯ_wølU«VBÌ™3'33S>²eËë&;²æää 8ðÀò‘«W¯~øá‡{÷î­]»v```HHÈ•+WvïÞýÝwßYK•G]¿~½Â¥û)þóÏ?£Fºï¾û>þøcooïÏ>ûÌÓÓsäÈ‘ÅŸÜ ¹1T @gÚ´i3f̘¤¤$OOÏ:X‡‡‡ÇÆÆþöÛo­[·ŽŽŽ–$)))éâÅ‹=zô˜={öO?ýtåÊyc[:t˜5kVbbblllddä¹sç’““}}}+V¬xãÆ ù1;vܺuëÏ?ÿÜ¡C‡J•*ùûû§¤¤dffV«VMÞyÛÃÃcÈ!ñññcÇŽý¿ÿû¿Ê•+gff9rD’¤¸¸¸¨¨(] I’âãã322>ýôS97×­[÷¥—^ú¿ÿû¿‘#G~ùå—j¿WŒ†Š# zä‘G„M›6 ²½küøñýû÷ •÷wlÖ¬ÙâÅ‹‡Ú£GOOO‡X¥J•~ø¡U«V7nþü‰'ÆŒó­o}«ºº:éÉ$Êc÷ÜsÏ«¯¾ºlÙ²öööƒvtt,[¶lÿþý÷Þ{oÒSHLE6›Mzå&“ÉØÇ(?Vˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ2*é ŸÁ•+z>~£»!éé.ÂJCïdì="¹i¼U % o5Æ| †—p Šp€b7蚢EGná@á@á@á%ÏŽ<ÜŠ.¤HTd³Ù¤çPn2™LSSSÒ³ ÜÄœ:-1QV 4ÄDá•+lÍÃÈqÉA(=í¨I„G(1ª‘¤Xq€Âòú¬„| rE Í–bÅ 軪g„#äë¯zBÊ Gø”2HCïS3B„#”]HR„#|6E¾$)+9ÂJÏÝ Q52¢lÇŸMñÄYñÌ„”°â@áŸbú# ßí(+I3Ç8@ot7”Ä% žâ]œS¥ Td³Ù¤çPn2™LSSSÒ³ ü °1vd$x«JÒÀÛIùf“”(á@Ç8Ààz/àûÀI„GÈ•+ò*­T¢­TæI ŽÐ¯þÚ«oM¡bX¥ÌG(¬˜ÓP’á@áC”ì’äÀ‹Ž–$ ÂJUu¨!¶ã€¦¹™¬8À‰6ÒF8@aºòGè×í(+I!á)ˆª‘trr b™Øw§­I°âé¿«óuh ’p€›D;Rê„# iHysŒ# bX| r…ƒ)]V` ý°hq‘ŽÐ/u½ G"YIÚG(l]8èñ‹p¤¤ G¢8«†SnMÑ•c(KV °I½¼ûªFʃGb‘òcņH’6V _ý°âªÑ‘Ž”™Šl6›ôÊM&“ijjJz §Þ 8´dìM>R¢¬8Àà¤Ç8À°tçp—œ¡D ÇAœ9s&“Éœ8tèPÒs( ÂqDd2™¼[‚¤J—œ±ÖHIŽ#B&d"eÇv<DŽDŽDŽDŽDŽDŽD©Èf³IÏ¡Üd2û8åÇŠ#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#QF%=(1T®èýéÝ IÏn+ŽëÊyÕút$”1áQDíHJGÚ‘4Ž08]A8I8E8E8ÀàlÖA8À°P–¤p€(¤¡j$%„#Äz£»¡o#ªFÒõªà³QФ–G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢ŒJzÀÐ=P¹¢÷§ot7$=#Ê™G(UyÕ˜é;ÃE8@I µ##D8@鑆$B8@R–Œá@á@á@áeÈ†ŽŒá¥G’á%i€v”•Œá¥ªo ¾ÑÝ 9®U %L&r3Yq Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp ʨ¤'p“444ìÙ³çôéÓcÆŒY¼xñ“O>9a„nÿÐC½ûî»yƒ·ÝvÛÛo¿ôCHF*ÂñÙgŸ}ñÅÇŽ;gΜÖÖÖ½{÷ž:ujÇŽÕÕÕýÝ¥­­­ººzêÔ©½kkk“~(‰)ÿpljjÚ¶mÛ¤I“^yå•Ûo¿=„°qãÆ;vlÙ²å™gž)x—ÎÎÎŽŽŽ%K–lݺ5éé‹ò?ÆqÏž=ÝÝÝëÖ­ËUcá©§žª©©yíµ×º»» Þ¥­­-„·ÜråŽG­¬¬¼ï¾ûzFªªª-ZtéÒ¥cÇŽ¼Kkkká®»îJzîE¤ÌÃ1›Íž>}zâĉ'Nì=>cÆŒÂÙ³g Þ+Ž.\XµjÕœ9s/^üøãŸnܸBGGGÁ{]¸p¡ººú‰'žXµjUnäðáÃk׮ݴiÓ‚ ¦L™2è¿+€òSæoU×ÖÖVTT\¹r%oüÃ? ¿\wìkûöí'Nœè©ÆÂüùóyä‘«W¯¾ùæ›I?&€d”y8Ž5ª¦¦¦ïÊbggg¡ç<ësçÎ !477'ý˜’QæáB˜4iÒ¥K—r¥Ø£¥¥%÷¥¾·Ïf³]]]}wꩪª !Œ?>éŒòÇûï¿¿««ë­·ÞêÉf³&L˜5kVßÛ·¶¶ÖÕÕ=úè£yãÇ…ÎzH‰òÇ+VTVV>ÿüó¹ãCÛ¶mkoo_¾|ù-·Ü’ùè£ZZZÎ;B˜:uêìÙ³ßy熆†žorüøñúúú)S¦<øàƒI? €dTd³Ù¤ç0âêëë7oÞ|çw.\¸°µµõÈ‘#uuuõõõ=Ûô8p`ýúõÓ§Oß¿áý÷ß_½zu{{ûÌ™3ï¾ûîóçÏŸ8qb̘1/¼ð½÷Þ;è?—ÉdœU ”Ÿò_q !<öØc[¶l™6mÚ._¾¼råÊ;vôÝܱÇ=÷Üóꫯ.[¶¬½½ýàÁƒË–-Û¿L5”«T¬8ÞdV€²”ŠGnœp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp ʨ¤'P¼öìÙsúôé1cÆ,^¼øÉ'Ÿœ0aBÒ“HŒÇž}öÙ§Ÿ~úç?ÿùœ9sÆ·wïÞ5kÖ\½z5éy$F8ÐÔÔ´mÛ¶I“&ýð‡?ܶmÛÁƒW­Zõ“ŸüdË–-IO 1±€={ötww¯[·îöÛoÏ<õÔS555¯½öZwwwÒ³H†p,àèÑ£•••÷Ýw_ÏHUUÕ¢E‹.]ºtìØ±¤g á˜/›Íž>}zâĉ'Nì=>cÆŒÂÙ³g“ž @2œUïÊ•+]]]µµµyã555!„Ë—/Ç|“L&“7ÒÔÔ”ô#¸!Â1_îÔé±cÇæ7.„ÐÑÑóMd"P~¼U¯¶¶¶¢¢âÊ•+yã~øaøåº#@ Ç|£Fª©©é»²ØÙÙBè9Ï m„c“&MºtéR®{´´´ä¾”ôì’! ¸ÿþû»ººÞzë­ž‘l6ÛØØ8a„Y³f%=;€dÇV¬XQYYùüóÏçŽk !lÛ¶­½½}ùòå·ÜrKÒ³HFE6›MzŨ¾¾~óæÍwÞyçÂ… [[[9RWWW__ßw›ž¾2™Œ³ª€ò#ûµoß¾ïÿû?ùÉOî¸ã޹sç®[·.·#Ï „#P–„ãðŽ@YrŒ#Q„#Q„#Q„#Q„#Q„#QF%=àº/Îèù¸rrsÒÓ€|V!yÝgô®Æð鈀"!!aý5bßš€d G¢GH’5EJˆp„¢¦,(€(€(Šš (Â’¤ (!Š—¬ ¨GHXåäæ‚¨(6®U EA&Pü¬8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8eTÒŠ]÷Å=WNnNz:$ÆŠ#0ÞÕ˜û4o€ôŽ@a4¢vH'á …vH!á@á`A€¾„#Q„#Q„#P€ýèK8C¡,RH8…ICò¸ä ЯÊÉÍ}O¯.ã LÕƒá $=åTp¢Ü`zž€y«`}+íj #ˆ"´³ I8 N\áÃù1A8ˆB€H€(Â`EGK’9 „þëP5ôŽ¿×ˆ•“›U#@o.9ðÿ”"À¬8ÅŠ#¤¾k[ó(ZVļ‹k´-á$c€@ÔŽÅI8 †¥(-Ç8644ìÙ³çôéÓcÆŒY¼xñ“O>9a„nÿÐC½ûî»yƒ·ÝvÛÛo¿ôCTè¾8ÃÁŽÅ&áøì³Ï¾øâ‹cÇŽ3gNkkëÞ½{O:µcÇŽêêêþîÒÖÖV]]=uêÔÞƒµµµI?€Ä”8655mÛ¶mÒ¤I¯¼òÊí·ßBظqãŽ;¶lÙòÌ3ϼKgggGGÇ’%K¶nÝšôôŠEùã¸gÏžîîîuëÖåª1„ðÔSOÕÔÔ¼öÚkÝÝÝïÒÖÖBÈ[nH¹òÇ£GVVVÞwß}=#UUU‹-ºtéÒ±cÇ Þ¥µµ5„p×]w%=w([ƒ¿88v_œÑû¿¤Ÿ€ÒSæá˜ÍfOŸ>=qâĉ'öŸ1cFáìÙ³ï• Ç .¬ZµjΜ9‹/~üñÇOž<™ô£†¨`)ÊG€ÏªÌq¼råJWWWß“ZjjjB—/_.x¯\P>÷ÜsÓ¦M›7oÞùóç:ÔØØ¸aƇ~8æßÍd2y#MMMI?¤Hï*Ús“+'7÷×mÃ;çëÐéÛñÊ<¯^½B;vlÞø¸qãBïuáÂ…êêê'žxbÕªU¹‘ǯ]»vÓ¦M ,˜2eÊ ÿ®L$)×ÕŠ6Œr+‰Ì ”S8^¿~ý¥—^êù´ªªjÍš5µµµW®\É»ñ‡~~¹îØ×öíÛóFæÏŸÿÈ#¼üòËo¾ùfOMB±éoi-7^´MV´ Où„ã'Ÿ|Ò{÷œÑ£G¯Y³fÔ¨Q555}W;;;C=çYǘ;wîË/¿ÜÜìJIÌQŒÅ¼( PTÊ'««« ¾Aÿüó¹ãCÛ¶mkoo_¾|ù-·Ü’ùè£ZZZÎ;B˜:uêìÙ³ßy熆†žorüøñúúú)S¦<øàƒI? €dTd³Ù¤ç0âêëë7oÞ|çw.\¸°µµõÈ‘#uuuõõõ=Ûô8p`ýúõÓ§Oß¿áý÷ß_½zu{{ûÌ™3ï¾ûîóçÏŸ8qb̘1/¼ð½÷Þ;è?—ÉdœUÍÍs0_:—Ö}fÒù´ Aù¯8†{ì±-[¶L›6íÀ—/_^¹råŽ;únîØãž{îyõÕW—-[ÖÞÞ~ðàÁŽŽŽeË–íß¿?¦¡h¥6*'7÷÷Øø}¥bÅñ&³âHR^ZSHyÏOÁÈ=KŽÃO8’ ›s-–20@d{®ú“Š·ª!= FúL\À ?å³##% †ÆŠ#@>e Pp Šp ŠpÈç8Q€‚œ7ª÷ñp‚€2fÅnHÞYÝg8¯¢ø Ü÷ê ?†h€FÔŽÅo€‹&=5€â%aDhÇâ×÷BÕª``ŽqRM,ijâCaA€ŽDŽDŽ0Œ …„#Q„# ‘M¤HÛñÀÐUNnî{zµd¤<øÝúŽpC¼”R– n8Õ}q†_xH9oUð)lSjSH9áÀg !Í„#ÿOŽDŽDŽDŽü¿A7ܱ#¤™p ŠpàSXS´Ü)çÊ1äËbï­y$#„#ý‹@oUE8E8E8E8E8E8E8Åà@ ë}i“{VŒá”¤¾ÉØ{\>ŒoUÅŠ#0œz/ŽÜ²_˽o`Ñ`ØYq†M^Ï šw”+ŽÀ0pÄ!@Xq ŠpnṪIÏ€a Ò3è{ßÞ Â(IÒàæŽ@©*ØŽ•“›5%ÀqV5PÂ4"ÀÍdŸQŽ8H áŒ,ÕP6„#0 ú;²P5”Ç8ÃF&”7+ŽDŽDŽDŽDŽDŽDŽD±#æûâŒÞŸÚÒÊŒG†G^5æFú¥K82 DíeC8r£¤!¤„cqÝg8Þ‘áðÙ¼'!ÏP „#PÔ >;\åT56¢ÏÀgâ­j xõw ÄŸzÕ÷;çA<IO H#á©‘k£R©±çSl³Ò@82â¼§FQQcC&¹Qº‘p"à&Ž ƒÚQVRrФG¥3P„„ã Μ9“ÉdNž<™ôDŠ]ß@¬œÜ¬²˜_ž!ü‚•PiÐ3p#lÇ3ˆ;w&=…’á5ŒâW9¹yÐvô› ÐáXXgggssó¾}ûvïÞô\Š‚p,léÒ¥/^LzpCJbwë ¼:XŠÈ3”:áXØÆ¯]»Bصk×áÇ“ž|fw·.¹ÔÈMxx/9XZ5Ößl‹mž@JÇÂ,XûàСCIÏ>›ª¨D/U7ìs.­+ÎYé$GD&“ÉijjJzRÀÿScC G„L$)ƒž2\¢‹ŽƒT‡ãõë×_z饞O«ªªÖ¬Y“ô¤ŠTªÃñ“O>Ùºukϧ£GŽýIu8VWW{O RªÃÊOÌ•QŠMß ;  8¹V5¤K±5YÁÌí¾8£äò „#”›Ò°$ª1ò«Ü|ÂÊPÁ@,¶j äTd³Ù¤çPn2™Œsn`P1 Šb ¨XqŠ—w«ŠŠpŠ—G€¢"dˆB€’#ˆ""eI ØG 1•“›û«CÕP„„#°¾¨Š“kUÉSŠ%ÁŠ#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Ql¤Q÷Å}íC00+Ž@ê¬ÆÆÈŽ@º \‡Ú`€(ÂH Š7B8|ЏèpøçVôG8)" n„p ŠpÒeàEGK’påH…¾'|¤¹*'7{B†@8Bù+xšp÷ÅiN¥4?v€!óV5”¹6—±ï Ÿ‰p„TÓŽÄŽPÎt!ÃH8E8E8E8B9tÓ»ÒO8E8B™«œÜÜß²¢åF>á©×ˆÔ$ôÇ%!-”"7ÈŠ#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#QF%=ŠH÷Åy#•“›“žP,¬8BÝgô­ÆP(%ÔŽ B;9ÂiDŽ NYA8I8E8%]áxæÌ™L&sòäÉAoùÐCeúøò—¿œô#`ˆ2™LÒS ŸJQt³F»9&ÈKJí%]€ïܹ3ò–mmmÕÕÕS§Ní=X[[›ô#HL*±³³³¹¹yß¾}»w}GGÇ’%K¶nÝšôÜn’Üš¢+ÇHE8.]ºôâÅ‹ñ·okk !ä-7¤ÁW¼×˜íùT5½¥"7nÜxíÚµ®]»><èí[[[CwÝuWÒH€Xú“Šp\°`AîƒC‡ÅÜ>Ž.\XµjÕ{ï½7f̘ºººµk×~ñ‹_Lú¡$&áøY={6„ðÜsÏM›6mÞ¼yçÏŸ?tèPccㆠ~øá˜ïÚ“­Š™JòC)N~.EÈ¥Ø455%=…dÇ.\¸P]]ýÄO¬Zµ*7røðáµk×nÚ´iÁ‚S¦Løî©ýeÊ[ù„ãõë×_z饞O«ªªÖ¬Y3´oµ}ûö¼‘ùóç?òÈ#/¿üò›o¾ÙS“©R>áøÉ'ŸôÞ=gôèÑCÇ‚æÎûòË/77;fH©ò Çêêêay8›ÍvwwWTTTV~ê²:UUU!„ñãÇ'ý@’‘®KÆhmm­««{ôÑGóÆ?ž ¤˜p !„>ú¨¥¥åܹs!„©S§Îž=ûwÞihhè¹ÁñãÇëëë§L™òàƒ&=Y€d”Ï[Õ7¢±±qýúõÓ§Oß¿áßøÆêÕ«Ÿ~úéï~÷»wß}÷ùóçOœ81f̘o}ë[ÕÕÕIO V ¸çž{^}õÕeË–µ··ý·û·/\¸pàÀ×_ý_ÿõ_ã7~#éÙ¥×õë×ÿäOþäĉ555óæÍûßÿýßÿøÇ?úÑþüÏÿüë_ÿzÒ³#ìܹ3é)¤Ý³Ï>ûâ‹/Ž;vΜ9­­­{÷î=uêÔŽ;\dµø)^Jr„ãpúÇüÇ>ø`íÚµëׯÏ|ï{ßû«¿ú«o~ó›»wïNzvéµgÏž'NÌž=ûŸÿùŸs/„§NZ¹rå /¼ð;¿ó;_øÂ’ž`Juvv677ïÛ·Ï_G²ššš¶mÛ6iÒ¤W^yåöÛo!lܸqÇŽ[¶lyæ™g’ž]zù)6^Jr¼U=œþýßÿ½ººúñÇïùÃ?üÃÉ“'ÿìg?ëêêJzvéõÃþ0„ð7ó7=Ë'Ó§O_»vmWWW ße(K—.ýÚ×¾æE1q{öìéîî^·n]®CO=õTMMÍk¯½ÖÝÝôìÒËH±ñR’cÅq8ÕÖÖΘ1ãsŸû\ïÁÑ£GüñÇü±7}’ÒÒÒ2vìØ™3göœ>}záìÙ³IÏ.½6nÜxíÚµ®]»>œôtÒëèÑ£•••÷Ýw_ÏHUUÕ¢E‹öíÛwìØ±ßú­ßJz‚)夨x)ÉŽÃi×®]y#GmkkûÒ—¾¤ôOÿôO£Fåÿªÿìg? !üÚ¯ýZÒ³K¯ ä>8tèPÒsI¯l6{úôé‰'Nœ8±÷øŒ3BgÏžŽIñRl¼”äÇqüøñ½{÷¶´´?~ü×ý×7oÞœôŒR­®®.oäÈ‘#Û¶m=zô²eË’ž$éÊ•+]]]µµµyã555!„Ë—/'=A(^Jr„ãˆhjjzå•W²ÙlaæÌ™¿ò+¿’ôŒø…®®®ï|ç;ßþö·»ººþáþá¶ÛnKzF¤«W¯†ÆŽ›7>nܸBGGGÒ„b”æ—á8ׯ_饗z>­ªªZ³fMïüñÿñýѵ··ïÛ·oË–-ÇŽûÁ~û1#gПËüã¿û»¿ûùÏ~ÇwlÚ´iþüùIO¹ü úC!YµµµW®\ÉÿðÃÃ/×ÞRþR"‡â“O>Ùºukϧ£GîûZXQQñùÏþ±Ç;{öì¿üË¿ŽÃæÖ[oýÞ÷¾·wïÞ¼ñ¶¶¶´iÓ’ž`zíܹóõ×_ÿêW¿ú /¤öOúsÿý÷wuu½õÖ[=#Ùl¶±±q„ ³fÍJzvP,¼”äÇa3iÒ¤L&ó£ýèßþíßzßÿýï|ç;ãÆ›3gNÒL©l6»k×®ñãÇÿå_þeÒsb´bÅŠÊÊÊçŸ>w\caÛ¶míííË—/¿å–[’ž/%=¼U=œ¾ùÍo~õ«_}üñÇgÍšõ«¿ú«ÿõ_ÿõÿñ!„oûÛ©:媨|ðÁmmmÕÕÕ_ûÚ×ú~õþàV®\™ô!IS¦LyòÉ'7oÞüû¿ÿû .lmm=räÈÌ™3ÿôOÿ4é©A±ðRÒC8§ßüÍßüÁ~ðÜsÏýô§?}ï½÷&Ožü{¿÷{_ÿú×s;Ë“ˆsçÎ…®^½úÓŸþ´ïWÓv6ôØc}þóŸÿþ÷¿àÀ;î¸cåÊ•ëÖ­³ôðRÒ£"·× Ì1ŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDù?)£ü¾ñ³O IEND®B`‚statistics-release-1.6.3/docs/assets/confusionchart_101.png000066400000000000000000001141161456127120000237010ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A€IDATxÚìÝwxSeûðû¤IÓ$m:é.”îA2ÊÞûDzd(¯€*"*NQPô•ñ*‚‚ ‚Ȟʆe´@)¥¥tï¦#mšäüþ8J:8-Êéi¿ŸËË«yòw;v¬Øþ×_ÙÛÛsOýú믟ڽ{÷°aÃ<<<ºuë¶k×®ŠÏŽ;–uüøñ÷ß¿eË–vvv 8vì˲»víêÕ«—­­­Ï믿®ÑhÌê9sæÌ˜1c‚‚‚¬­­Û¶m;mÚ´{÷îU9ÿ‘#G~þùçÞ½{«Õjÿ7Þx£¸¸¸bÏøøø^x!((H¡PxyyõéÓgÇŽF£‘{ö­·Þ2½@©Têää´aóù÷ïßߪU«rCÒÒÒ^{íµ-ZX[[;88´lÙòƒ>ÈÍÍ­yÂyóæq›7oþ—^iE£GæFíØ±ƒkY·n×Ò§O®%''‡kqqq©\!Ÿ%óóÏ?÷ìÙÓÆÆÆÏÏïóÏ?×ëõ5¯f5¿f“›.\È5®Y³æ ×®'Y-k~ßkXgª{ëkþñY\P‚#ÀÓS]pdYvÉ’%ÜS;w65.X° ò{cÇŽ5 \Ó—hhhhÅ> …bΜ9É#Ç¢Œ5Êì7ZXX˜M®V«wîÜiêcš̘1 ÃTì9|øpS·˜˜•JU¹ÔW^y…ë0kÖ,³§¸tbšÿÃ?”ÉdDÔ·o_–e³²²<<<*OØ¡C‡²²²&¬2=üƒ¯ÔÌš5k¸>óçÏçZ^~ùe®ÅÎÎŽ ‡âZ&L˜P¹ÂÇ.™Ñ£G›ÕóÁÔ°Ž=ö½`kk»vÕyàcß÷Ö™*ßúÇ~‚ø,.¨Áàé©!8Þ»wÏ8¸–³gÏr-¿üòË–-[‚‚‚¸–Õ«Ws}L_¢D4bĈ3f888˜Z<==çÎÛ½{wSKzz:7ðܹs\afÚ´iß|óÍÀ¹>ŽŽŽ¦ <çïÔ©Ó[o½Õ¿SKLL ×mРA\˸qã~þùç•+Wº»»s-çÏŸçúܹs§òk7ÍÏ}y«Tªÿû¿ÿcYöÕW_åÚ{÷î½fÍš?üÐ4á¾}ûj˜°rzøg_©™¸¸8®C=¸–ˆˆÓ¨;wî°,ûÉ'Ÿpׯ__e…5/"êÒ¥Ë[o½Õ¾}{µu ÛÃø¼µ ޵]»ê<Ïû^Ý:SyÁòùñY\P‚#ÀÓSCp4 ¦­b™™™,ËšòÍÕ«W¹>·oßæúr-¦/ÑéÓ§s-›7oæZ,--¸F???®ñĉ\‹éÞ/¾ø‚k1#GŽä.\h6ÿ³Ï>k +ݺuã·oßε899‘……ENN×òÛo¿mܸ‘k©9¹¸¸œ>}ÚÔνÓnâ¥K—r=—-[VÄ•ÓÃ?ûJ+kÖ¬_ôz½N§“ËåD¤T*‰hëÖ­,Ë>ûì³Ü$IIIlíƒã3Ï<ÃÕ£Õj­¬¬¸Æ»wïVWŸ÷¢¶Á±¶kWòyß«[g*/X>Ÿ >‹ *ÂYÕõ‚D"1m•¹ÿ>qgÉ4mÚ´eË–\»¿¿pp0ÅÆÆ¦¤¤TnÚpÒ¶m[î‡àà`ooo³FNÇýpñâE"R«Õ¦]¥ ÃÌŸ?¿â³M˜0Á´Ã´cÇŽÜÞ#"ƒÁàïïÿÒK/ýþûïýû÷¿yóæÍ›7'MšÄçåÏ›7¯sçΦ‡—/_fY¶¬¬L©TfffîÙ³gÓ¦Mf/§ö•VÖ§O"*..¾qãFtttYY™Z­2d]ºtÉô+½¼¼jU9gâĉ\=VVVíÚµã333«ëÿäïEeµ]»ê<°Vï»Ù:SŸOп±¸6G€zÁh4æååq?{yyåççs“’’*^÷1::šëÃ…KkkkîSè±±±1=kv\zzºF£!¢€€n §E‹Ü¦=°&¶¶¶¦Ÿ+á¼ùæ›Ü¹¹¹ß}÷Ý3Ï<ãèè8hÐ Óá}bÖrúôé)S¦xzzº¸¸ :4&&¦Kõ¥•qÁ‘ˆÎŸ?ÏeÄöíÛs»•/]º”•••””DD}ûö­CýDdggWåÏÕyò÷¢²Z­]O8ÿû^y©ˆç'èßX\ .ÇP/¤¦¦êõz"²µµmÒ¤IBB×.•JMß¾Õùw±,[e»D"a†ÛäS« 'OžÜ¢E‹uëÖýþûï©©©DTVVvàÀƒnÛ¶mÔ¨QÁ,¢mÚ´iÊ”)F£Q¡P 4¨]»vÅÅÅ+V¬ü•VV18r§}DDDpÛÒ.]ºtáÂîÙ:ÇÚzò÷B@µzßkŽõ¦?Ãjþ‰zq[êÓA`Üv///îŒÑððð¼ªÿüsîç¹sç‘T* $¢ëׯ›¶”——/X°`öìÙ¯½öÚ~Í·iÓ†ˆ V¯^͵°,ûÙgŸq?›Ž¥ãY|·nݺuëöÞ{ï1 Ó¡C‡O?ýôðáÃܳ%%%fýFcͦ¤¤pÇðyzzzzzr¨®Íþƒ¯´:ÜFǘ˜˜ëׯQDD„­­-wêíÛ·s¿…Ï^æÇ.™Çâù^˜ŠáŽÂ$¢²²²}ûö=ù¢xµ}ßkÆçTÛU»ªq÷îÝ™3gQyyùÍ›7###¹m?¦½c ,?~|iié!C^ýu†a6lذgÏ"š4iŸÃïj°dÉ’®]»Ñܹsccc[¶l¹gÏž½{÷‘£££éU>|}}¹“[ÏŸ?Ï0L«V­ÒÒÒ~ûí7îYӉɦ3‚ãââöîÝÛ¦M77·*'4õ¼sçÎäÉ“»térøðáßÿ½ºn5Oø¾ÒêôíÛwåÊ•ƒÁ`0xzzr×siÛ¶í;w¸û×¼y˜ÿ’ù§Þ ÓvÖ>úèþýûööö»víºuëÖ“/Š'Áó}çﱟ ž‹ !ôi݈érF£ÑÕÕÕô”Ùe®+Îϲ¬Ù…£%‰é[ü7Þ¨aÂ*¯ý¾Ò*i4©ôÁá#GŽä—-[fú]Ç7u®\!ÿ%ìMDçΫ®>ïEAAAÅßHDR©ÔtaÅÊ—ã©íÚUç|Þ÷êÖ™*ßúÇ~‚ø,.¨»ª„Ä0ŒZ­nÙ²åüùó¯]»VñÙ-[¶lܸ±_¿~Mš4qttìܹó÷ßäÈ‘Š§¦ÖÙ{ï½wòäÉ‘#GªTª6mÚüç?ÿ‰ŽŽ6lXm§š7oÞÑ£GGŽ R©”JeppðÂ… ¯^½jÚ+Ê0Ì/¿üÒ¦M…BáæææèèXÄßÿ=w=îVu‡2}Á¯_¿>77·Vþƒ¯´J666¦ë~›~0íW(:uªax­–Ì?ò^¨ÕêÓ§O?ûì³®®®ÎÎÎÆ ;tèPÅ+r …Ïû^+ýñY\PÃVsÖ!€€²³³:Ô£G*ïA Þw€zÁxÁ®jàÁxAp^€GàÁxAp^€GàÁxAp^€GàÁxAp^€GàÁxAp^¤BÐ1 #t Pw,Ë ]B­á«çéãzòäÿb\™†ÑœÙ-tu¡îÆÝ»w¯^½*t!"–˜–Ùnʼèø$¡ iD•ˆ‚^_íSvcÞv˜ö…ÔÿôÖ9V[¤êþœó¼MŒ\YÛ>µÖ*¤‹ûç§œ^[çøÒ—îËNØŽ˜[q¸ÌÝߺûsù?(ô’ ‚ãclÚ´IèDï—#§„.¡ÑUPŸ±,T^NCÕdMƒÕCgòÒÓÞì–õÅó©óºüÞÒ7Ün컵êSÛi%Jµã¬Õå©q©óº&ÏÑì_k;ržUXÓ vcß-¹|¨,î¢Ð‹P0ŽUÓh4/^|ï½÷~þùg¡k«ÂmÔí„O6îØ~ôŒÐµ4–ÊDA§#®ÚÔHDÖ½&#Éßþ™!/ƒkÉûùCcQ¾²ÃPb$üûÔvZy` µSÎ÷óôéwEùù[>Ög$*Ûä:˃:*ZõÎÿå¡—ŸpŒcÕ†šžž.tâöÜÂ/2s „®¢qU 2Ùƒôz2«è`Ø‘X£6êÈÃ&ƒ^{õ˜ªË³ò€öe±çyö©õ´ ×Ê>ìÀÉâAX²·¨èøf}ú]¡—Ÿ«¶dÉ’²²2"Ú¼yó™3ØìT‹¦ŽÑ•ë‰è—£§.ÄÄ ]N£¨@$od˜ªžf™‡¿A“m,Ì©Ø\ž|‹ˆ¤ÎÍÊbÏóêSûiËn7æ:N[žóýÆÂ\õÐÙRWí¦ÅD¤ì0Tæµ|²Ð O`ŽUëÚµ+÷ÃñãÇ…®E¬:…r?œ¼zCèZKå €D®" ©±(߬ÝXœODjGž}ê0­±D“ýíL§YkÜ¿8MDÄ v®Ð^=ÆXÈìÆ¼£Ù³Ê Ézñ ÁêF® "¶´È¬Ý¨-$"‰ÊŽgŸ:LKD¥Ñ'Sçuµ í&QڔŞ/O½CDÖ}žgä ÍþµB/á!8@=b,Ê'–eä*³v‰Â†þÞ@ȧO¦ý»g^ÉùÝ;ØŽ˜›¿íS¶¬„ˆ¬ûL²é7%c•»NGRéÃÝîD#{¹P¿±†rcq~å­†•-ò3xö©Ã´UR}ÅP˜Sô×V"²}æ5‡©Kõ÷Ö®ý–eI§#–¥FÁêCnº…­éLdn~ÜSüûÔaZ3ö®6_Êßú1 ŒL®þZáþµY_N]¼x\N SÓ5Ì$G¨_J. ‰…UËž›ƪU/canY\$ÿ>u˜ÖŒí¨ùº„«Úˇ‰HêÜŒ‘Yj¯3=+‘T}9¡ Áê—â?·k´ñw"©‡Î²°u.:±•Õ—óï#±²–¹ùJ›4å?¤"™gu·Ñy?Ä=ÔgÞcõåVa=MŒÆFwŒ#NŽ€úEŸœ¿åc»ñ‹]?9RzýO©Ks«.º„kš?¾­U«Ö½f­)O¾•övožC*²ûnIä^]üeî![^¦Ùõ•í¨7¥ÎM…\*+#–% ¡ÖÓ…àõŽfßC~†ªëhe‡a†œÔÂÃë ¶Æ]:§V}ê0-Ç*¤‹UX÷´ù=*6üþ•¡(ϦߔY³º1 ÉdØâðTÈddiÉÄŽt«òÙâ3;‹Ïì¬y†šû”œÛtnw¦%¢ÒØóÉ/ú™ïÂfÙ¢#ŠŽlÜ‘Æ6¶ª‰ˆˆiœ/û_Å0¢\ª ÃhÎì~òyž>uçab¬\Ýy˜×ó.ƲÅ[¹HËoå"-›«¼ºàXŸ5ÚàØÈ6°@]!8/ŽÀ ‚#ð‚༠8/ŽÀ ‚#ð‚༠8/ŽÀ ‚#ð‚༠8/ ˲B×ÐÐ0 #t PwbüfÄWÏÓ'ÆõäÉI…. aãÊÄ0bý+B¤•‹´l®rÍ™ÝBWQkêÎÃÄ»ÀÅX¹HË&1'0ñ.ðØ‘nBWQk;Ò„.AØU ¼ 8/ŽÀ ‚#ð‚༠8/ŽÀ ‚#ð‚༠8/ŽÀ ‚#ð‚༠8/ŽÀ ‚#ð"º€zJ«ÕþòË/¿þúkrr²M@@À /¼Ð¥K¡ëh°Ó2G½³lâ9-|› ] <%,KZ-›þÞ]üåÊÏZ÷oÝk‚Ì#ÀXV\zõxÞ–Œ…¹uèSÛ!•­UpgF©.»}AŸž`6ÜáÅÏež´£½Ð OŽUÐëõS¦L¹r劭­m§NJKKÏŸ?êÔ©9sæ¼òÊ+BWÐ0ýrä”Ð%ÀÓ¦×Wû”ݘ·ÕÃæK‹Jo“¹6WuNæñÉh¶¬¤V}j;­UH§Yk$jG""£¡`ç—;W˜†ËÜý­»?—ññ³B/9Á 8VaÛ¶mW®\iÛ¶íºuë ÅÅÅMœ8ñÛo¿íÝ»wpp°Ð4…%Ú;ÉéûÏ^þíøY¡k€§„e‰eÉ` ƒ¡ê²¦Áꡳ yéé‹ò2ˆÈþùmL³ûnÞÆwù÷©í´¥ÚqÖêòÔ¸œ‡‹rÕCgÙŽœWvçRéõ¿¸ìƾ[rùPYÜE¡¡`pŒc8@Dï¾û.—‰Èß߯ŒƒáôéÓBWР<·ð‹ÿ|ò-R#@£¢Ó‘NWmj$"ë^‰‘äoÿŒ‹wD”÷󇯢|e‡¡ÄHø÷©í´òÀj§œïçéÓï‹òó·|¬ÏHT¶Èu–uT´êÿË'B/?!!8V!!!A¥R…††Vlô÷÷'¢û÷ï ]@ƒ²hê˜ås¦.Ÿ35"Ô_èZà)‘ÉÈÒ’,-IRM ± ìH¬Quäa“A¯½zÌBí$hÏ¿O­§e¸VöaÖHvÏÚ[Tt|³>ý®ÐËOHŽUX»víÖ­[ÍcbbˆÈËËKèê”Na=Ú„öhêîä t-ð”H$þc˜ªžf™‡¿A“m,Ì©Ø\ž|‹ˆ¤ÎÍøö©ý´e·Î s§-—º6—¨líÆ.”ºúh/î'"e‡¡2€‚ßVPã†c«bÖrîܹÿýïr¹ü™gžº:€†L"W‘…ÔX”oÖn,Î'" µ#Ï>u˜ÖX¢Éþv¦Ó¬5î_œ&"b;Wh¯c,dvcÞÑìYeÐd ½x†àøƒá§Ÿ~Z¶l™Á`X¾|¹“““Ð4dŒ\ADli‘Y»Q[HD•Ï>u˜–ˆJ£O¦ÎëjÚM¢´)‹=_žz‡ˆ¬û<ÏÈšýk…^6ÂCp¬Éùóç?øàƒøøx77·O>ù¤sçÎBWÐÀ‹ò‰e¹Ê¬]¢°¡¿7òéS‡iÿî™Wr~wŶ#ææoû”»duŸI6ý¦d¬r×éH*­ö0͆ª‘½\Þt:Ý’%K&Ožœšš:{öìýû÷#5<¬¡ÜXœ_y«¡DeKD†ü ž}ê0m•ÔC_1æýµ•ˆlŸyÍaêR}ƽµk¿eYÒéˆe©QAp¬‚Ñh|ã7~üñÇ>}ú:thÖ¬Y¦ëòÀ¿Í›naëÄE:™›÷ÿ>u˜ÖŒ…½«ÍÀ—ò·~LF#“«‡¿V¸mÖ—S/^ —ÃÔt ó Á± ›6m:tèÐøñã¿ýö[ggg¡Ëh\J. ‰…UËž›ƪU/canY\$ÿ>u˜ÖŒí¨ùº„«Úˇ‰HêÜŒ‘Yj¯3=+‘Ñ(ôÂzºͱ,»yóf›·ÞzKèZ£â?·k´ñw"©‡Î²°u.:±•Õ—óï#±²–¹ùJ›4å?¤"™gu·Ñy?Ä=ÔgÞcõåVa=MŒÆFwŒ#NŽ1—•••””¤P(&L˜PùÙ#FLœ8Qè2}vrþ–íÆ/výäHéõ?¥.Í­Bºè®iþø¶V}¬Z÷všµ¦<ùVÚÛ½y©Ènì»%‘{uñ—¹‡ly™f×W¶£Þ”:7]r©¬ŒX–,,„^XO‚£¹ääd"ÒjµÑÑÑ•ŸÅ)2OfßC~†ªëhe‡a†œÔÂÃë ¶Æ]:§V}ê0-Ç*¤‹UX÷´ù=*6üþ•¡(ϦߔY³º1 Édn‹#Ã6¶Óþ} #Ê¥*Ò²Å[¹HËæ*לÙýäóTwQèE(Ç*|óÍ7YYY3fÌØ³gÏ—_~¹uëÖO?ýT¯×üñÇB—&&…%Ú¨Û Ÿlܱýè¡k€ðÁ„ú@§#®ÚÔHDÖ½&#Éßþ™!/ƒkÉûùCcQ¾²ÃPb$üûÔvZy` µSÎ÷óôéwEùù[>Ög$*Ûä:˃:*ZõÎÿå¡—ŸpŒcΞ=«P(fΜijyöÙgW®\c0,,,„.Pž[øEfnÐUÀ#ðÁ„ú@&{ðƒ^OFc¬;kÔFyØdÐk¯SuyVо,ö<Ï>µž–áZÙ‡X#Y<Köã߬OoÔ‡®!8VÁÎÎ. ÀÊʪb£\.×ét:N¡P] 8,š:FW®'¢_Žžº't9@„&Ô’¿72LUO3ŒÌÃß É6æTl.O¾EDRçfe±çyõ©ý´e·Î s§-Ïùþ ca®zèl©«vÓb"Rv*óÈZ>Yè…'0Ç*lÞ¼Ù¬%222))©uëÖHüu ä~8yõ†ÐµÀø`Bý'‘«ÈBj,Ê7k7ç‘…Ú‘gŸ:Lk,Ñd;ÓiÖ÷/N±Æ‚+´W12»1ïhö¬2h²…^<Cp¬ITTÔŽ;¢¢¢š6múÙgŸ ]@ÇÈDÄ–™µµ…D$QÙñìS‡i‰¨4údê¼®V¡Ý$J›²Øóå©wˆÈºÏóŒ\¡Ù¿Vèe#<ÇšÄÆÆþúë¯,ËQhh¨¥¥¥Ð4pÆ¢|bYF®2k—(lèï „|úÔaÚ¿{敜ß]±ƒíˆ¹ùÛ>eËJˆÈºÏ$›~S2V¹ët$•>ÜíÞH4²—[KcÇŽ½yóæ©S§Þzë­ƒŽ7®¨¨èɧ€ê°†rcq~å­†•-ò3xö©Ã´UR}ÅP˜Sô×V"²}æ5‡©Kõ÷Ö®ý–eI§#–¥FÁñ1†iÒ¤É /¼ðÜsÏ¥§§¶¿Øõ“#¥×ÿ”º4· é¢K¸¦ùãÛZõ±jÝÛiÖšòä[io÷æ9¤"»±ï–DîÕÅ_æ²åeš]_ÙŽzSêÜtQÈ¥²2bYjlwAp¬ÂÇ<~üø™3g†‡‡{zzfff^¼x‘ˆ–-[æää$tu ŸfßC~†ªëhe‡a†œÔÂÃë ¶Æ]:§V}ê0-Ç*¤‹UX÷´ù=*6üþ•¡(ϦߔY³º1 ÉdØâD-[¶Ü»wïÊ•+£££oÞ¼éêêÚ¿ÿW^yÅßß_èÒ™Œ,-™Ø‘nU>[|fgñ™5ÏPsŸ’s»“Îí®Ã´DT{>ùE?ó]Ø,[tdCÑ‘ ;ÒØÆvB51óeÿ«F”K•aÍ™ÝO>ÏÓ§îk´Á±‘m`€ºBp^€GàÁxAp^€GàÁxAp^€GàÁxAp^–e…®¡¡aFè îÄøÍˆ¯ž§OŒëÉ““ ]@Ã$Æ•‰aÄúW„H+gfÛ• ¡«¨‹1­]DºÀ5gv ]E]¨;écÙ$æ¶h¼Ð%ÔÅGƒ|³·.ºŠZs;_è„]ÕÀ ‚#ð‚༠8/ŽÀ ‚#ð‚༠8/ŽÀ ‚#ð‚༠8/ŽÀ ‚#ð‚༠8/R¡ ÔÔÔ¡C‡öîÝûóÏ?º€ÇËJ¹·òõ‰3–¬õôº–F!1-sÔ;Ë6,šÓ·©ÐµÐá坿&Ý6k´RÛÿèçŠ-wψ?{@“ž$•[¹·o5üE¹J]óÌ¢+)ʼs­\[ìäbÓÄÃlxäÖ•šô¤>¯-¯rò×þ~3%ˬÑÑZñÇü [v_ŠÝ}éVBf¾ÒRÚÑßë•vJ«šË~ìBmÙåÄ´¢R]˦.^޶f×þ~*!+oí´¡ÿâ{&*ŽÁ²ì[o½UTT$t!|;°Cè—_Žœº€‡Š²Ó¤–VÖMÜ+6š%¼ë{6Þ8¼U*W4ñmQ”špþPAú½^³–J-« a’wõ̆OËŠ ˆˆ‘HBL8Þ4\“q?áüáÞs–U7J®Fa)õtx$·Ù*å®=rqã‰+J¹¬µ·kJŽfoÔ턬¼o¦ VXVf;ärBÚÂmGó‹K‰H"a^èÙæ…žá¦á‰Yù{£n¯za°Ðïj=‚àø6l¸pá‚ÐU<^iqQzRüÕS‡#ÿ.t-Ba‰öNrúþ³—;~VèZЕéJ ½Â»wžòNu}òSnùEaëØï• [G"Šúmíí¿v]Û½¾Í¨™uR®->»q©Ú¥iûW_•[«oÙ½“£wkPn†k»ðëèÔ¼êÝ …Ú2¶¬O ŸÆô®®ì;¹›N^m¢V­›>ÜÉFID_í?·ílôêÃæî\·!E¥ºEÛŽy7±{gZ7[¥Õ¦“W¿?v©…§s„߃ͥ«Gv jÖÔEè7¶Á1Ž5‰‹‹ûòË/ƒ‚‚„.àñ¾ž7éû÷f!5>5Ï-üâ?Ÿ|‹ÔõJQvÙ<º¹ÑÌÝ3X– <™‹€DÔú™i–J›ûWN°,[·!Yw£K óÛ}ÕÆÙÃRiÓjØ‹ÖNî)×Ïp³â£SoD¶2µº’Rr ‰È˱¦}å»/Þ2²ìK}ÚrˆfˆP+äG£ŒÕ”ýØ!Wï¥çkßÞÍËÑV­¿Ò?ÂÓA}âV"×ùJbú™Û÷gök/ЛYO!8VK¯×ÏŸ?ßÞÞþí·ßº€Ç1ãí o~:áÍO}ÃÚ ]K£°hê˜ås¦.Ÿ35"Ô_èZ(ÊN%¢ÊÇV”a÷ÐS #±p iWZ˜Ÿ}7¦ŽC¸äÆP…ŒÑ`à~¾òû÷¾Ù8W[UrnyV:¾°¢+‰é†éððHb ‰¤“¿W^±özRF݆TΛ†Ñ4ÿ÷Ðùá킼j¬ª®êj}óÍ77oÞüá‡Ôjõ“ÏðoóoõàßôØË§…®¥QèÈýpòê ¡kx (+•ˆŠó2ÿ÷í¼ä;2¹ÂÎÓ7¤ÿ8ÇfVWbÙ‚ô$¹ÜúÑ£ ݼ‰¨8'½‰o óIy iâÛB®RGnYÙ~Ü«r•íÍ#Û 3SÂGÌ ¢ûWNjÒ“ºýçýÊNÎÕQF~Ѭõ{o§å(-enŽ“{´õtþ»JÈÊ·WYÙ©9 ÓÇÅžˆRò [5s­Tõㇴnæj§´úô÷“ï ïf§´ÚtòjRNÁ«ÿבˆŽÅ$$dæ>¡¿Ðoi½ƒàXµ+W®|÷Ýw'NìܹsLLÌ“Oðo+ÊI#¢è}›lœ=]ÂKò2Rc.¤Ýˆl7f¶O§D¤×•²Fƒ¥ÒÆl ×RZTPyN>Cd U§ÉoŸÙ¸tßÇÓˆˆa˜ÐãÝBÚ úk¬ê3ÊÊÆ®†²¹]Õß»ÔÔɶGzAáéÛIgâîÏÚeXÛ "ÒêÊ F£Z!7ȵp§¶˜á3ÄÚÊòƒÑ½o?öÜÊíD$a˜z†wò÷ÒŒ«GNìÚÒ^¥ú-­w« ÕjçÏŸïååõÆo] _%yY–ò–C¦ôεdÄFüîý¨ßÖºµQÚ;ëu¥D$“›ç!™•’ˆt%…•çä9Ä%0|ð»ßeܾR^Zâäªvñ"¢øÓû º²À^ÏÖ\vFA‘•L:³_ûÑC¹–Èø”7:´rÿ¹~ž.¶Ö¥åz"RÊ-ͪä2"Òh«Ž<‡´÷õØ:gÌÅ»)ÅeºVÍ\›9ÙÑÎÈ›¥åú±Ãzë5Ç*|öÙgÉÉÉ[¶lQ(ð§ˆFÏW>5kq ÷ï>üÖÑíÉ×Îôn©´!†Ñ—™'­òÒú{#¢þC,Uj¯ðî;Äø©åЩÜ%{âOï;¹§$/ÓÞÓ¯Õ°L{ω¾žòf“·÷õÓ1tó©k'nÞÝ1T­3 •èÊͺ—•‘ZQÅU„ø±UÊû´ð©ØaýŸQ3úµã.Ù³3òæŽó72 ŠÝ^îâÙä)¾ŸõNŽ1wáÂ…-[¶LŸ>½U«VB×ð¤œýˆ¨ -‘ˆ$RK¥Nk~qb]I)Ô•‡×açÖ‘írkÛæúу[.nû¯µ“›_·¡¥EùGWÎËO¹[sÙáÞnDŸ‘KDR ‰Z!/Ô–™õáZmªØÊS‡!œÍ'¯Ú©¬†„ц¿¢>ÿã´‡ƒzd‡¼"íŒuÜIÏýß*1@p4GD«V­ üÛ³Ï>KD»wï 2dˆÐT…eY£±ò%u‰ɬTÜC¥­ciaûL 3“‰HaçXåÄu¢-ȉýó·VÃ^d$C¹.æÐ–À^Ïv¶¸å)ýç}£rp‰9¸ÅÔÙhd+_RÇB"!"•Õƒ}ÍMlT¹ÅZ³ x/»€{ªÊê0$KS¼õlôËý#$F§7¬ÿëʸÎaŸï7£oûõ3G¸ÙÙüðgÔ¿ü.ÖwŽæš5k6øQ]»v%"ww÷ÁƒwïÞý‰À?¯0+uÛëƒÿ÷-³öì„DdçÑœ{èÖ‰5Óo]z؃eÓnFÊUêê.Ð]‡!×÷ýèÐ4À½E"*ÎI7êËÝ‚\)ÌBfÙÄ/L“~{hiiÙõýu³×ï3Ÿá~ù¹<Ø¢Ù-¸™ÑÈž¿“\¡:wßNiUݺë0ä»c—‚ܺ6%¢”¼Âr½¡£¿çƒ:¥áÞn‰YyOçݬ·ÍuíÚuÅ£æÎKDíÚµ[±bÅüùó….  6ÎN>¡Yw®ß={ÀÔ˜“x3öøoJ{gÏV]¸–æ0 sà'î E"ºyd[©&¯yÇþ‹g>èË´…™ÉÅ9éü‡TT–˜xáH«áÓ¸‡*GW‰…Ô”;úò¬øhµëƒË+êtºVÍ\£Óv_Š5Í}?óçÓ×]l­{†<È»CÛJfÝñ(î E"ÚtòjN‘vp›™Åƒ0SRVž”]šWÈHEw3óö]‰›5àÁ¥Í<ìmdSî,×®ÜKónb'ôû,0œÐ@´õò_kFn]yçô>µ³gq^FNÂM©\1~®é¦Ò*çVÃ_¼²ëûƒŸ½ìܶ(+5#—pŸÑ¦yRoDžÝð©­›÷À·WóRÑÕÝ?x¶êjºx¤…Ì2dÀ¸è}›Šr2lÝš&_;Sœ“^ñ¦ˆo îüúû—þ~rWäͦN¶éùEÑ÷3–Ò…#º›n*íjgýJÿˆožŸôíoü=’s4—RƒÜ&v}xB™¸û‹·óq¶ßí¸ËëT‡ÿË i‘ñ)[fªØ8¥G¸­R¾ãüÈøä@w§5Ó†ú»:RãÆTwcJ¨3†åRiÙâ­œa˜mW2ž|ž§oLk‘.pÍ™ÝBWQêÎÃDºÀÅX¶x+gfÑþx¡« "b–e«Ü…]¥ùfo]&tÕd0,U¹ »JNcç‹q=yrØâÿFbÁ<ù,O…Db!t ¢€“c€GàÁxAp^€GàÁxAp^€GàÁxAp^€†eY¡khh†º¨;1~3â«çéãzòä¤BÐ0‰qeb±þ!ÒÊEZ6W9Í=*tµ·¢x¸+iÙ$ê&Æ&‰õ³)âõäÉ`W5ð‚༠8/ŽÀ ‚#ð‚༠8/ŽÀ ‚#ð‚༠8/ŽÀ ‚#ð‚༠8/ŽÀ‹TèàI]YÒ»ûš‹‘÷5•ŸÚÎý…öîAΪâ2ÃÁÛ9 ÜÉ))¯CŸÚ±SH»7··µ’ž½Wp'§Älø·Ï…¸¨z­zÙAm 8VmÔ¨Qׯ_7ktrr:}ú´Ð¥4(JÙ{}}º6·ó¶·J/Ô]NÑ||4!6«äÉghTfΜ]ÝSôó™ßÓ»°Ìp*!ß×Q1©­[ˆ‹jຨb¡V}j;mûÍc[8©dDd0²ŸOüäX‚ixPÕ¤¶ný¾»,ô’ƒÚAp¬ZRR’B¡ðöö®Øhgg't] ŠBziNWË™Åûne{ÙZ sâÜsíÅË)…BW ,K,KMŸþr•Â\­çõh–ª)ëºúbš¦Œˆ>ì?«³×G|çþq›ŸÚNkk%Ý46ôVVñËÿ»•]\þff‹ú4¿p¿àH\.7ÃG|÷ÞÌ>—T ô"„ÚÁ1ŽUÐh4={öÜõ¨ 6]@ƒònïæ®6–ËþLl»òüó[cz®½ôÒŽ›2 fÅ¡KŽt:2T»Y¦¶w—0Ìû‡ïrñŽˆÞÙ'O[>*ÌYÂ0üûÔvÚ.ÞvMT–/ï¼—]’§-_pàN|Žvhp®sWo»Ž‹Å ½ü Ö«””DDf›à×ÛÏ¡XgXúg¢©eÓå´”‚²Öî6R S÷y ™Œ,-ÉÒ’Ž;Re‡®ÞvF–Ý›mjÑÙƒ·sš¨,;5³åß§¶Ór`–}8ÄȲ¦Ïõ§ƒüÖE¦Æeã ñAp¬Â½{÷ˆ¨Y³fBÐÀ喔ﻕ­-7Vl,ÕåR‰¥þux<‰äÁ÷î%V~–a(ØY•UTž]üÈ9+1ÅDÔÜAÁ³O¦=•˜ŸSR¾úÙ ?G¥Bºd€¯¿“r÷,"z¶…s³jÉÑÂ1ŽUà‚cZZÚ¤I“nÞ¼©T*CBBf̘ѪU+¡KhP*ßÕÛÎÇAqᾦ¤ÜP§)à!kK ©„ÉÕšŸWRNDNJÏ>u˜¶ T?ik̦±¡×çv$"#Ë~r,áàí™óÑß'îeë„^­\¹²yóæ:uJII9~üø_ýõþûï3Fèê ŽMm'µu pRvlj{7W;í×BWÐ(dDTTfþg˜¦Ì@DJÏ>u˜–ˆŽÅç†}y®—¯½­•ôtb>wµ„ÿDx(e_Ÿ¾/ô²:j˜ÁÑh4²,kaaAD×®];yòdÓ¦Mûöí«P(ø OKKS(sçÎ4i×ræÌ™3f|òÉ']»vuwwúõ44-\­§´uçŽÂJÕ”êO:#åiËY–Tr ³vµÜ‚ˆrKÊyö©Ã´œÜ’ò×3+t.èÝ|ñ¡xî’=ÿ‰ð˜ÞÑÓë­ޤR’àø1hhï’Á`øì³ÏÚ¶mMDçÎ;vì×_=oÞ¼‰'ñ™dÆ W®\1¥F"êܹóóÏ?¯Õj9Âg¨•ï/¤¨k¾ôÔÛûïŒu>þR[µ¼aþY ð4•Øu˜¶JotošU¬Ûx)ˆÞîåýõðÀ»¹Úµk¿eYÒé9“ê­†úé§~øA¡PX[[Ñ7ß|cii¹páÂ)S¦DGGoÚ´©Î3GDDÑíÛ·ë<Ô€e)½P·òTÒ÷‘©¶ò-š]@C¢)s¶¶´S<òœ”D”ú÷•tøô©Ã´fÜÕòÙ]š.<o0²VRÉÛ=½¿>4fóµÅ‹ÈåÄ0¤× ½°€‡†wìØ¡T*8àëë[PP5räÈçŸþwÞ ¸ŒpK7ëé=4eúS‰ùBÐ$å—.8¿tß…Ù‡ãr|•=}ì£R ¿8q¯V}8m“QÜîëó<‡Tôñ¿]1Y‘÷5ÜÃR½qéñÄÅ}}¼7T”•Ë’…Aý×Ђ£ŸŸßåË—³³³­­­÷íÛìääDDæÂ… |&Y¼xñ‹/¾¸páÂ-[¶øøø¤¤¤\¹rE©T~úé§<ÏË>^ÞyëèKm¶Oly>© !Oëf#ïêmGD/l¿‘Qˆk¼ü3VžJJ/,›î6*Ìå~Aéêsɾ«)Ó×¶O¦åôð±ïãçÐú«s—þ™˜[R>½£gïY¯1 ÉdØâ( Û°Îb:~üøŒ3ÔjµB¡ÈÈÈx÷Ýw'MštðàÁ¥K—¦¦¦.X° ò>è*eff._¾üìÙ³yyy^^^­Zµš3gŽ››Ÿ± #Ê¥*Ò²Å[¹HËæ*§¹Gÿ©Ùü•‹û6÷°ñP[%”^K+úôxwÿ‰ØŠ>â]àb¬\¤e‹·òöƒùÏ’J ÃT¹ ›H¬ŸM‘®'O®¡mqìիׇ~¸fÍšœœœaÆ7Žˆ®^½ššš:räHî!ÎÎΟ}ö™Ð¯ á»“S2é—¡«€‘ÞÈ5ÆŒÕ 5ؼ̲,Ã<¸™úýû÷ ·Ïú)é_!"-[¼•‹´lªß6j"έ$ÚUE¤e‹·r±~0I¬ŸM‘®'O®aP`4M×Ó¹víÚîݻϞ=«Õj…® @ÄÚ®jƒÁðÅ_lݺuÆ ­Zµ:wîÜ /¼`0ˆ¨E‹7nä. µÕж8þ{wŽhäÚGÓcÔj5wç˜qãÆ=ÿüóDtöìÙÌœ9SèD©¡mq|ò;Ç@•Zp|ò;Ç@•Zòóó»zõjvvviiiï•5´à8eÊN7hРþýû§¤¤<ûì³DtðàÁáÇççç1BèĪ¡GîÎ1ÖÖÖùùùOrç0Ó`¯{Ž;Ç4’²Å[¹HË&ñÞ Bœw§ Ñ®*"-[¼•‹õƒIbýlŠt=yr m‹£‰)5‘———““ÓúõëGŽ)t]bÕЮãHD·oß>|øpnnnÅFƒÁpøðaî2P -8^½zuÒ¤I¦+òTdii‰«ÔYCÛC?kÖ¬£G~ôÑG~~~‹/öññyõÕWóóó—/_®R©Ö®]ûj¨¸—DGŒßŒøêyúĸž<¹†¶Å1::ºM›6£F"¢gžyæ÷ßoÞ¼9­^½ºOŸ>»wï6lØS(CŒ+“xóiå ÃhÎ캊ºPw&Ò¾íJ†ÐUÔŘÖ."]àb,›ÄœÀíº„ºøhoöÖeBWQkNcç ]‚0ÚÉ1ÙÙÙ¦«|7oÞ<>>ž;®ÑÆÆ¦GÛ·oº@±jhÁÑÖÖ6''‡û¹Y³fååå ÜC‡[·n ] €X5´àغuëóçÏ_»vˆš6mªT*÷îÝË=%—Ë….@¬Ú1Ž/¼ð‰'F½|ùò!C†téÒå‡~0999W¯^2dˆÐˆUC ŽmÛ¶ýî»ï~þùg©TJDóçÏ¿páš5kˆ¨Y³fo¼ñ†ÐˆUC ŽDÔ±cÇŽ;r?7mÚôÏ?ÿ¼téÃ0mÛ¶U(BW V 08šQ*•ݺuº ÑkÁ1$$„ç7n]/€(5„àØºuk¡KhøBpüù矅. ákh×q€ICØâhrëÖ­¸¸¸¡C‡šZ>øà½^ßµk×~ýúI$HÉu×@²T~~þ”)S†þÛo¿UlOKKÛ¶mÛœ9s&Ožœšš*t™"Ö‚cyyùsÏ=wöìY__ßgžy¦âS‹/^¼x±Ï… þóŸÿ ¡‹«†·nÝš˜˜Ø·oß]»v >¼âSîîî&LصkWß¾}ïܹóÓO? ],€X5„àxàÀ©TºhÑ"KKË*;Èåò>øÀÒÒòøñãB V á䘤¤¤fÍš¹ººÖÐÇÉÉ©y󿉉‰ü§½~ýúÚµkcbbŠŠŠgϞݡC¡_+Àã%¦eŽzgÙ†EsZø6º–F!+åÞÊ×'ÎX²ÖÓ¿7#ø—^þjnÒm³F+µýð¹tÝݳâÏФ'IåVnÁí[ Q®R×<óc‡èJŠ2ï\+×;ù„Ø4ñ0¹u¥&=©ÏkË«œüŵ¿ßLÉ2kt´Vü1BÅ–Ý—bw_º•™¯´”vô÷ze@„Òªæ²;¤P[v91­¨Tײ©‹—£­Ù𥿟JÈÊ[;m(5Œà¨Ñhš6}ü¤Z­æ;6gÎ£ÑæïïúôéI“&­^½ºwïÞB¿\€ÇøåÈ)¡Kh\ÎØ!t e§I-­¬›¸Wl4Kx×÷l¼qx«T®hâÛ¢(;5áü¡‚ô{½f-•ZVÂ;$3îê™ Ÿ–#‘„˜:p¼i¸&ã~Âùýç,«nþ”\ÂRêéðHn³UÊ+>\{äâÆW”rYko×”ÍÞ¨Û YyßL¬°¬6Ì©vëÌŒÜM'¯6Q«ÖMîd£$¢¯öŸÛv6zõá sw®Û¢RÝ¢mǼ›Ø½3­›­ÒjÓɫ߻ÔÂÓ9ÂïÁæÒÕ‡#»5 kê"ô[4„ Ô¢E‹‚‚‚+W®ÔÐçÂ… †ç]­wìØ¡Ñhf̘Á¥F"jÙ²å Aƒ²³³¯_¿.ô˨Ús ¿øÏ'ß"5>5_Ï›ôý{³¡^)ÊN#"›G77š¹{æË²aƒ'sˆZ?3ÍRisÿÊ –eë6$ëntia~û±¯Ú8{X*mZ {ÑÚÉ=åú®sV|têÈ–C¦VWRJn!y9Ö´¯|÷Å[F–}©O[.Ñìj…üht‚±š²;äê½ô¼bí;ûy9ÚªòWúGx:¨OÜJä:_IL?sûþÌ~íz3멆GEDóæÍÓh4UvÈËË›?>9’Ï„'Nœ`ÆìÊ>Ë–-‹mÕª•Ð/ j‹¦ŽY>gêò9S#Bý…®¥Q1ãí o~:áÍO}ÃÚ ] ÀEÙ©DTùøÂвâ¯3 ãaja$n!íJ ó³ïÆÔq—ܪÐ1þ} ¼+¿ïÛysµU%ç‘g¥ã +º’˜.a˜.L³H:ù{åk¯'eÔmHå¼)a½áAóÞ.ȫƪ¡†°«ºsçÎÏ<óÌ®]»üòË/>\©|ð·EIIÉ®]»þûßÿæääôíÛ—çŠÑÑÑööö®®®/^ŒŠŠÊÏÏ êÛ·¯B¡úµT«SX ÷ÃÉ«7„®¥QðoõàK4öòi¡kx (+•ˆŠó2ÿ÷í¼ä;2¹ÂÎÓ7¤ÿ8Çfþ} –-HO’ÛØÉ­=šÐÍ›ˆŠsÒ›ø¶0Ÿ”Ç&¾-ä*uä–•íǽ*WÙÞ<²­03%|Ä "ºå¤&=©ÛÞ¯¡ìä\ eäÍZ¿÷vZŽÒRàæ8¹GëPOç¿K „¬|{••ê‘£0}\ì‰(%¯°U3ódù iÝÌÕNiõéï'ßÞÍNiµéäÕ¤œ‚Wÿ¯#‹IHÈÌÿ|B¡ßÒz§!G"Z²d‰¥¥åöíÛßÿý÷ßßÉÉÉÅÅ%333+ëÁ)Zƒþä“OøL¥Óé ýüüÞÿý-[¶˜Ú½¼¼¾úê«-Zð™àé+ÊI#¢è}›lœ=]ÂKò2Rc.¤Ýˆl7f¶O§D¤×•²Fƒ¥ÒÆl ×RZTPyN>Cd U§ÉoŸÙ¸tßÇÓˆˆa˜ÐãÝBÚ úk¬ê3ÊÊÆ®†²¹]Õß»ÔÔɶGzAáéÛIgâîÏÚeXÛ "ÒêÊ F£Z!7ȵp§¶˜á3ÄÚÊòƒÑ½o?öÜÊíD$a˜z†wò÷ÒŒ«GNìÚÒ^… FæHp”J¥}ôÑ‹/¾¸aÆC‡eggggg‘Z­îÓ§Ï”)S‚‚‚xNUXXHDwîÜÉÊÊúì³ÏzöìYZZú믿~ûí·¯¾úêž={°Ýê§’¼, KyË!Sz<¸FFlÔÉïÞúm­kP¥½³^WJD2¹ù™ÌJIDº’ÂÊsòâ>øÝï2n_)/-qò U»xQüé}]Y`¯gk.;£ ÈJ&Ù¯ý莡\Kd|Ê›?Z¹ÿ\?O[ëÒr=)åæWkVÉeD¤ÑVyiïë±uΘ‹wSŠËt­š¹6s²#¢‘7KËõc;‡ ô6Ök $8r¼½½¹-ŽZ­633ÓÑÑÑÚÚº¶“XY=ئ½téRÓ®íY³f¥¦¦îرcïÞ½Ü!•õMÏW>5kq ÷ï>üÖÑíÉ×Îôn©´!†Ñ—™'­òÒú{#¢þC,Uj¯ðî;Äø©åЩÜ%{âOï;¹§$/ÓÞÓ¯Õ°L{ω¾žòf“·÷õÓ1tó©k'nÞÝ1T­3 •èÊͺ—•‘ZQÅU„ø±UÊû´ð©ØaýŸQ3úµã.Ù³3òæŽó72 ŠÝ^îâÙä)¾ŸõQC89¦2…BѬY³:¤F"R©TVVV …¢W¯^ÛûöíKD·nÝúÅÔ‚³_¤%‘ÄBj©´Ñi‹ÌúèJŠˆH¡v¨<¼C8·Žl—[Û6ïПˆnÜrqÛ­Üüº --Ê?ºr^~ÊÝšË÷v#¢øŒ\"’ZHÔ y¡¶Ì¬×âhSÅžÀ: ál>yÕNe5$<ˆ6üõù§=Ô#;„äig¬ûãNzî¿øV‰Aà ŽOÈÙÙY&“1 S±‘ÛC­×ë…® *,Ë•/©ÃH,ˆHf¥â*mK ó¸ØgR˜™LD »ª¯v\‡!Ú‚œØ?k5ìEF"1”ëbm ìõl×i‹[™ÒÞ7*—˜ƒÏ"0ÙÊ—Ô±HˆHeõ`_sUn±Ö,ÞË.àžª²†: ÉÒo=ýrÿ‰„Ñé ëÿº2®sØgãûÍèÛ~ýÌnv6?üõ/¿‹õ‚czõê¥Ñhnß~ä–M—/_&"þÇJ£Mó¤Þˆ<»áS[7ïo¯æ9¤¢«»ðlÕÕtñH ™eÈ€qÑû6ådغ5M¾v¦8'½âMßÜùõ÷/ýýä®È›MlÓó‹¢ïg*,¥ Gt7ÝTÚÕÎú•þßýç}síõ·¯¤%Z;ºzGômñÏ+í98°×H+µCâ…£÷£N(íšøw6x2wyêð’w5#6jЂÿUl í?N®RÇü##ö²½—Äk¯Ûy<<‘ÙÏÕaýÌ«G^¼›Ÿ™çao3¨µÿ´Þm]l9q\—0Gåþ+qG£\ÔªQB_êÓŽ»¼Nuø¹œŸ²eö#N™Ò#ÜV)ßqþFd|r »ÓšiCý]ûö#¦ºSŠ×­[·–/_~âÄ îallìG}táÂ…Ï>ûŒç½ªŸÈr©Š´lñVÎ0ŒæÌn¡«¨ uça"]àÛ®d<ùx ¡Ç.]ºÜ¹sgýúõfí›7oŽíСƒÐˆ•øÎ{ªÙÌ™3?¾téÒC‡qw—þæ›o.\¸páÂ…¦M›Îž=[èĪ¡G™L¶aƯ¿þzË–-ƒˆþûßÿÑ!CæÏŸ¯T*Ÿô4V -8‘­­í¢E‹^}õÕøøøääd'''¡ë·9jµ:<<<<<\èBˆ†;vìXs‡sçÎ ]#€(5´àèááQñ!˲yyyiii,˺¹¹µoß^èĪ¡Ç;vTnÌÌÌ\²dÉÁƒÛ´i#tbÕЮãX%ggçåË—ûøø|úé§¥¥¥B— J ˲B×ð”|øá‡?ýôÓŸþéææö¯þ"†a„~­PwbüfÄWÏÓ'ÆõäÉ5´]Õ5(,,´²²ruu} ¿KŒ+Èõ¯‘V.Ò²Å[¹HËoå"-›ÄœÀÄ»ÀÅX¹xד'Ô(‚£Á`8qâÄ|}}í; ð„ZplÙ²eåF½^ÏÝEfêÔ©B V -8¶hÑ¢Êv‡Áƒ4HèÄJ”Ôsâ=\CŒe‹·r‘–-ÞÊEZ¶x+iÙâ­\¤e‹·r‘–ýäÚåx¾ÿþûÍ›7 ]@ÔÐòrÛ¶m Õ+W¬A¤…ˆ´lñV.Ò²Å[¹HËoå"-[¼•‹´lñV.Ò²Ÿ\CÛâ8jÔ(­V{êÔ)¡ hhZ^6 |ðÁÑ£GçÏŸáââ"‘<íp,Ò¿BDZ¶x+iÙâ­\¤e‹·r‘–-ÞÊEZ¶x+iÙÿÀ o`/›;oúþýûåååD$‘HÌ.ÜxãÆ»‘®L"-[¼•‹´lñV.Ò²Å[¹HËoå"-[¼•‹´ì'×Ð.Çcoooú?üƒi^þW‰ô¯‘–-ÞÊEZ¶x+iÙâ­\¤e‹·r‘–-ÞÊEZö“k'Ç,_¾|ÇŽBWÐÀ5„àø¿ÿýoÿþýBWÐÀ5„àO‚#ð‚à¼4Ëñܽ{wÙ²e|zΟ?_èbD©!œLÈ¿slllÍ´ZmëÖ­«{ÖßßÏž=5Ï ÒSôEZ¶x+iÙâ­\¤e‹·r‘–-ÞÊEZ¶x+iÙO®lqô÷÷Ÿ2eÊ?2Ã0ÁÁÁ•Ûu:]||¼­­­Ð¯@ $8ºººŽ5ê™ÊÊÊj×®]•ÛW¬X‘˜˜øÎ;ïýZ„“cx¹uëÖ÷ß?}úô-Z] €0Ï`0,X°À××÷å—_ºÁ4]ÕÿªŸ~ú)&&fýúõ2™LèZÓ‚ã’%K\]]ÿ¥É‹‹‹W­Zѹsg¡_(€Bpü§N‹©ÒúõëóòòæÎ+ô«Žq¬Iaaá?üо}ûððp¡k‚cMöìÙS\\â¢êµBèeµàXƒÁ0yòäË—/»»»wëÖ-//ïàÁƒ‡Þ¸qcûöí…® Ñ±0o÷ôösTë 72‹--˜ gU Wëߢ3wÝȺºzaæÌÙÕ=õA?Ÿù=½ Ë §ò}“Úº…¸¨®‹*ÖjÕ§¶Óöð±ß<¶…“JFD#ûÉñÄOŽ%˜†5QMjëÖï»ËB/9¨Ç*üòË/—/_4hÐ_|!•J‰èìÙ³/¾øâÂ… <(tuNO{?Gåíì’e%ê F"ò´µZЫù3¡M.§j’òK….P0,K,KMŸþr•Â\­çõh–ª)ëºúbš¦Œˆ>ì?«³×G|çþq›ŸÚNkk%Ý46ôVVñËÿ»•]\þff‹ú4¿p¿àH\.7ÃG|÷ÞÌ>—T ô"„ÚÁ1ŽU¸|ù2Mž<™KDÔ©S§àààÄÄÄÜÜ\¡«ht"·#Yö“c oçÈ,˜ø®8q/«q'~ñBp¬‚F£YºtiqqqhhhXXXNNΩS§víÚÕ±cÇ~ýú ]@£fÁ0}ýžkåjÁ0«ÎÝ/(Õ ]Qý¥YQQ™ù!š29(e<ûÔaZ":Ÿöå¹^¾ö¶VÒÓ‰ù±Y%DôŸ¥ÌâëÓ÷…^6PGŽU˜?þ¥K—Þ~ûí©S§r-©©©cÇŽ}ýõ×wïÞíãã#tT°³jrwwµ<·¤ü»È”\DZFyÚr–%•ܬ]-· ¢Ü’rž}ê0-'·¤|ÇõÌ ¤ z7_|(ž»dÏ"<¦wôôz«@§#©”$8zN ð.™ËÌÌ<~ü¸ŸŸŸ)5‘»»ûË/¿\^^¾sçN¡ hŒ¤fB¸ÛÛ=›;*e;c2ß:‡ÔøXå6O[noe¾‘ÈN!#¢ôBÏ>u˜¶JotošU¬Ûx)ˆÞîåýõðÀ»¹Úµk¿eYÒé9“ê-Gs999DäíímÖÎmhÌÊʺ@€F‡aèåŽ^ü/§hæï¿½3&³Loº(qHÑ”9[[Ú) yNJ"JýûJ:|úÔaZ3îjùì.Mˆ7Y+©äížÞ_ŸN³ùÚâÅ ärbÒã 1@p4çíímaaÇ>ú·Oll,ùùù ] @£Óßß±§úèÜ•§“ò´Èµ°çf¶…„éçïhjaà˜SRnºø6Ÿ>u˜ÖÌâ¾>—S4{oeQs…\*9ûð²w ñ·€ 8šS(Ý»w¿wïÞ×_mü{-Ž‹‹[µj•¥¥e¯^½„. qaˆúù9–”¶\MºñÙp1ÕȲïön®–?Ø:8¯{3Ë/=¼š:Ÿ>6r‹'%w $žC* uQM w}çÀîaB®Vg0öów0u0qŒ£8àä˜*|üñÇ£FZµjÕ¾}ûBBBrrr.]ºd4.\èëë+tu‹Bêlm©3ßíÕ¼ò³§óßɺÆú+)¿tÁø¥ƒü.ÌŽ8—ãë¨ìéc•RøÅ‰{µê3 ÀiÓØÐ˜Œâv_Ÿç9¤¢øíŠÉм¯á–êK'.îëãí ¸¡ú ¬ŒX–,,ê?Ç*899íÛ·oÍš5§NúóÏ?ííí{ôè1sæÌ°°0¡KhtœT–Ddi!©òbÔ1™8Eæ1VžJJ/,›î6*Ìå~Aéêsɾ«)Ó×¶O¦åôð±ïãçÐú«s—þ™˜[R>½£gïY¯1 ÉdØâ( ‹³˜þi #Ê¥*Ò²Å[¹HËoå"-[¼•3 3zãu¡«¨‹í“ÃDºÀiîQ¡«¨šTÂH¦Ê]ØDD+úˆt‹±ì'‡-Žð/ÒY¢Æ˜±$l^€GàÁxAp^€GàÁxAp^€GàÁxAp^–e…®¡¡aFè îÄøÍˆ¯ž§OŒëÉ““ ]@+tЈ4ÎOvU/ŽÀ ‚#ð‚༠8/ŽÀ ‚#ð‚༠8/ŽÀ ‚#ð‚༠8/ŽÀ ‚#ð‚༠8/ŽÀ ‚#ð‚༠8/ŽÀ ‚#ð‚༠8/ŽÀ ‚#ð‚༠8/ŽÀ ‚#ð‚༠8/ŽÀ ‚#ð‚༠8/ŽÀ ‚#ð‚༠8/ŽÀ ‚#ð‚༠8/ŽÀ ‚#ð°,+t Ã0B—u‡oF€êH…. aã?: #Ö¿"DZ9Ã0‹öÇ ]E]|4ȷתËBWQkÇ_n#Þ.Ò5œæºŠ:YÑGè ê/ìª^€GàÁxAp^€GàÁxAp^€GàÁxAp^€GàÁx‘ ]@cwxù«¹I·Í­ÔöÃ?ú¹bËݳâÏФ'IåVnÁí[ Q®R×<óc‡èJŠ2ï\+×;ù„Ø4ñ0¹u¥&=©ÏkËÍÚU*Õ¾©áÕýÒ{y¥3wÝä~þjh`€“Ò¬Cž¶|ÂÖèÊà80À©©U©Þp1Y³îbª¦T_±ƒµ¥EK7•¥$&£8USf6|N—¦Íì¬ÞØ{»ºùE·ÀE*00èÊ’ÞÝ×\Œ¼¯©üìÔvî/´wrV—ÞÎYpàNNIyúÔvˆBÚ½¹½­•ô콂;9%fÿ}&(ÄEÕk…ÐË CpXQvšÔÒʺ‰{ÅF³Àq}ÏÆ‡·JåŠ&¾-вSÎ*H¿×kÖR©¥UuÓ>vHfÜÕ3>-+* "F" 0!tàxÓpMÆý„ó‡{ÏYVyf£Ñx7W[¹]&a¼ì¬ uCž›¼To4Ëvš2=Uor[÷çZºhËÑEîjy?ǦvŠwÄ•ê\‡–nÖïôlnk%%"#Ëþ|%ýç+é¦á^vVýüæïkH \¤fΜ]ÝSôó™ßÓ»°Ìp*!ß×Q1©­[ˆ‹jຨb¡V}j;mûÍc[8©dDd0²ŸOüäX‚ixPÕ¤¶ný¾»,ô’¨×„¤+)Ò•z…wï<åêúä§&Ü<ò‹ÂÖ±ß+¶ŽDõÛÚÛíº¶{}›Q3ë6¤\[|vãRµKÓö¯¾*·Vß<²-zÿ&Gï × 6Ü ×vÿàÖÑ©yHåɵZí¬ßoUnŸÒÖÝ]-ÿîB ÷ÐÚÒÂFnq2!ïÓ?y.æöŠ1a.9%å¯ýËm(šÞÁsxH“©íÜWŸK&"•¥ÅÛ=›ßÏ/w:IS¦æ:1ÜíVVñå”Bn†©mÝÏÝ/¸™Yܸ¸°,±, 4}úËUvsµž×£Yª¦¬ëê‹iš2"ú|°ÿ¬Î^ ðûÇmþ}j;­­•tÓØÐ[YÅ/ÿïVvqù›=š-êÓüÂý‚#q¹Ü  ðÝ{3û\RЋ ^Ã1ŽB*ÊN#"›G·~™¹{æË²aƒ's‰„ˆZ?3ÍRisÿÊ –eë6$ëntia~û±¯Ú8{X*mZ {ÑÚÉ=åú®sV|têÈ–C¦ò!>Š‘-œ·]ψË~°ûÏM-'¢”J»’k00БaèÇË©¦Ý‹ßG¦–º5·g"¢Pk;+éÊÓI)š²Â2ÃSR5ešÚq[¸Z·÷To¸˜Úx½¥Ó‘NG†j7 ÒÔöî†yÿðÝ´¿×wößÉÓ– s–po3¿>µ¶‹·]•åË;oÅe—äi˸Ÿ£Ü„ëÜÕÛn` ã¢CñB/?€úÁ@HEÙ©DTùp·Š²â¯3 ãaja$n!íJ ó³ïÆÔq—*|3Æø÷·ý•ß¿÷í<ÈÆ¹¦ª*’0Ìk]›Þ/(ÝRa¯±»œˆRk[¸X³,]¨pHœÁÈ^LÖØYIC­MõVÌn,‘…äÁËx±ÇþÛ95GÕ†±Àë3™Œ,-ÉÒ’Ž;Re‡®ÞvF–Ý›mjÑÙƒ·sš¨,;5³åß§¶Ó>Xy*¬=F–•þ½ò|:Èo]dªéϨ‚#€Š²R‰¨8/óøßþííQ¼÷üÉïÞϹû°Ë¤'ÉmìäÖ|_ÚºyQqNz“òÒÄ·…\¥ŽÜ²²0+EWRtu÷…™)ž-»Ñý+'5éI¡'ðCƒü•ß]HÑ~-s[›X[.è¿}BËÇ´x¯¯O`Uu“0DMí¬òKË =æ^¾–ˆ\m,‰(:£HSª­KSwµÜÚÒâ…vîjù™{ùDÔÍÛ®©ÕÏQia×gɃÿîÝK¬ü,ÃP°³*«¨<»ø‘sVb2Љ¨¹ƒ‚gŸ:L{*1?§¤|õ³A~ŽJ;…tÉ_'åîYDôl ç gÕ’£ ƒc„T”“FDÑû6Ù8{º„—äe¤Æ\H»ÙnÌlŸN‰H¯+eK¥Ù@®¥´¨Šã±ø ‘)T&¿}fãÒ}O#"†aBŽw ig4è¯ý±>¨Ï(+;ž/A!³×ÊõZzQTjaÅv79=î–\Pv%µÐÙÚ2Â˶½§ú¿gî¸Sy+™……„),3ßÇɵpgÃë Ÿý•øVOïïG†ËÒÏWÒ/&k¤fJ;÷_£3òKk:ó¦a,pQ³¶´J˜\­ùÉÑy%åD䤔ñìS‡i Jõ“¶Ælz}nG"2²ì'ÇÞΑY0 ð]qâ^V±NèÅ ŽB*É˲°”·25 Çp®%#6êäwïGý¶Ö5¨ÒÞY¯+%"™Ü|+‹ÌJIDº’ÂÊsòâ>øÝï2n_)/-qò U»xQüé}]Y`¯gù¿„gC›¨­¤/™YØÄZV¦7n¸”úû,®%ÜÝæ½¾>/uð¼”RXùKZ.eˆH[nKt"²‘?øÇ**µð¥7[¹Û¨d’˜Œâû¥DôNr ÉÎèÌÆ°ÀEM!³ ¢¢JhÊ Dä ”ñìS‡i‰èX|nØ—çzùÚÛZIO'æÇf•Ñ"<”2‹¯OßzÙˆ‚#€z¾ò©Y‹K`¸÷á·ŽnO¾v6 ÇpK¥ 1Œ¾¬Ô¬[yi ý½MË ÿ!–*µWx÷ŠbüÔrèTî 2ñ§÷ÆÜS’—iïé×jØ Í+ÿ.•¥Å³-\¢Ó‹*ŸÈ¼àÀ³–¨ÔÂÝ7²F…¹tnfkJ“&Ee–ÈJfaÖ®´´ ¢Â ñÑ”éO&ä=ì ³ßÚuÃ¥Tî’=ÿä44¨IkÙíú‹)\8h0 \ìò´å,K*¹ù»¬–[QnI9Ï>u˜–“[R¾ãzf…Ò½›/>Ï]²ç?Ó;zz½U Ó‘TJÌP >õ޳_¤%‘ÄBj©´Ñi‹ÌúèJŠˆH¡v¨<¼C8·Žl—[Û6ïПˆnÜrqÛ­Üüº --Ê?ºr^~ÊÝÊCzúØ+d’Ãwry¾´ëéEDäm_Åajz#[X¦·¶4ÿîçZ*ï…4ÝÒ¥ T(.—ˆÆ¶rÕÉ+­°lÏÍl;+éçÿàSÕ!qâ]àbWn`ó´åöVæÛ,ì2"J/ÔñìS‡i«ôF÷¦Yź—Òˆèí^Þ_¼›«]»ö[–%Žª9‡ QCp˲Fcå+¼0 "’Y=8DiëXZ˜Ç¥“ÂÌd"RØ9V9q†h rbÿü­Õ°‰ÄP®‹9´%°×³]§-n9dJÿyߨ\bn©}ê0­™Å}}.§höÞÊ&¢æ ¹Tr0öá¶s‰„ŒF¡@ýƒà g'ŸÐ¬;×ïž=`jÌI¼{ü7¥½³g«.\K󎆉9ðwÌÝ<²­T“×¼c‰Åƒí+ú2maf²éb1|†TT–˜xáH«áÓ¸‡*GW‰…ÔƒŒúò¬øhµkS³Qí½ÔDt=­¨ò„)š²˜Œ¢0Wë¿ÈƒUφ:gëNÿ½…R!³ð´•s—Ú!¢ƒq9,KãÃ]•é8º¥‹½Bv(.·â…~LšÙ[õõsXù༜ôBÞȶù;wÊ,˜.ÖI=ûo6\L5²ì»½›«ÿ>ái^÷f.6–?^JÓŒüûØÈ-œ”¦Ãø ©(ÔE51Üõ¿ÄMÈÕê Æ~þ+0qŒ#@pr €ÚŽzù¯5 #·®¼szŸÚÙ³8/#'á¦T®ˆ?×tc•ƒs«á/^ÙõýÁÏ^v n[”•šwÕÞË?¸ÏhÓ<©7"ÏnøÔÖÍ{àÛ«y©èêî<[uuüûl ™eÈ€qÑû6ådغ5M¾v¦8'½ò=úÂÝmˆ(&³¨Ê9WŸKþ¨¿ï«]šrJ.(s¶¶ n¢Òê +N&™n<ÝÞSývOï{y¥3wÝ$¢Ì"ݺ‹)ÓÚ{|ûLÐ¥»ZÞÊÍæNNɯ×3ªü/´ó8˜›õ`c¤Î`Ür5ýùp7WkË{ù¥›ÙºÚX.ýó‘‹ó‰z7 Iù¥ Ä/äwavÄá¸_GeOû¨”Â/NÜ«UŸN›Æ†Æd·ûú<Ï!}<ÀoWLVäßW›/Õ—O\Ü×ÇÛAqCõAY±,YX˜Ap’‡Oÿyß\ûc}Æí+i‰ÖŽ®Þ}[üßóJ»&»öi¥vH¼pô~Ô ¥]ÿnCÃOæ®öRþC2ã®fÄF Z𿊡ýÇÉU긓dÄ^¶÷òxíu;ŸŠ,-$!ÎÖÅ:CR^i•ÜÍÕÎÙ;¥­{kw›fvŠô²#wr7G¥Õ|µ¼ß¢3sKÊûø9tonŸU¤ûãfÖ—ÒJÊ«8&²¥›u¸»ÍôßnVlÜz%½°T?$¸I¸‡Ílí¼S·ïæ>²[\¼ ¼!Yy*)½°lB¸Û¨0—û¥«Ï%pø®¦L_Û>u˜–ÓÃǾŸCë¯ÎUl\úgbnIùôŽž½g½Æ0$“a‹#@§ýÓF”KU¤e‹·r†aí¯7Æe–e«Ü£Z¥ùöZuYèªÉBÂ0DUî®Òñ—Ûˆw‹t §¹G…®¢jR #a˜*wa­è#Æðt`‹#@cÇH,˜'Ÿå©3ðŽŒõHxC¢7²ÞóøÂ†xàÁxAp^€GàÁxAp^€GàÁxAp^€Gà…aYVè†a„.êߌՑ ]@Ã$Æt†‰é&tu¸#MŒ•îHËÞºLè*êÂiìüâë§…®¢ÖTa]Ä»ÀEº†‹ñ_BÂÿ5®jàÁxAp^€GàÁxAp^€GàÁxAp^€GàÁxAp^€©Ð@}ÔtóÍô÷†èâ/W~Öºçxë^dƲâÒ«Çó¶|d,Ì­CŸÚ‘¨l­‚;3JuÙí úô³á/~.ó Œ~^Œ•ŸÕœ2NÑ‹k¿™’eÖÁÑZñÇü [v_ŠÝ}éVBf¾ÒRÚÑßë•vJ«š‹|ìBmÙåÄ´¢R]˦.^޶f×þ~*!+oí´¡UN^Z¦ûõП¿;‘’‘m­RøyyN>°c«ÐŠ}&¾õaÌó×îhg{dÝW5”½óȉߎüu÷~ŠÂʪk›°×žÎNm]±ƒ¦¨øbÌ­¢më ÿ¦n.fÃ?Z³!>)eÃ'ïV7¿¸¸ÄÚA«eE·zË<iG{€Á˜9svuOÙy[=lޱ´¨ôÖ9™ksU÷çdŸŒfËJjÕ§¶ÓZ…tqšµF¢v$"2 v~Y°s…i¸ÌÝߺûs?+ÒÊßéÛcÏkÏQJ®Fa)õtx$FØ*å®=rqã‰+J¹¬µ·kJŽfoÔ턬¼o¦ VXVû~ìË i ·Í/.%"‰„y¡g›z†›†'fåﺽê…ÁUN®7^zÙõÛñ¶Öªˆ°àRîbÌ­³W£gŽ}æ¥ÑÃMÝ’Ó3ryS÷G²­µ5Uï¿?ïX·cJaÕ&$ð~zæïÇNÅßOýßóò $2úæ[ËWçi ‰H"‘L3¬âoLHNýýØÉu½Sï×—ú´©ózȳOm§åùÁ$hˆ;–%–%ƒ¦O¹Ê²¦Áꡳ yéé‹ò2ˆÈþùmL³ûnÞÆwù÷©í´¥ÚqÖêòÔ¸œ‡‹rÕCgÙŽœWvçRéõ¿¸ì'¼WwQÕmôôÞÏ‹«r»±ï–\>tîÜ¢g µemYŸ>é]Ý{t'#wÓÉ«MÔªuÓ‡;Ù(‰è«ýç¶^}øÂÜÁë6¤¨T·hÛ1ï&vïLëf«´Útòê÷Ç.µðtŽðóàfX}8²[PÓ°¦.UÎÿÛ΅ߎö_µhž•Ü’ˆî$¥L[¼tí¶Ý=Ú…6oJDš¢â‚¢âþ#>{c&ϵ1îÞýõ¿íuv°ßüÙâ&vDôù?ÿ¼÷ð×›¶¿5m"—¼½bMsO÷õ3§Ø©mÖÿ¶wõÖ]a¾ZµàfX¹ùמíÃ[úU÷+IJÀ™\¢n"õ ‘z·ãê]w‘ç›â‚c;Žt:2ªí`Ýk"1’üíŸqß"D”÷󇯢|e‡¡ÄHø÷©í´òÀj§œïçéÓï‹òó·|¬ÏHT¶Èu–u´jÕÛ*¨£u5©±>W®hÕ;ÿ—O¸‡)¹…Dä娮á=Ú}ñ–‘e_êÓ–K$D4{@„Z!?`dÙº ¹z/=¯XûÎðn^޶j…ü•þžê·¹ÎWÓÏܾ?³_µ»œ½HDoNÏ¥F"òkêñâÈ!F£ñìÕh®%9#‹ˆ*ïJ®Áo‡ÿ2²ì+ãŸåR#Í<ÖÖZuèL$WvÔ͸ÜÍâ™Sš¹»ÚZ«^›4ÆËÕùøùûp/߈=uùêì £jøbYàŠ^S­ºŽ«.5’HVohx;™Œ,-ÉÒ’Ž;Re«ÀŽÄµQž5èµWY¨äíù÷©õ´ ×Zá{š5’Ńmäöãi£g}95ëË©¢«¼èøf}ú]îarnyV:Ü­¢+‰é†éÐÔÔb!‘tò÷Ê+Ö^OʨÛÊñGÂ0zÃæÿ:?¼]WõU%¦¦©VÁ¾Þ}½<ˆ(%ãÁáƒ÷Ó2ˆÈl?uÍ.ݸ-a˜nm¦% I—6-s 4WnÅK,1 ó°l‰Ä`4r?ùã¶‘ýz6sw­áWˆe—]9Xz~géù†¬{UþFQ¬ÞÐð 86vɃÿîÝK¬âi†‘yø4ÙÆÂœŠÍåÉ·ˆHêÜŒoŸÚO[vë¼±0×qÚr©ks‰ÊÖnìB©«öâ~"Rv*óÈýî í¥ƒÚKEWyÁoKÎÕQF~Ѭõ{ûòã3_l™ÿÓ¡˜äLS–¥„¬|{••ê‘Ó,|\ì‰(%¯°r|†´næj§´úô÷“÷s µe«]HÊ)èÒŒˆŽÅ$$dæ¿Ø+œª÷õ‚×Ö/1ß×yëî="òpiÂ=LJÏ$¢ô¬œ—Þ[Ö}Ò+_šûÚ§+¯ÇU)X–½›œbo«¶WÛTl÷kú0¶ °S[°j}RZ†¦¨xå¦í÷RÓ{G´!¢Ãg"ïÞO™>f8ÕH, Ü™`H¿cH¿Ã–Ôm=¬«74<8Æj"‘«ÈBj,Ê7k7ç‘…Ú‘gŸ:Lk,Ñd;ÓiÖ÷/N±Æ‚+´W12»1ïhö¬2h²@åÜžÓïŽ]jêdÛÎÇ#½ ðôí¤3q÷çí2¬miuå£Q­›ýF®…;Ó Ÿ!ÖV–Œîµxû±çVn'" üÐ3¼“¿—Þ`\}8rb×–ö*E ‹7¨¹yì¸pýæ;÷ZÊdC{váZ’Ó3‰hÕÖÞî®a!iYÙ'.]=yùÚ»/Mz¶_Ês–”– F[k•yÙÖ*"Ê+($"•réë3ßZ±zø¬·¹²_=¼K›–zƒáëŸ~òÌÿ9ØÖ´Z¼ ÜŒXVohx¡&Œ\ADli‘Y»Q[HD•Ï>u˜–ˆJ£O¦ÎëjÚM¢´)‹=_žz‡ˆ¬û<ÏÈšýkFåEV2éÌ~íGw|p!›Èø”7:´rÿ¹~ž.¶Ö¥åz"Rþ}(¡‰J.#"¶ŠÃsH{_­sÆ\¼›R\¦kÕ̵™“팼YZ®Û9Œx3Œ¿8úÕÛ Ã'¯Ïp´{°¿5=;×Jn9g¨qƒûq-ç¯Ý˜óÉW_¬ßÒ9¼…«“yp)-Ó‘Ja~Ék…‚ˆ Š,ó-C~ÿæÓó×okÛ„x{¸ѯ—–é&ðØjÀ'ñ¬ÞÐð 8BMŒEùIJŒÜ|#DaCo‡àÓ§ÓþÝ3¯äüîŠlGÌÍßö)weë>“lúM™èâKD2Ï€Šº«ÿ•_|g¢20à]ÆênüeÌK3õlïë1¦cèæS×Nܼ7ºc¨Z!g*Ñ•›ýÆâ²r"R+ª¸² ÿ!¶JyŸ>;¬ÿ3jF¿vÜdvFÞÜqþFFAQ »ÓËý"B<›Tþ]‘Ñ7?ýnsBrª«“Ãû¯¼Ø¡eˆé©µï¿iÖ¹CËñƒûmصïøù˦4ù°Ã0%¥efíEZ-=z[ëþ#–]¢]»ý÷ÙãGq—ìùõàñ_MËÎ nÞìÕçG·ð÷©8Û×SþÏl~q-ð¿×®ú¾zÛô›’±Ê]§#©”$8$  ÁjÂÊÅù•7NHT¶DdÈÏàÙ§ÓVI=ôCaNÑ_[‰Èö™×¦.ÕgÜ»yó9¼¸Ì²iH­~…°•ß½¯O¸ÌÈ•Š®ã%¶Î;‡{»Q|F.I-$j…¼Pk§¸G›*öoÖagóÉ«v*«!áD´á¯¨Ïÿ8íá Ù!$¯H;cÝwÒ¹´®\ÿù?Oÿóô¬œÏ=óÛןTLÕiHDqIÉU•m¡¶ViŠ‹ÍÚ5E%Däd_íé,ëwí³W«ŸéÓˆ¾ûõ%ÿûÑÓÕù¹½s 4SßýävâýÇV%Š^Qý_½õ÷Ö®ý–eI§£jÎDQBp„Ç0ä¦[Ø:qß&27?î)þ}ê0­ {W›/åoý˜ŒF&W­pÿÚ¬/§^ºIDƼLõˆ×ETù˜1ϔŜ,>¶Q_œ' èôH‰„ˆTVv}6±QåkÍrɽìî©*c†diŠ·ž~¹„DÂèô†õ]×9ì³ñýfôm¿~æ7;›þŒ2u6²ì‚¯Öü¼÷pÏöá¿ÿwéô1ÃMèæ°,k4+_¼ÆÂBBDÖJe•58;Øçäk4EdÇ{©iDäìh_åÌܼÍzõùщDW^þý¯»Ÿ:àË·æÌž0jËï»;;ýoûà c,KF#[EUõ~WVÏWï¬/§.^¼@.'†!½ž Á@p„Ç(¹|€$V-{>lb«V½Œ…¹eq‘üûÔaZ3¶£æë®j/&"©s3Ff©½zÌô¬.ñºÌ#@\•'çt]¼ö¥Ó$6ðwý~ù¹8p»73Ùówn¥cY:wßNiUݺë0ä»c—‚ܺ6%¢”¼Âr½¡£¿'÷”¥Ô"ÜÛ-1+ÏÔyËÞÃGÏ]3°÷Š·f›®¹XQRZFÛÑ/¾ôÞgfíWoÝ!¢€fžUÖÐ3"Üh4ž½]¡löÔåëvjëê®é½zËÎP_ïíZQrF–®\ߥMËeËdíZÝMN5uNÎ-èúþºÙë÷™MRÿxeõõæH$ô÷å’ !@p„Ç(þs ±FÛopÇ9‘zè, [ç¢[Y}9ÿ>+k™›¯´ISþC*’yYw÷óGÜC}æ=V_nÖóa‡f-ÊSâÄU¹—£m«f®—¢oüöëSÿèû™?Ÿ¾îbkÝ3¤9×2´M „aÖ⎙#¢M'¯æi· Y<ø—”•'e¤þ}±>C*º›™·ïJܬô°·‘YHL1¨\o¸r/Í»‰©ÿÖýG­•й“Ÿ«nµiæîì)&v瑦Æk±w6í>àê䨧S» S[š˜šž’ùàÒ#út—0Ìšm¿—h¹–õ;÷åä ïÕM&­â€ì;I)»ÿ<ýÚßexº4‘I¥g®\çêÊõ—cb}<ÝLý¹•˜¶ûR¬¸xeõõæ8Æ AaX~òOcQ.ÕÕ«¿Ÿ:uZú{C*žbÂQÿß »ñ‹õY÷K¯ÿ)uinÒE—x=ó³qÆ¢<þ}”‡9ÍZSž|+ííÞü§5i2o[VœýÍ S‹í3¯ÛŽz³$rïm™{ëÖá¬AŸ±xî^ŒX*ßµkÇà`·øbæ•yó²s²ƒÜš:Ù¦çEßÏTXJ—Žë×ÖÇÝ4dËéëß<ïfgÓÁß#9Gs)!5ÐÍéËIƒLwX>}wñ¶c>Îö›gä9¤¢76TZÊ*Þ…oýŸQß»Ô3¤¹³Ý_7ïZš›y IDAT%eç?}¸¿«#¹N\àããc%·ôñt¯<ÕÐ^]ÇêCD·ï¿üÑòœü‚`_oow×´¬œk±w «ógG„sž¾ðöŠÕ~M=¶ù1ײi÷qwvêܺERZfdôÍ Ÿf«½akSÅ®g/ùRieUñ–†ßmß½jëÎ>Ûùzy¿p)1%}ÓÒEÜ-Ua]²·.»“žûúûsŠ´bYàòÖ¤ÍZŠñƒùÕáKï¾»˜eÉÒRdÙQ¤ÿ†<8«O³o!?CÕu´²Ã0CNjááõÛ?ã®ÐQ«>u˜–cÒÅ*¬{ÚüG.þWðûW†¢<›~SB›Qîº7ÍRc=¯<°ÃD©¯Ÿ~ú†×&|»cßÅ»©ñ™yö6ƒZûOëÝÖÅö‘ãÆu s´Qî¿w4:ÁE­Õ!ô¥>í¸«½T‡ÿË i‘ñ)[f?r§¾)=Âm•òçoDÆ'º;­™6”KD$“Ɉ¨´Lw#>±òlZ>¸ÌM€·×–Ïßÿú§_/\»Ÿ”ìáâ<¤g—™cG¸:9ÔPöóÃ:ÙÛíùóô¡3‘.ŽÏ ê3kܳ*eç—DF߯Þ6ý¦ÌšÕaH&Yj€šá爵HÿZe&v¤Û“Ïó¯°2 Såž2" Ü‘&ÆÊw¤eo]&t}DD£ÑÈR•{T«ä4v~ñõÓBWMƒÑȫ܅]%n‹£ÐUÕi×Ó5üqL1þKH¢ý7àéÀGƒ^¬ÿŠ‹¡r ‰ÄBèêR¶…ÄBœGi‹tWA «7ü³DùÏ.<}ŽÀ ‚#ð‚༠8/ŽÀ ‚#ð‚༠8/ŽÀ ‚#ð‚༠8/ŽÀ ò¬Ð544 Ã]ÔQ@@€Ð%€ÄÆÆ ]‚0€ìª^€GàÁxAp^€GàÁxAp^€GàÁxAp^€GàE*tP wïÞ4hжmÛZµj%t-§Õjùå—_ý599ÙÆÆ& à…^èÒ¥‹Ðu=^~~þW_}uñâÅäää&Mš´hÑböìÙ>>>B×U ©©©C‡íÝ»÷çŸ.t-1jÔ¨ëׯ›5:99>}ZèÒïúõëk×®‰‰)** œ={v‡„.ªZZ­¶uëÖÕ=ëïï¿gÏ¡k¬‰N§Û¸qãþýûìííÃÂÂfÍšåïï/t] ‚£˜lÚ´IèøÒëõS¦L¹r劭­m§NJKKÏŸ?êÔ©9sæ¼òÊ+BWWF3dȬ¬,ÿ^½z¥¥¥íÛ·ïСC¿üòK‹-„®Ž–eßzë­¢¢"¡ á%))I¡Px{{Wl´³³º®Ç;vìØœ9sŒFcXX˜¿¿ÿéÓ§'Mš´zõêÞ½{ ]ZÕ† ®Ü®Óéâããmmm….°&ƒaòäÉ—/_vwwïÖ­[^^ÞÁƒ>¼qãÆöíÛ ]@cÂB½WPP¹xñ €€€€+W®]ÑãýôÓOãÆ+))áZnß¾|ãÆ ¡««ÉǰbÅ SËŽ;ž{î9¡Kãë‡~àV•yóæ ]Ëc¼úê«BRkùùùíÚµkÕªÕÅ‹¹–«W¯¶hÑ¢sç΃AèêjgùòåÁÁÁׯ_ºšpÿ¤¼úê«ååå\Ë™3g‚ƒƒû÷ï/ti Žq¡C‡N˜0aëÖ­BR  ¢wß}W¡Pp-þþþ3fÌ0 õ|äÙ³g ÅÌ™3M-Ï>û¬««kLLŒÁ`ººÇ‹‹‹ûòË/ƒ‚‚„.„—¤¤$"2ÛÜ( ;vìÐh43fÌhÛ¶-×Ò²eËAƒeggWÞó^ŸÝºuëû￟>}z=ß ~ùòe"šëÙ³gii鯿þúí·ß¾úê«{öìÅvÇõë×çååÍ;WèBxÑh4K—.-.. ËÉÉ9uêÔ®]»:vìØ¯_?¡«hL„>;jáÝwßËYÕ&çÎ4hP@@@=NŸ>-t9µc4333×­[ܽ{÷ÂÂB¡+ªÖ{ï½lZ7¢££EqVu•–-[°qãF¡ ©VQQwÞúÑ£G+¶¿óÎ;Û·oºÀÇÓh4ááá&Lº¾¦OŸðÃ?˜ZRRRºuë/tuΪ†‹N§[²dÉäÉ“SSSgÏž½ÿ~Q쫈a˜&Mš¼ð Ï=÷\zzúÁƒ…®¨j.\زeËôéÓëÿ¡|DDDÑíÛ·….¤Z*•ÊÊÊJ¡PôêÕ«b{ß¾}‰èÖ­[Bøx{öì)..1b„Ð…ð’™™yüøq??¿©S§šÝÝÝ_~ùåòòò;w ] @#‚]Õð¯0o¼ñÆ¡C‡úöíûÞ{ï9;; ]/qqq?üðC÷îÝ T±;=<##Cè«-›ˆV­ZµjÕªŠí»wïÞ½{w½½#˲F£‘a‰ä‘¿`-,,ˆÈÆÆFèkâì윟ŸÏ0LÅFnµ^¯ººÇÛ¾}»B¡8p Ð…ð’““CU]¶‰»ŸSVV–Ð4"Žð¯Ø´iÓ¡C‡ÆÿÞ{ï ]K-¨Õêß~û-++Ë,8r—lÞ¼¹ÐV­Y³fƒ®ØRPPpêÔ)ww÷ððpWWW¡ ¬Ú½{÷ avK¤¨¨(" ºÀšôêÕkãÆ·oß05r׬ÿÑŒ‰‰$@ E÷îÝ?þõ×_Ïž=›ÛD·jÕ*KKK³à_…àÿ¼¬¬,îÄ&L¨üìˆ#&Nœ(tÕúøãÇ?sæÌððpOOÏÌÌÌ‹/ѲeËÄr>¸ˆ,^¼øÅ_\¸pá–-[|||RRR®\¹¢T*?ýôÓz~brppðܹsW¬X1pàÀvíÚ•””DFF2 ³dÉGGG¡«{ îîM¦{ÞˆÂÇÝÉÉéÇ}fÏž]ÿדÒÒÒË—/«ÕjqíáurrÚ·oßš5kN:õçŸÚÛÛ÷èÑcæÌ™aaaB—и0,Ë ]ˆ.Ǽ 8/ŽÀ ‚#ð‚༠8/ŽÀ ‚#ð‚༠8/ŽÀ ‚#õ¬µÏ9‹s>°z†ÝOŸž?þôéÓŒŒ ¡P¨««;Ñþhh`¸¹¹ ÅHUUUXXXvvö¦M›lllÆuï‘‘‘¡¡¡zzzª¯"“É~þü9Þ‡%666??Þ¼y)))¶¶¶4ØÙÙ_RR‘žž>Þ5Œ·ª`RprrÚ²e !D,÷¾Œ---§OŸ\ßœ›ššD"‘A^^ž¼k$„ž={ÖÜܼªªêÕ«W]&üÑÐ8ÀdabbBéèè ‹;vìðôô”ÉdIIIöööW®\¡ñ?~œ?~Û¶mvvv|>?**JéiE‰D"¼½½W¬XüðáC¥;vLéÇ”””M›6ÙÚÚzzzž:uª¯¯¦ÁêÕ« !"‘ÈÂÂ";;ûw•¡$==}hhhïÞ½G)¥¡¡æììÜÐÐ0âºb±xß¾}...VVVnnnû÷ïñâ…′²²ÀÀ@çëë{óæM™L¦b@nr}á€?Ù³gÏ! ,P ÆÆÆ …B6›­¥¥Eéëë ª¯¯çr¹®®®­­­¹¹¹åååW¯^µ´´$„´µµíܹ³½½ÝÄÄÄÑѱ©©éÀŽŽŽcì···7  ¡¡a˜5kÖ444\¿~ýñãÇ·oßÖÒÒòòò2008wîÇóññ±··§2ŠŠŠ!¾¾¾#f}}}GKUWWïÞ½{hhÈÑÑQOO¯­­­´´´¢¢B$1 C …Ç×Ðа±±ÑÒÒ‹Å GŽùeà üƒîÝ»Ç0̉'ä™LöáÇääd†a¬­­[[[iÜÏÏoéÒ¥ÎÎÎòÁqqq Ã\»vM)**²´´Üµk]Œˆˆ`æäÉ“ƒƒƒ4’žžÎ0 Ã0"‘ˆF¢££†éì줋€a˜K—.É·™””Ä0Ìõë×ébgg'Ã0ÑÑÑ¿· Eýýý Ã8;;«xýüü/^L?‡‡‡3 óâÅ y–¶Œ©©©tÑÍÍmùòå]]]t±¯¯ÏÉÉÉÖÖV&“ý2  W`deeeee)ÕÕÕcbbæÎ+üøñãðáëV­¢‹‰$++ËÎÎ.88X>ÆÃÃÏç¶´´hkkß¿ßÔÔôèÑ£jjjt@``àƒjkkG¬D"‘…B†avíÚ%îÙ³§¶¶¶§§g´U~{?~$„Ì™3çÿ8˜^^^ëÖ­³¶¶–Gèë½½½„¡¡¡žž]]]šåp8·nÝúúõ+ý70Fö·Ÿw˜êÐ8ÀPœŽ‡¢©©Éår}||ƒ”ƒƒƒüó»wïd2›Í–?hHI¥RBÈû÷ïÙl6!ÄÕÕUÞ®Q®®®£ult›...,Kœ9s¦P(­øñ(ƒ¾âMÛÇ¿jÆ „ÁÁÁ–––æææÆÆF:¡Åb±Ö¯__XXèåååååµbÅ [[[sssù€±³ŠÐ8À>ψ¦M›¦xîÇ„ÊÊÊÊÊÊáƒ;::èe3CCC¥”Áh» ÛÔ××W½øñ(CGG‡Ãátuuõ÷÷kkkÐÞÞgddtâÄ ¥TKKKrrreee¿ººº¹¹ùÂ… _¿~-˜˜¸lÙ²¼¼¼Ë—/_¾|YMMÇã…‡‡¯\¹ò—YEh`òb±XÓ¦ýwòÚDîß¿?<<|Äñt*Ÿá? ÓÕÕ5Ú.h3Gïêªh<Ê „¬]»öÎ;ùùù;vìž-+++++Ûºu«R¼¿¿Ë–-R©4$$ÄÛÛÛÌÌLMM­±±ñÁƒò1êêêÝÝݵµµÕÕÕ¹¹¹!!!ÙÙÙÖÖÖcgÿÆÙ€!LÇSÆÂ… !555JñÌÌÌøøø¾¾>333‹õèÑ#¥Ùd?~ü—¶ùíÛ7›íÛ·ÿceB‚‚‚!©©©Ÿ>}RJI¥ÒŒŒ BˆüqO9±XL_ñ>pà—Ë¥7Ç?þ,ÐÚÚšœœL'š={¶‡‡GLLÌ¡C‡d2YEEÅØÙq=›0¡q€)cöìÙ|>¿¦¦†vQTiii\\\MMÍÌ™3gÍšÅçóSRRä?ô’™™ùäɓѶ©¯¯ïééYWWwóæMy0--m``@©K£0ŽS„KKKooïžžž7*v¥ÝÝÝ|ÿþ½ƒƒƒ‡‡‡ÒZôÑLÅ÷x¾|ùræÌBm[ÙlöÕ«WO:%‘HäcèÝöùóç¸S “nUÀTrøðẺºøøøœœ ‹žžžªª*mmíÓ§OÓ‹Å×®]+))Y²dIKKK}}=‡ÃQlŒFÜfBBB~~>—Ë}ûöíË—/ÍÍÍCCCéú²KyyyBB‚§§§Ýx”AILL”J¥%%%þþþÇÂÂB"‘466~ÿþËåž>}ZñÆ=eooojj*‰Þ¼yÃãñz{{ËËËy<ž††Fqq±©©ippðæÍ›sss=<<f̘Q__ÿúõk+++www6›=Fv¢Ï6L:¸âSÉœ9s BBB¦OŸ^\\ÜÜÜìëë[PP°dÉ:ÀØØ¸  ÀÏÏOSS³¸¸¸¾¾~Ñ¢EÉÉÉcl“®âïï?88XTT$•JCCCsrrh¿Háp8‘‘‘çöíÛmmmãT!DKKëÂ… iiiîîî:::uuu_¾|Y¾|ytttaa¡±±ñðUØlvzz:ŸÏoooÏËËëìì ÇçŸ>77·mÛ¶kÖ¬Ù{ëË/¿œ››;f̘$þÚ·ÜrKnnîÆ“8ÀÁe¾âøé§Ÿ2$Ù¿`!lܸ±U«VC‡Mö ±ô}wÓ)))¯½öÚÔ©S/¸à‚dÿ𡼼|Ïž=• tÅW4hÐ Ùsqè¨[+튎/kßø;GÖ)Û±ûÍŸüz^Éì¿oIö\ðÙ‡¯8žþùuêÔ5jÔ¦M›’ýkV׸qã–-[¦§ïÃn¦F©•–òÂy£ó[4άýòªÞúð“Ó³xîò¶·ÿ i²G€oÌ> ÇN8áúë¯/++>|ø—ï¹k×®±cÇ^tÑEíÚµ+((¸ýöÛ«}øÉ'ŸüêW¿*((èСÕW^ùòË/=:77÷Í7ßLì°hÑ¢k¯½¶K—.­[·>ãŒ3®»îº%K–$6 6ìôÓO!L™2%77wÒ¤I!„;ï¼³òÇÛn»-77wÖ¬YÕî±M›6]ºt)//™®ÿ÷w<>óµ÷¶6¿÷µ>/íñÈÿ—-ÛwÝ~æwÚ4ª—ìéà›±o?Uݯ_¿Ö­[¾ôÒK_´Oiié…^øûßÿþã?îÚµk:u¦NÚ»wï·ß~;±Ã¦M›úôéóøã§¤¤tîܹ¤¤äª«®zùå—+oaáÂ…ýúõ›;wnË–-óóó=öØÙ³g÷íÛ÷wÞ !äçç80„——7tèÐöíÛW G!„_|±êâìÙ³wîÜyÞy祥¥}å„p~ë£C7Ï\±}WybåÍŸÜûò{i©)g·pD‡ˆ}û^mZZÚÝwßÝ»wï»îºë”SNÉÌÌÜ{Ÿ±cÇ.[¶ìÖ[o½üòË+EEE×_ý˜1cÆBøío»jÕª›nºég?ûYaÏž=#GŽ|â‰'*oáÉ'Ÿüì³Ï¦L™Ò¦M›ÄÊÓO?}ÇwåäätìØ±I“&¿ùÍoš7o~饗î=@§N4h0gΜÏ>û¬víډř3g†Gg~å„“UwÛÎò××n«ºøÖ‡šY'ÙÓÀ7cŸŸÇ177÷g?ûÙ¦M›Fµ÷Ö²²²‰'¶k×®²ÉBݺu+((xå•WJJJÊÊÊo1ÿô§?ýÇÄ©©7ß|óGQ¹~~þ˜1c*«1„мyó–-QŸKHKK;çœs>þøãùóç'VJKKçÍ›————ý•îëƒÂù/ýÁ‹ª-¶mü­Âêv${:øfìO‡\}õÕ………S§N-((èܹsÕM+W®,//ÏÈÈHzXiçÎ!„U«VÕ¯_¿¼¼¼K—.)))•[322N:餹sç&.žsÎ9!„Ý»w—””¼÷Þ{«W¯ž6mÚך°  `„ ………gžyf¡°°p÷î݉—¿rÂN8a?<†à–¬ÛVmåŒì#oîÚdÇî=^_Ÿìéà›±?±víÚ#G޼ä’K† òÜsÏUÝ”8Cøüùó+_í«jýúõÛ¶m !uÔQÕ6U])))=zôüùó·oß^«V­fÍšegg/_¾<~¼¼¼ÆÏž={÷îÝééé3gÎÌÈÈèÞ½{Ì„ûáäà’žšrÕ)Ç<§YzjÊe“—mÜöY²'€oÆ~:M^^ÞüãÇ{ì׿þu§N*×6lB¸îºë ð¹W,..!ì}BŸÍ›7'~ؾ}{Ÿ>}vîÜÙ¿ÿ=z4mÚ4--mõêÕ/¼ðBüx)))ùùù=ôЂ Z¶lY\\ܳgÏzõêÅLUuÍ>ò×=sZuøšÒ?Ÿúö­tGûïD†ƒ š5kÖc=V·nÝÊÅìììð?uXÕ„ V­Zuýõ×7kÖ,„°`Á‚ª[wìØ±téÒÄÏ‹-*--½êª«Nغuëׯ  à¡‡*,,\½zõž={*OZþ•Ö¯_¿=†ÈKOýÕš]Ûéøí»Ê5{õ¯ç•|òYy²‡€oÒ>ÿpL¥ºuëŽ1bÏž=>ø`åbVVVAAAqqqÕOIÏž={øðáÅÅÅõë×oРA=–-[öè£&¶VTTÜÿý•¯8&Ž}¬¼Bضm[â‹°§`¬”8*ñ‹œxâ‰ÙÙÙEEE3fÌ8þøã;tè9á~{9¥¦¤üéÂï^×ùøgßúð{ÿ±pä­VzöëW§œzê©çŸþŸÿü窋ƒ^ºtéˆ#žzê©ÜÜÜÍ›7/X° nݺ÷Þ{ob‡›o¾yñâÅ£FzöÙg³³³ßzë­Í›7ŸvÚi¯¾új½zõ²³³›4i2eÊ”wÞy'//oË–-sçÎÍËË«]»vQQQ“&M.¿üòŒŒŒÂܹsGŽÙ½{÷víÚ}îxcǎݺuëÀ«~ç+'„k:×ë»G=ðßko˜ñ5®€ƒËþ{Å1á¶ÛnËÊʪºÒ°aÃéÓ§÷ïß?==½¨¨è½÷ÞëÕ«×ôéÓ[µj•Ø¡qãÆÓ¦MëÓ§OYYÙÂ… O<ñÄÉ“''NÇS¿~ýŒŒŒñãǬ[·î™gžÙ°aÃwÞùÀ\}õÕååå‰Ïâdff4(33óé§Ÿ^»víÍVPPBHMM=ï¼ó¾Ö„Ôp))áêNÇ•îØ}Û +’= ìC)Éžá+,^¼¸nݺ-[¶¬ºxþùç¯]»váÂ…©©û»}¿–”””pãìdOÁ¾Õ(ó°U¿è²}WùÛlß{ë‹×ÿqášdÏÈ~qÿYþQoDJÊAPPûÂ~}«úŸ3lذիW6nÜ8±2oÞ¼eË–]|ñÅx5RC|çÈ:!„ºµÒÚû­½·þ×ß}°€CÄAÐ˳gϾîºë233{öìyä‘G®\¹òÅ_<úè£ÇߤI“dO÷¼â5ˆW¡Æ¨±¯8¿vqqñC=ôÖ[o}ôÑGGyäÉ'Ÿ|ë­·V;VòÀ$¡ŽPcÔØp<Þª!tìØ±cÇŽÉž FsŒ Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#QÒ?wuÏž=iii!„¥K—¾úê«'œpÂÙgŸ‘‘‘ìHŽêáX^^~ß}÷Mš4iüøñ'tÒÂ… û÷ï_^^BhݺõŸþô§zõê%{f’ ú[Õ&Lxä‘G222øÛßþ¶víÚwÞyg¿~ýþö·¿=þøãÉ€ä¨þŠãÔ©SëÖ­ûâ‹/fff–––¾þúë_|ñO~ò“‚ ^|ñÅ«¯¾:Ù3Õ_q,))iß¾}fffá7Þ(//?å”S›ZµjµfÍšd @rTǺuëîØ±#ñó_þò—B^^^ââ'Ÿ|’šêSØ5TõlÞ¼ù’%K6mÚ´cÇŽçŸþÄOÌÊÊ !”••{ì±É€ä¨Žýúõûì³ÏºwïþÃþpíÚµ½{÷!öêÕkëÖ­çŸ~² 9ª‡ã™gž9|øðzõêmݺµgÏž_|qaÉ’%ëÖ­»à‚ ¨R***>wCEEEJJJâç÷ß?###ñž5_KJJJ¸qv²§ö‹ûÏú¢ÿ¢‡˜”””šù|ÿü»ìÙ³gÏž=‰Ÿ—.]:cÆŒ |úé§Éž€¤ñÍ1DñÍ1DñÍ1DñÍ1DñÍ1DñÍ1DñÍ1DñÍ1DñÍ1û–oŽÄ7Ç@á›cª«¬ÆÂñÇŸ••õè£^pÁÉ€äHß{éwÞ)**Ú²eKÕÅòòò¢¢¢ÄWÈPUÇ%K–ôíÛ·òŒûläȑ͛7:thvvöÀ·nÝ:f̘Ã?üšk®IöÀ$Gõcÿö·¿µk×®OŸ>mÛ¶=ï¼óV¯^Ý´iÓ¼¼¼?þñ¯¿þúŒ3’=0ÉQ=7mÚTy–ï¦M›®\¹2q\ã·¾õ­®]»N™2%ÙÕñ~ýú›7oNüܤI“]»v­^½:qñÛßþöÛo¿ìHŽêáØ¶mÛÿþïÿ^ºtiá„N¨[·îÌ™3›^ýõÃ;,ÙÕ?Ó¿ÿW^yåßþí߯ŒSPPÐ¥K—GydÏž=›7o^²dIAAA² 9ª‡cûöíÇ÷ä“O¦§§‡\\\üŸÿùŸ!„&MšÜtÓMÉ€äøê/ÌÙ¾}û¢E‹RRRÚ·oŸ‘‘‘ì2¾rj_95FýÊÁô¯Ü£nݺ§vZ²ç ÉÒC­ZµŠ¿Â²eË’=3IBhÛ¶m²Çà@—BxòÉ'“=ºÔý&¨ þχcÞ~ûí+Vœ{+wÝu×îÝ»O=õÔnݺ¥¦ªL€šë-¸uëÖ~ýúõêÕë™gž©ºyýúõO=õÔõ×_Ùe—­[·.ÙÓ4©!„]»v]tÑE ,hÖ¬ÙyçWuóСC‡š]\\üÓŸþ´¼¼<Ù©!„I“&½ûî»gŸ}ö´iÓzõêUusãÆ/½ôÒiÓ¦}öÙÿûß'L˜ìHŽÔ‹/¾˜žž>dÈÚµkîN‡vØ]wÝU»ví9sæ${`’#5„PRRÒ¤I“cŽ9æKöËÊÊjÚ´é»ï¾›ìHŽÔBYYÙ‘Gù•»fffnÞ¼9Ù©!„† ®X±â+w]¾|yƒ ’=0É‘Bhݺuiiéo¼ñ%û—••}­oµàP’BèÓ§Oáæ›o.++ûÜ>úè£Áƒ‡.¸à‚d @r¤†:wî|Þyç½ÿþû=zô˜8qâöíÛ+7oß¾ýÉ'ŸìÑ£ÇúõëÏ>ûìüàÉ€äH©¨¨!ìÞ½û®»îš2eJâbVVVÆ ?øàƒ?ü0±_=î¾ûî:uê${àƒLJJJ²G¾y‰dªiRªþÚï¾ûîøñã_zé¥ÊOOgffžuÖYýúõkÙ²e²G=(¥¤¤lš4:ÙSûCÖ¿7ÎNöÀ~qÿYÂñ}úé§|ðAƒ êÕ«—ì nÂjá5HM ÇôÏ]ÍÈÈhÒ¤I²gà’šì88G¢G¢G¢|a8–””¼üòË'N !”––&{N’ìs>UýöÛo3æ•W^I\¼øâ‹ÇŽ[\\|ï½÷ú®j€«ú+Ž7n¼âŠ+æÍ›×³gÏýèG‰ÅìììwÞyçÒK/-))IöÀ$GõpüÍo~³iÓ¦±cÇþ¿ÿ÷ÿ:wîœX¼ôÒKÿð‡?ìØ±ãøC² 9ª‡ãÒ¥K¿÷½ïuëÖ­ÚúYgÕ©S§¿üå/ɀ䨎ëÖ­;þøã?w× T~‡55MõplÑ¢Å;ï¼ó¹»._¾<;;;ÙÕñK—.ÿûß}ôÑjëO<ñÄòåËO>ùäd @rT?ÏÕW_=gΜQ£F½ôÒK!„ßþö·ÅÅÅÅÅÅ'œp€’=0ÉQ=kÕª5~üø±cÇNœ8±¼¼<„ð»ßý.„PPP0xðàºuë&{`’ãsN^¿~ý!C† 8påÊ•kÖ¬iذavvvVVV²G ™Ò¿hCfff^^^^^^²'à€P=O9å”/¿ÂÂ… “=3IP==öت+**>úè£õë×WTT4jÔ¨C‡É€ä¨ŽS§NÝ{§>ø`äÈ‘………íÚµKöÀ$GjÌNG}ô˜1c²³³ï¹çž;v${f’ *Cééé§œrÊÎ;?úè£dÏ @ĆcaÛ¶muêÔ9æ˜c’=3I³Syyù+¯¼òâ‹/6kÖ,%%%Ù3ÕñM›6{ï´{÷îÄ·È\~ùåɀ䨎­[·þÜý¾ýío÷èÑ£{÷îɀ䨎O>ùd²Gà@TýÃ1=ôÐO<‘ì©8àTÅñücyyùüãdÀ¥ú+Ž}úôùôÓOçÍ›—ìÁ8°TÇÁƒ_tÑE¿øÅ/¦OŸ¾~ýú={ö${BÕߪ.((!”––<8„ššZíÄË–-KöÌ$Aõp<òÈ#+ÿ*9QRCcÆŒ™:uj²'à€–BxðÁ_xá…dOÀ-õ_¿ já@á@”|ªzÕªU£G޹BâüŽÔ4ÿǵk×>üðÃ1WŽ5Ó?±E‹ýúõKö0¸þŽÇsLŸ>}’= .Ž Šp Šp JzaäÈ‘ÇsL²'à€–Bð±¾’·ªˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ²_ÃñùçŸÏÝKçÎ/¹ä’gŸ}ö¼£[n¹%77wãÆÿôðO{oÓÖÎCzsÍÉØWêÖJÐåø¿^ò¦_v]õ‹.Ïök{Vóo'{(ØÒ÷ÿ]6jÔ¨yóæ‰Ÿ÷ìÙ³víÚE‹-Z´è¯ýë]wݵ/îqãÆgžyfŸ>}†¾ÿ_jš) —%{`ª•–òÂyÏüèÓ]/¯ú(£VêéÙGœÝâÛ#f¯¾û¿V'{:Ø·’Žgœqưaê®,X°àç?ÿù¤I“z÷î}ÒI'ýëw1hР+®¸¢Aƒ•+ååå{öìù’à_ôñŽÏVnÜR¸ôïÓþòv²gö¡þßoÜñøÌ×ÞÛzî£K¶ï*!|·áá/]Ùîö3¿óÜ[.]ÿq²„}è€8ƱS§N}úô !,Z´è¹ÁÆ·lÙ2==ýŸÞ¾®ÿnêÕ?§áw~ë£C7Ï\‘¨Æ›?¹÷å÷ÒRSÎnáõqD8†Ž=öØÂúõë+W>ùä“{î¹§wïÞyyy={ö:tè–-[ª^eΜ9—]vY—.]òòòzõêõØc•—ÿã9|çwVÂ8lذÓO?=„0eÊ”ÜÜÜI“&UÛá¶ÛnËÍÍ5kVÕÿä“OÚ´iÓ¥K—ÄmîÚµkìØ±]tQ»ví n¿ývÇGRÍmçvï%Ý[‡fÇ&{`Êɪ»mgùëk·U]|ëƒCM¬“ìé`ß:PÂqñâÅ!„ï|ç;‰‹ëׯïÕ«×øñãwìØÑµk×ÔÔÔÉ“'Ÿ{î¹+V¬Hì0yòä«®ºjñâÅM›6mß¾}IIÉÈ‘#ï»ï¾½o9??àÀ!„¼¼¼¡C‡¶oß¾Ú=zô!¼øâ‹UgÏž½sçÎóÎ;/--­´´ô /üýïÿñÇwíÚµN:S§NíÝ»÷Ûo{m‰ÿuróãNkÙä´–MQ/Ù³ûÐù/ýÁÕßkÛø[!„ÕíHöt°o%ù½Ú={ö¬_¿þÉ'Ÿœ5kV:uºvíšX3fÌûï¿ýõ×_{íµ‰•§žzjÈ!wß}÷£>BøÏÿüÏÌÌÌ^x!+++„PVVvÎ9çLš4é–[nIMý?5ܱcÇ&Mšüæ7¿iÞ¼ù¥—^º÷ :ujРÁœ9s>ûì³Úµk'gΜB¸à‚ BcÇŽ]¶lÙ­·Þzùå—'¶]ýõcÆŒ7n\r@ö³%ë¶U[9#ûÈ›»6Ù±{Ï„××ÿS7 $„ãĉ'NœXm±V­ZC† 9î¸ãB›6mzî¹çZ´hqÍ5×Tîpá…Μ9óµ×^[±bEóæÍ7oÞ|ÄGÔ«÷—v233üñ?þ¸¢¢âëΓ––vÎ9çL˜0aþüùgžyf¡´´tÞ¼yyyyÙÙÙeee'Nl×®]e5†ºuëVPP0cÆŒ’’’N8aÿ?†ÒSS®:帑ç4KOM¹lò²Û>KöD°o%ùtù¬<ÙCÁþp žæ˜cŽ !|øá‡ÕÖ?øàƒð?ùX«V­¾}ûöíÛwÓ¦M¯¿þúÂ… §NÚ¿ÿI“&µiÓæëÞcJJJ~~þC=´`Á‚–-[÷ìÙ3ñ>xâî®»îº$û ùRSRþtáw{}÷¨Ë>¼áÙwÖ—íLöD°ÿ(Ÿª®ªiÓ¦!„ùóçW;`1ñš_³fÍÞÿýÑ£G†²²²ºuë6dÈ›nº©¼¼üÕW_ýçî´   „PXXøÂ /ìÙ³'ñ>u!;;;„P\\\mÿ &Œ1¢´´4ÙûÕ5ŽëõÝ£øïµMøÿT#5ÍŽYYY=zôX¾|ùƒ>X¹øÔSO½öÚk;vÌÍÍÍÈÈxøá‡GUVVV¹Câ=å/9â0qTâ9ñij³³‹ŠŠf̘qüñÇwèСr˜‚‚‚âââ'žx¢rçÙ³g>¼¸¸¸~ýúÉ~´ØRRÂÕŽ+ݱû¶V${H‚ñ­êÂÍ7ßüÆoÜÿýÏ=÷\nnîªU«Þ|óͬ¬¬¡C‡†²²².¸à‚©S§vëÖ­cÇŽ‡~ø²eË–/_Þºuë³Ï>{ï[ËÈÈ!Ì;wäȑݻwo×®ÝçÞiAAÁرc·nÝ:pàÀªŸËýôÓk×®ý¢;M¼[ššzÞyçU]oذáôéÓû÷ž^TTôÞ{ïõêÕkúôé­ZµJöãÀ~õ#ë„êÖJkwì·öþ_ãÌÃ’= ì[)ÿĉ‰—’’²iÒèdOìYÿ>8Ü8;ÙSûÅýgÕÌ‚:@_qà@#ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ’RQQ‘ìq)))Éø†ÕÌ‚ŽDñV5Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#‡¸çŸ>77·mÛ¶kÖ¬Ù{ëË/¿œ››;f̘$NxË-·äæænܸ1‰3À¡'ñܯ¦sçΗ\rɳÏ>û ÞÑW>…=Ç9”Gj„O?ýtÈ!Éž"„6nÜØªU«¡C‡&{¨5jtÚÿèҥ˷¾õ­E‹Ý|óÍ¿üå/÷Ñ=zŽshKOö°?¤¤¤¼öÚkS§N½à‚ ’=K(//ß³gOåÅAƒ]qÅ 4Hö\p:ãŒ3† VueÁ‚?ÿùÏ'MšÔ»wï“N:é_¿‹½ŸÂžã¼âHpþùçשSgÔ¨Q›6mJö,Õ5nܸeË–ééþûC§NúôéBX´hÑ7rƒ_ùöçP"©N8á„믿¾¬¬løðá_¾ç®]»ÆŽ{ÑEµk×®  àöÛo¯vdÒ'Ÿ|ò«_ýª   C‡W^yåË/¿?þxJJJçÎKJJ®ºêª—_~¹ò.\د_¿¹sç¶lÙ2??ÿØc={vß¾}ßyçB~~þÀCyyyC‡mß¾}µzôèBxñÅ«.Ξ={çÎçw^ZZÚWN|¥Å‹‡¾óï$.®_¿¾W¯^ãÇß±cG×®]SSS'Ož|î¹ç®X±"±ÃäÉ“¯ºêªÅ‹7mÚ´}ûö%%%#G޼ï¾ûö¾eÏq}pH›9sfNNÎþð‡ŠŠŠ·ß~»U«V;w.--Ml3gNNNÎ}÷Ý—¸8|øðœœœGy¤òê/½ôRË–-¯¼òÊÄÅ¡C‡æää<ðÀ‰‹åå剫äääüío«¨¨0`@NNÎ’%K*oaÊ”)999¿ûÝï7lØ““sÇwTîpÇwääälذ¡¢¢b÷îÝ:uj×®ÝÎ;+wøÙÏ~–““³råʘ „Äsÿ—¿üeåJyyùš5kF““Ó¦M›÷ß?±~ÓM7U}’VTTLž<9''§_¿~‰‹gœqÆ÷¿ÿý?ü0q±´´´S§NmÛ¶-//¯ø¿Oá Ïqu^q¤ÉÍÍýÙÏ~¶iÓ¦Q£Fí½µ¬¬lâĉíÚµ»üòË+»uëVPPðÊ+¯””””••%Þ~úéOšØšššzóÍ7qÄ•ûççç3¦M›6•+Í›7!T{Û다¥¥sÎ9üñüùó+¥¥¥óæÍËËËËÎÎþÊ “ýÃgâĉ•çâ9ñÄðƒ<ôÐCµjÕ2dÈqÇBØ´iÓsÏ=×¢E‹k®¹¦òZ^xá)§œòÚk¯­X±¢¢¢bóæÍõêÕKlÍÌÌ|üñÇÇ_QQñuçñç`çX]j–«¯¾º°°pêÔ©;w®ºiåÊ•ååå‰Ã’*íܹ3„°jÕªúõë———wéÒ%%%¥rkFFÆI'4wîÜÄÅsÎ9'„°{÷î’’’÷Þ{oõêÕÓ¦MûZL˜0¡°°ðÌ3Ï !îÞ½;ñað¯œð„NHö –F%þñ–pØa‡5oÞüÜsÏ­\\½zuEEÅi§VõyB8õÔS.\¸jÕª-ZüèG?š1cF~~~~~~‡Ú¶mÛ¬Y³z$Ïqj‘š¥víÚ#G޼ä’K† òÜsÏUÝ”8Cøüùó+_ ¨jýúõÛ¶m !uÔQÕ6U])))=zôüùó·oß^«V­fÍšegg/_¾<~¼¼¼ÆÏž={÷îÝééé3gÎÌÈÈèÞ½{Ì„É~tဳ÷éxªÙ°aCø¼çuÆ CëÖ­ !Ü}÷ÝßûÞ÷žyæ™qãÆ7.---//oÀ€§œrÊ?1’ç85áH“——÷ãÿø±Çûõ¯Ý©S§ÊõÄß×]wÝ€>÷ŠÅÅÅ!„½Oè³yóæÄÛ·oïÓ§ÏÎ;û÷ïߣG¦M›¦¥¥­^½ú…^ˆ/%%%??ÿ¡‡Z°`AË–-‹‹‹{öì™xì+'¾®cŽ9&„ðá‡V[ÿàƒÂÿ<éjÕªÕ·oß¾}ûnÚ´éõ×__¸páÔ©Sû÷ï?iÒ¤ªÇ¥Dòç æGj¢Aƒ5nÜø±Ç«ø`åbVVVAAAqqñOšØZQQqÿý÷W¾â˜8FªòbaÛ¶m‰/®<å[B∥/râ‰'fgg͘1ãøãïСCä„É~\áà“••Õ£GåË—Wý¯ÁSO=õÚk¯uìØ1777##ãá‡5jTYYYå‰÷”¿äˆCÏqUÞª¦†:õÔSÏ?ÿü?ÿùÏU¼téÒ#F<õÔS¹¹¹›7o^°`Aݺuï½÷ÞÄ7ß|óâÅ‹Gõì³Ïfgg¿õÖ[›7o>í´Ó^}õÕzõêegg7iÒdÊ”)ï¼óN^^Þ–-[æÎ›——W»ví¢¢¢&Mš\~ùå!„¹sçŽ9²{÷îíÚµûÜñ ÆŽ»uëÖV=fÿ+'¾®›o¾ù7Þ¸ÿþûŸ{î¹ÜÜÜU«V½ùæ›YYY‰ï›ÎÊÊºà‚ ¦NÚ­[·Ž;~øáË–-[¾|yëÖ­Ï>ûì½oÍsœC›W©¹n»í¶¬¬¬ª+ 6œ>}zÿþýÓÓÓ‹ŠŠÞ{ï½^½zMŸ>½U«V‰7n}ú”••-\¸ðÄOœùÖ[o­v¬$’„#Q•@á@á@á@á@á@á@á@á@á@á@á$ÁóÏ?Ÿ»—Î;_rÉ%Ï>ûì>½Ó§Ÿ~:qñ–[nÉÍÍݸqcR~÷Ê1¾Èk¯½vã7þð‡?<餓N;í´K/½ôñÇßµkWÕ}.¹ä’V­Zíçùš,=Ù5W£Fš7ožøyÏž=k×®]´hÑ¢E‹þú׿Þu×]Éž®º7žyæ™}úô>|ø>½£Ý»wßqÇÓ¦M !Ô¯_¿uëÖ}ôÑo¼ñ׿þõ‰'ž˜jÔ¨ÒÒÒĦaÆ~úé!„)S¦äææNš4難šñãÇWTT\sÍ5™™™Õ6Õ®]ûç?ÿyçÎW¬Xñ¹×]´hѵ×^Û¥K—Ö­[ŸqÆ×]wÝ’%Kªî0gΜË.»¬K—.yyy½zõzì±ÇÊËË#·oUšÅ‹‡¾óïT]¼ë®»&Ožœ‘‘Q§NBiii¿~ý–-[Ö¼yó®]»¾ÿþûS§N;wîÃ?ܲeËÂÚµküã¯[·îØc=ùä“ß}÷Ýž|òÉ_r¿[¶léÛ·ïŠ+rrr~ðƒ¬X±âÑG7oÞÓO?]§Nüüü£>ú7¿ùM^^Þ¹çžÛ¾}û}4ÆK/½BèÕ«×çníÕ«×mZ¸páOúÓŠŠŠ“O>¹Aƒk×®={ö«¯¾:eÊ”œœœÂäÉ“‡Z»ví“N:©N:‹-9räúõëñ‹_|åV€¨ØïfΜ™““óË_þ²r¥¼¼|Íš5£GÎÉÉiÓ¦Íû￟X¿øâ‹¿ûÝïvîÜùÕW_­Üyøðá999<òHåÊK/½Ô²eË+¯¼2qñ†nÈÉÉùÕ¯~µ{÷îÄÊøñãsrrrrr¦L™’X¹ãŽ;rrr6lظ8lذœœœ|°ò6ï¹çžœœœG}4qqÆ 999wÜqÇ7;FUÛ·oÏÉÉéܹsäÃxñÅŸx≉Ÿ ““³dÉ’Ê­‰düÝï~—¸xÆg|ÿûßÿðÃKKK;uêÔ¶mÛòòò¯Ü àG i&Nœ8qâÄj‹µjÕ2dÈqÇW¹²k×®ÁƒŸzꩉ‹eee'Nl×®Ýå—_^¹O·nÝ f̘QRRR·nÝ矾I“&·ÞzkZZZb‡Ë.»ì…^xýõ×?w’²²²É“'çää\yå••‹W_}õ믿¾yóæ/ºÊ7>Æ|Bhذá?ñ`æççÿð‡?lÓ¦MåJâë[¶l !TTTlÞ¼ùˆ#ލW¯^bkffæã?þñÇ'þ2ø’­ßøŸ;pðŽ@ÒT=Oá°ÃkÞ¼ù¹çž[u1¡cÇŽ•?¯\¹²¼¼<##£ò@Ä;w†V­Z•‘‘BèÚµke®%tíÚõ‹Š-q›]ºtIII©\¬_¿þäÉ“¿hø}1Fâ#Þ‰|üºÎ9çœÂîÝ»KJJÞ{ï½Õ«W'Nè“’’ò£ýhÆŒùùùùùù:thÛ¶m³fÍ*wøò­ ÂHš½OÇó¹RSS«¾·fÍšÂüùóçÏŸ¿÷ÎëׯO¼lvÌ1ÇTÛtôÑGÑ]$n󨣎Š~_ŒQ¯^½ÌÌÌ?üpûöíuëÖÝ{‡uëÖ >¼Q£F¿üå/«m*))=zôüùó·oß^«V­fÍšegg/_¾¼r‡»ï¾û{ßûÞ3Ï<3nܸqãÆ¥¥¥ååå 0à”SNùÊ­ Â8Ð¥¤¤¤¦þï) yÝu× 0às÷OœÊg﯄ùðÿè.1—xW7Ò¾#„pÖYgýùÏž6mÚ%—\²÷Ö9sæÌ™3ç /¬¶¾}ûö>}úìܹ³ÿþ=zôhÚ´iZZÚêÕ«_xá…Ê}jÕªÕ·oß¾}ûnÚ´éõ×__¸páÔ©Sû÷ï?iÒ¤6mÚ|ùÖáO8¤8pÉÎÎ!W[Ÿ0aˆ#JKK›6mš’’òÊ+¯T;›Ì¼yó¾Öm~úé§'tÒ¿ÿû¿ï·1Býúõ !üîw¿û裪mÚ¹sçO<B¨<ܳҢE‹ñ8p`óæÍoŽoݺµr‡÷ßôèщ“eeeuëÖmÈ!7ÝtSyyù«¯¾úå[÷éŸ&ppŽÀA&++«   ¸¸8QQ ³gÏ>|xqqqýúõ¿ýío¬^½ú¾ûî«ü¢— &üå/ù¢Û<ꨣºwï¾téÒÇ{¬rñüãŽ;ªUZâÆ}4F¡eË–=zôؼyóùçŸ_µJ7mÚtã7®Zµªcǎݺu«v­Ä¡™U?dzmÛ¶1cƄٚ‘‘ñðÃ5ª¬¬¬rŸÄ»í'œp—oMÞ5pÀñV5pðkÞ¼ù½÷Þ[õû„öíÛ7iÒdÊ”)ï¼óN^^Þ–-[æÎ›——W»ví¢¢¢&Mš\~ùå\pÁÔ©S»uëÖ±cÇÃ?|Ù²eË—/oݺõÙgŸ‘‘ñ%[“ý§ @¼â|6l8}úôþýû§§§½÷Þ{½zõš>}z«V­;4nÜxúôé_|ña‡VTT´lÙ²-ZŒ=úKn3q•Ÿüä'»wï~饗vîÜyÅW<õÔS‰^ !dff4(33óé§Ÿ^»ví>#„P§Nßÿþ÷üãÏ>ûìzõê-]ºtÛ¶mßÿþ÷ï¸ãŽ3f4nÜxï«dddŒ?¾  `ݺuÏ<ó̆ î¼óÎxàꫯ.//î¹çBÆ »ýöÛ5j´pᢢ¢”””n¸áOúSâüò­ )ÎÑÚvìØ±eË–FU=ÕNà_!ˆâ­j¢G¢G¢G¢G¢G¢G¢üÿ¿H<1ÊáÑ IEND®B`‚statistics-release-1.6.3/docs/assets/confusionchart_301.png000066400000000000000000000453641456127120000237130ustar00rootroot00000000000000‰PNG  IHDRhŽ\­AJ»IDATxÚíÝwXT×¾ÿñ54TЀQ± € zŒ:¨XШQ…Q,D£&ƒĘØkb âѨGsOL±‚"F,QD~v!$Ø®+D,X(ÃüþØçÎå–Š[åýzÎsž™µ×ìùî5³ÃÇ]ÖhL&“ÇJíðb 8@ ÁRŽBp€‚#¤ …à)G¼ä–,Y¢yœV­Z !úöí«<‹‹{Ä 'L˜ t[µjÕ“ö´Ö’îSWôSNII©X±bÅŠßxã ÕË{™¬Y³FÃ#F(-/Ù.Æ—Ï µ €2Äd2ݺuKq÷î]µk€b#8â%§Óé>øàóÓèèèk×® !:tèàáá¡4º»»Ë¯Ð××WY¡ùå%ó´Ö 999ŽŽŽjWñ|Ê*bðÒÀ©j¼äÚ´i³¨óŸ¡C‡š?ÿüs‹W…‡‡wèÐÁÑѱ^½zóçÏ7æE‰‰‰‹/^¼xñÙ³gÍ)))C† ©_¿¾ƒƒCíÚµ;uê´~ýúGÿüÓZâòåËcÆŒyíµ×*V¬èììܸqãÐÐÐëׯ›;>ÉÞ±cG'''//¯ñãÇß¹sç±c¸iÓ¦   š5k:;;¿þúëÑÑÑæE7nTÖlccsòäI¥±sçÎJã[o½UÜ wíÚ5cÆŒÆW®\¹sçÎ;wîBDGG¿ñÆ•*Uòðð;vìÍ›7¸i‹-òóósqqquu2eÊcÇíÑ›VTïÞ½•÷Z¿~½ÒòË/¿(-:uRZ²²²”–jÕªý”?ûì³æÍ›+=ÿüóÏ*Uª,[¶Lþ»W²OÿaÂÂÂ:tèP¹reÿ˜˜óEK–,):¶Û¶mkÒ¤I—.]Š5tîó„_ËÕ«WwêÔ©R¥J-[¶üé§ŸŠvxà.&9\E|||Ÿ>}êׯ_±bÅfÍš}øá‡iii%ÛÆŽÀ³fÊ’–-[*ßüˆˆ‹Eï¼ó޲èí·ßÖh4…w“3f˜»?^i\¹r¥ÒrüøñòåËݹ>ýôÓGTò´ÖsíÚµ5j}U‹-òòò,6M‰>…»=zÄ&Ož\tåï¼óŽÑhT:tëÖMiìׯŸÉdŠWžÚÛÛŸ>}º¸þãÿ(ÜG«ÕŽ9ÒÊêÿü788¸è§Ö§OŸ¢Eí¶cÇùM³ðã?*}&Nœ¨´|òÉ'JK¥J• L&ÓöíÛ•–þýûý”‡nñv?þø£üw¯dŸþMœ8±p[[[ƒÁ <^¼x±Å …††ÚÚÚ !:uê$?tíó$_ËiÓ¦Y¬Y¹RY1|øð‡íb’Ã%38&“iÖ¬YÖÖÖ«rttüõ×_‹~ñ½ÅÚG ‡gàˆ²E&8 !üüü&Mšd>8T¡B%˜ô×È|¦oß¾«W¯þúë¯]]]•–ßÿýa•<­õŒ5JéóÆoüøã¡¡¡æWýöÛoE7­U«V“&MzóÍ7Í-ÇØÊÍ)ÐËËkÍš5áááÞÞÞJË?ü ôùûï¿„VVVÉÉÉæ£Œ¡¡¡%«°Güñ+¯¼bn©Y³æØ±c_ýusËåË—‹¾ÐÓÓsÊ”)o¿ý¶¹åÿý¿ÿgÑÍüGWfÓ,œ>}ZéЮ];¥Å×××ü^gΜ1™L³gÏVž.]ºôŸò™3g”––-[÷»W²Oÿ«••ÕàÁƒÇçââb. hpTþ=S¾|ù€€É¡“éSâ¯åŸþ©ôÑh4ï½÷Þ¤I“Ì[-e†Krp” ¨Ñh>øàƒo¾ù¦sçÎJgg第¬bmc±ö‚#ÔEpDÙ"»wï®ü©¾{÷®½½½Ò˜’’¢t+ú×Hù»bmm™™©´¬_¿ÞÛÛÛÛÛ{Ù²e«äi­G¯× !ìììnß¾­´Ì™3GYó¼yó,6­gÏžæÒ¶m[¥122òa+7ÿ-lå¿ÿþ»¢víÚ5RZêÕ«W¿~}!ÄÉ“'/^¼¨4Ž;¶AƒJ1JË÷߯„ªâVh>ìÚ´iSåAýúõëÔ©cÑXô…}ô‘³³³òx„ ÊÙíC‡=á¦YèØ±£âöíÛÉÉÉÇŽËËËsttTÎc&%% !”ƒa:®V­Zò½Yq¿{Å[³!‡ª´x{{÷íÛ÷aýÇߺuëb ]±†·¸_˽{÷*õúé§JKݺu{÷îýØá•.ÉÁQ>hGGGóåÆ|ŽÛ|LTrKö9ª 8–*UªôÀÇ3aÂåAVVÖ¢E‹ºwïîììÜ¥Kóån’J¼žýû÷8°fÍšU«VíÚµëñãÇÖÓÉÉÉüØìæÆʵùiii…§½8–`=&“iüøñööö§NªY³¦Â|óïªU«–­­íýû÷õz½9=ÐÝ»wÍ÷ !6lØ­\ˆVªvüøqóõ…ׯ_WN†º¹¹=0Éoš…ªU«6lØðرc‰‰‰J¶ðõõõññÑh4ÙÙÙkÖ¬BX[[·oßþ©o`Q%Ûš5k*Û~úôéüü|sBúïÿþo™7•ºüüü’ ¯d666ùùù§OŸ¾wïžùó=qâÄ“—äàT¯^½bÅŠ7oÞ´¨áرcJ¦TNÊKzfûðTpªx"hÛ¶mÛ¶m¿øâ FÓ¢E‹/¿ü266VY*3Ý“¬çâÅ‹Êp5kÖTþÞ!¶mÛöT6ÍÆÆF§Ó !þû¿ÿÛ| éþýû“'O1bÄèѣ͇UBCCSSS…o¼ñ†rhĈÊQ¥R­°°E‹)'…ÿú׿ „-Z´xÂM+J9èxüøq%Løúú:99)óƒFFF !š5k&s–Y©ðI”ll­­­•SÏYYYæY$ÓÒÒŠÎ(Yâ¡{’á},kkkå©7n˜ÓÕÕ«W—.]úäÃ%?8ÊÉëììlóE&“iîܹÊcóõ©¥÷9jáˆ#ðD<<<”NÿýwFÓ¸qãôôtóÑæÛ'Ki=æË°Îœ9óþûïûùùÅÆÆ>zëb™þõ¯=pçòôô¼~ýúÃ*yZ뱘1ÛÊÊÊœ2Ç÷ˆM›:uªÒ¨ÌAý0…'¢3kÛ¶mNNŽÉd*((Pþ| !FŽi2™Ž?®\ügmm}èСWh>óئM›G|Fæ–=zX9sæÌG¸Þ´‡ÉÉÉ1ŸÁìÕ«—Ò8oÞ<óvîÜùˆO¹  @¹q§ðàK~÷Jö镟Ÿož.ǬqãÆÊƒ¢ÓñÿEfèÛ§Ä_Ë;wî(ó"f¾ãþÓñÈ —äà˜L¦‹©é…NNNÑÑÑþâÝÆïÅÀ³Ç©jàI?>..®W¯^^^^åË—wpp¨_¿þÔ©S9"yc쓬gñâÅÊ•*Uzë­·¶oßn K—.Uî?}áááË–-ó÷÷¯R¥Š³³sëÖ­/^¼cÇåfç%K–ìÛ·Oáàà ürcƒ ”¿pF£qèС¥]¡âÓO?ýþûï[´háääÔ±cǵkךÿ<—lÓ¦bÅŠæy¿Í̧&µZ­ù'LH£Ñ¬Y³ÆÇÇG«ÕV¯^Ý<…PÉ”ll­­­7oÞÚ´iÓŠ+¶lÙréÒ¥EÕæ ‡®dÃ+C«ÕîÛ·O [¶¶¶Í›7ÿæ›oÌ“<ápÉÎ_|±wïÞ^½zétºòåËûøø|øá‡ÇŽ3ÿ–RiŽ€*4&‰Ÿsð<ËÈÈØ¾}{»víø«eσҫ°o߾ʉé;vXÌTF<­±ýòË/• ܼys`` Ú›õxùùùþùgAAAá9&«dÃõ çùß‹ÁÀ ŒàXýúõKOOB,X°ÀüÈ‘#Ê¢×_]©Óé"""„S§N5_ãøùçŸëtº;vX¼c£FüüüŒF£L…(ã|j÷¬Yéµ´¬C_Åuÿsôòß?þi_¿;÷²ÛÕZÍQ§vu<¥{WõÀ6l³}ûö‡õÉÎÎîÝ»÷wß}wëÖ­víÚÙÛÛGEEõìÙóĉJ‡ŒŒŒààà+Vh4šÖ­[§¥¥}üñÇ»ví2¯!!!aàÀ»wïööö¨Q£F\\Ü€N:%„5j”B¯×OŸ>½iÓ¦ !¶mÛV¸1...//¯{÷îÖÖÖ­hP½“b[ò¿îs•–«7Ïì=»ÄJcåQ¥•ÚÕðt”î¹ZkkëÙ³g÷ìÙsÆŒ-[¶ttt,ÚgáÂ…ÉÉÉŸ}öÙ Aƒ”–ØØØ‘#G.X°`Ñ¢EBˆo¾ù&%%eܸq}ô‘¢  `Ö¬Y+W®4¯aõêÕ÷îÝ‹ŒŒlÔ¨‘Ò²nݺ)S¦ÄÆÆzyyùúúº¹¹}ýõמžžýû÷/Z@«V­œwîÜyïÞ=;;;¥qË–-BåêÌÇV¸”¯“—ûRö_…¯Ý<+„¨ìPCíêx:J}GN÷ÑGeddÌ™3§èÒœœœððps&Bøûû †={ö¤¥¥åää(§˜?üðÃÿTle5~üøJ•*™û,X°Àœ…žžžBˆ¬¬,™ ­­­;wî|ëÖ­ýû÷+-ÙÙÙûöíÓëõîîî­°´/„ÕŒüåÀ ‹ÆêNÞBˆëw.ª]Odz¸;dذa111QQQƒ¡uëÖ…={Öh4jµZåÒC³¼¼þÞ£­4ÖQ‡'ßÊËT»"žŽg4^¯÷Ýw—/_þïÿ»U«ÿ½W jÕªBˆáÇ1â/LLLBÐ'3ó?Œïܹœ——7xðàÀÀÀºuëZ[[§¦¦nݺU¾|¸££c·nÝ*W®|öìÙmÛ¶½úê«aaannnjW÷qÊŽ8eGŸ_;v\¶lÙâÅ‹·mÛvýúõÊ•+wéÒå³Ï>³¸V¥êŽB______µ«(Ó¸FRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽbóÀÖ‚‚“Édmm-„8zôèÞ½{k׮ݩS'­V«vÁP‡ep4óçψˆ kܸqBBÂàÁƒF£¢aÆ˖-«P¡‚Ú5@–§ªW­ZõË/¿hµZ% ~óÍ7vvvS§N8pà±cÇV¬X¡vÁP‡åǨ¨(‡mÛ¶9::fgg:t¨oß¾ï½÷ž">>~Û¶mÆ S»f¨ÀòˆcZZZÓ¦M…‡6-[¶T5hÐàÂ… j uXG‡ÜÜ\åñü!„ÐëõÊÓÛ·o[Yq6@e===9’‘‘‘››ûÛo¿Õ¯_ßÅÅE‘“““˜˜X£F µ €:,ƒãÀïÝ»×¥K—7ß|óâÅ‹={öBÄÄÄݸq£Gj uXÇ:„††V¨PáÆݺuëÛ·¯âÈ‘#—.]êÕ«—òeÆd2=pÉdÒh4ÊãóçÏkµZåœ5ŠE£ÑLZ×Dí*< sƒ?쿨^2¦lîï¾Ù¥     @y|ôèÑ7ÆÇÇß½{Wíj ~9RøåHá—c …_Ž€~9RøåHá—c …_Ž€~9¦tñË1@ÙÁ/Çe¿cÉœ…µjÕrqqYºti¯^½Ô.ê°)ÚtêÔ©ØØØ¬¬¬ÂF£166Vù ”A–ÁñÈ‘# 0ÏÈS˜³”Y–ÁqÑ¢E÷îÝ›5k–§§çôéÓÝÝÝGuãÆ ”/_þ“O>Q»`¨ÃòÇcÇŽùøø7iÒ¤{÷î©©©uëÖÕëõ?üðáC‡6nܨvÁP‡epÌÈÈ0Ïò]·nݳgÏ*×5V¬X±]»v‘‘‘j uXG''§ÌÌLå±››Ûýû÷SSS•§¯¼òʉ'Ô.ê° ŽMš4ùý÷ß=*„¨]»¶ƒƒÃ–-[”E‡*W®œÚ@–7Ç ݵkWsËŒ3òóóÛ´iãïïoeEÊ(»þ“oܸ1pàÀ   õë×^œžž¾víÚ‘#G¾ÿþû—.]R»Z¨ÆJqÿþý>}úÄÇÇ{xxtïÞ½ðâéÓ§OŸ>ÝÝÝ=11ñÃ?4j uX !"""þþûïN:mذ!((¨ðbWW×þýûoذ¡S§NgΜYµj•Ú@VBˆmÛ¶ÙØØL›6ÍÎÎîÊ•+7cÆ ;;»;wª]0Ôa%„HKKsss«V­Ú#ú¹¸¸Ô­[÷ï¿ÿV»`¨ÃJ‘““S¹råÇvuttÌÌÌT»`¨ÃJQµjÕÓ§O?¶ëÉ“'Õ.ê°B4lØ0;;ûðáÃè—˜˜˜““S¬_µÀËÄJ,„?~|NNÎ;]¿~}âĉBˆ^½z©]0Ôa%„hݺu÷îÝÏŸ?~çÎóâ;wî¬^½:000==½S§No¼ñ†Ú@“É$„ÈÏÏŸ1cFdd¤òÔÅÅ¥jÕªW¯^½víšÒ/00pöìÙöööjü‚Ñh4j—ž>%2•5šÂ›ý÷߇……mß¾Ý|÷´££cÇŽèíí­v©/$F“1Oí*< .ïLœ´®‰ÚUxæ.›ÁѦð“:uê„„„„„„ܽ{÷êÕ«ÎÎÎ*TP»B<lتÕjÝÜÜÔ® Ï+µ À‹à)GH!8@ÊCƒcZZÚ®]»ÂÃÃ…ÙÙÙj× •=à®ê'N,X°`Ïž=ÊÓ¾}û.\¸011qîܹüV5@™eyÄñÊ•+C† Ù·o_·nÝÞzë-¥ÑÝÝýÔ©Sýû÷OKKS»`¨Ã28~ýõ× .ü׿þÕºuk¥±ÿþßÿ}nnî÷߯vÁP‡ep>>j uXÉtzõÕW,Xàîîþå—_æææª]3T …666-[¶ÌËË»~ýºÚ5@²ÁQqóæM{{ûjÕª©]3T`#ÓÉh4îÙ³gÛ¶mFíš ËàØ¨Q£¢òóó•_‘4hÚ@–Á±aÆì÷Ê+¯véÒEí‚ Ëà¸zõjµKÀóÈòæ˜Å‹¯\¹Ríªðܱ<âøÃ?Æwß}WíÂð|±<â|÷îÝ}ûö©]ž/–Áqâĉ}úô™4iRtttzzzAAÚà¹`yªÚ`0!²³³'Nœ(„°²²²˜¸199Yíš ËàX¹reóÿfLÇ)VBˆ DEE©] žkVBˆŸþyëÖ­jW€çšÕ“¯eÁRŽòŸ»ªSRRæÍ›'óe~G”5ÿ Ž/^\²d‰Ì ŽeÓ‚c½zõ¨v1x~ý'8V«V-88XíbðüâæH!8@ ÁRl„³fͪV­šÚ•à¹f#„à¶<§ª …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ŠÍ³|³ß~ûm̘1ÎÎÎuêÔéÛ·o×®]ŸÖM˜0aãÆ{öì©ZµjÉ:%v.ãFß…ë}Ôí5_U»¥ÂÖÚ¾Yí`}­ J5òîߺzóÌ”åg3Ô® (uÏ48*ªW¯îéé©<.((¸xñbRRRRRÒŸþ9cÆŒÒxÇ+W®tèÐ!88844ôÙo/ʚȄdµKPЬ56ï·ü¹f¥×îÞÏNÍH´µ¶¯ãÜÌ£J«§~Ø}úgµ«J— Á±}ûö!!!…[âãã‡ѳgÏÆ?ù[Œ3fÈ!ÎÎÎæ£ÑXPPðˆÀº•{ï앬˜£g6üqBíZ”"ŸÚ=kVz--ëЊÄOîs…¯VôØrq»zCO^Ù}9ç¤Ú¥è¹¸Æ±U«VÁÁÁBˆ¤¤¤§²BWWWooo›wŠëÝo£†-ÙLj^z ªwBlKþ—’…WožÙ{v‰•ÆÊ£J+µ«J×s…5jÔB¤§§›[nß¾ýå—_öìÙS¯×wëÖmúôéYYY…_²sçÎ÷ßßÏÏO¯×-_¾Üh4*‹¦NªÓé®\¹"„ yýõ×…‘‘‘:.""¢Ã矮ÓévìØQxå·oßnÔ¨‘ŸŸŸ²Îû÷ï/\¸°OŸ>>>>ƒaòäÉÊk³Ï»·ÛÏn?ÿæ5Ô®@)r)_'/ÿö¥ì¿ 7^»yVQÙÝ/¹ç%8ûlРÿü—"66väÈ‘ ,X´h‘ºxÆÒs,Ôuömã18¿àÞ‘ ›Ô®(]*Çðððððp‹F[[ÛiÓ¦Õ¬YS‘‘‘±yóæzõê}òÉ'æ½{÷Þ²eËNŸ>íéé™™™Y©R¥ þshÇÑÑqÅŠ·nÝ2™LÅ­ÇÚÚºsçΫV­Ú¿‡„ÙÙÙûöíÓëõîîî999ááá>>>æÔ(„ð÷÷7 7nLKK«]»ö³CÀóÀJcí[§¿÷h+uÔáÉ·ò2Õ®(]*OÇ#„(W®œ§§g×®]Í©©©&“©mÛ¶¦ð Û´i“’’R¯^½·ÞzkãÆÍ›7oÒ¤‰‡‡G‰K2 «V­Š‰‰Q‚cLLL~~¾r¸ñìÙ³F£Q«Õ*Gšååå !RRRŽP6ÕunÐðó*êfß½}4$%ãwµ+JÝs1…Ë—/ !ªT©bÑ®LÖ}éÒ%!ÄìÙ³_{íµõë×/Z´hÑ¢EÖÖÖz½~Ĉ-[¶,AIz½ÞÕÕ5...??߯ÆfË–-Z­¶K—.Bˆ .!öïß¿ÿþ¢/,|7 Œ°±²ëä=ªEݾ÷¹»Nýx eù=ã]µ‹ž…çq>šjÕª !®]»fÑ~õêUñ?ñÑÖÖvÀ€ ÈÈÈ8tèPBBBTTÔàÁƒ#""5jTÜwÔh4‹/Ž÷ööNLLìÖ­›r\y»áÇ1Bí¨O£±ê¥Ÿ]¿ZÇ—wn9þåÍÜkO¾NàEñ¼ÜU]Xݺu…û÷ï·¸`Q9æçááqþüùyóæÅÄÄ!\\\üýý§M›6nÜ8£Ñ¸wïÞ’½©Á`BÄÄÄlݺµ  @9O-„pwwB$&&Zô_µjÕÌ™3³³³Õ-À3Õ¢NßúÕ:þqnmDÒXR#Êšç18º¸¸ž}6mÚT¯^=¥CHHÈäÉ“«W¯ž«ÑhF½lÙ2%#Zptt3fŒ££ãºuë.^|èì¬ÊÙj++«îÝ»n¯ZµjttôàÁƒmllbccÏ;Ý AµÇ ðLUÖÖBØZÛ»:5(ú?GûWÕ.(]šL|y&#bžÚUx\Þ™8i]µ«ð,Ì >\6ÔszÄÏ‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)“ɤv /9F£v à)+› Šà)œª€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽxÉýöÛo:®I“&.\(ºt×®]:nÁ‚*V8aÂNwåÊk^>ʾo¡uëÖýúõÛ´iÓS|£ÇîÂìãx™Q&ܽ{wÚ´ijW!„W®\iРÁôéÓÕ.(ªW¯ÞöøùùU¬X1))iüøñ_|ñE)½#û8^n6j< æÀQQQ½zõR»a4 ÌOÇŒ3dÈgggµë^BíÛ· )Ü?tèЈˆˆž={6nÜøÉߢè.Ì>Ž—GQ&ôèÑÃÞÞ~Μ9j×bÉÕÕÕÛÛÛÆ†ÅÏB«V­‚ƒƒ…IIIOe…Ý…ÙÇñ2!8¢L¨]»öÈ‘#srrBCCÝóþýû .ìÓ§Á`˜|ø‘#G”E!!!¯¿þº"22R§ÓEDD!¦Nj¾þéóÏ?×ét;vì°xÇFùùùF™ }zVVVá—ìܹóý÷ß÷óóÓëõAAAË—/WöGñwaöq¼ôŽ(+ذaؘ˜íÛ·?¬OvvvïÞ½¿ûî»[·nµk×ÎÞÞ>**ªgÏž'NœP:ddd¯X±B£Ñ´nÝ:--íã?Þµk—y ܽ{···w@@@5âââ pêÔ)!D@@À¨Q£„z½~úôéM›6µ( 00P±mÛ¶ÂqqqyyyÝ»w·¶¶~l…ëàÁƒBˆ:uê(OÓÓÓƒ‚‚ÂÂÂrssÛµkgeeµfÍš®]»ž>}Zé°fÍš?þøàÁƒuëÖmÚ´iZZÚ¬Y³æÏŸ_tÍìãxù™€—Ú–-[¼¼¼¾ÿþ{“Étâĉ ´nÝ:;;[YºsçN//¯ùóç+OCCC½¼¼~ùåóË·oßîííýÁ(O§OŸîååõÓO?)OF£ò//¯cÇŽ™L¦#Fxyy9rļ†ÈÈH//¯o¿ýVyzùòe//¯)S¦˜;L™2ÅËËëòåË&“)??¿U«V>>>yyyæ}ô‘——×Ù³ge* Pöý/¾øÂÜb4/\¸0oÞ1¿ªwïÞ-[¶üÕW_mÞ¼Y§Ó¥¤¤?~ÜÅÅEù½i—^½zEEEùûûûúú–/_>99ùäÉ“ 6ìÔ©Sѵ±ãåÆG”]Ÿþ¹‹‹Ká–ªU«FGG<ØÆÆ&66öܹsAAAÑÑÑ 4P:¸ººnذ!888'''!!¡~ýúkÖ¬Q¦ãqrrÒjµaaaƒáÒ¥Këׯ¿|ùòÔ©Súé§aÆFå^GGÇ1cÆ8::®[·îâÅ‹«M9“eeeÕ½{÷bU ¸\]]7nÜ8`Àkkë;vÜ¿¿OŸ>›6mªW¯žÒ!$$dòäÉÕ«WOHHˆÕh4£G^¶l™’-°ãå¦)Á4T@™uðàAooïÂ=zô¸xñbBB‚•ÿ¼Ìø;CHHÈÛo¿­ÌСطo_rrr@@©ðÒãˆ#P qqqÇwttìÖ­[åʕϞ=»mÛ¶W_}5,,ÌÍÍMíê(]G x/^ü×_]¿~½råÊ-Z´øì³Ï,®•à¥Dp€®Ê€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à@¿ýö›®ˆÖ­[÷ë×oÓ¦M¥ú¦ëÖ­SžN˜0A§Ó]¹rE•m7—ñ0;vì›o¾Ù¸qã¶mÛöïßÅŠ÷ïß/ܧ_¿~ 4xÆõ(ËlÔ.@ÙU½zuOOOåqAAÁÅ‹“’’’’’þüóÏ3f¨]¥+W®tèÐ!88844´Tß(??Ê”)6lB8995lØðúõë‡þóÏ?W®\¹fÍšJ•*©=Ê(‚#Õ´oß>$$¤pK||üСC#""zöìÙ¸qãR}÷1cÆ 2ÄÙÙYþ%F£±   ´‡eÆŒ6l¨U«Öüùó›4i¢4^¾|yæÌ™;vì=ztXXXi×Ä©jÏ‘V­Z !’’’Jû½\]]½½½mlž¯?ÿý÷ß‘‘‘¯¾úêúõëÍ©QQ­Zµÿú¯ÿòððˆ?qâ„Úe(£Žž/5jÔB¤§§+Oûõë×¥K£Ñøå—_6mÚtñâÅJûýû÷.\اOƒÁ0yòd‹«srrBBB›7o>hР˜˜‹7š:uªÅ5޹¹¹óçÏïÙ³g“&Mºté2gΜììleQHHÈ믿.„ˆŒŒÔétO« aaa&“é“O>qtt´Xdgg7tèÐÖ­[Ÿ>}ú¯MJJúôÓOýüü6lؾ}ûáÇ9r¤p‡;w¾ÿþû~~~z½>((hùòåF£Qr)NUxÞ½téÒ}ûö­[·ÎÞÞ> àÕW_ýúë¯õz}×®]›6mZJelß¾]ôÀ¥AAA[”ðᇚL¦-Z8;;_¼x1..nïÞ½‘‘‘^^^Bˆ5kÖLŸ>ÝÎήqãÆöööIII³fÍJOOŸ4iÒc—À˜à™Û²e‹——×_|an1.\˜7ož——W£FΟ?¯´÷íÛ÷ÿøGëÖ­÷îÝkîêååõË/¿˜[¶oßîííýÁ(OGíååõÏþ3??_i óòòòòòŠŒŒTZ¦L™âååuùòeåiHHˆ——×Ï?ÿl^ç—_~éååµtéRåéåË—½¼¼¦L™òtË(ìÎ;^^^­[·–ƾ}ûÖ¯__y>>ƒ 2÷ñ÷÷7 7nLKKsppøí·ßÜÜÜ>ûì3kkk¥Ãûï¿¿uëÖC‡=°’œœœ5kÖxyy}ðÁæÆaÆ:t(33óa/yêe\½zUQµjÕ f@@À›o¾Ù¨Q#s‹rÇzVV–Âd2effVªT©B… ÊRGGÇ+VܺuKùcðˆ¥Oýsðâ"8PMáéx„åÊ•óôôìÚµkáF…¯¯¯ùñÙ³gF£V«5_h¨ÈËËB¤¤¤hµZ!D»víÌqMÑ®]»‡%6e~~~ÆÜèää´fÍš‡_e(·x+ñ±¸:wî,„ÈÏÏOKK;wî\jjª2¡B£Ñ¼õÖ[7n hÞ¼y“&M<<<̽Gª):ÏYYY>wáÂ!Äþýû÷ïß_´szzºrجZµj‹^}õÕ‡½…²Î*UªÈ_eT¨PÁÑÑñÚµkwîÜqpp(ÚáÒ¥K¡¡¡Õ«Wÿâ‹/,¥¥¥Í›7oÿþýwîܱµµõððpww?yò¤¹ÃìÙ³_{íµõë×/Z´hÑ¢EÖÖÖz½~Ĉ-[¶|ìRP<ï4•ÕÿN¡„ÈáÇ1âý•©|Šþ$̵k×öJ˜SÎêJ*2„;vüõ×_7lØÐ¯_¿¢KwîܹsçÎÞ½{[´ß¹s'888//oðàÁuëÖµ¶¶NMMݺu«¹­­í€ ‘‘qèС„„„¨¨¨ÁƒGDD4jÔèÑKŸàÓðRa:/www!Dbb¢EûªU«fΜ™]·n]F³gÏ‹ÙdöíÛW¬uÞ½{·qãÆï¼óÎ3+C1pà@!Ä·ß~{ýúu‹Eyyy+W®B˜/÷4KJJRnñ5j”§§§rrüÆæçÏŸŸ7ož2‹‹‹¿¿ÿ´iÓÆg4÷îÝû襥úix±¼`\\\ Cbb¢’¢qqq¡¡¡‰‰‰NNN¯¼òŠÁ`HMM?¾ù‡^V­ZõÇÊÙöÚµk?z©z5€ç§ª¼x&NœxôèÑ™3g®]»V§ÓeffÆÇÇ;88Ì;Wé0vìØ¤¤¤_~ùeÇŽ 4HKKKNNvtt,Œ¸ÎY³fmذÁÓÓóÌ™3Ç÷ðð2dˆÒA¹Ùe÷îݳfÍêÒ¥‹Oi”!„˜={v^^ÞŽ;Þ{ï=GGGN—“““ššzïÞ=OOϹsç>q¯hÚ´©››[ddä©S§ôz}VVÖîÝ»õz½]ll¬››Û Aƒzõêåïïïëë[¾|ùäää“'O6lذS§NZ­öKÕþ´>>NNNµjÕêСÃúõës}¼Ì6BˆŸ~ú©{÷î5jÔ¨\¹rÛ¶m7nܘkÉËyØ)r¾£·uëV??¿.]ºÈ§ÊK2ç¾}ûz÷îíããS¾|ùæÍ›¿þúë11197È7؇~Ø¢E }ƒC‡U©ReñâÅ•V¥¹bÅŠ­Zµúî»ï$N2!ÄÆ»uëV»vm—ÀÀÀ/¿üÒúj÷CmS¸G~ƈˆˆyóæÍ›7ïܹsy/pÅŠÏ>ûl… ¼¼¼Þÿý´´´\¿¾hÑ¢víÚ¹¸¸tìØqÛ¶móçÏ×wþüùùÞzßkö~dnÉûÝhÖÅ &è‹9o¨‚Ãò ,àŽ+Ü(>À¦½òÊ+úC½S§N¹ÎºtéR©R¥„U«VÍÎÎιñ¯¿þªo“ðÄOä}â<ùä“wïÞÕ·‰ŠŠ*[¶lÞmÞ|óMëuÉlc±XÆŽ›w›W^yÅl6?Ôåä"3…uöÉ“'—.]ZÑ¡CÉTyIæ µ³³Ëµ³³ó?þ˜÷ÌlĈ¹~ëÛo¿•O;a„\ê'FŒñ(7£ÅbÉ›MÑ®]»œd¶)ô#?ãû￯¯,[¶,×¾üòËš¦åüõîÝ»ç¼5FóÜÒ¥Kë§çÍ›—ï XÀ½&3¬äeæº%ó>©ó®X,–ñãÇçŠôÀÇð£<ïwÇî 'Š#lœõ=è;vä=÷Ô©S'Nœ8qâDVV–%¿¿(o¿ý¶¾Ò¾}ûo¿ývòäÉîîîúÊ–-[ôm¬/ôéÓç‡~˜={¶u›Èo³oß>}ÅËËkÕªU+V¬hР¾òÍ7ßÈ_N^2SXg×ÿn•-[öù矗L•—LÎýû÷ëÕDÓ´×^{mΜ9;wÖ·©\¹rRRRÁÁΞ=«¯·jÕÊz½2i:¤¯hšöꫯŽ3ÆšMXenÆ;vè++VüàƒæÌ™ãíí­¯Ìš5K~›G¼q$g, 8 !njөS'ëJTTT®Û¹T©Rƒ~ï½÷\]]­›Ý¯8Þï^“6/™[²ÐÅQæ1\èáýî¸Â=ÁâDq„-»{÷®õeŒëׯ?pû¼Qüýý…wîÜÑW¦Nªo3}út}Eÿ“igg—˜˜¨¯¬_¿¾Aƒ 4X¼x±ü6Ö?–ÇŽÓWΜ9£ç÷öö–¿œ¼d¦°Î^­Zµ={öXW&U^29­;¢Î˜1C_ÉÎÎ~饗ôÅñãÇ,ß¿Ù2i»wïžëzÏŸ?o}™§€â(s3¶nÝZ_Ù´i“¾­·¢¶mÛÊoóˆ7ŽäŒÇ_|QÞb±èêB¬Y³F_yþùçõ•/¾øB_ùûï¿ W%‡ÍKæ–,tq”y úAx¿;®pOp 8QaˬŸÜ²··—Ù>ß¿(Vׯ_ÿé§Ÿ5j¤o3eÊ}ݺR©R¥×_}Æ ·oßÎõ»2Û¸¸¸!jÕª•s±qãÆú/ÆÆÆJ^NÁî7…uöÏ?ÿüaSå%“ÓÙÙYáì윑‘a]|¸õÓHwïÞݺukçÎ×®]+¹uÏ\{{ûŠùÑÊ\WᦰÊùÇ[2U^Ìi¹Ï^¢¥J•ÒKÀÝ»w –/™´zGBäÚó#ß=öfÌÌÌÔOdggßïBd¶yÄçQf”qçÎëíœsÝÁÁ¡—VˆaåoÉGQ¸çÚÃ>er=ª w¥@qâ8ްqÍš5;þ¼bΜ9Ö½Ju—.]êß¿¿¢bÅŠÖwÙr²X,ï¿ÿ~vv¶££ã™3gjÔ¨!„øöÛoónðõ×_GDDlذaáÂ…úG*ÃÂÂzõê%³MÍš5K—.}ïÞ=ÿˆˆˆ&’¹®ÂM‘—|ª‡ÍY½zõòåËߺu+:::33ÓÚ9Nœ8¡7 Ÿ‡½¯eÒšÍf{{û¬¬¬\×{êÔ©‚/\æf¬Q£†££cFFÆ… ,‹µ·­^½úÖ­[¯¾úªÌ6xãÔ¬Y³p3JªQ£†~;GGGgeeYëãñãÇ qi…Væ–,øªïÝ»g=o=}Øçšx´§L¡¯(N¼â÷ñÇëK_µjÕŒ3¬ëIIIֲؾ}{ýí\®\¹/„¨Q£†^„[·n͹ÍÞ½{Û´iÓ¦M›‰'jšöä“O~öÙgÖ=õCßÉlcoo¯ïzüøqë‹÷îÝ;vìÈ‘#ßyç»wïÊ\Nᦸ™TyK2§þÎfJJÊ7ß|£¯X,–iӦ駛7o.y[_p’Ikggçáá!„HNN¶Ö¾øøø… |-27£¦iú;ׯ_ß´i“¾xæÌ™W^yåµ×^Ó¯Bf›G¼q =£$;;;}„¤¤$ë‘ cbbrÅPþ^+ô°’·d^ú4…‡ÖOܽ{wË–-9·yØçÚC=ï¬pOp ˜ñŠ#l\“&M†þÕW_eggðÁ_ýu@@@FFFxxxJJŠ¢bÅŠÓ§OÏ÷w­Ÿß:{öìÀŸzê©;vä:oýúõõ"8 iš¯¯o\\ÜúõëõsõÝQe¶BŒ;¶oß¾ÁÁÁï¾û®¦i‹-Ú¼y³bÀ€eÊ”‘¼œBLQ€¦Êû+’9CCCõ½bGuúôé¦M›nÞ¼ùçŸBT®\ÙºßÆýX犎Žþù矛5kV½zu™´Ã† {çw„ï¾ûî±cÇjÔ¨±dÉ’ÄÄDÉ«+øf7nœ¾;pÿþý?øàƒªU«þç?ÿÑ_9ëÝ»·ü6xãnFyï½÷Þ€„ÇŒŒtvv^´hÑ­[·ø‹ùÞk…Væ–ÌËúæ¿ÿýïË—/»¸¸lذ!×˱’áB?óU¸'8PÜTï¹ÌÌÌqãÆå=¼°ÂÝÝ=çž•yw·´îä¨+Uª”õßï½÷ž¾Í矞ï“ËÃÃãæÍ›òÛXþ÷(zVmÚ´IMM}¨ËÉEfŠö(`ª¼$sNš4)ïk½*TظqcwŠ.;;ÛÍÍÍú[Öa˜6--­víÚ¹6ÐO°WµÌÍh±XôF•K÷îÝsîù+³Í£Ü8’3°WuÁ{geeY:cåë뫟(`¯êûÝk2Ãæë·dÞ‰RRRrfBØÛÛ·mÛ6W$™Çp¡„÷»ã ÷ŠÅF±gÏžÞ½{רQ£L™2úy}úé§Öòéòþß|ß¾}ú‘Õ*V¬øÜsÏýúë¯û÷ï×·©T©’õXk;wî|饗¼¼¼Ê–-ëäääãã3~üø\.³ÅbY¼xqÇŽ«T©R¹rå   yóæåüVùËÉIfŠ‚EôÀTyIæÜ³gÏK/½äíí]¶lÙfÍš½þúë—/_.øN±Ú½{w³fÍL&SõêÕ­‡”I{ùòe½–.]ºE‹sæÌY¹rå‹£äƒÁb±üðÃÏ=÷œ»»{ÅŠçÍ›—÷[vd¶y”GfÆBG‹Å’••5yò䀀€òåË·jÕjáÂ…sçÎ}`q,à^{à°÷Sð-™ïDçÎ{ñÅÝÜܪV­Ú­[·ß~û-ßeÃ…{pÇâ 'ÍÂ7`ºqãÆöíÛŸ~úé|¿n®¤°)þAYYY‡ÊÎÎ ’ÿ­’u3nÆBûì³Ïô¯ÚÛ¼ys×®]UO HP§oß¾qqqBˆ™3gZߨ©S'}OŽsçÎÕ«WOuFE‚½ª'++ë÷ßÿý÷ßÇŒsíÚµììì°°0½5úúúZž ÀöðŠ#àáœ={600ðÆB;;»²eËêGwrr ׿Ô€M¢8ÚåË—¿øâ‹mÛ¶]¾|YÓ´:uê<õÔSãǯ^½ºêhŠÅRøŒ#¤P …â)GH¡8@ ÅR(ŽBq€Š#¤P …â)GH¡8@ ÅR(ŽBq€Š#¤P …â)öªØ MÓTGEËb±¨Ž Å±H¬>z]u5^ö«–ºw“êÊ8u3æÿG„š¦vvƒoäÙ >¾‘g~‘ˆ·ª …â)GH¡8@ ÅR(ŽBq€Š#¤P …â)GH¡8@ ÅR(ŽBq€Š#¤P …â)GH¡8@ ÅR(ŽBq€Š#¤P …âx_Ç1bD»víZ´hÑ¿ÿ¨Nô` W.¹MlôIÕAÔ¸ß<äýçbTÀ6Qó÷Ûo¿õéÓç·ß~«Zµª¿¿ddä€~ûí7Õ¹`ÿÖuª#¨´ê×pÕ°eöª<ŽRRRÆŒcoo?þü€€!Ä_ýÕ¯_¿ &<óÌ3¥J=vm;ãÎík1玅ï8¸c£ê, ÜJK?{í—}GÖïÚ§: ¶Œâ˜uëÖ¥¦¦¾ûî»zkB4mÚ´K—.7n<~ü¸¯¯¯ê€¹}ùþ€ÔÄÕ)”é=~F|RŠêØ>Šc>þøãMÓzôè‘sqúôéÓ§OW-=‡}˜•™)„Ø¿uݹã‡TÇ)n½œy/K±jgxDT´ê8Ø,Šc>Nœ8áâââæævèСÈÈÈäää tèÐÁd2©Ž–?Oß–ú‰ÓGö¨Î¢@`oýÄŸÇ ºWŃâ˜[ffæ­[·<<<&Mš´bÅ ëzÍš5¿øâ‹Æ« Æc·Ÿ‡r·nÝBœ={vË–-Ó¦M;pàÀîÝ»GŽyåÊ•·ß~;==]u@5(޹9::ê'¦NÚ£GŠ+º¹¹1¢gÏž±±±?ÿü³ê€jPs+[¶¬£££Édj×®]Îõ:!N:¥: €Ç|T­ZµtéÒš¦å\Ô÷ŒÉÊÊR@ Šc>Úµk—ššzæÌ™œ‹GŽB4hÐ@u:5(ŽùèÙ³§büøñIIIúÊñãÇçÏŸ_¡B…Ž;ªN ‡ãɇϨQ£fÍšÕ¹sçæÍ›§¥¥z]u 5^ö«–ºw“êÊ8u3ìJÓ ý?#oäÙ >¾‘g7òø|ÆR(ŽBq€Š#¤P …â)GH¡8@ ÅR(ŽBq€Š#¤P …â)GH¡8@ ÅR(ŽBq€Š#¤P …â)GHÑ,‹ê ¶FÓ4Õ@Ñ2fƒ²WÀ6¥îݤ:‚ÎAÝV½®:…2/ûU3æÿG„šfè…y|#Ïnðñ<»0ð‹D¼U )GH¡8@ ÅR(ŽBq€Š#¤P …â)GH¡8@ ÅR(ŽBq€Š#¤P …â)GH¡8@ ÅR(ŽBq€Š#¤P …â)GH¡8>ØÕ«W>øàÕAìb\|ó÷Oœ‹QD„+—Æ¿Ü&6ú¤ê Ø&ŠãX,–1cÆÜ¾}[u)«~ WA¥ý[שހ-³Wàq·hÑ¢ˆˆÕ)àVZúÙØk¿ì;²~×>ÕYȸsûZ̹cá;îØ¨: ¶ŒâXèèèÿüç? 48uê”ê,é=~F|RŠêÊ|ùþ€ÔÄÕ)°}ÇûÊÊÊ=z´‹‹Ë‡~¢:NA& z9ó^–bÕÎðˆ¨hÕqŠ[Ïafef !öo]wîø!Õq°YÇûš3gÎßÿ½`ÁgggÕY °‰·~âÏcFÜ/ÄÓ·¥~âô‘=ª³`ËØ9&G;wnÿþýƒ‚‚Tgx,Pó‘žž>zôèš5k¾÷Þ{ª³<.x«:Ó¦M‹]±b…ÉdRàqÁ+޹EDD¬X±bèС¾¾¾ª³|øð‡~8hÐ }åêÕ«¯¼òʻᄏiÓ¦zõê©üŸªe6sww.“”voîÁ+QÇP4Ø9&·øøø]»vyxxX[£ÂÝÝý7Þ¸wïÞ?þ¨: ðìKiýü«øLÝÊN¥ŒŠ³5šÖ(:¼â˜[bb¢¢N:¹ÖõTþKÓÄ­j6¯á|øJê’#Wo¦óö4 hQs«S§Ž]tt´ÅbÑ4ͺ~úôi!„‡‡‡ê€Àuò¬Ü¼†óγI‹\U`¼U›ÉdjÛ¶í¥K—¾üòËìÿw°“èèè°°0‡víÚ©!„&DGÊi÷Ì+Ž]S`¼â˜)S¦ôêÕ+,,lË–- 6LLL<|øpvvöøñãëׯ¯: „MöUË9dš³Çµ«›÷Üð‹É;Î&ªÎ°5Ç|¸ººnÙ²åÛo¿ ÿý÷ß]\\ž~úéáÇ7iÒDu4à¿\Ë:!ìJÕ­dÊ{nT<»ÈþyšÅbQÁÖhšqoU#Ï®ÿ¯ÅÇU§PcÍÀ&¿ë ;¾‘g7øøFžÝÈãóGH¡8@ ÅR(ŽBq€Š#¤P …â)GH¡8@ ÅR(ŽBq€Š#¤P …â)GH¡8@ ÅR(ŽBq€Š#¤P …â)šÅbQÁÖhš¦:(ZÆlPöªØ&c>˜„šfèŠy|#Ïnðñ<»ÁÇ7òìÂÀ/ñV5¤P …â)GH¡8@ ÅR(ŽBq€Š#¤P …â)GH¡8@ ÅR(ŽBq€Š#¤Ø«P$²³³-‹⯿þúóÏ?kÕªÕ¡C“ɤ:@IekÅÑl6Ϙ1cåÊ•‹-òõõÝ¿ÿàÁƒÍf³¢qãÆ‹/.W®œêŒ%’­½U½|ùò ˜L&½ Ι3ÇÁÁaüøñ!!!'NœXºt©ê€%•f±XTgø'uïÞ=&&f÷îÝÎÎÎ)))}úô™0a‚¢[·nš¦mܸ±¨3hš­ÝªÌÎøÌÎøÌÎøÌÎøÂö^qŒ‰‰ pvvB=zÔl6·jÕJ?«aƱ±±ª”T¶Vœœ222ôÓBøûûë?Þ¹s§T)[› ØØZ‘òðð8vìØ7222¶lÙâãããêê*„HMMˆˆxâ‰'T(©l­8†„„dffvéÒ¥S§NW®\yñÅ…Û¶mëÞ½{rrrÏž=U(©líp<íÚµ›}ú!Ž;võêÕ—^zIÿ±`ééé~~~÷;×ÓÓsóæÍª§PÀf÷ ²X,š¦é§/_¾l2™ô÷¬(##ã•W^É»ž™™yîܹæÍ›/_¾¼àK0ìžVŸÝàãyvƒoäÙ >¾‘g7òø¶öŠ£îQ¾9ÆÑÑqÆ y×gÍšuñâÅ>úHõpjØZq,¢oŽ9uêÔ¼yó†Ú¸qcÕ#¨ak;ÇÅ7Ç˜Íæ±cÇÖ¯_ÿ7ÞP=€2¶öŠãºu뜜œ¶nݪsLdddŸ>}^}õU!ľ}û¶nÝ:|øð‡½ÌåË—GEE-\¸°téÒªçPÆÖ^qüÇ¿9æÎ;aaa-[¶ R=€J¶VÿñoŽY¸páÍ›7G¥z2Ål­8þ³ßsëÖ­ ´hÑÂÚ> ËÖŠã?ûÍ1›7o¾sçß7 l¯8êßS®\¹äääÂ}sLNkÖ¬1™L;wV=€z6{ÜóBsŒÕéÓ§»uëÖµk×Y³f=Ô/öhòŸÝàãyvƒoäÙ >¾‘g7òø¶öŠ£•µ5 !jÖ¬éêêºpá—^zIþvïÞ-„hÙ²¥êQ ¶vG!Ä™3gvìØ‘”””sÑl6ïØ±Cÿ I{öìB¨à±`kÅñرc °‘''ù£gdd9rÄÙÙÙÃÃCõL[+ŽsçÎÍÌÌ õððøøãëÕ«÷öÛo'''Ïœ9³lÙ²òßèèèxüøqÕÓ¾‘g7òø»HöÁdðÙ >¾‘g7øøFžÝàãyv#o Ÿqlذ¡üÆ'OžT D²…âèçç§:€í3è ­Eʰ/_|vƒoäÙ >¾‘g7øøFžÝÈãÛÚqPDlá­j«S§NEGG¿ð ֕O>ù$++«uëÖ;v,UŠ– Px6Ò¥’““CBBºwï¾~ýúœëqqq«W¯~ë­·xõêUÕ1J0[x‡þÞ½{ÁÁÁ/^¬_¿þСC»wïn=ëêÕ«»víZ¶lÙùóç=<<6mÚdggWÔy û¹ƒÏnðñ<»ÁÇ7òìßȳy|[xÅqåÊ•/^ìСÆ r¶F!„»»{¿~ý6lØÐ¡C‡³gÏ._¾\uX€’ÊŠãÖ­[ííí'L˜àààïeÊ”ùä“OvíÚ¥:,@Ie Å1&&¦víÚnnnlãêêZ·nÝ‹/ª PRÙBqLMMuqqyàfÎÎΉ‰‰ªÃ”T¶P«U«ýÀÍNŸ>]¹reÕaJ*[(Ž7NII9zôhÛDDD¤¦¦>Ô·Z '[(޽zõB¼ÿþû©©©ùnpóæÍÑ£G !^zé%ÕaJ*[(ŽAAA=zô¸|ùr×®]W¬X‘––f=+--í‡~èÚµk\\\‡Ú·o¯:,@Ie#‡¯ÌÊÊúä“OÖ¬Y£ãêêZ­Zµøøø„„}ƒ®]»~úé§ŽŽŽÅFÓ4Õ·(Z¶Ñ –GÝÅ‹-Z´}ûvëÞÓÎÎÎÏ>ûlHHHƒ Š-†a&oðÙ >¾¦i©{7©N¡ŒsP7#ßõ†Ýàãó¬7æ]o›øôôôøøøÊ•+—+W®ø¯Ýàÿ1ììŸ?!F¾ë ;»ÁÇçYoÌ»Þ^u€"a2™j×®­:€M±…cP (ŽBq€Š#¤ØlqŒ‰‰ùý÷ßW¬X!„HIIQ Ä³Á½ªO:5sæÌ?þøCÿ±OŸ>_~ùeDDÄ´iÓø®j€B³µW¯_¿>dÈðððnݺ=÷Üsúb½zõΜ9Ó¯_¿˜˜ÕJ*[+޳gϾqãÆ—_~ùùçŸé‹ýúõ ËÈÈ S ¤²µâø×_5iÒ¤cÇŽ¹ÖŸ}öÙÀÀÀƒªPRÙZq¼zõjÍš5ó=«råÊÖï°ÀòµâèééyæÌ™|Ï:}út½zõT(©l­8>õÔSgÏž]¸pa®õeË–>}úÉ'ŸT ¤²µÃñ >|×®]S§Nݾ}»ÉdBÌ™3'"""""¢V­Z#GŽT ¤²µâXºtéE‹}ùå—+V¬0›ÍBˆ¯¾úJ>ÏzcÞõ¶öŠ£•³³³¿¿¿¿¿¿ê 6ÂÖŠc«V­ Þ`ÿþýª3”H¶VŸx≜?Z,–›7oÆÅÅY,–êÕ«·hÑBu@€’ÊÖŠãºuëò.ÆÇLJ††nÛ¶­Y³fª”T¶vÇ|U­ZuæÌ™õêÕûì³Ï222TÇ(‘ Q…ööö­Zµº{÷îÍ›7Ug(‘ŒR…·nÝrtttssS D²µÏ8æËl6ÿñÇ[·n­_¿¾¦iªã”H¶V›6mšw1++Kÿ™Aƒ©PRÙZqlܸq¾ë•*UêÚµk—.]$/'99ù‹/¾8tèPlll•*U7n.ÆÅ÷úhú¢ o5®_KuÅg½*¶Vøá‡G¿ÔÔÔààà„„OOÏvíÚÅÅÅmÙ²eûöí«V­º_1 Ðª_ÃUGP¬xÖ«bkÅqÞ¼yŽŽŽýû÷” ™3gNBB°aÃÞ}÷]}eýúõ}ôÑ”)SV®\©zDÿu+-ýlìµ_öY¿kŸê,ŠÏzål­8~óÍ7f³ù‹ã¾}ûL&Óðáí+/¾øâìÙ³£¢¢Ìf³ê)!Dïñ3â“RT§P|xÖ+gkűW¯^‹- oݺu¡/¤bÅŠ^^^ŽŽŽ9Ë”)“™™™™™i2™TO @!& z9ó^–bÕÎðˆ¨hÕq9žõÊÙZq=ztzzú˜1cFݲeËjÕª•*õÐǪ\¶lY®•ƒÆÄÄøùùÑÇG`oýÄŸÇNªÎ 8ð¬WÎÖŠcpp°"%%eôèÑBˆR¥Jå:pãÉ“ñP‹ŒŒ\·nÝ… "##kÕª5mÚ4Õó(ckÅÑÅÅÅúßGwúôéµk×Z,!D£FTÏ Œ­Çäp¯8@ ÅR(ŽBq€Š#¤P …â)GH¡8@ ÅR(ŽBq€Š#¤P …â)GH¡8@ ÅR(ŽBq€Š#¤P …â)šÅbQÁÖhš¦:(ZÆlPöªØ&c>˜„šfèŠy|#Ïnðñ<»>¾µSu Ef=kô»Þx«R(ŽBq€Š#¤P …â)GH¡8@ ÅR(ŽBq€Š#¤P …â)GH¡8@ ÅR(ŽBq€Š#¤P …â)GH¡8@ ÅR(Žb¯:ÀcªW¯^ÇϵèêêºgÏÕÑÆUÉ©ôÄõZ×­XÇÅñÚ­Ì#WR§ì¼p:!Mu.Å1111&“©N:9+V¬¨:À¸*šì¿õ¤[y‡“ñw¶œºQ³‚c¯&Õº7¬úÌw‡Ž\¹¥: â˜ÔÔÔ”””.]º|ñŪ³ð_ãÚ×u+ï0ý÷‹wœ×W^mVýû—|f{=óÝaÕé`|Æ1111Bˆ\/7 V{Jw2ÍS¿h]Yz$îJÊ]?÷òö¥4Õé`¼â˜K—. !j×®­:ÿ')í^ÔµÛé÷²s.fde—±/å`W*+Û¬: lÅ1zqŒ‹‹0`ÀßÿíääÔ°aÃaÆùúúªŽ0®ŽsäZi]§b½J¦ˆË©i÷h(¼UË—/ !fÏžèêêºk×®>}ú¬^½Zu4D«ZÂz6øõõf[‡øŸOJmíIÕ‰`¼â˜¸¸8“É4jÔ¨è+{÷î6lاŸ~ÚºukwwwÕ†ÖØ­\H€»¦ !DäÕÔŒ¬ìG½D@Žf±XTg(>ÿüóyóæ7ÎÚ&ïGÓŒ{«yvƒoäÙ >¾‘g×Ç£v*ºjQ­œCo_·Ðçê_»•ÙlöÔ»YÅš`Ö³¿ë9>oUËjÙ²¥âÌ™3ªƒ ,qíVæìð˜y¯>Q¡LÏÆUT'‚!Ps³X,f³9;;÷ËþvvvBˆòåË«0¢FÕÊ~ÿ’ÏKMªæZ?zõ–ÂݹŒê€0Šcn—.]jذáÀs­GFF !¼½½UÑÍô¬W›UЬz®õz•LBˆ37øÖAŠcnuêÔ ˆˆˆX³fu122rÁ‚îîîÏ=÷œê€#ºšz÷øµÛ=+û¸Z›V/7´Õ©w³Â/&«C0èG; vêÔ©!C†Ü¸q£Q£FõêÕ»råÊÑ£Gœœ¾þúëV­Z=ð× ûYƒÏnðñ<»ÁÇ7òì¢ØwŽi^Ãyçÿ×ÌÁ®Ô˜” 7Ó«—/ÓºNE!Äà5'Wÿu½¸‡gçCŽoб(>>~æÌ™ûöí»yófÍš5}}}ßzë­êÕ«Ëü®aLŸÝàãyvƒoäÙ…Š½ª=*;}Ü¡®ÿåŸpvŒMÉø+îög».D]¿£`xŠ£!Ç7èØEʰ&ƒÏnðñ<»ÁÇ7òìBéáxÔ£8r|>ã)GH¡8@ ÅR(ŽBq€Š#¤P …â)GH¡8@ ÅR(ŽBq€Š#¤P …â)GH¡8@ ÅR(ŽBq€Š#¤h‹Eu[£išê h³AÙ«`›Œù`Bhš¡ÿ)bäñ<»ÁÇ7òìúø©{7©N¡†sP7ƒßõª#¨Á[ÕBq€Š#¤P …â)GH¡8@ ÅR(ŽBq€Š#¤P …â)GH¡8@ ÅR(ŽBq€Š#¤P …â)GH¡8@ ÅR(ŽBqÌ_zzú¢E‹‚ƒƒýüüÚ´i3dÈ={ö¨À]Œ‹oòþ‰s1ªƒÀXìUxeee…„„=z´B… ë­·Þ|óMÕé«~ WFDqÌÇêÕ«=0þ|“É$„ˆŽŽîß¿ÿ×_ݾ}{Õu+-ýlìµ_öY¿kŸê,0"Šc>¶nÝ*„7nœÞ…žžžÃ† ›:uêž={(ŽUzŸŸ”¢:Œ‹â˜ .”-[¶Q£F9===…—/_V`\½œy/K±jgxDT´ê80Šc>¾ûî;{ûÜ·LTT”¢fÍšªÓŒ+°‰·~âÏc'UgQóѰaÃ\+û÷ïÿþûïË”)Ó£GÕéÔàp<`6›—,YòÚk¯¥¥¥M:ÕÕÕUu"5xű øä“OÎ;W½zõO?ý4((Hu"e(ŽùËÌÌüüóÏ—.]êèè8räÈ!C†X÷°0&Šc>²³³ß{ï½íÛ·wèÐaâĉU«VU@=Šc>–.]º}ûö¾}ûNœ8Qu€Ç;Çäf±X–-[V¾|ù1cƨÎðáÇÜbbbL&S¿~ýòžÛ³gÏþýû«Î Å1·ØØX!Dzzú‰'òžËŽÕÀ°4‹Å¢:ƒ­Ñ4ãÞªFžÝàãyvƒoäÙõñS÷nRB ç n¿ë9>Ÿq€Š#¤P …â)GH¡8@ ÅR(ŽBq€Š#¤P …â)GH¡8@ ÅR(ŽBq€Š#¤P …â)GH¡8@ ÅR(Ž¢Y,Õl¦iª#€¢eÌEq€Þª€Š#¤P …â)GH¡8@ ÅR(ŽBq€Š#¤P …â)GH¡8@ ÅRìUÀ?ãøñãß}÷]TTÔíÛ·½½½GŽùä“Oª¥ÀÕ«W_xá…öíÛþù窳‡ÌÌÌÅ‹ÿòË/.\pqqiҤɈ#<==Uç*rééé~~~÷;×ÓÓsóæÍª3­äää/¾øâСC±±±UªTiܸñÈ‘#ëÕ«§:Wq;þ|—.]V¯^íëë«:K1éÕ«×ñãÇs-ºººîÙ³Gu´âžž¾jÕªµk×ÆÆÆ–/_ÞËËkðàÁO=õ”ê\Bq´¿ýöÛ[o½•ݤIOOÏ={ö 0à›o¾iß¾½êhÅÊb±Œ3æöíÛªƒ³ÙiiiúÊ™3gZ¶léããsòäIÕ錂Ï8–xëÖ­KMM6lX@@€¾Ò´iÓ.]ºÜ¸q#ïÛ6,::ú?ÿùOƒ T)>GŽB 8ÐÞþ¿oúøø\¼x1))Iu:N:5oÞ¼¡C‡Úü«nûöí3™LÇ·®¼øâ‹nnnQQQf³Yuºâð /ôë×oåÊ•ªƒ·˜˜!D®—cëÖ­BˆqãÆ™L&}ÅÓÓsذaf³Ù ïÔ?x«ºÄûã?4MëÑ£GÎÅéÓ§OŸ>]u´â“••5zôh—?ü0$$DuœbR½zu!DÎŽh±X’““K•*e­’Æa6›ÇŽ[¿~ý7ÞxCu–"W±bE///GGÇœ‹eÊ”ÉÌÌÌÌÌ´þMµa¡¡¡wïÞB,[¶lïÞ½ªãŸK—. !j×®­:ˆ.\([¶l£Fr.êŸê¾|ù²êtFa¸¿.¶çĉ...nnn‡ŠŒŒLNNnРA‡ŒðÇÃjΜ9ÿý÷‚ œUg)>ÁÁÁK–, urròóó»yófXXXlllïÞ½ u;è–/_µpáÂÒ¥K«ÎRä–-[–kåàÁƒ111~~~yâ·nÝZ?±k×.ÕYŠ•^ãââ ð÷ß;995lØpذaÙ7è»ï¾Ëû¯â¨¨(!DÍš5U§3 ŠcÉ–™™yëÖ-I“&­X±Âº^³fÍ/¾øÂæß°Ó=ztîܹýû÷ ÒÿbÞÞÞK—. Éù"kÿþýÇŽ«:Zq»sçNXXXË–-ƒ‚‚Tg)V‘‘‘ëÖ­»páBddd­Zµ¦M›¦:Š–þºÚìÙ³ëÖ­xåÊ•]»víÞ½{Ò¤I/¿ü²êtE®aƹVöïßÿý÷ß—)S&×Ûn(:Ç’íÖ­[Bˆ³gÏ&$$L›6í™gžÉÈÈX»ví×_ýöÛooÞ¼Ùæ_~HOO=ztÍš5ß{ï=ÕYŠ[jjêÔ©SïܹӨQ£&Mš$&&†‡‡oذ¡U«V;vT®X-\¸ðæÍ›£FR¤¸>}zíÚµ‹EѨQ#Õ‰P´âââL&Ó¨Q£  ¯ìÝ»wذaŸ~úiëÖ­ÝÝÝU,>f³yùòåÓ§O7›Í3gÎtuuUÈ0TïƒGrûöm}§Â;wæ\ÿ裼¼¼Ö¬Y£:`‘›8q¢uŸÊ'Ng¯ê¡C‡zyy-X°ÀºråÊ•6mÚ4jÔèܹsªÓŸÔÔTÿ~ýú©¢Fvvv||üüùó}||Ú¶m{ëÖ-Õ‰ŠÕ¸qã µWu¾¦OŸîååµxñbÕAŠÏþýû»téâååõôÓOïÙ³Guca¯ê’­lÙ²ŽŽŽ&“©]»v9×;tè „8uê”ê€E+""bÅŠC‡5Èç{rŠßµk—‡‡Ç Aƒ¬‹îîîo¼ñƽ{÷~üñGÕ‹ÏæÍ›ïܹӳgOÕAÔÐ4­J•*ƒîÝ»÷µk×¶mÛ¦:Š[Ë–-…gΜQ¤8dff†††8ðêÕ«#GŽüå—_Œöåx«ºÄ«Zµjrr²¦i9õw¨³²²T§+ZÑÑÑBˆ°°°°°°œë›6mÚ´i“m}Hbb¢Èï¨úw‡$$$¨X|Ö¬Yc2™:wî¬:H1‰ŽŽ^°`AÛ¶m»té’s]ßÕôúõ몢¨X,–ììlMÓJ•úŸ}ììì„åË—W°Èegg¿÷Þ{Û·oïСÃĉ«V­ª:‘QK¼víÚ-^¼øÌ™3^^^ÖEý6PÃÚµkwíÚ5çJJJJxx¸»»»¿¿¿›››ê€E¨N:vvvÑÑÑ‹%ç?NŸ>-„ðððP°˜œ>}:**ªk×®eË–U¥˜8;;¯_¿>!!!WqÔðW·n]ÕQT.]ºôÜsϵlÙ2×÷åDFF !¼½½U,rK—.ݾ}{ß¾}'Nœ¨:‹qQK¼ž={.^¼xüøñß~ûm¥J•„ÇŸ?~… l~‰Ö­[[Ê¡‹ŠŠ oÞ¼¹ÍWµÉdjÛ¶í®]»¾üòË‘#Gê¯@DGG‡……988äúè‚ Û½{·øoÕDµjÕ¼½½ÃÃÃûí7ë׊ž:ujùòååÊ•³ùo›4²:uêDDD¬Y³æ_ÿú—¾¹`Áww÷çž{NuÀ¢e±X–-[V¾|ù1cƨÎbhÇÏÇÇgÔ¨Q³fÍêܹsóæÍÓÒÒ<¨iZhhhåÊ•U§Cš2eJ¯^½Â¶lÙÒ°aÃÄÄÄÇggg?¾~ýúªÓýë"¬_›dS¦LéÛ·ïðáÃýýýkÔ¨èÐ!!ÄôéÓÙ·Ô¶}üñÇC† ?~üŠ+êÕ«wåÊ•£G:99}öÙg6 „„ý{ºûõë—÷Üž={öïß_uFC 8Ú‚¡C‡ººº.Y²dïÞ½...Ï>ûìÈ‘#õƒéƹººnÙ²åÛo¿ ÿý÷ß]\\ž~úéáÇ7iÒDu´b’‘‘qäÈgggã¼5¯kÚ´éÏ?ÿ<{öì'Nüý÷ßnnn:uzóÍ7yÖÛ¼ üøã3gÎÜ·o_tttÍš5{ôèñÖ[oéß#eÛbcc…ééé'NœÈ{.»ÈÍb±¨Î€€Ãñ@ ÅR(ŽBq€Š#¤P …â)GH¡8@ ÅR(ŽBqP¬¶lÙâGPPPß¾}úé§"½Òµk×ê?~ðÁÞÞÞׯ_W2»5ÆýìÝ»wÔ¨Q:uòõõmÓ¦M¿~ý–.]zïÞ½œÛôíÛ·aÆŜìU`DÕ«W÷ððÐOggg_¹råðáÇ>tèÐ'Ÿ|¢:]nׯ_o×®]¯^½&Ož\¤W”••5nܸ 6!*T¨Ð¸qã›7o=zôСCË–-[µjUÅŠUß â@gžyfÒ¤I9WöíÛ7tèЕ+W¾øâ‹¾¾¾Ezíï¾ûî!C*W®,ÿ+f³9;;»¨o–O>ùdÆ 5kÖœ1c†ŸŸŸ¾xíÚµÿûß¿þúë;ï¼³hÑ¢¢Îà­j…ÀÀÀ^½z !>\Ô×åîîÞ A{ûÇë_Î/^\³fMÕªUׯ_omB77·ÿüç?õë×ß·oß©S§TÇ`hG‹'žxB§ÿØ·oß.]º˜ÍæÏ>û, `Þ¼yúú½{÷¾üòËÞ½{7kÖ,88xìØ±¹>­˜šš:iÒ¤®]»¶hÑbРAÛ¶mËuEãÇÏõÇŒŒŒ3f¼øâ‹~~~]ºt™:ujJJŠ~Ö¤I“Ú¶m+„X³f··÷Ê•+ÿ©¹,Z´Èb±¼ñÆÎÎιÎrpp:thPPPttt¾¿{øðá7ß|ó©§žjܸñ3Ï<3bĈcÇŽåÜ`×®]|ê©§üýý»wï¾dɳÙ,y.X=^ÿà`dGŽBÔ©S'çâ'Ÿ|²jÕ*“Éäèè(„HII 9yò¤‡‡ÇÓO?}ùòåuëÖíÞ½{þüù 4B\¹r¥ÿþW¯^}â‰'ž|òÉ‹/¾ýöÛO>ùd×›””4`À€èèh//¯öíÛGGG/\¸0<<|íÚµŽŽŽÏ?ÿ|ÕªUgÏžíïïÿ /QŒíÛ· !ºwïžï¹Ý»w¿ßYû÷ïýõ×-Ë“O>Y¹rå+W®ìܹóÏ?ÿ\³f———bÕªUü±ƒƒƒ¯¯¯££ãáÇCCCãââÆŒóÀsàX ýüóÏ^^^'N´®˜ÍæØØØéÓ§{yy5mÚôòåËúzŸ>}5jôçŸZ7ž}úøøøè§GŽéååuìØ1ë¹zeüꫯôŸyæ™æÍ›'$$è?¦¤¤úùù™Íæž 9ñŠ#V¬X±bÅŠ\‹¥K—ž0aB5¬+÷îÝ=ztëÖ­õSSSW¬XѬY³AƒY·éرcppð¦M›bbbœœœ¶lÙR»ví?üÐÎÎNß`àÀ¿üòKddd¾IRSSW­ZåååõÚk¯Y‡™˜˜x¿_ùÇcÄÇÇ !ªU«VˆóùçŸïÔ©SÓ¦M­+úëIIIB‹Å’˜˜X±bÅråÊéç:;;/]ºôöíÛúŸÎýÇïw%Å€9Ç#„(S¦Œ‡‡Ç /¼sQײeKëésçΙÍf“Édý ¡îîÝ»BˆóçÏ›L&!ÄÓO?m­kº§Ÿ~ú~M¿Ì§žzJÓ4ëb… V­Zu¿ðECßÅ[¯«sçÎBˆ¬¬¬˜˜˜K—.]¸pA? NÓ´çž{nÓ¦MÏ?ÿüóÏ?ߢE ??¿úõë[7(ø\ȉâ@¼‡ãÉW©R¥r¾+„سgÏž={òn§¿læææ–묪U«Þï*ôˬR¥Š|ø¢ˆQ®\9ggç„„„´´4''§¼\½zuòäÉÕ«WŸ8qb®³bbb¦OŸ¾gÏž´´´Ò¥Kׯ_¿^½z§OŸ¶nðé§Ÿ6iÒdýúõsçÎ;w®¿¿ÿÈ‘#[µjõÀs 'Š#€Ç—¦i¥JýßÁô9bĈ‘#G滽~(Ÿ¼_ “p¿«ÐËœþ®®¤¢ˆ!„xöÙgüñÇ 6ôíÛ7ï¹»víÚµk×Ë/¿œk=--­W¯^wïÞ÷î=6ˆÃñ(1êÕ«'„ˆˆˆÈµ¾|ùòÿûß)))uëÖÕ4í?þÈu4™ððð‡ºÌôôt__ßW^y¥Øb!BBB„_}õÕÍ›7su÷îÝeË– !¬÷´:|ø°¾‹÷Ûo¿íáá¡¿9žœœlÝàòåËÓ§O×äêêÚ±cÇ &¼÷Þ{f³ùÏ?ÿ,øÜ"½7”DG%†««kpppDD„Þ¢t;wîœÝ¸qã:˜L¦ÎU}oxìðŠ#€’¤Zµj7n]ºtéÒ¥K·lÙòá¯mÙ²eú]?xðàÿÚæý÷ß×·Yºt©êé#yw}ì(™‡`gU ‹eòäÉüqVV–¾ÿçŸΜ9ó§Ÿ~jݺµêŒ¸oV«Uïýiiiª³€= 8B1räÈÏ?ÿ\?]ºtéÀÀÀôôôǧ¥¥]½zõµ×^‹ŒŒôññQ»Æ¿ùæ›Bˆš5kªÎòXcGE/Uâøñã³fÍÒO4(11qûöí{öì9{ölóæÍ…ÉÉÉ&L¸Ë5\¾|yèСõêÕ+]º´»»»¿¿ÿ„ ®_¿žs›Ó§O÷ë×ÏÏÏÏÅÅ¥J•*­[·^µjU®/‹—ÙFñÛo¿uèСR¥JîîîÏ<óÌš5krm y=÷;EΗé7nÜЮ];ùTyIæÜµkW×®]ýüüJ—.ݰa÷Þz+...çùûàƒ5j¤o°oß¾råÊ-\¸ð¾ÒêÏ4—-[¶I“&ßÿ½Ìc)22rΜ9sæÌ9uêTÞlááá­Zµ*S¦ŒÙl1bÄíÛ·ò‘߇kÖ¬yùå—«V­êææÖ´iÓ¯¾úÊöäºä>¹¯Aî¹ërG-X° E‹nnnmÚ´Ù´iÓܹsõËÎ;÷î»ôÁK÷ûß“yoxÜYÃ{ýõ×õÿÚ¶m›ë¬sçÎ+VLQ¾|ùìììœÿñÇú6W¯^}òÉ'óþÏõÔSOݹsGß&&&¦dÉ’y·yçwl·%³Õj=ztÞm^ýu‹År_ד‹Ì¶Ù'L˜P¼xq!DëÖ­%Så%™sÒ¤I¹¶quuýõ×_óÞƒ9ƒ 4(×¥¾ûî;ù´}ôQ® š6mªŸ4hÐ 5bÄ}›%K–äÊÖ¥KMÓr^a‡ò‘܇yw…¢E‹9ç½ç>‘Df×=ÌŽ9rdÎs‹/¢Ÿž3gÎ]vé?–îë!!¿'óÞðø£8VÛkÐ[¶lÉ{î±cÇ¢£££££³²²¬ùÇ!C†è+-[¶üî»ï&L˜àå奯¬_¿^߯öŒB·nÝ~úé§™3gÚ¶Ù³gü6»víÒWÌfó²eËÂÃÃkÕª¥¯|ûí·òד—̶Ùõ²R²dÉ_|Q2U^29wïÞ­wMÓÞ|óÍY³f½ð ú6îîîIIIwvòäI}½I“&¶Û•I»oß>}EÓ´7ÞxcÔ¨Q¶lâA‹£Þ3FÕ¶m[ÛJLLÌÃÜ#2ûpË–-úJÙ²eßÿýY³fùúúê+Ÿþ¹ü>‘Dr×=ð޲E-V¬Xß¾}‡îááaÛì.Åñ!K’sÝמÌu@‘@q„ÑݹsÇö$Ä•+Wî¹}Þâ(„prrºuë–¾2eÊ}›iÓ¦é+ú¿m‰‰‰úʪU«jÕªU«V­… Êocû§îСCúʉ'ôü¾¾¾òד—̶Ù+T¨°cÇÛeeRå%“Óv4ôôéÓõ•ìììW_}U_ »{°|‹£LÚ:äºÝÓ§OÛžÛ{°âøÊ+¯èOZ[­Vý-Bˆ+V<Ì="³›5k¦_jíÚµúJll¬^¡žyæù}"9ˆä®{àõâ‹/ê+_~ù¥¾rôèQggç{LJ|,IÎu_{2×MEÅFg{‹•£££Ìöy‹cNW®\ùí·ßêÔ©£o3qâD}ݶòÄO¼õÖ[«W¯¾yóf®ËÊlãææ&„¨R¥JÎźuëꌗ¼ž»û¯)l³öÙg÷›*/™œ®®®BWW×ôôtÛâž={ô ¾ð w–oq”IûÄOè·›––fÛ¦OŸ>SW®\iÛìý÷ß×m¯ž?Ø="³K•*%„(W®œ­Y­ÖE‹}ýõ×?þø£ü>‘Dr×=ðŽ*[¶ì]®ÿ.Åñ!K’sÝמÌu@‘ÀÁ10:///ý]ŒYYYÉÉÉv%;vì ­T©R… ^z饘˜˜\ØþýKJJúñÇ;vìèîîÞ®]»Í›7Ëo“œœ¬§å­opþüyÉÛz°)lj×®m;-™*¯{æ¼|ùrjjªÂl6—(QÂvAÛ?ñ±±w –/™´IIIIIIúíÚžÊB<ØÃCW¦LÛéœã<Ì=rÏ}xåÊý‰|||r¾qð7Þxçwôãšï÷¼Ë d×Ýåú¯]»¦ÿOêãã“óú4hp÷ë|ÈÇ’ä\÷»'ïùpC|ŒÎÙÙ¹Zµj§OŸB=zÔönw›¥K—¦§§ !ºvíª?y“ËâÅ‹CCC³³³M&S»ví6lxëÖ-Û‡ûèz÷î]·nݹsç®Y³æâÅ‹Bˆ;wîlܸqÓ¦MË—/ïܹ³Ì6¶ÃióM¢W™Ûz°)lrþÓ+™*¯{æ´þÇaàÅŠÓ4ÍjµÞ¹sç.Áò%“VoBˆ\‡hä{JÁy$«ŒŒ }Ëììì‡Ù'’™ z×ݺuË5纓“ÓÝ/ø%ɹîwOJþýï·fÍšú±“{öìÑ4ÍßßÿÒ¥K«V­ÒÏÕ•ÙF1zôèîÝ»§§§‡„„ :TÓ´ ¬[·NÑ«W¯%JH^ÏLq÷L•÷"’9'Mš¤äcIr®G¸'Ç”ê£s€ÇBFFƘ1cò~8°ÂËË+çÔyª¶Ùª+V¬˜íßìáÇëÛ|öÙgùþèíí}ýúuùm¬ÿ÷ãîlš7ožššz_ד‹Ìw9¢üž©ò’Ì9~üø¼Ïõ–)SfÍš5w¹StÙÙÙžžž¶Kَ̽gÚÛ·oW­Z5×AAAú‰;ª:g¶°°°\‘ì‘܇zÓÊ¥C‡9³¾ç>‘Dr×=ðŽÊÊʲ}ä¿¿¿~âîþ0%ù‡ÄƒíI ¨à¥j@!Š/>qâÄ¿ÿþ»k×®•*U*Q¢„þímŸ~úilll«V­îrÙ9sæè§W¶lÙçŸ~óæÍ¶ÎçÏŸ¯Œ9bĈ­[·¾úê«f³¹dÉ’...~~~aaa‡Ò?^Dr!DxxøÂ… Û´iS®\9ww÷ààà9sæüñÇ¥K—¾¯ëy€)îâž©ò’Ì9nܸþùçÕW_õõõ-Y²dƒ Þzë­èèè—_~ùžw«¦iË–-kРÉdªX±¢»»»dZ“É¡W·âÅ‹7jÔhÖ¬Y¶C˜ Ç£z\ !.\øÓO?=ÿüó^^^eË–mÚ´éœ9sV­Z•óP¸óUлÎÁÁaݺu&L *]ºt“&MæÏŸŸïWãäõ0%ù¹ÕžOšõ^__ àž®]»¶yóægŸ}6ßïˆ+*ìcŠG(++kß¾}ÙÙÙÁÁÁJÝ{¤wÝäÉ“õ/ú[·n]ûöííf.à1DqÝ»w¿té’bÆŒ¶olÛ¶­~TЩS§jÔ¨¡:#`Ïx©Pddeeýõ×_ýõרQ£._¾œ={öl½5úûûW«VMu@ÀÎñŒ# È8yòdÓ¦M¯]»&„ppp(Y²¤þéÜ...ú|(8G@Qrþüù/¿ürÓ¦MçÏŸ×4­ZµjO?ýtXXXÅŠUGìÅRx#¤P …â)GH¡8@ ÅR(ŽBq€Š#¤P …â)GH¡8@ ÅR(ŽBq€Š#¤P …â)ŽªØ!MÓTGËjµªŽ Å±@óÁ$„Ð4-uçZÕ)”q ~ٰ㻿l؇½BÓ4ÃŽoäÙ >¾‘g~’ˆ—ª …â)GH¡8@ ÅR(ŽBq€Š#¤P …â)GH¡8@ ÅR(ŽBq€Š#¤P …â)GH¡8@ ÅR(ŽBq€Š#¤P …âx§OŸöõõ=tèê ¸·³—†Žˆ>§:³ìÅñ/^¬:d-û#BufØ3GÕS©©©'Nœøí·ß~þùgÕYp7n§Œ¿¼a×UÛv©ÎÂì{FqÌßK/½tùòeÕ) ¥kØô„¤Õ)˜`ÿ(Žù›4iÒ;w„K–,Ù¹s§ê8¸›útÉÈÌB,Û«:³ìÅ1Íš5ÓOlÛ¶MuÜCÓz¾ú‰Q…ÙöŒƒc …â)GH¡8@ ÅR(ŽBq€Š#¤P E³Z­ª3ØM3î^Õ4-uçZÕ)”q ~ٰ㻿l؇½0üÿõ†Ýàãyv#Ï3ŽBq€Š#¤P …â)GH¡8@ ÅR(ŽBq€Š#¤P …â)GH¡8@ ÅR(ŽBq€Š#¤P …â)GH¡8@ŠfµZUg°7š¦©Ž –1”£êöɘ&!„¦úO#oäÙõñSw®UB ×à— ~×v|#Ï. ü$/U@ ÅR(ŽBq€Š#¤P …â)GH¡8@ ÅR(ŽBq€Š#¤P …â)GH¡8@ ÅR(ŽBq€Š#¤P …â)GH¡8@ ÅR(ŽùKKK[°`AHHH@@@óæÍûõë·cÇÕ¡ ·³—†Žˆ>§:CpTàq”••zðàÁ2eÊ4mÚ4==}Ïž=ï¾ûî;ï¼£:ü¯eD¨ŽÀ@(ŽùX¾|ùÁƒƒ‚‚æÎk2™„±±±={öüæ›oZ¶léçç§: £»q;ídüå »¬Ú¶KuBqÌÇÆ…cÆŒÑ[£ÂÇÇgÀ€S¦LÙ±cÅ€r]æ'$¥¨NÀp(Žù8sæLÉ’%ëÔ©“sÑÇÇGqþüyÕé@|Ô§KFf–bÙֈȘXÕqÅ1ßÿ½£cî=#„¨\¹²êt šÖóÕOüsèˆê, „â˜ÚµkçZÙ½{÷?üP¢D‰Ž;ªN Çs‹eÑ¢Eo¾ùæíÛ·§L™âáá¡:€<ãx7{öìùøãO:U±bÅO?ý488Xu"e(ŽùËÈÈøì³Ï/^ììì²³³‡¾yóæÖ­[7®|ùòª¨GqÌÇâÅ‹7oÞܽ{÷qãÆ©Îð¸àà˜Ü¬Vë’%KJ—.=jÔ(ÕY#<ã˜ÛÕ«WãââL&S=òžÛ©S§ž={ªÎ Å1·øøx!DZZZtttÞs9°–fµZUg°7šfܽjäÙ >¾‘g×ÇOݹVu 5\ƒ_6ø]oØñ<»‘Çç=ŽBq€Š#¤P …â)GH¡8@ ÅR(ŽBq€Š#¤P …â)GH¡8@ ÅR(ŽBq€Š#¤P …â)GH¡8@ŠfµZUg°7š¦©Ž –1”£êöɘ&!„¦i©;תN¡ŒkðËF¾ë ;»ÁÇ7òìÂØ¿ôŒüOøI"^ª€Š#¤P …â)GH¡8@ ÅR(ŽBq€Š#¤P …â)GH¡8@ ÅR(ŽBq€Š#¤P …â)GH¡8@ ÅR(ŽBq€Šcþ’““ÇЦM›¡C‡ž>}Zu(ÜÃÙK CGDŸŠS ¿ñ Å1©©©!!!áááBˆ-Z¸»»¯_¿þ¥—^ŠŽŽV w³ìÕ ðJ8ªð8š5kÖÕ«W 0tèP}eÕªU~øáĉþùgÕéÛÛi'ã/oØu`Õ¶]ª³@Áâ7Ô¢8æc×®]&“iàÀ¶•W^yeæÌ™111‹ÅÁÁAu@ü]æ'$¥¨N…ßxP‹â˜²eËšÍfgg看%J”ÈÈÈÈÈÈ0™Lªâÿø¨O—ŒÌ,!IJ­‘1±ªã@â7Ô¢8æcÉ’%¹VöîÝ@k| 5­ç«ŸøçÐÕY `ñjQï&**jåÊ•gΜ‰ŠŠªR¥ÊÔ©SU'P†âx7Çÿå—_¬V«¢N:NNNª(ÃÇñÜÍ믿~ôèшˆˆQ£FmÚ´©[·n7oÞT @ Šã=hšV®\¹¾}ûvíÚõòåË›6mR@ Šcn±±±~øá† r­×©SGqåÊÕÔ 8ææêêºjÕª•+WæZ‹‹BT¯^]u@5(޹U¨PÁ××7""âÏ?ÿ´-;vléÒ¥¥J•jÔ¨‘ê€jpTu>&NœØ½{÷VªT)!!aß¾}BˆiÓ¦yxx¨N Ï8æ£~ýú¿ÿþ{ûöí“’’¶lÙråÊ•¶mÛ®Y³&$$Du4e4ýC ñišq÷ª¦i©;תN¡ŒkðËF¾ë ;»ÁÇ7òìÂØ¿ôŒüOø‘Ï3ŽBq€Š#¤P …â)GH¡8@ ÅR(ŽBq€Š#¤P …â)GH¡8@ ÅR(ŽBq€Š#¤P …â)GH¡8@ ÅR4«Õª:ƒ½Ñ4MuP°ŒÙ U°OÆ|0 !4ÍЊy|MÓ–¼¢:…2]*ù®OݹVu e\ƒ_6ò]oØÙ…Ÿ$â¥jH¡8@ ÅR(ŽBq€Š#¤P …â)GH¡8@ ÅR(ŽBq€Š#¤P …â)GHqT @dgg[­V!Ä¿ÿþûÏ?ÿT©R¥uëÖ&“Iu4€¢ÊÞŠ£Åb™>}úÏ?ÿ¼`ÁÿÝ»w÷íÛ×b±!êÖ­»páÂR¥J©ÎP$ÙÛKÕK—.7ožÉdÒ â¬Y³œœœÂÂÂBCC£££/^¬: @QeoÏ8®\¹ÒÅÅeãÆ®®®)))QQQݺu{ã7„»víÚ¸qãÀUg(’ìíǸ¸¸   WWW!ÄÁƒ-K“&Mô³j×®¯: @QeoÅÑÅÅ%==]?½wï^!D`` þã­[·Š³·y ½)ooïC‡]»v-==}ýúõ~~~BˆÔÔÔÈÈÈ'Ÿ|Ru@€¢ÊÞŠchhhFFF»víÚ¶m{áÂ…W^yE±iÓ¦:$''wêÔIu@€¢ÊÞŠc‹-&L˜PªT©äää—_~¹[·nBˆC‡]¼xñÕW_Õ¼_/^ zÿý÷U W/œ ëÒ<>öˆê (lg/%4 }*NuÀ(ìí¨j!D×®]»víjµZ5MÓWºuëÖ·o_ý5ëûeµZGuóæMÕcøO»7®Tj,û#BuÀXì°8ŠGúÍ1 ,ˆŒŒT=€|¤ßºy9îÔ¡ˆ-{·¬Q…êÆí´“ñ—7ì:°jÛ.ÕYc±·âøh¿9&66ö‹/¾¨U«Ö±cÇTO ·¯FôJM¼ª:è6=!)Eu Àˆì­8êßãîîžó›c†¿`Á‚Å‹ËxVVÖÈ‘#ÝÜÜ>øàƒÐÐPÕ“È­Ó€²22„»7®ÂoŽ™5kÖÑ£GçÍ›§œ8€ÇcýÄñ;TgA¡jZÏW?ñÏ!Žˆ •½Uý¨¾9æàÁƒ?þøcÏž=ƒƒƒUÏðX°·âøH¾9&--mäÈ‘•+W>|¸êööRµ··÷®]»VªT©þ昩S§ÆÇLJ‡‡?ÀQØöÊÞžq|øoމŒŒ ïß¿¿¿¿¿êi#öVþ›cbcc…³gÏöýzû\»v­¯¯oHHˆêÔ°·—ªÅCsLÕªUÛ·oŸs%%%%""ÂËË+00ÐÓÓSõ|jØaqÔÙZ£¢råÊBˆùóç¯[·nåÊ{|5Y³fÍš5k–s%&&&""¢aÆŸ}ö™ê±”±Ãâxâĉ-[¶$%%å\´X,[¶lÑ¿BÀÞŠã¡C‡zõêeûDžœœœœä?ý¹hV«Uu†GiРA[·nýä“O¼½½ÇŽ[£F!C†$''Ϙ1£dÉ’ßÿ}!dÐ4{Û«ÌÎø2³/?xEu eºT0ò]Ÿºs­êʸ¿lä»Þ°³y|{;ª:::ºAƒ;wèØ±ã™3gªW¯øí·ßFEE­]kÜßnÉÞŠãµk×lŸò]½zõS§Néïk,]ºô³Ï>»bÅ ÕŠ*{+ŽeÊ”ILLÔOW­Z533óÌ™3úO<ñıcÇT(ªì­8ìÙ³çßÿBT©RÅÅÅå÷ß×ÏŠŠŠ*Q¢„ê€E•½UÝ·oß¿ÿþûµ×^›1cFHHÈÓO?=oÞ¼ìììÄÄÄC‡ñ½/ÌÞŠcPPÐ?þøÓO?9:: !FŽùÝwß !ªV­:|øpÕŠ*{+ŽBˆ&Mš4iÒD?]¥J•¿þúkÿþýš¦™L&ÕéŠ*;,޹¸¸¸4oÞ\u €"ÏŠcíÚµå7>räˆê¼E’=Ç€€ÕìŸ=ÇŸ~úIuûgoŸã€bÏ8Ú;v,66ö¥—^²­|üñÇYYYÍš5kÓ¦M±b´d€g']*99944´C‡«V­Ê¹~éÒ¥åË—¿û{÷¾xñ¢ê˜E˜=ÇÌÌÌ®]»îÚµ«fÍš;vÌyÖØ±cÇŽ[£FÈÈÈ·ÞzËb±¨ PTÙCqüùçŸÏž=ÛºuëÕ«WwèÐ!çY^^^=zôX½zuëÖ­Ož<¹téRÕaŠ*{(Ž7ntttü補œœòÝ D‰ü±““Ó¶mÛT‡(ªì¡8ÆÅÅU­ZÕÓÓó.ÛxxxT¯^ýìÙ³ªÃUöPSSSÝÜÜî¹™««kbb¢ê°E•=Ç *ÄÆÆÞs³ãÇ»»»« PTÙCq¬[·nJJÊÁƒï²Mdddjjê}}«5r²‡âعsg!Ĉ#RSSóÝàúõë#GŽB¼úꫪÃUöPƒƒƒ;vìxþüùöíÛ‡‡‡ß¾}ÛvÖíÛ·úé§öíÛ_ºt©uëÖ-[¶T ¨Ò¬V«ê @VVÖǼbÅ } *$$$\½zUß }ûöŸ~ú©³³s!„Ñ4MõþË>Ôý²“â¨;{öì‚ 6oÞl;zÚÕÕµU«V¡¡¡µjÕ*´šfW{•ÙŸÙeÆöªN¡Èç­ ~×v|#Ïnäñísì´´´„„ww÷R¥Jþ­öÁdðÙ >¾‘gGcßõ†ßȳy|GÕ „ÉdªZµªêvÅŽ@! 8@ ÅR(Žb·Å1..þ B¤¤¤¨ŽPäÙáQÕÇŽ›1cÆßÿ­ÿØ­[·¯¾ú*22rêÔ©|W5À³·g¯\¹Ò¯_¿ˆˆˆ—_~ùùçŸ×kÔ¨qâĉ=zÄÅÅ©PTÙ[qœ9sæµk×¾úê«Ï>û,88X_ìÑ£ÇìÙ³ÓÓÓgÏž­: @QeoÅñßÿ­W¯^›6mr­·jÕªiÓ¦{÷îU ¨²·âxñâÅÊ•+ç{–»»»í;¬p¿ì­8úøøœ8q"ß³Ž?^£F ÕŠ*{+ŽO?ýôÉ“'çÏŸŸk}É’%Çê©§T(ª4«Õª:ã”™™Ù¥K—#GŽ4hÐÀd2íØ±cРA‘‘‘‘‘‘UªTY³f‹‹KAgÐ4{Û«ÌÎøÌ~ÏñŰ­ªS(òy+ƒßõ†ßȳy|;;%%嫯¾ ·X,¶Å‘#GV¨P¡öÁdðÙ >¾‘gGcßõ†ßȳy|»;55õÔ©Sñññ*T¨Q£†‡‡G¡Ý´aLŸÝàãyvAq4ö]oØñ<»‘Ç·ÃoŽÑ¹ººª`'ì­86iÒäîìÞ½[uF€"ÉÞŠã“O>™óG«ÕzýúõK—.Y­ÖŠ+6jÔHu@€¢ÊÞŠãÊ•+ó.&$$Lš4iÓ¦M 4P ¨²·ÏqÌWùòåg̘Q£FÉ“'§§§«ŽP$¢8 !›4irçÎëׯ«ÎP$¥8 !nܸáìììéé©:@‘doïqÌ—Åbùûï¿7nÜX³fMMÓTÇ(’ì­8Ö¯_?ïbVV–þ-2}úôQ ¨²·âX·nÝ|ןxâ‰öíÛ·k×Nòz:wî|øðá\‹;vìP="ˆ'\Šk]£Yõ²ÕÜœ/ßÈ8p!uâÖ3ǯÞV €³·âøÓO?=’뉋‹3™LÕªU˹X¶lYÕó€(krÜÿîSž¥Ž$ÜZìZå2ÎëUèP»üsßï;pá†êt왽Ç9sæ8;;÷ìÙóa®$555%%¥]»v_~ù¥ê ·1-«{–všö×Ùq[Në+o4¨øÃ«~Ÿ‡˜Ÿû~¿êt왽Uýí·ßNŸ>ý!¯$..N‘ëéFxL´ô~âV†eÊ_gm+‹\ºr'À«´c1ŽÿP€ì­8vîÜ9---""âa®äܹsBˆªU«ªžò‘t;sý±ki™Ù9Ó³²K8sr°·ßê+ööRõÈ‘#ÓÒÒF5räÈÆW¨P¡X±ûþ5ªÇK—.õêÕëèÑ£...µk×0`€¿¿¿êù@´ùñ@®•fÕÊÖxÂy>õv¦Eu:öÌÞŠcHHˆ"%%eäÈ‘BˆbÅŠåúàÆ#GŽÜóJΟ?/„˜9sfõêÕ›6mzáÂ…mÛ¶mß¾}üøñ]ºtQ="ü?Mª”éTÑìáÒ¤J™ÓIioþrïßoð0ì­8º¹¹ÙþûÀ.]ºd2™† Ö«W/}eçÎ øôÓO›5kæåå¥zJBˆºž¥Bƒ¼ô¿Ž£.¦¦ge?ì5À]iV«Uu†¢á³Ï>›3gΘ1clmò¿hšq÷ª‘g7øøFž]_ Ûªè¦E…RN]ý='=_óòŒ3÷¤ÞÉ*ÔŸ·2ø]oØñ<»‘Ç·‡·QϘ1cåÊ•}+7Bœ8qBõ¸ð¿¬VqùFÆÌˆ¸9{/>Y¦D§ºåT'`Ïì¡8þðÃ6lxT×fµZ-KvvîW|„¥K—V=.C«S¡ä¯ú½Z¯|®õƒo!¼\K¨ÀžÙCq|´Î;W»víÞ½{çZŠŠBøúúªÀЮ§e½Ñ b¯s­×xÂ$„8qoP€(޹U«V-(((22rÅŠ¶Å¨¨¨yóæyyy=ÿüóª0´‹©w_¾ÙÆÇ=ÄÏöX¿b©þMžL½“q6Yu@öÌÞŽª~$ÆŽÛ¯_¿°°°ððð5j\¸páàÁƒ...“'O6™LªÓ0º·=¶õÿk°¢gý=q)g®§U,]¢Yµ²Bˆ¾+Ž\¹‘¡:{fÇùúú>ùä“/¼ð‚ÌÆúç;ÞSBBÂŒ3víÚuýúõÊ•+ûûû¿ûî»+V”¹¬a´2øìßȳ GU{»»Œm]=ðÉÒOº:ǧ¤ÿ{éæämgb®ÜR0–ý¡:ÔØ½q¥ê€±8ªð8JII5j”££ãܹsƒ‚‚„ÿþûo=>úè£çž{®X1Ú6ðX¸q;ídüå »¬Ú¶Kuªô[7/Ç:±eï–5ª³ÆBqÌÇÊ•+SSS‡ª·F!DýúõÛµk·f͚Çûûû«@!º†MOHJQ |5¢WjâUÕ)#¢8æãï¿ÿÖ4­cÇŽ9§M›6mÚ4ÕÑü¯útÉÈÌB,Û«: O§ded!vo\yêð>Õq¡8æ#::ÚÍÍÍÓÓsß¾}QQQÉÉɵjÕjݺµÉdR ÀÿjZÏW?ñÏ!Ž0ÿÆú‰ãv¨Î Å1·ŒŒŒ7nx{{?><<ܶ^¹rå/¿ü²nݺª¨Áq¹Ý¸qCqòäÉõë×O:uÏž=Û·oÊ—/_¼xqMÓr.êGÆdee©N Å1-Z´HMM=qâDÎÅ!jÕª¥:€Ç|têÔI–””¤¯>|xîܹeÊ”iÓ¦êtjðq<ùðóó6lØçŸþ /4lØðöíÛ{÷îÕ4mÒ¤IîîîªÓ¨AqÌ_ÿþý=<<-Z´sçN77·V­Z <ØÇÇGu.e4«Õª:ƒ½Ñ4ãîU#Ïnðñ5MKݹVu e\ƒ_6ò]¿üàÕ)”éPÁÈw½ag7òø¼ÇR(ŽBq€Š#¤P …â)GH¡8@ ÅR(ŽBq€Š#¤P …â)GH¡8@ ÅR(ŽBq€Š#¤P …â)GHѬV«ê öFÓ4Õ@Á2fƒrTÀ>óÁ$„Ð4Cÿ)bäñ<»ÁÇ7òìßȳ ?IÄKÕBq€Š#¤P …â)GH¡8@ ÅR(ŽBq€Š#¤P …â)GH¡8@ ÅR(ŽBq€Š#¤P …â)GH¡8@ ÅR(ŽBq€GÕ;iiiÿu®ÏºuëTgP€â˜›¦i~~~y×322N:U¦LÕÔ 8ææìì¼zõê¼ëŸþùÙ³g?üðCÕÔà=ŽRŽ;6gΜþýû×­[Wu54«Õª:ÃãÎb±¼öÚk™™™«V­*^¼ø=·×4ãîU#Ïnðñ<»ÁÇ7òìßȳy|^ª¾·¥K—ÆÄÄÌŸ?_¦5Ø+ƒöey·nÝjÕª•ÏâÅ‹%/bØ¿B >»ÁÇ7òìßȳ||#Ïnäñyã=ÌŸ?ÿúõëÆ S@1ŠãÝܸqcÞ¼y5 T@1Šãݬ[·îÖ­[:uR@=ŠãݬX±Âd2½ð ªƒ¨GqüOlj‰iÙ²eÉ’%UgPâøŸ¶oß.„hܸ±ê ŠãÚ±c‡"((Hu€ÇÅ1ééépuuõööVà±`Я,P†ýPPƒÏnðñ<»ÁÇ7òìßȳy|žq€Š#¤P …â)GH¡8@ ÅR(ŽBq€Š#¤P …â)GH¡8@ ÅR(ŽBq€Š#¤P …â)GH¡8@ ÅR4«Õª:ƒ½Ñ4MuP°ŒÙ U°OÆ|0 !4ÍЊy|#Ïnðñ<»ÁÇ×4íµ…‡U§PfEïzª#¨ÁKÕBq€Š#¤P …â)GH¡8@ ÅR(ŽBq€Š#¤P …â)GH¡8@ ÅR(ŽBq€Š#¤P …â)GH¡8@ ÅR(Žâ¨:Àc*##cáÂ…6l8s挛›[½zõ äãã£:ÆåäP¬eM·gª»•+ét;3ûBJúúã×¢¯ÜTË@(Žù°X,½{÷>pà€——WóæÍ¯_¿¾iÓ¦-[¶,\¸°Q£FªÓ`DÅ´ž«æíîr+Ãr$á–“ƒV«|ɺž¥VE'¬>’ :QPó±lÙ²´k×núô鎎ŽBˆ]»võë×/,,lÓ¦MªÓ`DÏÕpóvw9qíö´íg3,ÙBˆJeœG·¨Þ±N¹Sã’ÓU4Þã˜!z÷î­·F!DÓ¦MýüüΞ=›””¤:FÔ¸R!Ä’¨KzkBħ¤¯=rµ˜¦Õó,¥:QPóQ±bE!DÎŽhµZ“““‹+f«’ 0y–.‘ž•}özZÎÅ ©éBˆò%T§3 jP>BBB-Z4iÒ$—€€€ëׯϞ=;>>¾k×®®®®ªÓ`DŸGœÍÎνXÍÍ$„H¸•¡:QPóáëë»xñâÐÐÐÐÐPÛbÏž=G­:uîzîw1Ö._2¤V¹L‹5âl²êtFAqÌGjjê”)SnݺU§Nzõê%&&FDD¬^½ºI“&mÚ´Q£sдÖÞOtõ÷tдٻϧ¤g©NdÇ|Œ9rÿþý|ðAŸ>}ô•‹/¾þúëC‡]»vm5TÀ¸üÊ—ìÝÀË˵DÒíÌ÷^ˆás Çä–°mÛ6ooo[kBxyy½ýöÛ™™™¿þú«ê€”c1­G`Åž«îîRüט„Qci…ŒgsKLLBT«V-׺þDãÕ«WUÀˆ4M¼Ý¤rÃJ®û/¤.:pñz/O+@qÌ­Zµj±±±V«UÓ4ÛúñãÇ…ÞÞÞª`Dm}ÜVrÝz2iዪ³/Uçf2™žyæ™sçÎ}õÕWÙÿsÜllììÙ³œœZ´h¡: †£ ÑÆÛýv¦%üÐeÕY gó1qâÄÎ;Ïž={ýúõµk×NLLÜ¿vvvXXXÍš5U§Àpʚ˗rʰdiQ=ï¹g“·œLTÑ(ŽùðððX¿~ýwß}ñ×_¹¹¹=û쳬W¯žêh‘GI'!„“C±êO˜òž“À!2…D³Z­ª3ØM3î^5òìßȳ||#Ïnðñ5M{máaÕ)”YÑ»ž1ïzÞã)GH¡8@ ÅR(ŽBq€Š#¤P …â)GH¡8@ ÅR(ŽBq€Š#¤P …â)GH¡8@ ÅR(ŽBq€Š#¤P E³Z­ª3ØMÓTG˘ Šâ)¼T )GH¡8@ ÅR(ŽBq€Š#¤P …â)GH¡8@ ÅR(ŽBq€Š#¤8ª€GéôéÓíÚµ[¾|¹¿¿¿ê,…'--mÙ²e¿üòK|||éÒ¥Ífsß¾}Ÿ~úiÕ¹ Crrò—_~¹oß¾øøøråÊÕ­[wðàÁ5jÔPK‹/¾ôÒK-[¶üì³ÏTg) ;w>|øp®E;v¨ŽVH>üý÷ßÇÄÄܼyÓ××wðàÁO=õ”êP+--- à¿ÎõññY·nêŒ.##cáÂ…6l8s挛›[½zõ äãã£:—PíÊâÅ‹UG(lYYY¡¡¡,S¦LÓ¦MÓÓÓ÷ìÙñî»ï¾óÎ;ªÓ¬ÔÔÔ«W¯úøø´hÑâÒ¥Këׯ߼yó²eËêÖ­«:]¡²Z­£Fºyó¦ê …'..Îd2U«V-çbÙ²eUç*$þùç»ï¾›]¯^=Ÿ;vôêÕëÛo¿mÙ²¥êhHÓ4??¿¼ë§N*S¦Œê€Îb±ôîÝûÀ^^^Í›7¿~ýú¦M›¶lÙ²páÂF©NgV}))){÷î;v¬Ùl6›ÍT¨ð,]ºÔl6wëÖíöíÛúʉ'7nìççwäÈÕé ÖĉÍfóçŸn[Y¹r¥ÙlîÚµ«êh…mÞ¼yúƒĈª³†””³Ù¬:HÓá2$33S_Ù¹s§ŸŸ_Û¶mUG3Þãh^zé¥=züüóϪƒ(°qãF!Ę1cL&“¾âãã3`À‹Åb÷¯ÙíÚµËd2 8жòÊ+¯xzzÆÄÄX,Õé Ollì_|Q«V-ÕA O\\œ"×ÓÆ±råÊÔÔÔé+õë×o׮ݵk×ò¾|o÷Ž;6gΜþýûáu†!z÷îíèøÿ^/mÚ´©ŸŸßÙ³g“’’T§3 ^ª¶“&MºsçŽbÉ’%;wîT§P9s¦dÉ’uêÔɹ¨¿ßåüùóªÓ¬²eËšÍfgg看%J”ÈÈÈÈÈȰ5iû–••5räH77·>ø 44TuœBrîÜ9!DÕªUUQãï¿ÿÖ4­cÇŽ9§M›6mÚ4ÕÑ ›Åb=ztÍš5ß~ûmÕY CÅŠ…9;¢ÕjMNN.V¬˜­J¢ ±£íA³fÍôÛ¶mS¥°}ÿý÷y_ÄÄÄ!*W®¬:]ÁZ²dI®•½{÷ÆÅŤ5 !fÍšuôèÑyóæ¹ººªÎRxôâxéÒ¥^½z=zÔÅÅ¥víÚ 0ÈQqÑÑÑnnnžžžûö틊ŠJNN®U«VëÖ­ó°·YºtiLLÌüùó‹/®:Ka Y´hѤI“\\\®_¿>{öìøøø®]»ê7€ZGmµk×ε²{÷î~ø¡D‰¹ž°cQQQ+W®ýôÓfÍšyyy©X€nܸ!„8yòäÕ«W§NúÜsÏ¥§§ÿòË/ß|óÍ!CÖ­[gœççÏŸýúõaÆ©RxRSS§L™rëÖ­:uêÔ«W/111""bõêÕMš4iÓ¦êt†¡úè¶E//¯·ß~;33ó×_UÐ(x©E[vvöðáÃ7oÞܺuëqãÆ•/_^u¢B;oÞ¼gžy¦]»v9×õ̯\¹¢:`/„˜={öìÙ³s®¯]»víÚµöýV«5;;[Ó´bÅþÏ_þBˆÒ¥K«XàÊ—/Ÿœœ¬iZÎEýꬬ,Õé ÉŠ+L&Ó /¼ :HáILLù} •þ]YW¯^UÐ((Ž(Ú/^¼yóæîÝ»7Nu–BåêêºjÕª«W¯æ*Žú'üU¯^]uÀ‚UµjÕöíÛç\III‰ˆˆðòò ôôôT°;wîùçŸoܸq®oŠŠŠŠBøúúªXàZ´h±páÂ'N˜ÍfÛ¢þ ù8ÏãÇÇÄÄ´oß¾dÉ’ª³žjÕª988ÄÆÆZ­Öœ6?~\áíí­: QPQ„Y­Ö%K–”.]zÔ¨Qª³¶ *øúúFDDüù矶¯Y;vìØÒ¥KK•*e÷ß¾Õ¬Y3Û§Pébbb"""6lh÷ßU]­Zµ   ÈÈÈ+V¼öÚkúbTTÔ¼yó¼¼¼žþyÕ \§N.\öÝwß=ñÄBˆÃ‡Ï;·L™29BbûöíâÞœ`&“é™gžÙ¶mÛW_}5xð`ý÷ØØØÙ³g;99åzë ÅEØÕ«WõoìíÑ£GÞs;uêÔ³gOÕ Ðĉ»wï>pàÀÀÀÀJ•*%$$ìÛ·O1mÚ4ãQnLcÇŽíׯ_XXXxxx5.\¸pðàA—É“'á˜b??¿aÆ}þùç/¼ðBÆ oß¾½wï^MÓ&Mšäîî®:]aпËöÅ9Æ1qâÄÎ;Ïž={ýúõµk×NLLÜ¿vvvXXXÍš5U§3 Š#аøøx!DZZZtttÞsíþ™úõëÿþûï3gÎŒŽŽ>zô¨§§gÛ¶mßyçý‹s`ÇjÕªõ믿Θ1c×®]±±±•+WîØ±ã»ï¾«¯†ôïßßÃÃcÑ¢E;wîtsskÕªÕàÁƒ òÈOOO?pà€«««_œõððX¿~ýwß}ñ×_¹¹¹=û쳬W¯žêh¢Y­VÕPðq<Bq€Š#¤P …â)GH¡8@ ÅR(ŽBq€Š#¤Pªõë×ûæܽ{÷ß~û­@oô—_~Ñ|ÿý÷}}}¯\¹¢dv[Œÿ²sçÎaƵmÛÖßß¿yóæ=zôX¼xqfffÎmºwï^»víBÎŽª0¢Š+z{{ë§³³³/\¸°ÿþýû÷ïÛ·ïã?V.·+W®´hÑ¢sçÎ&L(ÐÊÊÊ3fÌêÕ«…eÊ”©[·îõë×<¸oß¾%K–,[¶¬lÙ²ªwC£8Pà¹çž?~|Ε]»võïßÿçŸ~å•Wüýý ôÖ‡Ú¯_?wwwù‹X,–ììì‚Þ-üñêÕ«+W®<}úô€€}ñòåËŸ|òÉüñÞ{ï-X°  3À]ðR5€ÇBÓ¦M;wî,„Ø¿Aß–——W­Zµ¯¿œÏž=»bÅŠòå˯ZµÊÖ…žžž_|ñEÍš5wíÚuìØ1Õ1ÅÀãâÉ'ŸB\ºtIÿ±{÷îíÚµ³X,“'O š3g޾ž™™ùÕW_uíÚµAƒ!!!£GÎõnÅÔÔÔñãÇ·oß¾Q£F}úôÙ´iS® ËõÇôôôéÓ§¿òÊ+íÚµ›2eJJJŠ~ÖøñãŸyæ!ÄŠ+|}}þùçG#— X­Ö·ß~ÛÕÕ5×YNNNýû÷ŽÍ÷²û÷ïçwž~úéºuë>÷Üsƒ :tèPÎ ¶mÛÖ»wï§Ÿ~:00°C‡‹-²X,’ç€Íãõ7#;pà€¢Zµj9?þøãeË–™L&ggg!DJJJhhè‘#G¼½½Ÿ}öÙóçϯ\¹rûöísçέU«–âÂ… ={ö¼xñâ“O>ùÔSO={vÈ!O=õÔ]n7))©W¯^±±±f³¹eË–±±±óçψˆøå—_œ_|ñÅòåËÏœ9300ð¥—^ * ›7oBtèÐ!ßs;tèð_gíÞ½û­·Þ²Z­O=õ”»»û… ¶nÝúÏ?ÿ¬X±Âl6 !–-[6vìX'''ggçýû÷Oš4éÒ¥K£Fºç¹ðX ýþûïf³yܸq¶‹Å?mÚ4³Ù\¿~ýóçÏëëݺu«S§Nppð?ÿücÛx„ f³yÞ¼y¶•Í›7תUëÍ7ßÔ|ï½÷Ìfóĉ³²²ô• ˜Íf³Ù¼bÅ }e̘1f³ùòåËúãÇ7›Í?üðƒí:'Ožl6›çÏŸ¯ÿxùòe³ÙªT©’m%33säȑ͚5ÓLMM oРAŸ>}lÛ´iÓ&$$díÚµqqq...ëׯ¯Zµê|ààà oлwï 6DEEå›$55uÙ²ef³ùÍ7ß´-80***11ñ¿.òÈc$$$!*T¨ð;óÅ_lÛ¶mýúõm+úëIIIB«Õš˜˜X¶lÙR¥Jé纺º.^¼øæÍ›ú?w9÷‘ßïŠ:Š#r~¢D‰ÞÞÞ/½ôRÎE]ãÆm§O:e±XL&“톺;wî!NŸ>m2™„Ï>û¬­®éž}öÙÿjlúu>ýôÓš¦ÙË”)³lÙ²ÿ _1ôC¼õúx¿^xá!DVVV\\ܹsçΜ9£ NÓ´çŸ~íÚµ/¾øâ‹/¾Ø¨Q£€€€š5kÚ6¸û¹Å€y?Ž'_ÅŠËù$\||¼bÇŽ;vìÈ»ñ¥K—ô§Í<==sU¾|ùÿº ý:Ë•+'¾ b”*UÊÕÕõêÕ«·oßvqqÉ»ÁÅ‹'L˜P±bÅqãÆå:+..nÚ´i;vì¸}ûvñâÅkÖ¬Y£FãÇÛ6øôÓOëÕ«·jÕªüñÇtpp >|¸ÅbùçŸî~nÞ›Š"Š#€"ÃÃÃ#$$$22RoQº­[·N˜0!22²L™2O<ñDHHÈ™3g¦OŸnû¢—¥K—îÝ»÷¿®³\¹ríÚµû÷ß-Zd[üöÛoÓÓÓsµ4ý-ŒCQ«V­öíÛ'&&vêÔ)g+½víÚ°aÃNŸ>ݸqã6mÚ五þÖÌœÇñܸqcÆŒB½¶šL¦¹sçN™2%55Õ¶þj{•*Uî~®º»ÀcŠ—ª%#GŽü÷ß?ùä“åË—ûúú&&&îÚµËÅÅeêÔ©úÆ Û¿ÿ¼yóþøãÚµkÇÅÅ9rÄÕÕ5g1Ê÷:'Mš´zõjooï“'OÆÄÄÔ¬Y³_¿~úúÁ.Û·oŸ4iR»ví4hP1„Ÿ~úé;wþøã7ÞxÃÕÕÕ××755õÌ™3ÞÞÞS§NÍù½.((¨jÕª+V¬8qâD```RRÒöíÛœœ¶lÙRµjÕ>}ú¼úê«+W®lÓ¦MãÆK–,yäÈ‘ãÇ×­[·uëÖ&“é.窾·ù侇”5ŒH‚«©Ä! ‚mP5l&·^LnyVÒòdidK–, !<óÌ3îyÝu×…:::.¼ðÂiÓ¦…Î8ãŒîîîr÷ihåžà¾}ûÎ>ûì”)S.ºè¢O}êS™L¦½½ýw¿û]Ñý6p¸/]º4„°råÊü–}ûöuvvŽ?þÀñû4´'øå/9„ðÔSOn<ýôÓC[¶léµóK/½4bĈSN9¥ÉæÖª ŒuëÖµ··_ýõ…ËÆ $AhÉr.lãªÑ`3¹õerËZI“RÒÿüÏÿ¬ZµjÕªUsçÎî3fÌhkkë5ä&ŽÕ«WÇïÓМ෾õ­ªU«ò[<øÑ~´­­mÛ¶m…{îÝ»÷ÔSO»wï¾ä’KŽ9æ˜ï}ï{iŸå`É­Ðm·Ý¶uëÖåË—§}*õ“ ´‡4_°5l&·¢G™ÜÊe%Íóıùuvvf2™îîî^ÛwîÜþïN(fŸ†–ì/½ôÒ'Ÿ|òÖ[oýÿøÜ–?ÿùÏgŸ}öÂ… _|ñÅã?>„ðÿþßÿ{õÕWŸzê©‘#G¦}–ƒ%·¼;vÜzë­Ÿüä'Ï<óÌ´O¥~„Vî!Ml›É­èQ&·rYIóýéO‡¦L™²páÂþçNû¤SÈ-ïøÃóÏ?ÿÙÏ~¶ï;~š^‚Ðâiâ`k4ØLn½˜Ü’±’~pJ4®+®¸"ûö©;wnܸqóæÍ¹_¾öÚkmmmÇüŽ;r[rï_¶lYþ˜}ZÌ öÊí_þå_B×_}þ‹[_zé¥#Ž8bøðá6l(ú_Y»vmh®¯:K[Îw¿ûÝÂwÞ9ࢿaܸ„ÆÛpj4ØLnY“[IVÒ²(Ž­¿á~ÿý÷‡¦OŸžßrË-·„¦Nºxñâ9sæd2™™3gnݺµð¨˜}Ú€'Ø+·7ß|ó#ùHaÚ´i_|ñyç7tèж¶¶;¿ÿDSÎ­åæ–sþùç‡Ö¯_?àŸß|Å1Yh‘`|°¨FƒÍäfr+ÁJZű±Å÷l6{ï½÷Λ7oìØ±3fÌøú׿ž¿*wŸ†Vúûæ¶k×®k¯½væÌ™£Gž:ujWW×ïÿû~³Î­åæÖÓÓ3|øðÃ;ìàÁƒþáMY„6à!Ù2ƒmP5l&7“[¬¤eÉd?ü(ʇcˆ¢8Eq Šâ@Å€(íiÿ¨·LæýñyúxBKFn1ò)AÅ1®ZB+ÊÇÖR¸D‘€#e2ÊJnT‹±T!FTÇÖâ¶©BLFn%äÑR )UH€‘Õ_TŸ—xây©h ž8Õ§QS½Þ ÔÇ5¡;R#ùʘÉfQz•l¡Q Å›sMµñ¼öšŒ¬€ÁÏKÕPJá³ ¨)/¿F*l؃:S²®—KbT‡Ù‰ånç\•…G(ÅW¥”Ë KMõ]Å ¹Ù¬I¬l†VQŠ#D1ƒD²8Qg†\$o¼)—¡U”⥘a+dæ-—Ä€ÁLqjHó.M>åê[¬eCJT‹âý2ÕÂ`ãªL¦Wác¤Ü{C½PÈ÷8¶?Žú3ØJËf-áe(š•1FíX7ûòıY¨¨Ÿx­ïþ€AÈU™§85ä6*ò¢!¤Nqlî–€æ ;BŠÇVdÚM@hÔ‚;:ÌÌü})ŽÅCJUa­‚Aœ֗âTGÑÖ´[‚p’‘uSxgàå(Ž@u}NæáYÖ'`ÐR¡8‹7 N¾ËR¤8¤ DÝñ˜´G :<ø)‹vXEÆÔâ0¸¨A¥õÍG ‡ºQ[‚u¨rV¦ÈØ+¡Ä ’[ .FH‘âØr̹1,Û ­Š\§%iU!F’QR€JèoåZ¹t ¨Å€F¢X“·(AqHKÈ⃇•^Gˆb-§ê ªdä)R!Š›NªÎ§ª«HbPŠ#ôf"unTÊ%1¨Åz³AÃq¿7 ¾3›ÐH@ql~¦h8.ÛÜÚAŠÇÖbÂášQ%Ú¡!WBÑÜ$6 w#T…â3áRg†\ :"¤HqjÅ_€ÕPwìdH‘á§8ÂÀ d̰%TÕe° ÈKLt…G˜5‰Z°U‘0Tt3¹Q.ÅfMÏ+TW6+½ò(@Éf”Kq„Þ̤0˜¹B“‘U¡8¤£¿‡dxjÁCYªBqlrfŠ„F}ôW@jÁ U¡8¶³u¦4Ũ÷*MFq*åÉ"4(o-šâÒâ3B2ž,BCp©&&º<Å€FâîR¤8‡¸­$ua2 å€úFd°Q.Å`b¥Î Ò\’‰õÎ`£\Š#|ˆiú£863ˆúðƒª©'?qR¤8¶ S* 6 P2ò©.(‹â¥X¢¨‘«µ…´G(Å£h½] ¥Ãq»B=o ´òü¦8Ô[饺•פJÈ-†š˜˜èrG &L²¥ÉhDŠ#”buá[…“‘Rb¢«"Oj)‹â0&Ók·¨4+Ũ2ý»Bšw2r‹äNJ(ŽMËâMŠ ¿Ä¬â‰u‘E%Ç–`)Š$¨d¬CU$LêÌ£,Š#P}*8µfŒQF]P¡s©ð´G/ª¹%Ó²7xŠ#| e'‚ Yx’éo¼É3Fß”\¿ÉȲ(ŽÍÏ"4%“[2r£Šcós7 ƒSë·k´Çæçæ2ž¬¨3CŽT<ƒ°,ù¸Z6·L¶eOŠéõ°ÇõAM}¸hÔÅsÁBµ§ý Vòó©™´,Ù¬è’Z2…ã-¿êÀ5K2^ªnNÞ#EZŒ½ 0ž¬ þGøKu–ÍzÃYB½²]<‰)Žð!Öž ºéÕ~”¡x…שÜ(‹âØœ|ì+1ïûI&—E(£.O¡þǦÕëõ/Ê¥•E\‰F'Ʋˆ«ž/ŒâÅ™LË"®Ä¼Á±*D—€ç $à{*(|öcR)‹¯ã©„ô Î}zaóæÍ‘û4¹ÉAÎ`“›Ð9űùuwwïß¿¿³³³×öÜ–·ß~;rŸV#·däFÝlÉÈ-¡å)ŽÍ¯§§'„ÐÑÑÑkû˜1cBÛ¶m‹Ü§ÕÈ-¹Q7[2rK@hyŠcóëììÌd2ÝÝݽ¶ïܹ3üßPÌ>­FnÉȺ1Ø’‘[BËS›ßСC;;;·oßÞk{nËĉ#÷i5rKFnÔÁ–ŒÜZžâØ&MšôÖ[oõÍ›6mÊýVü>­FnÉȺ1Ø’‘[BËQ[BWW×}ôÑü–l6ûÈ#~øáguVü>­FnÉȺ1Ø’‘[Bûà”h\W\qE(öµ¥;wîܸqãæÍ›s¿|íµ×ÚÚÚŽ?þø;vä¶,_¾<„°lÙ²ü!1û4 ¹ÉAÎ`“›Ð'ű±õ7Üï¿ÿþÂôéÓó[n¹å–ÂÔ©S/^7ªÂ•X!¹Q9?9€(ž8Eq Šâ@Å€(¾€†Qø…2>ÛÏwY'#·¾9#ű å¯AYäËõ›Œ¸(—/ Š'ŽDQˆ¢8Eq Šâ@Å€(Š#QG¢(ŽDQˆ¢8Eq Šâ@Å€(Š#QG¢(ŽDQˆ¢8Eq Šâ@Å€(Š#QG¢(ŽDQˆ¢8Eq Šâ@Å€(Š#QG¢(ŽDQˆ¢8Eq Šâ@Å€(Š#QG¢(ŽjÅŠ³fÍêèè˜8qâå—_¾uëÖÒû÷ôô|ÿûß?ùä“G=iÒ¤yóæ=öØc}w{öÙg?÷¹ÏM™2eìØ±ŸúÔ§üñ´O4åÜò6nܘÉdÖ¬YÓ÷·Þyç%K–LŸ>}Ô¨QûØÇ.\¸qãÆ´O´ÊäV‡ÐJ²{÷îLÿN>ùä´O7µÜJOnrP‰‹tß¾}7ÝtÓ¬Y³rÙ^vÙeo¿ývÚ'šrhÒô3[ÈÒ€®»îºBGGÇ…^8mÚ´ÂgœÑÝÝÝßþ{÷î={v¡³³sþüùsçÎ6lXá;ßùNán¿øÅ/† 6dÈÙ³g_xá…C‡ !üüç?OûtSË­Ð’%KBÏ<óL¯íÛ¶m›8qbᤓNºøâ‹Ï<óÌÂСCŸ}öÙ´OWnÚ€ôôôüS1'œpBáœsÎIûŒÓÉmÀÉMnêï"íîî>õÔSCG}ô‚ N9唉'žøæ›o¦}º©…6à!M?³e³Yűñ¼øâ‹mmm“&Mzýõ×s[®ºêªÂÒ¥Kû;äG?úQáŸøÄîÝ»s[Ö¯_?nܸ!C†¼ð ¹-ï¼óÎØ±cGŽùÄO䶬Y³føðáGyäÒ>étrËf³Û·o_½zõâÅ‹s7Z}çÖÜrÝu×å·¬\¹2„pæ™g¦}Ærk¤Ðríµ×¶··7DzT£ÉMnE x‘^}õÕ!„+¯¼rß¾}¹-wÜqGaáÂ…iŸq:¡ÅÒÜ3[ŽâØx–.]BX¹re~˾}û:;;Çß_Ã;ï¼óBk×®-Üxë­·†n¾ùæÜ/o¹å–ÂþçîsÉ%—PQ‚ܲÙìäÉ“ ŸÐ÷⤓N5jTOOO¯£†žŸmšÜêZ²@Ö­[×ÞÞ~ýõ×§}Æ©å3¹É­¨ÒéÁƒG=a„wß}·pûܹsGŒñü#í“N!´˜Cš{fËñÇÆ³zõê¶¶¶Ï|æ3ù-ííí\pÁ–-[žzê©¢‡lÚ´©££cæÌ™…O:é¤ÂæÍ›s¿|ä‘G2™Ì¥—^Z¸Ïüãl6;kÖ¬´O:ÜB+V¬XµjÕªU«æÎ[t‡qãÆÍŸ?ÿC)Ü8bĈ={öìÝ»7í“–[Ä– |å+_9ᄾýío§}Æ©å3¹É­¨Ò髯¾ÚÝÝ}Úi§1¢pû¹çžûÞ{ïýêW¿Jû¤S-ææžÙÞ?ë´ÿ”'›ÍnذaüøñGqDáöéÓ§‡6oÞ|Î9çô=ê—¿üe{{ïÿ×Ï?ÿ|áè£ÎýríÚµ‡~øäÉ“Ÿx≧Ÿ~zÛ¶m§œrJWWרQ£Ò>éÔr !Ì›7/ŸaÑ~÷»ßõÚ²zõêW^yeöìÙ#GŽLû¼åÖ0¡%äŽ;îxî¹ç{ì±Ü»ú]í&7¹=°ôEÚÖÖBؽ{w¯íï½÷^á7ÞHû¼ëZä!M<³å)Ž ¦»»{ÿþý½¶ç¶ô÷y·Üœ ýæ7¿ùÞ÷¾7bĈÜ#Æ={öìØ±ãÄOüêW¿zçwæw;úè£xàÓO?=íóN'·²<ýôÓ+W®Ü´iÓÓO?}Ì1ÇÜsÏ=iŸtÈ- C‹ d×®]7ÝtÓ¹çžÛß3݆S£É­¹Eš2eÊ¡‡ºvíÚ7Þx㨣ŽÊmÜ»wïÃ?BøûßÿžöyW$AhåÒ|3[ž—ªLOOO¡£££×ö1cÆ„¶mÛ6àŸ°ÿþÛo¿ý‚ .èîî¾ûî»<òÈÂŽ;B6lxðÁï¹çž­[·þõ¯½ñÆ_{íµ äþ£ ­òÜ´~ýú»îºë‰'ž8pàÀÌ™3{½¾Ó ä–@…¡ErÛm·mݺuùòåiŸnÕÔhrëEn‘2™Ì7¿ùÍžžž®®®5kÖìÞ½{ݺu]]]6lÈÿGW‚ÐÊ=¤ùf¶<űÁtvvf2™îîî^ÛwîÜþïÖ§„Ç|ÆŒW_}õ„ }ôÑ‹/¾8·=ÿ†Œ•+W^zé¥ãÆ›ûìÜÞÐä–@…¡Å²cÇŽ[o½õ“ŸüdîË>šC&·Br+˲eË-Z´víÚÙ³g=úÔSOݰaòeËB‡vXÚç]‘¡•{HóÍlyŠcƒ:thggçöíÛ{mÏmÉ}}TQ{öì¹úê«çÌ™ó—¿üåÆoüÓŸþTøJMGGÇ!‡2jÔ¨ùóçÕÕÕBxñÅÓ>ïÔr+K&“™8qâ5×\³xñâ¿ýío=ôPÚç])¹%Pyhrß}÷íÚµkÑ¢EiŸk5Õhr+$·²´··¯\¹òÉ'Ÿ\¾|ù7¾ñ•+W>ÿüó&L!Œ?>íó®H‚ÐÒd3[žâØx&MšôÖ[oõ¾›6mÊýVÑC<ø¥/}éöÛoïêêzùå—o¸á†¾y9ꨣ† –Éd 7ævÛ¿Ú'Nnz饗.»ì²|°×öÓN;-„ðú믧}ÒU ·Ê ­Ü@V¬X1räÈ‹.º(í­²MnyrKàì³Ï¾öÚko¿ýöE‹7îücáãÿxÚ']©¡ xHÓÏl9Šcãéêê:pàÀ£>šß’Ífyä‘Ã?ü¬³Î*zÈ~ðƒ‡~xÉ’%?ûÙÏòosîeþüùÛ·o_¿~}áÆÜW ä~`@£KۀƎ{÷Ýwç¾ßµÐ+¯¼B8î¸ãÒ>é*[å†VV øÃžþùÏ~ö³}ßnÕèj4¹É-™¯}íkŸþô§ ?óî»ïþô§?0aBßÏ$5œ¡ xHÓÏlœ6åµ×^kkk;þøãwìØ‘Û’{£÷²eËòûìܹsãÆ›7oÎf³<æ˜c=ôÐ^_IÚË /¼B˜5kÖ–-[r[~ÿûßwtttvv¾õÖ[iŸt ¹õrÅW„b_d=cÆŒL&Søƒ×­[7f̘1cÆ4Çæ’[}B‹ä»ßýnáÎ;ïLû,ÓÏ-rr“[6ÑEzýõׇ.»ì²Ü/÷ïßÿÅ/~1ôù9 *Ah1‡4÷Ì–£86¤ÜOy™:uêâÅ‹çÌ™“ÉdfΜ¹uëÖü÷ßaúôéÙl6÷x|äÈ‘§óÃþ0Tîèìììêêš3gÎСC‡ öÀ¤}ºéäÖKsëš5krßwæ™g~ùË_>ï¼ó† 2dÈûî»/íÓ•[#…ÈùçŸBX¿~}Ú§˜~nñ“›Ü\¤;vì8öØcC§vÚ¾ð…|ä#!„óÏ?¿i~J‚Ð<¤ég¶¬âظî½÷Þyóæ;vÆŒ_ÿú×ó7@9…ÃýÉ'Ÿ,ñÈù[ßúVáwÝu×)§œ2räÈ)S¦|þóŸo¾I6>·^ú›[³ÙìË/¿¼páÂc=öC™6mÚ‚ ä&·¡ÅÒÓÓ3|øðÃ;ìàÁƒiŸ_ú¹ÅOnrKv‘nÙ²åÊ+¯œ:uêèÑ£gΜ¹|ùò={ö¤}¢)‡Vúl Ìl™l6›ö«å4Ž Šâ@Å€(Š#QG¢´§ý æò?DÐèË’ËMhå2Þ" *™¦k6†”*×âzâØB>üc¨)%Ÿ•Ш¿LÆÀ+®Ä…éšQ˜’a£oPFšâTMËΤUdY3ÅJiÙ#¨)¥0×c…˜˜k6Oq„RLÔBáúmŒÅ“U…X‰oh)Š#@š<"E­Y}â^ž.ÕÅ€æau@ÑÅ´8ű…˜O#õšLÉÈšêo€xPSŠ#Pìdä–Œ;árI¬BÌQ[ˆõ‰š2«Â`æm¹L¦5'=Å Mý­=­¹&ÅSwH]kBÅz³`'Óšsh21YÉ3ž¬$¢ÊÉ0Gq¨7ßãH¹¦ZÚÓþ P%–¢üo™GúSô[^Å©Ëf½í,¡Ò¹™âˆç‰cŠiMÉ,WTé^¨5F2º‚âÔŽI¶\+M>‰‰®*4ì 86=£ˆ ¶´˜|d5¥869w™Ô‡‘Vb¬ÖHNE)Ž4¤¢Ÿc#†J”€ÐrG€zÓoHQßd@Õ+)å(Žð!~*uà§ÅT‘k³r^ )å(ŽMÈà†¥%`Æ«œWT¯¡%¥Å¨!S-Õ¥&&à[Ó«BJ9Š#PC¦Ú~žS% [‘“qƒW”XŠR[”é•ú0ó–E\Ð@Zs%U[”õ‰úh͉•Ú)ýAW3[Q.ÃdäV”âTÊG§nz­å¥IŽË°rù¡U8ÆZ3XűE™^!E­¹ÞÔ‚$c˜ðËG—iÞS«8¶(³-¤¨5×ÒbÂOLt})Ž-ʺ•€ ¥”X+[vU£–]–¨,R6ûþ?ù_¶8Å>à™b2fÒªðah…=²)Ž-ÊšDN•“!õÑʇªP[”¹#«{B+Ê5˜Xщê@qjËrCJñú»q‹u 8B¬î X΋òŽÆÄÀð„×#RÚò„£¯˜L,ðeÔ‡âTD/¬Á– &BZGø€W]©˜d°ƒâðá ¹™Ä¨âeðˆº±ÀƒâØœô «R›“ušAÅZ•€ÐÊbÒƒúP#M„G€ø?©pCB…GxŸù…«5±þnHDJ$ű9yVAÝlÉX§]%¤G…GxŸ”ŒuˆAÂP¬„ HŠ#¼oÀUÇÄšŒÜš†â±<Ï(jÀ^(·däÖ·""ű™v‹ò)Wã­?*u%Œ+*¤8¶"ÓnQ~P5õdý&ùyÌ„F2Šc+²bå‰cÈ-¡QkÆÉ(Ž­Èf2r Å)ŽË z$“€ûªè5ö¤OV$£8B,ó,U¤mׂT‹Kue2ïÿÓšÇVdIFnÔMË®I’Û€Ìc2ÆÇVdÜS]Fƒ„V4 WkYò‹æÖša*Žð«Ž ƒÒKuk.äÔ“µ@q„éoR° •`&MFnU!Æ™¾’é•[î—ÂT[‘y¶“ÐdúÎù&:S[‘)ƒºq—RB‰+QnñLhÔ‡«2GqlEF?ÐrSYá„fr+ªo·î”܈§8¶"7è ˜X©'i2r+ªïפ}÷ÄP[‘T‚p ŒCêÉx#žâ­ESLÆ£Ù 8B$óEiÖ¡„FZLh d2®ÙGˆd¾H@hÉÈ-1ÑQE†SQŠ# ÌôA=yT®ü*ºþ˜Ä0œŠRa`¦däFýuÔˆò£8Bof‡j‘$ ~®ÓHîIrGC+wáv5ˆªPû£8ÐØ Ë¢õ¾\+ªïH6+«Gˆáõd¼QOÆ[jÔ¨}ìc .ܸqcÚ'Zer«Ch¥Ù½{w¦'Ÿ|rÚ§›Zn¥'7¹ ¨ÄEºoß¾›nºiÖ¬Y¹l/»ì²·ß~;íM9´iú™-di@×]w]¡££ã /œ6mZáŒ3Îèîîîoÿ½{÷Ξ=;„ÐÙÙ9þü¹sç6,„ðï|§p·_üâÆ 2dÈìÙ³/¼ð¡C‡†~þóŸ§}º©åVhÉ’%!„gžy¦×ömÛ¶Mœ81„pÒI']|ñÅgžyfaèСÏ>ûlÚ§+·F mÀ@zzzþ©˜N8!„pÎ9ç¤}Æéä6àä&·õw‘vwwŸzê©!„£>zÁ‚§œrJáÄO|óÍ7Ó>ÝÔBð¦ŸÙ²Ù¬âØx^|ñŶ¶¶I“&½þúë¹-W]uUaéÒ¥ýò£ý(„ð‰O|b÷îݹ-ëׯ7nÜ!C^xá…Ü–wÞygìØ±#GŽ|â‰'r[Ö¬Y3|øð#<òÀiŸt:¹e³ÙíÛ·¯^½zñ⏭¾skî¹îºëò[V®\B8óÌ3Ó>c¹5Rh‰¹öÚkÛÛÛ›cYªÑä&·¢¼H¯¾úê•W^¹o߾ܖ;î¸#„°pá´Ï8Ðbiî™-GqlãÔr‹™ÜäVTé‹ôàÁƒ£Gž0a»ï¾[¸}îܹ#FŒøÇ?þ‘öI§ZÌ!Í=³åxcãY½zu[[Ûg>ó™ü–ööö .¸`Ë–-O=õTÑC6mÚÔÑÑ1sæÌÂ'tRaóæÍ¹_>òÈ#™LæÒK/-ÜçÇ?þq6›5kVÚ'Nn!„+V¬ZµjÕªUsçÎ-ºÃ¸qãæÏŸÈ!‡n1bÄž={öîÝ›öIË­aBKȾò•¯œp ßþö·Ó>ãÔr‹™ÜäVTé‹ôÕW_íîî>í´ÓFŒQ¸ýÜsÏ}ï½÷~õ«_¥}Ò)„sHsÏlïŸuÚÊ“Íf7lØ0~üø#Ž8¢pûôéÓC›7o>çœsúõË_þ²½½÷ÿëçŸ>„pôÑGç~¹víÚÃ?|òäÉO<ñÄÓO?½mÛ¶SN9¥««kÔ¨QiŸtj¹…æÍ›—ϰè¿ûÝïzmY½zõ+¯¼2{öì‘#G¦}Þrk˜ÐrÇw<÷Üs=öXî]}®v“›ÜŠXú"mkk !ìÞ½»×ö÷Þ{/„ðÆo¤}Þõ-ò&žÙòÇÓÝݽÿþÎÎÎ^Ûs[úû¼[î Î…~ó›ß|ï{ß1bDîãž={vìØqâ‰'~õ«_½óÎ;ó»}ôÑ<ðÀé§Ÿžöy§“[Yž~úé•+WnÚ´éé§Ÿ>æ˜cî¹çž´Oº ä–@…¡E²k×®›nºéÜsÏíï™néÑäÖ‹Ü"M™2åÐC]»vío¼qÔQGå6îÝ»÷á‡!üýïOû¼+’ ´ri¾™-ÏKÕ ¦§§'„ÐÑÑÑkû˜1cBÛ¶mðOØ¿ÿí·ß~Átwwß}÷ÝGydaÇŽ!„ 6<øàƒ÷ÜsÏÖ­[ÿú׿Þx㯽öÚ‚ rÿцVynZ¿~ý]wÝõÄO8p`æÌ™½^ßiPrK ÂÐ"¹í¶Û¶nݺ|ùò´O·jj4¹õ"·H™Læ›ßüfOOOWWך5kvïÞ½nݺ®®® 6äÿ£+AhåÒ|3[žâØ`:;;3™Lwww¯í;wî ÿwëSÂã?>cÆŒ«¯¾z„ >úèÅ_œÛžCÆÊ•+/½ôÒqãÆMž<ù†nX´hÑ«¯¾ú“Ÿü$íóN9·‹/>pàÀo¼qË-·<ôÐCgŸ}vîohrK ÂÐbÙ±cÇ­·ÞúÉO~2÷eÍ¡F“[!¹•eÙ²e‹-Z»víìÙ³G}ê©§nذaÙ²e!„Ã;,íó®H‚ÐÊ=¤ùf¶<űÁ :´³³sûöí½¶ç¶ä¾>ª¨={ö\}õÕsæÌùË_þrã7þéO*|¥¦££ãC5jÔüùó êêê !¼øâ‹iŸwj¹•%“ÉLœ8ñšk®Y¼xñßþö·‡z(íó®”ܨ<´¹ï¾ûvíÚµhÑ¢´Ïµšj4¹’[YÚÛÛW®\ùä“O._¾üßøÆÊ•+Ÿþù &„ÆŸöyW$Ah i²™-Oql<“&Mzë­·z ßM›6å~«è!üÒ—¾tûí·wuu½üòË7ÜpCß¼uÔQÆ Ëd2…s»íß¿?í“N'·½ôÒK—]vÙƒ>Økûi§Bxýõ×Ó>é*[å†Vn +V¬9räE]”ö‰VY&·<¹%pöÙg_{íµ·ß~û¢E‹Æ÷Ç?þ1„ðñ<í“®T‚Ð<¤ég¶űñtuu8pàÑGÍoÉf³<òÈá‡~ÖYg=ä?øÁÃ?¼dÉ’Ÿýìgù·9÷2þüíÛ·¯_¿¾pcî+r?0 Ñ%Èm@cÇŽ½ûî»sßïZè•W^ !wÜqiŸtÈ-rC++?üáÏ?ÿüg?ûÙ¾o·jt5šÜä–Ì×¾öµOúÓ…Ÿƒy÷ÝwúÓŸN˜0¡ïg’N‚Ð<¤ég¶N›ÆòÚk¯µµµüñ;vìÈmɽÑ{Ù²eù}vîܹqãÆÍ›7g³ÙƒsÌ1‡zh¯¯$íå…^!Ìš5kË–-¹-¿ÿýï;:::;;ßzë­´O:…Üz¹âŠ+B±/²ž1cF&“)üÁŒëÖ­3f̘1cšãsÉ­>¡ÅòÝï~7„pçw¦}–éç9¹É-›è"½þúëC—]vYî—û÷ïÿâ¿úüœˆ• ´˜Cš{fËQRî§¼L:uñâÅsæÌÉd23gÎܺuk~‡ûï¿?„0}úôl6›{<>räÈÓ‹ùá˜?*w tvvvuuÍ™3gèСÆ {àÒ>Ýtr륿¹uÍš5¹oƒ;óÌ3¿üå/ŸwÞyC† 2dÈ}÷Ý—öéÊ­‘B‹äüóÏ!¬_¿>íSL?·øÉMn .Ò;v{ì±!„ÓN;í _øÂG>ò‘ÂùçŸß4?%AhÒô3[Vql\÷Þ{ï¼yóÆŽ;cÆŒ¯ýëù œÂáþä“O–xäü­o}«ðÀ»îºë”SN9rä”)S>ÿùÏ7ß$Ÿ[/ýÍ­Ùlöå—_^¸pá±Ç{È!‡L›6mÁ‚r“[‚Ðbééé>|øa‡vðàÁ´Ï/ýÜâ'7¹%»H·lÙrå•WN:uôèÑ3gÎ\¾|ùž={Ò>Ñ”C+}H¶f¶L6›MûÕr€ÇEq Šâ@Å€(Š#QG¢(ŽDQˆ¢8Eq Šâ@Å€(Š#QG¢(ŽDQˆ¢8Eq Šâ@Å€(Š#QG¢(ŽDQˆ¢8Eq Šâ@Å€(Š#QG¢(ŽDQˆÒžö_€šËdÞÿ—l6í¿JãZb¢‹T"¨Üo °¨áÈ-F~àåˆk@}ÇU‹4O[H¯ù‚B+‹¸*—ÏP˜}•Gn1„S®¾ãÊHSê­pÉiÙå‡:+:Ò ¿J´fzŠc“kÍa]¡^¡É0¹•в/rU‘V-’Œ$¨ű9e2ý¾ #ÿ[P]Æi1ö¨ãª(ű ¾£¿‡g®‡²ˆ+¹ACp©Oq„1Rý 3ï4/ñ'fhQ-Š#D1í–&ê/7ê|¿ Ô“âØ„Ì›0ÈõºHÕnjªï³LÄRQŠ#P©½G%*J,Õ"Éô¡Hf¥8B,K¤®ôâmi§ŠN­9ÞÇÕšÃ}@ª!õá{² !X+ûR¡ –ö„ƒG¾ ©D‘²Ù÷ÿÉÿ²×¿´Å¨ˆ^Hõ·`·ìB^lå {d RêÍâMZZ¹ñPŠ#@½Y¼+$ÀÄ|ù<Rá}1ó¦å -'1/ôS!Å`0²÷Ç3³JH )ŽÍÉ’ÎBN=Y5ˆ¤86'Kuc½©ÁRS–‰Ärߺڲ*ŽÍÉ’“€ÐjD°ÔMË®åÔH¾#懖1¦8B,ˆ*2œ’ñラ›;bk–HÅ>`JFn0˜õºB[ùeÖJ-GqjH§¤vr£Ë£>Œ´Å>ÄÔÀ``å‘Oo1 ¿Å¢˜XK“OB««;Ô”âØŠ,W¥É§Z$ ƒ„‹±r2ÌQa`æ êÉx‹Q˜’Ä*!½Hfç(ŽP„™4^¡É0†”ªN¤Ôˆ¡•£86-·ãЈ\­Éd³ïÿCІ#±rY[ÇV‘ß­9ÐXBK@Vñ °êciýuÄ¿KÉd[öÔ(‡'ŽDQˆ¢8Eq Šâ@Å€(Š#QG¢(ŽDQˆ¢8Eq Šâ@Å€(Š#QG¢(ŽDQˆ¢8Eq Šâ@Å€(Š#QG¢(ŽDQˆ¢8Eq Šâ@Å€(Š#QG¢(ŽDQˆ¢8Eq Šâ@Å€(Š#QG¢(ŽDQˆ¢8Eq Šâ@Å€(Š#QG¢(ŽDQˆ¢8Eq Šâ@Å€(Š#QG¢(ŽDQˆ¢8Eq Šâ@Å€(Š#QG¢(ŽDQˆ¢8Eq Šâ@Å€(Š#QG¢(ŽDQˆ¢8Eq Šâ@Å€(Š#QG¢(ŽDQˆ¢8Eq Šâ@Å€(Š#QG¢(ŽDQˆ¢8Eq Šâ@Å€(Š#QG¢ü庾i½r°ëIEND®B`‚statistics-release-1.6.3/docs/assets/dendrogram_101.png000066400000000000000000000256011456127120000227760ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A+HIDATxÚíÝy|Ôõøñï@D rFDCäP¤ *⢕Vù¤wïÞM›6=æ˜c®¾úêE‹EQ4kÖ¬«®ºªiÓ¦GuTçÎßyçôµ?rqãÆ½{÷®[·n³fÍ4hðûßÿ>dæM›6ýêW¿êرcõêÕ?þøË.»lÞ¼y!\³fÍUW]U·n݆ ^zé¥sæÌùÞ›(~+¾üòËÁƒŸzê©Õ«W?å”Sî½÷ÞÝ»wM¿Î={öüæ7¿9æ˜c~ó›ß¤Ïðõ×_ßyççŸ~ƒ 4hеk×[o½5??ß«úøã{öìyÔQG5mÚ´_¿~ëׯ6lXêÊï¸ãŽÍíÝ»÷ùçŸïܹs“&M*W®Ü¤I“sÏ=÷é§Ÿ.~Ó~ÈÝ8d$’Éd2¹sçÎ:ìû["‘HŒ=:}¶Ç{,µÞ¾}ûÔÊí·ßžZ9å”SêÖ­[ü²õêÕ{øá‡8∌+|çw2.Û¥K—ã?>cÓýúõKo7}ÎK.¹$½øöÛo7hÐ`ßoºé¦ýߨ9sæ4lذø¥ªW¯~á…¦Nÿô§?ýN›HÏvî¹ç¶hÑ"ãÌW\qÅ÷ØtñÛ{Í5פNß~ûí©¯Îž={ßoWE7~÷Ýw‹onæÌ™;¥Y³fW^yeÆîséóg¸üòË÷ý&|»p¨ŽÀ7Òø³³³þóŸ4è´ÓNK­dee-]º4u¶ý„cE*ThÓ¦M:u2 £E‹G}túŸ;wÞ÷²QÕ¯_ÿì³Ï®V­Zzåõ×_Ï8g:·mÛV¯^½twÞu×]W_}u… ß<‘2f̘o»¥»víjÒ¤Iú¦~úé©£6ÓÒõ¸‰Œ[ѤI“ÓN;­råÊé•Ù³g×M§¯ó˜cŽI5Ur;vìH_ªråÊݺu»ð «T©’Ziذa~~~êJ rrrRë•*UêØ±cúŸßŽûnn„ éÔëÒ¥Kß¾}[·n>ÏÛo¿ýÃïÀ¡B8ß8óÌ3SÎï¹çžôâù矟Z5jTjeÿáøÚk¯%“ÉÂÂÂ.]º¤zè¡d2YTTÔ¿ÿÔJݺu÷½ìÅ_¼sçÎd2¹nݺ¼¼¼Ôâ™gž™qÎt8Þzë­©•â{5*µxì±Ç~Û-=ztê<Õ«WŸ5kVjñÆoÜ·Þ7QüV¤¿QK—.M·cú!ÛðM¿Î–-[Ž7nÖ¬YŸ|òI2™¼ûî»Së5jÔH'éÂ… ÓóÝrË-©Åx µR³fÍyóæ¥öµ×^»ŸpÜwsÿüÏÿœZÛŽ;Ò›Û7÷ÝÜo¼1nܸqãÆ¥wжmÛÒÏȧ#õ‡Ü €C…ÇßèÖ­[êÄòåËû÷ïߨQ£víÚ5ê믿nÕªUÆay%*þ,dvvvêDNNN"‘ÈXÜWëÖ­7n¼ï0ÉdòÓO?-ñ"+V¬HŸ9ñ¿ªU«VTT”Z_¹råþ/Xüݶ+UªtÁüÀMdw˜~®vïÞ½ßuÓimÛ¶Íx~yùòåߥ”ô•¬\¹2µÅâóß5ÜÿæºuëÖ»wï /¼pæÌ™ÿþïÿ~ÞyçsÌ1K—.ý¶kø!w Œóv<À7î¾ûîüüü'Ÿ|r×®]Q%“ÉyóæÍ›7oøðáguÖäÉ“ÓGû}›t—>"pÿ2´J•*5kÖܶm[E7nlÙ²eÆùóóó·oß¾ÿëüüóÏ÷]ܾ}ûæÍ›KÜhñrý~›Èødü3|ÓÅe¼Ð$???õm‰öy+Ít±íܹsÓ¦MU«Výâ‹/R+-¾¹(Š ‡ öÇ?þqÏž=©•ìììúõë§oK†r7Ê8?ÉÀ7Ž8âˆ?ýéO[¶l™0aBïÞ½k×®þÒ{ï½wóÍ7—êÖ7mÚTüŸéw–ÉxùHJ5ªW¯ž:=uêÔKrõÕWï{ÁìììJ•*¥Ng¤O:È~à&¾Mø¦‹Ëè°5jÔ¬Y3uzÆ Å¿”þg¥J•êÕ«W½zõôA–›ñÝÞÏæ¢(>|ø<°gÏžfÍš=òÈ#}ôQ~~~=Âo8pØŽ@EÑ®]»6mÚ´iÓ¦]»v]yå•ãÆÛ¼yó›o¾™>œîoû[©°dÉ’õë×§ÿùæ›o&“É(Š*Uª”~r†N8!ubÏž=ÇS»víZµjÕªU«Ä§D+V¬xÜqÇ¥NO™2%½žL&÷}gÁï·‰oó6½éWM:µøzúŸ¹¹¹YYY‰D"½¹éÓ§§Ï¶gÏžiÓ¦…oî‘GI=zôõ×_òÉ'gee­]»6ü€Ã†p¢(Š–.]Ú°aÆ 6jÔè“O>‰¢(++«k×®éÀÖªU«T(,,4hPaaaE6l:thj½GéW¢dèÚµkêÄO<‘ªÌ(Š&Ož|ÔQGÕ­[·iÓ¦_}õU‰lß¾}êÄÿøÇô[yß{ï½ÿó?ÿócmâÛ„oz?ÒoúXüJ/^|ß}÷¥N§ <çœsR'xàeË–EQ”L&o»í¶U«Vn뫯¾J?Z¹uëÖÔ‰ÿþïÿþNé 6ãDQ|òÉ 4Ø´iÓž={:uêtñÅשSçïÿûË/¿œ:CÏž=K{†_|ñ¸ãŽkѢŜ9sRÏSW¨Pá·¿ýí·ذaO>ùä—_~ùÒK/uéÒåœsÎY²dÉk¯½–úêM7Ý´ïû¦Ü|óÍÿùŸÿ™L&·nÝzÆgœvÚi[¶lIuÕµ‰o¾éý2dÈüǬ^½zÛ¶m:u:ï¼ó*V¬øÖ[o}ýõ×Q5jÔ(ýy0Æ ;vlaaá–-[ÚµkwÚi§­^½úÛ^lT¢jÕªU«V-u¬gÿþýÇŸH$Þxã}?(<âDQU¨Pᥗ^J=ñºqãÆ'Ÿ|räÈ‘'NܹsgEçž{î!CJu€³Ï>ûØc]¿~ýÛo¿ªÆ¬¬¬GydߗŤծ]ûé§ŸN=úÎ;ïÜ}÷Ý“&M*((ˆ¢hÀ€wÝu×·]°M›6éG),,|ï½÷–-[VµjÕ}_Úü½7ñÃ7½ÙÙÙ'NlÖ¬YE¯¾úê_ÿú×T56iÒdâĉ5jÔHóØc=ztê#[vìØ1}úôO?ý´Zµj;wÜV"‘¸è¢‹R§wìØñòË/ÿõ¯=úè£Ó×qœ%pxŽÀ7N?ýô?þøŽ;î8õÔSsrrŽ8âˆÚµkwêÔéÉ'Ÿœ6mÚ‘GYª[¯S§ÎÌ™3ÿå_þ¥yóæ 4¸ì²ËÞ|óÍë®»nÿ—êÑ£ÇG}tíµ×þä'?©R¥J³fÍzöìùî»ï>úè£%¾¶7m̘1L®_¿þÏ~ö³·Þzëì³Ïþ7ñÃ7½:tX¸páwÜqÞyç5hРnݺ]ºt¹í¶Û-Z”~«È”k¯½ö­·ÞºôÒKsrrŽ>úèK/½tæÌ™%~¶ä·yðÁO:é¤è?æ×¿þõüùóþ󟧾:~üøô›þ‡½Dú¨€ƒïŽ;î¸çž{¢(ºä’Kþò—¿ä­Ï;wúôé×]w]ú!ºò°é(Š®¹æšgžy&Š¢G}tÀ€<ÿîÝ»_}õÕè ±”eŽqʯöíÛ§_­rXnú_ÿõ_çÌ™EQÇŽÓŸv¸}ûöôg·¤J< #Ž8B2‘p8Œåää,X° Š¢ 4nÜøŠ+®Øºuë!CR&¶jÕ*®nQŽq8l :4}Èã°aÃN8á„öíÛ§ÞI稣Ž?~|iº f<âpØÊÎÎ~ë­·&L˜ðôÓOúé§6lH½ýä\pã7Ærx%pHóâ‚xª€ € € € € € € € € € € € € YqPF]~ùå‹-ÊX¬[·îÌ™3ã ±dkÖ¬ÉÎÎnÚ´iñÅZµjÅ=@l„c òóó·mÛÖ½{÷‡z(îYÊ Ç8–`Íš5Qe<ÜPΠǬ^½:Š¢&MšÄ=@â©ê¤ÂqÆ }ûö]ºti•*UZ¶l9`À€6mÚÄ=@lÉd2îÊœaƽøâ‹QwÜqÍ›7_·nÝ’%K*T¨p×]w]y啼x"÷ ~û‡8–`Æ ÙÙÙ7ÝtSß¾}S+ï¿ÿþ€î½÷ÞN:åääðü=öÏÿ0C‘GCÝwß}O>ùäm·Ý–®Éo“HGàü¢E^ªC‡Q­X±"îAâ!3%“É¢¢¢½{÷f¬W¬X1Š¢êÕ«Ç= @<„c¦Õ«W·lÙòšk®ÉXŸ?~EyyyqᘩiÓ¦íÚµ›={ö /¼^œ?þرcsrrºuë÷€ñðâ˜,[¶¬ÿþŸþy«V­š5k¶nݺ T©ReôèѧŸ~ú/î˜wà€ü¢E±d›7o¾ÿþû?øàƒ/¿ü²qãÆmÚ´¹á†5jrY€ò‹8 ÇŸ¿ÀùEŠã@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@áx`ëׯo×®ÝÍ7ß÷ qŽL&‡º}ûö¸ˆ™p<€§žzjöìÙqO?á¸?+W®|ðÁO<ñĸˆŸpüV{öì2dHíÚµo¹å–¸gˆ_VÜ”]£FZºt騱ckÔ¨÷,ñŽ%[°`ÁŸÿüç>}útìØqÉ’%ßõâyyy+Ë—/û6q˜H$➀‰]yH&ãž.áX‚‚‚‚!C†4nÜxðàÁßïd"¥Êß*(# ?”/±#FŒX»víøñã³³³ãž ¬ðâ˜L³gÏ?~üu×]צM›¸g(CI²ÿÿž{î¹ßþö·ßöÕÜÜÜW_}uÿ×à™ J•;”~)oôÐCsçÎ]»vm½zõZ·n=hРfÍšÅ=@lÉd2îÊœüüü /¼pË–-¹¹¹¹¹¹6l˜?~VVÖ„ Z·n}À‹'‘o*¥Ç Ê?”7žª.Á¨Q£¶lÙ2`À€W_}õÁ|þùç÷»ßíÙ³çž{î‰{4€Øxı_|ñÚµkgÍšU¹råôâ9çœóÅ_,X° bÅŠû¿¸ÿ€RªÜÁ ìðóHyãÇÔªU«yóæÅ«1Š¢#<²°°°°°0;;;îb K0nܸŒ•9sæ¬Y³æ”SNQ@¹%÷gþüù“'O^µjÕüùó=öØ#F^0///ceùòåq߀K$âžàPã;öxfÿP'÷gùòå“&MJÚªU«J•*…_0îÙ¾'Ú)%"û0àÅ1L&?ÿüóW^yåøC½zõ^{íµjÕªíÿ"Ž•¦T¹ƒQªÜÁ(=î]‡oÇs‰D¢^½zýúõ»êª«6nÜ8eÊ”¸'ˆ‡pÌ´råÊaƽþúëë­ZµŠ¢hÓ¦MqᘩF/¾øâäÉ“3Ö׬YEÑqÇ÷€ñŽ™4h——7cÆŒiÓ¦¥—-[öÜsÏU«VíÔSO{@€xxqL .\Ø«W¯Ý»w·mÛö˜cŽÙ¼yóܹs£(9räÅ_|À‹;ø—RåF©r£ô¸w„cÉV¯^ýðÃ/^¼xÓ¦M 6lÑ¢ÅÀsssC.ëƒRåF©r£ô¸w„ãϥʌRåFéqï: 8Æ€ € € € € € € € € € € € € € € € € € € € € € € € € € € € € € € € € € € € € € € € € € € € € € € € € € € € € € € € € € € € € € € € € € € € € € € € € € € € € € € € € € € € € € € € € € € YqPFL˜0aÒ¤Ik×®­^½zóæÍûõëwæ™gÆ=@lÉd2îÊœ={öôîÝ{Á‚5kÖl×®ÝÎ;çÌ™³{÷în¸aàÀ¼x"ù¦RzÜÁ(Uî`”÷®Ã€GK0qâÄ ´k×n̘1ÙÙÙQ­\¹²OŸ>£GîÒ¥K‹-â Žq,Áo¼EÑm·Ý–ªÆ(Šrss PTT4sæÌ¸§ˆ‡p,ÁªU«ªV­ÚªU«â‹¹¹¹Q}öÙgqOOU—àñÇÏÊÊüÎ,Y²$Š¢ÆÇ=@<¼8&ȬY³¸{÷îiÓ¦Õ­[wÿgN$¢æÍó2—/_÷(׉¸' $~ý”A^¾@éqï: xÄñŠŠŠž{#GÝÿý¬Æ™XùmUÖ¨y€CŽpÜŸ?üðî»ïþä“O5jtï½÷vìØ1î‰bã©ê’Þwß}Ï>ûlåÊ•¯½öÚþýû§_a}@Š/ƒì”2ÈN)›ìJ{×aÀ#Ž%Ø»wïàÁƒ§NÚµk×;ï¼³~ýúqO?áX‚gŸ}vêÔ©½zõºóÎ;ãž ¬ðTu¦d2yÁ|ùå—3f̨\¹ò÷¸Å—AvJd§”Mö ¥Ç½ë0 3mÞ¼ù¬³ÎÊÎÎ>þøã÷ýjÏž=ûôé³ÿkðƒQÙ)eR6Ù/”÷®Ã€§ª3­]»6Š¢‚‚‚Å‹ïûU/¬Ê-8þøüª ²SÊ ;¥l²_(=î]‡ŸU @á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@áxŸ~úi^^ÞG}÷ 1Žðì³ÏÆ=@™÷eT~~þŠ+^yå•çŸ>îYÊáX²=zlܸ1î)ÊáX²áÇïÚµ+Š¢qãÆ½ÿþûq?áX²N:¥NLŸ>=îYÊáX*òòò2V–/_÷P’‰¸'p[ö‘LÆ=AL„c©‰üˆÊm¦”Y‰D9Ý)ÞŽ€ € € € € € € ‰dù|¢ÒTnßÛ©,³SÊ ;¥l²_Ê ;¥ *·;Å#ŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽÉŠ{€²ë…^˜8qâÇ\¥J•sÎ9çæ›o®]»vÜCÄ&‘L&ãž¡,zðÁ{챪U«¶oß~õêÕÿûßO>ùägžy&;;û€—M$"ßÔ²ÆN)ƒì”²É~)ƒì”2¨ÜîOU—`ùòåO<ñDƒ Þxã'žxbÊ”)}ûö]¸páþð‡¸Gˆp,Áĉ÷îÝ{ã7Ö¯_?µrË-·Ô¬Yóõ×_ß»woÜÓÄC8–`Μ9*T8÷ÜsÓ++V<ûì³ÿñÌ›7/îéâ!3%“É?þ¸N:uêÔ)¾Þ¼yó(Š>û쳸ˆ‡WUgÚ±cGQQQ­Zµ2ÖkÖ¬EÑ_|r%yyyqß2,·SÊšæÍ#û¤ ²_Ê$¿ÁÊ åqᘩ   Š¢ªU«f¬W«V-Š¢mÛ¶ð’ɨÜÞŸÊ6;8tù F™à©êLµjÕJ$;vìÈXß¾}{ô¿;”CÂ1SVVVÍš5÷}d1???Š¢ôë¬ÊáX‚ üãÿH•bÚªU«R_Š{:€xÇœwÞyEEEï½÷^z%™L¾ûk×nÛ¶mÜÓÄC8–àŠ+®¨P¡ÂŸþô§ÔqQ=ñÄŸþùe—]vÄGÄ=@<|VuÉÆŽ;bĈ£>ú¬³ÎZ½zõ¬Y³Z¶l9vìØ}ߦ œŽßê•W^y饗.\بQ£:Üxã©wä(Ÿ„#Aã@á@á@á@á@á@á@¬¸8Ü|úé§Ý»wŸ8qb›6m➥¼+((˜0a¤I“Ö®][½zõæÍ›÷ë×ïÌ3ÏŒ{®ònÑ¢E?þø’%K¶oßž——7hРÓN;-î¡Ê»­[·>ôÐCsçÎ]»vm½zõZ·n=hРfÍšÅ=ßX¿~}=ºtérß}÷Å=K¹vùå—/Z´(c±nݺ3gÎŒ{´ƒG8þÈž}öÙ¸G Š¢hÏž=¿üå/,XP³fÍ3Î8cçÎ~øáŒ3n¸á†Æ=]ù5mÚ´n¸aïÞ½'tRnnîÌ™3ûöíûè£véÒ%îÑʯüüü‹/¾xË–-¹¹¹;wÞ°aÃý×M:u„ ­[·Ž{:¢d29tèÐíÛ·Ç=Ñš5k²³³›6mZ|±¼}±püqäçç¯X±â•W^yþùçãž…(Š¢‰'.X° ]»vcÆŒÉÎÎŽ¢håÊ•}úô=zt—.]Z´h÷€åѶmÛ†š••5f̘víÚEQ´páÂÞ½{ßqÇçž{n… Žœ‰Ç¨Q£¶lÙ2`À€_ÿúש•_|qذa÷Üs_heÁSO=5{ö츧 ÊÏÏß¶m[÷îÝz衸g‰“ßÔ?Ž=zôîÝÛ/Ù²ã7Þˆ¢è¶ÛnKUcE¹¹¹ (***WÏ)”)“'OÎÏÏ0`@ª£(:ùä“»wïþùçŸïûìÍ|}ýõ×§W.½ôÒ† .Y²¤¨¨(îéÊ»•+W>øàƒ'žxb܃­Y³&Š¢Œ‡Ë!8þ8†¾k×®(ŠÆ÷þûïÇ=ѪU«ªV­ÚªU«â‹¹¹¹Q}öÙgqOWNýíoK$—\rIñÅ‘#GŽ92îÑʵZµj5oÞ¼råÊÅ<òÈÂÂÂÂÂÂô½8øöìÙ3dÈÚµkßrË-¿üå/ã§¼[½zuEMš4‰{˜ ÇG§NR'¦OŸ÷,DQ=þøãYY™wï%K–DQÔ¸q㸧+§/^\»ví† Î;wþüù[·n=ñÄ»ví*Mâ5nܸŒ•9sæ¬Y³æ”SN±kâ5jÔ¨¥K—Ž;¶FqÏÂ7á¸aƾ}û.]º´J•*-[¶0`@y{-¬päðÔ²eËŒ•Y³f=ñÄGydÆ#^………_}õÕ 'œp×]w?>½Þ¸qã‡zÈ‹0Ê‚ùóçOžüðÃ=z >¼nݺcÆŒ¹ð 㞨œJB÷ûßÿþ’K.©U«VÆ ÿíßþ­gÏžk×®}íµ×âèŸþ韖.]:cÆŒ¡C‡N™2åꫯö0q1bÄÚµkGŽé?TeÇSO=µ`Á‚t5FQÔ±cÇ_üâo½õVÜÓ<‘ÃVaaáðáï¹æšõë×4èõ×_ïØ±cÜC•_U«V­\¹rvvvç΋¯wíÚ5Š¢eË–Å= QE‰D¢^½zýúõ»êª«6nÜ8eÊ”¸'*fÏž=~üøë®»®¼ýôÓ·ß~ûc=V§N(Š-Z4f̘š5kžþùqOWN5hÐ //oƌӦMKðã²eËž{î¹jÕªzê©qXuêÔ)ýo)K–,™1cFûöí}Vu\š6mÚ®]»Ù³g¿ð W\qEjqþüùcÇŽÍÉÉéÖ­[Ü<‘ÃЖ-[RŸ(Ú»wï}¿Ú³gÏ>}úÄ=cyÔ¢E‹›nºéøéOÚ¾}û;vÌ™3'‘H >ü¨£ŽŠ{ºòëž{îéÕ«×õ×_ß¶mÛcŽ9fóæÍsç΢häȑނÒ~ó›ßôïßÿöÛo?~|³fÍÖ­[·`Á‚*Uªüîw¿+W¯aކ֮]EQAAÁâÅ‹÷ýª—ÈÄèºë®«[·î3Ï<óþûï×®]û¼óÎ4hPê}ˆËÉ'ŸüÚk¯=üðË/^ºtiÆ /¸à‚Ú/P܉'žø—¿üåþûïÿàƒV®\Ù¸qãK.¹ä†nhÔ¨QÜ£T‰Ô[vÀþy;‚G‚G‚G‚G‚G‚G‚G‚G‚G‚G‚G‚G‚G‚G‚G‚G‚G‚G‚G‚G‚G‚G‚G‚G‚G‚G‚G‚G‚G‚G‚G‚G‚G‚G‚G‚G‚G‚G‚ü?ˆÊu“G IEND®B`‚statistics-release-1.6.3/docs/assets/dendrogram_201.png000066400000000000000000000461551456127120000230060ustar00rootroot00000000000000‰PNG  IHDRhŽ\­AL4IDATxÚíÝ{\TuâÿñÏ^¸9@Š™—bP0“DSó®[YÙjf­—°ÅÚpûYhkifÙ~ÃV×RKËø%ÚWI+5ËXÓ(\À[ˆ`bxARPd˜ßç»çÁw€™Ï èa†×ó±}Àg>çœÏåywn£3™L°ÆEëÀ1 …à)GH!8@ ÁRŽ@›–’’òÙgŸ}öÙgçÏŸW —,Y¢Óét:ÝäÉ“µn`“Þÿ}¥‘ƒ º‘Û½ƒ«lb„ 7²kÚn€CpÓº´4mÚ´K—. !öìÙ3nÜ8­›hÕŽ’··wÏž=…]»vÕº-ÐV8¤éÓ§OŸ>ýºn¢°°0((¨C‡Z÷Z îq´WWW·eË–1cÆôèÑ£cÇŽ=zô=zô† ®]»¦Ö©kÝo¿ýöüóÏ4ÈÛÛ{À€Ë–-«_SqùòåW_}õøC`````àøñã_zé¥ÊÊJµÂ¢E‹t:rZ1~üxNwùòe³õ”——?ÿüóôòò0`ÀG}Ôð{JÏž=ûÜsÏ 6ÌÛÛûÖ[o2eJVVVý õ_[[ûÊ+¯Ü|óͯ¼òJSríÚµõë×><((ÈËËëöÛoüñÇ:T¿NÃ{Õ­L:õäÉ“3fÌèÙ³çÍ7ß}ú˜Õyë­·êoë믿 4«£ÓéæÏŸß°ñ“&Mš5k–òóË/¿Üèh\¹reðàÁ Û¦ÓéÖ­[§V[¿~½Ra¶•øûû×_¶sçÎkÖ¬i×®Ù ¿ýö[³eÇŽÛp袢¢í‹MƒÐ¨ÌÌÌ.]ºÔ_ÊÛÛûþûïW~¾ï¾ûìg™DrÓ–çNfOSìß¿ßlRz÷î­îùê -oΦ#ÅŽÝ€UG@c[·nUÿ€;622²_¿~ê_µ¯¿þZ©¦þ9TôèÑã®»îêØ±£Zòã?*5«ªª”›ÿ„;v¼÷Þ{ï¿ÿ~¥¤K—.•••&“©¬¬¬  @-ß°aCAAA]]]ÃmõîÝ;<<ÜÕÕUùµC‡W¯^U¶UQQѹsg5r-]ºtÚ´i..ÿ{)ãÃ?4küÍ7߬®¶©à¨Vvwwÿãÿ8wîÜ»îºK)qssËÍÍUªYŽB—;î¸ÃÏÏÏ,aôíÛ·[·nê¯cÆŒitxFŽéå奖¤¥¥™ÕTƒ£ä 4tõêÕ=z¨]2dˆ:qféÍÖq¶º“ÈoÚÂÜIîi&“©ºº:((H)oß¾ý°aÃÔ_Ív ›³ãH±u7`ÁÐØŸÿügå¯×óÏ?¯8P)\±b…RRÿÏá;ï¼£æææª±@=÷Úk¯)%:uRƒÂáÇճ/ .T7¤f£={ö¨…õ·µfÍ¥pÓ¦MjaNNŽRøÒK/)%õOù¼óÎ;Já-·ÜÒp…¡¡¡›6mÊÈÈ8yòd£r÷Ýw+5_ýuµðøƒYß-Ç/¿üÒd2ÕÔÔŒ;V-\½zµÉd2³gÏVJüýý.ûàƒ^¹rÅd2>}:$$D)¼ûî»ÍjªÁQrZ·nRÇÛÛ;##C)Œ‰‰i˜ÞìgË;‰ü¦-ÌüžöÖ[o)%z½>++K™…'Ÿ|ÒBpl¸9;Ž[wVíܹsÓ¦M›6m*..VJ***ÔëŒêŸ^õÏa¿~ýê/®&ª^xA)Q¯óšÒ[¶l™R~ûí·«…–ƒcß¾}ÕÂßÿÝÍí§KJJR ï¼óN¥d×®]jÍK—.©§':T…§OŸ¶< ê:CBB>üðÃ3gΘL¦3gÎ=zôèÑ£¥¥¥J5 ÁQ-1™Lï½÷žRèã㣜O5™L_}õ•Rèææf¶¬›››:&“éÓO?UÊu:]uuµ©±à(9 >\©ðÒK/©…W¯^ 0Ko¶Ž³ÕD~ÓæN~O2dˆR²xñbµZUU•º¹†Á±áæl=RìØ XÅÃ1€Æî½÷Þ3fÜÿýû÷ïÿÛßþ6nܸ›o¾977·©úf·”©—áêêê”òòòÔ5ׯyÏ=÷(?äçç«•- VöòòR¯îFå‡'N¨ÛÒý‡———Z!??¿þ ÃÃÃÍ®Q6: jGfϞݵk×¾óÎ;—/_ 3»-¯Qõ¯Bº»»+?ét:³Â†úõë×½{÷†1™L?ÿüs£‹Ø: ¬ÿ¶íöíÛ«3e÷&¬î$ò›¶0wò{Zýöן³-oÎÖ#¥9»€¦ð:@c555‹-zûí·kkk•ww÷€€€sçÎ5Z_ý³×试••ÊÏf/8TÿŽ^¹råìÙ³2¯?Tï¢kj[êCÙM)++«ÿ«Ùà zíµ×*++?øàƒ«W¯ !L&SVVVVVVllìˆ#’““Õ»ýšbÖÎFûÒ³`êáá¡×ë•!=sæLhh¨Y};AqéÒ%uŠÍ6Z?¹Ú· Ë;‰ü¦ë3›;ù=ÍÓÓ³¼¼\)1Ë‚ò›Í>R’»€¦ÅÆÆ*w€õîÝûoûÛÝwßýá‡Ú±¶N:©A§´´´þ™§ÒÒRå‡öíÛ[Í^’Ûòööþý÷ß…»wïîÝ»wÃ:fjôo¹™víÚ­]»ö7ÞHKKûüóÏSSSûí7å£}ûö-X°àã?n‘‘oÔÙ³gëÿZ]]­¾YÆìñ»AáîîÞ¾}ûšš!Ĺsçn»í6õ#55sM‘ßt}fs'¿§¹ººvìØñÊ•+Bˆ²²²ú5ÍFÛÂæDK)ìÃ{{÷Ýw•Ö­[7gΜþýû»¹¹•””ؽBõyŽÝ»w×/W VïVl&5sÔÖÖÞZ¯¯¯­W¯^½zöìÙ³gÏ^½zõÑGÝ´iÓ¹sç¾úê+õvºýë_-Òò¦;vì×_UýꫯL&“¢}ûöêcÈ-2®®®½zõR~Þµk—Zn2™¾Y°eÇÙ¦M[ ¹§ét:us{÷îU«ÕÖÖ~óÍ7ò›kñ#€Ž€–~ÿýwõ"ãÅ‹•þýïÛôÕŒú*¾·ß~[}AôÑ£GÿùÏ*?׿­M¥œ²Õøñã•âââLÿy1xrròM7Ýäïïß³gOå<™¼ÜÜÜ.]ºtéÒ¥k×®'OžB¸¹¹?^}ÖÇǧ9nUMMÍܹs•Ñ(--}ñÅ•ò‰'ªO¢´Ô DDD(?ÔŸ©eË–ýôÓO×{œå7müž6jÔ(凷ÞzëøñãB“É´xñâÂÂBÉm]#€¸T hÉËËËËËK¹ƒmöìÙ›7oÖét;wîlø%ò^xá…>ú¨¨¨¨¢¢bøðáãÆsuuݳgò­0]»vU¿¥Cáãã£lý¿þ뿎;öÜsÏ™½Ù²E‹}ðÁ¿ýöÛŽ;ÆŽ;jÔ¨cÇŽ}ùå—ʧóçÏoø =Ëú÷ïxöìÙÚÚÚáÇ?øàƒ~~~¿üòË矮T˜ÿüóÏ>û¬[·ncÆŒQ ÕÛÅä¹»»'&&*wÂUWW§¤¤|öÙgÊßò=z$&&vêÔI­¬ž úþûï,X`ëyG__ß 6(g¿ýöÛ×^{mÛ¶mÕÕÕBˆèèè¥K—ÚÚx—;v(^Ïœ9óÁ¬X±"11Q¹CnôèÑ/¼ðÂu‘‘#GÞrË-¿þúë×_­¤F77·wß}·ác1Í„;î¸Cýr”ššš}ûö?~ÜÓÓ³á£Í->Îò›¶@~O»å–[Ö­[§ü7IUUÕÞ½{þùg///u?·êz)ì@p4¶jÕªÛo¿]üç[.æÍ›—ýÇ?þQùtóæÍê«Lä <øðáÃK–,7n\`` ¿¿ÿرc/^|äÈõ~êÖg̘àééÙ¯_?;ž98qâ¡C‡ž|òÉ;ï¼ÓÃãwïÞ“'ONOOï½÷d…ihÈ!K–,4hPPPP»ví|}}‡þÁ|óÍ7:t¸®Óáçç·ÿþ§žzÊ`0N™2嫯¾zúé§¯Ó |øá‡Ï<óŒòs@@ÀC=´gÏž‘#GÞ€q–ß´ò{Ú“O>¹gÏž‡~8((¨[·n?üðþýûýnɦ\#€­têí2´ríÚµ””qC®Ã¢QK–,yýõ×…“&MÚ¾}û ÞúÁƒ÷îÝûôÓO×?ìô›BÌš5+!!AñÞ{ïEGG[­Ï‘hŽ{íµk׎?„mYDD„ú´ŠSnú/ùKff¦bذaê·^ºtIýîåT¢U)€æŽ€ë+(((''G‘““Ó½{÷©S§^¼xñ…^PnL Ó*7°÷8®¯_|Q½åqÑ¢E·Ýv[DD„ò&›nºióæÍ×ûÖU-…3Ž€ëËÝÝ}Ïž=[·nݰaÃÏ?ÿ\ZZª¼~òž{‰ÑäöJöááHáR5¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@Š›Ö hIII‰‰‰£FZ°`¯¯¯…ú/^\½zõÁƒKJJ:wîܯ_¿¹sçöîÝ»~GyäÈ‘#f úûûïß¿_ëîhCg2™´nC³¬ZµjýúõžžžEEE¿üòKÿþýÜÝÝ­_YYyÿý÷Ÿ?>88888¸´´4;;ÛÍÍmëÖ­ýúõS« <¸¦¦¦gÏžõ—õññùøãµî1€6ûŒc^^^\\\``à¶mÛ„±±± +W®\²dI£‹¼óÎ;çÏŸŽŽž7ožRòé§Ÿ.Z´èõ×_ß²e‹RRYYYQQ1a„իWkÝE€Ö±ïqLLL¬««‹‰‰QR£báÂ…z½>--­®®®ÑE¾ÿþ{ww÷9sæ¨%?üp—.]Ž;f4•’ââb!„ÙéF€6αƒcff¦‹‹ËèÑ£ÕWWב#G^¸p!++«ÑE|||ÆŽÛ±cÇú…:t¨©©©©©Q~-**BôèÑCëþ´"|©Úd2øùùùùùÕ/7 BˆS§NEDD4\jÓ¦Mf%™™™ÅÅÅ Po‹T‚ciiidddnn®‡‡GhhhttôwÜ¡u§4ãÀÁ±ªªÊh4úøø˜•ëõz!Dyy¹åų³³“““ ³³³o¹å–åË—«:uJ±fÍš^½z :ôôéÓ{÷îMOO_ºté£>jµa!!! óòò´0€fqààX]]-„ðôô4+÷òòBTTTX^<((ÈjÛˆ‰Àù8ð=Ž>>>:®ªªÊ¬üÒ¥Kâ?ç-øÓŸþ”››ûÝwß½øâ‹»víš6mš² âã?ÎÉÉQS£bذa?þxuuõž={´î7€688º¹¹éõú†g+++…êsÖètºÎ;GEE=öØcgΜٵk—…ʃBœ8qBë~hã"00ðÂ… JRT*5¬ŸŸŸ¿hÑ¢´´4³ò°°0!ÄÙ³g…&“Éh46|›«««ÂÛÛ[ëNhñƒã¸qãŒFã¾}ûÔ“É”žžîëëÞ°~§N>ýôÓääd³råŽzõB…††Îš5ˬNvv¶hâÁ€¶À±ƒãÔ©S]\\Ö®]«ÞžWVV6eÊ”víÚ)%—/_.,,,))B†„„|÷Ýwß|óº’ãÇòÉ'^^^ƒ BôìÙsàÀ?þøcRR’Z';;;>>>((èÞ{ïÕºÓÚpøïªŽ_¾|y·nÝFŒQTT”‘‘¯¾¦'55uÞ¼yÁÁÁ)))BˆÃ‡OŸ>ýÚµkááá7ß|ó¹sç<(„X±bŃ>¨,rüøñÙ³g—••………õîÝûôéÓ999ëÖ­2dˆÕ&…„„ðT5p>Ž}ÆQµråÊ^½z¥¦¦–——Ïœ93!!¡áËUýû÷ÿòË/xàòòò¯¾úêìÙ³÷ÜsÏgŸ}¦¦F!DŸ>}¶oß>iÒ¤²²²]»vUTTLš4)%%E&58+‡?ãØ qÆ8%‡?〃à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@Š›Ö ¸A’’’ <<>>fåz½^Q^^nyñìììäääÂÂÂììì[n¹eùòå’Û 1+áqàèœ<8VWW !<==Íʽ¼¼„–ÏËËÛ¶m›òàyXXXûöí%·KLÎÇÉïqôññÑétUUUfå—.]ÿ9ïhÁŸþô§ÜÜÜï¾ûîÅ_ܵk×´iÓ”Ú 'Žnnnz½¾á™ÅÊÊJ!„úœµ:®sçÎQQQ=öØ™3gvíÚ¥uŸ´áäÁQxáÂ%)ª •ÖÏÏÏ_´hQZZšYyXX˜âìÙ³Zw@ÎÇg4÷íÛ§–˜L¦ôôt__ßððð†õ;uêôé§Ÿ&''›• !zõê¥u‡´áüÁqêÔ©...k×®UoOŒ‹‹+++›2eJ»ví”’Ë—/–””!CBB¾ûî»o¾ùF]ÉñãÇ?ùä//¯AƒiÝ!m´‰ïªŽ_¾|y·nÝFŒQTT”‘‘¯¾¦'55uÞ¼yÁÁÁ)))BˆÃ‡OŸ>ýÚµkááá7ß|ó¹sç<(„X±bŃ>hus|W5pJNþ:ETTTçÎwìØ‘ššÚµk×™3gÆÄÄ(oäiTÿþý¿üòË5kÖ=z477·K—.÷ÜsÏ3Ï<¬uW4Ó&Î8Þ`œqNÉùïq@‹ 8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@Š›Ö €cÓé´nÐV™LZ·@ÛCp„ýt:þtšápãq©RŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@Š›Ö mètZ· mwÁdÒºlGpÐv‘]4¤Ó1þ€ãáR5¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRÜ´n@ HJJJLL,((ððð5jÔ‚ |}}-Ô¯®®Þºuë¶mÛJJJ¼½½ CTTÔÝwß]¿Î#ûÌ3ϨՊ‹‹ÝÝÝ{öìYY­»  ÇŽyyyqqqÛ¶m BÄÆÆ&$$¬\¹rÉ’%.’˜˜˜““3pàÀ?üP —ùùù3gÎ\·nÝØ±cûöí+„¨¬¬¬¨¨˜0aÂêÕ«µî"@káØ÷8&&&ÖÕÕÅÄÄ(©Q±páB½^Ÿ––VWW×è";wîB,^¼X=%m4ÕËÐÅÅÅB³ÓmœcÇÌÌL—Ñ£G«%®®®#G޼páBVVV£‹zzz†……Õ/ Bœ:uJùµ¨¨HÑ£G­ûЊ8ð¥j“ÉTPPàçççççW¿Ü`0!N:Ñp©÷ßßÍͼ×ÇŽBtïÞ]ùU Ž¥¥¥‘‘‘¹¹¹¡¡¡ÑÑÑwÜq‡ÖÐŒǪª*£ÑØð½^/„(//ot©ÐÐP³’ŒŒŒ¸¸¸:Lš4I)QN=®Y³¦W¯^C‡=}úôÞ½{ÓÓÓ—.]úè£Ê´-$$Ĭ$//OëhŽÕÕÕBOOO³r///!DEE…Õ5ÆO>ùdÅŠF£ñÍ7ßô÷÷WÊKKKÝÝÝçÏŸ©”8p ::zÙ²eÇ ²ºfb"p>|£N§«ªª2+¿té’øÏyG ~øá‡‰'ÆÆÆúûûøá‡÷ß¿úÑÇœ““£¦F!İaÃüñêêê={öhÝom8pptssÓëõ Ï,VVV !Ô笪©©‰5kÖ¯¿þ:wîÜ´´´aÆYÝÜàÁƒ…'NœÐºßÚpàKÕBˆÀÀÀ‚‚‚ÊÊÊN:©…………ÊG.RWW÷üóÏïÞ½{üøñ¯¾újÃ|i2™êêêt:‹ËÿIÕ®®®Booo­;   >ã(„7nœÑhÜ·oŸZb2™ÒÓÓ}}}ÃÃÃ]dãÆ»wïž>}úºuë=+YTT:kÖ,³òììlÑØS/m„cÇ©S§º¸¸¬]»V¹¯QWVV6eÊ”víÚ)%—/_.,,,))B˜L¦M›6y{{¿øâ‹M­³gÏžüñÇ“’’ÔÂìììøøø   {ï½WëNhCg2™´nC³ÄÇÇ/_¾¼[·n#FŒ(**ÊÈÈ W_Ó“šš:oÞ¼ààà”””sçÎ1ÂÝÝýÖ[om¸ªÉ“'Ïœ9SqüøñÙ³g—••………õîÝûôéÓ999ëÖ­2dˆÕ&…„„´‘§ªu:áà»Ú4v`m1þ€#rì{…QQQ;wÞ±cGjjj×®]gΜ£¼‘§!å¼cuuõÑ£G~ª>"Ó§OŸíÛ·¿ùæ›ßÿ}~~~÷îÝ'Mšôì³ÏvíÚUëîhÆáÏ8¶Bœq;°¶À9ö=ޏaŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤¸iÝ€$)))11±  ÀÃÃcÔ¨Q ,ðõõµP¿ººzëÖ­Û¶m+))ñöö6 QQQwß}·ÖýÐŒÎd2i݆ënÕªUëׯ÷ôôŒˆˆ(**úå—_ú÷ïŸàîîÞhýÚÚÚ3fäääèõú^¹r%33óÚµkÏ>ûì3Ï>>fåz½^Q^^ÞèR¡¡¡f%qqq:t˜4i’ÌvCBBÌJÚÈã2À‰9yp¬®®Bxzzš•{yy !***¬®Áh4~òÉ'+V¬0o¾ù¦¿¿¿Ìv‰‰Àù8ypôññÑétUUUfå—.]ÿ9ïhÁ?üðÚk¯µÄd2¥§§ûúú†‡‡7ºÈÆwïÞ=}úôuëÖi’Z!çŽS§NuqqY»v­r_£"..®¬¬lÊ”)íÚµSJ._¾\XXXRR"„0™L›6mòöö~ñŵn;@+Ò&¾«:>>~ùòåݺu1bDQQQFFFhhh||¼úšžÔÔÔy󿧤¤œ;wnĈîîî·ÞzkÃUMž>>Zw@3Žóòòâââ·mÛ „ˆMHHX¹rå’%KšZª²²òĉ_|ñÅ–-[šªPQQ1a„իWkÝE€Ö±ïqLLL¬««‹‰‰QR£báÂ…z½>--­®®®©¥&Nœ8cÆŒ¦R£¢¸¸Xavº sì3Ž™™™...£GVK\]]GŽùÅ_deeEDD4ºTllìÕ«W…›6m:pà@à EEEBˆ=zhÝ?€Vă£Éd*((ðóóóóó«_n0„§Nj*8>\ùaïÞ½VP‚ciiidddnn®‡‡GhhhtttÃghÚŽUUUF£±á+z½^Q^^n÷šO:%„X³fM¯^½†zúôé½{÷¦§§/]ºôÑG•YCHHˆYI^^žÖÐ,«««…žžžfå^^^BˆŠŠ »×\ZZêîî>þüÈÈH¥äÀÑÑÑË–->|xPPÕ5€óqà‡c|||t:]UU•Yù¥K—ÄÎ;Úçã?ÎÉÉQS£bذa?þxuuõž={´î7€688º¹¹éõú†g+++…êsÖ-eðàÁBˆ'NhÝom8ppB^¸pAIŠªÂÂBå#ûÖi2™ŒFc÷ù¸ºº !¼½½µî4€6;8Ž7Îh4îÛ·O-1™Lééé¾¾¾áááö­³¨¨(44tÖ¬YfåÙÙÙ¢±§^ÚÇŽS§NuqqY»v­r_£"..®¬¬lÊ”)íÚµSJ._¾\XXXRR"¹Îž={8ðÇLJJR ³³³ããヂ‚î½÷^­;   ~ªZ´`Á‚åË—?ôÐC#FŒ(**ÊÈÈ {ê©§Ô:éééóæÍ NII‘\í+¯¼2{öì—_~yóæÍ½{÷>}útNNއ‡Ço¼!óØNɱÏ8 !¢¢¢V®\Ù«W¯ÔÔÔòòò™3g&$$4|¹£Múôé³}ûöI“&•••íÚµ«¢¢bÒ¤I)))C† Ѻ»šÑ™L&­ÛàlBBBšùGN0--ˆñD£œoÇp¾µ* / œàŒ#n ‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ ÅMë›N§u èiË1™´nZ7‚#À~:Qé0¡°ŒKÕBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)nZ7NB§ÓºÛ<“Ië ‡àˆC²NÇÐC[¹T””4uêÔððð»ï¾û¥—^úí·ß$üùçŸCBB:¤u4Ö&‚ãªU«^~ùå“'O4ÈËË+99ù/ùKuuµÌ²7nÔºù­‚ó_ªÎËË‹‹‹ ܶm[@@€"666!!aåÊ•K–,ij©ÊÊÊ'N|ñÅ[¶lѺ­‚óŸqLLL¬««‹‰‰QR£báÂ…z½>--­®®®©¥&Nœ8cÆ R#€ÊùÏ8fffº¸¸Œ=Z-quu9rä_|‘••ÑèR±±±W¯^BlÚ´éÀZw@{NM&SAAŸŸŸŸŸ_ýrƒÁ „8uêTSÁqøðáÊ{÷îÕº­‚“Ǫª*£ÑèããcV®×ë…ååå×i»!!!f%yyyZ@³8ypTöôô4+÷òòBTTT\§í€óqò‡c|||t:]UU•Yù¥K—ÄÎ;@†“G777½^ßðÌbee¥B}ÎV9ypB^¸pAIŠªÂÂBå#­[à0œ?8Ž7Îh4îÛ·O-1™Lééé¾¾¾áááZ·Àa8pœ:uª‹‹ËÚµk•û…qqqeeeS¦Li×®RrùòåÂÂÂ’’­ Ðz9ùSÕBˆ    ,_¾ü¡‡1bDQQQFFFXXØSO=¥ÖIOOŸ7o^pppJJŠÖíh¥œ?8 !¢¢¢:wî¼cÇŽÔÔÔ®]»Îœ93&&Fy#$éL&“Ömp6!!!Í|£N'nZ±Í­C§çyMzä|ÃØÆ1¡°Ìùïq@‹ 8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@Š›Ö †Nç`k6™®ÛXÚ$‚#`ÇŠb:ƒ5ÐÊq©RŽBp€‚#¤ …§ª8°f¾ÉȾÅyV@›EpàØn|Œã=GÚ,‚#-àú}G± ÿ]w]hD–Ö€k×Ç@ ÁRŽBp€‚#¤ …à)¼Ç´-òúñ毄7A6…àZ‘ÖÚx‹xS¸T )GH!8@ ÁRx8еÈÓ»×u<œVˆàh£Zy2ãÁ^´B\ª€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽâ¦un(®¹uL&­û gŽIII‰‰‰£FZ°`¯¯o3yä‘GŽ9b¶”¿¿ÿþýûµî.°ŸN×±¯EVâˆ>8®Zµjýúõžžžƒ ***JNNÎÏÏOHHpwwoÎ"ÅÅÅîîî={ö¬¿ ÖÝÐŒcǼ¼¼¸¸¸ÀÀÀmÛ¶!bccV®\¹dÉ»©¬¬¬¨¨˜0aÂêÕ«µî"@káØÇ$&&ÖÕÕÅÄÄ(P±páB½^Ÿ––VWWg÷"ÅÅÅB³ÓmœcÇÌÌL—Ñ£G«%®®®#G޼páBVV–Ý‹ !zôè¡uÿZŽ&“©  ÀÏÏÏÏϯ~¹Á`Bœ:uÊîE”àXZZ9hРQ£FÍ™3çСCZ÷ÎO§kÉÿµà }cUU•ÑhløÀŠ^¯B”——Û½ˆ’ ׬YÓ«W¯¡C‡ž>}zïÞ½éééK—.}ôÑGeÚbV’——§õ€Á1´ÎÇôÚìóƒ€ú88VWW !<==Íʽ¼¼„v/RZZêîî>þüÈÈH¥äÀÑÑÑË–->|xPPÕ¶€óqàKÕ>>>:®ªªÊ¬üÒ¥Kâ?'í[äã?ÎÉÉQS£bذa?þxuuõž={´î7€688º¹¹éõú†g+++…êCÓÍ\D5xð`!ĉ'´î7€688 !/\¸ Ä>Uaa¡ò‘}‹˜L&£ÑØðm>®®®Booo­;   ÇŽãÆ3ûöíSKL&Szzº¯¯oxx¸}‹…††Îš5ËlÁììlÑØS/m„cÇ©S§º¸¸¬]»V¹IQWVV6eÊ”víÚ)%—/_.,,,))‘\¤gÏžüñÇ“’’Ô eggÇÇÇÝ{ï½Zw@:“ƒ¿c#>>~ùòåݺu1bDQQQFFFhhh||¼úÎÔÔÔy󿧤¤H.rüøñÙ³g—••………õîÝûôéÓ999ëÖ­2dˆÕ&…„„4ó©jG|õ‰#¶¹ö±Õ# Ó|£­¶a­v4œ å­¿…ÚëÙDÛœáèg…QQQ+W®ìÕ«WjjjyyùÌ™3¾©Ñ¦Eúôé³}ûöI“&•••íÚµ«¢¢bÒ¤I)))2©ÀY9üÇVˆ3ŽÎÊQþ;˜†9åF[mÃZíh8AË[ ´×œql‡?〃à)GH!8@ ÁRÜ´n ÑénÄ"móqTÀ ÿÇ x Å¥jH!8@ —ª-IæJ´Õ:Ü ´NG@ ãûÜgÅ¥jHáŒ#ÐæØ÷L«­KqºœÁh‹n@ªãR#8.U@ ÁRŽBp€‚#¤ …à)¼Ç±M³ïEÐ×{m¼ü€Ö‰àØvµÚ÷3·Ú†ÐÆq©RŽBp€‚#¤ …à)¼ŽÜ 2oüµ\‡÷µi‹àn„yM/ïúÕÁ€ë¥™_©ÕœÅIW¸ŽÚ4ûþ0ÛºÂÛ²9Çvc–bG…UGmÝ øcÉÅ54S3÷Éiµ»1ŽìÑü;Ü…ýb4ÐúiuâN†àÀN7戣`4´¼ÇR8ãˆë‹'lí—LGé/ÀÉVë¹éŠ'êã6#€ã"8:3Þ³ Z÷8@ ÁRŽBp€‚#¤ …×ñÀ´žwRЖáø"`6á?8ëàpN| Ðâ¸ÇRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€¾«ºIIII‰‰‰£FZ°`¯¯¯ÖÐ g·jÕª—_~ùäÉ“ƒ òòòJNNþË_þR]]­u»4CplD^^^\\\``àÎ;ãââvíÚyøðá•+WjÝ4Í‘˜˜XWW ”,\¸P¯×§¥¥ÕÕÕiÝ:m‘™™éââ2zôhµÄÕÕuäÈ‘.\ÈÊÊÒºuÚ 8š3™L~~~~~~õË ƒâÔ©SZ7@>¾ákzÚ‚c“¾øâ‹;v>|¸k×®ƒމ‰QÞÈÐ6 …{ …à)GH!8@ ÁRŽBp€7­ÐFUWWoݺuÛ¶m%%%ÞÞÞƒ!**êî»ï¶µŽâ矞0aBbbâwÜaa£¿þúëĉÇŽûÏþÓ¦­ÔÖÖÆÅÅíÝ»7??ßÛÛ{øðá ,ðóó“o†ä$ûb¹Ž…O/^¼¸zõꃖ””tîܹ_¿~sçÎíÝ»w3gÊîúM5Uf%5556lHKK+,,ôõõ½ýöÛÿßÿûÁÁÁM5L~ šê×€šú4888%%ÅÂâ&å‘G9räˆY¡¿¿ÿþýû›Z›­óhy<›Óµ#G޼ÿþûÇŽ»téRHHÈܹsïºë.ûšÑP£¬e¶.ba^lm­ó(¹‰¤¤¤ÄÄÄ‚‚Q£F-X°À××W¦#’3+Ó ÉÞYþ§Iro±°[zɆÙ:)–@Éiµ<’Ǹ̾Ñüѳ:€65à 5P[[ûÄOäääèõú¡C‡^¹rå‡~øî»ïž}öÙgžyF¾ŽjãÆV7j2™^|ñEõÛ·å·R]]=}úôŸ~ú©{÷î£G.,,üôÓO>¼aÙfȯA²/–ë4õieeåƒ>xþüùààà1cÆ”––¦¦¦îÞ½{ëÖ­ýúõ³{¦šS¿Ñ¦Ê¬Äh4Κ5++++((hĈ¿ýöÛ®]»¾úê« 6 4¨™SÐ(N×·o߆å555'OžÔëõvOYqq±»»{Ïž=ëZønO[çÑêxÚݵo¾ùæÙgŸ­««»ýöÛƒƒƒ÷ïßùÞ{ï;Ö¾i­¯ÑÖ2;ij^lm­ó(¹‰U«V­_¿ÞÓÓsРAEEEÉÉÉùùù îîîV;"3³’Íì…ý\~oij%¶õ’ ³uR,€’ãiy4$qÉ}£ù£gymj†“0á†ûä“O ôiÓªªª”’'N <¸oß¾?ýô“|ŠŠŠÌÌÌW^yÅ`0 †œœ Wªýío³©%±±±ƒáÕW_­­­UJ6mÚd0æÍ›'Ù «kì‹å:V×ðúë¯ †·ÞzK-INN6 =öXsfÊŽú–›*¿{<÷Üs×®]SJ8зoß{î¹§ÑŽÈL}Þ|ó;}û9r¤ÑO­NJEE…Òù-Ú:¶N¢d×.^¼qÇweÖ`u4dŽq«ûFóGOfmm†sàRµ ===ÃÂÂê*wZœ:uJ¾NllìÕ«W…›6m:pà@S›«­­}á…|}}.\øÄOØÔ’’’’ªªªˆˆˆ:Ô¯3xðàìß¿ÿ¾ûî³Ü ™5HöÅr«kðññ1 ;v¬_Ø¡C‡ššššššF/+ÈÌ‚õ-7Uf%]»vBÔÿ÷Îd2]¼xÑÅÅEýgÑÖ)°•Ñh|饗n½õÖ¿þõ¯MÕ±:)EEEBˆ=zÈo×Öy´u%»ö¯ýK§ÓMš4©~áŠ+V¬XÑh}ùfX8`›bë"VçÅÖA³ce6‘™™éââ2zôhµ‚««ëÈ‘#¿øâ‹¬¬¬ˆˆÉU gV¦V{gµ2{‹Õ•ØtÔK®ÓŽI±|ʬÁêhÈãV÷æžÌÚÚ ç@pÔÀûï¿ßpO=v옢{÷îòu†®ü°wï^ ›{çwrssããã;uêdkK\\\„ÕÕÕfujjj„çÎ³Ú ™5HöÅr«kØ´i“YIfffqqñ€šºEfì¨o¹©2+yðÁbcc=<< ðÛo¿½ûî»%%%=öXÃY–œ[}òÉ'ÇŽûè£Úµk×T«“¢üI.--ŒŒÌÍÍõðð ŽŽ¶p ¿­óhë$JvíèÑ£¾¾¾]ºt9xð`vvöÅ‹ûôé3~üøæïKئغˆÕy±uÐì˜G«›0™L~~~fp !Ä©S§"""$ÿ T5œY™žZíÕfÈì-VWbÓQ/¹N;æÝò(³«£aõ—Ù7š?zVÐŽf8‚£BCCÍJ222âââ:tè þG˜L999ÿýßÿ=sæÌaÆ)G¯M- òöö>zôè¹sçÔSñ×®]Û½{·âüùóVÐü5´¸ìììäääÂÂÂììì[n¹eùòåMÕ´uZdÖdV²qãÆ'žx¢þ饙3g¾ôÒK Wx=¦àòåËï¾ûîàÁƒ‡ ÖŒ©øß“kÖ¬éÕ«×СCOŸ>½wïÞôôô¥K—>ú裖—•œG['E¦k555¿ÿþûm·Ý¶téÒÍ›7«åÝ»w_½zu£W·%›aù€m”‹Xeë Ù1V7QUUe4>€¢<ÔbáòbSY™ž6g/ví-²é¨·MóÞèhu 6FSǸûÆõ½ßE÷8jÌh4&$$<ùä“UUUÿøÇ?}ÄU¦N£ª««_xá…îÝ»?ÿüóöµD§Ó=õÔSÕÕÕsæÌ9tèPuuunnîœ9s „W®\±ºÚ毡ÅåååmÛ¶íàÁƒF£1,,¬}ûö2KÙ: vÏšÌJ*++ÿñ\¾|9,,ìOúÓþðww÷;v|óÍ77f >úè£ß~ûmþüùÍœ‹ÒÒRww÷Å‹ïܹóí·ßNNNŽwss[¶lÙ¯¿þjyY;æQfRdº¦ÜZPPššº|ùò~ø!==}îܹ§OŸ~î¹çžÜ•l†M¬Ý‹ØJfК3MmBFOOO³Ê^^^BˆŠŠ [;buf›êi3{×̽EeÓQß|VçÝêØèl¦6aǾq=F¯ÅwQ‡¡õÓ9mZFFÆ„  èQ£öïßowÅ‹7úÀ׫¯¾Ú·o_µüèÑ£M=qia+µµµ .4Ô3zôè+V †5kÖÈ4C~ V"_Gf uuuçÎûðÃûöí;räÈßÿ½ù3eG}ËMµ°’§Ÿ~Ú`0ÄÇÇ«%§OŸ1bDXXØÉ“'®Ê¦)°ª²²2<<|ÆŒò‹ÈLŠJi؆ ¬Ö´ie&E²k—.]R†ñ믿®_¾hÑ"ƒÁ””d_3䨿,bӼغç×'9MmâÚµk!!!<ð€Yý-[¶ †>øÀ¦ŽXY[{Úhïm†­{KS}±õ¨·i|ì `Sk°u4Ý„MûFóG¯©´£Î3ŽÚ¨©©‰5kÖ¯¿þ:wîÜ´´´†×ÅdêXðã?nÞ¼ùé§Ÿ¶üÆW«[quu}ã76oÞ<þüÈÈÈ7Þxcûöí7Ýt“Bù«š¿†§Óé:wîõØc9sf×®]vO3ëÛ±’sçÎíÝ»÷¶ÛnûóŸÿ¬ýõ¯½víÚöíÛ¯÷¤¤¤\¾|yòäÉ×iv,„8qâ„Õš’ó(?)’]óôôìØ±£»»û˜1cê—?^qüøq;š!yÀÖgÇ"òš¿'[GË›pssÓëõ OÛTVV !Ô›.$Y˜Yûz*¿—Ú··˜±ã¨·M£Ñèhy ¶ŽF£›°u߸N£×²»¨áG ÔÕÕ=ÿüó»wï?~ü«¯¾Úèî%SDzüü|!Ä»ï¾ûî»ïÖ/ÿüóÏ?ÿüså[ä·rçwÞyçê¯ÊUÎÛo¿]¾=Í_CsäççÇÇÇ9r„ õË•§ÿΞ=ÛèR¶ÎBógMf%.\½DùZ ÷,¶Ô$%%¹»»Û÷,v}&“©®®N§Ó)﨔wy{{7\ÄŽy´iRä»pñâENW¿P¹s¿¶¶ÖŽfȰÍ_D’MƒfÇ}ݺuMý‹,SDz=z<ð)ˆ=ðÀ#GŽ”ÜÊk¯½UVV¦–\¹re×®]þþþ Nkh¾N:}úé§ÉÉÉfåÊÚzõêÕ"³ÐüY“YIÏž=]]]óóóM&Sýò¼¼ÉûWÌî’ÜÊêÕ« âE‹”_kkkçÏŸo0Þ{ï=ÉfȯA²/öÝã8qâÄú7Öäææ*'áΟ?ßüY°µ~£M•\‰r¿ÎêÕ«Õ¯8qâÄ!CúõëWPPМI´êý÷ß7 ›7o¶i©¦&eÚ´iƒ!11Q-ÉÊÊ0`ÀèÑ£Õož0cÓ<Ú4)6uí§Ÿ~2 S§N½pá‚RrøðáðððAƒ•••5§*[oX´c‘FçÅŽÖÚ:’›8}útŸ>}î»ï>õæ¹õë× †+VÈtDÕÔÌJ6C¾wM5æ½Åò=ŽòG½üøØ4ÀsçÎɬÁêhÈãòûFóGÏÂÚÚ çÀ¥êíüùóÊמΘ1£á§“'Ož9s¦LÓ!ÄìÙ³¿üòËäääãÇwïÞýСC¥¥¥C† yê©§$7Ôü5´ˆ×_}úôésæÌ ¿ùæ›Ï;wðàA!ÄŠ+}PÔÖYh‘Y“\É믿þÈ#¼û©©¡¡¡.\ø÷¿ÿ]WW÷òË/ßzë­×u ”¯P¿ò¡™^yå•Ù³g¿üòË›7oîÝ»÷éÓ§srr<<<Þxã¦^ˆhÓ<Ú4)6u­oß¾óçÏë­·î»ï¾ˆˆˆªªªÌÌLNÛð¶ÑsD·;Zkëv×oÎFýýýSSSׯ_ÿÝwß}ûí·¾¾¾£Fš3gNS7,¶Ô\¹r%++«S§N-ui¬OŸ>Û·oóÍ7¿ÿþûüüüîÝ»Oš4éÙgŸU¾æ¡Q6Í£ü¤ØÑµ§Ÿ~Úßß?!!áÀ¾¾¾ãÆ›;wn3›ÑØÑZ[çQ~QQQ;wÞ±cGjjj×®]gΜ£¼îD’…™•l†{iCò{KSl=êm%9@år³Ì´Z Écܦ}ãú^ówQ‡£3ýßKþ@£x8RŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GHùÿ Ññ³œçñÜIEND®B`‚statistics-release-1.6.3/docs/assets/dendrogram_301.png000066400000000000000000000771601456127120000230070ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A~7IDATxÚíÝy\”åþøÿk—aP”ÄHÔ\2—Ü7,Óò¤år\ÂR;â1×Ò,5µ“––kGKORn_ 5ÓÌ=ÍÅ%Á-ETâ‚ ( Ãüþ¸>Ý¿ûÌŒp«À°¼ž=Æ{®¹¯÷µÜ÷¼¹·Ñ™ÍfÆÁÞ l q€&$ŽÐ„Äš8@GhBâMH  ‰#4!q€&$ŽÐ„Äš8@GhBâMH  ‰#4!q€&$ŽÐ„Äš8@GhBâMH  ‰#4!q€&$ŽÐ„Äš8@GhBâMH  ‰#4!q€&$ŽÐ„Äš8@GåÁòåËu:N§kÙ²eI~V£éÓ§Ë*úôéS@±mÛ¶mÙ²eË–-7oÞ,™~€‡âdïÿgàÀ÷îÝBìÝ»7$$ÄÞá€%Gå›››ŸŸŸ¢víÚ%ùY¨PH”ƒ 4hPÉ*®qP*dffΘ1ãùçŸ÷öööööîÖ­Û|‘‘¡.£¾R0//ïÃ?|òÉ'?üðCñàë/^¼Ø§OŸ5jøùù 6ìêÕ«ï¿ÿ¾,9}útYÆú³êŠîܹóÎ;ï´lÙÒÍÍí™gž™3gNnn®ºŠüüüï¾û®K—.uëÖ­Zµjݺu;wî¼jÕ*‹b“QÉóÔBˆnݺétºÌÌÌ‚[-]¿~}ܸqmÛ¶usskРÁk¯½vâÄ ë*4€pÄ€ý;vlàÀ—.]R–üòË/¿üòËÚµk×®]Û±cGëŒ1bÕªUB³Ùü Õ:tè•W^IMMBܾ}û›o¾9pà@‹-´–––Ö®]»sçÎÉž’””´víÚ¨¨¨7ß|Óæj¿üòË«W¯ !ÜÝÝ£¢¢"##¯\¹2bĈ‡ ï‹/¾øïÿ­äŽJâ¸sçNùbâĉ¿üò˪U«NŸ>ݼys¹ð?þÐXK54hààðûä:uê4hÐ@§ÓÜê¹sçÊ÷ôíÛ÷—_~™1cÆÿûÿoñâŲü¬Y³ä Å P$Žìì矖/ÆŽ«\eظqã‰'ZP8;;ïÙ³gðàÁÏ=÷\ýúõm®V9²øöÛo7kÖLáàà°dÉ’Zµji­Q£Fo¿ý¶|Ø¡Cù:!!A¾0`€<Ÿ>nÜ8¹$###++K¾¾}ûvv”u«•´õ­·ÞRнùæ›ŽŽŽBˆÄÄÄS§Ni/…"q`g±±±òE÷îÝÕË_xáù"...??_ýV³fÍ||| ^í… ¬W«×ë-j)Xƒ Ôÿ¬^½º|¡ÄÓ½{÷Áƒ÷ìÙ322òÝwß yòÉ'•k"‹–u«ÕmÔýÅÕÕÕd2)]§½Š›cØSFFFzzº|mñÅ:uêÈÙÙÙׯ_W¿+Ïb¼ZåhŸE²åëë«=<‹“ÅÿBäää¼ÿþûK–,ÉËË“Kôz}­ZµnܸQä}eÑꌌ å.ìIMMÕX¬È£P.‘8°§jÕª¹»»ËÜ1%%E}„/%%E¾¨\¹rÍš5ÕŸ²Nà,¸¹¹U­Z5;;[‘ššª^­rgq‘˜={ö‚ „õë×÷ÝwÛµk¶råÊ"ï+‹VW«VÍÍÍMÞ9´{÷n›§ìkÖ¬©±X‘G  \"q`gGBìÞ½»}ûöÊòÝ»wËþþþNN·³ÒétõêÕ“§Œ÷ïßÿÜsÏÉåyyyÚïtÖbÙ²eòÅÒ¥K_|ñEù:))©dºîé§ŸŽŽŽ–íR'Ç·oß–ÏëÑëõÚ‹@¡¸Æ€õìÙS¾X²d‰òHê3gÎ|öÙgòu=aµ:u’/,Xpþüy!„Ùlž:uj|||QE~÷î]å$oZZš|ñÇ<~nš““£¥X·nÝä‹+V(OvÜ´iS5¼¼¼üüüäFÅ Pq`g“'Oþæ›oÒÓÓÛ·oâèè¸wï^ù»)µk×V~â塼ÿþûááá9997oÞlÞ¼ùsÏ=—pùòå"ŒÜÕÕÕÕÕU^A8|øðõë×ëtº;w>Ôoƨyxxȵýë_ÿ:{öì¸qã*UªTp¿þúë;wîüøã]»víÔ©ÓÙ³g•›Ð'Nœ(ïæÑX ÅGv¦×ë#""äµwF£qÛ¶m[¶l‘Ycݺu#""ªU«ö«}ê©§–.]*¯¬¬¬ýû÷_¾|ÙÕÕµK—.E¹N§{饗ä묬¬­[·nÙ²¥N:JÊeš)GI>øòË/Õ7Óh,Óð3¯Pþ :tõêÕBˆ/¿ü2,,ìñW˜››»mÛ6!DŸ>}ìÝ8(^$ŽÊ§üãò‡Û¶m»téR¹ðÞ½{ƒAžA>xð`»víì&”%Ü |òññ‰‰‰BÄÄÄøúúöë×/--mòäÉ2k nÑ¢…½c€2†#ŽÊ'£ÑøÂ /}Úb¡——Wdd¤½[`å?qÌËË{ã7bbbÜÝÝÛ´i“}äÈ‘ƒŽ;vôèÑúTbb¢^¯÷óóS/ôðð°wkì¦ü'Ž111Í›7_¹r¥^¯BÄÅÅ 2déÒ¥]»vmذ¡õG222ÒÓÓ{ôè±hÑ"{‡PZ”ÿkwîÜ)„˜:uªÌ…þþþaaa&“éAç…‡*¸òŸ8ÆÇÇ»¸¸«úûû !®\¹bó# BˆºuëÚ;v€R¤üŸª^¾|¹““e3Ïž=+„ðõõµù™8¦¤¤„††ž;wÎÙÙ9(((,,¬iÓ¦ön €ÝèÌf³½c(iQQQ£GÎÍÍÝ·oŸ———u÷ßÿ‡~BÔ«WÏ`0$''Ÿ={ÖÁÁaæÌ™ýû÷/týÖ cccíÝn€ÇRþ8ª™L¦uëÖÍ›7Ïd2ÍŸ?ßfÖ(„HIIÑëõ'N •K:6gΜöíÛûøøZi"(Êÿ5ŽŠ#GŽôêÕköìÙ^^^+W®ìÙ³çƒJ~ûí·111JÖ(„hÛ¶í믿n4÷îÝkïvØG…HsrrfÏž=tèЫW¯Ž3fÇŽmÛ¶}Ø•´jÕJqáÂ{·À>Êÿ©êüüüwÞyg÷îÝݺu›1cF­Zµ .o6›óóóu:ƒÃÿdÕŽŽŽB777{7À>ÊÿÇ5kÖìÞ½{РAK—.-4kB$$$ :Ôbytt´xÀ/A9OÍfóÚµkÝÜÜÞ{jeffÆÇÇ'%% !üüüš7o~ôèÑ 6(¢££ÃÃÃ}||ºwïnï6ØG9Ï7:tè ×ë4h`ýnŸ>}† "„ؾ}û„ üýý·mÛ&„8þüðáÃSSSƒƒƒëׯŸœœãìì¼téÒÖ­[Zi@@wU€ò§œ_ã("Æ3gÎX¿û [d7oÞ<þüÇÇÅÅùúúöîÝ{ìØ±µk×¶wƒì¦œq´‹â;â¨ÓÙ»m@ÅÆþ@WÎ8–':_Z€±¨àÊùÍ1(*$ŽÐ„Äš8@GhBâMH  ‰#4!q€&$ŽÐ„Äš8@Ghâdï€2L§³w(q z…b6Û; ”!q ß+@yÅ €5NU@GhBâMH  ‰#4!q€&<ŽÇ6£Ñøý÷ßoܸ1))ÉÍÍÍ`0 6¬]»vöŽ ÀnHmÈËË{ã7bbbÜÝÝÛ´i“}äÈ‘ƒŽ;vôèÑöŽÀ>Hmˆˆˆˆ‰‰iÞ¼ùÊ•+õz½"..nÈ!K—.íÚµkÆ í €p£ ;wîBL:UfBÿ°°0“ÉiïèìƒÄцøøx—àà`õB!Ä•+Wì€}pªÚ†åË—;9YöÌÙ³g…¾¾¾öŽÀ>tf³ÙÞ1”QQQ£GÎÍÍÝ·oŸ——WÁ…¬ÆÆÆ>f :`¬J(ÇØÀkq,„ÉdZ·nݼyóL&Óüùó Í¥ÇOJÇ‚9rdÖ¬Y—.]ª]»öœ9sÚ¶mkïˆì†ÄѶœœœÏ>ûlÍš5U«V3fÌðáÕ;¬*&GòóóßyçÝ»wwëÖmÆŒµjÕ²wDöGâhÚ5kvïÞ=hР3fØ;€Ò‚ç8Z2›Ík×®uss{ï½÷ì @)ÂGK7oÞLLLÔëõƒ¶~·OŸ>C† ±wŒv@âh)))Ia4Ïœ9cý.7V€ ‹€½€€€âxŽ#¢-…+ÎÞvŶâˆ#”^|q¢"ãóRˆ›c  ‰#4!q€&$ŽÐ„Äš8@GhBâMx8쬬ÿ6F™ŽŸ'ë ‰#ì‰_°/úðP8U MH  ‰#4!q€&$ŽÐ„Äš8@GhBâMH  ‰#4©X¿U}ùòå=zDDD4mÚ´à’}ûö=}ú´ÅB//¯ÈÈH{7À>*Vâ¸fÍ%õz½ŸŸŸz¡‡‡‡½[`7"qÌÈȸpáÂO?ýôÝwßi,ŸžžÞ£GE‹Ù;v€Ò¢B$޽zõºvíšöò‰‰‰B‹Ã\…HgÏž}ÿþ}!ÄÚµk:Thù„„!Dݺuí8@)R!ÇöíÛËû÷ï×R^&Ž)))¡¡¡çÎsvv +ô–€r¬B$ŽëÊ•+BˆÅ‹׫W¯M›6ÉÉÉû÷ï?pàÀÌ™3û÷ï¯e KbccíÝ,€ÇBâhCJJŠ^¯Ÿ8qbhh¨\rèС°°°9sæ´oßÞÇǧÐ5& ÓÙs f³½Û_ñp¾ýöÛ˜˜%kB´mÛöõ×_7{÷îµwt”f³Ýþ{ü´Ö8â¨U«V­¾þúë .Ø; a¿_‘{€ÃE@)DâhÉl6çççët:‡ÿ9ëèè(„pss³w€@ÅBöPaétŒ>PêpªÚRBBBPPÐСC-–GGG [w½T$ŽB‘™™Ÿ””$„ðóókÞ¼ùÑ£G7lØ ˆŽŽ÷ññéÞ½»½ƒ°NU !Ä&L˜àïï¿mÛ6!ć~8|øðiÓ¦­_¿¾~ýúÉÉÉ111ÎÎΟ|ò‰^¯·w°öÁG7oÞÜ»wïÔÔÔ]»v¥§§÷îÝ{Û¶m­[·¶whv£3síqQ (Žç8–ËëÄËe£ÊÒßÿ¥?BF¿°ï 2…ŠG  ‰#4!q€&$ŽÐ„Äš8@GhBâMH  ¿U]*ètEVŒ§ä€bBâXZUÂÇ/,€b©jhÂG  Ðx1CiX3¼ #qʆ²’q±”cœª€&$ŽÐ„SÕPJßµ­eEï®ú@)Dâ¥W‹‚9€RˆSÕЄÄš8@GhBâXˆË—/œ*Dâ¸p᯾úÊÅÅ¥eË– ›6mŠ‹‹[½zµ^¯ÐGõz½ŸŸŸz¡‡‡G‘Äcó* ‹…uðÈŠé×’Šiµìî€2¤ü'ޱ±±+V¬ðööÞ¸qc­Zµ„³gÏ^½zõçŸ>}út›ÉÈÈHOOïѣǢE‹Š)ª‚w”üD€ÇTV²1vw@ÙRþ¯qŒˆˆÈÏÏ?~¼Ì…S¦Lqwwß±cG~~¾Í$&& !,7Tpå?q²˜‘‘!„Pî³Ö¢U«VBˆ .Ø»MZºƒ.*{= {”í¹È£e0ä1¿ÿVÿÑç€Ý•óÄQáíí}ëÖ-™)*âããå[ÖåÍf³Éd²~R£££ÂÍÍÍÞ zì‚Q‘SîÂF "+ÿ‰cHHˆÉdúý÷ß•%f³ùÀžžžÍš5³.Ÿ4tèP‹åÑÑÑÂÖ]/DùOûõëçààðïÿ[^×(„X±bEjjêk¯½V©R%¹$333>>>))Iáçç×¼yó£GnذAYItttxx¸O÷îÝíÝ  §Ý”:sxˆSxxøÜ¹sëÔ©Ó¡C‡„„„¨¨¨   ððpå1=Û·oŸ0a‚¿¿ÿ¶mÛ„çÏŸ>|xjjjpppýúõ“““cbbœ—.]ÚºuëB« (ø®jyÐã(’•”L-%ó-Gñm%Ð%¼Â"¬¨d>R’ý@-%p‰Mï2çãÔX´Ñº³}üïÇÿHIî‹ÊŸrþ8iذa5kÖüñÇ·oß^»ví!C†Œ?^>‘ǦÀÀÀÍ›7ÏŸ?ÿðáÃqqq¾¾¾½{÷;vlíÚµíÝ<ºÇÙ«€x˜½–’å/)î¿áQTˆ#Ž%Œ#޹N{5¶8>k½ªBi”GV´ÇJÃÐù©¥T­Ê.]Qb”’>/É0Šä{çñ?¢1Œ‚UØì©BqJ"ùsü‘s)€FÅw<¢L#qØYž®˜ßåZÐuz‹Î„5G€ý•†“¶åØ£ÿ¬•ÿÇñ H8@NUÊž2tÅ^ (‰# L*ÏpæâÂ"g³Ô I»‹‰#€bÁÎ@1áA9vDâ ¸”›{¹9ÕXð¡,›ï–Ά°GeX‰¥teâ¬h…j» qP¶‘ @‰!q„x¤Sx‚³x€ †Äø?ÜùÀ.¬w&Kø¥‰#v£åÚ ®¯@éAâhÅQ  áP‹]´ qB™x¾L¹yv ð˜ÊÄ[ªÐc(‰#Pq£1P$8X q€ÇUèYQA†QfqP#q€"PhzQ0 L q€R¡”<ªdNÎr (£HQ¼¸±±â¼jUbÉVqŸœå4@ÙEâˆbÇB¥_Ûe[ûr°w¥×† úõë׬Y³víÚ}ðÁwîܱwDZ@@Àc(8âhÛÂ… ¿úê+—–-[&$$lÚ´)..nõêÕz½ÞÞ¡x8…áµw€PfpÄÑ†ØØØ+Vx{{ïܹsÅŠ»ví =uêÔçŸnïÐ<œ bÍfQÀíHmˆˆˆÈÏÏ?~|­Zµä’)S¦¸»»ïر#??ßÞÑØ‰£ ÇŽsppèܹ³²ÄÑѱcÇŽ·nÝ:qℽ£°GKf³ùâŋիW¯^½ºz¹Á`B\¹rÅÞØ7ÇXÊÊÊ2™LËÝÝÝ…·oßÖ²’ÂîÓŒ}ìE²’RR a”Â0*Tc £Â6–0*lc‹&ŒÂÖP>éÌ\þ¿RSSÛµk×´iÓˆˆõòŸþyâĉ#GŽœ8q¢½c°NU[òððÐétYYYËïÝ»'þ:îP‘8ZrrrrwwOOO·Xž‘‘!„PhHmðöö¾uë–Ìñññò-{G`$Ž6„„„˜L¦ßÿ]Yb6›8àééÙ¬Y3{G`$Ž6ôë×ÏÁÁáßÿþ·¼®Q±bÅŠÔÔÔ×^{­R¥JöŽÀ>¸«Ú¶ððð¹sçÖ©S§C‡ QQQAAAáááÖé¨ Hè§Ÿ~úñÇO:U»víV­Z?ÞÕÕÕÞAØ ‰#4áGhBâMH  ‰#4!q€&$ŽÐ„Äš8@'{PþÆgžyæAï:999;;Œ3æ¹çžS¿Õ·oßÓ§O[”÷òòŠŒŒ”¯ÓÒÒ-ZôË/¿¤¦¦šÍæÊ•+wêÔé£>òôôÔ¸éôéÓË—/?yòä7‚‚‚¦L™¢Ž$--­gÏž·nÝzÐzŒFã÷ß~óæM³ÙìääÔºuëÏ>û¬à0ªT©rêÔ)埯¾úêÙ³g UqõêÕüüü‚;ߢ» hHÁÃT¹reGGÇš5k6lذnݺû÷ïOJJrss3 Æ k×®ºpNNΪU«vìØïééÙ¸qã·ß~ÛßßÿòåË=zôhРÁ¥K— èÌÂð÷÷ß¶m›–¡Bäåå­X±bÿþýqqqnnníÛ·Ÿ4iRõêÕeïõêÕËÉÉ)--MKŸËÈ…M›6µx÷ôéÓ ,8tè‹‹KPP2“5¶EÝ]ÕªUKMMíСÃW_}%‹iY‰œ7nLJJrvv¾uëÖ´iÓ^ýu›‰ŠŠ:th‡¾þúkõòŒŒŒÉ“':tèþýûŽŽŽžžžãÆëß¿¿ÅÇ7lذfÍšØØXI“&©û\iËåË—³³³k×®½bÅ e.Z´èàÁƒW¯^Õét:.00pÒ¤IêÍMYÃ¥K—²³³[·n=mÚ4e ZÚb4{ôè‘’’bsd5ŠÍmÖÓÓ3**Êb‚íܹ366ÖÓÓ³K—.Êíä ¸¹¹=õÔSgÏž}þùç?ûì3u¨êKKKkÕªÕ·ß~«®´àZ”^=~üxRRR[¨œÃ6'°E¨ò#ÕªU[¾|ùÙ³gïÝ»× AƒêÕ«'&&Ê*5j4f̘úõë«c˜?þ¾}ûäî¥J•*ÁÁÁ£GVö Z†^ÝOOÏ7ntìØñË/¿TǹvíÚU«VݺuËl6WªTÉ`0Lœ8Q©Å樹»»=zôAÝÕ¨Q£°°°ß~ûÍze1Êž¤M›6~~~Û·oÐ>0--máÂ…{öì¹sçŽÙl®R¥J‡>úè#õ¨úÝd4ׯ_ÿõ×_Ë•TªT©U«VŸ}ö™²’B¿˜Ô®^½úÒK/åääôìÙS= ísiÆ qqqÙÙÙ¾¾¾ê­Þ¢¢^½zuíÚU]KùCâXìt:]Æ -Þ»w/))InTÍš5‹ŒŒ ýòË/»víª”¹pá‚ÂÁÁÁÙÙ9'''''G¯×7hÐ@¾›‘‘ñòË/ß¼ySü•}fddìÞ½;>>~Æ z½^‘˜˜¨×ëýüü„×®]»s玟Ÿ_íÚµÕ‘ìÛ·oìØ±ùùùrKˆUG"k¹uë–ƒƒƒ««knn®ÑhÔét~~~O<ñ„"//ï7Þˆ‰‰B8::º»»§¥¥ýþûﯼòÊ®]»¬ÃB$$$dee¹¹¹)1äåå?^®A¯×›Í欬,³Ù,?nÍl6¿÷Þ{ùùùŽŽŽƒAé.ù‘§žzJ)©ü¶x¡ ±9L&“éÒ¥K&“ÉÑѱK—.W¯^ݵk—ÂÕÕµM›6ÙÙÙGŽ9xðàØ±cG­|dèС'NœðññéСÃ;wvíÚµgÏžU«Vmß¾]qýúuuoXÄi†2jŽŽŽ—.]rww×8ôF£qРAþù§¯¯oçÎãããøá‡S§N­ZµªFï½÷Þ½{÷*W®\@$jkÖ¬yÐô–ó'//Oa0¢££•ù£Óée^k±EFÙ‹î:|øp^^Þ¯¿þzìØ±–-[Zwˆœ<îîî^^^²C”èîîÞ¦M›?ÿüSññÇgdd(ƒ¢ž9“'O¶nÅýû÷;w™éààP³fÍû÷罹¦NŸ>=&&fΜ9J±… ~õÕW•*UBèõúM›6ÅÅÅ­^½Zö¹º-z½Þh4^½zõ•W^YµjUË–-•QÓétBggçÌÌÌÓ§O«77õjÕª•˜˜xäÈe ZÚ"{#%%E§Ó¹¸¸(›RÍš5Ÿ~úiÙŸ F£ÑbsBÈA‘ý¬ÓéäªJ•*r{IKK;sæL£FÔLþkµjÕ” æååe1(ÙÙÙ‡6›Í±±±¡*eþøã“Étøðá¥K—*Wp-êmÁßß¿à-455Õæ¶U~ÄÑÑQѸqãzõêÉD¤víÚ]ºtIIIÙ¾}ûîÝ»¿ÿþ{Ùêí±R¥JÎÎÎéééüñǰaÃäžAËÐ[4ä·ß~ËËËÛ¿¿ÒáyyyC‡=yò¤¬ÅÍÍíÎ;gΜQjB$&&V©R%''GQµjUGGÇÌÌÌôôô}ûöÙ¬E¶eÇŽf³Ùz%§œÅžäòåË[¶l‘cas˜‘‘ñÒK/ÉÞvvv®\¹rZZÚž={Ο?ÿÝwßÉQª/e§×ë•O^^^hh¨<² ×ëoß¾}ðàÁ—^zé§Ÿ~òòò*tn±¥¼÷Þ{YYYË ísõVïââR¥J£Ñ˜˜˜øüCÙê­+ºwïž(÷Ì(qiii-Z´ <}ú´Ùl>yòd£FÚ¶mk2™d™ãÇ †&Mš\¿~].ùøã ÃG}¤þg@@@‡d™M›6 ¥LzzºÁ`øç?ÿyìØ±?üP¾cIóæÍ7n.Ë¿ûî»J+W®4 Ï=÷œü“+iÕªUÆ ÿüóOëTVÒ¹sg¹Ä¢k…6¤€OÈaRÛ¯_¿Å)ËŒ7.77W.Ù»wo```óæÍ ) N¥9£6þü† Ê0 z³Ù<{ölƒÁ0cÆŒ¼¼<¹díÚµrP”Þ+4’ôôô_ýU™ÖóçÊ•+Íš5 RÞUÏä Šº-êîR xá… ÷wß}WY‰\Cÿþý###•kÞ¼¹Åä‘]:`ÀY`øðáê5?^ÎÀ»wïÊ%²¤²’?þø#00°iÓ¦Jc-6I¥-_ýµ,óÆo4lØP¶EnܸqÓ¦M?®ŒZ@@€²¹É5„††N›6M®aÍš5Ê´´E™¢o¿ývÁStàÀêÍ­I“&ƒaëÖ­ÊÖd0,X ¬Ùb{™1c†Á`èÙ³§Òʳ®B=²6ÃP 4jÔHjÁµ(½ªÄi½…FGG?ûì³6'°ÍÞøã?dùM›6)U4lØP&‹®Pö-ÊJd   Ù-C¯nˆz µÞÓ0@Örá¹W üóÏ?å¨+µ˜­¾Y,ºËl6Oš4IÎ|euèÐ!õ”³Ø“(aŒ;ÖæSzCùˆ²wRFM†ú /&¥–iӦɕ\¸pAnzr¶?Ôþ\ÝŸêïBûÜl6Ÿ?>00°C‡K–,‘ï¾øâ‹ê­þA;(s¹Æ5Žv°iÓ¦ŒŒŒüüü°°0ù—M“&Mzô葚šª½—ÇxÚ´iS«V-¹dÊ”)îîî;vìçg>ìääd6›Ç/˼úê«ò-Y&11Q5xðàï¾ûîA‘ܽ{÷þýû¿üò‹\òôÓO«#9|øp•*U„Êq)YËÙ³gM&“bçÎrù„ dþþþãÆBìß¿_ C~<..náÂ…aüüóÏBˆåo8ÿ°°0“Éd}ÒA®D®P‡B¨k±©Ð†Øô믿 !Þzë-9L²±5jÔ8wîœü”uœ'NœB :ÔÉéÿçôÑGùùùwïÞUV[@œR¯^½Ô£–ðõ×_9R†QèÐ›Íæ 6xyy½ÿþûòÀ‰bðàÁm۶ݳgÏ‚ ”!(8’^½zýãÿP憵޽{gffÊÃ’z&Û”óçϫۢtW||¼27ÜÝÝÿûßÿÞ¾}ÛzÜeŒŒ e%rP®\¹òæ›o*=Ö§O‹É#»4::ÚfCä¹¼I“&)3ª_¿~²K÷ìÙ#— >—U¨÷Š»ŽÃ‡;88¨W" ˜ÍfÙ-C¯4DÝ]z½ÞzO;}útY‹¿¿¿<È—ŸŸ)G-77W©EX}³Xt—ü¬âÞ½{òh¨¢M›6Ê”³Þ“È0š4i²ÿ~9ìСCr”ÈÆ:88(£¦|7=è‹IÖâáá1mÚ4¹åkåðáÃwïÞÕ¾?‹‹[°`Ò:µBû\‘ŸŸ?pàÀÿüç?²@pp°z«WWdóÛ­\"q´ƒ!üüüþùÏ* çÍ›«\#OI´oß^)àèèØ±cÇ[·nÉo½^ïààйsg¥ŒÜ–d™„„!Ä€–-[¶lÙ²¶mÛZGòÛo¿étºÙ³g« ¨#ñðð BÔ­[W]‹ùä“rþ¨g—2¬Åd2}ðÁê¶Èîºyó¦znäää888(™·zÜe˜˜e%rPæÍ›§î1___‹ÉóÑGùúúzxx[7DžÆRŸ¦7›Í2!V.¬^½ºN§›;w®ÒX‹MR¶eñâÅêIž––&Ûâáááîî®Óéz÷î­µüüü˜˜¹¹É5„……) 1›ÍÊ´´%>>^ººÛ-¦¨ì1å³rPdÕ²Œ¸àààªU«ªW®l/ò2›àà`‹K«V­îß¿©Ta½Õ[„ .P­Z5¥L¡µÈ!ëÚµ«§õ*ç°ÂÛÛÛæ¶è ñ×^Q CV1þ|õþY½ëððð¨\¹²ÅJªT©"“+W®hzY‹“““º7Ô{ZyùºåJÄ+W®ÈQ³¨EXíÏÕÝ¥L¹ÜÜ\e‡¦žrÖ{Ù]]»vU†Àb‚9;;ËÉ£ÞùÈÆ*‘¡†††>è‹Iþ©Ð¤IõJd-yyy‘‘‘÷çyyy“&M2›Í6/I,´Ï…ÇŽsppؾ}»R@§Ó©·z¥¢}»•K\ãhòPÁôéÓOž<––Ø­[7åO^³Ù|íÚ5!DFFFhhè¹s眃‚‚ä!+W®´hÑbÍš5ÁÁÁÕ«WW.>vìXbbbíÚµSRR®\¹"¿ð\]]W­ZuîܹÜÜ\!D\\œúÚð3gÎxzzöíÛ÷øñãòoÁƒ %’µk×.[¶,:::%%EFâäätûömY櫯¾êÛ·¯: !„r›‹FJJÊ /¼œœìéé¹téR‹yùå—ÿßÿûJ²±rG/3Å_|qîܹðððÝ»w !ŒF£üˆüã/::zóæÍÊ”ÆÚkëÖ­ËÊÊúæ›oä5mBˆåË—Ÿ?þƒ>xæ™g”OÉÆ*q¾üòË«W¯ž={¶³³ó3Ï<#¯ºuëÖ€òóóå‘-‹–ªã””?öïß/„¸|ù²:ŒB‡^~¨Ir¯Ý³gOùõ\h$íÛ·—‘ܺuK^„jA^QÞ·oß½{÷ÊNNLLTf²üzPWáææ§n‹ì®>øàÞ½{_}õÕýû÷…YYY P‚T»\(¯¾—+Y¾|¹“““r©«Òc“GæÓáááëÖ­³¾ kΜ9ï½÷žzÔ–-[&¯Ó’‡îÌfsJJJ5z÷î}üøq僲^¹I¾üòËáááW®\™4i’¼¬óäÉ“III²-k×®mÑ¢…§§çO-oðêÝ»÷°aÃ,jQ“Gì*W®£Ì|eÊÉ/õžDv׎;”!ÿ»\´hQ×®]Õ‘½!û_~D†êéé¹jÕ*™~Í›7oòäÉÊÎgΜ9#GŽ´Øƒ)½qã†Æý¹œ]:n̘1³fͲh{¡}n6›/^¼XµjÕ¸¸8õVoõêŠÔeÊ7Ç’vçÎû÷ïëõúÝ»w¯_¿^Yîëë»hÑ"yþ.++KfB‹/®W¯^›6m’““÷ïß/ÿ–G³²²²L&“‡‡Gttô¦M›âã㣣£Ÿzê©Þ½{/^¼øöíÛòï?e G5Ó§OÏÏÏ—÷Šæääܽ{÷é§Ÿž9s¦É’%K6oÞ¬D"þú;rñâÅnnnNNNwîÜB\¾|9""¢ÿþ~~~ùùùêC5QQQ+V¬prrÊËËS‡!„xê©§ªU«&¿wå¾CÊÎζn¬ÙlvrrRÿõóŸÿügÈ!mÛ¶•§òÏŸ?¯´Nñý÷ß{yy)k8pàÀÌ™3•c nˆÅ0eff.[¶¬U«Vòb‹Nž;w®º±UªTQâ X³fÍo¼ñÆo(k2dÈ|0cÆ ùO‹–ZÄ©&z©ÿ./tè}||ÜÜÜΜ9sãÆ åR‡ãÇÿñÇBu~ÿ¡"±¦ž?ò{}ëÖ­[·nUf²Å ¼råÊŸþ©Óé’’’”•LŸ>}êÔ©Bˆ‘#GÊ…õêÕSúÊbÜåä©Q£†Ò!òÀƒ…üQ=(ê5¬[·Îº|=êÔ©c1j•*Urpp+QúÜâƒòn¹IÆüüüJ•*)7T&$$È¡Ww×Ûo¿­œþBܼyS¹ßzòüòË/Ê´´%((H~Ý*Ý~áÂy¿ÌÃ,zLÎóÀÀÀ;w*=¦¸† ^¸paß¾}ûöí«Q£†œùê ¦¬*77Wþ9wóæMY…:TyRRéO†º€L âââ”0 ­EÝðB·Ðºuëªã î1ëYíàààèèh±5jTtt´uÊJÔ1ÔªU+==]¶EËÐ+ÝÕ½{÷íÛ·ËÞpqqQj ²5**JÞÿ[¹råÞ½{Ï›7ONÂsçÎÉ#èwïÞ]²dÉÚµkÿóŸÿ¨ïö°õ‰'žHOO·Þ_Y Ü“Y Å>Pùˆœ3² ___ùå%?¢ž`ÞÞÞIIIüñÇÀ•O§N,ꕵȶ,Vò ýyLLŒüÈ!C¬o¥×Òçr«ÏÊÊzýõו)j±Õ[Ìsë?JË%NU—4ùà £Ñ¸}ûö¹sç9räÀcÆŒINN7nœÜéËÿ;88L:uçÎK–,Ù´iSxx¸Üõ'''+e\\\bcc7nÜxüøq“É,ÿâIOOOIIÑëõʺuë&„pttœ3gÎÕ«W…ò¯É‹/ÊH^yå!D¿~ýÔ‘!äzzôèqïÞ=ùd„V­Z)ëQÂB˜L¦Õ«W1"++kРAJU«V­^½ºŸŸßÖ­[7mÚ$s‚3gÎÈ0”*d¨ .|å•Wäu-ò¬,c4'OžìëëûÎ;ï!äÑ y‰Û’%K+W®ìää”™™9eÊÙ]NNNJc mˆÅ0}óÍ7wîÜ™8q¢ü§E'W®\YÝØO?ýT¹[0##ãÓO?ÍÌÌ þûßÿþüóÏëõúüqß¾}²@•*U,†Õ"N5yg½ìLE¡C¯ÓéÞzë-£Ñ8jÔ¨“'OÆèèè#FÈË4]Ní‘XSÏyþË/¿TÏd‹"„°¨âúõë}ô‘¢aÆÿûßåÓI®\¹¢t—ŸoݺU< Y”30..N¶Q‹5ؤµÈk-rss ¤¬D¨.PÈ,<==Ýh4¾û+WÎÍÍ ~á…d+C¯t×Áƒ•+®üýý¯_¿®lnê0ä±¥*Uª¨'–¶(ÝþóÏ?·hÑ"))I§ÓUªTiÉ’%Ö#»råÊ;wî\¼xQ=Õ׳gOå™Miiiòµz‚ɯÏÿþ÷¿£F’gåSB?~üêÕ«ÿõ¯ !š5k¦l)궘L&ù “ɤ„¡¥E¡[¨Åi÷ÍŸ•+W !òóó«T©b±þì³Ï,ª°ø¸:†›7o*“PËÐ+½Ñ¢E‹7ʇÈ“à6ãüöÛo‡ &‹Î;×ËËK~/È~“‘/X°ÀÑÑñöíÛo¿ý¶ÅÑ;u¨÷ïß76÷WÖ{’sçÎ)C`4­÷ÊGþõ¯)UFy¤@Žšz‚µiÓF1mÚ4õžA]ï‰'¾þúëáÇ+תªWRÀÓ»ï¾ëèèøÔSO=hc)´Ïe2Z¥J‹5([½ÆM²²÷Ý9KFFÆ3Ï<#o¼úå—_Ôo½ÿþûƒaÆ f³9777 ॗ^²øø°aà èQ£,Êäçç߸qcåÊ• 6lÑ¢…Á`øúë¯->;uêTƒÁ ï¡[µj•Ùl¾wïž:Y &&F‰šº–fÍšÉõ(aDEEõèÑÃ`0têÔ)22ò»ï¾S˜1cFÆ •ûæÎœ9#ë•a¨©W"otUÊØ\‰ÅÍkóæÍSÄâŸ7Äb˜š5k6xðà}ªuëÖÝ»wW«.6räHƒÁ®,INNîСCppðرcmÞ×ù 8322ä ËÑ2ôyyyS¦L1ü¯wß}×`0,^¼Øf‘¨ç2y,f²u—ZTÑ¥KƒÁðñÇ«‡µI“&ÁÁÁ—.]²÷ŒŒ yg¥Í›•É#oFV–[ÌœþóŸÖwU+£¦¬¤}ûöÏ=÷œ†ºÏÕUæùŒ3ä­¸rèeCF-‡þÒ¥KêîRšl‘ì.õ䑵ìÝ»WYƒÆ¶XoJ‘‘‘6Gvß¾}6§±õÌýõ× C‹-äçÖ¬sçβ–Å‹+¡®[·N†Ñ¶m[‹SÚ¢¸¡C‡ª«.´í[¨zÔlR‡ñ ýsDD„REÇŽ•{ð‡~á…ä”›ôµ ½zdóóóÿýwyÛµu-QQQ;w–+lݺµ2pûsõ]Àþ\6¹yóæJ-ÊþJN¹†à¹çž³9ylî|äžÖzÔ”q±˜¢Ö+iӦ͡·¹?—Ûc`` ìRåKÇæ |PŸOŸ>Ý`0„„„ÈòÊn³Ðo7îªFQÚ¶m[VVV¥J•ôz}—.]ÔoÉ#‚òJ2'''wwwùš¿{÷îúõëÍf³ÅÐëõz9ô›7oVw—zÔd‹ÎŸ?osòxyy)kиXoJmÛ¶µYYfÔ¨Qùùù!!!ÓØ‚Œvøðá²½òA‰Ê“]ýÏþsóæÍrjÕ¨QC†üÑGÉ0¾øâ õ:e#FlÛ¶M†:`À!DÍš5ÕÅ ®Åfœo¡Zz¬J•*šÕ±±±ÊÀ]»vMv…z%o¼ñÆõë×njӿy}³Å–bsè-FV§ÓÉ›9êÖ­«®%''ç_ÿúWhhèÕ«W+Uª¶oß>¥u6·Gå†<›ûs³Ù,†z÷î]¥e%g¾zOúÉ'Ÿ|ÿý÷òÁ½÷îݳÙÃÖéÛ·¯ÜÓjßù˜L&WWWy°¼iÓ¦³fÍÚ¾}»Í¡·ÞŸGFFÊíÑúòq‹X@Ÿ=zôû￯Zµª¼ðZMË·[ùÆ5Ž%J>Ÿ¹FWãÊDÁl6{{{_¼x1##C}±­¼Ö§FòZ]ggçëׯ«Ë(7ÜÕªUËd2ét:åÂ&IþSyøv­ZµÒÒÒI\\ÜÊ•+;tèУGõz”ZÜÜÜòóóåU ;wþ׿þ¥$¬ñññrýrG ïxµî˜˜˜Ÿ~ú)//oâĉ{öìéÖ­ÛŒ3”ÔG Už´^‰¼¨ÎßßË–-òqÓêÖ)ÿÔÒëazúé§ßÿýŽ;Ê;¸…ùùùï¼óŽ|ˆqhh¨¼[SMþŒõ3näLÈ3,f«'ƒX„­C^*ª^XèЫï}öÙgŸ}öÙuëÖíÞ½;<<\.”§†Õ½'ÏɃ<Ô3Pvé‹/¾(ï “Uœ9sFqûömyjX!)ðÝwßÉD ÷mÛ¶ÉAÙ½{·œ: ™YoʨÉý¹EwÉ)W§Nôôtõ°ZÌ|ñמDv׸qã䥯K—.íÔ©“:`uÊGä§6nÜ(GM†jýÝdsŠZLc9ôîîîS¦L)`®¤zì:ä•3ô¹|ÔQvvvvv¶ÅF-_x{{úŤžÆå ‰cɉ={öìK/½äååµjÕª .(·‚Š¿á&Ÿ{’ ÷}¿ÿþûK/½$ ˜ÍfY¦}ûöòžzê)“ɤ.#¯#qqq©^½zPPP«V­,~óC¦qÊfÐ¥K—"©V­ÚæÍ›7oÞüÝwß©×#Ÿž#þº–_^Áó·¿ýMÙ¼Ífó<==«W¯þ¯ý«F­[·V>žžž~ðàA!DÓ¦M[´h‘н{w!Ä AƒÔ·DÈ C†Z·n]¥BˆÌÌLù„EŸfÍšéõzÙXù7«Ò:e Zb=LO<ñÄ?üpóæMe?»f͚ݻwŸ={ÖâbsIþÄK\\œÙlVï¾åhÊGKÌš5Kþ)o³¥aøúúZ<¨Ð¡oÖ¬™¬%!!aÞ¼y^^^²÷L&ÓÞ½{CBB®_¿þÇT®\ùùçŸWÿЂÍH  ÌõB9jÖ¬©Ì@¥K]\\ÔU4kÖL§Ó9;;+Ï’sCÛ P{FFÆï¿ÿ^³fÍ›7oÊq—‘ËA±˜< ‹™#„8~üøõë×kÖ¬ÙªU+¹???‡7nX¬DŽšüÁ!DHHHllìï¿ÿ®Pæy»ví®_¿¾k×.¥-²!>>>žžžgÏž5 _~ùe:uRSSÕ››2 žô¹ÜÜ.\¸׬Y3eŠÞºuK§Ó5kÖ,''Çb“´9Ë!{Ÿ+¯@–/_n0Ö¯_ÿçŸ †~ýúÉŸ5›Í§NjÖ¬YË–-åO›Íæ×^{Í`0´k×N¹ôDþˆÂ³Ï>+6 W¯^/¾ø¢,sîܹF †Y³f™ÍæÊ‹räÇå¥$Mš4éܹ³ò êHdM›6©#éÕ«—¼4DYϹsçš6m*/ÉÌÌìÖ­[³fÍ•0ÌfóW_}e0æÍ›g†ù¯Gü7mÚT†‘ŸŸ/ifݺuJ™'N<óÌ3êP-¼òÊ+ÕïCÈZ5j¤|Äb 7D]‹2LJ'Ëk†òóó»uëöÌ3ÏÈ¿¤ås[“—©-Z´Hù  .´nÝZþ¾­E ´T†!ÛeqaV¡Co6›-Zd0Þÿ}ùOyLW¦/fÕ?Z"1?àGõü‘WOÆÄĨg²2ôJ—ZWaÑ]2°F5jÔèâÅ‹Ö2þ|õ%DrPš7on4Õ¡p)›õuùùùòj³Ï?ÿÜzÔ”0’““å<Ÿ}úàÁƒ­;dÑ¢EãÇÿÛßþ&y#'ú7Ü“““ïܹӠA½^¯ ŠÚèÑ£å'òù3°J•*U«VÍËË“ß=>>>ÇWV>wî\ٜƟ9s&(((<<\ö¹º-uêÔ‰ŒŒÔét:nÚ´iƒVZ¥J•\]]ÓÒÒÌf³££ãüùó忦^ƒÉdºråŠü±o¹ë­À¢-²!òÑÓyyy[ÓàÁƒ§M›¦ô˜ƒƒCff¦¿¿¿ú˲ÇΟ??tèPyµ§§§N§“75Ë=ÃË/¿¬ž`žžžwîÜñòòJMM•ìÖ­[ƒ"„0—.]òðð3fÌ!C¬N)ðä“O*W@-ò̦ö-´R¥JÑÑÑØ: éæÍ›ò7åÛ¶m{ãÆ ù³+rßrãÆ y¢vÞ¼y²+8ðüCüõÓ̹¹¹òÒCŸ>}š4iRèЫòä“OÆÇÇË áóÏ?ùå—eœr,žê/„ððð1bD‹-äæ&kqqq‘#èääôùçŸÛ¬E¶E>¨Üz%§œzOR«V-ùà-õJõäQÏswwwy[·âé§ŸÞºu«5õ—ÂÝ»w”=ƒllÕªUóóósrrôz}åÊ•³²²rss]\\Æ/ÆZãþ\’{×fÁ‚•‰¼€²eË–êHš4i²}ûöWW׌ŒŒ[·n¹¸¸tëÖmçέ[·–çŒF£|\yNNÎíÛ·å½;F£Q^ fFzzº¼v[9!W"ÿ€1iiir·›ŸŸoó™½â¯KÁ|}}•ÖõìÙ³{÷îF£QÖÒ»wïmÛ¶)-¸!&¥“oß¾-ïG†zåÊ•3ÿK‰ÓËËkûöí#GŽtqqùõ×_“’’:uê¡|ñÏ;WÝqZ„aóq²…½ÂÕÕõ»ï¾8p`ZZÚo¿ýV½zõ‰'~ýõ×Ê5OBˆN:I¡äü‘?‘’’¢žÉrè{õê%ôþýûÖUXt—œ„:t°È“”±x ¼2•Oиté’zP ¦ž÷ïßOOOÏÌÌ”ÿ¼zõªz%Æ ûüóÏåeXC† Y½zµÒçê¶ÈGfz{{+C¯ŒZ5òòòÒÒÒªV­Ú®]»-[¶(››z òÉùÏ>û¬zòhiÈýû÷åªÅÖ$/dTzLÞFg=úé§çŸ¾jÕªiiiwîÜquuíÒ¥ËÖ­[•/Te‚ÉKµjÕ” f=(gΜ‘Ï’LKK“UX—Q ¨®€Z,¶…B·P›·UÙ U ÀÙÙùСC2îØ±£ÙlÞ³gÏõë×_xá…-[¶(]¡\œ•••––&'Ãõë×µ ½º!{öì‘ÉVçÎe-ÊYWù£—RRR®_¿®ìi«U«–———žžîììÜ©S§üñAµÈ¶lܸ±€ý•zOrøða¹033óŒÙi²ŠçŸÞÍÍ-##ãÎ;îîî¡¡¡?þø£2jê/Ù´Ž;*{¹$;;[ºÑhLOO—™hff¦<ã¬q^°‚ûÜb«¯W¯ž¼µ~ýúê­¾bâˆ#4áˆ#4!q€&$ŽÐ„Äš8@GhBâMH  ‰#4!q€&$ŽÐ„Äš8@GhBâMH  ‰#4!q€&$ŽÐ„Äš8@GhBâMH  ‰#4!q€&$ŽÐ„Äš8@GhBâMH  ‰#4!q€&$ŽÐ„Äš8@GhBâMH  ‰#4!q€&$ŽÐ„Äš8@GhBâ ,™>}ºN§Óét}úôyÐ’2jöìÙ²!=zô( Ø¶mÛ¶lÙ²eË–›7oÚ;dŽ“½<„Þ»wO±wïÞ{‡ báˆ#4!q€ÿ_||üýû÷í”R$ŽŠÝ7Æ×®];www??¿=zl߾ݺXffæŒ3žþyoooooïnݺ}ðÁPc~~þwß}×¥K—ºuëV­Zµnݺ;w^µjUnn®RF}qäµk×ìååU¿~}ooïO?ýÔb…¹¹¹_}õUûöí}||\]]7nüú믟޺uk¥í'Ž©©©/^TºeÕªU/^ÌÏÏWGøä“O*둉£Æ¨4PÁ‘8(F|ðÌ<êÖ­{óæM‹…;v”KfÍš%—T«VíèÑ£rá©S§¼¼¼äò)S¦È…ZÇ7ß|S.yçw”Hš7o.Λ7ÏâƒBˆ—_~9;;Ûl6'''È…íÚµ“%Ûµk'—|üñÇÊ Ÿþy¹ð‹/¾°h—ú¸æ_|!>õÔSrÉÒ¥K•£ŒQQQráøñã M%%µÝ»w¯²PÝ–   µk×FEE]ºtI{T‹¨à¸Æ@1Úµk—|ñî»ï*Yà˜1cžyæ™gžyæþýû&“IñóÏ?Ë·ÆŽÛ²eKùºqãÆ'N”¯•Z 0`íÚµk×®7nœ\’‘‘‘••%_ß¾}Û¢¼““Ó²e˪T©"„ðññùä“OäòC‡egg !ŒF£\²fÍšðððëׯË×gΜ9sæLß¾}å»;wî”/Þzë-eåo¾ù¦£££"11ñÔ©SBˆõë×+ý ¹œ;w®ÍúËÙÙyÏž=ƒ~î¹çêׯ¯=*ÅTp$ŽŠÑÅ‹å å â‰'žˆŽŽŽŽŽŽŠŠ’yIll¬|«{÷îê¿ð òE\\\~~¾ÆJ»wï>xðàž={FFF¾ûî»!!!O>ùä¹sçT¾Q£F¾¾¾êËf³ùòåËê%±±±Ã‡¯]»vóæÍ¿øâ‹ÌÌÌàà`åjÅ .(kÐýÅÕÕU&Dzêbê}W®\YiìãhÖ¬™zÉÃFUp1‰#€â’‘‘‘žž._{xxh)V»vmõ[uêÔ‘/²³³åq>-rrrÞyçZµj 8pþüùûöíËËË+àxžÅ}*ÎÎÎîîîòõµkׄ³fÍ=z´<$)„0›Í'Nœ˜={ösÏ=×±cGù .ÊýÎ’ššzïÞ½7nجW¼>2å°®Ò·Z¢ÒXìñÃPÖñË1Š‹›››³³³úH®ðöíÛžžžraçÎg̘ѷo_å@݇~(‹ÅÄÄ('”+W®Ü¡C‡ÀÀ@u$?ŽGyRc›6m>û쳜œóž‚þPQi, ‚#qP¼~øáå^µ>ø@]ìÈ‘#6/­«[·îï¿ÿ®ÓòÇX¬¤~ýúʃLJjñÁŽ;>õÔSêòNNN_}õ•RéáÇt¢¶sçÎòÒÖ­[mÞ&ŸÔ-½ñÆ\\\”»ª N¬þ õ/ÇXDcT‹¨È8U  xõéÓçôéÓ#GŽlÙ²¥«««ŸŸßË/¿üÛo¿Íž=[]¬U«V§Nš>}zHHˆ···——W×®]§NzúôéöíÛ?T .lܸ±ÂÁÁ¡iÓ¦&LˆŽŽ~å•Wä»ëׯW=#U¯^=22ò­·Þ2 ÞÞÞ¯½öÚž={FŽ©hݺõÅ‹§OŸÞ²eKŸJ•*yzz¶oßþ믿޷oŸúpf¯^½Nž<9bĈgŸ}ÖÙÙ¹~ýú}úô9pàÀ—_~©¾meåÊ•£G–¯kÕªõ·¿ýmïÞ½;vÔØºÁƒתUËÅÅ¥Q£FÊ»@cT‹¨Ètæ¿®e€r#77wÛ¶mBˆ>}ú<¨ÌôéÓ?þøc!DïÞ½7oÞ\òA?~|ÿþý#GŽTÎ@)Çãx”C•*U* e,%Z´h¡Ü(e§ª  ‰#4!q€&ÜM8âMH  ‰#4!q€&$ŽÐ„Äš8@GhBâMH  ‰#4!q€&$ŽÐÄÉÞ”£Ñøý÷ßoܸ1))ÉÍÍÍ`0 6¬]»v|¤oß¾§OŸ¶XèååiïÖØGùOóòòÞx㘘ww÷6mÚdgg9räàÁƒcÇŽ=zôƒ>•˜˜¨×ëýüüÔ =<<ìÝ»)ÿ‰cDDDLLLóæÍW®\©×ë…qqqC† Yºti×®]6lhý‘ŒŒŒôôô=z,Z´ÈÞá”åÿÇ;w !¦N*³F!„¿¿XX˜ÉdzÐyçÄÄD!„ÅáF€ ®ü'Žñññ...ÁÁÁê…þþþBˆ+W®ØüHBB‚¢nݺöŽ )ÿ§ª—/_îädÙ̳gÏ !|}}m~D&Ž)))¡¡¡çÎsvv kÚ´©½[`7:³ÙlïJZTTÔèÑ£sss÷íÛçååe]àý÷ßÿᇄõêÕ3 ÉÉÉgÏžupp˜9sfÿþý ]@@€õÂØØX{·à±”ÿ#Žj&“iݺuóæÍ3™LóçÏ·™5 !RRRôzýĉCCCå’C‡………Í™3§}ûö>>>…VDšÊŸò£âÈ‘#½zõš={¶——×Ê•+{öìù ’ß~ûmLLŒ’5 !Ú¶mûúë¯ƽ{÷Ú»öQ!ÇœœœÙ³g:ôêÕ«cƌٱcGÛ¶mv%­ZµB\¸pÁÞ­°òª:??ÿwÞÙ½{w·nÝf̘Q«V­‚Ë›Íæüü|Nçàð?Yµ£££ÂÍÍÍÞ °òÄqÍš5»wï4hÐÒ¥K Í… AAAC‡µX-pã @EPÎG³Ù¼víZ77·÷Þ{¯€b™™™ñññIIIB??¿æÍ›=ztÆ JèèèððpŸîݻۻMöQÎÇsãÆ:èõú X¿Û§OŸ!C†!¶oß>aÂÿmÛ¶ !Ο??|øðÔÔÔàààúõë'''ÇÄÄ8;;/]º´uëÖ…VÀ]Õ ü)ç×8ʃˆF£ñÌ™3Öï>è™ÀÀÀÍ›7ÏŸ?ÿðáÃqqq¾¾¾½{÷;vlíÚµíÝ »)çGí¢ÌqÔé쀢ÃN@ñ)çG¡ß4@ùÀߊU9¿9E…Äš8@GhBâMH  ‰#4!q€&$ŽÐ„Äš8@GhBâMœì€²A§³wІ‘*Ìf{G<GZñUŽ e§ª  ‰#4!q€&$ŽÐ„Äš8@Çc›Ñhüþûï7nܘ””äææf0† Ö®];{Ç`7$Ž6äåå½ñÆ111îîîmÚ´ÉÎÎ>räÈÁƒÇŽ;zôh{G`$Ž6DDDÄÄÄ4oÞ|åÊ•z½^7dÈ¥K—víÚµaÆöÀ¸ÆÑ†;w !¦N*³F!„¿¿XX˜ÉdŠŒŒ´wtöAâhC||¼‹‹Kpp°z¡¿¿¿âÊ•+öŽÀ>8UmÃòåËœ,{æìÙ³B___{G`:3¿²®ATTÔèÑ£sss÷íÛçååUpက녱±±önÄét‚Y€B1O€"Ä…2Š#Ž…0™LëÖ­›7ožÉdš?~¡Y£TšÓD€GCâX#GŽÌš5ëÒ¥Kµkמ3gNÛ¶mí€Ý8Ú–““óÙgŸ­Y³¦jÕªcÆŒ>|¸r‡5@ÅDâhC~~þ;ï¼³{÷înݺ͘1£V­ZöŽÀþHmX³fÍîÝ» 4cÆ {ÇPZðGKf³yíÚµnnnï½÷ž½c(E8âhéæÍ›‰‰‰z½~ðàÁÖïöéÓgÈ!öŽÀH-%%% !ŒFã™3g¬ßåÆjPañð¢P¶žãÈsh¡ó%@§³w(jì7ÊŽ8JòŒr†¿9ËnŽ€&$ŽÐ„Äš8@GhBâMH  ‰#4áàÀc©P?tQAËÊàAHÇEžQÎðC𠜪€&$ŽÐ„Äš8@GhBâMH  ‰#4!q€&$ŽÐ„ÄšT¬ßª¾|ùr="""š6mZpɾ}ûž>}Úb¡——Wdd¤½`+q\³fÆ’‰‰‰z½ÞÏÏO½ÐÃÃÃÞ-°› ‘8fdd\¸pá§Ÿ~úî»ï4–OOOïѣǢE‹ì;@iQ!Ç^½z]»vM{ùÄÄD!„ÅáF€ ®B$޳gϾÿ¾bíÚµ‡*´|BB‚¢nݺö ©‰cûöíå‹ýû÷k)/Ç”””ÐÐÐsçÎ9;;………zK @9V!LJuåÊ!ÄâÅ‹ëիצM›äääýû÷8p`æÌ™ýû÷ײ†€€‹%±±±önÀc!q´!%%E¯×Oœ8144T.9tèPXXØœ9sÚ·oïããSèHe‹NWÆÖl6[_àÁx¸ ß~ûmLLŒ’5 !Ú¶mûúë¯ƽ{÷Ú;:Š…Ù\–þ+¾L qÔªU«VBˆ .Ø;(F:=ÿ³o Å©jKf³9??_§Ó98üOVíèè(„pss³w€P¼*ì@®â¶Ј#Ž–‚‚‚†j±<::Zغë ‚ qBˆÌÌÌøøø¤¤$!„ŸŸ_óæÍ=ºaÃ¥@tttxx¸O÷îÝí,€}pªZ!80aÂÿmÛ¶ !>üðÃáÇO›6mýúõõë×ONNމ‰qvvþä“Oôz½½ƒ°Ž8Ú¸yóæÞ½{§¦¦îÚµ+==½wïÞÛ¶mkݺµ½C°™+‹Z@@@ÙzŽ#׃?z¯ü©àcZ‘›_‘Û^›_æ.8âMH  ‰#4!q€&$ŽÐ„Äš8@GhBâMø­ê²J§+¥kã9þ”W$ŽeX)LÑŠ6¥ §ª  G”%vH»d**…'  `$ŽÊ’r“lq]€²ˆSÕЄÄšpªPÚ•§Ë[ËÍ娘He@¹É·tºòÓT@œª€&$ŽÐ„Äš8@ÇB\¾|9 àäÉ“öÀÎH ±fÍ{‡P*ð8Û222.\¸ðÓO?}÷ÝwöŽ T q´­W¯^×®]³w¥‰£m³gϾÿ¾bíÚµ‡²w8”yEþÃpÄšpW5*ŠG{j†×ÌŸ¿€Ò†ÄB™; Q|i.ŒÄP¢xh6ЬX‘8Àãâ‹êa•[=Pj1ÁЉ#¾¨TÜU MH  ‰#4!q€&ÜÀ>¸ÊGvÃÈP¶8E¦hî¥h×Fòx|$Ž@Q*ù?`(ÜMH  ‰#4!q€&$ŽÐ„»ª2¦dž›-Jëâ;"qÊž’yn68U M*ÊÇ 6DDD\¼xÑÙÙ¹S§N“&Mòôô, |ß¾}OŸ>m±ÐËË+22ÒÞM° ‘8.\¸ð«¯¾rqqiÙ²eBB¦M›âââV¯^­×ëô‘ÄÄD½^ïçç§^èááaï¦ØMùOcccW¬Xáíí½qãÆZµj !fÏž½zõêÏ?ÿ|úôé6?’‘‘‘žžÞ£GE‹Ù;|€Ò¢ü_㑟Ÿ?~üx™5 !¦L™âîî¾cÇŽüü|›ILLBXn¨àÊâxìØ1‡Î;+K;vìxëÖ­'NØüHBB‚¢nݺöŽ )牣Ùl¾xñbõêÕ«W¯®^n0„W®\±ù)™8¦¤¤„††¶lÙ²S§N£F:yò¤½[`OåüǬ¬,“Éd}S‹»»»âöíÛ6?%ÊÅ‹׫W¯M›6ÉÉÉû÷ï?pàÀÌ™3û÷ﯥހ€‹%±±±öî €ÇRÎG£Ñ(„pqq±Xîêê*„HOO·ù©””½^?qâÄÐÐP¹äСCaaasæÌiß¾½O¡õ’&€ò§œŸªöððÐétYYYËïÝ»'þ:îhíÛo¿‰‰Q²F!DÛ¶m_ýu£Ñ¸wï^{· À>Êyâèäääîîn}d1##C¡Üg­E«V­„.\°w›ì£œ'ŽBooï[·nÉLQ/ß².o6›M&“õ“z…nnnön€}”ÿÄ1$$Äd2ýþûïʳÙ|àÀOOÏfÍšY—OHH :t¨Åòèèha뮀 ¢ü'Žýúõsppø÷¿ÿ-¯kB¬X±"55õµ×^«T©’\’™™Ÿ””$„ðóókÞ¼ùÑ£G7lØ ¬$:::<<ÜÇǧ{÷îön€}èÌf³½c(vááásçέS§N‡¢¢¢‚‚‚ÂÃÕÇôlß¾}„ þþþÛ¶mBœ?~øðá©©©ÁÁÁõë×ONNމ‰qvv^ºtiëÖ­ ­.  îªÖéD ] ÔRnB-¥° j)µ”›†PK)¬¢œÕR •ÿ#ŽBˆaÆ}þùçõêÕÛ¾}ûíÛ·‡ ²zõjë‡;*7oÞÜ»wïÔÔÔ]»v¥§§÷îÝ{Û¶mZ²F€òªBq,aq,mUPK鬥Ü4„ZJaÔR:k)7 )±ZJ¡ qÄÄš8@GhBâMH  ‰#4!q€&$ŽÐ„Äš8@GhBâMH  ‰#4!q€&$ŽÐ„Äš8@GhBâMH ‰“½(½6lØqñâEggçN:Mš4ÉÓÓÓÞAØ Gm[¸pá´iÓ.]ºÔ²eKWW×M›6ýãÿ0öŽ ÀnHmˆ]±b…··÷Î;W¬X±k×®ÐÐÐS§N}þùçö ÀnHmˆˆˆÈÏÏ?~|­Zµä’)S¦¸»»ïر#??ßÞÑØ‰£ ÇŽsppèܹ³²ÄÑѱcÇŽ·nÝ:qℽ£°GKf³ùâŋիW¯^½ºz¹Á`B\¹rÅÞØwU[ÊÊÊ2™LËÝÝÝ…·oßÖ²’€€€âŽÓ`Å_IIÔR2 "¶¥<ÕÂÐWØZú [ Cÿ°µ”@KJ!GKòÖi‹å®®®BˆôôôB×'S©W2ãRžj)7ÊÓ 0ô¥< CÿPè®â©jK:.++Ëbù½{÷Ä_Ç* GKNNNîîîÖG322„Ê}Ö ‰£ ÞÞÞ·nÝ’™¢">>^¾eïèìƒÄц“Éôûï¿+KÌfó<==›5kfïèìƒÄц~ýú988üûßÿ–×5 !V¬X‘ššúÚk¯UªTÉÞÑ؇Îl6Û;†Ò(<<|îܹuêÔéСCBBBTTTPPPxx¸õcz*Çúé§Ÿ~üñÇS§NÕ®]»U«VãÇ—O䨘H  ×8@GhBâMH  ‰#4!q€&$ŽÐ„ıl0öòË/?~—/_8yò¤õ[yyyË–-ëׯß3Ï<Ó¡C‡÷ßÿöíÛE[Eß¾}­ÛÕ®]»ÇiQQ…­f4¿ýöÛ—_~Y®søðá‘‘‘ÖÅ6lØÐ¯_¿fÍšµk×îƒ>¸sçÎcÖ[ýc---mæÌ™²uÏ?ÿü„ ._¾\´U( ˜ EëêÕ«Í›7Ÿ4iRÉD^TC¯¥¿ XCNNÎþóŸW_}µY³f]»v7n\\\\ÑV¡qkz(űN›NŸ>ýöÛowéÒ¥eË–C† 9räH‘WQTC`“ÆÉó8›OUá®Æf-EþYpw•Àd(Uœì4Ñét 6´^ž““séÒ%ww÷ǯbÍš56—ÆAƒýù矾¾¾;wŽÿá‡N:µjÕ*//¯"©B‘˜˜¨×ëýüüÔ ç‹0lE^^Þo¼ãîîÞ¦M›ììì#GŽzäz‹£¬É8,X ,Ù´i“Á`0`@ÖRèd(Zááá²¢wß}·¸#/’¡×Ò?߇…®ANõqãÆåææÊ%‡jذá /¼P´U¼5=¬âX§µ´´´-Z4mÚôøñãrÉÉ“'5jÔ¶m[“ÉTTµ<þØôP“çÑ6ŸB«(’]Í£mûYh-%3JŽ8–açÏŸÿúë¯GŽù8„zõêuíÚµ½k6›7lØàååõþûï;::Ê…ƒÞ»wïÞ½{ïÞ½ëææö˜U!…‡ÓG‘„mmçÎBˆ©S§*üýýÃÂÂ>ýôÓÈÈHùnDDD~~þøñãkÕª%ËL™2eË–-;vì˜:uªƒÃ£\RäýcÓáÇõzý¨Q£”%¯¾úêâŋϞ=k2™”n|L…N†"·páÂÀÀÀóçÏ—@äE2ôZúçñû°Ð5œ8qB1tèP'§ÿûŽhÓ¦MÆ Ïœ9sûöíêÕ«?~Z¶¦‡Uë´¶iÓ¦ŒŒŒ &4oÞ\.iÒ¤I=¶lÙrúôé¦M›I-?6iŸ<¼ùZE‘ìja+x„oÌBk)™ÉPÚ8–U&“éƒ>hРÁ?ÿùÏÇYÏìÙ³ïß¿/„X»ví¡C‡,ÞMJJÊÊÊjÑ¢E•*UÔË[µjuèСÈÈÈ_|ñ1«B$$$!êÖ­[TS$a[‹wqq V/ô÷÷B\¹rEþóرc;wV 8::vìØñ§Ÿ~:qâD‹-¡Þ"ï›<<< CÕªUÕ «T©’“““““ó8çÙÕ E%//oòäÉžžžS¦Lyã7J ò"z-ýóø}Xèj×®-„P_,®888(yÌcV¡ekzXűNk¿ýö›N§ëÝ»·zá¼yóæÍ›WTUˆ¢›4NžÇÙ| ­¢Hv5»<Ú7f¡µ”Ìd(mH˪uëÖ={ö›o¾©T©Ò㬧}ûöòÅþýû­ß•‡IŒF£Åòœœ!Ä7¿ ñWb”’’zîÜ9ggç   °°°Gþs­H¶¶|ùrë]öÙ³g…¾¾¾B³Ù|ñâÅêÕ«[0 Bˆ+W®`À€ÔÔÔŸ~úéóÏ??qâÄÏ?ÿ, 2aîܹIIIëׯ/ɳEÅ4ôö2yòä?þøcÊ”)o¾ù¦\rõêÕ¿ÿýï&Lغukýúõ‹°®mM¥m’reÞ§Ÿ~ªY¿~ýĉCCC?ùä“Í›7רQC!ÿ_LZµj%„¸páB© ;''göìÙC‡½zõê˜1cvìØ¡þNrrrrww·>¼”‘‘!„PNš—†þ)˜N§«Y³æ°aà píÚµ]»vG-ÅáèÑ£ëׯ9rd ßÏX’C_Ünܸ±ÿþ§Ÿ~ZIY„>>>ÿüç?sss7oÞ\T¼5•žuª¹¸¸T­ZU¯×wéÒE½¼[·nBˆ"¹_”àX(ùͧv5Å÷Y2“¡âˆcÙ³aý^ÿh÷?²gŸ}öÙgŸUþ)Ïù6nÜøñ×l6›óóóu:ÅóJäCóè`цŸŸÿÎ;ïìÞ½»[·n3f̰™ x{{_¼x1##C}Qy||¼|«´õ"...<<¼cÇŽ=zôP/—7¨^¿~½Hj)ò§5–-[¶lÙ2õò­[·nݺÕßßÛ¶mÅTu‘½½ÜºuKØzü“<ÊUTW6kÙšJÃ:­ÕªU+--M§Ó©ÊãsyyyEREÉ µØ|J~WS¬ß˜%0J!Ž8–1±±±gÏžíÚµ«õÕTÅdÖ¬YÆ KMMU–dggïÚµËËËËúRôG4tèP‹åÑÑÑBˆ€€€Òöš5kvïÞ=hР¥K—>è;)$$Äd2ýþûïʳÙ|àÀOOÏG;QRLýc¡Zµj?üðæM›,–ËGHÖ«W¯Hj)uëÖ}éÉû"}||^z饎;_ÕE>ôöâçççèèg6›ÕËccc…O?ýt‘Ô¢ek* ë´Ö¥K—ŒŒ ‹ƒýò±‹EREÉ µØ|JxWSÜߘ%0J!Ç2æÀâ¯Ó”%ÃÃÃ#22rÁ‚òŸ&“iêÔ©÷îÝ{ýõ×çqb ??¿æÍ›=ztÆ ÊÂèèèððpŸîÝ»—’°ÍfóÚµkÝÜÜÞ{jõë×ÏÁÁáßÿþ·ò;]+V¬HMM}íµ×íÁIÅÔ?¼½½<¨¾ôþüùóëÖ­suu-’Ÿ8+íÛ·_ð¿äñ-Z´X°`ÁäÉ“‹¯ê"z{Ñëõ;vLHHX²dI~~¾\·lٲʕ+[œ•{4·&»¯Ó&yÒsÚ´iÊÍò§OŸ^¹r¥»»ûóÏ?_$U”ÀØT›O ïjŠû³&C)Ä©ê2&22R¡<¤¾ >üçŸÞ´iÓùóç}}}Ož<™’’Òºuë·Þz«¨ªøðÇ>mÚ´õë×ׯ_?999&&ÆÙÙù“O>yä ´‹<ì›7oÊŒsæÌ¹sçžxâ‰^xaôèÑò‡7 E‘½½xyymß¾ý«¯¾:xð௿þêééÙ©S§Q£FÉeÍâa¶&û®óAFŽéååµzõêC‡yzz†„„Œ3¦h·”â;*±]MÉ|c–Àd(mt—P6q#4!q€&$ŽÐ„Äš8@GhBâMH  ‰#4!q€&$ŽÐ„Äš8@GhBâMH  ‰#4!q€&$ŽÐ„Äš8@GhBâMH  ‰#4!q€&$ŽÐ„Äš8@GhBâMH  ‰#4!q€&$ŽÐ„Äš8@GhBâMþ?0<ýÓz²èVIEND®B`‚statistics-release-1.6.3/docs/assets/dendrogram_401.png000066400000000000000000000613571456127120000230110ustar00rootroot00000000000000‰PNG  IHDRhŽ\­Ab¶IDATxÚíÝ{\TÕÞøñ5€æ€yÁ8¢Æ ¨©yIñ~9••çÑòRjhZG<o”¥iiç––©£¥OR* 5»˜·L²Äð’à-EPALñ*cÈ0¿?öóÌÆ™5ÙÃðy¿zõ×ì½öw­µgÍ—}Ñh€-^j€šÄRH …ÄRH …ÄRH …ÄRH …ÄRH …ÄRH …ÄRH …ÄRH …ÄRH …ÄRH …ÄRH …ÄRH …ÄRH …ÄRH …ÄRH …ÄRH …ÄRH …ÄRH …Ä@5Y¹r¥F£Ñh4]ºt©Îu%½þúëÊ&†êÌ2N***zñÅ›5kæãããïïëÖ­»´!+âãã•f4¨ú·Àù¨àÿÌž=ûã?V^ß¼ySípà?8¨&þþþaaaBˆ¦M›Vçº5Ë®]»”½zõ:thݺuÕŽþ‰#€j2jÔ¨Q£FUÿº5Ëï¿ÿ®¼xõÕWŸx⠵ÀÿÀ5ŽdݺukÞ¼yþóŸ7nܸqã¾öÚkÅÅÅ—©x`YYÙo¼qÿý÷¿ñÆ¢êë³²²†zï½÷†……?þÂ… ³gÏV–|ýõוe*¯[qC×®]{饗ºtéâïïß¡C‡ ܹs§â&ÊËË7lØÐ¯_¿æÍ›×«W¯yóæ}ûö]³fÙbûý÷ß§M›íïïߪU«§Ÿ~úÈ‘#fËØŒáòåË999åååÊ?¯_¿ž““SVVv÷FD‘››;räÈààà&Mš<õÔS‡r¸™6· Æ3€„ƒ¶jÕªòºwï^ÓbsçÎUʇ 2vìXåõܹsFãG}¤ü³sçΦåSRR‚ƒƒ+VزeË#FT\Ñ⺦ õíÛ722Ò,ªáÇW ÞT¡™aÆYŒ¼ªN°¸Ì÷ß߸qc³š5M\\œ]1 2¤ò»§OŸ¾{#b4:Ô¤I“Š«ûûû?þøãÊëÇ{Ì®fZßÀ©j¶éõú#FüöÛoBˆzõêõéÓÇÛÛû‡~())9þüÈ‘#Ïœ9ãïï_q•ÇçååY¯ööíÛÇ/,,BÔ­[·sçοýöÛ¹sçÎ;'Û?ü „hÞ¼y“&MŽ=zûöm!ÄÆ:¤žLJJJJJBh4š~ýúÝÿýGŽ9qâ„bÓ¦M{öìéß¿¿Ã=S\\üÌ3Ï\¾|YÑ¿ÿÞ½{gdd|þùçåååï¿ÿ~›6mÆ7bpɈ”––6ìâÅ‹BŸÎ;_¼xñ·ß~Û¶m›cÍ´kôÔDœª`ۻᆱä( 4øñÇwìØñí·ß¦¦¦* /^¼¸`Á³Uòòò¢¢¢SSSŸþy‹Õ~øá‡.\B¤¦¦¦¤¤œ?þ…^°7¼þóŸ¿ýö[jjjZZZ½zõ”BÓ)×;v(/âââ¾ÿþû5kÖ?~¼S§NJá/¿üâLÏ,\¸PI§† öý÷ßÏ›7ïßÿþ÷²eË”wß|óMù¶lÙb4ëׯ¯îÞ½Ûh4FDDܽùøãsrr„þþþûöíûù石³³§OŸîp3í}5‰#Û¾ýö[åÅÔ©SMW¶k×...Îl__ßï¾ûnôèÑ?üpË–--V«„BüýïïØ±£ÂËËëƒ>hÔ¨‘|lmÛ¶ýûßÿ®¼nݺu¯^½”×JJ$„9rdbbbbbâ´iÓ”’âââ’’åõÕ«WéSFøâ‹/š Ÿþyooo!Dnnî±cÇîF .‘õë×+oM™2åá‡V^/\¸°rÿK6ÓʶxG¶edd(/}ôÑŠå<òˆò"33ÓtW‡¢cÇŽ!!!Ö«=sæLåjµZ­ÙV¬3»Î¯aÃ†Ê S<>úèèÑ£üñ”””—_~yÀ€÷ßÿ©S§\Ò3› ù_õë×7 ¦ž¹1¸dDLÁW|ÐwݺuM•ØÛL+Ûà¸Æ€ ÅÅÅEEEÊk³Ç(6kÖLyqûöíßÿ½â»f·¼X¬Öt¤Í,É •O£ÑXù§¢´´töìÙ|ðée­VÛ¨Q£K—.9ß36ŸÑ­\ÁéÚ\2"7oÞ4mÝìþ³þ—ofUÛà1HØÐ Aƒ€€%S)((¨x„¯  @yQ·nÝûâZ•83þþþõêÕSîe),,¬X­éY†.ÿþûï !Z¶lùòË/÷èÑ#***66võêÕÎ÷Œ¿¿ÿ7„»ví²xNVéׯà’ÑjµuëÖ---B\ºté0½eÊJímfUÛà18U À6Ó-¦ß51ûgxx¸}ˆj4š-Z(¯“““Måeee{öìqað+V¬P^,_¾|Ò¤I>ø «îù5å[eee­* Ôjµw#çGÄÛÛÛÔÿ;wî4•FåFuš Àã‘8°Íô`¿>øÀôÌç'N¼ûî»ÊëŠÉÉëÓ§òâý÷ß?}ú´Âh4Ι3';;ÛU‘߸qÃtõúõëÊ‹_~ùÅU¹éÀ•«V­2ÊëÍ›7ß{ï½ÁÁÁaaa7nܸ1¸dD:wî\¹’ üúë¯4Ó%ý ÀÍqª€m¯¼òÊ'Ÿ|’““STTÔ³gÏx{{ïÞ½ûÖ­[Bˆ¦M›š~âÅ.³gÏNHH(--½|ùr§N~øáœœ»âhSýúõëׯ¯\¢7a„õë×k4š;v¸ê7cfÏžýñÇ_»víË/¿ìß¿Ÿ>}Nžzôè /¼ðÐCùúú¶lÙrèС{÷îýðÃM÷ˆÜ\2"«W¯ž}:×Û€»!q€Ç)$ŽBâ)$ŽBâ)$ŽBâ)$ŽBâ)$ŽBâ)$ŽBâ)>jPôzý矾iÓ¦¼¼<N7~üø=zXYeذaÇ7+ NIIQ»5êðüı¬¬lܸqéééÝ»w¿}ûööíÛ7uêÔÉ“'WµVnn®V« «X¨vkTãù‰cRRRzzz§NV¯^­Õj…™™™cÆŒY¾|yÿþý###+¯R\\\TT4hР¥K—ª>€»ðükwìØ!„˜3gŽ’5 !ÂÃÃccc CUçsss…f‡j9ÏO³³³ýüüÚ´iS±0<<\qþüy‹«äää!š7o®vìnÄóOU¯\¹ÒÇǼ™'OžB„††Z\EI bbbN:åëëÛ¾}{µ[ ÑhT;†ê–šš:yòä;wîìÙ³'88¸ò³gÏþâ‹/„-Z´Ðétùùù'Ožôòòš?þˆ#lÖQ¹0##Cív8Åó8Vd0>ûì³E‹ †Å‹[Ì…Z­6...&&F)Ù¿llì‚ zöìbsC¤‰Àóxþ5Ž&pàÀ¾}û¦N:yòdµ£P‰£IIIééé:uZ½zµV«BdffŽ3fùòåýû÷ŒŒT;@p£;vìBÌ™3GÉ…ááá±±±ƒ!%%EíèÔAâhAvv¶ŸŸ_›6m*†‡‡ !Ο?¯vtêàTµ+W®ôñ1'O !BCCÕŽ@£Ñ¨v 5@jjêäÉ“ïܹ³gÏžàà`ë GDDT.ÌÈÈP»NÑh{ ÷Á¤¨‚#Ž6 †Ï>ûlÑ¢EƒañâÅ6³FEMO*#q´æÀo¾ùæÙ³g›6mº`Á‚èèhµ#P ‰£e¥¥¥ï¾ûîºuëêÕ«7eÊ” &˜î°¨H-(//饗víÚ5pàÀyóæ5jÔHíˆÔGâhÁºuëvíÚ5jÔ¨yóæ© €»à9ŽæŒFcbb¢¿¿ÿ«¯¾ªv,n„#Žæ._¾œ››«ÕjG]ùÝ¡C‡Ž3FíT@âh.//O¡×ëOœ8Qù]n¬µw½ˆˆÏ{Ž#ÏÚàV˜”Up#¤8@ ‰#¤ps ¸FíjzÌ.\ — qõq«î*’l¸ §ª …ÄR8Uí¦Üð´‚»…Äy=ª‰£;âj'ôÕŒSÕBâ)$ŽBâ)$ŽBâ)$ŽBâ)$ŽBâ)$ŽBâ)$Žâ£vÕêܹsƒ JJJjß¾½õ%‡ vüøq³Âààà””µ ŽÚ•8®[·NrÉÜÜ\­VV±000PíÜ]ÚxnÀF£Úà´Z‘8Ÿ9sæ›o¾Ù°aƒäòEEEƒ Zºt©Ú±W7ò›»¡%¸XQ+ÇÁƒ_¼xQ~ùÜÜ\!„ÙáF€Z®V$Žñññüñ‡"11qÿþý6—ÏÉÉB4oÞ\íÀÜH­H{ö쩼HNN–Y^I bbbN:åëëkó–V+G{?^±lÙ²-ZtïÞ=???99yïÞ½óçÏ1b„L f%j7 À)$ŽhµÚ¸¸¸˜˜¥dÿþý±±± ,èÙ³gHHˆÍH€çáà|úé§éé馬QýÜsÏéõúÝ»w«€:HeuíÚUqæÌµP‰£9£Ñh0ÊËËÍʽ½½…þþþj Gs999QQQcÇŽ5+OKK–îz¨%H…âÖ­[ÙÙÙyyyBˆ°°°N:ÇQ£ª ‹ZÛõxt,lb'Á]ÅWáˆ#¤8@ ‰#¤8@ ‰#¤8@ Àe4µ#¨Qñ ‡ÄW"’Ç&kNU@ ‰#¤8@ ‰#¤8@ ‰#¤8@ ÏqP»¸çcÝ60ž± "GµÉ<žÏ  "NU@ ‰#¤8@ ‰#¤8@ ‰£ ç΋ˆˆ8zô¨Ú¨ŒÇñذnÝ:µC€ãÜçÁxn ÏU8ƒÄѲâââ3gÎ|óÍ76lP;8…TÉÄM’W@ÍEâhÙàÁƒ/^¼¨vn„ÄѲøøø?þøC‘˜˜¸ÿ~µÃP‰£e={öT^$''« ðœ9ãìðºœñÇ»$""¬$##Cí à9ª?ã‹‚Äñ.!Mž‡ç8@ ‰#¤8@ ‰#¤8@ ‰#¤8@ŠÆÈS}]-""ÂÉç8ªõ°eÏ{ȳçµH­FyROzR[ªÝe/zÌ.tWÃGH!q€GH!q€GHñQ;Ü-Mu¬ÅÝpÔ$Žž¬²:ž¤¨È±¿Ýp+L#@MAâ5’'ýÙæIm<×8@ ‰#¤8@ ‰#¤8@ ‰#¤ð8ÔÎw!GÔ Õÿ±çÁr5¿Ü=³ç3Ÿ»‰#€š_H€jCâ€eÒÌ8P¥»ÕUÛ¥„€KpW5¤pÄÔ\? .GP“pKœŠjKâ¸qãÆ¤¤¤¬¬,__ß>}úÌœ93((ÈÊòÆ ;~ü¸YapppJJŠÚM·Æ!ÀƒÕŠÄqÉ’%}ô‘ŸŸ_—.]rrr6oÞœ™™¹víZ­V[Õ*¹¹¹Z­6,,¬ba`` ÚM€€B€§òüÄ1##cÕªU7Þ´iS£F„ñññk×®}ï½÷^ýu‹« 4héÒ¥j‡à.<ÿ®ê¤¤¤òòòéÓ§+Y£bÖ¬YÛ·o///·¸Jnn®Âìpcí¤ÑØøÏæ2Àcx~âxèÐ!//¯¾}ûšJ¼½½{÷î}åÊ•#GŽX\%''GѼysµcw F£Sÿ‘;º!›8ð3@màባÑhÌÊÊjذaÆ +–ët:!Äùóç-®¥$Ž111]ºtéӧϤI“Ž=ªvk—qòïþf€ÚÉïq,))1 •oj B\½zÕâZJB¹lÙ²-ZtïÞ=???99yïÞ½óçÏ1b„Ìv#""ÌJ222Ôî §xxâ¨×ë…~~~fåõë×BY\«  @«ÕÆÅÅÅÄÄ(%û÷ï]°`AÏž=CBBln—4x?U¨ÑhJJJÌÊoÞ¼)þ÷¸ceŸ~úizzº)kBDGG?÷Üsz½~÷îÝj· @ž8úøøT>²X\\,„0Ýg-£k×®Bˆ3gΨÝ&ž‰;–¸?O…7¾r劒)šdgg+oU^Þh4 †ÊOêñööBøûû«Ý Hyœ5w,psžŸ80À`0üôÓO¦£Ñ¸wïÞ   Ž;V^>'''**jìØ±fåiiiÂÒ]/j4—Û€ZÂóÇáÇ{yyýë_ÿR®kB¬Zµª°°ðé§Ÿ®S§ŽRrëÖ­ììì¼¼ú¨Ú àbÉIc-ø±Ï„„„… 6kÖ¬W¯^999©©©QQQ ¦ÇôlÛ¶mÆŒááá[·nBœ>}z„ ………mÚ´iÙ²e~~~zzº¯¯ïòåË»uëfssNÞUí’ß`u“JÜ'ŒjP=&7ÙŠûì¢5¢»ØJMܹíVj"Ï?â(„?~ü{ï½×¢E‹mÛ¶]½zu̘1k×®­üpG“Ö­[oÙ²eÈ!………;wî,**2dÈÖ­[e²F¸-. ÀIµâˆc5㈣§†á1[©)qÖ Þp“0ØJMÜŠÛÙªå¹móUW+Ž8Ày$Žâá?9µ‡ÌU¶6—áô+HÀs¸Ãõš<§ª …ÄR8U p;Î_¯é&'Ü]rá©û4 qàù^‡ÛªƬ††ˆêúí+@‰#yÌ÷:P8}Ú»J úDó§¯ÃHY<ë@ ů­¸<ΚÒX—#qìàü16j.GH!q€GH!q€GH!q€žãlãG H€$~œª€GHáTu•6nܘ”””••åëëÛ§OŸ™3g©€j8âhÙ’%KæÎ{öìÙ.]ºÔ¯_óæÍýë_õz½Úq¨†ÄÑ‚ŒŒŒU«V5nÜxÇŽ«V­Ú¹sgLḺcÇÞ{ï=µCP ‰£IIIåååÓ§OoÔ¨‘R2kÖ¬€€€íÛ·———«€:H-8tè——Wß¾}M%ÞÞÞ½{÷¾råÊ‘#GÔŽ@$ŽæŒFcVVVÆ 6lX±\§Ó !Ο?¯v€êà®js%%%ƒ!00Ь< @qõêU™J"""œ‹"Ãéܧ ¨AaxR[ƒ0înN×P#‘8šSnöóó3+¯_¿¾¢¨¨Èf .Ù™<© ¨AaxR[ƒ0îjµ§ªÍj4š’’³ò›7oŠÿ=îP ‘8šóññ ¨|d±¸¸XaºÏ ¶!q´ qãÆW®\Q2E“ììlå-µ£P‰£ 0 ?ýô“©Äh4îÝ»7((¨cÇŽjG G †îååõ¯ýK¹®Q±jժ§Ÿ~ºN:jG ÑhT;w”°páÂfÍšõêÕ+'''555***!!¡òczj Ç*}óÍ7_~ùå±cÇš6mÚµk×éÓ§+Oä¨H …k …ÄRH …ÄRH …ÄRH …ÄR|Ô ¶;wîÜ Aƒ’’’Ú·ooöVYYÙªU«’““333ýýý{öì9sæÌ† Z©­´´tÍš5Û·oÏÎÎ j×®Ýßÿþ÷ððp»B6lØñãÇÍ ƒƒƒSRR,.ýúõ¥K—>|8//ï¾ûîkÛ¶í”)SZ¶li¶ØÆ“’’²²²|}}ûôé3sæÌ   +aHVk…^¯ÿüóÏ7mÚ”——çïï¯ÓéÆߣGçW±Ò™ä›fe÷B?~|åÊ•'Ož¼yófDDÄ”)S~øaù0äÚzV–‘ Ãa²Þv+¬4ÄfoÈÄéðP¦‡åW‘ïR+•XßK%7!9LUí<:t¨ªùááá[·n• ÃæDj×èÀH]¸paðàÁýû÷÷Ýw%W‘i»•Õ%ƒ´˜õJž%›fï´ ÓÉ|¥Êô†K¾vkG•­[·Îb¹^¯5jÔ¯¿þÚ·oßììì/¾øâرckÖ¬ ¶¸ŠÁ`;vì‘#GBBBzõêuíÚµ;w~÷ÝwkÖ¬éÒ¥‹|H¹¹¹Z­6,,¬baU?Ò]\\üä“O^¾|9<<¼_¿~Û¶mÛµk×çŸÞ¶m[ÓbK–,ùè£üüüºté’““³yóæÌÌ̵k×jµZgªµ¢¬¬lܸqéééÝ»w¿}ûööíÛ7uêÔÉ“';³Š•¶ÈÔ`WÓªÚ=„{öì™:ujyyy»víÂÃÃSRRbbb>üðÃþýûK6D~ ­„ae™0&ëm·7HÉÞ‰Ó™ LK®bW—VU‰õ½TròÃd1 FY¹¼´´ôìÙ³2aØœHíÝí)£Ñøê«¯Þ¼yÓ®µl¶Ý±}îÀ¬TâÌ(Ó4{E¦“øJ•é W}íÖ0F¨¡¨¨èСCo¼ñ†N§Óétéééf ÄÇÇëtºyóæ•••)%‰‰‰:nÆŒUÕùÙgŸétºiӦݹsG)Ù¿ddä#}úôF)%³fÍ ؾ}{yy¹ÃÕZ·cÇ!Äœ9sL5ÃÃÃccc CUçÜeV±Þ™dšf}÷BlÞ¼¹¸¸866¶S§NJɃ>8hРÂÂÂãÇË„!3Ð6ð¾ŒL “õ¶;Ö›½!§@™¶w™PmVb}/•Ù„Ì09ÐüÓ§OüñÇ'NlÛ¶­Í0d&RÉ=ÐP…™™™K–,iݺµ]kÉ´ÝâòAZ Ìf%ÎÏ6›fW%2ìØWªLo¸äk·ÆáTµ:âããÿøã!DbbâþýûÍÞÍËË+))éܹó=÷ÜS±¼k×®û÷ïOIIyì±Ç*×Ù´iS!DÅÕh4^¿~ÝËËË´OÛ”““#„hÞ¼¹äò:®^½z ï¹çžÒÒÒÒÒRåcèÐ!//¯¾}ûšðööîÝ»÷7ß|säÈ‘Î;;V­uÙÙÙ~~~mÚ´©X¨\wrþüy‡W±Þ™dšf}÷BüøãfÈ! -Z´hÑ"É†È ´Í0¬/#†Ãd½íŽ5ÄfoÈÄéÀP¦‡í]E&T›•XßKe6!3Lö6ß`0¼öÚk­ZµúÛßþ&ÓR™‰Trt`¤ÊÊÊ^yå•   Y³f7Nfù¶[$¤õÀlVâüh³iò•Hv²c_©2½á’¯ÝÇcææzö쩼HNN®ü®———B¯×›•—–– !.]ºd±Î'Ÿ|ríÚµñññ¾¾¾:t¸víÚŠ+òòòFŽÙ AÉÀ”oЂ‚‚˜˜˜S§NùúúFEEÅÆÆVu‘ubb¢YÉ¡C‡rss;tè ä@F£1++«aÆf× ët:!Äùóç-&Ž6«µiåÊ••?·'OžB„††:¶ŠÍ¶ÈlT¦iÖw!ĉ'‚‚‚š4irøðá´´´ëׯ·nÝzàÀJ 2aÈ ´Í0¬/#†Ãd½íö)Ù2q:ð”éa{W‘ Õf%Ö÷R™MÈ “½Íÿì³ÏNž<ùÉ'ŸÔ©SG¦¥2©äèÀHýóŸÿ€ÕÓíò,î¥67q7†éÖ­[+V¬èÚµktt´dKe&R×v—Izzúÿ÷3&::ZÉxœQ¹íjæÚ9°ª¦IV"ßǾRe¸É§¾šq£;Òh4/¾ø¢^¯Ÿ4iÒÑ£Gõzý©S§&M𔕕%„¸}û¶ÅµŠ‹‹ßyç[·nµiÓæ™gžùóŸÿ¬Õj¿üòË={öÈoº  @«ÕΙ3gÇŽ|ðÁæÍ›|||,XpáÂ++fddlÚ´éðááM›6uëÖUÊ•?òüüüÌ–¯_¿¾¢¨¨Èz¹víZ\\œ|KíHï.…^¯å•WBCC_zé%çPªíÕ˜kç@™¦UU‰]mqì+U†~꫃ÚwçÔvsæÌ±x¯VYYÙ¬Y³tôíÛwÑ¢E:nÙ²e«š8q¢N§KHH0•äçç÷êÕ«M›6gÏžu&He»kÖ¬±¾Xyyù¥K—V¯^Ù»wï7nÆ;wîDDD<ñÄf oذA§Ó}üñÇ6·n±Zy©©©ƒ Òét}úôIIIqfù¶HnÔfÓ,î7oÞTv‰ï¿ÿ¾bùìÙ³u:ÝÆn{U]Õ^*¹ŒL’¡Ê·ÝÞ %{ÃJœÎ|í Lr™.•Ù®•½´ªMØ;L6Ã(..îØ±ãèÑ£ím©üD*¹Êôؼyó"##MËœ8q™»ª­·Ý® í Ìb%®m6ÍJ%öv²_©2]z÷¾vÝGÝ”··÷Ûo¿½~ýú¸¸¸˜˜˜·ß~{Ë–-÷Þ{¯Bù¿™K—.%''?ðÀÏ?ÿ¼©0$$äoûÛ;w¶lÙâL0]»vBœ9sÆúbæ¾ûî?~üÈ‘#/^¼¸sçN!„O@@@å#‹ÅÅÅBÓY{«•QZZ?vìØ .L™2eûöí6OôX_E¦-vmÔ±¦ùùùÕ«WO«ÕöëׯbùÀ…§OŸv¬íBz åÉ„aW¨2mw³Þ°ç]ýÞn—gq/µ¾ —ÓÖ­[oݺ5tèP{[*3‘º¶»<¸~ýú‰'Ê?!ܱ¶«˜kç@+M³^‰m±÷+U†[}ê«×8ºµ‡z衇2ýS9®Þ®]»ÊK^¹rEXzžˆòK’×pÆòòrF£\Jl¢<¿ÀßßßlùÌÌÌ„„„Þ½{4¨b¹r7Üï¿ÿ®ü³qãÆYYYÅÅÅ/ÎÎÎVÞª†dµÖ•——¿ôÒK»ví8pà¼yód2T™U¬·Åf .iš¢Q£Fׯ_×h4 •ÛÊÊÊl†aï@;F¦?&ëmw N™Þ°§K>€ÕÖíÖÙÜKe6áÚaÚ¸q£V«5»õU¾¥V&R绫rï !V¬X±bÅŠŠå_ýõ×_móG_$Û®b`NÎ2M“™Hk‹üWª ÷ùÔW3Ž8º©7ß|süøñ………¦’Û·oïܹ388¸ò…ÃBˆ°°0ooïÌÌL£ÑX±<##CñÀÈl4'''**jìØ±fåiiiBˆˆˆ³ò |ñÅ›7o6+WžŠ×¢E åŸ 0 ?ýô“i£Ñ¸wïÞ   Ž;VC²ZëÖ­[·k×®Q£F-_¾\òË@fëm±YƒKš&„èׯ_qq±Ù¡Aå‰b­[·¶†½í™þt`˜¬·Ý8ezÃfœ.ùº„]jÆæ^*³ SFFÆÉ“'û÷ïoviL6'Rç»ËLóæÍŸøOʹ!!!O<ñDïÞ½]Òvsr”išÍJh‹½_©2ÜçS_ÝÔ>W^ÛUuåÄÒ¥Ku:ÝìÙ³•–••ÅÅÅétº?ü°ªª”‹-–.]júa†3gÎtëÖ­mÛ¶YYY’ñ<ûì³:.))ÉTräÈ‘:ôíÛ×ôÿŠQñJ¦S§N)Õ]¾|Y)ÉÏÏoݺõc=fº:ê£>Òét‹-ª* ™j­(//8p`§Nôz½dÃ%W±ÒÉìjZU»Ç¯¿þªÓé†~åÊ¥äرc;vìÒ¥ËåË—e°k ¸ÆQ¦7&ëm/,,´¾nU ±Þ’q:ótÕ5ŽöviUÛµ²—^ºtIfv “õæ¯\¹R§Ó­_¿Þ–ZŸHØ)g®q´ØvWéÀ5ŽFWÌÖ›æØ´`³“øJ•é —|íÖ8œªvS&LøöÛo7oÞ|úôéÐÐУGtëÖíÅ_¬j•·Þzkذa+V¬Ø¶m[TTÔ•+W~ùå—òòò¹sç¶jÕJr»o¼ñÆ„ æÎ»~ýú–-[æçç§§§ûúú¾ýöÛŸ“÷Ö[o5jÒ¤I;v¼ÿþû/]ºtøða!Ä¢E‹L·¿…„„Ìœ9sáÂ…ùË_zõê•“““ššÚ¦Mëm±Y­—/_V~zxôèÑ•ß:tè˜1c[ÅJ[$kp²iŠÈÈȸ¸¸÷ßÿ±ÇëܹsIIÉ¡C‡4M|||yy¹Lö´½dzÃa²Þv‡¯U²Þ—.]’Yç?€ÕÐí2õXÙKF£Ì&\8LÊ…˜~Æ®–ZŸH]Õ]wŶ«Ëù9ÐzÓîÒ 8ð•*Ã>õÕÄÑMÕ¯_Æ |ðÁ?þ˜Ý¢E‹gŸ}vüøñ¦ŸKª,88xÛ¶m}ôѾ}û~øá‡   >}úLš4É® 8Z·n½eË–Å‹ÿüóÏ™™™¡¡¡C† ™:uªò|üÊ|ðÁo¿ývÙ²e'Nœ8uêT“&Myä‘É“'+Où7?~ü}÷Ý÷å—_nÛ¶­iÓ¦cÆŒ™>}ºògª­J^^žB¯×Ÿ8q¢ò»¯Ô–_¥ª¶(§álÖàdÓL&Nœ¼víÚýû÷ 0`Ê”)ááá’aØ;Ðö’éO†ÉzÛŽÖzoHÆé’`5t» +{©ä&\4L·oß>räHƒ ÌNüI¶ÔúDêªîºKªj»êœœ­7í. Š_©2ÜáS_ý4Æÿ<7XÄÍ1Bâ)$ŽBâ)$ŽBâ)$ŽBâ)$ŽBâ)$ŽBâ)$ŽBâ)$ŽBâ)$ŽBâ)$ŽBâ)$ŽBâ)$ŽBâ)$ŽBâ)$ŽBâ)$ŽBâ)$ŽBâ)$ŽBâ)$ŽBâ)$ŽBâ)$ŽBâ)$ŽBâ)$ŽBâ)$ŽBâ)$ŽÔ´uëÖ¯¾úꫯ¾º|ù²©påÊ•F£ÑtéÒ¥Ú"yýõו:Ô™eœTTTôâ‹/6kÖÌÇÇÇßßÿÖ­[ÕÖ&ñññJ3 Tý[àÎ|Ô@­öì³ÏÞ¼yS±{÷úfÏžýñÇ+¯•ž÷AâÀíøûû‡…… !š6mªv,Õm×®]Ê‹^½z :´nݺjGÿ‡Ä@uÈÎÎ ¹çž{d5jÔ¨Q£ÔY¿ÿþ»òâÕW_}â‰'Ôþ×8°Ã­[·æÍ›÷ç?ÿ¹qãÆ78pàk¯½V\\\q™Š^¼xqôèÑÁÁÁ-[¶lܸñ;ï¼cZlöìÙÆt6vàÀF¹¤¯ò5ަ:‡~öìÙÑ£G‡……ÝÿýÏ>ûìñãÇ…©©©#GŽ »÷Þ{ûõë÷Ã?T ©¼¼|Æ ýúõkÞ¼y½zõš7oÞ·oß5kÖܹsÇ%Ýòûï¿O›6-::Úßß¿U«VO?ýô‘#GÌ–±ÃåË—srrÊËË•^¿~=''§¬¬Ì…ÃQVVöÆoÜÿýo¼ñ†iÜÜÜ‘#G7iÒä©§ž:tèÃÍ´¹-5žä}ºiyÓGÉfZÙÏÀGR¾ýö[åÅÔ©SM—¶k×...ÎlŸ+V(7Ä„„„¼ýöÛJùþýûoß¾íX;wVN¤Ö©SgøðáJa``àÔ©S…^^^Ï<óŒRxýúuåÅÈ‘#§M›¦”—””(¯¯^½êL·(GO…/¾ø¢©ðùçŸ÷ööBäææ;vìnÄàÀpøúú~÷Ýw£G~øá‡[¶l)„X¿~½òÖ”)S~øaåõÂ… 5jäX3­l €gà®jR222”>úhÅòGyD9•™™Y^^îåõ޶mÛ644ÔôOÓŠF£ñܹsQQQ„a:-„ÐjµÊ‹FcVh¶Ýk×®íܹóðáÃiii‡ª|&×1gΜ±Ø-&™™™>ø Ëcp`8:vìb1øŠú®[·î#<’˜˜è@3­l €g q`[qqqQQ‘òÚìÙŠ¦LîöíÛ¿ÿþ{ÅwÍîºðõõ Pê¹xñ¢c‰£)A¬¨bzTYiiéìÙ³?øàÓÊZ­¶Q£F—.]r¾[l>£»°°Ðå186f7ݼyÓ´u³‘ª˜îÛÕ̪¶Àc8°­Aƒ¦œ¯   âͼÊ‹ºuëÞwß}×2=’P¡×ëMOŠQžï]=âããßÿ}!DË–-_~ùå=zDEEÅÆÆ®^½Úùnñ÷÷WîÚµËâ9Y¥O\ƒcÃa–skµÚºuë––– !.]ºôÀ˜Þ2e¥ö6³ªmð\ã@ŠéÖÓO›˜ý3<<ÜÇç?þ=yòä… Lÿüî»ïŒF£¢nݺ͛7¯¶ÈW¬X¡¼X¾|ù¤I“|ðAŸ¼¼<—TnÊ·ÊÊÊZU¨œ:wy  ‡ooï-Z(¯wîÜi*7fOÁ”o&Gâ@ŠéÙ~|ðé±Ï'Nœx÷Ýw•ׯ“S”––N™2E9¦UPPðꫯ*åƒVnª0[øn„}ãÆ ÓYTÓí2¿üò‹“Oá18p òbÕªUJZ,„ؼyó½÷Þ¬<ÝænÄàÀpTÖ¹sçÊ•,X°à×_u ™.éOnŽSÕ¤¼òÊ+Ÿ|òINNNQQQÏž= àíí½{÷nå·^š6múúë¯W^ë‹/¾hÑ¢Eddä¡C‡”óÔ^^^ÿøÇ?L *×Ïý¿ÿ÷ÿNž<9mÚ4³Gy;©~ýúõë×W61a„õë×k4š;v¸ê7cfÏžýñÇ_»víË/¿ìß¿Ÿ>}NžíX3]8jÜGHÑjµIIIÊõmz½~ëÖ­_}õ•’¦4oÞ<))©Aƒf«ôîÝûOúÓ… ¾ÿþ{%kTÐSñ¶˜>}ú(/~þùç™3gºü¸£F£1ýâsIIÉ×_ýÕW_5kÖ¬_¿~J¡é¢@Ç­Y³&00PñÃ?¼ùæ››6mÒëõBˆØØØùóçߥŽÊÚ·ooú}—ÒÒÒŸ~úéôéÓ~~~<òˆÍP8Õµk×cÇŽ½þúë hܸqpppÿþýçÌ™süøñž={V^¾aÆ)))/¾ø¢N§kܸñÓO?ýÝwßMœ8±â2K–,=zt£FüüüÚ¶mkýþhÇ,Y²¤]»vB//¯öíÛϘ1#--í¿þë¿”wׯ_ozÖŒc|ôèÑ^xᡇòõõmÙ²åСC÷îÝûᇚî¹1Ø;­^½zòäÉÊëFýå/Ù½{wïÞ½k&§1]­.ñú믿õÖ[Bˆ!C†lÙ²Eíp„âÎ;[·nB :´6ÇP•Ç'''Oœ8Qæ8%€ÚŒkx¾:uꨞ®¹C Uéܹ³éF°‚SÕBâ)$ŽÂÍ1ÂGH!q€GH!q€GH!q€GH!q€GH!q€GH!q€GHñQ;€ê ×ë?ÿüóM›6åååùûûëtºñãÇ÷èÑÃÊ*Æ ;~ü¸YapppJJŠÚ­P‡ç'ŽeeeãÆKOOèÞ½ûíÛ·8°oß¾©S§Nž<¹ªµrssµZmXXXÅÂÀÀ@µ[ ÏO“’’ÒÓÓ;uê´zõj­V+„ÈÌÌ3fÌòåËû÷ïYy•ââ⢢¢Aƒ-]ºTíðÜ…ç_ã¸cÇ!Äœ9s”¬Qk0ª:›+„0;ÜPËy~â˜íççצM›Š…áááBˆóçÏ[\%''GѼysµcp#žªzåÊ•>>æÍú¨ÚmP‡‡?ŽçÒ¥K½zõÒjµ­ZµªüîСCÇŒ#„ضmÛŒ3ÂÃ÷nÝ*„8}úô„  Û´iÓ²eËüüüôôt__ßåË—wëÖÍæF#""¸«x¿ÆQ9ˆ¨×ëOœ8Qùݪn‘iݺõ–-[/^üóÏ?gff†††2dêÔ©M›6U»Aªñð#Žªàˆ#ðH~ÄpÚ‚£(€ G@}|cªÓhø$¶yø]ÕpGH!q€GH!q€GH!q€GH!q€GH!q€GH!q€GH!q€GH!q€GH!q€GHñQ;7¥×ë?ÿüóM›6åååùûûëtºñãÇ÷èÑCí¸TCâhAYYÙ¸qãÒÓÓºwï~ûöíìÛ·oêÔ©“'OV;:u8Z”””žžÞ©S§Õ«WkµZ!Dffæ˜1c–/_Þ¿ÿÈÈHµP×8Z°cÇ!Äœ9s”¬Qk0RRRÔŽ@$ŽdggûùùµiÓ¦baxx¸âüùójG NU[°råJóž9yò¤"44TíèÔ¡1jÇP¤¦¦Nž<ùÎ;{öì ¶¾pDDDåÂŒŒ µ7¥Ñ>…€êø$28âhƒÁ`øì³Ï-Zd0/^l3kT&ÏCâhÍÞ|óͳgÏ6mÚtÁ‚ÑÑÑjG GËJKKß}÷ÝuëÖÕ«WoÊ”)&L0Ýa P;‘8ZP^^þÒK/íÚµkàÀóæÍkÔ¨‘Ú¨ÄÑ‚uëÖíÚµkÔ¨QóæÍS;wÁsÍÆÄÄDÿW_}UíXÜGÍ]¾|977W«ÕŽ=ºò»C‡3fŒÚ1¨€ÄÑ\^^žB¯×Ÿ8q¢ò»ÜX j-îz<Çòxì0àø$2¸ÆRH …ÄR¸9 4µ#pµ¼¸Ä2HB7ÔzÜœª€GHáT5ÜEm¾º¨Ö¶óbP³8Â-pmM-TkÓe¨¹8U )$ŽBâ)$ŽBâ)$ŽBâ)$ŽBâ)$ŽBâ)$ŽBâ)>jP­Î;7hР¤¤¤öíÛ[_rذaÇ7+ NIIQ»UÒhÔŽ Ço4ªw_íJ×­['¹dnn®V« «X¨v ª¤Ñ»¨¦F§¼È«‰cqqñ™3g¾ùæ› 6H._TT4hР¥K—ª;€»¨‰ãàÁƒ/^¼(¿|nn®Âìp#@-W+Çøøø?þøC‘˜˜¸ÿ~›Ëçää!š7o®vàn¤V$Ž={öT^$''Ë,¯$Ž111§NòõõŠŠŠµyK €«‰£½ÎŸ?/„X¶lY‹-ºwŸŸœœ¼wïÞùóç1B¦†ˆˆ³’ŒŒ µ›àG ´Zm\\\LLŒR²ÿþØØØ ôìÙ3$$Äf ¤‰Àóðp >ýôÓôôtSÖ(„ˆŽŽ~î¹çôzýîݻՎ@$޲ºví*„8sæŒÚ¨ƒÄÑœÑh4 åååfåÞÞÞBµP‰£¹œœœ¨¨¨±cÇš•§¥¥ Kw½Ô$ŽBqëÖ­ììì¼¼ú¨ÚÁ¨ƒ»ª…bïÞ½3fÌߺu«â7Þ˜0aÂܹsׯ_ß²eËüüüôôt__ß·ß~[«Õª,€:8âhAëÖ­·lÙ2dÈÂÂÂ;w 2dë֭ݺuS;4ÕhŒF£Ú1xšˆˆˆêŽ£F#IµÐùŽ¡ßÜ ÃöÈàˆ#¤8@ ‰#¤8@ ‰#¤8@ €ê Ñ¨A 'Åî€Äî:žç$7OjÚƒSÕBâ)$ŽBâ)$ŽBâ)$ŽÂs¨>îüLJ7Œ ºGªÉ<žïn8U )$ŽBâ)$ŽBâ)$Ž6œ;w.""âèÑ£j 2ÇcúuëÔ¡örÃ'ŠÕôPyªÀ$Ž–Ÿ9sæ›o¾Ù°aƒÚ±Ôj$:.TS²[€Û"q´lðàÁ/^T; 7BâhY||üü!„HLLÜ¿¿Úá¨ÄѲž={*/’““ÕŽ¥fsòô¨Ã«sŽ—#q¼+"""ÌJ222ÔJ5ÕŸÃq1w‰ã]Q›ÓDà©xŽ#¤8@ ‰#¤8@ ‰#¤8@ ‰#¤hŒü†«EDDTÿs57ý­UsÛÞP—»u‹»ÅCcÝ™'u 'µ¥Ð]î†#ŽBâ)$ŽBâ)$Žâ£v°@£©¦µ¸U È#qtSÕÒ9–ž ¨žï‘êÙ GR$‘8»yÒ9’"k …ÄRH …ÄRH …»ªÀÜݸÅònÔé1÷´¨)Hwç„õ¹‹§f-5å!#<@@õ#qÜšÛ&1d-€ÂÏ?ô…š‹ÄUÏŸvü÷Aâ¨VŽ¥A¥Ü‰# ºq”¨¡x¤pÄÜB5ÜcÁ©[N"qõUÛ=䎨 ·‡CFmI7nܘ”””••åëëÛ§OŸ™3gYY~ذaÇ7+ NIIQ»)Üw;«ãÂSP+Ç%K–|ôÑG~~~]ºtÉÉÉÙ¼ysffæÚµkµZmU«äææjµÚ°°°Š…j7@5žŸ8fdd¬ZµªqãÆ›6mjÔ¨‘">>~íÚµï½÷Þ믿nq•ââ⢢¢Aƒ-]ºTíðÜ…çßU””T^^>}út%kBÌš5+ `ûöíåååWÉÍÍB˜n¬q4ÿI. ðüÄñСC^^^}ûö5•x{{÷îÝûÊ•+Gޱ¸JNNŽ¢yóæjÇî,£ÑÙÿÜ$w´™à:“%`/OFcVVVÆ 6lX±\§Ó !Ο?oq-%q,((ˆ‰‰éÒ¥KŸ>}&MštôèQµ[S«9Ÿ[ÿØäá×8–”” †Ê7µ!®^½jq-%¡\¶lY‹-ºwŸŸœœ¼wïÞùóç1Bf»f%jw€S<ÜËËë_ÿú—r]£bÕªU………O?ýt:uÔŽ@£Ñ¨v î(!!aáÂ…Íš5ëÕ«WNNNjjjTTTBBBåÇôÔ$ŽUúæ›o¾üòËcÇŽ5mÚ´k×®Ó§OWžÈP;‘8@ ×8@ ‰#¤8@ ‰#¤8@ ‰#¤8@ŠÚà”––®Y³fûöíÙÙÙAAAíÚµûûßÿnW%Æ ;~ü¸YapppJJJU«\¿~}éÒ¥‡ÎËË»ï¾ûÚ¶m;eÊ”–-[š-¶qãÆ¤¤¤¬¬,__ß>}úÌœ93((Èl™sçÎ 4())©}ûö•7tüøñ•+Wžÿüó¶mÛš[²dÉG}äçç×¥K—œœœÍ›7gff®]»V«ÕV¬mݺuUmhÏž=S§N-//o×®]xxxJJJLL̇~Ø¿!DYYÙ¸qãÒÓÓºwï~ûöíìÛ·oêÔ©“'O¶·uV°¾ŒL’¡ÚU§c«X™$‡Þ½E¾Ã…z½~Ô¨Q¿þúkhhhß¾}³³³¿øâ‹cÇŽ­Y³&88X¦74MdddåšKKKÏž= ¹oHîä’;˜Ñh|õÕWM?vïÀžP¹É0˜LlŽ‚]lFn‘]ãèX—:ü©—ïR+û†½“³°5m:лÚb[l“ä È7­ª.•ŸŽªªÁÉYr¬=Ÿnà³Ï>ÓétÓ¦M»sçŽR²ÿþÈÈÈGyD¾’¢¢"¥ùUÞzë-N÷þûï›J6oÞ¬ÓéFŽi*9}útëÖ­{õêõûï¿W\ëÿø‡i»‡zã7t:N§KOO7ÛÊõë×;wîܾ}ûÇ+%GmÛ¶mtt´Á`05ÿÙgŸ-))Q8sæL×®]###ýõWÉÖÙ Ãæ22aÈ,co¬b}Pdjzö{%>>^§ÓÍ›7¯¬¬L)ILLÔét3fÌp¸‹/ŽŒŒ<~ü¸L6wrÉÌ$!!AYìå—_v¬!•k ÃÉÄæ(Ø¥ªÈSq-¶Ôf—ºêSo¥KmŠ“³ÍiÓÞh»öóÊÃ$†LÓl†as:’ü¤Ø;·8Ö?†kÝ‘#G„cÇŽõñùŸcÀÝ»wŒŒüí·ß®^½*YInn®Âì/Zë~þùg­V;iÒ$SÉSO=Õ¤I““'O ¥$))©¼¼|úôé5RJfÍš°}ûöòòr!ÄàÁƒG½aƪ¶²yóæâââØØØN:)%>øà Aƒ •s7;vìBÌ™3Çtt'<<<66Ö`0˜ÎãØlÍ0l.#†Ì2öÖéÀ*ÖE¦™¡w`o±«ÃFãÆƒƒƒgÏžííí­Ž=:::z÷îÝ7nÜp¬…§OŸþøã'Nœ¨{°¹oØÜÉ%w0Effæ’%KZ·níðž`±É0ìLdFAž•È`6Žf$»ÔùO½Í.µ9(LÎ6§M{"9Ðòû¹Åa’éO™¦Ù Ãætd³ÇæúÇópªÚ-4mÚTQqZ7ׯ_÷òò2MU6åää!š7o.¿ÝÀÀ@NW¯^½Š…÷ÜsOiiiii©òq:tè——Wß¾}M x{{÷îÝû›o¾9räHçÎãããÿøã!Dbbâþýû+oåÇÔh4C† ©X¸hÑ¢E‹)¯³³³ýüüÚ´iSqåú¡óçÏK¶Îf6—‘ Cf{ët`ëƒ"SƒÌЛq`ëž——WRRÒ¹sç{î¹§by×®]÷ïߟ’’òØc9Ѓáµ×^kÕªÕßþö7É}ÃæN.S‰¢¬¬ì•W^ š5kÖ¸qãØªªA²-öN&2£ äXÜ^•ÇÑŒd—:ÿ©·Ù¥6ÅÉÙæ´ioC$Zr?¯j˜dúS¦i6ð9Ù¬Á¹ÅþñH$ŽnáÉ'Ÿ\»vm||¼¯¯o‡®]»¶bÅŠ¼¼¼‘#G6hÐ@²en*((ˆ‰‰9uꔯ¯oTTTll¬•KwÍJ:”››Û¡C%0YYY 64»zZ§Ó !Ο?ß¹sçž={*…ÉÉÉ·râĉ   &Mš>|8--íúõë­[·8p )ÕX¹re寴“'O !BCC%[g3 ›ËÈ„!³Œ½uÚ»ŠÍA‘٨͡¯ÌU¬w¸———B¯×›•—–– !.]ºäX~öÙg'Ožüä“OêÔ©#†ÌNn³“þóŸ§NJHH0ûäÊ7¤ªdÚ"ìŸLdFA’õÈíUyÍHv©óŸz›]jsP˜œmN›ö6Dr %÷óª†I¦?ešf3 ›Ó‘͘[èDâè"""Ö­[7nܸЦ3æµ×^“¯Dù#iÙ²e-Z´èÞ½{~~~rròÞ½{çÏŸ?bÄë릥¥mÞ¼9;;;--íOúÓÂ… •ò’’ƒÁPù nåZu™Ó襥¥7nÜxàæÏŸ¿~ýzSyhhèÒ¥K•3PQQQfk¥¦¦®Zµêž{î1ýUêLë$É„!³Œ½uÚ»ŠÍA±k£U ½¬bQHHˆ¿¿ÿ‰'.]ºd:G|çÎ]»v !._¾ì@ÞºukÅŠ]»vŽŽ– ÃùÜ$==ý¿ÿû¿ÇŒ­|™H6ÄJ ’ìLdFÁɶ;@føp9V‰óó³½Ó—Ì´ioC\5ÐÖ‡Éf4Í:‡§#—ì?µ×8º…âââwÞyçÖ­[mÚ´yæ™gþüç?kµÚ/¿ürÏž=ò•hµÚ9sæìرãƒ>ؼysBB‚Ï‚ .\¸`}ÝŒŒŒM›6>|Ø`0´iÓ¦nݺJ¹ò穟ŸŸÙòõë×BÙŒJ¹t&++kÛ¶m .}ú¤¤¤8Ö:‹a˜±¾ŒLö†jïòVV‘ÉZzëì]¥ª/++›5k–®‚¾}û*úlÙ2{;°¸¸¸cÇŽ£G¶+ »vr+m™7o^dd¤©üĉï,¶Òɬ‡áÀd"? U±+r›lŽ£|—Êô˜ÍJä»Tfò1±29Û5mÊ7Ä®¶ÙëÃTUö6M¦K­OG6kp`r– ÌSqÄQ}—.]JNN~àžþySaHHÈßþö·;wîlٲřʻví*„8sæŒÍ%5Í}÷Ý7~üø‘#G^¼xqçÎBŸ€€€Ê]Š‹‹…¦óVøùùÕ«WO«ÕöëׯbùÀ…§OŸVþYZZ?vìØ .L™2eûöí2§å['I& {Cu iÖW‘»6jqè­s`‹¼½½ß~ûíõë×ÇÅÅÅÄļýöÛ[¶l¹÷Þ{…ÊÿíjËÖ­[oݺ5tèP»bp~'B(6kz'W‘÷ÐC=ôÐC¦*çÎÚµkgonܸQ«ÕÊß,ÙŸ25dff !V¬X±bÅŠŠå_ýõ×_þõ×_Ûë5Xüé3ÎL&VFÁɶËD^‘ä8:ðár ççgǦ/›Ó¦Ã½áð@›±8L2aØÛ´Ê\2¹dÿ©8⨾°°0ooïÌÌL£ÑX±<##CñÀÈT’““5vìX³ò´´4!DDDDåU4hðÅ_lÞ¼Ù¬\yäX‹-”0À`0üôÓO¦ŒFãÞ½{ƒ‚‚:vì([¿~ýŠ‹‹Íþ°V¦<ïmݺu»ví5jÔòåË-~zhl†!¹Œ3ËK®b}PlÖ 9ôN®"ãÍ7ß?~|aa¡©äöíÛ;wî V.]—ïÀŒŒŒ“'Oöïß¿òÕŠ69¿“7oÞü‰ÿ¤Ü}òÄOôîÝÛfClÖ †c“‰ÍQp²ív…ü8:ðár ççgǦ/›Ó¦½áä@›5ßâ0É„aoÓ*sÉtä’ý§–Rû\9ŒÆÿ½†féÒ¥¦çæŸ9s¦[·nmÛ¶ÍÊÊ’¬äÙgŸÕétIII¦’#GŽtèСoß¾¦'ã›úH§Ó-Z´È¬¶ª®ùøõ×_u:Ýðáï\¹¢”;v¬cÇŽ]ºt),,,//8p`§Nôz½KZçØ5Ž2aH†êðòò«XÉd†ÞùUlÊÒ¥Ku:ÝìÙ³•–••ÅÅÅétº?üÐÞ\¹r¥N§[¿~½aÈïäFék›*^ççÀž`tîG»&ë£àg®q”GǺԱO½]]ZÕ 809[Ÿ6ë »Úú~nq˜$ð«iU…!?Y¬Á±¤|ÿx6NU»…·Þzkذa+V¬Ø¶m[TTÔ•+W~ùå—òòò¹sç¶jÕJ²’7Þxc„ sçÎ]¿~}Ë–-óóóÓÓÓ}}}ß~ûíªýõÖ[o5jÒ¤I;v¼ÿþû/]ºtøða!Ä¢E‹L·•…„„Ìœ9sáÂ…ùË_zõê•“““ššÚ¦M›_|Q2°ÈÈȸ¸¸÷ßÿ±ÇëܹsIIÉ¡C‡4M||ü½÷Þ{éÒ%åW\G]yÝ¡C‡Ž3ƱÖÙåòåË6ÃYÆÞ:Ãú HÖ 3ôì-öš0a·ß~»yóæÓ§O‡††=z´   [·nÊÞeW*?ö`ú- »8¿“[çÀžà0&ë£PÍ$ÇÑ%]*ÿaqr~v`ú²>m:Ö´Åa’ î¦UÅÉé¨:?’ž‡ÄÑ-oÛ¶í£>Ú·oß?üÔ§OŸI“&ÙuÝIëÖ­·lÙ²xñâŸþ933344tÈ!S§NU~öÀ¢|ðÛo¿]¶lÙ‰'N:Õ¤I“GydòäÉÊÓóMÆß}÷}ùå—Û¶mkÚ´é˜1c¦OŸ®<¬DÒĉƒƒƒ×®]»ÿþ   L™2EÙJ^^žB¯×Ÿ8q¢òЦK•h]d ծ:^¥ªAQÎøØ¬Arè+r`›êׯ¿aÆ>øàÇÌÎÎnѢųÏ>;~üxåò/ùÞ¸}ûö‘#G4h yiGeÎïäV8°'8ÌÉÄú(T'ùqtI—JVâüüìØôeeÚt¬!®誆I~Pä›V'§£êüHzñ?¯Û,âæH!q€GH!q€GH!q€GH!q€GH!q€GH!q€GH!q€GH!q€GH!q€GH!q€GH!q€GH!q€GH!q€GH!q€GH!q€GH!q€GH!q€GH!q€GH!q€GHùÿÚ ³–Þ« IEND®B`‚statistics-release-1.6.3/docs/assets/dendrogram_501.png000066400000000000000000000514701456127120000230050ustar00rootroot00000000000000‰PNG  IHDRhŽ\­ARÿIDATxÚíÝ\Í÷ÿÿñç)¢¢üˆ”a¡süÌÊ[˜~ÚXHÍ7+Ëd¿Øòkèm³ÑæÍÆÞ¶ùµ·foŠl(–˜a…#?’+T’¨‘~Ÿï¯Ïû|ϻȳ¤S¹]/þxçy¾^¯çyô¢»×óõz•V«À£z¨ŽBp€‚#¤ …à)GH!8@ ÁRŽBpÄSç£>R©T*•jذaÕ°»o¾ùFÙ]¯^½ ýÑEDDĶmÛ¶mÛvóæÍŠ®[mu«žŠ=N)¶zúY? óçÏW>à AƒÖ§ÒÇI•`Õü7xJÔ3ôT??¿»wï !öìÙó /z8µ¸TÀÓ‰à}zÏž=5jôÜsÏ}÷ÝwZ­¶TŸ{÷îÍ;wÀ€ÖÖÖÖÖÖ/¾øâ|““£ßGÿjª¢¢¢9sæ<óÌ3sæÌºîÍÆÆFõ¥.«è®oß¾=}úô^½z5nÜø¹çž[°`Aaa¡Òíý÷ßW©TÊìªâÅ_T©T÷îÝS^–””lÚ´ÉÓÓ³]»v 6l×®‡‡Ç÷߯[½Bª¼bŠ7nL™2åùçŸoܸq‡FŒqüøñê/E9«?läUøs|™Ÿ`Ew‘’’2zôh++«V­Z >üèÑ£•8*w€¥¦¦tèÐÁÖÖvÔ¨Q(Ûç‘Çî\¹ÒÅÅÅÖÖ¶Q£FÝ»wøã?*ýÑ€§ŽxÊ|øá‡ÊÁïááÑ©S§R#¾øâ ýÎqqq:t(û§M›6û÷ï/»Í—_~ùµ×^S–?üðC­V»råJååßþö7¥s«V­ö÷ÑË˫һöððèܹs©Îÿûß•n³fÍ*»©»wï*ïŽ5êã9rä?c9å}Ójµ{÷îµ¶¶.µM•JõÞ{ïUs)ÊYý#¯ÚŸãÃTè'(³‹£G–:P7nºO¡¨Pp¬ÜðZ¶léææfnn®¼466>sæLåŽÝHt-¦¦¦¾¾¾“&MêÝ»·îcž;w®ºÿ1j!‚#ž:ú¿Ÿ–,Y¢4®_¿^×xòäI¥ñã?VZ,,,t¿SO:eee¥´Ïš5«ì6»té²~ýúÇ_ºtIû³P:wîܱ··W:X[[_¿~ýqv½lÙ2¥ñܹsº@ *¥Q£FJãž={tJãôéÓu={öT-ZTjGåÇ'T±>ø@iÑ?AµlÙ2¥±mÛ¶Õ\Ї­^väOèçXJE‚ÜÅŠ+”–Æ>|Xiœ:ujå‚c%†7tèм¼<­V›’’Ò±cÇR¬èñ [±_¿~JË?ÿùOÝŠ (UåàG<½:wîR–‡ 6sæÌÇÜu©ñ—zYŽ‚‚‚÷ßéÒ¥EEEJ‹©©iË–-322*TÏ'T±œœÝ-Ì“™™YÎg¯þRþøãœœœÕ«Wççç !´ZíñãÇ?>þ|WW×ððpÝ¥“†©jàÁ,,,,--•å´´4ý·t/MLLJý¦‘Ì()))~~~Ê {{ûuëÖ=þ®+mþüù_|ñEQQQûöí¿þúë?þø#''gèС5¤b7V–wïÞ}ñAüüüjT)§ ¶©©©‰‰‰²\*Ûérð^zzºþËû÷ïëöÛ¶mÛÇ9êׯ¿|ùò›7o†††Ž3¦iÓ¦º·<¨ÿŸ7CpJ£Ñ( »wïÖo×½´··×])/??Ĉ·nÝB˜™™mݺÕ¢zvý@_ýµ²°bÅŠ‰':88Ô«WïÚµk5§bºÛ#ŠŠŠ:èiÚ´i“&Mš4ibjjZÓJñD òD‡mlllgg§,GEEéÚµZío¿ýV Ã;sæLjjªî¥n &&&ÊÍÝ•;òóóoܸqãÆüüüQ£F­_¿>###::Z7IýÀ§E(…à<”î©uK—.Õ=[8!!áóÏ?W–K=¯[RPPбcÇ”åU«Vé?šäIïZ§  @Yøë¯¿tózwîÜQâããýõךS±_|QW.íŸÐÞ¼ys++«gŸ}öq.C|ÌRèV¯Î‚è«ÚŸ âoû[Ùa/X°àìÙ³Õ0¼ÂÂÂI“&)ÏOKKÓ=8sèСÊí/•;Î;תU«V­ZÙØØ\ºtIQ¯^½_|ñõ×_W:4iÒä1ÀÓ€k‡ þî»ï’““³³³]\\^xáccã={ö(_bcc£»HQÞ¯¿þºzõje¹E‹‡>|ø°î]ssóÏ>ûì íZѤIåú°yóæ9sfÊ”)5jÔ¨‘Òøúë¯oܸQ¥RýòË/•ûΘ'4ì÷ßõêÕ·oßþùçŸû÷ïïîî~æÌÝýÈï½÷žîöŽj+EÙÕëׯ_mÑWµ?AÅÌ™3ÿóŸÿhµÚ;wîôíÛ·wïÞ7oÞ<þ|µ oëÖ­vvv:uŠ‹‹SR ±±ñüùó•w+w<888X[[߸q£¨¨ÈÅÅÅÛÛ»Y³fþùçöíÛ•Æ {ÌŸð4àŒ#ðP¦¦¦aaaÊ3bîß¿±mÛ6åW~»víÂÂÂÊN1?ÒíÛ·uË7oÞ\þ¿Ö¬Yóäv-„pwwW:4sæÌ‚‚•J5dÈ¥177wûöíÛ¶mkݺµ§§§ÒXêâ¼ê¯˜¢iÓ¦ßÿ½rBè·ß~ûøã·lÙ¢}ÚÅÅ¥ÖíúË/¿3fLË–-ÍÍÍ»uë¦ÜWþå—_vïÞ]addÔ£GiÓ¦8qÂ××WYeãÆº§Ÿ°bC‡ýã?Þxã '''33³öíÛ6lÿþýÿþ÷¿åoš®ÂR>>{öìqss«†áyxxìß¿èСÏ<óŒÍ¨Q£~ýõWÝSÄ•;úôésñâÅ>ú¨W¯^¶¶¶õë×oÚ´©‹‹ËêÕ«ýõWåɑʧÒ] à©UXX!˜­«µ¥xBÃ>vìØ¾}ûÞ~ûíÇ<3ZK«  ,‚#¤0U )GH!8@ ÁRŽBp€‚#¤ …à)GH©gèT™äääU«V%$$\½zÕÔÔ´M›6}ûö |̯\‡‚ïªuÄöíÛgÍšU\\Ü¥K—¶mÛæææ&%%¥¥¥5nÜxýúõ:u2ôk=‚#¨ ®]»6dÈúõë¯ZµÊÉÉIi,)) ýøãÛ´i³k×®zõ˜k},\ãê‚#GŽäååèR£ÂÈÈÈÏÏÏËË+%%%11±ìZ………œD“GîuAZZšÂØØ¸ì[cÇŽÕh4&&&ÊKÿÛ·o¯Y³fÖ¬YqqqÆÆÆmÛ¶9rd`` ‘ÑÿS+,,ü÷¿ÿ“””dkkëàà0eÊkkkÝ6Ëïàè蘛›[v$[·nýþûï·mÛÞ­[7]{tttPPÐøñãÿñºå!8€º {÷îBˆ5kÖ4oÞÜÇÇÇÜÜ\÷–“““þiH!D^^Þo¼‘ýòË/«Tª¨¨¨E‹N˜0A‘=nܸ³gÏvìØÑÝÝýêÕ«áááû÷ï_³fr¡ä#;êïnÆ B //¯mÛ¶EEEéLjˆ!„¡«ø(Z€:aîܹjµZ­VwíÚõÕW_]¶l™2]ª›ŸŸŸZ­öööÎÊÊRZ.\¸Ð¹sç!C†(/?ùäµZ½víZÝ*»wïîÔ©Óo¼!Ù¡”©S§ªÕêüQ«Õæçç;99 0@÷î½{÷lèú=×8€:"$$dóæÍãÆëرã±cÇ–-[àììp;×®]BÄÄÄÄÄÄ”}7--í¯¿þ*¿ƒnùüùó3gÎlÕªÕòåËëׯ¯kwuu533‹ŠŠ ºsçNLLL¯^½lmm ]àG#8@µâ¹@åh4!ËéðüóÏ›™™• s 4˜9sæÖ­[/\¸ ³#åÎè   I“&=°C\\\ùYYY'NÔjµ+V¬hÞ¼y©!yzzFFF&''ÇÆÆÕŠyjÁs@Ý Ñh233?^ö­ôôt!DëÖ­e¶Ó¾}{ñßt¨oÆ óæÍËÎÎ~d!DaaaPPPjjê§Ÿ~Úµkײ{ñòòBìÞ½;22ÒÄÄdàÀ†®Ÿ‚#¨ ”[U¦M›¶oß>ýöÄÄÄ÷ß_1fÌ™íXYYy{{ÇÅÅ­_¿^׸wïÞO>ù$..ÎÒÒò‘„sçΟ0aÂàÁƒ¸777SSÓ°°°cÇŽyzzÖ–¯ÒfªÔ/½ôÒ¬Y³>ûì³ &XXX<ûì³ 4¸~ýzZZšòå$ŸŒàààS§NÍ›7/,,L£ÑܺuëСCfff .”é°wïÞððp333­V»dÉý-÷íÛ×ÙÙYѰaC]»v !jË<µ 8€:#00ÐÙÙyÓ¦MG½xñbIII³fÍ}zûöívvv¥žC^êOVV–rÁ¥J¥ 6ôp*†àP}ÌÍÍÇŒsçÎáÇ»¸¸z8ÃÍ1P}¸9¨´ºwsLmÄÍ1Bp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€”z†<.•ÊÐ#€§Á@] Õzrȸj5¦ª …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBpuGrròìÙ³}}}œœúõë÷Ê+¯,Y²$''ÇÐãú?óæÍÓh4üq©ö~øA£Ñ<ÿüóZ­V¿ýÖ­[¦S§N·oßBøûû;88”³ý™3gj4š7n<¡ñ@±}ûöAƒmÙ²ÅÈÈÈÕÕµK—.ééé_ýuÿþýÏŸ?oèÑ !Dß¾}…ñññ¥Ú<(„¸uëÖ™3gôÛOœ8!„Ðh4M›6­ÄînܸѥK—9sæTÕøëU{Ū޵k×>úè#33³U«V999)%%%¡¡¡üñ¤I“víÚU¯ž“³³³‘‘QRRRNNŽ………ÒXPPpôèQ“‚‚‚tëÖM×ÿøñãBˆ>}úHnÚ´i¯¿þzóæÍu-ÅÅÅ%%%U5~Î8€ºàÈ‘#yyyºÔ(„022òóóóòòJIIILL,»Vaaa©Ùá'Ê¢K—.%%%'OžÔ5;vìþýûþþþÆÆÆÐï_ÑàhkkÛ©S§'— Ž .HKKB—}kìØ±S§N511Q^úûû4(55uìØ±Ý»wïÖ­Û AƒÖ¬Y£fîÞ½{Ÿ~úéðáÃ}||æÌ™“••¥¼õÞ{ïi4ýéæ &h4šÉ“'ëZbcc5ͤI“ʦìlõï¿ÿ.„>>7nÜX´hѪU«”wÓÒÒ|}}×­[———çîîndd:tèФ¤$!„’Æ:¤t.))QR`\\œîäe\\œÂÝݽì8ËǃZXXtëÖÍÍÍ­¸¸8&&FiOHH(((èÖ­[£FtKJJ&Nœ¸eË{{{//¯ŒŒŒÏ?ÿüÛo¿-»£ÁƒO™2Eáèè8gΜž={ !²³³GµbÅŠ»wﺻ»7lØ0<<|øðá²×€j –«Eÿ’ Áþð§òiîܹjµZ­VwíÚõÕW_]¶l™2]ª›ŸŸŸZ­öööÎÊÊRZ.\¸Ð¹sç!C†(/§OŸ®V«—/_®[%44T­V7N«Õfffj4å­sçΩÕê~ýú©Õê .(£GÖh4e™››Ûµk×îÝ»hµÚŒŒ µZ=yòd­V› V«ßÿ}¥ç·ß~«V«/^\jä¾¾¾·oßVZΜ9£V«‡ª¼œ={¶Z­NOOW^¦§§«ÕêÙ³gë¶ðÉ'Ÿ¨Õêµk×êZvïÞÝ©S§7ÞxCæ1Î8@õÑjùÃþTòZ­yä_±Í›77®cÇŽÇŽ[¶lY@@€³³óŒ3þüóÏR§OŸ®»UÙÞÞÞÎÎ.33S‘™™aooÿÎ;ïè:5ªOŸ>±±±IIIÍ›7ïÚµëÉ“'ïß¿/„8zô¨â­·ÞB9rDqÿþýÓ§OwéÒ¥E‹eijjêè蘟ŸŸ þ{?µ«««¢K—.VVVÐjµâ¿8öîÝ»Ôf̘ѤIe¹K—.­[·¾uë–Ì?A9997ntrr Ô50ÀÛÛûÀ)))ÜÁÔï¿ÿþÏ?ÿ|äÈ‘•+WŽ;ÖÂÂbÇŽ#FŒ(5ëèè¨ÿ²aÆÊ•+W´Z­«««J¥Òïàââ"„¸|ù²ÂÝݽ¨¨H™n>zô¨••Õˆ#Œ•êãÇ=pžZ¡?[­\àøüóÏ !T*•‹‹ËÍ›7•ûxNœ8Q¿~}ý{}=zôÐiff&YœK—.›ššnú_ùùùºV>Çê‚û÷ï«T*]þ³°°ðôôôôôœ1cFHHÈÖ­[¿úê«•+W*ïZ>p;éééBˆ²' ­­­…©©©B77·+V:tÈÅÅ%>>ÞÙÙÙÜÜÜÁÁáÈ‘#Z­V9ïèááñ°¡öéÓgÉ’%ñññãÇíСƒ­­­ò–››ÛÏ?ÿ|àÀ† feeõêÕËÔÔT]“ÆW®D×®]BÄÄÄè.£Ô§Ü]T>‚#¨ žþy33³²‘¨Aƒ3gÎܺuë… d¶ÓªU+!ÄÍ›7KµgddˆÿÆG‡&Mš:tèÊ•+™™™Ê]Ï}úô9qâDRRR\\\³fÍ”›u¨GfffñññgΜ¹}ûöСCuo¹¸¸|øpÝ5‘ì „¸}ûv``à¥K—z÷îíèè˜0gΜ>ø@y×ËËK¥¿ßˆˆ!„¡ËV1GP¸»»ûùùåææ†„„ôîÝ; `ùòåqqqùùù嬵téÒ³gÏΚ5+22òË/¿Ü²eËòå˳²²/^,ÙAqûöm“-[¶üðÃk×®ŒŒ´··?räˆÂÅÅ¥Q£FúÁ177÷·ß~ëØ±cçÎ ]¶Š!8€:"$$dóæÍãÆëرã±cÇ–-[àììÿüóRûR’«¥¥¥~ ¬]TÚšví+TP ¼Š¨íjà_+FS _6] þþþ'Ož<{öì#{ÆÅÅøùù=,ÅÖ|œq¨?ýô“¨ÍóÔ‚kž¨’’’¼¼¼Ó§Ooß¾ÝÎÎÎÑÑÑÐ#ª<‚#À”••Õ¯_?!„J¥ 6ôp Á òV¯^]\\\Nssó1cÆÜ¹sgøðá...†ïcáæµ^ ¼Š¨íjà_«{sÌS…›c …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)õ =P1*•¡G€§Á€ÚD¥Zmuì(‹©jH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRêz¨MT*CÁ²T*¡ÕzÀƒð_¨LU@ ÁRŽBp€‚#¤ …à)GPìܹS£Ñ„„„<ðÝF³sçNC³v#8@ ÁRŽå)((¨’>uÁ<âããß}÷Ý~ýúuëÖÍÃÃ#((è?þнëïï?hР„„„aÆuïÞÝÑÑ1 44T ì¬Ñhô×ŠŽŽÖh4 .4t*£ž¡PÝ>üæ›ojµÚÞ½{7oÞüúõë{÷î=xðàæÍ›ÕjµÒçöíÛùùù½{÷®W¯Þ‰'âââþøã è¶S~//¯mÛ¶EEEuëÖM·JDD„ÂÇÇÇÐ5¨ ‚#¨;öïß?a„²í‰‰‰ú/ÿóŸÿlÞ¼ÙÁÁAiÙ²eËìÙ³£££õƒ£••Õ† ”–ÔÔÔ·Þz+<<Ü××·wïÞ2}\\\5j5}út¥nnîo¿ýÖ±cÇÎ;ºT•ApuGjjjjjê#» ÿüsýMÉôÿ­¶´´Ô”µ‘J[ï›B¤RÕÄ›ìÁÁ‰§ÌS{Àk4š²w=?9þþþ'Ož<{öìcöQÄÅÅ<ìQAµgž¬Ÿ~úIÔþyjÁ5ŽOHIII^^ÞéÓ§·oßnggçèèhè=.‚#À‘••Õ¯_?!„J¥ 6ôpª×8BÖS{U j>N!&11ñ‘Ý–,YòÍ7ßÛÙÙ5nÜøêÕ«™™™B??¿¹sçªT*C”ZŒ3Ž ŽXºté×_mjj<|øð† *í111sçÎݸq£……Å{ï½gèaÖbœq„¬§öÿ¸¨ù88Q…jþáTóGø„<òŒcRR’¯¯¯±±ñÖ­[íííK½{ãÆ //¯¢¢¢˜˜ ‹*R^^ž.›J*((011©ÞÊU%nŽuÁ÷ß_\\üÆo”MBkkëàà`ooï+W®(-þþþƒ *..þôÓO{öì¹zõj¥ÑÁÁ¡Ôº#FŒèÓ§þZ'Nœ8p`=œ'L˜œœ\TT´bÅŠ#F<÷Üsƒ Ú¼y³nue•„„„aÆuïÞÝÑÑ1 44T×!88X£Ñ$$$èï4::Z£Ñ,\¸ÐÐuýLU€ºàÀBˆ€€€‡uðóóóóó+ÕøñLJ††šššÊŸ;¼uëÖ›o¾iccãïïîܹ}ûö]¸pA­V?~üÅ_l×®Ý/¿üòá‡ÚØØ¸¸¸(«Ü¾};000??¿wïÞõêÕ;qâD\\Üü±`Á!„——×¶mÛ¢¢¢ºuë¦ÛKDD„ÂÇÇÇÐuýGPëåççgdd4mÚ´Y³fòk]½z5''gÍš5º„'#;;ÛËËë‹/¾066B¼þúë¿ÿþ{~~þöíÛ[µj%„èÕ«WHHÈþýûõƒ£••Õ† Ôjµ"55õ­·Þ ÷õõíÝ»·‹‹K£F¢¢¢¦OŸ®ôÏÍÍýí·ß:vìXÓîgªÔzéééZ­ÖÖÖ¶Tû{ï½§ù_“'OÖ½[XX\¡Ô¨Û¬’…Ï?ÿ¼b̘1JjB¸ºº !nݺ¥¿JPP’…¶¶¶sæÌB¬[·Nabbâé陜œœ””¤tسgO^^ž¯¯¯¡ëZg¨ežÖçÉ”wgŒ™™™(“Õ„:uÊÉÉQ–KJJbbbJupvv®è8ŒŒŒÚ¶m«{©ÌqÛÙÙ•j)ÅÝݽÔ~ÍÍÍ/]º¤¼ôòòÚ±cGTT”rfDD„J¥òöö®Þ ?Á€Úäé¼¥Z¡ÑhÊÉŽÍ›7oܸqFFÆ­[·š7o®kë­·Þzë-e955ÕÓÓS-###kkëGîºÔ#hT*UÙ‡A=b·eË–¥Zlll’““•eWWW33³¨¨¨   ;wîÄÄÄôêÕ«ì TƒcªÔzFFFnnn%%%ÿùÏÖçĉ¥ZT*Õ#ŸâöíÛ?›7o–jÉÈÈhÑ¢…²Ü AOOÏ .$''ïÚµ«¨¨¨ÎS ‚#¨¦M›Ö Aƒ~ø¡Ôsmýõ×—_~)³¢¢¢ââbÝËŒŒŒ´´´ÇžrÓ·ÎñãÇsrr:tè kñòòBìÞ½;22ÒÄÄdàÀ*dyŽ .hӦ̈́ rrr^}õÕ;v臿cÇŽ½úê«W¯^}äFš5kV\\¬ yEEEóçϯ’oKY¶lÙÅ‹•åôôô¹sç !ÆŽ«ëàææfjjvìØ1OOϪzJyÕâGPGLœ8±Q£Fÿú׿f̘ñÏþÓÎή^½z—/_¾uë–J¥š5kÖ·ß~[þ† =yòd//¯Æ>|øòåË666yyy30###›‘#GöìÙÓØØ8>>þîÝ»>>>nnnº> 6ôððصk—¢fÎS ‚#¨3T*ÕØ±cûõë·fÍš#GŽœ9s¦  ÀØØ¸gÏžS§Nuvv.{™c)ƒ *((øî»ïvïÞ——× Aƒ¹sç?~üàÁƒ9°õë×ùå—¿ÿþ{ZZšF£:thÙ§‘{yyíÚµËÒÒR?PÖ(|W5d=µßŽŠšƒUˆÃ©ÆzäwU?Ðýû÷U*UE¿QZ¡ÕjÓÓÓ›6mZ‰uKñ÷÷?yòäÙ³gÙ3... ÀÏÏ/$$¤Ê W¥8ãê,SSÓÊ­¨R©lllªy´?ýô“¨ÁóÔ‚à`X%%%yyy§OŸÞ¾}»£££¡GôPG¨;žÖ/j·¬¬¬~ýú !T*Upp°¡‡S‚#Ô)\Ÿ÷˜ߨr«W¯Ö6PYæææcÆŒ¹sçÎðáÃ+ñÅÙÕ‰›c ‹ ÆQcqpêPŠÇG k¬Ê݃ªÅÀ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€”z†@عsç´iÓô[Œ›5kæääôöÛowíÚÕЬ Ž î°±±éر£²œ““sáÂ…¨¨¨}ûöÍž=û•W^1ôèj=‚#¨;<<>>+V¬B,Y²D«ÕVb#†þ5ÁÔqýúõstt<þüáÇu÷îÝûôÓO‡îèèèãã3gΜ¬¬,Ý»þþþƒ JHH6lX÷îÝBCCKm¹°°péÒ¥£Gvrròööþàƒnܸ¡¼¬ÑhôûGGGk4š… º$•DpuŸ§§§ââÅ‹ÊË´´4__ßuëÖååå¹»»…††:4))I·ÊíÛ·/]ºÔ»woGGÇ„„„9sæ|ðÁºÙÙÙ£FZ±bÅÝ»wÝÝÝ6l>|øðóçÏ !¼¼¼„QQQúȈˆBøøøº•DpuŸ­­­"%%Ey¹xñâ«W¯Nžpà@JJЉ‰‰§§grr²nƒ{öìÉËËóõõ5t1*»ªø*•¡G€K|œ•333…-[¶B\¹rE«Õºººªþ÷‡íâârøðáË—/ÛÛÛ+-îîîúœÍÍÍ/]º$„¸téRqq±©©é¦M›ôûäçç !._¾Ü¶m[//¯;vDEE)ŒˆˆP©TÞÞÞ†®dåøÿ*uÓ-ªƒF£yœì˜––&„hÛ¶­"==]Ñ¢E‹R}¬­­…©©©º%hê³±±INNB\»vMó°Ý¹ººš™™EEEݹs'&&¦W¯^ʤy-Epußo¿ý&„èСƒ¢U«VBˆ›7o–ê£Ld+ñQqóæM›R}”Ä©t š4iÒÃvÚ AOOÏÈÈÈäääØØØ¢¢¢Z=O-¸ÆÔy‡ŠïÔ©Sß¾}…vvvBˆ˜˜˜RuTÎ*áRqàÀýÇÏÉÉQ:´oß^Wj_6l˜7o^vv¶òR¹·z÷îÝ‘‘‘&&&4t1 ÁÔYZ­622òÝwßBL:U¹¨ÑÊÊjÈ!‰‰‰«V­Òõ ‹uvvÖh4ºÆeË–éžà“žž>wî\!ÄØ±c•x{{ÇÅÅ­_¿^×ïÞ½Ÿ|òI\\œ¥¥¥ÒâææfjjvìØ1OOO C—ä±0U  .ànŠýû÷O˜0AYÎÎÎNLL¼w‰IHHˆò(GÅŒ3Nž<ùÅ_DDDh4šË—/Ÿ9sÆÊÊJ¹oZadddcc3räÈž={ÇÇÇß½{×ÇÇÇÍÍMé|êÔ©yóæ………i4š[·n:tÈÌÌLÿùÞ 6ôððصk—¢¶ÏS ‚#€:€»tÐ@jjªîî##£fÍš¹¸¸¼ýöÛ]»vÕïfkk»}ûö%K–=ztÏž=mÚ´=zôÔ©S›5k¦ë£R©Ö¯_ÿå—_þþûïiiifèС~~~ºÖÖÖÛ¶m[¶lÙ‘#G¢££›7oîëëûÎ;ï(·àèxyyíÚµËÒÒR—8k/Uå¾´O!•Š_Ï@MÇßSÔa&1ñ±žÈS!þþþ'Ož<{öìão*... ÀÏÏ/$$¤ÚÆÿ„p#ÀôÓO?‰:1O-˜ªxJJJòòòNŸ>½}ûv;;;GGGC¨ ª^VVV¿~ý„*•*88ØÐéG€ÒV¯^]\\ü8[0773fÌ;w†îââbèT5¸9²¸è¨ùø{Š:¬šoŽÁqs ¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ ¥ž¡PvîÜ9mÚ4ýccãfÍš999½ýöÛ]»v5ôë‚#¨;lll:vì¨,çää\¸p!**jß¾}³gÏ~å•W =ºZàêÝË’’’ˆˆˆ9sæÌ;·eË–ýû÷7ôk7®qu–‘‘‘ÏŠ+„K–,Ñjµ†QíÆGPÇõë×ÏÑÑñĉ‡îÛ·¯ÒxïÞ½¥K—=zôÊ•+mÚ´yî¹ç¦NÚ¬Y3ÝZyyyË—/½|ù²»»ûĉ--- ýi ‰3Ž îóôôB\¼xQy™––æëë»nݺ¼¼Îʶ¶¶Bˆ””ååâÅ‹¯^½:yòäwß}Wi ûè£,XðÝwß !–-[–””4cÆŒ7ß|SéðÙgŸ}÷Ýw›6m7nœ¡Ka0G¨;¸| u˜F£yœìhee%„ÈÈÈBdffFDDØÛÛ¿óÎ;º£FŠŒŒŒMJJ²¶¶ U«Õo¼ñ†®ÃĉOœ8qëÖ-CWÂŽ îËÌÌB´lÙRqåÊ­VëêêªúßSô...‡¾|ùòÝ»w‹‹‹ûõë§ßÁÒÒ244ÔПÃÀŽ îKKKB´mÛV‘žž.„hÑ¢E©>ÖÖÖBˆÔÔÔ‚‚‚vÁÔ}¿ýö›¢C‡BˆV­Z !nÞ¼Yª2‘mmmݼys!DVV–¡G]ãpW5¨ã:ß©S'åY±±±ÞÞÞ?ÿü³ä6»téb¸âÉ"8V=Fcè!ÔV”®Ò(]åP·J£t•Féž4×ÿêÛ·¯‰‰Éþýû'Nœ¸råÊjCqqñ”)SRRR¼½½Ÿ}öYC—¤*Õ3ôªŒ‡‡GHHˆ~KLLÌ„ V¬Xñ÷¿ÿ½yóæÕ0†ôôôœœœ¡C‡.X°ÀÐõ¨bœquY¿~ýœ Î;W={,..B4jÔÈнê@gdd$þ7ÉÅÇÇ¿ûî»ýúõëÖ­›‡‡GPPÐü¡¿Ê¾}û^{íµ~ýú9::úúúþðÃJÔÉÏÏÿꫯFŽùÜsÏyyy­^½º¤¤D2`À!ÄÆ5ͦM›ÄC.‹1bDŸ>} ]›ŠaªÔeGŽ9räˆZ­ÖE·Ã‡¿ùæ›Z­¶wïÞÍ›7¿~ýúÞ½{<¸yófµZ-„ 3gމ‰I=6l?þü´´´üãÊJJJ&NœxáÂWW׎;îÞ½ûóÏ?/..~ûí·ܼyóåË—÷ìÙsÈ!={ö4tªÁÔû÷ïŸ0a‚²\XX˜žž~ñâÅ^½zýë_ÿRÎ; !þóŸÿlÞ¼Y%·lÙ2{öìèèh%8®\¹ÒÂÂb×®]VVVBˆœœ//¯M›6Íœ9SÙHaaaVVVDDD“&M„cÇŽ6lXddäÛo¿íììܪU«åË—«Õê1cƺUŒàXõëäMsjµP©ŸðNU*CÎÚŠÒUu«4JWi”®Ò¤~¥¦¦¦¦¦–jLNNŽ‹‹óññQ^}-Z$„X³fÒ˜’’Ô«W¯AƒMš4iÛ¶míÛ·×_kÁ‚³g϶°°øöÛoßzë­¾}ûŽ3æðáú&&&7~̱響¬-8ãê8ccã””!DnnîÈ‘#óóóÇ?dÈ;;;ccã+W®ìÚµK׿~ýúcÇŽ;vlffæ‰'>>~üøM›6)ܪª¸ààöíÛ†.L…qÆÔq7oÞ,..¶µµBÄÇÇggg7nÊ”);v466BܹsG×ùêÕ«‹-ŠŠŠBXYY 0à£>š>}zqqñÁƒ+=†¢¢"ýúddd¤¥¥º0FpuYAAò .½{÷ÿ=Y¨#Ë_ýµxñbñßw›šš®Y³æ³Ï>ËÉÉÑõ¹v횢mÛ¶•C³fÍŠ‹‹8 ¼,**š?>SÕ†¤ÿ8!Dnnîùóç³³³mmm§L™"„èÙ³g»ví6oÞ|áÂGGǬ¬¬ýû÷;::š˜˜DGG·k×.00pĈááá pvv677?{ölbbb·nÝ^|ñÅÊjÈ!ÑÑÑ“'OöòòjܸñáÇ/_¾lcc“——gè‚U ÁÔ¥Çclllggçëë;iÒ$ !„©©éºuë/^|äÈ‘+W®têÔéÃ?ôññùúë¯øá‡ˆˆˆÀÀÀFóÓO?>|¸¤¤ä™gž™:uj@@€©©iåF5hР‚‚‚ï¾ûn÷îÝyyy 4˜;wîñãÇgîÛ Tµñ4)@m¤ÕjÓÓÓ›6mÚ°aCC¥2ŽÂÍ1Bp€‚#¤ …à)GH!8@ ßS5îܹóÕW_;vìÚµk-Z´èÖ­Û¤I“Ú·ooèqÕ÷ïß ݲe˵k×7n¬V«Ç߯_¿rV9räéÓ§K5ZYYÅÄÄúÓÔ•¨êÓéòå˃ ëÑ£Gù=9ê$É—ô)´yóæ°°°‹/š™™¹»»Ïœ9³iÓ¦åôç¨{¤Š–OÁ± äääx{{ß¼yÓÞÞÞÓÓ3--mçλwï íÖ­›¡GgxEEEãÆ;yò¤¥¥eß¾}óòòŽ9òûï¿Ož<ùÝwß}ØZ)))¦¦¦Ï>û¬~c“&M ýijŠÊUõéôã?Jö䨓$_Ò§Í—_~¹råJssó^½z%''‡‡‡'%%ýðÃå|OG]ù*QRzôèœ9sÔjµZ­>yòä#ûsÔ•¯¢%}Úœ?¾S§N®®®7nÜPZ”ߟ|òÉÃVá¨+_%JŠ'k«À¡C‡LMM'Nœ¨k>|x«V­Îœ9S\\lèÑÞ/¿ü"„˜={¶î?ˆööö&L(..~Ø\LJJŠ¢ÔÁ¡¯U}Ú :t̘1›6m’ìÏQ÷H-éÓ&,,¬¤¤dêÔ©-[¶TZfÍšeii¹k×®’’’®ÂQW¾J”OSÕU I“&jµºÔ·•7hР     €ÓéW®\177ïÚµ«~£½½½âêÕ«\%99YÑ®];C½æªDUŸ6óçÏÏÏÏB¬_¿>66ö‘ý9ê©¢%}Ú=zÔÈÈÈÃÃC×bllìææ¶cÇŽãÇÿío+» G]ù*QRüðÃ1cƼöÚkmÛ¶]¸p¡¡GT#téÒEù{®søðáU«V5hÐàå—_~à*Ê9³%K–dddôíÛ×ÊÊjß¾}~~~aaa†þ45E%ªŠòqÔáqäææ—½©ÅÒÒR‘••õÀµ8êÊQ¹’âIãŒcUJLLܲe‹V«BtíÚÕÄÄÄÐ#ªqŠ‹‹7lذhÑ¢âââÅ‹[YY=°[ZZš©©é{ï½7vìX¥%66v„ ,pqq±µµ5ôç¨Y$«ŠòqÔáqÜ¿_ann^ª½Q£FBˆììì®ÅQWŽÊ•Og«Ò+¯¼rîܹßÿýÿøGTT”ŸŸßÝ»w =¨äÈ‘#C‡?¾••Õš5kü°žëÖ­;yò¤î_R!ÄóÏ?pÿþý={öúsÔ,òUEù8êð8š4i¢R©rssKµ+¿”“deqÔ•£r%Å“Fp¬b*•ªE‹ãÇ=ztzzzTT”¡GT#ÌŸ?ÿµ×^KMM4iÒ®]»žþùŠnÄÙÙYqáÂCšš¢JªŠòqÔAR½zõ,--ËžËÉÉBèn –ÁQ§¨Â’¢ 1Uý¸’’’Ö®]ëææ6hÐ ývåv×7nz€†WRR2}úôÝ»w¿øâ‹sçÎ}äßv­V[RR¢R©ŒŒþç?6ÆÆÆBˆÆúÕ­*ÊÇQ‡Çgmm}ñâÅœœ ]ã•+W”·Êöç¨{¤Š–Õ€3ŽËÂÂbëÖ­ááá¥Ú•§sÙÙÙz€†÷ã?îÞ½ÛßßÅŠ2ù&99¹K—.¯½öZ©ö'N!4¡?PPѪ¢|ux|/¼ðBqqñÁƒu-Z­vÿþýM›6utt,ÛŸ£î‘*ZRT‚ãã²¶¶Öh4¿ÿþû¯¿þªk<þü† 5jÔ«W/CÐÀ´Zíúõë7nüü£œn÷îÝ»råʵkׄÏ>ûlÏž=ãââ6oÞ¬ëpâĉµk×ÚÚÚ¾ôÒK†þL†'YU”£Uëïÿ»‘‘ÑòåËuW·¯Zµ*33sĈõë×WZ8ê*D¦¤¨f*å`<ŽS§Nùûû:::>óÌ3ÇŽB,Z´ÈÛÛÛУ3°ŒŒ WWWSSÓ:”}wذa¯¾úªbçÎÓ¦M³··ˆˆBœ?þõ×_ÏÌÌìÚµkûöí¯_¿~òäI33³+VôéÓÇПÉð$« Ň~¸yóæ°°°RÏÆã¨«´‡•k×®]¸paëÖ­]]]“““>Ü¥K—µk×êž)ÃQWQ,)ª×8V‡ÈÈÈ%K–$$$œ;w®U«V|÷Ýw•¯ñxÊ)ÿ±¾ÿ~BBBÙwv3G§N~úé§Å‹:t())©M›6/¿üòäÉ“mll ýj„ÊUåã¨Ãã?~|‹-~þùç;wÚØØ¼úê«S§NUó@uTÑ’âIãŒ#¤p#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽòÿ_’,‰¼F0IEND®B`‚statistics-release-1.6.3/docs/assets/ecdf_101.png000066400000000000000000000315451456127120000215610ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A3,IDATxÚíÝ}]eaÀá÷n6•Àî¦!1QFFÍ.$µLbå#$8-­2PÌLÕ4Ð(J«hp'’‘PÛŽ±IÓZ ¸QuC†¨4¬KSƒ©!©,YLcRl1‹&† ¥ìÞþqa½ÙìÙÝ{ïùzžñëÉÞÍ9¹{¸¿}ß÷œ[(‹FR÷€H„#‘G"ŽD"ˆD8‰p á@$€H„#‘G"ŽD"ˆD8‰p á@$€H„#‘G"ŽD"ˆD8‰p á@$€H„#‘G"ŽD"ˆD8‰p á@$€H„#‘G"ŽD"ˆD8‰p á@$€H„ã~ò“Ÿ´´´üû¿ÿ{Ü;3á8‚Í›7ǽ ‰P÷$ÔÑ£GŸ~úéoûÛ_ÿú×ãÞ€DŽC{ç;ßùßÿýßqï@‚Ç¡­[·îÿ÷C_ùÊWy䑸w ~Âqh_|qéÁƒ>÷¾$‚p¬¼–––¸w¨®ÎÎθw!±*òùÔd---^”¤ñ¢$“×%¼( ”ÛA"·ã š …xU ¨¦b1žÇ@GªÃødŽp :ŒÿAæG"Žä‚ È‹’L^—ò¢Â€ê°Æ2§P´¥ÒÜp ²-·ïõFˆD8‰p :¬q„ÌŽT‡5ô9€H„#‘GªÃGÈá@uXã™#ˆD8‰p :¬q„ÌŽT‡5Ž9€‘”Žö1!€‘”Žö1!€á;ÊG†gì(#ˆD8‰p`xÖ8e„#óÆ(#ˆD8‰p`xÖ8e„#óÆ(#ˆD8‰p`xÖ8e„#óÆ(#ˆD8‰p`xÖ8e„#óÆ(#ˆD8‰pÈ“ò5‹£} äžpÈ“ò5‹£} äžp á@$ O¬YÆA8ä‰5‹À8G"ŽdJ¡µ#î]€Ìª{¨¡BÁl5)R'¬Ê-?½1Žy¢I6¥˜pˆRLáÔŽRL5á'Ö8RsJ1K„#@ž¨Fj¢<•b–G`¼ +æ„pFM)æ“pÈkÐG€üáÏž=;î㨩BkG<¯)iH¤\„ãÆï¼óÎÉ“'ÏŸ?ÿÀ[·nÝ·oߦM›&Mš4ä×÷öö^}õÕ{öì™5kÖ‚ ~ñ‹_ÜÿýßùÎw¾üå/ÏŸ??©â†%5û» 1BÂÕŽU×ÙÙÙÖÖ6cÆŒû­­íþûï_±bÅã?~ë­·÷”o|ã{öì¹ì²Ë¾óï|îsŸÛ¼yó¿øÅÂÚµkã> — …¸÷ ÊÇ ¥ÿC±ô¿¸÷Zöñ½½½¯¯oÕªUÓ§O/mY³fMCCÃŽ;úúú†|Êž={BW_}u}ý+#²\pÁ9çœóŸÿùŸÏ?ÿ|ÜäOv×8êEH—ì‡ãîÝ»ëêê/^Ü¿e„ .ìîî.â`3gÎ !”7b±Xüå/YWWן’‘”Žçq¶ bŒ{w€¨2ŽÅb±««kêÔ©S§N-ßÞÜÜB8xðàÏzÇ;ÞqÊ)§¬[·îûßÿþñãÇŸ}öÙ›o¾ùСCË–-;ýôÓã>& %JÙW>X8žÇ™`JÒ.ããg===½½½¶744„Ç˵´´lÞ¼ùšk®¹æškú7._¾üŸøDÄ¿·¥¥eÀ–ÎÎθÿ1€ÚÊ\ö‡«¤IµÁo빕ñp<~üxaòäɶO™2%„päÈ‘!ŸuôèÑÏ|æ3/¼ðÂܹsßò–·tww?üðÃÛ¶m{ÛÛÞöö·¿=Êß+‚«¤ÉŠÁoë¹MÉŒ‡cccc¡Pèéé°ýرcáÕqÇÁ>þñÿð‡?\³fÍŸüÉŸ”¶<ûì³ôGtà 7|ë[ßzãß÷a$!FȤŒ¯q¬¯¯ohh<²xôèÑBÿuÖåž{î¹|ðÍo~s5†fÍšõgögÿ÷ÿwÏ=÷Ä}L@Jd÷Ò–“´«^ Ó2Ž!„3ftww—J±ßþýûK4øë»»»CguÖ€í¥ÆŸÿüçq9[ãèªȃì‡ãÒ¥K{{{zè¡þ-ÅbqçÎMMMóæÍüõguÖ„ öíÛW<ñ?ú¥õ o~ó›ã> €d1Äù‘ýp\¶lY]]Ým·ÝVZ×Bhkk;|øðUW]5qâÄÒ–^xaÿþý‡ !Lš4iáÂ…øÜç>ׇð}ûöÝqÇ¿ñ¿qÉ%—Ä}@‰`Vr(ãÇ„fÍšµzõêõë×_~ùå ,8pàÀ®]»æÎ{íµ×öÍÎ;o¸á†Ù³gß{ï½!„O}êSïz×»î¸ãŽíÛ·Ï™3§»»û‡?üa__ßÚµkßô¦7Å}@@J Y­vá äVöÃ1„°råÊ3Î8cÛ¶mÛ·oŸ9sæòåËW­ZUº#ϦM›¶}ûö;ï¼óá‡þ—ù—¦¦¦E‹ýéŸþé[Þò–¸HÌU£{ë…bæþÓ»––÷q²¡ÐÚQܰ$eCŒÙë%9rû^Ÿ‹GÆhÃÒBŠ’±D5BÕdÿâ€x¤ù>Žý¾„Ö怜jŽÕ‘Îq/·cNÂT5!déZik¡j„#@Þe'KT#Tp¨ŽÄ{¹½0Z :\YbjE8äH.’1ñc½^ r‘Œ%ªªF8TGbƽʓ±ÐÚ÷î)&*o©Ì?N@59ÊXܰ$îýÒJ85TÞRyx“¼_.˜±^Èá9ZÈxªªF8ddj@85d± $#P3¨!ÕXQ’qh~?ªŽé#OF5BÕG€4‘Œ@Œ„#PCæÇA2±Ž@ ©Æ1‘Œ£ã÷¨á\’q,T#TpH"É$pjÈb’H,áÔj<)ÉX~?ªŽñ“Œ•¤¡j„#@œ$#"¨!sˆe$#:uqï'ªñU…P(†¢j¬ŠB!î=€Ì2âPS«Îï'P5¨•ÜÏSKF í„#P+9®ÆÊ&c¡µ#îrJ8TQ•F‹–Ä}dQ¾lŒ9®Ç@E G€ª01}B½Åõ¨(WUµ’§k]]4 d’G Vò1d È0áP’q k !s„#ÀxIÆ¡©FÈáÔJÇŸ$#+¨•,V£drÅUÕ£VÕ8²<]G9aÄ`ÌMBæÆ˜áÔJÊ×8JFSÕ@•õÏW¦¼ÝÐ@8U–æ^ –3އ5Ž9¦ª†fnz¼Rþ;0˜G šR;ædn`0#Ž@5¥pÌÉ@#Àp„#À+$c…¥ü:z`0á‚©Õ™c#PMiXãèºi€ˆŒ8Õ”ì1'sÓ£"œJÑ(c¡µ#î]Û~[ãY#ÜIã@cqÃ’¸wa ;¦a kjJÞG7h3#Ž@5%iÌ)‰"쓌ñ°Æ2G8—¢‹`²F5BæXãTS¬kÝ  ²„#Pý½ߘ“‹`*N8Uë¥Æ¤HÞ5õÀ8YãdŠdLk!s„#.¨6SÕ@Ô|ŽÒŠÆª+MGûÈ áTA ç(­h¬®!¯síc +LU)&«Nÿe„#JV4Ôž©j  ª¼¾ÍŠF€XG  ª6¿iEc­¹Æ(cªH Ék2ÂH+’ÀT5Pß´¢ !„#Pšß´¢1~Ö8eLU •öd,´vTê[7,‰í0¬qÊG`4 …_—D”Çcþ{R^%q@˜ª"óçÎá¯2= Tˆ V󕮃Ik2¦ªDpIJÆ(#ø™›HSÕ@Õœ¯Ti!ª3_é:˜°Æ(cªˆ‡dLk2¨5×Á¤”©j ‚ÊÍWºá@z G ‚Ê}ö´dLk2¦ªZ0=VÖ8e„#Pu²ÁT5Á8æ+U#@fG ‚1ÍWºMcXã”1U T…dÌk2F!ßÊÇ“¢<Žø]U#@ GÈ·òñ¤(Gbz:ªó yy™ªÞ²eK{{{WWש§žºhÑ¢Õ«W755ü)O<ñÄç?ÿù'Ÿ|òرc---×_ýïüÎïÄ}h’15*ý ¹qܸqãÚµkŸyæ™ùóçO™2eëÖ­øÀŽ?~’§ttt¼ûÝïîèè˜>}ú¼yó{ì±+VtttÄ}(PQRRé`‡ì8vvv¶µµÍ˜1ãî»ïž>}zaݺu›6mºõÖ[o¾ùæ!ŸräÈ‘o¼±¾¾þ _øÂyçBxüñÇßûÞ÷Þ|óÍ‹/®«ËEm“ •û<˜íæÞ…V¿}ÅÍ8"0ÙÇööö¾¾¾U«V•ª1„°fÍšo~ó›;vì¸é¦›†¬À­[·=zô†n(Ucá·û·/»ì²o~ó›O<ñĹçž÷1A‚Œv ±¸aIÜ» Àeðl÷îÝuuu‹/îß2a„… vwwïÙ³gȧüë¿þk¡P¸âŠ+Ê7ÞrË-ªÊ™žÈ•Œ8‹Å®®®©S§N:µ|{sssáàÁƒçŸþàgýèG?jjjzík_ûoÿöo=öØ/ù˳Ï>ûÒK/4iRÜU(ŒgâR5¦Òø^t ç2Ž===½½½¶744„žþùÁOy饗~õ«_½ùÍoþ‹¿ø‹¯}íkýÛÏ<óÌ¿ýÛ¿ý­ßú­(oKKË€-qÿcÀ c ˆè‹IÕ£7øm=·2Ž¥K§'Ož<`û”)SBGŽü”_ýêW!„®®®Ÿÿüçëׯ_¼xñ‹/¾x÷Ýwß~ûíýèGï½÷Þ(ãŽ2‘ 3ÐäÍà·õܦdÆ×8666 …žžžÛ;^wà”SN)=øÌg>sÅW466¾öµ¯ýð‡?|å•W:tèŸþéŸâ>&ˆ“jȳŒ‡c}}}CCÃà‘Å£G†ú¯³.7yòäSN9eÒ¤I—\rIùöK/½4„ðÔSOÅ}LP9£¼¥ŸjÌ÷qÆ!ãáB˜1cFwww©ûíß¿¿ôGC>eúôé'N,œøŸ×Ò õË/¿÷AåD^îæƒ³ÃG`²ŽK—.ííí}衇ú·‹Å;w655Í›7oȧ\rÉ%G}úé§Ë7–îÝsöÙgÇ}@Pk¥dTd?—-[VWWwÛm·•Ö5†ÚÚÚ>|ÕUWMœ8±´å…^Ø¿ÿ¡C‡Jÿ÷Ê+¯ !¬]»¶ÿ²ë'žxâ _øBCCÃÛßþö¸jÊ@#ý2~UuaÖ¬Y«W¯^¿~ýå—_¾`Á‚ìÚµkîܹ×^{mÿ×ìܹó†n˜={ö½÷ÞB8çœs>ö±ýÍßüÍïýÞïþù===»wï. ëÖ­ûÍßü͸*g¤[ú©Æ rG`²Ž!„•+WžqÆÛ¶mÛ¾}ûÌ™3—/_¾jÕªÒy†óÁ~pÚ´i›6mzä‘Gššš–.]zýõ×Ïž=;îC!»ÊßÎköxø€p§ÆÌRÀ8Šþ#Ri---îãHªUo ±ÐÚᳪ Èí{}ö×8£bz€áGà×Tcö¹#0Â’!oçÕ®ÆBkG܇ˆ5ŽÀ¸äââHXßÎkv)ŒŽ©&!ïLO‘©jÈ5Õ˜; X¤—p„dˆãí\5¦Xų̀[㌃p„d¨ùÛ¹jL·ò˜Ñ>+áy¤áùRÕ˜zÖ)1Ž 5IR2ªÆÔ3ï ÄD8B2T? 40NÂrA50~²O5f5Ž@L„#TΘo­ª˜ª1ƒ¬qb"a܆¼µrn³çj*ËgUø%røG2PqF!ƒTcÆYãÄĈ#dM¢ª±ÐÚ÷.dQ"¹<Ž0n…BrÞÈU%Å KâÞ*ÃT5Œ›j „#d„jÌk˜GÈÕ˜/‰äòF8¸Å=ü£¨ ÇÀ¸Å7üS…‚j 6Œ8BZ•UcÅ=È ä–p„T2=kÖ81Ž0n5þQÄB8¸ÕvøG5æQù/'æ©øGHÕ˜S応˜§â#aøáœÑ>®önªFb%ɱþæn8g´«º³ª€¸ Gr,=S~ª1ï¬k’Á À!éÒX…ÖŽ¸w![ÒóKmÂ-ÕXRܰ$î] ÂLU“c‰ŸþKo5I‘KöôŸjä×ÿKÂ’H5r‚dÿ’ä‡p„ÄQ$“p$Ç9ý§H,áHŽ%oúO52´Dþ’äp„¤P +y¿äù$!T#É'ɱÄLÿ©FRA8’cɘþSŒ,1¿ä9'!Nª‘H’ñK€p$sÊÇf¢<ŽqOU#©"Éœò±™(c¢Hú¸w*ªPHB޼›i«ÆBkGÜ»o)ùÁ2O8’-ixsM]5–7,‰{Ò©¼ùÆü8 ?Ø@˜ª†šJi52v£];‘°5å„#ÔŽjÌ—d\ƒPA‘lIð[µjÌã…@æG²%©oÕª€ ŽPuª€lŽP]ª1¿¼p`l„#Ù’°·jÕ˜kI]80f‘lIÒ[µj c„#T…j {„#Tžj$„Ä-œ?áH¶$à­Z5òŠ$-œ¨áH¶ÄýV­È0á£ȶú¸w2"ÕXhíˆ{2­Pˆ} ²„#ÙÓ[u«±¤¸aIÜ»]ªÈSÕd‹j€ªŽ0.ª€üŽ0vª‘“IÀÍ¡*K8’-5|«VŒÀG s„#ÙR«·jÕ8våqŸ‡Ç"aÔT㸔Ç}dˆp áH¶TŠÐp㸘ÃH3áH¶TyŠP5Ž—9\€4Ž•j ç„#D¢@8RC©½Šj¬kÒL8RC鼊j¬$kÒ¬>î€D«Y5Z;â>Vp„aÕx¬±¸aIÜG 'cªšJÕú63ÔU‘ªŸŽÔPzÖ·©ÆjIÏσ G"Ž0áF’p¤†Ò°¾M5VW~Žp¤†¿¾M5V]â8 á¯PprÂBPp¤†’º¾M5ÖHRˆH8RC‰\ߦk'‘?D'©šòá%CM~y Ç-[¶,[¶lÞ¼y]tÑ'>ñ‰_üâÑŸûì³ÏžwÞy«W¯Žû Ò¦|x)©CM† º\„ãÆ×®]ûÌ3ÏÌŸ?Ê”)[·nýÀ>püøñ(Ï-‹7Þxã±cÇâ>ˆTIÉø¢j¬µ”ü`0œú¸w ê:;;ÛÚÚf̘q÷ÝwOŸ>=„°nݺM›6Ýzë­7ß|óˆOÿÒ—¾ôƒü îƒH›¤Ž/–«`5Z;â>š”HÃ'‘ýplooïëë[µjU©CkÖ¬ùæ7¿¹cÇŽ›nº©®îdc®ûöíÛ¸qãÙgŸýÔSOÅ}TRÅÇ‹–Ä}LPuÙŸªÞ½{w]]ÝâÅ‹û·L˜0aáÂ…ÝÝÝ{öì9É_~ùåüãMMMkÖ¬‰û ¨$3Ô06Çb±ØÕÕ5uêÔ©S§–oonn!9Ú¿·¥¥eÀ–ÎÎθÿ1jÈR6†äH§Áo빕ñp,]:=yòäÛ§L™B8räÈpÏúøÇ?~æ™g¶¶¶ŽíïÍW&¦‡áFÆ`ðÛznS2ãáØØØX(zzzl/Ý^§4î8Øúõë:ôµ¯}mÒ¤Iq£`œ2¾Æ±¾¾¾¡¡aðÈâÑ£GCý×Y—ûÁ~ðµ¯}íƒüà¹çž÷î§Vò–²©ÆDHÞ£’ñp !̘1£»»»TŠýöïß_ú£Á_¿oß¾ÂwÜÑòª?üÃ? !|ë[ßjiiyÇ;Þ÷¥A–²©Æ˜õ÷bÂ~0­ŒOU‡–.]ÚÙÙùÐCýÁüAiK±XܹsgSSÓ¼yóýÞð†þ¯,9räÈÃ?|øýïÿĉK_ó /<÷Üs'N|ýë_ñÅ_|ñÅåßáÉ'Ÿ|øá‡Ï?ÿüÏ~ö³q @l²޳fÍZ½zõúõë/¿üò 8p`×®]sçνöÚkû¿fçÎ7ÜpÃìÙ³ï½÷Þ¸÷7 …„ 2nŒ_b~¿ì‡caåÊ•gœqƶmÛ¶oß>sæÌåË—¯Zµª4úHU$#Tc"$㇀Š(ýg½ÒZZZr}ÇdŒ0Õ² ­>« Wrû^Ÿ‹Gj*=ÕXhíˆ{O M„#Y3ª±F#…U—Œh*"û÷qâ¤2D8Ri±~:ˆ b z„#•ß“j€ªŽd„jL(ŸO !‘,PÉe#@†G*Íd”p¤Òj>Âd¸jC8’nª1Ñ ?d‹p$ÅTcr•’ÑG€lŽTZ­™Tc¢IF€,ŽTšb€Œޤ’áF¨½ú¸wFí$ÕXhíˆþ}Š–Ä}(ÙU({ÈáHEU?Fk”ƒ‰ ²ÈT5% »„#ibi#ÄH8’ª1MÜú ‹„#Uµ\P)cÑ@ G*ª:¹  „#‘G’Îpc*YãEÂ‘Šªt.¨Æ)qG|l#@ G*ª¢¹ “¥üÅò€ÌŽD"I(ÃÉbÍ"‘±re[…òB5&Ž9h„#c7äʶJä…j€dŽŒžYKÈ%áÈèUsÖÒpcBùmáH¢¨Æä²ÆáHr¨FH8áÈ虵€\ŽŒ^f- 7&ߎ$jLkŽÄN5@ZGFϬe– ù @'y @Ž GF¯r³–†ã7ä'ä19&‰j€t©{È‘Bkǯÿφ¥¡õ»…Ð1öoÇø FˆN82zã¨â†%¯|²ÇÄF50¦ª‰¬ÿ ‰q׆IjH#áÈH*׋¯|?Õé$‰ÙÌ sŸFC8RS†“ÅoŒ†p¤†6,U^‘‘Th6³ ¡õ»q 0v‘‘˜ÍÌ0k áH-XÚ˜P~+`4„#U§ „##1›YKåÿÚµ| GF2¾ÙLãSþ¯]ËÇϪ¦ò ­¯<Ú°4´~·:ÆõírbŸµ!©Šâ†%¯Œ5nˆ{WÒB5x¦ª‰•p@A82²1„YÚÙ#©-8FvH<áÈ îØ kH<áÈ ã»c‹Ï¤€¬ŽT’¥aÂ’ÁªO8r¢qä‹áÆq±Æ€ÄŽœh¬ù¢ ó„# CþjôÑ>€¤ŽTد?¨:o†»}´ ©„#'ýÐ×àáÆâ†%qFm/ „#'åЗIêŒÂ€H„#cg¸rE8r¢ÈËõTã¯Yã@>GNd¹ÞøG „#ca¸rH82jªòI8r"ËõÆÀ?ù s`Ty7Òr=ÃC°Æ€|Ž™VÊÁÊ}äj€<Ž™f$,¢Q Êžä1dšp$ª(Ã…ÖŽ4}Põôãy ™&‰$›“ÔšFC8fšYT r„c¦UhD-›ÃÀ( GFåj4" £!É1k`4„c¦{D-ËÃÀ( ÇL߈šjÊ GrÌG áÈÐr1Üh#Œ†pÌ´±Ž¨å¢€QŽY1ä§'çvDÍgL@Ôǽ5²eË–ööö®®®SO=uÑ¢E«W¯njj:É×?~üßøÆÝwß}èСÓN;­¹¹yåÊ•]tQÜÇ1H¡ðJVîÓ“Gn,´vÄ}Ø#ñÓP¹Ç7Þyç“'Ož?þ¶nݺoß¾M›6Mš4iȯùå—¯¹æš½{÷644\pÁ/¾øâ£>úðÃä#ùЇ>÷Ñœ(¦ú)nX÷‘£¿¤€JËþTuggg[[ÛŒ3î»ï¾¶¶¶ûï¿ÅŠ?þø­·Þ:ÜSÚÛÛ÷îÝ{Þyçíܹóþá¾øÅ/ÞsÏ=·ß~ûü㸨ºR¿ºQ5@Õd?ÛÛÛûúúV­Z5}úôÒ–5kÖ444ìØ±£¯¯oȧÜwß}!„›nº©HröìÙ×]w]ooï÷¾÷½¸¨ŠR_@5e?wïÞ]WW·xñâþ-&LX¸paww÷ž={†|Êþýû'OžeÊ”‘#GFü½½½_ýêWo¹å–ÞÞÞ 6L›6-Êß›ðL¢ü¶žÛ”Ìx8666 …žžžÛ;^w<‰G}ô/ÿò/Ÿyæ™™3g~úÓŸ¾ð ã> A*13›áF š2Žõõõ ƒG=Bè¿Îz°—^z鳟ýìæÍ›O9å”믿þ}ï{ßp7}Œ™jx<Ö8@µd<C3fÌèêê:zôèé§ŸÞ¿qÿþý¥?ò)}}}­­­<ðÀ¥—^úÉO~ò$}Iâ¨F¨šìߎgéÒ¥½½½=ôPÿ–b±¸sçΦ¦¦yóæ ù”Í›7?ðÀïyÏ{n¿ýölWcÖ†€jÊþˆã²eËî¼óÎÛn»mÑ¢E¥kbÚÚÚ>üþ÷¿âĉ¥¯yá…ž{'¾þõ¯/‹_ùÊWN;í´o¼1î} ú3³)ødj &²޳fÍZ½zõúõë/¿üò 8p`×®]sçνöÚkû¿fçÎ7ÜpÃìÙ³ï½÷ÞŸÿüç?ýéO'MšôÞ÷¾wðw»òÊ+—/_÷1•G5FnLî'SqTÖ8@µd?C+W®<ãŒ3¶mÛ¶}ûö™3g._¾|ÕªU¥ÑÇÁ:B8~üø~ô£ÁšÄ «Ç$³“Ôªª¦PôF[i---É¿côp,´v¤iĪ/ïõÕý‹c2nLŸUÙáF š„cÊ~À8ãÕ8¦’¢Žd‹¥P5Â1_2>ÜT“pL93³@­Ç”ÍÌl.†•4TpÌ‹¤TcyØUã±5ŽP5‘Ú*»j<ª&Ÿ“eÑ>aoTÃ>œ’pL¹J¶U÷sb|4¤™©êìKÊêÆ`NÒM8f\‚ªH9á˜rî>ÔŠpL¹“Nþ&n¸Qæ@š GjÈGH3á˜f'ÀKÜp#rÂ1͆ÀKJ5÷ù.@ GªÉç»@†Ç ЏÑà"d‘pL³Äö™ÁEÈ"á˜fCõYüÃ@Fù¬êLP…ÖŽ¸÷Èá˜qÅ Kbø[ ³Õ=¦ªÓìÄ5Ž š¤VEÂ1ÍôPCÂ1#4Üd”pÌ‚ÄUcbpL³Äö™9tÈ"á˜fÅbHàp#QÂ1yÊÇ£¨á˜r检ZñÉ1UW…ÐúÝB¨þ T“p¬Ÿ.¤©êêrM €H„cn²D8kË–-Ë–-›7oÞE]ô‰O|â¿øEÜ{4·ã‰¦¥¥%î]` /J2y]È‹BrÇ¡mܸqíÚµÏ<óÌüùó§L™²uëÖ|àÇþj4Üèv<@­Ç!tvv¶µµÍ˜1ã¾ûîkkk»ÿþûW¬Xñøãßzë­qï@l„ãÚÛÛûúúV­Z5}úôÒ–5kÖ444ìØ±£¯¯/Êw¨Ñp£yj †„ãvïÞ]WW·xñâþ-&LX¸paww÷ž={âÞ»2æ©€Ž‹Å®®®©S§N:µ|{sssáàÁƒ#~‡§;Ÿv15=>9f žžžÞÞÞÆÆÆÛBÏ?ÿ|”o2à ¸âÓO·ÜÛ\zÜùôÓ-Í~L.KL /J2y]È‹BBÇJ—NOž|ÕUWMœ81G¡è&ÒC¹ë®»Ö¯_ÿº×½nÁ‚صkל9sîºë®Á·éÈ á8¬oûÛÛ¶m{üñÇgΜùÖ·¾uÕªU¥;òä“p kˆD8‰p á@$€H„#‘G"©{²cË–-ííí]]]§žzê¢E‹V¯^ÝÔÔ÷NåÚ»Þõ®'žxbÀÆiÓ¦}ï{ß‹{×rç'?ùÉe—]ÖÞÞ~î¹çþSçN\Nòº8}jìøñãßøÆ7î¾ûîC‡vÚiÍÍÍ+W®¼è¢‹|™“¥–¢¼(9µôòË/_sÍ5{÷îmhh¸à‚ ^|ñÅG}ôá‡þÈG>ò¡}¨ÿËœ,µñEÉã™RdÜžzꩳÏ>{Á‚ÿó?ÿSÚò©O}ª¹¹ù¯þê¯âÞµü:räHssóG?úѸw$׎9²{÷î?ÿó?onnnnnÞ»wï€/pîÄbÄ×ÅéSc_ýêW›››ßýîw÷ôô”¶<ýôÓo}ë[Ï9çœÿøÿ(mq²ÔX”%ŸgŠ5ŽÐÞÞÞ××·jÕªéÓ§—¶¬Y³¦¡¡aÇŽ}}}qï]Nýô§? ! ø-{ç;ßùÞ÷¾÷ë_ÿúp_à܉ň¯‹Ó§Æî»ï¾ÂM7ÝÔ?v8{öìë®»®···ÆÓÉRcQ^”|ž)±vïÞ]WW·xñâþ-&LX¸paww÷ž={âÞ»œ:pà@á oxCÜ;’këÖ­»ãŽ;î¸ãŽ /¼pÈ/pîÄbÄ×ÅéScû÷ïŸÿùÏ××|;~òÉ'Cgžyfp²ÄaÄ%äõL1â8^===½½½ƒWÂ644„žþù¸w0§J¿þÝßýÝsÏ=wÁL›6íÁ|÷»ßÝÞÞ÷®ñ çNb9}jlΜ9¥ì·k×®¶¶¶×¼æ5W\qEp²ÄaÄ%äõL1â8^Ç!LžøöfÎ ÷º8}jé¹çž[°`Á¤I“Þô¦7 þÓ+¯¼rùòå¥ÇN–š‰ø¢äóL±Æ±2V®\yÆglÛ¶mûöí3gÎ\¾|ùªU«J7J gŸ}ö=÷ܳaÆïÿûûöí;óÌ3¯¸âŠ|ä#3gÎŒ{×8s'œ>µtèСÂñãÇô£ þÓò«1œ,5ñEÉç™bÄ€H¬q á@$€H„#‘G"ŽD"ˆD8‰p á@$€H„#‘G"ŽD"ˆD8‰p á@$€H„#‘G"ŽD"ˆD8‰p á@$€H„#‘G"ŽD"ˆD8‰p á@$€H„#‘G"ŽD"ˆäÿ0Ib«ÜŠIEND®B`‚statistics-release-1.6.3/docs/assets/ecdf_201.png000066400000000000000000001036401456127120000215560ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A€IDATxÚíÝy\õÿð×âÊà(à…ŠW¢¢xßägf^•Yææ•W?5ϰoÞ¥•VÞykyx§†æ †© ¢óûcjÚX–ewg×óÁŸùÌìÌ{f\x;ó9QADDDDT¥ """"óÀÄ‘ˆˆˆˆ´ÂÄ‘ˆˆˆˆ´ÂÄ‘ˆˆˆˆ´ÂÄ‘ˆˆˆˆ´ÂÄ‘ˆˆˆˆ´ÂÄ‘ˆˆˆˆ´ÂÄ‘ˆˆˆˆ´ÂÄ‘ˆˆˆˆ´ÂÄ‘ˆˆˆˆ´ÂÄ‘ˆÈàæÎ+‚ ;w–+SSSß~ûíŠ+ÚÙÙ•+WîÙ³gJ‡IDT;¥ "²RS¦Lùꫯ¤rzzºÒáމ#‘2<(‚ƒƒ{öìioo¯tDDD…`âHD¤ŒH…I“&uíÚUépˆˆ Ç6ŽDDxðàÁ˜1cš5kV®\¹jÕªõîÝ;:::ïf>3fLóæÍ½¼¼:wî¼ÿþ¼›Ý¹s§_¿~®®®*TèÕ«×¹sçÔ6HJJJHHÈÍÍ•Ÿûlݺuòfo¼ñ†”5:99õîÝ»uëÖÒª¯¾úê»ï¾“ÊYYYaaaRÖhgg×´iS//¯§OŸæû`’ˆÈì0q$"«¶`Á‚¤¤$aaaGŽ™9sæ?üðùçŸKkgÏž­¶YÕªUccc·mÛ9uêTi­üÄñ«¯¾JHHP®\¹'Nœ>}úöíÛcÇŽU;èŽ;DQ,[¶¬´xøðaQù¸‘ˆLG"²j?ýô“Txûí·åÊ¡C‡ÚÚÚ¸sçÎ¥K—üüóÏÒª &¸ººJåÑ£Gׯ_¿~ýú™™™9996nÜ(¯zíµ×¤ò‚ ÜÜÜ”>Q""=`âHDVíæÍ›R¡cÇŽÂ?Ê–-+%‚bccÄÅÅI‹Í›7—?[¡B… .\¸páÌ™3R¢)ïMu o{{û:(}¢DDzÀÄ‘ˆ¬WZZZ¡#o?zô(---55UZtrr*hËôôt¹ëL… TWU®\Yés%"ÒŽãHDÖ«|ùòåÊ•{úô)€ƒúøøäÝæÕW_-W®\™2ež? 99ÙÛÛ;ß½•.]ÚÞÞ>++ ÀÇ«W¯.¯’óN""³Æ'ŽDdÕäô.;;»š ggg'''''§Ò¥K ‚P­Z5i³_ýUþìýû÷ƒ‚‚‚‚‚Z·n››kkk+ç”r›H¢(=zTé%"Ò&ŽDdÕÚµk'Ö¬Y#k»}ûöW^yÅÕÕUL@«V­¤UK–,‘ÇhŒˆˆ8sæÌ™3gJ–,icc Q£FÒªÿýïòâóæÍ»víšÒ'JD¤œˆ¬ÚãÇ«U«öøñc!!!­Zµºzõê¾}û222̘1C‘çáǾ¾¾iiiÜÝÝÛ¶mûàÁƒ#GŽH;Ù½{w÷îÝüþûïÒïU{{û×^{-))éÆòá¤À¥r¹r外‡nÛ¶­ÒW‚ˆ¨pL‰ÈÚíÙ³gðàÁOž|¸eË–JŸ%‘ð‰#‘þ?þ—_~y÷ÝwË—/¯t,DDzÃÄ‘ˆˆˆˆ´ÂWÕDDDD¤&ŽDDDD¤&ŽDDDD¤&ŽDDDD¤&ŽDDDD¤&ŽDDDD¤&ŽDDDD¤&ŽDDDD¤&ŽDDDD¤&ŽDDDD¤&ŽDDDD¤&ŽDDDD¤&ŽDDDD¤&Ž…ˆ÷÷÷ÿý÷ß•„ˆˆˆHaL ±aÃ¥C """2 vJ`¢ÒÒÒnÞ¼¹gÏžM›6) ‘I`☿îݻ߿_é(ˆˆˆˆLÇüÍ;733Àwß}wêÔ)Ývâ ×*¨â¨Ñ áØ Ý”>3""""1qÌ_‹-¤Â/¿ü¢óN’‘œŒä ¸°ûó®í‹¾^ðZ€JŸ+‘V˜8ꟿ¿ÿߥM›mÁ ±€M†ËJ—5.óÙòô¢,½4Ñ^éëDDDdÆbbbŠ¿³ÃÄÑ ¤L-·Ï-ûhü£Gãh‚&oá­Q%¯Â#Å%mô^Ênokûçîïïom§lúxSLï‹ âM1Aÿ>$²2L HTy~x×#‘ŽôýØŸŠT Ÿ:‹³gqö}¼ï ßñ?# [Ênïâ|Ü%ô¶a®™.&ŽFR5×`jq%V®ÄÊ+¸’ïGbûÞ{ïaXP.NØèoÐÍb¦}ÅL:‰ˆˆÈLqpÅFaÔe\!ЧczuTÏÓÚ§ma+@ØJGMDDDÖ‹‰£©øŸÄ"V„xW µ§z „ƒƒ…ðHe£MÙíÍçŽDDDÖ†‰£É©Ú{°G„˜€„¦hšÏ6`IÛá®T„.¡·ÙÆ‘ˆˆÈ 1q4]UPå4N‹7bcÞµë°N€à/¥Ã4ìh‚xSLï‹ âM!ÓÁÄÑ ôGb2ꡞڪ$®H`|[MDDdUQ‹¿Reè·:£óOø)oýwøî ¼aä“MÙíÍ×ÖDDdm¬vpM>q4?páGð§¯Zý  $#Y鉈ˆÈ21q4Kâ’6bÅ›"Äa¦¶Ê®AR:@"""²@LÍÛZ¬Eø‘Öh­Zygßã{ãÄ ÍÃöŽDDD‰£%ˆD¤Ñöª•ƒ0H“ÍDš‡Í‰ˆˆ¬GË‘‰Ì£8ªZ#B üÿS:4"""²L-J+´!¾ƒwT+Ç`Œ=Bå5ß\Y$;¥ =È3a?qÉj‚¼,=zÜ‹½]ÑÕ@1¨½­fâHdPþþþJ‡@dQ¬sl0q4{â’6j5R)B\ˆ…“0I®ï†nîp¿ûJ‡LDzÀ¿sDúÂÿ‰i¯ª-ÙGøHÄx€ªO"‰ˆˆˆ´Ç'Žfàf˜gÞJ¿m‰Z~\„8“`\#@ŒÁßâ[ƒ†ÍIeˆˆˆ, G37GÌ7•Ô`>æÏ¬Ò(-׬Çú$¨õÂÖ#—ÐÛlæHDDdaøªÚ2åé.ƒR(%Blˆ†rM¢øÚšˆˆˆ´ÇÄÑåí.#;óc0FµF€ð'þT:d"""2L­ÎR,Uë1S •–a™Þ$½­æ˜ŽDDDƒ‰£•!:ÁI^ÑaÓûQ8!‘%aâh½ãñGøH^ÜŽí.pQ:("""2]ìUm±ÔúÇäÛðq4AùYãc< ¨½È&"""’ð‰£e—´QûÉÛÏZÒ½Õ2ECtµæÖDVnöìÙBJ—.]üý«  Ôm­–¼½½{öìièë¦ó9êÑœ9s\]],ïÔH|âHÀ?“YË‹„s8×ô²sÕfŽL‰¬Yÿþý+Uª¤Vig§ÿ¿D¶¶¶¶¶¶º­5Æ9‹k×®MŸ>½E‹£F2ÜQΟ??wîÜ9sæÔ®]Ûh§Fºaâh®ä1ÀµŸBF3i”ÇhDK‹Ñø8Ž·@ ¥O”ˆ,Ç|мys#èèÑ£:¯5Æ9‹¸¸8³fÍjÛ¶­áŽòàÁƒ;wŽ;Ö˜§Fºá«j³ä·-Qþ)ê,2ü†ßÞÁ;òb0‚¿Æ×JŸ+Y¬¬¬ÜÜ\-7ÎÉÉÉÉÉQ:d‹%Š"€R¥JéS¹¹¹F¾)Æ?¢ÕbâHÿ±«Wcµ¼8 Ãæaž÷¯:¸#_[‘*ooï1cÆLœ8±|ùò¥J•zíµ×öíÛ—=eÊ”š5k–/_¾uëÖ×®]“77nܲeËœœœìíí&Ožœ••%­mݺµÜHNÚòüùóõêÕ«W¯žÚZ/^ìÞ½»»»{… BCC/]º$¯Šˆˆ¨[·®ƒƒƒ‹‹Ëk¯½öý÷ßks"sæÌ©Y³f™2eªV­:bĈû÷ïËÁôéÓGuã¡C‡:;;çê AƒlllÿóZ©N:999òYhÞ ÀÙ³g»téR¡BOOÏ.]ºœ={Võš«]µØzôè E‹ÞÞÞZÆ¿zõjWWW;;»Š+Ž5êéÓ§š/õСC»uë $$D:ŠÚ *4~ G$½câhE„ðHùGÃfïà8!/Nôñ¡ÃwäøŽD”×wß}÷í·ßN›6möìÙñññaaa­ZµŠŒŒ|÷Ýwß|óͨ¨¨ÊoݺuôèÑ-[¶œ4iÒ«¯¾º`Á‚öíÛKOÈÔܽ{·cÇŽOŸ>mÚ´©ÚªÃ‡]½zuðàÁƒ :}útppð­[·Ìš5küøñ¯¾úê¤I“Þ{ï½§OŸ4hÏž=…žÅˆ#f̘Q¹råñãÇ~óÍ7Rú¥ ÕPû÷ï/ŠâŽ;äµW¯^½zõê›o¾©ÚPóf»víjÞ¼ùåË— пÿ+W®4oÞ|×®]Ú\œððð3fX¼xñ·ß~«Mü‡þðÃøÅ_Ô¯_åÊ•ãÇ×|©ÃÃÃgÏž `áÂ…yRhüŽH!’¾ùùùóp1½=ŠúŒ?Rè6ŠB„üÓKì¥÷È“wyçY#ÿž)¾Y³fôg¨GÒ6^^^öööׯ_—.\ ^½zYYYRM‹-¤¥¥I˜7ož|ˆ‰'ظq£(Š!!!õë×—w `öìÙ999R¼6;;»V­ZÕªUKII‘VEEE=z´(Š>>>~~~/_¾”V=yòÄÎÎnÔ¨QònåÈU¥§§ÛÚÚ2D®>|¸««kbb¢ô©°°0Õí‡ âää”o¨™™™ÎÎέ[·–7þøã\¹rEõ,4l–™™éíííåå•””$­JJJªZµªOfff¾GÍÎ;œ8qBŽ°Ðø·mÛ&-æææTªT©ÐK½wï^GU»AZÆŸï‹D‡/”Ù}õ…O)žðT¦çGüØJo"s¥¹!Š¡å;Ñ€ªB{UËù)_Ì[#«]»¶½½½¼èàààïï/½eVãïïŸobtóæMj#6L*8;;Ÿ:uêСC7n܈½zõjvvv¡¡téÒK—. ÷öö®]»v³fÍ:uêÔµkWÕP5P µÿþk׮ݵk×ðá㣣cccW¬X‘÷Sm @­ñbݺu¥U7Öpqtãç秺(ïYó¥.ˆ6ñtD2&ŽTÕÜñ9Áé žèkçysDö˜!*ŽBS7Ëfgg÷ìÙ³¼õNNNùn/u¦Éw ÉÌÌÌ^½zíß¿¿qãÆ:t jР6a¼ÿþû½{÷Þ»wï/¿ü²ÿþ5kÖøûûGEE¹»»ç{ ¡¶nÝÚÍÍmûöíÇß´iSÉ’%û÷ïŸw'm&Š"AøÏ´RûÈ—/_j¾8ZR‹¿ þ×.µÚÄ_ÔßTLL­TKÁ’¿GðJEª×@¬­ô‘µ»víÚË—/åÇׯ_ Ñ~Òêk׮˕óçÏOKKkÛ¶íþýû—.]:fÌy•6O“““ãââüüüFŒ1bĈÜÜÜ+VŒ=zÕªU3gΠ6ÒôP­ ¶¶¶}úôùòË/Ÿû¬jÕªºÍé§Cü…^jy›¼ƒwê=~*>>q´yÇ××t2ªTßYÆá–hy Ç”>u"2'+W®”úϪyë­·ä>1Úóðð˜>}ú©S§êÕ«wúôéC‡ ùD"100pëÖ­Mš4Ñíê¿6—ºY³f Ø·oß­[·Ôqê7~*>¡Ð§îTTþþþ111 p3ÌÓOerîà-¼õ ¾ÑãÎSv{³W5Q¡ÿ=£8ooïúõ뫎zm^ž={öìÙ3777¥±ÒøÕèð…²Úï Û8RÑ…‘‹ßâÛÑ­t@DDfÆÁÁÁ¬³.sŸtÆWÕTdâ’6Pyg½ Ë<á9Sô²sµÁùô‘ˆˆÈtð‰#éJå¹ãTLý_êkǜ̚ˆ Õ¹sç   ¥£ ²:|âHºSí+óÞñ†w;´S:("² ùN BD†Æ'ŽT,ª³È´Gû?ð‡Ò‘¡ð‰#‹#Oãtþ~aä ïLdÚC«)YµQÐ „|‘MDDd|L-“¡Gä‘HóŠKÚlÆæ~è'U–DÉÿL3S e‡œÏšˆˆH|UmŒ2âŸy ¥r_ô‹¹ò*Õ‰ˆˆÈb0q$ý˜Š©}ÐG^dîHDDdy˜8’ÞlÁ?øÉ‹Îp6ܱø¶šˆˆÈø˜8’>Åàßù—žàIgt.ÆÎ Äž1DDDŠ`âHÅ%„GJ?Ò¢jϘŸðÓlÌV:@"""Òöª¦b‘ûÇȉ#þ;0ø,Ìz ¯uB'¥#%""¢ââG2ˆ§x*—;£s&2•ŽˆˆˆˆŠ‹O-ÖÍ0Oµã Ó#)‹²+±ò=¼'-–B)} î(q ½²Û›‰ˆˆŒ‰O-“ß¶DµãÇ0#Ã./r€"k6{ölANž<©t Š™3gŽ««k@@€àààÀÀÀ‚¶üí·ßAؼy³Ò!ÿÍÛÛ»OŸ>ÅßOñ™Ú•±N|âHz£ÚÌ€¸¤Íb,þ¿D#Zªñ€Ç_øKé0‰ˆŒíÚµkÓ§OoѢŨQ£ØÚÚÚÚÚ*‘.˜8’~Ƚd$rù~“Ÿ5ÞÇýa¶ë”–ˆÈ¨âââÌš5«mÛ¶Ž=ªtDD:â«j28ÕÖ_ã뱫tDDD†’›››““£V)Š"€R¥Jó fÄÜã·*LÉTsÇÏñù ¼P:""29gÏžíÒ¥K… <==»téröìY©>,,¬D‰éééÒâæÍ›A¨[·®üÁ &‚páÂiñÊ•+½zõªR¥Š››[§NŽ9"oéíí=nܸóçÏ׫W¯^½zù†qñâÅîÝ»»»»W¨P!44ôÒ¥K…F(ïyõêÕ®®®vvv+V5jÔÓ§O :´GZ´háíí  uëÖªm;Ö¾}{—ZµjMœ81++K5žBO'߃z.v›¯3gÎtìØQ rüøñZ^µö‘C‡uvvÖ2~ÍW†ÁÄ‘Œäÿðr¹4J+™–]»v5oÞüòåË èß¿ÿ•+Wš7o¾k×.;wÎÎÎ>~ü¸´¥T¸råJrr²TsôèÑ *Ô¯_À¡C‡7n|ñâÅ~ýú :4>>¾cÇŽ›6m’t÷îÝŽ;>}ú´iÓ¦yÃ8|øpPPÐÕ«Wbz{óp$oåpq8DÈ?ŬT©€M›6ép:òA5œK¡»U#uaùì³ÏäšÉ“'ؾ}{¡—¥V­Zþþþòn;@µcAñk¾2zÿ÷É6ŽÚãG2 yþµye|…¯¾Á79ø{Ä×°u8„j3G—ÐÛJŸ1i²råʽ{÷ªÖØØØÌ;·dÉ’ýúõkРAß¾}EQܼysbbâÖ­[K–,)mÙ¹sç;vž8ÚÚÚïß¿¿råʵk×–¶±³³[ºté믿^¯^½¾}û¾|ùrçÎwïÞÝ´i“6Sü•*UjéÒ¥}ûömذaXX˜ _ýµÝŒ3´‰P%J”X¼xqß¾}ûõëW¢D‰Í›7'%%ÿt4œ‹»-S¦ÌøñãOœ8Q»víS§N9r¤cÇŽÒ“KÍ—¥C‡K—.íÖ­[=âãã—/_®Í£ßB¯ )IéÌÕ™þÿBLahž¿W©qÔž Šl^¦gþþþ111JG¡ÉÍ0Ocö­Â#ó>q”<Çs8È‹Åi옲ۛOÉz˜þïÒAbbâ+¯¼RœG˜&ëÙ³gÏž=sssÓíㆾ2:|¡¬ö;ÈWÕVêf˜gq>®¯¼³ Ê,ÄÂð‘´(@`G"²ZÒ×ÉÁÁÁÁÁAç[ð•1;L­Q1Ó¾b&j&bâwøîþžAµ1ŸÃ9Ýv%·wä£G"""C`âHÆ ÷’A~e~ÇïòÈŽçq~ ¦|ŠO‹z9Yä¨àDDDÂÄ‘ N5STÍ ÿ³Ê¨àó1_‡Ä‘ˆˆˆ ƒ°“©‹±rYN"‰ˆˆÈt0q$Sˆæh./ÖE]¥#"""¢ÿ`âH&äNÈå˸¼ktÛ›9GÒ…~;V«RŽç]¼«ÃØ¥šˆˆÈ@Ø9†ŠLÍG·QÄÅ%m4÷°°ëc°TæÈŽDDD¦ƒOÉØÄ%m¤Ÿ‚6xo"P^,òJ‡LDDDG2Mш–ËOñtv(1q$S•‹\¹Ü ½ŠôY—ÐÛ)»½ÙE†ˆˆH¿˜8’‰ ÌÃ<ÕÅ"}œ]dˆLÊìÙ³A8yòdÞU­[· ºuΜ9®®®‚ƒƒ Úò·ß~aóæÍJ‡ü7ooï>}ú(`zWÆj±s ))߉däæS0e¤"UZô‡ b”™ˆ¨h®]»6}úô-ZŒ5 €­­­­­­ÒA鈉#)&ßþ1j©ä<‘Ÿ5ÞÄÍ[¸U Õ”œˆ¨âââÌš5«mÛ¶Ž=ªtDDºã«jÒÝÍ0Oà è(Û‚-r¹:ªé³RKG6v$2G999999º­UJnnnÞ¨DQPªT)cÔŒ˜{üÖ†‰#éÈo[¢ã8ê úôFoyQû'Ž.¡·¥E®éÆÛÛ{ܸqË–-srr²··˜0tèÐ=zhÑ¢…··7€Ö­[«¶q“wy)u}ˆ Äì~ÏÌš5 À‰'ò® QýcäååU±bE]ºt™2eJëÖ­´lÙ277·Ðµ,Uª”··÷„ >úè#___[[Û7Ê{îÝ»·‹‹‹··÷;37’C‡Éwuu-_¾|\\œ(Š;wî´³³«T©ÒرcÇW¹re;;»;wÊ{®S§Ž½½ýûï¿ÿÅ_téÒÀˆ#DQ¼|ùòŒ3,^¼8**J:ßúõëKܾ}»­­­››Û¨Q£>øàƒ *øùùØ´i“6§SÐA5Ÿ‹æÝªñòòòóó+[¶l·nݦL™ÒªU+ 6|ùò¥6—%,,LuoC† qrrÒ&~ÍWFïtøB™ÝwP_˜8êŸUýc2Zâ(þ7w,Ò>™8’å1»ß3EJÌ›7O®™8q")³Ñ°633Ó××700ðùóçÒª/^ùøødggËŸ={vNNNÞ0²³³kÕªU­Zµ””©&** ÀèÑ£333½½½½¼¼’’’¤UIIIU«VõññÉÌÌ”÷¼mÛ6imnnn@@@¥J•¤Å;wªž»œ8¾xñ¢jÕª÷îÝ“V%&&zzzJé‘–§“ïA5Ÿ‹æÝª‘޲hÑ"¹f„ V¯^­ÍeÑœ8¿æ+cˆŸLµÇÎ1d6`Á$L’ÊœŠ¨ 6êÕWËWW×ððpyqæÌ™+W®Ü²eKÿþý5¬õööŽýá‡J—.-­*Y²äèÑ£ݸqcü±M>Í´.^¼xíÚµÏ?ÿ\~—Ú²e˵k×–/_>::úöíÛK—.uuu•#”ž±ýþûïÒž}||z÷þ»Q »wïÖ|šÑÑÑ ‹-’ž¡Já}øá‡“'OpáÂ…BO§ ƒj8mv«ÆÝÝ}ìØ±òâ¬Y³V­ZµgÏžºuëzY4+(~ÍW†”ÅÄ‘ÌÆGøèÿðéH—GcôøB›Jã³±#Y ø§^»vm{{{yÑÁÁÁßßÿÖ­[š×Þ¸qÀÀ¨¶Ã;wîHyŒ¿¿¾Y#€›7o†Z” 6 À† ¨5‹¬[·.€ØØXiÏÒ‹TYAGÉ{Ć ªVÊ͵9‚ªá\¾ýöÛBw«¦N:vvÿf Ò-ô²h¦9þ‚® )‹‰#™“§x*γ Ë>Á'ÎpV:("*\‰%äÛ¿!++KZ«Ý³gÏ4¯•²ÉE‹©%LjÕª%œœœ Ú‰›j†$E€Ú(åÒXŒ/_¾”uè4-Km·rò¤ÍétP ç¢Ínµ‰¼T©RÚ\5™™™ª‹ůùʲ˜8RqÉ#ò§“u$"Ûàï ]àÂÖDfAJJ._¾,ug‘½|ùòÚµkÒc*Ùµk×^¾|)g“ׯ_—šBjXëëë  \¹r;vTÝÕåË—5ä‹2éé×µkׂƒƒåÊùóç§¥¥uïÞ] ^ê"‘:)ûûûë|MªW¯à·ß~“O ÀÅ‹¥BqNGùôêÕ«¨»½zõjvv¶œ†J¼C‡R„š/Knn®ê®¤‡”ż2¤0¥YZ ël0«¯^2:ÇÈ‚Ä ¹—L;±6»eÿ²0f÷{æáÇNNN*T:öJ²²²¤ÉTfÏž-WJ}&,X ×L:À×_­yíË—/ýýý}}}?~,­JMM­R¥Š‡‡‡Ü›¤GE˜‘‘Q¥J•5j¤¦¦J5·nÝ*UªÔ›o¾ùâÅ‹*UªøøøÈ}M’““½¼¼ªV­úâÅ‹|÷¬Ú ¤ Î1YYY>>>žžž‰‰‰òUªT©€M›6ép:òA5œK¡»U#]ðÏ>ûL®‘nß¾½ÐËR«V-y·ÇŽ Ú9¦ ø5_Cüûdçíñ‰#™qIÕÉcò]æNÉ/¬ãðFl€JNDš¼úê«k×®íׯ_Íš5;uêäííýøñããÇÿñÇmÚ´‘’?™‡‡ÇôéÓO:U¯^½Ó§O:t(((hðàÁš×ÚØØ,]ºôõ×_¯W¯^ß¾}_¾|¹sçλwïnÚ´I›)þJ•*µtéÒ¾}û6lØ0,,L„¯¿þÚÎÎnÆŒ%K–Œˆˆèׯ_ƒ úöí+ŠâæÍ›·nÝZ²dI¯I‰%/^Ü·oßÀÀÀ~ýú•(QbóæÍIIIÒZ;;;OGùè°Û2eÊŒ?þĉµk×>uêÔ‘#G:vì(=¹Ô|Y:tè°téÒnݺõèÑ#>>~ùòåÚ<ú-ôÊ”Î\-uþ/DïãòˆŸ>Þïutžä]^Ò‚W‰H_Ìô÷ÌÍ›7\§N2eÊTªT©uëÖ6lPGzÕªU+GGÇ5jL˜0Az‚UèZQ£££»víZ¡Bgg烪íYs„'Ožlß¾½«««»»{hhè•+WäU§NêÔ©“»»»»»{§N~ýõW {Öæ‰£äرcíÚµ“º?;::nݺ*ÏÕŠt:ªÕ|.v«ÆËËë£>Z¹rePPP¹rå¦OŸ. âXèeyþüù˜1c*V¬(µV ›={¶6Oµ¹2úÅ'ŽÚD‘MÄôÌßß?&&Fé(Œíf˜§ÞÛ8 á‘ù>q”´@‹“8)•«¡Zâ´Ù'»W“e°àß3ÞÞÞõë×ß±c‡kÍZbbâ+¯¼RœG˜&ëÙ³gÏž=sssÓíãF¸2:|¡,ø;¨û(‘¹:rùnýˆ•ŽˆˆHwžžž™5pppÐ9k„E_sd-m·nݺeË–¸¸¸2eÊ´jÕjâĉò°¨ùÊÊÊúöÛo8pûömgg瀀€>ø@êAF¦#¹6ÿüç§7z³‡5‘AYEâ±jÕ*‡Æ'$$lß¾=66výúõò¸ùjrrrÞzë­èèhOOÏàààÇÿüóχúöÛoµÑÔjÉãòHŠÿæZ­£ŒÚ*„‰˜¸‹¤Ê²(+®æy5ø"›HY;w–zòê°–ˆ NéF–wãÆ5j?xð@ª™3gŽŸŸß'Ÿ|RÐG¾ÿþ{??¿1cÆÈíO:U³fÍ:hsD«m0«Ê}edjfT{ɬWgÏì:Cæ‚¿gˆôˆc´gùm·lÙ’››;vìX¹ÅäÉ“8 60©,::À[o½%wT³fÍ?þø#%%Eé"uªo¨ßÅ»J‡CDDd±,?qyòÄÆÆ&ßœHqs1W.ËC<‘~Yxâ(Šb\\œ‹‹‹‹‹‹j½4ÓÝ»wóýT·nÝJ•*5wîÜÓ§Ogdd$&&NŸ>ýÞ½{}úô)_¾¼ÒçDù˜ŠÿŒ¼K”ŽˆˆˆÈYøó³çÏŸçäääªÞÑÑÿ}¦¨Êß߯ C† 2dˆ\9hÐ µ¹ 4È;{©uŽöd8y‡x!ÊÏ'`B8ÂuÛ³Z×ö•!"¢âLJna,==ÿúí·ß&Ožüã?Ξ={Ù²eû÷ïwpp7n\||¼Òçd6ÔFç1‚±«ºø>ÞWúY Oíììó>YLKKï@ö>üå—_ªW¯>tèP¹ÒÓÓsÔ¨Q/_¾´Èy® AïÓjIõ)ã ¬Pú2Y O¸»»'''K™¢ìöíÛÒª¼Û'''È;À¬€¤¤$¥Oˆ 1ãå2{Xé‘…·qжmÛ˜˜˜ãÇwíÚUªE1**ÊÙÙ9000ïö^^^¶¶¶±±±¢( ¿i‡Ô¾¡zõêJŸb –|†ÏTuî(#áL3DDDËâØ§O›eË–Ií¬Y³æÑ£G½{÷.Q¢„TóìÙ³Û·oß»w@éÒ¥[¶l™ð¿ÿýO!<66vÅŠööö­[·Vú„Ð8!þûÂz&ç@.¡·5ü(}ˆˆˆŒÊòGOOω'ÆÇLJ††Îœ9sÈ!µk×~ûí·åm¢¢¢:uê4räHiqΜ9+V¬èܹó¸qãÜ£G'OžLž<¹ZµjJŸie!Êe¾°&RÖÈ‘#Aضm›jåîÝ»A¨]»¶ÚÆM›6A›±)‚ƒƒåGÞÞÞ}úôÑ-|Àµkפ·=’ÌÌÌ .¸»»k3Ö‰­­­­­­Ò'§gÆ9©k×®MŸ>½fÍšÚO¬ƒóçÏ÷ìÙóêÕ«Æ<524Ëoã(éÞ½{÷îÝ ZÛ¥K—.]º¨Ö”)SfüøñãÇ/|×T0yDE:Y« þÞ‰‘J_"+ÕªU+ä—8:;;?~üøÐ¡Cò(ÑÑÑYYYª“ÄjpôèQ¥ÏLÿŒsRqqqfÍšÕ¶m[ÃåÁƒ;wî;v¬1O Í*ž8’"ü¶%J? Æð1>–ËNp2Ä!4w!"þþþÑÑÑ/^¼jþüóÏëׯ=ºlÙ²”·<}ú4þI4ÉpDQPªT©"}*777''ǘqÿˆT(&ŽdÉþÿ'—S‘º ›ô»ö!ÒRHHÈË—/ÏŸ?/-Jï©»vírèÐ!¹'¢”8ª>q¼råJ¯^½ªT©âææÖ©S§#GŽÈ«Z·n­ÖfîÌ™3;vtqq©U«Öøñã¥ÉÃ_ È¡C‡:;;é222æÌ™S³fÍ2eÊT­ZuĈ÷ïß×fÿÞÞÞãÆ;þ|½zõêÕ«7hÐ ›ÄÄÿü§ºN:999òIiÞ ÀÙ³g»téR¡BOOÏ.]ºœ={VÞLíˆj'2tèÐ=zhÑ¢…···–ñ¯^½ÚÕÕÕÎήbÅŠ£Fzúô©¼ñÅ‹»wïîîî^¡B…ÐÐÐK—.I{èÖ­›t7¥£¨Ý¯Bã×pDRG²pª=¬`€Òá–< þ˜Z3ÇÇ;995lذC‡ÉÉÉ.\êÏœ9óꫯ֬YSZüá‡8ð‹/¾¨_¿þÊ•+å¦\‡ ºzõêàÁƒ túôéààà[·n…‡‡Ïž=ÀÂ… ó¥Ðø5‘&’¾ùùù)‚i‰éíaˆÝbü-·%Ž‚駺X]¿a$ïò2ÄÙiVÐï™ bù_»"?,=9{ýõ×¥Ež={Š¢xãÆ óæÍEñîÝ»úôé#m“™™éëëøüùs©æÅ‹AAA>>>ÙÙÙ¢(†„„Ô¯__Z%ÍÚ°hÑ"ùˆ&L°zõjimXX˜j>>½{÷–Ê‚ JC#_¼xñÚµk~ø¡ü^»eË–k×®mÙ²¥†½iAG$Å1q$«Œd¹ÜÅ,–3œ]à¢à†ØBBB’’’ââ⤎Râ C‡'OžLOOWë#=Œ8p  bàÀîܹ“wÿuêÔ±³ûw¨ÿØØX½\ØÒ¥K/]ºôÎ;ÞÞÞï¾ûîŽ;²²²´ü¸¿¿¿j׿ÿœœéÍltttllì!Cò~ª Í¤“Rk¼X·n]yUÞ#“ŸŸŸê¢¼ç›7oP rذaaaaö¦Mü‘g-Ãñ²äqy ÐÐ<.pé…^?âGi±ZE!Jé«B¤×pMé ²zõêS§N:t¨råÊrfСC‡/¿ü2**êôéÓ®®®òƒ7{{{‹-Ê;Hu­Zµ´9¢]A‡333‹ÿûï¿ß»wï½{÷þòË/û÷ï_³f¿¿TT”»»{¡ûW9¸uëÖnnnÛ·o>|ø¦M›J–,Ù¿ÿ¼;)h3Q¨NŠ @jùòåË|XTjñt¥ÔY5_׆6ñµÇ7 Sx28y\ý¦ŒšgÌk;¶Ëåc8v ·”¾0DÖEz”xôèѨ¨¨öíÛËõmÛ¶µµµÝ³gOtttË–-å|Â××@¹rå:ª¨\¹ò“'OòÍŠ®^½ªÚ&##ãúõëÒNÈ·%E}™œœü믿–,YrĈßÿ}BBÂ_|³jÕ*öokkÛ§OŸ#GŽuêÔ‘#G:vìØ«W/iÿK—.íÖ­[=âãã—/_^Ô7¹5ªS§ÎüùóãããëÔ©sàÀ)1ÕaÿÍ›7¯T©ÒÊ•+===UŸ¿j³YÉ’%#""úõë× Aƒ¾}ûŠ¢¸yóæÄÄÄ­[·–,YR‡û¢óõ)UªÔÒ¥KûöíÛ°að°0A¾þúk;;;i¸i'+W®|ðàê»x½ÇOÆÄ'Žd]¢ñogÌ[¸¥:Ê#šô”. @­]`‡¸¸¸¨5gìÔ©Ó™3g¾ûî»õë×{{{ÿüóÏ}ûöÍwç|ðÁÊ•+ÿú믥K—>|øpúôéÒp0æÍ›7f̘˗/¿÷Þ{ .”[)r{{û¼õÖ[§Núä“OŽ=Ú¾}û“'OJC[ë°Aúõë'ŠâàÁƒ5Ìà\ÐfR‡ë5j|ûí·ëׯ¯U«ÖÉ“'µWRMq®OÏž=£¢¢¼½½¿úê«uëÖ5iÒäÌ™3Õ«WЬY³üüóÏ‹-Rû”~ã'c¤6ª¤Gþþþ111JGa¢n†yê±¥£).iSÔOM¤…X(/3wLÙíÍùcÈøø{F7Ïž={öì™›››™îßÐÌ=~éð…²Úï _U“ySí£e¹ V`E:þìS|:S”>"2óÝ¿¡™{üdLɨü¶%êqhÕL±H=¬Ÿâ©<7ÚTLeâHDD¤ ¶q$c3ÄÐ<:˜ƒ9rÙ NÊCDDd˜8’•š†ir9©{ ã¼d.¡·Sv{+}6DDDÆÀÄ‘¬W&þ!¡J‡CDDdê˜8’åÂ#¥-··‡}_ü;®G+´ÒòƒDDDÖ‰‰#YqIé§HŸÚŒÍrùŽÝÅ]¥ÏƒˆˆÈt±W5)Iµ‡µÄøfÎâl4‘ÊUP…C‚„‰#)&ßQ¿#„k£1«Î=Žð%XRÔ¨öáxàDDd©˜8!±ò°ŽŸá³¢&Žª™"{X“Ñøûû+Y&Ždt˜Šp–}€þþ8¾°&gs‘âØ9†,³Wxï«.ªvš!""" G¢¿©>eìþJ‡CDDdr˜8ýë ¼!—ƒ¬t8DDD¦…‰#Ñ¿¾ÃwrùNœÇy¥#"""2!L‰þã4NËåÆh¬t8DDD&„‰#Y qI›"Í=¨ª)šÚ©Œ6ð1>VúlˆˆˆLG²Lºõ­–¼ÄK¹<s•>"""SÁÄ‘(ŸâS¹ì Wí?èz;e·7‡'""‹ÄÄ‘(“1Y.'#9ExëÍ)‰ˆÈRqæ297Ã<岑ç­Võá,•Û¢-ç’!""bâH¦E5STÍ u#÷ѡɣœÚ¡Ýa–û£ÿ&lRúò)‰‰#Y,9YÔ­{5€C8$@Ê›±™‰#Y9¶q$ÒDuÒj9‰,”ÜE†½dˆˆÈ’0q$Ò¤/úª.~¯µü Kèmö’!"" ÃÄ‘¨ªÝb†a˜Òá)†‰#Y›9J†`ˆ\F°ÒgCDD¤ vŽ!Óå·-± ŽÕE¦Gš°8‘|¯¿Á7RùNÄ!®:ª+}yˆˆˆŒ‰#™´|ÄâÓ£ƒc8Ö-¥²/|µÖQê%ÃÆŽDDdøªšH+Á¶Qù¾,ÄB¥#"""26&ŽDÚÊAŽ\ž„IJ‡CDDdlL‰Š`&ÈåZ¨¥t8DDDFÅÄ‘¬‚Ô?Fú)Î~a‘\¾Žë¿à¥ÏŒˆˆÈx˜8’YÒ¡Œ¸¤3Vçu—århµCN!CDD–‰#™Ÿ"Å£wuP§ ªÈ‹ãcÍÛs ""²L‰Š, ry.æ*‘‘0q$ÒÅLÌ”ËUQUépˆˆˆŒ€“ÕÑÜ?FËv³0k6fKå;¸s룾ÒgFDDdXLɺhÎ ‹Ôçú4N!H*"°Ð¹d4ôa#H""2 L‰tÔMk£öU\•'b¢ê`=j4¤†ìpMDDæ‚mÉ,ùmKTdÆj5WpE./Æb¥Ã!""2,&ŽDÅ2óä²-l•‡ˆˆÈ€øªšè?Ôš9ÚWf ¦LÅT©œ‹Üs8ו> """ƒ`âHô¯¼i¢Yhîxg› ‰Tn‚&…ö’É+e·7ûÇ‘éã«j¢âjŒÆuQW^ Gx‘>Δ‘ˆˆÌG"=ø¿ËåÏð™ÒáG"ýøŸÊeO(ß㛈ˆHï˜8éÇdL–Ëá¯hD+‘ž±s Q!´Ÿ¢0ñ>ð‘Ê ÑP‡^2DDD¦Œ‰#‘&Eš¢ÐÞªsÉL¤X ÍQ\Bo³c5™>¾ª&Ò'Õ¹db¡ÒáéG"=›ÙrÙœ‡šˆˆ,G2c¦0]u^30C.ÿ?ä7×DDD掉#™+¿m‰J‡ÐuænÈå:¨£tŒDDDúÁÄ‘Hwuñ‡uT—'b¢6{KÙÍ÷ÚDDdÒ˜8D,båòb,.t{v©&""ÓÇÄ‘ÈPZ£µ\®‰šJ‡CDDT\L‰ %ÿ6¼ñˆW:"""¢báàdÞäŽÕ&ÒWFM4¢ T®†jœK†ˆˆÌG2cªÉâÍ0OÌè¿ð—´Ø]÷aŸÒA鈯ª‰ +ÿ¦³û±_épˆˆˆtÇÄ‘Èࣱ\~ ¯)‘Ž˜8ÜYœU-?Â#¥#"""ÒG"c8Š£rùU¼ªt8DDDº`粦ÜúZ9ÀážI‹«±ú]¼›w³‚&áðàDDd ˜8’…“E9}45éH Hå‘™7q,(;äT„DDd"øªšÈxc°\î€J‡CDDT4L‰Œç[|+—áP6²•Žˆˆˆ¨˜8Õ.ì’Ë%PBépˆˆˆŠ€‰#Qq á‘ÚoŠPÕÅÍØ¬tøDDDÚD‘“çꙿ¿LLŒÒQX/©sŒ1;V á‘â’6EûÈ?½dh3u¾ýcØÕšˆH)Vû·ž½ªÉÒømK4ÙŽÕ²îè¾{¤r?ô+ô¹cÞ‘]­‰ˆÈøøªšH»±[.oÁ¥Ã!""Ò G"e|¯å² ¿‰DDdøçŠH„ðHéGû Á¹,B<„CJŸQ!ØÆ‘¨¸T{Æ©£L*Rá(•; ƒ6½dTåmæÈî2DDdPL‰S囡Ù)œ’GaÔ ¬Ðò³ì.CDDÆÇWÕd¤ŽÕ¦ß·ÀIœ”Ë+±Répˆˆˆ4aâH–ɘã8Ó",’ËðP:""¢YKâ¸uëÖ>}ú6oÞ|êÔ©?.ô#—/_þàƒZ·nݸqãAƒýúë¯JŸY¦ ˜ —ïãþE\T:"""¢üYEâññÇߺu«qãÆe˖ݾ}û;3‘‘¡á#‘‘‘ ˆŒŒtss ¼páÂàÁƒ##‹Ðg–H{·pK."Pçý¤ìö–”>'""²@–Ÿ8ÆÄĬY³ÆÝÝý§Ÿ~Z³fÍÏ?ÿ'²|5PC.·B+¥Ã!""ú›…'ŽÜÝÝ“““¥LQvûömiU¾qss+Q¢„ ª•Òêììl¥OˆŠLê^­tEp×åò1{ŽçÅØ‘ÞX~âØ¶mÛœœœãÇË5¢(FEE9;;æ?EGëÖ­ÓÒÒnÞ¼©Z)ÝS£F iA”~tûø~ì—ËpÐm'DDDúeù‰cŸ>}lll–-[&µk°fÍšGõîÝ»D‰RͳgÏnß¾}ïÞ=i±gÏž>þøc¹ÛõåË—×®]ëèèØ¾}{¥OˆÌ€¸¤ô£ó:£³êâ{xOç]qB""Ò ïU ÀÓÓsâĉ , NHH8sæLíÚµß~ûmy›¨¨¨qãÆùúúîÝ»@Íš5ÇÿÙgŸuêÔ©Q£FÏŸ??wîœ sçÎ}å•W”>!²"D·—X…U+±R‡Èýc˜8QñYþGÆ [¼x±··÷þýûSRR ´~ýú¼ƒ;ªz÷ÝwçÍ›çááqêÔ©„„„¶mÛîØ±£sçÎÚ’HêàßqC{¡—ÒᑵD‘# 뙿¿?Çq45ªcŒ9—ŒYœÖ䇎Š3xÊnoŽÎCD¤/Vû·Þ*ž8IsšÑôƒ²ïð\VM"‰ˆˆŒ‰#‘gÉxCuQµ·5‘‘1q$2uªã8vEW÷Ãþ1DDTLL‰L]i”nç1Žá:ì„ ‰ˆ¨ø˜8™Hüû¾{Ö)Y)ËÇ‘HæéM¶Ír,ïKeØä"W鈈ˆÈê0q$ë¢9/4ДÖRÿ˜bŽË3 £äÄQ„x'Z …¡.Q~øªšÈ°Š9÷ ªË¸,—ƒ¬ô™‘ÕaâHd6ê NC4”Çb¬Ò‘uaâHdNÎã¼\þŸ+Y&ŽDffæÉeG8*YvŽ!úµþ1zìd­a ™"5‚œ‚)S1U*§!í.ÕE]c_&""²JL‰þ•7M¼æ©—ÜQCj¨Ãœ„7qÓ~R¹ê‰z™ˆˆÈZñU5‘ùñ…¯œ8˜ŽéÚ|Ê%ôvÊnoéGé3 ""³ÄÄ‘È,Å F.ÏÁ-?åz›s‘Θ8™«i˜&—k †Òá‘åcâHd®T4Æ &qJGDDDŽcˆ a„¹­…ðHÝf—¹ˆ‹õQ_*û—½dˆˆÈ ˜8ib„¹­Å%mtèX-©‡z•PéîI‹ŸâÓ)˜¢Í5ôa#H""*G"óvwRy*¦j“8jH Ùᚈˆ4`G"³7ãä²ü暈ˆHï˜8™½Ïð™\þ¿ßÅ]¥#"""ËÄÄ‘È$èÜÌQrgårTQúlˆˆÈ21q$*}õ)棱;ÜåÅnè¦ìe!""‹ÄÎ1DºóÛ–¨—ÄQ/îã¾ÜKfö鼟|ûǰ«5ÁÔGQ¯_¿~êÔ©˜˜˜G%%%•*UêÕW_­P¡B£Fš6múÊ+¯(#‘éªúqQ*7@ƒhDuù&ˆìjMDDSIïÝ»÷ÝwßíØ±ãÉ“'ùnðÃ?‚P§NAƒuéÒÅÞÞ^é‰LÎ\:^À…{¸W •”Šˆˆ,‡ò‰ã_ý5þüƒ¨_¿~```½zõ|||œœœœœœ²²²?~üèÑ£k×®]¼xñܹs“&MZ´hÑ{ï½7pà@¶Ñ$Ë¡óü1ªÎàLS4•Ê•Q™sÉ‘)œ8®_¿>""ÂÃÃ#<<<44ÔÍÍMmƒ%J888TªT©~ýúEñüùó;wî\¼xñ®]»æÍ›çëë«ì)éEqæQõ^sƒÛC<”GaÔ ¬Pú䈈ÈB(üÄnÆ Ÿ|òÉÞ½{GŒ‘7kÌK„ÆÏ;÷ðáÃ;wîT6~"ôäòJ¬ÔË>Sv{³¥#)üÄñ§Ÿ~²µµÕხ®®3fÌÈÉÉQ6~"Ó4c—b©TVí1£¹ÇLÊnov¯&"²f ?qTË/]º¤yûŸ~úIÃljH¹ü;~O@‚Ò‘%0­Î%ýû÷_¶lY¾Ï?~yòdøðá»wïV:F"³ñ'þ”ËÓ0MépˆˆÈì)?Ž£ª²eË~òÉ';wž6mÚ¬Y³öïßÿèÑ#__ßO?ý4 @é‰ÌÌ$LZ€R¹&j^Çõbî0oßjv—!"²¦•8J‚‚‚6mÚôú믟={@ƒ Ö¯__¢D ¥ã"2?ó1_NoàÆ Ü¨:ï-oŽÈ1zˆˆ¬Ši½ª–?~¼OŸ>)))µk×vss‹ŽŽ~ÿý÷ýôÓO·oßngg7f̘wß}7==}æÌ™èÚµë”)Sz÷î­tŒD†¢aò˜âLEXµ}á‹Xiq*¦²£ éFEšÊ¶eË–<ðõõ]¸pa­Zµäú={ö|òÉ'iii-Z´X»v­ÒaÂßß?&&Fé(ÈHn†yúmK4è!ô2‡µA.ëqk NDÖÉjÿÖ›Ö«êG½óÎ;;vìPÍtïÞ}Ïž=AAA'NœP:F"³4särETT:""2K¦•8~ÿý÷áááùöƒ©P¡Â×_=m‡!Óâ·-ñf˜gñ÷chªÃñ$"ñk|­¯=KÓX³— ‘50­Ä100PÃZA¬tŒDæê.îÊåa¦—}º„Þ–~”>9""2…;ÇlÛ¶­gÏžºM9˜˜ײeKeOÈòí4SÔ†•PÉÏðLZ|ï­ÄJ¥ÏŒˆˆÌ‰ÂO—/_Þ¥K—={ödeeiÿ©{÷îÍ;·cÇŽñññÊÆOdâ’6ytÛU:Òåò*¬Rú̈ˆÈÌ(œ8îß¿?$$dÒ¤IÍ›7Ÿ9sæ‰'ž>}ZÐÆ ›6mzã7ÚµkwäÈ‘åË—2DÙø‰ÌÎ ¬Ë¥PJépˆˆÈœ˜Äp<±±±ß~ûíž={^¼x!BõêÕ«V­êìììè蘕•õøñãäää«W¯¦¦¦ðòòzóÍ7{÷î]ºti¥ÏŸÕvÑ·Zjc =:¤8cô¨ͳ{»¢kñã‘:ǰ±#Y «ý[o‰£äÉ“'8uêÔ™3gÒÒÒÔÖúúú6kÖ,$$$((HŽ`$Vû‰`”a%ÅI_àEiüûÿ.} ëÈ1‰ÈzXíßzš9ÆÉÉiÀ€ ÈÍͽÿ~rrò£GJ—.ýÊ+¯¸»»—/_^é‰,D)”ꊮû°OZ쉞;°Cé ˆˆÈ ˜Pâ(³±±ñôôôô4ƒ±ñˆ”’ïü„Ú?ƒÜ‹½ò ëØ™ƒ[è2¸YSLe¢(&&&Š¢X±bE=Md|jibAó\dvôDO©l;=ÎCHDD–Ê$ÏÈÈøùçŸ?û쳌Œ ¹òÔ©SíÛ·oÓ¦MÛ¶m›5köã?*&‘EéªO9:JùÄ166¶wïÞ~øáêÕ«³³³¥Êëׯ¿÷Þ{wïÞ`ooŸ’’2eÊ”9sæëHDô_ÙÈ–Ëïá½bîÍ%ô6'$"²l 'Ž™™™#FŒ¸uëVíڵnjSªÔߣÊ}ñÅ/^¼¨S§ÎÑ£Gÿý÷åË——+WnÆ —.]RúŠY”Q%—XŒ=‘åS8qܸqãýû÷Û´i³yóæQ£F•(QÀãÇ=*ÂÂ… =<>ÞÁÁ! @µ>55555õÕW_U6`"Íü¶%gÊA½ûþ'—K¡”Òá‘)R8q¬\¹òãǯ]»&×:t@£Flmÿ3ÅåË—T­ZUÙ€‰ÌEQ{ÉŒÆh¹œ‰ÌoðÒg@DD&Gáı[·n>ùä“´´4ÉÉÉ_}õ€Ö­[«n–““³páB=zôP6`"³ [/Õa‡b¨Ò'ADD&GáÄ144´zõê.\ éß¿§Nîß¿_¾|ù®]»J$%%EFFöéÓ'&&ÆÍÍ­sçÎJ_1"‹e Û0„É‹íÐN鈈ˆÈ´(œ8ÚÚÚnذ!((èÙ³g.\HKKsttŒˆˆ(_¾¼´Á¬Y³Þ{ォW¯º¸¸,_¾ÜÞÞ¾x$"M¶âß¡RàH’”ŽˆˆˆLˆÒÀÅÅå›o¾¹sçÎÕ«WK–,Ù¨Q#9kàêêÚ AƒæÍ›0à•W^Q:X"­ømK”;V›]_™(DµB+©ì7b‘>ž²ÛÛ%ô¶Ò'ADD¡|â(©R¥J•*UòÖÏž=[éЈt!å‹f7.€–hé ÏDüïNÇôÿÃÿiùYNWMDdÙ~UMD†VÔîÕþÄŸryæ(}DDd*˜8Y2ݺWX„Er¹,Ê*}DDd˜8Q>&`‚\~†gŸãs¥#"""å1q$¢ü©ë8c•‡ˆˆ”g*cˆ,’Ô½Úì:VKla[U -¶DËc8¦Í íÃn×DDfЉ#‘µÂ#‹ÚØñü!@ÊÇq< UQÈ´ŸÚ$…²‡ˆÈLñU5‘UСŒäÎÉe/x)}DD¤$&ŽD¤I#4ò‡¿¼8ƒ”ŽˆˆˆÃÄ‘ˆ q7äò÷ø^épˆˆH1L‰ îf˜§9N!£j-ÖÊe¹Õ#YvŽ!2,ó{PÕ0 ŽáòâJ¬|ïg‡y{^³» ‘écâHDZ!ÊÏGaTqǼ9"g¸&"2 |UMDÚRN¦ ª(G"Ò–êÖwq÷Ž(_U‰†fŽf4µÌc "ó° är2’7a“Ò‘>Yxâ(Šb\\œ‹‹‹‹‹‹j½ŸŸ€»wïjøì_|qýúõO?ý´|ùòJŸY3xPê ë t8DD¤OÞ9æùóç999NNNjõŽŽŽRRR úàÅ‹¿üòËAƒ5kÖìêÕ«E=®¿¿¿ZMLLŒÒƒLš"jOî£Í„„c0æs|.•K¡Ô ¼P:|"¢bÉûgÝjYx☑‘ÀÁÁA­¾lÙ²RSS úÔG}T¹råððpÝŽË4‘,‰œ,j9!áR,•ÇLdnÇöÞè­ôIé.ïŸu«M%-!"óð¾Ë‰H\‡uJGDDDÅeáO´mÛ6&&æøñã]»v•jDQŒŠŠrvv Ì»}ÕªUå-%©©©'Nœðôô ¬P¡‚Ò'D¤¤¼Í5t—! ¤òp ç\2DDæÎòÇ>}ú¬ZµjÙ²e­Zµ’úĬY³æÑ£G#FŒ(Q¢„´Í³gÏ>|X¢D‰J•*µhÑ¢E‹ª{¸zõê‰'5jĹªÉÊåÍ í.ó&ÞÜ€ RÙîð@é“ ""ÝYþ«jOOω'ÆÇLJ††Îœ9sÈ!µk×~ûí·åm¢¢¢:uê4räH¥ƒ%²4ë±^.?ÄÃðƒÒ‘î,ÿ‰#€aƽúê«;wîÜ¿¿‡‡Ç AƒÆŽ+=}$"CS}aýÞˆ†;–Ü?†Ý«‰ˆ AEƒ “aÍüýý9Ž#éàf˜§ß¶D¥£(!ìS:"""úG"ˤTk!<²˜{È@†\î†nFŽŸˆˆ4`âHdü¶%J?F>n‘æ,H)”š†iò"Gç!"2L‰Èä¨ë`Æ)¸„ÞfÇj"²rL‰È©N'³Kâ¡ÒG"2UÇq\.»Ã]épˆˆˆ‰#‘¥3ßy[ Et‘ýà§tDDDÖŽ3ÇY2¹Œ1Gm:VkÙföÉcb»kÞÁ;F;""RÃÄ‘ˆôI›Œ°HCöˆåÜñ]¼ËÄ‘ˆHA|UMD¦îk|-—9:‘‚˜8‘©‚!µPK^lÖJGDDd¥˜8Y sì#»Š«rù(ŽîÆn¥#""²FlãHdü¶%šT☷™c¡#³e{©ü:^W葈ˆŒƒ‰#[ÞQ›î2%Pb!~„þþæŽDDFÆWÕDd6&b¢-låÅîè®tDDDÖ…‰#™“ldË彨{@ÊnoÎXMDV‹‰#™™4¤ÉåŽèhÌC»„Þv ½­ô "R Û8‘I(Ò¨àó–Ì›Š©‰ˆŒ…‰#)OË%BxäLY‰•wqWªé„N?á'¥O‚ˆÈòñU5™¥;¸#—ÆÏòH""2&ŽDd®r#—?ŧJ‡CDdù˜8‘¹²Íb,–95;V‘ubâHd-¤Éc¤¥cÑ›p„7@y±>êá RßjæŽDd…˜8Y¿m‰~Û•ŽBT»`ÿ†ßäòïø} ¦(‘ÅbâHDf&olÕáxæc~:Ò•Ž‘ˆÈ21q$"Kðø?¹\唇ˆÈ21q$"Kð1>îþòb ”P:""" ÄÀ‰¬‘†þ1æÛr#6nÂ&©œì·ñö—øRé ˆˆ, G"«£!54£×Bxd¾åAy¾ÂW1°5Z.†”ÝÞœºšˆ¬ _U‘ùÑ0Ea2’åra&âbÊHDVˆ‰#Y¸üÿ“9*8‘ÅcâHD–f4F¿†×äE/x)‘…`G"ú|›9š]™38#?kL@ÂDL\„EJEDdö˜8Ñ¿òMM¶ÇŒêü1Õ¶ªecqÔy o)2‘ycâHDf)oÿ˜¼yäÜ©‚*Ry†"q,tÆjö¡!"KÂÄ‘ˆ,VeT~¯ïÂ.iQ€ :9añššV™vŽ!"K¶;ƒ,/ºÁM鈈ˆÌG"*ÜÍ0OéGé@tq Çär’ÞÅ»JGDDd®˜8Q!ü¶%J?J¢;Õ7Ôk°fö(‘YbG"²rÿ˜¼]g2‘Y%¥r(Bs‘˱Á‰ˆŠŠ‰#Y9YÌÛ½€=ì·c{oô–m`£ßŽ2DDÖ€¯ª‰ÈZôB¯a&/ç‰cÊnoö­&"‹Á'ŽDTyûǘWÛǵX»ûïã¾´Xõ/â¢á'×ÃÄ‘ˆ,G"ÒVÞÑûYÿ…¿äg¿ã÷ Æi¥ƒ""2|UMDHÌ·¥£Dµuãœ9ˆƒJÇKDd˜8‘¥—´ÉÛ«ZÍŸøS.wDÇ—x©tÔDDf€‰#Y#OxÊS°‡½Ò™¶q$¢b‘›9šW/¡‹±K±TZÔûLÖª íSè´×DD¦€‰#éNNͱ— €D¬Æê dH‹.pIAŠÞRhRÈn×Dd.˜8‘ÅÒÐ?FÅ^,i+•ã±XKÖÚD’ˆÈ:1q$"ËT”äOüw0pÏ[h³ `âHD”vŽ!"úÏ=èúå/øE鈈ˆLG"Ò3mæ(KF²\nƒ6ñX鈈ˆLG"Ò³ëR— \à€ê¢Ò™¶q$"ú['tšÙ31SZ4è=jŒÓ±šƒþQ11q$"ú× Ì˜yù0ŽK‹„‘ר·µqò9úCDÅÇÄ‘ˆè?Ä€cÕP-ñÒ¢û’÷qÚîCDdÉØÆ‘ˆôÃo[¢¹÷‘ÝÂ-¹üÚpt""L‰ˆò¥Úºñüò>P:"""åñU5QþD•Á—c9šÙq`p"²rL‰ˆ ¤š;¢÷çÂêŠâ»•JwjýcØÉšˆŠŠ‰#‘&ðÈ®/¼ûÑY´j‚&J¥‹¼ibÊnoæŽDT$lãHD¤É+xå7ü&/¾†×”ŽˆˆH1L‰ˆ Ñ 6a“¼øïËk""+ÃÄ‘ˆ¨pýÐo1ˋ̉È:1q$"ÒJ8Âq¼—¼ÈÜ‘ˆ¬G""­í|¿˜;‘õbâHDúd1“Çd;¶·@ y‘¹#Y&ŽD¤7~Û•ÁŽãxuT—™;‘õ`âHDTd±ˆµS×ÎJGDDd Ö2øÖ­[·lÙW¦L™V­ZMœ8ÑÙYÓ/úŒŒŒÍ›7oÛ¶íÞ½{åÊ•óóó6lXóæÍ•>"2/ñR~ÖøOìaŸ…,¥ƒ""2,«H#""V­Zåààиqã„„„íÛ·ÇÆÆ®_¿¾téÒùnŸ=dÈ‹/:::½xñâ×_=qâć~øþûï+}6D¦®ÐfŽfýF[ .iƒÿNHø/ë¡Þïø]鉈 Èòǘ˜˜5kÖ¸»»oÛ¶ÍÍÍ Àܹsׯ_¿xñâéÓ§çû‘-[¶\¼x±aÆk×®•’ËØØØAƒ-_¾¼M›65kÖTúœˆL—6IáÍ0O3Í¥|QÊÿ®QÉ/áR34;…SJ‡IDd(–߯qË–-¹¹¹cÇŽ•²F“'Ovtt==ÿ|xAƒ>©QÍS‘Ú ¢]¼]™ O¸»»ÇÅÅ¥¥¥•/_^®¼}û¶´*ßäææ†‡‡ƒ$"2ÖòÄ‘ˆ,†ß¶DÓI…ðHͨöž‰G| ´8‰“B&2ía¯ôIi‹‰#‘Ž4w©F~iå œ¨„JâOi±$JîÁžnè¦ô©äOêXÍAyˆHÆWÕDDFu÷Æaœ¼ØÝ·b«ÒAåÃ%ô6SF"RÃÄ‘ˆÌ’é¼­ÖÁgøìøŸ¼Ø}?Á'JEDT8&ŽDd~ÌbæÍFc´êƒÆ™˜Ù½•Šˆ¨L‰ˆ H,¨MÂT'°þ?VGu¥ã%"Ò„‰#‘¡ˆKÚhî@ã?Õoá‡é!"SÆÄ‘ˆHajƒ3w$"“ÅáxˆÈ\åíc¾móNK˜€„*¨¢t\À?ƒòè;k™/&ŽDd–òæˆfÝÏ€ÑîñPZ¬Šª?âÇžè©lT†HòRv{3w$2SL‰ˆ Nó3r;Èxð:^ßÝÒb/ô‹±ˆP:|"¢¿1q$"2,m&˜‘·Ù…]íÑþ0K‹K±t7vßÂ-¥O‚ˆ`ç""Ss‡Žâ¨¼xv—!"Á'ŽDd9äfŽæÛKFÒ ­r‘k£ò{B&2ía¯thDdÕøÄ‘ˆ,„ß¶DéGé@ôC€ 6LOI”ÜŽíJÇEDV‰#‘é!zÁK^ CX5TS:("²^|UMD¤<Ý®×",A{¥…xÄ Ùö˜ô“G)´›ŽÑh’ƒõ™,&ŽDdn†yšÑ;k-ò¹6û°¯ºý½d÷KÚª½È.”æ!ŒIs^¨÷ñƉHøªšˆ,ÔÒÑÜÇWÓ]s£Z#@Ø„MJÇEDÖ…‰#‘y°ÚSÆðïcH""ÃcâHDdNDˆªýcöaGy$"£aG""3‡¸ÍØÜý坸µ šhþ Z3GÓé+CD悉#Y,›9š~Çš~è×ýTŸ5¾†×ÞÆÛk°¦ äMU§:$"ÒG"²L:'fÔ«F„è÷‡x(-~‰/¿Ä—Eímm‚¤ŽÕ”‡È±#‘{€¯á5ÕÂ9œS:.ݹ„Þ–~8.‘ bâHDdÞÎàL<âUkš É P:."²@|UMD¤.ß·Õ¦ÜðÑÞ"DÕ&›°i6YÀkk"2)L‰ˆþ£ Ñôg£!ŽÃ¸¥X*×Ö`ÍÛx[éЈÈBðU5‘åˆ@ÄÜQ­yïxÁK鸈ÈB0q$"²(•QY„è‰ß¶' A€°Û•ˆÌG"" ô'þ‡qª5aë‚.JÇEDæm‰ˆ´eúÍU}†Ï>Ãgª=fà€!±ÕQ]éè´¢ýˆ<ô‘È8˜8iÅo[¢ .!VEUÕ†¾ð}o|‡ï`Ú“ÇhŸ rÄG"£á«j"" —€„[¸¥Zó=¾ ¤, T:4"23L‰ˆ,Ÿ|DˆpP­t ÍU:4"2'L‰ˆ¬E:Ò£õŸªÀHÂm° i…‰#‘i‰–"Ĩ¡Z韶h«thDdØ9†ˆÈê\ÇõHDª&‹‘ˆ àËù¸ÑX®4Ù~3D¤&ŽDDÖ¨ Úˆ¡ÑoøíßÚ·';Áé1Â#•Ž‘ˆLG""ëuç/âb þí^ýOS1fõòÚÚFäḕ¤AE¥c°4þþþ111JGADú'ãhFÀk©zíÀµÊÄøÁOéÐH]Êno&ŽŠ³Ú¿õìCD¤-¿m‰–—2J~ÄéHW«ô‡MÔT:4"2!L‰ˆà BüŸªVÞÀ Â4LS::"2 L‰ˆè_“1Y„èÕÊy˜'@؇}JGGD câHDTd7Ã<ÍqÞjíÝ­˸¬VÙ ÝìØ¥’Ⱥ1q$"* n騪êˆqø ÕÊäZ¢¥ÒÑ‘2˜8QÁ !–DIÕºã8.@h„FJGDÆÆÄ‘ˆˆ ñ/â¡ZåoøM€ð¾R::"2¶V!""MT¦9‚úGñæÿ©®}o¿·±fbŠð’“‡KèmyÀsèHFÆÀõÏj%²67Ã<­¡±c^ Ñ0ÑyëÇïuQ·Ð á‘Lõ‚#+ÈjÿÖóU5ÍoøM„ØíÕê롞á,Î*  G""ÒÅA!VEUµú×ðš-ló¶‰$" ÀÄ‘ˆˆt÷þHCšZe.rÝán»DXã«|" ÆÎ1DDº+tpkhYåDˆ±ˆõƒŸj}r*¢"€›¸é _ÕU*nòÁD&‹‰#‘Ž M -{v5¾ð!žÇùÆh¬¶JJ(¿ÂWÃ1…å…šsJ"R_U‘Þ4B#âr,Ï»jF¶c»Ò1‘îøÄ‘ˆˆôlF¨38„ µUa0ó¦`ŠÒaZy@Ǽ8RG""’ÞV[CKǼš¢©ñ.ÕC=µUS1u*¦ÄÀïñ½Òaš1Í©!Gy$Cà«j""CñÛ–h)£ªº¨+B¼‡{åPNmÕøA€P%ã±j½É–ŽD¦‰‰#\ETLCZrj£¶Úª,d¹ÀE€0SˆKÚH?̉LG""2Ø\Á¢4LšOñ©á=¼§t˜DT ¶q$"28÷¨æî˜‡yÓ0MmÕ*¬Z…UnpCÍqt$2-‚(ŠJÇ`i¬vâs"ÒÍÍ0OkKUE"²-Ú´ö#|´ ”ŽÑ,±sŒAYíßz¾ª&""%µAbròŽÝ`! \àrg”Ž”ˆøªšˆˆL€ lNá€9˜3ÓÕÖ>Æã¿ÓÊ‹!Ø0=ïÇ9K!‘q0q$"Ržq&'4‹âããññAwqW}uý£¨Àb,G¸TÇþ×DFÃÄ‘ˆHaÆÉçÌkâìèpwLÇô9˜“wƒ ˜0J£ô&lÊ*¯‰Ò0¯Œá°a¥ecçý³Ú³DdÊ̺ Îoøí¼è‚6¨Žê˰¬#:*©µ³ž9Vû·žcˆˆÈÔ5DÃßð›± Qã× õQ#6*/‘ÅâGý³Úÿ…‘)Ë÷Uµù>ƒìˆŽqPÓ÷½p¢'NwS:Rƒ0ÙÎ@|âhñØÆ‘ˆÈ*äÍͫգšŸñ3€,d  ­ØšÏþ@XÂ"àð-¾íÞJ‡¬7ì D â«j""2Wö°ß‚-"Äs8WÐ(âÏð, aÂ<ÌS:d"óÆÄ‘ˆˆÌ^#4:ŒÃ"Äc8Öí Úl¦Iäëx=±JGMd~˜8‘åFð!!þ…¿z¢gA›íÆn?ø Ê¡\ôQ:j"³ÁÄ‘ˆˆ,PTø?ŠEˆâÂ6KGú6l“C:ÁéŽ(¸V„ðH¶t$E0q$"" ÷9>—2È5X#@(h³T¤¶C;)‰ì‹¾»±[éÀó'.i#ý0w$ãcâHDDÖâm¼‹\âiœî‚.¶ÜŠ­¯ãu)‰ô‚×\P:v"“Àáxˆˆ¬”ß¶D³žN¦8š¢é>ì“Ê+±r:¦'#¹ Ð ¤r[´íà¥ÏÀtsžC+Ò|1q$""«öÞ“&¤y‚'³1{)–jØøŽÁ‘Ñ À¶ÿ‡ÿ{ï—Gy¥OÂT0í³x|UMDDNpŠ@„Ôò(ŽÃ0ÍÛç g*¦:ÂQz£]µóŠœÈ‚pÊAý³ÚiˆˆÈìhž<Æ:ßbçõþXŒÅ˱¼HŸz¯×B-ƒ9^hç“™ÐXíßz&Žúgµÿ˜ˆÈ’XmóGÍ2ñ?üïø_"Švqš¡YTY‰•Np2N¨Bx$Gñڿõ|UMDD¤­Ò(= “þÄŸÒíC8äm>x §6a“3œ¥÷ÚeQv†ý€”>!¢¢aâHDD¤£vh—ˆD)‰!®Ã:øhóÁgxö5¾~oHy¤á¼âÿ]Ø%‚oÉt1q$"¢üÝ óÔÜ’Ô ÅÐ[¸%%‘™È\‡u!Ñò³)H¹‰›=ÐÃ6r6Ù-?ŧ[°Eé3#úÛ8êŸÕ¶{ "ËÖŽz‰Èظk‹ùLÑþ}Ñ· ÚhÎJ•šWÆJVZíßz&Žúgµÿ˜ˆÈò0q4œd$ÀíØ¾;‹¿·²(Û ÍZ EBZ …†™ ÊzzäXíßzNDDšâm5“Q¯à•A4ƒäšäìÆîI˜”ŠÔ‡xX¤½¥#ý ÄÁ¼«ª£º7¼»¡Û+x¥úÙñO?ÿõQ ‘á±ÝdAlaÛ={¢§jåMÜŒDäAܺí6qqˆ;„CTóTI áÜÝë¢neTö…¯Ò—LG"""Óå??øÄHÕÊd$G"rÖÝÅÝ«¸Zœý_À‘(°AduTЧoá­¨ñ/{¡—+\•¾*¤¶q,ÐÖ­[·lÙW¦L™V­ZMœ8ÑÙÙY›Zm»SÆ›b‚xSL“îK¡Où"[ö7åÀ‰y˜W%OãtrŒ¤ܼáýë½Ä4†(àV}¤¸#íd•*ê®Ì¢•¤ÕþãÇüEDD¬ZµÊÁÁ¡qãÆ Û·o]¿~}éÒ¥•ˆÈ¼iÎ ù"»8\áÚ=z GÞUá¯Xa Ûßð[¢žâ©~ýâ!*•b Ý÷š··ƒ]ETLAJ'tò„§=ìë ÎC<œ¸Øéj»Ã]ékIùc☘˜˜5kÖ¸»»oÛ¶ÍÍÍ Àܹsׯ_¿xñâéÓ§+Q‘yÀãÿð­}ŒÇ—piV8Ã9ѱˆ}‚''Ù H°[ÿ³b*h·‡(á'7¸¹À%qÐÉ.—q¹'z:ÃY„è ïgxVµáX E~ðIùbâ˜-[¶äææŽ;VÊLžî8‚#ÐUé°ÂÄQ(Šqqq......ªõ~~~îÞ½ËÄ‘ˆÈ ¤|‘Í—'<=áYuº%½JGúiœî°ìúÖ<·bk Ôxˆ‡‰HLFòYœ-‹²ñXé3#&Žy<þ<''ÇÉÉI­ÞÑÑ@JJŠ6;ñ÷÷Wú±ÍuÈÍ-«ôÙ›&Žê222888¨Õ—-[@jjj¡{°ÎþùDDDÅgÀ¿ jO?+þSਔEÁ~ꜜœAxþü¹Z}zz:þyîHDDDd…˜8ª³³³sttÌûd1-- €ÜÏšˆˆˆÈÚ0q̇»»{rr²”)Ênß¾-­R::""""e0qÌGÛ¶msrrŽ?.׈¢åìì¨ttDDDDÊ`â˜>}úØØØ,[¶Lj×`Íš5=êÝ»w‰%”ŽŽˆˆˆH‚(ŠJÇ`ŠÖ­[·`Á‚Š+'$$œ9s¦V­ZëÖ­Ë;L‘•`âX ={öìܹóÒ¥KMš4;v¬4"‘ubâHDDDDZaG""""Ò G""""Ò G""""Ò G""""Ò G""""Ò G""""Ò G""""ÒŠÒXŽ­[·nÙ²%..®L™2­Zµš8q¢³³³ÒAY‘°°°Ë—/«UºººžüðÃ÷ß_ÞŒ_cÒò¦ð›"Û7jÔ¨üàÁ©fΜ9~~~Ÿ|ò‰Ò¡Y‹ÔÔT??¿1cÆh؆·ÉÐRSSÏ;7cÆ ?????¿‹/ªm Í-àmÒ»Bï ¿>Föý÷ßûùù 0àùóçRÍÍ›7›4iR³fÍk×®I5ü²™67…ß Û8êÁ–-[rssÇŽëææ&ÕLž<ÙÑÑñÀ¹¹¹JGgîܹ@è>™[IDAT@íjx› ­{÷îo¼ñƦM› Ú@›[ÀÛ¤w…Þ~}Œì§Ÿ~0mÚ4ù”¯¯ïÈ‘#srrä7žü²™67…ß G=8wîœMHHˆ\ckkÛ²eËäääèèh¥£³ ªV­ªaÞ&C›;wîŠ+V¬XѬY³|7Ðæð6é]¡÷…_#»}û¶ƒƒCíÚµU+}}}ܽ{WZä—ÅÈ´¹)ü¦HØÆ±¸DQŒ‹‹sqqqqqQ­÷óóp÷îÝF)£å“¾Ïýõ×àÁƒ¯_¿^¦L™Zµj9RîÀÛd-Z´ ¿üòKÞµÚÜÞ&CÐ|_À¯Ñ­^½ÚÎNýïÕ«WT®\ü²(¡Ð›~SþÁ'ŽÅõüù󜜵¶±¤¤¤( UþGøùçŸ?|ø0((ÈÕÕõ—_~0`À–-[¤ x›§Í-àmR¿>FV«V-)“9sfÍš5%K–ìÑ£øeQB¡7ü¦üƒO‹+##€ƒƒƒZ}Ù²e¤¦¦* Uøë¯¿J—.=~üøÁƒK5§N9rä¼yóZ´háééÉÛ¤8mno“"øõQPNNÎ÷ß¿p᜜œ%K–¸ºº‚_¥å{SÀoÊ?øÄ±¸œœœAxþü¹Z}zz:þùÚ7ß|sñâEùË  Y³fo¾ùfFFÆáÇÁÛd´¹¼MŠà×G)¿þúk÷îÝçÎëêêºvíÚ.]ºHõü²(¨ ›~SþÁı¸ìììóþO"-- €Ü¯ŠŒ¯I“&nÞ¼ Þ& Í-àm2üúTVVÖܹsßzë­ÄÄÄÑ£G8p@µë¿,ŠÐ|S b…ß&Žzàîîžœœ,ýËݾ}[Z¥tt–OÅœœœ¼#ØÚÚ(W®œ´ÈÛ¤8mno“‘ñëc|¹¹¹áááëׯoÛ¶íÁƒ?øàƒ¼CCóËbd…Þ~SdLõ mÛ¶999Ç—kDQŒŠŠrvv T::Ë—P«V­·ÞzK­þÂ… üýý¥EÞ&Åis x›ŒŒ_ãÛ°aÃÁƒ¸|ùò‚žBñËbd…Þ~SdLõ OŸ>666Ë–-“Ú1X³fÍ£Gz÷î]¢D ¥£³|^^^ 6<{öìÖ­[åÊ .¬[·ÎÓÓ³cÇŽR o“â´¹¼MFƯ‘‰¢øÝwß•+WnÒ¤I6ã—Ř´¹)ü¦ÈQ•ŽÁ¬[·nÁ‚+V NHH8sæL­ZµÖ­[—·[>Â7†þèÑ£ÚµkûøøüùçŸ/^,S¦ÌòåË›6m*oÆÛdüñÖ­[·lÙ"o&Óæð6HA÷…_czøðapppéÒ¥«U«–wmÏž= $•ùe1-o ¿)ÛY³f)ƒ% ôòòzðàÁ‰'ììì:wî¼`Á‚òåË+—µpuuíÞ½ûãÇoÞ¼yåÊ•’%K†„„|þùç5kÖTÝŒ·É8"##¯]»Ö§OŸ *¨­Òæð6HA÷…_cЉ‰Ù¾}{vvöÃüÔ¨QCîÁ/‹ÑhySøM‘ð‰#i…m‰ˆˆˆH+L‰ˆˆˆH+L‰ˆˆˆH+L‰ˆˆˆH+L‰ˆˆˆH+L‰ˆˆˆH+L‰ˆˆˆH+L‰ˆˆˆH+L‰ˆˆˆH+L‰ˆˆˆH+L‰ˆˆˆH+L‰ˆŠæÂ… µjÕjÙ²åÓ§OåÊôôôZµj]ºtI鉈 …‰#QÑ>üÁƒŸ~ú©\¹pá¿þúkÔ¨QuëÖU:@""CDQT:""3óòåËž={ÆÆÆ~õÕWÁÁÁ§OŸ2dH@@ÀæÍ›mmm•ŽŽˆÈP˜8éâÚµk}úôquuݺukÿþýSRRvîÜéåå¥t\DDÄWÕDDº¨U«Öûï¿ÿþý×_ýÏ?ÿœ4i³F"²x|âHD¤£œœœ>}ú\½zµI“&6lP:""ƒãG""¥§§'%%ˆòä‰ÒáG""Íœ9óáÇ 4xôèÑ'Ÿ|¢t8DDÇÄ‘ˆH{öì9pà@«V­Ö¯_ïëë»oß¾ŸþYé ˆˆ ‹m‰ˆŠìþýûÝ»wEqß¾}îîî—/_îׯŸ““Ó¾}ûœ•ŽŽˆÈPøÄ‘ˆ¨hDQœ˜˜X¸pa‹ÅR¸páêÕ«wìØ1W®\ª›É;@f äŒû÷ï¯X±bÅŠ§OŸ>uêÔ©S§.\¸1cÆB… •*UªnݺM›6­Q£Fß V­íÛ·wíÚ5sæÌ©ÿšGFF¶k×nÍš5ªÛ«uïÞÝ¿ŸHAwìäÈ‘Ãiƒ«T©¢ºiÁ-0Nž<9|øðÂ… §ù]¥J•Ù³g‡Þ  ÆÀ‘(X}þùç‘‘‘îÿ•(„xçwU5xÆ B?ŽAw1p4B ÿ`,X° kÖ¬î· @“&MNœ82w€‚G¢àsçÎgžyÆ£ïÝc=võêUóÛœàÎ{{!|œbàè_üƒqïÞ½z×¶B… =z4Øï…ŽDÁ§OŸ>Þ}1$iݺµùmž4i’;m á;àGÿ äŒ.]ºøÒ¶%Jœ={6¨ï…ŽDAfáÂ…¾|1$ùì³ÏÌlóùóç]EHvBõ¸ÂÀÑù㫯¾ò½m:tÞ;@!ChœÇ‘(x\ºt©dÉ’7nÜð±œÈÈÈ;v”+WΜf¿ð ³fÍrçÈ4?‘‚ô¸’3gÎk×®9æW©ReûöíjÛ\ùc÷îÝ?üp\\œå!6oÞ\½zõ »J8#Q0™2eJ*_ O?ýô²eËŽ;vâĉ¥K—>ñĮ޼{÷î„ Ìióúõë¿þúëp¾d‚@þÁ0`€«¨1K–,ýû÷ÿý÷ßcccO:µnݺ·ß~ÛU?´¦iï¼óN0Þ )ª»<‰È]ñññùóçwõ»üùçŸ;ž2tèPWÇGGG_ºtÉè6'$$<øàƒþúD Æ;:>ªö‹@þÁغu««ŠÊ—/úôiÇSŽ9R¨P!§§DFFÞºu+¸î…ŽDA#•§½Ï=÷œ«³yäWg½ÿþûF·yâĉŽßI%K–tդл©càèüƒÑ¡C§UäÊ•ëüùó®ÎZ¿~½«¶-[¶,¸î…޶nÝ:qâÄnݺU­Zµxñâ¹r劈ˆÈœ9sJ—.ݤI“×^{í믿¾xñ¢ê–ªôôÓO;ýˆB?~ÜÕY;vìpõÝððÃÚàsçÎeϞݮÒ÷Þ{¯Q£F®šbw MnŽgΜùøã›4iR¡B…œ9sfΜ¹\¹r?þøèѣݜ¥%´ìÆ™3g""œ¯Ð6yòäÔÏmÙ²¥Ó_{íµ ºz8’JñññŸ~úiÅŠឈˆˆ'žxâ·ß~SÝpîß¿Ÿ;wn§·¥nݺ©ŸëêaqDDÄÍ›7kóóÏ?oWc¹råîÞ½ë]àŒw MiŽ×®]ëܹsúôé]Ý1!DÆ ·mÛ¦ð*Ô ä W™3gþ÷ßÃáPèáàRfýúõ=ôЀöìÙãæ) Ë—/oÒ¤IÛ¶m/]º¤ú LµgϞ˗/;ÝÕºuëÔÏm×®Óü„„„Tžˆùèï¿ÿž3gŽ]æ”)S2dÈ&wÀw[·n­R¥Êܹs]£iÚš5kjÖ¬ùöÛoß½{Wu“äŒßÿÝi~óæÍ3eÊw€BGRãçŸnذáþýû½;ýÇ|ä‘GΟ?¯ú:̳fÍW»ªU«–ú¹µk×ö¢X_$$$8NDܵk׆ †ÉðÝÉ“'›5kvüøqwNHHxï½÷Ú´i†±c ÿ`üñÇNóëÖ­&w€BGR`õêÕíÛ·OHHð¥={ö<ýôÓZØLDzèÐ!W»*Uª”ú¹U«VuµËëØ=u“&MÚ½{·œ“+W®ñãLJÏðQ\\\›6m.^¼èÑY¿þúkÛ¶mÃ-v ØŒœ={Öé.w–ß ;@!‰#™íîÝ»={öôËwÛúõëgΜ©ú‚Lâªç)gΜyóæMýÜ9r)RÄé®'Nø½©çÎ1b„]æ¸qãÒlgÈÜß|øž={¾þúëT¾Ñ÷ìÙó믿ªn¸ùÃUà˜/_¾{÷îuíÚõé§ŸN½WïîÝ»}ôQéÒ¥]Îð;@!‰=Ždª¿þúËÕ®©S§.\Øé®L™23ÆÕâªþ[=sæÌTVzõEÓ¦MË•+çK ®ºàf@Ö¬Y]íº}û¶¿®ô³Ï>³ë +Z´¨ãûŽ!|üî­·Þzï½÷ó»téR¢D‰Æ»z]xòäÉ-Z´ðKø«á«Õê4?::ºU«VË—/w³œ‹/>ùä“3gÎìÔ©SpÝ I ÉT®FÿEEE5oÞ<•+T¨àj—§#O]=z´›SŸxjÖ¬YÆ};º9-bTT”…{äÌ™3£F²Ëœ8q¢_uÅð»Æ;ÖÕÞzõê}ôÑGýû÷wºwÅŠG-Q¢„ïÍெw\E]{÷îMåM§îÝ»×¥K—‚ >úè£At($1p$³U©RÅ1³bÅŠ©|xÁõC÷ïßW}M†‹wµ+22ÒR¹½©î‘AƒݼySÎiÙ²ešó‡Òð/!Ä'Ÿ|’ú»¡/¿üò_|qàÀÇ]š¦ýöÛo½zõR}Æ ä ÿF]÷ïßïܹóÎ;í@ò ÄÀ‘L5aÂ/κråÊСCU·]¥ÀïTXµjÕwß}'çdÊ”éóÏ?Ÿ;àw5ª\¹rêÇDDDôéÓ§_¿~N÷®[·.äÇ@þÁpÿ9oTTT®\¹.]ºtïÞ½T;{öìðáçL™,w€BÇP@;þüŒ3Ê—/¿nÝ:ÕmQÉ÷yÎSé¸Jý»Ê÷îÝs3räÈbÅŠ…É0ÂsÏ=çÎaÏ>û¬«ÑÓk×®U}† ä wÇ—^ziÇŽñññgΜ¹sçΦM›\­˜dÖ¬Yvouò ÄG عsçþýû>¼{÷n.]$::ÚÕ.7§R¿s玅»éÓO?µû?U±bņÏ0‚›«ÒåÍ›·lÙ²ûöísÜuìØ±[·neÉ’Eõ¥(0RYa@Ö¬Y§OŸ.‡‰Bˆš5k.X°`Ú´i¯¾úªÓÇÄñññÿûßÿ†w€BGRìúõëË–-[·nÝúõë÷îÝ›ÊGX8KšõÍ)7ïX*‡¥R¸;¬VëèÑ£å!ÄÔ©S#"üùñÈwÀQQQeË–uóà‡zÈiààòåË¡8òFTTT*z.\øøã;Ý•´¶–«7V¬X!Ž|($ñQ5)³oß¾Î;,X°C‡“&MÚ¶m£FW¹Sáµ×^»u떜ӣG7{ËBã!Ož<éÓ§wó`‹Åâj×åË—U_бù#•±)M›6u5&éÕ«WéÒ¥îÚ¼y³üÈw€B{IÄÄÄ7ß|óÓO?MHHPÝ–ÇŽSÝ—Rùøþ÷ßÝ)!•×­|ùnøóÏ?,X çäÉ“çƒ>Ÿ;`ÔW ±“#GW»ü8òWÃ;Y²d¹~ýºÓ]Nçæ”eÈaÈ!/¾ø¢ã®„„„Ý»w×®];ðï…$ö8’Ùâãã[·nýÑG¹5¦K—®I“&ª®RtttΜ9îrsþóTKe݈4ýý÷ßv9—.]Ê“'HÕêÕ«](ö /þ0Hê¯ÇÙI¥oÒ÷‘.0òåËç4?**ꡇJóôTŽ‘'¯ ä;@!‰=Žd¶Aƒ-]º4ÍÃrçÎ]¥J•ªU«Ö¨Q£Aƒ3fL¥[%-ZôêÕ«ŽùçÎsçtWK‡eÉ’ÅÕ·N  «;àÑJ-×®]sµ+Ož<ª/Åpûƒá*p,S¦Œ;ˈ—)SÆÕ.»UöPHbàH¦Z»ví_|ájoÆŒ›7oÞ¢E‹Æ)RDÞåê‰Oø(V¬ØÎ;óÝün8s挫bU_ï€ISú¹9_* çÎ[õ¥.`0Š-ê4ßÕË‹v²dÉ’/_¾ .8î²ëØ;@!‰ªÉTãÇwµë‘GÙ½{÷÷ßß­[7»¨ ]ˆÇÇǧù Z||ü‰'œîr¼Õ+¬îÀ½{÷ÜŸ‹jÛ¶m®v…CcÀþ`¸ï~w²«AÙv‹Çì ÄÀ‘ÌsûöíeË–9ÝU¼xñÅ‹—*UÊÕ¹GŽQÝ|Åœ.Õ˜äŸþIýÜíÛ·»z£4•bM¸Ýõë×»sØÕ«W]ÍÅS¦L¿,àö£|ùòNó.éèêÕ«vkxêìÇ€½’8’y6oÞìj‚W^y%õÙæbccU7_± ¸ÚµiÓ¦ÔÏMå€TŠ 4áv.\èæa®¾øëÕ«§ú"̰??ü°ÓwOŸ>í*"”¥2†¬páÂAq($ñG2O*½†111©Ÿ»yóf£›7sæLF$¸¯iÓ¦åÊ•ó±R¥J(PÀéKK ,?~|*ë†Ù­"­K—.]:uŒ¸d#„ÛX½zõÞ½{+T¨Ê1÷ïߟ4i’«½þ ù«áœ9sV¬Xq×®]Ž»¾úê«Ô—VÒ4mܸqNw-Z´xñâAq($1p$ó\¹rÅÕ.§Cu±±±_ýµÑÍ=zôñãÇ(yÖ¬Y¾;hРݤ‰IN:µ|ùòfÍš9=k×®]®:ªT©ât¾@«Õêª+GŽò)ݺukÔ¨‘§2`À€;v8Ý%÷²(P@Õ÷ïßÅ´ûø«¡sÿW#IóæÍŽ£GîÒ¥K*C—¾ýö[Wmkܸ±Â;@È,©Ì Ý­[·TNlÛ¶m*?Ã#GŽôKóìþˆ÷£Y³fù¥…‹/vUE©R¥nß¾íxJBBB­Zµ\õÉ'Ÿxz+ür·S‰5ä˜&ÍI¦FíêÜ 6¤²"Ü3Ï<ã¯FòWÃ[áôWcûöí®ŽoÕªÕÍ›7Ö²yófÇ¿št .Txˆ8’y¦OŸîêCJ±dÉÇS.]ºÔ¦M›Ô¿{Â'pLLL,Q¢„«ZêׯöìYùøk×®µnÝÚÕñ™2eºzõª§·BmàhÚ0;³“öïß?>>ÞîĹsç¦þZðªU«üÕHþj¸s+\ýjT¯^ÝÕ)¥K—Þ¶m›|pÒ»©¬UX¢D‰„„…w€ˆªÉ<©|æjšÖªU«çŸ¾cÇŽ¥K—ŽŠŠ:sæÌªU«&L˜Êuá&]ºt¯¼òÊàÁƒîýûï¿‹+öøã—)S&}úôG]¶lY*kŽuîÜ9èæTÏ;0qâÄo¿ý¶C‡•*UŠŽŽ>zôè‚ öìÙ“Ê)õêÕóâ‚àÈ?o¼ñFûöíî:|øpµjÕ~øáªU«fÏžýìÙ³¿ÿþûéÓ§S/ÍéBA|(Ô¨Ž\)ŒÄÅűòé;ï¼ã—æ~·Š¦iׯ_÷ËäjY²d‰õâV¨íq4í˜Æˆ¯ç¨¨¨ýû÷û±‘üÕpçV¤ò«ñÄOøåvU®\Ù±ïÙä;@ÄéxÈ0Ôá˜5jlÞ¼Ù£òíŠ5är¤4¿.‰ÀG""ò‹Æ;FošCx—”ùˆmæ–-[„Æ K¥Šï¾ûNO§3>j ÷š+VÌø ‰{ÍÆG" 1|ðÁ[oÙ¿mXÝÙƒi;š‹Þ‹Õ«W7lØÐ1_LMûê’cáÇ—*Uʬš‰§ã!""/mݺµzõêŽù×lnœžôâãJàqÛüF¥OŸ>!!AÎìÞ½»ž~ÜÂýeP%9]ºtiö¶P˜ã£j""òFŽ9£Æïͽ¨Q×ЀA¶™‰‰‰BˆfÍšé93gÎÔÓËM¼Ìy>¡)S¦˜X9QÀaàHDDži×®Ân)ç^€´õ¶Ì ¨l›¹|ùr!Ä'Ÿ|R¤H=ócÓ¯÷’”~å•WL¯Ÿ(€ðG³ñG" ^Ó¦MëÕ«—]f àˆÿª¸äMõ%_Z}`N›6m¼˜~’(40p4G" ^Žã¦Å ¨è[ £³ü]@%U×.¥ùÕIa‹ª‰ˆÈÓ͘¨@@^°ÍÌ«(j\Ȩ‘(G""rËÒ¥KåÍ—Œ¯q `, L¿äk€ÚÛf:äœ(L0p$""·4oÞ\Þ\bV½§­4c‚j@N‡Ì?ü=ŽÎ8#¹ëÎ;QQQIé–ŠÆ©˜àM`œCf“&MV®\©ºiDŠ±Ç‘ˆˆÜY¯^=}óUÕíñ»?á,jÔ4Q#8‘Gþþûo==QucüK9dþþûï|6M¤càHDDž5j”ž.§º1~ÑÔvÜt’!C†hšÖ¸qcÕ­# œÇÑlœÇ‘ˆB€<²ø PPu{¼6xÃ!³jÕª[·nUÝ4¢@ÄG""òØúõëõt!ÕñÎ@8‹¯^½Ê¨‘ÈŽDDä±ÚµkGGG뛳U·ÇS¹‡2,X iZŽ9T·Ž(p1p$""oܾ}[OwUÝ÷­pÅ6óÅ_Ô4­]»vª[Gè8#y©U«V‹/NJ?ÌpûÄLêÚ<Àv³X±bÇW×¢ ÃÁ1fãà" %Þ­¿§ð‹GnnlllÉ’%Õµ…(øðQ5yïå—_öâ,álú“½øâ‹Œ‰<ÅÀ‘ˆˆ¼7eÊÕM "óðG""òÒ Aƒô´xÁSÞUÝf"òG""òÒ'Ÿ|¢§O»w G¢ ÆGÕDDäÊ•+ëéaªCDæ`àHDD»xñâîÝ»õÍ1ªÛCDæ`àHDDË—/Ÿž^£º1DdŽDDä™o¾ùFOG T·‡ˆLÃÀ‘ˆˆ<Ó©S'=}OucˆÈL ‰ˆÈ/¼2ëN3Õ!"“1p$""Ìš5KOÿªº1Dd2ŽDDä.‹Å¢§?ñ¡" R ‰ˆÈ- ‚êö‘ ‰ˆ(mýû÷×ÓçU7†ˆTaàHDDihÕª•žî¬º1D¤G""JÃ/¿ü¢§ç¨n )ÄÀ‘ˆˆR­§¿VÝ"R+Bu‚ÒÝ»w¿þúëeË–;v,gΜ•*UêÛ·oéÒ¥U·‹ˆÈÏÖ¯_¯ovQÝ"R‹=ŽKLLìÚµëG}tõêÕúõë[,–+V´nÝzË–-ª›FDäguëÖÕÓg|(ÇhÂíDä Ž›?þ¶mÛš5köÛo¿Mœ8qΜ93gÎ0lØ0ÕM#"ò§Q£Féér@AÕíqêu†ƒD&â£jmÛ¶ @×®]#"þ»{µk×.W®Üž={®\¹’+W.Õ $"ò‘#Gêé}ªãÊG^¥išê†%Ž+X° €+W®è9š¦]»v-]ºtz(IDìêÕ«§§ûûPN*P8èC U¤ôC=T£F 3n Qc ã±-ZÌž={ìØ±™2eªR¥ÊÕ«W¿øâ‹Ó§O?ûì³Ù²eSÝ:""?¸sçκuëôÍÏüW²fûdù €WO=/ê2°SÚLzDD†ì®÷®]»ºuëöï¿ÿê9;w:thúôéÓ<7&&Æ1óàA_þä&"ò3!R¢»_€~-ü{ ³ü£À5RJ¯ZµªQ£FæÝ ¢pÅÀÑc7nÜèÝ»÷Ö­[+T¨P©R¥Ë—/¯]»6}úô|ðA“&MÒ<=&&†a"²û÷ïËô%ÑXâ Üvïôï€ÉétéÒ%&&š{“ˆÂGõîÝ{ÕªUo¾ùæ /¼”sæÌ™çž{îÊ•+‹/.Q¢Dê§3p$¢À§÷8f⌬(pÙ!óa`cš-”Òü"#2 §ãñÌ… V­ZUªT)=jP¨P¡W^yåÞ½{?ýô“êùS<°ÞÈò/9ëÑÜàC×gu—Ò?þ¸ª›C†8zæòåËŠ/n—ŸÔÑxñâEÕ $"òƒ3gRfû®ëC9nÒ€O2‡¸ž q¦”^¾|¹¹÷†(¬1pôLñâÅÓ§Oøða»'#IOŸK•*¥ºDD~P°`ÁråÊ難|(ÊM ¨å/€Ü¶9E¤ôǬè…)Žž‰ŽŽnРÁ‰'&Nœxÿþý¤ÌÇñÅ‘‘‘<òˆêùǾ})s~4«Ò €d²Í¼ 9àpZÚõÚk¯©¼GDᇃcIAÌÓO?-„8yò¤9•Ö¨Q#{öì£G–C(%öïß/„ˆˆˆBtèÐÁœJ»u릧˚{½rÔhµZÍ­œˆl0p$¢ óÍ7ß@ê+V¬XéÒ¥ ­qèСBˆþùÀˆ#äÉ“Gá(_¾<€ÄÄDß}÷bæÌ™¾š*!„þ€8¿³1ÎÆ#¥cbb *dbåDd#Ç™öccc…}úôñ{]«V­B¼ÿþûvù—/_Þ¹s§’Ë×gä–uïÞ]qúôiÏËKCÓ¦MízXÏ›{½Ã¥ôf†¬DäG" &/¼ð‚žŽ°ÝõÅ_!-Z䯺ҥK÷裺Ú[¥J%wàÕW_uµ«H‘"111þªè£>BüöÛoræCæ¾àØ@J÷ë×ÏÄš‰È9ŽDLäµ÷€Í´iÓFñï¿ÿúRËO 9ͽØH)½xñbs+'"ç8Qp8xð <¢v ´ëm@Ú¿iÓ&!ÄðáÃÝ+»víB <Ø.ÿ2°Ý6§‡”nÚ´©iw@ž…{¶í®[ÀF‡ãŸzê)!D\\œ›åwèÐAqùòe»‹Õ€ö¦]d²_m7å®V"Rˆó8šó8yG¢±¨èì˜D‡“üõ×_©/R—7oÞK—.Ùe~ <çª1RÚœOѵk×Ê—àªÊww2k×®½~ýúT Ÿ9sf÷îÝí2‹Úv¯šL¾Ãqqq3fT×"JÁG" “&MÒÓù\DÒ°Ì!¿Aƒ‘‘‘NOéÔ©“Â.jìh®£Fó¥´9Ó:ÊQã9ׇ 4Û1%6lØ „HšHÈÎéÓ§…ŽQãa¥Q£Ü\§NFDƒ#yDmšÓÁ<hÀk¶™÷îÝB4oÞ\Ï™5k–"iVH]@¦§U…Ý£Û?ÿüÓÐË—c¾ò@þ´Ž_ÜsÈLšº|íÚµzNLLL‘"EìûЀR†^OZ&HéÎ;+m Ùà£j³ñQ5‘§Z·n­èÌõäÜJÀ‡Ì‘#GŽ9ÒñàC€û3‰_rI›†~–z½Üß2àI‡ÌÈÈÈ—^ziòäÉvùm€»O/YJó{Š(p°Ç‘ˆ<¢Ö£¨Àng=”ŽQãd@ó$jxHÚ|ë­· ºü:uêèéžÛ Ðκ{÷®]Ô˜Ð)j„í{O?ý´êæÑØãh6ö8y$:::>>>)= èêm9ó§<[‹|hžÜ1¶oß>7Ï:zôh‰%Ü92>>¾jÕªú¦/Ÿ×½Îò7ûP¬qØéH€"|/‚ˆÈ 6lУFø5ètº_'çd|š%ðFòüŽH^BÚ8K};}p( 匆ÚbßL—f>Êš5ëÍ›7U·ˆˆØãh:ö8y¤dÉ’G°ÍöѰ6ÞÌîŒcªøi­¿l€þ§¿|o7mÚT³fMÕ-" w|Ç‘ˆ׆ ’¢FU}+ÊŽ¿¢F¿Y»W˜NJé‡Ì'êDá…ª‰(pÕ®];::Z_ûäkßžVä1€›¯7N¦&§·nÎOXHõ5ªR( NÞ;vìÛo¿­ºQDaªÍÆGÕDžòz2šôŽ´²ö¿@&Ó\ª“p” Qàà£j" t­ZµÒÓœ : ½"¥5j¤º9Da=Žfc#‘B¦Ó‘=ŽÞ‘;Ò§O¯ºEDaŠ=ŽD>ÿüs=OucÈ|?I鈾O¤ G" }ûöÕÓݪÛæÚV@øÅ”Ÿ²Ý\¾|¹ê{@¦8Qpßñ¨¬º1aî{ prº`Âcc¹qÙ²eO<ñ„ê{@¦8Qp(S¦LáÂz¸‚OT·'lpȹ ”1Õ=  QÊiÖ¬™ê{@¾8QÐ8uꔞ¤º1a뼋ü#€^ö_E,³Í¬\¹2Çt)ÄÀ‘ˆ‚É /¼ §Ùïd>ytsO`‰ÃSìñ­–½€^sÈ¿xñâÎ;Uߢ°ÆÀ‘ˆ‚ÉŒ3ô4ÇG˜ì›Í hãpd%·ÅqT¨è9oÞÛ½-[¶Ô4­_¿~ª¯˜ˆ\bàHDÁjðàÁzº¦êÆ„0¹»q¸‡çÞ.:dþ|f›¥iÚâÅ‹U_+¥#«ñãÇëé-ÀMÕí I#l7Gy^B@Þr}ÀÚµkãããÝ/ˆbàHDAlÅŠz:›êÆáÆ¿ÑÒñ×}¨ë=@*ÙfŽ1BÓ´ºu몾Dä.Áµ›LsðàAÕ­ B¤¬fò=ÐVu{R÷ðnrú_ “é Èæm×lpÏ מáQÐa#79øxFucÒ4Eun8›mÑ ª[ND Buˆˆ|õè£þùçŸIéÞÀTÕíqj€Ãˆ…Zº}äj©‡2pEuˉH->ª6UA~`hjG€R™­Eªæ&ùár¢Ïªø¨š(¨ñQ5…‚÷ß_O»3æCÿg´L΢ÆÁ5x]Jsqp¢0ÇG³±Ç‘È r§£ûÙ´ça`³Cfnà’e©&ßÙ±ÀP?Å/ ¢ ÃG" ÿüóg•†ø»%ãá,jÔ‚3jpNJsG¢pÆÀ‘ˆBDµjÕ¡Ko:d~xo^z$?YÚ¬¡º=D¤ GUQHq?vôîÑv*rW2këUß¿¸%=eö¦k—ˆB{‰ˆ|õ ¢ÆÌ€*Qcy—hÕ!"%8yo. €ù§[ªÛæwk¥t h@Ó/™ˆG""oL±ÝüÂĪ×Ú½U9%¹-÷ïcÞ<»ƒŸpÃÃ*j¸m›™ Ðìz:‰(Ì0p$"òÒn)ÝÇÄzëÛ4b·Í¾Ž¡ixüq»S²»½ÀôÇ€6:äkÀe¯‘ˆG""/U´}dÜÀ”J‡ËQQ¨XÑÉAË—CÓ3§œ÷ €¡©.€Á™ãf¬ôឬY³Þ½«jä:Ù`àHDä½x)ý·)5ޱ©>>µC¯\fò½`•ñyœ½©ù0 o˜r]©¸uëVTT”ïå‘ï8zi÷îÝ}ûö}ä‘GjԨѹsçM›6©n©ñ”Îjp]µm*~È­s4 |`—÷¨ôéß¡£ÍÙkßiÓú¸)wîÜ4‡ˆ<#4Í G¡ìÏ?ÿìß¿ÿýû÷+Uª”={öuëÖ%$$L™2åÑGMóܘ˜˜ƒª¾"‚HƒÜøÚÇ¢¤ôE 1 ¾ d–·=ýô~øalÞìÎGŒ¹„$§®nü§”Þ¾}{•*UŒl¥£Ç®_¿þØcÝ»woúôéÕªU°k×®N:eË–íï¿ÿN—.N\ŽDÂãÛWz#PÞ=ï¼ãM)™2!.ÎÕÎÀcïµ#@)i“ßYDjñQµÇ~øá‡7nôîÝ;)jP¹råfÍš]ºti·ÝðF" v\Õßÿ¢í«ô*jpû6bc³c-ð¢F%bÒæøñãU·ˆ(¬±ÇÑcݺuÛ¸qãêÕ« (àÅéìq$ ~ìqïÛ'.3úZHޏ~=)ø_ro+¿¶ˆŠPÝ€à³gÏžœ9s(PàŸþÙ¾}ûµk×Ê–-ûØcEG›÷­ADÆç8ÎmÙ³û!j'8¾¯’ÓM›6]¹r¥ê…)ö8zæîÝ»•*U*UªT5¾ýö[=¿H‘"Ÿ~úiE§ªÙЉ‰qÌd$‘™Ö®][¿¾Í,ÚOú¼ J`§ M÷ã'v©R8òßšÛAñ5ÀNG¢@ÀÀÑ3—/_®S§€ìÙ³:´Q£FñññßÿýäÉ“ *´dÉ’4ûù¨šH­¨¨(W³IOxUæ@ž*Æjµ¦yÊáÇ5jô߯’%hÞÜìlãB ½´É//"%88Æ3“Ÿ}ðÁO=õTŽ9 (зoß6mÚœ>}zéR.âJ¸Z´h!„He ’€öz^²5Ž1Bõ…†¦v¶›üñ‡ê…#ŽžÉœ9sÆŒ£££yä9ÿ±Çpà€wóÚ‘±>ûì3!„ÝŸv111V«µkWû)+ |ûÎv³gÏžª/7d]•ÒIŸºDd2ŽË—/_† ôñ˜I’žP'$$¨nÙØ¿¿bÀ€vù;vìøóÏ?¼÷Þ{V«µxñâòÞó€žw¯ŠRÚ‡Ôäµ@UióÍ7ßTÝ"¢°ÃÀÑc<òÈ7:$gnÛ¶ @Ù²eU·ŽˆR*T¨|ùòv™'N´Z­yóæ•3×­[gµZí&ðŸ `NªUôÒ¹råR}Å¡o«”7nœêæ…ŽkÓ¦ €aÆ]¹r%)g÷îÝÓ§OÏž={“&MT·Žˆ k×®Bˆ³gÏÊ™Ï<óŒÕjmÛ¶­«³N:5gŽ} ØÀ9§ÌÒ\ÀC¤´¾™ƒó8z¬\¹r¯½öÚ'Ÿ|òÄOT¯^ýöíÛ[¶lBŒ;6wîܾ—OD¾˜;wîóÏÛ?dΗ/ßöíÛÝ9ýÑGµZ­={ö´{!² PÞaÜLQ)Í¿Mó ÷4nÛ¶íÚµk9räPÝ(¢pÁÀѽzõÊ“'Ïìٳׯ_Ÿ3gÎÆ÷ëׯtéÒªÛEÖΟ?ït=§Õ«W{úë9mÚ4>øà¥K—ôÌ}€^>NI§Ìš5Kõ #¿úИœ9srj"Ó0pôRÛ¶mSyàED&«X±âÞ½öéŒ5êÅ_ôºÌ;w°X,rægÀgÀR@žw1)Ð$Ó4¶Ý\¸pa»ví¼+Šˆ<Âw‰(¸½öÚkB»¨±qãÆV«Õ—¨QgµZßÿ}»L9jB47úî°'÷1¶oßÞërˆÈ# ‰(¸M˜0AÞÌ!ƒÕj={¶«èÒ¥‹Õj­]»¶Ó½§OŸV}”<‘#§Ï$2G" ?ýôÓñãÇ *üûï¿·Z­™3g–3 .¬ú¢Ã×oRúË/¿TÝ¢°ÀÀ‘ˆ‚Ø«¯¾ª§kÔ¨Q³fM£kÓÓ[¶lIej?Ê–-Wˆ oHé'N=zTu‹ˆBG" n¿üò‹ž~àT7‡Ì&ÏÏY²dIÕÍ! q ‰(¸µhÑBÞüý÷ßU·ˆLU—zœ:uªê…2ŽDôâããõt×®]U7‡ÌvYJ¿üò˪›CÊ88½¨¨¨ºuë®[·.iówÞ3fŒêF“gÝ>r¾ê¦¦r zÛŠ)R§Nw¯h~À^Q \©Éd111TÝ ¢$„ÐÓ?xåðáÃ5úocɘ?…x©R8rÄ‹óö;Cxu¿‰<ÂGÕD"F¥§6l¨º9!Ë_9€‡€xŸËñ¥aBˆGyÄ×Dâ8Qˆ>|¸žŽ=þ¼ê¹´mÛ¶”îFUbcáUg›¬ò¹ò‚€®;€h ‡Ï.îûý‘ŽD:Ö¯_¯§«V­ªº9Ε*UªeË–)Û»w£Ie­Ñ4wÿÅÆê'=êC…휳ͼÛ%=ÕLJÿhnü#"/0p$¢ÐQ»víèèh}sáÂ…ª[d£{÷î‹%..Î&·sgDFªnšJ–„toßò¼€å€Rù_ò €ž—Ü^J§žRvˆBǘƒcˆŒ€£dfÍšõöÛoÛçFFâÎÕMóto=úòˆ2_òcïQá«õ³5j´j•ï߉Â{‰(ÔèˇÌ;Wu[pìØ1‹Åâ$jüçŸà‹H«WwïŒ2€pˆ‹ð%ð. •Î@!÷Ê/h[,Š#…š#ɳÌtîÜYmKjÔ¨Q¯^=ûÜ= i¨VMmÛ¼´i“žÜ \OõØ~€Ûf¦4à˜mæ.@ìØŸÐ!­ɯKKë`"òG" )•+WÖÓýû÷WÕŒAƒY,–3gÎØä/MÃW_©»=þ0nœžÌáâC€&9äÿäìµî°Ù!ó;@¸8E~Hý¢êCøŽ£ÙøŽ#‘q.^¼˜/_>}SÉ Ž?ÿüó+¯¼bŸ›.½).0Io:.ž±ÝíljÆÖÀ"·‹ïálˆLpÏ6ç+à%iÓÓ/3¾ãHäö8Qè£Æ~øÁäÚ¯]»f±XœD †TÔÈ@¶“²kÂ!jÌhžD¦PÔ63@Œ”#GÛTߢ0Áµª‰(D|óÍ7z:""¢V­ZfÖÞ¤I“}ûöÙç¶l‰Å‹UßcäÊ…+W’’½€âÀPgGùòHë€äw"uIÁ»¤ÌHà!Õ÷ƒ(L°Ç‘ˆBD§Nôô‰'L«÷ÝwßµX,öQcž<д\¾¬'§9‹?óÓ$Û÷™ŸJ›A8:(X1p$¢Pð /èéGõeeM™2Å>KÓpñ¢Ù· zuœ= !Ð!ÍÈ~Ò¬™Ó캀øq\R;@Z¸Ø[Ù£²ˆÈ7 ‰(Ìš5KOÏ™3GY;&Lðnh_åÏ­[Q¨|÷„ÀøZfêË–Ùåe4`­1þh@n‡üÆ^'Ù`àHDAÏb±èé‘#Gªª3f`À5·àÂûœÇC† †Ô5g„ÀÊ•Ž{n¡—¤'àð¶/e‘ç8Qp;pà€<]âK/½äCaÛ²eKÊF÷îjnÎó bb<+-uéÒ¡KW;§™uÅZrøø®Y5QŽDÜÊ•+§§ÿüóOJòF¡B…xà”í&M̾þ/¾°Ývxœ{è„ðCWháÂÂáA|oy L/³/žˆÌÆÀ‘ˆ‚Ø»ï¦t9åÍ›7Æ¿½kîY»Vz©ï÷ßÍ®¾Oi#iù½KÀûÃ>û B y1FÏtî !`?›zI@’ÖsÛyR0ŽDÄÞyç=}ÑüÌɺvíš²‘#‡y7h mTò'§4`¼ýñ¥J!S&Ê_³B`Þ<‡ÇXió”žúÞ¼‹'"8Q°jÕª•]ŽÅb©X±¢ù-yï½÷R6®_G|¼÷eyäï¿¥=»ÐÔ&/.Bàá‡Ó.n I+36o†7ÎùåÊA$$Øæ¶4àEµÌÖS×­f\?)ÀÀ‘ˆ‚RÆŒõôˆ#ìöþñÇ‹e±‰ ·<þøã6ÛcÆ[ߥK¸%Ï~óIZ'Ü·]lðæ›ö#²_{ BàÀÛãr0?­*Rº?«{ñD¤ G" >ëÖ­»s'e¹ž={Z­Öž={ÚöòË/.\س¢}+½ö7|¸±•åÍ+müêÞ9ð–}¶È• §NAL˜àpÖ6àŠ{å×RfŽüÀØë÷ÕÓª@¤8Qð©W¯žžÞ¾}{RbĈV«µdÉ’ò‘š¦Y,–š5kšÐªèèèªU«¦lW«fTMCí–†næÉÉïš}ŸàÕ«(ZÔáÈq€<äIáwõÔ[žœf¦)€~JÞ|ì±Ç6l¨ºQDAChJVÇ c111TÝ ¢ 6räÈQ£F%¥Ë”)³jÕ*ÇcŠ-š˜˜h—ùì³Ï~òIšt}e³–ŒA°6Ï—ï^•rÈîb×cÀoÞ6®°/)õ(`𺇞9”r–ÏïA"÷±Ç‘ˆ‚Œ5p58yòäÂ… í2çÏŸo±XôJƒ §ÚÂ)x5ÈhÎæÏÑ|ˆìÕSfÏÆžªâ΢ÆéÓ§3j$òG" &uëÖÕÓ/¾øb*GÖ©SÇjµ¶iÓÆ.¿E‹Å‹7®…¯¿þº‰÷cÏ%´4  ¿ËËÀø`°‰w m/8a›ùÜsÏišÖ]Õ*‘DA‹ªÍÆGÕD^‹–fº±Ú¯eâRÕªUÏŸ?o—cÄ…W¯^5e.É~@~àmã+òBzà~RêSàUuíX´wÈÌ•+×åË—Õ5Š(¸1p4G"¯ é)íìÙ³7nìÑé… vüÄëׯߛo¾éÇFÚ¼ãX råJã„û÷¥éoš9›[Û©)~l³_-Z誾`®9åoß¾½J•*ŠE 8š#‘w/^ܺuk}ÓýîFÙ‚ ´™+;""âĉ^åÔÏ?ÿüÊ+¯¤l»ó{û62gÖ¯héÏ»¦@Jp¿(¯¢Õ€m™~ø¡¹o…&¾ãHDÊœ8qB¸M޽õÚ·ooµZHK<'$$Ô©SÇ_WäqÔjÚê©*¢Æ7á56iÒDÓ4FD~áõp<""5~øáˆŸ>»¾ýö[Ø=Sö‡Aƒ¥läÉ£àÖ¨÷£ž:knÅN_\àS5"ÿb#©!„ðntó?þèÅY&øî»ïR6.^TÝóÐSÏ›[±p5þþûüŽ#ˆˆï^m4AõêÒZ,-ƒý=E奈[Ÿmb­Â!gÈ!š¦y:vŠˆÜÁGÕD¤^À†ƒn:vìØÙ³Ò³ÙÅ‹U·È|Ò€ws+. œNN?ôÐCÛ¶mó¥4"J{‰ˆ|%¯ ‡kÂÀTyÃÌçÔ¤¨±GŒ‰ŒÆÀ‘ˆÈ'³fÍJÙH—Ï<£ºEæ{YO™<&fµ”ž>}ºêû@ú8ùäí·¥å[U7Ç|ôTyy€ŒYÞ•ÒeÊ”Q}7ˆBG""ïÙ,vläØ,e½ì½*ª—W]<|øð©S§TߢPÆÀ‘ˆÈ{+V¬HÙ8vLusÌW]ÞˆSÔˆMRºhÑ¢êîQècàHDä¥R¥J¥lô衺9æ‹¶ÊÛ™¿-Â㉚@isÆŒJo Q(càHDämÛ¶ÅÅI]l_}¥ºEæ‹vÌÚ`„éM¹)¥{„cOdŽDDÞh)ÏòýÏ?ª›c¾_RÙ7ÀZsÔFJwèÐAÅ=! } ‰ˆ<öé§Ÿ¦lDF¢Z5Õ-2_«”ä­[Ð4ŒmwD} ÊÄÉ+QÚ,ÿHDþÃÀ‘ˆÈcãÇOÙ¸sGusÌ×/%™-2g€wަᡇäãîhaV³¾ÒyòäQ|“ˆBG""Ï´i#=­\Yus”˜”’¼~Ýf϶mÐ4DÙt5.0Ñøf½,¥/_¾¼sçN•7‰(1p$"òÀ½{÷6oÞœ²Ž¡IÙ”ä£:?$>»wÛå½ `¿Á;,¥«T©bþÝ! m ‰ˆ|ÊhJ”óÎèjXåõ²¯]»fò " m ‰ˆÜÕ¥K—”«W ¨áMs"{j–ÍÖ‹/º{Þ‘#Ð4¤³ùÆ™ `ž¿›(½}‰|ùòåÈ‘ÃÜ[Dâ8úêÌ™3ÕªU{ýõ×U7„ˆŒ5b„4­uÖ¬ðWD’)îÝ“¶Mˆì‘R’šæñÙ‰‰X¼Ø.¯³¿›(÷ÆùóçMº1Da#Bu‚›¦iC† ¹uë–ꆑ÷Nž“WÎþúë¯U7‡(41pôRBBÂo¼‘3gÎ7ß|Su[ˆ‚O‘"ET7»&t—«É ý"irÉ’¶¹çtñ®HÒ4ÌŸ¯ºN¬â¥M›aLDä?|Tí¥Ï?ÿ|ÿþý3fÌÈ–-›ê¶“=z̘1CαZ­ªãQÕ*TH™Û¥cG|ó-‹€ôéqÿ¾”;˜Ìž÷su^Œt 0u¥ô™3gT7‡(d±ÇÑ;vìøòË/;wî\§N/Nq ú‚ˆÌðÝwß !ì¢ÆÜ¹s«n—»öîÝ›²ñí·fT™˜ˆ%Kr»8§ú~QRº\¹r r p"£°ÇÑcqqqo¼ñF‘"E ä] ôîD¢ uùòå~üxÕ­#R¬qãÆþù§]fÿþý‡ ¢ºiþT¨P¡xàØ±cÿm7i‚ß~SÐŽù¼Œê»¢@Kg™O>ù$€{÷îEDð ŽÈÿøŽ#ùÁ| „°‹|ðA«ÕbQc’µkצlüþ»šFüñ‡´vÏ1ä5¼###íöfÈ¡¡+C…=ŽDä“mÛ¶ !Þzë-»üüúë¯&7&11Ñ´ººvíš²‘#‡ÉWj[c³k¥ô±cǬVkÕªUåþúë/!ÄØ±cU·”(¤ðG³ñG 1Žo4N›6­yóæ&7£[·n³fÍJ¶rúôi§ïYúÍ(™¸8dÌhÒÕÆÇÃf:0ï>ƃøÇòÀþät:u.\˜”Ž‹‹+Uª”ãñ›6mªY³¦‚k$ 9ìq$"¿yþùç­V«ùQ#€ß~ûMã .üÌ3ÏZÝÉ“'m¢FM3/jl£ÆEæÕÎJQ#=jmµZíV'ððÃgÍšUuÉBG"òÞºuò$zøàƒ”4ã°ËÙ°aƒÅbùüóϨ®víÚö#ÄMéàüϘ1¶Û­Í«:0’ÒãÆs<àñÇ·Z­6ï·nÝB´mÛVuó‰‚G"ò^ݺu£¢¢ôÍï¿ÿÞü6lÙ²åîÝ»Nw}ðÁ‹Ånr_ 2Äb±œ””ï8Ê]»nþ°ÙÏ»™,66¶dÉ’ .œ(˜±Ç‘ˆ|Õ²eÊ„z&/l³`T*WÆ@ÓP¾¼|ØÍ›7-‹“ÈÏ .Ï7Ï쨢Fø5¥ç¥tÞ¼yÝ<«P¡BV«ÕæGPªT©âÅ‹«¾&¢ ÃG³±Ç‘B’ªNGû*v"#qïž]Þ¸qãRy¾i§Y³f»vírÌ…é3 @ÆŒ¸s'yc80ʷ₯ÇÑ‹îF;/¿üòâÅ‹í2ù=Hä>ŽfcàH!éóÏ?×ûóæÍ»cÇ*mݺõ?ÿüóßF•*¶½qÉÖ¯Gݺβ×+V,•ÂßÿýI“&ÙçæÊ…Ë—M¸4'öìA¥JÒ¶ïÝ8sãð ÒÍ›7Ÿ6mš×5W¨PáÚµkúf£FV­Z¥à!ŽfcàH¡JîtüóÏ?cbb ­îÎ;%J”HÙNý£¬kW̶V"EŠlܸÑñØuëÖµoßÞI!j?-mnÿ Ôóº$ý¦Nàè)ß{µ÷îÝÛ´iÓ¤4G"÷ñG"òýûS&×{ôÑG®Î&j1"£¿þš†"Eä¼S§NY,–7ÞxCδX,N¢ÆqãG€mO§ïQc{ê©§|/¤B… ª¯ƒ((1p$"ÿ([¶l¡B)Sì}ùå—ÆÕµråJ›í‘#Ý:íäIhš]G×¼yó,Ë’%K:tè`óÆd’‡†¦Á6¸TÃfA”—}.n¡ÃÌ6¦Ó4ïÂñE‹)n9Qã£j³ñQ5…6sFÉØDxÿþ‹L™<;ÿÛoѱcÇDGãömƒÚï%›×ëîk@N›Œ_„‘Q¾ßT«†mÛ’’=ôÐ’%K|,Oÿ)â£j"÷±Ç‘ˆü©[·nzúùçŸ÷¾ ׆ “†RdÏîqÔ Chž|ÒåG\Ô ù<€wV³T©¢úÂܳu«žÜ¾}ûíüDØãh6ö8RÈf®¿çû'Xîܸr%esÀL˜`^û=esoÅÜ>óMÀau>…ƒÄ½óî»xç}ËÇ.mö8y=ŽD„;)³ú/ó¤xÆv–o/É‘SÖ¬5¶cË»wΟ€p5jZE†ÙÌÛ³|ùrÕ " ; ‰Â]:u2f̘-[6!ÄO?ýä{Þ-Ðâ}ûLª(p<ÿ¼m§cšï&  ±}Þøñê‰{Mú#§Gª[Cv"T7€ˆ”1bÄèÑ£“Ò7oÞðôÓO'¥³dÉâ]™óçÏ—7?1 Ùc”޲¦Ma7Â:äÝ¿/ÅŽ=—\×øÍ>¯V-lò… ##‘#’§ï:tè{ï½§ºMDa„ï8šï8R X»vmýúõS9 fÍš›6mò¢dáù:rÞÔ"oøþ!¦·9kVܸaX«ý§Hœ>¼ÑX`»{<à0P¦Lø÷ß´Kþ¼Ïw‰¼ÀGÕDa'**Ê1j¬d»¹yóf!İaî,—âÅ_ÔÓM=:ÓC6ÓæÌém1AëÔ)ic¡”Þ'Qãñã!5xì1=Y×Ù’’DdŽDa¤E‹Bˆ»wïÊ™ ØÜw8~ìØ±Bˆ5kÖ¸YþôéÓõô #/ä yãÚ5$$Y[@êÜYÚÈÈ Ì|6]ÑÑ Z MxãÆÊ•mŸð_¾ !в¥¯µ¼õ„À›S3gÎ|CžxòêU—ÿ ÔÅœ=;>øÀþ€ýÓùš% °Ë2dˆÕj­R¥Š‚ ' K ‰BD…  ,h—ù åüTÅ @ ÛfžN™‰ÚIǤ ÆÈññf Éž]OöêÕ ÀÚµkOœ8aØ’% zRt²  „c@¶jÕª³gϰé]6îù¸+»v¥¤¯]Ã!Ð4Ô¨a˜È›×Ë*êÕƒvSQÖ®]Ûjµöïßßìë% o ‰BÄ^ÛW¾Z`Ä—ê)ÀéÚG3]ø]»í={¼*Æ+7nÈ+ÍŒÿß4D9sæ¼qãÆÌ™3íoßé<üÔÍšùí2½óÎ;7nܨV­ZÒfëÖ­mv;<É5PTTJZ~d¿y34;øÒ%V­<(âDuëì²O:õý÷ß›w™D”ŒKšK’nݺ•5kV}ÓœßêÉ@_@`¢Y•Ú©¬µËòâ3Íë%¥î½ <ñÄއôíÛwöìÙö¹E‹Â±WÒþÚêc­ýÅÕ«Wï×_u<öæÍ›úz^Þ/lÝj3 Éi¥‡£L'ù â™gÒ(ßYïé¼yó5jä—æëw¬jÕª“&Mrç”råÊåÈ‘Ã/µ)ŽfcàH)X° >†úSàU³ê} øRÅõŽF8æfˆë×=.Ë»ÀqÄŒ­oÝHõÄòåËËÏôÿó ˜á¬£öóÏáì ìÕ«WÓ§O慠† nß¾ý¿š5áÕRã^Þ7_~ iÁI{ýûãóÏí3Ó¥Cb¢óãóæÅ%ûqV½zõ>|¸›oj»gÉ’%Ó¦MûùçŸýØ ¢àÂÀÑl É8Bú"á_ì @§;®_G¶lÞ”è]à(Ýí‹/FÉm9zô¨ó17âᇫûñÇ“Vgv%›|ùF¶÷èaõºS]L ²Ï,V ǧl¶nÅ‹í)W®Üï¿ÿî÷+ð"pL¾Öþõ"Jßq$ òxêªcLN£Æaài^FÞ‘BÀZµj¥5(Q¢Ä7œLŸ^«"# _>Ǩ±oß¾7nÜp'j0h´âO¦LÆÞO£FBÓ`×izâ„@øñGá5îÞ½Ûˆ¨€Õj-[¶¬'f2úÞ0ö8š=Žd¨ît| pò€ðÁ±c‡¯E{Ñã(Ýç½ èÔ©Ó/¿ü’ú1*Tذaƒ§%Ût:ÆÆ¢dI_oŽSÅ‹§¼£Y° Îx8ÝÓo¿¡iÓ4šOǨ(Üýo0÷[o½õÖ[oyWmÁ‚ÿµbFwôèÑ<^Íþ×_µh!u7ô /÷Œz]ÅsÏaþ|§{ž}öY§+[ªuáÂ9vä·'…'ŽfcàHF“;ÿê©n/1NwlÛé+ÜW>Ì}èEw£lëÖ­Ø.8}úôvíÚùRföìÙÍû`öY|÷O%*„³gõ­ lUµ6l›”9räˆ#|+(ø0p4G2Úùóç H lïoxà´cî‹/âKãö6püý÷ßkÖ¬éݹ²ñãÇ¿þúë/¿üò”)SürAÙL{ÝÓ/ß Òý·Z­&µÜ[ò~Râà¢P“?þ *è›ÁØ%ÒŽQcñâÐ4ÿG4 Y²xqž¿â¼×_Ý¥xôÑG;wîì¯Ò\Z¹Òð*O=ôt½zAÝ¡Oä ö8š=ŽdŽ %óÓ¯S™ðÏ_ªTÁ©Sî|办ôñQµ¡ìW”qáøñãÇŽûo#W.wK¿|Ùo ªGØv:ÆÇÇ»3¦ž(d0p4G2ÇÀ?ýôÓ¤tm`½êö¸ÉÉ3ã~ÀÓO«n—­Žñí·IÉ9rœ)Y¥J•7n¨n½Î;Û÷o©}ÇÎýÚ¯]CΜIÉ.]ºx÷²ãÚµkŸ}öY§»Úµk—>}ú“'OzQìíÛ·oÞ¼©oºÙ6÷ßì$RŽ#Q°ºwïÞÚµkõÍ€‚1ØèÞ‘qò†ûó zõo¸ví „ 5hРD‰nž:kÖ,C›6cÆŒØçfÈ`î òAŽÈšÉñÙˆ#FåQE‹MLLLå€ÄÄD‹ÅR²dIyjFw”.]ZO;¹ÉDÁOp—âââæÏŸÿý÷ߟ>}:kÖ¬eÊ”éÞ½{ݺuÝ97&&æàÁƒª¯€B<`s1ÐÒçV&§ýõ¹ €§€EFß‹€ýódP­Î¸îÉãÇW®\ÙÉŽ ä%ƒƒtoÝïtlРÁ‘#Gì2 .¼iÓ¦¤„ãwbÏž=GŒáNáüñ'Ÿ|âE«ôÇI“&õéÓÇ´[Hä¾ã豄„„nݺ½ÿþû.\¨]»v©R¥6mÚÔ½{wy™`"£-]ºTÞô=j4Â|&DòäñO9›6á‹/”÷½e˖͈ϓŠ+:‰»v…¦_Ô aC=ùÈ#¤yøÈ‘#-‹]Ô(„°Z­IQ#€Ó§OO™2ÅîÄiÓ¦Y,w¢@9jÜ¿¿êDdŽ[°`ÁŽ;ªU«¶fÍš)S¦Ìœ9ó§Ÿ~Ê‘#ÇäÉ“ùIA¦iÑ¢…žŽó¡WpÂçBž3ív$Ï›è“ÈHÔª…>}!àûhh¯Ð™¯ÿþÙ²e³i¯Hh ~,n Õ«õä¡C‡.\p¹<û©S§,Ë—_~i—ÿ¿ÿýïôiû ¬ZµjeµZ7nl—_³fÍR¥J¥Òœ¦M›êé,Y²dË–Mõ "2G-_¾ÀÛo¿”SºtéÞ½{'&&®[·Nuë(,ÈïNÕ2ú©ØyÀ6i³8ÙÛ¢¼(oäÎýß”+©ÿ³y°«¹ño~Êá^=þO¥J÷îÙdîß!0x°÷Å&Ï À­Ë7àû¢E‹²eËfÿÒdÒË—ùn¨G¤ÞÁ‡zÈé!%K–¬åПúØcY­Vù¯/;³g϶Z­9“‡à$‰‹‹³X,-[:ïßß»w¯žæûHÂ8zìØ±c™3g®P¡‚œ™ôB4çn%s|öÙgzÚ¬ä³Í¹  ¶W¥M—7¤9±ýª½ÍÖÇ{\À[oAìÙãò€?†ðâW»`Á”tñâÆ\~jnܸ‘-[¶.]ºØïøæÜ¿o~{ Ñ»·¼õý÷ßË›-[¶´X,ñññrfΜ9­V«›³ïÙ³Çñ õ¶mÛ,ËÔ©SåÌx@OËò…Žûßÿþ÷ÝwßÙe&ý­Y¤HÕ­£Ð'ÿÑâÖûž¸ìlXÌF@yRŽÍ¼Ì®ûuüáJJÒ£ÞÁK— >øÀaÇ&À!³hQdö°ûõܹ”ô±cFÞ'4hP¸paûÜ'Ÿ„¦¡C“c,©›öÕW_MJL:Õb±lÛ¶ÍîX«Õº'•?\°Z­ï¼óŽ]æ˜1cô-ûöíKš2‰]üJb8z¬|ùòeÊ”‘s6nÜ8mÚ´¨¨¨§žzÊb¨¾& &ò±‘ÆT¡ã2_Ü| Ø<ýå#ïGN@zFéfgO֬ț×!÷]@jC °}Ëíömánùòsó_të?9rd¶lÙvìØa“›+4 ¶ªBGþüzòÕW_µX,òrJI†îËÚÖ½{÷¶Z­U«VµË·X,+VlÒ¤‰ž3nÜ8Õ·ƒÈXœÇÑ'‰‰‰óæÍûðÃ?þøã<î íäë/ä ýåZs€ç©e00¨í0£r©E)-oÈïùe[JL»1­)#4Àß;ä6V;dþž|Å’!>úƒ¹¬Ân†Ã˜ ƒ¬Y³Æùëwªæ*:v Ò\;§Gꎽ}ÕªUó×:~¿üò €R¥JÅÅ¥ H»zõª|LçÎ͸d"uØãè½M›6µlÙrìØ±yòä™>}ú“O>©ºEä/­.>”㎠€d²Í¼ ¹‹S¾7„@»v¦Ü•7R’®ž)Ož !œE ΢FüfŸ7xpjcqzöLI;<-5NCizšÿŒ§ j6 B@”(L™|/Ï- 8æEGG[­V¿¯þ»yóf§»|éÔ$  ½q÷îݱcÇvíÚõÌ™3ýúõ[¶lY:uT7ŠÂˆÜ±dP£ì_à¸C毀¾uÈ·™¼Ø¼AÒóÁÛ·Œe}e\h@ú´  ÐlbS½LLJ >š’ŽŒ„‹¡¾F°™ÿåᇡixã ï‹óÚØ±)é¸8aì$‘óçC›7J›7oŽ5¨Î¤i_zé%93¯“—ˆBGÝ¿РA³gÏnܸñÊ•+ûöí+?:$2܉2×”‹0Ð!¿£í‡H›sŠ¥UªIý‚òr…ùò9ëhÀž”?ÐlÞ§pù2„°ý³jUJúÎscG5õ>ø “ÌM› >üÐÿÕ¥K‡çœÏjÂêÏ#GŽ´Z­%K–ܽ{·Õjµ¯”(D1pôØœ9sV®\Ù±cÇÉ“'çË—Ous(LMœ8QOð¡|h@YÛL @R¤¶HÞqü¸¹·Äv*¡ÁƒÑ¦ „ÀÅ‹¶‡U4à ¶±Ífw’¥K!æÏGöì)™NC(#“Çn'/6Û®].w âÓ\›vŠ“—O–RþW_}eÎÿõ×_¹rå2§.¢@ÀÀÑ3š¦Í;7kÖ¬C† QÝ kýúõÓÓç}&V½ÐÖ²Eò *îŠF|ü1-r8à<°ÛçZrÚÏ=žä¹ç ¯1mzÿSîܹ+V¬˜²]¯žÉ @T”´1Ѐ7í¹sûTK·nÂaöò¤>ñ”W#Ü\]šˆ<ÅQÕž¹xñâÉ“'£££;uê丷M›6RG¦Ù¿¹rå’ҜͿh¨{À ‘«Ý3f(º+?œåÏ:yZVªÚí—g=[Ç+¹øõë×§¼éhòBV[·BšËHšøð}à} :°5eÏ•+Íšá×_=«bãFÓ!J$§Kÿ­FÝ¥K—Ù³g›zˆÂ{=“´°i\\ÜgΟ?¯ºFÊ–-[¨P!}óSÓÐМ†c.Æœšâw‡œ®®šé_šÝ|ç0j”ªë—»¢‘%‹yW¯.ml°Ý÷pÍþøeË ¾ùÆÝò##ESMФ ˆùã?Ü(—ˆ<#4US|…«˜˜ÎãH~$¤÷ÆTý2¿›Ü¿”Ô ïS§K'½µæõÕŒ†(˜6=Šô þÂx=À6ùÿæûï¿ß§Oïʰ^}îœ !Ð%yJûóç!œ,ß·¸áF)±f›6mÜ8>¤$$$üíd¢{ÿ{ÑÜå4)@0p$CLž<ù•W^1³Æwß}7ivya…„§§¡6ÆÜ¹)“9Fš{™ À_òv*³±„¬r)ÉFT7æ?×®]KÙ0zõd›gÁ?¹}ÚQà¨}Þœ9™29ë( h@ ÷ /dÔ7>úè#cï€ú÷ï/O9Ù·oßç\ÌLé¾ 2˜Ö~ß[KA‡#ùY‘"E„}ûö2eŠÂæ©™16mÚ$„xçw6lØ „ÈdÚ*g.!’-Z´L™2&Ô¸@Zº°¹kó5t¨¹•‚3À”-yöo¥Ò¥KW¿~ý”myšÿJ/¯»3ÙÓ4àöÙöû54ÀÓŸ®”B&L˜`Ôåû`óæÍ‹å‡쟹ϟ?ß—§À¿ÚŽU׌ù'·Võ$³qpŒÙB{pÌ¡C‡bbbóoÞ¼™Å˜žY²dù÷_ûwª¾ÿþû¶mÛ*¹ÑÑÑñññv™¯¼òÊäÉž~§ºeòäÉ}mWÒ3ó÷y`³@»ï&þc&é5²iÓ`»WåùapŒÎf”ŒûOFéÒnyìlF.ûò¿¬ð½³üD:8ªÿ­^µjÕ_~ùŇæùY±bÅÒ<ìäÉ“Eœ¾ýéšüjãmÀ eͦ/'§sæÌyåÊ_J£àÂÀÑl¡8¦ò:vÍš57mÚäǺž~úéTº3•ü`¯_¿¾nݺ®ö.Z´¨uëÖþªËUŒn y^šwlþg_ºäëÄκÀñk [Ê–_~äü8~ôÑG£G6ënÜ 7S“Ð_]<îs)?¤GŽɘ1£EùÇ#väØDš–ö?›÷e½)hR^ñT8qLéÒ¥ÿ?¾h®£F7Çù'Û´i#„p|«Àùóç÷J^š³rÑq)=dÈSê$õ8’üüóÏzzží®ÇÍîÉ& „xòÉ'Ý(/½ô’âäÉ“ræs€t·=Rž°îèÑ£¦-!?¤îï°w pÏ!sôèÑBˆµkצYøåË—…;v´Ëß\0çòl]gɰfßŠŽµ]ï@@¤:§´ùR’íÚy_Œ£råä­ØØØlÙ²y÷Ä9¿¼`L8ηwMî³¥bȧžzÊb±Ø½ò( Ù~R¹RЀwò³dÉR«V-»ÌÒFfLá˜LÖ¤Ik&e8’dΜYOÏtqÌÇ€ØM½lÙ2!„ü^Ž !¾úê+937 ߺ8å)]Üfjb£ÄÇǯ_ŸòBÑgÎŽ‰4gtׯ_?***•«T©’'Own¦il°óûhqMÃc9äfjyQ˜1vS¶¤¹ü`åJÇçþÓ¦MË–-›G·lÙb3¡é—_*¸OŠåÔS³gÏ6¹î¯¾úÊb±lÙ²Å._<]?;é©ECṲ̂9Ȇž´i7“k=¯tš”þý÷ß½.‡‚GòÕÆå?©»¥z°ÓN² !öÚ.,võêU!ijÏ>kwðàRªUT²K›vA§¢£S¦¼X’ê‘Í h›y÷î]!D‹-ì~ýõ×…;wî”3ŸpÖ}k2›Î+#¦yÿí7hrä°ÍÝ»Õ ‘"ö+ ©AÓà0_‡²eËææüö6‹ÇlÛföRÏæçÄ~)ƒY,ÇQVúöP5à8yϘ1c„ÿý÷óÏ?¯gÞ1óR$ìIbô:‡8’¯j×®­§O»q|Òkyóò+V¬¨?m©Zµj®\¹ìhÀƒnTqMJ¿äûÔz©²›ÎÕ¢?4 ‚mæÒ¥K…'N°råJ!„ÝrI/Œ.3ôbÜcx$žäêUÜqü|v«Õ˜NZj¹C£*éÞš‡ˆ'þüi†Aãä¥b"#Žó¤¤<à=~ü¸iµVªTÉq<Ó`@|ˆ›ÞÅ'€<ÐPÉjõvïjüñ‡§ªd8’OÆŒ£§c÷‡€v4‡îÉóçÏ'-»²}ûv9¿  ½ç%OÿíØméG­ZµÒÓý­¿8çùꫯ !Ü~"’U@¢q×à!›qâÑM0 ˆŒ„¦AúKÖÐnÍsIO猞÷ø÷ß¡iÈ.÷¡cË–-Ù²e;v¬«“lvÝ1¿J¹*zªfÍšf®¿g7öƒ€Œ÷k©?sXâQYþsUJ?æäU ) É'úK6°YyÍ]3ݘzPVz^²¼Åÿ¾…&éß?e$L=Ï׉ÎhÀœT h“bªeÇÅÇÃa6c?6 š†jv#Pa·r‰¤Ÿ(žÍ]»æ° Æ—-[6ùåÚ$O<ñDÊÆƒîtЇž”·;LXòT+o^vVWÒ[ÎvëH~jÚ¥Úê(¿Oªhñ2Gòž¼n_ʱûåÿáÛ[AS¥´0ÆçŸ®WáõHÆÎ€<ïŸ4¦r¬%oµ¼álÿûçhìçp^Àü•ˆmŸÎ}ø¡áfÌMƒÃ20O<ñDniêõ{÷îÙ„’;v˜~g”KjfâüçЦM=Ý0aBüÝÀyɳ"½jæÕfÂaœâÆMo™Š#yOžJæsÊPЀ‰É›ošíJ0^èeâ­ð}ªÙ¶£:›Å-p4´›Ú½_?“*Ž‹Ã~Ç¿2^°ÇÜ{p-%iÚ vï¼Mƒí¤€÷îÝË–-Û3Ï<@"1l˜‡¥‡€m@ÊtNô¡(íÞ½[OÏ0«Ò|Š&Ò< ‡ÙÐ:tÈqª 1 )€ôKþÓù}ßË`»(–¡†û^„-OŸz›ÏfŒç¤IæU\¶,4 NV`«d7SÁ²Rgæ—å֭ޝ+W®Ì–-›ÍaNÞ y)ï3,^¼Øüêå‰ ‹ª¾ƉŠ8dNž MCzù±ùsæ¶@Z$S&³/¿|yh^~Ù>?kV‡Y0ÃAÊÜb±6ýï™æÍ›Ë“`û{a%nxÊ!ãÆ·nÝRÝ:R€#ùäãS"‡M·¢0Íf>¹ÄD¬ôbê$ŸÝ½‹å=“¿¬¥éŽK”Ppù€ÍûŽ z_NûÆin£F2}þóÓ§SVBðeº‰@PÈì9fÌMÓ~øaÕ­#58’¯–-Kyb™EucÈ|»ä ‡©ËÍ`³Ø·ùOÍlGÿ›;’ví²™å{õjÓï€rùR’íÚÙ…ï.\°X, 0³AEФŒyJé­ñÚp@v3ë4hÐ@Ó´aá8`ŸR0p$_ÙL8 ,RÝJbÚàÆJ@^yÛÈuzœ°;ü”©µÿGzRüé§fW.Ïò=eŠŠËWk7p1ekÁ9MC:›o·… Z,–üÑœ6Ésþ¬úyêo@ØÍó¸wïÞš5kT·ŽÔcàH~27KÊ!ß} @±€0ëI™ÍÃÑï¿÷¶¯ —§BRõ®ÄQEõ½l§+íÝ[YK”©œ’\±"%˜‡yúõëg±X.]ºdB³:Hë˜gö¡“E 2ýõWMÓ"T½ÄL†#ùAúôéJoVqV…zÚnN„W«Aºi lxD¢‰«jÛL¹R 0}\3<”LÙêÜÙÔÊ¥1¼Ç¥Þ>II¦O¦Mmv¶l MCû?f|ðÁÆݲ>úHOßæÜþ§Ê&‡wàÀš¦5kÖL]£(à.+i²˜˜˜ƒªn…!䱄AúS¥_@fÀüá‚÷¥åX†x^£À*»2q••–c€ó‘ ±±(YÒüe³N´ù?t=/íóŠÁÉ“&Õ_¢DÊ8îüùqöë'Íå¿ÄÒ@êßeùòáâE»¼ž={Ž1¸Æíڵ˻KÕ­_ÔKN—-[vÿþý¾”F¡Š=Žä7cǦ¬«ÌÕ”£Æ¼¶»âT÷SE%œFÏ?M3/jŒŽ–6Lž~! ì£F! iæE€Íì?¾GÁGz»:ÍK.\pŒ,§M›f±XV­ZcT®\Ù»…ͪDj¬ÇQVäŽä7C‡ÕÓ±€‰ßŸÙ¥ôƒÀgý[áÛlí½ØOWX¸04 ³g›wµûö!>^ÚmVÅ×´·ÏþæÜ¿oÞå6Óž?óŒþÜöÒ‡¹u†¦9.Ù¹sg‹År߀ÿ}·oßVxwˆ Âw]ÉŸ6oÞ\³fͤt± yÖnò¤Ï;’ð9Ðßöàw€w€;®ˆý=ÐÎ1W³¦$*H™Uk5`›}Þ“ObéR³/ÿçŸmnûÂ…Ô1˜ ÌÌ}kÓ]RÜܯŸçõéƒ>}P¿>Ö®•³‹)R»víïý:´K^¸¹PÉS‚}ÞG |ÇÑl!üŽc’lٲݼy3)ýÐCu{<¼ï8Êïú F9PXë™pgIãë@§;æÍCÇŽ¦ß'àå—1ujòFà®ñU¾ Œ³ÏË• —/+¸|ؾܹt)ž|Ò’Sœò«¹RçV¤lyý-–5+¤µO¢££cccýÕÄ?þø“ORÆî¸ÙDýî?ääoÃÉï8ž;w.þ€úŸN‚ªÉÏnH˽¨º1ab¤íæ(gÇü h3´_Ð$Õ«;›5ƒ¦©‰)j„ñQã€p5jš²¨Q&œ>½?£Æ¤ëjã8§V ¢ñ&Üþ'En>¤vêæMœ?¯oÅÅÅU¯î¯×€!Gñ>”Ch8’ÿ=ýôÓzÚÜɠÔ)^OõÈ›Ày‡ÌßÌtÈ ÀV»Ü\¹ iøõWÕ¤¹Áå à1û¼ñãO|sáBJZšBÕo~üš†|ùls÷0h]œA€'›uÑÑi‹I]¾|Füßl*M Tˆò¡(¢@ÃÀ‘üï‡~ÐÓ T7&äÉ ñf²¥u|>@ÞtÈï.}¬„Ógå »ÙtßÈ«÷raÛçÿ€Zµ i%mÜR(çÏ;‹¨>à÷?¦“¼9/PGŸìÝ»WO¯SÝ"ÿbàH†˜*=LÌ¥º1¡m‡”¾áöYïšÃÓG-ùA࣎'Œ(óKÛ?ÿÓߌð»M^t44 6¨¾x¶ë£´mkl]š†É“r›¸gHîþ H<ð€ž©º1D~ÇÀ‘ ÑKZ í*°]u{BUF)ÝÈóÓw!õƒ~š†7ÞP}­’£ò~_ÄáJ¬ž­¦MmæâiÝÚØê^yš†Ž Ñ9]Îg÷î¹û/ íÛ·ïîÝ”÷n œ^œHŽd”#GŽèiå“ÙLiýËÜ‘Nñzã»ÀF§;’ºÙ6nô°<ã=ð€íìßoù¯hÛÇÓBÓP¬˜ê v ¿Úè°"³!Ö¬¦!kVÛÜ¿ŒQ};H“&)ƒÍøšBG2J‰%Š/®o~¨º=Á%ˆKëŸ5Nõº&ÀÀÈ ?ãèÑÀêf³cÓ6/Vgtƒ¦ApäA!yóz_ŽGnÜpö’ëp@¸úë#¬ 2DOgê¨n‘8’ŽIK¢ ñ¡œ0‘·¹òzy{¢Ìæu9é=­õðÃÒF5¯‹q.]À6ÊÓÐ\ºd^½IÃêß~ÛaGm ³ê›¢ØÜ¹sõ´—†' ÿáHA^ÒÓùPŽÑ®9C«€×ë ‡ãP6Ïз¥5Q(’WLæþü¾û.4 ök1ßpÄ»"ƒ]íÚµõtKÕ!2G2Ö´iÓôôªãJ6 §´™GŲ1:Í“ºDà7umVfœ”CøÂñ™ì™gž‘7+»}â»ÀÛnì©©ÀËÎòo:¬ËÈžÒ÷“7Ÿ¾SÝ$³išô”¶½Ûk‡ŠÒ¥¸äêêÖÅ:cyÛ·—6þR}S̶bÅŠû÷õßBïÖÀ! ìq$3\»vÍ‹³†Öw!œE#œ­æø¥ô|ÕQ#—<Ç|OÕ­1<À\^TÆ4¯¼"md꫾#fëÞ½»žÞ¯º1DFcàHfÈž={µjÕºu릺!(à,­hÁ¼Æƒ<Í`!ÕI±fIÙLó¥êËN&=»4\)é,¦ÿí3eŠ´D/zøG=ôt! ¬êöªÉ$ÿüóÏùóç‡êÎÁ?üðÕ«WýÛ€¶€ã²¾Q@¼ê;ã»ãR4|Vucи1þL^0"¤>äǵÈ`ÔjxnµjáôiÎ1gŽá5Nœ}Hï¿ÿšz±¥JIOšZu`X¾|¹ž¶ªn ‘ 8’yòçÏŸ?¿[3¦—WTóÙR …³üž¼pàº3’ÓBí‹~J‹G'$@”-‹ý†=ÁëÞ3gÚf%k€†j.¿J@š*hî\Ì‹5kœ-Ùç'‘‘6ѹÉ+8‘'ßYjjÕ ²4!QWÕ!2USˆKï,jìh!5˜n»9ûR|—#‡“Ì ^{ÍÏumÚ!¢Æ$TÝìÜé$³aCdÈàqQiªXBØ÷éZ,æ]¬ÍxÌ«7`\–^“˜¥º1N%ýp÷þÕSÝZ )d•„4â8I @óy¾À´YJ÷ðº_ܾë®gáž0BàÄ ÿÔ‰Zµìò¢m°î¬àDEéɘ˜›]I¯åËû§¢7߄ػ×&Sh¬f=/]º÷å_¯&Õ0,RŒ>ׇr žÓ#‘‘8RzÅÙúéMÅ¢—}/Â=5y"fëôdNYqnæÌ™V«õmDž銗óF¥JŽÝlÍš5³Z­±±±RÞ<³/ûvÜMòçŸZ­Ölٲٳ?„ÀàÁÞ×rá„°ù0k–mg¼rWþ^¯‹ R3m»º;ù»ü=þ(äWoOÔ4ÍÍ׊( ÍäbÂ^LLÌÁƒU·"ÐåÍ›÷Ròò»^ü€:þ…½XÅ"`x@GͪT¾vOoÝû@ÊØ%O?FÂÈ‘ú–Uê÷zî¹çþþûoûãkÕ† žUñÖ[øà»¼Ì™3’&ÁîÝ»÷/¿ü’¼eN{yÿÒ¥Cb¢‡§¦ÜûÅ‹W«ößòÙ»wï~â‰'œò¤Ç#¯³dq2ö¥I¬\éáeú¬m[ü¨6ËïÃb™I2É“ )ùJJþW°`ÁþùÇ3äîÆó@>5Äv³“o}™riƒŽˆpwTÃûï¿ï§ ¢ÄÀÑl ÝáÇÀ±³ÁÔ&XçðÂPOàFÖ8%mzqß| ¥°éÈ‘#3f´ÛoqúîÝøñnu¿]º„¼y³—.]Z%i0ŠËŠ<½ ÞŽ/½„¯¾JJf̘ñÈû®íÉ“'¿÷Þ{ögeÊäî èzõœÌì#ü=ù€Û÷É—¿PYàøôÓOoÚ´))]Øíß¶8ä¬öj¨×@àÓätíÚµ×+™ã“BG³1pt‡/ã£Àªät$pGÑ%¸z¯è{ ­¿ëº 8>ýõ¢ÈûÀ±jUlßž”¬V­ÚâÅΗê]»ví³Ï>ëdGêueÍŠ[ö‹‡2¤ÿþNÿæ›o^ýõä-Ç×\Sçmà(RV×o>ûì³k×®µÏM½óõóÏáôJï݃ÛH~V ÎŸOÞx˜ís‰8zÁïÍíêì†Fx>Å”MhÏ/zò¾ãH¡Fš wí*Ú0Òõ®gÜð_]9œE }~vè™í)·ÙUÔ ^½zV«µOŸ>ö;„@îÜNNhÐBØEµk×¶Z­®¢F;v”¶4àkÃ/ÿôdÓ¦©­>þ|'aåÆìä!œDcÇBÓ”E€5ÂQc3bu卽{‰!@9· © ¥‡®äæP¨bàH!hš”®ª¢6Œ5í‡7ó²5<)Щƀì†1g4`µ™W+=•80íoÒ¡C‡Z­ÖJ•*Ùä^¹!мù›“'C8¼yòäÉï¿ÿ>Í*6o–‡˜w3ü?®'g:ŸȆÕjýî;‡EŶé÷Ê—ÏI7XµjÐ4¸7‹~PñðuR¿»sÉï¤zĸoГ€æðàâ €4çµ:ì“6G•ÖD`àH!è¥T7VWJ¿ú꫆ ¢iÚ£>*ö äGÞø ¶}«I®úµ/Ó-{öàNÊëƒÝ/¼|ùòý޳‚ÿú+„€èÛ×nÏܹs­V«›3Ã[,–âÅ‹KMÝ9ËKR“ÆŽëæIõë×·Z­¯Ø¬ò QQ/ÚägÌMƒ{ã6 gó¾©ó^ß„º7J’EF"7߆{qŽ'îß8dNʼV¥´“W#ˆ|ÃwÍÆwÝáãà˜$þ}{ßMñ€<— ãï—pö6ÕŸÀ#^]—n0ÆçÆ{óŽ£t9?ýôSÍš5=­tÉ’%½zõJ倗^zi¤4^Û}^’ñðÇDÛ”wV­^Í¡øøãïÙ“êjk[i3™IDATì+¢L/J6ÇÔ¶ØdË÷‘4V©2°Ó·ÂÜÑÜÙÜ:™Ç¡Us€.É騨¨øøXT• —¤U@zÏïà˜)•ÊQã’%KÐ4í·ß~³{îQ÷qr¶µQß[uë¦}ÌÑ”Y†2dÈàEÔ E‹V«õ7Þ˜7Ï~æÅ²eËþñÇ^_A—.]fÏÖßÀËxÒ¼û÷ݺÒHU'S¹gÅŠׯ_/ïtnð>}0i’×wÀ@O=…E‹’7 g<<àÐ;›3§ê«rÛÚµzè¼ ¸ äö­¼4%-昸"eÞP ‡Vu‘ÒŒÉìq4{Ýá—G˜Þé¸h-טê/×o¼1~üx»ÌÇåÎ~˜ïé÷1ãï{ûèÞv¶Ù©U«Ö©S§’Ò;wîÌ“'ZÌZÏýùÿRñË/¿ôîÝû¿Ì™Ç’›NÇ}nÜXã|AÈÄDï+3q"^}Uß2ó{Ôé3‡ñÀ`  0'9§E‹Òœ¦D~T¿¨Dj'¥Ýz9Î7rÔxWZDÄ©?üPÓ4»iWÂöÅ©?á,jüGý{aþ·qãÆãÇ[­V«Õê{Ôà«ä¹æ{Ô eKi–úÇ,ýã›áón.¥á$j|ï=hZE€Ýh÷oM¬YÆ;d¾)jÀ¨‘ l¿«DžX ¥ï‹Œ¬«Ÿ”®_¿~† Ü9kûöí—/Û¯J8À. ƒ³•»àÍд¼åCÇÉèÑ£ýÒ7ï››š5k¶cÇ?è¨cÇŽŸ}ö™¡U¨–-m£½‰©Ý ö£§«W‡¦á­·T_‰·¤G }(Æ ƒ ¨åú€0ý™$SðQµ—.\¸`Á‚ØØØL™25lØðõ×_ÏéÞ :|Tí=ª°x\Ú4îÇÝÇév¿ûî»:¤~L1à¸aí÷ýªýò´Z-ýÑvºtéô‡æJ€Ö­¥—XÚ£d&8™@&cFÄÅ©nº?äÍ‹äOª€*š Mžž‚ßìdö8zc„ Æ ;räH5²dÉòÃ?ôìÙ3.4>CNSÛ‡ÔOSKY)í]ßÛsÏ=§iZ÷îÝîMh5h,¥5j¤º9dº%¤¶ûö8ŸvðàÁ‰yÖ¤´'ð4Æ¿Ÿ i Ò'ò Gã‹ERºP¡B*Tð¶$¢´1pôØ‚ îß¿?`À€|ùò%å¼ùæ›Ù³g_¶lÙýû­ŠKæ)`VERYtØm'OžÔÓϘÕxïÈ«â+VLusÈtúHpˆ:¸`sLéÒÐ4|þ¹ê¶àçŸõäiàŠ& Ò!ðÆ8ŽÛ²eKºtéä§réÓ§oРÁåË—·mÛ¦ºu!È/]LX¸ù¹çžË”)S­Zµ|/*¸ ‘Ò 7nTÝ"¸±6£L™"mÜlçãLŸš†CJ*³üðƒžŒ1½rùý€®]}\ȇ(mœÜ3š¦ÅÆÆæÊ•+W®\r~™2eœ:uªzõêªÛj*ù€ó>”ÐCJ—-[¶·M‰ßÄÄÄ|û­™“r­Ò(ï¶mÛ²ÏC1!ðæ›øàw׿ñÝ‚hßÞIþ²exâ ³/ÿØXhÕJî4ÊÓOË[“>&^®ü~À¬Y³L¬™ÂGÏܾ};111GŽvùÙ³gpåÊw ‰‰±ÿ£”ã¬í\¼xQ^šï €Î¶³”¹Oêèd}dòYU p-y³_¿~Ÿ‡äCÉ 1#|ðÜ¿!P¬Ž7°Æ¨(8ÎZÚ®,ð¦4ßÉ»x1„À?ØÅvþ4l¤5Êï‘&^k””ž;w®‰5Søâ£jÏ$ Μ9³]~–,Y\¿~ÝB:P}YHÓ4»e?æ˜ía9E¥40窔þñÇU7'\íÚ…;ß8!У‡7¦®J§sÝ«ŠÓ;›é¿m[çù>ºrBÈQ#l#9£­ä[ß©S'+§ðÅÀÑ39räBܾm?mÖ­[·ÜïHþrúôéØev„³%›: Èsñ 4Hõ5…2y¾³¡ÆƒºÜ5c„À–-þ©hÄ6ˤÛ<ÀÊ–MÁåÿø#\PLê|}à¿Õ•-rÛ¯P=ÆÜµëKésçLx‘›`à詈ˆˆìÙ³;ö,Þ¸q€>Κü%&&FÓ´‰í¥(äÞgò´;m¿äÈïä.¦³gÝŒíɤ—w£ ˜ìxLÍšˆò­SìÆ ‡ÉJ×÷äí›7áÞ«;þÔ¶­ž<h@a»Ž‡xñEŸjiØBàæM9¯> ÃL¼ÖRºB… ùóç7±r k =–?þË—/'EŠºcÇŽ%íRݺÐÔ¯_?MÓlVòöxÕõYòPÏzà~ýõ×+W®tîÜyöìÙŽ“;’¡FŒ¡iZ:òC¬„íŒ3fÌð°`ò•¼zñj‡ž*ò³Ÿ–‡÷Këða€4°Ë½u B ”] €c7[@sxîÈæ…¿]» ¿R;Ýùñ_Û»ÿŒ !Rô,] !à0±Ô9?­eå‹éRúÉ'•tzRXšfæì„˜˜NÜè_ñññÑÑÑ®öéO¸>ÿù¶kú‹Þ€>R#{öìûöíSÝ"·èS‡¦K—îÔ©S¾æSк5-rë)lÚ”u»®W/çU©‚;ìòÊý/#¿ûédvIùôS ¨oyôÛ>ÆöÍÿdÍŠÿuœÖgÐÙ¨kðÌB@^¥'H?â(x±Ç‘‚^ÆŒ5M[,½¯;yò¤êÖ…©©RÚ͉ñÉmÚèÉBžD" øÕq‡CÔxÆÃ¨À;òÆÝ»Þ av“5^òðÔwÍîÁ:€›7í¢Æç-`¢FØN˜ àÏ?ÿTÝ" /\rBDË–-5Mëß¿ÒbwÅ‹Ï!C‘"ET·+|ýè³êY,.`í™ãÇ1ujÚ‡I½’ÞÝßf€¼æâ¥½¯.Þ^Á†ä9z zuL™âî™çΡ@·Ž”Ö‚zðnúŸ¿€{.^Ù,àöZ&» äLN7nܘŽd&>ª6U›`éҥ͛7WÝ Ÿû£êÿ®BJ:´Ãl&&€U{¨+0ËçÚ+{€'_}X^–¸ís!nòý›ìW@þÔØëÞ*ªT¶%§‡ òAÒêäDÆcàh6ŽäŽÐoòÂsßé¼£¿>Ç/þ]ÿJø^„ãýÝÚÀÿj´i-¿ÊÉ,|Ç‘ˆŒ’¨!møÐ@˜ïÓëØº•Ÿà÷US[Ÿú»L;#ü5ùOÊjÕª©n… ö8š=ŽäŽÐèqüïZ¤t`v:.X°` 4Æ@DDĉ'”4Æ£UŽªT©¢§ö£ü6pÓ½#‹'/–àœÛåûq¥×àêq´kðµkײ;,IäwCDÆ ¼—œ.Y²ä‘#G|)Íï .ìø÷³ª¨@^i”4uîÜyîܹIéh NU£S•ÉqÎm7ø1 a¿%§säÈÁž 2{ÍÆGr‡¿¦—€<ª[îür¼:+W®\»wï6®UÕªU;wξc+&&&¸æ7‘_‹\g»ŠqЉ–z•|3]£]›,XЮ];¯‹"rG³1p$wx8& ÌßçÕÀ#^˜!C†ãÇû½=ýúõûÑaQƒê2Ú¾}ûš4i¢o怛8ú¡ÙüN'ƒqp Q òúÓÿ+ÔÞ ÀÏ€Huå_÷uôöÄ{÷îù£þ6l°X,ŽQãâÅ‹ƒ1jP¾|ùÈÈ”YG©n%1lÆs'“Ò={öT}éâØãh6ö8’›än¤4ýþûïzÚ—_éò¤Í?&ä‘ÇÜ8~“4œÂãiŠ-š˜˜h—Ù¾}û &xU^‘Xïgzhô8¦“‹2í*ØéH¦áà¢õÛo¿¹ð3Ï<óÃ?$¥Ÿæ{Uc$àªO…¼]›DþJëLwãyrc¿hذall¬]f¡B…¶lÙâ×z”©P¡ÂÞ½{“Òõ€µªÛ¶÷¥Ÿyaüò3vó–3j$£±ÇÑlìq$ƒÈ¯Ezú[´dˆ}ÎÊyøÖ“’¿^’6Ýl˜8úØã8jÔ¨iÓ¦9Þ«Ó§OûRl’;ã(ÕíñBô8ºz7¹°Àß­uºRbΜ9¯\¹bÄÍ!JÂw‰BÄTiiã\nŸõ ¢Æ¤ñ>°ÙáøïüávùrÔø¹7ÄjµZ,ǨqòäÉ¡5xíµ×ôtFÕ O­]ïZ`¹ÿêjà,j>|8£F2{ÍÆG2ŽÜé¸ x(Õƒ/¸˜*oÐÕ6§‡³!2®ŸkëúÄ6‘À·/Ä÷ÇR¥JÅÅÙOkøè£Î™ãû ÌKît\ ´TÝO{£Ýé/9¬–Hð­‘c€á™µk×^¿~½9w‰Â{‰B‡<·vÕTÌê,jlhQ#€é€µÍL“j-òtˆîG¾³X,vQcŽ9¬V«ÉQãÒ¥K“3sæLsj<|ø°žö×"„ä&yÞöÒ€/ (n{XÒ¸™Ò^U±΢Ƹ¸8FdŽD¡£D‰Å‹×7?tvL}@·l3s°2ÕÂOšÃ+\‡ tv|)]ÙÜûP¨P!yÓjµêGÌÔ³gϤ.ÀaÆY,–£G]ã /¼ oö7ÿšÃØ%)}HJ4‡ïÚX@}=)?³³~þùgMÓ2fä» dŽD!娱czÚn‘ëÉ€p6ÞöpÕíòï;{ÇÿS@ǤœÛÀuis§‰w jÕªgΜIJgÏž]ÕêØ 4°Ë©_¿~µjÕ ªnòäÉ‹eíZ›ÿ½Ÿ+¹ò°$ÿAå4L~rÈLú•yïüùó-Ë¢E‹|¯¨|ùò?þ¸]æÂ… õôàŒù×f^•ÒiŽ|\h¶/DˆP]Ê9äâ½Ó§O8f%‘8…  Rž'_´Ý•Ðü73Î%gƒOågÃî?÷£/¾øBOkš¶dÉ3k—o~¦L™jÕªuþüùÝ»wÛÖ§O‹Åâõä)½{÷¶X,v]ª={öÔ4í™gž‘‡JX<.› ß ñŽÍê¶°Ÿ|òÉ AƒìŽ/W®œ¼bdš¾ùæ›×_Ý.³xñâòë­2eʤ-Ÿål°| Æéx|œÁçs7Æ0uìØqÞ¼y*î‘ìq$ MW¯Útö½ h†EP+y3iÙï¢F¿¨W¯^úôéõÍ®]M œúöMyº(?1OòÚk¯išöÄOÈ™û÷ï·X,cÆŒI³ð¤)Í£Æ#GŽØEnßNMÑÍœ‹?Y¤tu¯Jèh¶Ý–²¼yój𯍑 G¢Ð”#GŽªUS&sÌjJ¥ ÈÄ+ê1’}Ò<¥aÆš¦ :Ô.¿páÂíÚµ°lÙ2‹Å2{ölyoÖ¬Y5MûþûïÝi•¿æsç¥â}/Â7ð™W'šù‡‘Zc6Ž!“É£d®9U·Ç¾ŽÑ >|úôéú¦q£dä11,SÆÍñµÿ©Y³æ–-i?íܲeKõêž½M'ÿ쳫(pÊ6GÕ7Ó`‚ÛËk¸>ò¹výÕ€&Lp¿!Dæa#Qˆûã?ôt.Õ1ßèÑ£åÍÿýïFÔ"[¸paO£F›7o¾q#µÑDcÇŽÕ4ÍÓ¨€ü—ªÉk?º£+ &jP˜îö?¹«k3‘™Øãh6ö8’ùä>§ù@{ÕíI“{œ:uªV­Z>â>?TüñǶmÛÊ95Zµj•/e)RäôéÓÞ\‹÷G·¨ë, ÐÀÓ²ÔÉ èSq–|\=ŽøØãHúäPæYÊ REŠɘ1£9u½ð >–ðôÓOkšÖ»wï;wîHLLô1jpêÔ)ïN\aØ{‡‘΢ÆN€TQ#€ËRzŸêÆ™€#QXhÒD_¶/ªnLš¼\MÅ5»¹oŒ%K3fÌð¹$˜2eJdd¤¦iéÒùçSÚ»ˆö ‡•‡|WÀ=ÛL  sý]—9šIiOW~' : ‰ÂÂÊ•+õôtÊ1Ú9@Ç¥‹Å2eÊ_ÊܱcÇ¿ÿ>GPŽ9ùÍŸ3f(oÞ›€px˜+ ðæ9zÀøUJßÖªn‘¡8…‹ñãÇëébªãT  ³üwß}×b±ìÝëåûcÍ›7×Ó'OžÔŒáõã`3¹y-›7oöo½çŒsÈŸ ÜW}OüB^Ú¥¾êÆŠ#Q¸<8e5é“@¬êöÈ"­WÄš6mZ¡BOKž8q¢ž.]ºt‘"ET_kØÉpÈlhÀóªÛæ/m­î¢º=DÆaàHFvìØ¡§K«nL’¥€p˜u9***©ëëÅm^ȼvíšÅbyùå—Ý/ܸ”~®C‡©¾ÜðRÏa]>9 XéULî:£º1DÆaàHF|ðA=½\ucîhá¿víÚøøÿÆò~ùå—š¦+fóh}ñâÅ‹åÛo¿M³ y^›W^yEõ‡‘ϬsÈ¿»€R…¥4{¶)T1p$ #­ZµÒÓjG°Ö¢2GŒ¡iZݺöó´?~<6ÖþÑúàÁƒ-K*³<&$$lܸQßœÿ|Ê€]&q$ÝÒDï*j†ÓU¹¯€œŠÂa^!W+'  ‰ÂB½zõôôYs«n  Î6³_¿~š¦µlÙÒëboܸá8Ýà‹/¾h±X† ¦çÔªU+S¦Læ^q¸“»úÞQÑ€O¤táÂ…‹/.ï]à+TÔÀ ÛÌô€TqáD&`àHúäwË;›TÏ “,¶Í,[¶¬¦iòôŠ^«Q£†¦icÇŽµËŸ9s¦žÞ°aƒY—KÿÉd‘6«›Þ€ARúÔ©SÇŽ;räˆÝ1/9‹ùÜ·€ãú’+Ó¯—ÈL ‰BߨQ£ô´—«¯ø‰ÕjÝ¿¿Ë:t¨¦i 6tÜõÎ;J:¼7¥ôVs«~BJë+t—(QBÓ´©S§Ú\(åyQ΢ág hâyiDÁ…#Qˆ“¿jnÕý¤ô¬Y³4M+T¨Au­^½:11Ñ.sôèÑæ^1¥¨'¥£M¬w…”ž1æO°W¯^š¦É³{8ÀÍ9åp×6³  ß™xD 1p$ eñññëׯ×7?U×’®]»]Eºté4M[¾|9MÓ®\¹¢îr Kéxà€)•¦—Ò®¦ˆÿþûï5MË–-›œ9À®K`—C¾œ1àB>ýôSáûöíó¹B"w1p$ eÑÑ)}=KL¯ý)>}z¯ËñÈã?®i€œ9sš~Ådc’”.g|u«m‡6?÷Üs©|ýúõ-[ìg j Ûçì®ëP—3V*!„ðb w"¯1p$ Y‹ÛŒKinz:Héû÷ï¯^½Zñ!sõ±ÝìkpuHéK—.¥y|õêÕ5M{ï½÷ìò³5¥tn‡4àÅ´Ê÷‚ב(_ç%Óˆ¤?ÍÉ4111r¢2CÒc¬$w *ÚpÈ#mò'(lÙ²¥fÍÿb§“>/»l7¸AÞôðÁܱc‡G§?ú裫V­Jó°ìÀ5Ã.!‰G³ˆËkÕð—‹Ìaþ¡DdMÓôØ1øÛv¼‚9r;“7ß~ûmÇÙs(´å•fv, 6¦¹ÛÐÓ¨ÀŸþ©iZºt©=…û0aFÐ…ž¥¢;¤´ãcA y¤t, Œù§\õe…²w¥t™2eT7‡B{ÍÆG ûöísºXÙy Ÿa•êý"üð +VÜ»w¯]æ§À«ixÿ: ¢ÿãÁØãÛNÇ“'O)âãÜíDN°Ç‘(|•/_^Ó´O?ýÔ.??Pɘå™ð¾þÚ„gãäNW °/Õå¨qíZ¯_’$wm’ÒE‹UÝ M ‰ÂÝ«¯¾ªiÚ“O>)gîðš_+ÚÄI›]»vU}éä.Wƒ«*]œ2WJGFFÖ­[WõE„¾š€<‘ãŒ3T·ˆBU›ª)EFFÞ»wOß\m;ZÓGòs4«ÕZ¨9ã¹ÉϺví:{öl»Ì绬 «¤ªÿk¼”º;O=ŽÞˆ‹‹›5kV‹-ªT©R¿~ý=z¬[·Nu£ˆüàîÝ»ýõ—¾ÙÈ%–ÒeË–eÔ¼¾þúkMÓ ´éjœ@ï”;“Gg“¡ä‰;tè º9jØã豄„„N:íØ±#{öìÕªU‹ß²e˽{÷ú÷ïïÎìYìq¤À·páÂöíÛ'¥ýõÁ^гÿþòåË;æŸ Ú11º îqÝÈHìqôØ‚ vìØQ­Zµ5kÖL™2eæÌ™?ýôSŽ9&Ož¼¿iËp“úRº_¿~ª›CþQ®\9MÓ>ûì3»|9jtÜK&øBJçÎ[us(¤0pôØòå˼ýöÛÑÑÑI9¥K—îÝ»wbb"X9ºk»èÈĉf®’M†ëß¿¿¦i®žG÷ïß_uÃÑËRúÊ•+;wîTÝ"  =vìØ±Ì™3ÛÍ~Wºti§NRÝ:¢€%¥/^¬º9dˆ%K–hš)gîÛ·ÏÛòÈW±RºJ•*ª›C¡ƒ£Çþ÷¿ÿ}÷Ýwv™I³ãr¶U";Km7[¶l©ºEd ;wî$ÍרiÚîݻ˕+§ºEá«$ Oä8~üxÕ-¢ÁÁ1~°qãÆ>}úÜ»wïÏ?ÿÌ“'OêÇÄÄ8fr¸ ?Ž‘_Ò‹‹Ë˜1£ê‹#J[°ŽI¹)ͯ{ò‹Õ n‰‰‰óæÍûðÃ?þøã4£Æ$ )L ÒuêÔaÔHd²¯’ÓM›6]¹r¥êQÐcàèRBB—_~©o¦OŸ¾gÏžò›6m5jÔ‘#G ,øÞ{ïÕ©SGu“‰‹<ž–CLjÌ÷¥8þöÛoª›C¡€£K÷îÝ“×ðŠŠÒÇ»wïŽ?~Μ93fìׯ_=ôÖD”D>6bÄÕÍ! Sóg“ÓBðý4òG—¢££>S¾ÿþ AƒV®\ùØc1"_¾|ª[JpÎòxÚ‘#Gªn‘—wûȪ›êT{)pP£F\¹r¹{E+óšH%Ž›3gÎÊ•+;vìÈN"WäÕè’†Ù)÷ß :’æ  ‡ŠÿüóêæPpãt<žÑ4mîܹY³f2dˆê¶¨9R:**ªnݺª[Dä™âÅ‹/^Ü‹ýµ,Òû½•ÓÛ…|;™ì°ÇÑ3/^ûì3¯Ë! :6lÐÓ…=9q œEgÇx-ƒ‡/,þ,Ep/j$JG"ò}À9i³ÿþª[DdžZµjeÊ”IßœåÞYélßîHò: µ€d¶Ý{ @S÷ÊJJ/uï¢Ô1p$"ÿgüÞ·oŸ×å©ÿýWO¿ÖÁ…MßSЀm3oÙþI–ä7@_§ZE)xRõý¡ÐÀÀ‘ˆü@~,]°`ÁråÊ©n‘­[·ÖÓ\Ó€Õ63 {]œ’ÐÇIລú-¾HJ'¨¾328‘ ÒgΜQÝ"5-Z¤§¿qØû €yù뀻nþ ÙvíÐál,޼¦YIÕ·…B G"JpK—.^×E&Mš¤§åè-ÐÐáà.€x4‘Û@2ØfžÐQʹ(¥cUß % ‰ÈŸ¾þúkß ! ^}úôÑÓÝ@y@8<,.hi½¤˜Š»À‡Ìo¬±ý[®û…¹#Ùk×®wS0Î;WuÛ‰Ô“'ë­ ì·Ý›4&æ¤ÏµÔ4 «C~#ÛÍIî•Fä&®CDÎyºVoÒ*mDT¦L™Â… '­4fç ƒ_ëšÌЧœíÝïYaDicàHDÎ1$òÚ©S§ì–ºnüjXuIý—élç÷É”U}(ôðQ5‘ÿ•.]ZO?adÔ¨»| üÄ©¾’ØãHDDä‡Ò;—›Ué³À³ª/œB{‰èÿíÝ}lTUÆñßtêS*¥P – 4hƒå=&J%Ä,)”l0 ÑHXÞ$Ak€¤AåE¬†’¦‚ŠNŘ@–˜U©¡5RŒ` --îP…VL K)s÷ÓÖ=ÌtæÜ{ûýüuî™¶÷é09}¸/3¢âƒ~{3G·î0@Ÿ 8K–üv'L@¤Bw rG¢¥¥¥%8ž­; 9Š#Ñ2tèЉ'77éÎDˆâ@}ÿý÷ÁñÝa€Qˆ®uëÖÇٺÑ 8];wî ŽO‹ÜÔç÷¥ê+£8uŸ}öYpíº9gÎ݉à(ÇH]¹reòäÉëׯ×Y`wtt莧¡8FÄ0Œ—_~ùÖ­[ºƒ /šÆ3gÎt»ÝºÁi(Ž)++«®®Ö‘bÓ¸¢¢Bw8Å1|/^ܵkר±cuéAFF†î°+^</½Æ˜ÆÛ¶m ûçhÁ‹Ç.(ŽaêèèØ°aCrròÆugôwM"M››6mÒί;€]½ùæ›uuu¥¥¥ƒ ÒÐß2O:öÏ~Å1gÏž-))YºtiNNÎùóçï÷Û»¯¯¯×ý;ìªÔ4NLLÌÎÎÖŽEq¼oííí6lxøá‡×®]ÞO &Tœëz£toÌ÷ÄܼySwj8űW%%%ÁM·Û]XX("EEE?ýôÓáǽ^¯îŒ'ûG×Rø-\¸Pwd8űWwïÞݽ{wpÓãñVWW>|ø…^˜4iRØ?96÷Žq‡ÂÆ‹aãÅ£×¹sçìûO`µäœì‘Ë0 Ýìäý÷ßõÕW{{ô±Ç;vì˜îŒÛ6lXKK‹ú×ûí·ÍÍÍ|À ¢#Ž÷gôèÑsçÎ5Ï´¶¶VVV¦¥¥eee¥¦¦êp‚ææfÝ€pÄ1RçÏŸ_¸páüùówîÜ©; @ñàPBq€NU@ G „â%G(¡8@ ÅJ(ŽPBq€Š#”P „â%ñº Ïüðù¹¹>ŸoÒ¤IÝ-//÷ù| 3gÎ\¿~}rr²îȰœgŸ}¶¦¦&d2%%¥ªªJw4XË ÂÂcGGç8tèPoíÚµëwÞ8pàO<á÷û9rñâŃz½^Ý©a-—.]òz½éééæÉÁƒëÎëbyAØXpìˆâh{mmm GýðÃ{ü‚úúúýû÷1âã?>|¸ˆlß¾ýàÁƒ¯½öÚæÍ›uLJ…´µµµ¶¶æææîÞ½[wØË ÂÆ‚cS\ãh{yyyùùù½µFñù|@`õêÕ˺ˆlܸ1))éøñã@@w|XÈ¥K—D$äÿÀï`yAØXplŠâh{Û·o/.....ÎÉÉéñ NŸ>7kÖ¬àŒÛíž1cÆÏ?ÿüÝwßéŽ ñûý"2zôhÝA`,/ ŽMqªÚö¦M›Ö98qâD÷G Ãhll2dÈ!CÌócÆŒ‘¦¦¦Ç\÷o«è\ǯ^½ZPPPWW—™™¹råÊo·X^ ›âˆ£Ãݾ}ûÞ½{ݯ5NJJ‘7nè ijj‘={ö\¿~ýÉ'ŸLII9qâÄ’%K|>Ÿîh°"–D‚Ǧ8âèpííí"2pàÀùÄÄDimmÕrõêU¯×»fÍš‚‚‚Ι¯¿þzåÊ•;vì˜6mZZZšî€°–D‚Ǧ(ŽöÐÑÑQRRÜt»Ý………*ß8xð`—Ëuûöíù[·nÉÿ  ¿éíåTVVò•999Ë–-;pàÀçŸ\ÜN,/ˆ ŽMQíáîÝ»æ7,ðx<ŠÅ1>>>))©ûýÛÚÚD$x#$ú•ûz9egg8p ¡¡AwjXË ú ŽõQíÁëõÖ×ׇ÷½#FŒhlllkk4hPpòÇì|H÷o z|9†\.W\\—KŸÝn·ˆ<øàƒºSÊX^ûâæç{ê©§îÝ»wòäÉàŒa_}õUrrrVV–ît° ¿ßŸ™™¹|ùòù3gΈHFF†î€°"–„‡Ǿ(ŽÎ·xñ⸸¸}ûöu^x$"û÷ïoiiY´hÑ< ;¬"==}òäÉÕÕÕåååÁÉ3gΔ––¦¥¥=óÌ3ºŠX^ûr†¡;úÆ+¯¼R^^îóùº¿ ViiiQQÑÈ‘#§OŸî÷û¿ùæ›ÌÌÌÒÒR>f.\X±bEKKËøñãyä‘Ë—/Ÿ={6!!á­·Þš2eŠît°(–„‡ǦÜ[·nÕ}ãË/¿¬­­]¼xqjjjÈCYYYééé×®]«¬¬ŒÏÍÍ-**2_“ˆHJJJ^^Þ/¿üÒÐÐpîÜ9Ç3kÖ¬={öŒ7Nw4XË ÂÂcSq€®q€Š#”P „â%G(¡8@ ÅJ(ŽPBq€Š#”P „â%G(¡8@ ÅJ(ŽPBq€Š#”P „â%G(¡8@ ÅJ(ŽPBq€Š#”P „â%G(¡8@ ÅJ(ŽPBq€Š#”P „â%G(¡8@ ÅJþFL–iš{#IEND®B`‚statistics-release-1.6.3/docs/assets/einstein_201.png000066400000000000000000001300461456127120000224730ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A€IDATxÚìÝw|Eðß„ÞB¯Go¡Jh(ÒéMQ@T)ªHS”¢ 4i¢" ø¢Ti‚ô^”zXè¡C’yÿˆ\¶Ü]öÚîÝå÷ýðyßÙ¹ÝÙg×{˜Ý™RJ%&Âꈈ’®Ì™3 g*T¨`uhDDN$·:"òÕíÛ·¿ýöÛÍ›7Ûív»Ý~ñâÅØØØ¼yóÚl¶¼yóV®\¹C‡Y²d1?°#GŽlܸqãÆgÏž½råÊåË—…Ù²eËš5k¾|ùêÖ­[¿~ýòåË'K–,\ïY‹?¼ä’ˆBÖ¾}ûºvíš.]:÷ÍS¦LÙ®]»Í›7›UllìâÅ‹K—.mäWPÞ¼y?úè£[·n…Ó0.S¦LN._¾¼Õ¡…¶`ûÁصk—_¾²ßxã½6˜8…ª©S§¦L™ÒøWŽâ½÷Þ‹ hTÇ/S¦Œ§_‡™2eZ¸paxÜ0q „ üÁøê«¯<ýKá”ÁÄ1ï… &ŽD¡çÁƒmÛ¶õî‹§qãÆ×¯_P`«V­ŠŒŒôúK±G÷îÝ é;à)&Žþ´?C† ñúï…R¢‰cÐÞ Cz °|ùrïŽýå—_ºu눨¶oßÞºuëèèh¯[˜3gN—.]¤©‚óå‚öãèÑ£IüPØ`âHb–/_>}út_Zøá‡¦L™âߨþùçŸvíÚ=zôÈÇv¾ù曡C‡†â ËóƱcÇ’ø °!Œü㞈‚Ä•+WŠ)âK¯^¼”)Sîß¿¿dÉ’þ ¬GsçÎõKSBˆ={ö¸š&hï€w2gÎ|ãÆ }}ùòå÷íÛgml¡%˜0|õêU§µlÙÒý±úx111Û·o÷1°¿ÿþÛÕG•*Url²dÉŠ-êô£»wïÞ¾};$î@àìÙ³§|ùò .t3´BJ¹yóæªU«¾óÎ;>´:d ùFllìÉ“'5•þ³äw€Â G²Æ?üP¯^=¯ç6ûî»ï4hðÏ?ÿX}æÙ¼y³«ÍÏjÔ¨áE³¹úÆP°`ÁD/^¼¸«4ÿ}ƒöÈùóçŸ~úé³gÏÙ9&&fìØ±­ZµJ‚¹cÿ`üñÇúÿ(þMƒüP˜aâHØ´iÓóÏ?ãK#‡nݺµL2‘ê;-Ê–-ëþX7ã—}Ÿ—øÚµkNë³fÍš!C†Dwõ¬€¦›-hï@ Ü»w¯U«V—/_öè¨5kÖ´iÓ&©åŽAþƒátÍÿ&ŽA~(Ì0q$³=|øðå—_öËwÛöíÛý5étðsÕó”9sæìÙ³»?6S¦Lùòåsúѹsç| ÌUîn$kpþüyWi^Û Ú;'NœØ»w¯®^½úwÞ±:|Sù†Óô+>qŒ‹‹[»ví›o¾Y£F¢E‹æÈ‘£T©R5z饗¾ÿþû;wî„Ç 0“Üê(É™2eÊ©S§üÕÚ´iÓzôèaõ5™ÁÕwƒ›ÉÛ”òäÉsáÂ}½ïß ={ö¬]»¶¾ÞÍßFH“&MæÌ™Câ›É“'·k×®jÕªVb’ ÿÁÐ÷8&K–¬X±b‹-9r¤¦³ðòåËÇŽÛ°aìY³R§Nݵk×Q£F¹™µ*$î…&Žd¶9sæ¸ú(]ºt]»vmÛ¶m¡B…Ò§Oûöí¿þúkûöí3fÌ8}ú´ÓCöíÛwþüùüùó[}Yçê—x¢= ñrçÎí´þêÕ«wîÜq5´Ùˆ%J”(Q»coß¾íê;¯ZµjªG"A{L9sæ_|ñ‰'žH—.ÝŸþ¹lÙ²#GޏÚ966¶gÏžÐÜÀpä?úÇ,Y²´mÛvõêÕî¼ÿþÌ™3/^š1c†2kTJ›6íèÑ£]-®ê¯±ÕsçÎu³Ò«/š4iâã»ð÷îÝsõ‘Áþ7oÞ½{7W¨þùÇéŠñѾúê«aŒ:tèØ±cõõ]ºt)\¸p£F\½.<}út%Žü«áµóçÏUÑ)S¦Ü½{÷Ë/¿ ¹;@ᇉ#™ÊÕè¿T©R5kÖÌÍ¥K—võ‘§#O]5j”Á©O<5oÞ¼À};¦H‘ÂH ©R¥ò¢ñÀyðàAÇŽ]MÆÙ¯_¿,Y²„÷0¢Q£F|ð«Ok×®=iÒ¤þýû;ýôÿûߟþY¸paßÃà_ ¯9RíY³fÕ¯_¿cÇŽ¡u(ü0q$³•/_^_Y¦L7¿¼üù矮>Š‹‹³úšÎÕó\)S¦4Ò‚›Ûë¦ñyôèQûöíׯ_ïôÓtéÒ 0 ¼ï€Bˆ?þØÕrŽñ^}õÕÏ>ûLÿ0€”òçŸîÝ»·Õ×XAþƒáßm^y啺uëjAù ðÃÄ‘L5yòd/ŽºvíÚ°aìŽÝJáÔ©póæÍ6mÚ¸Ê|úé§Ù²e ã;`PýúõŸxâ ÷û$Ož¼oß¾¯½öšÓO·mÛö‰cÿ`¸éqLžúä“OBèPøIcî(týóÏ?sæÌ)UªÔ¶mÛ¬ŽÅJ¾Ïsî¦ãêÑ£G¦]ÈéÓ§kÖ¬é&k:thÏž=Ãø×¾}{#»½ð ®FOoݺÕꋸ ÿÁpÕã˜%K–uëÖ-X° qãÆyóæM™2eîܹŸyæ™ lß¾ÝÍü;_~ù¥f­¦ ¿~ØãHA$&&æøñã8vìØ©S§:Ä¥ â¥I“ÆÕG§Rðàû×wß}×½{w7Ã,^xáW¯ô…ÇðH­ZµŒì–={ö%J8íÙ:sæÌíÛ·Ó§Ooõ¥Pÿ`¸êqœ={vƒ œ~T­Zµ5kÖT©RÅiFx÷îÝeË–)‡Žù ðÃÄ‘,vóæÍµk×nÛ¶mûöíGŽqó+,)K:µ« Þ17»¹iÜ_Ý»wŸ1c†«ÎP¿žJ•*•ñÙ1+T¨à*A¹zõjx'ŽÁüƒ·páB}}ªT©4³MiTªTéÅ_\´h‘ÓO7lØ LƒùPXbâH–9zôèØ±c¿ûî;¾F“¨îT8räH‡<èj‡dÉ’M˜0A? &leË–,Y2ƒ;Ûl6W]½zµ@V_MóFDD„ûÉ"Ü=zô²eËbbbômܸQJéø'V0ß KLɱ±±C† ùä“OœþZ´Ê™3g¬Á%7¿¾ Îçf>¶€~7L›6mРAnÆffÍšuáÂ…®&é ƒ;àŒ3ß9S¦L®>Ò¼çþÕ0_áÂ…‹+æô]«W¯þóÏ?¹rå ï;@A‹ƒcÈl÷ïßoÙ²å¤I“ŒgO>ù¤Õ[I¿p³ƒÁùÏÝìæfÝ_\»v­eË–¯½ö𛬱Q£FL4k Ñ;à‹ØØXã;»é›ô}äD ã 7K¶('@ ã;@Á‰=Žd¶þøã‰î–5kÖòåËW¬X±J•*uëÖM:µ›n•¤ þüׯ_××ÿý÷ßFÿ믿œÖ§OŸÞÕ·Ž/¶mÛÖ¾}û‹/ºÚ!eÊ”|ðÁÀÝÏSºwÀG­ÔrãÆ Wé'6 ?áúƒá&qÔ¬z®w€‚G2ÕÖ­[?ûì3WŸ¦NºY³fÍ›7oÔ¨‘f’Û›7oZ»Å (pàÀ}½Áï†K—.¹jÖï¡.\¸°gÏžnÞ¯*Q¢Ä¢E‹*T¨®wÀwW®\yôè‘Áyø\}ñÈš5«Õ—páúƒá&é×üå ×;@Á‰ªÉT'NtõQƒ :´|ùònݺi²F0qtýKüþýû‰¾‚vÿþýsçÎ9ýH«}4vìØÎ;»É{÷î½gÏO³Æº~ñèÑ#ãsQíÝ»×ÕGI¡Ç1\0ܯ™è1\ï'&Ždž»wï®]»ÖéG \¹r¥›G3üñ‡Õá[ÌéRñ~ÿýw÷ÇîÛ·ÏÕ¥nšõÂÇüÎ;ï¸ú4EŠóçÏŸ1cFÚ´iÃõøÑöíÛìvýúuWsñ/^<]ºtV_GÀ…ëÆÉ“']}”3gΤp(81q$óìÚµËÕ:}úôq?ÛÜéÓ§­ßbuëÖuõÑo¿ýæþX7;¸iÖSK–,8p «OÓ§O¿jÕªÎ;‡ñð¯o¾ùÆàn®¾øk×®mõE˜!80vìØQÒ…eË–%z¸”òĉN?J™2¥¦Ç18ï…+¾ãHæqÓkåþØ]»v:¼¹sçz4"Á¸&Mš”,YÒÇFŠ-š+W.§/--[¶lâĉnF™,Y²Äi}DDDÍš5ýrgÏžu³,rš4i6nÜX¹rå0¾~·iÓ¦#GŽ”.]ÚÍ>qqqÓ¦Msõ©¿GþÕðB¦L™Ž?îô£õë×?ÿüóî_²d‰«ÁÎuêÔIž\õÝœw€Â–$2Ë„ \ýΛ7ÏͧNr3J`Ĉ~ ¯`Á‚ú[æþêŒsóe³fÍWG9}k>^ÅŠrñâų.ܸqÃé!Mš4qs¦M›ZwÀ4îç hÚ´©ûÃ?ÿüsWÇ&OžÜn·û%HþÕp0þWãÖ­[®/\¸ðýû÷Ý\Îýû÷Ý L™4i’…w€ˆ‰#™gܸq®~IuëÖÍÍmÚ´qóÝ“tÇ•+Wº:EÑ¢EïÞ½«?$&&¦zõꮎúøã=½NïöÖ­[Ý\~“&MâââBë˜&ÑI¦FåêØ;v¸Y®mÛ¶þ ’5ŒÜ ý_Š+ºÚù7Þpu-qqq}ûöuu âøñãÞ"&ŽdžÙ³g»ùm¸zõjý!W®\iÕª•û“8ÆÆÆ.\ØÕYêÔ©ó×_)÷¿qãFË–-]íŸ6mÚëׯ{z+œÞí-Z¸¹ü‚ –÷Š…wÀ4Ff'íß¿¿¾ƒjáÂ…î_ Ž_˜Î/øWÃÈ­ÐÿÕ;v¬«…½zõºté’æ“'O6oÞÜÍsõïðû«AA‹ï8’yÜüΕR¶hÑ¢sçÎ:t(V¬XªT©.]º´qãÆÉ“'»™£.©‰ˆˆèÓ§Ï[o½åôÓ_ýµ@O=õTñâÅ“%Kö矮]»ÖÍšc:uòËœêÑÑÑ?ýô“›Ξ=Þw ЦL™²xñâ_|±lÙ²iÒ¤ùóÏ?—-[vøða7‡Ô®]»~ýúVnžàüÁèСÃÈ‘#®-¥œ5kÖ¢E‹*UªT¤H‘ܹs_»vmïÞ½¿ÿþ»t½ØODDÄÈ‘#CèPx²:s¥$äÞ½{Xùô½÷ÞóKxÁß­"¥¼yó¦_&WKŸ>ýéÓ§½¸ún•Å‹è¾YxLˆ¯çT©R;vÌAò¯†‘[á´3~È!~¼]¯¿þºåw€ˆÓñyâ†ñ{³IjŠÇÈÈÈ DDøú7wÊ”)EŠñKH‰Î÷öw ؼÿþû%J”°: ³çÆ;ï¼ãæ ²G4h0iÒ¤»~˜8’©Þ}÷]ãk+uíÚÕÕ/Ä}ûöY}Y¦ªW¯ÞàÁƒ}i¡mÛ¶Ý»w÷W<û÷ïOâw ²fÍêÝ4é]»v:t¨Õá[#0Ò§O¿nݺ\¹rùØNéÒ¥¿ùæÍ,lõ•™mÁ‚½3ñá‡iÙø·c\\\²dɼþFtÏÂ;`7‰£”réÒ¥2d0ri©R¥7n\LLŒÕ‚ᯆÆÍ›7;uêäé_,Y²|ôÑG^Ìf5(h1q$ ÄÄÄ 8Ðý»8iÓ¦íß¿¿rNÝuëÖ¹Ùß_“ò„–ãÇ¿öÚk‰°H“&M·nÝvïÞm°Yãߎ—/_öô»Ð8 ï€iÜ'ŽRÊsçÎ=õÔSn.-""¢I“&GµúR‚‹å5œúý÷ßÛ·oo¤#9{öì#G޼yóf°Ý"!]ü' ¨#GŽŒ;võêÕŽÕ̲eË–7oÞ¢E‹¶jÕªE‹î§©#‡{÷î-[¶lÛ¶m/^¼páÂ… bccóåË—7oÞ|ùòU¬X±cÇŽá=¹FØß?þøcéÒ¥ëׯ¿téÒ_ý“?þ Ô®]»K—.~K–‚óãòåË›6mÚ´iÓÞ½{/_¾|åÊ•{÷îeË–-G޹råªY³fÓ¦M+Uªäû0— ½Ò˜8’ÅbbböìÙsáÂ…T©R=ûì³V‡CDDD.1q$""""C8ÂÄ‘ˆˆˆˆ aâHDDDD†0q$""""C˜8‘!L‰ˆˆˆÈ&ŽDDDDdG""""2„‰#ÂÄ‘ˆˆˆˆ aâHDDDD†0q$""""C˜8‘!L‰ˆˆˆÈ&ŽDDDDdG""""2„‰#ÂÄ‘ˆˆÂMçÎܹsÇê@ˆÂ G"" óçÏB,\¸P‘>}újÕªYQXaâh¶¨¨(«C " Cÿý·¢k×®ÊÊ]»v !Þ{ï=«£# L‰ˆ(ä•.]:wîÜ®>3fŒbË–-V‡Iò’[‘÷ÞxãO?ýTSÙè <­®¬W¯^òäÉ=zäËénܸñÃ?ø¶¦g”(T)¥Õ1$-QQQ'Nœ°: "¢÷ã?6oÞ\S™ ¸¯Ø|¬;ðé§Ÿ^³fg|æ™g&NœX¦L¿ÄÏï_ E|TMDD!æáÇB}Ö¸U5ø@YuåÚµk…“'Oöô¼k×®õWÖ`Ö¬Y¦Ý1"a£ÙØãHDä‹:uêlݺUS9áö¨Ë@gõ‡2˜ &Ož<66ֿׯ` 9ìq$"¢Ð0jÔ(!„&k¬ ÈIJFÙ |­«/[¶lΜ9=õæÍ›•Y£ôáOE³/¼ð‚Õ7•È3ìq4{‰ˆ<µcÇŽš5kêëï©=o­;0OWÙ±cÇ… º:Dá(_²ùv9BQæ·0…ö8zéСCýúõkРA•*U:uêôÛo¿YQxJ›6­>k\ H¯²Fs ØÔ•_ýµbþüùúýß}÷]Gù Ÿ³F3å,Y²è¾{½±aÆþýûÇÅÅ•-[6cƌ۶m‹‰‰ùüóÏ6l˜è±ìq$"2è¹çžÓÏ}ó0ÅOíŸJ8«¿té’rVHew£¿¾2•Ž{÷î­P¡‚Ÿ& ,&Ž»yófãÆ=z4{öìJ•*8xð`ÇŽ###ýõ׈ˆD:q™8%júôéýúõÓTFÇp®©@]eÉ’%=  Zµj»v튯LòÓIÏ…›ü.¦PÁGÕûöÛo£££_y啸¬ÀO<ñôÓO_¹råСCVGGDÚNž<)„ÐgöÀd^$ð¬ºòرcBˆ>}ú8²Fø/kP(¨Ø?~|`.ŽÈÏØãè±nݺíܹsÓ¦M¹råòâpö8¹’/_¾‹/j*çÝÌ n&H‡Ÿ€§ü}:Ž’¡ÃG>|8sæÌ¹råúý÷ß¿üòˉ'®ZµêÞ½{VÇEDò4Yc@š˜5¸lsñ‘ß³FÙå1cƘx¡D^âZÕžyøðá­[·Š-:bĈŋ;êóåË÷É'ŸœE6**JSÃ>H"¢iÓ¦9Ê…?1äÈÇsCæþü<ñ70 øP±ù /(Çn->ªöÌÕ«Wãg…Ș1ã°aÃêׯÿþýåË—OŸ>=Ož<«W¯N“&ûø¨šˆÈ©‡¦J•ʱ _Nµ­¾·¢¶p:¿Ž)$ðQµgR§þoÖ°qãÆ=÷Üs™2eÊ•+W¿~ýZµjuñâÅüÑꉈBUÊ”)k×®íØìïCSþâ÷¬1ÂYÖ¸nÝ:f*˜8z&]ºt©S§N“&Mƒ ”õ7püx€Æü% ¿þú«£<Õê`üë)@èºQ $¥|òÉ'­ŽŽÈ(&ŽË‘#GŠ)”óÁˆBcutDD¡mäÈ‘ŽrI«ƒñ‹I€Ö©+Ë—//¥œ0a‚ÕÑy†‰£Ç4h}òäIeåÞ½{”(QÂËF‰ˆðþûï;ÊÇKVÇ㋃€éê¯^½ºoß>«£#òGµjÕ À»ï¾{íÚµøšC‡Íž=;cÆŒ|Ü@Dä»íÛ·;Ê6Ú±V6 œ®rÉ’%RJ®OM¡‹£ª½1sæÌ?þ8cÆŒ•+W¾{÷îîÝ»…'N|úé§=–£ª‰ˆ•&Mšû÷ÿ›Š{ÐÕêx<ÒX¬«ìÙ³ç¬Y³¬ÈWL½ôí·ßΟ?ÿܹs™3g.[¶ìk¯½V¬X1#2q$"2Bó*¹Áó56è¡«Ì—/ßùóç­È?˜8š‰#‘µk×Þ¶m›Á³W,ö"ÏYýÉ“' v+…¾ãHDDÁÈxÖh¹(gYãôéÓ¥”Ì)ÌpÉA"" :#FŒp”Sù]ìvÚê8ûÓu•Ï=÷Ü÷ßouhDÁGÕfã£j"¢D)_ptó-åØÉüGÕ?Mt•éÒ¥»}û¶¹™Šª‰ˆ(¸ÔªUËQ~Ýê`\ÑϾ¶sçNfö˜8Q¹ÿ¾rÇO¬ŽÇåïÑ£GK)«U«fuPDÇÄ‘ˆˆ‚Hü ®ñV[Œ x÷Ýw­Ž‚È$L‰ˆ(X¬ZµJ¹ÙÌêxˆHƒ‰#‹-Z8ʬ†ˆô˜8QPèß¿¿£\Hiuÿüs!„¦³³ iº•oé5jÔÈ÷«Î›7¯£ü±îÓo dTWΜ9Sñí·ßúrÞ>}ú!NŸ>­¬l HÀoi©ÂßΆf0<±cßV”eb;QPãt½¾~PÅà]ó“À&]e$pSWéÇ4(,1q4G"Ë?^ù¦ñ_‚¯St•Ï>ûìÊ•+ÝÕ«W¯Ù³gk*Û‹a”ßGøæþ1¼s#`ƒ®rèСcÇŽusTõêÕûí7Måà_‹qusÖ6>.+ïóÒ¥KŸþyë‚% RLÍÆÄ‘(Ô«W/~ÒÄ·ñ[ 8¦«œ2eÊk¯½¦©\ºtiûöí5•Y+žñ–‹çª^óâ÷¾ÓäuãÆõë××T¾÷Þ{cÆŒÑTÖsÖçg¾hÝœñ¾ŠÊwHùåHäG³1q$ _ptå/À銄ǎ‹‰ðúõëY²dÑï°(çUÀ½íÀaŸ/| p˜éÕ±?Mt•Bˆ¸¸¸øò–-[êÕ«§?0F7A·µ†£Üîpíڵ̙3[&Q0â¨j"JŠ^|ñEG¹•ç‡ç$ð•®¾dÉ’6›­B… ú¬q" ½ÍÌÒõ%7»½ãmÖàI@ƒ4ç’RÑ´iÓ)Rè³ÆµÎ–u±ÜH·ÿ-*T¨À¬‘Èö8š=ŽDAÂÇNG‡ÎÀB·;4þgÂå(Ê&üZ/p»Ã $æÅNª& 6þ%cñU(Ê&_…ãÔ@¬Õ÷Á»ÈÁ‡ÔDưǑˆ’º¾}û:Êõ|h‡BËËŠrãÆ­‡(4°ÇÑlìq$ BÊNÇG@r«ãñæeö8z6ØÝHd{‰ˆ°bÅ G9…ÕÁ )ÊãÇ{ºê$QÒÅG³±Ç‘(8);×O[Çñ+Êìqtï‡R€ ‚¬Qµ ïœÑÃÆ¿$C]ù@Eu¥p–5þòË/̉üˆ=ŽDDA­ðµ®2ðÐêÀ”ÞÊ»ÝaÚãB4pHïaûñS‚k––Ù`°ÕÙh›ÁƒgyRMn˜8©Í@}gõÛ€šVǦÑ:±)»3c—3x;ˆGŸ}Õ•#t»U¬XqÏž=VߢðÄGÕDDÁ(…³¬± ƒ/k4b´zs¸·íô$P×õׯ_gÖH8L‰ˆ‚KI@1êÊ|€¾²:6_ÜT”GùÖÔf@Ô•Ë–-“RfÊ”Éê % gL‰ˆ‚Å[€Ž«+ãÇÄœ·:6ßE‘ŠÍò>7­(7iÒ¤]»vV_"QøcâHDd½ €>ÒÕ/òdþšà§ìt<`u0Dä&ŽDDKä×U>HàE«có»úŠrj«ƒ!"O1q$"²Ø]õf@?ú¯ý5@öÇ+¸¼bõÅnT”'­Ž‡ˆ<ÂÄ‘ˆÈJSÕ›¸êïS4®<.Ïð­EÛZ=£Š[ y‡‰#‘•&)ÊyÐþÎ*ÛB=¸$ÐVB·x ð®-"²G""+S”/ ýO]”¨bÊ5&Zè*_ñvp"²G""‹uU”ýûK¹´r£^=H‰Ì™•u¿°K+ÝÀð"€>ØI‰(p˜8yìÁƒŽòQŸ[›§(K`®Ÿ‚ü[Û¦Mpí¤¶§ïC@¨‡­øî@ª+# œö뉈ÈLL‰ˆ‡º@³ýŠnžÁƒ!%ªVUÖI@M}8oj œ®²5 f>_Yމ#Qâ¶oß.„1b„›}6g´I­‡Šò/>ÜE¹!]÷‡þö¤Dš4ʺÿ¹XÆÆ½ €¨+sÒºÙˆÈï˜8%"Mš4µjÕÒT~õÕWv»}ïÞ½šú¡€öxu¢2вðíO‚œ9?ñÝ»8­}ó0~áìƒÂ `¿®^ûãþQð`âHDäR‹-„÷ïßWVöìÙÓn·7nÜ@Μ9ívû«¯¾ª9°2ÉóÓ Ä5üm,y+RRâµ×4Õå€ì®º `„®þsNµC¦˜891uêT!ĪU«”•ÅŠ³Ûí£FÒìüî»ïÚíöâÅUË ÜÐÎÚËhÝÚ³ý§L”P_È@tûfÒé*ë26$¢InuDDÁåĉ%J”Ð×ïÛ·/GŽnܸq#€ ÄÄÄ8*—?bü²Sû>&FEzÛëwâ$OŽØ„aЋÅÀ ;ÐØ ;(ƒ¹KÑ‘%ØãHD”Àf³é³ÆO?ýÔn·»ÏÎ;÷ý÷š¥õÐÀ™ÄŽUމ±»°oß¾„¾øRºü㣘¬[§©ëgYãUfDIG""èÞ½»âÒ%Õ²mÚ´±ÛímÛ¶õ¨©ªU«Úíö6mÚhê …]¥ÑÒ»wo«ïàÉ'!%^xÁÍ.ïÈbu¤Dd&ŽD”Ô-Z´H1oÞvìXï¼óN²dɬ¾7DD‰`âèýû÷ùå—:uªY³æ‘#G<=<**JSs"~" ¼~ýú9Æ©´jÕJ?Y·™úöíÛ·o_«oI8X·nf躒”òï¿ÿΕ+—Õa…<&Ž»wïÞÛo¿/_¾z×ÓD" M:Õ‘8îÚµëÑ£G)R¤°:( ¬øœRú¾šQ’Çw=6~üø‹/N˜0!Mš4VÇBDÞP¾JX°`A«Ã!ïI  á§OŸnu¼D!=ŽžÙµk×âÅ‹ûôéS®\9«c!"/=ûì³ÊÍõë×7jÔÈê ÈKµ¢nwp¬ÊÓ¯_?¾@ä#&Žž9uê€Ï>ûì³Ï>SÖ¯\¹råʕŊ[½zµÕ1QâîÝ»çxhÐ¥KkGÉ/$¶CG`ÑãòsÏ=·bÅ «C& aL=S @fÍš)knÞ¼¹uëÖùÄê % L‰( iݺµróË/¿´Ùl.\°:®DäÍ›·]»vÚÚñã­Ž+€ÖXîvŸÆ@rN¡œÈ±L™2V_1Qhðå/Q(éÓ§ÓúêÕ«§Nú?þ°:@':tè°yófmmÕªP¼¦i‰B;uÙ·Æ“±ºÊ—™@Aàœ¢2@qà„çg Œz\>räHÖ¬Y#"Üu¦\¾ìãe…&ŽD”T|þùçŽræÌ™¯_¿îؼÿ¾Íf«P¡ÂêÕ«­ó?3gÎ5j”¶6MܽëMsþvÕí§Ø Ôò¼Ù¢€>/üù¸|HÅ'¼|âáé~ê<._»v-àw(ôñQ5% ÅŠs”|øða»Ý®Ùgß¾}6›í³Ï>³6ÔcÇŽÙl6'YãéÓg5j qcƒûÖö°í>€Ðeñ ⟺ã€eºÊOµàÇ …žìNž„”Ò÷Vȸ¨¨¨'¼x¨BDÞ;þ|›Ê”ÑyÇžz3•-[ÖI××ë¯#xpΟ†# ìv(é¬~Ð2±cŸô]ÄiÔ/ߘDìq$¢ð§Ì5>÷îÝÛn·WªTIsˆÍf+]º´™AöíÛ×f³i³ÆâÅ!ee¤LäÏc# 4–ÆYÖø dVЬy@µÄޤ¹,º™‡‰‚G" s³fÍr”3dÈP®\9ý>+W®´ÛíiÒ¤QVÞ¸qÃf³uîÜ9Ð.]ºÔf³­X±BU›,¤D(> PÌ4YÓõ^•ÜWWf$ð=ª6U™LùjZ¢ /]ºT¥J}ýôéÓŸ{î9¿Çö×_U®\ÙÉëÖáÉ'ͽO~¥¸çw4êÇï9;È÷o£ÉÀc-×v>.§î¸n³;0ÏÑ¿1)Éc#…6‘ÇžF—Ë“'Ýn×/`Ý·oß¼yóú7ò:uê8É_xR†vÖ`ÄG1­¢ú! œeSü‘5xêUaâ ‹ºf§¢|Dd{ÍÆG"?òh «§ã]êÕ«wúôiMežš¼•Øáìq$Rbâh6&ŽD~äH»wï>f̘€žëµ×^ûî»ï4•É“'?wîœñFT¹cÆX¿ÞïwDµiíoøˆ}C€­ˆ¥pLWiäî0q$Râà""C¦Nj·ÛsåÊ¥¬¬S§ÎÊ•+~îÜ9UÖ(¥ÿ³ÆÈHmȞ݂›e³AMÖ˜ eŽòñëYùøi8QRÃÄ‘ˆÈ{öì±Û펞Î7|{²@™3gNØ~ñE?Gvín9{iðÊ-LºA:@§£|M Â¥GÀfà³F"o1q$"òØÅ‹Þ¤@‡NØX²ÄÏ1eU®Ÿ¢k|Õ*åËxS6n„X¼X÷ÁDG)_OoT]« iL‰ˆÌÓ²¥b„±Ó±2ÞyO37â €t9\»vH–, –"6ÔÕΤfüÉÜ€œžˆLÂÄ‘ˆÈ<Ÿ}öY†gmT zð¸Ð€zÈv\„@¡B~;u‰Š‹<Î\{>ÞLx2ì¿äDd&ŽDD¦úè#Åä0þø%\¾¼b£6Rýñl@jŸŸ= !Ы—Oç0BèVÓÎH'ÏÊ‘0¨¨ƒ®™ˆ¬ÁÄ‘ˆÈTíÛ·OØs}~x{à€bÃÕ:,ç“ÚºÙ³!öìñøŒçÎALž¬û`pÕÅ19J‹AD¡Š+Ç™í÷ßO˜9¼Gܸánï7)“ËOß~[±1Òíi‹˜ôSUW®Œ”)ñà J—wïêj'ƒ;òy`Y|)ð¯?î$™Œ‰#‘ÙrçÎ]¨P¡3gÎü·=`€Ÿ~ßÀ>}¾ÀsÀ uB”+‡ýûÝZ£vîÔÕ6 .ç¸Ô‘8^eýtÙDd>ª&"²ÀÖ­[ýÝävOv^H ­ªîÀ¡  ˜4 B8Ë¥á¬1^Ÿøÿ«È¬‘(41q$"²@TT”_Û«Ôðü¨;Àmݘ1ÑÑ 5B`þ1ô/^Í¢ýß ò½Àe¿^?™ƒª‰ˆÌvàÀÛ·o'lÿù§óýŠQ¬ÚwÍm“™á¥ê€FÃUÕ3"C¤L‰«úÁ.ƒq^«Ž£T°b%D"òG""³=óÌ3 ;v›UÑëÔЈ÷÷:€âº“ +žÁNÐøÁ@^ G""SM™2%a#E T¯nuD¿T.>½dò¡ñ Ž’¿†‘ùøŽ#‘©ÆŸ°ñð¡Õáh¤$°Z]¹¾eÿ æ?ò¡!"²{‰ˆÌÓ¶mÛ„R¥¬Ç•f€NY€lþh0§£´Öêk#"_0q$"2‰”rÇÅ(æ#G¬ŽÈ½â~jg˜r£©ÕWED¾à£j""“äÍ›7acð`«Ã1͇ŽÒ#«CñÔÇÀ<«c *ìq$"2ÃæÍ›UÛã¼›Ñ&äÔv”2…ÔWÎ!à uÍÅ‹­ŠÈzìq$"2C‡6þþÛêpL³ÍQº`¬Õ‘C—58{ö¬ÕqY‰#QÀ5*a#]:äÌé}[¡ÄÉ[’ïØmud®t„nU›îÝ»K)kÕªeutDÖ ¡çDD¡jæÌ™ Ê5cÂÙà”«Ïª€hOš ´y@w]eÞ¼y/\¸`uhDA„=ŽDDÕ¸qㄚ5­Ç4ùŠsæ@J”.­üø €6VG à œe'Nœ`ÖH¤ÁÄ‘ˆBÕÁƒ!°pÝõë×;–°½m›÷m…’9 E!н;> )‘"…r¿ḭ̈.ЀMW9mÚ4)eñâþšˆ(|0q$¢”={öråÊYEâÊ”)“°ñé§V‡cšž Ÿ8Õ'B9™%àU@šb@'Ô•-[¶”RöíÛ×ÜXˆBG" 1:tB\¹rEY9fÌ«ãrâ‡~Pm÷ïouDæx1¡˜'“Ï«W‡”èÚUS](dJ|«LUW¦I“FJ¹bÅ 3ïQÈaâHD!cîܹBˆÅ‹++óäÉc·Û­͹>}ú$lHiu8¦Y’PtóŸfÞûlÂFÞ¼V‡jÞz R¢zuG…áÝxOQ¾&ƒ“ˆ¬ÇÄ‘ˆ,¶uëV!ĨQ£4õçÎûî»ï¬ŽÎW3f(–Ó Öù&ƒÝŽнðj„r¾õÚµk[}Dဉ#Y)UªTuêÔÑT.X°Àn·'O&£÷&*Ÿ·Fð·®y”+ûì33/óÆ6›íÕW_UÕnÙâARBû€õ'@›y!!-PK±Òƒô‰,ÇÄ‘ˆ,°fÍG¹hÑ¢þmüÖ­[túÑ|`³Ù>lÂ56iÒ¤téÒÚÚæÍQ·®g Ý»'« `Æ…„­Šò”)S¬‡(„1q$" hzÿ÷¿ÿù±ñ%J$lŒ5;<õÔS¥J• ÜÕŧ§GŽQÕfÍ )±j•7-/)ѯŸîƒ²@ÎÀ]H8éý¸P¨P!«c! aL‰È2dðÜsÏùÞÔ£Gå=zø+B͘¼ý6&M‚”Pf“ÀÍ›7m6Û+¯¼âßûó믿: .%®\ñµõ©S!%ŠS×þ  “/$üÌ|\8sæÌ™3g¬‡(T1q$"CZ·n-„¸}û¶â‡~BLŸ>Ý—“'O^WñÐvذa~‰óå—_NØPC9v RB=7äªU«l6Û¢E‹ürj›ÍÖ¾}{míÇ{0ƈ“'!%’%S×~ à+ž(ŒŒW” *ÄNG"¯1q$¢D̘1Cñý÷ßkêûõë'„8yò¤×-oÞœ07áW_ù!é¯O1fÌGÙ÷Eá.\˜°qõªóêÕƒ”èØQS]­Zµš5kzzÆéÓ§Ûl¶­[·ªjÓ¦…”P¯»íM›BJ´k§û À78CN#E¹wïÞ^·CD„ôï3JLTTÔ '$‰‚NÁ‚Ï;§©œô:ú‡»Ý»wŸ3gŽ'B8Ê>¬È§œõð™g yÙÑ©¼yõëGwîÜyܸq‰zèС¦M›:ùàüyøI{)wnüý·®¶¿zÕ=ßý 4ù¯xérç6ïŸ{?ü_ôôKK(ÊüÊ#ò{‰H륗^Bh²Æ ô| H@3õâܹs…K–,ñôtÊUUâ| jÔHÖàâEH ¡L-°`Á›Í¶ÖɃà%K–t’5)-Èüõ—³7)§HÒk¥(ÿÓ._¾ÜêpˆBG"J°lÙ2!ĬY³”•Y èóÁýd‰/¾ø¢⪫ÇÄÎT­ZÕâËŽ‹Ãüùšº^½zÙl¶;wîhê{÷îm³Ù¢££Uµ%KBJLšdñ…H‰3tµÏxèE{¡îgõf›6m¬Žˆ(ä1q$"¸~ýºB¿.ß>ÀMXÀGºúlÙ²•/_Þà©SkWFñ‡¹s=Û¿sgH‰&M4ÕÅ‹oÞü¿åŽ-Zd³Ù´‹'O)qô¨ÿ/Á;½{CJÔ¯¯û PÇêà̦üÏyóæM«Ã! L‰+VÌ¢ƒ<@y‡$ð”ºòÀBˆAƒ¹?vÛ¶m_”jJÉõë½o(þô8ùÈfƒ”X°Àç`M©În_ðº¥ÐRÞYeúôé«U«fuhD¡‰#QR$„h¬ë[ïùD'NÕ$ _&""¢aÆʚQ£F9ÊGmט¾Ê õCg ¦]£EJø0O¸5¶lQløë6µ«ÀíÚµKñÞ{ïY#Q¨bâH”´<ùä“B=û €Á€zÕ +¨¢®Ü¸q£âÃ? œmû ÿwšrãæMÜ¿ïk‹iÓúõƘKõbßVGc’lŠòÈ‘#/\¸ Ùa̘1Bˆ-ª”šˆ aâH”TL˜0AñË/¿(++H|¶koí¢u•Æ BìP,¬2Ù¯']¡ÜH“&`ô®]í[Šmßoó«/)qšy£zõêa·ÛU« êÕ«—"E «ã% 1L‰’!„jgÀu`OàOÀ·®w06U·Zj¶GüU¥¬Y¾ßæ( ƒÕ—”¸e»bY  Øíö—_~Y¹sLLŒâ™gž±:j¢ÁÄ‘(I8sæŒrs L&ÐÀ+Î>òû—¶vtvß¾^5â†iÞ2õå6÷„jè‘”¦®7hXOEY?ÀáÇÛíö%J(+×®]+„˜<Ù¿ßD቉#Qø7n\¡B…âËñýí,Šäs@…ñÓjû}ÄR@M•³"ü}ø¡bÃëÛü €éV_ŒQʵÒ:äj·õë×<¨]öhÀ€BˆÃ‡“ÐŒED^`âHþ† â(ßÎZÏÀ` äþköu@Ç4µ9sZ}¹Vxâ ÅF]¯nó]@Ïi«gÏv¶(¶©„ë?Mt‹idÍšÕn·O›6MS_¶lÙœIóg†È&ŽDIž= o3²:ýÚÚj@SôH‰¿ÿ¶úZ­ êlÛìùñ5€tÚºF ¥—Kò˜n®±5'[µje·ÛŸþyeå¿ÿþ+„èÔ©“ÕAŒ˜8% +V̘1£có «ãñ—‡€žÕ0c†åc¡é}@;Uu3BJ¨Çã›mÅŠÀý&B dI“®:K}ÖøÚk¯yÕ9ÇÄ‘(©PNh·Âê` FŒÇ“ MGqñâŵk×V}zû6„@:ž¶ê‘#!öíSÖ¥L™2:Z±xÌÂ…~>é¤I e)µÙÛñãðªŸyBàúue]¹råìvûÅ3k"òG¢$aíÚµÊÍ–VÇžÔKÕ5kÖlÍš5×ÕÙ lÝ !0Ýß}¾wïBè‚üïÿ»rå €V­Z%ÔæËç·ó–VLî?ûO\-Òî6y2„À¹s~¾êE‹ Ô?ÞŽ?¾fÍ?Ÿ‹ˆ88Æ;÷îÝ[ºtéòåË/^¼˜!C†âÅ‹÷èÑ£V­ZFŽå಄rLÌ m¢û+Ê&ÿŽH8µ%oÈ飸ÉÿüóOEïã/¿üâ|<ýΔIÿˆ|È!Æ S_J¤ÿO­ì_Ô´Ù¬ôÙ[Ú´¸sÇ?§Ž®öÅ_4ó븎!Rb£Çbbbºuëöá‡þûï¿5jÔ(Z´èo¿ýÖ£Gé~ï? ò“Ч„Õ däJ•Å*Uª(³F7ŽŽŽîÛ·¯ö(!|1Ó¨„ÐdU«VŽŽÖd¦L™’°áßÿ)S&”ŸzJûé?BJdÉ¢ªŒï­QçóæË!4Yc§Nìv»³F"Ò`£Ç-Z4räÈJ•*Íž=;þ»áÔ©S:uºuëÖ·ß~[2±×ÀÙãHæ38êE™=ކz7YõB¡NõêÕ=ª­}î9|ÿ½gÍš…—^ÒWk:;uW£èt\°:yg¶nU½¯i¸;6Áĉxë-ÏNÚ¥ ,ÐÔåÏŸÇŽÞ_ˆ[ìq$Rât<ûé§Ÿ¼óÎ;Ž_ÍÅŠ{å•WÆ·mÛ¶DG"“•ULã÷žÕÁ„\Ʊ´`çΉ¼jç®crç΄².™Ó’“&iÇ_„AƒŒ>4×ä©íر#þü†Z "Ÿ1qôØ™3gÒ¥KWº´j±×bÅŠ¸pá‚ÕÑ©üûᅦvl޲:ž§L•\Ð? ÖËž={ttô²eËzõê¥úà¹çŸ·2Oüõ—¦®wïÞ'N4rùóç/X°àÙ³g_Qâ„0ÔsùÖ[xë-Ô¨¡=©È’E¹N )S껟ÇßÉ—S"òßqôØÌ™3—,Y¢©ú(Ñ·‹ÀÁ1d"/ÆÄ$«(3qL\óæøñÇøb¾|ùâAxêäÉ“•+WvòA²dú‡×Ÿ}öY@ûÛ2qSo¾‰O>ÑVêFLÇ[»víO<À`œÈÄ‘(U{ï·ß~{öÙg?øàƒlٲ͞=ÛHÖHdš®]»:ÊüÑ ¸Õ«Å .œ9sÆ‹6Š/îü¡³:klÛ¶mtttø<¥<RBó(F—Ÿ :Ôn·›Ÿ5‘{½ñðáÉ'.X° uêÔ½zõêÙ³§›É/4ØãHæð¥»ìqôÂÒ¥hßÞ±åÝk‡çŸ>~¥¬Y³z—’zÁ¼G¥)£©«Y³æ7ß|cRΰǑH‰=Ž‹‹‹8pàüùó5j´nݺ~ýúω̡|ïí«ƒI*^xAùäìÙ³}ilÙ²eÑÑÑ©R¥rÔl߾ݴ¬Ñ2aÃeÅÅ‹­Í‰Hƒ‰£Ç,X°nݺ:LŸ>=‡K>FÑ¢Eå×­& Q .~óÍ7}oïòåËçÏŸŽŽŽŽŽN˜|1¼5h Ü†Ç$‘9˜8zFJ¹pá 2 <ØêXˆ\úõ×_­!©RÌDݱcGßÛË”)“Õ—DD”€€{&¾ Mš4N¿Zµj>o¬S(3fÌ»ï¾_.œ´:ž$äÜ9ÇëU«VY ‘Ÿ1qôÌŋܻwO¹‡CÍš5­ÞyçGâx ¸pnzóts㋹sçv2;#QÈbâ虊+rL4…„ß~û­Zµjñåü¦ŒNÒæÌq$ŽwîÜÙ³gO¥J•¬Ž‰ˆÈ?˜8…§ªU«¦OŸþöíÛñ›s€V‡”„ì܉êÕã‹ 4ðqj *Tpóé¾}û¬(à˜8…­[·n9¥ödâh¦jÕ"…cʉ'4Èê˜ÈöïßïæS!852…?Žª& g­[·v”ÛûÐNÒ²y³y˜°6øèÑ£­¾$ò^éÒ¥7nlpç X/Q`ñŸGfãÊ1IÇÇS¦Liu^.!£œ=ïPÜÌ€%“WŽyõU̘ñ_9"B¿<´ÇÊ–ÅãQtµk×^³fy×â3kVމ§ø‰µÛíV߉ÿØl6ƒ{ž>}ºH‘"VÇK(ìq¤À9r$!D<ÄéÓ§O|"•;wîÀ%~0DªT©J•*eõãóÏ?w”³zÕBæ‹#= !²Fqq… ùÔì¡CŽâÖ­[c}ÏDÉ:v·~þùgÇžÊé÷‰ÂG ¬#F8z¼"""6lhU$ßÿ½">‹Büý÷ßñI­ßݸqcïÞ½ñW}ìØ1!Äë¯[¶z˨Q£^}õUÇæUÃjrüû€ªXu•& J—vþÑÙ³½{{ßø!ŽbæÌ™­¾T ”R¥J)§jŸ¡üGQx ŠN $%I=ª®]»ö¶mÛôõcÇŽ:t¨iaܾ};C† N? ÄÏ¿«EÒV¯^ݬY3Ó®zÇŽú‰E=½Z§W2è<óUWª„½{uµõMNvÞ·åË{u= ôÝwß[ÎZ|Tíåãl~·R¸b#ʃœf† &„øý÷ßM£Zµj®²Fµk×öïé–-[æê£æÍ› !*ÆLNÚ´iõY£˘HàS]å0@qž·o ÜþI!\þ9|]ºxÄèÑB—5¦$°ÀTí!* ujoÎuù²£ØºuëH·¼½©Z´há(+Ç¥…ö8š-éô8*;ÞV6º}"##oÞ¼ Þ}÷Ý>ø@SYبÎNîß¿Ÿ*Uª@\µFúÇáµk×ÜZÒ-[¶\¹r¥¦ò5`ŠoÍÖôÿÈ \ó°£@iI„§¿Á>„óÿÜ¿úE´p’o—+·s²8‘<¹ñ¡6 1b„o’Øãèv:RØc#„f•Þæ@k@¯¨w‹ŽŽB´k×οgß²e‹BŸ5ÆãÃST¦ö®É™—^zÉQ~0€¦ëoëÖ­BˆQ£Fù÷ª§M›&„Ðd%ésÖ`+ têÊ뀞ò¤?g<ä”9³³¬ñ=@:ˬ$ þ 9pBÀ£ÜŽÃb’ŒI“&9Ênžu….ö8š-‰ô8*;Þš9iŠê™9sæË/¿ìû©“'O®¾ú“.¿Qv:®Zµªyóæþ½jýà§“·oß^£F Ï{âĉ%Jèëí@߯Jí —³ú@§ÄŽýxCq³Ð´©óýÖ®}\Ê qј¢ÞÈ/±'ŸÄ/¿èj«;Œ]÷v –“ê[·>}"‡fÉ‚ë×ÿ+§O:uÜ_5{CºÇêNÇ]»vU©žƒÊ(Ébâh¶¤8öïßêÔÿ^« 8}({(è¬þÏ?ÿ,äí(Ï<óÌÚ„œã?IÎv~(»ž|ÿ‹P @óçÏÇ—'o9ÛgÐBW™&Mš»wïz}Þ¼yóê¿\ç]}¼·Þ&ê*}ñQõþ¢›ž7äιØiÐÝPks碇ÓEsîi=¼î‘Àm]d$ܼn‡dÉ<ºj&Ž¡ž8^ºtI™,òK– U“ÿ9²F¸È$ð…®¾páÂ… öôŒ“'OBh²Æ²€t‘5H©~6Ù¿_.ùôéÓŽ¬.²FÏxM]yïÞ=!DË–-==i÷îÝ…šoÖŽ€ pÖ` Í•@>‡¨Æ“ûazänª­Y³œïá,k\HϳFüz !àjž)eÖÈU“†\¶lY}ý¿@v§VöåÈ‘ÃÍžwïÞM›Öeªñï¿ÿ:ÊûrN]8®«œ:uj¿~ý=vñâÅ:tÐTæþ1p^¿K è§Ìé,P×ín„ÁG—›Ë6m6\º¤;¤0ÝíâÕƒ/¿D¯^ ›~ˆaÃ<½jö8†zc<Ž’¡pÅÄÑlá8>|øP9BÙ£Ÿ­ÌÀ ]å7ß|Ó¶m[W‡äÌ™S™±Åûè£FÃýz²W ï¬N|œ8q¢xqç‹ü]¹r%{v')ñ! Œ_/Ä#.^L¨¬J._}Ÿ}æ®9£‰#Téwƒذ:tÀâź=‹'ý}ÝN_=P¤YÊ=ÿú ¹r¹kŒ‰£îV ”Ç¡C‡ÎŸ??¾\¯^½M›6Y‘ðQ5ù“riæä{Ø£«l×®B?eO§N„𬱠=Éa¬CÔ#ƳFy ÌÓÕGEEåËçä‘o¹råôYãG€´4kP@g]} %ð«¦KÒ}Öè™c űq#„p–5ž@Ö¯B wn(‡D¤K—HÖHÁÄÇWâ}øá‡ŽòæÍ›ã⼞ù”(¸0q¤@‰qý‚£+ ŒÓÕgÊ”©råÊñ対úJñõ×_+w°˜ëUœ÷=2öŽwÝ2]å»/^Bôxü~Þ[o½%„8xð rŸ¦€ø)xßÍ$W]ù¨«Ü>rÄß§UämN^4œ H×/^úÅ@Qªº¿ÿ†r~ûÛ·€ÿ¹™Ç>Œ=ûì³6›Íf³}ûí·6›MóKÆ ³¯Þ&S¾íJÊø¨Úláý¨À¿ÿþ›3gNǦ×?^õÆö<®ýÒö³dŠÁÂþÛ’¸l`·d@L€#ñQ„Ó{•:5îÝKü`Uÿw€³Ê€%æ^´]—6jÕÂ֭ƯÚÚGÕ—/_.¢º”,bÌýq3ýQõŒ3Fíô#P¾éøÓO?=õ”GÓž#ö8’ŸåÈ‘£L™„§^? þÅ@–6ÕIWOhû8˜Ø>›‚>k8é®1’5zC³RN@šž5ÂeÇ·‘¬18T¯^½ˆ~À»ÉY£él6›«¬1þÓòÞ­Q8y2ቦ®&.% )LÉÿ:ä(ö¡øÙY} @‰?Añ³}äì£w Ô³:Bƒ:Õ•ÛŠ JüíYàâãhì®ZzÝÝT[¯½æ]+&:thddäÑ£GUµÙ³›=,Fçœk·}~ L™2ÊÁx+VT¾« àòåË6›­wïÞ^œ"]ºt*TplöêÕë·¬¹ËDžà£j³…ý£êx ˜ªÖP>‚ ¹¿¨w5KÿUãñ£ê ²XõªçWmò£êŸþ¹M›6N>°ð«A#{Mš4iݺusçzóns—.]֯׾ “:ujGêvøða§•.\Ø AOO§OO]á72?ö8R@|üñÇŽòNÀûuQ‹Ÿqú€éY#yM•5Žö±ë9„x•5Z!&&&22ÒIÖ8mZGï­·ÞZ·n§G­\¹Òf³é³Æ]»v);üÊ”)c·Ûõ³¥vêÔ)þüžž4oÞ¼÷B8Ï㉂G ”5kÖ8Êé|h‡BÑ Íö»ïZ‘9«Ôd72½ež~úé,Y²hkëÔ”èÛ×âà¤Äĉ÷-âÉ*Dyóæ}õÕW5•/½ô’ÝnwÚ)8qâD»Ý®™+66Öf³Õ®]†]¼xÑœ;GdOçÚ#2êé§ŸVnþx¼¦…¬VʬÇ4ŠÇ¦º©éƒÄ„ ÆŒ£­MŸ·nYšBçÎ(PÀÝÏ?ÿÿ÷ïßß³gO¥J•Ü·WµjUýøè"EŠlÙ²%ÑXvîÜ _¾|ʹÏœ9c³Ùºwïîäfª•(QÂQ.\¸°«±ž|òÉÀÞR"?aâH“<ù?cÏ…à[zäU‡U¦LP5_ŠÇ‘ž¯mÚ4ùСCúçã´ÙlS¦L‰ßTN.qìØ1ã3&Žpï¼óŽ£| ¸`u´::ÿÙ¿ßQܽ{÷˜1cl6›f¢\!„Ýnß³gO Îo·ÛG¥©?~¼ÍfS>ÑN—.]dd¤Õ7‹È?˜8’~ûí7GÙã9Ð(¤”QnÔ­ku8æPŒ2” XM©R¥œ¬’×½;¤Dµjþ<Ó¹ ˜žýý„eM?ÿüs͇“'OôT8={ö´ÛíUªTÑÔ9rÄQV.}zÇæ«ã¡ÀQ=MBcHÏ&»t±6mª”??¤Äÿýµ›0B@,ˆtVOÒ:r¤ÓêºuëÚíöçÏÚh+V¬°ÛíiÓ¦ÕT£F o‘ß1q$“(ç¤èiu0Pªç£2XŽ9 Š Yœ­VgŽ9ÊQHéÿ~ÁÁƒÊwïBX•Õ©£_Ÿ022Òn·/^¼ØüpN:µ_ñô<ÞòåË­¹9DÁÄ‘ÌÓªU´Ð_Ýþ¡Ð¥JzûvÐN…íoŠqAÖ ºyófÂF²dþ?AõêN*wî„Ð m ©S!¶nÕÒÎý–={v»ÝÞ§Ov»}óæÍC‚Kª›,**Jóîv’"tÝ®ÏÏe2À±^„ÉQ)oVðÜ#~T“xô{&á‡$?oÑyàU`ÆÅÌ™qíšW=`À€#Fø„jÆæÍ~~Ó4Ñ¿Â&|§$ƒ›ùÀƒ–cÍÃÖ­[ûí·V‡Cä{ÉTŸ}ft2G$9ÃOSÍöСVGdÅàŒëסX¡ÎLªåI3ðûê¾Á€k÷Y³êÚräp–5$Pß±]¿~}ãM‘G˜8’©^}õÕN:Y™!F¹1nœWm\±ú"¼ è+òêI±r ï”+W.S¦L ÛþúwîîÝSl{ü¿¨¨ÚóÚ5ÝüÛ>yî9Ë—ÕµeùøåˆŽÚS§Ný›T^ 2G2Û‚ þuËêC[ü R´·:’d€ª³«lYÏÛ¸ `¶Õ—â‘Öª­?ôôømÛ¶EFFîÝ»×— TKê}ýµ®¬`AÅÆ/êÏöºµ%üB`éR_Ï»b„À?è>ø8¨®™á(U¨PÁ?WMDjLÉÙݲ:ºvøæñ›‘Kül]0›Õ¸ãK•h_’ëÀ›Å…­ ^›Äø3zõUׯ_?wîܾÄѺµ"…Í›××ËÒÎ%ÞH·G&@Ú…¡Ñ¾="|ø¢I– ŠAu} H@ÿ»¢·rƒÃ™‰‰#QøÐO©×D59µy’+ß8ó‹/êª hÖÁ>'¼æ}eT³§ß¹s'22ÒëW;æÍ›—°áû`‘É“n†¿´$ÐKU'%„@ž±P!¡{O´ ®Kˆíõ×_÷õª‰H‡‰#Q˜á¢>@”Ya<  VS[¹²g­,Z)‘'ºö4 €>f]ŠGò%´u½zyÖÆ¡C)R(ëV®\9{¶7Ïë§Nš°?e·×46pæ/ ¨3Åóç!ºuKüè—^‚8{V]k$0×ÀÙs:Jýû÷÷⾑L‰Â„r뺿Û'¼È>ð“¦6ujH‰Ý»½iÑnÿ¯³Jås@+y)é@Ý¥W° ¤Ä—_zÓÞÇرCS÷æ›oFFFž9sÆ£–ºví€ë5þúÃYÕÜ–ñ¾ú B`çNçGìß!0k–îƒã€ñ•ÿv”¢££pˆ’4&ŽDá@9  ˆ¾Ñíö) €?ü}öÀê?8qB=×+qqP>uýO+@wü})Y@[D¤„‡žVõ꺴¯\¹r¥K—¶ô’Ç{¸@ªf)ŠW£R¦ÔV¦J'#Z¦ÒÃó„§Û?ÿlá[¾D቉#‘;O(¿…‚Ø~EÙÑÇÒÀ³º‹i ´iPÀÉxé~ý %Š÷Ï9ºv…”h¬Hš¨îE{>»  £¶úûïëM{NÍ›)‘?¿²îÂ… ‘‘‘¯½fèMʶmÛ&l”)ÿI (îúÞöêJ^¤v¼ù£Gâ¿×:Ë—‡xøP}Ô³€úy~º„Y¾ô®Ó—ˆ\câHäÜ0@Ê‘À¬ɕԊ²~ºç•€432ßPÍ·óv ™XÅŠAJ(߮󗟆”PÎP¿xÏÿ§sé ‡¶®eKH‰çžóÿÙÎÓ?¯ÿꫯ"##¿ûî;÷‡®S®|‡œÿI0 8áú¾$ ^»üÈÔ{¦$°Ò«³¨æ?zæ™g|›ˆT˜8i]„æû€úqpð8(¿ù7¹¾(ýPØ]€ðüé#€¯h§L– RâäÉÀ^ðõëê\'Þ@[{j ÔýkÈžRbÅŠÀž9.K–hêºuë©ZœZ!«rù–W_ ð1.Øåv‡m€/¯7 s”’òâ®DÃÄ‘H%ƒ³ÙáÈdi`µ\ü)§ØçóÄ‘ÀǺÊ!êE±Ý» ›þƒµkc¸ߤL )1z´îƒz@ /Ú3à€pró¤„iSÖ¿ð¤D³fšê|ùòÕ©SGS¹}ûöG%l^êÓU | «H ¦-Wu”Ê—/Ÿ>}z«¯”( 1q$úO=@·Õ•©[%ÃÛ]üQzÅ@;o¨¡«@–ÄŽ- ØôµíÚAJ4mšØÑþö*©kcøñe ô‹ocÊÝDå¦X½Rjƒ>pà@ddäðáÃ5M•ÿ9ޱ ÎÄ $P@-@Ã}n3aðþ?þhõ…'&ŽDøÌÅcÎ{À «c3n';o¤nÂðëÎS$èฦ6W.H‰eË`¡ß‡”HZ]»ÀdïšTh iñŸZµ %Œ O ”+WôiëäÉ“###7mÚôÁŠÎ¼T©Pª”•¡&b`«?šJñepðyAHKþÑœ„EEEñÍ÷ÄãqMY1ÏéSÚQ掶ð"B§¼øËlœ®F÷õãÕ9V-œŸ,È~u?Ž’%}pðb ›±À;Úºtépû¶çMÒ¤IäöŸ Fþ3%Œ¼Yèd¨xh8­\XÈîûJ9æúôÓO'L˜_Δ)Óõë×}k(€ØãHIWNg9Y@SÖ@ºý“Y±§ùQüroéê;€pš5~ñEÐeJ”€”èÛW÷AÚ 'Yãß]Öà­· %ª»˜“¨bE«ã3MBÖøÍ7ßøÐŽÙbbbl6›#kpãÆ !Ä!C¬È9&Ž”µ Ô À^«cóÔ5Eù¨·L$ y¢é$7lÐR⥗¬¾hצMƒ”(Rć&ªj+†”șӛÆÌ±c¤DZÝìœ{öX™9TãÍÛµk·aCÐÎ¥R²dÉ.–ð?~¼"T.„’&Ž”´¬ð½®þpßêØ¼ö”¢œÒëV€#€’;ý,2R"T¾ÆNŸFfeW¬ñÉhÔ}Ð¥KCJŒgõõsG½ŽN§NVdš5Û;w¶Ùl1¦ ó÷"â_´Ùlšu‹£Q£FBW…È L) IæìÁkü¢ž>Î *Êå¡ù<Ðà°YSuë\L¤ââ zK,ÑyŠœ‘‡[}%žxGýx}Á«2GOW(P M›6V‡§µlÙ2›Í¶e‹v0Þmà˜‹Åy„Mš4ñå¤ÂÜ¿ºÿ¾&¿aâHIB@èt±ŒnHRæu¼n屺ší›/™r(ô·Þ´=»7GYkìØ„²ïK„‡Œ9 E)5?«;wî´ÙlŸ~ú©ÕAþ'oÞ¼o¾ù¦¦ò;õã©[nàçŸBLœ8ÑÓ3~ôÑGþê³B¤I“Æü›FÁ†‰#…¹Wü©®Œ$pÚêØü¨“ú!k«ã±Ò‡šEZ{×Lˆy≄rÆŒºù‰Â•b!ïæÍàÖ-\Ö®‚9a›Ͷoß> ­T©’ÍfÓLcò* VÎöß«~}9ÞÛo¿-„Ø¿¿ñó¾õÖ[Æw6båJï–‚¤ðÁéxÌÆéxåÇéxœþC{5ÐÌÓ†3Ò“ûNy½>þÅVݺÐú-¡ê_‰Ö.Žlðº³g7oI¿_µ§ÿ½Bu:žS@q—W=l˜îŸH›6í©S§L޲_¿~߯}­º(`0ŽeÀ ºÊ,Y²\½z5Ñc›6mú¿ÿý/¾\ hìí%ÄÓ›L’8&Žfc☨À%Ž­½|léÒÏ€òÍ£m¾-—æ;åõþèÛò)¡š8V­ŠÝŽåCª$¶,²ëë­Ä1U*<|ø_¹Q#üâáRG¡š8*~H¿ùmÛ:Ùå‰'p覮iÓ¦³gÏ6!¾íÛ··k×N_NÕSjÈKÀ,]å /¼°D·‚¹ê)þ9áãßáºÀ¯Ëýúõ›:uj î…&Žfcâ˜(%Ž©€ÇߥÈDûДËPu5©K^.Ë(ƒÔ¶ùñÒBè·„ð±×5ÇßG•*Š‹öüªC2qü xp5Dþüù‹Oxã³AƒŽò?Z¹žÖ‰'Bn]Gò&ŽΔyį[qF9YÆÐ¡C=zéÒ%Í>ý轄gϰæŒÁ.S&ÅF6«£1ËÈ‘ åR¥¼o'¸rxÔe8{6¤D~Õ†v»Ýf³ù8ú8¾‘/¾øBS¿ÏÙàhß½âl8ö©S§„}ûö}G1£g9 «ÿλCQΛ7¯×íPHã;Žfã;މr¼ã˜Bñ’¢×*û—ýõ¦ã5õïbå_¢ùóçë_œÊøñßæù€‹ºÊ’>¬7èTH¾ã¨zÁñ˜³•8 _w½ãèËxjm AòŽ£±y»vŰaPt³y&"B»>ÿüó-<~Ó¤hÑ¢÷tgŽwñ6‹ßepû„ÁïuÓw—çÎÛ­[7S®’‚{)x=„ÏßcÊ©Ûn7ü˜2kÔ,&Û¥K)e'õjo—t÷ù¼]¡Ë“ÒßYc¨Z±B±QÒÛVBÍSŠ%'Sú²ädP’ÒåŸyó¼ÏÄÅaÙ2MÝ«¯¾j³ÙnܸáQK𬱱‹`äð›‹ü<…#@¹®e÷î¾ÿV£ÐÃÄ‘‚ަ<þM¾y>4¨| ,³×­<¦|WI¡|—ÈaÁ‚RÊ9r(+çXäÕI·B½O"æ…ª€Æèê=^g&1Ÿpl51q¤à¤šßÞ>ð¡Þ|Ï«F^T”•ãõþùçŸCº9ä:¸ ¤t¶Š`'@ê×$ÕPÖþVGcå²ÔµjYM¨Yµ R"«êUÀZ†oãpÅø¤–^Ç;€|< PëüÚø@šÕ?ø i A#5&ŽŒŠ/.¥œ6mš¦>¯W¯­A=Ï@øðÇá)å#BÊ”)#¥üøã5õ9€'=( ]Ÿb^@:ë}¤ÿ*¤ØxÖêhLÑ©“êMÇ@NO¶®\ñî Ñ5kÖ8ÊÕ­¾›¿×ø¤ÿÚÌ”ÑU.\¸P9 ‡’&޼úöí+¥lÙ²¥²ò €×"tëÍ7ß”R>ýôÓÊÊC€º8äm@èÞ\€.€ÜúS¹2ùj«£1‹²ó{þ|«£IBÊ•+—"E Çæš Bü£®ìÚµ«”²cÇ`GE`âHÁnÅŠRÊ´iÓ*+§XéI;÷=ÙÙ½eË–Mš4ÉÓ£Ö¬Y#¥Lž<¹²òc@Ê ô/@8{9i—Ø)è?/¿¬Øðû?‚•M1S~O×´‹w׫£’:å,â>¾ <æX¨®Ì“'”rÞ¼yVGGVâtòX R=h1^Eð¦ñ~:!‚búÕÔ´c•7œ½Wýì³ÏJ)™5’G I[¶lyøP»¬Ì(@[Õ•›Ô¯¾øâ‹&;wî¼}[»îÃX@†Ö_ÎɓׯZ!°|¹Ia<ó „À5§ùvV¬è¼~Ø08³^I-TÈÉéŠõ¬)1~¼®¶‘ÑE\UªT¹té’vÿ=0{¶¢ÌŸ´óZvêÔi¼â©ëúõëÕýŽî Œ Ž9xåÊ9½êÛ·oGEE99dÁ¨W0÷^ªTн§víô+/ûäÌ.ììƒý@9ÛòTHŽz|ŒVýJåìðš5kzqÉ”±Ç‘ÂÇáÇÿþûo§ 8ÐÃÆÈ˜ôéÅW_}UóáîÝ»·nݪ=dÎÝ»}:o×®B“5æË—Ïn·W¿«×¨Q#õ‘ïúáªYãŠ+Ô÷#½ÝnÿòË/µ‡tî¬^GÛ+åËCmÖ˜+¤ôsÖ P!H‰×_×dóó¹ÂÂÂ…ªI¥‹? - ÒÕ8Â{÷î1k$ƒ˜8RXÉ™3§”rÁí‚|^Ì×M‰³Ûq'aÞÉwßu’“*TÈn·;VûAÕªH• ^ؾBèGÙ¾}ûÎÎ× >wîœbËçÕu_yÅQL™2e•*Uô»<óÌ3v»½sçΪZ)!òåóæ¤Ã‡C8 ­—ýåë¹ñÉ'Å‹«k¯B½l;©Çò?‰OjêjV®\)¥L:ÉÌ“O>ã£j³ñQµiºví:þ|)åÏ?ÿüä“~\¸5 ‚úQõÓ²4Lè=Y²d‰fŽ$½ž={:Y§ñ‰'œäC®¤L‰Gšµ»1~üøN‰=nݺõo¿ýöx«00ËÅŽ¯(S&|÷]¢W­y4ïTÍš5Õ™+ S',0¶Þxt42ftRÿÅxé%£÷Í/R¤pöål ‡¿ÏzªÛ¶m»cÇŽør)ÀÍ™FŠYŽLþöm('8xíµ×¦L™bn˜8š‰#9Ô‰£FR¨xE‹½wïž¶öwà~:ôÒ¥qT;3q³f;øâ ƒçõôý³D5nÜø«¯¾2²ç… ªW¯îäƒÍ›Q·®»#3fDt´¶²~}lÜèßk1jýz4nìô¼þ;Mè%ŽÊŸ.÷Iâȯ~òU‘¯ŒgNŸ>½zõjmí¸œ‚ñí·!„&kÌ!ƒÝn7ž54h¯Ú`ÖˆÇ/_N˜0AûA½zHáb®è „6kŒŒ„”–e5‚”Ð ™€|@q/Ú ÊáP¯ûÐQH`âHDNHOV,ö´3¯B… v»ÝI&—5+"³-þó„€nbÈ5kÖ8Ö6î7Þ¨P¡‚_nŽÝn=z´§GuìØÑn·7o®ž5/&B T©„š™3!6mÒó&nÞôKü¾Z¼R"Ouí)@ý¬ÎlÑÑÑÊ9ü?±:¢@ã£j³ñQ59lªÜNºÝ¡¼¢FŽôñŒ"œ¾Ôàã×J(=ªVþ«i5Ð,±ýù¨šBG³1q$§‚0qLÔe ‡bÓ£ÖJ111 p¿OÍš5¿ùæ›@_‘# Èš5ëÁƒz®C‡5mÚ4‘Ê•Ãþý¾j_Í™ƒžÊŸYß¿SB&qœ8qâ'Ÿ|âÑ•3q¤PÇGÕDä¥ì@YÅf«V­¼k'yòäv»}ëQÆ/^4!k4YÙ²eívû°aÜœ*¤ ¬@êôN¨ï†3eÖøÐûfˆB G"òž²Sn×®]¾4Õ°aC»Ýþ’zŠ™¯¿þÚn· aùòlÒ·o_»Ý®]ámß>„ÖJÁÚq?m­È Ìë)|hŠ(„0q$"Ÿ P”‹÷uhíˆ#ìv»Ýn/Ô¯_ßêë3Ã2åº/Õ«C³æuðSÌ} ÇžÀ;v옣¼Åê`ˆLÃÄ‘ˆ|ò‘¢|çΫW¯ú¥Ù—LžÝš¼V­šb£2éuK!¤`Á‚Žò(«ƒ!2G"ò•r5˜'žxÂêpÈ\ªW|[‚¼|SÖL|¤XÁè=«ã!2G"òÕSêÍ>ðy=h iÓ*6†úÖÖç€Vü·׃t:í§Ÿ~ÚQÞau0D&câHD~«(öÙgV‡C¦øã¨VëmC§ôQÕÅÅA1f9x¼õÖ[ŽrZ ºM…¢äV@Dá ¨lz¼Ù°aà 6xß…„¢E^ÿç.œ×ÖõèÙ³-¼²[·nÍ›7ÏéG‹/v”ïlŽ(Œ0q$"ÿب˜¸™³Ü‡¿7ÞPl çMôtÙaþü8wÎêkÃÕ«Wßyç÷ûön[¤zu¤HX˜Úë)ˆˆBGU{còäÉ3fÌH—.]•*UÎ;÷í·ßž:ujþüùiÒ¤±:4 y½€^®?•ÆÒY tpV(<R©ë0 èëù¹Zß=.Ûl6÷;Ûív_ïYe÷nÇ¿;v·ôŠõkü1B½úáCÇU¿£~µ—(ì±ÇÑc'Nœøâ‹/ræÌùÓO?}ñÅÿûßÿºtérðàÁI“&Y…?TñêÀgY㛀 RÒÙª»ý\?Ôvã[Ov®[·îýû÷q»È ª…‚ï)4vòƒS£¤ ù¬1^éÒŽ¢….&Ž[¶lY\\Üo¼‘#GŽøš!C†d̘qíÚµqÁ0*B“”F;W? NT~@èº*KøX·ó{€*êê#`×þÇ0q aÃ4=n]¬WÕ¥M )±}»Õ±úÏáÃŽâ&€¿ú)é`âè±Ý»wGDDÔ¯_ßQ“,Y²ºuë^½zuïÞ½VGG!¬¨[yòäqì™ÑXƒ]\PW&$pÌí{ ¤VW^ÐÊØ©•}M¢Îþä1Ö%¢kW«#=Rl,Ð~zþ<îø{•9s¬¾f`ð`G1™W `±WYˆ‰£g¤”§OŸÎ’%K–,Y”õÅ‹páÂ/Û%N¹¥yÐý³à€æëê7`Ô=àˆ®r €Ü8U½y8åìÏ,soo¸™2B@ÌŸ!,îÌKîâuù!%òåóÛ‰*Wþïª{öT¼[i‘^Pn|d°øZ±Ù_Ãj88Æ3wïÞÍ”)“¦>cÆŒ®]»f¤‘(ݳ\ŸŒRŠÇ_–m]Q¥t–vz~ÆR€úŸ«ëŸ"€XGõW”Ýwm’÷^]µY«R¤ÀÇD’/.^ÔV–,‰£Gý.Í”òB wn\ºdÁU§J¥¼ÛZ­Þ”€ò9Y±›(1qô̽{÷¤K—NSŸ>}z7oÞ4ÒÓDòZÆ 7lØ_~˜¡þ´Œ³>BpÑ@Ën||þPTÆ(¬®P[QN ”°úŽ…§ÚµT>z!PªŽñ¸Aïté‚ œtú´ÿOçtÚŠ¿þ‚xá,YbÒU—/4u-ë†WŠÿ×T FQy@à+ߢ{ÖõG\ljü‚}äžÉ”)“âîÝ»šúÛ·oãq¿#Qà¬_Ÿ0æ`¦¢~ tYcü˜³F‡Ó€ÔýÊøÀ+ŠšmŠò=#í’¶%ÜfíÂwGB¼ýv`ؾB¸ÌH µ®¾ :rËøÎœ9Ó÷F#”ã'­ H§K˜äÉ£Ì2ý ti¡Cýßë¶/?ŽDµ^¥¿F|÷éã(¦êºxQ³gl,„€î=rŸDF"sfMÝH@~IÐÌ’ÿ@ÃÏ“'O~ùòeÞJb˜8z¬Q£F±±±¿þú«£FJ¹yóæÌ™3W¨PÁêè(IسÇùÛJ™ ¬3%†o ¸ú§Òµl6Û¨Q£|o'àr%üKá'õ'C©ŸŒúΡï ôØÛoCÍx—H@ߨwTý“z¾Á.°Ä|ž0:K3üg ¬šýOž„xã _Ï[¿>„À­[ʺڀÞ÷Ï…%¸øx”ŒÒ@C;öpU±)ÝzôÈøÌ DN0qôX»ví"""¦M›ÿ^#€/¾øâÊ•+mÚ´I¡XÀ”(p*V¬¨Úÿ0Åô¿]Œ' ¡EØÊ”)£_ñàÁƒVÇåÌU ñ”³]68}E!þ•Ä)S¼9iü蓉ÚŦw®¶QnäÏïëU-ê(>ãb—+À}í§ŸBüñ¼0s&„ÀæÍšêÀ¯Þ4gT0OW9À?®*¯(Ÿ:u*A_¯‚æÌ™3~üx›ÍV§NsçÎíܹ³T©RsæÌÑ—ëEEEqT5ù…PÌcgù_ãÀ«@àc ±ùÖ*ò€#GŽùëã_]»výå—_4•©S§þûTÃ7 ÉkõêØ±ÃùNŠÿâq‰-¹ÎEf ~ç§O¯Ÿ»{,04±ãT±ùø-ãÉÏù$`¾6MÜõä]Dg3D®šùtžiü¬«LÜÖUN#¡òçÏîÜ9䤈=ŽÞèѣǤI“ *´fÍšk×®uêÔiþüùæíQ×®]»„²ÕÁ¼HÀ¼ ³|­^½Úf³é³Æ;wZ’5j‚øoŽkýŸÇêX@¼ ú„@ö쉇Q«„Ðd i k„f¢(W—cðÏc“ œ÷-@M4µ÷îAT«–øñ¹r鳯þ€47k°@&uå@¨g¼‚"kÀ¬‘LÀG³±Ç‘ü(¨:=eUcÞ¼yõ¿÷^zé¥#FXx7ôËÝðô¿u9ÀÉ£÷-ðƒ³id>ùo¾©¯N´SÃïëºxzÕN7N¹T`‚ví°|¹¦®$€IÌ=8}êS ¿ºc²W¯^_~ù¥ÕñRøc#Qûâ‹/åLVüªV­j³Ù4Yc‘"Eìv»µY#Í’’î-7¾+ààdíÊ•ß}§ªBŸ5þÏÙ¸DýaxQõDå{~T°A_;dˆ¶OqÍ¡Ï/AֈNjËëG›½õãlfdö8š=Žä_ÊNÇßJVÇcœ™=Ž Xºt©¦2Y²dçÏÑ2oï¾û®ûæÎë({÷‹{1ÐA_ØXdÏŽ+W4Ÿ¼L4Ô°K¯¹þè‚bÞì§"®÷œ Ÿ >Ô×fÎŒk×<9bµkg~tñíŒRøÝÅGK—.}þùç­’&ŽfcâHþuöìÙB… 96Cèï³9‰ã¾}ûš7o®¯_ºtim§ ÷±Ò¥K߸q#¾ü²zé ôæ&¶O9`€/çgÅˈß:›Ô¿Üd]€FÚ²T@¿„¿ÊÉ4|TMÚ ,X¸paÇæ8š ? Ôg-[¶´Ûí!—58¢X„ú Ú™H ¯ë®>k4Ÿ›ùƒäd(dî𾇫W¯zב˜8…<å@`##^“‚† Úl6Í\Ç9sæ´ÛíŸ}ö™ÕÑy¯Aƒ„¾ ûЀ ºü®æÓNg,pøÛêØ<¢ì0®P¡B–,Y¬Žˆ’&ŽDáà•W^q”ZŒµÆg³Ù4/„!ìvûÞ½{­ŽÎW .t”Ïg|k­8 i€tµ‚_8j (‡UÇ¥½nË"Ê aðSM¡…‰#Q8èÒ%ámþ >´Ò®]»f³Ù¦NÕ¥˜†úþûï;ʵjÕR> ·téR)eæÌ™••_ýµÍf[½zµ×ç}òÉ'Ë”)£©œ4i’”ò‰'žÐÔŸ>}ÚQæãSpS.£\¡žÈLL‰BÕwß}ç(w`·:$÷~ðžÛ}ú÷ïo³Ù®\¹âÝ)”½}úùÀ=5{ölGY9IãÚµkúeßz÷îm³ÙnݺåÑGm³ÙŽ=ª¬|ê©§¤”tuœL"”+%ž9sæÌ—œ$ò†à~“EEEiVÑ%òÎôéÓûõë§©ŒŽ[˜Sé;ºÊ+V´lÙòÓO?}ã74•(Qbýúõ^œH3Ç¡_Œ1B9Y¦+&Lóå>4nÜXJ©ŸÇf³9}x}óæMWKÔçæZô#²É¸z@@¨au0Ke¾¥@&câHVÞ{ï=)¥fmºí€Fþ콜WW¶oß^JÙ£Gš5j””R3¥öÎ;m6Û§Ÿ~êꨧŸ~ÚQ’1§ãÇ—RV¨PÁÍ>Ë—/—RFFFZ,¹´¸ý¸¼Àd‹"éÃGÕd)&ŽDaè×_}ðà¦r$ €m^5˜¨¥€f«+³fÍ*¥\¼x±×ÍîØ±ãÎíhì &Øl¶}ûöiê§M›æ(.\X¹T åöîÝët^ÉÞ½{K)íI%kepV9@À™à{@Ÿ«+ùï 2G¢ð”2eJ)¥~êÚ@j¿žè €öºúýû÷{=£RÚ´i¥”+V¬ÐÔ7oÞ¼X1Õ#qåÃß?þøÃ¯Wé™3g–R.]ºÀ¸qã .,¥œ1c†ÕqQ"®(úõ-ð1Ü„³ñC»víŠŽŽ¶ðæPÄÄ‘(œ5kÖLJ©YÍï ü4àºUW9qâD)e¹råüx!-[¶”RöíÛWYy÷î]›ÍÖ«W/ÊÕÿ‚y%ßçŸ^J9xðà LmÉ©ìŠò(@iÔ;\õß_(§ª9ëòüàƒ¤”Uªp‰r2§ã1§ã!«”.]Z³$ €Oþ^µö60QWÙ¤I“ÿýï¾âÅ‹Ÿ:uÊÍüµæT¹rå<_†4L±¸vÐNÇ3L½¸ã¾ýu¶ÿ2 ÿâ|ø@WY¿~ý7šx·ˆT’[™äÈ‘#ÿýwîܹ••¯¯Çæ°Ñ¿Ú%„ˆ‹‹3çBNžüJW¿ xäykþ•ìñ´Þú? ´óøEW9€‘YÝ'X«®,[¶¬”ò£>²ú&%`âH”¤íݻ׋£”Ϲ⹗ÒÙR+éâ5¾ ô³±ÝÒÙÔTUT®: `€®þßÿu f" L‰È åW^yÅêp(•„®O1 …–6.CsÈ­®|@¿æcNõ›”ñ¾þúk)eöìÙA|˜8‘7Ö+Ê3gδ: .CQWƉ±[›òx~È%g¹é!@Ãü«Þ¡[·nRÊ:X}ÅD.1q$"/S” .lu8þ„b–D‡yþ˜¤Æ¿dbþòáú‘ÿøZ]i³Ù¤”sçεú®%‚‰#yi°¢|æÌ™3gÎXY,=KWù$ ®VÇæ…в×ËR÷$ÐÈí>Ç¿xñ¢Õ—KdG"òÞE™ŽIYm@wÔ•™ ¬³:6¯i: çøÐÔ/€2êê§N*¥ŒŠŠ²úZ‰ŒbâHDÞ«dRl~ñÅVGDf› `›®þ‘Û¹CÅ§“2êÝÞWlJ)ûõëgõ%y†‰#ùd³¢üòË/[™J8[ëügb‡¨JêcyÝÐcáq[()câHD>)§(Ÿ:uÊêpÈ$9œ½öWG ‡ åÕ¬†ÈrL‰È{Ê-òåËW¬X1«#"3಺&5 -‘bP“Ç'òý±ï”ó/f²:"k1q$"ï½¥(Ÿ?ÞêpÈ$§Õ›Ç€{~mÿbIôøUû–Zw±ýåú-7¬‹„(ðu "òRSE¹G^·C¡%(ªØ Ä,©u5íöÀU ‹‰Wz (nâéˆB{‰ÈKÿS”gÏžíu;Z"€ÌŠÍÒþnÿG×e*˜u™ieÏšuv¢ ÅÄ‘ˆ¼‘LQ^¼x±Õá©®)ÊGýÝxsEùþýûMš4Q~ºÀÛ¼ºª€Ð=|ÏH`e ÏK˜8‘Ç6©—kß¾½Õ‘Ù”Ù\J¯[ÑyCQ®Y³fªT©þ÷¿ÿI)…Pážàg_Tüb€ú!>R7ˆ(ÉbâHDk (_¹rÅêpÈcxä[ ÊÛýاŠò¶m ÓŠÇÅÅmØ  §‰+jÄÂÙDB“ó'QèbâHDžyGQ.W®\Ö¬Y­Žˆ 9pà@íÚµ›)º¾58_Q®å•¯K>\óiƒ ¤”C‡ÕÔ Ÿçå΢~õ"^M@ª{@‰L‰ÈScåýû÷[y 66V¹ù+ €ÑÞ¶ÖYÝá×Õ·ØþV¿.9bħ»;VJY¹reeå@ã+PD]Ó¦M«ƒ%"“pp³qp B}ûöMtŸéÓ§[&Y¦iÓ¦ÿûßÿœ~tóæÍÈÈH«tIˆ„¾Ñ`ø¶ãàê¸ä 1)¤DüôÓO"""4¹NåÊ•ƒ9k$"¿ã£j""2$..nÆÿ†Ä|þùçvïÞmuPDd*&ŽDDdTƒ ¤”C‡}å•Wø¤ÕG©Ü²::"çø¨šˆˆ<3vìX«Cº[¹FqãÆŒ3nÈ ìq$""2IK`žá}Y€‘(@˜8™ä  «'ûóÍ7V‡L¤ÂéxÌÆéxˆˆLlÓñ [Qæ×4ö8—ÆŠòË/¿lu8D Øãh6ö8™&D{ÁNG Vìq$"" :ãåB… Yј8·å³gÏþùçŸVGD0q$"" Nûå"EŠXÀÄ‘ˆˆ(8•²(6g̘auDDc:Ž!"2MèŽI¸E™_Ùd9ö8¯å6mÚX%uìq4{‰ˆL=Ž`§#ö8µYŠrdd¤ÕáP’ÆÄ‘ˆˆ( ö5ýÑNOEùÖ­[»wï¶úÊ(ébâHDDägQ€*;øþfâyE¹jÕªV_%]L‰ˆˆüæ @'Õ•ßøÑ‡fóÅ›|ðÕJIǘƒcˆˆLcæà˜?€¢‰íÄúr9Š2¿¾ÉÉ­€ˆˆÈ ?¸þ(PÑ·ÆÓ÷t•Í£€r­À8@E€Ó^¥ðÙãr™2eÜ÷;¶lÙÒ·H…=Žfc#‘i”=Žnt6¼:E5`—®2+pE±™ ˆÓíóª" ôàŠ ïÉïw ¾ãHDDIÝBà¢îÅÄD„³¬Qª³F±ÀJÝnŸ8êáI÷Œ !*T¨ ;FIG"" [RJãoQž´,€!ºÊ]¿Iù, çtõ¥4žœwo@î‘QL‰ˆ(ÌŸ•={vÇžÓ ´–ÕÙóâ€ÞLìØï dWWÞPÉØ©J1.þG"" sÉÜú÷ß{ösÛÎ3€®©+ÓØîI<ÿ:ë˜Ü `´Û•§>$sñ‡(p˜8QRסCGù9g;,°VW¸ãíI%0MWù> €ûÎöWvs&ÚµI L‰ˆ(©ûúë¯eý¬=@G]å@@6ßÎÛ@]} “ºf’zócËn%uL‰ˆˆ0wî\G9ÝãB>@è+—¤.“óÅ@éÕ•74~¼9HñÑyƒíG"""tëÖÍQ¾ûøuÆ‹ê}’Òó t º\ÖU®¹"2Ruô{,ŽàýªÍù/Õy úKO­‘ßQ¸¯l‹È¿UÇøkE,"^w¿`Á>RÀ¥jº(//_¸p¡~&I$\¤]u0/GEt›Ñ4-..N?Y.bù‡Ò`É=].ÌÊÊÒ4mÆŒJ£¡ÿ³ð7}l„ ÜÐL¤µµõñÇï>ÿ“È„¾M’#ò^·ÉéÓ§WUU)Ú6p8ãÀŸ3fŒ¦i{÷îõšù¾ÊP#bé©5Þ¹s‡Öˆ¾DqàÁ–-[¦iš×çÍþ*bYà)2½ÛäW_}¥iÚ#<¢zÃ``¡8`Ôþýû5M1b„~ò¿E,"¥øq‹E,"·»N®ZµJÓ´ÔÔTÕÅß\¹r¥¶¶Ökr‰ˆEä7?ýˆŠXD¾ê:i³Ù4MËÏÏW½0pQðÙäÉ“5MÛ¹Óû³¬GˆLy¸Wn±ˆ¬ê6ßÒÒÒÐРú÷Æ@Gq —Ö®]«iÚ¼yóô“çD,"ëÕ Ž±u›,..Ö4-66Võ¯ p;ž>Çíx _²Z­.—Ëkò˜È\_^ÄÒõá믿^Zˆ?žz‰ÀœNçñãÇ“““õ“óDŒŸž)Ї víÚ5Õ¿àKÕøÇÌ™35MËÌÌÔO6üíúÛ4~ðÁª \ªîk\ª€Àbùã²³Uä®ñïÒyƒFâŒ#ÁâuÝxÑ¢EªãÞ8ãØ×8ãAïÎ8 'Ü8ã@)Ö###UǺ 8DôŸ|}ûöíššÕ‰€{(Ž—Ýxúôéªã÷P.±]??&''Gu"à,Žék,Ž€ ×‹cnÌ›5‚g`Å€ ¥ªŽüKÕ}KÕ0<Ì¥êÿ™ª{È;5‚g.úÖøóÏ?«ŽÜCq ˆ|¤?ùä“cÇŽU¸‡â@Ù¬755©ŽtAq XÌÖÓÓÓUǼ±8¦¯±8‚^,ŽÑºžÎá Aˆ3Žý[rYY™ê8@(ލWÑõáâÅ‹U'z@q@½¹ºq[[›ê8@Ï(Ž(¶^7ž6mZdd¤êD@ÏXÓ×XO‹c,º1ïËfœqDÀM˜0Au„~…íé_lO?bcöÎÓºñæÍ÷nãÈöô/¶§_PPæšÈÿêæää¨NüŠ#Ê ×¿ýö[Õq€ 8 Æ¿tãäädÕ‰€°ª@Ö)ò×û<µG7v¹\ª“Fq €:»ÄÍ;×ÈKÊq;ž¾Æª.ŒñøñãUç…7î×#Š#qàÀ»Ýþç_søðáùóç« Bq€!¬ª€!GBq€!GBq€!GBq€!GBq€!GBq€!GBq€!GBqD_¨­­]½zõ¬Y³¦M›f·Û«««U'ê'Z[[ׯ_¯:ˆY9޽{÷¾üòËO?ýôŒ3V¬XqêÔ)Õ¡ÌçСC¯½öZBBÂóÏ?¿yóæëׯ«Ndbì“ÃÓ/(ޏÊÊÊ7Þx£²²2&&&!!áÌ™3o¾ùfee¥ê\¦§iÚÆoß¾­:ˆY9ηÞzë£>ºråÊsÏ=7nܸêêêåË—çç竎f&»wï~ï½÷ššš¦M›6dȲ²²´´4‡Ã¡:—)±OL±ª€~îæÍ›7n´Z­ÅÅʼn‰‰"rîܹ¥K—fee%''‡„ð_—ÞÛ»woMMê&vðàÁ³gÏ&&&‡‡‡‹ÈÅ‹ív{~~þìÙ³'Nœ¨:  Ô×׎9òË/¿Œ‰‰‘œœœ}ûö}üñÇYYYªÓ™ûdàpÀôÞ¶XeeemmméééîÖ("O=õÔüùóûí·ÚÚZÕéLìâÅ‹»w‹SÄÄŽ;&"™™™îwh±Ùlééé.—‹‹ƒ 0ýˆâˆÀ:qâ„ÅbIMMÕOîØ±£¾¾~Ê”)ªÓ™•ÓéܰaCttô¦M›Tg1±æææˆˆˆøøxý¤Íf‘K—.©Ng§OŸ INNöÌ 4è…^¸víÚ?þ¨:ù°OLÿâR5ëüùóÑÑÑ£Fúá‡Μ9sãÆ¸¸¸””Ïÿ§Ñ Ÿ~úé… >ÿüóG}Tu+((°Z½uuu"«: hšÖØØ8lذaÆéçÇ/"—.]š:uªêŒ&Ã>0ý‹âˆêèè¸uëÖ¸qãÞÿýÒÒRÏ|lll^^ÞäÉ“U4¥³gÏÙíö¤¤$÷; zgÒ¤I^3UUU………¡¡¡^çÈÑ£ööv—Ë5tèP¯ù¨¨(ùý÷ßU4öI¿ã€éw\ªFݺuKD9²}ûöêêêãÇgddüúë¯ï¾û.ë.{Ááplذ!66vݺuª³ô+.—kß¾}+W®looß¶mÛðáÃU'2÷?ለ¯ù!C†ˆÈÍ›7U47öɇÇ38ãÿp:EEEž‡ƒ JKK s?ܶmÛìÙ³ÝãÕ«W·¶¶–••}óÍ7¯¾úªêàAªÇí)"Û·o¿|ùrii)×ú»ßÆô¨®®Þ²eKSSÓèÑ£·nÝš””¤:²9 :Ôb±´··{Í»ïxâ>ïˆÞaŸô ˜@q„ܽ{7//Ïó0444---""",,Ìb±Ìš5KÿÅ)))eee?ýô“êÔÁ«ÇíYSSSZZºjÕ*Öù¤Çéwttäææ–””„……edd¬X±‚7ã¬VkTTT÷3‹mmm"âYg Ÿ°Oú Ì¡8Â?ÂÃÃëëë»ÏÇÄÄܸqÃb±x}±ˆ8NÕ©ƒWÛóâÅ‹"²gÏž={öèçËËËËËËm6ÛáÇUF÷Û9;;;×­[WQQ‘’’’MÑé…‘#G666¶µµé—477»ŸRÎ|Ø'ýˆf€PX³fÍúâ‹/Ü -ÝÜ÷éà–Z¾;vìK/½¤Ÿ¹yóæÉ“'ÇŒ“0jÔ(ÕM¦¤¤¤¢¢bÉ’%ÙÙÙª³˜Õœ9sêëë¿ûî;Ïž©iÚñãÇ£££T§3öI?†MÓTg@váÂ…ÔÔÔ)S¦|öÙgî{vÔÖÖ.[¶Ìjµ=zô±ÇSÐÜêêê/^¼páÂÜÜ\ÕYLFÓ´_|ñúõë'Ožôü1.|ÕÚÚ:gΜ'žxâСCî51»víZ¹r%Ÿì+öÉ@ã€éœqD`Mœ8qíÚµ»víš7oÞÔ©SÛÛÛOŸ>m±XrrrhPèêÕ«---áááK—.íþì¢E‹ìv»êŒ&0f̘õë×oß¾}áÂ…3fÌøå—_ªªªâããß~ûmÕÑ̇}¦@qDÀ½óÎ;Çß·oß÷ß=gΜŒŒ ÷g!ª\¾|YDÇùóç»?Ë"Vã–/_>bĈ¯¿þúÈ‘#£G¶ÛíkÖ¬qŸ}„OØ'a \ª€!܆P`ņP`ņP`ņP`ņP`ņP`ņP`ņP`ņP`ņP`ņP`ņP`ņP`ņP`ņP`ņP`ņP`ņP`ņP`ņüÊ®¼äª_[IEND®B`‚statistics-release-1.6.3/docs/assets/einstein_301.png000066400000000000000000001262761456127120000225060ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A€IDATxÚíÝg|Uà³$„ÐBïÐ{é]:‚téRQä•.ˆ¤)Ò»€t¤w‘^¥ˆTÒ; ¤ìûaÉì™M²ÙìÎ;»û~|8ww3sfØìžÜ™{¯Él6@|ÉNÀ{™bS²dIÙ©ÄÂWvગ/_®^½zß¾}·oß¾}ûvHHHdddÖ¬Y³dÉ’5kÖ2eÊ|ôÑG©S§–’[TTÔ¶mÛ¶mÛrëÖ­[·nÝ¿ßßß?sæÌyóæ­\¹rݺuË–-ëÁg$Âg´g·uêÔ©N:Úÿ5O’$I«V­öíÛ§gn7oÞ1bDÖ¬Yãý*Q¢Ä¢E‹<ï 8"UªTqÙ©¹7·{c,\¸Ð&·Î;{ÕwÂÀ]M›6-I’$Žÿ•h2™†©Cn+W®Lž<¹ã¹Q:unܸá1gÀA(EpÇ7F:u4,Ýñ €»@áà~Þ¼yóÁ$¨,SÔ®]ûÉ“'âr 8p s¹eΜùÚµkî~…£¶ÜôqàÀ˜ù8W8ºé7‚ÂÀýôéÓǹ/‹¦M›ŠË­cÇŽ®ä–;wî»wïºõHŽÚrÇ7ÆË—/‹-3ç Gw<à^P8¸™U«V¹òÅ`ñã?ŠÈmΜ9®çÖ¶m[÷= …ÂQCîøÆxóæM½zõbÍĉÂÑϸ“ó8¸‡æÉ“çùóç.n'I’$§OŸ.X° †¹={¶|ùò¡¡¡.nÇd2=z´L™2nwœôôéÓ˜—(QâÔ©Srss/îøÆ¸téRÛ¶mOž<ë³;wž?¾gŸpG˜ÇÀüôÓOv¾Z´h±eË–ëׯ߸qã÷߯_¿~\¯|ûöíäÉ“µÍmÀ€qUÉ’%ëß¿ÿÎ;¯\¹rëÖ­?ÿüsèСqu¶™ÍæáÇ»ã‰ÜëqùòåÞ½{+V,®ªÑãϸ1Ù]žà¨°°° 2Äõ»vìØâÅ‹?ÿüó"EŠ8ò휠KÕF>àaP8¸ ÄõAߦM›¸~ªFqýÔ·ß~«UnmÛ¶u©S§¾wï^\?uðàÁ¸rÛ²e‹{ç pÔ„‘ßÕ«W'§$¨p4òƒKÕ`'Ožœ6mZ—.]J—.+W®4iÒ$Nœ8Y²d™2e ®[·î Aƒ-ZôðáCٙʴaÆX7™LãÇë§ì\uZ·n&‰Ý½{7®»òÇŒ“>}ú¸~°bÅŠ7Žõ©;v¸ÑíîÝ»?üðCݺu‹)’:uêdÉ’*T¨~ýúcÆŒ¹~ýºììäóÚ7ÎH »r¯6eÊ/Ü‘¯¯oýúõwìØ!;q ¢¢¢Ò¤Iëi©\¹²ýŸ-^¼x\çóÅ‹®çWoG``à«W¯¼á 8-ÞǧOŸ¶oßÞÇÇ'®_ “ÉT­Zµ“'OJ< ¹ þÆÐ¡ÇÑàg< zAšƒ–,YrÀ€çÎsðG"""¶nÝZ§N–-[z[ïã¹sç=zëSM›6µÿ³­ZµŠõñˆˆ;‹·sçÎXoذaÒ¤I½á râĉ%J,Y²$222®×˜Íæ}ûö•+WnèСoß¾•²^øÆÀ‰P8‚ëׯ¯V­ÚßÿíܯY³¦F÷îÝ“}úÙ·o_\O•.]ÚþÏV¬XщÍ:n×®]±>^¹re/9"ܼy³Aƒÿþû¯#/Žˆˆ7n\óæÍ½°vô¶7ÎÈå+;ðF{÷îmݺuDD„+9wî\‹-8`2™d.]º×S±.;Á•*U*®§œ®Ý/^¼{÷n¬O•,YÒ΀¡¡¡Í›7ðàA‚~jóæÍ-[¶\½zu‚Ö)vwcäÍ›7Ö©:-Þ¾}{áÂÏ>àaP8‚ÞÞ¾}Û£GMúE<8þü?þXö1é!®ž§   téÒÙÿÙT©ReË–íÖ­[1Ÿºqㆋ‰ÙùvÉ™3§7œþùçç~pÓ¦MC‡4i’ì#ÐÁß³g϶óì7\ÿ51øƒKÕ ·©S§^¾|Y«­MŸ>]öé$®ï;“·qq͘èúwÃÕ«WãzJùÒ [·nÝÇ\´hÑŒ3úùùeÊ”©T©RmÚ´Y¶l™þ·8F3yòä£GÊÎB?xcà €žÐãz›7o^\OvêÔéƒ>È•+W²dÉ^¾|y÷î݃þüóÏW®\‰õGN:uóæÍìÙ³Ë>,áâú·GÁ"S¦L±>þèÑ£W¯^:صk×b}®GFFvíÚõÌ™3‰yE×€7¿1p@^ñ±Æqþüù¸®l¦K—îâÅ‹3f̨Q£FΜ9Ó¦M›3gΊ+4èÌ™3eË–k›vÖ,ñaaaq-&æâwÅu‡¢ƒâ*Ó§OÞ©S§-ZØïºxûöíwß}—/_¾¸Fgü ˆÖ½{÷3fôìÙ³}ûö#FŒ8wîÜÂ… í|£Ÿ;wnóæÍ²׃7¿1p@ ô8‚®öïß×S?ÿüsÖ¬Yc}*iÒ¤cÆŒ‰kqU­ÆVÏŸ?ßÎJ¯®¨[·nÁ‚]ÙB\k@‘ƒýÉ“'ë©×¯_»’ÛíÛ·c}<  I“&[·nup;}úôë×/ÖgÿüóO/½ð3rap Ú½{÷æÍ›W¨P¡?ÿüSv.2™Íf·`§ãÊ~/G ÇîÝ»Ÿ>}:,,ìÎ;oÞ¼9räH\ Y,X°ÀæÖU#ŸAÚ´iãÈË>üðøFO8p@öAç…o œ =Ž` /^wî\^&šL¦råÊ­\¹ò—_~ùôÓOc½6kÖ¬#F¸ÅÄÁÓ¥KW @XW¹~ýúË—/“%K&ûPòÂ7ÎÈ…Â${öìÙ–-[þüóσž?ÞÎG˜7³Lˆ+Ϙ—ÙÙ¸#üüüì\ÏZµjU½zõb}ʲ€P\—Y·mÛÆ G#Ÿüüü (àà‹K–,ײu=òìÂÑÛÞ8 .Uƒ4.\hß¾}¦L™Ú¶m;}úô“'O¢jŒ‹‘;ìÜ€_·nݸªF‹ž={æË—/Ö§Ž=úòåK·8"¤M›ÖÇÇÇÁgÉ’%®§=z$ûPÄò¶7ÎH‡G 22rÈ!S¦L‰ˆˆ‹Õõë×e§';߯^½rd vîDtñ»!Y²dÏž=‹õ©X' ä'Nüå—_vëÖ-æSgÏž­X±¢ñÏ€öѱ‘*Uª¸žÒ¤pį†‘á €ÎÐãz kÚ´éwß}çxÕ˜(Q¢:uêÈN\¦€€€   XŸrpþs;/³³n„#Ò§Oëã~~~%K–Œ÷Çí¼†ÏÐiä3 ‚ý;GmØé›t}ä„ÁyÛg¤C#èmРA¿ÿþ{¼/K“&M‰%J•*U¶lÙªU«úûûÛéVñÙ³gòäIÌÇÿûï?G~<®¥Ã’%K×·Žƒâ*ƒƒƒY+9888®§l¦v7ì!A+µ<}ú4®§Ò¦M+ûP„óª7ÎH‡ÂtuàÀ™3gÆõ¬¿¿Æ 5jT«V­lÙ²ñ§âºê=räÈqæÌ™˜;øÝpçθ6ëbbÙ³gõñ¸n^´‘,Y²ôéÓß¿?æS6½n†="Xf»tp>; §I“Fö¡çUo œ—ªAW“&MŠë©5jœ={ö·ß~ëܹ³MÕH(ãþ ‹÷´°°°7nÄúTÌSPq þu¼Ï,®AÙ6‹Çö ˆîø\T'OžŒë)oèqôª7ÎH‡Âôóúõë-[¶ÄúTΜ97lØ7oÞ¸~öêÕ«²Ó—,Ö¥-Ž?nÿgO:×¥v6ë B… Åúx¬ëàÅôäÉ“/^Äú”MáhØ3 ÈÁƒyÙ“'Oâš‹'88800Pöqçmo œ …#èçèÑ£q­CðÉ'ŸØŸmîÊ•+²Ó—¬jÕªq=uäÈû?kçv6ë òåËÇz/cHHH\!·wïÞ¸žÊš5«[œAV­ZåàËâúâï½÷d„¼í3ráGÐ^ÃüùóÛÿÙ£GŠNoþüù ‘ฺuë,XÐÅäÍ›7cÆŒ±Þ´´råÊI“&ÙY7ì×_õñD‰UªTÉÅÄ‚‚‚Š)ò×_Å|jΜ9´ó³f³y„ ±>•={öœ9sºÅdïÞ½çÏŸ/\¸°×DEEMŸ>=®gµ*ñ«ap8 +3€^&Nœ×ûpÁ‚v~ðòåËvF Œ5J“ôlÊ Ù?:ǵnÝ:®]lÞ¼9®ŸŠõ®y‹R¥JÅú#!!!ÿÆáéÓ§1_ÿ¿ÿý/Öí§J•êáÇvŽhéÒ¥qåÖ¥K‰g@7öç ¨_¿¾ýÿé§ŸâúY__ßÛ·ok’$~5 ýՈ׿ÿþW;w6à@áú?~¼s‘-[¶´óÝã=…ㆠâÚEÞ¼y_¿~óG"""*T¨×Oýðà =±žíS§NÅõú&Mš¼xñ"Ö½=z4cÆŒqýàªU«$žÝÄ;ÉÔ×_×Ï:tÈΊp|ðVIâWÑSáÜ‘V…£çýj€a¡pýÌ;7®)“É´iÓ¦˜?òðáÃæÍ›ÛÿîñžÂ1222wîÜqí¥J•*wïÞå¯úôiÓ¦Mãz}Ò¤IŸ??¿;wîìÙ³gòäÉvæ¨ó6‰%úä“O>ÿüóXŸýã?räÈQ¯^½àà`Ÿk×®mÙ²ÅΚcíÛ·×pNõÁƒÇu±ìòåË¥K—._¾|©R¥R¦Ly÷îÝ;w†„„ØßZ¬«¡ù ˆ3uêÔåË—·mÛ¶hÑ¢×®][¹rå¹sçìüÈ{ï½W½zuÙ‰ëÇ;ß8 ‡ìʼHhh¨ˆ•O‡®IzÆïV1›ÍÏž=ÓdrµdÉ’]¹rʼnSa§[¥~ýúšœ®bÅŠÅì`Óù èFÄ׳ŸŸßßÿ­a’øÕpäTÈíqÔí `:ÐeaÍ7ëUS<¦H‘bñâÅŽ,ågßÔ©SóäÉ£mnsçÎu}²dÉ’­\¹ÒÏÏÏÏ€AŒ1"®YÙ=Þ8 Ž «aÆٙÂŽN:Åõhgd†GªV­Ú—_~éÊ>øàƒ.]ºhžXæÌ™þùgW¾·|}}çÏŸïÜL†=J“&MÒ¤IøÁN:Å5ÈÝãyÃgä“Ýå ^gÀ€ }—:Ôl6Û °eËÙ‡¥«ˆˆ'N£EëÖ­_¾|iû®\[½zµ¡¾v$Ož|ëÖ­9º‰ëRu‰%6mÚäë›°ÛÐÛ´i)û˜d2ò¯F¬4¼T­Ï@áz wü‚u† –/_nùÁÊ•+Çõ²Ô©SŸ;wNö‘émñâÅ ºg4Q¢Dß~û­#[vñÛñÀY²dIÐ7V™2eNŸ>mœ3 ;…£Ùl^±bEòäÉ94??¿ñãÇÇ:Ý öW#&Í GÑg…#H1hÐ û×4“&MÚ¿>§îöíÛí¼^«IyÜËÅ‹ûõëï‹€€€Î;;vÌÁͺþíúã?Ú™¦Q‘/_¾¥K—FEEê èÆ~áh6›oܸQ¯^=û_ùuëÖ½pá‚ìC1ÃþjØT8Š;&³Ùï';€çÏŸ7nܦM›”ÕÌÒ¦M›5kÖ¼yó6oÞ¼I“&ö§©EhhèÊ•+ÿüóÏ[·nݺu+222[¶lY³fÍ–-[©R¥Úµk'er7oÞ:thÏž=üñÇ;w=zôìÙ³T©Re̘1S¦LU«VmÚ´i‘"E<ø håêÕ«+V¬Øµk×;wîÞ½‘={ö9r¼÷Þ{;vÔd,­Gòø7Îè…#Hqâĉ[·nùùù5nÜXv:'ŽàLÇAáAáAáAáAáAáAáAáAáAáAáAáAáñ•€[zûöíÂ… ·lÙrýúõ   ¢E‹öíÛ7_¾|²óÈd6›eçàf"##Û·oòäÉÌ™3-ZôÉ“'ÇŽK”(ÑÂ… Ë–-+;;QP8&زeËFÝ Aƒï¾ûÎ××—ˆ:Ôµk×lÙ²mÛ¶Mvv¢àRu‚<$$¤U«V)R¤ˆ÷ÇóçÏ/û¼H›6md§à¨ìÙ³ËN ¸ÇÑýõWçÎ_½z¥<Ò¾}û¯¾úÊÇÇ'ÞŸµpüçŸd€gr‹îFÅܹs?þøcÙYÄ …c‚=þ¼W¯^'Nœ(\¸pÑ¢E=ztàÀŸñãÇשS'ÞÏŸ??ÊD}¤NúÉ“'–ø'¢^²ó‰ ¯mñ™ F†Â1ÁzõêµgÏž!C†téÒÅòÈ;wÚ´ióøñã 6äÎÛþ£pÐÇ©S§J•*¥4üIׂhmtüá‡þú믲3ˆîqL˜û÷ïïÙ³'oÞ¼JÕHD™3gþä“OÂÃÃ×®]ë¶@K¼j¼*;ûÖ°xÅŠ²Óˆ Ç„yôèåÌ™ÓæqKGãƒd'DD'NTâœD¹ß’N~bqš4id§;Ž “3gNŸË—/Û\â·\}Λ7¯ì€ˆèË/¿Tâ벓q¿ÿòñãǧOŸ–@,P8&L@@@ÕªUoܸ1uêÔ¨¨(˃—/_ž9sf’$IjÔ¨!;A >L­»ìdw…Å%K–”@,08&Á>|øÁܽ{7gΜ… zôèщ'¢¢¢† Ö®]»xƒcDãSð¸×\N¢Ññĉ¿øâ Ù¨ ptÆëׯþùç\¿~=((¨@½{÷.Z´¨#?‹Â@(^5®$j%;ŸçÏb|>€Ñ pÔ GqvîÜɯS»ã§[w¢9ÑqíÚµwìØ!;#+ŽzCá ïn|J”Rv>N‹ñ †‚Á1à!øHêÒn[5ÑJ»×’‰àñÐã¨7ô8â¾cbb9ïܹ³V­Z²3 B#x¾NÌÙÉ¸î ‹k×®-;€wP8€Û{òäÉ©S§”æ·²óq]*¢R¬9dˆÃà p©Zo¸T  9~‘zQMÙùhv\,Æg5zÀ½­X±‚7=¦j$¢/Y̯ÅÈ‚G½¡Ç@[ž4&&–£cñãǃ‚‚dg^ =ŽàN5jtòäI“ÉtõêU"êÖ­›òT]Ù¹‰°‹Å©S§–x;Žà¦L™b2™~ÿý÷Ò¥KQÞ¼ysæÌ9wî\åÛdg(‚Í•÷•+W:·MàRµÞp© ¡¢¢¢|||ì¿fÑç²ó£dÀ ÐãF—(QüŸT\5>Q7Ÿ?.;#ð^(Àèøð—æDf¢ÓêœNÐæÜJ)"~cãÏ?ÿœ"E ÙI€÷BáFwþüy%^KDDʼnÌD“ˆÌDf¢â²3町¹fÍÙ€WÃ=ŽzÃ=ŽNÈ”)Óÿýg‰$ê/;}˜ÔM|\€tèq7p÷î]%þTv2R j#@áî¡C‡JÜHv2vDj÷Àhp©Zo¸T à4ã/³ž¨™˜-㳌=Žà6/^¬Ä~²“‰i°ªÀ Ðã¨7ô8¸‚w:þAôžì|T¹‰Ù,>¥À8|e'ÿý÷_ÆŒ-q#]°.ÆâÖ­[ôÑG²3Ðzõ†G)RD™ÙqÑhÙùÑ¢ô¬‰ÏUðT¸ÇÜ̹sç”økÙÉXðªqß¾}²Ó…#¸Ÿ(q%ÙÉ,c±¯¯oÕªUeg .Uë —ª4ÁGɼ& ˜ ‹ñ‰ ž =Žà–~ÿýw%N*/Î,nР¼Dô€G½¡Ç@+¼ÓqQS)9°§àñÐãî*<<\‰›ÉH ‹'Ož,ùtˆ‡ÂÜ•¯¯o•*U”f_}÷~‘èkòñ:ž …#¸±ýû÷+ñ }w]Å|† †ÂÜÛ˜1c”8¿^;Æâ 2.\XöiÐÇè ƒc4ÇGÉÜ"ʪÃYŒOQðèq·wøða%Î&~wMXܾ}{ÙG ô8ê =Ž"$K–ìÕ«W"¶ó#ÝàµÐãžàåË—‚¶œ›è0kú³xáÂ…²@W(ÀìØ±CЖ¯ÝŠŽ½aOuìØQöqèÊWv¨[·®'ÑbƒQD1¬Ìâ;wî8¾5Ï€ÂÜÞàÁƒ•¸ Ñ1-¶¹‡¨¦ú‘Q,.X°`¦L™d7€Þ08Fo 9>VŸh¼pô!ŠÀ˜Üãî®dÉ’Jü?í6ëÃâHuÕøé§ŸÊ>h9Ðã¨7ô8hèñãÇiÒ¤QšÚ~œ%ŠcƒøØ¯…Gpc¼jÜ­õÆ£ˆÅxpÓ¦M²@Žà®V¬X¡Ä&¢vÑhƒú‘† Ê>nip©Zo¸T  cbbÙ ‹ß¼y“$‰&³ý¸%ô8€[êÚµ«×ua;öõgñ{gª¼zõ†GMèß݈OKô8€ûÉž=»'l/YhC@áîdæÌ™Jœ–¨˜˜½,dq@@@ÅŠe7€!àRµÞp©À zÀm4oÞ\‰Û ÛK;7iÒDöAzõ†G§¡»@.ô8€{ TâyÂö’žÅÓ§O—}ÐÆ‚G½¡ÇÀ ‡æ#T}lU¶ÁÇ#€ ô8€àUcˆ°½ðªàĄŒn̘1Jœ_=â†~`qÖ¬Yùl‘`KÕzÃ¥j€„˜ƒ@#ZÕªU•¸¯°½4`q—.]d4€A¡ÇQoèqp\xxx’$I”&ºäB#¯× Û‹/‹—-[&û Œ …#Ôï¿ÿΛ‚–pÙGÉšmÛŠ[’Àí¡pƒjÔ¨‘‡ ÛKu?xð@öA G0¢(qE"1{ÆâbÅŠ¥M›VöqÇè ƒc¡Ï<ĆÅ?~¼téÒ²ÀÐÐã†S¸pa%)rG7X\¦LÙÇ `t(ÀXþûï¿ .(ÍQ"÷•ƒ(7k~ûí·²ÀÐp©Zo¸T `¿H}€¨²{d1>ì@#ÈâÅ‹•ØO—ª‘ˆz±¸fÍš²Ï€q¡ÇQoèq°C·11¶ûe1>â‚G0Š:(q#¶ã„Õ,æÅ+p(À(–,Y¢ÄõÝu usûöí²O€ùº¾ ïtöìÙY³f?þåË—ùóçïׯ_ùòåe'àÆ2f̨ÄSe$ðœ(Et\¯^=\°ˆ =ŽÎؽ{wÛ¶mwïÞ>}ú’%Kž:uªcÇŽ»wï–€»:þü½{÷”f?9$'*Ëš_|ñ…ì³`8“`Ïž=«]»vxxøÜ¹s-ëLüõ×_íÚµK‘"Åü‘(Q<µ8ÇÄÄo+ü›¨€ÄLXŒGèqL°Õ«W?þ¼W¯^ÊêdÅŠkРÁÇÏž=+;;÷3eÊ%Î,µj$¢¯X\¢D ©¹z¬sç·Þ»w/¿%Ëqèq°!k ž8óañÇÓ¤I#;#£Àà˜;wî\PPPÆŒ?~êÔ©§OŸ(P víÚ²Sp? 6TâN²“±ØCT#:N›6-þºP Ç1aÞ¾}[´hѼyó–-[vùòåÊãÙ²e›2eJ‘"EâÝBþüùc>ˆ>HðZFën´ð!ŠŠŽ—/_Þ¦MÙ Ç„yôèQ¥J•ˆ(eÊ”_}õUõêÕÃÂÂ~ûí·3fdΜyÓ¦Mñö;âR5€"qâÄ–x Q;Ùùp%Ç$Œ¿¿¿%?~|³fÍR¥J•1cƾ}û6oÞ<$$ä÷ß— €; WbCUDTÅ]»v•€! pL˜ÀÀ@ÿ€€€5jðÇk×®MD/^” €;áשÊNÆÆVÏ›7Ov:†€Â1ÁÒ§OŸ8qb›Õl-W¨•‹nàˆ›7o*±W^úŽÅÙ³g—€|(¬FÏŸ?¿téðäÉ“DT €ÜèÜL¶lÙòå˧4ÇÊÎÇÆ ߺuëòå˲3 …c‚5oÞœˆ† öøñcË#gÏž;wnÊ”)ëÔ©#;;7Ãÿ.;™˜Î°888Xv:’¡pL°‚ ~öÙggΜ©_¿þ'Ÿ|Ò¹sç6mÚ¼}ûvôèј(À Ÿ|ò‰W“ŒEËè QZöøÌ™3e§ ¦ãqÒêÕ«-ZtãÆ   ¢E‹öë×_q³ÓñÄÄo—º2‰èQf""ÚDÔè ÿÝÆg&x3ŽzCáÓúõë›5k¦4e}*å$ºa÷øÀ/‡KÕ _Ó¦Mys‹¤4nÄ÷‚%K–HJ À°V5«W¯-ñû2:ùŸÑ¦ ¤M›öÁƒòN€! Ç !iÒ¤*TPšŸé»÷ßÔ•bÑÖ\¹r%ªFBáÆqèÐ!%ž¬ï®[±x;Ug`" Ž` Ç['s,ª×N³Ø‡(æt¬%J”0i„ˆ>|(󸣪õ†QÕöñ©yî¥×a,V>¯å¶G|ð€›B#Ëþýû•8ƒøÝñù½ùé<"è,X°@ü‘h=ŽzC#@¼’$In‰µ¹¯X» 5Ý×f¾/|ö€Ât<`8oß¾U.XwY8òªñÓØ^𻦻kF´>:n×®ÝÒ¥K…€¸T FÔ°¡µ³¯“˜]Ø Üž"þ Ö±xÙ²eâw 1Ž`D›6mRâEbvÁ§Š¼¢×qMgqºtéôÚ-€6P8€AM™2E‰3k½ñJ, Ê£×AõañÇÏž=«×ž4€Á1zÃàÇñ©y.ÔpË,ÖùCð²zø6>„À ÇÀè"""d§ Íùó畸v› dq9Ý*QVÖüþûïuOÀI(Œ¢]»v;vì0™L“&MR Jœ81Õ«WOv‚Âݽ{wÆ ùòå3™L[¶l!¢B… ¥Oo|ª{¹Eôš5È8Ò[,þüóÏe¤à \ªÖ.UC¬J”(qæÌþHݺu·oßÎñøßV~aÚ¢@/^´Ä݉~Ñd/,ž@4XÒÁv%š׫WoëÖ­’HŽzCá1=zô(mÚ´Ž¼Òƒa-ZÔ©S<ï¸~ðŸñ ÃrϦê>KÏýŸO‚KÕò9X5ÑîÝ»e'+ŠýªÑ_£"Ï8U#-g±ìtâ‡Â@²_ýU‰™‰r²g!zÌšµjÕ’¯:tPâÆD¡êgÆxÄ9|xMjÙ‡LDmXµwï^ÙÄ—ªõ†KÕ`ƒßاü6Þ$ÊÎ^SŠèTtÍN‚ŸD£Ø®¾ÉŸÌ`Lèq`æÌ™JœÖ᪑ÔåNëÖ­e‡KÞÿ}%î¬Ë3³8‡ì÷QWÝ\½zµìŒbG½¡Çȵž¶:D;£ãîÝ»ÿò‹&ëð¹ÙIp~§,6àgFÉ€Á¡Ç@oÍ›7Wâ¶ ÿq~§ãìÙ³e“|}}•x©Žûå'Ü€5YÜ«W/ÙéØB£ÞÐã®÷´M$ú2:Ι3çõë×eSÂìß¿¿Zµj.ž§ñ^½eNÕ‡Ïg0þÉ àÉ•xž³Ìâÿý÷Úµk²+axÕø@÷½ïeñG²OEL|Q ùßË—/“'O®ùIpš‘; £dÀÐã ‡ªU«*q_í6û+‹×¬Y#û(ãÁ«Æ­²“!¢,69½a>`±»Oö=ŽzC£ O’$‰ÒÔöWn.Q·è8yòäÏŸ?—}¸±[»vm‹-§ñzq‚z¸º ÓŒ…£ÞP8z!~‘z=QÍ·Ïâ¶mÛfÈA“ÍîÛ·Ï›ã¢)S¦(q¤a.vÜ"ÊΚFû4ü…¨gtœ*Uª'Ož¸²5סpÔ Go³yóæ† ­S¾ˆø}»i¼•—í¨N´Gv\ ‘2CRy¢Ã²ó±Áÿ*8qâD©R¥dg^ …£ÞP8z!¥Çq"Ñbv‘èŠìÃt?qŒ±@*ƒ\/ð ân¡»l¼Š'¦ßˆŒ9~§‹“ÊNÆF.¢\¬9~üxÙ€WCá \§N”Xè:%fíþ)*i·Í–DÍeÿ_Äê‹C‰Œ¶ò7_PòÿûŸìtÀ«¡pnÁ‚J¼Yv2«ïXœÛé­ӓŵjÕ’x/ŽzX²d‰'qa;:(dÈI E³YÆf€ì|lüÌâÝ»wËN¼ G=´k×N‰Ã‰þO¬Þ™ˆþfý);+¡ÚmŽùúe'Óo,æ<è …#€NîÝ»§ÄU]ØŽ81»BgÈNI‘‰h)Q="‘YÝ«g@-ÕÍ;vÈμ G¤OŸ¾H‘"Js„ì|bâ½X¥‰ÌDme§$HÌk½‰ˆz³f;Ç·¥£g,®[·®ìtÀ¡pÐÏÙ³g•xŒìdbÚÄⲓ*ÞÑ%dg«DeXsð`£-‘ž…#€®¨Äe'c£¡ú¡…Ó2¶!¼`󬑙è¤ì$ãrŒÅ“&M’x¬£7¬|dÃ+ãÍ8mäeT4?@²|Fÿ¤P_6¦¯ˆ¾ŽK”(qêÔ)Ù€ñ•€×Ù¼yóûï¿o‰Wœå!ºg ºçʶŒ§4oT¨óþU—_Ì!Œc…ãéÓ§=š2eJÍrÎ/(kðèqÔzÔŽk‰šÉÎÇ6={ÒÄS¢ ÞV>ýÄÌn“šè‘˜ÙCTSÌ–ñöáG """”Ø€«ðõb±'M¨ªÅß ø˜h£˜-×–³ÉdêÙ³§ëÛO…Â@ŸjÕª)Í>²ó±ñ“ºé³9®²iþ¹56›©qc;m"æX¦ŠÙ,@¼p©Zo¸T ~ÁÚh¿‡ˆ ³¦ÑÒsB,cb¸Ë—é‚v“ð|ô½~m û ¨óø±l"Ê©Å6•)F{ôè1kÖ,­SÁ1ÒŒ;vذa–8˜è’ì|¸BD~Do¢›U‰öËNÉ=x#uêX^‘/å˧Ùþ^½R¦uáø‹ý‰jºqûp©@š¡C‡*ñe¢[²ó±Æbc.®í¸Ù¼ñHÐµÖ jºa¾zx¨<îYw²€P(d:räˆg—LL¥Xœ\v2NËÉÑ! ·Ûº®áE¢;m5‹Ë8½&QYÖ?~<®S€(d*W®\²dÖb`žì|lð…_=”®Ýàíß×oß¿ü¢„Y´ØÞ=¢W¬yÌé 1/ÔÍ7n8·ð(${ñÂúÝÝUv21}Íât²“qBÞX¶L×}wïÎ[ ]Þ^F£E‚|­ëjÉÙå =º{W —:» >§f*MçQãcç‹™< GCèÝ»·?":#;OY|Vv2ZÃrÇ|´j¥„œÚŸšü‰¦©ùUfÍþýûëx^Àý p0ŠË—/+q ÙÉÄT‹ÅId'¯¼Ñ©“älV®TÂûDçøÓül×ÝO›6MÇóî…#€QäÍ›7;»¢úì|lìdq8ѧ7$Þ1›Yf,Ñ–-JX4!?w(œ5·‰Én4‹ ÔvÂrð(£7 ŽûŒÑǬi´ôª11‡Q… ²3"""__ŠŒ´„? Lø±,"ê ,;¾£Û·ogΜY÷n=ŽÆÒµ«u2Çz²“±ÑE]^˜ŒúÏ*qb£TD¡„Ÿ9öü»IdÕHDYœ%‹&–€Bá`,sæÌQâí²“‰)Jv óö­ì ÔòæUBG–>\ÄbÑg¾¢zÒ¥… ]Ÿ°< GÃùõ×_•ØäÂvDøÙõMè#]:*\ØõÍhŒÚßkùBút¾fqçÎu:'àVp£Þp#8‚ß鸋¨¦ì|¬‰±8mZ fœŒˆˆxúôé»FêÔ”8±6‰FϹm8}ûÒŒ–ÐW=ðÅ?Õº}L7%ÚôÑGK—:=õ$x&ŽzCáŽxòäIêÔ©•¦A~K[­Ž³dÉrôèQ×·yêÔ)ëj%ÇSéÒ²R<öWÁ¾èuÿZ­!z=ý{"öŸîÊz3ÎdÇb|A€ \ª0¢   %J(ÍÿÉÎÇb-‹5©‰È׸ûûo%¬F´‘ÈD´–ÈD”Ž(9ÑrõŸ zVD4ÅéÓ§—z¦ÀpP8ºêÎ;¥K—þâ‹/d'žæÔ©SJ<^v2D”œÅ~ø¡ëlÛ¶­jônÖ¬”*•ì£éĉwAäï¯<ÜDýª—D±æ^ÝÓìÃâœ=ë.K€P8ºÄl6ùå—/_¾”x¦Áƒ+q©™%âïò~øÁõmîß¿_Õ~ü˜òä‘z”Âøú•)c½HêÐÏU“‘/¿™¦X1wYœô€ÂÑ% ,Ðê‚@L&LPâDÏäeRžÅ›6mr}ƒ÷ïßWµoÞ¤W¯äŸHÛ·Sd¤µd4™( €ßæh‘ˆèë?ïÆÅ&ÊÊššüž…£ó._¾ 0ºZµj)qO÷¡î÷Ú½{·†WM.}é’Ž‡¥—L™XÃ2Tº‘™è‘™Èr«¨õ>Ʋói9‹}||d§ò¡pL°ÐÐÐÁƒgË–Íéû~þ‰Aö1ÑíܹS‰Ñq¿|—~ýúi¾ý#FX–¡ÇžDµzM\K°øò›W?‘²6,ŽŠŠÚ»w¯ìŒ@2Ž 6a„‰'ÈÎ¼ÈøñÖÉsë²G›Å”EÜÎÛ³'ë?Œ$6Èí©ÆM/°ûÒ'Jô“ì¬czÈâ¾}ûÊN$Cá˜0G]¾|yÏž=‹/.;ð._~ù¥_'º.~ï³XÜ,лví²6êÖXº˜=[ÝîßÔQ¢|²s·ñ”ÅçÏŸ—H†µªféÒ¥_ýu\ÏæË—/Þ)î°V58íäÉ“¥Å,å| z¼†â3¢ÉÑq``à%‘÷ -ZôñãÇï­[ÓŠâö¥Uwãm¢ÌŽüŒÝ Ê.ûbI‹èÔ©S|%LðBwS‘`9rähذ!äÙ³gÈœ9sÉ’%3fÌ(;Aðd¥J•J•*ÕÓ§OuØ×d ­‰èìÙ³ÖµW®tû±fMÖ(àXÕHD ˆ:[¢6íåù™Å©S§FÕèqtÕùóç[´hѤI“I“&9òzô8‚‹L1ÑŠòYP”è\t\¾|ù5kÖˆ>¨¾}û®]=MÆŒt÷®è= ¤úJÐl"åõ³‰ºÉ>Rw7âË÷8¸Ñßß÷YÕHD:TD4}útkC5ÙݤLÉ ‡¥DÝe©§úÐá™ÌÀ³¡pp?fíÄÜx;V·ƒš<™]Ö«*Öóçôü9kOMø&²(‘ôJOHþ믿ÊN —ªõ†KÕ`(üÂ÷¢MDس·oßÖ3ëŽD4{6u3ÂÕÚ„PÕ»‰9·%’øéœœèet2Fÿq0ömß¾]Õïhä©Ó§©dIÖÖ0ÕBD[¢ZD;ÅJ¤z11|;@L¸T à¥øâ™Ÿ~ú©ìtTêÖ­«j-;£¸©ªÆƒšnú‚íÒåPxÕh]È€A£ÞÐãÆaäNǰ°0Õk ‚ò„‚‚´ÙÔ³gÝð' uec±ùœè{¥!ôÃz+¿³_ +ŽzCáÆñã?0À§OŸþÔ))s¿Ä©I“&ª™NÐg©µ¸ßGTUXö|JÏ—/_ Û¸1\ªð^ü õýû÷/_¾,;#•~ýºÖ³DM„m9Ÿ‰«±¸|ùò¨ .èqÔzÁP.\¸P¸pa¥i¨ Öª±Õ†&ôST±Õ¼»_ `z¼Z¡B…2²ÛçÌ™#;£w†nm¤HAf³ÿøM“dÖîŸ8I”è[aû(ÆâaÆ9½ðèqÔzÁ€ 8JFÕݨÕÇTÞ¼tõª²QÙ‡¯DU¬ç@Ì>¥gM|#€}èqêØ±c¬±,ÕªU³6jÔ³ч²Ô>kÕx\Ø>xÕ¸oß>§·^=ŽzC#“q:ïÝ»Wª[¢YÛÏ(“)ÆCÆü ìH´Ø¥$z*fˈÚEǾ¾¾áá᲌=Ž@D´xñb%Ι3§ÄLTUã/¿h¼u·éT³þw<¶v,N’$‰ÓÛڷo¯ÄáááG•’ƪU«TíîÝ5ÞAÕªd6S¡Bì!“Ó&›} l]ÔÍׯ_›L¦fÍšÉ>v04\ªÖ.UƒaÝ»w°–rÁZȘ˜˜T¬ ø¨÷<ŠåË—·iÓFöá€q¡ÇÞÉ!ŸÓñ»ï¾Ó9Ռ߮1hCÕÝXSçct€õcy–°}ð2k°áGmÛ¶íÙ³§ì3Æ…G½¡Ç Nâ(t7-%²Þ3 (¹‹DYÓò¿¬œü=zÌš%®d÷æ+;0–L™2Å7nÜxãÆúì·X16u«V¢v“81kŒ×çÐÂZ5^¶^5Λ7ÏæÙ[·nmÙ²E“çQMºn=ŽzC#ït¼zõª¿¿¿è=^¼x±V­ZÖ¶ Ï¥ýû‰Ïi¸îÆúDÛ,Qn¢«®m+.ÓˆúGlj%ºuë–%±ÀãØ±cW¯^}òäI1‡ pÔ G0¾Í›77lØPiêpÁZUµlÛFuë Ùê"õ ¢RNoI ½ÇÄðÿYq+ƒ?~ü8((HØ€®08l½ÿþû¼¹mÛ6¡»û…OÖèã#ªjìÐ5R¯jL­Dâ§4aqöìÙùSâþüðCŽž—ª –ª‘DÞýFD{öì±6.]µ›ÖX)îpœ27ZŠÙÇA"Þ8a§7帪U«*q·nÝtØ#ˆ†ÂbÁ¯SÇœ±E+ªÛìúöu0‰øÖ‹_k`ˆ=¶Ê,Þ±c‡>¶|ùr%ž;w®>;¡P8€­Í›7óf½zõDìåСC‘‘‘Öö´iBfñbõ}“Z/~íªrJT†(…˜}Œfq’$I ©ÖÎkøðáJœ#GÝö ‚`pŒÞ08ŒOŸyUWÀÿù‡‚ƒ küKd´ÚEþ˜ÑøôåË—óæÍ«s !ô8€ÊÀ•¸T©R‚ªFÕ=vþþ¢ªFU_iãUI•è+aûxÅ|-rÝð+ãùÄ] ÇQoèqƒÓg­jLÁCôˆ(­ÒxH”FÀ>ÞñÂ_ÿîF‹"EŠ‘•¸…#¼sïÞ½óçÏ+ÍÏ?ÿ\Ä^^½zuúôikûØ1!EÑ]\DDô“½8ïטý¥õ>6©›ƒ ’xÀM›6Uâ-ZHÌ\ÂÞɘ1£¯]»VÐ^‚ùíŒãƉ:ÖX-j/Îk룦nžÆ,¾$nŽLÇÌœ9S‰Å½»@4Ž@D´dÉ%Nœ8q¹rå\ØXœl&ú¡ÿýOÈÁ|û­ºm´þ­®Ö0mZ2›Õ ÛhãS'K–,00PöQÓ÷߯ÄÉ“'—8ƒcô†Á1`LÆÄDFª§æÖò`Xã9‘Ñj–žå¸L:qâÝÚïCÚ˜˜˜øàÈ‘#‚þ>qÐãÔ©S'%®U«– ½ b]"…‚‚DUªZ¤¬ñªF¶XNãÆ1Ÿ6iôOQ©R%Ù‡luŒÝÒZ¾|yÙé@‚¡ÇQoèqò¨)xˆ÷8íóí2»ÅS9 ¬ÇQsÆén´xï½÷®_¿n‰ÇŒ3lØ0Ù@ ÇÀÛeÊ”I‰Gí–ìQõ{Õ­+ðxTשç Ü‘3XÕ¸j•5>~\\%ýðáCÙG­ràÀ%æ €[@£ÞÐã†rᾚˆ Þ©ÕuIÑ;÷{&QŸwa¢DÄ×é¶(QB³]=zD!!JËhŽC‡]°`%®Zµê¾}ûdgŽBá¨7Ž`(ü"õÞ½{­§ºH½huè ö¨2g¦»w£m‰–‰Ý£bŒ‰»7ëî¦M›f´©ù["<<Ü××WvFà\ªð^?þø£§OŸ^PÕ¸l«ÛL&áU#ݹÃË…ïÎ!Í­a]–Ìfµi¿~ýd¾­yóæ)qâĉe§ŽBáའ Ä§N´—/¾øÂÚˆŠÒéØ>ü5Ò:½í¬³†ÿþ«Ó>Ó¥SBþmõêÕãÍ-[¶È΂ÂÀK5jÔH‰?øàA{éÕ‹-Í/X‹ö+_ÓïÑýv 6ùv×®Îo&¡îßWÂU|,Ž1\¹rE‰ßÿ}Ùé€CP8x©ßÿ]‰ù5kmmܸÑÚ`Ã5ô°s'k”Ðu×*Gˆ^[[sæèºófÍ”°T©RòNB,xJŸ}ö™ìŒ ~(¼‘ŸŸŸO:UÐ^ ,hm´k§÷AÖªEª!ßéÀ;¬áñãz }ïÞ=ÞÉgüïŠÉ“'ËNâ‡ÂÀëÌœ9óíÛ·J³eË–"örîܹçÏŸ[Ûl-lý„‡³ÆNoÆc¬a’$Tº´„Ö­SÂjÕªÉ8 öð›/‹-*;ˆ¦ãѦãéLªi‰ˆ¶mÛV¤Hm÷¢š‚gß>ªZUÎÑæÏO—.E7êmÓw÷úNÁeXÒ˜1c>þøci™Ä†¿UîÝ»—>}zÙ@œÐãà]FŽóA›!®®›1c†µáë+­j$"ÕßiÛõÝ7;êbŤ">Ù¸kY³fgÈAv:` Gïòõ×_ÇúxM‡<7ÎÚP]/–áÓOYÃäôf(œèkëŒÜaÝD¹r)açÎ%'£V¾|y>øÒ¥Keg»?ÿüÓdl²ÏxŽ^¤bÅŠJܽ{wA+Ñ}ÈçPäãcd™2EÝÞ­Ë^“XáCeŸ¢k×”pÇŽ²³±uãÆ %nß¾½ìtba2™Þ{ï=ÙYÄŸdÓ¦Meg…#€· =|ø°Ò5j” 8pÀÚ¸pAöq‘ªl"ª%~›U­±ce?õè¡„¹X¤AÔ¬YS‰;uê$;q¿,šÛ°aƒìÀÃapŒÞ08dáW²/^lùžÖö µ­Aƒè;Y“àÄ4)…†F7†}«~ú{¢Ï…ì÷Ñ#JZöÁGcïõë×—)SFvB*üÝh¨ï&þ»ã/;™XE)w„¼~ýÚ•­ØG¯°~ýzÞä½;§j$"ÕWéxõsW‰ ÙiòäªIu«¥¯iŽ=Z‰3gÎ,;w*W®¬Äý‰B ùï-K844ôСC²Ox,ô8ê =Ž ï2¹qㆯjflaýŽFûx©Pމn”&R¦ã6ªÀhg€ˆüýéÍKøÙgŸ 4HvB*ü­xáÂ…‚²ï‘ PšÆûï´ºCÄñå‚ ÇÀóõíÛW‰+T¨`S5 Ô¡ƒìCWc·x z&vwÆüæ SÂ~øAv6¶öì٣ą ’ñªq“ìdìËLT€5ãš?ÀEèqÔzA¼»QÐHjNÕi´O˜‰éË/YÛ’^ôù1™”‰²=YÉ’tú´%,S¦ŒÍm Ò•,Yòþýû–øÇìß¿¿¬L6nÜØ¤I¥i°·rìxç9¾ßAô8x¸üùó+ñàÁƒuØc£F¬¬YeŸ5Û3ðÑç¶äÆNRÂãÇ¿‰¾rm§XzŸªæàÔ¯uŽâÖÅUªT‘x Žž,$$ä’uÁ=¾†gÍšemˆïàL0U7L+"¯üre åÎ[v6¶>øà%nܸ±”xOç{ªi9 m*‹8ÀW¥Ð GO–-[6%Þ´I¿{´&Mšdm$’ý9³x1‘ÉD3g¾{$®‘Ξ}ºP!2™È2Õ¶zbB£M þã?*±žï[nÚ´iJü‡ ÛÑŸÈÑÏÏOv:àid €0óçÏWâ¤I“–,YR·]ôÑGÖ†Ùü®t“"KêØñÝü…}úÉDÍ›ÓãǶ/ó÷7Üí˜2™Èd¢¿ÿ&"Ê™“©GAuêÔ‘¢-^;úûë=y"Í=Ú…íHaÓC+«òO…Á1zÃàÐÎcbl„„„”/_ÞÚ–õQãȾ>>!'=ÌœI}ú؉þoGðQVàó) uçÎÕTä²ÏƒÞ¨'*Ç=h=Žž‰÷ùÕ¯__ÿ²fÍš#Gk»^= gÁÁ«ä‘‘´oŸ„ôô_Õ¸sçNÙ)ÆŽ’Ñsh^5”}œãGÄ«l¹cŒÀàpðLË—/Wâ¹sçJÉáàAöµ»}»Þ»_¸ws^½z•?ùÑGýñ»u­zuýϪU³Æ~~6kù >üöíÛÒ'ÙŽKúô郃ƒ•¦> F/X°@‰ˆ*Ê> Nã“L:ÕéíØÀ¥j½áR5è ]ºt>´ÄãÆëÔ©“¬L† ²X¹Á1((–› Åa©/\¸5kV"Z¹reëÖ­•dzgÏþôéÓwvíhÉY'J‡“𮌖zƒt^Àšßàáîߎ£‰FEÇ ¼pá‚ìŒÀ pÔ Gí¯¿þ*^¼¸Ò”^¨æŒÔiuݺ=R8wîܧ£ç»Ž)EŠÖ†‡}&ON/_¾‹K–¤“'‰T…cõWìÚµKÐAŒ9rΜ9–8iÒ¤NtöìY›GÚµk·lÙ2KÜ”h CÒ¿Ã÷Î;™2e’¸=ŽzCá¢ñ.“äÊ•Kn>›7oîÞ½»µ­Ïg; ÏŸ?·óÂÎ;¯Y³æ]#K ‘pŽDxü˜Ò¤±6•ÓîÈh!§ˆûEÐZê1¿þ<©»Ñâ úfG|ãƒëp#€Gùþûï•8sæÌÒ«F"zÿý÷Uío¿¾Ë  %ìÖ­›ý×ò{ÚŒ8]¹ÓxÕÈ—-ΙSÐr>‚Ê;qL&¯Ó§O¯ÄÓe禕JêáÕ‹-’¸=ô8ê =Ž`CÛ…1øœmÒ/R+^¾|ÉW>ÛéA‰+-ûÝ .ì×/z©6ÏX®zØ0úæk3æ Óï¸bŠ͇?/]ºTèR™–/Á³gÏ+VÌú ¸ýÉ€¬AC(õ†Âl˜Ä|…·mÛö;õZ¹6lh½Ñ°L:vLÔžØù\ºt©ƒu¹êNÇE‹¨C)gIÄI ÐP:ö”3§ÒÒüÏÞ‘¹mÛ¶"EŠh»MË— ÿ5ü‡(؉X¢Ñq»ví–xÞ 0Ð.UÈ$¨j$"CUDôûï¿[Ç‹ÚÍØ±¼åxoîùóç­Žu=5šc=g”2¥Øª‘ˆrä ¤I•Ö7¼§Óe||’$I4©cúᇔ8«ÇU¤^„péÒ¥²Ó÷†Gg„††®X±â·ß~ IžžAL˜0Á:Ÿœ¿?…†j¿v>ÿû¦¬ ‰Wñâů_¿þ®Q·.mÛ&íLiwô'.f–Þ5¨ÉfkÖ¬iÿØS¿§õŽÓ§OïÞ=Ù»Bá˜`íÚµ;}útÊ”)K—.vìØ±ðððþýû÷‰o…BájJá8bĈž={ÊNG8Õø‰þ!m«Û2eèÄ KXºté={ö$tž05Ÿ½}û.®U‹t[¦bE:|Ø)Rd›ew^¼xa‰ *´#z~%§Å;|§ Ñ<ágJþGêÙ³guß‚ÇÃ¥ê[¹råéÓ§K—.½oß¾Ÿ~úiþüùk×®M•*ÕŒ3þþûoÙÙ;‰ðàõ‘ãðÛo¿Y|¸Œ&¢«F"r¢j$¢®]»Z©Sëzj´:JÕH¤_ÕHD‡)á¹sçž={æâö^¿~­TDäzÕHê ß±òàªñ¨º‰ªœ†Â1Á¶nÝJDC‡ °<’/_¾^½zEFFþù矲³·QµjÕÄl𯗨X±¢µ­Œev]ôï#9=wòäÉÖÆ“'î7¼ºLk¬ÿ:“ì¶ÚB… ¹¸±|ùò)ñ€\Ï®zõê+W®´ÄyˆÌDf"eI%_¢ezž+}%'*/;ð(ìúõë… æZ>ãnݺ%;;p‘‘‘&“‰/”\¡BO½Nmé4*R¤ÈêÕ«-ܼyÓúôtæË»x‘”ְaÜޒjÀ)¯qw—ÑÇëÀ A¼µqãFg7¤šŽ”ˆ¾øâ ׳ۻw¯+Ë–/ˆ® ÉÚêužtv›¨´úG Ç›5kÖ¯¿þjó eHf¶lÙdgnÀ'F9¢¬ræy (%K–'Ožôïß?K–,<r° *á–-[\ÙR“&MTm¦+×Ê|¸OŸ>ááá»wïN›6­ýçí¾. —ñ*|$õرc»té";#Q–,Yòå—_Ú{E«V}õÐy}ûÒŒ–Ð××÷ñãÇ.nïåË—™3g¶¶ÝâC2gNºqã]œ)ݹ#-“´iéÑ#KøÑGMš4)¡¨W¯Þ¹sç,q²dÉ´ýxäãcvÕ–všô“HYFßøà:Ž.‰ŒŒ\ºtéĉ###¿ÿþ{Û¥ÕbƒQÕðÏ?ÿ(P@ig}ÍÅ¿]»väú\Ä/Kí¸êÕ«ŸSqš¡Ý¦†=UŽWú{ÜŸ¯ìÜØ‘#GF}õêÕL™27®R¥J²3÷?þ,Y²(߈³gÏîÞ½»ì¤´×£Gk#kV Q=%‹í#ÎaC(êÔ©£Uò{÷îµNÍ#n‘­ð›>üPv6D Rô|ïåË—?räˆã?ÊWW¯X±¢æ©eΜ9 4zÑ/‰&Èg”CNœX5kŒ+t7Z|ýõ×ÖÕwèõkqçÊ%¿ýF­ZY›ùHgÿ/Ì‘#‡#?ô÷ß×®m½z,î÷Bµä œ§¹DÝ„mßøà:ô8&XTTÔ Aƒ¶oß^»ví‘#G¦OŸ^vFà–:wî¼`ÁKÜ¡C‡Å‹ËÎHKüZ|,ë>GFÒ¨Qìæë¯•ð[­G±Œ1ÂZ8††RÿþšÍìxù2ï(uÕèÑÖxûvmO‚ó~ý•Ú´±„•*Ur°äU£æÿ¡\éÒ¥ODÏúYŠè¤k[Ó– ªñóÏ?wâ~S€˜Ðã˜` .7nÜG}4räH'~=Ž ðÔNÇ¿þú«AƒÖ¶ò!#lanÒº»Ñâ?þhذ¡¸œ5æãC†šR>Q"å¿þÛo¿íß à_~ù%Ÿ Iôoït|L$í4©´!Z·hÑB™Ä À8P8&ŒÙl®[·î“'O8àïïïÄP8‚bÙ²eíÚµ³Ä¾¾¾7”Q±nNu‘ú?è½÷ÞÅ Çï¾ûNuK¥vR¥Jå.Ó€ðÃL—.Òô€ Ö±Œ‰áÂÂ4CDÙ²Qt½Ø³gOq·p½yóF«MYÿ»Ë•#-Ö_&"Jš”|zúcŽ:w7ƺ_¹ß…§ˆJ±&¾šÁ°ŒúYcT¥J•BÙJ›6mÑ¢EÏž=kiNœ8Ñéu– ukÖkëjÅþþäÔ=±{öL©KfÍš%®pôóóÓ~£‰‘Á;25Ñ¥ ÍŸo ƒƒƒ/]ºDDyòä¹zõj®\¹®_¿Nê5·™ WCAAAOž¼ëæëF4ǵ­¹‚WW¯^uz;¢¡ÇQoèq„˜|˜ÖKé d÷Z$#Òª˜µù5^¡n¢j·ƒ{ŒèsÝÖzÖÄàÁ²3PcúÆéÍRü=ß$Ñüù²ÓqͶm¬q-!?9]‰Š/.û0ˆÔóo¿°ýˆZµaàŠ¸#\ªÖ.Uƒ#xwãÙÉÄe o퓤š6Í&J”Èh“äµk×nãÆïÙ³Ó²3rJêÔôäIt£'ÑÏ üyë›|Ú´i-Zè3ybìÊ•+§ÜmÙ‚hµv[ÞCk§bݺu·©Ên÷€ÂQo(!^Å‹ÿ믿,ñP¢±®mMœšDÖ‰ø ">¡£°âû÷߯âØjxºQ’qÓÏaÕÝ΂QFɈ[6f Q¬Ó àËÜ.UËÇ•ª‘ \5ÑnÞ¸pAv:1DßæHD 6”-ÕÌ/‰Üð£XU5þæìVÒ)Ñ€dJÖ¬Y•X󅪙‰l棟4i’¬ƒp‘~Zx´té¬_¥{e'/ÕŠËI’ÈNG-_> PZ_ýµì„Tºuëfm˜Íd¼eí™0AÝnéì†î+‘¬…"7lØÀ;ÿz‰ÙËvuÓÍnb`p©Zo¸T v,_¾ü£>²Ä>D²óq„jÐ蟒ѦÝ6ðÔ<×®]+Q¢„µíFŸÆªîÆgD)œÞQs¢u–(C† 'OžÔùPøEê+DyÄì…Ÿ¯Ó§Od<€Ðã` JÕHnR5Ñ1Þ0à‰l†íêÕ«ËÎF%wîÜü") ›zZcå˳FתFâëBß»wïÊ•+zJÇŽ•8‡°ª‘_þN“& ªFpkèqÔz!.üñüèÉYêmqmkzJIdíÊëØ‘.”‘ë»sçN²dÉ\Ø–öÜo”Œcbl¬'j¦4ô%#nL §:_nñ_ 7ô8Å|6¥ŸUDôŒ7-’N 㬷bfΜYv6¶:uêdm`ìx$MÊÿÓh£Mù—Ñ<½fD/R¤ˆwsa;öñI†Ú´iãôv =ŽzC#Ä*[¶l!!!–ø{¢Ïdç“P­øÀÚ¬YéÖ-Ù©±N²Å‹7mÚTvB*nÓéxõ*åÍËÚÚ¦ª÷Ô<ènpzä»té’R5’VD¤ËŽÅ(Øv‡dgckÁ‚Ö†‘—šTU»ÞL¬SÖtîÜYô¡ðªq… Û±/9‹çÎ+ú t€Â@¾üùó+ñ_.lG®Y¼aÀ‰ ƒ‚”Pâ”±²]4Åd2è?–"Q ­OƒuÅÂ;v=á³f©Þ­­Åìå(ÑKÖüøã…€>Œ÷áàef̘¡Ä鈊ÊÎÇi=xÃl¦eËdg¤öø±êvãnÞ¼);…‰³ÙžJtùòeqÙóI=Ÿ¸°ûøàswûÿˆ GÉúöí«Ä÷]ØŽ\ãvíd§C½zJX¬X1ÙÙ¨œ:uJv Ž«+lˇ•HÜÚ*7Vâ’D©ÄìåçË—/[¶l‚@g£7 Ž®iÓ¦6l°Ä-•ër]W ÐæÍ²3Rc×[Ï;—={vÙ ½££½›™Ú]ðJdžzŒÁ˜W Ç@&¥j$¨ɦÓq‹ñ¦Z¼X ùl,r >ÜÚ $³Yƒ|À ýCôJ£âø)‘¸ùò²ñ=_ ;’ê,þä“O„í@ŽÒ$eSâ-Œ†T7;¦I#;µöíy§£j8³V;J)ï†×V¹rå”x§°#ñeñÚµkÞ€1¡pÐID„jõéJ•*)±~+¬éE5­£'&d+D«nÑÝãÇÏž=km<¨Ù¦c9.Q×]Ö]‰üýýK—.-b£GæÍZbŽd«ºÙ¬Y31û…#€p!!!&“)qâÄ&“Éd2]ºt‰ÏR€Èp«à¹ì›öĉ²3Rc ÛÈíÊ™3§µ1y²Æ[7›éÓO%Ãæ(ÑÕ«Wíã—_~QbqcU°ø¥»$Cá VþüùmfâÈŸ?ÿÈ‘#•æß²3ä)o|)n‚³Ú·W¬¬RO¿ýö›ª-bZò)ShèPÖ6^ï/[0¦n]QýT«VM‰k ;’A,._¾|`` °]Hƒéxô†éx¼Š)¾«´ýˆ¦ÊNRœ2D'”Fùòtø° €ýïüñÇÅ‹×yÿ:-Q­z¾%J¬óaÆ›Ÿa ãC#€@Ë—/WâdDéc¼Àƒ«ÆoxÕHd¸ª‘ˆþøC «T©¢óÎûôécm¤M+j7ªj¸ŠñªF%;v¬ }äÈ‘C‰';>¡ü°aÄí@2ô8ê =ŽÞãàÁƒ|À¬å7í<‘eòÀGD5vjËÆKG«1?j'¦èAK£Fúì³ÏtÛ³ŒîF£ý¬%².Ò-¨»ñСC|`½çVÐ)x þ³_¬àÁÐã J¥J•üýý•æ"""*Ld&2¥öܪ±5Q2›‡þ÷?ÙIÅ!<\ G¥Ûn *dm4öFðóc¯ÞŒ0Öªqÿþý‚öÁ«Æ“ÂŽ„Wûöísz;ƇÂ@ O©1ž£&²Ž&-Z”Ìf7NvRqc5\cq5sõêÕk[д…'NÐÛ·¬=Üé-‰ÑL‰2f̘'OûèׯŸ•s$WXìëë[µjU1û0ŽbñZÄøËwhﯿdgŸóç•PŸ¾¢’%Y³j•ó²¯LÖ8¤Ãq%Ðz%:qâ„ Û±gÍš5J,n&ú¼,.[¶¬°ý‚¯ë›;6lØ Œ­^B´Øµ­‰ÓŸh—F›ºÅìb½«ÂÂDüçŸÓwßYÂ)R(P@« Ïž=Ûf°öìÙ³­D‰èƒºM‡tëÆI‰*Ù‹ó¬—v[·n-h|"qQûˆÁ²"T@@€^;ÐÇè ƒc¼Ð´iÓ”¥í2ý';Ÿ˜LDe‰ŽÉN#~?ÿL={Š9B&8ܾ}{… ª¢ cb,ù)‘»OÁc±™¨!kâ‹<.UÇo´ºGtÞ…M‰ð#¹EÕHD½z‰ÚrªT"¶Z·n]^)¶mÛÖú›#Fc¹r±FSQ{qžµjœ>}º }ðIÝ縰½¯nŠ[n@:ô8ê =ŽÞéâÅ‹ Tš†ú­3àZ"öT«F{÷ 8 OÃóçÏ-º‰¦YWAÔݸråÊê| "Ô“dâ»<zôP @Ì™­KRO‘¢oäÉCf³ÿ2d`5kô/šˆñ+¼Ò8P›“C~Zºvõ?êãâúó\`­ÿ6pŠW7ô:0_">‰|ß¾}õÚ3€®P8è„w® ta;Úú7®\qv3vDj´kÁA¼ßÎu“&©š?ü à$бcÇøÜL4GÌåÓ5k(*еû8½%1¬•UÒ¤I#bü~€¼DÙu<<>åŒ3tÜ3€~P8è§S'ëdŽ ]ØŽVøôÐÂnô%ª®Åv¦XÃ/(ú⯶Æ7oŠ8)R¤¨U«–µ}ü¸ˆ½µlɼ%æ€íÚ¥Õ ~[|.ñ˺áçÏŸ_÷ý‡Â@? ,PâͲ“9@ħ‡¦Ÿ~ÒlÓÿÙ ß§Ñ”›¬aʔڤʇ<'MJÙ²ivâºÅ-IbÓÄh©)“•(XÈ^œg]N¨G‚öÁï$î-ã ùÕ—.]RÍôàP8èjÉ’%JœDj&ü~,:{Vã­?x nkRç©{i‡k±Ê‘#ÖøÕ+O¼y±<øæÆ{Q¨FòÞrz3b¼$²žÞÍ›…üÝñœuEÏ”t¨‡YœMÃ?EŒ…#€®Úµk§ÄáDHJc$oøùQ‘"ï mZ2›)wîèö3¢Ü®l/«ºÆŽuucÖ¸‚€)²»t!³™|Ù: bîê#"J—ŽïXÔ^œ—œ7BBB²dÉ2˜ß$ …l†£5.lÇE剨‹æÏŸ//ía:½a:xðàAúôÖ•3¤üª®»Ù¼0U¬·Ê/N§O;¹™ÿUÍw(è$¼zEɬ—hÝíTke Q˘—Ÿ<´ª¡úT?$v¥³ùYC˩޳‡jÖ´<лwïŒ3º¾‘#­wíç+m&›H3mÚ´lGŒ¸%ŽzCá ûÊE”Tü׫¯ ‰ª™&N¤/¿ä»°CD•œ<HùLš=rJ–´Þ™<¹–Or•+ÓÁƒÑâD§]Ø–y‰®¾ ëÖ¥mÛˆT…£æ†éÞ…o/êÏœ9S¬X1Ù¸ …£ÞP8‚bëÖ­ü›¿ŠªîÆÐPò÷³¾ŸgDš.ôb•”(z-–nÝhölgÒÓ§»QèǬuG÷‰Ò¹²%­Ý ÊËIY8íûì²z:M|á‚ðu}àœúõëóæ‡šNÙ³ßEµtnÊ”¢ªFÕ¼6¥…UDôÚZ Ï™ãháÈÇð6¶|?·Õª ;DÓ¦±FzƒN9­áÂ…Ö¸F 2›Õ]h¦ÑQÙ‡Íå#ÊÆ&Õüþûï º¡@/èqÔz‹ŒŒôõò÷[Ì_lwž‚'.M‰¢g½Î™“®_çå{÷RÂO™3T¢„ð½(T'|)‘AðÎ!ênÍPµ‚¶Ø“ðÜfÒHÀÔ<àI0ª@&Ÿ$I„¬ cR-U-šË×MÖVR~£æÿDíÅj½5ü÷ßø_ΫÆ+D%Å«F rŒ‹ªiçôf´ÖÝŠ®‰hÜ8%×Åí´YlsÀí péâÅ‹oß¾u};ö…]âí;…ìæêU eíqNo)!صZ{/äsé™LÔºµtzöT5{õÒãnÙ˜­a–,zìðª¿R$.«¹,Þf!à¶p©Zo¸T X}œ¨ Û dÁKË^øÓsçÒÇ'p“Ž kì&ªáô–ºck¸v-5kz0&ÆÎ~åßé(ã$DEñ¿¤ŸËYPÒø•¨­ò¸É¥C/,€èqfÙ¨4QR-þ),_M¶ å ª ` “ŽU#]´†Í›¿ 2g&båï÷Êž]T"¹ÙzÜ2èxˆš6e¬ºîÚV5l§ã¥óD‰(Ⱥk]zzãdŠ®MÑój¦dÏ¢¿Üzõ†GPðîF yד/QÎCÆÄÄ”•èö»0Kº}[õdºtÄç^ö¼îƘ{§‹6÷µêå$QiƒœYßmµˆì¯ƒ¯]pkèq£I“&JÜ^Ó-ó/%UÕ˜)“¨ƒÉÏk”º¢öbOˆ5´©‰TUcç΢RàwX~ ùJ9XËW¹+ !"UÕ¸w¯„ý×µ¾ýòH:ñ®¨8Êf-J·‚G½¡Ç,u7Z$Šu›ÛÝhÑ…hAü¯tÖ¯WÝ[)ësÕLJ ažf3w§xˆ†¼ }})<\ÎI`ïÆëªÉ$õ’HY#(-ÑCõ³+V}z­ê®VàR5€®ø}ñ…Ußñ†¯¯¨ª±m[ÖHc¼ª‘M T¤ˆ¨¤Ooóæ•}ÈDDÔ­k$uz3 Áª#ƒ¬ÅœÕ:'‘˜©Þmñªñ‰à}5jݺuº€-ô8ê =Ž^Nè˜ë^xÃÃÇÄÄ%Šˆ]ËóžîƘYÑA¢Š"w¶“¨ŽÁO‚èœJŽŽ“«ït$1ŽDøòåKÁG` ÷8è§råÊJü©°½ÔãüÂ&óS-%'läóXÕøå—¢vÂë³>}d2sò$•*ݨ[á$¦˜¹ySö‘3íÛÓ’w££‚÷žfñóÏnÒt_¢ƒW¯^9r¤|ùò" Àzõ†G¯ 4ݾ»‘xÙd´‘­D ô8 çÎQÑ¢Â÷â??².ƒ>šhDt@&dI“Ò«W²[Uö'ˆJ¹°%;ü‰”1/Õˆö >¦¢l¬‰/qÐîqtÒªU«ZµjU²dÉÊ•+õÕWOžˆ¾§Ü¯µíàTUã§âº5‰ñO9wä V5Þ¿/p?JÕHDçÎÉ>j5ÕÞ‘zìÑhU#íÛ§„¥]ØŒ±ª‘ÄWD”•(˜5ÇŽ+~ŸVèqtÆäÉ“þùçÀÀÀ2eÊܸqãßÿ-V¬Ø¢E‹xeô8z§7ò¥býÖí&R‚ýÛmÐ{ýð.L–Œ^¼¸«™3UW¨öqZ¢9Ýxè"Rõ8¶ÖnÜÈŠ²6‰+3F}«šjRüwà'×ÈVýîí …c‚ýóÏ?Íš5K—.Ýo¿ý–>}z"úæ›o-ZÔ¾}ûáÇÇûã(½ó†(‰ ½ðƵk”KðüÇY³²õýZ¤tÐw´ ¯ž{ö¤Ÿ–}øq§÷î­Ç G/ùü6J¦Ñ,ÖÔólö%šW­Zuë[ —ªlåÊ•QQQ H= Ç!CR¦L¹eË–(ëb_Výû÷Wâ÷„Uÿã€áU#…°¢i¥ðÝ9¤˜5¬REòÚkÖ,ç·#È0>µQWQ78Y¡BJ¨íÄT²ªF"šÎâýû÷G¨æá…c‚;v,Q¢DÕ«WWñññ©Zµê£GNž<);;0¢iÓ¦)ñÂö2ž7^¿ÖéØÚµc v§Dg­­ýûuÚm† Ö8OÙ'ˆˆ”éBÇŒQ?1Ïþù§ì,SÖ÷;^yl·v›ÏÍâ NoÅëXœXµò'€@(Æl6_¹r%uêÔ©S§æÑ­[·d'†S°`A%íÂvì+ÃzNϱ„/ý”HîßNl.nV¬ ÷ßÖøÚ5©g ú²ìèÑd2‘e’¿S§be¹r’Sz*T Ê•)Itÿ~ÍšÖ'5ÚÉuÿçôV\ÐTÝܲe‹Œ,Àë`Ç„yýúudddªT©lO™2%=~üØ‘ä1µîzôTwîܹxñ¢Òá¦ìxFt‚·Öõ ÷î%k|iy£d–ªZ}ûêºó-hÍšw±EFÊ99r±[ú’''“)–›4¡õº­a­;Ëxÿ#GˆˆÂÃÕwyiôå E ïX_³¥Þÿ} Z Ç1aBCC‰(00ÐæñdÉ’ѳgÏÙÈ?1È>,% ›%û  Û±/oLœ¨÷AV«F¾üOÐ z'ðN{k¨ÿ×çêÕÖ8*Š6n”sbοë©ðàªqáBþ÷×ñûÙWÉ;Ü¢ ¬9pà@y¹€·@á˜0©R¥2™L¯cÜ@fY÷ÉÒï`±páB%¶è›í—Ö_H8ÔðpÖÐ|ÂGt¶†éÒÉH€h›“M½¤ŸDö>ÏUÝnþþÒÓGçÎvž,¦Qwc3ÿ.ûˆ±xÊ”)²ÓχÂ1a|}}S¦L³gñùóçD¤Œ³ ¢Îì;LÜXÕD|/T(Àµuß½µF;ã· ªJ·-tÝûªUüßL´1: ¢½ê2zó†þúKÎYªn]%ÌKd&âËb>$:“ðMÆÔœÅ>DïË>hRßS¤HÙ逇Cá˜`2dxôè‘¥RT\¿~Ýò”ììÀ(Ú±áÆâzŸzð†zÀ–Þþþ›5vé»oV4k&ó$ð[×®Õu×l*ïËDDÔ(ºj4U#"¢üõÅ‹K9CbíØas2²'Óh´“u,6È8|ÔÝùóçïÝ»';#ðd(¬V­Z‘‘‘üaVÅl6ïÛ·/((¨dÉ’²³£X¶l™‹»¡l6o}ºå¾F"úå—_>|زeK̤ü¦…é.lÇ>ÕßïàŠÙ÷ß«Û;uÙ«u¶#Z·Nö) ºrÅ?x ÓNÙí•7ì¾P5÷÷/¿èvV„‹ˆ §O•ÖL]öyÅõMhÇfe%ªy²´„%1oÞ¼ &dÉ’¥J•*7nÜ8|øp¡B…æÍ›sšž˜°ä Ç;{öl±bÖõKý‚]³éð0È/òÍ›ïf„{ôŠ©DŸ¾ %’6 ŽÞ½U Šþ¯I›VélîJ4'¾—7&²–™¹rÉŸxRlÎ5êÛIXï·1~åâ¦),Μ9³ìtÀ¡ÇQoèqô` 4غu«%îB4Oä¾R=QíÚ‘Ñî…Wu:>& rzKöwc ¥²eevÜ'AÄ'-Ûþ#¢ÍÆtQ5ªÈ~$ü$èv þDo¢ãêD{dŸüwïÂ…  tzS1¡Ç@3JÕH‚«F"R-‹¾t©³›æ»ïXCÜ“lUîråds ¥JYãäÉ5Þx¥JJX"᧸‘ª3ªyónÀ¬·/Óq·|pú^Ùç ¦ó,.T¨ìtÀÓ pІ/[¯y™ Ûqœj͘¬YeŸ5vÉžˆˆVˆÙúâd×®²[íÄ küò%=|¨åÆY—š;åÔnó†f2J¨‹)ÌZÂÑwç|þt£-5[H=óùÔ©Seg—ªõ†KÕiß¾}Õ«WWšºýR}x¬N£dŒ:¶šˆÆŒ¡lA8­ÒK–Œ^½»Óõ ¢‰În¦3_«1]:i«5:‡½»ö‰¹ÔîþYüŒ(…ìóa'=|у†Ðã ^5ê5é3‘ÍÊ1‰dÿ:÷ìIß~K& üî‘4|™·ÎlÓ!ͬaΜ2ÏÀéÓôô)%IB&mßND|š"¢¯¾Ò`/·o+U#¹P5ÑÞÐmºrMôí«„¾2ªFR¯m´NG"êÀâFÉN<zõ†GÏ3tèÐqãÆYâbDgôÝ»ªÓqÑ"êÐÁÙ-¹&iR U=L—.©_äéŽ&õTÓ>>”4)½xñ®™6­6ÅÛËv¢:®ml)Q{Þv—ocbbÉ‚ÅÃt¿\ž ôð]Z‘ÝEàþ”ª‘t¯‰è_ÞèØQÎ)¸|Ù¶j$ŠQ5‘¸59gXCY=¯Ý»Û>i­‰´¹Çñ‹/xËŪ‘ˆÚÙ´§Mrr´•/Ÿ6šûߥ±R3‰Õbûùù9½…#€KʱÁ¼ŸËH ‡ÍÚƒuëJH"ØÁõq"ˆv‹Éàkh6ÓªUNœøVûãE¤ÓØpu­zT76öïïìftÄß,5‘dê[KHM&&Þ—üöíÛÈÎ< Gç½xñâØ±cJs’¤4®ðÆŽzï¾?_…$Ñí۪ѺC‡Ýn¹ÛïZÂò¸l [·v~3ÎÉ•K ëÔ©³k×.Õ³#G’ÙLŽ­Jj[¦¦v¹§#*ÊÛUª;MZ`Óü ;"zÆbý/8Äë?W1øÿ,¸ Üã¨7ÜãèIø²ÔÛˆdôõ½ó ÑOJ#U*zòÄ…%ø,(¡R5:t¨bÅŠÊã… ~úôit«­° ‹²[×ëiÔˆ6n”x²dÉb}V«Y‘7ö}„¾ÅæÍÔ°¡¸“àœšlð$lnpƒ(Âfv1bÄèÑ£egî =ŽNZ³f oJ¬‰h&o<}J:í˜]¤æCËyÕHDçÏó9‰— Ëæ¦5Ü´I§3@D>>J8vll·º™LÚü‹ö­€ƒøLDšÿcUã9ýþƒãÁo¿xëì´šâðõõ×_ËNÜ G'µlÙR‰£d'CDª26±¸a(j—­ˆ—Ú]À¦I“&¬•…Das€§M«ÇX·Ž¢¬ÿÿ]ºtÑaŸCló{òÖN¢Â®oE;¿°¸”Ó[f‹+±5‡œ€ÂÀ½{÷Vâ6—ù$±]3Žõ…Ým6räHû¯ýé§ŸX뎰œØ•G„ŸR-Ö·ÿ~%þî»ï¾S­»è¶ÈNÀqÿ¹¾ MÙŒ¨ï&;“Y|èСИs 8 ÷8ê ÷8z~w£q~…^©VDúÛ½};Õ«§´lÆÄÄjùò埮 =7 ë¨]AÔF§“Ь­_o 3fÌx‚¯1HD6w:jGè µFø+È>ãüÆÙÐg¡$çl&jÈšøê§¡pÔ G7oÞ«W¯ZâqDÿ“Wžè¨Ò(S†Ø o±Òy×®] 8´0ŒºšG$èÂ.ûÿá8P‡“àHéìŠ{÷î•*e½ êÜ&ávÑ2±®ÐœD×eçcƒ×µëׯWß=à(\ªH°­[·*qK¶#ÂÞ8~\Ôn>üP Ó¤Iã`ÕHDÇT…ìÇÂN»HýÙgÎoƾté”°µø €2dÈ4iR¥ù… ›Ò‡^ã³ ä.‹ÿ•LLoYÜ´iSÙ逻Bá`ü¡ü²“‰i(oÙÇÊ•Jø×_9þs™3gÎŦ<Ôbé“X¥VMÆ,h4[ fòäÉ.lÈQ—ÙP$ƒß>$r™ #ã@ø8½1ñ‰û²õ¾‡Â ÁŠ-šŽõ6M— Õ|0aa±-ýçšL™”°yóæ ýiõò;…6)Ê¡CÚož]¤ž1c† J˜²eË*q Ýöš@&¢§êG<û:õöä õQ¯qbs"íg±žï[ð$(œqÿ¾u¶~²“‰i/oä׺Wô?ëÖéÓ)›;uêÄZ©„v970PË OÊ[Íš5v¶Ö­[§ÄgT—ä Äfýè{²ó§ ‘‰¨%Ñ%"Q?ÕtPDD-dgÓç×üü G'µk×N‰v»P5›Ëd^“b=mN_Ÿ§š*è™°µ6&ZÃׯéÖ-ç·dãÓO•ðìÙ³b’_ùC—™*¦0›ÖÇŸÈL”^vJ‚Ü!º¨~d:Ñ<ÙYÅk‹/]º";#p3(œ´dÉ%Þ ;Ëâz&Vª†&huMjÎÞreDÈܹsYË_؉a+wgÏ®Í&ß{O ,˜:ujaÉÇ®[7Õ,¿ê¼ûøð5‚Â<ú"u¼3-}èÈVd8ÌâlÙ²ÉNÜ Gç-X°@‰“:¿ 4‰žkc‘‰hÑ »énç8朅 R¿~}õcœÛN|&YC­Æ ýù§îÜ)îM{øÔ?m¥d`ñm´"ZYÈbÿ1cToàLDfãÕôŠòDüÖùóçËÎÜ Gçñ{õB‰ ÁpHÅ4'ú·?ø@ƒÝÔª¥„yòäɘ1£‹Û»rå kÐú¬L#2m·>ðúµ[M–L {öì©uÎ À{:»º°&ª›"VÖ–®3‹CCC‡ æïoí8·2’V^²øãÅMŒ€ë €{˜;wîðI­¥ü:Å¿ÔÇôéÔ§Ë»Ñ~²ëÆŸýôÓ©ÑsûU&:àÚÖÇ?›'}nó 5j¤ÁnÖ¯WÂùóç×­[WÛ£Pw:Ö$J®ÅV£sΘ‘Ê—×ö$„„„ä{qË–-|µÑ>Í+ŒŽÔ丩sDEY3樠7Æe¢¼ZoóQa¹FCuá©P8ê …£§â_aD~â÷8h k*¿ÉB+7ö9r¤E Δ»J•*­ZµJvVY³fU>Ƨ¹|+«Æø»ñQ>Ùùhx8/^:ö™3gJ”(¡45ÿªæÇ¢Õ;'Ö‹øàap©@7nTbqÓrSX¬Ï'´ qÄåË—÷õtÑL{†ª‰ˆOàlÀµ‡ùñÁ²“ÑðX²dÉ"zÙ•âÅ‹§I“Fiþ¤éÆ?Q7ö÷zõ†GÆ;7iq‘8Nˆ”·Q¢‡êgkج:¨¡C‰Õ׬ gÇŽèÑ£‡ìDlU¨PáVôº8MÙPYƒà½P}‰ô¸+PüèöÕÉ?UÄŒÓf³ËˆÚ©Auá©P8¯Zª,yIDATê …£{óæ ŸËM诖æŸûvð24þü»wï¼C (5h:uø Oeä©yHß·« ˆ¶FÇ;wÖmÒì¶mÛþú뻩ě­Ñb›y‰®FÇéˆî»¼Á˜·Ç ´ð`¸T  ??¿Ê•++M çr³‘˜Å Å×ãÏcjÛÖº‚L  Û„¯©í¦¬·²XÏ¥V–/_®Äk5ÚæU»^5ÑGê¦Ó«Øƒ[@á ¥¬#ª]’Û£žsg“.Çõ ‹sæÌ©Ë>Ô¸qcƒ_òá»ï¾Sâ×êňà‹/ËNÆ üÜeË–é¼w¾°»ë3ðE ›i‘^7"åŒdË–Íl6«çØOƒÂ@c£FRâ‚¶_“ź-†û‹ÃÃÃ]\¨ZëׯgÉ’…-EC•*UòìëÔýúõ»qã†%Þ²e‹òxE'·'P»ÍH(""Ú§žTŸwîêƒ/ øÒµ©Ô7E±¦&]˜sX¬Ük  …#€ÆFŽ´®sQëUkùW–‰èC‹]5iÒÄé툓+W.›Gj×®-;)Q²dÉ’%K–5kÖTªT©|ùòD š>}Œì m¬gq¤jq£«Îâ8»—ܼyS‰]™•”ßÙ²N»ôøêä¿"®Cá ½ƒ•iIÛ‹¦¼‹1Êé­8¥¬ú2ÙÀõÝüøêâŋ߾}[ÐüAÒñ;"ˆ($$$K–,Õ«WçŽdL«Y\Ov2ÆâbÅŠ¥M›ÖéM¹"[¶lùòY'ÁüÆ©´dq"¢¦Ú¥÷‹oܸqõêU§7Ƈ´aó¥ED]»v•”Þúôy7ZÅŠy÷ÏB¶ÏkÐì2ð9‹W®\)#{³UÏœ9#;>üС¾æ*²ó´ÑBý•£g¹Óx‰&÷Mué’uQÉaNmÈŽtj vœbqÞ¼š/s‚Â\e2™7n¼oß>“É4nÜ8"Z¹r¥Édš7o^ƒ ²2›'¡jÕª3gÎ4™L6l ¢Ï?ÿ\y¶³F{áW½oH:R¾ÀKÙ²e%e»O?ý”7¿ýö[Ù aù-³(XÐö6ÚŒ3*ñ¢pÙÙÚàõŠáþòˆ_4hìtè“O¬óvWOàÏfdqn¹• JÍš?ÿü³n§t†yõæaó86iÒ„¯˜«”)S>}úTv¦%J”Èþï‘&¿c‰ØvºÍ“w¼üO¡ó;áíÛ·üNG£¥§ Õ”f3Mœ8ñÉ“'ãÇ?þ|¡B…6nÜÈoB5ÚG|.¢£ãŒDweç——ê{3 ò]ÉÿP‘Žçù±ˆKïÅg 4‡GpI¼U#={ö̘ƒp5±wïÞx?¯¹¼—ùêÏz‰U#ñž„¬Y³JÍÅV’$IR¤H¡4kÖ¬éÂÆŒ¨~ýúJüå—_Z‚Áƒûí·f³¹P¡BDÔ¸qcþ#¿ËÎÙÆuÿGjÔ¼jܺukBSµk­#¡œÎë9¡·ýòÛZ¶léôvÀÈÐã¨7Oêqô÷÷óæ%®E´Kýl¢?XÓSßi¼ "Ñ!õ³Ÿ}¯É^X|صa•Ú5‹g̘ѬY3Ù©ð>9Oêt|þü9¿6mçw*,,Œßek´ß½nDs]ßŠŽ õñÅ?s¶Õïõ?õæÇ":=¾/#7Ð zÁIþù§R5ÑN"3QÞèO%3Ñ~">9Êøñãe§¬½¯¾²ÎoXœè Qwö¬Y£ª‘Ï(“ØU#©WžP†GÕªU•Ø“&áUãÎ;í¼Òßß¿R¥JJs€ìÌmÌq}:ŠŒÔ|$‰K^¾|©Ä x=¯uÝÃÿs“'w}Âr0Žà¤÷Þ{O‰•»”,kB(còK´ÿûßÿd§¬=>üâ4‰ùâ]¹oe²En¢œ¬Ù¡CÙ©ðUÚ ;]yBÙÜR«V-û¯ÿóÏ?•øGÙÉÛØ';ýúë¯Õ«WO”ÈX_”–™;-ìÙ©Îb?¢bâÓã³i¼|ùòèQW&,#Â¥j½yÆ¥êQ£F=Ú$º÷+{ÍŠŽkÖ¬¹k×®ø¶í6Ê–-{üøqKüEô¸üx5W„è¬ì£æŒJÝPøk;ï}ÆÄظ¥ž/ e†‡Aá¨7Ï(üÌz÷b{Ìûíùóç)S¦Œy„ŽF;w=ˆfGÇ©R¥:Þ8• QÖ¬Y•÷[ëÖ­'Ož,;#ç}ñÅÊÉuêÔÙ¾ÝÑ…Wø¯ê]õœ,² %Ræ*V¬˜gϸ)ÎðáÃÇŽk‰‹ýEDDʼnÎ ºHDD)ˆ^D¿¾„zªEт٢äcÇŽ:t¨ìšAá¨7(+W®¬¬Œò)Ñ”ø^¿šèÖôŒ·ÿ>ÞNTÇæY1;Dôì·=,6`¯žÇŒ’q¢»ÑâÏ?ÿäw•áwÏ#ÿ’”‚ $²ùè—zýO4þ£=•{­5ò………ñõô¦8ð#6S2ìØ±£N:üœq­^Í×N£˜ÓFÓÝ)Ë ~o¼Âq%Qëè8K–,F+Î2fÌøßÿYâråʹéíVü†¶‰'&èg+W®ìçç§Œc[L$÷vÔr,6”Únmß¾}ÕªU³Ä1»ÓyÕ8JFzŸÍŒŽ«W¯¾wï^Y€öÐã¨7wïqäãn"jèØO='JÉšîþ®KЕz×¥!zÛ¿£TÎÙ`ñðáÃ{õê%;#wït¼qãíÜïŽÎïØ¸¼ â73ºûç€$Nœ8"""Þ—É:ÑüÃ!""ÂÇÇñ ËÁ¸Œ5X Îf\§ƒU#¥ *Ú|Ma·Ã #}f—~Äâ¿e~LOX}ºaCë¤ÚþŽèüN¾¡^ÖÜ]~ßÝQÆŒïÝ»g‰§õ“ åm7hРï¾3ÚŒ´èq„x,X°@‰“jQ5Q=wíÚUö!ƯU«VÖXj&·XlÀ‡¼Ö zôè¡ÄF»’ÎñªñæÍ›Ún¼S§NÖ‰?–œ,>vì˜øz/e®{"êïÂvDûþûïe§.A£ÞÜ®ÇQPÿ„{u:¤»Ñ¢Ñ"%1õõk#¨Ã®YçÉ“gÿ~c 7r½S¾|ù.]º¤ùfÅM±ùí˜M¤”ê)R¤xöì™ ý‚E‡–,ywósc¢ ²óQøEFÇK—.ýè£dgÎC#ØÓ®];%nªé–ù…ŠìÙ³Ë>P{R¥J¥ÄFèC[Èb3ÑbÙùØØÁâ«W¯ÊNÇ–{­:(¢j$"¥¶Ð\su³‹Q5ê`ñbëçq&SÝϪF"BÕèîP8‚=Ë–-Sâušn™OÉpëÖ­Ë—/Ë>ÖØ8q‚áu—ÅŸ,–¸H\øjÊFû«`×®]²Spˆ¯¯ï'Ÿ|"hã–?ELª·ŽÅ­YüÁ:°±p¡õOKÙÉXðéÃŒâÚµk¹rå’ 7’>ÄK¢ä¬‰bÃc pÔ›Žd€ž'Ìb·HØEƒ‰&øÛ­ˆŽ3fÌxâÄ Y™R(Ž)~råÊuíÚ5Ù©y©üøã–¸’zD>øbëÖ­õêÕszS`(Fë¡c™:uªgL¼&ÈN@ÕM£­æÆ”Œµ;J7B§Ô"2›ÍÓ¦M³yU£DS¦LQâƒDaúî}­º‰ªÑ“ p{úõ³.[uŸè¼ì|ì0 ‘ƒ¼*;™˜ø*ËY³f•’ƒÒïBDùòåË–-›ä“â¡úöík6›7nLDf³·6J·iÓ&%Ðw×-XéôvÀ€p©Zoîu©šˆþùçŸ (Mc¾]b^$3fžšXGt¨ÑïDïQ2¢WÑÏ–!2Ú²nügòäÉ­[·vzSÎáSð༠¿…`=Q]vú ÑOÑqõêÕ÷ìÙ#û4€–P8êÍí G"Ê’%Ë;w,ñDeçS6¢è8è¥ì|ÄÉAds5'Ñ¿¬iÀßç›D9XSçQ2-[¶<|ø°%îÓ§ÏôéÓeŸý„‡‡'I’Diêóù€)x<.UCüø7ýg²“‰i6«É£«Æ+1ªFRWÆ”(/k¶mÛV·]GDD(U#¡jo“8qâ÷Þ{OiösaSÊÇâo¾ùÆéí€a¡p‡tîÜY‰ß—Œîv›ž$_|/0Úú1 ¾ äþýûuÛoŽÖ¾ÎuëÖÉ> üñÇJ,ú/§›DWX󫯾’}ô =Žàùóç+ñ¶#¿2Çé­ÛO,N“&Mhh(¶5‘™¨®ì$íèÍâ‚ ê°ÇÝ»wófÓ¦MeŸ9¾þúk%þŸÈñ›RŽ=*û¸AŽÎ ]°`A£FJ”(Q¥J•®]»þù§þ“déméÒ¥JœXv21ed±GN7ü ‹>|èïï_¡Bå‘ ß Îf²øùóç¢÷Ø¡C%~õê• [po)RX×CÈ#l/üöäÉ“—-[Vöqƒ“`íÚµ;}útÊ”)K—.vìØ±ðððþýû÷éÓ'ÞwÇÁ1 >@oQUÙùئÇb{[7'Z+‹,W¬XQ¹/‰sÛÍaG±V=I‡†öìÙÌ5jÔìÙ³-q… :$ì°ŒNŸ¥0&ÆKøÊNÀý¬\¹òôéÓ¥K—ž;wn@@]¾|¹}ûö3f̨Y³¦>×àd¹ÿ~úôé-q5ãg­‰VFÇ>Dž4uØ:ǺÈò[íöe":@TYÀQ4°M‹¨¨(›G”ª‘ˆP5‚7kÔ¨‘w¶—YܲeKÙ áRu‚mݺ•ˆ†j©‰(_¾|½zõŠŒŒôø ÖéÒ¥+Z´¨Ò.;ürmÑÙùh%‹çÍ›§ÄÇ_°`ˆ=¾çú&â èOÕZµjñÉkÖ¬©Ä#FŒv4nà÷ßWâ…Âö²’Å¿ýö›ìƒP8&Øõë× .ÌÌ—/ݺuKvvÂýõ×_J³NæXÁ…íˆP—ȇ5=`-?ñþebÖ”²Ù¯ãO-Áª°x1‘Y‹1•(QB‰ùD$ÞæÀoßZoci/f/§ˆž°fÏž=e7ˆ…Á18|øpŸ>}ÂÃÃwïÞ6mZû/Ο?ÌÝn¸ ¿Õú%Q ì|lÓc±[¿¿Ç²û‚ƒƒuxŸ 8pÊ”)–¸"ÑAí¶ÜhItl"Šre[ ÿ¿¾}ûöêÕ«û÷ïoi&I’äÍqC}ŒŽPÿG”AÐ^X|õêÕܹsË>n …£K"##—.]:qâÄÈÈÈï¿ÿþý÷ãŸÛ­GU+¶nÝÚ A¥i´÷P0›q:-ÑÙù8MÊ(Eþeóš(@ıh±Á.D ì¾nàÍFŒ1fÌK\˜èœ˜½L$ú2:Ι3çõë×e7‡Â1N|`¦O=ø Ž92zôè«W¯fÊ”iܸq•*Urd³žQ8’º¼X#rÀ¬“鱨MßâU‰”ë¬z.²¼yóæ† *MMÎ_L<+‘ë÷›â{AÆ 7mÚ$æ ¸LÁ‚ pŒShh(¿YÊÏÏOòöíÛI“&-^¼Øßß¿[·n]»vUFXÇËc Ǩ¨(ëý„F{õS/®e´ô⮞šQçßSþ•³ž¨‰ëäÇ¢U’vŸÅ'x3>Éë@¢Äì¥ÑÎè¸{÷î¿üò‹ìã= pL°¨¨¨O?ýtûöíµk×9r¤2¯¡ƒ<¦p$¢5jìÝ»×÷V/ b¼°˜L4@v>N'¿~ýú&M\/Þ <<ž©²<¬p$uyqƒ(»ì|lÓc±[¼×M‰Ž+V¬xð †Sâ$̘1c”eW‚‰œx×Ö#Ú'Öt]D"*ÊŠ>üë¯EL= àfør¸°µšøçêÓ§OS¦L)û¸A?(æäÉ“mÛ¶ëÙ=z 4Èþ<¯p#š—/_^F à0èK‚ž?®ÄÝd'Ó8g–Œÿ±ª‘Œ±ÈrùòåùðÌùÿ`”z2U#©'9räÈ«W¯œÞ€» ¶Ž#l/¥Xpà@åÊ•egôŽÝü„Á.lin«zÐ(>ÐÀ;…„„dË–Mi ú5xB”š5ñëæP8êÍS G2öÔ<äÀZ#Æáçç&; «æÍ›¯[·Î·%Zßë¿%úŠ5E¿øÿìÚµkùR/Á?~•´ïÚµ«fÍš²$À¥jÐÌO?ý¤Ä©]تj$¢µk×*ñr^Ï«Æ;âÓ‹`qóæF[ü@¸yóæ)q °ªq¥º‰ªÑk¡pÍôêÕK‰Ÿ–÷»ìT¿~ýñãÇËÎ"ÊPM"Jk÷•eY¨ËP$¢j¬Ù§O}Ï €d]»ZG$Š›8âCãZ¥7Ã¥j½yð¥j"ºvíŸáÒ8ï-~…%44Ô¹ÉÛ½¿vš¨x\/c±žoŒôïÔ¶mÛ_}wWys¢5böÒhNt\§NíÛ·»²5pkèq-åÎ;GŽJS܈ÀâJ•*¡jtÎåËÖ…JD~DDd"ºMDD|‰‡öŒe1^ àÙ6mÚ¤Äâ>Úæ°U£—C£Þ<»ÇÑÂh£dÐ¥•9rܼyÓg"º«~6€-ðH2þëùôÍ›7ù SÆ?r‰h.ÑÇšn?'Ñèxâĉ_|ñ…ì#™ÐãÚëÞ½»בLa9Rv:îíÆ åëöj$uÕø£Œôް8{v£-~ Ä•+WlѶj¼ÊªF"BÕ(A{¿üò‹‰Í”Ú£F’šŽ'à·áÛÑ_Fn划±&j à©òæÍk6›gΜ©6ü‰ÞQDD„ìt<.Uƒp;wZ's ra;âUãßÿ-ûè=™Ò—LD'ˆžÉ· ®‰È××Wv:…#W«–jø„IÓ6¦°8sæÌ }ônÇŽJœJv2\¯_¿^v:—ªõæ…—ª-lVSÕcýñÿÙUDÈ·ˆ65dM¼´‚GÐIíÚµÏ;'t¼VèÔ©“ì#ö¼,k%; þNxýúµìt<zõæµ=ŽDôäɾ¡+vïÞ­lJy£»Q–ÚµkïÚµË÷ š%5™ìŽ…Š+=ŽzC£¶'Na½L÷³\©S§~òä‰%þ™¨§Ž»^LÔ1:N’$É›7o\ÙÄ =ŽàÞÂÃÃ÷ïßODf³ùƲÓñv?Vâ^úîº#‹Q5‚ÂÜ^•*U,Ù³g— PëÖ­•X·ÉÀyÕØ¨Q#ÙçÀcáRµÞp©<žþSó` } Ç46{öl%N)~w™Xüã?Ê>zO†G½¡Ç¼ïtéNÇŽÞ8=ŽzC#x¶¨¨(¥‰îFO‚GЯ×ÛK/^¼XöAx Ž ™mÛ¶ñfs1{9@ΚíÛ·—}ÜÞ…#h¦~ýúJüBØ^ª°øÞ½{²À‹ pm 4H‰Ë%³—,.\¸púôée7€Áà½ap x*LÁàñÐã(V¬˜¶—Š,8p ìƒð:èqÔzÁóho‡ÂlÚ´iJœ¨°˜½Ìgq```ùòåe7€·Ã¥j½áR5xŒ‰ðNèq€„iÒ¤‰·¶—¶,nÖ¬™ìƒ"ô8ê=ŽàîBCC“&Mª4ïe°t7z=Jþüù]߈Ày°tx3“€{Ó²xæÌ™Æ<nçÁçÁçÁç!¡P8@‚5nܘ7{]Ðnãgˆ±fïÞ½e.¼ƒÂlÆ f³ÙÏÏÏÒ@tD»—`ñåË—e+X¡p'………i¾ÍïXœ={ö¼yóÊ>J°ò•x‚%DǵØ¿ŸñƲ TP8€víÖtƒ]»v•}L` Óñè ¸À“\ºtIЖƒƒƒex5Ì+Žà¾ŠŒ&^¾|yøðáZµjÉ>2°…‚QÕàŽàŽàŽàŽàŽàŽàŽàŽàŽàŽàŽàŽàŽàŽžãíÛ·³gÏnÑ¢EÉ’%kÖ¬ùé§Ÿ^¾|YvRrœ={¶oß¾5jÔ([¶lûöí9";#ÉîܹSºté/¾øBv"„††.X° Q£F%J”¨R¥J×®]ÿüóOÙIéjÕªU­Zµ*Y²dåÊ•¿úê«'OžÈÎH¼ bòæÂׄ |F%;Ð@dddÇŽW¯^8qâ²eË&Nœxÿþý+V¬(W®\–,Ydg§«Ý»wwëÖíÚµk¹sçΙ3çÑ£GW¯^]¸pá\¹rÉNM³ÙܧOŸëׯçÏŸ¿nݺ²ÓÑUDDDÇŽûí·ÈÈÈråÊ¥H‘âèÑ£k×®M”(Q¹rådg§‡É“'Oœ8ñåË—eË– =tèÐÑ£G7nœ8qbÙ©éoƒ˜¼ùcð5á"3x„¥K—úé§ááá–G-S¦LñâÅ?nyäÌ™3EŠ©T©Rdd¤ììä˜7o^pppppðçŸ.;½Y~/Ú¶mûúõkË#—.]*W®\Á‚/\¸ ;;á.^¼X @*UªÜ»wÏòÈØ±cƒƒƒ¿þúkÙ©éÊËß±òæ|M¸—ª=ÄÉ“'‰¨S§N¾¾¾–G*V¬X°`Áÿý÷ñãDz³ÓÏêÕ«Ÿ?Þ«W¯Ò¥K[)V¬Xƒ >|xöìYÙÙIpùòåÉ“'(P@v"rlݺ•ˆ†`y$_¾|½zõŠŒŒô†+•+W®ŒŠŠ0`@úôé- 2$eÊ”[¶l‰ŠŠ’~¼üm“—,àkÂE(=D¦L™ˆˆ×ˆf³ùéÓ§‰%RJIo°ÿ~“ÉÔ¬Y3þàĉÿùçŸâÅ‹ËÎNoƒ 2dˆì\ä¸~ýz```áÂ…ùƒùòå#¢[·nÉÎN¸cÇŽ%J”¨zõêÊ#>>>U«V}ôè‘åOM/áåoøXÀׄ‹¼¨¤ðl5Z´hÑ7ß|“4iÒ%Jð5á:\ªöÏŸ??~ü«W¯ .ܦM›:uê¬[·n÷îݲSÓÏ‹/ˆèÊ•+›7ož0a‘#GöíÛׯ_¿Û·oúé§¡¡¡²ÔOhhèàÁƒ³eË6hÐ Ù¹Eddä¢E‹ºuëöúõëñãǧM›VvFbYÞð6'K–Œˆž={&;A9¼ímÀácð5¡ô8º™ˆˆˆÙ³g+MŸ=zÑàÁƒOœ81dÈ.]ºXžºsçN›6m¸aÆܹsËN\óàïïoiŽ?¾fÍš–¸oß¾wîÜY½zõï¿ÿþÁÈN\ó@D&L Y¾|¹—\|‰ë<(Ž92zôè«W¯fÊ”iܸq•*U’²p©R¥2™L¯_¿¶yüåË—Ýïèm¼ðmÀyÛÇB¬¼ðkBs(ÝLxxø”)S”¦ŸŸ_=îß¿¿gÏž¼yó*U#eΜù“O>9räÚµk=ïïËXÏC`` ¿¿¿ÉdªQ£qíÚµW¯^}ñâEÙYëtŽ=º|ùòO>ùÄ{nôŽõxð@vÖ:"JŸ>ýÓ§OM&“Í‹‰(""BvÖ:ËŠA3gΜ9s&|Æ 6lÈ—/ߦM›d'®Çy ¢¨¨¨Aƒmß¾½víÚ#GŽô¶j)C† W®\yþü9qýúuËS²³Ó—¿ ,¼ðc!.Þö5¡9Žž gΜ>>>—/_6›Íü—ÁòUš7o^Ù ê§F .¼té’e訅eæï™´,GŽ 6ä<{öìÀ™3g.Y²dÆŒe'¨ŸÅ‹oß¾ý£>9r¤ì\$¨U«Ö?ÿüóÇ(ï³Ù¼oß¾   ’%KÊÎN?^þ6°ÀÇ‚_®’=9h£gÏžÁÁÁS¦LQ&¾¿téR… Š)råÊÙÙéçÂ… ÁÁÁ­Zµzôè‘å‘¿þú«dÉ’eË–}øð¡ìì¤9wîœ.U»víÒ¥K‡††ÊÎEŽÛ·o(P ~ýú/^¼°<òóÏ?Oœ8QvjúÁÛ .Þù±`Æ×„ËÐãè!ÆŽûÁÌœ9sóæÍ… zôèщ'¢¢¢† –'OÙÙé§`Á‚Ÿ}öÙ?üP¿~ý2eʼ~ýúرc&“é›o¾I“&ìì@W<¸yóf@@@»víb>Û¼yóöíÛËÎQ¬Ì™3ñÅ&LhÒ¤I•*UnܸqøðáÂ… wïÞ]vjúÁÛlàkÂE(=DÚ´i7oÞüóÏ?8p`ïÞ½AAAÕªUëÝ»wÑ¢Ee§¦·ž={¦M›vÑ¢E ªU«V¿~ý,«D€W !¢ÐÐÐsçÎÅ|ÖKFÔ~üñÇéÒ¥[·nÝæÍ›3eÊÔ¾}ûXfäñx@Løšp…Él6ËÎÜ&‡ p‡ p‡ p‡ p‡ p‡ p‡ p‡ p‡ p‡ p‡ p‡ p‡ p‡ p‡ p‡ p‡ p‡ p‡ p‡ p‡ p‡ p‡ p‡ p‡ p‡ p‡ p‡ p‡ p‡ p‡ p‡ p‡ p‡ p‡ p‡ p‡ p‡ p‡üÍ7_ùc°IEND®B`‚statistics-release-1.6.3/docs/assets/evcdf_101.png000066400000000000000000000650321456127120000217450ustar00rootroot00000000000000‰PNG  IHDRhŽ\­AiáIDATxÚíÝy|Lgÿÿñk²ˆHHâŽ,ö¤˜¢ö¨Rk‚ª­¶¥–ª¢ZU-U”ÒE-µ´µ¥nm-å&¾ÜµßUD´b©¨åGˆDP{„ "’ÌïÓNÇd13™É9sÎëùðè#sÍY®ëÌLòîç:çŒÎ`0àI\äîœÁ!8À"GX„à‹`‚#,Bp€EްÁ!8øÇÉ“'uOR©R%k7»yóæÿþ÷¿ÿýïoܸ!÷ä£>’i÷îÝ‹ï>\¼xqûöí+T¨P²dÉêÕ«wêÔéË/¿|ðàÙ’ù¾+ÜÜÜüýý›4iòÑGå}Y-y#;V®#Àfnrw€úõíÛ÷Þ½{Bˆ;wFDDÈ݈ßÿ½W¯^çÏŸ7¶$&&&&&nݺuîܹK–,éÔ©Sá[ÈÉÉIMMMMM=xðà‚ ¶nÝúÜsÏÉ=,Gp¿ÀÀ@OOϼíAAArw E’кuk)ÊKÜÜܲ³³¥ŸÿüóÏ—_~ù·ß~«W¯^ÞuïŠû÷ï iii‘‘‘‰‰‰…¬bÆÏÏOî#ÀjGù[µjÕAUzÿý÷©qðàÁï¼óÎ3Ïûì3©ÅÕÕõðáÃÁ˜)MÝ»wÏ`0Lš4IzØ­[·J?Oš4IÚø/¿üh¶¢N§3fŒ±Æ-Ô¯_ßßßßtÉråÊÍŸ?ßÝÝÝlõ={öW·df¶mÛ&-æîîžžžnl2dˆÔÞ£G©åå—_Î÷Wn¯^½òö¿[·nµHúôé#µ¿ÿþûEé¿Á`èÑ£‡´dÙ²eïÞ½›wŽ;Ö¯_¿~ýúÑÑÑ–¼+LãøöíÛmx#p"TØhΜ9Òij_|ñÅÝ»w¿üòKé©·ß~»Q£FBˆ÷ß?11±T©RRû?ü`úPrøðá~øÁ´%==½OŸ>×®]B„‡‡üñÇ}ûöuqq1 sæÌY¶l™YOŽ=zëÖ­zõê•-[Vj¹qãÆ;ï¼óèÑ£š5kV¨PAj4 S§Nµm’ˆˆiÈ=Úµk—±ý—_~‘~èÕ«—bíÚµk×®Bètºððð<óÌ3ÒÑÑѦ+Ú̶þ !~ýõWé‡=zx{{ç]`Ë–-ññññññ={ö´¤'-[¶,Q¢„ôóÁƒ‹>4Š&wr  ¦…¢‚˜í¾ýö[©±dÉ’#FŒ~®X±¢Y)ËPL‹OÆêš¢V­Z+W®Œ‹‹;wîœÁ`˜0a‚ÔnZŸûú믥ÆÊ•+çÝ–-[ CVVVxx¸±qÞ¼yƒ!''ÇXô÷÷—Öµpy Uâªjù+è.*%K–4þ¬Óé–,YR¿~}ã5/½ôÒK/½dÕŽ4h`bŒ—e¼ð ù®röìÙºuë'£…Æ>—/_^§Ó™5Ú¼ #i¶:---%%åôéÓO?ý´Ù<µq›iii;vì8|øp||ü¡C‡îÞ½k¯—Ææþ—.]Úø³oÆžšš*ý åf3ù¾‘Œ'p.Gù³ð.*µjÕjß¾ý–-[¤‡ùÞ¥pf×µ¤§§›Þb0_7oÞ4}h ˆ¦\\ œQ±aFîîîݺu“îA³mÛ6½^¿{÷n©½K—.Ò2YYY~øáW_}e¼9¢§§g@@Àõë×­=8öí‰%üýý¥§LïþmêÎ;R·K–,éååeI®^½*ý÷bÁíxu!8(’¯5BL:µuëÖVmÁ,ö•)S¦téÒR}îÿûŸ4ym¦\¹rEésw)ÇíÛ··mÛVŠƒÆëf„Ÿ}öÙœ9s„¡¡¡ï¿ÿþóÏ?_«V­áÇÿûßÿ¶Ë1/Jÿ›5köÓO? !6mÚ4wî\³ Ï…O?ý´gÏžýÞ{ï=±3ûöí3ž:ùì³ÏÚe€‹àÀvÙÙÙo¼ñFnn®±eÏž=ß}÷ñêÛT«V->>^ÚþSO=el¿uë–Á`ùM=ç.Ú¶m+ÍVÇÄÄlÚ´Ij4ÎS !.\(ý°`Á‚:H?_ºt鉽2fh㹘’¼¥J›û?tèP)8^¸paÉ’%o½õ–é³›7o6–[µjeÉ‘œ?¾ôƒ——×óÏ?_Ä×€Âqq Û}ùå—ÒEeÊ”1Þ»ûý÷ß/èü9Ó«z Ѷm[釨¨() !Ö¯_ÿ¯ýËßß¿jÕªE?_°(»f«…>”î@äêêj<³óîÝ»Æibcþûý÷ß-¹ O¥J•¤8`<‹ñÿþïÿòÞºÜæþwîÜÙ¸î¨Q£¦M›våÊé¥Y±b…ñ†šO=õTƒ ïíÕ«Wßxãèèhé᫯¾jz%u’û²n bz•òåËW+ÀÏ?ÿl0Î;g,kM›6-33Ó˜{úõëgºÙŠ+JíM›65kVVV–¡à[Ï †[·n§}[·n=eÊ”^½z÷5yòdi±|·ðý÷ßKÏ<óŒ±qß¾}R£›››U»(ÈÖ­[M‘FDDŸÊÍÍ5^T^ªT©®]»¾ôÒK¦_â<~üø‚úÿûï¿+UªÔóÏ?¯×ëMwd¼OQúìØ1³z¤¿¿¿t9¶¤dÉ’ñññ…¿+‚ƒƒM·P®\¹7nä» 7Ô„àà–ÜÇQ±qãFƒÁо}{cì¾F%**ʸ̎;Œ›5~ÇŒ$ï7ÇäíÉO?ýäëë›w×ÇÏÍÍ•–)Jp´pÉÊÊ2æ6!Ä¢E‹LŸíÝ»·Ù6CCCßR8pàÀBúo¼séºÆ¡é7Ç¥ÿûöí+èvJHHxî¹çìò¢P8áï“cöòèѣ͛7 !Ì2%85‚#,ÂT5,Bp€EްÁ!8À"GX„à‹`‚#,Bp€EްÁ!8À"Ç'HJJÒëõüñ‡ÜÁñ V¬X!wÁMî(Tzzú™3g6mÚ´f͹û ÇüuéÒåêÕ«r÷@AŽùûì³Ï>|(„X¹råo¿ý&wwäGpÌ_óæÍ¥vïÞ-w_àhz½^î.òqæL‚Õëtr÷ºXil¸¶Óר‘`ýÛÉùB›o&èõz^zmâ¥W]éÇ`(x‘ÿ:Qð:ÎõÒë,‹„ƒE‹i•ñ ÖÐj‘ˆàpzf¡È’ðc– ˆÎÄ†Ô …çkãAÔhl$8œ”i@²0™†EÕ&E¢e ˆ¾ÂÎÄ“,HƼ¨’°HR´^Þ˜ÈQ³ Áà´žm¨¯j1ÑqŽE“"“UaIŠŒNŸ ‹3KŠ,Ç!8v³}ûv¹»yðÒ;‚S”òÒÛ0rM2 ‹©bCp(ŽN§½#yÑ„EÙ¹ÈÝ¥ûôÓOêÕ«'wG@t:[R£Aœ55J–Æ,ýCº¿ÿLþATŠ ¹sm°–P\T&‚#@~Úš›&2̘9:ÊDpÈɶB£SFFÎb,yÑY²±¶Ð(œ45Rb,˜94΂àVÎh$2€£“"8Š›& DÆPbtjG@±ÒJj$2>Ž£:ÅGý©‘Bc”Õ„à(&*ODÆ<ˆŒêCpõ§F"£ "£Z§æÔH¡ñqDFu#8KÅ©1$4”ÈhDdÔ¹;P3Õ¦FNètÉIIr÷CtBè„05€àp5§FƒZ£ 2jSÕ‡PyjÔ<&¦µ‰à°?u¦F®ƒ‘ƒ‚ȨUG€©65j>2Š¿'¦¡YG€=‘ÕŠB#Á /R£òaDpØÚ"'527Çö¡¶Ijµ¥`뀂ԈÇv@jT ÈÁPT¤F5¡ÐˆB0¡ùÔ¨ÝÁÃG@‘¨ªÜ¨áÔH¡– 8lGjT °‹Üh©QH°G€Ô“µÔ3+Ç-„ 5ÂG€-Ô3I­áÔ¨Åa£h˜ªR£¢a*Ž«©$n©dVZAj„­Žë¨d’Z«©Qsc†]1U ÐR#`‚#À j(7’[1U °©ÑqR#ìˆàÐ M¦Fm ÆT5À"N_n$5EFp8©Qæ“áGÀ“9wîrîÞÛ4bR#ƒsOàô“ÔZÂ¥0p(‚#@Õ´Tn¤ÐGcªPç.7’»"8TŠÔØÁP '.7’ 8T‡Ô8Á?g-7’‡!8ìC©QKH(~G@>œµlç¬ý¶~ ¤FÈà0Ç$µÂ‘!‚#@H€ãqÖr£6!/‚#Àùi£ÜHj„쎀8e¹‘Ô‚#À™‘bDpüÅ)Ë@j„rNKåFR#…àÂˤF ØNˆÔÈàpÂr£Ú‘¡LG€³Q{¹‘ÔÅ"8¬&g¹‘ÔȇàZçLIÌ™újÓøHP6‚#À:œÝè ¤F(Á4Í™JxÎÔWëGj„3 8œ©P‚#hwáQR#œÁ xê-7’á\Ž QNSn$5ŠAp@¤F8#‚#håFy‘ᤎ¥RijœÁ4ÇiÊ*E¹΋àP$•–IpjG€òE"8€¶0O-R#T€àP5–IP‚#hˆ”I€‚p R#Ô„àZA¹@Ê ÆÔH¹*CpÀ!HP‚#h‚Òç©UWn$5B•ŽØ©jEpõ£ÜXœHP1‚#@VêJ€ºæøŽA›Qn„º@å]ÑStç¬ ©jGpÈ„Ô8‚#¨™Ò/‹Q R#4‚àƒŠÊ¤Fh‡›Ü(&ëÖ­[»vmbbb©R¥Zµj5vìX??¿B–ÏÊÊúᇶmÛ–œœìççW§N·Þz«zõêr¬@¹€}i¢â8wîÜI“&;w®qãÆÞÞÞëׯã7p¸K—.ÉÝÈC‘/}H²µ³¨!ÂêU¬íShhrR’pþéÝФääd…¾ô°¿:ÈÝ¥Pyp”.öòò2k÷ööBܹs'ßµÒÓÓ¿øâ‹û÷ï×®]»N:©©©ûöíÛ¸qãsÏ=×®];Kö› ÷Ð!¹»y(𥷡KŽ…N' Å&Æ!MRÿ}¬øÒÃîòþYÏ[!Ò•G___N—‘‘aÖ~ïÞ=ñwÝ1¯qãÆýþûïãÇ}ú¼ûî»?ýôShh¨ÜÀÂ0Oí8œÚSù9Žnnn>>>y+‹éééBãuÖ¦®_¿¾{÷îjÕªS£¢|ùòo¾ùæ£G6lØ ÷˜À ©åš@ãT…©©©RR4’Îã Ì»|jjª¢jÕªfíR¡ñÆrìŒr£…(7êŽ999±±±ÆƒÁãçç× Aƒ¼ËW­ZÕÕÕõìÙ³†ÇÿçX:¿¡Zµjr £ÄÒžûdý H€‚cdd¤‹‹Ë7ß|#×(„ˆŠŠºyófÏž=ÝÝÝ¥–û÷ï'''KÇyzz¶lÙ2%%嫯¾2Þ!üìÙ³ .,Q¢D›6mä ¸‘‰Ê/ŽB”/_~ìØ±3fÌèÚµk‹-RRRâââj×®=tèPã2111ï¾ûnõêÕ7oÞ,„øôÓO{õêµpá­[·ÖªU+55õ÷ßÏÍÍ4iÒSO=%÷€ @J¼,ÆùˤFÀHýÁQñÚk¯•+WnãÆ[·n îß¿ÿèÑ£¥;òäËßßëÖ­‹/Þ·oßž={üüüZµj5bĈ:uêÈ=p*Ο˜ÒøHÛ›^¯ç>ŽÚ”œœÌÝ´I9/½â*ŽÎ /7*ç¥G1ÓìßzõŸãAj´ÿ˜¤Gp ¤F /‚#¨åFÅ€à€9Ê@¾Ž{sòr#©(Áœž²æ©I€z`‚#h寻O¹(Áœ›“G5!5ODp؉3gXR#` ‚#81e]@íŽ{ ÜhÁPd¤F@Žà¬˜§.:R#`‚# hœ¹ÜÀ*G€FQn¬Ep§¤”yj§-7’šCjlCpM Ü èŽà|lEA¹°Á`çL¯¤F (Žàd”rY í!8¬G¹Ð$‚#ÀJ¤F@«ŽàL˜§¶ ©° ‚#ÀÎYn`G€ÊQnì…àNCþyj',7’;"8T‹ÔØÁT‹r#û"8€s ¶Y‹r#`wG€œ-·’G 8€ÿ² 8žŒr#!Á 2¤FÀqŽ t2ÏS;U¹‘Ô8ÁP0§JàP Ê€£@Ñ䜧vªr#©(GX„àÈåFy@¹¸ï·eCÖØ€ùy8U¹@±!8€zPnàPGP(Ùª~ÎSn$5ÅŒàpJ¤F ø@%ì3Oí<åFÅàJD~+åF@GÀßœ$®’¹@q¸}#e"8„”<Áà4H€¼Ž ,òÌS;I¹€¼Žç@¹Á4ÏʤF@ Ž  2ÌS“XŒà‹@Ã(7°Á”‚û~ç7@Up6GÐ*g(7P‚#@¡(7JCpE(îyjÅ—I€`‚#håF6!8€ü¸žúñ¡©t`€ó#8€Æ(¾Ü@±Žà|(7ÁdV¬@e—I€ÂŠ@j”àNÆöyje—(ÁäD–“PnœÁ´AÁ•Ô8 ‚#8_O @ùŽ ›â+Rn`G€lH€s!8€<Šïk\nà\ŽyPnœÁTM©åFR#àŒŽ ƒâ›§û!8€zQn`WG@±"5΋àÅ­˜æ©Yn$5Nàj¤ÈÔÀÙÅ„r#àìŽP¬ŠcžZ‘åFR# GX„àêB¹€Ã øhó¾ß¤F@5Ž "Š,7P ‚#À(7jBp€bâðyjå•I€Ê¸ÉÝb²nݺµk×&&&–*UªU«VcÇŽõóó+|•ãÇ/Y²ääÉ“÷îÝÓëõo¿ýv“&Mä€l4Qqœ;wî¤I“Î;׸qcooïõë׿ñÆ<(d•]»võíÛw×®] 4ˆ0`À®]»ä €r#ÇSpLHHˆŠŠ ܾ}{TTÔŽ; pìØ±Ù³g´Ê;w>øà77·+Vüç?ÿ‰ŠŠZ½zu‰%>úè£ÜÜ\¹À)iízjR# JêŽk×®ÍÍÍ=zt@@€Ô2~üxŸmÛ¶”ׯ_Ÿžž>|øðFI-uëÖ}ñÅoÞ¼yüøq¹y(¯Ü@•Ô:äââÒºukc‹««kË–-SSS9’ï*{÷îÕétݺu3mœ9sfBBB½zõäM Ü@T~qŒÁ`HLL,[¶lÙ²eMÛkÔ¨!„¸xñbXXXÞµNœ8áççtøðáøøøÛ·o?ýôÓmÛ¶õôô”{@œ’c ‚ +7’SypÌÈÈÈÉÉñõõ5k÷ññBܺu+ï*YYYwïÞ­V­ÚǼzõjc{¥J•æÍ›÷Ì3ÏX²_½^oÖ²}ûv¹îÒ¥Krwò°à¥INN¶n£!ÂÂUB„¥KƒÐ$åôÆñøÔkD‡äî‚R¨<8J—N{yy™µ{{{ !îܹ“w•»wï !oܸ1cƌ֭[gffFGG/X°àwÞÙ¼y³%uÇ„„¹‡y„„„ÈÝÈã‰/½Uï¿æ©-YC§ƒ¢ÞvZûhm¼Ú”÷ÏzÞ ‘F¨üG___N—‘‘aÖ~ïÞ=ñwÝÑLÉ’%¥¾øâ‹nݺùúú½õÖ[Ý»w¿téÒ–-[ä'£°™dGŽ”Ij@픿üòËÄÄD;nÐÍÍÍÇÇ'oe1==]a¼ÎÚ”——WÉ’%===Û´icÚÞ¶m[!ÄéÓ§å>Hð7%eRR# Ê ŽQQQ:uêÙ³çŠ+ò=Ñ©©©RR4’ÎÀ Ìw•€€wwwNgÚ(ÍPgggË}8­Ý¾€º)+86¬B… 'NœøôÓO[´h1bĈ;vdeee›999±±±ÆƒÁãçç× Aƒ|WiÓ¦Mzzú™3gL¥{÷<ýôÓr$BPn eÇ1cÆüòË/?þøcß¾}½½½wíÚ5jÔ¨çŸþã?>zô¨mÛŒŒŒtqqùæ›o¤ó…QQQ7oÞìÙ³§»»»ÔrÿþýäädãÅqÝ»wBLš4ÉXõ<~üø¿ÿýoŸvíÚÉ}@YH€vè ŠùV3ÙÙÙ{÷îÝ´iÓ®]»233…UªTéÖ­ÛK/½T¡B«6µlÙ²3fT¨P¡E‹)))qqqµjÕZ¶l™ñ6=[·n}÷Ýw«W¯¾yóf©eÉ’%sæÌñññ ËÈÈ8tèN§›5kÖ‹/¾øÄÝéõz®ªÖ¦ääd®¯Ô¦‚^zÎSSnT>õš¥Ù¿õʽ››[xxxxxxFFFttôœ9sRRRæÏŸÿÕW_5nܸgÏž]ºtquuµdS¯½öZ¹rå6nܸuëÖàààþýû=Zº#OA† æïï¿|ùòß~ûÍÏÏ/""âí·ß®^½ºÜG”E˩РåV…iii¿üòËöíÛ÷ïß/]•R®\9ww÷Ë—/ !ªU«¶téÒàà`¹»iN³ÿjšUÜGÅ”I|ê5K³ë•Xq¼yóæÏ?ÿ¼cÇŽƒæää!üýýÛ·oß±cÇF !~ûí·¹sçž8qbòäÉß~û­Üý€|¨þzjR# AÊ Ž+W®Ü±cÇáÇsss…eË–}á…^|ñ۰0ÓYéæÍ›7jÔèÙgŸ=tèÜ]€â¥˜r# RVpüä“O„¾¾¾íÛ·ñÅ›4iRÐYŒžžž%K–Tà<58bR#åF@›”{öìÙ±cǦM›ZrÕ åFŠ¥îyjR# Yʺã¶mÛöïß_Pj|ûí·_xá¹û2QL¹€f)+8fddûlõêÕ ׯ_?yû vD¹€‘98N›6M1uêT)8J Gp Xö/* ÜHj`$sp|ûí·…uêÔ‘¾ÿþûrÀ?HLÉßzë-Ó‡C‡•·?Pœž0O­€r#˜RÖ7Ç€óR_Ì£ÜÀŒÌÇ={öX»JëÖ­åí3¹s(©@^2ÇaÆY»JBB‚¼}€¼ÔzûF0%spìÚµ«ÜG”‡r#E’98Κ5Kî#x ©@A¸8Š*44ÄžóÔ²–I Á7Ç€’È=I …à›c¡Ü p|s ‰N'’’’…±b•‚æ©™¤ l|s ,¢è‹cîß¿Ÿ••%w/ XPn x2WóuìØ± œøàƒìììï¾ûNî>À_ìV%¤ÜÀI(+8ž€Pn`eÇÈÈHƒÁðá‡fgg›¶çääL˜0!'''""Bî>€ýÈTn$5°Ì÷qÜ¿¿éCWW×=z¬_¿¾]»v‘‘‘¡¡¡:.999::úâÅ‹z½¾C‡òv„½æ©IœÌÁqРAù¶_¾|yþüùf Íš5KHH·ÏÚ$spìÚµ«ÜGä@¹€’98Κ5Kî#Ö±ÛõÔÅßsR#€¢QÖÅ1…ûàƒÂÃÃåî·ààœd®8æ•––öË/¿¤¤¤˜µ?xðàçŸvuu•»ƒ`ÊTCYÁñÚµk}ûöýóÏ? Z _¿~r÷€¦Ù¡V(G¹‘ÔÀ.”¿ûî»?ÿü³qãÆ]ºtÙ²eË&Ožìééyúôé•+Wöë×oâĉr÷œ ©€½(+8ÆÆÆzxx,\¸°L™2áááÍ›7 iÖ¬™"44ô“O>yùå—«W¯.w7h”.‹áìFÎLYÇ\¹r¥jÕªeÊ”B”+WÎÏÏïĉÒS‘‘‘~~~ß}÷Ü}gB¹€)+8 !\\þéRåÊ•“““¥Ÿ]]]õzý±cÇäî ØªØË¤Fö¥¬àtþüùû÷ïK+Uªtøðaã³:îÒ¥Kr÷€FužšÔÀù)+8¶mÛöÁƒï¿ÿþ¹sç„aaa.\Ø·oŸâæÍ›¿ÿþ{… äî#€F)ëâ˜ìرc×®]ƒañâÅ-[¶tss{ë­·6lxúô錌ŒŽ;ÊÝG°åFª ¬Š£¿¿ÿªU«ÆŒS§N!D… &M𔕕õ믿¦¦¦FDD¼öÚkr÷€9×× ’8ˆ²*ŽBÿaÆöíÛ·K—.Ç •»w`=nÁ@-MÝ¿ßÝÝÝÛÛ»iÓ¦r÷¬@¹€*)18;vlÁ‚'Ož¼qㆋ‹K… 6l8räÈ*UªÈÝ5ZT¤Šañ–IJYç8 !æÏŸ¹gÏž7nxxx”,YòâÅ‹ÿýï;vì¸zõj¹{ÊEjàhÊ Ž{÷î]´h‘««ë€vîÜùÇÄÇÇïÙ³gÈ!BˆO?ýôèÑ£r÷€¶é²În .Ê Ž«W¯6 ï½÷Þĉ+Uª¤Óé„ÁÁÁãÆûàƒ²³³ùÊANƒIjª£¬àxòäIæ}ªÿþžžž|å äEjP<”…AAAnnù\²#]%“‘‘!whˆíóÔÅXn$5(6Ê Ž 4¸xñbzzzÞ§îß¿Ÿœœ\»vm¹û QÊ Ž‘‘‘ƒáÃ?ÌÎÎ6mÏÉÉ™0aBNNNDD„Ü}€Qn n2ßÇqÿþý¦]]]{ôè±~ýúvíÚEFF†††êtºäääèèè‹/êõú:ÈÛaÚ¡üK¢IŠ™ÌÁqРAù¶_¾|yþüùf Íš5KHH·ÏP˜âÊ›¤FÅOæàصkW¹ä£·oÔÉÝwp™ƒã¬Y³ä>`?”¨š¿«ZqõêÕS§N¥¤¤>ÞÃãmÛ¶UªTquu=þüîÝ»üñÇS§N­ZµÊÕÕUîn€¹b+7€Œ”¿ÿþûøøøúõëýõׯö7n¼ýöÛñññßÿý!Cäî&<&4$”r#-PÖ Àcccu:ݼyóLS£¢\¹róçÏwqqÙ»w¯Ü} r6ÌSO¹‘Ô@vÊ Ž§OŸ®R¥JpppÞ§Ÿzê©S§NÉÝG©€(+8zxxuâĉK—.=ýôÓr÷LètÅt55(€²‚£ôE2£F2;—qß¾}o½õ–¢K—.r÷ŠåFÊ¡¬«ª;vì³qãÆ¡C‡W­ZU‘’’rùòe!D—.]:wî,w¨–ÕóÔ:Î Â,’Õ%R#%QVpB|ñÅMš4™7oÞ•+W®\¹"5–+WîÝwßíÞ½»Ü½€âCj 4Š Ž:®G=zô¸~ýúùóç CÕªUå¹Ü(wÇ ø(+8^ºt)77·råÊBˆ€€³»9€Rü3uÜåFÊ£¬àرcLJþúë¯þþþr÷dCj LʺªºzõêBˆ3gÎÈÝÚbÝ<µN' Ð9hžšÔ@±”?úè#OOÏE‹effÊÝ©€’)kª: àË/¿œuq 6È~:U½ÜÎHAÁQ§Ó•*UêâÅ‹·oßÎûlzzúùóçëÔ©#w7 ¨(7pR Ž®®®=zôÈÍÍýàƒ>|húTVVÖøñãu:Ý!ClÛøºuë"##4hðüóÏO˜0!--Íòu/_¾Ü¨Q£±cÇÊ}„/Ç\Cj༔u;žW^yåäÉ“{öìiÛ¶mÏž=CBBt:]rròÿýßÿ]½zµcÇŽ÷îÝÛ³gqùÐÐÐÊ•+?q³sçÎ]¼x±——WãÆSRRÖ¯_öìÙåË—{zz>q]ƒÁðÁÜ»wOîcÀn, „/d¯yjR#§¦¬àرcGé‡ëׯ/Z´ÈìÙ­[·nݺմåý÷ß⢢¢£££„Ÿ}öÙòåËgÏžýÑG=±KßÿýÁƒå>0Ô€ÔÀÙ)+8víÚÕªå«U«öÄeÖ®]›››;zôh)5 !ÆÿßÿþwÛ¶m'Ntq)l²þìÙ³sçÎ}úé§OŸ>-÷±`2–ÀÙ)+8Κ5ËîÛU-„ˆˆˆHHHˆíÔ©“Ôb0bbbüüü4hwù*Uª—”ܹsgß¾}åË—oРAPPÜ`‹'Ôí]n$5P%õÇÈÈÈÅ‹óÍ7­Zµ’®‰‰ŠŠºyóæë¯¿îîî.-sÿþýëׯ»»»W¬X±yóæÍ›77ÝÂÉ“'÷íÛæˆÛL©,£þàX¾|ù±cÇΘ1£k×®-Z´HII‰‹‹«]»¶éwÆÄļûî»Õ«Wß¼y³Üý`6$C›ç©ITLýÁQñÚk¯•+WnãÆ[·n îß¿ÿèÑ£¥ê#­³k¹‘Ô@Ýt®"´7½^Ï}µ)99™;º) g7Z[n4¾ôG­áS¯Yšý[¯þ«ª @”ÀGZU@j´íìFR#- 8P³â¹«whH©€h’ý¥Nˆ¤äd¹ÇÅà@µ ‡§Fkç©™¡ )G°©€Ö¨S1”@kŽ´Ä®§6’1h Á„°²ÜHj MG*”aÑNåFR#Í"8ÐR#Á€ÚØ-œ§&5Ð8‚# °G¹‘ÔGª’OD|Rj´¤ÜHjAp€'"5€„à@=TnHŽÔ‹SÀ®Ž´ë‰åFR#˜"8P óòb‘ˤF0Cp F¤Fp‚#5°ïM¿I/‚#Õ)Z¹‘Ô!8pzEËRcAåFR#‚à!5@᎜›½Ê¤Fx"‚#µ(©¤F°Á€û'+Zœó–I`!‚#M#5€åŽœ•]ÊË89Nm€âBpà”ŠþU1¤F°Á€3³µÜHj8-kR£i¹‘Ô¶!8p>:0jPÜŽÔÏXn$5@Q8›Ë¤F("‚#'cmj”ʤF(:‚#§bÓeÔ¤F° ‚#5Ó °ùþà€Ç8[ʤF°‚#'¡Ó鬜pf†ì‹àÀèt:a°ªx¨3þ`'G*$¥FG°+‚#ų²ÜÈ 58Á€²YyAŒ”u”ÀŽL§ƒåÑ‘Z#8Á€JS#åFp‚#¥²¦ÜH­ŠÁ€"Ùš)7€ã(5ÄPk€bCp P–¤G³ÔH¹ÊMîÀã,+7Jß CH€âDp $§ÆÂÓc¾ÓÓ”Àјª ×‰‡ ‚#e0I…È‚R#åF(GNƒZ#È‹à@,(7’)7@ñ 8›§6Rk% 8Õã©1ß Yxj¤Üņà@>E®5’ 8È$OjÌ#™¡EáàÁ†ÔH¹v¤×ëåîd“ wœÁ€ ¤æëQÌôz=ÑAËxXŽà Ø:Imáô4åF(~œã x=©ÖHÅ"8(Fù¥Fc›å©‘r#Ȃ࠸Pk'GpP, HR³U©‘r#È…à@6¤Fp.GŽWÐ$µ•© /nÇÀÁ š¤¶>2RnyQqàH§Æ¿nó pGShj4XY:¤Ü²#8p ûÍP R#Pìîܹ3|øðÊ•+{{{·lÙ2..® %=zäææ¦{\¹råäÁ_Ž;Ö»wï   ooï°°°¹sçfggËÝ)'Æ9Ž ß} !„0<á~Žä—žžváÂ…^½zùûûGGGwèÐa÷îÝ 4È»prrrNNN³fÍBCCÞÞÞrB!’’’Z·n““Ó½{÷Ê•+ïܹs̘1{÷îݰaƒÜ]sVGöV@j4øä“¶G¹È#++KQ¢D Gl|Μ9‰‰‰ßÿýÀ…ï¼óN£FÞ{ï½]»vå]811Q1mÚ´ˆˆ¹Š¹1cÆÜ¹s'..®qãÆR'‡ ²lÙ²;v¼ð r÷Î)1U À® MìE¯×›µ©S§Jñ¨èÖ¬Y<`Àéahhh¯^½bbb®\¹’wa)8V«VͶ}:t¨sçÎAAAf“ÝîîîEÈ®]»Z¶lizXÞzë-!Äþýûír 4ˆŠ#Ç2M”Ç9þüáÇ‹¾ôôô3gÎôíÛW§ûçÞáááK—.‹‹ëÞ½»Ùò‰‰‰¥K—^·nÝ­[·j×®ýì³ÏZX ݹsgûöí+Uª4xð`//¯ 69r¤aÆááá..E­megg92,,Ì´1%%EáááaC®EGöóx04žÔ˜ß“–mÔ»k×® †ÀÀ@ÓÆ€€!Ä7ò.Ÿ˜˜èââR­Zµ´´4©¥fÍš+V¬hÔ¨Qá;ÊÌÌ8p`ppð‚‚‚„cÇŽm×®]BBÂäÉ“K—.]ĸ¹¹MŸ>Ý´åÖ­[Ó§OwuuíÕ«—ÌGÙiØIžÔHâ” ;;{Ë–-=ûÒK/™µddd!Ê”)cÚèãã#„HMMÍ»…ÄÄÄÜÜÜ©S§öêÕËÝÝý§Ÿ~z÷Ýw»uëvâÄ i­‚ÄÆÆ^¾|yÚ´iRjBxxxŒ7®K—.ëׯ4hPbfÏž=o¼ñFbbâ¢E‹ªW¯^<_}ŽìáI©‘r#œ”NÖ;Õþ©ÉÉÉ1}˜›››ïb÷ïßïÖ­[Á»0߇¿¿¿âîÝ»¦éééBˆ²eËæÝž={J–,i|êµ×^ËÌÌ9rdttô!C éÿùóç…õêÕ3m¬[·®âĉEˆÑ… Þzë­M›6U¯^}çÎááá–|ä‹à ÈPk$5B!”|먇š>|ðàA¾‹ùøø¬F`` ‹‹‹Ù¬ôÍ›7…*TÈ»|ùòåÍZÚ·o/„8yòdá;òôôB˜ÝUQŠ¿ùžàhí@$«W¯6l˜··÷’%K^{í577’O‘pøIj4;©1¿EØÍåË—Mæ{ɳ°~†×ÍÍ­V­Z±±±¦{÷îÕétµk×6[8%%eóæÍááá5kÖ46JåÉ*UªÞi¾øÔ©S¦R­Q¯×} BˆM›6½úê«/¿üòâÅ‹Í&ßa#ì­FrwòHJJ’» ÅÎäwˆxò"oÕàd¿š´øÒ«‹3þÞ®ZµªbÓ¦MÒÃsçÎI÷ÜλäíÛ·­óçÏ7Ýøµk×Û·oŸwÉk×®•,Y²E‹YYYRKNNNŸ>}ÜÜÜNž< `êÔ©|ðAõêÕ_|ñE__ß;vÄÇÇþùçµjÕB¬^½úÍ7ßþüîݻׯ_ذa®®®ÑÑчþꫯ̮é¶m §N:}útÍš5_ýu³§zôèÑ¥K—b}µÔ‚àÀ&–¥F®‰§I“&:uZ²dIvvöСCË”)óÉ'ŸØeËeÊ”‰‰‰;vltttZZZÓ¦MW­Zeü¾ÁÌÌÌÛ·oϰ7nÜSO=5sæÌ•+W–,Y²nݺ۶mëСƒôlVVÖíÛ· :ÿ²cÇŽqqqS¦LY¸pafffýúõ·mÛf¯ït‘îL~êÔ)³Ùp!DµjÕ޶ÑYû!x"½^Ÿ w/ ƒäää¹{Q,þ΃ÔøøRÖlØ9S£†^z•rÆßÛ!!!+V4;Q™–.]zâĉyóæÉÝ‘ÙðpÆ÷Œ]𕃬d’ ÌP(TffæîÝ»6l(wG`GÖx<5Z° 5ÛvÎr#€Bìß¿¿fÍš¯¼òŠÜ}pŽ#‹étÂ`(|zÚdA+·Mj¬1bħ¸¿L›6mÚ´i#w/`7Z ŽëÖ­[»vmbbb©R¥Zµj5vìX??¿B–ðàÁþóŸèèèK—.•.]ºF¯½öÚóÏ?/÷8ùü w€Œ7Nî.@‹4çλxñb//¯Æ§¤¤¬_¿þìٳ˗/—îYŸWvvö AƒŽ=êããÓ´iÓÌÌÌìÛ·oÔ¨Q#GŽ”{4€¬I”@­ÔŽcBBBTTT``àöíÛ£¢¢vìØ1`À€cÇŽÍž=» UÖ®]{ôèÑFÅÄÄ,Z´è»ï¾Û°aƒ¯¯ï‚ ò^Ò¨ŸN§#5´×®]›››;zô耀©eüøñ>>>Û¶m+èûà·oß.„˜8q¢±$Y½zõáÇçääüúë¯r(^:t×.’@ýÁñСC...­[·6¶¸ºº¶lÙ255õÈ‘#ù®’œœìååeöœÒWj^¼xQîÅGgå½^)7€º©üGƒÁ˜˜X¶lÙ²eËš¶×¨QCqñâ۰°¼k-Y²ÄÍÍüÈœ|Ø.› 4 Bˆ„„„§Ÿ~º%ÓÓÓÏœ9Ó·o_Ngl _ºti\\\÷îÝ ßÑÎ;Û·o_©R¥Áƒ{yymذáÈ‘# 6 wq)êeÙÙÙ#GŽ4ûná””!„‡‡‡]”õûçŒF!„ôËÔÀ®]»f0Ìê…Ò InܸQøº™™™ >pà@PPbìØ±íÚµKHH˜>>EL‡… tqq1›•¾yó¦¢B… …¯+}—¯Ù]¥ø›ï ޶ dõêÕÆ óöö^²dÉk¯½ææFò) 6:‘ç©P£Ë—/›>¼råJ¾‹9tªÚÍÍ­V­Z¦_Ï&„Ø»w¯N§«]»váëJóŧN2m”jz½Þ.Ù´iÓ«¯¾úòË//^¼Øl>¶!8ê‘¡QØ~)Œq¤F@®^½ºyóæÎ; !’’’Ž=šïbªB :ôwÞ1öäúõëÑÑÑíÚµ )|ņ V«VmÁ‚#GŽôõõBdeeÍš5ËÛÛ[ÚTb0ÆW©R¥+V¸ººÚç kÁPƒ|"£íœDR#P<ÜÜÜúôéÓ¥K—ÜÜÜÍ›7t‹»OUϘ1ã‹/¾˜>}úðáÃ…ƒ Z¶lY¿~ý¤ü÷ý÷ßgdd¿¥põêÕo¾ùæàÁƒçÌ™c¶ww÷ùóçwïÞ½~ýúÆ suuŽŽ>|øðW_}•÷¶Ž6 äÔ©S§OŸ®Y³æë¯¿nöT=ºtébç×CŽ€ÓËgnZØ-5rA  XMš4éÔ©Ó’%K²³³‡Z¦L™O>ù¤ö›™™yûömã–eÊ”‰‰‰;vltttZZZÓ¦MW­Zeü¾Á¬¬¬Û·otþeÇŽãââ¦L™²páÂÌÌÌúõëoÛ¶Í^ßé’˜˜(„8uê”Ùl¸¢ZµjGÛèw¬féõú„„¹{$''?qjƾò/4 9S£6ËÅÿÒþœñ÷vHHHÅŠÍN.T¦¥K—ž8qbÞ¼yrw¤@6¼œñ=cE½-;Yèþ.4æ3=Mj ™™™»wïnذ¡Ü}0U 8Ÿü禅=ç•Iìbÿþý5kÖ|å•Wäîìƒà8“禩Ж#F8ÅýeÚ´iÓ¦M¹{»!8Îá ‘Qõž;¦#5Ê7nÜ8¹»-"8JWXdò_öLjí 8Ц…†2{§F¹S(@ÑŽ€B=¹Ð(ì6=mÜ$“Ô€BÅyBd) ’ODpäÉ‘Q²!8Š`idvžž¤F€ÅŽ€Ì,ŠŒÂQ×­–#8²±"2 û©`%‚# K#£pà rHkbe]d)4 R#À&G ˜X…cïÄMjØÆEîê§ûû `,-4’(FË–-§NZÈ=rssÓ=®\¹rrwü/»wïnÓ¦M@@À¿þõ¯æÍ›oذAî97*Ž€YWeÿÊ?R#«ÄÇÇÿú믅,“œœœ““Ó¬Y³ÐÐPc£···Ü}Bˆ­[·vêÔ)44´ÿþžžžÑÑÑ=zôøöÛo_ýu¹»æ¬Ž€CØ…£Îh4îÔ¨FVV–¢D‰ŽØxvvö®]»~ûí·… æææ¾pbb¢bÚ´i…çKY|øá‡AAAGŽñññBL˜0¡V­ZS§N%8ÚŒ©jÀά›˜þk0H,§×ëÍ‚ÚÔ©S7nl—§¦¦¾ð S§N½qãÆ–‚cµjÕlÛסC‡:wîd6Ùíîî^ÄQ<|øðäÉ“;w–R£ÂËË«E‹—.]zðà]”Qqì&4$DX•Eq©ІóçÏ>|Ø.› 4 Bˆ„„„§Ÿ~ºð…=<4}XÐ>>>†‚ý•/_Þ˜%íÛ·Bœ-[¶tëÖmåÊ•½{÷66úùù {ÔY5‹à}úöíÛ»wï:uêtãC»OUϘ1ÃÏÏoñâÅBˆ€€€©S§ÆÆÆV¯^}Ĉ~øaXXØš5k¦M›V«V-!ÄêÕ«ýüüÆŒ“w;îîîóçÏOMM­_¿þôéÓgΜټyóØØØéÓ§} þþþ'NܱcGãÆ'Nœ8iÒ¤&Mšüøã£G–Τ„ ¨8ù(R‰Qw•ѸOR# )Mš4éÔ©Ó’%K²³³‡Z¦L™O>ù¤ö›™™yûömã–ãÆ{ê©§fΜ¹råÊ’%KÖ­[wÛ¶m:tžÍÊʺ}ûvAç_vìØ1..nÊ”) .ÌÌ̬_¿þ¶mÛ^xá{uuÊ”)¡¡¡ ,X´h‘‹‹KÍš5׬Yc:s ké˜æ·;½^Ÿ w/` Û¯•B‘œœ"}Uk±¬l¸FAj´—d«ná åqÆßÛ!!!+VŒ•»#O¶téÒ'NÌ›7OîŽȆ7€3¾gì‚©j@ˆ¢\+m"$4´8'¦ÿê¹MPKWlg?hSffæîÝ»6l(wG`GhZQÏbügC:¡Ó%'%wÿ­?…’éiÅiÿþý5kÖ|å•Wäîìƒs¡QE=‹ñŸ ™œÎ˜lÅwÇØeÏœÔhÖˆ#Ê”)#w/ž¬M›6mÚ´‘»°‚#´¥ˆg1>¾-®€±yϜԨ̸qãäî´ˆàM°g^rFFA¡ ‚#TÎnSÒmNÎÈ(HY¡Nv.1 EDFk÷Ïô4À¾ŽPûçE!dÊ@p„8$/ EDFAj(ÁṈyQ("2ZÛ ¦§ŽCp„S²ó%/ÿlW%Fc_(4…à§¡3ùYõ‘ÑÚ¾Ph‚#”ÎQóÑÿì@A‘QPh(Á ULyQ(+2ZÛ €âDp„²8ûì³#GŽT®\yêÔ©ù.|øÐôa¾W®!||| EøÍYªT©ˆˆˆ/¾ø¢OŸ>7n|ã7LŸ tqq1›•¾yó¦¢B… …oY:c2;;Û´QŠ¿ùžàhí@–,Y’””Ô­[·™3gJ-wîÜÉÉÉ™1cFåÊ•ûöíkó1Ñ2‚#ž@ΰ(œ,/ "#€btùòeÓ‡]Ålí ï–-[ºuë¶råÊÞ½{ýüüD~U=77·ZµjÅÆÆš6îÝ»W§Ó=ñJ”êÕ« !N:eÚ(Õõz}Ñ"Ý®hΜ9¦iiiãÇoݺ5ÁÑFØ[5äîBQ “2õàï»ö8ú+ RîŽÃ’’’äîŠÄoW­ZU±iÓ&éá¹sç¼½½óý³~ûöm«bÀ7ÜÜÜ^xá…ÜÜ\cã+¯¼"„øã?ò.?þ|Óž\»v-00°}ûöOBVVVµjÕ‚ƒƒÓÒÒ¤–‡¶lÙÒÛÛûêÕ«EH¾í¹çžËÛnÃÀß3vÁ}ñ]qÞš»ÀNè~ ÆBzm0ˆ¤¤dKWáÖŒŠÌÍÍ­OŸ>}ûöíÝ»w:u ºñ¡4Ã[¼ËûûûOœ8qÇŽ7ž8qâ¤I“š4iòã?Ž=Z:qÆŒ~~~‹/––4hP½zõúõë7a„™3g¶nÝ:##Ãx·ðÕ«Wûùù3&ïŽÜÝÝçÏŸŸššZ¿~ýéÓ§Ïœ9³yóæ±±±Ó§O7»LÛ¶À˜ªÖ.³3¾eûÌ™ÜúËY’¢YÇ­º•÷_«Y“&M:uê´dÉ’ììì¡C‡–)Sæ“O>±Ë–§L™º`Á‚E‹¹¸¸Ô¬YsÍš5Æ™ëÌÌÌÛ·oϰ,S¦LLLÌØ±c£££ÓÒÒš6mºjÕª HÏfeeݾ}» ó/;vì7eÊ”… fffÖ¯_Û¶m/¼ð‚܇ÒÒíN¯×'$$ÈÝ‹|(%)þÕ';y1oßóv<999$$$ÿU8‘QÕ yéáû{»!!!+V4;¹P™–.]zâĉyóæÉÝ‘ÙðpÆ÷Œ]0U­fº‚' åÉ/Æ™hg›Œ6_ÊÌÌܽ{wÆ åî샩jUQVMñ¯>9ëLt¾ƒ`V¬²ÿþš5kJ×Ö@ŽÎM‰IQ¨$,š…¼@iFŒaö}-ÊÔ¦M›6mÚÈÝ Ø ÁÑÉ(4) U…Eas‰1„¼ ˜Œ7Nî.@‹ŽŠ–÷«®”•JÔE‘§¤“““HÔ‹à¨,Ê-(þÓEµ…EÁ)ŒX†à(]~JÌ ºÇ{ª–°(È‹X‰àXL”>élÞ]–ó޼€UŽöw&!ÁÉb¢PsY1ïɋ؆€Û_ ½Þ „»mÂôFÜf·ãv›r[8P gz\ŒGDîq TµAÅ|‡ká@u&§(ÁQty¦ÊÕž…M§e2 €UŽÎO“11ïÐ-´îñ‹”È‹Œôz½Ü]œÁÑ©èò»‡fb¢°iÊihO”`ÛŠÉÉÉ!!Ü÷BpT*ÍgD#ÊŠ(ÁQȈ³¶¬HR x‹Q¾Qh:# ›NÑ$) ‚£ý%œ9C± E‰‚¤€L¸¸ýékÔ0¿Ÿ¶ºîªm¹'Þh<ïQɳ†.ï¡”{XhG؇ 5V]>ßàM5å"8Â:6œ¨™o@dDœ Áù# 3Gí*(Jò=ûPQÈJDÔ‹c ´nݺÈÈÈ <ÿüó&LHKK“»GVÈ{UʯSé?K.Ráš3:t» /½fñÒCk¨8æoîܹ‹/öòòjܸqJJÊúõëÏž=»|ùrOOO{UxДT/ÔV4Žä GÅ1 QQQÛ·oŠŠÚ±cÇ€Ž;6{öl{íÂ’Šàcÿ¤ÿ,ýgaz!°Á1k×®ÍÍÍ=zt@@€Ô2~üxŸmÛ¶åææ>qõ3gÌ_>9Ðâ(ý³*’€#óqèÐ!—Ö­[[\]][¶l™ššzäÈ‘'¯_äÀG Dp4g0Ë–-[¶lYÓö5j!.^¼øÄ-ÔÐ× ðõáâs999¾¾¾fí>>>Bˆ[·nY²½^/÷8 ^zÍâ¥×,^zh ÁÑ܃„^^^fíÞÞÞBˆ;wî"""rrrbcc-ƒ!&&ÆÏϯAƒr÷@Ç|DFFº¸¸|óÍ7ÒyBˆ¨¨¨›7oöìÙÓÝÝ]îÞÈCg0p¯Á|,[¶lÆŒ*ThÑ¢EJJJ\\\­Zµ–-[–÷6=Ap,ЦM›6nÜxìØ±àààgŸ}vôèÑÒy´‰à‹pŽ#,Bp€EްÁ!8À"GX„à‹¸ÉÝ•HJJzñÅ×®][¯^½¼Ï®[·níÚµ‰‰‰¥J•jÕªÕØ±cýüüäî2ì¬W¯^Ç7kô÷÷ÿõ×_åî…¶6ña×þÄ›"8ÚÇŠ+ zjîܹ‹/öòòjܸqJJÊúõëÏž=»|ùrOOO¹{ {ºpá‚§§gÕªUMùŽJ㣭Y|ص†?ñ¦ŽE’žž~æÌ™M›6­Y³&ߢ¢¢£££„Ÿ}öÙòåËgÏžýÑGÉÝ}ØMzzú;w^|ñÅyóæÉÝ>ښŇ];øŸ/Îq,’.]ºôëׯ ·”bíÚµ¹¹¹£G–ÞRBˆñãÇûøølÛ¶-77WîîÃn.\¸ „0«@@ÅøhkvíàO|¾ŽEòÙgŸ-\¸páÂ…Íš5ËwC‡¹¸¸´nÝÚØâêêÚ²eËÔÔÔ#GŽÈÝ}ØMJJŠ¢J•*rwÅ„¶fña×þÄç‹©ê"iÞ¼¹ôÃîÝ»ó>k0Ë–-[¶lYÓö5j!.^¼&÷`Òß’+W® 0àÔ©S¥J•ªU«ÖðáÃó=“ÎŽ¶–ña×þÄ狊£eddääää=cÚÇÇGqëÖ-¹;»¹xñ¢bþüùׯ_oÚ´©¿¿ÿîÝ»ûöí»víZ¹»û㣭e|Ø!Ñìï*ŽôàÁ!„———Y»···âÎ;rwvsåÊOOÏ1cÆ 0@jùí·ß†þùçŸ7oÞ¼|ùòrwöÄG[Ëø°C¢ÙßÇ'ËÎÎþöÛo]]]ßxã KVôõõÕétfí÷îÝÿO œKAo†ï¿ÿÞlÉfÍš½úê«K—.ݹs§ñ Ô¶–ña‡D³¿ŽOöèÑ#ÓÛ.xxxXÝÜÜ|||òþoGzzºÂxœˆUo†gŸ}véÒ¥gΜ‘»×°3>Ú0Ç]ƒ4û{€àødžžž ¶­˜˜˜˜žž^¦Lccrr²ô”Ü#ƒÕò}3 †ÜÜ\NçâòØIî®®BˆÒ¥KËÝkØmmâÃSÚü=ÀÅ1Ž‘““kl1 111~~~ 4»w°”””Zµj 8Ь=>>^¡×ëåî ì¶6ña‡)mþ 8:Vdd¤‹‹Ë7ß|#ô „ˆŠŠºyófÏž=ÝÝÝåîì£jÕª5:xðàºuëŒñññË–-+_¾ü /¼ wa|´µ‰;Lió÷SÕŽU¾|ù±cÇΘ1£k×®-Z´HII‰‹‹«]»öСCåîìiòäÉC† ™4iÒêÕ«CCCÿüóÏ£G–*Ujúôé*þÆR-㣭Y|Øa¤Íß®ü±Ü}Pƒ]»vý¿ÿ÷ÿ"##ƒ‚‚ÌžjРAÕªU¯]»¶oß>77·_|qÆŒ¦çC@üýý»té’––væÌ™'Nxxx´nÝzþüù5kÖ”»kp>ÚÚć]ƒøoJg0äîœç8À"GX„à‹`‚#,Bp€EްÁ!8À"GX„à‹hËØ±cõzýž={äîˆøæ›oôzýªU«äîXŠà‹¸ÉÝШ6mÚøûû7jÔH¥Ž Úµk×®][î^€˜ªÅÉÉÉyôè‘ܽsGÎaÒ¤Iz½~Ö¬YfíÇ×ëõÍš5ËÎÎBܼysΜ9;vlذaÆ ;uêôÅ_\»v­ ÍJ×Êì߿߬½V­ZÏ=÷œi˯¿þ:jÔ¨¶mÛ6nÜxÀ€ß|óY¶ûóÏ?§L™Ò±cÇúõë·nÝú7Þ8tèP!#úöÛoM/Ž‘zréÒ¥¨¨¨¦M›>óÌ3aaa}úôÙ¹sgA[ˆ¯U«VË–-ïÞ½kl¼wï^ëÖ­kÕªuìØ1¹_4jCpàºté"„رc‡YûæÍ›…ݺusss»yóf¿~ý–,YrùòåÊ•+W¬XñâÅ‹ß}÷]ß¾}ÓÒÒŠ²÷Ù³g2dÇŽÙÙÙ‡þúë¯û÷š*-pöìÙ.]º¬Y³&55õ©§ž2 111¯¾úê®]»¬ÚÑ’%K¾üòKww÷¦M›úøøÄÇÇ9rÛ¶mù.Ü Aƒ!C†\»vmúô鯯™3g^¹råÍ7߬[·nq¿HÔŽàÀ94nÜ8 àâÅ‹ÿïÿý?ccnn®ªzôè!„X¿~ýùóçÃÃÃýõ×7þôÓOûöíkܸñŸþùË/¿Ø¼ëÝ»wûí·•*UZ·nÝž={¶lÙ²wïÞV­Z=ztÑ¢EÒ2³gϾÿþˆ#~ûí·õë×ÇÄÄLœ8Ñ`0ÌŸ?ߪ}­]»ö7ÞˆýþûïþùçAƒ !–/_^Ðò£Fª^½úúõëccc…û÷ïÿÏþS§N#FÈ÷ZP-‚#çàââÒ©S'ñxÑñðáÃ×®]kРAµjÕ„ÙÙÙmÚ´yÿý÷½¼¼¤Ê”)#•*SRRlÞõŒ3„óæÍ3ÖðüýýçÍ›}ûöm!ÄéÓ§…‘‘‘®®®Ò2}ûö}óÍ7Û¶mkÕ¾êÖ­ûÞ{ﹸ¸HC~óÍ7…çÏŸ/hyww÷™3gº¹¹Mš4éúõë'Nôôôœ={¶±`GGNCŠ€¦ó¶Ò¨Zµª£^ÚÆíx8ÚµkW­Zõüùó z½>;;{ûöížžž;v4.óçŸîÝ»÷ðáÃ/^¼páBOmB$%%IÿÕëõù.påÊ!ÄÔ©SG}ðàÁW_}µdÉ’µjÕjÒ¤IûöíkÕªeÕî*V¬hC'‡ ¶sçΓ'O>ûì³}ûöµëQ€8“.]º|ýõ×Û·o×ëõ±±±wîÜéÑ£‡qbzõêÕŸ~úivvvåÊ•ÃÂÂÚ¶mûÌ3Ï$''O›6ͪ½äää‹|YYYBˆ *4é\¾|y!DŊ׭[¿wïÞœ8qâÈ‘#‹-êÕ«×§Ÿ~ªÓé,Üu‰%l8,÷îÝ»qã†"))éöíÛ¾¾¾Ž)hÁ€31ÇwÞyGšƒ6ÎSß»wï“O>)Q¢Ä’%Kš7on\åêÕ«Öîåòå˹¹¹ÒÏ¡¡¡BˆR¥JM˜0¡ðµt:t !DVVVllì‡~áÐÃ2eÊ”ëׯ7lØðÈ‘#Ó¦M›3gŽCw@³8Ç€3©R¥Ê3Ï<“””tüøñ_~ù¥J•*aaaÒSÇÏÉÉiذ¡ij_¶R8³íŸþÙøs```¹råÎ;wòäIÓerrrzöìÙ¢E‹›7oþùçŸááá/¿ü²ñÙ%JDDDHWó\ºtÉ¡ÇdÓ¦MÛ¶mkÕªÕòåË«W¯¾eË–¼7-» 8p2Ò%2'NÌÈÈèÕ«—±=00Pqúôé›7oJ-999kÖ¬Y¹r¥âÁƒùn­råÊBˆ+VdddH-qqqÆ›ìHÆŒ“››;f̘S§NI-÷îÝûðÃOœ8Q»vmÿààà»wïþñÇK—.5–*ÏŸ?¿wï^!„Cï§xõêÕiÓ¦•.]ú“O>qwwŸ>}º««ëÔ©S‹~r'äÅT5'Ó±cÇ3f$$$¸ººvëÖÍØñË/¿´k×®Q£Fƒ!!!!--­_¿~Ë—/ÿ¿ÿû¿»wïJ7Ö1Õ­[·~øáÈ‘#µjÕº~ýzbb¢OPPÐÇ¥eºwï~ðàÁ 6tëÖ­B… ~~~IIIU«V•î¼íââ2a„ñãÇÏš5ëßÿþwÅŠ322Î;g0úöíÛ A ƒÁ0~üøôôôÏ?ÿ\ÊÍuêÔ4hпÿýï©S§Î›7Oî× €ÚPqàdž}öY!D‹-LŸúòË/GU¾|yéþŽ-[¶Ü¸qãĉûõëçêêšïVªTéÇlÛ¶­‹‹Ë¾}ûΜ9S¡B…o¿ýÖßß߸ŒN§ûâ‹/¾úê«ðððÜÜÜóçχ„„Œ3fãÆ~~~Ò2Ý»wÿá‡Zµjåééyúô錌ŒçŸ~áÂ…S¦LqÜ¡X±bÅþýû›7on<ÑS1jÔ¨*UªlÛ¶mûöí²¾PTHWøíÁ@;îß¿ŸššZ©R%Ë/‚M!8À"LUÀ"GX„à‹`‚#,Bp€EްÁ!8À"ÿ±êq"1PDIEND®B`‚statistics-release-1.6.3/docs/assets/evfit_101.png000066400000000000000000001502341456127120000217720ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A€IDATxÚìÝ{\Liü8ðgšé~Ït¿guÝ©(•.D…®X—¬kˆ"—–lZ ewI6»ì²DÉi”Ê%’’M6l›K+ݦ™ßÏ÷{~ç;ÓL§© ú¼_^^3Ïœ9繜˧çœç—ËEtEBÜŸ%8J p”@à(ÀPÒÇãÇÓ¨y÷îB(66¿õ÷÷wÞ?{=©ÌìììS§N:uª¾¾žHLKKÃ+´··wá>ubÙ“ß½{7oÞ<]]]ƒ¡¨¨ØÔÔ$îjèžÍ›7ãJóööÆ)îr‚Šù¿Óãë Þî'îP< (¢x&ëHO0ĺ'$$äýû÷¡‹/º¹¹‰;;€’5kÖ¤§§ã׸ù¾H‚Šù_\Ç×ýx[ö·žè¿£œœœ‘‘ñ¶¹¹ùÕ«WøµŽŽŽ””ñ‘„Dÿí—ý\(**âÖÔÖÖw^@'.\¸€_8;;ûûû“¯ÏT§»œ b~yÅõÁ‰W¼gr¸ŽPÔGooï§OŸo/]ºäîîŽ__¸pÁÒÒRÜì5OŸ>ÕÑÑ‘––þÄ×Ù¡¡¡¡¡¡âÎÅ'çÓi&⯲իWO˜0AÜÙéîr‚ŠùåÔ'^ñžÉá:Bô¥‰âõë×+W®6l˜‚‚‚ͯ¿þJþåFò3l6ûÛo¿ÕÓÓûöÛo‰^½zµlٲѣG+**8pÊ”)%%%ü[¡¸yÓ/_¾ c2™&&&ššš[¶lá_¾©©iÆ ššššššîîîk×®mllm‚F ÁéÑÑÑB2ÏápŽ9âêêjhh(##chhèââràÀööv¼Àš5kh4q§ÏÝÝF£áÇÅ=›ÒݾyófåÊ•öööŠŠŠ666 ÄÖiooß³g“““ŽŽŽ‚‚ÂСCg̘q÷îÝî–Žœ“iÓ¦=yò$,,ÌÈÈHOO/$$äþýû¡ëׯ 0ÀÕÕ5??_ä¦m£XX²úúúšš‡ƒß¾}û¶¦¦†Íf# GJ·šO„JäÙ³gAAAL&SKK+ àæÍ›üËðìr‚Š)¤ø«½ççŠ{¸ãK´}æâŋēâ1118ñýû÷L&'>¼££CÈv{±ì"ïÝ=Ï;oÑÕÕ•œ~øðaœ.''‡KGåœÀ¯»§Y®#"X—g ÎäX]]ÝŒ3¨££xåÊjæS¸Žˆp"ý´p—Ëår/^¼HÔIYYÿëׯǟº¸¸˜››óTãŽ;ø—ôóóûúë¯ñëõë×ãO/]º¤©©Éóu¶bÅ òæ(.&(“ãÆ8p Ï×çÌ™C^¸¸¸˜„¾¾>‹Åaä‚“7ŒÓ£¢¢„,Øé.:uêT¼qí!{ÿþ=—Ëݳg~;|øp‘ èââbaaÁ³ð´iÓ„TxKKˈ#ø7A£ÑvíÚE^²ËÒ‘sbccÃd2É‹©««ïܹSRR’g+ùùù½ÒLTö7ê…%óóóãÿÊ£Gº³={ö쫯¾¹f¨o½/®#=9‘~"àÇn³°°Xºt)~=yòdãUVVò,)''—››6räH„Пþ‰?š7o±ØìÙ³qÏå³gÏîÝ»G}1! ÆîÝ»ñ¨ï¿ÿ§µ´´ „Ξ=‹S–.]J<Ï1tèÐ+Và×ÄÔ×ÙAAAñÖÓÓ¿àr¹ÕÕÕ¡ŠŠ ž°ñãÇ› žè§¸Îžðôô óññ¹zõjTT”›››žž^yy¹È+¡€<²·´xãÉ6±¹¹sçjkk6ìÇljj²´´$ênéÈ7Îdeeñ Æ“ÈO„f¢¸¿Q,¬øš¯'•Æ_ÄÇ!)))b»½¨»‡¹Èç‚{xÏ3O£ÑÒÒÒÈNžNóñ•••’’jkkCýóÏ?ÄCT!âúÑ[D8ÌE;Ÿôn¶EÛô7ˆ±Æ¡¸¸8—nmñã—½‡›˜6mÚ¯¿þŠúóÏ?ÝÝÝq(FôD¢¾?'ˆœÿ}w–àù»·¹¹™ÈA¯Töʼn¨ïªè£ÇŠ8Ùlö@UUU|»„âbBãGEü8ÍÞ½{¹ÿ;gøñãÇ Àd2ŒŒðˆ¢­­-""ÿÕøâŋիWãt___üd41#×?ü@Ì[VV–””„_“Ÿn¡¸NâFÆ7ˆ§dNœ8Ñåéæ¿ÿþ#nšÇüíÛ·óòò„—Qȧ"°»ÊË˵´´´´´´µµñ¨IƒáîîN ÏTQQ¹t"ë²™øQÙß(¶·|„æëÔðáÃù·›ððáÃ^ßVÏóž¯AáÇõMoß¾ÂPRR"æîŽŠŠtKNøv?NÙ{¾ ânukkëöíÛBt:x²³'çê§Y‘ó/òQ ÚY‚b‹···GDDà™´_¼xALÇØÃ ÐG¾Ž|äi[ÕÕš5kÒÓÓß¼y“••5nܸ±cÇ>xð€–µbÅ ü -ÅÅ„;qℱ±±……ÅÍ›7ñÍJ ‰M›6áOW­Zõ믿ÖÔÔ¼{÷ÎÉÉÉÍÍN§_¼xO ¯­­ÛÝusI477ÛÚÚÚÚÚþûï¿ÄÃÅB((((((à'ræÎ‹báÏ?ÿìôTTTð’ß}÷݃–-[Æ3…oO Ø-VVVššš¯^½b³ÙNNN'NTSSû믿NŸ>À?`ЭÒõ áÍÄÊþ¦¢¢B¥°½å#4_§¢££ñ4{oß¾upp9rd}}=ßÐëz~˜÷ʉ‚Åã‹â¦«««‰ M¢¢¢p³ÖÖÖ¾~ý:22’<ÅíöiÙ{wÄÝjÔçqä™#ŠxnìÈ‘#—ÄNŸ>ÝéŸ , ϵKq1A™3f Ïc ƒ<É>—˽qãF§¾ˆ¶NbJ ‚‰‰ ñ‡¯yƒ‚‚ø¿Hüf××_Ml‚ø- LÈŒÿÝ- •Ù¿x\»vMÐí*<åõÒušây—!C†‰………Dt·™:Ý •ýba;%|–¾N”ž4ÅJëÔ¬Y³x¶(//OŒíèÅy)V{ÏÏ'ÝÚÃ;=¾:EeÓD½1™L ¨Ÿ%ºÛâ...,Ë××WOOO[[;000//˜G½»5#ÆëÈG>‘ö÷}_€ØØØøøx„ŸŸßÉ“'?Ùuvª½½=;;}.}õŸXé>Z3õ·nݺ|ùòüùóñtÍôºOÿŒGè<ã>’’’Ÿì J×ß >œ"@_øôÏ p€NÁ­j@ Ž€%08P=Ž€%8J p”@à(ÀP# G@ Ž€%8J p”@à(ÀP# G@ Ž€%8JâÎÀÈÌÌLÜY@ߪ¨¨wÄÇ>Ñ?w¦¾cffUÚ‹ >{Ti¯ƒ*í]PŸ½®ßvÁ­j@ Ž€%8J p”и\®¸óð¥ÁkÀ—­ß^ë¡ÇP# G@ Ž€%8J p”@à(aˆ;|–ÌÌÌĽ¦Îæ-è¶~ûƒðE‚¾êàV5 G@ Ž€%8J p”@à(ÀP€Лh4š·ÎårÅ]¾dÐã@/ãŠéŸpqqq4Í××—ÿ£ÄÄDv÷î]q×266ö÷÷ǯmmm{}·oߦÑh‚ªèêÕ«üyxxÐh´ŽŽü¶¦¦†F£Íž=›X€ÍfïÛ·ÏÙÙY[[[IIÉÆÆ&""¢®®ŽX`çÎ4¡ÎŸ?/Bqâãã™LæÐ¡C{½¢z¹A?Bv*ccãiÓ¦‰;ƒ}NÈþEÐã@?’}âĉ€€qg¤kt:N§‹;”p¹ÜÉ“'çää 6,,,LZZúÑ£G{öìùõ×_oܸaii‰²³³‹ŠŠ"¾òã?ª¨¨Ì˜1ƒH122êîv>|ëää´hÑ"q×A3fŒ››Û† z¾*òNuëÖ­Í›7ÇÇÇãúÈîÝ»·yóf‹õþý{ssó°°°ˆˆãó¾"···ËÊÊ_aL&³¾¾^ÜY½éóÞMÝ"++»téREEEqç¥ ùùùâÎUÌÉÉ‰ŽŽÞºu+‘xçÎ''§Ù³g#„œ‰OÓÓÓõõõ“’’z²Ýªª*„ÐÆÝÜÜÄ]}¥´´ôêÕ«½U@òNõêÕ«¬¬¬åË—üBUWW»¸¸tttøûû\¼xqÅŠW®\9yòäÇÏL/zúôiGGÇèÑ£MLLˆDqç ô2èGbcc×®]»~ýú;wöúÊÛÚÚ †„D¿{ßÝŽˆˆ 'ÚØØL›6í·ß~{ÿþ}];ñ#­222}T®n5(îgê­Nb6›——WTT´{÷n‡ÓGìIÍ „¤¤¤DûúŠ+Þ½{wýúu{{{„ЦM›æÎûË/¿œ?ÞÓÓS´ur8.—+ÞNzü—̦M›¾à¿d‚gèW¦M›æããóÓO?ݺuKÈbÅÅÅ>>>ZZZ:::>>>¸Ï 366ŽŒŒ¼uë–µµµµµ5NY¶lYtt´’’’ŒŒÌÈ‘#Ïž=Ëf³×¬Ycaa¡¤¤äêêúðáCb ÉÉÉVVVòòòjjj#GŽ}º’’R§£v0iiéýû÷o9ηß~ûÏ?ÿ"„rss'M𤭭$!!qòäIOOσ#„Nœ88`À€ ‰ƒž>}º×kuÚ´iéééþþþsçÎ pttĽ€=Y³¶X¹r¥Á¦M›¶mÛÖiÈ~øðaww÷)S¦”••íß¿¿¬¬ìúõëTZzƒ"„Ž;ö÷ßûøøX[[_¿~=11ñÚµkùùù<3 o)ššš¸?µ¢¢ÂÜÜ\Hy{{?~¼  ÀÛÛ!TPP€*++khh0`B(??_KKËÆÆ†ü­•+WoذaëÖ­#GŽÄ‰÷îÝ›0aÂÌ™3ÝÝÝO:µgχ“––F¥¥þúë/áŒØlöâÅ‹‡NN¬©©AIKKó/ßec]¼xq÷îÝóæÍ377?wî\jjj{{ûÏ?ÿŒº¹ÿ_¼xqüøñúúú³gÏ–——?yòdII‰Ý¸qã(ö:WUUIKK+**;vìõë×–––#FŒèáNàSĽÍÔÔTÜY}KH#±Žª’ç7"„ªªª¸\nbb"B(99´eË„Ð;w¸\nkk«±±±‘‘Q}}=þ´¾¾ÞÐÐÐÄĤµµ•Ëåâ1qqqx###))©òòrü?çgmmÝÖÖ†SœœœB\.×ÄÄÄÔÔ´½½ôöí[ƒ±hÑ"bU~~~øµ‹‹‹ A6mÚ„JOOǹ4h­­í‡ð§---&&&l6»¥¥ÅÐÐP[[ûùóçøÓºº:„Б#GU‘l6/ù×_!„fÍšE|÷СCÄ‹ÉÈÈŒ7.!!᯿þÔ***Ǿ›uÙYYY¡ÂÂBþï¾ÿžN§“s8wî\&“YWWG¥¨7(Þˆ EGG#„>LnPá-%¤=z„Ú¸q£ ž?ŽŠŠŠÂo‡ŠÇ˜Ÿ8qMBBbΜ9ü;Uvv6B(??Ÿ(5BèÔ©Sø-›Í¶°°044ìt£FFFNNNä”Y³f‰|=mhh1bNüø1ÿ§]6B(33¿åp8C‡ÕÓÓÃ5L}ÿonnÖÑÑÑÑÑyñâÑ@ÎÎθ¡©ðöö–••UUU% ‹[·n‰V-™î~{­‡[Õô;+V¬:thlllmm-ÏG%%%OŸ>]¾|9“ÉÄ)L&sùòåÕÕÕÄ|=ÚÚÚëׯ'wBŒ1‚èruuE…„„··ðM½> „Š‹‹KJJˆÑ£ ÄGTœ:ujÆ ‹-š;w.B¨´´´²²2::ZVV/ --Q]]]RRRRRRSS³bÅ ]]]"çK—.¾‰ààà(>¿ZUUu÷îÝääd[·n­]»ÖÄć¹¢¡Ò‚HHHà©…pWB(==½¾¾^[[›J+PoPœ«•+Wßݰaƒ‚‚ÂÑ£GÉùÞR"WBHWW×ÊÊ*//!ôæÍ›²²²ÈÈHyyy‹…*((àp8>>>TVejj:iÒ$üšN§ÛØØ455u7?l6û”`üËççç5êæÍ›»ví4hÿ]6–‰‰É”)Sðkfkk‹oÜwkÿ/((¨««[°`––Ñ@«V­ú矎?N±\UUU'..®®®®¾¾~ß¾}ÿý·ŸŸß»wïzÒÄàS·ªèw ÆÞ½{G½téRžœ•••!üð"?1VYY‰o‰š™™ñܺ""„/øS0UUÕ¢¢¢ÜÜÜGUVV>xð€ÍfSÌöÇg̘áää”’’‚SpwThhhhh(ÏÂÏž=×ÏaƑӻœrÉ’%ŽŽŽ<‰wîÜyöìY—9´²²²²²Z¾|y[[Û©S§"##7lØ0jÔ¨ñãÇ‹ÐLTÚBYYÙ””|CÖÒÒrôèÑ^^^&LÀ÷ »lê Š²´´$ߎ”——733{òä yá-EýéÀNy{{'%%½yów¾º¹¹999áÀ1??ŸÁ`¸»»SY©©)ù­ð&<“Î#xšššð³§â’¦èöìÙ’%KΜ93hР‹/Ž7®Ó¯tÙX<Ù&ŽÍÇ#Êû?îDïtgÃïR)W~~¾ŒŒŒššNœ3gNKKËâÅ‹333ñ_zàË#ýѨQ£,XššÊÓ ‚/%†tôyyùóçÏ×ÖÖ’G ÷ÒÉÉɉ¶æž´ECCCUU•©©ixxxxx8‡ÃÙ½{wDDÄž={œœœDkA>|ØÞÞNDóÍÍÍåååä:G]µT›ÀÑÑQII)//¯¸¸x̘1!‡sæÌ™ÒÒRüo¯#ÿ,BèÅ‹DMž={Vзð³3gÎ̘1#00pÏž=JJJB¶"ò!ƒþwt3Åý7Pyy99÷5â­ËrÕÔÔdgg7΂HollDáqlà‹#ý”²²rJJJppð®]»ˆD;;;ƒäää°°0üûëׯwìØahhØóÄãÈוÌÌ̦¦¦.{2V¯^}áÂ…ðŒEµ±±133Û¾}{PPŽ?½½½ÛÛÛñ@`“;v„††âgûêëë{}Kš––¿fÍâþfSSÓ† ýÌ#=i‹ŠŠ GGÇuëÖÅÇÇ#„$$$pô )))r+R__Ÿœœ¼jÕ*ü6>>¾±±‘ç—…·T›@RRÒÍÍ-''çÙ³gø–èðáú|ÀQäI"_¾|™çô©®®&².oér¹ÜU«Véëëÿþûï]N»Ø“ÆêÖþogg÷ÕW_íÚµkñâŸÚÚÚ’’’p»,—¬¬lTT”½½ý¥K—ð_'))‰Á`Ó/€/Žô_AAAû÷ïÿóÏ?‰iiéäää   ;;»ÀÀ@.—›‘‘QWWwìØ±Nç éWWWyyùyóæ………éêê^»v-//O]]½°°ðܹsx:~gϞݾ}»µµ5N'Ï`gaaagg—’’2yòdkkëÀÀÀööö¬¬¬ÚÚÚ#GŽà—Û¶m[`` ­­mPP¤¤dFFF_üúYrrrYYYllìþýû‡ †Ç±^½zõÕ«Wk×®=z´h«íI[ >|È![¶l©®®2dHEEŹsçÔÔÔBBBètº­ „¶¶vlllQQ‘µµõµk×rssfΜI^†Á`i©ž7··7~Z÷8Òétgg眜}}}A¿(ˆÃ£ÔÔÔW¯^u:%p #88Ø××—Ãádgg-Òå-ÝòòòGYXX„‡‡ó|Àóg†h‡ &))I}ÿ—””ܹs§¿¿¿Íüùóétzffæ­[·~øáMMM*åÒÐЈ‹‹[½zõ Aƒ¼½½UTTΟ?_ZZšÐó§À§EÜú¿@ývˆ~ÿñ¹OÇCV]]oÂÓñ`EEE^^^šššššš^^^7nÜ >"ϘÓi îzÁÓå`¸ÓëåË—\.—Åb=ZAAaàÀáááõõõéééêêêžžž\ÓñCax3°”””L˜0AKKKUUÕÅÅåÂ… äì]¹rÅÝÝ÷Ø)++;v ާÓÙmðè !Óñ455íÙ³ÇÁÁA]]]RRRSSsâĉ‚šƒÊt<]¶…éx¸\nmmíœ9s ¥¥¥ BCC‰v¨·B— Šf±XcÇŽUVV677ŠŠjiiétßÞRêr:¢°!uuu"ÿœãüùóÉ‹‘§ãáp8!!!JJJvvv8«S§N%/<}út&“ÙéæŒŒŒ uuu—-[KñzÚéØj,>>žùn5—Ë5k–ŠŠ ñ–úþÈ××WOOÉdº»»ÿùçŸTJD–™™9bÄ&“9nܸsçÎuw âÓñPGãŠz{bffVQQ!î\€>$¤‰i4š¸Ž(Úÿ³ xÔÕÕ 0 çý¦€ÌØØØÆÆæsÿ‘eJ­§§‡'ÿ\Àþ/œî~{­‡[Õ€~È'ýìÿ ·Àà€èq —Ñz¾ >ÞÞÞøWïú•…  ŸF€/Žô&xÊô+»wïwÄ€˜{€~nUJ p”@à(ÀP# äKU}ìØ±£GVUUÉÉÉ;6::ÿ¼’ ÍÍÍ™™™ÏŸ?WTT4553gŽ££#y™©S§Þ¿Ÿç‹L&óêÕ«â..€x|öcrròž={äååíííkjjŽ?^YYùÛo¿áŸßåÇf³gÍšuçÎeee‡–––7n.]ºtñâÅÄbÏž=“••噟LEEEÜÅ›Ï;p¬¨¨Ø»w¯¦¦fff¦††BhóæÍ¿ýöÛ¶mÛðOÎó;zôè;w† ¶oß>\VVVNŸ>}×®]ãÆ³°°@566¾{÷ÎÛÛ;%%EÜEøT|ÞÏ8=z”Ãá,_¾G¡˜˜eeåsçÎq8œN¿òçŸ"„Ö­[GtI4hÁ‚ÄmègÏž!„úáÏ!ñyŽ7oÞ”pqq!Rètú˜1cJJJ:ýÊÓ§Oååå---ɉƒ BÕÖÖâ·555!CCCq—|~hb%îÒøÂ}Æ·ª¹\nUU•ššššš9ÝÔÔ!T[[;|øpþo¥¥¥1¼¥~ðàBH__¿Åã‹/fΜY^^.''7xðà X[[‹»Ðàs ®„¸@ûŒ{?|øÐÑÑÁ?`EYY!ôúõëN¿5xð`Y®_¿¾wï^iii???œ‚»wîÜùÏ?ÿ8880™ÌË—/‡„„=z”bÞÌøˆ»¶@G£Ñ|}}ù?JLL¤ÑhwïÞw‘±±±¿¿?~íììlkkÛ뛸}û6FËÈÈTEΜàááA£Ñ:::ðÛšš6{ölb6›½oß>gggmmm%%%›ˆˆˆºº:b;w ï->þ¼ʼng2™C‡íõŠêäýÙ©Œ§M›&î Š#Áeð÷8677#„äååyÒBïÞ½ër ‡ÚºukGGÇöíÛ™L&Nñâ…¬¬ìŠ+fΜ‰SŠŠŠ,Xàä䤣£Óåš+**Ä]=t";;ûĉâÎH×èt:Nw.(ár¹“'OÎÉÉ6lXXX˜´´ô£GöìÙó믿޸q?cggE|åÇTQQ™1c‘"ÂCÕ>ŒurrZ´h‘¸ë ÷Ý»woóæÍ,ëýû÷æææaaaü÷‹º…¼SݺukóæÍñññ}ÚÑÑ1zôh"w‚|Örrr&L˜`bb2}útYYÙÌÌÌ€€€Ÿþ9<<\ÜY¢ûŒGƒ¡¬¬Ìß³ØØØˆ"ÆYókkkKJJúý÷ßedd"""æÎ+hÒG²#F¤§§?~üXÜå@t±±±k×®]¿~ýÎ;{}åmmm CBâ3~F4øîvDD9ÑÆÆfÚ´i¿ýöÛû÷ïû(àr¹!™>*W·÷–õV'ñŠ+Þ½{wýúu{{{„ЦM›æÎûË/¿œ?ÞÓÓ³ÊÛ­šAIIIõÖ ñß›6mêÅ¿8—Ëo·ýš5k´´´JJJpWÎÚµkãgíó>Åkjj644àH‘ðôéSüQ§_áp8+W®üí·ßÜÜÜ.\¸°dÉž¨‘ËåvttðÏæƒ¿O¿Ÿ!¦M›æããóÓO?ݺuKÈbÅÅÅ>>>ZZZ:::>>>¸Ï 366ŽŒŒ¼uë–µµ5.fll¼lÙ²èèh%%%™‘#Gž={–Íf¯Y³ÆÂÂBIIÉÕÕõáÇÄ’““­¬¬äååÕÔÔFŽyèСNóàêêŠGkjjþP`YYY@@€†††——×¥K—Èë¹r劇‡‡ššÚàÁƒ£££ñ%¿wᘩ¬¬Œ'=11ñÞ½{= /µÅìÙ³ñcÙNNNÆÆÆü_lnnŽ·°°““344 ùò%•VèVƒâýá§Ÿ~RQQ‘’’:thLLŒ JÞRdyyycÆŒÁQ#¶dÉ„еk×x–œ:uª¤¤$¾Ñ„ÊÈÈ ÑhVVVÄQQQ4­´´‘vªÙ³gOœ8!äââB®½«W¯z{{3™L]]Ý… þ÷ßfÏÌÌŒ'‹‹‹#ç¶»pàøÕW_Q\^xóEFF¦¥¥1™Lƒ¡««»hÑ"rAºuDܼysâĉZZZ|˜Ü Â[ŠÛ•†††#FÐéôÇó|ôüùs„PTT~;tèP<Æüĉ¸hsæÌáß©²³³BùùùD©B§NÂoÙl¶………¡¡a§ù122rrr"§Ìš5«'×SoooYYYUUUbg³°°¸uëV§ wÙ|¡ÌÌLü–Ãá :TOO×9õ#¢¹¹YGGGGGçÅ‹D“9;;khhà¦ï–ÄÆÆÚÙÙ©««çææŠ\Q}G„ w¿½ÖÞ=Ž:::ÑÑщ‰‰“&Mrvv®©©¹~ýº¥¥å¼yóˆeX,Vddä Aƒ²³³ëëëñP‡……ñ¯Íßßúôé¡o¿ývîܹëׯ?|ø°‰‰Éßÿ}çÎ99¹ï¿ÿþN_€+V|PTT,..–‘‘!ÆÆ644 „ø‡¸ rêÔ© 6,Z´hîܹ¡ÒÒÒÊÊÊ?þøƒ80¥¥¥#""BCCKJJØlvMMMRR’®®.þT[[{éÒ¥111B6¬§§Ç“xôèQüƒR‚„†††††Þ»w//////Åbååå­_¿~Æ ß~û­hÍD¥-‘ÀS ÕÔÔà®Ùôôôôôtüi—­@½Aq®V®\I|wÆ ©©©G%w% o)áeÉÏÏÿæ›oªªªRSSñ5éêêZYYååå!„Þ¼ySVV¶oß¾ˆˆ‹åïï_PPÀáp|||¨T¸©©é¤I“ðk:ncc“››ÛÝVc³ÙgÏžô)ÑmÏ£ªªŠÃáÄÅÅá;ï§OŸŽŒŒôóó+++ãèÙe󙘘L™2¿¦Ñh¶¶¶¸[±¤¤„úQPPPWW·iÓ&---¢ÉV­Zåëë{üøñY³fu«¤ß}÷¾ïáá?®ñ¹û¼G„М9sÔÕÕ³²²rrr´µµ§OŸ¾|ùrA¢ã¿M›››ùŸFB«ÍÍÍOž<¹}ûök×®UVVêëëûùù-]ºT[[[ÜÅ 0Œ½{÷Ž=zéÒ¥<ÃT+++Bxð€ÍfSÌöÇg̘áääDüˆü£GÐÿm< ?{ö ?÷6lØ0rz—sC.Y²ÄÑÑ‘'ñÎ;ÂG¢¢¬¬¬–/_ÞÖÖvêÔ©ÈÈÈ 6Œ5jüøñ"4•¶DVV6%%ßµ´´=z´——ׄ ðÝÏ.[zƒ"„,--É7UåååÍÌÌžûÀ!äëë+ä)âÏM;;;Š3,jhhàÛy|‘Fµ`Á‚ÔÔÔS§N‘Óñéžçé4|mooÇoùgݧ¨µµ5 ''ÇÞÞ~üøñ“&Mrpp°³³£òÝ7oÞLž<þ|…´´´9sæ™ÁÑËË+11‘Åb¸ºº®]»öíÛ·ùùùNNN]ÎΆuk|zkk+ù-1ÚCYY™'fâ¡©©yðàAâ­ƒƒBˆz`¼Ïà_5ãÙn—Í'¨ ¸)¸o˜'$Åñ1þJ—%å!''çææ¶eË–ààବ¬o¾ù†úwÁ'åK"øþûïOž<¹dÉ’¯¿þšHÄ·ïß¿?vìX"ñÞ½{¨7F†æä䤤¤,[¶ŒH¤ÒãØÑÑüüùó‚‚rGέ¢¢"yŠ–‡Þ¿_EE÷ëܾ}›üsöÄŽÞ"//þüùÚÚZràˆá^:999ÑÖÜ“¶hhh¨ªª255 çp8»wˆØ³g“““h­ ÈÇÛÛÛ‰h¾¹¹¹¼¼œ\稫–â_ç™3gf̘¸gÏ%%%ápttTRRÊËË+..3f BÈÅÅ…Ãáœ9s¦´´?ÂÛëÈ? „zñâQ“Âoà*((ð<+USS“=nÜ8 "ÏÂWWäƒýï¨mŠGn²òòrr"îkÄ»_—%={ö¬ŸŸßÁƒƒ‚‚ˆtüg·"Nð©À€~JYY9%%%88x×®]D¢ArrrXX>Å¿~ýzÇŽ†††=ÿ@ü¬ùꘙ™ÙÔÔÔåUdõêÕ.\8pàÏH[33³íÛ·áø£±±ÑÛÛ»½½611Ù±cGhh(~Τ¾¾¾×'°¤Ñh¡¡¡iiiñññkÖ¬!îo655mذAÐÏ"ϘÓi îzÁÓå`¸ÓëåË—\.—Åb=ZAAaàÀáááõõõéééêêêžžž\ÓñCax3°”””L˜0AKKKUUÕÅÅåÂ… äì]¹rÅÝÝ÷Ø)++;v ާÓÙmðè !Óñ455íÙ³ÇÁÁA]]]RRRSSsâĉ‚šƒÊt<]¶…éx¸\nmmíœ9s ¥¥¥ BCC‰v¨·B— Šf±XcÇŽUVV677ŠŠjiiétßÞRžçnÉâãã!¤®®N¤àŸsœ?>y1òt<'$$DIIÉÎÎguêÔ©ä…§OŸÎd2;Ýœ‘‘‘££cBB‚¡¡¡®®î²eËbcc{x=ÍÌÌ1b„‚‚“É7nܹsç-Ù­æãr¹³fÍRQQ!ÞR?"p“ùúúêéé1™Lww÷?ÿü³[…âp81b„ªªê€œœœmHì`:êh\xÔ ·™™™Q‚>SBš˜F£!qR4xrH˜ºººô¼ßÛØØôð'¤?;ÆÆÆzzzx²ñÏd"\¸ûíµnUúþ«ôgpDÑ@à@o£õ|À§GzÜ,ýŠ··7þ»~eáÂ…]NÀ— G"Ú½{·¸³ ÄÜCôC½ü# àK# G@ Ž€%8J p”@à(ÀP¿@o¢ÑÄùKÕðƒ‡úô8ÐÛ¸\ñü*..ŽF£ùúúò”˜˜H£ÑîÞ½+îŠCÆÆÆþþþøµ³³³­­m¯oâöíÛ4-##CP]½z•ÿ#ÖÑÑßÖÔÔÐh´Ù³g °Ùì}ûö9;;kkk+))ÙØØDDDÔÕÕ ìܹ“&ÔùóçE(N||<“É:th¯WT¯ 7è§@ÈNellqℸsA N§ÓéâÎ%\.wòäÉáááÍÍÍaaaܳg©©éƒð2vvvQ$ÒÒÒšššä##£în÷áDZ±±k×®wô¾Ë—/»ººjhh 0ÀÉÉéäÉ“=_'y§ºuë–¿¿?Ñ@â2f̘¸¸8AŸ¶··5ÊÁÁA¼™ì-=š6mšžžžŠŠŠ££cVV–¸sD·ªèGdee—.]êáᡨ¨(î¼t!??_ÜY êàÁƒ999ÑÑÑ[·n%ïܹãää4{öìââb„³³³³³3ñizzº¾¾~RRRO¶[UU…Ú¸q£›››¸ë —åääL˜0ÁÄÄdúôé²²²™™™?ÿüsxxxOVKÞ©^½z•••µ|ùr1³´´ôêÕ«Bšoýúõ7nÜ5j”3Ù[?~loo/!!1}út%%¥Ó§Oûûû§¥¥}óÍ7âÎèèq ‰ýûï¿×¯_ß+okkãp8â.¢à»ÛäD›iӦݾ}ûýû÷}´]üH«ŒŒL­¿[ ÚÑÑAÜÊï¹5kÖhii•””ìØ±cóæÍ%%%Bzæ>²¶¶¶¶¶6‘¿Îf³/\¸°qãFOOO!5œ›››””Ä`ôBÿ‡ÃéÅÖMBBBSSSAAÁ®]»¾ÿþû’’SSÓ/²³ü‹#ýÈ´iÓ|||~úé§[·n Y¬¸¸ØÇÇGKKKGGÇÇÇ÷™aÆÆÆ‘‘‘·nݲ¶¶¶¶¶Æ)Ë–-‹ŽŽVRR’‘‘9räÙ³gÙlöš5k,,,”””\]]>|H¬!99ÙÊÊJ^^^MMmäÈ‘‡ê4®®®øq´¦¦&á–••hhhxyy]ºt‰¼ž+W®xxx¨©© <8::º'×{Að%¹¬¬Œ'=11ñÞ½{RRR=Y¹ ¶˜={¶ŸŸBÈÉÉÉØØ˜ÿ‹ÍÍÍñññrrr†††ááá/_¾¤Ò ÝjP¼?üôÓO***RRRC‡‰‰TÉÂ[ŠÐÚÚúàÁƒ‰'*++ãyyyggççÏŸ777ó,ìîî>eÊ”²²²ýû÷—••]¿~J+PoP„бcÇþþûokkëëׯ'&&^»v-??Ÿg†á-EF§ÓïÞ½Ëd2‰6›}ÿþ}+++YYYž…½½½?^PPàíí*((@•••544 0!”ŸŸ¯¥¥eccCþÖÊ•+7lذuëÖ‘#GâÄ{÷îM˜0aæÌ™îîî§NÚ³g‡ÃIKK£ÒRýõ—ð?ÆÈ455qoqEE…¹¹9ÿ\.wæÌ™ªªª)))–––BVÕeS^¼xq÷îÝóæÍ377?wî\jjj{{ûÏ?ÿŒºyt\¼xqüøñúúú³gÏ–——?yòdII‰Ý¸qã$$(õ@ÙÙÙݾ}ûéÓ§8Rïèè¸y󦞞¹¡Áç z›©©©¸³ú–&Æ•¸FU ÉóÆBUUU\.711!”œœŒ?Ú²e BèÎ;\.·µµÕØØØÈȨ¾¾Z__ohhhbbÒÚÚÊårñޏ¸¸ŽŽ¼€‘‘‘””Tyy9~‹Ÿó³¶¶nkkÃ)NNN¡ÆÆF.—kbbbjjÚÞÞŽ?zûö-ƒÁX´h±*???üÚÅÅÅÆÆ†¿ ›6mB¥§§ãÜ4ÈÖÖöÇøÓ––6›ÝÒÒbhh¨­­ýüùsüi]]ŽŽBèÈ‘#‚ªH6›—ü믿B³fÍ"¾{èСâÅdddÆ—ð×_ j•áÇ ßͺl <¶ °°ÿ»ïß¿§ÓéäÎ;—ÉdÖÕÕQiê Š÷‡„„bCÑÑѡÇ“TxK ©„ÄÆÆÚÙÙ©««çææò/ðüùs„PTT~;tèP<Æüĉ¸hsæÌáß©²³³BùùùD©B§NÂoÙl¶………¡¡a§¹222rrr"§Ìš5K„ëé£GB7näIOLL”––.--ÅÛ5j” 5tÙ”¡ÌÌLü–Ãá :TOO×?õ££¹¹YGGGGGçÅ‹Dó9;;khhàÝ€Šªª*}}}==½ï¾ûnçÎÎÎÎRRRx?ùˆpáî·×zèq ßY±bÅÁƒccc§L™¢¯¯Oþ¨¤¤äéÓ§)))D7“É\¾|yddäÝ»wqÏ–¶¶öúõëÉÝ #FŒ :N\]]B!!!Ä ,77·ÂÂÂ>(**ËÈÈm544 „>|ø@1ç§NÚ°aâE‹æÎ‹*--­¬¬üã?ˆŽ(ii鈈ˆÐÐÐ’’6›]SS“””¤««‹?ÕÖÖ^ºtiLLŒMóßzô¨²²òÁƒl6›b¶>|8cÆ ''§””œ‚;lpÐÆ³ð³gÏðsoÆ #§w97ä’%Kyïܹ#½µµ•ü–µ£¬¬Üet(DZZZuuµŸŸ1µÓ»wï::: BBBxòÐeS *xtà~bžÇÊø+]–º¬¬ì?þX²d Ñ9íëë+))éííýóÏ?¯^½ZäŽôSßÿýÉ“'—,Yòõ×_‰ƒ BÝ¿ìØ±Dâ½{÷Bfff=ÜbaaaNNNJJʲeˈD*=ŽÁÁÁÏŸ?/(( w8áÜ***zzz‰>¼ÿ¾ŠŠÊW_}…º}û¶‹‹ ñ)1¤£·ÈËËŸ?¾¶¶–8b¸—NNNN´5÷¤-ªªªLMMÃÃÃÃÃÃ9ÎîÝ»#""öìÙãää$Z+òðáÃööv"šonn.//'×9ꪥxVxöìY??¿ƒ‰ªªªH@£££’’R^^^qqñ˜1cB...çÌ™3¥¥¥øÞ^GþY „Ћ/ˆšìÉ­j<®yÇŽäÄ7oÞÄÄĸ¸¸ðŽ"P¡n¸ùÊËËɉ¸¯ïŠ]–úõë×!â9` ¿Å·×Ág¦ã ŸRVVNIIyþüù®]»ˆD;;;ƒäää7oÞà”ׯ_ïØ±ÃÐаç?ˆÇ1XXX)™™™MMM]öЬ^½úÂ… iiiÇ'§ÛØØ˜™™mß¾ýíÛ·8¥±±ÑÛÛ;22RNNÎÎÎÎÄÄdÇŽÄE½¾¾~çν[4-44ôÆñññäÛ—MMM6lô3Tô¤-***Fµ}ûvüVBBÇ’’’"·‚ õõõÉÉÉÄÛøøøÆÆFž_ÞR<+ÄÜýõWr–8€êô7T$%%ÝÜÜrrrJJJpà8|øpEEÅ„„„.pyæÑ—/_âá5¡êêj"äÂ7mérµëÖ­ãˆ@ ޹|ù2ÏÂ=iÊnvvv_}õÕ®]»ˆækkkKJJRPPÀ³uYêaÆÉÊÊ:tˆÜS»oß>„ÿ“!à=Žô_AAAû÷ïÿóÏ?‰iiéäää   ;;»ÀÀ@.—›‘‘QWWwìØ1iiénÎÕÕU^^~Þ¼yaaaººº×®]ËËËSWW/,,÷éxȪ««ñLx:¬¨¨ÈËËKSSSSSÓËËëÆÄGäs:MÁ]/xº,>>!ôòåK.—Ëb±F­  0pàÀðððúúúôôtuuuOOO®€éxˆ¡0<ˆXJJJ&L˜ ¥¥¥ªªêââráÂrö®\¹âîîŽot*++;v ާÓÙmðè !Óñ455íÙ³ÇÁÁA]]]RRRSSsâĉ‚šƒÊt<]¶…éx¸\nmmíœ9s ¥¥¥ BCC‰v¨·B— Šf±XcÇŽUVV677ŠŠjiiétßÞRdçÀ#FŒPUUÅ¿UÝi“‘ ‹RWW'RðÏ9Ο?Ÿ¼y:‡¢¤¤dgg‡³:uêTòÂÓ§Og2™nÎÈÈÈÑÑ1!!ÁÐÐPWWwÙ²ex¤0•%4϶„LÇÓ­¦är¹³fÍRQQ!ÞR?:póùúúâ™ÝÝÝÿüóÏî–·°°ÐÛÛ[GGGIIiĈ{öì>ÓÇÓñPGã~¬¿ú33³ŠŠ qçô!!ML£Ñ¸Ž)ÎÂÔÕÕ 0 çý¦€ÌØØØÆÆ†glþÏØØXOOO6þe€£C„ w¿½Öíj@¿€'7ðƒ£P#½íÿÎp|1 p 7ÁÍbЯx{{ãßµëW.\¨¤¤$î\ 8ÑîÝ»Å1Xµj•¸³€ØÀ<Ž€%8J p”@à(ÀP# G@ Ž€%8Ð/ÄÅÅÑþ/eee{{ûôôt‡Óé2æææ3f̸~ýºðUBBB:Ýz||<“É:t¨¸«¡wûûû‹;ÿŸ³³³­­­ ¬N›6íÓÉݾ}›F£eddˆ;#Ÿ(¨@üV5ýHpp°žžBˆËå¾|ù2''gÞ¼yIIIüË´´´Ü¿ÿøñãGýá‡æÏŸßéªÈlllø7úðáÃØØX''§E‹‰»>!cÆŒqssÛ°aCÏWE§Óét:~}ëÖ­Í›7ÇÇÇ[ZZ~´²ðl”œŸ¾Ûʧ©Ëfmoo—••íèè '2™ÌúúzüúÑ£G±±±×®]{ÿþ½¥¥ett´ŸŸŸ¸‹Õ›ÚÛÛi4Úµk×-C±¨¬ ô:ødÐh!ÄåöÝ–,YâèèH¼}õê•­­mrrrTT”¦¦f§ËñúÕ«WYYYË—/ÿ˜ÅáÙ(9?}·•O•f}úôiGGÇèÑ£MLLˆDüâñãÇöööÓ§OWRR:}ú´¿¿ZZÚ7ß|#îÂõšõë×߸qcÔ¨Q‚ ^ ]® ôè¿455ƒƒƒ“““ËÊʈÀ‘‡¹¹ùÁƒííí¿ûî;Ñncq¹\„ŒŒŒ¸‹û?ÚÚÚ †„¥upÏPoõŸ±Ùì¼¼¼¢¢¢Ý»wOôݪöŸ7„”””h_ïV³â¿£6mÚÔi|™ÐÔÔtçÎ+++„ÐÆ­¬¬Ö®]Û“À‘Ãáp¹Ü¾èAnnnRRƒ!,ö X TVú§x >Õµ·· YføðᎎŽ'Nœ`³ÙÝ]ÿìÙ³ñ=&'''cccœX\\ìã㣥¥¥££ãããS\\L,ollyëÖ-kkkkkkþ677ÇÇÇ[XXÈÉɆ‡‡¿|ù’ø499ÙÊÊJ^^^MMmäÈ‘‡"¯yÙ²eÑÑÑJJJ222#GŽ<{ö,›Í^³f………’’’««ëÇÉÙøé§ŸTTT¤¤¤†ƒÃ ~eee^^^—.]T žžžqqqÄ}IA¦N*))ùþý{ü6##ƒF£áë(E£ÑJKKB®®®ø™ÂÙ³gOœ8!äââBÔ6BèêÕ«ÞÞÞL&SWWwáÂ…ÿý÷Ÿ í )‹ šçß(‘ŸîV»ì´hÂkþÊ•+jjjƒŽŽŽÔ|!333ž0...ÎÞÞQC½YÑÿŽ_}õU§Ÿ–——ëèè ---íââÒÐÐðï¿ÿvº¼ð>222--Éd2 ]]ÝE‹‘›žzý „nÞ¼9qâD---žÇš%%%)ÖBèÕ«W3fÌçÊ¥»•@qU OpAo355w@ßê“&&ƾ9*7n܈*,,$'þóÏ?:::uuu‚–Á/^Œª®®¾¿û÷ïûí·¡mÛ¶±X,.—›••Å`0ôôô–/_©¯¯Ï`0²²²ðòFFFS¦LQSS366þæ›oøWJ£Ñ<<<Ö­[7yòd:>räHü~°lܸqqqqk×®µ°°@>}šX³šššººú¦M›˜L¦ŒŒÌèÑ£GŒ‘œœ¼hÑ"fmmM,¬««‹òññY³f««+Bh̘1¸óÆÈÈÈÏÏ/yáÂcc㨨¨U«V 4ˆN§>|XxµvÙ¬\.7""BZZº¡¡áèÑ£{öì)((hmm%>]°`NÇ—Ëe³Ù¶¶¶zzz®ªË~È!RRR‹/þñÇ}||Bááá"ÔOnn.F300ˆ‰‰ùî»ïìììBvvv¸æ)V‡Ã?~¼¹¹ySS“‘‘ѨQ£-Ùe%P_u"œÕûíµÇÞ×ow¦þ£×š¡ÿóOHbáh/,,,&&&&&fõêÕ³fÍ0`BhéÒ¥äe:·lÙ‚ºté±?žK/!++‹Xmkk«±±±‘‘Q}}=þ´¾¾ÞÐÐÐÄÄ_>ŒŒBqqqü«zÿþ=NŸ5k‘2wî\&“‰_SSÓöövüÑÛ·o Æ¢E‹ð[###))©òòrüvëÖ­!kkë¶¶6œâää„jll$²‘@l(::!„ã"plmm4h­­í‡ðb---&&&l6[Hsta<þ!…ß:I?qâ.š„„Äœ9sð§ä@-;;!”ŸŸO”!têÔ)ü–Íf[XXòoQxY„×<ÏFyGêÕ.¼É[žÛ––CCCmmíçÏŸãOëêêttt>…ÀÑÛÛ[VVVUU•8p,,,nݺ…?­ªªÒ×××ÓÓûî»ïvîÜéìì,%%%èï.wx„Pff&~Ëáp†ŠÃ¯nÕOss³ŽŽŽŽŽÎ‹/ˆªvvvÖÐÐÀ­FQbb¢´´tii)Λh¯ËJ ¾*ê p¤@|¸ÜNÄà×}3P†|'‹Á`˜™™­Y³†ÊhÎ ÿ¨j|¡®¤¤äéÓ§)))L&§0™LÜõx÷î]|sP[[{ýúõ> '!!A£Ñ®^½ZSSchhˆJOOÇs¡ââbâ™§††„Їˆ¯1ÂÜܿƈ!!!Ľ677·ÂÂÂ>(**⌭\¹’øî† RSS=L$–––VVVþñDz²²8EZZ:"""44´¤¤„ú½N~ºººVVVyyy¡7oÞ”••íÛ·/""‚Åbùûûp8܇Ô%SSÓI“&á×t:ÝÆÆ&77—1áe2dˆšŽzµwÙ‚sËf³kjj’’’p·1Þ©–.]Ó݆`³ÙgÏžôéäÉ“»»Âªª*‡‡ŸF8}útdd¤ŸŸ_YY™²²²‘‘ÑÌ™37oÞ‹—www4Ú¦Ëê211™2e ~M£ÑlmmOŸ>*))¡^?uuu›6mÒÒÒ"ªzÕªU¾¾¾ÇŸ5k•**..^¿~}RRR§/ð^ ÝZè 8Ыø¬}«»kë*Ð,,,¤8šGmm-Bˆ<”ú¨j²ÊÊJ„ÏËøa¦ÊÊJi™™™ B!++›’’²råJcccKKËÑ£G{yyM˜0kPUU-**ÊÍÍ}ôèQeeåƒxÊ$¢U„\øS–––äÑòòòfffOž}?£hJJJ {>óÅ AƒB÷ïß;v,‘xïÞ=„™™Y—_ohh¨ªª255 çp8»wˆØ³g““SNNNJJʲeˈåENxøða{{;ÑÖÜÜ\^^îââÂ_EEEOOOòïß¿/<ü¥ÂÑÑQII)//¯¸¸x̘1!‡sæÌ™ÒÒRüÔi/^!5ß+s˜#„ ©· ðÜâ1Ë·oß&·×;w„l½®®ŽüöÅ‹DzñVuMMMvvö¸qãð@¬±±!dhhøúõk„ÐÀÉ_Áoñmh‘«‹G·êWuyy99÷5âc¶Ë*ÂãµwìØANóæMLLŒ‹‹ O´'¼ðKWúLÇ€¸áþEü?ñB´[Þ} ²²rúôé4xÞ¨'ììì ’““ß¼yƒS^¿~½cÇCCC*?RWQQ1jÔ¨íÛ·ã·øÊ'))‰G“¯Ç™™™MMM"wÕ××'''oãããy~iÐÆÆÆÌÌlûöíoß¾Å)ÞÞÞ‘‘‘rrr=¬+III77·œœœ’’8>\QQ1!!¡ËE˜$RxY„Ô|O6JF±ñV„çÖÎÎÎÄÄdÇŽDüW__¿sçN![ùò%|ƒª®®&¢(|Vî–QVV6**jþüùDÿ:‡ÃÁ“zxx 6LVVöСCäîÏ}ûö!„ø éÉß­ú±³³ûꫯvíÚETu[[[RR’‚‚ž ©Ë*Z·nÏè bDËåË—y6'¼ºµ*ÐG Ç€OùÞ´¸£ÆÔÔT|mmm-+++**jkkÛ½{7ùgcD&--œœdggÈår322êêêŽ;&--Ýåׇ>dÈ-[¶TWW2¤¢¢âܹsjjj!!!t:]^^~Þ¼yaaaººº×®]ËËËSWW/,,"O‘Ø©ÚÚÚ9sæJKK„††S½°X¬Ñ£G+(( 80<<¼¾¾>==]]]ÝÓÓ“͸K)==H‰G½|ù’X˜Åb;VYYÙÜÜ<**ª¥¥¥ÓL–””L˜0AKKKUUÕÅÅåÂ… ]Ö •y[paBêêêD þUñùóç“#OÃápBBB”””ìììpV§NJ^xúôéL&SÐ…”EHÍól”g:êÕ.¼y¶ÒeÍ_¹rÅÝÝO|£¬¬|ìØ1$x:GGÇ„„CCC]]ÝeË–áþõ.Û‘J³âã%%%…HÉÌÌ1b„‚‚“É7nܹsçÈËz{{ëèè())1bÏž=‚¦vêÖÏårgÍš¥¢¢"BýàªöõõÕÓÓc2™îîîþùgw+‡§ÂÉsèðWõJ€éx>>÷Ó{ êsgffVQQ!î\€>MüÅ366¶±±Á½}àsWWW7`À!]ÚÆÆÆzzzâΩxtY?ýgõ~{!€[Õ¾dü™Ôè(GàåííMå‡pÀ—aáÂ…JJJâΟ€×îÝ»Åðñ¬ZµJÜYà³·ª%8J p”@à(ÀP# G@ Ž€%8J p _ˆ‹‹£ý_ÊÊÊöööééé§Óe$$$ÌÍÍg̘qýúuá«"„„„tºõøøx&“9tèPqWCï066ö÷÷w.þ?ggg[[[AY6mÚ§“1º}û6FËÈÈwF>Pc S8 64Dëò_ïn1888*****jåÊ•¾¾¾Ož<™7oÞêÕ«;]fñâÅZZZÇ;vlZZš U‘Mœ8‘£>Œµ°°X»v­¸«\üîÝ»¤¥¥¥  0|øðääd6›ÝÃuÒét:Ž_ߺuËßßÿÁƒ³P<%ç§ï¶ò¹hoo5j”ƒƒC§Ÿ>yòDПa®®®x™GM›6MOOOEEÅÑÑ1++KÜeêÝ:ÊËËôõõuuu§M›VTTD½Aïbˆ;ɱcÇŽ=ZUU%''7vìØèèhUUU!Ë777gdddff>þ\QQÑÔÔtΜ9ŽŽŽâ.ørЋ¸½µEK–,!ïÆ¯^½²µµMNNŽŠŠÒÔÔìt™Gùùù-\¸ÐÑÑqÈ!‚V%DUUBhãÆnnn}^­Ÿ¶êêj—ŽŽƒ‹/®X±âÊ•+'OžìÉjóóó‰×¯^½ÊÊÊZ¾|ùÇ,ÏFÉùé»­|.Ö¯_ãÆQ£Fuú©‚‚ÂôéÓy›››?nllŒzüø±½½½„„ÄôéÓ•””NŸ>íï–öÍ7߈»d=Ò­c¡  ÀÃÃCEE%$$„N§gddxxxœ9sfܸq]V èuý"pLNNÞ³g¼¼¼½½}MMÍñãÇ+++ûí7YYÙN—g³Ù³fͺs玲²²ƒƒCKKË7 —.]ºxñbq—€^£©©œœœ\VVFŽ<ÌÍÍÅc¸wUTTìÝ»WSSóÏ?ÿÜ»wïùóçgΜyïÞ½mÛ¶ úÊÑ£Gïܹ3lØ0‹•ššú믿ž|¸££ã‰'D¸©:{öl???„““ÑP\\ìã㣥¥¥££ãããS\\L,ollyëÖ-kkkkkkþ677ÇÇÇ[XXÈÉɆ‡‡¿|ù’ø499ÙÊÊJ^^^MMmäÈ‘‡"¯yÙ²eÑÑÑJJJ222#GŽ<{ö,›Í^³f………’’’««ëÇÉÙøé§ŸTTT¤¤¤†ƒÃ ~eee^^^—.]TyyycÆŒÁWJlÉ’%¡k×®ñ,9uêTIIÉ÷ïßã·4 ‡XTTF+--E¹ººâg gÏžŸpqq!w·\½zÕÛÛ›Édêêê.\¸ð¿ÿþ”C!eTóü%òÓÝjÒ‚MxÍ_¹rÅÃÃCMMmðàÁÑÑÑ‚š!dffÆÓGn&ѼzõjÆŒááázzzÔ¿UTT”œœüË/¿ 0!T^^®££C4½´´´‹‹KCCÿÿþÛé×…‘‘‘iiiL&“Á`èêê.Z´ˆ¼3P¯1„ÐÍ›7'Nœ¨¥¥ÅsƒXRR’J1© OŸ>­¬¬œ;w.ñÇ­ŠŠJdddIIɽ{÷º¬@Ðû¸_ºM›6™šš?~œHa³Ùööö~eÆŒ¦¦¦eeeäÄ_~ùÅÔÔôçŸîr‹¦¦¦â.4è[½ÒĈKé裸X—6n܈*,,$'þóÏ?:::uuu‚–Áp_{uuµðÅøÝ¿ÿÛo¿EmÛ¶Åbq¹Ü¬¬,ƒ¡§§·|ùòÈÈH}}}ƒ‘••…—722š2eŠššš±±ñ7ß|ÿÂÐÐPæáá±nݺɓ'Óéô‘#Gâ6lØ€7n\\\ÜÚµk-,,B§OŸ&Ö¬¦¦¦®®¾iÓ¦„„&“)##3zôè#F$''/Z´ˆF£Y[[ ëêê"„|||Ö¬Yƒ–3f îª122òóóÃK^¸pAFFÆØØ8**jÕªUƒ ¢Ó釿Ïy{{{LLLff&9ߘKHHàY8==!”““C®öï¿ÿâ”aÆiiiáü¸¸¸ØØØàÚŽ‹‹Cmݺ×¶‘‘‘©©©²²rDDĶmÛœBVl—eTóü%òÓÝjÒ‚ü[žÛãÇÓét E‹-Y²DKKËÔÔ!täÈþ‚999‘SfÍšÕÃë#‡Ã?~¼¹¹ySS“‘‘ѨQ£¨|«¹¹yРA³fÍ"R,X@§Óñ¡ÇårÙl¶­­­žž^§_ïò2dˆ””ÔâÅ‹üñG„Pxx¸5–››K£Ñ bbb¾ûî;;;;„n‹.‹Ù­c?ùœœLN<~ü8BèàÁƒ]V E"œÕûíµþË}}}ÍÍÍȉ+W®455½yóf§_qrr²µµåI,((055ýöÛo»Üb¿Ý™úÏ7p ‹‰‰‰‰‰Y½zõ¬Y³ð_äK—.%/ÓiD¸e˄ХK—ˆÅøñ\z øY~¼ÚÖÖVccc##£úúzüi}}½¡¡¡‰‰Ikk+—Ë522BÅÅÅuúwÝû÷ïét:ùª0wî\&“‰_SSÓöövüÑÛ·o Æ¢E‹ð[###))©òòrüvëÖ­!kkë¶¶6œâää„jll$²A¾†EGG#„p\BŽ­­­ƒ ²µµýðá^¬¥¥ÅÁÁÁÄÄ„ÍfwÙ( #FŒ Óé?æùèùó硨¨(üvèСxLú‰'pÑ$$$æÌ™ƒ?%jÙÙÙ¡üü|¢Ô¡S§Ná·l6ÛÂÂÂÐÐ?3ÂË"¼æy6Ê8R¯vá-HÞŠðܶ´´jkk?þZWW§££ó1ÇÄÄDiiéÒÒR¼~Šã–-[deekkk‰”ªª*}}}==½ï¾ûnçÎÎÎÎRRRþeÒeâ×8ÎСCq Ú­knnÖÑÑÑÑÑyñâQùÎÎθE äXÀÛÓ¦M#'âîɤ¤¤.+"©ûŸqär¹UUUjjjjjjätü‡TmmíðáÃù¿•––ÆÿH ʧ¯¯/î2 :ò}+ƒaff¶fÍ*£ h4ÞñÝÁÁÁ<7àðeI¸’’’§OŸ¦¤¤0™LœÂd2q×ãÝ»wñ}+mmíõë×wú0œ„„F»zõjMM¡¡!B(==wÎ!„Š‹‹eddˆƒ·¡¡!ôáÃâë#FŒ077ǯq'bHHqgÍÍÍ­°°ðÇŠŠŠ8c+W®$¾»aÆÔÔÔ£G‰¥¥¥•••üññÀ´´´tDDDhhhII‰ð{ùùùß|óMUUUjjê Aƒx>ÕÕÕµ²²ÊËËC½y󦬬lß¾},Ëßß¿  €Ãáà£.™ššNš4 ¿¦Óé666¹¹¹ü‹ /Ë!C„Ô¼pÔ«½Ë¤˜[6›]SS“””„»ñNµtéÒ˜˜*&c³ÙgÏžôéäÉ“;M/..^¿~}RR’ õmýûï¿ßÿýòåËÉG–‘‘ÑÌ™37oÞ‹SÜÝÝ3ë²MLL¦L™‚_Óh4[[ÛÓ§O#„JJJ¨×XAAA]]ݦM›´´´ˆÊ_µj•¯¯ïñãÇgÍšÕÝJ~,hjjN™2%33311ÿ±tàÀÔÔT„Pccc—zÝ8~øð¡££CEE…']YY!ôúõëN¿5xð`ž”ëׯïÝ»WZZ?­Õ%333ž”ŠŠ qWøº5Å…©¯³Ëñ×………¢MP[[‹211!R¨ª&«¬¬Dñ<¼ˆŸßª¬¬Ä‘–™™™ !²²²)))+W®466¶´´=z´——ׄ ð°UUÕ¢¢¢ÜÜÜGUVV>xð€ç¡L"ZEáÀ…?…`iiI-!//offöäÉò2=B…†††††òdõÙ³g‚ÇgÏž-Y²äÌ™3ƒ ºxñâ¸qã:]ÌÛÛ;))éÍ›7¸³ÖÍÍÍÉɉÅb!„òóó †»»;•:Ç' ‰è²,Bj^8êÕÞe RÌ-~6tذaätáSKâQPbrÓ¦¦&!§}.—ûäÉ“¯¾úŠHÙ¿¿¿¿HHˆ‡‡ÇÒ¥K©4!11±¥¥%**Šœ8sæÌŒŒŒmÛ¶………ÉÉɱX¬Å‹;88ótˆP©@ž8Ð?~L½Æþúë/$à(.++£Ri䯢r,¤¦¦¾}ûß-ÁŌݸq#ÏÅ½Ó ì-ü—õ~ë ›››Bòòò<é ¡wïÞu¹†ŽŽŽC‡mݺµ££cûöíäó&ö[Ô§ÎËt<"»{÷.~0±§õÃå"¾þKÊtøÿÒ#[¼xñ”)S²³³/_¾œ““³wï^333‹¥¢¢““coo?~üøI“&988àG¯z ƒÁhjj"§à°)))‰nsþ¿?±Ã‡ÏŸ?_AA!--mΜ9BÆÛzyy%&&²X¬¢¢"WW×µk×¾}û6??ßÉÉ ÿÜ%ŠãÙ»,‹ š4¿»Z[[©· ðÜ^¹rñífÂt·¶¶’ßâkBHYY™èðÓÔÔ|ØÞÞNô‡577———»¸¸ðGQQ‘<ÈÇïß¿ßiø{æÌ™3fîÙ³GIIIx•””òòòŠ‹‹ÇŒƒrqqáp8gΜ)--ÅOö"áeRóx@FÏRoAá¹Å]€·oß&·×;w„l½®®ŽüöÅ‹D„ßuUPP #'âÁÈ;vì '¾yó&&&ÆÅÅEPàxôèÑׯ_Ï;—œˆo‹ 8œˆßâÛÐ"W nÕ®|ž9Fp_#>Š©ÜªîÖ±p÷î]%%%bõK—.Ñh4òE¹Ó }á  †²²2Ï"~0BCCCÐÛÚÚ’’’~ÿýw™ˆˆˆ¹sç šô€/[eeåôéÓi4ñˆUOØÙÙ$''‡……áIø_¿~½cÇCCC*?RWQQáèè¸nݺøøx„„„¾ÎIJJâÑ$x)–™™ÙÔÔD¥ç£SõõõÉÉÉ«V­Âoãããy~iÐÆÆÆÌÌlûöíAAA8RlllôöönooŸ:u*Ï ¹\îªU«ôõõÿýw*SèIJJº¹¹åää<{ö _‡®¨¨˜ÐåŽÄVê„—åþýû‚j¾'%£Ø‚x+Âskgggbb²cÇŽÐÐPmmmÜš;wî²õ—/_fgg㪫«‰˜‰ú]WºuëÖ­[GN166ÖÒÒâŸh†ì?þPVVæù±“aÆÉÊÊ:tháÂ…ÒÒÒ8qß¾}!þEzrt«Æììì¾úê«]»v-^¼W>¾b*((à ì²Òº{,ÌŸ?ÿÁƒx¼NyyùÁƒ'L˜€ß ©@оðÀ!¤©©YUUÕØØHþ›æéÓ§ø£N¿ÂápV®\yáÂww÷ 6‰/øò¤¦¦âá«­­­eeeEEEmmm»wï&ÿlŒÈ¤¥¥“““ƒ‚‚ììì¹\nFFF]]ݱcLjë¢Ç2dÈ–-[ª««‡ RQQqîÜ9555ü{òòòóæÍ ÓÕÕ½víZ^^žººzaaá¹sç¼½½»›UmmíØØØ¢¢"kkëk׮忿:88Ìœ9“¼ ƒÁHII™!îaÝ}.%%ÅÔÔ4;;›Háp8£G9r$1ýû÷›ššnܸQ´-öÛ!úýÇç;ðÉyæÙ¡Ñh¦¦¦¡¡¡EEEÝ]y:¬¨¨ÈËËKSSSSSÓËËëÆÄGä);U[[;gÎCCCiiiƒÐÐPbª‹5zôh…†‡‡×××§§§«««{zzò¯w)¥§§)¸/íåË—ÄÂ,kìØ±ÊÊÊæææQQQ---f²¤¤d„ ZZZªªª....\è4ç§NtŽTX„ºº:‘‚ cþüùäÅÈÓßp8œ%%%;;;œÕ©S§’ž>}:“ÉT½BÊ"¤æy6Ê3õjÞ‚<[鲿¯\¹âîîŽ;¶•••;†OÇãèè˜`hh¨««»lÙ2Ü¿ÞõÎM Ït<øJII!RÎ;‡JLLìôë………ÞÞÞ:::JJJ#FŒØ³g Éžºup¹ÜY³f©¨¨ˆPc¸ò}}}õôô˜L¦»»ûŸþI½Bº<ø«èÂ… ¸háááÄ„¦T* ˜Ž‡:··ÿ–úÔÔÕÕ¹¹¹;v ‰IKKÛ±cGxx8ž˜ !ÔÔÔôÏ?ÿHJJâ­ÆG2Šö#ifff08æËÖ+MÜ‹c¥A¯366¶±±éáOHƒOD]]Ý€„tiëééˆ;§ŸŠ.kìË#ÂY½ß^ë¿ü[Õ:::ÑÑщ‰‰“&Mrvv®©©¹~ýº¥¥å¼yóˆeX,Vddä Aƒ²³³ëëëŸ={&++Ëó¼3æïïÏÿ{êˆÂA>ò“p€ ¨1 Ä—8"„æÌ™£®®ž•••““£­­=}úôåË—ãÞG~øùâææf>>ÄE;;»þÙù x{{Sù!ðeX¸7ElPWIDATpa—3°þ8u»wïwÀÇCLºè \”@à(ÀP# G@ Ž€%8J p”@à(À€~!..Žö)++ÛÛÛ§§§s8œN—‘077Ÿ1cÆõë×…¯ŠÒéÖããã™LæÐ¡CÅ] ½ÃØØØßß_ܹøÿœmmmeuÚ´iŸN~ÄèöíÛ4-##CÜù,AíŽô#ÁÁÁQQQQQQ+W®ôõõ}òäɼyóV¯^Ýé2‹/ÖÒÒ:~üøØ±cÓÒÒ­Šlâĉü}øðall¬……ÅÚµkÅ]âwùòeWWW 899f¡x6JÎOßmåÓ4f̘¸¸8AŸ¶··5ÊÁÁAÈîÝ»¤¥¥¥  0|øðääd6›ÝÝ }FžMNN¶²²’——WSS9rä¡C‡Èk^¶lYtt´’’’ŒŒÌÈ‘#Ïž=Ëf³×¬Ycaa¡¤¤äêêúðáCr6~úé'))©¡C‡ÆÄÄàð‚_YYY@@€†††——×¥K—:]¬µµõÁƒ'NÄQ#BH^^ÞÙÙùùóçÍÍÍ< O:URRòýû÷ømFFF³²²"ˆŠŠ¢Ñh¥¥¥!WWWüLáìÙ³ñÓ...äÞš«W¯z{{3™L]]Ý… þ÷ß‚ÚKHYÕ<ÿF‰üt·Ú…´`§E^óW®\ñððPSS>>¡ððpj/77—F£ÄÄÄ|÷Ýwvvv!;;;Ü.Ý­ÃæææAƒÍš5«ÓO[ZZ¤¤¤f̘ÑÚÚzõêÕ´´´ .¼ÿ^„Úæ!ÂY½ß^ë!pì}ývgê?z½‰‘з½G{aaa111111«W¯ž5kþƒ~éÒ¥äe:·lÙ‚ºté±?žK/!++‹Xmkk«±±±‘‘Q}}=þ´¾¾ÞÐÐÐÄĤµµ•Ëå!„âââ:::øWõþý{:N¾¨Ì;—ÉdâÀ×ÄÄÄÔÔ´½½ôöí[ƒ±hÑ"üÖÈÈHJJª¼¼¿Ýºu+BÈÚÚº­­ §899!„‰l¯ÖÑÑÑ!—ckkë Aƒlmm?|ø€kiiqpp011a³ÙBšãÀ±±±vvvêêê¹¹¹ü <þ!…ß:I?qâ.š„„Äœ9sð§ä@-;;!”ŸŸO”!têÔ)ü–Íf[XXòoQxY„×<ÏFyGêÕ.¼É[žÛ––CCCmmíçÏŸãOëêêtttÄ8&&&JKK—––âmQ e¸\nCCÈ#ètúãÇ©lˆ¬ËÃ!D©gèСzzz¸&©×^ss³ŽŽŽŽŽÎ‹/ˆ†pvvÖÐÐÀmÚ][¶l‘••­­­íôÓ§OŸ"„fΜIî”500 ŸµD«m©ƒÛÿô#ä{U ÃÌÌlÍš5TFÐh¼·ÐƒƒƒynáK‘p%%%OŸ>MIIa2™8…Édâ®Ç»wïâ‹¶¶öúõë;}NBB‚F£]½zµ¦¦ÆÐÐ!”žžŽ;çBÅÅÅ222ÄSM ¡>_1b„¹¹9~;CBBˆ»innn………>|PTTÄ[¹r%ñÝ 6¤¦¦=z488˜H,--­¬¬üã?deeqŠ´´tDDDhhhII‰{ß}÷3äáá ÂCWW×ÊÊ*//!ôæÍ›²²²}ûöEDD°X,ÿ‚‚‡ƒ{‰ºdjj:iÒ$üšN§ÛØØäææò/&¼,C† RóÂQ¯ö.[bnÙlvMMMRRî6Æ;ÕÒ¥Kcbb¨d˜ŒÍfŸ={VЧ“'Oîr ÅÅÅëׯOJJ²±±éÖ¦óóó¿ù曪ªªÔÔTò}XŠº¬L“)S¦à×4ÍÖÖöôéÓ¡’’êµWPPPWW·iÓ&---¢!V­Zåëë{üøñY³fu«ÿý÷ßï¿ÿ~ùòå‚n1¿{÷!ôÛo¿ùûû8p@__ŸÅb…‡‡O™2¥¼¼\UUUäÚÔAà@où EšÐ·u9"»°°âPhµµµ!"…ú¨j²ÊÊJ„ÏËøÑ½ÊÊJi™™™ B!++›’’²råJcccKKËÑ£G{yyM˜0kPUU-**ÊÍÍ}ôèQeeåƒxÊ$¢U„\øS–––äÑòòòfffOžjÔ¨òòr že¼½½“’’Þ¼yƒ{SÜÜÜœœœX,B(??ŸÁ`¸»»S©s|“‘ hD—eRóÂQ¯ö.[bnñ³¡Ã† #§ ŸZ‚"COšššðCºâr»8æCBB<<<–.]ÚeE‘‹°dÉ’3gÎ 4èâÅ‹ãÆ£þ]ê•ɳcÝãÇ©×Þ_ý…ÑeeeÝ­ÀÄÄÄ–––¨¨(AËã?êxäȼïM˜0!))iÆŒ™™™AAA"Ô6è.èM"L¦Cëì[´>ž—§»îÞ½‹Lìázðu‚§ÿ‡2Ä!kX¼xñ”)S²³³/_¾œ““³wï^333‹¥¢¢““coo?~üøI“&988àÇ­z ƒÁhjj"§àKWRRÿÜæƒ¾699977·-[¶gee}óÍ7< xyy%&&²X¬¢¢"WW×µk×¾}û6??ßÉɉd#Åñì]–EPÍ ß]­­­Ô[Pxn¯\¹‚øv3áº[[[Éo‰áJÊÊÊ]F‡B¤¥¥UWWûùùá{ô¡wïÞutt$&&t:aþáÇçÏŸ¯  ––6gÎÑÆS©LA;Þ"ÅÚÃ=¾loo'úÚ››ËËË]\\ø‹£¨¨èééIþâýû÷ùÃß³gÏúùù|È![¶l©®®2dHEEŹsçÔÔÔBBBètº¼¼ü¼yóÂÂÂtuu¯]»–——§®®^XXxîÜ9ooïîfU[[;66¶¨¨ÈÚÚúÚµk¹¹¹3gÎ$/Ã`0RRR&OžlmmØÞÞž••U[[{äÈþG ™Læºuëðžžž4-77·¸¸xùòåä ɼ½½ñl,8p¤ÓéÎÎÎ999úúú–––~÷t¦¦¦¾zõŠ<ާKÂË"¤æ{²Q2WWWá-ȳ!¹¥ÓéÛ¶m ´µµ ’””ÌÈÈ>÷!ƒÁöõõåp8ÙÙÙÄÞØÃ[Õ]JLLܲeË÷ß¿`Á‚òòòGYXXðOàëëÛ‹•)ä»’’’ÔkORRrçÎþþþ666óçϧÓé™™™·nÝúá‡ðmeŠØÜÜÌb±ÜÜÜøï‰“«!´hÑ¢cÇŽyxx„……ééé;wîÖ­[«V­êtÚWÐ'Ä=¬û Ôo‡è÷½ÕÄ]~½x|R™|‘gžfjjZTTÔÝU‘‘§ãÁŠŠŠ¼¼¼455555½¼¼nܸA|Dž"±SµµµsæÌ144”––600 %¦za±X£GVPP8p`xxx}}}zzºººº§§'ÿšq—Rzz:‘Âó,â…Y,ÖØ±c•••ÍÍÍ£¢¢ZZZ:ÍdIIÉ„ ´´´TUU]\\.\¸ (óçÀ#FŒPUUÅ¿UÝéì0äÂ"„ÔÕÕ‰ü[óçÏ'/Fžþ†Ãá„„„())ÙÙÙá¬N:•¼ðôéÓ™L¦ - )‹šçÙ(Ït<Ô«]x òl¥Ëš¿r劻»;~@YYùرcHðt<ŽŽŽ †††ºººË–-ÃýëÜn¢2KÏ1øhJIIár¹§Nt¥Žïu8p¹ÜY³f©¨¨ˆP{¸!|}}õôô˜L¦»»ûŸþÙݪ;wîB(11‘ÿ#ra óçÏ·´´TRR=zô¡C‡(Ö¶0u4n_þ-Õ?™™™UTTˆ; õJS7 ‡èÇglllccÃóÁà3UWW7`À!]ÚÆÆÆzzzâÎ駨ËÚû2ˆpVï·×z¸U €x@8ÀÇ'¯¢Ú<`p  z€—··7•Â_†… öp3ýŽÀk÷îÝâÎøxV­Z%î,ðÙ€[Õ€%8J p”@à(ÀP# G@ L@·UTT˜™™‰;ÀÇ#¢¨¨¨w€ nUJ p”@à(ÀP# G@ Ž€%8J p”@à(ÀP# G@ Ž€%8J p”@à(ÀP# G@ Ž€%8J p”@à(ÀP# G@ Ž€%8J p”@à(ÀP# G@ Ž€†¸3Ð Ž;vôèѪª*99¹±cÇFGG«ªªRùbuuµ··÷Ñ£G­­­y>š:uêýû÷y™LæÕ«WÅ]\ñøìÇäää={öÈËËÛÛÛ×ÔÔ?~¼²²ò·ß~“••íò»¿ÿþ» ž={&++kddDNTQQwqÄæó+**öîÝ«©©™™™©¡¡Ú¼yóo¿ý¶mÛ¶ØØXAßjll|üøñ™3gŽ9"hwïÞy{{§¤¤ˆ»ˆŸŠÏûÇ£Gr8œåË—ã¨!£¬¬|îÜ9‡#è[¾¾¾aaa‚¢F„гgÏB<ÝýÜçÝãxóæM "…N§3æÌ™3%%%Çïô[›7onmmE|èèèà°¢¬¬ŒzýúµÈk®­­EíÜ¹ÓØØØÁÁáï¿ÿ¾|ù2‹ÅÚ¸qc`` •5˜™™ñ¤TTTˆ»Â þËz¿õŽÍÍÍ!yyyžt„лwïD^ó‹/deeW¬X1sæLœRTT´`Á‚„„'''.×a"ðÅ࿬÷ÛPò3£¢¢B£Ñ>|øÀ“þþý{ô¿ýŽ¢Ù¿ÿ;wˆ¨!4zôè3f477_¼xQÜåÏ8pd0ÊÊÊü=‹!bœuo1bBèñãÇâ.7€x|Æ#BHSS³¡¡GŠ„§OŸâD['—ËíèèàŸÍ‡N§#„Å]hñø¼G77·ŽŽŽ‚‚"…Ëå²X,UUU[[[ÑÖYSS3xð௿þš'½´´õãg>ïÀqÚ´i?ýô~®!´wïÞÿýwÊ”)’’’8¥©©ééÓ§ÏŸ?§¸N##£aÆ;vŒH,--ýå—_ttt<==Å]hñøŒGU#„ttt¢££'Mšäìì\SSsýúuKKËyóæ˰X¬ÈÈÈAƒeggS\í·ß~;wîÜõë×>|ØÄÄäï¿ÿ¾s玜œÜ÷ßOå'°¾HŸw#BhΜ9Û¶m366ÎÉÉyýúõôéÓûí7þÉ»ÅÜÜüäÉ“~~~ÿþûïùóçß½{ççç—=jÔ(q@lh\.WÜyøÒ˜™™Á<ŽÀ¬ß^ë?ûGðq@à(ÀP# G@ Ž€%8J p”@à(ÀP# G@ Ž€%8J p”@à(ÀP# G@ Ž€%8J p”@à(ÀP# G@ Ž€%8JâÎtŽF£ñ¤p¹\qg ú5Ÿ"†x¢DšhkÐkàV5 G@ ܪˆ­Ó›Ðð4#|z pˆ Ѹ‰<ãÈbþÿÏ!Ø€¾#à3A6ªšcg ïÁ3Ž€%8J p”ÀàÀ§å†¹ðƒù¿£ªa 5||Ðãøäp·“AÒ4ÄE\üOÜ€~ GÀ'DдŽ>8>?\Ä…‰àãƒÀð©€îFøÄAàø,A§#||0ª fäøïÿ¿îjT5ÿwô5âDÜ›æ¹OM£ÑxcG¾ßª†[Ûð‘Á­j€ø‰ÂÝjøÈ p”@àÀÿkïîcä(;Ž?ÏÙŒîl.†¦!I}GLÕÆ FyÁ…T Tiç J%PQÕÈ$"A”¤¤ ‘œJ$¢WÉBæE‰$ÂK¢d‘·®l JÄ÷p"µI};îžþ1;Ï>ó<ÏÌ<»;»óöýÄ"w³³³3³{3¿}^Q2jœ .ŽÊ4`j¤¶F‰à€ G¥)¤’šBG‚#‚0Ž#€!Ê- ŒV s ÔÁÀp¥…B]O=xEsT[Mú€a£ª@ ÈyPGG!8µa7Ò·F€à€ G#5¼Ö:À°„à`tèL µÆ8ŽjϬ¡Î¨­&³À€Žš@‡Â´BMš?Àਪ0"ÔS@ÝQâ`¸ë‘‹Âôƒ0<GCd8òÔUÕFa”©‘`HŽBp@‚#€¡£u#4Á@ÑÌ†à€ GÃE=54F[‚ãÎ;7oÞ¼nݺ÷½ï}7ÞxãoûÛÀ'>ûì³ÓÓÓO>ùdÙG ‹Òúg-,{  Z1øm·ÝvÇw,_¾|ýúõsss»vízæ™g¶oß¾lÙ²ÜçÞu×]eï>€i“SSÒ Åj~pœ™™™œœ¼ï¾ûÎ8ã !Ä-·Ü²}ûö[o½õ _øBÚ³æçç8ðÀ|ç;ß)û€+1½1÷ ®ùUÕ;vìX\\ܲeK”…7ÜpÃøøøÃ?¼¸¸˜ö¬Ë.»ìòË/'5hÍ/qÜ»wïØØØE]¤—,Y²dãÆ<ðÀ¾}ûÎ;ï<ï³n¹å–ßÿþ÷Bˆ»ï¾ûg?ûYÙÔ~Ð0 ŽJ©ƒ®ZµjÕªUæò©©)!ÄáÇӂã\ýðØc•}•Ððàxüøñ………‰‰ kùøø¸⥗^ÒëNOO[KfggË> îm½µOœ8!„X¾|¹µ|ÅŠBˆcÇŽ éu‰‰@ê©é îm½µQ²ác&&&¤”Ç·–¿üòË".w@ˆ†Ç¥K—Ž»%‹óóóBÝϹ…“““G’¢vèС衲÷h&*ˆ ‘š/¾øâ………Ç\/QJíÞ½{åÊ•ëÖ­+{ï€zs'úcº?h°æÇÍ›7Ý~ûíQ»F!ÄÌÌÌ‘#G6mÚtÒI'EK^yå•C‡ýú׿.{gúQB¹ÿÌå¥ïÉŠÒð^ÕBˆ3Ï<óúë¯ßºuë_ýÕ_mذannnÏž=çž{îßÿýßëuvïÞ}Ýu×­Y³æ?øAÙû ÔõÔÐTÍŽBˆ«®ºêôÓO¿ÿþûzè¡Õ«W_qÅ[¶l‰Fä@ ©›žžfG´„·pÑZØ_¤”Ò~’ý]¯(P¸ÖÞë›ßÆÀ(‘Ò ÁŽŽþ1P‚#‚†zjh6‚#‚¤ã8©ÿg¨È€_QÿªÑ`@GI$E•ù( æŽúg ôm?ÜïÝ€j¢#€HÊ ŽBpР̃#8– %ŽBp@‚#€PO íApÐô€„à ÔS@«„à€ G}ªc=5ýc`G!8 Á@?êXO ÁAŽÚ…þ1Ð7‚#€žQO íDp@¥eï€êʨÒ5ª~é£{ i‡Výc€ø¥ÕG[ËëÒ^ÐÚç´CõnI)Q@mPU  uªÕ?FVfO Á†&%ʘþµì€ TU@ ¨ŸPGG=` žDí­VŒR '5*‘,›¤Õ#€ª¢ªFMº¿*ÕÉ‹Vj”’FªƒG(HZ³–+¥¼kÒÃ@å„jR=uÔ±ºàÃq+¦…pë©Ý|Ù©ªNKÞÍ@ŽPœ(ä‰8/:eÑÿK)Í(ÝfŽÎSh   Ž‚4©¸±0Þ‚@32º?G«x·æfMý·ØÊ@çèKF€³’b^¡É¢JÝKÆêýJq#€òPâ ¼SÅ?ŒÎy:Šüà(…Pn¥¶ÎˆÞa}  G~î¼|š¦¯÷cñ.´þÝÊsfÔ³–Û¯ë¼jF(43(”Šà •U4p"µ§KN§aT:÷Qd¨ë¯©§PG“6ÚŽYШºÏí‰U=­€RÑ9@Š»¬ô¦K‡QhnP¿.Ù@©(q€^è‚@«8°ðWI[â¾UØF…Gè]‰YÍ-õ€Q!8ÈÒìzj·çxð3AGßúÐzEš?ªª º­¡wRÁ‘adGe 8€3O`w¡pf…e|´ê©ÍifLdJC@pªÙõÔ=Ë(áeJ3''Éì(è(`¸hãyª6øv4ŸµÛ²R;  ‰(q‡Õ„±âiÌ*ƒ€¡!8ðkI=uÔ±Z‰ÌŽÉSÂTYôXÍ=ÐGBøÊíÌVÍLfÍd CFpàÑ’âF›51t•k«­½b(G#ApÐ ÒÉU*# Zå‹UKÞ½";>zUh eüËY³ò•¿Þ,Kv0dG¶–ÖSwÞ¨§Ö?Æ@Ap{Æj³žºv©±v;  Vhã´W"-¥<Ô®¢Go?˜ÚE1Æå04G ¥Ò꣭åM­¶öy5f€ £ª@[YåˆMJ‡µ+%PG­£¬JúFf,kk(UÕºšZ1yÌQ µÌ\Åó¨ªW %­à ¤T ‡ºLNJ%„TY¡Ùz %xæ$Š:(Á@ (%;é0^"©¨yŽ:_O-£•Q ¢=uS²£7»…ŽÔ\èÁ@‹DÙQ!ÍÚç†E(ˆÍòÔh"‘2V%„¡W5!ZPܘ8Ø6¨·]£™  wG-7*)”°«t•3JOíÑ9@ÑŽZG*!E¢WuÙ{4¤ã”‰êiÁ@[ê©;­ÍmC½-ñ@qè´—Y3Û´ZZ‡ÊhÚØàì¨S£Y¼Úàã0dG ¥tc3‹­x$[YÚfDZ:UÕšŽ26§ÀŽ'Jн×Ì6°cµ}„:ÁhµfÖS†ƒ6ŽêÏ;™^r´M)8˜è´Pa  /MŽ;wîܱcÇÁƒO=õÔ /¼ðúë¯_¹rå€OùÈG>òßÿýßÖ³ÞøÆ7þô§?-ûpÂ4§¸Ñéº{x‰ahH0¸ÚÇÛn»íŽ;îX¾|ùúõëçæævíÚõÌ3Ïlß¾}Ù²eƒ<å¹çž[¶lÙÙgŸm>qbb¢ìÚ Ùû":èW½ƒãìììÌÌÌäää}÷ÝwÆg!n¹å–íÛ·ßzë­_øÂú~Êüüü±cÇ.¹ä’o~ó›e"0,Í)n4ÅER!¥Š({·†ËkH  G½;ÇìØ±cqqqË–-QBÜpà ããã?üðââbßOyî¹ç„Vq#€ˆ+¬•è„bÿ TÓŽÕª×#¥{õ`8wh­zǽ{÷Ž]tÑEzÉ’%K6nÜxôèÑ}ûöõý”¹¹9!Ä[Þò–²@ï”jépß(ˆÌË…|ºÐf5ŽJ©ƒ®ZµjÕªUæò©©)!ÄáÇû~JŸþù+¯¼rýúõ^xá§>õ©'Ÿ|²ì# ÓÌzj¦ÔëI[ ss¡胟»BÏ,Ú¡Æm?¾°°àvXB¼ôÒK}?%Jÿú¯ÿúÖ·¾õ=ïyÏo~ó›Ç{l÷îÝ7ß|óG?úÑ}›žž¶–ÌÎΖ}€ 2b02¯º?w½NÈš¨ ÷¶ÞZ5Ž'NœB,_¾ÜZ¾bÅ !ıcÇú~ÊóÏ?¿lÙ²Ï|æ3W^ye´äg?ûÙµ×^û•¯|å‚ .8óÌ3s÷˜ˆ*klq#©±Wº{µ;˜QmeÇ5ýhnªKíYŸ%¢a«¸·õÖFÉWUOLLH)?n-ùå—E\ˆØßSî¼óÎ'žxB§F!Ä{ßûÞ¿ýÛ¿=qâÄüã²€s;'5¢þ ¨”ù/°¸Q0æ<ªÆÁqéÒ¥ãããnÉâüü¼Bwšð)ÚùçŸ/„8pà@ÙÇ ‘B¦ý3-{7û;¶á¦Æšv¬î÷hÕÒQfÆ53f¯Ömé|´ÌG‰†!M- ªqpBLNN=z4Š}Ú¡C‡¢‡ú{ŠRjaaÁÍgÉ’%Bˆ7¼á e4JYE%BE5ÔæÏueN'HYãà¢ODƒd ™ü'âp™:¶‘”ú!ó)æ?óYiÉ’:nÔW½ƒãÅ_¼°°ðøãë%J©Ý»w¯\¹rݺuý=ennníÚµ÷wg=qÿþý¢Åm€*"5öÍ,ƒF!®µ¼zdæCuÄnÈsGúô„Åôóà>Q9/‘ºlÔQ½ƒãæÍ›ÇÆÆn¿ýö¨‘¢bffæÈ‘#›6m:餓¢%¯¼òÊ¡C‡~ýë_>åì³Ï~×»ÞõŸÿùŸ;wîÔ/´ÿþmÛ¶yæ™ù—YöAý«i·%…’B‰8ÖXRW;èTTtuI´^¨­d"ïõ=–NÍrZib!E€Òy V - ,²î3SmÛ¶mëÖ­guÖ† æææöìÙ³víÚmÛ¶é1wzè¡ë®»nÍš5?øÁŸòôÓO_}õÕGŽ9÷Üsßö¶·ýæ7¿yâ‰'N=õÔo}ë[ï~÷»swizzš^Õ(7#Z ‹Í‘RJ÷nÜ÷ÆÚšêÜù•~Øÿ³ñt7$v/sßìåÛÚ Okƒ¥mÍìL]‡îÕÃܘݥ5å<ÚÓ6Eçs˜ø¢â=·9q–(繨ÖÞëk<O䪫®:ýôÓï¿ÿþ‡zhõêÕW\qÅ–-[¢áuú~Ê9çœóýïÿë_ÿúÏþógžyæÍo~ó‡?üáOúÓ«W¯.ûpþÕ´¸±³óJ)”› ª­v{Ã$–¨î/ªI%›ÞvÕNÙ+ˆdX,jËnD9¹ÖÚÕÃ*¢ö%ŽÔÚo!¨7&†,è‡YâØÙš0†Y©±×Çì“£·&U'86¤ÄQ8n6*}%ˆÝ@oœîsâ#ê{LïÀG‘—>½ãGš]³½e¨‚àXa­½××¾Ä@»è £;W5èÔ€y2uûÑòNiFT’¾V‰ÂW=-D?…¦é]`”õk%ÎÊwtþO/Ù¨‚#Ð µ®§v¦ä|Ó(ú4êìXafùbh´RJ„U[ØÆ1ðUÒ^—òEÔÁh¾f¤Æx¢7£ pµSN=˜1¨ÔSšeÊòÐCþ·¼Dè$‡É 2±!ª¦ÞÃñh »WµðýŠ^yO`•Ϊ5’Nb7}nû6Q¯: fÔ_U@‰#Ðpõ+ntnôJƽªÝ•«”rš`˜mrÇÄéìBJ•tÆfíCÈøµ$᥆ҩ¼¦Ð•BpK(Së™—;©qô¯Ûyeî×E O!çÝ›¨ÂûAþØ{RôH ÄèfŠOÝ£OY©±Õ†Sè(“E‰ÖCÂé"›UÒÖkq£õD™Òô³I§uApP%qdQR Rcã¸A'·7qnA]’ShƒN`øŽ@cÕ¦¸1½÷‚49RE:f p-RÂP ËÒ²W%» é•[x¢P.‚#€²¹1%ê  /X^¹#Í{ÒSÿA÷á¾pÒP:‚#ÐL5K<îD‚Qt¤¶º&dæCV7áÀ±»[U–8„¸wÞÅV(”Žà Ì“£#LQá¢÷!)¤PqèiOQOïµÕñÅjÈHÐqõz6˜e!8 XÜè\þÀ%åí€÷ŒEgRJÊ=³dÐ(ëû‹wÌK²8F†à´[òV#KôΨ¡ŽöKªò«ª3J"›o€BG™\˜±&”Ýê‘“ŒÂZÊM3Ñ µiæåE#¦H)[T/\giã R‹cð2~™ÄÓz¯ó. @G ®ÒB¡®§®hQ™[ˆ¥Ë“Ë£G”)~_rkœE²Î4hÛíÌ4Ö‡¼¸2~7;Ê^Þ Áh”zt¦63bü³žiZ8zV©X·9/ãÈd3;ë!Aj)”=vºwT¥¬ÕZÐ14G#”lÈh•2ºŠ žt˜>H»w–<’Ê$C½ÿ«€>I@߯ÊÞ…©Gqcww‹ŸyT}ZŠ—R*.ã’F­(çfdTòŸgÊ¥¸û¿Õc† kˆGÔR›Öí £— ’¤R*ñe^O^A¡cÙ蟄á!8 QÑâFgXo!ümQ¢üšM)¥RBG¥ ìÓám¨Wþx¢M¡Œ‚aB$ Ap0dæD‚Ö‚²ÆJ“:)êÌü~õTÜ^öc0TG  *ZÜhò=Ö%5Ê& ”]­•/*=^’”*ZH³¹ú0f¯ÉŸª‹àÔ^ R£V—¤ØzRF)…=y±Ä ‡”=B¸w}AšD/ŽFˆ‡œQ ž‰£ãêäÚÒì[zÉî.CcS"8õVµâFÿìÒÎŒ‚i³Å`B*(»©!®ŒVƼávîG5…=·qBüNÓØùŽ@U-5¦ì¥/#’BF%£q›wÞé¼5RÞµÊ y{hìˆAºŠ¦¢®Ô„Ô*îD:vKª„¯nºVeª¡ýc2„LŽÝŸˆ:½k­ÜØT¹­xg†àÔRϪ{­WÒ(©BIt8°‚BV—ˆhŒF£dÑ~½ÍQCôŒAŽ@-U%5ñ"1tœŒ—0XcÅè¬Ð¸ÂSôÀú‘¨21W5€èjh¥¤èv‹‘Êè"ÃÝhØRΰ[Ä8‰ˆÊ,S”ñ0=h¾E '”8UÒr±*…ŽÉÝŽ«ª®f3G)<•Ëö ³K£=ܯ ´qD8‚#P9Ù‰P?Z¡n1z°h35RŽQ*³ˆQ3ß“Ô7Gu²qV5¦"DCPU0GEˆ¦1ªªU…‚mcu‡ÚI:fwzÈNRJâCƒõ:h`!8uRrõtZO—xb:]Kô(…Y˜‘ ÃBG Ž@mHý¿ˆê´m+{·:ã{+#/V­!`}e”÷$ú¾ÄƒÎ|€¥*PIÒø¯Í÷™qç˜èU ÔŠÿ•óêFW)Í™èÌ»QwðfñO¨8ìÍl,ÅD%¥2æWl0\F#HT“Jÿ癈¯ð¡Ä¨Yz»A«í¼ùkôƒ5OB60;ŽRÖ´.Æ RO*דæP,f)„Fpj ´¦iåIÑr÷•¬4Ô ýFØ€¡ÓÒ±äÓƒa!/ÂEpª®Ì1ºbZó×(1 }…µ‡œ¶9éKjß—;¬0žKÃH5{7-Ap*­üQ¾u²‰B¤t¬»HKòã臨 É‹%ê´täûCsUö³‡RÐ9¨®§Æœ®ÐVyeK“ºS‹s2uFét…Ê¿…—UwœœCM¢³#o0(qЕ2çq¢zšÈ8liCð(‘2œŠ*yø#Š£Ú€ÔˆÁ¨¨ò+©;ûWRëøh ÁÓfV¹žÊÏó9–Ó01ãw²æzÍáþxÜ_3D¥à&¾9´ Áµ!u¢ufÍ;Ù±Ìϳ2þ^‘GpJ&㦆£}ÕΜQÅj¢ªÚš]Ù9?É…ÿO ¬c?Qÿ×é¯*S~®8™ÑqŠÏO›¸ ~‹-5Gu2 ±†Ú;s²4¨ÛC%×l}‰‘4n„™o3¶¥Rú†©œ1½»›Í²»íoª-íïÂ屨RsTÁ(XàøÞi#5𾹤­…É~¯²3€³³©6 ô{ŒRGp!Œ€§¤‹Öß&)tl«Ô&¼|š‚àÏŒƒž~ Q®(<5úw%1C`§$¬ÛlÒKM¼·¢ßâÆ 2ªå7ž#(™ú¶¶«Ù±¡r?Ã*nQöžb(ŽÀð¹£?£QcÆ}:._4óhu}h™¦Ó$Q ¡TNàVɧ ôÙvª;$àŒ–ždn±-9õK».Ù!-5ãÁÆ“ºóþuÆ31†XÇp—:6SàÛɧ¦"8£%£t2h=u·8ËšäÍí-‘²=•¤QE¼9§_Rœ ­»­ ÒOTnq#fv$D¶[»šj4Á¨.Ý>Ò3ÔEÔ¹&{„ 3MÒW:WF¹lT6¶•²£ÚÈŽ­ÅûÞG ÒÜA¤µÎTf(ô–ë4îz=4·LT.»e„q©‡ûü€L“›vŽ •«¨ì½AIâ6Ž:ÖÁèMøh;_†:û´p¦–nG‰Î`±¨ÎÛh¨Ì6‰)R‚n5ÿüùÜÙMÓÿ~‚'jBùŽ@ϲ›'&g+–A§÷´—è²k•/Ö<;ÊÌq³O§û¨´#õ@%^ݹª…»5>çCá})tl7{„pÔÁ =‘`hïißHÝž‘¹E7ùtf4Ö¢ÓiÒ ãf¡Êª­yR׉ÇÖIíp#£PÙ–“ÄjA!â9Mo[ 3R¬ïräfÇà‰šP G`(¦1ý†ªçœ1ÉÔ^ÕÕ“Sd¨sž¯t0cÈîî™ëœ†ÎêfÇÜâÆôtB‡â%­3µ(Ñ2:; ’b •½@£xËsF‚N«YNAÚLž aËŸï.»_ Z[oG?¨øUâˆ[Øpx;Çp¶›K—ú'–*%ã?X­zƒB.6JbôS7mò1úK×Ì moŽÚÞ’Áv¡Š§jLœ™J.ÕLÇLØ…ï>FP7ݺÔßj~“Z¢ÏŸM­®ÀÌçßí]ÒùI%7ªâ‡¼Ï¼§ª ÉJܹ°œ°ÄÚ µµ¼K¼Ê(U”F¹`þ­ÂŽzÒ›ˆ{kR&Ös·WóNEÕeµe$;"f~ñ¾2HïÊ(ÁHÈm›hwšvž7A4æ#1[%Ê8ŠY#/vžœèííùa7pô¶èØ}tÌW"¥„Ý Z4«·xÁt:în~n3\b: î¾jTÁ臮˜Žó_2¢·ÛiÆ“†{Xù]z²’Q7™y ­gyCœÙa9ü>a6´7w†;M…x›á’Ûͽ’èøè½Èðµ¬"Žh‘žÇîî,òÜÞëx‡NŒ3P<Œ‹3»tÚsvo€ ç`U„ƒ_²=IÑ|È¿o2 0"±©ÎÓœZþN]¸»9Rú~ a¿éá'¡Á2ÆëAÑ.¹cw»Í棹ۗFd·[‡=éS¾˜2:Iá—ËÔa;;-SZºëùÆÙ¶F²Æ³<ûSÐÖêJ)%iðØFÙ°iãõð—^G´[JŸ¾—Å…]qÅ´Žî¨"ÆÝvÏ_=zŽ;Œ;ÇtÚ.ee¾€M?ØÀ§§Î ­·™Ø¸ŒZ%F :eÀÆeÎã‰Zm *’ßݪÛíè2/§Ò¸äF?«áÓ†ÁÍQHM´ŒŠÍtBtæ±Ç$óüê vy5¬\¥Dö ßÅ\Í™T¬GB²Ž´~NÎÎâÔËÄÑy÷§‡„%»ýŠªËìŸútpøZñ´p†eIŽú.ù‚„ZƳWëŽÃàN¬šù Á’ ­+•oƳÄȲ3­_ge½FZHM½b¥¤Ä¾ÅÙ1mQ©L_÷Ôþ‡Ý6º˜XWä¨3h´ £62c ·¼î,u)Æ3 š}%Çõ8ŠQ‰>Bî§:9.UÙ{‰‚…¿£ÝËN^…IQ“ ÁõÐÏ‹™5¿i/‘^»óm79†­4zºÄYGÅ/çy±Ó×8µ¢9÷z×[%un E³Ð1±²ÒÿI¯òÏÁ¬âvY»§O~z‰lwàÇä©U_”*þu~“RFŸ·´¹ HʃF#@pDI²ËÓÙÝV27â¿‚Xc¾Ämð”Ù5¦û_gœÅèyFá_à¥*Ú`v¥mლ光âÃîY$‚«S)_äU¸UCäH!•lU­tÌ6ŽÒì+“–I“­‘3¯½"`⨴§ oG Gn.ô ó.ëÌ,'­ÙüºÍ¡rGÀ¶j™}E‚ÆkÆK»CvÇ…jÞ¶Ø:¿úꑾÆR%•îô%Ù'²÷>1æÚf5‹ôŒ;ôÕ;Ùžõ+ßH%è|옕Ñ¹Åø‡ƒM¹®R—]‚cÓä‘€œi”ݵòþƒr¡2saÇ™^ê/—quªJn_—zuoWθÓqetúa&Ë ©I½ÞÙGª¼?šg¦°ñÏ‚^VÇ¢Sbvÿܪ±‡vB©Û~8¶WàµK%aîS²¯ÕI† 8‹Lý"”!w ã òBXœ27’ûdòWýŠæ Jw©õüV}Þ ˆ¨è.î}ÙYÁ,ñRzµÎ¸7ú¿c6Û,êÛ’Ul¦‹õ G71çœä–žI{ŒºÄq'*‘“Çnœt»ñ£ öÊî`šô—)“;SìÖ¢¯uÉ‹Œœšš: ¤{„»ÐyÅN]®¡nmÀ ö²µ©é©³ŠÚÚHN]²I´óýÁÓÇ{ 2Ÿ®ËôïµÜžG©70•½uÛm·ÝtÓM¿úÕ¯Ö¯_¿bÅŠ]»v]sÍ5'Nœh£¹C H™1‰Bà !<9S5íü¯’z 2JsÊ|=³è4ì&6ÝßÖÔ-Þ »'RÅEnª[hõ¹Èï‚!ã«”J¸ã+ÝÜ**Õ¿J!ô?aül޽M"~¿„”É»ç¹ûß”SÝw‹®^ ]TâŸoTÊ?)²EßD;ïq²eôÞ(}Ó¿F£+ãŸwë­³VpVîl§³AéÝZ¼™äîYûi훹5s÷`…q·VBužžò*Ý%ÒÝ s°ÉMéò®`¬ôïLÈ«Xo«{62v#í`Uî;oÄ>Ÿî Ý#U½lÊ îÁ†Ÿ.Õ¹†Éî±YW›îu5mO:ë)ãˆÜ³ažóî^ø1‚£ÇìììÌÌÌäää#<233óÃþðÊ+¯|ê©§n½õÖþ6¨Ker›ýÄNô’²[˜’çº=;áRZcQ¤szW)¯a楓M2Ú‡“,;4›Ð9ØíSg:wpóÏ[ÿ‘«©nì3žŠ¯ѵZÁøŸþÕ(˜Œ7 ¥2.¨îÏæ’ÁkfÃ2_h;ïDbM¬oi¿#5"w  ùãÛG_‰£úäU«÷+¨Svö ª£êúÓ;m4›·BQ3ù61yCv†Î`O‰¢JU­²=vìØ±¸¸¸eË–3Î8#Zrà 7Œ?üðË‹‹=l(ŽGþåÆÏÝH§[ÅÓp¨xyô OI^Ô"9sG·u¹0"]ü_]¬Ósž÷OÝ, ôWç@¬\˜Ü‚ð%6øâµ¿Cw¿vÆÛ1·`¬g$«ØOèboq¡µÐÏL”!­S?!Ÿ –¾¸X4qÖŒB§4£fw­G.KÜøÑ—£k¶Ê(Ï:fHÞÅ!&«gø»1¢W)m7¢êä]Ä(ÐMÝ»Q² g£òŽ{÷î»è¢‹ô’%K–lܸñèÑ£ûöíëm[úÒ—Ød\²h|fá=#pæ8}UꖱśµRR7±+ˆd¤3þ?Ý*¥3ËùŒHçæB‘L–F]§Ôå†*®>Ö?tNF¼Ëú–L?ú°”qø²FÕ©C+,Œša”\Ægj€/œE|·VúÝIžÌø“ã\÷’;à†nTJô©³ ÔºHfü•ß*;Ï4“eb¡H´]±^ϸu.M‰X¥Ö«èŒkŒùꉳ»á}}›°S²µ¾NBi+û&Œÿ{°2c Á+Œ[CçB·ö)WPRŠÎ¼ ÝÛŠù*v bG›RêàÁƒ«V­Zµj•¹|jjJqøðáž¶eó’‘ØívDœm:«u7˜ˆ€y‰-¥8-ma¯+˜߯ß^ò[™ ͧt/yãìXê^“‰î“º‘Šýg¿ŠQé ’»ªtêÌl)ùTXY`o-ÿ’M'»ùWtË“)ÙZ•b|êÌoHNÇèëJ'>Æ+‹¼Oi˹mE⺡¡ûµ3·vÕý6n-t†¬O´²Öw7ëþj\¨LÖ¹»‘ý*vJönÄ{øÆ f¡›÷z°©[~{ƒÂ¸ë%Ë5âûc|OÉø ¹ü»ßýî¿øÅÏ}îsW_}uö¦§§Ë>0\³³³ƒo¤vŽÇu^¾|¹µ|ÅŠBˆcÇŽån!ú$é ½S›ƒ*»: þUšå[)+=îŒ^Áø!ñ*Æà/—µ6’¾‚rËõ u_%Þ a|E‹5‹Ðܳ!â¯}_bdPw܈ìDHûÅÜO@À« rÇwáò®#ºí.†µBv£»Žq±4Ó#¶Fµÿžk`b‘v!5Ö·BbWsWH•‘âvc ƒí® „þ §îF|×Ⱥ 3ŒÁÑ611!¥<~ü¸µüå—_BŒ‡o*Y{j²Îg1ŽAnb³7”\AˆD€³^Âx(~•x7¬?­ÄæRVHù‹í¾ñ*ž]ÒÍM²kLœ³åRúÞ‘u úãÎM~¹+p FÊ[3æ]h}¿uÂÿh¯<Íiz|•ÝÜÈ »~°ËG¹¹¯’lãÔm fJ´€J½u ÐÚ½É޶¥K—Ž»%‹óóóBÝϺ7}&6'\š4Ó§õu<­S˜Õ¥éD÷oÆé²µ¨ëî†ÿo¯³O=\Ü}뉠?Ñœ!Cþȉ}@3Y=$2Öñ>ø]dÆÓÜ̇2ZaZÃÛ û`‡¹}Ÿs§X$ì`“e–N.qìá­ÁÑkrròàÁƒóóó§vš^xèСè¡àÍøªnEO‰ÍÞ˜½‘´G{_"Eîwz•×4`ÔíÜSznÀà­îÂNBf²¸§lÇíð+âiO+¸»aÝ5Üô½}lnyÄ€[ònÄ¥’J$^EX¿rkJ WµÇÅ_¼°°ðøãë%J©Ý»w¯\¹rݺuáÛévï²ú̾dÜyÍ]G÷L[Aoò<šìs›»Bæ*¡ÿ”Ñ籿@ã¹]­­n×ôªîGZÉPfŸßü/Øi‘³·é®[0šÝèãU2~ÕõÂC}•¾ÏFÐ9¡¤ïþÕñ‘?É‚£ÇæÍ›ÇÆÆn¿ýö¨]£bffæÈ‘#›6m:餓‚7S@+ê_@hSƒÿ+û}ª.ü(;\Ž`ýßwc¯ÒÉQ=á]¡»%y•Î )¯ÒÌÝH•ìr^Å\aÈË9ÃñømÛ¶mëÖ­guÖ† æææöìÙ³víÚmÛ¶MLL”½kå 8¦zàî¿ÿþ§žzjõêÕçŸþ–-[¢yÚ‰à€ ´q@‚#‚„à€ G!8 ÁAŽù¿ÿû¿›o¾ùÒK/}ç;ßùñ×]wݳÏ>ë®¶sçÎÍ›7¯[·î}ï{ß7ÞøÛßþ¶ì¯®'NÜyçÑ)ݰaÃÕW_ýÓŸþÔ]SÚ‡gŸ}vzzúÉ'Ÿô>Ê)í'­|2 ÁųpÜâ½¼óóóüàÿ÷ÿwÍš5kÖ¬yþùç÷ïß¿téÒï~÷»ò'¢W»í¶Ûî¸ãŽåË—ŸwÞysssÿó?ÿó§ú§Û·o_¶lYÙGP9¯¿þúå—_þÄOŒ¿ë]ïúÝï~·wïÞ×^{íÓŸþô?üÃ?èÕ8¥ýùÒ—¾tï½÷îØ±ãÏþìϬ‡8¥}अOæà¸xŽ[|*…~}ùË_žššúÆ7¾¡—ìÚµkjjêcû˜^òôÓOŸsÎ96lxá…ÌgýË¿üKÙ»_E÷ÜsÏÔÔÔ'>ñ‰ãÇGK8pþùç¿ãïøå/-á”öêØ±c{÷îýâ¿855555õÄOX+pJûÀIŸÌqñ,·ø4TU÷ïç?ÿù²eË>õ©Oé%ó7ó¦7½é¿øÅÂÂB´dÇŽ‹‹‹[¶l9ãŒ3¢%7ÜpÃøøøÃ?¼¸¸XöTÎ#<"„ø§ú'ý]mÍš5×^{í‚®sá”öê²Ë.»üòË¿ó來À)í'mp|2 ÄųpÜâÓû711ñþ÷¿ÿ”SN1ž|òɯ¾úꫯ¾ýºwïÞ±±±‹.ºH¯°dÉ’7=ztß¾}eAå:thùòåçž{®¹pÍš5BˆÃ‡G¿rJ{uË-·|ûÛßþö·¿ýÞ÷¾×»§´œ´ÁñÉ,ÏÂq‹O³´ì¨±»ï¾ÛZ²wïÞçž{îï|gôO)uðàÁU«V­ZµÊ\mjjJqøðáóÎ;¯ìƒ¨–û·[ºÔþLþâ¿B¼ùÍoœÒ¾\pÁÑ=ö˜û(§´œ´BðÉ,ÏÂq‹OCp,ÀþýûwíÚuèСýû÷ÿÑýÑÖ­[£åÇ_XX˜˜˜°ÖB¼ôÒKeïxå¬]»ÖZ²gÏž™™™“O>ùÃþ°à”§´œ´à$÷„‹çðp‹· 0;;{ß}÷)¥„çž{îüÁDËOœ8!„X¾|¹µþŠ+„ÇŽ+{Ç+maaáž{îùêW¿º°°ðõ¯ýo|£à”§´œ´à$÷‹g±¸Å[Žù^ýõÿ÷׿.Y²äšk®1WøøÇ?þ±}ìÈ‘#<ðÀ­·Þºoß¾|pÅŠRÊãÇ[|ùå—Eü¥¤rOéüÇ|éK_úÕ¯~µzõê¯|å+º §4Mî)MÃ)í'm8ÉýáâY8nñ‚c¾×^{í›ßü¦þõä“OvoÉRÊÓO?ýª«®:|øð½÷ÞûÃþpÓ¦MK—.w¿vÌÏÏ !t'¬Ê8¥¯¾úê×¾öµ»îºë”SNùÇüÇ«¯¾Ú ‹Sš&äSêÅ)í'm8ɽââ9<ÜâMÇ|Ë–-›µ>óÌ3Û¶mÛ¸qã%—\b.:µ½ð ѯ“““œŸŸ?í´Óô:‡Š*ûÈJã=¥BˆÅÅÅÏ~ö³?úÑ>ðüó?ÿ³÷Sê•vJCpJûÀINr8.žÅâŸáxútÚi§}ï{ßÛµk—µü¹çžB¼õ­o~½øâ‹üq½‚Rj÷îÝ+W®\·n]ÙQ9wÝu×~ô£O~ò“ßúÖ·Ò¾®qJ Ç)í'm8Éá¸x‹[|‚cŸ&''§§§ò“Ÿ<úè£záÓO?}Ï=÷¬X±býúõÑ’Í›7Ý~ûíQ£!ÄÌÌÌ‘#G6mÚtÒI'•}Õ¢”ºûî»ßð†7|þóŸÏXSZ8Ni8i#ÀIÄųpÜâ30Wuÿžzê©O~ò“¯½öÚºuëþðÿðÅ_ü¯ÿú/!ÄW¿úÕK/½T¯¶mÛ¶­[·žuÖY6l˜››Û³gÏÚµk·mÛæöáo¹_|qÆ Ë–-{ûÛßî>ú×ý×W\qEô3§´?7ÝtÓÎ;½3sJûÀI+ ŸÌqñnñi–Ü|óÍeïC]MNN~èCzé¥—æææžzê))å»ßýîo|ãïyÏ{ÌÕÖ­[wöÙg¿ð ?ùÉO–.]zÉ%—lݺÕlÈììì®]»^ýõ}Î9çÝ=SÚŸG}ô—¿üåæÍ›ßô¦7YqJûÀI+ ŸÌqñnñi(q@Ú8 ÁAŽBp@‚#‚„à€ G!8 ÁAŽBp@‚#‚„à€ G!8 ÁAŽBp@‚#‚„à€ G!8 ÁAŽBp@‚#‚„à€ G!8 ÁAŽBp@‚#‚„à€ ÿðCJÏ"IEND®B`‚statistics-release-1.6.3/docs/assets/evinv_101.png000066400000000000000000000637571456127120000220210ustar00rootroot00000000000000‰PNG  IHDRhŽ\­Ag¶IDATxÚíÝi|Lçÿÿñk’!²h$bO,±ûšJ¬Ej)E£ö­¥µUUŠª­µt±UQKùW|ùÕ®Öj‰¥¨¥„HìK…DT‘dþ7cL&Éd¶sfæõ|¸1sÍ™s®sNÂÛç:×9*µZ-€Ü8ÉÝØ‚# Bp€AŽ0Á!8À G„àƒ`‚# Bp Ο?¯ÊM©R¥òºÚ­[·þßÿýßÿýßÿÝ¿_î]TÏ>ûL:¤;w¶ÚF—,Y"m´^½z:=}útñâÅ­[·.Q¢D*T¨Ð¾}û¯¿þ:%%EgI½?'...>>> 4øì³Ï²žhC~´ÆŽ+Çy` ¹;ÀnõìÙó¿ÿþBìÙ³§E‹rwzüõ×_]»v½zõª¦%&&&&&fûöíóæÍ[²dIûöís^CFFƃ\³fͬ+Ôüœ>>Rcݺu322>ùä•J¥ %-[¶T©TOž<¯^á—žž>iÒ¤’%KNš4I³‰{÷î1¢qãÆ… .W®Ü[o½uòäIí>hÖЭ[·+W®DDD”-[¶dÉ’={ö<{ö¬"**ª{÷îeË–}íµ×BCC8 ³¹nBÇ€¤-†††j·¯[·Nj/X° ´w™™™ëׯ -S¦LÊ”)Ó¼yóŸ~úéÙ³g9¬?»«{öì©÷*À¼ö_è»ÆqÏž=[·n•^?~ùòå5kÖtvvö÷÷0`Àºu뤢££/]º”óÊK•*µ|ùrMç¿üòKéh°Cjïܹsš¿öìÙ“óÂÒ’ ¼{÷®Z­ž>}ºÔâìì|âÄ µZ­É”Úþûï?µZ=qâDém§Núôé#½ž8q¢´ò½{÷úùùé|Q¥R=ZÓÍjÕªåã㣽dÑ¢E,X/_>¯8p@óuC6¡cÇŽÒbùòåKJJÒ´0@jïÒ¥‹ÔòöÛoëý›¶k×®Yûß©S§ìZ$=zôÚÇŒcJÿÕjõâÅ‹¥%ëÖ­+µtéÒEj)R¤Èãdz~¥]»vµjÕªU«Vdd¤!?'Ú}çÎFühP>*ŽòfîܹÒEiÉÉÉ3gÎ|üøñ×_-}ôÁÔ©SG1f̘˜˜˜‚ Jí?ýô“ö[ɉ'~úé'í–¤¤¤=zÜ»wOöùçŸ÷ìÙÓÉÉI­VÏ;wùòå:=9}úôÇkÖ¬Y¤H©åþýû#FŒxöìYåÊ•K”(!5ªÕê)S¦· I‹-¤]~öìÙ¾}û4í{÷î•^tíÚUñË/¿üòË/B•JÖ»wïjÕªI DFFjÑhÆõ_¯?ÿüSzÑ¥Kww÷¬ lÛ¶íÔ©S§Nzë­· YaHHHþüù¥×ÇŽ3}g(ÁÀ+¤aå¬<(-àëë;{öléõâÅ‹?þøã‡ !J–,9mÚ4©ýµ×^+W®œ“Óó¿aJ”(Q®\9•J¥½¡›7oV©ReÍš5QQQýúõBÌš5Kšfѵk×½{÷Nž<ùçŸ^°`´¼&üiÛ²eËéÓ§ïÞ½¦iœ?þ?ÿüsýúuMEPÂ6nBˆ|ùòuêÔIz­©>ÆÆÆJ“‘]]]¥©Ç;wî”>=zôÞ½{úé§³gÏJIZñ×_™~vŒëVÏž=“Ò§"00ÐôŽ !T*•fÕÝ»w³. ÷GkÔ¨QfÙ:ë 8ȳ4mÚT‘ššºhÑ"©ñ»ï¾Ó[¸ÊNÁ‚ûí·ˆˆˆ HÙE¼ ¤Y¬_¿~ÎÎÎBˆëׯŸ9sF{ uëÖm×®"_¾|ݺu“½¼¼>üðC!„“““f¨711Qz‘×MhhÆ 5kД[·níáá!„èÞ½ûš5kÖ¬Y3bÄ飤¤¤ääd鵯Mdtÿu$%%i^/^ÜôŽI^{íµ¬ë`O˜U àÙÝ3¥@š×*•jÉ’%µjÕÒÌùèØ±cÇŽó´¡àà`È¢™„ѦM½_¹|ùr54o5ƒÑBMŸ‹/®)mfÝ‘¼nBC­NHH¸víÚÅ‹+Uª¤3N­YgBB®]»Nœ8qêÔ©ãÇ?~üØ\§Æ”þë(\¸°æµoÏþàÁé…”¤uèýÑÒ\fÀ&¼ÂÀ{¦T©R¥uëÖÛ¶m“Þê½ýJÎtæµ$%%ißPP¯øøxí·:cßÍøxVFlBC­–î8³cÇŽ   ýû÷KíáááÒ2iiiŸ|òÉ7ß|£¹¢›››¯¯ï¿ÿþ›×ƒcöþëÈŸ?¿´°öÝ¿µ=zôHÚ‘ *TÈÕjF¨³NßÜŽ° GÆ8zô¨æj?!Ä”)Sš7ož§5èÄ>Â… Kõ¹Ý»wë½ð®hÑ¢¦ôÙÄMtëÖM Ž;wîlÙ²¥5óf„Ó§OŸ;w®"00p̘1Mš4©R¥ÊСCüñG³só¢Æÿúë¯Bˆ-[¶Ì›7Og*º¢R¥JRüꫯ>úè£\WøÇ¤¥¥I¯ëׯo–] 4Gy–žž>xðàÌÌLMËV¬X!Íq1ZùòåO:%­¿\¹ršö‡ªÕj¡oèÙš›hÙ²¥4Z}ðàÁ-[¶Hšqj!ÄÂ… ¥ßÿ}Û¶m¥×7oÞ̵Wš ­¹S’µTiÆC4hÐ )8^¿~}É’%Ç×þtëÖ­šòá믿nÈ 5st *Ô¤I“¼Ÿ6€É1òì믿–&axxxhîÝ=f̘쮖Ó¢rÖ²eKéÅÒ¥K¥$„ظqãk¯½æããS¶lYÓ¯4eš¹ÕOŸ>•î@äì쬹²óñãÇšabMþû믿 ¹ O©R¥¤GÕ\Åø¿ÿý/ë­ËÍxˆ:tè YÛ‡~8uêÔ;wîH'kõêÕš[l–+W.888çUݽ{wðàÁ‘‘‘ÒÛwß}WûJö„Š#€WôîÝ[熋‹-jÙ²ell¬æ¶/cÆŒ7nÜŠ+nܸñðáÃQ£F­Y³F³¼———tMÞ´iÓΟ??bĈ¬ã¡Ú>ùä“eË–%$$lÞ¼9,,ìõ×_?þ¼æ2ÊÑ£G›>‘ÂÄMhF«¥)ÒÍ›7×\©éîîîîî.í¯ôä•JµsçΜŸ#Ñܲ'%%%888888>>>::ÚÒ‡hîܹ 4HIIQ«Õ“'Ož}zõêÕ *üá‡FEEéL<·Ä!jÒ¤ÉåË—çÍ›÷úë¯ûúúººº½ùæ›óæÍ»xñ¢t›Ìœ9;;)R¤~ýúŸ}öYtttÆ Írš(“Jýâ*€‰ž={¶uëV!„N¦û@p€Aª€AŽ0Á!8À G„àƒ`‚# Bp€AŽ0Á!8À GÄ¡ƒclllPPÐßÿ­÷Ó 6tëÖ-88¸I“&&LHHH»¿rrèà¸zõêì>š7oÞĉ¯\¹R¯^=ww÷7<8%%Eî.ÈÆEîÈ ))éÒ¥K[¶lY¿~½Þ¢££—.]êççéëë+„˜>}úªU«¾úê«Ï>ûLîîÈÃ+ŽáááÙ¥F!Ä/¿ü’™™9räH)5 !Æïéé¹cÇŽÌÌL¹» G¬8NŸ>ýéÓ§Bˆ5kÖ>|8ëÇwrrjÞ¼¹¦ÅÙÙ9$$dË–-'Ož¬[·®Ü{ G ŽM›6•^ìß¿?ë§jµ:&&¦H‘"EŠÑn¯X±¢âÆG–JµÜ}‘#Çœ%''gddxyyé´{zz !>|˜ë‚‚‚äÞ `ÑÑÒ?ôÑÑÑrwEG]ÒÔéB… é´»»» !=zdÈJó‡IÉ‚‚‚8)JÃIQ&΋qRE%Dô‹ìè€qrLμ¼¼T*Urr²Nûÿý'^ÔÁQ—‹‹‹§§gÖÊbRR’B3Ï8¿ÀQõòóó{ðà”5âââ¤ä§FApÔ«E‹‡Ò´¨Õêƒz{{ËÝ; •ÜÁQnݺ999}÷ÝwÒuBˆ¥K—ÆÇÇ¿õÖ[ùòå“»wò`VµÅ‹;vì¬Y³Þ|óÍfÍš]»v-**ªjÕªƒ ’»k0ÒÎ;åîtqR”‰ó¢@œ(ÁQ¿þýû-ZtóæÍÛ·o÷÷÷ïÕ«×È‘#¥;ò8&‡Ž_|ñÅ_|‘ݧáááááár÷(Sª×8À@G„àƒ`‚# BpÈSª%};å ’» Stt´Ü] wG¥ :8,þÛ° UÀ G€œp£Á!8À G„à-.pÔFp€AŽ0Á@?Æ©u`‚#”èÑ£GC‡-]º´»»{HHHTTTvK>{öÌÅÅEõª¢E‹Ê½Ï9s¦{÷îÅŠsww¯[·î¼yóÒÓÓåîFâYÕPœ¤¤¤ºuë^¿~½k×®>>>‘‘‘mÛ¶Ý¿pppÖ…ãââ2227n¨itww—{'„"66¶yóæ;w.]ºôž={Fýûï¿oÚ´Iî®rÇ8uVG#--M‘?~K¬|îܹ111+W®ìÓ§bĈuêÔùè£öíÛ—uᘘ!ÄÔ©S[´h!÷QÑ5zôèGEEEÕ«WOê䀖/_¾k×®6mÚÈÝ;òŒ¡j#((H'¨M™2EŠG¦[¿~½¿¿ïÞ½¥·]»v=xðà;w².,ÇòåË·­ãÇwèСX±b:ƒÝùòå3}GöíÛ¢}X†.„8räˆYVFÅæqõêÕ'N˜¾ž¤¤¤K—.õìÙS¥RiÖ-[Õ¹sgåcbb\]] .¼aƇV­Zµ~ýú–B÷ìÙÓºuëR¥JõëׯP¡B›6m:yòdíڵÜœLý?Uzzú°aÃêÖ­«ÝxíÚ5!„«««99À‚§Ö‹àe¹wïžZ­öóóÓnôõõBÜ¿?ëò111NNNåË—OHHZ*W®¼zõê:uê伡ÔÔÔ>}úøûû=z´X±bBˆ±cǶjÕ*::zÒ¤I… 6qG\\\f̘¡ÝòðáÃ3f8;;wíÚUæ£ €Qް¬ôôômÛ¶e÷iÇŽuZ’““…ÚžžžBˆd]CLLLffæ”)Sºvíš/_¾_ýuÔ¨Q:u:wîœô­ì:tèöíÛS§N•R£ÂÕÕuܸqááá7nìÛ·¯‰;¢ãÀƒމ‰Y´hQ… ¬sðơܘ‚£¢iÖÊ@ã/MFF†öÛÌÌL½‹=yò¤S§NÙoBw>>>BˆÇk7&%% !Š)’u (P €æ£þýû§¦¦6,22rÀ€9ôÿêÕ«Bˆš5kj7Ö¨QCqîÜ9ÓwDãúõëÇß²eK… öìÙfÈÁ@ŽŠ¦Vðÿwž>}ªý6%%Eïbžžžê¼ì†ŸŸŸ“““Ψt||¼¢D‰Y—/^¼¸NKëÖ­…çÏŸÏyCnnnB»*JñWïŽyÝɺuë† âîî¾dÉ’þýû»¸ð°aü3#ݾ}[û­Þ)Ï"ï#¼...UªT9tèvãï¿ÿ®R©ªV­ª³ðµk×¶nÝV¹reM£Tž,S¦LÎý—Æ‹/\¸ Ý(Õƒ‚‚Lß!Ä–-[Þ}÷Ý·ß~{ñâÅ:ƒïÅbœ:'j˜[ÅŠ­ðy•-[V±eËéí•+W¤{ng]2111¯?~ ,Ð^ù½{÷üüüZ·nuÉ{÷î(P Y³fiiiRKFFF=\\\Ο?Ÿó.¤¥¥•/_Þßß?!!AjyúôiHHˆ»»ûÝ»wMß‘ÌÌÌJ•*•-[6===çžØÜÙ7—ØØX¹»=8/ ÄI±2C²‘ÃþÕMÅFrqqéÑ£GxxxffæÖ­[³»ÅŒ#¼}ûö]¾|yDDİaü¼¼V®\™œœHbôèÑ=ŠŠŠªW¯žbêÔ© X¾|ù®]»Ú´i#wïÀáPn4G#((¨E‹Ú-S¦L‘â‘é,ÇB9rÄ, `8R£YPq„y\½zõĉfY•ŸŸŸZ­BDGGWªT)‡%“’’.]ºÔ³gO•J¥i [¶lYTTTçÎsÞО={Z·n]ªT©~ýú*ThÓ¦M'Ož¬]»vXX˜““©ÿ§JOO6lXݺuµ¯]»&„puu5ˈÔh.Gذ{÷î©Õj???íF___!D®ÕÊÔÔÔ>}úøûû=z´X±bBˆ±cǶjÕ*::zÒ¤I… 6±o...3fÌÐnyøðáŒ3œ»ví*÷‘ÀGXVzzú¶mÛ²û´cÇŽ¦¬<99Yááá¡Ýèéé)„xðàAÎß=tèÐíÛ·§N*¥F!„««ë¸qãÂÃÃ7nÜØ·o_óîȳhÑ¢ *˜çà @¹ÑŒŽŠ¦*ÓWb4uŽ¿hÚo³›ÅòäÉ“N:e» µI¿Ë>>>BˆÇk7&%% !Š)’ów¯^½*„¨Y³¦vc5„çÎ3ãŽ\¿~}øðá[¶l©P¡Âž={ÂÂÂLÙe@žÍ‹à¨hjÿ´?}úTûmJJŠÞÅ<==ML‡9ðóósrrÒ•ŽB”(Q"çﺹ¹ !tîª(Å_½8·#ëÖ­2dˆ»»û’%Kú÷ïïâÂoX©Ñìøg Fº}û¶öÛìf1[t¨ÚÅÅ¥J•*‡Ònüý÷ßU*UÕªUsþ®4^|áÂíF©Öd–Ù²eË»ï¾ûöÛo/^¼Xg<`i¤FK 8ÂHwïÞݺuk‡„±±±§OŸÖ»˜E‡ª…ƒ 1b„¦'ÿþûoddd«V­rþbíڵ˗/ÿý÷ß6ÌËËK‘––6gÎwwwiU&îˆZ­7n\©R¥V¯^íììlžƒ0 ©ÑBŽ0’‹‹K=ÂÃÃ333·nÝšÝ-fÌ>T=kÖ¬™3gΘ1cèСBˆ¾}û._¾<""BÊ+W®LNNÖ<¥pݺuï¿ÿ~¿~ýæÎ«³ž|ùò-X° sçεjÕ2dˆ³³sddä‰'¾ùæiÚÆíÈ… .^¼X¹råê|Ô¥K—ððp3ŸÀ ¤FË!8ÂH 4hß¾ý’%KÒÓÓ äáá1mÚ4+l755511Qs…¥‡‡ÇÁƒÇŽ™Ð¨Q£µk×KŸ¦¥¥%&&fwýe»ví¢¢¢&Ož¼páÂÔÔÔZµjíØ±Ã\Ït‰‰‰B\¸pAg4\Q¾|y‚#X©Ñ¢T–›¸à°‚‚‚¢££-ýy”,YRçâBeZ¶lÙ¹sçæÏŸ/wG²esgß\âââr½¢ÖÇyQ NŠá¬–ö¯n9{–ššºÿþÚµkËÝ€ÅQk´‚#ìÙ‘#G*W®üÎ;ïÈÝ€eY55ªä¼Ë²¼¸ÆÆxï½÷lâþ2¡¡¡¡¡¡r÷`YÔ­†àcŒ7Nî. ©Ñºª¶ŠÔheG`“HÖGp¶‡Ô( ‚#°1¤F¹€-!5ʈàl©Q^G`H²#8¥S)'5ªTB­ˆŽÈ‚€ESJdG d¤FE!8…"5* ÁŠ2eÊ”xö왋‹‹êUE‹•»ãÏíß¿?44Ô××÷µ×^kÚ´é¦M›äîØ R£q#”ëÔ©Sþùg‹-rX&...##£qãÆšFwww¹û.„Û·ooß¾}```¯^½ÜÜÜ"##»téòÃ? 8P¢©„¤FE"8ÂiiiBˆüùó[båéééûöí;|øðÂ… 333s^8&&F1uêÔœó¥,>ùä“bÅŠ|øpóæÍ¦ï8Ø:©ÐhK©ÑágÆ*Ž0ÚíÛ·µßÞ¹sGïbª¾víÚÖ­[ÃÂÂ*W®¬iLJJBä:"\¡B!Ä… ´¥ZcPPé;²mÛ¶N:­Y³¦{÷îšFoooaŽ:+Ø4 ¶‹à#ݽ{wëÖ­:tBÄÆÆž>}Zïbªvss3fL½zõöîÝ+Ý@'33sΜ9...­ZµÊù»µk×._¾ü÷ß?lØ0///!DZZÚœ9sÜÝÝ¥2qG4h „X±bÅÛo¿­zqÉÁO?ý$„hÔ¨‘NØ&®h´i UÃH...=zôèÙ³g÷îÝ«W¯žÝÍ>T=kÖ,ooïÅ‹ !|}}§L™rèС *¼÷Þ{Ÿ|òIݺuׯ_?uêÔ*Uª!Ö­[çíí=zôè¬ëÉ—/ß‚ ß7ʯ 8#Qht4GgDFÇDpycÏcÓ¯ì'ãÔºŽÀPÁäÎá"#åF}Ž Ž26Ü@¶®Ðø|·)7êGpz8hd¤ÆœÀ+72"7NrwÐcÿþý¡¡¡¾¾¾¯½öZÓ¦M7mÚ”ÃÂ=:théÒ¥ÝÝÝCBB¢¢¢äî¾Ïž=kذa£FäîäBºœÑqS#寡8Û·o »~ýz¯^½†zÿþý.]º,[¶LïÂIIIuëÖ]±bE³fÍ påÊ•¶mÛž:uJîÐ5qâÄ£GÊÝ È‰ŠI0È ÁÆHKKKKK³ÐÊ?ùä“bÅŠB¯øí·ßæÌ™ãâ•!JE¡ñù Ü˜ ‚#ŒÔ¢E í–)S¦Ô«WÏô5?}úôüùó:tðôô”Z *Ô¬Y³›7o¦¤¤d]~ýúõþþþ½{÷–ÞvíÚõàÁƒwîÜ1dsÇïСC±bÅT¯Ê—/Ÿ¹ŽÕ½{÷Þ}÷Ý–,YÒ\ës!2j Rcî(À<®^½zâÄ Ó×ãììü÷ßûøøhZÒÓÓÏž=[£F 777…“’’.]ºÔ³gO•J¥i [¶lYTTTçÎsÞÖž={Z·n]ªT©~ýú*ThÓ¦M'Ož¬]»vXX˜““yþO¥V«{÷îííí=þüªU«šëh€é˜ó R£aŽPMÀZµjULL̶mÛîܹóóÏ?g]øÞ½{jµÚÏÏO»Ñ××Wqÿþýœ7”ššÚ§Oÿ£G+VL1vìØV­ZEGGOš4©páÂfÙ9sæhÐ iÓ¦™eÍ“'O üþûï-ZäääT¹råõë×kF®SSS5WXzxx­IBˆÆ¿ûî»))){öì‘»wÇÀô#IÃÓŒP›ÁÑPõë×B\ºtI4c:6.Žàc .j´‚£.µZ‘‘‘™™©Óîìì,„(\¸°ÜØ?n²c*K¦FÕóéIŽˆà¨ëÚµkUªTéÓ§Nû©S§„_Ó°"£Pk´‚£®²eËÖ©SçØ±c6lÐ4ž:ujùòåÅ‹çyt !2šJEj´(fUë1iÒ¤Lœ8qݺu·nÝ:}útÁ‚gÌ˜áææ&wïö†û2š‘ÑòŽzTªTiÓ¦M_ýõ‘#G._¾\ªT©N:}øá‡þþþ–Û(ƒàà€ˆŒfCj´ ‚£~¾¾¾³fÍ²Úæ¸ï£¥ÅÅÅqk:ŠBd4›wj”»k°×2š—ÕïÔ¨*µŸ:*ŽX%F3£Ð(‚#–Ed4?®h” ÁK!2š…FY0?"£EPh”Ás"2Z„2 >3F0"£¥PhT ‚#&Q½xA´1?e¡Á}0’ö‰6f¦yê´bR£fœZ¥2y]6‹Š#yƨ´e16­TGò€ÈhYŒM+Áƒ-KÙ‘‘ùÔ‚#9aî‹Å);2BÁý(1Zƒ-\ÎH¹QƒYÕèÒž. KÑÌ›¶)6Øes¢âÀKT­Á¦Æ¦)7j#8À…ŒÖbS‘Y£•Øfd¤Ü¨ƒàpPDF+±ÍÈ(ô¥F¿ÀQˆÈh%6‘‚#ÀQp!£õØ~ddZ/‚#ÀþQb´ÛŒ‚Ô˜=‚#Àž­Ç."£È>5r£ 8ì£ÒÖ£zq°í"UQkÌÁ`W(1Z½”_îPö©‘r£„à°DFë±»È(¨5†à°yDFë±ÇÈ(H#8l2Z•FFa@jdœZƒà°=”­Ç¾æ¾èÙ?Rc^¶„Èh=ö[b|¾B%„`„:OŽÀ¨´UÙ{d_ÔH¹QÁ h”­ÇÞG¥_î(SaŒEp(‘Ñz Äø|Gó2ßݼIzJA‰Ñz¦Äø|wó8†Ô˜‚#@~DF+q°£0jê4©1G€l•¶+1 î¶cG€ (1Z‰ã•Ÿï·±ó¦)7æŒà°*"£•8^‰ñù~›Ph$5æŠà°F¥­ÄQKŒÂäÈ(ñ˜åÁ`Y”­Ä³‰—3Rh4Á`)DFkpà£0Ç Rcžfƨ´5¥½7í§ŒÔ˜WG€ÙPb´’æ»ÉŽcEãf@d´8Ç.1 ³Þ—‘B£ÑŽã1*mq*U€ôÂQ“޹F¥_®Ôh'¹;°I*!TB¨_üù©TRƉ‹ṳ£*é>ÞÒ3¬PEj4G@Þ0*mY I›»Ä(¸¢Ñ|Žƒ0*mYŸ…Åž.M•ÑŒŽ€\Pb´ ò¢eJŒÏ×L¡ÑÜŽ€l-…¼hɼ(ˆŒCpèbTÚ‚>ÑX4/ °…/ò¢%Pb´Ø%Œ/×Od´ß:%Fe#8€ ÄhäE9¢pèocŽ`󈌦rÔØ"oqQ8î·aG°UŒJ›Ê!c‹ìaQ8è·G°=”Mâx±E añyO¸„ÑÆÀ–çÀyQÞ°(ñØÛ-‚#Ø"£‘,³(§¸(îØ;‚#(2É‘2‹2âpˆcïpŽ P”á0yQQaQ8ÐwtGP"cž9FlQZXŽràñÁ”‚Qé|XµjU__ß“'O6ìÞ½{r÷ BdÌ–½ŒŒ*| úy'‰†Y)18>~üx„ Œ1bĆ ¶nÝúÆoÀK”õ°Ù¼h+eEAX„”8«zíÚµÁÁÁz?*V¬ØŠ+V¯^-w@¦Kge›Ï0Öž­À€øJW™ Y)18f—%*•ªwïÞr÷€£#2¾ÂÖò¢ò-00àeWÝSØ?%U€b1÷åÕÃaKãѶrµâóÞju766Î0Á ÂÜ—ÂfîïbCW+>ï0×,Bñ”8T ŠÂ¨´63mCW+>ï0×,¦ [DFåçEÛºZQ¼š…r+ ÁôpôȨà¼hsIQPV„!8À+:2ªTϧï*,ÝØÜ´ ,ÂN)48îØ±cÕªUW¯^UgóÛ%wØÍ¿òŽøO¼V}1... À¤µ™¥G6XV„E8%Ç={öŒ9Rzíìì,wwØ9Ç-1*i<Ú’¢PÄ,K‰ÁqÙ²eBˆ¾}û¾ÿþûžžžrw€ÝrÐȨ˜¼h‹Ђ²"›ƒcLLLÉ’%?þøc''n3 À"12* /RVlâ’Ù³gÏ?~\ªT)R#Kp¸ç¾È}³nÛz^ËËngs/nR#œâ*ŽNNNžžž—/_ÎÌÌ$;0#Ǫ2ÊW_¤¬Ø1Å%3ggçÆÇÇÏ›7Oî¾°ŽRe”éa€9<ÙOá©‘²"WŠ«8 !ÚµkwãÆ¥K—FEE½ñÆ%K–ÌŸ?¿Î2Í›7—»›l€CTå(.ÚÁ¼AYÈ;%Ç-ZH/Μ9sæÌ½ËDGGËÝMŠfÿ‘ѺyÑF “ ³Rbp|óÍ7åîfç‘ÑZyÑ>’¢ ,f¥Äà8gι»À&Ùsd´J^T •xñÔJŠ‚²"`-Š›y¥²ãé/žì’u^Kl\¬ò'µˆWçµèLm`9Ѝ8®]»VQ¿~ý *hÞæ,""Bî^ŸÝ–-V_d€)§N*„˜2eŠ¥·9#8Î>#£eò¢Î€ @Ê£ˆàøÁ!ªW¯.½3fŒÜ= \vÍ)+°EÇáÇk¿4hÜ= DöÍ—IЬCÁrfW‘ÑLy‘hÖGp höM΋”ÈŽà@¡ì$2š–m´¬HRìÁ€âØCd46/ÚGY‘¤Ø+‚#±ùÈhT^¤¬ÀV(‚mGÆ<æE-+’ØFpT«Õûöí»yóf5‚ƒƒåîs²‡Èh@†²ƒ²"I€Bƒã¾}û,XвeKéÞà'NŒŒŒ”>êÙ³çäÉ“U:ÿó`ƒl82Pb´Ñ²b``À+ݶ^°'¹; ÇñãÇßÿý‹/fff !þùçŸÈÈHOOÏwÞy§dÉ’ëÖ­Û·oŸÜ}`ªÀ€µÍ¥F•êùµúùÏ_.¡R¿\H­äÔ¨R½ò'66N»ß M‰Áñ‡~P«ÕŸ~úéûï¿/„ؽ{·bÆŒ“'OþñÇU*ÕÏ?ÿ,wO%„JˆØ¸8¹;bxsʋمE¹;mÐiïI@®”8T}éÒ¥bÅŠõîÝ[z{ôèÑüùó7kÖLQ¶lÙråÊÅÆÆZ¡6løå—_bbb ,øúë¯;ÖÛÛ[îcØ6í±iˆÙŒGÛâ4óZ˜…+މ‰‰>>>Òëôôôþù§Zµjùóç—Z ,oé>Ì›7oâĉW®\©W¯ž»»ûÆœ’’"÷±l•Te´±i}õE[ƒ¦¬À,”‹/~óæÍŒŒ !ÄÉ“'SSS4h }”™™yóæÍ¢E‹Z´ÑÑÑK—.õóóÛ¹sçÒ¥KwíÚÕ»wï3gÎ|õÕWrÀöØLd|5d©Ô¶7­sµ"I€Ù)18Ö«W/11ñÛo¿½uëÖ·ß~+„ ‘>Z¾|ùÇË—/oÑüòË/™™™#GŽôõõ•ZÆïéé¹cÇi¾CØFdÔÊY*µÐäE›(+æ ‹,A‰ÁqðàÁ… Z´hQXXرcǪW¯.Ý»ñí·ßž3gŽ¢ÿþíÀñãÇœœš7o®iqvv yðàÁÉ“'å><€ °¡Èø<,ª…-–IЬL‰Á±D‰ÿïÿý¿æÍ›+V¬iÓ¦óçÏ—îÚïáá1sæÌ† Znëjµ:&&¦H‘"EŠÑn¯X±¢âÆr@Ñl 2¾ˆ]R^T~Xd€r(qVµ¢B… K–,Ñi\½zµ¿¿¿““eÃnrrrFF†———N»§§§âádž¬$((H§eçÎí6rvóæM¹»`ÿÄ‹›ì2cÚÊ'% 0Pz¡R‹Ø¸X!DlœBÄ)rz·ö]¸cc_é¡¥ïbÄ/‹qRd×¶m[¹»  Ž’ÄÄÄsçÎݹs§xñâMš4quuµtjBHS§ *¤Óîîî.„xôè‘!+‰ŽŽ–áx!G¦¯z½ò˜¼g‹žé¦9jÍmh^èÔBåý,äx»kw—_â¤È+ë?ëY+DB¡ÁñÁƒ‹-ŠŒŒ”b\Ÿ>}š4iÒ¹sçªU«Î˜1â÷SôòòR©TÉÉÉ:íÿý÷ŸxQw ¡RÒ¨´æ‹jÕ‹^)x@—Ç@°9J¼ÆñÙ³gï¿ÿþêÕ«=<<:wî¬i÷õõÝ¿=,z?EOOϬ•Ť¤$©r@)TÊHº7ÍQ µJ(ó2@®V`ë”—,Yrúôé×_}çÎ3gÎÔ´ÿòË/;v¼zõêªU«,Ú??¿HIQ#..NúHîÃÈOö0zî°(åEMS &A°'J ŽÇŽsvvþòË/ ,¨ÝîììÊ•µÐhæ¼(L-1¾È‹„E°-J ŽsæÌ‘» €MÒŽŒfŒ~¾ãKŒY‹‹qqqBXäà Qbp`ilZõ"¡™-,>_»1%FF¢ÀÎ("88p ¯_iÞ¼¹Ü½”âE P"EGfùҞë=½Ú€A1â"82Û{äàÇ&w/+Éú @ß7mð6rB ý…T³JHHØ»wïµk×tÚSRR~ûí7ggg¹;X–Þ;/š¿Ð˜ã¨4ÅE€%Ç{÷îõìÙóÖ­[Ù-!w‹ÈáNÝ*«DFÂ" J Ž+V¬¸uëV½zõÂÃ÷mÛvôèÑI“&¹¹¹]¼xqÍš5Ÿ~ú©Ü}Ì)ç'»˜³Ð˜Í…ŒLsB‰ÁñСC®®® .ôðð kÚ´i@@@ãÆ…Ó¦M{ûí·+T¨ w7Såú$@óGF­`HqWJœsçβeËzxx!Š-êíí}îÜ9é£nݺy{{¯X±Bî>ÆË:ß%›ÅÌ4 F{V Ó\&PbÅQáäô2Ñ–.]:..NzíììtæÌ¹;äY®õE­%¥ÅLßäË*#ƒÑÓ)±âX¬X±«W¯>yòDz[ªT©'Nh>U©T7oÞ”»€¡ ¬/j-or¡ñEQQ%Ô*¡6àf;D‰Á±eË–)))cÆŒ¹r劢nݺׯ_ÿã?„ñññýõW‰%äî#‹¼æE!„Êô©ÓÚyQ¨Œ˜—‡ª{÷î½k×®}ûö©ÕêÅ‹‡„„¸¸¸ >¼víÚ/^LNNn×®Ü}²% I’_ý–É‘Q•P ££ÄŠ£ÏÚµkG]½zu!D‰%&Nœ˜––öçŸ>xð E‹ýû÷—»€.c^¾h|jT©^V…ZMq`QJ¬8¦§§ûøø 2DÓÒ³gÏððð³gÏúùùÊÝAà%ç¼dóuc¾ö|Ò‹Pi ŒÄE€(±â2{ö옘íFww÷F‘¡y½„1Ë×óœ_ÞIG¨ÔBÅÕ‹+Sbp|ðàÁ?þؾ}û=zlذA3½P£‡¤_]I¦NëäE"#@.J Ž‘‘‘}ûöõóó;uêÔĉ›4iòÉ'Ÿhß‘°>#fIg³C ¯Ü©[;/2Qbp¬^½ú'Ÿ|ràÀÕ«WwïÞ=þüÿûßÿ"""Z·n½téÒÿýW%/¾XUî…FÝ'»ˆWžû€Œ”Ÿ÷ÌÉ©~ýúS§N=|øðâÅ‹ÃÃÃïß¿ÿõ×_7oÞ\{Þ `!f’~u…9­%ë“u€ì”5\\\BCC¿úê«U«Vedd8p@îNÁž™±Äøb…Ù¦F=yQ ¥ÄÛñ舎ŽÞ¹sçÎ;cccÅ‹J¤Ü‚2ñÆ:Ù¯VÏê²}r´ÖÓ¥PåÇþùg×®];vì¸víšÔR­ZµðððvíÚùúúÊÝ;ØãžõbÀj…x55f›‘`”çÌ™³k×®7nHoË–-^¦L¹»{c¡È(^-4攑`3”—-[&„ðõõmß¾}xxxÕªUåîì…F¥µÖ/Ô¹æEAdØ%Çnݺ…‡‡×«WÏÉÉæîÀ¶X®Äøbý/7£Îyµ 2lŒƒã_|!w`‡,…”s „DF€ÍRbpÌèù¨t€%«Œ/®gT‹ÜnÕ(ˆŒÆX0ì–öícãbÍ¿þ·`”2©:×E¹/#ÀÆQq„²ø…ŒZ¥ÃÜ<-EFlÁvÅ¢‘Qg–tÖÛ4êÿ©`/ްVˆŒÚ PEd8‚#lžoâÍsJDF€ý"8†Y:2êÙ¦F"#ÀÞa“,õtéŸõ’íEDF€c 8ÂÆX42æýr*4Žà›a‰È˜û㤟ošB#GØËEÆ\SŸþái"#À!¡h2FF¡·ÐHd80‚#Êì‘ÑÀQi­èKDF€#8Bq,òùtS#…F„p’»ÀK*¡R •Z¨Í•UªçUÂØØ8ƒûðjjÔ¬‚ÔpxT¡˜ÎkØÓSh$/ðÁò“ªŒf[›±£Êº…FãÖ€ý"8BNf,4æuîK–ž¼è‘€l!³GFS’Þ+©‘È@6Ž¹Æ¦Í…”)4‚#¬Ê\…F³Ä<‘€¼ 8ÂJ…vj$2`‚#¬Á,cÓf¬ ª„PSh ް,³Í›ñž§F"#yDp„™^h4{YÔ€ÑްÓ –ˆŒBº®‘Ô€QŽ03sM›7ÝPhÀDG˜“Ǧ…*!bãâH˜ÈIîÀ~˜˜Uªç…Fs<•ê•'PPq„˜8ç0'†K€E9tptssËZ|V«Õ™™™*•ÊÉé•)çÎÎÎBˆÂ… ËÝký”)7`߸®k×®U©R¥OŸ>:í§Nr_Ó]¹‘Ô¬€à¨«lÙ²uêÔ9vìØ† 4§NZ¾|yñâÅÛ´i#w­‹Ô^pè¡êìLš4iÀ€'N\·n]``à­[·NŸ>]°`Á3f¸¹¹ÉÕ+yÊ/PqÔ£R¥J›6mêÔ©S||ü®]»=zÔ©S§­[·6lØPî®ébX Gý|}}gÍš%w/^’á±Ô¤Fð**Ž6@†AjÆ¿@G[¥„hG¹‡BpT:©€BmƒÔÀúŽÐbpj¤Ü€"8*šÞqjÙk‚¤FÁÑÆ0H äBpT.«N‹aä†àhK,U$5J†»ðäˆàh3(7y•ÈzåFR#0ÁÑ60ãÈŽàèÀ(7€¼ 8*NÖqj‹”I Ž0ÁQY(7Å"8:&Ú£MÞŒG¹h#8*ˆ5nßÈ 50ÁQ¹Ì_nd˜€à=(7€¬ŽJ¡3NM¹( Áº(7½ŽŽr#0ÁQ,;N—ÕQnÙ!8â%R#ÈÁQqd,7ä€à(?kÜ÷Û n( @ÁŽvr#0‚£²È•ô(7€\efÁqjÊÀ¬Ž bΤÇ-x€¹`‚£=¢Ü,€à('í ¹"(ÁÑîPn–Ap€AŽŠ`¶qjÊÀb޲QÈ“ Dp´#”€%åÇ|j`Žö‚r#°0‚£<¸ÀØ‚£] Ü,à(3.p¶‚àèX(7£e`æ )Z« 8ÊÉÊ‘r#0ÁÑÆQnÖBpt”€‰޶Œr#°"‚£µifÆX3õQn¦#8Ú,ÊÀºŽ0ÁÑþ1N Ì‚à(SÇ™§VGp´s”€¹­Ê<¤Üä@p´g”€`‚£ LjfœÈ„àh·§æEp´3ÌŒ¡ÜäCp´O”€Ù`‚£µ?ÚÌ85ÁÑ1N ,àƒm„ÁãÔ”€…­Ä>þ­·ÞÊ—/ŸÜ½‡ÝU›¢xñâcÇŽ5kÖ›o¾Ù¬Y³k×®EEEU­ZuРArw @6Gýú÷ï_´hÑÍ›7oß¾Ýßß¿W¯^#GŽ”îÈà˜Tj5OB@î¸Æ!8À G„àƒ`‚# Bp€AŽf³aÆnݺ7iÒd„ r÷Èäõ৤¤¬\¹²C‡µjÕjÖ¬Ù€þüóO¹wÂÞ˜òqûöí:uêŒ;Vî°7Fœ”³gÏ><44´^½z½zõ:zô¨Ü;aoòzRÒÒÒ~øá‡.]º‡……1âòåËrï„É úûï¿åîˆ Žæ1oÞ¼‰'^¹r¥^½zîîî7n__ßàààS§NõîÝ{ß¾}rïŠýÈëIÉÈÈèÓ§ÏW_}•ЬY³%JìÚµ«cÇŽÇ—{WËêÕ«åî‚|Ô0ÙÅ‹+UªÔ¬Y³{÷îI-_|ñEÅŠ§N*w×ìŸíÚµ+VìÙ³grr²ÔréÒ¥úõëW®\ùŸþ‘{‡ì‰¿Ë—/¯X±bÅŠÇŒ#÷®Ø#NJbbbݺukÖ¬yâÄ ©åï¿ÿ®V­ZãÆ322äÞ!{`ô__#FŒxöì™ÔrøðáÊ•+·nÝZî½q=:~üø¤I“¤¿£NŸ>-wd@ÅÑ ~ùå—ÌÌÌ‘#GúúúJ-ãÇ÷ôôܱcGff¦Ü½³sFü;w !>ýôS777©¥B… C‡ÍÈÈ`ÀÚ,Lù¸|ùò¼yó*Uª$÷NØ#NÊÆ“’’†Z§N©¥Fo¼ñF||üÙ³gåÞ!{`ÄI9yò¤¢OŸ>...RK£F*W®|õêÕ‡ʽCö/<<<""býúõrwDNG38~ü¸““SóæÍ5-ÎÎÎ!!!<~Éa9Fü¸¸¸B… U­ZU»±B… Bˆ7nȽCöÀè߈ôôôqãÆy{{?^î°7Fœ”ßÿ]¥RuêÔI»qöìÙÑÑÑ5kÖ”{‡ì'Åßß_¡Õjubb¢“““&JÂr¦OŸ¾páÂ… 6nÜXî¾È†Ÿ3S©Õꘘ˜"EŠ)RD»½bÅŠBˆ7nÔ­[Wî>Ú-ãþ’%K²þ {þüy!D©R¥äÞ'›gÊoÄ·ß~{áÂ…åË—{xxȽvŸ“rîÜ9ooïbÅŠ8qâÔ©S‰‰‰•*UjÙ²¥¦TSwR:tè°jÕªéÓ§,X°V­Z .¼yóf÷îÝù­±‚¦M›J/öïß/w_dCp4UrrrFF†———N»§§§xõÿ…0;ã~•*UtZ¢¢¢–.]êêêªS\Œþ8}úô?üЫW¯ÆK9æbÄIIKK{üøqùòå?ÿüóuëÖiÚK•*5þüjժɽO6ϸߔ   Õ«W÷íÛ·oß¾šÆ^½zM˜0Aî‚£`¨ÚTÒô·B… é´»»» !=z$wí™é?##cÕªULNNž9s¦ÜûdóŒ;))))ãÆ+UªÔG}$÷Ø!#NÊãÇ…111Û·oŸ5kÖÑ£G<øÁܺukĈÜ2ÂtÆý¦$%%Íœ9óÉ“'U«VíÑ£G«V­ÜÜÜ6oÞÌTwX GSyyy©Tªäädvéf"Òÿa!&ü£GN™2åÊ•+þþþ_~ù¥#_³bFÆ”Y³fݼysݺu ƒZ‚'¥@Ò‹™3g†……I¯‡~ûöí7nÛ¶­k×®rï–m3î7eܸqýõ×øñãûõë'µÜ¾}»G£Fúõ×_åÞ-Ø?*ަrqqñôôÌú¿Ã¤¤$!„f®,Á胟––6}úô>}úܾ}ûƒ>رc©Ñ\Œ8)ÇŽ[·nÝ!C˜ra!Fœ”B… (PÀÍÍ-44T»½eË–Bˆ‹/ʽO6ψ“òï¿ÿîß¿¿|ùòšÔ(„(^¼øûï¿ÿìÙ³M›6ɽOpG3ðóó{ðàôÛ®'}$wïìœ?33ó£>ZµjU‹-vïÞ=|øpª\æ•ד"=÷báÂ…A/téÒEñ믿uèÐAî²Fü¦øúúæË—O¥Ri7J¿,ééérï=ÈëIyðà¢lÙ²:íR¡ñþýûrïÁÑ Z´h‘‘‘qèÐ!M‹Z­>xð ··wpp°Ü½³sFüÕ«WïÞ½ûwÞùþûï) [B^OJ™2eÚ¿JšºX¼xñöíÛ‡„„ȽCöÀˆß”ÐÐФ¤¤K—.i7J·‰áF›f‘דR¶lYggçË—/«Õjíöèèh!DùòååÞ!8¹ï@nnݺU©R¥¶mÛ>~üXjY¼xqÅŠgÏž-w×ìŸ!ÿ¿ÿþ‹½qã†Z­ÎÌÌlÙ²e:uRRRäî»ÝÊëIÉêܹs<9ƼŒ8)ÿüóOÅŠ»uëöàÁ©åÌ™3ÁÁÁõêÕ‹—{‡ì'eÈ!+Vœ?¾æá=—.]jذaµjÕbbbäÞ!òé§Ÿ:ì“c˜cÅ‹;vì¬Y³Þ|óÍfÍš]»v-**ªjÕªƒ ’»köσðàÁQ£FU¨PaëÖ­÷ïß¿~ýº››[DDDÖµuîܹW¯^rï“ÍËëI‘»¿Áˆ“R¹råÑ£GÏ;·mÛ¶uëÖMNN>~ü¸J¥š>}úk¯½&÷Ù#NÊ_|ѵk×… nß¾½J•*<øë¯¿233'NœX®\9¹wàhýû÷/Z´èæÍ›·oßîïïß«W¯‘#GJwU€¥åéàß¼yS‘’’rîܹ¬Ÿ2EÆ\øP #NÊ!C|||V­Zuøðaooï-Z|ðÁÒc–`y=)>>>Û·o_¼xñüqàÀooï×_ý½÷Þ«^½ºÜ»G¡R¿z© “c`‚# Bp€AŽ0Á!8À G„àƒ`‚# Bp€AŽðÒØ±cƒ‚‚Ž9bµU}÷ÝwAAAk×®ÕþÖô~ ò"8€-ùã?<(w/8(¹;-44ÔÇǧN:~:f̘¤¤¤þùGîŽpDGSÕªU«V­jܧ`e U°Iééér÷ Á€Í&Ž\¹reÚ´iuëÖ­ZµjóæÍ?øà (Òb·oß>}úô[o½U£F›7oj>ݾ}ûСC_ýõ† öíÛ÷ÇÌÈÈȺ­?þøcĈ!!!!!!ï½÷Þï¿ÿ®³@||üܹsÛµkW»víÚµk·oß~æÌ™÷îÝËëª~øá‡¦¿h:{öì   „„„ŒŒŒ   ààà &­Y³Fç[sçÎ úúë¯å>cì Á€ùôÓO׬Y“ššZ¦L™„„„Ý»w÷ïßÙ²e:‹]¸p¡oß¾çÎ{úôiff¦B­VüñÇ£FÚ¿¿Z­öôôŒŠŠš={vDDDBB‚öw·lÙ2pàÀÝ»w(P 11qß¾}ƒ^°`føøøˆˆˆ%K–ܾ}»téÒ%K–¼qãÆŠ+zöì™×U®nݺ}úôquuU©T}úôyçwÚµk'„صk—öbjµzëÖ­BˆŽ;Ê}®Ø‚#sêÔ©æÍ›9rd÷îÝ'Ož?~¼J¥úúë¯/_¾¬½Ø¤I“ªW¯¾bÅŠ?ÿü³téÒBˆM›6mÞ¼Ù××wýúõ¿ÿþû®]»öïß_«V­S§N}ûí·Úßݸqc‹-Ž=*mbܸqNNN .}zpp°Ôâïïÿí·ßººº®_¿þîÝ»šï/^|Á‚B—DDD!¾ÿþ{iôôôÐÐÐ1cÆ*THjñððB\»vM»¹®ÊÎÎέ[·ÎÌÌüí·ß4[¶lBtêÔIîÀؘ·ÞzËÕÕU»¥wïÞBˆÓ§Ok7¾ùæ› мý÷ßïÝ»çï˜¯¯oóæÍ322.\¸ iìÖ­›‹‹KÖMœ?^z;lذŋ—+WN³Àýû÷·mÛ–µ·¹®ÊDo¼ñ†Ð­NOOß±c‡‹‹Kûöí-x8*nÇÀÆè´”,YÒÕÕõîÝ»iiiùóç—¥ái«W¯ !Ê–-›u…eÊ”¯V õnâþýûOž<‘ªŒ·nÝúý÷ßOœ8qãÆëׯë\Ú˜§U™¢AƒEŠ9vìXBB‚··÷ï¿ÿž˜˜V¤H‹Ÿ އŠ#£R©²¶8;;gffjß GÖP«ÕÙ­ÐÙÙYñìÙ³\7áää”/_>!ĺuëZ·nýù矟9s¦\¹rýû÷_±bŤI“ ï­fU&rvvnÓ¦MFF†tm%ãÔ,ŠŠ#§Ór÷îÝäääbÅŠ,X0»oIµF %R1R»4˜uwîÜINN.UªTþüùÿûï¿iÓ¦åÏŸÉ’%M›6Õî†!½Õ^•YÈo¼±nݺ;w¶k×nß¾}¡¡¡æ>ê G6çÿû_ZZšvËêÕ«…ÕªUËá[~~~E‹½}ûöü¡Ý~ÿþýýû÷;;;W®\YÓ©ssGiµk×Bœ={6##£víÚÚ©QqñâŬÛÍyUfQ·n]Ÿ#GŽDFF¦¦¦¶oßÞ\‘tؘ»wïŽ92))I‘™™¹víÚ•+W:99}ðÁ9qÔ¨QBˆ‰'ž;wNj¹wïÞ|ššÚ½{÷âÅ‹k–¼qãÆèÑ£Ÿçó9Ÿ÷çsvΞ^ïÏûý1FTÆGî@ް Áv!8À.GØ…à»`‚#ìBp€]ް ÁÀ-Ž9b¨Lƒ }Ù­[·þïÿþïÿþïÿž?^îCT×^{M:¥ ðÚNm½ÅÕ«WoÛ¶íØ±cOŸ>]éú~~~:txíµ×Ê¿§öüMždký«W¯š ùùùƒÎÌ̬Zµj»°.÷ÑpÁ€Mk×®MHH»ð ó·øÊ•+/¼ðÂÊ•+…'NœØµkWÿþý+XÿÔ©S3fÌøøã…§OŸ^²dÉĉ+Þµ£«€“vîÜiº^mêÔ©ÒÂ+W®DDDH ãââJKK_yåƒÁpåÊi…ž={ †«W¯Š[¯ð+))yýõ×ëׯÿú믛vqîܹ^x¡S§NÕ«W¿ýöÛxàÀó6˜^aðàÁÇ6lXãÆëׯ?tèÐ_~ùE‘žžþè£6nÜø¶ÛnëÑ£Ç7ß|cq•îÂÂèÑ£¥=öèÑÃ|ùºuë¤åÒÑ•••­_¿¾G5ªV­Z£Fºwïþé§ŸÞ¸q£‚×·uÕãСC­^èhû+¼xñbé᯿þZñú 4X¹r¥©o¾ù¦tà´Ìf>lú~عsgÅ+6LZ300ð?þ0³gÏ––øúúîß¿ßh4š2¥¹+W®ÆéÓ§KGŽ)ý<}útéÅ¿þúëÈÈH‹ äI“L 0½B«V­"""Ì׬Y³æ¢E‹L1È´ù7ß|cÚÜž]XHII‘Vó÷÷/((0-=z´´üᇖ–<òÈ#V¿u T¾ý‰‰‰¶–H† "-ùå—]i¥oqݺu¥§¦NjÏúæY|ûöíNüP*Žœ7þ|éJµÂ·ÞzëòåËï¾û®ôÔsÏ=×¶m[!ÄË/¿œ™™(-ÿôÓOÍJöïßÿé§Ÿš/)((2dȹsç„ññño¼ñÆÐ¡C}||ŒFãüùó¥îTs‡ºpáÂÝwß]£F iÉùóç_xá…7n4oÞ¼^½zÒB£Ñ˜””äÜ.$ Ò!߸qc×®]¦å_ýµôàAƒ„6lذaƒÂ`0ÄÇÇ1âÎ;ï”VHNN6ßÐiε¿b/^”^PÑ´iS{6éÖ­[•*U¤Ÿ÷îÝëúqP4¹“+e1¯Ùb^´[¾|¹´°ZµjãÇ—~®_¿þåË—Í_688Xzʼþdª® !bcc׬Y“žž~üøq£Ñøê«¯JËÍësï¿ÿ¾´°aÆå_aÛ¶mF£±¸¸8>>Þ´páÂ…F£±´´ÔTŒˆˆ¶µså=ùä“Ò:O?ý´´äøñãÒ’ªU«^ºtÉ|—^zÉ´¡”¤…óæÍ³h¿G§ÛoµxãÆ£GÞÿý¦§þïÿþ¯‚õÍ5lØPzö™gž±ó·hâĉžþMà T¸dôèÑ]ºtB-Y²DZ¸xñbSR´G``àW_}5lذ:DGG !¶oß.=5fÌÓjO>ù¤¯¯¯âäÉ“ÓúÄÅÅõë×Oáïï?xð`iaXXØóÏ?/„ðññ1¯‹/J?8º S´éLåÆ^½z…„„!}ôÑ5kÖ¬Y³æ…^ž*(((,,”~¾pá‚ëgÞéö›“.95 þþþÍ›7ß¶m›´üÁlÓ¦-¹í¶ÛLÇèúqP2FU°ÉÖD*ÕªU3ýl0–.]ÚªU+Ó˜‡z衇rhG­[·6]Z'9vì˜ôCïÞ½­nòÛo¿µlÙÒôÐÔ-„0µ¹nݺƒÁb¡Ó»0‘z«óóósrr~ýõ×;î¸Ã¢ŸÚôšùùù;vìØ¿ÿÁƒ÷íÛwùòew½5®´¿RwÞyç¢E‹ì_?//OúA ͬþ™®( .G6Ù9‘Jlll¯^½LÅ*«s²TÌb\KAAi¶-¹¹¹æMÑœÍN'vaâï˜(MC“’’³{÷ni¹iþšâââW^yå½÷Þ+))‘–ÔªUëÏ?ÿtô丽ýæÌSŸŸ_lll§N^xáóTê?þ0½Zùg™ŽÐ‚#Wýøã¦±ÆBˆ¤¤¤îÝ»;ô ±/$$¤zõêR}îË/¿”:¯-Ô¬YÓ•6»¸‹ÁƒKÁqûöí={ö”â iÜŒböìÙóçÏBDGG¿üòË;wŽ7nÜ¿þõ/·œsw"×SÝwß}W\\,ýܾ}{·Å"8pIIIÉØ±c¥;ŽH¾ùæ›?þØ4:Ä9Mš49xð ôú·ß~»iù… ŒF£°ÖõìÍ]ôìÙSê­NMMݲe‹´ÐÔO-„øðÃ¥>øàƒ>}úH?[ÜÚ*S†6]‹))_ªôÂ)²‡©S;((¨sçÎ^Ø#18€KÞ}÷]iFHHˆiîî—_~Ùt?: ¦êTÅzöì)ý°lÙ2) !6mÚtÛm·EDD4nÜØõë]Ù…Ô[-„¸~ýº4‘¯¯¯éÊÎË—/›º‰Mùïÿþïÿì™…§AƒÒ?þø£é*ÆÿùŸÿ)?u¹NQÅþøã±cÇ&''KüñêÕ«{tdGÅ€M#FŒ°˜pÑdÉ’%={öÌÊÊ2M‹øòË/O™2åã?>uêÔ… ^|ñÅ5kÖ˜Ö “®É›5kÖ‘#G^xá‹©¹-¼òÊ++V¬ÈÏÏß¼ys||ü½÷Þ{äÈÓe”“&Mr}t…‹»0õVKC¤»wïnºR388888X:ÞÑ£GK7•Ù¾}{Å÷Œ‘˜¦ì¹víZëÖ­[·n›››‘‘!Ë)*Ïô+qõêÕ³gÏš–׬YsÖ¬YnßÅ‘{> ÊbÏ<ŽBˆÍ›7Æ^½zI#""¤Û¨,[¶Ì´ÎŽ;L/kºÇŒ¤ücÊ·ä?ÿùOXXXù]7®¬¬LZÇê+|òÉ'ÒÂ;ï¼Ó´ð»ï¾“úùù9´ [Š‹‹MW4 !–,Ybþì£>jñšÑÑѦ»Ž9²‚ö›f2ßÖT_4¿sŒsíwô¶.•þJÔ¨QcÏž=®ì€ZÐU ÀIk×®ýòË/¥Ÿ_yå©›òÉ'Ÿ4 Ô?~üµkפŸ,X0lذZµjÝyçŒw6éß¿ÿO?ýôÔSOµiÓ&000::zÀ€©©©K–,±:†Ú ®ìÂÔ[-„ðññ±¸µô‚ îºë.é©»ï¾ûÅ_ Š‹‹ËÉÉ9qâDË–-W­Z`uý’’’aÆ:t(44´mÛ¶EEEûöí»qãÆóÏ??a¹@ÚŽ‰‰‰5kÖLNN®U«–böìÙ«V­>|øk¯½fu“Ï>û,))©mÛ¶ÿú׿¤pùÛo¿ >üòåË›6mjÞ¼¹ÜÇ í_ã¸aƲ²²‰'J©Q1uêÔÐÐД””²²2«›lß¾]1mÚ4SI²iÓ¦ãÆ+--ýþûïå> yh?8îÛ·ÏÇǧ{÷î¦%¾¾¾ÝºuËËË;pà€ÕM²³³ƒ‚‚Z´ha¾°iÓ¦BˆS§NÉ}@òÐøà£Ñ˜™™Y£F5j˜/oÖ¬™âÔ©Sqqqå·Zºt©ŸŸå™9r䈢Aƒr€<4 KKKÃÂÂ,–‡†† !.\¸`u«ØØX‹%éééË–-«Zµjbbb¥;‰‰‘û¸€geddÈÝh<8^»vMd±<88XqéÒ¥J_¡´´tíÚµóæÍ+--}÷Ýw#""ìÙ¯>™Ã[¯O¼õºÅ[¯[º-i<8†…… †ÂÂB‹åW®\7ëŽøñÇ“’’Ž?^§N7ß|³S§Nr€l4ýüüBCCËW „¦qÖå¿ýöÛ«W¯®V­ÚsÏ=7zôh[“>è„Æƒ£"22233³   $$Ä´0;;[zÊê&eee/½ôÒ—_~Ù³gÏ3fT/ôCûÓñ$$$”––¦¥¥™–ÆÔÔÔðððÖ­[[ÝdõêÕ_~ùåc=öÁ$ÚŽƒöññY¼x±t]£bÙ²e¹¹¹ô÷÷—–\½z5;;ûôéÓB£Ñ¸fÍšêÕ«ÿãÿ»í ¢ý®êºuëNžø`×®]srrÒÓÓ[´h1fÌÓ:©©©/¾øbÓ¦M·nÝzþüù“'O 6¬ü« 0`øðárJºçtˆ·^·xë¡7ÚŽBˆQ£FÕ¬YsóæÍ_|ñE:u†>qâDiFžò¤ºãµk×>\þYVÝ2F¹Û 5Lë¥[ÙÙÙQQQr·2à­×-ÞzÝÒíßzí_ã· 8À.GØ…à»`‚#좋y¨XLLŒÜM€œô9·Ž޽Óíœ|ðÏûÑU »`‚#ìBp€]ް Áv!8À.GØ…à»`‚#°téÒ¥qãÆ5lØ088¸[·nééé¶Ö¼q㆟ŸŸáV5kÖ”ûþòóÏ??ú裵k׎‹‹[°`AII‰ÜR1îU nQPPwòäÉAƒEDD$''÷éÓg÷îÝ­[·.¿rvvviii§N¢££M ƒƒƒå>!„ÈÊÊêÞ½{iié€6l¸sçÎI“&}ûí·Ÿþ¹ÜMS+‚#êS\\,„¨R¥Š'^|þüù™™™Ÿ|òÉÈ‘#…/¼ðBÛ¶m_zé¥]»v•_933S1sæÌ„„¹ÏŠ¥I“&]ºt)==½]»vR#G½råÊ;vôîÝ[îÖ©]Õ¨OLLŒEPKJJ’â‘ëÖ¯__§N#FH£££ ”ššzöìÙò+KÁ±I“&Îíkß¾}<ð@íÚµ-:»ýýý]?]»vuëÖÍü´<ûì³Bˆ={ö¸åDéG´àĉû÷ïwýu Ž;6tèPƒÁ`Z¿bÅŠôôôX¬Ÿ™™YµjÕêÕ«oܸñÂ… -Z´hß¾½¥Ð;wöêÕ«AƒO>ùdPPÐçŸ~àÀ6mÚÄÇÇûø¸ZÛ*))™0aB\\œùœœ!DÕªUÝqÊõˆàþvîÜ9£Ñi¾°V­ZBˆóçÏ—_?33ÓÇǧI“&ùùùÒ’æÍ›¯^½ºmÛ¶﨨¨häÈ‘uêÔùñÇk×®-„˜oÞ¼5kÖT«V­eË–)))}úô‘ž-..¾xñ¢­ë/ûõë—žž>cÆŒ?ü°¨¨¨U«V)))‹43ùÑ£G-zÃ…Mš4!8:Çàè¿BP©˜˜˜ŒŒ ¹[dggGEEÉÝ È€·^íÔø½U¿~}‹+•iÅŠ‡^¸p¡Ü ±É‰_5þθ·o3þúÏMnn$wÛÇíÞ½»M›6r7îAW5x‰))šzzÊ/±ÜäfR4 £­%€’íÙ³§yóæ=ö˜Ü {À㤀X>Z$Hó¤€X>š'H²£ž?^óËôèÑ£Gr·nCpÏ2*ŸDZZAZÓVd´ÜDí\š4eʹ›="8€§Ø*4Ú"¥Fûƒ ´&¥G^Ãàð©|èÐÄRtôæÈ¦Ò#xÁÜÏžîiËMnFÇ\ ²#o!8€›¹’%dGÊDp™q‘"µ 8€;9Qn´Š¢#"8€Û¸ÞImŽì@iŽàîM'²#xÁÜÀ©Ñ9xÁkÊApWEGG)¤ÜEpos45Rt„Œºuë–””Tñ:—.]7n\Æ ƒƒƒ»uë–žž.w«ÿöóÏ??ú裵k׎‹‹[°`AII‰ÜR1‚#¸Ä`YYÙr·ðˆƒ~ÿý÷¯SPP÷ñÇwíÚuôèÑÇïÓ§ÏÁƒån»BdeeuïÞ}ûöí}úô™4iR•*U&Mš4xð`¹Û¥bGpž×ÆÄPt„…âââââb½xIIÉ—_~ùÆoôîÝ»¬¬¬â•çÏŸŸ™™¹lÙ²µk×.Z´(--Í`0¼ôÒKrŸ!!„˜4iÒ¥K—vîÜùÉ'ŸÌœ9ó‡~5jÔæÍ›wìØ!wÓÔŠà€úÄÄÄ$$$˜/IJJj×®[^ùdPPÐçŸ~àÀ6mÚÄÇÇûø¸ZÛ*))™0aB\\œùœœ!DÕªUÝr¢tˆà^B†ƒöœ;wÎh4FFFš/¬U«–¢ÒjeQQÑÈ‘#ëÔ©óã?Ö®][1yòäûî»/##ãõ×_¯^½º‹móóó›3gŽù’ .Ì™3Ç××wРArŸ9µ"8€3ÜuOj‡Pt„JJJ¶mÛfëÙ‡zÈ•/,,B„„„˜/ BäååU¼mZZÚï¿ÿ>sæL)5 !ªV­:eÊ”þýûoÚ´é‰'žpï|óÍ7cÇŽÍÌÌ\²dIÓ¦MÝsrõ‡àSÎ}bàiò0ªøw¦´´Ôü¡­Q,W¯^MLL´¹ ×þ!„¸|ù²ù‚‚!D5*ÞöĉBˆ»ï¾Û|aË–-…‡vãœ< 99ùá‡^¾|ùSO=%wÓÔŠàn {¹Qê­v¨J*õVS%U©ââb!D•*U<ñâ%%%»víúá‡>üðò²²ŠWÎÌÌBÌœ9³â|)‹W^y¥víÚ B¼ú꫱±±IIIG§ÑU –œè§¼,&&Æ"¨%%%µk×Î-/ž——×»w襤¤óçÏWº²›4iâܾöíÛ÷ÀÔ®]Û¢³ÛßßßÅ£¸~ýú‘#Gxà)5 !‚‚‚ºvízúôék×®¹åDéG´àĉû÷ïwËKEFFF!DFFÆwÜQñÊ™™™U«V­^½úÆ/\¸Ð¢E‹öíÛÛY ݹsg¯^½4hðä“O}þùçhÓ¦M||¼«µ-__ߟ~ú)""´¤¤¤ä—_~iÙ²e@@€[N”àN”££¢•ÐáëDo5àºÌÌLŸ&MšäççKKš7o¾zõê¶mÛV¼aQQÑÈ‘#ëÔ©óã?Ö®][1yòäûî»/##ãõ×_¯^½º‹ óóókÑ¢…ôóªU«233·mÛvöìÙÏ>ûLîs¦bGÐ/.sÔƒ’’’mÛ¶Ùzö¡‡rñõ333ËÊÊ’’’ äïïÿŸÿüçÅ_LLL<|ø°©Øª´´´ßÿ}æÌ™RjBT­ZuÊ”)ýû÷ß´iÓO<áÆ™5k–Ô¥~ß}÷5jÔÈçY'ŽØæè ™îUa¹´´Ôü¡­Q,W¯^MLL´½WÿÙðÍ7ßT«V­FÒÃQ£FM˜0!99yôèÑlxâÄ !ÄÝwßm¾°eË–BˆÃ‡»÷@~ûí·ÂÂÂ={ö<õÔS÷ÜsÏÑ£GkÕªåâëƒcàoÎMߘ•%wÃá1F£œÿUèúõëæm ø 5Úæúª[·®)5Jzõê%„8räHÅJ–””˜/”â¯Õ ]<ÀÀÀ„„„·ÞzëÂ… ›7ovýÀõ‰Š#h“òèÊï¿ÿnþðìÙ³VWóhWuNNÎÖ­[ããã›7onZXPP „¨´G¸iÓ¦Bˆ£Gš/”j111®ȶmÛ׬Yó裚†‡‡ wÔYu‹àqún1Ù"[î¶Cþøã­[·>ðÀBˆ¬¬¬C‡Y]Í£]Õ/¿ür»ví¾þúki²²²·ß~ÛÏÏï¾ûî«xÛ6mÚ4iÒäƒ>˜0aBXX˜¢¸¸øí·ß–ÊÅéСƒâã?~ä‘G 7/9øôÓO…;vtàKtU J~~~C† :tè£>z×]wÙšøÐí]ÕsçÎ ÿ裄µjÕJJJJKKkÚ´éøñã_y啸¸¸õë×Ïœ9366V±nݺðððI“&•ÿE‹åååµjÕjΜ9óæÍëÒ¥KZZÚœ9s"##]?ˆˆˆiÓ¦íØ±£]»vÓ¦M›>}z‡>û쳉'JWR T@S˜”G?:tèpÿý÷/]º´¤¤d̘1!!!³fÍòÂ~‹ŠŠ.^¼hºÂrÊ”)·ß~û¼yóÖ¬YS­Zµ–-[¦¤¤ôéÓGz¶¸¸øâÅ‹¶®¿ìׯ_zzúŒ3>üð⢢V­Z¥¤¤ôîÝÛ]M1cFttô|°dÉŸæÍ›¯_¿Þ¼çŽ2ÐÍïv111r·2ÈÎÎŽŠŠ’»p’ÓýÔByo½+Ç¢OjüÞŽŠŠª_¿~ZZšÜ ©ÜŠ+>¼páB¹b“¿jüq ºª€§íÞ½»M›6r7îApž²gÏžæÍ›?öØcr7îÁ5Ž µ¾].sÔƒñãLJ„„ÈÝŠÊõèÑ£Gr·nCp0›£úL™2Eî&@誇‘±èÁ€ÞÑ« v"8€I—9:¶‰0„ƒÛЂ#]ÓØ°ð(‚#ìBp€]ŽôKÛýÔ\æÀíް Áv!8Ð)m÷S€'@³œ¸Ì*@p»è¤ÜÈø 8Ð#n3Tl÷îÝ=zô¨U«Öm·ÝÖ¥K—Ï?ÿ¼‚•/]º4nܸ† wëÖ-==]îæ[qãÆ{î¹§cÇŽr7DÝŽà_|ñE||üÉ“'‡>nܸóçÏ?üðÃ+V¬°ºrAAA\\ÜÇܵk×Ñ£G?~¼OŸ>”û ,MŸ>ýÇ”»ªGp€Ê©·ŸšËµª¸¸¸¸¸ØC/þÊ+¯Ô®]ûÀóçÏŸ={ö6l˜””duåùóçgff.[¶líÚµ‹-JKK3 /½ô’Ügè_}õÕÛo¿íçç'wCTà@wè§®—9ªBLLLBB‚ù’¤¤¤víÚ¹þÊׯ_?räÈ<*- êÚµëéÓ§¯]»V~ýõë×שSgĈÒÃèèèAƒ¥¦¦ž={ÖžÝíÛ·ï¨]»¶áVþþþî:WçÎ{üñÇŸzê©úõë»ë5u‹è €œ8qbÿþý®¿Ž¯¯ïO?ýaZRRRòË/¿´lÙ2 Àbå‚‚‚cÇŽ :Ô`VÙŽ_±bEzzú€*Þ×Î;{õêÕ Aƒ'Ÿ|2((èóÏ??pà@›6mâãã}|ÜSÛ2#FŒ_¸pa‹-Üu¶u‹à•Po?5à???SÀZµjUffæ¶mÛΞ=ûÙgŸ•_ùܹsF£122Ò|a­Zµ„çÏŸ¯xGEEE#GެS§Î?þX»vm!ÄäÉ“ï»ï¾ŒŒŒ×_½zõên9œ·ß~;555===00PîS«GúB?5ô¦¤¤dÛ¶m¶ž}衇*ØvÖ¬Y™™™BˆûQ£FåW(,,B„„„˜/”ú¸óòò*nXZZÚï¿ÿ>sæL)5 !ªV­:eÊ”þýûoÚ´é‰'žpý@öîÝ;}úô·ß~»U«V?Ñú@p“ÆÇ8—¥Ë©³ !óÅž¿¥¥¥æËÊʬ®võêÕÄÄD›»¨ð7ã·ß~+,,ܳgÏSO=uÏ=÷=zTª&šH=Ú—/_6_XPP „¨Q£FÅGwâÄ !ÄÝwßm¾°eË–BˆÃ‡»~ C‡½ï¾ûžþy;O8*Ep #ÜfŽRò{ýúuó‡VG®!BCC.”ÙÞzë­!C†lÞ¼yìØ±æÏFFFúøøXôJçææ !êÕ«Wñ+KWL–””˜/”â¯Õ =¥K—fee%&&Λ7OZréÒ¥ÒÒÒ¹sç6lØpèСNŸ=#8 J¿ÿþ»ùC[£˜íáݶm[bbâš5k}ôQÓÂððpa­ªççç›––f¾ðÛo¿5 •ŽDiÚ´©âèÑ£æ ¥ZcLLŒë"MW4þ|ó…ùùùS§NíÞ½;ÁÑIF¸[³fÍänä‘••%wP '¾ó„±òm”ÿÖ{èÀ5CßÛ7BlÙ²Ezxüøñàà`«Ö/^¼èP 8þ¼ŸŸ_ïÞ½ËÊÊL {ì1!ÄO?ýT~ýE‹™·äܹs‘‘‘½zõªôŠ‹‹›4iR§Nüü|iÉõë×»uëüǸ~ VOÚ=÷ÜS~¹¿jüq -Ìã¸qãÆÁƒ·nݺsçί¾új~~¾feeÅÄÄüôÓOåŸ4hPL9;w–ûX8OÏýÔL®I~~~C† :tè£>z×]wÙšøPêáµ¥üúÓ¦MÛ±cG»ví¦M›6}úô:|öÙg'N”.@œ;wnxxøG}$­ÿÄOÜ}÷ÝÆ {õÕWçÍ›×½{÷ÂÂBÓláëÖ­ Ÿ4iRùùûû/Z´(//¯U«VsæÌ™7o^—.]ÒÒÒæÌ™c1LÛ¹'¨¾«zÁ‚}ôQPPP»vírrr6mÚôÛo¿­Zµªü\Så­^½ÚÖS'Ož þ=g&÷ဗ0>Fù:tèpÿý÷/]º´¤¤d̘1!!!³fÍrË+Ϙ1#::úƒ>X²d‰OóæÍׯ_oê¹.**ºxñ¢é ËÔÔÔÉ“''''çççwìØqíÚµ­[·–ž-..¾xñ¢­ë/ûõë—žž>cÆŒ?ü°¨¨¨U«V)))½{÷–ûÔÂ&ƒªCzFFFbbbÍš5“““¥q^³gÏ^µjÕðáÃ_{í5[[I³•nÙ²eýúõBˆ 6X é*((h×®]ß¾}.\èD«bbb222ä>7AvvvTT”Ü­€Mž«8ªâ­×sÁµRjüÞŽŠŠª_¿¾ÅÅ…Ê´bŊÇ;÷'Õ;œøPãïŒ[¨»«zÆ eee'N4Í0uêÔÐÐД”[³!ú÷ï?lØ0)5ZuòäI!„E¹€ª›YíÞ½»M›6r7î¡î®ê}ûöùøøtïÞÝ´Ä××·[·n[¶l9pà@\\œÕ­fÏž-Ø×¬YóÃ?”_!''Gau¦S`¿={ö4oÞ\[ Pqp4™™™5jÔ°˜b´Y³fBˆS§NÙ Ž]ºt‘~ؽ{·Õ¤àxöìÙ#F=z400066vܸq=Ú "L®1ãÇ·¸_‹2õèÑ£Gr·n£âàXXXXZZZ~ÀŠt§£ .8ýʧNB,Z´(**ªcÇŽgΜٽ{wjjêo¼ñÈ#Øó å' Ú¾}»Ü' wúôi¹›ë¢££²²²³³Ù$*:+;+[صzÞú(Ç΂"J8¼ ¼bÊ”)r7AS*þ=ïÓ§Ü T GiˆVPPÅri"«K—.9ýÊgÏž ˜4iÒˆ#¤%?üðøqãÞ|óÍ.]ºÔ­[·ÒWÐç³B(„„n9ñÖ8´‰ZÞzOŸ@¥*þ=/ÿgÝêåz âÁ1aaaƒAº½º¹+W®ˆ›uGç|òÉ'‡2¥F!D§Nüñk×®íܹSî㇊ƒ£ŸŸ_hhhùÊ¢tou‹»°»®}ûöBˆcÇŽÉ}ÜÃxj¦à"G!Dddd^^ž”M¤Ë¬N:o£ÑXZZZ~6___!DõêÕå>hði|ŒÜ­ êŽ ¥¥¥æÓŸÆÔÔÔððpÓœõŽÊÉɉ9r¤Åòƒ _Ó îà8xð`ŸÅ‹K×5 !–-[–››;pà@Ó-;¯^½šmÿ˜ÇÆ·mÛvïÞ½7n4-|øÄ‰¥yœvÇw|þùçï¾ûîž={~ûí· $&&>ÿüóuêÔ‘ûpÀ%Ln W"ö0ùǸ»éöÆçÈÎÎfÆ;¥q4$9—ÔõÖ3ÌÜÔõÖÃtû·^Ý×8@è§÷"8À.Gø ²P1‚#m¢ŸÚ'îÃ4à$GØ…àBÐO v 8Ð ú©Àް Át‡ñ1œCp 5Ü<„à»`‚#M¡Ÿ<‡àzÄøN 8À.GÚA?5xÁv!8À.GA?µ£ÀQGØ…à»hýÔàGØ…àúåÄøzFp GôS;Õ€ž¨ž8œ@p€]Žt‡~jpÁ€ºÑOí"ÆÇ°ÁàÆÇºEp€]ŽTŒÆ€7`‚#ìBp VôS»‹«èÁv!8À.GªD?5xÁv!8¸ñ »¨ýÔJÀÀj@‡ް Áv!8Ð>ú©À-ŽTƉ nApÁØà@ãè§w!8Pú©@FG؅໨7Œñ4n< bG€óX è Áv!8Pú©@vG؅໨ýÔ^ÃT€à»`‚#¥£Ÿ‚à»`‚#­¡ŸÚE ¬`‹ŸÜ €Š8q£~Ù÷8›\@p53‹ö„BG×3GP!Sþs4ü™¯ïô‹Ð+‚#åb"kGhÂMQÏô"n|MšFp5ðhuPzM³ø(!I°@pÅóNˆ3ÅG§ö% ¬Öx¹Ð=‚#…¢Ÿú¯³ ¼Û‰ü÷d<Ú:“ÜàŠ$ãu‡RoµÁ@v`àÊ£€ ÂhdÐ €[(‘~û©•Õ\»ê€öpËAP )¢)#¥™]ëèø-hÁ”AÉ…=û²#w¬4à@qt×Om0(:5J¨; 8€Ì”Ô=] ²# {Gò ÈŽ€¾(‹Žú©U—%dG@ÇŽàuª¸¨±‚ˆHvôŠàÞ¥¢‹+`#;2°Ð6‚#Ñ~?µ ö¢îèÁ¼EK©QBvt†à^¡½Ô(!;zBp bªé§Öjj”Ý 8P ͆+5™€9‚#x’šS£Ì&« #8P+ôSë$5J(N:@p ŒX<¤Ê­ó^p|÷Ýw333å>^ð ¦F:à½à¸lÙ²ûï¿àÀ«W¯¾pá‚Ü@ÝÝO­çÔHÑÐ4ïǧŸ~º^½z‡þç?ÿÙµk×ñãÇïØ±£¸¸Xî3@~š Zš:!œˆ‚F£Ñ h’Ÿ×ö4iÒ¤_|ñÀ[¶lIIIÙµk×®]»BBBî¿ÿþÄÄÄV­ZÉ}*ÀešKN2ƒb+œf0ÊñWRRòí·ßnÙ²e×®]EEEBˆF%&&>ôÐCõêÕ“ûœ¸*&&&##CîV@ÙÙÙQQQr·B•Ô~‹ê¿ßzGgK£§ÂŸzÝÒíßzyFUûùùÅÇÇ/X°`Ïž=Ó¦M ÈÉÉY´hQBBÂã?¾yóæÒÒR¹Ï /Q{jtéH´Ë`\ìh÷ºª-äççýõ×Û·oß³gOII‰¢fÍšþþþ{÷îÝ»wïòåËW¬XQ§N¹Ï؇ÔXžtu$§ÐoÇÜÜܯ¾újÇŽ{÷î•ÊŠ½zõêׯ_Û¶m…?üð >üúë¯/_¾\îó•‹ŠŽ&ÐïÇ5kÖìØ±cÿþýeeeBˆ5jôîÝ»oß¾qqq¾¾¾¦ÕºtéÒ¶mÛöíÛïÛ·Oî“Àã´ÐOm0dgeiû27'J‡Òmñ^pœ5k–",,¬W¯^}ûöíСƒy^4P­Z5ú©¨€”в³ånxƒ÷‚ãÀûõë×±cG[yÑåF*@-Í ñިꔔ”={öØJÏ=÷\ïÞ½å>¼JÝýÔ„!ûq;@+¼ oܸaë©“'Ož9sFî³›<ÛUšš:~üxÓÃU«V­Y³¦üjeeeF£±aÆrŸ °åFGÑa h‚gƒ£¯¯oHHˆôs~~~•*U­®6uêT¹ÏïQq?µ.ó«•ð–pÏÇ.]º¤§§K?ÇÄÄ 2äÕW_•ûÀºLîAÑP?ïª=zt\\œÜÇ . ÷¸ˆì¨œ÷‚ã”)Sä>XJ¡Ê~jÝó`p\»v­¢}ûöM›65=¬Ø°aÃä>!O¢è¨™ƒãÌ™3…IIIRp”VŒà@¡È:àÑàøÜsÏ !îºë.éáË/¿,÷ÁPõõS“…n¬RtT˃ÁñÙgŸ58f̹GÄq3òã½Á1åÆ]»v>}ºeË–­[·–ûT@9¤F¡è¨“Wƒã®]»-ZÔ³gO©{úôéÉÉÉÒSC‡1c†›™Z§¾~jxÙP!ïÝ«zß¾}Ï<ó̯¿þZVV&„øïÿ›œœúØcÕ¯_ݺu»ví’ûl€b ÜÊ{ÇåË—ÆiÓ¦ :Tñå—_ !æÌ™“pâĉ>}ú|öÙg rŸB½‚¢# 6Þ ŽÇŽ«]»öˆ#¤‡?þøc•*Uºví*„hܸñí·ßž••%÷ÙàYªé§&ÍØ@ÒtÎ{]Õ/^Œˆˆ~.))ùïÿ{çwV©REZ˜››+÷Ù¸™4°ÚöÓFÁÕí€zx/8Ö­[÷ôéÓ¥¥¥BˆuèÐAzª¬¬ìôéÓ5kÖôÜÞ7nÜ8xðàÖ­[wîÜùÕW_ÍÏÏ·s쬬˜˜˜Ÿ~úÉk' €Ì(©€ Þ ŽíÚµ»xñâûï¿æÌ™÷ß_Ñ­[7é©•+W^¸p¡I“&Úõ‚ ¦OŸ~üøñvíÚoÚ´iìØ±×®]³gÛÕ«W{íÚ¦Ž~jR£÷QtÔÃ{×8Ž;vË–-K–,Y²d‰â®»î’æn|ä‘G¤zÞ¨Q£<±ßŒŒŒeË–EFF&''תUK1{öìU«V½óÎ;¯½öš­­ Ž;¶eË–õë×{í©*佊c½zõþýïwïÞ½víÚ]ºtY¸p¡4kcnnnHHÈ[o½uÏ=÷xb¿6l(++›8q¢”…S§N MII‘&²ªÿþÆ #5€7PtT«€7mÚtéÒ¥ W¯^]§NOEØ}ûöùøøtïÞÝ´Ä××·[·n[¶l9pà@\\œÕ­fÏž}ýúu!Äš5k~øáož%@“TÐOM¹Ñ> ¬ôLÎ[JêÕ«ç¹7™™™5jÔ¨Q£†ùòfÍš !N:e+8véÒEúa÷îÝrŸ!žGò$»îXM ÔÀ«Á1%%eÕªU'Nœ0ÚøjHOOwï KKKÃÂÂ,–‡†† !.\¸à¡#‰‰±X²}ûví Êqúôi¹› dQÙÙÙn!ÞĹ–EGgge ö¥¿·Þ#ïf”ðÒ;îFú{ëuªOŸ>r7A)¼wîÜ9qâDég___ïìT:d±<88XqéÒ%í7##Ã;¥‰ŠŠ’» Jt³äÀÉù«@å­Óéú§··Þ‰ã­|£1J…EG½½õúTþÏzù ‘Nx/8®X±BñÄO<óÌ3RÁÏ Â Caa¡Åò+W®ˆ›uGº¦Â¤rñ^pÌÌ̬_¿þ?þñσ±rx~~¡¡¡å+‹BÓ8kŠâ½a1¤F¥áJG@Ù¼”ánܸqùòå x35J"##óòò¤¤h"]FéåÆ:¤Ü Ü–)“çºå¥çããúÛo¿U0u¢‡$$$”––¦¥¥™–ÆÔÔÔððpir€§UrÇê[V%–Êå¥àèëëûÔSOåææ.X°ÀËG8xð`ŸÅ‹K×5 !–-[–››;pà@iÉÕ«W³³³(—ú©)7€ã¼wc¿~ýN:µlÙ²ôôô¾}ûÖ¯_¿J•*ë˜OÓí.uëÖ|øÄ‰¥yè©Qù"(•Áè­OæäÉ“+]çí·ß–ù|¸CLL ó8êSvv63ºYpô¯¿7ú©=HtøÖ{ü’* Ž:|ë!ÑíßzïUµ ØO‰ú•Ø&UòxM¢# H2Ü«úâÅ‹‡>{ölݺu;w›!÷y YÙuÇjÊæÕà˜——·dÉ’äädéN€#GŽìܹó€Z´h1gΜððp¹Ï·ñxW&4¢# <Þ›ŽûÆÏ<óÌêÕ«CBB `Z^«V­Ý»w2DJ“àDp™÷‚ãÒ¥K:tï½÷nß¾ý­·Þ2-ß°aÃC=tâĉU«VÉ}6h©Q¥˜ Pïǽ{÷úúú¾ùæ›æË}}}_ýõÀÀÀ;vÈ}6¸‡²ú©Ià&Þ ŽGŠŠ²:&888:::''Gî³°——ª%ñ^p ½zõª­góóó«W¯.÷Ù 9”•Ä;VP$ïÇØØØ³gÏZ½gÌÑ£GÏœ9Ó¼ys¹Ï7PP?5©ÜÊ{ÁñÑG5 /½ôÒ‘#GÌ—9rdâĉBˆÄÄD¹Ï !5j½Õ€bxoÇÎ;?õÔSË—/øá‡£££…;wîüᇎ?^VV6`À€Þ½{Ë}6`“W'ùå—Û¶m;wîܬ¬,!Ä™3g„5kÖœ4i’ùÌŽÔK)ýÔ”5†ÉÀeðö-{ôèÑ£Güüü¬¬¬âââèèèÈÈH¹Om!ax‹Õ8WY§²Ñž^gÞ?@™d¸Wµ"<<¼mÛ¶r;ùq›A °‚•¾ö¼éV^“¢#  Žk×®ut“aÆÉy2¸FÖÑ»%Õy&ø[¼æ_{4ÅH@V Ž3gÎtt‚#—=É”ÍO±Áà(g4íÌh´Ú ÞáÁà(M²cîèÑ£;vìðõõíÒ¥KãÆ}}}³³³ÓÒÒJJJêÔ©óꫯÊ}68Oþa1¤FÏPPP3…Á`¼ù.+¨a€nx08Ž?ÞüáÉ“'W¯^óÁ4hÐÀ´üÌ™3Ï>ûìÿûß-[¶ôêÕKîB ±ÌÔ0å7Ð ïM¾dÉ’¼¼¼÷ßß<5 !êÕ«÷Þ{ï !¾üòËÜÜ\¹Ou¢Üè&†›ÿoþW1oOÎmm¦¦*Ó À%Þ Ž¬[·n£FÊ?Õ Ai¹‘ï}@dî§&5ºƒCyÑž»c5ñð4ïMÇ“ŸŸ_VVf4 ÖþqZPP^³fM¹Oè‹úúy+›—Çhv\ª9(@%¼Wq¼óÎ; ¾ùæ›òO}÷Ýwùùù-Z´ûlP!ÊÎòZ‰QTOð^pìׯŸbÊ”))))æ]Ò_~ùåË/¿lZ€êÈÙOMjtŠydÔ6â#à^Þëª8pàwß}÷Å_Lœ8±fÍšÑÑу!++ëÏ?ÿBôïßàÀrŸ Ð8tà:xSçµê›Wo9øî»ïvêÔiÑ¢EçÏŸ?þ¼´°N:Ï=÷Ü€ä>¼„r£,4]`ä$.ójpôññvªEj´ É*z®§Éh†ü·„ DÆJÑs 8Á{£ªÀ=(7VH?#¦]¿kÑ,>°Á€ª+¤—ÈèVdGÀ~GN¢ŸZQ ú¼hÏM·Êf®GÀNGêA¹Ñ%ôM;‘ßV—;"mpÁ€´^n¤Ð¨2õVÿµs²#´ˆàÀë4鞆 ÙÚýªXç©~j­§FÍPqw!5*‘¬½Õ‚¢#4‡àÀ Ê‰ŽŠ"5š“;­) ÙZBpà-M!²²³5x`ÞåÁÕ ˆ±dGhÁ€èv °ÙÚ@p`É#•A-–IpÙ@pàyšK̹£2 è­´ààî£ÅÔ¨Ï[ÂÀu¡vGp…F;Qã³…ìU#8øåÆ ”ÔèYž½cµ’’,ÙêEpà1ÚJtOÃÈŽP)‚#çUTnÔ\j„ê)©è¨ÁÀ_4”ô܉Ô¡è5"8ðM„P.j„§‘¡:GB¸wXŒVR#5ºH‰=ÃÊkÙêBpàVJð>ϬV*²#TÄOîŸûgáQ-éï· ÜŠ#÷Qy¹‘îi]P^oµ èõ 8p˜õr£&R# ²#Tàè{ò©*¢È¢£ ;B Žt9w<ʉ„¦Ïñ1€Z]sϰÕ–¹¨JCÑ Gpà•§Fè”R{«ÙÊFpôË åFR#è Á€³Ô™¹¨ÊGÑŠEptJŸ“~sQ#þ¦àÞjAv„R8E…åF ²``µÓÈŽP ‚# G®–I KGR[jä¢FؤìÞjAÑÊCpP9õ^ÝÈEP;²#…àèŽKCU•)4¢rŠ/: ²#”„à —Ipв»}q>û©'5rQ£0°ÚEG(Á€T•¹¨ŽQIE”ì% 8:¢ùI¿)4€GTF%åFR#4¢#dGpôÂÉr£A(?5rQ#\¥’ÞjAv„ÜŽlRKjä¢FåãÆƒ€6]p¦·Y =Ôá6;Xc0”È螆ž‘!?¹Àãœ+*y05‘dAÅ@9Ê.7’á)êé­!‚# q— ƒQ¹åFR£z©*•©ÙÞGp`FÁb¸¨Q‡X])²#¼Œàh™c9Ð`F£2oÜ;ðê¢@…Ž„J¯5*´e€Pt„7ÍÒÀ©éž† TXt$;Âk˜Ž€BËDFP*Ž€69o®ª¨r#©Q“¸ñ çPt„w}£Ö”§ÂÞjAv„WÐU h½iÐl=…”¥?{ò·` G@¯”WkdÎÀEáiG@kT:˜šîi(‹:{«ÙFptIIÔ̹£+ŒTàhŠ]åF%uRÓ= ¸EGxÁЙ[S£¼åF P4ÕöV ²#<†QÕ€vT^ITL­‘ÑÓ FTp"5ÊUn¤{ªAѸÁÐ%ÕÑÈGÍaLeÈŽp;-tUoܸqÆ ™™™÷Þ{ïäÉ“ÃÃÃ]ÜdРA¿üò‹ÅVßÿ½Ü‡ XQI,´ö´÷ËtOÃiÒÀjÙ' úà¸`Á‚>ú(((¨]»v999›6múí·ßV­ZàÊ&'Ož hܸ±ù†aaar.à8eÔ)4B­¤©>DN6ŸOÜJÝÁ1##cÙ²e‘‘‘ÉÉɵjÕBÌž={ÕªUï¼óÎk¯½æô&—.]êÛ·ïÂ… å>D rÊŸñ›¿[€ŒÈŽp#u_ã¸aƲ²²‰'JP1uêÔÐÐД””²²2§79yò¤¢Ü¨’Ü•&÷†pU&p“ºƒã¾}û|||ºwïnZâëëÛ­[·¼¼¼8½INNŽ¢Q£FrP¹Š’¡ç¼Vndô4l!‰y£dà.*ŽF£133³F5jÔ0_Þ¬Y3!Ä©S§œÞD ŽgÏž1bD»víî½÷ÞñãÇÿôÓOr1àe¤FÀ]¸ñ ‹ÈŽp _ãXXXXZZZ~ÀJhh¨âÂ… No"%ÈE‹EEEuìØñÌ™3»wïNMM}ã7yä{Úc±dûöírŸ0xÜéÓ§½¼Çè訬¬ììlËåQÑÑÙYY¢üBˆ(‘mu¹[%„Èòôn”Äûo½&D9ü;âùß^›²²¢ †ì¬,‹Å*{ë£?çBѧO¹› *Ž×®]BY,B\ºtÉéMΞ=0iÒ¤#FHK~øá‡qãÆ½ùæ›]ºt©[·n¥mËÈÈûô@QQQ^Û×Í’b”Õ'¬¶ã¯r£'Ûøw¡Ñ‹§B ¼ùÖk†'MÞóluï*zëB¢¢è pBù?ëå+D:¡â®ê°°0ƒÁPXXh±üÊ•+âfѹM>ùä“C‡™R£¢S§N?þøµk×vîÜ)÷q’u4 ÝÓ€ÂÑa ©88úùù…††–¯,!Lƒ¦]ÜĤ}ûöBˆcÇŽÉ}Ü€¶òa…©Ñ£W72zŽRßøõµp?G!Dddd^^žûL¤ 8"##ÛÄh4––––ŸÍÇ××WQ½zu¹°A¾Z#£§áŒq ŠŽp…ºƒcBBBiiiZZši‰ÑhLMM oݺµs›äääÄÆÆŽ9Òbà _ÓE±+K*7Rh„¾Pt„î©;8<ØÇÇgñâÅÒEŠBˆeË–åææ8Ðßß_ZrõêÕììlÓÀ·J7iܸqÛ¶m÷îÝ»qãFÓŽ<¸råʺuëöîÝ[îƒÊ‘/5RhÔˆ¢#œf0ªöþ›’•+WÎ;·^½z]»vÍÉÉIOO]¹r¥iÎ/¾øâÅ_lÚ´éÖ­[íÜä×_=ztnnn‹-¢££Ïœ9sèСÀÀÀ>øàž{î©´I111ŒªÖ§ììl/Œ¯´L‰vôP{"8Rh4ç·^{”·ÌJ­ê·žO±+tû·^ÝG!ĨQ£Þy稨¨/¾øâÂ… Ç_µjUù™ÚäŽ;îøüóÏssswìØqéÒ¥ÄÄÄ­[·Ú“RBj¤{î¢ÊŽ_U6pÕWH·ÿ j·EûÊ5î ŽDF«T]v’—Ú‹ŽjëùD;M·ëU_qôCÞÔH¡ø‹†ŠŽ\ìG©øÎ1€~É‘‰Œ*Ž€:ü½;_#…F@Û(:Â!G@œHn)72áïº55º> }Ó€‚h··ZÐa !]Õ€W¹œÍËôMð2:¬AÅðw§Fú¦%ÒtÑ 8žg0¸Þ'mJôMCÃ]ÊG‡µÎÑU x˜µÈè\Œ¤o(OcÏÛá.tXëGÀ“Ü”  MÎ75 N¡]GÀcÜ–…Gn/΢ÃZ·Ž€g¸>ÑŽÙ匤F@etPt$;êÁp7ÛCa “7/!â›úÂ4à*BvÔ!Çne;ÚŸMƒ`¸äP1)s™ ´…à¸MTt´‹©Ñ|Ü4©€ò1ÂZoèªÜÄ`ÈÎʲñLå©ÑârFR#µ ÃZWŽ€Ë\›ß»üR#tN;—9ê`ˆ ô†®jÀ5•EÆŠŸ§‹€Ða­T¸mÝ9r# )º):Òa­T§*Ÿ–ÛVj¬àΤF€’Qq'EBÇScÅz“í\æèÜÁ¨EG= â8ÈŽq0åW© ÊxsR#ÕãbGÍ#8v³£{Z”K•FFAj4OO““µàØÇñ/}{"£ 5ÔƒkÊ82M£´bÅ×2°‡¦.stîxT‹‹5ŒŠ#P!G ÑÑQÂèX åFšD‡µVÛI!„ƒÔPºªkêž¾ùë¬ìlö@jôFO½Õ‚k"8åØ1Mã_+J_‹‡ ©°‡Ö.sÔ²£ö3vÿ¾a ã3lýÒYÑQ5‡k›ìŽŒâæßNÌËFj¨GÀÞB£Å$;¤FÀ 4X¡Óà!UvÄ5„Š#tϾÈ(nW‚Ô(–t™#7EavÍ 8BÇ츅 Õ»¿¸DOw üû ÉŽš@p„^Uö­m놤F€nq#ô§²++¸a ©ð>mNÊ£¿+;jGèI…}Ó¦¯3£í­Ià :¬ÕŽàݰûlõJÛ·µíMH* Ë+ÙQåŽÐÛ…F{"£ 5€[‘Õ‹àM³+í•¶x R# /'jsꘔG¯EG¨ÁÚeíëØÎc…¯QÙ&Êÿ[r£è¨RGh‘µB££‘QxŽ‹ŽdG5"8B[ÊEF‡z¥-^É¡orƒ0ˆ(Ajy€2é=; AŸuÅ1ã‚£©<) §.¶4˜õhá»T„ëí@éÑ!GORR´8Š‹ÔE×EG§OþPz´ÁÑý2ŽÓÀÅ%hÙ‘ìh'Jö`TµûÅ4k¦üÐV91’Ûl ƒÙê;vÐ2ÓpTÈ4àš“e G½£²@ó(::yôÊÔs-¨>–CpÔ#Â"½!;þ}„º¯¤òâ£UG]pb”ŽáÖ:½¦¾:èÙñ¯³ ˜¦ÇÄG Gm")@ydÇ[N„ ôh/⣠ƒc4Â|\‹ÅÐ[_ ·na¸u .h–£D¤ì(wÃ=p"1㠆΂£JYÄD{’b¹-HŠtʹ¼¤Áìh:ÄGGõ]t¤«ZÊ¢+í[(ÿG4Gû¬¥¯P öY ³«=רÁQY¬þ«¯Ò™­l¢½¯6p+®w´<‚øˆÊåa«[ ‚O«­^m~…€ç‘­œA|DEŽžåh@¬àÍ~O€|œ^l+£Ù¯eâ#lcpŒû;–akÌŠÑ(„Ñ Œå·X°Âàð4'†K_ËÚ.ó÷Aÿ:ÃèÜDp´iãÆƒnݺuçÎ_}õÕüü|{·4Lÿ9 I‡j×§O¹›yðÖk€Ë­‹øH‚ÄMGë,X0}úôãÇ·k×.88xÓ¦McÇŽ½víš=Û6‹iF4Õ1Hv’¾ð¥H%wó=Œ !ÁѪŒŒŒeË–EFFnß¾}Ù²e;vì1bÄÏ?ÿüÎ;ïÈÝ4€g9‘ŽL=×:M„H=!8Z±aƲ²²‰'ÖªUKZ2uêÔÐÐД””²²2¹[ð8'êk¦ž%Ý%H‹I”Ô4‚£ûöíóññéÞ½»i‰¯¯o·nÝòòò8 wëÞc+U´I¹©ýYþÊ,«C@¡~LÇcÉh4fffÖ¨Q£FæË›5k&„8uêT\\œÜmx›Å¼47SPFÓ®Y\×^ivÔÔuðÖï~ëTvdJ %!8Z*,,,-- ³X*„¸pá‚=/#÷q@¼õºÅ[¯7ÍšU²‚ÁQnY%È`ÔzMΩhTf©²Òß"8Z’†NY,B\ºt©ÒWÈÈȨtÊ¡´f"ÏŠnÿÒs£¥°°0ƒÁPXXh±üÊ•+âfÝ@‡Ž–üüüBCCËW „¦qÖzCp´"222//OJŠ&ÙÙÙÒSr·@G+JKKÓÒÒLKŒFcjjjxxxëÖ­ån€<ŽV <ØÇÇgñâÅÒuBˆeË–åææ8Ðßß_îÖÈÃ`dz$kV®\9wîÜzõêuíÚ5'''===66våÊ•å§éÐ ‚£M[¶lÙ¼yóÏ?ÿ\§NöíÛOœ8Qš‘@Ÿް ×8À.GØ…à»`‚#ìBp€]ް‹ŸÜ Ј¬¬¬¾}ûnذáî»ï.ÿìÆ7lØ™™xï½÷Nž<9<<\î&ÃÍ ôË/¿X,Œˆˆøþûïån<…¶>ña×þÄ›#8ºÇêÕ«m=µ`Á‚>ú(((¨]»v999›6múí·ßV­Z w«áN'Ož hܸ±ùBîQ©a|´u‹»Þð'ÞÁÑ%ÇŽÛ²eËúõë­®‘‘±lÙ²ÈÈÈäääZµj !fÏž½jÕªwÞyçµ×^“»ùp›‚‚‚K—.õíÛwáÂ…r·ÞÀG[·ø°ëâ­âG—ôïßذa¶~¥„6l(++›8q¢ô+%„˜:ujhhhJJJYY™Ü͇ۜìúÁŸx«Ž.™={ö‡~øá‡vêÔÉê ûöíóññéÞ½»i‰¯¯o·nÝòòò8 wóá6999BˆFÉÝx mÝâîü‰·Š®j—téÒEúa÷îÝåŸ5™™™5jÔ¨Q£†ùòfÍš !N:'÷À=¤¿%gÏž1bÄÑ£GcccÇgõJj¨m=ãîü‰·ŠŠ£––––¿b:44Tqá¹·9uê”bÑ¢EþùgÇŽ#""vïÞ=tèÐ 6ÈÝ4¸m=ãÉn¿¨8zеkׄAAA˃ƒƒ…—.]’»p›³gÏLš4iĈÒ’~øaܸqo¾ùf—.]êÖ­+wáN|´õŒ;$ºý 8V®¤¤dùò妇¾¾¾cÇŽµgð°0ƒÁPXXh±üÊ•+âæ?J .¶~>ùä‹5;uêôøã¯X±bçΦ?0Ð>ÚzƇÝ~+wãÆ óiªV­jgpôóó -ÿÏŽ‚‚!„iTÄ¡_†öíÛ¯X±âرcr·nÆGø°ën¿Ž• ÈÈÈpnÛÈÈÈÌÌÌ‚‚‚ÓÂììlé)¹ ³úË`4ËÊÊ ƒÏ- ûúú !ªW¯.w«á~|´õ‰;Ìéó{€Á1ž•PZZš––fZb4SSSÃÃÃ[·n-wëà999±±±#GŽ´X~ðàA!DLLŒÜ „ûñÑÖ'>ì0§Ïï‚£g <ØÇÇgñâÅÒEBˆeË–åææ8Ðßß_îÖÁ=7nܶmÛ½{÷nܸѴðàÁƒ+W®¬[·nïÞ½ån ܶ>ña‡9}~ÐUíYuëÖsæÌ¡C‡çÌ™£á;–êmÝâÃ}~ø¾ñÆr·A víÚõßÿþwðàÁµk×¶xªuëÖ7>wîÜwß}ççç×·oß¹sçš_ ˆˆˆèß¿~~þ±cÇ>\µjÕîÝ»/Z´¨yóær7 žÂG[Ÿø°ëâÍŒF£Üm€ p#ìBp€]ް Áv!8À.GØ…à»`‚#ìBp€]ް Á€¾Lž<9&&æ›o¾‘»!bñâÅ111k×®•»!`/‚#ìâ'w@§zôèѶm[¹ö"8€ù䫯¾zâ‰'„«V­²µþóÏ?ß´iÓM›6¥¥¥ !öìÙóïÿû®»î?~¼|ïÍ"8PŸûï¿_ÜZtÜ¿ÿ¹sçZ·nݤI!DIII=^~ùå   i…©T™““ãô®çÎ+„X¸p¡©†±páÂÈÈÈäää‹/ !~ýõW!ÄàÁƒ}}}¥u†úÌ3ÏôìÙÓ¡}µlÙò¥—^òññ‘ù™gžBœ8qÂÖúþþþóæÍóóó›>}úŸþ9mÚ´€€€wÞyÇÔ p#‚#Õ" y¿­ÔO=pà@éá„ >úè£Ûo¿Ý´Âùóç·mÛæÊNóóó³³³£££-F@vêÔéÚµk‡BHÉuêÔ©{÷î•®¶ô÷÷á…ž{î9‡v×·o_󇡡¡¾¾¾F£±‚Mbcc'L˜ðÇ<ôÐCgΜùÇ?þѸqcO½ôéx¨F‹-7n|âĉŒŒŒ˜˜˜’’’íÛ·ôë×ϴΙ3g¾ýöÛýû÷Ÿ:uêäÉ“.^Ú(„ÈÊÊ’þcu…³gÏ !’’’&Nœ¸wïÞǼZµj±±±:tèÕ«Wll¬C»«_¿¾|úé§wîÜyäÈ‘öíÛ:Ô­gþFp &ýû÷ÿý÷·oß“––véÒ¥‡~ØÔ1½nݺþóŸ%%% 6Œ‹‹ëÙ³çwÞ™=sæL‡öRZZj*ò !êÕ«g«Ó¹nݺBˆúõëoܸñàÁƒß~ûí?þxøðá,Y²dРAÿüç? ƒ»®R¥Š§åÊ•+çÏŸBdee]¼x1,,Ìóo="8PSp|á…¤>hS?õ•+WfÍšU¥J•¥K—véÒÅ´Éüáè^~ÿý÷²²2éçèèh!D``૯¾ZñVƒAšHQ\\œ––öÊ+¯$''ÇÇÇ'$$xô´Ì˜1ãÏ?ÿlÓ¦ÍfΜ9þ|î€nq#5iÔ¨ÑwÞ™••õË/¿|ýõ×5Š‹‹“žúå—_JKKÛ´icžÅÍa+³èÑþꫯL?GFFÖ¬YóøñãGŽ1_§´´tàÀ]»vÍÍÍ=sæL||ü#>>¯¾úêÔ©Sß~ûíýë_õë×/,,<~ü¸Ñh:thëÖ­=t*ŒFãÔ©S Þ|óM)7ßu×]O<ñÄ¿þõ¯¤¤¤… Êý^Ð*ŽT¦V­ZíÛ·BtíÚµV­ZæO½ûî»Ï?ÿ|ݺu¥ù»uë¶yóæiÓ¦ 6Ì×××ê 4hðÙgŸõìÙÓÇÇç»ï¾;vìX½zõ–/_aZÇ`0¼õÖ[ï½÷^|||YYÙ‰'¢¢¢&Mš´yóæððpi|úé§÷Þ{o@@À¯¿þZXXعsç?üpÆŒž;«W¯Þ³gO—.]Lz !žþùF¥¤¤lß¾]Ö7 €*ž ôãêÕ«yyy 4°4è Áv¡«v!8À.GØ…à»`‚#ìBp€]ް ÁvùÂÖ‰î÷2 nIEND®B`‚statistics-release-1.6.3/docs/assets/expcdf_101.png000066400000000000000000000554621456127120000221350ustar00rootroot00000000000000‰PNG  IHDRhŽ\­AZùIDATxÚíÝyXTeÿÇñ{\pañAw0ĵ2·2·À2QÌ%,Ó¬GÓòqI-wÍÜ2S3Ë•ÊÊ%Ë%-7,3QKSSù) ‚J*š(PÄÌüþ85Ml03g{¿®®®™{ΜùžsT>|ïsÎ,‹îÆMî GØ…à»`‚#ìBp€]ŽJ,..Îp7uêÔ‘»L™íرãË/¿üòË/¯]»f\µj•´Z·n]¢µMŸ>]zcïÞ½ïºðü±råÊÇ{¬V­Z+V îÞ½û¢E‹rrrò-Yè¡tww÷õõmÛ¶íôéÓm‹/æ-ùŒ?^îÝÀ)Üå.´©ÿþwîÜBìÝ»7,,ÌeŸûÓO?=ùä“.\°Ž$&&&&&îÚµkñâÅ«V­êÞ½{ñk0™LG]¶lÙ®]»|ðAyv"…!8(‚ã5jÔ»4%ªZµjýúõ…ÎX|||çÎ¥À*qwwÏËË“_ºt©_¿~?üðÃ}÷ÝWð½ÖC™••em4Þ¼y322211±B… ż%×îW.BpP&ëׯw^;-99¹fÍš…F•zæ™gžyæç­ÿÕW_µ¦Æÿþ÷¿/¿ür³fÍ®^½ºk×®±cÇÞ¾};;;û©§ž:wî\Á÷ÚÊÔÔÔ3f|ôÑGBˆ´´´+VŒ3¦ø·ÐÎqàD{÷÷6iÒ$iðÎ;¾¾¾Ò`«V­L&“ø÷9|ééé ðõõ ò÷÷óÍ7 ®9++kÆŒ>ú¨¿¿¿¿¿—.]¦L™’™™i»Œí:oÞ¼ùÊ+¯´nݺjÕª÷ßÿo¼ñçŸæ[篿þúòË/·k×®jÕª 4èÛ·ï‰'J±ÂÉ“' k€ëÒ¥‹Á`ÈÊÊEœãh6›?ûì³Gy¤^½z+V¬W¯^çÎ?ùä“‚ÞuoïØ±CzÖ]gkçα±±±±±}ûöµg…;v,_¾¼ôøèÑ£eý£@ýŽÊDš‡-(&&FZÀÏÏï­·Þ’¯\¹râĉ7nÜBÔ®]{öìÙ…®³G/^Œ‰‰‰ ‘çÌ™#=X°`tɰ§§ç¢££wîÜyäÈ___!Dzzúo¼Qpï½÷Þ… Ž9kzÖà8þ|ér'Ÿ|òÛo¿1cƧŸ~ºdÉéÕ™3g–h…ÿùÏ4hàæö×?°µjÕjРÁ`(tc­xܸqß~ûí'Ÿ|rúôikžþé§Ÿì<þù§|…AAA9¸ƒÁz‘SzzºGìØ±ùt DpàtC† iß¾½â÷ß_±b…4¸téÒB»bîîîË—/—.ˆ©Y³æ¼yó¤ñ~øá÷ßBìܹS=z´õLÁæÍ›7Nzl]ÀªY³f#GŽ”7jÔ¨C‡Òã””é5½ :Ôú®ÿþ÷¿F£QqñâÅS§N•h…ö{ê©§Ö­[·nݺ—_~YÉÌÌÌÎΖK!Û¶çwÖ¬Y³ìGMòŸÿü§àúèWU(“¢nÈbm ! êU«î¿ÿ~ëÕO<ñÄOûì³¶çPÐ-ÎqP&ƒ *ê…+V¬èÒ¥KRR’ubúÕW_0aÂG}”ššzãÆ±cÇ®[·®à¿øâ‹ÀÀÀÆ;vLš§vss›5k–ôª´†”””[·nµoß>,,Ìh4îÝ»Wúj“€€€éÓ§—t+&OžüÁܼysÛ¶m¡¡¡:uŠ‹‹³ž‘9nܸR\ðáíí-:9{ö츸¸—_~¹\¹rù–©R¥J•*U¤Å¤/w1 ÑÑÑ%ýΫ·ß~»mÛ¶999‹eÆŒ3fÌðõõ½yó¦ôõ>>Ÿ|òÉ Aƒ~ûí·ýû÷Û~cÊK/½ôú믗bÏtêÔiýúõBˆÃ‡>|xøðუÁ`èÞ½ûçŸ.„ÈÎÎþꫯ„AAAõêÕûî»ïDó8ïªyóæß|óM¿~ý¬{Ïö²žúõë/[¶ìþûï·ÿPV«Ví«¯¾’î‘ LUp¢õë×[O=œp‚#Ç /ʈ¶"× 8(ò¢\‹\à ”¤ÈH^t%Â"y” -F#,P‚#{ÑbtÂ"e"8¸ ZŒ®AX |GE¢ÅèÖ¼HX |GùÑbt6š‹TŠàà´Šæ"µ#8‚ÈèLäEšApôŽÈè LFÐ$‚# _DF‡£¹@ÛÜä.€« ýg±ãï=j°üµSÙ­€¦ e_‡J±Í‹DƲ#/º`ýmÛö×n½bªÐf¥ˆùh@Ë vù§ÓÁÐ8"££mÊ—ùç²XG@Ëô=£âäE@Sh(– ÁÐ&eD^´€˜èhG@kˆŒe$EFò" JÌ;;ÁÐ"cYÐbÔ‡†¢Ë- 2–yPŠr#8ªÇ0¥Ã”4 $E…!8*F£±h1ŠFRT6‚# JDÆR Å(IQUŽ€ú07]"´e!)ªÁP%B‹P’¢†u 2–‘™mXä_. !8*ÀÜ´˜•dC[QŽ€¢Ñh´-FÀÕHŠºDp”‹F£=ˆŒ€ë0­{G@‰h4ڃȸa6Ž€âÐh,'2ÎÅ4ŠFp”…ÔX ZŒ€³ÐV„}Ž€R0=] "#àx„E”ÁPE!2ŽDXDÙ™Ñh, ‘p Â"‡àȉFc¡ˆŒ@YáG@6¤Æ‚ˆŒ@éá|G@¤Æ|ˆŒ@iáZGÀÕ8©1"#P2„Eȇà¸F[DFÀ^„E(ÁpR£•AD ‘(Ößa1P¡nrè©ÑÊ aIJN’»@‘ †¿þ³X¤ÿ’“øË¥ ã8'5Z17 Ž™h¨Áp."#Pk^äŸ ¨Áp"R£ 2ùÐ\„šg!5¿¡GÀ)HÒ0rWÈŠ™hhÁp0.…¡Ñ½#/B»Ž€#é¼ÑHd„~1 } 8Cj$2Bwh.BgŽ€cè95Òh„î¡WGÀt›‰ŒÐ&£‚#PvzNDFhÍEÀÁ(}¦FÐ>ò"P‚#PzºMDFhy(Á(%¦FÐ,ò"`‚#PúLDFh y(!‚#PbzK4¡5äE ´Ž@Éè05¡äE ÌŽ@ è*5Òh„FÇ!8öÒ[j$2BÝÈ‹€»è'5Òh„º‘g"8w§«ÔHd„*‘— 8w¡“ÔH£ªD^\‹àG?©‘È5!/2!8E"5Š#EF=ü͉àN©‘éi¨-F@Ž@!t’‰ŒP:ò" 0z Ž›6mÚ¸qcbbb¥J•:uê4~üxŸb–ÏÍÍýä“OvïÞœœìããÓ¼yó‘#G˽pͧFP¦¤Er“»WX¼xñ´iÓΟ?ߺuë*UªlÙ²eذa999E-o2™ž{î¹… Þ¼y³C‡µjÕÚ³gÏOúH1mÚ4¹·N§ív#ÓÓP¨|yQà •Ó~pܸq£Ùl3fŒŸŸŸ42iÒ$//¯Ý»w›ÍæBßrâÄ !ÄsÏ=çîþ×TþC=Ô¸qã .ܸqCî ‚‘W#/ª¢ýàxìØ177·Î;[GŒFcÇŽ322¤€XP@@€Â6#Z,–ß~ûÍÍÍÍ%¡=NR3‡ÔaJP'G‹Å’˜˜X­ZµjÕªÙŽ7lØP‘ššZè»zôèQ±bŹsç>|8''çòåËÓ§OOKK‹ŒŒôôô”{›àÚNœÔ¥`JP9÷ϲ³³M&“··w¾q///ñ­µk×>ÿüóÏ?ÿ¼upàÀS¦L±ósCBBòDGG˽3t---­˜Wƒ‚“’’““å®Ò ‚ƒ’’“’…·­øƒ¹8é¸ !’“’þz®É¿oNÃ_Ù=þøãr— ŽÒ¥Ó•+WÎ7^¥J!Ä­[· }Wffæ›o¾™••Õ´iÓæÍ›gdd:thÛ¶m>øà£>jÏçÆÇÇ˽éÈ/00°Ðñ¿{%[âýsÏoYQòräqù÷9Þ¥Æ_yü±^°C¤ŽÞÞÞƒ!;;;ßø;wÄß}Ç‚&L˜ðÓO?Mš4é¿ÿý¯4rùòå§Ÿ~zìØ±_}õUPPÜ›‡Ñê 5g4B~܈Ð"ŸãèîîîååU°³˜™™)„°^gmëêÕ«ß}÷Ý=÷ÜcMBˆš5kþïÿûóÏ?·nÝ*÷6wAj„œ¸êÐ4G!„¿¿FF†”­¤ÓÙüýý .Ÿ‘‘!„¨_¿~¾q©ÑxíÚ5¹7£Év#©²áª@´ÃÂÂL&ÓÁƒ­#‹%&&ÆÇǧE‹—¯_¿¾ÑhLHH°üû>éü†{î¹Gî ‚ch/5rÏȆ# ÚŽ‘‘‘nnnK—.•ÎkBDEE]¿~½oß¾åÊ•“F²²²’““¥ËÖ<<<:v옒’òî»ïZïž°|ùòòåË?òÈ#ro@“©‘{îÀÕ˜•ôGãÇ!jÖ¬9~üøùóç÷ìÙ³C‡)))GŽiÚ´éСC­ËÄÄÄŒ;688xÇŽBˆ9sæ<ùä“Ë—/ßµkW“&M222~úé'³ÙG¨ƒŠ~ “õŽF#í"8BHP"#­#8CjÔ/"#} 8BéÔÒn$5ê‘€ž 5ê”Z~­!8BÑø¹ …¢Ñ@—ŽP.µ¤FÚúBd cG LH:Bd {G(”*Ú¤FQÅŸHp2‚#PJ¤F½ Ñ#8B‰”ßÜ!5ê‘þà”©Q”ÿë ¸ÁŠÃÏkÈŒF#à” íF-#2@±ŽP…·IZ¦ð?| G(ˆÂp“5‹F#؇àØ…Ô¨MDF( ‚#”BáíFhæ „ŽÀÝÑnÔP*G(‚’[?¤F­QòŸ6P6‚#PR£¦Ðh€²!8B~Šm‘µƒÈŽ@p uŠýÕÔ†à™)ög:íF- ÑEp AjÔÅþRªEp„œ”ù“Ô¨z4À9ŽÀ¿UO™¿Ž€&!~¾ÃÁh4€“ÐnT1~ç#8B ü)OjT+à*G@R£z)ðWÐ.‚#dÀÏz8Fp9‚#@»Q…øåä@p„«)í'>©Qeh4€|ŽÐ5R£Ê(í×Ђ#\ŠŸû(% GèíFÕàP‚#\GQ?ýIê@£”„à@©õ«@7¹ €^(*ÐnTEý‰!è8B‡HJÇô4(Á® œæ©Qé”ógPÁ€2ÐhÅ#8Âé”ÓB¢Ý¨\ÊùS(Ç@/HÊEj• ãç" 8LO€ª¡ AA´•&0(ˆÈêÂT5œH!íFƒ0$%'É]l Â`HN⠀ʸ–ôû„~¥”ÁÇ51Ê¢.4 T8Ç΢„„@jT®ƒõ#8p>%ü(3¦ªáJÈ ´•B Ž@ÇÚDjT¦§@[Žp<L‚? ALUCƒh7ÊÔZDÇ&{` 5ÊŒéiÐ.½ÇM›6mܸ111±R¥J:u?~¼Oño9}úôªU«âââîܹ2jÔ¨¶mÛʽ€²Éþ{À™t1U½xñâiÓ¦?¾uëÖUªTÙ²e˰aÃrrrŠy˾}ûú÷ï¿oß>??¿-ZÄÆÆ4hß¾}ro î‚v£œH uÚŽñññQQQþþþÑÑÑQQQ{öì4hЩS§.\XÔ[nݺ5qâDww÷µk×~þùçQQQ6l(_¾üôéÓÍf³Ü¤hò&R£l R#èöƒãÆÍfó˜1cüüü¤‘I“&yyyíÞ½»¨¸eË–ÌÌÌ—^z©eË–ÒȽ÷ÞÛ­[·ëׯŸ>}Zî †ïžÝÐ~p¹7H¹h7êFÐ_c±X«U«V­Z5Ûñ†  !RSS[µjUð]gΜñññ©Q£ÆñãÇcccûí·FuéÒÅÃÃCî BáHò 5€Îh<8fgg›L&ooï|ã^^^Bˆ7n|KnnîíÛ·ï¹çž×_}Æ Öñ:uê¼óÎ;Íš5³çsCBBòDGG˽3œ+((0))99Y¦ÅvZZšL•iS`P"9)I”ásP”‰ã¢@Ù=þøãr— ŽÒ¥Ó•+WÎ7^¥J!Ä­[· ¾åöíÛBˆÄÄÄk׮͟?¿sçοÿþûæÍ›—-[öòË/ïØ±Ãž¾c||¼Ü›.ƒÀÀ@Y>÷¯vãÝ>\®ò4èïFcÙw(E™8. ÄA‘WÁë;D:¡ñs½½½ Cvvv¾ñ;wûŽùT¬XQzðæ›oöêÕËÛÛ»F#GŽìÝ»wZZÚÎ;åÞ&ü “Ô®Æô4蘲‚ã¢E‹¸Bwww//¯‚ÅÌÌL!„õ:k[•+W®X±¢‡‡Ç#}úÃ?ôòòzôÑGåÞIø íFá7Àß ¥þHÈËË;pàÀöíÛ÷íÛ÷ûï¿ !êի׫W¯'žx¢V­Z%ZÕêÕ«çÏŸ_«V­:¤¤¤9r¤I“&«W¯¶Þ¦g×®]cÇŽ Þ±c‡4²jÕª·ß~ÛËË«U«VÙÙÙÇŽ3 ,èÖ­Û]?.$$DWWUË’+Jš“““¹&±4œyt9(ÊÄqQ Šéíg½•roÇãîîš½yóæ·ß~;%%eÉ’%ï¾ûnëÖ­ûöía4íYÕàÁƒ«W¯¾mÛ¶]»v 8p̘1ÒyŠòâ‹/úúú®Y³æ‡~ðññ 5jTpp°Ü{EqèFi–tŽ/G`C¹G!ÄÍ›7¿ýöÛèèèÇKW¥T¯^½\¹r—/_BÜsÏ=|ðA@@€Üeæ§«ßBTÑnü¾^R.9®eâ¸(Etõ³Þ–;Ž×¯_ÿæ›oöìÙsôèQ“É$„ðõõ}ì±ÇÂÃÃ[¶l)„øá‡/^|æÌ™×^{íý÷ß—»^ý¢Ý¨MW@”×­[·gÏžãÇ›Íf!DµjÕºvíÚ­[·V­ZÙÎJ·oß¾eË–mÚ´9vì˜Ü%ÃÕ¸&ƹH€¢)+8Ξ=[áííýØcuëÖ­mÛ¶EÅèááQ±bEÎSéHÎEjKYÁ±oß¾ááá=ô=W½Ðn”CS¸`eÝÇq÷î݇.*5Ž5ªk×®r×ÙÐntîï °²‚cvvöŸþYÔK/^¼té’Ü5BÚZ±ØMþ©ê˜˜˜áÇ[Ÿ®Y³fݺu3›Í‹¥nݺr× yÐnt R# $äŽF£ÑÓÓSz|óæÍòåËWªT©Ð%½½½'Mš$w½©Ñ)H€’?8¶oßþÈ‘#Òã§Ÿ~zÊ”)r…â7´€£(9ùƒ£­!C†´jÕJî* ,´Œ ¨¥¥¬à8a¹KÀ]ШR7Ž  dŽëׯB´iÓ&88Øú´x ·f¸íFG"5ÊFæà8kÖ,!ÄÌ™3¥à(=-ÁQ?HŽDj”™ÌÁqÔ¨QBˆæÍ›KO_}õU¹wŠCöP+ŽÀdŽ#GŽ´}:tèPyërÐntR#ÀA”uq ”Œø¡>\@ p(™ƒãþýûKú–Î;Ë[3\€v£ôŽ&sp|ñÅKú–øøxykT€Ôp™ƒcÏž=åÞ°‹+síÆ²"5œCæà¸`Á¹÷”…ÔXV¤F€Ó¸É]Ç!5œ‰oŽÁݹ,Ðn,R#ÀÉøæ@Hçã›cp´U€Ôp ¾9P3nñ p!E_“•••››+wpÚ¥!5IWQâWž:ujÙ²eqqq×®]sss«U«Ö<0bĈzõêÉ]šî0ª\€Ë)®ã¸dÉ’ÈÈÈýû÷_»v­B… +VLMMýòË/ÃÃÃ7lØ wup Ú%FjÈAYÁñÀ+V¬0ƒ Ú»wïÏ?ÿ»ÿþ!C†!æÌ™sòäI¹käFjÈDYÁqÆ ‹å•W^™:uj:u ƒ" `„ 'NÌËËûè£ä®QG\“Oh7– © eǸ¸¸ *<÷Üs_8p ‡‡Ç©S§ä®ŽDj,R#@VÊ ŽBˆ5j¸»rÉŽt•Lvv¶Ü2!5ä¦¬àØ¢E‹ÔÔÔÌÌÌ‚/eee%''7mÚTîõÂ)…vc   ¬ài±X&Ožœ——g;n2™¦L™b2™ÂÂÂä®p9R#@d¾ãáÇmŸÆ>}úlÙ²åÑGŒŒ 2 ÉÉÉ›7oNMM yüñÇå-ŽB»Ñ^¤F€bÈŸþùBÇ/_¾¼dÉ’|ƒñññíÚµ‹—·f= «(G $2Çž={ʽ Úv!5Fæà¸`Á¹÷ H¤F€ò(ëâ˜âMœ8144Tî*´ÏÙ‰…vãÝ‘Š$sDZ ›7o~ûí·)))ùÆsrr¾ùæ£Ñ(w€“‘J¥¬àøë¯¿öïßÿÒ¥KE-0`À¹kÔ8Ú2#5LYÁñ£>ºtéRëÖ­#""vîÜùã?¾öÚkçÎ[·nÝ€¦N*w€Óʦ¬àxðàÁ *,_¾ÜÓÓ344´}ûöíÚµBÍž=»_¿~ÁÁÁr—‰R¢ÝXR#@ñ”uqÌ•+Wêׯïéé)„¨^½ºÏ™3g¤—"##}||>úè#¹kÔ2¢‹lØõ5PVpB¸¹ýSRݺu“““¥ÇF£1$$äÔ©SrˆR¢ÝX$R#@%”kÔ¨qáÂ…¬¬,éi:uŽ?n}Õ`0¤¥¥É]#àP¤F€z(+8véÒ%''çÕW_=þ¼¢U«V/^}úlÙ²åÑGŒŒ 2 ÉÉÉ›7oNMM yüñÇå-XcÈ6Ξh‘ÌÁñùçŸ/tüòåËK–,É7ß®]»øøxykFñh7’Z%spìÙ³§Ü{p(R#@»dŽ ,{è—3ŽÞÛ¤F€¦)ñ»ª…ééégÏžMIIùóÏ?ƒ‚‚7n\³fM¹‹ŠEjhâ‚ãÍ›7ß{ï½Ï>ûÌd2YFãSO=5fÌ///¹ D‘tÝn$5t@YÁÑd2 ><66¶B… ]ºt©W¯žÑh¼páÂwß}÷é§Ÿž={výúõF£Qî2µ€œãHìM€>(+8~üñDZ±±÷ßÿ{ï½çççg¿víÚ¨Q£bcc?þøã!C†È]&`ƒÔÐ eÝüàÁƒƒáwÞ±MBˆêÕ«/Y²ÄÍÍíÀr׈ÂétžšÔÐeÇsçÎÕ«W/  àKþþþ 48{ö¬Ü5jiÇ1ØQVp¬P¡BNNNQ¯æääxxxÈ]# ¡Çv#© ?Ê Ž7þõ×_ccc ¾tæÌ™´´´FÉ]#@j蔲‚£ôE2£GÎw.ã¡C‡FŽ)„ˆˆˆ»FÕsxæÑc»]RÖUÕááá111Û¶m:th@@@ýúõ…)))—/_BDDDôèÑCî¡{´z¥¬à(„xóÍ7Û¶mûÎ;ï\¹råÊ•+Ò`õêÕÇŽÛ»wo¹«C~ºk7’:¦¸àh0úôéÓ§OŸ«W¯^¸pÁb±Ô¯_ßßß_îºR#@ï”ÓÒÒÌfsݺu…~~~ùîæˆ²slòÑW»‘ÔÐ=eÇððð?þøãûï¿÷õõ•»À©¥]U,„øå—_ä.w§£v#©!„Ò‚ãôéÓ=<X´h‘ÙlBT¨PÁh4¦§§§§§ïÛ·oܸqC‡•»@U" Ù‹=@Ñ”5U}øðáE‹ †AƒíÝ»÷çŸމ‰yá…ÜÜÜÞ~ûíÇË]£®i¼ÝHj XÊ ŽŸ~ú©Ùl?~üÔ©SëÔ©c0„5jÔ?~ü”)SÌfóÚµkå®Ejàn”OŸ>]±bÅAƒ|©ÿþ•*U:}ú´Ü5ª‰èîØGØAAÁ1//ïÊ•+þþþF£±BÝÜ,üt—fç©IØGAÁÑ`0TªT)55õ·ß~+øjffæ… š7o.w™:¥ àh4ûôéc6›'NœøÇؾ”››;iÒ$ƒÁ0dÈÒ­|Ó¦M‘‘‘-Z´xøá‡§L™róæMûß{ùòå–-[Ž?^î=$'Ú@Y·ãyæ™gâââöïßߥK—¾}û †äää/¾ø"===<<üÎ;û÷ï·.T·nÝ»®vñâÅ+W®¬\¹rëÖ­SRR¶lÙ’°fÍ»¾×b±Lœ8ñÎ;rï›R"‡½@I(+8†‡‡K®^½ºbÅŠ|¯îÚµk×®]¶#¯¾úê]ïìåïï¿yóf???!Äܹs׬Y³páÂéÓ§ßµ¤?þøèÑ£rï™i³ÝHj „”{öìY¢åï¹çž».³qãF³Ù&0(ˆÔ@i<8 !üýý322¤¤h%åæïï_pù„„!ÄòåËCþÖ§O!ÄW_}Ò£G¹7Èu´sYŒÁœ”$w¨žÆ§ª…aaañññìÞ½»4b±Xbbb|||Z´hQpùzõêY—”ܺuëСC5kÖlÑ¢E5äÞ »0+ûi_pA e¦ýà¹råÊ¥K—vêÔIº&&**êúõë/¼ðB¹rå¤e²²²®^½Z®\¹Úµk·oß¾}ûö¶kˆ‹‹;tèP«V­œq›IÅÒN»8ˆöƒcÍš5Ç?þüž={vèÐ!%%åÈ‘#M›6µý®Â˜˜˜±cÇïØ±CîzáP´^píG!ÄàÁƒ«W¯¾mÛ¶]»v 8p̘1R÷…ÒH»‘Ô€Cé"8 !""""""Šz5<<<<<¼¨W›6mªœû2Úƒ¼Ä^À´U5ôˆÔ€‘Ÿêç©I8ÁQkHMÀIŽøÚ (Gh©g"8B+H8ÁQSʘTŽBÿÄÄÄÌÌLOOOë t*ƒ¿¿¡o1›Í¯¼òÊ×_Ý¥K—3f“/ôCû·ã 3™L´ŽX,–˜˜Ÿ-Zú–µk×~ýõ×Ï<ó̲eË4ži7»i?8FFFº¹¹-]ºT:¯Quýúõ¾}û–+WNÉÊÊJNN–®%´X,ëÖ­«Zµêĉå®ýNÿÂT®~ýú|U£³iªºfÍšãÇŸ?~Ïž=;tè’’räÈ‘¦M›:ÔºLLLÌØ±cƒƒƒwìØqíÚµ‹/zxx 0 àÚz÷î=pà@¹·ÉAh7TâÔ©SsçΉ‰¹sçN£F 0jÔ(Û›.Ÿ8q¢råÊÒÅÎß}÷ݬY³âââL&SãÆ_yå•Þ½{˽¡ýà(„}ú¼ÿþû/¼ð‚ÜÛ¡ éÁÑBBBJÑ*/&È9ežZgÁ199™[Ó) E™8.JPºŸ#òÊÍÍB”/_Þ+ïÕ«×öíÛ9ÒºukidÈ!«W¯ŽŽŽîÚµ«4Ò¬Y³O>ù¤eË–÷ÝwßÕ«WÏ;'Ýt/++«I“&f³¹˜/ .ÅWã1ríŸãˆBè,5œ-$$$,,ÌvdæÌ™ÖœWFûöíëØ±£íÚFŽ)„8|ø°ô4!!áöíÛ-[¶üã?âââzôèa½UsåÊ•;tè––&}'ÊHSÕøR#Àù.\¸püøñ²¯'//oĈ­Zµ²LIIBT¨PAzºuëVé;FãÏ?ÿlû5oyyy§OŸ¾÷Þ{]p?f= 8*×SôÌÝÝ}Þ¼y¶#7nܘ7ožÑh|òÉ'¥‘­[·¾ùæ›ÒÂM›6•׬Y“˜˜¸sçÎ+W®|úé§ro‡FÁuM@Ú fƒlí¨Ÿyyy;wî,êÕ'žx¢ø·ïß¿ذa‰‰‰+V¬B\¾|ùüùóíÛ·Ï·äìÙ³…>úh½zõdÛqÚBp@5”ü»¿Éd²}j6› ],++KšV.b‹Ü‹/Ž9rûöíÁÁÁ{÷î •Æ·mÛa4ó-Ÿ}øðá^xáÁ<{ö¬Æ¿ÔÃ%¸8FÑzÇŽ]ºt©X±¢ô´mÛ¶Bˆ>ú¨_¿~†¿Oýä“O„=ôÜ{H ŽòsE+v#ÀÉÜÝÝŸ~ú鈈³Ù¼cÇë½rò‘¦ªí_íÙ³gÏ;׸qã‚_ýÒ§OŸ­[·FFFZG|}}§N*ÝB²k×®ƒá›o¾9zôè˜1cî½÷^¹÷•‹ñT¤mÛ¶Ý»w_µjU^^ÞСC===gÏž]öÕJWFŸ={öìÙ³ù^ºçž{¾ûî»?þØvpÆŒAAAË–-[±b…››[ãÆ?ûì3Û™k”_9èx%ý¢¢º Ž´ù5Eâ (ÇE Ôøuvµk×>xð Ü…”_9h?®ªÖ:R#p‚£B1O ”†seæÜ† íF€K ><ßr IGPV&L»¸SÕJä˜yjÚÀ¡ŽEjŽFp€]ŽrrV[v#p‚£âp# LG͡ݜƒà¨-¤Fà4Geaž(ÁQ6ŽoÒnÎDp€]Ž R¦yjÚèØ±ãÌ™3å®B¿Žš@jè@llì÷ß/wºæ.w@õrss…åË—wÆÊóòòöíÛ÷Ã?,_¾Ül6˽­ºFp”‡#[„´r ©]»öÁƒ­#3gÎܱcDZcÇʾòŒŒŒ®]»Ê½‰‚©jåàF<-¹páÂñãDz*‹Åb±XÎ;'÷féÁQåh7Waª¸N^^ÞÎ;‹zõ‰'ž»@‡à¨¥œ§¦Ý:c?½øU&“ÉöiQW±deeõêÕ«Èàçš²eà˜¼GjýQòÙðüñ‡íÓœœœBóòò"ªÁ8ÀåË—mŸ^¹r¥ÐŘªV5‚£:Ñn(LzzúŽ;zôè!„HJJ:yòd¡‹1U­jGùq#€¸»»?ýôÓf³yÇŽ*T(t1¦ªUà¨B´ÊÓ¶mÛîÝ»¯Zµ*//oèСžžž³gÏ–»(8ÁÑÕÊšúHE2 “'Ož,÷vëG…¡ÝЄ .?~¼ìëÉËË1bD«V­lSRR„*T{+u‡à”ËÝÝ}Þ¼y¶#7nܘ7ožÑh|òÉ'å®NwŽ®`o‘v#@ëòòòvîÜYÔ«O<ñDñoß¿ÿ°aÃW¬X,÷ÖèÁÑ¥8ÁP&ƒœŸ^lwÃd2Ù>5›Í….–••Õ«W¯¢?¡È¸xñâÈ‘#·oß¼wïÞÐÐP9w…^ƒv#à®ü“â?þ°}š““Sèb^^^–’oņ ^|ñÅ*Uª¬ZµjðàÁîîy°ß€\¾|Ùöé•+W ]¬SÕÛ·oöÙgûõë·råJOOO¹7T׎®SÜ<5íF€Ê¥§§ïر£GBˆ¤¤¤“'OºXI§ª-Ë„ êÔ©³víZ£Ñ(÷VêÁÑéÈ„=pwwúé§#""ÌfóŽ;ŠºWNI§ªÏž={îܹÆ¿ð ù^êÓ§ODD„ÜÛ­/G ZÔ¯mÛ¶Ý»w_µjU^^ÞСC===gÏž]öÕ&&& !Ξ={öìÙ|/ÝsÏ=G#8ÊÔЃÁ0yòäÉ“'[GfÍšUöÕöìÙ³ÓÀIøÊAáF<@í޲¢ÝÔƒ©jPVÇçF9z@pt®âZŠ´Z1a¹K€+0Uí œà4€à(Ú@mް ÁQ´€ Hʇœà´àèr´€:`‚£s埧¦ÝT‹€ 8!!!r—‚àèB´vˆ·}šœœ(wQ€LU;)h Áщþu‚#A¨ÁÑ%H@ýް ÁÑùh7M 8:…ošBpt ƒÁæíF  GØ…àèL´€†‹´iÓ¦ÈÈÈ-Z<üðÃS¦L¹yóf ÞÌ Ž óøãË]òã (ÇE8(P‚cá/^}:ß ¯¯ï÷ß/wi®CptŒÅ‹¯\¹²råÊ­[·NIIÙ²eKBBš5k<<<ä. bíÚµr—!„ÈËË{þùçOž<éååõÐCýþûï?þøã¡C‡F=bĹ«Ó¯ÌÌÌ=z\»v-88ø‘G¹råÊ®]»¾þúëÏ?ÿ¼Y³frWa±X&Nœxçι ¸xñ¢‡‡Gýúõmõö]ÄGˆŠŠò÷÷ß¼y³ŸŸŸbîܹkÖ¬Y¸páôéÓå®N¿233ùå—íÛ·öÙgr×!„ظqãÉ“'[¶lùá‡J¿S%$$ 8pÙ²e¡¡¡7–»@zï½÷®]»öÒK/;Vùâ‹/&Ož|ØÃÃcøðáÖ‘>}úÔ¨Q#..Îd2É]Þ%$$,^¼¸Q£FrqñâE!D¾v£àرcnnn;w¶ŽÆŽ;fddœ8qBîêôkîܹ˗/_¾|y»víä®B‘œœ\¹rå¦M›Ú !RSSå®N¿¼½½CCC+V¬h;X¡B…ÜÜÜÜÜ\¹«Óµ¼¼¼ &øøøLš4IîZ RRR„õêÕ“»™1U]V‹%11±ZµjÕªU³oذ¡"55µU«VrרSíÛ·—|÷Ýwr×!„Xµj•»{þsâââ„uêÔ‘»:ýZ·n]¾‘cÇŽ]¼xñþûïç,my½÷Þ{gÏž]½zµ§§§Üµà¯àxåÊ•Aƒ={¶R¥JMš4y饗ôvÙ%Á±¬²³³M&SÁsc½¼¼„7nÜ»@@)š4i’oäÈ‘#QQQ*TèÕ«—ÜÕAÄÆÆnÙ²%99966¶nݺóçÏ—»"];yòäûï¿?pàÀvíÚI¿_A^ÒÄÈ’%Kzè¡K—.}÷Ýw111¯¿þz¿~ýä®ÎuŽe•““#„¨\¹r¾ñ*Uª!nݺ%w€™L¦õë׿õÖ[&“iÑ¢E¾¾¾rW¿yóf‹Å"„hÚ´iùòåå®H¿rrr&L˜P§NW^yEîZð—+W®xxxŒ7nРAÒÈ?üðÒK/½ñÆíÛ·¯Y³¦Üºç8–•···Á`ÈÎÎÎ7.Ý:Aê;°õã?FDDÌ;×××÷Ã? —»"!ÄÓO?}öìÙC‡Mœ8qÏž=ýû÷ç0r™?~ZZÚ[o½ÅÙÊññÇŸ÷Üs—/_5jÔîÝ»¹tIQ CõêÕüÔSO¥§§ïÙ³GîŠôèèÑ£6lxñÅõvòœµiÓFñË/¿È]ˆë0Uíþþþ‰‰‰™™™¶ç/'''K/É] f³ù•W^ùú믻té2cÆ ~­R‚„„„Õ«WwìØ±[·n¶ãÒÅï¿þú«ÜêQBB‚Bº)„íøW_}õÕW_ïØ±CîuÇb±˜ÍfƒÁàæö¯Ž›ÑhBT­ZUî]‡àèaaañññìÞ½»4b±Xbbb|||Z´h!wu€R¬]»ö믿~æ™gf̘!w-ø‹§§ç_|qíÚµ|ÁQºe]`` ÜêQ½zõ¬?M$·nÝ:tèPÍš5[´hQ£F ¹ Ô£”””®]»¶iÓ&ßW‘ÅÆÆ !BBBä.Ðu޹råÊ¥K—vêÔIº&&**êúõë/¼ðB¹råä®P‹Å²nݺªU«Nœ8QîZðÿC‡íÛ·/44T}:$$¤]»vyyyBˆëׯ¿ýöÛááá<ðÀ<н{÷7ß|ó×_-jµÒµ2‡Î7Þ¤I“|Ðväûï¿=zt—.]Z·n=hР¥K—æËv—.]š1cFxxøý÷ßß¹sçaÆ;v¬˜-zÿý÷m/Ž‘*IKK‹ŠŠz衇š5kÖªU«§Ÿ~zïÞ½E­!66¶I“&;v¼}û¶uðÎ;;wnҤɩS§ä>h´†à@"""„{öìÉ7¾cÇ!D¯^½ÜÝݯ_¿>`À€U«V]¾|¹nݺµk×NMMýè£ú÷ïóæÍ²|úÂ… ‡ ²gÏž¼¼H´Žà@Z·níçç—ššúÿ÷ÖA³Ù,…ª>}ú!¶lÙráÂ…ÐÐÐï¿ÿ~Û¶m_}õÕ¡C‡Z·n}éÒ¥o¿ý¶ÔýÝwß½ÿþûuêÔÙ´iÓþýûwîÜyàÀN:|ø?ü°eË–˜˜˜©S§Z,–%K–”è³6nÜ8lذƒ~üñÇß|óÍóÏ?/„X³fMQË=:88xË–-B>|øóÏ?oÞ¼ùðáÃå;V4‹à@ÜÜܺwï.þÝt<~üø¯¿þÚ¢E‹{î¹G‘——÷È#¼úê«•+W–ðôô”Z•)))¥þèùóç !ÞyçkÏ××÷wÞñ÷÷ß¼yóo¿ý&„8wîœ"22Òh4JËôïßÿÿû_—.]JôY÷Þ{ï+¯¼âææ&mòÿþ÷?!Ä… ŠZ¾\¹ro½õ–»»û´iÓ®^½:uêT… ZË"8P )ÚÎÛJóÔ}ûö•žŽ1båÊ• 4°.píÚµ;w–åCoÞ¼™œœ”ï èJ•*µk×.''çÌ™3B)¹Nš4éèÑ£ÒÙ–åÊ•{ùå—GU¢ëÖ­›íS///£Ñh±XŠyK“&MFŒ‘žžþÄO\ºtiâĉõë×wÖ1 oÜŽ€j4mÚ´~ýú.\ˆ ÉËË‹ŽŽöðð·.séÒ¥?~<55õâÅ‹e<µQ‘””$ý?$$¤Ð®\¹"„˜9sæ˜1cŽ=úì³ÏV¬X±I“&mÛ¶}ì±Çš4iR¢«]»v)Š|ñÅ÷îÝצM›þýû;t¯À?ŽÔ$""â½÷Þ‹ŽŽ 9xðà­[·úôéc˜Þ°aÜ9sòòòêÖ­ÛªU«.]º4kÖ,99yÖ¬Y%ú“Édmòåææ !jÕªUÔ¤sÍš5…µk×Þ´iSllì~üñÇ3gΜ8qbÅŠO>ùäœ9s ƒ]¾|ùRì–;wî\»vM‘””ôÛo¿y{{;ÿPÐ#‚#5±Ç—_~Yšƒ¶ÎSß¹sgöìÙåË—_µjUûöí­oIOO/é§\¾|Ùl6Kƒ‚‚„•*Uš2eJñï2 Ò=€„¹¹¹œ°¶*/\¸pàÀ!„S律žž>kÖ¬ªU«Îž=»\¹róæÍ33gÎ,ûÉPSÕT&<<|þüùñññF£±W¯^Öñ   °°°o¿ýöÑGmÙ²¥Åb‰¿yóæ€Ö¬YóÅ_ܾ}[º±Ž­^½z}òÉ''Nœ kÒ¤ÉÕ«W½¼¼jÔ¨ñÇHËôîÝûèÑ£[·níÕ«W­Zµ|||’’’²³³ëׯ/ÝyÛÍÍmÊ”)“&MZ°`Á‡~X»víìììóçÏ[,–þýû·hÑÂI»Âb±Lš4)33ó7ÞrsóæÍŸþù?üpæÌ™ï¼óŽÜÇ €ÖÐq 2~~~mÚ´BtèÐÁÏÏÏö¥E‹=ºfÍšÒý;vì¸mÛ¶©S§0Àh4ú€uêÔùôÓO»téâæævèС_~ù¥V­Zï¿ÿ¾¯¯¯uƒÁðæ›o¾û¡¡f³ùÂ… ãÆÛ¶m›´LïÞ½?ùä“N:yxxœ;w.;;ûá‡^¾|ùŒ3œ·+Ö®]{øðáöíÛ[OôBŒ=º^½z»wïŽŽŽ–õ@Ð Cñ·ýÈÊÊÊÈȨS§ŽýA€®`¦ª`‚#ìBp€]ް Áv!8À.GØ…à»`—ÿ`t“6%”CIEND®B`‚statistics-release-1.6.3/docs/assets/expfit_101.png000066400000000000000000001326051456127120000221560ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A€IDATxÚìÝy\GÿðYDD¹ZˆˆÊ!ž€‚H­·"àñx`­Š õ¨T±hÅ üÕz=´méã}UÅz”‚ Z´x¡HA¬b©–âAEDBö÷ÇØ}bÂáø¼_¾ÚdöšÙ$_fgf–e @M´4h8/€ŽÀ Gà#ð‚ÀQ™C‡1ü<þœEߎ=ZÓyoòêR˜'Nœ8vìØ±cÇŠ‹‹¹Ä;wÒöîÝ[Ó'רiäJ~þüùÌ™3-,,„Ba»víÊÊÊ4] µ³fÍZh4Eá%WÝi6¡ÓWøù‚ÚRï×T]>³>>šÎð²lÙ²„„úšV_³TÝi6¡ÓÇçK-šk1jö¼šk©6*•iÛ¶­µµ5÷¶¼¼üñãÇôu§NZµjÅ-ÒÒBÛmc×®];Z›æææšÎ (pæÌúÂÓÓsôèÑÒŸ¯&Já%WÝi6¿Ó4’¯)µgC³çÕHJµÙ@à¨L@@À½{÷¸·?þøã!Cèë3gÎ8::j:ƒjsïÞ½N:éèè4ò}ÖEHHHHHˆ¦sÑè4žjâþ*[²dɰaÃ45PxÉUwšÍïô@ã¹zÕ¥‘|M©=š=¯FRªÍÚÉêË“'O/^Ü«W/===ggçÿüç?ÒOw”îÞ!‹?ùä“Î;òÉ'Ü ?^°`Á€Úµk÷Î;ïŒ;6++Kþ({öìþýûb±˜ðø¤ÔªúT(´ê_ª]3çÎãzŠ/]º”&¾xñÂØØ˜&º¹¹UUU©põÖÇ纊QáןoþT¸t©?Ú*|ýREEE“'O~çw:uêxþüùêJU:]æW£1|ù«ðí×$±ÀÛ¹sç¸rËÎΖ_aÅŠt©——W×®]eŠzóæÍòkŽ5ê_ÿú}½bÅ ºôÇ455•Ùœa˜E‹IŽçjÕerðàÁï¼óŽÌæÓ§O—^933S~BH—.]RSSUاô‰K(((ˆ¦GDD(Y300Páe}äÁ0Ì_|!½fg'gggcccéÕLLL¶lÙ¢­­-s”””µTŸëÿÉJ5j”ü&wîÜ©ñ“RÛêS¡Ðº|ù²™™™ô&íÚµ:t(}íïïOW“¹äª;M%§Ï³Øëþ}Âó WòùRˆÏ¡'NœHÓÛ¶mûèÑ#–e׬YCSÁ•+Wà‹‹ÏçºaŠQá×T­¾d¾ZÕréòüh×꼸 ÷îÝ[¦²´µµwìØQã©ÉüjhüË_µo¿¦c-ð)[[[@@ßêèèTTTȬٹsgn}úEÿüùsš2xðàU«Vs}(¿üòKºž«Õ˜ÉŽ;8POOK9uê]óåË—\ÏÖ­[ûùù :´mÛ¶4ÅÌ̬´´´¶û¬Kà¸oß>îs8xðà)S¦tïÞ;Ä?þȲì_ý•ŸŸÏeò믿ÎÏÏ—H$¬¢ï•OÐÊʪoß¾­[·æR233k,ð6mÚŒ92,,¬oß¾4E(æääð?;™œhii999É|O988XXXpo½½½ë^M<¯7ž'+ƒOà(ÿIQ­új[hò***¬¬¬¸“êׯŸtOh¢ÖÀ±¶Å®ò÷ Ï+\ÉçKÏC?~ü¸}ûö41<<¼´´”«ððð†üâRò¹n°b”ÿšªí7ƒ’ÀQåK—çG»V祰Buuué[@pëÖ­ZýjhüË_µo¿¦c-Ô*pܲe MLLLä¯]»&¿f·nÝ/]ºt÷î]–e—/_NÓ¥ÿšüüóÏi¢¥¥%MṚòL¾ÿþû¯^½bYö÷߉D4ÑÝÝ®MSôõõ¹ÏÆ7¸6›¥K—ÖvŸu §M›FS/^ÌmØ«W/š¸~ýz.‘û99wî—(ÿÝ¡Ú ~þùç41''‡ûúPò¥»»;]'&&†Kôõõ•Ùϳ“ÎÉÉ“'Y–}ýúõàÁƒ¹Äøøx–e«ªªf̘ASŒë^M<¯7ž'«ÂZSòIQ­új[hò¾øâ ºN»ví.]ºDÃÃù½)ùõ­î4«KçYìuÿ>©Õ^Ý)Èàÿõïÿ›&¶nÝzöìÙôuçÎÿþûo…WB}|q)?ë+Fùk¦¶ß JǺ\ºü?Ú<ÏKº¬†N+ôÁƒï¾û®Ì‰ðÿÕàôú¸Hêòí×´ c½ppp˜?>}=räH¡ðÍ ¤¼¼<™5Û¶m{öìÙ‰'öíÛ×ÖÖ–òÃ?ÐE3gÎäV›6mm¹|ðàÁ7ø¯¦„P(ܶmíWÞ©S§Ï>ûŒ¦gdd¼zõŠròäIš2þ|®kH=-ZD_s+ðßg]L˜0!11111qÁ‚4¥´´ôåË—ôõ“'Oj»CN°{÷îóæÍ£¯»víêééI_ß¿¿º£”——Óß~ûíW_}EÇ@|ûí·ÙÙÙÙÙÙãÆSíìÜÜÜè &mmíñãÇÓDCCCzáiiiqߪϞ=«{5ñ¼Þxž¬ ä?)*T_] ³gÏúBºE!66¶cÇŽ*Ÿ]ujû1Wùû„£Â^÷ÌϘ1ÃÃÃòêÕ«íÛ·ÓÄ­[·J7(rê㋫ƳÖ`1ªñ{¯.—ný}´µµµ¹ íÒ¥ W¡III´{k}¨‹¤þЍ±AàX/ììì¸×zzzÜ-0ù‹‹K§N¤S~ýõWúÂÏÏë6®§§ÇmK£Ož«)ѽ{÷.]ºpoýüüè –e !¹¹¹2‹¨÷Þ{;×£Ÿç>ëÂÏÏoâĉC‡½páBDD„OçÎsrrTÞ¡ '(Ó'†»§&³šL¶¹Ã͘1ÃÜܼW¯^ŸþyYY™££#×ߨ¶g'}_µM›6ôE§N†‘I”§B5ñ¼Þxž¬ ä?)*T_] M¾(¸Ù’ !­ZµâŽ«Fµý˜«ü}ÂQá ¯{æ†Ù¹s§tOÓ‘#GŽ9Ránë㋫ƳÖ`1ªñ{¯.—ný}´¥»Xpy{ýúõo¿ý¦òn•«‹¤þЍ±AàX/d¦uä~–äÉtÕ/--­qîß¿þú‹çjÊW¹ŽÛ¶mk``@_?zô¨´´”>‡ÈÍ}Åýú¾zõŠ›C„Ï>ëXª¯_¿^¼xqÇŽƒƒƒ7mÚ”œœ,‹UnæQíeªRIÍr¢££çÎËͲlVVÖš5kúöí;pà@îñµ=;…‡æ9Ÿhm«‰ÿõÆódU ÿI©{õժШ/^üùçŸ ‹Q:šQ >æª}Ÿ()">W¸Z2ß­[7éðEúþ©ŒúøâR~Ö,F¢¾ï½:^ºõ÷Ñ–ÉŒ®®.W¡¥‹ÒÒÒ"##wïÞ­ö³S®¶ÕÄÿzãy²*ÿ¤4LõÉhÓ¦M«V­^¿~MùóÏ?¹þX„î§H]Tø˜«ö}¢Þl«vèŸþùÔ©SÜÛèèh///…{®/.µW„©ë›¡Ž—ný}´eþX-//çòciiYEZOßõWD Zîó,‹ß‘Ò¾}{CCCCCCz7çjJܺu«¨¨ˆ{{öìY–e !­Zµ¢#ï¸^çÜ3-dÞÚÙÙqÝ7yî“ûa“éCÆý)¬Ä¶mÛè‹/¾øböìÙ={ö …>T¹¨U8ÁÚª¨¨xüøñãÇ+**ÿüóϳgÏr³6p3–©ý씨±šäñ¹ÞøŸ¬Z4@õÉ666ôõéÓ§¹t–eùÌþX[uÿ˜×} y±XüÁHßLIIùÏþ£p·õñÅÕ¡2u}3ÔåÒ­×¶L…rykÕªý;¶.¿ÕQûEÒÀß~š…À±ÑáN³k×.öŸ9Ã:Ô¡Cccckkkú‡/ÏÕ”xýúuXXýô?þX²d M>|8íñÍMîõÿ÷Ü<·ÙÙÙ6l ¯¥;ÊðÜ'wOäçŸæ:Ü>|¸Æo®¿ÿþ›»Ä}}üòË/ÉÉÉÊÏQÉRN°¶rrrÌÌÌÌÌÌÌÍÍïÞ½K …C† áFïª|v*«±šäñ¹Þxž¬º4@õ)äææ&ܵk×Þ¾}[íǪûǼî{PBùç‹ÿ¡7mÚD—èëësó–GDD(¼»W_\ Pª£z¿T¾tUûh+¿<8•••aaat&í?þøƒ›Ž±Ž¿ üåßÀß~š…[ÕβeËž>}zôèÑÁƒ4èÖ­[ܯE‹Ñ>¹'«. P} EFFþ÷¿ÿeYöÙ³gýû÷ïÛ·oqqñ;wêãXuÿ˜«å‹BÏÏÏCps£DDDÐj-,,|òäÉÂ… ¥§3ãÔÇWã,Fõ~3¨|éòü«Õå!_¡]»vÍÌ̤!¸@ àæ¯Õ¯†¦¾ükUDMž¦çjJøÏã(3Ý×olïÞ½Êפ¾ÿþ{…|øá‡Òsíò\­ºL8P¦‰P(”ž¯ŸeÙŸþYa‡++«´´4ÕöÉÍx±µµåþ W2ã„ ä7ôöö¦¯ÿõ¯q‡àžEA)yx@mOÏDb2.^¼XÝm,///:{ÿ³S˜®ëL÷îݹÄôôt® j[M Âçzãy² )ŸÇQá'¥.ÕdzК:uªÌuuu¹±jœÇ‘g±×ýû¤VW¸ÂÏ—B|Í•›±±1uy×®]Üš§OŸ®íÕ[Ç £º³n˜b”¿fêòÍ ÆK—ÿG›çyq644” ÖªU«¯¾úJaJ‚ü¯ÿ£×ÇER—o¿¦·ª£áÇ_¿~=44ÔÕÕµmÛ¶¶¶¶£GNMMݾ}»tçwž«UÇÈÈèÂ… 3gδ··755;vìÙ³ggÍš%½NŸ>}nܸåããcjjjllÕ$ÏõÆódÕ¥ªO¡/¿ürîܹôuÇŽGŒqîܹÖDZêø1WËdðÿ|Õxèï¾ûŽëU¶lÙ²víÚB¦M›Æý¢Ïž=››ª/®Æ\ŒêýfPùÒåÿÑæyP^^^©©©Ã‡ïܹ³¹¹y```rr27í9ÅÿWCƒ_þ üí§IšŽ\¡¡ñüÃTãûTèõëׇ>|øp½“&Ô÷Ù5X5µ—/_^¿~ýóçÏ5‘¡%_½jÿfÀ¥ u>ŽÐ”hkk7«ž"-éìš777n´@ýQû7.]¨ ܪ^8/€†ýg.S%Ðâ¼ p^8/€ŽÀ Gà#ð‚ÀxA༠p^8/€ŽÀ Gà#ð‚ÀxA༠p^8/BMg ‰DšÎÔ¯ÜÜ\MgA8Ö‹–y1H$BÕ·L¨ú UßbµØF"ܪ^8/€ŽÀ Gà#€Ú`pe‹…ªo±PõÐÒ p^8/€ŽÀ Gà#ð‚ÀxAà¼5hnD"‘¦³P;˜Ë'Ž ~ø €&îò‡[ÕÀ Gà#ð‚ÀxA༠p^8/€L ‡a eYM@Ó†GhP¬†þ)Í0ÌðáÃåÅÆÆ2 sýúuM—±±±=z4}íéééââ¢öCüòË/ ÃìÛ·¯º"ºpá‚ü"___†aªªªèÛû÷ï3 3mÚ4n±Xüå—_zzzš››ëëë;;;‡……q+lÙ²…QêôéÓ*œNLLŒ±±q=Ô^Pj!]¡’‹ÊÆÆfüøñšÎ 4 hqxãĉ‡3fŒ¦3R3@ 4 ^X–9rdRRR¯^½&Nœ¨££sçÎ;vüç?ÿùùçŸ !®®®Ü&Ÿþ¹¡¡áäÉ“¹kkëÚ÷öíÛQQQsæÌÑtÔ£úøø¬\¹²î»’¾¨®\¹²fÍš˜˜ZA ìÆkÖ¬IMM}ñâE×®]'Nœ&"biP o´iÓfþüù¾¾¾íÚµÓt^j’’¢é,𕘘˜””¹~ýz.ñÚµkÓ¦MËÌÌ$„xzzzzzrKºté²aƺ7??Ÿ²jÕ*M—A}¹zõê… Ôu‚ÒÕãÇ=Þð'UPPàååUUU5zôhKKËsçÎ-Z´èüùóGŽiøÌ€<ܪx#**ê÷ß_±bE}ìüõë׉DÓ§¨ôîvXX˜t¢³³óøñãùå—/^ÔÓqi—ÖÖ­[×ÓþkU¡UUUÜ­üº‹ÅgΜYµj•ŸŸ_#¼¨^¿~ýúõk•7_´hÑóçÏÏ;·{÷îÕ«WgddLŸ>ýèÑ£ªuWµCàðÆøñㇺuëÖ+W®(Y-33sèСfff:u:t(m3£lll.\xåÊ''''''š²`Á‚ÈÈH}}ýÖ­[÷íÛ÷äÉ“b±xÙ²eúúúÞÞÞ·oßæö׳gO]]]##£¾}û~÷Ýw óàííM»£•••)ï˜=fÌKKËŽ;úûûÿøãÒû9þ¼¯¯¯‘‘Q·nÝ"##ëò{_0eggË¤ÇÆÆÞ¸q£U«VuÙyuu1mÚ´Q£FB<<†azöìÉ­Á0ÌÕ«W‰ÔE5mÚ´÷ߟâåå%]z.\066¶°°˜={ößÿ­ð "‘H¦4::ºwïÞ<ë499yàÀÒëÏ›7rñâEÕ.P/ܪxƒa˜/¾øÂÑÑñƒ>¸|ù²ÂN„ÇŽ7nœ™™Ypp0Ã0tww?xðàÈ‘#é ………~~~¾¾¾4%11Q |üñÇB¡póæÍãÆsuu‹Å³fÍÊËËÛ¾}{HHȵk×!«V­ŠŽŽD££ª•äyÕªU„üü|–eccc !qqqtѺuë!×®]cY¶¢¢ÂÆÆÆÚÚº¸¸˜.-..¶²²²µµ­¨¨`Y–ŽáˆŽŽ®ªª¢+X[[·jÕ*''‡¾¥ýüœœœ^¿~MS<<<!¥¥¥,ËÚÚÚÚÛÛWVVÒEÏž= …sæÌáv5jÔ(úÚËËËÙÙYþDV¯^MIHH ¹µ³³sqqyùò%]úêÕ«þýûÛÚÚŠÅâW¯^YYY™››?|ø.-**êÔ©!dïÞ½Õ‘b±˜®ùÛo¿B¦NÊmûÝwß½óÎ;tµÖ­[]þ¢:qâ!$%%…;kBȱcÇè[±Xìàà`ee¥ð ÖÖÖÒ)S§NU9Þ())éÓ§@ øõ×_UÛ*üp·ØßzܪxË¢E‹zôèUXX(³(++ëÞ½{áááÆÆÆ4ÅØØ8<<¼  €›¯ÇÜÜ|ÅŠZZÿûvíÓ§×,äííM ÖÖÖ¦)ô¦ÞË—/ !™™™YYYÜèÑ’’nÇŽ[¹råœ9sf̘A¹zõj^^^ddd›6mè :::aaaYYYYYY÷ïß_´h‘……—óùóç+?DPPP„KKKå[…„„äçç_¿~=..Î××÷Ê•+Ë—/·µµ¥a®jøÔEu´´´èÔB´)‹’P\\lnnΧøW(ÍÕâÅ‹¹mW®\©§§·ÿ~éü(¯)•‹ˆbaaѳgÏäädBÈÓ§O³³³.\¨««›ššJIKK“H$C‡å³+{{û#FÐ×ÀÙÙ¹¬¬¬¶ù‹ÅǪ'¿~JJJ¿~ý._¾üÅ_ØÙÙÕ¥(@]p«à-B¡p×®] ˜?¾Ì@μ¼vìØÂ… W®\Ù¯_¿÷Þ{O…jâSÕiÓ¦M||<½!ëèè8`ÀÿaÆÑ—5Öÿ %„8::J÷ãÔÕÕ‰DwïÞ•^GyMñï¨P@@À† ž>}J_}||<<}:fplTP |öÙgGŽ™7oÞ¿þõ/.‘Þ,»yóæ Aƒ¸Ä7nBD"Q˜žžž””¿`Á.‘O‹cUUUPPÐÇÓÒÒ¤‡›Ðܶk×ÎÏÏK¼}ûöÍ›7 ß}÷]BÈ/¿üâååÅ-å†t¨‹®®îéÓ§ ¥GŠ¶ÒµmÛVµ=×¥.JJJòóóíííCCCCCC%ɶmÛÂÂÂvìØááá¡Z-TçöíÛ•••\4_^^ž““#]椦šªc¸»»ëëë'''gff8âåå%‘HŽ?~õêUÚ…Wí¤ Dùã?¸’ú¨K—.ß~û-¢ÆÆ -ŽŠM˜0a÷îÝ?üð—¢££7aÂWW×ÀÀ@–e÷íÛWTTtàÀºÏâíí­««;sæÌ‰'ZXX\¼x199ÙÄÄ$==ýÔ©St:y'OžÜ´i““““@ žnÐÁÁÁÕÕ5>>~äÈ‘NNN•••G-,,Ü»w/}¸ÜÆ]\\&L˜ ­­½oß¾çTA\\\vvvTTÔîÝ»{õêEÇq_¸páñãÇË—/0`€j»­K]¸¹¹uïÞ}ݺuÝ»wÏÍÍ=uꔑ‘Qpp°@ P¡”077ŠŠÊÈÈprrºxñâÙ³gû÷ï?eÊéu„B¡’šª{ÐÞº4pžžžIII]ºt©î‰‚´¥sûöí?V8%rB¡0((høðá‰äĉ\Ôx«:''çÎ;¡¡¡2‹ÆŒ£òŸ FªµmÛ6GGG®‡!d̘1çÏŸ_½zõ×_Mqqq9pà@Ÿ>}ê~,KKˤ¤¤eË–}þù禦¦ÞÞÞ7nÜ8vìØ²e˶lÙR]ÈB¬wýúõI“&I§GDD¸ººúûû_ºt)***11±¢¢ÂÉÉéßÿþ77ÁäèÑ£“““W¯^ýí·ß>}úÔÀÀ 11qüøñê-Ã6mÚœ9sæÛo¿ýúë¯úé§gÏžõîÝ{É’%tæ•©\­Zµ:uêÔÊ•+üñÇÇ›ššúúúFEEÑÉ®U¨%úöí»páÂO>ùdË–-æææ111ò}I•×TÑl›˜˜p7ñ½½½“’’”470 88øäÉ“wïÞU!pìÛ·ï°aÃvîÜ)‹gΜ©¯¯ÿé§ŸòÙ^Ï9999992‹Þ}÷]Ž£ró;TG$åææj:£ä#À0Œ¦¾q˜·Çl‚Œ¢¢¢:`Žeõ²±±qvvniY¶±±éܹ3l¼©PᇻÅþÖ£Åú@9 Ž^Ðâ Š©û.šˆ€€ú°¾eöìÙÝŒ!p€†ƒ^†Ð¢lÛ¶MÓYЀ>úHÓY€z„[ÕÀ Gà#ð‚ÀxA༠p^8/€ŽÀ ž ‡a4ùÄA<· Ž8@ÃÒTð†‡dÔnUèèh†a†.¿(66–a˜ëׯk:ÄÆÆfôèÑôµ§§§‹‹‹ÚñË/¿0 ³oß¾êŠèÂ… ò‹|}}†©ªª¢oïß¿Ï0Ì´iÓ¸Äbñ—_~éééinn®¯¯ïììVTTÄ­°eËF©Ó§O«p:111ÆÆÆ=zôP{A©…t…6J.*›ñãÇk:ƒÐ( Åà'N>|x̘1šÎHÍ@ Ðt.xaYväÈ‘III½zõš8q¢ŽŽÎ;wvìØñŸÿüççŸvtt$„¸ººFDDp›|þù熆†“'OæR¬­­k{ÜÛ·oGEEyxxÌ™3GÓe ~7nÜX³fMjjê‹/ºví:qâݰ0¡°N¿éÒÕ•+WÖ¬YC+¨!UVV¶iÓ†û;„266...nàœ€BÞhÓ¦Íüùó}}}Ûµk§é¼Ô %%EÓYà+111)))22rýúõ\âµk×<<<¦M›–™™Iñôôôôôä–&$$téÒeÆ u9n~~>!dÕªU>>>š.5+((ðòòªªª=z´¥¥å¹sç-Ztþüù#GŽÔe·ÒÕãÇ=ÞðgwïÞ½ªªªØÚÚr‰zzz ŸP#ÀQQQË—/_±bÅ–-[Ô¾óׯ_ …B-­×AˆÞÝ “Ntvv?~ü7ß|óâÅ‹zŠ èX¨Ö­[×ÓyÕªBiû™º‰-ZôüùóK—.õîÝ›²zõê3f|õÕW§OŸöóó«§ó­UÉBZµj¥Úæ4â_½zuó‹ø›‡÷PñãÇ:tëÖ­W®\Q²ZffæÐ¡CÍÌÌ:uê4tèPÚfFÙØØ,\¸ðÊ•+NNNNNN4eÁ‚‘‘‘úúú­[·îÛ·ïÉ“'Åbñ²eËôõõ½½½oß¾Íí!..®gÏžºººFFF}ûöýî»ïæÁÛÛ›vG+++SÞ)0;;{̘1–––;vô÷÷ÿñÇ¥÷sþüy___##£nݺEFFÒŸ|õ¢1Svv¶Lzllì7T/”×Å´iÓFEñðð°±±‘ß°¼¼<&&ÆÁÁ¡mÛ¶VVV¡¡¡=âS µªPz=lݺÕÐаU«V=zôXºtiu…¬¼¦¤%''8FÔ¼yó!/^”YsܸqÚÚÚ/^¼ o÷íÛÇ0LÏž=¹"""†¹zõ*‘º¨¦M›öþûïB¼¼¼¤KïÂ… ÆÆÆ³gÏþûï¿fO$ÉÄ|ÑÑÑÒ¹UŽŽï¾ûn]. ¨?hqxƒa˜/¾øÂÑÑñƒ>¸|ù²Âö¡cÇŽ7ÎÌÌ,88˜a˜ƒº»»þøc¡P¸yóæqãÆ¹ººŠÅâY³fåååmß¾=$$äÚµk„U«VEGGùóÏ?­¬¬!gÏž1b„¹¹ù„ ´´´Ž9âçç—˜˜D9|øp```‡‚ƒƒµ´´¿ÿþ{µ—êøñãF=cÆŒ1cƸ»»ÓVÀŽ;vìØ±.{VR‹/¶´´\½zõƆ,¡¡¡{öì2dÈØ±c³³³wïÞ}éÒ%>µÀ¿B !øý÷߇êäätéÒ¥ØØØ‹/¦¤¤ÈLM¥¼¦¤‰Åâ¹s纹¹I'Þ¿Ÿ^ 2+:t(--- €’––FÉÎÎ.))éС!$%%ÅÌÌÌÙÙYz«Å‹ÛØØ¬\¹rýúõ}ûö¥‰7nÜ6lØ”)S† rìØ±;vH$’;wò©©ß~ûMùcÒòóóuttÚµkwàÀ'Ož8::öéÓ§Ž`€:± nöööšÎ€&)ùB«¡J¿îV­ZEÉÏÏgY666–G­[·ŽríÚ5–e+**lll¬­­‹‹‹éÒââb+++[[ÛŠŠ –eéŽèè說*º‚µµu«V­rrrè[ÚÏÏÉÉéõë×4ÅÃÃRZZʲ¬­­­½½}ee%]ôìÙ3¡P8gÎnW£F¢¯½¼¼œåOdõêÕ„„„š[;;;——/_Ò¥¯^½êß¿¿­­­X,~õê••••¹¹ùÇéÒ¢¢¢N:BöîÝ[])!‹éš¿ýö!dêԩܶß}÷Ý;ï¼CWkݺõàÁƒ×®]ûÛo¿UW†††nnnÊ/³ëâèÑ£„ôôtùm_¼x!¤s8cÆ cc㢢">µÀ¿Béõ°víZî@‘‘‘„={öHW¨òšbkRRRÒ§O@ð믿Ê,zøð!!$""‚¾íÑ£c~øðazjZZZÓ§O—¿¨Nœ8AIIIáΚrìØ1úV,;88XYY)̵µµ‡‡‡tÊÔ©SùÇmÚ´iß¾=wi988\¹r…çæªQᇻÅþÖãV5À[-ZÔ£G¨¨¨ÂÂB™EYYY÷îÝ 766¦)ÆÆÆáááÜ|=æææ+V¬îúÖ§OŸ®]»Ò×ÞÞÞ„àà`mmmšBoê½|ù’’™™™••Å-))áñqìØ±•+WΙ3gÆŒ„«W¯æååEFF¶iÓ†® ££VPP•••••uÿþýE‹YXXp9Ÿ?¾òCEȱ´´T¾UHHH~~þõë×ãââ|}}¯\¹²|ùr[[[檆O]TGKK‹N-Dê! ÅÅÅæææ|j…Ò\-^¼˜ÛvåÊ•zzzû÷ï—ÎòšR~.)))ýúõ»|ùò_|agg'³Ô¢gÏžÉÉÉ„§OŸfgg/\¸PWW755•’––&‘H†ʧÀíííGŒA_ ggç²²²ÚÖšX,>V=ºN~~¾D"‰ŽŽ.***..þòË/ÿý÷Q£F=þ¼¶‡ƒú€[Õo …»ví0`Àüùóe†©æååBhçEí1–——Go‰ŠD"™\dC¡á…| Õ¾}ûŒŒŒ³gÏÞ¹s'//ïÖ­[b±˜g¶oß¾=yòdøøxšrçÎBHHHHHHˆÌÊ< ýÞzõê%^ãÜóæÍsww—I¼víÚƒjÌaÏž={öìþúõëcÇŽ-\¸påÊ•ýúõ{ï½÷T¨&>uQ6mÚÄÇÇÓ²ŽŽŽ ð÷÷6l½Zc-ð¯PBˆ£££ômV]]]‘Ht÷î]éu”×TuçòàÁƒyóæ?~ÜÎÎîܹsƒV¸Z@@À† ž>}J_}||<<}ú«W¯æÎ{ðàAúhGYýúõûð÷oßε‚Pô‡M¦wý­¬¬¤o U;hEEŘ1c’’’z÷îýÞ{ï1¢ÿþ®®®|¶}úôéÈ‘# <È.4^Ù°aƒü ØÝºu;þ¼ü¹¨}Ð÷‹/¦M›öÞ{ïÍœ9“KlÕªÕøñãÛ·oïëë{òäIÕG>u¡ÄܹsÇŽ{âĉŸ~ú)))i×®]"‘(55ÕÐÐPåZàI(Ê´Õ)¯)…;Ù³gϬY³ôôôvîÜ9}út%38úûûÇÆÆ¦¦¦fddXZZZZZz{{/_¾üÙ³g)))|²]«ñéÒoËËËé ¶¦'ÒþÒèrëÖ­:–<¨G>ûì³#GŽÌ›7ï_ÿú—HoÞ¼ysРA\â7!"‘¨ŽGLOOOJJŠ_°`—ȧűªª*((èáÇiiiÒÃMhnÛµk'=EËíÛ·oÞ¼ihhHG­þòË/^^^ÜRnH‡ºèêêž>}º°°P:p¤h+]Û¶mUÛs]ꢤ¤$??ßÞÞ>44444T"‘lÛ¶-,,lÇŽªÕBunß¾]YYÉEóååå999ÒeNjª)ù}?~|òäÉ;vìÐ××Wžwww}}ýäääÌÌÌB¼¼¼$Éñãǯ^½J»ðªôc!üñW’'Ož¬n«‘#GÞ¿ÿĉƒvppàÒKKK !t¼hú8(```ÿðáÃ/¾ø‚Ktuuµ´´Œ‹‹{úô)MyòäÉæÍ›­¬¬êþ@:ŽAú÷òàÁƒeee5¶Ð,Y²äÌ™3;wî”iëìì,‰6mÚôìÙ3šRZZ°pá¶mÛºººÚÚÚnÞ¼™ûQ/..Vû– Ä„„üüóÏ111Ò·/ËÊÊV®\YÝcù¨K]äææöë×oÓ¦Mô­––ä´µµU®…êÇÅÅqocbbJKKež4¨¼¦dvȲìG}Ô¥K—o¿ý¶Æ¨‘ž”ORRRVV ÝÜÜÚµk·víÚ;8r·˜këÑ£Gtx !¤  €ûƒ„Þª®!¤M›6³fÍâš%Ɇ „B!7MhZ›0aÂîÝ»øá.EGG'..n„ ®®®,ËîÛ·¯¨¨èÀò3¡Ô–···®®îÌ™3'NœhaaqñâÅääd“ôôôS§NÑéTä}ôôôŒ|êÔ)þÛªÓñðǰª6¿CuD"Qnn®¦s 1J> ÃM}å0_wJuèСîí¦ ÍÆÆÆÙÙ¹Žnrlll:wîL'o*Tøán±¿õ¸U †²ÈCà ‹©û.@38@ÃÁÍbhQèÃúZ”Ù³góî MG€z±mÛ6MgA>úè#Mgêæq^8/€ŽÀ Gà#ðÒR¦ã9pàÀþýûóóóÛ¶m;hРÈÈHúlÖêŒ7îæÍ›2‰ÆÆÆ.\Ðô©hF‹ãââvìØ¡««Û»wïû÷ï:t(//ï›o¾iÓ¦Mu›|¸ü¢ØØX†a®_¿®é‚#666£G¦¯===]\\Ô~ˆ_~ù…a˜}ûöUWD ûyûúú2 SUUEßÞ¿Ÿa˜iÓ¦q+ˆÅâ/¿üÒÓÓÓÜÜ\__ßÙÙ9,,¬¨¨ˆ[aË–-ʃþÓ§O«p:111ÆÆÆ=zôP{A©…t…6J.*›ñãÇk:ƒÐ(4óÀ‘eÙüü|######ét{{{BHaa¡Â­hàøÇL™2¥wïÞƒ š={6ߟ ´j4Y'Nœ8|ø°¦sÁ‹@ šÎ/,ËŽ9244´¼¼|âĉaaaï¼óÎŽ;ìííoݺE×quu¢££cjj*¢Â- Û·oGEE988,_¾\Óe ~?ýô“··wÇŽ;tèàááqäÈ‘ºïSú¢ºråÊèÑ£¹ Ò”FGGË$Þ¸qc„ fffzzznnnqqqb±X³ùlQšyÇ—/_VUUÉj100 „¾º‰—-[fff–••EA–/_Þ­[·èèè:Žj,BH«V­TÛ\,'''gddlÛ¶M~(¢E‹ž?~éÒ¥Þ½{BV¯^=cÆŒ¯¾úêôéÓ~~~õwRò­?-6”læ_a††† ü|ùR&ýÅ‹äŸvGy»wï¾ví5B 0yòäòòòsçÎÉ®Í0oý£ñ"Ëʦ@£7~üø¡C‡nݺõÊ•+JVËÌÌ:t¨™™Y§N†JÛÌ(›… ^¹rÅÉÉÉÉɉ¦,X° 22R__¿uëÖ}ûö=yò¤X,^¶l™ƒƒƒ¾¾¾··÷íÛ·¹=ÄÅÅõìÙSWW×ÈȨoß¾ß}÷Â÷¦««ëééùðáCÚV"mܸqÚÚÚô'²oß>†azöìÉ­Á0ÌÕ«W‰ÔE5mÚ´÷ߟâåå%]z.\066¶°°˜={ößÿ­0‡"‘H¦™0::šÆy|”””øùùEGGË/MNN8p ôÞæÍ›G¹xñ¢*Ô^3oq …ò-‹¥¥¥„nœ5}úôIHHøõ×_eБ¾I'ä¡$4z Ã|ñÅŽŽŽ|ðÁåË—¶;vlܸqfffÁÁÁ Ã˲±±±„¸¸8ºhݺu„k×®±,[QQacccmm]\\L—[YYÙÚÚVTT°,KÇpDGGsß!ÖÖÖ­ZµÊÉÉ¡oi??''§×¯_ÓBHii)˲¶¶¶ööö•••tѳgÏ„Báœ9s¸]5оöòòrvv–?‘Õ«WBhníìì\\\^¾|I—¾zõªÿþ¶¶¶b±øÕ«WVVVæææ>¤K‹ŠŠhWœ½{÷VWDJˆÅbºæo¿ýF™:u*·íwß}÷Î;ïÐÕZ·n=xðàµk×þöÛoÕU‡¡¡¡›››òˬƺ8zô(!$==]~Û/^éΘ1ÃØØ¸¨¨ˆO-ð¯Pz=¬]»–;Pdd$!dÏž=Òª¼¦”Â×_åêêjbbröìYù>|H‰ˆˆ o{ôèAǘ>|˜žš––ÖôéÓå/ª'NBRRR¸³&„;vŒ¾‹ÅVVV semmíáá!2uêTâ;wîBV­Z¥d’’’>}ú‚_ýµ¶û—¦ä[K›4ÍüV5!ÄÇǧªªŠþ™E±,›ššÚ¾}{…óÜ¿¿[·nÿú׿dÒiK~-ú4 ­ iZ´hQ=¢¢¢ä'^ÈÊʺwï^xx8×Þcll^PPÀM¼`nn¾bÅ é®o}úôáN¼½½ !ÁÁÁÚÚÚ4…ÞÔ£=j233³²²„Â7÷‚JJJ¸E|;vlåÊ•sæÌ™1c!äêÕ«yyy‘‘‘\C”ŽŽNXXXAAAVVVVVÖýû÷-ZdaaÁå|þüùÊ!ÇÒÒRùV!!!ùùùׯ_‹‹óõõ½råÊòåËmmmi˜«>uQ---:µm¬"„$$$›››ó©þJsµxñbnÛ•+Wêééíß¿_:?ÊkJɉ|úé§Ÿ~úiVV–³³³Â)ä,,,zö왜œLyúôivvöÂ… uuuSSS !iii‰dèС| ÜÞÞ~Ĉôµ@ pvv.++«m­‰ÅâcÕ«íÞRRRúõëwùòå/¾øÂÎή¶›ƒjšù­jBÈøñãwìØ±uëÖAƒÑ.Ø»víú믿BCC¹ÏyYYÙŸþ©­­Ý¹sgkkë^½zeff8p€›¶êêÕ«_}õU§NjÑ÷–ÞÂFìÐÔ…Â]»v 0`þüù2C5óòò!´ó"‡öËËË£·DE"‘Ì€ 黊ôkG>…jß¾}FFÆÙ³gïܹ“——wëÖ-þóŒÜ¾}{òäÉÜ#¯hƒMHHHHHˆÌÊ< ýÞzõê%^ãÜóæÍsww—I¼ví}n‚r={öìÙ³gxxøëׯ;¶pá•+Wöë×ï½÷ÞS¡šøÔEuÚ´iOoÈ:::0Àßßذa´ÃeµÀ¿B !ŽŽŽÒý8uuuE"ÑÝ»w¥×Q^SJÎ%//ïåË—/^ íׯ_NNŽüÝÿ€€€ 6<}ú”6¾úøøxxxÐÀ1%%E(2„OÓiì8Êúp“zRÜ—²²2Ú÷T!–÷/æƒæÍ›wüøq;;»sçÎ <˜ç†PwÍ?pìÔ©Sdddllìˆ#<==ïß¿éÒ%GGÇ™3gr뤦¦.\¸ÐÎÎŽ6ÎòÉ'3fÌX±bÅž={lmmÿý÷k×®µmÛö³Ï>SòxkBþ™ÄÑÞ!#@“Ö¯_¿?üpûöí2­ ô‡M¦wý­¬¬¤oU~¨}EEŘ1c’’’z÷îýÞ{ï1¢ÿþ®®®|¶}úôéÈ‘# <È.4^Ù°aƒü ØÝºu;þ¼ü¹¨}Ð÷‹/¦M›öÞ{ïIå¶jÕjüøñíÛ·÷õõ=yò¤j#ŸºPbîܹcÇŽ=qâÄO?ý”””´k×.‘H”ššjhh¨r-ð$ eÚê”×”ò½µmÛÖÇÇgݺuAAAGýàƒdVð÷÷MMMÍÈȰ´´´´´ôöö^¾|ù³gÏRRR<<<ª'*£VãÓ+**¤ßr£v øG‡ÕÙ³gϬY³ôôôvîÜ9}út®mF‹(îéÓ§›˜˜=z4))ÉÜÜ|Ò¤IáááJ&€èÚµë‘#G6mÚtñâż¼¼.]ºŒ5jþüùô.†bÒãcD¢ÿ˜€¦é³Ï>;räȼyó¤;®ÐÛa7oÞ4h—xãÆ ¢Ž¹9ÒÓÓ“’’âãã,XÀ%òiq¬ªª zøðaZZštƒÍm»ví¤o•ܾ}ûæÍ›†††ï¾û.!ä—_~‘~°7¤C]tuuOŸ>]XX(8R´•®mÛ¶ªí¹.uQRR’ŸŸooo*‘H¶mÛ¶cÇÕj¡:·oß®¬¬ä¢ùòòòœœé2'5Õ”ÌOž<9jÔ¨ÄÄÄ &p‰íÛ·'մع»»ëëë'''gff8âåå%‘HŽ?~õêUÚ…Wí¤ Dùã?¸’|¸’a‰C‡•éäѱcGÚA¾Žª€¦ÉÀÀ >>>((è‹/¾à]]]---ãââ&NœHªŸ%Ã0!!!;w‰Y¶lw³¬¬låÊ•Õ=摺ÔEnn®»»ûÇCáK«­­­r-T§¸¸8..î£>¢ocbbJKKež4¨¼¦dvH‡9ÿç?ÿ ä\¿þúkBHÿþýå3 ­­íãã“””ôàÁÚùÕÍÍ­]»vk×®­±ƒ£ü4Š<=zôèĉtNŸ‚‚î’:ÞªfYö£>êҥ˷ß~ÛTžœÔü´”À±ÞÉ\î¸U ÐôM˜0a÷îÝ?üð—¢££7aÂWW×ÀÀ@–e÷íÛWTTtàÀºÏâíí­««;sæÌ‰'ZXX\¼x199ÙÄÄ$==ýÔ©St:y'OžÜ´i““““@ žnÐÁÁÁÕÕ5>>~äÈ‘NNN•••G-,,Ü»w/}¸ÜÆ]\\&L˜ ­­½oß>…3çÕQ\\\vvvTTÔîÝ»{õêEÇq_¸páñãÇË—/0`€j»­K]¸¹¹uïÞ}ݺuÝ»wÏÍÍ=uꔑ‘Qpp°@ P¡”077ŠŠÊÈÈprrºxñâÙ³gû÷ï/=O0!D(*©)™üñÇtfD???†aΞ=›™™.=A£´€€Ú[—¶8 OOϤ¤¤.]º8::*܄Ư۷oüø±ü”@5 …AAAÇ—H$'Nœàj¤Ž·ªsrrîܹãàà ?Õù˜1cTþ#jGÓú›!{{{LÄ-YSŸŽGZAAíÙL§ã¡222üýýMMMMMMýýý¥'ö’ž1Ga mz¡ÓåP´ÑëÑ£G,˦¦¦0@OOïwÞ -..NHH011ñóóc«™Ž‡ #ƒ›%++kذafffíÛ·÷òò:sæŒtöΟ??dÈÚbg``pàÀ¢t:…³ÛÐÑJ¦ã)++Û±cGÿþýMLL´µµMMMßÿý´´´êªƒÏt<5Ö…’éxX–-,,œ>}º•••ŽŽŽ¥¥eHH7ÃÿZ¨±BéÊ©©©ƒ 200èÚµkDDÄ«W¯^ÊkJšD"ùúë¯ûôéÓ¾}{ú¬j…U&}²„.…>ÎqÖ¬YÒ«IOÇ#‘H‚ƒƒõõõ]]]iVÇ'½ò¤I“ŒÎÚÚÚÝÝ}íÚµVVV ,ˆŠŠR!ÞŸŽGÉÈ똘˜Úî_¦ãáaÑ0¦n"‘„–L$U÷pvFƒñ ¾î”)**êСfQV/ggçú~ŒrccccÓ¹sgéYð?%ßZjܤyÀ­j têoå8@ÄMGh8¸Y -J@@}X_‹2{ölL”ÓŒ!p¨Û¶mÓt4€›{š¥æÿ¬jP ŽÀ GàcýÀ³ª ÙA༠p^8/€ŽÀ Gà#‰ŽŽfÞf``лwï„„‰D¢p--­®]»Nž<ùÒ¥KÊwÅ Vxô˜˜ccã=zhºÔÃÆÆfôèÑšÎÅÿxzzº¸¸T—ÕñãÇ7žühÐ/¿üÂ0̾}û4hìð¬j€7‚‚‚:wîLaYöÑ£GIII3gÎÌÍÍݰaƒü:¯^½ºyóæ¡C‡öïßÿÿ÷³fÍR¸+iÎÎÎò½}ûvTT”‡‡Çœ9s4]ÈÀ}||V®\Y÷] @@__¹reÍš5111ŽŽŽ v.2•ÎOý¥Q¹qãÆš5kRSS_¼xѵk׉'†…… …Š#çÏŸ/Y²$))éÉ“'®®®ëׯïׯŸüjj¼B V8@A'ÕgÙú;¼yóÜÝݹ·?vqq‰‹‹‹ˆˆ055U¸Î;wF5{ölww÷îÝ»W·+%òóó !«V­òññiÈâlÌ®^½záÂuHJJ ÷úñãÇG oÈÓ‘9¨t~êï(GAA——WUUÕèÑ£---Ï;·hÑ¢óçÏ9rD~åÒÒR77·Œ7ÎØØøàÁƒþþþ?ýô“L­z¯¨ܪPÌÔÔ4((¨ªª*;;»ºuºv횘˜È²ì§Ÿ~ªÚQX–%„´nÝZÓ§ûÆëׯ¹»ó5ªªªªªªRסÅbñ™3gV­ZåççÇ?ÍC­Š½áóöúõk•7_´hÑóçÏÏ;·{÷îÕ«WgddLŸ>ýèÑ£§OŸ–_yóæÍùùù»víúî»ï¶lÙ’––Æ0ÌâÅ‹éÒ–|…4ë ž: F S¯mÕ¡Q]ee¥’uÜÜÜÜÝÝ>,‹k»ÿiÓ¦5ŠâááaccC333‡jffÖ©S§¡C‡fffrëÛØØ,\¸ðÊ•+NNNNNNò;,//‰‰qpphÛ¶­••Uhhè£G¸¥qqq={öÔÕÕ522êÛ·ïwß}'½ç DFFêëë·nݺoß¾'Ož‹ÅË–-sppÐ××÷öö¾}û¶t6¶nÝjhhتU«=z,]º´ºØ";;{̘1–––;vô÷÷ÿñÇ«+’’??¿èèèââbåå6nÜ8mmí/^зûöíc¦gÏžÜ  Ã\½z•âííMÛ«¦M›öþûïB¼¼¼¸Ò&„\¸p! ÀØØØÂÂböìÙÿýwuÇUr.Õ•¼üA¹üԶؕԠÂSS^òçÏŸ÷õõ522êÖ­[dd¤’ÐP$É´íEGG÷îݛ𓜜ù¤K—.‹-rqqÙ½{7 L !«V­Z´h‘‰‰É’%Khx4iÒ¤ãÇsÛ&&&~ýõ×üqtttAAÁ¸qã ”œœ}Á¯¿þ*³è×_%„,\¸P:ñܹs„;wÖê ©-¾µÔöE×Ô`p 4V\û¢t;}]?e¤oÝ …B‘H´lÙ2>£ ¹vPùQÕ4FQ.++ëÞ½{ñññÆÆÆ4ÅØØ8<<|á…ׯ_§7ûÌÍÍW¬X¡¥¥à~‘––Ã0.\¸ÿ¾••!$!!!!!.ÍÌÌlݺ57”•6ν|ù’Û¼OŸ>]»v¥¯½½½ !ÁÁÁÚÚÚ4ÅÇÇ'==ýåË—íÚµ£ãzžBV®\¹}ûöýû÷q‰W¯^ÍËËûïÿÛ¦M𢣣’••Åÿ^§< ‹ž={&''Bž>}šýå—_†……¥¦¦Ž=:--M"‘ :”Ï®ìííGŒA_ ggç³gÏʯ¦ü\ºwﮤä•ã_ì5Ö ÏÜŠÅâû÷ïoذÁ‚.577Ÿ?þÒ¥Kk[b±øäÉ“Õ-9r¤LJJJÊ|ŸŸ¿}ûv;;;™¥ô\ôõõ¥ ¸“…Æ#4 Õn4W·Um÷VS ™žžÎs(´ z“ÚÖÖ–Ká?ªZZ^^!DæÎ8íº———G#-‘H¤0j$„´iÓ&>>~ñâÅ666ŽŽŽ ð÷÷6lX«V­!íÛ·ÏÈÈ8{öì;wòòònݺ%Ó)“‹V !4p‘Oá8::ÒÝRººº"‘èîÝ»ÒëÐf¡é{ÜÔƒê8B6lØðôéSÚXëãããáᑚšJIII …C† á³{{{é·ÕM”Sã¹()yåø{5È3·´oh¯^½¤Ó•O-)3Š˜RVVÆõ…ÇJ}âŒ{öì™5k–žžÞÎ;§OŸ^Ý Ž¦¦¦ZZZ2_þúë/B×8 ‡ÀšˆúŸÇQ5YYYiiiÕýòGoÞݼysРA\â7!"‘¨ÆÍKJJòóóíííCCCCCC%ɶmÛÂÂÂvìØááá‘””¿`Án}†snß¾]YYɵ‡•——çääxyyÉŸN»víüüü¤7¼yó¦òð—www}}ýäääÌÌÌB¼¼¼$Éñãǯ^½J{ª‘òsQRòêš¡:== *Ïí»ï¾Kùå—_¤ëëÚµkJŽ^TT$ý–Žq&ünU?~|òäÉ;vì¹ -C(vëÖóD?ža˜F8«y‹…QÕиÑöEú_îE£™ë*//oÒ¤I ÃDEEÕ}o®®®–––qqqOŸ>¥)Ož<Ù¼y³••Ÿ‡Ôåææöë×oÓ¦Mô­–– ´µµéhn僖••ñi.R¨¸¸8..Ž{SZZ*ó¤Aggg‘H´iÓ¦gϞєÒÒÒ€€€… ¶mÛ¶Že¥­­íãã“”””••EG77·víÚ­]»¶ÆŽ*L¨ü\””|]*g Ò£(Ï­«««­­íæÍ›¹ø¯¸¸xË–-JŽþèÑ#:ø†RPPÀE™ôVuu!,Ë~ôÑG]ºtùöÛo•GÔÌ™3ûí7îXþùçÁƒ}}}¥§OÍB‹#4zÒ÷¦55nß¾þªUTTdgggdd¼~ýzÛ¶mÒQ™ŽŽN\\Ü„ \]]Y–Ý·o_QQÑäç.‘çææÖ½{÷uëÖtïÞ=77÷Ô©SFFFÁÁÁ@WWwæÌ™'N´°°¸xñbrr²‰‰Izzú©S§j›Uss󨨨ŒŒ ''§‹/ž={¶ÿþÜô{”P(Œ9r¤““S```eeåÑ£G ÷îÝ«–gîЧÐÀQ xzz&%%uéÒ¥º*ÚÒ¹}ûöÇKã©‘òsQRòu9¨4oooå5(s%¹7n tqq™0a‚¶¶ö¾}û”ÏŒ( ƒ‚‚†.‘HNœ8Á]5ÞªÎÉɹs玃ƒChh¨Ì¢1cÆ ><66vݺuŸ}öÙ‡~H™:uêW_}5qâĹsçîÞ½ûåË—t¦!h,4=¬»Ât<ÐÂ5Ä,êþp)™jGfÃ0ööö!!!µÝ•4ééx¨ŒŒ SSSSSSÿŸþ™[ÄÍtSÂÂÂéÓ§[YYéèèXZZ†„„pS½¤¦¦0@OOïwÞ -..NHH011ñóó“ß3mRJHHàRbbb!=âVNMM4hA×®]#""^½z¥0“YYYÆ 333kß¾½——×™3gj,ž“­Ð1I&&&\ }ªø¬Y³¤W“žþF"‘ëë뻺ºÒ¬Ž7NzåI“&WwD%碤äe*3ÿbW^ƒ2G©±äÏŸ??dÈöíÛB 8@ªŸŽÇÝÝ}íÚµVVV , íë5Ö#˲ÒSʈ‰‰aÿù¼ÄÇÇs›<{ölæÌ™vvvÆÆÆÃ‡ÏÊÊRù áÓñðǰ¯ÃPS'‰rssß¼i|½øêÛ[hŽlllœ>kšœ¢¢¢:(iÒ¶±±éܹ³L×ÃfF…o­ûE‡[Õ-ú€' Ž^ÐâµÀçA8Ð<Ìž=›Ï€hh!8@ílÛ¶MÓY€†óÑGi: ЈàV5ð‚ÀxA༠p^8/뙦Ÿ«  .€ŽÀ Gà#ð‚À€DGG3o300èÝ»wBB‚D"Q¸Ž––V×®]'Ož|éÒ%å»â+zô())iæÌ™¹¹¹6l_çÕ«W7oÞ~üØÅÅ%...""ÂÔÔTá:wîÜ5jÔìÙ³ÝÝÝ»wï^Ý®”ÈÏÏ'„¬ZµÊÇǧދµq+((ðòòªªª=z´¥¥å¹sç-Ztþüù#GŽÔe·)))ÜëÇ=z4<<¼!ÏKæ Òù©¿£4N+V¬øùçŸûõëWÝ ¿þúkïÞ½µ´´&M𤝝ÿý÷ß=zçÎ|ðžžÞ¤I“dÖ///?tè¦Ï¬Aà ˜©©iPPP\\\vv68ÊèÚµkbbbïÞ½?ýôSÕnó±,Kiݺµ¦O÷ׯ_ …B--^™ªªª!êj?[´hÑóçÏ/]ºÔ»woBÈêÕ«g̘ñÕW_>}ÚÏÏOÓS¿jUì Ÿ7BH«V­ê¸Ÿ³gÏnذAyûñÚµkËÊÊ®]»Ö³gOBȪU«zöì¹|ùò>øÀÔÔôÛo¿•Y?22ÒÜÜ\úžÔ·Æx44ª«¬¬T²Ž›››»»ûáÇÅbqm÷?mÚ4zÎÃÃk5ÉÌÌ:t¨™™Y§N†š™™É­occ³páÂ+W®899999Éï°¼¼<&&ÆÁÁ¡mÛ¶VVV¡¡¡=â–ÆÅÅõìÙSWW×ÈȨoß¾ß}÷ôž,X©¯¯ßºuë¾}ûž…Ó¦M{ÿý÷ !^^^ÒmT.\066¶°°˜={ößÿ]]•œKu%/P.?µ-v%5¨ðÔ”—üùóç}}}ŒŒºuëY]õBD"‘Lsxtt´t5ññøñãÉ“'‡††Êwá–““Ó©S'®*utt¼¼¼JJJþúë/ù•322âââ¾úê«:Ô*3P',¨›½½½lÊZÚ#,¯O ÏÕj´jÕ*BHzzºtâŸþÙ©S'--­¢¢¢êÖ¡æÎK)((P¾š¼›7o~òÉ'„7¦¦¦²,{ôèQ¡Pعsçððð… véÒE(=z”®omm=vìX###›>ø@~‡!!! Ãøúú~üñÇ#GŽ}ûö¥‹V®\I²³³{öì‘ÏyeeåÒ¥K<(HoR¯]»Vfå„„BHRR’tù3 ó×_Ñ”^½z™™™Ñüxyy9;;ÓÒŽŽŽ&„¬_¿ž–¶µµµ½½½AXXØÆ=== ! ¶Æs©®äåÊå§¶Å®¤å¢<·‡;vœ3gμyóÌÌÌìíí !{÷î•?qkkk锩S§Ö*~H$ï½÷^×®]ËÊʬ­­ûõëWÝš~ø¡@  %–eÅb±‹‹KçÎå×,//·³³›:u*ÿl(¡Â·–Z¾èš"4ê‡ÀZ¸¦8Nœ8qéÒ¥K—.]²dÉÔ©Si3Æüùó¥×Q®[·Žòã?r«É“ùéå=z”ÛmEE…µµuqq1]Z\\leeekk[QQÁ²¬µµ5!$::ºªªJ~W/^¼Ò?¥3fÌ066¦¯­­­½½}ee%]ôìÙ3¡P8gÎúÖÚÚºU«V999ôíúõë !NNN¯_¿¦)„ÒÒR.Òñ\dd$!„Æ%\àXQQaggçââòòåKºÚ«W¯ú÷ïokk+‹k¬”’’’>}ú‚_ýUfÑÇ !ôm=è˜ôÇÓSÓÒÒš>}:]*¨8q‚’’’Â5!䨱cô­X,vpp°²²’ÏŒòsQ^ò2• ù»ò”>ŠòܾzõÊÊÊÊÜÜüáÇtiQQQ§Nê/pŒÕÑѹzõ*Ý›’À1??¿K—.;wþôÓO·lÙâééÙªU+…i¬[·®M›6………ü³¡GþÐÇà é[·B¡P$-[¶ŒÏhFî‘ôò£ªiŒ¢\VVÖ½{÷âããiб±1mz¼~ý:½9hnn¾bÅ …á´´´†¹páÂýû÷­¬¬! ´qŽ’™™Ùºuk®‡YII !äåË—Üæ}úôéÚµ+}MƒƒƒµµµiŠOzzúË—/ÛµkG3¶xñbnÛ•+Wnß¾}ÿþýAAA\âÕ«Wóòòþûßÿ¶iÓ†¦èèè„………„„dee)¿×™’’òÁäççoß¾ÝÎÎNf©……EÏž=“““ !OŸ>ÍÎÎþòË/ÃÂÂRSSG––&‘H†ʧÒíííGŒA_ ggç³gÏʯ¦ü\ºwﮤä•ã_ì5Ö ÏÜŠÅâû÷ïoذ6Ó‹jþüùK—.å“aib±øäÉ“Õ-9r$!$33sÅŠ6lP8«€ kkë)S¦¬Y³&**Ц 2D~ÜØ_ýõÙgŸ…‡‡+¿ñ õ#4>3ìÔveþû¬qüuzz:Ï¡Ð2 !¶¶¶\ ÿQÕÒòòò!2i¯¼¼<i‰D¢ê†P´iÓ&>>~ñâÅ666ŽŽŽ ð÷÷6lÖо}ûŒŒŒ³gÏÞ¹s'//ïÖ­[22¹h•BùŽ£££ôh ]]]‘Ht÷î]éuîܹC ‘Éꃪ \[[; àßÿþ÷’%Khâ«W¯¾úê«1cÆH‡’Ð`8ÔIVVVZZZ```ç©&„Ð{²7oÞ4h—xãÆ BˆH$ªqó’’’üü|{{ûÐÐÐÐÐP‰D²mÛ¶°°°;vxxx$%%ÅÇÇ/X°€[_…aàœÛ·oWVVríaååå999^^^ò§Ó®];éÉtnß¾}óæM…áïñãÇ'Ož¸cÇ}}}åpww×××ONNÎÌÌ8p !ÄËËK"‘?~üêÕ«´×©)?%%OG´Ô]zz:ÿTž[:ö/¿ü"]_×®]Srô¢¢"é·üñ—å·ªé`íÍ›7K§?}útéÒ¥^^^2ã“'O!ï¼óŽt"}KïËSû÷ïòäÉŒ3ÔR°P[˜Ž@uyyy“&Mb†ë’U®®®–––qqqOŸ>¥)Ož<Ù¼y³••Ÿ‡Ôåææöë×oÓ¦Mô­–– ´µµéh:—:xð`YY™òæ"%Š‹‹ãâ⸷111¥¥¥2Otvv‰D›6mzöìM)-- X¸paÛ¶mevȲìG}Ô¥K—o¿ý¶Æ¨‘ž”ORRRVV ÝÜÜÚµk·víÚ;8rwZùS~.JJ¾.•ƳéQ”çÖÕÕÕÖÖvóæÍ\üW\\¼eË%Gôè|C)((à¢Lz«º:„?þXfh78FþY/½zõjÓ¦Íwß}'ÝÀùå—_B¤;~ü÷¿ÿ500 ýA¡á¡Å ¶oßNA+**²³³322^¿~½mÛ6éÇÆ¨LGG'..n„ ®®®,ËîÛ·¯¨¨èÀ:::5nîææÖ½{÷uëÖtïÞ=77÷Ô©SFFFÁÁÁ@WWwæÌ™'N´°°¸xñbrr²‰‰Izzú©S§j›Uss󨨨ŒŒ ''§‹/ž={¶ÿþS¦L‘^G(ÆÇÇ9ÒÉÉ)00°²²òèÑ£………{÷î•ïJ˜““sç·ÐÐP™EcÆŒ>|¸|è|=4pžžžIII]ºt©î±{´¥sûöí?–ÇS#å碤äërPiÞÞÞÊkPæ(Jr+6nÜèââ2aÂmmí}ûö+?ý   áÇK$’'NpWc·ªk»nݺÏ>ûìÃ?ÔÕÕݶmÛ´iÓnjӺuëóçϧ¦¦Ž3†Ž³!„”——§¦¦úøø4ÎÉÒ[Mën†0´pMw:å“/Ê̳Ã0Œ½½}HHHFFFmw%Mz:*##ÃßßßÔÔÔÔÔÔßßÿçŸæIO‘¨PaaáôéÓ­¬¬ttt,--CBB¸©^RSS  §§÷Î;†'$$˜˜˜øùùÉï™6)%$$p)111„Gq+§¦¦4ÈÀÀ k×®¯^½R˜É¬¬¬aÆ™™™µoßÞËËëÌ™3 s~ìØ±ê~§bbbª;YBˆ‰‰ —BŸ 2kÖ,éÕ¤§¿‘H$ÁÁÁúúú®®®4«ãÆ“^yÒ¤IÆÆÆÕ¯’sQRò2•™Ž‡±+¯A™£ÔXòçÏŸ2dHûöí ! ÕOÇãîî¾víZ+++ ‹ Ðöõš/nEd¦ã¡Ÿ—øøx.%===  S§Núúú}úôÙ±c‡ôäM§N"„ÄÆÆªvôê`:þ¶n+€<‘H”››ûVÔ3´ >µ§Æ±Ò v666ÎÎÎu|„44EEE:tPÒ¤mccÓ¹sç´´4Mç´©ð­¥–/º¦·ª 1B8Ð0èÔß<¡‹@ƒ`YÂÔbú:€F-ŽP;|„ÍÃìÙ³ùŒs‡#ÔζmÛ4h8}ô‘¦³nU/€ŽÀ Gà#ð‚ÀxA༠pl(xx 4q-%pø ¼¼œÏ¶,Ë.Y²äÅ‹š> kþcnnî®]»LMMøá‡]»v>}zÊ”)7nÜØ¸q#ŸÍwïÞ™™©é“€úͼÍÀÀ wïÞ ‰Dá:ZZZ]»vüîÝ»3gÎ\²d‰ÂuæÎkffvèСAƒíܹ³º]I{ÿý÷åzûöí¨¨(‡åË—kº4ï§Ÿ~òööîØ±c‡<<<Ž9R÷} @@__¹reôèÑ·nÝjÈ“’9¨t~êï(ÓÀ£££U[JI$’­[·:99éééuíÚuýúõ•••<—‚z°ÍÝðáûvíZRR"¸xñb{{ûË—/+Ù°²²rÔ¨QÌÈȰ··ˆˆàyD{{{Å Z@i°J>uCX¶þ>B«V­"„¤§§K'>zôÈÜÜ\ }:Ÿ¥Ê©ð­UO_t_3oqdY6??ßÈÈÈÈÈH:~*ÙöóÏ?ÏÉÉùì³Ïôõõ5} ¦¦¦AAAUUUÙÙÙÕ­Óµk×ÄÄD–e?ýôSՎ²,!¤uëÖš>Ý7^¿~]ãÝNUUUUU•º½lÙ233³¬¬¬Í›7¯Y³&++ËÒÒ²Æ&¨æ¡VÅÞðy{ýúµÊ›‹Åâ3gάZµÊÏÏOþ•/•ñÍ7ßœ|X,×vÿÓ¦M5j!ÄÃÃÃÆÆ†&fff:ÔÌ̬S§NC‡•îfmcc³páÂ+W®899999Éï°¼¼<&&ÆÁÁ¡mÛ¶VVV¡¡¡=â–ÆÅÅõìÙSWW×ÈȨoß¾ß}÷ôž,X©¯¯ßºuë¾}ûžœn›˜˜(>þøc¡P¸yóæqãÆ¹ººŠÅâY³fåååmß¾=$$äÚµktåüþûïC‡urrºtéRllìÅ‹SRR˜·'¬={öìˆ#ÌÍÍ'L˜ ¥¥uäÈ??¿ÄÄÄ   ™œ ‚ëׯs)b±øæÍ›={ölÓ¦ÌʇJKK  „¤¥¥B²³³KJJ:tè@III133svv–)m›•+W®_¿¾oß¾4ñÆÆ ›2eÊ!CŽ;¶cljD"ßiµÆs©®äTÿbWRƒòGQžÛÇvèÐ!88XKK+11ñûï¿çÝþöÛoôÖ6¦¦¦ô°ÜÜ\ù1Ê—J«¨¨¸råÊ„ Äbñ•+W²³³mll @â•/­;ùŸõ–;jú^yýª¬¬‰DÆ “Iß»w¯½½}BB‚­V®\éààpíÚ5ú6;;}øS{×¢ô­ZÐŽ‰'N\ºtéÒ¥K—,Y2uêT‚ÌŸ?_z…×­[GùñǹÕäyxx(<ôÑ£G¹ÝVTTØØØX[[Ó¥ÅÅÅVVV¶¶¶,ËZ[[B¢££«ªªäwõâÅ @0uêT.eÆŒÆÆÆEEE,ËÚÚÚÚÛÛWVVÒEÏž= …sæÌ¡o­­­[µj•““Cß®_¿žâääôúõkšB{Œ•––rÙX»v-w :Óíž={X©>Žvvv.../_¾¤«½zõªÿþ¶¶¶b±XIu|ýõ×QQQ®®®&&&gÏž•_ááÇ„îk¹GtLúáÇé©iiiqÛ¼¼¼œékù>Ž„cÇŽÑ·b±ØÁÁÁÊÊJþˆÊÏEyÉËT:?µ*vå5(}å¹}õê••••¹¹ùÇéÒ¢¢¢N:‘jú8Z[[Ë\½S§NU!~¸sç!¤º^ŒÊ—²,{ïÞ=BÈ”)S¤;---égGùÒ¡#ͼÅQ(È·,–––B¸qÖÒ233÷ìÙ3gΜÛj><†e5]* ˜ô­[¡P(‰–-[^ㆌÜs¡‚‚‚:wî,Bcå²²²îÝ»Ï5¼‡‡‡/\¸ðúõëôÑÜÜ|ÅŠZZ :iii1 sáÂ…û÷ï[YYBèÒÌÌÌÖ­[ …o¾öKJJ!/_¾ä6ïÓ§×äãííM ÖÖÖ¦)>>>ééé/_¾l×®͘ô=™•+Wnß¾}ÿþýÒM‰W¯^ÍËËûïÿË5êèè„………„„dee)¹×ùé§ŸæççB|}}é‰È°°°èÙ³grr2!äéÓ§ÙÙÙ_~ùeXXXjjêèÑ£ÓÒÒ$ÉСCùTº½½ýˆ#èk@àìì|öìYùÕ”ŸK÷îÝ•”¼rü‹½Æä™[±X|ÿþý 6XXXÐ¥æææóçÏ_ºt)Ÿ K‹ÅtH“B\3¹ZПòo¾ùfôèÑ_ýu—.]RSSCCCÇŽ›““£|iûöíÕ˜“®™Ž„SSÓüüüÒÒRé1.ôOSSSùõi/ÚmÛ¶mÛ¶M:ýûï¿ÿþûïíììè_u •{(2JßòÁç/¶ôôtwww²GGÚÙÚÚr)óæÍSaWôûGæ¯VÚu///FZ"‘HaÔHiÓ¦M||<½kéèè8`ÀÿaƵjÕŠÒ¾}ûŒŒŒ³gÏÞ¹s'//ïÖ­[22¥oÓÀE>…ãèèHwKéêêŠD¢»wïJ¯CÛBBBBBBd²úàÁ%c^^ÞË—//^¼Ú¯_¿œœù¿ó6lØðôéSÚ¤äãããáᑚšJIII …C† áSæt¬$§º‰rj<%%¯ÿb¯±yæ–ö íÕ«—tºò©%e†@q£XÊÊÊh']…Xµ6”пXÞyç½{÷Ò‚6l؆ &Ož|ðàAÚ ³º¥3gÎTcNZ¸æ8úøøäææ¦¥¥ 6Œ¦°,›ššÚ¾}{…Ÿ+++nMêùóçééé:urqq133Óô 4a*üŒ0жbTÚUý¹~ýºP(”ibTý¡•i¿¤¡ 7@G~´Ÿ´¹sçŽ;öĉ?ýôSRRÒ®]»D"Qjjª¡¡á˜1c’’’z÷îýÞ{ï1¢ÿþ®®®j,¡PXVV&B¿7lØ ?·y·nÝ”ï­mÛ¶>>>ëÖ­ :zôè| ³‚¿¿llljjjFF†¥¥¥¥¥¥··÷òåËŸ={–’’âááÁ ²QŽçxöÏ¥º’WØB¡‚ŠŠ þ5¨<·çÏŸ'r—YupG—~Ë W200Pot¨-Iwwwépœþy–““CCäê–6L[ˆæ8Ž?~ÇŽ[·n4h³k×®¿þú+44”ûK®¬¬ìÏ?ÿÔÖÖîܹ³‡‡íS¹uëVzzº››Û† 4}6-Ku"Û˜bǬ¬,:ñwQetøçÍ›7 Ä%Þ¸qƒðë‰_RR’ŸŸooo*‘H¶mÛ¶cǤ¤¤øøø pë«0 œsûöíÊÊJî[´¼¼<''ÇËËKþtÚµkççç'½áÍ›7åÃß“'OŽ5*11q„ \"½Ã¨04qww×××ONNÎÌÌ8p !ÄËËK"‘?~üêÕ«´×©)?%%¿råJµd == *Ïí»ï¾Kùå—_¤ë‹ö¤PQQ‘ôÛ?þøƒË@ƒÝªÖÕÕµµµ•É ‹Ý¹sgåKÕ˜ hæÓñB:uêYPP0bĈ•+WN:5..ÎÑÑQºá:55ÕßßÿÃ?Ôtf ‰ÉËË›4iÃ0QQQuß›«««¥¥e\\ÜÓ§OiÊ“'O6oÞleeÅç!u¹¹¹ýúõÛ´i}«¥¥E#mmm:šÄÁÁ[ùàÁƒeee*7ÇÅÅqocbbJKKež4èìì,‰6mÚôìÙ3šRZZ°pá¶mÛÊìŽþÏþ#¥¯¿þšÒ¿ù hkkûøø$%%eeeÑÀÑÍÍ­]»vk×®­±ƒ£ 3&*?%%_—ƒJãYƒô(Êsëêêjkk»yóf.þ+..Þ²e‹’£?zôˆë¦UPPÀE™ôVuuêr¾ ýë_ÿJNN¦-¦ôd×­[§¥¥EïS+_ êÒü[ !Ó§O7119zôhRR’¹¹ù¤I“ÂÃÃië#4ZÊÛ5Õè¸}ûvú ZQQ‘‘‘ñúõëmÛ¶uïÞ½î;×Ñщ‹‹›0a‚««k`` ˲ûöí+**:pà€ŽŽN›»¹¹uïÞ}ݺuÝ»wÏÍÍ=uꔑ‘Qpp°@ ÐÕÕ9sæÄ‰-,,.^¼˜œœlbb’žž~êÔ):©M­˜››GEEedd899]¼xñìÙ³ýû÷Ÿ2eŠô:B¡0>>~äÈ‘NNN•••G-,,Ü»w¯|WBccã?þ˜NèççÇ0ÌÙ³g333ÃÃÃ¥'h”@ŸIHG@àéé™””Ô¥KGGG…›Ð–ÎíÛ·?~üX~J %”Ÿ‹’’¯ËA¥y{{+¯A™£(É­@ ظqc`` ‹‹Ë„ ´µµ÷íÛ§|E¡P4|øp‰DrâÄ îj¬ï[Õ±±±ëÖ­ûì³ÏhËΜ9s8àëë;qâÄÎ;Ÿ:uêÊ•+}ôí¬|)¨¦‡u7Cʆè£À¡P×,5~ZÔøqâóœ@™yv†±·· ÉÈÈ¨í®¤IOÇCeddøûû›šššššúûûÿüóÏÜ¢ŸæWXX8}út+++KKËnª—ÔÔÔèéé½óÎ;¡¡¡ÅÅÅ &&&~~~ò{¦MJÒs–ÅÄÄBèÓéÊ©©©ƒ 200èÚµkDDÄ«W¯f2++kذafffíÛ·÷òò:sæLu™—H$_ýuŸ>}Ú·oOŸU­ü xtL’‰‰ u 5@IDAT —B;Íš5Kz5ééo$Ipp°¾¾¾««+«è‘ƒ“&M266®îˆJÎEIÉËTf:þÅ®¼eŽRcÉŸ?~È!´3€ÁHõÓñ¸»»¯]»ÖÊÊÊÂÂbÁ‚´}­%¦ã¡Ÿ¦øøx.¥¤¤dÖ¬YŽŽŽúúú øî»ï¤×W¾T LÇÃÃbvu‰DÕNŽéx Pöàÿ¸i|¢ž³³3m탦®¨¨¨C‡Jš´mll:wîLgYo®TøÖRË]SÔ"nU@“ƒp aЩ¿xjþƒc@-ÐâØ°ððhúø<š‡Ù³gK?AZ8ŽP;2Ö‚æí£>Òt Á­jà#ð‚ÀxA༠p^8/€ŽÀ &opxx 4w¹¹¹"‘HÓ¹õCàê—››«é,€úáV5ð‚ÀxA༠p^8/€ŽÀ Gà#ð‚ÀQèSšŽÀ Gà#ð‚ÀxA༠p^8/€ŽÀ G ÁÃc ©A༠p^8/€ŽÀ Gà#ð‚ÀxA༠pÔ<<šŽÀ Gà#ð‚ÀxA༠p^8/€ŽÀ GÂÃc é@༠p^8/€ŽÀ Gà#ð‚ÀxAà¼5Qôx–eéÿÃú CàØ@äC†aXÄ‹ÐtàV5ð‚ÀxA༠p^8/Eóõ4*€—–2ãöïߟŸŸß¶mÛAƒEFF¶oß^ÉúÏž=‹¿råÊÇMLLºwïfkk«éóИÑâ·bÅŠ»wïöîÝ[OOïСC|ðAyyyuë—––¾ÿþû{öì!„x{{wèÐ!))iøðáÙÙÙõ•Eúü€F¬ù޹¹¹»ví255ýá‡víÚuúôé)S¦Ü¸qcãÆÕmòùçŸøá‡'Nœˆ‹‹Û»wïgŸ}&‹cbbÔ˜1–Â0ož7H£Fú–þhdšà¸ÿ~‰DÞ±cGš²téRƒS§NI$…›\¼x±M›6³gÏæRÆŒcffvëÖ­ªª*ueŒ!„°ìÿžRM_K§4&Í?p¼|ù²–––———"XRR’••¥pCCÃÁƒ·nÝZ:QGGçõëׯ_¿VWƇ‡\$@#ÓÌǰ,›ŸŸoddddd$nooO),,tss“ß*11Q&åòåËtèLúƒ!666š>!Íhþãøñãµ´´¶nÝÊuOܵk×_ý5vìXmmmšRVVvïÞ½‡BLMME"Qzzzrr2·“;wî|÷Ýwzzz½{÷Öô hö€{£_}õUll¬………§§çýû÷/]ºÔ­[·¯¾úŠ›¦'))iáÂ…vvv'Nœ „ܸq#$$¤²²ÒÅÅ¥sçÎþùç•+W!ëׯÿý÷k<œH$’U-_Ê !,&qh‚äë[ˆf>5}út“£G&%%™››Oš4)<<œÎÈ£PÏž=Ož<¹eË–ìì윜33³÷Þ{oîܹvvvš>i-Ž LÅG‚FG€¦¡Å¶86ÿ>Ž €ŽÀ Gà#ð‚ÀxAàØ˜°,aMg@1ŽÀ Gà#ð‚ÀxA༠pld0°+ŽÀ Gà#ð‚ÀxA༠pl|0°%ŽÀ Gà#ð‚ÀxA༠pl”0°ŽÀ Gà#ð‚ÀxA༠pl¬0°ŽÀ Gà#ð‚ÀxA༠p^86b˜‘ŽÀ Gà#ð‚ÀxA༠plÜ0° ŽÀ Gà#ð‚ÀxA༠plô0°ŽÀ Gà#ð‚ÀxA༠pl 0°ŽÀ Gà#ð‚ÀxA༠pl"0°4 #ð‚ÀxA༠p^8/€ŽuÅFæŸ|"aÕq$ÌÈ…ÀQ XÂJÿS˜ÐÔ!p^8/€¡¦3Ð@8°ÿþüüü¶mÛ4(22²}ûöJÖ///ß·oßÁƒ>|Ø®];{{ûéÓ§»»»kú<4¦EŽqqq;vìÐÕÕíÝ»÷ýû÷:”——÷Í7ß´iÓFáúb±xêÔ©×®]300èß¿ÿ«W¯~þùçôôôùóçÏ;W“gBV³mÐüoUçææîÚµËÔÔô‡~صk×éÓ§§L™rãÆ7V·Éþýû¯]»Ö«W¯ÔÔÔíÛ·ÿç?ÿ9r䈡¡á_|‘““£éÐŒæ8îß¿_"‘„‡‡wìØ‘¦,]ºÔÀÀàÔ©S‰Dá&?üð!äã?æš$íìì>üðꪪ .ð9(Í 9iþãåË—µ´´¼¼¼¸@0pàÀ’’’¬¬,…›Ü»wOWW×ÑÑQ:ÑÎÎŽRXX¨éÐŒfÞÇ‘eÙüü|######ét{{{BHaa¡›››üV;wî eKæÖ­[„.]ºð:.aÂ`êohNšyàøòå˪ª*CCC™tBÈ“'OnÕ­[7™”K—.íÚµKGGgÔ¨Q|Ž+‰ì‰½ˆˆè[{bOȯš. P…H$Òt‹f8–——BtuueÒõôô!ÏŸ?¯qUUUß}÷Ýúõ뫪ª6mÚdll,¿ŽLF{bÿkî¯ò+©V4¬ÜÜ\™”J6óÀÑÐÐa˜—/_ʤ¿xñ‚üÓî¨ÄÏ?ÿ}÷î]ssóµk×0@~ùûÑ""¢‰ÜÝj†ÁXhòšyà( ä[KKK !Ü8ky¯_¿Þ°a÷ß~Ûºuë°°°3fT7é£èéÍI3 !¦¦¦ùùù¥¥¥úúú\â½{÷è"…›H$’Å‹Ÿ9sfÈ!+W®T_´Í:Ÿªªª´´4.…eÙÔÔÔöíÛ»¸¸(ÜäÛo¿=sæLHHÈ_|QǨ‘6:jº Ô ùŽãÇ×ÒÒÚºu+í×HÙµk×_ý5vìXmmmšRVVvïÞ½‡BX–MLLl׮ݒ%K4w€F¤ùߪîÔ©Sdddllìˆ#<==ïß¿éÒ%GGÇ™3gr뤦¦.\¸ÐÎÎîĉÅÅŨ;Mÿ­o!šGP Ž „Îè¨Ö=²óŠ@j}›ƒêbDétܹ€ú„À±á¼yŒL]Z ¹ÐP¾#Z žáVuÁ²oÝ›–~Í0a cƒªkOGù~4dDÔõ#ð‚À±¡©gxµÂ{Öõ ƒcšzcšëшZ5 NŽ2ã`л Z›…a"bGhhqÔ –!ñ4)›2ŒŒ€„[ÕÀupdˆ²°E›$4&5ƒ¥1#[mt¨<¦hx¸U­Iì?dv»ÕÐ@8/5L Ž #ð‚Á1šÄüÓ=‘ù§Ù‘Ua6oé‡ÔŽžý·¬ íjàcc‚»ÍЈ!pl0›#Ô?Ž ƒÆ@ã…Á1šÁ(¼+Í‚‡ @c…G `Â2ŠÆP3o]Í–E‡Ghd86:*>KÝ ž!p^86Fx€54B€Ž”*Žèæõ cã…ÖШ p^86jµntÄÝj¨7;ܰ€F#ð‚À± @£#4›ts€úÀ±i@£#hœPÓ^hÔ¨(//ç³í·ß~«éì× Ã*i¤¦³MLóU››»k×.SSÓƒvìØ‘²fÍšo¾ùfãÆQQQÕmUZZú믿?~|ïÞ½š>U± R©'V#v€Ziþ-Žû÷ï—H$ááá4j$„,]ºÔÀÀàÔ©S‰¤º­†>qâĦ5²Œ¢)–%,ûÏ Mgš’æßâxùòe---///.E  8ðøñãYYYnnn ·Z³fMEE!$111##CÓ'Q_þ6ƒjÖÌG–eóó󌌌ŒŒ¤Óííí !………ÕŽôÅO?ý¤é“¨—rá¦Gì<5óÀñåË—UUU†††2é„'OžÔÓqE"‘ô[{{{ò믚.Œj!vPBæg½%kæ#:­««+“®§§Gyþüy=777Wú-Ó'Ü–jt$ˆª'ó³NZp(ÙÌGCCC†a^¾|)“þâÅ òO»#pøŒ³Fp Ðb5óÀQ(È·,–––B¸qÖ-ÔÛŽoÒjŠ Ñ0 Ðb5ÿéxLMMKJJh¤È¹wï]¤éÜ5.˜”hþ£OUUUZZ—²ljjjûöí]\\4»F±#T§ùŽãÇ×ÒÒÚºu+í×HÙµk×_ý5vìXmmmšRVVvïÞ½‡j:³ ŽÞ­–ICìŠ4ó>Ž„N:EFFÆÆÆŽ1ÂÓÓóþýû—.]rttœ9s&·NjjêÂ… íììNœ8¡éü6 d òšàH™>}º‰‰ÉÑ£G“’’ÌÍÍ'MšNgäQ;†{BÒtb.ECdbGð,"ub±‰~ÍÍ•.V†aXEkÊFe Q­:꺆!¬â0Q>Ñ$€H$’ŸÜ±%hþ}×ÐÈ’&ÕIPQOÇ7KÐßþÀj€Ø(Žj#Ó¯±‰5:*EcG„-\‹Óðjai:ÎdkÈí׈Ø %C‹£zÈ77²ÿ¤óµØ¦2ÃbZ2´8Ö#.dX–!„e{sÏE ¬h™8ª’ÖÂ77€††oߊ ¹{Ä &SlH,Q<¡c5§ŒØ ÅAàØp¸x‘ù_pÖÈÚ Y¾±c­†Z#Äh8ÖUß´5Jµ2Ò’!D6Dc˜&4!;ÿGË y yÀà5`Þþ§0EéÖ¬ÔpÂÈ©îˆõ¢úÉÀ«É}#k4€zƒÀ±®X¹ò‰ŠC1–•3ik#˾õ¯úã6† S<´~M}dæÚÊР‘! ©¶}šŽšÁð¿#̲խW_Ž\Þ¦æLÊ4´@ó…Á1ðoÇŽ:ŒcßN—iÃ|«ßä[ã¸k±#@!p„š1Õ>H!onX¿yO;0¾5æ­¹{jÀ ¯fßjG”¹ƒ-[òڳ̤? ŽÀ‹|€ÆÅa ûVìX£Ú·üIÝÁþ_*×[ò­ dß ÐfÞ •ÏòƒJA j;*QÛ§ÎpáŸÌV\PøO:KÞƒ©j #¨Í?œfYîyÖrxΩp÷Õn÷ÏMm©12,£x„ ߨ”Q%„hæ8‚êXFÉ"ÅËê%cYòÏDŒÔLÿ»™^‡~MøÿöÎ6ÆŽªŒãçl‹Øtén«²¼ˆ/ Ü­ôƒ¬¶D^Ú &¦Å(dS¢"J¢I) ÂK–`ûAhâš4Fh*à"Á0Œ…’‚ µ-M[CliÁ6Ø&MwæÞ™3眙{fîÜ;÷Îýýr³¹÷Üyfž™çìÿ<ç  Ú !?AÛ´18Fjƒc‚¹‹kÁöÙ.6g¸tõ…LÙQ}RဠÌaÎT‘Gh£ƒcÐN­ÂÅe¡] ë=Ý_Ä?×Gx‡ýu©¬5l¢ â“Df¸´n@ÕA8B„Ú1ìã(’—¨ÎŽ5[d˨ýZE³ûÙð:v"A/¶3݈Ѐb l ‚'ëû‹^Îü¥”ÎÙ‚¢‘2BÊ6e$µŒŽ"´7†)摼õO±2®z 2ŽP*ìQ(D¨íRÆV—ãd|ôLrë¶õ•”Áz؉­Û-yEÒz„#C½›£¬7ì­ÕJÛÃ1ƒ;IRLŸßQÆe¤l¾È«u;þ^ykÁ|z±c#ÄlŽP Fk±lÌæ¨J’޾GM®’HT©CrÒÇn7yY“Ž$) ,ŽPÎ5c‚vjÎéØÑfk©š)+w‡Åì>Z+Ö˜åöar+?’”P.Gh?dlÞ\²—u1©ÜBKÅV¦"’ž*aÐŒ2Fs‹Æ<‘¡¤Žï¤#t;GèI Á픹–¢NHSª´%rÂ…°]>¸š¸]W@)%r“ÚÞZJRf2'I NŽÐA:¥›¶S‹ ùgt‘¶°Ó×0lcšÏ™D”®*y{€¶Â<ŽÐY _K¦ý ªF#‘ÙDí¦$#½]éïí '“.h|2K߬Ôä̸=ô"d¡ãèyÇàM/HIÍV ˜öñ;6%Q4Pl×á>ƒÖíôŒ©³ýº® ô>Gè8RFlíØÅÃh´™ ¥]¨¥ŒR…ºµUôqlìÓuÁüæô¦HUšƒ½é$Av’Ò'ô¤èŽP¡š …Ž]Ò Ø"Ò§{¥}5Ì d,­¦+ÅFZW¦]’¡”Ù[ÃÝ:Êá'Ì/*e—)}ÊÇ<9±¦äd;+ ™4ÒÚþBv=¨Tƒ–ÎOjý&mçDˆœº­SÖkÞw`2óvo) ¡ ôŽz;ué-ÔR$M—ã{f¡‚4Gm·â”l¶AaÎÞO,IYÐqZ™Z(G®íPŒª†. ¢ÇÚ©ó’áeÔ0ý••±'¥Ò;#:$e8¸ÛëísªYµ`¦í[YklÈ8BIè«E8‘¶ë*kÌGO¡Dó1*±­›ÒÖ &=O)îcñnËgß³³÷™Ã=sÙ‘t€áå¡kÄp^žp‡¬Z³Ý óäk Gk@é ¡$âRFYodC2ò1È5ªîè ™6l%Ç´<õAÝ2|£ÂБæà›fÙ‘~¦9z"fMR !’V¤LÊ\¦{Õ¥•[kfÝ­ ÝÂz£µÕÔŽeÌ㓞l}Tu¸VM}‡m³!½V÷nÙœ"&uL{Ó™Ìe¼0e?v6´Mª+÷n; 5™•ÒA8B·,ó§¿i”×ïnÊG5–>Cd˘G¯õ;ãY¢+™3pYb”¢¢¤+‡îORÚÕ(I$Ú™tì˜ÖÌZ ¯@8B¶YS Ö{C*%‚–ëþ¼i9O;¶ra»ÕB4m{RNPïI™?LʼnþtÕTƒ e©—øì°ØShñ@ù–ŽÌAŽ Ú§ÿæÝÂz† ã(5ɘѾK’ŽyV¦É°o%ÌFZmÿí¸óÌÓÎÁ§ŠJK+J)”²‡àd™à=í@2œ(@{¶izšª¨ŽiÍtLkæ8D+Ò’@8B¯ts¬wvLŸý1œë' m™ñ§å•i2½]¡¶³Ó¤û佯‰;Ò¨E·ÊW;5iYu…3’jû·× ßo”ý±X­i´ïw•Ö̱hP¾9’Z9¶štGè‚tc˜h”úÍØXx¦+2‹Ýˆ>ÔFo‹Èrs“ d0ÕPа¶—öN[€H‰¢îÚÞûÓõMlÚK½†7{°IYs¼(:¦5;sˆZ3ŸInßÚmàÂz }üD˜nÔ&~Œrlq³ø²4ᮚ®·§Ï€-ÝùÈâ„W{Ï&Ûæªéb—…ôr(æÂ…ŽhµÝÖ)yM‘ZíeêGQ„ÿ9´f+š©3IǬtlt|“¬r˜t[8 +Gè%bS«¤Ìæh¬F6dkå2U*äœ-²èn”^îïÚ‹S5Ô›ÚãC»¦eàUв ûæ•Ííļ¦I©½zº<ù†.ƒÇ"Ñ\æ#<íô!;Ò®Ãñ¦v×¥Hüè>SýÊ5ú›d=‹ÂÉ¡5[1ÉJŽïNÑœã"tFžvçµêNŽÐ3Ø«J£…Ú £|2æ},Þ¿<ûl"`“¥XëóDz8—ò…{Tµ-ŒŒ^•] ,m<:_¶¬5üwò!ì# Sk*cÃØ¿„Œî°‰ÿö¢DS“2é* œ²dB$¯{¬ e S>¬™šÝ;6g+tft|“¬Os˜ä뫚ä­]ú„#Tš†vtO\ãü5ÒÆÃFIGÏÞ“úrÛ>ÞåÓ¯Ía´ÔwnŒ•0“F¯Ê&žôÌ϶[kÆÓuæmÈ#¦65´¦lú`ªÓ´œ«¥5 WÆ1æ—f"„[I]çÜõÊõ¹ä6I–§IO>³&¥ZIéòÊv,>½|V“Ø¿C‚Il3#|í1Iôª@o¯Z11m 7©5’LªÊ@Ùt/O<ñÄøøøØØØe—]vÛm·}ðÁe{ÙI¾ÑJ!¤Š^‰;ÐÓ!Íáèèhf³¨n®5•ñRR()T½©>z¥%ó_Ø% ‰sš–cÑÍ®þÁýBÖ÷n¾ ºb˜x„^š‘f‰-odü媩MÛA±ósÊÙE8ýr5;Š ª¢hœ† &ó[Î24‰j‹Vuà ¨~õ”î”*|])i›„߆A1Ëb5Rén ¡j£5£¤©‰¯Fò?c£¼qdxÊ“@¦{šÈ€@i«ñÿye<é9Ž’×D÷J¹äši??“˜WIW8Ÿ‰þ­ïj…@8ºY¿~ýí·ß¾gÏž%K– NMMÝxã'Nœ(Û/ÈŽŸª+Èú{¥¤Œ^Ú®Œ=Ç^úœ@HÑ–å]²O-Ô…„MôR#<ÃØV—q­.ç­KIS_jº3KÛU–+Ümêš«T­©Tðä£+ñÖóºé-zYs\´&‡ïãŸÍ:4Ûj[Wy¶ÖŒªÑ"‘nbjSõ» Å¥¡5e|ƒð VºLâD½½µ Õa2W)s˜dvËÛD6B߯ÚÞÅ ìܹsrrrddäÙgŸœœ|î¹ç¾ûÝïîØ±ãÁ,Û5ÈNÆYÃé!ÃW°“úK×$ÉG¬çV¬\ftÛ26dÛРm¸©sÔ(‡ØjóÝD™·S=cåí—ónÇr(!Õž¤l¹j6 ÇF yêÈkÆïüfê§ÑÇÔ‘µäi‘x%.+£ªïïç¡5ýóšáƒYÎ>¾ÑÞ x¸IQ´9’II&²_³z¥õðv™ÄB=`øËS—‰U[¿ŠÉ&öQL¡©wŠ~uõ_`•bâ•ÓÍb6LeŽHU@8:ضmÛÀÀÀW\–Ìš5kÙ²eGŽÙ¾}{ÙÞA'È:}W0úPêMᆰ«ÿÚ†ÇJÊ>ÆÅ¥ldììÔ`8²'–=òi–Šo“ÚTE¿¨z~.®„ÌN? ÊU¬Ž@˜×§iÞWë*^¢pÿ*ÙÄÙåÀám #]’Ú*TaS»ñm¬å]3IosõX˜=èÜ& AI;J˜õRÂÑU#¬_VVV­NÒšBdJzXªWqëú7 ½Š2sÚ2aRI+¥„>é%Þh õ$a=û…1eÓ£;®DW°RÂQœ&ªñ ¬]©FN/í(.ç¿°Ð×÷ÒÏEçE‹³*˜ˆÞÄäiSGÿÝÄê;Døl¨ûШt)'RUUm¢”Ú½{÷‚ ,X —×j5!Ä/^\¶Ð^¢ûAkI'a:So§zb¥YYýÛ÷++c§5ÕÙ…i%ñÂpÿÚeqJa­õlc‘³ù;½M¼k—ÄSõŸòzŠ#~”Äì¦s8|úQ\ΨÜd÷ì÷õ£ÇG"7”tt™DG‘õë_Wê)í­R ¥BA_ŸÑIZ)“zå•ÅF88(„8zôhÓ=Ôkô z;š^’þH&e”åÒÿ65q¾ijâüXE“Øw‚‰ñãÞ’I²W-šøxÕç&EƱ½¡÷B¯ÍYM¤ž‹Ns,›IП\³'MŒí 6‘õœ¿äŽ6ÃÃÃRÊãÇå~ø¡bhh¨l¡ûÈÚ>ö‰ÑûTùJÒLÃ?C+Cí[ˆ‰çöþZYo‹4šÛíÖ÷LÜf M'Mºö„¾£&†mZP,­i½‘1Q—ϤQSÓ~Žtågb¾Ïjbw lv…-qÖ²I£GF‹&Ö)äø¬G“Ù³g Ù™ÅcÇŽ !ÂqÖuòý^Ø?»éÚÑe>ZÓ§>ÚÔÈ}ú¤B[4ÉÔ+ÈÃÄL &.¯MRODF=ÕÞdºÔ>Û‹ŒÏ †‰gP¢ëÒN“6„¾Õ+ܵ&~¡WÆöÂzcpJL›&Ä1.Oó˜DòË膘|.¦6í£;¤Ç4­Y-ŽFFFvïÞ}ìØ±yóæ……{÷î ¾*Û;è}V£hǹëç’N+&ŽcA¡Ïo’£!÷ãb+ÿ¢àÐ+}Û$]Ѷh¢iè´œ®pÿ 7ÉéÚû¦ãq°|ùòééé—^z),QJ½øâ‹óçÏ+Û;èKrü0å§J9äi“¦Žõ„IØ•DØPåq¹ìuóœ/sû$­°E“¤9Ïõó¼»ÃħI4Vr(Ûú&Gij’ò{ûB‚â}4 {Ò«O::"Œ <ôÐCA¿F!Ääääáǯ¾úêÓN;­lﺞ¢dn—›”è@S5ïm’.dÓWæ-ݤ• 0'Ë4j’Žà¼@8€Gðá^ À „#xp,Œ'žxb|||llì²Ë.»í¶Û>øàƒ²=‚6òÎ;Žþýïw~Ke¨'NœøÝï~·råÊ‹.ºhéÒ¥7ÜpÃ_ÿúW{3B_=þûßÿÞyçAè¿úÕ¯þô§?}çwìÍ}µy÷Ýw¿øÅ/ÞrË-öWýz„c1¬_¿þöÛoß³gÏ’%K§¦¦n¼ñÆ'N”í´‹Gy$é+*Cõ8uêÔ÷¿ÿýûï¿ÿСC—\rÉùçŸÿÊ+¯\ýõ?ü°¾¡¯ÇŽ[¹råæÍ›…_þò—?ö±ýùϾòÊ+ÿñè›új£”ºõÖ[?üðCû«~ ½‚–yûí·.\¸téÒƒ%÷ÜsO­V»ûî»Ëv æèÑ£Û¶m»ãŽ;jµZ­V{ã7Œ ¨ •dÓ¦MµZí;ßùÎñãǃ’ýë__|ñç>÷¹·Þz+(!ô•$âºuëÂ’©©©Z­¶jÕª°„ÐWž7¿ù?ÿùÏõòþ =ÇxüñÇgffV¯^}æ™g%k×®Ú²eËÌÌLÙÞA‘\yå•×^{íþð‡¤ ¨ •äÙgŸBüò—¿œ3gNPrÁüèG?šžž¬ }%ùÛßþ6gΜ›nº),¹êª«Î:ë¬7ß|szz:(!ôÕf×®]ëׯ_¸p¡ýU†áXÛ¶m¸âŠ+Â’Y³f-[¶ìÈ‘#Û·o/Û;(’{ï½wÆ 6l¸ôÒKP*ÉÞ½{çλhÑ"½ð‚ .B8p øHè+ÉðððW¾ò•~ô£záé§Ÿ~òäÉ“'O }…9uêÔš5kæÏŸ¿víZûÛþ ýì²èy”R»wï^°`Á‚ ôòZ­&„8pàÀâÅ‹Ëö ãòË/Þüå/±¿¥2T•ßüæ7³g›¿–o¾ù¦â¼ó΄¾º<úè£FɶmÛöïßÑEégB_m~ýë_ÿóŸÿܸqã¼yóŒ¯ú6ôÇV9~üøôôôðð°Q>44$„xÿý÷Ëv:•¡ª\xá…FÉÖ­['''O?ýôo~ó›‚Ð÷¯¿þúÔÔÔÞ½{_ýõO}êSA9¡¯0o¼ñÆoûÛë®»îÒK/ uú6ôÇV OÍ;×(B=z´l¡sPúéééM›6=ðÀÓÓÓ¿úÕ¯>þñ Bßìܹóü£RJ±hÑ¢|ä#A9¡¯*'NœX³fÍyçwóÍ7'm ú2ôÇV–R?~Ü(ÆíOÐ'P*Ï+¯¼r×]wíÙ³çì³Ï¾ï¾û®®„¾ò|ûÛß^µjÕáÇŸ~úé|pûöíÏ<óÌàà ¡¯*ÿþ÷¿7oÞ‰3èÛÐ38¦UfÏž=44d?[;vLŽ´‚~€ÊPaNžñ‰ë¯¿~ÕªUÿùÏž{î9Aè+Ê«¯¾ºyóæþð‡Ÿÿüç“¶éÛÐ# `ddäÈ‘#A] Ù»woðUÙÞAG¡2T’™™™›o¾ù÷¿ÿýòåËŸþùÿøÇv‚ÐW]»výâ¿Ø²e‹QŒ¯?xð`ð‘ÐW]»v !6lØ0Úફ®BüéO]¹re°Y†áXË—/Ÿžž~饗Â¥Ô‹/¾8þü±±±²½ƒŽBe¨$<òÈóÏ?Í5×<üðÃI‰B_=æÍ›÷ä“ONMMåû÷ïB|ö³Ÿ >úêñéOzEœ`JsÎ9gÅŠË–- 6ëÏÐ# `|||``ࡇ ×#šœœ<|øðÕW_}Úi§•ít*CõPJ=úè£gœqÆ­·Þ𲡝###£££/¿üò /¼¾ýöÛ›6m\²dIPBè«Çå—_¾.ÎÏ~ö3!Äâŋ׭[·fÍš`³þ =ƒc àœsιå–[&&&¾ño,]ºtß¾}[·n]´hÑ~ðƒ²]ƒNCe¨ï½÷ÞþýûçÌ™síµ×Úß~ë[ߺîºë¡¯(÷ÜsÏ5×\sÓM7}ò“ŸT±±±Ï|æ3|ùå—gÏžýõ¯}bbž/*à /¼ðÖ[oŸuÖYÆWT†Š±sçΩ©©S§Nr±páÂp” ¡¯###+V¬xÿý÷÷íÛ·cÇ)å—¾ô¥uëÖ]rÉ%úf„¾ò¼÷Þ{=öØèèè×¾ö5½¼C/ƒY©Ò¡#xp/Žà¼@8€Gðá^ À „#xp/Žà¼@8€Gðá^ À „#xp/Žà¼@8€Gðá^ À „#xp/Žà¼@8€Gðá^ À „#xp/Žà¼@8€Gðá^üÖtZDEwÆIEND®B`‚statistics-release-1.6.3/docs/assets/expinv_101.png000066400000000000000000000515461456127120000221740ustar00rootroot00000000000000‰PNG  IHDRhŽ\­AS-IDATxÚíÝy|L×ÿÇñ3IŠXÑH¬%!b_j_KÔ©}+EQKK-U{«¨¢ íW­mi-åÛjõG;­¢öX"¶ ±‡4Éüþ¸:ß1™ÄÍd&w{=þ˜9sçι˸ï|νwLf³YÏã¦t  GÈBp€,GÈBp€,GÈBp ×É“'MÏS¼xq¥»©°ˆˆˆÿû¿ÿû¿ÿû¿›7oZ,X ­Ÿš5kfjn|ðôÆvíÚ¥7M3òäÉüùó›5kV´hÑ\¹r………}ñʼn‰‰6SÚݸ¾¾¾µk×þàƒ¬'ƒ·Øxÿý÷•Þ œÉC逮tëÖíÁƒBˆ-[¶„††*Ø“?ÿü³cÇŽ/^´´œ?þüùóëׯŸ5kÖ‚ ÂÂÂ2žCJJÊ­[·nݺuàÀ9sæ¬_¿¾N: .Å8ÂßßßÓÓ3m{¡B…”îšåË—¯dÉ’BˆÂ… gÏÌ£¢¢5j$EX‰‡‡Grr²ôøÊ•+;wÞ³gO•*UÒÎвq>|h)4&$$têÔéüùó9sæÌà-6|||²kÈfçĉ–ÿ:¶lÙâºŠŽŽ~üø±Ò‹ë ¼yó:qM˜0Aš[Û¶m3õÆÖ­[[6Ö›o¾yôèÑäää«W¯~ûí·ùòå“Úƒƒƒ-Ó§·qcccß|óMËK³fÍzî[èç8p¾-[¶XÎr3fŒÔøàÁ___©±F)))âÙsø®_¿Þ½{w__ßÀÀ@ÿéÓ§§óÇ'Nœøê«¯úûûûûû7mÚtܸq÷îݳžÆzž ï½÷^Íš5óåËWµjÕO>ùäŸþ±™ç7†Z¯^½|ùò•*UªC‡‡v`†cÇŽ5™L–"_Ó¦MM&ÓÇE:§!¦¦¦®\¹²qãÆ%J”È•+W‰%5jôÃ?¤íaÆÒÎ|Ë–-Òã1cÆ,Z´¨J•*îîî… îÛ·ïŠ+¤—¢¢¢Îž=›ñÌ‹/¾hÑ"Ë–Ÿ|ò‰´D Jéä @32UaêÞ½»4eîܹ¯_¿n6›§N*µ¸»»:tHšÌRQkÒ¤I©R¥lþƒêÓ§õ<8v!DñâÅwîÜi™Ì2ÏF•+WÎfâN:YÏsëÖ­þþþ6Ó˜L¦#Fdv†–ˆlíÁƒf³yþüùÒÓ5jXfÛ¹sg»ÿ-wìØ1íGgPqL;óöíÛK- ¸ÿ~Ú·´jÕªjÕªU«V]µj•œ»cÇË«‘‘‘ìôŠ#—˜9s¦t~Û£G¦OŸ~ÿþý/¾øBziÈ!Õ«W·™~Û¶m.\ðóó ±Œö.Z´(22Rzœ˜˜Ø¹sç .!råÊÕ¼yóV­ZåÎ[qùòå.]ºÜ¿ßfž;vì8}út‰%j×®+W.©ñçŸ>xð ôøÞ½{]»v½qㆢI“&}ôQ·nÝÜÜÜÌfóÌ™3-Z”©Ž9òüùóR—„?üðƒõS?ýôÓO?ý$„0™LMš4éÙ³gÅŠ¥—V­ZµmÛ¶¬¬üÝ»wKÚ·ooY™ÖÖ­[wäÈ‘#GŽtèÐAÎ CBBräÈ!=>pà@Vú@ÓŽ!æµsçNi??¿O?ýTz<þüÑ£Gß¾}[Q¬X±)S¦ØgëÖ­cccwîÜ,5~üñÇÒƒÏ>ûLº@ØËËë÷ߌŒ\·nݾ}û|}}…ׯ_ÿä“OÒÎsöìÙ/^Ü·oß‘#G,QÏg̘!]üѱcÇ­[·Nœ8ñÇüꫯ¤W'M𔩾øâ‹¥J•rs{úÿjÑ¢EK•*e2™ì.¬%1bëÖ­?üðÃñãÇ-yúÏ?ÿtxÓüóÏ?RB:es›L&ËeOׯ_O;ÝýaøðáNùtêApà*}ûömРâñãÇóæÍ“¿þúk»50¹sçJWì)RdÚ´iRûž={?~,„X·nÔòî»ïZNæ«T©Òˆ#¤Ç– ,*V¬8xð`éqÙ²e_yåéñ¥K—¤–ôöÖ[oYÞõæ›oº»» !bcc;–©Ê×¥K—eË–-[¶lèСR˽{÷=z$=–B¶c¬Ïø,R¤ˆÃó±ñâ‹/¦?£áv<‘ÞíW,E8!„ÉdZ°`AÕªU-W{´iÓ¦M›6vgX±bE뛇7oÞ\z`6›£££Ë—/eó’¤Y³fãÆBœ;w.55ÕRðBØœY @éAjjªôÀriˆÍ<-Î;W¹reù3”OúÄ„„„7:tèÈ‘#L;ÚîËEÓBˆ´wívØ­[·¤^^^i_µ»?XÖÝ 8pÄòåËåÜݺ|ùòÍš5³Ô‡ –Þ”67€Ì;···÷Ý»w…ׯ_/V¬˜ôX¤¹bÑ¢E¥?¾qã†õ«6ÃÄ6OïÝ»g}›C»âãã3˜CzÃÐr$%%;ö?ÿùåÞŠžžž~~~ÿý·Ãó”äÈ‘Ã××Wê¹õÝ¿­Ý½{WúÜ\¹råÉ“GÎl-#Ôi¯%²÷ZÇP5Ú¿ÿ† ,Oíž5(±œ–'ILL´ ‰–,YÒËËËÛÛ[zzíÚ5ë)-OsäÈQ°`Aù}óòò²ç6mÚtÞžnݺ¹hÍL:uæÌ™ÉÉÉsçÎý믿îÝ»׫WOz°víZ»7÷)[¶¬¯¯¯¯¯¯åŠìŒíÚµ+))Iz\«V-­êGpà*ÉÉÉýû÷·ÆÝ±cÇâÅ‹íN|òäÉ«W¯ZžnÞ¼Ùl6 !räÈQ¢D !„år™M›6Y¿Ñò4((ÈÃ#s£(¥K—¶tµ”ŸüùóçÏŸßîp¼SÌ;Wz0gΜAƒU®\ÙÃÃ#..Î)3·œ²»`Á›W#"",åÆ Ê™¡å‚¡ûì3éqË–-3ÛæM›J.\(åT!Ä/¿üòâ‹/úúú–,Y2+'ZJtiÝ¿ß2~çÎéÁŸþ™Å»ðX´nÝÚ²hï¾ûîäÉ“¥ºlRRÒÒ¥K{õê%½TªT©jÕªe<«ëׯ÷ïßÕªUÒÓ7ÞxÃúJFÃ9ŽѳgÏôîP8oÞ¼¦M›FGG[¦GŽ9jԨŋ_¾|ùöíÛÇ_¶lYÚ7þúë¯åÊ•;xð 4Níææ6yòdéUi—.]º{÷nƒ BCCÝÝÝ·lÙ"ýIáÂ…?øàƒÌ.ÅØ±c¿ýöÛ„„„ß~û­I“& 6ˆŠŠªS§N»@ëL–Óz û}ðÁÒoômÛvõêÕJw'[ýóÏ?RÝ´]»vJ÷da¨”ñ /h CÕ…àYŽ…‹c GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈâ¡tTªcÇŽÇ·iôõõݽ{·Ò]PÁÑ¾ØØXOOÏ’%KZ7æÏŸ_é~(†àhǽ{÷îÞ½Û²eË/¿üR龨ç8Ú+„°)7ÁÑŽK—. !J”(¡tGT„¡j;¤àxíÚµž={ž>}:wîÜåË—8p`•*U”îzg2 ³YéN¤é”0™…êz¥Àz0«oÛ(nìØ±¿þú«"  L™2W®\9yò¤››ÛG}Ô¹sçç¾=88Xé%@“¢Îž .SFé^Øq6êl™àg:¥t§@ÅÑŽk×®yzzŽ1¢gÏžRËž={øÉ'Ÿ4hРH‘"σ1w&5 f£¨ EØ.*d¬b2©saM♎¶HÄ9Žv|ÿý÷Gµ¤F!D½zõÞxãÄÄÄ-[¶(Ý;eåªU«–âìÙ³Jw@G[f³9%%%55Õ¦ÝÝÝ]‘/_>¥;€N©ò²X#8ÚºtéRùòå{õêeÓ~äÈaàs޶J–,Y½zõüüóÏ–Æ#GŽ,Z´¨H‘"Í›7WºƒÊàvކ=ÖSq´£lÙ²«W¯nÛ¶m||üÆïÞ½Û¶mÛˆˆ9©8BÅ©ÜÇÑ>??¿3f(Ý ¡âYŽ@iŒSkÁ² Á²€¢8ÁQ;¸*ðK†Ù̘wm ‹ŽjA”ÉN†½ã?YÁP5PãÔšBp€,G€Œ˜„É,(‹ Ap€LG NpÔ‚#d!8@‚#PãÔDp€,GhUÉ’%ùõ²ÁjtìØ±.]º*T(oÞ¼5jÔ˜5kVrr²õ‡Γ'ôßÛ·ooܸ±ŸŸß‹/¾Ø AƒÕ«W+Ý}ô‰àÕ‰ŽŽnÔ¨Qddd‹-FŒ‘#GŽ#FtêÔÉzšÕ«W·k×N±~ýú&MšÄÆÆöèÑcàÀ7oÞlß¾ý·ß~«ôB2Ä ŽÚä¡t IIIIBˆ9r¸bæ#FŒ¸{÷î¾}ûjÖ¬)„˜íçç§äêØÅ8µ–qqŒª™ÍJþËØ“'O¬Ÿ¦w1Š···9}éÍ|ÅŠ+V}æÌ™råÊ¥½ƒwûöíW¯^mý2¾¾¾ãÇ—n!Ù¼ys“É´yóæ 6¬råÊJ¯!@œà¨qG8¨víÚaaa ,HNN~ë­·¼¼¼¦L™’õÙJWFŸ>}úôéÓ6/•.]zûöíßÿ½uãĉçÌ™3oÞ<77·råÊ­\¹Òzä8‹‰SÁœ.888**ÊÕoQV@@@±bÅþøã¥;â Í­p]Љ‰ Pº°ÅvQ!]m VížãhØãWU€l¡ÁÔ˜ÞrÁ²pŽ#1hÐ ›åÝ#8£FRº MÑË8µÁ1T YŽ…à\Œqj½ 8@‚#d!8WbœZGŽ…à`ŸÝª62‚#pÆ©õ…àYŽ…àU ™4i’Ò½8„qjÝ!8B½Ž9²{÷n¥{žòPºФ¤¤$!DŽ9\1óääämÛ¶íÙ³gîܹ©©©J/+xŠàG+Vì?þ°´Lš4)""âàÁƒYŸù­[·š7o®ô"²†qj=b¨ÎqñâÅC‡9eVþþþf³Ùl6Ÿ9sFéÅÿCp€, Uõ’““×­[—Þ«mÚ´Qºƒ`œZ§Žªf&?=ãYJII±~šÞU,>lÛ¶mºÁ+hÁQÕÔüû˜Ož<±~š˜˜hw2oooÒ!ú@p„ƒ®^½jýôÚµkv'c¨ G/ãÔ&aRsGG8èúõë­[·BDGG=zÔîd U G8ÈÃãk×®ááá©©©9sæ´;CÕ`,z)7Â.‚#T»ví°°° $''¿õÖ[^^^S¦LQºSÀ…ŽpÉd;vìØ±c--“'OvîGS­@=¸8pÆ©õŽàYª†# äåå¥t/@¶"8£FRº •aœÚª€,GÈBpYÆ8µ1lñCÕv@ÖPn4 ‚#d!8@‚#ÈÆ©„àYŽ…àÅ8µÁ¡FÇŽëÒ¥K¡B…òæÍ[£FY³f%''+Ý)ŒÎCé¶¢££5j”’’Ò®]»—^ziË–-#FŒøý÷ßW¯^­t×V(7ÁŽHJJBäÈ‘Ã31bÄÝ»w÷íÛW³fM!ÄäÉ“ûöí»hÑ¢76oÞ\éEÀ¸ª†#‚ƒƒCCC­[&Mš$弬۶m[HHˆõÜ,„Ø»w¯ÒË 0~o0=Tá/^zô¨ÝÉ2;Tm6›GU¼xñ¥K—º»»+½”àŽp‡‡G×®]ÃÃÃSSS#""Ò»WNf‡ªOŸ>}æÌ™råÊõë×Ïæ¥öíÛ‡‡‡+½Ü`l†/7J+ 8Xé~(„àÕ®];,,lÁ‚ÉÉÉo½õ–——×”)S²>ÛóçÏ !NŸ>}úôi›—J—.Mp@AG8Èd2;vìØ±––É“'g}¶¯½öšÓà,ülLøÉÁç»zõjõêÕßÿ}¥;€¢ ?N ‚ãs˜ÍæÑ£G?xð@éŽ(Œ¡êçøþûï8 t/TgРAÜ(Œ…r#Ž;wîܬY³Ê–-{æÌ¥û¢.£FRº »1T®äääQ£FùøøŒ3Fé¾ (ÊBPqÌÀìÙ³OŸ>½hÑ"ÆdÁ1=Gýæ›ozôèQ¯^½“'OföíÁin ©ô2á111JwÁèâââ”îì`»¨6J€¡þÛ °]Ø-ZX=‹ 6ìí¿ Žv%&&J¿z÷Þ{ï96‡¨¨(¥Ï tÀVP)¶‹ )¼QL&a6d·xzÇg—Öú°n2‰¨(ãfG‚£3f̈‹‹[±b…§§§Ò}P .ޱuàÀ+V 0 J•*J÷¥qY ¬Pq´uîÜ9!ÄܹsçÎkݾfÍš5kÖEDD(ÝGm•(Q",,̺åîÝ»»ví*R¤HµjÕ *¤tÈ.”ñ,‚£­ 4hÐÀºåäÉ“»víªQ£ÆgŸ}æºÏ5ìi¶@+ŽªÀUخÅ¢dÇ{§FTŸ¯B… T¨8€4 Yn|z÷o¤àYŽàY†,7B‚#d!8+”‘>‚#d!8€QnD†ŽÜ‹G‚#d!8!ãÔx>‚#d!8Ê…àYŽåFÈCpFǽxd"8`l”!Á²00ÊÈ ‚#€,Äl‚#FEB& ÁC¢Üø/îÅ#Á²0ÊpÁ²0ÊpÁ²0ÊÏâ’êL!8@‚#†A¹YCp€,GŒr#²ŒàYŽåF{¸¤:³Ž…à€ÞQn„“ Á]£Üç!8 _¤F8Á—T;€à€NQn„³ Á=¢Üèl¬QAp€LGt‡âØópeŒcŽ…à€¾Pn„Ë Á¡ÜW"8 ¤Fy¸2ÆaGÈBp@(7ÂõŽ…à€öQnD¶ 8áʘ¬ 8 q”‘]Žh©ÙˆàYŽhåFd/‚#0 ®ŒÉ"‚#ÚD¹1±²%G4ˆ % Á­¡ÜèNpÌ:‚#d!8 )”¡‚#ÚAj„¢Ž…à€FPnÌ®Œq ‚#d!8 ”¡GTÔu 8ãGg!8 j”¡GTÌdЉŽVºÀSG€ŒpŠ©Áµ"°8'8:Á²P%ÊP‚#êCj„*€nq‚£sPÊP+‚#jBj„Š€>1NítGTƒr#Ôà€:¡zGÈBp@(7:›³NpdËX#8 4² 4‚àYŽ(Šr£ p#ñPº*uçÎ/¿üòСCqqq ¬X±â!C•î@_HÐ*ŽvÜ»w¯uëÖ+V¬B4nÜøÅ_\¿~}xxø‰'”î€bŽvÌž=ûæÍ›Œˆˆ˜5kÖÊ•+§M›–œœüñÇ+Ý5€ŽPn„ÖíØ»w¯§§ç Aƒ,-íÛ·/T¨ÐÉ“'SRR”î@H.Ã Ž®Ã9ŽväÏŸ¿L™2¹rå²nÌ™3gRRRRR’§§§Òh©ÚDp´cÙ²e6-Œ­Zµ*©Á1#GŽùå—_bbbŽ9òÒK/͘1C惃ƒmZ"##•^C‹‹‹Sº °ÅFQ'¶K6 Œ‰Ž112§g£dJ`@`tLtŒ»zŸ3·À€èè˜ààJ/–Z3µjÕ*³Ù,„¨P¡BŽ9ä¿Qé¾ÃV@@€Ò]€-6Š:±]\ËdfsfW1%Sœ»ºÒÖÓVˆ ‚‹c2Òµk×Ó§OïÚµkôèÑ7nìÖ­Ûƒ”î€2t;–ñŒ›L¦‚ öéÓ§K—.ׯ_߸q£ÒK Ð,®‰q1®§v5]Ç®]»~ýõ×v0lذ¡C‡>w&çÎ;vì† lÚ+T¨ „¸qã†ÒK Ð&R#´OWÁÑÏÏoöìÙ]ºt¹xñ¢uûÆÃÂÂ6lØP¢D‰çÎÄËËë×_ýå—_lÚcccg™Cj„.è*8FDDtéÒåøñãmÛ¶•~0ðÎ;#FŒx÷Ýwïܹӷoß5kÖþøã×_}РAÕªU+V¬Øßÿ}èÐ!!ħŸ~êëë«ôR´†r#ôBWGIݺuW®\Y @ÄÇÇ¿üòË«W¯–Ÿ…•+W^·n]XXØíÛ·7oÞ|ãÆfÍšýßÿý_ëÖ­•^8€Ö¡#ºª8Jþøã &ܾ}»B… 7oÞ<|øð;ï¼3eÊù3)Q¢ÄÌ™3•^ ‹+Æ©ÉüiéªâxÿþýqãÆõë×/>>~èС?ÿüsDDDË–-wîÜ–öz\‹è}ÑUp”ÒaPPÐÏ?ÿüöÛo»»»{{{ùå—Ÿþ¹Éd7n\ß¾}•î#À0HÐ]Çøøøþýû¯^½º|ùòÖíááák×®­[·î®]»”î#ÀHو멳®Îq\¾|yµjÕì¾T¨P¡Å‹/]ºTé>h•®*Žé¥F‰ÉdêÙ³§Ò}åFè”®‚#Ê#5f/Æ©³Áç!5B׎8 ©1Û¹®ÜÈÆ´‹àYŽ8*Á€,#5*Ëb²Ÿ®îã(„ذaÃ’%K.^¼hNç ¼oß>¥ûÐR# CWÁqË–-Æ “»»»+Ý]ÑUpüöÛo…½{÷~ûí·½½½•îÀ(7*„qjEè*8ž?¾X±b£GvsãÜM€ë‘uŠ ›ý¬þùçþýûÅ‹'5²áB9”•¢ŸŒåæææíí}îܹÔÔT¥ûÐ;R# I?ÁÑÝݽ_¿~ñññ³fÍRº/:¤«s[µjuùòå… îÛ·¯eË–ÅŠË‘#‡Í45Rº›£Ü¨(Æ©¤«à*=8vìØ±cÇìN¥t7ZFj„é*8¾öÚkJw k¤F¥eC¹‘œ]ÇÏ>ûLé.ô‹@ÃÓÏÅ1@ß8»QqÚ®8._¾\Q«V­   ËÓŒuïÞ]é^4ˆr# õà8yòd!ĤI“¤à(=ÍÁi¤F@¡õà8dÈ!D¥J•¤§#GŽTºGÝ!5ªãÔj íà8xð`ë§o½õ–Ò=è ©Ñ`ØàãâÒAˆP Ê*Ap€,Gì¡Ü¨”Õƒà@¤FÀ‚#Ï"5ª åFU!8`…Ôh`lüçÒöíxžËl6oÛ¶-..®råÊÕªUSº;u#8Ò[pܶmÛW_}Õ´iSéÞà&LXµj•ôR·nÝ&Nœh2™”î#@•HêÃ8µÚèj¨úàÁƒo¿ýö™3gRSS…§NZµj•··÷믿^¬X±+VlÛ¶Mé>h•®*Žß|óÙl?~|·nÝ„›6mBL›6-44ôâÅ‹-Z´øñÇCCC•î&@}(7ªåFÒUp<{öl¡B…zöì)=Ý¿Ž9^yå!DÉ’%K•*­têCj{<ºª¾s环¯¯ô899ùÔ©S+VÌ‘#‡Ô’;wîøøx¥ûPò‚*QnT']Ç"EŠÄÅÅ¥¤¤!>üøñãÚµkK/¥¦¦ÆÅÅ,XPé>Ô„Ôd†®‚cÍš5ïܹ3{öì+W®Ìž=["½´hÑ¢Û·o—.]Zé>TƒÔ¨V”UKWç8öïßíÚµóæÍ›7ož¢R¥JÒ½;wîü×_ !úôé£tê@j2OWÇ¢E‹þ÷¿ÿmÔ¨Q¡B…4hðå—_JwmŒ÷òòš>}z:u”î#@H*¦H¹‘=B&]U…AAA ,°i\ºtiáÂ…ÝÜt•’"#ŽÒ[p”ܹsçĉ×®]+R¤HýúõsæÌIj@ý8»Qåôoݺ5oÞ¼U«V%&& !zõêU¿~ývíÚU¨PaÚ´i>>>Jw (Ê@èª÷Ï?ÿ¼ýöÛK—.õòòj×®¥ÝÏÏoûöí]»v•Ò$À Hê¦T¹‘ýB>]Ç =z´aÆ‘‘‘Ó§O·´ÿôÓOmÚ´¹xñâ’%K”î#@!¤ucZt8àîîþÉ'ŸäÎÛºÝÝÝýÃ?Ì;÷Æ•î#@ ¤FÀtOŸ>`ùÕAkyóæ ¼té’Ò}d;R£êQnÔ ]Goo÷jBBB¾|ù”î# {‘‘!vLÑUp,_¾üµk׎;–ö¥Ó§O_¹r¥\¹rJ÷Z@¹QCt»téb2™Þ{s'OZ·Ÿ¥» p R#àbº Ž÷îݳi1›Í©©©ÒãB… Ù½78@Hš¢†r#»ŒtO:eÓ’’’rõêÕÍ›7Ï›7ïÉ“'}ô‘Ò}¸ÈººcZîîîÅ‹ïÓ§ÏìÙ³ïÞ½;|øp3ÿ³€ÎµF åF8FçÁÑ¢N:¥K—¾|ùòåË—•î ÀyHZCjÔ4£G!„ŸŸŸâÅ_Tº#'!5ÂQì;Ž1Jp|ôèÑ©S§|}}óäÉ£t_ÎÀ‘_ƒ(7j®.ŽÙ»w¯Ýö„„„¥K—Þ¾}»iÓ¦J÷à ¤F@ º ޽{÷ÎàÕ|ùò :Té>²ŒÔ¨Mê)7²9LWÁñµ×^K綾^z©mÛ¶Å‹Wº€¬á˜¯MêIÈ ]ÇÏ>ûLé.\‰Ô(Ê(Ç4Ô¨Yª*7²e…¶+Ž;vìÈì[5j¤t¯™ÇÑ^³T•‘EÚŽ Èì[¢¢¢”î5 “H€:h;8fp5 @'HZ¦¶r#{Si;8r5 èÇy-S[jDÖèâ˜Ñ£G7iÒDé^d#5*£íŠcZ [·n½té’M{bbâæÍ›ÝÝÝ•î @R£Æ©°ÜÈ>•uº Ž7nÜèÖ­Û•+WÒ› {÷îJ÷ GxSaj„Sè*8.^¼øÊ•+5kÖ _·nÝþýû?üðCOOÏ3gÎ,[¶¬{÷îãÇWº€ç!5j©QÇtÿøãœ9sÎ;×ËË«I“& 4¨W¯ž"00pÊ”);w Rº›€ô‘áìYN¡«‹c®]»V²dI///!DÁ‚}||Nœ8!½Ô©S'ŸÅ‹+ÝG@ú8¶kåF}ÓUpB¸¹ýo‰^z饘˜é±»»{ppð±cÇ”î ¤Fí#5êž®‚c¡B….^¼øðáCéiñâÅ:dyÕd2ÅÅÅ)ÝG€=¤F¸û—³è*86mÚ411qäÈ‘.\BÔ¨Q#66v×®]Bˆøøø?ÿü³hÑ¢J÷Gu] Ühºº8¦gÏž7nܶm›Ùlž?~HHˆ‡‡ÇàÁƒ_~ùå3gÎõë×Wz™@ƒ8€ë‹&R#\D‡ÁñÔ©S7nܰaÃ¥K—¤–Š+†‡‡·jÕÊÏÏOÎ’““{÷î}ôèQooïºuë>~üxÿþý»víz÷Ýwßy祗´ÃdBõD+©‘¿V\DWÁñ³Ï>Û¸qãåË—¥§%K– /Q¢D¦æóÓO?=z´zõêß}÷§§§âܹs=zô˜3gN“&MÊ•+§ô‚€pèÖ­¤F¸Ž®‚ã·ß~+„ðóó ¯P¡‚c󉌌BŒ?^JBˆ   NŸ>}÷îÝGx>R#”ÃÞç:º Ž:u ¯Y³¦›[–.ú‰‰‰É“'Mî BXÊ™€tqÜÖ#Ê: Žü±Sæ³`ÁÛ5sòäI!DñâÅ•^JP7R£‘!ÑUpt–òåËÛ´ìÛ·oáÂ…9sælÛ¶­œ9Û´HÃßPJ\\œÒ]€-6Š:eq»ÆDG‹˜¥—CWÿ²FÇDÇmlÖÀÀ€èèçîƒ-Z´Pz±Ô‚àø)))Ë—/ÿôÓOSRR¾øâ ___9ŠRºã° t`‹¢Nn—/ f£º‚‚_–§µFMmW§¯®´‡õ´"ƒ 8fdÿþý“&MºpáBáÂ…?ùä“zõê)Ý#P%†§uJs#Ô쉮Fp´/))é³Ï>[ºti®\¹† Ò·o_ËÖ€gp¬Ö)Í¥Fd‚£©©©ï½÷Þ¦M›š6m:qâD™· #"5B5سÁÑŽ¥K—nÚ´éõ×_Ÿ8q¢Ò}ã@­_”aÁÑ–Ùl^¶lY¾|ùF­t_@­ø-A]Óbj䯘ìAp´uóæÍØØXOOÏîÝ»§}µ]»v=zôPº (Ѻ¦ÅÔˆlCp´%Ý.+11ñĉi_åÂjFGjÔ5¦FöÊlCp´õòË/sF°ã³®i45";eé7BjÔ5í¦FvÌìDÅð<\ £w¤FÈDpdˆ#³Þi75"û1T H©Qï4Ù=³ÁËz§éÔE0T Hƒ“ @ë©‘¿kAp<‹²h=5B) Uþ' 0Ô¨{:Hüu£‚#à_&SLt´Ò€k‘‘G€&Gc#ÐAj„²8Ç Èh úHì­Ê¢âÆÆqØHp *Ž`TÜsÇ0ô‘¡G0$J7†¡›ÔÈ>« U€ñp6 R#œ‹àÃØ0t“¡ U€apR£‘è)5òÇŽzÀ8ö ©.BpàØk&aBè&5BmŽ k O‰ž O—ˆ?yT†àúÅQ×HHÈ\U :ÅQ×Hô—¡NT@wž6]¦FþðQ'‚#è Ç[ƒ!5";@/(4Œ^/ &5ªÁtƒ­Áè²ÐõãâÐ>R£Áè85²/«GÐ2†§‡Ô@³8Ì©Ê"8€Qh4½^ ótéHAp­ák<:.4 öhMáâÐޱƨãÔm!8€F˜L¤F2 StL´Ò½på²Sk Á´@:ºr€5“0é{„Z5ˆs@ݸÆt©Q›Ž bZ ‰ÔÕ"8€*Qh4$}ßsç‹IjÔ,‚#¨ÇUC2B¡Q°wkÇ€Êp\5$R#4Š#¨ÃÓ†dáiAjÔ‚#¨UC2H¡Q°ƒëÁ”F¡ÑŒSh„ž@QÔa É8…ƧËËn®GP…F£"5B»Ž Ž¥†dÀáiöt!8@ö¢ÐhT,4 ötÝ!8@6¢übH¡GÈ”_ŒÊh…FAjÔ5‚#¸RC2`¡Q°³ëÁ\‰B£Q°Ð(H@p× 2•1 ‚Ôh Gp¡FeÌB£`—7 ‚#8…F£2l¡Q„àÎÃñÓ¨ [hìõCpg ÐhT/4 özƒ!8@–Qr1* 0‚#d%£2r¡Q Œà!2•Á#£ 5Á2#§Qylúé`ß76‚#d…F£¢ÐȾAp€L ØbHDFÁ¾@Š-FÅØ´ 5 Á2Dd4* ‚Ýi }TZ ‰Èøt=°û# ‚#ØC¥Å¨›~ºH°‡àÏ"2…ƧëoÒGp+”Y ‰ÈhÁ7#8€‚2‹A­‘ñ\G†Gd4*Ng´àK™ŽŒ‹!Qh´Æ—ò5C"2ZãK€Ì"80Ž–†Dd´A¡ 80"£!mð=€ÃŽ ƒ‹ñÓâ{€¬ 80 ,ÆCdL‹ï²Žà@×8T÷ÙI‹B#œ‚à@§ˆŒ†D¡1-¾ p"‚#=¢ºb_¨ÁѾðððëׯ+Ý @ï8N‘ñ¹ø*@+ŽöM:õÉ“'BˆeË–íÙ³Géî:ÈqR÷ˆŒÏEd„¶íkРô`ûöíJ÷ГI tGà"œÈ(‘ZDpt‰àà`›–ÈÈH¥;ehqqqJwBHUF!b¢£E­²¸]…Ñ1ÑÒÓ£ô©‘t_Æèè!DŒŒ5Ä—Eq-Z´Pº jApt‰¨¨(¥»[”·eU]±l 6Š:9¶]ž•fæãÙ*c&V_e¥=¬§­Á€‹1 §kŒJËÄ÷ú@pà2*u _ä0=ÍÕ| G.@dÔ/JŒ2ñ%€.8GKý¢Ä(_èÁ€“p´Ô)JŒòñ%€îdGK¢Ä('2Â8޲€È¨G”åã£qSºj÷ñÇGEEU©REéŽ*c2 “I˜Í3õÄ$Læ§Û•-›.i÷ç"8È$˜ºóo 2™…Ùò£/°Ëz÷çb¨€l Ëég1ÊÇî‚#Y8fê g1ÊÇ…/€5‚#€ õ…£LäEÀ.‚#€tu„£|ìø@ŽÒàÈ©äEù(1rX!2êCÒò±×ò!8xê%Fù(1 8†GdÔ>ò¢|äE +Ž€QqüÔ>ò¢|ìï€Sã¡Ä¨qäÅLaœˆà ‡Pã’ù(1®@pŒÈ¨e”å#/.EpôŽÈ¨YäEùÈ‹@ö 8úEdÔ&ò¢|äE ›="2jyQ>ò" ‚# #N5ˆ¼(;8 8‚#  ”µ†¼(yP‚# qDFM!/ÊG^Tˆàh‘Q;È‹ò‘5#8DdÔò¢L–°(دu#8ÚA)F#È‹2±GšCp´€£e"/ÚEpÔȨn–°(È‹b0Ђ# VDF£¸(ÅE@gŽ€Êp¤U1ò¢#8ªA‰Q­È‹rð'`G@ˆŒêÃÉ‹rP\Œ†à(ŠÈ¨2å ¸ÁP^•!/>ÅE‚àd7JŒªÁ`ôsØ 8مȨŸ‹‚8€ôã ¬ŸËª¸À® =nJwÐ/“I˜LÂl~úÙÎôt˜ÌÿÛ lˆÿ1™þ÷ϲ‚¢£c”îõ¢â¸£ÒÊ¡¸˜1N[GÀy•Vg.f€°ÀYŽ€3PbTÅÅ ¸ÁÈJŒJ ¸˜Â"W#8¡Ä˜½(.¦‡° ;L"2f¢]ÖIQ°'È^G@F¥³ #ÑiQV Gày(1ºÅÅ´‹Tˆà¤ƒ£‹Zcд€_ŽÒà_\Æê—JLÑ1Ñüš‹Ýßna¿ ZGà_6p8‰uXä§ÿ¬“¢MXõc¨à,F—à ÎV Gg1:׸<]œ­@§Ž0$JŒÎCX$E†Ap„‘Pbt¢`€!aBpxÏÂ"eEàªjèÚ¿¯ÆDGsœÏ¬g/ÿ5âÑ\ÍÞÀ˜ŽÐ)îÅèô’¢AÂ"I2ÆP5ô…³3ÏÈcÐŒ>@¦¡\(† ‹$EÈ ‚#4Ž£lÆ ‹$Ep"‚#´‰¼(ƒuRÆ‹61Q°ƒ€S¡5 IgÈheE ŠŽÐJŒé3NX¤ Ê"8Bõ(1¦aœ1h Š *G¨%Æg¡¬HATŽà•!/þËeE Š -G¨CÒz/+¦)({k€ö¡4c—u\V|î¸sLLŒJw G(ÄÀyQ—eENO# 8"{2/꯬HLc"8"»éF%Eb"@Bp„‹¦Ä¨›hb" =G¸†ò¢>ÊŠÄD€|G8•®ó¢Ö“bÚŒ(ô¹¡®Bp„“èñFM'EJ‰§#8"kôUbÔhR¤”ÈG8D/yQ‹I‘R"@)Gd†öó¢¶’"¥D€ª!ƒ–óâÓ¤øï/Û©6)’êç¦t b&ÓÓfóÓZ`ú_¿M&a’º-=PºwBˆgû—f[ÿ@U¨8ÂM]"­æÑgêˆ=!8ŠF†¤Õ™ɈÝ#8BíyÑ&& $E2"À˜Ž¦Ö¼¨ª‚" ‚£ñ¨//ª!)Ú ˆBE+ å C5yQñ¡gŠˆ8†à¨w*È‹JŸ ˆ–GdDÃ}uJ¹[0¦½G¡ÍÝ ]º¸éÝ1::†›#ETõE‰úbv9u!óböœ¡H@@…ŽZæú¼èê˜H@@CŽäʼè¢qg":@pÔäEçÓK‡Ní2P ÁQõœ—)`LGµÊr^ÌbL¤|lUÆÑ¼èpL¤|dâàéúùçŸ;uêT­Zµúõë7.!!Á…–Éûu?÷&Û6©Ñîý±ÓÞ%ÛúŸÎ´hÑBé.ÀEØ.*ÄFzPq´oÖ¬YóçÏÏ“'OÍš5/]ºôË/¿œ;wnÉ’%žžžÎüyõE™ÕD—€KQq´#**jáÂ…þþþ‘‘‘ .ܸqcÏž=;öùçŸ;ç2¬/f\M&³0™3U;$5§ 8ÚñÓO?¥¦¦6ÌÏÏOj3fŒ··÷† RSSŸ¯½¼h7&JéÐòtÔ€àhÇÁƒÝÜÜ5jdiqww ¹uëÖáÇ37¯gCßÓ(hÕj“¥˜H:*Dp´e6›ÏŸ?_ @ X·—)SFqùòeYsù7>“ Ÿ‰O£ éhÇØzôèQJJJþüùmÚ½½½…·oß–3“Y“¹L™à2ÁϾ`õ<8XΜà4Á¬qõa£¨ÛE…Ø(P ‚£­ÄÄD!DžZ±b…¥½xñâ_~ùeÅŠ•^&Ís웼téÒÞ½{÷îÝÛÒØ£GqãÆ)½@0 †ª³Jºü-Ož<6íyóæBܽ{WéêYÖW~JJÊ’%Kúõë÷èÑ£éÓ§ûúú*½LšçØFILL5jTñâÅß{ï=¥—@‡Ø(÷ïßBœ?~ýúõ3fÌØ¿ÿÎ;‡ råÊ•¡C‡rˈ¬sì›rïÞ½éÓ§?|ø°B… ]»v}õÕW===ûí7.uG¶¡â˜Uùóç7™L=²i—n&"ýíÉâÊß¿ÿ¤I“.\¸P¸páO>ùÄÈç¬8‘ceÆŒqqq+V¬`ÔØ(¹rå’LŸ>½I“&ÒãÁƒ_½zõ—_~Y·n]ÇŽ•^,msì›2jÔ¨?ÿüs̘1o¾ù¦ÔrõêÕ®]»>|Íš5J/ôŠcVyxxx{{§ýëðÞ½{B˵rp‡W~RRÒÔ©S{õêuõêÕ!C†lذÔè,l”¬X±bÀ€\rá"l”} ,øÛo¿­_¿¾páÂ=zô6l˜tW¸Z¦V~\\œ"11ñĉi_ågá¡Bl”øúú.Y²dÏž=>>>¡¡¡C† ‘~f N‘Ùâëë»~ýúùóçïÚµkÇŽ>>> 64hP¥J•”^…Éüì©€]\YŽ…àYŽ…àYŽ…àYŽ…àYŽ…àYŽð?ï¿ÿ~ppðÞ½{³mV_ýuppðòåË­ßµcÇ»¯€²Ž %»víÚ¹s§Ò½`PJw ­qãÆ¾¾¾Õ«W—ùêÈ‘#ïÝ»wêÔ)¥;ÀˆŽ ¤ *T¨PÁ±W ›1T @“RRR’““•î Á€fHŽ\¸paÊ”)5jÔ¨P¡B£F† bsŠ4ÙÕ«W=Ú¡C‡Ê•+ÇÅÅY^]¿~ýÀ6lX§NÞ½{÷Ýw)))i?k×®]C‡ 4hÐï¿ÿn3A||üÌ™3[µjõòË/¿üòËaaaÓ§O¿qãFfgõÍ7ßdpù‹õ«Ÿ~úipppBBBJJJpppµjÕÆ¼lÙ2›wÍœ9388ø‹/¾Pz‹Ð‚#?~ü²eË?~\¢D‰„„„M›6õéÓçÛo¿µ™ìôéÓ½{÷>qâÄ“'ORSS…f³yôèÑÇß¾}»ÙlöööÞ·oß§Ÿ~Ú½{÷„„ë÷®]»¶_¿~›6mÊ•+×;w¶mÛÖ¿ÿ¯¾úÊ2A|||÷îÝ,XpõêÕ—^z©X±b—/_^¼xq·nÝ2;+ùjԨѫW¯œ9sšL¦^½z½þúë­ZµBlܸÑz2³Ù!„hÓ¦ÒÛ €ÞhÌ‘#G5j´wïÞM›6>|x̘1&“é‹/¾8wîœõd~øa¥J•/^¼{÷î—^zI±zõêß~ûÍÏÏoåÊ•¿ÿþûÆ·oß^µjÕ#GŽÌž=Ûú½¿üòKhhèþýû¥5j”››Ûܹs;f™àâÅ‹Mš4Ù½{÷o¿ý¶fÍš]»vÕ¬YóÊ•+[·nÍÔ¬äkҤɸqãrçÎíææ6nܸ÷ß¿nݺùóç?tèP||¼e²Ã‡_¹r¥bÅŠ¥K—Vz[Ђ#ñóóûÏþ“?~!„»»û›o¾Ù½{÷ÔÔÔ¹sçZO–'Ožo¾ù¦^½z¾¾¾RË—_~)„˜:ujµjÕ¤–Â… Ïž=;gΜ+W®¼~ýºå½EŠùꫯ¼¼¼„}ûöíÞ½»bΜ9ÒÉÉÉ79rdžàt\Y8Dz Á² Á²ü?‘º…³ókIEND®B`‚statistics-release-1.6.3/docs/assets/exppdf_101.png000066400000000000000000000552321456127120000221450ustar00rootroot00000000000000‰PNG  IHDRhŽ\­AZaIDATxÚíÝy\TõþÇñï.²‚kŠ…“`‹¹¥âй f¦¦yýin¹¡æ–zÍ-÷¬4,KÑ,Ô«WQÑÜÈ}É‹‚(.)¸ B0¿?ŽMã°x€Ι™×óáã÷c¾sæÌçÌÑË»Ï÷|Ïht:žÇNé`Ž…àYŽ…àYŽ…à À¢££5ÏSµjU¥ËTXDDÄÿûßÿþ÷¿wîÜÑ._¾\ú|êׯ_ ½Mžw•øàƒŠá ÏË£GFŒ±råJ!Ä•+WöîÝ”Ïö×®]›2eÊ÷ß/„HNN^ºtiHHHþoÀF0U ÀŒvïÞ­¿ômüøñÒà£G<<<¤Ázõêeee‰g¯á»uëVÏž==<bĈÆ—-[ö¥—^êҥ˩S§ ±Ã &h4šGI[·n­Ñh?~,ò¸Æ1;;û§Ÿ~jÙ²eµjÕJ—.]­Zµ-Z¬Zµ*g……ãìì¼xñâ%JH/^¼˜ÿöU«V]¹r¥þbÊÏ?ÿ\*è80£Ö­[÷ìÙsíÚµBˆE‹9ÒËËë믿NMMBØÛÛ/_¾ÜÞÞÞð%iiiþþþ—/_–>xð`„ qqqß}÷~›'NôèÑC¿bÏž={öìY³fÍš5kš5kfTÆýû÷›4i#=<{öìÙ³gÏœ9®ßfïÞ½|ðÁï¿ÿ.=|ôèQBB¦M›F޹`Á‚BìP¾=z¾ðêÕ«W¯^ŠŠŠˆˆX¿~½IN„££cùòåoܸ!„¸{÷®œ—Œ1bÓ¦MBˆ;wîûì³=zØÙÙétº/¾øBšä•¿ÃO>ù$>>^*I±jÕ*ÇFÂÃÃ¥Ô¨ÑhZµjÕ»wïÚµkKOmذaïÞ½&9 ÷ïß×gb9/iÖ¬YÉ’%¥Ÿ?n’2X:‚#€"‘æasŠŠŠ’6ðôôœ;w®ôó²eËÆ'u¼ªT©2}úô\÷Ù±cG©å«Õj¥Á3fH?Ì›7ïÊ•+B—_ý522rÛ¶mGõððBܺuëóÏ?ϹÏE‹]¹råèÑ£§OŸÖG=}pœ3gŽ´"ä½÷ÞÛ³gÏ”)S~üñǯ¾úJzvêÔ©Úá /¼ðÒK/ÙÙ=ýØÊ•+¿ôÒK&׃ÕâQ£FíÙ³gÕªUçÏŸ×çéß~û­ˆ'(33óâÅ‹½zõ’. B¼ñÆr^¨Ñhô+œnݺ%óÔ9²ˆP3‚#³ëׯŸ¿¿¿â?þXºt©4¸xñb}CуƒÃ’%K¤1•*Uš5k–4~øðá?þøC±mÛ6idøðáú+_}õÕQ£FI?ë7Ы]»öСC¥Ÿ_y啦M›J?'%%I?èÓ[ÿþýõ¯ú¿ÿû?iýêÕ«F·ÔyîåëÖ­›4Ã>bÄi$---==]úYæ´rNúTW¢D‰Zµjé?“N:½ùæ›2wò /èK*\¬ ×8(’¼îÉ¢o !4ÍòåËßxã ýjwÞyçwÞÉu‡µk×6¼y¸þÒ:N—àëëkô”¤M›6Ÿ~ú©"...;;[ßðB¼ôÒK†[–+WNúAºIâÒ¥K¹îS/..îµ×^“¿Cù¤w¼wïÞÎ;Ož›ë©×¬Á@‘ȼ'‹¯¯o›6mô}¯\oï"1ºd™2e\]]GÞ¼yÓ°ówóæM釒%K–/_^~m...eË–•š|»víªQ£FÎm ´Ã™9sæ_|!„¨Q£Æ'Ÿ|Ò¤I__ßAƒ®"/„¢§ºƒ>yòDú¹Aƒf:|–…k˜]ffæ€ §q÷ïß/Ý_:§èèhé®1’_~ùE§Ó !J–,Y­Z5!„~¹Ì®]» _¨èãããàP°ÿ*~ùå—õ¥¾dÀÝÝÝÍÍÍÍÍ-×éx“X²d‰ôÃ7ß|3xðà×^{ÍÁÁÁèK¥¡ŸÔvrrjÒ¤‰ÒåP‚#³[°`´¸ÄÅÅåßÿþ·4øÉ'Ÿè¿ÚÎГ'O† &õºnÞ¼9nÜ8i<((HZª(|ýõ×út_¸paÞ¼yÒÏíÛ·/h…­[·–~ •rªbãÆ/¼ð‚‡‡GõêÕ‹rÑ¡¾o—ÓÇõ“à÷ïß—~øí·ßLužÂ¹uëÖ€6lØ =üðÃË–-«`=Ôƒ©jEÒ»wï¼îP¸téÒÖ­['$$èogóÉ'ŸŒ;öûï¿¿víÚÝ»wG޹fÍšœ/üÏþãíí]«V­'NHóÔvvvÓ¦M“ž•ö””ôàÁÿ€€{{ûÝ»wKßnR±bÅÉ“'ô(&L˜ðí·ßÞ»woóæÍ­ZµjÞ¼ytt´þŠÌQ£Fb͇›››téäôéÓ£££GŒ¡ÿî=ggggggi³~ýú­[·N£ÑDFFšê;cäÓŸÇÇë'ý…åË—Ïë®IlÁ@‘N+‘’ÜàÁƒ322„!!!¥J•š+Ä'Ó¼ysé+sŽ9räÈ‘Áƒç ަC‡?ÿü³"==}Ë–-Bˆ5jT«Vmß¾}ÂàÂMsËõ<–+WnË–-Ò 2@0U À¬Ö®]«¿ôp„ ÒŒçÿýßÿé èc¥^¹rå:Ô¿ÿš5kzyyuéÒå—_~8p á6 48wîÜäÉ“¼¼¼<<}Z¯¢uëÖéoT<ìííË•+× AƒÉ“'ÇÆÆ¾õÖ[ÅùîTN£¿š4yòdé»a‚ƒƒ¥¯H¶ýõ—Ô7íܹ³Òµ@~˜ª…•(Q‚ÈÀ"0U YŽ…àYXYè8@‚#d!8@‚#d!8@‚#d!8@‚#d!8@‚#d!8@‚#d!8@‚#d!8@‚#d!8@‚#d!8@¥ °B¨YS«tÀŒbcc•.AG³°Í¿Lj¦Õj9)jÃIQ'΋ qRTH«µÑSÕ…àYަW³¦V£QºS#8@‚#d!8Â&DFF*]ŒqRÔ‰ó¢Bœ¨Á²ÍB§¬V†àYŽ…àYŽ…àYŽæÂÂj`e”.ÓjµJ—`[bcc•.Á2P­VKŽ)NÄtù˜ª€,GÈBp€,G3ba5°&GÈBp€,GÈBp€,GÈBp4/VP<ªW¯Î7î˜Á¨Ý¹sçºuëV¡Bggçzõê-\¸033ÓpƒS§N999I_¸oß¾–-[zzz¾ð þþþ›6mRº|ëa[Á1!!A«Õž={¶@¯ºqãFݺuÇŒ£tùØ¢„„„-ZDFF¶k×nÔ¨Q%K–5jT×®] ·Ù´iSçÎ…Û·ooÕªÕÕ«W{õê5hР;wî¼ûî»ß~û­Òa%”. X………ô%:nܸq=RºvÔëÉ“'Bˆ’%Kšcç£FzðàÁÑ£Gëׯ/„˜6mZ¿~ýV®\¹sçζmÛJÛlÚ´iÕªUBˆ &T¨PáÔ©S®®®BˆO?ýÔ××wêÔ©}ô‘Ò’5°‰ŽcZZÚÉ“'§L™òã?ôµ?üðÃñãÇ•>TM«ÕŽL:UÊyE·wïÞfÍšîmèСBˆ#GŽHãââ>|X·nÝ?ÿü3::ºcÇŽRjB8995mÚ4999##CéÉØDÇ1((èÖ­[…xa\\ÜÂ… _yå•‹/úÝ¥õ1:ÒŸÅèÊ•+'Ož,ú~233‡ R¯^=ÃÁ¤¤$!D©R¥¤‡›6m BØÛÛŸ={ÖÃÃÃðåçÏŸíµ×•þH¬MÇ™3gþùçŸBˆ5kÖ>|Xæ«233ÇŽëîî>~üø>}ú(}Ø"‡Y³fŽÜ½{wÖ¬Yöööï½÷ž4²iÓ¦Ù³gKûùùIƒ«W¯Žß¶mÛÍ›7 1åˆ\ÙDpô÷÷—~Ø·oŸüW-Z´(&&fåÊ•...JV"33sÛ¶my=ûÎ;ïäÿòýû÷0 >>~éÒ¥>>>Bˆ7n\¾|Yÿ»^oúôéñññBˆ·ß~»ZµjJ·•°‰àXgΜY±bE¯^½7n]ЗK·0›˜˜¨ô1Ù´ääd¥K€1NŠ:q^TNÁ{?÷𫬬,ÇÙÙÙ¹nöøñciZ9wÉóm®^½:tèЭ[·úøøìÞ½»U«VÒøæÍ›ƒ‚‚ìíí¶‹‹KOO?räÈG}ôÖ[oÅÄÄxzzæµóüM·k×ÎŒŸ¬E!8æ"##cìØ±U«V=ztáö`tRFx{{+}X¶ŽS Bœu⼨™š¯˜—® ÓËk1Š«««®à‡±nݺ:;;/_¾¼oß¾ÿ˜M›61"×W•)S& `öìÙÝ»wß¼yó€òÚþísÞW}zÑw+­ŒŽ‰‰‰‰‰1zêå—_Þ·oß?ü`88eÊ”5j|óÍ7K—.µ³³«U«ÖO?ýd8s¢ 8 !ÄãÇoß¾]¢D‰*Uªøûû-鎎>xð`½zõæÍ›§t¥¨”F£™0a„ ô#Ó¦M+ún;uê”O‡râĉ9ËèÝ»wïÞ½•þ<¬“M|åàsEEEµk×nРAJ ^Çb"­°\¶5U=cÆŒ3fä ÌëU~~~9oàôÌ­ÙÛ ŽÀÆŽ«t (LU@‚#d!8@‚cñaa5°hGÈBp€,GÈBp€,ÇbÅú`¹Ž…àYŽÀb4kÖlêÔ©JWa»ŽÀ2œ>}úСCJWaÓ”.ÀæHëct:¥ëÀtžDÁT50‡+W®œtÛÂT5(*­V`82uêT)çÝÞ½{›5kf¸·¡C‡ !Ž9¢ôqÛ:ŽÊ“ÖÇètJ×€é\¹råäÉ“EßOffæ!CêÕ«g8˜””$„(Uª”ÒGisŽ@½fÍše8r÷îÝY³fÙÛÛ¿÷Þ{JWgsŽ ødffnÛ¶-¯gßyçü_¾ÿþÄÇÇ/]ºÔÇÇG飱9G,‡²÷þÍ÷²ª¬¬,ÇÙÙÙ¹nöøñãààà¼ß!Ï·¸zõêСC·nÝêãã³{÷îV­Z)ùQØ*‚#–CÅWÄÿù矆322rÝÌÕÕUWð£X·nÝÀ—/_Þ·o_Œ2øÜUõ1KwãÆ Ã‡7oÞÌu³BLUoݺõÃ?|ÿý÷—-[æââ¢ôÚ4‚#0[·nEDDtìØQ‘pæÌ™\7+èTµN§;vlÕªUÃÂÂìíí•>J[Gp&àààн{÷   ìì숈ˆ¼î•SЩꘘ˜‹/ÖªUë£>2zêÝwß Rú¸m Á˜@Æ ;tè°|ùòÌÌÌþýû»¸¸LŸ>½è»BÄÄÄÄÄÄ=õòË/‹ÁQ-¸Ì`Ñ4Í„ &L˜ ™6mZÑwÛ©S§B,¦™ØÖW&$$hµÚ³gÏ>wËŒŒŒ~ø¡cÇŽo¼ñFÓ¦MûõëwèÐ!¥ËP’muÃÂÂäl–™™Ù§OŸ3gθºº6jÔè?þ8vìØÁƒ‡>dÈ¥@6ÓÒÒ.]º´uëÖŸ~úIÎöááágΜ©[·îwß}çèè(„ˆ‹‹ëÕ«×7ß|ÓªU«Zµj)}@¨ËàÁƒ¹QŽ-°‰àtëÖ-ùÛGFF !&Nœ(¥F!„Ï AƒfÏž}èÐ!‚#FÆŽ«t (6gΜ)ÝÎ~Íš5‡~îö‰‰‰NNN~~~†ƒÒb^»vÍ|u²>¨™MGé‡}ûöÉÙ~ùòå9¿Ë(::ZQµjU¥@6 Ê×××häèÑ£¡¡¡¥J•Êçf÷†´Z­Ñˆ4ý-ƒwbb¢Ò€JNNVº㤨ç¶)ÿ_¾íÚµSº@µ 8>GVVÖÚµkçΛ••µ`Á9¯Š-ô;z{{+}ÐÖ‰V…8)êÄy Êÿ¯}Î_ë9;D6‚à˜ŸcÇŽM:õòåË+VüüóÏ7n¬tEŠ!8æîÉ“'óæÍ +]ºô°aÃúõë§_amV¬ªEpÌEvvöèÑ£wíÚÕºuë)S¦xzz*]€ò޹ Ûµk×|0eÊ¥kP ‚£B<~üøöíÛ%J”¨R¥ŠN§[³fMÙ²eǧt]e³k/ rG!„ˆŠŠ9r¤ODDÄ;w®^½êèèØ³gÏœ[vîܹW¯^J× °fFkxYê• 8“îa–‘‘qáÂ…œÏÃÂjÖÇuÒèH(¦¦Õj‹rG!ަǯ«'E8/*ÄIQ¡¢ÿ®·PvJË@p€,G5’.sP‚#d!8@‚#d!8@‚£J±>¨ Á² Á²Õ‹Ë€ª Á² Á²Uõ1@=Ž…àYŽ…à¨v\æT‚àYŽ…àYŽ…àhXÔ€àYŽ…àYŽ–Ë€âŽ…àYŽ…àh1¸Ì(‹àYŽ…àYŽ…àhIXDp€,GÈBp€,G ÃeŽ@)GÈBp€,GÈBp´<\æAp€,GÈBp€,G‹ÄeŽ ø Á² ÁÑRq™#(fÇçHHHÐjµgÏžUº…Ÿ#,,LéTÁAéT*--íÒ¥K[·nýé§Ÿ”®@޹ ºuë–ÒU<‡t™£N§tÀ6s7sæÌ?ÿüS±f͚Ç+]€ò޹ó÷÷—~Ø·oŸÒµ¨ÁÑô.Å^ÒjµFƒ‘‘‘æy7ïÄÄD¥Ø$''+]ŒqRÔ‰ó¢Bœŵk×NéÔ‚àh±±±ÅóF:Ðh¼¹ÌQooo¥K€1NŠ:q^Tˆ“¢¬œ¿Ösvˆl·ã1½šÚšÁ½¹€µ!8@‚#d!8š…NèŠm¶š/­ŃàYŽ…àh.Å9[ P ŽÏ1cÆŒØØØ×_]éBòÃeŽ ͈¦#°&GÈBp€,Gó*¶Ùj.sæFp€,G³c‰ °GëÁl50+‚#d!8f«€ 8@‚c1)ž¦#—9ó!8@‚#d!8–È‹Fp´6\æÌ„àX¬h:ËEp€,GÈBp,nÅ0[ÍeŽÀŽ…à¨–ÈKDp´NÌV“#8*ƒ¦#°8GÈBp€,GŘ{¶šË€i ÁQI,‘„àh͘­&Dp€,G…1[ ,Á²•gÖ¦#—9S!8@‚£*p¥#P?‚£õc¶˜ÁQ-h:•#8@‚#d!8ªˆùf«¹ÌÁ²Õ…%2@µ޶‚ÙjPDGÕ¡éÔ‰àYÔ,X¯tV‹ÙjPê Ž¡¡¡:tèÒ¥KXXØÝ»w•.G1ÌVRWp8p`åÊ•/\¸0cÆŒ¦M›<<<>>¾L™2Í›73fŒ»»{>Û?yòdÕªU;vìHLLtwwõÕW‡êãã£ô'dÌV€BPתê;v9r$¯Ô8lذ¶mÛb· .œ4iÒåË—ëׯïìì¼qãÆdddäµ}VVÖ¿þõ¯ùóçß»w¯iÓ¦•+WÞ¹sç;ï¼£ÔÌ8Ë«€¨+8¦§§ÿõ×_y=uõêÕBÜÄ166644ÔËË+22244tçν{÷>wîÜüùóózÉÏ?ÿ|êÔ©öíÛÿòË/_ýuXXØ÷ß/„˜4i’ÒŸ€b”ŸªŽŠŠ8ÚÛÛ»¸¸H?ß»w¯dÉ’eÊ”ÉuK77·ñãÇtÿ'Nœ°³³kÑ¢…á;6kÖlëÖ­§NªW¯^ΗHknîÞ½«Ñét÷ïß·³³ÓGÉbfò%2\æ JùàèïïôèQég­VÛ½{÷O?ýÔT;×étñññåÊ•3jÖ¬YSqíÚµ\ƒcÇŽW¯^=sæÌ2eʼñÆ÷îÝ[²dIrrr·nÝôÀÖ( õë×/×$WhéééYYYnnnFã®®®âÙž¢!­VÖ§OŸ>}úè{õê%?ÑjµZ£‘ÈÈÈ"K‚HÐxkL÷ñx'&&šnoª–œœ¬t 0ÆIQ'΋ qR×®];¥KP uDZcÇšv‡ÒÒi'''£qggg!ăr}UZZÚìÙ³?~ìçç÷ꫯ¦¦¦.n¤ppœ6mšbêÔ©Rp”æ¯@ÁÑÁÁÁÕÕ5gg1--M¡_gmèöíÛûöí{ùå—õ©QQ©R¥?þxÊ”)›6m=z´²€"ŽÃ† B¼úê«ÒÃO>ùÄäoáå埖–f¸®Eº¶ÏËË+çö©©©BˆêÕ«KÆ;wî(û‰™¶éÈÚj ŸÂÁqèС†û÷ïoò·ˆ=pà@‡¤Nåîî^§NœÛW¯^ÝÞÞ>..N§Ói4ÿ|_‹t}ÃË/¿¬ì' u}sLN:nÏž=«V­:}útáöеkW;;»Å‹K×5 !BCCSRRºtéR¢D iäñãlj‰‰Ò²5GGÇfÍš%%%}ýõ×ÙÙÙÒqqqK–,)Y²dË–-•þHøB  u­ªBìÝ»÷«¯¾jݺµ4‹=iÒ¤ 6HOõèÑcÊ”)†]@9*Uª4f̘9sætêÔ©iÓ¦IIIGõóó3ìnFEE9ÒÇÇ'""B1cÆŒ÷Þ{oÉ’%Û·o÷õõMMMýí·ß²³³'MšôÒK/)ý ™³Õ@&uuOœ8ññÇ_¼xQjõýïÿÛ°aƒ««ë|P¥J•uëÖíÝ»·»íÛ·ïüùó½½½·oß~÷îÝ^½z­^½:çÍõ<<<¶oß>pà@''§ýû÷'''7oÞ<<<¼@ërÌŠ¦#(~êê8®X±B§ÓMœ8±GBˆ]»v !fÍšpåÊ•víÚýøã…ØsPPPPPP^ÏŽ”)SfÔ¨Q£FRú#P uÇK—.U¨P¡wïÞÒÃcÇŽ•,Y²iÓ¦BˆêÕ«¿ôÒK &üÞËfÂåÕÌV9Ô5U}ÿþ}éçÌÌÌÿýïµk×.Y²¤4R¦L™””¥k°Qê Ž•*UJNNÎÊÊBœ:uê?þhذ¡ôTvvvrrrùòå•®QE¸Ò'uÇúõë߿ѢEׯ__´h‘¢Y³fÒS+W®¼{÷.·Q4i¶ êºÆqÀ€[·n]ºtéÒ¥K…¯¾úªtî÷ßÿìÙ³Bˆ¾}û*]£ºðíՠب«ãX¹råŸþ¹E‹*Tð÷÷ÿòË/¥»6¦¤¤¸¸¸Ìž=û­·ÞRºF¥®Ž£ÂÇÇgùòåFƒaaa+V´³SWÌU S5Y[ ò§ºà˜«Ê•++]€­S]pܱcÇêÕ«¯\¹¢Ë£÷uôèQ¥kT®tÅ@]Áq÷îÝ!!!ÒÏöööJ—cs˜­ùPWpüöÛo…}úôùøã]]]•.Ç’Ðt榮à_¥J•qãÆ±@mT”Ïþú믇V­Z•ÔX8&ù"îò¢¢ˆfggçêê—­t-0¦¢àhooÿÑG¥¤¤,\¸PéZ,ß^ ÌG]×8^»v-44ôèÑ£íÛ·¯R¥JÉ’%¶iÑ¢…ÒeZ9ÖV€\©+8H?œ;wîܹs¹n«t™ªÆòj`&ê Ž:uRºäN]ÁqÞ¼yJ—` ŠÞtd¶䤮à¨wÿþý .ܼy³R¥JMš4IIIñððPº(›¦ºà˜ššºtéÒ 6ddd!þõ¯5iÒ¤sçÎ~~~³fÍrwwWº@ËÀ•ŽÀäTt;!Ä_ýõñLJ……¹¸¸tîÜY?îéé¹oß¾îÝ»KiÅ€;#ê ŽË—/?sæLóæÍ###gÏž­çw®\¹²zõj¥k´ÜÓ˜–º‚ãñãÇííí?ÿüó2eÊŽÛÛÛÿûßÿ.S¦ÌÎ;•®Ñ’1;Òt†Ôcbb¼½½s]ãìì\£F¤¤$¥k°Qê Ž®®®?ÎëÙ{÷î•-[Vé- ÖÀTÔ}}}oÞ¼™ëwÆÄÄÄ\¿~½V­ZJ×h[˜­zê ŽÝºuÓh4£GŽŽŽ6ŽŽ B+]£å¡éLB]÷qlÒ¤ÉG}´bÅŠwß}·FBˆÝ»w>|øòåËÙÙÙ;wnÛ¶­Ò5Ø(uG!Ä'Ÿ|R·nÝ9sæ$$$!®_¿.„(_¾ü¨Q£ ïìˆ)ÊýÀùúA Q]pB´lÙ²eË–÷îÝKHHxòäI5¼¼¼”. ÀÖ©18JÜÝÝëÖ­«tÖƒ/!E¤pp\»vmA_Ò³gOek¶AÌV¡xpœ6mZA_Bp,4šŽ (ŽÒMv ÅÄÄìܹÓÞÞÞßß¿zõêööö‰‰‰ÈÌ̬X±â§Ÿ~ªlÁ–®ÐÙ‘¦#P88<ØðáÕ«WôZí7ß|SµjUýøõëׇú¿ÿýoëÖ­mÚ´Q¶fÛ¤®€/]º455uÑ¢E†©QQ¹r寿þZ±k×®””¥Ë´lÜŽº‚ãéÓ§+UªT­ZµœOU­ZU×1]ª¾~§®ÛñÜ»w/;;[§ÓirK(iiiîîîåË—WºL‹Ç*Pêê8Ö®];--mÿþý9Ÿ:xðà½{÷üüü”®ÀF©+8 !ÆŽ»cÇÃ)é]»v}òÉ'ú Pt…»Ò‘Ùjl™º¦ª»térðàÁíÛ·‡„„”/_¾F&!!áöíÛBˆ   .]º(]£õ`ˆº‚£bÁ‚7þꫯîܹsçÎi°bŊÆ ëܹ³ÒÕ:`»TíììºvíúÞ{ïýþû‰Õ«WgAŒ™Ðtò©.8J4M… *T¨ t!xJ]‹cPü ±J†%2Ø&‚#d!8‚¦#…à!øk Á²ñTA›ŽÌV`kŽ…àˆÐtù 8⬒y!8@‚#Œ¨éÈl5¶C¥ßUmrëׯ/S¦LóæÍÇŒãîîžÿKΟ?¿|ùòèèèGiµÚaÆ5lØPéã(&RvÔ Ò…±‰ŽãÂ… 'Mštùòåúõë;;;oܸqÀ€ù¼dïÞ½=zôØ»w¯§§g:uNŸ>Ý»wï½{÷*}(jDÓaýÁ166644ÔËË+22244tçν{÷>wîÜüùóózɃÆçààöóÏ?‡††®[·®dÉ’“'OÎÎÎVú€Š «d€ëŽáááÙÙÙ!!!žžžÒÈøñã]]]wìØ‘W ܸqcZZÚ AƒêÖ­+¼öÚkíÛ·OII9þ¼Ò  ëŽ'Nœ°³³kÑ¢…~ÄÞÞ¾Y³f©©©§NÊõ%¿þú«F£ 6œ;wnllì믿®ôùMGf«°V¾8F§ÓÅÇÇ—+W®\¹r†ã5kÖB\»v­^½z9_uáÂww÷ *œ|øòË/öÙgëÖ­ÓW­ZõË/¿¬]»¶œ÷ÕjµF#‘‘‘J…å-Ÿ»UB‚Ðh¼ž¿¥"’““•.Æ8)êÄyQ!NŠâÚµk§t jaåÁQZ:íääd4îìì,„xðàAΗ<|øPçÎ9sæ´hÑâ?þذaÃ7ß|3bĈˆˆ9}ÇØØX¥ÝdtB§ñ–ÛtôööVº^‹¬ÍfqRÔ‰ó¢Bœeåüµž³Cd#¬üG777F“žžn4þèÑ#ñwßÑHéÒ¥¥fÏžìææV¡B…¡C‡vîÜ999yÛ¶mJ“d^ìÈ•ŽX7+Ž®®®9;‹iiiBý:kCNNN¥K—vttlÙ²¥áxëÖ­…/^Tú˜”aåÁQáå啚š*%E=é¢=//¯\_âééY¢D ͳÝ3i†:33SéR·uÖ²²²8 ÑétQQQîîîuêÔÉõ%-[¶LKK»té’á tïžW^yEéRŒœìÈl5VÌúƒc×®]íìì/^,]×(„ MIIéÒ¥K‰%¤‘Ç'&&ê—­uîÜY1iÒ$ý²ëóçÏ÷Ýw®®®o¿ý¶Ò  +_U-„¨T©Ò˜1cæÌ™Ó©S§¦M›&%%=zÔÏϯÿþúm¢¢¢FŽéãã!„¨U«Ö¨Q£¾øâ‹víÚÕ«W/==ýĉfæÌ™/¼ð‚Ò¤$9·u”šŽ:îü€Õ±þà(„èÛ·oùòå7oÞ¼}ûöŠ+öêÕ+$$Dº#O^èáá±zõêÇ»»» 6ÌÇÇGéCPŒFGkÈÔ´Z­5ÝÇ1'9ß%£¶¦cbb"wASNŠ:q^Tˆ“¢BVÿ»>/Ö#LŽÖØ&‚#d!8¢0žÛtä¾<X‚# ‰ kl ÁæBÓ+CpDáÑtÀ¦Q$ùgGšŽX‚#ŠŠ¾#6‚àó¢é€Õ 8Âh:` Ž0|²#MG¬Á²a24°nG˜;`ÅŽ(&4°tG˜MG¬Á¦GvÀ*a¹fGf«°hGÈBp„¹ÐtÀÊaF\ì€5!8¼rfGšŽX(‚#d!8Âìh:`Ž(\ì€ 8š^ì¥KJ— FFÙ‘¦#‡àhzÚš5…FC,V†àh:-µœh:`ÑŽæ$%#‘.vÀrÍŒÖc†Ù‘Ï Bp,´€å#8Zh:`‰ŽÅ‹Ö£þ“ ;`iŽÅNßz´ù¬ÄB, ÁQ!Ì\KÃßÙ‘õ#8*ŠÖ#°G¥Ù|둦#–‚ਸ਼ÝzäbG,ÁQ5l{ÑŒ”i: fG•±á™kúލÁQ•lµõ¨:¡ÓØÞq`”.yÐé„O³£ô3€¢è8ª›íÍ\Ót@µŽ–ÀÆf®ÉލÁÑBØØšk);*]xÁÑ¢ØÒÌ5‹¬P‚£²Ö£†ì€Š°ªÚ2ÙÆškŽØ€ŠÐq´d¶pá#MGTƒàhù¬úÂGŽì€Z­…õ¶ÉލÁÑŠXõÌ5‹¬PÁÑêXc|”ˆì€²ŽVÊ㣠ŽVÍŠÖÍèƒì€Rl%8®_¿¾k×®uêÔiҤɧŸ~zïÞ=ù¯½qãFݺuÇŒ£ôA–µ´ÉŽ(Ë&‚ãÂ… 'Mštùòåúõë;;;oܸqÀ€r^«ÓéÆ÷èÑ#¥¢h¬tæ'ëޱ±±¡¡¡^^^‘‘‘¡¡¡;wîìÝ»÷¹sçæÏŸ/çå?üðÃñãÇ•>±üøHÓYp ÏÎÎ ñôô”FÆïêêºcÇŽìììü_·páÂW^yEéƒ0)ËOƒì@ñ²þàxâÄ ;;»-ZèGìíí›5k–ššzêÔ©|^˜™™9vìXww÷ñãÇ+}f`±ñÑpµÙ€âdåÁQ§ÓÅÇÇ—+W®\¹r†ã5kÖB\»v-Ÿ×.Z´(&&fÖ¬Y...J‡? KŒdGá t敞žž••åææf4îêê*„¸{÷n^/ â¥úÉk£ kÁœ5fcýÁ±k׮˖-[¼xqóæÍ¥51¡¡¡)))}ôQ‰%¤m?~|ûöí%JT©RÅßßßßßßpÑÑѬW¯Þ¼yó”>…¨>>×KvÀ ¬?8VªTi̘1sæÌéÔ©SÓ¦M“’’Ž=êçç׿ý6QQQ#GŽôññ‰ˆˆPº^Sk|ÌÙtdGÌÀúƒ£¢oß¾åË—ß¼yóöíÛ+V¬Ø«W¯©ûˆSe|$;P l"8 !‚‚‚‚‚‚òz6000000¯gýüü,ò¾Œf¥Êø˜K™dGLÇúWUÌԴò:ç ë§ã¬³ÀDl¥ã3RM÷1× k!ï{eÀsÑq„‰¨©û˜SBb}GŠˆà“2ŒJ$ȼ&¬sÖÁf ÅG…dGÌ„àsRßü5Ù€B#8ÂüŠ=>æÓtdG ‹àˆâR¼ñ‘ì€ÉQ¼Š1>ÊÉŽÄGäã>ŽP‚á­…bw”îìÈWË G(Çü‹¯óo:>݆ikä!8BÌÉŽ˜ SÕP ³}u¡N'4ïüw)eGæ¬ÈÁ*£ÜådGòÇT5TÉÔ—?&$$ÊÙ sÖäƒàu3]|”s±£ ;7‚#,‰âc²#ñ#\ãËQŒ—?r‹Gr¢ãKS´Ëe6ŸnÌ´5ްX†ñ± ’ì@áaá Õ€$;PGX‹ÆÇBdGâ#ÀƱ8ÖÅl hX.GX#yó×j:>} ÓÖFÇVí路áÃgŸ×h Ö—ä› 6‹Ž#l€N—˜W²Ð}GZ[CǶ$+ ×w\ò°1GØ}B4H…ÈŽ‚ik€!8†'ÈÂä?ýrâ#Àê§ R§¿j±€G¦­6‚Å1Àßt:¡ÓiDa¿›;õ¬Gà:Ðht:]aî"δ5Àºc/”Ée Íó_Ë´5Àz\<³Èºà ’ÕÖ«Dpr—Ë zŒd¾ñ‘ik€õ!8yÊóæŽyÜHÜx+¦­Ö…àä'¿ƒË›ÂfÚ`5ŽÀs<ÿKež— ™¶X‚#ð|r¿0ïÉ´5À Y öeÖy$HZ‹Fpä*XvÔ¿Fòw‚”nIë`‰Ž@±x6Aê„Ðèh=, Á(€Â4sîBúÿO{EÜŇàŒ”E¾Â:ïI þ¥Ø(‚à˜þþߦIzú«Iu#8…d‚iký Ý?W=’ ªDp ÏäÙQH­Gf±ªDpŠÄ´ÙQÝë‘ P‚#PTæÈŽBˆgnN‚¨Á0“gG‘×·æL‚ (&GÀ4Ì‘E>ßRhøN´!Å‚à˜Œù²£0š¹ÎùÆ$ÀœŽ€)™);мf®s¾½„‰l€3_vùÌ\ç,B6$ÀDŽ€é™ìk sÝùsg®sV#¡ ([ Žëׯ/S¦LóæÍÇŒãîîžÏö?ÿüó† ’““Ë–-[³f;}û6iÒDéã€Å0ñ×æÜ¿œ™ë\k’ІœMÇ… .[¶ÌÉÉ©~ýúIII7nŒ‹‹[½zµ££c®ÛgfföéÓçÌ™3®®®5úã?Ž;vðàÁáÇ2Dé£%1ë´µ?skeÚÙì”.ÀìbccCCC½¼¼"##CCCwîÜÙ»wïsçÎÍŸ??¯—„‡‡Ÿ9s¦nݺQQQK—.ýþûï7mÚäææöÍ7ßÄÄÄ(}@°0:Ý3ÙÌôû:)>J ²0õéÿh4OÿëŽáááÙÙÙ!!!žžžÒÈøñã]]]wìØ‘ëK"##…'NÔ·$}|| ”••uèÐ!¥–ÇÜÙQ=>ê 5J„H€ëŽ'Nœ°³³kÑ¢…~ÄÞÞ¾Y³f©©©§NÊõ%‰‰‰NNN~~~†ƒ>>>Bˆk×®)}@°Hú0fÞw1I|y´! ‘`ó¬üGN_®\¹råʎ׬YSqíÚµzõêå|ÕòåËŒ?™èèh!DÕªU•>&X*s/—ùç ºìZNÝ–Ô€m³òà˜žžž••åææf4îêê*„¸{÷n®¯òõõ59zôhhhh©R¥‚ƒƒå¼¯V«5‘¦¿¡”ääd¥Kx*!Ah4Þ ‰f#‘ „Ðxk„ ‰ &«^!„·A÷11¡;WÏI!΋ qR×®];¥KP +ŽB'''£qggg!ăž»‡¬¬¬µk×Î;7++kÁ‚rÞ766VéC‡1ooo¥KxJ§wñôìžv½MÔ}4<†¿ya]¶zN q^Tˆ“¢¬œ¿Ösvˆl„•G777F“žžn4þèÑ#ñwß1ÇŽ›:uêåË—+V¬øùçŸ7nÜXé‚•0ëÂsy»BÜô±@£ÇÍ}ÀªYyptpppuuÍÙYLKKBè×YçôäÉ“yóæ………•.]zذaýúõËë¦@áÛ%ÿ¼c¡oúXУ’"ÀêXypBxyyÅÇǧ¥¥¹¸¸è¥§r}IvvöèÑ£wíÚÕºuë)S¦ä“/"2÷Âßδëfž{lz„H° Ö;ž€€€¬¬¬èGt:]TT”»»{:ur}IXXØ®]»>øàƒo¾ù†Ôs+ž;õ<óŽwí)ê{ädŽûûxרQ|Ç 0ëŽ]»vµ³³[¼x±t]£"444%%¥K—.%J”F?~œ˜˜(-[ÓétkÖ¬)[¶ì¸qã”®¶B¨ŠõMÿŽrÅ V§KLHà&‘`Y¬ªºR¥JcÆŒ™3gN§Nš6mš””tôèQ??¿þýûë·‰ŠŠ9r¤ODDÄ;w®^½êèèØ³gÏœ{ëܹs¯^½”>&X§b^1óÏûçüuÎcÖ3ÊŽÌh€úXpBôíÛ·|ùò›7oÞ¾}{ÅŠ{õê"Ý‘''©ï˜‘‘qáÂ…œÏ²°fUü+fþykã£áÁëqY$¨MG!DPPPPPP^ÏJ?¿ùæ›Ü…Ê*æ3ϼµâñÑðSÐ#D€:ØJp,‹RÓÖOß]=ñQÿqè1£ Ê!8*¥à´õÓ â£PI‚Ìh€’Ž€ª)ÛzyQE Ègê£ Ňà¨â­Ç§e¨mþ:—ónF r$˜Á° Š·Ÿ–¡ÎùëÜkeRLŒàX }ëQ(|Ô>{ÑLj@Q £’™ë§Å¨þ:÷º™Ô€Â 8I%3×O‹± ùëÜ€ ²K¥ž™ë§õ<;-,1A>­› ¹#8–MU3×OK²Ä+ ó;ž|s¤ J°!GÀ¨jæúŸª,} ;÷£Êq´$Ø ‚#`%Ô6sýOaV3…ç2µ ÀVØ)]SÒéžvsN¨*N÷´:Fhô!Ò étÏü‘N†á°Xt+¤ÚîãÓò¤)lo+m@-SÛ¬GÀj©¹û(„HHL0l@ZsÒ-I‹Ž#`åTÞ}¶päsŽÿy-I¡Ö3Àö› þø(Hÿ|DI*EplˆEÄGA‚̉( @Ž€Í±”ø(Hù%…êO0KCpl”ÅGA‚”#׳Hc€I›fYñQä– !24&˜Á€åÅGñlX¤ YÏkLzç¿%ÛÆ}“Ú‚(iqòÿ;J¬„±Sº6G§:HHHÔé„FóôµÒ==Üþhþ9hMÎX £Óå÷G£yÎÀÒÐq ¤œÙÂÚÛ4\iCžûWù¹ÙѺÿ1À¨‚áïGÛ ‘ây9R%­›¼dé]”=&ÅT5ÕÉk®ÏéL 5*Ä?`9Y³fM¥LLUÀ3äÌŒ!WùÌ/æ?›¨táÀ³ä̘Û*:Žðrº’‚Æd¾òï8æŸéVêAp€Ë5#æÕ‰$P>WQb¥œ=0‚#˜F^‘@YDrB!á(G0¯‚JA¦,8S…Kù{lÁ”‘O:|îú’e!ȃ]¯CЄí 8€ê<7’,ͪ A° ÃÉš°PG°ŽyZ¿~}×®]ëÔ©Ó¤I“O?ýôÞ½{JW„Âk×®Ò%À'Ŭ ýým5jxóåmÅ @ß²WS[SþM1eþQú€¥¢ã˜»… .[¶ÌÉÉ©~ýúIII7nŒ‹‹[½zµ£££Ò¥€)uµZmlll^:;Ò×4!“tÍ”é†Z=‚c.bccCCC½¼¼6lØàéé)„˜9sæêÕ«çÏŸ?yòd¥«Å:ÿ™ª[I53%¼âìeRÁTu.ÂÃó³³CBB¤Ô(„?~¼««ëŽ;²³³•®,Oæe 2±nŽ?( gYÌÿw¹þ\sqâÄ ;;»-ZèGìíí›5k–ššzêÔ)¥«ÛU yDÉ0’ÇŸK—bI´9gHÍùGé£W SÕÆt:]|||¹råÊ•+g8^³fM!ĵk×êÕ«§tsQál¸tá)ÙQUjÖTº…¥§§gee¹¹¹»ºº !îÞ½+g'Z­Véã€1NŠ qRÔ‰ó¢BZ­Öf“ T…àh,##Cáääd4îìì,„xðàÁs÷Ï‚DËÅ5ŽÆÜÜÜ4MzzºÑø£GÄß}GDp4æàààêêš³³˜––&„Я³°5Ç\xyy¥¦¦JIQ/11QzJéê”ApÌE@@@VVÖô#:.**ÊÝݽN:JW  ‚c.ºvíjgg·xñbéºF!DhhhJJJ—.]J”(¡tuÊÐèTxÇ*X¹råœ9s*W®Ü´iÓ¤¤¤£Gúúú®\¹2çmzlÁ1O[·nݼyó¹sç*V¬Ø AƒéŽ<¶‰àY¸Æ² Á² Á² Á²8(]€õX¿~}xxx|||™2eš7o>fÌwww¥‹‚B$$$´oß><<üõ×_Wº[—‘‘ñóÏ?oذ!99¹lÙ²5kÖìÛ·o“&M”®ËÖÝ¿ÿË/¿>>Bˆk×®)]írsskÕªUéÒ¥ K•*õäÉ“'Ož(]MËÌÌ;v¬»»ûøñã•®"))IQ­Z5¥ QSÕE¥ÓéâããË•+W®\9Ãñš5k !®]»V¯^=¥k´QþþþÒûöíSº!ÄòåËŒÿ7'::ZQµjU¥«³]kÖ¬19qâÄÕ«Wßxã ®ÒVÖ¢E‹bbbV®\éââ¢t-xoÞ¼Ù»w˜2eÊøúú4ÈÖ–]‹*===+++çµ±®®®Bˆ»wï*]  ¾¾¾F#G -UªTpp°ÒÕAœ>}zãÆ‰‰‰§OŸ~ñÅçÌ™£tE6íÌ™3+V¬èÕ«WãÆ¥ÿ¾‚²¤‰‘¯¾úÊÛÛ»Q£Fׯ_ß·o_TTÔgŸ}öþûï+]]ñ!8UFF†ÂÉÉÉhÜÙÙYñàÁ¥ Ô(++kíÚµsçÎÍÊÊZ°`‡‡‡ÒAÄÆÆnذA§Ó !üüüJ–,©tE¶+##cìØ±U«V=z´Òµà©›7o:::Ž5ªwïÞÒÈáÇ ôùçŸûûûWªTIé‹ ×8•›››F£IOO7—n õ:vìXPPÐÌ™3=<<¾ûî»ÀÀ@¥+‚BtïÞ=&&æàÁƒãÆÛ¹sg=¸ŒRæÌ™“œœÇ¢rpppuuÍÙYLKKBè×YBLU›€——W|||ZZšáõˉ‰‰ÒSJW¨EvvöèÑ£wíÚÕºuë)S¦ðŸUj·råÊfÍšµoßÞp\Züþûï¿+] -Š‹‹BH7…0ß²eË–-[|||"""”®ÑæètºììlFcg÷LÇÍÞÞ^Q¶lY¥ ,>Gˆ=pà@‡¤Nåîî^§N¥«Ô",,l×®]|ðÁ”)S”®O¹¸¸üç?ÿ¹sçŽQp”nYçíí­t¶¨Zµjúß&’-„ÐjµJX|Ž&еk×eË–-^¼¸yóæÒš˜ÐÐД””>ú¨D‰JW¨‚N§[³fMÙ²eǧt-ø‡———V«=xðàÞ½{[µj% ^¼xqíÚµÎÎÎõë×Wº@[äïﯿ›˜$::úàÁƒõêÕ㻪•R½zõºuë?~|ýúõ]»v•OŸ>½råÊJ•*µmÛVé‹ÁÑ*Uª4f̘9sætêÔ©iÓ¦IIIGõóóëß¿¿Ò¥jqçÎék^{öì™óÙÎ;÷êÕKémÔŒ3>øàƒÁƒשS§J•*·oß>yò¤bîܹ¬vôþýï÷ë×oÒ¤IëÖ­«Q£Æõë×Ïœ9S¦L™Y³fÙÔ&‚£iôíÛ·|ùò›7oÞ¾}{ÅŠ{õê"u!’““….\Èù,KdôÚk¯mÛ¶í«¯¾ºpáBLLL… Ú´i3dÈéK}H^yå•M›6-X°àÈ‘#qqqU«V >|xÅŠ•.­Xi¤[vùãv<…àYŽ…àYŽ…àYŽ…àYŽ…àYŽ…àÀ¶Œ3F«Õîß¿_éBÄâÅ‹µZíÚµk•.ä"8@¥ Õ²eKºuë*]ÈEpeøùùùùù)]SÕ :YYYýõ—ÒU€1‚#Ë0iÒ$­V;oÞ<£ñóçÏkµÚÆgff !RRR¾øâ‹ÀÀÀ7ß|óÍ7ßìСÃìÙ³ÿý÷¼v+­•9räˆÑ¸¯¯ï[o½e8rèСáÇ·nݺ~ýú½{÷^¼x±Q¶»~ýú”)Sßxã-Z 0àĉùÑŠ+ ÇH•$''‡††6jÔ¨víÚõêÕëÞ½ûîÝ»óÚÃéÓ§}}}›5köðáCýà£GZ´háëë{îÜ9¥OkCp`‚‚‚„;wî4ˆˆB;88¤¤¤ôìÙsùòå7nÜxñÅ«T©ríÚµï¿ÿ¾G÷îÝ+ʻϟ?¿_¿~;wîÌÌÌôôô=dÈ;väºq:uúõë÷ûï¿Ïš5K?8wîÜ›7o~üñǯ½öZqŸ$ÖŽàÀ2Ô¯_ßÓÓóÚµkÿûßÿôƒÙÙÙR¨z÷Ýw…7n¼råJ«V­:´yóæ-[¶>>7nþøãÖ­[è½^{íµÑ£GÛÙÙI‡üñÇ !®\¹’×ö%J”˜;w®ƒƒÃ¤I“nß¾=qâDGGÇùóçëË"8°R4œ·•æ©»té"=2dȲeË^zé%ýwîÜÙ¶m[QÞôÞ½{‰‰‰5jÔ0Z]¦L™Ægdd\¸pA!%×ñãÇ?~\ºÚ²D‰#FŒ6lXÞ®}ûö†]]]íííu:]>/ñõõ2dÈ­[·Þyçëׯ7®zõêæ:l·ã`1üüüªW¯~åÊ•ØØX­V›™™éèè¨ßæúõë¿þúëÉ“'¯]»võêÕ"^Ú(„HHHþ¯V«Íuƒ›7o !¦Nrüøñ?ü°téÒ¾¾¾ 6lÓ¦¯¯oÞ®J•*…(ràÀ»wŽnРA=Lú©À?Ž,IPPТE‹"##µZí}zÉ’%—/_îïï¯É­[· ú.7nÜÈÎΖ~®Q£†¢L™2Ÿ~úiþ¯Òh4Ò=€„Ož<9pàÀ„ 6lØÐªU«€€³~,S¦L¹}ûö›o¾yêÔ©iÓ¦}ñÅf};6‹kX’jÕªÕ®];!!áüùó{öì©V­Z½zõ¤§ÎŸ?Ÿ••õæ›o¦Fñ÷²•üÍhÿòË/úŸ½¼¼Ê—/ùòåèèhÃm²²²ºtéÒ´iÓ”””ëׯ·jÕêý÷ß×?[²dÉ€€i5Orr²Y?“­[·îر£yóæ«W¯öññÙ¶m[Λ€IXi‰ÌĉÓÓÓß{ï=ý¸———ââÅ‹)))ÒHVVÖO?ý´fÍ!DFFF®{{ñÅ…aaaéééÒÈÑ£Gõ7Ù‘Œ5*;;{Ô¨Q111ÒÈ£G&L˜páÂ???Š+>|øðìÙ³ß~û­¾UyåÊ•_ýUaÖû)ÞºukÚ´ieË–>}z‰%fÍšeoo?uêÔ¢_Ü 91U ÀÂΙ3'66ÖÞÞ>88X?^£F€€€={ö¼ýöÛuëÖÕét±±±÷îÝëÙ³çêÕ«ÿóŸÿ<|øPº±Ž¡àààU«V:u* À××÷öíÛñññ®®®*TøóÏ?¥m:wî|üøñM›6W®\ÙÝÝ=!!!==½zõêÒ·íìì>ýôÓñãÇÏ›7ï»ï¾«R¥JzzúåË—u:]=êÔ©c¦B§Ó?>--íóÏ?—r󫯾ڧOŸï¾ûnêÔ©_~ù¥Òç €µ¡ãÀÂxzz6hÐ@Ñ´iSOOOç,X0|øðJ•*I÷wlÖ¬ÙæÍ›'NœØ³gO{{û\¿°jÕª?þøcëÖ­íììxÜ|ÏÌ™ï÷;^x÷ùžï“ÅbÀ­¸(ÝhÁ6!8À&GØ„à›`‚#lBp€Mް Á6!8À&G:wüøqÓ­Lœ8±â“ܼysÙ²e=ôPýúõkÔ¨òÈ#¼ýöÛyyy¶¼œ›››ŸŸßý÷ß?cÆŒÌÌLGôœ€à·pèС¦M›>÷Üs_}õÕ… nÞ¼™––¶yóæ—^z)$$dÓ¦M·üÅ_lѢťK—6oÞ<~üøß~û-77wÀ€'Nœ¨øåÎ;7sæÌ?üPqþüù¥K—Ž7N–€Ó°T åÚ¾}ûÆ¥ï§L™²bÅŠ{î¹ÇÕÕ500päÈ‘‰‰‰Ò¡ÔÔÔ“'OV|ª ¬X±¢OŸ>Òo¼ñÆ7”TÁʵtéRé__ßiÓ¦•8úÈ#ôèÑãÞ{ï½÷Þ{üñG[Nøâ‹/JßdffîÙ³Géñ@å°T åÚ»w¯ôMß¾}===K?À–1Ö"##«U«–ŸŸ/„øî»ïºuë¦ô ¨80.]º”¾ÓÍøñãË|ðüñ믿JßËÒ“ÉT·n]éû‹/ÚÙCp2‚#”-''§øûzõêÉuÚÚµk—>?hKÕ ¤Ì›Ýøúú–ùàÛo¿½øûÒwí®²¬¬,é›ZµjÙÙCp2‚#©ÔÍnªU«æççwùòe!Ä™3gÊ|̵kפ{:Ö¨Q£fÍš¶œ¶x…: À΀“±T åjÛ¶­ô͆ þøãÒhÚ´©ŸŸŸŸŸß²eËl9áž={¤1Bˆûî»Oéñ@å \O?ý´ôÍÙ³g—/_^âèÆ‹Ë‡;v´å„‹/–¾©Y³f»ví”TÁÊõè£véÒEú~ìØ±³gÏþå—_„ùùù O>ù¤tèÎ;ï ¯øT/^5jÔÚµk¥Ÿxâ ëk(@¸Æ*²`Á‚ûï¿?//Ïb±Ìœ9sæÌ™~~~ÙÙÙ………ÒjÔ¨±víZWW×ÒÏ:tèm·Ý&„¸q㆔8%uêÔyíµ×”TG¨HË–-¿úê+ëÛñ\¾|¹856nÜxݺu÷Þ{o™Ï½páBZZZZZšujôõõýâ‹/üüü”TG¸…víÚ:u*>>~ýúõ)))×®]kܸqhhh§Nž{î¹êÕ«ßò ®®®^^^Mš4éÖ­ÛØ±cI4Êd±X”î4€¥jØ„à›`‚#lBp€Mް Á6!8À&GØ„à›`‚#lBp€MŽ·žžúÃ?(Ý…o!!!Aé.¨‚›ÒP©œœœ“'OnذáÓO?Uº/ª@p,[Ïž=/^¼¨t/T„àX¶×_ýæÍ›Bˆ•+WîÛ·Oéî(àX¶öíÛKß|óÍ7J÷@Žò Uº þ–z2Ué.ЛлBSSø»…àèÆüÇ„ÐPƒþQ†ÉæGZÞÞzÃâ­7.£ÖˆŽÔ­¼€èø8(à@MJÇD"¨Á€¢J$Eb"¨Á€ÓY‡E’"hÁ€³çEÂ"hÁÍÖ­[•î‚* /òÖo=Œ†àÀa¤È¨ß¼Fã¢tÔnΜ9©©©÷ÜsÒ´Ãô×—…ÔºBÅ€|(1€®ÈÄDd#8°…F0‚#;ÀHŽªŠµi0‚#€Ê£Ð†DpPIÀ¨¸#€Ê 5€Qq`–§ÀðŽl@¡ÀR5€[#5„G·@jü…à |¤F€‚#€rÿDpPR# ‚#€RH€²ü©P‚#+¤F@ùް ÁÀ_(7*Dp „ 5nà€Ô° Á6!8†G¹`‚#`l¤F€ÍŽ€‘•Ap€MŽ€QQnTÁ6!8†D¹PyGÀxH€*!8À&GÀ`(7ªŠà›#¡Ü°Á0 R#À>GØ„àåF€Ýް Á0Ê9`‚# w”2!8À&G@×(7äCp€Mް ÁÐ/Ö©²"8À&G@§(7äFp€MŽ€Qn8Á6!8À&G@wX§8Á6!8úB¹à0GØ„à›aàHGØ„àèåF€ƒ`‚#lBptuj€ã`‚#lBp´uj€S`‚#lBp4Žuj€³`‚#lBp´Œuj€`‚#lBp4‹uj€s`‚#lBp´‰uj€Ó`‚#lBp4ˆuj€ް Á6!8ZÃ:5@!GØ„à›`‚# )\àÎb2•ûeXG`PDC“IX,å~–›Òp’Ï>ûlÍš5iii·Ýv[ÇŽ'NœèããSÁãóóó?þøã-[¶˜ÍfŸ–-[Ž3&$$Déq€J+¯FhäX5†¨8.\¸púôé§OŸnÓ¦§§çºuëF•——WÞã Ÿ|òɸ¸¸ììì:Ô¯_Û¶m=öØÁƒ• Œuj(_j‡¨,ýÇÔÔÔøøø€€€­[·ÆÇÇoÛ¶mèСG‹‹+ï)«W¯>|øðÃ?üÕW_ýûßÿNHHøðÃ…Ó§OWz4+ËÊÒp\³fMQQѸqãüýý¥–)S¦xyymÙ²¥¨¨¨Ì§>|Xñä“Oº¹ý¹”ÿàƒ†……9sæÊ•+Jý#ª“þƒãÁƒ]\\¢¢¢Š[\]]###³²²¤€XZ`` Â:#Z,–«W¯º¸¸GI`?—µEçÁÑb±¤¥¥ùúúúúúZ·ßu×]BˆsçΕù¬G}´F¯¿þúþýûóòò.\¸0cÆŒóçÏÇÄÄÔªUKé1Á¨¸À€–õAçõ³ÜÜÜÂÂBooïí^^^âŸ5Ek¡¡¡ Æ 6lXqã!C¦Njã놆†–hÙºu«Ò“‡;þ¼ãN$‚Ìf³ÒCDÙúÖCÍxëK *³==½ìß`šøÅÖ½{w¥» :ŽÒÖéš5k–h÷ôôB\»v­Ìgåää¼ùæ›7nÜhÞ¼yË–-³²²öìÙ³~ýúx k×®¶¼njjªÒC‡2‚‚‚ì?‰"'‡xw ˰o}åop£á‰*ýg½t…È t½½½M&Snnn‰öëׯ‹¿êŽ¥Mš4éСCS¦L>|¸ÔráÂ…ýë_ãÇÿâ‹/‚ƒƒ•ÎSfFd5Ù˜t~£›››——WéÊbNNŽ¢xŸµµK—.}óÍ7Mš4)NBˆzõê=ÿüóüñÇÿþ÷?¥ÇCâGŽW©ËaL:ŽBˆ€€€¬¬,))“® (ýø¬¬,!DãÆK´K…ÆÌÌL¥€½Ø§‚ªÑpìܹsaaáîÝ»‹[,ËÎ;}||ÂÃÃK?¾qãÆ®®®§N²üóÿ+Òõ Mš4Qz@TEDÈHÿÁ1&&ÆÅÅåÝwß•®kBÄÇÇ_¾|¹_¿~îîîRË7Ìf³´9ÎÃÃ#222##ãßÿþwñÂO:µdÉ’jÕªuêÔIéÁxX§`2"Mç›c„õêÕ›8qâ¼yózõêÕ¡C‡ŒŒŒ4oÞüé§Ÿ.~ÌÎ;DzqãF!Äœ9süñ%K–lÞ¼¹Y³fYYY‡***š>}úwÞ©ô€`Ês•žî»îRºOÊÐpBŒ1¢N:ëׯ߼ys``à!CÆ'Ý‘§L~~~›7o^¶lÙž={vìØáããÓ±cÇçž{®eË–J`8dD§²qºz;“…zr å>ŽÆd6›rG7–ªUÏQo=TÏo}éÜÂjªêtöo½!*Ž€†‘ý¢”èTL·Ž8¥Dç!#: Á™‘[œŠHîDGìBnq*¦[QG@ŸÀPŸæ– Anq*·ê£ÿ€PeßO;=ÝLŒ‘ ÷.×*Žü‰UPça®µ‰à0(¢‹ó0×zApÔŠ Y]œ‡¹Ö/‚#@ŸJ¤¢‹1׆ApèE.ça® ŒàÐ$Š\NBL„‚#@HŠNÂD£|G@•ØãÎå$L4*ƒàPê\NÂDÃG€20NÂDC>G€“`œ„‰†ÃõáGèÆI˜h8 Á Œ“0ÑPÁPu'a¢¡G@%`œ„‰†*•áG¨u†!À8 IZ@p”D†qfDpAYÑ9˜ehÁ Š‚—30ËЂ#/‡#)B׎€š°3r#Æ8y†Ap½!Æ8ƒÉ$„’¾g–a.Jw “éï/‹åï/ÈÆzŠÿšesz:³ C¡âZEeÑá˜bàŸŽ€jp#l@’q8¦(ÁÔŽ$ãXl lFp5",:ó T ÁÔ‚0ãXÌ/`7‚#(‰0ãXÌ/ +‚# ìŒ1ÂŒc1¿€ÃÀ3ŽÅüNAp*Î3„‡`~ç"8€Ì(~9ó (‡à2 Ì8ó ¨ÁPvÆhÖ_y&ˆ0#?Â" >.Jw4ÆdúûËb‹HO7+Ý))1¹Òu â6a†Q\4‚àå"Ï8“ hÁJ¢¸è@L. eG@iìŒQ "£P\ô‚àÀЈ4Dt‡àÀˆˆ4ÄäúEp` DG¡r Á€þ‘…™ †à(Š1C ÌÈ‹€Qè ‘ÆQHâŽô¼è(Ì,+GFªqf@YŽ´‡Tã(Ì,€ å°3¦’H5ŽÂ̰ Á€Ú‘j…™PIGê%RÌÈ‹ªŠà@u6Á´°Á€Zl‚i ‚# vÆü…`ãL+pQº ÊdúóËbùó 2`ZÇ3 “ý'Ñ(‚#g#ØÈ¼ÈÍô÷ÿ¯J~Y ¼`ÄR5'aíT~Ì)`·òʇFN‡ 8p,²ü˜S òˆ² 8J0ÆÎîÂ(?渢CÈŒr˜ü˜S ¢"ŽäA¶‘s U†àÀ^,ŸÊŒ¼C" jÁ@oäG‡1”™ ˆš@pPiÄ™‘Á¡_dD!8N§å-ÕDF™1¡Ð š ‚ààÖ¨ˆÉŒ …–QD42‚#€ŠP“yZCFD Ge áÈŒÕ##ÂGÿ@‘ªDFD•çRñÎ"£œ˜M¨ò"8FGQLNÌ&U:&’!/‚#`\ÅäÄl¹(%BGÀˆ9r2™‚³ Ç¢”•pQºœÊd&“°XÈ9v“¦Òd‹9=]éÞ@?LÿÛúûËòçÿkÿþRº›0(*Ž€!péœ(ØB>”¡-T'RbKµu‰‘¨c/ ¶°¥D­3ýõeXG@·9²±Z•f6a;b¢v™Êù²üõeX,U:ÄRªl˜JØŒEg*³|È;W‚# +äÙ0•¨ÐŸ11èïb¢ú‘íÇR5 ,¥Ê†©D)å-:§›ÓYtV§Šš-,:WGÀY¶3†Ò˜<Øy+%ÖÉ…jFÑ™Ž€†åÁ<—'jQqG@“ˆ:ò` ‰˜¨ dDu"8CÔ‘óh$¬;«_é˜È›¤NF ŽŸ}öÙš5kÒÒÒn»í¶Ž;Nœ8ÑÇǧâ§üøãË—/?~üøõë×CCC_xá…ûï¿_éqÀЈ:ò` €¤¨f”5Í»ª.\8}úôÓ§O·iÓÆÓÓsݺu£FÊËË«à)IIILJJò÷÷ONN:thRR’ÒCA±ÍWÌ£NÝò>ÛJwÐÐØÚ¬3úŽ©©©ñññ[·nß¶mÛСC=WÞS®]»6yòd77·„„„Õ«WÇÇÇ'&&V«VmÆŒEEEJÚTÕ-ÕDy0úÂDZ¨“wÀ¦é?8®Y³¦¨¨hܸqþþþRË”)S¼¼¼¶lÙR^ \·n]NNγÏ>Ûºuk©åî»ï~øá‡/_¾üã?*= QG|T ^PPT!J‰Æ¤ÿàxðàA—¨¨¨âWW×ÈÈȬ¬¬Ã‡—ù”]»v™L¦Þ½{[7¾õÖ[©©©÷ÜsÒ‚þud`=‰Ì£‘Õ†R"$:ßc±XÒÒÒ|}}}}}­Ûïºë.!Ĺsç"""J?ëØ±c>>>uëÖýþûï“““¯^½Ú´iÓ.]ºxxx(= èÛ6dÀ$jÛYT…=Î(΃cnnnaa¡··w‰v///!Ä•+WJ?%??ÿ·ß~kҤɫ¯¾š˜˜XÜÞ AƒE‹µhÑÂ–× -ѲuëV¥'wþüùò‰ ³Ù\Ásƒƒƒ„ééf!D…D¹‚‚ƒ…æôt!œ=‰¼õ(OpP°õéætëÍBÿ7ÐÇ[T¢%½Ôÿƒ´ñ~8L÷îÝ•î‚Zè<8J[§kÖ¬Y¢ÝÓÓSqíÚµÒOùí·ß„iii™™™óæÍ‹ŠŠúý÷ß×®]ûÞ{ï½øâ‹7n´¥î˜ššªôСŒ R¿m9$­©JRzÚdUeTj+x!¹EMQ³ó§¹·Þ¦j¢Öåh¥ÿ¬—®„ίqôöö6™L¹¹¹%Ú¯_¿.þª;–P£F é›7ß|³wïÞÞÞÞuëÖ3fLŸ>}Ο?¿iÓ&¥Ç *Kuñ•x¨".U1®ST®M„¼Ôß~ûí´´4OèæææååUº²˜““#„(Þgm­fÍš5jÔðððèÔ©“u{—.]„'NœPz’ {1ƒêCRT1ަ®àÿÈ#ôë×/!!¡Ì « ++KJŠÅ¤«ÍÊ|Š¿¿¿»»»Éôr¾´B]PP ô$Aó<öbÕ„¤¨,b"œL]Áñ™gž©_¿þ±cÇæÌ™Ó¡C‡çž{nÛ¶mùùùöœ³sçÎ………»wï.n±X,;wîôññ /ó):uÊÉÉ9yò¤u£tM›*=IÐ0 ˜A¥UPVTºkúwË‚"àhê Ž±±±_ýõÿûßzzz&%%;¶]»v¯¾úê‘#GªvΘ˜—wß}Wº®Qùòå~ýú¹»»K-7nÜ0›ÍÅ›ãúôé#„˜>}zqÕóÇüÏþãååÕµkW¥' ZEౄ*‡²¢R((BmLµþ.((صk׆ ’’’~ÿýw!D£Fz÷îýØcÕ¯_¿R§Z±bżyóêׯߡC‡ŒŒŒ4kÖlÅŠÅ·éÙ¼yóøñãCBB6nÜ(µ,_¾|Á‚^^^¹¹¹4™LóçÏøá‡oùr¡¡¡ìª6&³Ù\öþJ“0qcA{¨þÖŒå¾õšÅ]m$ï[ÏÝ5İëÕ{;77·èèèèèèÜÜܵk×.X° ##cñâÅÿþ÷¿Û´iÓ¯_¿ž={ºººÚrª#FÔ©Sgýúõ›7o 2dȸqã¤;ò”ç™gžñóóûä“OöíÛçããÓ¹sç^x!$$DéYƘLÂ"ø«kÕGF=±‹ü›uŽI‘I‡ú©·â(„ÈÎÎþú믷nݺÿ~iWJ:uÜÝÝ/\¸ „hÒ¤É|¨t7K2ì…Àºöðwà1ñ× J45Zq¤¬h¿J½õõİëÕXq¼|ùòW_}µmÛ¶ï¾û®°°Páçç÷ÐCõèÑ£uëÖBˆ}ûö-\¸ðرc¯¼òÊû￯t’¸Ï.šŠŒšCYÑ™((BÔW®\¹mÛ¶ï¿ÿ¾¨¨HáëëÛ­[·‡~8""ÂzUº}ûö­[·¾ï¾û<¨t— óØ…és ¢Ó¡{ê Ž¯½öšÂÛÛû¡‡zøá‡ï¿ÿþò®bôðð¨Q£† שaX&“"ˆÌSuÔieEXtŽŸòÌDC÷Ôûõë×£G|Ж]/”¡Ræ1›Í%?p— mA¡Q\°è%jŠéÚ¼¼¨2uÝÇqË–-û÷ï//5¾ð ݺuSºÀ?poA»pKtûp{E'à†Û€5uUsssÿøãò={öçŸVºÀ߈ŒUG•±ªXƒv4®S* |pܹsçsÏ=Wüã'Ÿ|²råÊÒ+**²X, 6Tº¿€Ä{0w•GXt(’"`;僣««k­Zµ¤ï³³³«U«vÛm·•ùHooï)S¦(Ý_±Ç.imFXt’"PeÊÇöíÛ8p@ú>44ô_ÿú×Ô©S•îP6bOÕ‘¸mSœ ‹ò²‹Ì,PeÊGk#GŽŒˆˆPº@ª{ØR-!2Þ ÅEG ¬8‚º‚ã¤I“”îP UÇÜ•ƒ°è”GS88®ZµJqß}÷…„„ÿX±Áƒ+Ûg ŲªcîJ!,ÊŽ²"àd ÇÙ³g !fÍš%GéÇŠá4˪ˆÈøO\¶(/ÊŠ€‚Ž/¼ð‚¢eË–Ò/½ô’ÒAò±q[šŠ‹ò¡¬¨‡ÂÁq̘1Ö?>ýôÓÊö$Ÿ*3|Ü&,ʈ²" NêÚ(KÎäc¨-ÕÆŽŒ&a’>¢œ°hÊŠ€&(wìØQÙ§DEE)Ûgè…Æ*2äÄ•(.šÍæ   ¥;¥=”ÍQ88>óÌ3•}Jjjª²}†.2üØÍx…F¶¹Ø°hšÂÁ±W¯^JÏŒÎxáG&†ÉÚ\¹h?Â"  Çùóç+=04ÄY#kS\´aÐ%6ÇÀ Œ~äf€Y#/Úƒ°èŸ#rx¡Q—[ªõ[že1Ú„EÀPøäŽ~óÃè´ÐHq±Ê‹€añÉ10æÓ]Ð&/V a€P<8òÉ1pÝåÇÓWÐ&/Va@ ªÞsãÆ ww÷jÕª)Ýh©±Òô2eäÅÊ",¨€ƒãÑ£Gß{ï½ãÇgffº¸¸Ô¯_¿U«V£GnÔ¨‘Ò]ƒöè«j溘2òb¥ØHuÁqñâÅK–,‘¾¯^½º««ë¹sçÎ;·iÓ¦éÓ§8PéBKôR5s"-O›£+«x¾˜,6rQºÿ°k×®¥K—ººº:tûöí?üðCrròŽ;FŽ)„˜3gΑ#G”î#4C±¤Ñ{ñ˜LM¦?»n²Kñ—ÒR/“Õ—å¯/°‘º‚cbb¢Åb™0a´iÓ4h`2™„“&MšBJg!íPn¦ø éÒØì@ÔUqB¸¸üe6lh6›¥ï]]]CCC=ªtál¤F›(·ÂyTv'“¦É¹3E‰ÑZpPP‰â¢Ñg€N©+8véÒ%//綾^:}ú´"""âìÙ³{öìB\¾|ùСCõë×Wºp%²=æt³¯ëìpÍ­¦âϯt³™°ÀÔµT=tèÐmÛ¶%%%Y,–eË–EFFº¹¹3¦U«V'NœÈÍÍíÑ£‡Ò}„3Ph´‰s—§Ù(]¬ôf%þ‹ ®Š£ŸŸßªU«bcc[¶l)„¨_¿þôéÓóóó÷îÝ›••Õ¹sç#F(ÝG8©Ñ&N,ÉRb´š 6»04uU…~~~Ï<óLñìÙ³ç?þ¬tïàp¤F›8eš(1ã~: Q]p´vãÆ wwwOOÏ|Pé¾ÀH6qü4±Qú¯yø“Ñ'þ¢ÆàxôèÑ÷Þ{ïøñã™™™...õë×oÕªÕèÑ£5j¤t×à@¤Æ[süEDFA^€ò©ëG!ÄâÅ‹cbbvìØ‘™™Y½zõ5jœ;wîÿþïÿzô葘˜¨tïà(¤Æ[säEÜ[Gp¿n°º‚ã®]»–.]êêê:tèÐíÛ·ÿðÃÉÉÉ;vì9r¤bΜ9GŽQºŸR£ÉÁAÃasÄÆò"ØN]Á111Ñb±L˜0aÚ´i 40™LBˆÀÀÀI“&Mž<¹  €Ô=¤FGsÌQb$/@e©+8?~¼zõêO>ùdéCC† ñððà#u†Ôxk˜#ƒGÆ%F€íÔ…uëÖus+cËŽ´K&77WéB6¤Æ[pÀG.92²$ öSWp ?wî\NNNéC7nÜ0›ÍÍ›7Wº©ñdÝ cð½/äE‹º‚cLLŒÅbyùå— ¬Û §NZXXعsg¥ûoA¾ 2òÞ–¤@v ßÇqÿþýÖ?ºººöíÛwݺu]»v‰‰ 6™Lf³yíÚµçÎ íÞ½»²†ýt˜åÝR-ÓöŽŒÜ…Gáà8lذ2Û/\¸°xñâ©©©mÛ¶MMMU¶Ï°‡S£¼ä˜ ƒGFà œHáàØ«W/¥gÎCj¬ˆŸ cÌÈH‰œFáà8þ|¥gNBj¬ˆÝ³cäÈh¬1€¢ÔøYÕBˆ‹/¦¤¤dddüñÇÁÁÁaaaõêÕSºS¨:RcEì›FFJŒ ÕÇìììwÞyçÓO?-,,,ntuu0`À¸qã¼¼¼”î *ÔX;fǰ‘Ñ@•QWp,,,|î¹ç’““«W¯Þ¥K—F¹ººž9sæ›o¾ùïÿ›’’²jÕ*WWW¥»‰JÐj´gKuUgÇh‘‘#¨„º‚ãG}”œœ|ï½÷¾óÎ;þþþÅí™™™/¼ðBrròG}4räH¥» [é?5Ú£J³cÌÈh”Ñ€ê©ëà»wï6™L‹-²NBˆ:uê,^¼ØÅÅe×®]J÷¶"5V¤ò³c¨~áÞÝ Nêª8ž8q¢Q£F¥Üyç)))J÷6!5V¤’³c¨*#%FP3uÇêÕ«çåå•w4//ÏÃÃCé>âÖHåªä͉ŒUQ×RuXXد¿þšœœ\úбcÇΟ?ß´iS¥ûT•¨mKÆY˜fU4D]ÁQú ™±cÇ–¸–qÏž=cÆŒBôìÙSé>â(7–Íæy1Zd´@;ÔµTÝ£G;w®_¿þé§Ÿ lܸ±"##ãÂ… Bˆž={>úè£J÷1\j´ñ^<¶Í‹q¦Y•RWpB¼ùæ›÷ßÿ¢E‹~ùå—_~ùEj¬S§Îøñãûôé£tïPÃ¥FÙ0/‰ŒÜŽ´NuÁÑd2õíÛ·oß¾—.]:sæŒÅbiܸq@@€ÒýÂ-Ëf[j4HdÔù ÀÔÏŸ?_TTÔ°aC!„¿¿‰»9BµHe»Õ¼¡ÐHd=QWpìÑ£ÇÍ›7÷îÝëçç§t_`+RcÙ*œ"#@‹Ôµ«:$$DqòäI¥;اüÔh„MÓÜ^ôJ]ÁqÆŒK—.ýý÷ß•î lbèrcy[ªË™"#@ëÔµTíïïÿöÛo¿òÊ+½zõêÕ«WÆ kÕªUâ1QQQJw2tj,Où©QßyQ¢Û„j Ž:u’¾¹|ùò;ï¼SæcRSS•î&„ 5–%(8¸ô¤èûrF.dCQWp”>9êGj,ƒÉdNO²n 2ôE]ÁqþüùJw·Fj,ƒ4)fóß ú]›&2€a©ksL ùùù¹¹¹J÷¸•FéâM0JwËeï ›º*Ž’S§N-Y²äÈ‘#/^,**ª[·n‹-^xá…¦M›*Ý5Pn,ÅjF‚ƒ‚…Nצ©2„ +Ž|ðA¯^½6oÞ|áÂww÷Ûn»íâŋ۷oïÓ§Ïû￯tïŒŽÔø7©òf5#&aJ7§ë/5ReSWpÜ¿ÿÛo¿m2™†º}ûö~ø!99yçÎO=õ”‹‹Ë‚ öï߯t‹ÔXÒ_3¢×µi"# uÇÿþ÷¿EEE'Nœ6mZƒ L&“¢nݺ'Nœ:ujQQQBB‚Ò}4(Rc,½ÞÓ›È(“º‚ã?þX£F¡C‡–>4pàÀÛn»íÇTº€&“økß4‘`* Ž¿üòK@@€««kuq ´PõRåÆ0™L!t· †È¸%G“ÉtÛm·;wîêÕ«¥æääœ9s¦eË–JwÓpHÿ`2™,DF€A©(8ºººöíÛ·¨¨hòäÉ7oÞ´>”ŸŸ?eÊ“É4räȪü³Ï>‹‰‰ o×®ÝÔ©S³³³mî… Z·n=qâD¥gH¤Æ(N&„,"# RÔuÇAƒ?~|ÇŽ]ºtéׯ_PPÉd2›ÍŸþùÅ‹{ôèqýúõ;v?>88¸aÆ·<íÂ… —-[V³fÍ6mÚddd¬[·îÔ©SŸ|ò‰‡‡Ç-Ÿk±X&Ož|ýúu¥çJ3™„Ž.•ྌ€*PWpìÑ£‡ôÍ¥K—–.]ZâèæÍ›7oÞlÝòÒK/=ýôÓŸ3555>>> `íÚµþþþBˆ×_ý“O>‰‹‹›1cÆ-»ôÑG}÷ÝwJOŒ2(7JLÂd1 =Í…^ ¦gSWpìÕ«W¥ߤI“[>fÍš5EEEãÆ“R£bÊ”)ÿ÷ÿ·eË–iÓ¦¹¸T´XêÔ©… 6mÚôĉJϳ‘%:KöPWpœ?¾ìçQÞ &Mšäãã3eÊ”aÆ)=7NEjB˜„I¡›ÔHdØOE›cÁb±¤¥¥ùúúúúúZ·ßu×]BˆsçÎUðÜwÞy'%%eîܹµjÕRzp¶?ïѨ‹ÔÈ€\ÔUq”]nnnaa¡··w‰v///!Ä•+WÊ{â‘#GÞÿý!C†´mÛöøñã•}ÝÐÐÐ-[·nUz2l”žn6›•î‡Rà B¤›ÓE°Éœž.JMDPp9Ý,ÊšŸóçÏ+Ýýc B¤›ÍB£¾ŸN¢¶·NÃ[oÝ»wWº j¡óà˜——'„¨Y³f‰vOOO!ĵk×Ê{Ö¤I“4h0a„ª½njjªÒC¯¢¿©ƒ”îˆBÃ/þÈé`“°XÊ›…  rç§‚CNË_%FÕtIßÔóÖÃÉxë ôŸõÒ"ƒÐypôöö6™L¹¹¹%Ú¥ÛëHuÇÒæÍ›wþüùÄÄD[î×}øóŠF)kiüO.g8ˆÎ¯qtssóòò*]YÌÉÉBï³¶öÝwß%&&>óÌ3÷ÜsÒÝw6ç%;ný©ÓZž.g8”΃£" ++KJŠÅ¤+øJ?þÔ©SBˆ%K–„þ¥oß¾Bˆ/¾ø"44ôÑGUz@Ž¢å¼dǨ…éïåi-Ï‘à:_ªBtîÜ955u÷îÝ<òˆÔb±XvîÜéãã^úñ5*~¤äÚµk{öì©W¯^xxxݺu•Ch6/Ù7jëȨeÜÐàúŽ111Ë–-{÷Ýw;vì(퉉¿|ùòSO=åîî.=æÆ—.]rww¿ãŽ;Ú·oß¾}{ë3?~|Ïž=ޏÍ$”RFjÔ`|ærF€3é?8Ö«WoâĉóæÍëÕ«W‡2228мysëÏ*ܹsçøñãCBB6nܨt Á¼dßx­÷ÁTvTSÜ#2œOÿÁQ1bĈ:uê¬_¿~óæÍC† 7nœT}„ScËÓZ›ÕÄW€±˜,šú{© ¡¡¡º£Ö"“}ƒµ?5VÙÌf³£ïèF¡QœðÖCxë K[ëedˆŠ#ÊcœÔXöò´¦¦€ÈPÁѸ´™ìiy»§µ3¬MÔ€àÓzj¤ÐP‚£Ai$5Ù7Æò–§«<~çÖýˆŒµ!8‘AR£¦oîÍÚ4@…ŽÐ¡[¤Fug Õ"8ŽºS“ÔxjToç†Gp„~TtQãŸPoj¤ÐP?‚£±¨88Ù=´[^Ô¨âÁShhÁÑ@TœìšR£cÂ…F€†¡yÚÝ@M¡ -G£Ðe¹ñÖ5ªuðZDp„VÙZhTejTW‡° ÁÑÔ—ì‘6S#…F€¦õOeÙIŽi65ª¨7TÁ£ÅÔH¡ GSS|’c8Jm ¶£ZH¡ Ghƒ­¨ÿ|´*ò2…F€ÎõLñIŽTªÐ¨ŽaShè‹Ò€£¨#>É1R#ê@Ū¦¹ÔÈò4@ÇŽú¤‚%Ç(´öY‚ÁAAZê.•ÄR5TªÒ©ÑqaÙ†…g“&!ÒÍf§ÍÎGpÔ!”U”mê­°°< 0‚#TG‹©#àG½Ñz¹QC©‘}0£!8BE4´†B#À€Žº¢Ýrcå>F铯Dp„òªXhtNjügHdy`dGýÐh¹QÕ©±dW‰ŒCcW5”ÄEhÁQ'´Xn¬zjtúhI–ª¡R# W¡¡¡Jw¨œÔÔT¥» G=Ð\¹Q+©‘„ª†?ÃЖÐÐPþÑÚˆ¥j8›V®k4 a¡Ø€‚£æi«ÜhWjtâPIŒ”ÆR5œG©‘;5P‚£¶i¨Ü¨•Ô¨‘é@,UÃ4q]#©€Š5L+åF{S£SÆIjà–ŽP7R#ªÁ5ŽZeˆr£ãYÑVâ$ÿDp„©üÒF’!•ÂRµ&i¢Ü¨òKITÁAj ]‡2™L«W¯–~œ3gŽŸŸ_Ë–-•î—Gµ!8júˬPП~úiÆŒaaaS§N-q(22rÖ¬Yz]yO^zG0`@ݺu===#"".\XPP ×Ë9ôäPÁ2“!5:2“TJZZšâÕW_8p u{rròÞ½{ô¢²Ÿ¼Ä(ÒÓÓ£¢¢¶nÝÚ½{÷ØØØjÕªÅÆÆÆÄÄÈòZ=9ÇæQy¹Q?©‘€ @!„ÅbBÔ¨QCú±   ))iß¾}K–,)**’÷µwò£ˆ½víÚÚ´i#„˜={öÈ‘#W¬X±mÛ¶nݺÙùZ=9GŲQó µ‰( |»víêÚµ«¯¯o³fÍ&Nœ˜ŸŸ/µ>¼wïÞBˆöíÛ !²²²ºuë6kÖ¬ÌÌLÙ»açÉmERRRdd¤ì$cÆŒBìß¿ßþQ8ôäPGÈCžÔè˜r#‘@>ÿüóþýû×®]{àÀ...+W®üâ‹/¤C&LhذáìÙ³ãââ¤$ UïRSS›6m*oOì9¹í£(((=ztDD„õÓ322„Õ«W·s=9Ô€à¨%ª]§&5Ш›7oÆÆÆúûû}ZñÀ´k×NéÎÊ6йsçZ?ýÊ•+sçÎuuu}üñÇí쉛››ãN5 8BH€˜Lнty¿`>œ‘‘1þ|)o !ÇŽ;eÊ;_±  `Ó¦Må}ì±Çd=£Ø±cǨQ£ÒÒÒ–.]"ï(*>9´ˆà¨:/7:¤cªì``*ü%vòäI!DëÖ­­ÃÃÃí?ó7¤+ Ë™ 9ç¢j£8{öì˜1c6lز}ûöèèhGaËÉ¡ElŽ]T»HmWj$r†áææ&„0ý³êâ"ÃG///KùEbbb‹-¾ÿþûåË—ÿôÓOå»ªÂÆ“C‹¨8jƒ:ËúLŒ¤I“&BˆC‡EEE79rÄþ3;s©º²£Ø°aÃO<Ñ¿ÿeË–ÕªUKÞQØ~rhÁUÄ 5hÕªUppð‚  („ÈÌÌ\¼x±ýgvæRu¥Fa±X&MšÔ Aƒ„„WWWyGQ©“C‹ލ ÙR£ÜåFR#€Jqww‹‹ëß¿xxø€ÜÝÝW¯^-Ë=¥E^»š˜˜øüóÏ>|Á‚öŒ"%%åĉaaaO=õT‰C}ûöíÙ³§=£¨ÔÉ¡EG PÛ:5©€žôéÓ'))iöìÙ ÙÙÙ^^^+W®TáGäåçç_½z5//ÏÎQH?˜’’’’’RâP“&MìÌv=9ÔÀ$û%º MMM•ñ„GÛz%_j¬ê¹Ìf³ô© 0Þzk²ÿt¦ .Ô®][µ·ªþàƒŽ;¶hÑ"MB…ªðVÓÿÎíÁ®jµ#5ÚÖ+åS#¨W¯žjóÖï¿ÿþÍ7ß´jÕJÓ£€ÖQ úO Vû÷ï 4hÒ¡q#l¥ÎmÔ¤FÑ©S§N:)Ý GUSÏ:µœ©Q¾Q‘p&‚#œ‹Ô€fÕKŸåFٺ䘑F(Á· ÂEjÒŠ 8¢"¤FPŒà¨RêY§VR# "8¢\j+7’PÁe#5€Žj¤ø:µÚ¶Q;)5N¨Áfw &ΠG”¤ªr#©õ 8ªŽ²ëÔ2§FûCj ˆC‡™L¦Õ«WK?Ι3ÇÏϯeË–J÷ˈ£€Úñ7R#”ðÓO?͘1#,,lêÔ©%EFFΚ5KÞ—;zôè€êÖ­ëéé±pá‚‚GŒÂA/ä„)‚²ŽP#R#•HKKB¼úê«´nONNÞ»w¯¼¯•žžµuëÖîÝ»ÇÆÆV«V-666&&FöQ8î…=EPœ›ÒÀ?(¸N­žr£2©‘¬  ,‹EQ£F éÇ‚‚‚¤¤¤}ûö-Y²¤¨¨HÞ׊½víÚÚ´i#„˜={öÈ‘#W¬X±mÛ¶nݺÉ8 ǽ£§Š£â!HŒm×®]]»võõõmÖ¬Ùĉóóó¥öáÇ÷îÝ[Ѿ}û   !DVVV·nÝfÍš•™™){7’’’"##¥0'3fŒbÿþýòŽÂΪ˜C§Š£âm£&5p¾Ï?ÿ¼ÿþµk×8p ‹‹ËÊ•+¿øâ éЄ 6l8{ö츸8)fHÕ»ÔÔÔ¦M›ÊØ‚‚‚Ñ£GGDDX7fdd!ªW¯.ã(ì|¡[rÜA Ž*¢ø}¿•©€óݼy366ÖßßÿàÁƒõë×BL:µ8TµhÑâôéÓBˆx ]»v퉛›Ûܹs­[®\¹2wî\WW×Ç\ÞQTù…‚£Ñ©d‘šÔI˜”zéò~Ñ>|8##cþüùRÞBŽ;vÊ”)v¾bAAÁ¦M›Ê;úØcUüô;vŒ5*--méÒ¥!!!?ØžQTüBvŽúCp44õ,R+ŒÜ 8… áœ{öì˜1c6lز}ûöèèh–ªò( WlŽQ =¬SSn 5nnnB“é¥Pþ8zyyYÊWÞ³[´hñý÷ß/_¾ü§Ÿ~²%5Vm6¾PÕF£âh\*)7’(¨I“&BˆC‡EEE79rÄþ3Wa‘wÆ O<ñDÿþý—-[V«V-ÇÂöb©% JþÔX¥r#©€²Zµj¼`Á‚Aƒ !233/^lÿ™+»Èk±X&MšÔ Aƒ„„WWWÇ¢R/ÄR5J 8ª‚æ×©I´ÉÝÝ=..®ÿþááá pww_½zµ,7 ”ym|JJʉ'žzꩇúöíÛ³gÏÄÄÄçŸ~øðá ,°g·|!{FÝ#8‘©IT¢OŸ>III³gÏNHHÈÎÎöòòZ¹r¥ìŸ¿wKÒ§¦¤¤¤¤¤”8Ô¤I“ž={æçç_½z5//ÏÎQÜò…œ•FÃ[o­ ¿ÕãÂ… µk×–å>ØŽðÁ;vlÑ¢Eš… Uá­¦ÿÛƒ]ÕÊÓü:ueÇ«ªÔVêÕ«§Ú¼õûï¿óÍ7­ZµÒô( uGcQC¹Pû÷ï 4hÒ¡åÇÏ>ûlÍš5iii·Ýv[ÇŽ'NœèããSÁãóòòV¯^½víÚóçÏß~ûíwÝu׈#ýySަ†ÔH¹ª¦S§N:uRº0:CÇ… .[¶¬fÍšmÚ´ÉÈÈX·nÝ©S§>ùä2_PP0lذ#GŽxyy=øàƒ¿ÿþû·ß~»gÏž±cÇŽ=ZÞ¾ª`Gj@Óô¿Tšš°uëÖøøømÛ¶ :ôèÑ£qqqå=eÍš5GŽiݺõÎ;—.]úá‡þïÿóöö~ï½÷JïAÓ ÅË*M*íj¤ÿà¸fÍš¢¢¢qãÆùûûK-S¦LñòòÚ²eKQQQ™OÙºu«bÚ´iÅ%ÉgŸ}¶°°pïÞ½J¨*¿ÿñ Ðp|¸Ì§˜Íæš5k6oÞܺ1$$DqîÜ9¥¤•)7’Ð_ãh±XÒÒÒ|}}}}}­Ûïºë.!Ĺsç"""J?kùòåÒÆ[;~ü¸¢Aƒ2vÏ98*¾H ôAçÁ177·°°ÐÛÛ»D»———âÊ•+e>«Y³f%Z8_½zõ >²ÓZhhh‰iù»” ³ÙìðYò¾J¨Ä ƒƒ‚Ò1È*EηàüùóJÊà­´®â¿Ý»wWºƒj¡óà(}4SÍš5K´{zz !®]»vË3®Zµê­·Þ*,,|ûí·ýüüly]Ûï&ïèO›ø³Ü(㋘LÂb±ñ|.R«ö5LBXDœ³ãð7ªÅ[hZÅÿ.ýg½t…È t½½½M&Snnn‰öëׯ‹¿êŽøöÛogÍšuúôéÀÀÀ7Þx£mÛ¶2öÍ ë½Êî‰áÒFtFçÁÑÍÍÍËË«te1''GQ¼Ïº´üüüùóç'$$Ô¨Qã…^9rdy7}4›Ó.©ýÑypB¤¥¥åääÔªU«¸Qº”!  Ì§M˜0áË/¿ìÒ¥ËÌ™3+È—jÆž /ýߎ§sçÎ………»wï.n±X,;wîôññ /ó) _~ùå AƒÞ{ï=Rc•^r#:¤ÿàãââòî»ïJ×5 !âãã/_¾Ü¯_?www©åÆf³YÚi±XV®\yûí·Ož<Ùq½Ò^ñŽEj†qèÐ!“É´zõjéÇ9sæøùùµlÙRé~qPý/U׫WoâĉóæÍëÕ«W‡2228мyó§Ÿ~ºø1;wî?~|HHÈÆ333Ïž=ëáá1xðàÒgëÓ§Ï!C”Ó-(XnÔRjÔR_(æ§Ÿ~š1cFûöíŸþù‡"##;wî|øpéÃÚ·o/Ý :++«[·n³fͲù¸4)86iÒÄÑ£HJJŠŒŒ”‚d̘1Bˆýû÷Û? ‡žŠ3JÅÑ ”º©€v}þùçýû÷¯]»öÀ]\\V®\ùÅ_H‡&L˜Ð°aÃÙ³gÇÅÅII( @ªÞ¥¦¦6mÚTÞž¤¥¥U¯^ýöÛoÿì³Ï®\¹Ò¼yóûZµjòŽ¢  `ôèÑÖOÏÈÈBT¯^ÝÎ!8ôäP‚£~(µH­ÉÔ¨ÉNßÍ›7cccýýý-„xàÚµkçèΤ¥¥¹¸¸4iÒ$;;[j KHHhݺµ¼£˜;w®õÓ¯\¹2wî\WW×ÇÜÎ!¸¹¹9îäP‚#ʧ±5uêf2)ùêåü6;|øpFFÆüùó¥¼%„ ;vì”)Sì|Á‚‚‚M›6•wô±Ç+ݘ––VTT4kÖ¬ÇÜÝÝý‹/¾?~|ïÞ½;VñgäÚ3Š;vŒ5*--méÒ¥!!!öÂö“C‹ŽÎæ 0F¹€Ú©ò?DOž<)„(QÒ+ïã!*åÆÒ•…åLF³±cÇŽ5jøúúJ?Ž1â÷ß=zôÚµkGŽ)û(Ξ=;f̘ 6„„„lß¾=::Z–QØ~rhÁå°!á’htsAÓ?«¡..2ìõòò²T2+׫W¯DËC=$„8~ü¸ì£HLL|æ™g<==—/_>bĈòn²X…QØ~rhï¥(RnÔpjÔp×ÈLÚÂ|èС¨¨¨âÆ#GŽØæÊ.òfddlܸ1:::,,¬¸1''GѨQ#yG±aÆ'žx¢ÿþË–-«U«–Œ£¨ÔÉ¡EG”…«C«V­‚ƒƒ,X0hРÀÀ@!DffæâÅ‹í?sey=<<^zé¥6mÚ|ýõ×Ò'âÍŸ?ßÍÍ­k×®2ŽÂb±Lš4©Aƒ ®®®òŽ¢R'‡5O‘[ðP³ îîîqqqýû÷0`€»»ûêÕ«e¹GceyýýýgÍš5yòä‡~ØÛÛ{Û¶mÉÉÉo¼ñF³fÍ„‰‰‰Ï?ÿüðáÃ,X`Ï(RRRNœ8öÔSO•8Ô·oß–QÙQTêäÐ"‚£Sé£Gj '}úôIJJš={vBBBvv¶——×Ê•+cbbœß“I“&Ýyço½õÖÊ•+kÔ¨q÷ÝwoÙ²¥{÷îÒÑüüü«W¯æååÙ9 é6ã))))))%5iÒÄÎlçГC LU¸è -ïC eŽÎ/7ê!5:l f³YúT o½µ ~ªß… j×®­Ú[UðÁÇŽ[´h‘¦G¡BUøG«éçöà#5Œ¥® =$_ŽR¯^=Õæ­ßÿý›o¾iÕª•¦G­#8ŠÊ Mû÷ï 4hÒ¡q£óÈ»Níür#©Ô©S§N:)Ý Gü¥Â`KjGMRä<Ààޏ5ý”õ3@pÔ'—ÉZ@Bpt–‚€Ö5†r#P ÁåÒ[jÔÛxp6‚£–8³ÜHÊ%`‚£fPnÊ"8:ƒ·T“@%µÁùŸL­7Äa6;tèÉdZ½zµôãœ9süüüZ¶l©t¿#”Gp4$Ê`›Ÿ~úiÆŒaaaS§N-q(22rÖ¬YzÝ2O~íÚµgŸ}¶aÆžžž‘‘‘pÐ=:`À€ºuëzzzFDD,\¸°  À9c„Ê5ÀiåFR#”––&„xõÕWhÝžœœ¼wï^½h™'ÏÉɉˆˆøðÃ;tè0räÈÓ§OwïÞ=99Yö1¦§§GEEmݺµ{÷î±±±ÕªU‹‰‰q¡~nJwN§Æ+.@¥,‹¢FÒIIIûöí[²dIQQ‘¼¯UñÉ,X––öÑG=ùä“Bˆ_|±uëÖ&LHJJ’wŒ±±±×®];pà@›6m„³gÏ9räŠ+¶mÛÖ­[7‡ŽêGÅÑáìÌi”GÛµkW×®]}}}›5k6qâÄüü|©}øðá½{÷B´oß>((H‘••Õ­[·Y³feffÊÞŠOþé§Ÿ:Tú188øñÇß¹sç/¿ü"ï“’’"##¥Ô(3fŒbÿþýŽ#Ôàh0åÄX’ÃúüóÏ£££=:pàÀÎ;¯\¹rذaÒ¡ &¼òÊ+Bˆ¸¸¸?þX`±X,ˉ'dïI'ÏÉÉ9yòd§NL&SqctttQQ‘-W:Ú>Æ‚‚‚Ñ£GKI±XFF†¢zõê#4¥jUc358ÔÍ›7cccýýý|ø‚ ìcJJʉ'žzꩇúöíÛ³gO‡ŽêGpT#Êà4}úôIJJš={vBBBvv¶——×Ê•+eÿ„=ûÕªUkçÎ'N\»vmvvöƒ>¸jÕªâ=.ùùùW¯^ÍË˳sŒÒǦ¤¤¤¤¤”8Ô¤I“Ádâ¿dššš*}_µbŸœÁ±¬(5:w¨f³ù–kFÐ%ÞzkÖ¿5çÂ… µk×–åN×Î÷Á;vlÑ¢E:£ƒTá­¦ÿÛƒOŽQnú J©W¯žFÕï¿ÿþÍ7ß´jÕJÇc„ur£Q† Àèöïß6hÐ ¥;ãGua‘P:uêÔ©“Ò½€þQqt #ïfúCpÔ)ÊÆ-Î@pT‡n‹!G;õˆ5ràGµ ÜTŽà¨;¥ÊFLF3GpTnú Ôà¨/”€ÃE *¤FC‡#8*uj  G½ ÜŒà¨0Ê2#/°Û¡C‡L&ÓêÕ«¥çÌ™ãççײeK¥ûÅ @yG] ÜŽñÓO?͘1#,,lêÔ©%EFFΚ5ËA¯[æÉ¯]»öì³Ï6lØÐÓÓ322òÀ¶•qŽ=:`À€ºuëzzzFDD,\¸°  @Ç3kG%9¨ÜHj¹¤¥¥ !^}õÕZ·'''ïÝ»×A/ZæÉsrr""">üðÃ:Œ9òôéÓÝ»wONN¶å¨Œ3žžµuëÖîÝ»ÇÆÆV«V-666&&FÇ3kGíã‹™ÈÍb±!jÔ¨!ýXPPðå—_¾úê«Ýºu+**’÷µ*>ù‚ ÒÒÒâããW­ZµxñâÝ»w›L¦ &ØrTƈ½víÚöíÛ?úè£Ù³gïÛ·oĈëׯ߶m›^gÿ`Üîºë.‹ÅbËÔ ‹Ýó_êe ýŽ*=øôôt¥§Êà­·&ýÔ–;wvéÒÅÇÇ',,쥗^Ú·oŸâÓO?6lXñŸËÆ[,–‹/Zÿ }õÕWeìFÅ' ,***nyê©§\\\.\¸pË£2ÎÀí·ßeýÜÇ !fΜ©Ý¨Â?Z-þ;—GÅ8bšŠTÖçŸ}ôèÑvîÜyåÊ•Åii„ ¯¼òŠ"..îã?BH>Oœ8!{O*8yNNÎÉ“';uêd2™Š£££‹ŠŠ8PñQg   `ôèÑcÆŒ±~zFF†¢zõêÚØÎMéè–3VY¤¶FjPy7oÞŒõ÷÷?xð`ýúõ…S§NˆˆŽ¶hÑâôéÓBˆx ]»v öó×_µX,ÖþþþBˆÌÌÌŠÊ;sçε~ú•+WæÎëêêúøãktP)Gý 8P;“ý§¨ªr~?>|8##cþüùRfBŽ;vÊ”)v¾`AAÁ¦M›Ê;úØcUêl¹¹¹BˆZµjY7zyy !²²²*>Zñ™í™;vŒ5*--méÒ¥!!!T ÁQ2¬Sÿ³ÜHj êû=uòäI!DëÖ­­ÃÃÃí?ó7z÷î]îLTr½ÈÏÏOñÛo¿Y7æää!|}}+>êˆ8{öì˜1c6lز}ûöèèhíÎ*…à¨M,R—@pP%nnnBë ã„..2lðòòªl6ª@@@€‹‹K‰U×Ë—/ !êׯ_ñQÙg 11ñ™gžñôô\¾|ùˆ#¤3hwP)GȾ-†ÔUÓ¤I!Ä¡C‡¢¢¢Š9bÿ™å]¨usskÖ¬ÙîÝ»­wíÚe2™š7o^ñQyg`Æ O<ñDÿþý—-[VbiX£3€ÊQz[·Ýr‹¾½wáùç»Æ[¨ž)àž,†Å[oM[·)ÉÏÏ®W¯^ñM[.]ºtÇw!>ýôS‹Å²~ýz!Äž={Jú(77·øCù*>š˜˜øüóÏ>|Á‚öÌ@JJʉ'žzꩇúöíÛ³gOÕÎäBpt6{שÙ²êÓ§ORRÒìÙ³²³³½¼¼V®\)ûgèÙ¯V­Z;wîœ8qâÚµk³³³|ðÁU«Vïb©øh~~þÕ«WóòòìœéãSRRRRRJjÒ¤I‰à¨ª€\Lòþׄ¡¡¡©©©åµ+8’KSÓ,˜Íæ   ¥{ðÖ[«øw Ê]¸p¡víÚ²ÜËZm>øàƒcÇŽ-Z´È°3P*ü£Õô¿s{ðÉ1NåˆO‹È¥^½zºÌL¿ÿþû7ß|ÓªU+ÃÎäBpÔÊ¥1 `ƒýû÷‡…… 4HéŽ@ó¸ÆQ“ÈKÛuêÔ©S§NJ÷z@ÅÑyd¼ºBŸp6‚£°H T€à¨1¤F ‚£“T}šEê2‘ p:‚£º±H]&&%5ƒ°”Ept†*®S[•Ic.PÁQ­¸´¨ 7w8û?fÛߘ @ BCC•î‡ 8ª‹Ô4+55Ué.8Ùl Rº€ó°T­>¤Æò0(ŠàèX•^§æÒÆòPÁQ½HJc.P‚£š°H TŒàè@•[§&5–‡é@Žê@j,Ó€jU€ÔX¦5!8:Š­ëÔ¤Æò0¨ ÁQQ¤Æò0¨Á±\Ÿ}öYLLLxxx»ví¦Nš-ó ËdÒðttïÞ]é.@¼õ†Å[£!8–máÂ…Ó§O?}út›6m<==×­[7jÔ¨¼¼<ÛÏp‹ujRciÅ‘‘é@•ŽeHMMغuk||ü¶mÛ†zôèѸ¸8y^€ÔX‘- 8–aÍš5EEEãÆó÷÷—Z¦L™âååµeË–¢¢"»Nm2§F-/ÉʇÈ€vËpðàA—¨¨¨âWW×ÈÈȬ¬¬Ã‡Wñ¤Å‘Ñb1zX2Y}wЂcI‹%--Í×××××׺ý®»îBœ;w®r§“ò¢Éd²XLF‹Œ¦r¾,V_@;Ü”î€êäææz{{—h÷òòB\¹rÅ–“„††¦žLB‡#‹Ié9]è]¡åPºgu¨®‡‡òñÖo= …àX’´uºfÍš%Ú===…×®]»åRSS•„*¤ æ]a©º$ooo“É”››[¢ýúõë⯺#€Krssóòò*]YÌÉÉBï³0‚c²²²¤¤XÌl6K‡”î€2ŽeèܹsaaáîÝ»‹[,ËÎ;}||ÂÃÕî€2Žeˆ‰‰qqqy÷Ýw¥ë…ñññ—/_îׯŸ»»»Ò½P†ÉbáfzeX±bżyóêׯߡC‡ŒŒŒ4kÖlÅŠ¥oÓ`ÇrmذaýúõG ¼ï¾ûÆ'Ý‘À˜ް ×8À&GØ„à›`‚#lBp€Mް ÁQ6Ÿ}öYLLLxxx»ví¦Nš­tàTééé¡¡¡?üðƒÒ“äåå}ôÑG>úè½÷ÞÛ¡C‡‘#GîÝ»WéNÁ®^½úꫯJo}×®]ÇŸžž®t§àl.\hݺõĉ•å±páÂéÓ§Ÿ>}ºM›6žžžëÖ­5jT^^žÒý‚ó$$$(Ý8OAAÁ°aÃæÎ{éÒ¥|°I“&ß~ûíˆ#Þ{ï=¥»ÇÊÉÉyôÑG…:uª]»öæÍ›{öìyìØ1¥»ç±X,“'O¾~ýºÒQ€›ÒЃÔÔÔøøø€€€µk×úûû !^ýõO>ù$..nÆŒJ÷Ž•““sòäÉ 6|úé§J÷γfÍš#GŽ´nÝú?ÿù‡‡‡âÔ©SC† yï½÷¢££Ã”î åwÞÉÌÌ|öÙgÇ/µ|þùç/¿üòœ9sø%`}ôÑwß}§t/”AÅQkÖ¬)**7nœ”…S¦LñòòÚ²eKQQ‘Ò½ƒcõìÙsðàÁüÁ0š­[· !¦M›&¥F!DHHȳÏ>[XXÈ‚µ¾íß¿ßÃÃã¹çž+néÛ·oݺu?^XX¨tïà §NZ¸paÓ¦M•îˆ2Ž28xð ‹‹KTTTq‹««kdddVVÖáÇ•îëõ×__²dÉ’%KÚ¶m«t_à}:00ð7ÞàRWãø×¿þ5`À€Ë—/oذ!..îðáÛ6m’JÐ¥yóæ?>11Ñà×$°9Æ^nnn^^^¥+‹999Bˆâ}Öt&??ÿõ×_òÉ'/\¸ð /lÙ²…Ôh4&“©N:#FŒ0`ÀÅ‹·mÛ¦tà(ß}÷]bbâ3Ï: ÁQ;wNMMݽ{÷#<"µX,–;wúøø„‡‡+Ý;òKHHøòË/ 4sæL¥ûç©U«Ö矞™™Y"8ž={V¤tá(5*þ/¹víÚž={êÕ«^·n]¥;è<GÄÄÄ,[¶ìÝwßíØ±£tK||üåË—Ÿzê)www¥{@f‹eåÊ•·ß~ûäÉ“•î œ* 44tÏž=IIIÑÑÑRã‰'V­ZåééÙ¦M¥;Giß¾}ñÍ×$Çß³gODDÄüùó•îSeP¯^½‰'Λ7¯W¯^:tÈÈÈ8pà@óæÍŸ~úi¥»@~™™™gÏžõððÊ}»ûî»7mÚ´xñâcÇŽ¥¤¤Ô­[÷¡‡=z´ô¹A€î™¤{Pãv<° Á6!8À&GØ„à›`‚#lBp€Mް Á6!8À&GÆ2qâÄÐÐÐ;v(Ýñî»ï†††®ZµJ鎀­ް‰›ÒƒêÔ©“ŸŸ_ëÖ­•îØŠàÊhÞ¼yóæÍ•îTKÕ :………üñ‡Ò½€’Ž´aúôé¡¡¡óçÏ/Ñþã?†††¶mÛ¶  @qùòå ôèÑ£U«V­Zµzä‘GÞ|óÍ_ýµ¼ÓJ{eöïß_¢½Y³f<ð€uËÞ½{ÇŽÛ¥K—6mÚ :ôÝwß-‘í~þùç™3göèÑãÞ{5jÔÁƒ+Ñûï¿o½9FêÉùóçããã|ðÁ-ZDDDüë_ÿÚ¾}{ygHNNnÖ¬Yddäo¿ýVÜxýúõ¨¨¨fÍš=zTé7 €ÞhCÏž=…Û¶m+ѾqãF!DïÞ½ÝÜÜ._¾üðÃfggÛóêqqq#GŽÜ¶m[AA¿¿ÿ÷ßÿÎ;ï 2$++KzÀ©S§zöìùé§ŸfeeÝyç‹eçÎO<ñDRRR¥^hùòåo¿ý¶»»ûƒ>èå啜œû,99y×®]ß~ûí±cÇ>¼téÒÇ|Μ9&“ÉÆ—®V­Z¦åúõë™™™Bˆôôô«W¯z{{;þ­`DGZR_|ñEi ºxúúõ믽öZµjÕ–/_Þ¾}ûâ§\¼x±²¯ráÂ…¢¢"éûàà`!Äm·Ý6uêÔŠŸe2™¤{ !òóówïÞýòË/¯]»6::ºsçΖ™3g^ºt©U«V‡ž={ö‚ úr ‹khI£FZ´h‘žžþã?~ýõ×5Šˆˆýøã………­Zµ²Nâ¯m++±¢ýÕW_P§NÓ§O?~Üú1………ýúõëСÃåË—þùçèèèþýû­V­ZçÎ¥Ý<çÏŸwèœlذaË–-;vüä“OBBB6mÚTú¦E ‚#‘¶ÈL›6-77÷ñÇ/nBœ8qâòåËRKaaá§Ÿ~ºråJ!D^^^™gkذ¡"!!!77Wj9pà@ñMv$±±±EEE±±±)))RËõë×_~ùåcÇŽ5oÞÜÏÏ/00ð·ß~ûá‡>øàƒâRå™3gvíÚ%„pèý/^¼8{öìÛo¿ýµ×^swwŸ;w®««ë¬Y³ì¿¸Jc©€ÆôèÑcÞ¼y©©©®®®½{÷.nîܹó×_ݵk×Ö­[[,–ÔÔÔìììÁƒòÉ'Ÿþùo¿ý&ÝXÇZïÞ½?þøãÇwîܹY³f—.]JKKóòòª[·îÍ›7¥ÇôéÓç»ï¾ûßÿþ×»wïúõëûøø¤§§çææ6nÜXºó¶‹‹ËÔ©S§L™2þüÿüç?wÜqGnnîéÓ§-ËÀÃÃÃ4‹eÊ”)999o¼ñ†”›[¶l9lذÿüç?³fÍZ´h‘Ò。â@cüýýï»ï>!D‡üýý­½ýöÛcÇŽ­W¯žtÇÈÈÈõë×O›6mðàÁ®®®e~`ƒ þûßÿvéÒÅÅÅeÏž='Ož¬_¿þûï¿ïççWü“Éôæ›oþûßÿŽŽŽ.**:sæLPPPllìúõë}||¤ÇôéÓçã?îØ±£‡‡Ç‰'rssÛµk·dÉ’™3g:n*öïßß¾}ûâ =…cÇŽmԨі-[¶nݪè@‡Lß ŒãÆYYY 4°}4 Á6a©6!8À&GØ„à›`‚#lBp€Mް Á6ùß½qZPÁÐIEND®B`‚statistics-release-1.6.3/docs/assets/finv_101.png000066400000000000000000000570551456127120000216260ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A]ôIDATxÚíÝy\”åþÿñk·$pAwD\*;n ¦©—\B+×´\ —<´åXVêדKy´#zГZ?qÏpÉ5×c*¢âB"J)ŠÀüþ˜¤‘u–{æ^æõ|øÜ7sÏçºofxû¹îû^¯@Eœä.ê@p€IŽ0 Á&!8À$G˜„à“`‚#LBp€IŽ0 Á€69sFW‘©S§–úØ¥K—~ mÛ¶ÅV=xð`É’%/¾øbýúõ«V­êïïß³gÏÏ?ÿ<77×”\\\<<<þò—¿|ðÁ™™™Ö v@pS;v¬Y³fo½õÖ÷ߟ‘‘ñàÁƒ”””-[¶L™2ÅßßóæÍn¡   ++ë§Ÿ~š5kV@@À¡C‡ä˜ÁEîÀæ¼¼¼ªU«VryÍš5Kýù'Ÿ|²I“&BooÉÉÉ¡¡¡¿ÿþ{Ñ—üü|Ã××®]8pàžyæ™r ¸{÷nQ£1;;{À€)))UªT±¾f°=hÑéÓ§‹ÞèvîÜiý{õêU´ÁáÇŸù¤ay@@@…\¾|yøðáE«æÍ›g»š@ZLU@q%Ïqܹsç¦M› _OŸ>}ùòåÏ<󌳳³··÷È‘#ããã «’““ÏŸ?_þÆ6l¸|ùò¾}û¾ýøãïÞ½+÷ˆÀ$G¨ØâÅ‹ _ÔªUë½÷Þ+¶¶gÏž=zôxöÙgŸ}öÙŸþÙ” Nš4ÉðEffæ¾}û䘄s bû÷ï7|ѯ_?WW×’?`Ê•1ÆBBB*W®œ——'„øé§Ÿºuë&÷ bth_—.]JÞ׿wÞ1ñá>¼qã†ák___IJÒétuëÖ5|}ýúuÉk[ 8@rrrо®W¯žT›­]»vÉ퀒1U @ûJ½µM­ZµL|xÑEÓBˆ’wí¶XVV–á 777Ék[ 8оիWwîÜÙâ‡W®\ÙÃÃãæÍ›BˆK—.•ú3wîÜ1ÜÓ±jÕªÕ«W7e³E3Ô^^^’× ¶ÀT5T¬C‡†/>|Xòš5kæááááá±dÉS6¸oß>Õ1Bˆçž{Nîñ€IŽP±7ÞxÃðÅåË——.]Zlí¦M›ŠÚ‡/¼ð‚)\°`á‹êÕ«wìØQîñ€IŽP±^½zuéÒÅðõĉcbb~ùå!D^^^\\ÜСC «žzê©   ò7uýúõÑ£G¯[·Îðík¯½f|%(ç8€Ibccÿò—¿äææêõú¿ÿýïÿûß=<<²³³ ?PµjÕuëÖ9;;—|ì믿þÄO!îÞ½kHœuêÔùÇ?þ!÷ÈÀTtÀ$­ZµúþûïoÇsóæÍ¢ÔؤI“õë×?ûì³¥>6###%%%%%Å85ÖªUkãÆr LEÇLÕ±cÇ .|ùå—ß}÷]RRÒ;wš4iöÖ[oU©R¥Â-8;;»»»ûùùuëÖmâĉ¤Fê¢Óëõr×`ª&!8À$G˜„à“`‚#LBp€IŽ0 Á&!8À$G˜„à“`‚cÅ222Ú´i3uêT¹ Á±z½þÝwßýý÷ßå.@fÇ |ýõ×?ýô“ÜUÈàXž .Ì›7¯Y³fr ?‚c™òóó§M›V³fÍéÓ§Ë] €ü\ä.@¹.\˜””´|ùr777¹kÇ¢:½ÐË]…ý‡­zÇ5T…àXº“'O~õÕW¯¾új‡Μ9cÖcä.ìê|rrSißú’%{/=>¹iSu¼-'óDU’““å.AÇRäææN›6­aÆ“'O¶l Žùˤd¥á (“eÇE'éûÞíF‰¶§Ó©ä=Y§z}©…òbQ ‡øÇR|úé§W¯^¯V­šÜµ€ÃqÄIj@%¸8¦¸Ÿ~ú)>>~̘1Ï<óŒÜµ€#Ò „[ã¤A@Bt‹»pá‚bÑ¢E‹-2^¾qãÆ7úûûoÚ´Iî@AtBÑB.8$Dp,®qãÆ={ö4^rçÎ}ûöÕ«W/((¨nݺrÐâ-T‚àX\§N:uêd¼äÌ™3ûöí ž3gŽÜÕ€ÆI{#ò -Îq„Cضm›Ü% 8Š2q\ˆƒå 8À$LUW¬E‹Ü@ J¥ð+cÔ u¨G˜„àP ýˆj@=ŽmbÁ`!Np ÁùÐ…ª`nÇ£r—˜‡{TAr\(ÁQ)ø3 u à— SÕK(üÊuœ:¨Ž*?`‚#LBpÈ+cU 8̦ðÕ¡BG˜„àÐzy€`‚#@fŽxe MQ¨Á`®ŒÁÒ8vì˜N§[»v­áÛY³fyxx´jÕJîºqØÁÒ;{öì|]lUHHÈÌ™3mô¼Òn¼ä(N:5hРºu뺺ºÏ›7/??_ª§³éƇÂ$0`;GH/%%E1cÆŒÈÈHãå'NœØ¿¿žTòEjjjhhè¶mÛºwïU¹r娨¨Hò\6Ý8Å!ÛBµ\ä.¤×ë…U«V5|›ŸŸŸ˜˜xàÀE‹Jû\¶Ûx±QDEEݹsçСCmÛ¶BÄÄÄŒ9rùòåÛ·oïÖ­›•ÏeÓÒ’üGG¼2P-:ްÐÞ½{»víZ«V­æÍ›O:5//ϰ|øðá}úôBtêÔÉÇÇG‘••Õ­[·™3gfffJ^†•7}‰‰‰!!!†`g0~üx!ÄÁƒ­…M7€Tè8Â6l8p`íÚµ###œœV­ZµqãFêɓ'7jÔ(&&fîܹ†$äååeèÞ%''7kÖLÚJ¬Ù¸é£ÈÏÏ7n\pp°ñÃÓÓÓ…UªT±r6Ý8"8Âl<ˆŠŠòôôø 000::ºØª™3gJût§N4hPݺu]]]ƒƒƒçÍ›—ŸŸo‹QØè‰ì°‹ÁÒKIIB̘1#22Òxù‰'öïß/ís¥¦¦†††nÛ¶­{÷îQQQ•+WŽŠŠ0`€ä£°ÝÙz ¹ €éõz!DÕªU ßæçç'&&8p`Ñ¢E………Ò>WTTÔ;w:Ô¶m[!DLLÌÈ‘#—/_¾}ûönݺI8 Û=‘­w`1[œàèXWÆ0O Í¡ã íÝ»·k×®µjÕjÞ¼ùÔ©Sóòò ˇÞ§O!D§N|||„YYYݺu›9sfff¦äe$&&†„„œÁøñã…”vV>Qùlº‹ GXbÆ ¬]»vdd¤““ÓªU«6nÜhX5yòäFÅÄÄÌ;׳¼¼¼ Ý»äääfÍšIXF~~þ¸qゃƒ¦§§ !ªT©"á(¬|¢ Ùn !‚#ÌöàÁƒ¨¨(OOÏ#GŽÔ¯__]ªZ¶lyñâE!D»ví:vìhÓJ\\\fÏžm¼äÖ­[³gÏvvvîß¿¿´£°ø‰Ø³Á€=M't2>{Yç!?~<==}Μ9†¼%„ðööž8qâôéÓ­|ÆüüüÍ›7—µ¶wïÞå?|÷îÝ£GNIIY¼x±¿¿ù?lÍ(Ê"+G('8Z=Z"-4ˆà¨hÊ|‡=þ¼¢M›6Æ ƒ‚‚¬ßòÝ»w g–¾7Ê~ ¾|ùòøñãüýýwîÜn£Q˜òD…ãâ˜ÍÅÅE¡Ó=Ö ur’àwÉÝÝ]_¶²ß²eË£G.]ºôìÙ³¦¤FËFaâY6 ”Ž#Ìæçç'„8vìXhhhÑ“'OZ¿e &y^{íµ.Y²ÄÍÍÍv£0ý‰˜ª†ðIƒJEp„ÙZ·níëë;xð`ooo!Dffæ‚ ¬ß²¹“¼z½~Ú´i 6Œ‹‹svv¶Ý(Ìz"¦ª»Qîi„Ê­ ° Áf«T©Òܹs4hРJ•*­]»V’&yMÿù¤¤¤sçÎŽ5ªØª~ýúEDDÄÇÇ;vøðá±±±ÖŒ¢Â'²f€ƒp¬+c"8Â}ûöMLLŒ‰‰‰‹‹ËÎÎvww_µj•䟿W!ç&%%%%%[åçç‘——wûöíÜÜ\+GQáÙyàÈBGkDrÉÉɶ~ˆrdddÔ®][’û`Û²eËNŸ>=þ|UB¬ÿ¥MKK3|*%--Í×ÇÇlÑqTè„°ÔeñbQ Uÿá¶WUÃZõêÕSlÞºÿþ®]»Z·n­êQ GhÙÁƒ,w!€£s v# iœã- “» Ž„< M£ãø“Np  G˜„à°-îàhÁ > =“P¡e’!8þ "5-Mî*(Á&!8 æ©áŽâÊ@KŽ!„Ð Õä;Z{€\Ž0 Á«Ñ…c 8BÇŽÓétk×®5|;kÖ,V­ZÉ]—#ް€æ©9ÁЂ#¤wöìÙ>ø 000::ºØª™3gJø\>tqqÑ=®N:¶Å©S§ T·n]WW×àààyóæåççK5›nI¸È]4(%%E1cÆŒÎ;/?qâÄþýû‹-´RZZZAAA‡|}}‹ºººJ>ŠÔÔÔÐÐЂ‚‚¾}û6jÔhçÎQQQ{÷îýöÛo­.›nÐ%Î +±&À&Žž^¯BT­ZÕðm~~~bbâ-ZTXX(ísâ]LLŒ´y´ä(¢¢¢îܹsèС¶mÛžqäȑ˗/ß¾}{·nݬ|.›n©0U íÝ»·k×®µjÕjÞ¼ùÔ©Sóòò ˇÞ§O!D§N|||„YYYݺu›9sfff¦äe‚£ŸŸŸ­G‘˜˜bvãÇB{ÿ‡>~üxzzúœ9s yKáíí=qâÄéÓ§[ù„ùùù›7o.kmïÞ½K.LII),,œ9sfÿþý+Uª´qãÆwÞy§OŸ>§OŸvww/繬ÅîÝ»G’’²xñbëGaúÆGwÁQÙùyþüy!D±–^PPõ[¾{÷®áÌÂ2vF){c÷îÝU«V­U«–áÛ#FÜ¿ܸqëÖ­9r¤ä£¸|ùòøñãüýýwîÜ.É(Lß8 9Np´nœ$Y8‚#Ìæââ"„Ð=Þ ur’àB+www½™oÁõêÕ+¶äÅ_Bœ9sFòQÄÇÇ3ÆÕÕuéÒ¥#FŒ0lA’Q˜¾qdÄ'˜Íp ó±cÇBCC‹ž|xll¬5£HJJ:wî\``à¨Q£Š­êׯ_DD„5£0kã€*ØèGr ;‚#,Ñ·oßÄÄĘ˜˜¸¸¸ììlww÷U«V 0Àþ•L›6í©§žúì³ÏV­ZUµjÕ§Ÿ~zëÖ­Ý»w7¬ÍËË»}ûvnn®•£0Üf<)))))©Ø*???+³M7€„tœÅò$''Ûú!Ê‘‘‘Q»vmÅÞªzÙ²e§OŸž?¾ªG¡@ÖÿÒ¦¥¥>•2*9U-Éqq”Ž£½ âÅ¢@ªþÃm >rÖªW¯žbóÖýû÷wíÚÕºukU°Np´Šâb,`GhÙÁƒ,w!€q”v#à8ÇZ&whGpDÌS[…þ'Á&!8$ã(Q 8*‚#@é”53¬¬j»"8€ÃáG–!8À$G€4âGæ©áØŽàX˜§`1‚#@ÑèñÊApÀ4dX8<‚#8ÛÍS;Ä Ž€Ã#8À$GHãØ±c:níÚµ†ogÍšåááѪU+¹ëbŒ€º)hrXA¥²!8BzgÏžýàƒ£££‹­ ™9s¦ž·Ôß¹sçÍ7ßlÔ¨‘««kHHÈ¡C‡l4ÆS§N 4¨nݺ®®®ÁÁÁóæÍËÏϷϰ‚#¤—’’"„˜1cFdd¤ñò'Nìß¿ßFOZêÆsrr‚ƒƒW¬XñüóÏ9òâŋݻw?qâ„äcLMM ݶm[÷îÝ£¢¢*W®5`À;Œ0'8°’‹Ü@ƒôz½¢jÕª†oóóó8°hÑ¢ÂÂBiŸ«üÇÆÆ¦¤¤|ýõ×C‡BLš4©M›6“'ONLL”vŒQQQwîÜ9tèPÛ¶m…111#GŽ\¾|ùöíÛ»uëfÓ1°æ©!GXlïÞ½]»v­U«VóæÍ§Nš——gX>|øð>}ú!:uêäãã#„ÈÊÊêÖ­ÛÌ™3333%/£ü¯Y³ÆÛÛûõ×_7|ëëëÛ¿ÿ={öüòË/ÒŽ1111$$Ä Æ/„8xð ­Ç€Ýa‰ 6„‡‡Ÿ:u*22²sçΫV­6l˜aÕäÉ“?üðC!Äܹsÿýï !¼¼¼ôz½^¯?wîœä•”³ñœœœóçχ……étº¢…ááá………¦œéhúóóóÇgHŠEÒÓÓ…UªT±éÓ©ñchóJÃT5ÌöàÁƒ¨¨(OOÏ#GŽÔ¯__lXÛ²eË‹/ !Úµk×±cGë¼qã†^¯÷òò2^èéé)„¨°ugîgÏžmüð[·nÍž=ÛÙÙ¹ÿþ2îÀ>´‚#x„à¨h:ë7a…²Þ&?žžž>gÎC¢Bx{{Oœ8qúôéV>c~~þæÍ›ËZÛ»wo³¶vïÞ=!„›››ñBwww!DVVVùµfŒ»wï=ztJJÊâÅ‹ýýým:Fì‰à¨hÊüîùóç…mÚ´1^dý–ïÞ½k8w°ô½aæÿø=<<„¿ýö›ñœœ!D­Zµl1ÆË—/?>!!ÁßßçÎááá¶#`"5ÎS+íFÀÁfsqqBŸ8(„pr’à|Ywww ““———““S±Yé›7o !ŠúˆŽ1>>~̘1®®®K—.1b„a ¶# a6@Ž0›ŸŸŸâرc¡¡¡E OžýôSPlɶmÛä Š “» KKK³æáW¯^•{ŽÁÇǬ#eúqñõñMMKMVý”S·•¿`Ö>½¯oZjªµ†"¼Xd×½{w¹KP ‚cy’““×­[g8 ´E‹•+W6ýrרœõ']qÚ–­ý1Omæ~6ý¸Øè>:·Pæ_Eý~*ªTòÏzÉ‘ƒàÓ>4ì•W^IJJÚ·o߻ᄏ}ûöÈÈÈßÿ]î¢äAp¬€N§«S§Îˆ# týúõíÛ·Ë]ÀÆs=5 4Çâ.\¸ð·¿ýmëÖ­Å–>¤îÆr&±éõÔÜÁpLÇâÜÜÜ6lذ~ýúbË/_¾,8ËlLþfŸüÊEp,ÎËË+ `ß¾}‰‰‰E Ï;·zõjWW×¶mÛÊ] €<¸ªº³fÍûÌÃÃCîê bÌS°:Ž¥xúé§7oÞܳgÏ[·n}ÿý÷7nÜxñÅÿßÿû½zõ’»4€-1O ”‹Žcé7n+wàXˆm€ÂÑq­áó©ØÁ`-ŸàHèÁÒ8vì˜N§[»v­áÛY³fyxx´jÕJîºØH†àé={öƒ> ŒŽŽ.¶*$$dæÌ™6zÞR7~çÎ7ß|³Q£F®®®!!!‡2}­„{àÔ©Sƒ ª[·®««kppð¼yóòóó5¼ #õÎSËÜï£Ý˜€à饤¤!f̘i¼üĉû÷ï·Ñ“–ºñœœœààà+V<ÿüó#G޼xñb÷îÝOœ8aÊZ ÷@jjjhhè¶mÛºwïU¹r娨¨hx@«´Wæh“RkÚ´©"»={ötéÒ¥fÍšS¦L9pà€bÍš5Æ +úíjÒ¤‰^¯¿~ýºñ¯ÜŒ3$,£üx{{-5j”““SFFF…k%ÜO>ùdhh¨ñc?.„øûßÿ®Þ=`ý/mjjªõÃG1Ö¿§—\„ÏPöÆeü‹¤ì¿†¼XH¸%AÇ–ذaCxxø©S§"##;wî¼jÕª¢´4yòä?üP1wîÜÿûßB///ÃoÛ¹sç$¯¤œçääœ?>,,L§Ó- /,,}ú”¹3Ìl xxx!~ûí7ã…999BˆZµj•¿Ö{àòåËãÇOHHð÷÷ß¹sgxx¸z÷À1a6!„ñ‰qB'' Ηuww77•ÃËËËÉɩجëÍ›7…õë×/­ä{ >>~̘1®®®K—.1b„a êÝp@š½óÔ€9Ž0›ŸŸŸâرc¡¡¡E Ož}zþüù»Êaý/mZZsâR‘08–z\´yGõ´y±(ªÿp[ƒO޵êÕ«§ÉÌtÿþý]»vµnÝÚa÷ÅÒÌSÁàh7R 8гõ<5)P)‚#¨ óÔäBphN@"GÀc4x=5‰@M40OmïöíF@:G˜„àªa‡v£¯¯¦æ©i7’"8ì‡ ¨Á&!8€:ØažZ't©i©rTÂñÐÞ$Fp€IŽ;±kv#`GP ܾ€Bhìch7¶Ap¥£Ý@!Ž{°_v#`3G€¶æ©Ø ÁyjóÐnl‰à°9â  GP.û´™§`"‚#@+hl6Fp€IŽ Pš™§¶Sv#`{G˜„àJ¤™v£Ðnì‚à°! %G€ÊN{!8€â0O @™Ž5£ÝØÁ”EKNM¨4†àŽH#óÔ$SÀ¾Ž0 Á„yj%=€âŽàp42O ÀZj7ÚíF@G€ôÈu€&À±hažšX È„àŠÀ<5å#8T…v# ‚#ÈÏníFûÌSí­"8ÔƒL ÈŠà2ÓX»€†i*8ž:uªüضm›Ü5€ÆÙ°'H»›¦‚ã+¯¼òÏþ³   äªììì·ß~{Ò¤Ir× Vš Žžžž .4hÐ¥K—Œ—oß¾½gÏž[·nmܸ±Ü5Àc˜§6y´ùi*8nÚ´iРA?ÿüsŸ>}âãã…·oßŽŠŠš8qâíÛ·G޹qãF¹k-#ÝÚæ"wRruu‰‰y饗Þ{ï½3flÙ²%55õæÍ›þþþ³gÏnÕª•ÜÀc¸é·©¤€2hªãhо}û5kÖÔªUë§Ÿ~ºyófëÖ­¿ýö[R#G¦úyjÊ Áàøã?0àÖ­[-Z´ðôô<~üø¸qãnܸ!w]ðíµmÕ¤Ý(†¦‚ão¿ý=jÔ¨›7oNš4é›o¾Ù´iÓK/½´gÏžž={®_¿^î@ên7’%ÑTp4¤Cÿo¾ùfìØ±ÎÎÎîîîóçÏŸ;w®N§‹ŽŽ9r¤Ü5¨•¦‚ãÍ›7Gýí·ß6oÞÜxyDDDBBBûöí÷íÛ'w óÔrn€å4uUõêÕ«ƒ‚‚J]U·nÝ+VÄÅÅÉ]#Ø•ºç©(Œ¦:Že¥FN÷úë¯Ë]#h°Ýh´åÑTpÈ‚Œ8‚#Ø•=Û*ž§&ŠŠDp€IŽ`?´M+v# PG€U$Žy¤F@ÁŽ`'\L @í4uG!ÄÖ­[W®\yéÒ%}ÿa=tèÜ5€Í©užšv# lš Ž;wî|ûí· _;;;Ë]hIp(š ŽË–-B 6lìØ±îîîr—â²ê&„J§©à˜’’Ò Aƒwß}×ɉs7$¦€õðáÃß~û­aƤFJ£ÕËb¤lÒnÔ@;ËÉÉÉÝÝýÂ… ………rײQå<5©P íGggçQ£FݼysÞ¼yr×¢Ý@34uŽc=®\¹òå—_:t襗^jРAåÊ•‹ýLhh¨Üe€­Ðn`Sš Ž;w6|qêÔ©S§N•ú3ÉÉÉr— ÀhµÝÀ1i*8þõ¯•»p’u i7ª¢©à8gιK€?ٹݨÊyjª¢‹c*C»PuwW¯^-„xî¹çüýý‹¾-ß!C䮀CÐp»Qš¼GjTHÝÁ1&&F1sæLCp4|[>‚#€eÔ'L˜ „hÕª•áÛ)S¦È]ÁÅԢݨ“ºƒãøñã¿}ã7ä®d ²yjR# Z\£Ý@«Ž n*» íF@ÍŽ %m·I}€ƒ#8€ŠÑn`OGŒ¶ÛÖ"5êGp˜„à@Ý·ã©^¯OLL¼zõêÓO?$w9´ÌþíF5ÍS“:MÐZpLLL\°`A—.] ÷ÿý÷×­[gXù÷¿ÿ]§ÓÉ]#¨UÁÔh…¦¦ª92vìØsçÎ !Ξ=»nÝ:ww÷Áƒ7hÐ >>>11QîhíFŽ@Sǯ¾úJ¯×¿÷Þ{‘‘‘Bˆ;v!fϞݹsçK—.uïÞý?ÿùOçÎå. íF@C4ÏŸ?_·nÝ×_ÝðíáÇ+W®üüóÏ !š4iòÔSO¥¦¦š¸©ÜÜܵk×®[·îêÕ«O>ùdÓ¦MGŒѱcG¹‡@‰4ßn$û0ÐTp¼}ûöSO=eø:??ÿìÙ³-[¶¬\¹²aÉO©©fÑÇ×7Íä»X Bx±¨]÷îÝK.LNN–».hªãXäöíÛ§OŸþå—_êÕ«×±cÇ*UªXœ V¯^ýÙgŸ|þùç¦FÇüeR8¹K@q8(vÂíF?g±A™=FNèõª?´ £‹ª•ü³^j“Èh-8fee-^¼xݺu¹¹¹Bˆ¡C‡vìØ±oß¾-Z´˜={vÍš5ÍÚÚáÇgΜyñâEooï?þ¸C‡r€R8ÂÙ–L83I hš¦®ª~øðáØ±cãââÜÜÜúöí[´ÜÓÓs×®]¯¼òŠ!Mš"//ï£>:thFFÆ„ ¶nÝJjPD–Ô¨Ž³hš¦‚ãÒ¥KOž<ù /lÛ¶í“O>)Zþßÿþ·wïÞ—.]Z¹r¥)Û),,œ}ºäZ.‘€âH€ÃÐTp4hÐŽ;&Ož<þ|ã n¤uëÖÜ…@©áùä¤I“ä®ÊC»€’i*8þõ¯-kU£FúôéÓ°aC¹k ´Cjðˆ¦‚ãœ9sä.,§Ä‹©IŒ8ÊÅ1`"Gk7’ ˜NÝÇÝ»w›ûÐÐP¹« \2¦FÚ”OÝÁq̘1æ>$99Yîª@)ÊK†¤F%¨;8–s5 ˜‹v£QA¤F¥Pwpäj°á€¹èâ˜wß}7<<\î*(íF£‚H”@ÙíºÇ©»ãXRvvö?üžž^lynnî÷ßïìì,w”Èÿ”}|}IÊ¢©àxãÆÈÈÈk×®•õC† ‘»FxŒ²Ú:]ZjªÜUP,MÇ+V\»v­mÛ¶›7o>|øð‡~X­ZµsçέZµjÈ!ï½÷žÜ5Pl7–ÎЄLK“»Ê¥©àøã?V©ReÑ¢Ennnááá:uòññéСƒÂ××÷ÿøÇÀýýýå.€‚È›åj7r#Ëhêâ˜_~ù¥I“&nnnBˆ:uêÔ¬YóôéÓ†U ¨Y³æŠ+ä®þ ´Ij²$€ i*8 !œœþQ£FÒ͹8;;œ:uJî(ˆcNR—IL£©àX·nÝK—.ݽ{×ðmÆ =Z´V§Ó]½zUî(…cNR—V ©€©4»té’››;eÊ”‹/ !‚ƒƒ/_¾¼oß>!ÄÍ›7;V¿~}¹k9O‰¤FÀ,Ž9OaDSǼþúëÛ·oOLLÔëõK–, qqq?~|ëÖ­Ï;wïÞ½=zÈ]#E ÝÐTÇÑÃÃcõêÕQQQ­ZµBÔ¯_ÿý÷ßÏËËÛ¿VVVçÎGŒ!w Ú¬¤©Žc~~¾‡‡Ç˜1cŠ–DFFFDDüüóÏ^^^¾¾¾r@h7 Aj` MuCBB>ûì³””ã…®®®íÛ·'50pø3” {ÔÀš ŽYYYÿú׿zöìùÊ+¯|óÍ7E—W€BÈØnü3+’XJSÁqݺuÆ óòò:qâÄûï¿ß±cÇ¿ýíoÆwäààh7’Ëñ¢±àتU«¿ýío»w‹4hPåÊ•7lØ0dÈ_|ñË/¿üõ×_å.€œdÏ—¿ÝHj`MÇ?†ääôÜsÏÅÄÄ8p`É’%™™™Ÿþyhh¨ñu3`OJ¹&¬ ÁàXÄÅÅ%,,lîܹ+W® (((ؽ{·ÜE‡ìíF9ÇN»€D4u;žb’““·mÛ¶mÛ¶ÔÔTñ¨)wQd {j”¿ÝHj¬$ûûˆ2h08ž={vûöí[·nMOO7,iÙ²eDDD=<==å®ìJ§zAj MÇ9sælß¾ýÊ•+†o›4iѸqc¹K ÙÛò¶I$¤©à¸lÙ2!„§§gÏž=#""Z´h!wEd&{j”{ü¤F@ ŽþVò'MÇDDD´mÛÖÉIËýP9Û:b#‰i*8Κ5Kî(ˆì=ùS#±€¤èÌÐ&ÙS£¬ƒ§ÕHÇ¡ßMŠ#8Ð %¼ÏË{M Ñ€-@[ÈŒ€„”ðßP%!8Ð%¼ÏËÖnÔé„^Ot`#GšBj”{ô€†(á EaŽ  R#é€íh‡ºò´I‹€ä”ð†¢<Gá¸oòF©‘ HÃqßP*@p  y“—¡ÝHT`GG†ì©‘ HC!ÿU$‚#ÕsÐ7yr"` ú†b*‚#uSÈ›¼½Û%R#1€¨©€”òž¢`GP•ÒR#I©ÑGj¥7y»¶Iˆ€(ä EñŽTÉßäËH„IÀZŽø†b!‚#õQΛ¼ýÚÄCÀF”ó†¢G°R#y° ©ÑLG*ãpïódCÀFîÝDGj¢œ÷y;µËMDJÀrÊy7Q¹ S)ç}žÔ¨˜N¡˜wµ!8€" [PÎ@Õ‰©jê œw{{´+J¤JÀÊyQ-:ŽT@9ïöJHÌÆô´DŽ”N9©Ñ.£­85,3%Ep hŠJ6o7 i)êDŽ”KQïù IdKÀ$4mƒà @j¤Bd´%‚#…r v#y‘ÑöŽ”ÈQR£N'„015/2í…à@q(5’+í‹à@Y•m9NóR#!(ŽÈ(‚#”ÉVíFb ` "£|ŽDQíFå¤Fr& Ä£¼(”ô6áxŽ”BQ©Ñfƒ$5æ£Å¨GŠ ´Ôh“v#0 -Få!8©QÒ*G^T0‚#™i?5šs³FÀq‘Õ€à@NJK6¡å=CÚpäEU!8S£ÄíFR#Pò¢:àÊI€6錾æÅ¡NGòðõñÑòëR#™šBsQCœä.€#Ò ‘š–&wÅJ’®ÝHîtFÿôþAýŽìM˧6êtÖ§Fb'ÔªÔ°È/³¶0U À®4ž­N|¤F¨ §-:‚#û!5Z@Xt`Gv¢ÀÔ(ÝØ¤I„O(aB‚#ûPfj” Ý(ݧ¡8„E”@p`sZNd=h‰îñoùíF G¶Ej´ûÆ“‘a&‚#Rfj”b`¤F¨IÖ!8°ŦF«ÚÒÔØI’"8° ͦF©##íFHIWb ¿]Á€!5Bkh(¾ޤ§Ìv£ÒR#`6ŠÁ€Ä”™­­Nj$‹¢b¢ðùã+~a 7'¹  )ŠM¶ áŽÔ;Еø§ÿã_ZjÚ_r£ã@2ÚL€ät¥-äw j@p M¥Fßs‡DêX81Bp ­¥F[Æ:R£–ÑJ„ÖX‹ÔGDF„C"8°ŠbS£ù#±ÇGÂKU‰Œ£ÑÞ©QWîZ…E*Dp,]DDÄõë×å®°7å7Eù©Q)½>)G[Í €ÂK÷ÑG=xð@±jÕªÈ]`*Nr7‹ª°¤¢!õ 8–®S§N†/víÚ%w-€=¨55*#2ŠòS#Ñ€Vm"  Ø’mÛ¶É]”C»zõªÜ%(š¯OjZZš}ŸÔ܃âë㛚–š&þ,ÓÇ×7-5U!ì]{q>¾>zQf@LK-·<™k/Ž‹qPd×½{w¹KP ‚£M$''Ë]Šóññ±~#šôG¯QŽýcúAù£×Xôãö+ZWÁÊršž>Be¿{¼Xˆƒ"¯’ÖKvˆÁp\ª¸€Z”œ¡¶ÑE0–N(kòš(ÁpPª8©QKVžÑhƒs I ÁpDjMåg4]E›“z̤Fކà8õ¥Æ¢F£’.O&5p@GÀ±(=5EC£óõJ+ÔÀ1G¡”KaEÃÒ¯5þ#"êôBO:¥q’»ö`èÖÙ#…é*ú§ÿã_ZjZÑ×þ3¤F¢{z . l‹àXY³f%''?óÌ3rXNâ9^Óra™ÿ*ظNo¸)¢R£©€#cªÐ8KR£\× (>”)¾@°-‚# YåÔ¨¤Ë“…PÐGN—_£² ›#8¥+7þ)'étB®…QNM¥—Ij‚# ZJëZ2Ðë‹¢ òÀ€à(˜EÑPI·;,gh:!H .\U ÈÍâ+”ËØ’ÒCŽNgÈbi©©ÊOct۳˜²:"£øó __å§FÚ`ŒŽ# 釖=¹Òã!‚éõBÐé„.5-UîšL*P„à˜Ã²thûŠoÍM?*X§zz FLU%”3³¬°$¡‚È(»;£ZNj$5@©Žp`eD•$E§ÆÒnèMjµ#8BëtBá#|JY¥ÚpPÞGÂÈ®ŒÏ€!5€pŽ#´¢ÜSÓRÓì|ê¡MªÐò‹Îe$5€FÑq„Ú¨|~Ùú¡+t eg.R#hÁJåÀ±TÊ=£±Œ¹i!„Nè„Pú‡P ‚Ô"8BJ͈ü7¢ÐÔXvdêi4 R#˜Œàû"#šI¡ÓÓåFFAj"8ÂfȈVSb£±¢È(H ]GHŒ(5%6MˆŒ‚ÔšFp„ùJÆDþúJJqF“#£PÉ¥0‚Ô!8¢"ÄD;R\£Ñ´È(TÕh¤F°Á%KŠü}µe5MŽŒ‚Ôƒàèðh(*€²æDFAjGBpt<4FAFó#£PÏI‚ÔV#8:ã°ÈNÅPP£ÑÌÈ(ÔÖh¤FÁQ£h+*žRæGFAjGEpÔÚŠ*¡”F£¥‘Q¨jzZ@:G•#,ª"EF¡ÂF£ 5€¤Ž*DXT'E4-ŒB…©ÑбJGpT¢¼ÈBµÑ@dLOŽ*@^T9ù禭뼩®Ñ(H`3G¥"/ªŸüF«'kIcGå‘?n@r6uþÛa]dj›ž¤F°1‚£bÐbÔ 9“¿D׃¨±Ñ(H`{G Å¨ÚˆŒB…FAj» 8ʊȨ!²ÍMKw×õ6%Ú€ eBdÔÙ¦¤‰I½©‘ÈvCp”ƒü7h4䉌R\ûòø(˜ž˜„àh_4µBÎÈ(iVRi£Q@G;¢Ñ¨2IÛDF¡ÎF£ 5€LŽöBjÔ¶¹ôCÕFì€IŽvAjT?{GF©Od4F€…޶GjT9y"£mò‘z‚Ô @p´1R£ÊÙõÚ82 57ÓÓ G tök4ÚlVÚh,4 8ÚíFu²wd´e,Ru£Q@aŽ6CjT!"£¢@iŽ€v‹Œ¶Ÿ•~4ÏM Nj¥"8ÂÑÙ52Ú> ÑhØÁÑ6˜§V{DF{µˆF#À†ŽpDö‹Œö A4v@p„ñm;ؾ-F¡‰È(H G8Û6å˜gUûÜ´`zT…àhüT_a£Ãb÷ãOK£`wNrØ–N©iiÒçîàcøg¿é FU§FNøúú@]ŽÐ,Ý£Ó%'†¼Xí:"-DFñ¨Ñ˜šš&w!ó0U ²Õ¹Œ²žŽ§Óg4€Ê¡)6‰Œ2Åh4(-œÎ(8£Ôà-x”ì$ÍVrçE¡­È(h4€ú¡n6l1Ês4FЂ#ÔJúȨ€£Ð\d4@CŽP‰#£2ò¢ 2à5±IdTFºÑÆEÓŒ…¹iÐ(‚#ÔAÊȨ˜㣡Ñh¨ÁJ'YdTX^ÚŠŒ‚F#8‚#”KÂÈè#”…#£PÖØ9ÅÑIõiFŸ ˜–š*÷°ŠF§‘ üc8ò|ø"@t¡ Ò´•7%ýhttêFp„"H•š…æ"£àtFpTGÈL²È¨È £ÉÈ(º³6Gp„<$øtiÅ·‘ -GØ›µ-FçE¡Å£ 2!8Â~¬ŠŒÊ΋‚ÈpGØœU³ÒŠÏ‹‚ÈpGØ-Fe'MFFÁEÓ€2a–GF5´…¦#£Pú¾Ȇà)Y>+­ª¼(ˆŒ‡Dp„4,l1ª$/ í¶‘`2‚#¬eIdTO^DF!8ÂB–ÌJ«0/ -FFU€‚a6³[ŒjË)´(Á¦2»Å¨¶¼(ˆŒ”‹àˆŠ™×bTm^DFÊEpD™,l1ª*¡h¸Å(Ty@ŠFpD)h1ªš @Žø“y-FuÆZŒXŒà!Ìj1ª3/úúøþQ5‘K9É]ä¤{ôO_ajÔéþø§×ÿñO ­KMK5Ô-wERðñÀM”q^,/o¨3/ŠG‘ñQѪ)ÛŒªò°Ô©jÇbêYŒêœZ¿êE¨øÈ´€àè(L:‹Qµ©DóyQp#@ŽgR‹QµyQhý*i¡îƒÐ‚£f™ÑbTa$¡Å€ý5¨âȨÚ.–ãäE¡¾ƒÐ>‚£vT<+­ÚHB^@ ŽZPA‹Qµ‘„¼€¢U¬‚£j# ye"8ª’I-FµEò" GpT™ò"£:S yµ 8ªCy³ÒêL%äET‡à¨t·Õ“Jt`ò"êCpT®2#£Ú‚‰C5…j f#8*Q‘Q%ÁÄ¡ò¢JŽ V!8*H™'2ª*žÐ*‚£"¨½Åè'/2 ÁQfªŽŒšo.0Fp”“N…³Òšo.( ÁQ¥4Üb$,Ap´?EFmÏD0ÁÑ®tŠŒÚn.°ÁÑNŠ7•5’¢PÊþ@­œä.À!¥F½^Þ£º¢ú?ªÑk 5êtý+Xjj©+Ñq´9bšì,Ï> zŠØÁѶt%ö.@ka‘¤€\Ž6ôgj´o£QKa±XL$EäCp´•ÇR£íÃŽfÂ" E‹àhöIj‹%»‰‚¤€‚mIêÔhœ…ªÂ" àv,,¬mÛ¶¯¾úêáÇå„Ö˜{Pòòò¾úê«~ýú…‡‡Oš4éÂ… rÂᤦ¦üïÿ“»¥1oÞ¼÷ßÿâÅ‹mÛ¶uuu]¿~ýèÑ£ssså®Ë!˜»óóóó‡ 6{öì_ýµ}ûö~~~‡1bÄ_|!÷P´ÃšW„^¯÷Ýw‹>)R±à $&&FFF&&&zzz8qâõ×_OLL”{(ÚaîA)((:tèܹs³³³Ÿþùúõëoß¾½wïÞGŽ‘{(Ž%..Nî䣇ÕÎ;׬Y³çŸþƆ%³fÍjÚ´iLLŒÜ¥iŸ;õêÕM›6ŒŒ¼wïžaÉùóçŸ{î¹ÀÀÀ³gÏÊ= -°ò±|ùò¦M›6mÚtÊ”)rE;,8(·oß~æ™gŽ=jXò¿ÿý¯eË–:t((({@Z`ñÛפI“>|hXràÀÀÀÀ_|QîÑ8„;wî9räÃ?4¼G00ðÒ¥K·nÝ’{@Ú1dÈ5kÖÈ]ˆœŽ8r䈓“ShhhÑgg第,˶cÁÎOKK«^½z‹-Œúûû !®\¹"÷€´ÀâWD~~þ´iÓjÖ¬9}út¹¡5”½{÷êtº>}ú/üì³Ï’““Ÿy湤ooo!„qFÔëõ·oßvrr*Š’°>úhÑ¢E‹-êСƒÜµÈ†ß3kéõú”””ZµjÕªUËxyÓ¦M…W®\ –»FͲlç/]º´ä;ì™3g„ 6”{LªgÍ+báÂ…IIIË—/wss“{šbÙA9}útÍš5ëÖ­{ôèÑ'Nܾ}»Y³f]ºt)jÕÖ”^½z­\¹ò£>zâ‰'ž}öÙìììE‹]½zuРA¼jì S§N†/víÚ%w-²!8ZëÞ½{5jÔ(¶ÜÝÝ]<þÿBHβ߼yóbK:ôå—_V©R¥Xs°øqòäɯ¾úêÕW_íСƒ!ÇC*”¼¼¼ß~ûÍÏÏoÆŒñññEË6l8þü–-[Ê=&Õ³ì•7lذaÆ-|õÕW£££åSÕÖ2\þV½zõbË]]]…wîÜ‘»@-³~ç¬\¹rÔ¨Q÷îÝûä“O<<<ä“êYvPrss§M›Ö°aÃÉ“'Ë= ²à üöÛoBˆ”””-[¶|ú駇Þ³gÏ„ ®]»6iÒ$na=Ë^)999Ÿ|òÉÝ»w[´hñÊ+¯tíÚµZµjß}÷—ºÃnè8Z«F:îÞ½{Å–n&bø¿#lÄÊøðá™3g^¼xÑÛÛûã?väsV$dÙAùôÓO¯^½Ï4¨-XpPªV­jøâ“O> 7|=~üøŒŒŒõë×oÞ¼¹ÿþrKÝ,{¥L›6íØ±cÓ§O>|¸aIFFÆ+¯¼òÎ;ïlܸÑ××WîaAûè8ZËÅÅÅÝݽäÿsrr„E×ÊÁ,Þùyyy}ôÑСC322&L˜°uëVR£T,8(?ýôS||ü˜1c¸äÂF,8(Õ«W¯ZµjµjÕÂÂÂŒ—wéÒEqîÜ9¹Ç¤z”_ýu×®]~~~E©QQ¯^½±cÇ>|øðÛo¿•{LpG xyyeee^íEÒÒÒ «ä®Nã,Øù………“'O^¹reçÎwìØ1~üxº\Ò2÷ >÷bÑ¢Eôë×O±qãÆ€€€^½zÉ= -°à•âééY©R%Ng¼ÐðbÉÏÏ—{@Z`îAÉÊÊB4iÒ¤ØrC£133SîÁ!%йsç‚‚‚ü±h‰^¯ß³gOÍš5ƒ‚‚ä®Nã,Øùqqq;vìª]»¶ÜÒ ʬY³ú÷ï¿hÑ¢-[¶4oÞ<++ëØ±c………ï¿ÿþSO=%÷€àŽÒ1bD:u¾ûî»-[¶x{{¿úê«o¿ý¶á® °5³vþÕ«W…¹¹¹§OŸ.¹–Kd¤Â+B,8(cÆŒñððX¹råjÖ¬Ù¹sç &>f ’0÷ xxxlÙ²eÉ’%ûöíÛ½{wÍš5_xá…·Þz«U«VrŽB§üT  T\“`‚#LBp€IŽ0 Á&!8À$G˜„à“`‚#LBp€?M:5 ààÁƒvÛÔ?ÿùÏ€€€Õ«W?j÷îÝ¥®y@MöíÛ·gϹ«à \ä.ZXX˜‡‡G›6mL\;eÊ”œœœ³gÏÊ]8GDp9µhÑ¢E‹–­;cª€*äççË]8‚#Õ0\8rñâÅüãÁÁÁ-Z´ 0aB± P ?–‘‘qòäÉ—_~ùé§Ÿ¾zõjÑÚ-[¶¼ùæ›/¼ðB»ví† ö¯ý«   äsíÛ·oÒ¤I!!!!!!o½õÖÞ½{‹ýÀÍ›7ccc{ôèѺuëÖ­[÷ìÙó“O>¹qㆹ›úꫯʹüÅxígŸ}]PP°jÕªbŠ øüóÏå>b´†à@eÞ{ï½U«VÝ¿¿qãÆÙÙÙ;vì1bIJeËŠýXRRÒ°aÃNŸ>ýàÁƒÂÂB!„^¯÷Ýwßyç]»véõzww÷C‡}öÙgC† ÉÎÎ6~lBB¨Q£vìØQµjÕÛ·o'&&Ž=zÁ‚E?póæÍ!C†,]º4##£Q£F 4¸råÊŠ+"##Íݔ邃ƒ‡Z¥JN7tèÐÁƒ÷èÑC±}ûvãÓëõ›6mBôîÝ[îc@kŽTæÄ‰¡¡¡ܱcÇñãǧOŸ®Óé>ÿüó .ÿ؇~تU«+Vìß¿¿Q£FBˆo¿ýö»ï¾óôô\³fÍÞ½{·oß¾k×®gŸ}öĉ .4~ìúõë;wî|øðaÃSL›6ÍÉÉiÑ¢E§N*úK—.…‡‡ïß¿ÿ»ï¾Û¸qã¾}ûÚ¶m{íÚµ~øÁ¬M™.<<<::ú‰'žprrŠŽŽž:ujûöíkÔ¨qôèÑ›7oýØñãǯ]»Ö²eK???¹­!8POOÏÿû¿ÿ«Q£†ÂÙÙyøðáC† ),,\´h‘ñU¯^ý«¯¾êСƒ‡‡‡aÉüùó…}ôQPPa‰··÷Â… «T©²fÍšëׯ=¶^½z ,pssB¸¸¸Œ9rÈ!Bˆ/¾øÂðùùùaaaS¦L©^½ºa‰››[DD„"==ݸŒ 7e ggç_|±°°ðûï¿/Z˜ „èÓ§Ü €¨ÌË/¿\¥Jã%¯¿þºâäÉ“Æ ÿú׿V­ZµèÛ_ýõÆÞÞÞ!!!Æ?æééZPP””T´pÀ€...%ŸâÌ™3†oÇ·dÉ’§žzªè2337oÞ\²Ú 7e¥—^zIÍVçççoݺÕÅÅ¥gÏž6<·ã 2>>>Å–4hРJ•*ׯ_ÏËË«\¹²a¡azºÈ¥K—„Mš4)¹ÁÆ‹Ç;…¾¾¾¥>EffæÝ»w ]Æk×®íÝ»÷èÑ£W®\¹|ùr±SÍÚ”5þò—¿ÔªUë§Ÿ~ÊÎήY³æÞ½{oß¾^«V-› އŽ#•Ñét%—8;;ß Ç0;\D¯×—µAggg!ÄÇ+| ''§J•* !âãã_|ñÅ3fœ:uê©§ž1bÄŠ+>üðCÓ«-Ú”•œ»uëVPP`8·’yj6Eǀʤ¥¥[rýúõ{÷îÕ­[÷‰'ž(ëQ†^c± ÍHãÖ`ɧøå—_îÝ»×°aÃÊ•+ÿþûïÿøÇ?*W®¼téÒN:—aJµÆ›’d‡¼ôÒKñññÛ¶mëÑ£Gbb¢››[XX˜Ô{„ ã@u6lØ——g¼$..NѲeËråååU§NŒŒŒ}ûö/ÏÌÌܵk—³³s```ÑÂuëÖ»¹£á)Z·n-„øùçŸ Z·nmœ…çÎ+ù¼åoJÁÁÁ\·nÝýû÷{öì)U$€bŽTæúõëo¿ývNNŽ¢°°põêÕ_ýµ““Ó„ Êà;ï¼#„xÿý÷OŸ>mXrãÆ &Ü¿РAõêÕ+úÉ+W®DEEݽ{×ð+W®ü÷¿ÿíââ2nÜ8!„———âܹsE7Á)((X³fáFܹ¹¹ÆOZþ¦,SXXxïÞ½¢o ×VçççÇÆÆ æ©ØSÕT¦G;vìh×®]“&M Ó¾NNNQQQÍš5+ÿ}ûö=xð`BBÂË/¿Ü AƒjÕª]¼x±°°0((èí·ß6þÉ€€€mÛ¶}ÿý÷>>>×®]ËÍÍuqqyÿý÷ —ÑøúúvîÜù‡~èÚµk›6môz}rrrvvö!CV®\¹aÆß~ûíÓO?5eS¨Q£Fvvvddd£FŠn?Ù£Gÿüç?¹¹¹7~öÙgå>D4‹à@ez÷î=dÈýë_?ÿü³««kûöí_{íµöíÛWø@''§¹s熆†&$$œ;wî×_}î¹çBBB† f¸>¦ÈŠ+¶mÛöÃ?œ9s¦fÍš/¼ðÂðáÃÙ矾|ùò-[¶=z´Aƒ!!!Ç÷÷÷/((HHH8räˆé›2×ôéÓ?ú裋/Þ¿¿ha›6mêÔ©“™™I»€MéʹÒeêÔ©7n\ºtihh¨Üµ(KaaaçÎùå—~ø¡~ýúr—@³8ÇTïÀmÛ¶%5°)‚#¨[nnî¼yó„/¿ü²ÜµÐ8ÎqkÛ¶íýû÷óòòüüü – ¶Cp =zôhÚ´iÉñsdÞÞÞ—/_ ‰‰‰)v‰HŽ‹c`Îq€IŽ0 Á&!8À$G˜äÿ¹“†N4ñIEND®B`‚statistics-release-1.6.3/docs/assets/fitgmdist_101.png000066400000000000000000000467401456127120000226550ustar00rootroot00000000000000‰PNG  IHDRhŽ\­AM§IDATxÚíÝ}°UÕyøñ’‚ b "á^¾ÑNTD‰Ñª#SF 1ñ%¢+A$µ¶‚€V2‰âKF[5–T%±FÁj¥¢£  "Õ+¾FBUQ ‰À=¿?v³s<çÜsöËzyÖZßÏärä޻Ͻû²¿çY{ïÓ­R©( •î®7~  á€LGdB8 ™ŽÈ„p@&„#2! á€LGdB8 ™ŽÈ„p@&„#2! á€LGdB8 ™ŽÈ„p@&„#2! á€LGdB8 ™ŽÈ„p@&„#2! á€LGdB8 ™ŽÈ„p@&„#2!IÔáøæ›o¶··¿øâ‹ ÿë}÷Ý7a„#FuÔQ³fÍúè£\o/€KQ‡ãÝwßÝÕZ¸páìÙ³ßxãÃ?|Ï=÷\²dÉ÷¿ÿý;v¸Þdgz¸Þ¶mÛöÚk¯ýæ7¿ùå/Ùð/tttÜvÛmûî»ïý÷ß߯_?¥Ôœ9sîºë®ë¯¿þÇ?þ±ëÍp#ƉãÉ'ŸIØ;S{{{ØO0xü}ÇO0ü}í(Æ‹cšÛk¯½ºuë¶}ûöšÇ?þøcõ§¹#@„ÇZ=zôèÓ§OýdqÛ¶mJ©ô:k€ØŽ ì»ï¾›7oNJ1õÖ[o%ÿÉõÖ¸Á9Ž wÜqO>ùäI'”øàƒsÏ=÷sŸûœë­äS¾ój”O½ê‹c(Hx„pl`À€—_~ùüùóO9å”Q£F½óÎ;Ï<óÌðáÿ÷½ï¹Þ4¸Ðwü}ÃOPoê ²êbºyÕÏZà6ŠpìÊÔ©S¿ò•¯<ðÀK—.íß¿ÿäÉ“/½ôÒdú0êøîâ̦êgMDB¦n•JÅõ6„†»s@1I-ÑI5ˆH¢=Ö3qˆí ±%&‘ƒp8Æ 1;"nŽ—4FDÂ>ÂàƒFˆHØA8`Ðh sG€mT£5D$ô"ö°<íPÈäg\G€% åàíjP á0ŽA£X¬e#Â`ƒF_‘h‰p˜Â ±ÚøaWTÿße¯\ëz‹š!"Ñá0"ÂAcMÖ¨)Åä/ ÏljáÐ,àAc®4l.ùËåc‚ˆŒáÐ)€Ac“:Ô^xžæc‚ˆŒáÐãA£ÆÁ¡^çc¢>"½ØáÐ@à ÑæàP‹ò1‘ì w ”G8Êr•Ò‡Z„”ŒÃC8гPÞ µ¨ÎGŸ)£ÇðŽ€‚ _÷;4*}î^ “Ñ#훹AãøaWxšGFù¾~Ͳu0G@>F>V‘5^ç#ËÖa Y1h”À÷|¤½F82aÐ(Š¿ùȲµ×G@ Åò4Y¶öáhÆÜÑjÔÅß|¤½C8ºÄò´G|ÌG–­½C8`yZ£Ñ'-høøŠ‡ghÿZÞå#ËÖ~!µ4–QŸ‰]bò7ÉGŲµ?ºU*×ÛšöööŽŽ×[E0hÌ+{&6ÿ &ò1áQ>z´lí±žpÔ/Ú €ï4¶T>›fòQy²lí±žpÔ/Ú €¿46d.›EòQ~;F{¬'õ‹vgà) û™Ø|K"ÏGáËÖÑë Gý¢Ý™x'òAcM)ºÊÄæ›G>ÊlÇhõ„£~ÑîLüÛ QÎ@±ÀfÇœ2Û1Úc=á¨_´;˜«F! âi&6:Ñæ£Àeëhõ„£~ÑîL¼äòt`™ØüiÆœrÚ1Úc=á¨_´;ùÂXžŽ$›?ý8óQN;F{¬'õ‹vg ™¿ƒÆÈ3±+Ñæ£eëhõ„£~ÑîLÄònÐX‹dbvòQÉ+Hç£Çhõ„£~ÑîLònÐhº„‚dá›&pé¶£=ÖŽúE»3ÆÇA#ÉXX„ùèpÙ:Úc=á¨_´;94Êô Vÿß57O×þ%âÌGûíí±žpÔ/Ú € åh^ŠÉ%˳ߎÑë Gý¢Ý™Hà×½Ã4˜)’ZX^¶ŽöXO8êíÎÀ-—§HF]«Ïä£ÖFÑë Gý¢Ý™8Äò´5FÏS$˳ӎÑë Gý¢Ý™8áã Qyµ.{åZçí]˜8êí«v0nlB쩊†ž©GÓG·í¨ý·&Úc=Gð‰“·å-ÌB5ú8Vl¿f¡Rªcv©MõnúÈÜ1 „#À'>–¢úS,&’dÔ›Ú¿&òÑa;>ÖyŸ_/ºÄb©Z¿hÇ×Lóëbj]ãFOKQ5ŠÅ®þNÉ|T&W®•î|t8wÔøí±ž‰#@¿’Õè琢Yb±Z:}»r­tOY³öGý¢}À(Æå«1ìXlòIÊ•'ÓGWí¨ë÷(Úc=Gð@<§gùRZb±š‰•àé#sGO1qÔ/ÚW!̉dÜ(¼µÇbó/ÃôÑI;jùmŠöXÏĤóhÜ(äMb4²‹Õâ™>:™;r…u„#ÄKÔZ¡œq£“X¬§ëº%;Y³ö KÕúE;¾`‚Ñш޶׋ԖcqÐ Þžšõ{¥qåZI]¼¶ßŽ%³¢=Ö3q¹ŠmGÂ1;ÂQ¿hw&ZxŽÖªQB,*»½XÿuCÊÇ`Ú1Úc=ç8€ aŸ§Ÿ½^ãRÍD/ñȬôÏ«NœÛü/»hFé¾kÒwî#ç;úމ£~Ѿ P’…jt8nÌU÷bu,&¶ÌÇt«Šmöïgù|”9wÌõ í±ž‰# Ó÷ßqX†Ö£›ÔaòàÌÊÒŽÉ»Ø<½—]+ÓG™sGnÍ“á"ø2n,&ã¸ÑU5>•°¹ŒÅU'ÎÍø7‹Ý¯GX¹V¥ó±@;B–ªõ‹v|   /ÂÑè"µýj4:bT™× «?0û²uáÍÖ~ÝŒ*‘y÷(9 ÖÑë Gý¢Ý™F5Ú¬Fs—Hç:g±üg#¥µ#áØá¨_´;€bìœVUòpÀ1Fo©S> ¶ÂÍ(1ùèc;Æ{¬¯@·¶¶6×›À'ãºaúKœ8tfÉÏpÌ·æçýçßño¶ýcÖ¿YÀþ·ÏOþgèó¾ìŠÃ—]aè3çzŽ…¿‰ïöŸ~"ïV~—n"˯d´Çz&ŽúÅû*@~¡ŽÏMß²»ð‰Œ¾Š¿+×þÎ[þbF{¬'õ‹vgP€ü³ý:µÑÂ[¼”\•ž¶vbúçŸø×Œ_1û—µrp;F{¬çv<àL¨7³_vÞPK2VÇâ´µ³´cöûõ¨·{TfÞo&W;æ½Go*cGý¢} kÕXæÈjn‘ZK5ÚìE¥5³ü§®¶ÄÂE3Jk>ú;wlòKï±ÞõI–Šö„Y¹X¸&¦RîsÄ”¼Ãôõ.©ò¾\´æ¬‹Öœ•å¯åÚªŒ³üw©íoÐr錧×Ê4ù%öXÏÄQ¿x_…ÈLþ¸Qà1væ‹ ]'2f%*ãGUe<ìéܱ«_Õhõ„£~ÑîL²“1uÞö¹j´ß‹Ê̪´ö·vьҴrR;F{¬'õ‹vgQxãFÕh³•Ž;x—LÆšO%vô¨Êå£íH8~†ëµòE{Þ€Œ„ŸÝ(áÔF ç/¦¬Èhîsæz å¿·%O|ôñ|ÇúßÙhõ„£~ÑîL²°S‹áèi5&±%0 ~›ÍTÊå£wíH8¦Gý¢Ý™´D5¶äѵ҅“ñ¡7|ès}9OÍm>úÞŽÑë Gý¢Ý™´$< Uc%s8š®F·#ƤÓdÌ•†FMßóÚ‘pLŽúE»3hÎZ5V 2®Fç«ÒM1o>æzÊÿ²ÃÑ£¿íí±žpÔ/Ú @s!}©Æò½X1–Œ5ÍÄÆX¾h¦R(=mÇhõ„£~ÑîLšiÜèE5ú’ŒÅþ¾ä‹f*ùóÑ£v$ Gý¢Ý™t%¤j¬È¾ F㪴µd¬ùØ\Û™ëÛ’ñ/kÌÇìÙ»vŒöXO8êíΠ+!…£Øj2b,œŒ5ŸÇÄ;Y¹Îþ—}iGšE»3hˆjlBKIÆòO¤ðç̵åö/šÉþ—=jÇhõ„£~ÑîL’Ž^ŸÚ¨eUº"/k>¿‰gaÿf²ÿe/Ú‘p„NÑîLêQ])“#Zz±â.wÿÏÝÿ3ÄÄ{ÑLíXþ“ø¨[¥RqývÙ¡‰÷Ï|ÖñÝ'<ÖyŸµ/7~ØË^¹6ûß}Ò‚ÏÈò7¿qÁÂ57OÏò7Û¯YØ1»õßtÇ‚·§fúÒ5Žxd–RjÕ‰sË|£¦­˜üág#þµÀ‡?üæAJ©“¾¶®ÀÇvþ¿6¥T÷ý^«ù³Þ/:míÄŒO-×÷sÐ ”RÅ~p*󾑸Æ •R÷:•ggNäýeiðt¢=Ö».×1q°<“È5GÉ>¤‘0k”³*­}ʘ}ôXñåÚè--Ï£=ÖŽýñ¼í¶ÛN;í´C=t̘1_|ñk¯½–ñc£Ý™T £+®/ˆ cUºy]¹Î¾©vV®ƒiÇhõ„c»ví:óÌ3ÛÚÚŽ=öØiÓ¦Mž<¹½½}ذa«V­ÊòáÑîLª…Ž«1Œd4ô÷…Œ‹åcíí±žplàž{îikk»ä’KvîÜ™<òôÓO6ì„NÈòáÑîLRTcC;#¶d¬ùX[h袙JÑ•ëÚ1Úc=áØÀe—]ÖÖÖ¶fÍšêO?ýô¶¶¶Í›7·üðhw& û—[f?òyqj£¿ïûR&‹}C+×F¾·c´Çz±믿¾­­í?ÿó?ÓG:;;ÇŽ;tèЭ[·¶üðhw& ±ãÆà«Qàµ/…ÅpÑŒ×íí±žplàÕW_=øàƒÇŒóôÓOoß¾ýw¿ûÝ•W^ÙÖÖöãÿ8ˇG»3¨1nô±%_ûRX ·{ô·£=ÖsÇÆ^zé¥)S¦|òÉ'é#“'Ož5kÖ{ìÑòcÛÛÛëŒônO@|ÄÞ»1ãîÞ²ñˆGf¸AcrSFûwdTJuþ¿¶Œwa,#×WyøÍƒ²?s·{Ìu¯Ç\÷wTyvQ¥ïþŽÙSÝ]o€DÛ¶m›7oÞ'Ÿ|2|øð3Ï<óøãïÕ«×<°|ùòŒŸ¡£Žëç LË^¹vü°+4~Â57OOËÛSg$7Ž6¤X2& 'clJÞq=ÖS„c3fÌxþùçgΜù«_ýêꫯ¾ñÆ—.]Ú»wïéÓ§¿ùæ›®·Dè˜=½ý‰¹êĹÉd ÐeÅÃ3FŸdðuK„ÇZï½÷Þã?>xðàï|ç;éƒ ¸ð wîÜùë_ÿÚõí±ÎûŽï>ÁõV4àðja蘾‹`^'}m]²`]@÷ý^KÞ6Ð ëÔªèYáXkóæÍJ©AƒÕ<þµ¯}M)õþûï»Þ@0Kûjuv `úuÜ"k 4h=öذaCÍeCÉ ƒv½¤;tÔNûjuaQÇZ½zõ:æ˜cÞyçŸþô§Éƒ6lX´hÑç?ÿù1cƸÞ@øŒì×ǼZ$;Wm£šö«ÍÂC86pÍ5×ôïßÑ¢EãÇŸ>}úÙgŸ}ê©§nÙ²eæÌ™p€ë­à߇ŽÙW«å\"ùÐ1× Ž@a„cûì³ÏÒ¥KÏ;ï¼Þ½{?ñÄ7n=zô½÷Þ;iÒ$×›¾bè€plì _øÂøÃ_ýêWk×®]¾|ù¢E‹:¨à‹Qqò}èèCGex:×%Õ@5Â"’ý4G«Õ†ŽeÚÑ_¬SÃÂL±6t ïŒ~'÷å‘6t"eɹ/ bèÕõÔ¢v´D8€A^ŸéhâNàÙW«:ŽÞ½×ÉU2ÞáGØD84u‰LÎ‡Ž¦×©¹¤eŽ`–ÕjC×Ç8|ßêCGÔp¾OFŽpèÁÐQY?Ó‘ujXF8€qÒ.‘ñè4GÙÐ1ªë©á#ÂÐLœ+ƒ M;â‘Y«Nœëz+ á6H:bhµ:ª¡#ôòk¾.áÈu} GÓ–Ê ‹É»N]àG.©FI„#XâïÐ1×j5CGÜj5"~°ÿ^2ö‡Žp.¼w~׋p{ü:bç¾<^ ¹ž^  R¹Ns4´Z—ýk±CGîà'G«l¢H;Ó‘+cPáVE²Zmî]d‚:²N _Ž€Lâ¼xI††Ž¬SÃÂl“3tr7ÇȇŽá…¿9Ê F˜»DF¹¸5OaÒÎtÊ ÀsCG£×ǘ[­¶6£’9t|A8Laè˜h2t,°N]ìG.©†„#¸!äLG!§9ÚÄÐQ£/0 áÈAÔjuCGÀ#„#8#dèh”Ìa’¡£µuêÂŽxdÖªçZûrp€Ðä½>FÎj5CGdÁ-E"À%‡ŽyÛ `ŽAl ·caÕCG›÷ýŽü’j93õŽïY^°v5täááŽIX­Î;’ cµZ¹:B>£wÑ÷áòúÈWì]d|:&«Õá½?5"A8€{†Ž¦1t,‰ujH@8Š0zK”à‡ŽŒá)ÂDp>t”våi±v,Æ—¡c1‘_R ½G€%V«}:ž"@ ½CG ×ǘ~› ÖÂ‡Žœà!G€=b/‘)Œ¡#¢B8€ nÏt”vš£bèC8Š3½Z톎ˆá²8¿¼Ú´¼«Õ ËœàÈ%ÕЋp€`¸>Fàjµ‚:ñȬU'Îu½…p”R`µš¡#à)ÂÄ ~µºù÷74tôôF<6^°‰pËòýÀQXx÷i á9:8ÍÑÂjµòaÁ:È3eâr~WG™…÷X\Râª/]G*ø3:¶äé ŽàWWG€,1 @.WCGÉëz± QºU*×ÛšöööŽŽ×[ ÇwŸðXç}%?ÉøaW,{åÚ\’„㊇gäú¨o\°pÍÍÓs}Hû5 ;fçû¥TÒŽoOÍ·yI;潩uÒŽyOLÚ±ØBsÚeÞ0¦À6—üFUtÇ‚\?¼»AÞ=môI ríÌ-e¢=ÖŽúE»30ÄU;ªü‡[U´•Räc¿ßp# lgõw¦À7'•ƒÃ®Fñ±žpÔ/Ú €9ºÚQ)U`ôh¡UÑÑ£ %µ$£Û£ÊÿSP~V£ŠøXO8êíÎÀ(-í¨Š.[ oGåm>–\•.9b,ü¨V8•·Õ¨">ÖŽúE»30Í»vTJÙ9å1åQ>J1xÖ©b«ÒÕü­Fó±¾ÝÚÚÚ\o€`ëv†–ÏsâЙy?ä˜oÍ/ð…FœCÞiûÇÜRcÿÛçï{î­=|Ù‡/»"ïG]´æ¬‹Öœ•÷£zãÀÂÏ®ØW,ù4«ûöÖÈûSλ#åÝ]óþFD{¬gâ¨_¼¯BXávî¨l]j­ ].SMþô±À—(óUJ®J—1¦¤ÍUþ_‡hõ„£~ÑîL¬qØŽÊî)Š|³*]¾T£ŠøXO8êíÎÀ¦HÚQý)U¹‚ô4ý½Vº+aT£ŠøXO8êíÎÀ&]á¨Äߦ'U~éK>zz;Æ–‚©Fñ±žpÔ/Ú €eÛQɾԺZØùÞˆ1R5ªˆõ„£~ÑîLìó±UéÑ£ 1NF\5ªˆõ„£~ÑîLœˆ¶UùêªtµðªQE|¬'õ‹vgàŠ„vTVnÓÓ§ùöˆ1d5ªˆõ„£~ÑîLrÞŽÊÅå2Õ¼ËÇnÇØR¨Õ¨">ÖŽúE»3pHo8*.µ®áW>øe¾Šc*àjTë Gý¢Ý™¸¥½•ÅK­5¶£ÒqëGQùè˪t¢Ø7?×>PìÔÕ¨">ÖŽúE»3pÎëvTånÓÓPɤó|ôkU:ùCÞïvÞ}±‹±ᨠá¨_´; ümGe`ô˜ð.=Z•.9ܵ°<Ð[*âc=á¨_´;!ä´£rw©u=/òÑ—£–÷ô·UÄÇzÂQ¿hw&riG%ã”ÇjbóQK2zÑ‹ ¯«QE|¬'õ‹vg ‡‰pTvÛ1ùCðÓG/V¥5öbÂ÷jTë Gý¢Ý™ˆb®••Ûô$ ]4“p›òW¥µ÷b"€jTë Gý¢Ý™Hc¨•ÅËeF®òQìˆÑP/&¨Fñ±žpÔ/Ú €@Á´cÂܲd-Ù9ÅÐèW1Ú‹‰`ªQE|¬'õ‹vg “´vTù/µ®!vi(쌮J[èÅDHÕ¨">ÖŽúE»3KT;*£Ç„¹‚’æFŒÖz1X5ªˆõ„£~ÑîLÄ2ŽÊu;&¾ñL™æ37b´Ü‹‰ðªQE|¬'õ‹vg ™évT/µîŠ¡¤Í|44btÒ‹ kÕ¨,†ãñÝ'üvÈKqë GýG2mGåèr™†L M磉dtØ‹‰ «QŽ®·!4„#±âiGef©=M¬J;ïÅDÀÕøXç}Ñë Gý¢Ý™x!ªvLh@–)³4µ…ô¢*ô ÷«UÄÇzÂQ¿hw&¾ÙŽªômzš5€tÇ]É(¤Óo¯Êÿö¥áH8šíÎÀ¦ÃQɸԺ+†–»MB/–‰Å”Õ¨">ÖŽúE»3ðˆvT.µîŠö¤|tÞ‹Zb1åQ5*ÂQ)E8šíÎÀ/ÚQ‰<屆ނ4”n{Qo,¦ü­Fñ±žpÔ/Ú €w$·còû)*ÝÞ1ý³‰·vô«áø'„£~ÑîL|$¶ö Rã²p>ºêEÓ±˜ò½UÄÇzÂQ¿hw&>²Žªôñ>-He+"u ³ç£«÷Lÿl4ST£ŠøXO8êíÎÀS¾´cÊæRײIÚïEû±˜ò®áøY„£~ÑîLüå];&ì¤Æ¤å^t‹©’—=É7ªˆõ„£~ÑîL¼f³UþÛô4g­ 5 -ô¢„XLùXŠp¬C8êíÎÀwÖÚQëk§Bšx½&jÛ«Fñ±žpÔ/Ú @hÇ”1¤ö÷¡)¼ 9±˜ ¯UÄÇú®7©e¯\k´ ÒX1ZI¨Ù@ Å”§Õˆ®0qÔ/ÚW!Â`sè¨ì–…¤¹du)úÚù[- ¢=ÖŽúE»3FÀí˜0]º¾Œò·áØ5ÂQ¿hw&!±ßŽJ÷¥ÖY˜¾˜¦ÀÒßX¬þfªrßOáÕ¨">ÖŽúE»3ŒåvT®sÁܲåÒ»X¬iÄ„®ï›üjTë Gý¢Ý™„'¶vLØ)Hb±>Í$ê| ›ãªj€ ¦/µÎÂÜåØi ~ã‚…bcÑf&Öpþ£·ÿJÉ;„# KuÞgÿPš´cúg‡O¿¾ •¦Š’S3>b©Z¿hÇ×Båp #¤ «Ù|ƒlsŸ’ó,ü7F{¬'»´nݺ[o½uýúõüq{{û´iÓþê¯þ*ËF»3˜ó%< ²ðæU“¹©Ê·jTë ÇÆ–/_~ñÅwvvtÐA}úôyê©§víÚuóÍ7;¶åÇF»3›óvL¤©ÄD¤„‚”òÈ#•R}úô™5kÖ±Çû‡?üáþûï¿é¦› ðÐCµœ;F;¾•ì]!¤åcœäüJ¾ø‰öXÏRu­ž={&˜7o^zó‹.ºhÓ¦MK–,yøá‡Ï8ã ×Ûî%]FI¬È —y7hD=±VïÞ½{öìÙ­[·1cÆT?>nܸ%K–¼úê«®7INyTþ†ÉG'ä|Ã=z©#áØ@¿~ý¶lÙÒ­[·ê“ê]»v¹Þ:Żѣúl>*A0!!3fÌwÞùÚk¯µµµ¥®Y³F)5tèP×[ ¿Úº¡šK°%ÄM`ä|c½Û9Åââ˜^yå•SO=õC¹å–[öÞ{o¥ÔºuëÎ9çœ=z,[¶ìË_þróö„Yðz¨#§rÂö 1Úc=áØØ­·Þzà 7ôéÓgäȑ۷o_½zu·nÝ®»îºñãÇ·üØhw&Hx=Ý!ËsûÌ„¹]1Úc=áØ¥%K–Üu×]ï¼óNß¾}:è iÓ¦ 2$ËF»3@ÊëÑ£"3«.E%é;fzŒöXO8êíÎ5¼=*®žiDl)V³°ãE{¬çâ€)>^1S«g”'¥˜ò}Ô-á0È»=6ÕÝý*Åj^¿Jñá0ËÇ=6p>J»¨%¯^œø‚pØÆèQ…’þŽëðšÄ#„#À’`FÊÃ| ©Sa¼ñ á°*˜Ñ£’ýÖ…A–bµ0^x‡pâ’°ü› WB=*1__Š©`^xøˆpBV‰‰êjëÿkýßÌñýf=õ,¯_ÇSŠÕÛg¼Ã Àõ‹ö¦ p«aûç• „M¡NLäcœ¥˜µ«D{¬'õ‹vg‚MÍG‰Ö¾¨µ/à…:F*™‘—b5i{H´ÇzÂQ¿hw&˜ã$ËlžÀ„|¢æIze¿z†R¬'sLjöXO8êíÎ-4®8;GP¢iƒ%½ }¿ù¶Qb÷‡hõ„£~ÑîL(@ø(ÑÚ³Žç¹# ™&+f!|7ˆöXO8êí΄–âÌÄìJTK÷v€‰4¦¢=Ös;ÀˆVœ­éêûCPÆ)ýùróÑØÈ¯Æ˜Ž€ŒÊ”ŠïXÞ|”q„/OCŽ@d¢M¾íL,BÅ2`üÚzpšaÅÙS!½2b ~[=B8µ˜d„!}7dÅÏ1tõcH~âaÐèÂø3"#òc Ù~áŸ\ŽÀÿ¡-ÆÊulXÈ–r=E8¼ê+×Ñb ) ¿†^#5þýŠ +×1c )¿}¾#)’1f¬\ƒëiìã—. „#bÄK^0zD‚…l;ø] ሸð’Õ="ÅB¶!üІpD,øÇ qÑ ê1†Ô…AcxG„&@K¬\£!ÆÅð½ áˆÀ‘ÈŽ•k4Áõ4©†ïÅZ-ÚïL G‹@¬\£¥à²éB4A8"@õQ+×ÈÂß…ìæièÅS€+„#BÃÁ¾¥ñîPJ-{åZ×"+×ÈNÔ’‘!Ì!ŽñM$±˜H’1}„‚l‚Ñ#ò²0†¤ áP·J¥âzBÓÞÞÞÑÑáz+âB2v%KÖ7%걡Œ\Iz!Úc=á¨_´;“Îë• A"²9ö7”Ô2 ;˜'¢=ÖŽúE»3ÙÇbÊDð±–Ýv<Ñë9Ç^bð“0Úvéçd Yƒ‹fD‹p„g8`Ûϸê¯BD&¸Ý#€8ŽðFÌi9¹Ö0"£-H®¹Â~ˆóØ,¼ÌXËN°r „#¤‹íìc„±–Íè@$GÈO2†[1¯e3z<ÂBÅ0¼ ¾«"\Ëæ¢a#!NØÝxªZlkÙ¬\áABMÆR)»xÖ²Y¹Â"y| »Š´~-›•k!á^H+z¡ia¯e³r „#\ c^è¸êZ6+×@8ÂŽ !5X­e3zà;¶ù˜ŒÕÕ’ò7_|ÒZ6£Gþ"a/ËúLô±NÀZvÚŽàÂÆ¥H_’ѯ‰\`kÙ áƒ|1ª˜’qôI ”R+žázC4«C ÿi&CG/~; E8Â’Q‚¤k$ɘþ§ð Rýé§9~ØAþXÀ¡n•JÅõ6„¦½½½££ÃõV¸áݪ´ "¢Ê…a¤üvdèx*Úc=GèÁˆÑŽ&CÄbÒ ² —½r­üvŽ(‹d4¡Ì±˜ú‚4úåàLG~!QG«ÒJv2j"–Tý¥C2t8ÇQ¿àÏ{ðnĨd$£ý!¢‰÷bkë oG†Ž€w‚?Öw…‰#òñåçvÄ(mˆXžï§B2w-˜8êð«/ªÑf2z=DÔõÜ=z²’ÛÑ‹_.©€õÍ1qDVòlæ’1æ@ìŠ3HæŽPGýÂ{"ÿ¤F½ÉXŸ‰ò“H_ Rl;Êm Þ±>#&ŽhAòÁÌĵ/£OZ ¼{ÄòeÉÜ câ¨_H¯BÄV£‰UéPßĹÚ7.X˜üaÍÍÓ-|9É)³Åþƨұ>&Žè’ÌcɘQÚˆÕÒ^Lþ«é|”<ƒdî0qÔ/€W!2Oj4tí‹ïkÓ Qe‹B;ùXMZA lG™/ØÔàX_ GÔxÜ2—ŒJLÁdÑ|ˆX@ò±6óQÚ ’¹#äÂÄQ?¯_…ˆªF£ïû"yÐXfˆXò‹Úœ>&$¤´võk !¯õe0qÄŸÉ9\½‰·¨A£ö!baö§ 3HæŽGý||"ç¤Æ€“QN#fÜTWÛæª Eµ£œWqòñX¯GH9D™~«@kkÓNšõr5}L¸šA2w€–˜8êç׫ Õh!•™øðhˆXò9º}R6 RN;JøÝпŽõ1qŒšÛ#“Ñk_RZ  s;}LØœA2w€&˜8êçÅ«·'5š1& ë31†@ÌBÂô1Qý~â&"RH;2tÄòâXoÇ9< OF¥Ô7.X(!Œd’0}LTÿpMŒ!™;@CLõþ*ÄU5ÚIFUbmZBÕ~Íg&©³K=Sß.í)¡:2 ?Ö›ÃÄ1.NB6“Q•X›Õ@eÔbª¦“¿V8åLSÕ§BjiGæŽPƒ‰£~2_…Ø?©Ñε/©2ƒF!ÝS@ÃFÌÕ‚í×,,9zTÂò1¡ñîKÎÛ‘¡# Ìc½„£~w&Ëk#ÆD$ƒÆòØü3‡—Á´#á$ðXo᨟´ÉæQÇ—dT²æ±å ,iG†H;Ö[Ã9޳v¼±œŒ*ˆ‹`2žŒhGòEË磨sW<<ÃÚ;@ ˜8ê'äUˆµ“$£òmmÚɱäÖ3}ÔÕŽ ¤„ëí#õ“°3Y8ÆX¾ö%%ÿ"¿±å #hGÂEÂ±Þ ÂQ?ç;“éŒýcBà 1˜Flþµ<#çùH;ÐÈù±ÞÂQ?·;“…jô(•¦A£¨“íÓ5zT®óÑ÷v$9Ghãjg²pR£«j´|L}&FˆÍ…‘´#-Ghãdg²sR£ýÓ•õµi]+³¡ ½nG‚p„6öw¦ Oj´ŒÆ$’fÐ ê|{jñxò=iG%ŽÐÆòÎÞIö!%cöFLþf´ùèo;Ž€„#´±¶3…wR£“‹`ü]›Ö2GÔ’º¾–óÑÓv$ Ghcgg ï¤FWÁxQÚך~þŸPïwÒf>ÒŽŠ!¡…)°“¹¦šéFlþ¥…¬\+‹ùèc;Ž€s„#´1½3vRcÌÁ8lÄæ›[>ÒŽò"¡¹)°“£ºF`#¶ÜÚ¨ò‘v ám íL!ÔöE0~5bË'"äºe>½kGÂpˆp„6&v¦Nj æ"˜†¨ülÄ–OSÈu3Êp>ÒŽ2"¡ö)˜“ý½&˜!bÉï@ ùH;È‚p„6w¦Njôè"˜úLŒª›uÙµ2–~µ#á8A8B];S0'5úuLÉ6 ž´ëf”™|¤4G8B-;S'5úuLù$’éˆGf5||Õ‰s ÎòÑ£v$ûGhS~g ã¤F¿.‚ cÐØ°» Ää/;ÏG½-éÍGÚ@WGtiÓ¦M'Ÿ|òرc¯»îº,¿ÌÎÆI~]ãé 1W#¶ü<óÑÄ5ï…ÇÕ5t…£¢àŽh¬R©œ}öÙ«V­:å”SL‡c'5zwŒüdÔÕˆ-¿DHùa;Ž€M„#ûçþçyóæ)¥L‡c'5rLy±åW/™rN|¤˜m8öp½¢mذaáÂ…C‡}õÕW~!ßOjä"˜Ü6bCÉW/“oOQæÛ›ü@uåãš›§kiÇÏÐØŽà5&Ž]Úµkׄ >üðÃyóæM™2ÅÐÄ1€“=ºÆU2 lÄ,Ûìüº¥#¥Í:aˆvâH8viáÂ…·ÞzëwÜѧOŸÓO?ÝD8ú~R£wÁXHF±ùsqž´c^´#`áˆÏxá…&Nœ8qâÄÙ³g¯_¿>o8Ö?X¿{ù~R£GÁ(“ÕXSŠž6bË'èû‰Qµ#áh—ñÈÎql`ÇŽ3fÌ8pàe—]Vì3´Ü™ìüËR5&äTcÚ‹á•bU'ÎíêâvtÌžž´#¸RXo˜’1 ˜?þÆ/^Ü«W/×ÛRµw ¶FÎ uù ,Ó5nôãFF޵V­Zµxñâ /¼ðCq½-B¹7ºψQíï.S×VáXkÆ J©E‹-Z´¨úñ|ðÁ2dÈC=TòKx}ó'ÇN‡ãFzÚ™û eÜÀ4±ÖþûïÒI'U?²uëÖ•+W0`Ĉûí·Ÿë ô•ýû5–Ä’t¼žs€4„c­£>ú裮~dýúõ+W®9rdÆ«ªÝ’9ntrð.;uAïo+WÆpˆp4Ë£â¹&Ðõ†ujhˆpô’öq£«EjÌÕÝ¿æŽp‰q#! 2´N̸‘j„Lzש¥Ž eޱã\.#†S&<:m@GÏH›^0n„v]R !!Mñb0À51@ fðÐáèiãÆÂ7"ÁüÎ@‚pŒ×Ä %¾uÌ¿ÀÂÑëÔzG¬ÇÁ(Ooâ(ü÷‹`„pDŒaWÆ€d„£DY²àGá!õûꆃ%/'9\ŒcÜC´¼˜¾N Ž5·ˆa‘zÚÚ‰å¾I„©‡ë Ðo‡¼äzºÄ"uFi;þlÄ¿ºÞxIûë=®Œ á(ÆÃ‹ÔYL[;±:“‚$ípxe ëÔሬâ7VK’‘¤dqî™àá(ãF·ãÆTú H@ÌÇ(”¯ÆH®‰iY„ ³ðîîßÚ_V‰º  4"å’sìa)°FÍRQ0Œ+cA8†Eê,²Œ뱄­Q±½…W5`á(”®q£ÃEj«Æj,aû‹ë© ;ÂÍ”©Fƺ0€„’t’ hG8J$gÜhŸ/‹ÔÍ1€‰p –ÛEj‡wr–ƒ¤iåÏ£ðâÅWƃpGÈ:W$‹Ô&Æõ@¶Ä+ ðá&/æ(ÎÙ©ÆT$7ññî&Žz yá†޲h9êxºHíï51y±„-¯¯ /µüºÿŽðEêæXÂ.ïÂ@8 "dÜX†ýqc@¢ ®Œ á©3’0n¬íÒÉ•1&^bq‚#€àŽRH8äD²ö'³S bŽáˆm‘Ú»kbòŠv™E$/r@ÂQ„òãÆØÞ“:°Eê&ÞÄ'à4gŠ!¡Téjäš XÂŽWƆptO¸± ©½76T½„-íéðJÂF8º·ì•k½^äê˜=½ýš…Ér}àÛSgëŒU'Î-ÖŽ?ñ¯ž¶cºN]ótÌ}Å#™•÷Cݱ ï‡Øs¾qÁB¥T™¹/ëԌԭR©¸Þ†Ð´··wttäú CÇòç8=&µQ “²)2guõ[XÍòÖèò¯ ì0å÷Rª€Žõa õ+¶39oG-Ç=ªrùèõ²µýQbsr¼ÀÏÎÕ Q)E5Ђp„6®ÂQÉhGeý¬GFÎG‰Í1hÌeü°+”RT#'ÂÚÞ™œ•ÖvTq¥› xШüYžVT#àÂÚ8 G%©UL£Gá£Äæ4*ªñøî”RT#à ÂÚ”Ù™$´£Þ;‡7zôk”Ø\±Ô¦Yž@8Bçᨄµ£òyôèõ(±¹bƒFåÉò´¢˜D8B›’;“„¡£2ÓŽÊúèQ•ÈÇD0™X-†A£âj&ŽÐFB8*‘í¨¼z›™`ÔßÊ›AcT#€j„#´)¿3 iGᨼ=ú¨|&Ö`ÐÈmwÔ‹6yËAtiÍÍÓM´c’Ú"É—“”Sx£Ç†ï ¨ñ92hTÜv>‹‰£~Z^…:*csGÅè±ÐÆW3úD4*n» kÑN GýD…£’ÝŽŠ³»ÞÈšG¬m³A£Òô~0ÊL2*NjÐámtíLrÚÑh8ªèG¦Wœs±6hT"ß&E5h.ÚpäG´fèdÇTTg=:%¶äËò´ÑA£¢ kLõÓø*DÎÐQ™Ÿ;ªG’3±šG×Á˜4*. GnÅÃ3ŒqµHG*g‘=ú’‰54&¸€Zb⨟ÞW!zfÂOv¬Vì¢k£GQ'&æË Ñt2*. G 5Ó';Vë˜=]ÎèÑÓQbs MOÊ9©2b⨟öW!¢†ŽÊîÜQ9=Ö SÉwF1hüª@ÑN Gý„‡£ÒÔŽJÇ»}dT梙b÷z Fš‰©ßPŠjPámLìLÛQ¹ÈG›£GiÉÄjNîìmgШ¨F%DŽœãˆâ’8°–%ÏzTÁå£öL¬áäÎÞÖŠÛî@~Lõ3ô*DæÐ1esúhÿ] %0‰5ì/O{=hTT#™h'Ž„£~¾„£20ݱ–öon™åL¬fÿ:kɨ¸íMGhcngò¢•Ý| côè0k84Z»/='5Ð%ÚpäGègíÜÇbg=*¥Þž:ÃáèQN&V {Ш¨FЉ£~F_…ø2tLÙ™>J=ÊÌÄaÕ@·h'Ž„£~Þ…£2·BÎzô"«Å0hT\@ @7ÂÚ˜Þ™¼:¦ìä£ÍÑ£w™XƒAc1T#ÂÚøŽÊâÝt>š=úž‰5,W£åA£âj&ŽÐÆÂÎä{;*+ùXrôX&¦ß–ôÏÖ–§í'£â¤F†ŽÐÆßpTÖW棳ªÎÄD±˜.9h´ŸŒŠ“F8B;;SCÇ”é|,VK>ª)ÅòOœAc‚jP#Úpä>ŽøŒϰߎFïûXø^òé(v…Ac‚j€Gý¬½ fÁºš¹é£ï£GÓ™XͯA£¹dTT#€.0qþÌÉÜ1anúè×èÑf&Ö(æ=ú5PìŠ/ƒF;ɨ¨FȆsõkooÿꆃ-„L¥µcJïô±~ôF&&’ïUB~2*ó{u‚Ûî(€sfÎz§Õ÷ë©~ÄSÕ¥¨Ê}‚\›V  'Â1QéXÏD>z§&µ|+T¸kÓŠj€üGd%vè˜2úž×i(vÅþ ÑÚ‹ª àGý’óœ–,w…·c*¼|44PìJÀƒFE5(sLäÏL-  ;Õ%ŽA±v¦£í¨¼ÊGËÅ®¼6­¸€J#‘[öoÎR˜Ì|t5Pì ƒF@Kœã¨_zÞƒ«•Í)ŽGù˜p•BŠ]±9h´ŸŒŠj ç8â3vìØñoÿöo÷ßÿÆ¿øÅ/¶µµM:õ¨£Žr½]âTO•imú(m ØûƒFû7¢@&Ž ìÚµkÒ¤I/¼ðBŸ>};ì°?üá«W¯Þ¹sçÅ_üƒü å‡;Ÿ8*G‡gåÛ2m»òU'| Ø•àŠj`GüÙ½÷Þû /vØa·ß~{¯^½”R6l˜{õÕW¿ñÆýû÷Ÿ;wî‘G™å£ºÚ™ÜÞGI=V“63“Il,&X›ÂŸñé§Ÿ^wÝuwß}wÏž=Ï=÷Üï~÷»éÖ-5Ù™=6!¼œ_Õ¬Mˆáˆ?ëìì¼ä’K}ôÑqãÆ]uÕUýúõËõá-w&F-É& Ï]þÓgm@´GüÙwÞ9wî܉'^uÕU><ËÎÄè1#*J×3õâi²6 r„#þO¥R9á„>ú裕+WöìÙ³ÀgȾ31zÌů´ÊõŒzTAäcÂZÃ9¯UíX›€&Gh£egr»BÀÊu a^,&X›€–Gh£kgbôhHÉ1dH+ÑõX›€,Gh£wgbôhNö u¸XµiÈŽp„6Úw&F¦uÕ…aS¬M@^„#´1´31z´#†ábÊy2*üD8Bs;£GhÄéŒPX´áÈ;ÇøÄùŲ̂˜F¡J^(NgäG8úç±Îû}Ów)Lÿ¯ëïZ¨þy)§?2Ngߎ^’0zLȉ¤þP4@G¹=&j¢D`²DBìØù. Јpô›ÛÑc=:Ò/¾·röL€„c$Œ¢#5òë»'s‡”D8"=*ÁGk:2/± ÐMß eŽA‘¶rÝYÏ÷o‚/û Â1@bW®›‹³#ƒyš>îr€¼Ç0ù5zl(ÔŽ 扤HFˆá2OG yÝ‘>žª˜‘×/NyŽ `ôØP“Ž”Pf~um1Á¼&dG8F!¤ÑcCÎßÌ&†RL…½/š cê豞µEmicN;bØ…]!ãü豞ƎŒj¬X/¶=PpŒN<£Ç†rud䥘" Â1RŽ¢[Šö5 á¯ÈG QŠÕxi¨A8ÆŽÑ#ê±K"ÁèF2š ñ=‚€æGü£ÇhñšáˆZŒ£ÂÏáˆ=F‚1 Â]bô0~²€G4Ãè1I#Öà (€pDkŒ½Ð0?5€>„#2aô(p…pDéè±ú×, áˆ|jª¥«¸iþQ¨F |A8¢”ŒqC_*à?Â6DÕ—" T„#ñ«/ D@lGøÇr_ˆ$GKW_ˆ$GäÖÞÞÞÑÑáz+´‰° û FˆŸ`ø!ÂSÝ]oü@8 ™ŽÈ„p@&Ý*•ŠëmM{{»ëMfÅy]<á€LXª@&„#2! á€LGdB8 ™ŽÈ„p@&„#2! á€LGdB8 ™ŽÈdÇŽÿò/ÿòíoûÐC5jÔw¿ûݧžzÊõF¡ M›6vØa—_~¹ë A>ëÖ­»è¢‹ÆŒsøá‡Ož<ùÙgŸu½EÈçÓO?ýùÏ~úé§1bìØ±—\rɆ \oZ{óÍ7ÛÛÛ_|ñņÿõ¾ûî›0aˆ#Ž:ê¨Y³f}ôÑG®·×,­íÚµkÊ”)×^{í{ï½÷Ío~sðàÁÏ>ûìÔ©Soºé&×›†Ü*•Ê~ô£?þØõ† ŸåË—ŸuÖYË—/ïׯ߈#Ö®]{öÙg/_¾Üõv!«Ý»wŸsÎ9×_ýG}4jÔ¨¿üË¿üÿø¿þë¿^½zµëMC wß}wWÿiáÂ…³gÏ~ã7?üð=÷ÜsÉ’%ßÿþ÷wìØáz“Mª­ÜsÏ=mmmguÖöíÛ“G^{íµ#Ž8bذaÿýßÿízëÏwÜÑÖÖÖÖÖö·û·®·YmÙ²eäÈ‘‡rÈsÏ=—<òâ‹/xàGyäîÝ»]o2Iþ!½ä’KvîÜ™<òôÓO6ì„Np½ihlëÖ­«W¯þ»¿û»äßÌ^x¡æ/¼úê«C‡5jÔÿþïÿ&\sÍ5mmmÿðÿàzÛ bâˆÖyä¥Ô•W^Ù«W¯ä‘!C†œþù»wïfÁÚ/6lX¸páСC]oòY²dɶmÛÎ?ÿüÃ;,yäàƒ?~ü|°nÝ:×[‡LÖ¬Y£”:çœszôè‘<òÍo~sذao¿ýö‡~èzëÐÀÉ'Ÿ¼úÁ!C†(¥Þ}÷]×[‡¬víÚ5cÆŒ¾}ûΜ9Óõ¶ Ÿÿú¯ÿêÖ­Û©§žZýà‚ :::9ä×[‡Lú÷ﯔªnÄJ¥²eË–îÝ»§) QæÌ™³hÑ¢E‹yä‘ ÿÂêÕ«»wï~ì±Ç¦ì±ÇÇsÌæÍ›“× AbgEk·Þzký¿këׯWJ 8ÐõÖ!«Ÿýìg¯¼òÊwÜñ¥/}Éõ¶ Ÿ—_~¹oß¾ûí·ßsÏ=·víÚ-[¶ :tܸqé"äûö·¿}×]wÍ™3ç _øÂ¡‡úÑG-Z´hãÆó7ï¤LG}tò‡Ç¼þ¿V*•×_}ï½÷Þ{ォokkSJ½ûî»#GŽtý Œ ÑÚ׿þõšGžyæ™Ûn»í/þâ/jF ë…^øùÏ>yòä#<2‰~øâÓO?ýýï?xðà¿ÿû¿_¼xqúøÀò“Ÿxà®7™´··ß}÷ÝS¦L™2eJúàäÉ“gÍšåzÓPÄöíÛwïÞ½×^{Õ<Þ§OõÙÑr`XªF>»wï¾ë®»Î=÷ÜíÛ·Ï›7oŸ}öq½EhmÇŽ3fÌ8pàe—]æz[Ûïÿ{¥Ô믿¾téÒùóç?ûì³+V¬˜6mÚï~÷»K.¹$ðë7²mÛ¶yóæ}òÉ'Ç?óÌ3?þø^½z=ðÀ\ï©äW¯wïÞ5ï¹çžJ©­[·ºÞ@S˜8"‡gŸ}öꫯ~ã7ú÷ï?wîÜ®Nû€4óçÏ߸qãâÅ‹YÙôQÏž=“?Ì›7oìØ±ÉŸ/ºè¢M›6-Y²äá‡>ãŒ3\o#Z›1cÆóÏ??sæÌï|ç;É#›6m:óÌ3§OŸþàƒ~ík_s½Èg¯½öêÖ­ÛöíÛkOnv–̃ÄÄ™|úé§sæÌ9çœs6mÚ4mÚ´eË–Q¾XµjÕâÅ‹Ï;ï<®¢ðTïÞ½{öìÙ«W¯1cÆT?>nÜ8¥Ô«¯¾êzÑÚ{ï½÷øã<8­F¥Ô€.¼ðÂ;wþú׿v½È­G}úô©Ÿ,nÛ¶M)•^g&Žh­³³ó²Ë.{ôÑGÇwÕUWüû¤ä­)’k«ðÁ|ðÁ!C†<ôÐC®·-ôë×oË–-ݺu«~0™ïÚµËõÖ¡µÍ›7+¥ Tóx2h|ÿý÷]o ŠØwß}_ýõmÛ¶U_ÞôÖ[o%ÿÉõÖ™B8¢µ»ï¾ûÑG8qâUW]åz[ÛþûïÒI'U?²uëÖ•+W0`Ĉûí·Ÿë DkcÆŒ¹óÎ;_{íµä‚ÍDr¿îÊé…Aƒí±Ç6l¨T*Õ/:::”Rƒv½(â¸ãŽëèèxòÉ'Óc+•ÊŠ+úöí;bÄ×[g áˆ*•Ê/~ñ‹/~ñ‹?úÑ\o Š8úè£Ó›J$Ö¯_¿råÊ‘#G^wÝu®·™œvÚiwÞyçìÙ³o¹å–äÞëÖ­»ýöÛûôésüñÇ»Þ:´Ö«W¯cŽ9æñÇÿéO:mÚ´îÝ»+¥6lذhÑ¢Ïþó5'!À&L¸å–[n¼ñÆÑ£G'×ÄÜvÛm|ðÁ¹çžû¹Ï}ÎõÖ™B8¢…÷ßÿ·¿ým¯^½&MšTÿ_O;í´É“'»ÞF pÆ ûáxà 7œxâ‰#GŽÜ¾}ûêÕ«»uë6gΜ/ùË®·™\sÍ5gœqÆ¢E‹–.]úõ¯}óæÍÏ?ÿ|ggçìÙ³8à×[‡" pùå—ÏŸ?ÿ”SN5jÔ;ï¼óÌ3Ï >ü{ßûžëM3ˆpD 7nTJíØ±ãå—_®ÿ¯\"ØqÞyçí³Ï>wÝu×ÓO?Ý·oßãŽ;nÚ´iÉ8Á ûì³ÏÒ¥Ko¹å–•+W>ñÄ}ûö=zô\pÐA¹Þ47uêÔ¯|å+<ðÀÒ¥Kû÷ï?yòäK/½4™>†ª[¥Rq½ ð·ã@&„#2! á€LGdB8 ™ŽÈ„p@&„#2! á€LGdB8 ™ŽÈ„p@&„#2! á€LGdB8 ™ŽÈ„p@&„#2! á€LGdB8 ™ŽÈ„p@&„#2! á€LGdB8 ™üÊÚ.áÿ â•IEND®B`‚statistics-release-1.6.3/docs/assets/fitlm_101.png000066400000000000000000001335031456127120000217700ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A€IDATxÚìÝy\õÿðÏ.‡ ¬Ü A¡(‡Š¨"‚A¤¤…¥ŠŠ摨˜¢X €¦xrh^y“–ZV¨˜¦"Þxp( r‰€rß;¿?æÛü¶…]„ÝáõüƒÇÌììì{fw>¼çóùÌgxE€Wá³($Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž dª««×¬Yckk«­­m``0räÈ?þøƒ­`Ç{öìYó—úöíËãñ~úé§  ¤¤$//¯¦¦†žUSSãñxUUUí²qzo¼ñƤI“òòò!eee<OMM­µ‚RCâJfêÔ©Ë—/ðàA¯^½ÆŽÛÑù™Âš>}º™™Ùï¿ÿNÏöïßßÖÖ–ÏoÏÿïfff¶¶¶fff‡úôÓO)Šjs„ Ô8B;£/O?þøcfÉ?üÀãñœœœä‰ô«á†††5kÖ >\GG§ÿþÓ§OÏÊÊ’²5Ù×Ç:@‡***:v옪ªjJJJjjjiié7ß|# ccc›¯\[[Ëv¼ò–œœœššª©©ÙŽÛÜ´iSjjêÓ§OùåBȵk×=zÄöŽK(€veccCÿ´.^¼H/¡KsGGG9GòòåKBˆªªjó—JKK™DVWW—ÇãBÁ‰'ZÜT«Ö§sN¿kèСB¡PJHb¼½½ !‡–óAP|ÉÉÉô™X\\L/)++‹‹‹£DNüS§NÙÚÚª¨¨xxxäå剾”ššêææöÝwßQUSS³dÉ’Þ½{ Ë—/3tïÞ½÷ßßÀÀ@KKËÞÞþèÑ£ôòúúú/¿ü²G}úôÙ·oŸ¶¶6!¤°°°y¨tiÐâ‰ÜÐаzõj[[[--­FFF655Ñ/Ñ!YZZjkk;;;Ÿ9sFJô©E™6mEQ999#FŒ˜4iý‰®®®„£Gfggóù|UUÕÇSµnÝ:z›­JÓÓÓ队>}JQ†ŠŠJAAÁÝ»wéôëåË—E………©ªª.^¼XR|˜2nÜ8f ½æ¹sçè—FÝ|[Œ‡’œ8JùúP¨¨¨ÐíB¥¥¥’C˜F$š‘‘ÑÔ©SKKK©ÿ&ŽR>‹BâÈ-¸9:D÷îÝ¿ú꫼¼¼ÈÈHÑå{÷îÉÉɧNº|ù2!dëÖ­………ô B¡ðí·ßÎÊÊ-‚Ï;w÷îÝ©S§B ðøñã»wïòùü'Ož”••åææöéÓgÒ¤Iÿý÷ùóç‡ÚØØø÷ßKŠ-''‡B7u‰¢kIéW_g}Ú²eËÜ«W¯1cÆB¼½½Å¶ åPxxxÐ#‡nkkËö—  XîÞ½»~ýú¸¸8555{{û¹sçž={ÖØØ¸±±ñþýûÌjÌmÅt;,]ïHQQQ122b¦ !ŽŽŽE¬X±‚R^^>hР¹s窩©yyyÑo)//ݸÝTMÆ¿¤ßÔLQ!„y#!ÄØØ˜ÒØØØØØHijj{‹¤xÚö)ô,}ŸèîHÂä|EEEûöíÓÓÓkígg q„޲xñâ7ß|sýúõùùùÌB:Ÿ1bÙÚÚÚØØ455Ñ­3„÷Í7ßôêÕK´”§«Þzë-Bˆ‡‡‡ŠŠŠ‰‰ ÝþÛØØhnn~ìØ±#FÌž=ÛÁÁ!11‘H-­ÌÍÍ !¢Q•––VWWß»w~ÕÏϹ'úرc¯\¿ÅOyüøqrrrNN}¾ÿ~±^y( E _}õÕœ9sþùçzIaaaCC!ÄÒÒ’YíÈ‘#„gÏž]¸p2xðàæ›¢/ÌJJJ&Mš4yòd ‹äääÊÊJBÈÉ“'³³³ßyçmÛ¶}òÉ'̉ieeE¹rå =TQÑ/íÚµ«æ_t?EIè&…„„„‚‚BHffæµk×ø|¾ݺråÊ•ŠŠ BȪU«App°¤xÍ =)ŸÒî_Š,Ÿ…$’8BGÑÔÔ\»vmUUÝmˆöÊ«RÑÊsML£[aDµöBœᬠ àêÕ«„ºº://///¯¿þú‹2xð`±jƒW®ßâ§à ƒ 4èã?®ªªrpppppèß¿¯^½^¼x1qâÄÞ½{Óëðx¼°°0WWW[[ÛÚÚÚqãÆ1Ý]DõïßÿÃ?ÌÎÎvwwŸ6mÚèÑ£7oÞüæ›o’‹š„„//¯7ß|“n¡(ÊÙÙÙÖÖ¶±±qàÀnnn ,=‹[D·?0~úé'___ºìúðÃëëëçÏŸÿÆo 4hôèÑÕÕÕ9räêÕ«'Mš$)BÝWgóæÍ ¢Ÿ+åSÚýK‘þY’"¥Äv[9phŸ¡PÈŒbC÷q|ðà!¤[·nùùùEedd¨««óùü¼¼¼æ]Å–,_¾œòÕW_ѳ„âââü‘ü{?`CC]N>|XÊ-ÌsçÎ%„XZZ¦¤¤PN©¯¯OwHõ¥ÜG)’”CAýÛ%èàÁƒlŸŠ¨¦¦fÓ¦MìÖ­›žžž½½ý–-[è«™³ì÷ßïÛ·¯‘‘ÑÌ™3«ªª( 7ÌUVVΟ?ßÜÜ\ ¸»»ÿùçŸôòêêjºíÍ7ß\±bÅ_|A™3gEQÿüóÝPЫW¯ØØØWÇ#fëÖ­EÕ×ׯ\¹²_¿~]»v0`@TT3OEEE@@@¯^½´µµ]]]ÿúë/éñ¤¤¤ôîÝ[SSóÛo¿¥þ{Wµ¤O;RJK 4é{$!(5$ŽÐÎÄJºë¹9Æ××—bllÂÛÛ{РAiii³fÍš={6!äâÅ‹RÞ¢¯¯õêÕo¾ùÆÕÕµ¶¶ÖÀÀ`ìØ±k×®-,,üî»ï^}I9³gÏîÝ»÷Ý»wÓÒÒ:껩ÔÕÕ=<>ží¨Inn®™™ÛQ Óv½zõb;„¶xüøñæÍ›¯\¹2`À€>}úèêê666–””îŸþñóó{÷ÝwwîÜ©¯¯ÏöÞ—!q”Éüùó§M›FO§¤¤ýòË/Ý»wg;.èì¦L™²hÑ"¶cîCâ(CCCCCCzúùóç„ I7ÇÈMbbâ³gÏúöí›””Ä,´´´dŠ,€v„Ä@‰=zôˆ¢¨… Š.Ü´iÓ˜1cØ 8‰c« 2D¡nš€ÎlÆŒ3fÌ`; è,8´3Yí"„èêêZYY±,@+ qhg¿þú«,«YYY!qå‚Ä ­]»–í:Ÿí@9 q™ q™ q™ qè@iiiÏž=#„\¾|9((hÿþýB¡í Ú‰#@G9tèÐG}tïÞ½ÂÂÂyóæ=þ|óæÍÛ¶mc;.€6BâÐQbcc===Ïž=knn¾gÏžˆˆˆãdz@!qEÄãñx<ÛQ¼®ââb777BÈ7ÜÝÝ !ÖÖÖEEElÇÐFH@áðx<Š¢(Šb;×Õ³gÏ„„„¼¼¼K—.½ýöÛ„«W¯³@!qBW4r e¤ÍŸ?çÎï¾û®££ãŽ;V®\éëëËv\m„G€B ¦9“2ÒFŽyöìÙœœ>Ÿïàà°wï^¶ãh#$ŽÀ>.Õ2BŠ‹‹™i ›ªªªªª* úUCCC¶ch $ŽÀ&NV4ºººJ_!==íÚ‰#°ƒ“)#íܹsl‡Ð!8€¼q8e¤½õÖ[’^ª««‹ŒŒ f;F€¶@ârűîŒÒ½|ùrëÖ­¹¹¹Ì’ÒÒÒ¼¼<¶ÇŒŒŒGÇd¾±œ^ÒPšXëcýN ‰#È ç+› MIIyçwŽ=:eÊ”šššk×®}ÿý÷lÅcee%½{¥Ø·óÊ/ ëcýμ~ç„Ä:\'Liׯ__¿~½‡‡ÇÓ§Oßyç''§~ýú={ÖÉɉíÐÚ‚û€§¥¥={öŒrùòå   ýû÷ …B¶ƒèD8ó˜6¨©©100 „ØØØÐU}îîîgÏže;.€6âxâxèС>úèÞ½{………óæÍ{þüùæÍ›·mÛÆv\ÇÓVVV‡®©©±¶¶¦oµÎÉÉ©®®f;.€6âxâèééyöìYssó={öDDD?~œí¸8ŽI;sÖH :uêÔ‘#G†þàÁƒ÷Þ{oöìÙ#FŒ`;.€6âxÇââb777BÈ7ÜÝÝ !ÖÖÖEEElÇÀe¼–QÔ!C®_¿^UU¥««¯¯¯?~üx¶ãh#Ž'Ž={öLHHÐÑѹtéÒÔ©S !W¯^566f;.nê´7ÁH¡®®®®®N±´´´´´d;€×ÂñÄqþüù .ܾ}»££ãŽ;bbb¾úê+¶ãऌ-’t÷ôÍ›7Ù  -8ž8Ž9òìÙ³999|>ßÁÁaïÞ½...lÇÀH¥Ø²e 3]WWwÿþý={öøùù±@q3q,..f¦544lllªªªªªª,,,èW ÙŽ€ ÐQ:±ËTkkëÅ‹ûùùijj²@«q3qtuu•¾‚ôg'À+¡¢±mz÷î]WWÇvmÄÍÄ‘/ :RFÙ½|ùRt¶¼¼|ûöí¦¦¦¨n%ÅÍÄñ­·Þ’ôR]]]dddpp0Û1(%´M·Š³³³Ø55µõë׳@q3qd¼|ùrëÖ­¹¹¹Ì’ÒÒÒ¼¼<$Ž­…ŠÆ6hÞúadd„êFP^OCCCSRRÞyç£GN™2¥¦¦æÚµkßÿ=Ûq(¤Œ­•””$饼¼<Òì¦eÁñÄñúõëëׯ÷ððxúôé;ï¼ãääÔ¯_¿³gÏJ\ Ä mº üýý™éÚÚZ¡PH?ƒQ(B,--Oœ8ÁvŒmÁñgU×ÔÔBlllè;©ÝÝÝÏž=Ëv\J€yÞ4Û(Ÿ¿ÿµqãF33³Ý»w§¤¤¤¤¤ìß¿ßÜÜÜÎÎŽíڈ㉣••ÕáÇkjj¬­­éÎF999ÕÕÕlǠИ”YãkÚ²eKHHˆ«««ºººššš³³sXXرcÇÄî¶POƒ‚‚N:uäÈ‘áÇ?xðà½÷Þ›={öˆ#Ú°©²²²ààà!C†899Í;7''‡íh<ÏÂÂ)c{ÉÏÏ¢K´´´´µµuttZµúúz‡ššš_ݵk—µˆ¡C‡²½ßÀYïã8dÈëׯWUUéêêÆÅÅÅÇÇëëë?¾ › yøðaTTT·nÝbbbüüüNž<ÙµkW¶w ÝеŒÙÙÙlƒމ‰ùöÛouuu !eeeÑÑÑôýF2*..ŽŽŽ®¬¬”´Bnn®§§çäÉ“éYUUŽìÀ"î—/êêêêêê„KKKKK˶m¤ºº:!!aûöínnn„˜˜˜¡C‡^»vÍÓÓ“íýhíxßt]]±±q~~¾––½¤¡¡!,,ì‡~ãÇ_³fM«Ò&¥>eʾ}ûBÒÒÒôõõ8 û¶oß¾yóféëäææº¸¸Ð¥@‡âxâ(éîé›7o¶j;ùùùýû÷wpp gµ´´444JKKÙÞ?€×Õª”‘Iø$­_XX¸|ùòòòrÑ…ÁÁÁû÷ïß½{7!ÄÏϯK—.aaalï·œ˜ššÆÇÇŸ9s&++‹ÏçO:uĈjjj²oÁßßßßßÿÎ;'N”´Nnn®©©immmcc£¶¶6Û; \ÆñÄqË–-Ìt]]Ýýû÷÷ìÙãçç×ÚíôéÓçØ±cÌì©S§ª««ííí%­ommM‰gûÑÁÏY‡`- ‹¬¬,Bˆhó´¤`˜• !<™f|ûí·ÑÑÑôtNNÝ‘£®®nÇŽaaaýúõ#„nܸÑ××—ÏçrëÌÌL===CCÃÌÌLBˆ sd!mnýhN(æççïÙ³'00P(öë×oõêÕýû÷—´>]:Ñ£L´ÕÉ$$$ØÙÙUWW·ííMMMû÷ïïÛ·ïÆ%­ceeÅö^þ¿¬¬,¶C@0ŠLóÓ¿¸¸xÚ´iFFFÓ§O/..[¿ùZÜò•+W!•••ôì7!¹¹¹ôìÓ§O !wîÜQØ#Ó.¬¬¬6mÚDO´¨µ¼}û¶••U‹Waaá€6lØPRR’——çïïïêêZ^^.)0¶ (7Ž×86×»wﺺº¶½÷ñãÇK—.ÍÎÎ^¹rågŸ}Æö®´‚X·BªY[óŒ3ÒÓÓþùçÂÂÂðððÏ?ÿüøñã¯ÿ¹OŸ>åñx=zô gßxã WXXÈöñèXÉÉÉô*©©©ýY&&&)))Ììºu놚””äååÅöaâxâ(6XZyyùöíÛMMMÛð¬ØþùÇÏÏïÝwßݹs§¾¾>Û{Ð ôíÒLwÆæ÷¦ÔÕÕ:ujûöíÙÙÙ‹/ž7o^]]]—.]^ó£kjj´´´˜†i>Ÿßµk×/^°}H:S¨««§¥¥éé陘˜\¾|ù?þ°µµõõõí¸FFFÅÅÅlà&Ž'ŽÎÎÎbKÔÔÔÖ¯_ßÚí466L™2eÑ¢Elï@[ˆ>†ÎÅ*ù|¾††=­©©)½¢ìO”Ñ×ׯªª …ô…BauuµžžÛÇCN:¾cÇŠ¢æÍ›çàà°yóæ²²² ´×GÄÇÇoß¾ýàÁƒÝºu#„¼xñ¢¨¨¨OŸ>lï:pÇGúi1¢ŒŒŒÚPݘ˜˜øìÙ³¾}û&%%1 --- ÙÞE€W ëýüü (ŠrssÛ´iýRVVV@@@bb¢††Æ›o¾¹aÆæååEFFúøøˆV7ŠÕSʘ5BºwïNQTQQQ÷îÝ !Ïž=£(Ši¹æ¼ØØØÀÀ@OOOúaƒ{öì9sæÌ† ^?qŒ‹‹3005j”««kXXXPPÐŒ3TTTbbbììì$ (𚸙8Цwbòòò!...­Úà£G(ŠZ¸p¡èÂM›63†í} ä¿]™¬N´múêÕ«?þø£žžÞòåË­­­+**„Bá'Ÿ|bddtúôéÚÚÚéÓ§gdd 8bddtþüy±=YekkKožúÏ?ÿ466–rÏ/ÇÓÃ+Þ¸qÃÝÝbmm]TTôú[>xð ¥¥å¨Q£ÁáÇ׭[·páBUUUww÷   Î3R&È7Gfº¶¶V(ÒÏÞ …„KKË'N´jƒ3f̘1cÛ»Ð2±†c¦G#½°²²’Ç㥧§5ŠYçÂ… ÉÉÉ·nÝrpp(//§SÉÂÂÂÜÜܽ{÷:;;ß¹s‡ný|jjjsæÌ ±²²jjj þâ‹/Z5¡RëÙ³gBB‚ŽŽÎ¥K—¦NJ¹zõª±±qk·coo/6€ÎéÓ§™é^½z}÷Ýwlï+´ CâÇps(µ¿ÿµqãF33³Ý»w§¤¤¤¤¤Ð­EvvvlÐnZìn(ºðÉ“'%%%ôH  ¨¨ˆ¢¨Y³fÑUŒ§OŸ®¯¯×ÒÒ222Ò××ß¼ysiii{ DºjÕª &|úé§&L˜4iRxx8ÛÇL~æÏŸ¿sçÎwß}×ÆÆÆÑÑqÇŽ+W®ìЛc@žè* )+Λ7¯ùø?üðÃîÝ»7oÞ»jÕ*¶÷ 5بc3æÂ… ¢K®\¹beeõâÅ‹ŽûP…)M¡†ÁC0¯L‹g®Øô+Ï븸8÷àÁfIQQQhh¨ŠŠÊœ9sè`jkkµµµ:ÄöQ¬¯©mž>}zùòezÆëׯ_½z•Å`¤ür0ÝÚiæ\“tVŠf„ôȦ„šš@@?H‰¢¨ØØXºZqö Ó­šî„¸YãÈÈÏÏ¢K´´´´µµuttØ  uèJDFózfI[ …ß~ûí´iÓ‚‚‚˜™B>üðCú?Ü£Gnݺ•’’2qâD]]]Ѧmh3333ºW!ÄÎήµ¬Û—••3Mý7ãÁt«¦EO7Ñ¿¢ë¬X±‚úwH|fyjjjEE…——½Î{ï½WTTtçÎÙ/L·vºâxâ8xðà˜˜f4Dz²²èèht(ÅÇûW‹¯Rÿ—‘i›–4PÎLJ ºcÇŽuëÖ‰¾”””ôüùó)S¦üõ×_£Fš1cÇ»pá‚®®.ÛÇ@éUVV~ñÅžžžÓ§O'„L›6-00°ªªŠí¸ZPRR2}útccc??¿’’¶#R&-^˵¨s‰\ÂñÄ1<<|ëÖ­cÇŽa ÀvQQQqùòeBÈÒ¥KïÝ»·aÃV‚áñx’~N3f̸víÚÏ?ÿüóÏ?'%%}þùç,7ëœCâ—pûŒj€òòåK¡PصkW¶÷žS-ZÄvGGÇeË–%$$È9 梂îݼ&›~tP`` ‡‡‡»»ûâÅ‹Ož<Ùæ§³vBmŸžílCâps8žÌÌL===CCÃÌÌLBˆ Ó£+''‡biiÉvŒ²¢þ[ç•íÑ-:wî\^^Þ AƒD‡fìß¿¿··÷’%Küýýýýý«««W¬XakkëèèHu í¢¾¾^,722jjj’$b=´š×;¶êÑA {Û´˜N>$>p7GooïÙ³gz{{·¸‚؈hJA´_£ìï¢o ?~¼èƒNž<ùÔ©SAAAnnnZZZžžž{öìQWWg{/9ÅÉÉiß¾}k×®¥gËËË£££›? •u]ºt™0aBTT=–üKãGÊÉ?þheeuþüù‚‚‚LŸ>ÝÞÞ~Ë–-ú¡Á´!I§¤üÏSE;2l‡ÐFÕÕÕÿýwNN³¤©©©¬¬,77wݺu¬„$¥Ø?|ø°¾¾~SSªžžÞO?ýÄJœœôÊÿ¹ôìôPá´Ù³g3&þ_çÏŸ—}›ãƳ¶¶Ž¿~ýúÈ‘#ÍÍÍ+**ššš 4räȤ¤$ú¹£Ÿ}öÛÇFQÿÞeÈv8Š‹ãuo±±±žžžôÃ÷ìÙsæÌ™ 6,X°€íР³c.j)в°° þý7 z éô#Í*©û÷ïÏž=ûùóç„~ýúíܹ3<<<11‘¾O™Çã-[¶LþQQemmÝbo¡PØÐÐÐØØHwrmhhhhh`îü…×!v"·xgÛ7ß|Úü½ÙÙÙï¾ûî{ï½×âf¥l³²²òøñã¿ýöýÞŸ~úÉØØXì õ„¹s熅… …BÜ %v )‘›A Ç+ÅÅÅnnn„7n¸»»B¬­­‹ŠŠØŽ :5¦šÆãñÄjEW`;Xh‹ 6ÅÅÅýöÛoæææüqvvö† ~üñÇßÿ~ŠŒB=z´ŽŽÎĉoݺuóæM<:¨}Q¯º¥½ù3fhÙÙÙ={ö¬©©ë6Ðb–#ºý„zWWWzV hjjŠ=¡žbaaî•ÐZO{öì™——wéÒ¥·ß~›rõêUúÁ ,’’¢¢‘îÝ»7eÊGGG›âââÙ³g5ÊÁÁÁÚÚšõFqèêêþùçŸE=úƒ>À£ƒP(|òäITTý˜\{{{Ñ'Jׯ_¿›7oêëëÓ³?ÿüsee¥«««­­í®]»TUUŸ?~ùòåuëÖMš4 ÕÐ*ÿ¹ÌŸ?çÎï¾û®££ãŽ;V®\éëëËv\ÿaaaA¤>ú”Kyy93X,}Cƒµµ5ÛA½‚¥¥å/¿üòüùó¢¢"<:Hðù|ww÷œœsssooï²²²VmDÊêß~ûí§OŸÎŸ?ŸíUD(Š¥àxÇ‘#Gž={6''ÇÁÁÏç;88ìÝ»×ÅÅ…í¸ ÓyåmzmÜjq€&Ö[NöÜÔÔ´¦¦†™Ý»w/=LÒÇ,c¼‡úúú¦§§ïرƒyÖ(-))©¸¸xÍš5Æ +((ÐÔÔdû8±L¬¹…°Ü/ÚÌÌÌèîÀ„;;;d ¢=Eo|i¾²Fî¡DØjó ®££Ó½{÷ÂÂÂæÛlq³²<¡~ݺu‰‰‰l!ö‰•Ò‘G Ž×8VVV.Y²äâÅ‹E¥§§O›6ÍÌÌlÕªUZZZl‡õ߇S•Ý«W/¶ã‚ögbb"iváÂ…lrÕ†|ñÈ‘#«W¯¾xñ"ý$ëâââ‚‚‚~ýúɲMæ õkÖ¬]ž˜˜úäɺFO¨—wUKÁñÄ1""¢¢¢âòåËô-ÕK—.]¾|ù† V®\Évhh á, ‹¿ÿþ[Ò,Aâ2ðòòš;wîÔ©SUUU—/_>dÈúÙ+µö õlï+(Ž'މ‰‰‘‘‘ÌhûŽŽŽË–-[¾|9GIMÒY#§>}ší@±ˆ¶0ÈøÄÄÄÀÀÀñãÇ«©©½ÿþû6l± O¨‡ŽÃñı¾¾^¬ÞÈȨ©©‰í¸ S½ßEôyÓY#@§!Ëà4WWW±—¬­­Oœ8цÅê[K´m×öÒqüæ''§}ûö1Ï?(//ŽŽvvvf;.à>Ñb7Ä <èT^98(<|AFOƒƒƒoß¾íåå% 'Mšäîî^TT´bÅ ¶ã‚Î…I"Q(,ѲàxSu÷îÝOžü'I*++—,YrñâEŠ¢ÒÓÓ§M›fff¶jÕ*---9GBÿb­¬¬èqñ‹•3Œã¨øÄ:¯#}”w´LôêS¬%Z´ÁÿƒAŠˆˆˆŠŠŠË—/«¨¨B–.]zïÞ½ 6È9 æ¾.zEÉ™è}uíuäyÿÅö.rXuÛá(.$Ž-hžŠþÓÃv° ¸-ZD Fqtt\¶lYBBÛqü4ïÓòúI‰h&Ú¾ùh'×¼ššãfS5@›‰Ö&‘6 Ü+ mP__ßµkWÑ%FFFMMMlÇâpWµŒPã@ˆÈ…&i);dîa;LP2NNNûöí£QM)//ŽŽvvvf;.'ÖôJ\I¸Y㘔”$}—Ön³±±qË–-GÕÒÒ=zô¢E‹ð«R^-~w¢Ý‘ÿ¶(áêÚ&88Ø×××ËËK(Nš4éÁƒfffëׯïˆÏª¯¯wqq¹r劦¦¦ØKb?f‚« 9…‰Âû^ð/^n&ŽþþþÌtmm­P(¤¯!èë~KKË'N´v›QQQLjˆ „|ýõ×êêêóçÏg{G¡u$=EZô:±awð_^G÷îÝOž|8$$ÄÃÃåïï*…æù¢XÿEÒÒÅ%€…×·ÿþaÆ;–YRSSºqãÆvü”íÛ·oÞ¼™í}y“2¬,´*†eÇñ¼gË–-!!!®®®êêêjjjÎÎÎaaaÇŽc+£ŒŒŒªª*777zÖÍÍ­¤¤$--íýƒWhq)˜Fó4´¯5kÖ|úé§¢M¿ÿþ{û~Š¿¿zzú¡C‡ØÞ]hY»Ç#Zd¡˜j/Ì3ÀPøKÇÍGF~~¾@ ]¢¥¥¥­­­££ÓªíðxŸ¯¡¡QVV&i}…*”{õêÅvì#V:÷êÕ‹.²-,,èåtÖ(Ú`ͼÄí#£DÁÈ-wï8ÞÞÞÎÎÎóæÍKMMݼy³Øè<ò§P¥(Ž7U‡‡‡çååyxxLœ8qâĉ¹¹¹ááá­ÝŽŽŽNMM 3¦†P(¬­­mmµ%ÈYóV¡EÊ4L Ñ:ˆ¥¥å±cÇôõõÇ÷Ê1^ O=q¼ÆÑÔÔ4>>þÌ™3YYY|>êÔ©#FŒPSSkív )Š*--544$„”””PÅ´\ƒâk~[Lvv¶âÔ«ç ‚mÛ¶}÷Ýw_~ù%Û±€\uÐ]í~§6€Œ8ž8BÔÕÕ ]\\jkkÛ5B¬¬¬ôõõ“’’ÆŒC¹v횥¥%Û;¯Ðâ°;r³wï^mmmzšÇã}ñÅvvvçÏŸg;.«JòP +8ž8VVV.Y²äâÅ‹E¥§§O›6ÍÌÌlÕªUZZZ­ÚŽªªªOTTTÏž=›šš¢¢¢|||¡Ÿ;¼’èˆlÇEff¦žžž¡¡¡¡¡¡X7M###¶yCùœÁñÔ'""¢¢¢âòåËîîî„¥K—._¾|Æ +W®lí¦êëë!ÞÞÞ ,`{çàÕ2+¼½½gÏžèííÝâ ¸C”ÇÇÄÄÄÈÈH¦3¢££ã²eË–/_ކđÇã-]ºtéÒ¥lï¼ìJNN¦[$RSSåö¡öööÈGå ½ ¡âø]Õõõõbƒ_555±ÈCûޏ ;MMMº;õ”)SÔÿ«¶¶vÖ¬Ylí@ì¾æW®Lc;jˆ÷_l‡£¸8^ãèää´oß¾µk×Ò³åååÑÑÑÎÎÎlÇ ª««wìØAINNŽŒŒ}©  àáÇl¯KìæhéÁ³ì_ó/”íˆÇÇàà`___///¡P8iÒ¤˜™™­_¿ží¸ ý‰=³¥3°¨±±1++‹žf&h|>?44”í¡IiÙÀ“c”¾&)8ž8vïÞýäÉ“§OŸ~øð¡@ ˜5k–»»;óà±ò¹#°®[·nÛ¶m#„Ìœ9“žàŽ'Žû÷ï6lØØ±c™%555¡¡¡7nd;4h’*ņûf;Lè¤bccÙä—©Ðyp7 1àn&ŽYYYô43Aãóù¡¡¡lØ©5ÿÕâCQÔÔ×׋=tÀÈȨ©©‰í¸àu±;w‹ƒ‘±}H ³àfâØ­[·mÛ¶BfΜIO€Ü4$ Ø ¢×è¸Í¸ÍÉÉiß¾}k×®¥gËËË£££ÙŽ ”žª láfGFll,Û!t.bãÜŠÎ6¿ž@‘|ûöm///¡P8iÒ$ww÷¢¢¢+VÈ9 ±¶iTPqžzòÇÍGFjjjXXØÓ§OÅ–ß¼y“íи y墌ý¨DÛ¦›/àŒîÝ»Ÿ³fÍrwwçóY¸bÇЧíNö>Ž\ÂñÄ144T]]}ÕªUºººlÇÂ5m.4ÅVFÕ#pORR’謉‰‰‰‰ =}ýúuBˆ‹‹‹œC¢Ï;kkëôôtd9¯OìÒÇ:Ž'Ž=Š‹‹0`Ûpì•‹¢oaVnq#œáïïÏL×ÖÖ …Bºç†P($„XZZž8qBžñ°{'‡áB'ÄñÄÑÈȨ¦¦†í(”›ìOµjñÒb %ÆÙÎàï¿ÿ¦'Ö¯_îääÄãñîܹ³bÅ ;;;¶.À#Ûþ=É‚ã7ÇDDD¬^½úÌ™3yyyÅ"ØŽKiˆÝÝòÊjEÑ¡n™^ÛÌÛé¡‘Z¼W€“¶lÙâêꪮ®®¦¦æììvìØ±—/_²(·ÖÎ ØÝœ8žRp¼ÆÑÏÏO(ˆ-dzªÛ†©Sl±r‘YGt!DèÌòóóè---mmm¶C%†žÝ9dÄñÄ1>>ží8KJ£3RFÚàÁƒcbb¾ýö[úþ¼²²²èèh9×gˆž­8=àupf̶£ Dd œªòÔü€·ËW€*Ú©Œ8~Wubbâ¢E‹ŒŒŒèYGGÇeË–%$$°—’©­­íÖ­[ee%³dݺu<†††8Íšs’@þ‘ÐÉŠ••îå ŒPÑîpHeÁñÇúúú®]»Š.122jjjb;.òÊÊÂÂÂÂåË————‹.ÌÎÎ3fÌüA‰GÓ@‹¶lÙÂL×ÕÕݿϞ=~~~r€@{áxâèää´oß¾µk×Ò³åååÑÑÑÎÎÎlÇÕn^³^]ì™ÑÍ7òÍ7ß„††6ã®]»Úü¡‡Ø£=<<¬­­/^ìçç§©©Évt­Æñ¦êàààÛ·o{yy …ÂI“&¹»»­X±‚í¸ÚAóÑJ[Ûü$Zå iÈÓ+VPuåʱÏíÓ§ÏáÇkjjÄj"@ºÞ½{×ÕÕ±ÈØXH¨ëeÇñÇîÝ»Ÿ³fÍrwwçó9’.·öiѯ.ò„B¡¦¦fTTÔ¤I“„BáàÁƒcccíííÙ> Gì 1åååÛ·o755•u£¤ûA˜ò)#p7Ǥ¤$ÑYzúúõë¤YûÈB[[›.õ ø|¾»»û‰'ª««¿üòKooïàabšwŒQSS[¿~½œÃí‘‚/Và˜gp3qô÷÷g¦kkk…B!Ý@  !–––'Nœ`;F¥ÁTN0wU›ššÖÔÔ0+ìÝ»×ÈÈèüùóü1ÛÁ(–sçΉ-122b«w#EQ^GmÅüý¯7š™™íÞ½;%%%%%eÿþýææævvvlØÄÚ¦ÛP‹ÀôŒd4ß½P´cs:::Ý»w/,,dû(œ¥K—¾õ_ Ó¦Mc;.€6âf#cË–-!!!®®®ô¬³³sXXØŒ3‚‚‚èGÇÊ®¬¬lýúõ EÑãAöìٓݽ{ýÑJ¥¼KJœ#Gެ^½úâÅ‹zzz„âââ‚‚‚~ýú±{4GuuõŽ;!ÉÉÉ‘‘‘¢/<|øPöM566nÙ²åèÑ£ZZZ£G^´hQóŠ»víý==½k×®±} €›8ž8æçç Ñ%ZZZÚÚÚmèòðá訨nݺÅÄÄøùùŸßâW’DEE?~<""‚òõ×_«««ÏŸ?_lÜÜ\OOÏÉ“'Ó³ªª/Ø€E/_óí·ßÒõ‹eeeÑÑÑ­½©°ºº:!!aûöínnn„˜˜˜¡C‡^»vÍÓÓ“í]lg²4yëèè$&&Ž?^MMíý÷ßß°aîÓ`tëÖmÛ¶m„™3gÒmSWWwøðáBH```TT”¿¿¿ØÐ¹¹¹...téС8ž8†‡‡O™2ÅÃãoß¾„´´4}}ý´v;ùùùýû÷wpp gµ´´444JKKÙÞ¿ö$¥¢ÑÕÕUl¹µµ5n0x¥ØØXfº©©IEE¥UoÏÈȨªªb2B77·´´4±ž!¹¹¹¦¦¦µµµÚÚÚlï4pÇGSSÓøøø3gÎdeeñùü©S§Ž1¢ ÏÇëӧϱcǘÙS§NUWWK¹ÐÚÚšÏö ¹¹¹¯\Ç‚üÛ –Ín0rƒ`”"å•““süøñ>øÀÒÒ²®®î«¯¾:{ö¬ŽŽÎ_|1uêT7RPPÀãñŒŒŒèYcccW\\,ºŽP(ÌÏÏß³gO`` P(ìׯßêÕ«û÷ï/i›té„{«_Ÿh3 FÛ΃ã‰#!D]]}̘1íµ5¡P·víÚ™3gÒùV‹ªPîÕ«—¤—ä?&­”`äÁ(~0z%ÓqîÝ»7yòd ‹>ø€²uëÖ .Ìž=[KK+::º{÷î^^^²l§®®NSS“i˜æóùeee¢ë<þœÏç2ä»ï¾«­­]³fÍœ9sNŸ>-Ö½›¡P¥“òëÕƒÑ1¡óàxâèääÔâò›7oJã©S§-ZDOŸ8qÂÒÒ’òøñã¥K—fgg¯\¹ò³Ï>c{ç^J:€òí·ßzyymذBQÔ/¿üòùçŸ/X°€ÒÐÐpàÀGšš¡PHçŽB¡°¶¶VìÞ>“””fvݺuC‡MJJ’ñ# ]Ðc\ D…΀ã‰ã–-[˜éºººû÷ïïÙ³ÇÏÏï•oôòòºuë=­¥¥EùçŸüüüÞ}÷Ý;wêëë³½g¯¿èPwïÞ‰‰¡§333‹‹‹ßÿ}zÖÞÞþàÁƒ2nÇÐТ¨ÒÒRCCCBHII EQLËu‹‘‘‘Xs6@{áxâ(öhAkkëÅ‹ûùùIxƒªªªhCOccc@@À”)S˜jH%…”@*++™û`®^½jllÜ»woæÕªª*·cee¥¯¯Ÿ””D÷·¹víš݈߾}ûÁƒ»uëFyñâEQQQŸ>}Ø> ª¡óàxâØ\ïÞ½ëêêZû®ÄÄÄgÏžõíÛWô)Ø–––t5€²@Ñ æææIIIƒ&„œ={vèСÌK)))o½õ–ŒÛQUUõññ‰ŠŠêÙ³gSSSTT”=Lc\\œÁ¨Q£\]]‚‚f̘¡¢¢cgg'©—´Ѷi F ÇÇ—/_ŠÎ–——oß¾ÝÔÔ´µÏŠ}ôèEQ .]¸iÓ¦v¼í¦C¡¢@ž|||6nÜÈãñrrrnß¾={ölBˆP(LJJúî»ïšà-E@@@}}}@@!ÄÛÛ›î(I9xð ¥¥å¨Q£ÁáÇ׭[·páBUUUww÷   ¤2rÀ<» E+t*¯‚¢ž¥¦¦¶~ýzúVÇŽûPŹoQ¡Êµììl…º]Á ˜BQÔ®]»Ž9RQQ1qâÄ/¿ü’²pá³gÏN˜0!44Tlo¹Q¨Ò ”ÇkÏ;'¶ÄÈȨµÕÊ‹Çãeee)ãÿ]¥ÆãñæÌ™3gÎÑ… .\½zµ¤Qr”;W½r³téÒ·þ«¡¡aÚ´ilÇÕáx<z4( d ì¸YãX]]½cÇBHrrrdd¤èK>d;À¤PmÓÀ%ÜLé葟¤Çàóù¡¡¡lØ!2€$Ìí2((àup3qìÖ­Û¶mÛ!3gΤ'8 Ó S>07Ǡ¶áxÇØØXfº©©‰íp:º3€|p³Æ‘’““süøñ>øÀÒÒ²®®î«¯¾:{ö¬ŽŽÎ_|1uêT¶£khrPL7nÜe5]]]+++¶ƒhn&Ž÷îÝ›´ ;fdd käúŸÛQ@çÂÍı²²REE…ž¾zõª±±qïÞ½™W«ªªØ°-2Àë (ÊÊÊ e7ˆÖ# wyâfâhnnž””DOŸ={vèСÌK)))o½õ۶X=rG'nöqôññÙ¸q#ÇËÉɹ}ûöìÙ³ !B¡0))é»ï¾›?>ÛÊ Ý@qp6q,//?räHEEÅܹs=<<!‹-:{öì„ ”b8¤ŒÊ«¢¢B–ÇR˸€âàfâÈãñæÌ™3gÎÑ… .\½zµRÓh˜PjÓ¦Mspp˜2eФŽ17nÜØ»w¯™™Ypp0ÛÁ´7ÇYXX°«¡¢€>¼k×® &ØØØ8::öîÝ[GG§©©©¤¤äþýûW¯^mjjš?>3Ú@«4ïÔˆÿ 7(qTpH8C]]}þüù3gÎLHH¸zõê¹sçž?®®®nbb2xðàgggÜÍÐyˆ~×íUÈãŸEG`¾)^)8*´Mp†††·····7ۛĊw”ö ƒäˈ›Ãñ( µÐy`èÅ$ö_“¨qd Ú¦@¹ qdj@é q”7T4€ü1ín(‚äŒnôDç9傯I ôq”ÑG‹² ÈÄ Ä–”——O›6MÎa0%ý¬jôß’3ú€£G»"ýŽð5I‡GyÀ%>@§R]]½cÇBHrrrdd¤èK>d;@7”ÿŠß‘Œ8v8\»t6YYYô43Aãóù¡¡¡lÐFH;*:§nݺmÛ¶2sæLz€ÐDZC ;#Blmm333ÙŽB|P:4ƒ@›¡Æ±ýedd PBÈåË—544,--ÙäÿsGdð:PãØþ¬¬¬ØÂÆÿüóÏ_ý5''§X+Á0wU³}TsW5Û(4Ô8toooŠ¢þùç±åééél‡ÿOìžTÌKÄ £ÄÇdzȤù³ª‘;¶‰#@GÉËË“²\CCcðàÁlÇÐ H:ÊÚµkéViºã”P(äóùô«½zõúå—_ØŽ 8t”?þxÿþý«V­2dŸÏ¿sçNhhè’%KFŒÁvhðÿðHqÙá®j€ŽòóÏ?‡……¹¹¹©«««ªª2dÅŠ111lÇâðHq¡Æ £<þ\KKKt‰––VAAÛq@ /Ê5ŽeÈ!111/_¾¤gËÊÊ¢££íììØŽ  PãÐQ¦M›æááÑ·o_BHZZš@ Ø¿?Ûq´ÇV»víÚôéÓÿþûoMMM¶c…fll|âĉóçÏgffÖ××ûøø¼÷Þ{Ì]Õí¥±±qË–-GÕÒÒ=zô¢E‹ðè è H[§¢¢â믿F7QffæÀ½¼¼._¾üÇ”••ùúúòùíÙM(**êøñㄯ¿þZ]]}þüùlï7pú8¶Îêիźº+¸Q£F±‚A0 ¦ :ôÑGÝ»w¯°°pÞ¼yÏŸ?ß¼yó¶mÛÚñ#êêê>èáááááøã? …B¶w]~¬­­Ù{Ôéöˆ«;% $Ž­pöìÙ[·n-^¼˜í@@9ÄÆÆzzzž={ÖÜÜ|Ïž=ÇoÇÈÈȨªªrss£gÝÜÜJJJÒÒÒØÞuà&4U˪¸¸8<<|óæÍ²´S+Ô…‚A0JŒR+..¦Sº7n¸»»B¬­­‹ŠŠÚñ# x<ž‘‘=kllÌãñŠ‹‹%­ÏÉ/—{;…=……ÄQV+V¬;v¬““Ó7¤¯I?a  gÏž :::—.]š:u*!äêÕ«ÆÆÆíøuuušššL§Iú‘†eee-®ŒÒ ^šª[vêÔ)ëeffþòË/OŸ>ýòË/ÙŽ ”ÉüùówîÜùî»ïÚØØ8::îØ±cåÊ•¾¾¾íø:::555L§F¡PX[[«££Ãö®7á¹:-kll¬©©¡§µ´´V­ZuèÐ!±u¦M›Ìv¤ Ðrsssrr455oܸÑÔÔäââÒŽÛ¿ÿþ¸qã !ÏŸ?wss;~ü8=r$@ûBâ(“ââ⊊ z:%%%((è—_~éÞ½»Û¡@§ÖØØ8|øðààà1cÆBþøãµk×^ºtIU=‘ ý¡d‘‰¡¡!}5Oyþü9!Ä€ëTUU}||¢¢¢zöìÙÔÔåãレ: åP__@ñöö^°`Ûg¡©d‚»ª@&H@&H@&H@&H@&HÛÙÓ§OçÌ™ãäääêêúõ×_¿|ù’Å`ÊÊÊ‚ƒƒ‡ âää4wîÜœœ¶©¯¯wpp`žÊ#QQQÆ 9rdTT”"Œ*Àú1¡)Ô¯E¡Î#¥Öü×¥€§ÀëïÔ®]»¬E :”íe%é¼SÞ¯IÒ)ïwD$—HÊû5½ŒãØž„Bá‚ ôõõ¿ÿþûúúúààà°°°Í›7³OHHÈÇ£¢¢ºuëãççwòäÉ®]»²Oqqqtttee%[B¢¢¢Ž?Aùúë¯ÕÕÕçÏŸÏb<ŠpLhŠókQ´óHyµøëR´S ]v*77×ÓÓsòäÉô¬.é¼SÞ¯IÒ)ïw$¥DRÞ¯éµPÐ~222¬¬¬îÞ½KÏÆÆÆ8°©©‰•`ªªª¬­­ÏŸ?OÏ–••õíÛ—™•¿mÛ¶Yý«ººš•jkk|ôèQzöÈ‘#...l}A rLh õkQ¨óHyµøëR´S ]vŠ¢(??¿]»v±]«I:ï”÷k’R’(éwDI.‘”÷kzMhªngãÇ·±±¡§ß|óM/ªòóóû÷ïïàà@Ïjiiihh”––²¿¿zzú¡C‡Ø €’‘‘QUUåææFϺ¹¹•””¤¥¥uæcBS´_‹âœGÊ«Å_—¢í²S„ÜÜ\SSÓÚÚZE¨¼—¤óNy¿&)%‰’~G´K$åýš^ÇödiiùÍ7ߨ¨¨”––Þºuk×®]ÞÞÞ|>;¹OŸ>ÇŽÓÑÑ¡gO:U]]mooÏöAbSAAÇ322¢gy<^qq1Ûq±O¡~- uq 'O¡P˜ŸŸ¿gÏžÁƒ;88Œ7îÞ½{l%Içò~M’öHy¿#"¹DRÞ¯é5¡,îsçÎ_CC£¬¬Œí¸ˆBýZê<âNžÏŸ?çóùC† ILL¼páÂo¼1gÎœŠŠ ¶ãj±óŽ_“Øqà;"ÍJ$|Mmƒ ×rêÔ©E‹ÑÓ'Nœ°´´¤§úé§/^ìØ±ÃÇÇçÊ•+lóøñã¥K—fgg¯\¹ò³Ï>cýȰKGG§¦¦F(Ò§ºP(¬­­e.Ž­_‹$¬œGÜÆÉSÀÄÄ$%%…™]·nÝСC“’’¼¼¼ØM&ÍÏ;eÿššï‘²G4±IÙ¿¦6Cãkñòòºõ¯Þ½{gggÿý÷ßôKzzzK–,©ªªºsç+ÁBþùçŸqãÆ™››Ÿ9sFÎy@ó`¡¡!EQL×½’’Š¢˜††NŽÅ_‹vÏ#në §€@ 022R–ÃÏ;¥þšd)I”ë;’T")õ×ô:8¾UUUÁ¿ø|þ;w.\( éWËËË…B¡¦¦&+Á466L™2eãÆúúúì9º$VVVúúúIIIôìµk× ¤6”]ìþZİ{q'Oøøø?ü°¼¼œž}ñâEQQQŸ>}ØŽëÕ$wÊû5IÚ#åýŽˆäIy¿¦×„¦êöäáá±nݺ•+WNš4©¦¦fóæÍ–––¶¶¶¬“˜˜øìÙ³¾}û2?kBˆ¥¥¥¡¡!Ûlj5ªªª>>>QQQ={öljjŠŠŠòññÁ»DÁ~- uq 'OWW×°°°   3f¨¨¨ÄÄÄØÙÙ999±׫I9ï”ôk’´GÊûÉ%'Ï&YpåÉÀÀàûï¿ß¸qãĉ555]\\Ö®]«¦¦ÆJ0=¢(jáÂ…¢ 7mÚ4f̶›êëë!ÞÞÞ ,`;"… P¿…:¸‡{§€@ 8|øðºuë.\¨ªªêîîÄãñØŽëÕ¤œwJú5IÙ#%ýŽˆÔII¿¦×Ä£:Çrà5)Jç3PpH@&H@&H@&H@&H@&H@&H@&H@&H@&H¡Õ¾ùæë–Lš4éÉ“'ÖÖÖ/_¾”[0åååÕÕÕ„šškkëÌÌÌV½¸¸¸X¾‡°…°ÙŠ$=ztó‚îÊ•+¢¥ s.‹MËhðàÁIIImŽåÈŸ*Û€òùüóÏ?þøcBHyyùôéÓ—/_nooOéÚµ«üƒùúë¯-,,UUUgÏž­§§ÇöáicØ­ýrðÉ'ŸLž8pà»ï¾{èÐ!¶¿g€NŠ9mEÏeÑi"ù,ÎËË›5k–££ã‡~˜Ð|ãsçÎ]¼x13ëáá! ¥—`RJ'”'о8Bû[½zu``à?þØ­[·•+WBêêê|}}555øá‡ÈÈÈÇ/Y²„ÒÐÐ0eÊ”†††]»v}óÍ7—.] ¡7BQÔW_}5räÈ>ø@ÒÛcccGŒ1{öìŸ~ú‰ùô¦¦¦éÓ§744ÄÆÆ.]ºôçŸÞ½{w}}ýœ9s¬­­ãââÖ¯_Ÿ’’²uëVIñ755M›6­¬¬lÇŽË–-Û¿zzº”ý•²q¡P¸fÍšµkׯÅÅ©««‡……I ›!igsss.\Hñ&LOKKcû«à¸çÏŸ§‰xöì™è«¢ç²è´¤³¸¾¾~Ê”)µµµß}÷Ýâŋׯ_O_*‹=zô_ýÕÐÐ@Ïž>}ú£>jll”½…òÚšª¡ý-\¸¾Øõõõ %„œ>}š²víZ>ŸO‰‰‰>|x~~þ;wJKKýõW@@Y³fÍ”)S‚‚‚!B¡pâĉãÆ#„?~¼Å·Ó-æbþüóÏüüüŸ~úIKKkÀ€•••Ož<©ªªZ´hÑgŸ}¦©©Iyçwrss%Åþüù‚‚‚C‡éêêBV­ZõùçŸKÙ_)§(jÞ¼yC† !„LŸ>>ÒI:V999B¡ð“O>155íׯ_Ÿ>}”¥C'€ò:räÈ‘#G˜Y__ß+V¼ò]’ÎâÛ·o—––þòË/tÙ¢¦¦6cÆ ±÷zzz†„„\»vmøðáyyywïÞݸqc«J0Y"Aym†ÄÚÓ%ˆ¹]æáǹ¹¹¶¶¶Ì:E=~üøÑ£G666tÖH±··çóùYYY¦¦¦„ÁƒK{‹‰czzºµµµ––=;iÒ$z‚nJOOOKK»~ýº«««¤ø333ûöíK—ì„!C†ðx<)û«§§'eãLØÌ¥“´³vvv£G~ûí·‡ âååebbÒñ_&@§æïï¿páÂÖ¾KÒYœ••%Z¶8995/[´µµÝÜÜÎ;7|øðÓ§OÛÙÙYXXÖ”`²D‚òÚ ‰#´? ±%ÀÞÞþÇ[~ãÆæå&Ý%‘¢­­-ýí-jllTUÿagffNž<¹oß¾#GŽtww·²²ÊÊÊ’´…úúzÑY>ŸßbâXWW'ËÆ»téÒª£'eg>|ëÖ­K—.9rdÓ¦MÛ¶m>|xë¾èx’Îâ[·n‰Îòx¼Ë–÷ßݺuáááñññt«K«J0"R:¡Ž VVV<(//§goݺ5a„ÚÚÚÞ½{§¥¥UUUÑË“““›ššz÷î-ãÛ[ü,z›555ôìîÝ»?ÿüóøøx==½}ûöùúú:991¯¶ÈÂÂ"--­¬¬Œž½sçŽP(d^e¸ÿ>=Ѫ·ùXݸqã»ï¾2dÈ’%Kþøã‡?þøC^_ ´‚¤³¸OŸ>Rʆ§§gyyùÉ“'ÓÒÒÞÿ}"s!Ó¼tByí‰#ȃ»»»™™Ù¢E‹îÞ½{áÂ…åË—›™™ihh¼÷Þ{ºººK–,¹ÿþõë×CBBÞÿý=zÈøvBŸÏ/((`ŠEBÈ{ï½'–-[öàÁƒS§N}ÿý÷ŽŽŽúúúÏž=»qãFQQÑ‘#G~ýõ×ÒÒRæ¢\ ½…€€€äääÄÄÄÐÐPº{‘‘‘ššÚÖ­[srrΟ?¿gÏzýVmœÖ<ìWîlSSSLLÌ?þ˜““sæÌ™””Ñæ'`…è¹ÌLK:‹GŒ¡¯¯Ï”-’ºKjii >|Íš5îîît×ÃW2’J'”'Ðî8‚<ðùü={öhkkÏœ9sùòåÎÎΫV­"„¨©©8p€ÇãMŸ>}Ù²e®®®²¿âíí””´`ÁfeuuõÔ××O:uݺuŸ~úéìÙ³Ç?zôèyóæ}öÙgßÿ}^^^ddd‹Ñjhhìß¿ŸÏçþùçk×®]²d ¤jjj®_¿þöíÛ£FZ¼x±ŸŸ½~«6.)ìW‹ËW_}õÃ?Œ3fÆ Ó§O÷õõeû‹èìDÏefZz‰×¥K—Ï?ÿ|ÆŒŽŽŽ–––-nvôèÑ/^¼øè£èÙW2’J'”'ÐîxE±€¢>>kÖ¬éàŸ@+dee 8pÛ¶m)))]ºtyðàAdd¤‹‹KYYÛ¡ý?º¾ßØØ855522ÒËË‹yI–¦Öëû§Nº|ùòôêÕ«¡¡!!!aìØ±L—9„‡®¡ Ó³±±!„>|˜ž}üøñ°aÃD—Œ7Žboo?nÜ8:õ¹{÷.EQ/^¼ÐÓÓ#„¼ÿþûžžž|>_WW·¨¨ˆ¢(UUUBHee%EQ~~~„]]]'''UUUG),,|ùò%!DUU•þÑÙÆÆÆž={B äéé©¢¢¢ªªúèÑ#±·HßQ’váСC„‘#GÒ« 8rùòe)o¡càóù}ûö%„ìܹSR´EùúúBôôôé}×ÐÐ’ôbª rssÅŽÆôéÓ !£GÖÕÕ%„,\¸¢¨ . 4ˆ2oÞ¼ÔÔT¶nÿ> øðáCŠ¢ž>}:`ÀBÈW_}ÕæmJ*%ªªª455g̘!û¦ÄξëׯÓgÖo¿ý&ûF¼½½%•Kr@÷&WUU¥‹—†††o¾ù†2bÄ9„'véBHff¦ôÂ\q 4‡Äþwn‹âñx6l _MMM%„ôéÓ§©©‰¢¨¨¨(BÈ´iÓ(Šºté!ÄÔÔ433“¢¨7Μ93%%…I³³³ù|¾ªªêãÇ)ŠZ·nýÒÇœœœ#FLš4‰~ÉÕÕ•rôèѶ%ŽRv¡²²²k×®êêê………<ÏÔÔT(Jy !dΜ9YYYµµµ’¢}ôèÇSUU}úô)EQ‘‘‘„:q”²ýwÊÜÜ|РAtzJñöö;bééé„@@½}•‚‚ %/(¤'OžÐ¿ç;wî0 O:åáá1oÞõh«W¯¦(êÞ½{ï¿ÿ¾–––½½ýÑ£GEcþóÏ?íííµµµ===³²²èO©©©Y²d‰¥¥¥¶¶¶³³ó™3gD—÷îÝ[ xxxÐW¼b’““éëöââbzIYYYlll\\\‹áIÚ&¡††F\\\Ÿ>}ºwï¾lÙ²G½óÎ;ÚÚÚvvv-~ºØlll¤L.]º$V˜Kú6›G¬Câÿ;·™›cºtéByûí·kkk)Šjñ™AƒQUZZÚ£Gz‰¥¥¥¿¿rr2½M¦<¥/1ß~ûmzùÇeI)Š*++Û½{÷¬Y³ìííé·>|Xtº‚F¾’G)»@QÔ„ !Ç?xð !dÑ¢EÒßBÇÀãñèºU)Ñ9r„2|øpzªª*¦ÆQzHÍ¿†‘‘ÑÔ©SKKKÅŽØáÇ !ãÆ{ã¹sç($Ž Îž=K_yJYGR=º”—˜óB(~úé§„%K–ˆmVJk‰¨æE ] 1§*SÐIÚ X}¿ô¶×µk×þýûÓ=vFE ]/ûæ›oº»»«ªªª©©Ý¾}›’­Õ¢ººÚÔÔ”¢££óñǯ]»öܹstÙNµÔ!½¥…¢¦¦Ö¿zºK—.¦¦¦†††„·Þz«ùׇNBââçö‹/´´´!/^¤þÍHŠ8vì½ryyyllìØ±cé‘***çÏŸ§DÊÓ½{÷B<<<˜‹5U«¨¨Ð/‰–#eee½zõêÒ¥‹¿¿ÿáÇéNEb‰ã¬Y³4þõË/¿P’Gé»ð믿BfÍš5uêTBȵkפ¿¥y­§¤h8@Dš„ ˜ÄQzHR¾Q¢‘Ðmîü1óêÛo¿M9}ú4…ÄÒ?ü@Ÿ’VR.å%æ¼ #„øøø…B±-Ki-Õüìû믿èë7z–)è¤lPôì“Þ–Bùõ×_)Š:sæ êQu÷î]:£zùò%EQaaaªªª‹/–½Õ"--mìØ±t©N?üðýªhx²´´ÐÿèÒÒÑѱ±±±°°îåIGØü¢Á„cps ˆÓÕÕµ´´$„äççBlmm !%%%“&Mš}Ÿ­±±±ƒ~3m@ׄKZáï¿ÿ&„Œ1ÂÌÌŒbkkkccÓÔÔt÷î])/Ñïmll\µj!ÄÞÞž¾XekkÛ£G¼¼"„899Bè› é=2dˆŽŽ!$<<¼¡¡!222%%…òðáC·xñbBÈ?ÿüÓBÝIú^7')Z{{{‹/0 OŸ>ׯ_gÞÒªíËÂÆÆÆ××÷àÁƒƒ rvv¾råJ}}}@@Ào¼A¡¯õ7oÞlbb2bÄ9üx^ÉÚÚšòäÉ“ÌÌLúb•òÛo¿Íœ9sÀ€tgDBˆhÚgllœ––ÖØØ(å%f‰]JJÊêÕ«§Njbb"úÑzzzééé?ÿüó‰'¶oßþÝwß={ÖÓÓSzÌôYÜ»wo±å2n°¼¼|РAùùùŸþyPPÐîÝ»éöz=f !Dô6mzšššÄ>QEE…âèèøå—_2 ›€v÷îÝ“'Oš™™Mž<ÙÞÞÞÞÞ~ÆŒo½õVQQÑýû÷éüOöm2Òè¢ï•>L÷’D–oÛUžÀ¾æÍ1Ÿ}ö!dìØ±ôleeåüùóÍÍÍ»»;Ó»œ¢¨Ÿ~úièСºººÝºusrrúùçŸéå¢}Æÿùçú:²W¯^±±±t£vaa!ýÒСCµ´´œœœè”n¹¨®®¦«ÐÞ|óÍ+V|ñÅ„9sæÈrsŒ˜­[·Jߊ¢˜+éžCÒ÷ºy ’¢¥(ª´´tâĉúúú}úô9zôh—.]˜»ª¥‡$åÛaˆER__¿råÊ~ýúuíÚuÀ€QQQÌm)))½{÷ÖÔÔüöÛoÙþ¹ü¿1cÆBÜÝÝKJJ(Š*(( O¥Å‹SõàÁBH·nÝòóó)ŠÊÈÈPWWçóùyyyR^bÆ=xùòåøñã !Ÿþ¹ØçÆÇÇ/Y²„n®««£W [Mìì»s玾¾>!äøñãô¦ “²Aº¥õàÁƒEýøãäß΋ ôuX'ê¿§6]×µk×òòrŠ¢V®\©­­ýõ×_Óµq½zõ¢â¯^½ºdÉ’}ûö‰íÂ;w!ZZZLôœœº;&}'»hxR¶)áòåˉÈÍï„æþIP”è¥|›b‚"@âòP]]}ýúõV½¥®®îÂ… lþZÑ–––?~üĉô,}{cŸ>}Ø@Q¤§§ÓÉ“ŠŠJ¯^½èÏÞ½{3½å譌njC§;Ò_ÍH222TUUù|þ­[·D?÷üùóô˜Þ&Løä“Oè«Yº¶(Ñ.z½{÷¦«Ä\]]™˜ÄQÊçÏŸOqrr:wîÜÏ?ÿLÇ6räÈîÝ»Ó5‹‡’~§àèÑ£é|nĈjjjôm"~ø!!døðáS§NÕÑÑQSSk~ý) ?þøcúÛÛÛ÷ë×Þ‹‰'Ò+ˆ†'e›š8Jÿ¢Å"Ö!qè(/_¾„ÿ;wÒÝ —/_Îv\ äùóç³gÏî߿׮]ûõë·téÒ/^0¯J©G—ô’XF2gαl&©µD”h#†††Fÿþý/^\]]ͬ Ú´"iƒ¢õý2¶¥ˆÍVTTôêÕK[[ÛÕÕõ¯¿þ¢—ËØjQSS³iÓ¦vëÖMOOÏÞÞ~Ë–-ÌÕbÍ2¶´´{âˆ%ò¿ÞfÐnÞ¼vóæÍêêjsss??¿Å‹Ó‰ ª¯¯¿zõª‡‡Û´G †ã™ q™ q™ q™ q™ q™ q™ q™ q™ q™ q™ q™ q™ q™ q™ q”UYYYppð!CœœœæÎ›““ÃvDÀ}QQQÆ 9rdTTEQÍ×AérƒÄQV!!!wîÜ‰ŠŠúá‡êêêüüüª««Ù 8.**êèÑ£!!!GŽÙ¶m[óuP:€ÜðZ¼~1ÕÕÕöööÛ·o÷ôô$„”——:tëÖ­ô,@G¨««sqq ùä“O!GŠŠºrå Ÿÿÿ×ü(@žPã(“üüüþýû;88гZZZ¥¥¥lÇÐÙÕÕÕéèèTUU1K‚ƒƒMLLúôé¬ÔׯUUUnnnô¬››[IIIZZšè:(@žTÙ@9ôéÓçØ±cÌì©S§è«üW¶¶¶¦'âããÙ@‰YXXÐ’’¿ÂÂÂåË————‹. Þ¿ÿîÝ» !~~~]ºt c{WÚ¨  €ÇãÑ³ÆÆÆ<¯¸¸XtV•Näß*==í¥„ıu„Ba\\ÜÚµkgΜÉüWk…2Àkâñþ¿#è4ã›o¾ [X[[ûÝwßmÞ¼ùƒ> „¬]»688xÅŠ¢m»J¤®®NSS“ žÏçkhh”••µ¸²,¥“µµ5J'xJY˜²åñãÇ>>>[¶lY¹rå’%KØ€³Ä2EŠ¢x<žØ:+V¬ (êÊ•+¢ SSS+**¼¼¼èÙ÷Þ{¯¨¨èŸþa{‡ÚHGG§¦¦F(Ò³B¡°¶¶VGG§ùš(@>8ÊêŸþ7nœ¹¹ù™3g>ûì3¶Ã€<}ú”Çãõèуž}ã7x<^aa!Ûqµ‘¡¡!EQL‡Å’’Š¢˜–kJ'$Ž2ill ˜2eÊÆõõõÙG”””LŸ>ÝØØØÄÄÄÏϯ¤¤„툠S«©©ÑÒÒmÛíÚµë‹/ØŽ«¬¬¬ôõõ“’’èÙk×®XZZŠ®ƒÒ ä }e’˜˜øìÙ³¾}û2%8!ÄÒÒÒÐÐíÐ:œhaó~f3fÌHOOÿùçŸy<Þœ9s>ÿüóãdz2pM‹}[¤¯¯_UU% éÜQ(VWWëéé±½m¤ªªêããÕ³gϦ¦¦¨¨(UUUBH\\œÁ¨Q£:séò‡ÄQ&=¢(jáÂ…¢ 7mÚ4f̶CëXbÿ°ÅfëêêN:µ}ûvBÈâÅ‹çÍ›WWW×¥K¶å&Ö©Qö!uºwïNQTQQQ÷îÝ !Ïž=£(Ši¹VFõõõ„ooï ÐË}šž@éò„Ä$zeû`—.]&L˜5pà@BHdd¤ªEjjjsæÌ ±²²jjj þâ‹/ÔÔÔØŽ €#8‚Dts¡ôÜ122²oß¾tâH×ô°5tv«V­ª¯¯ÿôÓO !“&M g;"P,uuuÆÆÆùùùZZZô’†††°°°~øA Œ?~Íš5͇AVÍKÒòòrggçI“&M˜0ÁÙÙYì1ÊÕÕ•¢(& „ðx¼õë×?~üøñãÇk×®EÐÙðx<)_zaaá¼yóš?mè‡~ؽ{÷æÍ›cccW­ZÅöN(.$Ž ]éH£(J¬öñôéÓeee111FFFFFF›7o.--Ń€¢%U‹¹ã7ß|Ó£G~øAt!ý´¡uëÖ}ðÁ|ðÁÚµk·oßÎ ºb8Â+Pÿjþ’P(lhhhll¤g¤À---1c†¾¾þ‡~˜‘‘A/ÏÊÊòööÖÓÓëÑ£žà¦¤ê´OèhH¡íF­££3qâÄ[·nݼysâĉººº£F’ϧKoš9sæÕ«WüñÇøøøÚÚZ//¯ÊÊJ¡PøÉ'ŸÔ×ן>}úСC—.]š;w.ÛGÚìƒ}ŠáØÓ†:n޶ÓÕÕýóÏ?—-[6zôh7|øð .èêêÊᣙtî(ö£²²òøñã¿ýöÛ{ï½Gùé§ŸŒ/\¸`aa‘œœ|ëÖ-BÈܹsØÁ¢€Z›ArìiC ‰#¼KKË_~ùEÎ*ú¡Å©'Ož888¸ººÒ³@SS³¨¨¨W¯^³fÍ¢ï'„XXX` neˆqìiC ‰#(½æÿ0úõëwóæMfö矮¬¬tuuµ±±Ùµk!äùóçiiiëÖ­›4iª¸¹Œl±!Bî=m Cá_&p™P(üöÛo§M›dccÃ,ÿðÃß~ûí§OŸÎŸ?Ÿí ÝÐÉ¢¤ûùZĺwï^aaá¼yóž?¾yóæmÛ¶±—Òåá~ÐIp€ÅÍ'Ç3Ó666UUUUUUô«†††lÇ d¸™8ºººJ_ó×Ü펛‰ã¹sçØ¡£ÐrAC È7Ç·ÞzKÒKuuu‘‘‘ÁÁÁlÇØj¢)#:ñ€üq3qd¼|ùrëÖ­¹¹¹Ì’ÒÒÒ¼¼ôùóç|>È!ß}÷]mmíš5kæÌ™súôi@ÐâúÜ(€-oªn®wïÞuuulG¡Ð< Ð*—/_VQQ!„,]ºôÞ½{6lxåuttjjj„B!=+ kkkuttdùP“”””¥K—êëë¿ñÆëÖ­{ñâERRÛ¸‰ã‰ãËÿzòäÉöíÛMMM;´º:§ÄÄÄE‹1-ÎŽŽŽË–-KHHxå )Š*--¥gKJJ(Šb¶Ó*ÀÈÈHÆfn€ÖâxSµ³³³Ø55µõë׳—ÒÀp<²«¯¯ïÚµ«è##£¦¦¦W¾ÑÊÊJ__?))i̘1„k×®È8 D||üöíÛ<Ø­[7BÈ‹/ŠŠŠúôéÃöÁnâxâH?-F”‘‘ª[É"€ŒœœœöíÛ·víZz¶¼¼<::ºùåksªªª>>>QQQ={öljjŠŠŠòññ¡‡cŒ‹‹3005j”¤÷ººº†……͘1CEE%&&ÆÎήmcG¼7G)ý{òòòH³›f^_pp°¯¯¯———P(œ4iÒƒÌÌÌdl⨯¯ „x{{/X°€^~ðàAKKK)‰£@ 8|øðºuë.\¨ªªêîî„ÞÉÐAäñÈcù¿OŸ>#FŒPSSëÐOì¸û17€"+..ž>}z~~¾µµµªªjZZš@ 8pà€©©)Û¡ý×ÄÍ,33SOOÏÐÐ033³Åd|$CÛt†¢ZÔÔÔô矦§§766öîÝû½÷ÞSWWg;¨ÿ×J'$ŽŠ›'˜µµõìÙ³­­­[\¡C‹ÎÎP4€2ê ¥G€ÅÍ>ŽÉÉÉôÓºRSSÙŽ:‹ÔÔÔ°°°§OŸŠ-¿yó&Û¡´n&ŽÌÓ¨ÕÕÕÓÒÒôôôLLL._¾üÇØÚÚúúú² ¼.±ûâQÁŠ 44T]]}ÕªUºººlÇÐ!¸™82:¾cÇŠ¢æÍ›çàà°yóæ²²2æ9° E{ΡXSWñèÑ£¸¸¸°@Gáø8ޱ±±žžžgÏž577ß³gODDÄñãÇÙŽKiÐÏø¦(ŠH1S4®mÓ ˜âããÙ c)bZоrsssrr455oܸÑÔÔäââÒ¡ŸÈ¥‘Қ߆Âù @;ª««‹ŒŒ f;ÿáRé$ Š)€ÅñGBˆ™™ŸÏONNvqq±³³ÓÐÐ`;"e"V·‡â@Š—/_nݺ577—YRZZš——§8‰#ÀkâøÍ1•••_|ñ…§§çôéÓ !Ó¦M ¬ªªb;®6â‰Û‡R"Ø>, éBCCzô葘˜haaÑ£GŒŒŒ˜˜¶ãúÌ´è¹Ã¥iQЦ¹=Ý q|¸¦¦ÆÚÚúܹs„œœœêêj¶ãh7OœœöíÛ' éÙòòòèèhggg¶ãj5+Õ¿7!ªcAA:uêÈ‘#ÇðàÁ{ï½7{öì#F°@»áøÜÂÂB___BHnn®½½ýƒÌÌÌöìÙchhØqÚA^ˆ¦GrK•v8&E{Ž6trõõõUUUzzz™™™ñññúúúãÇWSSc;®ÿÁp<𚸂ÕÕÕ>}úáÇÀÊÊÊÝÝÏïØzÖŽ+š™:?V²F¢`%2RFP4&Løé§ŸD—”——/X°`ß¾}l‡ö?Hà5qvÇšššôôt===ssó±cÇB„BaeeeAAÁÁƒ—-[Æv€mÒPŽ(ˆêêê;vB’““###E_*((xøð!Û´n&Ž÷ïߟ={öóçÏ !ýúõÛ¹sgxxxbbb]]!„Çã)iâ(g ûÈA…ÒØØ˜••EO34>ŸÊv€í†›iÁôéÓËÊÊBBB´µµwîÜyóæM@ðå—_ikk›››wèóc¸Ô$ÚŒ$@º™3gÆÆÆ²…4\*$AIС¸YãxïÞ½¯¿þÚÑÑ‘âææ8jÔ(¶ãR>¸X¤t?¼ØØØ´´4===“Ë—/ÿñǶ¶¶¾¾¾ݯ@n¸Yœ•——[ZZÒÓôèßÖÖÖl¥ÄíyƒÐ0ÏRä¡ Ä:tè£>ºwï^aaá¼yóž?¾yóæmÛ¶±@»áfâHÁ%>€òmmT¢KÆÆÆzzzž={ÖÜÜ|Ïž=Çg;.€vƒì  }»¹¹BnܸáîîN±¶¶.**b;.€vÃÍ>Ž„¸¸8I³ .d;@àšž={&$$èèè\ºtiêÔ©„«W¯³@»áfâhaañ÷ßKš%H[CΣŽ4§,÷ÉΟ?áÂ…Û·o·³³sttܱcGLLÌW_}Åv\íF9ŠcåÂ¥/ÄžsH>‚¼ˆujT–^nnnNNŽƒƒƒ¦¦æ7ššš\\\Øêÿq©t’DY.3”7k¡#(Ú Hd¹M‰¾ÙÌÌL===CCÃÌÌLBˆ‰‰Inn.!DOO~•ä@Ù!q‰ù‰ é#°ÎÛÛ{öìÙÞÞÞ-®ÀùJ>è<8*9w7TØGŠÕ¢Põ Ð %''«ªªBRSSÙŽ c!qTbÝ å–Ï)þÍ1 ›àB'‘œœ,}…êæð:¸™8&%%I_¡ åxccã–-[Ž=ª¥¥5zôèE‹ɳ¢K,1b%UBÅ@‹üýý™éÚÚZ¡PH?íF(B,--Oœ8ÑæË^òÔ××»¸¸\¹rESS“íCœÅÍı#Êñ¨¨¨ãÇGDDB¾þúkuuõùóçË×äߥOô³3wDu#°‹í+!!aýúõáááNNN<ïÎ;+V¬°³³{ËXòGGGWVV²}0€ë(N;wî܈#®\¹RWWW__íÚµ‘#G~ýõ×­ÝNmmíàÁƒ=JÏ9rÄÅÅ¥©©©Å•­¬¬Ú}Gľ/ù|wÍ?Bq~0ç7 Jd̘1.\]råÊ++«/^´mƒ2–<Û¶m³úWuuµ” vDé¤hP&t(Ž?rpË–-!!!®®®êêêjjjÎÎÎaaaÇŽ{ùòe«¶“‘‘QUUE?LŒâææVRR’––&·¡þ- Egåð¡ŠYÅHþûíXþ'??_ ˆ.ÑÒÒÒÖÖÖÑÑiÛe,yüýýÓÓÓ:Äö`AIIÉôéÓMLLüüüJJJØŽ€ã¸ÙTÍh¯r¼  €ÇãÑ³ÆÆÆ<¯¸¸¸Å•322:(ßÛ¬|²:V>€¦\ƒމ‰ùöÛouuu !eeeÑÑÑm>kZUòÈÈÚÚš(ÕAÒûç̘1#==ýçŸæñxsæÌùüóÏÙŽ€ã8ž8¶W9^WW§©©Éçÿ¯‚–Ïçkhh”••µ¸²••U»ÊÍ»ñɧc_ó¥\ÿÈä)<<|Ê”)}ûö%„¤¥¥éëë8p ÍlUÉ##%JÉ«Fl­««;uêÔöíÛ=<<!‹/ž7oÛ!pÇÇö*Çuttjjj„B!]‚ …ÂÚÚÚ67?µÅÒmÔͳUy \LMMãããÏœ9“••Åçó§N:bÄ55µ6oõ’‡]b#¶’– %:™¦§E“lè OÛ«744¤(ª´´ÔÐÐRRRBQÓ~$b=Qó €ÔÕÕÇŒÓ^[S„’G‘uéÒe„ QQQ$„DFFúøøìß¿Ÿí¸”^iié’%K~ûí7Š¢ÜÜÜ6mÚdeeEÉÊÊ HLLÔÐÐ5jÔ¦M› ØäûgêêêC† Y°`Á;ï¼Ó¶«+++}}}fxÈk×®Èÿù³r¾#D‘oŽè ¤äa”‚(22òéÓ§8p`~~~TTÛÁ* z”º_š9sæÕ«WüñÇøøøÚÚZ//¯ÊÊJ¡PøÉ'ŸÔ×ן>}úСC—.]š;w.Û;,àxceeå’%K.^¼HQTzzú´iÓÌÌÌV­Z¥¥¥Õªí¨ªªúøøDEEõìÙ³©©)**ÊÇLJ~È·¡š€ERJž¸¸8ƒQ£F±#›ÊËË'Mš´bÅ BȪU«œÙJ ˆvmÞú_YYyüøñß~ûí½÷Þ#„üôÓOÆÆÆ.\°°°HNN¾uë–ƒƒ!dîܹaaaL? è<8þ}GDDTTT\¾|YEE…²téÒ{÷îmذ¡ › xÿý÷-Zäíí½`Á¶wNN0ð ‹$•<ÔÚÚZ¹î[€ö’––¦§§gbbrùòå?þøÃÖÖÖ××Wqªd”´t’tkà¡C‡æÌ™S\\¬®®N©««344¬¬¬äöÿµ×ÔÚ1:~üñG__ßû÷ïÛØØÐKž?ž––èèè¸}ûv¶wäMQгR__ßµkWÑ%FFFMMMlÇtèС>úèÞ½{………óæÍ{þüùæÍ›·mÛÆv\œ5zôh‰'ÞºuëæÍ›'N¤G^Y¼² »P(üöÛo§M›Äd„?üðí·ß~úô)+ÏÝÖqø€Çã]¸pí Œw=>|øpذa¡¡¡;vìX·nèKIIIÏŸ?÷ññ6lXMM Û;òÆñÄ188øöíÛ^^^B¡pÒ¤IîîîEEEt7j€öU\\L?ðÆîîî„kk뢢"¶ãâ2KKË_~ùåùóçEEEÇŽëÓ§Û)&wl±ç(!äúõëööö–––3gΤ¦§§37ø®[·®¢¢¢Cû}bâø}ÁÝ»w?yòäéÓ§>|(fÍšåîî®8ý€Kzöì™ ££séÒ¥©S§B®^½jllÌv\â¤yò„þúòåK¡P(Ö :Žß³ÿþaƉ^ƒÖÔÔ„††nܸ±ã>TI»ŸÀk:wîÜÂ… …B¡ÝáÇ¿û˜˜¯¾úÊÏÏíÐþGIK§V=7KþÙRR’Ô©S§¼½½úé'}}}faÿþýù|¾Íøñãýýý«««W¬XQXXxûömúÎ$è<8~‚Y[[kjj®^½ÚÛÛ›^RQQáèèØ¡E§’Íðúrsssrr455oܸÑÔÔäââÂvPÿOIK'$ŽAÒŠŒŒ\²d‰ØÂƒNž<ùÚµkAAAÉÉÉZZZžžžëׯ733c{?@Þ8~‚Y[[¯X±bÓ¦MŸ}öÙ²eËTUU‘8@ûzò䉊ŠJ=¿Œ’–NH;´¢s¯ÏÛÛûÈ‘#ýõ—¯¯ï³gÏØ¸fäÈ‘žžžNNN?ýôÛ±€"ª««ÓÑÑ©ªªb–¬[·Ž'Ï%Âñ›ch–––ÇŽ[¶lÙ¸qãÂÃÃÙGÉà‘ƒÒ:tˆÏç[XXtëÖíX@á._¾¼¼¼\tavvö˜1cæÍ›GÏâ, D:EâHÛ¶mûî»ï¾üòK¶cQ&bmhÚhÎÞÞ^ʫϟ?G}‡I¿´þæ›oBCC›¿+;;ûÝwߥ  \8ÞT½wï^mmmzšÇã}ñű±±¾¾¾lÇôóÏ?‹Î655íٳɇÑ×ÒŒæk¯X±‚¢¨+W®ˆ-ÏÎÎîÙ³gMMXM$€âãf☙™Y\\L144ÌÎÎÎaddäããÃv€Êõ‹­²nݺýû÷ÓÓ7nÜøè£6oÞüÅ_°tˆ6—B¡ðÉ“'QQQÚÚÚ:::öööwîÜa{odÅͦjooïÙ³g2£ðˆQÆû åOʱÐÜž={fΜYZZúäÉ““'OŽ=:66¶{÷îlÇ«µådAAŸÏwww?qâDuuõ—_~éííýàÁ¶wàÕ¸™8&''«ªªBRSSÙŽEéÉòTS „ 8ðÀ~~~EíÛ·oèСlG¨Í—Ö¦¦¦¢xÞ»w¯‘‘Ñùóç?þøc¶÷ àÕ¸ÙT­©©Iߤ6eÊõÿª­­5kÛ*¦XDÕ#@‹^ŠèÞ½ûÖ­[)Šº{÷.³í¡£¼ò¡Ï²ÐÑÑéÞ½{aa!Û{ nÖ8VWWïØ±ƒ’œœ)úRAAÁÇÙP90å RF)œ›/ܸq#óhSôá°6Ô;9rdõêÕ/^ÔÓÓ#„ôë×í] 7ÇÆÆÆ¬¬,zš™ ñùüGEÃt“PðK—sçα(//¯¹sçN:500PUUuùòåC† qwwg;.™p3qìÖ­Û¶mÛ!3gΤ'  ps °Hô·§à¿Ã·ÞzKtöÙ³gYYYMMM½{÷îÑ£ÛÑÂÑÑÑILL ?~¼ššÚûï¿¿aÃô&—…²\Lr›BÇJJIŸ+ ó?[Áÿy—4ÿ±)Åϯ¶¶6$$ääÉ“ôC«›ššÞÿýˆˆMMM¶Cû%-üYÕJñãä@ØJt1Émܬqd¤¦¦†……=}úTlùÍ›7ÙMi0½¿q–H·iÓ¦ÔÔÔÐÏ’INN Ù´iÓŠ+Ø €SÐ Æ"Ž÷qãÆ©««OŸ>]WWWt¹‹‹KÇ}¨’^Ó(%­q|çw¾ùæ777fÉõë×—-[vñâE¶Cû%-P㈰•´Là$Ž×8>zô(..nÀ€l¢Ä¤?‰@”å?Duuµ@ ]"ª««ÙŽ €;”¥4à0nŽãÈ022gZë•Obèô¡,ÿ'¶nÝZQQAÏVUU}ûí·ŽŽŽlÇ ôðHq(M‰Ü6ׯ__³fͼyólmm»téÂ,744ì¸UÒÆ ‰ýÏV¨áèy Ц  `Ê”)¥¥¥666</--MWW÷Ào¼ñÛ¡ý’–NhªFØLÌÌ´ÒÏÊ÷»i•~ýú …ÂæûØ¡E§’ÍÍ)rŸÑ{½ JP gΜyôè!¤wïÞï½÷ý+¡¤¥G„­ìas Çû8ÆÇdz‚SØÛÖD£Bû(555'''zG…Ê^ÇGz`ÞüüüÇ»¸¸ÔÖÖjhh°”²RØüLa\èlG€×Äñ›c*++¿øâ OOÏéÓ§B¦M›XUUÅv\JCôúþ¶#P\Ì8Ž©©©©©©?þøãƒ6mÚÄv\í†ã‰cDDDEEÅåË—UTT!K—.½wïÞ† ØŽK))l#ª¹Š¹ha;Y?>44ÔÉÉIEEEEEÅÁÁaåÊ•çÏŸg;.h#¥+…ä€ã‰cbbâ¢E‹ŒŒŒèYGGÇeË–%$$°—ÒPÌáx”t¬hÑ›‚üð^ ã8BÛˆhlÇÿOô? ¾ÇÇúúú®]»Š.122jjjb;.å È9™h:Ëv,ÐþÄ®Xˆ’äŽÇÚ@1¯ÏA þ×08~sŒ““Ó¾}ûÖ®]KÏ–——GGG;;;³´‚²ü7]±bÅ”)SÜÝÝÅÆqd;.P\Š|}ÞÉá«‘„ãÇ¥°°Ð××—’››kooÿàÁ33³={ö`p)òàÀaŠ<†¨tDZ#pxGêÊrN±¶èhÁbÇk»wï~òäÉÓ§O?|øP Ìš5ËÝÝ)d„sX§Õ©©©***ýúõóöö.,,üᇴ´´*kE†VÑ` 7I¸™8&%%‰Îš˜˜˜˜˜ÐÓׯ_'„¸¸¸°£rÀÓY€ÍÛ¦ùçWSS³téÒsçÎ…‡‡÷ë×Âãñ®^½ºÿþáÇoݺÃÇ‚$bÙ 2…ÂDø'(Š›‰£¿¿?3][[+ éû¡„B!!ÄÒÒòĉlǨLp¶€ü1E¶âÿü¾ÿþûÛ·oÁº£fXX^^>eÊ”‹/–——BÊËËÿúë¯É“'—••-Y²ä•[ÈÈȨªªrss£gÝÜÜJJJÒÒÒd\'77×ÔÔ´¶¶í!ÐÑ”²ECv¦¦¦ñññgΜÉÊÊâóùS§N1b„FV³¶¶&„ S|ÇÉÎÎf¦³²²x<^VVÛAAûëÕ«Û!¼šÁÞ½{׬YãïïßÔÔ¤®®^__ÏãñÞ~ûíèèhf,0) x<ž‘‘=kllÌãñŠ‹‹eYG(æççïÙ³'00P(öë×oõêÕýû÷—ôYté¤PÀc°X%ÂñÄ‘¢®®>fÌ9¨BÊœÔ<ŸPŠ ¸ªG[·n}öìÙýû÷‹‹‹õõõmllLMMe|{]]¦¦&ól>Ÿ¯¡¡QVV&Ë:ÏŸ?çóùC† ùî»ïjkk׬Y3gΜӧO‹uïf(`é„O”ÇÇædÐnÞ¼)ý§NZ´h=}âÄ KKK¶w…(ÑxÈr†9  DŸ5Ð*:::555B¡Î …Bamm­Ø=|’Ö111IIIaV[·nÝСC“’’¼¼¼Ø>­Ãqèà È8ž8nÙ²…™®««»ÿþž={üüü^ùF//¯[·nÑÓZZZlïÇÿà±ÑÌqÀ ˜À%†††E•––BJJJ(ŠbZ¥e_‡"ŒŒŒÄš¹ÓTÝ™K6¥ÀñÄQìÑ‚ÖÖÖ‹/öóóÓÔÔ”v\TU%5ô°‚Å”Iѧ4;øOÊÎÊÊJ__?))‰îWsíÚ5±†IëÄÇÇoß¾ýàÁƒÝºu#„¼xñ¢¨¨¨OŸ>lïSá\Pp¿«º¹Þ½{75$#Ca¾Áà ìTUU}||¢¢¢RSS“““£¢¢|||èáãââèÛì$­ãêêúìÙ³   7nܾ}; ÀÎÎNR/€×ÄñG±'Ä”——oß¾ÝÔÔTzu£R„ÎãÈÏ:N@@@}}}@@!ÄÛÛ›y¼õÁƒ---G%i@pøðáuëÖ-\¸PUUÕÝÝ=((§*°HÛ© q¼xB”ššÚúõë?øàƒýÐŽ¸oQôA)òI"[üÖóW‚¦j€¶ê Ò©½H:—[uŽË¿@h—OTÒ°›o“ˆä‹ô8PJã5ŽçÎ[bdd¤tÕ4ÑÆbùüˆ›Ws*Èù£õ¯ÐœhÉŒ²š“8ÞÇqéÒ¥oýWCCôiÓØŽ«-”¢»¡Ü0¥€Üp³Æ±ººzÇŽ„äääÈÈHÑ— >|Èv€­&–É­»¡"|£PÁtròl ÅÇùKúÎÜ“›‰ccc#ó:±'ÑñùüÐÐP¶T&ð¬Ù‰u¿&(4Ú2f'¢)#WÓÇΰRp3qìÖ­Û¶mÛ!3gΤ' ƒ0ÿ81öB{‘Ã]&AôúAYbn­9¹§’p¼cll,3ÝÔÔÄv8m'V£hEÐü_&rÇöÂJ÷¤vŒ¼SåR gÇœœœ˜˜˜ÌÌLBHÝÿµwïQQœçÀß]PÙ"¢ÜêÑ´Rêî¥h@HQ8AP¥´rIÔTO<"¡€Q„jõx²Á(i­£ohŽ/‰ÇzE,Õ#¥- ¹Èe…ÝíÓîoËmXvw.|?Í; 3Ï;ûòîÃ;óÎ(ñññ®®®^^^'Nœ`:4=éL1Ùߤ@ ÓçØE;¡á÷8G…\ðÿ™ò¸LWü¼TýÏþsåÊ•NNNÔó:týúõõë×[ZZ~úé§S§N `:F}˜¾;fçãx`Œ3ê¤=VÝY8š^w,tàýëhì#ê\›æåY?ǃìß¿Ÿ¢V«óòò>üðCê- ½½½_}õGGƒ0R:ƒŽ¦7aÊžœÀà‘Œ…»ñLSGM›çýù?/U—––†‡‡SË?njj ¢Šnnn:ó¬`447ÏpýK”©Ÿõ§yd/1Dv2.ªš¸ŽühðúágâøêÕ+333jùîÝ»?ÿùÏ5?íììd:@nàÖíØ0Öh¦óµ§2lv¡ᱱpk&wñ3qœ1cFaa!µ|õêÕwÞyGó£’’’Ÿþô§LÈ%&¾0"Æ{ç2×õŸºÄ Ú¯Iö¿:â{Êøycdddzzº@ ¨®®þûßÿ¾~ýzBˆJ¥*,,<|øðG}Ät€œ‡ú iòÃæCýç=hQ{3¦OÀÈjÄ­˜¬Âñó ŽÜÂÛı½½=77·££#::Ú××—õêÕˆˆˆ>ø€é9ÀFý‡vÀ; 9==™»—òéŸgîÖ‘‹¸ÔúGééÓ§öööVVVÆ>T*-//gºººŒÚ;dÇ€{ÑzƒduÃfŠŸò<Òº~çFM ò!jfÖn¼ê˜þˆ,ÇÏÇ9991pؘÍLI;YÄ8" ¡Ä`ô>n[d3~Ϊ0ŽNOæ4¤Œ¬…G€a` €‚G€á!e H€&$Ž\‚wñƒ8‚( kkkí—€ïÛ·Oûe£öööLÇÀyš·êá‘×ÀLŽáÓß=ì‹¶êëë÷»ßµ··k¯¬ªªZ¶lYLL U7n#§ `\œï¢‰vØwñéw6tŽblšƒrëSË8r†vg²§ˆ ûÈþÝ»wïØ±£ÿ/VUUùùù-^¼˜Ù“07”0Î6ÁÎMsN þ0\ªæ4}8:ÆÛ·oW«Õ·oßÖY_UUåèèØÝÝ­3 ÀÚýW.ûj¿GÛdÇ2¯®| €Ä‘¸õ¯˜J¥zöì™\.Ÿ8q¢µµµ››Ûƒ˜ ࿸գ° G”ÞÿÿÕÕÕ …BŸúúúêêê3f·µµ1]!BL;tg¼Èû_\6Èlk#íé’¦9" îqäƒßMŸ·MŸ>½»»[SüòË/ííí¯]»ö«_ýÊôñðÉ€_:7 ’‘Ï5ÑÙ­Á§Ýô¿Ò¨GãAâÈ:ã¦ùÓ¤Œ£9¢µµõÔ©SëëëMqšÀ˜¸8 y@:ƒŽœ®‘¡nÔ>'ÆËMpD0*\ªæµÓ—þö¹¹¹sæÌyùò%Uljjª««›5k–)cƒÓ(âÁåEª[3}ÊfšsbŒØfŒzD0$Ž`xµµµ|ðÁ_ÿú×Û·o¯X±ÂÓÓÓÇLJé¸@:Ó1–…Øù‰ ©ð G0u.ÕðKtŒ¿wN眠ý‘që³£¶uêÈtàl‡Äq`ÅÅÅÔ²¥¥%!äÑ£Gk×®õóóûãÿhccÃt€„bgg§V«[ZZììì!ÍÍÍjµZsåZoÆËtf*˜ðT1l¤ïgÍGÆ¡°Gz¶¹XG¦`rÌÀÌÍÍ­þG(öõõÅÆÆ®^½:==Y#°‡D"±±±),,¤Š÷îݳµµ¥.’°–fú*Ó0Vw¦£@Øü©£éaÄ‘–;wî4448;;kzgBˆX,¦þÅ`й¹ydd¤\.wttT*•r¹<22ÒÜ};:Z*++Õju\\œöÊŒŒŒeË–1Œu±±±¯_¿Ž%„oÚ´‰éˆ€·¸t£+0÷8-H€$Ž@ G ‰#ЂÄQO}}}r¹ÜËËËßß_.—19ýõë×îîîÝÝÝœˆ­­­-99ÙÓÓÓÃÃ#::ºººšµ¡jÜ»wïÍ7ß4êeœùùùnnnQQQõõõ쌳µµ5))I&“yyymÛ¶­µµÕxq궉[&ÏÐo\Ô¿1󩾃µ|>Õ‘òý÷ßGEEyxxÌŸ?_»ÿáY5yB zIKK“Édׯ_¿~ýú;ï¼sðàÁ7kllLNN–H$]]]œˆ-&&fñâÅ·nÝ¢^±èëëÛÙÙÉÎP)ííí¾¾¾Æ>ã‰óÔ©S...çλuëVHHÈÊ•+Ùç† /^\TTTTT´xñâèèhãÅ©GØ&n™,**òóó‹¥~ħjòG}ôôô¼õÖ[çÏŸ§Š¹¹¹2™L©Têl–••%ù“%Ž£‰­³³S*•^»v*¶µµ9;;kЬ UcË–-K—.5êMœJ¥ráÂ…‡¦ŠEEE‰¤¶¶–mq* ggç³gÏRÅ3gÎ8;;+ #Ò‘†mâ–É34 ؘùTßÁZ>Ÿê¨V«+**$Iii)Uüâ‹/æÌ™£T*yVMÞÀ¥j}TTTtvvz{{SEooïæææ²²2Í6nÜX^^~úôi®Äöâŋٳg»»»SEKKK ‹––†J¹zõjqqqBBkOiuuu}}}PPUôôô,//Ÿ6mÛâ$„… &PËB¡‰::a›¸eò ͆ÁE6f>Õw°–ϧ:RÂÃÃß|óMjù'?ù õÎLþU“ðÊA}ÔÕÕ {{{ªèàà ššš˜Žk´±Íœ9ó믿Ö ºººÜÜÜX*!¤©©içÎPù®—ÑÄY]]mffVRRýâÅ‹¹sçnß¾ÝÑÑ‘mqŽ?>((èØ±cTß½téÒñãÇõÄÒÛÄ-“gØÜ_¡¾C¬å?yò„7u$„ˆÅâÝ»wBZZZž>}ú§?ý)88X(òé£äŒ8êC¡PˆD"ÍŒP(´°°hkkc:.ƒÅ¦R©¾úê«­[·®[·ÎÉɉ¡nß¾ý—¿ü¥‡‡‡‘Â3Hœ*•*++kË–-ÙÙÙfffk×®5Ò<žQžÏ¤¤¤ºººåË—/_¾ü‡~ضm›±O¬a›¦eò ›û+Ô—&–ÏË:B¢££W®\YWW·jÕ*ÂÓ’0â¨kkëîîn•JE5h•JÕÓÓcmmÍt\†‰­¦¦æã?®ªªÚµkWXX;CÍËËûþûï8`ܳ9ê8E"‘Z­NMMuuu%„dddxyyݹsgÑ¢E¬ŠóÕ«WaaaË–-Û¸q#!$+++,,,??âĉì9½&k™<Ãæþ õ¥£Ëç_)gÏž}ùòåþð‡ÈÈÈÛ·oóµš\‡G}ØÙÙ©ÕjÍ-VÍÍÍjµZ3œÎéØ=z:cÆŒ+W®û»y4¡–””<~üø¿ø…T*]½z5!dîܹ{÷îe[œ¶¶¶„±XL'Mšdooo¤'òŒ&Λ7ovtt$''ÛØØØØØ¤¤¤´¶¶ÞºuËqê¶)[&ϰ¹¿B}‡5`ËçY«ªª>|H-O™2eóæÍ<àY5y‰£>$‰Maa!U¼wïž­­­&9ànl}}}±±±«W¯NOO·±±as¨}ôÑåÿÙ¿?!$///**ŠmqΚ5kâĉ¥¥¥T±¥¥¥¡¡ÁH÷8Ž&N•JÕ××§T*©b_____ŸJ¥2Fœz„mâ–É3lî¯Pß¡ ÖòùTGBȃâââ4N{{»J¥‰D<«&oàRµ>ÌÍÍ###år¹£££R©”Ëå‘‘‘Ô,°œœ[[Û%K–p1¶;wî4448;;kþP !b±ØÎÎŽm¡ÚÙÙi¢jll$„899‰D"¶Å9a„+V¤¤¤ìرÃÊÊ*##C*•Êd2¶Å¹páB++«„„„¨¨(µZ}øðáI“&-X°Àq궉[&Ï q†y‰Oõ¢å󦎄__ß}ûöíÚµëý÷ßïîî>pà€X,vqqáÓGÉ'øôûúõëØØXBHppð¦M›¨õ'Ož‹Å &Ž£‰­²²R­VÇÅÅi¯ÌÈÈX¶lÛB5±ÑĹuëVssó]»vuttÌŸ?ÿÓO?533c[œ“&M:qâDzzúºuëÁ¼yóNœ81iÒ$–œ^Ó·Lžì óoê;DËçM !¶¶¶GŽIOOï½÷D"‘L&KMM7náÑGÉ'c?Êø÷8-H€$Ž@ G ‰#ЂÄhAâ´ qZ8-H€$ŽÀv`: súúú>ÿüó÷Þ{ÏÝÝ=00póæÍUUUÔž={&•J[[[™ŽQkÞ@â «­­-,,,''Çßß?++kÆ mmm¡¡¡W®\a:4&™3ëÈåòÖÖÖo¾ùÆÎÎŽZ’––¶cÇ™LÆttŒÁˆ#pU}}}ll¬L&óññINN~õê!$:::!!A³Í_|áëë«R©ÜøÙ³g³fÍzúôé¯ýëÌÌLBÈýû÷W¬XáêêúöÛoÇÆÆj.÷444lذÁÃÃ#44ô›o¾‘J¥/^¼,àºæææsçÎ%$$h²FJll¬¹¹ùéÓ§©biiixx¸»»{ddä?þñjå·ß~2gÎ???Í–¢º ¢¢"???WW×ÐÐPj':—› =<<4ÛÿùÏ–Édîî‰›6mš7o^@@ÀÝ»w5{00šÝ ÀÐ8')ŠU«V‰D¢£G~òÉ'555›7o&„Þ¸q£··—ÚìÒ¥K!!!½½½nLQ«ÕIIIþþþK—.}ýúuTT”T*ÍÉÉIKK+))9tè!D©Tþæ7¿ÇŽ‹‰‰IOO:àº'Ož¨Tªþ#‹"‘ÈÍÍ­¢¢‚*¦¤¤¬Y³&;;{êÔ©«W¯njjzþüy\\•2FDDìܹ³¬¬lˆ©Tª={ö¤¦¦æääŒ?þ÷¿ÿýÐ)•ÊÓ§Oùå—{÷î½téR@@À¢E‹NžñÀjv[²dIff¦ÎÊüü|???¥RIøá©TZ[[ÛÑÑáââróæMµZýüùs‰DRYY9ØÆ555‰$//ZßÒÒrüøñ®®.ª¸sçΨ¨(µZ}åÊ77·W¯^QëÏž=+‘HjkkÛ-Ó' Fëüùó³gÏðG{÷î £zsçÎQ+{{{}}}?ÿüó[·nI¥ÒçÏŸSë¯]»V__?ØQ¨\¾|™*Ì›7O³þåË—Ôú»wïj¯øð!µ>22211‘Z¾xñâܹs5ÛôŒf70,ÜãœôäÉ“çÏŸ»¸¸hÖ¨Õêšš™Læííýí·ß.X°àÒ¥K®®®NNNyyyn<}útBÈ[o½E­œ2eÊòåË¿ûî»òòò²²²¢¢¢ùóçB***¤R©¥¥%µ™fûÁb˜6mÓ§Feúôé½½½---666:?ª¯¯Ÿ:u*µüöÛoS æææ•••kÖ¬quu \¸p¡§§g@@Àüã¡¥éC&OžL'¶7ÞxƒZ°¶¶Ö^ÖÞ¦`tºA€a!qN²²²rss;uêTÿíÛ·oçΗ/_ bãgÏžB&NœH?~¼råJggg‰DòôéSBˆR©šßÒ,pÚÌ™3ÁÝ»wƒƒƒµ×+ЇFFFöÿ¡Phnn.‰Îœ9S\\|óæÍÜÜÜŒŒŒ¬¬¬  q¬ & ŒB¡ìGÚ]Ó`¨ÀhvƒÃÂ=ŽÀI‰äßÿþw{{;U,..Žˆˆèéé!„¼ûî»íííùË_ÊÊÊ‚‚‚†ÞXÛåË—§L™rüøñU«VyxxtwwSëgΜY^^ÞÕÕE=z4l Àivvvaaar¹¼¥¥E{ýgŸ}ÖÓÓóþûïSÅââbjA©Tþío‹Å÷ïß?|ø°§§çæÍ›/\¸àîî~áÂýbÐô-ÿú׿Fú»ýC†‚Gà€ÆÆFíÌE"‘Ïo¼ßØØ˜––6{öl Bˆ¥¥å‚ öìÙããã3eÊBÈk³±±ihh¸ÿ¾££ã7òóó%‰B¡Ëå[·n‰‰ihhÈÎÎ&„š».JLL,))Y¾|ùúõë/\¸PXX¸ÿþÉ“'SXFF†••Õ´iÓ²³³;::V¬XQZZš™™immíååU^^^RRGÉÉɱµµ]²d CÛÛÛ7îСC7n¬¬¬ù$99ùøñã;vì .doÛ¶íÃ?œ4iÍÝMž<ùüùóGŽ)((ÈÌÌtpppqqÉÏÏÿÙÏ~Fm ‰>ûì³ÚÚZ—Ó§O[YYÉd²¤¤¤£G¦¦¦:88¬Y³fÕªU„“'OŠÅbš‰£H$JKK“ËåK–,™0aBTTÔˆrÇ#„ ¿ƒ¨Õj¦c`µúúú7n„…… …BBÈõëד““ ™Ž xŽºaF$1ÀÿÁˆ#À0ÆŸššÚÚÚÑÔÔtðàAûåŒ)#°F†WXX˜‘‘QYYéàà°pᤤ$ssüÓcG ãZ8-H€$Ž@ G ‰#ЂÄhAâ´ qZ8-H€$Ž@ G ‰#ЂÄhAâ´ qZ8-H€$Ž@ G ‰#Ðò³¶$`Î…L–IEND®B`‚statistics-release-1.6.3/docs/assets/fitlm_201.png000066400000000000000000001273551456127120000220010ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A€IDATxÚìÝy@MéÿðçÞ¥}G„Û ­R”Ð0Ã,d‹,I Ù³dËÚÂeš±62˜ñ±$3HÊ0)K› -¤¢´«{~œ™û»s[ÜêÖ©Óûõ×Yž{Îç9¹Ï}žsžÃ¡(Š|—é c@âAâAâAâAâAâAâAâAâAâAâAâAâAâAâAâAâAâAâAâAâAâAâAâAâAâAâAâAâAâAâAâAâAâAâAâAâLyyùÖ­[MMM•••µ´´ÆŒóÛo¿1ŒŠŠ ‡ÃyõêUÝ]ýúõãp8§OŸnÕ srr***èU999‡SVV&•ƒÓUêѣǴiÓrrr!ÅÅÅGNN®©B‡†Ä:77·µk×>yòÄÈÈèýû÷ÑÑÑ'Nlíü¬Ýš={¶Á¯¿þJ¯0ÀÔԔ˕æÿ簾¦yyy§NúòË/)Šjv„С!q)£ž~þùçÂ-ßÿ=‡Ã±²²jãHÿ5üþýû­[·>\MMmÀ€³gÏÎÈÈhäh’—Çt€V•ŸŸîÜ9YYÙÄÄĤ¤¤¢¢¢Í›7 ‚°°°º…+++™Ž·­%$$$%%)**Jñ˜»wïNJJzñâÅÏ?ÿL¹sçÎÓ§O™®(0„*úŸÖüAo¡[sKKË6ŽäíÛ·„YYÙº»ŠŠŠ„‰¬ºº:‡Ã!„¨¨¨\¸p¡ÞC5©<}„?ÐéO :T 4’BHDDD_4€ö/!!þ&Ð[Š‹‹ÃÂÂÂÃÃ)‘/þ¥K—LMMeddsrrDw%%%ÙÛÛ:tˆ¢¨ŠŠŠeË–õéÓGEEÅÑÑñæÍ›Â=zôè“O>ÑÒÒRRR277?{ö,½½ººú›o¾éÞ½{ß¾};¦¬¬LyùòeÝPéÖ Þ/òû÷ï·lÙbjjª¤¤4hРÀÀÀÚÚZzÇSVV¶±±¹råJ#ñÐmmË–-EÉÊÊBJKK9‹ðRüþûïæææÊÊÊNNN¬BMM¼¼ÿüómÛ¶]½zµ²²’ÞKË8޲²²µµµ¦¦&!ÄÊÊJ¸‹Ëåöë×rðàAŠ¢&MšD·W“&MRTTTTT|øð!EQ555½zõ"„ <ØÉÉIFFFVVöéÓ§E¹»»Ó™«•••¬¬,ýK²©‰ãìÙ³ !ZZZãÆSWW'„øøøÐ»è>úè#YYY99¹{÷î5Ïõë×LY´hQRRõßı¡³¯R×®] @ƒŒ;öƒUÞKš-Ö 5t®ºB‡†Ä¤ŒneºwïN9vìU'qüà/`ag½EAA!<<¼o߾ݺu[¹råÓ§OGŽ©¬¬lff&ì¨÷‡xCYZ~~¾ŒŒ !D´k¡¶¶–þ¿dçÎ-,è­-99yâĉJJJÂoŠŠŠÊ÷ßOýûÅ'„lÛ¶¢¨ÜÜÜ.]ºBnß¾-ܵ`Á‚ŒŒŒÊÊʤ¤$BHß¾}é¯^PP!dÖ¬YEeee=zÚ´iôíìì!gÏžÍÌÌär¹²²²Ïž=£(jûöíô1›”8¦¤¤Ð1¿xñ‚¢(: ™¼¼¼‡Òé×Û·o)ŠÚ°aƒ¬¬ìÒ¥KЇªó;S˜86rá¥øå—_(Šºrå ˆ7TCCÃÁƒÓ™+!ÄÅÅ…úoÛȹ(üf$Ž et+¢¬¬¬¯¯_VV&–86þ X´3@Ø´ÉÉÉ 0€^îÒ¥‹¾¾¾¶¶6!¤gÏžTà %Ž¿ÿþ;!¤[·nbÛýüü!Âv¹Ùåñ mTWWß»w/44tĈô7ëÙ³gÂvC8ð:zôhBHXX˜°›-??ŸÞ^÷®ÁƒÓ{‹‹‹øá‡ùóç›››Ó»"""è1„#FÐeÒÓÓ…‰#ý¦Ñ)]C‰cDD!dÒ¤IÂ-tÉ«W¯Ò»ÆW·¾õÆC5œ86rúRÈÈÈÐãBEEE †‘h:::nnnEEEÔÇFÎE!qd<­¢[·n«V­ÊÉÉ ÝžššzôèQ•„„„K—.ݼy“²oß¾—/_ÒÁˆ#222D›à«W¯>|øÐÍÍ2pàÀgÏž=|øËå>þ¼¸¸8;;»oß¾Ó¦Mûû￯]»6tèКšš¿ÿþ»¡Ø²²²!ôP—(º—”ÞÛ’ò´•+W2ÄÈÈhüøñ„±#4r)é›#‡njjÊô }yøðáŽ;ÂÃÃåääÌÍÍ.\¥««[SSóøñca1ácÅô8,ÝïH‘‘‘ÑÑÑ.B,--OŠX·n!¤¤¤dðàÁ .”““[±b…³³3ý‘’’уkiiÑCÕô‰þÕøCÍEB„$„èêêBjjjjjj!µµµbi(žæ…^¥à­NC„9_~~þ±cÇ444šz.` $ŽÐZ–.]úÑGíØ±#77W¸‘ÎçFM'F¦¦¦&&&µµµôè !„ÃálÞ¼ÙÈÈH´•§»zöìIqtt”‘‘ÑÓÓ£Çkjj Ï;7zôh ‹˜˜ÒhkehhHª¨¨¨¼¼üÑ£Gô^wwwá3ÑçÎû`ùzÏòìÙ³„„„¬¬,úúñãÇÅ |ðR@½Þ¿¿jÕª }úÐe8Ά ìììLMM+++'Mš$¼ÝEÔ€&L˜™™éàà0kÖ¬qãÆíÙ³ç£>"ÿ65ÑÑÑÎÎÎ}ô=*BQ”©©iMMÍ Aƒìíí/^,ú-®=þ túôi“3fÐmׄ lllª««½¼¼zôè1xðàqãÆ•——4h̘1[¶l©©©™6mZCñBè{uöìÙ-zÞFÎ"õ?Jãçj(Bè˜+¶½§G g±¡ïq|òä !DUU577—¢¨ÔÔTyyy.—›““S÷–D±-k×®%„¬ZµŠ^UPP „üøãäßçß¿O·S<¼páBBÇKLL¤(ÊßߟRSS“¾!½%åyŽR4¤F.õï-A'Oždúï ÐUTTìÞ½{РAªªªæææ{÷~Ë~ýõ×~ýúéèèÌ›7¯¬¬Œjà¹ÒÒR///CCC‡ßÿÞ^^^N÷¢}ôÑGëÖ­ûúë¯ ! , (êÁƒô@‘‘QXXاã³oß>Š¢ª««7nÜØ¿ÿ®]»80((H8Ï»wï¼½½ŒŒ”••íììþüóÏÆãILLìÓ§¢¢â·ß~Ký÷©ê†Î"v)i-%lЯ‘X„С!q)keè[÷ˆÈÃ13fÌ „èêêŽ?žî‡óöö¦êk¹$Lúé'ºØ˜1cºuëF߬sêÔ©FšÂÂÂBKKK:0mmmú>'ºEÎÊÊjayÉÛÙ†.EQ^^^„+++úÖrä“^}PUUÕõë×ëÝU^^ׯUk$€6ƒ¡jh]ööö_~ù¥è–~øaãÆÚÚÚ×®]300 nÉ)\\\\SS“œœ<þ|BÈüÑÈG455oß¾½yóf;;»ÊÊJ--­‰'nÛ¶íåË—‡jyy 5r)<<<úôéóðáÃäääÖúÛ@£äååëÝ¥¨¨hmmÝ~âh3ª)¯›hŸª««oß¾Ýò&õÞ½{C† ‘ü¯M-­­¸¸X]]]VV–~\¤ ‰#H=% $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž’zñâÅ‚ ¬¬¬ìììV¯^ýöí[¦# „âââ5kÖX[[[YY-\¸0++‹éˆ€µ8E1C >ÿüsMMMooïêêê5kÖ 0`Ïž=LÇ@¼¼¼ÒÓÓ×®]«ªª’™™yñâÅ®]»2°,Ót OŸ>}òäÉÏ?ÿ<`ÀBÈÔ©S¿ýö[@Àå¢Ë˜T^^jooO :tè;wœœœ˜ X‰£¤&OžlbbB/ôÑG²²¸tð¹¹¹·oß~øðaAA¼¼¼®®®………ªªªO1`À zUIIIAA¡¨¨ˆéª;a¨ºiŠŠŠ222¶oßnjjêïï_o>ŸO/DFF2¯tdgg0*ÕéjD322b:„æxöìÙž={nݺ5pàÀ¾}ûª««×ÔÔ>yò$33súôésæÌQQQ‘úyûí·åË—_ºt©wïÞu÷r8œ†>Xïÿ(ò(/yùNÝfM³pá„„mmííÛ·7R,%%…éH¥¬ƒþçÝÙ*žeff2Bs¬[·.--mÆŒ»ví’‘‘Û[RRrúôééÓ§Ïš5ë‹/¾ÖIAxxø¶mÛæÍ›WoÖH166nRëÔÔÿQå;sùN‰cÓœ>}úÍ›7puu½uë–‚‚Ó@»3iÒ$ssó†öªªªÎŸ?ßÝÝýñãÇÒ:ã³gÏ–/_ž™™¹qãÆ¯¾úŠé ¬…g;$’™™ù÷ßÓËË–-+++»ÿ>Óq@{ÔHÖ($++kff&•Ó=xð`Ò¤I†††W®\AÖ­ ‰£Dîß¿ïãã#èÕ’’@ ¨¨Èt\ÐÙÕÔÔx{{Ïœ9s×®]šššL‡,‡¡j‰8::nß¾}ãÆÓ¦M«¨¨Ø³gÇ355e:.èìbbb^½zÕ¯_¿ØØXáF§­­ÍthÀBH%¢¥¥õÝwßíÚµkêÔ©ŠŠŠ¶¶¶Û¶m“““c:.èìž>}JQ”èÆÝ»w?žéЀ…8JjðàÁáááLGðsæÌ™3gÓQ@gÄ@Êâãã%)¦®®nllÌt°M€Ä@Ê~ùåIŠ#q€Ž‰#€”mÛ¶éZ¦ã‰ q‰ q‰ q‰ qhEÉÉɯ^½"„ܼysŊǾ¼ ÃAâÐZN:õÙgŸ=zôèåË—‹-zýúõž={öïßÏt\̈́Ġµ„……ùúú:99EEE9r$ àüùóLÇÐLHZKAA½½=!$>>ÞÁÁÂçóóóó™Ž  ™8´–^½zEGGçääܸqcĈ„Û·oëêê2@3!qh-^^^5j”‰‰‰¥¥å6nÜ8cÆ ¦ãh&¼r µŒ3&***++Ë‚ËåZXX=zÔÖ֖鸚 ‰#€”—LLLÊÊÊÊÊÊz÷îMïÕÖÖf:F€æ@â evvvHIIa:F€æ@â eW¯^e:€VÄ@ÊzöìÙЮªªªÀÀÀ5kÖ0#@s qh-o߾ݷo_vv¶pKQQQNNS‰cjj*‡Ã©»¢(zÞ+¶Šò(òõ–ïœ8´–õë×'&&Ž9òìÙ³3gά¨¨¸sçÎwß}ÇT<ÆÆÆß^)ö?âÿƒDy”ïÌå;'$Ž­%..nÇŽŽŽŽ/^¼9r¤••Uÿþý£¢¢¬¬¬˜  9Ø?xrrò«W¯!7oÞ\±bÅñãÇA3ŽS\\¼fÍkkk++«… fee1]3hï***´´´!&&&tWŸƒƒCTTÓq4ËÇS§N}öÙg=zùòå¢E‹^¿~½gÏžýû÷7ãP~~~÷ïß úþû﫪ªÜÝÝËËË™®´kÆÆÆ|>Ÿ~Ô:++ Mt\,OÃÂÂ|}}œœ¢¢¢ 9pþüù¦§¼¼<::zÅŠöööfff!!!¯^½ºsçÓõ€vmÅŠ—.]:sæÌðáß???¿©ÇÉÍÍ0`€……½ª¤¤¤  PTTÄtýØŒÃáddd0E‹X[[ÇÅÅ•••©««‡‡‡GFFjjjNž<™é¸š‰å‰c¯^½¢££ÕÔÔnÜ¸áææF¹}û¶®®nSÓ·oßsçÎ W/]ºT^^nnnÞPy>ŸO‰ŒŒdúH‡èd"¬Á¾J±©Fô«ù:zÖH“—————'„ðx<Çt8-ÂòÄÑËËËÇÇ'44ÔÌÌÌÒÒòÀ!!!«V­jöAxxø¶mÛæÍ›GÿßV/ö½OÌÈȈéP©NQ#±yÔ233™Ž¨EzzúîÝ»L‡Ð,OÇŒ•••eaaÁår-,,Ž=jkkÛ¼£={ölùòå™™™7nüꫯ˜®«ˆ¥Œì°wï^árUUÕãÇ9âîîÎt\ÍÄÎı  @¸¬  `bbRVVVVVF÷hkk7õ˜UUULGÐLìLéùÒ¤(&&æÕ«Wýúõ‹näñxÍè¹ÒiRÆ·oߊ®–””„††êë룻:(v&Ž={ölhWUUU``àš5kštÀ§OŸRåãã#ºq÷îÝãÇgº® /’N2ÒlllĶÈÉÉíØ±ƒé¸š‰‰£ÐÛ·o÷íÛ':MIQQQNNNSÇ9sæÌ™3‡éÚt`¤‹QLÝÑt7@ÇÅò7Ǭ_¿>::º{÷î111½{÷îÞ½{jjjHHÓq°AUU•ššZYYYÝ]¿ÿþ;—Ë¥wq8‡CQT˳F±3ž>}šSG{¸9ö_9u$$$ˆÞñб°¼Ç1..nÇŽŽŽŽ/^¼9r¤••Uÿþý£¢¢š\ hÂ1eÒ@7áË—/×®][RRRwWqq±»»;EQÊÊÊD²^Æž®Þ3:88ˆN³_YY9sæL'''¦/ñôôJ ÐI­@ „ðx¼ .0#@s°¼Ç±¢¢BKK‹bbbB?IíààÅt\íš°ƒ&šÕÑ6oÞܽ{÷ï¿ÿ¾Þ{{{?þœRZZ*aÖØøé:c·nÝ>ñ÷ß;¶=Üyü÷¿víÚe``ðÃ?$&&&&&?~ÜÐÐÐÌ̌隉剣±±qDDDEEŸÏ§o6ÊÊÊ*//g:.€ö‹Nã/³nÝ:Š¢nݺUïÇ?þ믿6;€zsÇFÎHKOOß¿¿è„ÛíÁÞ½{ýüüìììäåååäälll6lØpîÜ9±§­: –'Ž+V¬¸téÒ™3g†þäÉ“?þØÃÃcôèÑLÇÀBôh¬®®îŸþ©ªªÚÆg÷óó›?~·nݘ¾ ÿ‘››«¢¢"ºEIIIYYYMM­IÇ©®®¶°°¨¨¨¨wïáÇù"†Êt½€µX~£µµu\\\YY™ººzxxxdd¤¦¦æäÉ“™Ž  ý¢;üšô ‹ð‰é &ðùü#FüùçŸmó£G._¾œ‘‘ÑÆ×ꃆ òí·ßª««BŠ‹‹ƒƒƒ-,,êŽoHAAApppiiiC²³³œœ¦OŸN¯Êʲ¼a±¿}‘—————'„ðx<Çt8ƒ0wü`©¬¬L8zôhFFÆ™3gšz.±Tµ©i+!d÷îÝ“'On‡òûûûÏœ9ÓÑѱ_¿~„äädMMÍ'NH~„ÐÐÐ={ö4^&;;ÛÖÖÖÞÞžéêû±tèPeeåÖ­[,Xpùòe±‡rZãÔÐ ±UUULGБ´ó·^¿~}Þ¼yLGñ ô*III­}.==½ÄÄDáêöíÛ‡ëììÌôebyâ(6YZIIIhh¨¾¾>º$ÑxÊhgg×Ð.‡ÖH4ë=cff&שa #//Ÿœœ¬¡¡¡§§wóæÍß~ûÍÔÔtÆŒ­wj‚‚¦¯°ËG±-rrr;vì`:.€ö®÷2v§Nò÷÷?pàEQ‹-²°°Ø³gOqqñâÅ‹¥uŠÈÈÈÐÐГ'OÒsg¾yó&??¿oß¾LW؉å‰#ý¶Q:::ènhRF) óõõurr¢_6xäÈ‘+W®ìܹ³å‰cxx¸––ÖØ±cíìì6lذbÅŠ9sæÈÈÈ„„„˜™™54¡@ ±3qŒmhWNN©óÐ ¤Œ­   €~ð<>>ÞÁÁÂçóóóó[~ä“'Oòx¼±cǪ¨¨DDDlß¾ÝÇÇGVVÖÁÁaÅŠMš`@rìL===…Ë•••€~š@ „ðx¼ .0#@;‚”±•ôêÕ+::ZMMíÆnnn„Û·oëêê6õ8æææbOC_¾|Y¸lddtèÐ!¦ë B;šÀBŠþþ×®]» ~øá‡ÄÄÄÄÄDz´ÈÌÌŒéÚ ú7EQÈ[ƒ——×ÁƒGebbbiiyàÀ7¶êÃ1­ªÉ¯öêX&L˜°téRÑ™cbbæÌ™G¿:¶5ðù|–Í”–™™iddÄt¨””kÔ!zYðgÊÎÎÎÊʲ°°PTTŒ¯­­eðV™†^íˆe,c¹yË;‡ª…rssÅfÁURRRVVVSSc:4f4ûÍ~Ð<\.7!!ÁÖÖÖÌÌLô•ŒmÏØØX¸,úËXÆró–;!vU 2$$$D8›cqqqpp°……#¢yåEG¥;yÃ×fJKK¿þúk''§Ù³gBfÍšåëë[VVÆt\ÍÄòÄÑßß?''ÇÑÑqêÔ©S§NuttÌÎÎö÷÷g:.€¦Mø(Šú`îX·XÚF·nÝ.^¼xùòåôôt•ùóç;88p¹,¿¹XŒ‰£Ð©S§üýý8@QÔ¢E‹,,,öìÙS\\¼xñâV=/Ë&'„tôI˜ÙQ©zGŸ…½ŒuçÊfÁhuÇÍw+**RRR444 'NœH¥¥¥yyy'Ož\¹r%Ó2¬¤¤D]]ýåË—Â0nß¾}õêÕÂZZZL‡Ù¢J>}ÚÕÕU¬Ì7ß|Ìt¤ÍÇò¾aaa¾¾¾NNNQQQ†††GŽ 8þ<Óq´”pŽFL²Ó=~üx̘1S¦Lqvvž4iÒ«W¯.\8xð`+++''§#GŽ0`ëúà„£‰‰‰VVVbÿn333ÇîÜ9:ë:~ü8Óõhi¥/^,''÷Í7ßlݺÕÈÈHFFÆÉɉ骴Ë{ ìíí !ñññ„>ŸŸŸŸÏt\͇éuÚ¿;wêèè„„„(++Ýb·bµ¨÷ɳz+¥««ûË/¿lÚ´iÕªU„ÔÔÔcÇŽ 4ˆé ´Ë{{õê““sãÆ#FBnß¾-èXÐÅØQŸé  £j<™Û[÷ñ—æ‚HY,77WEEEt‹’’’²²²ššÓ¡4;{ !xtÚz ¡®!C†„„„û‹‹‹ƒƒƒ-,,p[tPììqhK˜dâïï?sæLGGÇ~ýúB’““555Oœ8Át\ÍÄÚÄ1<<\tŽ~±U¦„¯ÞvDéëëGFF^¹r%##ƒË庹¹=ZNNŽé¸š‰‰cïÞ½…O5Ö]%H¡eÐÅ’“——·°°ÐÖÖ¶µµ­¬¬DÖ;ÇË—/3°RFh’ÒÒÒeË–ýñÇE¥¤¤Ìš5ËÀÀ`Ó¦MJJJL‡Ðx‚@"xöš! àÝ»w7oÞ”‘‘!„,_¾üÑ£G;wîd:.øá”XLÒ´€ÛìDèÊH·âLGÑN!qø¤ŒÐl111K–,¡'#„XZZ®\¹2::šé¸àÿ ¿Ý·ɷsbsÄâÊH½Ö¢W˜épÚ#$Ž BÊ-T]]ݵkWÑ-:::µµµLÇÿ›™¿ýç ¢·j»Ôᮌ‰^áÎSkÉ!q¨RF ++«cǎѯ¨&„”””ÛØØ0°2éjÒKb;-v>Ûx[[Û¦³¦¦fïÞ½gÏžURR7nÜ’%Kðue%<þR´fÍš3f8;; ‚iÓ¦=yòÄÀÀ`ÇŽ­q®êêj[[Û[·n)**2]o`-v&ŽžžžÂåÊÊJ@@w Ñ¿ûy<Þ… šzÌ   óçÏBV¯^-//ïååÅtEARϹ(ú)#HQ·nÝ.^¼xùòåôôt•ùóç;88´Æ{­ ‚ƒƒKKK™®1´)ôI݃‹KÚ8v&ŽÂY£££wìØáïïoeeÅápîß¿¿nÝ:33³¦°ªª*""ÂÏÏÏÑÑ‘âëëäéé‰v¢ X£ –2¢¤ëøñãÆ ›8q¢pKEEÅúõëwíÚ%ų„††îÙ³‡éºvHu¿õí–'Ž„yyy mmm[[ÛÊÊÊfd„cccMMÍØØØñãÇBîܹ£¥¥Åãñ˜®|€„“2"_„VrôèQeeez™Ãá|ýõ×fff×®]c:.€fbyâXZZºlÙ²?þøƒ¢¨”””Y³flÚ´III©IÇ‘••uuu êÕ«WmmmPP««k{¸Ï‚y¼AiiiÚÚÚÚÚÚb·iêè踺º2 @3±<õ x÷îÝÍ›7!Ë—/_»víÎ;7nÜØÔCy{{WWW{{{B\\\/^Ìtå ~Hq...¾¾¾...õÀ*ÐA±üQ‡ÀÀ@KKËþýû?~ü˜rýúõµkׯÄÄ´ÞIù|>ËþW>€ÜÎ5)eì(•’ûjÔq+UQQ!+++''W]]]oyyyFc_ëmŒåOUWWW‹M~¡££S[[Ët\ Mœa¾Vh'éÛ©gΜ)ÿ_•••óçÏg:@€fbùPµ••Õ±cǶmÛF¯–””ÛØØ0HF¥¡}*//?pà!$!!!00PtW^^^zz:Ó4ËÇ5kÖ̘1ÃÙÙY L›6íÉ“';vì`:.h)¤ŒÐžÕÔÔdddÐË—Ë]¿~=Ó4ËÇnݺ]¼xñòåËééé***óçÏwpp¾:"¤ŒÐþ©ªªîß¿Ÿ2oÞøq€¶ðîÝ»›7oÊÈÈB–/_þèÑ£;w2@3±³Ç±¼¼üÀ„„„„ÀÀ@Ñ]yyyéééLØéàÙèœbbbuttèUKKË•+W®]»vãÆL‡ÿiÿÍ”hÀ­m‡»2­QñÎSkɱ3q¬©©ÉÈÈ —… 4.—»~ýz¦ìD2BgV]]-öÒÚÚZ¦ã‚Ô½m¦ß$-^ëEÛá®L+U¼“ÔºIØ™8ªªªîß¿Ÿ2oÞ}>pà@i°ººÚÖÖöÖ­[ŠŠŠLW®]@ÊP—§§§p¹²²R Ð÷oBÇ»páÓ1Â?:Ü,°Â€[;Úwe¤Uk‚ÿÚÅòÄQGG§¢¢BZG+((.--eºZí¾W ùûï¿é…èèè;vøûû[YYq8œû÷ï¯[·ÎÌÌŒéá?:\;Öfw¸+ƒŠ·–ßj°eË–+W®äääˆhÆ¡BCCíììΞ=Ët˜‡g_$´wï^???;;;yyy999› 6œ;wîíÛ·L‡Ð,ïqtwwÞÞÞbÛ›ñ®jOOOOOÏû÷ïO:•éj1½ŒM’››«¢¢"ºEIIIYYYMMéКƒå‰cdd$#çåóù ž½%z÷îM/ˆNœžMo§7fff6^¾CÈÎÎf:Ôˆý† òí·ßÒÏç[XX´êc ­‡å‰cÏž= !¹¹¹Ïž=³µµ­¬¬TPPhƒó6£G³={†Ž|è.ìŽþÌ‘‘Ó! F ú+¥#ò÷÷Ÿ9s¦££c¿~ý!ÉÉÉššš'Nœ`:.€fbyâXZZºlÙ²?þøƒ¢¨”””Y³flÚ´III©ñ^ºtiÉ’%ôò… x<ÓUiktÊH§ƒõþç-–)bú+€ºôõõ###¯\¹’‘‘ÁårÝÜÜF-''Çt\ÍÄòÄ1 àÝ»w7oÞtpp „,_¾|íÚµ;wîܸqcãtvvþ믿èåf™ìP·»‘àvF€“——?~<ÓQHËǘ˜˜ÀÀ@zÕÒÒråÊ•k×®ý`â(+++vK;ëÕ² ·a´••U½Ûñò*è Xž8VWWwíÚUt‹ŽŽNmm-Óqµ;Íèb¬û^¦+ÐîìÝ»W¸\UUõøñã#Gޏ»»3@3±˜DvÎ÷ HNìÕ‚ŽŽŽ|>éÒ¥îîîxûtD,Ÿ|Íš5÷îÝsvvÓ¦MsppÈÏÏ_·n]³hnnž’’ÂŽ¿Þy¼)’¤I… OŸ>UUULGÐL,ïqìÖ­ÛÅ‹/_¾œžž®¢¢2þ|.—åéòao€¶!ö†˜’’’ÐÐP}}}vüø€Nˆ‰cll¬èªžžžžž½GêŒuHÚRÝcääävìØÁt\ÍÄÎÄÑÓÓS¸\YY)èaY@@áñx.\`:ƶ†” í]½zUl‹ŽŽº ãbç íßÿÚµk—Á?ü˜˜˜˜˜xüøqCCC333¦lSõÞËm`ùòå=ÿëýû÷³fÍb:.€fbg£ÐÞ½{ýüüìììèU› 6Ì™3gÅŠô«cÙ ½ŒŒ(//?pà!$!!!00PtW^^^zzºä‡ª©©Ù»wïÙ³g•””Æ·dÉ’ºS_>|Xô,wîÜaú;±ŸÏçó™¾<ÐQ±tèÐØØX OÐ$,O÷îÝ+\®ªªzüøñ‘#GÜÝÝÛ,ºG°î²ÐæÍ›ë}Ä233sÔ¨QüqÝÉRÆzKÖ{:@°uëVÿyóæBºté2räÈçÏŸ÷ìÙ³Í.›<|ø0$$„^NKK+((øä“OèUssó“'OJxmmmŠ¢ŠŠŠ´µµ !………EÕ;þ ¤¢¢¢££#6œ -,ª¶áèèèéé¹}ûöC‡UTT´ÁÙÅ2EŠ¢ê>ͽnÝ:Š¢nݺ%¶=33³W¯^®A ¦…{ë-VïéRSS³³³§L™B¯:::R…¬ ÙJKKeddèåÛ·oëêêöéÓG¸Wì.‘Fkjj ß¡zçÎ---'Z&22r„ †âÍ›7ùùù}ûöeú;±UUULGñàùóçAAAô”“¦ŒõöhJ"55UFF&>>ÞÌÌLMMmìØ±©©©L_€ÌÐÐP˜íEEE :T¸+11Qò_e²²²®®®AAAIII AAA®®®ô4ááá‘‘‘„;;»W¯^­X±">>þÞ½{ÞÞÞfff Ý¥ÐB,ª~ûö­èjIIIhh¨¾¾~;Wl^^—Ëuppˆ'„Lœ81..®¸¸¸ñyËéÍfäŽïÞ½›6m ÔÐÐØ´i“³³óãÇ»víÊô•è\]]wíÚÅáp²²²îÝ»çááA±±±‡ª;ƒw#¼½½«««½½½ !...ô’„“'Oòx¼±cǪ¨¨DDDlß¾ÝÇÇGVVÖÁÁaÅŠlªÇòÄÑÆÆFl‹œœÜŽ;Ú,€ÞãX/BÈ®]»èòÅÅÅ:::×®]ûüóÏ[#H%%%Š¢Ž9bmmM ×ÓÓ‹ŠŠš8qb›](6quu-))9sæÌ»wï.\HOß½dÉ’¨¨¨)S¦¸¹¹I~(‡³|ùòåË—‹m¿|ù²pÙÈÈèСCLW:–'ŽW¯^Û¢££ÓfÝ¢©É^èRï-jjjݺu{ùò¥$gíi0OÕÕÕ%„˜ššÒ«êêêݺuÃŒ<ÍÆáp,X°`ÁÑ>>>[¶l{ *@ÇÂò{—/_Þó¿Þ¿?kÖ¬¶Œú×K*++Ó%Ïœ93hР7oÞÐÛ òòòú÷ïߤÓI>fmnn®ªªú×_Ñ«¯_¿ÎÍÍ566nË«Àz½{÷FÖ;{ËËË8@IHH Ý•———žžÎt€ÿ!ì#¾.ÌÙÙyáÂ…nnn¾¾¾²²²k×®µ¶¶vpph¥æÎ;wîÜýû÷«©©­ZµjàÀ£FbúÂ@ûÂÎı¦¦&##ƒ^.и\n½ó&2B80#|-!DMM-&&Æ××wòäÉrrrŸ|òÉÎ;[õn÷Ý»wËÊÊzzz3&""B8™­™¸tóæÍ kã“òùü¾Ñ«ñy¼Û›ÌÌL###¦£@¥:]ØZ)IÒ:4‚å÷8Šfµµµ-9Tqqñš5k¬­­­¬¬.\˜••Õ¼ã4ûÓÌbçP5!$++ëüùóŸ~ú)Ç«ªªZµjUTT”ššÚ×_ݤ¹0„üüüÒÓÓƒ‚‚TUUCBBÜÝÝ/^¼Ø¤™;V/#4=ë©««ã)4èXØ™8>zôhúôé½{÷þôÓO !ûöí»~ýº‡‡‡’’Rppp·nÝœ›tÀòòòèèèÐÐPúNÄ¡C‡Þ¹sÇÉÉI’#eèT~ùåIŠ#q€Ž…‰ã·ß~ëìì¼sçNBEQ?ÿüóܹsé7.¼ÿþĉMMsss `aaA¯*)))((}ðƒH:¡mÛ¶1@«`gâøðáÃz9--­  à“O>¡WÍÍÍOž<ÙÔöíÛ÷ܹsÂÕK—.•——›››7T^ø4ýLwff&Ó—¤EX98û*ž@{ÃÎı´´T8›ÌíÛ·uuuûôé#Ü[VVÖì# ‚ðððmÛ¶Í›7¯wïÞõ–IMMe_#+Ÿle_¥ØW£Žþ£ €eØùTµ¡¡all,½5tèPá®ÄÄÄž={~ð—.]âÿ+--ÞøìÙ3WW×½{÷nܸqÙ²e }7-+±³ÇÑÕÕu×®]'++ëÞ½{„@{èÐ!//¯ÁÙÙYø >%%%BȃÜÝÝGuðàAMMM¦«ÐÖX›8–””œ9sæÝ»w .ttt$„,Y²$**jÊ”)’LÇ#+++úVÙššooï™3g.Y²„éÊ@{÷îÝ;I^K-a1€öƒ‰#‡ÃY°`Á‚ D7úøølÙ²¥yÍtLLÌ«W¯úõë''„ðx}JQ”èÆÝ»w?žéj@»qøðá)S¦˜˜˜XZZöéÓGMM­¶¶¶°°ðñãÇ·oß®­­õòòÎöÐQ°ü]ÕŒ`ßÛ`Yù¾`öUŠ}5ê蕪¬¬ŒŽŽ¾}ûöãÇ_¿~-//¯§§7dÈá¤]m‰}­´±NÔãЖ\\\\\\˜@jØ9HGGGG€Ö2eʱ-%%%³fÍb:.€fÂSÕRV^^~àÀBHBBB`` è®¼¼¼ôôt¦h&$ŽRVSS“‘‘A/ h\.wýúõLÐLH¤LUUuÿþý„yóæÑ ì€{Z‹©©iZZÓQH zZËÍ›7x<ÓHG€Ö²k×®U«Vѯ¨VVVn×ÖÖf:4€æ@âÐZ\\\(ŠzðàØö””¦Ch$Ž­%22’é¤ ‰#@kÉÉÉid»‚‚Â!C˜Ž  8´–mÛ¶Ñ£Ò‡Ãá.—«  @ï522úù矙Ž  8´–Ï?ÿüøñã›6m²¶¶ær¹÷ïß_¿~ý²eËFÍthÍyZËO?ý´aÃ{{{yyyYYYkkëuëÖ…„„0@3!qh-¯_¿VRRÝ¢¤¤”——Çt\̈́ĠµX[[‡„„¼}û–^-..633c:.€fÂ=Ž­eÆ ³fÍrttìׯ!$99YEEåøñãLÇÐLH%õâÅ‹-[¶Ü¿_^^~Ĉ+W®TWWg:(h×tuu/\¸píÚµ´´´êêjWW×?þXøTµ´ÔÔÔìÝ»÷ìÙ³JJJãÆ[²d ‡ÃaºêÀNª–ˆ@ X¼xñû÷ï¿ûî»ààà»wïnذ頠HKK4hТE‹,--cbb~úé'@ ÝS={6 ÀÏÏïÌ™3û÷ïg¶Êœ1*Ð8JäéÓ§Ož<ñõõ¿µk$V©Ž^£¶Ç¾±µR’@â(©É“'›˜˜ÐË}ô‘¬,FùàÂÂÂ|}}œœ¢¢¢ 9pþüy)ž"55µ¬¬ÌÞÞž^µ··/,,LNNf¤¾t‚%\]îÐÄ*…~GèÌýH„ÇãmÞ¼™RTT”‘‘qøða.·Á´›}?DØW#VVŠ}5êè è”.>>ÞÁÁÂçóóóó¥xм¼<‡£££C¯êêêr8œ‚‚‚†Ê·ö?’ºÇoƒ–ì«û¾Ëì«Q§…ıi.\˜ ­­½}ûö†ÊÐoèÕ«Wtt´ššÚ7ÜÜÜ!·oßÖÕÕ•â)ªªª…¿céW×[¸µ['‡#vŠº[:VV  Ù0T]¿K—.ñÿ•––&Ü~úôé;wî|úé§®®®•••L‡ íš——×ÁƒGebbbiiyàÀ7Θ1CЧPSS«¨¨ÞÔ(*++ÕÔÔ©¯Ø0.k†tÅ*Åš!x€fÀ ~555ô²’’Ò³gÏÞ¾};dÈzKuuõ Aƒ¾ÿþûaÆ1)´kÙÙÙYYYŠŠŠñññµµµ¶¶¶R<þãÇ'M𣭭Myýúµ½½ýùóçé™#!L³Øôÿ ++Ð èq¬Ÿ¬¬¬Ê¿¸\îýû÷}||„¿éKJJ¢¢"Óa@{g```ooO7ÖÖÖÒÍ !ÆÆÆššš±±±ôê;w´´´x<ƒU>€Ì` ¨@+Aâ(GGÇŠŠŠ7¦¤¤$$$,_¾œÇ㙚š2tv²²²®®®AAAIII AAA®®®˜öZ †ª%•°k×®'Ož(**ÚÚÚ.[¶¬[·nL@(ŠÚ½{÷¥K—!...K—.eÍÍ…ÐÞ q‰`¨$‚Ä$‚Ä$‚Ä$‚Ä$‚ÄQÊŠ‹‹×¬Ycmmmeeµpᬬ,¦#’šêêj á u:¨ššš   aÆ3&((ˆ5³ °ã¯#Äâï#^¼x±`Á+++;;»Õ«W¿}û–鈤éÎ;&&&,øÇøða¾ˆ¡C‡2‘üòË/ÎÎÎæææ ,xùò%Óá´”è눅˜Ž«Ma’X)óóóKOO RUU qww¿xñb×®]™Ž«¥ ‚ƒƒKKK™¤¥‚‚‚Ο?OÏW¯^-//ïååÅtP-Åš¿Ž[¿GŒ‹/ÖÔÔüî»ïª««×¬Y³aÆ={ö0—t¼{÷nõêÕìø˜íää4}útz•³¸Ÿ:u* `ýúõÝ»wß½{÷²eËNž<ÉtP-bmmýý÷ß W«ªª–/_ÎŽ¿ (ž²²2>ŸíÚ5zµ¸¸¸_¿~ÂÕŽkÿþýÆÿ*//g:œæ«¬¬2dÈÙ³géÕ3gÎØÚÚÖÖÖ2W‹°æ¯#ÄÖïSRSS>|H¯†…… 4¨£ÿ³Z±bŧŸ~ÊŽüîîî‡f: ©©­­1bÄ¡C‡èÕ¸¸8cc㜜¦ã’¦½{÷z{{3E[ÃPµ4åææ0À‚^URRRPP(**b:®–òôôLII9uêÓ´TjjjYY™½½=½joo_XX˜œœÌt\-š¿Ž[¿G š`•––Fo|ö왫«ëÞ½{7nܸlÙ2¦c”N¥ØAMM­¢¢B Ы ²²RسíJGÿµC§OŸ¾sçΧŸ~êêêZYYÉt8-òóÏ?¿xñâ›o¾a:©ÑÓÓKLL\¾|¹¦¦f=¶oßþæÍ›ØØX¦ãj>EEEŠ¢¶mÛ6|øðAƒíÞ½ûõë×111LÇ%?üðøqã444˜„,¹Ó…)ÎÎÎýõ½¬¤¤Dyðà»»û¨Q£<¨©©Ét€Ò©khkkSUTTD.R%¹†öƒߣö#33óíÛ·C† !„hhh,[¶ìĉ÷ïß6lÓ¡5_bbbZZÚÀ…[|H¯½zõªW¯^LÇ%×®]ëÒ¥‹µµ5Ó0=ŽÒóêÕ«~ýú‰Ž/ðx¼Nxólû$++ëêêÔ«W¯ÚÚÚ   WWWÖ¥(ÊÇÇGtãîÝ»ÇÏthðooïêêjoooBˆ‹‹ËâÅ‹™ŽÄá{$]ZZZß}÷Ý®]»¦Nª¨¨hkk»mÛ6999¦ã‚ÿPQQ‰ˆˆØ¾}»¬¬¬ƒƒÃŠ+8ÓqµÈÊ•+eee7nÜøîÝ;;;»àà`¦ƒ’‚;wî|õÕWLGÁÅŠ ÷ µuÒŽVh*$Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $ŽÐd›7oæ×gÚ´iÏŸ?çóùoß¾m³`JJJÊËË !|>?--­I§.((hÛKXOØLE 7n\݆îÖ­[¢­ð»,¶,¡!C†ÄÆÆ6;B´Ðöd™:ž¹sç~þùç„’’’Ù³g¯]»ÖÜܜҵk×¶fõêÕ½{÷öõõ•••õððÐÐÐ`úò43ì¦þmà‹/¾˜>}ºèCCCÑÖFø][`+$ŽÐd=zôèÑ£!„îY4220`½ëùóçLE%''×ÛkaØ ^:hˆžžž°}Õ[©ÀP5H_jjª««ëàÁƒ'Nœ˜””Do|ùò¥···­­­ƒƒÃš5kJKKéíyyyžžž666#GŽÜ²eKee%!äùóçýû÷ÏÈÈøâ‹/BBBúø¼yó¢££>4hШQ£N:Åôß “~mE¿Ë¢Ë¤áoqNNÎüùó---'L˜]÷à .\ºt©p5,,ÌÑÑQ 4Þ‚5Ò:¡=éBâÒ·eË__ßüQUUuãÆ„ªªª3f(**~ÿý÷Ïž=[¶l!äýû÷3gÎ|ÿþýáÇ7oÞ|ãÆ ???ú E­Zµj̘1Ÿ~úiC =z´‡‡ÇéÓ§…g¯­­={öû÷ïÖ/_þÓO?ýðÃÕÕÕ ,àóùááá;vìHLLÜ·o_Cñ×ÖÖΚ5«¸¸øÀ+W®<~üxJJJ#õmäà`ëÖ­Û¶m ———ß°aCCa 5TÙììlº‰Ÿ2eŠ¿¿rr2Ój–{ýúu²ˆW¯^‰îý.‹.7ô-®®®ž9sfeeå¡C‡–.]ºcÇú§²¨qãÆýùçŸïß¿§W/_¾üÙgŸÕÔÔHÞ‚‰B{R‡¡j>úÇîŒ3Ö¯_O¹|ù2!dÛ¶m\.—2|øðÜÜÜû÷ïýòË/***„­[·Îœ9sÅŠ„@0uêÔI“&BΟ?_ïÇés1¿ÿþ{nnîéÓ§•””XZZúüùó²²²%K–|õÕWŠŠŠ„‘#Gfgg7ÿµk×òòòN:¥®®NÙ´iÓܹs©o#§(jÑ¢EÖÖÖ„Ù³gÓW£q ]«¬¬,@ðÅ_èëë÷ïß¿oß¾å†N€ŽëÌ™3gΜ®Î˜1cݺuüTCßâ{÷îýüóÏtÛ"''7gαÏ:99ùùùݹsgøðá999>ܵkW“Z0I"A{͆ĤOxKðq™ôôôììlSSSaŠ¢ž={öôéS:k$„˜››s¹ÜŒŒ }}}BÈ!Cÿx½‰cJJ ŸÏWRR¢W§M›F/ÐC)))ÉÉÉqqqvvv ÅŸ––Ö¯_?ºe'„X[[s8œFê«¡¡ÑÈÁ…a ظ†*kaaaff6nܸ#FX[[;;;ëééµþ Sóôôôññiê§úgddˆ¶-VVVuÛeee{{û«W¯>üòåËfff½{÷&MiÁ$‰í 4G>±-***æææ?þø£Øöøøøºí&}K"!DYY¹ñ׫¦¦FVVüvZZÚôéÓûõë7fÌcc㌌Œ†ŽP]]-ºÊårëM«ªª$9x—.]štõ©lDDÄ_ýuãÆ3gÎìÞ½{ÿþýÇoÚßZ_Cßâ¿þúKt•ÃáÔÛ¶|òÉ'Û·o÷÷÷ŒŒ¤G]šÔ‚‘Ö í Hîq„¶`llüäÉ“’’zõ¯¿þš2eJeeeŸ>}’““ËÊÊèí µµµ}úô‘ðãõž‹>fEE½úÃ?Ì;722RCCãØ±c3f̰²²î­WïÞ½“““‹‹‹éÕû÷ï á^a?¦štðf_«øøøC‡Y[[/[¶ì·ß~³°°øí·ßÚêMÐз¸oß¾´-BNNN%%%/^LNNþä“OˆÄLÝÖ í HGh K–,yøðáõë××®]k``   ðñÇ«««/[¶ìñãÇqqq~~~Ÿ|òI÷îÝ%ü8!„Ëåæåå ›EBÈǬ¢¢²råÊ'Ož\ºté»ï¾³´´ÔÔÔ|õêU|||~~þ™3g~ùå—¢¢"ár1ô¼½½bbbÖ¯_Oߤ££#''·oß¾¬¬¬k×®9r„.ߤƒÓê†ýÁÊÖÖÖ†„„üøãYYYW®\ILL~Fˆ~—…Ë }‹G­©©)l[º]RIIiøðá[·nupp o=ü`#ÓPë„ö¤‰#´.—{äÈeeåyóæ­]»ÖÆÆfÓ¦M„99¹'Np8œÙ³g¯\¹ÒÎÎ. @òB\\\bcc/^,,,//âĉêêj77·íÛ·ùå—“'O7nÜ¢E‹¾úê«ÔÔÔï¾û.'''00°ÞhŽ?ÎårçλmÛ¶eË–ÑIª¢¢âŽ;îÝ»7vìØ¥K—º»»Óå›tð†Âþ`emmmW­Zõý÷ß?~çγgÏž1cÓX€ÎNô»,\n¼ÅëÒ¥ËܹsçÌ™ciiÉãñê=ì¸qãÞ¼yóÙgŸÑ«ldjО€Ôq(Šb:€önÈ!¡¡¡¶¶¶ô*=ND?ÞÐTEKøÀ\“ u‚Ö†‡cš 2´‡Ãi¬‘ u‚Ö‡¡j€322ªû¨8@gƒ¡jz@"H@"H@"H@"H@"H@"H@"H@"H@"H@"H@"H@"H@"H@"H@"H@"H@"H@"H@"H@"H@"H@"H@"H@"H@"H@"H@"H@"H@"H@"Hôë×ó_}úôÙ´iEQÍ>¦œœ‡Ã)++«»KEE…Ãá¼zõª‡-..æp8rrrTäôéÓ ]ÈV!ö×éѣǴiÓrrr>x5DæääTTT0]èØ8Â? LMM  ªªš‘‘±aÆðððfmÀ€¦¦¦\.þIý×100ÈËË;uêÔ—_~Ù¤´~öìÙ¿þú+Óõ€Ž ÿ¯Ã?vïÞ””ôðá⢢‰'B._¾Üì£%$$$%%)**2]-– ÿ:/^¼øùçŸ !wîÜyúô)ÓAHÁ›7o¼¼¼ ¤¬¬Ü¿ÿeË–¶ä€ õÄ?xð€Ãá 2DòC‰ö÷+**š™™-[¶L´ç¾‘¡!ÆûûËËË·nÝjjjª¬¬¬¥¥5f̘ß~û­mÂÀ +!qq222fff„eeezKeeåòåËûöí«ªª:räÈ[·n ß½{wÔ¨QêêêÚÚÚüñÝ»wéí¢íéû÷ï—,YÒ£GwüøqágűÕÇúé§ÚÚÚÊÊÊçÎkI¥ªÂĉ9NHH½º|ùr‡³xñâF>"ŒóáÇÇ?|øp#ÑVUU-^¼¸[·n¦¦¦¿ýö›¢¢¢0™näª6b„ òòò„¼¼<±]555[·n8p ²²òàÁƒƒ‚‚!düøñ.\ „¸ººnݺµ•ÿù4AFFÆ Aƒöïߟ˜˜Ø¥K—'OžÚÚÚ3Úÿ£ûûuuu“’’…»$Za¼¿ßÍÍmíÚµOž<122zÿþ}ttôĉ…·ô´Ax0a :=BHDD½úìÙ³aƉn™4i!ÄÜÜ|Ò¤ItêóðáCŠ¢Þ¼y£¡¡Aùä“Oœœœ¸\®ººz~~>EQ²²²„ÒÒRŠ¢ÜÝÝ !êêêVVV²²²‡òòåË·oßBdee鳈®ÖÔÔôêÕ‹2xð`'''YYÙ§OŸŠ}¤ñŠˆj¨ §N"„Œ3†.6hÐ BÈÍ›7ù—Ëíׯ!äàÁƒ EKQÔŒ3!–––tÝ©ñJ » ²³³Å®ÆìÙ³ !ZZZãÆSWW'„øøøPuýúõÁƒB-Z”””Äô?7€ÿG  ”žžNQÔ‹/HYµjU³ÙP+QVV¦¨¨8gÎÉ%öí‹‹‹£¿Yÿûßÿ$?ˆ‹‹KCíR ï&—••¥›—÷ïßoÞ¼™2zôè6OìÒ&„´´´Æóös¡.$ŽðÏw[‡ÃÙ¹s'½7))‰Ò·oßÚÚZŠ¢‚‚‚!³fÍ¢(êÆ„}}ý´´4Š¢víÚ5oÞ¼ÄÄDJ$qÌÌÌär¹²²²Ïž=£(jûöíô)O³²²F=mÚ4z—!äìÙ³ÍK©Biii×®]åååß½{÷òåK‡£¯¯/ù!dÁ‚••• EûôéS‡#++ûâŠТ !tâØÈñë­”¡¡áàÁƒéô”âââ"vÅRRR!***ô¹èãËÈÈäååQhy¡]zþü9ýïùþýû—.]rtt\´h½úþýû-[¶˜šš*)) 4(00þÊ4²Kô{QVVFÿjÚ³gEQ‹/þý÷ßéÇÇÇ;99©©©iii9;;ÇÇÇ×°n“²bÅ BÈ_|A¯ŠþB®÷€ôW¶eËŠ¢=zôÉ'Ÿhii)))™››Ÿ={V4æßÿÝÜÜ\YYÙÉÉ)##ƒ>KEEŲeËx<ž²²²Í•+WD·÷éÓGEEÅÑÑ‘þÅ+&!!þÝ^PP@o).. ¯7¼†ŽIG¨  Þ·oßnݺ­\¹òéÓ§#GŽTVV633«÷ìb°¦¦†0¹qã†XcÞÐ_³n„À8$ŽðÏw[øpL—.]!#FŒ¨¬¬¤(ªÞGdLQTQQQ÷îÝé-<ÏÓÓ3!!>¦°=¥bŽ1‚Þžžž.IâHQTqqñ?ü0þ|sssú#¢eè6Ýø6”86RŠ¢¦L™B9þüÉ“' !K–,iü#t ‡î[m$Ú3gÎB†N—)++ö86RÝ¿ŽŽŽŽ››[QQ‘Ø‹ˆˆ „Lš4IìƒW¯^¥8B»Eÿòl¤LCýèì~/Á—_~IY¶l™Øa-U·I¡4áWUØÐ5t@±þþÆÇR8N×®] @ß±3vìXú,t¿ìG}äàà +++''wïÞ=J²Q‹òòr}}}BˆššÚ矾mÛ¶«W¯Òm;UßpDã#-„99¹ÐË]ºtÑ×××ÖÖ&„ôìÙ³îŸ&¬„ÄÄ¿ÛoÞ¼QRR"„üñÇÔ¿‰¥¥åIçΣ —””„……Mœ8‘¾!RFFæÚµk”H{zôèQBˆ£££ðàbCÕ222ô.Ñv¤¸¸ØÈȨK—.žžžôMEb‰ãüùóþõóÏ?S 'ŽWá—_~!„ÌŸ?ßÍÍrçÎÆ?R·×³¡hOœ8AD†„òòò„‰cã!5ò×% =æþùçŸ ÷Ž1‚rùòe ‰#´Kßÿ=ý-h¨@#ýèì~/6lØ@quubGnd´DTÝoߟþIÿ~£W… ]#ýö5>–Bùå—_(Šºrå êQõðáC:£zûö-EQ6l••]ºt©ä£ÉÉÉ'N¤[ušŠŠÊ÷ßOï O’‘úÿºµ´´´¬©©yùò%}—'aÝ ˆ–ÁÃ1 N]]ÇãBrss !¦¦¦„ÂÂÂiÓ¦MŸ>½wïÞ ¥¥¥„+W®lÚ´IKKë—_~),,œ|ØÈ.ú³555›6m"„˜››Ó?VE™ššvïÞ=''‡ÇãgffzyyÑ·W6®¨¨Hy3hhhxîܹѣG{xxXXXÄÄÄ‘/¦ŒŒÌgŸ}F±²²"„ÐÒ5²¶¶VSS#„øûû¿ÿ>00011‘’žž.##Ãáp–.]JyðàAݘù|þ/¿üòæÍ›{÷î…††Ž1âÝ»w ,Þ* ôÁcÊÈÈпH{öìIqtt”‘‘ÑÓÓ£ jaž={–••E˜ˆ>"ùÁ?´4þ¡”É2´_ååå„L˜0á×_upp022úßÿþW^^Nÿ –““ Ü¿ÿ„ jjjè£F=ˆ©©éÇ dbbÇápèüIAAaРA ¶¶¶</55Uø)úw|tt´³³sRRxQ’=ˆ·råJᔄU«VM™2¥¡*Bºté2qâÄcÇŽB蘯u] EknnîèèøÇ 8°oß¾qqqÂ4éø’011™1cÆÉ“'lccsëÖ­êêjooï=zBèßú{öìÑÓÓ=ztüãø >ŸOyþüyZZýc•ò¿ÿýoÞ¼y¤oF$„ˆ¦}ºººÉÉÉ555ìn133KLLܲe‹›››žžžè©544RRR~úé§ .DGG‡††:t(**ÊÉÉ©ñ˜éoqŸ>}ĶKxÀ’’’ÁƒçææÎ;wÅŠ?üð=^O£ç¬!„ˆ>¦Mר¶¶VìŒ222„KKËo¾ùF¸±î h>¼xñ¢ÁôéÓÍÍÍÍÍÍç̙ӳgÏüüüÇÓùŸäÇFH£›¾Šˆˆ ïjˆ$MhG˜îòæÕŽùꫯ!'N¤WKKK½¼¼ UTT„w—Suúôé¡C‡ª«««ªªZYYýôÓOôvÑ{Æ}¿ýö[¦ÿ¹ü¿ñãÇB )ŠÊËË£¿JK—.¥(êÉ“'„UUÕÜÜ\Š¢RSSååå¹\nNNN#»„ó¼}ûvòäÉ„¹sçŠ722rÙ²eô¸pUU]lÍš5bÅľ}÷ïß×ÔÔ$„œ?žÞ"lè9 =ÒzòäIŠ¢~üñGòïÍ‹ïß¿§׉݄Cý÷«M÷ÆuíÚµ¤¤„¢¨7*++¯^½šî322¢âoß¾½lÙ²cÇŽ‰Uáþýû„%%%á èYYYôí˜ô“ì¢á5rL±×®]KD~WPP „Ÿ¿ièŠ=`#M±¡=@âm¡¼¼<..®I©ªªº~ý:Ó·(Ú¢¢¢óçÏ_¸p^¥oìÛ·/ÓÁ´)))tò$##cddDxöéÓGx·=¡•®®îøñãétÇÛÛ»ñ]¢Ijjª¬¬,—Ëý믿DÏ{íÚ5zNï)S¦|ñÅô¯YúþlQ¢·èõéӇ³&ŽÐËË‹beeuõêÕŸ~ú‰Žm̘1ݺu£{O:Õø“‚ãÆ£ó¹Ñ£GËÉÉ)((ЉL˜02|øp77755599¹º¿?ÁçŸN_assóþýûÓµ˜:u*]@4¼FŽÙª‰cãh±qHZËÛ·oUTT!žžž¤o7\»v-Óq´#¯_¿öðð0`@×®]û÷ï¿|ùò7oÞ÷6ÒÞÐ.±ŒdÁ‚bÙ­¡ÑQ¢ƒ  Xºtiyy¹°€èÐJCíï—p,ElõÝ»wÞÞÞFFFÊÊÊvvvþù'½]ÂQ‹ŠŠŠÝ»w4HUUUCCÃÜÜ|ï޽«ņ#$i‘z∓䟻͠5ܽ{wÆ wïÞ-//744tww_ºt)}#tBÕÕÕ·oßvttd:€fBâÁt< $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž $Ž’*..^³fµµµ••ÕÂ… ³²²˜ŽØ£¦¦&((hذacÆŒ ¢(ªn™†Z¡Ã‡óE :”éÚkÉ2@‡áçç—žž¤ªªâîî~ñâÅ®]»2°APPÐùóç!«W¯–——÷òò+ÓP+”íää4}útº˜¬,vh-œzׂ˜òòrssóÐÐP'''BHIIÉСC÷íÛG¯´DUU•­­­ŸŸß_|A9{ölPPЭ[·¸Üÿj¤š3gŽ­­íüùó™®°†ª%’››;`À zUIIIAA¡¨¨ˆé¸€ RSSËÊÊìííéU{{ûÂÂÂäädÑ2´BÙÙÙúúú•••¥¥¥LWX#éÛ·ï¹sç„«—.]¢ý×[˜ÏçÓ ‘‘‘Lб1B[ÈËËãp8:::ôª®®.‡Ã)((-ÓP+$rss9âëë+ú÷ï¿eË–4t.ºJIIaºÒÐ!!ql@¾mÛ¶yóæõîÝ»¡bh”@rUUUŠŠŠÂi.—«  P\\\oa±VèÕ«W\.×ÚÚúСC•••[·n]°`ÁåË—UTTê~–Ïç£u€–@âØÏž=[¾|yffæÆ¿úê+¦Ã–PSS«¨¨tî(*++ÕÔÔê–¬Û ééé%&& lß¾}èС±±±ÎÎÎLW X÷8JêÁƒ“&M244¼rå ²F"mmmŠ¢„·MR%¹’¤RQQÑÑÑæ$Ž©©©ñööž9sæ®]»455™XÅØØXSS366–^½s玖–Ç-ÓP+9a„’’zõÍ›7ùùù}ûöeºNÀNª–HLLÌ«W¯úõë'lÙ !<O[[›éРÓ••uuu êÕ«WmmmPP««+=cxx¸––ÖØ±cj…ììì6lذbÅŠ9sæÈÈÈ„„„˜™™YYY1]'`'$Žyúô)EQ>>>¢wïÞ=~üx¦C6ðöö®®®ööö&„¸¸¸,^¼˜Þ~òäI7vìØFZ¡ˆˆˆíÛ·ûøøÈÊÊ:88¬X±‚Ãá0]!`'L.}xnÚ'´NÐB¸Ç$‚Ä$‚Ä$‚Ä$‚Ä$‚Ä ÉJJJ¸\n~~>½zúôiNK–,a:L)Ã<Žâè9ðš©*11ñ«¯¾ÝëààI)++[¸pa~~¾²²²““Óõ2$ŽÿO4eäpê™åtÔ¨Q¿ÿþ»ØÆnݺuëÖ2kÖ,üüü1cÆ`rx` Uü‡0Y¤(ªîë7®]»FQÔê~ð矾yó&ýæÝ»w3]€¯ªªJMM­¬¬¬î®ßÿËåŠíª[~ûöí¢7éèè|ðøÇŽãñxªªª...ÙÙÙ î´7)¡Çàõv1JèÕ«W .ŸÿðáC{{{CCCBŸÏ×ÕÕe:.€öK˜;~px§´´”"„üöÛo»wï–¤<½\YYIQ”ŽŽŽ¡¡áÑ£G ®]»ÖP0JJJEÅÅÅ;ÖÆÆ&<<Ÿ¯¤¤ÔHùœœ777___YYÙµk×Z[[;884TXAAaîܹsçÎÝ¿¿ššÚªU«8jÔ¨FŽõêU[[[.·ßv¢ª@§CQÔäÉ“§L™Âãñ.\¸Ðøs9»wïž4i’§§§‹‹K÷îÝ/_¾L?gÝNx“Ró_• áóù)))LG ­´+M}_W«–oÉËÃ:ô8€DØŸ8&''¿zõŠróæÍ+V?~œž¥ š„å‰ã©S§>ûì³G½|ùrÑ¢E¯_¿Þ³gÏþýû™Ž  ãayâæëëëääehhxäÈ‘€€€óçÏ3@ÇÃòı  ÀÞÞžO?Ïçóóóó™Ž  ãayâØ«W¯èè蜜œ7nÐóyÞ¾}ï‚h–'Ž^^^5j”‰‰‰¥¥å6nÜ8cÆ ¦ãèxØ?kQvvvVV–………¢¢b|||mm­­­m«ž3¥€´ÔÔÔìÝ»÷ìÙ³JJJãÆ[²dIÝé‹‹‹‹wìØMQ”¥¥åÊ•+{õêUïÑÐ:A»‚y;"v¾r°  @¸¬  `bbRVVVVVÖ»woz¯¶¶6Ó1|XPPÐùóç!«W¯–——÷òò+ãçç—žž¤ªªâîî~ñâÅ®]»2;°;óká»,Òª¿¹ñ›¤¢ªªÊÖÖÖÏÏï‹/¾ „œ={6((èÖ­[¢/Æ-//777 urr"„””” :tß¾}ôª´NЮ Ç±#bgãÕ«W™ ¥RSSËÊÊè©!!ööö~~~ÉÉÉýû÷–ÉÍÍ0`€……½ª¤¤¤  PTTÄtìÀNìL{öìÙЮªªªÀÀÀ5kÖ0#Àäååq8zUWW—ÃáˆÞŠCéÛ·ï¹sç„«—.]¢û :&= ƒ~Ghv&ŽBo߾ݷo_vv¶pKQQQNNGhÿªªª…Ó\.WAA¡¸¸¸Þ <<|Û¶móæÍ£ïç®RFh –Odz~ýúèèèîÝ»ÇÄÄôîÝ»{÷î©©©!!!LÇðajjj€^•••jjjuK>{öÌÕÕuïÞ½7n\¶lÓk±¼Ç1..nÇŽŽŽŽ/^¼9r¤••Uÿþý£¢¢¬¬¬˜ Ú#±‰Np£40K[[›¢¨¢¢"z"ˆÂÂBŠ¢„#×BŸöìÙ3fdee•——3´G˜‹ÚYYYWW×   ^½zÕÖÖ¹ººÊÊÊBÂÃõ´´ÆŽóêÕ«~ýú óKBÇÃlµÐXž8®X±bÁ‚|>„ ›7oþøã_½z5nܸf°ººÚÖÖöÖ­[ŠŠŠLWØÏÛÛ»ººÚÛÛ›âââ²xñbzûÉ“'y<ÞØ±cŸ>}JQ”è§vïÞ=~üx¦cbKuuuYY™††FZZZdd¤¦¦æäÉ“åääšq¨‚‚‚ààà³gÏ&$$4’8bŠÝŽK¬Ó}À2h ]ÁàË{ !òòòòòò„'voP“„††îÙ³‡éÚ@«½¯€(–'Ž ==}÷îݦÊÓÓÓÓÓóþýûS§NeºZÐZ)4‚å‰ãÞ½{…ËUUU?>r䈻»{kŸ—~7Cdd$Ó c322b:„&ËÍÍ}öì™­­mee¥‚‚ÓáHËG[[[ÑUGGG>Ÿ¿téRww÷V}ºwtB¥¥¥Ë–-ûã?(ŠJII™5k–Á¦M›”””˜ @:X>c]}úô©ªªb: `¡€€€wïÞݼySFF†²|ùòGíܹ“鸤†å‰ãÛÿzþüyhh¨¾¾>&Ó©‹‰‰Y²d‰ðÍ.–––+W®ŒŽŽf:.©aùPµØ99¹;v0°Puuu×®]E·èèèÔÖÖ2€Ô°}>þøcyyy¦ƒúh ]AâØ±ó2ñù|___>Ÿ_oVm:Ñ4@û„Ö Ú$Ž;ïqLHH••%„$%%1 tIII6lxñâ…Øö»wï2€t°3q¾Z^^>99YCCCOOïæÍ›¿ýö›©©éŒ3˜Xhýúõòòò›6mRWWg:€VÁÎÄQèÔ©Sþþþ (jÑ¢E{öì)..^¼x1Ó¡Û<}ú4<<|àÀLÐZX>cXX˜¯¯¯““STT”¡¡á‘#GΟ?Ït\ÀB:::˜µØå=Žööö„øøxBŸÏÏÏÏg:.h¿D'‡ÇÒÐ$[¶lY´h‘©©i—.]„Ûµµµ™ @:Xž8öêÕ+::ZMMíÆnnn„Û·oëêê2´SbOÕá!;hwww@àíí-¶2k°ƒ$šjýúõÑÑÑÝ»w‰‰éÝ»w÷îÝSSSCBB˜Ž @jXž8¼{÷îæÍ›222„åË—?zôhçÎLÇíEQt¿#²Fh†¸¸8ÿ 6ØØØŒ9rÆ ~~~QQQ’|¶¦¦&((hذacÆŒ jäŸ_uuµ………è¼?‡æ‹:t(ÓWX‹åCÕ111:::ôª¥¥åÊ•+×®]»qãF¦Cƒö )#4OEE…––!ÄÄÄ$%%ÅÊÊÊÁÁaß¾}~~~ülPPÐùóç!«W¯–——÷òòª[¬   88¸´´Ttcvv¶““ÓôéÓéUú…«­å=ŽÕÕÕ]»vÝ¢££S[[Ët\ÀBÆÆÆ|>ÿêÕ«„¬¬¬òòò~°ªª*""Â×××ÑÑÑÑÑÑ××÷ÇbÅBCCíììΞ=+¶=;;ÛÜÜÜþ_èq€ÖÃòÄÑÊÊêØ±cÂö·¤¤$88ØÆÆ†é¸€…V¬XqéÒ¥3gÎ >üÉ“'ü±‡‡ÇèÑ£?øÁÔÔÔ²²2úm„{{ûÂÂÂääd±bžžž)))§NÛž­¯¯_YY)Ö u,ÑX³fÍŒ3œÁ´iÓž>þÞ½{ÞÞÞfffVVVL_ `'v&Ž%%%Âëôpý !@ë9uêÔgŸ}öèÑ£—/_.Z´èõë×{öì‘°ÒÛÛû“O>ñöö^²d‰‹‹ËâÅ‹éí'Ož¼téR#TQQ‰ˆˆ (ÊÇÇç›o¾144<|ø°ðÍ™ÒÅÎ÷ªñùüŸþY8!…ØjœÏ-tB£Fš2eЇ‡ÇñãÇÏœ9óÛo¿]¹reçÎ×®]c:´ u‚v¥©/wmÕòxÓ¬„ØÙãÐö èI¼ããã!|>???Ÿé¸¤†ÇBÂÃÃõôôZõñña:@`›^½zEGG«©©Ý¸qÃÍÍrûöm]]]¦ãv&޽{÷þûï¿Z%H xyyùøø„††š™™YZZ8p $$dÕªULÇ 5Ñ—>ÜEÐiegggeeYXX(**ÆÇÇ×ÖÖÚÚÚ2ÔÿCëí îqìˆØÙãÐfÒÒÒ444´µµÓÒÒ!zzzÙÙÙ„ z¯„32´HZÄÅÅÅÃÃÃ×××ÅÅ¥ÞèäÖ@âÐ" ôdÝIIILÇк8´HBBBãÚÕmŽ-ÁÎÄ166¶ñÍhÇkjjöîÝ{öìY%%¥qãÆ-Y²ïfBˆ§§§p¹²²R p8‡C¿lÇã]¸p餃‰ck´ãAAAçÏŸ „¬^½Z^^ÞËˋ銂ô‰þÀv ál_ÑÑÑ;vìð÷÷·²²âp8÷ïß_·n™™ÓH ;ßó÷¿víÚe``ðÃ?$&&&&&?~ÜÐаíxUUUDD„¯¯¯££££££¯¯ï?þH§¡À&ôt BèT†&Ù»w¯ŸŸŸ¼¼¼œœœÍ† Î;÷öí[¦Cv&ŽBÒjÇSSSËÊÊè—‰Bìíí “““™®H&ñ‚ÊÍÍUQQÝ¢¤¤¤¬¬¬¦¦ÆthÒÁΡj!iµãyyyGGG‡^ÕÕÕåp8õNMMEOUU÷‡?%³:V*?dÈo¿ýV]]R\\laaEÀ,O¥ÕŽWUU)**r¹ÿtÐr¹\…âââz cÚ¶J¬Ó}Ð$þþþ3gÎtttìׯ!$99YSSóĉLÇ 5,O¥ÕŽ«©©UTT:w•••~b7dÐTúúú‘‘‘W®\ÉÈÈàr¹nnn£G–““c:.©ayâ(­v\[[›¢¨¢¢"mmmBHaa!EQ‘k` Ñb5B3ÈËË?žé(Z ËGBˆ¼¼¼………¶¶¶­­meeeó~ýkjjÆÆÆÒÿ%ܹsGKK ïŸe%ä‹ ayâXZZºlÙ²?þøƒ¢¨”””Y³flÚ´III©IÇ‘••uuu êÕ«WmmmPP««+ý’1€N‚åÓñ¼{÷îæÍ›222„åË—?zôhçÎÍ8”··÷'Ÿ|âíí½dÉ—Å‹3]9€6ÅòÛÿ---û÷ïÿøñcBÈõë××®]Óz'åóùxª sJNNÖÐÐÐÓÓ»yóæo¿ýfjj:cÆ á„ ŒCëíJSŸAlÕòx RBí¥9k%ÕÕÕ]»vÝ¢££S[[Ët\ÀB§Núì³Ï=zôòåËE‹½~ýzÏž=û÷ïg:.©ayâheeuìØ1á»KJJ‚ƒƒmll˜Ž X(,,Ì×××ÉÉ)**ÊÐÐðÈ‘#çÏŸg:.©ayâ¸fÍš{÷î9;; ‚iÓ¦988äçç¯[·Žé¸€… è“ÆÇÇ;88Bø|~~~>ÓqH ËŸ îÖ­ÛÅ‹/_¾œžž®¢¢2þ|‡ös¿°I¯^½¢££ÕÔÔnÜ¸áææF¹}û¶®®.ÓqH ËÇãÇ6lâĉÂ-ëׯߵkÓ¡Ûxyyùøø„††š™™YZZ8p $$dÕªULÇ 5,†ˆÏç+**nÙ²ÅÅÅ…ÞòîÝ;KKËV}®Ï-tZÙÙÙYYYŠŠŠñññµµµ¶¶¶LõÿÐ:A»‚§ª;"–÷8B–-[¶víÚ¬\¹Sv€Ô=þ\FF¦{÷î\.×ÀÀÀÀÀ€ÞnmmÍthRÆþ»ý\\\Μ9óçŸΘ1ãÕ«WL‡l3fÌ'''++«Ó§O3 @ëbâHáñxçÎÓÔÔœ4iRll,Ó᫜:uêôéÓׯ_Ÿ2eŠÔ^SS4lذ1cÆ52”V]]maaQQQÁôõ6ë,C·***û÷ï?tèÐ7ß|Ãt,À*æææì}ýúµŽŽN³tþüù€€BÈêÕ«ååå½¼¼ê+((.--eúbH„Ãሮ~ðÆ2Ñòì¾ ­©W¦%Çg÷•„ÖÃòÇ£G*++ÓËç믿 ›1cÓq ýôÓO¢«µµµGŽùøã›}Àªªªˆˆ___GGGGGG__ßüQøF¡ÐÐP;;»³gÏ2}$B?‚ J,[j¼|ã…;´¦^™ŸÅWZ;Ç´´´‚‚Bˆ¶¶vfffšWWW¦Ú¾}ûñãÇéåøøøÏ>ûlÏž=_ýu³˜ššZVVFO*N±··/,,LNN+æéé™’’rêÔ)¦/@[@ÆÓÓ{¼Ñ­[·}ûöQõðáCáÆfYMM­¢¢BxS£@ ¨¬¬TSScºÆ-"6ÖüÁlF´<»©›zešAôJ"‰„æagcyyù! ¢»òòòÒÓÓ™ØÃÆÆ¦îÆ]»v _mÚìN>mmmŠ¢ŠŠŠ´µµ !………EµäívB˜!I˜¾˳>×iê•iêÁé##k„–`gâXSS“‘‘A/ h\.wýúõLí¦«€¦ºzõj+ÙØØXSS366vüøñ„;wîhiiñx<¦k,M9í<ÏÄ´Á˜2Z6h v&Žªªªû÷ï'„Ì›7^„X{ßå ‰ž={Š®¾zõ*##£¶¶¶OŸ>Ý»woÉ‘eee]]]ƒ‚‚zõêU[[äêêJßÀ®¥¥5vìX¦k ;G¡°°0¦C€i"´Pee¥ŸŸßÅ‹éÇYjkk?ùä“€€EEÅfÓÛÛ»ººÚÛÛ›âââ²xñbzûÉ“'y<Ghc,ÿŸ2))iÆ /^¼Û~÷îÝÖ;)ŸÏo?Ï-‚äê&ŽH%¡I¶lÙrãÆ­[·Òï’IHHðóó³³³[·nÓ¡ý£]µNMý~užïc«Ö´]]ÆÖþ7ФòíêÊ´g,¿L“&M’——Ÿ={¶ºººèv[[ÛÖ;i»jš¡I0T -1räÈÍ›7 çë&„ÄÅÅ­\¹ò?þ`:´´«Ö ‰##5mW—‰cGÄò¡ê§OŸ†‡‡8é@ ãé$w⃕——«¨¨ˆnQQQ)//g:.©aç<ŽB:::LGý<£pº üú„&±°°Ø·oß»wïèÕ²²²o¿ýÖÒҒ鸤†å³qqq[·n]´h‘©©i—.]„ÛéIÑZI» €6“——7sæÌ¢¢"‡“œœ¬®®~âĉ=z0Ú?ÚUë„¡jFjÚ®.#†ª;"–_¦þýû ‚ºulÕ¦³]5ÍЖ޿åÊ•§OŸBúôéóñÇÓo±j'ÚUë„Ä‘‘š¶«ËˆÄ±#bù=Ž‘‘‘L‡ˆœœœ•••––=c»ÊZŽå‰#=1onnî³gÏlmm+++˜ Ø©5æqhWXþpLiié×_íää4{ölBȬY³|}}ËÊÊ˜Ž Xh÷îÝIII'NœHJJJJJúñÇŸiûùMm {÷îûöí{õêÕãÇ 455MLLôõõ™Ž @ÊXž8Ö ƒv÷îÝÆ?xéÒ¥%K–ÐË.\àñxLWÚˆðþWŒY@S‰¾k€•Xž8îÝ»W¸\UUõøñã#Gޏ»»ðƒÎÎÎýõ½¬¤¤Ät= ˆÞãBgH„Xž8нZÐÑÑ‘Ïç/]ºÔÝݽ‘§[!²²²bóøë‰ÝMQT3ž¾`1–OÇSWŸ>}êΚÄòG±7Ä”””„††êëë7ÞÝÐÆjjjöîÝ{öìY%%¥qãÆ-Y²¤n‡wCe>(,¦¡¡qçΦ+ìÄòÄÑÆÆFl‹œœÜŽ;š}@sss<1ÍVôØ´Ø=Žm#((èüùó„Õ«WËËË{yyIX&;;ÛÉÉiúôét1YY–7ìÀ –·/W¯^Û¢££ƒîFhˆè}x,ÚLUUUDD„ŸŸŸ££#!Ä××7((ÈÓÓ“ËåJR&;;ÛÖÖÖÞÞžézû±üÇåË—÷ü¯÷ïßÏš5‹é¸ ý¢þÅt Љ¤¦¦–•• 3?{{ûÂÂÂääd ËdggëëëWVV–––2]`9vö8–——8p€’ zë!$///==éþ_^^‡ÃÑÑÑ¡Wuuu9NAA$eAnnî‘#G|}}Aÿþý·lÙ2`À€†ÎE¿× ·Ü@ó°3q¬©©ÉÈÈ —… 4.—»~ýz¦øUUUŠŠŠÂi.—«  P\\,I™×¯_s¹\kkëC‡UVVnݺuÁ‚—/_nhB1¤ŒÐìLUUU÷ïßO™7o½Ðn©©©UTT:/•••jjj’”ÑÓÓKLLÛ¾}ûСCccc™®°Ëïq .×ÖÖ2@=´µµ)Š***¢W )ŠŽJK^†¢¢¢¢££#6Ì -¬M³²²BBBÒÒÒ!UUUK–,1336lØñãÇ™ à?Œ555cccéÕ;wîhiiñx}!qqqK—.‰‰i½³óù|<·íP»jD_ÔÔå;®V­i»ºŒ­ýo IåÛÕ•iÏØ9T]ZZ*##C/ß¾}[WW—ÎieeeLÐñ°3q444ÞB5tèPá®ÄÄÄž={2 @ÇÃÎ{]]]wíÚÅáp²²²îÝ»çááA±±±‡òòòb:@€Ž‡µ‰cIIÉ™3gÞ½{·páBGGGBÈ’%K¢¢¢¦L™âææÆt€O'º4##CGG§¡×pIQ»ºý@¨]µNx8†‘š¶«Ëˆ‡c:"vö8Ö«wïÞL‡ÿ×ÞýG5uÞ‰(¿ìAש’RVRÐPT6ÆY#¬Ê™œz ”¨"œZz<‚(͘-íj Ô³¢(*ílQ×2Žr4à˜LÆ6 EA‘á‡ò#Jr¿Ü™åË//b¸7ÉûõWž'ñ}Ÿk>Ü 0ã¼9ž;ŽÀ G`Ä„®qæ´ß[ÈäŽ) æTr}×÷Ìèõõ9µ[#pÄ`Êúûûù|þýû÷µ=‡âé°··g;#À³£ÿSO<õ›¯G f÷›²§fª[Ê™™j˜iÎäó}q0\8âðÿ<õ/ìšš©T:êÙï¾ûŽÏçËd2GGǼ¼<+++¶·`Zžù§ŠŒ§†õ ,ôøÉ·S33cŸÚÃdfÀD pøÝ•‘^âG-”þþþýë_Gý”F£©ªª üýïOñññùå/yçÎ|¹%‡É‹NÕ3†S3ƒÚfNUŒoÜõ·´´”¢¨O?ýT·³¡¡axx888xhh¨¿¿ßÏÏ¢(T`è?Ÿ&/G´Ò¸p ñ™Ã<ÛxŽÌ “0Ó|q-ŽÿõÌË.ýUG3gŽ­­­­­mqq1Û[0-Ï\.pªÎxj˜Q§™,œšýÍö3Ì ˜ŽÓu÷î]BHOOOaaá×_-¤Ri{{;Û¹ž‘îýL*†QƒÙ­0¦fª[Ê™™j˜iÎäó}q0\(þë™/]_´h!¤¤¤$""",,ìúõëjµ:;;›í ˜ºV`X1Li0§’ë{¼¾gF¯¯Ï©Ý ›cþgTíÈp¹trr"„¸»»ÓÍ_|ÑÌÌìöíÛlo Às†#Žÿ¥ƒá455™™™•••ÑÍúúzµZíååÅö¦ÿ¿§ø|¾¥¥e__߸ƒMöWèÛ¨/z6âï}6âMc…ãøJJJvïÞM?þöÛo]]] !ÍÍÍï¾ûîíÛ·?øà©TÊvFbkk;44¤ÑhèÚQ£Ñ ÛÚÚ² L޶¢2â“ÔäÉYxmíh‚u$ ÇñVUUÑ­¬¬!7oÞŒŽŽö÷÷ÿãÿhggÇv@Bqpp (J©T:88Bº»»)ŠÒž¹˜º%£ÑRºWpýÆŽ…›cÆgnnnýŸÏ‘ÉdQQQGŽAÕÜ! íìì ݬ¨¨°··§O’Ì0úFc¶SÌÜ–šÈÆŽ‚#ŽŒ\½zµ££ÃÍÍM»:B\]]é?ñØbnn)—Ë/^¬V«årydd¤¹9ÖvÐ ,.Œ466RµsçNÝά¬¬M›6± LL&{ôè‘L&#„lܸqÇŽl'£eruÀ³Á5ŽÀ G`…#0‚ÂAጠpœ‚‘‘¹\îãã —Ëǽ!½¯¯/%%ÅÛÛÛËË+..®©©‰îïííMNN–H$>>>ûöíëííåNæ»wïÆÄÄxyy½öÚk3™mšñ&šj®åÔª¨¨x饗†††8›³¸¸800ÐÓÓ3&&¦½½]9§•­w“áb2ÛÆáØ±c"«V­b;‘^úhì˜øøøõë×———Ó_Qèçç700@QTllìúõë++++++ׯ_Ç‘Ìjµ:,,,::ºººº²²Òßß_&“qgJ'‰7ÑTs-'­¿¿ßÏÏO(rs>Oœ8áîî~úôéòòò°°°-[¶è/ç4£²õn2\LÖ.ãðÞ{ïÅÆÆ–?¡P(ØNôüuvv¦¤¤ŒZLŒr»¥¦°‹9…#SÃÃÃ+V¬8sæ Ý,**’H$jµZwÌÀÀ€H$*--¥›}}}nnn¥¥¥*•ÊÍÍíÔ©Staa¡›››J¥âB憆¡PX[[K7¿øâ‹åË—ÃÁxM5×rjìÙ³'$$D¯…ãtrªÕê5kÖ|öÙgtee¥P(¼wõn2\LfÛhDGG;vŒíz”““#|B»˜å.wK)ØÅ܇SÕL544 øúúÒM__ßîî:Ý1­­­Ë–-‹ÅtÓÊÊÊÒÒR©TBø|þìÙ³é~KKK>&fžIfBÈæÍ›_zé%úñÏ~ö³û²²éÄ›dª9•“ö—¿ü¥ªª*!!³óÙÔÔÔÞÞL÷{{{×××;;;s0*aéÝd¸ζqhiiY¸páðððÇÙ΢o¿ýv}}ýÉ“'u;r»¥Äv1÷aÁeª­­Çã9::ÒM'''×ÕÕ¥;ÆÅÅåìÙ³¶¶¶t³¤¤dppÐÓÓÓÂÂ"888??¿¾¾¾¾¾>///$$Ä‚ ™]]]8`ff¦T*«ªªŽ;¶qãÆ™ùM”J¥›6mR( …"88X*•ÎÀavæ™ !§Nª¨¨ ‰ŒŒæÔ”NoìTs-ç¹sçîÞ½»k×.ŽÏ§@  (*##cõêÕË—/ÏÊÊêìì¼zõ*£²õn2\Sšmƒ¶`Á‚šššwß}×ÎÎÎÙÙùСC=== …‚í\z‡]Ìv.ӂ‘)Š¢´WÑuwwS¥=5 uóæÍðððŸÿüç—.]’J¥tç•+WŸ?00ŸŸ/‹ÛÚÚÒÒÒ¤R©D"!„´¶¶º¸¸”——FEEuvv¶|ØÏÏÏÏÏ/++K£ÑÐý6lرcEQ¹¹¹Â1þüç?SÕÔÔ¿råÊU«V½óÎ;MMMÉLQTuuõo¼±bÅ ŸÄÄͶ6îLéDñ&™jNåÔE8¢^?|:9ÕjõáÇ׭[·råÊ„„„ÎÎNýåœfT¶ÞM†k¢Ù6>·nÝzë­·V­Zåë뛚šÚ××Çv"½øûßÿ>j11Ö]©TZPP““Û××~éÒ%¶£°Éœíœ#—Ë{{{¿ùæº',,,33sÿþý‰„ít¬ÁG0Tííí2™L"‘¬]»6%%åáÇ„¸¸¸„„í˜/¾øÂÏÏO£ÑŒ;øÎ;/¿üò­[·~ó›ßdggB®_¿þúë¯{xx¬\¹R&“iO÷tttÄÆÆzyy…‡‡óÍ7"‘¨µµu¢ `躻»OŸ> ­i2™ÌÜÜüäÉ“t³¶¶vóæÍb±822òŸÿü'Ýùý÷߇……-_¾Üßß_;r\ôTYYéïïïááN¿È¨ÓÍ …ÂËËK;þ믿–H$b±811±³³sÇŽ¯¾új``àµk×´¯|øî?uê”P(¼wïÞD/Ëö„Àt9sfÙ²eã>•žž.•JéÕãôéÓtçãÇýüü>ùä“òòr‘HÔÒÒB÷—––¶··Oô¯Ð/rñâEºYRRòꫯjû{zzèþk×®éöWWWÓý‘‘‘‰‰‰ôão¿ýö•W^ÑŽŒá2ðT¸Æ ÒO?ýÔÒÒâîî®í¡(ª¹¹Y"‘øúú~ÿý÷«W¯¾pႇ‡ÇÒ¥KÏ;7îà… BV¬XAwΟ??44ô‡~¨¯¯¯«««¬¬|íµ×! "‘ÈÊÊŠ¦?Qggg¶§¦eáÂ…?V*•vvv£žjooá…èÇ+W®¤˜››{yy566nÛ¶ÍÃÃ#((hÍš5ÞÞÞ ,˜üßÒ®!óæÍc’mÑ¢Eô[[[ÝǺcÆ`² < G0HÖÖÖžžž'NœûTppð¡C‡ÒÒÒ.^¼>Éà;wîBæÎK7üñÇ-[¶¸¹¹¬]»V(Þºu‹¢V«y<žö§´'ÉÍÅÅ…Çã]»vmãÆºý*•ªºº:22rìðù|sss@PXXXUUuåÊ•¢¢¢¬¬¬œœœÕ«WOòoÍž={ò0*•j¢§t—¦‰ÐÁ.ƒO…kÁ …Âÿüç?ýýýt³ªª*""bxx˜ò«_ýª¿¿ÿ»ï¾««« ž|°®‹/Ο?ÿøñã[·nõòò¢û]\\êëëéæÍ›7Ÿš šƒƒƒT*•ËåJ¥R·ÿèÑ£ÃÃÃo¼ñݬªª¢¨Õê¿ýío®®®×¯_ÿì³Ï¼½½“’’Ο?/‹ÏŸ?ÿl´kË¿ÿýï©þìØ`X¯àyÁG0º˜ ‚µk×.Z´h÷îÝ»wïîììÌÌÌ\¶l™¥¥%!ÄÊÊjõêÕ\»víüùó !“ Öegg×ÑÑqýúõÅ‹_¾|¹¸¸X(ªTªÀÀ@¹\¾wïÞøøøŽŽŽ¼¼þøã·ß~»±±1??ªádz²²ÂzÏ G0EEEEEEÚ¦X,>qâD~~þ¶oßnff¶nݺ={öh•––†……ÑM>Ÿ?É`­Í›7×ÖÖÆÇÇÏ™3'00ðóÏ?ßµkׇ~˜’’rüøñýû÷Ó'²÷íÛ÷æ›oÚØØ0|Y0DóæÍ;sæÌçŸ^RR’íäääîî^\\¼dÉz€@ HHH8zôè½{÷ÜÝÝOž!¤¬¬,%%E¡P° Œ}ÁŒ@ `;Àÿàˆ#ÀSXXXdddôööFDDtuu}ôÑG£®—ДŒÀA8âðt …"++«±±ÑÉÉiÍš5ÉÉÉææø£ L G`ÇŒ pFP8#(€ŽÀ G`…#0‚ÂAጠpFP8#(€ŽÀ G`…#0‚ÂAጠpFP8#(€ŽÀ G`äÿ ‰ù=÷3IEND®B`‚statistics-release-1.6.3/docs/assets/fpdf_101.png000066400000000000000000000552401456127120000215750ustar00rootroot00000000000000‰PNG  IHDRhŽ\­AZgIDATxÚíÝy\UuþÇñÏeQQÁ ´&WR´Ô'4—qÍ´1S3Ã,Ç—1Ò\¦Å´rÁŸi¶<"sÃÜMSÈTD· ¥#àüþ¸EWÖw9çÞóz>|ô€sï=çó=‡äí÷{¾ßcRE€Ê¸i]œÁª  Áª  Áª  Áª  Áª  Á€‹;yò¤©23gάÒgëÖ­>qâÄ .Tú~__ß?ÿùÏ/¾øbVV– Ë#8@•ýüóÏÇŽ{çwî¼óÎÿý°°ðÊ•+‡^°`Appð¡C‡´.ªÉCëÀqüüü¼¼¼JooРúÏþú믗/_.**‘7nLœ8ñĉuêÔ)ïý7nÜ(îhÌÉÉ:thjjjÍš5m[8Á€¬_¿¾OŸ>ÖöçŸ~ê©§Ö¬Y#"ß}÷]BBÂÀ+xÿùóççÌ™óŸÿüGD.\¸°råÊéÓ§Û¶<p†ª Ê¼½½ßxã OOOó·§OŸ®øý-Z´X³fÍ AƒÌß.\¸ðÆZ7ªŒàÕáååÕ¸qcó×W¯^Uó‘§žzÊüEVVÖ¾}û´nTÁªãÚµk?üðƒùë   5‰ŒŒ¬Q£†ùëÇkݨ2‚#éÛ·oéÅnž~úé*í¤  àôéÓ£G.,,4o¹çž{Ô|Ðd25mÚÔüõ÷ßo§òÀ~˜ªôíÛ·Ìíýë_;vì¨r'5ÊÌÌ‘ÜÜ\­UFp` e®wÓ°aÃjï°C‡+V¬Pÿþ+W®˜¿¨W¯žÊÛ"80kÖ»±Lu¡¡¡Ýºu{ê©§jÕª¥~'Å#Ô~~~¶-€àªXŸêöíÛ—ŸŸoþºsçÎZ7ªŒÉ1à ŃÚuêÔéÞ½»Öå@•Àî¾ÿþû‰'nÞ¼Ùüí˜1cêÖ­«uQPe U€]Œ;¶víÚ"rãÆË—/ooܸñ?ÿùO­«€ê 8€]\ºt©ôƆ ~úé§¾¾¾ZWÕApûrww÷ññiÛ¶m¿~ý¦M›Fjà¼LŠ¢h]œ“c  Áª  Áª  Áª  Áª  Áª  Áª Š‡Ö8B^^ÞÆ7oÞ|áÂ…ºuë¶k×nüøñÝ»w¯à#C† ùöÛoKlôõõÝ¿¿Ö­ІëÇ‚‚‚qãÆ%%%ùøøtíÚõÖ­[_}õÕ¾}û¦M›6eÊ”ò>•™™éååÕºukËõë×׺5šqýà¸iÓ¦¤¤¤ððð÷Þ{ÏËËKDΞ=;zôè7ß|3***$$¤ôGrss¯_¿>`À€åË—k]>€^¸þ=ŽÛ¶m‘çŸÞœE$((hÒ¤I………å;gffŠH‰îFƒsýà˜žž^§NöíÛ[n ‘óçÏ—ù‘ŒŒ iÕª•ÖµèˆëU¯ZµÊãd3Ož<)"-Z´(ó#æàxùòå±cÇ&''×®];44tÒ¤IúÓŸ´n €fLŠ¢h]ƒ£:thÊ”)¿þúkBB‚¯¯oé7üãÿøè£D$00°]»v/^}z„ ÙÙÙíÛ·oÓ¦ÍÅ‹“’’j×®ýæ›ovéÒ¥ÒƒO²3™Ä¥Ï.JJOO Ôº h€KoX\zÃ2ì„z¿ÇÑ܉˜——wâĉү–7EæÎ;ïüøã_{íµƒž={¶E‹ÑÑÑÓ¦Mó÷÷׺AšqñGMÐãhXô=—Þ°¸ô†eØG¿Ç¶Bp€*G¨Bp€*G¨Bp€*.¾Ž#ÀÁx4+œ‘1×Ö©‚#ÀÆø ç¿vÔc¨ª  Áª  Áª  Áª  Áª  Á€Û=zÔd2mܸÑüí‚ |}}ïºë.­ë2b+ 7GÊuêÔ©_|1$$döìÙ%^ŠŒŒœ7ožŽkÛ—nÅñãLJÞ´iSooˆeË–ØêpvÝ9´Ep \©©©"2wîÜ#FXnOLLÜ¿¿jó—hEZZZ¯^½¶mÛÖ¿ÿ˜˜˜5jÄÄÄ :Ô&DzëΡ9­ @¿E‘Zµj™¿-((HHH8pàÀ[o½UTTdÛcÙoç%ZsýúõC‡uêÔIDæÏŸ?a„5kÖlß¾½_¿~VË®;‡æèqÝž={î»ï¾† †††Îœ93??ß¼ýÑGŽŽ‘=zŠÈ•+Wúõë7oÞ¼¬¬,›—aåÎÕ·"!!!22Òì̦N*"´¾vÝ94G#ÀÐ>úè£aÆ5jÔhĈnnnqqqŸ~ú©ù¥3f´lÙrþüùK–,1'!???sï]JJÊwÞiÛJ¬Ù¹úVL™2%""Âòã"R³fM+›`×CŽãúå—_bbbš4iräÈ‘fÍš‰ÈìÙ³‹sO‡Î;'"]ºtéÞ½»ÖÅÚ¬‹-²üøÕ«W-Zäîî>dÈ++ñðð°ßΡG€#˜LZ]QÊÞ~ìØ±ŒŒŒÅ‹›ó–ˆøûûO›6mÖ¬YV±  `Ë–-å½úÐCÙ°uÖ´âË/¿œ8qbjjêÊ•+ƒ‚‚lÛŠŠwgDp8ByÑM[gΜ‘ððpËaaaÖïùÆæ; Ë9¶<ÕkEffæÔ©Sããヂ‚vîÜeÃV¨Ù9œ“cÆåáá!"¦Û»CÝÜlðËÑÇÇG)Ÿæ­Ø°aC‡¾þúëU«V:uª¼`W½V¨Ü9œ=ŽãjÛ¶­ˆ=z´W¯^Å“’’¬ß³#‡ª«ÚŠøøø1cÆ 6ìí·ß®W¯žm[¡~çpFG€quìØ±M›6K—.9r¤¿¿¿ˆdee­X±Âú=;r¨ºJ­PåÙgŸmÑ¢Ell¬»»»m[Q¥ÃÆåéé¹dÉ’aÆ……… >ÜÓÓsãÆ6Y£Ñ<ÈkÃR7lØ0yòäG}téÒ¥Ö´"99ùôéÓ!!!=öX‰—úhtt´ˆôèÑ#00PD®\¹Ò¯_¿yóæeeeÙ¼Œ„„„ÈÈHs˜3›:uªˆ-"=zô ‘+W®ôë×oÞ¼yYYY6/ÃÛ¶mkïV$$$DFFšƒÙÔ©SEäàÁƒÖ·Â®;‡æèqÚG}4lذF1ÂÍÍ-..îÓO?5¿4cÆŒ–-[Ο?É’%æ$äççgî½KII¹óÎ;m[IjjjÍš5ëÖ­ûÁ\½zµ}ûö;w®Q£†m[QPP0eÊ”ˆˆËgddˆHÍš5­l‚]w= 8Œë—_~‰‰‰iҤɑ#Gš5k&"³gÏ.Î=:t8wtéÒ¥{÷îö.&55ÕÍÍ­mÛ¶999æ-!!!±±±ááá¶mÅ¢E‹,?~õêÕE‹¹»»2ÄÊ&xxxØoçЂ#ÀQL&Í­(en>vìXFFÆâÅ‹ÍyKDüýý§M›6kÖ,+XPP°eË–ò^}衇JoLMM-**š7oÞ!C<==?ýôÓ§Ÿ~:::úĉ>>>ËšV|ùå—'NLMM]¹rePPõ­P¿s8#‚#ÀQÊIo:s挈”èÒ ³~Ï7nÜ0ßYXΙ(ãT|ùå—µjÕjذ¡ùÛñãÇߺukÊ”)›7ož0a‚Í[‘™™9uêÔøøø   ;wFEEÙ¤êwgDp—‡‡‡ˆ˜nï us³ÁÌQ¥ŠA9  Ä–ûï¿_DNžÛ¢E‹ØØXwwwÛ¶¢J;‡3"8ŒËÓÓsÉ’%Æ >|¸§§çÆm²FcUy›4i2oÞ¼çž{.((hÀ€õë×ß¾}{bbâÂ… CCCEdÆ “'O~ôÑG—.]jM+’““OŸ>òØc•xiðàÁ´¦UÚ9œÁ`hƒ JHH˜?~lllNNŽO\\ÜСC_ɳÏ>{Çw¼úê«qqqµjÕºûî»·nÝÚ¿ó«ùùù×®]ËË˳²æeÆ““““““K¼Ô¶m[+³]w=0Uã¦W#ÈËËÛ¸qãæÍ›/\¸P·nÝvíÚ?^å"^ÁÁÁ)))æ¯M&N"„Õ,o@·¸¾éééæ§2Àh¸ô–,ÿt:—.]jÔ¨‘n—ª~÷ÝwOœ8±|ùr§n…Uã‡Ö©έAc Æ—””äããÓµk×[·n}õÕWûöí›6mÚ”)S´®Z3ÝK~ À™•ž×¬·nÝÚµk—šÇ=ë¹pvÇ2lÚ´))))<<ü½÷Þóòò‘³gÏŽ=úÍ7ß,1ß †S:&*dGŽpðàÁ‘#Gj] ÍKU¹žmÛ¶‰ÈóÏ?oN"4iÒ¤ÂÂÂýû÷k]´C@ Þ½{¿ð ¬‰mËžž^§NöíÛ[n4?+éüùóZWýQn¿ëÅ?\ʰjÕªÒÿ¤3/ÜߢE ­«ƒFènÁ± æ³,:thõêÕ5kÖ¬`TKÁÁÁ¿™bþÚ<ü ç(ééé徜&¦À {.h]&´qá—pný /R¼(Ž•(,,\¿~ý«¯¾ZXXøÚk¯ùúúªù”år<Æœ®ï’*]o¥yóæ¬ÉbX\zÀ©Uü¿pé_å=DÆBp¬ÈW_}5oÞ¼sçÎùûû/\¸°[·nZW¨§V$ÐÈp6À…Ë–ŸŸ¿xñâØØØZµj=ùä“&L(ža `LÇ2͘1cÇŽ}ûö3gN“&M´®šbZ "Ârúhtt´ˆôèÑ#00PD®\¹Ò¯_¿yóæeeeÙ¼ŒŠwþþûïûûû;Öüm›6m† ²{÷îË—/Û¶ ‘‘‘æÔh6uêT9xð ½Ûý#8å`9FÀ>ú裨¨¨ãÇ1¢OŸ>qqqãÆ3¿4cÆŒ—^zID–,YòßÿþWDüüüEQåôéÓ6¯¤‚çææž9s¦wïÞ&Óÿ*ŠŠ***Rs§£ú6L™2Åœ‹eddˆHÍš5íÚF8†ªÆõË/¿ÄÄÄ4iÒäÈ‘#Íš5‘Ù³gGDD˜_íСùsçD¤K—.Ý»w×°Î~øAQ???Ëæ‡âVÚuWÕ6.Z´ÈòãW¯^]´h‘»»û!C4<Ð ‚#ÀA´½ƒ£Ì!„cÇŽedd,^¼Øœ¨DÄßßÚ´i³fͲòp[¶l)ïÕ‡z¨J{»yó¦ˆÔ«WÏr£ˆ\¹r¥âÏZÓÆ/¿ürâĉ©©©+W® ²kᎀ}ðìA þqæÌ ·Üfýžoܸa¾w°ìS¡TídøúúŠÈO?ýd¹177WD6lh6fffN:5>>>((hçÎQQQön#œÁ( ™0±¼qPDÜÜl0ÀÇÇdžÉÉÏÏÏÍͭĨtvv¶ˆ÷#Ú°6lxüñǽ½½W­Z5~üxóìÝF8‚#À¸Ú¶m+"GíÕ«WñƤ¤$ë÷lÛa\ÐÐн{÷ZnܳgÉdjß¾½mÛ?f̘aƽýöÛ%ÇíÚF8‚£})Š˜L¿Ç@Ÿ:vìØ¦M›¥K—Ž9Òßß_D²²²V¬Xaýžm>Œû÷¿ÿý©§žúì³Ïþò—¿ˆÈ?þ¸yóæûî»Ï¼†Ž­Ú¨(ʳÏ>Û¢E‹ØØXwww·úGpì†ÛÝóôô\²dɰaÆîéé¹qãF›,1hóaÜqãÆ­Y³fÔ¨QS¦L©_¿þÚµkoÞ¼YüȾ 6Lž<ùÑG]ºt©5mLNN>}útHHÈc=Vâ¥Áƒ8Юm„þ†6hР„„„ùóçÇÆÆæääøøøÄÅÅÙü {Ö«W¯ÞîÝ»gΜ¹yóæœœœ®]»®_¿¾xŽK~~þµk×òòò¬l£ùñƒÉÉÉÉÉÉ%^jÛ¶m‰à2ño› NII)þ–¡jçSÝnÂôôô’cFô8C—ÞÀJüè\.]ºÔ¨Q#›¬tíxï¾ûî‰'–/_îÂm´“jüÐ:õϹ5xr ¿ pÒDuëÖ­]»vuìØÑ…Û= 8öÄC«8ÄÁƒCBBFŽ©u!pqÜã€ÓëÝ»wïÞ½µ®®G¨BpnÇtÊAp€*GÀΘpG¨Bp€*G¨Bp,0¥€òûc~ À%  Áª¸ÍÑ£GM&ÓÆÍß.X°À××÷®»îÒº.δGp \§NzñÅCBBfÏž]â¥ÈÈÈyóæÙé¸eîüúõë“&MjÙ²¥··wddä¡C‡Ô¿jÃ3püøñáÇ7mÚÔÛÛ;""bÙ²e.|`‰àüήSª™8§ÔÔT™;wîˆ#,·'&&îß¿ßN-sç¹¹¹ÿùÏzöì9a„sçÎõïß?11QÍ«6<iii½zõÚ¶m[ÿþýcbbjÔ¨3tèP>°Dp \Š¢ˆH­ZµÌßìØ±cîܹýúõ+**²í±*ÞùÒ¥KSSSW¯^½~ýú+VìÝ»×d2͘1CÍ«6<111ׯ_ß¹sçÚµkçÏŸàÀñãÇòÉ'Û·owÕ3€Û(°µvíÚY~Ë9vV_©´´4»îºUÉ¥7˜:…Ý»w÷íÛ·Aƒ!!!Ï<óÌDäý÷ß7n\ñ¯ËÖ­[+Šòý÷ß[þ;w® ˨xçÁÁÁþþþEEEÅ[{ì177·K—.Uúª Ï@ݺu{õêeùÙcÇŽ‰Èœ9sœ÷ Tã‡ÖÎm‚G€¡}ôÑGQQQÇ1bDŸ>}âââŠÓÒŒ3^zé%Y²dÉÿû_ñóó3ÿú<}ú´Í+©`ç¹¹¹gΜéÝ»·ÉôÇ]/QQQEEE‡ªøUž‚‚‚)S¦L:Õòã"R³fMç=PÏCëÐÌ/¿üÓ¤I“#GŽ4kÖLDfÏža~µC‡çΑ.]ºtïÞ]Ã:øáEQüüü,76iÒDD²²²*~Õ¶g`Ñ¢E–¿zõê¢E‹ÜÝ݇ â¤gUBpEᑆ0< §ˆ•ó¿Þ±cÇ222/^lÎL"âïï?mÚ´Y³fYyÀ‚‚‚-[¶”÷êC=T¥½Ý¼ySDêÕ«g¹ÑÇÇGD®\¹Rñ«ïÙš3ðå—_Nœ8155uåÊ•AAANzP%G@Dˆt€Cèïÿ²3gΈHxx¸åư°0ë÷|ãÆèèèrÏ„Rµsáëë+"?ýô“åÆÜÜ\iذaůÚã dffN:5>>>((hçÎQQQÎ{P%G€qyxxˆˆåq"âæfƒ >>>UÍFðóósss+1êš-"Íš5«øU›Ÿ 6<þøãÞÞÞ«V­?~¼yÎ{P%G€qµmÛVDŽ=Ú«W¯âIIIÖïÙ¶µ¡¡¡{÷îµÜ¸gÏ“ÉÔ¾}ûŠ_µíˆ3f̰aÃÞ~ûíCÃNzP5ZOëvA,Çã”lq™*_“…År<–œk™’üüü6mÚ/Úòã?6oÞ\DÞÿ}EQ>ùäÙ·o_‰š§ýV°ϵkתý˷̯X±BDâããÍßþðÃ~~~÷ß¿šWmuŠŠŠî¼óÎÖ­[Tºgg9 ËñT=Ž€1?ÐOOÏ%K– 6,,,løðážžž7n´É<\ÛԊȸqãÖ¬Y3jÔ¨)S¦Ô¯_íÚµ7oÞ,~(_ůnذaòäÉ>úèÒ¥K­9ÉÉɧOŸ yì±ÇJ¼4xðàêö ÀVŽC4hPBBÂüùócccsrr|||âââlþ =ëÕ«Wo÷îÝ3gÎܼysNNN×®]ׯ__<‹¥âWóóó¯]»–——gå0?~099999¹ÄKmÛ¶-uu`+&Ûþk"œ’’Rü­É$œc'`‹ŽÀôôôÀÀ@z£êÒF‰¿Ë¥K—5jd“µ¬õæÝwß=qâÄòåË {*PZ§þ9·OŽs~à’™éÖ­[»víêØ±£aÏl…à€‹;xð`HHÈÈ‘#µ.N{pq½{÷îÝ»·ÖUÀÐã8–¢éS×°Áª  Áªax¬Å€:G¨BpމÕçÄ:Žv§(üÁ¿!11qÍš5ýúõÓºX¸.óŠ<質EDvïÞýôÓO}öÙg"òÒK/M˜0á…^ذaC›6m.^¼˜””T»víE‹yyyi],€6èq,ÃwÞùñÇGGGgggoß¾ýúõëÑÑÑŸ}öY—.]´. @3&Ea¦€—¹Ž#gZì99&==ÝÚݘ»ãœlpé᜸ô†Uæïz# Çª  ÁÑAELL˜ÎŒà#Ñÿ„¬ÈÐ1‚#T!8@‚#T!8@‚#TÑWp|íµ×RSSµ®Ð«z¥¯à¸zõê|ðá‡޽zõªÖåàú Ž?þx³fÍNœ8±`Á‚ž={>ñÄÛ·oÏÏÏ׺.ˆ‡ÖÜ&&&æé§Ÿ>vìX||üÖ­[êÕ«÷àƒFGGßsÏ=Zg¦ÿÕ¿Ð7“¢èôwiAAÁž={âããnݺ%"­ZµŠŽŽ~衇š5k¦uu NII)½Ýd½žlc°pLOO tŠRa[6»ôp6\zÃ*ïw½ËÓ×Pµ%¨¨¨eË–}ÆŒóÉ'Ÿj]#€èk¨º„œœœ/¾øbÛ¶m,((‘Æ{zz>|øðáÃï¼óλï¾ëïï¯u™† Çà˜ý¿ÿýoûöí‡6w+úúúÞÿý<ð@xx¸ˆ8p`Ù²e'Nœx饗Þyç­ëlMa´ Gú ŽqqqÛ·oÿúë¯‹ŠŠD¤aÆýúõ0`@DD„»»{ñÛzôèÞ¹sç#GŽh]2€Qè+8þóŸÿ‘úõëßÿý øóŸÿl™-yyyÕªU‹qj‡ÑWp|øá‡xà®]»–—-ÑÝàHúšU½uëÖƒ–—Ÿ|òÉ~ýúi]#€Aé+8Þ¼yó×_-ï¥ÌÌÌ‹/j]#€Ai?T½{÷î'žx¢øÛuëÖÅÅÅ•~[QQ‘¢(-[¶Ôº^8'&)`5탣»»{½zõÌ_çääÔ¨Q£víÚe¾³~ýú³fÍÒºÞêSÕX‘ ?ÚÇ=z:tÈüuppðßþö·Ù³gk]JÒ>8Zš0aBDD„ÖU  ú ŽÏ>û¬Ö% lÇõë׋Hç΃‚‚Š¿­Ø¨Q£´­À˜4ŽóçÏ‘yóæ™ƒ£ùÛŠ4¡qp|òÉ'Eä®»î2ûÌ3Ïh}BÝ`b5@g4ŽS§Nµüöïÿ»¶õ <úšSš¢( .\¸ûî»Ã´.Ή~;lAwÁ1!!aÅŠ}ûö5b¿ð ›7o6¿4bĈ9sæ˜L&­k0"}=«úÈ‘#“'O>}útQQ‘ˆœ:ujóæÍ>>>#GŽlÞ¼ù† ´®À ôÕãøÎ;ï(ŠòüóÏ1BDvìØ!"‹-êÓ§Ïwß}׿ÿÿû¿ÿëÓ§Öe‘¾‚ã™3gš6m:vìXó·_}õU5zöì)"­[·¾ãŽ;ÒÒÒ´®À ô5T}íÚ5___ó×§NêСC5Ì[j×®­u€™Wä@ô.\¸PXX("ÇŽ»uëÖŸÿügóKEEE.\hܸ±Ö5”¾‚c§N®]»öúë¯_¼xñõ×_‘ÈÈHóKkÖ¬¹zõjÛ¶mµ®À ôuãĉãããW®\¹råJ¹ë®»Ìk76ì›o¾‘ñãÇk]#€Aé«Ç±Y³f7nìÕ«WÓ¦M{ôè±|ùróªÙÙÙõêÕû׿þÕ¥K­k´Š¢ËP'¥¯G ZµjU‰±±±þþþnnúйp<6Ñ]p,S³fÍ´.Àèt·nݺnݺï¾ûNQÊî&:tèÖ5¤Ði Ð }Ç;wNŸ>Ýüµ»»»Öåàú Žï¾û®ˆŒ7nòäÉ>>>Z—€?è+8¦¦¦6oÞü¹çžc €Þè(Ÿýúë¯?ýôS‹-H:¤£ˆææææããsöìÙ¢¢"­k@I: Žîîî=öXvvö²eË´®ÐóÄj´¦¯{xàóçϯ^½úСC hÞ¼y5J¼§W¯^Z— `Dú Ž}úô1qüøñãÇ—ùž””­Ë„ó`DlG_Áñ¯ý«Ö% lú Ž‹/Öº”M_Á±Øµk×Nœ8qùò倀€îÝ»gggûúúj]€¡é.8^¹reåÊ•›7oÎËË‘Gy¤{÷îƒ jß¾ý¢E‹4h uÖR1™DáÆ;àlt´ˆüú믓'OŽ­W¯Þ AƒŠ·7iÒd×®]ûÛßÌi0Vä耾‚ãªU«’’’î½÷ÞmÛ¶ýë_ÿ*Þ¾iÓ¦‡zè»ï¾[·nÖ5”¾‚ãáÇÝÝÝ.\X»vmËíîîî/½ôRíÚµ·oß®u¥¯à˜œœXæ<ooï6mÚdddh]#€Aé+8úøøÜ¸q£¼WsrrêÖ­«u¥¯àzùòå2Ÿ“œœ|ñâÅ­k„óà±1Ø”¾‚ãðáÃM&ÓŒ3NžðÀ"òì³ÏnݺÕrHzÇŽÏ<óLñã2O¬@ úª~øá‡÷íÛ÷ùçŸOŸ>½qãÆmÚ´1™Liii?þø£ˆ 8ðá‡ÖºFƒÒWp‘×^{­[·n+V¬ÈÊÊÊÊÊ2oô÷÷òÉ' ¤uuÆ¥»àèææ6tèÐ!C†üðÃééé­[·v½ 1:/nsT‹ëÇ”””Õ«WûùùmÞ¼¹I“&"òòË/¯[·nÉ’%/¾øb™ÉÍͽ~ýú€–/_®uù¥”ŸÚéhyTq`|$î ׿ÇqÓ¦MEEEÓ§O7§F™5k–ÏÖ­[‹ŠŠÊüHff¦ˆ”ènÔ…Êú-gɈ]ov,}àÇ.Çõƒã‘#GÜÜÜzõêU¼ÅÝÝ=22òÊ•+ÇŽ+ó#"ÒªU+­k·ÇeGæÍàÚ\<8*Š’ššÚ°aÆ Zno×®ˆœ?¾ÌO™ƒãåË—ÇŽÛ©S§{ï½÷‰'žøæ›o4nŒº[Kwü9:;‚bçå?®ÈÅïq¼yófaaaéI->>>"rõêÕ2?e”+V¬ ìÚµëÅ‹wíÚµ{÷î¹sç6LÍqƒƒƒKlÙ¶m›•m IOOWùÞ’ï TÿY[HK‘@“IDÒÓÒl¸ãÀÒMÓ“ .h]Bèüd:çºô°!.½Aôïß_ëôÂŃc^^žˆÔ©S§Ävooo¹~ýz™Ÿº|ù²——WLLÌØ±cÍ[80iÒ¤… öèÑ#  Ò㦤¤Ø¸%&“(J º÷*Š˜L–½“Š(¦@ûO”)]‡9>ÚtÒL` ÊÓ  —çÔÕê'Ó°¸ôFPú×zé"ƒpñ¡êúõë›L¦›7o–ØþóÏ?ËïýŽ¥­]»6))©85ŠH·nÝÆŒ“——·sçN šQ•ìe2@*¿}aú}@Ò¡Ö–¹ÀU¸xpôðððññ)ݳ˜››+"Åó¬Õèܹ³ˆœ9sFë6•­8#*¿ÿÓ_ÿmâ7>ê·9ªÈŃ£ˆøùù]¹rÅœ‹™oíòóó+ý~EQ K¯Ôãîî."uëÖut*ën,™ÿhˆå¬K†H ƒõKö°ˆ#šrýàØ§OŸÂ½{÷oQe÷îÝ 4 +ýþŒŒŒÐÐÐGy¤ÄöÄÄDÑß= ¦Ry±Ræ» ã#]8'׎C‡uss{ã7Ì÷5ŠÈêÕ«³³³~øaOOOó–7n¤§§›'ǵnÝ:<<üðáÃ|ðAñN׬YЯ_?‡V_awc¥påuðýþPÑ&>2r­ŒVªÂÅgU‹H@@ÀÌ™3_yå•¿þõ¯={öÌÈÈ8tèPûöíÿþ÷¿¿g÷îÝO?ýtPPÐgŸ}&"/½ôÒ„ ^xá… 6´iÓæâÅ‹IIIµk×^´hQ·v0•ö%žCøÇößH¨ü¾7qð80ºÀÙ¸~£ˆŒ?~É’%ŸþùÕ«WG½nݺҋ;»óÎ;?þøãèèèìììíÛ·_¿~=::ú³Ï>ëÒ¥‹ÖMùMnö³œg­}ï#Ð=“Bg­ÛfÇrÆ©«‘+ñ6÷;–Ø¿8~Šš®GÝOŽIOOw¾ÝtV‚S^zØ—Þ°lö»ÞÙ¢ÇÑ•Tï·|z¥×wÔ¦÷‘µÂmŽÕŽzUV'¡ýú†J¯ ®q|,«D:ÆÐÁÑ(*ît,ï¹2Š&Rt= KG]²OwcųP*x&!#×@ŽFcMv$>º,ns¨Cpt»Á¯‚ì(Ž\3÷ 8êO©qjÛ¦ÆJ—M¬8;ŠV+>šÏ ]h‡àhD6ÉŽŒ\»F«* Êúì(޹¶ìt%> ‚£ÎØyœÚ’M²£hþ¬Bâ#Žâ¡uÐ5svT*Ë®æ—5xV¡9d«y\!°=ŽºfïÉÔ•v:ÊïÙQe×£6wÊÑûhÜæ¨ ÁQOÊZ÷ÛÞTfG•ÃÖ¢áœë Wlà¨_Ž[»Q]ܪRvÔ2>Òõ€}!b‡ì(Œ\;#F«"8ê†ãÔ–ª”«­íz¬^×+ñ[cVµN9lœÚ’9hU_Í“¬Õ̶þýý¿µHß(¦]`;ô8â6ê§—TiØZ4¿ñ‘ÞG•­”G”¤²ßQ,²£Ê®G¡÷gF£>ÜžÔ4§¶T¥~Ǫv=Іóf„ÞGªG”M}¿£T«ëQ,²£)Ù²÷Q耼¢ƒ»t‰àˆr÷;ª¶–ªÌ˜ùýS"šÇGaüUŽ: ³qjKÅsöîz”òâ£cN·? ÷8¢rUz’_õîzm§]·“Û;Ì­”G¨R¥[¥º]¢ùàµÐû@¹Žú¢«qꪑ¥êw=þþY­Ï³g(…à¨5­Ÿ4X%Uš.óÛGªÛõ(úé}Cv@2·P ÁUSÕé2bÑõ(N…ñkDލžêu=JUG®-z¼t«Ôx\ÁQGœk`°]bÝȵè*>Š: ­ÜŽà¨)§ºÁ±LU1#V\‹Nâ£Ð 0‚#¬Uak±u|}t@Võ,èŽ ,®NýÛ¹xåì*ð÷Õ«±`øï{ÐÁÊ῟…ô´´ßÖg q€+¢Ç6S½®G)¯÷±ŠQZ_ã×Â6Àµãü78–fͪ5Ö^‹~ƯŅæÐ0Z øÁ¶W½ ׿}ÖŠçÍXìä7Úw@ sh®ƒà¨ .Ù¡Sí‘k±Qï£è¹²zçMaGV>oŶñQtÕ)N• ­ˆÁQ3®xƒcylÅe: Å9$ÀØŽpªÅÇRý[ÅyÑÕ: ÅI$Ž‚#ÌÊÞG±Ýøµè­Rœ$A Œà¨=öãØ6>ŠM; E—CŸ ’NG0<‚#4c«ø(6í€'HÑGˆÁQ FšS)ëã£Ø´Rtž EgÝ#!8Bn‹RͤV¢R\2AЦÙŒV€±5ÆoaKÊïÓUlÒ)6Â'JB7$ÀŽŽÐ#›Œ_‹­‡°¥¬)z‘ed‹}B$Ž``nZ”KQ~{n¡Ét[ªò~~Û“òûž¬Ø×ûüãé÷?º (ü±þÜ`G‡cfL•µ¾RlÚ)–Ý%¶hÌNcÙt:€QÑã)?‘ذ­t¤Mº!ÓÒÓKôAꥯ¯ÌnHz"UD£–赩ÛN)¶ìq´Ç­¢·»!ÅF7DÒé†Dp„³²ù¢4öÈW ‘à 8Âé9 AŠ=C¤^2Zy!RÊ9¡t:€ñ‹™1³.ˆØ/AŠ=C¤©œíZ*qâ茈Á.ÉV±ÓÝR*)ên8[*ìŒ4ÙäœÁQ3Œò9€Ý–£±×X¶èüžH)ÝI$Á†Pf—™í»!Ë~ÉŠý[”]þKZRnïtTss$Ài±Ž# ÇN *¢¤¥§Ùi…H¹ýY5%–ŠÔx=FÅr¦Rîš‘, ÎGbfLÅ>xo×µhì:±F*¼3RtÔYþ$¡?œÁQÜà¨7š„Hq™©rižŠs¤%@ïŽ@I ‘âª9Rm•¥ ¡KôàT¤ª«bWyÿ:È‘b“(i“õÀé’}#8BœaðÞ7ìUœ#Å“µ?PåïQµ_Û^ÇJ»$Ë{À>ŽŽÂÌ—SVŽ ,ïÕj¢T sL—¤Ø©WÒ…–U“à(,Ç£gè\C•)Ф¥¥Û{!šÛW»QL%c³#)RÉ@e/¤h±8P‰5€JŸ}¡Ç:àŠQÚ1wëUÚ%YÞÛªu¬2”}0Í/¨ÊŽI¡oª†à8‚š»õì%Ån÷JJùùP#ݤI°ÁІâ¤8¶cò·•êt4•û^M©O“B ‚£c03*h%¥œ4)Õ ”¥fX«ï›¬øýŽPÞY&P0<‚££i~÷—îpFÊçàåhÊ ˆÕ ”êVçq@XÕ€sbV5àLJO .o±ý¦rW0§»äÌn+&Y+åü1•ÿGë’ž–VµkÃ,oΉGÀéi5²ª¦‡Òœ/+ýHUZ.Su?hGœëг#]•t‰àM1NmOU ”b™ÝŠ(¦?6T¼Ò¤•±²âë.VV|®‰•t‰àhÌŒÎT¯¬ú?Å7;V u++ý¸íY++ý8TÁÑ¡è_ƒÎÙkdUíD™êÇÊJ?^Ùg+QɱÕìÄf*Í…$KöAp„vÈÑNÅÚ‘UuÙ±¢Töa5O\¬v¸¬øcééé*'¼8â§Þúd©r? †àÀTÆJ¥üpg}DQ 5 —5Øx‡ÕªUݾɗnGp„Fèn4Ë\QÞ“¬Ql.Õï­¬O©U¥5{ìòÿ“mó¥úÐ+‚£13(¡xqÇÛÿÏÐO˜ú8øGÄ ¬üÍÕH™Uú@UW†´å_LêOwU°äïO@gŽŽCÛ8g¾úÕú1°yX•v[ª¿}Ì|c%%U}‘ò*eͪ¶ zK[½gw@Ðt†à@#VO—©hßúË'Õèq¬FÖT êxkžxS­q};_Èj0*‚#íØ3;V­k󉊱ꪨz÷PV/nª<¨5×ÊÊÇ,ª‹ÃÕ-°º‰3КƒNˆà‡ÓGP€^”sˣΕˆ j†ªÍ¬|HµšˆbåJéVæÎ °ò ÛðñÞeTRÝð—žž耋 èÁÑAK@¹¬¸åÑéX¬Œ(jj°þyâÖGÏ2ë±áO‡-ë ź«j“‹jF…ýí‰)Õ¥# :œ³ëÑÁlò7Š ƒJ™%Y=o«Ö¦1ÏæVií÷rª©¤˜*ÔjÛK«¢6ÁDjDÅŠ»…;²m°yV)Qªmcèo5Û0Œ–s‡‚ Ë®B­Ö]Ú2>lï« 'Dp 3ÄG§b×ßþvË-%‹®v+Ê»½Õ¥*Zeåí­¥÷è ÿªó 8:mœTñüoEn)oR”ÚÒmØFMÒjY-¯úÊS:Ëvª‚l»vZ—© ‚£Ýpƒ£%R#ª‡ø‡°y£z6ík³Ùÿ$ÖüúÒI~-·ijž;ª¢ý킃µnŠ6ŽtÏ2> .EŸ= ÖÅYÍš¤ædÚ.×ÒãØ Ý°‰âŸ"$`gúŒ³•R—wmÔ¶víqtÓºýúàƒ†Ö½{÷Ù³gçääTo?FOMFjÿþýµ.Á”ßÿ˜~ÿ£5.½aqéuEQ÷ǰŽe[¶lÙ /¼pîܹN:y{{øá‡'NÌËËÓº.§b2Vj„J'H}äHpUÇ2¤¤¤¬^½ÚÏÏoÛ¶m«W¯Þ¾}ûرc?¾dÉ’*ìEQÄÈÁÉôûotÀ”Ûÿ#À>ŽeØ´iSQQÑôéÓ›4ibÞ2kÖ,Ÿ­[·i]îÑÑÍUœ#I“P]Ç29rÄÍÍ­W¯^Å[ÜÝÝ###¯\¹rìØ1õû1V|2YDF5Î@)멲?€RŽ%)Š’ššÚ°aÆ Zno×®ˆœ?^å~\95–ù[V!2©(•ý©4YZüI9“¢öÍàÌXާ¤›7oÖ¯_¿Äv¹zõªš+gR´nн—¹A×%()بKº û¬Ñ–brÙ¿Œ)ERø÷€AtG‚c)æ©ÓuêÔ)±ÝÛÛ[D®_¿^éRR\üCЏx¨˜a2T]RýúõM&ÓÍ›7KlÿùçŸå÷~G"8–äáááããSºg177WDŠçY Á± ~~~W®\1'Åbéééæ—´®@Ç2ôéÓ§°°pïÞ½Å[EÙ½{wƒ ´®@Ç2 :ÔÍÍí7Þ0ß×("«W¯ÎÎÎ~øá‡===µ®@&ÅÈOê.ßš5k^yå•fÍšõìÙ3##ãСC¡¡¡kÖ¬)½L€AËÿÉ'Ÿ?~Üßß¿sçÎÓ§O7¯È`LG¨Â=ŽP…àUŽP…àUŽP…àUŽP…àh3|ðÁСCúwï>{ö윜­+‚C¥¥¥óÍ7ZÉËË[»ví_þò—{î¹§gÏž&LØ¿¿ÖEÁ®]»6wî\ó¥¿ï¾ûž~úé´´4­‹‚£]ºt)<<|æÌ™ZâhGÛX¶lÙ /¼pîܹN:y{{øá‡'NÌËËÓº.8Nll¬Ö%Àq Æ·hÑ¢ü±k×®mÛ¶ýꫯÆÿæ›oj]ì+77÷/ùˆ D¤wïÞ5úüóÏxâÄ ­Kƒã(ŠòÜsÏýüóÏZ¢­ p)))«W¯öóóÛ¼ys“&MDäå—_^·nÝ’%K^|ñE­«ƒ}åææž9s&>>þý÷ß׺8ΦM›’’’ÂÃÃß{ï=///9{öìèÑ£ß|óͨ¨¨­ „½¼þúëYYY“&Mzúé§Í[>úè£üã ,à/ãX»víáǵ®Bô8ÚÀ¦M›ŠŠŠ¦OŸnN"2kÖ,Ÿ­[·i]ìkàÀ£Fâ†ÑlÛ¶MDžþysj‘   I“&2`íÚ<èååõÄOo<;;;>>~É’%ÇŽÛ²e‹¹Ë.é•W^¹pᆠ ~O“c¬åáááããSºg177WDŠçYp1ùùù/¿üò#ÊÊÊ*333E$00Pëa/­Zµ*þovýúõ}ûö„……5mÚTë‡àhC‡}ûí·ßxã{ï½×|ƒËêÕ«³³³{ì1OOO­«`cŠ¢ÄÅÅÕ­[÷¹çžÓº8”ŸŸ_ppð¾}û¢¢¢ÌOŸ>½~ýzooïN:i] ì¥GÅ‹¯™üðÃï¾û.**jÿþýŸ|òɧŸ~ºoß¾N:]¼xñ‹/¾¨ö¡wíÚõÎ;ï´hÑâƒ>øòË/·lÙ²gÏž{ï½7))iåÊ•æ÷,Y²äÆO<ñÄ>üðÃÝ»w?ÿü󊢬X±¢JÇÚ´iÓĉ÷îÝ»víÚÿýïãÆ‘uëÖ•÷þiÓ¦}øá‡{÷nܸñ®»îzâ‰'´»V\Á€spss{ðÁåöNǯ¿þú‡~ kÛ¶­ˆôîÝû™gž©S§Žù õêÕ3wUfddTûЯ¼òŠˆ,_¾¼¸Ï××wùòå~~~›7o¾v횈œ>}ZD†êîîn~ψ#&OžÜ·oß*ëî»ïž1c†›››¹É“'O‘ï¾û®¼÷{zz¾úê«/¼ðÂ?þøüóÏ{yy-Y²¤¸ °!‚#§aŽ€–ã¶æqê‡~Øüí”)SÞ~ûí;ø YYY[¶l±æ 999ééémÚ´)1ºvíÚݺuËËË;q℈˜“ë¬Y³>l¾ÛÒÓÓó©§žzòÉ'«t¸X~ëãããîî®(J 2eÊ÷ßÿÐC]¼xñ¹çžkݺµ½®cc9N£}ûö­[·þî»ïRRR‚ƒƒ ¶mÛæååõÀ¿çâÅ‹{öìùúë¯ÏŸ?Ÿ™™iå­"’––fþoppp™o¸|ù²ˆÌ›7oúôé‡3fL­ZµBCCÿüç?ßÿý¡¡¡U:\óæÍ«Qäã?¾sçΓ'OvîÜyĈ6=ëð‚#g2pàÀ×_}Û¶mÁÁÁ{÷î½~ýúàÁƒ‹¦7lذ`Á‚‚‚‚–-[FDDôíÛ·C‡éééóçϯÒQ ‹;ùòóóE¤Y³få :ˆHóæÍ?øàƒÄÄÄ={ö|õÕW'Nœ8vìØÊ•+‡ ²`Á“ɤòÐ5jÔ¨Æiùù石²²D$--íÚµkõë×·ÿ¥`DGΤ88>õÔSæ1èâqêŸþùŸÿüg5V­ZÕ£Gâ|ÿý÷U=Ê¥K—ŠŠŠÌ_·iÓFDj×®={öìŠ?e2™Ìk‰H~~þÞ½{ÿñlÞ¼9**ªOŸ>v=-sæÌùñÇ;vìxìØ±ùóç/]ºÔ®‡`XÜãÀ™´jÕªC‡iiiß~ûí_|ѪU«ˆˆóKß~ûmaaaÇŽ-S£ü>m¥b%F´ÿ÷¿ÿíçç׸qãsçÎ}:;;Û¼¥°°ðý÷ß‹‹‘¼¼¼2÷Ö²eK‰½yó¦yË¡C‡ŠÙ1‹‰‰)**Љ‰INN6oùùçŸÿñœ8q¢}ûö¾¾¾þþþ?ýôÓ7ß|óî»ïwU~÷Ýw{öì»®§øý÷ßÏŸ?¿nݺÿüç?===-Zäîî>oÞ<ëoî€ÒªàdxàW^y%%%ÅÝÝ=::ºx{›6múôéóÅ_Üwß}ááኢ¤¤¤äääŒ5jݺu}ôÑO?ýd^XÇRttôÿûßcÇŽõéÓ'44ôÇLMMõññiÚ´é/¿üb~Ï Aƒ>üñÇGGG7kÖ¬Aƒiii7oÞlݺµyåm77·Ù³gÏš5kñâÅï½÷^óæÍoÞ¼yîÜ9EQFŒf§S¡(ʬY³rss.\hÎÍwÝu׸qãÞ{ï½yóæ-_¾\ëkÀÕÐãÀÉ4iÒ¤sçÎ"Ò³gÏ&MšX¾ôÚk¯M›6- À¼¾cddä'Ÿ|òüóÏ5ÊÝݽ̶hÑâÿþïÿúöíëææ¶oß¾3gÎ4kÖìwÞñõõ-~Édú׿þõïÿ;**ª¨¨è»ï¾ Œ‰‰ùä“O4h`~Ï AƒþûßÿÞ{ï½^^^§OŸ¾yóf÷îÝßzë­9sæØïTÄÆÆøàÊ•+–̒ǘ1c¤ÞäKÇwUЭ[·Þxãÿû¿ÿ+ðÑgŸ}véÒ¥~~~RwÓA~ÿý÷nݺýý÷ßùªV­ÚüùóŸ{î9S˱cÇ7n\ÄÒ|||6mÚôØcY>‹bôèÑÓ¦M“zK)©;@»nß¾ñǘZœœœt:]NNŽñ×Í›7?ÿüóÛ¶m+S¦ŒÔµ»¤¤¤6mÚܹsÇÔâââ’müùüùó/½ôÒÞ½{›6mš^www!Dzzº©ÐxýúõîÝ»'''»¹¹1K>>>Ro òÅP5ɼýöÛ¦Ô±sçÎ7ndff>|ø¥—^2¶ïÝ»÷ã?–º§Ž0zôhSj|ã7>|÷îÝ .,\¸°\¹rBˆŒŒŒ=z8ï÷߯×ëõzýåË—Ïœ9óÆoÛÏ;7wîÜ¢gÉã½÷Þ“zK1HÁ¼ÐøòË/ß¿?ϯ¿þºñÑÚµk›·çää¬X±¢M›65kÖtss«Y³fëÖ­¿û¬,Ó4ï¿ÿ¾qÞnݺ%''÷ìÙ³V­ZÕªU{ùå—9b0öíÛ÷ÒK/ÕªU«B… mÚ´Ù±c‡Mæµ°{ùýüóϦ­1~üøòÈ#ÆG'NœhÉ,P,Îq ƒÁpêÔ)ãϖϸeËã£FÚ¶mÛ’%KŽ=Ú¢E cãï¿ÿž–õë×>|855µmÛ¶¦Æ™3g?~üÌ™3ýúõ3¶=zÔúyKÑ=!Äýû÷/]ºdü9 À&[X§ÓU®\Ùøsjjjþ žzê©ü÷â9r¤Mž€ZHàÆ¦K§kÖ¬iþÐôéÓóš={öíÑ£ÇòåË—/_>|øpcË­[·222Œ?_»v-Ï…„„tèÐAáêêÚ½{wc£··÷°aÄNNN/¿ü²©KÖÏ[Ò1ý\µjU[md__ßüËkp;([¶¬éçü÷©.Bûöí…ׯ_ߺuëo¿ývèСܾ}»°éÍ”MwŸ©ZµªN§ËÓh“yKÚ=#ãEÓ¥ØE»zõªñ‡òåËç´ÀÛñä”sGpss«X±¢1$8qÂü¡òåË×®]ÛøóåË—Må:£¬¬¬wß}÷Ë/¿4ÝàÐÝݽR¥J—/_.ð‰L!Ïœ““Eƒ-¥˜·¤Ý3zä‘GüüüÒÒÒ„Þý[qóæMã2Ë”)ãááaIÿM#Ô¦(Í}ÿý÷QQQ–,Lª ÓYƒëÖ­3ÏU 0ÞPðÔ©SÞÞÞyæšøàƒ¤¤¤Ç{L­@}tƒAê>@ Ü¿Æ Bˆ^xAê¾(¯{` ‚#,ÂP5,Bp€EްÁ!8À"GX„à‹`‚#,Bp€EްÁ!8À"Çb¤¤¤þñÇRw@bÇb,[¶Lê.È‚‹Ô©[·nýùçŸëׯ_¹r¥Ô}‚cÁ:uꔚš*u/d„àX°É“'ß»wO±|ùò½{÷JÝé nüaÇŽR÷@޶(uàP&%IÝ€CÕ LÒä›?ÁÑ.´¹3)‘Î 1<ø!P«ï#ª¤Ó•~ï0 ¥ž·t}uèÓY¼Šë¶cºaßÅ[óW¯sÐ&(¶ŽÝ]-Ø5³ÚVÎ(êK½ Ò 8Bµ,yWÅÛ¤Pl.,Qø+Az°GÈ“ö8¬+aû¿Ý–²×–­™/VRéóŸÁ›ÀúJ1îßrÔY¿Ú]$8BÙŠx‘×›!¤PD:´ª(˜o±IÂâ¸ÌŽÒ…¯£ÅSÊu…¬¯çYìl>ÎPÒ (›ÊVO.ëƒÂ¡¾-ñ“ü1±é°D‡ë|‹UÞY Š*–.Ú¤žgã±`=$ ‚Ö„?ÙmmØ Á2•ÿ Œ·%˜+AL”ýáÚ.Š^i¬®åqP†°à5*n…¤ØËJ”•±!-‚#dÄüŽ70ägÿ‰¦ÆÂŽÛê …yȯoI(TJ,`íZ¹$Ó¯ÜÑ”&‹à‰©),nÙ²Eê.¨ÐCañá´J¿ã8GF,6*7>´š|ÑëõuêÔ±íÓZ06/Šà ¨),ÂÆt:Qà"ƒt(ÅÖÈ×âÀÍPD:TG.|he ZW»ít²?(œ“Ô»I“&%%%5mÚTꎨîÁ?ƒÙ?h—N—çŸN§ûg1#Œÿ4B÷ð?C¾¶B]aÿlúþI½™¬^ë|k[àzZ»i ýg(ò kTaw¦×¼#jW‘õÓ`´£ï›-y6Œ=7@D¤@‹ÖýáU·Ýަ+|˜ZDÅv”çÃ5´Â²zŽî‹‹ZPtíÉfObiQêÍa/E[dµC½>…Â!4…Š#l£æ”°žc,1j%) »ŸÕ›¿”¨âDXèF°eMQ— ²Dp„-ßnyU¿R¥µ5$m·°HLüg;Ø&)’’!8Â6ˆŒ*gÝQZC%F[×Û‰‰æÌwÃRíM|±`-‚#¬EdT-«ÒB#‘Q'ꈗHX½¢y’¢–c¢‘»!1°=.ŽA陟Ü•(ì‚‚Ò,éß _¤^+û0»ÀEŸ¢/õ_BÑ—°H½’’)ùnhÉ]oX‹Š#JIÇÛ°jØ¢²øðòT]e´z0ššbaJ¸':ðVF 8¢Ä›V[‡E³ëÔ­Ë‹æa‘¤˜‡Å_IR¤GpDÉPhT6{~¿³j ¥ý¨DX,še;#_P È Á–¢Ð¨Tv+.š=ƒ#c©JŒ„Åb—)+²Fp„E(4*=‹‹?ºÆ¦KžuBgvQµŠ6…M¹?RVƒ«ªQ8ˤܘwlZó+qd|–à(G5ãˆlK¤F+û¿Ð(ØGó(ñ€½’÷JŠDpŠ£ð’Žä©±àÈ(HæJsŽ'©€ãU‹ƒ²mpp¶NcÓ`B”:2 – `G pÊO– -4 R£Ii6„ò÷J FpT'ŽË6 üã³´©±Ðï™fïüg+R#Å!8ù0h…¢ ‚Ô(¬¹e%©€äŽ*Ä¡Ù*j98KRn,ªÐ(Ø5­ºË¹ZvLÊFpÌpp.­b ‚ÔXúõ§@>Žj£õ£³5T”\n,¦Ð(4¾_Rh G@¡ªã3©Q6¬ýní•T‚à¨*Ú=@[‰ãs©?<-´¼SZ»æì•dˆàÍS×ñÙaåÆâ B³©ÑÚB£PÛ^ @=ŽÐ6uŸI2`ƒÕV×^ @UŽê¡Ñô58>—œEÃÓB›»£ ‚½€¼¡Uª;>; ÜhQ¡Qh15Ö©`“uVÝ^ @mœ¤îlC{Gjëp|.9Rcá+¬ÓëS¬]ŠŽ½€¡=j<>۵ܨ:Rc‘+l›áiÕí•Tˆ¡jhŒS£]Y…ÖR£mÎhì’…à¨Ú:^[C¥‡hû•Iö^[•î’T‹àÍPé!Z©QClVhªÝ%¨ÁÚÀ!º$,½çŽÙ ÚH˜¶\OvIJDpT<­²­¡ÞC´=Ê%.4je$5ÁªÇ!º$H…¬¤ 5€ 8*&ŽÚÖPõ!ÚæåFR£VRÕ»$õã>ŽP/Ñ%AjtÀJ²KP:*ŽP)µ¢m[näê|l<< ê@pT0MT|JGí©Ñ¶J“U¾óÙeõØ+¨ÁP[•K|Û³‘K¼PR#U 8Bu8D[¦”ÃÓ¤ÆR,”]€Z•Jå‡ïRÓÀ!Ú&åFRcAë&HP4‚#T„C´e¸&{%bvI*Ãíx Ú8D[_n,}jTm¹‘Ô–"8BjtØŠ‘¨CÕŠ¤Úƒx©iã(me¹‘Ô˜o­©J„àåã(mÎk|˜³0û#c¨ §™£´5åF«R£ Ë*\%p ‚£òpÐû—fR£5HŽ\%vIêFpÔŒꇑÀ*œãÅÒÒQºtãÔÖ¦FU•íx)Ì?O ¡ý€v¡L¥‹CjtäÊÔa  U+ŒªŽæ¥ß ÚJ¥(7’¹2:HIÑK½šàG@m8¯ÑŒª"0HŽà¥¡ÜXôôÖ§Fõd-G¬‰ÆöGZGpTõÐK¿ 8J…Ôèà5a 5G@¾JTnd„Ú ©ì‚àåà@]8Û¤F•”I`/G(j{#5ŠCpT M5™-§fúý•hr!´sð5kÖ¬^½:99¹lÙ²­[·3fŒOÓgee-Y²dóæÍz½ÞÇǧI“&C† ©W¯žÔëäÅ µƒ×Ô@Ë4QqŒ‰‰yÿý÷ÿú믖-[zzz®]»öÍ7ßÌÌÌ,lúœœœ×_ý‹/¾¸~ýú“O>Y­Zµ­[·>ÿüózU4I“j ˤÆ+@jGPpLJJZ°`¿¿ÿ–-[,X°uëÖÞ½{9rä‹/¾(l–U«V}úôécjìÕ«×{ï½gáóæiÙ²e‹UkR§Ž^¯wà–“^!·Êçγ~!)))E­{Ûl™:uô)z¡°m,„uêèõ)ÂQ]¨Sô "lôÒC‰xé5â™gž‘º r¡òàh¼tÚÃÃ#O»§§§âæÍ›ÎuëÖ­)S¦¤§§7jÔ¨I“&W¯^MHHX·nÝc=Ö®];Kž7))ɆkñOi¥N)6¡Dt:a0(q…ëØâe*b!ÿ”m´ilÒ[‡Ó appÇ-ÙPÊܘ°^z-ÈXÏ_!Ò•GoooN—‘‘‘§ýÎ;âAÝ1¿±cÇþþûïãÇã7Œ-.\xùå—GŽùÓO?H½ZÐ([R+õìFG÷›Aj0§òs]\\¼¼¼òWoݺ%„0]gmîòåË;vì¨[·®)5 !ªV­úöÛoß¿ÿÇ”z4@ÃÇê".‹!5’@r*ŽBÿ«W¯“¢‰ñ|%ÿüÓ_½zUQ»ví<íÆBã•+W¤^!µãX].ˆQnÚ5QpŒŠŠÊÉÉÙ½{·©Å`0ÄÇÇûøø4oÞ<ÿôµk×vvv>uêTžÂñü†ºuëJ½BP­ÂÊ6NŠ `tš0Ÿúƒc÷îÝœœ¾úê+ãyBˆ ¤¥¥½øâ‹®®®Æ–ôôt½^o¼8ÎÝÝ=""âôéÓ_~ù¥éá§Nš3gÎ#<éàþ+ò(_úµåX Y`O€©üâ!DÕªUÇŒ3uêÔÎ;?ùä“§OŸÞ¿£F `š&>>~äÈ‘õêÕÛ°aƒbÒ¤Iݺu›3gΦM›6lxõêÕßÿ=77÷ý÷ßÿÏþ#õ A[(7rj#ȇúƒ£¢oß¾+V\·nݦM›ªT©Ò«W¯#FïÈS ??¿M›6Í›7/!!açÎ>>>­[·4hP“&M¤^UÓöáºÀqjR£B; jUÌ7›¡mxG­6U‘õz}©ïè–?8Úþ‚åíLŠ9µÑš—ŠÆK¯Y¶=Ö+ˆúÏqäÔ(“«âó ØÁQÖ”w¬/åzr¸FZÙ÷@YŽ€ìh¾Ü(MwùüÅ"8Bjš?\ç§Öü½¾I _GHŠÃõÃì’•TnTR_@ƒŽòÅ!6 ¤ÝH²¾òù,Dp„t8\?¼@)áp±ÿÙ :aÔ¥ynöA(‚# : (7* ‹€üŽp,J=ÿl-—%NìƒPjG@öJÔòŠDjkåHµ‡~Úö¦€]G]†à8š}oß(k R€²á(´›Aèì·hy×òäÞ?@±Ž€ãhø^ßÒ§F>¹€õŽpÚØkœZú`&ëα€MÑp¹ GÙ‘¾8cûU¢ÚcçÔ(ëFúα€­ÇÑÞõÔÒ§F€ agT{´[n”EÏØÀ†Ž€}iõÔFR#¨ÁöÄqÛŒ]Æ©eÏZApìˆr£”àc ØÁQ^dq¼µÙÊhý¸m÷Ô(ÓÝE¦ÝXà8‚f®§–KjÔüǰ ‚#ìCóÇmM–åÒ'Íï}`/GX„à;Ð|Á‡r£”ýÐúÞvDpl,jÔÀ ŽrI»"8ʈJ޽|ìMv;ŠŒ:ÄÞvEplI«7n”R#ØÁ°™€:ùS£ÚÇ©eTnØÁ6EÍÇÞä•ÓdÔv=p‚#`:¡KѧHÝ Ç®±lR#À1ްj>ùØxœš¨Vv=p ‚#`Ú»&† ZDp” Ň5\óqPj”Ñ."£®MïzàhGÀ^Tz=µ¼R#À‘Ž€U´Wn”ÊàHGØGo­W€e¿#8¥§±r£\ú ÁVÓjÙ§èÔ¨ÒeD«ûH‰àÈ›\Ê|ré@BGYPð1Y«eݸQv{¨V÷;Á°=uSË.5¤BpJÌqåF2[A(7€Tް‚&à R4‹àÈ•ô™MúÐ'-~Z¹ 8¢´4y·¤Ü¨®øÁ%é‹}Ò÷ €>iñÓ ÈÁ°”–În$5 @p”žÑÅwšcxÁl3N­È} ~GÀ"”%îU@Ž(9íÃI‚#`CŒSÛƒö>ª€LbPnÀˆàˆ¢øcWR&7™¦Fö8‚#P-•(Á° N—’’bÝ"(7æëåF‚£Ädz¸.´»Ú:Œk¦Ü¨°Ý ‚#™ÒØçP‚#,¦±Ã¸£Ë’Uý(7,EplÀ6ß4(EÇe›5ö9”à@3åFJ€àËPÿQ!ùÆUv7'‚#WIËʧ–ojÈÁxˆ·à!Â=Œr#ÈÁQJŠ ÉÕF1»@VŽÀ¿´Qn”ujäC ÈÁ°Š2Op 4Ž(ŽfJ@Úø‚AÊ€Ò#8Ò‘uŠ /‚#Ф™åFÉif_#8¥gÕ ŽŽNq²NE 8)7ÊåFP‚# ÇÁÜ~(7ˆà(Žä2Qêr£rnÄ#÷}O( GX„àˆBh£ $ÍÙ­RnØ Á!8B»¬)7*äGÊ["8¢ ÏíÇqYNî© 8Gh÷n”O@qŽ€Qn(Áùh de¹Q!'8`cG@}PnÔÀÇP!©;à kÖ¬Y½zurrrÙ²e[·n=fÌŸ¢g9zôèüùó;vçÎÀÀÀ¡C‡†††Úª? 8°«—dg7:èUgçØ‹&*Ž111ï¿ÿþ_ýÕ²eKOOϵk×¾ùæ›™™™E̲}ûöW^yeûöí•*UjÞ¼ù¡C‡z÷î½}ûv©WÅþ(ÁþØË@¡Ô“’’,Xàïï¿eË– lݺµwïÞGŽùâ‹/ ›åæÍ›ãÆsqqY¶lÙªU«,X°bÅŠGyäƒ>ÈÍÍ•z…`ëË¥<Á‘r#@ùÔW¯^››;bĈJ•*[ÆïååµyóæÂRàÚµkoݺõÖ[oµhÑÂØòè£>ûì³iiiG•z…e£ÜÊ¥þàxàÀ''§6mÚ˜Zœ#""®^½zðàÁgÙµk—N§ëÒ¥‹yã矞””Ô´iS©WÈž8¤+åF€}©üâƒÁœœ\¡B… *˜·×¯__qöìÙüs%&&úøøT®\ù·ß~;tèÐ74hðÔSO¹»»K½B°Šª/‹QFjä³ (šÊƒcFFFNNŽ··wžv///!ĵk×òÏ’••uûöíºuë~üñÇ+V¬0µ×¨QcæÌ™7¶äyó´lÙ²å¡ßëÔÑëõRož¼ê!Ã^Ùv ­\Á€€€”””ÂrîܹBžÖî/w«WÍQä¸ç[¯°—ªÇK¯Ï<óŒÔ] •Gã¥ÓyÚ===…7oÞÌ?ËíÛ·…ÉÉÉW®\™:uj›6mîÞ½ûõ×_>|Æ –Ô“’’ЦN:Rož‡étÂ`YŸlº~Ær£ÕkXô WÀ£:! ¢ŽõO\ôÊ ƒÜv¨zùO¹Qö-ÙýEÃQxéµ ÿa=…H#T~Ž£···N§ËÈÈÈÓ~çÎñ î˜G™2eŒ?L™2¥K—.ÞÞÞ•+W2dÈ /¼pîܹ7J½NÒWpœ>}zrr² èâââåå•¿²xëÖ-!„é:kseÊ”qwwŒŒ4oê©§„'Ož”z#¡4$;»Ñ1+§„UãìFPyÇ <÷Üs/¾øâ²eË <±üýý¯^½jLŠ&Ƴ¬üýý œ¥R¥J®®®:μÑ8Bm}—”qœG>¥¹ƒ£Ý_lö&€ãÈ+88°Zµj‰‰‰“&MzòÉ' ´uëÖ¬¬,k–•““³{÷nS‹Á`ˆ÷ññiÞ¼y³DFFÞºuëÏ?ÿ4o4Þ»§AƒRo$ûPu9HÕåFePõþ"¯à8jÔ¨mÛ¶ýðï¼òЧ§çöíÛ‡ öÄO|üñLJ.Ý2»wïîääôÕW_ÏkB,X° --íÅ_tuu5¶¤§§ëõzÓÅq/¼ð‚âý÷ß7U==ºhÑ"//¯víÚI½‘ʇ*Õ—§9Dvvö®]»Ö¯_¿}ûö»wï !jÕªÕ¥K—矾Zµj%ZÔâÅ‹§NZ­Zµ'Ÿ|òôéÓû÷ïoذáâÅ‹M·éÙ´iÓÈ‘#ëÕ«·aÃcËüùóg̘áåå’‘‘qàÀN7mÚ´gŸ}¶Ø§ ,úªj9íÕ[²a¹±Ø¡j½^ÿÐõ•ŒS›:ªÚýëy_zh/½f{¬W+ùÞŽÇÅÅ¥mÛ¶mÛ¶ÍÈȈ1cÆéÓ§gÍšõå—_¶lÙòÅ_ìÔ©“³³³%‹êÛ·oŊ׭[·iÓ¦*UªôêÕkĈÆ;òfàÀ~~~K—.Ý»w¯OTTÔСCëÕ«'õV±ÕÕm¡”_QmÏ‘&·cáC®_¿¾mÛ¶-[¶ìÛ·ÏxUJÅŠ]]]/\¸ „¨[·îÂ… «T©"u7óR^ÅQ½vG–EžÚåFSGU»ý‹²“fñÒkGIKKûù矷nÝú믿æää!üüüž~úé:´hÑB±wïÞ˜˜˜ÄÄÄ?üð›o¾‘º¿€ã‘Wp\¾|ùÖ­[ûí·ÜÜ\!D… Ú·oÿì³Ï†„„˜J‡‡‡·hÑ¢U«VºËʧÞ»z/¦VLj¨Œ¼‚ã'Ÿ|"„ðöö~úé§Ÿ}öÙÐÐÐÂÎbtww/S¦Œ Ç©¡J%>Á‘h'„Pó§Ð(yÇ_|±C‡?þ¸%W½Pn„&‘I’‘×}7oÞ¼oß¾ÂRãСCÛ·o/u¡ ê§V Ê >ò Ž÷ïß/ì¡3gΜ?^ê>ª Çv{°cMr#@JÒUÇÇÇ4ÈôëÒ¥K—/_ž²ÜÜ\ƒÁP³fM©ûk-Žü`Ûr£üîà¨|$U’>8:;;—/_Þøóõë×y䑲eË8¥··÷øñã¥î/ >t$&}p ß¿¿ñçÀÀÀ—_~ù½÷Þ“ºSÚ Ò¢Äg7Ú+ݑғ>8šëׯ_HHˆÔ½`•~$È,8Ž;Vê.@Ùl^n,Ñ ŽuêPn¨˜ÄÁñûï¿B´jÕª^½z¦_‹öꫯJÛg• (û`Ï“88Nœ8Qm ŽÆ_‹Fp„ÆPnÈ…ÄÁqèСBˆ&Mš=z´Ô &ùe1ú}QGêÍ %Ê nÇ!C†˜ÿ:`Àiû˜“Á)7dD^ßQc]ˆï”œw+ÀC$®8îܹ³¤³´iÓFÚ>0VõöX(r!qp8p`IgIJJ’¶Ï!Ê8€ÄÁ±sçÎRo‡’E‰EËH}‚£,v–t—Ý 4@âà8mÚ4©·Oúr£í3žÂR#@#¸8€µ(7€FðÍ1€ÜPnÈߣ1ª+ Ùiœº'8j>æ©nŸŠoŽdEó9 c|s L—Å( åFÐY_“žžž••%u/‡Ñ|È›ÄÇ9rä믿>vìØ•+WœœœªU«*"Û²e‰PyåF€fI|Ç}ûö™ÿêììܵk×µk×¶k×®{÷î:N¯×ÇÆÆž={600ð™gž‘¶Ãœº.‹Qdjäch–ÄÁ±OŸ>¶_¸paÖ¬Yy“’’ÂÂÂ’’’¤í3TŒ[P‰ƒcçÎ¥ÞPY”mV%¤ÜP‰ƒã´iÓ¤ÞÀ¡Ø‚¼.Ž)Ú¸qãÚ¶m+u/ Y”m¸6 \>ƒ€ÆI\qÌïúõëÛ¶m;}útžöÌÌÌŸþÙÙÙYêBµ,:ÁQ‘yÛWp¼téÒ+¯¼rþüùÂ&xõÕW¥î#`=â'@‘ä¿ýöÛóçÏ·lÙ²S§N7nüå—_>üðCww÷“'O._¾üÕW_0a‚Ô}Tµ .ªkœZ‘Ô²+JO^Áq÷îÝnnnsæÌ)_¾|Û¶mÃÃÃëÔ©&„øä“O^zé¥zõêIÝMh•m …”J%¯‹c.^¼X»víòåË !*V¬èã㓘˜h|¨{÷î>>>ß~û­Ô}„PnäŽE£Ür ŽB'§»T³fM½^oüÙÙÙ900ðÈ‘#Rw°åF€‚É+8V®\ùï¿ÿNOO7þZ£Fß~ûÍô¨N§;wîœÔ},%iòe"Òpäc?É+8>õÔS™™™£Gþ믿„!!!gΜIHHB¤¥¥ýþûïÕªU“ºp4]£áì Py]Ó»wï­[·nß¾Ý`0Ì›7/""ÂÅÅeÈ!ÁÁÁ'OžÌÈÈèСƒÔ}„&ù[ÅÑÏÏïûï¿5jT“&M„ÕªU{ÿý÷³²²öìÙsõêÕ¨¨¨¾}ûJÝG8”cʹ2F©Ù“qj€‰¼*ŽB??¿š~}å•W:uêtôèQÿ€€©{§(ð€MÉ.8šKOOwuuõôô|üñÇ¥î 4̵BÊ5cpŽûöí3ÿÕÙÙ¹k×®k×®m×®]÷îÝt:^¯={öl``à3Ï<#m‡¡!?&qpìÓ§Oí.\˜5kVžÆ¤¤¤°°°¤¤$iû X@Á©“qj@a$Ž;w–z 8‚CC„Âûާ¶ÿ­¿P‰ƒã´iÓ¤Þ@A¬ û”ê$ÇïªB¤¦¦ž8qâôéÓ÷ïß ªZµªÔÐ4ÙÇëׯϞ={åÊ•999¦Fggç=zŒ1ÂËËKêÂŽTq=µ‚ËM^Á1''gРA‡rss{ê©§jÕªåììü÷ßïØ±ã‡~8qâÄ÷ßïìì,u7eŒF‹u‚£V³» hò Žß}÷Ý¡C‡š5k6{öìJ•*™Ú¯\¹2tèÐC‡}÷Ýwýúõ“º›° ”ëÔ Ðhähƒ¼n¾{÷nN7sæLóÔ(„¨X±â¬Y³œœœvíÚ%uu¢Ü(–¼‚ãÉ“'kÕªU¥J•üùûûÿç?ÿ9qâ„Ô}„Ú•~œZ§×§HÝ{ìH^ÁÑÍÍ-33³°G333ÝÝÝ¥î#ìÂÁãÔÜÁ1ÊKÈ+8]ºtéСCùJLL}ú‡~عsçÎ;׬Y³|ùòy¦iÓ¦ÔÝ„mȨܨI|Ü””¼‚cdd¤ñ‡´´´Ù³g8MRR’ÔÝåF€É+8¿9p4í…@Ê€¹ÀÀ@©»‰Q–²¼‚ã´iÓ¤îDáãÔÚKš€Ú‘´ŒO–“×Å1ydeeeddHÝ Ù£vd1›^€æÈ«âhtêÔ©9sæ>|855577·råÊ7:thƒ ¤îÔ¨ÄÕCÅ—ù¬(ÙÇ… NŸ>=77Wáæææììœšššššº}ûöQ£F 0@êÂ>N €FÉk¨zß¾}Ó§O×ét½{÷Ž‹‹ûã?:ß¿''§3fìÛ·Oê>Bã(7´K^Áñ‡~ÈÍÍ3fÌ„ jÔ¨¡Óé„•+W3fÌ{ï½—››»lÙ2©û(3 LR• >ÁQñ9Ç‘WpýôS''ÕªPjò Ž:t0þpùòå¹sçæytÓ¦M›6m2o=zt±wvLJJZ°`¿¿lll¥J•„“'O^ºté_|ñÁÛ¥ï¾ûî×_•zè„’Ç©_n€R‹ˆˆˆŠŠúè£,œ>))©S§NÑÑÑÉÉÉ_~ùeNNŽ­¾UøÈ‘#“'OŽ¿sçNƒ ^}õÕ¡C‡º¸È+Ϩ˜¼6tçÎK4}ݺu‹fõêÕ¹¹¹#FŒ0¦F!ÄøñãÿûßÿnÞ¼y„ E:uêTLLLƒ Nž<)õ¶¬By@é:thÏž=QQQ–Ï2|øp__ßøøxOOO!DHHÈ€z÷îmý… )))mÚ´ÉÉÉyá…jÖ¬7jÔ¨]»výøãRo'­Wp´ÕÇsprrjÓ¦©ÅÙÙ9""býúõ )lÆììì±cÇúøøŒ?¾OŸ>RoHˆr#ÍÉÎÎÞ¾}ûÞ½{çÌ™cü:7 ݹsgÇŽ~ø¡15 !úôé3räÈõë×[GuóæÍýû÷·lÙR1qâÄ~ýú-^¼xëÖ­íÛ·—z›i‚ÊO80 ÉÉÉ*T¨P¡‚y{ýúõ…gÏž-bÞÙ³gŸ8qâ³Ï>+_¾¼Ô롎SpeŒÆ¢ åF@•âââÂÂÂ<==ûöí›––æêêºdÉ›,üêÕ«íÛ·ŽŽ¾råJ‰fÜ¿VVV«V­L-...M›6·¾WÛ·oˆˆ0¦F£!C†!øb9‡‘WÅÑæ222rrr¼½½ó´{yy !®]»VØŒ‡þæ›ozõêvìØ±’>o``à¿¿$%nٲŶ«V' @Ÿ’"ôz;n>÷Xè¥ëmž§®#êXØ™:uôú!,šøÜ¹sR­`±ë!áÆ×¿ôP­7víÚ500pèС—.]Z¹råž={JT,š¿¿¿ñ#wRRRƒ ,Ÿ1--M‘§^ãããsþüy+»”=xðàûÌÙÙ¹[·nV.¼è?á¤|Çñ‡*DZ¢òàèíí­Óé222ò´o¯c¬;æ7uêÔsçέX±Â’ûõ@yJ0N­†!mÆ©«ètR>{!½{÷îMII™2eŠ15 !ºuë¶jÕª§ÏÎÎÞ¸qcaOòüóÏÛ°ËÆ œ'Ož\«V-ScLLLþo÷°²W;wî|óÍ7“““çÎ[¯^=®Š òàèâââåå•¿²xëÖ-!„é:ks¿þúëŠ+Þ~ûí¦M›JÝ}Ø€-ný @ÃdùrêÔ)!DPPycË–- Žééé]ºt)|m¹ŽÆ ¢¢¢BCCMK–,Éÿ,¥îÕ™3g† ²~ýúzõêÅÅŵmÛÖ†ýGÑT~qŒÂßßÿêիƤhb<•Áßß?ÿôÆ¿Æ9sæ>еkW!ÄO?ýرcG©WH¡°"’¼nßX¢Ž+²Û¯ƒ’ö–*ð¶…ÙÙÙ…Mïååe(œmûæëë+„HMM5oLMM­X±¢MzµbÅŠÆÿöÛoóçÏ?~ü8©ÑÁT^qBDEE%%%íÞ½û¹çž3¶ †øøxŸæÍ›çŸ¾V­Z¦)nÞ¼™PµjÕæÍ›W®\Yê‚uÔhq8))©qãÆ¦ÆÄÄĦwäPuhh¨³³óL‹MOO?~üx=¬ïÕúõë_{íµ—^ziÞ¼yÜóDêŽÝ»wŸ7oÞW_}Õºukã51 ,HKKëß¿¿«««qšôôôË—/»ººV¯^=<<<<<Ü| ÇŽKHH ±Çm&!Wj˜”µ öõõ9sfÇŽ?~|Íš5¢^U‡††.Z´hôèÑÆ»šÄÄÄäää´k×ÎÊ^ 㥫˖-svv¶ëFaÔ«V­:f̘©S§vîÜùÉ'Ÿ<}úôþýû5jdþ]…ñññ#GެW¯Þ† ¤î¯Ú(vœäËÓÓóã?:th«V­Ú·oýúõU«VyxxÜ»woÑ¢EÍš5kÖ¬™ùôÆAavÀx1Ào¼1cÆŒüΞ=ÛX…éÙ³çÉ“'W­Z5hÐ ó;;–®W'Nœ8yòdPPPÿþýó<Ôµk×N:Ùs“ãêŽBˆ¾}ûV¬Xqݺu›6mªR¥J¯^½FŒaº£=T,ï•1––ÕPn nC† ©Zµê¬Y³/^ìëëÛ¹sç &¼ùæ›z½þĉy‚£ÍeeeݸqÃxÏ»ü‚ƒƒ×®]ûþûïOš4ÉÛÛ{àÀÓ§O·þI“““…'Nœ8qâDž‡êÖ­Kpt .8µ½ÀÀÀ¼÷q´-E @J[qtppÔëõò¹™Ÿ¢vÅ“ÕKR0߆….\˜˜˜8sæL©;b¥Ø4»Ï¨ÿªjHH™ãÔ” wïÞݱcGpp°Ô£¡Z „”ØÕ¾}û‚‚‚zöì)uGàhš8Ç’¼ÜXª[k)]@iEFFFFFJÝ H€Š#,BpTÆ KGK•Dö€a’S—²×Êë3ŽCp„:•êG5 Ü°‚#4À¢J"åFŠAp„í)sœƒà¨( CÚ‹JÊì »"8BíT’ Á6&‡qê^£’hI¹`oGX„àU+¾˜H¹KíÈÆ‘D Ñ@ãÔÀNŽP›’œà¨’r#ÈMBBBXX˜‡‡GõêÕÇŸ››+u`GØ åF©(¡ @yŽ9Ò£GÊ•+{zz†„„ÄÄÄdgg[2cRRR§NîÝ»ݱcÇ/¿ürܸq’÷ 6á"u»)¦žH¹ •’’Ò¦M›œœœ^x¡fÍšqqq£FÚµk×?þXì¼Ã‡÷õõ÷ôôB„„„ 0 wïÞMš4‘°W° *Ž€²Qn`£Fºyóf\\Üwß}7qâĽ{÷öíÛwݺu[·n-zÆ;wîìØ±ã7Þ0¦F!DŸ>}<==ׯ_/a¯`+G…}:É8µÅ'8Rn xqqqaaažžž}ûöMKKsuu]²d‰M¾}ûöˆˆˆ–-[šZ† "„Ø·o_Ñ3îß¿?++«U«V¦—¦M›ÆÇÇKØ+Ø CÕP)’!UÛ¸qc×®]‡zéÒ¥•+WîÙ³ÇV× dgg<8$$ļñôéÓB77·¢çMKKBT¨PÁ¼ÑÇÇçüùóö ¶BpLö•hv‘››;lذmÛ¶•)SFÑ¿ÿˆˆ[G—Ï>û̼åÚµkŸ}ö™³³s·nÝŠž÷ÚµkBˆ<ñNQ³fM {[!8Âd2N]‚þ*©·¤¤: Ÿ½°·Ö½{÷¦¤¤L™2Ř…aaaݺu[µjUÓgggoܸ±°gyþùç‹îÆÎ;ß|óÍäää¹sçÖ«W¯è‰]\\„“'O®U«–©1&&æÆö ¶Bp„i#Rn@žŸŠO:%„ 2olÙ²eaÁ1==½K—.…®cáo%gΜ2dÈúõëëÕ«×¶mÛbûV¾|y!DTTThh¨©qÉ’%ùŸÅ‘½‚­pq Ôò+c´*¨š±ª—G·3ôòò2®°¹V¬XѸqãß~ûmþüùÇ·0Ÿùúú !RSSÍSSS+V¬(a¯`+T•@Þ•%¥S«„¼w öeNJJjܸ±©111±°éK1(¼~ýú×^{í¥—^š7ož±ˆh¡ÐÐPgg瘛žž~üøñ=zHØ+Ø ÁªSTI‘r#5öõõ9sfÇŽ?~|Íš5¢Þ’  †±cÇÖ¨QcÙ²eÎÎÎ%ê[ùòåCCC-Z4zôhooo!DLLLNNN»ví$ìl…à€Âxzz~üñÇC‡mÕªUûöí¯_¿¾jÕ*{÷î-Z´¨Y³fÍš53ŸÞ8(lùòOœ8qòäÉ   þýûçy¨k×®:uZ±bÅÛo¿ýÆo̘1#ÿì³gÏïÙ³çÉ“'W­Z5hÐ ó;;Ú©WŽ~4‰à«ÈgœÚ‚ÕSndœÀ!CªV­:k֬ŋûúúvîÜy„ o¾ù¦^¯?qâDžàXRÉÉÉBˆ'Nœ8q"ÏCuëÖíÔ©SVVÖ7233 œ=88xíÚµï¿ÿþ¤I“¼½½8}útëW¹Ø^Ùk[à ÁꢞpÅèÚµk×®]Í[vïÞm“%wîܹè⯿þúýû÷‹8«òÙgŸ}öÙgm»¾Åö ÀUÕ²GqÉ6Ô“(Ù#HîîÝ»;vì–º#p4‚#JO>ãÔGÚ·o_PPPÏž=¥î¡j¨Á?'8ZUTO¹ä 22222Rê^@T%aœ !‚#JI9ãÔ”° ‚£¼Q_²œò!»@ZG”åF4ˆàųàÖßj@¹ 9‚#TÂ"öGpD‰1N €6`œ G{±A±‹°`Ng@)7`cG”ŒrƩՃO™ 8B•(7`{G(d&!!!,,ÌÃãzõêãÇÏÍÍ•ºG° ‚#J@nãÔÿœà˜¿›rê¤ÕëÈ85iìØ±#22²R¥J¾¾¾ááá?þø£…3&%%uêÔéÞ½{ÑÑÑ;vüòË/Çg«^9r¤G•+Wöôô ‰‰‰ÉÎΖzSiˆ‹Ô@!È élÚ´é¹çž èÕ«—»»{lll×®]¿ùæ›þýû;ïðáÃ}}}ããã===…!!! èÝ»w“&M¬ìUJJJ›6mrrr^xá…š5kÆÅÅ5j×®]–‡ZX‰Š#.oº¦Ü6ðî»ïV®\ùàÁƒ3f̘}úxzz®_¿Þú^5êæÍ›qqqß}÷Ýĉ÷îÝÛ·oßuëÖmݺUê ¦GXJnãÔ qqqqaaažžž}ûöMKKsuu]²d‰õK¾wïÞ±cÇ:vìèååelñððxòÉ'Ï;—™™Yô¼û÷ïÏÊÊjÕª•©ÅÅÅ¥iÓ¦ñññÖwlûöí-[¶4µ 2D±oß>;l`€¡j(UA'8Rn 7nìÚµk``àСC/]º´råÊ={öØêggç?þøÃÏÏÏÔ’}ôèÑG}ÔÝݽèyÓÒÒ„*T0oôññ9þ¼•½ÊÎÎûì³<ÏõÙgŸ9;;wëÖÍ6[Å!8Â"J§VU¹€lè$}ö‚ßÖöîÝ›’’2eÊcjB„……uëÖmÕªUNŸ½qãÆÂžãùçŸ/¢Ÿ|òIrr²¢]»vµjÕ*¶Ç...BˆÉ“'›OsãÆ öJ±sçÎ7ß|399yîܹõêÕ³zSÃ"GYbRóØÙãŸâ©S§„AAAæ-[¶,,8¦§§wéÒ¥Ð5,òíæÔ©Sûöíëß¿ÿc=vâĉJ•*1}ùòå…QQQ¡¡¡¦Æ%K–ä–R÷êÌ™3C† Y¿~}½zõâââÚ¶mk·-¼¸8Ê$m $e¬êåQÄí ½¼¼ …+öéÊ–-5eÊ”k×®­[·®è‰}}}…©©©æ©©©+V´I¯V¬XѸqãß~ûmþüùÇ'5:GO†ãÔ:¡{ømEUãÔ”Í8 œ””Ô¸qcScbbbaÓ—tPxãÆ]ºtY¾|y=L>>>¢¸ò¤"44ÔÙÙùÀ¦Å¦§§?~Ü|Q¥ë•býúõ¯½öÚK/½4oÞú( à믿ž;w®““SPPÐÊ•+MÃÍYYY7nÜ(ìfàÁÁÁk×®}ÿý÷'Mšäíí=pàÀéÓ§[¿ÊÆ‹»Oœ8qâĉ<Õ­[—à躅}X"000))©ôE0‚c±]Ò™ï·2*7êõú:uêX·j²zña)ë_zHËø¾-u/fáÂ…‰‰‰3gΔº#6PŠ@³û WUCi¸ž¤v÷îÝ;vKÝ8ÁE‘a¹1oeÝ=P§}ûöõìÙSêŽÀÑ8Ç Æ©(Eddddd¤Ô½€¨8¢Pr,7êÌïàH¹‡"8Ê E'­â•ÈÁ E¹G#8¢`ò§–[l¶f”J@p„’<¸ƒ£z#$2Fp€EŽ(€¼Ç©ÕVndœ G9!A#8B1t:Á (7 ‚#ò’÷85 ÁÊ¢ªüH¹ ,G`c aaaÕ«W?~|nn®Ô=‚mñÙŽS?8ÁQ=(7³û÷ﻸ¸èV±bEKæMJJêÔ©Ó½{÷¢££;vìøå—_Ž7Îæ=ŒˆˆˆŽŽ–z;iŽ‹ÔP§Òœ’GŽ(ÛD¯×çää„……˜===-™wøðá¾¾¾ñññÆéCBB лwï&MšØª{‡Ú³gOTT”ÔÛIsŽ ¯ääd!ÄĉKÎîܹ³cÇŽ?üД2ûôé3räÈõë×[³³³·oß¾wïÞ9sæ0ü- †ªñ/ÙŽS ¡“º¶^-êˬæé騷oß´´4WW×%K–ØdáÆàX·nݒθÿþ¬¬¬V­Z™Z\\\š6mo}¯®^½Ú¾}ûèèè+W®Øl;¢$¨8Bt:a g€™7víÚ500pèС—.]Z¹råž={lX„KNNvss+W®Üš5k®]»Ö¨Q£V­Z=òÈ#ÅΘ––&„¨P¡‚y£Ïùóç­ï•¿¿¿ñp””Ô A›oU‹à£ÜÉÍÍ6lXHHȶmÛÊ”)#„èß¿DD„mƒ£““Sݺu¯_¿nl Z¶lY‹-ŠžñÚµkBˆ<í5kÖ”z³ÁŽø‡Ç©@rÒ~t-ä]yïÞ½)))S¦L1¦F!DXXX·nÝV­ZUàôÙÙÙ7n,ìIžþùüÉÉɹ¹¹ÑÑÑݺusuuýé§ŸFŽÙ¥K—ÄÄD//¯"ºìââ"„˜{öìððððððž={ž>>›7o~÷Ýwfeeݸq#33³Àyƒƒƒ×®]ëææ6iÒ¤¸¸¸Κ5Kê Ûà¨l{&%•`³J]‰’cpTæ•1z½¾N:¯åFU+⥇"&%%IÝ …Y¸pabbâÌ™3¥îˆ ”bÐì>CÅQëäšÕsA ¨ÏÝ»wwìØ,uGàhGÈ“A(­ÜÚ±oß¾   ž={JÝ8šV.ŽY³fÍêÕ«“““Ë–-Ûºuë1cÆøøø1}ffæªU«bccÏ;W®\¹úõë÷íÛ÷‰'žz= HŒSP™ÈÈÈÈÈH©{ h"8ÆÄÄÌ›7ÏÃãeË–§OŸ^»ví©S§–.]êîî^àôÙÙÙ}úô9|ø°——×ã?~÷îÝ_~ù%!!aذaƒ–zmlI®ãÔR÷DýCÕIII ,ð÷÷ß²eË‚ ¶nÝÚ»wï#GŽ|ñÅ…ͲzõêÇ·hÑ">>~îܹß~ûí?þèííýõ×_ÛäR5h åF€j¨?8®^½:77wĈ•*U2¶Œ?ÞËËkóæÍ¹¹¹βeË!Ä„ L%Ézõê½õÖ[999{öì±qÿˆæÌÊœà€Ü¨?88pÀÉÉ©M›6¦gg爈ˆ«W¯ÔDåç8 †äää *T¨PÁ¼½~ýúBˆ³gφ„„äŸkþüùù¿?Þøµî5jÔzTŒÓ5•ÇŒŒŒœœãwešóòòB\»v­À¹Œß§dnÿþý ,pss+â[5ó 4ÿÕ8ü_!ôz½4[§ŽtO]`w ú½0둬ºg‰sçΙÿP'%Eq+ÒÈóÒPœ¢ß¬Ÿyæ©;(*ŽÆoCòððÈÓîéé)„¸yóf±KÈÉÉùþûï?ÿü󜜜éÓ§ûùùYøÔ–ßP^’/œøgœZF_u¡Â`ÚÊ=Á1ϫɷ‰h¯5 hEÿ ç?¦ç)i‡Êƒ£···N§ËÈÈÈÓ~çÎñ îX„_~ù%::ú¯¿þªR¥Ê§Ÿ~&õ A18» >*Ž...^^^ù+‹·nÝB˜®³Î/++kÚ´iË–-+S¦ÌСCûõëWØMa \¨€¨<8 !üýý“““oݺU¾|yS£ñTÿgÉÍÍ}çwþ÷¿ÿ=õÔS}ôQùÒZU¥ˆiöF¹ Jê¿OTTTNNÎîÝ»M-ƒ!>>ÞÇǧyóæβlÙ²ÿýï={öüúë¯í˜ñ¼S+÷GÔMýÁ±{÷îNNN_}õ•ñ¼F!Ä‚ ÒÒÒ^|ñEWWWcKzzº^¯7^i0–/_^®\¹qãÆIÝwÍP×}x(7@BBBXX˜‡‡GõêÕÇ_Ø7n@qÔ?T]µjÕ1cÆL:µsçÎO>ùäéÓ§÷ïßߨQ£˜¦‰9rd½zõ6lØpåÊ•3gθ»»¿úê«ù—ö /ôêÕKêu²ŠÌƩՕ@ENœ81a„äææ†……9Ò‹D“’’:uꜜüå—_æääL›6Í&½ºyóæ¸qã6mÚtíÚµàààÏ?ÿü±Ç+pÊû÷ï»»»çää˜7úùù]¹rEêM«`êŽBˆ¾}ûV¬Xqݺu›6mªR¥J¯^½FŒa¼#O~ƺcfffbbbþG¹°ÚöŽŽJ§¦Ü@vïÞÝ®];ooïW^yÅÙÙyÕªUíÚµ[¿~}Û¶m‹wøðá¾¾¾ñññÆCmHHÈ€z÷îݤI+{uëÖ­3gÎtëÖÍÏÏ/66ö™gžÙ±cGçžéõúœœœ°°°€€ScaGXÊ[«_¿¾¥›UŠí/ òyÑ…é?ÿ6)yŸLIIQr÷Qz)))RwV©_¿¾Ô]—ÜÜÜzõêUªT)55ÕØrýúõ€€€àààbç½}ûö#<2iÒ$SËýû÷==='Ožl}Ç>úè#!Äwß}güõ¯¿þòööŽŒŒ,pâ7 !âââŠ]l)vÍî3ê?ÇQ¾¤¨MÉlœZmêPnà0qqqaaažžž}ûöMKKsuu]²d‰õKÖëõ§NêׯŸéö#ÞÞÞ#GŽ>ÞúŽ­\¹²J•*½{÷6þЭ[·øøø‹/æŸ899YQ·n]Ûln!´pq äJ'„S t6nÜøÜsÏݹsgèСO<ñÄÊ•+Ÿxâ []ƒröìY‘ïnÇU«VB=z´èyÓÒÒ„*T0oôññ±þÌÂ[·nýù矑‘‘:ÎÔØ¶mÛÜÜÜýû÷çŸ>99ÙÍÍ­\¹rkÖ¬™?~BBBVV–M¶–iâGɿܨèu:‘’¢rúGj•››;lذmÛ¶•)SFÑ¿ÿˆˆ[Ç !öîÝ;bÄSãŽ;„ÖöÌ]»vM’§½fÍšVöêÒ¥Kƒ!Ï=˜é¶ÀTšœœìääT·nÝëׯ[‚‚‚–-[Ö¢E ›l%m"8BT(ƒyqËÁŠø ½wïÞ”””)S¦S£",,¬[·n«V­*púììlã zþùçó´øûû¿øâ‹±±±S§NíÛ·¯Á`X²dÉܹsѝ^+‚‹‹‹bòäɵjÕ25ÆÄÄܸqÃÊ^¿@Øüë<ăo¾zõjþ%$''çææFGGwëÖÍÕÕõ§Ÿ~9rd—.]‹ýÎa†àé¨(=OXÕë¥î[“ç0È©S§„AAAæ-[¶,,8¦§§wéÒ¥Dë8wîÜ7nŒ?~üøñBŸ>øàã?ööö.ºoÆ`jj\²dIþg)i¯üüü„·oß6o4Ù<#ãF;wî,S¦Œé¡¾}ûÞ½{wðàÁ±±±ýúõ³Í+¡=G­Ó8uÁQÑãÔàHƪ^ÙÙÙ…MïååUÒ7ØŠ+þüóÏû÷ïÿã?üýýÃÃÃwíÚ%,qöõõB¤¦¦š7¦¦¦O‘´¦WþþþNNNyF¥§TV«V-ÿôùŸñé§ŸB;v¬D›æŽˆêÊà0ÆQत¤Æ› ¼ý°QI……üñGùòåüñÇÜØ²mÛ6NWìýŒCCC8`ZlzzúñãÇ{ôèae¯\\\6lhþÂBˆ]»vétºF噸ôéÓ6lhÛ¶­y]ÖXž4CG‰I}? ²è>Žßò²¹}£ÈóÿPìÞhê87óÓ,^z¥SÜ=ùnß¾íëë~÷î]c˱cÇÜÜÜ„ß~ûmþéóŸ_Xl õôô<þ¼ñ×ãÇ—+W®cÇŽ–t/,,¬råÊׯ_7þúÉ'Ÿ!~ùåë{5kÖ,!Äúõë¿^ºtÉßßÿé§ŸÎ?å¥K—Ê”)óä“Ofee[rrr^~ùe—cǎ噘û8ZN©‡j9“ap”Mj4¨/8š÷šô Y¼ôJ§Ä0{öl!Ä£>:f̘þýû—+WÎx2_xxø¡C‡¬_þÖ­[œœªW¯>tèзÞz«B… •*U2íê?üðƒñÎŽÎûûï¿»»»7jÔhòäɯ½öÚ#<2hÐ ›¬õÍ›7›6mZ¾|ùwß}wêÔ©AAAåʕ۷oŸñÑ)S¦x{{Ï;×øëÔ©S…µjÕzë­·Æoüv™O?ý4ÿb Ž–ã>Žp¤ãÓùÆ©9ÁJdÈ!k×®õöö^¼xñ®]»:w×ëOœ8aýòŸ~úé-[¶Ô¬YóÛo¿Ý´iS×®]?^§Î?wËÊʺqãFfffó¯]»ÖÍÍmÒ¤Iqqq4V ­W¾|ùøøø=zÄÆÆN›6­nݺñññ¦ïª¾{÷î7îÝ»güuìØ±±±±þþþË—/_¸p¡ÏæÍ›ß}÷]{¿4êÆÑÚöÿLJ*f³:ö´8Ù\£¶à˜çeÔëõ¦wUh /½Ò&%%IÝ …Y¸pabbâÌ™3¥îˆ ”bÐì>CÅQýäŸÊr÷îÝ;vKÝ8ÁŽQTZTG¹´cß¾}AAA={ö”º#p4nÇ#&Ù”ê)u/ *Žp³r£ZÆ©)74ˆà‰)qœšÔÐ&‚£šÉcœZ…åF´‰à” åF€faWÅÔ•8N €fm¯ø»;„<Æ©ꬺSÊ• ÜÐ0‚£Ãi(z¨"*€ŽpUdH e~ BpT'ŒS9Áe!8ÂN”P‚£ ɠܨ6¤FÁv`Q‘qj€QBBBXX˜‡‡GõêÕÇŸ››+uP(‚#ìLùãÔ”hÍ_ý¥+Ddddþéïß¿ïââ’gÊŠ+Zò\III:uºwï^tttÇŽ¿üòËqãÆÙ|"""¢££¥Þ®jà"u4ÆþDêqjåçDÐÜ××7>>Þ8}HHÈ€z÷îݤI[­Î¡C‡öìÙ%ÉÆT‚#ì©© qjÊ4ÈßßÙ²eyÇŒS¥J•iÓ¦åŸ>99Y1qâÄ’†³;wîìØ±ãÃ?4¥Ì>}úŒ9rýúõÖÇìììíÛ·ïÝ»wΜ9 Û CÕ°!Êà8qqqaaažžž}ûöMKKsuu]²d‰=žkïÞ½111‹/öõõÍÿ¨18Ö­[·¤‹Ý¿VVV«V­L-...M›6·¾ÏW¯^mß¾}ttô•+Wì±M´‰Š£ªH=N·7òéK)×€r#¹Ú¸qc×®]‡zéÒ¥•+WîÙ³ÇNuµ»wïöéÓçµ×^{æ™g œ 99ÙÍÍ­\¹rkÖ¬¹víZ£FZµjõÈ#»ä´´4!D… Ì}||Ο?o}·ýýý£[III 4°Ç–Ñ ‚#lÅÒœ¨”qjR#ÙÊÍÍ6lXHHȶmÛÊ”)#„èß¿DD„‚ã¬Y³Î;÷É'Ÿ6Arr²““Sݺu¯_¿nl Z¶lY‹-Š^òµkׄ!!!yÚkÖ¬éÀ͉ 8ª‡¤åFåW  :”Ï^ØÇ×½{÷¦¤¤L™2Ř…aaaݺu[µjUÓgggoܸ±°gyþùç‹èCZZÚgŸ}6bĈêÕ«6Mrrrnnnttt·nÝ\]]úé§‘#GvéÒ%11ÑËË«ˆ…»¸¸!&Ož\«V-ScLLÌ7l¸ °!‚#ìCáI’r##y¾œ:uJdÞØ²eË‚czzz—.] _Ç¢VrêÔ©wïÞ=ztÓìܹ³L™2¦ç¾}ûÞ½{wðàÁ±±±ýúõ+bÆòåË !¢¢¢BCCMK–,Éß%kV6Dpt Õ†‘„DEŒS«ö… ÆB]ÙÙÙ…MïååUº÷Þ»wï.^¼¸k×®yNCÌ£jÕªyZž~úi!ıcÇŠ^¾ñR›ÔÔTóÆÔÔÔü ,õ*À¶Ž*Áe1 ÆÝ¤¤¤Æ› ›¾Ô㼫W¯¾víZÑUÃÓ§Ooذ¡mÛ¶æÐ[·n™úY„ÐÐPggç˜úžž~üøñ=zØj`[GX‰r#8Zpp°¯¯ïÌ™3;vìèææ&„8~üøš5kD!ƒ¶¥çýᇼ¼¼ ü¶ww÷Ñ£G·lÙrÛ¶m®®®BˆÜÜÜiÓ¦¹¸¸´k×®è)_¾|hhè¢E‹Fííí-„ˆ‰‰ÉÉÉÉ?#CÕ2Á}Õ@ºrcA©‘r#Ø™§§çǜЪU«±cÇ0à±ÇóððB,Z´èðáÃy¦7Žó¦°gÉÌÌŒwrÊ›¦Nêãã3oÞ$$dÀ€½{÷nÒ¤‰­ÖåСC{öì‰ŠŠ’z£ªÁQI8N]ô·Á)å6NMj€’š1cFrròwß}÷úë¯ !†Þ¢E‹wÞygûöíù'NNNBLœ8±¤áìÎ;;vìøðÃM)³OŸ>#GŽ\¿~½õÁ1;;{ûöí{÷î3gÃß¶ÂP5JHU…HP°¸¸¸°°0OOÏÀÀÀ¾}û¦¥¥¹ºº.Y²Ä& _¹re•*Uz÷îmü5  [·nñññ/^Ì?±18Ö­[·¤Ï²ÿþ¬¬¬V­Z™Z\\\š6moý*\½zµ}ûöÑÑÑW®\±É6 8*ˆ\ÊÅÎL¹ìoãÆÏ=÷Ü;w†úÄO¬\¹ò‰'ž°U]íÖ­[þùgdd¤N§35¶mÛ677·À3“““ÝÜÜÊ•+·fÍšùóç'$$deeYòDiiiBˆ *˜7úøøØ$êùûû ƒÁpòäI›l†ª‘UƒÔrCj J¹¹¹Ã† Ù¶m[™2e„ýû÷ˆˆ°Up¼té’Á`ð÷÷7o¬T©’¢ÀH—œœìääT·nÝëׯ[‚‚‚–-[Ö¢E‹¢ŸèÚµkBˆ<í5kÖ”dâXGepT¹ÑÚ`(«r#©€õtÖ/ …½‡íÝ»7%%eÊ”)ÆÔ(„ ëÖ­ÛªU« œ>;;{ãÆ…=ËóÏ?Ÿ§%##CQ¾|yóF///!ÄÕ«Wó/!999777::º[·n®®®?ýôÓÈ‘#»té’˜˜hœ«0...BˆÉ“'תUËÔsãÆ +WvBp´35…E•Õ´áHHžo$§NB™7¶lÙ²°à˜žžÞ¥K—B×1ßÛ¥ŸŸŸâöíÛæ·nÝù†•vîÜY¦LÓC}ûö½{÷îàÁƒcccûõëWÄŠ³iTTThh¨©qÉ’%ù»TÒU€@åF R£|ʤFêf,Ôå‘]Øô^^^%zö÷÷wrrÊ3*m<±Zµjù§¯Zµjž–§Ÿ~ZqìØ±¢ŸÈ××W‘ššjÞ˜ššš%]Ø ÁFŠ*'€¶v“’’7nljLLL,lú’Žóº¸¸4lØp÷îÝæ»víÒét5Ê3ñéÓ§7lØÐ¶m[ó ¨±] ÐÐPggç˜úžž~üøñ=zX¹ °‚£Ü9¤ÜXì)7€ŒûúúΜ9³cÇŽnnnBˆãǯY³F2h[ŠqÞ >|Æ ;vB\¾|966¶]»vuêÔÉ3¥»»ûèÑ£[¶l¹mÛ6WWW!Dnnî´iÓ\\\ÚµkWôŠ”/_>44tÑ¢E£GöööBÄÄÄäää䟑¡j™àv<(Ž¢j‘¤FZàééùñÇ'$$´jÕjìØ± xì±Ç<<<„‹-:|øpžéã¼…)ð)úôéÓ´iÓW_}õ½÷ÞûüóÏÛ´i“‘‘aúÖ¾©S§úøøÌ›7OQ©R¥èèèÝ»w׫WoРAï¾ûnHHÈÊ•+'NœØ°aC!ÄŠ+|||FUàÍž=ûæÍ›áááŸ~úiïÞ½?ùä“Aƒ™ßÙ±Ô«{ 8Êš,Ê–,BåFR#í2dÈÚµk½½½/^¼k×®Î;'$$„‡‡ëõú'NX¿üòåËÇÇÇ÷èÑ#66vÚ´iuëÖì±ÇŒÞ½{÷Æ÷îÝ3þ:vìØØØXÿåË—/\¸ÐÇÇgóæÍï¾û®ñѬ¬¬7ndfføDÁÁÁk×®uss›4iR\\ÜÀgÍš%õÖE¡dq¼W™‡‚˜uYÆþÁQ=ƒÔrHz½>ÿ ´€—^é“’’¤î…š-\¸011qæÌ™Rw¤`¥Ø4»ÏPq”/E¤F™CjèîÝ»;vì–º#°‚£=É:ÎØ&Ê¡Ü(ëÍ š·oß¾   ž={JÝØWU˔˖Œ@+£ÜHj™‹ŒŒŒŒŒ”º° *Ž(ˆe©Qòr#©G"8Ê‘ÄåFR#(CÕZ£è¢×A'„ 5àhGÙ±g¹Ñf§6JXn¤Ð€TªÖR#° ÁÑnJ•qìVnTÃeÔ¤F¤ÅPµØ25JRnä¤Fä€à(#ö)7ª!5‚£\ yRR#G ”º €ULÙç52< Àa’’’J7£^¯¯S§ŽÔ݇à( ¶.7ê„¶M.7Rh@†Žêcá=udš)4 [GéٴܨàÔHd@æŽöañP+©ñÁ;‚£:XvR£cj¤Ð€R¥d£r£Å…F!¯ÔHd@YŽ’±Ej´W¡Qa×ÔHd@‰ŽÒ°QjTX¡Ñ˜‘e"8JÀêÔhñm-˜êßÉíYh¤Ä€ 8IÝùZ³fM÷îÝ›7oþÄO¼÷Þ{ׯ_·Éb­Kº…FËnî]ÂB£ÍS£N÷Ï?ƒA©ñ™gž‘º /½fñÒCk¨8,&&fÞ¼y-[¶<}úôÚµkO:µtéRwwwkkEj,I•Ñ‚ ÿÃÖ…FÓx´ Ä€ºPq,@RRÒ‚ üýý·lÙ²`Á‚­[·öîÝûÈ‘#_|ñ…¥‹((1•*5ê,­2šOeÉ©ؤÐhª,šŠ‹)1 )Ǭ^½:77wĈ•*U2¶Œ?ÞËËkóæÍ¹¹¹¥[f S£ÎÒ$hq°ügò‡ób©#£yR$, Ç8pÀÉÉ©M›6¦gg爈ˆ«W¯ùäéÓ§÷ïßß°aÃÅ‹ç¿M€F µ~ýúuëÖ9r¤J•*­Zµ1b„ñŽ<ÚDp€E8Ç!8À"GX„à‹`‚#,Bp€E\¤î€z¬Y³fõêÕÉÉÉeË–mݺõ˜1c|||¤îì®[·nGÍÓèçç·gÏ©»»HIIyöÙgW¯^Ý´iÓüò> bE¼ô¼¨RffæªU«bccÏ;W®\¹úõë÷íÛ÷‰'žÈ3™Öþê Ž¶3oÞ<–-[ž>}zíÚµ§NZºt©»»»Ô]ƒ}9sÆÝݽvíÚæ|5¥Š-[¶¬°‡xP·"^zÞÔ';;»OŸ>‡öòòzüñÇïÞ½ûË/¿$$$ 6lðàÁ¦É´øWo€ÕNž<Ù Aƒ'Ÿ|òÒ¥KÆ–I“&Õ¯_âĉRw öuóæÍúõë>\êŽÀînÞ¼yàÀ?ü°~ýúõë×?|øpž xP«b_zÞTéû￯_¿þ+¯¼’‘‘alùóÏ?[µjtüøqc‹6ÿê9ÇÑV¯^››;bĈJ•*[ÆïååµyóæÜÜ\©{;:sæŒ"O™ªÔ©S§W_}uåÊ•…MÀû€ZûÒó> J[¶lBL˜0ÁT;¬W¯Þ[o½•““c:A›õG8pà€““S›6mL-ÎÎÎW¯^=xð Ô½ƒ>}ZQ«V-©;»›}ºaƯ¿þzžöC‡ !¥î Š÷mâ}@­–-[ö¿ÿý¯gÏž_ýuaåCmþÕm {÷îNNN_}õ•ñÌ!Ä‚ ÒÒÒ^|ñEWWW©{{©]»v‹-~ýõ×5kÖ˜:´xñâªU«¶oß^ê¡xÐ&ÞTÉ`0,_¾¼\¹rãÆ+b2mþÕsUµ T­Zu̘1S§Níܹó“O>yúôéýû÷7jÔhÀ€Rw öõá‡öë×ïý÷ß_±bE@@Àùóç>\¶lÙÏ>ûLÍ_TŠ‚ð> Y¼¨Ï•+WŒß?þꫯæô…^èÕ«—Ðê_=ÁÑ6úöí[±bÅuëÖmÚ´©J•*½zõ1b„ñš|¨Xƒ ~üñÇéÓ§ïÛ·ïÔ©S5jÔèҥ˰aêT©"u× Þ´‰÷õ9wîœ"333111ÿ£æ—Èhð¯^g0¤î€s`‚#,Bp€EްÁ!8À"GX„à‹`‚#,Bp€EŽ´e̘1;w#⫯¾ üþûï¥îXŠà‹¸HÝШÈÈH??¿-ZHݰÁ¤Ñ¨Q£FIÝ (†ª@vrrrîß¿/u/ /‚#exÿý÷§M›–§ýèÑ£aaaÙÙÙBˆ´´´3ftèÐ!88888ø¹çž›2eÊ¥K— [¬ñZ™}ûöåioذác=fÞ²gÏžaÆ=õÔS-[¶ìÝ»÷W_}•'Û?þ£>êСC³fÍÚ´ióæ›o8p ˆ5úæ›oÌ/Ž1öäܹs ,xüñÇ7nòòË/ÇÅŶ„C‡5lØ0""âöíÛ¦Æ;wî´iÓ¦aÆGŽ‘úE 6GÊЩS'!ÄÖ­[ó´oذAÑ¥K—´´´W_}uþüù.\¨Y³fõêÕÏž=ûí·ß¾òÊ+ׯ_·æÙ¿øâ‹~ýúmݺ5;;»R¥J¿ýöÛìÙ³{õêuõêUã§NêÔ©ÓÊ•+¯^½úŸÿüÇ`0ÄÇÇ¿öÚkÛ·o/ÑÍŸ?úôé®®®?þ¸——סC‡¼yóæ'nÞ¼y¿~ý.]ºôÙgŸ™?ÿüó‹/¾ýöÛ>ú¨£_$jGp  -[¶¬T©ÒÙ³g?njÌÍÍ5†ª®]» !Ö®]û÷ß·mÛvÏž=ëÖ­ûé§ŸZ¶lyþüùmÛ¶•ú©wìØñÍ7ßÔ¨QcÍš5;wîܸqã®]»Z·n}øðá¹sç§ùâ‹/ÒÓÓ ´wïÞµkׯÇÇO˜0Á`0Ìš5«Dϵzõê7ß|s÷îÝß}÷ÝÏ?ÿܧO!ÄÒ¥K ›~ذaõêÕ[»víîÝ»…ûöí[µjU“&M $Ýk@µŽ”ÁÉÉé¹çžûí·K—.5oÞ¼nݺBˆìììÈÈÈÑ£G{xx'(_¾¼±TyúôéR?õÔ©S…3gÎ4ÕðüüüfΜéïï{ãÆ !ÄÉ“'…Ý»wwvv6NóÊ+¯¼ýöÛO=õT‰žëÑG}çwœœœŒ«üöÛo !þþûï¦wuuýüóÏ]\\ÞÿýË—/O˜0ÁÝÝý‹/¾0ulˆà@1ŒÐ|ÜÖ8Nýâ‹/|èС%zºgŸ}ÖüW///gggƒÁPÄ, 6ýôÓ 6,ÑÓU¯^½8p`\\ܱcÇZµjõÊ+¯Øt«À¿Ž”¤S§N³gÏÞ²eK``àîÝ»oÞ¼ÙµkWÓÀôŠ+&Mš”]³fͧžzªqãÆz½~âĉ%z–œœS‘/++KQ­ZµÂ«V­*„¨^½úš5k:´k×®_~ù%11ñàÁƒsçÎíÖ­Û¤I“t:…OýÈ#”b³Ü¹sçÊ•+Bˆ”””7nx{{Ûÿ¥ EGJb ŽÃ‡7ŽA›Æ©ïܹóÉ'Ÿ<òÈ#óçÏ7Í’ššZÒg¹páBnn®ñ瀀!DÙ²eß{ï½¢çÒétÆ{ !²²²vïÞýî»ïÆÆÆ¶mÛ6**Ê®›å£>º|ùrppðÁƒ'Nœ8cÆ »>ÍâGJR«V­Æ§¤¤=ztÛ¶mµjÕ 1>tôèÑœœœàà`óÔ(\¶R´<#Ú?ÿü³égÿŠ+þõ×_ÇŽ3Ÿ&''çÅ_|òÉ'ÓÒÒΟ?ß¶mÛ—^zÉôè#<e¼šçܹsvÝ&ëׯ߼ysëÖ­—.]Z¯^½7æ¿iØÁ€Â/‘™0aBFFF·nÝLíþþþBˆ“'O¦¥¥[rrrV®\¹|ùr!DfffK«Y³¦bÙ²eÆ–ýû÷›n²c4jÔ¨ÜÜÜQ£F8qÂØrçÎwß}711±Q£F~~~UªT¹}ûöü±páBS©òï¿ÿÞµk—®÷SLMM8qb¹rå>ùäWW×Ï>ûÌÙÙ9::Úú“; ?†ª(L‡¦Nš””äììÜ¥KS{@@@TTÔ¶mÛÚµk×¢E ƒÁ””týúõW_}uéÒ¥ÿ÷ÿwûömãuÌuéÒeÉ’%ŒŠŠjذáåË—“““½¼¼*W®|ïÞ=ã4/¼ð¯¿þúã?véÒ¥Zµj>>>)))µk×6ÞyÛÉÉé½÷Þ?~ü´iÓ-ZT½zõŒŒŒ¿þúË`0¼òÊ+Í›7·Ó¦0 ãÇ¿uëÖ§Ÿ~jÌÍMš4éÓ§Ï¢E‹¢££gΜ)õk@m¨8P˜J•*µjÕJñä“OVªTÉü¡éÓ§6¬jÕªÆû;FDD¬[·n„ ¯¾úª³³s_X£F~øá©§žrrrJHHøóÏ?«U«öÍ7ßøùù™¦ÑétS¦LùòË/Û¶m›››û÷ßשSgÔ¨QëÖ­óññ1Nó /,Y²¤uëÖîîî'OžÌÈÈxâ‰'æÌ™óÑGÙoS,[¶lß¾}ááá¦=…Æ «U«ÖæÍ›·lÙ"é @…tEß ´#==ýêÕ«5jÔ°ü"hЂ#,ÂP5,Bp€EްÁ!8À"GX„à‹`‚#,òÿ61”†9œ µIEND®B`‚statistics-release-1.6.3/docs/assets/gamfit_101.png000066400000000000000000001613541456127120000221310ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A€IDATxÚìÝwXGÿðYîhÒ‘ÅH¥‰"p(ˆ°ƒJ!Æ‚J„X"Q D£ æÕ ŠŠñ(r‚hP±!E0Æ¢A‰H;nL²¿{¯±(ˆßÏããs7;[ffwo˜™%H’DtD¦§| âhŠ# *Ž€¨8Z âhŠã»uüøq‚ž×¯_#„âââðW??¿ž>ö^W23;;ûÔ©S§Nª­­¥wïÞ78|øðžN\o×#gòëׯ### ™L¦ŠŠJcccOgCç¬[·gš¯¯/yʉKæ”|‘×—d………sçε°°PQQéß¿ÿÈ‘#?ûì³¢¢¢žNJÏ£yÚÐDóÖ÷Ž.p¸ñ~˜=}ôFÁÁÁoÞ¼A?ÞÓÓ³§вbÅŠ´´4ü_Ÿ$.™Pò;u}544Ìž=ûĉü¿þú믿þúã?úúúþøãZZZ=¦>¢go}pãý @ÅñÝêׯŸ‰‰ õµ©©éùóçø³œœµHFZ{;\šúúú=},@„sçÎánnn~~~ü××Jä)'.™}/ù¡¿ÿþ{Ô¨Q·oߦBddd‚hooÇ_Ïž=;yòä .(((ôôÁöÝ~§êÙ[Üx{¨8¾[¾¾¾>¤¾^¸paìØ±øó¹s笭­{ú»ÍÇ äåå{ù6»"$$$$$¤§¢×é=ÅDýU¶lÙ²ñãÇ÷ôát‘§œ¸dö½ä#„æÏŸOÕGµvíZ…²²²õë×=z!TTT´fÍš7öôÁöÝ~§êÙ[Üx{håê½^¾|¹téÒaÆ)++ÛÙÙýç?ÿá?$ÿ.—ûÍ7ß}óÍ7T„çÏŸ/^¼ØÅÅEEEeàÀS§N-))Þ ÍhüøwýìÙ³ÐÐP---333]]]‘÷îÆÆÆÕ«W{yyéêêêêêŽ;våÊ• ÒmSÜØšàà`+áày<Þ‘#G<<<ŒŒÝÝÝ8ÐÖÖ†#¬X±‚ ª§oìØ±Aàábâ†Út6¯^½ZºtéðáÃUTTìììÖ¯_Oí]œ¶¶¶]»v±Ùleeå¡C‡Îœ9“¿†fêø$ àÁƒ¡¡¡&&&FFFÁÁÁwïÞE]½z5((ÈÄĤÿþùùùR½tçÍÄò«­­}ôèÇÃ_ëëë=zÄår+¥SÅ'E¦‰óøñã   ---===ÿk×® Ç8åÄ%SBòif{×ï'4Ïp ×—°;w§ãÏÓ§O¿páÂèÑ£UTTdeemmm322>ûì3¼4##£G.éÎ:‡×§ Öáe%Å­«©©™9sæÀ /]º$îÄà¸c÷†¯wž Þ£óçÏS9_ZZ*aÕªUx©»»»¥¥¥@amݺU8æ”)S¨»çªU«ðÒ .èêê ¬NÄ—_~É¿;šÑÄä˜1c(°zxx8äââbá8¡p8)¶ÉŸpþMŸ>‡ÇÄÄHˆ(òB˜6mް|ùrá¥oÞ¼!Ir×®]ø«£££Ô tww·²²ˆ !Û››GŒ!¼ ‚ ¾ÿþ{þ˜¦ŽÿHìììF†ikkoÛ¶MVVV`/ùùùÝRLtÎ7ú‰å7eÊáU***:¼R:[|RdšH×®]ÓÓÓã_EEEeܸqø³Ž&pʉK¦„äÓÌö®ßOhžá®/a ,Àþøãáþùç¬ýõ×_ïÿBî| sxÝxÚм¬:uë£r`øðáW¬¬ì®]»$ß H¡;vßx¥»ó|œ âø^ѯ8bfffööö •——oiiˆiddDÅÇ7úׯ_kkkã1cƬY³&88˜C¹oß>¼šÑ:È &477“$ùÇXXXà@WWW3>>‡¨ªªR×ç;w¨¿Ñ—/_ÞÙmv¥â8{öl²téRjÅaÆáÀM›6QTeèüùóT ðýKºnß¾–——S·0 Ôºººâ8 T ———ÀÖh¦ŽÿHΜ9C’dkkë˜1c¨À””’$ÛÛÛçÌ™ƒC´´´º^L4Ï7š‰Id©I¸R¤+¾Îfš°ï¿ÿÇQQQ¹zõ*\²d µ5 5qÉN3Û»~?éÔ.. üx<õ7óêÕ«IÚÞó…ÐÙuéß…ºñ´¡YѼõñçÀĉñ­àñãÇŸ|ò‰À…OÿŽMïïâÆÛ•;ÏÇÆ8öRVVV‹-Ÿ'OžÌdþóSUU•@Ì~ýúåææ†††:99™™™!„þûßÿâE‘‘‘T´Ù³gã»ðãÇïܹC?šL&sçÎø©ƒ 6à𢢢ææf„Й3gpÈ¢E‹¨á)C‡ýòË/ñg*ýmvEPPPzzzzzúâÅ‹qHCCÃÛ·oñç—/_vvƒR$pÈ! .ÄŸ---ÝÜÜðçG‰ÛKSSþðÓO?ýðÃøˆŸ~ú©´´´´´tÚ´iÒ¥ÎÑÑwrÉÊÊà@uuu|âÉÈÈPwöúúú®Íófb¥ |¥HQ|]É4ÊáÇñþVÄÄD©S'Ng/s©ï')Îp‘êëë©G§Y,ÿ¢-[¶O…{ùòe¼ô}^R¬+õ]¨+§Í»»¬dee©[Á€¨[ANNU|Ýî]Üxß]õ=Pqì¥ D}VVV¦º<„/E{{{þû÷ïãÞÞÞÔ]UYY™Z×>iF“`È!  ¾z{{ã$IþöÛo¡ÊÊJEاŸ~Jí‚ÑOs›]áíí:nܸ˗/ÇÄÄxzz•——K½A)(0.‡êáˆ&pØÔîæÌ™£¯¯?lذíÛ·766Z[[Scž:›:þ~4EEEüÁÀÀ€ @aRÍófb¥ |¥HQ|]É4ᬠflFÉÉÉQûíF½Ì¥¾ŸP¤8ÃE¢zBôç Gï÷Bb]©ïB]9mÞÝeemmÍ?¼:¶ÖÖÖßÿ]êÍJö.n¼ï.‹ú¨8öRÓ:R·!aC³:œû÷Å‹4£IŽ p-õë×OMM ~öìYCC~š‹ºÛ677SsˆÐÙfsµµµuéÒ¥:::ÁÁÁ[¶lÉËËãr¹R7óH—@¢”P²”øøø PóÝ$YRR²nÝ:''§Q£FQ¿©MÈ]ÓœO´³ÅDÿ|£™X)_)]/¾NeöæÍ›¿þúKd6ò×Å»…—¹t÷ YDç I^^ž[)P¯RUU5ùý{Ÿ‚ëJwêâióî.+ƒQRR¢n?–z³¼£ï»Ë¢¾*Ž< @UUUEE>wî\µ(ÁÁÁ4£IÞµÀ•ÙÔÔDM…`bb¢ªªJÝAþüóOþ˜ÔW999ê·Î6»˜WëÖ­Ûºu+—Ë533Û¹sçíÛ·&Nœ(ÝÖ¤K deewìØQ[[›‘‘ª¡¡A-*(( ¦êÞÔIÖÙb¢¾ÑL¬„¯”÷S|©©¹©ªFýv).séî'Ý{ØjÔ`VV^EFF>|øðáÇUUUêêêk½Ï A Ò^O›wwY ü¡ØÔÔDÀƒîòŽ®Üw—E}Tû jx2—ËÈGCCC]]]]]÷žÐŒ&Á½{÷jjj¨¯¹¹¹$I"„äääðÓÔ3Ô;-¾4ˆ¾Is›Ô›Àx#›©H;wîľÿþûyóæÙØØ0™Ì§OŸJÕR$°³ZZZž?þüùó–––ÀÀÀôôô¿þú+77—š9‚š5­ÛS'A‡Å$ŒÎùF?±Ýâ=Ÿ0ƒajjŠ?ÿòË/T8I’tf쬮_æ]߂Ԗ,Y‚[ï^¿~½xñbþ™)±Ý»wóŸ‡Øû¼¤ Ýáuå´y§—•À­€:6999ü7dWîØâtû•ûžï<:¨8öAÔËiöìÙCþ;gøñãÇû÷ﯥ¥ebbò÷ßÓ&AkkkTTTkk+BèÏ?ÿ\¶lŸ8q"8OM0öÝwßQÓ—––&%%áÏüƒuhn“ê—ùõ×_©A?'Nœèðîù÷ßS}jÔ-ìÆyyy’Ó(a© ì¬òòr======}}ý „˜LæØ±c©§5q‹‹t©“Z‡Å$ŒÎùF3±Ýå=ŸHŽŽŽÂû]¿~}YYY·ï«ë—y×· äëkäÈ‘sçÎÅŸ92jÔ¨K—.á®óÛ·oÏ;—zÜòž/„ÎêÊáI}ÚHwYI.J[[[TTžIûÏ?ÿ¤¦cìâû=ßxßóçC¯ìƒV¬X‘––öêÕ«¬¬¬1cÆŒ=úÞ½{ÔSf_~ù%L3šd'Nœ055µ²²ºví‘‘Y»v-^úÕW_ýç?ÿyôèÑëׯÙl¶§§'ƒÁ8þ<~€¾¾~\\\g·IÍ[ÑÔÔdoooooÿâÅ j¬´ÊÊÊÊÊÊøWgΜ9‡&â¿ÿý¯È·5¨««ã˜ß~ûí½{÷/^,0£oWØ)666ºººÏŸ?çr¹l6{„ ššš¿ÿþûÏ?ÿŒ#à÷1t*uÝBr1 £s¾©««ÓIlwyÅ'Rllì¡C‡H’¬¯¯wvvvrrª­­­¨¨xûêúeÞ-7 4¯/„І þûßÿâ·^¹reôèÑ222rrrÔÃûÎÎÎW®\¡â¿ÿ ¡SºrxRŸ64ï!- ¾XZZã¿" ƺuëðÒNݱ{êÆÛ©,0ã{EG)¯¨qcGŽ‘ûùçŸEþ…ôÅ_ðϵK3š¸ƒ5j”À(&“ÉÿÎ’$ýõW<©‡ccã‚‚é¶IÍpA133£ÚE$Ìã$¼¢‡‡þüÙgŸQ» å&áM ÉÌ\¹rE\o »»;žA~êDÉþýûqà!C¨ÀÂÂBª:[L"÷Bç|£™X‘$Ïã(òJéJñÑÌ4‘fÍš%°G%%%ê™ÐnœÇ‘f¶wý~Ò©3\äõ%γgÏÜÝÝEž“&M¢†Û¾ÿ AŠuéß…ºñ´¡YѼõQ9 ®®.ð0œœÜ?ü òàO²ð›þÞÉwpãíÊçc]Õ}Óĉoß¾áààЯ_?333???‡“ššÊ?øf4q455/_¾inn®««;uêÔÜÜ\ªk 1bÄ;wâââ<==uuuµ´´ÆŒóõ×_ß½{—ÍfK·ÍüqݺuC‡URR²··_´hÑÕ«Wž)99yèСèß—=DGGß¼ysòäÉxéáÇ©ž”äääÐÐP%%¥!C†HxL²³ ”ÂÈ‘#«««ãââ†n`` ++«¡¡Áf³ÓÒÒòòò¨Çé§®ëè“0:çÍÄv—÷P|"íÛ·zŸžŽŽÎ¤I“Ο??jÔ¨w±¯.^æÝ²ô¯/„®®îÅ‹OŸ>Äb±äååû÷ï?jÔ¨ýû÷geeéèè¼ñ}^Ò¥]êÓú´¡YuªhBîîîgâĉFFFúúúyyyÔ$çý;vÞxßóçƒFÿŽY€¦¸¸¸„„„Д)SNž<Ùk·)R[[[vv6ê£]ï:uï­˜>ׯ_¿xñâܹsUUU{úXú”^~™wñðà´= Æ8‚‹¬¬lïü-Ô}„©'@7êåBNг «ÐG@ T-ðp  Z-Pq´@ÅÐG@ T-Pq´@ÅÐG@ T-Pq´@ÅÐG@ T-Pq´@ÅÐG@ T-Pq´@ÅÐÂìéèƒ,,,zúðnUVVöô!ô¨8¾çÉôîXXX@–v#ÈÏnYÚí K»äg·ûh‰ «ÐG@ T-Pq´@ÅÐB$ÙÓÇÐ×ÀÃk@ßöÑþÖC‹# *Ž€¨8Z>–7Ç;vìèÑ£ÕÕÕýúõ=ztll¬†††äUîÞ½»{÷î{÷î½yóÆÂÂ"**ÊÉÉ©§ÓÐc>ŠÇäääU«V=xð`øðáÊÊÊÇÿüóÏ›šš$¬’——œ——§££cooóæÍ°°°¼¼¼žN @éûOUWVVN™2E[[;33SGG!´nݺüqÆŒqqq"WyýúõرcÛÚÚöíÛ7lØ0„Ð;wBCCUUU dd:¨m´OZ‰ö·¾ï·8=z”Çã-Y²×BË—/WSS;{ö,ǹÊñãǾøâ \kDÙØØøúú¾xñâîÝ»´öJ=n€nÖ÷+Ž×®]“‘‘qww§B ƨQ£êêêJJJD®réÒ%‚ ¦L™Â¸iÓ¦ÊÊJ[[ÛžN@ÏèãÇ$Y]]­©©©©©ÉnnnŽzò䉣££ðZ¥¥¥zzzׯ_¿yóf}}½¥¥åرc{:AàÃ`aaÑÓ‡ >Î~g)ôñŠãÛ·oÛÛÛÕÕÕÂÕÔÔB/_¾^¥µµõï¿ÿþä“OÖ¬Ysøða*|À€)))C† é`—ÌÍ-ÌÍÑÿVàŒüØ@‰À‡¢Ã¿ö¡9€ÒÇ+ŽøÑi%%%peee„Ðëׯ…Wùûï¿BÕÕÕµµµ‰‰‰îîîÍÍÍ™™™ßÿýâÅ‹³³³E´; h¬¬¬„aŽ@ß ÜðÑV%ûøGuuu‚ Þ¾}+þæÍôo»£üaãÆS¦LQWW×ÓÓ[¸p¡ŸŸßÓ§OÏœ9#b7Ô“é$)ö3À®W™L¦šššpËbCCBˆzΚŸ’’’‚‚‚¢¢¢‡‡øØ±cB¢÷„«‰T+#þ@ÿS}øõñŠ#BHWW·®®×)>Ä‹D®¢££#++Küo_3î¡ær¹= €žÑ÷+ŽžžžíííTI’GCCÃÞÞ^ä* ÷ïßçÄs÷XZZöt‚zF߯8ÈÈÈìØ±kDíÙ³çÅ‹S§N•••Å!>|úô)þêçç‡ZµjõØõÝ»w÷íÛ§¦¦æåå%vO¸cš¿·šÿ+À®?U200ˆMLLœ4i’››Û£G®^½jmmIÅáp8ÑÑу ÊÎÎFYYY}ùå—[·nõññqtt|ûöíµkׂX·n]ÿþý%í Wñ“VPk@ßÒ÷+Ž¡ððpmmí¬¬¬œœ}}ý3f,Y²ÏÈ#Îܹsµ´´~üñÇ¢¢" OOϨ¨¨AƒIÚðC0ðX ú‚„ÊMw³°°¨¼j3 ‘€=Ý ×;wÓîÞUú†¾?Æ€^…ì¹ÄÇÇ1qâDáE‰‰‰Aܾ}»§s™ššâñÇ!777q·uÅ7‚ÈÈÈ—E—/_^äååED{{;þúèÑ#‚ fÏžMEàr¹ûöísssÓ××WUUµ³³‹ŠŠª©©¡"lÛ¶è—_~‘"9 ZZZC‡íöŒêüÚH8©LMMè§‹~ä^EÂù*,,tqqQRR222Z¾|9Çëéã=ã£èªБ}âÄ ÿž>Ž1 ƒÑÓGA I’“'OÎÉÉ6lXhh¨¼¼|EEÅ®]»þóŸÿüúë¯ÖÖÖ!‡˜˜j•íÛ·«««Ïœ9“ 111éì~ËÊÊâââØlöüùó{:Þ¡Q£Fyzz®^½ºë›â?©®_¿¾nݺ„„\@} u]TYY9qâD33³øøøêêêï¾û®½½=))‰æêwîÜY·n‡Ãy󿥥ehhhTT“ 5àŠŠŠ‹-òòòRQQéécé@~~~O]ééé999±±±›6m¢oݺÅf³gÏž]\\Œrsssss£–¦¥¥ 0€þ¯²HÕÕÕ¡5kÖxzzöt¼+7oÞ¼|ùrw%ÿ¤zþüyVVÖ’%KúLêºhñâÅýû÷çp8øñGGÇÈÈȰ°0:íÙ¿ýö›»»{{{»ŸŸ‹Å:þü—_~yéÒ¥“'Oöt²€4 «𸸸?þøcÕªUïbã­­­gßîÝŽŠŠâ´³³ ¸qã5MX·ÃãY©w¨v»Nh{{;Õ•ßu\.÷ܹskÖ¬ñööî{'Õ»HÇëJþ¿yóæâÅ‹³gϦ*5k–²²òéÓ§é¬þå—_¾~ýúüùóû÷ï_»vmQQQxxxVV–t0@ƒŠ#àãÆÛ±cÇõë×%D+..7nœžžžÁ¸qãp›fjj}ýúu[[[[[[²xñâØØXUUU''§3gÎp¹Ü+VXYY©ªªzxx”••Q[HNN¶±±QRRÒÔÔtrr:xð ÈcðððÀÃÑ% ,--õ÷÷g±X:::>>>.\àßÎ¥K—¼¼¼455ÛÚÚÚí¹Š°KKKÂïܹ#''ו‹+‹Ù³gO™2!Äf³MMM…WljjJHH°²²êׯŸ±±qDDijgÏè”B§ Ÿ;vìPWW—““:tèòåËÅe²ä’âWWWçíí_[[+9¦M›&++KÕÎ322‚°±±¡"ÄÄÄqóæMÄwRÍž={„ !wwwþÜ»|ù²¯¯¯–––¡¡á¼yóþþûï ˆÇãÍœ9“Á`ˆ;“»’::…½{÷n---&“ihh8þ|þæyþ_½zµµµuĈT“É´µµåp8tŽ0//oÔ¨QǧB.\ˆºrå Í<½ tUþAÄ÷ßommýùçŸ_»vMä ÂS§NM›6MOO/88˜ ˆÌÌLWW×ÌÌÌÉ“'ãOž<ñööæŸ-?==Á`|ýõ×L&sëÖ­Ó¦Msppàr¹sçέªªJMM ¹uëBhÍš5ñññcÆŒ™6mZKKËÉ“'g̘¡ªª*ò©L^^~ÿþýÔW÷Í7ßüõ×_ÆÆÆ¡ÜÜÜI“&éëëÉÈÈœ,,lìØ±§NÚµkÇÛ½{·„½“$9gΜC‡ýðá¡¡4‹•~êèÖùóçwîÜiiiyöìÙÔÔÔ¶¶¶½{÷¢Îœÿ/^¼@ijjòjhhüñÇ&‡Ëå.X°ÀÑÑ‘?ðÑ£G!yyyšyzt7sss’$IÈÛØ?ç€ÔÓOU‹;à5kÖ „ª««I’LLLD%''ãE7nDݺu‹$É––SSS“ÚÚZ¼´¶¶ÖØØØÌ̬¥¥…$Iü G|||{{;Ž`bb"''W^^Ž¿âq~¶¶¶­­­8„Íf#„H’433377okkËêëë™Læüùó©MM™2vww·³³NÈÚµkBiiiøh dooÿöí[¼´¹¹ÙÙÙÙÌÌŒËå677ëëë?}ú/­©©100@9rD\IÀårqÌßÿ!4kÖ,j݃8GSPP3fÌúõëÿýwqÅ¡®®îèè(ùë°,²²²B………Âë¾yó†Á`ðáœ9s´´´jjjè”ýÅçÃúõë©ÅÆÆ"„>Ì_ ’KJB&TTT „Ö¬Y#.~XLL þ:tèP<&ïĉ8i222áááÂ'~D~~>•j„ЩS§ðW.—keeell,r§&&&Ó¦Mãñx‘‘‘AìÛ·”J‡©£SX¡ÌÌLü•Çã :ÔÈÈç0ýóÿûï¿yγX,)ÒUWW7băqÿþ}éræ]wÓîÞUúhqü/¿ü2===..nêÔ© à_TRRòðáÔ”---¢¥¥µdÉ’èèèÛ·oã–-}}ýU«VÉÈüÿ0˜#FP '¡àà`ê…Ÿžžž………oß¾UQQ)..VPP žµ¬««C½}û–摟:ujõêÕóçÏŸ3gBèæÍ›UUU‡RTTÄäå壢¢BBBJJJ¸\î£G’’’ ñR}}ýE‹-_¾\Â.¦OŸndd$xôèÑÇKX+$$$$$äÎ;yyyyyy'//oÕªU«W¯þæ›o¤+&:e!ŽŒŒ žZèÑ£G¸i6----- /í°è(>ª¥K—Rë®^½:55õèÑ£üM‰’KJrZ$344´±±ÉËËC½zõª´´tß¾}QQQÇÏϯ  €Çã7ŽÎ¦ÌÍÍ'Mš„?3 ;;»ÜÜ\q‘I’\°`ÁÞ½{ÃÂÂÂÃép.—{æÌqkQÍöôuXXfffS§NÅŸ ‚°··ÇÍŠ%%%ôϼýuëÖá³KNN®¯¯ïlŠòóó?ÿüóêêêÔÔÔÞ©z+¨8þ“Éܳg‹‹Ë¢E‹{¬ªªBáÁ‹??ŸÍf«©©ÑÙN§žO'Iòرc***cÆŒY¼x1õ˜šššµCqè\2â7"Ò<ÿñxPþǧðWš):|øðܹs•••wïÞ38~Рð"lذáäÉ“ .üì³Ï¨@ܵt÷îÝÑ£GSwîÜAYXXtq………999)))‹/¦é´8¶··OŸ>ýéÓ§ü›à£UQQñöö¦ËÊÊîÞ½«®®þÉ'Ÿ „nܸáîîN-¥éè.JJJ¿üòË“'Oø+Žn¥ëׯŸt[îJYÔÕÕUWW›››GDDDDDðx¼;wFEEíÚµ‹ÍfKW ┕•µµµQµù¦¦¦òòrþ=sæÌÀÀÀ]»váÆKðAƒŠ#@55µ”””éÓ§ó‹wpp`±XÉÉÉ¡¡¡¡—/_nÝºÕØØ¸ë/ÄÏ1XYYQ!™™™¶g,[¶ìܹsxrÓÎÎÎÂÂbË–-AAA¸þÑÐÐàëëÛÖÖ†633ÛºukHHˆ¾¾>B¨¶¶vÛ¶mÝ›A„„„ìÞ½;!!aÅŠTÿfccãêիŽ摎®”Eee¥««ë×_€’‘‘ÁµYYY©KAœÚÚÚää䯾ú MHHhhhxÓ ä’êbÈÊÊzzzæää<~ü~uttTQQY¿~}‡¥žF‘jºÛ²eKvvö¢E‹<==»·«º+…Õ©ó_UUÕÉÉiß¾}111¸€’““ÛÛÛ½¼¼:LI’_}õÕ€~úé§åmO@2¨8D Ú¿ÿÿû_*D^^>999((ÈÁÁ!00$ÉŒŒŒšššcÇŽu}f %%¥ÈÈÈÐÐPCCÃ+W®äååikkž={O§"ìÌ™3[¶l±µµ˜*ÏÊÊÊÁÁ!%%eòäɶ¶¶mmmYYYOž<9rä~¹ÜæÍ›íí탂‚dee322hΜ×)ÉÉÉ¥¥¥qqqû÷ï6l~ŽõòåËÏŸ?_¹r¥‹‹‹t›íJY8::2dãÆ¿ýöÛ!C*++Ïž=«©©Ì`0¤( ôõõãâ⊊Šlmm¯\¹’››ëììÆ‡ÉdJ(©®¯¯/î,Æ-Ž ÃÍÍ-''gÀ€âÞ(ˆ«G©©©ÏŸ?9%M:::6l˜7o~a÷vUKwÉ`²²²:ÿ·oßÎf³ÙlvHHHEEEFFƼyóðÌŽ’ST^^^QQaee!°Èßß_ê?œ@OêéǺû ˜Ž|ÐÓñðûí·ßðƒ®x:¬¨¨ÈÇÇGWWWWW×ÇÇç×_¥ñϘ#2÷…áér0ÜèõìÙ3’$9Ž‹‹‹²²òÀ#""jkkÓÒÒ´µµ½½½I1ÓñP f`)))?~¼žžž†††»»û¹sçøïÒ¥KcÇŽÅ-vjjjÇŽC§ã9» ~ºBÂt<»vírvvÖÖÖ–••ÕÕÕ0aBAA¸â 3O‡e!a:’$Ÿ>ž ˆ‰' /JLL$âöíÛ=}ŒÈÔÔÔÏÏvss³··ïö]ܸqƒ ˆŒŒ qYtùòeáE^^^A´··ã¯="böìÙT.—»oß>777}}}UUU;;»¨¨¨šš*¶mÛ‰~ùå)’“ ¥¥5tèÐnϨnÁ_ ½„“ÊÔÔ4 €~ºèGîU$œÿ¡ÂÂB%%%##£åË—óx¼ž>^Ð3 âøGvvö‰'zú(ha0 £§‚’$'OžÑÔÔ5pàÀ]»v™››ß»wÇqppˆá#//¯««ËbbbÒÙý–••ÅÅÅYYY­\¹²§ó ûݹs'((HOOOYYÙÑÑ199™Ëåvq›ü'Õõë×ýüü¨ê©ë¢ÊÊʉ'¶´´ÄÇÇO˜0á»ï¾[¶lÙ" 5èª~—H‚ÎAðPTT\´h‘———ŠŠJOKòóó{úèJOOÏÉɉݴixëÖ-6›={öìââb„›››››µ4--mÀ€III]Ùouu5BhÍš5žžž=Ýì·ß~swwooo÷óóc±XçÏŸÿòË//]ºtòäÉ®l–ÿ¤zþüyVVÖ’%KúLêºhñâÅýû÷çp8ÊÊÊ!GGÇÈÈȰ°0:íÙ½3E@jÐâøG\\Üü±jÕªw±ñÖÖÖ³o ÷nGEEñÚÙÙܸqãÍ›7ïh¿x<«‚‚Â;Ú~§ ´½½êÊïº/¿üòõë×çÏŸß¿ÿÚµk‹ŠŠÂÃ󲲤ëÐïmÞEêx<^WòÿÍ›7/^œ={6®5"„fÍš¥¬¬|úôéžJèAPqü# `ܸq;vì¸~ýº„hÅÅÅãÆÓÓÓ3007nn3ÃLMM£££¯_¿nkkkkk‹C/^«ªªª  àäätæÌ.—»bÅ +++UUU²²2j ÉÉÉ666JJJšššNNNy x8Zcc£äA¥¥¥þþþ,KGGÇÇÇçÂ… üÛ¹té’———¦¦æàÁƒccc[[[»=Wñvii©@xbbâ;wää亲qqe1{öì)S¦ „Øl¶©©©ðŠMMM VVVýúõ366ŽˆˆxöìRèTâóaÇŽêêêrrrC‡]¾|¹¸L–\RüòòòF5|øp*dáÂ…¡+W®Äœ6mš¬¬,U;ÏÈÈ ÂÆÆ†ŠCÄÍ›7ßI5{öì & „ÜÝÝùsïòå˾¾¾ZZZ†††óæÍûûï¿;, 7sæLƒ!îLîJêèVttôîÝ»µ´´˜L¦¡¡áüùóù›æùõêÕÖÖÖ#FP!L&ÓÖÖ–ÃἋ^ºªÿ âûï¿·¶¶þüóϯ]»&rá©S§¦M›¦§§LDff¦««kffæäÉ“q„'Ožx{{«©©yyyáôôtƒñõ×_3™Ì­[·N›6ÍÁÁËåÎ;·ªª*555$$äÖ­[¡5kÖÄÇÇ3fÚ´i---'Ožœ1c†ªªªÈ§v0yyùýû÷S_y<Þ7ß|ó×_#„rss'M𤝝$##sòäIooïôôôéÓ§#„Nœ8Ø¿ÿàà`™ôôôŸþ¹Ûs5 --ÍÏÏoΜ9þþþ®®®¸PGGGGG§+[–PK—.e±Xk׮ݼy3ÿ6%""âðáÃcÇŽ:ujiiéþýûKKK¯^½J§è(BèØ±cüñǸqãlmm¯^½š˜˜xåÊ•üü|y©$—?.—»`ÁGGGþÀGá“A ²¯¯ïñãÇ |}}B¡ÒÒÒºººþýû#„òóóõôôìììø×Zºt©©©éêÕ«7mÚäää„ïܹ3~üø°°°±cÇž:uj×®]<o÷îÝ ˆ$É9sæ:tè‡~ ¥S¦JÂ:þüÎ;###---Ïž=›ššÚÖÖ¶wï^Ô™óÿÅ‹!MMMþ@ ?þø£ÛS>$ènæææÿÿrø£ô?ç„"{îŸø³qÍš5¡êêj’$BÉÉÉxÑÆB·nÝ"I²¥¥ÅÔÔÔÄĤ¶¶/­­­566633kii!I?ÃßÞÞŽ#˜˜˜ÈÉÉ•——ã¯xœŸ­­mkk+a³Ù¡††’$ÍÌÌÌÍÍÛÚÚð¢úúz&“9þ|jSS¦LÁŸÝÝÝíì섲víZ„PZZ>ÚAƒÙÛÛ¿}û/mnnvvv633ãr¹ÍÍÍÆÆÆúúúOŸ>ÅKkjj BGŽ—Ep¹\ó÷ßGÍš5‹Z÷àÁƒÄÑÆŒ³~ýúßÿ]\q¨««;::J>Ç:,‹¬¬,„Paa¡ðºoÞ¼a0üG8gÎ--­šš:¥@¿@ñù°~ýzjG±±±¡Ã‡ó¨ä’";RWW7băqÿþ}EOŸ>EÅÄÄà¯C‡ÅcòNœ8“&##.|Regg#„òóó©T#„N:…¿r¹\+++ccc‘Çcbb2mÚ4Iľ}û:L‚t©£SX¡ÌÌLü•Çã :ÔÈÈç0ýóÿûï¿yγX¬nOQOwÓîÞUúhqü/¿ü2===..nêÔ© à_TRRòðáÔ”---¢¥¥µdÉ’èèèÛ·oã–-}}ýU«VÉÈüÿ0˜#FXZZâÏ¡àà`YYYâééYXXøöí[•ââb&óŸûR]]BèíÛ·4üÔ©S«W¯ž?þœ9sB7oÞ¬ªª:t袢"Ž //RRRÂår=z”””dhhˆ—êëë/Z´hùòåv1}út###À£G>~üXÂZ!!!!!!wîÜÉËËËËËãp8yyy«V­Z½zõ7ß|#]1Ñ) qdddðÔB=ÂM³iiiiiixi‡¥@¿@ñQ-]º”ZwõêÕ©©©GåoJ”\R’Ó’ŸŸÿùçŸWWW§¦¦4H`©¡¡¡M^^BèÕ«W¥¥¥ûö틊Šâp8~~~<oܸqt2ÜÜÜ|Ò¤Iø3ƒÁ°³³ËÍÍ™$É ìÝ»7,,,<<œ çr¹gΜ·ÕlO3ut ËÌÌlêÔ©ø3Aööö¸Y±¤¤„þù·¿nÝ:|¶`ÉÉÉõõõÝž"ÐûAÅð?˜Læž={\\\-Z$ðØcUUB^¤àcUUUøÞ‚¿Öˆ¢j6!\½Á444ŠŠŠrss+**ªªªîÝ»GÎŽ²²²™3g²Ùì””RQQþ­´ D~üø1÷6lØ0þðç†\¸p¡«««@à­[·$W©Œ²±±Y²dIkkë©S§¢££W¯^=räÈO?ýTŠb¢Sâ(**¦¤¤àYkkkŸñãÇã—–ýEY[[óãTRR²°°xðàÉ%%.-?^¸páéÓ§ tþüù1cƈŒæëë›””ôêÕ+ÜøêééÉf³ñà¼üü|&“9vìX:nnnÎÿUòlPÙÙÙ$I?~üÛo¿e±X8¼±±=‰ä›‚ƒfê:,,æ®Íû÷ï#Ú翪ª*BÈÓÓ“ê¸G8p€$ÉnOèý â4räÈ/¾ø"55õÔ©Süáøg@`tþmkkÃ_ÕÕÕ¥ÛiKK‹¿¿NNÎðáÃ?ýôÓI“&9;;;88ÐY÷Õ«W“'OVSSËÌ̤*.¸¾’””$£q×ÒÝ»wGMÞ¹s!daaÑÅ=æä䤤¤,^¼˜ ¤ÓâØÞÞ>}úô§OŸð?n‚VEEÅÛÛ› ,++»{÷®ººú'Ÿ|‚ºqㆻ»;µ”z¤£»())ýòË/Ož<á¯8b¸•®_¿~Òm¹+eQWWW]]mnnÁãñvîܵk×.6›-])ˆSVVÖÖÖFÕæ›ššÊËËùóuTRÂÛ<}úôÌ™3wíÚ…Ã$puuUUUÍËË+..5jBÈÝÝÇã>}úæÍ›xo·›0aîמ1cFzzzvv6~L›NÇ.ýÔI}É „:uþ;991Œk×®Q]ÏeeeAAAÝ›"ðA€Š#@55µ”””éÓ§ó‹wpp`±XÉÉÉ¡¡¡¡—/_nÝºÕØØ¸ë/ÄÏ1XYYQ!™™™¶g,[¶ìܹsxrÓÎÎÎÂÂbË–-AAA¸þÑÐÐàëëÛÖÖ†633ÛºukHHˆ¾¾>B¨¶¶vÛ¶mÝ›A„„„ìÞ½;!!aÅŠTÿfccãêիŽ摎®”Eee¥««ë×_€’‘‘ÁµYYY©KAœÚÚÚää䯾ú MHHhhhxÓ ä’Ø I’_}õÕ€~úé':o’••õôôÌÉÉyüø1üêè訢¢²~ýú8J=ó(Õt·eË–ìììE‹yzz***vر۩Ôu¥°:uþ«ªª:99íÛ·/&&Prrr{{»——W÷¦| â-((hÿþýÿýï©yyùäää   ‡ÀÀ@’$322jjjŽ;Öõ™5<<<”””"##CCC ¯\¹’——§­­]XXxöìY<а3gÎlÙ²ÅÖÖV`ª<+++‡”””É“'ÛÚÚ¶µµeee=yòäÈ‘#øår›7o ´·· ’••ÍÈȨ­­íölLNN.--‹‹Û¿ÿ°aÃðs¬—/_~þüùÊ•+]\\¤ÛlWÊÂÑÑqÈ!7nüí·ß† RYYyöìYMMÍàà`ƒ!E)H ¯¯WTTdkk{åÊ•ÜÜ\ggç°°0þ8L&SBI l°¼¼¼¢¢ÂÊÊ*""B`‘¿¿¿ÈЏ¯¯/î,Æ-Ž ÃÍÍ-''gÀ€ÖÖÖ"WRSSŸ?.<%}:::6l˜7oÞºuë:ìØíTꤻd0YYÙNÿÛ·og³Ùl6;$$¤¢¢"##cÞ¼yxfÇnLø0ôôcÝ}LÇ>èéxøýöÛoøAW<VTTäã㣫««««ëããó믿R‹øgÌ‚ûÂðt9nôzöìI’ÇÅÅEYYyàÀµµµiiiÚÚÚÞÞÞ¤˜éx¨GaP3°”””Œ?^OOOCCÃÝÝýܹsü‡wéÒ¥±cÇâ;55µcÇŽ!‰ÓñˆœÝ?]!a:žÆÆÆ]»v9;;kkkËÊÊêêêN˜0¡  @\qÐ™Ž§Ã²0I’Ož< 766–——g±X!!!Ô ;ôK¡ÃÅ‘9ÎèÑ£ÕÔÔ,--cbbš››Ež’KŠ"0î–_BB‚¸Ä"„´µµ©ü:ǹsçòG㟎‡Ç㫪ª:88ÿΰÃyÆŒZZZ"w'¹½½ÝÉɉ# :›ºNI’³fÍRWW§¾Ò?ÿI’ÌÉÉqppPTTÔ××ŠŠ¢&`êÞõ˜Ž‡>‚„7)w7 ‹ÊÊʾÀ»ª?Jÿsð!õàé@ ¸ÞÅ©©©éß¿?ÌHܽLMMíììà•ĽœÿânÚÝ»Jß]ÕïIBÝ€ÞO} ÀÇ Î@Tx¿ˆ®oèPqàýžbðQñõõÅo½ôPqðNìܹ³§Ðͺù5  ¯‚Š# *Ž€¨8¾>DO·7Ã;t´8ð~á&çù'^||[@eeåĉÍÌÌâãã«««¿ûî»ööö¤¤¤ÎngÔ¨Qžžž«W¯îÁ´aPq|gpÇ4õ?®>Bo5èÅ-Zäå奢¢ÒÓÇÒüüüž>ºÒÓÓsrrbcc7mÚDÞºu‹ÍfÏž=»¸¸!äæææææF-MKK0`€?´üª««BkÖ¬ñôôìé<èf999ãÇ733›1c†¢¢bff¦¿¿ÿÞ½{#""º²Yþ“êùóçYYYK–,yÏISVVž1c†@`SSÓñãÇMMM…ã?|ø°½½ÝÅÅÅÌÌŒ#ïù°,^¼¸ÿþ‰££cdddXXX§¿oÞ¼yùòå¾wööPq|—ðˆ6‚ Ñ¿OUCë#èÅâââV®\¹jÕªmÛ¶uûÆ[[[™L¦ŒÌG7<÷nGEEñÚÙÙüøãoÞ¼yG?óx<«‚‚Â;JW§ 7‰uW#ñŠ+ôôôJJJÔÔÔB+W®º›øûC’B$B$B¸úˆ{ú°+ `ܸq;vì¸~ýº„hÅÅÅãÆÓÓÓ3007nn3ÃLMM£££¯_¿nkkkkk‹C/^«ªªª  àäätæÌ.—»bÅ +++UUU²²2j ÉÉÉ666JJJšššNNNy x8Zcc£äA¥¥¥þþþ,KGGÇÇÇçÂ… üÛ¹té’———¦¦æàÁƒccc[[[»=Wq©´´T <11ñÎ;rrr]Ù¸¸²˜={ö”)SBl6[dKUSSSBB‚••U¿~ýŒ#""ž={F§:U ø|رc‡ºººœœÜСC—/_..“%—¥¥¥åÞ½{&LÀµF„’’’››ÛÓ§O›šš"O›6MVVöÍ›7økFFA666T„˜˜‚ nÞ¼‰øNªÙ³gO˜0!äîîΟ{—/_öõõÕÒÒ244œ7oÞßÿÝañx¼™3g2 qgr‡ŠŠŠ’““øá‡þýû /ÅGq½ÛÂ$—lttôîÝ»µ´´˜L¦¡¡áüùóùÓHób¹zõjkkëˆ#¨&“ikkËápèa]]··w|||Ïö¶  Åð‚ ¾ÿþ{kkëÏ?ÿüÚµk"›N:5mÚ4==½àà`‚ 233]]]333'OžŒ#>~̘1Ó¦Mkii9yòäŒ3TUUE>µƒÉËËïß¿ŸúÊãñ¾ù替þúËØØ!”››;iÒ$}}ý   ™“'Oz{{§§§OŸ>!tâĉÀÀÀþýûËÈȤ§§ÿüóÏÝž«iii~~~sæÌñ÷÷wuuÅ­€::::::]Ù²„²Xºt)‹ÅZ»víæÍ›‡.¼nDDÄáÇǎ;uêÔÒÒÒýû÷—––^½z•N)Ð/P„бcÇþøãqãÆÙÚÚ^½z511ñÊ•+ùùù3 H.)~ ãöíÛZZZT—˽{÷®¢¢¢@d__ßãÇøúú"„ B¥¥¥uuu¸–ŸŸ¯§§gggÇ¿ÖÒ¥KMMMW¯^½iÓ&'''xçÎñãLJ……;öÔ©S»víâñx»wï–P@$IΙ3çСC?üðChh¨EÜÜÜ€uÀ—\>U-î€×¬Yƒª®®&I211!”œœŒmܸ!tëÖ-’$[ZZLMMMLLjkkñÒÚÚZccc33³––’$ñ3ñññííí8‚‰‰‰œœ\yy9þŠÇùÙÚÚ¶¶¶â6›jhh IÒÌÌÌÜܼ­­ /ª¯¯g2™óçϧ65eÊüÙÝÝÝÎÎN8!k×®E¥¥¥á£4h½½ýÛ·oñÒææfggg333.—ÛÜÜlll¬¯¯ÿôéS¼´¦¦ÆÀÀ!täÈqY$—ËÅ1ÿýw„ЬY³¨u<8pà@MAAa̘1ëׯÿý÷ßŇººº£££äs¬Ã²ÈÊÊB ¯ûæÍƒÁ„sæÌÑÒÒª©©¡S ô Ÿëׯ§v‹:|ø0J.) ™pàÀ¸¸8mmíÜÜ\áOŸ>EÅÄÄà¯C‡Ž¥'NœÀI“‘‘ >©²³³BùùùTªB§NÂ_¹\®•••±±±È£211™6mÇ‹ŒŒ$bß¾}¤´6nܨ¨¨øäÉq|}}544¨óÐÊÊêúõë"#wX²¡ÌÌLü•Çã :ÔÈÈý‹åûï¿y°X¬N¥½¢¢!´fÍ©s¯SÄÝ´»w•¾ZÿãË/¿LOO‹‹›:uê€ø•””<|ø0%%…jïÑÒÒZ²dIttôíÛ·qË–¾¾þªU«ø‡¾1‚j9ððð@ËÊÊâOOÏ·oߪ¨¨+((0™ÿÜ—êêêBoß¾¥yä§NZ½zõüùóçÌ™ƒºyófUUÕ¡C‡¨†(yyù¨¨¨’’.—ûèÑ£¤¤$CCC¼T__Ñ¢EË—/—°‹éÓ§ =zôñãÇÖ ¹sçN^^^^^‡ÃÉËË[µjÕêÕ«¿ùæ銉NYˆ###ƒ§zôènšMKKKKKÃK;,úŠjéÒ¥Ôº«W¯NMM=zô(S¢ä’’–o¿ý÷Õzyyá„044´±±ÉËËC½zõª´´tß¾}QQQÇÏϯ  €Çã7ŽN†›››Oš4 f0vvv¹¹¹â"“$¹`Á‚½{÷†………‡‡Sá\.÷Ì™3âÖ¢ší±/^lذaÉ’%§¥ººšÇãÅÇÇãNùŸþ9::zÊ”)¥¥¥TW>¥Ã’533›:u*þL„½½=nV,))¡±àí¯[·Ž¿D’““ëëë;•|ÐkAÅð?˜Læž={\\\-ZtòäIþEUUU!“É;v, 777çÿ*ùÙ‘ììl’$ ?þí·ß²X,ÞØØˆÇžŠDþï øÄÄÄææfþyš„åçç+((PýÂáááÍÍÍ ,ÈÌÌÄ>ñë°dÒH]È÷ïßG´/UUU„§§'ÕË:pàI’J>èµàá˜÷…ÿŃôn#GŽüâ‹/²²²N:ÅŽïì£Óð/h[[þª®®.ÝN[ZZ&NœèæævöìÙAƒ-]º´¼¼\¸ÕD¤W¯^Mž}úÓ§O øœðѪ¨¨x{{SeeewïÞUWWÇ¢Þ¸qÃÝÝZJ=ÒÑ]”””~ùå—'OžDFF ,­týúõ“nË])‹ºººêêjss󈈈ˆˆ·sçΨ¨¨]»v±ÙléJAœ²²²¶¶6ª6ßÔÔT^^Ο稣’Øà™3g¦L™’žžDâA~"+®®®ªªªyyyÅÅÅ£FB¹»»óx¼Ó§Oß¼yáív&LÀýÚ3fÌHOOÏÎÎÆiÓï«=zôèË—/…[ ù=zô(;;{̘1VVVT`CCBH¸ã^êë ýûÔ6Í‹ÅÉɉÁ`\»vJNcccYYYPPtU÷ KÅñرcG­®®îׯßèÑ£cccùG ›6mÚÝ»wµ´´D¾p €¾GMM-%%eúôéüCÝX,Vrrrhh(¾‚^¾|¹uëVcc㮿?ÇÀÿ˜™™ÙØØØaSIJeËÎ;wàÀGGGþp;;; ‹-[¶áúGCCƒ¯¯o[[~ØÌÌlëÖ­!!!úúú¡ÚÚÚnŸÀ’ ˆÝ»w'$$¬X±‚êßlll\½zµ¸×<ÒÑ•²¨¬¬tuuýúë¯B222¸B +++u)ˆS[[›œœüÕW_ᯠoy‘\RÄ ÿùÏ©6° „œ…@VVÖÓÓ3''çñãǸæè訢¢²~ýú8J= Õ·eË–ìììE‹yzz***Òï«=tèššB*Ž¢¢bLLÌðáÃ/\¸€«æ</))‰ÉdRsPºR²ºXTUUœœöíÛƒK399¹½½ÝËË ºªû†¢â˜œœ¼k×.%%¥áÇ?zôèøñãUUU?þø£ðÜ ”Ç+** ¼æKê>8>DAAAû÷ïÿïÿK…ÈËË'''988’$™‘‘QSSsìØ1yyù.îÎÃÃCII)22244ÔÐÐðÊ•+yyyÚÚÚ………gÏžÅÓ©;sæÌ–-[lmm¦Ê³²²rppHII™èéxøýöÛoøï+<VTTäã㣫««««ëããó믿R‹øgÌ‚»·ðt9nôzöìI’ÇÅÅEYYyàÀµµµiiiÚÚÚÞÞÞ¤˜éx¨GaP3°”””Œ?^OOOCCÃÝÝýܹsü‡wéÒ¥±cÇâ;55µcÇŽ!‰ÓñˆœÝ?]!a:žÆÆÆ]»v9;;kkkËÊÊêêêN˜0¡  @\qÐ™Ž§Ã²0I’Ož< 766–——g±X!!!Ô ;ôK¡ÃÅ‘9ÎèÑ£ÕÔÔ,--cbbš››Ež’KŠÇ;pàÀˆ#444ú÷ïÏf³EbBÚÚÚT~ Ëܹsù£ñOÇÃãñ‚ƒƒUUUÈgØáøÐõÉ‹EÜM»{WéúþSÕ×®]£Fð` cÔ¨Quuu%%%"Wyôè5¸ÐWô±BÞ¸X>r}¼âH’duuµ¦¦¦À„x¶*Ü! Wÿüóϰ°°áÇ=zÞ¼y·oßîéÔ€> zìÐ5}üᘷoß¶·· ?Ô‚'¯zùò¥Èµp…rÛ¶m¦¦¦ÎÎÎüñÇÅ‹9Κ5kéìO‡annŽgÅ0§³ø@O1ø¨øúú 6;wîìéC {güh«’}¼«Z]] áwÝâ·‰{aÀþýûoݺÅ?a„‹‹ËÌ™3›ššÎŸ?ßÓiè}¼âÈd2ÕÔÔ„[ñÜúÂo5•ÏA…_Ù)=xñ >X}¼âˆÒÕÕ­««Ã5EÊÇñ"áø$I¶·· ¿0ÏC«¢¢ÒÓ è}¿âèééÙÞÞ^PP@…$Éáp444D¾˜ëÑ£Gƒæ?/vóæMôièûÇ€€™;vàq¡={ö¼xñbêÔ©øåž¡ÆÆÆ‡âWyš˜˜ 6¬¸¸O‹Ý¼yó‡~000ðööîéôŒ>þT5BÈÀÀ 66611qÒ¤Innn=ºzõªµµudd$‡ÃáDGG4(;;!ôÍ7ßÌ™3gÕªU‡633ûã?nݺկ_¿ 6Hx½5@ßÖ÷[Bááá›7o655ÍÉÉyùòåŒ3~üñGáÉ)–––'Ožœ2eÊ‹/~ùå—ׯ_O™2%;;{äÈ‘Ýp4ð| >LðîÚî'é]Õ¼±º¯ûhßa "xW5}E‹#è:¨8Z â@ñññÄÿRSS>|xZZ5§©@KKË™3g^½zUò¦(ÁÁÁ"÷ž ¥¥5tèОΆîajjêçç×ÓGñÿÜÜÜDN=†5  ÷OºqãA‹z$—z ùƒ*,,tqqQRR222Z¾|¹ðDÈ /ŠcO€çc€tÞñi3}úô˜˜˜˜˜˜¥K—Nœ8ñÁƒ‘‘‘Ë–-gÁ‚zzzÇ=zôîÝ»ÅmŠß„ „wZVVgeeµråÊžÎß^dÔ¨Qñññݲ)ƒß_€º~ýºŸŸß½{÷ÞgZvÊ<ïn/½Êëׯ¿øâ ‹¥¬¬é‘ »™››ã!!Rd>CÎ÷iÔ9ÐÍÞÙi³fÍ„Paa!à³gÏôõõ ƳgÏÄÅ)//·°° âîÝ»6%Á©S§BçÏŸGI{ÿLLL¦L™Ò•-”””ÈÈȬY³¦Û Ï8–ŸŸOê´iÓÞu†ì´wîåúõë¡#GŽ/êb.½~ýú“O>‘““ Y´h‘ššZII‰ÈÈ—.]’——×ÕÕ]²dÉÒ¥KŒŒúõëwá¼´½½}üøñAøùù-[¶ŒÍf#„ÂÃÃßiÆv˜?ÞÞÞüûï¿ñ×½{÷"„îܹCg³<ÐÐÐPUUýì³ÏâââœBâ.É9Ù©|&ÅMû]Ýç{=hqàÆmÕºººÓ§Oooo/--ÇÒÒ2==$Éo¿ýVº½$‰RPPxoé’¬µµ•~G[{{{{{{wíšËåž;wnÍš5ÞÞÞ[g_§²ýòuëÖêêê={ö|ø°ªªjΜ9ººº8D]]=::º¤¤äÎ;¡½{÷š˜˜Ì™3‡Z%##ƒ$ÉAƒ‰Üµä>::z÷îÝZZZL&ÓÐÐpþüùüEO3®^½ÚÚÚ:bÄ*„ÉdÚÚÚr8:™“——7jÔ¨áÇS! .D]¹r¥³9I?ŸAWõt“g]ÕàtaàsæÝœ9"û—ÿúë/™ššRbô‚ B¿ýöÙÉ®ê»wï~óÍ7¡Í›7s8’$³²²˜L¦‘‘Ñ’%K¢££ Àd2³²²p|“©S§jjjššš~þùç !ÂËËë믿žŒº~ý:à„ ìíí;Ìœ¶¶¶åË—gffòžEÅÄÄà¯C‡ÅϤãßÈúúzjèEMxŒ#BèÔ©Sø+—˵²²266Þ£ä´HÎy Tég»ääß‹ä£mnn666Ö××úô)^ZSSc`` ¹âÈãñ"## ‚Ø·oIÛýû÷BÑÑÑüçÏŸGíÞ½[ 2n£ àÄ-pIII>D………ñ·Ï±X,q¤uxÂ#„¨JÇ:t¨‘‘Î+úùóý÷ß‹¼ÞY,ý\¢ÔÕÕ1‚Á`Ü¿¿S9Ù©| *ŽôõýwU÷Rx°¼?H€OáóD\x—ñ÷d1™L ‹+V,Y²¤Ã ¡‘—Ó§O722âÁ?T’•””<|ø0%%EKK ‡hiiá¦ÇÛ·oãßK}}ýU«VÉȈf###CÄåË—=zdllŒJKKÃs¡ââb&óŸ›^]]BèíÛ·Ôê#FŒ°´´ÄŸq#bpp°¬¬,ñôô,,,|ûö­ŠŠ >0þáS«W¯NMM=zôèôéÓ©À›7oVUU:tˆzǽ¼¼|TTTHHHII ÿÏgÚØØäåå!„^½zUZZºoß¾¨¨(‡ãççWPPÀãñpR‡ÌÍÍ'Mš„?3 ;;»ÜÜ\áh’Ó2dÈ 9/ýlï°i-—Ë}ôèQRRn6Æ'Õ¢E‹–/_.î I’\°`ÁÞ½{ÃÂÂÂÃép.—{æÌqkMž<žªª*¸ššuüütuu§Nš™™™˜˜ˆëýHMME544¼~ý!ôã?úùù8p`À€'""bêÔ©ååå[ë0»ÌÌ̦NŠ?aooÿóÏ?#„JJJèçÞþºuëp¹cÉÉÉõõõfŽ@H~~þçŸ^]]šš*Üù.9';•Ï ‹ âÀû%ÅÓ-âVéì¦:ªhºººJ‘¦'Ož „ÌĮ̀… J±)<Æ_`ð"ºWUU…kZ"k!EEÅ”””¥K—šššZ[[»¸¸øøøŒ?^NN!¤¡¡QTT”››[QQQUUuïÞ=A™Tm!„+.Â!kkk¼YLIIÉÂÂâÁƒüqpÃaHHHHHˆÀ¡>~ü¸+G„¯¯oRRÒ«W¯pƒ“§§'›ÍÆËòóó™LæØ±célwARÄM”ÓaZ$ä¼dô³½Ã¤y´xlè°aÃøÃ%O-™M’¤¡¡áñãÇ¿ýö[‹…Ãñ ]‘H’Äi6ÚÐЀÒÔÔ^%55µ¾¾7üã$ÇÅÅ­Y³F]]ÿÅ2pàÀ#GŽàŒ?~|RRÒÌ™3333###6Õav =uYáÖ;šùƒëjžžžNNNTàH’ì0sø eáÂ…§OŸ4hÐùóçÇŒ#_rNv6ŸAW@Å€÷KŠfBÆÅÞ×V}ûöm<0±ËyC"¡öK\•¡ÐQWW—°… L:5;;ûâÅ‹999{öì±°°àp8êêêþþþ999ÇÿôÓO'MšäìììààЙÀd2ùCð¯{RR’ðÜæƒîâî|||9NQQ‹Åb±X+W®¬¯¯ÏÏÏg³Ù¸¹¥C4Ÿgï0-âržzΣ‹ZZZ藠䣽té:ÍÄý5‚‘$yìØ1•1cÆ,^¼ÃC©©©‘/F]]]§^¼x¢Úóøikkçææ^½zõöíÛºººl6-‹ÅÂ9éêêÊ_Çž•——K‘]âŠ7"ÒÌ< …ÿ4üφCÒ¸S>|xîܹÊÊÊ»wï§šH;•“ÍgÐPqà댽lœCII žDÜŸ>Ü?u÷îÝÑ£GSøyR ‹W¯«««®®677ˆˆˆˆˆàñx;wŠÚµk›ÍÎÉÉIIIY¼x1_ŠÇÀ)eeemmmT{XSSSyy¹»»»prTTT¼½½ùW¼{÷®äê/®®®ªªªyyyÅÅÅ£FB¹»»óx¼Ó§Oß¼y:íF’Ó"!çñ#]WXXH¿%í'Ÿ|‚ºqãyݺuKÂÞ'L˜€;ôg̘‘žžžâî°7–Éd<¸  €?üÒ¥KAX[[ ¯rûömUUUggg<£!BèÂ… Aà÷²˜™™ÕÔÔðÇÇU%á¿Ù:•]:•?NNN ãÚµkT×scccYYYPP®êÓ§OÏœ9300p×®]Í$çdgótLÇÀ‡€ þÇÞôÚ¡ªªª3f×õ­988°X¬äääW¯^á—/_nÝºÕØØ˜ÎKê*++G޹eËüUFFÿòÉÊÊâ§Iðƒ¥Xfffcc#‘jkk“““©¯ o´³³³°°Ø²eK}}=ihhðõõŽŽîׯ_óJVVÖÓÓ3''§¤¤WUTTÖ¯_ßáG)fL”œ 9ß•ò£Y‚x/’ÖÁÁÁÌÌlëÖ­ÔD-µµµÛ¶m“°wª½mË–-êêê‹-jjjBÿvU‹ƒW‰ŒŒüý÷ßñ³;¡¿þú+33ÓËË‹F$Êܹsmll¨Úayyyzzúøñãñ³)Ÿ}öY^^nƒÄ‰Ý¸q£ŒŒŒ§§§tÙ%R§òGUUÕÉÉiß¾}TV'''···{yyu˜9$I~õÕW øé§Ÿ$×éäd§òt´8öœ^Önz)\M¤Îêɘ’ššŠoÍ---¥¥¥EEE­­­;wî2dH×7.//ŸœœäààH’dFFFMMͱcÇäåå;\ÝÑÑqÈ!7nüí·ß† RYYyöìYMMÍàà`ƒ¡¤¤jhhxåÊ•¼¼Äüàá@ ´8ö(x>€¯¯/á@ßGèœ;wöô!@Ï€®j@ T-Pq´@ÅÐÇžÖûÞ> T-Pqìp»#@/G@ LÞÄ5. „ÃeЛ@ű'¿iÿ+®>B­½ tU÷qSã$ÔÁûOü/55µáǧ¥¥ñx<‘qddd,--gΜyõêUÉ›¢‹Ü{BB‚––ÖСC{:º‡©©©ŸŸ_OÅÿsss³··w¨½çxzÐ7‚ÈÈÈ^Ô#¹ÔÛHÈ„Paa¡‹‹‹’’’‘‘ÑòåË©›è“ âØs„k‡ÍàãFüó·EÿºqÓ§O‰‰‰‰‰Yºtéĉ%°Sþãyw{éU¤+ÖQ£FÅÇÇ òx¼;vØÚÚ*++[ZZnÚ´©­­­gSWYY9qâÄ–––øøø &|÷Ýw7 šD¦W@EEE@@€‘‘‘ººº««kVVV×ót º›¹¹9þ€""%ä3.ü|Ȩs +ÙñÉ@'kÖ¬Aò>{öL__ŸÁ`<{öL\œòòr ‚ îÞ½+aSœ:u !tþüùnIHo`bb2eÊ)V|ðà†††ªªêgŸ}çì쌒nSâdgg#„òóó©C6mÚ»Îöν\¿~!täÈáE]Ì%銵¤¤DFFfÍš5üíííãÇ'ÂÏÏoÙ²el6!þN3¶Ãüñöö8pàßÿ¿îÝ»!tçÎNm_dzTVV*++«ªªÎŸ?ùòåƒFíÞ½»+ùL‘â¦Ý-÷ù´8ö¸Ã¦ã½Œ®®îôéÓÛÛÛKKKÅű´´LOO'IòÛo¿•n/$I"„z:¹ÿhmm¥ßÑÖÞÞÞÞÞÞ]»þòË/_¿~}þüùýû÷¯]»¶¨¨(<<<++ë—_~éé\yç:•í–N+—Ë=wîÜš5k¼½½…3äÇ}šÎê’Ó+`ýúõßÿý† JJJÌÍÍ©žŠùòyÏ âØs¨ú"5¨ꎠ—Áµ:É}aŽŽŽ®®®'Nœ¢WhöìÙS¦LA±ÙlSSSX\\Ä÷™ööök×®iiiu6ŸA—ôt_yÔ‰1Žü ,útŒchhèòåË—/_¾lÙ²Y³fá*È¢E‹øãˆ¼¸qãF„Ð… ¨hÂØl¶È]ãáíx³---¦¦¦&&&µµµximm­±±±™™YKK I’&&&¡øøøööváM½yó†Á`Ìš5‹ ™3gŽ––VMM I’fffæææmmmxQ}}=“Éœ?>þjbb"''W^^Ž¿nÚ´ !dkkÛÚÚŠCðx²††ê0Ö¯_Oí(66!tøða’oŒcKKË Aƒìííß¾}‹£577;;;›™™q¹Ü ¥®®nĈ ãþýû‹ž>}ŠЉ‰Á_‡ŠŸI?qâNšŒŒ 5ôÍÝÝÝÎÎãˆ:uêþÊår­¬¬Œ…FrZ$ç¼ÀNù§SÙ.¹ù÷"ùh›››õõõŸ>}Š—ÖÔÔ ‰cy<^dd$Aûöíë°ì¤+V~!þ1>D………ñ7ª±X,qã‰;<áB™™™ø+Ç:t¨‘‘Î+úùóý÷ß‹¼ÞY,V§²E8½Âª«« `ddôí·ßnÛ¶ÍÍÍMNN_tRç3Æ8Ò-޽n¥ ‚ø·s€÷¿'‹ÉdZXX¬X±bÉ’%®Hµ”OŸ>ÝÈȈ?ÿPIVRRòðáÔ”---¢¥¥µdÉ’èèèÛ·oãßK}}ýU«VÉȈf###CÄåË—=zdllŒJKKKKKÃK‹‹‹˜Ìnzuuu¡·oßR«1‚jóððð@ËÊÊâOOÏ·oߪ¨¨à[ºt)µîêÕ«SSS=Êß”xóæÍªªªC‡)**âyyù¨¨¨’’þŸaùùùŸþyuuujjªpG¤¡¡¡M^^BèÕ«W¥¥¥ûö틊Šâp8~~~<oܸqt ÝÜÜ|Ò¤Iø3ƒÁ°³³ËÍÍŽ&9-C† ‘ó’ÑÏöKæÑr¹ÜG%%%â¥úúú‹-Z¾|¹¸ƒ$IrÁ‚{÷î §Â¹\î™3gÄ­E5“Ó,VÉ^¿~úñÇýüü80`À‡1uêÔòòr øf—™™ÙÔ©Sñg‚ ìííq³bII ýüÁÛ_·n.w,99¹¾¾¾³™Ó!“°°°uëÖÅÅÅá±cÇzzz ÇìJ>ƒAű·€ÚâÇ ³³çЉO›dGgYaa¡«««ézòä BÈÌÌŒ Y¸p¡›ÂcüzÆñ¦ªª*\Ó²°°YkD)**¦¤¤à^KkkkŸñãÇËÉÉ!„444ŠŠŠrss+**ªªªîÝ»'0(“ª­"„pÅE8„bmm7‹)))YXX~üxáÂ…§OŸ4hÐùóçÇŒ#2š¯¯oRRÒ«W¯pƒ“§§'›ÍÆËòóó™LæØ±céä¹¹¹9ÿWqåt˜ 9/ýlï°i-:lØ0þpÉSKfgg“$ihhxüøño¿ý–ÅbáðÆÆF}úæÍ›xÔi7’œ 9¿zõên9€ÂÂBú%(ùh?ùä„Ð7øË‹zìI¤ &àý3f¤§§gggㇸéôÆvªX%PRR233«©©áÄ# ÿÍÖ©ìЩüqrrb0×®]£ºžËÊÊðC<ÝØUýòåK„ÐÀùñWÜ ß]ù :Óñô.=ßv@gTUU͘1ƒ jÔQW888°X¬äääW¯^á—/_nÝºÕØØ˜ÎKê*++G޹eËüUFFÿòÉÊÊâ§I¬¬¬¨È™™™R·ˆÔÖÖ&''S_Þ4hgggaa±eË–úúzÒÐÐàëëݯ_? ’$ùÕW_ 0à§Ÿ~¢ó³'++ëé陓“SRR‚+ŽŽŽŽ***ëׯïp€£3&JN‹„œïÊNùÑ,A¼ÉGëàà`ff¶uëÖ?ÿü“*ÍmÛ¶IØ;ÕÞ¶eËuuõE‹555¡»ªÅ‘¢X%ûì³Ïòòòp‹)NìÆedd„Çùuå„ïTþ¨ªª:99íÛ·Êêäääööv//¯3§S† ¦¨¨xðàÁ––*pß¾}!WW×îÍg ´8:!55?¾ÚÒÒRZZZTTÔÚÚºsçÎ!C†t}ãòòòÉÉÉAAA$IfddÔÔÔ;vŒÎœŽŽŽC† Ù¸qão¿ý6dÈÊÊʳgÏjjj3 %%¥ÈÈÈÐÐPCCÃ+W®äååikkž={OjÓ)úúúqqqEEE¶¶¶W®\ÉÍÍuvv ãÃd2SRR&OžlkkØÖÖ–••õäÉ“#GŽ%,//¯¨¨°²²ŠˆˆXäïïOM¡ÂÏ××÷™âŠ#ƒÁpssËÉÉ0`€µµµÈÃÆ-©©©ÏŸ?žHÉi‘ó]Ù)?É%(° GË`06oÞhoo$++›‘‘AgA„ŽŽÎ† æÍ›·nݺ„„„{c;,ÖÄÄÄ7nذá‹/¾èpïóçÏ?v옗—Whh¨‘‘ÑÙ³g¯_¿þÕW_ O˜ÕavIØ‹¬¬l§ògûöíl6›Íf‡„„TTTdddÌ›7ÏìØÅ®jþÌQRRÚ¹sçìÙ³­­­ýýý.]ºÄápüýý'Ož\VVÖÙËH¯§ë˜Ž‡Š “òô èt<’ß(0ÏAæææ!!!EEEÝ?þéx°¢¢"]]]]]]Ÿ_ý•ZÔáÛüž‚„É_º›……Eee%Bˆ œ¹N²CÅDHhVpð¢Î® ù¸tox8æccjjjggG=!>h555ýû÷‡i¢ÅùHòGŠ›v·Üç?DÐUÝ»‘ø%„à£5BÞ<µ5ò€‡c-ÐâãëëKçE8Ð÷@Å:gçÎ=}Ð3 «º÷!IDtîÅtïT-Pq´@ÅÐÇ^ †9 ÷Š# *Ž€¨8Z âØ[Á0Gô2Pq´@Å€âãã‰ÿ¥¦¦6|øð´´4'2ŽŒŒŒ¥¥åÌ™3¯^½*yS”àà`‘{OHHÐÒÒ:thOgC÷055õóóë飸nnnöööâ5  ÷Oºq7Ù¼b§IDATãA‹z$—z ùƒ*,,tqqQRR222Z¾|9uÓ}T{1è­ï×ôéÓcbbbbb–.]:qâÄDFF.[¶Ldœ èéé?~|ôèÑ»wï·)~&LÞiYYY\\œ••ÕÊ•+{:zÞÅ‹=<Ó%°Sþãyw{é%”••g̘!ØÔÔtüøqSSSáø<oÒ¤I999S¦Lñõõ½|ùò²eË*++÷íÛ×áÒž²xñâþýûs8eee„££cdddXX>„††GGÇÇO›6MKK+33ÓÇÇçâÅ‹"Û¤ ¼¼¼ÔÕÕƒƒƒ FFF†——×éÓ§ÇŒƒºÿþðáÃeddf̘¡ªªúóÏ?ûùùíÞ½ûóÏ?ïÁÌé›HÐÝÌÍÍñ„ùï/½äUÄÆ„ú0Qç@7B|ÿw»5kÖ „ £££BçÏŸ—çÚµk¡ÀÀ@É›· Ðÿ®µ´´´··ÓŒÌår¹\®@ ‰‰É”)S¤Øµžž^}}=þúæÍ‹eddÔ©ËÎÎFåççS‡:mÚ´îÍÀw*R§²]ê½Hpýúu„Б#G„u{.ÅÄÄèëë¿xñBxÑþó„О={¨ÀÀ@„Ðýû÷;\*öövás˜~þüý÷ßrrr TH[[›²²òºuëèì}õêÕ¡ýû÷ã¯#âöíÛøkss³¹¹yÿþýiæƒ7íwqŸÿ @W5@,’$B’ûÂ]]]Oœ8Áår;»ýÙ³gO™2!Äf³©˜âââqãÆéééŒ7®¸¸˜Šojj}ýúu[[[[[[á 655%$$XYYõë×ÏØØ8""âÙ³gÔÒääd%%%MMM''§ƒòoyñâű±±ªªª NNNgΜár¹+V¬°²²RUUõðð(++ã?Œ;v¨««ËÉÉ :tùòå­­­"ÓXZZêïïÏb±ttt|||.\¸ 2ZKK˽{÷&L˜ ¦¦†C”””ÜÜÜž>}ÚÔÔ$yÚ´i²²²oÞ¼Á_322‚°±±¡"ÄÄÄqóæM„‡‡n¿™={6-àîîÎßÜuùòe___---CCÃyóæýý÷ßâÊKBZÄå¼ðN©ãél¶K(A‘I“œó—.]òòòÒÔÔᣣ£wïÞ­¥¥Åd2 çÏŸÏ_ô4óçêÕ«­­­#FŒ B˜L¦­­-‡Ã¡“GŽÑ×× Ã_ÍÌ̦M›ÆápþüóO˜>¬ªªš3gÕû¡®®]RRrç΄Pyy¹uÈËË»»»×ÕÕ½xñBº’bõt͵êÎG?HÝþ—(󹻈l&ü믿 dddjjjH‰M‰ ,@ýöÛod'[ïÞ½ûÍ7ß „6oÞÌápH’ÌÊÊb2™FFFK–,‰ŽŽ0`“ÉÌÊÊÂñMLL¦Nª©©ijjúùçŸ o0$$„ //¯¯¿þzòäÉ ÃÉÉ /ÂmcÆŒ‰_¹r¥••Bè矦¶¬©©©­­½víÚõë×kii)((¸¸¸Œ1"99yþüùAØÚÚR‘ BãÆ[±b¬6jÔ(Gþo‹ã¹sçLMMcbb¾úê«Aƒ1ŒÃ‡ y[[[ii)Õš‚Cllllll„#§¥¥!„rrrøóŸ ªkذazzzøxÜÝÝíììpnÇÇÇ#„6mÚ„sÛÄÄÄÜÜ\MM-**jóæÍnnn!‘ÛaZÄå¼ðN©ãél¶K(Aá½H>ÚãÇ3 ùóç/\¸POOÏÜÜuÔâÈãñfÍš%##CµuVSSÓ AƒfÍš%riss³œœÜÌ™3[ZZ._¾¼{÷îsçνyó†ÎRažðC† ‘““[°`ÁöíÛÇ‡Šˆˆèlþ>|!týúuþÀ &ØÛÛw˜¯_¿&"$$„?ðСC¡'NDÆ#’““ù?ŽJOO'Iò‹/¾`0ø.D’$—˵··§ß`-ŽôA¥¤ûAÅ| ÇÐÐÐåË—/_¾|Ù²e³fÍÂ-"‹-â#²F¸qãF„Ð… ¨hÂØl¶È]ówU·´´˜ššš˜˜ÔÖÖ⥵µµÆÆÆfff---$Iš˜˜ „âããEvk¾yó†Á`ðÿ*Ï™3GKK W|ÍÌÌÌÍÍÛÚÚð¢úúz&“9þ|üÕÄÄDNN®¼¼Ý´iBÈÖÖ¶µµ‡°Ùl„PCCuëׯ§v‹ÂõªâØÒÒ2hÐ {{û·oßâhÍÍÍÎÎÎfff’;8çàà ­­››+áéÓ§¡˜˜üuèСx<þ¹­¯¯—‘‘ ÇKù+jÂ]Õ¡S§Ná¯\.×ÊÊÊØØXx’Ó"9çv*Pq¤Ÿí’K/’¶¹¹ÙØØX__ÿéÓ§xiMMäŠ#Ç‹ŒŒ$bß¾}¤´6nܨ¨¨øäÉ‘K>|ˆ >|8uá°X,|uH^*¬Ã!”™™‰¿òx¼¡C‡âjV§òçûï¿y½³X¬sãþýû¡èèhþÀóçÏ#„vïÞ-7`ð.\¸!”””D’duuõ€ŒŒŒ¾ýöÛmÛ¶¹¹¹ÉÉɉü#M$¨8ÒÇÐÛ <C¾³§dø{²˜L¦……ÅŠ+èbÄKKKü7"ËÊÊâOOÏ·oߪ¨¨à[ºt)µîêÕ«SSS=:}út*ðæÍ›UUU‡RTTÄ!òòòQQQ!!!%%%ü?ÿ¾ýö[üÌ——NˆCCC›¼¼<„ЫW¯JKK÷íÛÅápüüü x<nCê¹¹ù¤I“ðgƒagg—››+MrZ† "!ç%£Ÿí– Í£år¹=JJJÂÍÆø¤Z´hÑòåËÅ$I’ ,Ø»woXXXxx8ÎårÏœ9#n­É“'ó}ñâņ –,Y"piP^¿~úñÇýüü80`À‡1uêÔòòrÉK544¶Öav™™™M:&ÂÞÞþçŸF•””ÐϼýuëÖñŸ¨ÉÉÉõõõf>UUUþp))iæÌ™™™™¸$nidd¤ÀÖ:Ì.¢§.+ÜH3pµÏÓÓÓÉɉ üÓO?4i’³³³ƒƒC7f“ÉllläÁ¿îIIIÂó’ ›Í¦²‘LAAN´Ó".ç©Gº¨¥¥…~ J>ÚK—.!¡ÓLÜ_#I’ÇŽSQQ3fÌâÅ‹©ù5ÕÔÔHzwææææ~øÁßß_B%ç•««+…ÿV^^Ž+Áâ–J‘]âŠ7"ÒÌ< …ÿ4üÕÀÀ ÃÌÑÕÕ•‘‘©­­åÄϲPüðÈ«W¯Þ¾}[WW—Ífã¢d±X¥¥¥‡Z¸p!Õ0qâDYYY__ß½{÷vj^IС¥âxìØ±£GVWW÷ë×oôèѱ±±Â ûâÔÔÔLœ8q̘1III=™‚€º#è…JJJ ©N1©á‡CïÞ½;zôh*?2iaaÑáêuuuÕÕÕæææ<oçÎQQQ»víb³Ù999)))‹/¦âKñ8¥¬¬¬­­jkjj*//wwwNŽŠŠŠ··7ÿŠwïÞ®þž9sfÊ”)éééAAAT ¾M‰üõuuuUUUÍËË+..5jBÈÝÝÇã>}úæÍ›xÔi7’œ 9ÑèºÂÂBú%(ùh?ùä„Ð7øËëÖ­[ö>aÂÜ¡?cÆŒôôôììlü7ý®ê£G¾|ù’ÿhaJJJfff555ü¸^edd$yiW²K@§òÇÉɉÁ`\»vJlcccYYYPPP‡™Ãd2\PPÀ~éÒ%‚ ¬­­…W¹}û¶ªªª³³³³³3¹páA...xhÇÀùãã¯Â½Þ ‹>Šéx’““W­ZõàÁƒáÇ+++?~üóÏ?žáB$’$—-[FM{Ñc ÊøQ’ЬHv¡ã»UUU͘1ƒ j\QW888°X¬äääW¯^á—/_nÝºÕØØ˜ÎKê*++G޹eËüUFFÿòÉÊÊâ§Iðƒ¥Xfffcc#Íæ"aµµµÉÉÉÔׄ„„††7 ÚÙÙYXXlÙ²¥¾¾‡444øúúFGG÷ë×O`ƒ¸§ï?ÿùÿ!8p!DýLò“••õôôÌÉÉ)))ÁGGGG•õë×w8ÀQŠ7ÂIN‹„œïÊNùÑ,A¼ÉGëàà`ff¶uëVjΗÚÚÚmÛ¶IØ;ÕÞ¶eËuuõE‹á_Ü+ÿ:¤¦¦&îm1”Ï>û,//7¤áälܸQFF÷SK^*Ev‰Ô©üQUUurrÚ·o•ÕÉÉÉííí^^^t2'22ò÷ßÇ6!„þúë¯ÌÌL///‘³£Ï;×ÆÆ†ª:———§§§?ÞÀÀ`ذaŠŠŠlii¡âãyÑ¥~$èû-Ž•••{öìÑÕÕÍÌÌÄã„Ö­[÷ã?nÞ¼™ÎOÝþýûù§‘à#—ššŠïò---¥¥¥EEE­­­;wîämŒÔäåå“““ƒ‚‚ðŒâ555ÇŽ“——ïpuGGÇ!C†lܸñ·ß~2dHeeåÙ³g555ñ{&”””"##CCC ¯\¹’——§­­]XXxöìY__ßΪ¾¾~\\\QQ‘­­í•+Wrss©éè0&“™’’2yòd[[ÛÀÀÀ¶¶¶¬¬¬'Ož9rDx(¡––Ö×_?|øpooo‚ rss‹‹‹—,YÂ?A#?___ÜgŠ+Ž ÃÍÍ-''gÀ€"lпý©©©ÏŸ?çާC’Ó"!绲S~’KP`/Ž–Á`lÞ¼900ÐÞÞ>((HVV6##C ÃT 6Ì›7oݺu 4»ª›šš8ާ§§p‡obbâÆ7lØðÅ_ „æÏŸìØ1//¯ÐÐP##£³gÏ^¿~ý«¯¾Â%/íTvI8ZYYÙNåÏöíÛÙl6›Í ©¨¨ÈÈȘ7ožÙ±ÃÌ™5kÖ?üº`Áuuõýû÷¿}ûϬ$œ9k×®õõõurròóókkk;zô¨¢¢âwß}‡RRRÚ¹sçìÙ³­­­ýýý.]ºÄápüýýQÝ §ë~çÖ®]knn~üøq*„Ëå>ÜÙÙ¹ÃÜ¿èС“&M277§f¾èP7LÇóï×ÿù'z«n™¦Nw×I@gòEyv‚077 )**êì¦ø ¿9¦¨¨ÈÇÇGWWWWW×ÇÇç×_¥uøR–'Ož„‡‡ËË˳X¬jª‡ãâ⢬¬×¡Yè9t&vøHôñŠ#~ðMIII \YYý;M¿Èµ¾úê«ð¿¢S„»ª¥$ÐC 5Hz___:/Âô½ÒmU²WÕÕÕ ‚~'ž^Gܹ‰‰‰OŸ>=|ø0õºª†«ŒDo˜}€vîÜÙÓ‡=£qd2™jjjÂ-‹ø¥FÂoñB>|xîܹÂô ¡ÇbzD¯8"„tuuëêêpM‘òðáCôïûà·åîܹÓâ_þþþ¡ŸþÙ¿-à=x°€ç¨ÐCúxW5BÈÓÓ³²²²  `üøñ8„$I‡£¡¡!ò]ÆÆÆTLìõë×………ööözzzïïÐÅT{ÕKŠðñèûÇ€€€]»víØ±côèÑø™˜={ö¼xñ"""‚zVccã_ý%++kdd„gÀçß½{÷ {ø]Õ=ªïW bcc'MšäææöèÑ£«W¯Z[[GFFRq8Nttô Aƒ¨7föRðˆ zN߯8"„ÂÃõµµ³²²rrrôõõg̘±dÉÜúhêû¯|ÿºç•ƒ¢þ;ƱãÈ ‡|´¯¢€¼r¾¾ÿT5èEWuŸB’$ sü|´/ЇAÅ€î÷qö_èó «ÐÇtT G@ÅÐG@ T-Pq´@ÅÐǼmïT-Pq´@ÅÐÇ"à=2xO âhŠ# *Ž8’„Þj¼Pq´@ÅÐÂìé]Æß[MÂÛdð®@‹# *Ž€¨8ö!ð„5Þ%ãø#‘¨7Çð‡ÀGt¨8~ਪ!®/ò…Z#ºT?`B¤@} Õ º ŒqüÀQD˜”ïTû x,ïT?px,#5¢ªxg âøá£jÊt+¨8~øF4ÂG¼PqüÀ ×a"¼Pq´@ÅÐÇ>ÞX €w*Ž€¨8Z âØAo5Þ¨8Z âhŠc½ÕènPq´@ÅÐǾ z«Э âhŠ# *Ž}ôV û@ÅÐǾÐM âhŠ# …ÙÓÞ=þÞj’ìé£À‡ Z-Pq´@Wu_FüÛCýOÿ4ÞjH*Ž}AbÂÿÿ3T"@tU÷]|•B‚?ÿCPk@ç@ű/ûŸ‰¿©g« :¬ ¨8~” Ö€ÎƒŠãG^?iAÅñ£@"ôÿÝÓðöjH*ŽñuOC­RŠãGF7@ZPqü(AõÇŒq€T âhŠ# *Ž%è­@çAÅÐÂìéxOŽ;vôèÑêêê~ýú=:66VCCCBüúúú”””ëׯ?}úT[[{È!QQQfff=ŽîƒáñjÐöQ´8&''¯ZµêÁƒÇWVV>~üøçŸÞÔÔ$.~CCÄ >Œòððèß¿NNÎĉKKK{:)=¦ïW+++÷ìÙ£««ûßÿþwÏž=¿üòKXXØ;w6oÞ,n•íÛ·×ÖÖ~ñÅÙÙÙÉÉÉGŽÙ°a—ËMHHèéÔô˜¾_qñàƒþíßþí‹/¾øÒK/vØaŸûÜç¾ò•¯Ì;·è§ÒVIÉEk;q$BÔ$ãØeeÊ8ZùEó½ð‘·1dQKzR£ 2` bª_ƒ ñ‘¨¸8"J—ÈD8"@¢¤"p„ˆI7€Žµç…ŒÎ™ŽÇÚ‹‡Œ:õ` p@.Žpa¦#ˆ!p@.ŽÈ…À ­QŽÈ…ÀÉH:#r!pD*’Ž @à€\‘…¤#B8 'G4‚Ô#5FàˆÌÑjbGêŠÀ¹I)”*ú @a‘!#µ7¥è@sŽJÇ‹¬‰)¨G$Ó1¢ ½ÑjëSI#ÊT„˜”#Ry¡^<@´ÊôûðnQôS-bŽ#r0S:ƒHú€š!pD:ãH/jŒÀ¹>PoÌq„/£ŠEG,] @]‘qDH…,ñ:òŽÔGdI*‚¡8€š!㈦0` @ý8 G4‹¤#5Cà€\Ñ’ŽÔ #r!pDkH:PŽÈ…À-#é@=°r š¡¶¶WµÖKZ€Ê!㈆I)íU­Í¤#ÙG*ŠÀ¹8¢M¼¤#ãÔTsÑšøÀt´V†@€Ê pD;èD£—t4ÿTCÕh&:D)…RDŽT#ÚAÇŽúæ;P9ŽÈ…Àí ó‹:Ý*‡Àm"%•1T#ÚÄ ™Ý@8¢â‘"±#•Cà€\Ñ1Iý@98 Gt’bª#ÕAà€\ÑYLr 2 #ºŽRkʉÀ]âWÉ5PZŽÈ…À]"En¤18å4¥è@Å)ëÝØÑŒéö@qDgIókTÊÿʃÀÝeŽSKIø@‰8¢KìðЋ@y8¢ë(Ž œêRsÏ=÷¬Y³fÛ¶mùÈG>ýéO_}õÕ3fÌHÙß¾}?üáï½÷Þ;w|ðÁƒƒƒK—.=餓Š~å§CF/|$é@yÔ"p¼å–[¾ûÝïN›6mÁ‚Û·o_»víÖ­[ï¸ãŽ©S§:÷ÿàƒ.ºè¢gŸ}¶¿¿ÿ„NøßÿýßÍ›7?ñÄüÇü•¯|¥ègSVR¥#E)I:P:Õª™={öC=422òðÃ_pÁÏ?ÿüÍ7ßœt“5kÖ<ûì³ÇüÆÿáþáŸþéŸ~ô£ ÜvÛm/½ôRÑO¨¬”0ÚîP@ U?p\³fÍäää²eËfÍšåmY¾|yÿ† &''7y衇„_ÿú×uJrîܹ—]vÙÄÄÄü㢟PY‘` ìª8nÙ²¥¯¯ïÔSOÕ[8à€SN9e÷îÝO?ý´ó&cccÓ¦M›7ož¹qîܹBˆ;vý„*„*J¥âs•RÛ¶m›9sæÌ™3Í탃ƒBˆ;vÌŸ??~«ï}ï{S¦Ø¯ÌOúS!Ä‘GYôsªJd(ŠŽãããÖöþþ~!Ä[o½å¼Õ±ÇkmÙ´iÓÈÈȇ?üá/|á ywhhH1888$„b°èס\d4 ©+…ò.ë•÷íÛ'„˜6mšµ}úôéBˆ={ödÞÃÄÄÄ]wÝuÓM7MLLüõ_ÿõ!‡’çqGGG…RJ/äa863é¨ÿ×P4ï²nªm(YñÀq``@J9>>nm÷ÝwEwL±yóæo~󛯾úêœ9s¾ýíoŸxâ‰E?¡:’ù‚G%HLÐY§L™ÒßßÏ,îÝ»W¡ë¬ãöïßÿWõW«W¯>è ƒ.¿üò‹/¾8©é#Z$…JDR‹f¨ø$Ç…^d™'¾$¸ …³gÏÞ¶mÛÞ½{?úÑêcccÞ¯œ7™œœ¼êª«yä‘ÓO?ý†nH‰/Ñ~ûì<ÐÛòÞ{ïíܹS¡”ºóÎ;>øàk¯½¶èc¯™Î·uTþ’5îE?z]õ‡ª?ü𫯾zåÊ•gžyæÂ… ·oß¾iÓ¦yóæ]rÉ%zŸ7^yå•sçÎ}àÞ|óÍ×^{mêÔ©çŸ~üÞÎ:ë¬%K–ýœJÛ¿(ÍÿMØ-žbÔ[HÐ#ª8 !–.]z衇®[·nýúõsæÌY²dɲeË¼ŽŽé¯sþ={ínuT˜æ ýüb¼8¦fç?JVi¶ÞAJjRHG€0®õuS‹Œ#•Gl;¥¤~‚Q !„’Bª°ª:ÌgmíBà—®¯xcNsôbE©„j-ô‹g­û#}@CÑþã)o¯ßY ¥Uï^ÛÞ‘GÄ"E>"$ÙÑ©sͨ,>¬"ý=:Ÿï g4Ç2‹‘õi pD·¨Ôâ’XGo¨ZueÀ\ЇÃã*qÏô»bb% ÂÑ ^™KZ©RñZj©ÌnŽ] ȼÐ0¬ª&{@€À¦K¤S÷²Z…‡Û•¾•~óNµ`tv' –Ña'3’vÊo¼£í!E§Ôù¿ä;É{<ósÁÇÌÆ@éÅ H@y8¢ÍÌò—žšð×–ƒ1{Åk´uœ~ÄŽ€’"pDÛ¸q{kÁ¨p‡føIGcYÂ;“çIIæŒç¬ZìÎEÒ(b…'@/ pD{8/oZÄZy7µ;¶]7²ª]ïÄ@ G$Kjë¯bQùo½EžlžÞæÁS×%Ø=54@Û8"3 «XŒ–nLÛó’Žæ{¦a;ž ‹P®±l™Õ®€2#pDÏsƈñرè‘ëð@R hDŽÄ$q' 78¢I²k±™hFÙKóíCN- É,».úðp#pDã”"\¤/Ø"“vnCÿl2*U`•LÊs´0ž½è|ý5ÝAàˆÆH‘{kR¡´lãdD2êŒ[ip“Ö÷;6!Òy[R‰€²ë+úP&=TöÑt}Œ*lùikü€Ò!㈼Šu–±äT8ÎßQ8ù8"—â£Fÿ8¢³Edø¹DË«$Í}Œ”]'÷’쉿 ~‘­W¢Fí¹V[ûGY¼¬ná±ÝÝ᣿=aê$#Ý€¢8"CFÁ)¥’]ì ”Nfd=“f„ƒ€2 p¬/;RQŽÈ¥‡¢Æ”'[ »Œë&s¹¥Öw(œžHR¢i$Ò8ÖZdv^HPD.GŽPFÝtácåeþ½ ° Á¥òç];Õ@àˆdÒ -cMBÌ"Ôj3n®4ÓÐýôFɶŸ}lCçôŒçȵ¼C¼—8ýÅͦ?„Ê @{âÝ  ZQRÕŽUd:]iÓ@6Q† óX7Ïs'is z§œ¨–ò§ 3ƒËÖw(>%  TSÞËHãkÉtû³^\÷¤R)¤’ñ²ëôûiýh­ü+éI-g(–“5tÌs+)‚?aò®‰w k æX92sô«ÇYËV…WÿSÀÜGUäZ;½¬é¿D£³3?‘i;ÙÜÍ“ž©w·j‰Œ#Bå-OögƯæ–¸Ôµ¾X¶óïC¨›Ò'ša_žabáº«æ¶Ø¿ÍʾçOv2œ @#pD)Y9”°8Æ»RꤣðcG)D¯$ Û1¿Ð±b!ÓÛ'OœÔÐ(³LøßøˆvÒ}fîãÎ æ;Z•õ¸¼­hŽX…É=ÏŠ”¤—l3Ç©ƒA:U¹°*iÉtZÄ̘¯Ñ4%þ3÷‘:㨔óÀò¿oZ,P%Žu‘Þ‰WV¯u`iç8†‰äµªƒÍAøèê»™øåúŸ*gEaì&£ãwhÞsæC§?VæÁ¸î×ï¡h…°2ëæ9ƒÅ<½‡Tcm$çÜd‰'7&Ð}Ë;Z-ÙãkUÇË®•PážzKò’?ÖÎÈOº>F™5ÔyÂМÃÁ9‹©›ØÇJI¶˜Paލ`xÚœé¨Ê;¶„ {k2(Ƴk9ß^9S˜é¿m¾¼:õI‰XìÛD–”°¨ Ǻ+ÅjÔ<£’´„Ç–Ÿ~â¸6´†Bœôaèœ÷™?¡Øú>mIIªäôj“(öª‚À±Ö"ËÄW .Ý©>~qRJ/Xºéc¥¾´‰Lý•Šîß—¿è8Ïn-þÁò„•™=­Ä¤^5>e õÊ8rZJ%AàXkÖŒ:{jYé3xo¯1Ó:=o•ðÑ’Þ}Fï#±-Ä…2:¹¢ÅggÆ_ú‡œyÓœ/yÿy+cdP¡“vïaÿ,=‹ÀuTêHÊ1Íé2ºöÔoP;g¼(Œÿm{OÇŽŠdxÔ(®Êþ“ç.ñtl¼:‡À±šRFŸÍX¡n£™heìü{™õ×B‰xÙµpþ­S3ÊÕŽ)­N:é‘_•‚¡Äç˜%WZ4Þå§áºìJ§ÿ*!p¬,¯K‹sôYÇÕâ¤ðÕ!"õ×5PµŽK RFNS¦0f6P¬þ 'ÂÐ-ïG"!‚Œô¶Ì÷ùʳ@"€AàˆzÑ-+kxò¿-”k @»Š'ÌÈ2ÿ Ñ;ï–.‘d¼,ùÔ~…•íÓ§’(cíÔmxÚNæ÷ÿ?Ú¯§&W ³Wa¹dO¤deÂv‘#”é)Œ9_‡–d±È¬Ô`$éh̳” ·jr9l*i€‚8ÖŒµ=Þ8u˜tk_5kùH?ûXí·Dæj(¢&#ÑE‹WÒ4ô¶ë­Ø¨1Çš©÷ÙWÏq”B(½ÌŒ¨Z®1c.ctqBQ•$t¼§ ùszwîŽOêêð%–ÐåÇ~ú©yÄ´©i[å›åGàˆºªhÔ˜Æ×ªŽw|ÔUùæNñx´gÃͼÍ;6 mŽçæé`X&®.?޽’ï@¿æ‘AíôññJ´DªÀu¤„±°u³ãÔ²Bó«Ü£uÈV”ÐS5ÚÖúxæLGÒTÝ—ó5¬ n†ÚÉ jó× GàXœk ~UµnÇÓBü×hqn+G“¦ä ‘Õß; áHÛÙíxbãÚÉ%NRïœÙ, @÷8¢FüëPØ÷9ˆëY“ ìøX’—$2êdpæ q¸gõ&#'ÌS'kgöÎtŽM§ X矟 }E:N29( ƒªêRþ¿XÞ±œíÛª7_cŠ@Ê:%þŸ5ü{¢»â Ò(# „-ŽY£ãbùª\ý(«4µBröÎÔ?ëJÿ†±@߬¶ÐQ UW–2\«ÚèSÒë3Ø ¤”’á &+¿H_CoéÚãÝ0ÏÍÛ_yÝèÊxèI± ¿c6¤_vzJ1 Òy8V“_å ¥ÙjEGm,Lõš†Ÿüfñ°9Xå\±`v럯ò2¥º%:[ÎlÜíx # uû³–cý×lH™pÛpçØß·ÕÊk¤²8Všb¢^n2Œ®MJˆ:.K˜ íe× äx¢¿Md¾^ƒèe¹â¿`%ÃFhs+K2(ÝàòcòÖ˜ ‹'A„m}^Þ¤BÚ ì™w3ÜÌ"y¦#o  -€‘›’fUu M«M Ùéo')=V¨„¨°&RƒVø˜´ï E UW“¬AiG'D–JÑý„Œ ÜëÍäà¨u¢öx?^ýzJ;ysXíþZÁmÃìc°²h{ßH•]‹ÈBà$òcÇZ¦½ªüPr ¶3|Ô;»o•õrZK&a ºªÊnÛžú‘LY»-ï™*¯Ed!p,+¯‘uJN‘tc+ô„ÇzÆ%fU¾/Z‚m¶æ‰ÜĽœ·3¹ç`S|¦c¤h:yñ:ÔWr©¬büº~–¶#p,%=íü¦«¯Ö’Áêféë ïK“ŽMh¥ì:>Ñ^EBi4Íè┘tä}ä@àX5I9äáh/§7ÆbG^å$Þ÷šxø˜–ò‰ƒŒA#—Ìô³ë3Ë·i Ž•BÔØ¢Œ<yÇFèðQ…#ÿÉÊðÚ²²HÏÉJ?;gCšá£ÙHADûŠp¢›¹ž5‹ çcfcÍPTZ ²73Cº©'J!G ìÍwЫÈ8VéÆnðbGB‡õA_#¿-JðûhãwÕ¶â]1§CØXɕ҄˜#›‘n47爭š<«T'•]Ká%ídäÚp¥–Dh–UUN‰ì.?ce˜é†hºQIݪ0Ì[Ôöo2ÿ/ú²Xõ ÙMvòO `úlY]œÜK%¬~Ò‰/QcŽåæ])™§ß=zš£Rú*¢‚¶šuË;ÚR_ÙÅZ[8%ã(+…å@$‰˜\Fãx³½{RV¼j‹â˜’Sþä0ÒÝC˜Þs@Z%î#e”À\SZ{’ÛF8 rÄ*12t\›¥´«dx5Ñ«T#‰ìk´e è' $b¨ºê<·®(2ûÈ`´:¶[m3”Ò˜f_ãõ¤”*²ÚupæMÜõפÛÑœÌg¬†«+éqå/øÉ$ô&G q^8hÕVK×nõ”¯ Ý^'hÁã/Ü{a¤ð戋VÇW»¶Ã5YU5ÑŠèg8»T+½8†:9ÔA]†ªï¹çžÅ‹ŸtÒI×]wÝÛo¿ó†?ûÙφ††ž{î¹¢ŸMªÈXŸ×cÙúWô1VT¬´¿œµ â§Úk¥ª@ •´b!Ð^*úÏì·enO˜k¡ï…õR‹Àñ–[n¹þúë_}õÕ LŸ>}íÚµ—^zé¾}ûòÜvõêÕE¾ƒòò5úÜåwƳÿqåíšpœÚÊDƓս¬¹X)…QU`ý 'D&\tý70Ðû¤ŒWÏôèºG@;T¨ztttdddöìÙ÷Þ{ï¬Y³„+V¬¸ãŽ;n¾ùæ?û³?KºÕÞ½{_yå•ûï¿ÿ?øAÑÏ Ö&-‚–=þ/‚ر—#Li€"&;$lÐòƒw¹LØ9Þâ”l”Zõ3ŽkÖ¬™œœ\¶l™5 !–/_Þßß¿aÆÉÉɤ[}þóŸ?ÿüó{:jDï .3ƒ!®¢ð¨‚a½eX]ëóxÃÙáÜ eí,õ,Ž¢_'Tœ4Ƶõ< 3`ÔgÞ‹(»êg·lÙÒ××wê©§ê-pÀ)§œrÿý÷?ýôÓóçÏwÞjÅŠÿ÷ÿ'„¸óÎ;Ÿ|òÉ¢ŸÊC¯.c´ ¯§©j— £8¦AɵҎÇPîÆ=zPÛ‘Èô;9WóeG§Iã¿®YÎþo’n݇¤#Ê«â£RjÛ¶m3gΜ9s¦¹}ppP±cÇŽ¤Àñä“Oö~xì±ÇŠ~n’sOÏ2cG¶.)÷².þ›‚—iãÚÒl釳qÐ Iï°ÈªÖRÆï2¯E¤ ïZ”^ÅÇñññ‰‰‰k{¿â­·ÞêÐã !‡„B ý: H=\£3 y:Æ9¯y…\ÍÆ=@ÏRa2^9ÕÊÇ'euxt‚wY‡¨|àè•NO›6ÍÚ>}út!Äž={:ô¸£££Âëà*„èÀ¤é5,éÐÑ£]t®1%v,¶C¸™MÝ/~œyŠ:{ìÁ‡€%7Q¤Ô¨M™MÛþ‰ÈûùEx—uSmCÉŠŽRÊññqkû»ï¾+‚¼#Ðfº°Ú:­«Ø$ÇRñU‹£Ò<°´¯Q:¸L|V=÷„PYÊ(ÉH:’DD¯ªxà8eÊ”þþþxfqïÞ½B]g]2J(®t=ΪªB÷5´'Tªà¤cŽ'c†Vf옰ꆰvîÊ!*!„Lþ`$¥$ƒÉj|¢Ð¼¼ïc6$o8”WõÛñÌž={÷îÝ^¤¨y¿*úèPEÎ(P7ã¨Dܯbÿ„î‚]~£ þé°ãH"ÊØ­€N‹.3“ðѰ™ËÒÈ„»-ÿyÕTýÀqÑ¢E?þ¸Þ¢”Ú¸qãŒ3†‡‡‹>:7çúæÅR*ÑŽk2ºMKZû—´Ë6ÿ½%ÈÆ)Õý‚ÐÈêG^!µPæ:I")•.[ôºHøØÓƒ€u/^Ü××wë­·zó…###»ví:ûì³<ð@oË{ï½766¶sç΢6ä\BпFÊ*¤¬ê))súcDö"¥Ó‡åÖUtìAïÓ3㟬”ÏZI>ƒ¨¦ŠÏqB~øáW_}õÊ•+Ï<óÌ… nß¾}Ó¦MóæÍ»ä’Kô>7n¼òÊ+çÎûÀ}¼i$åÔåçÅ_~èo6 ïÁ™Žªgëar Ò¤RÐúièsÿ<ÐÈÝÒ»mTýÀQ±téÒC=tݺuëׯŸ3gÎ’%K–-[æuä f¬+ãþ}W¾($C‡Q£wíQ* 'KÄlý s-]“3èdf)•’AT ;ÇÕ䗹ܽ{j¼3Únhh(ÞÇ1ýu¶ötö¥Ó½#+ÇH÷ýGI¦îÙÐÎÝ»Ûvƒ4J4ŠzjæM„Î8Z!clog/pÌy·™`í¬. Ú«Ú‹øÅ.f Ëýå=†„Ó÷´>)ÎýÜÜÍs¾t~²ßøcå=ÚÔ×Á¸•ʳgC;s·Ý¸ÛöƒÆvÖí{2÷ìþ+VsúZ_7µÈ8½(>H°V²˜*ì Á{"éhÏܰK°Ee^ºÓüi§Ì€D×8ßdÎ5fTÂmeB IG4Àè†6Äú‘®ŠaøèE¥úËDú5 XHPEbžŠµfl†Ì\«:ýë’DDÉ4òa'¦„cï¢,nÁØ´Œ®'!¼³¼¹Úµ«¾2ìð“¹NtÑO´[²VÖÖ«Êø-ýð13‚ 'Jº?\ hBFgVDÓ“T^£QŽ@ )%D0ñÑ<Ügy)%s;ÌŸã˜õ2«„¿Ožù@»äz·E[ü#PzÁÂ&ÑNÂÆô&e¤ÐA‘…áHÖ K²×°NhÚªožôfe$â{ãÔÈ ¥5Ø$ü*™XqŒ®¼&ïh®\©‘ðþíy”Ž-J.óƒ-S?þáòôBˆÎ¬nj¾‡«¹fiô}š¤Š^UµÿUC)=ÿ=ŒÍ›pÖö¨Æ)~ѯ¤ÑÿDb•Œ_„Ô†ÕÔ–„/!F¢<Þ ?ñí+ún¤'Ÿj ãØ‹H7"³ÃŽÒ_ØÚëÖä O›t»Gåí|·ä·,ñîŒÑJýuˆÒÉEÆG;½zè®àû'ï>XÈ8åäÍY4Déu†W*Üh5} Jjµ2Ñ`‘ÜV‡x54)UØÊOËDþ15]`g¥TÑi0–xWÔG üüñèpTZ*%¤Tñ†áJ‘P,–ÙÞ¿ècAýdöqŒ}«4—À|¥cbœyÙãÑÑ ó ond ü‰TÏtWAªF¦ŠM¡'g¤IîWêÿ>a{´¬¿ÅúUÒ½ñެG ¢‚ÉŽá"„ÆÂÖ’syûøMEôZª¯°A„—Ò%ØÙß³Û¶óÍM2V–JÔh’±ìê!pì1Š„rñOñá*´öw~;DþÌ$âRô”.#ëc#?¿8FJ»ŒFø^Îé0%wˆc&ý·¹1a:žt¤dU8%æÕÁá^,U¹FžDBN}Žt$iƒ®a$ a÷qlh {)½ý»ˆ'g1»_ÒK²]çˆÙdp.Vé•.ÖÉÑ(”ñbG¡ïÄHLrBíÑI¹DšJ&φ$—‰8DÌ\Â>e»ÃÞb ¢)Žp$Œ† T!=TÝjVg¸½Þ=^ÂRS!ãG?=Éš×­IÌ f.)­Ù“‰÷¯ŒNðI‰Lt޵Œa¸%aê¤5öR p,†z—jé7TIî$ŒÚQñhsˆ¹Õ{÷bÁhÓGÎàÿ›)s]?e0A•¿º.ýª\ =Žò#pìÒœ$èÄ;$\gÌÿÒb®?f<´vG×ù!¾Âft=Ë7˜§šH¬ŒH>²×8½*hÑ"bcÄúK¼cYÙFDU {ì;LmêñúŠ»š>úyrNð]ÔDMâÊÚÑ ‘D¢ˆs,!㪤Ɉór®d=#;öG $¤?)ÑØ Ã1ëxûÖî SÕÖfåµ±CPFc ¹ÆNHèéyÍÔ+eçX;Üß$#m›Š~Гâï ç<ÚÌ/1æL›¤¤cø´tè=޽!¸6 }çÜ]o~<çŸS•ÿßÖŠ­™‘R¸¢L³kú z3-¡î,•XÇš;˜ÓÅ1RÈìš ÝJ 柫MMO!pì=|82zwÍ.÷{÷ˆhøô’džnPÞÿ+‡ÌXº&zK‘>ö™ 4(˜xïàXy3_»E6ì2G HîѯKŽŠ Ñt=|TÁ´E¿¿‹Î}ŠÄ^h*ùWŽñrtAr¯™øGLn×ÌX6R%¼¥”ýC|£CmÊo#ÿ‹Î#p,ž¤÷N]¥üÙ#CÕ… '8ZýÆ£‹_‡íϳTÁÚ†ÆSŠLÅD“’Ûz‹¬*ŽìÆŸí“tÆŠN¢M ô‚%Û#ýh…Ȩ¶Ñ{öÀù²bH½x´u â3é¼M×—Ê2 pbËÌåÕÁphxœ,ÏÐR$-ì‘¿Ú±&MÖíÂܤ¾L«ì8µè %¼Éó–l§ÜSÑO¥J &iàX[ ë(ô”x{iÍ; bGNld[-²`yÖ_Îê¿”ú-†sܲ¾ú:‡ªó •ˆÍ´N¸sÞ‹íEàÌžÉ(eæÎ½“Éñ=²@Æ[…Ç—Í“áöÈsgºRkZ˜Gæ–YøÓJ§¢_v»!ç–6!p,†ùu\úƒ>¨“„¯ÔÞTÂĶުçÒyÊø¯fCê• '<9Oý m·Æè£%Ά̼«àöyDz‡”á©32‰Jë(Çt›Þ¬æWM¥Ü4ùÞ¼=õ…¼Çõ}u¤„òþ韅J %£S9PÁ‚Záp)•”A×é÷uöH©zõì&…*6É.zN7;Ç_ ÂÇV(ó;¨?{@ iŸsºC}Žjì0ƒ±A ЄÄ~àA²=ñ­šunáÔ“#Ð}ÊŠ«$މ͹½¹Ü©"¬ìÙÅ1©7öÄõ¿ 7éß­^uãWUçØÍñÅÓÊÐÿH7¶CÕ@§¤5’p U—ñä•Ô‡2û•Ñ«%Y ÒÄ–=´#΢ŸrÙ9zñˆè´Ó\üâóÞÍ#šûǯ#p¬/רÝAðƒläm~.ãù¹C “¿wª¥‡ƒéúÓ–Æ*Ø>³ËOð¿´ o/ëœvóW9oì¼ þÌÙ@STÂئô.l$ÝM&4!Ï;zŽp×(Ƕ𗕜d”W»s“ÂènMpŒ'e½véUçº]9ºNùyK¿Å˜1vµu~7p4*>d4,ÖW\ÄÞšIIGYÕósS.‘©Qc•¥.Q˜¸§^i&z;ŸéX³Üm§¹ÃµÆ_cc½ìpBdZÊÓu‰;+®ã5©€‰ö”•ÑÝÒ³’ñ{Ë|—tBQÛ8ƒqêj³zJ¯tZ¯õœLéÅ+£¡>ç^œa,H]Ï06ÒÄpvÛ%,]¢ºÑs—êÀÌÅ|†8ËVNdôÙœó×N{[D[…«ØMì1nÞGQŽ@gùßeetl¤‡[3F¯|mýƒµ•ìD£±gxêV¯I¿lýTëKg‹°Ñ£ÿ‹fÈŒ…H˜mYOÍSç)©!é( Aº±"RƒÖìFo®·±Ê³Þ)aÅáZ†5áêaÁ«*#¹F¡dqôš\ú¿Ð+ÆîÐÜ'º.YÑϵ2²}9õ`,;¸KÕd»òä£4Æ!“ï–³q%9þØÑ!‹”7Y|}š¤9‘õDG yICϺg™LÞ¾UB”ñêé3V©J%N È^¹‚à2YrOo{]ƒ†…wäÎ&ä vדJè®Ïíu>­8vãÔUb‡ƒÊK· ýTDôCv×<sÙCeËÈ?=-Ò[ç3ˆG{‘¢bõI]×öPÌ^öИÙ†À.k‘FTOæ<Åô)C5/égŽ#Ð0WO/»J#.ˆ2ë|ÂižÝ3õ´.út•toAh¼’h"Eúz0þö¿?ЬÕk¬hQb;IsŽœ"PJxÝñ1¡ y8- ÃAÎ/!+&,åon¶õ D}Ý×ÈÃ}ÂG ZÅ9¯1õ[û'¿.xÙíÛýÝ,FºÀ¤÷*œzQæßDf}À•CE?‹¢8v_LK%!`ˆ4QÆhur¥^¤øƒ¤c§(£Ðsýß©0vô²ÁMü"n«f&¹[%¬‚c‰¨ù¬Ö¬n÷2(v6öoOUµY[„q·m= {ÓoÓîSJoâmß eTçoÇ.ñ/a¼K&1ȳ3U^Ò1¹yrxå=Ð1ѹj‹Ê =¤?3Õ›}§]…“¾ ´˜t¬óˆ0¶KhPÕâwìèùÖ+ïN½KøÆÑ›“Sè-úÓÜjw°èc, c·pN(vòÒœAdбè£D÷ÌÅ`¨ÚúE˜Š­XÉ$' g‡7lïS¨ñ{,afaô‡*å7Ñ2žõL9ª†þ"*ú? ³å"3)“3¯D–ÅHžãÈP5º‚ñŠ’‘ñÌ“JÚ³Ö)¤žÉ )¥;`­j,i˜0¡2:{Ro–aÊ3q´:Oüa&ªkÆ$EÓ“¢mŸ8³×³ŸdŠ”~ëU¶ÓWÖnËSN)'jÿCM!pì~eŒRá9¨èc¬;3hÿÊ…ŒnÍ×j'ånQ0«[¸‰CP±1hsêd¸yÏÑš›ð7fÙM¬]¹7"‹f%þ¶øªsNÌÓulÄî¥ÜÅÝ®Ü$Wt}ÛLŸh¼®c~;bcî•îg[ô‘Ö^lÝ‘ Ù)".H^ã"ŒoÓ½­ÐÐû¥ùƒþC'·ò OŠÆ²óŒ‰º²6R׃‰ü©ÚõxÖÝ*aŒtw¡[¸ë9*+?íY* 5–‘qD-%_ÅýBi!ôœzV_|¨::ÙQ:ÏÆ|¡s™)³!õÂe:ëTv·ÿ ÕyšdÇ©xUu;væ|‘X¬%E‘ƒ>¤-Ð"GÀÌKKL8ù’«íPJñ¯±B¡Ûñ$,8i”Ï«pçXVR±£UÂØ6GÀzË©AcŇËÛ×å'÷Æ Æ}öÀzóÃÊ Í³´v–‰_3«sZ=lTcWðAë-îF*ÖÅÞþ«ÅjëMvdã#’(¿ÞŨ`HjÊã\ŽÒ¿‰·A¸®ý®þ‘AiF¤ºªàéÔs.u«óh—ŸØ/;ÕKÒE¥×»ØÓ{¯˜cªeÂ+‰žQ9ލ VqQÊÜ_¦$iÊ{íD ¡Ë˜tÎq´ÞÑT¢2FŸusø¤wT ãRmµÒ?K{\Û:ÖÈ2&æoRûYê®çåÝ(dB8b¦Ž.Ù`nã^{dýˆ”%%õ'Œ×‡Ï«žšFàˆº±[xD†ù~\u­Œò%ìmÖg䳃¶xÜæj¤‚{6%5žŒŒkÇÒœñÎ%ýsáªw¾’eK°é:7—Ñݱܧ¸ò£½ÃšjéÊ3Whì±g„8ÇŽ“Ê<Ç£ã"MÙ’v2/¨9¯£¬uÒÚ¬ù‚éG÷üBç< #£˜>!2ÜÙ˜©Ìà2q¥¾´? ­}¡Ê5Õ²'+~µ&ñ0H¶§p.O:Üî%~ÍHiÙÓ‹ÒVhLX(2éŽÌž–éÝAàˆòiþ£•Ž7ê vˆ·ÞŒÞpHÉMF¾ÀXµÕ©½$“Þpºð_á]äûR|3)h¼ùeP®£•\ZËçȶF–¹ôìh@»zI¶ÖZ<±ªÚÌZ‹EWi3Sõ“•Ñ/9VŽ6OçËÔÇ'åãFG”Sba`d$'¼Ò)eÔJ;ê[UtQÞ<3)ý=K/§´*öÍD*×̪μ·ÔŒ£Œ7’ÔÝ…‚Jø½f•Þ;?ÜY)ï¤ > *L|*ïã.Ǭô}:?)éó@¼ÁúÌÄdÆPJ!}¾bÆ‘4¸åè%™ãØ;.ÖKXÿ³;PêŽJtº3e§ev¾tþáü×+±;f]Wô!p쬴ŒšÒðw@¥ÂážMZ¦Ø÷"ó4¢ô¬‰„Fåiw„ƒ+úÃeF–æ—1=Žè݉Ùî>ÚýÞŒG#éIý¯!¹§”¨”óC;>þÍžÏeJÒúQµôŒ-Ó#ÍÕ­ãì¾â])ÙNübЫ™Ún`¨½Gå˜ïäªW•±ÑžŒBik·¢Ÿ7 „#jŒ7‡RzlZ×´:ïÉÊêuºc{JÝÞÜ4FÀ­J Ç71s<6n?¯ v´zÙwÛöù!JeÆ ™2ŠÐã¥Bñ7ÑcÈÓà¦@Îêïà¹êõ"8GUu[G~ý!øÞœ[ŽDºÑ)õ¬m4É ¾à«?gÖ»$5â1ÖƒJOZÓ ­®@A„']]~Lú3“ùÑ"Ëh$ý)ÃúnéÞ°Š”zH3ºr ħo†¿ŽÖ¡7Ge·‡4:`ysW£sX#ÑXBUµ#ÊÌ|"™yÜj½ó³ÌªªŽõëA 8vD˜Õ·>t=ó%²8ŸØ]«wˆxƒå¤»v‹vcï<2Dô<麖[ß©¤•ŒI¨_ѹLÇWÜF«^¢IM}·ŽpP„õÝVÍýƒ°¿gê‚ñôÒr÷Ý:›5ÂìÓÙ¥¬z¦È/cÃ)±$_Ø+Ô:ú™9›‰veú/ˆˆ‡í}"­”ˆ¥-ò¯©iWg_¤t­‡Ñ8¶ª±@°M:õ\²¾mgŽ4$%ü¢;%öµ1ò‚2£á¢øÂ“fÆð“0.“I«#;¢Æ­S3ýÎÏ‘ÀK½qvǤÃðr„:‘¯·ú«§}Dã ÛU4rµ ÖùROßT2m¦{-r}Ÿ _t;Ê1ßÎqÆ‘“ªþbÐxÒÑì?•u` ðïÖ<Ÿ›ß7Ìük¤‰€Ù’®–é±C‰dmkENd 8&Ñ=÷ܳxñâááá“N:éºë®{ûí·“ötM˜õ”žhœ.ëí˜g )Gwv4kéÖMÎIÒ#ÑÒ*6;ì$=jÖwâº,úªfh°ô/©ã3ËÇ+ëB¬#ýƒ3ÿgmñ5»ÍÜ“ñ5nÈûÔûSè‚ïxÁ¸±ƒ=À#ƒG×5à Õ9V…Pänõ‘ÛEEÊQô}jVź ÊŒŒ¢{Ú«[»ØËáeÏÞŽ¾ ƒCƒ‘ï]:ÿã‹Ô SîëIFŽÖzÛ´rž6ªX‚;óë~¼×ÖYUmöpU,Å^±ž©j*£Û-·Ürýõ׿úê« ,˜>}úÚµk/½ôÒ}ûöuâ±¼F)‘l:àjH°BZúa¤?‘œó•Ýû8òÊ+´My¾¤Ô¢n4þ7R1mTUë­öUÕŽ£££###³gÏ~衇FFF~øá .¸àù矿ùæ›3okŒÕúóê‚QN¾É”ʈØüYÉmøf| M=Ȥ”æ¹Õ?Q;癘"Â+AüŸ$6Š„AzKlfŒ&íü=†‹:–‚H¯AcŽ90MÂ;_F™ñ¨°²žÆ€xø/Z‡nExñü¨#x ¢m+&Æ„/¯°cM}Àö_-ØÇpŸœLÇ£">²[GáƒèÔšSh—‘´eôŸÞ!š?zú¦ùç°fX¯­{ i½/L²—»Ãâ½÷ÞûÍßüÍ£Ž:êÁ4·ÿð‡?üÆ7¾qÍ5×\|ñÅæv]ϯ£Ÿ¡¡¡¢Ÿè¬WF_©a• }m^éô´iÓ¬íÓ§OBìÙ³'óFGG…Q |ƒò›è·XRšÍ¸IÆIû´¾CC‡‘’/´^‘z?¢µ} 0Í­ÂbµÀŒïßADó…Κ¸I|!"ÃúÖV¦xKH»ÏN³;˜Gè|}RŽÁº뇜;XÏ7ÏߺêmRÊññqkû»ï¾+„èïïwÞÊŠl¬Š«j¤]︤»RY[[#çäÜJ,3’pî›o—}«øM¬aÓôâa¢žÈhm4ˆï ÿ×Ù,IOOJ¯n̳ƒùVhèŒçR‚/¹ ©#J®=GÛ”)Súûûã™Å½{÷ !tu‹RÂ)=ó/}‡¶DŸ­Fæ=˜w"²ö©õ×7È#3úl}Ñ“ñ«ó!D4ôŒï`=Jzh(‰’ët¤8ÆaöìÙ»wïö"EmllÌûU|ÿ¤t£Ç žÚUà’'bk1¤Ë”ós#³þJ£-ñ«3M¿“øñð´¡òoÉ|úuBàè°hÑ¢‰‰‰Ç\oQJmܸqÆŒÃÃÃΛXËe.LÔú0q[也̘/s•ã='O޶f/^Ü××wë­·zó…###»ví:ûì³<ðÀØîfGBåúß uC#ÁVž}º°ƒÈöP´ãq[µjÕÊ•+8∅ nß¾}Ó¦MÇ{ìªU«Š>4€b8&ºÿþû×­[÷üóÏÏ™3çSŸúÔ²e˼Ž<õDà€\˜ã€\ #r!p@.ŽÈ…À¹8 Ƕ¹çž{/^<<<|ÒI']wÝuo¿ývÑGTnûöíûçþç3Î8ã¸ãŽ[¸páÅ_üãÿ¸èƒªˆ×_ýøã¿úê«‹>Ò{á…¾úÕ¯žvÚi ,X²dÉæÍ›‹>¢rÛ¿ÿ÷¿ÿýßû½ßþÌg>sÅWlݺµèƒ*ŸŸýìgCCCÏ=÷œó·\ªšò’ÖðREàØ·ÜrËõ×_ÿꫯ.X°`úôék×®½ôÒK÷íÛWôq•Õ|pÑEýå_þåo¼q 'uÔQ›7o^ºtém·ÝVô¡•žRêÚk¯Õë°£i>úè¹çžûè£Îš5kxxø™gž¹à‚ }ôÑ¢«¬&&&.¼ð›o¾ùí·ß^¸páGñðÃÿîïþî–-[Š>´’Y½zuÒ¯¸T5'é%­é¥J¡e/¿üòÑG½páŸÿüçÞ–o}ë[ƒƒƒñQô¡•Õ]wÝ588xî¹çŽ{[^yå•O}êSÇsÌþç}tå¶jÕªÁÁÁÁÁÁ?ù“?)úXJìwÞ™?þ'?ùɧžzÊÛòÜsÏ}üã?ñÄ'&&Š>ºRò>õW\qÅûï¿ïmyòÉ'9æ˜Ï}îsEZ9ìÙ³gË–-ßøÆ7¼ø³Ï>kíÀ¥ªQ™/i=/UdÛ`Íš5“““Ë–-›5k–·eùòåýýý6l˜œœ,úèJ顇B|ýë_Ÿ:uª·eîܹ—]vÙÄÄDåG:jëÖ­·ÜrËÑG]ô”ÞÚµk÷îÝ{Ùe—üñÞ–O|â¿ýÛ¿½k×®^x¡è£+¥§Ÿ~Zqá…N™2ÅÛr 'sÌ1ÿõ_ÿõÖ[o}t%ðùÏþüóÏÿÁ~´—ªFe¾¤õ¼T8¶Á–-[úúúN=õT½å€8å”SvïÞí Ѩ±±±iӦ͛7ÏÜ8wî\!ÄŽ;Š>º²úàƒ®¹æš3f,_¾¼èc)½ÿ÷—R~á _07ÞtÓM£££Ÿüä'‹>ºRš3gŽÂŒ•Rï¼óN__Ÿ%‘bÅŠ·ß~ûí·ß~â‰':wàRը̗´ž—*>­RJmÛ¶mæÌ™3gÎ4· !vìØ1þü¢±|¾÷½ïÅ/?ýéO…GydÑGWVÿ÷ÿÒK/­Zµê£ýhÑÇRz/¾øâŒ3;ì°§žzê™gžyçwŽ>úèÓO?]'Ш3Î8ãŽ;îX±bÅG>ò‘ãŽ;îí·ß¾ýöÛwîÜù¥/}‰wl'Ÿ|²÷Ãc=ÿ-—ª&¤¿¤¢®—*ÇVOLL XÛûûûEôÛ3ò;öØc­-›6mùð‡?låxÓ³Ï>ûýïÉ’%'žx¢w^CÓöïßÿ‹_ü⨣Žúó?ÿó»ï¾[o?òÈ#ÿæoþæãÿxÑXJCCC«W¯¾è¢‹.ºè"½qÉ’%×]w]чV\ª:¡ž—*†ª[åÕ£M›6ÍÚ>}út!Äž={Š>ÀÒ›˜˜¸ãŽ;þàþ`||üÆo<äCŠ>¢òÙ·oß5×\sä‘G^uÕUEKüâ¿BlÛ¶mýúõ+W®Ü¼yóÆ/¿üòÿþïÿ¾âŠ+¨QmÎÞ½{o¼ñÆ÷Þ{oÞ¼yçœsÎg?ûÙ©S§®[·ŽBõ¶àRÕiõ¹T‘qlÕÀÀ€”r||ÜÚîµ;ñ¾Ì¡i›7oþæ7¿ùꫯΙ3çÛßþvÒD¤[¹råÎ;ï¾ûnRÛâ ƒò~¸ñÆ?ó™Ïx?õ«_}ýõ××®]ûàƒ~ñ‹_,úËçšk®ùÉO~²|ùòßÿýß÷¶¼þúëçœsΕW^yß}÷ýÚ¯ýZÑXn\ª:ªV—*2Ž­š2eJüëÚÞ½{…ºx Ú¿ÿŠ+.¼ðÂ×_ýòË/ß°aCµ?Šóÿñwß}÷—¿üeŠ6ÚeÚ´itÐÔ©SO;í4sûé§Ÿ.„xùå—‹>Àòyã7{ì±£Ž:JGBˆÃ?üþèÞÿýýèGE`éq©ê^ªÈ8¶ÁìÙ³·mÛ¶wï^s÷ØØ˜÷«¢®”&''¯ºêªGyäôÓO¿á†8©µÂ[{ë 4·ßwß}÷Ýwßܹsxࢱ|fÍšõÎ;ïH)Í^B÷ƒ>(úèÊg÷îÝBˆ}ìcÖv/Ñøæ›o}€UÀ¥ªíêy©"plƒE‹ŽŽ>þøã¿ó;¿ãmQJmܸqÆŒÃÃÃE])­^½ú‘G9ï¼ón¸á†¢¥ô~åW~E¿3={öìyâ‰'?üðáááÃ;¬è,¥ÓN;í_þå_^yå¯(Õãõ4¡Mf>ö±pÀ[·nUJ™áøèè¨⨣Ž*ú«€KUÛÕóRÅPu,^¼¸¯¯ïÖ[oÕ˸ŒŒìÚµëì³Ï>ðÀ‹>ºòQJÝyç|ðµ×^[ô±TÁÉ'Ÿü¨¯}íkBˆùóçç;ß¹æškŠ>ÀR:묳„×_½.G}á…þñÿ±¿¿ÿ³ŸýlÑGW>S§N=å”S¶oßþw÷wºõÖ­[o¿ýö}èCÖ”4‡KU{ÕöREƱ ?ü𫯾zåÊ•gžyæÂ… ·oß¾iÓ¦yóæ]rÉ%EZ)½ù曯½öÚÔ©SÏ?ÿüøoÏ:ë¬%K–}Œ¨»cŽ9æk_ûÚw¾óßú­ßš?þøøø–-[¤”+V¬ø¥_ú¥¢®”¾õ­o}ñ‹_¼ýöÛׯ_ì±ÇîÞ½û'?ùÉäääõ×_ÿë¿þëE]p©j¯Ú^ªÛcéÒ¥‡zèºuëÖ¯_?gΜ%K–,[¶Ìks€FíܹS±oß¾_|1þÛÊÏ;FY|ùË_>äCî¸ãŽ'Ÿ|rÆŒ‹-ºüò˽E#ЄC9dýúõßýîwŸxâ‰û·›1cƧ?ýé?üÃ?üßø¢­:¸TµQm/UR)Uô1 ˜ã€\ #r!p@.ŽÈ…À¹8 GäBà€\ #r!p@.ŽÈ…À¹8 GäBà€\ #r!p@.ŽÈ…À¹8 GäBà€\ #r!p@.ŽÈ…À¹8 GäBà€\ #r!p@.ŽÈ…À¹8 —ÿK³Œä.ÜÅIEND®B`‚statistics-release-1.6.3/docs/assets/gaminv_101.png000066400000000000000000000707651456127120000221500ustar00rootroot00000000000000‰PNG  IHDRhŽ\­Aq¼IDATxÚíÝ{\eÿÿñk9*¤™†·ŠxHE%"‘ÌÌc†Ù­æù˜š‡]îžÊ£[·nƃ0dÈ#GŽÿñÇüq5 íaaaÆå;f\~ÇŽÆö3gÎ 2ÄøPrrr¥«@ÅŽÊ´ÐøüóÏß¾}ÛlAƒ}øá‡MÛKJJV¯^Ý¡C‡zõêyzzÖ«WïñÇÿôÓO‹ŠŠŒËÌœ9Ó°nbbbVVV¿~ýêׯÿàƒ>ÿüóGÕëõxî¹çêׯØ¡C‡ÔÔT›¬+±{¥-Y²Ä𤑑‘†–o¿ýÖx|f̘a¶ü¦M›Œfff+NÏ<óŒá¡Zµj]¿~]Ê*P‚#‡;v¬!¯xyy?¾ôþùçà»þúë/c»i1ÒTbb¢qcøkÕª•Ù%’µjÕZ´hQµjÕL5ÍîÝ»«¾®Äî•V:8öîÝÛÐxíÚµÒ«<ýôÓ­ZµjÕªÕúõë -§ÀÝ»wݶm›”U <GÕ¤Ic¹QúZk×®5ƵŽ;8°yóæÆè³sçNÃbÆð'„psskÙ²e`` Y’ ðÁ?ÆÇÇW}]‰Ý+­tp 1´ >\âÁ©8êtºûî»ÏðèìÙ³¥¬åáv<G¯×Ÿ:uÊð}XX˜ô·mÛføfòäÉ;wî\±bÅ/¿üÒ¦MCã?þXz•”””#GŽ\¸p¡cÇŽÆÆ… ž8qâÌ™3Æ 3´üòË/U_׊î•éöíÛ/^4|ß A›sFóÀ¾¿páBéžxâ‰Ò÷â™4i’Mž€‹!8pœ¼¼<ãÔézõê™>ôî»ï–Ž/û÷ï7<Ú·oßÏ>ûì³Ï>›0a‚¡%??ÿæÍ›†ï¯\¹böD‘‘‘O?ý´¢Zµj}úô14úûû¿ôÒKB77·çŸÞØ¥ª¯ki÷Ê“ŸŸoü¾N:¶:ìAAA¥·Vàv<çþûï7~_ú®Ôèܹ³"77wûöí?üðÃáÇ:tíÚµò–7P6Þk¦N:ƬÑ&ëZÚ½ò'M[z|*vùòeÃ7¾¾¾¥-óv<¥‡é@8’§§g­Zµ ‘(##Ãô!___à …ýõ—±\gPTTôÊ+¯¼÷Þ{ÆÛV¯^=88ø¯¿þ*ó‰Œ!Ï”››¤1+Öµ´{å¹ï¾ûjÖ¬™““#„0½û·©«W¯žÅËËËÛÛ[Êf#ÔÆ (M}þùç õ€j1T À¡ŒW nܸÑ4W1B«ÕjµÚS§Nùûû›­5gΜ 7hÐ`ñâÅ?ÿüs~~~÷îÝåÞÛw/&&ÆðMJJÊíÛ·K/ФI“š5kÖ¬YÓ8±¦bûöí+**2|ß¶m[¹çFpàP'N4Tï®^½:aÂc‰ÎhéÒ¥üñ‡YãâÅ‹ ß|ðÁcÆŒyä‘G<<<Î;'÷ÞØ¾{#FŒ0|sæÌ™¥K—š=ºiÓ&cùðñÇ—²ÁE‹¾ñöö~ôÑGå>TœÁ€Cµk×nÔ¨Q†ï׬Y·gÏÃÇëýüóÏ£F7nœÙ*×®]3ŒÞ “ù(?þøã®]»äÞÛw¯[·nO<ñ„áû—^ziöìÙþù§¢¨¨hÕªUÆ»£ÿãÿhݺuÅ›ºpáÂÈ‘#ׯ_oøñ…^0½†¬À5Žmîܹ۶mÓjµBˆ<þøãnnn÷Ýw_aa¡aöíÛ8pÀ¸¼!\6lõêÕfÛ¶meŽä:žÍ»·`Á‚èèè‚‚½^ÿïÿûßÿþwÍš5sssÒ½¼¼Ö¯_ïîî^zÝf ݸqÃ8 jÕªõÆoÈ}¨8=*ŽÍÏÏïÀ:t0¶èt:cjìÑ£ÇÆM—×h4]»v5|óæÍ¯¿þúÿý¿ÿ÷àƒÆÇÇM’ãÙ¼{-Z´øöÛoMoÇ“““cL?üð† ZµjUæºüñGVVVVV–é“~ýõ×f‡V 8AHHHjjjJJJß¾} î÷é§Ÿnܸ188Ølþorrr‹-ÄÝÏt™4iÒáÇ{öìixtõêÕ¿þú«Œ»cóî=ú裧NJNN~üñǃƒƒ===ÃÂÂzô葜œ|òäIÃm&+æîîضmÛýë_™™™íÚµ“ñøp½^/w r·oßÞ´i“â™gž‘»/Î×=° ‚#$a¨’ Á’ Á’ Á’ Á’ Á’ Á’xÈݬ]»výúõçΫQ£FãÆ‡ú裚-¶nݺ/¿ü2++ëþûïüñǧN wßd£Ñëõr÷Á¡Š‹‹û÷ïäÈ??¿6mÚ:tèöíÛ/½ôÒØ±c‹%''/Y²ÄÛÛ;22òôéÓ¿ÿþû#<²råÊêի˽òP]püâ‹/’’’Ú´i³lÙ2C ~ü¸⡇Bèõú¬¬¬ÀÀÀÀÀ@Óe7n,„8{öldd¤Ü;ä¢B]—ù™R]plÚ´©YËÁƒ?úè#OOÏ^½z !nÞ¼YRRâïïo¶˜ŸŸŸâÊ•+•>EXX˜Ü{ ì"3óÎúÌÌL¹û"ÕGS%%%ŸþùÛo¿]RRòî»ïÖ¬YSQPP „ðöö6[ØÇÇGqõêU)[Vç/“’………qR”†“¢Lœâ¤(Œ&33SµE"õÇï¾û.))é·ß~«]»ö[o½ch÷÷÷×h47oÞ4[þúõëânÝ@…Ô‹ŠŠÞyçU«Vyyy?~ذa¦wgôðððóó+]YÌÏÏBçY¨ê‚£N§{ùå—¿ùæ›'žxâßÿþw™A0$$$+++??ß××ר¨Õj ɽòPÝíxV­ZõÍ7ßôë×ïƒ>(¯|˜PRR²wï^c‹^¯OKK hݺµÜ{d¤Þ)ÕBmÁQ¯×öÙg5jÔ˜>}z‹õéÓÇÍÍí¿ÿý¯áºF!ÄG}”““óì³ÏV«VMî2ÒÈÝ9©k¨úÒ¥KgΜ©^½zÿþýK?úÌ3Ï 0@Q§N©S§ÎŸ?¿G=öØéÓ§<جY³#FȽ°’რ(œeâ¼('Ê¡®àxîÜ9!DAAÁ±cÇJ?jœX-„:th­Zµ6nܸeË–Úµk0`âĉ†;ò¨“º‚cDD„ô[auïÞ½{÷îrw@)Ôu#¬Fp€$GHBp€$GHBp€$êºb………ÉÝÈIú]¢ÁQ)ˆªÅ?΂¡j‰4BèåŽ„àIŽ„àIŽ„àIŽ„àIŽ„à´oß¾˜˜ooïºuëΘ1C§ÓÉÝ#\ÁJ—””$}ùÌÌÌîݻߺu+))©[·nï½÷ÞôéÓmÕ™£GöíÛ÷ðññ‰ŒŒLNN...–ûà rw¨ÈáÇ÷ïߟ }• &¥¥¥ùøø!"##GŒ1pàÀ-ZT±3ÙÙÙ:t())yæ™gêÕ«·cÇŽÉ“'ïٳ端¾’û8àT¡DÅÅÅß|óͬY³:wîlÑ@óõë×SSS‡ bHBˆÁƒûøø¤¤¤T½W“'O¾zõêŽ;>ýôÓÙ³g§§§:tãÆÛ·o—û€G£‘»ò!8ÂJ;v숉‰ñññ :thNNNµjÕV¬Xa“_¾|¹sçÎIII—.]²hѵmÛÖØâááѲeË´´´ª÷j×®]qqqQQQÆ–qãÆ !8`“½@᪆56oÞÜ»wï°°°ñãÇ_¼xqÍš5û÷ï·á”½^/„ÈÌÌlÒ¤‰ôsrr„¦çÏŸ¯b—Š‹‹ÇŽiÚxúôi!„§§§­v%#8Âb:^ŠŒŒÜ¹s§———bøðáqqqJ˜¼|åÊ!„Y¼BÔ«W¯Š[öðð˜;w®ÙsÍ;×ÝÝ=11QîýÀŽÊ&ïez}™ÍéééÙÙÙóæÍ3¤F!DLLLbbâÚµkË\¾¸¸xóæÍå=IÏž=mØe!Äœ9sêׯolLNNÎË˳m¯vïÞ=räȬ¬¬?ü°Q£F6Ü‹à¨låD7y:uJnÚU^p¼qãF¯^½ÊßE[¯¯"!!!::ÚØ¸bÅŠÒÏbu¯Îœ93nܸ”””FíØ±£cÇŽ6ì?JÆäXÌPÕ3SÁí ýüüôå³mß‚‚‚„.\0m¼páB­ZµlÒ«Õ«W7oÞü‡~Xºté‰'HU¡â‹F333›7onlÜì¡Þ½{wïÞÝž‡ !”8÷À‘Ž°Æ¸qãêÔ©³hÑ¢åË—õèÑãµ×^9r¤V«ÍÈÈ0 Ž6WTT”——WPPPæ£6l˜9sæ›o¾éïï?jÔ¨wß}·êOš••%„ÈÈÈÈÈÈ0{¨aÆG€a¥Þ½{÷îÝÛ´eïÞ½6–°°°ÒuÁAƒݾ}»‚«*»téÒ¥KÛö¤G6ŸÊ€saV5œOaaajjjDD„Ü@]Žp>ïׯŸÜ@]ª†ó‰—»¨GHBp€$GHBp€$GHBp€$GHBp€$GHBp€$GHBp„ Ú·o_LLŒ··wݺug̘¡ÓéäîÀÙi„ÐËÝù¡PGíÛ·ï<àã㙜œ\\\,eÅÌÌÌîݻߺu+))©[·nï½÷ÞôéÓeï.ÀCîeÈÎÎîСCIIÉ3Ï>>aaaC‡ÍÉÉ©V­ÚŠ+l²ñ]»vÅÅÅEEE[Æ'„8pà@Å+}ZáééYñº999BˆÀÀ@ÓÆ€€€óçÏËØ+\ÁÓét/½ôRddäÎ;½¼¼„Ç‹‹³Upôðð˜;w®iË•+WæÎëî˜XñºW®\B˜Å;!D½zõdì®à¨h!g1\_Î}ÒÓÓ³³³çÍ›gHBˆ˜˜˜ÄÄĵk×–¹|qqñæÍ›Ë{–ž={VÜÝ»w92++ëÃ?lÔ¨QÅ {xx!æÌ™S¿~}ccrrr^^žŒ½À5M¯È[F:uJnÚU^p¼qãF¯^½ÊÝG}¹ûxæÌ™qãÆ¥¤¤4jÔhÇŽ;v¬´o¾¾¾Bˆ„„„èèhcãŠ+J?‹#{€k`r ,f¨ê™©àv†~~~úò•·ÖêÕ«›7oþÃ?,]ºôĉóYPPâÂ… ¦.\¨U«–Œ½À5Pq„Å £À™™™Í›776;v¬¼å­NIIyá…ž{î¹%K–ŠˆEGG»»»:tȸÙ7nœ8q¢oß¾2ö ×@p„Å"""‚‚‚.\Ø­[7Äâ'N¬[·N”3Âké °^¯Ÿ6mÚC=´jÕ*www‹úæëë½lÙ²)S¦øûû !’““KJJ:uê$c¯p GXÌÇÇgÖ¬YãÇoÛ¶mçÎsss×®]ëíí}ëÖ­eË–µjÕªU«V¦Ë…¥o?##ãäÉ“áááÇ7{¨wïÞÝ»w_½zõ‹/¾8dÈ ”^ýý÷ßíׯßÉ“'×®];fÌÓ;;Ú©WŽ> 8ÁÖ7n\:u-Z´|ùò   =z¼öÚk#GŽÔjµfÁÑRYYYBˆŒŒŒŒŒ ³‡6lؽ{÷¢¢¢¼¼¼‚‚‚2WˆˆØ°aÃÌ™3ß|óMÿQ£F½ûî»UßåJ{e¯c €ba¥Þ½{÷îÝÛ´eïÞ½6Ùr=*®4èöíÛ\UÙ¥K—.]ºØv+íÀui„"ïsâx̪†ó),,LMMˆˆ»#¨ ÁÎçÀáááýúõ“»#¨ CÕp>ññññññr÷Õ¡âIŽ„àIŽ„àIŽ„àIŽàóÿFpD£zugH‚#$!8@‚#\о}ûbbb¼½½ëÖ­;cÆ N'w.B#4z_òHp„B¥¦¦ÆÇÇÅÆÆ~õÕWWÌÌÌìÞ½û­[·’’’ºuëöÞ{ïMŸ>ÝV½:zôhß¾}xàŸÈÈÈäääââb¹â!w€2lÙ²¥k×® 40`@õêÕׯ_ß»wïÿýïǯtÝ &¥¥¥ùøø!"##GŒ1pàÀ-ZT±WÙÙÙ:t())yæ™gêÕ«·cÇŽÉ“'ïÙ³Gz¨À©Qq„½òÊ+<ðÀO?ý´`Á‚9sæüôÓOõêÕKJJªtÅëׯ§¦¦2Ä…ƒöññIII©z¯&Ož|õêÕ;v|úé§³gÏNOO:tèÆ·oß.÷ÀŽ°ÒŽ;bbb|||†š““S­Zµ+VT}Ë·nÝ:~üx·nÝüüü -ÞÞÞ=öعsç *^÷àÁƒEEEmÛ¶5¶xxx´lÙ2--­êÛµkW\\\TT”±eܸqBˆØá 8 UÛ7oîÝ»wXXØøñã/^¼¸fÍšýû÷ÛjŠ»»ûÏ?ÿ\³fMcKqqñ/¿üòÈ#T¯^½âusrr„¦çÏŸ¯b¯Š‹‹ÇŽiÚxúôi!„§§§ÍŽ, Fp„Åt:ÝK/½¹sçN///!ÄðáÃãââl=<<š5kfø~åÊ•YYY›7oþóÏ?¿øâ‹J×½råŠÂ,Þ !êÕ«Wõ^Í;×ì¹æÎëî˜h›# P>6æG…ÓÈúìe¿TÒÓÓ³³³çÍ›gHBˆ˜˜˜ÄÄĵk×–¹|qqñæÍ›Ë{Žž={VЃ7Þx#++KÑ©S§úõëWÚc!Äœ9sLNNNÎË˳a¯„»wï9rdVVÖ‡~بQ£*jœÁQá”ø¯œS§N !ÂÃÃM£¢¢Ê Ž7nÜèÕ«W¹{Xá‡7:uêæÍ›>|x»ví222‚ƒƒ+XÞ××W‘ml\±bEég±ºWgΜ7n\JJJ£FvìØÑ±cG»i”…É1°˜¡ªg¦‚ÛúùùéËWéÓÝÿý óæÍ»råÊÆ+^8((HqáÂÓÆ .ÔªUË&½Z½zuóæÍøá‡¥K—ž8q‚ÔP*ް˜a833³y󿯯cÇŽ•·¼¥ƒÂ›7oîÕ«×gŸ}Ö·o_cc@@€¨¬<)„ˆŽŽvww?tèq³7nÜ8qâ„馬ë•"%%å…^xî¹ç–,Yb(m *GX,"""((há…ݺu3L(>qâĺuëD9ÁÎÒAaÃ(ó'Ÿ|òÜsÏi4w®ò4Üè§}ûö÷Í××7::zÙ²eS¦Lñ÷÷B$''—””têÔ©Š½ÒëõÓ¦M{衇V­Zåîî.Ó±ÈF£z½Ì“dGp„Å|||fÍš5~üø¶mÛvîÜ977wíÚµÞÞÞ·nÝZ¶lY«V­Zµjeº¼aPXúökÖ¬ùÚk¯%%%EEEuîÜY£Ñ|ûí·ßÿýĉyä!ÄêÕ«_|ñÅ!C†,X° ôêï¿ÿ~llllll¿~ýNž<¹víÚ1cƘÞÙѺ^eddœüðC77·ððð5kÖ‡›‹ŠŠòòòÊ»xDDĆ fΜùæ›oúûû5êÝwß­ú.&wgddddd˜=Ô°aC‚#@ 4] EXXXff¦½WQ¹?þøØ±c .”»#6 Ú³¯ÕjCCCåîÌq^ˆ“"Ÿ{nâxw¨Z£zÕ¾u3«Χ°°0555""B.G8Ÿ„‡‡÷ë×O.\ãç/w/P*Ž„àIŽ„àIŽ¥•qG Á’ Á’ Á’ÌÜs/á‚öíÛãíí]·nÝ3fèt:¹{pbÜÄшà%º}û¶‡‡‡æ^µjÕ’²nfff÷îÝoݺ•””Ô­[·÷Þ{oúôé6ïa\\\RR’ÜÇ ‡ò»@´ZmIIILLLƒ Œ>>>RÖ0aBPPPZZšaùÈÈÈ#F 8°E‹¶êÞáÇ÷ïߟ ÷q8”FhôêÂ&8B‰²²²„³g϶4œ]¿~=55õõ×_7¦ÌÁƒOš4)%%¥êÁ±¸¸x×®]ééé‹/fø B UÃJ;v숉‰ñññ :thNNNµjÕV¬Xa“‚cÆ -]ñàÁƒEEEmÛ¶5¶xxx´lÙ2--­ê½º|ùrçΓ’’.]ºd³ã€ó âklÞ¼¹wïÞaaaãÇ¿xñâš5köïßoÃ"\VV–§§g5Ö­[wåÊ•fÍšµmÛö¾ûî«tÅœœ!D`` ic@@Àùóç«Þ«½^/„ÈÌÌlÒ¤‰Í*@˜R].‚#,¦Óé^zé¥ÈÈÈ;wzyy !†gÛàèææÖ°aÃÜÜ\CKxxøªU«Ú´iSñŠW®\BDFFšµ×«WOîÀÓ#8*›FÖg/çŸ[éééÙÙÙóæÍ3¤F!DLLLbbâÚµkË\¾¸¸xóæÍå=IÏž=K7feeétº¤¤¤ÄÄÄjÕª}ýõד&MêÕ«×±cÇüüü*貇‡‡bΜ9õë×76&''çååU½W¨ÁQÙY)?uê”"<<Ü´1**ª¼àxãÆ^½z•»‹eÝk÷îÝ^^^Æç¡C‡Ž;výúõÆ « o¾¾¾Bˆ„„„èèhcãŠ+J?‹½¨7q4Ep„Å U=3ÅÅÅå-ïççgi«S§ŽYË“O>)„8~üxÅ+ !.\¸`ÚxáÂ…Ò´¢W¨Á3Œgff6oÞÜØxìØ±ò–·tPøôéÓ›6mêØ±£iQ3??ßøÔˆŽŽvww?tèq³7nÜ8qâDß¾}«Ø+ êà˜Ý¥K—/¿ü²eË–f%&&þòË/f5kÖÜ¿¿Ü½–_DDDPPÐÂ… »uëæéé)„8qâĺuëD9#¼– W¯^}Ê”)QQQ;wî¬V­šB§Ó½óÎ;:uª¸o¾¾¾ÑÑÑË–-›2eŠ¿¿¿"99¹¤¤¤ôŠ UÊ”ꊨ:8®Zµª¼‡Îœ9S½zõ‡~Ø´ÑDàãã3kÖ¬ñãÇ·mÛ¶sçι¹¹k×®õöö¾uëÖ²eËZµjÕªU+Óå-NJJš>}z£Fºtéâïï¿}ûöÇ¿õÖ[M›6B¬^½úÅ_2dÈ‚ J¯þþûïÇÆÆÆÆÆöë×ïäÉ“k×®3fŒé­ëPcpÌÏÏÿõ×_SRRÖ¬YSÞW¯^íÒ¥ËÂ… åî¬B7®N:‹-Z¾|yPPP=^{íµ‘#GjµÚŒŒ ³àh…iÓ¦ýãÿxûí·?ûì3//¯GydëÖ­O=õ”áÑ¢¢¢¼¼¼‚‚‚2׈ˆØ°aÃÌ™3ß|óMÿQ£F½ûî»r0\ƒc÷îÝÍ&O˜9s挬Ü3½{÷îÝ»·iËÞ½{m¸ýgŸ}öÙgŸ-ó¡Aƒݾ}»‚«*»téÒ¥Kûí{XXÕJP¦T›Qcpœ3gέ[·„Ÿ}öYzzzéNŸ>-$ÌÀ\ SSS;wî,wGP5ÇØØXÃ7©©©e.`ŽþùçÀ322î¿ÿþ¦M›Ž=ºôÈâÀáááýúõ“»#Ã̘J¨18VêìÙ³BˆE‹…††¶oßþüùó©©©iii³fÍzî¹ç¤l!,,̬eÛ¶mrï–눗»¶¤Õjåî‚ Î;'wP΋qR&4´ôr¨V«5^d/2Ëø¯*Ç2üùçŸÕ«WŸ,T|MÁÑÜÃ?ܦM›ï¿ÿÞðáˇ^¾|y:u¸w ꤽ¡$©‘»+òaVu^ýõaÆ͜9sõêÕ 48þü‘#Gî¿ÿþ¹sçV¯^]îÞȃŠcš4iòÕW_õêÕ+''gûöíW¯^íիצM›Úµk'w×€#03¦Lª®8¾ùæ›o¾ùf™ÏŸ?_îÇ`fŒ$T Á’á‚öíÛãíí]·nÝ3f”¾+'àÇò¡P½{÷~衇|ðÁ>}ú¤§§K\133³{÷î·nÝJJJêÖ­Û{ï½7}út[õêêÕ«£G®W¯žO\\ÜÁƒË[òöíÛš{ÕªUKîã ( ¥Rõä(ÖÞ½{;uêäïïÿÏþÓÝÝ}íÚµ:uJII騱c¥ëN˜0!(((--ÍÇÇG9bĈ¶hÑ¢Š½ÊÏÏŒŒXh„ mÚ´yùå—wíÚUzᬬ,!ÄìÙ³ä>¢ØCÕ°ÒŽ;bbb|||†š““S­Zµ+VT}ËZ­öÔ©SÆ 3¤F!„¿¿ÿ¤I“~úé§£GV¼îÁƒ‹ŠŠÚ¶mklñððhÙ²eZZZÕ;¶fÍšÚµk8Ððcƒ ÓÒÒþüóÏÒ ‚cÆ ms¸ŽÂŽ 8›7oîÚµëõë×Çÿ裮Y³æÑGµÕ”³gÏ !‚ƒƒMëÔ©#„øå—_*^7''GhÚpéÒ¥*ö*??ÿ×_×hþþ¨©Ž;êtº2¯tÌÊÊòôô¬Q£Æºuë–.]ºoß¾¢¢"›€Mq£ª†Åt:ÝK/½¹sçN///!ÄðáÃãââl›4i"„HOOŸ8q¢±155UQfmÏÔ•+W„‘‘‘fíõêÕ«b¯.^¼¨×ëEPCº-3•fee¹¹¹5lØ077×оjÕª6mÚØä(àxGE3-n9ž¾œJ}zzzvvö¼yó ©Q“˜˜¸víÚ2—/..Þ¼ysyÏÒ³gO³–gŸ}výúõóçÏ:t¨^¯_±bŇ~(„ÈÏϯ¸ÏBˆ9sæÔ¯_ߨ˜œœœ——WÅ^ݼySáëëkÚèçç'„¸|ùré-deeétº¤¤¤ÄÄÄjÕª}ýõד&MêÕ«×±cÇ kàtŽŠ¦WäE§NB„‡‡›6FEE•oܸѫW/‹öñÃ?ÌËË›1cÆŒ3„ÿú׿fÍšåïï_qß Á.!!!::ÚØ¸bÅŠÒÏbi¯jÖ¬)„¸víši£!ÈšŒìÞ½ÛËËËøÐСC ÇŽ»~ýúaÃ†ÙæLl +Fp„Å U=3ÅÅÅå-ïççgi®U«Ö·ß~{ðàAÃÄêØØØ={ö #ÎAAABˆ .˜6^¸pÁp‰dUzâææf6*m¸¤òÁ,½|ég|òÉ'…Ç·èPìIꎡÑs)$ÁV0Œgff6oÞÜØxìØ±ò–·tPXñóÏ?ûúú¶oß¾}ûö†–;wj4š˜˜˜Šûíîî~èÐ!ãfoܸqâĉ¾}ûV±WM›6Ý»w¯iãž={4M³fÍÌ>}úô¦M›:vìhZ—5”'MÇÐp2zØZãÆ°ŠŒ®]»Xhh9~ü¸§§§â“O>)½|éë +ý ŒŽŽöññ9þ¼áÇ'NÔ¨Q£[·nRºóÀäææ~|ã7„ß}÷]Õ{µhÑ"!DJJŠáÇ‹/†„„<ùä“¥—¼xñ¢——×c=VTTdh)))yþùç=<<Ž?n¶°s}ÊÎΖ» (çE8)ötÏ~±H˜.)ÔûÖMp´=—Žz½þý÷ßB<òÈ#S§N>|x5 óÅÆÆ>|¸êÛß¾}»››[ݺuÇ?zôèÀÀÀàà`ã[ç_|a¸³c™ëþøãÕ«WoÖ¬Ùœ9s^xá…ûî»o̘16Ùë«W¯¶lÙÒ××÷•W^™?~xxx58`xtÞ¼yþþþ~ø¡áÇùóç !êׯ?zôè3f>]æ­·Þ*½Y§;û¶ÂßBeâ¼('ÅžŽ–á>Ž°Æ¸qã6lØàïï¿|ùò={öôèÑcß¾}±±±Z­6##£êÛòÉ'·mÛV¯^½O>ùdË–-½{÷>qâDhh¨áÑ¢¢¢¼¼¼‚‚‚2׈ˆØ°aƒ§§ç›o¾¹cÇŽQ£F*…Uçëë›––Ö·oßõë׿óÎ; 6LKKk×®áѼ¼¼[·n~œ6mÚúõëCBB>ûì³?þ8 `ëÖ­¯¼òнO @2îàh1ž¹C¶–™™iïUTîã?>vìØÂ… åîˆ ¨öìkµZã? œâ¤Øyp¬`Jõ=“c4"¬±Jߺ©8Âù¦¦¦FDDÈÝ€ëàF>¾ôò·oßöðð0[²V­ZRž+33³{÷î·nÝJJJêÖ­Û{ï½7}út›ïQ\\\RR’ÜÇ€ªò»€9Ÿ˜5lذ!44´ôòZ­¶¤¤$&&¦Aƒ¦‘ò\&L JKK3,9bĈ¶hÑÂV»søðáýû÷'$$Èr0ebœÚ:G(NHHȪU«Ì§NZ»víwÞy§ôòYYYBˆÙ³g[ή_¿žššúúë¯SæàÁƒ'Mš”’’RõàX\\¼k×®ôôôÅ‹3ü `å8õ=Ÿ7¨z UÃJ;v숉‰ñññ :thNNNµjÕV¬XaçJOOONN^¾|yPPPéG Á±aÆ–nöàÁƒEEEmÛ¶5¶xxx´lÙ2--­ê}¾|ùrçΓ’’.]ºdc°åF«Qq„56oÞÜ»wï°°°ñãÇ_¼xqÍš5û÷ï·S]­°°pðàÁ/¼ðÂSO=UæYYYžžž5jÔX·nÝ•+Wš5kÖ¶mÛûÒ-çää!MΟ?_õn‡„„èõz!Dfff“&Mìqdp0‚#,¦Óé^zé¥ÈÈÈ;wzyy !†g§à¸hÑ¢sçνñÆå-••åææÖ°aÃÜÜ\CKxxøªU«Ú´iSñ–¯\¹"„ˆŒŒ4k¯W¯ž'Àþ§¦ÜXGEÓhä|öò^WéééÙÙÙóæÍ3¤F!DLLLbbâÚµkË\¾¸¸xóæÍå=KÏž=+èCNNÎܹs'NœX·nÝò–ÉÊÊÒétIII‰‰‰ÕªUûúë¯'MšÔ«W¯cÇŽùùùU°q!Äœ9sêׯolLNNÎË˳á.à2ŽŠ¦Ì:uJnÚU^p¼qãF¯^½ÊßÇŠvrþüù………S¦L©`™Ý»w{yyGœ‡ZXX8vìØõë×6¬‚}}}… ÑÑÑÆÆ+V”îRUv ”«ˆà‹ ufŠ‹‹Ë[ÞÏÏϺhUXX¸|ùòÞ½{›]†h¦N:f-O>ù¤âøñãoß0ÕæÂ… ¦.\(½A«w Ü÷Ûfް˜a`733³y󿯯cÇŽ•·¼Õã¼_~ùå•+W*®ž>}zÓ¦M;v4­€æççûYèèhww÷C‡ûpãÆ'NôíÛ×V»PÊUGp„Å"""‚‚‚.\Ø­[7OOO!ĉ'Ö­['Ê´µzœ÷‹/¾ðóó+óÓbŒªW¯>eÊ”¨¨¨;wV«VM¡ÓéÞyçN:U¼#¾¾¾ÑÑÑË–-›2eŠ¿¿¿"99¹¤¤¤ôŠ U€ÓªR¹‘›8šá>ް˜Ï¬Y³öíÛ×¶mÛiÓ¦1¢]»vÞÞÞBˆeË–9rÄlyÃ8oyÊ{–‚‚‚´´´ØØX77óßÒùóç,Y²Dœ””´wïÞF3æ•W^‰ŒŒ\³fÍìÙ³›6m*„X½zu@@ÀäÉ“Ë|–÷ßÿêÕ«±±±o½õÖÀßxã1cƘÞÙ±*»PÛ”U?èMp„5Æ·aÃÿåË—ïÙ³§Gûöí‹Õjµ6yŠ´´´Â¸¸¸ÒæååݺuËðã´iÓÖ¯_òÙgŸ}üñÇ[·n}å•W ååå”ù,6lðôô|óÍ7wìØ1jÔ¨E‹É}tP( õ› ËÌÌ´÷*îã?>vìØÂ… åîHÙT{öµZm™>yq^ˆ“Rw*„V—͇ª ÛÓhÂ7Vç[7G¸¸ÂÂÂÔÔÔˆˆ¹;€Ó#8ÂÅ8p <<¼_¿~rwà`U-7¢4fUÃÅÅÇÇW>>qqq,oÉÛ·o{xxhîU«V-)Ï’™™Ù½{÷[·n%%%uëÖí½÷Þ›>}ºÍ÷%...))Iƃ .r£cxÈÝ  ùùù‘‘‘gΜILL¬Y³æúõëŸzê©ÔÔÔÖ­[—^X«Õ–””ÄÄÄ4hÐÀØèãã#å‰&L˜”––fX>22rĈlÑ¢…­öåðáÃû÷ïOHHû €Ëâ®Cp„-X° ++ëÓO?4hb„ mÚ´yùå—wíÚUzᬬ,!ÄìÙ³- gׯ_OMM}ýõ×)sðàÁ“&MJII©zp,..ÞµkWzzúâÅ‹þçRÑ”jCJ “»ò`¨VÚ±cGLLŒOXXØÐ¡CsrrªU«¶bÅ ›l|Íš5µk×8p áÇ $&&¦¥¥ýù知6dž Zú,,**jÛ¶­±ÅÃãeË–iiiUß…Ë—/wîÜ9))éÒ¥K69&€2Qnt$‚#¬±yóæ®]»^¿~}üøñ>úèš5k}ôQ[ÕÕòóóýõ×øøxæï+;vì¨ÓéʼÒ1++ËÓÓ³FëÖ­[ºté¾}ûŠŠŠ¤øàƒ¥—¯S§ŽYË“O>)„8~üxÅO$„¸pá‚iã… JoÐÒ]Ø•]Ë|Juް˜a`733³y󿯯cÇŽ•·¼¥ã¼M›6Ý»w¯iãž={4M³fÍÌ>}úô¦M›:vìhZ5”'M Ëíîî~èÐ!cnܸqâĉ¾}ûVqös75Rn”Á‹ˆˆ Z¸pa·nÝ<==…'NœX·n(gÐÖŠqÞ#FL˜0aÓ¦MݺuBüõ×_ëׯïÔ©Shh¨Ù’Õ«WŸ2eJTTÔÎ;«U«&„Ðétï¼óއ‡G§N*Þ__ßèèèeË–M™2Åßß_‘œœ\RRRzE†ª@!Hòâv<°˜Ï¬Y³öíÛ×¶mÛiÓ¦1¢]»vÞÞÞBˆeË–9rÄlyÃ8oyÊ|ŠÁƒ·lÙ²ÿþ¯¾úêÛo¿Ý¡C‡›7o?µoþüùK–,B'%%íÝ»·Q£FcÆŒyå•W"##׬Y3{öì¦M› !V¯^0yòä2Ÿèý÷ß¿zõjllì[o½5pàÀ7Þxc̘1¦wv´z6Ç„ÙaqãÆmذÁßßùòå{öìéѣǾ}ûbccµZmFFFÕ·ïëë›––Ö·oßõë׿óÎ; 6LKKk×®áѼ¼¼[·n~œ6mÚúõëCBB>ûì³?þ8 `ëÖ­¯¼òŠáÑ¢¢¢¼¼¼‚‚‚2Ÿ(""bÆ žžžo¾ùæŽ;FµhÑ"¹.  &©ÑáåFê›wñ‘à¶–™™iïU ÝÇ|ìØ±… ÊÝ‘²©öìkµÚÒ×@vœâ¤óZ£s\Ù3cLŸP£z½jߺ©8ÂŦ¦¦FDDÈÝ€•–Q)‚#\ÜÂÃÃûõë'wGÖ 5* ³ªáââãããããåîÀ̆Q*Ž@‰J¥FÊò#8Å‘¥ÖXùÌÕ#8e)+5ßà„Ô¨dG ̆Q8‚#P„rR£ƒÊe_àˆ{€üäMˆàd¦Üj‚뽸¸R„……ÉÝdP~j$µ)ÁQÔùA鎤ÕjCCCåîÀ©Ñ¹0T 䡜jfÆHDÅ8šF#„¨ 5RnT(‚#p¨Ê ŠIŠéˆr0T ÇiR£U½wyGà ÊÌ]\à(Á8‚„Ô¨ìr#¸ÆØ[eSaî,¥¬Ô¨°î(ÁØ‘´áiÙbãÔa¨Ø‹2/j„Õ¨8Û“6<}gYF…Áؘ%…FE¦FEvJ ª¶äD©‘ -EÅ؆%ÃÓBöÔ+€ 0F Ž J,,4ÞYIörc¹ãÔòwM¹ŽÀzV‰fΊà¬aU¡QÁXÌÚ+•’§¶ÁXÀÚB£ ”¹‚#ª S§I®€€€Êi4®sÃ*ŽSk EWU¢â*QåÈèåF— ÎU@påªÂoÃR#„GP&[DF¡ÀÔÈ|êª 8s6•%‹¹‚#ø› ‚Ôè’Ž@[FF¡ØÔÈ8uP;›FFA saGTÍÖ7™qÂÔè„]–‹ªožöóÏ?—ùèºuëúôéÓºuëG}ôÕW_ÍÍÍ•»¿Ø’îé­èVî85$Sup\µjUy%''Ïœ9ó·ß~‹ŠŠòññÙ°aÃÈ‘# äî26`ŒŒêI° g ŽG­xmÛ¶IÙN~~þ?üðïÿû‹/¾(sÌÌÌ>ú($$dÛ¶m}ôÑöíÛxôèÑÿüç?rªÄ>‘Q(?52-Æ&œ)8>ÿüóÿýïKJJJ?”››;qâÄ &HÙN÷îÝû÷ï¿fÍšòøòË/u:Ýĉƒƒƒ -3fÌðóóÛºu«N§“û0` »EFAøRg ŽÁÁÁï¿ÿ~ß¾}ÿýwÓöíÛ·wíÚuëÖ­õë×—²9sæ,^¼xñâÅ111e.pèÐ!77·:[ÜÝÝãââ._¾üÓO?É}°Œ=#£pîÔèÌ}—…3ÇM›6õíÛ÷—_~éÕ«×êÕ«…yyy“'O~饗òòò† öõ×_KÙNlllBBBBBƒ>XúQ½^Ÿ••hÚÞ¸qc!ÄÙ³gå> XÀž‘Q8KòbZŒ­8Óíx|||fϞݥK—×^{mÖ¬Y[¶lÉÎÎÎÉÉiÔ¨Ñܹs[´ha“g¹yófII‰¿¿¿Y»ŸŸŸâÊ•+R6fÖ"ñúKØÉ¹sçäîÌqR”‰ó¢@VŸ” B…ÙÙZ­Ö. m Õf aŸ­Û¸¯¢ôQmªÍÖJéþSO=•ùë¯a‹RßÕÆ™‚£Aûöí׬YÓ³gÏï¿ÿ^±råÊjÕªÙjû†©ÓÞÞÞfí>>>Bˆ«W¯JÙHff¦ÜÇ æBCCåîÌqR”‰ó¢@–ž”{oèm§ªBï¿,wÊeuUâÍÌÌá»F£ÑëõajMÎ4Tm°wïÞ>}ú\¹r¥Y³fÁÁÁ?ýôÓØ±c/^¼h«íûûûk4š›7ošµ_¿~]Ü­; Lv¾œñïçqŠj×ÞY8Sp¼víÚ«¯¾:|øðœœœ &¬[·nÓ¦M]ºtIKKë򵑠 lò,~~~¥+‹ùùùBãùä“×^{Í&OÔ§O77·ÿþ÷¿†ë…}ôQNNγÏ>kÃY8XÇ…“ÖèʧvÊ]Q gšU]qµO£Ñ 8Ð&OT§N©S§ÎŸ?¿G=öØéÓ§<جY³#FÈ} ªvïtiÇ=-Q ÎièСµjÕÚ¸qã–-[j×®=`À€‰'îÈ€ãÉ…ó¦FÊö ÑËñ;èÚ¸£ÒhµZnM§4œeâ¼(|‘Q8uβqp4\`rGuþ­w¦kPÃ…ŒÙÙZR£å]·KjÁÅqøÜóçwêÔXî>¹ÖÉ‚kP è´m`úN/œ=aqÓoû!8 ?Y/d¼§#Ξíº[† åÞ9“b"£pÔXF¹ÑvK)ŽÈ@£ÒwÇй»¥#8àPJ*1Þé‘ËDFÊöFpÀA”…++R£°/…JßÓ5‚,BpÀ^Yb¼Ó5!„+¥F;–¹û· ‚#6¦àãºRdtØ.r/ApÀ†\bü»®—¹ã·Ã¨*Å—ïtÓÐG¹»áUÁ^Ê‚à€õœ¡Äx§§®¦ÌË.»£Š@pÀbNRb¼ÓYCOåî†öÔèPG¤rª¼x§Ë*JRjÚW¹¨œó IßÓk×NRŽœÔj‚#årÂãŽz-w7»ÇöØ]nâx/‚#æœ6/Þé¾"ã=åFUì±"ø›sIÿÝ}!„2©Q.Gœ½Äxg'Ô ²Ó\àhDp¨—KäE¡žBãݽ½[nTeT–Á :®’ïìªÒ©Q^G€Š8ù%Œæ{#„Piz"5Ê„àp}®Ub¼³O*ŒNwÊÛuFèõ\àhŠàpY®˜…j ŽN( Áàj\4/ÞÙ9uæ&R£B.Â¥ó¢Pm¡ñž â½W‚#À¹¹z^¡¡ û'wGd£½ã>•úÞ§æÇ{¹Éݬ¡ÑÜùÒëï|¹(V›MjTñP‚#À™¨&/ !4ŒÎÊ™ ¿d¸CÕ'àòãÑ¥÷Xå‘Ñ@ÞZ#ãԥʥ¾¼(˜ó7³òŠ£Ê¼(ˆŒSÀ‘ÐA¹±4‚#@)Ôšïì=‘ñ¦Ã(Á 'cX*Í‹Bå5åPH~6ý½„ ‚#@ê..þ} Ç@în(†Fý݉‘½#êþÕ,Áà8äÅ»ˆŒ÷º{<”Q‚#ÀîÈ‹÷RÈp¬bÜ= IFþN(Á`\¼X ¥(,5¢bG€-Q\,‘±“C¢œÔx§Üȯo9Ž /–ÈX“ázå¤FTŠà°y±BDÆr(55ÞùŒAîÅS>‚#À2\¼( 3`Ê¢à,Í'SKApHBqQ2‡#y•ÊÒŠ*7Þ퓆_ñ 墸h!"c9Ê:0ŠJ”%"8ÌQ\´‘±|e Ú+*5B:‚#àF*È‹–!2–¯œc£´ÔH¹Q:7¹;“Fó÷—^/²³µü•Ls·˜Æ!+K9ÇFÑ©‘ +CÅÔˆÁ誡ÊX¡ò¢S#$ 8€Z0ÓňŒªðð(-5 Gpe„EÛ!2V¦Â;W*05Rn´Á\#Ñ6Ed¬LeGÈ9R#8J@pAqшŒ•‘p„œ#5B‚#87Š‹öAd¬Œ´#Djt1Gp>í‰È(„âÖ‚ÔèbŽà‹öGd”Ài ¢âÔÈŽÒ@щv"£’’ó¥FHFpÅ¡¸è@DF ,9H¤F×FpE ,:–ñps¬+da®vÖÔÈ8µdG#ÑG‰QË“³¦FX‚àŽFqQ&DFi¬:N¤F• 8€#eEd”ÆÚÈ(”wÛ!=52Nm ‚#Ø#Ñr#2JcíqRf¡QPk´‚#ØÅEe 2JS…ã¤ÌÔ¨Ñh„¤F;!8€ ƒéÒ’U-Z+65Z§¶Á¬DXTJŒ’U92 §¾¨U@p ‰È(Y••b ‚ái‡ 8@å˜ã¢HŒJKf£C¥ØÔheddœÚrG(ÅE£Ä(™ÃÓ0 8Àß‹ŠGd”Ìv‡J±…FÁð´Ã¨aÑ0*-™­•S£m"#ãÔV!8P#¢ó Ä(™­•2‡§›–Á€Z ‘Q2;*—-4ÞÝïÖ!8pe„E'Ĩ´dv;TJK\ΨG.ˆ»ç8'JŒ’ÙíP)pxš±iE!8p%FÉì|¨ÔRhdœº ŽœaÑÉQb”Ì·Ji…FƦ‹àÀÉ%FÉ4B*Bíz¨Uh´{d¤ÜX5nrw*§Ñüý¥×ÿýg£B#„þîÊ¡¹çPi³µv{rR£F£1\ÎH¡Qɨ8P(*‹.„£d½WTdŽ˜¦ÜXeG BXt9\Å(c£µr®häZF§Cp 3¢+¢Ä(ÇI …FÍÝ—½C##åF[ 8F#„5|Ï;¹k¡Ä(L¹Z …FJŒÎŽÉ1Äl‚Kv¶– ..äÞÙ(“F¶ÙAÆI02¦F澸*ŽìˆahWÇ´r$yǦå•.«¼ÙÁ€íñ‰*À´r$yǦ4*Mj´‚#Û ¸¨rWÏœ‚’Œ‘Q)%FØÁ€õ‹ª¡€(¤|Š9HrM+¨Äxo·x{²!‚#ËUFîÑV…3y9(á ÉRh¤Ä¨*G•#,ªbªgʤ¼ÃãøÈèy‘r£­”°¨JšÐ»·×”»'Ф¼¼x·_Ž›v޼»á>Žþfv«Eã\Ýß7Ôj³‹d'ßý%tMã˜Ô¨¹K—Ü».©Ó¼ÙG@í¨,ª—0–O©õÅ»½sÄØ4õE˜!8jDXT=eg"y)þØ8 2ºB^¤ÜhG@E¸/·ê)>ÉEa“£Ëï¦}#£+äÅ»{ÂÛœGqäÅr9ϱkdt¼û#8.ˆ°!„3Å"Gr’⢩¡ l5&o®–)7ÚÁp„E˜`ÊK)Ι¢ …Ælm¶µÑ).¢j¸àĸ{îevÛ(úN:•uüÎ}vª^kÔ˜p¦›éX»·¼ ÚGÀÉPYD)ÎYL³'Œ¾·û¶¹œQÅER£ýçÀ„h”B^4áäañîNT52ºò•‹P‚# \Qò¢ W9U‰Œ„EãàÒŽ€²QW‰HUçÅE“½±22ªq$º¤FG!8ò#,¢|äE!„«…Å»ûdqd¤¸X6R£ÙpÙ"ÊG^B¸æaÐÜÝ+‰‘‘°Eáv<€C•yà.§½yŒ=ŽËÓ;ìT5÷ÒëõÙÙÙ.~ª ÜèXT»c$•qÅšuÀEA¥£Ò”­Djt8‚#`/ŒD£2ê΋®ïîe¹‘‘°XU¤F9[¢¸ TœÕïîk‘‘°gGpªŠ°iÔšÕïîñß‘Ñ4) ¢ Qn” Á°#ÑF•yQ}aQ§Kkîù‘¤h¤Fù P\„dêË‹ª ‹wvhG"5ÊŠàTŽâ"$SY^TkXdZ6ÊH!Ëݹ²Q\„%Ô”UÍ’¢qÇ­ûtiÀy{P\„dj PjÚ×;{\NMÑê–† (£Ü¨rG€â",¢šâ¢ÊÂb¥£ÏDF™‘•àX¶ÄÄÄ_~ùŬ±fÍšû÷ï—»k°Š‹°„:ò¢F„ŠP5ì¨|¢¥- » 5*Á±lgΜ©^½úÃ?lÚèïï/w¿`äEXÂÕóâ½Wî ½Ðjµ¡¡¡ÖmLá,ÑB‰Q)HJBp,C~~þÕ«W»té²páB¹ûÛhÐàï?„¼ÿ@—΋ªƒ¶nî3%Fe!5*Œ›ÜP¢3gÎ!ÌÊpFͯìl­^/ _@94&_ú»_®¢Ìs¡ýBhJÑßKÂAÒh„æî[…k'EjT‚cNŸ>-„¨_¿¾Ü•Œy‘° \4Oi\?,V¥ß[ñ¼¨,¤FEb¨º †àøçŸ80##ãþûïoÚ´éèÑ£[¶l)w×P.fFÃB®8íÒcÐæwR´Åm·¹ŠQ¹HJEp,ÃÙ³g…‹- mß¾ýùóçSSSÓÒÒfÍšõÜsÏIÙBXX˜Y˶mÛäÞ-×d¼x1;[klÔjÍ;wîœÜ=…9YNJhhÃ7ZmöÝ6­µS„P“ëwµ&¯«wK!/– ˜µdgg›µhµVîdƒ»¿ÙÚl!„Vñ¿ 9)Ú 6;[X{~íá©§žºççÌL¹{$‚cþüóÏêÕ«Ož)º@)±ìý"/º* .É1°%³)/@)ÏÑj³•Ç”}¯)÷ÁqêÔÈ”GjtTa I£BJŒVjMÑUK‰eï,õE—Ç”k!8¢JxC@ù9ÓEa!VUñž'/ª…F—Cp„5(1¢ ËeBAeEÕfÄ{yQUH®ˆàËPbDY”T\T@R$#š!/ª*\Á’PbDY”‘åNŠ®tÒ˜œò¢ºPhtiGT‚7â^ Œ–/)RJ¬ÅEUㆠQ6JŒ¸—¬ÅE9’"Ñ"äEPhT ‚#Ìñ/FÜ%_qѱI‘Œh5ò"„Pן ".å–ÁSÓk£¸è¨¤HF´ ò"þF¡QeŽ‚È!5"T„þý£ž“Œh[Lv9þr¨9¨j|B ê•ù{ö*z¡ÍÖÚê95eq±Oä“KéO$5‚¿jFÅQ¥ø‡¢º9¤¸hŸÑgꈎÁ`4ÊÅØ´ºU‡È¨V™éb»')3 2¢=Ý ‹¡BQ&þ~€¡jUalA•JDÛôôkÊî¶äI¤4“íÁl0:[›Mj„9þ~à.*ŽªÀ¿UÆžÅŪ @3ЬÌt›† *Ž.Ž%ª‰}Š‹Ô+Ü|¥uÄììlŠˆÆLXÆø'¸‹Š£Ë¢Ê¨v(.Z^S¤Ž¨da þ„”…» ‚£«âŸˆ®Î¦Ó¢-IŠdDgÁ´hX‰Èˆ ] /y—f£¼(-)’ÅET ? ÁÑuð’wQ¶Œ®,)’ÅET? ÁÑð’wEU+.–Ÿ5(•ɈN‡â"lƒ¿°ÁÑéq9£ ©Bq±¬¤øwÑäQ2¢ó",–ˆŒ° ÁщñªwV5f?iJ?JFt„EØ<¬Â”j‚£SâUï,Ì‹Óo͛Ɉ.†Ëaüñ@•cÓÎÌÂÁhMQ]ÅEØ‘6Bpt&¼ð–¤â"S›Uˆ°»ã/lŠàè4(4:›ŠŠ‹egD’ƒ:á DFØÁÑ9GÅÅÒ1ñï¸ÀiUÂ"ŠÈhkÌŒ1"8*/'q'˜DÄr‚§RM˜ã‡2¾ñ7vCpT4 ÊVÆ€óKmñi/pR!j p‚£r‘•¦Œgã2>bø†§2„EȆÈÇ"8*©Q^åLp¾ó!îĪ}. œarbTÚ¸ÀÑÁQqø×£ã•_J¼wÈ™hÕ#,B~ü‘€¬ŽÊB¡Ñ*q¾»ÈȨ¹·S£J„E(%F(ÁQAHö !&þ½¬†°È½rTÍìÓz‹™F*È‹²aœÚŒ›ÜÀ¤F›Ð”¢×ëõz}vv¶þ®Rë¿ôB£†Ü¨ç­B]4BcüÒ ½é—Ü]ƒZ%õzmv¶Ü½î â¨¤F«™¥~@W+‚1h(W1BÁŽò#5Jgɸó=B„Þ»šÜ{™¡\\Ũ<ŒS—Fp”©±bVï¬lº&÷WT/Â"¼§Â5Žr"5š)ï År/O,c&_zÍÝ/¡Õf“U¥¼kåîp—É%Œw¾g@ÅQ6¤FQÅ‚âMÜû£ž«UŠ©Ðp\Âè$§.Áeƒ¤(ÊœÚÂG¸¨cÐp& IÃ%塞r£m’¢(o4yQu‹p2äEçD¹±<G¸vj´YRÜ4‡¼¨"ŒAÃ)‘á¢ŽŽæ’©Ñ4,V))ŠŠï°H^T ÊŠpVäE—@¹±GXÖeEQéí¸É‹ª@X„#/B5ŽåÔåF[–…”Ïn!/º¸¡ L$,ÂɘþûÙyßÙQ åÆŠqGÇqºÔXÁ-­Ý¢éMËûHèÒKÀu˜Þ^1[›Íá|JßѹÞÙª!8âUºùvÙ[”yÑ…q/n¸î×­”+ÅPµƒ(¹Ühã1è;5nÑ6ËÁ‰0®ƒ‹{Õ˘myQu˜Ú×ÁÅ‹jE¹Q ‚£#(§Ü(kqѲE¡p”áj(.ª©Q"‚£*ÈZ\äE—AY®†â"`!‚£ÝÉUn”»¸hñÒP ÊŠpA„E”B¹Q:‚£«‘»¸(È‹N¤—ÅH4ÊAj´ÁѾVn´c^´`{KW€0 —Eq•!5ZŠàèÜ””-[2¢¬WFXì‰àè”È‹°eE¸2Â"¬B¹Ñ G;²Ç8µ!2ÊšCÒN²"\aUCj´ÁÑ9ظÄX¥¼hñjp ’"\a6Bj´ÁQélYb$/º áú‹°5RcU•Ëf‘ÑúàÇ´âPV„*a7¤Æ*"8ÚKU.p´qd´2/Z³&ì²"T°û#5VÁQYl)1:9ÊŠPÍ=¿ç„EØ©Ñ&ŽJaËÈH‰ÑÙ¡”!Š"6Dp”Ÿ "#%F'Ä4T²"äF¡Ñ¶Ž2Óh46ˆŒÖl€Èèh”¡”¡¤F›#8Ú…”™1U-42*­x$E¨eE(Õ;!8Ê£J…Æ*EF^DöÅ4T¤e£Ðh?GX™¹Q‘(+BHŠpüÁ³7‚££Y“¹QIHŠP’"œ…F 8:”•©‘È(7 áúî&ÅPÃÿHŠp*üÍs7¹; "§F©Qc²¯ ëi„ÆôK/ôÆ/¹»؈æÞ_ó»¿ãÚìlR#œóŒŠ£ƒX–­ù§ÿܪ áú}†káÏž,Žvaö†lAj$2:Ðpef1Qá:ø³'#‚£ÝY–­™1ÍkG*ÊŠpe¡DFÙíKjj¤Ðh7wÂb¨$E¸ ŠPþæ)“cÀâËz¹¸"eÎkÉÖf“áÜÊ™Ëò÷à¢ø›§(TíHR¹Ñ²¡fþÅU á‚((Bõø„\e"8ÊDzHd¼óZàRˆ‰€ þà)ÁÑ^*)7Z\hTû+ˆ²"\1( %F§@p”ƒ9PÕÿW@L*£ê?uΆàèpRS£J_G„E87b" %FgDp´‹rÇ©-Hjy1 gU:# b"P9ò¢S#8:¤4¨ŠB#eE8J‰@˜¾~xå85‚££HM.û‚",ÂiPJl„â¢ë!8:„*S#cÐpdDÀÖ(.º6‚£¸Îð4eE(ÃÍ€ÝP\T ‚£]Ü33¦’J¢Ó ‹P"J‰€ýQ\T!‚£¹hj$,B)Ê ˆ‚ŒØ…Ùë—™ eäd©‘°™QDä@Y¦ŽöTQ2tŽÔHX„<Ȉ€|(+¢GY(:5á8 4 @R„tG»)7*15aw¥2b¨ ò )ÂjGSPj$,Â.$µZm¨ÜT‚¤[!8:’ü©‘°›a”PªÒ/N^–°‚£}”åLƼHX„ň€²áHGÇ!5R\„ÊK‡‚€(H™/T^¢p$‚£«¡¸ˆŠP>œÄ=¯ÕÐ;×óB…ìÜäî€8¢Ü¨×^è _rï5ä£Ñ”û¥×—ý@>š²¾ô&_ÙZ­žÔe âhovL F«åCÀ©”wE¯X8‚£}Øóm€ÁhuáêCÀ©”ÿŠå-®€àhW¶,7’]ép*¤C¨ÁQéÈ‹.¢‚h(H‡€‘ÒŽöS¥r#yÑ)Q8œ‡¦²xÑ¥ÇÉ‹ EápäBÀŽJA‰QA(ÊVi(äBÀ>ŽvbÁ85%FP8”ŠP(ÁQNDF{)• CÍ~&Ž%%ð┌OŽ‘Ù§¼ÈÝçTÁ‡£”õù(Úìl>(°-%_zÉ_”ŒŠ£”ûîgÈ‹rwOñ4••'€Mýý’ •¸ /B@…¨8:ޱÊ(wG”ÁÂ’!Ÿ­ HgQ-Ь"hüXdJƒJ£âèj¼–‘’!P5Ò/ ,W;!8ÚkVÉ…@…ªû x P †ªËµnݺ>}ú´nÝúÑG}õÕWsss­ØˆS¦ÆŠ‘s(ù©§ž’» 0§À“bÅoÕç‚(m Xçœ(Dz%''/Y²ÄÛÛ;**êôéÓ6l8uêÔÊ•+«W¯.q Êž¦X—Põ’^iüê@Ũ8–!33ó£> Ù¶mÛG}´}ûö=zô?ÿùEÛ‘!5ºb±ÎHJMî×ÌLyKzÊ)ò€³ 8–áË/¿Ôét'N 6´Ì˜1ÃÏÏoëÖ­:NÊì2Bm“PH.T޽Ú<Õ5 #ä€s!8–áСCnnn:t0¶¸»»ÇÅÅ]¾|ù§Ÿ~’²‹S#¡Ð™ÉÎä*Ë‘ê@µ¸ÆÑœ^¯ÏÊÊ 4moܸ±âìÙ³‘‘‘l®Ò ï>«Üûm={\jf{™™öë§Ÿ<,Ap4wóæÍ’’³v???!Ä•+W¤läïŒẩP¢ÆaarwAfjßÿ*Sý/2q^ˆ“… 8š+((Bx{{›µûøø!®^½Zé233åÞ ÇRÛþ V\ãhÎßß_£ÑܼyÓ¬ýúõëânÝ@…Žæ<<<üüüJWóóó…ÆyÖjCp,CHHÈåË— IÑH«Õ’»wò 8–!!!¡¤¤dï޽ƽ^Ÿ––кuk¹{ ‚cúôéãææößÿþ×p]£â£>ÊÉÉyöÙg«U«&wïä¡Ñ«à~1VX¾|ùüùó|ðÁÇ{ìôéÓlÚ´éòåËKߦ@%ŽåJIIÙ¸qãÑ£Gk׮ݶmÛ‰'îÈ NGHÂ5Ž„àIŽ„àIŽ„àIŽ„àh3ëÖ­ëÓ§OëÖ­}ôÑW_}577W¥¿  àÓO?íÖ­[«V­{ì±aÆíß¿_îp5UyEüñÇmÚ´™:uªÜ;áj¬8)¿üò˸qãâã㣢¢ ðÝwßɽ®ÆÒ“RTTô¿ÿý¯wïÞ­[·îرㄠN:%÷N¨NvvvXXØÏ?ÿ,wGd@p´äää™3gþöÛoQQQ>>>6l9rdAAÜýRK~qqñàÁƒçÎû×_µoß¾aÆß}÷ÝСC?øà¹wÅuTå¡×ë§OŸnü¤xØŠ'e×®]ÿüç?wíÚܺuëÇ8p×®]rïŠë°ô¤””” 4è?ÿùOnnîc=öàƒnß¾½gÏž‡’{WÔeÕªUrwA>zTÙÉ“'›4iòØc]¼xÑÐòæ›o6nÜxöìÙrwÍõYqð?ÿüóÆÿóŸÿ¼yó¦¡å×_mÛ¶mxxø‰'äÞ!WPÅWÄòåË7nܸqã)S¦È½+®ÃŠ“’——Ù²eË~øÁÐòóÏ?7oÞ<&&¦¤¤DîrV¿}M˜0áöíÛ†–ôôôððð'Ÿ|Rî½Q…«W¯:tèõ×_7¼G9rDîɀУ |ùå—:nâĉÁÁÁ†–3føùùmݺU§ÓÉÝ;gÅÁß¶m›âµ×^«^½º¡¥Q£F£G.))aÀÚ&ªòŠ8uêTrrr“&MäÞ WcÅIÙ°aC~~þèÑ£Û´ichyä‘Gºté’““óË/¿È½C®ÀŠ“òÓO? ! äááahiß¾}xxøï¿ÿ~åʹwÈõuïÞ½ÿþkÖ¬‘»#r"8ÚÀ¡C‡ÜÜÜ:tè`lqww‹‹»|ù²áEû±âàkµZooïfÍš™66jÔHqöìY¹wÈXýŠ(..ž6mZ@@ÀŒ3äÞ WcÅIÙ³gF£éÕ«—iãÛo¿™™Ù²eK¹wÈXqRj×®-„0͈z½>//ÏÍÍÍ%a?sæÌY¼xñâÅ‹cbbäî‹lø=«*½^Ÿ••hÚÞ¸qc!ÄÙ³g###åî£Ë²îà/]º´ô;ìñãÇ…=ôÜûäôªòŠxÿý÷322–/_îëë+÷~¸ëNʱcÇxà~øáðáÃyyyMš4yâ‰'Œ¥zT…u'¥[·n+W®œ3gÎý÷ßߪU«ÜÜÜÅ‹Ÿ;w®oß¾¼j 66ÖðMjjªÜ}‘ Á±ªnÞ¼YRRâïïoÖîçç'îýw!lκƒß´iS³–ƒ~ôÑGžžžfÅXÁêWÄ‘#Gþ÷¿ÿ 0 &&Æãa+Vœ”¢¢¢k×®5lØpÖ¬Y«W¯6¶?ôÐC .lÞ¼¹Üûäô¬{¥„……­ZµjðàÁƒ660àÕW_•{‡  UW•aú›···Y»âêÕ«rwЕUýà—””¬\¹røðá7oÞœ7o^Íš5åÞ'§gÝI)((˜6mÚC=ôòË/˽.ÈŠ“ríÚ5!DVVÖ–-[æÏŸÿÝwߥ¥¥?þüùó&Là–UgÝ+%??Þ¼y7nÜhÖ¬ÙóÏ?ß©S§êÕ«oܸ‘©îp*ŽUåïï¯ÑhnÞ¼iÖn¸™ˆáߎ°“*üï¾û.))é·ß~«]»ö[o½¥ækVlȺ“2þüsçέ^½šaP{°â¤xyy¾™7o^ÇŽ ß7î?þذaÃæÍ›åÞ-çfÝ+eÚ´i?þøãŒ3† bhùã?žþùI“&}ýõ× 4{·àú¨8V•‡‡‡ŸŸ_éæçç !Œså`Vü¢¢¢9sæ 4è?þ?~üÖ­[I¶bÅIùþûïW¯^=jÔ(¦\؉'ÅÛÛÛËË«zõêñññ¦íO<ñ„âäÉ“rï“Ó³â¤üõ×_©©© 64¦F!D:u^|ñÅÛ·oõÕWrïTàh!!!—/_6¼Ú´Z­á!¹{çâ¬8ø:îå—_^¹reBBÂ7ß|3nÜ8ª\¶eéI1|îÅâÅ‹ÃîêÝ»·â믿 ëÖ­›Ü;ä ¬x¥W«VM£Ñ˜6^,ÅÅÅrï+°ô¤\¾|YñðÛµ —.]’{‡  GHHH())Ù»w¯±E¯×§¥¥´nÝZîÞ¹8+þªU«¾ùæ›~ýú}ðÁ”„íÁÒ“R¿~ý®÷2L]¬S§N×®]ãââäÞ!W`Å+%>>>??ÿ×_5m4Ü&†mÚ„¥'åá‡vww?uê”^¯7mÏÌÌB4lØPî‚:È}rWpþüù&Mš<õÔS×®]3´,Y²¤qãÆo¿ý¶Ü]s}Rþõë׳³³Ïž=«×ëu:ÝO<ѦM›‚‚¹ûî²,=)¥;vŒOޱ-+Nʉ'7nܧOŸË—/ZŽ=Úºu먨¨œœ¹wÈXqRFÕ¸qã… ?¼ç×_m×®]óæÍ³²²äÞ!yíµ×TûÉ1Lޱ:uêL:uþüù=zôxì±ÇNŸ>}ðàÁfÍš1B>)?--mÒ¤I5Ú´iÓ¥K—Μ9S½zõþýû—ÞÚ3Ï<3`À¹÷ÉéYzRäî¯*XqRÂÃÃ'Ož¼`Á‚§žz*22òæÍ›‡Òh4sæÌ ’{‡\'åÍ7ßLLL\¼xñ–-[š6mzùòåüQ§ÓÍœ9óÿø‡Ü;U 8ÚÆÐ¡CkÕªµqãÆ-[¶Ô®]{À€'N4ÜUöfÑÁ?w  àرc¥eŠŒ­ðŠP +NʨQ£jÖ¬¹råÊôôô€€€„„„ñãÇ>f 6aéI©Y³æ–-[–,Y²o߾ݻw<þøãcÆŒiÑ¢…Ü»µÐèï½T(“c Á’ Á’ Á’ Á’ Á’ Áþ6uêÔ°°°8lSÿýïÃÂÂ>ÿüsÓµvïÞ]æ£ /‚#8“}ûö¥¥¥ÉÝ *å!w@ÕâããkÖ¬Ù¦M‰N™2%??ÿĉrw€@NÍš5kÖ¬™u€ƒ1T À)•””ËÝ P‚#§a˜8òÛo¿½ñÆ‘‘‘Íš5ëÐ¡ÃøñãÍ& ûã?Ž9òì³Ï>òÈ#çÎ3>ºeË–Ñ£G?þøãíÚµc\ Á€“yíµ×>ûì³ÂÂÂúõëçææ~óÍ7C‡ýøãÍËÈÈùä“ýû÷׫WOñÕW_mܸ188xÍš5{öìÙ¾}{jjj«V­>üþûï›®»aÆ„„„ï¾ûÎðÓ¦Msss[¼xñÑ£G üþûï;vÜ¿ÿÆ¿þúë}ûöEEE?~çÎmJºŽ;¾úê«÷ß¿››Û«¯¾:uêÔöíÛûûûÿðÃ999ÆÅ~úé§óçÏ7oÞ¼aÆrŸ+®†àÀÉ¿÷Þ{þþþBww÷!C†ôïß_§Ó-^¼Øt1ooïÿýï1115kÖ4´,\¸P1gΜ֭[Zj×®ýþûï{zz®Y³æÂ… ÆuëÔ©³hÑ"___!„‡‡Ç°aÃú÷ï/„øàƒ ÇÇÇO™2ÅÛÛÛÐâëëÛ½{w!ÄéÓ§M»Q馪ÂÝÝýÉ'ŸÔétß~û­±1%%EÑ«W/¹ODpàdž}öYOOOÓ– !Ž9bÚØ£G///ãýõ×Å‹k×®gºXppp‡JJJ222Œ}úôñðð(ýÇ7ü8vìØ%K–üãÿ0.péҥ͛7—îm¥›ª¢.]º“Ñêâââ­[·zxxtíÚÕŽç€Zq;N&44Ô¬¥nݺžžž.\(**ºï¾û †ái£ßÿ]ñð×Þ`ýúõŽ•Â ”ù—.]ºqㆡÊxþüù={öüðÃgÏž=sæŒÙ¥mª*¢££¿ÿþûÜÜÜ€€€={öäååuìØ100Ðîg€úPqàd4MéwwwNgzƒÃè°‘^¯/oƒîîîBˆÛ·oWúnnnÕªUB¬^½úÉ'Ÿœ5kÖÑ£Gÿñ :ô“O>yýõ×¥÷Ö¸©*rwwïܹsII‰áÚJÆ©ØGNF«Õšµ\¸páæÍ›<ðÀý÷ß_ÞZ†Z£Ùˆ†b¤ii°ôSüùçŸ7oÞ|衇î»ï¾ëׯ¿ñÆ÷ÝwßÒ¥KcccM»!¥·¦›²ÉéÒ¥ËêÕ«·mÛöôÓOïÚµË××7>>ÞÖG„ âÀéüßÿý_QQ‘i˪U«„Í›7¯`­ZµjýñÇûöí3m¿téRjjª»»{xx¸±qýúõf7w4ùä“mÛ¶íܹóøñã?þø!CLٻᄏ|ùò-[¶üðÃuëÖ‹‹2dH£FJJJRRR:$}S–š1cÆœ9s~ûí·ÂÂBcc›6mjÕªuéÒ%ÊìJSÁLCP”©S§~ýõ×K—.íСƒÜ}QN—ðçŸîܹóÁ”»;\×8€ÓKOOÿã?¢¢¢HìŠàέ   99Yñì³ÏÊÝ.ŽkÀ‰EEE5lØÐðaÙ`?GNãé§ŸnܸqéñS³ÚµkŸ9s&..nöìÙfS|Àæ˜I¸Æ’ Á’ Á’üD’ï+8lIEND®B`‚statistics-release-1.6.3/docs/assets/gampdf_101.png000066400000000000000000000766701456127120000221260ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A}IDATxÚíÝy|Lgÿÿñk²Ø’b'¾HƒÖ–ÐF¤HUµ¨µZUÕØªv¥´t‰RÜ]BµUZîZzÛâ®_QôŽ%ÄRz£mˆTšÔv£‚Pk$™ß‡1&3“™dfÎöz>ú¸ïäš33×9sÌyçsëƒÑh@Q¼äîÔà‡à‚#Bp€CŽpÁ!8À!G8„à‡È/%%eذaaaaåË—~ôÑG_~ùå={öÈÝ/Ï9räˆÁšòåË·lÙrèС§OŸ.ryŸJ•*µnÝúí·ß¾pႃoanâĉro Šfà^ÕdtõêÕW^yåßÿþ·ÕG;wî¼téÒJ•*ÉÝM·;räH“&Mì,àçç÷ÝwßuìØÑÁ僂‚~øá‡G}Ôñ·BL˜0áÃ?”{cP.¹;@¿þþû˜_~ùÅÔâååe0òóó¥_7mÚôì³ÏnݺµL™2rwÖsBBBÊ–-+„¸sçÎÙ³g „ׯ_:thjjªŸŸŸ­å¯_¿n*4^¾|¹OŸ>¥K—¶ó‚‚‚ä^{ŠÆP5Ù¼öÚk¦Ô³cÇŽœœœ›7o>|ø¹çž“Ú÷ìÙóÞ{ïÉÝSúöÛo³²²²²²NŸ>}åÊ•¸¸8©ýÏ?ÿܶm›åÿú믓'O¾òÊ+RûéÓ§çÏŸoÿ-,¼õÖ[r¯=E#8ǯ¿þº|ùréççŸ~ëÖ­?þxùòå}}}›6mºjÕª—_~YztÕªUæO,((X¹reûöíëÔ©S¦L™:uê´k×nÉ’%wîÜ1-óöÛoK'íõéÓç?þxñÅëÖ­[³fÍ^xá·ß~BìÛ·¯oß¾uëÖ nß¾ýŽ;\ò\»ç8ÿÏ>ûÌ××Wúõرcö—¯U«ÖâÅ‹{ôè!ýúÁ\¿~]æO€–@#FŒ¾…Ê”)sæÌ™Â œ={và=ýõ—©ÝTŒ´Ð»woÓ2S§N•›5kfqŠdåÊ•çÎkŠbƒÁ°cÇŽ’?×Áî–ššjZ2))ÉâÑêÕ«KMž<Ù‘åͳìæÍ›y 8‚Š#ylݺUú¡{÷î¦`d®jÕªÿ¼§råÊRãêÕ«W¯^-„0 :t0`€iÂGbbbá‘ÜÇ_ºt©iÓ¦+V”Z.\¸0f̘;w‡×¨QCj4ñññ%®³ÝsDNNÎùó祟4hàÈSbbbJ•*%ý¼ÿ~7}‚tˆà@F£ñøñãÒÏaaaŽ?qóæÍÒãÇߺuë’%K~ûí·–-[Jÿýï ?eýúõ‡>wî\‡LsæÌ9zôèÉ“' $µHÃÐ%|n1ºgG^^Þ±cÇú÷ïoš-Ô¬Y3Gžh0ªV­*ý|îܹ <ñÄ…¯Å3nÜ8§º@‡Žd““c Cµk×6èã?.œivïÞ-=Ú·oßåË—/_¾|̘1RËÕ«Woܸ!ý|éÒ%‹7Šˆˆxúé§…¾¾¾}úô‘G-„ðòòzþùçM]*ùsížU¦Tçëë¾qãF©½[·n-Z´pp ›:àÖ€®p92(W®œéç—ª¶£S§NBˆË—/oÙ²åçŸ>tèÐþþûo[Ë›”…¦ ÐT¯^Ý`0X4ºä¹ÎvÏqMš4™;w®ãË_¼xQú¡B… …µz9Óˆ<ØBp ƒÒ¥KW®\YŠŒiiiæU¨P¡nݺÒÏýõ—©\'ÉÍÍ}óÍ7?ýôÓ¼¼<©¥lÙ²UªTù믿¬¾‘)ä™óòrh°¥Ïu¶{V™§:ŸFEEE3Æ©‹YšF¨CBB ?úí·ßÆÆÆ:þj a¨€ù$//¯^½z_|ñÅ/¿ürõêÕ®]»Ê½6®ìžùE?þÿþßÿ›4i’S©1%%%77Wú¹U«VroÚAp ±cÇJÕ»+W®Œ3ÆT¢3Y°`Áÿþ÷?‹Æ/¾øBúáóÏ?>|ø#<âããcqg)¤{¦Am??¿6mÚȽUhÁ€<}ôÑaÆI?¯\¹2&&fçÎ×®]BüòË/Æ 9r¤ÅSþþûïììlégÓ|”ÿþ÷¿Å»ÌË)¡{çÎ:thbb¢ôëK/½T¾|y¹7 íàG²™9sææÍ›³²²„{÷î}üñǽ¼¼J•*uëÖ-iÇ{lïÞ½¦åýýýýýý¥p9hР+V †Í›7ï¦,.'W÷  M6º~ýúÙ³gMí•+W~ÿý÷åÞ*4…Š#ÙìÝ»·]»v¦–‚‚SjìÖ­ÛºuëÌ—7 Ï<óŒôó7¾ÿþûÿ÷ÿþ_5Ú·o/5šÇ&Ï“«{ÿûßÿ222222Ì_¿bÅŠßÿ½Åo „Žä²}ûöõë×÷íÛ·víÚ¥K—މ‰ùæ›oÖ­[W¥J‹IÁ ?ü°ÂËË«iÓ¦ãÆ;tèгÏ>+=ºbÅŠßÿ]ÆÕ‘·{ÞÞÞ+VlÕªÕÛo¿žžþè£Ê¸)h’Áh4ÊÝpÂ;w6lØ „èÑ£‡Ü}Q_÷ $ŽpCÕpÁ!8À!G8„à‡à‚#Bp€CŽpÁ!8À!G8„à‡øÈÝY³fÍêÕ«322Ê•+÷øãOœ81((ÈÎò½{÷þí·ß,+Uª´{÷n¹W@ºŽ _~ù¥ŸŸ_ddä‰'Ö®]{üøñ¥K—–-[ÖÖSNžëìÙ³eË–?~ü€¤–={ö¼úê«|ðAtttõêÕ‹|_§v&ƒ^w>í ã£Ô'>zÝâ£×­0½V|4>Th0nܸaÑ~íÚ5q¯îXØ7ß|søðaSjBDEE½ôÒK7oÞLJJ’{ä¡ñàèããP¸²xõêU!„ižµ#Zµj%„øý÷ßå^'yh<8 !BBB.^¼(%E“¬¬,é¡ÂËÆüüüÂWêñööB”/_^î‡öƒclll~~þ®]»L-F£1999((¨yóæ…—?qâD£F^~ùe‹öC‡ ÇÎikØP r¯7€‹i?8öéÓÇËËë³Ï>“ÎkB,\¸0;;»W¯^¾¾¾RËõë׳²²NŸ>-„¨[·nË–-÷ïß¿fÍÓ‹:thñâÅÕ«WïÔ©“Ü+ íßrP±xñâÙ³gרQ£mÛ¶'NœØ·o_£F/^lºLÏ?ü0nܸ lذAqìØ±Aƒegg7nܸ^½zgΜ9|øp¹rå>ÿüóG}´È· Kÿýwáð†5¡ýÏ@²²²BCCåîdÀG¯[|ôº¥Û õÚ¯8 !âââ>úè£ÐÐÐ~øáÒ¥Kýû÷_ºtiá‹;š<ôÐCß}÷]÷îݳ³³·lÙråÊ•îÝ»oذÁ‘ÔX F!Øʧ‹Š£‡9[qµ‚ÚƒnñÑë½nQqì!8À!G8„àèF#—rCp€CŽpˆÜ@~ŽÜQ¦ÏkëÁ wº½&$üÙà8†ªà‚#Bpt®È´…à‡à‚#Bp€CŽpÁ!8À!GwâRŽ]JII‰ŠŠòóó«Y³æäÉ“ äî\ƒà쉉‰‰w|ùôôô®]»Þ¾};>>¾K—.Ÿ~úé¤I“\Õ™_ýµoß¾U«Võ÷÷ˆˆHHHÈËË“{ éˆÜÊuèСݻwÇÆÆ:þ”1cÆ'''ûûû !"""† 2`À€‡~¸„ÉÌÌl×®]~~~=j×®””4~üø;w~÷Ýwro'½ â,åååýøãï½÷^§Nœh¾víÚöíÛ_yå)5 !èïï¿~ýú’÷jüøñW®\IJJúæ›o¦M›¶gÏž¸¸¸uëÖmÙ²Eî ¦GT))))**Êßß?,,,...;;Û××wÉ’%.yñ‹/vêÔ)>>þÂ… N=qß¾}¹¹¹­Zµ2µøøø4mÚ499¹ä½Ú¶m[LLLdd¤©eäÈ‘Bˆ½{÷ºd­Q$†ªPŸ7öìÙ3,,lÔ¨QçÏŸ_¹råîÝ»]8%$$Äh4 !ÒÓÓzè!ÇŸ˜-„¨X±¢ycPPЙ3gJØ¥¼¼¼#FDDD˜7ž8qBQºtiW­8ì#8 2£GŽˆˆØºuk™2e„ƒމ‰QÂäåK—. !,â¢víÚ%|eŸ™3gZ¼×Ì™3½½½{÷î-÷zëÁÑͤ+òr÷P,2^UÍö±cÏž=™™™³fÍ’R£"**ªwïÞ«V­²º|^^ÞÆm½Ú³Ï>ëÂ^ûøø!f̘Q§NScBBBNNŽk{µcÇŽ¡C‡fddÌŸ?¿Aƒ.\ØApÀ6Eþåüøq!Dxx¸ycdd¤­àxýúõîÝ»Û^EW®c… „±±±­[·65.Y²¤ð»»W'Ož9räúõë4h””Ô¡Cöö19•‘ªzì\Î0 Àh›kû,„8wîœyã¹sç*W®ì’^­X±¢I“&?ÿüó‚ Ž=Jjô0*ŽŠ` „ÿª(4 œžžÞ¤IScjjª­å=9Tݺukooï˜^öúõëGíÛ·oÉ{µ~ýú—^zé¹çžûòË/¥Ò&<Œà€Ê´hÑ"88xΜ9]ºt‘&=ztÍš5ÂÆ¯‡‡ª[·n½hÑ¢ & !òóó;vìXÂ^Æ7Þx£V­ZË–-óöövë†-GTÆßßÿ½÷Þ5jT«V­:uêtùòåU«Vùùùݾ}{Ñ¢EÍš5kÖ¬™ùòÒ ° ;°bÅŠ×^{í•W^ùä“O ?:oÞ¼èèèèèè~ýú;vlÕªUÇ7¿²cñz•––vìØ±ðððÁƒ[<Ô³gÏ®]»ºs“ã.‚#ê3räÈêÕ«Ï;wñâÅÁÁÁݺu›2eÊСC³²²ÒÒÒ,‚£ËåæææääܼyÓê£-Z´X»víÔ©S§OŸ8lذ?þ¸äoš‘‘!„HKKKKK³x¨~ýúGÏ 8ºWä¸AÏž={öìiÞ²k×.—¿KXXXáºàË/¿|çÎ;gUvîܹsçήíI·nÝ\>•ÎbV5pέ[·¶oßÞ¢E ¹;O#8çìÝ»7<<¼_¿~rwžÆP5pNûöíÛ·o/w/ *ŽpÁ!8À!G8„àèÒ¥ÔŒà‡à‚#Bp€CŽpÁ!8z WäèFJJJTT”ŸŸ_Íš5'Ož\PP wàG`ů¿þÚ·oߪU«úûûGDD$$$äåå9òÄôôô®]»Þ¾};>>¾K—.Ÿ~úé¤I“dï\ÂGîÅÉÌÌl×®]~~~=j×®””4~üø;w~÷ÝwE>w̘1ÁÁÁÉÉÉþþþBˆˆˆˆ!C† 0àᇖ±Wp *ŽÀÒøñã¯\¹’””ôÍ7ßL›6mÏž=qqqëÖ­Û²e‹ý'^»vmûöí¯¼òŠ”…ô÷÷_¿~½Œ½‚«P¥¤¤¤¨¨(ÿ°°°¸¸¸ììl__ß%K–¸äÅ·mÛij9r¤bïÞ½öŸ¸oß¾ÜÜÜV­Z™Z|||š6mšœœ,c¯à* U >7nìÙ³gXXبQ£ÎŸ?¿råÊÝ»w»jJ^^Þˆ#"""ÌOœ8!„(]º´ýçfgg !*V¬hÞtæÌ{W!8 2£GŽˆˆØºuk™2e„ƒމ‰qUpôññ™9s¦yË¥K—fΜéííÝ»woûϽté’Â"Þ !j×®-c¯à*G’®Èc4ÊÝ€£ BÎ+©…õCÆž={233gÍš%¥F!DTTTïÞ½W­Zeuù¼¼¼7Úz—gŸ}Ö~7vìØ1tèÐŒŒŒùóç7hÐÀþÂ>>>Bˆ3fÔ©SÇÔ˜““#c¯à*G¥0 a‚P ŠbTäóñãÇ…áááæ‘‘‘¶‚ãõë×»wïnsmW4Nž<9räÈõë×7hÐ ))©C‡Eö­B… BˆØØØÖ­[›—,YRø]<Ù+¸ “cP©ªgÁÎå Œ¶ÙzÖŠ+š4iòóÏ?/X°àèÑ£æ³àà`!ĹsçÌÏ;W¹re{W¡â€ÊH£ÀéééMš415¦¦¦ÚZ¾ƒÂëׯ饗ž{î¹/¿üR*":¨uëÖÞÞÞ0½ìõë×=Ú·o_{W!8 2-Z´ž3gN—.]¤ ÅG]³f°1Âëì °Ñh|ã7jÕªµlÙ2ooo§úV¡B…Ö­[/Z´h„ Bˆ„„„üüüŽ;ÊØ+¸ Á•ñ÷÷ï½÷FÕªU«N:]¾|yÕªU~~~·oß^´hQ³fÍš5kf¾¼4(ìøë§¥¥;v,<<|ðàÁõìÙ³k×®+V¬xíµ×^yå•O>ù¤ðÓçÍ›ݯ_¿cÇŽ­ZµjøðáæWvtS¯<ý1èÁõ9rdõêÕçλxñâààànݺM™2eèСYYYiiiÁÑYBˆ´´´´´4‹‡êׯߵk×ÜÜÜœœœ›7oZ}z‹-Ö®];uêÔéÓ§6ìã?.ù*Ù+wmk˜!8zWä¸HÏž={öìiÞ²k×.—¼r·nÝì×_~ùå;wîØ9«²sçÎ;wvíúÙ+x³ª€snݺµ}ûö-ZÈÝxÁ8gïÞ½áááýúõ“»#ð4†ª€sÚ·oß¾}{¹{Pq€CŽpÁÑ㤉ÕjCp€CŽpÁ!8À!G8„à‡åÀy€ à‚#p±”””¨¨(??¿š5kNž<¹  @îÁ5ŽÀŠíÛ··oß¾J•*ÁÁÁÑÑÑß}÷ƒOLOOïÚµëíÛ·ããã»téòé§ŸNš4ÉU½úõ×_ûöí[µjUÿˆˆˆ„„„¼¼<¹7•ŽøÈÝ 8?üðÃ3Ï÷Ò¥KB‹x'„¨]»vÉ{5sæL‹÷š9s¦··wïÞ½]³eQ‚#vÈ{¿ë£P{öìÉÌÌœ5k–”…QQQ½{÷^µj•Õåóòò6nÜhë=ž}öY;=xÿý÷322„;v¬S§N‘=öññB̘1Ã|á„„„œœöJ±cÇŽ¡C‡fddÌŸ?¿Aƒ%ÞÔpÁ;”xÑñãÇ…áááæ‘‘‘¶‚ãõë×»wïns öÖñøñã7nÜØ»wïàÁƒ}ôÑ´´´*UªØY¾B… BˆØØØÖ­[›—,YRø]ŠÝ«“'OŽ9rýúõ 4HJJêСƒÛ¶4,19•‘ªzì\Î0 Àh[‘oW®\¹ØØØY³f]ºtiݺuöBœ;wμñܹs•+WvI¯V¬XѤI“ŸþyÁ‚G%5zGTFNOOoÒ¤‰©155ÕÖòÎ oܸ±{÷îË—/ïÛ·¯©1((HUžB´nÝÚÛÛûÀ¦—½~ýúÑ£GÍ_ªx½B¬_¿þ¥—^zî¹ç¾üòK©´ #8ÊÇÚÄjŠÔ¢E‹ààà9sætéÒEšP|ôèÑ5kÖÁÎÙAai”ùŸÿüçsÏ=g0Ü=ËSºÐÏc=f¿o*Thݺõ¢E‹&L˜(„HHHÈÏÏïØ±c {e4ßxãZµj-[¶ÌÛÛ[¦m¯wGTÆßßÿ½÷Þ5jT«V­:uêtùòåU«Vùùùݾ}{Ñ¢EÍš5kÖ¬™ùòÒ °ã¯_©R¥)S¦ÄÇÇGFFvêÔÉ`0üç?ÿÙ¿ÿرcyä!ÄŠ+^{íµW^yå“O>)üôyóæEGGGGG÷ë×ïØ±c«V­>|¸ù•‹×«´´´cÇŽ…‡‡¾{MÏž=»ví*çG¢GÔgäȑիWŸ;wîâÅ‹ƒƒƒ»uë6eÊ”¡C‡fee¥¥¥YÇbx÷ÝwëÕ«÷ùçŸÏŸ?ßËË+<<|åÊ•¦áæÜÜÜœœ[oÑ¢ÅÚµk§N:}úôÀÀÀaÆ}üñÇ%_eirwZZZZZšÅCõë×'8z†Á©°¯^kÖ¬Y½zuFFF¹råüñ‰'Jçj8âÿû_×®];tèðá‡:²|XXXzzºC/]h¨š €«ZVVVhh¨Ü½€ øèÕΉïmÜóõ×_§¦¦Î™3G@1vÝî3º˜U0uêÔ?þø#22ÒßßíÚµC‡-ò¦I£Ñ8iÒ¤k׮ɽ(Å­[·¶oßÞ¢E ¹;OÓ~pLOO_¸paHHÈæÍ›.\¸eË–üúë¯}ô‘#Oÿæ›oöïß/÷J  {÷î ïׯŸÜ§i?8®^½º  `ìØ±¦ –Nž<9 `Ó¦MEÞšéøñã =ôÜ+€‚´oß~êÔ©V/' mÓ~pð+TåôéÓrwòà£ÔÎþÁ÷©§ž’»ƒJ¡ñà(Möóó³h÷÷÷B\¹rÅÖ³¤kÓ¿þúëÅ{_§¦è[\Ń‹z¨ŸnñѪfÿŸpáÃzá ‘Nh<8 †7nX´K—בꎅ͞=ûôéÓ+V¬([¶¬Ük ?ÇÑÇÇ'  peñêÕ«BÓ7nìÙ³gXXبQ£ÎŸ?¿råÊÝ»w»°—‘‘Qºtéòå˯Y³æÒ¥K7nÕªU©R¥Š|bvv¶¢bÅŠæAAAgΜ)y¯BBBŒF£"==ý¡‡rùVE‘ŽÊ M¬6rG@Ñ F±uëÖ2eÊ!ãÚàèååU¿~ýË—/K-áááË–-kÙ²¥ý'^ºtIaÑ^»vm¹7\€à€mò^-ÍF=aÏž=™™™³fÍ’R£"**ªwïÞ«V­²º|^^ÞÆm½É³Ï>[¸1##£   >>¾wïÞ¾¾¾ßÿý¸qãºwïžšš`§Ë>>>Bˆ3fÔ©SÇÔ˜““Sò^AvGlSäPÐñãÇ…áááæ‘‘‘¶‚ãõë×»wïns­wíØ±£L™2¦縸¸[·n1"11qРAvúV¡B!DlllëÖ­MK–,)ü.ÅèdGp@e¤ªž…¼¼<[Ë8›ÃªW¯nÑòä“O !Ž9bÿ‰ÁÁÁBˆsçΙ7ž;w®ð £WÁ•‘FÓÓÓ›4ibjLMMµµ¼³ƒÂ'NœØ°aC‡Ì‹šW¯^5½µ­[·ööö>pà€ée¯_¿~ôèѾ}û–°WP‚#*Ó¢E‹ààà9sætéÒ¥téÒBˆ£G®Y³FØáuvP¸lÙ²&LˆŒŒÜºu«¯¯¯¢  àÃ?ôññ騱£ý¾U¨P¡uëÖ‹-š0aB`` "!!!??¿ðªV#‚£b0±àÿ÷Þ{oÔ¨Q­ZµêÔ©ÓåË—W­ZåççwûöíE‹5kÖ¬Y³fæË;;(\¥J•øøøI“&5hРsçÎ[¶l9tèÐ|ШQ#!ÄŠ+^{íµW^yå“O>)üôyóæEGGGGG÷ë×ïØ±c«V­>|¸ù•‹×+(@}F޹víÚÀÀÀÅ‹ïܹ³[·n)))ÑÑÑYYYiii%ý7Þx#111$$dùòå_ýuPPЦM›Þ|óMéÑÜÜÜœœœ›7oZ}n‹-Ö®][ºtééÓ§'%% 6lîܹro0¸†°ïraaaéééÅy¦Á ŒFƒBçð¡hYYY¡¡¡r÷2à£W»âoëØ×_šš:gι;âÅØt»ÏPqιuëÖöíÛ[´h!wGàiGàœ½{÷†‡‡÷ë×OîŽÀÓ˜œÓ¾}ûöíÛËÝ È€Š£’H«‰à‡Ç(UG @G8„à‡à‚£Â0±(Á!8À!G8„à‡€‹¥¤¤DEEùùùÕ¬YsòäÉr÷®ApT£Qî ÒÒÒzöìY«V­5jôéÓgÏž=>1==½k×®·oߎïҥ˧Ÿ~:iÒ$WõêÊ•+¯¾újíÚµýýýcbböíÛgkÉ;wîøøøT¹re¹·«ºùÈÝ 8»víêØ±c``à /¼àíí½jÕªŽ;®_¿¾C‡E>w̘1ÁÁÁÉÉÉþþþBˆˆˆˆ!C† 0àá‡.a¯®^½qòäÉÞ½{WªT)11ñ©§žÚ¾}{óæÍ /œ•••ŸŸU¯^=S£Ô%Á<Àh44( à—_~ BL:µeË–'Nüïÿkÿ¹×®]Û¾}û;ï¼cŠh7nÜúõëK?ù䓌ŒŒo¾ùæå—_BŒ3¦eË–¯¿þú¶mÛ /œ‘‘!„˜6mZll¬Ü[T;ª@•’’’¢¢¢üýýÃÂÂâââ²³³}}}—,YRòWÎÊÊ:~üø Aƒ¤Ô(„ 7nÜÁƒýõWûÏÝ·o_nnn«V­L->>>M›6MNN.yÇV®\Y­ZµH¿Ö«W¯wïÞÉÉÉgÏž-¼°ëׯïšÍ !Á5Ú¸qã3ÏôÐCBˆ={öŒ;ÖÔ¸}ûv!„ÕÚž¹K—. !""",Úk×®]Â^?Þh4šŠ )ÝZM¥^^^õë׿|ù²Ô¾lÙ²–-[ºd+éÁQ© ¦W€ìÌ‹[žg´q سgOffæ¬Y³¤Ô(„ˆŠŠêÝ»÷ªU«¬.Ÿ——·qãF[ïòì³ÏZ´„„„ôêÕ+11qöìÙqqqF£qÉ’%óçÏB\½zÕ~Ÿ}||„3f̨S§Ž©1!!!''§„½ºqㆢB… æBˆ‹/~…ŒŒŒ‚‚‚øøøÞ½{ûúú~ÿý÷ãÆëÞ½{jjªô,Á›ŒŠüþøñãBˆððpóÆÈÈH[ÁñúõëÝ»wwjçÏŸŸ““3yòäÉ“' !‚‚‚Þ~ûí÷Þ{/00Ð~ߤ`ÛºukSã’%K ¿‹³½ªT©’âï¿ÿ6o”‚¬ÅȸdÇŽeÊ”1=wëÖ­#F$&&4È5Ÿ„þP©ªg!//ÏÖòÎ&àÊ•+ÿç?ÿÙ·oŸ4±:::zçÎÂçàà`!ĹsçÌÏ;'"Y’^…„„xyyYŒJK§TÖ¨Q£ðò…ßñÉ'ŸB9rÄ©MsGTFNOOoÒ¤‰©155ÕÖòÎ !~ùå— *<öØc=ö˜Ô²uëVƒÁe¿o­[·ööö>pà€ée¯_¿~ôèѾ}û–°W>>>5Úµk—yãÎ; CãÆ->qâĆ :tè`^—•Ê“æcèpš®Ö°aÃ’¿ŒeffÊÝȃ^í\ò½íIÿýwpppttô­[·¤–#GŽ”.]ZñÏþ³ðò…Ï/,2 ´nÝÚßßÿÌ™3Ò¯G-_¾|—.]é^TTTÕªU/_¾,ýúþûï !~úé§’÷jîܹBˆõë×K¿ž?>$$äÉ'Ÿ,¼äùóçË”)Ó¶mÛÜÜ\©%??ÿùçŸ÷ññ9räˆÅÂÅØT·Ï¸ ùÄõ\‰õjCzÐ->zµSc˜7ožâ‘G™8qâàÁƒË—//Ì}èС’¿þ–-[¼¼¼jÖ¬9jÔ¨W_}µbÅŠUªT1íêÿú׿¤+;Z}îÿûß²eË6nÜxÆŒ/½ôR©R¥†î’µ¾råJÓ¦M+T¨ðæ›oΞ=;<<¼|ùò{÷î•5kV``àüùó¥_gÏž-„¨S§Î«¯¾:yòdéî2|ðAá—%8:Žë8 >#GŽ\»vm``àâÅ‹wîÜÙ­[·”””èè謬¬´´´’¿þ“O>¹yóæÚµkÿóŸÿüá‡zöìyôèÑÐÐPéÑÜÜÜœœœ›7oZ}n‹-Ö®][ºtééÓ§'%% 6Lª–\… ’““ûö훘˜øá‡Ö¯_?99ùÑG•½uëVNNÎíÛ·¥_ßxãÄÄÄåË—ýõ×AAA›6mzóÍ7ÝýÑh›Á¨Èùbª–žž^Â1aäŠ>>KV®\Ù‘÷JOOïÚµëíÛ·ããã»téòé§ŸNš4Éåk/÷vÕ¹;”Åßß¿ÿþ7oÞ\»vmhhháå³²²òóó£¢¢êÕ«gþ"Ž¼×˜1c‚ƒƒ“““¥å#""† 2`À€‡~ØU«sèСݻwÇÆÆÊ²15†à²lÙ2‹Æ‰'V«VíÃ?,¼|FF†bÚ´iΆ³k×®mß¾ýwÞ1¥ÌŽ7nýúõ%ŽyyyÛ¶mÛ³gÏ_|Áð·«0T €*%%%EEEùûû‡……ÅÅÅeggûúú.Y²ÄïµgÏž„„„Å‹~T Žõë×wöe÷íÛ—››ÛªU+S‹OÓ¦M“““KÞç‹/vêÔ)>>þÂ… îØ&úDÅQ ¤‰ÕF£Üý(ÅÆ{öì6jÔ¨óçϯ\¹r÷îÝnª«ÝºukàÀ/½ôÒSO=euŒŒŒÒ¥K—/_~Íš5—.]jܸq«V­J•*Uä+ggg !*V¬hÞtæÌ™’w;$$Äh4 !ÒÓÓzè!wl"8 2£GŽˆˆØºuk™2e„ƒމ‰qSpœ;wîéÓ§ßÿ}[ dddxyyÕ¯_ÿòåËRKxxø²eËZ¶liÿ•/]º$„ˆˆˆ°h¯]»¶7'œ@pÀ&y/¤kk¨iÏž=™™™³fÍ’R£"**ªwïÞ«V­²º|^^ÞÆm½Ë³Ï>k§ÙÙÙ3gÎ;vlÍš5m-“‘‘QPPß»wo__ßï¿ÿ~ܸqÝ»wOMM °óâ>>>Bˆ3fÔ©SÇÔ˜““ãÂU€ °I™g ?~\nÞi+8^¿~½{÷î¶×ÑÞJΞ=ûÖ­[&L°³ÌŽ;Ê”)cqŽ‹‹»uëÖˆ# dç‰*TBÄÆÆ¶nÝÚÔ¸dÉ’Â]*É*À…ލŒT¨³——gkù€€€âE«[·n-^¼¸gÏž§!Z¨^½ºEË“O>)„8räˆý×—¦Úœ;wμñܹs…_°Ø«×"8ªóc÷H»éééMš415¦¦¦ÚZ¾Øã¼«W¯¾té’ýªá‰'6lØÐ¡Có èÕ«WMý´£uëÖÞÞÞ0õáúõëGíÛ·¯«V®Ep@eZ´hú¨ŸŸŸbÑ¢E‡¶X^çµÅֻܼy3999::ÚËË2-Ìž=;((èË/¿BT©R%>>~×®] 4>|ø›o¾±råÊiÓ¦5jÔH±bÅŠ   ñãÇ[}—yóæ]¹r%::úƒ>0`Àûï¿?|øpó+;–dàrGÔgäÈ‘k×® \¼xñÎ;»uë–’’•••––æ’·HNN¾uëVLLLá‡nݺ•““sûömé×7Þx#111$$dùòå_ýuPPЦM›Þ|óMéÑÜÜÜœœœ›7oZ}—-Z¬]»¶téÒÓ§OOJJ6lØÜ¹såÞº°É@Nw¹°°°ôôô’¿ŽAˆ>ÎqT¼¬¬,«wq…æñÑ««¾·aË×_šš:gι;b]1vÝî3TÕCš€ªÜºukûöí-Z´»#p‚#p£½{÷†‡‡÷ë×OîŽÀ˜U ܨ}ûööçeCE¨8À!Gå2 Á)@9ŽªÂü ‚#Bp€CŽpÁ!8ª óc€LŽpÁ!8À!G §”””¨¨(??¿š5kNž<¹  @îÁ&‚£ 1?à~W®\yõÕWk×®íïï³oß>[KÞ¹sÇÇÇÇð Ê•+;ò.ééé]»v½}ûv|||—.]>ýôÓI“&¹|]bbbâããeܘšá#w€â\½z5""âäÉ“½{÷®T©RbbâSO=µ}ûöæÍ›^8+++???**ª^½z¦FGÞh̘1ÁÁÁÉÉÉÒòC† 0`ÀÃ?ìªu9tèÐîÝ»cccåÞ¨Z@p–>ù䓌ŒŒo¾ùæå—_BŒ3¦eË–¯¿þú¶mÛ /œ‘‘!„˜6mš³áìÚµkÛ·oçwL)sàÀãÆ[¿~}Ƀc^^Þ¶mÛöìÙóÅ_0üí*zª^³fMŸ>}š7oÞ¦M›·ÞzëòåËö—ÏÉÉyï½÷ºtéÒ¬Y³Ž;Ž7.33Sî•ྤ¤¤¨¨(ÿ°°°¸¸¸ììl__ß%K–¸äÅW®\Y­ZµH¿Ö«W¯wïÞÉÉÉgÏž-¼°ëׯïì»ìÛ·/77·U«V¦Ÿ¦M›&''—|.^¼Ø©S§øøø .¸d›@è$8&$$L:õ?þˆŒŒô÷÷_»víСCoÞ¼ikù«W¯véÒeÅŠBˆöíÛÿðÃ]»vMMM•{UBˆ7>óÌ3×®]5jT›6mV®\Ù¦MWÕÕ®^½úûï¿·oßÞ`vJ}‡ ¬žé˜‘‘Qºtéòå˯Y³fÁ‚)))¹¹¹Ž¼Qvv¶¢bÅŠæAAA.‰z!!!F£Ñh4;vÌ%›BCÕééé . ILL¬R¥ŠbÆŒK—.ýè£Þ~ûm«O™7oÞ… ^}õÕqãÆI-ÿþ÷¿ß|óÍéÓ§¯\¹Ò“7 aÂhå£0„ÑèüKT¯  `ôèÑ[·n-S¦ŒbðàÁ111® ŽçÏŸ7!!!æÒ1Ôj¤ËÈÈðòòª_¿¾i@/<<|Ù²e-[¶´ÿF—.]BDDDX´×®][– ‹"i?8®^½º  `ìØ±Ò/„˜>¾wïÞ¾¾¾ßÿý¸qãºwïžšš*=Ë!ÄŒ3êÔ©cjLHHÈÉÉ)á*ÀM´8àååÕ®];S‹··wLLÌúõë}Zî.@|ôð0i`7==½I“&¦F;38çõññiԨѮ]»ÌwîÜi07nl±ð‰'6lØÐ¡Có ¨Tž4€¶ªuëÖÞÞÞ0õáúõëGíÛ·o WÁYö©O=õT __34¥©Ó~~~íÒõ¢®\¹bÿééé鉉‰ÒŸ87.Uª”ƒï›žžîµ µÒj4†2?Fy¬XÐ>zxR‹-‚ƒƒç̙ӥK—Ò¥K !Ž=ºfÍacжã¼C† 3f̆ ºté"„øë¯¿;vìXxW/[¶ì„ "##·nÝêëë+„(((øðÃ}||:vìhE*T¨ÐºuëE‹M˜0Aªò$$$äçç~¢»‡ªíÿ.|X/\!Ò _Ž'00Ð`0H'ùš»v횸Ww´ãùçŸOKKKII™4iÒ–-[^xáé‰ÈÈßßÿ½÷ÞKIIiÕªÕo¼1dÈG}Tª’,Z´èðáÃËKã¼¶X}‹6mÚôÅ_|ë­·þñ´k×îÆ¦»öÍž=;((èË/¿BT©R%>>~×®] 4>|ø›o¾±råÊiÓ¦5jÔH±bÅŠ   ñãÇ[}£yóæ]¹r%::úƒ>0`Àûï¿?|øpó+;{àŽ>>>…+‹R Ý4ÏÚén›qqq}ûö=wîÜ–-[ä^'ÄÈ‘#×®]¸xñâ;wvëÖ-%%%:::+++--­ä¯_¡B…äää¾}û&&&~øá‡õë×ONN~ôÑG¥Goݺ•““sûömé×7Þx#111$$dùòå_ýuPPЦM›Þ|óMéÑÜÜÜœœ[—OnÑ¢ÅÚµkK—.=}úô¤¤¤aÆÍ;Wî­ ›4>T-„ ÉÈȸzõªùe¤S,®P%9~üøâÅ‹cbb:wîlÞ.Õqþüy¹W!„èÙ³gÏž=Í[,ÎJ,¡€€€… Z}èÝwß}÷ÝwÍ[zõêÕ«W/« ¿üòËwîܱs fçÎ-޹®FUÒU4^qBÄÆÆæçç›ÿ[2ÉÉÉAAAVïÔ^¡B…ÿûßk×®µh?yò¤PÚiLÒeÀP°[·nmß¾½E‹rw. ýàØ§O//¯Ï>ûÌtzâÂ… ³³³{õê%Ã+„¸~ýzVV–4/2$$$,,,%%Åü>îÇŽûöÛoýýý###å^!ÔdïÞ½áááýúõ“»#píUW¯^}âĉ³gÏîÖ­[Û¶mOœ8±oß¾Æ2Ä´Lrrò¸qã4h°aÃ!ÄôéÓûõë7|øðæÍ›×¬Yó¯¿þúù矅ÿøÇ?¤k¢µoß¾}ûör÷®¡ýà(„ˆ‹‹«\¹òºuë~øá‡jÕªõïßìØ±Òy¬zä‘G6nÜ8wîÜÔÔÔ´´´ªU«>ùä“#FŒhРܫ §‹º\XX˜ ¯ãh°Ã+.å¨$YYYÊ: žÂG¯v®ýÞ†êcÐí>£ýs5Žù1ÀSŽJg‚`”€à‡à‚#BpT?æÇÐÅu°#===,,Lî^*@p@ïš|\ÂzÃP5¢¬àøñÇgddÈÝ â4Gà~Ê Ž .|æ™gzõêµlÙ²K—.ÉÝܧ¬à8lذ5j¤¦¦NŸ>½m۶Çß²eKnn®Üý€Â&ÇŒ?~ܸq\¿~ý¦M›¶mÛ¶mÛ¶ *<óÌ3Ý»woÖ¬™Ü„úÄ7r÷µ2(ö8š——·sçÎõë×oÛ¶íÖ­[Bˆ:uêtïÞýÙgŸ­Q£†Ü½³',,¬x³ól1áЇd0¥~š²"£ÅnµÑU˜_©[|ôºÅG¯[.?Ö«…²†ªÍùøøtèÐ!!!aïÞ½S¦L)[¶ì‰'æÎûÒK/­[·.??_î>B¹ ƒÑh,¥FƒÁ``:NRÖPµ…Ë—/oݺuóæÍ{÷îÍËËBT®\Ù××wÿþýû÷ïÿꫯ¾þúëjÕªÉÝM(‹#5EéQ)\ÊÝ_TC‰Á1;;û?ÿùÏ–-[öïß/•+Uªôä“O>ýôÓ-[¶BìÙ³'!!!55õwÞùꫯäî¯Û­Ö=§² Tz$;à eÇåË—oÙ²åçŸ.((BT¬X±S§N;wŽˆˆðöö6-ݲeËV­Z8p@î.CÝÈŽ8NYÁñý÷ßB>ùä“;wnݺµy^4W¶lÙ2eÊ0Nýé2à:Î@Å‹€dG¤¬àØ«W¯§Ÿ~ú±Ç³•ÍQn„¹’„?²#ŽPÖ¬êM›6íÝ»×Vj5jT§Näî#”¨ä±OÊŽr¯Ц¬àxãÆ;wîØzèäÉ“gΜ‘»:%ÿPurròðáÃM¿.]ºtùòå…+((0µk×–»¿Ê¦ËÓ]5ÊÌ€5öɽ½½+T¨ ý|ùòåR¥J•+WÎê’“'O–»¿P×F=²#vÈ£££÷íÛ'ýöüóÏ¿õÖ[rw –äŽæ !w/ î¨RtÀeÇ7ÞxCî.¨Ÿ.Os spüöÛo…­ZµjРéWû^|ñEyû …p_]¢#VɧM›&„ˆ—‚£ô«}GxÙ€ÂdŽ£FB<üðÃÒ¯&L{ƒ@HuxžÌÁqäÈ‘æ¿2DÞþ(–QƒŽ%NstŠŽXPÖä˜ÂŒFã¶mÛNŸ>ýÈ#4oÞ\îîè—â‚ã¶mÛæÎûÄOH£ØS§NMLL”zá…Þ}÷]n( ):`NY÷ª>pàÀk¯½vìØ±‚‚!ÄÑ£GúõëW³fÍ+VlÛ¶Mî>蔲*Ž_}õ•Ñhœ2eÊ /¼ „øñÇ…3gÎŒýóÏ?Ÿzê©ýë_±±±rwròp ¢#&Ê Ž¿ÿþ{ÕªU  ýúÓO?•*UªmÛ¶Bˆºuëþßÿý_ff¦Ü}T æÇWSÖPuNNN¥J•¤ŸóòòŽ=Ú¤I“R¥JI-åÊ•ËÎΖ»“,Å?©è(÷ª ?eÇêÕ«Ÿ>}:??_qðàÁ[·nµnÝZz¨  àôéÓ•+W–»:¥¬à™““3oÞ¼3gÎÌ›7O#=´xñâK—.Õ¯__î>B(: ”vŽãСCׯ_?þüùóç !~øaéÚÏ=÷Ü/¿ü"„ˆ‹‹“»ê¡¹Ó™¤€¼”Uq¬Q£ÆªU«ÚµkWµjÕèèè9sæHežììì *Ìš5ëÑG•»:¥¬Š£¢Aƒ ,°h\¶lYµjÕ¼¼”s¡+\—ÅG«jÔ¨!wäçÜíª5‡Ð€ì7mÚ´téÒ?ÿüÓVJØ·oŸÜ}TÍæ(/ŠŽSVpLJJ;v¬ô³···ÜÝÀ}Ê Ž_ýµbàÀ¯½öZ@@€ÜÝR(§ÎGÑ gÊ Ž5kÖœ4ió`”FAùìÎ;ÿýw­ZµH®$æPb Šh^^^Ç/((»/P¥ s€n)(8z{{<8;;;!!Aî¾À’²Îq|úé§O:µpáÂ}ûöuîܹfÍš¥J•²X¦]»vrwSm¸(«1E OÊ Ž±±±Ò¿þú믿þju™ôôt¹» Ï!Ÿ Ê ŽÝºu“» °NYÁñÃ?”» €C­貂£INNNjjêÙ³g«W¯Þ¦M›ìììJ•*ÉÝ)ùÿvÕê<Í‘d€¢(.8^¼xqþüù‰‰‰7oÞB¼üòËmÚ´éÑ£GãÆgΜ$w»(:ôFA—ãBܹsçµ×^[¶lY… zôèaj¯R¥ÊöíÛŸþy)MÀó”,XpøðáÇ|óæÍ³fÍ2µ¯^½úÙgŸýóÏ?—.]*wtJYÁqÿþýÞÞÞ|ðA¹råÌÛ½½½ßyçråÊmÙ²Eî>ª–Úî=¨ŠQ`î"ÐeÇ´´´ÐÐP«ó`üýýëÕ«wâÄ ¹û SÊ Žׯ_·õèåË—Ë—//wtJYÁ±Q£FgÏžµzϘ´´´3g΄‡‡ËÝGx‚*Æ©%ŒVôCYÁ±oß¾ƒáõ×_?räˆyû‘#GÆŽ+„èÞ½»Ü}T3µæEY×qlÓ¦ÍàÁƒ¿ú꫞={Ö«WO‘””´gÏž?þø£   G:u’»€%.èÐ eG!Ä„ Z¶l9{öìÌÌL!Ä™3g„•+W?~¼ù•àaŠ ŽBˆöíÛ·oßþòåË™™™¹¹¹õêÕ ‘»SZ¡†{R½@™”%AAA-[¶”»ŠSüÛUäÑj©L€VÉ¿ýö[gŸòâ‹/ÊÛg}’98N›6ÍÙ§d!sp”.²c.--mË–-ÞÞÞÑÑÑuëÖõööÎÊÊÚµkW^^^µjÕÞzë-y;¬Ê>ÍQ½'82· y2ÇáÇ›ÿzòäÉeË–………}þùçµjÕ2µŸ9sfäÈ‘G]¿~ý“O>)oŸôIYŸ?þÅ‹çÍ›gž…5jÔøôÓO…?þøcvv¶ÜÝÐ#eÇC‡U¯^½N:…ªU«–ÔÎP  p ÷ÈÌÌäöƒ SÖåx._¾\PP`ëæ¿W¯^ ª\¹²ÜÝ„»pŽ J¦¬Šc“&M®^½ºcÇŽÂ¥¤¤\¾|¹qãÆr÷@§”Ÿ~úi!Äo¼±iÓ&óÊÓ?þ8aÂÓ€bÙª— ÊªîÕ«WJJÊ?ü0vìØÊ•+׫WOºÇ_ý%„èÚµk¯^½äî£V(û¢<@”…üqTTÔܹs/\¸pᩱZµj£FêÑ£‡Ü½S­ÞuP8ÅG//¯>}úôîÝûüùóYYY>>>uëÖeB T„+´JqÁQb0ªV­ZµjU¹;¢iŒVg(kr   L‘hÁŠÀØ.ÊGp€CŽúƽ݆Ñj€öà‚#äÇ Ž¨ÁQ÷­vF«CpT%éæ1žDp€CŽy´ZÛ'82Z Ђ#¢Ð{U»Üš5kV¯^‘‘Q®\¹Ç|âĉAAAv–¿yóæªU«OŸ>]¾|ù† ÆÅŵiÓFîõ.‚cBB—_~éççyâĉµk×?~|éÒ¥eË–µº|^^ÞÀ>ðØcݺuë§Ÿ~JII=zôˆ#ä^¨Œ4Z­ááx€~h¨:==}áÂ…!!!›7o^¸pá–-[ ð믿~ôÑG¶ž²zõêÇ·lÙ299yþüùÿüç?¿ûî»ÀÀÀÏ?ÿ<--Mîr.ÊŠ¢ýà¸zõê‚‚‚±cÇV©REj™eóæÍBˆ)S¦˜J’ 4xõÕWóóówïÞ-÷ i ¥8TDûÁñÀ^^^íÚµ3µx{{ÇÄÄ\¼xñàÁƒVŸ’••åçç׸qcóÆ !N:%÷ A}˜[ Пãh4322*V¬X±bEóö†  !N:QøY ,ðñ±Ü2GŽBÔªUKîurãÆƒ þlÐxp¼qãF~~~`` E{@@€âÒ¥KVŸÕ¨Q#‹–}ûö-\¸°téÒÝ»wwä}ÃÂÂ,Z¤áoÊš™•åÂ× "Ë¥/èÏ¿£ûœ>}Z'k ö?zh½N<õÔSrwA)4oÞ¼)„ðóó³h÷÷÷B\¹r¥ÈWÈÏÏÿöÛoÿñäççüñÇ•*Urä}ÓÓÓ=³‚¡¡¡ A;4y‚£ èÉm ÏãóÕ->z=(|X/\!Ò ÇÀÀ@ƒÁpãÆ ‹ök×®‰{uG;~úé§øøø?þø£Zµj|ðATT”Ü+äfŒV» åh€Æƒ£O@@@áÊâÕ«W…¦yÖ…åææ~øá‡Ë–-+S¦Ì¨Q£ dë¢:¡ñà(„ ÉÈȸzõj… LÒÙf!!!VŸRPPðúë¯ÿøãO<ñÄ»ï¾k'_BLš©÷PÚ¿Olll~~þ®]»L-F£1999((¨yóæVŸ²lÙ²ü±_¿~Ÿþ¹îR£6®nxð?ã½ÿ …þó .ÊP;íÇ>}úxyy}öÙgÒyBˆ… fgg÷êÕË××Wj¹~ýzVV–49Îh4._¾¼|ùò“&M’»ïZæ–þ 'EãƒUFc¡ÿ<P/íUW¯^}âĉ³gÏîÖ­[Û¶mOœ8±oß¾Æ2Ä´Lrrò¸qã4h°aÆ .œrw.c,Q0S);ªlhÞµrùÇæ`æ,Á©§"8¢d¤¢£ òÀÌWÄ#²£UIÑÁDX¼gôŒà¨VÌOŽÑfv,¼šFc‘ÒMɯx™ÏâY%|5€Qbv‹ŽnyCíeGgŠŽnJx÷KÃ$H€ GUR_lrõi|úÌŽR¤swž#Al!8B­4ŸM£Õr8‹I|á ÖF«ïŸ¢§íÉÞnæÙ³¬»û1@÷¸Ž£úØ)³éí^$¼¸£ÙGh0!Jr¿FWwÍx÷.1 ºEp„‹Øº¸›ËšÌŽR8»Ô”µvÄGÐ3†ªUFkgõ¹‚ÆNv4„Q(}pŸÁkÐ'*ŽpÂEGOݨº£©Ð¨–s¨>€ÞáE^¼ÚåÔžMcÓ¦õwëyJ¿oµ)>4à¨&ZuõfGëS§URw¼ÛYJ G­‘9l˜—žä¸ ê²ãýáiõcä4à­QQv´ž¶¶2 ‚ÑêºÌÈ5hÁQ5T3NmJ òuVÙÑÑB£ª¬ï÷šÒ#hÁ®gBöŒ«ð쨙ái;(=€ö¡YŠÍŽN§F£0 5V?Ðw²#hÁQT3NmÞeP`v,f­Q]¾Eß¶­ 8j"NŠSL¡IQÙ±$#Ôêš"S¨óÊÙ#ÅÇ-ájŠ ãÝ’­v§‡óí»?oJßÛÔ‹à¨ê§6ˆ{÷Œ‘b‚‡2‚¸j¼ß±"ª±nìªË¶„WÇt!ÓM®ÉŽ FG¨—y,:†HcÖv#¸Áò®ê¨‹r’4ZmTÓß¶V„ìªDp„KybœÚ}ƒÎ/è\0µÙ]’5dGP#‚£Ò©kœÚ’+Ó ò¢EÇ·òîÎuÀ-ÙȨúë»ëÁ) 6̪Ö&y&V»+Íî½´±äoPÜIÖF³ÿ ÷þ+ªßnHwçV+bæ¼KV‡ÙÖ &G¸’ÁpofŒI‰rydt™_ Ç¡éöqX­dG¡ k7Š@pT4uS—pÕÝM\tqG‹iÖ{ÎÞsÙTsá"Û50çÎt”^Âí±ËÉó‹z1!„0„† !D᪫‹{.Í­65s²ã½õâ”GP:*ŽP÷V sõMeŒYY™ƒÑhtè HW­ƒf¬§<€â•KMãÔEÖ½ŠˆžŽŒ÷ûåÒìX¯^¨Ñ(l_»²Ûj¾ý kGv…"8j–çKQ†bŽÑÊMÜv3k·ÇÇû˜Eve"8ÂS¬gEœ£ç’ìh0ˆÌÌ,+¯íÌ|нdG€QbÅÌ~…¤FI ³cQ“Œ./@ZŽV“îGpT(5àè¸ûA@æáië½+nvtæâ;ž¿Ö i—!>€BáΜਠB£…bdÇb]²Ñ=ñQ‹EGÁTkP‚£–y"H8Up¯<·Í•±öV%ÛVæV+~ó–`eÉŽ ?‚#G8Éz>Ôìµ°6“Z1ÙQ˜\1EFEGAvw"8*ˆ¯àh0ŒFá‚Ô¨Ô£½­ëï(); GKdG@ÉuÁÍAea×u«­´ìh4E×å!;J@/ÁqÍš5}úôiÞ¼y›6mÞzë­Ë—/;øÄÌḬ̀°°_~ùEî5P·ŽH+ïP_äå¾–ŽGQ]’òv(P=]Ç„„„©S§þñÇ‘‘‘þþþk×®:tèÍ›7yî²eËäî¾’¹ú°¬¤C½ƒ7‰‘²£òâ£í‘kÝ·%WÓ~pLOO_¸paHHÈæÍ›.\¸eË–üúë¯}ô‘g]½zõçŸ~÷Ýwÿõ¯y¦Ÿ*<ÁQËbœbFå”ïM‘±{ŸkeG%ý=ê¦ýà¸zõê‚‚‚±cÇV©REj™x].÷xoC Ä|äî€{ÆŒŒŒŠ+V¬XѼ½aÆBˆS§NEDDX}btt´ôÃöíÛå^ ý‘Žð2ݺ„ï,Y+ï¬Ó¤ãmÿ ÐVsÏ-Ðxp¼qãF~~~`` E{@@€âÒ¥Knzß°°0‹–Í›7ÛY¾^h½Ì¬Ì,‘åÞÍš•UÌ·­*u04´^VV¦¸×Õb¿`23C †¬ÌL÷nëZì•:}ú´"SdB ™Y²tþ®ÌÌLƒÁi¹3CC Bˆ,Sß2E¨!4+ÓÍ;ž’df ƒ!4ÓÕ«,}ôÐ!>zxê©§äî‚Rh<8JS§ýüü,Úýýý…W®\qÓû¦§§;û”ÐÐPwo £†ÐÐbW[BCC¥ •ÔS·œàèñmbá^9ªøï+õÙ(Œ†PùëŽÖ6 QjVi4ŠPC¨Ü=õ(£Q ¡.ßy=¿»B!øèõ ða½p…H'4~Žc`` Á`¸qã†Eûµk׼º#æÙqM•Ÿ’¦œyÖÖ{g~Ö£Î&ÊÕï\ GŸ€€€Â•Å«W¯ !Ló¬Q¹Î„óìáÝåg¿É›‹¸uµî'Í 4…!!!/^”’¢‰t[HHˆÜ½SO£pÓœ e×Åýø¨¿¢£ ;€ó´cccóóówíÚej1ÉÉÉAAAÍ›7—»wB(ÿÒß!Œò¥FõÛeÌŽEÍú( J¸î¡þý ^^^Ÿ}ö™t^£báÂ…ÙÙÙ½zõòõõ•Z®_¿ž••¥‡ÉqÅ­+Y¦FÌŒ1{s·ÛÝ}‰Å×ÅÝÒ£ò»éŽ5ç¶„à0ϪBT¯^}âĉ³gÏîÖ­[Û¶mOœ8±oß¾Æ2Ä´Lrrò¸qã4h°aùû OóÌ…ý亾£Ttt8å+õ2”n&m.ñEÒ~pBÄÅÅU®\yݺu?üðCµjÕú÷ï?vìXéŠ<(‚BÎlÔÄ…›UÊL— Êøì=¸æZØËÀ½<8à¨aaaN]ÇÑóaÂá4h³kª6{W—Õ]û’YYYE^ÑM–ìèôçuwQÈß U¼]‘šÄG¯[Îë5Cûç8*œJPš%KyI'Þ=V×ëaº ØAp„- +7 íÒ¥ì¨ôøx?;êîR=ZÙÑÀõްJ©c”®;¤Ë{6›Q=Yztøº<–½¼×AݕɎ`ÁQtWA*D!s Ô1lmê¬Îâ#Ù #8¢0ƒFÅÖ5v<÷Xv,qÑÑô»ŽþîÐÖ¾.@p”“"gÆe;ÁÑ\ÉŽç )7Þ_…×­E•¹<8˜#8BŠ›•–ï®G²c1‹ŽÂVvÔKéÑh¤ôwuÊÆ1ÿ^¹Q±ãÔڥº£ÐaétŽàµ¥EçäÊ,7Þ_!÷_¦§øEGa';ê%>’€à'(âGsš;’{ø2=®ì¸>F®5·Ç€s޲‘}f̃Çy³r£º*É^n|`Ü™ÝPt´xXãÁŠì@ÏŽj‹ŠÅZCõ¤F‰rëŽEgGíÇG²#Ý"8âAjÌ=Œ»/;–¨è(”ÖþÈ5—é OG]»wlW]T,¼&ö²£êÊ÷WK±wµv(j¼ôÈezèÁŽRÜÌ 6ŽáêMwWË=ÓeJZtŽgGíÇG²#ýð‘»:%û̘û1ï†Ç©ÍIÇpUçD[k&ŒŠÙgè–cûŒ´„Úw/Û«gC¨÷;°DÅQÏ4{ ¿¿†Š‘.¯;º è(œ:•QË¥ÇÌÌ,êŽô€à¨wZ›Â éC…žòè\vÔl|Ôô®wu«P¹ÑnýQé'8š»w×R¹ñþʹô”G׋±Lµ yGh‘ѨÉÔxý”v•Ç⮵yɦZÐ6‚£ 0Ëáê¢Þw×R›«%qÕ°µËŠŽÅÜ´\zí!8ê1i Õçî–µ~ôVÜ­‹Ÿ5µ¾÷Ð)‚#„E¤5àhqj£ŽÞ%ÏŽ®<Ó±øåk ÆGNy =G½Ñþ%x,é&;*¥ôX¢S´vâ#§<Ђ#4&­Ï‰ÑÁ¡»„ÃÖ.ž^]Òì§ÍÒ#hÁQWì%D Ôy´=“ÚÚÊŽšŠdGÚ@pô4L©¶ìýî¨ëG›tsÜVаµ þÑT|ä”G@pÔ H[]½"ËzÊŽÅ+=ºþzனck'>rÊ#µ#8ê„C©Q½£ÕŽRëé ­”Ò£Ëö*íÌ›ÑÓn@kŽú¦ñ*¤5z:h£ôè–›º2ïi§ô¨›Ý€¦õÀ‰xhqˆWÅ ŽNωÑÙA[ wqvÔB|ä”GjDp„.é2;:ÝRt.gÖB|ä”GªCpô(9¦TÛ.7jbœºø—àÑÙÛ©ak•dG¡™ø¨§=€ºaIEJzáFý±åŸ1ã–ÝKõñ‘akjApÔ¶Uq‚cIéïˆí`éÑ]EGá¾?MÔ¶  >rw2±)UQttÙ}b¤WÑÙmgLÙQžËÑ›ö0׿¹ôŠîzuw3eG=íŒÔ„Š£†iâF[ëæò˜§¿j©ôh«úèÆ¢£p÷eU\}¤ô@ÉŽZe75j9R–€.×öG®Ý›…»‹ÛêŽúÛ¨ÁÑsw—ê"º«Ü¡[7vM¯‡k9'͸ýĵÆGý @Žš¤åŠ¢Û­Ž³£ÕÒ£Û‹ŽÂ3'Õª2>2l @iŽúãpªTÅ·Ðñ±ÚjéQ+ÙQ¨7>Rz ̪Ö”{!ÏŸëxv«tB… s®«•«oæµ.§þP"*Ž:ãäYQEGO5õ=Lh1çÚEGááj yõQŸ2¥G²#8jŒ–Ïn”‡Ž³£xðÄGÏeGþ½bT×øµ¾ÿœ ?‚£‡¨lJµ…å¤ÓýÚTzôPv²ìv*‹”È‚sµ¤¨r£cåHžà(ÿ©]:>åñî0;ñÑco)G]5§?rÖ#Y5ÃÇXyŽà¦SÈ¡‘µÂ`0ÜýÉýï'S„32¼½Õû_4<¡jÝàìG—Ðý°µÂh4 ƒðÐÃ=}Êcá÷Vúø5g=ð$‚£6¸,Ú§–ëØ­Äç—I›Áî½ ]þf²&7uÄGöJ@p„£<ìVbj¼»-ô^ä1Í’ñܽ åOnJ¿|i¯ÔñŽ Àí8ÇÑÜ<¥Úr#ãÔî ïóˤìh4=wÁpÓ™‡rnoÓ{+t çâp+*ޏ¯ÈùÔž,:ªãȧïÒ£ùÕy,.îÎwUH½OÑã×”¸ ÁQí´YnTGj4ÑñQÚâÊŽŠ lwãchh=…tè~ϹàG8Çå•¥F‰Ñ(ŒÆÐzõäî‡"˜ÇGw%H9g[[éMVV¦2Ï€$>p-‚£ª¹²–èøu¿t¼V˜¬ÌL¢mÝNÆx7´¸³© Ò£©CJÂÖ÷)\‰É1êåà}`T6N­Êr£9]ÎM0M”±þ¨[gÏ(bÆŒn™ÿ*wŸt=› €kQnº—Œvâ–þÑö³£ð@|Tâ,g‹)Øò÷ÏôwÐѾ À•Žnçžkñ¸¸ÜXŒûS»<;j'5Jôwˆ.2; ·ÆG…–Í;'oõ·op‚#àN:¹v$;Šã£pm‚ThéѼB!Hâ#€b 8ª‘RÎntaÑQãÉJO#×fGa–]\€TtéѼ‹B ’øÀ)GgœÚÄ%ÙQã©Q¢§ã³ãÙñîòî¿VzéÑÔK‰Ì RO»'€!8ªŽRÊ&%ÌŽºH&º9>;›…;Ư͇…•¾±‘ u³{(>‚#䤯Ôh¢ãs1²£(4~-Jž Õ…¤>vOÅDpt/WO©v}¹±$ãÔ&nº:Æéàø\¼ìx÷¹®=R'>Zí±+Aê`÷PGQôA¯ÙQ§åF Z?>—$;Þ}a«ãÄÇÂ–È µ¾{pÁQ×\Rn4q*;’ éãsɳ£pá¶ÊF® w]˜%H­ƒùî)4¸‡pÁQ-¿–·œ‡C³#©Ñ:íÆG—dÇ»/å’!lÇG‹{® iúô´¸‡pÁ.Vdv$5A£åfÇ»/Xò!luÇGóuž,Cj÷E#8ª‚[Ê®=Š›³“IŽÒbyÇåÙQ¸d[ ñQx¾ ©Ñ?pà¨|ꤶ`5;’‹C[å);J?¸ø• %HáTˆÔH|4_á2¤ÿÀ`ÁÑ\}-—öÍmåF‹ìHj, •w¤Ïïû/ëtRSñQØ(CºeÝ4´‡°‡à¨pª,7šp}G³(ïŸÝ1lmå]Š7m…fö`O„H í¡¬#8ê‘Ø&w/œG¹Ñµ41@è¾ak+ïUŒl‹ñ^Unã"×M¸)Djb`ÁQÉÔ]nTM÷TMå„î¶¶òŽÅÈÖÚøµÕÕ»·I¬·—àÕÕ½‡°DpT,¤-Ó©š=ì*Ê=3lmå}*CjsüÚêJÞÛ*6rþuÕ½‡¸à¨~N&LO¡Í'Ĩï^Áj¤Úã³'‡­­¼»µ2¤°"µ<~mkUÍWØêCμ¨Z÷Pw•IõùÊÖ‰ML—ñŸMÃÖB¦øx·†H‹d¦\ýõ# ï¡B;)‚£Ú)²ÜhÿÊ;F=k”CmÇgÏŸõh¯3E†È{ÿjµhÑ4;ÅH§7ù笞?sýò’»šU‚‹8ºkNŒR£Ähá!Fãýÿ †»ÿ)•4rmPRÍ6ŸÑp ¤@™•™u·6èmç6>øŸáÁÿœy!Õì¡€~QqTuä:u•oJ²QCR!#×Öûöà>kjþ˜Ùt0¡ÃýÛ~=R8²EÔ°‡:EÅQµ”Wn,ƽaÌ Õ2¤’êÞïöƒ3i¤s" ‘r:J"¹™Ԩ¤Aê’ Óø:ÔKIÅH•ÆÇûý—vmk·¹_›d÷w(JÞ]LI»' }GµQÌ€®ûnA«‹;t¨—b¤ðÜÚ<> u&H³•¹÷ÿëcÜ‚()m+,Óä½áÞ=È‘€«ÝÂÉkñ¸ñÔF7•][h´JGwèP5û9R¸÷XmÚ·Õ[€|p}üÍ,Gš‡H³ÅU¾¾.`k ˜þ¢x°Õ`s¼€ƒ޲SYjt_¡Ñ jRxÏðH”ÔTòþZ™ýh0~È`c>2ÒÖ÷„ñÁüm‘#QpÁQ^*›ãB£-HA‚T G¢¤pÍÛ¢)4“ …õk#>ÍÏó#PÚd«âxw‹Y‹’Š9=P‚£ŒÔ4!Æó…F[Hªgu7²ui¾bís…¤ÐRˆEL1ÚˆˆÛWLÔ}¦¼wj¤•?s¬^È|Kjÿ>å€9‚£â9ŠŸkS£r"£… R"ÕËÖfçZÏì”æÿ4"ï®Òƒ¿Z¯êÚ\kCQ(×m²´ñgŽCCáæÈ½€ËåâX Q¾óMYåa­]ØÄÊCP%;ûŸýû‡ 9ê&D § ß_¸È\Xd²z —æ»LVVVhèÝ;N:(­,+÷ÊEà–ƒ6­Y³¦OŸ>Í›7oÓ¦Í[o½uùòe×½¶¢S£tG/Óm¾ÔÅþ­ÍÜí©§ž’{è‰ùÝè ÿg~ºBÿïÝÌÐt?C“âõE½ÑÆÿ=ðTc‘ÿìot³ÿäÞ®dþÑÛÞvþsìÃ(ê<…Š£u _~ù¥ŸŸ_ddä‰'Ö®]{üøñ¥K—–-[¶Ä¯í–ÔXòË‘¨¨Äè¸"‡ï4´®xP‘û±iesáKj}7)âš6Ž>ÑñŠ£³ÙQíµLû{Ѓ{œÑ™W(vvT÷ö„¼ŽV¤§§/\¸0$$$11±J•*Bˆ3f,]ºô£>zûí·‹|úïé¿í y U[±zõê‚‚‚±cÇJ©Q1yò䀀€M›6÷U ÷F"ì.âÀR÷¿ÇÙÔh>h¤Ò!iWqvìŽ!"2ÚPÄâè°­ÿ)–ѱÿœ}-î@¹KÆÐúÏ£[Ú™v ÷Ž›»ãse ^õ¨8ZqàÀ//¯víÚ™Z¼½½cbbÖ¯_ðàÁˆˆ'_¯¨¢“וqöuž½—‡F³Ô’žnÿÛŽ ¯%æÿÃÂÂÒÓÓÍuötI{ÿœeÉŽ.¿ ½³\·ÒVîî w³czI ¢.X5‹Æ¬©3ûšÓoãl‰£ø«á.|… Ap,Ìh4fddT¬X±bÅŠæí 6Bœ:uÊ™àh#2:3õ×þWŽü#'&ºƒÕZ8=XPÔ!û…[9? ÃÞ¡¸´êVïò2€Û½{P _ÖM Î}JÿŠjØPîÈ„àhéÆùùùíBˆK—.ý÷o+ëð½í±|óïó† Ê|ù°¢Ë„ÙÝÜŠúž1ØÍ¸pNQÅæ¢Éñž½>ó§:¨êcRUg‹¦×c+ÁÑÒÍ›7…~~~íþþþBˆ+W®ù žý¾åØ€Çéõoo&ÇX 4 7nܰh¿v횸WwÐ!‚£%Ÿ€€€Â•Å«W¯ !Ló¬ô†àhEHHÈÅ‹¥¤h’••%=$wïäAp´"666??×®]¦£Ñ˜œœÔ¼ys¹{ ‚£}úôñòòúì³Ï¤ó… .ÌÎÎîÕ«—¯¯¯Ü½GñoU§m‹/ž={v5Ú¶m{âĉ}ûö5jÔhñâÅ…/Ó G›Ö¯_¿nݺ_ýµZµj­Zµ;v¬tE}"8À!œã‡à‚#Bp€CŽpÁ!8À!>rw@;Ö¬Y³zõꌌŒråÊ=þøã'N ’»Sp»Þ½{ÿöÛo•*UÚ½{·Ü]ƒ[dffvîÜyõêÕM›6-ü(ßfç£ç{@“nÞ¼¹jÕªÄÄÄÓ§O—/_¾aÆqqqmÚ´±XLoÿê Ž®‘ðå—_úùùEFFž8qbíÚµÇ_ºtiÙ²eåîÜëäÉ“eË–­[·®y#·¦Ô°eË–Ùzˆïm³óÑó= =yyy<|øp@@Àc=vëÖ­Ÿ~ú)%%eôèÑ#FŒ0-¦ÇõF”رcÇzè¡¶mÛž?^j™>}zÆ §M›&w×à^W®\iذá˜1cäîÜîÊ•+xçw6lذaÃÇ[,À÷€VùÑó= Iß~ûmÆ _xá…7nH-¿ÿþ{«V­ÂÃÃ=*µèó_=ç8ºÀêÕ« ÆŽ[¥J©eòäÉ›6m*((»wp£“'O !,Ê Ð¤®]»¾øâ‹+W®´µßZUäGÏ÷€&mÞ¼Y1eÊSí°Aƒ¯¾új~~¾é }þ«'8ºÀ¼¼¼Úµkgjñööމ‰¹xñâÁƒåîÜèĉBˆ:uêÈݸ݌3¾øâ‹/¾ø"**Êê|hU‘=ß𔕕åçç׸qcóÆ !N:%ýªÏõœãXRF£1##£bÅŠ+V4ooذ¡âÔ©Sr÷î"0Ξ=;`À€´´´råÊ5jÔèÕW_µ:mª-ý°}ûöÂò= aö?zÁ÷€F-X°ÀÇÇ2#9rDQ«V-¡ãõTKêÆùùù…O‚B\ºtI;çÎû×_=öØc•*UÚ¾}û /¼°zõj¹»â{@ÏøФFIÐdß¾} .,]ºt÷îÝ…ŽÿÕSq,©›7o !üüü,Úýýý…W®\‘»ƒp£³gÏ–-[vüøñ ZöìÙóꫯ~ðÁÑÑÑÕ«W—»ƒð¾ôŒïÍËÏÏÿöÛoÿñäççüñÇ•*U:þWOű¤ Ã7,Ú¯]»&îýå­úæ›o>l:Z!¢¢¢^z饛7o&%%ÉÝ;xßzÆ÷€¶ýôÓO]»v1cF¥J•-ZôôÓOKíºýWOp,)Ÿ€€€Â[\½zUašiýhÕª•â÷ß—»#ð¾`ï ÈÍÍ1cÆË/¿ü¿ÿýoÔ¨Q›6m2Ÿ ¥ÛõG ¹xñ¢´¯˜deeIÉÝ;¸‹ÑhÌÏÏ/|Íooo!Dùòååî <Šï}â{@« ^ýõ¥K—ÆÆÆþøã#GŽ,|Mo}þ«'8º@lll~~þ®]»L-F£1999((¨yóær÷îrâĉF½üòËí‡B„……ÉÝAxßúÄ÷€V-[¶ìÇìׯßçŸn«|¨ÏõGèÓ§——×gŸ}&Ù „X¸pavvv¯^½|}}åîÜ¥nݺ-[¶Ü¿ÿš5kL‡Z¼xqõêÕ;uê$wáQ|èßšd4—/_^¾|ùI“&ÙYLŸÿê™UíÕ«WŸ8qâìÙ³»uëÖ¶mÛ'NìÛ·¯qãÆC† ‘»kp¯wÞygРAS§N]±bE½zõΜ9søðáråÊÍœ9SË7*…5|èßÚsáÂéþã/¾øbáG{ôèÑ¿¡×õG׈‹‹«\¹òºuë~øá‡jÕªõïßìØ±Òœ|hØC=ôÝwß}üñÇ{÷î=~üx­Zµºwï>zôèjÕªÉÝ5È€ï}â{@{NŸ>-„¸yófjjjáGͧÈèð_½Áh4Êݨç8À!G8„à‡à‚#Bp€CŽpÁ!8À!G8„à‡èËĉÃÂÂvìØ!wGÄgŸ}öí·ßÊÝpÁñ‘» SíÛ·¯T©RË–-åî8ŠàòhܸqãÆåî8¡jPœüüü;wîÈÝ °Dp S§N ûðÃ-Úûí·°°°¨¨¨¼¼jÞ²{÷îÑ£G?ñÄ‘‘‘ øì³Ï,²Ý™3gÞ}÷ݧŸ~ºY³fíÚµ:tèì¬ÑW_}e>9FêÉéÓ§.\øØc5iÒ$""âùçŸOJJ²õ ‡jÔ¨QLLÌßÿmj¼víZ»ví5jô믿Êý¡Ð‚#uèÚµ«bË–-í6lBtïÞÝÇÇ';;ûÅ_\°`Áÿþ÷¿Úµk׬YóÔ©Sÿüç?_xá…Ë—/—äÝ?úè£AƒmÙ²%//¯J•*?ÿüó¼yóú÷ïñâEiãÇwíÚuåÊ•/^ü¿ÿû?£Ñ˜œœüÒK/mÛ¶Í©7Z°`ÁÇìëëûØc:thĈ›6m²ºpóæÍ tþüù™3gšÿñœ={öµ×^{ä‘G<ý!Ð:‚#uˆŒŒ¬R¥Ê©S§Ž=jj,((BUÏž=…k×®ýóÏ?;tè°{÷îuëÖ}ÿý÷)))‘‘‘gΜٺuk±ßzûöí_}õU­ZµÖ¬Y³cÇŽ7îܹóñÇ?|øðüùó¥e>úè£ëׯ>|Ïž=k×®MNNž2eŠÑhœ;w®Sïµzõê¡C‡îÚµë›o¾ùÏþ3pà@!ÄÒ¥Km-?zôè ¬]»v×®]Bˆ½{÷®Zµêá‡>|¸|ŸÍ"8P//¯gžyFÝ`08øÖ¥J•*Æf¹víÚ… „™™™999îÿ(èÁ€š˜‚ã˜1c¤1hÓ8õµk×ÞÿýR¥J-X° ::Úô”sçÎ9û.ÿûßÿ ¤ŸëÕ«'„(W®Ü[o½eÿYƒAº"77w×®]o¾ùfbbb‡bccݺYÞ}÷Ý¿þú«E‹œ6mÚ'Ÿ|âÖ· [œã@MêÔ©Ó¤I“ÌÌÌß~ûmëÖ­uêÔ‰ˆˆúí·ßòóó[´hažŽi+öYŒhÿç?ÿ1ýR¹rå?þøãÈ‘#æËäçç÷êÕ«mÛ¶ÙÙÙgΜéСÃsÏ=gz´T©R±±±ÒlžÓ§O»u›¬_¿~Ó¦M?þøÒ¥K4h°qãÆÂ-— 8PiŠÌ”)SnܸѻwoS{HHˆâرcÙÙÙRK~~þÊ•+—/_.„¸yó¦ÕW«]»¶bÙ²e7nÜZöíÛgºÈŽdüøñãÇOKK“Z®]»öæ›o¦¦¦6nܸR¥JÕªUûûï¿ùå—¯¿þÚTªüóÏ?wîÜ)„pëõÏ;7mÚ´òåË¿ÿþû¾¾¾3gÎôööŽ/ùÉPCÕTæé§Ÿž={vzzº··w÷îÝMíõêՋݺukÇŽ[¶li4ÓÓÓ/_¾üâ‹/.]ºôßÿþ÷ßÿ-]XÇ\÷îÝ—,YrðàÁØØØFýõ×_U«V½}û¶´L=öïßÿÝwßuïÞ½FAAA™™™7nܨ[·®tåm//¯·ÞzkòäÉ~øá¢E‹jÖ¬yãÆ?þøÃh4¾ð ͛7wÓ¦0“'O¾zõê| 忇~xàÀ‹-ŠŸ3gŽÜŸ­¡â@eªT©ÒªU+!DÛ¶m«T©bþÐÇ\íýàÉ’À¦222:tèßïœ-Z¤¦¦ª]£ xzzÊkôóÏ?+Y~îܹòòQQQ6)à÷߯P¡‚Õ¼víZÓ…9Rðw¯¯ïîÝ»ê)BˆaÆ©½ŪAƒÎG €ýbr Û¸qã†qê´1…ȦOŸny À;wÊnذA¾Ñ»woãSþóŸÿÈ1ôܹs‡B¬[·N~hÀ€ÆS!V¯^}È!òmãFQQQ-[¶B)R¤sçÎr£Ï€„Z­öõ×_7ÿPÅl1\©ÈÈȦºäädùFýúõeʔٿÏ’'M?Âv.Xzzº|ÃËËËòQ«§ã±<€Ó#8°bÅŠ•.]ZŽ2ÇŽ3}ÈËËËxxâµkײ²²ŒeffšžŒÐª´´´ÌÌÌŒŒ ù®ÙyéðÎ;W¯^5}ÔM™&K3 ‹Q²5Ì&åX}/ãùøø(ßÎE‹õ÷÷—Ë8sæŒÕe222äs:/^¼dÉ’J^öÊ•+ò ˉABˆ¥K—6iÒDy‘œÁ€Í4nÜø»ï¾B¬^½úÚµkÆù½{÷–G~sssCBBLƒ£——W©R¥nÞ¼)„øé§Ÿ¬Žê–.]ÚËËËÛÛ[NZ—/_6[}ùòeùFÑ¢EsMÂb”¼”ÕÌjªT©R%J”7Ezzzhh¨ò:ëÕ«'Ÿ rÍš53fÌ0›$.„¨\¹²§M›6tèоàŽ;Œ‡N>÷Üs³ 87Žq`3ƒ ’ûó222h¼‰Ñ¼yó.]ºdÖX©R%ùFnnî3&|}}}|||||äARN'/öÓO?™>Ýx7,,ÌÝýqÿVXÌãÓh4Æøû믿Û¯\¹R·nݺuë6jÔ(//ÏêsÇ_ž;wnÞ¼yf®]»ÖØ}øâ‹/*)fÖ¬Yò’%KšŽ›€‚#›yá…úôé#ß^¾|yttô¶mÛäÁ߃öéÓç½÷Þ³|VÓ¦Måñññ’$É·W­ZõÔSOùûûW¨PAî”§¹!>ÿüó}ûöÉ·92uêTùv‹-cÊtšóC1¦ºéÓ§£ÞŒ3öìÙ³gÏžbÅŠå7ªþÊ+¯ë0`À¤I“änלœœÅ‹ÏùÌ3ÏDFF\Õ+WÞ~ûí„„ùî›o¾iz %˜S{Z7§rãÆ ³QW­VkzYêºuëÊ7vìØ!?寿þ2^ò8&&f„ :u2vì?^^,+++$$Dnôððxå•WÚ¶mk<€/((ÈxýÓ³p [¸p¡ÜX­Z5cãŽ;äFww÷‡*F’$ã™ëÖ­;uêÔœœœüÞZfy:ž«W¯g¢¾ñƦÇþøãlçC‡™õ}úûûO‡$„(^¼øþýûË›ž[§lÙ²•*UªT©’ÙÑ¢ò!ªVŸÂyÈŽlìÊ•+111VÿRmÓ¦ÍÕ«WÍ‚£$I?þø£Õ "}ûö•O¬-ûõ×_­w²}ûvãb•ÓµkWÓG-¯c¶Y¬^9æÿþïÿ¼½½-ßkôèÑÜÎ;vìÈoâv… Ì®[øÀ“2úùùíÞ½;¿§ȘÀÆ·lÙ²víÚ%K–ìÞ½ûêÕ«žžžo½õVll¬F£ 4ÆGYëÖ­<øá‡îÛ·ïøñãeÊ”©Y³æ Aƒ¢££M{î¹ç:·k×®#GŽ †5jÔ­[wäÈ‘6`UXÌŒ3„›6mº}ûvhhh“µ о}û¨¨¨>úhß¾}ÇŽó÷÷¯V­Úˆ#6løÀçÖ¯_ÿäÉ“ñññ«W¯>vìXFFF… t:]£FÞyçbÅŠ=ðÜÜܼ½½+UªôòË/0à3Á@#ýsP&Ç@‚#!8@‚#!8@‚#!8@‚#!8@‚#!8@‚#!8<$Fí ÔAp|€Ó§Oëtºƒª];æL_!N³.N³"δ.N³".Œàø‹/V»ÀIñb'œiG8Óº8 vŠsqW»;•™™yâĉ5kÖ,_¾\íZØ%FHÒC´Û-I²^³Ã­ˆ“­‹³¬ˆF’³¬‹óüÔ?‚£u­[·¾råŠÚUNÇ™~íZÍ(ޏ"V×ÅAWĉÖÅJÞÒh4’p¸5‘„¤‘4’Sì§ú©TGë>ú裻wï !–,Y²k×.µËL8ô/)'ûµk¶:Ž»"fëâ°+¢IH¯ËßM!I·;ó¼õwjt°µ0_™Ã~À„p®ŸúGBp´®Aƒò-[¶¨] à\œì×®1£8ìŠüªŒëâ˜+"ä€bš65þ»:ÿä-ÇM÷¯‹ÿ¤˜¬ŒÃÿÔ?‚£íét:µK€³ÑŸ8¡ ÿû¶ÉgÌ´Ý‘„‡ëÿùµ« Žö#£?qÂú&“e¿èOœ»³ò[GYãN1_ƴűÖåŸÕBIsßz9ÄŠœÐŸLvÅ¿ Ë‘?`æÌ¦þ¸@Ž$8 ½^¯v ¸N§sô¢7±ú{]4!I³Vù̬4ÿu숿v«fR¼ÃìãJ¤ù·+Å´ËáÖEñïZho¿hLâßý¥òßY&?’c¬Š¸¯“Ô‘wŠ9k?õ.‚à8Gáµ<®Ñj»Ã‘w„éÿŽÉt@÷Ÿ¯vµkz„-I£1F.‡íý·ÈkÔXæ-óÏψõ¹2ŽÅY~ê çq‡ÓXc¬ßtƒ#2ÛŽ»:$ùA!G[IHÿ»?]Éë"iþ^@í2Æý³a$!i$‡='âý?)δ.÷“òøèqì[~¿’LÛ+DZýµëX«`uEsuäj$LŸû»÷îŸFGÊ[÷͆ÑÜ7WƱX›Cýw_Ú¥=ºXngZ‡ž€õŽ€}s²^§[Ʋ-¿-4B#9ÔŠHâßxbÌ[±Ââ}ëc¾S$á_êùÍ¡v¸"ß_V¬‹ƒb¨pN0›_¨r¨°õoÕÿŒíþ3q×ñŠ‘±x9²h„C~ÀLwéq·:æ8êÇʜӬˆpÉà…à—°aõKxlNw`MÊéÓj—`ÿfG§H–ëåXòÛŽ»kd§Sœá‡E8þŽ€`¨."´bEíÓú[~#¼PC~‰ê¾‰½Žó™_äu U°ÊÑëì=Ž0yòd½^_³fMµ k##Ú“'ðÞ?Q×j£ýs¬j¨‹àç¥d>²#r–Y1´¢Ú%Ø€±»ÎAÇv-9ͨ(€Â@p„ó²z #ÎÞ…½²:Wí¢ áÔ̲#©QmΔ«¬HvàÜŽpvNsµ§_®rİå¬x Ìª†3r¾«­8Ë2;ô‰lŒ+¥v ð$ጜìj+NÇ´ßÑ R#¸‚#œ‡n¹Zvd¨Ö˜þ¸f_<÷Ë/ºNjGXaù§ÙðØø&qGÜ/¿w—ú{ `#ÎÃÃuj— ‚#îG@Ø—•p2Gˆ x<–ÙÑ¥f“8‚#(\¦Ù‘ÔèÐŽ Ðq12çÀy€íq}g§Dp¶gõúήvºlçÃP5(\\VÂiá*†VT»pQ\V™@aá²N†à§¥š‡jØÑÉá´$!YfDÐH‚_c B¤ 8™™eGR#ƒà'gÌŽ¤FªbÅPµKþÆyá„ÝHŽà¡á„Ì¡1/’8 Î’ ûÄP5œœq„Úê\°OVÏtȹ¡:‚#œ™ÙqdGÄ,;Ò {@p„Ó²:†ìÀ³#©v‚cá´ò;¢‘#سüÆ£MÛ ‘P Á;b y‘°{ÀP5\Âé”Ój—Í8Bmu® ðä°GfÇ5’aŽØ«³aÈŽPÁ»“ßéu Á»vútŠÚ%#8@‚#!8@‚#!8œç; ÁŠN"¿^Fz[!8œ„Õ+òY½v€GCp8³ìHjl‹àp*ÆìHjlÎ]íx\JŽn$Dàpxf¡Ð˜ ‹€m1T p*Æj«se<‚#Ày˜×Hvl‹àpVgÃ"8œD~G4r¤#`+G€",…àEŽP„àEŽPÄU®³råÊ+V$''—(QâÅ_>|¸¯¯oËçää|ûí·‰‰‰)))¾¾¾Õ«Wï½÷ÂÂÂÔ^Õ¸DãŒ3ÆŽ{êÔ©:uêxzz®Zµêí·ßÎÎÎÎoyƒÁн{÷iÓ¦]¿~½aÆÁÁÁ7nlÛ¶íÞ½{Õ^Õ8pÔëõñññ6lˆß¸qcllì¡C‡¦M›–ßS¾ûî»}ûöµhÑbÓ¦MŸþùâÅ‹¿ùæ!ÄØ±cÕ^Õ8p\±bE^^Þ Aƒä–Q£Fy{{'&&æååY}ʾ}û„Ý»wwwÿ{(¿nݺUªT9sæÌ_ý¥ö ¨ÃùƒãÞ½{µZmLLŒ±ÅÍÍ-:::==]ˆ–‚‚‚„¦Q’¤7nhµZc”p5N%IJNNöóóóóó3mBœ?Þê³^yå•âÅ‹ôÑG»wïÎÎξtéÒ¸qã.\¸Ð¹sg///µ× @NÞ–••e0|||ÌÚ½½½Åý}Цt:ÝâÅ‹{ôèÑ£Gcc·nÝF­ð}u:Yˆ ÔÞ.íÂ… j—sìûT±bèéÓ)jWûðâºæÍ›«]‚½pòà(O.Y²¤Y»§§§"##Ãê³233§L™rûö툈ˆêÕ«§§§ïرcõêÕ/¼ðB³fÍ”¼¯^¯W{Õa.44Tí`Žb4óË:³_ì;E]–_ë–=D.ÂɃ£F£ÉÊÊ2k¿uë–ø§ßÑÒˆ#þøãQ£Fýç?ÿ‘[.]ºôúë¯<øÇ¬X±¢Ú«6#IV²£Ö¸8'?ÆÑÝÝÝÛÛÛ²g133SaœgmêÚµk[¶l©T©’15 !Ê–-ûî»ïÞ»wïûï¿W{ÀÆäìhŠÔÀ*'ŽBˆÀÀÀôôt9)¥¤¤ÈY.Ÿžž.„¨P¡‚Y»Üјššªö €í™fGR#€ü8plÒ¤‰Á`ؾ}»±E’¤¤¤$__ßÈÈHËå+T¨àæævòäIéþ_œòñ •*UR{…Àf4šÿÉw­¶€ÌùƒcçεZí—_~)×(„ˆOKKëØ±c‘"Eä–Û·o§¤¤ÈÓÖ<<<¢££Ïž=ûùçŸÏ~òäÉÙ³g-Z´Q£Fj¯ØŒ$Ý÷¯€FN?9FQ¶lÙáÇÇÅŵiÓ¦aÆgϞݳgODDDïÞ½Ë$%% <8,,líÚµBˆÉ“'wêÔiöìÙëׯ¯Zµjzzúü‘——7vìØgžyFí€B!P˽ŒäEV9pB¼õÖ[¥K—^½zõúõ냂‚ºuë6hÐ ùŒ|XíP‡óǽ{÷jµÚ˜˜c‹››[tttzzú¾}û¬>eÛ¶m¦]»v¦Ÿ~ú©^¯¯Y³¦Ú+ 'Ÿ#IRrr²ŸŸŸŸŸŸi{xx¸âüùóQQQ–Ï:r䈯¯o™2e~ÿý÷ýû÷߸q£råÊM›6õððP{…¡ÑIR»€Kròà˜••e0|||ÌÚ½½½…ýõ—åSrrrnÞ¼Y©R¥>ø`Ù²eÆöråÊÍœ9³ZµjJÞW§Ó™µlذAíáÒ.\¸ v 6š’’¢v 6à\;Åy°_ì;EuÍ›7W»{áäÁQž:]²dI³vOOO!DFF†åSnÞ¼)„HNNNMM‹‹‹‰‰¹sçNBBÂW_}5pàÀµk×*éwÔëõj¯:Ì…††ª]£3ëe4®‹£÷>:ôNqbì;ÄNQ—å׺e‘‹pòc}||4MVV–Yû­[·Ä?ýŽfŠ/.ߘ2eJ»ví|||Ê”)óÞ{ïµoßþÂ… ëÖ­S{àŠ$Ih4掞Ǿ‚ãôéÓ“““mø‚îîîÞÞÞ–=‹™™™Bã}‚ƒƒ92yòä† ¾óÎ;7nÌÉÉyœ×lÒ¤‰Á`ؾ}»±E’¤¤¤$__ßÈÈH«OiÔ¨Qffæ‰'Lås÷T®\Yí¢Ñ˜ÿ³úO†}Ç!C†üòË/ÿûßÿºtéâéé¹yóæÔ¯_ÿƒ>8pàÀ£½fçεZí—_~)×(„ˆOKKëØ±c‘"Eä–Û·o§¤¤§­µoß^1vìXc¯çáÇÿûßÿz{{7kÖLí"Iæÿ¬>À“¡‘ìõk'77wÛ¶mkÖ¬Ù¼yó;w„!!!íÚµkÛ¶mppðC½Ô‚ ââ₃ƒ6lxöìÙ={öT­ZuÁ‚ÆÓô¬_¿~ðàÁaaak×®•[æÍ›÷ÙgŸy{{GEEeeeíÝ»W£ÑL:µE‹|;NǬj{“’’âsåjÓÿšsìçÃ~±Cì;ä²ßõö{:ww÷Æ7nÜ8+++!!á³Ï>;{öì¬Y³>ÿüó:uêtìØ±uëÖnnnJ^ê­·Þ*]ºôêիׯ_Ô­[·AƒÉgäÉOŸ>}üýý-Z´k×.__ß&Mšôïß?,,Lí­×e–#;‹ýö8 !®_¿þË/¿lذa÷îÝò¬”Ò¥K)RäÒ¥KBˆJ•*ÍŸ??((Hí2͹ì_!öÌÑÿ^7͈ùÝv8޾SœûűSìË~×ÛccZZÚ¦M›6nÜøÛo¿ !„¿¿ÿK/½Ô²eËÚµk !víÚ5cÆŒ#GŽŒ?þ믿V»^ Ðå—75‘}Ç%K–lܸñ÷ßÏËËBøùù½üòË-Z´ˆŠŠ2•nРAíÚµŸ{î¹½{÷ª]2€«°¯àøá‡ !|||^zé¥-Z<ÿüóùÅèááQ¼xq;§ ½ŒµØWpìØ±cË–-ëÖ­«dÖ ÝO’}Ç111q÷îÝù¥Æþýû¿üòËj×à¢ì+8feeÝ»w/¿‡Î;wñâEµkpQêU'%%½óÎ;Æ»‹-Z²d‰åbyyy’$•/_^íz\”úÁÑÍÍÍËËK¾}ýúõ¢E‹–(QÂê’>>>£FR»^¥~plРÁž={äÛ:îõ×_=z´ÚEÀœúÁÑTÏž=£¢¢Ô®VØWp1b„Ú%À:•ƒãÒ¥K…Ï=÷\XX˜ñnÁºvíªnÍ®Iåà8iÒ$!Äĉåà(ß-Á@*Çþýû !ªW¯.ß6l˜ÚÖ©ß{ï=Ó»½{÷V·äǾ®»¥rãÖ­[ö)111êÖ àšTŽ}úôyاèõzukpM*Ç6mÚ¨½ ˆÊÁqêÔ©jo(Âä(•c WŽ€"\9Špå(bדcnß¾““£vBõG«:ôÕW_=z455U«Õ?ûì³ýúõ Q»4×ew=޳fÍêܹóÖ­[SSS‹+V¼xñóçÏÿðÃ-[¶\¶l™ÚÕ¸.û ŽÛ¶m›3gŽ››[llìÏ?ÿ|ðàÁýû÷oݺµgÏžBˆÉ“'8p@í\”}ÇeË–I’4tèÐ1cÆ”+WN£Ñ!‚‚‚FŒ1räÈÜÜÜo¾ùFí\”}Ç£G+V¬{÷î–uëÖÍÃÃãСCj×à¢ì+8 !Ê”)ãîneÊŽtûöí”””ˆˆµkpQö;wî,IÒû￟››kÚn0Fm0š4i¢v.Jåó8îÞ½Ûô®››[‡V­ZÕ¬Y³Î;W¬XQ£Ñ¤¤¤$$$œ?^§Ó5oÞ\Ý‚\–ÊÁ±GVÛ/]º4kÖ,³F½^_¯^=½^¯nÍ®IåàØ¦Mµ·Q98N:Uí-`{'ô'Ô.ÀöìkrLÁFŽÙ¸qcµ«pQ*÷8Zº~ýú/¿üröìY³öìììM›6¹¹¹©] u¡‘„¤¼ÀáØWp¼zõj—.].^¼˜ß]»vU»Fë$!YfDR#p&ö¿ù曋/Ö©S§uëÖëÖ­ûõ×_Çïááqüøñ%K–tíÚu̘1jט/³ìHjNƾ‚ãöíÛ‹+6{öl//¯Æ7hÐ 44´^½zBˆŠ+~øá‡¯¾újXX˜ÚeæKÎŽ‚Ôœ‘}M޹|ùr… ¼¼¼„¥K—öõõ=räˆüPçÎ}}}¿ùæµk4§ÓVÛÕ®¢bÅPµKÀáÙW£B«ý7Ë–/_>%%E¾íææ¦Óé:¤væ,k´Úàèì«Ç±L™2gΜ¹}û¶|·\¹r¿ÿþ»ñQFsáµk,ˆq„Ú8f iØØ”}ǦM›fgg6ìÔ©SBˆ¨¨¨sçÎíØ±C‘––öÇ«]c¾ÌŽk$;ªN’¬gG%ƾ†ªccc7nܸyófI’æÎíîîþÞ{ï=ûì³ÇÏÊÊjÙ²¥Ú5Zgu6ŒÕsôàI’³£d²Ìîåì«ÇÑßßéÒ¥C† ©^½º"88xìØ±999;wîLOOoÒ¤É[o½¥vÖå—Iª3íw$5ð84’ݑ޺uëðáÃ+VT»Eèe´Crv´û»kIII e¶»Ýa¿Ø!vŠÒétz½^í*T`_CÕfnß¾]¤HOOϺuëª]ËC×… Wü,Ù‘üŽb4k'GðPì18:t諯¾:zôhjjªV« ~öÙgûõë¢vip f‰ÐØÝÈP5þŽqBÌš5«sçÎ[·nMMM-V¬XñâÅÏŸ?ÿÃ?´lÙrÙ²ejWÇcó›g ”°¯à¸mÛ¶9s渹¹ÅÆÆþüóÏÜ¿ÿÖ­[{öì)„˜tûöí”””ˆˆµkpQö;wî,IÒû￟››kÚn0Fm0š4i¢v.Jåó8îÞ½Ûô®››[‡V­ZÕ¬Y³Î;W¬XQ£Ñ¤¤¤$$$œ?^§Ó5oÞ\Ý‚\–ÊÁ±GVÛ/]º4kÖ,³F½^_¯^=׼€êTŽmÚ´Q{ @•ƒãÔ©SÕÞPįU-„¸råʱcÇΞ={ïÞ½Š+V©R¥lÙ²jàÒì.8^¿~ý‹/¾X¾|¹Á`06º¹¹½öÚkƒ òööV»@e_ÁÑ`0¼óÎ;û÷ï/V¬XÓ¦MCBBÜÜÜΜ9³eË–ÿýïÇŽ[ºt©›››Úe¸"û Ž .Ü¿­Zµ¾øâ‹€€c{jjjÿþý÷ïß¿páž={ª]&€+²¯€oß¾]£ÑÌœ9Ó45 !J—.=kÖ,­V»mÛ6µkpQö?dùP``à3Ï}ºF£‰ýùçŸ<¸ÿþ¤¤¤^½ziµÚÏ>ûl÷îÝj×à¢ì+8þïÿËËË>|ø˜1cÊ•+§Ñh„eÊ”>|øèÑ£óòò/^¬v.ʾ‚ãáÇ‹/kùP—.]J”(qøðaµkpQvsss/_¾èææf¥P­6((H’$µËpQv5M‰%Ο?ãÆ ËG333Ïœ9S½zuµËpQvÝÜÜ:tè——7räÈ»wïš>”““3jÔ(FÓ³gÏG{ñ•+WvîÜ922²~ýú£G¾~ýºòç^ºt©víÚÇW{ ¨É¾NÇóÆo=ztëÖ­M›6íØ±chh¨F£IIIù¿ÿû¿+W®´lÙòÖ­[[·n5._±bÅòåË?ðeg̘1wîÜ’%KÖ©SçìÙ³«V­:yòä¢E‹<<<ø\I’FŽyëÖ-µ· €Êì+8¶lÙR¾qíÚµ9sæ˜=º~ýúõë×›¶ 6ìgvÔëõñññ Bˆ>úhÑ¢EÓ¦M7nÜKZ¸páo¿ý¦ö†PŸ}Ç6mÚ<Ôò•*Uzà2+V¬ÈËË4hœ…£Fúá‡ÇŒ£Õ4XòäÉ3fT®\ùøñãjo•ÙWpœ:uªÍ_sïÞ½Z­6&&ÆØâææ½fÍš}ûöEEEå÷ÄÜÜÜ#FøúúŽ5ªGjo•ÙÑä˜Â IRrr²ŸŸŸŸŸŸi{xx¸âüùó<÷‹/¾8vìØ'Ÿ|âåå¥öz¨Ï¾zm.++Ë`0øøø˜µ{{{ !þúë¯üžxàÀ¯¿þº[·nõêÕ;zôèþ¯N§3kÙ°aƒÚÃ¥]¸pAí`ŽbŸØ/vˆ¢ºæÍ›«]‚½pòà˜-„(Y²¤Y»§§§"###¿g1¢\¹rC‡}´÷Õëõj¯:Ì…††ª]̱SìûűSÔeùµnÙCä"œ<8úøøh4š¬¬,³vùô:r¿£¥¸¸¸ .,[¶LÉùz\„“ãèîîîíímÙ³˜™™)„0γ6õÛo¿-[¶¬OŸ>5kÖT»|;âäÁQ˜žž.'E£””ù!ËåOž<)„˜={¶î:tBüøã:î•W^Q{…ÔáäCÕBˆ&MšèõúíÛ··jÕJn‘$)))É××722Òrùã’²ŒŒŒ;v”-[622²L™2j¯€:œ?8vîÜyîܹ_~ùå‹/¾(ω‰OKKëÕ«W‘"Eäenß¾}íÚµ"EŠ<ýôÓ 4hРé+=ztÇŽQQQ…qšIGáüÁ±lٲÇ‹‹kÓ¦MÆ Ïž=»gÏžˆˆÓk&%% <8,,líÚµj× `§œ?8 !Þzë­Ò¥K¯^½zýúõAAAݺu4hÜû…\"8 !Z·nݺuëümÙ²eË–-ó{4""‚ó28ÿ¬jØÁŠ ÁŠ ÁÑh隷 ‚#!8œÕ^FºÁæ$É<&j4B’Ô. ¨à+L³#©ÈŽ°Î˜I@æ*תÆåw£Y;9—EpÄßÌ¡Ü××·€å³³³¿û„„ .”*U*<<ü­·Þª_¿¾’÷:qB¯öê†N§S»½žïnE\"8Θ1cîܹ%K–¬S§ÎÙ³gW­ZuòäÉE‹yxxX]>77·Gðöö®[·î;w~ýõ×;v 0 _¿~j¯ ÀÙZÔEvWÎù‡ªõz}|||``à† âãã7nÜ{èСiÓ¦å÷”+V8p víÚIIIsæÌùæ›o¾ÿþ{Ÿ¯¾úêØ±cVŸ¢Ñˆ‡jp8ÎW¬X‘——7hР€€¹eÔ¨QÞÞÞ‰‰‰yyyVŸ²aÃ!Ę1cŒ]’aaa}ûö5 ;wî´úI²’5!Ij¯?€8pÜ»w¯V«‰‰1¶¸¹¹EGG§§§ïÛ·ÏêSRRRJ–,aÚ&„8þ|~od–IÀÉ8ù1Ž’$%''ûùùùùù™¶‡‡‡ !Ο?eù¬yóæ¹»›o™£G !Ê•+WàÛýIÀù8ypÌÊÊ2 >>>fíÞÞÞBˆ¿þúË곪V­jÖ²gÏžøøøbÅŠµk×Îì!%G7†‡ëäáo¨åÂ… j—sìûÄ~kJII)àÑæÍ›«] ½pòà˜-„(Y²¤Y»§§§"##ã¯`0–.]úé§Ÿ †éÓ§ûûû›-`Ö³hÌ‹÷·3]N}¡¡¡j—sìûÄ~ *øco9íÝe'b;ypôññÑh4YYYfí·nÝÿô;à×_8qâ©S§‚‚‚>þøãzõê¼¼”!00ÐêSòòò†úÓO?5mÚt„ äK#«‘윉󟎧I“&ƒaûöíÆI’’’’|}}###­>eñâÅ?ýôÓo¼ñÕW_)IBä›IÀi8pìܹ³V«ýòË/åã…ñññiii;v,R¤ˆÜrûöí””y.¡$IK–,)UªÔÈ‘#íÃÃ]ô€Y UFFFß¾}Ë—/ïéé½gÏž>tèÐk¯½V¦LOOϨ¨¨3fäææª½Ïù‡ªË–-;|øð¸¸¸6mÚ4lØðìÙ³{ö쉈ˆèÝ»·q™¤¤¤Áƒ‡……­]»655õܹs]»vµ|µöíÛwëÖMíuàœïX©ÌĮ̀¨¨sçÎuêÔÉßß?!!¡yóæ[¶l±:~xúô阘ƒÁо}ûòåËÿüóÏC† Ù¶mÛ÷߯öz86çŽBˆ·Þz«téÒ«W¯^¿~}PPP·nÝ $Ÿ‘Ç’Üï˜}äÈËG8±a0„nnnOæí>ûì³äää… vïÞ]1pàÀÚµk:tóæÍ– 2$##cÏž=uêÔBLš4©gÏž ,ظqãË/¿¬ö–sdl-<<\í`îôéÓj—sìûÄ~yòlø­aú­žßíÇW¡B…Aƒ}ñÅžžžZ­¶Zµj#G޼{÷®ühVVÖ‡~X¹reòåË÷ìÙóòåË6y_N”——gléÕ«—V«½té’åÂ¥J•Љ‰1m‘¯3qssëÔ©“í7‡+!8àTŒýŽ…7?ÆßßèСƻ&L˜3gΊ+Ú¶m«ÑhvîÜyöìÙ!ÄüùóçÏŸoù ¹¹¹ëÖ­ËïõÛ¶mkÖ"_Îô”ÌâŸ+À¥§§\íÖ­[ß~ûíäää9sæ„……ÊqGžåµÕv[åȈˆˆ¢E‹ï–,YR§Ó:uÊÃÃcæÌ™C‡ ˆˆ¨W¯^óæÍ[µjeº°ìöíÛ aK…úûû !nÞ¼iÚ(_ÎÏÏ/¿×9wîÜ{ï½·fÍš°°°Ÿþ¹qãÆ¶YÆ1Ž8}ºZµjz½>11ÑÏϯK—.f¯ U?Ô›öèÑcÁ‚]»víׯŸÏÂ… ³²²&Nœ(?7eÊ”O>ù¤o߾ǎ;~üx•*Uzõêeö":thݺu¡ï çEpÀIä—ÄlÞãøüóÏÍÃæ}jÔ¨œœùÑìììÉ“'W©R¥D‰!!!½zõºråŠMÞwùòåAAA±±±òÝŠ+vêÔ)))éòåË– ËÁ±R¥J6\q‚#NC’eF,Œ1ë•+Wöïß?::zäÈ‘¥K—Ž‹‹kÖ¬™$IBˆ^½z?¾\¹rC† ‰ŒŒ\¸pa»víÿ333Oœ8ѨQ#æßlܸq^^žÕ#“““‹+VªT©•+WΛ7oÇŽÆh‹ÇÁP5ÎCΎƤXHG:^¼xñã?~ÿý÷å»#FŒ˜:uêwß}׺uëï¾û®{÷îß|óüP¯^½~øá‡Ë—/=Î;^½zU’¤ÀÀ@ÓÆ€€!DjjªåòÉÉÉZ­¶R¥Jׯ_—[ªT©²xñâÚµkÛ|k¸‚#NÅØïXxócüýý‡j¼;a„9sæ¬X±¢mÛ¶fçÎgÏž BÌŸ?þüù–¯››»nݺü^¿mÛ¶f-YYYB///ÓFooo!Dzzºå+$''çååMœ8±S§NEŠùñÇÜ®]»#GŽÈÏ£!8àðÝh«Q´hQãÝ’%KêtºS§NyxxÌœ9sèС¡¡¡õêÕkÞ¼y«V­L–ݾ}»€!lyÔÛ”¿¿¿âæÍ›¦™™™B???ËWغukñâŽõÖ[wîÜéׯ_BBBÏž=m·á]Ç8àð$!™þ{`»Í¹»»Ëöë×ïÌ™3ñññ5jÔX¿~}‡jÔ¨qõêU³å½½½¥üY¾~`` V«5•NKKB[._¶lY³@ùÒK/ !Ž=ZÈ»ÂÉÑã€S‘G¨Mÿ·ù[üùçŸ÷îÝ+R¤ˆ|7;;ûرc111éééÉÉÉááá½zõêÕ«W^^ÞìÙ³û÷ï?wîÜ &˜¾ÂÃU»»»W­Zuûöí¦Û¶mÓh4f Ÿ={víÚµ7®R¥Š±Qîž”ÐñÈŽ8³¤XHÙ155uÆŒ#FŒïNž<933³}ûöz½¾~ýúcÆŒ™//¯¤¤¤×^{-!!aêÔ©•*UJJJzá…äGïܹsãÆ»wïÊwGŒ‘¸dÉ’ùóçûúú&&&Ï„G¦yؼÒétz½^í*pŸ””›üÚ‚ ±SìûåÉ+¤oÂ;Ohhh­Zµ¾ÿþûBß4OÊ#ì—ý®§Ç'T¨s¨á²ŽP„É1à!´hÑ¢B… jWuÀC˜={¶Ú%@5 U@‚#!8@‚#!8@‚#!8@‚#!8@‚#!8@‚#p }ûö-_¾¼§§gttôž={¬.vêÔ)M>5j¤öJ86wµ …@£’¤v¶”™™uîܹN:ùûû'$$4oÞ|Ë–-‘‘‘fKzzzvëÖͬ1;;{ÕªU¡¡¡j¯‡c#8€Ga0„nnnOæí>ûì³äää… vïÞ]1pàÀÚµk:tóæÍfK.^¼Ø¬qøðáAAAS§NU{³96†ªpÍx“ÐÐÐÁƒùå—>>>E‹­^½ú¨Q£rrräG³³³'Ož\¥J•%J„„„ôêÕëÊ•+6yßåË—ÅÆÆÊw+V¬Ø©S§¤¤¤Ë—/?ð¹»víš1cÆ‚ žzê©'°‰œÁg!IÖ³£­åÊ•+û÷ï=räÈÒ¥KÇÅÅ5kÖL’$!D¯^½Æ_®\¹!C†DFF.\¸°]»vÿŽ™™™'NœhÔ¨‘Æd]7nœ———ß‘ŽFwîÜéѣǛo¾Ù¼ysÛnÄP5NDÎŽ¦G7ÂÁŽ/^üøãßÿ}ùîˆ#¦NúÝwßµnÝú»ï¾ëÞ½û7ß|#?Ô«W¯~øáòåËAAAóŽW¯^•$)00д1 @‘ššZðsgÍšuáÂ…?üжÁ5p.¦ýŽ…3EÆßßèСƻ&L˜3gΊ+Ú¶m«ÑhvîÜyöìÙ!ÄüùóçÏŸoù ¹¹¹ëÖ­ËïõÛ¶mkÖ’••%„ðòò2môööB¤§§PjZZÚ'Ÿ|2hР§Ÿ~ÚæÛÁp|ŒP›>d£Q´hQãÝ’%KêtºS§NyxxÌœ9sèС¡¡¡õêÕkÞ¼y«V­L–ݾ}»€!lÉ¢N!ÄÍ›7M333…~~~”wçÎaÆÙhC»:ŽqÀñI’ù?«í…ÆÝÝ]žÓ¯_¿3gÎÄÇÇרQcýúõ:t¨Q£ÆÕ«WÍ–÷öö–ògùúZ­ÖlT:--Mœ_UwîÜY°`A‡ —PŽGœŽÜËhy¼£üùçŸ÷îÝ+R¤ˆ|7;;ûرc111éééÉÉÉááá½zõêÕ«W^^ÞìÙ³û÷ï?wîÜ &˜¾ÂÃU»»»W­Zuûöí¦Û¶mÓh4ù½ÎŠ+þú믞={öövGœ‹ 3;¦¦¦Î˜1cĈòÝÉ“'gff¶oß^¯×ׯ_̘1“'OBhµÚ˜˜!„1b=ìPµ¢wïÞ\»ví+¯¼"„¸víZBBB³fÍ 8§÷ÿþ÷?ooo®cCGœˆeL,„ì4nܸ]»vÕ¬Ys÷îÝ›6mª[·nlllnnnµjÕ¦L™rúôéjÕªéõúÄÄD??¿.]º˜½‚>> .ÌÊÊš8q¢üh\\Ü”)S>ù䓾}ûÊ-ÙÙÙIIIMš4Ñj90ÏfØ”8‹ü¢­{ŸþùM›6ݸqcÖ¬YçÏŸ6lØ–-[´ZmÑ¢E»wï¾k×®I“&mݺµY³f;wî´É…þ¼¼¼’’’^{íµ„„„©S§VªT)))é…^½sçÎ7îÞ½k\>))éÎ;ÑÑÑ…·½]æaó>H§Óéõzµ«À}RRR¸>©½a§Ø'öË“WXß…v­êÐÐÐZµj}ÿý÷…½ež˜GØ.û]O#ΈŽ!‚#ar x-Z´¨P¡‚ÚU@GðfÏž­v P CÕP„àEŽP„àEŽP„àEŽP„àE88*Óétj—(Bp@Mz½¾àRRRBCCÕ.‚¡j(Dp€"G(Bp€"G(Bp€"G(Bp€"G(BpÌ×Ê•+;wîY¿~ýÑ£G_¿~]íŠðèš7o®v 0ÇN±Oì;ÄNý 8Z7cÆŒ±cÇž:uªN:žžž«V­zûí·³³³Õ® @5G+ôz}|||``à† âãã7nÜ{èСiÓ¦©]€jŽV¬X±"//oРAr˨Q£¼½½óòòÔ®@G+öîÝ«ÕjcbbŒ-nnnÑÑÑéééûöíS»:uÍI’”œœìçççççgÚ.„8þ¼Ú¨Ã]íìNVV–Á`ðññ1k÷ööBüõ×_J^D§Ó©½0ÇN±CìûÄ~±CìØ ‚£9yêtÉ’%ÍÚ===…|½^¯öJØCÕæ|||4MVV–Yû­[·Ä?ýŽ.ˆàhÎÝÝÝÛÛÛ²g133Saœg àjŽV¦§§ËIÑ(%%E~HíêÔAp´¢I“&ƒaûöíÆI’’’’|}}###Õ®@G+:wî¬Õj¿üòKù¸F!D|||ZZZÇŽ‹)¢vuêÐH’¤v öhÁ‚qqqÁÁÁ 6<{öìž={ªV­º`ÁËÓô¸‚c¾Ö¬Y³zõêC‡=÷Üsƒ ’ÏÈàšŽP„c ÁŠ ÁŠ ÁŠ ÁÑfV®\Ù¹sçÈÈÈúõë=úúõëjWäê²³³.\øÊ+¯ÔªU«aÆ={öܹs§ÚEá_—.]ª]»öðáÃÕ.Bqøðá÷Þ{¯Q£FuêÔéÖ­Û¯¿þªvE®.''ç믿îСCdddãÆxòäIµ‹rQ§OŸÖét´ú¨«}ûmcÆŒcÇŽ=uêT:u<==W­ZõöÛoggg«]—ëÊÍÍíÑ£Ç'Ÿ|ríÚµºuëVªTé×_}ë­·¾úê+µKƒBH’4räHãå࡮͛7wéÒeóæÍ‘‘‘û÷ïݼy³Úu¹.ƒÁн{÷iÓ¦]¿~½aÆÁÁÁ7nlÛ¶íÞ½{Õ.Í-^¼8¿‡\ñÛ_Âc;~üxåÊ•6lxõêU¹eòäÉááá“&MR»4×µtéÒððð.]ºdeeÉ-'Nœxî¹çªT©ò矪]¤ „‡‡‡‡‡6LíZ\Ý7¢¢¢jÖ¬ùûï¿Ë-¬V­Z½zõ ƒÚÕ¹(ù7ØÀïÝ»'·ìÚµ«J•*/½ô’Ú¥¹ŒŒŒ½{÷Ž?^þeuàÀ³\óÛŸGX±bE^^Þ Aƒä–Q£Fy{{'&&æåå©]‹Ú°aƒb̘1rKXXXß¾} Öª;yòäŒ3*W®¬v!BˆU«VefföíÛ·víÚrK5Z´h‘––vøðaµ«sQûöíBtïÞÝÝÝ]n©[·n•*UΜ9ó×_©]«hݺu×®]—/_žß®ùíOp´½{÷jµÚ˜˜c‹››[tttzzºüÃ'/%%¥dÉ’¦aaaBˆóçÏ«]KËÍÍ1b„¯¯ï¨Q£Ô®B±mÛ6FÓ®];ÓÆO?ýT¯×׬YSíê\TPPÂ4#J’tãÆ ­VkŒ’(l}ôÑìÙ³gÏž]¯^=« ¸æ·?Ÿ¿Ç%IRrr²ŸŸŸŸŸŸi{xx¸âüùóQQQj×èŠæÍ›gùëõèÑ£BˆråÊ©]Kûâ‹/Ž;¶`Á///µkB9rÄ××·L™2¿ÿþûþýûoܸQ¹rå¦M›{ëñä½òÊ+‹-úè£J”(Q«V­ëׯϞ=ûÂ… ¯½ö?8OLƒ ä[¶l±|Ôe¿ý Ž+++Ë`0øøø˜µ{{{‹ûÿ^Ä“TµjU³–={öÄÇÇ+V̬gOÒ¾þúënݺիWOÎñPWNNÎÍ›7+UªôÁ,[¶ÌØ^®\¹™3gV«VMí]”N§[¼xq=zôèalìÖ­ÛèÑ£Õ. sÙo†ª—>>&++ˬ]>ψü—Tô믿Nœ8ñÔ©SAAAüq~‡ªà ˆ‹‹»pá²e˵ŋ—oL™2¥qãÆòí÷Þ{ïÒ¥K«V­Z·n]§NÔ®Ñ1â?þ5jÔþó¹åÒ¥K¯¿þúàÁƒüñÇŠ+ª] \÷ÛŸÇÇåîîîíímù·Eff¦Â8Ó O^NNÎG}Ô½{÷K—.õïß?11‘Ô¨¢ß~ûmÙ²e}úôa¾…])Y²dñâÅ=<<5jdÚÞ´iS!ÄñãÇÕ.Ð]»vmË–-•*U2¦F!DÙ²eß}÷Ý{÷î}ÿý÷j!\øÛŸG LNNÎÌÌ4=f9%%E~Híê\T^^ÞСCú駦M›N˜0Á‰†…|Ñ yŠ¢iû?þøã?†……­]»Ví]T@@À74i£Ü+œ››«vu®(==]Q¡B³v¹£155Uíñ7×üö'8Ú@“&MôzýöíÛ[µj%·H’”””äëë©vu.jñâÅ?ýôÓo¼1aµkB„„„@d;vì([¶lddd™2eÔ.Ðu5jÔèÛo¿=qâ„<T&ŸL„smª¢B… nnn'Ož”$É4Ðëõz!D¥J•Ô.sÍo†ªm sçÎZ­öË/¿4^?->>>--­cÇŽEŠQ»:W$IÒ’%KJ•*5räHµkÁß4hðÙý† "„ˆŠŠúì³ÏFŒ¡v®«}ûöBˆ±cÇç>|ø¿ÿý¯··w³fÍÔ®ÎyxxDGGŸ={öóÏ?7žGúäÉ“³gÏ.Z´¨ÙAP‘k~ûÓãheË–>|x\\\›6m6lxöìÙ={öDDDôîÝ[íÒ\Tjjê¹sç<<<ºvíjùhûöí»uë¦v€½¨R¥Ê!C>ûì³æÍ›GEEeeeíÝ»W£Ñ|ôÑGO=õ”ÚÕ¹¨É“'wêÔiöìÙëׯ¯Zµjzzúü‘——7vìØgžyFíêð7×üö'8ÚÆ[o½UºtéÕ«W¯_¿>((¨[·nƒ ’çäãÉ»pá‚";;ûÈ‘#–2E0Ó§OÿE‹íÚµË××·I“&ýû÷—¯´Uøûû¯_¿~îܹ;vìØºu«¯¯ï‹/¾øÎ;ïT¯^]íÒpüö×H’¤v pãEŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽ€“>|¸N§Ûºu«Ú…ˆ/¿üR§Ó-]ºT­²³³5j” ö–ø›¼kvïÞ­v!V¤§§0 ***&&æq–1cö°Ÿ§Â`04kÖlÑ¢Ej8$‚#g3sæÌ¢E‹¶oß^íBÀG}´qãF­V[£FÇYƸ¹¹ 0`ÆŒ—/_V»Àñ¸«]gÓ¨Q#ÿÚµk«òî'Ož\¼xq\\œ›››Ú[ÂüöÛoBˆï¿ÿ>88øq–1£îgàZµj5gΜ)S¦Ìš5KíZCp`cj½û·ß~[²dÉ—_~YíÍànß¾]¢D‰‚¡’ęûx ­VÛ¡C‡éÓ§_¸páé§ŸV»À‘0T àÉ1 ÷îÝ+¼×¿qãÆš5kZ¶lY´hÑB- '''77·ðV…­M›6Bˆ%K–¨]à`Ž€ÊÆŽ«Óé¦NjÖ~øðaNW¯^=9 ¤¥¥}öÙg-[¶|öÙgŸ}öÙV­ZM™2åêÕ«ù½l~2ªV­ú /˜¶ìܹsÀ€M›6­S§Nllì—_~i­.^¼8a„–-[ÖªU+&&æí·ßÞ»wokôõ×_[NŒ¸páB|||ݺu«U«õúë¯ÿüóÏù½Âþýû«V­}óæMcã­[·bbbªV­zèСüž˜˜˜xçÎfÍšYnŠ‚ P²¹äe’““G]»víjÕªµhÑb„ ׯ_—$iÉ’%±±±QQQ5;vìõë×-ËÛ±cÇÀ££££££ßyçmÛ¶Y.Sðîk¸téÒ:vìX£F .°/Ö¯_ß·oß_|ñ…^èÑ£Çÿû_ƒÁ ?ôé§Ÿêtº¬¬¬¬¬,Niùôü–yà§Ñì3`FùÖÎoMÿCP«V­ï¿ÿ^’$@1‚# ²Ö­[ !6nÜhÖ¾víZ!D»víÜÝÝÓÒÒºví:oÞ¼K—.•/_þé§Ÿ>þü7ß|Ó¥K«E¹iÓ¦õìÙsãÆ¹¹¹¿ÿþû_|Ñ­[·ôôty“'O¶nÝzùòåéééÏ<óŒ$IIIIo¾ùææÍ›êæÍ›7}úô"EŠÔ­[×ÛÛ{ÿþýýúõKLL´ºpdddÏž=¯^½úÉ'Ÿ?ýôÓË—/¿ûî»LÑØµk—F£©Y³æcP€Q£F­ZµªB… QQQ.\X¾|yŸ>}ÆŒ3yòäÌÌÌððð«W¯®\¹rèСfO\³fM¯^½~úé§âŋ߸qcóæÍo¿ý¶Ù1vܲcÇŽõèÑãÈ‘#wïÞÍË˳Z§$I#GŽV?õáÌoMmø¡Ý°aCxxø×_-PŒG@eZ­¶U«VâþNÇßÿýêÕ«‘‘‘•*UBäææ6jÔhذa%K–”ðòò’»*Ïž=ûÈo'„˜9s¦±ÏßßæÌ™ 7nÜB?~\ѹsgã$å.]º¼ûî»M›6}¨÷ªQ£ÆÐ¡CµZ­¼Êï¾û®âÌ™3ù-_¤H‘O?ýÔÝÝ}ìØ±×®]3fŒ‡‡Ç´iÓ ˜+}åÊ•ÌÌÌ›Ÿ×^{­qãÆòíªU«>ûì³BˆØØØúõëËÏ>ûlµjÕ„fƒÈeË–5k–———ÂÝݽgÏž]»vB|õÕWÊw‡¬dÉ’_ýu½zõüýýó«sæÌ™Bˆ>úÈ8¾ôÅ_+VlùòåW®\yØ7*¤O£U–kjÃmÅŠ…z½Þ¶5Îà¨OþÒ56•Ç©;vì(ßíׯßܹsŸyæã©©©ëÖ­{œ7½~ýzJJJÅŠÍf¿–(Q¢^½zÙÙÙGŽBÈÉuÔ¨Q¿ýö›|´e‘"EØ¿ÿ‡z»-Z˜Þõöövss“ <¼¬jÕªýúõ»råJÛ¶m/^¼8räÈ *°¼}~þùç£G>÷Üs]ºt)xa9x{{Û°KÆn¶5å2rÿ–YIÅŠKMM½}û¶ÂÝ!+_¾|ÁEÊ=©Vs¶Ü#û˜]ƒ6ÿ4æÇlMmû¡•ƒcjjj!8%‚#`Z·nýÅ_lذA§Ómß¾=##£C‡Æ8²lٲɓ'çææ–/_>**ªiÓ¦ÕªUKII™4iÒC½‹|„Ÿ|;''Gœß sÙ²e…O?ýôÊ•+÷ïß¿mÛ¶_ýõÈ‘#ûöí›3gN§N&Ožl5!Y•ßùq vëÖ-ù{ýôéÓ7nÜ¿éóãááa\/›`º¹Ÿå¶Òh4nnnZ­¶H‘" w‡Lï.@eË£·sN"[}ÍXÝÚfkjÛ­üj÷Ý0Cpì‚188Põ3ŽSߺuëÃ?,Z´è¼yó4h`|Ê#¦véÒ%ãÔT¹¬D‰£G.øYF>ëŠ"''gûöíï¿ÿ~BBBãÆ›4iR¨›e„ ×®]{öÙg÷íÛ7iÒ¤Ï>û¬€…Ÿzê)!„ {¿L7×ãKII1k¹|ùrVVV¹råŠ-ª|w(!÷5ZíV”;#-»?²á§ÑŒ’­mÛ­üQ)]ºôcV¸ŽqìBHHHµjÕNŸ>}øðá_~ù%$$ÄxØÜáÇ óÏ>kú=-þ™P0³µiÓ&ãíÀÀÀÒ¥KŸ:uJ>ÆÎÈ`0tìØ±aÆiii/^lܸñ«¯¾j|´hÑ¢Mš4‘gó|ÁÇ·fÍšÄÄÄ_|qÑ¢EaaaëÖ­³suçS||W®\™4iR©R¥>üðÃ"EŠ|òÉ'nnn'N, CÑËË+,,Ì,R(¤ds=¦óçÏ2äöíÛBˆ¼¼¼E‹}ûí·îîîýúõS¸;êí,„;v¬qVÍÕ«Wû÷ïçÎ×^{Ítàû¡<ڧц[Û†Ú?ÿüSXLlP0†ª{Ѳe˸¸8½^ïææÖ®];c{ÅŠ›4iòË/¿4kÖ¬víÚ’$éõúëׯwíÚuÑ¢Eÿ÷ÿwóæMù%¦Úµk÷í·ßîÛ·¯I“&U«V½víZrr²··w™2eîÞ½+/Ó¾}ûß~ûíûï¿o×®]pp°¯¯ïéÓ§³²²*T¨ Ÿy[«ÕŽ=zÔ¨QS§NýïÿûôÓOgee:uJ’¤.]ºX½ÖˆMH’4jÔ¨ÌÌÌ?þXN*Õ«W—/|2qâDùD3VÕ«WïÛo¿={öl~'åÉ’Íõ˜t:݆ 6mÚzñâÅììlùdCÆR¸;JûöíwïÞ½fÍšŽ;>ýôÓ§NÊËË‹ŒŒ4hÐ#¯Å£}m¸µmø¡=pà€F£1»€‚ÑãØ‹€€€çž{NѰaÀ€Ó‡¦OŸ>`À€²eËÊçwŒŽŽ^½zõ˜1cºvíêææfõ€åÊ•ûßÿþ×´iS­V»cÇŽ'NýõצWfÊ”)ŸþyãÆóòòΜ9:dÈÕ«WOjÓ¾}ûo¿ýöÅ_ôðð8~üxVVVýúõgÏž=a„ÂÛ‹/Þ½{wƒ Œz ! ’˜˜¸aÆüž#„°¼–Ý)Ù\é›o¾?~ü /¼––æëëÛ¼yó¥K—šNW²;”ÓjµÓ¦M›>}zLLLnnîµkמ{î¹#F,]º4¿‰ç =§ц[ÛVZI’öîÝ[­Z5ùÐX il8g€}º}ûvzzz¹rå”O‚vP’$5oÞÜßß?¿«$+á:›Ë¨µµ÷îÝÛ­[·¸¸8ÓÞ}D#àüJ–,Y¾|yWˆAæÍ7ßüã?gâŽël.{ ÖÖ^½zµ¿¿¿é©R(ApàT:vìX¶lÙo¿ýVíB`¿ÒÒÒÖ­[÷Î;ï<ÚéEWFpàT<<<>øàƒåË—_ºtIíZ`§fÏžöÆo¨]àxŽœMttôСC“““Õ.öÈ`0xxx|üñÇZ-߀ÀCcr áï-(Bp€"G(Bp€"G(òÿ§€­=pôÜIEND®B`‚statistics-release-1.6.3/docs/assets/geofit_101.png000066400000000000000000001064341456127120000221350ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A€IDATxÚíÝw\×þ7ð3ì" H ]¥%€Ø(‚AAĈ±wÑ$ÖhTìÆàØ07Æ®ññ&æÚÐD1–(Xˆ-`ÁB@ jHQ J›ç“ÌÝl†ea`÷ó¾¾rÙ³³3§ ³_Μs†aY–ÔEOì @Ë€ÀAà‚ pA8€ @ŽšwðàAF˜’’±3Û¬­\¹’VÔˆ#êûÙÇûí·ß~ûmaa!—øùçŸÓúûû‹]¸æ®!•¯¶’’’3f´mÛV*•¶iÓ¦¬¬Lìj¨Ÿ5kÖÐJ §)JO9UÅlAÅWúû¥ƒê[Mp x6¤€Š;l¤Ë.ãÍ“Tì 4Š &¼xñ‚ròäÉÐÐP±³‚,]ºtÇŽôgÚ|ZIU1[Pññû¥#õ nµ¾z[(Žš×ºukgggîeEEÅãÇéÏ­ZµâÞÒÓCo“jÓ¦ m{{{±óJ?~œþ4bÄÙ_–Jé)§ª˜ÚW|#Ê%Hã÷BŠË¸è8j^xxøýû÷¹—?þøcÿþýéÏÇïÔ©“ØTîþýûÍ|Ÿ !v.šæÓLÜŸX‹/~ë­·ÄÎŽ(=åTSûŠrD¹iü â^Hqz¼DA‡kÈþ& 4ˆ&6ŒK  ‰+V¬àËÊÊV­ZfkkkkkÛ¿ÿeË–•––òTv<Êü1qâD+++WWW[[ÛuëÖ)n/ä(Â÷©j4Ì„ hzll,Oækkk÷îÝâäädhhèääüŸÿü§ªªŠn°téR†a¸;}ýû÷g†S58¦¾|þüùÂ… ýýýÛ´iãíí½víZîèªTUUmß¾=00ÐÁÁÁÄĤK—.o¿ýöµk×ê[:ÙœŒ3æîÝ»'Ntvvn׮݄ nܸA¹pá¸qãœ_{íµ´´4µ›^ÑãÇçÏŸЦM›×_}Ô¨Q™™™êVVaaa~~~mm-}Y\\œŸŸ_]]-—çêêê>ø ]»v|ðzͧF¥©òàÁƒqãÆYYYÙÙÙ9òòåËŠÛÈrªŠÉS|Õ^g-Õk|¸ìÆOÓcbbx¶;v¬Ò3yôèÑtƒ%K–(¾ûâÅ –e·oßN_úùù©]Ààà`OOO¹ÇŒÃSá/_¾ìÞ½»â!†ùôÓOe·¬³t²9ñöö¶²²’ÝÌÚÚúã?Ö××—; wÎ4°™~üñG[[[ÅR,X°@ÂÊ>|¸âGîܹ#—“wß}—þ¼bÅ õšOJSêòåËvvv²iӦ͠AƒèϤ›ÉrªŠÉS|ÕÎ_KõÚÿÎóû¥Ôùóçå*ÜÕÕ•;Ϲ Ìd“µx™á©ž¶Pz :~ü¸âÞ¦OŸÎòRï$øKZ¯ )Wd¹ÖÑ××ß¾};ÿ……U¸þ‹~Wï:¦#86:þÀñáÇܻ?fYVö67!¤  €eÙ¬¬,úÒØØøÕ«W,Ë–——s#) ß|óÍAƒµnÝš¦ØÙÙ•––ªÊ’lŸ%!ÄÆÆ¦OŸ>&&&\ÊÑ£Gé–Â"|Ÿ ÷íÛÇýööë×ïwÞéܹ3wˆü‘eÙ§OŸæååq™üÏþ“——W[[Ë*»â¨]@''§=zr)—.]ª³ÂŒŒ† Ù£Gš"•Joß¾-¼tr9ÑÓÓóòò²´´”»ºyzz¶mÛ–{Òðf*))áþ¤éׯ߇~8aÂnœî_|Q¯ÂÊ8¶k׎{‹~ «×|õ­4E¯^½rrrâ Õ³gOÙaÍD£c}«]±–ê»þ3œç÷KQEE…ƒƒݲU«VÜKÙ ÏdÓ´¸ÌðÔO[(^‚denn>jÔ¨îS_}õ•ÆOB¿¤õº*½°Ó—‰äæÍ›õºþ‹~Wï:¦#86:þÀ‘eYúî÷ßϲì! ÃÐÄo¿ý–eÙÿûßôå Aƒè§âââhŠ©©)w®_¿~ûÛzÉ’%ª²$ûË3xðà—/_²,ûÛo¿q9éÝ»w}"|Ÿ §L™BS.\È}°[·n4qýúõ\" ù„&Þ¾}›»èðüÚ»woºM||<—&·7¥“ÍÉ‘#GX–­¬¬ìׯ—¸eË–ekjj¦M›FS¬¬¬ÞLË–-£)²ÝŸŸ|ò Mttt¬Wa•RÚj²yîØ±ãîÝ»/\¸p÷î]µ›¯¾•¦èÓO?¥Û´iÓæÂ… 41**ŠÛÏw¶ªbªJXí<µ¤Æê<ÃUAÎæÍ›éffff™™™´†§OŸÎˆ f²iZ\`fÔ8cÏîXNNN………r‰}úôiŒ“Pø/©À ©l‘‡ B/,^X5ÈMqÐHóÕ«Ò¨/^zôHíš×H5ò{õêÕãÇ?~üêÕ«±cÇîÞ½ûÉ“''NœàÖzàÖ9ÓxéxÔÙLЏqîÕÕկ˰°°077777722^Xh‚æS$‘H\\\èÏÜ5B˲BV¬/!ÕÞØ{PÃ0\E>}šK¯®®>uê”z™lšo²c†»gJ‡*QüñG¯^½zõê¢t„@CNÂFý%•»°pykÕªý‹´!×U4~V4ñu¬ÅAàØ,p]‰ôzêçç'‘HlllèŸhéé鄆adÖÉ-Öõ¯ý‹[–6;;{Æ ôgÙ/ªTVVFFFVVVB~ÿý÷Å‹Óô!C†Ð5j¥Î}rwR.^¼È Ó9tèP×»?ÿü“ë·à.:?ÿü³â—\~xÞÕH5ò»}û¶½½ýÝ»w !R©´ÿþÜ\Nz‹J½Ò©­ÎfRÄýy“””D£LBÈÁƒ_{í5+++ggç?ÿüS`a5¥ šO)z7@î¸k×®½uë–Æ%¤Ú{<ø¿úöíKؼyó;w!,Ë._¾\nÑ1á™lšW£ÆøëAHmÚ´‰ë®KLL¼páÂ…  TÝUWû$Tï—T`«ªª"##é-²ßÿ[ޱ×ÿ&¾Œ7ñu¬ÅÁ#›…ž={¶iÓ†»qSäüüü¸q!]»v•]vÑ¢Eÿïÿý¿üüü’’’ÀÀÀÐÐP‰DròäIº¶¾½½½Ü#T9tè‹‹‹§§çåË—éÍJ==½Õ«W7ä(üûäzR+**||||||ž>}ÊnæabbbbbB‡M›6mÏž= ÃüðÃJŸÚbnnN·ü¿ÿû¿›7oΟ?_n½_ÍV#Úp?®®® ¨öI(ðФvé…¥C‡—.]¢_j‰dÍš5ôÝz]ÿźŒ×«Št‘Øëi¿:×q¤ÌmvèÐ!š¸víZ.Qvu+êâÅ‹J—xprr:{ö,O–¸µ¬úôé#7îD*•Ê®ò/ü(õÚ'·þÇÕÕ•û+ŸgÇqãÆ)~[/÷Ýwßå1qâDÙÍx9Pß Y~LÎO?ý¤êÞVpp0]óLx锿d×®]4±sçÎ\â¹sç¸&¨o3)=Êwß}§ôOíY³fqK@ ,¬Rü«âÉÕ|ÛO`¥)5yòd¹#sƒI4¸Ž£Àj篥†ìAé®ô÷K©ÿûßr_ö&&&ÜY-ûä!™l²˜¥õÀÓJχC‡q£ôd-[¶Œå¥öI(ü—Tà…”+²¹¹¹\i«V­vîÜ©ôŒâ(½þ ?zÏ ¥'yC®cZ·ª› în5ùg£Ò ¨îÝ»_¿~}åÊ•¡¡¡¶¶¶VVVýúõ[¾|ù7…ÔÒÒòüùó3fÌpww·µµ5jÔ‰'fΜ٣Ùç—_~¹fÍš.]ºûøøÌ›7ïÂ… uÎ@$„$&&véÒ…üý(ˆèè謬,î‰Þ{öìáî}$&&Nœ8ÑÆÆÆØØ¸sçÎ<“(^uêÙ³g^^ÞÊ•+ýýýôõõ-,,wìØqêÔ)nâžðÒ5œfR4dÈk×®MŸ>Ý××·uëÖ®®®#FŒHOOÿì³Ï¸¡K «)MÐ|J}ñÅ\oÍСCOž<Ù§OŸÆ8–joì=Èþû5}úô“'OŽ9ÒÁÁ¡mÛ¶#GŽ<þ¼Ò‡¹ ÌdÓ´¸À̯#FŒ¸qãÆÌ™3ýýýMLLœ|æÌ®—NµOBῤõ-`pppzzú!CÚµkgoo?vìØS§Nq6 „_ÿE¼Œ7ñu¬…;rðwN4Ÿ}*UYYyèÐ!®SVË4v隬™tÄå˗ׯ__RR"vFZ˜wÞy‡ž‡Ÿ}ö™ØyiñpBÃGhaôõõµx|‰v—NûøùùÉÞ9ï½÷}xA@@÷ˆ¼/^œ8q‚þL»Ø¡!pBCàÂÁÁáêÕ«„«W¯¶oß~̘1ÅÅÅ‹-¢ ìuêÔ @‹ƒ1ŽÐ(/^Ì0[ºtéo¼áççGW˜zíµ×öìÙ£ëcÅZ ô8@£022:yòä¾}ûþóŸÿÜ»wï÷ß§ë 0 **ÊÔÔTì @½1ìß«›ðÀ­j#‚ÀAà‚ pA8€ @Ž G#‚ÀAà‚ pA8€ @Ž G#‚À‘Š-äáá!v åääˆq pl:{>)òðð@mpP²P²PrP!²P²šIm4“l4=ܪA8€ @Ž G„aYVìtèÐÈ‘#ÅÎHÝ$‰D";‚°,;lذÔÔÔnݺMœ8ÑÀÀàÎ;Û·oÿÿïÿ]¼x±S§N„__ߘ˜î#Ÿ|ò‰¹¹ùÛo¿Í¥8;;×÷¸·nÝZ¹re``àìٳŮƒFÔ§OŸÐÐÐU«V5|W²'Õ•+WÖ¬YO¨ù())Y¼xqjjê³gÏ|}}ׯ_ß³gO5j©ªªÊÈȈûk‡²²²*,,»ˆZ#h?##£yóæ………µiÓFì¼Ô!--Mì,µ{÷îÔÔÔØØØõë×s‰W¯^ œ2eÊ¥K—!AAAAAAÜ»;vìhß¾ý† rܼ¼þøcï¼²²R*•êééÜÈzw;22R6ÑÛÛ{̘1_~ùå‹/éÛši544l¤rÕ«AiÏ–¦:‰«««O:•‘‘±mÛ¶ÚÚÚF*`Ãi¶Ô„Í›7çååíÚµëÝwß%„ÌŸ?¿[·n .>>ÕÕÕô­uëÖB®^½J_¦¤¤H¥ÒvíÚEEEEGG·oß^*•¦¤¤ÐwGeiiéââòÞ{ïÑKKKkkëÕ«W¯]»ÖÊÊÊÐÐ0  {÷‰³gÏfÆËË‹~œŽÁêׯ_\\ܲeË<== !ß}÷·óáÇӟƒƒƒ½½½Y–­ªªÚ%cçÎíÚµkÕªÕíÛ·Y–=~ü¸¡¡¡‹‹KLLÌ¢E‹ÜÜÜ$Éž={èN<(‘HlllfÏž=wî\;;;wwwBÈÞ½{UUѹsçßêß¿?!„«±_ý•2yòdú’†°³gÏ>yòdEEEç¹¹¹ŸŸ_›ñ´Å7>øàBÈÆÓÓÓ?Á0LXXØòåˇ &‘Hzôè!°„7¨³³sÛ¶m !ƒ ZºtiHH!¤OŸ>µµµr ÊßRªÜ¹s‡òᇪÚ`ÇŽ„ÔÔTúrΜ9„†až>}JSºuëfggGóÃT7n܈‹‹#„¬_¿žÖž³³³»»»™™YddäÆé¸z†+â/5OÍó+))a&""B6ñ¿ÿý/!äСCõ­¥ÈÈHƒ¢¢¢ýû÷oß¾ýìÙ³¯^½ª3j|qëìw=GÍÓÙ“ tAË Y–MHH „$&&Ò·dÇW¯^¹¸¸8;;Òw œœ\]]é·ÃWSSC7pvvæÂ8–eé8?//¯ÊÊJšH)--eYÖÕÕÕÝݽªªŠ¾U\\,•JgÏžÍíJ1p”³zõjBÈŽ;hnÝÜÜ|||ÊËËé»/_¾ìÕ«—««kuuõË—/œœìíí=zDß-((pppày¨ Y–ýúë¯_ýuº™¡¡a¿~ýÖ®]û믿ªj!cm‘’’¢*Ò}ñâ…D"‘Íá´iÓ¬¬¬ „´‚ð¥çÃÚµk¹ÅÆÆBhDÈ5(KñTBã£G!111ôe—.]èsiëééM:Uñ¤:|ø0!$--+5!äÛo¿¥/«««===œœ””§Ôü5Ïï—_~!„DGGË&žxð ÎvíÚµk×®QQQ•••ß~ûmttôªU«zöì9`À5šIH[¨bdd´eË–… º¸¸têÔ) `àÀo½õpYg+oPBH§NdÇq{xxܽ{Wvþ–â/KÂÃÃ7lØðüùsÚùHÇ´´4©TJGÔ‰càðOyQUjžš/++£ÃR•bY–V²ÜÀÊÒÒRBˆ¥¥e}«%--ÍÐÐûàÔ©S_¾|9gΜäädúw4GÐ!={öœ5kÖgŸ}F»:8,Ë…çßÐoЪª*úÒÜÜ\½ƒ¾zõjäÈ‘©©©þþþ :th¯^½|}}…|öùóçÆ 333KNNæúͽaÃŰ;vìxæÌŲh|Ò÷‹/¦L™2`À€3fp‰­Zµ3fŒ……EXXØ‘#GÔ …´9sæŒ5êðáçOŸNMMMJJòððHOO777W»’J¥r}uü-ÕÀà 80!!!===##ÃÑÑÑÑÑ1$$dÙ²eÅÅÅiii´Ó®N œŸÎ•ZUÍÛÚÚ²¼Ïv²µµÕÓÓ“›éòôéSB×k.•!‹ž‡7oÞl`……ÀtËG}ôÍ7ßÌ;—.üA¹¹¹Bnܸѷo_.ñúõë„ñܹs©©©[¶l™?>—(¤Ç±¦¦füøñ=:{ö¬\nÛ´ióæ›or‰·nݺqㆹ¹9OúóÏ?sï^½zU³Õhll|ìØ±‡ÊŽí@jݺµz{nH[ååå¹»»OŸ>}úôéµµµÛ¶m‹ŒŒÜ¾}{`` z­ Ê­[·ªªª¸h¾¢¢âöíÛ²uNêj©6AïÞ½MMMO:uéÒ¥>}úB‚ƒƒkkk¿ÿþû¬¬,:„WãT•š§æ—/_~äÈU;6l˜T*íØ±ãÙ³geÓÏœ9Ã0L}W)ÏÏÏ?|øp¿~ýèÌ'Šv^:995F…è ŒqÝbff¶eË–G}úé§\¢¯¯¯££cbbâóçÏiʳgÏ6oÞìääÔðÒy ²ßdÉÉÉeeel]Ø^¼xññãÇ?ÿüs???ÙtoooM›6Ó”ÒÒÒðððèèèÖ­[ûúúºººnÞ¼™[ʤ°°Pã XÒi°/^Œ—}JGYYÙªU«T=æQˆ†´ENNNÏž=7mÚD_êééÑHN___íVP¥°°011‘{_ZZ*÷¤Aþ–j`èë뇆†¦¦¦fffÒÀÑÏϯM›6k×®­s€£Ú‹Dª*5OÍÓ[ÕªÐíg̘ñ믿҉;„'Ož$''‡……)]q‰‡‘‘QLLÌÌ™3¹ÎéÚÚÚ 6H¥Ò°°°V8Pèq3nܸ]»výðÃ\ŠAbbâ¸qã|}}ÇŽ˲ì¾}û 8```ÐÀÃ…„„Ϙ1câĉmÛ¶ýé§ŸN:emm}îܹ£G†‡‡+ýÔ‘#G6mÚäåå%‘Hd—ôôôôõõݲe˰aü¼¼ÆŽ[UU•’’òðáý{÷Ò‡ËmܸqìØ±>>>ãÆÓ××ß·o_cILL422º~ýúG}TZZÊÓH×1¾víÚ¤Ú³g!dàÀ.\èÒ¥ËîÝ»¿üòK—cÇŽ;–~vĈ§NêÒ¥ËW_}µiÓ¦?ÿüs÷îݯC##£ãÇoß¾ÝÆÆæôéÓÛ¶m;wŸß™3gâãã²gµÛ¢U«VG}÷Ýw322V¯^––vþüyõZG=Nœ8Q\\üñÇ?|ø0&&æôéÓŠcIù[ªh¼kmmÍÝħ“Áyº&L˜pìØ1õü¨ªÔ<5/d·¦¦¦éééãÆKNNÞ°aÃo¼‘žžÎ=«úåË—ÅÅů^½²«E‹%''ÛÚÚîÞ½{ÇŽG]ºt©F*!ŒÚ½ô Š‡‡GNNŽØ¹hªNo†aˆˆ×†àR¦JAAÁk¯½Öð~Såâââíí-77_ëiq©ÕøâÖÙïzܪÐfŠ“LÔ†[Õ z@C˜†ïBM¸O M,<<œ>O§èf©AGЄn S¶mÛ&vPjnU€ @Ž G#‚ÀAà‚ pA8€ xr hÈ÷ÀA<· © p /zc±#@À­jÐfqqq à 2Dñ­„„†a®]»&v‰‹‹Ëˆ#èÏAAA>>>?ÄÏ?ÿÌ0̾}ûTUÑùóçß c¦¦¦†¾ÌÏÏgfÊ”)ÜÕÕÕ_|ñEPP½½½©©©··wdddAA·ÁÇÌð:vì˜ʼn·²²êÒ¥‹Æ+J#d´9à9©\\\ÆŒ#v¡%AàÚïðáÇ;‚H$‰D"v.aYvذaÓ§O¯¨¨˜8qbddä믿¾}ûvww÷›7oÒm|}}cdØÚÚʦ8;;×÷¸·nÝZ¹r¥§§ç²eËĮͻ~ýú¸qãìììLLLüüü«««¸OÙ“êÊ•+#FŒà¨ù())™5k–£££‰‰IŸ>}.\¸ j˪ª*©T*÷ˆµµµ»5àV5h?##£yóæ………µiÓFì¼Ô!--Mì,µ{÷îÔÔÔØØØõë×s‰W¯^ œ2eÊ¥K—!AAAAAAÜ»;vìhß¾ý† rܼ¼œþìííͲlUUÕ.;wîl×®]«V­n߾ͲìñãÇ ]\\bbb-Zäææ&‘HöìÙCwrðàA‰Dbcc3{öì¹sçÚÙÙ¹»»BöîÝ«ªŠÎ;§øVÿþý !\ýú믄ɓ'Ó—4„500˜={öÉ“'+**ê<ÌÍÍýüüêÜŒ§-nܸñÁB6nܘžž®øÙˆˆ†a–/_>lØ0‰DÒ£G­ ¼AÛ¶mK4hÐÒ¥KCBB!}úô©­­•kPþ–’UUUµdÉ’äädÙDz“zíÚµrïØ±ƒ’ššJ_Ι3‡Â0ÌÓ§OiJ·nÝìììh~¸“êÆqqq„õë×ÓÚsvvvww733‹ŒŒÜ¸q#W@ÏpEü¥æ©y~%%% ÃDDDÈ&þ÷¿ÿ%„:tHqûÈÈHƒ¢¢¢ýû÷oß¾ýìÙ³¯^½RoW5¾¸uö»£æéìɺ åŽ,Ë&$$Bé[²ã«W¯\\\œ é»………NNN®®®ô;‰Îላ‹«©©¡8;;sa˲tœŸ——Wee%M $„”––²,ëêêêîî^UUEß*..–J¥³gÏæv¥8ÊY½z5!dÇŽ4·nnn>>>åååôÝ—/_öêÕËÕÕµººúåË—NNNööö=¢ï888ðŽLIKKãJMùöÛoéËêêjOOO'''¥ùá)5Íóûå—_!ÑÑѲ‰'Ož$„|þùçŠÛ‡‡‡YXXp§¨§§ç•+WÔØ£p¸U ºbÁ‚]ºtY¹råÇåÞÊÌ̼ÿ~TT”••M±²²ŠŠŠºwï·^½½ýŠ+d‡¾uïÞ½C‡ôgÚû2aÂ}}}šB`•——B.]º”™™)•þ5¬¼¨¨ˆ{Kˆo¿ývÕªU³gÏž6m!$+++77766ÖÈȈn```yïÞ½ÌÌÌÌÌÌüüü ÐÎ!šóyóæñbüøñ1 ù?‘——wíÚµÄÄݰ°+W®,[¶ÌÕÕ•†¹êÒªèééÑ¥…òóóiÊŽ; ííí…´‚ð¥¹Z¸p!÷ÙU«V™˜˜ìß¿_6?ü-Å_–´´´ž={^¾|ùÓO?uss“{·mÛ¶]»v¥ãöž?žmllœžžN9{ölmmí Aƒ„T¸»»ûСCéωÄÛÛ»¬¬LÕÆªJÍSóÕÕÕߪÆU©©©©ìÌÌ̸6’“——W[[WPPPXXøÅ_üöÛoÇ/))©ï®@ ˜ºB*•&%%Ì›7Onšjnn.!„^äÐc¹¹¹tÌ™‡‡‡Ü„ .²!„ÐðB1…²°°ÈÈÈ8qâÄ;wrssoÞ¼)|•[·n½ýöÛ[¶l¡)wîÜ!„DDDDDDÈmüàÁ:î­[·n²éuN);wnïÞ½å¯^½úàÁƒ:sصk×®]»FEEUVV~ûí·ÑÑÑ«V­êÙ³ç€Ôh&!m¡Š‘‘Ñ–-[.\èââÒ©S§€€€¾õÖ[tÀe­ ¼A !:u’Çillìááq÷î]Ùmø[JUYlØ033³ääd.p¡ßÜ6lP\»cÇŽgΜQ,‹Æ'}¿xñbÊ”) ˜1c—تU«1cÆXXX„……9rD½ÀQH[ð˜3gΨQ£>|úôéÔÔÔ¤¤$ôôtsssµ[A ©T*×WÇßRJw²gÏž™3gš˜˜|þùçS§NåúG 80!!!===##ÃÑÑÑÑÑ1$$dÙ²eÅÅÅiii´§­N œŸÎ•ZUÍÛÚÚ²¼v²µµÕÓÓ+,,”M|úô)!„ë5—EÇ]È¢gÚÍ›7ß}÷Ýzí Ô€ÀtËG}ôÍ7ßÌ;—®ÖAÑ[7nÜèÛ·/—xýúuBˆ‡‡GxîܹÔÔÔ-[¶ÌŸ?ŸKÒãXSS3~üøG={ÖÆÆF.·mÚ´‘]¢åÖ­[7nÜ077§³Mþùçàà`îÝ«W¯j¶;öðáCÙÀ‘¢H­[·VoÏ i‹¢¢¢¼¼½¶¶vÛ¶m‘‘‘Û·o T¯T¹uëVUUÍWTTܾ}[¶ÎI]-¥¸Ïï¿ÿþí·ß;vìöíÛåî·*êÝ»·©©é©S§.]ºÔ§OBHpppmmí÷ߟ••E‡ðjœªRóÔüòåË9¢j‡Ã† “J¥;v<{ö¬lú™3g†éÔ©“Üöùùù‡îׯÛDÑ>E''§zí Ôƒ1Ž [ÌÌ̶lÙòèÑ£O?ý”KôõõuttLLL|þü9MyöìÙæÍ›œœ¾n0Ç û=—œœ\VVÆß CY¼xññãÇ?ÿüs???ÙtoooM›6Ó”ÒÒÒðððèèèÖ­[ûúúºººnÞ¼™[¤°°Pã XÒ¹«/^ŒçžIH)++[µj•ªÇ< ѶÈÉÉéÙ³ç¦M›èK===Ééëë«Ý ª&&&r/ãããKKKåž4ÈßRr;dYvÑ¢EíÛ·ÿꫯêŒi¡BCCSSS333iàèççצM›µk×Ö9À±¶¶V³¥æ©yz«ZºýŒ3~ýõW:q‡òäÉ“äää°°0Å—ŒŒŒbbbfΜÉu?×ÖÖnذA*•†……ÕkW ô8€Î7nÜ®]»~øá.ÅÀÀ 11qܸq¾¾¾cÇŽeYvß¾}000hàáBBBŒg̘1qâĶmÛþôÓO§N²¶¶>wîÜÑ£GÃÃÕ~êÈ‘#›6mòòò’H$²Ë zzzúúúnÙ²eذa^^^cÇŽ­ªªJIIyøðáÞ½{éÃå6nÜ8vìXŸqãÆéëëïÛ·OîæF$&&fgg¯\¹r×®]ݺu£ó¸ÏŸ?ÿøñãeË–¨·Û†´…ŸŸ_çÎ×­[wïÞ½Î;çää=zÔÒÒr„ ‰DVàaoo¿råÊŒŒ //¯Ÿ~úéĉ½zõâ–¤¤R)OKÉíðöíÛwîÜñôôœ>}ºÜ[#GŽTˆ‡‡‡ÓѺ4p”H$AAA©©©íÛ·WÕÁF{:?ûì³Ç?^S¥®®®VUófffuFç“'OÞ¹sçĉçÌ™cnn¾k×®òòrºr!$!!aݺu}ôѬY³lllâââ/^ìæænnn~ìØ±¬¬¬µk×Ò»ÿü» {Z·ÒÙ)ú  Zôr<²îÝ»G'ºrë8²,›‘‘1pà@[[[[[Û^¼x‘{KvÅ¥)ô^0].‡Š'„üñÇ,˦§§˜˜˜¼þúëÓ§O/,,ܱc‡µµõ›o¾ÉªXއ› #‡[%33ó­·Þ²³³³°°>~ü¸löΜ9Ó¿ºd‰™™Ùˆ¦×qdY¶¬¬lûöí½zõ²¶¶Ö××·µµ|8uêT'''GGLjˆn…á­PgƒÒÓÓÓûöíkffÖ¡C‡˜˜˜—/_*=7ø[Š#7îVV||¼ªÂB¬­­¹ú8Ç™3gÊn&»Ommí„ LMM}}}iVG-»ñ¤I“¬¬¬”Ž¿Ô<5/DqqñŒ3ÜÜܬ¬¬† ’™™É½EOÑ-[¶p)ÉÉÉÝ»w711±²²êׯßÑ£GîJ,Ç#êÛKªxxxäääˆ €F¡êôf†ˆx1ap)S©  àµ×^kx¿)Èrqqñöönà#¤[-.µ_Ü:û][ÕÚLq *€Ú8€†üsýÐ>@p§tJxx8}þžNÑÍRƒŽõ³mÛ6±³€Rƒ8°Ž#‚ÀAà‚ pA8€ @]YŽçÀû÷ïÏËËkݺuß¾}cccé#\U=zô7ä­¬¬ÎŸ?/vQÄ¡cbbâöíÛýýýóóó<˜››ûå—_©úȃŒŒŒäV:577WÜRñYîʱ82´tÚ8æää$%%ÙÚÚ&''ÛØØBÖ¬Yóå—_nܸqåÊ•J?RZZZRR¾eË!‡ =Rð 6ÐÚ?ÆqÿþýµµµQQQ4j$„,Y²ÄÌÌìèÑ£µµµJ?òàÁB¬ KûÇË—/ëéés)‰¤OŸ>EEE™™™J?’ŸŸOqrr;ïÐPqqqÌ?™™™ùûûïØ±ƒûÓQn==½:¼ýöÛ.\àßg„ JoeeÕ¥K±«A3\\\FŒ!v.þ'((ÈÇÇGUVÇŒÓ|ò#¢Ÿþ™a˜}ûö‰ÐZ~«šeÙ¼¼}ú„††®Zµªá»’H$‰„þ|åÊ•5kÖÄÇÇwêÔ©ÉÊ"wPÙü4ÞQZŠ’’’Å‹§¦¦>{öÌ××wýúõ={ö¬óSЧGUU•‘‘QMMìfVVV………bQGiyàX^^^SS£8©ÅÌÌŒòìÙ3¥Ÿzøð!!äã?vqqéÕ«×o¿ývúôéôôô?üpìØ±BŽëáá!ûÒ’“#ve讹sçöîÝ›{ùøñcŸÄÄĘ˜[[[¥Ûܹsgøðáï¿ÿ~ïÞ½;wî¬jW<òòò!~øahh¨ØÐ\dee?^S’––Æýüøñã”””¨¨¨¦,ŽÜAeóÓxGiJKKýüü}š¿GVééqÿþýššš€€WWW.ÑÄĤ‰K$÷µ®Ë´œèââB/]º4hÐ ;;;‡Aƒ]ºt‰ÛÞÅÅ%::úÊ•+^^^JGÅTTTÄÇÇ{zz¶nÝÚÉÉiúôéüñ÷nbbb×®]---{ôèñõ×_Ëîyþüù±±±¦¦¦†††=zô8räHuuõÒ¥K===MMMCBBnݺ%›­[·š››·jÕªK—.K–,©¬¬TZÆììì‘#G:::ÚØØ 8ðÇTUEEEo¾ùf\\\·G­¯¯O/Ñ„}ûö1 ÓµkWnƒ˜˜†a²²²!!!!´kÊ”)ƒ&„sµM9þ|xx¸••UÛ¶mßÿý?ÿüSÕqyÊ¢ªæÊå§¾ÕÎÓ‚J‹Æ_ógΜ ³´´ìرcll¬ªæ«³¹ùO9~{÷îµ··ç¾F]]]Gžžþûï¿×÷ô ão¼!ðÐÐèXm×½{÷ÀÀ@¹Ä¤¤$ww÷ï¾ûNø~ÒÒÒÜÝÝ—/_.—®XƒîîîunÐB)žÞj ,‘û§˜¨© øá‡„sçÎÉ&>yòÄÁÁAOO¯  @Õ6Ôœ9s!÷îÝãßLÑ7>øàBÈÆÓÓÓY–MII‘J¥íÚµ‹ŠŠŠŽŽnß¾½T*MII¡Û;;;5ÊÒÒÒÅÅå½÷ÞSÜaDDÃ0aaaË—/6l˜D"éÑ£}‹ëׯ_\\ܲeË<== !ÜõÍÙÙÙÒÒÒÚÚzõêÕk×®µ²²244 èÞ½{bbâìÙ³†ñòòâ6nÛ¶-!dРAK—. !„ôéÓ§¶¶–¾;|øpºåñãÇ ]\\bbb-Zäææ&‘HöìÙÃ_-wîÜ!„|øá‡ª6رc!$55U¶þ†yúô)MéÖ­›ÍOpp°··7­í¸¸8BÈúõëim;;;»»»›™™EFFnܸ1((ˆ¢´bë,‹ªšW<(—ŸúV;O *…?·”H$666³gÏž;w®Ó¿wï^Å‚ó77Ï)ǯ¤¤„a˜ˆˆÙÄÿþ÷¿„C‡Õ÷ôˆŒŒ400(**Ú¿ÿöíÛÏž=ûêÕ+!Ù¨5®l¹¶DÚÒ 2ÄÓÓ³¤¤D6qéÒ¥îîî/^Tܾ¶¶¶ººº¦¦F.ýìÙ³îîîëÖ­“KGà:ES×JþÐPããĉ—,Y²dÉ’Å‹Ož<ùµ×^#„Ì›7Ov¥áºuë!?þø#·™"Å?M©””n·¯^½rqqqvv.,,¤ï:99¹ººÒoAºþW\\œâŇeÙ/^H$’É“'s)Ó¦M³²²¢¯«««»»{UU}«¸¸X*•Ξ=›¾tvvnÕªÕíÛ·éËõë×B¼¼¼*++iJ`` !¤´´”ËÆÚµk¹ÅÆÆBh\Âޝ^½rssóññ)//§›½|ù²W¯^®®®ÕÕÕ<ÍQgàøèÑ#BHLL }Ù¥K:'ÅÅÅzzzS§N¥ïÊj‡&„¤¥¥q¥&„|ûí·ôeuuµ§§§“““âùËÂ_ór• …W; Ê…?·/_¾trr²··ôè}·  €¯R8ªjnþ‚óûå—_!ÑÑѲ‰ô~ÝçŸ^ßÓ#<<ÜÈÈHöaožžžW®\©3õ‚ÀQ8-¿UM ­©©9{ö,—²lzzº………ÒQºùùù;v¤Ã2dÑ;#Ç4`P#è†0õúÇÿ‘úî°Îì}ýõ×ëÖ­[·n]BBÂîÝ»íìì6nܸyóæºËÅÈï|üøñ1ÿ4~üø:÷“™™yÿþý¨¨(+++šbeeuïÞ½k×®Ñ{{û+V( §§§Ç0Ìùóçéš„;vÚÛÛB.]º”™™)•þ5f½¨¨ˆ";D§{÷î:t ?Ó^¥ &èëëÓ:tŒÛÞÊÊjáÂ…ÜgW­Zebb²ÿ~ÙüdeeåææÆÆÆrÏß200ˆŒŒ¼weÎjÛ¶m×®]éH¸çÏŸgggGGG§§§BΞ=[[[;hÐ !»rww:t(ýY"‘x{{—••)nÆ_þšç'¼ÚëlA¹ÍÌÌÌÏÏ_°`íG$„ØÛÛÏ›7'“ªš›§àÕÕÕߪÆåÜÔÔTö@tl-Z½äååÕÖÖÆÅÅ~ñÅ¿ýöÛðáÃUÍR€Æ¦å“c!cƌپ}ûÖ­[ûöíKçÄ$%%=}útúôéÜ/pYYÙ“'OôõõÛµkçììÜ­[·K—.8p€[,++kçÎo¾ù¦ØhŽÔ›×"7!¦ñæÇœ;wNàTh9tÙéœÂgUËÊÍÍ%„È ^¤C÷rssýýý !ª¦PmÙ²eáÂ…...:u 8pà[o½ÕªU+Bˆ……EFFƉ'îܹ“››{óæM¹A™\´J¡×=ÅN§Nèn)ccc»wïÊnC{†""""""ä²úàÁZµ…‡‡oذáùóç´³644400ŽiiiR©´ÿþBöCoÑrTÍü¨³,<5ÏOxµ×Ù‚sKdžvëÖM6"³ªææ9åÊÊÊèø]¥X–¥Å”QZZZJ‘[Oˆ´´4CCCîƒS§N}ùòåœ9s’““§M›Vß½AÃiàèàà›0tèР  üüü .têÔiÆŒÜ6éééÑÑÑnnnôŽÀ|0mÚ´+VìÙ³ÇÕÕõ·ß~»zõjëÖ­?úè#žÇ[€ö¹ví˜ØÀý°,Kú/i(ÃMÐQ\8LÖœ9sFuøðáÓ§O§¦¦&%%yxx¤§§›››9255ÕßßÀ€C‡íÕ«—¯¯¯+A*•ÊõÕÑPcÆ Šk›wìØ±‡8p`BBBzzzFF†£££££cHHȲeËŠ‹‹ÓÒÒUÍk”#p>{eQUóªæã×׫W¯„· nÏœ9CN³úNèæš›§àô|VÅÖÖVOOOn¦ËÓ§O !\W¨pŠ+™ 0€róæMÔ?Ô—öŽ„©S§Z[[§¤¤¤¦¦ÚÛÛOš4)**Šg¨:|óÍ7›6múé§ŸrssÛ·o?|øðyóæ©º7!w+Ë]Y"¨Bï5³„mâEyê”™™yöìÙ±cÇr÷ÕæææF¹qãFß¾}¹Äëׯa`ŠŠŠòòòÜÝݧOŸ>}úôÚÚÚmÛ¶EFFnß¾=00055uË–-óçÏç¶Wc8çÖ­[UUU\XEEÅíÛ·e¾Å§M›6²7anݺuãÆ þðWˆÞ½{›ššž:uêÒ¥K}úô!„×ÖÖ~ÿý÷YYYtÔ©ñ—…§æ5²†9!äܹsÂ[?·têñÏ?ÿ,Û^W¯^å9ºªææ)øòåË9¢j‡Ã† “J¥;v”!F9sæ Ã0õ]ÃL×zòäIrrrXX˜ìbIBÅÄÄøûûÿøã´Îkkk7lØ •JÃÂÂRí 6] ›Ã0,Kþy¿@íë8€Vâ:éKÑÃÇÏ>ûŒVyõêUvvvFFFeeå¶mÛd£6ƒÄÄÄqãÆùúúŽ;–eÙ}ûö8pÀÀÀ ÎûùùuîÜyݺu÷îÝëܹsNNÎÑ£G---'L˜ ‘HŒg̘1qâĶmÛþôÓO§N²¶¶>wîÜÑ£GÃÃÃë›U{{û•+WfddxyyýôÓO'NœèÕ«—캶„©TºeË–aÆyyy;¶ªª*%%åáÇ{÷îÕÈ"Òáááß|ó !„ö8J$’   ÔÔÔöíÛ«ê²¢QÔgŸ}öøñc!Ó•–…§ærPY!!!ü-(wžÜJ$’7Ž;ÖÇÇgܸqúúúûöíã_;SUsWWW«*¸™™Y_g“'OÞ¹sçĉçÌ™cnn¾k×®òòrº®!$!!aݺu}ôѬY³ø÷ccc·xñb777ZÇŽËÊÊZ»vmÃE€šÄžÖ­…ÜÝÝ ËÊÿCUƒVhq+PY|Qn†aÜÝÝ#""222ê»+Y²ËñP´µµµµµ8p ìŠ`²K$*õðáéS§:998::FDDpK½¤§§˜˜˜¼þúëÓ§O/,,ܱc‡µµõ›o¾©¸gzãrÇŽ\ íRúã?¸ÓÓÓûöíkffÖ¡C‡˜˜˜—/_*Ídffæ[o½egggaa|üøñ:ë¤Îåx¸ÂB¬­­¹úTñ™3gÊn&»üMmmí„ LMM}}}iVG-»ñ¤I“¬¬¬T‘§,<5/wP¹åx„W; ʥΚ?sæLÿþýiǶ™™Ùˆêåxxš›§àBϘ1ÃÍÍÍÊÊjÈ!™™™Ü[ôWiË–-OäääîÝ»›˜˜XYYõë×ïèѣ³!–ãŽaÑ ¦i¿(>™šAUƒ6ðððÈÁƒ×µ—‹‹‹··7í탖®  àµ×^ãéÒFssÔ¸²éìÅ·ª´â|d€†ÓþÀ@#Ðã §¡]€æ5 p€¿lÛ¶Mì,@ÓAsƒp«Aà‚ pA8€ @Ž G#‚ÀAà‚ pmÇü“™™™¿¿ÿŽ;jkk•n£§§×¡C‡·ß~ûÂ… ü»âL˜0AéÑããã­¬¬ºté"v5h†‹‹Ëˆ#ÄÎÅÿùøø¨Êê˜1cšO~DôóÏ?3 ³oß>±3ZϪ€¦ÆÛŒÕÜÇß®];B˲üñGjjêŒ3rrr6lØ ¸ÍË—/oܸqðàÁýû÷ÿë_ÿš9s¦Ò]ÉòööV<è­[·V®\8{öì&©×fíúõëkÖ¬IOOñâE‡&Nœ)•6è;H"‘H$úó•+WÖ¬Yß©S§&+”ÜAeóÓxGi)JJJ/^œššúìÙ3__ßõë×÷ìÙSé–UUUFFF555²‰VVV………õÝ4Ž ‚:ƒBÁ¥@sçÎíÝ»7÷òñãÇ>>>‰‰‰111¶¶¶J·¹sçÎðáÃßÿýÞ½{wîÜYÕ®xäååB>üðÃÐÐÐF­ÌæïÞ½{ÁÁÁ555#FŒptt|8!$00ÐÅÅ…&^ºtiРAvvvƒ ºté·½‹‹Kttô•+W¼¼¼¼¼¼wXQQïééÙºuk''§éÓ§ÿñÇÜ»‰‰‰]»v566¶´´ìÑ£Ç×_-»çùóçÇÆÆšššöèÑãÈ‘#ÕÕÕK—.õôô455 ¹uë–l6¶nÝjnnÞªU«.]º,Y²¤²²Ri³³³GŽéèèhcc3pàÀüQUmœ:uªOŸ>4j¤æÎKùé§Ÿä¶=z´¾¾þ‹/èË}ûö1 ÓµkWnƒ˜˜†a²²²!!!!´ÛiÊ”)ƒ&„sµM9þ|xx¸••UÛ¶mßÿý?ÿüSUyÊ¢ªæÊå§¾ÕÎÓ‚J‹Æ_ógΜ ³´´ìرcll¬ªæ«³¹ùO9~{÷îµ··çwèKWW×Ñ£G§§§ÿþûïŠÓÀñ7Þhø® )° iîîî„eåÿ¡ªA+¸»»7|'B~4õ óá‡BÎ;'›øäÉ==½‚‚UÛPsæÌ!„Ü»w3E7nÜøàƒ!7nLOOgY6%%E*•¶k×.***::º}ûöR©4%%…nïìì|˜’––Æ•šòí·ßÒ—ÕÕÕžžžNNNŠ™á/ ÍËT.p^íü-({þܾ|ùÒÉÉÉÞÞþÑ£GôÝ‚‚žÀQUsóœß/¿üB‰ŽŽ–M<<ÜÈÈÈ‚ûòôô¼r劻RGá0Ʊ©°œ! õ#{ëV*•zxx,]ºTÈl†‘Ÿ¥£8«š~ûòËÌ̼ÿþ–-[¬¬¬hŠ••íz¼ví½‡koo¿bÅ ¥ƒáôôô†9þ|~~¾““!dÇŽ´sŽréÒ%CCCn†rQQ!¤¼¼œûx÷îÝ;tè@¦½J&LÐ××§)¡¡¡çÎ+//oÓ¦ ÍØÂ… ¹Ï®Zµê³Ï>Û¿ÿøñã¹Ä¬¬¬ÜÜÜÿþ÷¿FFF4ÅÀÀ 222"""33Sö–´¢´´´÷Þ{///ï³Ï>sss“{·mÛ¶]»v¥Ãמ?žýÅ_DFF¦§§1âìÙ³µµµƒ ÒèîîîC‡¥?K$ooï'N(nÆ_–Î;óÔ}úôéµµµÛ¶m‹ŒŒÜ¾}{```jjê–-[æÏŸÏm¯Æ4pέ[·ªªª¸þ°ŠŠŠÛ·o+§M›6²‹éܺuëÆJÃßï¿ÿþí·ß;vìöíÛån;*êÝ»·©©é©S§.]ºÔ§OBHpppmmí÷ߟ••EGjYxjžÎhi¸sçÎ oAþÜÒ‰É?ÿü³l{]½z•ç誚›§àË—/ç¿U-•J;vìxöìYÙô3gÎ0 £¸†y~~þáÇûõëG§Q´OÑÉÉ©^»‚¦åx”ÈÍÍ4iÃ0+W®løÞ|}}Ÿ?NSž={¶yóf'''!ëçääôìÙsÓ¦Mô¥žž ôõõélÙ/Ýäää²²2VÝqÕ………‰‰‰ÜËøøøÒÒR¹' z{{{xxlÚ´©¸¸˜¦”––†‡‡GGG·nÝZn‡,Ë.Z´¨}ûö_}õUQ#-Thhhjjjff& ýüüÚ´i³víÚ:8r‘Ž¿,<5߃ÊØ‚ô(ü¹õõõuuuݼy3·TMaaáÇÌstUÍÍSpz«ZºýŒ3~ýõW:­‡òäÉ“äää°°0ÙÅ’(##£˜˜˜™3gr]ïµµµ6lJ¥aaaõÚ4 ô86†aÔ¾@ãûì³Ïè—Ó«W¯²³³322*++·mÛ&ûص$&&Ž7Î××wìØ±,ËîÛ·¯  àÀu~ÜÏϯsçÎëÖ­»wï^çÎsrrŽ=jii9a‰Dbll]î­‘#G2D1ááát½8J$’   ÔÔÔöíÛ«êg¢=Ÿ}öÙãÇeçñÔ‰¿,<5ßƒÊ áoA¹£ðäV"‘lܸqìØ±>>>ãÆÓ××ß·oŸÜ}^Í]]]­ªàfffu~›Mžœ:uª“““££cDD·ÔKzzz@@€‰‰É믿>}úôÂÂÂ;vX[[¿ù曊{¦7.wìØÁ¥ÄÇÇBþøãnãôôô¾}ûš™™uèÐ!&&æåË—J3™™™ùÖ[oÙÙÙYXX?~\iοýö[U_@ñññª K±¶¶æRèSÅgΜ)»™ìò7µµµ&L055õõõ¥Y=z´ìÆ“&M²²²RU½¾k×®K—.‰]ñià¸ÿþÚÚÚ¨¨(š²dÉ33³£GÖÖÖò677711±C‡b@|Ú8^¾|YOO/88˜K‘H$}úô)**ÊÌÌäù`uuõ¢E‹,,,–,Y"v!ħå#˲yyy––––––²éîîò|ö“O>¹}ûöG}djjÚèùÄühö¤bg q•——×ÔÔ˜››Ë¥›™™Bž={¦êƒW¯^ý÷¿ÿ=iÒ¤€€€›7oÖ÷¸îr)¿ˆ] …¯u¥å#:mll,—nbbB)))Qõ©E‹µoß~áÂ…ê÷—œù$]Š-RŽÂ׺Ά’Z8š››3 S^^.—N—סýŽŠ=z´gÏ###±KÐ\hùG©Tjff¦Ø³XZZJáæY˺téÒž={fΜéåå%vöš- !¶¶¶EEE4RäÜ¿Ÿ¾¥¸}nn.!dÛ¶m9r$!ä»ï¾óððùä“ÂÂÂY³f>|811qïÞ½}ôQuuu||¼Ø¥öŽû÷ﯭ­ŠŠ²±±¡)K–,133;zôhmm­ÒüôÓOFFFï¿ÿ>—2räH;;»›7oÖÔÔˆ] qhàxùòe==½àà`.E"‘ôéÓ§¨¨(33SéGÌÍÍûõëghh(›h``PYYYYY)vÄ¡å“cX–ÍË˳´´´´´”Mwww'„<|øÐÏÏOñS»wï–K¹|ùòƒ¼½½ŒŒÄ.“Lé0?š–Žååå555æææréfff„gÏžñ<++ëàÁƒ÷ïßÏÊÊrttLHHx\w¹”_Ä® P‡Â׺ÎÒòÀ‘N666–K711!„”””ð<'''99™eYBH§NZµj%ð¸¿ääÈ'1x¸4@‹”£ðµ®³¡¤–q477g¦¼¼\.ýÅ‹äï~GãÇ¿}ûö¹sç/^|ìØ± &Ðè -¥R©™™™bÏbii)!„›g̓akkë©S§Ž7î?þ8vì˜Øeú:Ì  hyàH±µµ-**¢‘"çþýûô-Åísss—.]zôèQ¹ôN:B?~,vÄ¡ýchhhMMÍÙ³g¹–eÓÓÓ-,,|||·755=tèÐÁƒåÒ|˜rýúõˆˆˆªª*ŸvíÚ=yòäÊ•+„õë×<¸ÎÃyxx(UÝHU¥š˜‡‡‡âTk] åËñPS§Nµ¶¶NIIIMMµ··Ÿ4iRTT]‘G©®]»9räã?ÎÎξ}û¶Ý€æÌ™ãææ&vQ”À2àÐ4t¢Ç±‰5q#Aàдt¶ÇQûÇ8€F pA8€ µžM#‚ÀAà‚ pA8j ̀ƆÀAà‚ pA8€ µæÇ@£Bà‚ pA8€ @ŽZóc ñ pA8€ @Ž Gmƒù1ÐH8€ @Ž GD*v@3Þ—2o0,ËŠYh‘Ðã¨=X™„Â`v5hG#‚ÀAà¨XB&Á€F!pA8€ µ–ãBà‚ pA8€ @©Ø‘Ÿ ƒu@£8j Å ‘aÄŽ A¸U ‚ pA8€ @Ž G#‚ÀAà¨c°$8¨ #‚ÀAà¨c†; ÐB!pA8ê–t:€8€ @Žºw«@ @Ž: ŽP_@Žº ŽP/@Ž G†»Õ G£®C§#„ÀAà‚ pÜ­A8€ R±3ÐD8°ÿþ¼¼¼Ö­[÷íÛ766Ö‚gûŠŠŠ}ûö%''?zô¨M›6îîîS§NíÝ»·Øåh,´Ó‘;МéDà˜˜˜¸}ûvcccÿüüüƒæææ~ùå—FFFJ·¯®®žÆ‘eÙ¼¼\ÈqÝ=<äR~»*@= _ë:KËÇŠŠ Bˆ±±±\º‰‰ !¤¤¤¤Î=ÔÔÔ|ýõ×ëׯ¯©©Ù´i“•••ãþ’“#ŸÄ`!@‹”£ðµ®³¡¤–Žæææ Ã”——Ë¥¿xñ‚üÝïÈãâÅ‹qqqwïÞµ··_»vm@@€Øjt¸[ ªhyà(•JÍÌÌ{KKK !Ü}KéGjkk.\xüøñþýû¯ZµŠ'¾ÔJèt¥´9žÐÐКšš³gÏr),˦§§[XXøøø(ýÈW_}uüøñˆˆˆO?ýT×¢FU´?p3fŒžžÞÖ­[é¸FBHRRÒÓ§OG¥¯¯OSÊÊÊîß¿ÿèÑ#B˲»wïnÓ¦ÍâÅ‹ÅÎ;@3¢ý·ªbcc†”ŸŸáÂ…N:͘1ƒÛ&===::ÚÍÍíðáÃ………<022š8q¢âÞFŒ1iÒ$±ËÔèp·iàH™:uªµµuJJJjjª½½ý¤I“¢¢¢èŠ<Šh¿cEEEvv¶â»º0±@)†eѯ¤aJ×qlâªf†(±>Ù@§#€RŠ‹;êíãÀAà*Ñ)2G#ðA§#p8€ ¡èt #‚ÀAàuÃÝj @ Ž :#‚ÀAàBán5€ŽCà‚ p„z@§#€.Cà‚ pA8Býàn5€ÎBà‚ p„zC§#€nBà‚ pA8‚:p·@!pA8‚šÐé k8€ @Ž >Ü­Ð)@ŽÐ ètÐ5Œù+ŽB4Ú#4:t„Tì ´xŒÊ¨ Ñhô86KXú_îß_Éýû{+€£°„e£¬ë‘ùgø¨µp·@àVµfÐŽF†0÷8"ŽmƒG‘‰‰LG#£#A$:´G SXއý+¦ÒþûÕ å8j’L§£\KBÇA2蘀– c5ƒ†ƒì?úÙ¿ïS³¿fUo¬ XÙÒ€ÖAà¨*¢@–gcm @[!pløH´%‚D§#€Cà(2­¿ Zcsû×ÐÌ!pl^´àþ5îVh+ŽÍQ}ï_3 –ø€F‡À±Y«ÇýkÅ7Å &Ñé •8¶jDà…À±ÅhÃ?+”ZŽ-L=†?2„°"Ü1控êØ ÐB!pl©ä: ›žØ€a Ë6Ó»ÖM‘­G­À¨~,6‚7Ðô8j=öŤhô8j/:Ræ…(YÀ‚ŽZ£öbaÙ¿¢¤8!œüƒmX–a–E< РpÔ^¬â F„БabD­€1ŽÚ‹!2}K†þ;РÇQ»q·ªe“þ±„8i®¡€æ£.PµT"H¨ŽPŸÇ€Càÿ#÷Cõ"Hù±“˜ -8‚¼†ÜÂVÜŽÁ¬jmÀTjÄ[Ø%Z ŽP·ÝÂVº-Vh8‚Pš…§´8¡Þ„ßÂfè&,BDm€ÀÔ'w [ÉÃhXþ£Ó %Aà õ¿H–ç1†ŒŠÏ"vh1ð¬jЕq#+óÈŠ,Ác³ZŽÐÈþ%2ªº;´º88p`̘1>>>½{÷^¶lÙóçÏ~ðÞ½{×®]»-Cþ eÓ‰À111qÅŠwïÞõ÷÷7119xðà{ï½WQQ!ä³_}õ•ØÙײ7©BÅnGt:4Ú?9&'''))ÉÖÖ699ÙÆÆ†²fÍš/¿ürãÆ+W®Tõ©ÒÒÒ_~ùåûï¿ß»w¯Ø%háèÄëÿ…Š,!tpùÅ 1Q ™ÓþÇýû÷×ÖÖFEEѨ‘²dÉ33³£GÖÖÖªúÔ!C&Nœˆ¨QèR ý‰,aé?†0ôA¿#@ó¦ý=Ž—/_ÖÓÓ æR$IŸ>}¾ÿþûÌÌL???¥ŸZ³fÍ«W¯!»wïÎÈÈ»Z€U59Fñ4 e Ð,iyàȲl^^ž¥¥¥¥¥¥lº»»;!äáǪÇÀÀ@úÃéÓ§Å.„Ö`ëzû$ówçcCžjš¥åcyyyMM¹¹¹\º™™!äÙ³gt\w¹”_ĮЄýë…ÿx, "H‹‡Â׺ÎÒòÀ‘N666–K711!„”””4ÒqÉÉ‘Ob0x¯¸‰2Š7²Õ‹  ôõä(|­ël(©å£¹¹9Ã0åååré/^¼ ÷;BóÄÊOÆÖL jÓòÀQ*•š™™)ö,–––B¸yÖÐ<)] G’v7¢Ó ´9[[Û¢¢")rîß¿Oß;wPžz”.èGûÇÐÐКšš³gÏr),˦§§[XXøøøˆ;ÐÅRî·¥ªtBûÇ1cÆèéémݺ•Žk$„$%%=}útÔ¨Qúúú4¥¬¬ìþýû=;³ „ðUÁ¹Rö–4÷Rî]ܶ¨/-ãHqppˆMHH:thPPP~~þ… :uê4cÆ n›ôôôèèh77·Ã‡‹_PB§rƒ‡Bb°#€z´?p$„L:ÕÚÚ:%%%55ÕÞÞ~Ò¤IQQQtEh)ÔŽ‰Â’ †ÅÓÝ4ÍÃÃCé:ŽWÕ }ÒŠ|*Qò辞úÆŽD¡Q®’àž5ÔŸ‡‡‡â⎺@'zAgqQ#óÏÊ…’Љ #´$BnX3²éaÿŽ ²¬Ò»ÕŠ C‘Ê p„FÐ`GVUò_Kö( •vC‘Cà-ed>+èst/º ECà-RCbÇú ÷²Aà œFîe£ÓZ.ŽÐR5e§£²£×;ˆT\  eAà-˜¸±£L6ê),Ê­ ÐR p„–­™ÄŽ2ù©c@¤âˆ  ¥@à-^s‹ÿÎÕÿÄ:ƒH€#hƒæ;þ7<2´G€F';'† 'Ê š9Ž %šs§£Gf¬ ÍGÐ4vlž„Ü­Æ3 ™CàZ…%„a›c)7'†ç‘ÙŠÛküŽ6!õ p­Ã0DYìÈ0J¢I–mŠøI1J«WÜÖw´;€8‚ÎPŒ™f×1)¨ ëŒÄl@mA[±<¯´¦×@SBàÚŠùÇlFY£ÖáéŒTÜ‹@}!p-Æ4ï™Ö«Î Ré A<8‚vÓ騑#»ê8i„iÚ #84 FÅÌ›¦™Ç­üЄ¥±£ìs´qÏ„CàZO¼NGÅLÔ®OÙG¹u%å6ûg!GÀ_8‚.`tafŒò’Ëv|²„aE3¬Ê¶ÉâH ¯hq8‚n`t7vüG`ÆrÿÿW×c+£?8t—+k*ŽÄ:ä-GÖÀ.Cþ8’Û@ÉT!–0 ò,~Ђ p¦³7¯bøW(É[Óxà @K¡'vÄô̇U·(­þÃ(ïÈüÍzA[ zV5·Nüsr7&Y4A+1JTܘfe>€˜¥‰)®+©j”dãAÀ GBdÂG„M‡%Š3cTŽ’äÝšG€ÿÁë&ÅnV5ÏÜj„’ÍG€Àë&Öðµ$I}BIù Qì?âW±+ ¹Cà î\7¥†¯.0”ü뉋*`U €:!pP w®›ŒÆ5å¡$[÷öèzàÀ€ºµ†ÊG}B!p¨ºµCXö«)½iÞÑ$V€#€ ˜4£#”†nbE“Í G€zÀk-ÄÖ=®±±£IžÎN€f#@½áεVù{9RÏ™1 Œ&•Ïûþg":5 ¹Aà ܹÖ2ÜÃ5²9|»eþ· ˲<^h8¨w®µL#õðÉíö“»eÞáæÇˆ¸$æè?Ž …;× 2“» «ÍG @×#hP½îw# €¦„À@cºYÅ-eŸ¨sr·Ê§o« Yߘ’ËŸª pФÿMšaeçÏüíïÛ‘2 „ÿMî®ïGž-…tRªÚFô§é xhž8hû×|íAýhv5ÇúvRrÛ‹þänL*h¶84*eýŽª5A ¦xU3rdÑÿ#@#ã="v„f‡adNË¿ORÙ'wÿccÞsXãa¥¸Ë€*šƒ®Ghnþ±œ$Å¢úö4 ×À9:ª™ƒ¡–Í G€¦ñWgV|„æŽ! Ûst¸þ/„Uñ:wÒx5Ñôhæ84!†ùû> @óÕ4st(†Ôý:wM#€¸ï@OfI³±#Uëæÿ½>Ñ߯4¶\¥õ€°€ƒÀ@drƒñÍD3‰–êÌF®ð‚`¨%@84 ²}Љ:‡¥ÿ©»Ã¯á‘%·¥‡ÃPKYšÔ?@!„°,ó÷ÀÇ¿d7V– °š ˜ê;­[¬ÛâüEhŽÍ! :ŽŠåy%üÈ AqÎn²cqä"$îQÂ;/´G€ÆÃ(IPë9„ˆ Ag5Ÿ8L`N„GºŸ ){]Äjç6=£âñ˜x «x8´$j …dAÛè4n% zÝ)V{.ŽÀ=‹x¿Xœ;æ¸053Z¤z…dä^)þ½Žá÷wcº±ï• ™Ö£t]¤¦yü£ª£ˆ>ÇÄ…À ÅÃl€’{l7ÃýOæáÝâääï—tUK5žßX§zMZ}Žù_f1MG4´‡ÒÙ ˆ²'ws¿KM¦°Êx§¸¾YåÿßýŽ9ˆKOì €æ±ÿû{.‹^H€ŒiÜ;æüÿä¶áf—ÓþkŒ*iÔý×yt¢«Kl¢Ç@«1 aY…ç2Jæ*b–"@3Öt–™ú~DÍ̳ª’ÿñPô}6%Žºƒ»ë†‹,@ËӔᑒ¡–?ËG½¹Õêež;®Ü¾äÂÐ&X³]q$âAT¬¤Ý8èž¿º!’e~n„‹VhQ‡Zjîq> Â4âT!…:`¹{7u³ãcà/¬Ì?FáŸ&üs— Ãþó :qÑhɸQâf‚¾w_çNþŠÃ(GUÒVüji*@ ÅŽi¬hZ‘ƒ¤Æœ*¤XRU³…¸¼èNÈH!pAXaÑd³§P–EL в4ñT!F[¹õ5›Ó¤¥¦ÀÔ×2;&qÇ ÅáɇÜÕáït-d¤09@°<¯óHaþ·œäÿÒÄ®qaª@C‰~X» GÀ(IPœU­bªµ†² »œ$Ū •äÖœÔ^Íáâ¬Ò4FÐvÚ— "0 G6š6Í7Fô(¶ÉàVµJ3fŒOïÞ½—-[öüùs±sÔ"¹»»‹…fµ!ƒq÷ðPò€ Bè½c¡ù§½ ×IDATFØ?­!Þ¹ÁÔyï^”l¸{x4y6ØfS¤Ô†’lˆTòcIÜÝÝŸ(Òò÷¡YBX-»"ñ@à¨\bbâŠ+îÞ½ëïïobbrðàÁ÷Þ{¯¢¢Bì|hÅ ‹Ü;ÂþéZ|  “ä¡›E­«c£8*‘“““””dkkûÃ?$%%;vìwÞ¹~ýúÆÅÎüC½âË>¹›oV5(…ÀQ‰ýû÷×ÖÖFEEÙØØÐ”%K–˜™™=z´¶¶VìÜ@½ý}c‰Æ„‚fU ìËÔÊÎN柈Üè@‡!pTâòåËzzzÁÁÁ\ŠD"éÓ§OQQQff¦Ø¹ cÐTÝ™õ½™®¼ãSEÐ)N¨ªbüGy,ËæååYZZZZZʦӡë>;ƒ-Ws¤z¨¥ÆË¬²ã“¦«˜*ÔÀP•©Güª¢ø*–I×@¬ªlh(ŒÖšn`€f‚añ×ä?•••ùúú¾ñÆGŽ‘Mß·oß|°hÑ¢iÓ¦ñïÁÃÃCìB@ãÊÉÉ‘}É4¯?ˆ Öq”G§NË¥›˜˜BJJJê܃ܙ͇À+{c ÈFl4Ãlèܪ–gnnÎ0Lyy¹\ú‹/!fffbg@èq”'•JÍÌÌ{KKK !Ü>>YYYï¼óΩS§ÄΗjjjÞ}÷Ý7>þ<((¨mÛ¶ÇŽ6lØåË—ÅÎZSûꫯT½¥ƒ—VUµ¡›—VžsƒƒKkSc¡ÁîܹӡC‡   ÇÓ”øøxww÷Õ«W‹5|ýõ×îîî&L(//§)¿üòK÷îÝ===oݺ%vîÄ´sçNwwwww÷˜˜±ó"Žââb???//¯+W®Ð”k×®uîÜ9  ¦¦FìÜ55ú›2þüªª*š’‘‘áéé9`À±³ÖDJJJ._¾üÁÐß‹«W¯Êm S—Ö:kC§.­uÖ†,\Z›z5`ÿþýµµµQQQ6664eÉ’%fffG­­­;wMí‡~ „,_¾ÜÈȈ¦¸¹¹Íš5«¦¦FëïªðÈÍÍMLLìСƒØÓÁƒKKKgÍšÕ­[7šÒµk×ððð§OŸÞ¸qCìÜ5µÌÌLBÈ»ï¾+•JiJ¯^½<==ýõ×gÏž‰»¦0dȉ'îÝ»WÕ:ui­³6têÒZgmppimz5àòåËzzzÁÁÁ\ŠD"éÓ§OQQýnÐ)÷ïß766îÔ©“l¢››!äáÇbçNÕÕÕ‹-²°°X²d‰ØyÓ™3g†>|¸lâúõësrr¼¼¼ÄÎ]S³··'„ÈÆˆ,Ëëééq¡¤v[³fͶmÛ¶mÛ tº´ÖY:ui­³6(\ZE¡—§FŲl^^ž¥¥¥¥¥¥lº»»;!äáÇ~~~bç±I}þùçŠ_{7oÞ$„´oß^ì܉ã“O>¹}ûöÎ;MMMÅ΋˜²³³-,,ììì®\¹’••U\\Ü¡C‡þýûs=(:eðàÁ_~ùåš5kZ·níííýüùómÛ¶=zôhܸq:ržÒNŸ>­ø®®]ZùkƒèØ¥µÎÚ pidž*//¯©©177—K733#ÿìNÐ;v”K¹páBRR’\W“ޏzõê¿ÿýïI“&Ы¼nª¬¬üóÏ?ßxã?üpÏž=\zûöí·lÙÒ¹sg±3ØÔ<<<¾úê«É“'Ož<™Kœ4iÒ²eËÄÎZ³€K«\ZåàÒ*ܪn(:¿ÏØØX.ÝÄÄ„RRR"vÅTSSóå—_NŸ>½¼¼|ݺuVVVb稩UTT,Z´¨}ûö .;/"ûóÏ? !yyy©©© /^LOOŒŒüí·ßæÏŸ¯Ýód•*--]·n]YYY§NÆfdd”’’¢›sÌáÒÊ—V\ZE„dž277g¦¼¼\.. @ÿ8ÖM/^Œ‹‹»{÷®½½ýÚµkù‡ªh«„„„GíÙ³G7ïÆÊ244¤?¬[·®_¿~ôç¹sç>}º¾¾¾Ø¹kR,ËîÞ½»M›6‹/;/â ä• nÞ¼yîÜ9??¿ 6ˆ;Œ1â?ÿùÏŠ+¶oßN×X¹qãÆ_|aff&vîš”‘‘QŸ>}NŸ>ý¯ý+22ROO’››»mÛ¶V­ZÉÝÍ×Y¸´rpi•…K«¸8j€ƒƒClllBBÂСCƒ‚‚òóó/\¸Ð©S§3fˆµ¦VXXøàÁ##£‰'*¾;bĈI“&‰G§§ç‚ 6oÞýB×XYY¥¦¦nß¾ýܹsiii}ûö}ÿý÷»té"vÖš\Z)\Z¡ù`X–;Ð`9#‚ÀAà‚ pA8€ @Ž G#‚ÀAà‚ pA8€ @Ž G#‚ÀAà‚ pA8€ @Ž G#‚ÀAà‚ pA8€ @Ž G#‚ÀAà‚ pA8€ @ÿI?~ ü\¢3IEND®B`‚statistics-release-1.6.3/docs/assets/geoinv_101.png000066400000000000000000000605351456127120000221500ustar00rootroot00000000000000‰PNG  IHDRhŽ\­Aa$IDATxÚíÝy\Nùÿÿñ÷U‰H ­H‹²eb¦)1Cd“†fø Ùc1Öi >fìƒ[fŒ}ß—0ƒ %"K •£H×uýþ8ó¹~}+\çÔõ¸ßüq]ï³½Î9ÒÓûœó>*­V+€—1’»” Gè…འ‚#ôBp€^ŽÐ Áz!8@/Gè…ཧãÇ8ÐÓÓ³bÅŠ•+WnÞ¼yß¾}Ož<)w]Åfûöí¿ÿþûï¿ÿžœœ¬ÏüK–,Q©T*•ªiÓ¦¯¹é¬êéÓ§‹/þàƒªV­Z®\9öíÛÏ™3';;;ßœ—/_V`bbbccÓ¬Y³I“&ܯBÉçË/¿”ó¬x[Lä.@)‘™™ùé§Ÿþúë¯yOŸ>}úôéÕ«W·k×nõêÕ666r—ùºzõêõ÷ß !öïß w9BñçŸvëÖíæÍ›º–¸¸¸¸¸¸;wÎ;wÉ’%íÛ·ñÔjujjjjjê™3g~úé§;w6oÞ\îÝ DGÅàÑ£G¾¾¾ýõ—®ÅÈÈH¥R©Õjéë®]»:uêtàÀråÊÉ]ì[U±bE!„££ã›XUll¬ŸŸŸ”e%&&&¹¹¹ÒçÄÄÄ?þøäÉ“ 4(¸B{{{333!ÄãÇuiiiÝ»w‹‹+[¶ì ÉÇÚÚZ¾c à-ÒÀkëÝ»·î___ßÇgffæää\¸páã?ÖM;v¬Ü•¾.sssi_öïß/w-Z­VÛ¡CÝáýôÓO/\¸››{÷îÝåË—W¬XQj÷ôôÔÍéÒ%ÝüywáöíÛŸ~ú©nÒܹs_ºDpðºòv4öìÙóÙ³gùfèÛ·¯4ÕÅÅ%ߤ{÷î :ÔÇÇÇÜÜÜÍÍ­k×®þùgÁMüý÷ß“'Onݺµ]@@ÀW_}•‘‘‘wž‰'J[éÖ­[\\Ü'Ÿ|âìì\µjÕž={FEEiµÚS§N}üñÇÎÎΕ*Uòóó;tèÐ+3nܸ‚ÿ÷þûï¿ónºsçÎÏž=›4iRÕªU'Mš¤Õj/^,MjÒ¤IÞmÝ¿èС-Z´°°°pvvnÛ¶íŽ;^|œ ®jß¾}ºJÆ—oþíÛ·ë¦ÆÆÆJ/N]ºt‘&ÙÚÚJ»öÒE‚#€×5xð`)U”+W.11±à IIIýþçÁƒºöØÛÛç‹b*•jäÈ‘y?sæL5 †6''§#GŽèfÓ¥·† æ»™ÒÖÖvþüùeʔɷ¡Ã‡ë_ŒžÁQ—’'Nœ¨}NpÜ»w¯]Áµ…„„¼à8\U×®]¥–J•*=zô¨à" 6lذaDD„ÔòâxøðaÝÔÝ»w볃BpðºjÕª¥ënÔ©ŒŒ [[[iÁV­Z}ýõ×½zõ22úg¨‡ŸþYš-++Kº±O ¦~øa```ùò奇ÌÌLiN]zB5hРR¥Jù’YíÚµ«V­ªûêïï¯1)))qqqºMÿ÷¿ÿ‹‹Óh4y7]­Z5ÝÊŸónËÊÊê£>ò÷÷×-þ¼#VpUº¤ûâę׋S F£155•¦N:UŸE†ãðZ´ZíµkפϞžžú/8{öléŒnݺ8p`Ê”)¿üòËüùó¥©ß|óô!,,Lz^ØÂÂâèÑ£»wïÞ±cGdd¤Ô§xïÞ½3f\ù¶mÛ.\¸pïÞ½V­ZéçÍ›}ûöíH-/^Ô¿˜Ê•+רQC—&«V­Z£F •J•w» uêÔY³fMdddÞ[ Ýqggçk×®EDD|øá‡…ÎpíÚµúõëÇÆÆ:Û| õÒ]»vM£Ñè:…y/FëÆŽ©R¥Š®w°à€2zóÒòöö~i†‹‹‹“>´lÙR×èààpþüùW:òº‡¦_õÈ¿XjjªôÁ¢àÔB‡ã)xK€ÒŠàൔ-[ÖÖÖV .111y'YXXènO|ðàAVV–nRfffÞ¡ •’’’™™™‘‘!}Í7¢.>yòäþýûy§æ»|,É›,óѳ}ŽÆKG8Ï»GVVV¯|¸ó055µ±±‘ Ë;úw^Ò˜ŽåÊ•«P¡‚>«Õ]¡.ø¨bíÚµ ö€,Ž^W«V­6lØ „زe˃tÏ öÙgÒ•ßÜÜ\ggç¼ÁÑ¢bÅŠ=BìÝ»·Ð«º¶¶¶–––RÒJJJÊûluRR’ôÁÔÔT÷¬IÑèYŒ>«*4³æU±bÅòåËK‡"55ÕÕÕõu*oÑ¢ÅÖ­[…Û¶m›;wn¾ÇÆ…µjÕ’‚à÷ß?jÔ¨—®ðøñã999ÒçwÞyçujP*q#€×5|øp©?/##cذaº×–è,Y²äîÝ»ùÝÝÝ¥¹¹¹5ò°¶¶¶²²²²²’.‰ê¸Ù»woÞÅu_=<}Z×~ïÞ=F£çÚtwdÞ¾}{É’%ù¦nß¾]×}øþûïë³BÝó@*TÈ{%$G¯«yóæ”>¯_¿Þ××÷èÑ£ÒÅß¿þúkàÀC† )¸TëÖ­¥K—.ÕjµÒçÍ›7W®\ÙÆÆÆÅÅEê”sBüç?ÿ9wîœôùÒ¥KaaaÒçvíÚ½þ.èYL^ºž¹W¥ËpsæÌÑ»¹sçFFFFFF–-[öWÕóéСƒ®ò¡C‡N:UêˆÍÉÉ ×(Y£F ooï¯êÞ½{ŸþyDD„ôõ_ÿúWÞ{(àr 4HOOÏwÕÕÈÈ(ïk©}||¤Ç—yøð¡îÇ~~~S¦LéÖ­›®coòäÉÒlYYYÎÎÎR£™™Y‡:uꤻ]ÏÑÑQ÷þ˜¼£pë [µj•ÔX·n]]ãñãÇ¥F“W*F«ÕêFjôññ ËÉÉyÞ¦%_¼ÿ¾î¹{{ûO>ù$ï]ƒ[·n}ÞA.t,ñ¨¨¨|½¡666ÒÃà’råÊ?^7ÞA«T©âîîîîîžïþQé¦ÕBaGÀÀ{÷îùùùúÔŽ;êFÔG­V»uëÖB4h4°¶äôéÓ…Þwèìì|ìØ1Ýl¯õ/&888ïÔ‚oŽÉwX M{¿þú«¥¥eÁm?þGøyo/<~üøóåvqqÉ÷&ü)°P•*U:uêÔó!8އc{{ûC‡mß¾}Íš5§Nºÿ¾¹¹¹——Wÿþýûôé£R©ìííuñQô×_}ûí·çλr劃ƒCƒ †îëë›w¶wÞy'**jöìÙ'Ož¼té’Z­®_¿¾Ïرc‹ñrªžÅÌ;W±o߾ǻººêY9¯.]º4iÒdúôéç΋‰‰±±±©[·î˜1cÞ{ï½"¬­eË–×®][ºté–-[bbb222\\\<==ýýýÿýï—-[ö¥k066¶´´twwÿðÇúÒgÃ,•öwó/ÀÃ1Ð Áz!8@/Gè…འ‚#ôBp€^ŽÐ Áz!8@/Gè…à½tp¼qㆧ§ç_ýUèÔM›6uïÞÝÛÛ»eË–ãÇOKK“»^9tp Þ¤¹sçNœ8ñúõëM›6577ß¼yó矞-wɲ1‘»dff^½zuÛ¶mëׯ/t†ØØØ¥K—ÚÛÛGDDØÙÙ !¦OŸ¾zõêï¿ÿ~Ò¤Ir— Cìq ~^jBlܸQ£Ñ >\JBˆqãÆYZZîÚµK£ÑÈ]>€< ±ÇqúôéOŸ>B¬Y³æäÉ“g8{ö¬‘‘‘ŸŸŸ®ÅØØØ××wÛ¶mçÎkÒ¤‰Ü{ C Žï¾û®ôáСC§jµÚ¸¸¸J•*UªT)o{Íš5…wîÜ!8PìT*¡ÕÊ]^ƃã‹eee©Õj++«|í–––Bˆ‡¾t žžžrïŠpõj¬žsÖ¬YÂ~ÆÆê»k¥ Á1?éÑé *äk777Bdddè³Ãüˤdžžžœ¥á¤(çEJôIy•~Ä’´%,äC|8æÅ¬¬¬T*UVVV¾ö¿ÿþ[ü¯ßÀó311±´´,س˜™™)„Ð=g `hŽ…°··OMM•’¢N||¼4IîêäAp,D@@€Z­>v옮E«Õ9rÄÚÚÚÛÛ[îêäAp,D÷îÝŒŒ~üñGé¾F!ÄÒ¥KSRR>úè£2eÊÈ]€l”HG…««ëˆ#~üñG+++SSÓzõê7.''Gšš=mÚ´Úµk—/_ÞÙÙ9$$äÞ½{ŲÝõë×;::öéÓGúêææÖ­[·#GŽ$%%œùàÁƒ¾¾¾M›6Õµ 2DqêÔ)¹%ÁE´iÓ¦ÐÐP__ß±cÇÚÚÚΞ=»M›6Z­V2yòd''§‘#Gz{{¯Zµªsçί¿ÅÌÌÌ«W¯úûû«T*]c«V­4MÁ;sss,%E[·n !Ê–-+÷Á DâGQbbâŒ3¾úê+éë˜1cÂÂÂ6lØ´aƾ}û®\¹Ršòûï¿'%%9::¾Îïß¿¯Õjíííó6ÚÙÙ !’““óÍlbb2sæÌ¼->œ9s¦±±q·nÝä>x”HG‘MÞ› §L™²hÑ¢7vêÔI¥R8qâÖ­[ÎÎÎBˆåË—/_¾¼àrsswìØñ¼õwêÔ)_KVV–ÂÂÂ"o£¥¥¥"55õÅÕ>|øóÏ?‹‹[´h‘‡‡‡Ü€‰à¨hy.ÉÊ@«}ÑT///SSSÝ× *xzz^¿~ÝÌÌlÞ¼y£FruuõòòjÑ¢EÛ¶mÛ·oŸwfÉãÇ_p [[`ó666BˆGåmÌÌÌBTªTéyë¹}ûö!C¶mÛæáá±ÿþV­ZÉyL(ɸÇQÑ´Z9ÿ¼*éù˜Áƒß¼yséÒ¥õë×ß¹sg×®]ëׯÿþý|ó[ZZjŸ¯àúíí파ò]•NIIBT­ZµÐ’Ö­[W·nÝ?þøcÉ’%ÑÑѤF^=Ž(¢èèègÏž•)SFúšãçç—ššW³fÍF³páÂÐÐÐÅ‹O™2%ï^õRµ‰‰I:uŽ;–·ñèÑ£*•ÊËË«à¶mÛö¯ýëã?^¼xq¾ Ü Ž(¢äää¹sçŽ3Fú:mÚ´ÌÌÌ.]ºÄÆÆ¶lÙr„ Ó¦MBùùù !tSçU/U !>ûì³aÆmß¾½C‡BˆDDD´iÓÆÕÕµàâcÆŒqrr 766–ûhPQDŽŽŽ“&M:yòdƒ N:µoß>Ÿ>}úäææÖ­[wÖ¬Y7nܨ[·nllì®]»*UªÔ«W¯|k.U¿ÒFûõë·bÅŠàààÁƒ[YY­Zµ*++ë›o¾‘¦Îž={Ö¬Y3gÎ4hPLLÌ•+Wj×®’o%]»v ’ûøPòQDÍš51bÄäÉ“çÏŸïèè8zôèiÓ¦™ššîÚµkÊ”)øõ×_íííÛ´i3iÒ¤‚‚E`aaqäÈ‘/¿ü2"""--ÍÇÇgíÚµº÷ >yò$==ýéÓ§Bˆ¸¸8!DLLLLLL¾•¸»»(Õ«vùà¥<==cccßô"òruumذaizés‰;¥@|||±üwÅ‹ó¢@%÷¤¨TEyÔ²D0Øß>>}úôÉÍÍ­[·î¬Y³nܸQ·nÝØØØ]»vUªT©W¯^ùÖ ]ª~¥öë×oÅŠÁÁÁƒ¶²²ZµjUVVÖ7ß|#M={ö¬Y³fΜ9hÐ ;;»o¾ùfìØ±íÚµ³²²Ú³gÏùóçg̘Q§N¹%÷8¢ˆš5k¶oß¾ôôôùóçß¹sgôèч222255ݵkWß¾}Ož<9uêÔÇ·iӿĉ;‹ÀÂÂâÈ‘#=zôˆˆˆ sww?räHóæÍ¥©Ožr”T\ªF%&&Θ1㫯¾’¾Ž3&,,lÆ AAA6lèÛ·ïÊ•+¥I!!!¿ÿþ{RR’££ãëlñþýûZ­ÖÞÞ>o£"99ùÅËΟ??!!áÛo¿•û°P‚QD666£FÒ}2eÊ¢E‹6nÜØ©S'•Juâĉ[·n9;; !–/_¾|ùò‚kÈÍÍݱcÇóÖß©S§|-YYYB ‹¼–––BˆÔÔÔ”š’’2sæÌáÇW«VMîÃ@ FpT¶<×de Õ¾`¢———©©©îk… <==¯_¿nff6oÞ¼Q£F¹ººzyyµhÑ¢mÛ¶íÛ·Ï;³äñãÇ/¸„­-°u!Ä£Gò6fff !*Uªô‚RgÏžýäɓѣGËy0(ù¸ÇQÙ´Z9ÿ¼"éù˜Áƒß¼yséÒ¥õë×ß¹sg×®]ëׯÿþý|ó[ZZjŸ¯àúíí파ò]•NIIBT­ZõyU=yòdÅŠ]»v}q¸/E#Š(::úÙ³geÊ”‘¾fggÇÄÄøùù¥¦¦ÆÅÅÕ¬Y3$$$$$D£Ñ,\¸044tñâÅS¦LÉ»†W½TmbbR§NcÇŽåmûì³aÆmß¾½C‡BˆDDD´iÓæczÿòË/–––¼-€×GpD9::Nš4éäÉ“ 48uêÔ¾}û|||úôé“››[·nÝY³fݸq£nݺ±±±»víªT©R¯^½ò­AºTýJíׯߊ+‚ƒƒleeµjÕª¬¬¬o¾ùFš:{öìY³fÍœ9sРARKvvö‘#GŒŒ¸+€×ÅoSQ³fÍöíÛ—žž>þü;wîŒ=úСCFFF¦¦¦»víêÛ·ïÉ“'§Nzøðá6mÚœ8q¢X^ôgaaqäÈ‘=zDDD„……¹»»9r¤yóæÒÔ'Ož¤§§?}úT7ÿ‘#Gž|¨kÑjµéééFFFº( `hŽ…èСC¹rå¦OŸ~êÔ©ììì»wïNš4)!!¡{÷îrW úÏ áééÞ¯_¿~ýúé{÷î=~üxýׯe÷îÝrï^">>^î KBB‚Ü% œzý“âæV £ùò?’mÛ¶Õ}¾{UîräDp,Dffæ¬Y³?~ìååU¯^½ÔÔÔãÇoÙ²¥yóæmÚ´Ñg †9¶SI'û0iˆc®Lœzý“R£0î_Œ¼¿ÖUB¥ZOáùë+ÁŽ…3fÌŸþ9nܸO?ýTj¹{÷nÏž=GŒ±uëV777¹ ÷8æ÷àÁƒC‡¹»»ëR£¢J•*_|ñųgÏJÓ»R^ Á1¿ÔÔT!DÁA ¥ŽÆääd¹ Á1?ccãk×®å{‹·tƒ»»»Üȃ{ó333óõõ=tèÐþóŸÐÐP###!ĵk×.\hjjêïïÿ†¶[ðAlE!8bÚ´iݺu[¸páÎ;ëÔ©“ššúçŸj4š‰'Ö¨QãMl‘§°ß´øøxà5q©º666;wî8p`… >œðþûïoܸ188XîÒdCcáÊ—/?räÈ‘#GÊ]€RÐã½ E_ªÖjµ111'OžŒMIIINN.W®œ­­­ƒƒC“&Mš7o^¹re¹k0 Ž kÖ¬ùí·ßÒÓÓ á—_~Q©TuëÖíÝ»w`` ©©©Ü%”rŠ ŽIII³fÍÚ»w¯¢aÆÞÞÞ 4pss³²²²²²ÊÉÉIKKKII‰ŽŽ¾páÂÙ³gÇŽöïÿû“O>‘Æ\À› ¬à¸zõê¹sç:::Ž5ªcÇŽvvvùf(S¦L… ªU«Ö°aÃO>ùD«ÕþñÇ[¶lùþûïÿý÷3fxxxȽ¥“²ºèÂÃçNº}ûö‚©± •JÕ´iÓéÓ§ïß¿¿^½z[¶l‘{J-eõ8îÞ½ÛØØ¸ ÚØØLž©V­Úºuë<(w†BÑ=ŽË–-Ójµ&LèÕ«—B£gæÌ™7oÞlÛ¶í/¿ü w™AÑÁñêÕ«}úô‘¾ž>}ÚÔÔô½÷ÞB¸¸¸Ô¨QãÆr×`(}©:==ÝÆÆFúœ››]·n]ÝKbÊ—/Ÿ’’"w†BÑÁ±J•* Ò ;çÎ{òäI³fͤI&!!ÁÖÖVî …¢ƒcÓ¦MÓÓÓ,X˜˜¸`Á!„¯¯¯4iÅŠ>tww—»FC¡è{?ÿüómÛ¶-Z´hÑ¢EBˆzõêIc7~üñÇýõ—¢ÿþr×`(ÝãXµjÕ 6øùù988¼ûî»óæÍ“FmLII±°°˜5kVóæÍå®ÀP(ºÇQááá±dÉ’|ááᎎŽFFŠN½¥ŒÒƒ£$==ýÒ¥KIIIUªTiÙ²eÙ²eIo™Òƒcjjê¢E‹"""²³³…}ûömÙ²e—.]¼¼¼fΜimm-w†BÑývÏž=ûâ‹/ÂÃÃ-,,ºté¢k·³³;tèPÏž=¥4 €·@ÑÁqÉ’%.\xÿý÷wïÞ=kÖ,]ûÆ;uêtóæÍÕ«WË]#€¡Ptp=qâD¡C9àmRôSÕBˆ«W¯Ê]”'Mšdff¶hÑ¢'OžÈ] €¡Sô¥j;;»9sæLž<¹cÇŽ;v¬^½º……E¾yüüüä.åR©„Ö ‡¬FqRtpô÷÷—>¤¤¤,X° Ðybccå.À (:8vìØQîðEǰ°0¹KÀ?ýp ”CÑ=ŽÍ›7é<‘‘‘r— `333óµhµZF#}vpp``p€·FÑÁ1:::_‹Z­¾{÷î¾}û-ZôôéÓ¯¿þZî E »ÇÑØØØÉÉ©ÿþ ,ÈÈÈ1b„–Á©Þ E÷8¾@óæÍÝÝݯ^½zçÎêÕ«Ë]ÅC¥*Øæ*wQ*¡zý•”%¬Ç1/;;;!DåÊ•å.€â¤ÕþŸ?7nÄçkyÕ?(Òá”» ™•Ôà˜••mccS¡B¹k0оT}êÔ©BÛÓÒÒÂÃÃ>|غuk¹k0ŠŽýúõ{ÁÔŠ+6Lî …¢ƒã ÞU]½zõÎ;;99É]#€¡Ptpä]ÕÊQRŽÀ[¦¬ÇÇ¿ê"~~~rW `”øª‹ÄÆÆÊ]5€APVp|ÁÓ0—²‚#OÃ(Ç@/Êêq\»v­âwÞñððÐ}}±àà`¹«0Ê ŽS§NB|óÍ7Rp”¾¾ÁPj¨TB«•»àù”CCC…õêÕ“¾Ž=ZîŠðeÇ!C†äýúÙgŸÉ]þQ‚Ž;vl«V­ä®ÀP(«Ç± ´´´ܺu+_{vvö¾}ûŒå.ÀP(:8Þ¿¿W¯^‰‰‰Ï›'cÞEÇ•+W&&&6mÚ4((hÇŽ§OŸž~üXúêääôÇ親Tª„„¹k0ŠŽ­[·ÎÎÎ=zôõë×…Mš4¹}ûöñãÇ…)))þùgÕªUå®ÀP(úá˜>}úìÙ³çàÁƒZ­vñâž¾¾&&&C† iԨѕ+W²²²å®ÀP(ºÇÑÆÆfíÚµ#GŽ”Þ^]µjÕ‰'æääœ8q"555  ÿþr×`(Ýã(„°±±8p îk¯^½‚‚‚.^¼hooïææ&wuDY=Ž~~~C‡Õ}õöö Ë7¹¹¹©à-SVpüûï¿###uïÌÊÊzöì™ÜE@¥]ªnѢŞ={ZµjU¾|y©eíÚµ›6mzÁ"çÏŸ—»jƒ ¬à8eÊ“3gÎèÆn€B(+8V®\ù‡~Ð}õôô ?~¼Üu@aÁ1Ÿ4iÒDî* „ƒã˜1cä.ÿPÖSÕP,‚#ôBp€^ŽÐ ÁzQVpÔç]Õ…²‚#ïªP,eãÈ»ªKYÁ‘wU(–²‚#ïªP,eÇ|xW5€r(:8êÞU}ïÞ½˜˜˜[·n={öÌÍÍ­víÚUªTyÓ[¿xñâ’%K._¾ü÷ß{zz†††6kÖLîC EG!DZZÚ‚ Ö¯_¯V«uÆÆÆ=zô>|¸¥¥åÚîÁƒ‡ªÑhêÕ«çááqâĉ>}ú,Z´¨U«Vry(:8ªÕêÿûßçÏŸ/[¶lëÖ­oÞ¼yèС_~ù%&&fí򵮮ÆÅ¾ÝŒŒŒ±cÇš˜˜üüóÏ7BDEEOš4ÉÏÏÏÈHYc¼ŠŽ«V­:þ|Æ ,X`gg§kONN =þüªU« PìÛݼysffæˆ#¤Ô(„¨_¿~»ví~ÿý÷‹/6hÐ@î Ewž;vL¥RÍ›7/ojBØÚÚΟ?ßÈÈèèÑ£ob»GU©T;wÎÛøÝwßÅÆÆ’€ÁRtã•+Wœ N²··¯Q£FLLÌ›Øî¥K—¬­­þøãóçϧ§§×ªU«uëÖfffrÙ(:8–-[6;;ûyS³³³ßD’ËÉÉyôè‘»»û×_½nÝ:]»““Ó¼yóêÖ­«ÏJ<==óµìÞ½û-5&!!Aî'E™8/…rss}kÛŠÏ×ÂI‘…›«[Þ¯5=kz Ï¢®¬ôPtp¬]»ö¡C‡ÎŸ?ïííoÒ¥K—üüüŠ}£=BÄÅÅ%''Ïž=ÛÏÏïÉ“'?ýôÓ°aöoß®OZ•ûà!?W×·÷ï>ôÄIQ&ÎK¡´Ú·¶©BŽ?'EZ‘ç¬ÿß_ì{ˆ „¢ïqìØ±£bèСùîe<~üø!C„AAAžÑråÊIfÍšÕ¹sg+++‡!C†téÒ%!!aÇŽry(ºÇ100ðÈ‘#[¶lùì³Ï]\\„·nݺ{÷®"((¨C‡Å¾Ñ *”+WN¥RùûûçmoݺõæÍ›¯\¹"÷Q‡¢ƒ£bÖ¬YÍš5›7o^RRRRR’Ôhkk;bĈ.]º¼¡ÚÙÙ¥§§«Tª¼ÒêÜÜ\¹ €<”U*U×®]»víúàÁƒ›7ojµZ{{û7ºQÿÿþ÷¿W¯^­Y³¦®ñܹsBˆZµjÉ}Hä¡è{ó²³³{çwš5kö¦S£BêËœ8qâÇ¥–‹/þüóÏ–––mÚ´‘ûHÈCé=޲¨]»öÈ‘#øá‡¶mÛ6iÒ$++ëìÙ³*•júôé•+W–»:y 7pà@›Õ«WŸúè£>’» ¥(1÷8@^GèEÑÁ1!!áöíÛrW!~c``àÓ§OOœ8acc#w-†NÑ=ŽÒSÌW¯^•»(;8Nš4ÉÌÌlÑ¢EOž<‘»C§èKÕvvvsæÌ™¤¤¤,X° Ðybccå.À (:8vìØQîðEǰ°0¹KÀ?uÒÓÓ/]º”””T¥J•–-[¦¤¤0@À[¦ôà˜ššºhÑ¢ˆˆˆììl!Dß¾}[¶lÙ¥K//¯™3gZ[[Ë] €¡Pôp<Ïž=ûâ‹/ÂÃÃ-,,ºté¢k·³³;tèPÏž=¥4 €·@ÑÁqÉ’%.\xÿý÷wïÞ=kÖ,]ûÆ;uêtóæÍÕ«WË]#€¡Ptpœœœ\¶lÙråÊݹsç÷ß \·nÜÕEÇ£G.Z´ÈØØ¸OŸ>û÷ïÿ믿Ο?øðá!¦M›vá¹k0ŠŽëÖ­Ójµ£Fš0a‚“““J¥B8::Ž3fìØ±¹¹¹+W®”»FC¡èàxùòå²eËöíÛ·à¤Þ½{›™™úR¼ ŠŽB“Bžà‘ž’ÉÊÊ’»@C¡èàèíí}çÎÌÌÌ‚“?~ïåå%w†BÑÁ±{÷îZ­ö«¯¾ÊÍÍÍÛ®V«Ç¯V«ä®ÀP(kÇS§Nåýjllܵk×Í›7·iÓ¦{÷înnn*•*>>>""âÎ;žžžmÛ¶•»dC¡¬àد_¿BÛïÞ½;þü|±±±-Z´ˆ•»jƒ ¬àرcG¹K@á”ÃÂÂä.…SôÃ1Peõ8êáÇ Z­¶Ð© 4»@ƒ èà˜––6jÔ¨'N¼`Žx;çÌ™sâÄ ccãºuëZ[[K婢,¥Ô¸fÍšFÉ] €¡SôÃ1=jذ!©@ ëÔ©“••%wBáÁñƒ>¸råÊ‹ŽÀÛ¡è{ƒƒƒ£££ Ô§OŸ&MšT¨P¡à<ï¼óŽÜeÞ ŒÄ› üÅ* EÇôôô¸¸¸œœœåË—/_¾¼ÐyŽJ½çŒä ¼­(ê_,•JÔ¬)wùòPtpœ7oÞ_ýebbÒ¨Q#kkk¹Ë0hŠŽgΜ155ݰaC:uä®ÀÐ)÷á˜ÜÜÜøøø ”@¹ÁQ£Ñ”)S&##CîB „’ƒ£©©iPPÐÕ«W<(w-Pö=Žýû÷¿zõê!Czôèñ¼áxüüüä.À (:8¶oß^úðË/¿üòË/…ÎÃp<o‡¢ƒcÇŽå.ÿPtp “»€ýúë¯å®ÀP”°{œœú÷ï¿`Á‚ŒŒŒ#FhµZ¹‹0%,8ê4oÞÜÝÝýÎ;wîÜ‘»ƒPRƒ£ÂÎÎNQ¹re¹ 0%58feeEGGÛØØúB;E?sêÔ©BÛÓÒÒÂÃÃ>|غuk¹k0ŠŽýúõ{ÁÔŠ+6Lî …¢ƒã ÞU]½zõÎ;;99É]#€¡Ptpä]ÕÊQRŽÀ[¦èG!Ä®]»V¯^}óæÍç ôÍ»ªÞEÇýû÷>\úlll,w9MÑÁqùòåBˆ~ýú}ñÅ–––r—`ÐãââªU«6vìX##îÅ™rÙ³gÏ=zäääDjPåf2###KKËk×®i4¹k€‚ƒ£±±qHHHJJÊܹså®ʾÇ100ðÎ;K—.ŒŒl×®]µjÕLMMóÍãçç'w™AÑÁ1 @úUè<±±±r— xST*ñœa|È@ÑÁñïªÀ[¦èàÈ»ª”C¹Ç@Q”#""ÔjuÑ–½{÷îÑ£GåÞ€RKYÁñ§Ÿ~ ܶm[NNŽþK%$$LŸ>ýÃ?¼qã†Ü{Pj)ëÇ;wΛ7oìØ±S§N lÓ¦Mƒ *V¬XèÌ·nÝ:uêÔ¶mÛþüóÏ*UªüôÓO¾¾¾rï@©¥¬àhfföÕW_uëÖí¿ÿýï–-[Ö¯_¯R©ÜÝÝ­­­---srrÒÒÒRSS/_¾œ‘‘!„pqq™8qâG}dff&wù¥™²‚£ÄÃÃcÚ´i£GÞµk×É“'###¯]»VpžÎ;ûùùùøø¨T*¹K(ý”%VVV½zõêÕ«—F£¹wï^jjjJJŠ™™YåÊ•ííí-,,ä.”H*¡Ò F–/ åG##£*UªT©REîB š²žª€b ‚#ôBp€^ŽÐ ÁñåîÞ½Û¸qã/¿üRîBä¤èàõâvïÞý¦kÐjµcÇŽýûï¿å>2StpìÙ³ç?þ¨V« NJKK>|ø°aÃÞt «V­:sæŒÜG@~ŠŽvvv ,èÑ£ÇÍ›7ó¶ïÙ³§}ûö»vírvv~£\»vmîܹµjÕ’ûHÈOÑÁqûöí=zô¸xñbçÎ×­['„HOO9räСCÓÓÓ °uëÖ7·õÜÜÜ1cÆX[[7Nî# ?E¿rÐÜÜ|êÔ©íÚµ›0aÂ×_½sçÎ7n¤¤¤xxxÌœ9³^½zotë ,ˆ‰‰Y±bïÅ ŽŸõë×wêÔIº×°Q£F«W¯.S¦ÌÝè… –-[Ö»wï-Z\¾|ùU÷ôôÌ×òžãÁ $$$È]òã¤ÈÎÍ͵°f×W]Ï›/w 2㇥Pn®n¯³ø+ý½jÛ¶mìÕ«ÒgÏš5Eßò†£ÇcÇŽMœ8ñáÇ^^^ÉÉÉçÎJ¡èà(¥CM›6}ñÅÆÆÆ–––óæÍûþûïU*Õøñã Pì=sæÌºuëØ A¹€‚(:8¦¤¤|þùç¿ýö[:uò¶mÛ¶ÍÇÇçøñãžÑk×® !.\èù?]»vBlݺÕÓÓ³C‡ry(úǵk×z{{:ÉÁÁaåÊ•ááážQggçöíÛçmÉÈÈ8~üx•*U¼½½ä>*àíúß ŽPtp|^j”¨Tª>}úûFß}÷Ýwß}7oËåË—?Þ¤I“°°0¹ €l}©ÊAp€^}©Z!¼¼¼—€Gè…འ¥ßã¸k×®Õ«Wß¼ySûœñ“"##å®À (:8îß¿øðáÒgccc¹Ë0hŠŽË—/Bôë×ï‹/¾°´´”»ƒ¦èàW­Zµ±cÇq/&€Ì”Èž={öèÑ#'''R#€(7“YZZ^»vM£ÑÈ] CBBRRRæÎ+w-Pö=ŽwîÜYºtiddd»víªU«fjjšo???¹Ë0ŠŽÒ‡¨¨¨¨¨¨Bçá-Òo‡¢ƒcÇŽå.ÿPtp “»üC¹Ç@Q”Õã¸víZ!Ä;ï¼ãáá¡ûúbÁÁÁrW `”§N*„øæ›o¤à(}}1‚#ÀÛ¡¬à*„¨W¯žôuôèÑrW€(+82$ï×Ï>ûLîŠðŽ€^ŽÐ Áz!8@/Gè…à½(k8ž—ÒjµLHH¨_¿¾···Üå¥ǃΟ?¿uëÖÒØà'NŒˆˆ&õêÕkÊ”)*•Jî ‚¢/UŸ={ö‹/¾¸råŠF£BDGGGDDXZZ~òÉ'ÕªU[·nÝÁƒå®ÀP(ºÇqÙ²eZ­v„ ½zõBìÝ»W1sæÌ€€€›7o¶mÛö—_~ »Lƒ èàxõêU‡>}úH_OŸ>mjjúÞ{ï !\\\jÔ¨qãÆ ¹k0оTžžncc#}ÎÍÍŽŽ®[·®©©©ÔR¾|ù””¹k0ŠŽUªTIHHP«ÕBˆsçÎ=yò¤Y³fÒ$F“`kk+w†BÑÁ±iÓ¦ééé ,HLL\°`Â××Wš´bÅŠ‡º»»Ë]#€¡Pô=ŽŸþù¶mÛ-Z´hÑ"!D½zõ¤±?þøã¿þúKÑ¿¹k0Šîq¬Zµê† üüüÞ}÷ÝyóæI£6¦¤¤XXXÌš5«yóær×Þ6•Pi…Vî* ‘¢{…K–,É×îèèhd¤èÔ PÊ(=8JÒÓÓ/]º”””T¥J•–-[–-[–Ôð–)=8¦¦¦.Z´(""";;[Ñ·oß–-[véÒÅËËkæÌ™ÖÖÖr`(Ýo÷ìÙ³/¾ø"<<Ü¢K—.ºv;;»C‡õìÙSJ“x —,YráÂ…÷ß÷îݳfÍÒµoܸ±S§N7oÞ\½zµÜ5 EÇ3gÎϘ1£|ùòyÛ'Ož\¾|ù={öÈ]#€¡PtpŒ‰‰quuÕ½u0/sss77·[·nÉ]#€¡Ptp´´´|üøñ󦦥¥U¬XQî …¢ƒc:u’’’¢¢¢ NЉ‰ILL¬]»¶Ü50 *U©ú¼&ÿþënðÓò {ôè¡R©Fuùòå¼í—/_>|¸¢sçÎr×À°hµ¥êðšdüû[¬»ÁO‹¾=ŽcË–-CBB–-[ÖµkW777!ÄþýûOžlݺµÜ5 EÇ~ýú½`jÅŠ‡ &w†BÑÁ±cÇŽÏ›T½zõÎ;;99É]#€¡Ptp “»ü£¤>€·LY=އ~ÕEüüüä®À (+88ðU‰•»jƒ ¬àø‚§a /eGž†P¬üpÌØ±c[µj%w†BY=Ž¥¥¥8pàÖ­[ùÚ³³³÷íÛgll,w†BÑÁñþýû½zõJLL|Þ ÁÁÁr×`(W®\™˜˜Ø´iÓ   ;vœ>}zòäÉfffW®\Y³fMppð„ ä®ÀP(:8;v¬lÙ² .´°°hÕªÕ»ï¾ëêêÚ¢E !„››Û·ß~ûñÇ{xxÈ]&ƒ R ­Vî"@VŠ~8&))ÉÅÅÅÂÂBakkkmm}éÒ%iR÷îÝ­­­W®\)w†BÑÁQadôÿ+¬^½z||¼ôÙØØØÓÓ3**Jî …¢ƒ£ƒƒÃÍ›7?~,}urrúã?tSU*UBB‚Ü5 EÇÖ­[ggg=úúõëBˆ&MšÜ¾}ûøñãBˆ”””?ÿü³jÕªr×`(ýpLŸ>}öìÙsðàA­V»xñb___“!C†4jÔèÊ•+YYYr×`(Ýãhcc³víÚ‘#GÖ«WOQµjÕ‰'æääœ8q"555  ÿþr×`(Ý㘛›kcc3pà@]K¯^½‚‚‚.^¼hooïææ&wDÑ=޾¾¾ß}÷]\\\ÞFsssR#À[¦èà˜ššúóÏ?·oß¾gÏž›6mÒ=^ €·OÑÁ1""¢_¿~öööçÏŸŸ8qbË–-¿ú꫼#òà­Qtp¬W¯ÞW_}uøðáððð=z˜ššþúë¯ÁÁÁ|ðÁÒ¥K}ú›o¾¹~ýº££ãŒ3Z´h!wE²!8.''',,,<<¼\¹r¡¡¡ Ð=a `˜Ž…Ðh4£FÚ»woëÖ­§L™bgg'wEò#8"<<|ïÞ½Ÿ|òÉ”)Sä®@)Ç1?­V»fÍšŠ+Ž;VîZ„Çü’““oß¾mff\pj—.]z÷î-w2 8æ'a–}éÒ¥‚Sy°,‚c~5bF€‚¸Çz!8PD*¡zÓ¯…འ‚#ôBp€^ŽÐ Áz!8@/Gè…འ‚#ôBp€^ŽÐ Áz!8@/Gè…འ‚#ôBp€^ŽÐ Áz!8@/Gè…འ‚#ôBp€^ŽÐ Áz!8@/Gè…འ‚#ôBp€^ŽÐ Áz!8™¨TB«•»¼‚#ôBp€^Lä.xKT*¹+@©¦¥åo˜«Üí›?'Z!Ä›?õ¥èœ Ä#8€p# Þ(­( Ãâãã]]KEP)E7Ï•ž“‚’KÕÐ Áz!8@/Gè…འ‚#ôBp€^ŽðºTBU:Fÿ€#8@/Gè…འ‚#ôBp€^ŽÐ Áz!8@/Gè…འ‚#ôBp„ApssÕjå.€Žà½ ‚#ôBp€^ŽÐ Áz!8@/Gè…འ‚#ôBp€^ŽÐ Áz!8@/Gè…འ‚#ôBp€^ŽÐ Áz!8@/ÇçÚ´iS÷îݽ½½[¶l9~üø´´4¹+J•¶mÛÊ] ÁyQ N ”ƒàX¸¹sçNœ8ñúõëM›6577ß¼yó矞-w]²!8"66véÒ¥ööö»wï^ºtéž={úôéõý÷ßË]€lŽ…Ø¸q£F£>|¸Ô2nÜ8KKË]»vi4¹«Á±gÏž522òóóÓµûúú¦¦¦ž;wNîê/£R ­Vî"€Rˆà˜ŸV«‹‹«T©R¥J•ò¶×¬YSqçι ‡‰Ü(NVV–Z­¶²²Ê×nii)„xøð¡^kQ©äÞüZ!çDabEéùIÑ Qjþ†•šóâéé)w ìJ!‚c~Ò£Ó*TÈ×nnn.„ÈÈÈxébccåÞ 0tüC ¼ \ªÎÏÊÊJ¥Reeeåkÿûï¿Åÿú Á1?KKË‚=‹™™™BÝsÖ††àX{{ûÔÔT))êÄÇÇK“ä®@ÇB¨ÕêcÇŽéZ´Zí‘#G¬­­½½½å®@ÇBtïÞÝÈÈèÇ”îkB,]º4%%å£>*S¦ŒÜÕÈC¥eˆÔ¬X±böìÙU«V}ï½÷nݺY§N+V¦À@ŸkÛ¶m[¶l‰ŠŠrtt|çw†.È`˜ŽÐ ÷8@/Gè…འ‚#ôBp€^ŽÐ Á±ØlÚ´©{÷îÞÞÞ-[¶?~|ZZšÜW=øÙÙÙ«V­êСCÆ ß{|8qBî(m^ç'âîÝ»7þòË/åÞ‰Ò¦'åâÅ‹C† ñ÷÷oÚ´iïÞ½OŸ>-÷N”6¯zRrrr–-[ÖµkWooïV­Z 6ìÚµkrï„Á¹qㆧ§ç_ý%w!2 8¹sçNœ8ñúõëM›6577ß¼yó矞-w]áU~nnn¿~ýfΜùàÁww÷Ó§O÷ïßÿ§Ÿ~’{WJ×ù‰ÐjµcÇŽÕ½)Å¥'åàÁƒ½zõ:xð ··÷ùóçûôésðàA¹w¥ôxÕ“¢V«ûöíûý÷ß§¥¥½÷Þ{U«VݳgO§NΞ=+÷®–ððp¹K¯íÊ•+µjÕzï½÷îß¿/µL›6­fÍšS§N•»´Ò¯íÚµ5kÖìÕ«WVV–ÔrõêÕwÞy§víÚÑÑÑrïPiðš?+V¬¨Y³fÍš5G-÷®”E8)éééMš4iРÁü!µüõ×_uëÖmÑ¢…Z­–{‡Jƒ"ÿó5lذgÏžI-'Ož¬]»ö| ÷Þ„ŒŒŒ³gÏNž}áÂ… .lÑ¢…ܵȆ¿g¯K«ÕÆÅÅUªT©R¥JyÛkÖ¬)„¸sçN“&Mä®±Ô*ÚÁ_²dIÁa/_¾,„prr’{ŸJ¼×ù‰X°`ALLÌŠ+,,,äÞR¥h'åÒ¥KÖÖÖüñÇùóçÓÓÓkÕªÕºuk]W=^GÑNJ‡V¯^=}úôòåË7lØ0--máÂ… =zôà§æ-x÷Ýw¥‡’»Ù_WVV–Z­¶²²Ê×nii)þïÿ QìŠvðëÔ©“¯%22réÒ¥eË–Í×¹‚"(òOÄ… –-[Ö»wï-ZH9Å¥'%''çÑ£Gîîî_ýõºuëtíNNNóæÍ«[·®ÜûTâí'ÅÓÓ3<<¼_¿~ýúõÓ5öîÝ{üøñrï —ª_—ôø[… òµ››› !222ä.°4{ýƒ¯V«W¯^’••5kÖ,¹÷©Ä+ÚIÉÎÎ3fŒ““Ó¨Q£äÞƒR¨'åÑ£GBˆ¸¸¸;wΞ=ûôéÓGŽ MLL6lCF¼¾¢ý¤dffΚ5ëñãÇ^^^={ölÓ¦™™Ù–-[xÔo =ޝËÊÊJ¥Reeeåk—‘þïˆ7ä5þéÓ§¿ùæ›ëׯ;::Θ1ÃïY)FE;)³gÏNHHX·n—Aß„"œ”råÊIfÍšÕªU+éó!CîÞ½»yóæ;vtëÖMîÝ*ÙŠö“2f̘?ÿüsܸqŸ~ú©Ôr÷îÝž={Ž1bëÖ­nnnrïJ?z_—‰‰‰¥¥eÁÿfff !tÏÊáM(òÁÏÉÉ™>}zß¾}ïÞ½ºk×.Rcq)ÂI9sæÌºuëÈ#oHNJ… Ê•+gffæï½uëÖBˆ+W®È½O%^Nʃ:äîî®KBˆ*Uª|ñÅÏž=ûí·ßäÞ'‚c1°··OMM•~Úuâãã¥IrWWÊáàk4šQ£F­^½: `ïÞ½C† ¡—«x½êI‘Þ{±páBÏÿéÚµ«bëÖ­žžž:t{‡Jƒ"ü¤ØÙÙ•)SF¥Råm”~XrssåÞ¡ÒàUOJjjªÂÅÅ%_»Ôјœœ,÷Á ‹A@@€Z­>v옮E«Õ9rÄÚÚÚÛÛ[îêJ¹"üððð½{÷~òÉ'?ýô]Âo«žggçöÿ—ôèb•*UÚ·oïëë+÷•EøIñ÷÷ÏÌ̼zõjÞFi˜Ú,¯zR\\\Œ¯]»¦Õjó¶ÇÆÆ !ÜÝÝåÞ!¹G / kÕªÕ¶mÛGI-‹/®Y³æwß}'wi¥Ÿ>ÿï¿ÿ¾qãÆ;w´Z­F£iݺuãÆ³³³å®½ÔzÕ“RÐ¥K—xsLñ*ÂI‰ŽŽ®Y³f÷îÝSSS¥–¨¨(ooï¦M›¦¤¤È½C¥ANÊÀkÖ¬9oÞ<ÝË{®^½Ú¼yóºuëÆÅÅɽCd„ ûæŽ)UªTùòË/gϞݱcÇ÷Þ{ïÖ­[‘‘‘^^^Ÿ}ö™Ü¥•~úü#GŽŒ1ÂÃÃcûöíÉÉÉ·oß633 .¸¶.]ºôîÝ[î}*ñ^õ¤È]¯A(ÂI©]»öÈ‘#øá‡¶mÛ6iÒ$++ëìÙ³*•júôé•+W–{‡Jƒ"œ”iÓ¦uëÖmáÂ…;wî¬S§NjjêŸþ©Ñh&NœX£F ¹wàX<ú÷ïokk»eË–;w:::öîÝ{øðáÒ¨ xÓ^éà'$$!²³³/]ºTp*È~"¨'eàÀ666«W¯>yò¤µµu@@@hh¨ôš%‹W=)666;wî\¼xññãÇ>lmmýþûïÿûßÿ®W¯žÜ»C¡Òþß[%€Bñp ôBp€^ŽÐ Áz!8@/Gè…འ‚#ôBp€^ŽÐ Áþ¿/¿üÒÓÓóÔ©SomU?þø£§§çÚµkó.uøðáB§€¼ŽP’?~üÈ‘#rWÀ@™È]4›Æë9uôèÑ™™™ÑÑÑrÀ@N^^^^^^E› o—ª”Hjµ:77Wî*À°”Òƒ#ׯ_ÿöÛo›4iâåååççšïi¶»wï^¸pá£>ª_¿~BB‚nêÎ; ôþûï7oÞ¼_¿~?ÿü³Z­.¸­ãÇ6Ì×××××÷ßÿþ÷Ñ£GóÍ’’òÃ?6jÔ¨Q£FíÛ·Ÿ5kÖýû÷_uUË–-{Áã/y§~÷ÝwžžžiiijµÚÓÓÓÛÛ{üøñžžžk֬ɷÔ?üàéé9gιπ҆ࠄ™0aš5kžù$00P±gÏž¼³iµÚíÛ· !:uê$÷¹PÚ”0çÏŸ÷óó;uêÔÞ½{Ï;7nÜ8•J5gΜk×®åmòäÉõêÕ[¹rå‰'ªW¯.„øí·ß¶lÙbgg·~ýú£GîÙ³çСC 6<þü‚ ò.»y󿀀€Ó§OK›3fŒ‘‘ÑÂ… £¢¢t3ܼy³U«V'NœØ²eËÖ­[?Þ´iÓÄÄļҪôתU«ñãÇ—/_ÞÈÈhüøñ_~ù¥••Õü‘’’¢›íܹs‰‰‰uëÖuww—û\(mŽJ;;»ÿüç?VVVBccãO?ý488X£Ñ,\¸0ïl*TX¶lY‹-lll¤–yóæ !¦OŸîíí-µ8::.X° lÙ²ëׯ¿wïžnÙ*UªÌŸ?ßÂÂBabb2`À€àà`!ÄO?ý$Í››ëïï?zôè *H-AAABˆ[·nå-㥫zÆÆÆ|ðF£Ù·oŸ®qÛ¶mBˆÎ;Ë}¢”BG%ÌG}T¶lÙ¼-}úôB\¸p!ocÇŽË•+§ûúàÁƒû÷ï;::úúúæÍÎÎÎÏÏO­VÇÄÄè»wïnbbRp—/_–¾úè£jÕª™™™]¿~]£Ñx{{><žž»wïÞ·oŸ««kbbbvv¶‰‰Éĉ¥ÇhÜÜÜ8ЦM›ÆkµÚØØØ´´´àààÕ«Wÿúë¯=š={¶>«*++«´´´^½zU¯^]7üd``à/¿ü’íììܰaC¹O€R‹à „éÔ©SppðÏ?ÿ|ñâEsssŸýë_>>>/]ÐÈÈèûï¿÷óóÛ¶mÛ•+WFgåÊ•»wï>pàÀåË—­­­ßÿýO?ý4o ›3gΊ+vîÜùÇT«VÍ××÷ÓO?õððP«ÕÛ¶m;{ö¬þ«zUãÆ›>}úõëן’»¥÷8@ Ö´iÓ'Ožää主»K/Ë€7‡à Ä ¬Y³fÁ—ø2GGÇÛ·oûúúN:5ß#>Pìx8záGè…འ‚#ôBp€^þÚGvÄSÒ}IEND®B`‚statistics-release-1.6.3/docs/assets/geopdf_101.png000066400000000000000000000605711456127120000221250ustar00rootroot00000000000000‰PNG  IHDRhŽ\­Aa@IDATxÚíÝy\TÕÿÇñ3l‰(Ä"î˜@.$Vnˆ¢å’¹W¦©_C3ÍÄÝ\2ÍT²RË\Я¹~MÅ_V&.¥âJZV¦Šâ‚š ¨` Üß·¦qf +ÜY^ÏG3gîÌ|ν£óöœ{îh$IÀ¿qP»X‚#!8@‚#!8@‚#!8@‚#!8@‚#!8@‚#€2±ÿþ×^{-88¸råÊ>úèÓO?Ý¿ÿƒª]—ÙlÙ²åË/¿üòË/322”l¿dÉF£Ñhš4iòo}âÄ )•+WnܸñàÁƒÓÓÓÿu{'''ooï§žzjÊ”)Æ](î-ô;V탠¼˜Ynnn=Z¶lêÔ©[·n]¿~ýûï¿_µjUóæÍ;v옙™©vfлwï®]»víÚõرcj×ò—[·n=ztéÒ¥?þøÎ;KÞ¸°°0++ëðáÃ3fÌNNNV»|VÀIíØ”›7oFFFþòË/ºFSXX(ßMLLìÒ¥Ëwß}W¡Bµ‹-W•+W®]»¶Âßßߌ/ëçççêê*„¸wïÞ•+WŠŠŠ„·oß}j×®]½zõÞ½{ÿúë¯Bˆäää_|±víÚ>úhëÖ­÷ìÙó@żõÖ[æÖ­[òݶmÛj4šÛ·oë¿u·nÝ Þ~ûíêÕ«¿ýöÛ¢øs¯]»6bĈæÍ›kµÚÚµkwèÐaëÖ­¥Ûÿ•*UZ°`³³³|÷÷ß/yû5j,_¾¼[·nòÝ™3gʽ€bI`&Æ “ÿb©P¡Â¥K—Œ7¸råÊ€¿]»vM×þÝwßùùùüí¤ÑhF¥ÿôÇ?öØcÆÕ¨Q#))I·ÙäÉ“åöFy{{ëoéãã3þ|]´Ò½Ñž={”3aÂãnݺ¥ÿÖ]»vÕ¥äÉ“'K’´xñbùnDD„î½vìØáëëküj111%ìçãÇë¶üöÛo ­ZµªüЄ ”l¯Ÿ›·mÛ¦ä)ì#ŽÌæ»ï¾“otíÚU_ôU©R峿ùøøÈ¹¹¹/½ôÒÕ«W…mÚ´yçwz÷îíàà IÒG}´|ùry³üüü^xáÌ™3Bˆ *<ûì³;v¬X±¢ââÅ‹/¾øâÍ›7 Þî矾~ýzÆ ½¼¼ä–ŒŒŒ#FÜ»w¯^½zÕªU“%Iš6mšòbÆŒ“šš*¿µbåÊ•úwe?üðÃÊ•+KÞ]¹¹¹}úô¹víšÂÃãG­[·–Z¶l™nìödggËÅ !•<%22ÒÅÅE¾}øðá‡û°uj'W6¢¨¨ÈÑÑQþ‹eêÔ©ÊŸ¨;U®gÏžºÆO>ùDn¬Y³¦Ü¢Ëvîî;¦SÔ °é†ý„ß|ó$IwïÞmÓ¦®qÞ¼y’$¾úê«r‹··÷#IR¥J•äFý9ý· Y³fMrrò™3g$S#Žº÷ªU«VFF†Acdddq{Ìäpà½{÷Nž<Ù©S'ÝC?þøc Ûë«Y³¦üèСCŸbRlllyÂXF˜Gvv¶né´.ˆÈ>üðCã«8p@~tÛ¶mòAƒéžòŸÿüGŽ¡.\¯wóÍ7ßȽù曺Óëׯ?jÔ(ù¶nˆˆˆŽ; !œ{õê%7zxx¼ùæ›B‡—^zIWüó¯*V¬¸sçÎ>}ú<õÔSuêÔ1¹ÍöíÛåcÆŒÑÅßáÇ7jÔ¨Q£Fþù§n–@>ÃR£Ñ8;;׫WO·žþù'žxBá±{ôÑGåg‹€.ÇÀ<ôçj^[vêÔ)ùƳÏ>krƒÓ§O7hÐ %%ÅäfÏ<óŒ++K¾áîînü¨ÉËñèfÿØ‚#óxä‘G|||äÈxòäIý‡ÜÝÝåK !®]»–——§{(77W·<¹8™™™¹¹¹999ò]ƒë êÒá;w®^½ªÿ¨. êÓO–£do,Ê1ù^ºyxx<ðîþ›~ªsrr iÖ¬Ùˆ#è2™üñ‡îÕŒ]»vmttt©+`KŽÌ¦M›6òuv6oÞ|íÚ5ÝzáAƒÉ3¿µjÕÒŽîîî•+W–×µìØ±Ã䬮»»»V«•“Ö•+Wô×V_¹rE¾áââ¢[pS: ‹QòR&3«¾Ê•+W¬XQÞYYY¥«ùáSÝþýûïÞ½+ß~òÉ'æ¥Ø<Îq`6±±±òx^NNΈ# 6X²dÉåË— ëÖ­+ß(((xL§§§‡‡‡‡‡‡<¢,o¶cÇý§ëî:9=ì?†óð4.þ~ÿý÷ºö?þø£iÓ¦M›6mݺµü30eM7©íææ¦?iÆŽÌæé§Ÿ~íµ×äÛŸþyddäÞ½{åÉß_~ùåµ×^{ã7ŒŸÕ¶m[ùF||¼$IòíM›6=úè£ÞÞÞµk×–‡åe.Bˆ?þXw9îãÇÏ™3G¾Ý¡C‡‡ï‚Âbôé†ëT«V­ä~ø¡n²xîܹÉÉÉÉÉÉ<òH ³êfñÇ <8!!A¾ûÊ+¯T®\¹L߀µcª€9Íš5kÛ¶miiiBˆC‡µjÕÊÁÁÁÅÅåÎ;òM›6=tèþSÞzë­e˖ݸqcóæÍmÚ´iÕªÕ‰'t«ƒG%¯Ã7nÜgŸ}vþüùœœœ-ZDGG;::~ûí·òøûûO™2åáëWXŒÂÃÃCÎÄï¾ûî‰'FŒap]ñ5eÊ”U«Våææ¦¥¥5jÔ(::úêÕ«ºkaꮦn^ýúõ“—1ݾ}[7Ë/„ðññy÷ÝwËâØF˜“V«=tèPTT”®¥¨¨H—ŸþùÍ›7<ÅÓÓsåÊ•ò‘={öL›6-!!!??_1dÈݯZ»ººnذA>ï0??Ë–-_~ù¥œkÕªµaÓ+‚”Âb„Þxá¡C‡ÆŽ[ŠqG__ß+VhµZ!ÄÕ«Wÿ÷¿ÿéRãĉ;wî\èòåË©©©©©©ú©ÑËË뫯¾ú×=Àˆ#3óóóÛ½{÷–-[Ö¬YsèС«W¯VªT)44tàÀýúõÓh4~~~º_7‘uîÜù—_~y÷Ýw=úûï¿W©R¥aƱ±±‘‘‘ú›=ùä“ÇŽ‹‹‹;xðàñãÇ 4hдiÓñãÇ›qŽUa1sçÎBìܹóöíÛ¥›VîÖ­[DDÄ{ï½wôèÑ“'Oz{{‡……7®eË–e}˜µZmݺuŸ}öÙ7ß|“Ô@ î$ LU@‚#!8@‚#!8@‚#!8@‚#!8@‚#!8@‚#!8@'µ ('7nܰaCjjjÅŠ[µj5vìXOO϶¿{÷îÊ•+ÓÒÒ<==ëׯÿÆoªÝÕh$IR»†27wîÜÅ‹»¹¹EDDœ?þܹs 4Xµj•«««Éí ûöí{ôèѪU«Ö¯_ÿÆGŽqppX¹re“&MÔî €:l?8¦¤¤tíÚÕÇÇ'!!Á××WñÞ{ï­Zµªoß¾S¦L1ù”ÿýïÓ¦MëСÃ|àää$„8tèЫ¯¾Z£FíÛ·«Ý!uØþ9Ž6l(**Š•S£b„ Z­611±¨¨ÈäSŽ=*„èß¿¿œ…M›6­W¯Þ¹sç®_¿®v‡ÔaûÁQžeŽŠŠÒµ8::FFFfeeÉј¿¿¿B?#J’”íàà ‹’öÆÆƒ£$I©©©^^^^^^úíAAABˆ‹/š|ÖsÏ=W¡B…÷Þ{ïСCùùù—/_ž2eJzzz¯^½ÜÝÝÕî€:l|ü,//¯°°ÐÃÃà]«ÕŠûÇõ¯^½zÀ€ Ð5öíÛwâĉJÞ488Xí~€²•’’¢v *°ñà˜ŸŸ/„pss3h¯T©’"''Çä³rssgÏž}ûöíÐÐÐúõëgeeíß¿óæÍO?ýt»v피¯}~˜,Ypp0ÅÒpP,ÇÅqP,ÝÙxpôððÐh4yyyí·nÝ;7nÜ?þ8a„ÿüç?rËåË—_z饑#G~õÕWuêÔQ»[*°ñsœœ´Z­ñÈbnn®B·ÎZßµk×vïÞ]·n]]jBT­ZuèС÷îÝûâ‹/Ôî€:l<8 !üüü²²²ä¤¨“––&?d¼}VV–¢víÚíò@cFF†ÚP‡íÇèèèÂÂÂ}ûöéZ$IJJJòôô 7Þ¾víÚŽŽŽ§OŸ6¸4º|~IݺuÕî€:l?8öêÕËÁÁaÁ‚òyBˆøøøÌÌÌ=z8;;Ë-·oßNKKKOOB¸ººFFFž?þã?Ö]!üôéÓ .tqqiݺµÚP‡íÿä bùòåqqqÕªUkÙ²åùóç“““CBB–/_®»LÏÖ­[GޏeË!DfffÏž=¯\¹R»ví¬¬¬ü±¨¨hòäÉ}úôù×·cù›JKK P» ܇ƒb™8.ˆƒbìö»ÞÆWUËèãã³yóæ­[·úûû÷íÛ766V¾"IÞÞÞ[·n]¼xñþýû÷ìÙãééÙªU«×_½~ýújw@5v1âXÎìö_!–Œ¯[ Šeâ¸X вÛïzÛ?ÇfAp€"G(Bp€"G(Bp€"vqG,Vpp°Ú%@ØçµuJà€ÊH-ê"»+ÇT5!8@‚#!8@‚#!8@‚#!8@‚#!8@‚#°999C† ©Y³f¥J•"##“““KØøØ±c/¾øb•*U*Uª1wîÜ‚‚µ{`õø­jlF#$Ií"Ì*777""âÂ… ={öôööNHHhß¾ýîÝ»ÃÃÃ7>{ölTTTaaa·nÝjÖ¬ùí·ßŽ5jïÞ½_|ñ…Úý°nŒ8€Ò(,,,,,,··ûè£RSSããã×®];þü}ûöi4šÑ£G›ÜxÔ¨Q999ß~ûíŠ+¦OŸ~ðàÁnÞ¼yûöíjï6ëFpÀFh4Ö^:#GŽ\°`‡‡‡‹‹Kýúõ'L˜p÷î]ùÑüüü3fÔ«W¯bÅŠµjÕŠ‰‰ùã?Ìò¾Ÿþ¹¿¿¿~ýä»uêÔéÙ³gRRÒ•+WŒ7ÞµkWddd“&Mt-o¼ñ†âСCæÜö‡à€$±,æ¬7nÜ8|øðÈÈÈñãÇûøøÄÅŵk×N’$!DLLÌÛo¿]£FQ£F…‡‡¯X±¢k×®ÿ޹¹¹§NjݺµF¯‡mÚ´)**2>Ó±  `ذarRÔ9þ¼â‘G1ó¾°3œã€í³£.)–Ñ™Ž—.]š9sæ[o½%ß7nÜœ9sÖ¯_ß¹sçõë×÷ïßÿ³Ï>“Љ‰ùòË/¯\¹âïïÿ0ïxõêUI’üüüô}}}…;99Íš5K¿åúõë³fÍrttìÙ³§ùw‡=!8`StãŽe·>ÆÛÛ[ÿä©S§.Z´hÆ ]ºtÑh48þ|­Zµ„Ë–-[¶l™ñ+|óÍ7Ž~—.] Zòòò„îîîúZ­V‘••Urµ{öì|øâÅ‹§Nªÿ :Uíää²oß>ýƽ{÷j4šÐÐPãWøúë¯_yå•^xañâÅÜxGl‡AR,£ì˜‘‘1wîÜqãÆÉwg̘‘››Û­[·”””æÍ›Oš4iÆŒB‡¨¨(!„.bê<èTµbРA#FŒØ²eËsÏ='„¸víZBBB»v팟>nܸ5j¬^½ÚÑѱ<ö»Ý 8`#LfIJȎþþþS¦L9xð`Æ :´sçΦM›öëׯ   ,,löìÙgÏž KIIILLôòòêÝ»·Á+ÈSÕô¦ X¾|yŸ>}† æáá±bÅŠ¼¼¼iӦɯÅÅÍž={Ö¬YC† 9yòäï¿ÿ^¯^½˜˜ƒéÞ½{çÎËüHØ.‚#6¢¸$föǧžzjäÈ‘o¿ýöüùóýýýÇŒ3cÆ —ÄÄÄ©S§~÷Ýwÿ÷ÿççç×®]»)S¦ –‚»»{RRÒØ±cnܸѴiÓµk×ê~oðÎ;ÙÙÙþù§"55UqòäÉ“'O¼Hݺu ŽCó yÿ*888%%Eí*pŸ´´4³üµ3â X&ŽKù+£o²»O@@@£FléGŸKqìö»žUÕØ Æ…PŽP„sÀèСCíÚµÕ®ê 8€°páBµK€j˜ª€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"G`rrr† R³fÍJ•*EFF&''·å½{÷œœœ4÷óññQ»VÏIí€ùi„F’ÚU˜SnnnDDÄ… zöìéííо}ûÝ»w‡‡‡oœ––VXXجY³:uêè+Uª¤v'¬Á”Faa¡ÂÑѱ|Þî£>JMM]±bEÿþý…#FŒhܸñèÑ£wíÚe¼qjjªbúôéÑÑÑjï'›ÂTµù¥œ:¥v {¤šj/€€€‘#G.X°ÀÃÃÃÅÅ¥~ýú&L¸{÷®üh~~þŒ3êÕ«W±bÅZµjÅÄÄüñÇfyßÏ?ÿÜßß¿_¿~òÝ:uêôìÙ3))éÊ•+ÆËÁ±nݺfì8Á›! É8#–ÅœõƇ9~üxŸ¸¸¸víÚI’$„ˆ‰‰yûí·kÔ¨1jÔ¨ððð+VtíÚõáß177÷Ô©S­[·Öhþé`›6mŠŠŠLžé˜ššúÈ#T®\yãÆK–,Ù¿¿.Úâa0Um&¤h  ÈÙQ—ËèLÇK—.Íœ9ó­·Þ’ïŽ7nΜ9ëׯïܹóúõëû÷ïÿÙgŸÉÅÄÄ|ùå—W®\ñ÷÷˜w¼zõª$I~~~ú¾¾¾BˆŒŒ ãíSSSêÖ­{ãÆ ¹¥^½z«W¯nܸ±Ù÷†]!8š‰$™Èˆ¤F@¹Ó;–ÝúooïÑ£GëîN:uÑ¢E6lèÒ¥‹F£9pàÀùóçkÕª%„X¶lÙ²eËŒ_¡  à›o¾)îõ»tébÐ’——'„pww×oÔjµBˆ¬¬,ãWHMM-**š6mZÏž=¿úê«‘#GvíÚõøñãò³P:Gó1ÈŽ¤F@yQxv£¹rdhh¨‹‹‹î®››[ppð™3g\]]çÍ›7zô耀€ÐÐÐfÍšµoß¾S§NúËnß¾]¶dôêíí-„¸yó¦~cnn®ÂËËËøöìÙS¡BÝC¼sçΰaÃ^}õUóíx»Ã9Žf%gGAj”+IHúÿýk»Ù999É'6ìܹsñññ 4غuk÷îÝ4hpõêUƒíµZ­T<ã×÷óóspp0˜•ÎÌÌBT«VÍxûªU«ÊgžyFqâĉ2>6ŽLJ¦Ñü{;!P^äjýÿ›ý-~ûí·{÷î9;;ËwóóóOž<••••ššSTT´páÂáÇ/^¼xêÔ©ú¯ð SÕNNN!!!ûöíÓoÜ»w¯F£ 5Øøüùó[¶liÓ¦M½zõtòð¤<ŽR#8>4ãóM¶Pö ’beÇŒŒŒ¹sçŽ7N¾;cÆŒÜÜÜnݺ¥¤¤4oÞ|Ò¤I3fÌB888DEE !tSçA§ª…ƒ 1bÄ–-[ž{î9!ĵk×Úµk`°¥««ë˜1cš4iòÝwßÉo]TT4gÎ''§víÚ•Ëq°YG³’g¨õÿ@y1™Ë";úûûO™2åàÁƒ 6IQw¾#墸thöǧžzjçÎÙÙÙóçÏ¿xñâ˜1cvïÞíàààââ’˜˜Ø¿ÿƒNŸ>}Ïž=íÚµ;pà€ñ `)¸»»'%%½øâ‹ sæÌ©[·nRRÒÓO?-?zçÎììì?ÿüS¾;nܸ„„??¿5kÖ,[¶ÌÓÓ311Qwý ”šæAó>L+n=5㎖!--Í,mÁŒ8(–‰ãRþ‚ƒƒSRRÌþ²ew-ž€€€F}ñÅe¾kÊK)A5ËLj£™—I5”éjØ-‚#aqŒùÙãà5À>tèСvíÚjWuÀX¸p¡Ú%@5LU@‚#!8@‚#!8@‚#!8@‚#!8@‚#!8@‚#°999C† ©Y³f¥J•"##“““MnvæÌM1Z·n­v'¬›“Ú€2 ÑIR»sÊÍ͈ˆ¸páBÏž=½½½Ú·o¿{÷îððpƒ-+UªÔ·o_ƒÆüüüM›6¨ÝëFp¥QXX(„ptt,Ÿ·ûè£RSSW¬XÑ¿!Ĉ#7nßÑL~ûí·{÷î9;;ËwóóóOž<••••ššSTT´páÂáÇ/^¼xêÔ©ú¯ð SÕNNN!!!ûöíÓoÜ»w¯F£ -îu6lØpýúõW_}µ¬÷·ý 8`[ä°X–Ù1##cîÜ¹ãÆ“ïΘ1#77·[·n)))Í›7Ÿ4iÒŒ3„QQQB]ÄÔyЩj!Ä AƒFŒ±eË–çž{NqíÚµ„„„víÚ•pMïÿýïZ­–_‹1#‚#6Ä8&–Avô÷÷Ÿ2eÊÁƒ6lxèС;w6mÚ´_¿~aaa³gÏ>{ölXXXJJJbb¢——WïÞ½ ^Ažª~ 70`ÀòåËûôé3lØ0+VäååM›6M~4..nöìÙ³fÍ2dˆÜ’ŸŸŸ””íàÀ‰yfîÀVÍ=âøÔSOíܹ3;;{þüù/^3fÌîÝ»\\\û÷ïðàÁéÓ§ïÙ³§]»v0Ëý¹»»'%%½øâ‹ sæÌ©[·nRRÒÓO?-?zçÎììì?ÿüS·}RRÒ;w"##ËnÛ!̓æ}ü«ààà””µ«À}ÒÒÒø}RKÃA±L—òWVßeö[Õ5úâ‹/ÊzÏ”›R»ý®gÄ[ÄÀÊÁа8<€:Ô®][í* ‚#x .T»¨†©j(Bp€"G(Bp€"G(Bp€"G(Bp€"\•«] Á5¥¤¤”¼AZZZ@@€ÚeB0U …ŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEœÔ. œlܸqÆ ©©©+VlÕªÕØ±c===K~ʯ¿þºdÉ’'Nܺu+88xøðáO=õ”ÚýP]Œ8Î;wòäÉgΜiÒ¤I¥J•6mÚ4xðàüüüž²k×®Þ½{ïÚµË××7<<ü§Ÿ~êׯ߮]»Ôî €jl?8¦¤¤ÄÇÇûùùmÛ¶->>~ûöíýúõ;vìØ|PÜSrrrÆïää´zõêõë×ÇÇǯ[·ÎÅÅeÊ”)EEEjw@¶7lØPTTëëë+·L˜0A«Õ&&&—7mÚ”››;dÈÆË- 4èСCff毿þªv‡ÔaûÁñÈ‘#QQQºGGÇÈÈȬ¬¬£Gš|ÊÞ½{5M×®]õßÿý”””† ªÝ!uØøâI’RSS½¼¼¼¼¼ôÛƒ‚‚„/^Œˆˆ0~ÖñãÇ===«T©òÃ?üôÓOÙÙÙ?þxÛ¶m]]]Õî€jl<8æååzxx´kµZ!Äõëןr÷îÝ›7oÖ­[÷wÞY·n®½FóæÍ Sò¾ÁÁÁ-Û¶mS{gصôôtµK€!Šeâ¸X ŠêÚ·o¯v –ÂÆƒ£¼tÚÍÍÍ ½R¥JBˆœœã§Ü¼yS‘ššš‘‘uç΄„„O?ýtĈ[¶lQ2’¢v×a( @í`ˆƒb™8.ˆƒ¢.ã¯uã";aãç8zxxh4š¼¼<ƒö[·n‰¿Ç T¨PA¾1{öì®]»zxxT©Rå7ÞèÖ­[zzú7ß|£vŸÔaãÁÑÉÉI«Õ,æææ !të¬õ¹¹¹U¨PÁÕÕµuëÖúímÛ¶Büþûïj÷ @6…~~~YYYrRÔIKK“2ù___gggF£ß(ÏP¨Ý!uØ~pŒŽŽ.,,Ü·oŸ®E’¤¤¤$OOÏððp“Oiݺunnî©S§ôåk÷<þøãjw@¶{õêåàà°`Áù¼F!D|||fff=œå–Û·o§¥¥é–­uëÖM1yòdݲë_ýõ¿ÿý¯V«m×®ÚP‡¯ªBT­ZuìØ±qqqÏ?ÿ|Ë–-ÏŸ?Ÿœœ:hÐ Ý6III#GŽ Ü²e‹¢^½z£Fúè£Ú·o‘——wäÈFóÞ{ï=úè£jw@¶…ôññÙ¼yóÖ­[ýýýûöí+_‘§8¯½öš··÷ªU«<èéé=|øðÀÀ@µ» $Ij×`k‚ƒƒ¹Ž£¥IKKã*h–†ƒb™8.ˆƒbìö»ÞöÏq€Y ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁÑüN¥œR»ó#8@‚#!8š‡Fh6X)‚£yHB2ˆ‰¡‘„¤v]fCp4ýìHj¶‡àhNºìHj¶ÇIí¬žÂ³‰’ÀÚ–~"”g¨t6‰©j³Ñ?¯Ñx­ €µ#8š‡ñj²#°1Gó091Íl5°%G(Bp4¿ à µK0?‚#!8@‚#!8@‚#!8@‚#!8@‚#!8@‚#!8@‚#!8@‚#!8@‚#!8@‚#!8@‚#!8@‚#!8@‚#±¬àøá‡¦¦¦ª]L°¬àß©S§=z¬^½úúõëj—€XVp|íµ×ªU«vüøñ3f´lÙòõ×_ß¾}ûÝ»wÕ® ÂIíî3jÔ¨‘#G=zô믿NLLܵk×®]»ÜÝÝ;uêÔµk×F©] €ý²¬G!„F£iܸñ;ï¼sàÀE‹uìØñîÝ»ëÖ­{ñÅŸyæ™… ^ºtIíì‘ÅG''§6mÚÌ;÷СC“&Mruu=þüüùó£££_yå•Í›7ª]#€±¬©j7nÜøî»ï¶mÛvèС‚‚!„³³óáÇ>¼téÒeË–ùûû«]&€]°Äà˜™™¹sçÎíÛ·>|XVôöö~æ™g:vìØ¸qc!ÄÁƒçÎ{üøñ·ß~{éÒ¥j× `,+8®Y³fûöí?üðCQQ‘ÂËËëÙgŸíСCDD„£££n³-Z4nÜøÉ'ŸùD)?´|ùòëׯ׭[·/;wîÜÉ“'Ÿ9s¦I“&•*UÚ´iÓàÁƒóóó•\¿~}ùÚ/¼ðœ9s„|Ð×LII‰÷óóÛ¶m[||üöíÛûõëwìØ±>ø@ÉÓW¬Xqøðaµw €ú,+8V«VmýúõQQQUªTiѢżyóä«6fffº»»Ïž=ûé§Ÿ~Ð×ܰaCQQQll¬¯¯¯Ü2a­V›˜˜(_ô§§OŸž;wîã?®öŽPŸe­ªB.Y²Ä qõêÕþþþ¥‰¹GŽqppˆŠŠÒµ8::FFF~ýõ×Gˆˆ(î‰ãÆóôôœ0a€ÔÞ1*³¬ÇâT«V­t©Q’¤ÔÔT//////ýö   !ÄÅ‹Kxî'Ÿ|ròäÉY³f¹»»«½Ôgq#މ‰‰«V­:wîœ$I&7HNNVþjyyy………íZ­VqýúõâžøóÏ?/]º´o߾͚5;qâăö"88Ø eÛ¶må´aJzzºÚ%ÀÅ2q\,EuíÛ·W»KaYÁñÛo¿•o;::>ü ÊK§ÝÜÜ Ú+Uª$„ÈÉÉ)îYãÆ«Q£ÆèÑ£K÷¾)))å´Ë X@@€Ú%ÀÅ2q\,E]Æ_ëÆ#Dv²‚ã²eË„ :t¨<(ø<<<4M^^žA»|yâÞ"...==}ݺu®®®jïKaYÁ155µzõêãÇ/Ý&ºçä¤ÕjGsss…ºuÖú>¼nݺ¡C‡6lØPíý`A,hq̽{÷nÞ¼Y£F s¥F™ŸŸ_VV–œuÒÒÒ䇌·?}ú´báÂ…ÁëÞ½»⫯¾ ~î¹çÔÞOê° G­V{úô颢"3fÇèèè”””}ûöuêÔIn‘$)))ÉÓÓS¾º¸Zµjé¶”åääìß¿¿jÕªáááUªTQ{?¨Ã‚‚£££cLL̇~8wîÜR¯J1Ö«W¯Å‹/X° U«Vòš˜øøøÌÌ̘˜gggy›Û·o_»vÍÙÙ¹zõê-Z´hÑ¢…þ+œ8qbÿþýò¯×Ø' ŽBˆŽ;^¼x1>>>99¹C‡Õ«Wwqq1ØFÿRÞJT­ZuìØ±qqqÏ?ÿ|Ë–-ÏŸ?Ÿœœ:hÐ Ý6III#GŽ Ü²e‹ÚûÀBYVpŒŽŽ–o;vìØ±c&·)Å•nèãã³yóæ­[·úûû÷íÛ766V}€B–Ÿþù2zåÎ;wîܹ¸G;vìØ±cÇâ 庌–9‰ÀbYVpÔÉÎÎ>~üø•+WªV­Ú¼yóÌÌLoooµ‹°k³²²-Z” ÿZ`ÿþý›7oÞ­[·ÐÐÐY³fyzzª] €²  € !îÝ»7tèÐÕ«W»»»wëÖM×îëë»{÷î—^zIN“(–—,YòóÏ?·jÕjÛ¶m³gÏÖµoذ¡K—.çÎ[µj•Ú5Ø)Ë Ž‡vttœ9sfÅŠõÛß~ûíŠ+nß¾]íì”eÇ“'O˜\S©R¥:uêœ?^íì”eG­V{ûöíâ½qãFåʕծÀNYVp ¹råŠÉߌ9yòä¥K—êÕ«§vvʲ‚ã‹/¾¨ÑhF}âÄ ýö'NÄÆÆ !ºvíªvvʲ®ãؼy󘘘¥K—vïÞ½N:Bˆo¿ýöàÁƒgΜ)**êÖ­Û³Ï>«vvʲ‚£b̘17Ž‹‹;{ö¬âÒ¥KBŸQ£Fé_ÙåÌâ‚£¢uëÖ­[·¾qãÆÙ³gïÞ½[§N???µ‹°w–ežžž7V» üEåà¸víÚ}JŸ>}Ô­À>©§OŸþ O!8¨Båà(_dGßÉ“'·oßîèèØ¢E‹Úµk;::¦¥¥íÛ·¯  Àßßâĉê `·Tޝ¿þºþÝ .¬^½:88øÓO?­Q£†®ýÒ¥Ko¼ñÆo¿ýöõ×_?óÌ3êÖ `Ÿ,ëà‹-ÊÊÊúä“OôS£¢Zµjü±bÇŽ™™™j— `,+8þôÓOU«V­U«–ñC5jÔÛ%IR»L{dY—ã¹qãFQQ‘$IÆøÑÜÜ\OOOµË°G–5â–››»gÏã‡öïßãÆÐÐPµk°S–;vì(„7n\bb¢þ”ôŽ;ÆŒ£Ûåϲ¦ª{ôè±ÿþ­[·ÆÆÆúøøÔ©SG£Ñœ={öÚµkBˆÎ;÷èÑCíì”eG!ć~جY³ùóçgdddddÈþþþÇïÖ­›ÚÕØ/‹ ޽zõêÙ³çÕ«WÓÒÒœœœj׮͂ÕY\p”i4š*UªT©REíBðËZ‹Ep€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"G(BpDI4B£v ÀR Á÷aˆ‡àˆûHB2™ ”€àCÆÙQ#4’Ô® ¨Œàô³#©ÈœÔ.–Âx2Z?;ê ‘Ø-‚#þbœå¼HR2¦ªašn†še1@Fp„ úç5·ÎØ‚# ¯†!;Ap„1“'5r¦# 8@‚#JÂ@#Ð!8@‚#!8@‚#!8@‚#!8@‚#!8@‚#!8@‚#!8@‚#J¤Ñ¨]°GܤŠApÄý$Étv$P`÷Ž0bœ5!Ij—TFp„)úÙ‘Ô„GK—I@!„“Ú”“7nذ!55µbÅŠ­Zµ;v¬§§g Ûççç¯_¿>!!!==½råÊAAAlÞ¼¹’÷:u*Eíî–Jqg1´“#°Wvçλxñb77·&Mšœ?~Ó¦M§OŸ^µj•«««Éí  ðóÏ?kµÚ¦M›Þ¹sçûï¿ß¿ÿ›o¾9lØ0µ{Sf ¡>~ûöíýúõ;vìØ|PÜS6lØðóÏ?7nÜ8))iÑ¢EŸ}öÙ_|áááñé§Ÿž 1€âqI2 ”€àCÆÙQ£’¤vY@mG˜ ŸI@æ¤v°Æ“ÑúÙQ‡ €Ý"8â/ƉP΋$E cª¦éf¨YdG˜ ^cq묀½!8Âñj²#G3yR#g:‚#!8¢$ 4‚#!8@‚#!8@‚#!8@‚#!8Â.Ô© v X=‚#!8Âfi4zw$M©_ÈްY’tvü›† @©a³4Bcœ5~€€R"8ÂfIB2ÈŽrjÔ†( 'µ ÌOo”QÒH!$]£Fh„æ¯zàaƒîO„’F·2FÒHBäEJ…àdz2ZÒŽ€EÓ…ò 5ƒŽµ0U Xýó‹[g @™"8VÀx5 ÙPþŽ€¥+n 5³Õ€rFp,`!Ž€•!GÔBp Ž:uÔ.ð`ŽP„à ü°¬Á@ù)î*BJ° GåÊ8;w½!€¥!8(oúÙ‘ÔV„ߪPJ˜¡Öˆ –Œà <'B9/’ÀŠ0U @ºÔȲ°"GåMÿ¼F²#X‚#€re¼†ìÖ‚à ü·†ÚÚÏt$ø°GåÇÚ"Ø9‚#ìB@:j—`6a#£[gϦ©]ÂC)n”‘ÑG6Œà¥aòÔL®gÀ¶a»lhDÈfFmŒAv$5°yGØ.’„dœI“–@÷)³ÎO<~96MþV×}Ÿ[ów»œ%ñWýú·QΔŒe[í JBp„­³¡!ݸ#©Q]Ÿ#]^´òÏü;‚#l‘³­á{¾¸ùhývB¤ŠäèÿlÁ¶È†F„ B¡./-AR´ìX§N€µw@Ùaq lî›ÜúØN7Cmr­ ʙɌhýŸ2( Á6Íäˆu28¯‘쨺â†å¬q¸Îä «ý³  a»lhDÈäj²£å°Æ°hP¿Á ˜sPް]64"TÜœésÑÏŽ¤FÅ!8Â.¤=«v €¥ÓeGR#€â°ª°2Œ2Â\lèºUÊ Áì”ñu«liБ w ,0U ¸/fYç2åàöÎxpÎJ³£ÂÉw¥Fp»VÜ”®5ÎóšÌ»ÌYfDp»fc¡Ê ;’ó"8lŠ.;ÚLj¬S'@퀿ÿ8{6MíJC£¹ï¿mP:\Ž€:êÔáš”0ãK ™l·63V ÛÈ#À¦èR—•® /¡r+íl Á@ùÑ͵Ê`¬Î–²#ðGåG’qFÔ sÖ0 “ÑÊ6²£m¤F+=ÐÇ9ŽÊ•œuI‘Ô3*.ZYWä2h4n·®Á–”7ݸ#©eÇz£•É…>ÖÛâÆJmc Õ”…g7’#}rº’¯%d¥1K®ß8 [iwtNJQ»u”ƒD¨Ë‹$E 8úéÊdü²Å[oG XXë?½\7Cmr­ a*]Yï*a‹?çc·qP® Îk4X+@Ÿ®¬+rs Ú­¨S&‹½Ea‚#` låo&“Ѳ£µ×KcÜmíç|„©låïæÀT5` LÎQYá¬UqéŠÔ”ÀJ@\Ÿ üœÌö.®ù q¬§—[F…Lþœuý¦äâšÂšS•cݶuzùÙ´³j—ðPŠûµë,‹müœ$Ý÷ŸÉFëÿ[YF˦äôr;ùëÊòð+8À¿²ŸóÑg×|GÀ²ÙÞéå¶…_ÁìŠÍ\\³ÔŽ€õÐý;×>ÿº²¶ý+8uêXiå°|Öþ—Vq×´ö~=‚#`%làôòûÔ©c¥õÛØ¯à0V (d×|x,ެmœ^n‹làWpŠ«ÜJ»c3õ–‰àX›9½\áOIX‰R£FÛÊŽ CZ”:uÔ.†‚‚‚Õ.AG娸+™[].ñWpÔ.­4ô+·ÞÔ¨ðôS¨Å–Ä©”Sj— ‚c±6nÜØ«W¯ðððæÍ›Oœ8ñÆjW„Òkß¾½Ú%˜f,Ãúõ³£u¦Fa‹¿‚ó×Õ…4Vß…¿në.Ñl…9Øp¡•­Ä-›éˆõåM›;wîäɓϜ9Ó¤I“J•*mÚ´iðàÁùùùj×ØÛ¸’¹ML»k„Fhä ÒiôGõÿS»Æc0èk©QØØ‰§Võ'â_ºbûßÜŽ&¤¤¤ÄÇÇûùùmÛ¶->>~ûöíýúõ;vìØ| vi€ÕÒÜŸFþµÝòÙÄ´»$$!IºQF]Æ’Ä_V–º4aòâšÖõÑB¹¦N<µº¾·ŒÏê:bê ˆ¿ÿõ¥viå‡àh† ŠŠŠbcc}}}å– &hµÚÄÄÄ¢¢"µ«¬Sq¿ÌeÕ¿Øe+ÓîrGôS£Õõå¯yHB@ÕoFÖ7z*Iú1åŸÔhUÇE×?öl1ÈŽòÙVÙ—Ò"8špäȇ¨¨(]‹££cdddVVÖÑ£GÕ®°~ºï ¸¢ML»k„æ¾c¡ÑÉÊVùèþñ!µÿÓ®BúçŸ&j—©È?#ðÒýC\Vš€eF0µ *}GtÅS£ 8“$)55ÕËËËËËK¿=((HqñâEµ ¬œÉ+™[[šv—ó‰Füÿnÿ«ÑZ:¢ß'éï $i„Æ ¿Óõáu9غ°n+ëˆTL? Ö#[ÃõÅ>† ކä¥Ónnní•*UBäääüë+¤¤¤¨Ý ÀrýóÇC£ÑÿÃb­lô~:<Ū'àôú’rꔕvÄÄjIÒo·®™ÁjôÏê%ëêÈßý‘‡é ÏÔ´º¾ü5C-ß–¬øòU¥ÃTµ!F“——gÐ~ëÖ-ñ÷¸#aÓî&ûbµù'5Þ­5~µ®†1Z–aelâ& Îk´öƒR*GCNNNZ­Öxd177W¡[g àaYç˜Ö?ŠûqkdÜëýj·‰4oz õýë~¬‰­|ÀL¬†±¿ìHp4ÁÏÏ/++KNŠ:iiiòCjWÀ2XiF4VÜ »5v°¸4om¥Ø+ïØÌA±Î¾˜^Cm½¾TŽ&DGGîÛ·O×"IRRR’§§gxx¸ÚÕ°¯QŸ™™Ù£Ggggµ«€²d3_6Ó[ê‹ÍtÄÆúò 4’½ö¼dË—/‹‹«V­ZË–-ÏŸ?Ÿœœ²|ùrãËôØ ‚c±¾þúëÍ›7;vÌßßÿÉ'ŸŒ•¯È`ŸŽP„s ÁŠ ÁŠ ÁŠ ÁÑl6nÜØ«W¯ðððæÍ›Oœ8ñÆjWdïòóóW¬XñÜsÏ5jÔ¨eË–¯¾úêÔ. ÿ¸|ùrãÆÇŽ«v!Bˆ_ýõ7Þhݺu“&Múöíûý÷ß«]‘½»{÷îÒ¥K»wïÞ¦M›#Fœ>}Zí¢ìÔÙ³gƒƒƒùå“ÚÛ·?ÁÑ<æÎ;yòä3gÎ4iÒ¤R¥J›6møàÆ-[¶¬V­ÚöíÛ»téräȵK³G«W¯.î!{üö—ðÐ~ÿý÷ǼeË–W¯^•[f̘4}útµK³_k×® êÝ»w^^žÜrêÔ©'Ÿ|²^½z¿ýö›ÚÕAZ¾|yPPPPPИ1cÔ®ÅÞeggGDD4lØð‡~[~ùå—°°°fÍšª]’ÿ1bĽ{÷ä–ƒÖ«Wï™gžQ»4;’““säÈ‘·ß~[þËêçŸ6ØÀ>¿ýq4ƒ 6ÅÆÆúúúÊ-&LÐjµ‰‰‰EEEjWg§¶mÛ&„˜4i’«««Ü8dÈÂÂB&¬Uwúôé¹sç>þøãj!„Ø´iSnnî!C7n,·4hРC‡™™™¿þú«ÚÕÙ©£G !ú÷ïïää$·4mÚ´^½zçλ~ýºÚÕÙ‹Î;÷éÓçóÏ?/nûüö'8šÁ‘#G¢¢¢t-ŽŽŽ‘‘‘YYYò~”¿´´477·ÐÐPýÆÀÀ@!ÄÅ‹ծήŒ7ÎÓÓs„ j×!„Ø»w¯F£éÚµ«~ãû￟’’Ò°aCµ«³SþþþBýŒ(IRvv¶ƒƒƒ.J¢¬½÷Þ{ .\¸pa³fÍLn`Ÿßþ|þ–$I©©©^^^^^^úíAAABˆ‹/FDD¨]£=Z²d‰ñ_¯'NœBÔ¨QCíêìÚ'Ÿ|ròäÉåË—»»»«] „âøñãžžžUªTùá‡~úé§ìììǼmÛ¶ºÑz”¿çž{nÕªUï½÷^ÅŠ5jtãÆ… ¦§§¿øâ‹üÁ)7-Z´oìÞ½ÛøQ»ýö'8>¬¼¼¼ÂÂBƒv­V+îÿ÷"ÊSHHˆAKrrr||ü#úè£qãÆ©] ýêÖ­›bòäɺu ¿þúëÿû_­VÛ®];µ«³G®®®‘‘‘çÏŸÿøãuב>}úôÂ… ]\\ N*€ŠìóÛŸG3¨Zµêرcãââžþù–-[ž?>99944tРAj—f§222.\¸àêêÚ§OãG»uëÖ·o_µk,E½zõFõÑGµoß>"""//ïÈ‘#æ½÷Þ{ôÑGÕ®ÎN͘1£gÏž .ܺukHHHVVÖ?þXTT4yòäÇ{Líêðûüö'8šÇÀ}||6oÞ¼uëVÿ¾}ûÆÆÆÊkòQþÒÓÓ…ùùùÇ7~”%2€×^{ÍÛÛ{ÕªUôôôŒŽŽ>|¸üKKP…··÷Ö­[/^¼ÿþ={öxzz¶jÕêõ×_¯_¿¾Ú¥á>vøí¯‘$Ií`8ÇŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ1vìØààà={ö¨]ˆX°`AppðÚµkÕ* ??¿uëÖ jȇæÐ¡CjbBVVÖ›o¾õ0Û0ø X·SQXXØ®]»U«V©]`•Žlͼyó\\\ºuë¦v!Và½÷ÞÛ¾}»ƒƒCƒ f+âèèøæ›oÎ;÷Ê•+j×X'µ `kZ·níííݸqcUÞýôéÓ«W¯Ž‹‹sttT{OXÇ !¾øâ‹jÕª=Ì6Ôý ü«N:-Z´höìÙóçÏW»ÀʘYhhhhh¨Zï¾råJ77·gŸ}VíÝ`nß¾]±bÅ’¡’m ¨ûøWÝ»wÿðÃÓÓÓ«W¯®v9€5aª@ù),,¼wï^Ù½~vvö×_ݱcG—2-àîÝ»e×”µçŸ^±f͵ ¬ ÁPÙäÉ“ƒƒƒçÌ™cÐþ믿7kÖL(™™™}ôQÇŽŸxâ‰'žx¢S§N³gϾzõjq/[Ü‚Œ§Ÿ~Z¿åÀo¾ùfÛ¶m›4iÒ¯_¿ D«K—.M:µcÇŽ5ŠŠŠK–,¹|ùrÍš5«W¯~ñâÅÏ>û¬wïÞ&Šr|ðÁ«¯¾º}ûö‚‚__ß~øá“O>éÛ·oVV–¼ÁéÓ§;wîüùçŸgee=öØc’$%%%½òÊ+»víz 7Z²dɇ~èììÜ´iS­VûÓO? 6,11ÑäÆáá᯾úêÕ«WgÍš¥k|ÿý÷¯\¹2tèЖh´áááÙÙÙ'Ož4oÍ€“¨ª°°°E‹AAA'NœÐolÙ²ePPÐéÓ§%IZ¼xqPPÐ!Cnݺ%o““Ó§OŸ   7Ê-cÆŒ ’S‚îîÁƒ Þ®^½zO=õ”|{×®]AAAmÛ¶ýå—_ä–ŒŒŒAƒ½ûî»rËàÁƒƒ‚‚æÎ[PP ·¬\¹2((èùçŸ/®GñññAAAk֬ѯ$((èƒ>(,,”{7sæÌ   —^z©¸¹{÷n§N‚‚‚öîÝ+IÒÁƒƒ‚‚zôè¡+Ã䞌ˆˆèÔ©“A»’”ì.y›zõê}÷Ýwrˉ'BBB‚‚‚ÂÂÂöïß/7þøãõêÕ ÊÊÊ2(`èС999’$Ý»woÙ²eòfº¯äpÈ/Õ¬Y³¾}û8p ##£¸½±iÓ¦   -Z=zTn¹|ùò /¼4mÚ4Ýf5jÔ¨QÉQƒm”|M~èÃY\OÍø¡Ý¶m[PPÐÒ¥K%Š1â¨ÌÁÁ¡S§NâþAÇ~øáêÕ«áááuëÖB´nÝz̘1nnnòîîîòPåùóçKýÖqqqBˆyóæéÆð¼½½çÍ›ççç—-„øý÷ß…½zõÒ-RîÝ»÷СCÛ¶mû@ïÕ AƒÑ£G;88È]:t¨âܹsÅmïììüþûï;99Mž<ùÚµk“&MruuýàƒJX+ýÇäææÖªUË,çÅ_lÓ¦|;$$ä‰'žBôëׯyóærãO<&„0˜D®ZµêüùóÝÝÝ…NNN¯¾újŸ>}„Ÿ~ú©òÃ!sss[ºti³fͼ½½‹«sÞ¼yBˆ÷Þ{O7¿ìïïÿÉ'Ÿ<òÈ#Ÿþùüñ ×)£O£IÆ=5ㇶN:Bˆ””óÖ Ø6‚# >ùKWÚTž§îÑ£‡|wذa‹/~ì±Çtddd|óÍ7ó¦7nÜHKK«S§ŽÁê׊+6kÖ,??ÿøñãB9¹N˜0áðáÃòÙ–ÎÎÎ#FŒ>|ø½]‡ôïjµZGGG©ÄÓËBBB† öÇtéÒåÒ¥Kãǯ]»v ÛË3•žžžæ*À¤ˆˆý»òÛ™l4xñ^½z99Ýw!‹~ýú !Nœ8¡üpÈžþù *”Päµk×®^½êïï©ßîëëUXXø0ó³eñi,ŽAOÍû¡õððBdff–E倭âr<€úBCCk×®}îܹ”””ààà‚‚‚mÛ¶¹ººvìØQ·Í¥K—öîÝûÃ?\¼xñÂ… 2ÙÙ³gåÿ›Ü@¾<ò´iÓbcc>üÊ+¯T¨P!$$ä©§žzæ™gBBBèíJwÑ“×^{íÛo¿=qâÄ“O>Ù»wï’7–€V«5cÆtÃl%4j4ãmäñ-ƒ’y䑌ŒŒÛ·o+<²š5k–\¤<’j2gË#²94höOcq zjÞ­322ʨxÀ&‹Ð¹sçO>ùdÛ¶mÁÁÁûöíËÉÉéÞ½».ެ[·nÆŒ5kÖŒˆˆhÛ¶mXXXZZÚôéÓè]ä3üäÛwïÞBT«V­¸IçªU« !ªW¯¾qãÆŸ~úiïÞ½ßÿýñãÇ=ºhÑ¢ž={Θ1ÃdB2©¸ëã”ìÖ­[ò÷úÙ³g³³³åoú⸺ºêúe–ôw×Ã3ÞWÆÑÑÑÁÁÁÙÙYááÉóÝ%(¡lyööa®Id®O£“{Û §æýÐʯVòØ-GÀ"è‚ãˆ#äY?Ý<õ­[·Þ}÷]—%K–´hÑB÷”Rœ¦vùòeÝÒTy¬bÅŠ'N,ùYF¾êŠâîÝ»ûöí{ë­·Ú´i]¦»eêÔ©×®]{â‰'Ž=:}úô>ú¨„}ôQ!„G¿ôw×ÃKKK3h¹råJ^^^5\\\”%ä±F“Êò`¤ñð§Bfü4P²·Íû¡•?*>>>Y9`W8ǰµjÕ ;{ö쯿þúÝwßÕªUKwÚܯ¿þZXXøÄOèO‹¿W”Ì EíܹSwÛÏÏÏÇÇçÌ™3ò9v:………=zôhÙ²effæ¥K—Ú´ió /èuqq‰ŽŽ–Wó”|Á‡÷õ×_'&&¶jÕjÕªUß|óñE‹ôùùù‰¿Ït,v×ÃKHHÐ]CQ¶zõj!„n”åï%¿ÚåË—÷ï߯ߞ‘‘±{÷nGGÇzõê•®ói4PнmÞ­¼K«T©Rº]Ø'‚#`)ä%2“&MÊËËëÙ³§®]ÎC¿ÿþ».:~þùçò^äçç›|5ùä°Õ«WçååÉ-ÉÉÉ‹-ÒßfÔ¨QEEE£FÒ-•¸uëÖ[o½uüøñÐÐPoooÿ›7oþòË/Ë–-Ó;wN¾ru ×S|xüñÇôéÓ+W®üî»ï:;;Ïš5ËÑÑqÚ´i% (º»»D …”쮇tñâÅQ£Fݾ}[QTT´jÕª•+W:99 6Lááx ·9r¤bòäɺU5W¯^>|ø;w^|ñEý‰ïRºO£÷¶?´¿ýö›0ZØ dLU–¢cÇŽqqq)))ŽŽŽ]»vյשS'::ú»ï¾k×®]ãÆ%IJII¹qãFŸ>}V­Zõÿ÷7oÞ”¯Q¢¯k×®+W®|ø‹/¾èÚµkµjÕ<==Ïž=›——W»vmùÊÛ'Nœ0aœ9sþûßÿV¯^=//ïÌ™3’$õîÝÛäo˜…$I&LÈÍÍ9s¦œTêׯ/ÿðÉ´iÓä ͘ԬY³•+Wž?¾¸‹òGÉîzHÁÁÁÛ¶mÛ¹sg@@À¥K—òóóå‹ éJý×Ãñ@ºuëvèС¯¿þºGÕ«Wwuu=sæLQQQxxxlll©{QºO£÷¶?´?ÿü³F£1ø!%%cݾ¾¾O>ù¤¢eË–¾¾¾ú}øá‡o¾ùfÕªUåë;FFFnÞ¼yÒ¤I}úôqtt4ù€5jÔøßÿþ×¶m[‡ýû÷Ÿ:uªZµjK—.Õ¸Òh4³gÏþøãÛ´iSTTtîܹ€€€Q£FmÞ¼YwQ›nݺ­\¹²U«V®®®¿ÿþ{^^^óæÍ.\8uêÔ²Û«W¯>tèP‹-t'z !Þ|óÍZµj%&&nÛ¶­¸'FEE !ŒËî_)Ù]é³Ï>{ûí·Ÿ~úéÌÌLOOÏöíÛ¯]»V©¸’ᜃƒÃ|ðá‡FEE\»víÉ'Ÿ7nÜÚµk‹[x®P)>fÜÛæúÐJ’täÈ‘°°0ùÔX i̸f€eº}ûvVVV5”/‚¶R’$µoßÞÛÛ»¸_IVÂ~v—%Pko9r¤oß¾qqqú£ûþ#Ž€ísss«Y³¦=Ä FóÊ+¯üøã³pÇ~v—%PkooÞ¼ÙÛÛ[ÿR©” 8°)=zô¨ZµêÊ•+Õ.–+33ó›o¾yýõ×KwyQÀžØWW×wÞyçóÏ?¿|ù²ÚµÀB-\¸000ðå—_V»ÀúØšÈÈÈÑ£G§¦¦ª],Qaa¡««ëÌ™3ø‹c ÿÞ€"G(Bp€"G(Bp€"ÿ­‡„2”IEND®B`‚statistics-release-1.6.3/docs/assets/gevcdf_101.png000066400000000000000000001024121456127120000221060ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A€IDATxÚíÝyxLgûðg²'²j$‚lF(’j IPBìyK)AUSµkib+Qª­ÕV-¥Åk ᵄ&•”ø‘ŠL‚F, ’ˆY~œšŽ™,“™3s¶ïçrõJžÌrŸ'GÏ×ýœsF¤T* @m̘.¸Át‚à:Ap 8€N@'Ž GÐ ‚#èÁt‚à@³óçÏOœ8Q,;88¼õÖ[ï¼óΘ1c.^¼Èt]túì³ÏD"‘H$xùòåË—/oݺµoß¾[·nuuueºL0Ȉ#ž?N9qâDDDÓåùã?† –——§ÉÉÉÉÉÉ9räÈÚµk7nÜØ¯_¿š_A.—ýþûïëׯ?räÈ;ï¼Ãôf°‚#=ž={ú矪FÌÌÌD"‘\.§¾MII8pàÉ“'mll˜.–~Íš5#„xxx0] Hvvv=¨(O±°°ÉdÔ×ÿý÷þóŸ‹/¶mÛVû¹îîî¶¶¶„/^¨ÅÅÅÑÑÑ999ÖÖÖ5zôè·ß~[õ˜“'Oj¼B Á1..îc5áááª×QÍ’Ž¿|ù²iÓ¦Ô ……Å;ï¼CO©RCpÔñ-Ñ~J•Tÿ´œã`¨§OŸª.Vu(_~ù¥ö~.\ ~zôèQê‹ &¨ž2vìX*†Þ¹sçêÕ«ê¯ööÛoúé§Ô×-Z´èÖ­õu~~¾~/hggwüøñ‘#GvìØÑÇLJòÞ{ïmß¾}ûöíS§N¥SZZZVVF}ýäÉ=æG©TŽ3æÖ­[„ssó]»vyzzÖ©`ÕÉj“'OîØ±#õõÊ•+ÝÜÜj}wÝçdüøñ]»v%„TTT¨®øöÛoUIQÚSZ×_JHHµoiiM :;;O™2…bff¦ ^OŸ>Õï÷®¢ZƒV½ÂÉ“'©/z÷îíèèHŒ³Kèý;RWZZªúZµGî­·ÞÒ~}PÁíx ¥Z»$„Ôé¦Ðªöß}÷Ý*pëÖ­6mÚ¨¾õõõUÿ©j)S¡Pè÷‚AAAG\ê‰ÅÅÅÇŽKOOÏÈÈHKK{öì™!ó³bÅŠ¨¾îÑ£G]g@õ0õ«j¬¬¬z÷î­º&ÉðI‰D7n T]ó1pàÀÖicµ§´®¿õÅhÕ_<==E"‘Æ Þo¡áââR\\œŸŸóæÍ-Z¨‚ã°aÃÔ_“Þ]‚–ú©‹¦)4ÞŒ½¨¨ˆú‚Êͪ¼öI<†à`(kkë P‡®7n¨ÿÈÑÑQuÆØÃ‡U}BHii©úÍçªôøñcõoUÑ¡ÊoõxAí»‘WVVΛ7ï믿VÝ ÏÖÖÖÍÍíáÇúMÎñãÇ?ûì3êëÁƒ«_H«cÁÏŸ?W½»Æõ1^^^5?½®sÒ²eËÞ½{>|˜úV}5\GSjøo™¢:áÏðmTgii9hРŸ~ú‰’’’"‹OŸ>MGEEQ¡}— «~+++WWWêGêwÿVWRRB•mccS¯^=]ê),,¤¾Ð¾X‡²cÇÜõÁ€áááÔ5û÷ïøð¡j u„ Ôê›L&kÚ´©zpttttpp :7ÿûßÿ¨eM ª+t¡Ç jg”eË–­Y³†âãã3kÖ¬.]º´lÙòã?þá‡ô˜–;wîŒ1‚jˆúûûoÙ²E‚mmm­¬¬¨Ú>|èçç§úiII ½srùòeյƄøøxõþ¨.4¦”öß²áÛ¨!::š ŽGíÙ³'©N$õzw zëïܹ3ußÐC‡­]»VãÂsBH‹-¨ ¸zõê™3gÖZÌùóçU§NvèЖ àGL›6m÷îÝ …¢¤¤dêÔ©Û¶m³°xã/ׯ 4žåçç—‘‘A‘ÉdêËÐOž'2™ì£>R­ûBΜ9óÓO?©®Ñí¿ezߢgÏžÔjõÙ³g:D ªÖ©‰»„*C«ÎŤh·*õ®„ Tp¼sçÎÆUgS’““UíÃîÝ»ë2“ëÖ­£¾¨W¯^—.] ü½ð.Ž Á;ï¼3qâDêë]»v…††ž;wŽZ€ûóÏ?'Nœ¨qH£ôìÙ“úbÓ¦MÔ’²wïÞ·ÞzËÕÕµY³fu=“ÌÀ|öì™jMPu°ÿã?N:¥Çœ|úé§éééªzÔïáRׂCBB¨}ýõת›B/_¾üÿþïÿhœ“/¿ü’ºÃÑÑQuïîY³fUwþœúU½Æû¥û-¨ÕjBÈË—/¿üòKBˆ¹¹¹êÌNCv Õ‰—/_VÅøßÿþW;îë]ÿþýUÏ2eJBBÂýû÷©_ͶmÛT7Ôôõõ ª¹ÚÂÂÂ>úhÏž=Ô·|ðú9”ð/¦/ëà‰§OŸz{{«ÿå233S¿Ûb§N¨/Ο?O=åÉ“'ªÁ=z,^¼xذaªæÊ¢E‹¨‡é~[_P¡P¨® ¶³³0`ÀÀÕ?±wîܹս‚ÆíxT×XB4hðé›æÌ™S§‚333Uí+++«nݺ©nœI©áv<:¾ÅíÛ·Uƒ ªÜ3räHõTÝ©±S§N‰‰‰•••5L©¿ÕâþÛo¿­<þ<5haaQ§·¨Î‘#GÔ'3""‚–]â?þP=ÌÎήK—.b±XýêºßVéêÕ«ýHWWWÕí±!666ªÇ«ß[ÇÓÓÓÏÏÏÏÏOãÖ©S–«| îã€à@›ÂÂÂêN‰0`Àƒ4‚£R©û,;;ûwÞ¡å—ÀK"åëJ!¯^½JNN&„h6HOO?}úôĉ«¼Ç ›w 01GÐ –ª@'Ž GÐ ‚#èÁt‚à:Ap 8€N@'Ž GÐ ‚#èÁt‚àX‹ÜÜ\±XüçŸ2]Ãk±mÛ6¦K` ¦ `©ÒÒÒ¿þúëСC»víbºV@p¬ZTTTaa!ÓU°‚cÕ–-[öòåKBÈöíÛ/^¼Èt9ÌCp¬Z×®]©/NŸ>Ít-¬€àH?±XÌt `\ÙÙÙL—ÀG£àâÎ$‹¹X6waÂM nb˜pÄ›˜`›D¸èÁt‚à:Ap 8€NáGeºaÁ„›&ÜÄ0á&† Ó@p 8ÖbéÒ¥ÙÙÙmÛ¶eº†!8€N@'Ž GÐ ‚#èÁt‚à:ApxƒˆˆjþÃtŒApÞª5VùGI”5ÿaz³cÁt:Ñ£Õ'äg ŽÀ˜:eA¤@Æ!8y Át¢c"Dä1G¡C"!8ð™.¡‰t„àÀaÿäBïj€P4Â}ØKÇ;æJsqÇA0t˜TóR2’° ‚#€ÑÕ Cèt¼‡àPH‡ dŽU¨. "‚!8€ ! èÁ„¢ÊŒˆ€ ;Gà!dDc@pnCF0Gà dDf!8KiÇDdDf!8+ &°‚#01€‹ÀèøÁèçãí£þ-b"?˜1]ðˆˆÔÿäJs•D©úÃtu@GЇFRT‰HŠ|…¥jЉÆyŠH‡„àUCR Xª€`õ "5L×ÂGACRÐ&ªŠR Ó2KÕ‚£¾€WeûPÈѰfŽü‡³2"°T ÀOXƒ«y­YïEgê/•`!8ðGua‘麌«ÖSü"Qí¨¿T‚…¥jÎS­D##‚h¯8ë k%äD¨#GNÂ. IQ;&"š ‚#g ,‚Tu ‹òÍhýLÁ€í° ü¦•5÷säBö@p`#4O´z„šIÑ+XÍEà¨ÚÎ2¬å$Eà Gæ!/'Ô5¢`­—³G!80‹ÑÀB57kˆHŠà`Rh.ãtoÖö:jÿøARGS@^Ó«. êñÐVG#B^c{å¼µDK®C[Ôᳪè§ýÑLWœWóG'çæJ•êOnØç)W÷‰ÏLÏ0G:Q-F$EÐíëË:¿/:‹P;G`IôPeF4efCX„ºBpÐò"è‚©&bõõ¼Þo¡Žê yªÃx±úÂÐ\ 8ÔNaÖfDµ f޵C‹QàØŸ߬+Ñ`,Ž5A‹Qh¸•߬yŒÁ  h1 „vLä\èB^SBpxZŒ<ƃ˜øzC4O^”J¥L‚€àðDFžáMLTÛ"4aŽ tX•æþÅDµMC^¶@páB‹‘»xÕ¶yXÁ„‘‘[„ßÜ^A^VBpaAdä¤(…#°‚#"#› 3)¾ÞväEà G๮}ñFdd¡-=W?X’Ž1cºc‘ˆˆ”D©$Ê\i.ÓåšHôÆ¥Ró ˆ^S*•HÀ-è8aUšq>>Þêß"QÐb®CÇxE½ËÈt-¢ÑSÌÍ• ¶¡XÕä ÅÈ}»¸P!8O 2š^ «Ï@QÏ‹ˆŒÜƒ]\ –ª€¨ÈÈtü'äkŸë «Òœ„]¼6ŽÀm8ÑØÔ¤8ŒÖ ÷Öá$Å:Bp®Bd4Iõƒ#gàC@pîAd¤ޤ†@däìâ4Ap.Ad¤ޤ†Cdd5ìâF€àÜ€ÈH Ié‚ÈÈF8ÍÂø€pÑ´!é…ÈÈ.Ø¿M ÁX Fýà`j ˆŒlý›9ŽÀRˆŒu…ƒ©ñ 2²‚jÇ/‚9ŽÀFX›Ö¢±!22 »8Ë 8» ÑX+IM‘‘1ØÅY ÁØ‘±fX¦3DFf`çG`¬MW Ó‰DˆŒ¦ƒ]œk€ah4jCç…h4švqÎBp&¡Ñ¨‚Î ƒM»8/ 83ÐhügÐyaÖ¦ »8¿%8îÞ½û·ß~ËÉɱ³³ëÞ½ûìÙ³]\\jx|eeåÏ?ÿœ’’"•J]\\Z·nýé§Ÿúûû3½|úôéôyýÏ/¨—§qs:®ÀÚ´ž´þI Žçç8ZXX899iwKKK !ªë¬Õ=|øðôéÓ~~~ªÔHñôôüä“O^½zµoß>¦· €Õøzõ4Îïâ¤Æ:ÓØÅªÁóàHqww/**¢’¢ u¦‹»»»ö㋊Š!Íš5Ó§=bzƒØ‹WO#/r®ƒ©ìâPGüŽr¹\"‘¨F”JåÙ³g]\\‚‚‚´߬Y3ssó[·niü‡:¿ÁÏÏé `)ž5q0å"Üp§°‹ƒ^ø£££ÍÌ̾ýö[ê¼FBȦM›?~äE~0cº ±S£R‰C*èŠ{×Ä`7&Ñë?Ê×€ÓÐqà<¤Fq,5¢ÑhLT‹“Ë3ŽP5R¡®¸—9T-w`Išß¸ÍHíFRç°‹Ó yQ 8 ©؃3íFôÒé†%iAApà*c¤FRA?\Jœ¨“ Ðb&GN2RjÄ!ø »8ÁÁ! Àv#vqƒaI‚#ÑÛnÄò4ðvqàÅê8†öÔˆã)‚ííFìâ@‹´!8p R#° R#/¡Å5@p(Rç°‹×ZŒP+GΠ±ÝˆC*޽íFœÔXwˆŒ #Gn +5â ´`ujdga¬„Ui¨+G 15â |†]\gh1‚~„‡T  KÛØÅuƒÈ†@p`;ZÚ8¤Ïa¯ V¥ެ†ÔlÃÆv#vñ¡Å4Bpà9RÏpµWvŽìex»©èÅ®v#öïê!2‚‘ 8°”© R#ûáDF06GÂ!x»¸oo‚¼ÆgÆtPCÚ8¤‚1°¨Ýˆ]üM"BD„äJ¥˜0GÖAj¨vq5TdT¢Ñ&„¥jvAjbK»»øk¸ö˜‚àÀ8¤Ïa§¦‚ÈÌAp`½Û8¤‚ñ°¢Ýˆ]‘ØÁ€ópHžü.ŽÈìàÀúµHãb¾Ý(ì]‘ØÁ€ª à]‘Ø Á€«|Ha¸Ý(Ô]‘Ø Á€yz´…zHÁä.ŽÈì‡àÀ0¤F`'&ÛÂÛÅ+8Fx‡Tí∌À-ŽLªk»Q`‡T` cíF!í∌ÀEŽŒAjxƒ`vqDFà.GnÌ!˜ÇL»Q0»¸‘¸ Á€>Þ>ú}º  #5¢Ñ<€àÀÂ8ª‚P `ÿFdÞ0cº!Q®4W×óÿ¨ ,Âüg ò‹èõÚ4æøÁÀÔêtM R#ðwqDFà%,U°©ÀR¦n7òwÇ0ÀWŽ&¥{»‘¿‡TBowqœÎü†àÀF<=¤«™´ÝÈÇ]‘„ÁÀttl7òñ  †»8Ö¦A À„x—ÑhAAp0´Íp= 2‚!8˜R#!¼Úű6 „àÀ<:¤ǘ¨ÝÈ—]F2G£Ó¥ÝÈ—C*@5x±‹#2 80‡Tà*S´y±‹cm€ 8[>`XFG†ñ¢P=Žïâh4¨Jpܽ{÷o¿ý–““cgg×½{÷Ù³g»¸¸Ôü”k×®mܸñúõëÏŸ?‹Å“'OîØ±#ÓÛSk»‘ã‡Tà<£¯SsyG£@›Ó˜ÂÚµk.\xûöíöíÛÛÛÛïÝ»÷£>*//¯á)§N1bÄ©S§ÜÜÜ‚‚‚222F}êÔ)¦7¸©„޳»¸èu£‘“Õÿƒcvvö¦M›ÜÝÝ=ºiÓ¦cÇŽ=úêÕ««W¯®î)%%%sæÌ±°°Ø¶mÛ¯¿þºiÓ¦;wZYY}öÙg …‚é àoî¦FDF€êð?8þöÛo …bÚ´innnÔÈܹsœœRRRªK{÷î---ýøãÛµkG´iÓ¦oß¾?¾víÓÜPk»ÑÇÇ››GUà|ZŒÎh„š‰ÔþÿƒcZZš™™Y=T#æææ¡¡¡EEEW®\©ò)çΉDƒ R\µjUvvvÛ¶m™Þ à‘ˆäæJ™®ÀhD"in.ÓEÔ±d4¡JêaQ©öG¨x~qŒR©ÌÉÉ©_¿~ýúõÕÇ›7oN¹{÷nHHˆö³²²²\\\6l˜žžž‘‘ñôéÓ-ZôìÙÓÖÖ–é n¨¹ÝH÷%EnF±Ýȵ]Á@T=Eìoâyp,++“ËåÎÎÎãNNN„'Ožh?¥²²òÙ³g~~~ŸþùÎ;Uã^^^_}õÕÛo¿­ËûŠÅb‘£G2=µ¸wïÓ%ðˆ7‘ÖtÔô–J¥˜pÄk“!ÛyûøHss wöpoï\©”™œ[ ®L8›yûx«¾–ª…¤„Ò§O¦«c žGêÒézõêiŒÛÛÛBJJJ´ŸòìÙ3BHNNΣGV®\Ù£GŠŠŠ={ö¬_¿~êÔ©ÉÉɺô³³³™Þt}x{{þ"ðO»±š¹|}™©7Á„›&\ƒ‘&Dõ²,Ÿðì®Sw,Ÿp–R?[Q­¹èýæÿĵëÚ"àù9ŽÎÎÎ"‘¨¬¬LcüùóçäußQƒ õÅ_|1hÐ ggç† ~ú駃¾wïÞáÇ™Þ&à0ÎÞœøÆXëÔÜÙÅqF£Ðá´E}±+8~ùå—9994¾ ………“““vg±´´”¢ºÎZ]½zõllllmmÃÂÂÔÇ{öìI¹yó&Ó“¬VÃÙÜ9¤è…;»8.¨*/s:bWpÜ´iS¿~ý†ºmÛ¶*O@Ôƒ»»{QQ•U¨3{ÜÝÝ«|Š›››¥¥¥HôÆÕöÔ µL&cz’@O¸áŽ¡¹H+vlj'6jÔ(++kéҥݺu‹=vìXee¥!¯!—Ë%‰jD©Tž={ÖÅÅ%((¨Ê§„……•––þõ×_êƒÔ½{Z´hÁô${¡Ýœ`”uj.ìâXž4†]ÁqÆŒ'Ožüå—_FŒaooêÔ©)S¦téÒåóÏ?ÏÌÌÔï5£££ÍÌ̾ýö[ê¼FBȦM›?~íFFd©‘'Y‰]ÁqÉ’%„ggçÞ½{÷íÛ·cÇŽÕÅhkkkccÃÂuj R#ð+wq¡-O󛣡Jì ŽC‡ŒŒìÔ©“.W½ ÝlPÃÅÔ¼ÅÖÔȺš@Gh.r»î㘒’’ššZ]jœçØ´‹#5²ò"1Õ?>$$„é*j‡‹©˜‚“Ù yQØãââ˜.@Olêżžujvìâh4²ò¢0wìØAéСƒ¿¿¿êÛš9’Ùš´Ûì8¤ ;vq¤FvA^$†ƒcBB!$>>ž ŽÔ·5Cp ¤F¶@^6†ƒãäÉ“ !­[·¦¾5kÓP ´X§fzÇI¬€¼„ƃ㧟~ªþí„ ˜­XF†!/›Øuq ç0Ý‹02Fwq¤FÆ /B5ŽgΜ©ëSzôèÁlÍ dëÔHÀr†®S#5 ò"Ô†áà8qâĺ>%;;›ÙšÀØM ytÆpp0`Ó3 +´AX˜ÛÅ‘MyêŽáà˜˜˜Èô [àjS@^àâ ÝœcÐ ŽLìâh4ò"ПoBjä4r>øä€Ú¡Ý`THF#>9 nô_§6ù.ŽÔH3äE0&|r 0©‘.Þ>Þÿ|… c2cº€š¼xñ¢²²’é*@èÔשÑnž3í.ŽÔHÑ?¤¹R¢Ä„‚ѱñªê«W¯®_¿þúõë=233kÔ¨Qppð¤I“š6mÊti@¤FCi\ò"eºÖu×­[}æÌ™GY[[ÛØØÜ½{÷À‘‘‘;wîdº:´‹ô<ÁÑ„»8R£þ^·Ñ_F°+8ž;wî»ï¾377=zô‰'þüóÏŒŒŒ3gÎŒ?ž²téÒÌÌL¦ký‰õ£‘1ƒÀvÇ;w*•Ê™3g.X°ÀËËK$B<<<âââæÌ™#“É~úé'¦kA»Ä$»8Údú@^6aWp¼~ýºµµõ˜1c´4jÔ([[Û«W¯2]#èƺÁ’4°»‚#!¤aÆU\²C]%SVVÆt Dh7‡ès‚£ñwq¤F]aIØ]Á1((èîÝ»¥¥¥Ú?zñâ…T*mÕªÓ5‚Ph|Z o!5²ò"p»‚ctt´R©œ7ožL&S—ËåóçÏ—ËåLׂƒv#€!k%ià†ï㘚šªþ­¹¹ù!CöîÝÛ«W¯èèh‘H$•J÷ìÙs÷î]±XܧOf @»„ÂÈÿ0Bj¬‰Æ¸€áàSåxAAÁºuë4³³³;wîœÍlÍ (h7·èÿÕÆ(¡¨Jø,ià2†ƒã€˜žMh7‚PóF>ÞÞø[¤ -Fà>†ƒcbb"Ó3P-´ô#"$W*%ÞÞLÂh1°ë☚͙3'<<œé*xÁhÿ0 õ¿p¡4ðÃGmÅÅÅ'OžÌÏÏ×///?~ü¸¹¹9Óϩ֩ÑnÎaà ŽHÿÌs¼Ã®àøàÁƒ#Füý÷ßÕ=`äÈ‘L×À}Æù‡R#ÎbÞcWpüé§ŸþþûïöíÛGEE>|øòåË‹-²µµ½yóæöíÛG޹`Á¦k>C»@o‚Nh1‚`°+8J$kk뤤$GGÇððð®]»z{{wîÜ™âãã³dÉ’ÿüç?þþþL— ÀeFø‡‘pS#ZŒ 0ìº8æþýûÍš5stt$„4hÐÀÅÅ%++‹úQtt´‹‹ËO?ýÄtÀh71x‚£S#>]GBˆ™Ù¿Y¶I“&R©”úÚÜÜ\,_½z•é·pûFºÿa$¸Ôˆ#»:Ž 6ÌËË{ñâõ­——Wzzºê§"‘èÞ½{L×<‡v#€î„•Ñb`[pìÙ³gyyù¬Y³nß¾M ¹sçÎùóç !?þã?5jÄtÀOh7Ô•PR#V¥Ô°k©zôèÑÇŽ;uê”R©Ü°aChh¨……ŧŸ~|óæÍ²²²ÈÈH¦k>C»8J×éÛÅ‘±*  …]GWW×;v̘1£uëÖ„F-\¸°²²òÂ… EEEãÆcºFà;´ªÁ®Ž#!ÄÕÕuâĉªoGŒuíÚ5www¦«~¢Ö©ÑnžC»Q— £ðsóhÀºà¨îÅ‹–––ööö:ubº „¯©«Òºacp¼zõêúõë¯_¿þèÑ#33³FOš4©iÓ¦L—<„v#pN'8Ò´‹ó05"2Ô»Îq$„¬[·.::úÌ™3=²¶¶¶±±¹{÷î"##wîÜÉtuÂÅ·ÔˆêŽ]Áñܹsß}÷¹¹ùèÑ£Oœ8ñçŸfddœ9sfüøñ„¥K—fff2]#ðÚÀstìâüI¸½€ØwîÜ©T*gΜ¹`Á///‘HDñððˆ‹‹›3gŽL&ÃG½pûF]ð$5ªçE>lد_¿nmm=fÌí5ÊÖÖ9P7·ùÑb  »‚#!¤aÆU\²C]%SVVÆtÀ7X§NÓõÖßz¿>׳"#­Øƒ‚‚îÞ½[ZZªý£/^H¥ÒV­Z1]#ðÖ©jÆíÔˆÈ`ì ŽÑÑÑJ¥rÞ¼y2™L}\.—ÏŸ?_.—GDD0]#ð ÚÀsÜÅqí €11|ÇÔÔTõoÍÍ͇ ²wïÞ^½zEGGûøøˆD"©TºgÏž»wïŠÅâ>}ú0[0ðÆ?·odº Öâ^»wd0>†ƒcLLL•ãëÖ­ÓÌÎÎîܹsvv6³5o°5Ø AƒéÓ§<˜éê€ÃDÿ|Ð Óu°Ã©‘€³XE"Ñ!C† òðáü¼<¥RÙ¬Y3www¦ëà &S#"#DZ+8Þ»wO¡P4iÒ„âææ¦q7Gaø¡ê+cØY ó«ã`(vÇÈÈÈ—/_^¸pÁÕÕ•éZ€W°N @a&¼¡ÑÀ캪Úßߟò×_1]§èÖnd 5â¢i~aWpüì³Ïlmm¿ûî»ŠŠ ¦k¾aù"€±™85zûx#2ð»–ªÝÜܾüòËE‹ 0`À€Mš4qttÔxL=˜.8ëÔ&%"„i®ÔÛÛ›éR€fì ŽaaaÔ?þæ›oª|Lvv6Óe÷ Ý¼QÅ•1:¬S›¨Ý¨~.£”‰Ù#cWp¤>9hdŠÔˆË_„]Á111‘é€o°N ÒÑkÓ‚Ç®àøË/¿(ŠÙ³g/X°ÀËËK$B6l8{öìùóç+ŠmÛ¶1]#pÆ?íF0"#Bد]»fcc3zôhí1ÂÎÎîÚµkL×\‚v#ðYõëÔt¶@ ‹‚£L&»ÿ¾»»»¹¹y…š™yxxè¸F X´¥FDFТà(‰ìììîÞ½ûôéSퟖ––æååµnÝšé2°N ÂDgjDd-, ŽæææC† Q(sæÌyùò¥ú*++çÎ+‰Æ¯ß‹ïÞ½;:::((¨K—.óçÏ/..Öý¹íÚµ›={6Ó3uƒö4ðÌWÆèð1ƒú¾ nµÕb×íxÞÿýëׯŸ9s¦gÏžC‡õöö‰DR©ô¿ÿýoaaaddäóçÏÏœ9£z¼O“&Mj}Ùµk×nذ¡^½zíÛ·ÏÏÏß»wï­[·¶nÝjkk[ës•Jåœ9sž?ÎôÜÔÂм‡ûì@mØ###©/>|øÝwßiüôÈ‘#GŽQ™5kV­wvÌÎÎÞ´i“»»ûž={ÜÜÜ!Ë–-ÛºuëêÕ«?ûì³ZKÚ²eËï¿ÿÎôÄ@ÝàöÀsUµ JˆŒ vÇÔéñ~~~µ>æ·ß~S(Ó¦M£R#!dîܹHIIY°`™YM‹õ·nÝZ»vm‹-nÞ¼ÉôÜ@Ý`@WX˜±+8&&&Òþšiiifff=zôP˜››‡††:tèÊ•+!!!Õ=Q&“ÅÅŹ¸¸Ì;7&&†é¹¨–žÙF¨#]c J¥2''§~ýúõë×WoÞ¼9!äîÝ»5<÷›o¾¹qãÆŠ+™Þ¨\O <§µN­OjÄ­v@/ìê8Ò®¬¬L.—;;;kŒ;99Bžáœƒ 7ª>}ú0][ð<8–——BêÕ«§1nooO)))©îYqqq^^^3gÎÔï}³³³™Þt}x{{3]‚°6„+uò×'\U¿ú†üÓnÔqÓ^¯M{SL×'œs0áÆ£}X×î σ£³³³H$*++Ó§n¯Cõµ­\¹òÞ½{;wîÔå~=À*¸žxîÍuê:,RãtF ÏÏq´°°prrÒî,–––BT×Y«ûý÷ßwîÜ9qâĶmÛ2]>è×S¼§3}x !îîîEEETRT¡Îrww×~ü­[·!IIIâ׆ B9xð X,îß¿?Ó@ˆŽíFDF Ï—ª !ÙÙÙ‰¤_¿~ÔˆR©<{ö¬‹‹KPPöã›6mªz$¥¤¤äüùóžžžAAA 6dzƒ@¨ÔÖ©kOX›#àpŒŽŽÞ°a÷ß~Û½{wꚘM›6=~üøÃ?´´´¤óâÅ‹‡ZZZ6nܸk×®]»vU…ëׯŸ?>$$Ä·™áôFà«>¥Z$ÒíÑ„DF0 þGOOÏÙ³g¯\¹rÀ€ݺuËÏÏ¿téR«V­Ô?«ðìÙ³Ó§O÷÷÷ONNfº^€ZÔÔnÄÇÀ€1ñ?8BÆ× Aƒýû÷9rÄÃÃcÔ¨QÓ¦M£ºÜðzºÚdˆF#Ÿ ‚#!$*****ªºŸFFFFFFV÷ÓV­Zqô¾Œ‚‚uj44À$„x Š|ˆF#˜‚#(•š©‘LÁøëÔÀc"‘¨ŠkÓÀGø7(ò¥Ñ(ØúvÂÅ :Bp`;‘R÷s ÕÀøgŒîó°N ‚À—F#p‚#Û)ùÕhî2cº¨À&è8·axKDýçßó‡Ž#ûˆQ#° :Žl‚µi`1tðN |C]£|ý¥HÄtAo@Ç€Þl4â*j`'G¦!'G 80§ª3ÿ‰‘"Q* V«ÙA¡P:tHcÐÒÒ222’éÒL Á¸ '8çÕÖh‰p/¶xõêÕ Aƒ4‹‹‹é}£ÐÐЈˆˆÅ‹3½Å\ªµ…ñ.Ž09Qµ©«Öìdmm-—Ë?øàƒÐÐÐ{÷î)•J¥RI{jÌÈȸpáÓÛʱÚX[_¡ã`ZÕgC¤F6;~üøŽ;rss5jDï+Ëd²S§N]¼x1))I¡P0½¡´ÕVYYI±²²b[a`Gà$¬S'é~FœàÈ>‰ÄÓÓ³iÓ¦´¿rQQѻᆱ÷ÓÓÒÒâããÓÓÓnaañêÕ+k‹Å7–H$ª‘øøøäää´´4Æ' ô†à`µžÑˆv#»yyyÞ¾}Û××—ÞWvww§NfÍÎÎnÑ¢Ež{âĉ޽{{yy;¶^½zûöí»råJpppxx¸™ g£R›¶¼¼¼ôôtÆ' à`dø0^=zô–-[ºwï>gΜ6mÚ8;;{zz6hЀÁ’***ÆŒãááqùòå† BfϞݫW¯ìììE‹9880=gÀCŽÀ=X§.Ñ­‘øÆ£D"¢Tâ’j¶±µµ]²dIllì”)S¨‘Õ«WÏœ9Sãa2™ìðáÃÕ½ÈÀi,I"‘$$$P©‘bmmµwïÞ˜˜k«ÖÚŒCçF#©Õ1{bg Y}éÒ¥ñññ .üàƒš5kVÝBð‹/´oÜ£öútþªóòò!mÛ¶UlÓ¦ !$++‹ÙÚ(r¹\ýÛê®b1}a 7G#@Ô;CB^^Þ¢E‹µ[ŒœœœLtlmm !2™L} gUæZSÖFyùò¥ú·åååU>Ìô…ÞcDX©–«ãš “ºžX&55U©TFDDÔúHS®ºúûûBnܸ¡>HõÅb1³µQ Ô¿½ÿ>ã“BpîÁQØ Fž²¶¶&„ìÛ·/00°æGšrÕ588ØÏÏoýúõ“&Mrvv&„TVV&&&ÚÛÛ÷ïߟÙÚ(………ÉÉÉT1¹¹¹™™™ŒOŸ@“º§FäL®èß¿ëÖ­†ºyóæÃ‡K$’çÏŸk?’Zu­Žo½sçN—3fhÿÈÒÒrݺuEEE+V¬XµjU×®]%ÉŠ+ÜÝÝ™­baa1|øð#F¼÷Þ{­[·¶´´¬òa´ƃŽ#€Ápþ³²²ºpáÂòåË?>kÖ¬’’BˆD" 6ê[WVV>}ú´º³###/]º´xñ⤤¤ŠŠŠÀÀÀ””“Ý»æÚ!;vìם߯e2Ù„ —,YbšÚÀHKpz#°‘¾mÃ*ž÷úGÜ‹‡…V¬X±bÅ Bˆ\.ÏÌÌìСCJJ ÁQ,kÿÞÇŒóêÕ«*¯’¦§OŸ Ò~°T*•Ëå;wöññQ ÚÛÛ3=CoÈÈȸpáBDDÓ…p¦0ApA2Éòtí¹'8rÇñãÇwìØ‘››Koj$„¬Y³&''gË–-cÆŒ!„L:µ]»v3gÎ\Ý‹ 8Pc¤¬¬Œâèè¨>èääD)**Ò~…œœ…B?lØ0KK˃NŸ>}РAYYYÔ³ª#‘H ¨ÔH±¶¶Ž‹‹‹ŠŠÚ»woLLŒb2¬-L ÕpTzˆˆ4WêM¼™®£¶2qGêæÔp‡¥K—ÆÇÇ/\¸ðƒ>hÖ¬™™YÕçz½xñBûÆ=ÿ¾¾Öï×ÕÕ•òìÙ3õÁÒÒRBHýúõµ_áÌ™3666ª7®¢¢bÒ¤I{öì?~| ›–——GiÛ¶­ú`›6m!YYY†oˆá4î1TÝU,¦/ Ô!8KáF<@ªû'5õ‚~Øù×>//oÑ¢E‰‰‰Ú-F NNNuÊ.îîîfff«Ò?&„Tyù¶§§§ÆHïÞ½ !ׯ_¯ùlmm !2™L} gU†àºnˆá^¾|©þmyyy•3}a Áø '5MRSS•J¥.wÀ©ëBª……EË–-Õ¯&&„œ;wN$µjÕJãÁùùùÉÉÉáááªAª=YëåÞþþþ„7n¨R½F±Xlø†®  @ýÛû÷ïÓ2Ã@/Gà)†ú~º¾-NpäkkkBȾ}ûk~¤ ©&L˜:ujrrrÿþý !>ܳgO¯^½¼½5O®°µµ5kVûöíOž}úP?­¬¬|úôiugFFF^ºtiñâÅIII)))&»3v͵B:vìØ¯_¿7Êd² &8::.Y²Ä4µîÐÕ¡ŸX,ÎÎÎfºŠ:“J¥ÚË"LBÇ‘UÎÕ7ÓLx‚cUKÕ|ºªºÖ çèÿ*)r¹<33³C‡ ,`ºœ7lÞ¼9++뫯¾bººÕæíí­ñÉ1¦¤ÇÞÈéØXª¾`ºÝg`j177÷óóS*•ÔÉ‚ìQQQqúôiÛ B« t‡à¬#„v#ÐéÔHÃð¨Ý(P*•]»veº7¤¦¦¼ÿþûL±Ú@w8Ç8Ž÷Üá~p…ºéÒ¥ËÊ•+5î§Í¸°°°°°0¦«Ð§¶ØØXÏvBp.C^†øúúÆÅÅ1]`2¹KÕÀ.ø¸¨֤ƺ‚€³upT°&5‚#p›R#›j0.œãœÂŽKa„ G`œàµ š{lÚGêÜnÄ©ÀeŽÀ.8ªBµx½$Œ›8' 8°25²²(#Bp¶À:5T  €pq °‹/…Ñ'ÍâT à8G`Uá h4° ‚#°»S#»«ú)ŠC‡i ZZZFFF2]€I!8+P'8Š˜.ع XæÕ«Wƒ Òtvv...¦÷BCC#""/^Ìô³½¶W¯^ÙÚÚÊårõAWW×G1]Ï!8˰>5êY NÅà2kkk¹\“ŸŸÿË/¿4jÔÈï’‘‘qáÂ…ˆˆ¦7—µI¥R¹\Þ¹sgÕ ½½=Óuñ‚#°ŽªÀæKaŒ»Ý¸‰#?~|ÇŽ¹¹¹´§F™LvêÔ©‹/&%%) ¦7”¶Ú*++ !VVVÆ(,''‡’Àž,+ŽÀ<¬S!h4rªL ŸD"ñôôlÚ´)í¯\TTôî»ïêýô´´´øøøôôô¨[XX¼zõŠÁÚÄbqãÆ%‰j$>>>999--ÍðI£‚£ŸŸŸá/u‚à,€8¬çååUXXxûöm___z_ÙÝÝj9ggg·hÑ¢NÏ=qâDïÞ½½¼¼ÆŽ[¯^½}ûö]¹r%888<<ÜÌŒ†[5R›¶¼¼¼ôôtZ&-''ÇÚÚÚÁÁa÷îÝOžgΜ6mÚ8;;{zz6hЀÁ’***ÆŒãááqùòå† BfϞݫW¯ìììE‹9880=gF”““cffæç秺>) `Û¶míÚµcº4žCpVÀ ŽÂ%,†]œûlmm—,Y;eÊjdõêÕ3gÎÔx˜L&;|øpu/2pà@K’H$ Tj$„X[[ÇÅÅEEEíÝ»7&&†ÁÚêDÂrrr E||ü°aÃ,--<8}úôAƒeee9991µ!B€à Ã Ž‚Æ©ÔÈ©b¹LÄèÿªÏ÷K—._¸pá|ЬY³ê‚_¼x¡}ãµ—§s'ÊËË#„´mÛV}°M›6„¬¬,fk£hÜ.§ºËkô(ìÌ™3666õë×§¾7n\EEŤI“öìÙ3~üxÚ7T€ B½€jÇÊÖl^^Þ¢E‹µ[ŒœœœLv¼­­-!D&“©Rá¬Ê\kÊÚ(/_¾Tÿ¶¼¼¼Ê‡éQ˜§§§ÆHïÞ½ !ׯ_7å ‚#˜zwÀ5©©©J¥R—;¿˜r9ØßߟrãÆ õAª×(‹™­RPP þíýû÷i™´üüüäääððð€€Õ`ii)!Ä—½ƒ:G`µNÍt`ZÜLU¹ÏÚÚš²oß¾ÀÀÀšiÊåààà`??¿õë×Oš4ÉÙÙ™RYY™˜˜hooß¿fk£&''SÅäææfffÒ2i¶¶¶³fÍjß¾ýÉ“'--- ! …"11Ñ¢W¯^´o¨£áZ}á¨* ÜLF…»sBÿþý[·n0tèÐÍ›7>|X"‘<þ\û‘Ôªkuôxë;wº¸¸Ì˜1CûG–––ëÖ­+** \±bŪU«ºví*‘HV¬XáîîÎlm ‹áÇ1â½÷Þkݺ5ò /ÌÍÍ->>^"‘øûûÇÆÆÎ›7/$$d×®] -[¶Ôów ºAÇL…³©‘³…m¬¬¬.\¸°|ùòãÇÏš5«¤¤„bgg'‘H‚ƒƒúÖ•••OŸ>­îìÀÈÈÈK—.-^¼8))©¢¢"000%%ÅÛ‰ÓX!¤cÇŽýúõÛ¸q£L&›0a‚££ã’%Khy븸8__ßU«Vmß¾ÝÆÆ¦M›6)))}úô1͆ ‚#˜ÂpœƒƒÃŠ+V¬XA‘Ëå™™™:tHII¡18ŠÅbíÛ˜1c^½zUåUÒ”   ƒ{óõ«M$Í›7oÞ¼yª‘„„ºJ:tèСC½á KÕÀœà( \N†ÖŽS1øÈÜÜÜÏÏO©TRgUEEÅéÓ§Ý×ä_m`$è8ÃpTå9ÜvxêÀJ¥²k×®Æ~£ÔÔÔ€€€÷ߟé-æXm`$Ž`4\n4òe ÀXºté²råJ›oCXXXXXÓ›«Om±±±ŽŽŽL×4Jpܽ{÷o¿ý–““cgg×½{÷Ù³g»¸¸Ôðøòòò_ýuÏž=÷îÝspphÞ¼ù¸qãºtéÂôvp2𚯯o\\ÓU°懗×®]»aÆzõêµoß>??ïÞ½·nÝÚºu+uÏ}m2™,&&&33ÓÉÉ©S§N—/_>þü”)S&MšÄôÖðNpä9^¤F^løqLvvö¦M›ÜÝÝ=ºiÓ¦cÇŽ=úêÕ««W¯®î)¿ýö[fff»víΞ=ûÝwßýôÓOûöísvv^¿~½Æ úÁ@8Á‘Ÿ¸TjÛÅqGàþÇß~ûM¡PL›6ÍÍÍ™;w®““SJJJuŸ¶~ôèQBÈ‚ T-Iÿ?þX.—_¸pé `7¤FþâpLKK333ëÑ£‡jÄÜÜ<44´¨¨èÊ•+U>E*•Ö«W¯U«VêƒÔG‚Þ½{—é â¬SóR#6€6.Oóq›èÁóàhaaáää¤ÝY,--%„¨®³ÖVYY™˜˜¸mÛ6›É“'?¾º›>€Àð<8BÜÝÝsrrJKKÕ?øˆ:•ÁÝݽʧ(Š™3gþïÿëÙ³çâÅ‹kÈ—ÂÅÓÔÈÓÍ ÿƒcDDDvv¶D"éׯ5¢T*Ïž=ëââTåS¶mÛö¿ÿýïý÷ß_¼x1Óåój·þæ6Ä«Zé°‹ãîߢP(:¤1hiiÉti&Åÿà½aÆo¿ý¶{÷îÔ51›6mzüøñ‡~hiiI=æÅ‹>´´´lܸ±R©Ü¾}»ƒƒÃœ9s˜®€•Ax^½z¥}W ggçââbzß(444""‚Um‹«W¯.[¶ììٳϟ?oÑ¢ÅÈ‘#'Ož¬}Ó:{õê•­­­\.Wtuu}ôè³…ñÿƒ£§§çìÙ³W®\9`À€nݺåçç_ºt©U«V&LP=æìÙ³Ó§O÷÷÷ONN~ôèÑ;wlmmGŽ©ýjƒ5jÓÛÀ^§F^oÄÚÚZ.—ÇÄÄäççÿòË/52Æ»ddd\¸p!""‚éÍýWnnn=ärùàÁƒ›4irâĉ3fœ;wnß¾}Ì&•JåryçÎ}||TƒT{ŒŠÿÁ‘2nܸ ìß¿ÿÈ‘#£Fš6mZu»uï±òòò¬¬,íŸâÂj4+°ãÇïØ±#77—öÔ(“ÉN:uñ⍤¤ê> —)3fÌ())¹téRûöí ! ãÇÿñÇ;öî»ïÖüÜÊÊJBˆ•••1 ËÉÉ¡êaUÎAGBHTTTTTTu?ŒŒT§ÌÑ»0²nÄÃm|OtnÎáå#‰DâééÙ´iSÚ_¹¨¨¨ÖVƒ´´´øøøôôô¨[XX¼zõÊÀÚN:J¥FʧŸ~úã?¦¦¦ÖZ³X,nܸ±D"QÄÇÇ'''§¥¥>iTpôóó3ü¥ N„UpTå!„ç© V^^^………·oßöõõ¥÷•ÝÝݩˤ²³³[´hQ§çž8q¢wïÞ^^^cÇŽ­W¯Þ¾}û®\¹nfff`a2™lÒ¤IŸÍ›ŸŸO±¶¶ÖãóòòÒÓÓi™´œœkkk‡Ý»w?yò¤U«V:t0RwÔ!8@øÞhÒV‚AF½eË–îݻϙ3§M›6ÎÎΞžž 4`°¤ŠŠŠ1cÆxxx\¾|¹aƄٳg÷êÕ+;;{Ñ¢E¾¾……ÅŠ+ÔGž\Ý‹ 8Æ’$IAAABB• !ÖÖÖqqqQQQ{÷¡·¶3gÎ|ôÑG999ß}÷¿¿?¢Ga999 …">>~ذa–––œ>}ú Aƒ²²²jýX80‚#TC0©Q0Ê "Fß½†=aéÒ¥ñññ .üàƒš5kVÝBð‹/´oÜóïëÓzšN^^!¤mÛ¶êƒmÚ´!„Ty}§ÞµÝ¹sçÓO?=tè¿¿ÿ‰'ÂÃÃu¬Pãv9Õ]ú£GagΜ±±±©_¿>õí¸qã***&Mš´gÏžñãÇÓ8É Áª‚0¥7œÃkvÎ]^^Þ¢E‹µ[ŒœœœLv_wê³pe2™ú Ϊ̵úÕ¶sçΉ'ÚÛÛoܸqܸquºƒãË—/Õ¿-//§kÒ<==5Fz÷îM¹~ýºþ :@pSÃQ•Ã-©©©J¥R—;¿˜r©šZ/¾qã†ú Õk‹Å´ÔvèС>øà?ÿùφ Ô?¹WGêßÞ¿Ÿ–IËÏÏONNP –––BŒqÙ;¨CpSÀ Ž\"°Ô(°Í=QïÛ·/00°æGšr©:88ØÏÏoýúõ“&Mrvv&„TVV&&&ÚÛÛ÷ïßßðÚ”Je\\œ——×¶mÛÌÍÍõ¨°°°099™*&77733“–I³µµ5kVûöíOž<**J¡P$''WwŸºæææ?gÎÿ¾}û:;;;v,##cùòå-[¶¤qòA‚#¼&¼ÔHÿãT ž²²²ºpáÂòåË?>kÖ¬’’BˆD" 6ê[WVV>}ú´º³###/]º´xñ⤤¤ŠŠŠÀÀÀ””Cn'®ŽºÉö74Và !~~~QQQ5×F騱c¿~ý6nÜ(“É&L˜àèè¸dÉZj‹‹‹óõõ]µjÕöíÛmllÚ´i“’’Ò§OZ^j€àF§¾N£*{ /5Ô‰ƒƒÃŠ+¨ûÊåòÌÌÌ:¤¤¤ÐÅb±vãm̘1¯^½ªò*iJPPÐÁƒ±É ¨¹Xkm"‘hÞ¼yóæÍS$$$ÐUÞСC‡jŒ ‡z[yàA¦FAn4ÐÃÜÜÜÏÏO©TRgUEEÅéÓ§Ý×ä_m`$Ž‚‡PwP*•]»v5ö¥¦¦¼ÿþûLo1Çj#ÁR5€€áC¨ôÕ¥K—•+WjÜ|Û˜Þ\}j‹Õã>ÀrŽ`\¸{ »Ñh”­Ç9¼BâëëÇt¬†ùá%,Uƒéà¨Ê"ÂNŒÃÝ¿€£„Gð©Qð 'G0"¬S³Bè Á@H1@p $&£Â9¼ Ž`"8ª2 © †àÆ‚Y©ñ5Ì€!øY h‚àÀkHjŒ88„ÁŒBcGUf 5²îþ Ü…à)¤Æ7ùx{c>@o …âСCƒ–––‘‘‘L—`RŽ|„Ô@«W¯^ 4HcÐÙÙ¹¸¸˜Þ7 ˆˆX¼x1Ó[üï†ÛÚÚÊårõAWW×G¡0aBpúázj†!5ÐÍÚÚZ.—ÇÄÄäççÿòË/52Æ»ddd\¸p!""‚éÍý—T*•Ëå;wöññQ ÚÛÛ3]{ ã=GB« "$W*%ÞÞÆyuœÃ+Çß±cGnn.í©Q&“:uêâÅ‹III …‚é }CNN!$!!A8[YYI±²²b[a`\F‡£ª‰PFL5€qH$OOϦM›ÒþÊEEEï¾ûn||¼~ˬiiiýû÷oذ¡èM–––†×Få3???=ž+‹5R]|||ûöíi™4C C ã4Ã:53°<]=jn¤L—\çååUXXxûöm___z_ÙÝݺÐ>;;»E‹uzî‰'z÷îíåå5vìØzõêíÛ·ïÊ•+ÁÁÁáááff4ô†rrr¬­­vïÞýäÉ“V­ZuèÐAï&b^^^zz:-“Foa ;GîCj0¾Ñ£GoÙ²¥{÷îsæÌiÓ¦³³³§§gƒ ,©¢¢b̘1—/_nذ!!döìÙ½zõÊÎÎ^´h‘ƒƒƒáo‘““cffæç秺 ( `Û¶míÚµcpÃÙ\ï!8pRc0=@[[Û%K–ÄÆÆN™2…Y½zõÌ™35&“É>\Ý‹ 8Æ’$IAAABB• !ÖÖÖqqqQQQ{÷1¼¶œœ…B?lØ0KK˃NŸ>}РAYYYNNNtmk mŽ\†XÄ8œÃK;£ï^ý/séÒ¥ñññ .üàƒš5kVÝBð‹/´oÜóïËÓº·äååBÚ¶m«>ئMBHVV-µ9sÆÆÆ¦~ýúÔ·ãÆ«¨¨˜4iÒž={Æ_k…·Ë©îÒÓzCp:iŸàˆ£ª!5r>6¦v¬œž¼¼¼E‹%&&j·5899™ìWlkkK‘ÉdêƒT8«2×êQ›§§§ÆHïÞ½ !ׯ_×åé/_¾Tÿ¶¼¼œ®I3°0Ђ#7!5ê“tIMMU*•ºÜùÅ”KÕþþþ„7n¨R½F±XlxmùùùÉÉÉáááªÁÒÒRBˆŽW—¨{ÿþ}Z&ÍðÂ@oŽ„@`ZÖÖÖ„}ûöÖüHS.Uûùù­_¿~Ò¤IÎÎ΄ÊÊÊÄÄD{{ûþýû^›­­í¬Y³Ú·oòäIêæ> …"11Ñ¢W¯^ºTXXX˜œœL“›››™™Iˤ^è Áhƒñ˜R£n0O@£þýû·nÝ:!!!++«oß¾ŽŽŽAAAÚUBûRõÎ;?ù䓱cÇ®Y³FãG–––ëÖ­}úèR!¤cÇŽýúõÛ¸q£L&›0a‚££ã’%KLPNÓ¦ŸX,ÎÎÎfºŠ:“J¥Þ†} ®Œ©}&©QgÚSeø^ÕÛÔyÎÅ1µN8GÿWI‘Ëå™™™:tHHHX°`±ßnóæÍYYY_}õÓÛ]·Ú¼½½7n,‘H˜®±vzìœÞ z`ÚèXÃÜÜÜÏÏO©TRgUEEÅéÓ§Ý×ä_m`$Ž\€ÔÀ2P*•]»v5ö¥¦¦¼ÿþûLo1Çj#Á9ŽìFÝ ©±.L³q*†°uéÒeåÊ•7ß6†°°°°°0¦7WŸÚbcc™®h†à4¨rGU ÑÈ/Â9ÁQ|}}ãâ☮‚Õ0?¼„¥j¶BjÔ ¦ ÀxX ñØÁ …ë©é‡Ô¨/Ì€Q!8° ²'à^$G0 Uõ„Ô,†àÁ:5 ƒù06Gv@êÖCp`¤Fƒ™t q*nú«nGÕ:ÀÃîþ <€àÀ4i‚‰0 Gfxûx#ìp…B¡8tèÆ ¥¥edd$Ó¥˜‚#è ×SDD¤¹RoâÍt|€v#˜À«W¯ ¤1èìì\\\Lï…††FDD,^¼˜é-þWIIÉœ9sŽ9òäÉ“àààU«V½óÎ;ÕÍ’­­­\.Wtuu}ôè³›ÀÚ¸ÁÀ䨤#eº ÐÎá$kkk¹\“ŸŸÿË/¿4jÔÈï’‘‘qáÂ…ˆˆ¦7÷_¥¥¥!!!wîÜ6l˜««ëž={úôésúôé   íK¥R¹\Þ¹sgÕ ½½=ÓÁÞ¸Áh†£j-Ðà¦ãÇïØ±#77—öÔ(“ÉN:uñ⍤$…BÁô†¾aÍš5999[¶l3f !dêÔ©íÚµ›9sæ©S§´œ““CIHHÐ#ûVVVB¬¬¬Œ±†p;ÐÖ©õ„ÔH7Ì(˜ŒD"ñôôlÚ´)í¯\TTôî»ïÆÇÇë·rš––Ö¿ÿ† ŠÞdiiixm»víòðð=z4õ­Ï°aÃΞ={ÿþ}íSùÌÏÏO7‹Å©.>>¾}ûö†o‚…tL€Ë¼¼¼ oß¾íëëKï+»»»S·jÊÎÎnÑ¢Ež{âĉ޽{{yy;¶^½zûöí»råJpppxx¸™™¡½¡ÒÒÒ¿þúkĈ"‘H5¾yóæK—. gΜ6mÚ8;;{zz6hЀÁ’***ÆŒãááqùòå† BfϞݫW¯ìììE‹988øúòéÓ§zsoÞ¼IùüóÏu¬ª²²ÒÏÏÏÃ㸸˜yùòehh¨½½}aa!-µ­[·ŽrèÐ!êÛ¸»»÷îÝ[û‘<°±±éÖ­[ee%5"—ˇnaaqýúõZ·¥Y³fêotûömê݆o….…é±7rk¦îãu€uêÚQ­0L’1¡™ ¦×¿ÿÖ­['$$ :tóæÍ‡–H$ÏŸ?×~$µZ=ÞzçÎ...3fÌÐþ‘¥¥åºu늊ŠW¬X±jÕª®]»J$’+Vh\ ­wm111mÛ¶9räüùóW­ZÕ£G²²²øøxê§+W®tqqÙ°a!ÄÍÍ->>^"‘øûûÇÆÆÎ›7/$$d×®] -[¶¬yC(Ç1bÄ{ï½×ºuëêîCY×­¨µ0¨,UЉ€§¬¬¬.\¸°|ùòãÇÏš5«¤¤„bgg'‘H‚ƒƒúÖ•••OŸ>­î„¿ÈÈÈK—.-^¼8))©¢¢"000%%åÝwߥëÝÏž=;{öì={öwêÔiÇŽªÏ¬¨¨xúô©êÜĸ¸8__ßU«Vmß¾ÝÆÆ¦M›6)))}úôÑeC!;vìם߯e2Ù„ —,YBËVÔ\Ô îA?±XœÍtu&•J½½½kx@­íF¡ŸVÇÔXë„C•ôç4L¸»¸oÇSë„sô•¹\ž™™Ù¡C‡„„„ ûí6oÞœ••õÕW_1½ÝFÜooïÆkœOi2zìœÞ ¥j R#z<‡ÔjÌÍÍýüü”J¥³³³±ß«¢¢âôéÓÆîkšo6Dà°T :ÁÙÕ§˜ò9°Ç”Je×®]ýF©©©ï¿ÿ>Ó[Œ B ‚  T]ºtY¹r¥ÆÍ·!,,,,,ŒéÍ5ú†ÄÆÆj|D °‚#€¾M‹Éùú©P__߸¸8¦«àL&W 8BípYŒÖB@pêF&`ÖØWUC-pYÌ_@ÀÐqÐ –§™Ãp\Ü©ÕBp„šèÒnÄQFÐnâ|‚àP#4™†ÐÀŽP-œÝˆÌÂ8üXÁ ÂÛuj4ÂÛ]@ŽP5A·ÑæbüxO,3]Ô ‚#TA¸©FSÉÎÎfº^‘J¥ÞÞÞLWü‡àð\lŠßÖ©Þ„àšto7ò稊F#˰"5Ò²!¸ð ‚#"#€Îá Âj7ò¦¯Å/lùµða ‚#üK@×Ä ÑÈVlIPGø‡· R#"#‹!5°‚#胓‹xˆŒ ;:vq\ücÆtÀ ""Ê•æ2]…±¶íŸ?J¤FVC»€ý¡Î§6r¦Ý¨ž9Q°€±+5rf05ÇjíÞ½;:::((¨K—.óçÏ/..fº"£P¥Æ>}ú0] m›Ä‰#&Ü`¦I˜pÄ›&LÁ±jk×®]¸páíÛ·Û·oooo¿wïÞ>ú¨¼¼œéºè$""=.£fu/-FbW¯‘ж‹ãGà%Ç*dggoÚ´ÉÝÝýèÑ£›6m:vìØèÑ£¯^½ºzõj¦K£ ùpµˆ3-FÐ baj€!8Vá·ß~S(Ó¦Msss£FæÎëää”’’¢P(˜®ÎPú5ÿy.KÚÚa‘‘kXšóÙ²‹°‚cÒÒÒÌÌÌzôè¡177 -**ºrå ÓÕé‰Ê‹†4™<¤Šùƒ½Fúvq¬S_!8jR*•999õëׯ_¿¾úxóæÍ !wïÞeº@]©’¢z^Ô;2=5Šjü£DXä6¶ŸP`Š]€ppMeeer¹ÜÙÙYcÜÉɉòäÉ“Z_᯿þ‰DLo‡&©½¤šËfr›X74mûöSl5ƒo]ó„Ó÷ëhÞ¼¹X,fnCÙ“`b˜p0GMÔ¥ÓõêÕÓ···'„”””Ôú X¢^ÂRµ&ggg‘HTVV¦1þüùsòºï @Žš,,,œœœ´;‹¥¥¥„ÕuÖBƒàXww÷¢¢"*)ªH¥RêGLWÀ Ç*DDDÈår‰D¢Q*•gÏžuqq bº:f 8V!::ÚÌÌìÛo¿¥Îk$„lÚ´éñãÇC‡µ´´dº:fà.µUûñÇW®\Ù¨Q£nݺåçç_ºt©eË–?þø£ömzÁ±Z‡Ú¿ÿÕ«W=<<:tè0mÚ4êŽ<„à:Á9Ž GÐ ‚#èÁt‚à:Ap 8€N…n÷îÝÑÑÑAAA]ºt™?~qq1ÓñYyyù–-[ú÷ïØ­[·ñãÇ_¸p预¢   ]»v³gÏfºž»víÚ§Ÿ~Ö¾}ûQ£F]¾|™éŠø¬²²òûï¿2dHPPPxxøÔ©SoݺÅtQ<”››+‹ÿüóÏ**´Ã(‚£ ­]»váÂ…·oßnß¾½½½ýÞ½{?úè£òòr¦ëâ'™L³bÅŠ‡vêÔÉÏÏïòåËãÆ[¿~=Ó¥ñŸR©œ3gŽêÓçÁHN:5bĈS§N¹¹¹eddŒ=úÔ©SL×ÅOr¹|̘1«W¯...îÖ­[£FŽ;6pàÀ´´4¦Kã›mÛ¶U÷#!F• T7oÞlÑ¢E·nÝèïïO¹{÷.ÓÕñ–L&‹‹‹sqq™;w.ÓµðܹsçD"Ñ AƒÔW­Z•ݶm[¦«ã!BˆzFT*•OŸ>533SEI0IJeË’’’’’’:wî\å„yž%PJ¥2''§~ýúõë×WoÞ¼9!äîÝ»!!!L×È77nÔþ¿ùõë× !^^^LWÇ[ß|óÍ7~üñGGGG¦kṬ¬,—† ¦§§gdd<}ú´E‹={öTµØ^ýû÷ߺuë²eËììì‹‹‹“’’îÝ»÷Þ{ïao§E×®]©/NŸ>­ýSÁFª¬¬L.—;;;kŒ;99‘7ÿ tiÙ²¥ÆÈ¥K—6mÚdmm­Ñ¤ºdff~ÿý÷£Fêܹ3•ÑÁH*++Ÿ={æçç÷ùçŸïܹS5îååõÕW_½ýöÛLÈCb±xÛ¶m111111ªÁQ£FÍŸ?ŸéÒA°‡Q,U uÍW½zõ4Æííí !%%%LÈsr¹|ëÖ­~øaYYÙ_|áêêÊtE}úôƒúøø0] Ï ö0ŠŽ£@YXX899iÿ“¨´´”¢º@ èUYY¹lÙ²1cÆLž<9%%©ÑH~ÿý÷;wNœ8—e˜F½zõllllmmÃÂÂÔÇ{öìI¹yó&ÓòÍÇOŸ>íçç§J„OOÏO>ùäÕ«Wûöícº@þìaGárwwÏÉÉ)--U?Z*•R?bº:R(3gÎüßÿþ׳gÏÅ‹óø+l@}~uE¤úøÁƒ<èïœÌt|ãææöôéS‘H¤>Hµ{e2ÓÕñMQQ!¤Y³fãT£ñÑ£GL(Â<Œ"8 WDDDvv¶D"éׯ5¢T*Ïž=ëââÄtu<´mÛ¶ÿýïï¿ÿþâÅ‹™®…ÿš6mªÚ±)%%%çÏŸ÷ôô jذ!ÓòPXXØÏ?ÿü×_QW•R¨›’à&š´kÖ¬™¹¹ù­[·”J¥zXÏÎÎ&„øùù1]  ó0Š¥j኎Ž633ûöÛoUŸÃ¶iÓ¦Ç:ÔÒÒ’éêøF©Tnß¾ÝÁÁaΜ9L×"]»v]ó¦3fBBBBÖ¬YÇt<4xð`BÈÂ… Uד^»ví‡~prrêÕ«ÓÕñ­­mhhh~~þ×_­º×ô­[·’’’¬¬¬4N#æaGáòôôœ={öÊ•+ Э[·üüüK—.µjÕj„ L—ÆC=ºs玭­íÈ‘#µ:xðàQ£F1]#€Af̘±fÍš>}ú„„„”••¥¥¥‰D¢eË–½õÖ[LWÇCK—.6lXRRÒ‘#GZ¶lYTTôÇ(Š… úúú2] ó0Šà(hãÆkРÁþýû9âáá1jÔ¨iÓ¦Q·zÝ»wR^^ž••¥ýS\"ü0qâDWW×­[·^¼xÑÅÅ%""bòäÉÔÇ#í\]]9²aÆóçÏŸ9sÆÅÅ¥{÷î±±±­[·fº4àaT¤T*™®8ç8€N@'Ž GÐ ‚#èÁt‚à:Ap 8€N@'Ž G–Ù³g‹Åâ3gÎ0]ùöÛoÅbñŽ;˜.@WŽ  ¦ ¨°°0WW×víÚ1]€®˜ÑªU«V­Z1]@`©€uärù«W¯˜®@‚#pÃÂ… Åbqbb¢Æøµk×ÄbqçÎe2!äñãÇkÖ¬‰ŒŒ îׯß_|ñàÁƒê^–ºV&55Uc¼eË–ï¼óŽúÈ… ¦L™Ò³gÏöíÛ=úÛo¿ÕÈvÿý÷âÅ‹###{ôèñÑG¥¥¥Õ°Eßÿ½úÅ1T%÷îÝÛ´iS§NÞ~ûíáÇŸ8q¢ºWÈÈÈhÙ²ehhè³gÏTƒÏŸ?ïÑ£GË–-¯^½Êô/ øÁ¸!**ŠrìØ1ñäädBÈ Aƒ,,,?~ýý÷ß{yyíÞ½ûÌ™3‡>wî\÷îÝ333¿ûî;ê1«W¯~ñâEllìÅ‹÷îÝ{öìÙ (•ÊuëÖÕé½~ûí·>úH"‘lÙ²åøñã111„­[·V÷ø)S¦øûûïÝ»W"‘BRSSýõ×Ö­[ÇÆÆ2÷»ÞBpn033ëׯy³é˜žžþàÁƒ   ???BˆL& ›5kV½zõ¨8::R­Êüü|½ßzåÊ•„¯¾úJÕÃsuuýꫯÜÝÝ÷ìÙóôéSBÈÍ›7 !ÑÑÑæææÔcFŒñÉ'ŸôìÙ³NïÕ¦M›™3gš™™Q›üÉ'ŸBòòòª{¼¥¥åªU«,,,.\øðáà ØÚÚ®^½ZU€3¨¨¾nK­S:”úvÒ¤I6lðõõU=àÑ£G‡6äM‹‹‹¥R©ÆÐvvv;w.//ÏÊÊ"„PÉuîܹ¿ÿþ;u¶¥¥¥åÔ©S'Ož\§·ëÛ·¯ú·NNNæææJ¥²†§´lÙrÒ¤I………üûï¿ç̙ӟìgàÅIDAT¬Y3cý@Øp;àŒV­Z5kÖ,///;;[,Ëd²£GÚÚÚFFFªó÷ߟ;w.==ýîÝ»wîÜ1ðÔFBHnn.õ_±X\åîß¿O‰Ÿ6mÚï¿ÿþÁØØØ´lÙ²cÇŽ½{÷nÙ²eÞ®qãÆz9qâÄ'N\¿~½C‡#FŒ uÖþ…à\õÍ7ß=zT,K$’’’’!C†¨¦wîܹtéR™LÖ¤I“ž={¾ýöÛR©4!!¡Nï"—ËUM¾ÊÊJBH£Fª[töôô$„4nÜx÷îÝçλ|ùrVVÖ•+W¾ûî»aÆ-]ºT$éøÖVVVzLËóçÏ=zDÉÍÍ}úô©³³³ñ DŽÀ%ªà8uêTj ZµNýüùó%K–XYYmܸ±k×®ª§Öõ]  õµ!ÄÎÎnþüù5?K$Q÷"„TVVJ$’yóæíÙ³'<<<""¨Ӳxñâ‡_¹r%!!aÍš5F};,œã\Ò´iÓ·ß~;77÷Úµk'OžlÚ´iHHõ£k×®Éåòàà`õÔH^_¶R3íãÇ«¾vwwoРÁíÛ·¯_¿®þ¹\>tèÐnݺ=~üøï¿ÿÿÏþ£ú©••UDDu5Ͻ{÷Œ:'‡JIIéÞ½ûÖ­[ýýý>¬}Ó"Z 8ÇP—È,X° ¬¬lذaªqwwwBÈÍ›7?~LÈåò]»vmß¾R^^^å«5iÒ„²mÛ¶²²2jäÒ¥Kª›ìPf̘¡P(f̘qãÆ jäùóçóæÍËÊÊjÕª•«««‡‡Ç³gÏþüóÏÍ›7«Z•yyyçÎ#„õ~Š……… K–,±´´\±b…¹¹y||¼á'whÃR5pLddäÊ•+³³³ÍÍÍ ¤÷ññ‰ˆˆ8yòd¯^½Úµk§T*³³³‹‹‹G޹uëÖÿþ÷¿Ïž=£n¬£nРA?ÿüó•+W"""Z¶lùðáÜœ''§† ¾|ù’zÌàÁƒÿý÷}ûö 4¨Q£F...¹¹¹eeeÍš5£î¼mff6þü¹sç&&&þðÃ7.++»}û¶R©1bDPP‘¦B©TÎ;·´´tùòåTnnݺuLLÌ?üÿÕW_1ý»¾AÇ8ÆÍÍ­C‡„nݺ¹¹¹©ÿèË/¿œ2eЧ§'uÇÐÐÐýû÷/X°`äÈ‘æææU~ ——×/¿üÒ³gO33³óçÏÿõ×_5úþûï]]]U‰D_|ñÅ×_®P(òòò¼½½g̘±ÿ~ê1ƒþù矻wïnkk{óæÍ²²².]º$%%-^¼ØxS±mÛ¶ÔÔÔ®]»ªNô$„L™2¥iÓ¦)))Geô<$ªùö`ÂñâÅ‹¢¢"///Ý/‚GÐ –ª@'Ž GÐ ‚#èÁt‚à:Ap 8€N@'ÿ‰ó8ÍÝúIEND®B`‚statistics-release-1.6.3/docs/assets/gevfit_101.png000066400000000000000000001236271456127120000221470ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A€IDATxÚìÝg@W¿ð3ì""H¥¨4Ä ˆP°cÇŽ¨±`ÔØ°;FM_!Uå’Ä$&ö¨QQ£!`¯Ø° XPc4Š•ÎÎýpt·1ì.l{~×¼—=;;3çÌìÌO†eYPmïèŽ G#‚ÀAà‚ pTÑöíÛa^¾|©íÕi .¤^ÞÏîÙ³g×®]»vízòä —¸nÝ:ºÂ-Zh;sºNÂWÙË—/ÇŽ[»vm±X\½zõ7oÞh»Êgùòå´ÐÂÂÂhŠÜSNQ6õ(ûr¿_P^š½L©óxêj6_t‘ÁÅ_‹ÄÚÞÕEDD¼~ýšrèСŽ;j{w@O?ý4))‰þMŸAR”M=Ê>¾_a¨Å¨Ý|j©êŽ*ªV­š››÷2??ÿñãÇôoggç*Uªpo™˜ Z·RU¯^'''mï ÈñçŸÒ?‚ƒƒÃÃÃù_=%÷”S”MÃË>¨@G.Sß íæKGJÕà!pTQXXØ;w¸—ýõW§Nèßþùg£F´½ƒòݹsÇÙÙÙÌÌLÇשޡC‡:TÛ{¡stç0q?±æÌ™Ó£GmïŽÈ=åeÓð²_ tçìÕ¹Li|7´›/)Uƒ‡Ê°Ê0tèPÚñ‚NwïÞ&öéÓ‡KlÛ¶-M\°`—øæÍ›Å‹wîÜÙÁÁÁÁÁ¡S§NóæÍËÍÍU¾Q~Ï’GEFFÚÛÛ{xx888|ñÅ²Ë ÙŠðu*ê×AÓgÍš¥dç%ɦM›BCC]]]«V­êêêòÓO?Ó>ýôS†a¸–¾N:1 C»‹)êæRÞ >þ|ÆŒ-Z´¨^½º¯¯ïŠ+¸­+R\\¼víÚ   gggKKË&Mš >üâÅ‹åÍOxëÖ­ÈÈH77·:uêDDD\¾|™ròäÉÁƒ»¹¹Õ¨Q#44455UåC/ëñãÇS§NmÛ¶mõêÕëի׿ÿôôtÕ2Ë÷äÉ“ììl‰DB_¾xñ";;»¤¤DjŸKJJ-ZT§NE‹©vøT(4EîÝ»7xð`{{{GGÇ~ýú9sFv©SNQ6•d_`±—YJåZƒ’3\É÷KµsæÐ¡C\·ï¹sçÒÄׯ_ÛÛÛÓÄ€€€ÒÒRÎÞŠø^WB1ʽL ¹2§Â©K•ùÕVáòK=|øpøðáõêÕsvv4hÐáÇ•*?]ꮡ ®~…M8tèW¤RïþðÃô-www.±fÍš4ÑÉɉ¦›››ÓÄÔÔTšxúôézõêɸºu릥¥)Ù%.ôìСƒìFÍ_XàV„¯“[²oß¾ü 2„¦Ïœ9SÉ’ƒ ’{º0€.ÀÝ{ø^¿~ͲìÚµkéË€€•3âãã#µðÀ•xAAAË–-e7Á0Ì·ß~Ë_²ÌÜñ÷Ä×××ÞÞž¿XÍš5¿üòKSSS©­p猚‡é¯¿þrppÍÅôéÓUÈ,_ß¾}e?rýúu©=ùè£èß ,Píð©Phr9sÆÑÑ‘ÿ‘êÕ«wïÞþÝ­[7º˜Ô)§(›J²/°Ø•—R¹Ö ü Wòý’KȦ###izµjÕ=zIJìòåËiŠH$:{öl%\¸„|¯+§å^¦Êueº´jäÔøÕ.W¾¸nÑ¢…ÔÁ255]»vm™Y“ºkhýâ¯ÚÕÏ pÔ åãýû÷¹w?~̲,¿™›òðáC–eÏŸ?O_ZXX²,›——Çõ¤¬Zµj×®]»wï^­Z5šâè蘛›«h—øu–„Zµjµk×ÎÒÒ’KÙ·o]RøV„¯SÀqóæÍÜ÷°C‡#FŒhܸ1·‰¿þú‹eÙ§OŸfeeq;ùÓO?eeeI$VÞµCå ººº¶jÕªjÕª\ÊéÓ§Ë,pssó>}úLž<¹U«V4E,_»vMxî¤öÄÄĤY³fvvvR×)ŸÚµks/CCCÕ?L/_¾ä~ÒtèÐaÉ’%\?Ýï¿ÿ¾\™•"$p¬S§÷ ‰T;|å-4Y………®®®\¦Z·nÍïÖL48–·ØeK©¼kP~†+ù~ɸéÇÛÚÚÒÄèèèÜÜ\îèDGGWæ…KÉ÷ºÒŠQö2UÞ+ƒ’ÀQåSWàW»\ù’{@-,,èK‘HtåÊ•rÝ5´~ñWíêgH8j†òÀ‘eYoooúîîÝ»Y–ݺu+½@ÐÄ]»v±,ûÿ÷ôe÷îÝé§bbbhŠ••wÖ^ºt‰«M™;w®¢]â zöìYPPÀ²ì?ÿüÃíI```y·"|ꎣF¢)3fÌà>ؼysš¸råJ.‘»:tˆK”½v¨–Á¯¿þš&^»v»|(ùAH—Y¶l—عsg©µ ÌOöîÝ˲lQQQ‡¸Ä„„–eKKKÇŒCSìííÕ?LóæÍ£)üJޝ¿þš&º¸¸”+³rÉ=jü}nذᆠNž}ø£ù*âÂUf®µXŒ¼î©sêVÜW»Q£Fü.ܾݽ{WåÕ*W'IÅ‘¾@àXIBBBÄb1!äôéÓ¥¥¥çÎ#¼ÀñÌ™3„ggç† Brss¹§ÎHÍJÅÝ ¸Ù=‘:«U«fmmMÿ~ôè‘j[Q¾N5˪¨¨hÆŒµjÕŠˆˆøßÿþ—’’RRR¢r5jä" ¹/劉‰™8q"7c˲éééË—/oÕªU»ví¸Ç”7wr7-prÐò¦ÜÜÜ2§¤~úô©ð̪@jP‹F_¹ zýúõÿý'·ùÑŒF/v%¥TÞ5¨p†kdç6lÈ_øí§R*âÂ¥<×Z,F¢¹ëžš§nÅ}µ¥vÆÂ‚; ÷îÝSyµJTÐÅ¿âŠH_ p¬$VVVtVnnîüA'àǧOŸþñÇtÀ?WÝheeÅ}¯þý÷_þÚ¸—UªTáºr+"õ­ÈÏÏç¦!pssSm+ÊשfY-_¾|õêÕ%%%ß}÷ÝÅ‹sss{õê¥rÉk¤ËdjjúÍ7ßY"‘ÈÝÝþ}àÀ.eY!³?–—b¯è5TÂΗ””|üñÇü–ÁÔÔÔüQîj+âÂU Bešº2¨sêVèW[ê€rûV¥Jú;V»†"?I*ùê§›8V®*1%%… ‰jÕªEl¥¥¥B†á?v“›v뫯¾âf ÍÈȈ‹‹£ó»°(RTT4yò䢢"BÈ¿ÿþ;gΚޫW/Úã[…­”¹N®MäÔ©S\‡›ßÿ½Ì+׫W¯¸Æ îòqîÜ9ZhJò¨ä]£r×®]sttttttrrºuë!D,wêÔ‰½kcc£rîTVæa’Åý¼ILL¤÷iBÈöíÛkÔ¨aooïææöêÕ+™Õ”J8|rÑÖ©í®X±âêÕ«ß–b¯è5(¡üû%|Óÿûßÿèà+++nÞò™3gÊmÝ«ˆ W%ÕŠQ³W•O]Õ¾ÚÊONqqñäÉ“iÃÚ¿ÿþËMǨæ]£’/þ•|õÓMxä`åiݺuõêÕ¹ë7Ø- €ëáÑ´iSþܳ³gÏþñdz³³_¾|Ô±cG‘HtèÐ!:K¾““ÓÂ… …lú÷ßwww÷ññ9sæ mî111Yºt©:[Q¾N®&5??ßÏÏÏÏÏïéÓ§\?e%,-----iO£1cÆlܸ‘a˜ýû÷Ë}v‚ ]ò³Ï>»råÊÔ©S¥fxÖl1*AÜãÇKJJ‚‚‚zöìiggw÷îÝ?þøƒ.@Ÿ…P®Üi„òÃ$ëÓO?MJJzþüùÎ;;tèо}û+W®p§OŸngggcc#$³šR ‡O®Y³fýöÛo,˾xñ¢M›6­ZµzòäÉõë×+b[Bн¢× Kà÷Kà¦oß¾Í5LÏœ9“Öû÷ï?{ölÚ´i6l]sE\¸t³5{ePùÔx+×é!{@4hpúôiz+‰DÜ<ðåºkhëâ_®"2XÚžÈ@”9#Õ³gOn±ßÿ&®X±‚KäÏSE:uŠN·!ÅÕÕõÈ‘#Jv‰›•ª]»vR=HÄb1¾~á[)×:¹O8Üz%ó8úˆÛ÷, JÉÃÊ›A!‰I9qâ„¢f¬:{™ðÜÉÝ“õë×ÓÄÆs‰GåAy“Ü­üñÇr4?ž›Z`fåR>£ÜÙéÔ9| M®‘#GJmÑ‚ëL¢Áy»òRRg rÏp¹ß/¹„lš+7{{{:ërbb"·äÊ{öªyb(Êuå£ì9£Î•Aƒ§®ð¯¶À|q;lcc#5@­J•*?üðƒÜä‚ì]CøÖ+â$QçêgÐT]©¸Öjòa£Ü¨–-[^ºtiáÂ…;vtpp°··ïСÃüùó/_¾LgD+“ݱcÇÆŽëåååààпÿƒŽ7N­YçÏ?ÿ¼|ùò&MšXXXøùùM™2åäÉ“R£AåŠoÒ¤ y÷ðiÓ¦?ž›³cãÆ\+F|||ddd­Zµ,,,7n¬dجúÅX¦Ö­[gee-\¸°E‹ÎÎΦ¦¦¶¶¶AAAIII)))Ü<á¹SŸÃ$«W¯^/^ŒŠŠò÷÷¯V­š‡‡GxxxZZÚš5k¸NH3«)•pøäúþûï'NœHÿ®U«VïÞ½:Ô®]»ŠØ–b¯è5Hþý*sÓ¿þú+׫ìÓO?¥cPFÅÝÑ'L˜ÀMGUÄ…K—‹Q³W•O]á_má§’––Ö«W¯:uê899 4(%%…›öœ~×ÐâÅ¿’¯~ºHÛ‘+T?Lµ¾N¹ŠŠŠ~ÿýw®RÖÀTtî*í0‰3gά\¹òåË—ÚÞ£`Ìg¯Æ¯ 8u¡" #è"SSSî)bع3<üf€ ¢ñ+N]¨hªA8€ @†}7Ç)€¨qA8€ @Ž G#‚ÀAà‚ pA8€ @Ž G#‚ÀAà‚ pA8€ @±¶wÀy{{k{ effj{´c…ЋóÉÛÛ[/öS H5EªY(OC‘jœ¾©¾ì§Æ¡©Aà‚ pA8€ @†eYm1Ú‘VFÂhïõ¨qA8€ @Ž G#‚ÀAà‚ˆµ½ÂÛÛ[Û»zÃ8góVG0X¸ €¨kMÕ G#‚ÀAà‚ pA8€ @LF‡a-neYm€ŠPãÆ…a­ýS,&&†a˜^½zɾË0ÌÅ‹µ]xÄÝÝ=<<œþìçç§ñMœ;wŽa˜Í›7+*¢cǎɾչsg†aJKKéËììl†aFÅ-PRRòý÷ß;99YYYùúúNž<ùáÇÜ_~ù%£ÔTÈβeËìíí›4i¢ñ‚ÒþÕJN*ww÷ Y‰D"Ù%#99YÛ™0¨qÐ!{öìùý÷ßûõë§í)›H$‰DÚÞ AX–íÓ§OrrróæÍ###ÍÌÌ®_¿¾víÚüñÔ©S5"„øûûÏœ9“ûÈ×_mcc3|øp.ÅÍÍ­¼Û½zõêÂ… ƒ‚‚>ùäm—Aj×®]ÇŽ/^¬þªø'ÕÙ³g—/_¾lÙ2z€„+..îÛ·¯T¢ÍóçÏUÞ±—/_Ι3'99ùÙ³gþþþ+W®lݺµ¢­›››s¿a({{û'Ož¨_>å¢Áã"Ð¥K—–/_ž––öúõë DFFNžmÚ´³gÏ6kÖ¬Y³f4eêÔ©³fͲ²²ªZµj«V­öîÝ[RRòé§ŸúøøXYY…††^½z•[C|||Ó¦M-,,ìììZµjõ믿Ê݇ÐÐPZãòæÍå322úõëçââR«V­nݺýõ×_üõ>|¸sçÎvvv 6œ5k½{i™222¤Òccc/]º¤òRù±5jm0 rww—ý`~~þ²eË|||ªU«æêêõèÑ#!G¡\”žß|óM•*Uš4i2wî\E…¬üHñåäätíÚ5&&¦Ìؘšš¾~ýš¾Ü¼y3Ã0M›6å˜9s&Ã0çÏŸ'¼“jÔ¨Q={ö$„„„„ðKïØ±caaaöööµkמ0a«W¯änôÈ‘#ÎÎή®®êYΦM›œœœFŒA_zxx 0 --íßÿ•]˜Žõë×Wm[gΜéÙ³§£££Ô·ÉÔÔTÈÇ…YÞÞÞRÁnLL …HIIi×®ùI“&BNœ8¡ZQ€ÎB#€aæÛo¿mÔ¨ÑÇ|æÌ¹õC»ví0`€££cDDÃ0Û¶m ܶm[Ÿ>}è÷ïßïÚµ«µµuçÎiʆ D"ÑüùóÅbñêÕ« àïï_RR2nܸ›7o®Y³fèС.\ „,Y²$&&¦C‡ (,,ܱcǰa쬬äŽÚ¡ÌÌÌÖ¯_Ͻ”H$‹-úï¿ÿèmûàÁƒ½{÷vrryòÄÕÕÕÃã°°eY:†#&&¦´´”.àææV¥J•k׮ї´Ÿ_³fÍŠŠŠhJPP!$77—eY//¯ââbúÖ‹/Äbñ'Ÿ|­ªoß¾ôï___ÙŒ,]º”’””D÷ÖÓÓÓÏÏ///¾[PPЦM’’’‚‚WWW''§Ðw>|èììLÙ´i“¢"R¢¤¤„.y÷î]BÈÈ‘#¹Ïþúë¯\ QµjÕ:¬X±âîÝ»Š‡M@@€òs¬Ìc±sçNBÈÑ£Ge?ûúõk‘HÄßÃ1cÆØÛÛ?|øPÈQ~@éù°bÅ nC³fÍ"„lܸ‘@•)%…pýúuBÈ’%K-ðàÁBÈÌ™3éË&MšÐ1æ¿ÿþ;Íš‰‰ÉèÑ£eOª={öBRSS¹\BvíÚE_–””øøø¸ººÊÝh^^^ëÖ­k×®ýÕW_¥¦¦^¸pá¿ÿþcUrãÆ BÈ´iÓø‰‡"„¬[·Nvù°°0sss[[[î´ôññ9{öl™ÊÏÏwvvvvvþ÷ß¹C\«V-z(Ë¥Ìã"ËÍÍ-((ˆŸ2räH•ƒ„œœœ–-[ŠD¢7n¨¶†J¦ÂÛhïõ¨qÐ9Ó§Oß°aÃÂ… û÷ï_·n]þ[éééwîÜIHH°··§)öööÑÑÑÓ¦M»xñ"­ÙrrrZ°`¿Š¢eË–\õChh(!$""‚küêØ±ãÑ£GóòòªW¯~úôéªU«r!srr!yyy÷|×®]‹/þä“OÆŒC9þüÍ›7ûí7sssº€™™ÙäÉ“‡šžž^RR’ÇuDsrrš2eÊܹs•lbÈ!uêÔ‘Jܲe˽{÷”|jèСC‡½téRJJJJJJZZZJJÊ‚ /^¼hÑ"Õ“c¡ˆ‰‰ Z(;;›VÍ&%%%%%ÑwË< Â(Ý«3fpŸ]¼xñš5k¶lÙ¯JT~¤„·Wʪ]»vÓ¦MiwÀçÏŸgdd|ÿý÷“'ONKK ?räˆD"éÞ½»UyyyõîÝ›þ-‰|}}<(wIssóÏ>ûl„ S¦L¡)«V­š1cFIIÉÞ½{­Ÿ«³ç£ÅneeÅO´¶¶æŽ‹”¬¬,‰DCÛèÿøãiÓ¦õíÛ7##ƒ~J‘#GŽ<|øpéÒ¥ŽŽŽÜ!˜={v¯^½¶oß>räHv^SÊ»éÔÔÔ?þ8++kÍš5žžž·c tŽX,NLLlÛ¶í”)S¤Æ$Þ¼y“B;/rh±›7oÒ¼···TÃÙBhx!›BÙÚÚ?~üàÁƒ×¯_¿yóæ•+WJJJîöÕ«W‡”@Shµ Ú¤¾wïí÷Ö¼ys~z™sCNš4)00P*ñÂ… ÊG® š6m]TT´k×®iÓ¦-^¼¸uëÖ]ºtQá0 9Š˜››'$$ÐÙFµmÛ¶[·n=zô mšeá”Ò¨Q#~S©………··÷­[·øË(?Rꎄ°°°¸¸¸çÏŸÓÊ׎;¥¥¥BRSSÅbq§N„¬ÇËË‹ÿRÉ@ŸeË–ÅÄÄ,X°`øðánnnÜ×áÍ›7²3õpX–½uë¿{âúõëé¾Iu¦ÌÍÍ%„ØÙÙÉ®$55µjÕªÜ[£G.((˜8qâ¶mÛè¯)Eh5¹ÜÓ‰vÏ-sçÕ9F”Ô,BÜð᛾wïÞ¤I“vïÞíééyèС:¨¿W k8è¢Ö­[?~Íš5»víâ§Ók´Tï4z-..¦/mllTÛhaaa¿~ý’““[´hÑ¥K—Þ½{·iÓÆßß_ÈgŸ?Þ§OkkëmÛ¶q WâââdgÀnذááÇeó¢ñA߯_¿5jT—.]ÆŽË%V©ReàÀ¶¶¶;wÞ»w¯j£c¡Äĉû÷ï¿gÏž¿ÿþ;99911ÑÛÛ;--ÍÆÆFå£ X,~óæ ?Eù‘Rssݺu‹MKK;~ü¸‹‹‹‹‹Khhè¼yó^¼x‘šš¤¼*Ž#p|úÝ»w-Zǯg¥¬­­•X6là^¶iÓÆÁÁÁÄÄDj¬ÉÓ§O !r‡lÓ¾|ôìºråŠòݦu½R¿hèF¿eî¼ú ù/óóó–µqãÆqãÆYZZ®[·nôèјÁÑPá¸è¨Ï?ÿ|ÇŽ“&M¢“€P´ÝçòåËíÛ·ç/]ºDñööVs‹GMNNNHH˜:u*—(¤Æ±´´tÈ!<8rä¸ ÝÛêÕ«óçã¸zõêåË—mllhÕιsçBBB¸w¹!šbaaqàÀû÷ïóGŠÖÒU«VMµ5«s,rrr²²²¼¼¼¢¢¢¢¢¢$Éwß}7yòäµkשv¹zõjqq1Íççç_»v_椬#¥æ! ´²²JII9}út»ví!!!!‰d÷îÝçÏŸ§]x5èĉ´^Sö­2›\---###¥Ò6lHÇôp>Ì0ŒìÌäÙÙÙ{öìéСƒ—H«'ËâMÁµk×ø‰´®‘žN•ÐTÍ–!„6.dÓ»wï>|ø AƒÖ®]+Õ²#€Ž²¶¶NHH2dÈ·ß~Ë%úûû»¸¸ÄÇÇGFFÒøÏž=[½zµ«««ú¤ãø÷¼mÛ¶½yó¦Ìʆ9sæüùçŸ?ýô“Ô°J___ooïÿýñGnnnXXXqq1ìáá±zõê¡C‡:99BžÍš54hPqqñÎ;ïß¿¿iÓ&úp¹U«V 4ÈÏÏoðàÁ¦¦¦›7o®ˆ'³ÅÇÇgdd,\¸pýúõÍ›7§ã¸;öøñãyóæµmÛVµÕªs,7nüÅ_ܾ}»qãÆ™™™ûöí³³³‹ˆˆ‰D*%œœœ.\xüøñfÍš8qâàÁƒmÚ´áf%¤Äb±’#¥þ! £½ui£H$ NNN®[·®¢' ÒàiÍš5?–;%"={ölÒ¤ÉÒ¥K322ÂÂÂèÓÉýüü,--Ukí9rä?üICºõë×çååÅÄÄÐwccc¿øâ‹Ï?ÿ|üøñµjÕŠ‰‰™3gާ§gXX˜ÍΟ?¿bÅ Úâ¿qãÆO>ùdÔ¨Q«W¯–ÚŠ©©é—_~îëë;nÜ8‘H´mÛ¶³gÏ~õÕWDMÕJ¶N‰Åâ!C†ôêÕK"‘ìÙ³‡;ËÜôµk×®_¿îãã%õV¿~ýTþm:JÛú ÑÑ×)z=ßíÛ·iç':uüøñnݺ988888tëÖíÔ©SÜ[üsä¦ÐZ:]E+½=zIJlZZZÛ¶m---ëÕ«õäÉ“¤¤¤š5kvíÚ•U07F 7Kzzz=mmmCBBþüóOþî>|¸S§N´ÆÎÚÚzëÖ­Dét!¤fÍš\ }œã¸qãø‹ñ§ã‘H$VVVþþþtW À_xذaööör7—››;wîÜæÍ›s½'«U«vîÜ9!T®/^Œ;ÖÓÓÓÞÞ¾W¯^éééÜ[ô´LHHàR¶mÛÖ²eKKKK{{û:ìÛ·{‹Îx:~üxEJOOïÕ«W:uìíí;uê´ÿ~ÕvXîqQ¾u77·ÀÀÀ+V¸ººÖ®]{êÔ© .$HuÅæ[¶l™ÊÅ^™0p [Ám··wff¦¶÷ÂØ): Ã-žòŒfZ” ÒÇkÔ¨é‚5ËÝÝÝ××טŸ\ZZzáÂ…–-[.]ºtþüùÚÞ’”””‘‘¡èç–·îîî^§N©ÞœÆC…·ÑÞëñÈAÐ ÎÎΈAãD"QýúõY–U”ú þþûoÍŽ‘×—­ƒÁ@à†Œ>o†>PG»Nœ8áãã#;Y¦1l Ç€qaYVjâ=FÖgÌccc¥æÖÖŠÐÐPú¤Üú„ 0>Žšg´ýt Ž„>ŽÂ¡©Aà‚ pA8€ @Ž G#‚ÀÁ#Áèh÷‘ƒxVè/Ž`\†!Z Ýð˜lÐghªÐ 111̇¬­­[´h‘””$‘Hä.cbbÒ AƒáÇŸ{ölxxø•+W*3/RåïOÅmESŠ‹‹ûʈŒŒTg/_¾?~¼‹‹‹¥¥e»ví¤~zIm],Ký«Y³¦ì’úˆ2uêÔæÍ›Ï˜1#%%Evaú³jéÒ¥rÃ2íž0åÚºò\—«L¤BªT©¢Z.¦OŸþòåË“'O¶hÑ‚õ˜1c~øá‡tíÚµÒråÀ‚¦yyyi{@áQ '½Öþ)þÆ-Y²„rôèQ©tZ³oß>%˰,(‹‹‹‹•/&käÈ‘ÜÕÀÍÍ&ž:u*,,ÌÁÁÁÉÉ),,ìÔ©SÜònnnÑÑÑgΜiÚ´iÓ¦MeW˜——÷ÙgŸ5hÐÀÜÜÜÅÅe̘1ÿþû/÷îêÕ«›4iR­Z5[[Û–-[nذ¿æ)S¦Ìœ9ÓÌÌÌÔÔ´eË–{öì)..ž;wnƒ ªW¯råÊþn|ýõ×–––&&&7ž3gNaa!÷nß¾}¹5_¾|9<<¼nݺ5kÖìÚµë¡C‡•Æ£Gø—Ç%K–(Z²ÿþb±øÕ«Wôå¦M›!Mš4á˜1c!$==eÙ___¹¥íææ6`À€£GvëÖ­FÎÎÎãÇÏÍÍU´]%yQTò²åö§¼Å®äÊ=‘”—|ZZZ§Nlmm}||fΜyüøqBȦM›ds=þü:uê9Ÿ…ðöövrr’H$\JTT”‰‰ÉÇeþòË/ !wïÞUó„‘ëôéÓ=zôýM(‹…|¼\[Wžër•‰77·   ~Ê’%K=Çø)ééé„Å‹Wf.T¸qí½^\õäÉ“-[¶˜˜˜4kÖLù’¾¾¾%%%÷ïß/ï&f̘±hÑ"BȪU«~úé'BÈ®]»/_¾1dÈŒŒŒÀÀÀ]»vq¹ÿ~×®]_½zÕºukÙFEE-Z´¨nݺӧO÷óó[¿~}ß¾}é[K–,™>}zÍš5çÌ™3a„W¯^ 6l÷îÝÜg7lØðÓO?ÍŸ??&&æöíÛ hß¾}JJʸq㆞––6tèPná­[·Nž<¹]»vsæÌ©Y³flllçÎY™!ólѢŅ yòÄÕÕÕÃÃÖç¹¹¹BbbbJKKeWõúõk‘H4räH.e̘1öööô¿‡‡‡——­eYöÅ‹b±ø“O>¡/ÝÜܪT©ríÚ5úråÊ•„f͚є   B­£»±bÅ nC³fÍ"„lܸ‘åÕ8zzzúùùåååÑÅ Ú´iãááQRR¢äü¡wb%U8< „Ìœ9“¾lÒ¤ “þûï¿Ó¬™˜˜Œ=š¾Ë¯áÛ³g!$55•Ë5!d×®]ôeII‰«««ì•çEyÉKmTªÆQx±+?‚ü­(ßÛ‚‚WWW''§Ðw>|èììLÔ8æååµnݺvíÚ_}õUjjê… þûï?V%7nÜ „L›6ŸxèÐ!BȺuëd— 377·µµå¾G>>>gÏž-ï #%??ßÙÙÙÙÙ™«/((®U«–’úfEÊܺò\—·L¤ÈÖ8Òßå>6,˲lNNNË–-E"Ñ7*3¨q}tȯ¿þÊý-‹½½½?ýôS!£ dg52dH:uø)4FQ.==ýÎ; ööö4ÅÞÞ>::zÚ´i/^¤œœœ,X ·3œ‰‰ Ã0ÇŽËÎÎvuu%„$%%%%%ÑwOŸ>]µjU±øíe‡VÎåååqoÙ²eƒ èß¡¡¡„ˆˆSSSšÒ±cÇ£GæååU¯^îm¦/^¼fÍš-[¶ 2„K<þüÍ›7ûí7sssšbff6yòä¡C‡¦§§Ó쨦víÚM›6¥}§ž?ž‘‘ñý÷ßOž<9---<<üÈ‘#‰¤{÷îBVåååÕ»woú·H$òõõ=xð ìbÊóÒ¸qc%%¯œðb/ó ÜÛ’’’ìì츸8®Ï¢““Ó”)SæÎ+wÍÍÍ?ûì³ &L™2…¦¬ZµjÆŒ%%%{÷îU”¯>}úÈ&Ò½µ²²â'Z[[sÙ‘’••%‘Hbbb `jjúÇL›6­oß¾ôSª9räÈÇ—.]êèèÈ•ÏìÙ³{õêµ}ûö‘#Gª5%”纼e"\ys‘ššúñÇgee­Y³ÆÓÓSGrR8è£G  -…6Ró~ UÍwóæMBˆTËxÓ¦Mé[4ÒòööV4„ÂÜÜ|¸››wú½yó†ë!‹eÙ[·nÕ¯_ŸKY¿~==(¯^½â/™››K±³³“]IjjjÕªU¹·F]PP0qâÄmÛ¶3¦Ì²UäîÝ»DÁ-##CHÖʵ9z@åZù»BÖOǨq¸‘:ÂsqïÞ½I“&íÞ½ÛÓÓóСC:t¨ü\€@ ÁÅ‹Åb±T£ è¥\ªþ’†2ÅÅÅô¥’5Lœ8±ÿþ{öìùûï¿“““½½½ÓÒÒlllúõë—œœÜ¢E‹.]ºôîÝ»M›6´_—¦ˆÅâ7oÞðShØ';·yÆ ÕÜ\·nÝbccÓÒÒŽ?îâââââ:oÞ¼/^¤¦¦ ¬‘8ž½Ì¼(*yEãñË«°°PøT¾·‡&2§™¢_#wïÞ]´hQ\\¿‚™²¶¶VB988lذ{Ù¦M“'Ožð{úô)!DîmÚ€Î×¥KBˆšÓUÒŠX©°›Æ[´ÊÌZ¹(ÏuyËDVaa!ÿe~~>ýC`.6nÜ8nÜ8KKËuëÖ=š«Ò®ä\€@ô^zzú‘#G ¤è‚+mº|ùrûöí¹ÄK—.B¼½½ËüxNNNVV–——WTTTTT”D"ùî»ï&Ož¼víÚ   äää„„„©S§rË+™æ·LW¯^-..æêÃòóó¯]»"›êÕ«óçõ¸zõêåË—•‡¿BZYY¥¤¤œ>}º]»v„‰D²{÷îóçÏÓ^§¤|Èùï¿ÿÒ?„äb÷îÝÇ4hÐÚµk¥š+9 ”¶;Y £í0«SôtpŒò9tä.sãÆ †a._¾,|U|üÁ1...Ïž=£ïæä丹¹¹ºº°23ÝH9vì!dþüù\ÊåË— !Ë—/_¿~=!äÀÜ[[·n%„|ôÑGô¥Ôši‘””Ä¥,[¶ŒòèÑ#öݘ’ØØXî]úØ›ü‘¿ªââboooOOÏçÏŸÓÅ^¾|éâââä䤿à*<<¼^½z¦¦¦‰‰‰,Ë–””T¯^öÌÈÈà““’’ÂåzÀ€üu6ÌÞÞ^v[Êó¢¤äe7*58F`±—yù[Q¾·EEEÎÎÎÜ<)ÿý÷­/—³}ûvBÈ¢E‹dËäÅ‹*ÜÝè ;»wï¦/?~ìààÐ¥KÙ%?~\µjÕàà`n¨Piié!CÄb1Š"á' §¨¨¨~ýúNNN\ù¶k×ÎÒÒ’žáåÊš­+ϵð2‘E¿ŒÜgoݺE'H’ ‰DÒ A777åßÇJÈLJG=³fÍz‡.,,ÌÈÈ8~üxQQÑwß}ÇlŒÊÌÌÌâããìïï?hÐ –e7oÞüðáí[·ÊÎŽ!+  qãÆ_|ñÅíÛ·7nœ™™¹oß>;;»ˆˆ‘Hdaa1vìØÈÈÈÚµkŸ8q"%%¥fÍšGÝ·o_XXXywÕÉÉiáÂ…ÇoÖ¬Ù‰'<ئM›#Fð—‹Å }úôiÖ¬Ù AƒŠ‹‹wîÜyÿþýM›6idÎð°°0ú| Zã(‰‚ƒƒ“““ëÖ­«¨’ƒÖt®Y³æñãÇüq5jÔêÕ«¥Þ255ýòË/ÃÃÃ}}}Ç'‰¶mÛvöìÙ¯¾úŠv-P¿©šŸ‘2s­ü]%¡Äbñ!Czõê%‘HöìÙÃ]+ÊÌŵk×®_¿îãã%õV¿~ýzõê¥Á\€Æh;r­$[¶l0`€¯¯oÛ¶m?ýôS®6E‰K—.Mœ81$$$ 22òäÉ“·e´¿BtŠ×8r†ñòò:tèñãÇË»*>~#uüøñnݺ988888tëÖMjp%5Ž,ËÞ¿ôèÑ®®®fff...C‡å¦zIKKkÛ¶­¥¥e½zõ¢¢¢ž>~íÚµÙÙÙwïÞmÚ´éÏ?ÿÌÍ!+%%eÊ”)‰¤I“&ÖÖÖÇŽ+))Y³fÜ¡^R¼½½333µic§è(0 C´xÎ3Fñ«îîî¾¾¾rŸf zçáÇ5jÔR¥M)--½páBË–-—.]:þ|mï{’’’222´½#˜ww÷:uêHu.Ô;*ܸö^oøOŽÉÌÌLLLtppØ¿bbâFŒqéÒ¥U«V)úÈË—/çÌ™#‹ùå—Í›7'&&nܸ±J•* .4¶Ç×T4gggQ#!D$Õ¯_ŸeYõ‡7U´‚‚‚¿ÿþ[³S # u†8nÙ²E"‘DGGתU‹¦Ì;×ÚÚzß¾}Š¢ÀíÛ·çææŽ?ž›f¬iÓ¦aaaOŸ>¥ýÍA±,KFkÿ@môA;ô‘6ºìĉ>>>²3YêƒÉh„áŽ9s按‰ Ò‘HÔ®]»Ý»w§§§È~„à—š¶tåÊ•ôa\ ïÐXl„< R```lll™p׺ÐÐPú$}§<#&LP>Y–ÍÊʲ³³“š8ž>ªáþýûrÇŒŒ [[[GGdzgÏž?þÅ‹ 4èÔ©“’>‘P™¾ûî;mïhM½zõfÏž­í½€·p,ŒŽyyy¥¥¥²]aèмgÏžÉ~¤¨¨èÕ«Wõë×_²dÉÆ¹ôºuë&$$œñDvªdãìB `„<ÁHxàH|daa!•N§'}ùò¥ìGè“.³²²žË&‰D"‘¶÷B–eûô铜œÜ¼yóÈÈH33³ëׯ¯]»öÇòõ×_ÛØØ >œKqss+ïv¯^½ºpá   O>ùDÛe y—.]Z¾|yZZÚëׯ4h9yòd±X­{ ÿ¤:{öìòåË—-[FpÅÅÅ}ûö•J´±±yþü¹À5¼|ùrΜ9ÉÉÉÏž=ó÷÷_¹reëÖ­+§TùÚµk×±cÇÅ‹Wþ¦e3 sâÄ mï hG€rªÈØÑÜÜ|Ê”);w®^½º¶óY†ÔÔTmï‚P6lHNNž5kÖÊ•+¹Ä .5êôéÓ„ààààà`îݤ¤¤ºuëÆÅÅ©³Ý¬¬,BÈ’%K:vì¨í2а۷o‡„„”––†‡‡»¸¸:thúôé‡Þ±c‡:«åŸT?Þ¹sgtttyWbffVZZ:räÈìììß~û­víÚåúxnnn@@À½{÷ `oo¿mÛ¶nݺýý÷ßQ¿®Äùóç;¦;g΂ N:¥•t šªtÈÂ… ÿùçŸ TÄÊ‹ŠŠ$‰¶³¨´u{òäÉüD__ßž;wŽ›¨Kãhrî)¦W®ZZZÊ5å«oúôé/_¾ýôS++«ÐÐЫW¯rkˆoÚ´©………]«V­~ýõW¹ûJë`Þ¼y£¼S`FFF¿~ý\\\jÕªÕ­[·¿þú‹¿žÃ‡wîÜÙÎήaƳfͪˆ; ˜222¤Òccc/]ºT¥JuV®èXŒ5Š6˜¹»»Ë~0??Ù²e>>>ÕªUsuuŠŠzôè‘£P®Jχo¾ùÆÆÆ¦J•*Mš4™;w®¢BV~¤øRRRÚµk×¢E .eÒ¤I„Ùv̘ššrÑùæÍ›†iÚ´)·ÀÌ™3†9þ<áT£FêÙ³'!$$$„_zÇŽ ³··¯]»ö„ ^½z%w÷Ž9âìììêêªÂÝ´i“““Óˆ#èK¤¥¥ýûï¿B>~æÌ™ž={:::J}¸iƒ•ËÉÉéÚµkLLÌ“'OÊ»çÞÞÞR5”111üc¤šÇ><**ªN:j® ~@(õá“' !„e¥5M2 óí·ß6jÔèã?>sæŒÜN„»ví0`€££cDDÃ0Û¶m ܶm[Ÿ>}è÷ïßïÚµ+¾ú 6ˆD¢ùóç‹ÅâÕ«W0Àßß¿¤¤dܸq7oÞ\³fÍСC/\¸@Y²dILLL‡ PXX¸cÇŽaÆYYYɵC™™™­_¿ž{)‘H-ZôßÿÑÛöÁƒ{÷îíää4xð`“;vtíÚuÆ C† !„üþûïƒ ªQ£FDD„‰‰É† þøãÃ&%%…‡‡3¦_¿~´°V­ZrX/œ’c1cÆ —¥K—®ZµJîÍ;**jãÆ:uêß¿FFÆúõë322Nž<)ä(? „­[·þóÏ?Ý»woÖ¬ÙÉ“'cccOœ8‘šš*õTUåGН¤¤dâĉüÄììlz2H-¶}ûö#GŽ„……BèC¼222rrrè´¸©©©ŽŽŽ¾¾¾üO͘1ÃÝÝ}ñâÅ+W®lÕªM¼téR=FŒÑ©S§]»v­]»V"‘¬[·N¶lëÖ­ûèÑ£[·nÕ«W¯\”>3ŒM.±C‡III'Ož,s Ñ¡C‡ºtéR·nÝQ£FYXXìØ±#==Ýßß¿C‡&&‚ªihEuff¦ú*»{÷®òŸ ebYvĈ¶¶¶ åíl ‹MóòòÒö.€æŽ‚òï!¬†¾DK–,!„dee±,K‰§o}ñÅ„ .°,[XXèîîîææöäÉúî“'O\]]=<< Y–¥c8bbbJKKénnnUªT¹ví}Iûù5kÖ¬¨¨ˆ¦BrssY–õðððòò*..¦o½xñB,òÉ'ܪúöíKÿ ñõõ•ÍÈÒ¥K !IIIto===ýüüòòòè»mÚ´ñðð()))((puuurrzðà}÷áÇÎÎ΄M›6)*"%JJJè’wïÞ%„Œ9’û쯿þÊÅU«VíСÊ+îÞ½«èpØØØ(?de‹;wBŽ=*ûÙׯ_‹D"þŽ3ÆÞÞþáÇBŽ‚ðJχ+Vpš5k!dãÆüªüH•yöæää´lÙR$ݸqCê-úD®™3gÒ—Mš4¡cÌÿýwš5“Ñ£GËžTôq ©©©\® !»ví¢/KJJ|||\]]åîO^^^ëÖ­k×®ýÕW_¥¦¦^¸pá¿ÿþ+3,ËÒ'ÍN›6ŸxèÐ!BȺuë”6??ßÙÙÙÙÙùßÿåÊ088¸V­ZôX”Ëõë× !K–,þ77·   ~ÊÈ‘#Õ¼ËÇÆÆš™™?ž®¿uëÖê¬M—©pË0Ú{=jÁøÈV"ª¹¼ð «›œ>}ú† .\Ø¿ÿºuëòßJOO¿sçNBB‚½½=M±··ŽŽž6mÚÅ‹iÍ–““Ó‚ ø5-[¶äj/BCC !\ÛYÇŽ=š——W½zõÓ§OW­Z•ëÌ”““CÉˢ¿]»v-^¼ø“O>3f !äüùó7oÞüí·ßÌÍÍéfff“'O:thzzzIIIvvv\\×ÍÉÉiÊ”)sçÎU²‰!C†È6™mÙ²åÞ½{J>5tèСC‡^ºt)%%%%%%---%%eÁ‚‹/^´h‘ÐÃ÷!!ÇB:µPvv6­šMJJJJJ¢ï–y„PºWü.z‹/^³fÍ–-[øU‰Ê”ò¼¤¦¦~üñÇYYYkÖ¬‘}JBíÚµ›6mš’’ByþüyFFÆ÷ß?yòä´´´ððð#GŽH$’îÝ» )p//¯Þ½{Ó¿E"‘¯¯ïÁƒå.innþÙgŸM˜0aÊ”)4eÕªU3fÌ())Ù»w¯¢õ÷éÓ‡²••?ÝÚÚš; J9räáÇK—.uttäÊpöìÙ½zõÚ¾}ûÈ‘#ËܺBPj›>}úô‚ âââ¤êƒÁÈ!pã£Z˲TÇŠìï(‹Û¶m;eÊ©aª7oÞ$„Ð΋ÚcìæÍ›ôïíí-Õ.ÆE6„^ȦP¶¶¶Ç?xðàõë×oÞ¼yåÊ•’’»}õêÕáÇ%$$ÐZkBƒ6©…ïÝ»Gû½5oÞœŸ^æØÕI“&J%^¸pAyàÈTÓ¦M£££‹ŠŠvíÚ5mÚ´Å‹·nݺK—.*&!ÇBssó„„Ú Û¨Q£¶mÛvëÖ­G´Ãe™GAø%„4jÔˆßÓÂÂÂÛÛûÖ­[üe”)Ey¹wïÞ¤I“vïÞíééyèС:È],,,,..îùóç´òµcÇŽAAAiii„ÔÔT±XÜ©S'!îååÅ©d6¨eË–ÅÄÄ,X°`øðánnnÜ×áÍ›7²3õpX–¥Å(Õu277—bgg§|÷h=·Üóö¯-sëB A9©ñOÜðš27}ëÖ­úõës)ëׯˆˆèܹ3|PtQëÖ­Ç¿fÍš]»vñÓéÝEªw½ƒÓ—666ªm´°°°_¿~ÉÉÉ-Z´èÒ¥KïÞ½Û´iãïï/ä³ÏŸ?ïÓ§µµõ¶mÛ¸À…Æ+qqq²3`7lØððáòyØL¸×¯_5ªK—.üÇÓW©ReàÀ¶¶¶;wÞ»w¯j£c¡Äĉû÷ï¿gÏž¿ÿþ;99911ÑÛÛ;--ÍÆÆFå£ X,~óæ ?Eù‘’»’7Ž7ÎÒÒrݺu£GV2ä¶[·n±±±iiiÇwqqqqq 7oÞ‹/RSSƒ‚‚h•^™ŽO¿{÷î¢E‹âââd‡B[[[+ÏLLL¤¦<}ú”RæmZY+âÓОÕen]}………ü—ùùùÂ3¾aÃîe›6mÖ­[wûöí¾}ûr“X½|ù²´´466ÖÅÅ%""¢B3º #€\ý"*åAŸþùŽ;&MšôÑGq‰´)ðòåËíÛ·ç/]ºDñööVs‹GMNNNHH˜:u*—(¤Æ±´´tÈ!<8rä¸ ÝÛêÕ«wíÚ•K¼zõêåË—mllh ǹsçBBB¸w¹!šbaaqàÀû÷ïóGŠV/U«VMµ5«s,rrr²²²¼¼¼¢¢¢¢¢¢$Éwß}7yòäµkשv¹zõjqq1Íççç_»v_椬#%»ÎÝ»w>|РAk×®•jØ•hee•’’rúôévíÚBBBB$Éîݻϟ?O»ðjЉ'h½¦ì[e¶ØŠÅ↠Ò<œÃ‡3 SæÐZ†×®]ã'ÒºFz>TBS5ÿaH„n$x™›¶´´ŒŒŒä'Ò¡÷«W¯æ'>þ|îܹ!!!Gaø!##+xvkkë„„„!C†|ûí·\¢¿¿¿‹‹K|||dd¤­­-!äÙ³g«W¯vuuU‚b:ŽÁÇLJKÙ¶mÛ›7oʬ&™3gΟþùÓO?I´õõõõööþßÿþ7xð`äææ†……ÓÀ«W¯:t¨““!äÉ“'_~ù¥f‹‘a˜¡C‡®[·nÙ²eŸ~ú)×¾ùæÍ›Å‹+zÌ£ê‹ÌÌÌÀÀÀùóç/[¶ŒbbbB#9SSS•‚"Ož<‰Ÿ={6}¹lÙ²ÜÜ\©ÂÊ”Ô Y–={vݺuùå!O255íØ±crrò½{÷hç×€€€êÕ«¯X±¢ÌŽ*Ì ÿþûoÛ¶m;w–;§Ÿ¿¿ýúõ¿ýöÛ‰'Ò2,**Š‹‹³´´¤«ª„¦êGq{~ûömîg˜ ›ž?þüùóù)îîŽxr p†m•‘§b }ú4kÖlРAÅÅÅ;wî¼ÿþ¦M›èÃåV­Z5hÐ ??¿Áƒ›ššnÞ¼Y…éëÊŸ‘‘±páÂõë×7oÞœŽã>vìØãÇçÍ›×¶m[ÕV«Î±hܸñ_|qûöíÆgffîÛ·ÏÎÎ.""B$©p”prrZ¸páñãÇ›5kvâĉƒ¶iÓ†›§‹ÅJŽ”Ô ¯]»výúuŸ¨¨(©·úõë'7 £½ui£H$ NNN®[·®¢š<{­Y³æñãDzS)ѳgÏ&Mš,]º4###,,Œ>ÜÏÏÏÒÒRHcñÈ‘#øá‡ÈÈHÿ­_¿>///&&†¾»qãÆO>ùdÔ¨QRUq„SSÓ/¿ü2<<Ü××wܸq"‘hÛ¶mgÏžýꫯˆ&šª•l;ŽC† éÕ«—D"Ù³gwVB+9më6@F;D_§èÝQàOÇÃwûömÚwŠNÇC?~¼[·nݺu;uê÷ƹ)´‚N—CÑJ¯G±,›––Ö¶m[KKËzõêEEE=yò$))©fÍš]»veLÇà …‘ÂÍÀ’žžÞ£GGGG[[Û?ÿü“¿{‡îÔ©­±³¶¶Þºu+Q:ÜÙmèè %Óñ¼yófíÚµmÚ´©Y³¦©©©ƒƒCÏž=9¢èp™Ž§Ìc¡d:–eïß¿?zôhWWW333—¡C‡r3ì? ePºpZZZûöí­­­4h0sæÌ‚‚¹ç†ò#Å‘êwË·lÙ2E™%„Ô¬Y“K¡s7n1þt<‰$""ÂÊÊÊßߟîê€ø 6ÌÞÞ^îærssçÎÛ¼ys®÷dµjÕÎ;'䀲,ûâÅ‹±cÇzzzÚÛÛ÷êÕ+=={‹NY:~üxEŸMOOïÕ«W:uìíí;uê´ÿ~•"w:å[wss \±b…««kíÚµ§NºpáB Þå1ú1 ‹_!šæíí™™©í½0v8 zçáÇ5jÔP¿ÞøÜÝÝ}}}Õ|„´^+--½páBË–-—.]*Õöªš¤¤¤ŒŒ E¿—*š’­»»»×©SGªƒ&¤Â-Ãhï2xä ègggD q"‘¨~ýú,˪<Û_AAÁßÿ­ÙAîú²u #2ú¼ú@58qÂÇÇGv¶ËʡݭP`°ÂÂÂèÃúŒY```ll¬ÔÔܪ ¥êÑ å[Ÿ0aB™S#¨}5Ïhû=è}…CS5‚ÀAà‚ pA8€ @Ž G#‚ÀAà bbb˜Y[[·hÑ"))I"‘È]ÆÄĤAƒÇ?yò¤òUq"""än}Ù²eöööMš4Ñv1h†»»{xx¸¶÷â½àà`???E»:pà@ÝÙ-:wîÃ0›7o–J—H$»d$''k{ŒG…Âù§Á-2dæÌ™3gΜ1cF¯^½nݺ5vìØ9sæÈ]fâÄ‰ŽŽŽÛ·ooß¾ýºuë­Š¯gÏž²½zõêÂ… }||æÍ›§í"×¾¿ÿþ;44´V­Z5jÔ Ú±c‡úë‰D"‘ˆþ}öìÙððð+W®Tf¦¤6ÊߟŠÛЦ÷•)| /_¾?~¼‹‹‹¥¥e»ví¤~h©¶p»víbbb4^†Ìȵk×úõëW·nÝÚµk8ðøñãüw%É7ß|Ó¬Y3KKË ¬\¹²¸¸¸’³#«¸¸¸uëÖmÚ´Q¹.]º4xð`GGGKKË€€€øøø’’mgËà° i^^^ÚÞÐÌQ ¬ /ˆÀÅ”[²d !äèÑ£üÄG999‰D¢G)ZæÚµkÞÞÞ Ã\¾|Yɪ”صk!äСCêçBG¸¹¹õíÛW…îÝ»—âáá1mÚ´yóæyyyBþïÿþOƒû¶gÏBHjj*·« ¨è‘Ú¨nnåìÙ³„M›6ɾUZZ:|øðvíÚ=x𠼫}ùòeýúõ«T©2tèÐ)S¦8;;[[[§§§«³pzzº‰‰É’%K*´<ÕÉÈáÇÍÌÌ¢££g̘Q§NjÕªýõ×_\yöèуa˜ððð9sæBF]™Ù‘köìÙ„Ö­[«V·nݲµµµ²²úè£.\HP—nF{¯Gà¨yF{2éÃY–6mÕ)ZæÌ™3„Aƒ)_•";wî,×ò­°°°´´TàÂ%%%%%%R‰*ŽM›6utt|ñâ}ùúõk—:uêh0w:8–«ØUÞŠJÇýû÷›˜˜Ü½{W…Õ.^¼˜²~ýzúòÖ­[666¡¡¡*,\\\|àÀÅ‹׬Y“RÉ£ðŒH$OOÏZµjÑœ,Ë>þÜÃÃÃßߟ¾üñÇ !‰‰‰ÜG D¹qãF™»QXXXXXXüóÏ?†‹ÅJGå…ЧO“Ó§OsË=š²ÿþ2·ŽÀQ8Žšg´'“N1˜À1::š²oß>ViD(‹‹‹‹ÙrŽ#GŽäÚÜÜÜhâ©S§ÂœœœÂÂÂN:Å-ïææ}æÌ™¦M›6mÚTv…yyyŸ}öYƒ ÌÍÍ]\\ÆŒóï¿ÿrï®^½ºI“&ÕªU³µµmÙ²å† økž2eÊÌ™3ÍÌÌLMM[¶l¹gÏžâââ¹sç6hРzõê!!!W®\áïÆ×_miiibbÒ¸qã9sæp÷3©ÀñòåËáááuëÖ­Y³f×®]Õ­ˆD¢¨¨(~"mÍËË“Z¸ÿþb±øÕ«Wôå¦M›!Mš4á˜1c!„Ö…„„„øúúÊ-m8=z´[·n5jÔpvv?~|nn®¢ã¥$/ŠJ^v£Üþ”·Ø•A¹'’ò’OKKëÔ©“­­­ÏÌ™3i[ªÜÀqþüù*‡ïÞÞÞNNN‰„K‰ŠŠ211yøðay~ô追®¼ãéÓ§{ôèáàà Õî'‹5›‘[·nB>ýôS~â×_M¹xñ"˲mÛ¶ussSíw‚››[PP?eÉ’%ªΣGÆŽëææ¦$pT^ôtå/ŸžžNY¼xq™;€ÀQ8ôqÐ]Ož<Ù²e‹‰‰I³fÍ”/éëë[RRrÿþýònbÆŒ‹-"„¬Zµê§Ÿ~"„ìÚµ+00ðòåËC† ÉÈÈ ¤ÍÙÔýû÷»víúêÕ«Ö­[Ë®0**jÑ¢EuëÖ>}ºŸŸßúõëûöíKßZ²dÉôéÓkÖ¬9gΜ &¼zõjذa»wïæ>»aÆŸ~úiþüù111·oß0`@ûöíSRRÆ7|øð´´´¡C‡r oݺuòäÉíÚµ›3gNÍš5ccc;wî̲¬ÔþyòÄÕÕÕÃÃÖç¹¹¹BbbbäVW¼~ýZ$9’K3fŒ½½=­ððððòò¢Õ¢,˾xñB,òÉ'ô¥››[•*U®]»F_®\¹’Ò¬Y³¢¢"šB{bÑÚ8º+V¬à64kÖ,BÈÆY^caa¡§§§ŸŸWeXPPЦMÙn¾Ÿ~úiáÂ…þþþ5kÖ>>®®®²[Tžå%/µQ©GáÅ®üò·¢|o \]]œœ¸>‹>¤‘ÜǼ¼¼Ö­[×®]û«¯¾JMM½páÂÿýÇ pãÆ BÈ´iÓø‰‡"„¬[·Nå…ià(¼Æ1??ßÙÙÙÙÙ™«}/((®U«–’Úe•3BkFÈO¤U\\Ü;w!#FŒhÑ¢wqpqqØF![ãH#~E!Wll¬™™ÙùóçéúÕ8–«X–ÍÉÉiÙ²¥H$ÒGáÄÚ\à½_ý•û[,{{{úé§´µZ9þOpjÈ!uêÔá§ÐE¹ôôô;wî$$$ØÛÛÓ{{ûèèèiÓ¦]¼x‘Þiœœœ,X`b"§½ÂÄÄ„a˜cÇŽegg»ººB’’’’’’è»§OŸ®ZµªXüö²C+çòòò¸·lÙ²AƒôïÐÐPBHDD„©©)M騱ãÑ£GóòòªW¯NwŒ6S‹/^³fÍ–-[† Â%ž?þæÍ›¿ýöWehff6yòä¡C‡¦§§óoœR>û쳬¬,BHçÎiF¤Ô®]»iÓ¦)))„çÏŸgdd|ÿý÷“'ONKK ?räˆD"éÞ½»ƒîååÕ»woú·H$òõõ=xð ìbÊóÒ¸qc%%¯œðb/ó ÜÛ’’’ìì츸¸ÚµkÓwœœ¦L™2wî\¹{hnnþÙgŸM˜0aÊ”)4eÕªU3fÌ())¡ã™äêÓ§Ý7+++~ºµµ5·ó|åZ¸\Ž9òðáÃ¥K—:::r¥1{öì^½zmß¾}äÈ‘šÍˆƒƒCÿþý·mÛK½üôÓOkÖ¬!„äææ¾|ù’òóÏ?‡‡‡ÿôÓOuëÖMKK‹ŠŠêß¿ÿµk×lmmUÎf™¹›~úôé ÄÅÅIUÏË*W!¤¦¦~üñÇYYYkÖ¬ñôôT9S #rM #paáëd «äÝ£Gª)Ú8åááÁ¥Lš4I…Uݼy“"Õ2Þ´iSú´¼½½åF„ssó„„„3f¸»»7jÔ¨m۶ݺuëÑ£G•*U!¶¶¶Ç?xðàõë×oÞ¼yåÊ©™2¸h•BÙN£Fèj) ooo©ÖLZ34tèP~7uïÞ=%ãÍ›7óòòNœ8Õºuëk×®I5üBÂÂÂâââž?N«j:vì”––FIMM‹Å:uRætì6GÑD9eæEIÉ+'¼ØË<‚÷öõëׄæÍ›óÓ•L-¹lÙ²˜˜˜  >ÜÍÍ;ýÞ¼yÃu„Ų,ÍÈ«W¯øé¹¹¹„;;;¹å pár¹{÷.QðµÊÈÈÐxF!kÖ¬yñâm¾ náÂ…K–,±±±¡¿»êÕ«·iÓ&zzôèÑ#..nøðáÛ¶m;vl™Ù)--å¿ä&š-3·nݪ_¿>—²~ýúðððˆˆˆÎ;s? ”X÷îÝ›4iÒîÝ»===:Ô¡CuŽÈBàFGyèÆÇFÈ«P/^‹ÅRUŒªË™úKÊpÓ¼ÙØØ(YÃĉû÷ï¿gÏž¿ÿþ;99911ÑÛÛ;--ÍÆÆ¦_¿~ÉÉÉ-Z´èÒ¥KïÞ½Û´iC{ziŠX,–êªEï‹qqq²s›7lØPùÚªU«Ö±cÇ/¾øbÈ!;wîüøã¥èÖ­[lllZZÚñãÇ]\\\\\BCCçÍ›÷âÅ‹ÔÔÔ   ZR¦ªU« Y¬Ì¼(*yÙѪ),,~•ïíáljÌi¦è×ÈÝ»w-Zǯ`¦¬­­YVÙWÏÁÁÁÄÄäÉ“'üħOŸB¸ÊNÕ.Zí*dÓx‹æZ³!„Ð.'Ož¼xñ¢ƒƒCPP-sz>òTЙ׮]’ÂÂBþËüü|á‡cÆ ÜË6mÚ¬[·îöíÛ}ûö¥}$!/_¾,--uqq‘z`Bظqã¸qã,--×­[7zôh®v4e  ÷ÒÓÓ92hÐ õ¯’´MçòåËíÛ·ç/]ºDñöö.óã999YYY^^^QQQQQQ‰ä»ï¾›þ|îܹ!!!Rc™…°{÷îáÇ4híÚµR-Ú IÚîdi€Œ¶Ã¬NÑÓÁ1Êû§Ë]æÆ>>>êLÎSPPàâââááñìÙ3únNNŽ›››««kAA[։ǎ#„ÌŸ?ŸK¹|ù2!dùòåëׯ'„8p€{këÖ­„>úˆ¾”Z3 #’’’¸:Þ™NMGûkÆÆÆrïÒÇÞüøãüU{{{{zz>þœ.öòåK'''ÙÁ1Ož<‹Å]»våOöA[Zé$&²ÂÃÃëÕ«gjjJ§Ä+))©^½:í/˜‘‘Á-&;8&%%…˵Ô<ŽÃ† ³··—Ý–ò¼()yÙJ ŽXìeAþV”ïmQQ‘‡‡‡³³37•ÌÿýG£ÙÁ1Û·o'„,Z´H¶L^¼xQæÝíË/¿$„ìÞ½›¾|üø±ƒƒC—.]äP —wpLQQQýúõœœ¸Ò(,,l×®¥¥%=Ÿ5ž‘V­ZYZZþóÏ?ôåÕ«W«W¯Þ³gOú2&&ÆÄÄ$--¾,-- 711¹páB™y¡_=n7nݺeiiIwRH.„¬_Ét;;»ˆˆ‘Hdaa1vìØÈÈÈÚµkŸ8q"%%¥fÍšGÝ·o_XXXywÕÉÉiáÂ…ÇoÖ¬Ù‰'<ئM›#Fð—‹Å }úôiÖ¬Ù AƒŠ‹‹wîÜyÿþýM›6Év%´··§SÒ´hÑ¢k×® ÃÙ'Ç?~¼[·nݺu“š\ùCYîß¿?zôhWWW333—¡C‡rS½¤¥¥µmÛÖÒÒ²^½zQQQOžwGß)ÏÈ„ 0Ó‘CGÍ3Ú~:GBGáÐT ‚ pA8€ @Ž G#‚ ÀÁ`y{{k{ G0LÆ9/+@…BS5‚ÀAà‚KÇ­[·nÙ²%++«ZµjíÛ·Ÿ5k–­­­’å pùòe©D{{ûcÇŽi;+Úac||üÚµk-,,Z´h‘½}ûö›7oþüóÏæææŠ>rïÞ=sss777~¢¶³ 5†8fff&&&:88lÛ¶­V­Z„åË—ÿüóÏ«V­Z¸p¡Üäææ¾|ù2,,,!!AÛ» + ¿ã–-[$Itt4 !sçε¶¶Þ·oŸD"‘û‘{÷îB¤ªŒœáŽgΜ111 áRD"Q»vírrrÒÓÓå~$;;›âêêªí}Ð!8²,›••egggggÇO÷òò"„Ü¿_î§hàøï¿ÿŽ1¢E‹íÛ·Ÿ0aÂÅ‹µm2ð>Žyyy¥¥¥²ƒZ¬­­ !Ïž=“û)P~ùå—îîîmÚ´ùçŸþþûï´´´%K– 4HÈvev‡™è)<Öcàc~~>!ÄÂÂB*ÝÒÒ’òòåK¹Ÿú÷ßÍÍͧOŸ>bÄšrüøññãǯX±"((ÈÙÙ¹Ìí"L0²·u£ % ¼©ÚÆÆ†a˜¼¼<©ôׯ_“wõ޲֝_áÂ.j$„´mÛvøðáùùù‡Òvž´ÃÀG±Xlmm-[³˜››KáÆY ѲeKBÈ7´'í0ðÀ‘âàà““C#EÎ;wè[²Ë³,[ZZ*;SH$"„T¯^]ÛÐÃ;vìXZZzäÈ.…eÙ´´4[[[???Ùå³³³6løÑGI¥Ÿ?žqŸÃhbbòÍ7ßÐ~„ÄÄħOŸöïßßÔÔ”¦¼yóæÎ;< „¸¹¹5oÞüôéÓ[·nåVrþüù~øÁÙÙ¹k×®Ú΀v0,Ëj{*Ü?ü[»víàààììì“'O6lØð‡~à¦éINNž6mš§§çž={!ׯ_3fÌÓ§O5jäááñÏ?ÿ\¸p¡Zµjß~ûmëÖ­ËÜœ··7FU0£½×~#!dôèÑ«V­rwwONN~öìÙ°aÃ~þùgÙÉ9 4رcGß¾}Ÿ>}zàÀ—/_öíÛwÏž=B¢FCe5Ž•Ìh… £½×E#¨#‚ÀAà‚ pA8€ @Ž G#‚ÀAà‚ pA8€ @Ž G#‚ÀAà‚ pA8€ @Ž G#‚ÀAà‚ pA8€ @Ž G#‚ÀAà‚ˆµ½ÆŽaú˲ÚÞePã M ÖÐ\  ›8€ @Žº­Õ Ã8èÄŽ «8è –‚Õ Ã8€ ˜Ç@{†%„H5M³¬tk5ª!A7 p¨@RS3JOñý.Fdh2CX.ýÝç5‚î@S5@{7¿·\ ! KX.¼äM†AÔº#€öÑØñíà.vDÔ:#€ö± ×ZÍÈéã 8è„·­Õ4jD]#è$Žºâm5#WãH»9è ŽZFë~%#˾­tD³5èŽÚÇÈmšFì:#€ÎCìº#€6±Šª¥—CìÚ‡'Çè:îñ3,\ƒV!pPÿ‰‚¬ !Sv-"Ãp"$ ƒØ´ MÕêQü8Á2¨¢Í´#€¾AìZ‚À@ÔlqFìÚ`,ãÖ­[èçç8oÞ¼çÏŸ ÿìÇ›7o>kÖ,mg€±#T:£ããã,XpëÖ­-ZXZZnß¾ýã?ÎÏÏòY–eçÌ™óúõkmg ˆ¦¸ v„Êeøcfffbb¢ƒƒÃþýû80bĈK—.­ZµJÈÇׯ_úôimg ˆf‡E#v„Jdøã–-[$Ittt­ZµhÊܹs­­­÷íÛ'‘H”öæÍ›ñññ 4Ðv&Cì•ÅðÇ3gΘ˜˜„„„p)"‘¨]»v999éééJ>XRR2{öl[[Û¹sçj;`(*hFÄŽP) ô…‹¥¶‚‡Í¨Gö¶n´ xð`ãÆæææÚÎ@ùѪGDŠ iÞÇQ,[[[ËÖ,æææB¸qÖ|§OŸÞ¸qã¸qãš5k¦íÝÁ2„©ä(Žk¶F šcà#!ÄÁÁ!''‡FŠœ;wîзd—¿yó&!ä»ï¾ó~§_¿~„?þøÃÛÛ»gÏžÚÎ@Yæ}ÔHÑ8’ÿ ü ¼©šÒ±cÇÌÌÌ#GŽôèу¦°,›––fkkëçç'»¼««+·$õòåË£G:;;ûùù9::j;C g´PÝHxãcø±£T @9~à8pàÀµk×~óÍ7íÛ·§cbŸ>}ejjJ—yóæÍÿýgjjZ§N      þ®\¹rôèÑ€€€¸¸8mçô K´5rë¥ú;¢åÔ`ø£³³ó¬Y³bcc{÷îœ}òäÉF;–[&--mÚ´ižžž{öìÑöþ”ëDdi\(wx5¢FPᎄѣG׬YsçÎÉÉÉNNNÆ ‹ŽŽ¦µ*cˆ ¶¶â'ßÝÅTb«0½ØÈÝYƒ†0,N#MóööÆ<ŽÆ€!L™A¡e@¯1 ÃElrn©4pä’å-ó~ ª. p7¸`‘k¶Fø¨!F{¯7üQÕÚ¡ Q@Ío¶ÆÈPƒQ4UT6]ˆɇÏDÔjCà` d£F]ˆeAŸ!pPT¯wô€·¢BGõÐ9ÒX–g  §8hKXÂ"vT7‚Cà 9º5bp ¨ #€F¼­jD¥#0ŽêcxÓû"v0bº\Ý  ÔôAÔH!vƒ„éxÔð6b|ÛJ-,"v0|¼.ƒ,!zP݈ÙA=Tô®Zñý3a¥æqăªŒÇ‡—ƒ…¦j1eU)¢ÁÀÀ1 æýcƒÀ@k;–! âG0*bGƒ§gQ#fs5 #@¹•·ó"û¶>B¿î- C*Þz×LÍ2.€æk0\ÊGµ±#€! !T2Ã0äí –AȆMÕå!¯©]RÀH p(uj ÑÙÀм«zÔ¿Á1èæªBà ”úm͈ ÃB–×ÍÀ ¡#€B ÿ9K4ÒC Ä»q0,ƒßƒ`DPã ˾ý§ÁU¢Þ@¯q?)Y–ÂèÝt<j@à "=xGÞIÄŽ`$8”IóO E¥#hÆÇ€J8(§ù¨‘Bì ÇøS9ŽZƒØô GÅXRAÕ¼- v½éxäc耵ãFþœ>,Ú¶ €Á´SÓnކ‘¨,¨q¨@ ½(+Ð•Ž /8ÈQÉst#v½€À@šVžì‚Ø@? mŒG€hñy€ˆ ²a6G(' Žã…a+`¸X˽P3„°r "±,Ë0ï+VÑ,  ©Œ‘Îͼƒ±/º íÔ|¨qÐ-rfbß½Ãâyƒ MtˆÜzP©ù&µ½`¼ÐT  /t«uÀ(Óxð fÍš7ž}ú´ÿþ¦¦¦4åÍ›7wîÜyðà!ÄÁÁÁÛÛûèÑ£)))ÜJ®_¿þ믿ZZZ¶hÑBÛ‡e Aƒ<hº9‚ UMqvvž5kVlllïÞ½ƒƒƒ³³³Ož<Ù¨Q£±cÇrˤ¥¥M›6ÍÓÓsÏž=„eË– :t„ ~~~uêÔùï¿ÿΞ=KY¹r¥½½½¶3僎P´Sfø#!dôèÑ5kÖܹsgrr²““Ó°a⣣éŒxŒbG¹øOéÄüteB#€aB¥#@™ÞÎ\Hÿ€Àø @%Á0sG*@3ÐÍÞAà‚ p#ƒvjU!p0dh­ Ât<`€hG̲ 1´›#®¥F5Ž`ÐX—9T:|Ñ€8€qÀ¸`µ!p0|¨t@Ô ÁÐ`G½ôÔ„Ù#€‘@¥#¨£ªÀIÕqµeüù~N”GǯhTRéˆö}04r¦¹— C5”G0(èà(W&JÊEˆ«e” ¹€=öÊ ýDú8>æú·¶w ñ«¹`q€ª8‡·s¡£VŒWûˆŸOªBàÆ!#€ÚÐÇô’T{+}5zé †EAÑàFRÓæiÄŽê¡×^ÍýF 5Ž ·hÛ+.^ œ¢ÕPN ÖöÝß`”8LFDn˜ˆØ@UÀ ¡]@s8‚@G€Ê«­1Cà`ŒÐZ *@à† íÔ‡a0DÝa:#E+ù-NÜ0I7Z#tp,æòÝßüFjÞßïŠU`0PÝ ihª0p,a CÈÛé×XÂöý˜,o€r„êÆ5ŽP6~ÓÅø±#ªx G£†áÕ`°ÐN]1˜·}ZÞuâ UÆ#è?– ƒ#@E£}^è¨:™÷¦ ôq0v¼@8†%,­[ä:8"j4&Àà ”¨€6A¡”í}S5:5%Ž ï0´ R±td ­ÓåZ«Á8 pŠE¥#´SW0†?÷+ŒGŠ‘%"v4À€ º±2áÉ1Æ#è5†`"MBk5(ƒÀAà|˜ ôÚ©*G#|ˆÁܘ GÐ_T:€Ž çÐN PY8€B¨t]ƼCdPC¥¢«Á8 pýƒ ªà-–°„0¨m¨,@c™ÇqëÖ­[¶lÉÊʪV­ZûöígÍšekk«dùüüüÍ›7oÛ¶íÁƒÕ«W÷òò=zt`` ¶óPÙ08pŒ"pŒ_»v­……E‹-²³³·oß~óæÍŸþÙÜÜ\îò%%%#G޼pႵµu›6m N:uôèÑ)S¦Lœ8QÛ¹€·èϨ4†ßT™™™˜˜èàà°ÿþÄÄÄŒ1âÒ¥K«V­Rô‘-[¶\¸p¡yóæiiikÖ¬ùñÇwìØaccóí·ß^»vMÛ2v¨ýª|"”áŽ[¶l‘H$ÑÑѵjÕ¢)sçε¶¶Þ·oŸD"‘û‘ýû÷BæÏŸÏUIzzzŽ?¾´´ôرcÚ΀v0<ÚÞÐÃÏœ9cbbÂ¥ˆD¢víÚåä䤧§ËýÈ;w,,,5jÄOôôô$„Ü¿_ÛЖ^eYÌ–ºã©ufä1ÞÇ‘eÙ¬¬,;;;;;;~º——!äþýû²ŸZ·nX,]2W®\!„Ô­[WÛyÐóòòJKKmll¤Ò­­­ !Ïž=“û©† J¥œ@ecŒÆÐ  !YYY¹¹¹VVV\â;wè[r?"‘Hf̘ñçŸvêÔiñâÅJâK¨Lèà¨XÂân 2h(‰ áOÇÓ±cÇÒÒÒ#GŽp),˦¥¥ÙÚÚúùùÉýÈ/¿üòçŸ:ôÛo¿EÔ@~à8pà@“o¾ù†ök$„$&&>}ú´ÿþ¦¦¦4åÍ›7wîÜyðà!„eÙ 6T¯^}Μ9ÚÞwÄ„eé?³u€røi¡×0#áB#è"tp44vÄqA¤‚ .ìà§#”Ð@Ûh¤(r/Qw 3ÐT Eaƒ5€,E›4 Du#€n@à:í›FŠßBý~„>®:MÕPÐÓÁ({ƒÄVQC…G¨Xh°…XyñX çê†aÞS–0S jAIÍÕ‚Ú£À}ñ¹vjÐ1¨qÝò¾YóÝ„ÚÞ#ÐT:B9pßz\tG¨ x!”Mn˜ˆØ@— pÝ€1Ô:#Tæí §8‚Á¼-Æ Õú#T&•ŽÆ³)"ŽPÉ;‚ T7è ÌãºíÔÀ‡GËè Ô8@åÃox%ŠçÜañè:Ý‚ÀAàÚÀûË/¿h{÷±£^bÂà"€a1üGfff&&&:88lÛ¶­V­Z„åË—ÿüóÏ«V­Z¸p¡¢OåææÞ¸qc÷îÝ›6mÒvŒKÊ{V5bGí2üÇ-[¶H$’èèh5BæÎkmm½oß>‰D¢èS½zõŠŒŒDÔPiX†¾ýÇ–°²ÿ´½›FÍðkÏœ9cbbÂ¥ˆD¢víÚíÞ½;=== @î§–/_^XXHÙ°aÃñãǵ ƒ‚Ž ömû'N!]‡vjFVcn&=gà#˲YYYvvvvvvüt///BÈýû÷ŽAAAô¿ÿþ[Û™€ vÐóòòJKKmll¤Ò­­­ !Ïž=« íz{{K¥dffj»0 bGÇT7‚A‘½­-éÐi ©tKKKBÈË—/+h»*ß@q TÙۺц’>8ÆÆÆ†a˜¼¼<©ôׯ_“wõŽP™PKêâÆÉ0d­«}Ú¿SSSšòæÍ›;wîXFý°Ÿz´ŸeÅŽeî'”‰a®ŒY‡8ò Q|>hh˨¿öSãûi0?0Œö^oø} ‚¼ï[j(Ñ(gMÕ`<ÐÙ±Â1 K>ìÚH«1C^ z#Ú…‘a…-e 6†|88æÃ.ÚÞ;¨@hª†Ê€ ¨T,Kθ ò,×µQ ¯.Ž` ð0ë ðocG–n°BFƒ‡¦j0Xò'ç:è±ï#KÔOª†–/ÊÀx Æ*Ú©AëØ÷*bßuÐc ó6]Û{§Ç¸§ˆj{G ’ p‡V„·c×iÉrãdA‚8UôG0|ˆ+ß½@(‚pÏ7gpÂè'ôq€òa /d|ŸŠF†Å#Îõj¡b¡ƒ#èT:j jŠŒG0ˆ5sî7Ž`DXL¼£DF#†þ‡ªG€rCàAWᙄå‡êFÐÜôFU€±bâÞQD@A#3<9FDðG¨(h§=‚ÑÖ !j4U€“ Yòvd ûþ­÷Ïï>Dð!Ž`ÈdA† ††åEEìÛˆ5å ¡©à=Lþª¡"ÑçUk{/ Ü8B…@µ è/;{øˆ¨äAS5€4co¶¦O£~WÄ"‚€w8Èg¤#fhÔÈ娏+^@ šª¢=Q³5Z¨@)Ž yÆÛÀʸbGÅÐT ªSr+•z q$è;~³µÀ RÿN{T7@Y8‚ZäÞ¥jQU†1C…úwÚ#j„ÊDz8ñôGÐ0†û?BÆc‚Á1€fk†7yûn.tܼ@ôq„ŠÁ²¸Óû‰Yþ¸iD j>À|ø4 ¹µæ†3Ñ#¢F(Ž2¸XJé#ÑŒt¢G0bA“hŒ~7ᔇ’ªGFŸ¼"U™Jª \ÐÇ4ÆšíT"õxë·!£n÷ôÅ/<Ð t`5èÔ8‚f j£";0™?YŽ¢Ýé°xœ ”jÊÖ&ÊT(ÒÔw¿¡t2.cY–¿ò@%¨q @u#À˜·ý a´üÍà7òÂ\–á- Ãíé kPãêBÔ KçÃ×Z6 ù•£ Ãðk5@y ÆÔBo‡Ò7EÚ׋¼»i w'¶Ü“œ•zUŽgjžÔà–% ÃõqDØå‚ÀÔ"ÿYÕ\ãÃèÐD$šÂ|0Ñ£ìIÎÈkÿU> ü‰¥b܉'€† p¡…@Rƒ¯ù_¢2¿P*Ößss‚yO@á‡^Aàª@Ô Þ¸kÍ·_¿Ÿxüíÿ{×TýîÞÌ"|Uap ”¢FM¡Ó÷h¾+0KÞÎÒÈv"ûÁ,A,¢G(?ŽZƵ_k$‚d¹ù½ß'IO9‰y@5hª†òAu#€F(ö KXÙ„¬”¼­h°,žå‡ÀÊQ#€&ɰò>||×EQèˆÞlÚÎ,4UƒPˆ* KØw5‡LÙó¡2 ¥‚~cÿ@mC#‚¨@KX:U$²ý÷_FþT;r?*7âd¥À·BàeCÔPù¤º ²oG¼|0 $aˈùOÑOÿ"\H G(¢F]óv&Vá\â#(ƒ¨@‹X†a¤š¡eÚ¦¥æ§I¼ÅË?4@1Ž ¢F€Ê$ÝdÌ„ü®ŠŠƒ¿÷$×M>œ\îF†°oãKD–P&ŽÚ'ý#aÚÍ‘e üx ô"ï>®0æ“S ùá†éÀm¡cZ߆°Ì..oBP…ÀäCu#@¥’ŠÛX–0t45óÁ2R"û¾–QAìø¾Æ‘aË "…y;99·FNØŠ7Pnô× ª½uGCyÔˆ^Sš÷nîî·ß.ÚvLû8ÒGµ¿krÚ²éèBð #HT׈TTæÃÚ@æí£55*Þûv³,Ôٮ]A0ß$€þ@à@ 5€*Ôlbc¸)uónÂF¹¡Sq¿Öx-ίyÕ1ØÂ€ù&ôGc!𚋨 ÜT æÞ÷_äwU¤Q£Ìà¼qÛ­œÜ½Û½wU’¼çhsð.ðU5²¬ˆ0Òû‰A<š€Àш( ñk@uÂúõ3ÜøhnÄ4!„—ø~} aø‘¥.xWí'=8†?m¤‚&‹²#˲¦ RyŸ5;ˆ§"šÔà‚~Aà„¼»Ü#vcÀVþH[¢ß%*ÞÃwMÕoû82ŒMáï»-ÊéÂÈ ó¾Ó³üå'$×÷u²A¡šÔµà’òĸà~°Å'd¹cqÔ\§ñ’M4†V;mï€îÚºuëÀýüüçÍ›÷üùs¹‹1„‘ú§(Q8ÙËý§f½½½¹ÍñÏuæUVJwM£XR1£p*`\‘êø~VÐ:5½dÍ©&òÎÂ2ÌÛäÃÚ2†¡E!½Ë–²m†%REÉUÇ0ow–ÞäYÂzy{±„}ñx¿€ÆÐ¬*Ü öýõíÃ¥ôõWk…|ë5åN»wÿøÇ]Îa‚ùàoe›º>Fz% ¡gé«U?û2{«þ:妎òÅÇÇ/X°àÖ­[-Z´°´´Ü¾}ûÇœŸŸ/wa©³“hâd’sÒxÞk&Ÿ27Q†VlÐmêT3™fU@Ö*îšQ!k6àƒ[fÖÕn~ÿåÇ‚R³s³ìÛÚίná]Ç> 2hE0#?²dË]åðž¾üüÖåÈÌÌLLLtppØ¿bbâFŒqéÒ¥U«V ]…†»éTÀœ¨ÜlqF;Œº‚ÌtþÐWàÜ.Dg.Ð\eüûx†þý®¢‘›QWöXϼ¯•[CFdZcd[NÕl“ax´] Q‚ŸT>Fyž p”cË–-‰$::ºV­Z4eîܹÖÖÖûöí“H$ÚÞ;MbXvÈxW[©Á¨„}÷ ]ãü~ê †¡µíÌ¡±Wª‹ËBèYÞÇ|²[ç74󠹚±wŠ„¼o‰~Û…Q¯Ârý¢¬aTn[¤ÒÈRÎÃÁY~Û>®9•Žû2₯Ã8ÊqæÌ“.E$µk×.'''==]ÎdnKoîŸ 4±Ne=/ß^T5ºŸ<ÜtË¿N®‹˜m•{?yÕxÒÁªûÉòFʳºûÉht?ß!õö“(=ôªíç‡}y©¬ZûÉEŸ4œx·“JŠ•jhæõC‘ê€È~ø †ch™–­ê“ÓʬñÒ.o] #õ·L¥&‘·À»ed[Ì ‘W¯)Ó¤.¼fTãU™4S;«è®ñ{hE¬Sý{½Bà(eÙ¬¬,;;;;;;~º——!äþýûJ>ùA ÷RZyëän]eŽž‘ÓWöŠ)µ ö¼¿³Ò4®>FÅì¿«z¿©M¨ºN©üJïgyWË­‡¿Ÿ2›(÷:åítQ”s o%ôÉSy?‰‚CÏß„àýTØ:Häþ&ù°.P*ì“g~PÒ=ŠË‰ÞEŒã¶!·ªOY+³Æ6\öw_ã­Ì²-æo“y™å¥sEA”•Ƈ5£Ò¡'T3*¸¤ÒW¶Ï¨lŒ[vÓ¿Ô^í¬5ÈßOöÝñ•ºÈküZë$jßCõÞÏŒ qoÞ¼ñ÷÷¯_¿þÞ½{ùé›7o^´hÑìٳnjÃOßGðÝOdš’™™IÈû»¿‘ŒÀ<ŽÒèÐi ©tKKKBÈË—/Ë\ƒÔ™DÊ2}°¼ÔðUOЊX燿Nµó:õhWõn²hd'¹D¢oôMx‹­ê=5–1Ôu–wµ¾NÅßzÕ³_ë”ZmEŒ^Õmhª–fccÃ0L^^žTúëׯ !ÖÖÖe¯‚»s¨ßb¿ÃiJE¬Sið0UÄ:õîÐWÐ:5»Z®s’FV+÷na|íVê“Ó]@Á?mï)TŠŠ»@UÄÅÙhº©pPã(M,[[[ËÖ,æææB¸qÖ q·% Þ<*t´6õw¸"ÖÉ­Yƒk“Ýa}Y§Æ÷PS+•k‚TE ñ]듾>1:R×ͶÞèþÅYO ÆQ‡œœ)rîܹCß’ÿ®?¤•FhnÜЀþ—þS|Ã|P5 ‘ìk|ÜUI‡Så­SSµRëÔà¡§*¨‚Uƒ†®‚j1+ú™^Fª".Îúp_ÖGåèØ±ciié‘#G¸–eÓÒÒlmmýüü~¬"FZÉ]§J§©’'/ñÕÚU%/ x\tË_§.úŠÍ~E¬S¶Õ/RĈ  zŒ–¹N‹q+èê$u!US]ðõ G9hbbòÍ7ßÐ~„ÄÄħOŸöïßßÔÔTvù÷x•óWsfZE³ÔuV}ɾ‘]FÔQÁhEtå&¶,s8UÖ)÷ªFkX¥®S7ñ ƒéxäûá‡bcck×®œ}òäɆ þðÃ666ÚÞ5í@à¨ÐîÝ»wîÜyéÒ%''§–-[FGGÓyŒG}@Ž G#‚ÀAà‚ pA8µË—/Oš4)44´E‹Æ ;uê”¶÷È@<|ø°yóæ³fÍÒöŽè·üüüõë×÷ìÙÓ××788x̘1ÇŽÓöN饭[·8ÐÏÏ/00pÞ¼yÏŸ?×öé7œ™ ×O‡ÀÑx¥¤¤DDD¤¤¤ÔªUËÏÏïüùó#FŒHIIÑö~é=–eçÌ™Ã=èTSRR2räÈÏ?ÿü¿ÿþkÓ¦MýúõO:5zôèo¿ýVÛ»¦gâãã,XpëÖ­-ZXZZnß¾ýã?ÎÏÏ×ö~é+œ™ ×OÝ'Öö€v¼|ùrΜ9b±øûï¿oÞ¼9!äÒ¥K‘‘‘ . 11Á/ Õ­_¿þôéÓÚÞ ½·eË– .4oÞüûï¿777'„ܼysذaß~ûm‡|||´½ƒú!33311ÑÁÁaÛ¶mµjÕ"„,_¾üçŸ^µjÕÂ… µ½wz gf…ÂõS÷!>0RÛ·oÏÍÍ?~< !M›6 {úôéåË—µ½wzìæÍ›ñññ 4ÐöŽè½ýû÷BæÏŸOïÍ„OOÏñãÇ—––¢YP¸-[¶H$’èèh5BæÎkmm½oß>‰D¢í½ÓK83+®Ÿz£‘:|ø0Ã0}ûöå'®\¹233³Y³fÚÞ;}URR2{öl[[Û¹sçj{_ôÞ;w,,,5jÄOôôô$„Ü¿_Û{§7Μ9cbbÂ¥ˆD¢víÚåä䤧§k{ïôÎÌ ‚ë§¾@Sµ‘ÊÈȰµµutt<{öìùóç_¼xÑ AƒN:q¿¡A_ýõµk×~øá+++mï‹Þ[·nX,}ºrå !¤nݺÚÞ;ýÀ²lVV–?ÝËË‹rÿþý€€mï£þÁ™YApýÔQQQÑ«W¯êׯ¿dÉ’7réuëÖMHHhܸ±¶wP/]¸páÿþïÿ† Ö¶m[zu4lØP*åäÉ“‰‰‰fffR5å H^^^ii©Tºµµ5!äÙ³gÚÞA½„3³"àú©GÐTmŒ^½zEÉÊÊJNNŽ=uêTZZÚäÉ“ÿù矩S§b¸¥ òóógÏžýÿíÝMHÀáZ1(É^¢.¢C‚¶A Jò%ˆ„H:KE¤“Òƒ‡BJÁ[$Ñ˱B-# ñÒ¡ô°AYû? ˆ¨ÁO‘ÿ8ö<§ÝÙ=|~Žfwf8ÐÖÖ–ö,[Ðïß¿ûûû›šš …BWWWEEEÚeCò·\VV¶lûŽ;¢(š››K{À̳27„ãg¶8ã¸Å-,,Ü¿ñé¶mÛZZZr¹\ò´««ëäÉ“ÉãëׯÏÎÎ =yòäÂ… i¾I­º?£(êîîž™™ôYÿZým—.zùòåíÛ·?~üXYYÙÙÙyüøñ´GÎŒ]»vÅq\(–mOîu’œwdݬÌâø™-Âq‹ûõë×;wŸnß¾½¥¥¥¬¬,—ËÅq\[[»ôÍuuuCCC“““iO½y­º?_½z588xíÚ5׭ê»4yüóçÏžžž\.×ÚÚÚØØèÿÊš”””ìܹså™Åùùù(Н³f­¬Ì äø™9Âq‹+--ššZ¹}ï޽߿ãxÙ›£(ZXXH{êÍkÕýùáÇ(Šúúúúúú–n®®®~üøqÚƒo^[¢þüikk«««kooW9ë³oß¾éééùùù¥|úô)y)íé2ÉÊÜXŽŸ™#ÿQµµµ|˜\sïÞ½ÞÞÞ¦¦&¿¼VæÿÀñs“sÆñuøðá›7oöööž>}úرc…Báõë×qwtt¨FR÷õë×/_¾”––^ºtiå«çÎkhhH{Æl¨ªªºuëVwww}}ý‰'>þüâÅ‹#GŽ477§=Z&Y™ ÿ]W¯^­¨¨èïïþüyyyy>ŸommM~ÿÒ533EÑ?Þ¾}»òU—¯®É•+WöìÙóèÑ£‘‘‘ÊÊʆ††7n$gY++|T @7 ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp È ޹ ž®IEND®B`‚statistics-release-1.6.3/docs/assets/gevinv_101.png000066400000000000000000000774621456127120000221660ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A~ùIDATxÚíÝy\TõþÇñï°ˆ¸‚ ¦ ˆhn¸/¡Hš©¥WÍrÍ̬4ׯ¦æÒ~µl¿.Ù¯ôZŠ[®…kššaJ!`¹¦ˆâ†ÈÌüþ85Ãâìg™×óáã^ø2sæó=‡åÝç{ÎÑhÀÝxÉ]Ôà«`‚#¬Bp€Uް ÁV!8À*GX…à«çعsçèÑ£cbb*W®|Ï=÷´iÓfèС»wï–».gú÷¿ÿ­Óét:]ß¾}¥‘Å‹K#-[¶t[³fÍ’^´{÷în{ÑÔÔÔo¾ùæ›o¾¹pá‚Û^TùŠK¸Aßu·nÝzÿý÷»víZ£FòåËGGG÷ìÙóõ×_¿yó¦Å#=ª+ÆÇÇ'88¸uëÖÿþ÷¿‹èŸbaòäÉrÀ}|ä.P½üüüáÇÿïÿ3Ü·oß¾}û–,YÒ½{÷%K–Ë]&2hРk×® !¶lÙ’˜˜(w9(Á?þد_¿œœÓHfffffæúõëß|óÍÅ‹÷ìÙ³ì-èõúÜÜÜÜÜÜ~øaáÂ…ëׯoÓ¦ÜÓ”…à8äêÕ«ñññ?ýô“iÄËËK§ÓéõzéÓ 6ôîÝ{ëÖ­åË——»Xç«\¹r:u„aaar×OQâw]FFF§N¤p/ñññ)**’>>}úô¿þõ¯Ý»w7iÒ¤øCCCýýý…ׯ_75óòòú÷™éççWÆS,T©REîݸKÕ€Cž~úiSjŒß±cÇåË—oÞ¼yøðáýë_ÒøîÝ»_yå¹+u‰G}4;;;;;{Íš5r×OQâwݤI“L©qøðá‡.((8sæÌG}T¹re!Ä7 Pâ—/_.mðÏ?ÿüý÷߇.Ÿ:uê½÷Þ+û)^zé%¹wàZGÀ~GŽY¶l™ôñÀ·nÝÚ±cÇÊ•+ûúú6iÒäÿþïÿ†*}õÿþïÿ,ž{þüùqãÆµk×®råÊuëÖ}ä‘GùäSñ³gÏ–ö€¿ØkìØ±ÒÏQùòåOŸ>]ügÏžö·?ÿüÓ4¾uëÖÐÐP‹FN7aÂÓc¦M›&wêÔ)66ÖâÁýû÷7!›6اOS¢6mšôUSÔB¿~ýJÜ‚4òþûïK#-Z´FªW¯^Úo›nݺÙT°ÑhÜ¿¿Å+W®Ü£Gâ,Κ—??¿jÕª¦O¥Ç\¼x133³B… ÒøÿûßÌÌLƒÁPö.µã({yy5iÒÄT€Illl5LŸ&$$Ø4G ………¦)ýõצqÓ¾ýüóÏù–°>8ÚW‰ßu¦ôùÄOXùcXv 4 åÊ•“¾š’’bÍSApìd0¼½½¥¿"3f̰þ‰¦³ Ì;7ï¾û®4xï½÷J#æ‘âÝwß•;fÊŽ .´{ƒ 4X¶lÙÞ½{Oœ8a4M'uMœ8Ñ´…æÍ›KƒóæÍ³ØBÁÑÜåË—£££¥„††šš²V¼páBi¤råÊ{÷î•ÇoMp´ò%ŒFã‡~( –/_~̘1¦ hѸªT©RñÄPÆ.µã ¬[·Îh4š§í·ÞzËh4êõzSG088ØÖ9Z0îÑ£GK#'NœFüüü®\¹âÈ·„õÁÑîú-¾ë M»köìÙFëÜ5Þ{ï½ÒWŸ~úéâO)‘é?6 ãGÀN—/_6]:mú#yýõ׋Ÿá·k×.é«7n”>5j”é)Ç—bèï¿ÿ~äÈó­Ýwß}Ï<óŒôqýúõï¿ÿ~éã“'OÚ·Á *lÞ¼yðàÁ­[·ŽŒŒB 0`Ù²eË–-7nœô˜üüü7nH_ºtÉŽýc4‡úÛo¿ !¼½½¿øâ‹ððp› 6šöì³Ï¶nÝZúxîܹ!!!w}uë÷ÉÈ‘#;tè „(((0] ñŸÿüÇ”­Q|—ÚzPZ´h!-Áûúúöïß_ zî¹ç„^^^¦àuùòeûŽ»‰i Ú´…­[·JtíÚ5 @¸æ[ÂîcT¶üü|ÓǦï1ÇÝsÏ=Å·€Ûñv2­] !lº)´éôü|°ÄüöÛo76}Z·n]󯚖2 ƒ}lÖ¬™ÅßWé‰yyy›6m:pàÀ¡C‡öïßõêUGöÏœ9s¾ùæÓÇ:u²u˜f~UM¹råºvíjº&Éñ¬Óé/^Ü´iSÓ5½{÷îÝ»·M“-¾Km=(æ‹Ñ¦û¼„‡‡ët:‹A»_Â$11±J•*yyy'Ož<~üxýúõMÁ±_¿~æÛtî·„³ê· ]4-qâíÙsss¥¤$m¡ÄÛñ?ÍЂ#`'??¿jÕªI¨Ž;fþ¥€€Ócþù§©O#„ÈÏÏ7¿Õ\‰.^¼hþ©):”ø©,~7òÂÂÂ_|ñwÞ1Ý÷Îßß?$$äÏ?ÿ´oçlÞ¼ùßÿþ·ôqß¾}Í/¤µ²àk×®™^Ýâú˜Zµj•ýt[÷Iƒ ºvíºnÝ:éSóÕp+YìRDzÄtŸãs4çëëÛ§OŸO?ýT±aƘ˜˜íÛ·KãIIIÒcœþ-áÄú-”+W.88Xz°ùÝ¿Í]¹rEšHùòå+V¬hÍfÏ;'}Püò!Äòå˹<<Á°_çÎ¥k¾þúë?ÿüÓ´„:jÔ(iõ­¨¨¨víÚæÁ1  råÊRçæÛo¿•–5-˜®°†,žQfÍšõÆo!"##'MšÔ¾}û <õÔSü±»å÷ß4hÔŽŽþì³Ïì(Øßß¿\¹rÒékþùgTT”é«W®\qî>Ù·oŸéZc!Drr²yÔ»ÔéGÙñ9Zèß¿¿7nÜøÀHqPêDJpî·„Óë·Ð®];鞎k×®}óÍ7-.EBÔ¯__ ‚ ,˜8qâ]7¸sçNÓ©“­ZµrÊ”m 8ö?~üW_}e0®\¹2nܸ¥K—úøÜñ3µxñâ3gÎX<+**êСCBˆ¢¢"óeèK—.FQÒ¢dÙßà¢E‹¤.\Ø­[7éãS§NÙ±OnݺõÈ#HË|*TøßÿþW|¥Ïš‚½½½#""222„›6mj×®ôã·Jq|Ÿ=ù䓦u!ÄŽ;>ýôSÓÕ!öqúQvîK<ðÀÒjõwß}·víZiдN-ø–0ehÓ¹˜’â­J'î¢Q£FIÁñ÷ß_¼x±éœ`Ijjª©}رcGk6øöÛoKT¬X±}ûö¶@³¸8°_›6mF-}üÅ_ÄÇÇÿý÷ÒÜO?ý4zôh‹?`’x@úàƒ>þ@ !V­ZuÏ=÷שSÇÖ3ÉÜàÕ«WMk‚¦?ö?þøã¶mÛìØ'Ï<óÌLõ˜ßÃÅÖ‚[´h!}éwÞ1ÝzöìÙ¿üò‹÷É믿.]„`ºw÷¤I“J;[Îü^×W¿„´Z-„¸uëÖ믿.„ðöö6ÙéÈ·„éD‚}ûö™ÎbüßÿþW<î;qõêÕË´µçž{.%%åìÙ³ÒÁZºt©é›uëÖmÖ¬YÙ›:wîÜ“O>¹råJéÓÇÜüJÜŽpÈåË—#""̦¼¼¼Ìï¶Ø¶m[éƒ;wJO¹té’iA°S§N3fÌèׯŸ©¹2}útéaÖßÖÄÁ  ÓÄ*Tx衇z÷îmþþ¼/¼ðBi[°¸1Šé !DµjÕž¹ÓÔ©Sm*øðáæöU¹råî¿ÿ~Ó3%eÜŽÇÊ—8qâ„i0%%¥  À”{l¾AÓÛ¶m;þüÂÂÂ2v©ƒÅ´¸ß}÷™wîÜ) úøøØô¥Y¿~½ùÎLLLtÊ·Ä?þhzX… Ú·ocþB¶~ßWâM Ž9bÑ¡ 6Ý0KQ¾|ùC‡™o~oðð𨨨¨¨(‹·\—Nb.ñ)ÜÇ‹à8êܹs¥÷ÐC?Þ"8Æ5kÖüSO=%ÝYÚhã;p8²A£ÑXü=|###MoI7tèÐÒ¶`ñ'ÜÔ§)‘é„Vl4‡ fñ€Š+víÚUú¸ìwޱæ%L› –ÞFåƒ>0=rÓ¦M¦­™ÞcFRücì+À‘àhýn,‘ùÀ…ï½÷žS¾%Ì¿EÍŸkêÚú}[\iwݹsgi·ã©S§Žt›L“»Þ”±jÕª{öì)í)Gx,–ªG…††nß¾}íÚµ ¸÷Þ{ýüüî¹çžøøøÏ>ûì믿 )~UfRRÒO?ýôÄOÄÅÅU¨P!22²oß¾ß}÷Ý{ï½WâÕµwåàß|óÍF‰¿ß¼äùçŸ?tèiárÅŠw}‡_üñÇ›Þ×1$$䡇Ú²eK||¼S^bùòåß~û­ôà_|QZ‘>|¸éB1cÆÜ¼yÓ´‹R±bÅûŒë]w”û¦Õj!„———Å[K;ò-±dÉ’Y³f5jÔ¨bÅŠÍš5{î¹çöîÝ[üZ~§ï¢öíÛÿöÛoo¾ùfÇŽCBBüüübbbzè¡7ß|óøñã¦wª,ƒ··wÕªU[µjõïÿ;##£M›6N9L€–茟YÀ“ݾ};55Ua ”àÀÛ·o=zt‰wÔƒ‹(ù[€\ް KÕ° ÁV!8À*GX…à«`‚#¬Bp€Uް ÁV!8À*GX…à«xtpÌÊÊŠ‰‰ùé§ŸJüêW_}Õ¿ÿfÍšµoßþ¥—^ÊËË“»^9ytp\ºtii_zóÍ7§M›vâĉ–-[VªTiÕªUO>ùäÍ›7å.@6>r ƒüüü_ýuíÚµ_|ñE‰ÈÈÈøàƒBCCW®\"„˜5kÖ’%K,Xðïÿ[îòäá‰Ǥ¤¤Áƒ—–…_~ù¥Á`?~¼”…/¼ðB``à†  ƒÜåÈÃ;޳fͺuë–bÙ²e»wï.þ€ýû÷{yyuêÔÉ4âíí¿víÚƒ¶hÑBîÈÀƒc‡¤¶oß^ü«F£133³jÕªU«V5¯W¯žâ?þ 8ð:!Œr× xªßI:0Ê0‹—ÕétF7–¡:£Ê›\<18–íÆz½>((Èb<00PqéÒ¥»n!&&FîI€dˆ ~¡Ý]†º÷R†l¶îØoõêÕskN˜uFF†û V ‚£%éÒéŠ+ZŒWªTIqåÊk6â™ßLJÃAQŠ2ýs\tBE†à•å¯v£‹¿“]ûâӹÿ'ñïvc†Ùˆ»;ŽÎZÕÿµàO¼8¦lAAA:îÆã×®]÷Й֩¡^GK>>>Å;‹ùùùBÓuÖ§ú³ÃÍíF8‚àX‚ÐÐÐÜÜ\))šdggK_’»:p=2\‰”¨^Ç$&&êõú´´4ÓˆÑhüî»ïªT©Ò¬Y3¹«Àä[§Öéäž;ìEp,Aÿþý½¼¼þóŸÿHç5 !>øàƒ‹/>òÈ#¾¾¾rW.F»Ñ ì$õâ^<Žàªê„‡‡Ož}úX ååå9÷…âããg̘!÷ŒÕT›b ƒ²h'6àýÇR5læçç§×ëüñøøøS§NF£ÑèôÔxèС]»vÉ=W•Õ¦ØÂÕ!Z»'8ªGØcóæÍË—/ÏÊʪQ£†s·\TT´mÛ¶Ý»w/Z´È`0È=Q§ÕVXX(„(W®œÒ ƒ'"yÖ©áTGØ#---<<¼víÚNßrnnîƒ>h÷Ó÷ïߟœœ|àÀóçÏ›ûøøÜ¾}[ÆÚbbbjÖ¬™––fINNNMMÝ¿¿ì; €¢µ+`µà{ÔªUëܹs'Nœ¨[·®s·*-adddÔ¯_ߦçnÙ²¥k×®µjÕ>|xÅŠW¯^}ðàÁ¸¸¸Î;{y9ᬠGj+.''çÀ²ï4Z¦¼°Æ:µÚa!C†|öÙg;vœ:ujãÆƒ‚‚ÂÃëU«&cIC‡ Û·o_õêÕ…“'OîÒ¥KFFÆôéÓ+W®,÷>”fÚݰ‡€2aÿ™3gŽ3æ¹çž“F,X0qâD‹‡­[·®´ôîÝÛ‰%¥¥¥9s&%%EJB??¿)S¦$%%­Zµjذa2ÖfÅÁQÑt:9_½ŒÅ„W_}599yÚ´i?þx:uJ[¾~ýzñ÷˜mß™ÿUŸ““#„hÒ¤‰ù`ãÆ…éééòÖ&Ñëõ柖v‹û ƒ¡™v7šÚCÊ[§†M™?ò999Ó§OŸ?~ñ£…ÀÀ@·!DQQ‘ù ÎJ̵î¬MrëÖ-óOoÞ¼YâÃÜ_¸'8jÁ6Û³gÑhLLL¼ë#ݹê-„8vì˜ù ÔkŒ‰‰‘·6É™3gÌ?={ö¬ì; žESÍ4—ÐÔ¢Ý× 8Âf~~~BˆÕ«W7mÚ´ìGºsÕ5...**jáÂ…cÇŽ BΟ?¿R¥J½zõ’·6ɹsçRSS¥b²²²>,ûN÷r¬¼ç_Á)xçجW¯^5JIIyä‘G>úè£uëÖ¥¥¥]»v­ø#¥U×ÒØñÒ+V¬¨R¥Ê„ ŠÉ××÷í·ßÎÍÍmÚ´éœ9sæÍ›×¡C‡´´´9s愆†Ê[›ÄÇÇgàÀƒ 0`@£F|}}K|˜Ó „ÐX3Í%4µ‡h7–„÷t :ްY¹råvíÚ5{öìÍ›7Oš4éÊ•+Bˆ *¤¥¥ÅÅŹô¥ /_¾\ÚÙ=zôØ»wïŒ3-ZTPPдiÓ 6¸íÎØe×&„hݺuÏž=/^\TT4jÔ¨€€€™3gº§6'8jÁö¨\¹òœ9sæÌ™#„Ðëõ‡nÕªÕ† œcbbŠÿŠ:tèíÛ·K¼JZÒ¬Y³5kÖ¸zúöÕ¦Óé^|ñÅ_|Ñ4’’’â†Âm5Ó\‚=X‰¥j8ÊÛÛ;**Êh4JgºTAAÁöíÛ]Ý×Ô^m<ëÔp%‚#œà›o¾1:tpõ íÙ³'66öÑG•{Æ*« fÚݰ‡Ü‚uj`©Nо}û¹sçZÜ|Ûäž®=µ3& @îh"Û\L­%G8Aݺu§L™"wŠÆþ},ƒ‚‚òòòœ²ý+W®L:uýúõ—.]Š‹‹›7o^›6mJ«Äßß_¯×›_¸pAît‡øøøÄÄÄ3fÈ]ˆj ƒ4ØOs& îÅ·R wÿv"‚#læçç§×ë‡ vòäÉÏ?ÿ¼FNÜx~~~‹-~ÿý÷~ýú¯\¹²[·nÛ·ooÖ¬YñgggëõúvíÚEFFš+Uª$÷ºÃ¡C‡víÚ•˜˜(w!ª)  XGØcóæÍË—/ÏÊÊrnjB¼ñÆ™™™Ÿ}öÙСC…ãÆkÞ¼ùĉ·mÛVüÁ™™™Bˆ””¦Ÿ¢¢¢mÛ¶íÞ½{Ñ¢EƒÁ¦ç !Ê•+§´Â hì§9“wBºy¥VÇ:µ6a´´´ðððÚµk;}Ë_|ñEXXØ!C¤O###ûõë÷É'Ÿœ={6,,ÌâÁRpŒŠŠ²ïµöïߟœœ|àÀóçÏ›ûøøÜ¾}ÛÁ‰äææ>øàƒö=7&&¦fÍšiii¦‘äääÔÔÔýû÷;X•ƒ…*¥ÁÔÈ„«ªaZµj;wîĉÎÝl~~þ¯¿þš 3û¯ÔÎ; †½{÷|ff¦ŸŸ_åÊ•¿úê«Å‹ïܹSêÕYcË–-­[·þù矇>sæÌ¸¸8!D\\ܤI“&L˜àø\BCCF£Ñh<~ü¸ã[ËÉÉ9pà€Sv²s ƒRŒ<²ÛÐ0:ްÇ!C>û쳎;N:µqãÆAAAáááÕªUsp³çÏŸ7¡¡¡æƒ!!!Bˆ¯wÉÌÌôòòŠŠŠ2]—»téÒæÍ›—ýBC‡ Û·o_õêÕ…“'OîÒ¥KFFÆôéÓ+W®,÷à4„j÷“Ö©å®.Ap„=üýýgΜ9f̘çž{NY°`Áĉ-VTT´nݺÒ6Ò»wo‹‘7n!Ì…¹¹¹Å·™™i0’““ûõëçëë»f͚矾OŸ>éééÒ³J“––væÌ™””)5 !üüü¦L™’””´jÕªaÆ98·Qlap+’‘§QI»Q%eÂ6GEÓ 9Ï+.ãæ¯¾újrrò´iÓüñ:uêxy•|ÎÃõë׋߸çŸíû,„¸zõªù`~~¾¢jժŷ°cÇŽòåË›¾4bĈ‚‚‚±cÇ®\¹räÈ‘eL-''GѤIóÁÆ !ÒÓÓŸˆã,î1TÚU,î/ PB5à\GESæ}§rrr¦OŸ>þüâ-F 6e—ÐÐP///‹Ué‹/ !J¼|;<<Üb¤k×®Bˆ£G–ýBþþþBˆ¢¢"óA)œ•‚mˆãnݺeþéÍ›7K|˜û ƒâŒJ§Í}£ø>ëÔÚFp„ÍöìÙc4­¹Ž­ ©>>> 40¿šXñý÷ßëtº† Z<øäÉ“©©©;wŽ5 JíÉ»^î-„8vì˜ù ÔkŒ‰‰q|"Ž;sæŒù§gÏžuÊOÃÝ¿‹à›ùùù !V¯^Ý´iÓ²iÇBê¨Q£Æ—ššÚ«W/!ÄŸþ¹råÊ.]ºDDDX<ÒßßÒ¤I-[¶Üºu«¯¯¯Â`0ÌŸ?ßÇǧK—.eµpá±cÇ ! çÏŸ_©R%éuŸˆƒÎ;gÚ YYY‡vÖ†¦h³¥æÚÜ7Šo7Bó¸lÖ«W¯F¥¤¤<òÈ#}ôѺuëÒÒÒ®]»Vü‘ÒBjiJÜø°aÚ4i2xðà—^ziÞ¼y:uºqãFrr²ôÕ¹sçV©Råý÷ßB„„„$''§¥¥EGG3æÅ_lÑ¢Å_|‘’’Ò A!ÄŠ+ªT©Râ½u|}}ß~ûíÜÜܦM›Î™3gÞ¼y:tHKK›3gŽÅ5ÝvO¤leÔ&ñññ8pà Aƒ ШQ#)»¡0pëÔšGÇ6+W®Ü®]»fÏž½yóæI“&]¹rEQ¡B…´´4énˆŽøî»ï&Ož¼råʼ¼¼¶mÛ._¾Üô~ƒ—/_6ÿ7eÊ”ºuëΛ7oÙ²eåË—oܸñ† ºuë&}µ°°ðòå˥أG½{÷Θ1cÑ¢EM›6ݰaƒÛîŒ]vmBˆÖ­[÷ìÙsñâÅEEE£F ˜9s¦{jƒjh³¥æÚÜ7ªj7ªªXØ€ÿ2p¾˜˜˜ŒŒ W?E9ôzýáÇ[µj•’’òòË/Ë]Î>úè£ôôô·ÞzKîBl«-""ÂâcÜÉmßÙÙÙÅÏ@€ \Ž4p\´—ÿ:(ŠÏbæíFåë¢sUý‡Û,UÃQÞÞÞQQQF£Q:YP9 ¶oßîxÔÓjƒ:h/¡lÊ bðlG8Á7ß|c4;tè w!wسgOllì£>*w!*« *@j,&÷MDd$© Á9Žp‚öíÛÏ;×â~Ú²KHHHHH» {j3fŒÅÛç°†&S£ZpYŒ‡ 8 êÖ­;eʹ«Ðv&ÊB8ò4:]vV–ºO;•7qt:–ªZ@¢–‘E»‘25ŒàêA8*…fw  Cp€UŽ šíª9J³;F%íF.‹ñ(G€Š‘w"8€h6AÝh7z‚#@­4§ÕÜnTsí¸;‚#(žfó‘CØ+(7qt‚#(ùÈÓ¨§eÇ:µ"8ÔG³qZ=©ž‰·„Í ÃÚµk-}}}{ôè!wi€æh69„½¢´=Á6»}ûvŸ>},ƒ‚‚òòòœûBñññ‰‰‰3fÌ{ÆJ¯íöíÛþþþz½Þ|088øÂ… r—À´¡xGØÌÏÏO¯×6ìäÉ“Ÿþy5\ñ*‡ÚµkWbb¢ÜÓUAmÙÙÙz½¾]»v‘‘‘¦ÁJ•*É]Fc­$ì%(­ÝHôÕ<‚#ì±yóæåË—gee9=5mÛ¶m÷îÝ‹-2 rOÔiµ !Ê•+çŠÂ233…)))Êɲ€‹h95’¹ GØ#---<<¼víÚNßrnnîƒ>h÷Ó÷ïߟœœ|àÀóçÏ›ûøøÜ¾}[ÆÚbbbjÖ¬™––fINNNMMÝ¿¿ã;M ŽQQQŽo ¢åˆ„bHÎÆ½x\„à{ÔªUëܹs'Nœ¨[·®s·*-dddÔ¯_ߦçnÙ²¥k×®µjÕ>|xÅŠW¯^}ðàÁ¸¸¸Î;{y9áŽÔV\NNΜ²Ó233ýüü*W®üÕW_]ºt©aÆ­ZµrQwYZ!¸,Æ“KVXXøßÿþwÆ ÙÙÙUªTiÔ¨Ñ3Ï<-w]J1dÈÏ>û¬cÇŽS§NmܸqPPPxxxµjÕd,©  `èСaaaûöí«^½ºbòäÉ]ºtÉÈȘ>}zåÊ•åÞg.”™™éååeº>)66véҥ͛7—»4Ø‹ˆTŒ–w íF¨Á±z½~èС ¿ÿþûóòò6mÚ´yóæÿþ÷¿-[¶”»:Eð÷÷Ÿ9sæ˜1cž{î9idÁ‚'N´xXQQѺuëJÛHïÞ½XRZZÚ™3gRRR¤Ô(„ðóó›2eJRRÒªU«† &cm6±£°ÌÌLƒÁœœÜ¯_?__ß5kÖ<ÿüó}úôIOO ”k"°Ÿ–#’´¼KÔ–Ëh7ªm*°Á±ÿ÷ÿwðàÁîÝ»/X°ÀÇÇG±gÏž‘#GN›6mÓ¦Mn-E§“sG”þ àÕW_MNNž6mÚã?^§NÒ‚¯_¿^üÆ=f›wæ/˜œœ!D“&MÌ7n,„HOO—·6‰ÅírJ»¼ÆŽÂvìØQ¾|ùªU«JŸŽ1¢  `ìØ±+W®9r¤Ó'ðXÇ}þüùÅ[ŒÝvŒ¿¿¿¢¨¨È|P g%æZwÖ&¹uë–ù§7oÞ,ñavn1ÒµkW!ÄÑ£GÝ9A8‡–{kvÒò.Q[޳Ap,AXX˜âÒ¥K¦£Ñxùòe///S”ôd{öì1ÖÜùÅËÁҨǎ3”z111òÖ&9sæŒù§gÏžuÊN;yòdjjjçÎcccMƒùùùBW\ö¸©PbP zõêµdÉ’Y³fU¨P¡iÓ¦yyy‹-:uêÔ€ä®N~~~~BˆÕ«W7mÚ´ìGºs98...**jáÂ…cÇŽ BΟ?¿R¥J½zõ’·6ɹsçRSS¥b²²²>ì”æïï?iÒ¤–-[nݺÕ××Wa0æÏŸïããÓ¥K§Ï®¥å”dö‡¢¨¨ÝȽx\‡àX‚˜˜˜¥K—6ÌüŠŠÇ{쥗^²~ #7n”{ZNÓ«W¯F¥¤¤¤§§wïÞ=,,,  Y³fÅߪÄéËÁ+V¬xú駇þÆoX|É××÷í·ßîÛ·oÓ¦MGííí½råʼóÎ;¡¡¡Å7åÎÚ$>>>LJJ2 ©©©Rþv¼°äää©S§FGGwïÞ=((hÓ¦M‡š={vƒ ì›Kvv¶÷LiN:å†WQ‘ˆÈˆì¬láŽ}_e—ˆ÷|7Ê0³ÈÈì¬,aÝì”sPÊ8‘‘YYŠ9\Nþ=Ö­[7¹§¤Çäçç¿öÚkׯ_oذa£FrsswîÜùõ×_·iÓÆÊNFF†Ü“p¡råÊíÚµköìÙ›7ož4iÒ•+W„*THKK‹‹‹séK^¾|¹´³{ôè±wïÞ3f,Z´¨   iÓ¦6lpävâN¬MѺuëž={.^¼¸¨¨hÔ¨Q3gÎtÊKO™2¥nݺóæÍ[¶lYùòå7n¼aÃG~ÍEDD¸g§¹í…ÔB!;D!eüÕnTF1Ξ›N6MLöƒbM»Qö"]WLñ?ë%žå TÓvv§§žzjûöí/¼ðÂðáÃ¥‘3gÎ 8ðÒ¥KkÖ¬1;àÅÄÄØíxŠrèõúÇ·jÕ*%%åå—_võË}ôÑGéééo½õ–Üó¶­¶ˆˆ‹wŽQ,·}7fgg+êό̳(«ã¢˜ýá¢éÙvv£Ê]ƒ£¢ÎØtÃRµªÿp; o§¡1þùçöíÛ£¢¢L©QþôÓOß¾}{õêÕr¨8ÞÞÞQQQF£Q:³Ð¥ ¶oßî꾦öjÔ…Ô¨4*:»®Fp´”››+„¨S§ŽÅ¸Ôh¼pá‚Ü*Ñ7ß|c4;tèàêÚ³gOllì£>*÷ŒUV”NãA fT˜sœãh©N:ÞÞÞ¿ýö›ÑhÔ™Ý[êHGEEÉ] µoß~îܹ7ßv…„„„„„¹§kOmcÆŒá’|À¤h¥±¦ÝHöt-ùûûÇÇÇŸƒAAAyyyÎ}¡øøøÄÄÄ3fÈ=ã9rdÖ¬Yß}÷ݵk×êׯ?xðàgŸ}ÖÇG柣۷oûûûëõzóÁààà .È[î ýÄu§F ´¹¤Ú ް™ŸŸŸ^¯6lØÉ“'?ÿüó5j¸âU:´k×®ÄÄD¹§û¬¬¬N:éõú¾}ûÞ{ï½[¶l™0aÂ÷ß¿zõjy ËÎÎÖëõíÚµ‹ŒŒ4 VªTIæýs¤F!„æwƒšS#3†•Ž°ÇæÍ›—/_ž••åôÔXTT´mÛ¶Ý»w/Z´È`0È=Ñ;L˜0áÊ•+{÷îmÙ²¥"%%eäÈ‘Ÿ|òɦM›|ðÁ²Ÿ[XX(„(W®œ+ ËÌÌ”êQTÎ,•LíF¸ÇÀiiiáááµk×vú–sss|ðÁäädû–Y÷ïßß«W¯êÕ«ëîäëëëxmÛ¶m‹—R£ä™gžBìÙ³ç®Ï‰‰±HuÉÉÉæ›r„£¢¢œ²58ŸÆû€ÔBÇö¨U«Ö¹sçNœ8Q·n]çn944Túý•‘‘Q¿~}›ž»eË–®]»ÖªUkøðá+V\½zõÁƒãââ:wîìååè#;¶E‹æƒ'OžBøùùÙ±Áœœœ8e§effúùùU®\ù«¯¾ºtéRÆ [µjå¢î&l¦ñÄÄ>< Áö2dÈgŸ}Ö±cÇ©S§6nÜ8(((<<¼Zµj2–TPP0tèа°°}ûöU¯^]1yòä.]ºdddLŸ>½råÊnßÇÇgΜ9æ#—.]š3gŽ··w¿~ýdœ¸"33ÓËË+**Êt}RllìÒ¥K›7o.oa€ð„ÔH»ž„à{øûûÏœ9s̘1Ï=÷œ4²`Á‚‰'Z<¬¨¨hݺu¥m¤wïÞN,)--íÌ™3)))RjBøùùM™2%))iÕªUÆ snm;vìxòÉ'333ß{ï½èèh'NÄŽÂ233 Crrr¿~ý|}}׬YóüóÏ÷éÓ'===00ЉµÁfÚM¿<85*mê\RíGEÓÉúêeüü½úê«ÉÉÉÓ¦M{üñÇëÔ©SÚBðõë׋߸çŸí;õWNNNŽ¢I“&æƒ7B¤§§;±¶ßÿý™gžY»vmttô–-[:wîle…·Ë)íÒ; Û±cGùòå«V­*}:bĈ‚‚‚±cÇ®\¹räÈ‘NÜÉ€MH€öM™¿rrr¦OŸ>þüâ-F n[ñ÷÷B™Já¬Ä\k_m+V¬=zt¥J•/^vì˜Åj¸"***))©ìÚ„­[·îÙ³çâÅ‹‹ŠŠF0sæL§Ô6eÊ”ºuëΛ7oÙ²eåË—oܸñ† ºuëæ”ÃfÏMÌ^õ´—áN|÷8_LLLFF†«Ÿ¢z½þðáíZµJIIyùå—]ýr}ôQzzú[o½%÷¼m«-""¢fÍšiiir×xwnûnÌÎÎŽˆˆ{º. òèäÈqQùÔ­™¡<íF'þ°8+5*­ñêþŽ£ªÿp;‚·„£¼½½£¢¢ŒF£tf¡Klß¾ÝÕ}MíÕ÷Ñ~tòà©+-+r 8 ¾ùæ£ÑØ¡CW¿Ðž={bcc}ôQ¹g¬²Úà&ÚN},ƒ‚‚òòòœûBñññ‰‰‰3fÌ{ÆÿLÜßß_¯×›_¸pÂ<ˆÆ“”'Í•ÔØŽà›ùùùéõúaÃ†ëØ±ãÔ©S7n^­Z5K*((:thXXؾ}ûªW¯.„˜}ÒÓÓ5ÅmÓ !„0 ‘-w%®™ž¦nÖø÷œÜ—5¹a?‚£²éd}õÒM¼úê«ÉÉÉÓ¦M{üñÇëÔ©SÚBðõë׋߸çŸÍ;õ÷PNNŽ¢I“&æƒ7B¤§§;¥¶;v”/_¾jÕªÒ§#FŒ(((;vìÊ•+GŽy× -n—SÚ¥?î/ wáíFOQ‹©‡^#äBpT6EþZÈÉÉ™>}úüùó‹·-ºíW›¿¿¿¢¨¨È|P g%æZ;j ·éÚµ«âèÑ£Ö<ýÖ­[æŸÞ¼yÓY;ÍÁÂPG*˜"©Q£¸2F.GØlÏž=F£Ñš;¿¸s©:::ZqìØ1óA©×ãxm'OžLMMíܹsll¬i0??_aåÕågΜ1ÿôìÙ³NÙiކRiƒaþüù>>>]ºt±¦ÂsçÎ¥¦¦JÅdee>|Ø);ÍñÂà±´œµxR£)5j1~Ã~GجW¯^5JIIIOOïÞ½{XXX@@@³fÍŠ¿U‰Ó—ªW¬XñôÓO>ü7Þ°ø’¯¯ïÛo¿Ý·oߦM›Ž=ÚÛÛ{åÊ•xçwBCC‹oÊÖÚBBB’““§Nݽ{÷   M›6:thöìÙ 4(»6‰ÏÀ“’’ Cjjª”¿ÝPì¤åT¥õùi1éèt:áìÿÞì@p„ÍÊ•+·k×®Ù³goÞ¼yÒ¤IW®\BT¨P!---..Î¥/]XXxùòåÒÎìÑ£ÇÞ½{g̘±hÑ¢‚‚‚¦M›nذáÁtÖ«O™2¥nݺóæÍ[¶lYùòå7n¼aÆnݺYS›¢uëÖ={ö\¼xqQQѨQ£fΜé†Â`-§*­ÏO‹©122’ÈhŽeĩΓ‘‘áê§(‡^¯?|øp«V­RRR^~ùeW¿ÜG}”žžþÖ[oÉ=oÛj‹ˆˆ¨Y³fZZšÜ5ÞÛ¾³³³#{¿@í+ÓmwJ£èãr÷éi05êtº¬¬,Šwª‚£ªÿp;‚·„£¼½½£¢¢ŒF£tf¡Klß¾ÝÕ}MíÕÛh:5µ:9N‰Ç Ó’¹¿£Å ‡°T 'øæ›oŒFc‡\ýB{öì‰}ôÑGåž±Êjƒ ´žµI£éFöÔGp„´oß~îܹ7ßv…„„„„„¹§kOmcÆŒ »FÜv³•vgFjÜŠà'¨[·î”)Sä®BÑØ?‘fS£Fï¹#HeRÂ ŽžŒàBmÆ«»^ £bÚm4 ÅÜvG£û!8€fS£ææ$MŒF# ‚#§Å„¥Å9IÓlŒÔUàv< 5¤FÕQ`jTæÎæGÙÑqàÙ´²4{R£¦—§…bNjîŠàÀƒi.5jh6æSdïË93S\£(Á€§ÒVÎÒÖlL³Òl£Q¡NGP=ͦFæ*å/O+sßs‚£x$­D-mžÔH£P*‚#Ï£¡Ô¨‰yXÌJ‘Í.çÌLéFà®ް™Á`X»v­Å ¯¯o=ä. °‚VÒ–Væa>%Š Ýè' 8Âf·oßîÓ§Å`PPP^^žs_(>>>11qÆŒrÏøW®\™:uêúõë/]º7oÞ¼6mÚ”¶—üýýõz½ù`ppð… ä‚b sM¤- .Ok=2 ãG… 8Âf~~~z½~ذa'OžüüóÏkÔ¨áŠW9tèЮ]»åžî?òóó[´hñûï¿÷ë×/88xåʕݺuÛ¾}{³fÍŠ?8;;[¯×·k×.22Ò4X©R%¹'¡ÜÂ`%MD_‹)i¹Á¥¢F#` ‚#ì±yóæåË—gee9=5mÛ¶m÷îÝ‹-2 rOôo¼ñFffægŸ}6tèP!ĸqãš7o>qâÄmÛ¶pff¦"%%ÅŽì[XX(„(W®œ+fáHaª§þÌ¥þẊF# 2¼å ì‘––^»vm§o977÷ÁLNN¶oåtÿþý½zõª^½ºîN¾¾¾Ž×öÅ_„…… 2Dú422²_¿~ß}÷ÝÙ³g‹?XÊgQQQv¼PLLŒEªKNNnÙ²¥ãSp°0uSyæÒ©~ŧ¤F£†S£ÑhTcjÔtÿN@Çö¨U«Ö¹sçNœ8Q·n]çn944TúU›‘‘Q¿~}›ž»eË–®]»ÖªUkøðá+V\½zõÁƒãââ:wîìååè#åççÿú믃 ’º’Î;ôÑG{÷îíÛ·¯Åã333ýüü*W®üÕW_]ºt©aÆ­Zµ²»‰˜““sàÀ§ìaç¦*Ï\*/¿ø|h4Â6œà¨GØcÈ!Ÿ}öYÇŽ§NÚ¸qã   ðððjÕªÉXRAAÁСCÃÂÂöíÛW½zu!ÄäÉ“»té’‘‘1}úôÊ•+;¸ýóçÏÆÐÐPóÁ!D‰ÍÑÌÌL//¯¨¨(Ó5C±±±K—.mÞ¼¹Œ{IÉ…¡DZ»FÓ‘QpF#<Áöð÷÷Ÿ9sæ˜1cž{î9idÁ‚'N´xXQQѺuëJÛHïÞ½XRZZÚ™3gRRR¤Ô(„ðóó›2eJRRÒªU«† æ`m7nÜB˜ !rss‹o!33Ó`0$''÷ë×Ï××wÍš5Ï?ÿ|Ÿ>}ÒÓÓ¥g9…{Ø=…)‹jûuª-¼ÄÉh?2 õ7Y§Æ]Í|UÔýÊø øê«¯&''O›6íñǯS§Ni Áׯ_/~ãk¶o‡œœ!D“&MÌ7n,„HOOw¼¶àà`!ÄÕ«WÍóóó…U«V-¾…;v”/_Þô¥#FŒ;våÊ•#G޼ët,n—SÚuBvìa SÕ†/Õ^âd´œG´+M™¿‰rrr¦OŸ>þüâ-F n›‚¿¿¿¢¨¨È|PÊ[%æZ[k õòò²X•¾xñ¢¢ÄKËÃÃÃ-Fºví*„8zô¨5/wëÖ-óOoÞ¼YâÃìØÃ¦2ê _šZžÖt£‘Èèœà¨(GØlÏž=F£Ñ𛹏s©:::ZqìØ1óA©×ãxm>>> 4HKK3üþûïu:]Æ -|òäÉÔÔÔÎ;ÇÆÆš¥ö¤•—¢Ÿ9sÆüÓ/ܶcަ&ªM*¬ºÄ™h92 Ng„Ç2ÂÙêի熧ÈhÕªUBˆéÓ§ßõ‘—/_¶û{ïøñãBˆW^yÅʪ £¢¢ÂÂÂòòò¤‘[·nÅÇÇWªTéܹsN©íí·ßB¬]»Vúôüùó¡¡¡]»v-þÈóçÏ—/_þþûï/,,”FôzýÀ}||Ž=z×¹Ô©SÇü…Nœ8!Ý ÛñYXS˜Û¾³²²\ûjûõ&”Q²Ž‹FMÿqqÿ_O—ÿ°ü5/wÎÉ–Âñ“aI]¸H‰Cí4oݺըQ#!ÄÃ?üᇦ¦¦~ÿý÷W¯^uî«”?ÿü󠠠矾ħ¬[·®\¹rµkמ={öܹs[¶l©ÓéÞ}÷]g•tåÊ•&Mš¼øâ‹sçέ\¹²Ô5¯½öZPPÐ{ï½'}:wî\!DíÚµŸzê©^xAzw™Ù³g[3‘:uêøøøT¬XqàÀÿú׿*T¨P¥Jgý¡*»0£f‚£Ú~·)§^‡Ž ‘Ñ5<98*35Õö‡Û‰Xª†ÍÊ•+·k×®Ù³goÞ¼yÒ¤IW®\BT¨P!---..Î¥/]XXxùòåÒNøëÑ£ÇÞ½{g̘±hÑ¢‚‚‚¦M›nذáÁtÖ«|÷Ýw“'O^¹re^^^Û¶m—/_nz¿Á‚‚‚Ë—/›ÎMœ2eJݺuçÍ›·lÙ²òåË7nÜxÆ ݺu³f"BˆÖ­[÷ìÙsñâÅEEE£F ˜9s¦SfQva¡ªå^œÑè Ó‚Ó!8E£T?ÿüóâÅ‹=zíÚµ˜˜˜gŸ}¶uëÖÖ<1&&&##æײã)Ê¡×ë>ܪU«”””—_~ÙÕ/÷ÑG¥§§¿õÖ[rÏÛ…‰ˆˆ¨Y³¦Åù”nã¶ïÆìì숈çoWm©QiÅÚs\¸hÚÅ\õÃrÇ4z {eŒªÿp;‚·,Ù¶mÛ ´mÛ¶fÍš:thÈ!%¾%1¼½½£¢¢ŒFcPP«_«  `ûöí®îkºf&¢8 b¥Wªžb˘†N¹‰Ã “Ó©÷a©ºW®\™:uªÏÇ,½Æ‘#Güïÿ»S§NŽ¿yö|óÍ7F£±C‡®~¡={öÄÆÆ>úè£rϘ‰(’z‚˜z*-cZ^›VB—BÁíFOFp,ÁªU«òóóŸþyÓ›°5nܸ{÷îß|óÍÏ?ÿlq‹i!Ú·o?wî\7완„„„„¹§ëò‰Œ3Æâ-j Z8£‘Ȩ9ÚíÃùŽ%nÎgñ†óæÍ›7ožÜ¥)Tݺu§L™"wÚÁδ‡šxj¨±ì OGp,Azzz•*UªW¯~àÀC‡]¾|¹~ýú<ð€ôÞ$Gñ‰LÝFÓ{Ÿj4T•‰uje"8Z*,,¼zõjTTÔ+¯¼²bÅ Óx­ZµÞzë­ûî»Ïš«’7Ê=3ÀZÙÙÙnx•S§N9e;‘ÙYÙÂ%Û#2"B‘•-„bk¼ƒùq‰ˆŒBdgeýõ¹[¾1Ü)22R‘••%Üõmogý°”²"²²9û­Ý³ÌGKW¯^Bdff^¸paîܹ:u*((X¹råÂ… Ç—ššjMßÑ3/чf¸úÆÎ|!F!ÜT°]Õý5U¹k±ADD„ùª´šJ·šêºŒ.ý©tÛ¼z +þg½Ä7³õ\ l©|ùòÒ¯½öZŸ>}‚‚‚ªW¯þÌ3ÏôíÛ÷Ô©Se¼/0wSð µzï¶ù×µê UÖÓý›ìö!8ZªX±bùòåýýý-.z}à„Òûà@¤È¨¾T¢Ó .;+KÑÑô¶ir—£нžš‹àX‚___é|p!„Ò uQQ‘ÜÕB(´¡§ÖF£é>ÞÊ ÍŒ#àLÇ$$$äççÿúë¯æƒBÔ¯__îê(1éÔØh”ò¢¦##-FÀ¹Ž%èÛ·¯bÚ´i—.]’F~þùç?þ800°K—.rWx °ÂR£únШݛx«îBi@Ž%=ztppð’%KvïÞ]¥J•ÄÄÄgŸ}6::ÚE/Çí{\-;;[9·u€ý””Uµ{oÓùèDFÀ Ž¥zä‘Gy乫ð7…¥FÅÔr×ZµÙb$/:ˆuj؇à6PM£Që-Fò" ‚#5P@‹Oe‘Qs¹Š# GŠ'wjTGdÔh‹‘¼è ¬SÃnGÊ&kjTSdTf°NäE@‰ŽLîÔ¨èÌ¢Å#yP8‚#¥’/¸)½Ñ¨¹#yÑX§†#ŽI¦Ô¨èȨ­£), ò" GÊ#GjTndÔh^$,ÊB±íF¨Á€Â¸=5*42j(/Ò\Ä]±N­GžK‰‘Q‹y‘°hÁ€’¸«Ý¨¸È¨•¼HsQÉX§†ãŽéQ)=5‘ ‹pëÔ*Bp  nIsJi4ª?/Ïä%wÖ:räHÙظq£Ü5°—ëS£îï‘3ãètý3ÿú§*:3F3r׫°N §PMp8pàþó½^_üKyyyãÇ7nœÜ5°‹‹S£ü‘QÍy‘°WcZ]TCBBÞ}÷Ýäää˜oÚ´©gÏž6l¨]»¶Ü5°+S£Ì‘Qµy‘°¨=´á,ª Ž©©© øùçŸûôé³bÅ !ÄåË—'L˜ðÜsÏ]¾|yäÈ‘kÖ¬‘»F6rYj”32ª3/š’bdd$anC»QuTsqL¥J•RRRºwïþòË/¿òÊ+ëׯÏÊʺxñbttôœ9s5j$wl኿ò\þbv¥ˆŠ’¢ù§¦Œ˜-wi”K5GIÛ¶m¿øâ‹ªU«þðÃ/^Œ‹‹[½z5©PÈÎrf@ÑÉÒe,Þ\TpjÔÝÉx'¹«ƒ ±N 'RYpLKKëß¿ÿ¥K—6lrðàÁ±cÇž?^îºØÂ©+ÔæyÑMÕ³MR„’±N­Fª ŽW¯^}饗žx≋/Ž7¾JMMíÞ½ûwß}׳gÏU«VÉ] ë8/5ºµÅh ‹Ê΋e´å. €¨&8Jé0::ú«¯¾zúé§½½½ßzë­ ètº—^ziäÈ‘r×ànœ”ÝK ‹JJ`ºbh+ÂëÔp.ÕÇ‹/>ùä“«W¯nРùxRRÒÚµkÛ¶m»sçN¹kP&g¤FwDF‡Å²c"I*Â:µJ©æªêåË—7kÖ¬Ä/U¯^ýÓO?]ºt©Ü5(éѵ—K+ò²h‹ ŸoîÑn„Ó©&8––%:nÈ!rנޥFWEFå…ÅÒn‘h íFõRMpàiLÊ™^”i(Â¥h7ÂŽ\Ìöv£“[ŒÊ‹ÄD@pàJ6¦F§EFYÃbñŒ(ˆ‰ÀßX§V5‚#—±%5:!2ÊɈP&Ö©á"G®a]jtôDF÷†E–›ÑnT;‚#°"5FFDûò¢ëÃb‰}DAL„JÐn„ë¨)8nذaÉ’%999¥ýîÞ»w¯Ü5¸Kj4%²¬ì숈«·éª°ÈZ3à6´5@5ÁqË–-ãÇ—>ööö–»¥(=5ZœÅ˜}—íÜ™çNr4Àqª Ž}ô‘bذaO?ýt`` Üå(I)©ÑÚ _œÑV$ ÂñN —RMpÌÌ̬Y³æÔ©S½¼TóþÚ€g)–ï~á‹mE" .¬Skƒ:‚ãíÛ·¯^½zß}÷‘…º35–Úb4K{âîI±´t(ˆ@Ih7ÂÕÔ½¼¼ûí7ƒÁ@vçïÔXB‹±ôžbvvvÄ_!G»Q3Ô¼½½Ÿx≋/¾ùæ›r×àN:!ŒB÷wz4êtFN˜þÂh”¾ªBg&22RúÀX:¹ç¨ íF¸::ŽBˆ=züñÇ|ðÁÞ½{»wï^³fÍråÊY<¦S§Nr— xÐ…¨ÓéÌ:ŽfЉR‡Ù6ÝŽ€jÑnÔÕÇÄÄDéƒ#GŽ9r¤ÄÇdddÈ]& Y¥.(ëþú„€Œh7Â=Tzè!¹K4®Œs Åß§-êþþÓd´å}¨x,Ú£šà8þ|¹KT¬ìP(ù§eXìŠù…ÒÖÞ•€›Ðn„Û¨&8(Ã]saYëȦçš>0{°eJ¤ÑÀj´µG¹ÁqùòåBˆV­ZEGG›>-ÛàÁƒå®p>Ûš…ÖmÑâÉ%<ÄôE‹Qþ€SnpLIIB$''KÁQú´lG¨‹5‰P8~ÑIñW)}ƒe½× ©P$Å®SÓnÔ$åÇgŸ}VѨQ#éÓI“&É]`-7%ÂR^»øËXõ<é±e|™ßÿàñ”ŸyæóOG%wE€¬‰°”‚Š¿¶m0=¯ì‘ERl»Z¥ÜตqPÈ~«B‡câ?[2mÀš‡òg €X§Ö*‚#´Éú,(dƒ¥Ï¡x¡ŽnÒ´%럠È}@Ðn„ŽP G²  ÞÝÎ1ñŽÍK›´õ9üM`;ÚFp„œ´Ð´kÚ%NÏ%/eÚ¼ÏÔÊþ4I±íFR£¶ádšËàâVbɯiz)»ŸïG`+‚#îŽ,h-7¶K~}Ók:¸>†€*Ðn„\TFã¶mÛN:Õ¸qãfÍšÉ]Žú¨æRbe’;#ÞQ‹éõ²-Ž6 j ŽÛ¶m{ûí·xàéÞàÓ¦M[¹r¥ô¥Aƒ͘1æƘVOIñŽºLµ8q‹òO À]Ðn„Œ¼ä.ÀZû÷ïúé§?n0„¿üòËÊ•+}ôÑš5k®X±bÛ¶mr×èZ:ë­&÷„I§+áŸÑXÂ?küûŸñïNÛ.߀2©¦ãøá‡Æ—_~yРABˆo¿ýV1gΜÄÄÄœœœnݺ}þù牉‰r—i¿»v ‰zN¦Ô>b©õšjtѦ•;uÿ Ýy©&8þúë¯Õ«W2dˆôé¾}ûÊ•+wÿý÷ !êÔ©S·nݬ¬,¹k´Ji‘\èB:] ·pTÉwa^4½€:ö@~ªYª¾|ùrpp°ôqQQÑ/¿ürß}÷•+WN©P¡Âŋ宱Ö/%Ë]©V”²Öœ•¥œµf«æá¢õèâ/£ô=à´!;ÕtÃÃÃO:¥×ë½½½÷¼žŠ÷@ªé8¶lÙòòåËï¾ûîéÓ§ß}÷]!D||¼ô¥O>ùäÒ¥KQQQr×øúˆÎTbQy׬Ø?¿bÍER#€âh7B TÓq|òÉ'×®]ûÞ{ï½÷Þ{BˆFI÷nü׿þõÓO? !FŒ!wp˜æšˆeÍÕ4?Y^[›;Ð,R#B5Ç5jüßÿý_§NªW¯Þ¡C‡·ÞzKZ¾xñb@@Àk¯½Ö¦M¹k„Õ´ÞD,kêî9y±ì ´¶Sn¢šŽ£"::zñâŃK—. óòRMö,¥ÝcHsqð®äì/ZÔáqûP½ÈÈeþÖ¤ÝèÔ%—/_NOO?{ölxxxûöíýüüHŠàI«ÌVr÷Å.ÖT#SSpÌÍÍ}ï½÷V®\yóæM!ÄСCÛ·oß·o߆ Ι3§J•*rèh"ÞRš‹5)¨6ÐéDVV¶ŽoÊÉ…ÑnôHªéÕݾ}ûé§Ÿ^ºti@@@ß¾}Mã!!!Û·o8p ”&áLÖŸ†HjTÂÉ‹eT¦ j*¦šà¸xñâÇwìØqãÆ¯½öšiüË/¿ìÝ»wNNÎ’%Kä®QÍ<õR锜M%*®&Öâbj(j‚ã?üàíí={öì *˜{{{OŸ>½B… ›6m’»F• #:Lž;/ÚW¨B+ b¤FO¦šs;az×As•*UŠŒŒÌÉÉ‘»Fåá‚çQÖ•.VV¬ŽB”L±íFx2ÕÇÀÀÀëׯ—öÕ¼¼¼Ê•+Ë]£¬Èˆ®¡Ä+]¬¬[e¸ƒbS#íF§š¥ê œ={öÈ‘#Å¿tìØ±Ó§OÇÆÆÊ]£±ÖìJ*8sñ®Õ«©bªAj„j‚ã€t:Ýĉ=j>~ôèÑñãÇ !úôé#w.cML„ÃTsæbÙsPeÝî Øv# š¥êöíÛ?ñÄ~øáÃ?)„زeËîÝ»Oœ8a0úöíûàƒÊ]£“_tæ÷‡Ë¨ïÌŲ'£ú9P.Ú* ŽBˆI“&5oÞ|îܹYYYBˆÓ§O !ªU«6aÂó;;ªER$&ºžZÏ\,{JÚ™ àÑh7BÉÔ… yyyYYY………‘‘‘¡¡¡reó°Èo·ÐTs±øÜ´6%ÀC)65Òn„DeÁQR¥J•æÍ›Ë]…í‹røk§GDhsóÔ\ÔÕÇ6mÚÜõ1{÷î•»ÌRH‘‘°è.Å›‹ÙÙÙ"Bqïôê„yò=hˆ2Û¤F˜SMpÌÏÏ·1ƒAú¸zõê%Þ\f¦£hŽ–W¢K›°GÌ  ª Ž¿üò‹Åˆ^¯?sæÌæÍ›ß{ï½[·n½òÊ+r×x'eþ—£æhð2+§íY´O™4h7‚jîãXœ··w­ZµFŒñî»ï^¹råùçŸ7*çgN™¿´BÝ7èvÊü=k€ö)ó©Å©88š´iÓ&**ê?þøã?\±ý3gÎ4oÞ|òäÉ6Å)}¾~øaÅŠO?ýt“&MäÞê@XtNj R#¬¤ÜàXÆÕ0.õÛo¿ !-Z´hÑ"óñ5kÖ¬Y³&:::55Uî}£ÜmÑÉH€gP`»‘Ôë)78ºùj“Úµk÷ìÙÓ|äÊ•+;wî oÖ¬YõêÕåÞ1r¢¹è*¤FÀ3¡vÊ Ž6™:uêþýû·mÛæø¦:tèСCó‘£Gîܹ³E‹reYy]‹“ê¡¦à˜——·uëÖ“'OZŒß¼ysóæÍÞÞÞr¨„E7¡ÑxÚÐÕÇóçÏ4èôéÓ¥=`ðàÁrרzœ¶èV¤FÀ“¡ ª ŽŸ~úééÓ§[¶l™””´nݺ}ûöMŸ>ÝßßÿøñãË–-X©R¥¶mÛzBjäJ5!5ŒÔmSMpÌÍÍýøã{öì9pàÀ¯¾úÊtyµ¶‘U†åiJBj„Ó©&8®\¹rذa¡¡¡‡š6mZûöí_|ñEó;òh yQ}¸zðxŠj7’á ª Ž5zñÅwìØ±téÒ”+WîÿûßàÁƒ»víúÁüùçŸrè-F¨FÀã‘á Tÿ*×Ë«U«V)))»wï~ÿý÷“’’.\¸ðúë¯wêÔÉüº5¢Å¨V,O 5Âc¨,8šøøø$$$,X°`É’%111z½~ÇŽreZŒêÆ‘@j„'QÍíx,dddlܸqãÆYYYâïN¤ÜEÙFº±?Ü*F£€Âáj* Ž¿üò˦M›6lØpòäIiä¾ûîKJJêÑ£GHHˆÜÕY‹È¨zBSN»‘Ô7PMpœ?þ¦M›þøãéÓ:uê$%%%%%Õ®][îÒl@ÞÐþFj„§QMpü裄!!!={öLJJjذ¡ÜÙŒ¼¡E#5©&8öïß?))©eË–^^ê» ‡F£p˜!5Â3©&8¾úê«r—`'ZTZÀQ`†Ô¥šà¨Rä Õ£ÑàN¤Fx2‚£ ‘UCàN¤Fx8õ/¨DÕ㸩 ãèDucy€‚‘!#‚#p'R?€’(¤ÝHj„¼Ž.ÁÏ´*ÑhP R# !8BJ¥„Ô¨:!©²#8¤F¥RBjŒŒˆ$2B!¸ªžMGjP*%¤FÐeegɽ'€¿áÁ¤È(÷_ʤÔH¯ŠÂR5<×Á(©(Áž‡µie"5¥!8“Ðhp7²§F. †’á1h4¸%¤F"#”Œà "‚_ÅÊFjª¡u:!Œ";+[î:(š¼©Q't¤F¨GhËÓîF§BÈœ‰ŒP ‚#4Šë`XåiÀ&GhFV}yZpõ4Ô†àm¡ÑÀ:²§F"#Ôˆà ¡ÑÀ:¤FÀ>GhFV“15²< µ#8Býh4°š¼©‘ȵ#8BÍh4°…\©‘F#4ƒàÕ¢ÑÀj2Þ¬‘F#´„à¢ÑÀ,OÎBp„ÚÐh` –§'"8B=h4°‘Œ©‘ÈM"8B%h4°‘,©‘F#´àÅ£ÑÀF²\ Cd„' 8BÙh4°‘\F"#<ÁJE£€íÜŸi4£¡H4ØH®åi"#< Á C£€íh4îAp„’Ðh`;7§F"#<ÁÊ@£€íÜ¿<ÍÚ4<Á @£€íh4îGp„¬h4°‹;S#‘0!8B>4ØÎÍËÓ¬MæŽFv¡Ñȋ෣ÑÀvîl4ÒáF4ØÅmF"#P6‚#Ü…F#»¸'5káz4ØÅ=ËÓDFÀzG¸Fvq[£‘ÈXà—¡ÑÀ.4Å"8Â5h4°‘P8‚#œF#»¸amšÈ8ˆà§¢ÑÀvnh4§ 8ÂIh4°‹«DFÀ‰ŽplçêF#‘p:‚#C£€í\uýb"2ÎGp„h4°ëÖ¦i1®Fp„]h4°ëDFÀ=ްF6"2Ú@p„-h4°‘Ђ#¬F£€\t:#‘ ÁV ÑÀF®h4r¹4 ;‚#î†F#[¸.2’ÙQ:lAd4àˆRÐh`5§GFV¥e"8–ìæÍ›ÿ÷ÿ·råÊS§NU®\¹^½z#FŒhß¾½Üu¹FVsQd$/ÊDp,AQQѰaÃ>ضmÛ‚‚‚}ûöíܹó¹çž;v¬ÜÕ¹FÖqnd¤Å¨Á±_~ùåáÇ›7oþñÇûûû !~ûí·Ç{láÂ…;wŽ•»@× ÑÀ:®ˆŒäE@¼ä.@‰6nÜ(„xùå—¥Ô(„ˆŽŽ~ê©§ôzý®]»ä®Î5¤F#¿·”I§ûëÖŒŽ§FÝ_Ó…‘Ô¨ÇdggW¬X±aÆæƒÑÑÑBˆ?þøCîê\€åiwãÄ.#-F@½Ž%X¼x±åž9zô¨¢V­ZrWçT,O¸gEFÎb4€àX‚ XŒìÝ»÷ƒ>ðóóëÓ§5[ˆ‰‰±‘–¿%"2";+[!²å.ÅõN:%w °ÄAQ&óã!„ÈÊÊBd;ð‹"2"R‘•%}ší ¿tœŠÙuëÖMàxz½~ùòåóæÍÓëõ¯¿þzpp°5ÏÊÈÈ»ð2ýÝhŒr—â>4Yµà (SDDÄ]F;“e‹‘£í~XäUüÏzñ‘‡ 8–eß¾}ÉÉÉ'Nœ ›={v»víä®È8£@é¤.£# Ó,IFp,Yaaáüùó—.]Z¾|ùgŸ}väÈ‘¦+¬UŒ3”Nê2feeÛ×Ü"/ž€àXƒÁ0qâÄo¿ýö˜1cFHHˆÜ9F%Ñý•÷þê2Úq.#WIžƒàX‚¥K—~ûí·>úèŒ3ä®ÅIHŠqðriZŒ€"8Z2Ë–-«\¹òÔ©Så®ÅXžPŒ#‘‘¼x2‚£¥ .üþûïþþþƒ.þÕ¾}û>öØcr×h5ÌX¬JÛö\ò"‚cqÒí²nÞ¼™žž^ü«jº°šÔàov·É‹Ì-ÅÅÅ)ý.ŒwÅò4€¿ÙÉ‹JDpÔì]•Ö t›nò"€yÉ]œŠÔx¤FÀ-Ì®gÑ™ÿÐÀVG™W*1,’ÀAG9ø+,J ЄEp‚£Û‘ç)IŠà:GjrGR„Ep+‚£{Ñnl§Ó‘@ŽnDj¬fIŠ GŠpGR„EP"‚£»ÐnîARu!8º©BˆÞZ’"¨—ÜÐ2Йÿ3 £é_Vv–ÜÕlCÇÑõh7“ÜÑSäògЂ#‡Às]Œv#4‡¤‹à ,–wÉ!)€#8¸ƒEC‘kŸ&GWbjÀÒ3ÀJGÀ³°ô °ÁÑeh7BŠÇD–žv#8šÂ;>\‡à¨ E€;uЙò! E€LŽ®Á ŽpL 1Ñhú¾·ò 8òÓ™¯6KI‘˜P‚#àneÄDAR(Áp!Ý®ªFpœÃ2#J¸Õ6@CŽ®A<кâ1Ñh,ö.Ï$E€¶»(±•X<&ꈉ­#8ÿ(-#þõU³¤HLx ‚#0ý³xà_4’(ŽŽ#Té® Í"#"-L4ÀFt¡h%6M}D‹ÿ<«Ø3²²³h(à ‚#”Âú€X¼³Èº3nÀR5Ü­äwX)s¡Ùr Üg9áB¶ž‰XòFˆ‰(ÁNàxñŽ­ Þß%"8Â6Ni"Þ±AЍÁ%snñŽ-ÓP@Žp~ñŽÓP@+ŽžÅ¥ñ¯— ¡€F5Ë ñ¯")àŽZà¶Œø×Ë‘ðHGõ)]—ÿzE’" 8*Ÿûc¢ )€’Ç")º!& ’"°ÁQ~²$EqgX$)€»"8ÊÃ<,Ê’a؈àè>²‡E’"pÁÑåLy‘°TàèBRdtÿÕ-„Eà GWÑéÜz{EÂ"p5‚£K¸45šò"a¸Á±T_}õÕ—_~™™™Y¡B…Ž;Nž<¹J•*V>×é©‘æ"—Ü(Ô›o¾9mÚ´'N´lÙ²R¥J«V­zòÉ'oÞ¼éæ2tB'ý3 £éŸÜûx(‚c 222>øàƒÐÐÐ7~ðÁ›6m2dÈ‘#G,XàžŠçE¹w Á±$_~ù¥Á`?~|HHˆ4ò /nذÁ`0¸îuÉ‹@ÉŽ%Ø¿¿——W§NL#ÞÞÞñññ¹¹¹tÅ+’€ò-ÆÌÌ̪U«V­ZÕ|¼^½zBˆ?þøÃ¹/gåž:@Y¸ªÚÒ7ôz}PPÅx`` âÒ¥KÖl$&&ÆbdãÆæŸFFDJdeg !²E¶ÜóÖ¸S§NÉ],qP”‰ã¢@ÙuëÖMàhIºtºbÅŠã•*UB\¹rÅšddd”ñU©Åø×'rOØcDD°¯‡ƒ¢Lâ È«øŸõâ"Ap´¤Óénܸa1~íÚ5ñwßÑnÒíY•jDp´äããX¼³˜ŸŸ/„0]gm+"#P;.Ž)Ahhhnn®”M²³³¥/Ù±A.@p,Abb¢^¯OKK3Æï¾û®J•*Íš5³ukwœÑ ZÇôïßßËËë?ÿùt^£âƒ>¸xñâ#<âëëkÓ¦H@38DZááá“'Ož;wîC=tÿý÷ŸùäÍ›7å®Ë#غ󋊊† 6gΜ?ÿü³mÛ¶QQQûöí1bÄÂ… 垊v8òa4§NzíÚ5¹'¡5v”mÛ¶ 4hÛ¶m!!!Íš5;tèÐ!C¶mÛ&÷T´ÃÖƒ¢×뇺`Á‚¼¼¼ûï¿¿F›6mêÝ»÷þýû垊gYºt©Ü%ÈLJ?~¼~ýú÷ßÿùó祑W_}µ^½z)))r—¦}vìüå˗׫WoРA7nÜF~ýõ×V­ZÅÆÆþòË/rOH ü‰øä“OêÕ«W¯^½I“&É=í°ã \¾|¹E‹Mš49pà€4òÓO?Ýwß}íÚµÓëõrOH ìþõ5nܸ۷oK#»wïŽíÚµ«Ü³ñW®\Ù¿ÿôéÓ¥ßQ‡–»"Ðqt‚/¿üÒ`0Œ?>$$Dyá…7lØ`0ä®NãìØù7nB¼üòËþþþÒHttôSO=¥×ëY°v G~"~ûí·7ß|³~ýúrOBkì8(«V­ÊÏÏê©§š7o.4nܸ{÷î/^üùçŸåžØqP<(„:t¨4Ò¶mÛØØØœœœK—.É=!íKJJù$ @îyhŠ}%==½J•*Õ«W?pàÀ¡C‡._¾\¿~ýxÀÔª‡#ì;(½zõZ²dɬY³*T¨Ð´iÓ¼¼¼E‹:ujÀ€üÔ¸A‡¤¶oß.w-²!8:êÆz½>((Èb<00PÜùß…p:ûv~ƒ ,FöîÝûÁøùùY4W`»">üá‡>öØcíÚµ“r<œÅŽƒRXXxõêÕ¨¨¨W^yeÅŠ¦ñZµj½õÖ[÷ÝwŸÜsR=û~Rbbb–.]:lذaÆ™{ì±—^zIî ÁS°Tí(éò·Š+ZŒWªTIqåʹ Ô2Çw¾^¯_²dÉOqâDXXØìÙ³=ùœ'²ï Ì;÷Ô©S+V¬`Ôì8(åË——>xíµ×:wî,}üÌ3Ïœ9sfÕªUëÖ­ëׯŸÜÓR7û~R¦L™òã?¾ð Ç—FΜ93pàÀçŸ~Íš5‘‘‘rO ÚGÇÑQ>>>Åÿë0??_aºV®`÷Î/,,œ5kÖСCÏœ9óì³ÏnذÔè,v”~øaÅŠ£Gæ’ ±ã T¬X±|ùòþþþ æã<ð€âøñãrÏIõì8(þùçöíÛ£¢¢L©QþôÓOß¾}{õêÕrÏ àè¡¡¡¹¹¹ÒO»Ivv¶ô%¹«Ó8;v¾Á`˜8qâ’%K¿ýöÛgžy†.—sÙzP¤÷½X´hQÌß~øa!Äš5kbbbzõê%÷„´ÀŽŸ”___Ng>(ý°É=!-°õ äææ !êÔ©c1.5/\¸ ÷„àŽN˜˜¨×ëÓÒÒL#F£ñ»ï¾«R¥J³fÍä®NãìØùK—.ýöÛo}ôÑ… Òv[JíÚµ{ÞIºt1<<¼gÏžñññrOH ìøIIHHÈÏÏÿõ×_Í¥ÛÄp£M§°õ Ô©SÇÛÛû·ß~3æãBˆ¨¨(¹'Ï ÷ȵàôéÓõë×ïÖ­ÛÕ«W¥‘÷ß¿^½zóæÍ“»4í³fç_»v-++ë?þ0ƒáhÞ¼ùÍ›7å®]³l=(Å¥§§óÎ1ÎeÇAùå—_êի׿ÿÜÜ\iäÈ‘#Íš5kÙ²åÅ‹åžØqPF]¯^½·ÞzËôæ=¿þúk›6mî»ï¾ÌÌL¹'äA^~ùe}ç.Žq‚ðððÉ“'Ï;÷¡‡ºÿþûOž<¹wïÞ† Ž5JîÒ´ÏšÿÝwß=ÿüóÑÑÑ©©©.\øý÷ßýýý\|k}ûö}ì±Çäž“êÙzPä®×#ØqPbcc'L˜ðÆotëÖ­E‹7nÜØ¿¿N§›5kÖ=÷Ü#÷„´ÀŽƒòꫯöë×oÑ¢EëׯoРAnnî?þh0¦M›V·n]¹'@ptŽ#FT«Ví믿^¿~}XXØc=6~üxé® p5›vþ©S§„7oÞLOO/þU.‘q~"ÈŽƒ2zôèààà%K–ìÞ½»J•*‰‰‰Ï>û¬ô6Kp [Jppðúõëßÿý;wîØ±£J•*;v3fL£Fäž <…Îxç©@‰¸8V!8À*GX…à«`‚#¬Bp€Uް ÁV!8À*GX…àÿ˜úÈâaÇŽ6lXzzú­[· ƒÂh4N:õùçŸß¾}»Ñh Ü»wï¼y󜗗gþܵk×>ñÄß~ûmùòå/_¾¼mÛ¶'Ÿ|òí·ß6=àâÅ‹ƒ^¼xñ™3gî½÷Þš5kþñÇŸ~úé AƒlÝ”õZ´h1tèP???N7tèÐG}´GBˆM›6™?Ìh4¦¦¦ !z÷î-÷± 5G*sèСN:íÙ³çÛo¿=xðà /¼ Óé^ýõß~ûÍüaÓ§OoԨѧŸ~ºk×®{ï½W±zõ꯿þ:$$ä‹/¾øþûï7mÚ´}ûö¦M›:tèÝwß5îªU«÷íÛ'½Ä”)S¼¼¼-ZtäÈÓrrr:wî¼k×®¯¿þzÍš5;wîlÙ²åéÓ§·nÝjÓ¦¬×¹sç—^z©B… ^^^/½ôÒäɓ۶mtàÀ‹/švðàÁÓ§Oßwß}QQQr+ZCp 2!!!ï¼óNPPÂÛÛ{øðáƒ6 ‹-2XÅŠ?üðÃvíÚK#o½õ–bÖ¬YÍš5“FÂÂÂÞ}÷]??¿/¾øâܹs¦ç†‡‡¿ýöÛBŸ‘#Gr(Dp 2<òˆŸŸŸùÈ!C„‡6|衇ʗ/oúôÏ?ÿ<þ|XXX||¼ùÃBBB:uê¤×ë;fìß¿¿Oñ—8zô¨ô騱cßÿýºuëšpáÂ…uëÖ¯ö®›rP÷îÝ…ÙjuQQц |||zöìéÂcÀSq;*a1R³fM??¿sçΖ+WN”–§Mrrr„uêÔ)¾ÁÚµk‹;;…‘‘‘%¾Ä… ®_¿.uOŸ>ýý÷ß8pà?þøý÷ß-Nm´iSŽhݺuÕªUøá‡¼¼¼*Uª|ÿý÷—/_îܹsÕªU]~$x:ŽTF§Óñöö6 æ7è‘V‡MŒFciôööBܾ}û®/áåååëë+„X±bE×®]_yå•#GŽÔ­[wĈŸ~úéôéÓ­¯Ö´)y{{?øàƒz½^:·’uj.EÇ€Êdgg[Œœ;wîÆÕ«W¯P¡BiÏ’z' J¤f¤yk°øKœ={öƵjÕ*W®Üµk×fΜY®\¹Å‹wèÐÁ¼ kª5ß”SvH÷îÝW¬X±qãÆ=zlÛ¶- !!ÁÙ{„ ã@uþ÷¿ÿš,]ºTqß}÷•ñ¬ÐÐÐjÕª9sfçÎæã.\ؾ}»··wll¬ipåÊ•7w”^"..NñóÏ?ëõú¸¸8óÔ(„8~üxñ×-{SNÑ¢E‹ààà={ö¬\¹²   gϞΊ¤`à@eÎ;7~üøüü|!„Á`X¾|ùgŸ}æååõì³Ï–ýÄçŸ^1mÚ´ôôtiäüùóÏ>ûlAAÁ€ÂÃÃMüã?&L˜pýúué%–,Yòßÿþ×ÇÇgìØ±BˆÐÐP!ÄñãÇM7ÁÑëõ_|ñ…t#î›7oš¿hÙ›²Á`¸qã†éSéÚꢢ¢7ÞxC°N À•Xª 2=zôøöÛoÛ´iS§NiÙ×ËËk„ õë×/û‰}ûöݳgÏÚµky䑚5kúûûŸ8qÂ`04kÖlüøñ按‰Ù¸qãæÍ›#""NŸ>}óæMŸiÓ¦I—ÑDFF&&&nݺµK—.Í›77yyyƒ^²dÉÿþ÷¿«W¯Î;ךMÙ!(((//oРA÷Þ{¯éö“=zôøüóÏoÞ¼Y»ví¦M›Ê}ˆhÁ€ÊôîÝ{ðàÁüñÏ?ÿ\©R¥¶mÛ>þøãmÛ¶½ë½¼¼,XЩS§µk×?~üÏ?ÿlÕªU||ü°aäëcL>ýôÓ7nݺõèÑ£UªT騱ãðáÃÍÙ믿þÉ'Ÿ¬_¿þÀ5kÖŒ>|xtt´^¯_»víþýû­ß”­^xá…Y³f8q¢  À4ؼyójÕª]¸pv#—Ò•q¥!(Êäɓ׬Y³xñâN:É]‹² †ÄÄijgÏnݺµFr—@³8ÇTo÷îÝgΜiÙ²%©€K@ÝnÞ¼ùæ›o !yä¹k qœã*Ö²eË‚‚‚¨¨(éͲÀuŽT£GõêÕ+þ&~ž,,,ì÷ßOII±¸ÄœŽ‹c`Îq€Uް ÁV!8À*GXåÿtÚwDÏIEND®B`‚statistics-release-1.6.3/docs/assets/gevpdf_101.png000066400000000000000000000764211456127120000221350ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A|ØIDATxÚíÝy\õþÇñïaQÙ APSDÜ×rGÔ µ4õ¦ijš™Y¹£–W/hšK{YÚrË%»©?Í%4÷pÁôª^#°ÌQT$„3¿?¦NÇsXæ¬s–×óÁã^øž93Ÿ&Ï›ïw¾3I’Pµ €s 8@‚#!8@‚#!8@‚#!8@‚#!8@‚#`eû÷ï;vltt´ŸŸß}÷Ý÷àƒŽ1âàÁƒj×eMÿüç?5F£éß¿¿Ü²lÙ2¹¥M›6v+ãÕW_•7úÈ#Øm£[¶lùú믿þúë+W®Øm£ŽÏø”°ƒ“'OjJãççתU«gŸ}öܹs.ïååÜ®]»þóŸÆ¿Ó²6¡oÚ´ij~À~Ž€Õäçç0 S§NË—/ÿå—_nݺuíڵǯX±¢C‡ W¯^U»FXjÈ!ýúõëׯß?þ¨v-(Ý­[·Ž;öÑG5jÔhÇŽå/\RR’››ûý÷ßÏ›7/:::--Míò‡æ¥v€‹¸yófçÎøá]‹‡‡‡F£)))‘LIIyì±ÇvíÚU¹reµ‹µ>??¿zõê !ÂÂÂÔ®î(44Ô××Wq÷îÝ .hµZ!ÄíÛ·Ÿ}öÙôôôªU«–µüíÛ·uyyyƒ ÊÌÌôññ)g‚‚‚ÔÞ{À~èq¬ãùçŸ×¥ÆÎ;ïÝ»÷úõëwîÜ9qâÄ?þñ¹ýàÁƒÿú׿ԮÔ&ž|òÉììììììM›6©] ÜÑêÕ«å3ðܹs7nÜ5j”Üž““³{÷îr–¿|ùò¯¿þúôÓOËíçÎûàƒÊß„—_~Yí½ì‡àXÁ?þ¸jÕ*ùûÁƒïÚµ«K—.~~~ÞÞÞ<ðÀþóŸ#Fȯþç?ÿ1xï¥K—&L˜Ð¾}{??¿  0àØ±cú è_=–——7eÊ”6mÚøùùµhÑbþüùwïÞµd…ÅÅųgÏ®]»öìÙ³åWµZí—_~W·nÝÊ•+×­[·k×®Ÿþ¹ñ†ô_ãVÖ5a—$VX°ì×_}â‰'‚ƒƒkÖ¬ùøã9rDù/¨üMìܹSWÛŒ3äÆ[·nË­[·.))™9s¦F£¹uë–¼@÷îÝ5ÍíÛ·+<¤&ýR tæÌ™¡C‡Ö«W¯víÚC† ùé§Ÿ„iiiO<ñD½zõî»ï¾¸¸¸½{÷šú{70zôhy‹qqqúíkÖ¬‘Û«T©"ïy§DYW=2¤ÔKM­¿ÕªU{ï½÷¼½½åþùçò—¯S§Î§Ÿ~ª«sþüùòŽ(…ÀbãÇ—ÿƒª\¹òï¿ÿn¼À… Fþåòå˺ö]»v…††üW©Ñh&Ož¬[fÖ¬Yr{×®]cbb 4hþ†LZa¿~ýt‰vÖ¬Yò«ºþQ,u rˇ~(·´nÝZn©Y³fYÿìôêÕˤ‚%I:räˆÁ ýüüŒWhLÉ&†*·W©RåâÅ‹’$½úê«r‹§§çÑ£G%IÒeJ}·nݪðšôKiÑ¢Epp°þ’5jÔxûí·u1H÷ö½{÷šzõ¥¤¤È‹y{{çççëÚG-·?þøã–œÆ-²ÁƒËíS§Nµ¤~I’ÒÓÓu ïܹÓàÕððpù¥3f(Y^?‹oÛ¶MÉ[7Dp¬ Q£FòGËàÁƒ•¿ëÆ5jÔߨ­[·ýë_C† ñðøsà“O>‘Ó}ËêÖ­Û®];ý %¿ÿþ{óVX»vmÝJ䔣ëÕh4ݺu>|xÓ¦MuËìÚµË` åÇÄÄÄçôtëÖM·ÝQRXðüQ·n]¹ÑËËëÁ”¯§Ô)'8*ÜÄ¥K—tWªMœ81??¿zõêºåe®^½š™™Y¥J¹ýóÏ?ÏÌÌÔjµåR3~Ë<ð€®˜˜˜Zµjé~Œ‹‹3i évyãÆºvݱýâ‹/,9%”Góê—ÊMuyyyžžžk(?jµÚJ•*ɯ&''+y à†Ž€¥´Z­î#jΜ9Êߨ»4J¿çæÝwß•ï¿ÿ~¹E?R¼ûî»rã©S§tÙñý÷ß7{…7^µjUZZÚ™3g$IÒ]é5eÊÝZµj%7.Z´È` åG}ׯ_ŠŠ’ ÕuÊ*,øý÷ß—[üüüÒÒÒ䯉'* Ž 7!IÒG}$7V®\yܸqº xóæMýV«VÍ8F”sHÍø¥lݺU’¤¢¢"ý´ýÖ[oI’TRR¢ë 6u è~ÝcÇŽ•[Μ9#·øøøÜ¸qÃ’SByp4»þRSÝÝ»wO:Õ»woÝKÿýïËY^ßý÷ß/¿úüóÏ¿¥Tº¿+7Á5Ž€¥®_¿®›:­ûà‘½þúëÆWø8p@~uÛ¶mò7cƌѽåé§Ÿ–c诿þjpצM›¾ð ò÷5êÔ©“üýÙ³gÍ[a•*UvìØ1tèÐvíÚÕ¯__ñÄO¬ZµjÕªU&L—ÉÏÏ/((¿¿víšÇG’¤#Fœ>}Záééùå—_êÆ¼fÍù¥_|±]»vò÷ . ©pëÊÉèÑ£;vì(„(,,ÔMxï½÷tIQ ãCjê/¥uëÖò¼··÷ AƒäÆÀÀÀ—^zIááá¡ ^ׯ_7ï÷®£ƒÖ­a×®]ò7={öô÷÷¶9%Ìþ•C¾äT£Ñx{{ÇÄÄlݺUnôÑG[¶l©°’ûî»O·–ïà’¸`)ÝØ¥¤›BÿòË/ò7?üp© œ>}ºyóæº4h ÿªn(S¾óˆ+ŒÕe8ý7æååmß¾ýèÑ£Ç?räÈÍ›7-9> ,øúë¯ußwíÚÕÔ# [LVM¥J•zöì©›“dùAÖh4Ë–-kÑ¢…nÎÇc=öØc™´³Æ‡ÔÔ_Šþ`´îæ/áááÆ ÑìMèÄÇÇååå={öçŸnÔ¨‘.88PÖ=%¬U…š6múöÛo+_>77WþFÍJ½ñ€k#8–òññ©Q£†O:¥ÿ’¿¿¿îŠ±Ë—/ëúi„ùùùºù¹e1¸a¸.:”ú£+4˜„!„(**š9sæ;ï¼S\\,·øúú†„„\¾|Ù¼ƒ³cÇŽþóŸò÷ýû÷ןH«°à[·né¶n0?¦N:å¿ÝÔcÒ¸qãž={ê:«ôGÃ28¤–ÿ–eº þ,ßG}ÞÞÞýúõû÷¿ÿ-„HII‰ŽŽÞ³gÜÞ·o_y«ŸV¬_Ÿ~ªóòòjܸqûöí'L˜`ÒmS/^¼¨[›ñ««W¯Ž·Ê^΋àXA·nÝä97n¼|ù²nu̘1òè[qqqݺuõƒ£¿¿¿ŸŸŸÜsóí·ßÊÚt3”0c…ÆåÕW_}ã7„õëן:uj‡7nüÜsÏ}òÉ'f–_ýuÈ!r‡hTTÔgŸ}fFÁ¾¾¾•*U***B\¾|922R÷ê7¬{L>¬›k,„HJJÒïUÂàZý·lù>4h·mÛÖ½{w9Ê=‘òÖ=%¬^¿Žå©nÿþýòi&„hÛ¶­Uöp=GÀ &Nœ¸víZ­V{ãÆ &¬\¹ÒËëžÿ¸–-[vþüyƒwEFF?~\Q\\¬? }íÚ5I’Diƒ’å³|…K—.•¿yÿý÷{õê%oðÀ_…þøãÈcUªTù¿ÿû?ãá?%{zzFDDddd!¶oßÞ¾}{yéÞû§X~LŠ‹‹Ÿ}öYݸ¿bïÞ½ÿþ÷¿u³CÌcõß²u7ѽ{wy´zß¾}›7o–uãÔ‚SB—¡u×bÊŒ»*ípˆ”Ð jW­ZµC‡vØ"àŒ˜XÁƒ>8vìXùû/¿ü²sçÎß}÷<÷Ã?Œ;V7©E_÷îÝåo–/_.@ !Ö¯_ß}÷׫WÏÔ+É,\áÍ›7uc‚ºûÿþ÷¿¥>x£B/¼ðÂÑ£GuõèßÃÅÔ‚[·n-¿ôÎ;ïèn =þüÿýïV<&¯¿þº< Ãßß_wïî©S§–uݪ®wʦ¿[oB­Büñǯ¿þºÂÓÓSwe§%§„îB‚Çë®bü¿ÿû?ã¸o‡CT¾‹/>ûì³ëÖ­“|ê©§üüülºEÀyÑãXÇ‚ ¶mÛ–-„8tèP—.]<<<*UªTXX(/ðÐC:tHÿ-3gÎüøãóòò6nÜØ­[·.]ºœ°Ê)¡Šê¿W׿hêykÌÔ»sWxSÆêÕ«:tÈ’M.¡jÀjBCC÷ìÙ³yóæ'žxâþûï÷ññ¹ï¾û:wîüÙgŸmܸ1$$Äxªfß¾}øá‡gžy¦eË–UªT©_¿~ÿþý÷íÛ÷Á”:»¶B®ðÍ7ßlÖ¬™øëá%“&M:~ü¸nàrÍš5º1GkQXð'Ÿ|¢{®cHHÈ£>ºsçÎÎ;[e«W¯þöÛoå…gΜ)S>ýôÓº‰ãÆ»sçŽî :4$$¤jÕªM›6-g¾³í~ËÖÝ„n´ZáááaðhiKN‰+V¼úê«Íš5«ZµjllìK/½”––f<—ß>‡¨,žžžÕ«WoÛ¶í?ÿùÏŒŒŒ|Ц›œFúë‚Bܽ{wË–-BƒáŽ=ºgÏž±cÇ–z›=؈#ŸìŒàEª€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"^jà‚¢££Õ.ØVFF†Ú%¨€àhÎx2EGG;cÙ΋ngp;ã€ÛÜÎܶ“ˆ¡j(Bp€"G(Bp€"G(BpÄŸ¶mÛ¦v î…ngp;ã€ÛöAp»Òh4j—f"8€½‘8)‚#ØF£‘$Ií*ÀLG°7I’ètàŒŽP„àEŽP„àE¼Ô.àŽ¢££Õ.ø[FF†Ú%8‚#؉þ½xä‰Õn~k>ªá ø3F9†ª ÁŠ ÁŠ ÁŠ ÁŠ@ò=ÀÕ®LÀ“c¨€V«Ý¼y³A£··wBB‚Ú¥vEp wïÞíׯŸAc```^^žu7Ô¹sçøøø9s樽ÇÎT›Ãæ’ª >>>%%%O=õTçÎÏ;'I’$IVOÇ?pà€Úûêdµ9la®ŠG*¶cÇŽÕ«WgeeÕªU˺k...Þ½{÷Áƒ—.]ªÕjÕÞQ«ÕVTT$„¨T©’£KÀ4$IjW󥦦†‡‡×­[×êkÎÍÍ}øá‡Í~û‘#G’’’Ž=zéÒ%ýv//¯»wïªX[tttíÚµSSSu-III[¶l9räˆê f#8P±:uê\¼xñÌ™3 4°îšCCCå?*2225jdÒ{wîÜÙ³gÏ:uê<ýôÓU«VݰañcÇZ¶lÙ­[7+\fImÆrrrŽ=ªúAƒ%ŽTløðáŸ}öY—.]¦OŸÞ¼yóÀÀÀððð5j¨XRaaáˆ#ÂÂÂ>\³fM!Ä´iÓzôè‘‘‘1{öl???µ\Á€ŠùúúÎ;wܸq/½ô’ܲdÉ’)S¦,V\\¼uëÖ²VòØcY±¤ÔÔÔóçÏ'''Ë©Qáã㓘˜Ø·oßõë×9RÅÚLâ°…ÁÁà@Ô½'z9—¡Î›7/))iÖ¬YO=õT½zõʾ}û¶ñ{ôÖoÍë\srr„<ð€~cóæÍ…éééêÖ&+))Ñÿ±¬Y,ö/ f#8€jä‡Çð¹¨Ï1FNNÎìÙ³/^lÜÅh Àn¿P___!Dqq±~£ÎJ͵ö¬MöÇèÿxçÎR³a0Á€ :tH’¤øøø —´ç¨kTT”âÔ©Súr_ctt´ºµÉΟ?¯ÿã… T?h°Á€ øøø!6lØÐ¢E‹ò—´ç¨kË–-###ßÿýñãÇ !ŠŠŠ/^\­Zµ>}ú¨[›ìâÅ‹[¶l‘‹ÉÊÊ:qâ„ê âÉ1T OŸ>Íš5KNN0`ÀǼuëÖÔÔÔ[·n/)º–ÅŒM¯Y³&((hòäÉÆ/y{{¿ýöÛ¹¹¹-Z´X°`Á¢E‹:v옚šº`Á‚ÐÐPuk“yyy µÁFŽTÌÏÏoÁ‚ ,B”””œ8q¢mÛ¶)))V ŽÑÑÑÆl#FŒ¸{÷n©³¤e±±±›6m²õî›W›F£™9sæÌ™3u-ÉÉÉv( ¶ÃPu²²²¢££øáµ 8 OOÏÈÈHI’ä+ mª°°pÏž=¶î×t½Ú`#Ç ¬\¹Ríç믿–$©cÇŽ¶ÞСC‡bbbž|òIµ÷ØÉjƒ0T]ºüüü_~ùeóæÍ_~ù¥ÚµN‡.\hpóm[ˆ‹‹‹‹‹S{wÍ©mܸqþþþj×+#8–®oß¾/^T» €ƒjРAbb¢ÚU84ŽK"8–îÕW_•ïw¿jÕªƒª]€úŽ¥Ó]¶²gϵkàÊxê 'Bp´ ãg=mÛ¶Mí¢*pîÜ9µKp/p;s„žmÆKNÊ8 \ùÿ öêÕKíÁÑ&222Ô.Áj—à^8àv¦ú/§Õk³óþަüÓÕøc½Ô§»nÇEŽP„àEŽ`sÌ›àŽP„àE¸Ðjµ›7o6hôööNHHP»4À®Ž˜7oÞ¼yóÔ® ¦»wïöë×Ï 1000//Ï*ë¿qãÆôéÓ¿ùæ›k×®µlÙrÑ¢E>ø`Y•øúú–””è7_¹rEíƒtÎ;ÇÇÇÏ™3GíBœ¦0gAp >>>%%%#GŽ<{öì_|Q«V-+®xðàÒ¥KµZ­Iï-**BTªTÉÑ ƒ‚#¨L’$î×ãøRSSÃÃÃëÖ­kõ5ùå—aaaÇ—¬_¿þÀ?ýôÓ .„……,,ÇÈÈHó¶uäÈ‘¤¤¤£G^ºtI¿ÝËËëîÝ»îHnnîÃ?lÞ{£££k×®ššªkIJJÚ²eË‘#G,¬ÊÂÂ`€YÕT¬N:/^>>~~~k×®]¶lÙþýûå¾:%vîÜÙ®]»Ÿ~úéé§Ÿž;wnË–-…-[¶œ:uêäÉ“-ß—ÐÐPI’$IúùçŸ-_[NNÎÑ£G­r­[˜›£Ç€Š >ü³Ï>ëÒ¥ËôéÓ›7o^£F W{éÒ%I’BCCõCBB„¥ÎwÉÌÌôððˆŒŒÔÍˉ‰‰Y¹re«V­ÊßPaaáˆ#ÂÂÂ>\³fM!Ä´iÓzôè‘‘‘1{öl???µ0œÁ€ŠùúúÎ;wܸq/½ô’ܲdÉ’)S¦,V\\¼uëÖ²VòØc´!üýýõ„¹¹¹ÆkÈÌÌÔjµIIIôööÞ´iÓ¤I“úõë—žž.¿«,©©©çÏŸONN–S£ÂÇÇ'11±oß¾ëׯ9r¤…;b7[˜› 8ˆFh,_‰Ù$Q敦óæÍKJJš5kÖSO=U¯^=Ò¯õº}û¶ñ{þ^¿Ñ•¬ÁÁÁBˆ›7oê7æçç !ªW¯n¼†½{÷V®\Y÷Ò¨Q£ Ç¿nݺѣG—³k999Bˆx@¿±yóæBˆôôtËwÄr÷*k‹ý ƒ>‚#À”ÝT”““3{öìÅ‹w10)»„††zxxŒJ_½zUQêôíððpƒ–ž={ !Nž}„—/_^·n]=""" –ôõõ:uj›6mvíÚåíí-„Ðjµ‹/öòòêÑ£Gù…µlÙ222òý÷ß?~|`` ¢¨¨hñâÅÕªU“·kùŽXèâÅ‹ºƒ••uâÄ kaX·ã }úôiÖ¬Yrrò€>þøã­[·¦¦¦ÞºuËxIy µ,¥®|äÈ‘<ðÀСC_~ùåE‹uíÚµ   ))I~uáÂ…AAA~ø¡"$$$)))555**jܸq3gÎlݺõ—_~™œœÜ¸qc!Äš5k‚‚‚J½·Ž··÷Ûo¿››Û¢E‹ ,Z´¨cÇŽ©©© ,0˜ÓmöŽ”¯œÚd^^^ƒ2dÈO<ѬY39Û¡0˜„G*P©R¥ÌŸ?ÇŽS§N½qㆢJ•*©©©òÝ-áïï¿oß¾iÓ¦­[·.//Z½zµîyƒ………ׯ_×]ÿ—˜˜Ø AƒE‹­ZµªråÊÍ›7OIIéÕ«—üjQQÑõë×˺:0!!!--mΜ9K—.-,,lÑ¢EJJŠÝîŒ]~mBˆvíÚõîÝ{Ù²eÅÅÅcÆŒñ÷÷Ÿ;w®}jƒr<«Àú¢££322Ô®ÂdÙÙÙÆÃ"°¸©{À+|0Œë=9¦Âî¤ÿTÊJJJNœ8ѶmÛäääW^yEírîññǧ§§¿õÖ[jbZmOޱ'3ÎF§>-ÁP5¦ñôôŒŒŒ”$I¾XÐqîÙ³ÇòNPw« Ê0Ù×_-IRÇŽÕ.ä‡Љ‰yòÉ'Õ.ÄÉjƒr\ãê“$ÉõF«][‡.\hp?mÕÅÅÅÅÅÅ©]…9µ7Îàñ9pLGLÖ AƒÄÄDµ«pLgÁP5!8@‚#!8@‚#!8@‚#!8@‚#!8@9@´ZíæÍ› ½½½Ô. °+‚#Ø–F£‘$©ÂÅ$IR¸$ìïîÝ»ýúõ3h ÌË˳î†:wî?gε÷ØÑk»{÷®¯¯oII‰~cppð•+WÔ.ÍŨ€OIIÉÈ‘#Ïž=ûÅ_ÔªUË[9~üøâããÕÞ]'¨-;;»¤¤¤}ûöõë××5V«VMíº\Á€ŠíرcõêÕYYYVOÅÅÅ»wï>xðàÒ¥KµZ­Ú;jµÚŠŠŠ„•*U²Ea™™™BˆäädÇɲn‚à@ÅRSSÃÃÃëÖ­kõ5çææ>üðÃf¿ýÈ‘#IIIG½té’~»——×Ý»wU¬-::ºvíÚ©©©º–¤¤¤-[¶9rÄòƒ&ÇÈÈHËW“¨X:u.^¼xæÌ™ XwÍ¡¡¡òµ­52é½;wîìÙ³g:už~úéªU«nØ°áØ±c-[¶ìÖ­›‡‡nœbImÆrrrŽ=j•ƒ–™™éãããçç·víÚk×®5iÒ¤mÛ¶6êÝ„>‚#>|øgŸ}Ö¥K—éÓ§7oÞ<000<<¼F*–TXX8bĈ°°°Ã‡׬YS1mÚ´=zdddÌž=ÛÏÏOícfC™™™‘‘‘ºùI111+W®lÕª•Ú¥¹8‚#óõõ;wî¸qã^zé%¹eÉ’%S¦L1X¬¸¸xëÖ­e­ä±Ç³bI©©©çÏŸONN–S£ÂÇÇ'11±oß¾ëׯ9r¤Šµ™ÄŒÂ233µZmRRÒÀ½½½7mÚ4iÒ¤~ýú¥§§¨µ#î€àp$š[/ûvHóæÍKJJš5kÖSO=U¯^½²‚oß¾m|ã½Õ[óvK999Bˆx@¿±yóæBˆôôtuk“Ü.§¬é5f¶wïÞÊ•+W¯^]þqÔ¨Q………ãÇ_·nÝèÑ£­¾#Ð!8‰CÞÉ2''göìÙ‹/6îb4`·›qúúú !Š‹‹õåpVj®µgm²?þøCÿÇ;w˜……‡‡´ôìÙSqòäI{î "8PC‡I’¤äÎ/öŽŠŠBœ:uJ¿QîkŒŽŽV·6Ùùóçõ¼pá‚UÚÙ³g·lÙÒ­[·˜˜]c~~¾ÂÓÞ¡à@|||„6lhÑ¢EùKÚs8¸eË–‘‘‘ï¿ÿþøñã…EEE‹/®V­ZŸ>}Ô­MvñâÅ-[¶ÈÅdee8qÂ*Í××wêÔ©mÚ´Ùµk—···B«Õ.^¼ØËË«GVß è³Â\}\[Ÿ>}š5k–œœ<`À€?þxëÖ­©©©·nÝ2^Ru-‹›^³fMPPÐäÉ“_òöö~ûí·sss[´h±`Á‚E‹uìØ155uÁ‚¡¡¡êÖ&óòò;îÎŽà($IÒh4vž¾…üüü,X°`Á!DIIɉ'Ú¶m›’’bÅàmüÛ1bÄÝ»wK%-‹Ý´i“­wß¼Ú4ÍÌ™3gΜ©kINN¶VI 0`€­wªÀ4žžž‘‘‘’$ÉWÚTaaáž={lݯézµÁFŽ˜ì믿–$©cÇŽ¶ÞСC‡bbbž|òIµ÷ØÉjƒ0T €É:tè°páBƒ›oÛB\\\\\œÚ»kNmãÆó÷÷W»FXÁ“5hÐ 11Qí*ÇÇ%1T EŽP„àEŽP„àEŽP„àEŽP„àD’$F£vP:‚#!8@žU @´ZíæÍ› ½½½Ô. °+‚#¸{÷n¿~ý óòò¬»¡Î;ÇÇÇÏ™3Gí=þÛ?þøê«¯îÛ·ïÖ­[5:tè‹/¾èå¥r~¸{÷®¯¯oII‰~cppð•+WÔ-Ì娀OIIÉÈ‘#Ïž=ûÅ_ÔªUË[9~üøâããÕÞÝ¿eeeuíÚµ¤¤¤ÿþ÷ßÿÎ;'OžüÝwßmذAݲ³³KJJÚ·o_¿~}]cµjÕT>^n€à@ÅvìØ±zõꬬ,«§ÆâââÝ»w}jÖ¬©¹—···åµíÞ½»sçÎrj”½ð BˆC‡UøÞèèhƒT—””¤¿*KÈÁ122Ò*kƒrô8P±:uê\¼xñÌ™3 4°îšCCC%IBddd4jÔȤ÷îܹ³gÏžuêÔyúé§«V­ºaÆcÇŽµlÙ²[·n–ö ?¾uëÖúgÏžBøøø˜±Âœœœ£GZå effúøøøùù­]»öÚµkMš4iÛ¶­z7¡à@ņþÙgŸuéÒeúôéÍ›7 ¯Q£†Š%Ž1",,ìðáÃ5kÖBL›6­G³gÏöóó³pý^^^ ,Ðo¹víÚ‚ <==¨âŽ !233=<<"##uó“bbbV®\ÙªU+u syG*æëë;wîÜqãÆ½ôÒKrË’%K¦L™b°XqqñÖ­[ËZÉc=fÅ’RSSÏŸ?Ÿœœ,§F!„Obbbß¾}ׯ_?räHëÖ¶wïÞgŸ}633óƒ>ˆŠŠ²âŽ˜QXff¦V«MJJ8p ··÷¦M›&MšÔ¯_¿ôôô€€+ÖG€Q÷y‹RÙ/Í›7/))iÖ¬YO=õT½zõʾ}û¶ñ{þ^¿TÎL–““#„xàô›7o.„HOO·bm¿þúë /¼°y󿍍¨;wvëÖMa…·Ë)kê…íÝ»·råÊÕ«W—5jTaaáøñã×­[7zôh+d 8ˆ5ƒ•õäääÌž={ñâÅÆ]Œ¬›Ëáëë+„(..Öo”ÃY©¹Ö¼ÚÖ¬Y3vìØjÕª-[¶lÔ¨Q&ÝÁñ?þÐÿñÎ;Ö:hááá-={öBœT½fÍšçŸþé§Ÿ~ã7 ^òöö~ûí·û÷ïߢE‹±cÇzzz®[·îèÑ£ï¼óNhh¨ñªL­íÔ©S?ÿüsLLÌ3ÏŒ¨@¥J•80þü;vL:õÆBˆ*Uª¤¦¦¶lÙÒ¦›.**º~ýzYW&$$¤¥¥Í™3géÒ¥………-Z´HII©ð™. É7Ù>uê”Áh¸"22²oß¾å×&„h×®]ïÞ½—-[V\\ppGLÖ AƒÄÄDµ«ph—ÄP5!8@‚#!8@‚#8I’4ÚU€!w™U½víÚ¯¾ú*33³J•*]ºt™6mZPPP9Ë}þùç)))ÙÙÙAAAÍš5{á…¢¢¢ÔÞÕ¸Eã›o¾9kÖ¬3gδiÓ¦ZµjëׯöÙgËy¶fIIɈ#–,Y’——שS§Zµjmß¾ý±Ç;räˆÚ» ×ŽË—/ ݶmÛòåË·oß>|øðüqÉ’%e½å?ÿùϱcÇyä‘;v¼óÎ;+W®ü÷¿ÿ-„˜5k–Ú{ ×Ž_}õ•V«8qbHHˆÜ2cÆŒ€€€””­V[ê[Ž;&„1b„—ןCù=ôPLLLNNεk×ÔÞ!u¸~p>^íÝý[vvvIIIûöíëׯ¯k”?C]¬°òOWãuã"7áâÁ100P£Ñ´ßºuKüÕïh,11ñ¿ÿýïŒ3ž~úi¹åüùóƒž4iÒ¦M›ôÏQ€›Ø±cÇêÕ«³²²¬ž‹‹‹wïÞ}ðàÁ¥K—–5kS-™™™Bˆääd3âlQQ‘¢R¥JŽV,áâ“c¼¼¼Œ{óóó…ºyÖú._¾¼gÏžÈÈH]jB„‡‡?ÿüówïÞݰaƒÚûPAjjjxxxݺu­¾æÜÜ܇~8))ɼaÖ#GŽôéÓ§fÍšš{y{{[^›œÏ"##Íxott´AªKJJjÓ¦Uš%…Á.Þã(„ ÍÌÌÌÏÏן×"_Êj¼|nn®¢^½zírG£êWuTQ§N‹/ž9s¦AƒÖ]shh¨$IBˆŒŒŒF™ôÞ;wöìÙ³N:O?ýtÕªU7lØpìØ±–-[vëÖÍÃà }C™™™>>>~~~k×®½víZ“&MÚ¶mkv'bNNÎÑ£G­rЬ[”sýàŸ‘‘‘ššÚ»wo¹E’¤}ûöÅÆÆ/_¯^=OOÏÓ§O<+V¾¾?nÀ= >ü³Ï>ëÒ¥ËôéÓ›7o^£F K*,,1bDXXØáÇkÖ¬)„˜6mZ=222fÏžíççgù&233=<<"##uÓ€bbbV®\ÙªU+wÜ‘ sy® ôᇾ÷Þ{]ºt‘/›]¾|ùÕ«WŸyæ]7þíÛ·/_¾ìíí]»vm__ßÎ;ïÙ³çwÞyñÅå¿ØNŸ>½téÒJ•*ÅÅÅ©½CÜ‚ü·«ÜGàëë;wîÜqãÆ½ôÒKrË’%K¦L™b°XqqñÖ­[ËZÉc=fÅ’RSSÏŸ?Ÿœœ,§F!„Obbbß¾}ׯ_¯c³kËÌÌÔjµIIIôööÞ´iÓ¤I“úõë—žž^Ö<38la0æúÁ1<<|Ú´i .|ôÑG;uêtöìÙ´´´&MšŒ3F·Ì¾}û&MšµeË!ļyó¸téÒo¾ù¦qãÆ¹¹¹ÿýïµZí¬Y³¬>B¸‡ÆòUX ì >oÞ¼¤¤¤Y³f=õÔSõêÕ+k øöíÛÆ7îù{õVýK ''GñÀè76oÞ\‘žžn•ÚöîÝ[¹reݽGUXX8~üøuëÖ=ºÂ n—SÖÔû³¹~pBŒ5ªF7nüæ›o† 6qâÄr&íóÍ7~øáþýû÷îÝÔ¥K—qãÆ5kÖLí]Wç}¬999³gÏ^¼x±q£€€»õûúú !Š‹‹õåpVj®5£¶ððpƒ–ž={ !Nž<©äíüñ‡þò=ò¡0˜Í-‚£¢oß¾}ûö-ëÕ„„ƒ»ÿW©ReòäÉ“'OV»p€ú:$I’’;¿Øs¨:**JqêÔ)ýF¹¯±Ô» šZÛÙ³g·lÙÒ­[·˜˜]£|[…³ËÏŸ?¯ÿã… ¬rÐ,/ fs—à€Ù|||„6lhÑ¢EùKÚs¨ºeË–‘‘‘ï¿ÿþøñãåg¤-^¼¸Zµj}úô±¼6__ß©S§¶iÓf×®]ò¬­V»xñb///…øxñâ–-[äb²²²Nœ8a•ƒfya0Á€ ôéÓ§Y³fÉÉÉééé<òHXX˜¿¿ll¬ñUOVª^³fÍóÏ?ÿôÓO¿ñÆ/y{{¿ýöÛýû÷oÑ¢ÅØ±c===×­[wôèÑwÞy§ÔûÍ™Z[HHHRRÒôéÓ£¢¢yä‘ÀÀÀíÛ·?~|þüù7.¿6™——×àÁƒûöí«Õj·lÙ"ço;Û!8PJ•*8p`þüù;vì˜:uªü\‰*Uª¤¦¦¶lÙÒ¦›.**º~ýzYW&$$¤¥¥Í™3géÒ¥………-Z´HIIyøá‡­µõÄÄÄ ,Z´hÕªU•+WnÞ¼yJJŠîÁÍå×&„h×®]ïÞ½—-[V\\.‰¡jpPòãªÕ®þFp€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"ý›o¾¹víZË–--Zôàƒ–u”|}}KJJôƒƒƒ¯\¹¢î.8laΈàŽK~\µ$Ijâî|||JJJFŽyöìÙ/¾ø¢V­Z¶ØÊñãÇ8¯öîþ-??¿uëÖ¿þúëÀƒƒƒ×­[׫W¯={öÄÆÆ/œ]RRÒ¾}ûúõëë«U«¦öN8naΈà@ÅvìØ±zõꬬ,«§ÆâââÝ»wüðÃIIIæœ9r¤OŸ>5kÖÔÜËÛÛÛòÚ¾üò˰°°áÇË?Ö¯_àÀûöí»pá‚ñÂr>‹ŒŒ4cCÑÑÑ©.))©M›6–ï‚……Á=ŽT¬N:/^g Žp'ý§RVRRrâĉ¶mÛ&''¿òÊ+¶ÞÜÇœžžþÖ[o©½ß6Ü‘ˆˆˆÚµk\Oi7fœN}[‚¡j°g |PÂÓÓ322R’¤ÀÀ@[o«°°pÏž=¶î×´—Ù7GpÀd_ýµ$I;v´õ†:óä“Oª½Çì„àGÌСC‡… Ü|ÛââââââÔÞ]›ïȸqã QÇDpÀd 4HLLT» ×ÁÁt U@‚#!8@‚#!8@‚#8:ù©ƒjWG(Cp€"Ü ŽèèhµK`‚#@j—àR²³³#""Ô®®¡j(Bp€"G(Bp€"G(Bp€"GpHHH(**Z³fÍO<ѳgÏ¥K—þþûïf¬víÚµƒ ŠíСÃË/¿œ——Wá[~úé§^x!..®M›6Æ ;|ø°ÚÇ@Mu¼¼¼ºuëöæ›o:tè•W^ñõõ={öìÛo¿ÿÔSOmܸ±¤¤DáªÞ|óÍY³f9s¦M›6ÕªU[¿~ý³Ï>{çÎrÞ²{÷î!C†ìÞ½;$$$66öøñãÇß½{·ÚG@5Ž5Tm //o×®]Û¶m;tèPqq±¢FÞÞÞßÿý÷ßÿÑG}üñÇaaaå¯$##cùòå¡¡¡ëÖ­ B¼úê«+V¬X²dÉ?ÿùÏRßrãÆéÓ§{yy}òÉ'­ZµBüøãC‡ýç?ÿÙµkWÇMÛ\žüðI’Ô.€;rÄ tõêÕ5kÖŒ9²C‡¯¼òJjjj``à“O>¹jÕªï¾ûn×®]Ÿ|òIÓ¦M333gÏž]áÚ¾úê+­V;qâD95 !f̘’’¢ÕjK}ËúõëóóóŸ{î995 !š7oþÈ#\½zõ§Ÿ~Rûð¨Ã±zW­Zµ}ûö£GÊ‘®zõê?üð#<ÒºukOOOÝb;vlÕªUÛ¶m9Rá:9âááѵkW]‹§§gçÎ7oÞ|ìØ±Ö­[¿å»ï¾Óh4ýúõÓo\´hÑ¢E‹Ô>Bªq¬à8wî\!D```Ïž=yä‘víÚéçE}¾¾¾•+W®pœZ’¤ÌÌÌêÕ«W¯^]¿½aÆBˆß~û­Ôà˜žžT³fÍ£G?~üúõë5êÞ½»¯¯¯ÚG@5Ž ðÐC••õ)én,((()) 4hB”zñ¢¢¢›7oFFFþë_ÿZ³f®½N:o½õVÓ¦M•ìHtt´A˶mÛì|0MuîÜ9µKp/p;Së€ggg;Ñj­ˆ3ÜÎ8à6Õ«W/µKpŽSRR‚‚‚:vìXê«/¾øâ/¿ü²}ûvå+”§NW­ZÕ ½ZµjBˆ7n¿åæÍ›BˆÌÌÌ+W®,\¸°k×®………ëÖ­{ÿý÷'L˜°eË%ýŽjKsDDD¨]‚{á€Û™*ÜFuŠ“Ç)Št%pÛ1þX7î!rŽ59¦  àîÝ»e½ô믿šzÇÀÀ@FSPP`Ð~ëÖ-ñW¿£Ê•+Ëß¼öÚkýúõ ¬Y³æ /¼Ð¿ÿsçÎmݺU탠õ{÷íÛ7nÜ8Ý+V¬Xµj•ñbZ­V’¤ûï¿ß´Ýóò 0îYÌÏÏBèæYë«ZµjåÊ•5M\\œ~{÷îÝׯ_ÿóÏ?«}ÀÔ¡~pôôôô÷÷—¿ÏËË«T©R•*UJ]200pÆŒ¦®?444333??_·ñ×åA¡¡¡¥¾%$$äúõëF¿Q¡–o' à†ÔŽ;vLKK“¿ŽŽÚ©S§³gϦ¥¥5iÒd̘1ºeöíÛ7iÒ¤¨¨¨-[¶!bbb&OžüÆoôêÕ«uëÖGŽÑh4¯¾úê}÷ݧöAP‡ÊÁqõêÕBˆ¶mÛFEEé~,ßСCMÝʨQ£jÔ¨±qãÆo¾ù&,,lذa'N”ïÈS–±cǯX±âàÁƒAAAñññ/¾ø¢\$€{Rù*ù6HIIIƒÊîŠäø·HŒŽŽvü"eggs0{â€Û™*ÜvW":þ5ŽœávÆ·3'ý¬·œÊ=Ž/¾ø¢¢Y³fòS§NUû€ t*Ç^xAÿGýëàPkrŒ1I’vïÞ}îܹæÍ›—u÷ØÃÇÝ»w¿ýöÛÝ»w—G±gÍšµnÝ:ù¥!C†Ì™3Çà¾Ü°Ǻã‘#GžþùŸþY«Õ !þ÷¿ÿ­[·. àÉ'Ÿ¬]»öš5kvïÞ­v >ùàjWÀí8VãG}$IÒ+¯¼2dÈ!Ä·ß~+„X°`A|||NNN¯^½¾øâ‹øøxµËpGŽùå—š5k>\þñðáÕ*UêÔ©“¢^½z 4ÈÊÊR»FPÄñr¬¡êëׯËßÿïÿkÚ´i¥J•ä–*Uª\½zUíÜ”cÇðððsçΕ””!Ž;VXXØ®];ù%­V{îܹ5j¨]#€›r¬àئM›ëׯ¿ûÿþû»ï¾+„èܹ³üÒ§Ÿ~zíÚµÈÈHµkpSŽuã³Ï>»yóæ>øàƒ>B4kÖL¾wã?þñ~øA1jÔ(µkpSŽÕãX«V­ÿüç?]»v­Y³fÇŽßzë-ù~W¯^õ÷÷íµ×|ðAµkpSŽÕã(„ˆŠŠZ¶l™AãÊ•+ÃÂÂ<<+怊ä[92q€=9\p,U­ZµÔ.ÀÝ9\pLIIY±bENNNYF§¥¥©]#€;r¬à¸sçΉ'Êß{zzª]þæXÁñã?BŒ9òùçŸP»üͱ‚cfffíÚµ§OŸÎ<Gã@ùìîÝ»7oÞ¬S§©Ñõh4jWا8÷à@ÍÃÃ# àôéÓZ­VíZ`M$¡ÑðÙ W$ŸÙœâ܃GOOÏgžyæêÕ«o¾ù¦ÚµÀjäT!„$ýùÙ ¸Ý)®Â–% ÿQ°#ǺÆ1!!á·ß~[¾|yZZÚ#X·nÝ;w„#FŒèСCÿþý›4i²`Á‚   µ „"äB¸¸òOqî ÀE9Ðíx„wïÞ}þùçW®\éïïß¿]{HHÈž={,§IØŸcÇeË–8q¢K—.Û¶m{íµ×tí_}õÕc=–““³bÅ µk„uÐ#g¯.wnåÀž+8~ÿý÷žžžóçϯR¥Š~»§§çìÙ³«T©²}ûvµkàö¸€»r¬àxêÔ©ˆˆˆRçÁT«V­~ýúgÏžU»FTLá§*Žp}œâ\‹cÇ€€€Û·o—õj^^žŸŸŸÚ5¸)Ç Ž7¾páB©ÏŒ9uêÔï¿ÿ£vnʱ‚ãO<¡Ñh¦L™ròäIýö“'ONœ8Qѯ_?µk„51Z Ç)Àµ8Ö};tèðÌ3Ï|ôÑG?þxýúõ…;wîÈÍÍ}÷ÝwõS£¢V­Zï¼óŽâÛo¿½zõªÚe€‰¸8—àXÁñøñãáááuëÖ5~©N:r;·œòyÔ®€ës¬ÛñäååiµÚ²þÌÏÏ ªQ£†Úe¸#ÇêqlÚ´i~~þÞ½{_Ú¿^^^“&MÔ®¶ÂP\§8ççXÁ1!!A‘˜˜˜’’¢?$ýí·ßN:U·ìϱ†ª °ÿþo¾ùfâĉ5jÔ¨_¿¾F£ÉÊʺ|ù²¢oß¾ P»FÿÜžcG!Ä믿޾}û·ß~ûÊ•+W®\‘ÃÂÂ^|ñÅþýû«]l‹›òÀÅqŠpr=<< 4pàÀK—.egg{yyÕ«W 1ND\›ÃG™F£©Y³fÍš5Õ.œƒ|? nXÀ¦kr ÀÄS¸8NqÎŒàEŽP„à‡ÃPމàöÅßFœÁàvS@p—!ß‘Gí*¸2‚#¬ÃºÝ1 åÁÅqŠpNG(Bp€"G8(†òàâ8Å8!‚#!8€ë`b5›"8Âq1”€C!8€JøÛ€³!8@Exl !ŽppôÈà8ްºc3ñ·§Bp—ÂÄj¶Cp€"G8:†òàâ8Å8‚#!8@‚#œCy8‚#¨ÍÚ1±€ ÁÎÑjTGp€rÙçÉHümÀ Á–âAÕ¸ w Žk×®4hPlll‡^~ùå¼¼<åï=þ|«V­¦M›¦öN¸;†òàâ¬zŠ3±€-¸Ep|óÍ7gÍšuæÌ™6mÚT«VmýúõÏ>ûì;w”¼W’¤éӧߺuKíp5¡ÑÿR»P1׎˗/ ݶmÛòåË·oß>|øðüqÉ’%JÞþÙgŸ}ÿý÷jï„K‘“¢$$ý/$ŽÏõƒãW_}¥Õj'Nœ"·Ì˜1# %%E«Õ–ÿÞÓ§O¿ùæ›5R{'\‡.2´$ȲÞÎh5\§8ÇæúÁñÈ‘#]»vÕµxzzvîÜ977÷رcå¼±¸¸8111((hÆŒjï„‹ScùËèâ£ÚÅÑh4³Æ¸Ž’$effV¯^½zõêúí 6BüöÛoå¼÷Ýwß=uêÔ‚ üýýÕÞW $5êË1?€Õy©]€m”””´!®]»VÖOœ8ñÑG 6¬}ûö'Ož4u»ÑÑÑ-Û¶mSû`Tàܹsæ¾5";;»ü%êGÔÏÊÎÊÙÊV(„Y"K¡ÉÊÎ2lÏMDV– «rLp˜Ãì!D…gx©Ì{—ÈÊŠÐh²³²Ìy¯˰g¸qÀmªW¯^j—à(\<8ÊS§«V­jÐ^­Z5!Ä7ÊzWbbb:u¦L™bÞv322ÔÞusDDDØâö5š¾nIHšˆÒû)Í.Õ¡¸Æ^8áVßœ…ïµÝªœhÓî‰n;ÆëÆ=DnÂŃc`` F£)((0h—o¯#÷;[¸pá¹sçÖ¬Yãëë«ö8=“F¨ÉcÖ–¬X‹‹_ãèåå`ܳ˜ŸŸ/„ÐͳÖ÷ý÷߯Y³fìØ±<ð€ÚåCˆÒ®wdâ)\§8GåâÁQš››+'Eù¢ŸÐÐPãåOŸ>-„Xºtiô_üq!ĦM›¢££ûôé£ö9ku2Wªá‘š ÇŇª…ñññ©©©½{÷–[$IÚ·o_PPPll¬ñòuëÖÕ-)»qãÆþýûÃÃÃccckÖ¬©ö9 ë13f ˜AžXÍX‹ëÇAƒ}øá‡ï½÷^—.]ä91Ë—/¿zõê3Ï<ãíí-/sûöíË—/{{{×®]»cÇŽ;vÔ_ÃÉ“'÷ïßߺuëÅ‹«½7ÇžÝ1úÙQÊãÓ{rýà>mÚ´… >úè£:u:{ölZZZ“&MÆŒ£[fß¾}“&MŠŠŠÚ²e‹ÚõºõÒïwÁßF’ëG!ĨQ£jÔ¨±qãÆo¾ù&,,lذa'N”{ [G!Dß¾}ûöí[Ö« e½Ú¤I'½/£ZlÚ)¨ët¤G;sýYÕp=L²†[°ÒMyxð +"8Â)‘°?‚#¬Ìž“W¸M2öDp„³¢Ó®¿8‚#¬ÉÎ÷Ê‘äô \\æÀZŽpnô;ÂÅÑéÀ‘ ÁV£Ú3]4t:`G8=I";Â¥1Z Àa  .ôl"æÇ° ‚#¬Cµqê¿0K[#8ÂüùÜj²#\£ÕÁæs¡q<P1‚#¬@õqj:°‚#\CypqŸâÌ`9‚#\ ŽØÁ–r qê¿zdÈŽØÁœdPÁ®‰NGÀ—9°Á.E¿G†ìD§#UaǹÀØÁ®ŒNG¬ˆàWc0”Gv„«±l´šËX‚àEް€ä 8Òé€-ÀÙ0·€JŽp t:Âd±CÝr\æÀlG¸&ã²#\ ŽÔ@p„™¸ƒ#î†à—E§#ÖEp„{!;ÂuX0ZÍeŽÌCp€"G˜C#_âèðJí‘¡Ó®ƒ)2ì‹àwDvÀ G¸8zd€Rq™#3á¦èt„‹ào#vDp„ɸƒ#î‰à×WV Žpt:°‚#ÜÙîŒË˜Šà·@ \§8» 8ÂÝÑé€BG˜ÆygÆ”Ó#Cv„Ûb´€IŽà­`{G¸:°ÁøÙÓh„ä„—dÐéÀÆŽàָ̀rG˜ÀygÆè”ß#C§#œŽl‰às8é8ždGÊBp„Û¡G.ÎôSœÑj Ct:P*‚#”r u*ì‘!;¹ѯÀ6ŽF«(Bp„›¢Ó.ŽNG6à¥v€ã’³£Ë л¡{rSD„Á«ü^ÀTô8Â}Ñ#ãÂ4Bh„ô¾²²³¥{[4}¹,OqF«TˆG øàßÿþ÷† ßÿýS§N©½CvBÜ)ÓO]Ÿ»Üý’GNqårýàøÕW_iµÚ‰'†„„È-3fÌHIIÑjµ¥¾eÛ¶mBˆW^yE×%õÜsÏ•””8p@í‚ʸØrôKË=ŹÒps®9âááѵkW]‹§§gçÎsss;Vê[²³³«V­Ú¤Iýƨ¨(!Äo¿ý¦öA}dG{rê±Ýr8tv€2¸ø5Ž’$effV¯^½zõêúí 6BüöÛo­[·6~ײe˼¼ ÌÉ“'…uêÔQ{ŸTÆ¥óæábGsÜKË%Ã•Ž€;sñàXPPPRRhÐ „¸víZ©ïjܸ±AKZZÚòåË}||úõë§d»ÑÑÑ-òð·#;wîÜ=?GˆìììÒŒ(£Ý½de &"+Ë„C‘%²4š¬ì,ùGÃ޲DXç”SxÀ#„°Êæ®$KMD„"ËÑþ³ÊÊŠÐh²³²ÌÞAÎp;ã€ÛT¯^½Ô.ÁQ¸xp¼s玢jÕªíÕªUBܸq£Â5”””¬^½zÑ¢E%%%¯¿þzpp°’ífdd¨½ë戈ˆ(çÇ ÛÝ$ &¤nIHšˆ¿û9’ Yë@)\U6§|%òÙ ‰ˆp¸¦’³c–Ȳ|Up%ºé2ËþÛˆ+÷äâÁQš™™™ŸŸïïï¯k”¯Î -õ-Z­vÊ”)ß~ûm÷îÝçÌ™SN¾Ì{Ö†Á˜5 ûsØÚI²#7äú·ã‰/))IMMÕµH’´oß¾   ØØØRß²råÊo¿ýöÉ'Ÿ|ÿý÷I¨y·LÎÊÎâ=ås¬üdGw§ž2Nqîé¸!׎ƒ òððxï½÷äë…Ë—/¿zõꀼ½½å–Û·ogggËSÒ$IZµj•ŸŸßôéÓÕ®NüìÈýQ‡{À O” „p‡¡êðððiÓ¦-\¸ðÑGíÔ©ÓÙ³gÓÒÒš4i2fÌÝ2ûöí›4iRTTÔ–-[®\¹ò믿úúú:Ôxmýû÷6l˜ÚûGÄ€¬Ë‡­‹äJGÀ͸~pBŒ5ªF7nüæ›o† 6qâDùŽ<Æä~Ç;w§¿ê«™ókOL²Fùh¶u‘·âÁQÑ·oß¾}û–õjBBBBB‚ü}Ë–-ô.ŒPùeÈŽF%-9šmM¿:àö\ÿGÀž¸Ø¶ 9ÎŒ™ÒNqfÉîƒàX™%Ù‘øˆr8ÊŒ&ÊnŒàXŸÙÙ‘®G”ÏQºNq:7AplÂìN²£àÇŠ8D×#ÙpKG܃YVDv„í8D×#cÖ€û!86Dv„M©ßõxï)N§#àòŽ€m‘‰ÞkFý®G²#àNŽ€Í‘MÂŽfP¹ë‘1kÀm{ ;ÂÖTîzÔ;Åét\˜»<9Vá„ãxÄì‡nðh(§æcfôNqžC¸*zñ7Ò‰­Ñï;P³ë‘1kÀÕ»²0;¡jW=þuŠgee1` ¸‚#`o–dG—ïzdfŒIjÅÇ¿Nq.v\×8*$¡ÑD˜w—<Â$ò‰bï %)B£’ÄÅŽ€‹¡ÇPGVV¶Ù}1.ß﫳ÿ…ÙYY\︂#þT?¢>XvfÉD²#Ì`ï‘kI Ö€+!8j²<;ºR|äG;°÷…dGÀµ•ÉÙ‘é2°'»ÆG9; Av\ÁPŸ$1l Ø/>J’$²#àŽ€£`ت°ß¼²#àüŽ€±0;Òõ³Ù¯ë€3#8B!4B“•¥v²K…3[33Fuö¹þs¢ ýŽ€s"8Ç*—<:i|„êì%IÒAvœÁpP [CE¶ŽdGÀIÇe•akâ#̦­~ý‰€ó 8Íòakº•Òh˜ºQ*ÉffGKNqöEpœ€Ëw=23Æ)Ø">þ9WÆÂS€½!4BÃSª]pVgGº‡Gp„RŒã9—ïz„³°n|üûaÖt=ŽÍKí˜FŽïfçx¹wYÎŽô4ÃBò ¤¹÷G3W%IF’ûªŠGÀ)YÞõÈÈ5¬ÅZ³gþîwt=ŠGÀYéúe„¹rÓeGu»™ã2î逌ˆ0ãתˎ÷t= žU8 zÝ3cœµ&ÍÐûk‘{³²³Í뀔$ɰë‘I3€Ã 8®€‘k8 Kî~OvŒ\Ž‚¡jÀ™é°µ”I*«Ù!F®ábt'“æÞ+~£nºÌ_? ÁÈ5 2‚#àv¬”ñéYÁgkÙ+/=2òmŠ{²ô˜1ûžKÿj‚ø¨†à8ã$gÙbŸ­ÊVþwïc…)Ö‚j™ãn : EE'€ ã8ñP ÁPƒFDˆˆ¿´ÍŸ…Ÿ­ßñQªhðZSÞZ€R™” ‡­ÿj‚øØ“cÜSªíJ£÷%‰ì¬ì¿ogKº9©æÍ+P4íZ*ûKSö „(íd)}1IÒh4ãóØÂS€)èqlIÿƒLÕˆnµÞGS§Î”³¬¦Œ×ù[Æ]UØYú°õ_¯ Aï#`sGÀ¬ò6P->–±:Qê5Žšò–‡;(?A–2cFï5!ˆ€ ëqÔ¼hÀqâ£Æ¤ÇR¥cjX¨¬Y^×£ >6Dp,æ$yÑ€þg«0ýãU?> «t@*Ød)èžtÆ R”ßõ(ˆ€MÝ3c¬ÀÔ;;Ýç©y¯ºSHµ;‡+îžüs{™ËkÈNAÿ—$gF!„Òø(H€¥˜U ˜å¯ÉÑNõÙcòµ]÷ÇðëÏiìÌïv!ß–@’„<çºÌE%&_VA#`"çïe,‡ó_›¼‡¥5ʽ¥Ö¾ ;ìæÏ_”.;J’(ë·G$`‚#aOŒú Ư…‰¯ ǯè™1R§8Óqœ¤7r­Ñû…JFËýù W@&"8 ¸Md4`•+ º²¢(Óqždtác™7T¥0ÁÑM13F)wŒ,ùxU•Eíš2¾wòÝu^RófJùåXØÇ¸‚#P"£« akœôöE vïOcðôPªÊ8>–óË‘H@EŽ€"cE,ùxÕë€t•>ÈŠv¸tÓßs•Õûhp¤5o$HÀÁ¸—MÙpf'È¿³“_i‰ŠžâmÚ[ €TÑMKéŒük1‰ !ŽÀßèh´€q‚Š?a .‚î– ÑIiKúñQ”‘ …qg佋ILdž»"8º#fÆ”‚ŽF+Ñÿ$5µ†Y3:)'véôÆ¢Ë~êŒþò÷þh˜#ÕÞÀnŽp{t4ÚŒÙÝ$H“™—)g¾ÒHÃwÝû£¦ÜWWBp„{££Ñ. »!¥?#a…ŸÑÆ R"MUþÑ"VÊ;jb¤áÛõÐhè„ #8Â]ÑѨIú;2*ï‰Ô‹tCZ±Ò`ŸÌê€,e2£gØü¹ˆÚ» ˜àèv¸ÀQ> GPê‘Bqˆ¤Òæ,‰•YjoÉ~ßÛ)ÌKâÞ§fëâDI8/‚#Ü©Ñ!™"K톄H»)÷0Gh",y»ƒ°Z‚÷œÊ’Ñ)ÎsÑá,<Ô.°# ©Ñ9HÒß_Í=_e¾EïMúïP´=†ûªX]vV¶Dy__Cú‹F%«38Å%ÝW¹GP=ŽpDFÇ`êïÁ Ñ|X—š÷J 'ÒÁ(ùm(ÉJöý­Þ{£ÅÝ¢¼S\2z•ŽI¨Žàè^Ì»ÀѺcH®ÂÔ©;á³³³5šR_‚ã²V¸T¸*S«3ȆHQÁ)^êÊÿ\"ÂðÚÎoØCÕpu O»4ý?ãqmÃXyïâúÃÙJµá€$e_JFÆÍ= $=ÖËÖ[u…—nÈû—•­pKÐã—Fdt3ÆÝ1zŸÝËèõ8jäù÷z8o\Â_©ò`UÆ KË–÷Dþµ–{«-ûü6ýÑ•œôP‚G¸.R#ôúk²²²Ëï•,kz “làö_*ëÂüû¤²zOäŸÕþ½…쬬ÒÏo£Í™±C€=ŽnĽîàHjtHŽðk)¥ß§´ÏVÞ{?=Ýè?%”ŤS@sïœ-ME§“ÙçW©ýšÆQµ´Åxn%” 8ÂåðH˜®Ü1î?Ñ_̸’(‰òH?>¤ðžWåÇ+™ªœ;®+8¿Ë\²”òVf®ÃéáZ¡G .¡¢ŽÉ`Iý(ÉCaƒþm‚™ÔÆ*¾ãú½Û4øݶK­OÙºJWaæ?çBptn1NMj„•›&ÿžj#4Ý¥E¢c&+?GŠ2¢dvVvD„IÙQ^»áº,£÷‚‚P[áŽw³N”‡àWAjtx®ú+2žçú÷ˆ¶Æp£äŸ+qÍc+0މ¥N¯ÉÊ2ëéà–œw³†Ô6íØ7ë„!‚#œ5ÂQ•3ÁࣿÔ@IšD©J¿ xiiÒ:÷*³Žr_-ò¸‰×qJÊ^°øfJ¨ÁÑ-¸ò8µ«öbÁnTz2’Ñ6 F'…(»{R)a$++Ëx¨Z…4©·™ò^­0V*dx“óiÊ}3ÿ½éáÌH΃ߕIþúÜ,ó˜•wkÉ¿>þI¡°˜ò¾Ér–·Qe彪äV—ò¬W¯dê°{Cë§@pDôAÕ Oý•Óã¨ë§Ô”ñ²áªøïÈÍ”“"S e'¥òû¨+¬ÜÔý‹¶ßñp(G×ç‚ãÔt^ÁQi4»~¾–¦üÿÞ‡¿~.ïíjïl˼LYá{mT«Ò%MzT§xEŽp6¤FÀþ©)wÄNïf•þwhüðd8± s¡Ã%K½ ›°°ò”ÙÐMǪ Žp O;-Ò¾Q8@¡Q|E˜¦âˆYF%œ4NÅòd©|U6Ý ¥KF»éX5ÁÑŹÎ85Ñp$þÃ’ýçý¨•GLƒÕš4ÀXúÚøGÑ(ƒÊ#¦©k†åŽp¤FÀi™ô·ë=³ÅMù¯¾Ô­X=ïÙÿ Ù‹©AÐÔ iÞV #8º2WèndxÚùû¡œÙÿd•~"Å+S²]ëÆPÃøÄæE@óâ¦NC®q ‘và ·›‚É,ü#Y£ä™#V¡†X!•šü j7?÷-ìqŒv×k=Ô.Àq­]»vРA±±±:txùå—óòòÔ®È4¦v7öêÕ«”•¨õ©*wR¹ô?j¥p×ã8ÝnrÀ‡spIHVüÒ©_BRúUÖV6Œ6µP“«´ý=Ž¥{óÍ7?üðêU«¶iÓæìÙ³ëׯ?}úôŠ+|}}Õ.M'¤¦£€“³é?¿evŽf(ë7½·PÇÙ¯?÷Îy²£»ŽTÓãXšŒŒŒåË—‡††nÛ¶mùòåÛ·o>|ø?þ¸dɵKSÄ)S£æ¯/Wïht+ŽÓݸŒ²:F7´n¿©UzRm×ójF§¬u¿ÜÁ±_}õ•V«8qbHHˆÜ2cÆŒ€€€””­V«vup¾Ô¨Ÿªpp+vÉcÎpMîÜu!ÇR9rÄÃãk×®ºOOÏÎ;çææ;vLíêÊcÝÔhà 5t1º>'èndf àŠìOÕÞKÕ I’”™™Y½zõêÕ«ë·Ëïûí7µ 4¤ÿƒžÊ£/‰.FW¦qŠÔh‹w€U€M19ÆPAAAIII`` A{@@€âÚµk®á—_~±ðîPf³°óܸl[í‡ûöñßC­óÄN{§v¥”d|À­ý+pÛ;t”Š£agpØÁÑÐ;w„U«V5h¯V­šâÆ®.à’ª6¨Ñh Úoݺ%þêwpCGC^^^Æ=‹ùùùBÝ}Z´hÑ©S§Ñ£G8p@í¢ÜÅùóç[µj5mÚ4µ qq?ýôÓ /¼צM›aÆ>|XíŠ\YQQÑG}ôøãÇÆÆvëÖm„ §OŸV»(”••ýÃ?”úª»}ŒÝÚ›o¾9kÖ¬3gδiÓ¦ZµjëׯöÙgïܹ£v]®©¸¸xäÈ‘ ,¸|ùòC=yøðáQ£F½ÿþûj—æú$Iš>}ºîéó°‘Ý»w2d÷îÝ!!!±±±Ç>|øîݻծË5•””Œ1bÉ’%yyy:uªU«ÖöíÛ{ì±#Gލ]š«Y¹reY/¹ãǨwõóÏ?7jÔ¨S§N—.]’[æÍ›×°aÃäädµKsM«W¯nذá!C ä–_~ù¥mÛ¶111ÿûßÿÔ®ÎÅ}úé§ 6lذáÔ©SÕ®Åe]¿~½uëÖ<ðÀÑ£Gå–~ø¡iÓ¦íÛ·/))Q»:$ÿ“2a„»wïÊ-Œ‰‰éÙ³§Ú¥¹ˆ7n9rdöìÙò¿'Nœ0XÀ=?Féqt__}õ•V«8qbHHˆÜ2cÆŒ€€€””­V«vu.hÛ¶mBˆW^yÅ××Wn‰ŠŠzî¹çJJJ°¶©Ó§O¿ùæ›5R»·~ýúüüüçž{®U«VrKóæÍyä‘«W¯þôÓOjW炎;&„1b„———ÜòÐCÅÄÄäää\»vMíê\Aß¾}‡úå—_–µ€{~ŒÝב#G<<<ºvíªkñôôìܹsnn®üï¬+;;»jÕªMš4ÑoŒŠŠBüöÛojW粊‹‹ƒ‚‚f̘¡v-.î»ï¾Óh4ýúõÓo\´hQFFÆ< vu.(,,L¡Ÿ%Iº~ýº‡‡‡.J¯¾úêÒ¥K—.]Ú¾}ûRpÏQÎ-7%IRfffõêÕ«W¯®ßÞ°aC!Äo¿ýÖºukµkt5Ë–-3þ×üäÉ“Bˆ:uê¨]Ëz÷ÝwO:õé§Ÿúûû«]‹‹KOO ªY³æÑ£G?~ýúõFuïÞ]×ÅëêÓ§ÏŠ+^}õÕ*Uª´hÑ"//oéÒ¥çÎ{â‰'8Û­¢cÇŽò7{öì1~Õm?F Žnª   ¤¤$00Р= @Üû',¬¥qãÆ-iiiË—/÷ññ1褵œ8qâ£>6lXûöíåŒ)**ºyófddä¿þõ¯5kÖèÚëÔ©óÖ[o5mÚTí]PttôÊ•+GŽ9räH]ã°aÃ^~ùeµKs nû1ÊPµ›’ç|U­ZÕ ½ZµjBˆ7n¨] ‹+))Y±bÅ3ÏÜöc”G7¨Ñh Úåû•È0ÁF>œ””tæÌ™°°°ùóç—uõ ,´páÂsçέY³†¡R;¨\¹²üÍk¯½Ö­[7ùû^xáüùóëׯߺuëÀÕ®ÑÕ$&&þ÷¿ÿ1cÆÓO?-·œ?~ðàÁ“&MÚ´iSýúõÕ.ÐŹíÇ(=ŽnÊËË+ ÀøO¢üü|!„n‚¬«¨¨èÕW_1bÄùóç_|ñÅ””R£|ÿý÷kÖ¬;v,Ó2ì£jÕª•+Wöõõ‹‹ÓoïÞ½»âçŸV»@Wsùòå={öDFFêR£"<<üù矿{÷î† Ô.Ðõ¹íÇ(=Žî+444333??_ÿ2êììlù%µ«sAZ­vÊ”)ß~ûm÷îÝçÌ™ãÂÿ¬8ùùòŒHýöM›6mÚ´)**jË–-j×èjBBB®_¿®ÑhôåîÞââbµ«s5¹¹¹Bˆzõê´ËW®\Q»@·àž£G÷Ÿ‘‘‘ššÚ»wo¹E’¤}ûöÅÆÆª] Z¹rå·ß~ûä“OΙ3GíZ\_ݺuu'¶ìÆû÷ï­Y³¦Úº ¸¸¸Ï?ÿü—_~‘g•Êä›’pM««W¯ž§§çéÓ§%IÒëBˆÈÈHµ t îù1ÊPµû4h‡‡Ç{ï½§{Ûòå˯^½:`Àoooµ«s5’$­ZµÊÏÏoúôéj×â:vìøÆ½&Ož,„hݺõo¼‘˜˜¨v.¨ÿþBˆY³féæ“þôÓOŸ|òI@@@=Ô®ÎÕøúúvîÜùìÙ³ï¼óŽî^Ó§OŸ^ºti¥J• .€¸çÇ(=Žî+<<|Ú´i .|ôÑG;uêtöìÙ´´´&MšŒ3FíÒ\Е+W~ýõW__ß¡C‡¿Ú¿ÿaÆ©]#`‘˜˜˜É“'¿ñƽzõjݺuAAÁ‘#G4Í«¯¾zß}÷©] š7oÞÀ—.]úÍ7ß4nÜ877÷¿ÿý¯V«5kVƒ Ô®Î-¸çÇ(ÁÑ­5ªF7nüæ›o† 6qâDùV°®sçÎ !îܹ“žžnü*SdàÆŽ¼bÅŠƒÅÇÇ¿øâ‹òã‘`uÁÁÁß|ó͇~¸ÿþ½{÷uéÒeܸqÍš5S»47↣I’Ô®N€k ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ Á€{™6mZttôÞ½{Õ.D¼÷Þ{ÑÑÑ«W¯V»PŠàE¼Ô.ÜT\\\ppp«V­Ô.”"8€:š4iÒ¤Iµ«0T §¤¤äîÝ»jW†ŽœÃ¬Y³¢££/^lÐþÓO?EGG·oß¾¸¸XqõêÕ7Þx#!!¡eË–-[¶ìÝ»÷k¯½véÒ¥²V+Ï•9tèA{ãÆ|ðAý–¼ôÒKÝ»woÓ¦ÍðáÃß{ï=ƒl÷ûï¿Ï™3'!!¡E‹]»v}öÙg9RÎ}ôÑGú“cäJÎ;·|ùò‡z¨iÓ¦­[·ûlÇŽ#GŽB¬X±¢¬å_z饨¨¨õë×§¦¦ !:ôŸÿü§Y³fãÆSïwÀe8Þ½{‹{;=zé񴯯ØÈÈH!Dqqq\\ÜÔ©S«V­*/àïï/wUž={ÖìM/\¸PñÖ[oéúð‚ƒƒßzë­ÐÐÐuëÖ]¿~]ñóÏ? ! äéé)/3dÈ矾{÷î&m«yóæS¦LñððwùùçŸBää䔵¼··÷¢E‹¼¼¼fÍšuùòåW^yÅ××wÉ’%º2ÀŠŽœ†õÇmåqêÈ?Ž?þÃ?lРn+W®lݺՒæååeggׯ_ß`t•*UÚ·oçÎôôt!„œ\g̘ñý÷ßËW[z{{O˜0áÅ_4is<òˆþžžž’$•ó–Æ?þâÅ‹=öØï¿ÿ>}úôzõêÙêwÀ½q;N£I“&õêÕËÉÉÉÈÈˆŽŽ...Þ¶m›¯¯oBB‚n™ßÿý»ï¾;zôèo¿ýö믿Zxi£"++KþßèèèR¸pá‚"))iâĉßÿýSO=U¹r寷k×®gÏž76isµk×6£È±cÇîܹóäÉ“mÛ¶2dˆU:üàÀ™ôíÛ÷Ýwßݶm[tttjjê7üqÝÀôš5kæÍ›W\\|ÿý÷·nݺ{÷îM›6ÍÎÎNNN6i+%%%ºN¾¢¢"!D­ZµÊtBÔ®]{íÚµÇÿî»ï>œžž~ìØ±>ø`àÀóæÍÓh4 7]©R%3Ë­[·®\¹"„ÈÊʺ~ýz`` íÜÁ€3ÑÇ &Ècкqê[·nÍ;·R¥JË–-ëØ±£î-/^4u+çÏŸ×jµò÷õë×BT©Råå—_.ÿ]F¾¢¨¨(55uæÌ™ëÖ­ëÖ­[||¼MËœ9s._¾Ü²eËcÇŽ%''¿ñÆ6Ý·Å5ŽœIݺu›6mš••õÓO?íÚµ«nݺ­[·–_úé§ŸJJJZ¶l©ŸÅ_ÓVÊg0¢½cÇÝ÷¡¡¡5jÔ8sæÌÉ“'õ—)))0`@§N®^½úûï¿wëÖíÿø‡îÕJ•*ÅÇÇ˳yÎ;gÓc²yóæ”””.]º¬X±"**jëÖ­Æ7-« 8p2ò™W^y¥  `àÀºöÐÐP!ÄÏ?ÿ|õêU¹¥¤¤äË/¿\µj•âÎ;¥®íþûïB¬\¹²  @nIKKÓÝdG6yòd­V;yòäS§NÉ-·nÝš9sfzzz“&M‚ƒƒÃÂÂnÞ¼ùÃ?|üñǺ®Êœœœï¾ûNaÓû)^¼x199ÙÏÏoîܹÞÞÞ ,ðôôLJJ²üâN0ÆP5'“°páÂŒŒ OOÏ~ýúéÚëׯ¿k×®=z´jÕJ’¤ŒŒŒ¼¼¼¡C‡®X±âÿþïÿnÞ¼)ßXG_¿~ý>ÿüócÇŽÅÇÇ7nÜøòåË™™™5kÖüã?äeú÷ïÿý÷ßoذ¡_¿~µjÕ ÊÊÊ*((¨W¯ž|çm—_~yÆŒ‹/þä“Oj×®]PPpæÌI’† k£C!IÒŒ3òóóçÏŸ/çæfÍš9ò“O>IJJzë­·Ôþ]p5ô8p2!!!mÛ¶BtêÔ)$$Dÿ¥×_ý¥—^ —ïïØ¹sç7¾òÊ+C‡õôô,õ€uêÔùâ‹/ºwïîáá±ÿþ_~ù¥V­Z}ôQpp°nFóÚk¯½óÎ;ݺuÓjµ999“'OÞ¸qcPP¼Lÿþý?ÿüó.]ºøúúþüóÏ:tXºtéœ9slw(V®\yèСŽ;ê.ôB¼ôÒKuëÖMIIÙ¶m›ª¿(.HSþíÁÀ}ܾ};77·N:Ê'A€[!8@†ª ÁŠ ÁŠ ÁŠ ÁŠ Èÿ‰>LN¯IEND®B`‚statistics-release-1.6.3/docs/assets/gpcdf_101.png000066400000000000000000001006471456127120000217430ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A€IDATxÚíÝy|L÷þÇñïd!’pCk"i,µ$¶Ú‚ØS±•¶j§ªJQ{K¹A¹–R]·U·(Õ¸]ì¥ˆÐØ®(ñ#DÔ$ˆˆÌÌïÓN§“m23É93óz>ò¸ÌwfÎ|Ιè¼ïç{ÎwTZ­VEq»X‚#ŒBp€QŽ0 ÁF!8À(G…à£`‚#ŒBplÄáÇG\¡B…üã/¼ðÂСCýõW¹ë²¤÷ß_¥R©Tª>}úH#«W¯–Fš5kVje|ðÁÒ‹vïÞ½ Çœ;wN•Ÿ *4iÒä7Þ¸víš\‡qûöí?þøã?þxçÎËnùéÓ§«V­êÒ¥KÕªUË–-ôâ‹/~øá‡Ož<1æø899yyyµhÑâý÷ßÏ[[A‡TßÔ©Så:ª€p’»æÊÌÌ>|øÿû_ýÁcÇŽ;vì믿îÞ½û×_íåå%w™BˆG:uêÔ©Sß|óÍ÷ßß¹sçÒ¯aÀ€=BìÛ·¯cÇŽ–Úìÿþ÷¿~ýú¥¦¦êF’’’’’’vîܹ|ùòÕ«W¿øâ‹…oA­V§§§§§§?~ü³Ï>Û¹sç /¼PúÇ@!Ž€u{øðaXXØo¿ý¦qppP©TjµZº¹k×®^½zýòË/eË–•»XË«P¡B­Zµ„¾¾¾r×R oooWWW!ijgÏnܸ¡Ñh„?~ã7Ê—//w˜˜Ø¾}{)Jœœœrss¥ßÿý÷—_~ù×_mÔ¨Q!ÇçñãǺFãýû÷û÷”äââRÈS T¬XQî#Ø8¦ªëöÖ[oéRcXXØÁƒüôéÓÙÙÙׯ_ÿâ‹/*T¨ „ÈÊÊzå•W ?>·oß¾råÊðáÃ¥ñk×®}þùç…?ÅÀ{ï½'÷‘lÁ°bgΜٰaƒôû«¯¾úË/¿´k×®B… ÎÎÎ5úöÛo‡*Ýûí·ß<÷Ö­[&LhÕªU… j×®ýÒK/:uJÿú'Þ¿òäÉÍš5«P¡BãÆ,XðìÙ3s6˜››;{öìjժ͞=[ºW£ÑlÞ¼¹C‡5kÖ,[¶lÍš5Û·oÿŸÿü'ï éË{Ž£¯¯oA'Àœ’XdÁ’+W®¼òÊ+^^^>>>}ûö=qâ„9o™››Û§Ÿ~êìì,ݼpá‚î.cŽ@áǰÈz÷ÝwU*•.áuêÔI¥R=~üX÷€ÇÏ™3§sçÎÞÞÞÞÞÞ:uzï½÷233 ß©}ûömß¾]ú}ÆŒk×®mÔ¨‘£££¯¯ïÈ‘#7mÚ$Ý•˜˜xñâÅÂ7U½zõµk×êÎa]°`~yä§`µÆŽ+ýC.[¶ìï¿ÿž÷7nÜö§Û·oëÆùåoooƒÿ¨TªI“&é3kÖ,i¼}ûöuëÖ5xpÿþýõ_¨XìÝ»·.ÑΚ5KºW×5Я_¿|· ¬ZµJiÚ´©4âããSÐîºuëV¬‚µZí‰' 6X¡B…ˆˆˆ¼4 {ʾ}û îõóó“îš1c†n°¸G ï1,r§f̘‘wû=’î=~üxíÚµó> zõê111…üöíÛWzd¥J•>|˜÷7nܸqtt´1ÇçàÁƒº{wïÞmÌS”Îq¬Ø/¿ü"ýÒ»wo]ÑçããóÕW_ fff¾úê«ÒÉdáááaaa‰‰‰ß~û­F£Y¶lYýúõus©éS¼fÍš>>>¿ýö[vv¶â»ï¾;qâ„Ôç+îOž|¸C¯\¹ræÌý­=ÿüóãÆ“~¯S§NÛ¶m¥ßÓÒÒLÛ`¹råöîÝ;pàÀ-Z!^yå• 6lذa„ Òc233¥®˜âÞ½{&­V;tèÐK—. !7oÞ¬kÊY°îä¼·ß~»E‹Òï‹-ªR¥J±*‘N%T©TÎÎÎuëÖÕµßzöì*ý^Ü#÷÷]0 «jüøñºF4h0iÒ$ƒÐïïæÛö6Í?þñ¼Û ;¦ªk%Í0Jе’³î…‚f/]ºÔ°aCÝMƒóÞ*Uª$ý"-+cÂCBB †ôÄû÷ïïÙ³çäÉ“ñññ'Nœxøð¡9ÇgáÂ…?þø£î÷öíÛ÷è¦UM™2eºt颻&ÉdÏ?ÿüŠ+L>yaq߉‰‰ù>½K—.R/óÒ¥KÆÁÁ°Ý ?mÁÅÓÓÓ¥_ÜÝÝóÞ›ïr<º¿L%‡àX+—Ê•+KÕçϟ׿ËÝÝ]ZÝPqûöm]ãJ‘™™©¿Ø^¾îÞ½«S¥RrÓ„ æ]<''çÝwßýøãu+ÿ¹ººV©RåöíÛ¦œ½{÷¾ÿþûÒï}úôÑÿB# ~ôè‘îÕ ®©^½z±ŠÑO9NNNõêÕkÕªÕ„ ôWÖ,î08†&¼ OÏÈÈ~7X³jÕªÒ/ÙÙÙ·nÝÊ»^f™2e¼¼¼¤ë¯þ­/##CÚ¯²e˹n¥tj©tôòÞ»qãF .]ÀxGÀŠ…‡‡Këìüð÷oßÖM¡Ž5Jš¯ÌÍÍ­Y³¦~ptww¯P¡‚ÔÊúù知YN•+W6¾6h=…|ðÁ²eË„S¦Liݺu½zõÞ|óÍ/¿üÒ„ÃråÊ•H Ñ   uëÖ™P°«««îúŒÛ·oêîÕe,#“rŠ{ Ž¡™o«»»»‡‡‡´_7nÜÐï1߸qCú¥L™2m¡U«VÒ:šÛ¶m[¾|¹n±!:uêHApéÒ¥“'O.òˆ>|XwêdóæÍ‹u´”(Îq¬ØÄ‰¥©ÃŒŒŒ &èšU:«W¯¾~ýºÁ .åææÖÖS±bEOOOOOÏ|¿“£æopåÊ•Ò/Ÿ}öÙ˜1c6lèäädÚ·9?}úô¥—^’&:Ë•+÷ßÿþ7ï\§1;::úûûKÛ³gî¹Ú¿/c)æ3ß…àà`é—ŸþY\w3((ÈÉ)ÿ^ƒî¬Ê+W®¬^½ÚàÞíÛ·ëÚ‡íÚµ3f_t“øåË—oݺµÅ6“+ö /Œ=Zú}óæÍaaa‡’¦,ûí·Ñ£Gë.jÑשS'é—5kÖhµZé÷­[·þãÿðòòªU«VqO.4sƒ>ÔÍ¢>xð@úåÿûŸiߪ2nܸ“'OêêyþùçM.¸iÓ¦Ò]ü±ní üßÿýŸéïY‰Þý ¢u‹SêïlBBÂ’%K¤ß –O××£GÝ«?~îܹRŸ2''gýúõºõ&k×®Rø^ܼyó7ÞˆŽŽ–n<¸ 5€ÈCî˺˜åÁƒºÆ˜ÄÁÁAÿä¹–-[J¿>|Xzʽ{÷t_éÛ¾}û9sæôë×O׎š={¶ô°¼kßH^}õUi|Ê”)Ù F£Ñ-S®\¹ž={öêÕKÿŠu Á¹naK!DåÊ•ÇýÝôéÓ‹UðéÓ§u3ÂeÊ”iÛ¶m:uôµÉ €0çè¹SZ­¶Zµjº¿%K–ääähµÚ¬¬¬š5kJã®®®=zôèÕ«—î|D__ߌŒŒBváÌ™3M///ÝrQBˆ²eËÆÇÇç{|üüü N ”Ná5í(!GÀêݼySÿ’a}={öÔ­5­ ŽZ­ö§Ÿ~Ò­†­ïÍ7ßÔh4ÒcŒŽfnP«Õæý €:H¿:´ -G]§*_^^^Å*X«Õ6ÌàåË—ïÒ¥‹eƒ£9G@Ÿ‘;5pà@ý{ußsìØ±|OެY³flll‘»pøðá‚–ã©U«ÖŽ; :>ùªT©R\\œ9‡@I`ª°zÞÞÞضmÛ+¯¼R£F —üãaaaëÖ­ûᇪT©’÷ºÔÈÈÈß~ûíõ×_ -W®\@@@Ÿ>}bbb>ÿüó¼W®ÃÌ ._¾¼AƒB‡F½óÎ;ñññ½zõ’îÝ´iS‘ßq\Bùå—ºïu¬R¥JÏž=÷íÛfÙb,uŒÜ©åË—8°J•*åË—þùçu+ì4oÞüÌ™3ï¿ÿ~ÇŽ½½½½¼¼ÂÃÃgΜyöìÙ6mÚùê­[·¾téÒòåËÛµkW¥J—àààž={._¾üÂ… º©ðB8::VªT©yóæï¿ÿ~bbâ /¼`ñã ÀL*ퟧ€Œž={¶}ûv!DŸ>}ä®ÅÐÉ“'80zôè|×´‡#‚#ŒÂT5ŒBp€QŽ0 ÁF!8À(G…à£`‚#ŒBp€QŽ0 ÁF!8À(Ç"$''ÿöÛor 3‚cÖ¯_/w Šà$w •™™yñâÅmÛ¶mÞ¼YîZà˜¿ÈÈÈ›7oÊ]€‚ó÷Á<}úT±aÆ_ýUîräGpÌ_›6m¤_8 w-Š@p´¼àà`¹K%+11Qîd@p,öùǤdÁÁÁ¼)JÛ¢L¼/ Ä›¢@vÛ$b9…à£`‚#ŒBp€Qް »wï–»âMQ&ÞâMr`‚cæÏŸŸ˜˜Ø¨Q#¹ ÁF!8À(G…à£`‚#Œâ$wBˆàà`¹K€]KLL”»€ 8*ŸÜQpp0€"1U £`‚#ŒBp€QŽ0 ÁF!8À(G…à£ðÍ1(6F³mÛ6ƒAgg爈¹K%ˆàˆb{öìYïÞ½ ===ïß¿oÙ ëØ±ãœ9säÞc+¨-##cúôé;wî¼wï^hhèâÅ‹_xṋئªQl...jµzðàÁaaa×®]ÓjµZ­Öâ©1>>þÈ‘#rï«uÔ–™™Ù´iÓ¯¾úªmÛ¶#G޼|ùr·nÝâããå® `kè8Â{÷îݸqcrrrÕªU-»åÜÜÜýû÷ÿúë¯+W®Ôh4rï¨ÅjËÉÉB”)S¦$ [¶lYRRÒºuë†*„˜0aB“&M&Ož¼ÿ~¹À¦aŠØØX??¿š5kZ|Ëééé]»v5ùé'NœˆŠŠ:yòä­[·ôÇœœž={&cmÁÁÁÕªU‹ÕDEEmß¾ýĉæ´Í›7ûúú2DºЯ_¿µk×Þ¸qÃ×××üí aª¦¨^½úÍ›7/_¾lñ-{{{Ksß.\(îs÷íÛ×¢E‹³gÏ>|Þ¼y¡¡¡BˆÐÐÐ)S¦Lš4IÞÚòJMM=yò¤ùÛÉÌ̼xñb‡T*•n0<<\£Ñ=zÔüí CǦ2dȺuëÚµk7}úô† zzzúùùU®\YÆ’²³³‡êëë{ìØ1!ÄÔ©S;w˜8{öì *È}ÌJÊ­[·´Z­···þ`•*U„wîÜ‘»:€M!8®®®óæÍ3fÌøñ㥑¥K—Nž<Ùàa¹¹¹;vì(h#½zõ²`I±±±×¯_Ÿ;w®”…...Ó¦M‹ŒŒÜºuë°aÃd¬­XŠ[XVV–ÂÝÝ]ÐÃÃC‘žž.×^lÁQÑôæe Õx×üùó£¢¢fÍš5xðàZµj98äÎÃãÇó.Ü£·ý‚_ øRSS…5Òlذ¡"!!AÞÚ$jµZÿfA—×·0///!ÄÇõ333…•*U²ø^ìÁQÑJ ½X@jjêìÙ³—,Y’·ÅhÀÃã$X¾\]]…¹¹¹úƒR8Ë7×–fm’§OŸêß|òäI¾+naÞÞÞ³ÒwïÞBXüšw€#8¢Øâââ´ZmÇŽ‹|diN !Ο?¯?(õƒƒƒå­Mrýúuý›7nܰÈAsrrªW¯žþõÚBˆC‡©Tªúõë[|/öŒàˆbsqqB|ÿý÷7.ü‘¥9øÙgŸ;ÖÓÓS‘““³dÉ77·=zÈ[›äæÍ›Û·o—ŠINN>}ú´¥Ú¨Q£&L˜ ÛøíÛ·£££;wîìïïoñ½Ø3–ãA±õèÑ£AƒsçÎ}饗¾øâ‹;vÄÆÆ>zô(ï#¥Yׂ˜ðÒ›6mªX±b¾kë8;;¯X±"==½qãÆ .\¼xq›6mbcc.\hpÅqé×&qrrzõÕW ðÊ+¯4hÐÀÙÙ9߇™PذaÃ5j4pàÀ÷Þ{oñâÅíÛ·ÏÊÊŠŠŠ2åÝ `tQleÊ”9räÈ‚ öîÝ;eÊ”ŒŒ !D¹råbcc¥¥KNNN΃ :;0""âèÑ£sæÌY¹revvvãÆwíÚeÎrâ¬MÑ¢E‹_|qõêÕ¹¹¹£FrwwŸ7ožE^ÚÝÝ=&&fêÔ©ÑÑÑ÷ïßoÙ²åÆCBBJgÇöƒàST¨PaáÂ… .B¨ÕêÓ§O7oÞ|×®] ŽÁÁÁylC‡}öìY¾WIKBBB~úé§’Þ}ÓjS©Tï¾ûî»ï¾«™;w®¥JòððX³fMIï8ÀÎ1U s9::jµZéÌ•}àÀ’îkÚ^mXÁðã?jµÚ6mÚ”ô ÅÅÅÕ­[÷µ×^“{­¬6,‚©jX@ëÖ­-Zd°øvIèСC‡äÞ]Sj3fŒÁ—»`uް€ÚµkO›6Mî*ã°LUÀ(G…à£`‚#ŒBp€QŽ0 ÁF!8À(G…¯D±i4šmÛ¶ :;;GDDÈ](AGÛ³gÏz÷îm0èééyÿþ}‹lÜÕÕU­VëzyyݹsGîýþ›°°°Ž;Ι3GîBþ‘‘1}úô;wÞ»w/44tñâÅ/¼ð‚ÜEl ÁÅæââ¢V«‡ –––öÍ7ßT­ZÕ‚OIIQ«Õ­Zµ Ð º¹¹É½ÓäÈ‘Ž;Ê]È233›6mzåÊ•~ýúyyyEGGwëÖíÀ!!!r—°)G˜bïÞ½7nLNN¶ljB$%% !æÎ«œX¦“››»ÿþ_ýuåÊ•¦XÏÍÉÉB”)S¦$ [¶lYRRÒºuë†*„˜0aB“&M&Ož¼ÿ~¹À¦pq LëççW³fM‹oY ަ=ýĉ=zôðññQý³³³ùµ¥§§wíÚ5**Ê„yóàà`ƒ(Õ¬Y3‹´Í›7ûúú2DºЯ_¿˜˜˜7nXdûHŽ0EõêÕoÞ¼yùòe‹o9))ÉÅÅ¥B… ß}÷ÝêÕ«>,õꌱoß¾-Zœ={vøðáóæÍ B„††N™2eÒ¤Iæ×æíí­ÕjµZí… ÌßZjjêÉ“'ÍßNffæÅ‹;tè R©tƒáááæèÑ£æo¦ªaŠ!C†¬[·®]»vÓ§Ooذ¡§§§ŸŸ_åÊ•ÍßrRR’ƒƒC`` îR›ºuë®_¿¾I“&…?1;;{èС¾¾¾ÇŽóññBL:µsçΉ‰‰³gÏ®P¡‚ÜǬ¤ÜºuK«Õz{{ëV©RE¡´+ŠÖŽàS¸ººÎ›7o̘1ãÇ—F–.]:yòdƒ‡åææîر£ ôêÕ+ï`RR’F£‰ŠŠêׯŸ³³óO?ýôÎ;ïôîÝ;!!ÁÃã’bcc¯_¿>wî\)5 !\\\¦M›¹uëÖaÆ™_[é(naYYYBwwwýAéX¥§§Ëµ›DpT4•P™¿“i…¶ »æÏŸ5kÖ¬ÁƒתUËÁ!ÿs?~œwáž¿¶¯Ígû,[¶l¥J•¤›#FŒÈÎÎ;vlttôÈ‘# ©655UѨQ#ýÁ†  !,R›™ Ö*èòšâæåå%„xøð¡þ`ff¦Bw°‚£¢Ýd”šš:{öì%K–äm1ððð(nóóó3éÒ¥‹âܹs…?ÑÕÕU‘››«?(…³|s­ µ™ééÓ§ú7Ÿm‘ƒ&„5jÔ„ t¿}ûvtttçÎýýý-¾{FpD±õèÑ£AƒsçÎMHHèÞ½»¯¯¯»»{HHHÞïw)î¬k•*U¢¢¢¦OŸÔ½{wOOÏ={öÄÇÇ/X° ^½zBˆM›6½õÖ[Ç_¶l™ÁsW¬XѧOŸÆ=ÚÑÑ1::úäÉ“ü±ÁǦÕV¤Bj“899½úê«‘‘‘fûöíRþ¶HaÆ [»víÀ¥Ð¼nݺ¬¬¬¨¨( î‚à”)SæÈ‘# ,Ø»wï”)S222„åÊ•‹•–N4Ç´iÓj×®½xñâ 6”-[¶aÆ»víêÖ­›toNN΃ :;0""âèÑ£sæÌY¹revvvãÆwíÚÕµk×Ò9,…×&„hѢŋ/¾¸zõêÜÜÜQ£F¹»»Ï›7Ï"/íîî3uêÔèèèû÷ï·lÙrãÆ|ß ÀâT¥|}€=NLL,é§(‡Z­>}útóæÍçÎ;sæÌ’~¹/¾ø"!!á£>’{¿‹W›¿¿µjÕ ÎDTYþSRR˜LW ÞâMQ «þà6ßs9::jµZéÌ•}àÀóûšöVAp„üøãZ­¶M›6%ýBqqquëÖ}íµ×äÞc+« ‹àGX@ëÖ­-Zd°øvIèСC‡äÞ]Sj3fŒÁ—»`uް€ÚµkO›6Mî*ã°LUÀ(G…à£`‚#ŒBp€QŽ0 ÁF!8À(G…¯D±i4šmÛ¶ :;;GDDÈ](AtQlÏž=ëÇÀ-µý3gμòÊ+>>>nnnM›6]¾|ynn®îÞŒŒŒ7ß|³FnnnaaaG•ûxä#,,,**Jî*þb  |G›‹‹‹Z­|Þ¼y¡¡¡BˆÐÐÐ)S¦Lš4Éüâ½½½¥Yû .˜¿µÔÔÔ“'Oš¿3ؼBÒ¡V[àÝbª¦2dȺuëÚµk7}úô† zzzúùùU®\ÙÌÍ:99-\¸PäÞ½{ .tttìׯ߭[·´Z­···þªT©"„(²É—=tèP__ßcÇŽùøø!¦NÚ¹sçÄÄÄÙ³gW¨PAî#ZRÌ9h`3 éÚs 4Á¦puu7oÞ˜1cÆ/,]ºtòäÉËÍÍݱcGAéÕ«Wá¯rðàÁ7Þx#))éóÏ? úí·ß„îîîúñððB¤§§¾©ØØØëׯÏ;WJB—iÓ¦EFFnݺuذa–­¼ä·°¬¬,“X‚"éÐRŽÊ&ïiÿ;›?~TTÔ¬Y³\«V-‡üÏyxüøqïÞ½ Þ|Û¿råʸqã¶mÛ´oß¾ððp!„———âáÇúÌÌÌBTªT©ð]IMMB4jÔH°aÆBˆ„„ Vn2µZ­³ ËkŠ[˜9 ‹€(‚£²)ò_@jjêìÙ³—,Y’·ÅhÀÃÃÄŒµiӦѣG»¹¹­^½zĈNNü•z{{;88L°Þ½{WQäÅÝ®®®Býõ ÅŸá,ßÔkZåæxúô©þÍ'OžXäšsÐ@vD¥!8¢Øâââ´Z­ÁUÀù2aÂwÛ¶mƒ~ùå—W­Ze0ÁêääT¯^½ØØXýÁC‡©Tªúõë^IPPâüùóúƒR¯188Ø"•›éúõëú7 ºä¹¸…™sРÔ­†–öÜsÏ•ÂSd´uëV!ÄìÙ³‹|䃊õ·§ÑhêÔ©S«V­ÜÜÜ|7¸bÅ !ĶmÛ¤›·nÝòööîÒ¥K‘•äääúúúÞ¿_yúôiXX˜››ÛÍ›7ͯ\ŸtUõ?ÿùOãi­Zµô÷ëòåËnnnù¾ …sÐdù LNN.ýE‘x_È–Þ!òÿ±:ÖõÁmAtQl=zôhРÁܹsºwïîëëëîî"e}ÅW=þü… êÖ­ûúë¯ÜÕ·oßÈÈÈaÆ­]»vàÀcÇŽõôô\·n]VV–îËý6mÚôÖ[o >|Ù²eOwvv^±bEŸ>}7n}útóæÍçÎ;sæLy‹ùâ‹/>úè#¹Jñjó÷÷¯V­šÁ™ˆ¥I–¿À””¹vá}Q å¼)dD«þà6‡½t¿ûî»-[¶$%%•+W®]»vS§N­X±b!ÏÉÉùÏþ³k×®”””Š+6hÐ`ܸqÒ0àèè¨Õj===å­$;;ûÀ¥ÖD´™Ú /2"òe_9¸|ùòY³f]¾|¹Y³fnnn[·n}ã7 ™4T«ÕC‡]ºtéýû÷Û¶m[µjÕ={öôêÕëĉrïŠBýøãZ­¶M›6ò–W·nÝ×^{Mîãaeµ°sÆÛ`ûÇÄÄÄ5kÖx{{GGGKß´öÁ|ýõ×K—.}ÿý÷ó}Ê·ß~{êÔ©îÝ»/]ºTZD0..näÈ‘³fÍÚ³gÜ;¤D­[·^´h‘ÁòÚ¥¯C‡:tû`˜RÛ˜1c Ö€’@f²ýŽã–-[4Íĉ¥Ô(„˜1c†‡‡Ç®]» úrŽS§N !†ª[zºeË–uëÖMMM½wïžÜ;¤Dµkמ6mšÜUX±iÓ¦½ùæ›rWÀ¦ÐGDI°ýàxâÄ ‡öíÛëFÃÂÂÒÓÓ¥€˜—¯¯¯B?#jµÚ888è¢$ AFD©±ñà¨Õj“’’*Uªdðµ¼Ï=÷œâêÕ«ù>«GeË–ýàƒâââž /2"ddãý³¬¬,µZ÷j_ñ÷ž¢¾àààõë×6lذaºÁAƒ½÷Þ{F¾nÞo±Û½{·Ü(LJJJ)¿âµk×äÞiäƒ÷EQ¤Uxþ¶Or²á¿ÖRÿçkwºuë&w JaãÁQºtº|ùòãÒwœH+Wç•™™ù¯ýëñãÇõë×oРAzzúáÇøá‡^x¡sçÎÆ¼®}®í«&Ë*q Yšx_ä’÷Ê©q˜gGÞ Ò–÷c=o‡ÈNØxpôôôT©TYYYã=öóš6mÚÿþ÷¿3f >\¹~ýú«¯¾úÎ;ïüôÓOrïÀê%³ñsœœ<<<òv333…ºë¬õݾ}ûÀºÔ(„ðóó{ë­·ž={öý÷ß˽Oëc̉‰€òÙxpBx{{§§§KIQG:ËÛÛ;ïãÓÓÓ…µjÕ2—wîÜ‘{‡JGL„­²ýàØ±cGµZ­ÿ-ÀZ­6&&¦bÅŠ!!!y_«V-GGÇK—.|‹·t~C`` Ü;Pb"ì‡íÇþýû;88|úé§ÒyBˆ5kÖܽ{÷¥—^rvv–F?~œ’’"]Kèêê–––öñÇëV¿téÒÊ•+Ë”)£Ø/&”b"ì–_#„ðóó›:uê¢E‹zöìÙ¶mÛ´´´£GÖ¯_Ô¨QºÇÄÄļóÎ;AAAÛ·oBÌŸ?¿_¿~+W®Ü¹sg½zõÒÓÓÿ÷¿ÿi4šY³fÕ®][î”*®btl?8 !FŒQ¹rå~øaçξ¾¾ƒ š8q¢´"O¾¼¼¼vîܹjժÇëúà¶ »è8²ž={Ö»woƒAOOÏû÷ï[ö…ÂÂÂ:vì8gι÷ø/gΜùàƒbbb=zT§N¾ýöÛJø󌌌éÓ§ïܹóÞ½{¡¡¡‹/~á…ä. P(Š€ÉlÿâXœ‹‹‹Z­}ú´¥Ú¨Q£&L˜ ÛøíÛ·£££;wîÌw”A h+¶„àˆbëÑ£Gƒ æÎ›Ð½{w___ww÷777ƒGZ|ªzÓ¦Mo½õÖðá×-[fp—³³óŠ+úôéÓ¸qãÑ£G;::FGGŸoÞ<‹Ôæîî3uêÔèèèû÷ï·lÙrãÆ!!!Ù8` ÚŠ€P•Úµ ö#88811±¤Ÿ¢jµúôéÓÍ›7Ÿ;wîÌ™3Kúå¾øâ‹„„„>úHîý.^mþþþÕªU38Q9dù LIIa2]Œ_h+–þ±(Up›ƒo޹µZ­tfa‰ÊÎÎ>pà@I÷5m¯6ÀR ú¾v‚©jXÀ?þ¨ÕjÛ´iSÒ/W·nÝ×^{Mî=¶²ÚsÐY Cp„´nÝzÑ¢E‹o—„:tèÐAîÝ5¥¶1cƘ°‚ Â"€|aµkמ6mšÜU(ÇÊ÷gXô„EàG°_yÏYLNN!5(G°/LC0Ála€EÀ6XÁla@‰"8€u#,(5G°Jº¼HXPjŽ`5h.Á”Žæ"… 8€Ñ\ @G›F£Ù¶m›Á ³³sDD„Ü¥Væ"%#8¢Øž={Ö»woƒAOOÏû÷ï[dã®®®jµZÐËËëÎ;rï·Bœ9sæƒ>ˆ‰‰yôèQ:uøöÛo;9Éÿï(##cúôé;wî¼wï^hhèâÅ‹_xṋ‚±h.°òàÁ길¸¨ÕêaÆ¥¥¥}óÍ7U«VµàÆSRRÔju«V­tƒnnnrï´B$''·oß^­V÷éÓ§Fûöí›4iÒ¡C‡¾ÿþ{y ËÌÌlÚ´é•+WúõëçååÝ­[·„„„È}ÌPš‹¬Á¦Ø»wïÆ“““-›…IIIBˆ¹sçvìØQî½44iÒ¤ŒŒŒ£G6kÖL*räÈ‘k׮ݳgO×®] nNNŽ¢L™2%QزeË’’’Ö­[7tèP!Ä„ š4i2yòäýû÷Ë}Ìò"ëå w°J±±±~~~5kÖ´ø–¥àhÚÓOœ8Ñ£GÕß9;;›_ÛþýûäÔ(7nœ"..®ÈçDᨨ(ýM™cóæÍ¾¾¾C† ‘nôë×/&&æÆÙ>̧Rýõ£ÕþñV‡Ž#LQ½zõ›7o^¾|¹víÚ–ÝrRR’‹‹K… ¾ûî»{÷îÕ¯_¿yóæF6êöíÛ×¥K—êÕ«>¼|ùòßÿý©S§BCCÃÃÃÌýÿH¹¹¹cÇŽmÚ´©þ`ZZšÂÅÅÅ„ ¦¦¦žÔÌÌÌBè#Jy°ºåçä®D.GeSäçPjjêìÙ³—,Y’·ÅhÀÃÃC[ÌÏR???ƒ‘.]º!Î;Wø]]]…¹¹¹úƒR8Ë7ךP›bÓ¦M£Gvss[½zõˆ#е‚ãÓ§Oõo>yòÄ"ÍÛÛÛÁÁÁ`VúîÝ»B‹_ó}äEÀæåíÞèþ¹Ë]›\Ž(¶¸¸8­VkÌr9ÅuMKKÛ¾}{xxxݺuuƒRó¬È+¸¥ùâóçÏëJ½Æàà|þ›0U½mÛ¶Áƒ¿üòË«V­2˜6Æõë×õotÉsq srrªW¯^ll¬þà¡C‡T*Uýúõ‹[$ŠD^lU!1ÑÂÒž{î¹RxŠŒ¶nÝ*„˜={v‘|ðàA±þönݺU¶lÙ¶mÛæääH#jµúÕW_urr:wî\ᯕ““èëë{ÿþ}iäéÓ§aaannn7oÞ4¿6FS§NZµjåææšpÐjÕª%„ضm›tóòåËÒªææ¦ÕjW¬X¡¿ñ[·ny{{wéÒÅøòdù LNN.ý5™üØ<ëz_ìoJIy~ŠÅº>¸-ˆŽ#Š­G 4˜;wnBBB÷îÝ}}}ÝÝÝCBBò~¿Kqg]«T©5}úô   îÝ»{zzîÙ³'>>~Á‚õêÕBlÚ´é­·Þ>|ø²eË žëìì¼bÅŠ>}ú4nÜxôèÑŽŽŽÑÑÑ'Ožüøã ®86­¶óçÏ_¸p¡nݺ¯¿þºÁ]}ûöŒŒ,¤6‰““Ó«¯¾©Ñh¶oß^Ð">&Ì¡6líÚµ;v¬§§çºuë²²²¢¢¢Šµä‹þ"`è&Z ÁÅV¦L™#GŽ,X°`ïÞ½S¦LÉÈÈB”+W.66644ÔÌO›6­víÚ‹/Þ°aCÙ²e6l¸k×®nݺI÷æääúè#¹÷»xµùûûW«VÍàLDåå/0%%Åßß_î]ÿò¢PäûÞ”ÂÉ­úƒÛ|å Ìåèè¨Õj===Kúµ²³³8`~_ÓÞjCáø2@Àº¨þþ£Íóƒ’ÃT5,àÇÔjµmÚ´)銋‹«[·îk¯½&÷[YmÈýEÀ*0ï¬(GX@ëÖ­-Zd°øvIèСC‡äÞ]Sj3fŒ +ø $%#&*ÁP»víiÓ¦É]…¢q|”@ŠŒäE@Q ’"ÿ@ŽàÀÆÑb…¤hÕŽlyP¦žm Á€­aJ EÛFp`#h1² )Ú‚#«G‹(M$E{Fp`­h1¥ƒ¤‚#+C^JI!8°LI%„¤#X"#`Y$E˜†à@¹˜•,…¤‹ 8¢Ø4ͶmÛ #""ä. ¶ƒ#`&’"J‚ƒÜÀú<{ö¬w´ÔöÏœ9óÊ+¯øøø¸¹¹5mÚtùòå¹¹¹º{322Þ|óÍ5j¸¹¹………=zTîãalå2RòA3 Rýñ£Õ’âQýýGû÷À"è8¢Ø\\\Ôjõ°aÃÒÒÒ¾ù曪U«ZpãÉÉÉíÛ·W«Õ}úô©Q£Æ¾}û&MštèСï¿ÿ^‘™™Ù´iÓ+W®ôë×ÏËË+::º[·n ‘û¨Q¹Œ”|ÐôÑbL ßVä_Jƒ–öÜsÏ•ÂSäµ{÷n‡ÔÔT‹o¹W¯^Ç׌1B±{÷n­V;gÎ!ĺu뤻._¾ìééÙ¡C¹GÑ•îéÓ§OŸ>-¡ÂŒ9h²ü&''K¿H („î}rè¿)âï?‹Õ}p[ SÕ0Ell¬ŸŸ_Íš5-¾åýû÷‡……5kÖL72nÜ8!D\\œbóæÍ¾¾¾C† ‘î èׯ_LLÌ7ŒÙø‰'zôèáãã£ú;ggç’®¼pÁÁÁ;vÔ‰ŠŠÒß”9Ì|ø¼yóBCC…¡¡¡S¦L™4iR‰VnÂSSSOžÿüó   ß~ûMáîî®ÿ!Dzzzᛊ½~ýúܹs¥Ô(„pqq™6mZddäÖ­[‡ V¢•[ðÈ·°¬¬,“šeqí `€ëZ`ŽŠ¦?½Xú´ÈÏŸ??**jÖ¬Yƒ®U«–ƒCþç<<~ü¸wïÞ&lÿÊ•+ãÆÛ¶m[PPо}ûÂÃÃ…^^^Bˆ‡ê?233SQ©R¥Â÷%55UѨQ#ýÁ†  !Jºrc¨Õjý›Æ"‡Ôœƒf¬à è#,ÂÚM«ÈÛÔÔÔÙ³g/Y²$o‹Ñ€‡‡‡ »°iӦѣG»¹¹­^½zĈNNü•z{{;88L°Þ½{WQä’@®®®BƒU¥p–oêµlåÆxúô©þÍ'OžXäšsÐÌD‹ÌAÃæQlqqqZ­Öà*à|™0á»mÛ¶Áƒ¿üòË«V­2˜`urrªW¯^ll¬þà¡C‡T*Uýúõ ¯Dš/>þ¼þ Ôk .éÊqýúuý›]ò\ÜÂÌ9hÂÎÑV„-“{= dóë8nݺU1{öì"ùàÁƒbýíi4š:uêÔªU+777ß ®X±B±mÛ6éæ­[·¼½½»téRd%999¾¾¾÷ïß—Fž>}ææævóæÍR¨¼pµjÕÒ߯˗/»¹¹åûBÅ-Ìȃf©¿Àb­ÈÈzÊÄûbš][‘7E¬ëƒÛ‚TZÚ–œ˜˜XÒO‘QNNNÓ¦MÏž=Û·oßîÝ»ûúúº»»‡„„HYÇÿ÷ÿW¿~ýºuë¶hÑÂா}ûFFFfff†……¥¤¤Œ;ÖÓÓsݺu×®]ûùçŸ_xá!ĦM›Þzë­áÇ/[¶,ïÆwîÜÙ§O__ßÑ£G;::FGGŸ&¦a?8a ãhy6ßq4 V«OŸ>ݼyó¹sçΜ9SÞb¾øâ‹„„„>úHî£R¼Úüýý«U«fp&bi2í/ÐÌÈHE™x_ (á„EÞ²ênsðÍ10—££c`` V«õôô”·’ììì˜Ùõ´ÃÚLÀW¶|q ßÚè0U øñǵZm›6mä-#..®nݺ¯½öšÜÇÃÊj+&¦a«”ÐY”à hݺõ¢E‹ –×.}:tèСƒÜÃ”ÚÆŒc >¥ŒÈÛCXŠ‹à ¨]»ö´iÓä®ÂŠ)üèaK‹€9Ž Dd„m ,–Bp"#l€./ò‡ X ÁÀßaÕh.%ŠààDFX)Â"PjŽ„¬ËX Â" ‚#!h4ÂJpÚ" /‚#@Ñh.ÊAp(aP&‚£RË]ÈŒ™h@ᎊ˜˜(w 6.%%Åßß_î*dÆEÓP&š‹€!8¶È¢¹X#‚#`ãXgÊAs°vGÀfÑh„BÐ\lÁ°ADFÈŽæ"`“Ž€­an2¢¹Ø6{ Žß}÷Ý–-[’’’Ê•+×®]»©S§V¬X±ð§œ={võêÕçÎ{ôèQppðÛo¿Ý¢E ¹÷( FÈ‚æ"`?ä. 4,_¾|Ö¬Y—/_nÖ¬™››ÛÖ­[ßxã'Ožò”ýû÷0`ÿþýUªT ‰2dÈþýûåÞ *ÕFR#JêÏ­ÞÛfûÁ111qÍš5ÞÞÞ»wï^³fÍž={† ræÌ™¥K—ô”ŒŒŒéÓ§;99­_¿þÛo¿]³fͦM›Ê”)óþûïk4¹w0DdDiÊ›ØÛŽ[¶lÑh4'N¬R¥Š42cÆ ]»v”·nÝš™™ùæ›o6iÒDiذa÷îÝïÞ½{öìY¹wø‹®Ñ”4ò"aÁñĉíÛ·×8::†……¥§§Ÿ:u*ß§:tH¥RõîÝ[pñâʼn‰‰5’{‡!˜›F©P‘ü_£Õj“’’*UªT©R%ýñçž{NqõêÕ¦M›æ}VBBBÅŠ}||Nž<ÿàÁƒ:uêtêÔÉÕÕUî„àºi”0®ŒPŽYYYjµÚÓÓÓ`ÜÃÃCqïÞ½¼OÉÉÉyøða``à?ÿùÏM›6鯫W¯þÑG=ÿüóƼnpp°ÁÈîÝ»å>víÚµkr—`þBˆää””¹K1›Í¼)6#@ú>wÿä?ÿ¼¬ÿ¯ÌFðEvݺu“»¥°ñà(]:]¾|yƒq777!DFFFÞ§<|øP‘””tçÎE‹µoß>;;;::ú³Ï>›0aÂöíÛé;&&&ʽë0ä/}(Z3½F£ÕïË»aýoŠ 0è/¦¤¤ð¾(oмò~¬çíÙ ?ÇÑÓÓS¥ReeeŒ?zôHüÙw4P¶lYé—ýë_½{÷öôôôññ7n\Ÿ>}®]»¶cǹ÷ öˆ‹``qœ¼ÀÊ Ž~øaRR’7èäääáá‘·³˜™™)„Ð]g­¯|ùòeË–uuuíСƒþx§N„.\û Áîp ,ˆ¼ÀÊ ŽkÖ¬yñÅ_zé¥õë×ç{¢ ¼½½ÓÓÓ¥¤¨# æííïSªT©âìì¬Ré‚f¨ssså>H°#4a)äE¡¬à8zôèªU«&$$ÌŸ?¿mÛ¶cƌٳgONNŽ9ÛìØ±£Z­ŽÕhµÚ˜˜˜Š+†„„äû”:dff^¼xQPZ»§N:r$Ø 0y€e)+8Nš4é—_~ùæ›o àææ¶ÿþñãÇ·nÝúŸÿüçéÓ§MÛfÿþý>ýôSé¼F!Äš5kîÞ½ûÒK/9;;K#?NIIÑ]¶Ö§O!ĬY³t]ϳgÏ~ùå—;w–û ÁöÑh„™È‹JˆJ«ÔO§ÜÜÜC‡mÛ¶mÿþýÙÙÙBˆš5köîÝ»W¯^U«V-Ö¦Ö®]»hÑ¢ªU«¶mÛ6--íèÑ£õêÕ[»v­n™ž;w¾óÎ;AAAÛ·o—FV¯^½lÙ2¦M›fee8qB¥R-Y²¤{÷îE¾\pp0WU+](j?‘ÑŠÞka‘õy_ˆ7Eìö³^¹Ëñ899…‡‡‡‡‡geeEGG/[¶,--mÅŠüq³fÍ^zé¥ÈÈHGGGc65bĈʕ+ÿðÃ;wîôõõ4hÐĉ¥y 2zôh//¯¯¿þú×_­X±bÇŽß~ûí   ¹ l™tV­¤FXëu(5Êí8 !îß¿ÿË/¿ìÞ½;..Nº*¥råÊÎÎÎׯ_B~ñž¾¾r—iÈnÿ_ˆ’)ÿÿ¯ÛO£QGùoŠÂ•P^ä}Q Þ²ÛÏz%vïÞ½»wïÞ={ö?~\­V !¼¼¼ºtéѤI!į¿þº|ùò„„„Ù³gÿûßÿ–»^À,4Q,ôÈHYÁqÆ {öì9yò¤F£BTªT©k׮ݻwoÚ´©þ¬t›6mš4iÒ¼yó'NÈ]2`;l4Â4äEJ ¬à8oÞ)2òÀJÉõ9²iÓ¦rWX ©ZŒlƒ²‚ã´iÓä.° ¦§!È‹lŽÌÁqãÆBˆæÍ›énnàÀòÖ ‰F#˜’`“dŽsçÎBDEEIÁQºY8‚#ŽÔhÏh1°m2Ç·ß~[Ñ Aéæ”)Sä> €é˜ž¶g´Ø™ƒã¸qãôoŽ5JÞz“Ñh´O´Øe]X)R£½!/°O2ǃ÷)íÛ·—·fÀ©Ñ®0% ÀžÉG]ܧ$&&Ê[3 ÃIöƒ#ÙƒcÏž=å>€‰h4Ú ZŒ #sp\²d‰ÜG0©ÑÀÇÅFj´mÌJ@Aøæ xH6Œ#ŽoŽŒÅ¥0¶Š#‰oŽŒB£Ñ&Ñb€bá›c€¢‘m‘Là w…yüøqNNŽÜUÀÞ‘m‰êÏ-©ŠO‰WUŸ9sæ³Ï>;wîÜ;wªV­:vìØš5kÊ]ì©ÑfÐbó)®ã¸bÅŠþýû>þàÁƒ#GŽBÌŸ?ÿôéÓr×» R‘­³Ò`qÊ Ž›6mÒjµ“'Ož9sfõêÕU*•Â××wÚ´iÓ§OÏÍÍýꫯä®¶OŠŒ¤F륟yÀ‚”Ï;çââ2tèмw 4ÈÕÕõÌ™3r×G£ÑªÑb€¥¬à(„ðññqrÊç’é*™¬¬,¹ „-#5Z/"#”eÇ«W¯fffæ½ëñãÇ)))õë×—»FØ,R£5âDF(MÊ Žýû÷×jµï¾ûnnn®þ¸Z­~ï½÷ÔjuÇŽå®¶‰Ôhu8‘JŸÌë8ÆÅÅéßtttìÛ·ïÖ­[;wîÜ¿ÿ€€•J•’’}õêÕààànݺÉ[0l©Ñº°"#ÈEæà8lذ|ǯ_¿¾bÅ ƒÁÄÄÄV­Z%&&Ê[3l ©ÑŠ@^2Çž={Ê}`×HÖ‚ÈJ sp\²d‰ÜGö‹ÔhˆŒ ʺ8¦pÓ§O—» ؾFù¸\HæŽc^÷ïßÿå—_ÒÒÒ ÆŸÿüsGGÇ!C†ìÛ·ï·ß~‹?xðàÈ‘#…óçÏ?}ú´Ü5øÝ0›§¬à¸iÓ&­V;yòä™3gV¯^]¥R !|}}§M›6}úôÜÜ\¾r¡ÝXú¸h첂ã¹sç\\\†š÷®Aƒ¹ººò•ƒÈ©±”Ø0•Pù#w²QVpBøøø89åsÉŽt•LVV–ÜBqH¥‰ÈÀª µB[äÜû!eÇ«W¯fffæ½ëñãÇ)))õë×—»F( ©±Ô(¡°(+8öïß_«Õ¾û¹¹úãjµú½÷ÞS«Õ;v”»F(©±tÈŽP¨2¯ã§ÓÑѱoß¾[·níܹsÿþýT*UJJJttôÕ«Wƒƒƒ»uë&oÁPRcéàŠi%͘SÉ| !sp6lX¾ãׯ__±b…Á`bbb«V­å­J@j,,è À"ŠÌ…„B+"spìÙ³§ÜGÖ‡ÔXÒˆŒŒG.´+2Ç%K–È}`eH%ŠÈÀ¹ú”ø]ÕBˆ›7ož?>--íÙ³guëÖõóó“»(ÈÔX¢8°O…GCr!ô).8Þ¿ÿ“O>Ù¼y³Z­Ö :::¾òÊ+'Nôðð»@ÀÑhl-CX²‚£Z­3fL||¼‹‹K§NjÖ¬éè蘚šzàÀo¾ùæüùó7nttt”»LȃvcI 26€–!J²‚ãºuëâãã7nüÉ'ŸT©RE7~çηß~;>>~ݺu#GŽ”»LÈ€ÔhqDFÀŠ ¡ÊZ<66V¥R}ôÑGú©QQ¹rå+V888:tHî!R£Å± 7 @­kàÀ¢ÖPeu/\¸P³fM__ß¼wy{{×®]ûüùór׈ÒFj´,€ŒLk¦¤¤¹K„J Ž...Ož<)èÞ'Ož¸ººÊ]#J©Ñ‚ˆŒ@é($Ò„µSÖTuݺuoݺŸ÷®„„„k×®Õ©SGîQzHÄÜ4`Y¦}c²ÜUæRVp”¾Hfüøñç2>|xܸqBˆÈÈH¹k¬ŒŠS‘ÊšªŽˆˆˆ‰‰ùá‡Fåëë[«V-!DZZÚõë×…‘‘‘=zô»F”Úæcn03Ë€ñ”…ÿú׿Z´hñÑGݸqãÆÒ`åÊ•ßyç>}úÈ]J ©Ñ|t}¤CÀ"U*Uß¾}ûöí{ûöíÔÔT­V[«V-ooo¹ëBé!5š‰F#ìYA‘tX„²‚ãµk×4M5„UªT1XÍö€Ôh"#ì…²‚cDDÄÓ§O9âåå%w-©ÑÌMÃ&EQÖUÕAAABˆ‹/Ê]`M¸n6 ¸/Ë]/`§”ßÿ}WW×Ï?ÿ<;;[îZPÚh7š†a]ˆ€USÖTu•*U>üðÃÙ³g÷ìÙ³gÏž5jÔpww7xLûöíå.–Gj4g4Bɘbl’²‚c‡¤_îÞ½ûÉ'Ÿäû˜ÄÄD¹Ë„…‘‹‹ÈEÉ7#›¤¬à(}s €Bp:#dDF윲‚ã’%Kä.¥v£ñh4¢Ô0Ñ _Ê ŽrrrrssË•+'w!()¤FãÑhD 1̈þB@‰ÁñÒ¥K+W®<}úôÍ›75ÏóÏ?ÿöÛoשSGîÒ`I¤F#Ñh„¥3Ñœ’’âïï/w¥JqÁñ‹/¾øðÃ5ÂÅÅÅÑÑñæÍ›7oÞÜ¿ÿ¤I“F%w° R£‘h4Âdyc"}DfRÖ:Žqqq~ø¡J¥2dȾ}û~ûí·øøø˜˜˜×_ÝÁÁaÙ²eqqqr×”–õ†ñŒ\Qî2X=eÇo¾ùF£ÑL:uæÌ™Õ«WW©TBŸ©S§¾÷Þ{fýúõr×  ÝX$–õFAŒ_=[îJØ edzgÏ–-[vÈ!yï0`@¹råΞ=+w0©±p4¡Œ@Qsssoܸáíííèè˜O¡¾¾¾Z‡•#5ŽF£cº€Â)(8ªTªråÊ]½zõÁƒyïÍÌÌLMMmРÜe%‚F£"&°: ŽŽŽŽ}ûöÕh4Ó§Oúô©þ]9993fÌP©T#GŽ4mãß}÷]ÿþýCBBZ·nýÞ{ïÝ¿ßøç^¿~½I“&S§N•ûY=Ú¡Ñhˆ‰l€²–ãyíµ×Î;wðàÁN:½ôÒKþþþ*•*%%å¿ÿýïÍ›7#""=ztðàAÝãjÔ¨Qäf—/_¾jÕªòåË7kÖ,--mëÖ­—.]úúë¯]]]‹|®V«>}ú£Gä>6VÔ˜/Öh´U,…À&)+8FDDH¿Ü¾}ûóÏ?7¸wçÎ;wîÔ™2eJ‘+;&&&®Y³ÆÛÛ;::ºJ•*Bˆ>øà믿^ºtéûï¿_dIëÖ­;~ü¸Ü¶‰¹i›ALì‹Jˆçä®A&Ê Ž={ö,Öã‹|Ì–-[4Íĉ¥Ô(„˜1cÆ?þ¸k×®™3g:86YéÒ¥å˗שSçÂ… rëF»1/R£õ"&6NUÔ´BË]¤L”—,Ybñmž8qÂÁÁ¡}ûöºGGǰ°°mÛ¶:uªiÓ¦=177wÚ´i+Vœ1cưaÃä>6VŒÔh€éi«c‰‰€u3&¢ º8¦$hµÚ¤¤¤J•*UªTIü¹çžB\½zµç~òÉ'çÏŸ_¸p¡»»»ÜûaÅH¸FùмŠEîJUÔ¶¨LYG‹ËÊÊR«ÕžžžãBˆ{÷îôÄÓ§Oÿûßÿ4hP«V­Î;WÜ× 6laïÞ½[îƒ!ÿ””¹k×®]“»àï/„HVÂáP%¼)’ÿý›É)ÉHvô¦)ç}oŠ>ÿÿÂ’\Ô?ØâÿƒîÖ­›Üû­6Ÿ>>rï 5Òh,iôG×ù±ýàØ¿ÿU«V}úé§íÚµ“®‰Y³fÍÝ»w_ýugggé1?¾}û¶³³sµjÕÚ´iÓ¦Mý-œ;wîðáÃM›6-‰e&a{8£±$QH:äòcûÁÑÏÏoêÔ©‹-êÙ³gÛ¶mÓÒÒŽ=Z¿~}ýï*Œ‰‰yçw‚‚‚¶oß.w½VÏÎÛ¤F Ò‹$EÀD4aQ¶…#FŒ¨\¹ò?ü°sçN__ßAƒMœ8Qê>²ì952=m>ÚŠ€‰h¢´ØEpBDFFFFFtoDDDDDDA÷Ö¯_ŸuQ8&£­‹t°—àˆR`·íFRc±ü•ý… ,òK‡þþkdgûËñ tØgjT‘“ïZ9É)ɤFØ©b.d“’œÂ¿(GÀDDÆBp¶"ÀÌ2lÁ`‡íFRc^œ­;UP@älÁæ"5Ú3Â"ìíC@ApŠ…5wa¶ö!P(‚#ÌbWíF{n4akˆ€IŽ0©Ñ¶a ˆ€E"ØÕô4aV,ߌÈ_1`QG˜ÈNÚöÐh$,ÂÊÐDäCp„)HÖŽ°+@@”‡àäÏ&S£./¡,Ì2V‚àˆb³ùv£ÔHsÊBF¬Áø›i4Ò\„üȈ€Í!8¢xl»Ýhí©‘æ"dCFìÁÅ@jT&š‹(UdDÀŽ!¬05Ò\Di #ø;‚#Œe«íF뺆æ"JJ!ü…ÿ_#ü•ø;¹ ä$5•ÿá¨*éG+´ÒÜÁÊ©òûÑ ¡)É)ü«à¯ @ta›l7*zšþ",#ïŒ3PLBpDÑH¥['/ œ• $a˜i.´”.‚#Š`{íFE¥Fò"Š˜@nGØå\@M^Dш‰”‡àˆÂØR»Q Fò" DL` ް þþ2~ “aˆ˜À:±Ž# d3íF•É))2½4‹/B‘ÿЉûk@pDþl)5–þ~¬×-÷1@©S•À:1U [VÊ©‘)iûe0õÌûÀF‘Ûh7–Zj$/ÚÎP`¯ްA¥¶ìŽÉ‹¶†"!ŽÈËÚÛ¥Ðh¤ÅhûHŠ‚#lJ‰¦Fò¢-#)€Žø«n7–\jdJÚ‘ øް%‘i1Ú’"˜àˆ¿Xo»Ñâ©‘£- )€¥ñRãŸ[#2Z-’"”0‚#¬›¥R#³ÒV‰¤¥‹à!¬¶Ýh‘ÔH‹Ñš@VGX+óS#‘Ñ:è‡EÞ+ÁVÙn4'52+­t´@©ް>&§FZŒÊE[¬ÁÑÞY]»Ñ´Ôà ˆŒ ãàÿ× Þ°rƒ ©Q%T*¡JNI&5ÊOõ·Ÿ”ä¡ü¬ÁÑ®YW»±¸©QŠŒZ¡%2ÊI?,jÿþ°6LUÃ:+5r.£Ì8alÁÑ~YQ»ÑøÔHd” aìÁJgdj$2Ê€°v†àh§¬¥ÝhLj$2–*Â"Ø1‚#”«ÈÔHd,%„E€‚àhŸ¬¢ÝXxj$2–8Â" ‚#”¨ÔHd,A„E@¡ŽvGùíÆ‚R#‘±DF#8BYòMDFËÓåE*ÀhGû¢ðvcÞÔHd´$š‹ó¡ù¦F"£Ð\XÁÑŽ(¹Ýhi4š‹æ" !?ýÔHd4 ÍE@I"8Ú Å¶u©‘Èh"š‹€ÒBp„œôS#‘±xh.JÁÑ.(³Ý(¥FÅC^ȇày¨„B¥"2ƒÉh€2mŸÛRj$2æ"@aŽ(m¤Æ"JEp´qJk7þy5Œ’jRò"@ñŽ(%*¡Ê ±Ê@^X‚#J©Ñy`…޶L óÔª?"’ì…(y`ÍŽ(AÒ²Þ*by`Ž6KÞv£nYo»NäE€m!8ÂòìýûÉ‹Ep´Mrµ ¾?ÐîÚœÏ)w” ‚#,Æ ÑhG©‘#À>m,íF{LäE€!8Â\ÓÓÂæS#y`¯Ž0KÞë`l95r #À¾mMiÎSÛKj¤Å€‚à“ÙEj¤Å€‚£M)vcÞ“m -FòCpDñ´¸·´i1P0‚£í(…v£Í¦FZŒàcÙfj¤Å€ÑŽ(Z!'5Zqj$2PLGQróÔ5…•¦Ff¥0Á…±©ÔH‹ómA µ IVF%ü…¿mì 2r»(Tá©Ñ:Úª?´"%9Eîj°zt­^I´­>52+ @ 8Âu§F"#%†àˆ¿±âÔHd „ÙKpüî»ï¶lÙ’””T®\¹víÚM:µbÅŠ…<þÉ“'ß~ûmttôµk×*T¨ðÜsÏ1¢uëÖrï‡!ËÎS[kj$2P*ì"8._¾|ÕªUåË—oÖ¬YZZÚÖ­[/]ºôõ×_»ººæûøÜÜÜaÆ>}ÚÃãeË–ÙÙÙÇŽ;|øðøñãÇŽ+÷Þ”«¼†šÈ@)²ý«ª׬Yãíí½{÷î5kÖìÙ³gÈ!gΜYºtiAOÙ²eËéÓ§›4ióùçŸõÕWßÿ½§§çgŸ}vþüy¹wè/l7™×nüóri…•€-³ýà¸eËF3qâÄ*UªH#3fÌðððصk—F£É÷)»wïBÌœ9S×’ zóÍ7Õjõ‘#GäÞ! S ••¥F"#À‚T*S~ì•íÇ'N888´oß^7âèè–žž~êÔ©|Ÿ’’’R¾|ùúõëë !®^½*÷YR!_B­÷Å$4"#Ø'Ó²‘?Z­)?öÊÆÏqÔjµIII•*UªT©’þøsÏ='„¸zõjÓ¦Mó>kõêÕNN†GæÜ¹sBˆêի˽O°Ô<µu¤FÎe«PB­8;jJcãÁ1++K­V{zzŒ{xx!îÝ»—ï³êÕ«g0rôèÑ5kÖ¸¸¸ôîÝÛ˜× 6‘¦¿-Ê?%ŬoC ðHNIN…nÄßÜW1w'ü…øó{_Ì(äÚµk2îòÅ›¢L¼/ TBoŠ@€Å·™’œ\"‡@ÖO"!D·nÝä-@9l<8>yòDQ¾|yƒq777!DFFF‘[P«Õ7n\¼x±Z­þðý¼¼ŒyÝÄÄÄݯ?Ûþ¦oA:¯Ñ¿ðÇ­ÂßôW1o'…týÍØS¹vãMQ&ÞúãM±l?¯Úx¶ú§“÷c=o‡ÈNØxpôôôT©TYYYã=ö qìØ±¨¨¨Ë—/ûúú.X° U«Vrïe³òŽœ“ÔLL°%f§½¿Ò3¶›G'''¼ÅÌÌL!„î:ë¼rrr–,Y²~ýú²e˾ýöÛ#GŽ,hÑG«£èÔHd –jï™öRRRhC!l<8 !¼½½“’’233ÝÝÝuƒÒy{ÞÞÞù>E£ÑLž<ùçŸîÔ©Óœ9s É—²0ç²å¦F"# ²H棽äaûËñtìØQ­VÇÆÆêF´ZmLLLÅŠCBBò}Êúõëþùç×^{í³Ï>SZj4‡B¿†Evä%Ë+¬·Åöƒcÿþý>ýôSé¼F!Äš5kîÞ½ûÒK/9;;K#?NII‘.[Ójµ6l¨P¡ÂôéÓå®=&·L¥Ýn$2¶JÞä dØþTµŸŸßÔ©S-ZÔ³g϶mÛ¦¥¥=z´~ýú£FÒ=&&&æwÞ Ú¾}û;w®\¹âêê:pàÀ¼[ëÓ§Ï AƒäÞ§bSbjdnP>s&|Io€-²ýà(„1bDåÊ•øá‡;wúúú4hâĉҊ*°tm‡l“Ô4í1ýc>¢RRäÞ éð‘Ò`«Ž6BÎÔÈmL‘Ÿš|"BÁÌ}d> G¥3ák ÛšcF+E.„²™™üˆ}@‰"8ÚNm¤Ñ¨d…îò±ŠFòlÁQÑŒi7–ö$5F…(ä³™Ï]X‚ÉùäØ0‚£u“!5ò‰PšH‡°Ó" ù@^G‡FcÉ!Âh¥SRRüýýåÞQ EpT®"ç©K¯ÝH£Ñ|¤CäaB ¤ @^GkEjT¨‚¢Ÿ÷v ¸AÀêmœY©ééÂ囈¶¥XY ÀæªðyêÒX‡F£>2¢m1>’@ÁÑú”Æ$µ=§F2¢Õ"@I#8Ú,³Ÿ]MO“­q”ƒà¨D…ÌS—ì$µm7óær†ÜŒ …ÄAP‚£5)ÙIjKO$þ‚˜XÚ…`{Ž6ÈScQÝÄ””V4¶ ‹„””¹÷P<GÅ)hžº¤&©­ñ¤F&KX‘¹N!Ø'‚£­)^ëÐZ9†Ôbr!À4Gë`d»ÑvR#IÑ<…GCr!À4GeÉwžºD&©•–IŠÅWH:$JÁÑv# *!5’@ã (G¥³ð$µ¼—ÂèÇ Bž‚"Ñ (G)üû©-ñrDFÂ⟘YX;‚£¢Y²ÝXš©Ñ¾Ã"íC€­"8Z=¥¤Fû ‹D€½!8*EÞyj‹]L]r©ÑnÂb¾‘€°7G…²Ø$uI¤F]вÅäDF  G+Vª©Ñ›‹dDŠ…à¨óÔ–™¤¶Hj´¡æbÞ˜HF XŽÖªˆXhfj´þ¼HLÀ⎊cL»±¤R£ÕæÅ"cbJJŠÜ5`õŽò³ðºß&¤FkË‹tÁQYÌm775J Lñ©Ë )ÁцŸßb$) @G™éÏS›Õn425*µÅHR@ùŽÖÄôÔ¨¼#I«CpT Ó×n,<5*¦ÅHRÀÚåT¬ë©óχ…¤FDFý°HRÀÚ¡ÈvcñR£¬‘‘°€­"8Z­|S£L‘‘°€= 8Z|"bÞ¡RŒ„Eì ÁQ6º‹}YŒAj,ÝȨˋ„Eì ÁQé {‹ú·K+2Ò\‚à(»ÂÛ…~» e¿â:ßW ¹þBp”‡‰©O ’%Ùh¤¹ Bp”SñÚ*é%i.€"*ÿÔhéTG^Æ#8Ê ØóÔ%¥ÈH^Æ#8ʦy꿵-ši1“•M¥Bk~j$/óåaT»ñÔhÞ 1% ,„àXÚ¤UE>H3S#‘XÁQYTBhuÑÒ¤ÈǬ4(!G4Omfj¤ÅJÁ±T=OmRì#2€R@p,m…µ 3bkDFPZŽÊ [ÜèÔHd¥ŒàXz œ§V©TR4.5€,Ž¥*Ÿyj]j4æéDF ‚£¬ô¿µº¨vcq&€åeöG\,45ÒhJ@p,%*•Ú¿ÏSë· {"F G™¨TB«-¼ÝH£( ÁQFœÚH£( Á±4ä3OýÇ æ“i4e"8–ºBOm¤ÑËAîìÌŸ©1ßv#©(ÇRñ÷y꼩‘éi |ǧÒeÄ&©i4«ÀTui3h7’€µ 8–¶lÙ¢Ñh&NœX¥JidÆŒ»víÒh4ÆlAº0Fîý°$‚c>Nœ8áààо}{݈££cXXXzzú©S§Š|zâÅ‹rï€å iµÚ¤¤¤J•*UªTIü¹çžB\½zµÈ-Ðn6ÉIî'++K­V{zzŒ{xx!îÝ»gÌF‚ƒƒåÞâMQ Þeâ}Q Þ(ÁÑtétùòå ÆÝÜÜ„Env#°ILUòôôT©TYYYã=öìÁÑ“““‡‡GÞÎbff¦Bw5€½!8æÃÛÛ;==]JŠ:)))Ò]rW ‚c>:vì¨V«cccu#Z­6&&¦bÅŠ!!!rW ‚c>ú÷ïïààðé§ŸJç5 !Ö¬Ys÷îÝ—^zÉÙÙYîêäÁ×âåoíÚµ‹-ªZµjÛ¶mÓÒÒŽ=Z¯^½µk׿]¦ÀN ´mÛ¶~øáÌ™3¾¾¾Í›7Ÿ8q¢´"€}"8À(œã£`‚#ŒBp€QŽ0 ÁF!8À(Nr`;¾ûî»-[¶$%%•+W®]»vS§N­X±¢ÜEA!’““»wï¾eË–FÉ]‹½{òäÉ·ß~}íÚµ *<÷Üs#FŒhݺµÜuÙ»|ôÑG'Ož¼víZåÊ•Ÿþù·ß~; @îºð‡ëׯGFF†‡‡/Y²DîZìZ¿~ýΞ=k0èååuäȹK+=GËX¾|ùªU«Ê—/߬Y³´´´­[·^ºté믿vuu•»4ˆõë×Ë]„"77wذa§OŸöððhÙ²evvö±cÇ><~üø±cÇÊ]ýÊÌÌìÑ£Ç;w‚‚‚:tèpãÆ;wþüóÏß~ûíóÏ?/wuZ­vúôé=’»ˆ+W®¸ººÖªUKÐÞ¾‹˜àh‰‰‰kÖ¬ñööŽŽŽ®R¥Šâƒ>øú믗.]úþûïË]ýÊÌ̼xñâ¶mÛ6oÞ,w-Bˆ-[¶œ>}ºI“&_~ù¥ôÿ©.]º4hРÏ>û,<<¼nݺrh§>ùä“;wî¼ùæ›ï¼óŽ4òßÿþ÷Ýwß?>ÿv”`ݺuÇ—» ˆÌÌÌŒŒŒîÝ»ôÑGr×"'Îq´€-[¶h4š‰'J©Q1cÆ ]»vi4¹«³_‘‘‘ä“O9vïÞ-„˜9s¦®ôæ›oªÕj»šèQš¸¸8WW×1cÆèFúöíëããsîÜ9µZ-wuöîÒ¥KË—/¯S§ŽÜ…@\¹rEaÐn´CG 8q℃ƒCûöíu#ŽŽŽaaaééé§N’»:ûõÁ¬\¹råÊ•­Zµ’»!DJJJùòåëׯ¯?$„¸zõªÜÕÙ/OOÏððð²eË꺸¸ääääääÈ]]ËÍÍ6mZÅŠg̘!w-iiiBˆš5kÊ]ˆÌ˜ª6—V«MJJªT©R¥J•ôÇŸ{î9!ÄÕ«W›6m*wvªM›6Ò/»!ÄêÕ«œ ÿ›sîÜ9!DõêÕå®Î~mذÁ`äĉW®\iܸ1giËë“O>9þüÚµkÝÝÝå®Ç7n 2äüùóåÊ•«W¯Þ›o¾io—]Í•••¥V«óžëáá!„¸wïžÜJQ¯^=ƒ‘£G®Y³ÆÅÅ¥wïÞrW¿uëÖ”””øøø5j,Z´HîŠìÚéÓ§ÿýï4¨U«VÒÿ¿‚¼¤‰‘+Vøûû·lÙò÷ß?pà@LLÌ?ÿùÏ—_~YîêJÁÑ\Ož<B”/_Þ`ÜÍÍM‘‘‘!w€©Õê7.^¼X­Vøá‡^^^rW‘˜˜­Õj…õë×/S¦ŒÜÙ¯'OžL›6­zõê“'O–»üáÆ®®®“&M2dˆ4ò믿¾ùæ› ,hÓ¦ŸŸŸÜ–Îq4—§§§J¥ÊÊÊ2—–NúŽô;v,22òƒ>ðòòúòË/#""ä®Bñꫯž?þðáÃÓ§Oß³gÏ€XF.‹-ºvíÚâÅ‹9[@9Ö­[wúôi]jB´jÕjðàÁOž<Ù·oŸÜÕ•‚£¹œœœ<<<òv333…ºë¬!rrr>øàƒ¡C‡^¿~ýí·ßÞµk—.)ŠJ¥ª\¹òˆ#^yå•›7oîÙ³GîŠìÑñãÇ7mÚ4zôh{;yÎ5oÞ\qñâE¹ )=LU[€··wRRRff¦þùË)))Ò]rW(…F£™>^,w¥‡àhýû÷_µjÕ§Ÿ~Ú®];隘5kÖܽ{÷õ×_wvv–»:@´Zí† *T¨0}út¹kÁ_¼½½ƒƒƒ>¼ÿþððpiðÂ… 7ntsskÖ¬™ÜÚ£6mÚèV“œ;wîðáÃM›6廪åR«V­&Mš?~ü»ï¾ëß¿¿4¿víZ??¿®]»Ê]`é!8Z€ŸŸßÔ©S-ZÔ³g϶mÛ¦¥¥=z´~ýú£F’»4@)îܹ#}ÍëÀóÞÛ§OŸAƒÉ]£š?þk¯½6f̘jժݾ}ûäÉ“BˆÅ‹sµ; 3{öì‘#GΚ5kÓ¦M¿ÿþûéÓ§Ë•+·páB»º†‰àh#FŒ¨\¹ò?ü°sçN__ßAƒMœ8Qê>B\»vMñäÉ“„„„¼÷r‰ŒŒ6l¸cÇŽ+V$$$œ?ÞÇǧK—.cÇŽ•¾Ô€¤N:ßÿý‡~wéÒ¥êÕ«÷îÝ{üøñ¾¾¾r—VªTÒ’]@áXŽF!8À(G…à£`‚#ŒBp€QŽ0 ÁF!8À(G…àÀ¾L:588øàÁƒr">ýôÓààà7Ê]‹à£8É]Ø©:xyy5iÒDîBÀXGGýúõëׯ/wP LU€â¨ÕêgÏžÉ]"8°³fÍ ^²d‰ÁøÙ³gƒƒƒ[µj•››+„¸{÷î²eË"""BCCCCC_|ñÅýë_·nÝ*h³Òµ2qqqãõêÕ{á…ôGŽ92~üøN:5kÖlÈ!Ÿ~ú©A¶ûý÷ßçÌ™ѸqãöíÛ¿ñÆ'Nœ(dþýïë_#UríÚµ5kÖ´lÙòùçŸoڴ髯¾ºoß¾‚¶_¯^½°°°‡ê=zÔ¾}ûzõê9sFî7 €­!8°‘‘‘Bˆ={öŒoß¾]Ñ»wo''§»wï8põêÕׯ_¯Q£FµjÕ®^½úÕW_ 0àþýûæ¼úÒ¥KG޹gÏžÜÜÜ*Uªœ4hPzzºô€K—.EFFnÞ¼9==½víÚZ­6&&fðàÁû÷ï/Ö ­^½úÃ?tvvnÙ²¥‡‡G||üرcwíÚ•ïƒCBBFŽyëÖ­… ê/^|ãÆ·Þz«aÆ¥ý&°uGÖ¡Y³fUªT¹zõêÿýßÿé5ªúöí+„غukjjjxxø‘#G~øá‡Ÿ~úéðáÃÍš5ûý÷ßùå“_úÀÿþ÷¿«W¯þÝwßÒõð¼¼¼>úè#ooïèèè!.\¸ „èß¿¿£££ô˜¼õÖ[:u*Ök5lØpòäÉÒ.¿õÖ[BˆÔÔÔ‚ïìì¼xñb''§Y³fݾ}{æÌ™®®®K—.Õ•Dp`5¤¨?o+ÍS¿ôÒKÒͱcÇ®ZµªvíÚºܹsgÇŽæ¼èýû÷SRR ®€.W®\«V­ž}úôZµj•Ô{À¾±«Q¿~ýZµj¥¦¦&&&çææîÞ½ÛÕÕ5""B÷˜ßÿýСC'Ož¼zõê•+WÌ<µQ‘œœ,ýoppp¾¸qã†"**jâĉÇÿüóÉÉÉgÏžýå—_jÖ¬Ù´iS鮳gϪÕêÐÐPýÔ(þ¼l¥p3Ú{÷îÕýîíí]¹råË—/Ÿ;wNÿ1jµú¥—^jÛ¶íÝ»wÿý÷ððð—_~Ywo™2e:vì(]ÍsíÚµ=&Û¶mÛµkW»ví¾þúë   ;vä]´,‚àÀÊH—ÈÌœ93++«_¿~ºqooo!Ä… îÞ½+¨ÕêÍ›7oذAñäÉ“|·V£F !Äúõë³²²¤‘£GêÙ‘Lš4I£ÑLš4éüùóÒÈ£GÞ}÷Ý„„„úõë{yyùúú>|øð·ß~ûâ‹/t­ÊÔÔÔC‡ !Jt=Å›7oÎ;·B… óæÍsvv^¸p¡££cTT”ù'w@^LU°2‹-JLLtttìÝ»·n<  cÇŽ¿üòKçΛ4i¢Õjïß¿?pàÀ¯¿þú¿ÿýïÇ¥…uôõîÝû?ÿùÏ©S§:vìX¯^½Û·o'%%yxxøøø<}úTzLŸ>}Ž?þý÷ß÷îÝ»jÕª+VLNNÎÊʪU«–´ò¶ƒƒÃ{ï½7cÆŒì{¦übIDAT%K–|ùå—ÕªUËÊʺ|ù²V«0`@HHH  ­V;cÆŒÌÌÌ H¹¹AƒÆ ûòË/£¢¢>úè#¹ß+¶†Ž#+S¥J•æÍ› !Ú¶m[¥Jý»>üðÃñãÇûùùIë;†……ýðÃ3gÎ8p ££c¾_X½zõo¾ù¦S§N‡¾xñbÕªUÿýï{yyé£R©þõ¯}üñÇááá&55ÕßßÒ¤I?üðCÅŠ¥ÇôéÓç?ÿùO»ví\]]/\¸••Õºuë•+WΙ3§äÅúõëãââÚ´i£;ÑS1~üøš5kîÚµk÷îݲ¾QlªðåÁÀ~<~ü8==½zõêÆ_ v…à£0U £`‚#ŒBp€QŽ0 ÁF!8À(G…à£ü?À÷Ám‚t›IEND®B`‚statistics-release-1.6.3/docs/assets/gpfit_101.png000066400000000000000000001226041456127120000217660ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A€IDATxÚìÝwXGðYHUZDEŠØAQlØ{ÁEì½Æ5 𨣉ILlh4*6‚ ¶¨Á†"5–`A,D@)·ï£û®×Ø+pp|?ÏÝÜÞ»³3³ ˲ $ºÎT @Ž G#‚À©0ã¾}ûa^¿~M™7o}Ú³gO]ç½ÂÓ¤2>|ðàÁƒfeeq‰›7o¦;lÔ¨‘® WÞéäL~ýúõÈ‘#Åb±¹¹ynn®®«A5K–,¡•FSäžrŠŠYŠ/÷óU9É~Rtò=#{îɺyó¦Ü/ssó† Ž5êÑ£GºªÆ2;£~H5ɶìKéë´²ý̉uÐs|óæ !$...44T×ÙAfÏž½uëVú˜6Ÿ^RTÌ T||¾ôÉ›7o’“““““ýõ×ß~û­]»veŸ‡ zFé6Û´ÒÔVaǪU«º¹¹qOóóóŸ>}J;99q/T˜nÔJËÜÜœ¶¦£££®órœ8q‚>îÙ³'ÿóUAÉ=åSÿŠ_9Uˆï{{{BHaaáãÇ% !$77wÔ¨Q)))¦¦¦ºÎ`ÙÑz{éö¨§Ÿz*LàvïÞ=îéüѶm[úøÄ‰õêÕÓuµæÞ½{NNNÆÆÆå|Ÿš×u.ÊòÓLÜ_eŸ}öYçÎu-{Ê)*¦þ¿rªß3¿üò ×GõæÍ›É“'ÿý÷„þù'>>¾k×®ºÎ`ÙÑz{éö¨§Ÿz*EçÜ‹/¦OŸÞ°aC333??¿~ø£Eþ ‡¢¢¢/¾ø¢F_|ñ·ÁÓ§O'OžÜ¼ysssóO>ù¤wïÞÉÉɲG¸ÿÐOž<4h­­­‡‡‡½½ý²eËd·ÏÍÍ?~»víìíííííÛ¶m;gΜœœõö©h´ÇÀiúÌ™3•d^"‘ìÚµ«uëÖ®®®UªTquu ùñÇ é³gÏf†»Ò×¶m[†aèp1Eƒ?T-àË—/§OŸÞ¨Q#sss??¿¥K—rGW¤°°pÓ¦MAAANNNfff>>>C† ¹v횪¥ãç¤oß¾wîÜ4h››[5xãÆ BÈ… ú÷ïïææV­ZµÖ­['$$¨Ýôêo Ë—••uÿþ}ÚíAyõêÕýû÷‹ŠŠˆ€OŠJͧF¥)òàÁƒþýûÛÚÚ:88ôêÕëÒ¥K²ÛHrŠŠ©¤ø«]óïg¸’Ï—"={ö¬V­š››[DDDff&Ý Ã0óæÍSéìRõc¨a½ ù<–Øè„GGGEƒã¥†$ ü>rî gff¶nÝ:CCCúôöíÛÜK*}#©wî•xF ù€+¢Æ‡”*ñKL*33sÈ!Ÿ|ò‰““S¿~ýNŸ>­è„ä§Ký>–‡Ÿ95¾ç5ÅVLqqq\RRRd7˜;w.}5$$¤N:R¥^½zµì–=zôøôÓOéã¹sçÒWÿøã{{{©·3 3mÚ4þán¦(“mÚ´ùä“O¤ÞÁßøâÅ‹²ÛBjÖ¬™˜˜¨Æ>ùçhÀ€4}ÆŒJ¶ìׯŸÜ3ªOŸ>tƒ¨¨(ÙWß¼yòì¦M›èÓÀÀ@µ âíí-µqß¾}•TøÛ·o7n,{†aÖ¯_Ïß²ÄÒñsâççgkkË߬zõêk×®å~¸£$$$h¥™„œo Ë×£Gٷܾ}»ÄOŠªÍ§F¥ÉuéÒ%þ[ÌÍÍ;uêDwìØ‘n&uÊ)*¦’â ¬vÍ¿OžáJ>_r={VªÂ=<<¸óœË¡v3©­zSéóÈ}Rd¿g¤N>îT˜aá瞬””î-qqqR¯:99Ñ—¢¢¢ÔûFRïÜS~F ü€kñCÊ ûS釆«¢FIÇÐÐpÓ¦MJN'Jê÷Qç?sê}ÏkHÿGÊÃÃÃßß_$Ñ§ÆÆÆïÞ½“Ú²FÜöôÃöúõëêÕ«Ó”6mÚ,X°`àÀÜÊmÛ¶Ñ=ܬÄLÚÙÙµlÙÒÌÌŒK9zô(Ý2//âY¥J•:têÔ©jÕª4ÅÁÁ!''GÕ}j8îÞ½›;;Û´i3tèÐúõës‡øã?X–}þüyFF—Éü1##C"‘°ò>QjÐÕÕµI“&UªTáR.^¼Xb…›˜˜tïÞ}âĉMš4¡)b±855Uxé¤rb``àëëkcc#õéõöövvvæž¶nÝZófx¾ ,¬!£ì'E½æSµÒd½{÷ÎÕÕ•+TÓ¦Mù#¡‰VGU«]íïg¸’Ï—¬üü|.122jÞ¼9÷”ŸC­gR+õ¦êçQIà8kÖ¬15 ‡NS¦OŸÎ½±aÆ4ñ믿æ¹`ˆÿý(û‰R¯€ß~û-MLMMå>TJþÌjÑ¢ÝfñâÅ\"7u‘Û›ÀÒñsräÈ–e ø?EkÖ¬aY¶¸¸xĈ4ÅÖÖVófx¾ ,¬\r[MÉ'E½æSµÒd­_¿žncnn~áš8eÊnoJ~“SQºÀj×üûD¥3\Q¤¬^½šnfii™œœLk822’;8j=“š×›ªŸG%#ß«W¯j×®M7°··ÿ÷ßUʰðsO–ÜÀ±°°055•?¦ö¯¿þ¢/©ñ¤Þ¹§èŒþ—¥É‡Tø—˜À~uíÚ•~ñ>xð V­ZR'ðßGáG/Ÿ9M¾çÕ¦ÿ£··7—øßÿ‰ÅïçíÝ»Wj˪U«rßT@@}éøñã\â›7o¸¿¯]»&|3%™‹Å<àÒ÷ïßOÓ†ÉÏÏgY–ë‹æ_QbYvéÒ¥4ÝÇÇGÕ}j8;vlÇŽ;vìàñúõk®Gÿ%"ð¥FëׯÏß’û¨Ìš5KÑiõ”——×¶mÛž¤Â¿ÄT  >|Èm¹wï^šnddTTTÄ–NàX?sš|Ï«Mÿ'ÇpSBÌÌ̸K`ÅÅÅR[úûûK]¾ùûï¿éƒ:pc¨ÍÌ̸÷¦§§ ßL‰úõë׬Y“{Ú¡Cú€eÙ»wïBÒÒÒ¤^¢Ú·oÏ‚Ñ/pŸšèСàAƒ:uêtöìÙ3f„††Ö¨Q#55UíªQ@©‘"ÜO©Í¤²ÍnĈŽŽŽ 6üöÛosssëÕ«ÇÂQµtüëªte Bˆ““Ã0R‰²Ôh&ç›ÀªAö“¢FóiRi²UÁŸÙ`ddÄW‹Tý˜«ý}ÂQã ’y~µKµWidRózÓú· !䫯¾:xð ÷8$$DÕ(Õs¯~ýúk×®U»4?÷¤¨ñ—=´Uz_bõêÕã_ÐçòVPPðÏ?ÿ¨½[åJãg®ôªH‰ ³Ú¤–uä~–dIÏÉÉ)qíßçÏŸ ÜLùR­[µjUKKKz œ'OžÔ¨Qƒ>&2+Bq¿¾oß¾}úô)ÿUåû¬[·®&µZPP0{öìo¾ù†›pjbbbgg÷ìÙ35ö–““£F¥šRIËr.\˜““³uëÖwïÞBX–¥Ëí.Y²$88xß¾}tª¥“{h뉪ÚLÂÏ7…Uƒì'EóæS©Ò¨7oÞp-"UüX\+Ôø˜«÷}ªƮ(ó/^¼ ¥â ©ŠÒz&5¯7¢íoBÈÉ“'¹Yä={öä/!0ÃZ<÷¸u !b±¸nݺ͛7Ÿà”†Uz_bR™155å¾xÑn¶)ssó*Uª¼}û–òüùs~I~ZϤæõF´ýy|ðàÁÀi‡MíÚµ¥>3¬Ås¿Ž£"ªÖ€vÏ=M>àVTé}‰=yò„ÿ4??ŸË‹‹‹zûT®”¾'K¯Š”ÐÿKÕšàÎò¢¢¢Ox¬­­­¬¬¬¬¬è_Š7SâæÍ›™™™ÜÓ“'O²,K122¢óѸ9Ü=-¤žÖ®]›¾)pŸÜ—Ë«W¯øoòwü† èƒõë×;¶Aƒb±X“û«ªQ@U½{÷îéÓ§OŸ>}÷î]¿~ývìØñìÙ³“'OrãN¸u¼´^:%Jl&YBÎ7á…ÕŠ2h>Y"‘ÈÝÝ>>~ü8—β¬ÕU¥ùÇ\ó=¨‡a®¢N:Å¥ÅÇÇ—v&5ß¡?ïÞ½ëÝ»wvv6!¤jÕªû÷ï·°°P#Ãe|îi^¶‚ÚpM*ªT¿Ä¤¾x¹¼Ñ¿Ø5ù}Ôz5ꤊ”@ਠwsš-[¶°Ö ß·o_µjÕlmmÝÜÜèßp7S¢  `âĉôϲÇöÙg4½k×®tð2·äÕ7ß|Ã-Ùš’’²bÅ úXjõZ!ûä®üùçŸÜ0”ýû÷—øyþï¿ÿ¸ë܇꯿þ’ý’Ê’WÕ( ªRSSïܹC‹ÅmÛ¶åfïZYY©]:µ•ØL²„œo «-eÐ|rÊwéÒ¥·nÝÒú±4ÿ˜k¾%”¾ZµjE¬^½š.+ͲìçŸοW)eRÃj÷ó8a„˗/sùá/j£j†ËìÜÓJ ¨Ñ ü3J“¸Ú¥Þ—˜ò§°°pâĉt%íÇsË1jøûXÆ?seü=ÏÁ¥jefÏž½uëÖ—/_8p M›6­Zµºyóæ‘#Gè«Ó¦M£#Un¦ÜþýûÝÝݽ½½/]ºD/V,Z´ˆ¾:kÖ¬~øáþýû¯_¿ ‰Dqqqt…zGGG©?Ù'·šC~~¾¿¿¿¿¿ÿóçϹѻJ˜™™™™™ÑA3#FŒØ¹s'Ã0ÇŽ“{+++ºå—_~yóæÍÉ“'K­ð¬IUÒ A{{û§OŸuéÒÅÆÆæŸþùý÷ßéô*•N+”7“,!盕••ÂjK4Ÿ\3gÎüõ×_Y–}õêU³fÍš4i’••ſ߆iþ1×Ê…Ÿ¯Ù³gÿý÷YYY 6lÒ¤Éýû÷åξÒz&5Ü¡?ñññ[·n¥«W¯~áÂ… .p¯šššÒ›6 Ìp™{Z©á­ ÷ŒÒä®vE üÆV’måû§_¼uêÔ¹xñ"›E"Ñ’%Kè«*ý>êêgN¥*Ò¦Ò˜ª]„/Ç#5—ž7¶k×.å[R¿ÿþ»Ü˜}̘1üµvn¦(“-[¶”W!‹ù«Ø³,ûçŸÊ›âêêš””¤Þ>¹•8ÜߦJ–ãéß¿¿ì[·nMúé§Ü! ÄßLÉ’úªPÈ* RΟ?¯èŠLHH]ÓKxéäæ„PÂ_FáÌ™3\¨ÚLr"ä|XX¹”/Ç#÷“¢Ió ¬4¹† &uDSSSn–¢—ãX횟¨t†Ëý|ÉõÝwßIý˜™™™qg5}­gRÃzSûó(Õè111D1þr¡¿Ïž{²”ß9F–&ßHªJÑ%ð.—ÚRá_bh¸*²²²’šŠgddôý÷ßË=™ùÕ.ûû(üè«QøçK“ïyµáRu ºvízíÚµÈÈÈ€€€ªU«zxxôìÙ311qãÆüÈ7SÄÆÆæìÙ³#GŽôôô´··ïÝ»÷É“'GÍߦqãÆ×¯_Ÿ7o^hh¨½½½­­m›6m>ÿüó7np e©ºÏŸ~úiÉ’%>>>¦¦¦þþþ“&Mºpá‚ì¬FYÑÑÑ>>>äÃÍ?¦NzåÊn]´;wr}ûÑÑу ²³³355­_¿¾’i³ªP M›6ÍÈȘ7o^£Fœœœ ­­­ƒ‚‚¶nÝoll¬jé4'¤™d 9ßV[Ê ùäÚ¶mÛøñãéc;;»nݺÅÅŵlÙ²4Ž¥áÇ\+{"üó׫W/'''ggç^½z={VîÍÊ´žI wX–ŸG•2\fçžVj@`¡Qš|ÀÕ®(á_bÂ?THHHbbb×®]kÔ¨áèèØ¯_¿øøxn¡uJøï£æÊø{þ½ÒˆFA å –Ÿ}ÊUPP°ÿþýû÷—z5éBi—®Ìš©’¸téÒ×_ýúõk]g¤‚:t(=7nܨë¼(Sž¿mÊæÜ+Ï5 >¤zcAM†††¥5~¢ÐïÒéŸÀÀ@n >È5jÔ¥K—!Í›7çn÷æÍîö<´C«Ü*ϟDz9÷Ês „©Þ@à çœœœ®^½J¹zõjÍš5ûöíûêÕ«Y³fÑäêÕ«‡_tcôÜgŸ}Æ š={v­Zµéz.ÕªUÛ¹sgi…½ƒG=gbb·{÷îüñîÝ»?¦«÷µoß~Ê”)²‹`(°ÖP—ª@Ž G#‚ÀAà‚ pA8€ @Ž G#‚ÀAàX‚»wïzyy]»vM×Ð1Ž%øùçŸu€rA¬ë ”S999ÿý÷¡C‡víڥ뼔 åëÚµë“'Ot €r£|K–,y÷î!dÇŽçÎÓuvt£|AAAôÁ©S§t€r£öyyyé: PºÒÒÒt@àX**çÉTžyyy¡QÊ4Jù„v)‡Ð(åP¥í$Âr< G#‚ÀAà‚ p„JË!4Jù„v)‡Ð(P~ pA–eu}ƒ·ô[¥ý­G#‚ÀAà‚ pA8€ @±®3 ‡¼¼¼tPAå\[G J¾ƒ* üµ/.U€ @ŽÚÀ0ý“MáÒ*,ŽZ²ÿÿ'õ”û‡Ø*2Ž G#‚ÀÁàe‡Ñõ)–NÞP zK‡®ã(¿äθ/›Š-\¸a˜®]»Ê¾´|ùr†a®]»¦ëŠ#îîî={ö¤ƒƒƒýýýµ~ˆ¿þú‹a˜Ý»w+ª¢³gÏʾԮ];†aŠ‹‹éÓû÷ï3 3|øpnƒ¢¢¢mÛ¶;::ZXXøùùMœ8133“Û`íÚµŒRÇW£8‹/¶µµõññÑzEi¿AË%'•»»{ß¾}…—KøÆåŠ’ó€ƒGxïðáÃû÷ïïÕ«—®3R2‘H$‰t AX–íÞ½{lllÆ  dll|ûöíM›6ýðÃþùg½zõ!3fÌàÞòí·ßZYY 2„KqssSõ¸·nÝš7o^PPиqãt]¥¨eË–¡¡¡óçÏ×|Wü“êòåËK–,Y¼x1m =(]ypýúõ%K–$&&¾yó¦N:ƒ š8q¢XŒ8¤‚AƒÀ{&&&“&Mj×®¹¹¹®óR‚„„]gA¨;vÄÆÆÎœ9ó믿æ¯^½4|øð‹/B‚ƒƒƒƒƒ¹W·nÝZ³fÍ+VhrÜŒŒ BÈ‚ BCCu]¥åÊ•+gÏžÕVù'ÕÓ§O80eʽ)Îݽ{7$$¤¸¸¸gÏž...qqqÓ¦M;}úôo¿ý¦ë¬jp©ºt`¹o¨€æÍ›÷ï¿ÿÎ;·4v^PP ‘Ht]D W·'NœÈOôóóëÛ·ï_ýõæÍ›R:.ÏZ¥J•RÚ¿J Z\\Ì]Ê×\QQщ',XСCý;©J£t‰D‹õ¯žiÓ¦½~ý:..nûöí‹-:wî\DDÄÔ†:„ÀÞëÛ·o§NÖ­[wùòe%›]¼x±S§NNNN:u¢}f”»»ûÔ©S/_¾ìëëëëëKS&Ož(0%%¥W¯^...vvv;vüã?øû9}út»vílllêÖ­;sæÌ‚‚­×*ýÁNII‘J_¾|ùõë׌Œ4Ù¹¢¶>|x=!AAAîîî²oÌÏÏ_¼x±··wÕªU]]]###Ÿ¬[·ÎÊÊÊÈÈÈÇÇ'**JQ%+o)¾ììì:,\¸0++KyýôéÓÇÐЋÎwïÞÍ0Lƒ ¸ f̘Á0Ì•+Wï¤>|x—.]!!!!üÚ;{ölXX˜­­­³³óرcÿûï¿H"‘ 2D$):“5)Æš:uêæÍ›mmmÅb±³³ó¸qãøÙVéü¿téR—.]¤>k†††Bòß²eËFq)&L „œ?^`Í@9KÕðÃ0ëׯ¯W¯Þ¨Q£.]º$wáÁƒûôéãàà0pà@†abbbZ´hÓ½{wºÁÇ;tè`iiÙ®];š²cÇ‘Hôù矋ÅâÕ«W÷éÓ'  ¨¨hôèÑééé7n ¿zõ*!dÁ‚ .lÓ¦MŸ>}Þ½{÷Ûo¿ <ØÂÂBî¬ÊØØxûöíÜS‰DòÅ_<{öÌÕÕ•ròäÉnݺ9::öïßßÀÀà·ß~ëСÎ; @Ù¿¿~ýªU«6pà@ƒ;vüþûïZ¯Õ¾}ûnݺµgÏž#FŒèÕ«W‹-h/ &{VÒÓ§OwqqY´hÑÊ•+ù?ÕœÈÈÈ;w¶mÛ¶wïÞ)))Û·oOII¹pá‚VÞ „½{÷þûï¿:uòõõ½páÂòåËÏŸ?Ÿ µÂ€ò–’booOûSÓÒÒêÔ©£¤ŠÂÂÂöíÛ—””FIJJ"„¤¤¤dggW«V’ààààççÇ×ôéÓÝÝÝçÏŸÿõ×_7iÒ„&^¿~½sçÎC‡mÛ¶íÁƒ7mÚ$‘H6oÞ¬äè,ËŽ1â×_ýþûï $°Y…—NHcÅÅÅmذaäÈ‘uêÔ9zôèÆ ¿ûî;¢âù×¾}ûš5k>ÜÔÔô·ß~KNNhÓ¦AÉ=PEEEãÇ ä'Þ¿Ÿbll,°f ¼`As„ðÿyzzJ¥¼ÿ•†§§§Ütú‘Óá¬jE^°`!$##ƒeÙåË—B¢££éKË–-#„\½z•eÙwïÞ¹»»»¹¹eeeÑW³²²\]]=<<Þ½{Dz,ñpáÂââbº›››‘‘Qjj*}JÇùùúúД   BHNN˲žžž………ô¥W¯^‰ÅâqãÆq»êÑ£}âçç'[E‹B¶nÝJs[»vmÿ¼¼<úêÛ·o›5kæááQTTôöí[WWWGGÇGÑW333œœ!»víRTEJÑ-ÿùçBȰaø÷þòË/Ÿ|ò ݬJ•*mÚ´Yºté?ÿü£¨9¬¬¬•Ÿc%¶Å!gΜ‘}ï›7oD"?‡#FŒ°µµÍÌÌÒ Â”žK—.å4sæLBÈÎ;ù ª¼¥”TÂíÛ· ! ,P´Á£G!3fÌ O}||èóýû÷Ó¢DDDÈžT‡&„$$$p¥&„-**òöövuu•{P77·>}úH$’‘#G2 ³mÛ6V-%–NHcBbbbèS‰DâããS£F ZÃÂÏÿüü|'''''§Çs lggGZ ÙÙÙ7‰Dÿý·z{Ð.E_ÚÚ}‹~@£6H-tâåõ~Œ#Ö̃ hÚ´i;vì˜7o^ïÞ½kÖ¬É)99ùÞ½{kÖ¬±µµ¥)¶¶¶S¦L™:uêµk×hÏ–££ãܹsù7æ:NZ·nM8p wy+44ôÌ™3yyyæææ/^¬R¥ 7Ë2;;›’——'0çœ?þ¸qãFŒA¹råJzzú¯¿þjbbB7066ž8qbxxxrrrQQÑýû÷W¬XáììL_uttœ4iRTT”’C 0 FR‰{öìyðà’w…‡‡‡‡‡_¿~=>>>>>>111>>~îܹóçÏÿâ‹/Ôk&!m¡ˆ]Zèþýû´kvëÖ­[·n¥¯–Ø Â”æjúôéÜ{çÏŸ¿qãÆ={ö𻕷”ò²(çììÜ AƒøøxBÈË—/SRR¶mÛ6qâÄÄÄÄž={&%%I$’N: Ù•§§g·nÝèc‘HäççwòäIE³,;~üøï¾ûnèС\zQQÑ‘#G½‹ë¶®ÄÆòððèÝ»7}Ì0Œ¿¿?íVLNN~þ'%%eff.Z´ÈÁÁk Y³fuíÚuß¾}Æ Sµ\ £FÊÈÈØ¸qcíÚµU-5èGøˆX,Þ²eKóæÍ'Mš$5á1==B/r舱ôôtúïåå%u銋l!4¼M¡¬­­Ï;wòäÉÛ·o§§§ß¼y³¨¨H`¶oݺ5dÈ   5kÖÐÚaCƒ6©¼}ûö#GŽäŒŒúöíkmmÝ®]»#Gލ8 i %Æß»wïÇŸ:u*66vË–-^^^‰‰‰VVVj·‚@b±877—Ÿ¢¼¥4<\ÇŽ—/_ž˜˜xîÜ9—Ö­[Ï™3çÕ«W AAA–––Bö£Òüt–e÷îÝknnÞ¦M›É“'s€YZZª*"ä#£(Û´“RàùO{‚¥BR:㛾E`¹vîÜ9zôh33³Í›7GDD`Ç Ír|õÕW¿ýöÛ„ >ýôS.‘^TºqãF«V­¸ÄëׯB¼¼¼4<â™3gbcc׬Y3yòd.QHcqqñ€=z”””ÄŸnBsknnÞ¡C.ñÖ­[7nܰ²²ªU«!䯿þ á^å¦th‹©©éñãÇ>|È)ÚKWµjUõö¬I[dgggddxzzFFFFFFJ$’ 6Lœ8qÓ¦MAAA굂"·nÝ*,,ä¢ùüüüÔÔT~“’ZJÃ&hÑ¢………E||üÅ‹[¶lI ‘H$‡ºrå «u]ºt¡×µ¼cǎÇÓiÚÚ½T­öG†¢ÒùO(55•ŸHûéÉ&¤\‡2dH¿~ý6mÚdaaQÕe#Èaii¹fÍš¬_¿žK pqq‰ŽŽ4hµµ5!äÅ‹«W¯vuuÕü€tƒ··7—“››[bOÆgŸ}vâĉüQjΦŸŸŸ——תU«ú÷ïO㜜œ°°°ÂÂB:ØÃÃcõêÕáááŽŽŽ„¬¬¬µk×j·† ß¼yóâÅ‹gÏžÍ]ßÌÍÍ?¾¢Û< ¡I[¤¥¥µhÑâóÏ?_¼x1!ÄÀÀ€F†††j·‚"YYYÑÑѳfÍ¢O/^œ““#u§Aå-¥a†††ÆÆÆ>xð€~ 477_ºti‰Õ^F‘ëº[µjÕáÇ'Mšjbb¢ÝKÕš4–Jç@@@­ZµÖ¯_?~üxÚ@+V¬033£q‰åbYvÖ¬Y5kÖüùçŸ+Ê=Ÿ@Ž _ÿþý·oß~ìØ1.ÅØØ8::ºÿþýúõcYv÷îÝ™™™{÷îÕ|MÖ­[›ššŽ9rРAÎÎÎçÏŸ¯^½ú™3gŽ=J—S‘uäÈ‘U«VùúúJ-•çíí°fÍšîÝ»ûúúöëׯ°°ðÀ>ܵk½¹ÜÊ•+ûõëçïïß¿CCÃÝ»w \9O%ÑÑÑ)))óæÍÛ¾}{Æ é<Ö³gÏ>}útΜ9Í›7Wo·š´E```ýúõ—-[v÷îÝúõë§¥¥=zÔÆÆfàÀ"‘HVPÂÑÑqÞ¼yçÎóõõ=þüÉ“'›5k6tèPþ6b±XIKiÞaaaôb1íq‰DÁÁÁ±±±5kÖTtGAmܸñéÓ§r—ÈÎÎ¾;v,½¡v/U«÷‘¡ …Ÿÿ†††k×®íÙ³§ŸŸßèÑ£E"QLLÌåË—¿ùæ{{{"àRujjêíÛ·½½½###¥^êÕ«—Ú>nèzZ·úÿ}ToeU¡—ãá»{÷.ÞD—ã¡Î;×±cG{{{{{ûŽ;þùçŸÜKüsä¦Ðkat¹Švz=yò„eÙÄÄÄæÍ››™™}òÉ'‘‘‘YYY[·n­^½z‡XËñpSa¤p+°$''wîÜÙÁÁÁÚÚ:$$äĉüì>}ºmÛ¶´ÇÎÒÒrïÞ½Dér^8 @………ѻހÞ@àPv0Ä*• 6è:  e¸T ‚ pA8€ @Ž ÇÒIJX{ôG#‚ÀÁcÊ£»a¯¸o h#@ÙaF‡±Ã0ˆ@¸T dáÂ… ÃtíÚUö¥åË—3 síÚ5]瑸»»÷ìÙ“>ö÷÷×ú!þúë/†avïÞ­¨ŠÎž=+ûR»ví†)..¦Oïß¿Ï0Ìðáù ŠŠŠ¶mÛìèèhaaáçç7qâÄÌÌLnƒµk×2J?~\â,^¼ØÖÖÖÇÇGë¥ü-”œTîîî}ûö^.á—+JÎGxïðáÃû÷ï×u.‰D"‘H×¹„eÙîÝ»GFFæçç4hâĉŸ|òɦM›<==oÞ¼I· ˜ÁclllooÏOqssSõ¸·nÝš7ož··÷œ9st]Úwýúõþýû;88˜™™FGGi¸OþIuùòåž={r ¤¥+ôµ\• .UÀ{&&&“&Mj×®¹¹¹®óR‚„„]gA¨;vÄÆÆÎœ9ó믿æ¯^½4|øð‹/B‚ƒƒƒƒƒ¹W·nÝZ³fÍ+VhrÜŒŒ BÈ‚ BCCu]Zv÷îÝâââž={º¸¸ÄÅÅM›6íôéÓ¿ýö›&»åŸTOŸ>=pàÀ”)Sô¦t:§¯åª„ÐãïÍ›7ïßÿ;wniì¼  @"‘躈:@¯nOœ8‘Ÿèçç×·oß¿þúëÍ›7¥t\:žµJ•*¥´•´¸¸˜»”¯¹iÓ¦½~ý:..nûöí‹-:wî\DDÄÔ» _Þ”Fé$‰ë¿ü” t#¼×·oßN:­[·îòåËJ6»xñb§Nœœœ:uêDûÌ(ww÷©S§^¾|Ù×××××—¦LžyòDH+¨Ô ô|X·n•••‘‘‘OTT”¢JVÞR|ñññ-[¶lÔ¨—2aÂBÈùó祶ìÓ§¡¡!ïÞ½›a˜ p̘1ƒa˜+W®ÞI5|øð.]ºBBBBøµwöìÙ°°0[[[ggç±cÇþ÷ß%6D"2dˆH$Rt&kR:!5uêÔÍ›7ÛÚÚŠÅbggçqãÆñ³­ÒùéÒ¥.]º888H}Ö K£\PnáRu)£wÄTV¨†Y¿~}½zõFuéÒ%¹ƒ<اO‡2 Ó¢E‹˜˜˜îÝ»Ó >|Ø¡CKKËvíÚÑ”;vˆD¢Ï?ÿ\,¯^½ºOŸ>EEE£GNOO߸qcxxøÕ«W ! ,X¸pa›6múôéóîÝ»ß~ûmðàÁrgíPÆÆÆÛ·oçžJ$’/¾øâÙ³g®®®„“'OvëÖÍÑѱÿþ¿ýö[‡vìØ1`ÀBÈþýûûõëW­Zµìرã÷ß×z­öíÛwëÖ­={ö1bD¯^½Z´hA{íììììì4Ù³’¶˜>}º‹‹Ë¢E‹V®\Éÿ©æDFFîܹ³mÛ¶½{÷NIIÙ¾}{JJÊ… „´‚ð%„ìÝ»÷ßÿíÔ©“¯¯ï… –/_~þüù„„©u©”·_QQÑøñãù‰÷ïß§'ƒÔÆaaaûöíKJJ #„$%%BRRR²³³«U«FIHHpppðóóã¿kúôéîîîóçÏÿú믛4iB¯_¿Þ¹sç¡C‡¶mÛöàÁƒ›6m’H$›7oVÒ@,ËŽ1â×_ýþûï $¤MU*ÆŠ‹‹Û°aÃÈ‘#ëÔ©sôèÑ7~÷ÝwDÅó?..®}ûö5kÖ>|¸©©éo¿ý–œœЦMƒ’{ T-”k,h›§§çGÏQÉ•ô9ð!„ÕÝ?%Ÿ÷ B222X–]¾|9!$::š¾´lÙ2BÈÕ«WY–}÷î»»»››[VV}5++ËÕÕÕÃÃãÝ»w,ËÒ9 .,..¦¸¹¹¥¦¦Ò§tœŸ¯¯oAAM "„äää°,ëáááééYXXH_zõê•X,7n·«=zÐÇ!!!~~~²Y´h!dëÖ­4·µk×ö÷÷ÏËË£¯¾}û¶Y³fEEEoß¾uuuutt|ôè}533ÓÉɉ²k×.EU¤DQQÝòŸþ!„ 6Œ{ï/¿üòÉ'ŸÐͪT©Ò¦M›¥K—þóÏ?ŠšÃÊÊ*00Pù9Vb[8p€ræÌÙ÷¾yóF$ñs8bÄ[[ÛÌÌL!­ ¼Aéù°téRî@3gÎ$„ìܹ“ß Ê[Š-IvvvãÆE"Ñßÿ-õÒ£G!3fÌ O}||èóýû÷Ó¢DDDÈžT‡&„$$$p¥&„-**òöövuu•›77·>}úH$’‘#G2 ³mÛ¶‹ ^é„4!$&&†>•H$>>>5jÔ 5,üüÏÏÏwrrrrrzüø1×@ÁÁÁvvv´¡µ^®²§èK[»oѸT ™6mšÏ¼yó>|(õRrrò½{÷¦L™bkkKSlmm§L™r÷î]n½GGǹsçò;!7n\§Nú¸uëÖ„r—·èÔ¼¼fÆßߟ^¸WéüOJJÊÌÌ3fŒƒƒ×@³fÍzöìÙ¾}ûJ£\PžáR5|D,oÙ²¥yóæ“&M’šð˜žžN¡ƒ9tÄXzz:½$êåå%u銋l!4¼M¡¬­­Ï;wòäÉÛ·o§§§ß¼ySøj·nÝ2dHPPК5khÊíÛ· !ááááááR?xð€þ|6lØŸ^âÚ&LhÑ¢…TâÕ«W|xûöíGŽÉ%õíÛ×ÚÚº]»vGŽQ/pÒJŒ?¾wïÞ‡>uêTllì–-[¼¼¼­¬¬ÔnÄb±T_ò–’»“;wŽ=ÚÌÌlóæÍ\—›¬Ž;._¾<11ñܹs......­[·ž3gΫW¯‚‚‚,--…d[¥ùé,ËîÝ»×ÜܼM›6“'Oæþ³´´d yX:!EÙ¦ûxþÓž`©”Ω§oÑn¹ œC³€_}õÕo¿ý6a„O?ý”K¤•nܸѪU+.ñúõë„/// xæÌ™ØØØ5kÖLž<™KÒãX\\<`À€G%%%ñ§›ÐÜš››wèÐK¼uëÖ7¬¬¬jÕªEù믿BBB¸W¹)Úbjjzüøñ‡òGŠöÒU­ZU½=kÒÙÙÙžžž‘‘‘‘‘‘‰dÆ 'NÜ´iSPPz­ È­[· ¹h>???55•_礤–’Ýç¡C‡† Ò¯_¿M›6YXX(Ï@‹-,,,âãã/^¼Ø²eKBHHHˆD"9tèЕ+Wè^­ëÒ¥ ½®=xðà;v>|˜NÓ.**:r䈢wÑfÂK§öG†¢ÒùO(55•ŸHûéɦÝrA9‡Àä°´´\³fÍ€Ö¯_Ï%¸¸¸DGG4ÈÚÚšòâŋիW»ººj~@:ÁÛÛ›K‰‰‰ÉÍÍ-±'ã³Ï>;qâÄ?þ(5gÓÏÏÏËËkÕªUýû÷§ñGNNNXXXaa!ìáá±zõêððp:¶/++kíÚµÚ­F†aÂÃÃ7oÞ¼xñâÙ³gs×7sssçÏŸ¯è6BhÒiii-Z´øüóÏ/^L100 Ñƒ¡¡¡Ú­ HVVVttô¬Y³èÓÅ‹çääHÝiPyKIíeÙY³fÕ¬YóçŸr÷ CCÃÐÐÐØØØÐÁ¯æææK—.-q€£Ú+r]w«V­:|øð¤I“BCCMLLJ¼¤«Ré4i,•Îÿ€€€Zµj­_¿~üøñ´ V¬XaffFbí– Ê9Ž _ÿþý·oß~ìØ1.ÅØØ8::ºÿþýúõcYv÷îÝ™™™{÷îÕ|MÖ­[›ššŽ9rРAÎÎÎçÏŸ¯^½ú™3gŽ=J—S‘uäÈ‘U«VùúúJ-•çíí°fÍšîÝ»ûúúöëׯ°°ðÀ>ܵk½¹ÜÊ•+ûõëçïïß¿CCÃÝ»wgeei½£££SRRæÍ›·}ûö† Òy¬gÏž}úôéœ9sš7o®Þn5i‹ÀÀÀúõë/[¶ìîÝ»õë×OKK;zô¨ÍÀE"‘­ „££ã¼yóÎ;çëë{þüù“'O6kÖlèСümÄb±’–’ÚajjêíÛ·½½½###¥^êÕ«—Ü@<,,Œ^,¦=Ž"‘(88866¶fÍšõêÕ“›mmܸñéÓ§²K ggg÷ÕW_;vÉ’%‹/.ñ’®J¥Sï#C ?ÿ ×®]Û³gO??¿Ñ£G‹D¢˜˜˜Ë—/óÍ7öööDÀ¥j5Z Ê/]OëÖCXŽ*ôr<|wïޥÛèr<Ô¹sç:vìhoooooß±cÇ?ÿü“{‰¿bŽÜz-Œ.—CÑN¯'Ož°,›˜˜Ø¼ys33³O>ù$222++këÖ­Õ«WïС«`9n*Œn–äääÎ;;88X[[‡„„œ8q‚Ÿ½Ó§O·mÛ–öØYZZîÝ»—(]ŽGîê6tv…’åxrss7mÚÔ¬Y³êÕ«ÚÛÛwéÒ%))IQsYާĶP²˲>Œˆˆpuu566vqq çVØÞ %6(Ý811±U«V–––uêÔ™1cÆÛ·oåžÊ[Š#w–.µxñbE…%„T¯^K¡·s=z43þr<‰dàÀì‡vø<ØÖÖVîá¤6...nÒ¤  #%T-JŲì°a쬬¸§ÂÏÚ@]»v­Q£†­­mÛ¶m;Vbq4iµ2†åx„cX¬M­m^^^iiiÿŽÀ+ésà†atx*0Oo¾ÌÌÌjÕªa-bírww÷óóÃ͈Ë?œÿо´µûý€KÕ„.} P9áüá8–>ÜuxÍw #Ê®C¥Fïzz#”Š 6è:  e¸W5‚ÀAà‚ pA8€ @Ž Gc™ w¨È8€ €,\¸ù˜¥¥e£F¶nÝ*‘Hänc``P§N!C†\¸pAù®8”{ôÅ‹ÛÚÚúøøèº´ÃÝݽgÏžºÎÅÿûûû+Êjß¾}ËO~t诿þbf÷îݲ/餖Ê%õ• G€ £´‡; 0`ÆŒ3f̘>}z×®]ïܹ3räÈÏ>ûLî6ãÇwppØ·o_«V­6oÞ¬hW|]ºt‘=è­[·æÍ›çíí=gÎÝVo¹Ò²eË… jeW"‘H$ÑÇ—/_îÙ³çÍ›7˲,Råç§ôŽR> iÖׯ_3ÆÅÅÅÌ̬eË–R˜)µâº~ýzÿþýÌÌÌ£££‹ŠŠÔ«"Ž?DÀ'Öu ¼˜0aB‹-¸§OŸ>õ÷÷ŽŽž1c†½½½Ümn߾ݣG±cǶhÑ¢~ýúŠv¥DFF!dÁ‚¡¡¡º®€òâÊ•+gÏžÕV…$$$pŸ>}zàÀ)S¦”eq¤ÊÏOé¥Ò¬999<èÓ§­­mLLLÇŽO:Eûh•¿Zqݽ{7$$¤¸¸¸gÏž...qqqÓ¦M;}úôo¿ý¦j©TÛ ô8T !léw:òÙÛÛ0 ¸¸8%%EÑ6uêÔÙ±c˲_~ù¥zGaY–R¥J•2,™2ÜÕùkëÐEEE'NœX°`A‡„çA?¨Tí‹JͺzõꌌŒ-[¶üòË/k×®MJJbfúôéB^UD"Ñâ9¬žiÓ¦½~ý:..nûöí‹-:wî\DDÄŽ?®jUæQ™Aà Ѩ®°°PÉ6-Z´Ø¿¿’KKŠ >¼G„   wwwšxñâÅN:988899uêÔéâÅ‹ÜöîîîS§N½|ù²¯¯¯¯¯¯ìóóó/^ìíí]µjUWW×ÈÈÈ'Ožp¯FGG7hÐÀÔÔÔÆÆ¦I“&¿üò Ï“'Ož9s¦……E•*Uš4iräÈ‘¢¢¢Ù³g{{{[XX´nÝúÖ­[ül¬[·ÎÊÊÊÈÈÈÇÇ'**ª  @nSRRzõêåââbgg×±cÇ?þøCQmdggwèÐaáÂ…YYYÊë­OŸ>†††oÞ¼¡OwïÞÍ0Lƒ ¸ f̘Á0Ì•+W!­[·¦1ǧ£BBB¸Ú&„œ={6,,ÌÖÖÖÙÙyìØ±ÿý÷Ÿ¢ã*)‹¢š—=(—U«]I Ê-šòš?}út»vílllêÖ­;sæLEÍ'E"‘ 2D$ñOå„7+!d×®]ŽŽŽC‡¥O=<<úô铘˜øøñã_•¥ü„Ÿ:uêæÍ›mmmÅb±³³ó¸qãøM¯Rý\ºt©K—.RÚ …TQ|||Ë–-5jÄ¥L˜0rþüyU«H¥Ú5± mžžžrRQÕ•‰üs@EDæ+/E+,X@9sæ ?ñÙ³gNNN™™™Š¶¡ÆO¹{÷®òÍdݸqã‹/¾ „¬\¹211‘eÙˆÅâ5jL™2eêÔ©5kÖ‹Å Û»¹¹õîÝÛÆÆÆÝÝ}Ô¨Q²; g¦]»vŸþy÷îÝE"Q“&MèKóçÏ'„´iÓfáÂ…sæÌñöö&„üþûïÜžmllªW¯¾hÑ¢¥K—ÚÚÚV©R¥yóæ7ŽŽŽ7nÃ0¾¾¾ÜÆÎÎ΄N:Íž=»uëÖ„–-[J$új=è–'Nœ¨R¥Š»»ûŒ3fÍšU»vm‘H´sçNåÕrûömBÈ‚ m°uëVBHll,¿þ†yþü9Miذ¡ƒƒÍOHHˆŸŸ­m:äë믿¦µíæææééiii9qâÄ•+WBäVl‰eQTó²åò£jµ+iAÙ£(Ïí¾}ûD"‘ݸqã&L˜ààààééIÙµk—lÁÝÜÜúôéò¬D"6l˜ÁöíÛ~²TjÖׯ_3 ÎOüõ×_ !û÷ïWþªìÞJ<áëׯodd4~üøo¿ý¶S§N„ÈÈH5êçäÉ“ ø¸¸DEE}ùå—„€€Zó%VKaaaTTTLL ?‘^¤^ºt©JU¤RmKQãK[+ßó¢íCàÚúB!¼ªí 4(*****ê³Ï>6lXµjÕ!“&Mâo#7"\¶l!ä?þà6“$÷ÐàvûîÝ;www77·¬¬,újVV–«««‡‡Ç»wïX–uss#„,\¸°¸¸XvWoÞ¼‰DÆ ãRFŒakkK_OOÏÂÂBúÒ«W¯Äbñ¸qãèS777##£ÔÔTúô믿&„øúúД   BHNN— þ¯ÚÌ™3 !4.áÇwïÞÕ®]Ûßß?//nööíÛfÍšyxx)iŽó=zD™1c}êããCç¤ÓßÎW¯^DDDÐWùÚáÇ ! \© !¤O‹ŠŠ¼½½]]]e¨¼,Êk^ê R£ðjWÞ‚ü£(ÏíÛ·o]]]=zD_ÍÌÌtrrR8J$’‘#G2 ³mÛ6V-%6ëßÿM™:u*?1..޲yófå¯Êî­ÄžÂ…k‰ÄÇǧF´®„×O~~¾“““““Óãǹª¶³³£­¦†ìììÆ‹D¢¿ÿþ[¥*R©¶¥ p“cÊŽ# ^•–´ÿJ–X,öòòš={¶ÙŒÌúö ¨Q£?…þP)—œœ|ïÞ½5kÖØÚÚÒ[[[ÚõxíÚ5z%ËÑÑqîܹr†Ù0 söìÙû÷ﻺºB¶nÝJ;ç!/^¬R¥ŠXüþK/;;›’——ǽ½qãÆuêÔ¡i'âÀ¹km¡¡¡gΜÉËË377§ã-›?þÆ÷ìÙ3`À.ñÊ•+ééé¿þú«‰‰ M166ž8qbxxxrr2ÿœªœ4hOyùòeJJʶmÛ&Nœ˜˜˜Ø³gϤ¤$‰DBûJäééÙ­[7úX$ùùùÝÝݽ^½zÍ›7ïØ±cçÎŒŒ!ÖÖÖçÎ;yòäíÛ·ÓÓÓoÞ¼)5(“‹V !4p‘MáÔ«Wî–255õòòºsçÚç.•Õh8BÂÂÂV¬XñòåKÚY”˜˜HIHH‹ÅmÛ¶²z ’£h¡œË¢¤æ•^í%¶ ÀÜÒ±¡ 6ä§+Ÿ˜|øða–e÷íÛ÷å—_º¸¸ÐôÜÜ\:HW.–UícJ .5Æ4''‡bcc£üUÙ½•X]RMÏ}¬h¯žÀúù矈‚Ï,T'¼Š500 ¿|†††t6 XJÅÄÄäææªÝ]”••Í=]¼xqNNŽÔýüü¼¼¼V­ZõêÕ+š’““6uêÔªU«jXW†††¡¡¡±±±ÉÉÉ4p 477_ºti‰ÕXßNyY”Ô¼&娂ô(Êsàáá±zõjn›¬¬¬µk×*9:×ß¶jÕ*++«I“&åçç“×aQ£˜#GŽüçŸèDBȳgÏbbbÚµkG×RþªÕ%—JõP«V­õë×sU]PP°bÅ 333[—XE,ËΚ5«fÍš?ÿü³ò¨QHA@#@¹&ÕÑÈ~HdtÔû¸qãFú•ýîÝ»”””sçÎlذÛµGGG÷ïß?  _¿~,ËîÞ½;33sïÞ½ÆÆÆ%¾=00°~ýúË–-»{÷nýúõÓÒÒŽ=jcc3pà@‘Hdjj:räÈAƒ9;;Ÿ?>>>¾zõêgΜ9zôhXX˜ªYuttœ7oÞ¹sç|}}ÏŸ?òäÉfÍšqkËQb±xÍš5Ý»w÷õõíׯ_aaá>|¸k×.­Üs/,,Œ^3¥£H$ Ž­Y³¦¢ÞÚÓ¹qãÆ§OŸòçñ”HyY”Ô¼&åkݺµò”:Š’ÜŠD¢•+Wöë×Ïßß¿ÿþ†††»wï¸ìŸÝW_}5vìØ%K–,^¼XóKÕË—/_¶lÙW_}5fÌBȰaþÿþûAƒ?ÞÊÊjûöíyyyÜ}󔿪Ru)É’¡¡¡ðú144\»vmÏž=ýüüF-‰bbb._¾üÍ7ßÐQ %VQjjêíÛ·½½½###¥^êÕ«W×®]Uª"( ºžÖ­‡NÑGmWn™!‹/J­³Ã0Œ§§gxxø¹sçTÝ9êܹs;v´·····ïرãŸþɽÄ_"Q®‡FDD¸ºº»¸¸„‡‡sK½$&&6oÞÜÌÌì“O>‰ŒŒÌÊÊÚºukõêÕ;tè »gzanëÖ­\ÊâÅ‹ !Ož<á6NLLlÕª•¥¥e:uf̘ñöí[¹™LNNîܹ³ƒƒƒµµuHHȉ'J¬+‰Ð9IÕ«WçRV¬XA=z43þò7‰dàÀ,o…BÎàÁƒmmmQIY”Ô¼ÔA¥–ã^íÊ[Pê(%ÖüéÓ§Û¶mkmmM±´´Ü»w/)iGª¸¸¸I“&üU„’Û¬ôó²fÍ.åÕ«W#Gެ]»¶­­m×®]“““ùÛ+•O¥žeÙaÆYYY©Q?´ª»víZ£F [[Û¶mÛ;vLxµ~üx÷îÝ/]º¤ë¢€6999é}T¤ ÔHÑÿÀ1--mË–-öööÇŽÛ²eËñãLJzýúõ•+W*zËîÝ»“““ÃÂÂNž<ùÍ7ßüüóÏ?üð!dîܹº. €Îèà¸gωD2eÊ;;;šeiiyôèQE³ü’““ !Ÿ~ú)·¼H³fͼ½½ÿùçŸ/^èº@ caaaÍš5Óu.t@ÿgU_ºt‰[‚‰D-[¶6lˆ­[·nvvö_ý%‘HæÎûÉ'Ÿèº@º¡ÿ#!$""¢zõêˆutt}êïï=cÆ ní*©mn߾ݣG±cǶhÑ¢~ýúŠv¥DFF!dÁ‚¡¡¡¥]å\lllçÎ=<<lbbÓ«W¯ï¾û.22R“Ý&$$pŸ>}zàÀ)S¦”e¹¤ÊÏOé¥ü¸{÷nHHHqqqÏž=]\\âââ¦M›vúôi¹$%%µk×ÎÊÊjàÀ"‘h÷îÝíÚµ;tèP›6m¤¶œ;wîŸþÙ´iS]—O›®\¹röìYå_999<èÓ§­­mLLLÇŽO:%µLŠ]zÐãòÙÛÛ0 ¸¸8%%EÑ6uêÔÙ±c˲_~ù¥zGaY–R¥J]÷½‚‚n9…këгgÏvppHNN^½zõ’%K’““]\\*I—‰JÕ^±L›6íõë×qqqÛ·o_´hѹsç"""8püøq©-Y–1b„¥¥åµk×¢££W®\yãÆ ‡™3gJmyòäÉ+VˆÅZèú‘H$Z<‡ÕSTTtâĉ tèСÄÓ`õêÕ[¶lùå—_Ö®]›””Ä0ÌôéÓÕØ¨#(D£ºÂÂB%Û¶hÑbÿþýJ®¾)2|øð=zB‚‚‚ÜÝÝiâÅ‹;uêäàààääÔ©S§‹/rÛ»»»O:õòå˾¾¾¾¾¾²;ÌÏÏ_¼x±··wÕªU]]]###Ÿ|8-ÂÕ6!äìÙ³aaa¶¶¶ÎÎÎcÇŽýï¿ÿµ—’²(ªyÙƒrùQµÚ•´ Ü¢)¯ùÓ§O·k×ÎÆÆ¦nݺ3gÎTÔ|R$É!CD"ÿäQ.>>¾eË–5âR&L˜@9þ¼Ô–÷îÝKOO1b×Áoee5uêÔäääëׯs›=}útÈ!‘‘‘5jÔP~hå'üÔ©S7oÞlkk+‹ÇÇoz•êçÒ¥K]ºtqpp`>Æ­y§\vvv‡.\(ä»vírtt:t(}êááѧOŸÄÄÄÇ«º+P“®Yê¡Ì¢Î+í šrªhét¢3ZΜ9ÃO|ö왓““Aff¦¢m¨ñãÇBîÞ½«|3Y7nÜøâ‹/!+W®LLLdYöÀb±¸FS¦L™:ujÍš5Åbñèönnn½{÷¶±±qww5j”ìÃÃÆi×®ÝçŸÞ½{w‘HÔ¤IúÒüùó !mÚ´Y¸páœ9s¼½½ !¿ÿþ;·g›êÕ«/Z´héÒ¥¶¶¶UªTiÞ¼yãÆ£££ÇÇ0Œ¯¯/·±³³3!¤S§N³gϦ˻¶lÙR"‘°OŽ9qâD•*UÜÝÝg̘1kÖ¬Úµk‹D¢;wÊæ¼°°0%%åÉ“'ü” 4hÐ@vã­[·BbccùõÏ0ÌóçÏiJÆ h~BBBèd”7nÐþ˯¿þšÖ¶›››§§§¥¥åĉW®\L‘[±%–EQÍË”˪ծ¤e¢<·ûöí‰DvvvãÆ›0a‚ƒƒƒ§§')irŒD"6l˜ÁöíÛ~² £¢¢bbbø‰ô"õÒ¥K¥6¦ñ£££ù‰ûöí#„Ð~}š‡öíÛשS'77×ÍÍ­iÓ¦Š]â _¿~}##£ñãÇûí·:u"„DFFªQ?'OždÆÅÅ%**êË/¿  „КXQÔíÛ· ! ,P´Áëׯ† ç'þú믄ýû÷«´+)˜#‚íCà4p4hPTTTTTÔgŸ}6lذjÕªB&MšÄßFnD¸lÙ2BÈüÁ*žU$÷ÐàvûîÝ;www77·¬¬,újVV–«««‡‡Ç»wïX–¥÷]¸p!7×›ïÍ›7"‘hذa\ʈ#lmmiàëáááééYXXH_zõê•X,7n}êææfdd”ššJŸ~ýõׄ__ß‚‚šDÉÉÉá²Áÿá§i\ÂŽïÞ½«]»¶¿¿^^ÝìíÛ·Íš5óðð(**RÒ?þøã¼yóªW¯~òäIÙ èÝ f̘AŸúøøÐÅÂèoç«W¯ """è«ü@.U›À•šrðàAú´¨¨ÈÛÛÛÕÕUöˆÊË¢¼æ¥*8 ¯vå-È?Šòܾ}ûÖÕÕÕÑÑñÑ£GôÕÌÌL'''å£D"9r$Ã0Û¶mc5ݸqc‘Hô÷ßK½DûhûöíËO¤Ý“+V¬ O—/_nll|åÊš1%c‰'¦ˆ䮵…††ž9s&//ÏÜÜœfŒVE™?þÆ÷ìÙ3`À.ñÊ•+ééé¿þú«‰‰ M166ž8qbxxxrr2ÿÚ¥”/¿ü’Îj×®-ˆggç ÄÇÇB^¾|™’’²mÛ¶‰'&&&öìÙ3))I"‘Ð>¤yzzvëÖ>‰D~~~'Ož”ÝLyYêׯ¯¤æ•^í%¶ ÀÜݿŊ´Û˜žT“&MŠŠŠR”I–eÇÿÝwß :4""‚K/**:r䈢wuïÞ]*%!!aÔ¨Q7n¬]»¶Ô«ööö½{÷މ‰Y¾|9ûüñÇ7Brrr!/^œ;wîŠ+üüüJ¬Ø«ËÃãwïÞô1Ã0þþþ¿ÿþ;!$99Yxý$%%eff.Z´ÈÁÁ«êY³fuíÚuß¾}Æ SµŠ”£ù·°°à'ÒÑ´€P8”-•æA ÙXøKš£}æÌS¡¥<|øâááÁ¥ŸUÍ—žžN‘¼H‡î¥§§ÓHËËËKnÔH111Y³fÍôéÓÝÝÝëÕ«×¼yóŽ;vîÜÙÈȈbmm}îܹ“'OÞ¾};==ýæÍ›Rƒ2¹h•BÙN½zõèn)SSS//¯;wîð·¡}ááááááRY}ðà’À1===//ïüùó‘‘‘M›6MMMµ³³“Ú&,,lÅŠ/_¾¤µ¡¡¡AAA‰‰‰„„„±Xܶm[!uN/Ar-”SbY”Ô¼r«½Ä˜[:6´aÆüt©9¹R>̲¬³³ó¾}û¾üòKšž››KéÊÅò>q<˜0a¡C‡j×®';KšÚ¸qã«W¯hÇ?-ò¼yó,X`ee•““3pàÀvíÚMš4IHË–X]RMÏ}¬h¯žÀúù矈‚Ï,T'¼Š„ ç†Ô0\U󯯬´+PG€²%ü‹RÈÊMåcu§k׮щ× Kdú/i(ÃMб²²R²‡ñãÇ÷îÝûðáçNŠÝ²e‹——Wbb¢••U¯^½bcc5jÔ¾}ûnݺ5kÖŒÆÒ±Xœ››ËO¡aÓŠ+do:U·n]å{«Zµjhhè²eË pàÀQ£FImбcÇåË—'&&ž;wÎÅÅÅÅÅ¥uëÖsæÌyõêUBBBPP7ÉF9óÙK,‹¢šçæyhèÝ»wÂ[PynOŸ>MdN3EP,ËîÝ»×ÜܼM›6“'OæVÒ±´´úìܹsôèÑfff›7oŽˆˆP2šN¸páµk×ìí탂‚hn]\\6oÞ|÷îÝ=zÐ ú„ׯ_/_¾ÜÅÅeàÀªV—¢¦§ÙX?´OW*$¥Ó™é[V‘@öööR_ž?NáúG¡´!p$'''%%õë×OóÅAèÅ»7n´jÕŠK¤óI½¼¼J|{vvvFF†§§gddddd¤D"Ù°aÃĉ7mÚ»f͚ɓ'sÛ«1 œsëÖ­ÂÂB®?,???555$$D¶8æææ:tà¿ñƲáï‘#Gzôè±cÇŽþýûs‰ÖÖÖDA¯L‹-,,,âãã/^¼Ø²eKBHHHˆD"9tèЕ+Wè¨S-R^%5O§hhîÌ™3Â[PynkÕªEù믿øíuõêU%GïÒ¥ ½ ?xðà;v>|˜NâröСCC† éׯߦM›¤®±Êºvíš……E³f͸•½ÿøã†aš7ož––FY½z5û—/_FEE…„„HŽ*U—•ê‡Vujj*?‘ö5ÒϬv/U‹Åâºuë&%%ñOŸ>Í0L½zõTÚ¨ Ëñ€úÒÓÓÌ0̼yó4ß[@@€‹‹KttôË—/iÊ‹/V¯^íêêªüJ"•––Ö´iÓU«Vѧô—ÏÐÐÎ&¡K©˜˜˜ÜÜ\µûB²²²¢££¹§‹/ÎÉÉéÙ³'???//¯U«V½zõЦäää„……M:µjÕªR;lÒ¤ !ä‡~àgéÇ$„Ƚ;ˆ¡¡ahhhlllrr2 ÍÍÍ—.]ZâG5Ö·S^%5¯ÉAù¶ =ŠòÜxxx¬^½š.àB[síÚµJŽÎõ·­ZµÊÊÊjÒ¤It$zVB˲³fͪY³æÏ?ÿ\bÔH=ztƒ 233éÓÔÔÔ;vtîÜÙÉÉéóÏ?—š£ÀMŽ9uê”zÕ%—JõP«V­õë×sU]PP°bÅ 333[—XEª9rä?ÿüCçBBž={Ó®];þ SPªÐãXæpó¨È6nÜH¿²ß½{—’’rîܹ‚‚‚ 6ðo£6ccãèèèþýûôë×eÙÝ»wgffîÝ»×ØØ¸Ä·Ö¯_Ù²ewïÞ­_¿~ZZÚÑ£GmllèM8LMMGŽ9hÐ ggçóçÏÇÇÇW¯^ýÌ™3G S5«ŽŽŽóæÍ;w¯ïùóçOž<Ù¬Y3nm9J,¯Y³¦{÷î¾¾¾ýúõ+,,}ú”?§DÊË¢¤æ59(_ëÖ­•· ÔQ”äV$­\¹²_¿~þþþýû÷744ܽ{·Àeÿììì¾ú꫱cÇ.Y²dñâÅ%^‡MMM½}û¶···ìízõêÕµk×åË—/[¶ì«¯¾3f !dÑ¢EaaaMš4éÙ³gaaáž={LLL¾ùæ­W—’÷ ¯CCõk×öìÙÓÏÏoôèÑ"‘(&&æòåËß|ó ¥ ù¥j©*6lØ÷ß?hРñãÇ[YYmß¾=//¯’¬“_^èzZ·*yŠ>ª]ßUÐåx”/¾(µÎÃ0žžžáááçÎSuW|üåx¨sçÎuìØÑÞÞÞÞÞ¾cÇŽþù'÷‰D¹>|áêêjllìââÎ-õ’˜˜Ø¼ys33³O>ù$222++këÖ­Õ«WïСƒìžé…¹­[·r)‹/&„Ðu鯉‰‰­Zµ²´´¬S§ÎŒ3Þ¾}+7“ÉÉÉ;wvpp°¶¶ 9qâ„¢ÌK$’ü±qãÆÖÖÖô^ÕrW‡á–R½zu.eÅŠ„Ñ£Gó7ã/#‘HhaaÀòV(ä <ØÖÖVÑ•”EIÍKTj9áÕ®¼¥ŽRbÍŸ>}ºmÛ¶t0€¥¥åÞ½{IIë8RÅÅÅMš4á¯"¤ÄÁƒýø.^¼˜ýðyY³f ÷–'NÐbº¸¸DFFrksÊ͘’åxT:áY–6l˜•••õC«ºk×®5jÔ°µµmÛ¶í±cÇJ¬¹ä®¡#[E¯^½9rdíÚµmmm»víšœœ,pWJ`9á]_ÚæååE£(„G}Wò9 „ÀéÒ8—Êœ»»»ŸŸŸÜ{ C…“™™Y­Z5!]Ú•S%©5¾´µó=_áR5@y…ˆ ôÑ¥­AÔHÁä=Žª r#ýƒÀ@56lÐut—ª@Ž G#‚ÀQè]*Ž Gë8” ///]g@Ë8h_å¼ó=è=\ªAÐã¨3ŒÒ‰Õ,Ëê:ƒAà¨KŠbC,Õå.U€ @Ž GÁä¨h8€ @gvïÞÍ0ÌØ±ce_úõ×_Åb±••ÕÅ‹uÍ’ê0C† aæßÿÕuM@Yغuk“&MÌÍÍ#""ž?®ëA%‚ÀÊ;w:ÔÜÜ<..®qãÆºÎN¹óï¿ÿŽ=Zש¨*t~þùç#GŽLMMmÙ²¥……Å?üйsçÜÜ\]ç * Že…a¤ÿ€<»wï2dˆ……E\\\`` ®³SNI$îé’%K®^½jgg§ë|URXQ\¿~}Ù²eÎÎηoß>räHZZÚäÉ“/^¼¥ë¬AeÀ± ±ìGÿ@Æž={ diiùÇ4lØPî6e9»¬Œ§___õ.—«ZÀwïÞ骘ùùùº:´ÿþûï;wJ5ýî»ï$ÉâÅ‹œœhÊÊ•+mllöìÙSã`¨ˆ8@y±wïÞAƒYYYÅÇÇûûûó_ ööö¾ÿ~›6mªT©bllìíí½råJþåÿý7mÚ´† š››ûúúŽ=:++‹¾4pà@†aΜ9ÃmܵkW†aúöíË¥ÄÅÅ1 Ó»wo‡SBIN¨üüü¨¨¨ÀÀ@333ooïéÓ§¿xñ‚¿Á™3gzöìéàà`llìââÒ«W¯?ÿü“¾4vìØ5jB¶nÝÊ0ÌæÍ› !#GŽ”ã¨<ªnùò倀€*Uª˜››‡„„lÙ²Ej3%ÙævRTT4mÚ4KK˯¿þZø»Î;çééYµjÕjÕªuíÚ5##£°°pÑ¢E5¢u¸uëV~N æÏŸß¬Y3 Ÿˆˆ®räV ò·(É<߀jÕªõòåK~bçÎÝÜÜTú (qúôiƒÎ;s)b±8,,ìÙ³ggÏžÕÖQ”aAÛ<==å¤ÊV5!Šþ¡] ’صk!d̘1,ËÆÄĈÅb[[Ûk×®Énäâââíímooÿé§Ÿ6ÌÜÜœ²dɺÁƒ<<<!ÞÞÞýúõóóó#„888ܸqƒeÙü‘²`Áºqqq±••!ÄÖÖV"‘ÐÄÏ?ÿœ²uëV!‡“ÍžX,’–eŸ={V¿~}BˆÏ€|||!õë×ÏËË£üñÇÆÆÆFFF:t2dHpp°‰‰Éõë×Y–=uêÔ—_~IiÖ¬ÙºuëRRRX–ŒŒ$„`À±XL9~ü8}Kvv6ýãnݺýû÷oÔ¨!ÄÞÞþêÕ«Š*Pù[e^¶–!ÏŸ?ç'r熆$‰X,vppJÿꫯ!Û·o×ÊQ@ ù¿õ•íCà 8îÛ·þö·iÓ†‹äøèO²OVVMIII‹ÅõêÕ£OÃÃà ! .äÞBûÃÚ¶m˲ìÓ§O† ¦/]½z•âèèHáb©æÍ›3 “™™)äp²Ùã‚å9aYvܸq„eË–qL›6²zõjú´OŸ>„?ÿü“Û€v§qû|ôè!$22’Û@*p,1j†ž\|HS6nÜH™4i}:aÂBȪU«¸}îß¿ßÀÀ ,,LQ–ø¹™—[K¥8æääÐÐV*vš®X±B+G8‚Ö pˆŽuëÖ544ôóó£¨×¬Y#»%ýI>|ø0?±nݺ¶¶¶,Ë>yò„a˜úõëKmÚ´!„Ð.¥ÀÀ@CCÃÜÜ\–e¿ùæz Bí:ÊÍÍ544 r8¹Ù£ÁA‰9yñâ…X,öññáoÝ´iÓ¨¨(útÏž=¿þú+ÿíçÏŸ'„L˜0>U8 © 5 HÙ°a?ñÔ©S„nݺ Ì6ÝÉO?ýÄßFà»ÒÓÓ¹ V¬XAùòË/¹”»wïB À²ìË—/Åbq‹-¤Š0xð`BHFF†l y‹ÜÌË­%ácttôJÅþûï?©íŸ^¯ }ûöñññ·oß®W¯^§N._¾œ””Ô¡C‡Ó§O;88DDD̘1#!!a„ gÏž-,,äSr8%JÌINNNQQQ»víøØØØÐh‰¢#/ ïܹ“‘‘‘––öÓO? ¯O!µ¡^¥ê'$$ÄÜÜ<55U¥l‡„„ðŸ y—Á'Ÿ|Â=511!„xzzÊÍyjjjQQQÕªU¹Á‹ÔÛ·o !·oßæïJÕ·He^.öã™F¬â‰G³gϦ‡kÀ€t<ÇÆÆ†a˜7oÞHmI{"mllJÌ€æ8ê ó¡s ’óññ‰‹‹³¶¶¶±±Y½zõèÑ£ téÒ%###þf"‘HÑO#í@¢—žùœ !÷ïß'„„……-Z´è?þèСCRR z5j”À~è<ãFJ§D‰9¡S’e7à»sçÎÌ™3Ož<ùæÍ###ooï:uê\¿~][yP»€²û¬Y³fFF†ðlÐl¨TXFf 3‘H$7“÷îÝ#„œ|øPí·Èf^®‚‚%OùT$nhhhcc#5ù†BS”ŸTÚ‚YÕ c-Z´°¶¶¦GÕ¹sçëׯө*|ŒâÕOé$ÙÇK¥Óúc߸qãjÕªÅÇǧ¥¥=}ú´eË–„6mÚdgg§¤¤$$$T¯^N‰(ñpJ”˜úë.5ÉšïÍ›77>vìØÔ©SoÞ¼™——wõêÕE‹i1j^*åËÌ̤%˜mƒÿÿîh^XYtšùóç˽Ê6f̵ß"•yE¤Öâ–í Ô„³³óÓ§O¥bÇ´´4ÂkY€R…ÀÊ—mÛ¶ÙÚÚ®Zµ*>>^à[¼¼¼!'Ož”º,xâÄ Bˆ··7!ÄÀÀ C‡W®\ùí·ß!\àH9|øð¥K—„„æ¤N:„„„þ«yyyU«V¥ó…Ïœ9óâÅ‹©S§.Z´¨nݺ´_-;;[‹yP»tGå?={öì«W¯èÕ˶慕Eó#UÄõë×Oœ8QjÙ#µß¢wíž’——ÇuñÊ211a“{ÉîÝ»?~œKaYöèÑ£¶¶¶ôü(m |±··ß²e ˲Ÿ~ú©ìU9Eo0`½©—øÝwßÅÅŵjÕªAƒ4¥S§N‰dõêÕ666tœ_óæÍ£££‹ŠŠ¤ð©yå9qttìׯßÅ‹éjñâÅùùù:t :Ÿ={ƽúúõëÙ³gBŠ‹‹ùÇR4iÒ$•²Í§Þ»Jl‚&&&®[·ŽK|¸ÔЀҢëÙ9zHà¬j‚YÕPéñ×q”2|øpBH¿~ýèSþz7œÀÀ@nðýû÷é2Ë>>>áááô®3öööÜj;,ËfeeÑ>ÅîÝ»s‰­[·&„ˆÅâ—/_r‰%N ûsÂm0dȺ··7ñýæÍ›ZµjBš4i2uêÔÁƒÛØØtîÜÙØØØÞÞž®Cãi›É“'Ÿ9s†•YާÄ<¨Q@ƒÆW­ZµC‡:u¢aÍàÁƒéB²-{PõÞEû˜˜.…^C§³ªY–}ôèÎÒ AƒÁƒ·k×ÎÀÀÀÌÌ,99™n [%¾EnÉÖ!ÄÂÂÂÔÔ´}ûöb±ØÅÅE[ËñP+W®$„¸¹¹=:44”a˜† JMå†2PigU£Ç± }|¯jÌŒPbíÚµnnn{öìùù矅lïââríڵɓ'‹D¢ƒŒ5êÆüÙÙ¶¶¶t#½NMÑ«Õ-Z´ K‚k®Äœ¸¸¸\½zuâĉEEEû÷ïÏÏÏŸ1cÆ… èÔ`SSÓ¸¸¸>xðà‡~xôèÑÚµk>>¾l2ÌBF×Õð†eõ| oZZZ=ªW¯cggGY²dÉO?ý4xðàyóæÉ}Ëëׯ۶m[XX¸mÛ¶† B®_¿>hÐ ‹¤¤$ƒ¢m//¯´´´3Æ0Œ¢ªgèÄj}o€ Jào½þÑÿÇ={öH$’)S¦Ð¨‘eiiyôèQ‰D"÷-ûöíËÉÉ3f  ! 4 {þüù7t] ÝÐÿÀñÒ¥K!!!\ŠH$jÙ²evvvrr²Ü·œ>}ša˜=zð¿þúë´´4___]@7ô|r ˲666666ütOOOBÈÇeß•’’bmmíààpùòå+W®¼zõªN:mÛ¶511ÑutFÏǼ¼¼ââb+++©tKKKBÈ‹/dßRPPðßÿÕªUkÁ‚;wîäÒkÖ¬¹fÍšúõë 9®———TJå  dÖ+-=éÔiSSS©t333BÈëׯeßòßÿB222²²²–/_òöíÛ˜˜˜õë×Ož<ùðáÃBúµ&²,aÌÐ9ÙŸõJJêùG+++†aòòò¤Òß¼yC>ô;J©R¥ }°lÙ²=zXYY988L˜0¡gÏž=:r䈮Ë z8ŠÅbKKKٞŜœB7ÏšÏÔÔ´J•*&&&­[·æ§·mÛ–rûöm]— @7ô|üØ‘EåzËË{ðÿÇ Ã‹ˆ žUý>+@¹‡ÀQ˜'Çè:;‚`9žRÇÈ ùIÚYÍ ”!p,rãB^@IcGÕze7VôvD¥  Ë ubG~DÈ0%†§šÀG}‰ÕPÊ8–#ìåÇò±#”[@Žå«hš €NaVu¹DgX«ú&z¥ûãDöÃB’ªïà#õ +/Ó­@s¸T]N!Ú€òcù…ØÊŽ Çr ŽP~`rLyGcG93¢eî1ˆYÓPª8Vd¯°Ã0 bG(=•åRõÞ½{ûöíëïïߢE‹9sæ¼|ùRø{3336l8sæL]e¬ <¨cttôܹsïܹӨQ#33³}ûö5*??_È{Y–ýì³ÏÞ¼y£Û" vÓÿÀ1--mË–-öööÇŽÛ²eËñãLJzýúõ•+W yûöíÛ/^¼¨ëBèžþôÑY%?IDATŽ{öì‘H$S¦L±³³£)QQQ–––G•H$Êß›žž]§N]‚t:€®éàxéÒ%ƒ.E$µlÙ2;;;99YÉ‹ŠŠfÍšemm¥ëB¼‡ØtHÏG–e322lllllløéžžž„‡*yï·ß~›ššúÕW_YXX躺§çËñäåå[YYI¥[ZZB^¼x¡èW¯^ýî»ïܼyó›7oªz\///î±§§'ñòú;-M+%R¸¬#”þÏz%§ç#:mjj*•nffFyýúµ¢wÍš5«fÍšÓ§OWï¸i¼0‘a©5„Ø ,¥ÉôþTÚPRÏG+++†aòòò¤Òéò:´ßQÖòåË=z´sçN]—@>ÄŽPöô|Œ£X,¶´´”íYÌÉÉ!„pó¬ù.^¼¸sçÎÑ£Gûúúê:û刞Ž„{{ûììl)rîÝ»G_’Ý>==²aïzõêEùý÷ß½¼¼ºté¢ë½‡ÖPÆôüR5!$444---))©sçÎ4…eÙÄÄDkkkÙí]]]¹-©×¯_Ÿ9sÆÉÉÉßßßÁÁA×ú?\°€²¤ÿcß¾}7mÚ´nݺV­ZÑ91[¶lyþüydd¤¡¡!Ý&77÷Ù³g†††5jÔ âïáæÍ›gΜ \±b…®K£ËF~/$‚KМþŽNNN3gÎ\¾|y·nÝ‚ƒƒïß¿áÂ…zõê9’Û&11qêÔ©µk×>|ø°®ó«©NG†eYW° TèàH‰ˆˆ¨^½úbcc²D[hƒÔo}åQ)zõ Ã…†2 Ë0Ìlj¸r Ú‚À±b’ÛwȲ„a¸H‘Aÿ"hGý$g– shÔ¥ÿ €W"®Scn5”ŽzEvŒãÇ/+\è DõË¢¯JG=Â0,ïjµ®sú£¾a?L¬fϼÖu BBਟX^ï#€V p¬|ÐéjAà¨ÏÐéZ„ÀQÏ!vmAà¨ÿXÙÆàj5¨cåÀ NM!p¬,XB>ŠÑé*BàX‰HÇŽª@àX¹ vµ!p¬tþ;âj5¨#‚À±2B§#¨c%…ÁŽ *Ž•bGP ÇJ%„ÁÕjce‡ûX€@\³8!,ËâfÖPŽðæÊ€r"AG¡$ð p„ÿC§#(À>‚ØAà|¸ZÍ~¸HÍ"ޱ®3å SR"Ö}¨´8˲ CØ÷Á!×éÈ •G ü5ÿmša! Ër)ˆ*9Ž@!\/ãÿå¡) ð,AÔ˜Rzµš!#PA)–e0·!AÖGŽ ÃEˆ*9Œq„÷¤¯P;~¼)._TFáÿ˜!ûaN aè¼jþF Ö娜p©ä"Ç!•GPbG€J—ªA>ÚéÈ|¼<8¡!#½¥õ‡ ×PI p„°òRÞÄŽ•.UƒFpÍ ò@à ÉL¨–±#@%À”"v¨ 8‚vÐØá#€CàZâë@¯!p-Cì ¯8‚ö!vÐKXÇÞS~›AUÉ]â‘[ý*"ŽðŒìò; £vœ‡åÁô .UC)Â5k}‚GÐ>©Û[3,K†Ðÿ¯+å G(RÁ!}ÊÅŽüWtS#”5.RÄH€ŠcAê|z"5T8A !D½µ{†AÔP1!pu}°¨òû!˜m P!p„²Å² bG€Š #h@NG†ay·a>TA3j]°fy°H8@EÀtƒýø1bG€ò#hLÝY2í—­Ê=Ž  ZŠÑõPž!p„ò±#@¹…À´DŽï÷„ËÖåGЭƎèz(o8Bù…®G€rE¬ë €~Ñ^§ãûýB”ß›eqÛk€²À´eYF«Á#!„aâC]Ã¥j#hC«í>GÅ+³#Tv¡T0,[v±ã‡94˜IPª8Bi)³Ø‘ýðJ&Ç@÷aÒ ƒØ ”!p„Ò%§ÓQ*EÃéÒ Ã°,AÔPú8Bia¹îÃBaé…5^j‡['±#@©ÂG¨àxݘPª8B©+ÝY2 ÃÅ‹¸Ã5@©Bàe¡TcG©)Õ¸Ã5@)ÁG(kR+v³R4¼é4+ó˜‘IM p„2Â|¸‡µl$WJ×—>h.UCÙa4ìTT >h G(Sº à0ð@s¡²`…….ÁG¨\”|DÔ z¡2ÂÀG5 p„ÊKî•k”ŠT–KÕ{÷îݳgOFFFÕªU[µj5sæLkkk%ÛçççïÞ½;&&æÑ£Gæææžžž-Z´Ðu9*˜R¼aŒVq¹deR¤Ò*³J8FGGoÚ´ÉÔÔ´Q£F÷ïßß·o_zzúO?ýdbb"wû¢¢¢aÆ]½zÕÒÒ²Y³foß¾ýóÏ?Ïœ93iÒ¤ñãÇëº4#w톑„é*2£ý‹üäãð!#Gÿ/U§¥¥mÙ²ÅÞÞþرc[¶l9~üøÐ¡C¯_¿¾råJEoÙ³gÏÕ«W6l˜˜˜¸qãÆ~øá·ß~³²²Z¿~}jjª® ¤ŸBHvO2<ÿ¿Û5ï¶×Q#€ ý÷ìÙ#‘H¦L™bggGS¢¢¢,--=*‘Hä¾åرc„Ï?ÿœë’¬]»ö˜1cŠ‹‹Ïž=«ëé/–-ËØ‘°ìÿÿq)äÿá#¢F)ú8^ºtÉÀÀ $$„K‰D-[¶ÌÎÎNNN–û–{÷šÖ«WŸX»vmBÈÇu] ½VƱ£¢\B°`8€ =ãȲlFF† ?ÝÓÓ“òðáÃÀÀ@ÙwmÞ¼Y,–®™›7oBjÖ¬©ë2é;;êàÞ„ÿÏÃû(;ð ÒÒóÀ1//¯¸¸ØÊÊJ*ÝÒÒ’òâÅ ¹ïª[·®TÊ… ¶lÙbllÜ£G!Çõòòâ{zz/¯¿ÓÒt]‡ncG†aYVÑ@å¤ç£X,¶´´”íYÌÉÉ!„pó¬e¬X±â矮R¥ÊĉGŒ¡hÑG(EºŽæ‹"8|ÄmÐz8Bìíí322rrr,,,¸Ä{÷îÑ—ä¾E"‘LŸ>ýĉmÛ¶?¾’øJ]ù˜g-?k„’ÂÇršuµèÿr<¡¡¡ÅÅÅIII\ ˲‰‰‰ÖÖÖþþþrßòóÏ?Ÿ8q"<<|ýúõˆu-]ŽüÜñîyÍÈÐuî´IÿǾ}û¬[·ŽŽk$„lÙ²åùóç½{÷644¤)¹¹¹÷îÝ{ôè!„eÙ;v˜››öÙgºÎ;¼Ç|¸í5Ë0Òÿ! óÑ?Ýd‘!äãEŹ¥Å?€¾ÐÿKÕNNN3gÎ\¾|y·nÝ‚ƒƒïß¿áÂ…zõê9’Û&11qêÔ©µk×>|øpVVÖƒLLL $»·ž={22‰DA"@©Bà‰ðµnãŠvÁZºÈLj̇ù4ü§e#TŒŠ7Z|2Vüð‘ëz”º„M5@ÙBàúŽ +Tì(gisÞzç,ËÒGèq€²„À*‡Š°^œ<+NáæVc ”ŽPiÈëz”?hR*±¼Åš Ãð–’.£jvÑm !p„J†e¹{² #gÜäGQÙû”ò;Ê]oH½²B¯[e #T>,Ë0Œð ÚåS‰÷¡!‚#H¬(á^ÕPIѾƊ>*'u/l}.*” ô8B¥Æ°ìû»–³‹ÑÚ%wÙpå/ésu€º8BeÇu=êwìHÉ®ÉO'¸f J!p „ßõ(³†"û!…Õ—È’›[â£TÀà=%£Y½ Èߟ÷?ÂG “c>¢g¢ð"³þçO¦Q¯6*aTèq¨ÔyËñ°o ›¨|‡ ¯8¢gWo¥nu­äZ¼ëŠcaH}…À@†þ¨GSd¤ž2¶gïôGÁ¸»]“ >²‚•lÆ(¸g#Žø@ÿ p„JM;Ç(îM6½ÌãNFiIÕXiˆQt ozGÇ{Ä5k}‚À*/ù+~3Œ @GAø(·N:,ÓÕ}E‡ZÏ˪:¥F9DŸåG |Y¢»p°b–e™q“þ*:¬ã 1–e”®^éЪøÐSÈj¶<$£ °TPèqЦÿߺ°‚ϞѬd/Ï¢`yH‚žH€Š#€–ñ»+mø(|q"D*z#bMCàP*>ºr­h²^^`!=‘ж€²„À 1,K'Ípcߨ£‰•/šTBzÁ ÞÔlò!päßV[£c¡Ï@-JlÏf{ȧxÁ þE Ã>Ô<€Ú8èÆÿWðQÜïXžW/cR÷¿fd^Õdo GÝ`¸KÕJÃÇr½¢x™ùx}"óiG€@t>ýï;T‡Ü›bó(‰#YÅa%ÂMU!pÐ&õç#:oCñ>ÆŸ#pc"ï-¬Ìán”Ýï r@à 5ÝüšÃÒÑ ûa:v¥] R–! 2Š7¶;´Tj¸å @9EãEz+öC jcyã#ÙJ5n„(Aó@¥€G€òŽëqDì¨*Ùµ!i+3Ûæýö2{@#G€ ƒù0†Aªº¢¸üèS×÷aäÞ°‡öãÒ‡²•#»UêD‹³m°Z”O*6¹ËÓ(ÇȬæSéÖ÷aöã;Ó(òQ¤Ò[Gª1Û ÂAà '©ÞÄŠßeXÚØCµPS¼0T[wDD§#”Cô?XÄÂh­jx]˜( z #€ž’Y²Äe´ACŠº …„’r¯›3Jߢô_€V p(×´0“úÄe¹µ!‰¢U'A=,«$2&²ŠŸêû˜S¨08”_ÚYQüãr+ŠkkqŸÊ3M[Á³m¨÷7ÂùxLª’[#j¥»Ž 9Ž•û–­a‰iÚ”:³mÅÓ+ÐâÌmA P9!p™ð…a0·F=Z¬,îöÜ%^³x)œhu¥I¨œ8€<Ï­‘“¥JA=ËMU&*4©­eƒ RAàÒ·æûèV4 .:—Þ4m š¤å^·Š¢IE³¹µ8h*Ž ÿæ{òÂÑŒì4m¢½™Ú4IxAžzqžÜ¹5ŒÌ©uý—GPš6áwÒúÝ)X&´»|£ð•&¥Ž.7Ðdµ€"v(ÿ8T:ÚZˆGÖû’ë ä¡d™`dƤòo±-|¥É÷{+épåùÚ7ÂP€Ò€À r‘s5Yƒ…!EvÐ$} ‹¡Š•gÐ$?F”.—Š+M¾«ì!DxåpÁ ( @ûš”¶þÿ-¥vSD š¤T]i’‘W- Ënî”°ƒ¸£ÿŸ2õÏÂ*^]=ètÐ:Ž SJgÛÜQÛT®M¹õ¯¸Q”ìŸQò^.åm©IÃãÚ7@)AàåˆÔl‘å©G°ò\ûVFõîaVÑÅô÷/Kw7ª>2Ñ…  !Ž ©Ò›mCxF?:"Ñq †kßDヤ}¨Cá×¾ Q¶È9Qe?%ç]˜„Ž ¡²™m£dÚ/«à&7¥:h8Z«_Un–Ãa”>•»˜e¹Rn3 GÐGŠM’òwË\û¦å•é¶-™¢5)ùc%‰Ìcå{P²½Ö—®Ô.„¡P8€>“4Ih &–ét¥I\û&¼°L“ˆÛ YfRàZ•²O5ŒÒJ鶈¡´!p€JGîMœ®4ù~‹Šôs\q»0e{ UŨ85»Ä / ©Gta‚~@àåN©Î¶y) šä£7¹U'Ëý‚Aº S…™Ôò¢á·NWgÍs¹™‘¯#•C!GaIJ脊#”/e3ÛFe¼{÷ ]0Hî²X®»0•TÕ5ω¼Û6¾OR<S¥Gå]˜.?Tþ»0Ë[–@U4¢hÁ ®}—NÿPéó£ç¦ S0EªhnÛ¨Æô¢ [TÑÝw„W¢»0åÞ"è}&Ë÷_>ˆDËG-PùÚ7Cä]ûæ^.ç¿Ùš(×]˜J²­öô¹÷—W jô8–8 SÐ>/‡¤­.ÌRº˜e #è¿24©FÞµoBÞ‡PÒÙ.÷q•eç—®Btaj>}‡·/V½„*ua ÊmI—û¹ýh5r{+ÏÝ„å9oåGÐsåtÐdIÔ^óüýã¸â32—4r¯")ã.Líì…7}§ôº0…äVá­ ÜRøÎåNän¡übºÑ™r¤¨Q“‹éJVuU^ÆJ #€j*èµïÈ JèÂT´QI»­´Ê&•®qÍ"QõÿNP|1Õ8ÂØõøþ°B2«ài…ù± !píÂ|ÿ¤äQ˜ ¶’#Q¢Âôü²¸:¯ÁÅtÙEו¯ÊΩDªÞʼ2Cà {zE …É½Æ é”Ú=ú„´JI$ÊðÅj‰Ò—>zRòÞäß"HØì.¡‹YÊ‹D•œ]ž•uRGÓÏkßj½n[RLPòZ˜ŠRp ]EêÕ—¢Hô£UoF¢,ûQQ‘èûúT}X'ù8EÊÑbE`쬠´ Së”Ü‘\U Ë ™.û*/-ù¾”DÐ#D¢þŸÜXL}ºÍ’†8€  S+>ŠóÔ]ާT#QùYÕb ÈdFÃ8Uˆó•Bàe­4º0‰mDQR‘¨ì\¥µ«óDÍHTùö8J‰®3 )†e¥ÿé:K:ÁÊü#š þÓâ•7 mýc>D´Â[ù}¬©àû!eæ£ÂwXY!pCxHåÖ#QéVV¸T ÓäBàPꉂ~@àPñ @àˆDAŽ }ZDå,3©1„¶ªBàƒœ[Kkqoï°2Àr< íÝ»·oß¾þþþ-Z´˜3gÎË—/u#PŸ———®³ÒÐ(åÚ¥B£@ùÀQ¾èèè¹sçÞ¹s§Q£Ffffûöí5jT~~¾®ó 3åHKKÛ²e‹½½ý±cǶlÙrüøñ¡C‡^¿~}åÊ•ºÎ€Î p”cÏž=‰dÊ”)vvv4%**ÊÒÒòèÑ£‰D׹РŽr\ºtÉÀÀ $$„K‰D-[¶ÌÎÎNNNÖuît£4–e322lllllløéžžž„‡ê:ƒºÁ°•øFÝråææÔªUëÈ‘#üôÝ»wñųfÍ1b„ò=`ú€ÞKKKÓutë8J£S§MMM¥ÒÍÌÌ!¯_¿.q•óL½‡KÕÒ¬¬¬†ÉËË“Jóæ !ÄÒÒR×Ð ŽÒÄb±¥¥¥lÏbNN!„›g PÙ p”ÃÞÞ>;;›FŠœ{÷îÑ—t;Ý@à(GhhhqqqRR—²lbb¢µµµ¿¿¿®s åèÛ·¯Áºuëè¸FBÈ–-[ž?Þ»woCCC]ç@7°|ßÿýòå˃ƒƒïß¿áÂ…ºuë~ÿý÷VVVºÎ€n pTèСC¸~ýº££cãÆ§L™BW䨜8€ ã‚ pA8€ @Ž G#"ÖuôÇÞ½{÷ìÙ“‘‘QµjÕV­ZÍœ9ÓÚÚZ×™B¹{÷nXXØž={|}}u—Ê.??÷îÝ111=277÷ôôŒˆˆhÑ¢…®óUÙ½zõjÍš5—/_~ôèQõêÕëׯ?qâD]ç ÞËÌÌìÚµk›6mV¬X¡ë¼Tj}úô¹qã†T¢­­íÙ³guµ²ƒÀQ;¢££7mÚdjjÚ¨Q£û÷ïïÛ·/==ý§Ÿ~211ÑuÖ€üüóϺÎBHQQѰaî^½jiiÙ¬Y³·oßþùçŸgΜ™4iÒøñãu»Ê+''§K—.YYYµk×nݺõãÇcccOœ8±{÷îúõëë:w@X–ýì³ÏÞ¼y£ëŒyðà‰‰‰››?±²Ý‹£¤¥¥mÙ²ÅÞÞ>&&ÆÎÎŽ²dÉ’Ÿ~úiåÊ•óæÍÓuî*¯œœœ¿ÿþûСC»víÒu^€BöìÙsõêÕ† nÛ¶þM•žž>xðàõë×·iÓÆÛÛ[׬¤¾ýöÛ¬¬¬1cÆL:•¦ìß¿öìÙ‹/Æg§<ؾ}ûÅ‹u 999¯_¿ [³f®ó¢Kã¨{öì‘H$S¦L¡Q#!$**ÊÒÒòèÑ£‰D×¹«¼ºví:hÐ üò•ÇŽ#„|þùç\O|íڵnjS\\\©.ô”7çÏŸ711;v,—Ò«W/‡›7oë:w•]zzzttt:ut < „Hu7VBµàÒ¥K!!!\ŠH$jÙ²evvvrr²®sWy-Y²dÆ 6lhÞ¼¹®ó„rïÞ=SSÓzõêñk×®Myøð¡®sWyYYYµiÓ¦J•*üDccã‚‚‚‚‚]ç®R+**š5k–µµuTT”®óäþýû„WWW]gDÇp©ZS,ËfddØØØØØØðÓ=== !> Ôu+©   úàÔ©SºÎ BÈæÍ›Åbé7oBjÖ¬©ëÜU^;vìJ¹téÒƒüüü0J[·¾ýöÛÔÔÔï¿ÿÞÂÂB×y÷ããLJšššZµjÕºuëŽ3¦²M»D਩¼¼¼ââbÙ±±–––„/^è:ƒåEݺu¥R.\¸°eËccã=zè:w@®\¹²oß¾{÷î]¹rÅÅÅeùòåºÎQ¥võêÕï¾û_{÷ÒôpüYY`j%8܆# Â@†&$Ë ÄQQÔaVk%X¡"…$å%²C*< <„?’ †‡$EÒP¤FåÜAQ› ƒù¯y™‡îwø†??HöìÇÞ¯ãó½|n{ïûý>Ï÷/§ÓYZZªý¿‚ZÚƒ·Û——wòäÉÅÅÅ?Ž=}ú´²²RõtñC8þ©h4*„HKKÛ±žžž.„ˆD"ªÑÆÆ†Çãq¹\YYYª'‚˜››ëííÅbBˆ‚‚‚ýû÷«ž(yE£ÑG™ÍæÆÆFÕ³à—åååÔÔÔܺuK[ùüùsmmmkk«Õj5™LªŒÞqüS‡Öét?~üر® Ýw°ÝøøøÅ‹[ZZ²²²^¼xqþüyÕA!®]»633ãõz›šš†‡‡¯_¿Î0ª´··‡B!—ËÅÛ‰ãåË—~¿«…¥¥¥7oÞŒF££££ª§‹ÂñO¥¤¤:tè÷;‹ëëëBˆ­}Ö„?þlii©ªªZZZºwïÞû÷ïÙº”Pt:^¯¯®®¾zõêÊÊÊðð°ê‰’‘Ïçëéé©©©I¶—çþJJJ„ß¾}S=Hüð¨zdggÏÏϯ¯¯oyaaA»¤z: Qlnn666ŽŒŒ”——777ó·*îîî²²²sçÎm_×6¿¯®®ª0!„v(ÄöõcÇŽ½{÷NõŒI'‹mnnêtº={þuÇmïÞ½BˆŒŒ ÕÆḠΞ=;77÷éÓ§ .h+±Xlll,33Ób±¨žH¯^½q8ÍÍͪgÁ/|ûöm8ÞŽÚ‘uyyyªLFGŽÙú5ÑD"¯×k2™,‹Á`P=`2 ƒ6›­¤¤dǧÈ&''…ùùùªŒÂqØíöçÏŸwvvž>}ZÛÓÕÕµ¶¶vçÎ}ûö©žH±Xìõë×MMMªgÁ?²³³óóó½^ï‡Μ9£-ÎÎÎz<žôôô'N¨0Y­Ö­ÓÄ4ÓÓÓ^¯·¸¸˜oU«’››[TTäóùÞ¼yc·ÛµÅÉÉÉîîn“Éd³ÙT?„ã.0™L>loo¿téÒ©S§‚Áàׯ_ îÞ½«z4 Q„Ãaí3¯7nÜøýê•+WœN§ê“Ô³gÏG]]ÅbÉÉÉùþýûÄÄ„Âår±ÛØòäɓ۷o?~ü¸§§çèÑ£‹‹‹~¿ÿÀmmmIµ‡‰pÜÕÕÕz½¾¿¿hhÈh4:Ά†íî#!D(BD£Ñ©©©ß¯²EF¡ÂÂÂÁÁA·Û=55533c0***êëëµúÐ?~¼¯¯¯££ãË—/@Àl6_¾|ùþýûF£Qõhq¥ÓŽìþÇñ@ á)„#¤ŽB8@ á)„#¤ŽB8@ á)„#¤ŽB8@ á)„#¤ŽB8@ á)„#¤ŽB8@ á)„#¤ŽB8@ á)„#¤ŽB8@ á)„#¤ŽB8@ á)„#¤ŽB8@ á)„#¤ü _|‡n*&ƒùIEND®B`‚statistics-release-1.6.3/docs/assets/gpinv_101.png000066400000000000000000000756171456127120000220130ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A{VIDATxÚíÝy\TõþÇñï°ˆ(‚¸¤ ˆK.྄‚¹KjYj¦¢ffZ–k¥WKSK³n–å5™é½ámÁ5Í \nšbŠ"à¾Ëb "Ìüþ85M¬œ3g^ÏGGðeæð9ß3à›Ï÷œ3N'€²¸È]Á&!8À$G˜„à“`‚#LBp€IŽ0 Á&!8ŽmÏž=cÇŽ «R¥Ê#<Ò®]»#FìÛ·Oîºléÿø‡F£Ñh4 F–-[&´nݺÜÊx÷Ýw¥oÚ«W¯‡=æÄ‰š’T©R¥eË–/¾øâÅ‹åšÆõë×ÿðÃ?üðÃ7l²ÁRŽÂýû÷?ûì³îݻתU«bÅŠ¡¡¡}úôùàƒòòòL™1777??¿¶mÛþãÿ(^íÃ&ÙÐÔ©Såšg@ÝÜä.€…rssGŽùßÿþ×pðÀøê«¯zõêõÕW_ùùùÉ]&„â÷ßÿå—_~ùå—o¾ùæ»ï¾ëÖ­[ù×0dÈßÿ]±mÛ¶®]»Úïýïÿ8p`ff¦~$-----mãÆ‹/^¶lYŸ>}JßBQQÑ­[·nݺuðàÁO>ùdãÆíÚµ+ÿPÁpHwî܉ŒŒüõ×_õ#...¦¨¨HútÓ¦MýúõûùçŸ+V¬(w±¶W¥J•zõê !å®å¡<==…<¸råŠV«Bܽ{÷Å_LII©\¹²ÜZ«Ä£ššÚ¥K)¡JÜÜÜ ¥/]ºôì³ÏîÛ·¯yóæ¥ÌØÝ»wõƬ¬¬gžy&--ÍÃã”§©ZµªÜÓ¨KÕ€Czùå—õ©122rçÎÙÙÙyyyG}öÙg¥ñ}ûö½ýöÛrWjÏ=÷\FFFFFÆ?þ(w-µzõj©È‹/æääŒ5JÏÌÌܾ}»ÜÕÙ@‰GaÊ”)úÔ8räÈ£Gæçç_¾|yùòåUªTBÜ»woРA¥ÏØõë×ÏŸ??räHiüâÅ‹Ÿ~úiéO1òÖ[oÉ==€:ÇsìØ±¯¿þZúxðàÁ?ÿüsçΫT©âîîÞ¼yóÿûß#FŒ¾úïÿÛè¹×®]›8qb‡ªT©R¿~ý§Ÿ~ú—_~1|€á …YYY“'Onݺu•*UZ´h1wîÜX³ÁÂÂÂY³fÕ®]{Ö¬YÒWµZíÚµk£¢¢êÖ­[±bźuëvéÒåÿþïÿŠ#CÅÏ® |ØénF§$–Y°äüùóƒ òóó«Q£ÆSO=uèÐ!k™——×?ÿùOwwwéÓS§Né¿dÊ ”>‡eîÔ›o¾©Ñhôyî‰'žÐh4wïÞÕ?àîÝ»³gÏîÖ­[@@@@@ÀO<ñÖ[oåææ–¾SŶmÛÖ¯_/}üÆo¬X±¢yóæ®®®£G^³fô¥ÔÔÔÓ§O—¾ñ:uê¬X±BVëܹs  G3~üxéç·bÅŠ—.]*þ€+W®ÄþéúõëúñŸþ9 Àè—€F£™4i’þ13gΔƻtéÒ¨Q#£?óÌ3†ßȬ öïß_ŸhgΜ)}Uß52pàÀ· |öÙgÒH«V­¤‘5j<ì·\Ïž=Í*X§Ó:tÈhƒUªTéÝ»wñ IIIÑ?eÛ¶mF_­Y³¦ô¥7ÞxC?hî ŸÃ2wê7Þ(¾ýßÿ]úêÁƒëׯ_üuêÔÙµkW)¯ÃâGá©§ž’FªU«vçÎâOéÝ»w‹-Z´h‘`ÊŒíܹSÿÕÍ›7›òvÅ9Ž€ãùù知ú÷ï¯Ï"†jÔ¨ñå—_ æææúè£ÒW_~ùåâO)Ñk¯½fâw`.ÎqLvv¶þÒiý¿©’>ø ø~ú&ÐæÍ›¥ÆŒ£ÊÈ‘#¥zþüùcÇŽní±Ç›0a‚ôqÆ üqéãsçÎY¶ÁJ•*mݺuèСmÛ¶ B 4è믿þúë¯'Nœ(=&77WêŠ !nß¾mÁüètº#Fœ9sFáêêºvíZ}SÖÄ‚õ§â½òÊ+mÛ¶•>ž?¾¿¿¿Y•H§j4ww÷Fé›mO>ùdDD„ô±¹3P|Í= FôU½úê«úS›6m:iÒ$£”ɰã[b#Ü2<òHñí KÕ€ƒ‘V%fÝÉY9ÂÃÖûΜ9Ó¬Y3ý§Fç½U«VMú@º­Œ 7ÊÒ³²²¶lÙrøðá#GŽ:tèÎ;ÖÌϼyó~øáýÇ]ºt1wô3¼ª¦B… Ý»w×_“d±Ç{lÉ’%Ï@ñ94÷(IMM-ñéÝ»w—z™gΜÑjµ..ew W´muq!Ä­[·¤¼½½‹µÄÛñè_«lŽà8êÕ«Kÿ0Ÿ6º#f­Zµ¤òóó¯]»fÊý2+T¨àçç'};ûÊÉÉ‘ö´bÅŠ&ÞÉR:ÙTšÏâ_]½zµ]ofÀÁp<ÑÑÑÒ}v¾ÿþûëׯë—PÇŒ#­WÖ­[×08z{{W©REjeýôÓOÒ*§‘êÕ«›^ƒ4ŠžBˆwß}wÑ¢EBˆààà)S¦tìØ±qãÆ/½ôÒ¿þõ/ ¦åüùóC† ‘¢¡¡¡+W®´ `OOOýÕׯ_ ÑUŸ±LdJ¦1wŒæÐÊÃêíííãã#íו+W {ÌW®\‘>¨P¡‚é/Œ:H÷tLLL\¼x±þöCz 6”‚àûï¿?yòä27¸gÏý©“mÚ´1kþØç8Žçµ×^“–srr&Nœ¨oVé-[¶ìòåËFƒú TXXXß@ÕªU}}}}}}K|ŽRX¿Á¥K—J|òÉ'ãÆkÖ¬™›››eïæ|ÿþý§Ÿ~ZZÖ¬T©Òÿûßâ+›¦ìêê$=lË–-úçêþ~k[±~¬< aaaÒ?ýô“á¸þÓÐÐP77S[ úó,ÏŸ?¿lÙ2£¯®_¿^ß>ìܹ³)Ô/ëW®\¹cÇŽ6šu–#8ާ]»vcÇŽ•>^»vmddäîÝ»¥%Ë_ýuìØ±ú‹Z =ñÄÒŸþ¹N§“>^·nÝ#<âççW¯^=sO.´rƒwîÜѯ¢fggKüïÿ³ì]U&L˜pøða}==ö˜Å·jÕJúÒG}¤¿öܹsûí7Ë™ÝfÀ‚£`xù³þ攆;›’’²páBéc£Û§—®oß¾úz^}õÕøøx©sYPP°jÕ*ý(ëׯ^ú¦®^½úâ‹/&$$HŸ6Ìô»°–ª‡4o޼͛7gdd!öïßß¹sg— *Hw[B´oß~ÿþý†OyóÍ7—/_ž••õý÷ßGGGwîÜùĉúkf'Mšdî%VnÐËËËËËKÊ»ÒÛŠh4šÍ›7—þž1%Ú¾}ûòåË¥«W¯žœœœœœ¬ÿjåÊ•ß{ï=Ó ž:uê7ß|£Óé²³³Û·oß¶mÛ7n¾×‹­ØdL? ¾¾¾Ò÷š3gΉ'&Nœèîî>mÚ´/¿üòܹs999:uêÚµ«««ë¶mÛ¤·i ÔŸ3j¢E‹µmÛ6//O§ÓÍž={öìÙ~~~YYYú[T¬X1!!AK)CÇ—®ýº{÷®~­\:¦sæÌ±ùü°„Ü÷`¡«W¯^2lèÉ'ŸÔßkzÏž=ú§üøãú»az饗´Z­ô˜â7M” ýôÓâW®˜ÂÊ .^¼¸iÓ¦B—æÍ›¿þúëGŽéׯŸôÕ5kÖ”ùŽÆv*ø_ÿú—þ}ýýýŸ|òÉmÛ¶EFFÚ¶[Í€‰;µxñâ¡C‡úûûW®\ù±ÇÓßa§M›6ÇŽûÇ?þѵk×€€??¿èèè3f?~¼S§NìTÇŽÏœ9³xñâÎ;ûûû{xx„……=ùä“‹/>uê”~q¼®®®ÕªUkÓ¦Í?þñÔÔÔvíÚÙ|æXF£ûóœ(üäÉ“•*UjܸñK/½Ô¼ys¹KÃßh4NgÁÓ„Ï‚]i„PÞ1ÑNeÁùгçþòk6Bp,Á… „K–, jß¾ý¥K—vìØ±k×®·ß~ûÙgŸ-óéaaarï±`¶S9FÊ“*R•xPRy©¨Wª"_röÜa'Ûßòšš*w 2°¨a£v±±±G4iÒðáÃ¥‘}ûö½ôÒK...7n¬Y³féO sÎS93«Ýø·ƒÂŸÞÊð÷ƒ¢¸þÓ¶á7˜ò^nep†ƒâpœö pŽc V®\yôèQ}jBtèÐaذayyyÛ¶m“»:Ì£ÑÈ]Ô‚àhª6mÚ!NŸ>-w!ò 8ÓétEEEZ­ÖhÜÕÕUQ¥J¹ PœsJGp4vîܹÆ1ÂhüÈ‘#‚‹*{PägÁÚž:)òåfç]æ¼nØÁÑX½zõZ¶lyðàÁo¿ýV?xäÈ‘+VÔ¬Y³Grˆ?p]匫ªKpêÔ©Ñ£Gß¼y³I“&ÁÁÁ—.]:zôh¥J•>ùä“víÚ•ùt§½Òªœ™uUuFFFPPþ™üõ­E¶€œöªê¿ý°¨‘"_ne°ò ð;Ïœößz:Ž%hذáwß}׿ÿ›7onÙ²%''§ÿþëׯ7%5¨7/™¿¿ÿüùó宀<œ¶Ý¨zŽØn…Ž#ªÅ:5l‹à“ÈŠµCpG€SàÀzG8Î÷ÀRG˜„àýxTÉ9שYbÍ`‚#LBp ç\>‡Ep¨¡¶Bp„CÒh4:Nù€‡ãÊØÁ&!8À$Gø 7qTNplˆà“È#(8ˆF`'\;!8T‹ujÀ¶Ž0 Á&!8À$Gø÷âQ§=Á‘+c`?G˜„àgŸáÊ¡ér0Á BN»N ØÁ&!8 œ’»"8À$G€Úp‚#`'G8F£c%¶ÆM LGåŽv8&‚#@Uœù®Œ½`‚#LBp€IŽõpær@pP¾ù;÷â pe ÊÁ&!8TB‘íl@UŽ0 Á&!8àð¸2åƒà§Á¯U@Õ8Á(GåH‘ÿ¶s/0Á&!8ž"{Ù€ plœÂrCp„ƒÑh4:~A ‚#À±±N ”‚#€òÂ?ïààŽœ÷âÓŒF6WÆ <`‚#LBp€IŽÊg¢ÁxYq‚#ÊÁ€óâ’j0 Á&!8ëÔ@ù#8Â)sV"8à¸2åàÀþXS„­ñšdAp€IŽœ÷âsáH4Ž3z§Ç:µàGÈ„à“`‚#;cY6Å Á&!8à`¸2r!8pFÜ‹ÇA±N È‹à“`‚#{be°5Np„ŒŽÇÀŸ!€ìŽ0 Á€Óá’j° ÁN@£ÉHO—»VaZ ŽÁ&!8°zD .G8 F£c…pJü (Á&!8à¸2²#8p.Ü‹Çá°N (Á&!8°ÚD°^G€¢pœà% 8À$G€B±N ( Á€á’j°Á±l—/_nÙ²åÔ©Så.à¤8Á Ap,ƒN§›>}úï¿ÿ.w!€Ca‰VãE(Á± +W®} GrrröìÙS³fÍððð5jÈ] KpI5Xàh¬S§N:u29qâÄž={ZµjµpáB¹«~`;Ò;pE5”ƒsJÁ߀Â`–ªËÖ¤IîËöF»Ñˆ´N ( G˜„à@ý¸¤l‚àÀvXk„¥xíàUã!މß^P&‚#LBpÈŒujÀQá4Ž5äFp`#JíqI5'8B±Ž9)õ/% 8À$G€lh7Ž…à€‚p‚#”ŒàÀh€ 8P3.©V2þÜÁ¥` Gp€IްN 8"‚#LBp„zq®P¹Qjïˆ+cK©/™ñK ÊGp€IŽP:F£ãop€à(W¬S—ˆuj8‚#LBp`ÚG0¯À¡¨—T€Í'8ÂQå„ujÀÑ`‚#+ÐA‚Éx±< ëÔp G˜„à@…¸¤ìà°;Ö©u 8B¥8i€#àw Á€¥h"Á4¼RÕ 8À$G(šF£Ñ±Š3qe ëÔp8G€±N ¨ Á&!8°}$˜€—I)X§†#"8À$GªÂ•1`?G€]°N ¨Á€òÆ ŽpPG棕„²ðT‰à“(W¬SÃq¡FüVvV\R­¬SjEp€IŽP.F££q¨@t“P*^ ¥cEà“6C»P7‚#•àÊ(ëÔptGæ ¡NŒà° þ¬Tà@y`*@pØíFÀ¨WÆ@9 80=%</2±N u 8À$G€Uh7΃àÕaA€Âðk ªAp„Bi4¿ha®Œ€òAp`Ö#Q^€S!8`G¬SCMŽ Ñnœ Á&!80‚;K\#¿(„uj¨ Á&!8ÌF»pNGì‚uj¨Á&!8(‹‚W%¹2F ~E°/‚#¶Ç:5T‰àuáW5`g´gFp„i4ù…!8(•‚ûKœàXþürP? VG˜„à0 íFÑn„Š`‚# l´‚#€Ò(8,pe ”‰uj¨ÁPÿ \`‚# 4´MÇ:5Tàà!È €¿#8BEøcßipeL¹áφŽPÞ¨€#âOW8‚# d´!8( ‘0íF8 ‚#à Žåƒ¿Gp€IÜä.@¡²³³?üðÃÇ_¼x±zõê=öØ+¯¼,w]Ph7š…uj8:Ž%ÈÍÍíÛ·ïš5k„QQQ<òÈÆcbbRRRä. (¤@IŽ%øøãoܸñÒK/­_¿~ñâÅk×®7o^aaá;ï¼#wi`wüá`Úp*Çìß¿ßÓÓsܸqú‘§žzªF'Nœ(**’»:À©qe ȈsKàëëÛ AƒŠ+zxxxzzÊ] ØKpPÁÀÃKðõ×_:tèüùó-Z´ 5ôX§†³!8–æÈ‘#ëÖ­ËÈÈ8räÈ£>:þ|Ÿf4²yóf¹÷Æ‘dddX𬠇?ñâÅ‹rï“à ÊHÏ–óXxP‚,|yÀÁAA»“’2j×–»T/H~ƒÉ®gÏžr— ÇÒ¤¦¦&$$Hï›Ü¤I“ *˜þD¹kwT–¿QµF#tº ‡=((Èô9¹r›+s¿Ñ'8r$í©víÚü°˜èÏvcyLE^ÅÿY/Þ!r\SšÁƒŸ|X±`Á???¹÷@ªê8JÚ·o¿víÚjÕª>>~øáû￯ÑhÞzë­Ñ£GË]#ÀÑn„“SUp¼yóæ‹/¾øÝwß5nÜØp<&&&11±}ûö{öì‘»F”ÆÊ÷”»|GëÉùp̘KUç8®^½:<<¼Ä/Õ¨QãË/¿\µj•Ü58*Uu–%føðár×Àlœàh´-ÀÚ ªàû!8 ûät8à Ý‚#LDp hœàhs´-@»À‰Xƒà8=¢À4ªº£bÓ¦M_}õUffæÃî#œœ,w þF° ëÔ€žª‚ã¶mÛ^{í5écWWW¹Ë`-NpEQUp\¾|¹"66öå—_öññ‘»˜‡÷”=(§Á¡¶ ¿`Cª Žiiiµkמ>}º‹ çnؘzÖƒîܹS§NR#¡ÝhÚ€õd,Ÿ3gÎhµZ¹k`œàJ£žàèêêú /ܼysñâÅr×8ÚPÎãlÚ@qª:DZwïÞ.\øüóÏ“““{õêU»ví *=¦K—.r— å‡ÔÀ†T»ví*}pìØ±cÇŽ•ø˜ÔÔT¹ËpHª ŽO>ù¤Ü%° Np´ Úc(‘ª‚ãÂ… å.pd €™Ôsq ÀXŒv#ð0ŽÝq\½zµ¢M›6¡¡¡úOK7tèP¹«pHŽããã…qqqRp”>-ÁQ™x¿AâGëÑn´¿T€R8vp|å•W„M›6•>2eŠÜ‚X¡j^vâØÁq„ †ŸŽ3Fv#P:.ŽU¡ÝÀ~Ž€óQv²àGÈ…v#P&‚#¨‡²ÿ(àðŽÐnLBp• ÝÀÞŽ€“Qv¸àG‹)ûÀ*íFÀDŽ};ž2étºíÛ·_¼x±Y³fááár—àÀÔ·oß¾dÉ’'žxBº7øÌ™3¤/ 2döìÙFîaŒ·¬D»Ñü"L§ª¥êC‡½üò˧NÒjµBˆß~û-!!ÁÇÇç¹çž«]»öš5k¶oß.w€¬”/X§…SUÇñ‹/¾Ðét3fÌ2dˆâ§Ÿ~BÌ›7¯k×®™™™={öüæ›oºví*w™`KÊþs@éh7fQUp<}út5†.}zàÀ *<þøãBˆzõêÕ¯_?==]îÀ–HÊ“ª–ª³³³ýüü¤ ûí·Ç{¬B… ÒH¥J•nÞ¼)w¥ Ý˜KUÁ±fÍš/^,**BüòË/ùùùmÛ¶•¾¤Õj/^¼X½zu¹kä£ìÞ'8Z@Ù‡€ ©*8¶nÝ:;;ûã?¾téÒÇ,„ˆŒŒ”¾´bÅŠÛ·o‡„„È]#Ø©ÑJ´ ¨êÇ_|111ñÓO?ýôÓO…M›6•îÝøì³Ïþúë¯BˆQ£FÉ]#€£RUDZV­Zÿþ÷¿»téR£FN:}øá‡Ò]oÞ¼éííýÞ{ïµk×Nî™ÐžRާ•h7–QUÇQºlÙ2£ÁU«Vº¸¨*%j ŽàÔ%ÙÙÙ)))W®\©Y³fÇŽ=<wîœÜ5厸°UGŸ»wï>ì«YYYUªT‘»Fà Ž&"ÿ[v#`=UÇÆ_¹r娱cÅ¿tòäÉK—.5jÔH‚ã Aƒ4ÍäÉ“Oœ8a8~âĉ×^{MÑ¿¹kÊ}*Uà0Zv#`ªºcÇŽ_xá…/¾øâ©§ž BlÛ¶mß¾}gÏžÕjµ èÑ£‡Ü5âo,¿û7TujS(‡ª‚£bÊ”)-[¶œ?~zzºâÒ¥KBˆêÕ«Oš4ÉðÎŽpxt˜Œ_€­¨-8 !¢¢¢¢¢¢²²²ÒÓÓ ‚ƒƒä. ,A»Ñz¤FÀ†T%U«VmÙ²¥ÜU²"t88 ¥QUpl×®]™INN–»LBÌ Ž°7Ú€m©*8æææèt:­V+}\£Fï  D»€©*8þöÛoF#EEE—/_Þºuë§Ÿ~zÿþý·ß~[îòBîpd=› ÝØœªîãXœ««k:uFõñÇçää¼þúëÜüPФg¤Ë]À<*ŽzíÚµ ¹páÂ… ä®JC»Ñ&h7öà,ÁQáïï/„xä‘Gä.°?¢‡ÃâÐP2g Ž÷îÝûí·ßüüü*W®,w-øƒåoC'ÁÁñ†1°7~Iv¢ª‹cöïß_âxVVÖªU«nß¾ýÄOÈ]#<íF› 5ö£ªà[ÊW«T©2qâD¹kìôá˜8n”OUÁñÉ'Ÿ|Ø—}ôÑþýûשSGî ¤F[¡ÝØ•ª‚ãÂ… å.@8Á—³\8 :Wˆƒf+´{sìŽãÎ;Í}J—.]ä®þBj´R#P;8Ž;Öܧ¤¦¦Ê]5à¼X§‡æØÁ±”«a p–ßÄ¥ yåh8b¶B»(޹ÆñïÔ‚ÔÀá8ÑÅ1Ó§OŽŽ–» Ày±N ;áÏI Ü8vDZ¸¬¬¬ŸþùܹsFãyyy[·nuuu•»@Ànè_9—­ò¤ªàxíÚµ!C†\ºtéa:t¨Ü5©€£RUpüòË//]ºÔºu똘˜ 68p`Ö¬Yžžž§Núú믇:cÆ ¹kœëÔz¤F¢Ý”3UǤ¤$¥K—z{{GGGwêÔ)((¨C‡Bˆààà9sæ<û쳡¡¡r— Øa`ªº8æÊ•+õêÕóööBT¯^½jÕª)))Ò—žy晪U«~ùå—r×À©‘ðmˆv#PþT…..íÑ£>š‘‘!}ìêêvìØ1¹ œëÔγ`3¤F@ª Ž5jÔÈÌ̼{÷®ôi:u>¬ÿªF£¹xñ¢Ü5Bîþmsä@¹PUp|â‰'òòò¦L™röìY!D«V­ÎŸ?¿gÏ!ÄÍ›7ÿ÷¿ÿÕªUKîaš pXÄ{â7 U]3|øð-[¶lß¾]§Ó}öÙg‘‘‘nnn&Lˆˆˆ8uêÔ½{÷z÷î-w€ÓaZmŠÔÈHUG??¿Õ«WOš4©iÓ¦BˆZµjÍœ9³  `ïÞ½·nÝêÚµë¨Q£ä®°5"‰âqˆ¨†ª:Ž………~~~cÇŽÕ 2$&&æøñãÁÁÁr° íF@^ªê8FFF.X° --ÍpÐËË«}ûö¤F@¬SÓn´!R# ;UÇ[·nýë_ÿêÓ§ÏàÁƒ¿ýö[ýåÕ€j‘J”ã@eTbccŽ92sæÌŽ;¾ù曆wä€rCj´-Ú€¨*86mÚôÍ7ßܹsçªU« T¡B…ÿþ÷¿C‡íÞ½ûçŸ~ýúu¹ „ÜÄÑ™°N [!5 ¡ªàøÇ.¹¸´iÓ&>>~ß¾}Ÿ}öYLLÌ7>øàƒ.]º^7ÇÃ?Fèh)€*©08ê¹¹¹EEE½ÿþû_}õUXXXQQÑÎ;å. €ú‘m‹¿åPÕíxŒ¤¦¦nÞ¼yóæÍéééâÏN¤‰ÏÍËËû÷¿ÿpñâÅ*Uª4hÐ`Ô¨Q;v”{Ÿ‡á´ëÔ¤FÛ"5Š¢ÂàøÛo¿mÙ²eÓ¦MçΓF{챘˜˜Þ½{ûûû›²…ÂÂÂØØØ£Gúøø´oß>??ÿÀ{öìyõÕWÇ/÷þBâ‰BqX¨›ª‚ãÂ… ·lÙráÂéÓzõêÅÄÄÄÄÄÔ­[׬íüç?ÿ9zôhË–-ÿõ¯yzz !Μ9óüóÏòÉ'ÑÑÑ5’{GÀ)Ðn”FUÁqùòåBÿ>}úÄÄÄ4iÒIJílÞ¼Y1cÆ )5 !BCC_zé¥÷Þ{oïÞ½GÈOñ}-ç\§Vüaq0¤F@TŸy晘˜˜Ö­[»¸XuÑOFFFåÊ•rghh¨BßÎC¤FÎ@UÁñwÞ±Év–-[ææf<3'NœBÔ©SGî½tlÜĪDj´9Ú€2©*8ÚJãÆF’““?ÿüsþýû›²…°°0£iùBˆŒŒ žœ‘ž.,z®ââÅ‹rï·Íe¤g g¢<§›P¢šŠ ²ì…­@J8.ÁÁAé骙QPÂAqr={ö”»¥ 8–¡¨¨hõêÕ ,(**úàƒüüüLyVjjªÜ…+WPPP9?Ñ&OWå*GLñG»Qû"QÂqQB ŠÂ„È«ø?ëÅ;DN‚àXšÄÅÅ={600pîܹ:t»"ÊÂ"µÍ±H (Á±d .\µjUÅŠ_yå•Ñ£G믰䤸œâT×S+þh8R# pÇhµÚÉ“'ÿôÓOO<ñÄìÙ³M¼m8§Bj´9R# |ǬZµê§Ÿ~zî¹çfÏž-w-€ÅG§j7€²ê~‡ª¤Óé¾þúë*UªLŸ>]îZ(”â3¼ã¡Ý8:ŽÆnܸqþüyOOÏ¡C‡ÿꀞþy¹ktT–ßÄ‘R $¤F›ãGpGcÒí²òòòRRRŠ• «!ŧ'Y§Vüqp<¤FÀEDDpF%"5prœã&!5ÚíFÀ±G øÌâ$ëÔ°-R#àpŽP6ÅGwÇCjç8ЧøÌ¢úv£â€ÃsÚ·ý…rpyƒ‰Ž('–ß‹©ÑŠ·ùg2âOÓ±T ÅcA ò!5Ú?Ó€ã"8ʦøä¢âujÅϽC"5à% 5@qG@Á/PÚ€£#8°œZשIìö@jT€àCj´R# G”îÅc ÅçU¶?ë‰Ô¨ÁÊÆ?8(G¤F(ÁP$"L¹cÊí„¿þ5ácXBeëÔ¤F;QejÔjµ‰‰‰Fƒîîî½{÷–»4ÀòbÊóm'ªLBˆôïßßhÐ××7++˶ß(22²k×®³gÏ–{ ¶œœœéÓ§oܸñöíÛ ,h×®ÜE©KÕ̦²v#ìA­©QáááQTT4lذÈÈÈ‹/êt:NgóÔxäÈ‘½{÷ʽ¯ŽQ[nnn«V­¾üòËÇ|ôèÑgÏžíÙ³ç‘#Gä®Kè8pj´íAÅ©Q²uëÖÕ«W§§§×ªU˶[.,,ܾ}û¾}û–.]ªÕjåÞQ›ÕVPP „¨P¡‚= [´hQZZÚÊ•+GŒ!„˜8qbË–-'Ož¼}ûv¹çL…ް;îÅcÅ5µ?ÙP¨¤¤¤š5kÖ­[׿[¾uëV=,~ú¡C‡âââ>|íÚ5Ãq77·ÈX[XXXíÚµ“’’ô#qqqëׯ?tèõ“¶víÚÀÀÀáÇKŸ8pÅŠW®\ ´~û0ÄR5Lõ] ÈŠÔh'Îðƒ[§N«W¯ž={Öæ[Ö¾O:eîs·mÛÖ¶mÛãÇ9rΜ9Bˆˆˆˆ)S¦Lš4IÞÚŠËÌÌ<|ø°õÛÉÍÍ=}útTT”F£ÑFGGkµÚäädë·#t%!Ë”fÚNœ!5 !†¾råÊÎ;OŸ>½Y³f¾¾¾5kÖ¬^½ºŒ%åçç1"00ðÀ5jÔBL:µ[·n©©©³fͪR¥ŠÜsf/×®]Óét†ƒþþþBˆ7nÈ] ˜AëÔ¤F;q’Ô(„ðôôœ3gθqã^}õUiäý÷ߟ>^JBiÓ¦ÅÄĬ[·.66VÆÚÌbna÷îÝBx{{úøø!nݺ%×^¨Á€s!5Ú‰R£Áòcy+ewÞy縸¸™3g6¬^½z..%Ÿ÷u÷îÝâ7î1ؾ-ç+33SѼysÃÁfÍš !RRRä­MRTTdøéÃ.¯1·0???!Ä;w sss…ÕªU³ù^€à(†â ÚŠŸcGe¿^£[˜™™™³fÍZ¸pañ£Ÿr»4ÐÓÓSQXXh8(…³smyÖ&¹ÿ¾á§yyy%>ÌÜÂ\\\ŒV¥oÞ¼)„°ù5ïGØ—TC9Hvâ<+Ô’ýû÷ëtº®]»–ùÈò\ Bœ}ú,[¶¬°°p̘1ÞÞÞsæÌ±É·öööÞµk×Ô©S²²²Ú·o¿zõjÞoÐNXU´½°°°ÔÔT¹«2o☑‘!Ú…⃣¼íFâø©r`æþ`ÉòÃâп6‹ŠŠŽ=Ú¦M›øøø3fØûÛ-_¾<%%åÃ?”{¿Í«-((¨víÚFg"*‡¯@‡~ÑZƒwŽìƒ(d2¦Ê~Xž.®®®!!!:N:³Ð®òóówìØa}_ÓÙjƒ aK\ã@rv#©Ñ~H忇~Ðét:u²÷7Ú¿£Fž{î9¹÷ØÁjƒ qŽ#”AeÿÄ)> ‘UOe?R ×±cÇùóçÝ|Û¢¢¢¢¢¢äÞ]Kj7nœÑ›»ÀAÈ#8(ˆ`c'¤ÆrV¿~ýiÓ¦É]…¢1?ªÁR5`kŠo£)¡Ý¨"=#Cî™P!†ÔÀŽŽ€M)>5ÊNÃ$ÙI쇥jÀ¹ÈÛn$2ÚF倎#lF™wp,ß) •†é±Õü P8‚#àDdl7’í‡Ô Ü°T ØÉèá˜;á½”3‚#à,äj7’í„F#€òGplAñáH–Ô¨B(}b©€,ް §¾2Fñ©QÌŠý¨à‡€ƒ"8êWþíFR£pR#y둊aJì„F£BhµÚÄÄD£Aww÷Þ½{Ë]`wÜŽP¹rn7’í„Ô¨<è_ÌСCmµýcÇŽ 4¨F^^^­ZµZ¼xqaa¡þ«999/½ôÒ£>êå噜œ,÷|” 222..Nî*þâ“æ(ްËOpttŠOIå™y/Aû!5*Ї‡GQQѰaÃ"##/^¼¨Óét:]VV–M6žžžÞ¥K—Í›7÷ìÙsÒ¤I*T˜4iÒ3Ï<#}577·U«V_~ùåã?>zôè³gÏöìÙóÈ‘#rOÉß9rdïÞ½rWñ‡˜4G¢ƒ­5hÐ@îÊ›å/¤òz¦§§Ûa·Ë§v+k,§*-ø6v9(ª#D¹ý”üA–ãâp¿67oÞìââ’™™ió-÷ë×ÏÅÅåàÁƒú‘Q£F !6oÞ¬ÓéfÏž-„X¹r¥ô¥³gÏúúúFEEÉ=:N÷àÁƒ-[¶Ìž=»zõêBˆ·ß~ÛôçÞ¿ÿþýûv*Ì”I³àèp/Z[¡ã¨V¹µi4Ú‰Ôh¤×¨@III5kÖ¬[·®Í·¼}ûöÈÈÈÖ­[ëG&L˜ „Ø¿¿bíڵÇ—¾}:11qíÚµr×¢PÎr‚£sP|Bv<œÑ@•Ž%‹‰‰¹zõªÜU@VŠS6i7Òh´þ8 VÇ’½ûî»Ò®ýõ×ûöí“»”;§IÊÞKÇC£€ºK¦¿«ÂŽ;ä®0FjT "#g@p´‹°°0£‘Í›7Ë]”-§§§gdd˜ûÄ ààŒôtaþ­tñâEsŠ ÊHÏå]£9‚„“¯$„°äøÙ”YEႃƒÒÓ3„(ÿ—¶í©é¸¦+ý7bÏž=å.P)Žvá oCdñ›’Éõ.s¦~_:$”ûVx´--ð¯F£ÞîOo9hÐhtø}ÑSÁqÌUú˾ø?ëÅ;DN‚àPüò­5‹Ô\cs\ÀÙ‡aej$áØg4pNG˜MµwpTo¶RïžÉ€ÈÀ™!„d+ËÚ,OÛ–ÂÿöAùÐjµ‰‰‰Fƒîîî½{÷–»4À°85rl…F#ô}úÆoß¾±`Á‚víÚÉ]”:¹È]ŒåëÔJ¦ì„eAjÔ(}Ÿ‰FóG£Q}/|XÆÃ㨨hذa‘‘‘/^Ôét:Îæ©ñÈ‘#{÷î•{_ÿ&==½K—.›7oîÙ³ç¤I“*T¨0iÒ¤gžyFîºDnnn«V­¾üòËÇ|ôèÑgÏžíÙ³ç‘#Gä®Käÿ+ÎB±‹|ÊNX–¥FïƒQìËòÚºuëêÕ«ÓÓÓkÕªeÛ-nß¾}ß¾}K—.ÕjµrïèßLš4)'''99¹uëÖBˆøøøÑ£G¯X±bË–-=zô(ý¹Bˆ *Ø£°E‹¥¥¥­\¹rĈBˆ‰'¶lÙròäÉÛ·o—{ÎTˆŽcÞyçÔÔÔæÍ›Ë]ìC]!‹F£ é@qIII5kÖ¬[·®Í·|ëÖ­=zÄÅÅݸq§:t¨oß¾5jÔÐü»»»õµmß¾=22RJ’ &!öïß_æsúvíj8g¸)k¬]»600pøðáÒ§ÁÁÁܵkו+Wl²}"8ÊeV»QŠŒäë±62Õ©SçêÕ«gÏžµù–¤µïS§N™ûÜmÛ¶µmÛöøñã#GŽœ3gNDD„"""bÊ”)“&M²²°ÂÂÂñãÇKIQïܹsB 6˜™™yøðaëg,77÷ôéÓQQQéLd!„ÑÑÑZ­699ÙúíÃKÕ0ƒÚnÄ£ìîœé©‘K§m…+``¢áǯ\¹²sçÎÓ§OoÖ¬™¯¯oÍš5«W¯.cIùùù#FŒ >>åvÿ2OOO!Daa¡á ÎJ̵–Õ¶fÍš±cÇzyy-[¶lÔ¨QfÝÁñþýû†ŸæååÙdÒ\\\ŒV¥oÞ¼)„°ù5ïG˜Nm'8*U™íF6Ad„Åöï߯Ó錮.Qy.UKëÅ'Ož4”zaaa6©-11qذaÏ>ûìgŸ}f´4lŠË—/~ú°KžÍ-ÌÍÍ­qãÆIII†ƒ»wïÖh4Mš4±ÕôBà'£ìN]é©‘ÈhDFXIºˆø»ï¾kÑ¢Eé,ϥꈈˆO>ùdüøñ¾¾¾Bˆ‚‚‚… zyyõíÛ×úÚt:Ý´iÓêÔ©³jÕ*WWW *¼zõêúõë¥bÒÓÓ=j«I3fÌĉõ¿~ýzBBB·nÝ‚‚‚l8ÃáL<5*¸v‡AûÖëÛ·oÓ¦MãããSRRzõêèííîååeôH›/U¯Y³æå—_9rä¢E‹Œ¾äîî¾dÉ’´hÑbìØ±®®® ‡þ裌®8¶¬¶“'Ož:uªQ£F/¼ð‚Ñ—žz꩘˜˜Rj“¸¹¹ <8&&F«Õ®_¿þa7ñ±`ÒbccW¬X1tèP)4¯\¹òÞ½{qqq6œyèa5¬S+;y•’i4ÚFØJ… öîÝ;wîÜ­[·N™2%''GQ©R¥¤¤$éÖ‰öSPPý°³{÷<{öì¥K—æçç·hÑbÓ¦Me¾§‹‰ÒÒÒ„'Ož4Z B„„„ÄÄÄ”^›¢mÛ¶}úôY¶lYaaá˜1c¼½½çÌ™c“Ú¼½½wíÚ5uêÔ„„„¬¬¬öíÛ¯^½:<<Ü&‡5¾ï°ÜÂÂÂRSSå®ÂÆ>8:rjTpáVÉÈÈ(Ÿ…$"£YÊí¸rè_›EEEGmÓ¦M||üŒ3ìýí–/_ž’’òá‡Ê½ßæÕT»vm£3•ÂW C¿h­Á;Ç2{Xjäý­Ç{À ¸ºº†„„èt:éÌB»ÊÏÏß±c‡½ûšê« 6DpDÙTÐnÌHÏ»ˆ‡•öÐÔÈûZƒÈˆòôÃ?ètºN:Ùûíß¿¿Q£FÏ=÷œÜ{ì`µÁ†8Çj'E0EæÆS#g4Z‰…i”¿Ž;Ο?ßèæÛö%÷îZRÛ¸qã,¸ƒˆàUs¨µ^"£•ˆŒKýúõ§M›&wŠÆü¨Áepàuje§F£v£²‹U:"#”‚#TJÙAÌ05Òh´‘ÊÁjä ©‘Èh "#”?‚#JãëÔŽ“\¦¢@.G üH©‘F£ÅˆŒ /‚#ÔEÁ}<СSpÊ%åEAd¹ñPŽ·N­àP&¥F¥V§\´@QŽP E§FAø1‘ˆàUPjjätF @±Ž(™#­S+25þyV^ÉoE@áŽppJMº‡¼5JDd„Ñjµ‰‰‰Fƒîîî½{÷–»4Àîް©rn7*/5ê!Heâri8¢ôïßßhÐ××7++Ë&÷ôô,**2ôóó»qã†Üû-„ÇŽ{÷ÝwwíÚõûï¿7lØpèС¯¼òŠ››üY"''gúôé7n¼}ûvDDÄ‚ Úµk'wQê$ÿÁ†Y¾N]®U*+5êOg¤Ñh F¤üWPœ‡‡GQQQllì¹sç¾ùæ›ZµjÙpãEEE:tÖzyyɽÓB‘žžÞ¥K—¢¢¢<úè£Û¶m›4iÒîÝ»¿ûî;y ËÍÍmÕªÕùóçèçç—гgÏ;v„‡‡Ë=g*Dp„cRRj4¼†ÔX&ýªtFF†Ar—XbëÖ­«W¯NOO·mjB¤¥¥ !âãã»ví*÷^›4iRNNNrrrëÖ­¥"G½bÅŠ-[¶ôèÑ£ôç!*T¨`Â-Z”––¶råÊ#F!&NœØ²eËÉ“'oß¾]î9S!¹ €â8Àe1ŠIš?k!5–I£ùã?Ž…i8¼¤¤¤š5kÖ­[׿[–‚cHHˆeO?tèPß¾}kÔ¨¡ù;wwwëkÛ¾}{dd¤”%&LBìß¿¿Ì熅…EḸ8ÃMYcíڵÇ—> 8pà®]»®\¹b“íÃG8%¥FÝß>%5–Œ _ >uêÔ¹zõêÙ³gëׯoÛ-§¥¥yxxT©RåÛo¿½}ûv“&MÚ´icb£nÛ¶mÝ»w¯S§ÎÈ‘#+W®üÝwßýòË/ÑÑÑ..Öö‰ ÇߪU+ÃÁsçÎ !<<<,Ø`ffæáÇ­Ÿ±ÜÜÜÓ§O2D£?iZˆèèèåË—'''0ÀúoCGØHù´•‘‹ß‘ÔX""#Ôjøðá+W®ìܹóôéÓ›5kæëë[³fÍêÕ«[¿å´´4—ý¥65ZµjUË–-Kb~~þˆ#8P£F !ÄÔ©S»uë–šš:kÖ¬*UªXY˜››Û¼yó Gnß¾=oÞ>>æþR­Y³¦ÑH÷îÝ…'Nœ(ý‰žžžBˆÂÂBÃA)œ•˜k-¨M±fÍš±cÇzyy-[¶lÔ¨QfÝÁñþýû†ŸæååÙdÒ\\\ŒV¥oÞ¼)„°ù5ïG8ùRc)ï4Mjüch1Âùìß¿_§Ó™r»sW]Ï;·~ýúèèèF饿Y™WpKëÅ'Ož4”zaaaÖ×&„HLL6lسÏ>ûÙgŸ- ›âò刟>ì’gs ssskܸqRR’áàîÝ»5M“&MÌ-eÓÁÖ4h w ²ðõ`×W‘¶žžnî·¥}ÕÙpþ¼‘U1÷  |Èr\ë׿ºu넳fÍ*ó‘ÙÙÙfýû{íÚµŠ+>þøãÒHQQÑàÁƒÝÜÜNœ8Qú÷*(( ÌÊÊ’Fîß¿éååuõêUëkÓjµ 6¬W¯^aa¡“V¯^=!Dbb¢ôéÙ³g¥»š[_˜N§[²d‰áƯ]»н{wÓ˳àèX/Z¢ãˆ?(ñ²9z¥tÿ|€S÷i1}ûömÚ´i|||JJJ¯^½½½½ÃÃË¿¿‹¹«®þþþqqqÓ§O íÕ«—¯¯ï–-[Ž92wîÜÆ !Ö¬YóòË/9rÑ¢EFÏuww_²dÉ€Z´h1vìXWWׄ„„ÇôÑGFW[VÛÉ“'O:Õ¨Q£^xÁèKO=õTLLL)µIÜÜÜ£Õjׯ_ÿ°›øX°†»bÅŠ¡C‡Ž?Þ××wåÊ•÷îÝ‹‹‹3k#0ÁÖ±ßÙåžM‰ŒÂY/…á,F@¯B… {÷î;wîÖ­[§L™’““#„¨T©RRRRDD„•Ÿ6mZýúõ,Xðõ×_W¬X±Y³f›6mêÙ³§ôÕ‚‚‚ììì‡Ø»wïäääÙ³g/]º4??¿E‹›6m*ó=]L$Ý™üäÉ“F«áBˆ˜˜˜ÒkB´mÛ¶OŸ>Ë–-+,,3fŒ··÷œ9slR›··÷®]»¦Nš••Õ¾}ûÕ«Wó~ƒv¢¼&“ã KMM•» ó(벘2œù222‚‚J{w»2cªs6íšË<(…,ÇÅmê=z´M›6ñññ3f̰÷·[¾|yJJʇ~(÷~›W[PPPíÚµÎDT ^ý¢µo9+Ø)5êʵר!5–¸ËoÈ_—@)\]]CBBt:¯¯¯½¿W~~þŽ;¬ïk:[m°!–ª¡¤³ËwyڔΦ³-O³$ Xà‡~Ðét:u²÷7Ú¿£Fž{î9¹÷ØÁjƒ ¡å˜M\ wžF#y°FÇŽçÏŸotóm{ˆŠŠŠŠŠ’{w-©mܸqÜÁ Dp„¥l»N]^©Ñôó'!5’›¨_¿þ´iÓä®BјÕ 8:;E¬S—Kj4+2 µ/OsW€ްˆ­Úv¸€ºäodâ7Qw£‘#À\UíÔ,l7Ú05ÚójÁÓé&<^£ÖÔ(]"ÍUÒ+Ñq„L칺mÛ¶I“&íÞ½û»ï¾Bäææ¶jÕêüùóôóóKHHèÙ³çŽ;ÂÃÃåž•2*—‘’'Í!é`k 4»„’Yx¸Í}–-^SÂê͈¿o ==ÝeÙ¾—ê„{Pœœ,ÇE±¿6fóæÍ...™™™6ßr¿~ý\\\<¨5j”bóæÍ:nöìÙBˆ•+WJ_:{ö¬¯¯oTT”ÜóQv奻ÿþýû÷íT˜)“fÁ+Ðá^´¶ÂRµ³(Ej[,Ok¬~ kå¿å4‹Ñ€£KJJªY³fݺum¾åíÛ·GFF¶nÝZ?2aÂ!Äþýû…k×® >|¸ô¥àààîÚµëÊ•+¦lüСC}ûö­Q£†æïÜÝÝí]yéºvíj8g¸)kX9i0Bp„X÷46ŒÊLÅÃ"ypPuêÔ¹zõêÙ³gm»ÙÂÂÂñãÇKyKïܹsBÜÜÜÓ§OGEEiô§¶­ÕjM9ioÛ¶mmÛ¶=~üøÈ‘#çÌ™!„ˆˆˆ˜2eʤI“ìZ¹ÌÌÌ<|ø°õSj夡8Îqt öm7Zw*¢Mnò¨ä[ípò" >Ç_¹reçΧOŸÞ¬Y3__ßš5kV¯^ÝÊͺ¹¹Í›7ÏpäöíÛóæÍsuu8pàµk×t:]@@€áüýý…7nÜ(}Ëùùù#FŒ >^JBiÓ¦ÅÄĬ[·.66Ö®•ÛpæÍ-ìÞ½{OJDpT?{ÝñÛÒÜgå ¶£¬ÈHXlÎpy±ü•ò›ówÞ‰‹‹›9sæ°aÃêÕ«çâRòy_wïÞíß¿¿Û?þü„ CCC·mÛ-„ðóóBܹsÇ𑹹¹BˆjÕª•¾/™™™BˆæÍ›6kÖL‘’’bïÊMQTTdø©V«µÉ”Z3i(ÁQåìµHmQ£ÑVo=¨¨ÈÈJ4`?vù£×j™™™³fÍZ¸pañ£ vaÍš5cÇŽõòòZ¶lÙ¨Q£ÜÜþø—: ÀÅÅÅhõæÍ›Bˆ2o äéé)„0º«¢ÎJL½¶­Ü÷ïß7ü4//Ï&Sjͤ¡DG5³Kj´(ý©,2Ò\œÙþýûu:ÑUÀ%²`Á711qذaÏ>ûìgŸ}f´ÀêææÖ¸q㤤$ÃÁÝ»wk4š&Mš”^‰´^|òäIÃA©×fïÊMqùòeÃOvɳ¹…Y3i(™Ü÷R!åÜÛÉ’ã[ÊSÌ¿¹¢°ÅÿÜ”VlÉ&·¦sæ{.Ú÷qT&îãX¦uëÖ !fÍšUæ#³³³Íú÷W«Õ6lذ^½z………%npÉ’%BˆÄÄDéÓk×®tïÞ½ÌJ BBB³²²¤‘û÷ïGFFzyy]½zµ*/]½zõ ÷ëìÙ³^^^%~#s 3qÒ¸£éìsö›s KMM•» ‹Ú¥ôÍ\›¶U‹Qب˘‘‘dÉw§¹h7Ø•,ÇE!¿6MTPPЪU«ãÇ?õÔS½zõ ôöö—²Ž5~ûí·&Mš4jÔ¨mÛ¶F_zê©§bbbrss###322Æïëë»råÊ‹/þôÓOíÚµB¬Y³æå—_9rä¢E‹Šo|ãÆ  ;v¬««kBBÂáÇ?úè#£{èØ©òÒk ºxñ¢‡‡GLLŒV«]¿~½‡‡‡”q­¯­ôI“Xð t¬­ ±T­N¶¼ Æœ h« _þÜš< Ó„E¥¨P¡ÂÞ½{çλuëÖ)S¦äää!*Uª”””$ÝÑbiiiBˆ“'O­) !BBBbbb¼½½wíÚ5uêÔ„„„¬¬¬öíÛ¯^½ZÿÖyÙÙÙ;;°wïÞÉÉɳgÏ^ºti~~~‹-6mÚÔ£G›ÌI™•—^›¢mÛ¶}úôY¶lYaaá˜1c¼½½çÌ™c“ÚJŸ4˜‹Ž£í)ᯛµMn4Ú°Å(ìËl¢ËGe¢ãh®¢¢¢£G¶iÓ&>>~ÆŒò³|ùò”””?üPîY1¯¶   Úµk‰Xžè8šŽwŽQ!Û¤F“ß?Ðúw|1Ø”¦<ßý¥Ä·þ#50‹««kHHˆN§óõõ•·’üüü;vXÙõtÂÚ`–ªÕƩѴ桃®JÓY`s?üðƒN§ëÔ©“¼eìß¿¿Q£FÏ=÷œÜóá`µÁ,GU±65š»*]â. ñÇÒa€ÍuìØqþüùF·×.QQQQQQrO†%µ7΂;ø@Gõ°Aj,ëžß¶…Ý"£Qg‘ÓéØOýúõ§M›&wŒÙs G•°*5–ÕBt”#ËÐØÁQ ,O¥FB‡h1(7G‡gajº‡­MÛ6/ [· “¢ ,PŽŽŽÍ¢Ô(–âì±$-li+ Gfvj|H0Tà’4mEˆàè¨ÌK%EF¥åEÚŠ(ÁÑ!™‘5þÏàñ6\’¶&/ÒVÀ±©©Qÿ¼íŽ [ŒçEÚŠ8.‚£ƒ1)5FFÐüùxYò"mE¦ “»e#8:’²S£á"´F#EÆr΋$EæJMM•»E㽯 G‡QZjüû"ôŸ)Ϫ̦ùk£eäE’"N‚àè4xX4h1ÚäFSš‹$EœÁQéÚhü32þ•5ËB\™ÍE’"G%+¹Ñøg†Óü9¬&;s]éa‘¤Š#8*T Æ¿·u>N3’ÝÃV¢IŠ LGÅ)¡Ñ¨¨Å(̈Œ%6IŠÀ\Geù[£ñï«ÒƉïáYÏ0) !tB§Ò_'D’€™ŽJñW£±X^4¥ÅhÔV4l(jˆ‰ÀŽòû[dÔ<$/ ãôgÔVük%›¤ìÃEî”ëÛo¿}æ™gÂÃÃ;vìøÖ[oeeeÙü[h4F£:ÐýuFFæÿtº?þBóרFhtúÿtB§ÔŸÅßôìÙSî`Œƒ¢Lâ @9è8–lñâÅŸ}öYåÊ•[·n}îܹuëÖ9s櫯¾òôô´Éöÿè2JñÏ+Vþº±Žú¤( ;‹ÐwI‡ |Ñq,Ajjê矰yóæÏ?ÿ|Ë–-Ç?vìØûï¿oå–5Ò‰?úŒœøçµ ÚŠué&ùKðŸÿüG«Õ¾öÚkþþþÒÈo¼áãã³iÓ&­VkÙ6 ó¢N§B£+uâo1‘¤”„àX‚C‡¹¸¸téÒE?âêêyëÖ­_~ùŬMé[ŒÞ˜ñ¼øg[±ØÙ‰ÄD TGc:.--­ZµjÕªU3oРâÂ… ¦lÄ`Iú‹]t†—¹èˆ‰ÀñpqŒ±{÷îùúúûøø!nß¾mÊFtB„5h „3 3å¹°“0æ_y8(ÊÄqQ  ‚àh,//OQ¹re£q///!DNNN™[HMMB¤Ê½#¶ÅRµ1___FsïÞ=£ñßÿ]üÙwpBGcnnn>>>Å;‹¹¹¹BýuÖΆàX‚€€€[·nIIQ/##Cú’ÜÕȃàX‚®]»%%%éGt:Ý®]»ªV­.wuò 8–à™gžqqqùç?ÿ)×(„øüóÏoÞ¼ùôÓO»»»Ë]€<4ÜK°D+V¬˜?~­ZµüñsçÎ%''7nÜxÅŠÅoÓà$Ž•˜˜øý÷ß;v,00°M›6¯½öštGçDp€I8Ç&!8À$G˜„à“`‚#LBp€IŽ6óí·ß>óÌ3ááá;v|ë­·²²²ä®È‰˜;ùyyy+W®ìÛ·o‹-üñÑ£GïÝ»WîPk~"._¾Ü²eË©S§Ê½jcÁA9~üø„ ¢¢¢Z·nýüóÏ8p@îPsJAAÁ_|ñÔSO…‡‡GGGOœ8ñÌ™3rï„ÓIOO ûõ×_å.DGÛX¼xñÌ™3Ïž=Ûºuk//¯uëÖ½øâ‹yyyr×åÌüÂÂÂØØØyóæ]¿~½}ûö!!!5jÔ'Ÿ|"÷®¨‡5?:núôéúwЇ­XpP¶oß>dÈíÛ·ûûû‡‡‡9rdøðáÛ·o—{WÔÃ܃RTT4bĈ÷ß?++ëñǯU«Ö–-[úõëwèÐ!¹wʬZµJî䣃ÕN:Õ°aÃÇüÚµkÒÈ;ï¼Ó Aƒøøx¹KS? &õêÕ 42dȽ{÷¤‘Ó§O·iÓ¦Q£F¿ýö›Ü;¤VþD¬X±¢Aƒ 4˜2eŠÜ»¢”ìììV­Z5oÞüðáÃÒȯ¿þúØcuèС¨¨HîR‹}Mœ8ñÁƒÒȾ}û5jÔ½{w¹÷Æ)äää:thÖ¬YÒ﨣GÊ]‘ è8ÚÀþó­VûÚk¯ùûûK#o¼ñ†Ï¦M›´Z­ÜÕ©œ“¿yóf!ÄŒ3<==¥‘ÐÐЗ^z©¨¨ˆk›°æ'âÌ™3‹/nذ¡Ü;¡6”uëÖåææ¾ôÒK-[¶”Fš5kÖ«W¯›7o?~\îR Ê/¿ü"„1b„›››4Ò¾}ûFeffÞ¾}[îR¿˜˜˜¡C‡®]»VîBäDp´C‡¹¸¸téÒE?âêêyëÖ-é‡öcÁägddT®\¹I“&†ƒ¡¡¡Bˆ .ȽCj`ñODaaá´iÓªV­úÆoȽjcÁAÙ½{·F£éß¿¿áà‚ RSS›7o.÷©%00Pa˜u:]vv¶‹‹‹>JÂ~Þ}÷Ý¥K—.]º´C‡r×"^gÖÒétiiiÕªU«V­šáxƒ „.\hÕª•Ü5ª–e“¿lÙ²â¿aOœ8!„¨S§ŽÜûäð¬ù‰øøãOž<¹bÅ ooo¹÷CU,;()))U«V­Q£ÆáÇ9’ݰaÃ'žxBߪ‡5,;(}ûöýꫯÞ}÷ÝJ•*µhÑ"++kéÒ¥/^4h?5å S§NÒ;vì»Ù­uïÞ½¢¢"___£qñ÷¿ as–M~ãÆF’““?ÿüs£æ ,`ñOÄÑ£G¿øâ‹çŸ¾C‡Rއ­XpP îܹòöÛo¯Y³F?^§N?üð±Ç“{Ÿže?)aaa«V­ŠÕ>ÿüóo½õ–Ü;gÁRµµ¤Ëß*W®l4îåå%„ÈÉÉ‘»@5³~ò‹ŠŠ¾úê«^xáÞ½{ï½÷žŸŸŸÜûäð,;(yyyÓ¦M«S§ÎäÉ“åÞ²à Ü¹sG‘––¶qãÆùóç8p`×®]¯¼òÊ¥K—&NœÈ-#¬gÙOJnnî{ï½w÷îÝ&Mš <¸[·nžžžßÿ=—º£ÜÐq´–¯¯¯F£¹wïžÑ¸t3éoG؉•“àÀ¸¸¸³gÏÎ;×™ÏY±!ËÊüùó/^¼¸fÍ–AíÁ‚ƒR±bEéƒ÷Þ{/::Zúx„ —/_^·n݆ (÷n96Ë~R¦M›ö¿ÿýï7Þ9r¤4rùòåÁƒ¿þúë?þøcpp°Ü»õ£ãh-777Ÿâæææ !ô×ÊÁ,žü‚‚‚wß}wĈ—/_~å•W6mÚDj´ ÊÁƒ׬Y3vìX.¹° JåÊ•+V¬èéée8þÄO!N:%÷>9< Êõë×wìØ¢OBˆš5k¾üòË<øî»ïäÞ'8‚£ ܺuKúi×ËÈȾ$wu*gÁäkµÚÉ“'õÕW]»výé§Ÿ&L˜@—˶Ì=(Òû^,]º4ìOO=õ”âÇ ëÛ·¯Ü;¤ü¤øûû»»»k4ÃA釥°°PîRsÊ­[·„õêÕ3—7nÜ{‡àŽ6еk×¢¢¢¤¤$ýˆN§ÛµkWÕªUÃÃÃå®Nå,˜üU«VýôÓOÏ=÷Ü'Ÿ|BKØÌ=(uëÖíówÒ¥‹5kÖìÓ§Odd¤Ü;¤ü¤DEEåææž>}ÚpPºM 7Ú´ sJ½zõ\]]Ïœ9£Óé ÇSSS…!!!rÜw WƒK—.5lذgÏžwîÜ‘F>ûì³ ,X°@îÒÔÏ”Éÿý÷ßÓÓÓ/\¸ Óé´ZíO<Ѳe˼¼<¹kW-sJq)))¼sŒmYpP~ûí· <óÌ3·nÝ’FŽ;Þºuë›7oʽCj`ÁA;vlƒ >üðCý›÷œ>}º]»v=öXZZšÜ;äDf̘á´ïÃÅ16P³fÍ©S§ÎŸ?ÿÉ'Ÿ|üñÇÏ;—œœÜ¤I“1cÆÈ]šú™2ù»vízýõ×CCCׯ_ãÆóçÏ{zz:´øÖ ðüóÏ˽OÏ܃"w½NÁ‚ƒÒ¨Q£I“&-Z´¨gÏž­ZµºwïÞ¡C‡4Í»ï¾ûÈ#ȽCj`ÁAyçw¸téÒ76nÜøÖ­[ÿûßÿ´ZíÌ™3ëׯ/÷Á)mcÔ¨QÕ«Wÿþûï7nÜøüóÏ¿öÚkÒ]`ofMþÅ‹…yyy)))Å¿Ê%2¶ÂO„YpPÆŽëçç÷ÕW_íÛ·¯jÕª]»v}å•W¤·Y‚M˜{Püüü6nÜøÙgŸíÙ³gçÎU«Víܹó¸qãš6m*÷®ÀYht?U(ÇÀ$G˜„à“`‚#LBp€IŽ0 Á&!8À$G˜„à“à/S§N Û¿¹mêŸÿügXXØêÕ« Ÿµsçο ò"8€#Ù³gÏ®]»ä®€“r“»pjQQQ~~~-[¶4ñ«S¦LÉÍÍýí·ßä.€3"8€œš4iÒ¤I˾ 匥j©¨¨¨°°Pî*À¹8 鑳gÏΙ3§U«VMš4éÒ¥Ë+¯¼btŠô°Ë—/=zôé§ŸnÖ¬ÙÅ‹õ_ݸqãK/½Ô¹sçvíÚÅÆÆþë_ÿ****þ½öìÙ3qâÄÈÈÈÈÈÈqãÆíÞ½Ûè7oÞ\´hQïÞ½#"""""úôéóÞ{ï]»vÍÜM}ñÅ¥\þbøÕ „……eee…………‡‡¿õÖ[aaa_ýµÑ³-ZöÁÈ}Ĩ Á€ƒ™1cÆ×_ŸŸ_·nݬ¬¬Ÿ~úiÔ¨QË—/7zØÉ“'cccSRRîß¿¯Õj…:núô鯿þúŽ;t:Orrò‚ †š••eøÜÄÄÄ^xá§Ÿ~ªX±bvvööíÛ_|ñÅ%K–èpóæÍ¡C‡.[¶ìòåË>úhíÚµ/\¸ðå—_2ÄÜM™®U«V#FŒðððÐh4#FŒxî¹çz÷î-„زe‹áÃt:Ýúõë…ýúõ“ûXP‚#säÈ‘.]ºìß¿ÿ§Ÿ~úå—_Þxã FóÁœ9sÆða³fÍjÚ´é—_~¹wïÞG}TñÝwß}ÿý÷þþþk׮ݽ{÷–-[vìØÑ¢E‹#GŽ|üñdžÏ]·n]×®]8 }‹iÓ¦¹¸¸,]ºôرcúdffFGGïÝ»÷ûï¿ÿñÇ÷ìÙÓºuëK—.ýüóÏfmÊtÑÑÑo½õV¥J•\\\Þzë­©S§¶oßÞ××÷ðáÃ7oÞÔ?ì—_~¹téÒc="÷± 6GÆßßÿ£>òõõB¸ººŽ9rèСZ­véÒ¥†«\¹ò_|Ñ¡C???iäÃ?B¼ûî»áááÒH``àÇìáá±víÚ«W¯êŸ[³fÍ%K–x{{ !ÜÜÜF=tèP!Ä'Ÿ|"= °°0**jÊ”)•+W–F¼½½cbb„çÎ3,£ÌMYÃÕÕµ{÷îZ­vëÖ­úÁÄÄD!Dÿþýå>PTˆàÀÁ<ýôÓ†#ÇB=zÔpðÉ'Ÿ¬X±¢þÓëׯ_»v-00022Òðaþþþ]ºt)**:yò¤~ð™gžqss+þ-Nœ8!}:~üøÏ>û¬~ýúúܸqcÆ Å«-sSVêÕ«—0X­.,,Ü´i“››[Ÿ>}ìx 8+nÇÀÁÔ®]ÛÃÃãêÕ«*T¥åi½ÌÌL!D½zõŠo°nݺâïÂààà¿Å7îÞ½+u/]º´{÷îÇ_¸páüùóF§6šµ)k´mÛ¶ZµjÌÊʪZµêîÝ»³³³£££«U«f÷#ÀùÐqà`4MñWWW­VkxƒiuXO§Ó=lƒ®®®Bˆ”ù-\\\ÜÝÝ…kÖ¬éÞ½ûÛo¿}ìØ±úõë5êË/¿œ5k–éÕê7e%WW×=zIçV²N À®è8p0F#W¯^½wï^5*Uªô°gI½F£%R3Ò°5Xü[\¹råÞ½{uêÔ©P¡Âï¿ÿ>gΜ *,[¶¬S§N†e˜R­á¦l2!½zõZ³fÍæÍ›{÷î½}ûvoo﨨([Ï:AÇ€Ãùïÿ[PP`8²jÕ*!Äc=VʳªW¯~ùòå={öŽß¸qcÇŽ®®®5Ò&$$ÝÜQúBˆãÇEDD¦F!Ä©S§ŠßÒ7e­ZµòóóÛ¿BBB~~~Ÿ>}lIÀÁ€ƒ¹zõêk¯½–››+„Ðjµ«W¯^¹r¥‹‹Ë+¯¼Rú_ýu!ÄÌ™3SRR¤‘k×®½òÊ+ùùùƒ ªY³¦þ‘.\˜4iÒÝ»w¥oñÕW_ýßÿýŸ››Ûøñã…BˆS§Néo‚STT´víZéFÜyyy†ß´ôMYF«ÕÞ»wOÿ©tmuaaá¢E‹ëÔ쉥j¦wïÞ?ýôS»víêÕ«'-ûº¸¸Lš4©aÆ¥?qÀ€û÷ïOLL|úé§k×®íééyöìY­VþÚk¯>2,,lóæÍ[·n ºtéR^^ž››ÛÌ™3¥Ëh‚ƒƒ»víúóÏ?wëÖ­eË–:.555++kèС_}õÕÿûß;wîÌŸ?ß”MYÀ××7++kÈ!>ú¨þö“½{÷þæ›oòòòêÖ­Û¢E ¹Õ"8p0ýúõ:tè¿þõ¯ãÇ{yyµoß~ذaíÛ·/ó‰...ï¿ÿ~—.]O:uýúõ6mÚDFFÆÆÆJ×Çè}ùå—›7oþùçŸOœ8QµjÕÎ;9Ò0}ðÁ+V¬Ø¸qãáÇk×®9räÈÐÐТ¢¢ÄÄÄC‡™¾)s½ñÆï¾ûîÙ³góóóõƒ-[¶¬^½ú7h7°+M)W€¢L:õÇ\¶lY—.]ä®EY´Zm×®]¯\¹òóÏ?תUKîr¨ç8€ÃÛ·oßåË—[·nMj`WGplyyy‹/B<ýôÓr×@å8ÇXëÖ­óóó BBB¤7Ëû!8p½{÷nРAñ7ñsfçÏŸŒŒŒ7ºÄlŽ‹c`Îq€IŽ0 Á&!8À$G˜äÿTów˜ÎaãIEND®B`‚statistics-release-1.6.3/docs/assets/gppdf_101.png000066400000000000000000000772521456127120000217650ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A~qIDATxÚíÝy|L÷þÇñïd!’pC” R”еФ¶TZŠV«öª¢Eí·””ZJu¡´U—ºZ[-µ”ÒM,?”¸„HBÕ‘ ˆdÎïÓŽ1ÙfÍ93óz>úècæ;gÎ|Î9Éäíû=ç{4’$  4.Jû@p€QŽ0 ÁF!8À(G…à£`‚#ŒBp€QŽ€ƒØ»wïðáÃCCC+Uªôüã©§ž8pào¿ý¦t]Öôî»ïj4FÓ³gO¹eùòårKË–-ˬŒ÷Þ{OþÐnݺ·Ì‰'4E©T©RóæÍ_ýõ .(µ7oÞüÃ?üðÃ×®]³Ê MÝØ"—wssóóókݺõ»ï¾[¸°â>Bßĉ•Ú¥€ó 8v/''§W¯^íÛ·_±bÅéÓ§oß¾}ãÆýû÷¯^½ºmÛ¶ÑÑÑׯ_WºFüåöíÛ‡þüóÏüñ;v(RÃË/¿Ü£G=z;vL=P™™yàÀÙ³g‡††&%%)²s”ÌMéXäÖ­[ááá¿ÿþ»®ÅÅÅE£ÑÈO·nÝúüóÏÿòË/åË—WºXë«T©RíÚµ…J×R,OOO!ă.]º¤Õj…wîÜyýõד““+V¬¨tJn¬nù;wîè:³²²úô铚šêááQÂG¨\¹²Ò[8>zû6räH]j ÿõ×_oÞ¼y÷îÝ£G¾øâ‹rûo¿ýö¯ýKéJmâ•W^IOOOOOÿñÇ•®¥Xk×®•‹¼páBvvö!CäöŒŒŒ]»v)]«[þêÕ«çÏŸ]~U«Õ~óÍ7µjÕ*_¾|­Zµ:vìøïÿ»ðé+|Žc```qçÀœ’XjÁ²óçÏ¿ôÒK~~~/¼ðÂÁƒ-9d^^^Ÿ|ò‰»»»üôÔ©Sº—ŒÙ%ïÃR7êŸÿü§F£¹}û¶üô™gžÑh4wîÜÑ-pçÎ3ftêÔÉßßßßßÿ™gžyçwrrr¬¾±EªY³æÊ•+u'°Î™3G¿6ª °[£F’‘Ë—/ÿçŸ^àÒ¥KƒþvõêU]û/¿üâïïoðm ÑhƧ[fÚ´ir{ÇŽ4h`°pŸ>}ô?ȤöèÑC—h§M›&¿ªë5лwï"× ·|öÙgrK‹-ä–€€€â¾îºvíjRÁ’$0`€~ÙéÓ§u#¤¾¾¾&í¼¼¼Þ½{_¾|YáææÖ¢E‹Ë—/gddlٲŒ£vóæÍ+W®ÈCBBÌÛ…÷¡15a„×^{­I“&¹¹¹BˆÿûßmÛ¶­P¡‚âîÝ»/¾øbFF†¢|ùò:tpuuýõ×_sssÿøã—^zéôéÓ•*U²ÊÆ–,<<¼\¹ryyyBˆtéÒÅ’½ ÀÊ”N®Ì¤Õj]]]å_ä3fÿFÝ©`ú]Yü±ÜøØcÉ-ºÎ-!ÄÇ,7žùÕm۶Ɇ ¦{ËàÁƒåzþüyƒYZžxâ‰7ß|S~üøã·oß^~|îÜ9óVX¡B…;vôëׯuëÖuêÔB¼ôÒK_ýõ×_=fÌy™œœ¹WLqãÆ 3ö$I-?(nðÌ™3Mš4Ñ=58ï­J•*òy¦3Vf0°.¿1++kûöí‡:räÈÁƒoݺeÉþ™;wî?ü {ܱcGS÷€n1ý«jÊ•+×¹sgÝ5If{â‰'–,Ybö(¼M= RRRŠ|{çÎå¾Ì3gÎhµZsº 6¶T™™™òooï¯9îÇ€M{åááQµjU92ž¦fÍš&£tÜÜÜ6løôÓO3FfMS÷€Á>4ã(¼=;;[~l0#fõêÕå÷îÝ»råJ©óe³±¥’Ï+•×VøÕµk×FEE™tX Á°c‘‘‘ò<;7n¼zõªnuذaòxe~~~­Zµôƒ£··w¥J•䮬ŸþYå4PµjUãk0c…ÑSñÞ{ï-Z´HQ§N &´mÛ¶aÆo¼ñÆ—_~iÆn9þüË/¿,wˆ†„„¬ZµÊŒ‚===u—h\½zµ^½zºWuËHÆS÷€Á>´ð°z{{ûøøÈÛuéÒ%ý>æK—.ÉÊ•+ğå©nïÞ½ònB´jÕÊ’U°:‚#`ÇÆŽûÝwßiµÚììì1cƬY³ÆÍí‘_êåË—_¼xÑà]õêÕ;räˆ"??_?"ܸqC’$!D‘·å(å+\ºt©üàÓO?íÚµ«üؼ»9ß¿¿W¯^òXg… þûßÿî4¦`WW×àà`ywûöíO?ý´¼Œôè|1Öbù°ð(„††8p@ñóÏ?·k×N×þóÏ?ËBBB ~ºlD7¨]±bŶmÛ–Á'0Çvì©§ž>|¸üø›o¾ ß³g\wQ‹¾gžyF~°bÅ 9R!6lØðüÃÏϯvíÚ¦ž\há oݺ¥E½yó¦üàÿþïÿÌ»«Ê›o¾yèÐ!]=O<ñ„Ù·hÑB~é£>ÒM£=gΜÿýïæ3›í3Ž‚®cO¡›œRc“““,X ?6˜>Ý._¾üúë¯ÇÅÅÉOû÷ïoÆ@lŠGÀ¾Í;wÛ¶méééBˆÄÄÄ:¸¸¸”+WNžmQѦM›ÄÄDý·üóŸÿüâ‹/²²²6nÜÙ¡C‡'Nè®~7nœ©×X¸B//////9ï:tݺufÛ¶m%ß3¦H»víúâ‹/äÇU«VMJJJJJÒ½Z±bÅ÷ßßø‚'NœøŸÿüG’¤›7o¶iÓ¦uëÖ×®]+õö'f°Ê0þ(øúúÊŸ5kÖ¬'NŒ3ÆÝÝ}Ò¤I_}õÕ¹sç²³³ÛµkåêêºsçNùÞ-ºsF­kÀ€òe^wîÜÑ ‹Ë‡oÖ¬Y¶øDQz> –º|ù²þ%Ãúž{î9ÝôË{÷îÕ½åÇÔ͆­ï7ÞÐjµò2…'M”õíÛWnŸ0a‚UV(IÒK/½dðÆ:uêDDDÈXÜ æqÔuVÉÏÏϤ‚%I4hÁ+Vìܹ³üØì;ÇföÐgäFõë×OÿUÝcöïß_äÉ‘µjÕJHH(¡xS7¶ÔI«T©’˜˜hÉG°†ª»çïï¿{÷îM›6½ôÒK=ö˜‡‡Ç?þñðððU«Vmܸ±Zµj…/M‰‰ùý÷ß_{íµfÍšU¨P¡N:={öŒ_¶lYá+WŒaá /^ܸqc!„‹‹Ë“O>ùöÛo9räù矗_]·nn®k1²à/¿üRw_ÇjÕª=÷Üs;wî ·n1ÖÚFnÔâÅ‹ûõëW­ZµŠ+>ñĺvZµjuìØ±wß}7**ÊßßßÏÏ/22rêÔ©Ç×?ëÑF\]]«T©ÒªU«wß}7%%å©§ž²õ'0ƒFúûTPЃ6oÞ,„èÙ³§Òµ:tèÐîÝ»‡^䴂ΰ@Fp€Qª€QŽ0 ÁF!8À(G…à£`‚#ŒBp€QŽ0 ÁF!8À(G…àXŠ´´´ÐÐÐßÿ]éBFp,Åš5k”.@Ü”.@¥rrrNŸ>½iÓ¦o¾ùFéZTàX´˜˜˜Ë—/+]€Š‹öÞ{ïÝ¿_ñõ×_ÿöÛoJ— <‚cÑÚµk'?ؽ{·Òµ¨ÁÑ4šÐúõ•.ØPJJŠÒ%(€àhÎùäf¡¡¡µá ¨ÇE…8(*ªt Ê`:…à£`‚£Mh4JW`mG…à§°mÛ6¥K€!Š:q\Tˆƒõ 8À(ÇRÌž=;%%åÉ'ŸTº…`‚#ŒBp´ IbFàhŽ0 ÁÑ&4‚þFàhŽ0Š›Òœ]hh¨Ò%ÀÙ¥¤¤(]‚} 8”ÇŸm(ˆº¡j…à£m…©€ƒ!8À(G…à£`‚#ŒBp€Q¸sŒ É3òH’Òu¬G«ÕnÚ´É ÑÝÝ=::ZéÒ›#8`‚ôèÑàÑ××7++˺5cÆ ¥·ØjËÎΞ~üø]»v)½ÏÁÓ$$$ÕªUËêkÎÌÌìÒ¥‹Ùo?xð`llì¡C‡®\¹¢ßîææöàÁk ­Q£FBB‚®%66vóæÍ´|§}óÍ7 ŸÖ©S§wïÞ+W®¼téR`` åë‡>†ª0MÍš5/_¾|öìY«¯Ùßß_û>uꔩïݹsgëÖ­?>xðàY³f5kÖLѬY³ &Œ7NÙÚ ËÈÈ8tèåëÉÉÉ9}útDD„F£Ñ5FFFjµÚ¤¤$Ë×ô8`š¬ZµªC‡“'OnÒ¤‰¯¯oPPPÕªU,éÞ½{ Ü¿@@€bâĉ:uJII™>}z¥J•”Þg¶råÊI’üýýõ«U«&„¸víšÒÕ9 ‚#¦ñôôœ5kÖˆ#F-·,\¸püøñ‹åççÿôÓOÅ­äù矷bI /^œ9s¦œ…“&MЉ‰Ù°aàAƒ¬Í$¦–››+„ðööÖoôññBdff*µŒàh[LåfÓ{T@ _ݳgÏŽ6mZÿþýk×®íâRôy_wîÜ)Ù¯_¿wÞygþüù;vÌÍÍ5çè¢4ô8`‚råÊíÛ·oΜ9;vì˜0aBvv¶¢B… òÔ‰¶“——wóæÍâÎŒŽŽNJJš1cÆÒ¥KïÝ»×´iÓ­[·Z2¸kB´nÝúÙgŸ]¾|y~~þ°aü½½gÍše•öööŽŸ8qb\\\VVV›6mÖ®]V6îl4e|n¬SÐh„ôð⮪VƒôôtÆ,Ô†ƒ¢NŠ—ÐÐД”¥7ÝLGmÕªÕÌ™3§Njëûâ‹/’““?üðC¥·Û´Ú‚ƒƒ î£*füÚõ­%ª¶9yF€Cruu­W¯ž$Iò™…6uï޽ݻwÛº_Óñjƒ°È?ü IR»vílýA‰‰‰ 4xå•W”Þb;« VÄ9ŽX¤mÛ¶óæÍ3˜|Û""""""”Þ\sj1b„ÁÍ]`§ŽÖZ¿~ŠFÃäßà$êÖ­;iÒ$¥«P5öÃ`¨F!8À(G…àX˜‘8‚#ŒBp€QŽ0 ÁF!8À(Ç2Â…ÕÀÞqËA[‘„¤‰;€cÑjµ›6m2htwwŽŽVº4À掘àÁƒ=zô0hôõõÍÊʲÊÊ=== ôýüü®]»¦ôv?"<<<**jÆŒJò—ìììÉ“'oÙ²åÆÍš5›?þSO=¥tQމà€ <<<  tîܹÿüç?Õ«W·âÊÓÓÓ ž~úé:uêè½¼¼”ÞèG9rdß¾}QQQJò—œœœ-Zœ?¾wïÞ~~~qqq]»vݽ{wXX˜Ò¥9 ‚#¦Ù±cÇÚµkÓÒÒ¬›…©©©Bˆ™3gª'–éäççïÚµë·ß~[ºt©V«5é½yyyBˆråÊÙ¢°E‹¥¦¦®ZµjàÀBˆ1cÆ4oÞ|üøñ»víRzŸ9 .ŽÀ4 AAAµjÕ²úšåàX¯^=óÞ~ðàÁîÝ»håîînym™™™]ºt‰5cÜ<44Ô ÇÆÆ¶lÙÒ*;í›o¾ 0`€ü´N:½{÷Ž¿té’UÖ}GLS³fÍË—/Ÿ={ÖêkNMMõðð¨T©Òwß}·|ùò½{÷Ê}uÆØ¹sgëÖ­?>xðàY³f5kÖLѬY³ &Œ7ÎòÚüýý%I’$éÔ©S–¯-##ãСC–¯'''çôéÓ½¹K"##µZmRR’å뇆ªËŽ<#ÄeÖ`ç °jÕª:Lž<¹I“&¾¾¾AAAU«Vµ|Í©©©...õêÕÓ]jÓ Aƒ5kÖ4oÞ¼ä7Þ»woàÀû÷ïBLœ8±S§N)))Ó§O¯T©’ÒûÌV®\¹"I’¿¿¿~cµjÕ„j»¢È10§§ç¬Y³FŒ1zôh¹eáÂ…ãÇ7X,??ÿ§Ÿ~*n%Ï?ÿ|áÆÔÔT­VÛ»woww÷üñí·ßîÑ£Grr²O %%$$\¼xqæÌ™rjBxxxLš4)&&fÆ ƒ ²¼¶²aja¹¹¹BoooýFy_eff*µŒàP)PòÆ %LÄ;{öìØØØiÓ¦õïß¿víÚ..EŸ÷uçÎÂ÷<\Q#P¿þúkùòå«T©"?2dȽ{÷F7tèЪÍÈÈB<ùä“úMš4B$''[¥6 Ì1TÜå5¦æçç'„¸uë–~cNNŽB·aEG€J©ó Ó§O_°`Aá.F>>>¦&°   ƒ–Î; !Nœ8Qò===…ùùùúr8+2ךQ›…îß¿¯ÿôîÝ»VÙiþþþ...£Òׯ_BXýšw‚#&ILL”$ɘérLu=wîÜæÍ›###4h k”;ÏJ½‚;$$DqòäIýF¹¯144ÔòÚ,wñâEý§Å]òljannn 6LHHÐoܳgF£iÔ¨‘Õ·GLàáá!„øþûï›6mZò’¦ŽºzzzN˜0¡eË–¿üò‹<ŽV«]°`››[§NJþ¬fÍšÕ«WïÓO?5j”¯¯¯"//oÁ‚^^^Ý»w·¼6Ë]¾|yóæÍr1iiiGµÊNB 6l̘1º•_½z5..®S§NÁÁÁVß ËV€½ëÞ½{ãÆgΜ™œœÜ­[·ÀÀ@ooï°°°Â÷w1uÔµZµj±±±“'O éÖ­›¯¯ïöíÛ92gΜ†  !Ö­[7räÈÁƒ/Z´Èà½îîîK–,éÙ³gÓ¦M‡îêêwèС>úÈàŠcój+U µÉÜÜÜúöí£Õj7oÞ,ço«6hР•+Wöë×OÍ«V­ÊÍ͵âÖA‡à€ Ê•+·oß¾9sæìرc„ ÙÙÙBˆ *$$$ÈS'ZbÒ¤IuëÖ?þ×_]¾|ù&Mšlݺµk×®ò«yyy7oÞ,îìÀèè褤¤3f,]ºôÞ½{M›6ݺuk—.]Êf·”\›¢uëÖÏ>ûìòåËóóó‡ æíí=kÖ,«|´··w||üĉãââ²²²Ú´i³víZî7h#š2>7Ö„††¦œ>-$I#4…Ïì¦ÇQéééŒY¨ E9.¡¡¡)))Joº™ Ž=ÚªU«™3gN:ÕÖ÷Å_$''øá‡Jo·iµרQÃàLDõ0ã'Юh-Ác0Ÿ««k½zõ$I’Ï,´©{÷îíÞ½Ûò~Mg« VDpÀ"?üðƒ$IíÚµ³õ%&&6hÐà•W^Qz‹í¬6Xç8`‘¶mÛΛ7Ï`òm[ˆˆˆˆˆˆPzsÍ©mĈ7w"8Ú$Š>ÍàHêÖ­;iÒ$¥«P5öÃ`¨º¬É3òØ‚#ŒBp€QŽ0 ÁF!8À(Gpa5°GG…à£`n9€ ´Zí¦M› ÝÝÝ£££•. °9z0ÁƒzÒ¯_?k­ÿرc/½ôR@@€——W‹-/^œŸŸ¯{5;;û7Þxì±Ç¼¼¼ÂÃÓ’’”ÞEUºŠ‡ìb§Ù ‚£2¸°씇‡GAAAÿþýÃÃÃ/\¸ I’$IYYYVYyZZZÇŽ·mÛÖµk×qãÆ•+Wnܸq}úô‘_ÍÉÉiÑ¢ÅW_}Õ¾}û¡C‡ž={¶k×®GŽQz—<âÈ‘#ûöíSºŠ‡ìb§Ù†ª0ÍŽ;Ö®]›––V½zuë®yܸqÙÙÙIII-[¶BÌœ9sèС+W®Ü¾}{—.]-Z”ššºjÕª !ƌӼyóñãÇïÚµKé]"òóówíÚõÛo¿-]ºT«ÕšôÞ¼¼~üøàÁƒgÍšÕ¬Y3!D³fÍ&L˜0nÜ8Ë‹÷÷÷—GíO:eùÚ222:dùz,Üi(Œ¡jL3`À€U«VuèÐaòäÉMš4ñõõ ªZµª…«uss›;w®~Ë7æÎëêêÚ»wï+W®H’äïﯿ@µjÕ„¥vòÝ»woàÀû÷ïBLœ8±S§N)))Ó§O¯T©’Ò{ÔV,Ùi(ÁѶ$!i„F’Ò…¬ÆÓÓsÖ¬Y#FŒ=z´Ü²páÂñãÇ,–ŸŸÿÓO?·’矾äOùõ×__ýõÔÔÔeË–…„„üþûïBoooýe|||„™™™%¯*!!áâÅ‹3gΔS£ÂÃÃcÒ¤I1116l4hu+·S ËÍÍ5{§¡HGÅÈVKDJ(޲ÓOÿ={öìØØØiÓ¦õïß¿víÚ..EŸ÷uçÎ=z¿úb×þüù7ß|sÓ¦M!!!;wŒBøùù !nݺ¥¿dNNŽ¢J•*%oJFF†âÉ'ŸÔolÒ¤‰"99ÙŠ•›­  @ÿiq—טZ˜%; E"8ÔJ•ÿ¶ÎÈȘ>}ú‚ w1ðññ1#c­[·nøðá^^^Ë—/2dˆ›Û_©ýýý]\\ X¯_¿.„(õânOOO!„þ|âïpVdê5¯rKÜ¿_ÿéÝ»w­²K-Ùi(Á$&&J’dpp‘ÌðÝ´iSÿþý_|ñÅÏ>ûÌ`€ÕÍÍ­aÆ ú{öìÑh45*¹’!ÄÉ“'õ徯ÐÐP«Tn¡‹/ê?-î’gS ³d§¡h¬­~ýú’ÞŽR±;™Ý_fÒÒÒ”.†8(ê¤Èq©_¿¾ÒÛm‚ 6!¦OŸ^ê’7oÞ4éï¯V«}üñÇk×®ŸŸ_ä —,Y"„Ø´i“üôÊ•+þþþ;w.µ’¼¼¼zõêfeeÉ-÷ïß÷òòº|ù²å•듯ªþ׿þeü.­]»¶þv={ÖËË«È2£0cvš?öõCkEô8`‚îÝ»7nÜxæÌ™ÉÉÉݺu ôöö “³Ž>SÇUOžúÈàŠcó*/U µÉÜÜÜúöí£Õj7oÞìááQäbfVòNƒ©Ž˜ \¹rûöí›3gÎŽ;&L˜-„¨P¡BBB‚<9¢ÙRSS…'Ož4SBÔ«W/&&ÆÛÛ;>>~âĉqqqYYYmÚ´Y»vmXX˜¼L^^ÞÍ›7‹;;0:::))iÆŒK—.½wï^Ó¦M·nÝÚ¥K—²Ùi%×&„hݺõ³Ï>»|ùòüüüaÆy{{Ïš5Ë*]òNƒ©4Öý'„¡¡¡)§OëÎé.y:.¬.éééÁÁÁJWGpPÔI‘ãš’’¢ô¦›©  àèÑ£­Zµš9sæÔ©S•-æ‹/¾HNNþðÕÞ+¦Õ\£F ƒ3Ë’?výCk g¹sÌwß}×§OŸ°°°¶mÛ¾óÎ;¥Þ>//ïóÏ?á…ÂÂÂ"##ÇŒsæÌ¥7 :®®®õêÕ“$É××WÙJîÝ»·{÷n {=°6˜Ä)‚ãâÅ‹§M›vöìÙ–-[zyymذáõ×_/¡Ã¼  `àÀ .ÌÊÊjß¾}õêÕ·oßþüóÏ|X1pà@Ý´«mÚ´iРAFFÆ7”Þ €ºÔ­[wÒ¤IJWaÇ&MšôÆo(]ŒâøÁñàÁƒ...;vÔµ¸ºº†‡‡gffʱ°ÀÀ@!„~F”$éæÍ›...º( àl<8J’”ššZ¥Jƒ[RÖ¯__ñÇù®îÝ»—/_þ½÷ÞKLL¼{÷îÅ‹ß}÷Ý .ôéÓÇê}éò«ÔÏÁûÏrss _éæãã#íSÔºfÍšAƒ 4H×øê«¯¾óÎ;F~nhýú)MhýúB‘"BCC·mÛVüâÁéééJï*wáÂ¥K€!Š:q\àœJþCܵkW¥ T Žò¥Ó+V4h—ç÷—gm-,''çý÷ß¿sçN£F7nœ™™¹wïÞ7>õÔS:u2æsSRR„F#Ïð¤šR§zb6»2ÀNV!Š:q\à„Jþ±/üw¼È{|;޾¾¾&77× ýöíÛâï~ÇÂ&Mšôÿ÷S¦L¿¡^½zJo€2?8öéÓÇÅÅå“O>‘ÏkB¬X±âúõë½zõrww—[îܹ“žž._Kèéé~îܹ>úH7Cø™3g–.]Z®\9ÕNÊ`k~qŒ"((hâĉóæÍ{î¹çÚ·oîܹ¤¤¤F 6L·L||üÛo¿²yóf!ÄìÙ³{÷î½téÒ-[¶4lØ033óÿþïÿ´Zí´iÓêÖ­«ô(Ãñƒ£bÈ!U«Vݸqã–-[_}õÕ±cÇÊ3òÉÏÏoË–-Ÿ}öÙÞ½{ýõ×Ê•+wèÐaĈ7VzS£18“– •çqïÛR§ãÑ[6‘žžÎÔtjÃAQ'EŽË__›vB«ÕnÚ´É ÑÝÝ=::ZéÒ`&3~íë‡ÖŠœ¢ÇQýä «ÉŽ ~<èÑ£‡A£¯¯oVV–u?(<<<**jÆŒJoñCÇŽ{ï½÷âããoß¾ýøã÷ë×ï­·ÞrsS>KdggOž"--­cÇŽÛ¶mëÚµë¸qãÊ•+7nܸ>}ú(]—ÈÉÉiÑ¢ÅW_}Õ¾}û¡C‡ž={¶k×®GŽQº.Ǥü¿°/;vìX»vmZZZõêÕ­»æüüü]»výöÛoK—.ÕÍì¡ãÆËÎÎNJJjÙ²¥bæÌ™C‡]¹råöíÛ»téRò{óòò„åÊ•³Ea‹-JMM]µjÕÀ…cÆŒiÞ¼ùøñãwíÚ¥ô>s@ô8`š„„„   ZµjY}Í™™™]ºt‰5ï~ìÞ½{@@€æQºéç,±k×®ððp95ÊÞ|óM!Dbbb©ï ŠŠÒo‰Õ_•%¾ùæ›ÀÀÀÈOëÔ©Ó»wïøøøK—.YeýÐGpÀ45kÖ¼|ùòÙ³g­¾fyìûÔ©S¦¾wçέ[·>~üøàÁƒgÍšÕ¬Y3!D³fÍ&L˜0nÜ8 ËÏÏ5j”œuÎ;'„ððð0c…‡²|åääœ>}:""B£w¶ÈÈH­V›””dùúa€¡jµàú° XµjU‡&OžÜ¤I__ß   ªU«*XÒ½{÷¸ÿþ€€!Äĉ;uê”’’2}úôJ•*Y¸~77·¹sçê·Ü¸qcîܹ®®®½{÷Vpï\¹"I’Á=„«U«&ls—`0§§ç¬Y³FŒ1zôh¹eáÂ…ãÇ7X,??ÿ§Ÿ~*n%Ï?ÿ¼KJHH¸xñâÌ™3åÔ(„ððð˜4iRLL̆  dÝÚ~ýõ××_=55uÙ²e!!!VÜS ËÍÍBx{{ë7úøø!233­XdDz ©Ô©…i,_…¹JøÊž={vllì´iÓú÷ï_»vm—¢ÏûºsçNá‰{®ßªcLBˆ'Ÿ|R¿±I“&Bˆääd+Övþüù7ß|sÓ¦M!!!;wŒ4²Â‚‚ý§Å]úcja~~~Bˆ[·né7æää!ªT©b =G€z©ðÜÓ§O_°`Aá.F>>>ev— OOO!D~~¾~£Ί̵æÕ¶nݺáÇ{yy-_¾|È!&Íàxÿþ}ý§wïÞµÊNó÷÷wqq1•¾~ýºÂê×¼C0Ibb¢$Iש,‡ªåñâ“'Oê7Ê}¡¡¡V©mÓ¦Mýû÷ñÅ?ûì3ƒ¡ac\¼xQÿiq—<›Z˜››[Æ ô÷ìÙ£Ñh5jd­Ý ‚#&/"þþûï›6mZò’e9TݬY³zõê}úé§£FòõõBäåå-X°ÀËË«{÷î–×&IÒ¤I“jÖ¬¹fÍWWW3*¼|ùòæÍ›åbÒÒÒŽ=j­6lذ1cÆèV~õêÕ¸¸¸N:qSS[ 8ªV€úuïÞ½qãÆ3gÎLNNîÖ­[`` ··wXX˜———Á’Vª^·nÝÈ‘#¼hÑ"ƒ—ÜÝÝ—,YÒ³gϦM›>ÜÕÕ5..îСC}ô‘ÁÇæÕvòäÉS§N5hÐàµ×^3xé…^ˆ‰‰)¡6™››[ß¾}cbb´ZíæÍ›‹›ÄÇŒ6hР•+Wöë×OÍ«V­ÊÍ͵➇Á”+Wnß¾}sæÌÙ±cÇ„ ²³³…*THHH§N´¼¼¼›7owv`tttRRÒŒ3–.]zïÞ½¦M›nݺµÔ{º)55UqòäIƒÑp!D½zõbbbJ®MѺuëgŸ}vùòåùùùÆ óööž5k–UjóööŽŸ8qb\\\VVV›6mÖ®]f••À¦ÌÎÛu¡¡¡)))‡F^UM£¤§§3f¡6uRä¸üõµiŸ Ž=ÚªU«™3gN:ÕÖ÷Å_$''øá‡Jo·iµרQÃàLDõ0ã'Юh-Ác0Ÿ««k½zõ$I’Ï,´©{÷îíÞ½ÛÖýšŽW¬ˆà€E~øáI’ÚµkgëJLLlРÁ+¯¼¢ôÛYm°"ÎqT®»Ó¶mÛyóæL¾m Jo®9µ1ÂŒ| BG,R·nÝI“&)]…ª±CÕ0 ÁF!8À(Ç2" I#4F-) Q ”)‚#ŒBp€QŽ0 ÁF!8ª×Ç"8À(ÜrhµÚM›64º»»GGG+]`sGLðàÁƒ=z4úúúfeeYeåžžžú~~~×®]Sz»…âØ±cï½÷^||üíÛ·üñ~ýú½õÖ[nnÊg‰ìììÉ“'oÙ²åÆÍš5›?þSO=¥tQŽIùƒ €ñðð(((4hйsçþóŸÿT¯^ÝŠ+OOO/((xúé§ëÔ©£kôòòRz£…"--­cÇŽ={ö|ì±ÇvîÜ9nܸ={ö|ÿý÷Ê–““Ó¢E‹óçÏ÷îÝÛÏÏ/..®k×®»wï SzŸ9 ‚£JÉ×ÇH’Òu Ù±cÇÚµkÓÒÒ¬›…©©©Bˆ™3gFEE)½•†Æ—””Ô²eK¹È¡C‡®\¹rûöí]ºt)ù½yyyBˆråÊÙ¢°E‹¥¦¦®ZµjàÀBˆ1cÆ4oÞ|üøñ»víRzŸ9 .ŽÀ4 AAAµjÕ²úšåàX¯^=óÞ~ðàÁîÝ»håîînym»ví —S£ìÍ7ßB$&&–úÞÐÐPƒ(«¿*K|óÍ7 ŸÖ©S§wïÞñññ—.]²Êú¡GLS³fÍË—/Ÿ={¶nݺÖ]sjjª‡‡G¥J•¾ûî»7n4jÔ¨U«VFvÔíܹ³sçÎ5kÖ}z©KÞ¼yÓ¤¿¿W®\)_¾|ûöíóòòä–‚‚‚¾}ûº¹¹8q¢äÏÊËË«W¯^```VV–Ürÿþýððp//¯Ë—/[^›V«}üñÇk×®ŸŸoÆN«]»¶bÓ¦MòÓ³gÏʳš[^˜$IK–,Ñ_ù•+Wüýý;wîl|yfüÚ×­Ñã¨jôZ€ÚtïÞ½qãÆ3gÎLNNîÖ­[`` ··wXXXáû»˜:êZ­ZµØØØÉ“'‡„„tëÖÍ××wûöíGŽ™3gNÆ …ëÖ­9räàÁƒ-Zdð^ww÷%K–ôìÙ³iӦÇwuu‹‹;tèÐG}dpűyµiÒ¤ºuëΟ?ÿ믿._¾|“&M¶nÝÚµkWùÕ¼¼¼›7owv`tttRRÒŒ3–.]zïÞ½¦M›nݺµÔ{ºIž™üäÉ“£áBˆzõêÅÄÄ”\›¢uëÖÏ>ûìòåËóóó‡ æíí=kÖ,«Ôæíí?qâĸ¸¸¬¬¬6mÚ¬]»–û ÚˆÆÔ\R…††¦¤¤! ÷š1#=ŽV‘žž¬txE9.¿6íPAAÁÑ£G[µj5sæÌ©S§Úúã¾øâ‹äää?üPéí6­¶ààà5jœ‰¨füÚõ­%¸å æsuu­W¯ž$I¾¾¾¶þ¬{÷îíÞ½Ûò~Mg« VDpÀ"?üðƒ$IíÚµ³õ%&&6hÐà•W^Qz‹í¬6Xç8ª×ǀʵmÛvÞ¼y“oÛBDDDDD„Ò›kNm#FŒ0c¨Á‹Ô­[wÒ¤IJW¡jì‡ÁPu™’„¤QøZf"8À(G…àhäëc”Ep€QŽ0 ÁF!8ÚNsŠ#8À(G…[`­V»iÓ&ƒFww÷èèh¥KlŽG»ÁiŽ <èQH¿~ý¬µþcÇŽ½ôÒK^^^-Z´X¼xq~~¾îÕììì7Þxã±Çóòò OJJRz[¹‚Ô¼Óì=ŽeM¾]µ$$¥ ˜ÃÃã  `РAçÎûÏþS½zu+®<--­cÇŽ={ö|ì±ÇvîÜ9nܸ={ö|ÿý÷Bˆœœœ-Zœ?¾wïÞ~~~qqq]»vݽ{wXX˜Ò{¥”ʤæf—$X[ýúõÿzTÌî’™»Ãe¶´´4¥K€!Š:)r\~mÚ‰mÛ¶¹¸¸dddX}ÍÏ?ÿ¼‹‹Ët-C† BlÛ¶M’¤3f!V­Z%¿töìY__߈ˆ¥÷Gé•—ìþýû÷ïß·QaÆì43~íî‡ÖZªÀ4 AAAµjÕ²úšwíÚÞ²eK]Ë›o¾)„HLLB|óÍ7 _ªS§NïÞ½ããã/]ºdÌÊ<ؽ{÷€€Í£ÜÝÝm]yÉBCC£¢¢ô[bccõWe w 0MÍš5/_¾|öìYë®6??Ô¨QrÞÒ9wîœÂÃÃ#''çôéÓ½Þ###µZ­1'ííܹ³uëÖÇFâôHPÔ€V­ZÕ¡C‡É“'7iÒÄ××7((¨jÕª®ÖÍÍmîܹú-7nܘ;w®««kïÞ½¯\¹"I’¿¿¿þÕªUB\»v­ä5ß»woàÀû÷ïBLœ8±S§N)))Ó§O¯T©’M+·æ®7‘%; E"8`OOÏY³f1bôèÑrËÂ… Ço°X~~þO?ýTÜJžþù’?å×_}ýõ×SSS—-[òûï¿ !¼½½õ—ñññBdff–¼ª„„„‹/Μ9SNBI“&ÅÄÄlذaРA6­ÜŠ{ÞÔÂrssÍÞi(Á RE'!“Šß™={vllì´iÓú÷ï_»vm—¢ÏûºsçN=ÌXÿùóçß|óÍM›6…„„ìܹ322Ráçç'„¸uë–þ’999Bˆ*Uª”¼-Bˆ'Ÿ|R¿±I“&Bˆääd[WnŒ‚‚ý§Z­Ö*»Ô’†"*%©òÔœŒŒŒéÓ§/X° p£36aݺuÇ÷òòZ¾|ù!CÜÜþúKíïïïââb0Àzýúu!D©Syzz ! fU”ÃY‘©×º•ãþýûúOïÞ½k•]jÉNC‘Žv†Ó@Y‰‰‰’$\\$3|7mÚÔ¿ÿ_|ñ³Ï>3`usskذaBB‚~ãž={4M£FJ®D/>yò¤~£Ü×jëÊqñâEý§Å]òlja–ì4Méù€íæq,q­( SªE˜Ç±T6lBLŸ>½Ô%oÞ¼iÒß_­Vûøã×®];??¿È.Y²D±iÓ&ùé•+Wüýý;wî\j%yyyõêÕ ÌÊÊ’[îß¿îååuùòå2¨¼dµk×Öß®³gÏzyyùA¦fäNcGãi$:¯¬-444%%EQ\ß …wŽ¡ÇÑ éééÁÁÁJWGpPÔI‘ãòðkÓäååµhÑâøñã/¼ðB·nݽ½½ÃÂÂä¬c‰ÿýï5jРAëÖ­ ^zá…bbbrrrÂÃÃÓÓÓGåëë»jÕª .üüóÏO=õ”bݺu#GŽ|¸««k\\Ü¡C‡>úè#ƒ9tlTyɵ_¸pÁÃÃ#&&F«ÕnÞ¼ÙÃÃCθ–×VòN“™ñh_?´VÄPµ¸ë دråÊíÛ·oΜ9;vì˜0aBvv¶¢B… òäˆfKMMBœ)µò’kB´nÝúÙgŸ]¾|y~~þ°aü½½gÍše•ÚJÞi0=ŽÖWj£ Ó±Ìѹ¥Bu¢ÇÑTGmÕªÕÌ™3§Nªl1_|ñErrò‡~¨ô^1­¶ààà5jœ‰X–èq4wŽÀ|®®®õêÕ“$É××WÙJîÝ»·{÷n {=°6˜„à€E~øáI’Úµk§l‰‰‰ 4xå•W”ÞvVLÂ9ŽX¤mÛ¶óæÍ3˜^»ìEDDDDD(½3Ì©mĈfÌàEí³9€zÔ­[wÒ¤IJWaÇØ{v„¡j…àhKrÇ €C 8À(G{Eo&(cGeÈ7Qº `‚#ŒBp´cœæÊ€”ªt JGp(,%%EéT-===88Xé*!ª€‘ŽöÓ@™!8À(G…à¨n싳\UýÝwß­_¿>55µB… :t˜8qbåÊ•K~ËñãÇ—/_~âĉ۷o‡††¾õÖ[­[·Vz;Š Ÿæ(IJ×Sô8.^¼xÚ´igÏžmÙ²¥——׆ ^ýõ»wï–ð–]»v½üòË»víªV­ZXXØ‘#G °k×.¥7@1ŽSRRV¬Xáïï¿mÛ¶+Vlß¾}À€ÇŽ[¸paqoÉÎΞÐß߿ȷT«VÍÝÝ]óè…Êòu~~¾Ò  ÇŽQQQ ºI’âãã+W®Vä["""rrrNŸ>­ß(ÏÝóøã+½AÅbR`SŽûôéãââòÉ'ŸÈç5 !V¬Xqýúõ^½z¹»»Ë-wîÜIOO×]¶Ö³gO!Ä´iÓt—]?~üË/¿ôññéÔ©“Ò  ¿ªZ4qâÄyóæ=÷ÜsíÛ·?wî\RRR£F† ¦[&>>þí·ß Ù¼y³¢AƒãÆ[´hQ×®][´h‘››{ðàAFóÞ{ïýãÿPzƒ”áøÁQ1dȪU«nܸqË–-¯¾úêØ±cåyŠ3|øp??¿Õ«WÿöÛo•+WŽŠŠzë­·BBB”Þ”RÈ£ÕLÊlA#‘2¬-44TÇ’sœFh$aÍC@p,Rzz:³ © E8.*ÄAQ¡GþÖ;Ç?ÇVAp´1.uŽ‚à¨0«ÏNR6Bp€QŽ0 ÁÑ1Z là£`‚#Œ¢®àøÁ¤¦¦*]…#à4G`uê Ž+V¬xöÙg{õêµfÍš7n(]N±úT޶ ®à8|øðêÕ«'''Ïž=»}ûö#FŒØ¾}{^^žÒu@¸)]À#Æ÷öÛo>|xÓ¦M[·nݵk×®]»¼½½Ÿ}öÙ=z4mÚTéí‰##cõêÕJ×à¤Ô8àêê:gΜ *è·»ººNŸ>½B… Û·oWºF£=2¸4ôèû¦®àxòäÉààà"¯ƒñòòªS§Î¹sç”®±Œ”ý«­%SWpôññ¹sçNq¯feeUªTIéÍ÷h$€QWplذá¥K—мgÌÉ“'ÿüóÏ (]£#£Ó”@]Áñ¥—^Òh4ãÇ?qâ„~û‰'ÆŽ+„èÑ£‡Ò5Z„NG`¿Ô5cÛ¶m_{íµÏ?ÿü…^¨S§ŽbçοýöÛÙ³gµZmÏž=»té¢t¦(jîoævJ]ÁQ1a„æÍ›Ï›7/--MñçŸ !ªV­:nÜ8ý™a#Ü~GuÁQ‘•••–––——W§N¥‹²&#;ËøŽÕ%Scp”U®\¹yóæJWáŒètER88®]»ÖÔ·ôë×OÙš­‚3€ÝQ88Μ9ÓÔ·Økp¤Ø9…ƒ£<ÉŽ¾“'Onß¾ÝÕÕµ]»vµk×vuuMOOOHHÈÏÏ |çw”-ØdÅw-ª¹Ó‘” S88Ž1Bÿéùóç׬Yúé§ŸÖ¬YS×þ矾ùæ›ÿûßÿ6mÚÔ¹sgek¶"5gGêš|Ù²e™™™ü±~jBT¯^ý£>BüüóÏׯ_WºÌ²Söw¬~øÑÜE(ŽàX†L9ÍQètÀ™UM…ÖÀimE’$5zçÔ–étÀi`g Žß}÷]Ÿ>}ÂÂÂÚ¶mûÎ;ïdeeÿÞ‹/6oÞ|âĉÖ(ÄœK\äNGõ\C§#ÎÉ)‚ãâÅ‹§M›vöìÙ–-[zyymذáõ×_¿{÷®1ï•$iòäÉ·oßVvÔ6` œãÇ”””+VøûûoÛ¶mÅŠÛ·o0`À±cÇ.\hÌÛW­ZuàÀ¥7BuètÀ 9~p\¿~½V«;vlµjÕä–)S¦øøølݺU«Õ–üÞ3gÎ,^¼øñÇWz#„øk"ûžÍØ5ÇŽtqq騱£®ÅÕÕ5<<<33óðáÃ%¼1??Ò¤I•+Wž2eŠ5 ²`ÔYUÖt:àl<8J’”ššZ¥J•*Uªè·×¯__ñÇ”ðÞ?þøäÉ“sçÎõööVz;”ç¦t¶•››[PPàëëkÐîãã#„¸qãFqoýôÓ'Nœ0õsCCC lÛ¶M,Dzzz°NOO7s“‚ëh„”föÛ­*-Mh4Áiiª(¦d.\Pºâ ¨ÇE…8(ŠëÚµ«Ò%¨…ƒGùÒéŠ+´{yy !²³³‹{פI“jÖ¬9~üxó>7%%E¡Ñhäú‚ƒƒuÿ7$„&8X=g;Z²-Ôéä8(êÄqQ!в ÿ5×u 9޾¾¾&77× ]ž^Gîw,lÞ¼y.\X·n§§§• ’O ”$ybFóW#,\õ78<?ÇÑÍÍÍÇǧpÏbNNŽBwµ¾¬[·nøðáO>ù¤ÒåA=Ó€gãàÁQáï™)'EùCÿÂËŸ9sF±téÒп½ð Bˆü144´{÷îJoÐ_Ôs…5—Wà$|¨Z•’’’ðì³ÏÊ-’$ÅÇÇW®\9,,¬ðòµjÕÒ-)ËÎÎÞ»woPPPXXX@@€ñ-I’F£‘l6Ž«žkà ?8öéÓç³Ï>ûä“O:tè _³bÅŠëׯ¿öÚkîîîò2wîܹzõª»»{5Úµk×®];ý5œ8qbïÞ½-Z´X°`ÕʲRèSIväLGœãÇ   ‰'Λ7ï¹çžkß¾ý¹sç’’’5j4lØ0Ý2ññño¿ývHHÈæÍ›•®·tòiŽ’òq8ÇŽBˆ!C†T­ZuãÆ[¶l |õÕWÇŽ+÷>::@ÙpŠà(„ˆ‰‰‰‰‰)îÕèèèèèèâ^mÔ¨Qá œTE%Ù86Ç¿ªZ½¬z]´.²æòjÁÑ.1›#({GÇA§#°)‚£¢¬õÈŽÀvŽŽF Ù8$‚c™³RœšOs¤Ó‡Dpt@t:[ 8Ú–|»ê—°IÊS<;Òé€ã!8:,ų#p0G;VêiŽÊfG:p0GpܾA²#Ž„àèà7”€²Fp´oÆLÊÀ5° ‚£:Ø8ÜÑï,Gpt fG:p G'Bv– 8*¡Èen¬3éÞƒŒY³QFètÀÞm®ô»–q=t:³Õ¤LF«-ø‹·NGìÁÑI‘€©ŽÎ‹1k`‚£Ê”mšS$;Òé€"8:SOsÔ{#Ù…àƬ€QŽê£DŽ+ûϤÓ»CptfVÿýv²#( ÁQ!ª MŒY€Ë‚É7qš§Êü ŠFpt(ŽV ¬@ñŽ0ä4ÝÀ4GµR4¾•ñ‡Óé€] 8:ËG«ÿ^Ù<‚à¨bJ+ýù@]Ž(IYfG:P9‚£²Öhõßk#;!Že¦ˆ©IIê-VG@aG¥Ì²#ލÁQõÌŠlÖ­¶ ³>ˆì€*a9;–A¨#; BG‡e‹NG!„Ä)8+‚£=P_R+ƒŠèt@mŽ0ÙgCp´ª¹DÆâ¢Lü²#ªAp,;fNå¨nêE¶Bp´jÍh¶®ËþÓ5‚àèàl=Zý÷§p|GXÙ‡Gp´+ª¼DƲêLY?ÙEaMevkPöŽöF­—Èèh»ét@AÇ2¥ÔŒrÍ¥Ö 8:gºÂº¸­7rp©5úŽÊ+b6G›¤3Xëo½©ñ‘ì€ 8ªTDçÎŽÂÄøÈ°5Ây®ªþî»ïÖ¯_ŸššZ¡B…:Lœ8±råÊ%,÷îÝo¿ý6..îÂ… •*Uª_¿þ!CÚ¶m«ôvX•)YËÙQr¸K²åíÑè=.vIIÁÕÖ§æÁqñâÅŸ}öYÅŠ[¶lyîܹ 6œ9sfõêÕžžžE.ŸŸŸ?hР£Gúøø´iÓæÞ½{û÷ïß»wïèÑ£G¥ôÖÀúLŠdG€Órü¡ê”””+VøûûoÛ¶mÅŠÛ·o0`À±cÇ.\XÜ[Ö¯_ôèÑæÍ›ÇÇÇ/[¶ì«¯¾úþûï}}}?ýôÓ“'OÚ¢HNsüëƒ}ÀÚ`g³?¶8-ÇŽëׯ×jµcÇŽ­V­šÜ2eÊŸ­[·jµÚ"ß²mÛ6!ÄÔ©Su]’!!!o¼ñFAAÁ¾}ûʨî2»"ƒìh¸¥ŸøÈÕÖçäøÁñàÁƒ...;vÔµ¸ºº†‡‡gff>|¸È·¤§§W¬X±Q£Fú!!!Bˆ?þøCé ²²£á6ÉŽ§âàç8J’”ššZ¥J•*Uªè·×¯__ñÇ´hÑ¢ð»–/_îæf¸gNœ8!„¨Y³¦ÒÛd£=åŒw#,™1'>ê²#g=œƒÇÜÜÜ‚‚___ƒv!Ä7Š|WÆ Z’’’V¬XáááÑ£Gc>744Ô Eþ.AZZšF£IKKÓµ ‘žž^v;+Mk‚ÓÓJÿÄ4‘¦ Ö¤¥§±Rµ¸pႹ{E!4ÁÁBˆ´¢‡|Ä4šà4#vô™}P`Sâ (®k×®J— ïÞ½+„¨X±¢A»———";;»Ô5¬]»vþüù|🟟1Ÿ›’’b^ÁÁÁÁŸHRp_Á+‰`M°1ýŽ’4Áv6;Ï#ûÖä#Äßñ±Èm–$¡ÑÓïh*K l‡ã¢Beþ³^¸‡ÈI8xpôõõÕh4¹¹¹í·oß÷;–`ÿþý±±±gÏž œ3gÎÓO?­ôÙžÑcÖŽ:³c‰›,Dñƒ× [žƒG777ŸÂ=‹999BÝuÖ…ååå-X°`Íš5åË—ë­·†ZܤV$OÊ#)ž;ÈŽ¥lµÅÄG& 86ŽBÿÔÔÔœœooo]£|î ¿¿‘oÑjµãÇÿù矟yæ™3f”/mŽù¦ÕJ?>ŠG$]GåøÓñDEE$$$èZ$IН\¹rXXX‘oY³fÍÏ?ÿüÊ+¯|úé§J¦F=A3ÌÎSâæ=w=’ãÇ>}ú¸¸¸|òÉ'òyBˆ+V\¿~½W¯^îîîrË;wÒÓÓåËÖ$Iúúë¯+Uª4yò䲯V±[ÈQ ÙÑÅÅGî1p$Ž?T4qâÄyóæ=÷ÜsíÛ·?wî\RRR£F† ¦[&>>þí·ß Ù¼yóµk×Ο?ïééÙ¯_¿Âkëٳ端¾ªô6•ɸû7;ëÉŽEí!Ýgº³#×ûçøÁQ1dȪU«nܸqË–-¯¾úêØ±cåy “ûïÞ½›œœ\øU.¬Vö4G]";­„øHvØ5§ŽBˆ˜˜˜˜˜˜â^ŽŽŽŽŽ–7kÖÌìY­B-×V?RÙÑd…¯žá¢€½süsaÆòÈùŽ ®žá¢€]#8Ú•d ²£ â#ÍìÁQTtmµaedG‹èâ£üˆø°/G;¡’NGAv´Ýøµ.>`Ž0ÙÑJtñQc줙(‰à¨Rê­þ«>²£ÕwûÔ†àh?Ô3ZýW=F%²£ñôã#»  BGõR{§£Ð¿Ö£ä¥ÈŽ&øküZC|¨Á#;Ú€$=Ùw5 8ÚµV?,ÌØìH|4‰ô÷Ð5CØ5 8ªšŒV?¬µô\# ‰®GS=¼ÙŒ†kh s–{U;9D¨ónǺÛ3K%/Å-­M&pý[]ë߀²ApT;¹ÓQRgR,ºâ¿CTÂ"dGsŽ‚ (CG;¤æNÇ¿*B”ÒõHv4›A|ÔíA$ÀÖŽvÀþ:ÿªÛ¨ì(?PºVûS¸÷‘ °5‚#l©´akÝœ3dGó9xM‚ØWUÛÃË«U;/O¥—>Y—Z[HwåµüßÃvîF°*zQ&ŒèzdØÚB/—y´RÐ °zí†w:þUp)]Ìòh-ú†/Ñ °=Ž([t=–•"O|øêßèƒàhO /¯Vÿ¼ÜZ!ñQ1–$HQdˆ „H°+Ln÷mJðÒ7¸èiÃu³…3a¸­É³ˆë&7ãÇM>†iééúsŒsØ@ýèq„}¢÷Q,ìƒüë-z5Å¿P‚£#p®ëG¶\QÄE¼ÄÇ2f•) %EN‹µa¨ÚA8Ý€õ#_ôø5ƒ×eÏòQìGÖVÔ]³9–  z‡óö;>ÜBÃñë¿zƒé},SÖêƒ|¸B½ÇŒh€Rèqt(NÝïøp«í¡B‘–ž¦ë}¤²,Y·ò¯ußÉ¡›¢ÇÑÑö;:­G'¡ÁBzØãÈée¯p¤ÁVù9åÌH(3ô8::çìt|d!‰ô´týþ(NT®2--ÝŠÝ×Og$Ø =Žˆ“‹Vèlý‹¯J(ªÒš?ª%tF ú#ÀtGÇDv,V¡û(ëöã× ÒÿÙ´Öõ4E|Ê£O5¥-0@ptXdÇR“ é€Tœ­»!®³P ]’P2‚£##;åÑ©»„†©¸"»!…mBä_k~ô)9 œn‚ž¿â#Ù±$H+û)Ú€BŽŽï¯X]×#Ù±T…¤B"Aª…"!R1´-ˆ’ÁÑY<2l­›£‡øX²GoWB‚T!¥Bä_ŸR¨…( À±ˆav‚®GèuC’ ÕIÙù×gj!Jp$GçÂå2VP8A ¡‘HêR\ˆeÞÏN”àHŽN‡Ëe¬FoŸIš‡OäI‚TƒŸnes¤ J°gGgTôå2‚S-@ˆ´%äH¥~Œ‰’‚4 @ŽÎë‘®GNy´"B¤]QÏ ö#]T#i€âŽN™zl®øI‚T!µ j–WT#i@Y"8¢P×#ÃÖ6RLˆ4x ê¡òùWE5’&ØÁBt=ꆭ…jþ6:žâïIBg¤j•œ#…š~]ŒO“‚@ ÀG<ÄYŠ¡3ÒþÍPg—äÃzŠi7 ”ÁÁ%/À™¹(]ÔE’$9>jt=ŽM]+°éÑÿ4þ“ÿÁ¥ûOþÕÑÿO ~âÒÒÓ‹üÑãg€ ÇEÒ\ë3r­ýk~åqì‪”Ú%)Ôý+el¥oà0Ž(ñQm¤G'ó‘oxÈж±÷(ùW…Å¿Äi”€Ã#8¢ÄGÕÒÝ2[VtŽüÑV5c¢¤°Ÿß63:)?¡€]!8Â(ÄGõ+2G ¢¤½)òWÊ;&©¶ÄWûìÁ& >Ú‘‡£ÚDIûç`“†eÿ]•€Úa2ýøø×Sâ£=0ˆ’½?ÊEDIÁŸeU3²c²„…í‚Ù]•¥¾€yŽ0“ô÷ߢ‡º¿ZöûgÊ™üNؘñß:ééé%ÜCÜ•£H¥î¿P¥+T ÁND*ê«´È4)äo ¾z¡&¥L™%YSþW–¼KІu™úmdÞ ê|ç¡TG8;©˜oJM17¯ ‡êgQÖ ~¸ó?Îò›–ðfó¾¢Ì¾a߈΃à­¤@)Šý~¥ŸvªˆG£i çDS~ ŠŽ¹Öº_¿Ž¦0ûÛËÂ[Dò­iGŽ€i¤¿á4¥ÝdWâ ÇŒN}š"C¢é«´mµ 0g`á›UnMΗkÙ 8ÖTj.ÔñI¸„S±0wêX+€–R˜Õ“¨5JµwVùγJú´b=ŽŠà”)cB¡1áÒÈUÎÃZTÇêI´”R‹ÿ½x©»5>ÛQYñјïàúÎ:ÁP#¡‘ùÒÔÕY=‰êØ.’–¾ ¶ë1-±ûbÌ—e¨³ÎÇCpì•iAP£15hšó)Œ`j$5ãŠ%™…×-YmëI«e¾áN‚à8ó ¹qÓòO`9Ûuš–@‘´Zúæ[=¼2T †, }'NË£§UÊP6I«E2òÞñæ©ê¤É‘àÀ6þyÅ}]›0úfƒ ZT½jùkÀ*laCõ¦ƒGªWZ5Ÿ^µi*-j›È©ìÁ€ÓKo6ÏqÓ2ΩFì ‚,€Ò L<šÌŽi…b«Ú‚¬IH½@™!8ë»ï¾[¿~}jjj… :tè0qâÄÊ•++]ÌÔµk×””¥«À#8(J*”´tÏCCCUz\жvz­‚èŒ2Cp,ÚâÅ‹?û쳊+¶lÙòܹs6l8sæÌêÕ«===•. œRñÙÈñCSiɘè\öê;ë­cŽEHIIY±b…¿¿\\\µjÕ„ï½÷ÞêÕ«.\øî»ï*]À¹„Ö¯_r7°ãGç²aJþvÒkª…pQº5Z¿~½V«;v¬œ…S¦LñññÙºu«V«Uº:`’dÂΊàX„ƒº¸¸tìØQ×âêêž™™yøða¥«PÁÑ$I©©©UªT©R¥Š~»|6Ãü¡tÊàGC¹¹¹¾¾¾í>>>Bˆ7n³’ÐP§=ùA½8(*ÄAQ'Ž‹ qP GCwïÞBT¬XÑ ÝËËK‘]êT:“€eª6äëë«Ñhrss Úoß¾-þîwpBGCnnn>>>…{srr„ºë¬œ Á±þþþ™™™rRÔIOO—_Rº:e‹UPP k‘$)>>¾råÊaaaJW  ‚cúôéãââòÉ'ŸÈç5 !V¬Xqýúõ^½z¹»»+]€24ܽH+W®œ7o^õêÕÛ·oîܹ¤¤¤† ®\¹²ð4=N‚àX¬M›6mܸñرc­Zµ;v¬<#€s"8À(œã£`‚#ŒBp€QŽ0 ÁF!8À(nJà8¾ûî»õë×§¦¦V¨P¡C‡'N¬\¹²ÒEA!ÒÒÒºuë¶~ýú'Ÿ|RéZœÝÝ»w¿ýöÛ¸¸¸ .TªT©~ýúC† iÛ¶­Òu9»›7o~øá‡‡ºpáBÕªUŸx≷Þz«N:J×…¿\¼x1&&&22rÁ‚J×âÔz÷î}üøqƒF??¿}ûö)]ZÙ!8ZÇâÅ‹?û쳊+¶lÙòܹs6l8sæÌêÕ«===•. bÍš5J—!„ÈÏÏ4hÐÑ£G}||Ú´isïÞ½ýû÷ïÝ»wôèÑ£FRº:ç•““Ó½{÷k×®…„„DDD\ºtiË–-?ÿüó·ß~ûÄO(]„$I“'O¾}û¶Ò…@œ?ÞÓÓ³víÚúÎv/b‚£¤¤¤¬X±Âßß?..®ZµjBˆ÷Þ{oõêÕ .|÷Ýw•®Îyåääœ>}zÓ¦Mß|óÒµ@!Ö¯_ôèÑæÍ›ùå—ò¿©Îœ9óꫯ~úé§‘‘‘ 4Pº@'õñÇ_»ví7Þxûí·å–ÿþ÷¿ÿüç?gÏžÍZµêÀJW‘“““Ý­[·?üPéZ”Ä9ŽV°~ýz­V;vìX95 !¦L™âãã³uëV­V«tuÎ+&&¦_¿~üåSmÛ¶ !¦Nªë‰ yã7 œj Gm===GŒ¡kyá…Nœ8QPP tuÎîÌ™3‹/~üñÇ•.âüùóBƒîF'Dp´‚ƒº¸¸tìØQ×âêêž™™yøða¥«s^ï½÷ÞÒ¥K—.]úôÓO+] „"==½bÅŠ5Òo BüñÇJWç¼|}}###Ë—/¯ßèáá‘—————§tuN-??Ò¤I•+Wž2eŠÒµ@œ;wNQ«V-¥ QCÕ–’$)55µJ•*UªTÑo¯_¿¾â?þhÑ¢…Ò5:©víÚÉvïÞ­t-BˆåË—»¹~çœ8qBQ³fM¥«s^_ýµAËÁƒÏŸ?ß´iSÎÒVÖÇ|òäÉ•+Wz{{+] þ Ž—.]0`ÀÉ“'+T¨Ð°aÃ7ÞxÃÙ.»$8Z*77·   ð¹±>>>Bˆ7n(]   64hIJJZ±b…‡‡G=”®âÈ‘#6lHOO?räÈc=6oÞ<¥+rjGýüóÏ_}õÕ§Ÿ~Zþ÷”%Œ,Y²$88¸M›6þùçîÝ»ãããÿõ¯½øâ‹JWWvŽ–º{÷®¢bÅŠí^^^Bˆììl¥ Ô¨  `íÚµóçÏ/((øàƒüüü”®"%%%..N’$!D£FÊ•+§tEÎëîÝ»“&MªY³æøñã•®¹té’§§ç¸qã  ·üöÛoo¼ñÆœ9sÚµk¤te„s-åëë«Ñhrss Úå©ä~GúöïßóÞ{ïùùù}ùå—ÑÑÑJW!„èÛ·ïÉ“'÷îÝ;yòäíÛ·¿üòËL£”yóæ]¸paþüùœ- «V­:zô¨.5 !ž~úéþýûß½{wçÎJWWvŽ–rssóññ)ܳ˜““#„Ð]g @‘——÷Þ{ï 8ðâÅ‹o½õÖÖ­[¹tIU4MÕªU‡ òÒK/]¾|yûöíJWäŒ8°nݺáÇ;ÛÉsö¨U«VBˆÓ§O+]HÙa¨Ú üýýSSSsrrôÏ_NOO—_Rº:@-´ZíøñãþùçgžyfÆŒü³J Μ9³råÊðððnݺé·Ë¿_¹rEéÑ™3g„ò¤úí?þøã?þ²yóf¥kt:’$iµZFãâòH›«««¢R¥JJXvŽV•’’’ðì³ÏÊ-’$ÅÇÇW®\9,,LéêµX³fÍÏ?ÿüÊ+¯Ì˜1CéZðooïÿþ÷¿×®]3Žò”uÁÁÁJèŒjÕª¥ûk"ËÎÎÞ»woPPPXXX@@€Ò:£sçÎuéÒ¥U«V·";räˆ"44TéËÁÑ úôéóÙgŸ}òÉ':t¯‰Y±bÅõë×_{í5www¥«TA’¤¯¿þºR¥J“'OVº<äïïºwïÞ]»vEFFʧNZ»v­——WË–-•.еk×N7›˜ìĉ{÷îmÑ¢÷ªVJíÚµ›7o~àÀï¾û®OŸ>rã‘#GV®\Ô¥K¥ ,;G+ š8qâ¼yóž{î¹öíÛŸ;w.))©Q£FÆ Sº4@-®]»&ßæµ_¿~…_íٳ端¾ªtNjöìÙ¯¼òʈ#ÂÂÂjÔ¨qõêÕC‡ !æÏŸÏÕî€ÎôéÓ‡:mÚ´uëÖÕ©SçÏ?ÿyòd@@@çÎG%ßÔ€ìñÇÿþûï?øàƒÄÄÄ3gÎÔ¬Y³G£G Tº´2¥‘§ìJÆt<0 ÁF!8À(G…à£`‚#ŒBp€QŽ0 ÁF!8À(GÎeâĉ¡¡¡¿þú«Ò…ˆO>ù$44tíÚµJÆ"8À(nJN*""ÂÏϯyóæJÆ"8€25jÔ¨Q#¥«0T ªSPPðàÁ¥«CGöaÚ´i¡¡¡ ,0h?~üxhhèÓO?ŸŸ/„¸~ýú¢E‹¢££›5kÖ¬Y³gŸ}öý÷ß¿råJq«•¯•ILL4hoذáSO=¥ß²o߾ѣG?óÌ3-[¶0`À'Ÿ|bíþüóÏ3fDGG7mÚ´cÇŽ¯¿þúÁƒKØ¢Ï?ÿ\ÿâ¹’ .¬X±¢M›6O<ñD‹-úöí»sçÎâÖpäÈ‘† †‡‡ßºuK×xûöíŽ;6lØðرcJ4ކàÀ>ÄÄÄ!¶oßnоyóf!D=ÜÜÜ®_¿Þ¯_¿åË—_¼xñ±Ç«Q£ÆüñÕW_½üòËYYY–|úÂ… ‡º}ûöüüüjÕª:tèã?~õÕW333åΜ9óÍ7ßdffÖ­[W’¤øøøþýûïڵˤZ¾|ù|àîîÞ¦MŸ#GŽŒ5jëÖ­E.6tèÐ+W®Ì;W×8þüK—.9²I“&e}8:‚#ûвeËjÕªýñÇÿûßÿtZ­VU/¼ð‚bÆ ‘‘‘ûöíÛ¸qã?þ¸wïÞ–-[þù矿üò‹Ù½{÷îÏ?ÿ¼fÍšß}÷ݯ¿þúÓO?íÙ³§C‡G]¶l™¼ÌÂ… ïܹ3bĈß~ûmÆ ñññS§N•$iÉ’%&}Öúõë_ýõ„„„U«VíØ±cРABˆÕ«W·üèÑ£CBB6lØ „HLLüöÛo7n«[·®nk×®ýôÓO–|hVVVzzz:u ®€®P¡ÂÓO?}÷îÝääd!„œ\§L™ràÀùlKww÷1cƼõÖ[&}\·nÝôŸúøø¸ººJ’TÂ[6l8jԨ˗/?ÿüóþùçäÉ“k×®m«cÀ¹1»Ñ¨Q£Úµkgdd¤¤¤„††æççoÛ¶ÍÓÓ3::Z·ÌŸþ¹gÏžC‡ýñÇçÏŸ·ðÔF!DZZšüÿÐÐÐ"¸té’"66vìØ±èß¿ùòå6lغuëÎ;7lØÐ¤«Q£†E>|çÎ'NœhÕªÕË/¿lսؓ˜˜˜?þxÛ¶m¡¡¡ ÙÙÙ/¼ð‚n`zݺu³gÏÎÏÏì±ÇZ´hñÌ3Ï<ñÄééé3gÎ4éS t|yyyBˆêÕ«7è$„¨Q£Æwß}wäÈ‘={öìß¿?99ùðáÃË–-ëÝ»÷ìÙ³5‘]®\93vËíÛ·¯]»&„HKK»y󦯯¯ígDp`OtÁq̘1ò´nœúöíÛ³fÍ*W®ÜòåËÛµk§{ËåË—Mý”‹/jµZùq:u„*TxçwJ~—F£‘çBäåå%$$üóŸÿŒ‹‹‹ŒŒŒŠŠ²én™1cÆÕ«W›5kvøðá™3g.Z´È¦ÀiqŽ#{R«V­'žx"--íøñã¿üòK­ZµZ´h!¿tüøñ‚‚‚fÍšé§Fñ÷e+%3ÑÞ±c‡î±¿¿ÕªUÏž={âÄ ýe zõêÕ¾}ûëׯÿù矑‘‘/¾ø¢îÕråÊEEEÉWó\¸pÁ¦ûdÓ¦M[·níСÃêÕ«CBB~úé§Â“€UØù™©S§æææöîÝ[×îïï/„8uêÔõë×å–‚‚‚o¾ùæë¯¿Bܽ{·Èµ=öØcBˆ5kÖäææÊ-IIIºIvdãÆÓjµãÆ;yò¤ÜrûöíþóŸÉÉÉ5òóó ¼uëÖï¿ÿþÅ_èº*322öìÙ#„°é|Š—/_ž9sf¥J•fÍšåîî>wî\WWרØXËOî€Âª`g¢££çÍ›—’’âêêÚ£G]{:u¢¢¢~ùå—N:5oÞ\’¤”””¬¬¬~ýú­^½ú¿ÿýï­[·ä‰uôõèÑãßÿþ÷áÇ£¢¢6lxõêÕÔÔTŸ€€€û÷ïËËôìÙóÀßÿ}=ªW¯^¹rå´´´ÜÜÜÚµkË3o»¸¸¼óÎ;S¦LY°`Á—_~Y£FÜÜܳgÏJ’ôòË/‡……ÙhWH’4eÊ”œœœ9sæÈ¹¹qãÆƒ úòË/ccc?üðC¥GC#;S­ZµV­Z !Ú·o_­Z5ý—>øàƒÑ£GÉó;†‡‡oܸqêÔ©ýúõsuu-ò€5kÖüÏþóÌ3ϸ¸¸ìÝ»÷ôéÓÕ«WÿüóÏýüütËh4š÷ßÿ£>ŠŒŒÔjµÁÁÁãÆÛ¸qcåÊ•åezöìùïÿ»C‡žžž§NÊÍÍmÛ¶íÒ¥Kg̘a»]±fÍšÄÄÄvíÚéNôBŒ=ºV­Z[·nݶm›¢ €Ò”<=8;wîdffÖ¬YÓø‹ À©`†ª`‚#ŒBp€QŽ0 ÁF!8À(G…à£`”ÿ¢õØ’"ý*IEND®B`‚statistics-release-1.6.3/docs/assets/grpstats_101.png000066400000000000000000000424161456127120000225260ustar00rootroot00000000000000‰PNG  IHDRhŽ\­ADÕIDATxÚíÝ}\Tuþÿÿ÷p¡rå)WêJ– ¢)«h¢ Vk«åET¦«­Yê'-ZWSÓ²ýª›yUë5mh¢¸®Z¨EêŠbxIJb.^¦‚ "(2œßçÓùÌo†‹788 ó¸ßüƒyÏëÎ9ófæéyŸó¢(¨‰ƒµ7¶à)GH!8@ ÁRŽBpD­mÚ´éé§ŸnÛ¶­——Wxxø¢E‹ÊÊÊLjâããuU8räˆV¶k×®èèhOOÏiӦݾ}Ûd=}ô‘N§KNN¶öNK™;w®º P[V¯^­¶„……ÕvmÛ¶mû÷¿ÿýïÿûêÕ«Z㽬ð^Üãï­t_”Y³f©;8dÈ{_[aaáË/¿ÜªU+'''[·nY{ÿìÚ½ôÞZu É~nÙÎÜgNÖÞØ’ŠŠŠQ£F}öÙgZ˾}ûöíÛ—’’²k×.WWW­ýäÉ“5®-11qìØ±êL¢………?ýôSZZÚþó'§ÿí–·oßž={vhhh\\œµwÝ †^\\,„صkWll¬µ7‡}©…éÓ§ôÑGêÏêŽÃØ[?‡}"8¢–.]ª¦F‡˜˜GGÇï¿ÿþÎ;ûöí{ã7V¯^­UªÁÑÓÓÓÓÓÓd%Mš4B\½zõ7ÞP¥gÏžñññYYY‹/ÎÌÌ\ºtéo¼¡Vþãÿ¸páBbb¢N§³ö®×‘‡‡G`` Âßß¿a®°ÿ^µsçNõ‡ˆˆˆ!C†¨}ÖBï,I䔕•¹»»«ÝfÓ¦Mjã?þØ´iS!„³³óÙ³gÕÆ[·n©Qï£>ªjm›6mB¸¹¹åçç«-cÆŒBôïß_}xýúu//¯¨¨¨{Ùæ_~ùåöíÛ÷íÍ™3G=>øÃî}mÚÑÞµk×}Û…zÒð÷eæÌ™ê<Ø‚û»mÛ6kïîI­:†d?·lgî3®q„¬œœu¦sçÎÚ¥9¿ÿýï‡ &„¸{÷î×_­U*Š"„ ªjm§OŸV xàµ%<<\‘››«>œ?þõë×ß{ï=ÉÍ3¾lè×_1bD‹-Úµkçëëk²ãÊòòò·ß~»uëÖo¿ý¶Vpùòå×_=<<ÜÃÃ㡇6lXVV–ùo<{öìsÏ=×¢E ??¿¡C‡fffš×TuqÕ•+W^ýõ>}úèõúÀÀÀhGO1}útN§ qöïß_§Ó©×ÉUµÂ[·n½óÎ;=ö˜¯¯¯¯¯oÿþýg̘QTTTÕŽ_¿~}òäÉaaaݺu›7oÞÝ»w«9¼æ¿WrmÕì‹äÑ®êõz饗Ôöèèhãú/¾øBmwuuUQEEÅ—_~ݶmÛfÍšµmÛ6**êÓO?­~—…wïÞ]µjUß¾}ÜÝÝ»téò§?ýÉø"]sW¯^ÍËË«¨¨PÞ¸q#//¯¼¼¼Î¯T¥]´Ò⸸¸Ó§O1"00°uëÖÇ?vì˜"##ã¹çž |ࢣ£¿ÿþ{“5Ètx™cXçö /¨ ¾ð Zã“O>©6>ýôÓZcxx¸Ú¨e/™í¯ê¯&77wÈ!<ð@``à˜1c.^¼¨vWN7kÖ,óí¼víÚäÉ“»wïîîîÞ­[·O>ùDùí;{kìçU¹xñâŸþô§‡z( àÙgŸýᇴ§ÆŽ«nL›6mŒ¹pá‚vÉøñãÇÍ×YÛë£ÔØoaì\a3Ôs„Bˆ?þñÆíÚ;ìèÑ£Õ–Ï?ÿ\m9wîܦM›æÌ™“˜˜xìØ1óµ¹»»_»vMm7nœ"&&FQ” .¸ºº:T~ó´’˜˜˜‡zȤŸ3ƼrðàÁ£GVž9s¦úì·ß~ëëëk²¸N§ûË_þbüë233ýüüŒk<<<ž|òIõgíŒãªU«Ô–=zhËîܹÓÇÇÇüQ½âSQ”iÓ¦™?[\\\Õ 8`¾ËBˆ6mÚ¤§§›ïxTTTÇŽMŠãââª9¼æ¿WrmÕì‹äÑ®êõJMMUvvv.**Òê_zé%µ]ë?Ï>ûl¥ï~Ï<óL¥¿Em¹}ûvÏž=Í—ÒétË—/¯ê@ <Ø|‘“'OÖ핪´‹VÕó»uëÖ¢E ãÕ¶lÙòÃ?tvv6Ùþï¿ÿ^[\²Ã×êÖ¶ƒ%&&ª5>ø ÖزeKµÑßß_m¹{÷®‹‹‹Ú¨í‚ÌöWúW³wï^“ÃÕ®];m7µ£m¼S:t0ùE‹/–éçU½daaa&ýÁÙÙyÕªUjÙ®]»´ö#GŽh‹òÉ'jc‡*]­¬ Óoa»ŽuàÀõ $$ĸ}äÈ‘jûO<¡¶¨ÿÅÔét&£FÒ>à/_¾Ü¼ys!Dddä–-[Þ~ûmGGG!ÄÂ… E7nœ££ãO?ý$¿yÆg „>>>‘‘‘ÚÈ‘"55Õ¤²uëÖÚ³ê»[aa¡öq3{öìáÇ;8üï‰ù?þX]Ã;wÚ¶m«6:99=úè£êTšj‚£ñ¯ðôô6l˜ñ ³µk×*Š’ŸŸŸ››«Ýlôé§ŸæææVTTTºÂ’’í·7kÖì‰'žxòÉ'µeýüü´cnrˆÚ¶mÛ«W¯fÍši-¨êðV«_[5û"y´«z½ÊÊʼ¼¼Ô‡›7oÖ6U;Ÿþ¹¢(ëׯ×> cbbFÕ¹sgm=ß~û­ÉoÑ‚£ÖâââòôÓOOš4©W¯^Ú‹~âĉJT5Á±¯”y­¾ç;88tíÚÕÛÛÛd:vìØªU+íatt´yo¬æ%¨í1¬m;wîœVsùòeEQΜ9c¼ª‹/*ŠrèÐ!õ¡››Û;wä·ß¼÷–––¨Mš4 ךm“j×®]hh¨úf%„hÚ´©º%ÕôsÉ7+777õ¡££cvv¶¢(åååZ¤ûûßÿ®->|øpµñí·ß®týò ÖSé·°]GȺyó¦v¿ó—_~©68p@½ÆQ¦6VõS!Ä Aƒ´®Y³Æä®—^½zݽ{÷çŸvrr2>G(Ãø½xàÀê¥.\Vûôéc^Ù©S§uëÖeddœ>}ZQ”3f¨íÆÿ^ºt©Úø»ßýNmY¾|¹Úâáá‘‘‘¡6ÆÇÇk«­&8j¿¢mÛ¶W¯^5iŒŒŒÔ~o¥×K™¯ðÝwßU[š7o®}0=zT;›2mÚ4ó_ºt©ÚxâÄ í£½šiÕÇ×Vé¾Híj^¯?ÿùÏjû¸qãÔbõõ½°°Ð¸fòäÉÚoéÞ½»Úøþûï›ü-8öéÓGm™3g޶àc=f²Ë•ªtëöJ™ìrõ=ÿ«¯¾R¥¬¬,&&FküàƒE1 Ú¹Ø-ZÔê%¨í1¬CÓþN·nݪ(ʆ „ÚûÿÿýoEQÖ¬Y£>|òÉ'kµýæ½wñâÅj‹^¯ÏÊÊRÏØ±cµí¯48~øá‡jãºuë´ÆÃ‡WÿºWÿ’ 4H}³:{öìÃ?lÒ 'Nœ¨¶DDD¨-Z‡9~üxU¿BrÁúë5ö[Ø.‚#jaÒ¤IꛂN§ëÓ§Ott´ñí¢Z2{ä‘GÔ–_|ñôéÓê•CZÙÎ;µîر#22²yóæ;vœ>}ºú×´iSíV›ÂÂÂýû÷k÷ÐTE{ÏrrrÒ–UŒFØu:]ii©q¥««ë… ŒWòûßÿ^}jÇŽZcqq±v‚A÷éÛ·¯úpÆŒZÙ;w´èj‚£önkœ<.]ºÔ­[·nݺõêÕ«¼¼\m” ŽÚpªÉÿìçÍ›§¶wéÒÅäuîÜÙ¸R CS§N­êðVeÖVé¾Híj^/m´ºmÛ¶jKBB‚öy¬¶lß¾}ݺuëÖ­3îQÚ¹pó¬¦}fk›üñÇÿú믊¢üúë¯Ç?~üø¥K—ªé•îo^)ó]®¦çî\¹RmôôôÔÎ{}óÍ7ÚßH­^‚ÚÃ:t0-è¼õÖ[Š¢L:U= ê‰ÀY³f)ŠòÊ+¯¨5j–ß~óÞûè£ÿ:UII‰ö'l;vì¨Uÿ/zÆ Õ¿îÕ¼dÎÎÎçÎÓÚÕ¸,„hÒ¤‰ú>°gϵÅÑÑQ½ªçÇ4ßs’ ÖSé·°]܃Zx÷Ýw»ví*„PeïÞ½ß}÷]YY™öö¡×ëÕV®\ùý÷ßÿý÷kÖ¬i×®¿¿ÿ¼yó´YͶmÛ¦­ðñÇOOOW'qœ7o^Ó¦M<¸qãÆ‰'¶iÓ&??ÿùçŸ÷ôôìÕ«W‹-üñ³gÏÖ¸‘;w6¾$ü‰'žPPå—_~1® 5Ÿúù矵¥´«ÈÝÝÝ ƒÚ~êÔ)ã2m¢o!D“&Müñ7O»ûG;¡%„ðóó;tèСC‡222´·lI999&{ª[m›µ{5T&—Ui#›&e’ê¼6É£­1½bccÕÑê¼¼bĈ'Ÿ|rïÞ½ýë_ccc[·n}âĉ÷K;ž999/½ô’¿¿÷îÝ—.]zëÖ­“+\ëé•2ßåjFk×hçí´ÆÚ¾µ=†uèZ¸Ü¿¿B½Õ¬W¯^=zôBÑ]]]µDû믿?eri|QQQs5ççç_¹r¥Òßer£¹¢¢¢ÂÂBõgó.ëÀx…&sÔil·oß¾|ù²ñS&WÜã4™u[›äÑ6~hòz !œµk ÕkX¿ûî;µ}РAj{YYÙäÉ“}||†¾hÑ¢´´´òòòJoN2ñî»ï¾úê«Ú•Š¢deeÍ;·W¯^‘‘‘µý œº½Ræ»,ÿB¨´ëÕîå%¨í1¬C—ˆŠŠRß.8`0ÔÓcZpÌÌ̼}û¶z#p@@@§Njµýæ;~íÚ5õg“|SÍŸ°É‘´Èä²&o nnnÚ›•úŸdN÷ÜsÏ©-êÄ Zþ«þkd¬¿P«~ ›CpDí4kÖlÞ¼y¼uëÖ‰'&L˜páÂõ©nݺU³ vÙø;wªªÙµk×®]»¦L™òÀ|þùçptt\»vmQQÑæÍ››5kvúôiíúª˜|ô–––js˜ÜÂbòÖß¼ysõç;wæVføðá...Ú½– UZ2¨Š‡‡‡v îýåhÞ¼¹öIséÒ%ã§´‡Mš4Ñ®o8$¶ñ"•~TkŸ‚Û·o?~ü¸úŠhg"…sçÎ]¼xqyyy»víV¬XqäÈ‘¢¢"-VVÃÙÙyÙ²eW¯^]¿~ýˆ#´ !vïÞ=eÊ”Úîo^©zú^þ%¨ó1¬ÕƨCùEEE[¶lQÿfµà˜ŸŸ¿eËuæí¿ uèB*í²K“diòîQßLþ+[ZZª½‡üîw¿SxþùçÕRSSoÞ¼¹wï^!DÇŽCBBª_y Ö_°Ý¯l€ ‚#d•””|øã/§Ö& T/Ú³gODDDDD„ñ”lBmb0í HŠ¢LŸ>Ý××W½Ëdß¾}BˆAƒ9ÒÃÃãé§ŸVoßÎÈȨ~;³³³/^¼¨=üæ›oÔs–Mš4Ñn…®ŠvqzyyùCF¼¼¼ÔoÁqqqqtt|ðÁÕ²;vo¿ù y&t:6ЧÉ©~ýõ×Þ½{÷îÝ;::º¶ãÅÚ]Ú“‡íÛ·7>õÛpÈíWÒ¿5Ò¥§§oݺUmÔÆ©…+V¬PX¾|ù„ yä''§óçÏW¿Ú;wî\¾|ùòåËwîÜyöÙg×­[wåÊ•o¾ùF»NÑx¾=I ð•’| êv k«ÿþêË–-B¸»»wêÔI»&XÛã BêÖ…t:ö'¬ž¢ÖV’––v?¿É›•ö~Ò¤Ií¹Ý»wWwóêÕ« .Tß{«§–_°AuØ ‚#d¹ººþ¿ÿ÷ÿâãããããµÓ~óæÍËËËB´oß¾wïÞBˆ6mÚìÙ³gÏž=ëׯ×>¿ýö[í®¯í3¶qãÆƒΚ5K½À\ý¯°6¢$~;EgüØ•*++›4i’ú.yéÒ¥7ß|Sm4hP—j] ÚyJJÊ<ТE‹ÀÀÀ›7o !Ô³ BˆüãZ ž7oÞO?ýTãaìׯŸúâE‹´ó K–,ÉÈÈÈÈÈhÚ´©ùØ¢qL7§Mi¼1Ç_°`ú³ñ…˜Vg¼/’G»zÚhõ;w-Z$„pttÔ¦Œ¾yó¦vJéÆê?þøcùàĉ~~~~~~þþþêÚNNNýû÷×nL®Ã• ð•’y ê| kK;•¨®¹GŽŽŽ>>>ê¹·ôôt!„N§3þè:w!íÏpñâÅêձТ¼õÖ[&ÓÕYõ³š»wïNš4I=“zéÒ%m2H“7+íÜáÂ… Õd‚£Ì‚ ªÀfXûîØ’ &h='00Ðøz uëÖieÚ;»N§ ÑÂPDDD¥s›Ý½{7((èÁT'ESŒæ°?~|jjê_ÿúWõ¡:Ó¡9“©ÑbccÕ©"…êÔhJµß÷uíÚ5mD2**êwÞyæ™g´“Úäg‡ÖÆbš4ia23p5wUkX !|}}_xáãÂ-[¶h£]5ß»wï ”••)UÌã¨Iuqq8pàÓO?­Í çïï¯ÎJSÍŽkŸ.ýë_«z髹«Zfm•î‹äÑ®ñûÙŒ¿tG«=UQQ¡ÝèêêêúÔSO=ýôÓÚe‹¢ê»ª ƒ6žŸŸßرc§Núì³ÏjCœûÛߪùK©ôîÚ{¥ªïùÆÅÿüç?ÕF㜵;mµ»ªe^‚:ÃZu0EQîÞ½«œ !Þ|óMµ}èСZc×®]‘ìBæ½7//O»àÄÕÕ5::º]»vƽÈü®j“ÒÎjs“UÕÏ«yÉT­ZµŠÕöÝÑÑQ›1^eòõ0:uª±WH.x:‚#jáÖ­[Úô Æ&Nœh\vñâE“waU·nݪšÓK}g7NŸŠ¢O«¦2žÒ„öž©]¤}Lj_Æ Ôôî¶eË–JO&?Þ8ò¾øâ‹&nnnÚ Zõß³iÓ&ír7cÆ“û(Š¢Ýu¤ªæ›cöïß_éoÛ¶íîÝ»kÜñû+ÝÉ£]ã§‘ñLàBˆ•+W?«Ý" i×®6éºöuGæ¿eß¾}U•GEEUÿèUMËr¯Tõ=¿ÁQò%¨ó1”ï`ªj¿bÓ¦Mj£6]Q¥kÙþJÿjÖ¬Ycò:îîîÚNÕ-8VÕÏ«zÉ<==MFš4i’˜˜h¾ˆñ„Û³gÏ®±WÈ/x:†ªQ ®®® .|ôÑGõz}ëÖ­Ÿxâ‰äädmÂX•¿¿vvößÿþ÷>}úx{{ûùù=öØc .ÌÌ̬ôS³´´ôoû[—.]L®d_³fÍêÕ«ÃÂÂÔo†]¸pá¿þõ¯7ÒÛÛ{ïÞ½/¿ürPP¯¯ï°aþùæõû e 4èÈ‘#cÇŽýýïïêêÚ®]»!C†¤§§¯\¹ÒøŠï?þøÕW_Uöññyê©§víÚ)ó+† rìØ±qãÆ©»8pàÀ~øaîܹÆeK–,1b„››[çΫ¹=¶gÏžG5kVll¬¯¯o‹-bbbÞzë­cÇŽiSNZWUû"y´«g|oµƒƒƒöEêÚ¯îÒ¥‹øí[UÞxãC‡icÙ_|ñ…6#‰‰G}477wÖ¬YaaaÎÎÎ^^^}ûöýè£ÒÒҌϸÈk€¯”ÌKPçcX[ÚhµBûžíÊ“ùí¯ÔرcwíÚ5tèЀ€€V­Z :tïÞ½•~ɤ<ù¿YUTTTzzú AƒZ·níïïÿì³Ï¦¥¥i³mÓ·¨é~êÚ.Ø :l‚Nùí²À¦Íš5kΜ9BˆÁƒËäK‹8xðàwß}7nÜ8mô ÐÝ»wÕÙCM2%äÙÉ1=ztRR’båÊ•ãÇ·öæüŸ}ûö…‡‡ !:uê”}4a'2â½–€­èÑ£‡ñé4LÎÎÎ|ÚÝ£Fv _yåu:ñððpíV¿ââbíËuÔl ‡:Ë„¾-æÞ4ÑÈ:îÁ`_>,„8|øp›6mââânܸ1uêTuNÍòBEQV¯^}îÜ9í˵%ó_jÄP5 « U°E¥¥¥?þ¸v·±xà»ï¾k g ƒñÔžC‡MII©×qÆ`_\\\víÚµ~ýúO?ýô—_~¹té’:máã?ß .Yvuu-//oÓ¦ÍÈ‘#§OŸ~ªÇGHa:H!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€'ko@í;vlõêÕÙÙÙÅÅÅÁÁÁ“&MêÕ«—I͆ ’““sss]]]ûõë7eÊ//¯zª°:EQ¬½ ²ÒÒÒ^{íµŠŠŠ.]ºèõú½{÷–——¯\¹2&&F«Y²dɪU«ÜÜÜzôè‘——÷ßÿþ÷‘GIJJrqq±x €]±™àXXXØ¿ÿ»wï~üñÇÝ»wB=ztĈÍ›7ß½{·ƒƒƒ"''gðàÁ-[¶Ü¸q£bîܹIII#GŽœ5k–ºKÕØ›¹Æ1%%¥¨¨hüøñjjB<òÈ# ÈÏÏ?vì˜Ú’œœ\QQ¯¦=!Ä´iÓôz}jjjEE…ekìÍÇ~øA§Ó <ظñý÷ßÏÉÉéÚµ«ú033ÓÁÁ!**J+pttŒŒŒ,((ÈÊʲl €½±™àxüøq///??¿ƒ®Y³fÁ‚[·n---Õ EÉÍÍõööööö6^0((HqîÜ9 ÖØ!Û¸«º¬¬ìæÍ›?üðìÙ³¿øâ ­½M›6|ðAçÎ…%%%ƒÁÓÓÓdY½^/„¸víškªlíêQNN޵7Á:l#8Þ¼yS‘››{õêÕùóçGEEݾ}{ãÆË—/ýõ×·mÛæâ⢞}tss3YÖÝÝ]QXX(„°TMì¶?Õ“àà`)2º(8º¨ÅÙí!µ¡êfÍš©?¼÷Þ{ƒöôôôóó›8qâ!CΟ?ÿÕW_ !<==u:]II‰É²ÅÅÅâ·ó…–ª°C¶ÝÜÜš5kæââmÜÞ¿!ÄÉ“'…NNNz½ÞüŒ`QQ‘B½?ÚR5vÈ6‚£ÂÇÇÇÙÙY§Ó7ªÓq———«}}} Ô„§9sæŒú”ekìÍÇèè袢¢ŸþÙ¸Q§C‡êÃØØXƒÁ°{÷n­@Q”ôôt//¯ÐÐPËÖØ› ŽC† BÌœ9S»¯ùرcü±^¯ì±ÇÔ–¸¸8‡eË–©×# !òóó‡ æììlÙ{c3_9(„X½zõâÅ‹õz}=JJJ233u:Ý‚   Õ$&&Ο?¿U«Vyyy:uJLL4ž^ÇR5U±Û;­°vûYoKÁQ‘’’’”””——çååÕ¥K—I“&µoßÞ¤fëÖ­›7o>zô¨¿¿Ïž=ãããÕ™t꣦RvÛ™°vûYocÁÑ&ØmgÀNØíg½Í\ãë"8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@Š“µ7 žyæ™cÇŽ™4¶hÑbïÞ½Æ-6lHNNÎÍÍuuuíׯߔ)S¼¼¼L–²T €ý°¥àxöìY—ÀÀ@ãFOOOã‡K–,Yµj•››[XXX^^^JJÊ©S§’’’\\\,^`Wl&80àƒ>¨ª&'''!!Á××wãÆ>>>Bˆ¹sç&%%-\¸pÖ¬Y–­A½ÒMN«æYeQŒµ7{d3×8ž={VarºÑDrrrEEE||¼šö„Ó¦MÓëõ©©©–­A½RÅÿ3i±öÖ`§l&8æåå !Ú¶m[MMff¦ƒƒCTT”ÖâèèYPP••eÙ{ccÁñÒ¥K£F ëׯ߄ Ž9¢(Š’››ëííííím¼`PPâܹs¬°C6s£šØ>üðÃ|°wïÞ.\øî»ïÒÓÓgÏžýì³Ï !JJJ ƒÉ½2B½^/„¸víškjlÒ’““cíCêÂücÝnÙLp¼té’‹‹Ë_þò—Q£F©-ÿùÏÆ?oÞ¼¾}û”–– !ÜÜÜLtwwB !,US#b"†ùǺÝFI›ªþç?ÿyøða-5 !ÂÃÃÿô§?•––îÚµKáéé©ÓéJJJL,..¿/´T €²™àX©ž={ !~þùg!„“““^¯7?#XTT$„Pï¶T €²à¨(ŠÁ`0Ÿ ÇÑÑQááá¡>ôõõ-((PžæÌ™3êS–­°7¶óòò:uê4zôh“öC‡ £ë bcc ÃîÝ»µEQÒÓÓ½¼¼BCC-[`ol#8vïÞýÀ6lÐ:”˜˜ðÄO¨-qqqË–-S¯GB$$$äçç6ÌÙÙÙ²5öF§(е·AÊÉ“'_zé¥üüüvíÚ]¸páðá˗/ôÑGµ²ÄÄÄùóç·jÕ*"""///##£S§N‰‰‰ÆÓëXª¦*ÁÁÁÜUmYºÉi|a  á°ÛÏz› ŽBˆ+W®,Z´hß¾}ׯ_oÓ¦M×®]_{í5“²­[·nÞ¼ùèÑ£þþþ={öŒWgÒ©šJÙmgª?G@ƒb·Ÿõ¶m…Ýv¦úCp4(vûYo×8ÀêŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)NÖÞ°IºÉiU=¥,бöÖ@½ 8@]§CÝä4Â"{ÀP5¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)¶/^¼Ø½{÷)S¦˜?µaƸ¸¸ÐÐÐ>}ú̘1ãúõëõW`?l28*Šòæ›o›?µdÉ’™3gž>}:,,ÌÝÝ=%%å•W^)--­»b“ÁñŸÿüçÌÛsrr|}}·oßž°cÇŽQ£F=ztáÂ…¯°7¶O:µdÉ’:˜?•œœ\QQïã㣶L›6M¯×§¦¦VTTX¶ÀÞØXp,//Ÿ:uª——×´iÓÌŸÍÌÌtppˆŠŠÒZ### ²²²,[`ol,8.]ºôĉÿûß›7onò”¢(¹¹¹ÞÞÞÞÞÞÆíAAABˆsçÎY°À9Y{jáðáÃkÖ¬9rdxxxvv¶É³%%%ƒÁÓÓÓ¤]¯× !®]»fÁš›´äääXûø€º0ÿX·[6KKK§NÚ¦M›É“'WU „pss3iwwwBZ°¦FÄD óu»’6çÏŸþüù/¾øÂÅÅ¥ÒOOONWRRbÒ®ÎÚ£ž/´T €²k8ðÅ_Œ7®k×®UÕ899éõzó3‚EEEBõþhKÕØ!ÛާNB¬X±"ø7C‡BlÙ²%88xàÀj™¯¯oAAšð4gΜQŸ²l €½±¡ê¶mÛþñ4n),,ܳgO@@@hh¨ŸŸŸÚ›““³{÷n­XQ”ôôt//¯ÐÐPËÖØÛŽ}ûöíÛ·¯qKvvöž={zôè±`Á­1..nÕªUË–-ëׯŸz/KBBB~~þرc-[`ol#8J ˜2eÊüùóŸzꩈˆˆ¼¼¼ŒŒŒ—_~Ùâ5ö¦QG!Ę1cZ¶l¹yóæ¯¿þÚßßäÈ‘ñññêYC‹×Ø¢(ÖÞ†Æ&88˜y-K79MYcí­ªDìÝ~ÖÛÆ]Õ°:‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤8Y{)ºÉiÆ•E1ÖÞ"ìÁ¶Á$)šäHA” þa“Ìc"Q€úFpD#A” ¾Ñh%°,‚#ìHQ’ @5ްkÜs€<‚#ðÝ G :DI4G vˆ’»EpîQ`'Ž€åqû6 Q"8÷·o‚#`ŒnlÁhˆ’€†à4PDI@CCplQ`]GÀ†qû6à~"8 ·oêÁhÌÝXÁ°/DI@{G”H"80Å=7€JÔŒ{n‚à ÝûDp`DI°Gõ‚( ÁÀ}B”[Gp`5ܾ ¶…à áömhÈŽ.F·:3ÿcÑðWƒ:#8°%DI@’ñ‚nr°‚#ÛF”€û†à ±!J@=!8hü¸},‚àÀqû6ÔÁÝ)G¨QÌ@JõQ’éNØ‚#Ô‘–ÕÔ¨åH$€ÆŠà–aœ#Í °¥àxãÆ>øààÁƒçÏŸoÙ²eçÎ'MšÔ®];“² 6$''çææºººöë×oÊ”)^^^õTæL¾±Ã¼l”ÍÇ¢¢¢^½zµ}ûöÑÑÑ—.]úúë¯wîܹ~ýúÎ;keK–,Yµj•››[XXX^^^JJÊ©S§’’’\\\,^52? I‚`»l&8.]ºôêÕ«ãÇã7Ô–M›6MŸ>}Μ9_~ù¥Ú’“““àëë»qãF!Äܹs“’’.\8kÖ,ËÖ@­0  p°öÈÚ·oŸ‹‹Ë„ ´–¡C‡úùùegg µ%99¹¢¢">>^M{BˆiÓ¦éõúÔÔÔŠŠ ËÖ@Ý(‹b´ºÉiê?koH±™àèééÓ¬Y3ãÆ¦M›–•••••©333¢¢¢´GGÇÈÈÈ‚‚‚¬¬,ËÖÀ½#A°-63T½nÝ:“–ÌÌ̳gÏvëÖM½îPQ”ÜÜ\ooooooã²   !Ĺsçzôèa©k Ùl‚ÍGÍ¡C‡RRRΜ9sèСßýîwóçÏWÛKJJ ƒ§§§I½^¯B\»vÍ‚55 6iÉÉɱö‘`¸#h€Ì?Öí–íÇœœœ7*Š"„ iÒ¤‰Ú^ZZ*„pss3©wwwBZ°Ff#­}œØsww S[âââ–-[¦^(„HHHÈÏÏ6l˜³³³ek "A¨W¶1T-„˜3gÎ /¼0a„ÐÐÐÖ­[_¹råàÁƒBˆ÷ß¿E‹jM@@À”)SæÏŸÿÔSOEDDäååedd„„„¼üòËÚz,U ÙêƒNׯ&äåå}øá‡Ç¿|ù²ŸŸ_ÇŽ_}õÕöíÛ›”mݺuóæÍGõ÷÷ïÙ³g||¼:“N}ÔT*88˜éx,K79<4d¶ÒE¹ŸÆnÙJµ!vûYoKÁÑVØmgª?¼å¡³¹.ÊiH{cs]´á³ÛÏz›ªX C¨‚#Ø5&† à‚ûiH 8þÈP‚# Jœ†`Œà¨§!‚# ¶¸Ÿ°[G@1 Ø‚#à^1 Ø ‚#À’È1‚# ^0 4>G@ýb h4Ž€û‡Ó€M#8¬€Ó€-"8¬Œûi[Ap4 d ÁÐà0 4LG@ƒÆ@6Ðp¶lÀêŽÃ@6`-G€ ã4$p?§!û€àhl¸Ÿ¨'G@£Å@6`YG@ãÇ@6`G€}a ¨3‚#ÀN1 ÔÁ`ïÈ$ø?œ†ªAp œ†Ì¨÷Ó*‚#²Ȇ#8Pk dÃ>¸'œ†„ý 8`œ†D£GpÀò¸ŸÁ€zÄ@6‚#÷ÙhŽÜo dÃF°²a[ŽXÙ° GNC¢Á"8Ð@q ÁÀý4hŽØ²aEGlÙ¸ÿŽØ<²qh<*È,…à@#Té@6p¬½° GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)NÖÞ€Z(--]¿~ýÆÏŸ?ïáá4f̘>}ú˜”mذ!99977×ÕÕµ_¿~S¦Lñòòª§ûa3Á±¼¼üÅ_<|ø°^¯ïÝ»÷íÛ·÷ïß¿gÏž×^{íÕW_ÕÊ–,Y²jÕ*77·°°°¼¼¼”””S§N%%%¹¸¸X¼À®ØÌPurròáÇ»wïžžž¾råÊO>ùä_ÿú—§§çòåËOœ8¡Öäää$$$øúúnß¾=!!aÇŽ£F:zôèÂ… µõXªÀÞØLpܾ}»â­·ÞÒÎùµoß~üøñƒaïÞ½jKrrrEEE||¼Ú2mÚ4½^ŸššZQQaÙ{c3ÁñÌ™3nnn!!!ÆíÛ·Bœ;wN}˜™™éàà¥8::FFFdeeY¶ÀÞØLp\½zõ—_~iÒ˜-„hÓ¦BQ”ÜÜ\ooooooãš   ñ[¸´T €²™›c:uêdÒ’‘‘‘дiÓÁƒ !JJJ ƒ§§§I™^¯B\»vÍ‚55 6iÉÉɱö!uaþ±n·l&83 Ÿ}öÙûï¿o0-ZÔ¢E !Dii©ÂÍÍͤØÝÝ]QXXhÁšh4Ì?Öí6JÚ^pÜ¿ÿ»ï¾{úôiÿyóæ…‡‡«ížžž:®¤¤Ä¤¾¸¸Xüv¾ÐR5vÈ–‚cYYÙ‚ Ö®]Û¬Y³I“&½ôÒKƳ*:99éõzó3‚EEEBõþhKÕØ!›¹9¦¢¢bòäÉIII±±±;wîœ8q¢ù\ܾ¾¾jÂÓœ9sF}ʲ5öÆf‚ãÚµkwîÜù /,_¾¼ªÓ~±±±ƒa÷îÝZ‹¢(ééé^^^¡¡¡–­°7¶EY·n‡‡Ç›o¾YMY\\œƒƒÃ²eËÔë… ùùùÆ svv¶l €½±k¯^½zöìY—#F˜?;dÈ‘#G !¦L™2þü§žz*"""///###$$äå—_ÖŠ-U`ol#8ž?^QZZzüøqógµ«…cÆŒiÙ²åæÍ›¿þúkÿ‘#GÆÇÇ«3éX¼À®èE±ö646ÁÁÁÌãhYºÉiÊ¢koP%º(8º¨ÅÙíg½m\ã«#8@ ÁRŽBp€‚#¤ØÆ<ްCºÉiU=dR ¬‚àˆŠt@CÃP5¤ …à)GH!8@ ÁRŽBp€& âû·PŽ4B¤CÔ†ª …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽâdí Û£›œVU‹²(ÆÚ[õ…àµF:`Ÿª€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€› Ž¿üòKppð‘#G*}vÆ qqq¡¡¡}úô™1cÆõë×ë¯÷Gpp°µ7¨] ]–b“ÁqíÚµU=µdÉ’™3gž>}:,,ÌÝÝ=%%å•W^)--­»bKÁ±¨¨èàÁƒï¼óÎçŸ^iANNNBB‚¯¯ïöíÛvìØ1jÔ¨£G.\¸Ðâ5öÆ–‚ã AƒFŒñå—_VUœœ\QQïã㣶L›6M¯×§¦¦VTTX¶ÀÞØRpœ;wîŠ+V¬X^iAff¦ƒƒCTT”ÖâèèYPP••eÙ{cKÁ±oß¾±±±±±±­Zµ2VQ”ÜÜ\ooooooãö   !Ĺsç,X`‡œ¬½SRRb0<==MÚõz½âÚµk¬©÷¯Y‡ ] ]Ñx‚£z˳›››I»»»»¢°°Ð‚5ÕËÉɱöÁ°<[ª®ž§§§N§+))1i/..¿/´T €j<ÁÑÉÉI¯×›Ÿ,**B¨÷G[ªÀ5žà(„ðõõ-((PžæÌ™3êS–­°7*8ÆÆÆ †Ý»wk-Š¢¤§§{yy…††Z¶ÀÞ4ªàçàà°lÙ2õzD!DBBB~~þ°aÜ-[`oÏ]ÕBˆ€€€)S¦ÌŸ?ÿ©§žŠˆˆÈËËËÈÈ yùå—-^`ogÏžmím¨µ´´´Ÿ~ú)..ÎÏÏÏä©ÐÐÐÀÀÀË—/ïÙ³ÇÉÉiÀ€óçÏoÞ¼y}ÔØ¢(ÖÞØ€Fu#êÁRŽBp€‚#¤ …à)ê›c`‹JKK»uëVÕ³íÛ·ß¶m›öpÆ ÉÉɹ¹¹®®®ýúõ›2eŠ———µ÷\­ºè±cÇV¯^]\\ýôÓÔÔÔ3gÎxyyuéÒeâĉíÛ·7®)--]¿~ýÆÏŸ?ïáá4f̘>}úX{ÛaKް2N×±cGóö²²²Ó§Oëõz­eÉ’%«V­rss ËËËKII9uêTRR’‹‹‹µw™|MKK{íµ×***ºtéÒ¾}û½{÷Ž5jåÊ•111ÖÞ 4rƒaôèÑYYYׯ_ß±cÇ7ß|óé§Ÿ†……©5ååå/¾øâáÇõz}ïÞ½oß¾½ÿþ={ö¼öÚk¯¾úªµ÷¶C¤E‹uìØñرcêÓ'OvèÐ!""âòåËjËœ9s‚‚‚þö·¿Y{Ka§Lºè7zôèѵk׃ª-GŽéܹsxx¸Á`°öÆ¢‘ûì³Ï‚‚‚^ýõ»wïª-ÿùÏ:vìøøã›Ô >¼¤¤DmùùçŸ{öìÙ±cÇŸ~úÉÚ{›Á5ŽhˆNž<ùÑG7®sçÎjKrrrEEE||¼Ú2mÚ4½^ŸššZQQaíí…Ý1ï¢)))EEEãÇïÞ½»ÚòÈ# 0 ??ÿرcÖÞ^4rYYYBˆÑ£G;9ýï@bïÞ½;vìøßÿþ÷ÚµkjËöíÛ…o½õ–6JÓ¾}ûñãÇ †½{÷Z{`3Žhp ÃŒ3zè¡ÿùŸÿÑ333¢¢¢´GGÇÈÈÈ‚‚õ¸o*í¢?üðƒN§üðógÏþâ‹/´ö6mÚ|ðÁÚp6PO‚ƒƒ×®]ûâ‹/¾øâ‹ZãÈ‘#g̘¡=ìÔ©“ÉR M›659STƒ¡j4,Ÿ|òÉõë×ÿò—¿7––– !ÜÜÜLŠÝÝÝ…………ÖÞjØ‘J»èÍ›7…¹¹¹_ýõüùó÷ïߟžž>iÒ¤ .¼þúëjêOQQÑ{ï½wëÖ­çŸþ±ÇsqqÙ¼ysZZZ¥õƒ!))iìØ±%%%ï½÷^‹-¬½°œqDróæÍÄÄݰ°ÐÐPãvOOONWRRbR_\\,~;ïÜUuÑfÍš©?¼÷Þ{Úä;'N¼xñbJJÊW_}õÌ3ÏX{ÛјM:õÇœ6mÚŸÿügµåâÅ‹Ï?ÿüo¼±eË–víÚïß¿ÿÝwß=}ú´¿¿ÿ¼yóŒÏ5âŒ#m۶ݺukÈ!&íNNNz½ÞüÌbQQ‘B»Ï¨oUuQ77·fÍš¹¸¸DGG·÷ïß_qòäIko8³+W®|÷Ýw?ü°–…ÿó?ÿs÷îÝýë_ZcYYÙܹsG}ñâÅI“&¥¦¦’Q[œqD²a×?üáæOùúúæææiz !Μ9£>eí ‡½¨¦‹úøøÜ¸qC§Ó7ªwÆ”——[{Ãј!MÚÕW¯^UVTTLž>^‘¨o’]4%%%)))//ÏËË«K—.“&Mª*e–URR²jÕª={öœ9sÆËË«C‡&LèÒ¥‹úlVVÖðáëZö•W^™|x¼Gy䆯méÒ¥¿üå/·ÝvÛZµj5hÐà‡~Èööåµ i½jí|ã66ØÌje»T%ëÖ­2dÈßþö·¤ä7Þxã7Æ7~üøÂ¤üƒ>XïÚÆŒsÚi§Åw]ºté¿þõ¯ &¼þúëµjý_³üñǯ¸âŠÎ;80Û›žÇüòåË£(?~|Ÿ>}²]ÛR—\rÉ]wÝ?Ž7œ|oíœü$8R7ÝtSœkԨѻwïš5k¾òÊ+«V­zã7Î=÷Ü;î¸#Y2Ž5jÔ¨QÆJêÔ©EÑW_}uî¹ç¦R©½öÚkذaÓ§O¿îºë¦M›vÓM7{î¹ñ’ùË_.\8f̘‚‚‚loz%5hРM›6QµlÙ27W˜ãï[E½øâ‹ñƒîÝ»yä‘q›'[´^ؘRfõêÕõë×›Íã?¾ýöÛ[l±EEµk×þôÓOãÂ~ø!ŽzwÝuWYk{üñÇ£(ªW¯Þ’%Kâ’SN9%Š¢¾}ûÆ~ûí·7îÙ³ç†Ôùã?þñÇ7Û.ºêª«âýó³ŸýlÃ×–ìíñãÇo¶MØDr[.»ì²¸†ýû÷߈ÛûÌ3Ïd{ËØ jí|ã66ØÌÌq$Ôœ9sâQ˜]vÙ%™šóÓŸþô裎¢hÍš5Ï>ûl²d*•Š¢¨]»ve­í£>ŠØzë­ã’nݺEQ4oÞ¼øÏ«¯¾úÛo¿ýÓŸþX½ôiCŸþù Aƒš6mÚ¶mÛæÍ›g¬$}ɵk×^~ùåÛm·Ýå—_ž,ðÅ_œsÎ9ݺukРÁ;ìpôÑGOŸ>½ä;~úé§Ç{lÓ¦M[´hqÔQGM›6­ä2eM®úòË/Ï9çœýöÛ¯aÆmÚ´9äC’½EÑ%—\RPP qöíÛ·   ž'WÖ øá‡ßÿþ÷x`óæÍ›7oÞ·oßK/½tÙ²eemø·ß~{þùçwíÚµAƒ{ì±ÇÈ‘#׬YSÎî-ù¾k+g[÷vYÇëÔSOË{õꕾüƒ>—Æo´nݺ‡z¨W¯^­[·ÞrË-[·nݳgÏ{ï½·üMŽ¢hÍš5·ß~ûþûï_TTT¿~ý]wÝõÄOLŸ¤[ÒW_}5þüuëÖÅ~÷ÝwóçÏ_»vm¥T©M´Ô…øÑG 4¨M›6Ûm·ÝñÇ?kÖ¬(ЦL™rì±Ç¶iÓfë­·îÕ«×+¯¼’±†²+ÝÀN8á„ø…'œpBRx衇ƅGqDRØ­[·¸0É^!õ/ëS3oÞ¼#¼d=¿ùæ›óÏ?¿K—.õë×ßc=þú׿¦þó›½ëmçeY´hщ'ž¸Ã;sÌ1ÿüç?“§N;í´¸2­ZµJÉÂ… “)ãï½÷^ÉuVô…›¢¬·ÝR…e;¹ReÄ}„Qýüç?O/O¾aO:餸äˆK,Xðøã_uÕUcÆŒ™5kVɵկ_ÿ›o¾‰KÎ8ãŒ(Šz÷îJ¥.\XXXxÔQG…W/9‘ôîÝ{‡vÈhç§œrJÉ%û÷ïÒI'Å/»ì²øÙ—_~¹yóæ//((8ï¼óÒßnÚ´i-Z´H_¦Aƒ‡zhü8éq¼ýöÛã’=÷Ü3yí‹/¾Ø¬Y³’ÆxÆg*•ºøâ‹K>»|ùò²V8uêÔ’›EQ«V­&MšTrÃ{öìÙ¡C‡Œ…XÎî-ù¾k+g[÷vYÇë¹çž‹×®]{Ù²eÉò§žzj\ž´ŸcŽ9¦Ôo¿”ú.qÉ?þ¸×^{•|UAAÁ-·ÜRÖŽê߿ɗ|ðÁ•;R¥6ѲZþ{ìÑ´iÓôÕn³Í67ÞxcíÚµ3êÿÊ+¯$/lðÚ‡m`cÆŒ‰—Ù~ûí“Âm¶Ù&.lÙ²e\²fÍšºuëÆ…É&„Ô¿ÔOÍäÉ“3vWÛ¶m“ÍLövúFí¼óÎotÝu×…´ó²Y×®]3ÚCíÚµo¿ýöx±ñãÇ'åï¼óNòò¿þõ¯qáÎ;ï\êú+ôÂMÑBÚ-U—àH¨©S§Æ_:uJ/:½ÃìþûïO¥RK–,™7o^r±Ñ½÷Þ;oÞ¼uëÖ•ºÂ+V$ï¾å–[|ðÁ‡zhòÚ-Z$û¬h[°`A²Ì_|‘J¥>ùä“ôU-Z´(•J͘1#þ³^½z«V­ ¯ÉÖ»råÊ¢¢¢¸°N:ݺuKþÌØÛÕ¶mÛÎ;Ç_VQm±ÅqMÊiç_VõêÕ‹ÿ¬Y³æû￟J¥Ö®]›Dº?þñÉË?þø¸ðòË//uýá/ÜD ¤ÝRu Ž„úþûï“ëz衸pêÔ©ñÇ(Šºví–õ¿iEýúõKVxçwf\õ²÷Þ{¯Y³fîܹµjÕJï# ‘þ]|Øa‡ÅS.\ؾ}û¸p¿ýö+¹dÇŽÇŽ;eÊ”>ú(•J]zé¥qyú¿Ñ7ÝtS\ø“Ÿü$.¹å–[â’ L™2%.6lX²Úr‚cò­[·þꫯ2 {ô葼o©ó¥J®ðÊ+¯ŒK¶Új«äÄüî»ï&½)_|qÉ ¿é¦›âÂÙ³g'§ör:ÒÊŽë][©Û¸·Ë9^¿øÅ/âò3Î8#^8žŸÑ—.]š¾Ìù矟¼K—.]âÂ?ÿùÏï’ÇýöÛ/.¹êª«’xà›\ªR··rG*c“ËoùÿøÇ?R©ÔêÕ«{÷îÞpà ©Tª¸¸8é‹mÚ´i…AE÷a%Xò9}úé§S©Ô£>EQòýð÷¿ÿ=•JÝyçñŸ‡zh…ê_²õ^wÝuqIÆ §OŸïŸÓN;-©©ÁñÆoŒ ÇŽ›Μ9³üã^þ!ëׯ_üeõé§Ÿî¸ãŽð¬³ÎŠKºwï—¬[·.i0ï½÷^YoøÂM×ÖÛn©ºG*àì³ÏŽ¿ öÛo¿^½z¥_.š$³ÝvÛ-.9ùä“?úè£xæP²Ø‹/¾˜¬ð…^èÑ£ÇV[mÕ¡C‡K.¹$þ8pà[l‘\j³téÒ7ß|3¹†¦,ÉwV­Zµ’צÒFØ V®\™¾daaáÂ… ÓWòÓŸþ4~ê…^H —/_žt0Äã>ûï¿ü祗^š,¶jÕªdºœà˜|Û¦'Å‹ï±Ç{ì±ÇÞ{ï½víÚ¸008&éÿÙ92.ßu×]3vÑ.»ì’¾d†.¼ð²vo9Á1dm¥nKàÞ.çx%£Õ­[·ŽKFœã’çŸ~ìØ±cÇŽMoQI_xɬ–œ³“êµoßþî»ïþüóÏS©ÔçŸþÞ{ï½÷Þ{‹/.§5–º½•8R%7¹œ–Ÿ>{Ûm·Å…5Jú½^zé¥ä3R¡CPÑ}X‰–ßýîw©Tê /ŒwHÜ8|øðT*uúé§ÇËÄQ8¼þ%[ï>ûì“þv±+V$á’Á±C‡É’éÿE?úè£å÷rYíÚµ,X”Çq9Š¢:uêÄ߯½öZ\R³fÍxVÏÛo¿]²>%¾p5€vKÕåâ*àÊ+¯Ü}÷Ý£(J¥R“'Ož8qâêÕ«“¯† Æn»í¶W^yå•W^¹óÎ;Û¶mÛ²eË‘#G&w5{æ™g’tÐA“&MŠoâ8räÈ-¶Øâ­·Þzì±ÇÎ:ë¬V­Z-Y²ä¸ãŽkÔ¨ÑÞ{ïÝ´iÓƒ:èÓO?]o%wÙe—ô)á|pü •J}üñÇéKvîÜ9c|jîܹɫ’Yäõë×/..ŽË?üðÃôÅ’}GQT§Nƒ:h½ÕK®þI:´¢(jѢŌ3f̘1eÊ”ä+;М9s2¶4Ù·I“k5bÓª’‘ÍŒÅUzm{;QòxõéÓ'­ž?~|¨—_~9~jÀ€ÉÊ t衇Nž<ù·¿ýmŸ>}¶Ûn»Ù³g¯w»’ý9gΜSO=µeË–]ºt¹é¦›~øá‡N:eÌpÝDGªä&—#}0:™ XTT”ôÛ%…=݇•hI¸|óÍ7£(Š/5Û{ï½÷ÜsÏ(ŠÞzë­¤0}áŠ6¡R7<}§ešt;í´Sò¸~ýúÉÞNÞ«:uê”>ª›|Ÿ¬^½úßÿþwEݺu‹¿ÍŠ‹‹ã{<%wz*g`'ü…›¨T¨ÝRåŽT@ãÆ§L™rÉ%—téÒ¥°°pçw¾õÖ[ ?›ŒƒtëÖí€8à€’Ê£´ïúòÏÙ—\rIƒ .¹ä’µk×þüç?øá‡Sÿ¹nñ¥—^êÝ»÷Š+ʯdƽ°°0I´ŸþyúSSã—-[¶Þ{5/Y²dùòå_~ùe©ï•q cIË–-[ºtiü¸ä.+!}…÷¨KNl?þøã_|‘þTÆ ¼MfåÖ¸·ÓÿÌ8^QÕ®];™SÏa8qb\Þ¯_¿¸|õêÕçŸ~³fÍŽ?þøk¯½v„ k×®-õ⤠W^yå¯ýëd&F*•š>}úˆ#öÞ{ï=zTô'p*w¤Jnrøˆ%óÕ6äTtV¢IôìÙ3þº˜:ujqqqÜ=–ÇiÓ¦ýøãñ…ÀEEE;v¬PýKnø7ß|?ÎÈ7å|„3öäF¹¹lÆH½zõ’/«øŸä‚‚‚c=6.‰o¼ä¿ò!ä…›®T¨ÝRåŽTÌ–[n9räÈ·Þzë‡~˜={ö™gž¹páÂø©=öØ£œ&ÓÆW­ZUÖ2ãÇ?~ü\°õÖ[?ðÀS§N­Y³æý÷ß¿lÙ²'Ÿ|rË-·ü裒ù…eÉ8õ®\¹2¹×IÆ%,_ý[mµUƒ âÇ/¾øâ¼ÒüñuëÖMè“K’AY4h쇯¿þzÃÇV[m•œi/^œþTòg:u’ùï¹#po§¿¤ÔSur|þùçß{ï½øˆ$=‘Q1âºë®[»vmÛ¶mo½õÖwÞygÙ²eI¬,GíÚµo¾ù毾úêá‡4hP²Â(Š^}õÕ .¸ ¢Û[‰#µIo}~*½+T™x(Ù²eO=õTü™M‚ã’%Kžzê©øÎ/É¿ •hB± $Ó.3’eƷǦ–ñ¯ìÊ•+“ïŸüä'ñƒãŽ;.~ðÜsÏ}ÿý÷“'OŽ¢¨C‡:u*åë}á¦kU÷'!8jÅŠ7þGúS'7 Œ§ ½öÚkÝ»wïÞ½{ú-Ù¢(Jn –Ì€ÌJ¥.¹ä’æÍ›ÇW™¼ñÆQõë×oðàÁ 48âˆ#âË·§L™R~=ßÿýE‹%¾ôÒKqŸe:u’K¡Ë’LN_»víi7nÿ NݺukÖ¬¹ýöÛÇ‹½ð éõ/y‡¼ É(^<$ûüóÏ÷Ýwß}÷Ý·W¯^/N®*Hz2þÜi§Ò»~sGÈÞ^ïJúöíGºI“&=ýôÓqa2NEÑ­·Þ?¸å–[Î<óÌÝvÛ­V­ZŸ}öYù«]µjÕ_|ñÅ_¬Zµê˜cŽ;vì—_~ùÒK/%óÓï·(Tà!¨Ü>¬¨¾}ûÆn¾ùæ(Šêׯ߱cÇdNpR‡ô !•kBÉG8î¢NV2a„͹ÿ3¾¬’ï“:uê$ÿåvéÒ%Þ̯¾újÔ¨QñwoùãÔá/Ì©@U!8ª°°ðÿý¿ÿ7lذaÆ%Ý~#GŽœ?~E;í´Ó¾ûîEQ«V­^{íµ×^{íá‡NΈ/¿ürò ×ésûÒ=öØco½õÖðáÃã æñ¿ÂɈRôŸ.ºô_Ä.ÕêÕ«Ï>ûìø[rñâÅ]tQ\Þ¯_¿õNLN]£GN†ÈÇ·õÖ[7mÚ´M›6ßÿ}Eq/HEùË_’@¬¨¤+1^óž{îY³fÍfÍšÅ}o“&MŠ¢¨   ý7 +Ý„’áu×]ÏŽM¥R¿ûÝï2nTiåfkÖ¬9ûì³ãžÔÅ‹'7ƒÌø²JúG? Ž!/Ì©@•‘í«s¨JÎ<ó̤å´iÓ&}>ÐØ±c“Å’oö‚‚‚Î;wêÔ) CÝ»w/õÞfkÖ¬i×®ÝöÛoß-•vÛ¡C‡>÷Üs¿ýíoã?ã;–”qk´¢¢¢>}úÄ·ŠŒ¢¨Fñ­ÑRåþÞ×7ß|“ŒHöìÙó÷¿ÿý€’N‹äæg3gÎLÆbêÔ©Ó½{÷Œ;—sUurË(Šš7o~ '¤ŸŸzꩤ2ɬù}÷Ý÷šk®Y½zuªŒû8&=©uëÖ=ì°ÃŽ8âˆäžp-[¶ŒïJSΆ'g—ßþö·eúr®ªY[©Û¸·×ûûlé?ºEQŸ>}’§Ö­[—\èZXXxøá‡qÄɴŨ쫪‹‹‹“;áµhÑâ´ÓN»ð 9æ˜dˆóøC9Ÿ”R¯®Ýð#U~ËO_øž{î‰ Ó/pN®´M®ª9•Þ‡j`©TjÍš5ÉÈiE]tQ\~ÔQG%…»ï¾{úK›PÉÖ;þüdÂIaaa¯^½Ú¶m›ÞŠJ^U±QI`ro²²Úy9‡,¶í¶ÛöéÓ'Ùöš5k&wŒeüãûî»ïþõ¯?nÖ¬Ùá‡>~üø=z„¼Å‘G9kÖ¬3Î8#Þ´6mÚvØaÿüç?GŒ‘¾Øõ×_?hРfÍšÕ«Wo—]v)çòؽöÚëÝwß>|xŸ>}š7oÞ´iÓÞ½{ÿîw¿›5kVrËÉì*k[÷vùÒ¯­®Q£FòCêÉ[ïºë®Ñ~UåÜsÏ1cF2–ýàƒ&w$ɰÏ>ûÌ›7oøðá]»v-**ª]»vãÆ÷ßÿ»îºk„ é=.árðH…‚JïÊJF«£(J~§'™’±@xýKuÚi§?þ¨£Ž***ÚvÛm:ê¨É“'—ú#“áÂ?³±ž={Nš4©_¿~Ûm·]Ë–-9æ˜ &$wÛN—„ïh}×SWô…9Õ¨ Rÿ™ÖUÚðáïºêª(Šú÷ï’/7Š·ÞzkâĉgœqF2úLZ³fM|÷ÐŒLI¸<Ù‡'tÒ}÷ÝEÑm·Ý6tèÐlWç¿ÞxãnݺEQÔ±cÇ÷ß3¼0Cž4Bäâµ–PUì¹çžéÝ!ä¦Úµk;Ûm j¶O?ýôøvâݺuK.õ[¾|yòã:q[îˆï2_³á/ÌPÍBp ¿Íœ93Š¢™3g¶jÕjàÀß}÷Ý…^ßS³S§N9òa*•ºãŽ;,Xü¸v`þ«ô a½ USMde¨¨ŠV®\yÐA%W ¥Ûzë­'Nœ˜#=ŽÅÅÅé·ö<ꨣÆ·I_ë¥Ç€üR·nÝñãÇ?üðÃ÷Þ{ïǼxñâø¶…tаaÃrjÊraaáÚµk[µj5xðàK.¹d3¼ʧÇ€ nÇ@Á€ ‚#AG‚Ž"8Dp ˆà@Á€ ‚#AG‚Ž©•í dÁÊ•+~øáÇ{ì³Ï>kРA»víN9å”ýöÛ/c±G}ô‘G™7o^aaápÁ4nÜ8ÛuÈš‚T*•í:lVk×®4hÐÌ™36lØ¥K—üqÚ´ikÖ¬ùÍo~óë_ÿ:Yìú믿ýöÛëÕ«·çž{Ο?ÿßÿþ÷n»ívß}÷Õ­[7Û[yxà+¯¼²K—.wß}wœ?üðÃÁƒÿý÷ãÆëСCEsæÌéß¿ÿ6ÛlóØc5kÖ,Š¢#FÜwß}ƒ>|x¶· ;ònŽãóÏ?EÑï~÷»¤ïp§v:thqqñäÉ“ã’GydݺuÆ ‹ScE_|qÆ Ÿ{î¹uëÖe{ ²#ï‚ã'Ÿ|R¯^½N:¥î´ÓNQ-X° þsÚ´i5jÔèÙ³g²@Íš5{ôèñõ×_OŸ>=Û[ywqÌwÜQ«VæV¿ÿþûQµjÕ*Š¢T*5oÞ¼&Mš4iÒ$}™víÚEQ´`Á‚=÷Ü3Ûy;vì˜Q2eʔѣGo±Åýû÷¢hÅŠÅÅÅ5ÊX¬aÆQ}óÍ7ë}‹öíÛg{+€MhΜ9Ù®Bvä]pLW\\ü·¿ýíÏþsqqñµ×^Û´iÓ(ŠV®\EQ½zõ2®_¿~EK—. YsÞ¶§M¤}ûöv)¹L%Çi¢]ÞîÒü Žo¾ùæ•W^ùÑGµlÙräȑݺu‹Ë5jTPP°bÅŠŒå—/_ý§ß åcp\½zõ5×\sÿý÷o¹å–gŸ}ö©§žš~wÆZµj5lذdÏâ²eË¢(J®³È7y×­[wþùç¿øâ‹}ûöýýï_jlÞ¼ù¼yó–-[¶ÕV[%…Ÿ|òIüT¶· ;òîv<÷ßÿ‹/¾x 'ÜrË-euöéÓ§¸¸øÕW_MJR©Ô¤I“7nܹsçlo@väWpL¥RcÇŽmРÁE]TÎb¬Q£ÆÍ7ßÏkŒ¢hôèÑK–,9úè£k×®íÈŽüúÉÁ/¿ü²{÷îuëÖÝa‡J>{ä‘G<8~û,Š¢•+W¾÷Þ{%ŸM.¬Ž¢è”SNÙf›mž|òÉgŸ}¶eË–ƒ6lX|G€ü”_=Ž›GÞþy"oÏõù5Ç€J"8Dp ˆà@Á€ ‚#AG‚Ž"8Dp ˆà@Á€ ‚#AG‚Ž"8Dp ˆà@Á€ ‚#AG‚Ž"8Dp ˆà@Á€ ‚#AG‚Ž"8Dp ˆà@Á€ ‚#AG‚Ž"8Dp ˆà@Á€ ‚#AG‚Ž"8Dp ˆà@Á€ ‚#AG‚Ž"8Dp ˆà@Á€ ‚#AG‚ÔÊvª¤‚ó'”õTêÚÞÙ®À&!8TFz:,8‚°äCÕ"8Dp ˆà@Á€ ‚#AG‚ŽñË1P ùUL6Áª!¿ŠÉ¦`¨€ z6‚R‡õñÕŒàPyI^,5#–3Éló\Kp¨¤dÞXY1ë¹-ëÉ5v° ޲ÜD¹Pì‡×\Ø PmŽPU"cîÈú¾ÊzrÍ…‹àÊ=Mª¢\8d¹^a£ÖOG#"ë-GrecÊ#2$G€2›H'8”BG#@I‚#ÀÿÊ"8ü—±i€rŽQ¤£ €àä;‘ àä5cÓTW÷nLÿS›§ÒG Om`G£³29N;dS¼³QƦ•<$8ùÅØ4@¥ Ž@¾p ÀêOdØ(G š36 °±Ž@µ¥£`ãjHdØG º16 °‰Ž@õ¡£`“ê@dØ G j6Á¨ÂLgØœG JÒѰù Ž@#2d‹àT%Ʀ²HpªY'8¹NdÈ‚#ÓŒMäÁÈQ:ràä‘ 7 Ž@n16 ³G WèhÈq‚#}"#@•×Áñã?>äCyä‘Ýwß=ã©Ìš5+£°iÓ¦“'OÎv­¡º16 PUäup¼ÿþûËzêÓO?­[·n›6mÒ 5j”í*Cµ¢£ jÉÇà¸lÙ²¹sç>ýôÓ=ôPY ,]ºôC¹á†²]Y¨žDF€ª(ƒc¿~ý>ÿüórøôÓO£(Êèn6cÓUT>Ç#F¬Zµ*Š¢±cǾþúë%˜?~E­[·ÎvM¡ºÑÑP¥åcpÜÿýã'N,u88.^¼xÈ!³gÏ.,,ìØ±ãСCK^Cª| Žëµ`Á‚(Šn¼ñÆí·ß~ß}÷]¸páĉ'MštÅWsÌ1!khß¾}FÉœ9s²½Y5Ʀ*­äi=o Ž¥X¼xqݺuÏ;ï¼!C†Ä%¯¿þúСCG޹ÿþû­w b"Ät4Õ@ÉÓzÞFIÁ±÷ÜsOFI·nÝN<ñÄ»îºküøñIšÊ!2T?‚c¨½öÚë®»îš;wn¶+¹Nd¨®ÇL©Tjݺu5jÔH/¯Y³fE 4Èv!§™ÎPÕØðUT3óçÏïØ±ãI'”Q>cÆŒ(ç4Àzœ?Aj¨Þô8fjÓ¦M—.]¦Núè£80.œ1cƘ1cŠŠŠ>øàlWrޱi€úèÀ;wî¼ß~û]zé¥ß~ûm¶ë Myï¿ÿþ²žºþúë/»ì²>ú¨k×®õë×7nÜé§Ÿ¾råÊlW kje»Y°lÙ²¹sç>ýôÓ=ôP© Ì™3gôèÑÍ›7ì±Çš5kEш#î»ï¾Q£F ><ÛÕÈŽ|ìqìׯߠAƒÊJQ=òÈ#ëÖ­6lXœ£(ºøâ‹6løÜsÏ­[·.ÛÕÈŽ|ìq1bĪU«¢(;vì믿^riÓ¦Õ¨Q£gÏžIIÍš5{ôèñôÓOOŸ>}Ï=÷ÌödA>Çý÷ß?~0qâĒϦR©yóæ5iÒ¤I“&éåíÚµ‹¢hÁ‚‚#Ÿò18–oÅŠÅÅÅ5Ê(oذaEß|óMÈJÚ·oŸQ2gΜloP%OëyKpÌ_:]¯^½ŒòúõëGQ´téÒ•ˆ‰Pm”<­çm”ÌÇ‹cÊרQ£‚‚‚+Vd”/_¾<úO¿#@3ÕªU«aÆ%{—-[EQr5@¾KѼyó¯¿þ:NЉO>ù$~*ÛµÈÁ±}úô)..~õÕW“’T*5iÒ¤ÆwîÜ9ÛµÈÁ±¬Q£ÆÍ7ßÏkŒ¢hôèÑK–,9úè£k×®íÚd‡«ªKQTTtÁ\}õÕ‡~x÷îÝçÏŸ?eÊ”N:ýò—¿ÌvÕ²Fp,Ý)§œ²Í6Û<ùä“Ï>ûlË–-šΘ1c̘1EEE|p¶+©T*ÛuÈ9|ðÁ©§žºdÉ’N:µmÛváÂ…3gÎ,,,¼å–[öÙgŸõ¾¼}ûö®ª€j,oÏõzK±óÎ;?ñÄýû÷_²dÉ /¼°téÒþýû?óÌ3!© ºrÇÒ5kÖìꫯÎv-rˆG‚Ž"8Dp ˆà@Á€ ‚#AG‚Ž"8Dp ˆà@Á€ ‚#Aje»PйŠÊzªÝc‹²];ÈS‚#¹(#ÎP$/@Öª¦j˜; ¨œnH`3ÐãHÕ÷8fdGݰ9 Žä¢’‹IIzX,¹˜( ›ŽàH. Ì%Ó% ›ŽàHµRòªšrž*Dp¤:+?GF¢$T„àH1´ Bp$¯Ú€p‚#ü— å¡L¦H@:ÁB™" @ž¡ò mWGØh mP½ ް©Ú šaó1´ @•&8BÖÈ‘T-‚#ä S$Èq‚#ä(S$È5‚#T†¶È.Áª*CÛlf‚#T†¶t%ÿ™Lø6 ÒG¨¶ mC>KÿŒÏPä#ÏF!8B¾#Ø@‚#ä)S$¡Ú(gT6.Áˆ"S$!‡­7–úñÌxUúŸ>ÎTšà”ÎÐ6l•Ë…ëåCʦ 8A mC%„ "ûìP…Ž@eÚ†h“uBÎÃÐ6Õ\G`“#É}r!T”àl¦H²ùÉ…°Ñ Ž@˜"ÉrÑ d…àäCÛ¤ÓY¹Ipr‘¡íêM.„*JpªCÛU‹\Õ•àTI†¶³ÅäBÈg‚#PÚÞXtåjÈÐvYäB`CŽ@^È“¡m¹ؤG UÑ)Ù%8äÄI¹OpÈ2E²œœWj¼ÓYT‚#Àú­·Kr½ÏÊ…@5 8TXÉ)ù@p¨ŒŒnÅô?…H º*C:òPlW€ªAp ˆà@Á€ ‚#AG‚Ž"8Dp ˆà@Á€ ‚#AG‚Ž"8Dp ˆà@Á€ ‚#AG‚Ž"8Dp ˆà@Á€ ‚#AG‚Ž"8Dp ˆà@Á€ ‚#AG‚Ž"8Dp ˆà@Á€ ‚#AG‚Ž"8Dp ˆà@Á€ ‚#AG‚ŽezôÑGعsçýöÛïÒK/ýöÛo³]£üÕ¾}ûlWÊ£‰’ã4Q6Á±t×_ýe—]öÑGuíÚµ~ýúãÆ;ýôÓW®\™ízdàXŠ9sæŒ=ºyóæÏ?ÿüèÑ£_xá…!C†¼ûFÊvÕ²Fp,Å#<²nݺaÆ5kÖ,.¹øâ‹6løÜsÏ­[·.ÛµÈÁ±Ó¦M«Q£FÏž=“’š5köèÑã믿ž>}z¶k‚c¦T*5oÞ¼&Mš4iÒ$½¼]»vQ-X° ÛÈŽZÙ®@ÎY±bEqqq£F2Ê6lEÑ7ß|²ׯmtv)9N%Çi¢l‚c¦øÒézõêe”ׯ_?Š¢¥K—®w sæÌÉöFl|†ª35jÔ¨  `ÅŠåË—/þÓï‡ÇLµjÕjذaÉžÅeË–EQ”\g oÇR4oÞüë¯¿Ž“bâ“O>‰ŸÊví²Cp,EŸ>}Š‹‹_}õÕ¤$•JMš4©qãÆ;wÎví²Cp,ÅÀkÔ¨qóÍ7Çó£(=zô’%KŽ>úèÚµkg»vÙQJ¥²]‡\4f̘«¯¾zÛm·íÞ½ûüùó§L™Ò±cÇ1cÆ”¼M@žËôôÓO?ùä“ï¾ûnË–-÷Úk¯aÆÅwäÈO‚#AÌq ˆà@Á€ ‚#AG‚Ž"8’£V¯^}çwuÔQ;wîÝ»÷9çœóá‡f»RPºE‹uéÒå‚ .ÈvEàÌš5묳ÎêÕ«W×®]üæ›of»FTy‚#¹¨¸¸ø¤“N5jÔ·ß~Û½{÷m·Ýö…^8âˆ#¦M›–íªA¦T*uÑE%?m9b„ Çü„ š5kÖ¹sç3f 2d„ Ù®U[­lWJñðÃOŸ>ýC5jT­Zµ¢(zã7N=õÔË.»ì…^ÈvíàÜsÏ=S§NÍv-à,]ºô¢‹.ªU«ÖÝwßÝ¥K—(ŠÞ}÷ÝAƒ >¼gÏž5jè6¢’4rÑôéÓ£(:餓âÔEѾûîÛ¡C‡ÿûßß|óM¶kÿõá‡^ýõ;ï¼s¶+ÿcܸqË–-:thœ£(Úm·Ý9ä%K–Ìš5+Ûµ£ ÉE-[¶Œ¢(=#¦R©ï¾û®FI”„¬[»ví…^ظqã‹/¾8ÛuÿñÏþ³   ÿþé…þóŸçÌ™³ûî»g»vTaÎÁä¢Ã;ì¾ûî1bDaaá{ìñí·ßÞzë­Ÿ}öٱǻÕV[e»vðnºé¦Ù³g3F³$×¼÷Þ{7nÑ¢Å[o½5cÆŒï¾ûnçwîÛ·oݺu³]5ª6Á‘\Ô¾}ûûï¿ÿä“O>ùä““ÂÁƒ_zé¥Ù®üŸ™3gÞyçƒîÖ­Ûû￟íêÀ­^½úûï¿ßqǯ¸âŠ|0)oÕªÕ 7ܰË.»d»‚Ta†ªÉEË–-ûÓŸþôÃ?têÔé¸ãŽ;ðÀëÖ­ûä“Oº±råÊ /¼°U«VçŸ~¶ë™¾ÿþû(ŠæÍ›÷ì³Ï^}õÕo¾ùæ¤I“Î>ûì… žsÎ9+W®Ìv©Âô8’‹.¼ð·ß~ûâ‹/þÅ/~—,Z´è¸ãŽ;÷ÜsŸzê©¶mÛf»‚仫¯¾ú³Ï>{ðÁ ü‘ƒ¶ÜrËøÁŸþô§Þ½{ÇÏ:ë¬E‹7îÿøÇ€²]Gª*=Žäœ/¿ürâĉ;î¸c’£(***úÕ¯~µfÍš'žx"Û$ßM:õÁ<ãŒ3\d@nªW¯Þ–[nY·nÝ^½z¥—÷íÛ7Š¢>ø Û¤ ÓãHÎùú믣(jÓ¦MFyÜÑøÕW_e»‚仸GŒn½õÖ[o½5½ü©§žzê©§vÚi§gžy&Ûu$ß5kÖì»ï¾+((H/Œ;È×®]›íÚQ… Žäœ6mÚÔ¬YóÃ?L¥RéßzsæÌ‰¢hÇwÌvÉw­[·þùÏž^²téÒ×^{­¨¨¨sçÎ-Z´Èv!êÕ«×½÷Þ;wîÜvíÚ%…ñ-rÝv” QJ¥²]È4tèЉ'þêW¿:ûì³ã_8øðÇ ²|ùò'Ÿ|r‡vÈvá¼ÿþûGuÔá‡~Í5×d».EQ4{öìþýûï¾ûî·ß~{“&M¢(š5kVü« Ï=÷ÜÖ[oí RUéq$]uÕU ¸õÖ[Ÿ}öÙŽ;~ýõ×o¿ýöºuë.»ì2©`½:tèpÞyç]wÝu?ûÙÏöÜsÏ+VL›6­  `ĈR#Bp$5mÚôÙgŸ½ýöÛ_{íµW^y¥qãÆpÀ™gž¹ë®»f»jUÃgœÑ´iÓûî»ïõ×_oܸqŸ>}Î>ûìvÚ)Ûõ¢j3T @·ã ˆà@Á€ ‚#AG‚Ž"8Dp ˆà@Á€ ‚#AG‚Ž"8Dp ˆà@Á€ ‚#AG‚Ž"8Dp ˆà@Á€ ‚#AG‚Ž"8Dp ˆà@Á€ ‚#AG‚Žòÿ8¦'x)ZIEND®B`‚statistics-release-1.6.3/docs/assets/gscatter_101.png000066400000000000000000000357051456127120000224760ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A;ŒIDATxÚíÝ{œVU½?ð=\Òá" H"ˆâšÆAPuD’¨00/©ˆ&#fxÁSjÞK4)o¤Á *Šš¦x8…ŠÀñB0€ˆ¡€ð‚"Ãóûã9g~ÓÌ0³˜yæÙÏåý~õê5®Y{ïïÚi|\{ïµ ‰DµiwdÁ€ ‚#AG‚Ž"8Dp ˆà@Á€ ‚#PË–-+¨ÍÏþó(Šîºë®ä_öéÓg—.qÕUW%>|xCgÈ!ÉkÝ~ûíõ<Õ.·Î7'ܸqã’—2dÈ®;cÆŒ?ÿùÏþóŸ7nÜØ@åÙ¥IÜ¡N;í´O?ý4Š¢Ù³gwÜqq—ÄOpê«}ûö………UÛÛ´iEQË–-»téEÑÞ{ïw¥é°KãÍ·›d;Á¨¯|°†é¨ÓO?ýôÓO»ÆZtïÞýù矢èàƒ®ç©vi¼YqsÊyÇhXÕ¾Æ÷ÕW_Ýyç èØ±c‹-¾ùÍožy景¾úêÎNòá‡^rÉ%½{÷nѢŷ¾õ­{î¹'‘HTêóþûï_xá…ýû÷oÙ²åþûïÿÃþpÉ’%;T|irûöíW_}õ>ûìsõÕWGQt 'DQ´×^{sÌ1u.rgã­áº)¹9­]»öÔSOmÛ¶m‡N<ñÄE‹UÛmÇŽ?üð±ÇÛ¹sçÝwß½sçÎÅÅÅ÷ÝwßW_}•ìpùå—$ŸSGQ4hР‚‚‚Ï>û,ðp g%vÝo¼Qþ#³gÏ®¡çwÞ™ìvØa‡%[¾øâ‹¾}ûVý¿£‚‚‚ &”xå•W&Û‹‹‹»wï^©ó-·ÜRñ*ÿýßÿݾ}ûª';vlÕ6쬳ÎJþ|å•W&‰¯¾újß}÷ýéOZÞ9°ÈñÖpÝ:ßœj-Z´¨C‡jÙ²åw¿ûÝäÏßùÎwÊ{žrÊ)Õþ‰pÒI'%;\vÙeUûé§Ÿä*3Ž@º]ýõ .Œ¢¨°°ð?øÁ˜1c?üð(Љą^¸bÅŠJýçλbÅŠ®]»öêÕ«qãÆÉÆË/¿|Û¶mÉŸ·lÙò£ýèý÷ߢhàÀ×^{íi§Ö¨Q£D"qË-·L™2¥Ò /^|ß}÷UliҤɚ5k&L˜Pç"CT½nýoN¹mÛ¶tÒIï½÷^r8GqD—.]>ùä“gŸ}¶RÏéÓ§OŸ>=Š¢‚‚‚Ž9²üýc=ö /DQôŸÿùŸ«W¯nÖ¬Y²ý¾ûî+ÿËÜwr²RÅÇj]tÑEÉžU'ÕŽ<òÈdËõ×__~ÂoûÛÉÆ;î¸#ÙR>QEÑí·ßžl|àÊKJJ’¿üå/“-g¼î¸ãŽdã¾ûî[õ„={ö|à,Xðæ›oV;ÀÀ"«ªaƱêuë|sª*O½-[¶\°`A²ñ¢‹.*¿tùŒãüãdË%—\R~xïÞ½“ãÇ/olÑ¢E²±â¤røá@îñq n[·nMþ0uêÔ½÷Þû{ßû^ûöí§NºiÓ¦(ŠöÚk¯Jý{ôèqÁ$þÁ~ФI“íÛ·GQ´jÕªC=4Š¢äw-Qýû¿ÿ{ùQ?þñ/ºè¢²²²µk×¾öÚk‡rHù¯š5kö—¿ü¥cÇŽ),2Dƒ^wÚ´iÉÊ')£(ºé¦›zè¡ 6Tìyê©§&?f:ú裓-[¶lùüóÏ“?øá‡5¢ž‡YMpê«ÚåxöÜsÏõúhæÌ™‹/^ºté¢E‹>ùä“ÀQÔóp « Ž@}Õ¼OU×]wÝ–-[î¾ûî/¿ü2Š¢D"±dÉ’%K–Œ7ŽzüñÇ¿þõ¯Wìߨѿ¼]PPPñ/·lÙRþñïÎ$§ëʵmÛ6åE†h¸ë~úé§åÓŠ•¾éÔ©S¥ÎÛ¶m»üòËÿûß''n£(*,,l×®]¥‰É©çá@Vóq nM›6ýÃþ°qãÆGyäŒ3ÎH®žô·¿ý-¹Qa¸=öØ£eË–ÉŸgÍšµº:§vZÅC*EÏ4ÙÐ×-,,üÚ×¾–ü¹R€Û¼ys¥ÎãÆ»å–[¶oßÞµk׉'¾úê«[¶l:thà(êy8ÕG ­¾üòË÷ßÿý÷ßÿòË/O9å”x`Æ ùË_ÊŸÃþõ¯ÝÕspÀɶoß¾mÚ´iݺuëÖ­«ÝØ&ÍE6èu7n¼ß~û%ž9sfy{"‘˜;wn¥Î'NLþ0a„óÎ;ïCiҤɺu달çá@V´Z¾|y‡:tè°÷Þ{¿ùæ›Q5iÒdРA£FJvhݺõ®žsРAÉ&Mš”ø¿…Áüñ½öÚ«mÛ¶ÉUib/²¡¯{Øa‡%øýï_¾òù 7Üð÷¿ÿ½b·O>ù¤üÁýÇœüáþçj^F§|壺ä ï8iuÈ!‡´oßþý÷ßß¾}û€¾ÿýïï¹çžÿøÇ?žzê©d‡áÇïê9/¿üò»ï¾û£>zòÉ'xÌ1Ç,[¶ì™gžIþvìØ±5|©“¶"úº?ÿùÏzè¡D"ññÇ÷ë×ïðÃ߸qcÕu[´hÑ¢E‹ä[¡£Fš6mZAAÁóÏ?_í¦/­[·Nöüõ¯½lÙ² /¼p—rPÜëY©>;ǼüòË;{v\\\üÅ_$»UÜp¥â »té’løá‡ËŸzê©jgãF½cÇŽšOX­À"CÆ[Ãuë|sªuöÙgW:¤yóæÇ|òçòuO=õÔJݺvízì±Ç&>묳ÊOxÆgTì–Ü9&üp ÷xT ¤ÛG±zõê«®ºªOŸ>;vlÚ´i›6m p÷Ýw¿ð »í¶[Î9tèÐW_}õ'?ùÉ¿ýÛ¿5kÖ¬k׮ÇŸ7oÞÿøÇORÒSdC_wòäÉçŸ~òçvíÚp ³gÏ._m±Ü­·ÞúÍo~3Š¢Fzè¡_|ñÒ¥Kðƒ$;mÚ´ò•}n½õÖ3Î8£]»vÍ›7?øàƒ“Ÿ·‡äž‚Äÿ½@X¼xñœ9sÎ=÷Ü=öØcg}¾úê«3fDu}æ^ÏÃì%8Ä£j‚Ž"8Dp ˆà@Á€ ‚#AG‚Ž"8¤IÜ@)˜;·Ö>‰â↾Dˆz–ANÊ‹à¸uëÖGyä±Ç[·n]Ë–-<ðÀsÎ9çÈ#¬á“N:éõ×_¯ÔضmÛ_|1îÑ­ æÎ IcÝjPóáÉó×z•ú—AîÉýà¸}ûö³Ï>»¤¤¤U«Výúõûâ‹/^yå•ùóç_pÁçŸþÎŽZ»vmaaa—.]*6¶nÝ:îÑÄ&÷ƒãôéÓKJJz÷î=yòäÂÂÂ(ŠV­Z5bĈ & 8°GUÙ²eËæÍ›‡ rÛm·Å]>@¦Èýcžþù(Š®¸âŠdjŒ¢¨[·n£G.++ÛÙsçµk×FQTiº Ïå~p|ûí·›7o~ÐAUlìÖ­[Eï¼óNµ‡¬Y³&Š¢Î;Ç];@ÉýGÕwÝuW“&•‡¹lÙ²(Š:uêTí!Éà¸~ýú‘#G._¾¼Y³f={ö=zô¡‡÷hb“ûÁ±gÏž•Z,X0iÒ¤ÝvÛmذaÕ’œ‰¼ýöÛ÷Ûo¿~ýú½ûî»sæÌ™7oÞµ×^{Ê)§ÔzÅ¢¢¢ª¥¥¥qß €zÉýàXQYYÙƒ>8~üø²²²›o¾¹mÛ¶Õv[¿~}aaáØ±cGŽ™ly饗F}à 7 0 cÇŽµ^HLrOî¿ãXî•W^:tè¸qãÚ¶m;yòäï~÷»;ëyï½÷–”””§Æ(Šú÷ïæ™gnݺuöìÙq y·mÛ6nܸ³Î:ëŸÿüç˜1cž{î¹þýûïêIúöíEÑÊ•+ã @a„ZScEkÖ¬éÙ³çYgU©}éÒ¥ÑN>|È9>ã˜H$xà–-[^zé¥5tûì³Ï6lØÐ´iÓ}öÙ§K—.½{÷^¸pá£>zòÉ'';,]ºtÊ”);vûìÅ_Ü­[·3fDQ´bÅŠQ£FmÚ´é ƒêÚµë»ï¾[RRÒ¬Y³ &qĵ^´¨¨ÈWÕ@îÉñÇuëÖEQ´uëÖ7Þx£êowö‰L÷îÝŸx≛o¾ùå—_^µjU§N† vÁì½÷Þq 69>ã 3Ž@NÊýcH Á€ ‚#AG‚ŽÉñåxÈëT'Š‹Õ Jp Ô¶2d”l©3Pþl´k½@‚#°Sù¨ò'ןw"8Dp ˆà@Á€ ‚#AG‚Žbç²@¶ìÔ—-uÆhîÜ‚òŸ‹‹q—îÈtµn!²¥Î¸$#cŰ8wnAƒfÇ£>ú¸ãŽ»æškâzîð¨hpÉŒX)&'æÎ-¨8™BK—.}ñÅãw®1ã4¬f“í)œzܾ}û /¼ðÒK/Mœ8qÇŽq=׎@îøàƒw9Ë£j w´oß>‘H$‰+VÄ]K€ò:ù²cÜ•R;ÁˆYC^MªŽ@2›˜K|@¦Ë¨Uµë³Xcø@j¸JàIê†(ЬóP³MÈ=±Ng$8jþ3;ù§~­Q©æ‰ââä×z¡†HàUj=IýÏ’ÁÊ„çÔõ¿¥y£j aÕ°Ðw&¤F™q\ùBßÕ¶“-G MÄÄl'89¨¨¨(‘SSÌ;Ž"8Dp ˆà@Á€ –ã „løVkŸš;$ÛÐ;Ë¥äüõ?‰ ô*qC Ždº•³BJRÿ“„Ÿ¡¨AoG&É™¿ÇšGÕ"8Ä;Ž@ ÿîÄ‹†™OpVH"Láwͯ½öÚ¸qãæÍ›÷é§ŸvïÞýŒ3Î3fL“&2O ¸‰@îxë­·Š‹‹ËÊʆ¾ï¾ûΞ={ìØ±ýë_Ÿx≸KË‚#;ÆŽ»yóæ ôéÓ'Š¢_ýêW£Fš2eÊÌ™3wuYOp€Ô|ØZósÛ”œ$Ÿ½ð G}t25&ýìg?›2eÊË/¿,8ÖŸà)Skž É…)9I~Ú¾}ûùçŸØa‡Ul\³fME»í¶[ÜÕåÁÈMš4¹ñÆ+¶|øá‡7ÞxcãÆO:餸«ËÖqrÓܹs8âˆE‹M˜0¡[·nq—“ G ׬]»ö„N8öØc£(š={ö¹çžwE9BprÊ´iÓ>øàÅ‹ßu×]ÿûßwE¹Ã;Ž@îxúé§Ï<óÌSN9åÎ;ïÜc=â.'׎@ŽH$¿øÅ/:uê4uêÔÆÇ]N€†•¶õƒ–/_¾bÅŠ=züä'?©ô«O*v«©™¬A³ãœ9s~õ«_-[¶¬¬¬¬G—\rÉðáÃãqŽð¨HŸ†žn|öÙg¸víÚ#FŒ=zãÆ'žxâÝwß÷¸s„à¤[q¢xnÁ܆8óå—_Þ¡C‡%K–ÜrË-ãÆ[²dɾûî{Ýu×Å=â!8iÒÐÓ_~ùå²e˾ÿýï·jÕ*ÙÒ¼yó£Ž:jݺu[·n{ô¹À;Ž@ ’“Ž©Í‘7~õÕWÛ¶m[Þ²}ûö×_ýC),,Œ{Ĺ@pÒ! S7iÒä ƒJþ|ÿý÷¯^½ú™gžY¿~ýC=÷ès„àÄ£!&Ëýú׿^½zuEßþö·;wî÷Xs„w€—þµW­ZõÙgŸÍž={ÕªUGqĆ â¾¹@pbÓpŸWGQÔ¬Y³ãŽ;î7¿ù͇~øä“OÆ=Ö\ 8 +mÓÏ<óLÓ¦My䑊mÚ´‰¢(‘HÄ}ràÄ)…“އ~xE÷ÜsOŘxß}÷EQÔ¯_¿¸š |Q¼M_­Ýêß!U¥fˆd(l¸çѵmÛöŠ+®¸îºëúôé3xðà‚‚‚¿üå/ .¼è¢‹9ä¸ïD.(0s›rEEE¥¥¥qWõ•¢%‰©S§N˜0aÕªU5êÑ£ÇÏ~ö³SO=5dž3Ž@î(((9räÈ‘#ã.$7yÇ€ ‚#AG‚Ž"8Är<ÕÛºuë#<òØc­[·®eË–xà9çœsä‘GÆ]@–ɨ¥ªÅÅq—ÙMp¬ÆöíÛÏ>ûì’’’V­Zõë×ï‹/¾xå•WæÏŸÁœþùqWejŽksç&Š‹“ÿ]CŸšÏSk‡(Ã",d)Á±Ó§O/))éÝ»÷äÉ“ £(ZµjÕˆ#&L˜0pàÀ=zÄ] ¤IQQQÜ%AÇj<ÿüóQ]qÅÉÔEQ·nÝFý›ßüæÅ_ÈõÙˆ¯æYä]íVŸÃëy *òqL5Þ~ûíæÍ›tÐA»uëEÑ;ï¼wuñ0ãX»îº«I“ÊwfÙ²eQuêÔ)îêâ!8V£gÏž•Z,X0iÒ¤ÝvÛmذa!g¨úFH}fû2àX‹²²²|püøñeee7ß|sÛ¶mCŽ€Ü#8Öä•W^¹îºëÞ|óͽ÷Þû†nèß¿ÜÄFp¬Þ¶mÛ~ûÛßN:u÷Ýw3f̨Q£Ê¿°ÈO‚c5vìØqÉ%—Ìš5kРA×\sM»víâ® ~‚c5¦N:kÖ¬ÓO?ýšk®‰»€LQH$â®!³$‰ã?þ£>š?þî»ï^‡3ù8 )£6ú³ t:…ÿO_ÏÀúT$8V¶aÆ£Ž:ª°°pÿý÷¯úÛáÇ1¢æ3Ž@Nò¨º²uëÖEQ´uëÖ7Þx£êo}X ä-3Ž©gÆÈIöª ˆà@Á€ ‚#AG‚XŽ€˜¥j‘ðy¶Lt%nu#8§‚¹skM'É”Ss·Z“PH )&3£vý!CxT @Á€ ‚#AG‚Ž"8Dp ˆà@Á€ ‚#AìU @œÅÅ{"×sëäÃóa£êhWî9TRH$â®!ו––Æ]@ŠyT @Á€ ‚#AG‚Ž"8Äà¤ÒÜ‚¹Å‰âò¿ _hº†Å·OÒÐËw§jÑìšë¬ÿ`SrÏSu7òdMõü!82ÉÔX);†D‡ZSH­'IÏV(!™¯þ¹°þƒMÉ=OCdª"8åÉIǸËROp ˆà@ Tz¯Ñ¤#ä$Á€ ‚#õUiº1ɤ#äÁ€ ‚#õRítcRq¢xαqפŽà@Á€º«aº1éØ9‘7!gØr€z©9Ή¢([ÏeÈæu!edÂ`Ós»2äÒ© ‘HÄ]C®)***--» €ó¨€ ‚#AG‚Ž"8Dp ˆÀòE­»¼Ä"|éDqÆùFpÈ#™™C¡MJ xT 232ÙEpÈ#ʼn⚷–¨àûL7)!8䓎@ Ž9Ît#*‚#@Þ1éÔàËL7)$8ä#“Ž@Ž9Ët#Z‚#@ž2éì*[ä¦d(ÌŠhh;AȉD"îrMQQQiiiÜU¤˜GÕ"8Dp ˆà@Á€ ‚#A,À.ˆeÃÀÂÅé.Ì`É7‚#@¾Hî"SŸØã>4µæ¤\Ú~&¯Kvñ¨ /¤j¦Ð×ÏG€ûì³ 64mÚtŸ}öéÒ¥KïÞ½.\øè£ž|òÉÉK—.2eJÇŽw±@Ö+«¯ÖnõÜ0ð*õì¶2Ž ZQ h@‚cEѼyó.¾øânݺ͘1#Š¢«¯¾zÔ¨QW^yå´iÓºvíúî»ï–””4kÖìÆo,,,Œ»X ë¥çKä ùÞ9…e$â àQu5ºwïþÄO 6lÓ¦M3gÎܼyó°aÃf̘qÄGÄ]@l  ÿ —bEEEÖqrG‚Ž"8Dp ˆujQÏ…¸³«ÎzîR˜ª2²TÁܹ!ÝÅÅqW u$8Ô$[öÓKƵ”l6Sÿ»‘ÏÙ±ÖP.!3yT P‹¼Ú޹ÖÁÖÜ!Ÿ##äÁ`§²%•×YŸŒ›ÂgÐyµ!¯ŽµË«$TçIÇlÉÙ@ ŽÕË–T©ÎºeÜ”ò’WQò‡à$¯’P&³%gõ!8T#[bPµuîjÆm vò*jCžBåUÚ¥IÇlÉÙ@= Ž•eK ª¡ÎðŒÛ  zçUÔ†| 8삼JB“ŽÙ’³úþE¶Ä Zë ɸ!ƒ­çÝÈ«¨ 9Ï–ƒ•¥$oeB©lz*É v$·$‰¸kÈ5EEE¥¥¥qWbUDp ˆà@Á€ ‚#AG‚Ž,–!ëN§d í4”PO‚#­²+'Õ\mrÇçút¬! Wr˜àd±LØ9¹ý` e¤j«¤¡ Ÿ Ž@VʺTCªKŽ¥Ö±— 8Ù-Þ SévVFjn­WIO@Þì“¥1¨ÚTWq,µvˆ± €Hpr@\A§R¤«ZFCÜZ¯’ž2€ü$8Y&«cP¥TWu,µvˆ¥ €$ÁÈé:ÕFºŠe4\À­õ*é)ÈC‚#Mr •§º¥Öi. \“¸ HdÐIO¬¬áBåy«A+©õ*é)È7f¬‘ÓIµfÜô„àÀ2bºI@&Ü‘ž “3ù`W$‰¸kÈ5EEE¥¥¥qW9(06tªËÃI8AHSOpr’GÕ"8Dp ˆà@Á€ ‚#AG€šÌ-˜[ëŠßõ_<ä*!'IÏ IÃU€Ì$8ÔKrÂØãTzÊÈÁqv*™“:*¥ç*õ'8Ô]2óEQoìKO2X F‚#@õÊsRÔQ)=WH Á Ž*f¾(¾Ø—ž22d°@¼G€jTÊIQÃD¥ô\ UG€º¨šù¢8b_zÊÈÁ±*«6'E©ŽJé¹ @ Ž»lg™/JoìKO2X Žÿ¢†œ¥.*¥ç*©%8ì²2_”®ØWsôLUé¹ -šÄ]@If †Þœ:ü*5‡6›SiVH$â®!ו––Æ]@ŠyT @Á€ ‚#AG‚Ž"8Dp„¼c=çŠBî†;$8B>’„*ªùn¸WåGÈ/µîb—Wï†í˜’GÈG’PE5Ü 9 "ÁòˆTÑ.Ý Q !oIBU{7äl€JGÈbPEu¸¢6€àùKª¨Òݳª!/ˆAÕùnˆÚ@ž!¯IB•ß 9 Z‚#ä>1¨¢zÞ QÈg‚#ä;I¨¢äݳªUH$â®!ו––Æ]ü¯ÀP˜'Q)…9Oî@E‚cê Ž@Nò¨€ ‚#AG‚Ž"8Dp ˆà4ˆ Ù&=eÔz• ¹õ$8Öâ­·Þ***zõÕWã.òÎÜ‚¹)É[Ú2¤ €úk1uêÔ¸K€ì“Üî9ö¨”ž]§k¬Í¯œ!8VoË–-‹/¾æškz衸k|” [)IŸ™a3§ €úhwjèСï½÷^ÜU@V*Ÿ`KF¥¸&ÛÒ9ÝXÃ`M7¹ÄŒcõÆ7qâĉ'öïß?îZ ïT [&2‡Çê 0 ùÜ9s⮲I¥ ¶¸&Ó<ݸ³ÁšnrŒàØ ŠŠŠ*µ”––Æ]d‡ªa+%é3Þçæ™V@ÝŽ BL$?U‰Ò•b™n¬:XÈ=Þq2ÈΖ72à¤F léŒJ1N7V¬éF ' Ž@¦¨9l™tˆà¤@­lé‰J±O7ä6Ç©‘ž}¥k mé™É ¹Š9E ÷Ž@ ¤d®þ'IÏD éF oyT @‚D"w ¹¦¨¨È:Ž@î1ã@Á€ ‚#AG‚Ž"8Dp ˆà@Á€ ‚#AG‚Ž"8Dp ˆà@Á€ ‚#AG‚Ž"8Dp ˆà@Á€ ‚#AG‚Ž"8Dp ˆà@Á€ ‚#AG‚Ž"8Dp ˆà@Á€ ‚#AG‚Ž"8Dp ˆà@Á€ ‚#AG‚Ž"8Dp ˆà@Á€ ‚#AG‚Ž"8Dp ˆà@Á€ ‚#AG‚Žiwd¢¹s *µ'â. ˆ™àHesçT‰Õ6yÅ£jþÅÎbqq¢ê4$WGþ¿š§eGÈs‚#AG‚Žü¯Ï_<­€|&8ò¿BB¡o« Ÿ Ž"8òÿÕü´ÚsjÈsvŽá_”gÇŠ±j ‡G*KÄŠS"# ŽìŒ°TâG‚Ž"8Dp ˆà@Á€ ù²Žã£>:}úôÕ«W7kÖì˜cŽùùÏÞ¦M›úŸtÒI¯¿þz¥Æ¶mÛ¾øâ‹q%STڜкóò"8Þzë­wÞygóæÍûôé³fÍšÇ|ÕªU÷ßaaáÎY»vmaaa—.]*6¶nÝ:î¡dŠªûVÛÉr^îÇÒÒÒI“&µoßþ±Çk×®]EãÆ»ÿþû÷»ß]uÕUÕ²eË–Í›72ä¶Ûn‹»üŒ³³}«“›\ËŽÃrÿÇéÓ§ïØ±ã¢‹.J¦Æ(Š.»ì²V­Z=÷Üs;vì¨öµk×FQTiº‘r;K‡Éìwu@CÉýà¸hÑ¢F—·4nÜøè£þàƒ–,YRí!kÖ¬‰¢¨sçÎqמqÌ)@>Ëñà˜H$V¯^½çž{î¹çžÛ<ðÀ(ŠÞyçjJÇõë×9²OŸ>ÇsÌyç÷ꫯÆ=š,`ÒrXŽ¿ãøù矗••Uý¨¥U«VQ}øá‡Õ• ”·ß~û~ûíׯ_¿wß}wΜ9óæÍ»öÚkO9å”ëUj)--ûfÔKŽÇ­[·FQÔ¼yóJí-Z´ˆ¢hóæÍÕµ~ýú±cÇŽ92ÙòÒK/=ú†n0`@ÇŽk½®˜äžTݺuë‚‚‚Ï?ÿ¼Rû§Ÿ~ýß¼cU÷Þ{oIIIyjŒ¢¨ÿþgžyæÖ­[gÏž÷˜2š—  ‡åxplÒ¤I«V­ªÎ,nÙ²%Š¢òï¬CôíÛ7Š¢•+WÆ=&€xäxpŒ¢¨}ûö|ðA2)–{ûí·“¿ªÚ?‘H”••U]©§qãÆQµlÙ2îÅ©æo_|¹-÷ƒãqÇWVVö·¿ý­¼%‘HÌ›7¯M›6½zõªÚÍš5={ö<묳*µ/]º4ªî«—|“ÌŽU3bò!µçÔÃr?8ž|òÉ5úÃþ|¯1Š¢I“&mÚ´é‡?üaÓ¦M“-Ÿ}öÙÛo¿½nݺ(ŠºtéÒ»wï… >úè£å'Yºté”)S:vì8xð฿d@LÆÇòÿˆŒó ‰Üÿó~Ê”)7ÝtÓ7¾ñ£Ž:jÍš5 ,èÙ³ç”)SÊ—éyöÙg/¾øânݺ͘1#Š¢+VŒ5jÓ¦MtP×®]ß}÷Ý’’’fÍšM˜0áˆ#ލõrEEE¾ªrOîÏ8FQtÎ9çüîw¿Ûo¿ýž}öÙ?üpĈ÷ßÕÅËuïÞý‰'ž6lئM›fΜ¹yóæaÆ͘1#$5䪼˜qL33Ž@NÊ‹GêOp ˆà@Á€ ‚#AG‚4‰»vMÕ½þvuË–jw”®t’Z¯r’4ŒH'Á1›T»³_2~F®í XÞ¾³³Ul¯õ$!eìì*²#d, €§^-^s¨ ‰\µž!ª-€ÖÚ'%eÈŽ™¼ã˜Ò§ÏŸ†2ª}ÄNpÌé™Éû ‡ Ž9¢þ‰-ððú_Å“hÈR‚#AÇQÿ™¼ô¼ãèY6d/Á1_¤'±y 9LpÌiˆ}éyÇ1äü¢'d&ë8¦^­ã¥hð¨Æ•·ë¼xjË2à˜z £mÓW‡wµCÚÆ¤à˜z ââG‚Ž"8Dp ˆà@Á€ ‚#AšÄ]»&d·•J}jííú–-6}€<$8f“m]ÞXíЕk=IýËr’-S¯¶¬!™•ÏÿÕÝjí˜üj-C|€\åÇìPsª Ïj5Ÿ¤êè*ÈF‚cî¨9·Iu@= ޹£æùÂZgS"dÚÈR‚#AG‚޹#Þq´(ä0Á1wÔóÇÌçFÈg‚cvH&¶…¶òÌWs‡bß.ÅÁZËr’ÀS¯OªΪ®¹]5½U=¤æu(£n'²‹à˜z £ð«6«íê^Õu |)9 EÇÔkèà ï8Dp ˆà@Á€ ‚#AG‚ޱŽc*¥|aíZß;¤Îú—‘žÛ¤M“¸ Èå{î•/¾«»ðU»`Å–ª¢]ßQ0¤CÍe„œ$üvÕp £˜qLJ‰§âÎ1áa¨†à•üUH‡¨ÆÙÁNRk‡À«ƾZ¯²K÷HÁ1*eJ[†$¡Zû„tˆjL¨õïx’4 ˆ…cê+sRNÍeÔZdà(2d°@ú Ž ®üñnC«ù*é©¡ÖÁfNÎv•à¿À,ÕÐÉ/ðüi i‹ÚÀ.³FCOÔeΣj³’™Çø¥j‚­žï8¦D­™Ïl"d/Á±¾2ç­¾LxÇÈa‚cF¨9}V\@qg/TÏ«¤­Œ]½@XÇ15*.pXqç˜hWžW›™*6†t¨zŪÛÏìj‡À«Ôsç˜:œH'Á1•R¾}s´“XóUR¾™uÝNRÿÁEpL½J;Çäï8Dp ˆà@Á€ ‚#AG‚ŽÒ$îòHµ4§|¯”Z¯’ž2€Ü#8¦ÉÎvaNíî̵^%=e9É–ƒ©WuËÁšcYªB[­W‰jœY”€šyÇ1~Åʼnjçg@Æ\zfòÌ Mp ˆà@Á€ ‚cƒKÏG'>mšà¿ ù®%CÊ2–à˜5L¦0®Õz•d‡jûH@­,žzUOÊ-«í#5µSogÁ «yT @Á€ ‚#AG‚Ž"8Dp ˆà¸S>úèÉ'ŸÜ«W¯#<ò—¿üåG}wEù«¨¨(îrŠû™rniʹ¥©å~¦\ÞÞRÁ±z·Þzë•W^ùæ›oöéÓ§E‹?þøüÇlݺ5îºb#8V£´´tÒ¤IíÛ·þùç'Mš4sæÌ‘#G¾öÚk¿ûÝïâ. 6‚c5¦OŸ¾cÇŽ‹.º¨]»vÉ–Ë.»¬U«VÏ=÷ÜŽ;â® ‚c5-ZÔ¨Q£âââò–Æ}ôÑ|ðÁ’%Kâ® ‚ce‰DbõêÕ{î¹çž{îY±ýÀŒ¢èwÞ‰»@€x4‰»€Œóù矗••µnݺR{«V­¢(úðÃCN’·[5·4µÜÏ”sKSÎ-M-÷3µJKKã.!‚ceÉO§›7o^©½E‹QmÞ¼¹Ö3äíßL@n󨺲֭[|þùç•Ú?ýôÓèÿæòàXY“&MZµjUufqË–-Q•g oÇj´oßþƒ>H&Åro¿ývòWqWÁ±Çw\YYÙßþö·ò–D"1oÞ¼6mÚôêÕ+îêâ!8Vãä“OnÔ¨Ñþð‡ä{QMš4iÓ¦M?üá›6mwuñ(H$q׉¦L™rÓM7}ãß8ꨣ֬Y³`Á‚ž={N™2¥ê2=yBpÜ©§Ÿ~úÉ'Ÿ|íµ×öÞ{ï¾}û^tÑEÉyò“à@ï8Dp ˆà@Á€ ‚#AG‚Žiw¹æ­·Þ2dÈôéÓ=ôиkÉn[·n}ä‘G{ì±uëÖµlÙòÀ<çœsŽ<òȸëÊVüñm·Ý¶xñâuëÖ}ýë_?øàƒÇŒÓµk׸ëÊÿüç?‡:pàÀßþö·q×’ÅN:é¤×_½RcÛ¶m_|ñŸKËV¯¿þú]wݵlÙ²O?ý´¨¨h̘1‡~xÜEe¥­[·~ë[ßÚÙo»uë6cÆŒ¸kLÁ1ŦNw ¹`ûöígŸ}vIII«V­úõë÷Å_¼òÊ+óçÏ¿à‚ Î?ÿü¸«Ë>[¶lùþ÷¿¿qãÆnݺ{ì±ëׯöÙggÍšõÈ#|ðÁqW—õ‰Ä¥—^Z¾µ=u¶víÚÂÂÂ.]ºTl´Ñk½ð \pÁŽ;¾ùÍovëÖíÅ_9räÿøÇÆ]Zö)((èÑ£GÕömÛ¶½ùæ›­ZµŠ»ÀôScË–-+W®|úé§~øá¸kÉÓ§O/))éÝ»÷äÉ“ £(ZµjÕˆ#&L˜0pàÀjÿé¥wÜqÇÆG}ñÅ'[þô§?]~ùå×_½¿cëïÞ{ï]¸paÜUd½-[¶lÞ¼yÈ!·Ýv[ܵä‚Í›7_zé¥Mš4™8~üø²²²›o¾¹mÛ¶qW”ÅJKK{ì±D"EÑAôµ¯}-ÕÖ­[ñ‹_têÔé’K.‰»–±~ýú±cÇŽ92ÙòÒK/=ú†n0`@ÇŽã.0›|òÉ'Q­^½zãÆ7ÝtSqqñ_|ñØcM˜0á /œ1c†yÇzºçž{>ú裱cÇÆ]H |CF{å•W†:nܸ¶mÛNž<ù»ßýnÜe·ýèGË—/Ÿ?þ¥—^:sæÌÓN;Í"2usÓM7­[·nüøñþN•{ï½·¤¤¤<5FQÔ¿ÿ3Ï}úôêÕ+îZb 8’¡¶mÛ6nܸ³Î:ëŸÿüç˜1cž{î¹<|"Ð ¾þõ¯ŸsÎ9§žzê{ï½7sæÌ¸+Ê> .œ6mÚ¹çžëõ»†Ö·oß(ŠV®\w!Y¦yóæ»ï¾{aaá±Ç[±}РAQ­X±"î³ÛŒ3>ûì³áÇÇ]H<<ª&íØ±ã’K.™5kÖ Aƒ®¹æšvíÚÅ]Q[µjÕ”)SŽ>úè!C†TlO~´þþûïÇ]`öYµjUE'Nœ8qbÅö§žzê©§žÊ«=$R%‘HìØ±£   Òú‚7Ž¢¨eË–q˜}Úµk÷ñÇTlLNoß¾=îê²Û£>ZXXøï|'îBâ!8’‰¦N:kÖ¬ÓO?ýšk®‰»–¬·Ç{üéOÚ¸qc¥à˜\6o¿ýö‹»ÀìÓ¹sçï}ï{[6oÞ<þüŽ;öêÕ«C‡q˜}Ö¬Y3xðà¾}ûVÚ|kéÒ¥QÅ]`ö9öØcï»ï¾•+WxàåK–,‰¢È²£õQZZºlÙ²ï}ï{Í›7»–xŽdœD"ñÀ´lÙòÒK/»–\о}û¢¢¢ùóç¿ð å[­X±âÁlÑ¢EŸ>}â.0û 0 |®¤eË–ÍŸ?ÿ°Ã³WuÝtéÒ¥wïÞ .|ôÑGO>ùädãÒ¥K§L™Ò±cÇÁƒÇ]`ö>|ø}÷Ýwå•WÞyç{î¹gE¯¿þúäÉ“[µjõío;îê²Ø¼yó¢ÿ{‰"? Ždœ7&·¬=ãŒ3ªþvøðá#FŒˆ»Æ,sýõן~úéçw^¯^½öÙgŸ 6,^¼8Š¢ñãÇûJ qõÕW5êÊ+¯œ6mZ×®]ß}÷Ý’’’fÍšÝxã¾@ªƒ=zŒ;ö–[nùÎw¾sØa‡}þùç‹-*((7nÜ^{íwuY,¹{Yù~õÔS7~ýõ×8 T>þøcN§ÓéºvíZü;|ôèÑüùó_xá…Ê•+»ººtìØqæÌ™éééY¶<}ú´.gggooïF}üñÇ·nÝ’ó’,F­Ô‘ ~ÎJw€v¥¦¦¾ñÆ?þø£e㯿þú믿.[¶¬}ûöË–-óööVº›Åç·ß~ëÑ£ÇÅ‹Í-qqqqqq›7ož={ö‚ :vì˜÷ CJJJJJÊáÇ¿ýöÛÍ›77nÜXéapGÊøóÏ?CCCÿýws‹“““N§3 ÒÃ-[¶tîÜyçή®®Jw¶8ÄÆÆ¶jÕêþýûæggçÌÌLé÷«W¯öêÕëÀÏ=÷\ö×úúúº¹¹ !Qº§ÅäÃ?4§Æ7Þx#&&æáÇ׮][´hQÙ²e…iii¯¼òJޝ]¹reBBBBBBRRÒ¥K—Þxã ©ýÊ•+óæÍËû%YŒ?^é#@½Žpâĉ+VH¿¿úê«;wîlÙ²eÙ²eK”(ñÜsÏýðï¿þºôì?ü`~Un‹{÷îe}žyËž={^¸p¡OŸ>5jÔ¨R¥JïÞ½Ož<)„8tèÐ+¯¼R£F§žzªuëÖ{öìɱŸ×®]ëׯ_Íš5+UªÔ«W¯½{÷fßææÍ›#FŒhÚ´iÙ²ekÖ¬Ù½{÷cÇŽô€ìرcãÆÒïãÆ[¼xñsÏ=§×ë+V¬8hРU«VIOÅÆÆž;w.ï]U­ZuñâÅæCôÅ_|¸ÂÉÉéÕW_5÷*ËkK”(1wî\é’äªU«N™2Ejß¼y³Ôÿ­[·J-ƒ6¿ê7ÞÐëõBˆK—.8qBN'SSSÍ¿çX-œ§žz*ûþ (˜ªPÜJ•*eþ=ûMª­«råÊæßÍwŸ©T©’yeŽ·¤‘Ô­[·J•*æ‡íÛ·—~ÉÈȸxñbÍš5Íשä6|þüùgŸ}6ßNJM[ý€¤¤¤H¿¸»»g6ÇÛñ”+WÎZïÀ!7—òåËK éÌ™3–O¹»»×¨QCú=)))--­ˆïeˆ–œœdM¶˜§z%¥K—öðð¸wïžâÒ¥KåË—·¼çbŽÌåä­dÉ’ÞÞÞÒÆ–wÿ¶tïÞ=鞎®®®¥K—–³[ó µ¯¯oögW®\Ù¦M›"ZZÄT5˜—®_¿>))ÉÜ>xð`én‚çÏŸ÷ôôT¶“Y–¦§§K©QQ­Z5wwws¥ðÿû_\Nz÷î-ó½š6m*ý²aÃóåÞ–êÔ©ãííííí=þ|9;Ü¿¿teŒâùçŸWöHpG 9r¤Tö»wïÞˆ#Ìßb¶`Áéî3–ÌåÃ,ë-£§>}Ú²Û¶m“~)Y²¤T•.—BdffÖ´àåååééééé™Ç|øPÚ I“&´|Iýúõ¥_ÒÓÓCBBBBB’““cccm×ÉüÑÏϯN:‡–R ^¯ÿüóÏ¥g?úè£E‹ݹsgýúõaaa-[¶<}ú´ù†‹£F*е&³fÍjÔ¨QzzºÉdš4iÒ¤I“¼½½ïܹc¾ÝÕÕ5**JʬYôïß_ºäèÁƒRâ””/_~òäɶ;>´†Š#exxx>>Ù/^¶lÙçŸþÌ3Ï”.]:$$døðᇲQ6jÕªUtttxxx•*U*V¬Ø«W¯]»v½ñÆ–Û„‡‡ÿþûïo¾ùf½zõJ•*åïïßµk×èèèyóæåxAwÞš5kvþüùÙ³g·lÙÒÇÇÇÅÅ%00°S§N³gÏ>{ö¬tCʼéõúråÊ=ÿüóüqlllãÆmqdh–μ.ÈGÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBpÌG|||``àï¿ÿ®tGFpÌÇòåË•î€*8+Ý•JMM=wî܆ V¯^­t_Tà˜³ððð7n(Ý !8æìóÏ?ôè‘bÅŠPº;Ê#8æ¬yóæÒ/»wïVº/ª@p´¾ÀÀ@¥»(¼sçbemgÒ)ÝS(¦v`íØXyN ÁÑ&´ù‡IÍ9)jÃIQ'Uü`få 'ko&a*žã ª“¢ ø“a+µ•îBŽë³Næ“ÌŠ-Ã!ÅéL*8ÝZ]$8òWà Hæ³/Ö |jˆt°%‚#hÝ“™!6Ç!åŒ9\‚ Â  |‡àŽ/ï,a™r‹†R+¡P±çÎ aK|å 8.ç“é‰aÒYþXn[;°¶)ëæÿü(=>‡“Û {ò'°víÜÏI¶À–¨8B¶nݪt'¥(r+?e R1ËæyDÀ„­ JÎä[&”—ó¶&pR”—å\jõ¢j‚#¨^öø‘cÞÐå”S(Ú–üEP+™‹²œK^SÍTu¾>ûì³ØØØçž{NéŽÐŠ|'šÍi$ˆL.ÛÌEÌ«.¿“¼H¨8€Â²­rËÙ/[!ZŸüEP‡|ë…œ9ë"8@q“™Å“a‘˜heyÜv*“G:ä„3‚#Ë”"3) ¢µíéÐ.ÀV IŠV ób"($·€ÈI² G°&Âbq#&ªÑ! ¨d†Ea‘ ‹…'‰(ŠKŽ‘ãŽPHæ#3, òbáÕ„Œ¨qG(˜‚æEÂb‘U#§[ÊCÓŽ yѶäÏ÷Ãfˆ‰ÈÁòB^´ÊŠJ#&¢Ž™yQüÉ‹²PVTT–¤È @!à R¶‘™‘1_„EåauG‚£ÕÉ? °’"là@ë(1Z ÅÅbGRD1#8ЮEFòb®(.#’"”Ep 9ÌJ[ÅÅbäïçgþc e9)Ý(>:Ðé„Éô×O^[ Nè¤ •HGÐò ’mCgñŸ`ÂDj„ h‚eÚÉgK"cvÙó"lÀ2,š,~õ`ª€ƒ“¹Q01‹mÏrÍ"GêGpà°ˆŒ…'ÿØ¡à‹°_GŽIšVÍ3"£%0ˆŒ6`΋\Ø/Ö8p4æÅxùlÆZÆŽÅ?KâãIV”ã²EÀ~Qqà8 47M^‚)i[¡¸GEpàXÎX0\õb¬\„Ø=–3%Fk£¸M!8°cÌMËE‰ÑÚÈ‹Ð&‚#{E¡QJŒVE^„ÆØ ²­‡¼HŽì …ÆüFά´Õ,Žì…Æü†M‰Ñ:È‹@nŽì…Æ<‡Md´ò"/‚#µ£Ð˜ç˜‰ŒEE^ä#8P5™…F¡ÁÔHd,2)2rùŽÔ‹éé\Ld,JŒ@¡¨”üÔHd„L”""8P5æ4T"cáQb¬…à@]XÔ˜ÓPe<‰#`]G*¢ÆlC¥ÐX”!8P 5f=‚ÈX`”›"8PRãÇB ŒÈ‚#…q)LÖÃAd,f¥âDp $.…yâX @‰(~GŠ!5þs ‘±ˆŒ€RŽ”áïïGj‚¹é‚!2ÊrRº´H§ññ ²¶tàÔ¨Ó‘åÓ ¡ÂDjEpPܘ¡þç(e 2êÁT5€bEjdE£|LLjCpP|HÌMËDdԉ࠘h=5Rh”‡È¨Á@q 5óEdÔàÀæ4)4Ê@dìÁ€mi=5óDdì Á€ ‘•î„z{Dp`+ÚMLOç‰ÈØ/‚#›Ðtj$2æNGdìÁ€’*5RhÌ…FÀXŸÌ¢›£¥F"c.ˆŒ€Ã 8°2™ ÊßÏŸÔèðˆŒ€ƒ!8°&-&(-ŽY–3ŽÇIépº &>!^éþZcÀ¤ÆœèH€ƒ"8°Í]F- ˜Ôø$sd三©jÅÊ¡R#žD•pxGV ­Ë¨IÙp  GE¥¡Ôȳ!2šBpP$ª¾ih¨r17 h Á@áiè‚Rã“(4ÚDp`s¤FC¡Ð,‚#€BÒÊÒFR£ €Æ†VÒ”VÆ) …FG¦•¥¤Æ¿Qh !8°R£c ÐÀŒà `i#7kü…FY€ã—á„rQh“Ò`7i#©ño¤F9¢âÀÊHvÍßÏO䂊#Y¤F²QqGž¤Ö|jä6 ŠàÀ Hv‡B#€B`ª@®6\9ìÀdR#€B!8È™ÃNR“I ‹©jEBj´#,jPDG9pÌ|嘣’=z"#€"cª@VŽ9IMjTºG…Dj´ LO°"‚#€'h8b9 ¬‹©j…A¹QýH¬Žàà±pHòÆMj`Z™ª^»víš5kâââJ•*Õ²eËÑ£G{yyå±}FFÆwß}·eË–„„//¯gžyæÝwß Pz€ 9à51¤F°*MTgÏž=qâÄ .4lذL™2ëÖ­2dHzzznÛ †×_}ÆŒwîÜiÑ¢EåÊ•·mÛÖ¹sç#GŽ(=@y¤F5Ó‘Ø’ãÇØØØÈÈH__ß­[·FFFnÛ¶­ÿþ'Nœ˜1cFn/ùᇎ;Ö¾}ûíÛ·ÿç?ÿY¾|ù’%K„'NTz4€­8ZÊr´ñÈ´&R#[rüà¸fÍ£Ñ8räH©eܸq[¶l19¾äرcBˆ×_ÝÙù¯©ü&Mš]¼xñöíÛJP’}”5œÀ¦?89rÄÉÉ©U«Væ½^š’’"Äì*V¬(„°Ìˆ&“éîÝ»NNNæ( 8‡ Z5Ùƒ&5(M&S\\\¹råÊ•+gÙ^»vm!ÄåË—s|ÕË/¿ìêêúù矎j“À]ÐÌd&.[§Æ"R£ÍðaQ!NŠ iößzÇ_ãÀ’#$.Gƒì±Rk &G9Põ$µf¨ ÁÐG(Õ9Âä ”Ô@}޲Ro¹‘ÔŠ"8Za÷¡Ëî { ¤FjEpð•–I G@4“»ì©€Êüƒr£’£$5P=‚#àøì;wÙwïe’ÔÀüEåFR#¨ ÁppÚˆ^vŒÔÀŽA¹Q©!’Ø‚#àÈì8zÙq×e‘ÔÀÞ¨²ÜèèHìÁpXv\³³ã®Ë©€}"8Z§ºr#©ÔŠà8&{M_öÚoÙã#5°gG@ÓTWnth¤FöŽà8 {-ÛÙk¿å ŽÔÀþ¨©TàhóÔŃÔÀaGc—•;»ì´¼‘‘8‚# Q**7’ÀN‡â¸Ìþ8‚# E”m>,R#GDp‡ýe0ûë1hÁЕ”ýüý55Rn਎€ƒ x§¤FŒàh‹JÊB§KˆWº6©€C#8€u8<‚#àìlžÚκ+oL¤F@p4DóÔ¤F°[GÀî9b³'¤FÚAp´‚r# ˆŽ€}³§$fO}•=&Ê´„àh‚*ʇÔ@kŽŠ…ÕI4ˆàØ1» cvÓQÙ"5Ð$‚#àø˜§¶.R#Í"8öÊnªxvÓQy£!5Ð0‚#àà.7:Vj#8v‰<¦Ê4ŽàÀf+Þ’€à82.‹±R#‚#`ì£g½”7R#!Ž€S²Üè@©`Fpì ‘¬˜Qn3‚#ks lKjKGÀ1qYLÑ‘ ‚#`Oì –g]”7R#dCpbåFGI€»A*+6” GGVâ(Á–Ô¹!8ކËbŠ‚Ôy 8öAíå<µ÷OÞ H'‚#àP(7l‡àص—óÔÞ?yƒ Üù!8(R#hÁpÌS©d"8j§êŠžª;°2‚#à (7åFà °ì¿ÜHj€!8ªfÿÙL½HPPGÀ(0OM¤í!8ê¥Þl¦ÞžÉåF(8‚#Í!5@á»WÜóÔv^n$5@¡•²óxp@Gaçy–r#Á°oÜ÷[>R#ÁP#•ÖõTÚ-y}'5@‘;F¹PœŽä¡ÜšGpTG M}’ÝwR#X Á°WÌSŠÁP5–öÔØ'Ù}§ÜÖCpà°H`]GÀ.ß<µÝ–I`uG@Eì6¤4à wv›d)7€-ûÃõÔy#5€µP]uOu(ŒàÀ¡PnÛ!8v¦˜æ©í³ÜHj›"8ª`Ÿ9  -GÀžPn̫הÀÆŽ©ŠÁPžº |êê @EŽ€Ýàö¹¡ÜŃàÀ‚–IPlŽ€Âì0ª©©Š“³Ò(&k×®]³fM\\\©R¥Z¶l9zôh//¯¼_ròäÉ œ>}úþýûï½÷^£F”´«8æ©É°€uE^IPì?8®Y³Æh4Ž9ÒÇÇGj7nœ‡‡Ç–-[rKëÖ­KMM:thýúõ¥–gŸ}¶}ûöÉÉÉ'OžTz@Ð"®§¨ãÇ#GŽ899µjÕÊÜ¢×ëCCCSRRŽ;–ãKöîÝ«ÓéºtébÙøå—_ÆÆÆ>÷ÜsJ°Êüâ“ÉW®\¹råÊY¶×®][qùòå dÕ©S§¼¼¼*T¨pôèÑãÇß½{·N:mÛ¶ussSz@p(ö–ÖÔ‚ÔJqðà˜––f0<==³´{xx!nß¾ý%þùg­Zµ>ùä“U«V™Û«V­:gΜ§Ÿ~ZÎûfiÙºu«ÒCÓ®\¹¢trä—ïFþ~þñ ñ "ÿ- Ù ÿ„øx!£'ÖUø“â'븡pÔúaÑ4NŠâ^zé%¥» ¥K§K—.¥½L™2Bˆ{÷îeÉŸþ)„ˆ‹‹»uëÖ´iÓZµjõðá訨o¿ývĈ7n”SwŒUzèÈÊÏÏOé.¾W¶î¼R§ïûW¹Q•gÓa¨óâqœeeÿg={…H#|£§§§N§KKKËÒ~ÿþ}ñwÝ1 WWWé—©S§véÒÅÓÓ³B… ï¾ûn×®]¯\¹²iÓ&¥Ç¡–yjµôC^g™¤E©+8Μ93..Ί;tvvöððÈ^YLMMB˜¯³¶TºtiWWW77·Ö­[[¶·mÛVqöìY¥´…ë©ê¡®àÙ±cÇîÝ»/_¾<Lj…àëë›’’"%E3i”¯¯oŽ/ñññ)Q¢„N§³l”f¨333•>H€õPn„º‚ã[o½U¹råS§N}öÙg-Z´xûí··mÛ–‘‘Q”}¶iÓÆ`0ìÛ·ÏÜb2™¢££½¼¼BBBr|IëÖ­SSSÏ;gÙ(Ý»§N:J$8» lüE]ÁqÔ¨Q;wîüþûï{÷î]¦L™]»v >¼Y³fŸ|òILLLáöÙ³gO''§o¾ùFZ×(„ˆŒŒLNNîÞ½{‰%¤–$$$˜/[ëÚµ«bâĉæªçÉ“'ÿûßÿzxx´k×Néƒ ±í<µ]¥WÊ :“ZÿåÈÌÌÜ»wï† víÚõðáC!DõêÕ»téÒ¹sçÊ•+hW‹/ž6mZåÊ•[´h‘˜˜xèСàààÅ‹›oÓ³yóæ÷ß? `ãÆRË‚ fÍšåááÑ Aƒ´´´#GŽètºéÓ§·oß>ß· äªjµIHHPÕ5‰23›cGù'…ÔXœÔöaन’fÿ­WïíxœÃÂÂÂÂÂÒÒÒ¢¢¢fÍš•˜˜øÕW_ýç?ÿiذa÷îÝÃÃÃõz½œ] 8°|ùòëׯ߼ysÅŠûöí;räHéŽ<¹yë­·¼½½—-[vàÀ//¯6mÚ¼÷Þ{J8¥›z:°3ê­8 !îܹ³sçέ[·}ºÒGPë/pT}¹ÑßÏOÕýdÃÅ1€ ©>¼P|s àˆTŸXuBÄ'$??¥;(¾9P_° |s `+ŠUýì¡Üh"Aén ŠoŽP¬¸’ì—ª/ŽyðàAFF†Ò½l‹yj€½P¸â˜£'N|ûí·§OŸ¾uë–““SåÊ•ëÕ«7lذêÕ«+Ý5@õÔ=OM¹ìšê*Ž_}õUÏž=÷ìÙsëÖ-WW×Ë—/ÿßÿý_‡V­Z¥tï¹Ôß( uǽ{÷Λ7O¯×÷ïßÇŽ¿ÿþûñãÇ÷ìÙ3hÐ !ÄgŸ}£tk²ò<µºã*åF°wê Ž«V­2™L|ðÁ„ ªV­ªÓé„+V3fÌØ±c333—,Y¢t©€º‚ãéÓ§]\\^ýõìOõíÛ×ÍÍíĉJ÷ÈŸ2…?u—@]ÁQQ¡Bgç.Ù‘®’IKKSºƒ Œr#8uÇË—/§¦¦fêÁƒ uëÖUº€ÕXs£ŠË¤Fpê Ž={ö4™L}ôQff¦e»Á`?~¼Á`hÓ¦Ò}ò¡â@‘(|ǃZ>Ôëõݺu[·n]»vízöìéïï¯Ó颢¢._¾øÒK/)Ûa@TœU)7€#Q880 Çök×®}õÕWYccc›6m«lŸ«à cvGáàØ©S'¥[¡ÜFáà8}út¥`M L«xžà`ÔuqLÞÆŽ¦t/ÈB¹ÂÇìîܹ³sçÎÄÄÄ,íéééÛ·o×ëõJw°«-pTk¹‘ÔI]ÁñæÍ›½{÷¾zõjnôéÓGé>¹RkŠÀ:Ô—,YrõêÕ† †‡‡oÚ´é×_ý÷¿ÿíæævöìÙ+VôéÓg„ J÷P µUÊà¨Ô÷íÛçââ2wî\ww÷°°°æÍ›ûùù5mÚTáïï?yòä^½z(ÝM H¸ÀN©ëâ˜ëׯרQÃÝÝ]Q¾|y//¯S§NIOõìÙÓËËkÉ’%J÷PÊ€b§®à(„prú§KÕªUKHH~×ëõ'NœPºƒ@ÎÔäŠ÷ À¡©+8V¨PáâÅ‹<V­ZõèÑ£ægu:Ý•+W”î#P$ÌSì—º‚cÛ¶mÓÓÓ?üðà .!4hpéÒ¥ýû÷ !’““ûí·Ê•++ÝG@TYÞ¤ÜO]ÇôïßÛ¶m»ví2™LóçÏ uvv~÷ÝwëÕ«wöìÙ´´´:(ÝG ª rX™º*ŽÞÞÞ+W®5jÔ3Ï<#„¨\¹òĉ322~ùå—”””6mÚ 8Pé>JSeJ¥ÜZ ®Š£ÂÛÛû­·Þ2?ìÝ»wxxøÉ“'}}}ýýý•îP$,pØ5ÕGK<(Q¢D™2eš4i¢t_€\kr#@9j Ž'NœøöÛoOŸ>}ëÖ-''§Ê•+׫WoذaÕ«WWºk²"5€v¨k£⫯¾êÙ³çž={nݺåâââêêzùòåÿû¿ÿëСêU«”îPxÌS캂ãÞ½{çÍ›§×ëû÷ï¿cÇŽßÿýøñã{öì4hâ³Ï>‹‰‰Qº€rÔ7OM¹4E]ÁqÕªU&“éƒ>˜0aBÕªUu:¢bÅŠcÆŒ;vlff&_9µQ_–ÀVÔOŸ>íââòúë¯gªoß¾nnn|å ´K}•r#hº‚£¢B… ÎÎ9\²#]%“––¦tÂp¼ޤFÐ uÇË—/§¦¦fêÁƒ uëÖUºÀ?Н¨¾r#@ƒÔ{öìi2™>úè£ÌÌLËvƒÁ0~üxƒÁЦM¥û€r#h”Â÷qÅMeóÔ”@³Ž:uRú…¤²8€Í)§OŸ®ôÔMeù”r#h™¿«ZqãÆ3gÎ$&&>~üØßß?((¨R¥JJw ( GZàHjS]p¼sçÎ×_½zõjƒÁ`nÔëõ¯¼òÊÈ‘#=<<”î D±ÕUVnhœº‚£Á`xûí·?îââÒ¶mÛêÕ«ëõú‹/îÞ½ûûï¿?sæÌÊ•+õz½ÒÝ´ˆr#@]ÁqéÒ¥Çÿ׿þõõ×_ûøø˜ÛoݺõÞ{ï?~|éÒ¥ƒ Rº›€\Ž4O €ºn¾oß>N7gÎËÔ(„(_¾üW_}åää´wï^¥û5ÍSSnµdzgÏV¯^½bÅŠÙŸòõõ­Y³æ™3g”î# ªD@ñQWptqqIOOÏíÙôôt777¥û 5…Sʉº‚cPPÐÍ›7?žý©S§N]¹r¥N:J÷Ë18’fê ŽÒÉ ><ËZÆýû÷¿ûî»Bˆððp¥û­+ŽR šÊ˜©ëªê:DGG¯_¿~ðàÁ+V¬Q£†"11ñÚµkBˆððð—_~Yé>B¹`I]ÁQ1uêÔFÍ™3çúõëׯ_—Ë—/ÿþûïwíÚUéÞr9Æ<5–Tu:]·nݺuë–””tñâE“ÉT£F ___¥ûÕÌSSnd¡®àxåÊ£ÑX­Z5!„O–»9ŠSM¨@ê Ž:txôèÑ/¿üâíí­t_%¨&™Rnd§®«ª„çÎSº#@‘°ÀàÔ?þøc77·yóæ=|øPé¾ÅŽr#@ÝÔ5Uíãã3sæÌÿûß:uêÔ©SµjÕÜÝݳlÓªU+¥» RM®³ñ0I€\¨+8¶nÝZú%99ù믿Îq›ØØX¥» ä…yj€£RWp”¾9Ð"uÔ3)7ò ®à8}út¥»äL¹%©ëâ˜,222ÒÒÒ”î`{ꈥ”ySWÅQrþüù¹sçÆÄÄܸqÃh4V¨Páé§Ÿ~ï½÷êÔ©£t×€|°ÀàÀT-Z4sæL£Ñ(„pqqÑëõ7nܸqãÆ®]»F5xð`¥;8&Ê€|©kªúàÁƒ3gÎÔétýû÷ß±cÇï¿ÿ~üøñèèè7ß|ÓÉÉiÖ¬YTºÐ"ÛÎ$«cž€|©+8~ÿý÷F£qôèÑ&L¨ZµªN§BT¨PaôèÑãÇ7Ë—/Wº€¢ÜC]ÁñäÉ“®®®ýû÷ÏþTïÞ½K•*uòäI¥ûäª0 UPn$5dRQpÌÌ̼~ýº¯¯¯^¯Ï¡£NN+V4)ýO,4HÑUPQpÔét¥J•º|ùòÝ»w³?›ššzñâÅgžyFénÖ£‚LJ¹ ŸŠ‚£^¯ïÖ­›Ñh;vì£G,ŸÊÈÈ7nœN§4hPáv¾víÚž={†„„4kÖlüøñwîÜ‘ÿÚk×®Õ¯_ôèÑJ!¨7â8”d«ËW¸,`·<8 !|}}SRR¤¤h&­ïòõõ;ýùóç…sçÎ ü[·nÝ„?ÿüs``àË/¿¬ô€€Â£Ü( ŸªB´iÓ&66vß¾};v”ZL&Stt´——WHHHöí«W¯nÞRrïÞ½ýû÷WªT)$$¤B… JêR°ñPnØ3ÇŽ={öœ?þ7ß|Ó²eK隘ÈÈÈäää7ß|³D‰Ò6}zÿþý 4°Åm&bC¹PDŽ+Uª4zôèiÓ¦uêÔ©E‹‰‰‰‡ª[·®åwFGG¿ÿþû7nTº¿P*ƒdçøÁQ1pàÀòå˯_¿~óæÍ+VìÛ·ïÈ‘#¥ê#P|M£”E§‰à(„ÏíÙ:tèÐ!·gëÖ­Ë}‘£Ó bý´‡^TÏñ¯ª Ê&•A&¿öà88Êk!8…d/óÔX Á°=åæ©)7¬ˆà<µˆä†àØåF€£ 8…ÁG€ÇD¹`uGàÖŸUVhžšÔ°‚#d!8&w#åF€c!8áF<äàØåF€Ã!8ÃxšEpåF€M!¬>±ÌzI€#"8‚r#ÀÖŽ@ÈZàH¹à Ž€# Ü(GÀîK„¤F@ñ 8r1O Ð8‚#`ß(7Š ÁZgÍ!åF€C#8vŒr# 8Yò_àH¹à莀½¢Ü(fGhUBä#8ÖPì ”r# øüɺƒc±öGM½hÁÚeµ*!Þm 8v†r#@)G j›§@)G hŠwžšr#@AGhë((‚#P”ZBpòÂGÌŽ@aQnh ÁZdw I5 8¹bžKG PбhI¹ GhŽÝÍS G à(74‰à䌎dApÔ‹r#@UŽÐ+L2³F UG@¥(7Ô†àä ׎ÅUn$5Tˆà a’€¢ 8²QnhÁÈŠñ#‚# .”ªEp„Vuž™’Í#8*B¹ fGà 9/p,–r#© rGh‚¿¿óÌÁÈåF„GÀ7â G@y”vàǧӉøø„¿˜Õ‘!Ž€â(7ìÁøK m_n$5숳ÒlKÊ~ …© JwЉUº vƒàä‚r# D-ã€|LUBp#d 8ʠܰ;G8²ÂÏ6s²!8  Ü°GG ÛG—I;Ep„Ãb¶ë"8O¢Ü@.ŽÐ:nÄ€LG øPnØ5‚#S!'œm9OMj€ìöîÝÛ¶m[ooïJ•*uíÚõìÙ³J÷y!8BÓ˜§€Ý»woèСժU+S¦Lhhè¡C‡rÛòñãÇÎÎκ'•/_^λüöÛomÛ¶MLL;vì¸qã.\¸Ð¢E‹¤¤$kâĉ¯¼òJ… Ê”)Ó AƒÙ³ggff*}híßU ür#!„HMMmРÁ¥K—zôèáííõÒK/íÞ½;$$$ûÆ ƒ¡iÓ¦þþþæÆ2eÊÈy£ùóçÆ]»vU­ZUѯ_?ÿ+VŒ5ªè£ˆoÕª•Á`èÚµkµjÕvìØ1jÔ¨½{÷þôÓOJ`;Fp„âF<^FF†¢dÉ’¶Øù¬Y³âââ–.]úúë¯ !FŒQ¿~ý>ø`×®]Ù7Ž‹‹B|úé§mÚ´)èzô(..®zõêVÅ®]»BCC-É»ï¾+„8xð Uö¯MGhWñ,p$5(/^}º\ºŽûÀE…dÕªUO?ýôÑ£G,XðÇ‹ŽŠ#Šz+’ØÚµk×,æxɳ(ø$¯³³sppð¾}û,÷îÝ«ÓéêÖ­›eãÄÄÄ7†……™¥òdá.Ž–nЭ×ë‹8 !Ć úõë׫W¯ùóçg™yG¡¡EÿÌS«'i@ݸqcãÆ/¿ü²">>>&&&ÇÍ 1É;xðà#F˜wž””Õ®];??¿,[º¹¹}øá‡ 6ܹsg‰%„F£qúôéÎÎÎíÚµ“3ŠÃ‡Ÿ;w®víÚÒÃuëÖ !êÕ«WÄQ˜L¦1cÆT­ZuùòåÙc( àXåFÅÀÙÙùÕW_ 77nÌí.3Ò$oö<`À€Å‹÷éÓgذažžžK—.MKK‹ˆˆž6mÚÔ©S§L™2tèPŸˆˆˆ±cÇ´oßÞÓÓsÛ¶mÇÿâ‹/‚ƒƒ…«V­zçwÞxãY³fåø^? ëܹsPPPLLÌ’%KBBB²_ø\ÐQœ9sæìÙ³AAAæÕ“fݺu /¾óäXŽp®Rn`Ï5jÔ±cÇ dff<ØÝÝ}òäÉVÙ³»»{ttôèÑ££¢¢îܹӤI“•+Wš¿oðáÇwïÞ5¯°3fLÍš5¿üòË+V¸ºº>ûì³[¶ly饗¤g322îÞ½›ÛúK!D³fÍ8cÆŒeË–•/_~È!S§N-zPº-ù™3gΜ9“å©Zµj MWÐÿ A¾ccc•î…å‘,gXþšª¶Mp¤Ü(S–“•Ðæy±Ç¿·ýüüªT©’e%¢:-Z´èÔ©SsæÌÉqµjÕÚ¾}»²=,Ä{ü3c\U Í!5@±yøðáîÝ»³¯Y„"8ÂA0í *tðàÁ   ×^{MéŽÀ:XãM¢ÜÀνýöÛvq‹™Ö­[·nÝ:·gÇïéé©tQZ Žk×®]³fM\\\©R¥Z¶l9zôh//¯<¶OOOÿᇢ¢¢®\¹R¶lÙÚµk8°Y³fJEõ÷xý.(²1cÆ(Ý+|øë¯¿îß¿øðáÆ Sz4(2ÊŠã¯qŒŒŒôõõݺukddä¶mÛú÷ïâĉ3fäö’5kÖÄÄÄÔ¯_?::zÞ¼yK–,ùé§Ÿ<==¿ýöÛìWõC _àHjhãÇ5kÖÆ‘#GúøøH-ãÆóððزeKnß¿uëV!Ä„ Ì%É€€€¡C‡ †_~ùEé¡ðþùÂPpŽ9âääÔªU+s‹^¯ MII9vìXŽ/IHH(]ºt–oä B\¾|Yé¡hlPœ¤ÜÐ_ãh2™âââÊ•+W®\9Ëvé;1/_¾Ü Aƒì¯Z°`³sÖ#súôi!DÕªU•²RvžšÔÐŽiiiƒ!û¥þBˆÛ·oçø*éë5-:t(22ÒÅÅ%oX·˜¥Ešþ†mø%$$ä½Å•+WüýüM:‘/òÛ¸€ožÿ»#GW®\Qº ÈçÚ”÷ßäæoP„ƒGéË1K—.¥½L™2Bˆ{÷î廃Á°råÊ/¿üÒ`0Ìœ9ÓÛÛ[Îûjókˆ$ÿÒ¬û]j•µ÷ýlÖ¢Á¯¶³ œhPÞì³ÿ³ž½B¤===u:]ZZZ–öû÷ï‹¿ëŽyøõ×_#"".\¸P±bÅ/¾ø¢iÓ¦JYÉŸ§6éß-@Q8xptvvöððÈ^YLMMB˜¯³Î.##cúôéË—/wuu}ï½÷ ”ÛM¡Y¬nhƒG!„¯¯o\\\jjªåW3IK|}}s|‰Ñhüàƒþ÷¿ÿµmÛvÒ¤IyäKØ ?ë–I rüÛñ´iÓÆ`0ìÛ·ÏÜb2™¢££½¼¼BBBr|ÉòåËÿ÷¿ÿ½öÚkß~û-©QÍ¿ï7šâøÁ±gÏžNNNß|ó´®Q™œœÜ½{÷%JH-ø`×®]ù¾ÑÉ“'ƒƒƒÍßÊæååU§N .Xe£FºwïÞ¡C‡6l(„øôÓO ´xñâmÛ¶½øâ‹¶8nZàøk¡i:Î$LV {¤F꘥!%¤¢KIIyñÅ#""nݺ•ïÆ«W¯®X±bÿþý¥‡þþþ=zôˆŽŽ¾~ýz¾¯MNN~ê©§Ì=zW½zu«Œb×®]¡¡¡–ÇäÝwßB(7P§GY>LOOÏq3SîŠØ___''§,³ÒÉÉÉBˆÊ•+b‡Ò¥Ù°Ê(V­ZõôÓO=ztÁ‚üñ©±è¨8ÂétÂd²Ê<5©€j]»vÍòanW1ÛtªÚÙÙ988Øò{}…{÷îÕétuëÖ-Ä333…z½¾è£Ø°aC¿~ýzõê5þü,“é(4‚#ì ×S€äÆ7n|ùå—…ñññ1119nfÓ©j!ÄàÁƒGŒaîIRRRTTT»víüüd}a×áÇÏ;W»vméáºuë„õêÕ+â(L&Ó˜1cªV­º|ùòì1…Fp„ñ^´¤Ü@Íœ_}õÕððp£Ñ¸qãÆÜî2#MòZñ}§M›6uêÔ)S¦ :T1`À€Å‹÷éÓgذažžžK—.MKK‹ˆˆ6^µjÕ;ï¼óÆoÌš5+ǽ=~ü8,,¬sçÎAAA111K–, É~ásAGqæÌ™³gÏ™WOšuëÖ-ïAÞŽpLEŸ§&5P¹FuìØqÁ‚™™™ƒvwwŸ>>O=õTóæÍúé'¥§ÝsVº@®r­*­ÜHj™Ž?þË/¿´iÓ&m CÓ¦MýýýÍeÊ”‘³ÿùóçÆ]»vU­ZUѯ_?ÿ+VŒ5ªèß¼ysÇŽýýýûöíëææÕ­[·… ¾ùæ› V{Fp„Ýãö4(##CQ²dI[ì<33s×®]˜;w®ÑhÌ{㸸8!ħŸ~šw¾ÌÑÉ“'ƒƒƒ¥Ô(„ðòòªS§Î… ¬2Š>ú¨B… ÇŽóððBŒ?>888""‚àXLUC¥(7@³µˆˆˆ† Zeç)))/¾øbDDÄ­[·òÝX ޵jÕ*Ä%''?õÔSæ‡=Š‹‹«^½zчðèÑ£Ó§O¿üòËRjB”.]ºE‹W®\IOO·ÊQÒ&*ް+¤FÈÅÅ‹=j•]ùúúšL&!Dlll:uòÞ8..ÎÅÅ¥lÙ²k×®½}ûvݺuŸþy™¥PƒÁàìì,„0™L/^?~|åÊ•Xô!èõúßÿÝÛÛÛÜ’™™yòäÉgŸ}ÖÍÍÍ*GI›ްoòç©I` qqqNNNµjÕºsçŽÔ´|ùòúõëËÜãG\]]…îîî+V¬°L{…æìì\·n]é÷eË–ÅÅÅmÚ´éúõëßÿ½Ò̾¡F9¹©#€â§Ó)ùîÖøK/33sÓ¦M¹=Û¹sç"î?..Îh4FDDôèÑ£D‰?ÿüóûï¿ß¥K—S§N™§‰óæìì¼pᤤ¤têÔ©W¯^«W¯Ö=yä‹2ŠÉ“'KóéíÚµ³Ê<¸–aÇä—ýýüˆœ CÅÿ½j0,æv˃ºté’ûøŠ:À={ö¸ºº–+WNz8pàÀ‡6,**jРArö ×ëͬDDD|òÉ'¯¼òJ·nݬ5Šóçϧ¥¥ÌíšSîŠÞJ•*™S£ä…^Bœ>}º{{ýõ×…°î(J•*Õ¦M›©S§Þ¾}{ýúõEµfQq„êä‹–MB8žk×®Y>¼~ýzŽ›Ùtª:11qãÆaaaAAAæÆÔÔT!Dá&…333…z½¾ˆ£Ø´iS—.]V¬XñÊ+¯˜½¼¼„5ЬZFp„½’3OÍ1Ø76nÜøòË/ !âããcbbrÜ̦SÕnnn~øaÆ wîÜY¢D !„Ñhœ>}º³³s»víäìáðáÃçΫ]»¶ôpݺuBˆzõêq5B,Y²¤W¯^æå’ß}÷¢I“&E:îÚFp„ºX·ÜÌÙÙùÕW_ 77ntqqÉq3i’׊ï;mÚ´©S§N™2eèС>>>cÇŽ hß¾½§§ç¶mÛŽ?þÅ_ !V­ZõÎ;ï¼ñƳfÍÊqo? ëܹsPPPLLÌ’%KBBBzôèQÄQx{{O˜0Aº·å‹/¾¨Óé¶oß~øðá‘#G>ûì³6=/Žà»D¹5jÔ±cÇ dff<ØÝÝ}òäÉÅð¾>¼{÷®y…å˜1cjÖ¬ùå—_®X±ÂÕÕõÙgŸÝ²eËK/½$=›‘‘q÷îÝ<î¹Ý¬Y³Θ1cÙ²eåË—2dÈÔ©S³OU¤I“üýý¿ýöÛyóæ999­^½Úræ… c¦ßêccc•î…]’_nÌ78fI ~~~JOन“6Ï‹=þ½íççW¥J•}ûö)Ý‘ü-Z´èÔ©SsæÌÉqµjÕÚ¾}»²=,Ä{ü3c\U +ì$5µFP‰‡îÞ½;ûšEØ)‚#ìOÞåFR#¨ÇÁƒƒ‚‚^{í5¥;ë`#Ô"ky±PåFR#xûí·ÝÝÝ•îEþZ·nݺuëÜž?~¼§§§Ò}D¡J¹§Æ<ʤFÚ1fÌ¥»`ƒVº (¦ª¡ Ürõ#8B}(7 JG(ÈÒFԊ໑[¹‘Ô@ñ 8BaE,7’(6G¨©u#8Â>dŸ§&5PÌŽPÒ?EÆ–I?‚#T ¿Ô˜¥ÜHj@G(毸H­;Ap„ÚY–Ià`öîÝÛ¶m[ooïJ•*uíÚõìÙ³J÷y!8B…(7’ ØìÞ½»uëÖ>>>O=õTóæÍúé§<6¾wïÞСC«U«V¦L™ÐÐÐC‡É|—ß~û­mÛ¶‰‰‰cÇŽ7nÜ… Z´h‘””dõá<~ü¸qãÆMš4Qä`:‚#”##5šË¤F(6›7o »téRß¾}‡zëÖ­nݺ-Z´(ÇSSS4h°dÉ’-Z 4èÂ… /½ôÒñãÇå¼ÑüùóFã®]»F=|øðèèèÌÌÌ+VX}D'Nüõ×_•=ªŽàètÂ$¨5@áedddddØhç}ôQ… Ž;6kÖ¬Ï?ÿüرcÕªU‹ˆˆÈqãY³fÅÅÅEFF®\¹ò«¯¾Ú·oŸN§ûàƒä¼ÑÉ“'ƒƒƒ«V­*=ôòòªS§Î… ¬;œíÛ·OŸ>ÝÙÙÙF‡KSŽP/©ÜHj€ìÛ´icÙѰaâïùÑ£G§OŸ~ùå—=<<¤–Ò¥K·hÑâÊ•+éééÙ·_½zuÅŠû÷ï/=ô÷÷ïÑ£Gttôõë×ó}¯äää§žzÊò­ãââªW¯nÅuóæÍ~ýú½ùæ›UªT±ân5‹àˆâV r#©dºxñâÑ£G‹¾½^ÿûï¿öÙgæ–ÌÌÌ“'O>ûì³nnnY6NMM=wî\ëÖ­u:¹1,,Ìh4ÊYéh0¤B ÉdJHH0`@åÊ•h­cb2™ú÷ïïåå5gÎkíSã(Û¢XÉO:¡ý B@‘9;;×­[Wú}Ù²eqqq›6mº~ýú÷ߟ}ã›7ošL&___ËF!Ä­[·d¾ã£G\]]…îîî+V¬ðöö¶ÖX¦OŸ}èСR¥J)t8 ÁÅŠÔÀ¾èо‹"°Ê_ƒ™™™›6mÊíÙÎ;çñÚÉ“'ÇÅÅ !Úµk—ã rZZšÂÝÝݲQšãNII‘ÙCggç… &%%8p S§N½zõZ½zµe ³p£8|øðĉ§OŸþ¯ýËBQ¬ póR#UPóßEƒÁò¡ÑhÌq³téÒ%׿ù×íùóçÓÒÒ<øæ›o6nÜøÌ™3R5ÑLªþù矖©©©BˆråÊɈ^¯óÍ7¥ß#"">ùä“W^y¥[·nEEjjjïÞ½Ûµk7|øpkpÖ8¢øèt:ëX×ò>¾N:_~ùå´iÓ¦M›vïÞ½«W¯N›6mÕªU¶=1Š#Š…N§ùÿ%EFÑd¸víšåÃÜ®b.è$ï¦M›ºté²bÅŠW^yÅÜèåå%r*ì9;;ï۷ϲqïÞ½:μP²@233…z½¾ˆ£îU4kÖ,ËÆ;wîŒ7®U«V½{÷.Ü1ÁjaN&R#ÈpãÆ7¾üòËBˆøøø˜˜˜7+è$o£F„K–,éÕ«—y¡áwß}'„Èñ›Wwî\íÚµ¥‡ëÖ­BÔ«W¯ˆ£˜0a„ ,[üüü*T¨pðàAkŸm!8Âöd”IPPÎÎί¾újxx¸Ñhܸq£‹‹KŽ›I“¼òwëíí=aÂé®/¾ø¢N§Û¾}ûáÇGŽùì³Ï !¦M›6uêÔ)S¦ :T1`À€Å‹÷éÓgذažžžK—.MKK3ß-|ÕªUï¼óÎo¼‘¥øgöøñã°°°Î;ÅÄÄ,Y²$$$¤GEl„à“Ò¨Q£Ž;.X° 33sðàÁîîî“'O¶Êž'Mšäïïÿí·ßΛ7ÏÉÉ)((hõêÕæ™ë‡Þ½{×¼ÂÒÝÝ=::zôèÑQQQwîÜiÒ¤ÉÊ•+CBB¤g322îÞ½›ÛúK!D³fÍ8cÆŒeË–•/_~È!S§NÍ>U •Б߭.00066Vé^¨ƒN'L¦<®¥–¦@LýnÃrcBB‚ÌINŠ:ió¼ØãßÛ~~~UªTɲ¸P-ZtêÔ©oÁíççW«V­íÛ·+ÛÃBü°Ç?3VÁUÕ°©ÑD­ÚÇwïÞ}Í"ìÁ¶!/5ZtÙ~L:I§û«²˜g´,1æÿÞPíUF`]ǬY³Æh4Ž9ÒÇÇGj7nœ‡‡Ç–-[ŒF£Ò½"§€øDLü;)þsæ°h΋¹mk±¡îï ‰Œh Á1GŽqrrjÕª•¹E¯×‡††¦¤¤;v¬: Ëï矀ødRÌ'ý=™-ÃböW<¹¡ÎbCò"EpÌÊd2ÅÅÅ•+W®\¹r–íµk×B\¾|9ß=œ‹Í7ù8æXG|2÷e …9þüµ­I'ýä±m–7Pú´åqqLViiiƒÁÓÓ3K»‡‡‡âöíÛùîÁ¤Óå»Bg*ÄSyîYÖå,BQ;°v¾[Š@ÙÇÌ>:Úˆ'E8/*ÄIJ³JOOB”.]:K{™2e„÷îÝËò¾_EÉ"^¬‚ï ìSÕYyzzêtº´´´,í÷ïß×4ˆà˜•³³³‡‡GöÊbjjªÂ|5€Ösàëë›’’"%E³„„é)¥{  ‚cÚ´ic0öíÛgn1™LÑÑÑ^^^!!!J÷@ÇôìÙÓÉÉé›o¾‘Ö5 !"##“““»wï^¢D ¥{  IÞ%ÀZ³xñâiÓ¦U®\¹E‹‰‰‰‡ ^¼xqöÛôhÁ1W6lX¿~ý‰'*V¬øüóÏ9Rº#€6 k Á² Á² Á² ‹³Òp4=zô8yòd–Fooï_~ùEé®iÑÚµk׬YWªT©–-[Ž=ÚËËKéNiU‰oß¾ýš5kž{î¹ìÏòñQD'…O1KOOÿᇢ¢¢®\¹R¶lÙÚµk8°Y³fY6ÓÚ'…àhe—.]rss«Q£†e#_T¨ˆÙ³gÏŸ?¿téÒ 6LLL\·nÝùóç—-[æææ¦t×´‹ˆª,_¾<·§øø(%“Âǧ8eff0 &&ÆÃãI“&>üõ×_÷ïß?|øðaÆ™7Óâ'Åë¹wï^íÚµGŒ¡tG`:{öl:uZ´hqóæM©å³Ï>«]»ö§Ÿ~ªt×´‹ˆJÜ»wïÈ‘#ÿþ÷¿k×®]»v혘˜,ðñ)~ùž>>ÅlåÊ•µk×îÝ»wZZšÔrîܹçŸ>((è?þZ´ùIa£5]ºtI‘å?¡ˆ5kÖÆ‘#GúøøH-ãÆóððزe‹ÑhTºwÅD%ÂÃÃûôé³zõêÜ6àãSüò=)||ŠÙÖ­[…&L0׆j0Ìk´ùI!8ZSbb¢¢zõêJwâÈ‘#NNN­Zµ2·èõúÐÐД””cÇŽ)Ý;⢟þùܹsçÎÛ´iÓ7àãSüò=)||ŠYBBBéÒ¥ëÖ­kÙ „¸|ù²ôP›ŸÖ8Z“ôÁ¾~ýzÿþýÏœ9SªT©ààà¡C‡æ¸ð¶c2™âââÊ•+W®\9ËöÚµk !._¾Ü A¥û¨E|@T¢yóæÒ/»wïÎþ,Eä}RŸb·`Ágç¬éôéÓBˆªU« R¨8Z“ô_!_}õURRR“&M¼½½wïÞÝ»wï5kÖ(Ý5mIKK3 Ù׌{xx!nß¾­t5Šˆ]àã£N||ŠYpp°Í:éââÒ¥K¡áO Gkº~ýº››Û¨Q£ú÷ï/µ8p`èС_|ñEóæÍ+Uª¤tµ"==]Qºté,íeÊ”BÜ»wOéj»ÀÇGøø(È`0¬\¹òË/¿4 3gÎôööþ¤ #33sáÂ…æ‡z½~È!Bˆ¥K—fÙ²iÓ¦ýúõ[´hÑŽ;ÌŸvØš§§§N§KKKËÒ~ÿþ}ñ÷¢øñ± ||Ô‰R~ýõ׈ˆˆ .T¬Xñ‹/¾0/BÕì'…àX?ž3gŽù¡‹‹‹sôüóÏ/Z´èܹsJ÷ZCœ=<<²ÿ_jjªÂ|ùÔ€ˆÚðñ±#||l*##cúôéË—/wuu}ï½÷ dywFÍ~RŽ…áææ›¥Ñd2FNçäôÄÊQ½^/„([¶¬Ò½Ö__߸¸¸ÔÔTwwwscBB‚ô”Ò½Ó"> v„Úðñ)~F£ñƒ>øßÿþ×¶mÛI“&åµùIáâ«ILL ~ýõ׳´?~\¨tµ¥M›6ƒaß¾}æ“Éíåå¢tï´ˆˆáã£6||ŠßòåËÿ÷¿ÿ½öÚkß~ûmnåCm~RŽVS£Fúõë>|xíÚµæÆãÇ/^¼¸R¥J/¾ø¢ÒÔ–ž={:99}óÍ7Òr!Ddddrrr÷îÝK”(¡tï´ˆˆáã£6||Š™ÉdZ±bEÙ²eÇŽ›ÇfÚü¤èL&“Ò}pgÏž4hPrrrݺuýýý¯^½SªT©o¿ý¶qãÆJ÷Ns/^ùDé>8ooïððð;wîœ;wîÔ©S...­Zµúꫯ‚‚‚”îš…„„Ô¨QãæÍ›û÷ïwvvnß¾ý´iÓ,W¢ ˜ñQ›]»výñÇ={ö¬P¡B–§øø(%·“Âǧ8ÅÆÆ®[·.333)'uêÔ1_[­ÁO GÈÂGÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp -£G ܳgÒß|óM``àÊ•+•îÈEp€,ÎJw4ªuëÖÞÞÞõë×Wº# Á”Q·nݺuë*Ý (¦ª@u ÃãÇ•îdEp`&Nœ8}úô,í'Ož lÚ´iff¦"99yÖ¬Y:t¨W¯^½zõ:vì8uêÔ›7oæ¶[éZ™ƒfinܸ±eË/¿ü2|øð¶mÛ6lذÿþß|óM–lwõêÕI“&uèÐá_ÿúW«V­† räÈ‘„‡‡ !¶mÛ–¥}ãÆBˆ.]º8;;'''÷éÓgÁ‚×®]«V­Z•*U._¾¼dÉ’Þ½{ß¹s§(ï>cÆŒAƒmÛ¶-33ÓÇÇçèÑ£_ýuß¾}SRR¤ Ο?¾zõê”””š5kšL¦èèè~ýúíÚµ«@o´`Á‚™3g–(Q¢I“&Ç6lØ–-[rÜ8$$dРA7oÞœ2eйñË/¿¼~ýú;ï¼óì³Ï÷IàèŽìCÆ }||._¾üǘF£ªºuë&„X·nÝÅ‹ÃÂÂ~ùå—õë×ÿüóÏû÷ïoذáÕ«WwîÜYè·Þ½{÷Â… «V­ºvíÚ={ölÚ´iïÞ½-[¶Œ‰‰™7ož´ÍŒ3`À!IJeËrÛ~øðáëÖ­Û·oŸâàÁƒ?üðÃ3Ï<óöÛo+w®8,‚#ûàääÔ±cGñdÑñèÑ£7oÞ ©U«–"33³uëÖ~øaéÒ¥¥ ÜÝÝ¥Rebbb¡ßzÚ´iBˆ9sæ˜kxÞÞÞsæÌñõõŠŠº{÷®âìÙ³Bˆž={êõzi›Þ½{¿óÎ;mÛ¶-Ð{=ûì³|ð“““4äwÞyGqñâÅܶ/Q¢Ä—_~éìì|XZmY¢D‰#F¼÷Þ{z»öíÛ[>ôððÐëõ&“)—6ìÆ;w¾zõêØ±ckÔ¨a«s@Û¸»Q·nÝ5j\¼x166600033sëÖ­nnn:t0osõêÕ½{÷=zôòåË—.]*âÒF!D||¼ô¿9npýúu!DDDÄÈ‘#>ܯ_?WW×àààF½ð ÁÁÁz»*Uª¢“o½õÖŽ;NŸ>ýüóÏ÷îÝÛªGþAp`OÂÃÿþúë­[·îÛ·ïÞ½{ݺu3OL¯Zµê³Ï>ËÌ̬V­Zƒ Ú¶mûôÓO'$$|úé§zƒÁ`.òedd!*W®œÛ¤s¥J•„UªTY»víñãÇ÷îÝû믿ž:uêØ±cóæÍëÑ£ÇgŸ}¦Óéd¾uÉ’% qXîß¿ëÖ-!D||üÝ»w===m*hÁ€=1Ç#FHsÐæyêû÷ïOž<¹dÉ’ ,hÞ¼¹ù%7nÜ(è»\»vÍh4J¿ûûû !J•*5~üø¼_¥Óé¤{ !222öíÛ÷ÑGEEE………µiÓÆ¦‡eÒ¤IIIIõêÕ;vìØ§Ÿ~:kÖ,›¾Íb#{R½zõ§Ÿ~:>>þäÉ“;wî¬^½zƒ ¤§Nž}–-[öã?þùçŸÒu,uéÒå»ï¾;vìX›6m‚ƒƒ“’’âââ<<<*T¨ðèÑ#i›®]»>|ø§Ÿ~êÒ¥KåÊ•½¼¼âããÓÒÒjÔ¨!ÝyÛÉÉiüøñãÆ›>}úÿûß*Uª¤¥¥]¸pÁd2õîÝ;$$ÄF‡Âd27.55õ‹/¾ró3Ï<3`À€ÿþ÷¿sæÌQú\p4TØŸçŸ^Ñ¢E ˧fΜ9|øðJ•*I÷w ]¿~ý„ úôé£×ësüÀªU«~ÿý÷mÛ¶urrÚ¿ÿ¹sç*W®¼páBoooó6:nêÔ©ÿùÏÂÂÂŒFãÅ‹ýüüFµ~ýz///i›®]»~÷Ýw-[¶tss;{ölZZZ³fÍæÎ;iÒ$ÛŠåË—ƒÁPVVnii‘t5ô̆ p¥ùûûã”.O¹îŠù ¿Ëë‹\iiéܹs-,,”•• 4zô课úª¬¬LREèó3¼7;¤xæPDñÓ¯Ÿ®qøìýø1$>FïÞ½C?ÞËËKÒÙ”¬Zµ*33?ÆÍ÷YꮘŸPñ{t}577Ïœ9óرcü‰W¯^½zõêo¿ýæïïÿÛo¿1™LI—éó!ÙO?øìýøAàØ¿LLLˆ§­­­ÏŸ?Çõôôdddˆ—¤¤ ÷÷c§¬¬Œ[SWWWÒy]8wî~àææÄ}}¢º<åº+æçW|„Ð?ÿü3f̘[·n)RRR4­³³?=sæL``à… äää$ÙHŸXIöÓ>{?*8ö/ÿGO/\¸àííŸ;wÎÚÚZÒì3=ÒÓÓ“••ýÈ÷Ù‘‘‘‘‘‘’ÎÅGçãi&⿲•+WŽ7NÒÙé]žrÝóó+>BhÁ‚DÔ8f̘õë×;88ÈÉÉݽ{7%%åðáá²²²ÄÄÄ7J:³‘>ÿ°’ì§|ö~T —ëãõêÕ«åË—>\IIÉÎÎî×_åÿ}Hþñ%çÛo¿500øöÛo‰ ž?¾dÉgggeeåÁƒOž<¹¢¢Bø(7ãÇègÏžEEE1™LSSSmmí.?»[ZZÖ­[çã㣭­­­­ííí½zõêææfñöÙÝÀšˆˆœ¾bÅ ’Ìs¹ÜC‡yxxËÉÉ»»»ïÛ·¯££o°jÕ*FÜéóöö¦Ñhx¸XwãlzZÀׯ_/_¾|äÈ‘ÊÊÊvvv)))ÄÑ»ÓÑѱk×.WWW===%%¥aÆM›6¿†béøs2eÊ”‡FEE™˜˜DDDTVV"„®\¹fbb2hÐ ¢¢"±›^¼óbaù566Ö××s¹\üôÍ›7õõõQ¸RzÔ|bTZw?~Æd2utt‚ƒƒÿóŸÿo#pÊuWL’âS¬öÞžP<ÃI®/a·oßÎÊÊÂÃÃÃ/\¸0vìXeeeiii[[Ûìì쯾ú ¿šÝeNø÷&üÑWÍÚÐÐ0mÚ´Áƒëéé…††‹wæS$Æ™ƒ‰¼²Äøô£R[äcøìãÃg âÑùó牚¯ªªÞ`íÚµøUwwwKKKÆÚ¶m›ð–“&M">=×®]‹_½pá‚¶¶¶ÀÛi4Ú²eËøGq³î2ééé9xð`·Ïš5‹ãòòrámB†††l6[Œ}òœÿ@ááá8=..ŽdËÐÐÐ./„¼A||¼ð«ïÞ½ãñx»víÂOGŒ!vÝÝÝ­¬¬6ž2e I…·µµ9:: ‚F£ýôÓOü[Š,NìììF†ijjnß¾]ZZZà(EEE}ÒLTÎ7ê…å7iÒ$á·Ü»wOä•ÒÓæ£ÒºôŸÿüGGG‡ÿ-ÊÊÊø±ŸŸÞLà”뮘$ŧXí½ÿ<¡x†“\_Â.\ˆ7““û믿„7øûï¿gü׋/Äþˆè͵0räHSHZZz×®]ü‡îiôù™CñÊêѧõ Ø"ÿìïÃg‚Àñ_E=pÄLMMíííét:~*++ÛÞÞ.°¥±=þ ûö­¦¦&NñôôLLLŒˆˆ ÆPþüóÏx7™I--­1cÆ()))gΜÁ[¾ÿžâ)''çëë   €Stttš››{ºÏÞŽD·Fóôôœ>}úСC‰C\¸pÇã½|ù²¶¶–Èä¾}ûjkk¹\.¯«/± hll000&&fÔ¨Q8…Á`TWWS/@N¤¤¤lmm544>(­¬¬ôõõ‰§½o&ŠçÅ  8 _)â5_O+MX{{»±±1Q¨Ñ£Gó„F}8ö´ÚÅþ<¡x†“\_ˆžÃÃéÌŠñÑWׂ¢¢"~J§Óïܹ#Þ™O8Š}æP¼²zôéG½(¶ˆÄ?{Åûð€ püWõ(pܾ};N$nÖ „nÞ¼)¼å!C²²²®\¹òðáC·zõjœÎßÏôÃ?àD###œBq3òLŽ?¾­­Çãýõ×_8ÑÅÅo™””„STTTˆ‹óöíÛÄ?÷ñññ=ÝgoÇ™3gâ”åË—o>|8Nܼy3‘HCçÏŸ'…?¼Ä+à?ü€«««‰Ï/’ÿh]\\ð6ÉÉÉD¢ÀÞ(–Ž?'§OŸæñx>|ðôô$ÓÓÓy<^ggçìÙ³q “Éì}3Q<ß(¶K]¶É•"^óõ´Ò„ýôÓOxeeå+W®àÄ¥K—{#ùúﮘݥS¬öÞžôè ï®ü¸\.ñ?óºuëx”‰8öæZ˜0a¾?~üÅ_ˆwæS {sæP¿²(~úQ¯ê-BýèýñÙÛ›ŸÆ8~¤¬¬¬/^Œ2ÿ;©¦¦F`K…‚‚‚¨¨¨Q£F™šš"„þøãüÒœ9sˆÍfΜ‰?…?~|ûömꛑ`0;vìÀ³"ôôô¾ÿþ{œ^VVÖÖÖ†:}ú4NY¼x116eذaË–-É ¨ï³7²²²²²²–,Y‚Sš››ß¿¿zõª§;£€C‡]´h~liiéææ†×××ww”ÖÖVüà÷ßÿå—_ðˆßÿ½ªªªªª*$$D¼Ò1ßá’––ž2e NTSSÃ'ž””ñ±þæÍ›Þ7ÅóbaÅ |¥ˆÑ|½©4ÂÁƒñþ.M›6iii‰]ºîôô2ûó„ ÆÞ¥7oÞS§ŒŒø_Úºu«ðR¸—.]»–zÓ¬ÒÒÒĵ`hhH\ ùùù8ÿ½ÿ¤%ôæÌé¿+Kd ô‡þøìí¿*úÌ@àø‘233#+))÷J„¯C{{{===þ”྾¾Ä§ª’’ñ^}RÜŒÄСC ‰§¾¾¾øÇ«««CÝ¿_à%ìË/¿$AŒè§¸ÏÞðõõŠŠ ¸téR\\œ———AuuµØ;£€ƒrˆ[c› d›8ÜìÙ³uuu‡þÃ?´´´X[[žzZ:þpòòòøžžFH&F3Q<ß(V ÂWŠÍ×›J® b¹f„ŒŒ qÜ>ÔÓË\ìÏ‚gx—ˆÛŽ!êë„‹§7ÍjmmÍŸhÓ>üùçŸbT ‰Þœ9ýwe‰¬þП½ýWEŸ?RË:Ÿ_ÂÆt777‹\û÷åË—7#ß@àBRPPPUUÅŸ={ÖÜÜŒ -¾E|L·µµkˆPÙg/kõÇË—/×ÒÒŠˆˆØºukaa!‡Ã»›G¼ 4%IË’’’.\H¬wÃãñ***6lØ0jÔ¨1cÆß©=-]—‡¦¸žhO›‰úùF±°b¾Rzß|=ª4ìÝ»w/^¼è²ùcñ>!Æe.Þç IQ9û$++K øÿGEEÅä¿øãK±õáµ ¨¨H\ ?î“OZ¬—gNÿ]Yä5 önIôÓgoÿUÑgÇOžÀÙ¯¢¢¢¬¬ŒŸ;w®¶+7#?´ÀeÙÚÚJ¬ƒ`bb¢¢¢B||üý÷ßü[Oeddˆï*ûìe]mذaÛ¶mÇÔÔtÇŽ·nÝjnnž0a‚x{¯€b––þñdz³³£¢¢ÔÕÕ‰—JJJˆµEú¶täzÚLÔÏ7Š…ƒð•òï4Ÿyyybin"Àˆï¾"Æe.ÞçIßf›@ 7ÌÍÍ寫9s滪Å(`Oµ··?þüùóçííí¡¡¡YYY/^¼((( – –LëóÒ‘ÙL¨œoÔ Û'þ…æF§ÓY,~|öìY"ÇãQYý±§z™÷~b[ºt)îö{ûöí’%KøW¦Ä222øÏC¬7b¸ˆ6•‘‘ÁÿDõUöæÌé×+Kd ôG‹ôùÅû/ø|Ò pü ?N³{÷nÞ× ?zôè Aƒ˜L¦‰‰É?ÿüC}3>|ˆ‰‰ùðáBèï¿ÿ^¹r%NŸ0a÷M¬.ö?ÿó?Äj·UUU©©©ø1ÿHŠû$nÊ\½z•ñsìØ1‘ÿüóqKˆøüº~ýzaa!yI^£€=U]]­££££££««ûðáC„ƒÁðöö&¦yâñJ'6‘Í$ŒÊùF±°}å_h¾.1Bø¸)))wïÞíócõþ2ïýH__£Gž;w.~|èС1cÆã;¿·nÝš;w.1ןØâéè舉‰ÁëHÿý÷ßÄb„ĵЇ(ö™#Þ•EÞ:Ôk@¼ù—?{ÿåŸOüäàghÕªU™™™¯_¿ÎÍÍõôô;vì;wˆ)fË–-Â)nFîØ±c,ËÊÊê?ÿù¾Y)%%µ~ýzüê7ß|ó믿Ö×׿}ûÖÕÕÕËË‹N§Ÿ?ÿ€®®nBBBO÷I¬/ÓÚÚjoooooÿòåKb 4 %%%%%%ü­3{öìƒÒh´?þø£Ë_mQSSÃ[~÷ÝwwîÜY²d‰ÀRÀ½)`ØØØhkk?þœÃḺºŽ?^CCãÏ?ÿù @ñúB}ÿý÷üñþáÖË—/;VJJJFF†˜¼ïäätùòeþ·ˆý!6|-XZZ–——ã(N§oذ¡Ï+Pì3‡âÇHO[‡b ô¨E$õÙÛ£*è$½ÐÀB}Gõ®ˆqc‡"ß;yòd—ÿÍ›7­]Š›u—É1cÆ aa0?™põêU¼¨‡ccã’’ñöI,A055%þ­'YÇ1,,LøøñW_}E"**Š3’_/èi©¬d&àòåËÝÝÌrwwÇ˧Q/]—9Ù»w/N:t(‘XZZJ4AO›©Ë£P9ß(¶Käë8vy¥ô¦ù(VZ—f̘!pDEEEbBh®ãH±Ú{ÿyÒ£3¼Ëë«;Ïž=swwïò”˜8q"1ܶ´´Tø üו1®555i4222¿üòKß6AïÏêWÅO¿ÕÅ¡~ô^^¼]ž™½ùðPàVõçi„ ·nÝŠŽŽvppPPP055 b³Ù;wîäüNq³îhhh\ºtiΜ9æææÚÚÚ“'O.(( n-aŽŽŽ·oßNHHðòòÒÖÖf2™žžžkÖ¬©¬¬tuuoŸ¿ýöÛ† † ¦¨¨hoo¿xñâ+W®ÌíRZZÚ°aÃÐ%"66öÆøÕƒ·QÒÒÒ¢¢¢´´´‡J2¿²§ÃèÑ£kkkFŽ©§§'--­®®îêêš™™YXXH̤^ºÞ£ÒL¨œo ÛWþ…æëÒÏ?ÿLüžž––ÖĉÏŸ??f̘þ8V//ó>Ùƒê×BH[[ûâÅ‹§N 322’••4hИ1cöîÝ›››«¥¥%ük~bDˆÁÝÝÍfO˜0ÁÀÀ@WW744´°°X¿Ï+Pì3‡ú•Õ£Ö¡XÔ[D‚Ÿ½ÿò‡Ï§‹Æûï (JHHHNNFMš4éøñãí>»ÔÑÑ‘——‡>Óûý]º­™ˆk×®]¼xqîܹ***’Î ø”À™$Æ8‚EZZú³ Bé>?#FŒ ¦;@œ9@‚àV5 G@ Ž€˜(G@ Ž€%8J p”@à(ÀP# G@ Ž€%8J p”@à(ÀP# G@ Ž€% Igà3daa!é, Ý¿_ÒYûùÉdaa10϶þ•Ù‡ 2û Ôd‚ÊìCP™}hÀvÁ­j@ Ž€%8J p”Ðx<ž¤óð¹ikÀçmÀ~×C# G@ Ž€%8J p”@à(ÀPÂtø$YXXH: úÌÀ\Í[ 8Ðcöà³}ÔÁ­j@ Ž€%8J p”@à(ÀP#  /Ñh4 ÇãIº|ΠÇ€>Ɠ餤$6aÂá—6mÚD£Ñnݺ%éšC,+((?vss³··ïóC\¿~F£eggwWE—.]~ÉÇLJF£uvvâ§õõõ4mæÌ™ÄççŸvssÓÕÕUQQ±³³‹‰‰ihh 6ؾ};ÔÙ³gÅ(Nrr2“É6lXŸWTŸàoÐÉIÅb±¦L™"é ö;’ó!T\\ìííÍd2õôô‚‚‚îÝ»'éü‚ô80€äåå;v,88XÒN§ÓétI炘ŸŸ?|øð¨¨(YYÙ{÷îíÚµë×_½zõªµµ5BÈÁÁ!..ŽxË?ü ¦¦6mÚ4"ÅÄĤ§Ç½{÷nBB‚««ë‚ $]ýh̘1^^^ëÖ­ëý®øOªk×®mذ!997пìöíÛ6l`³ÙïÞ½³´´ŒŠŠŠ‰‰a0$ù|ýúuoooccã•+WÊÊÊfffº¹¹Ý¹sGKK‹ÊÛ;::äå剮0&“ÙØØ(ÁBþ#ˆ¼¼üâÅ‹}||”••%ŠŠŠ$ª²²²òóóW¬X±yóf"ñæÍ›®®®3gÎ,//G¹¹¹¹¹¹¯fff¦¦¦ö渵µµ¡ÄÄD///I×A¹qãÆ¥K—úª€ü'ÕóçÏsss—.]ú类®ÎÝݽ³³3((ÈÈÈèüùóË–-+..>~üø¿Ÿ®]»¸\naa¡¡¡!BhÚ´i¦¦¦YYYË–-£òöGuvv:;;›šš‰JJJ,è'80€$$$¬^½zíÚµÛ·oïóøðÁ`HI ¸0øîvLL ¢Ý”)S~ûí·wïÞõÓ×'Ò*''×OåêQƒâ®¦¾ê$æp8………eee;vìàr¹ýTÀÞÔ BHFFF¼·/[¶ìíÛ·W®\9r$Bhýúõ³gÏþå—_Ξ=ëëë+Þ>¹\.ÇëMýWVV2G!uuuKKˇR|;þ7fýúõŸñ¿1pñ dS¦L øñǯ]»F²Yyyy@@€ŽŽŽžž^@@î3ÃX,Vllìµk×lmmmmmqÊ’%KV¬X¡¢¢"''7jÔ¨Ó§Os8œU«VYYY©¨¨xxxܽ{—ØCZZ𢢢††Æ¨Q£öïßße<<<ðp´––òAUUUÁÁÁFFFZZZ~~~.\àßOqq±††Æ!CV¬X¿òûŽ™ªªªÒ7mÚtûöm±Ã ò¶˜9sæ¤I“B®®®,Kø­­­ÉÉÉVVV ÆÆÆÑÑÑÏž=£Ò =jP|>üøãjjj222Æ ‹ï®’É[Š_SS“¯¯oRR’È!!!ÒÒÒïÞ½ÃO³³³i4š ±A\\F»qãâ;©fΜ9~üx„»»;í]ºtÉßߟÉdêëëÏŸ?ÿŸþéò áQRRŽ©(,,3f ÿö‹-B]¾|¹ËíÉ+666##ƒÉd2 }}ý ðg›úùÿòåËAƒOÛÛÛkkk) Ž_|ñÅíÁ§ z@h4ÚO?ýdmmýõ×_ÿç?ÿé²âĉ!!!:::4-''ÇÅÅ%'''00oðäÉ___UUUœ’••E§Ó׬YÃ`0¶mÛâààÀápæÎ[SS³sçÎÈÈÈ›7o"„“’’<==CBBÚÛÛ?>uêT•.gí`²²²{÷î%žr¹Üo¿ýöÅ‹ø+­  `âĉºººaaaRRRÇ÷õõÍÊÊ G;v,44tРARRRYYY'OžìóZ2eJfffPPÐìÙ³ƒƒƒ]\\p/ ––ÅñaÝ!i‹åË—­_¿~Ë–-]†,ÑÑÑôööž}Š_mhhÐÓÓC:t¨»*"Áápð–þù'BhÆŒÄ{÷ïß?xð`¼™œœœ§§gJJÊŸþÙ]s¨©©1‚ü4Ù¹¹¹¡ÒÒRá÷¾{÷ŽN§óçpöìÙL&³¡¡J+PoP|>¤¤¤Z±bBèàÁƒü JÞR$•€'ö&&&v·ÁÓ§OBqqqøé°aÃðócÇŽá¢IIIÍš5Kø¤ÊËËC¥F8q?åp8VVVÆÆÆ]ÔÄÄÄÕÕ•?eÆŒbŸ6559::Òéô¿*²±B999ø)—Ë6l˜®áÿ&&&ÞÞÞmmmø4VQQ9yò$õRøûûËËË«««׋••Õµk×Ä«“Ÿ_Üö»zp–-[–•••0yòdbHVQQñèÑ£ôôt&“‰S˜LæÒ¥Kcccoݺ…{¶tuu×®]Ë?ôÍÑÑ‘èòðð@EDDHKKã//¯ÒÒÒ÷ïß+++———ËÉɳG›ššBïß¿§˜ó'N¬[·nÁ‚³gÏFݸq£¦¦æÀòòòxYYÙ˜˜˜ÈÈÈŠŠ ‡S__Ÿššª¯¯_ÕÕÕ]¼xq||<É!ÂÃà >üøñc’wEFFFFFÞ¾}»°°°°°Íf®]»vݺuß~û­xÍD¥-º#%%…—ª¯¯Ç]³™™™™™™øU‘­@½Aq®–/_N¼wݺu;wî<|ø0W"yKQ¿É+L__ßÆÆ¦°°!ôúõ몪ªŸþ9&&†Íf•””p¹Ü€€*»277Ÿ8q"~L§Óíìì zš‡súôéî^%ºí EEE_ýummíÎ;ÍÌÌ„ß"²±LMM'OžŒÓh4{{{Ü­XQQ!ÆùÏ`0öìÙóâÅ‹²²²‰'†††:t¨³³Sd¡jkk¹\nRR|8ºÈµ!-Zäââ"xóæMòÀ‘¨(›¥K—~øðáĉ±±±ëÖ­=zô—_~)F3Qi‹îÈË˧§§ã²ÖÖÖÎÎÎ~~~ãÆÃ·E¶õEY[[óß‘TTT´°°˜TAÞR½ Bþþþ©©©¯_¿Æ¯^^^®®®l6!TTTÄ`0¼½½©ìÇÜÜœÿ)ùDugˆ<---xìi—x|Kô?~üxÑ¢E§N233;þ¼§§g—oÙXÙ&®Í žŸÿt:=::?NJJJLL óòòY¨¢¢"999 œ8kÖ¬¶¶¶… æääàóÀg&Ç0=zÞ¼y¹¹¹'NœàOÇߣÓð7hGG~ª¦¦&ÞAÛÛÛ'L˜àæævæÌ33³åË—WWWSìxýúu`` ªªjNN¸àx%55õ!ŽŽŽ¸“F ,}>éûÝ»wS¦LÁCÊ222S¦LÁC3IºjÈQi  .üóÏ?wïÞmcc“ŸŸlccóüùóÞ´E C`yKõòp~~~\.—Íf—””yxxܾ}ûÍ›7EEE®®®K×£ùéíííüO[[[ñUUU’{|Äö:tèµk×222îÞ½Û]ÔH¥±ºËvïÏÿ¯¾ú !TVVF¥PzzzDÔˆáÿ—îܹÓÓ9èq`€úþûï?¾hÑ"üõ€á›e•••cÇŽ%oß¾²°°èåKKKóóóÓÓÓ—,YB$Réqììì úôiII ÿtœ[eeeþELîÞ½[YY©¦¦†'x^¿~ÝÝÝx•˜ÒÑWÏž=ûäÉ“9s漄{éÄÛsoÚ¢©©©¶¶ÖÜÜ<:::::šËåîØ±#&&f×®]®®®âµBwîÞ½ÛÑÑADó­­­ÕÕÕüuŽDµT/›ÀÅÅEEE¥°°°¼¼|̘1!www.—{êÔ©7nà!¼}ŽÿgBÿý7Q“"ïêž:ujÚ´i¡¡¡»víRQQ!9ŠØ— úïçÞœÿø@t:]d¡êëëóòò<==­¬¬ˆôææf„õyÙàS#”ªªjzzzxxøO?ýD$:88¥¥¥EEEáqî¯^½Ú¶m›±±qïÏcàÿjÉÉÉiiiá‰ú‰í•+Wž;wnß¾}sQíìì,,,¶nÝ†ãææfÿŽŽ<ØÔÔtÛ¶m‘‘‘ººº¡ÆÆÆ>_À’F£EFFfdd$''¯ZµŠ¸¿ÙÒÒ²nݺî~摊޴Åýû÷]\\Ö¬Y“œœŒ’’’Âу´´´Ø­ÐÆÆÆ´´´o¾ù?MNNnnnø¥Aò–êeHKK{yyåçç?~üß1b„²²rJJŠÈŽb/ùìÙ³¼¼<¼¦O]]‰¼UÍãñ¾ùæCCÃßÿ]䲋½i,1Îÿòòò÷¾=Š÷#²Pòòòqqq#G޼páþ‚Ë妦¦2 bíðÙ€À€+,,lïÞ½üñ‘"++›––æààÊãñ²³³Ž9ÒåZ!=âáᡨ¨8gΜ¨¨(}}ýË—/jjj–––ž9s/§"ìôéÓ[·nµµµ¥Óéü+ØYYY988¤§§ÚÚÚ†††vttäææ>yòäСCøÇå¶lÙjoo&--Ý?€–––VUU•°wïÞáÇãy¬—.]zþüùêÕ«ÅÛmoÚbĈC‡ݸqc]]ÝСCïß¿æÌ ˆˆ:.F+ÐÕÕMHH(++³µµ½|ùrAA““ÓôéÓù·a0$-Õû&ð÷÷Ç£uq#NwssËÏÏ744ìîqüºsçÎçÏŸw¹$9ƒ>aÂ.—›——G´¾«KòÆêêê{÷îYYYC ÁÁÁÿfˆwÉ`ÒÒÒ==ÿ;::<==­¬¬nÞ¼ù믿ÚÛÛ‡„„ÐétòBiii%%%­\¹ÒÌÌÌßß_MMíìÙ³7nÜHII2dHïÚ||$=­û34`§èŸúr<üêêêðDW¼VVVæçç§­­­­­íççwõêUâ%þsºLÁ]/x¹ wz={öŒÇã±Ùlggg%%¥ÁƒGGG766fffjjjúúúòºYއ˜ #€X¥¢¢bܸq:::êêêîîîçÎãÏ^qq±··7î±SUU=rä"]ާËÕmðì ’åxZZZvíÚåä䤩©)--­­­=~üø’’’Êr<"Û‚d9÷äÉ“Y³fËÊÊEFF+ìPo‘ Š7f³ÙcÇŽUUUµ´´Œ‹‹kkkëòÜ o©.‰\އ(,BHSS“HÁ?ç8wî\þÍø—ãár¹***8«!!!üO:•Édvy8—””ccc}}ý%K–$$$Pü>UÌ/99Yxû5Ç›1c†ššñ”úù—ã9pà€ƒƒƒ’’‹Åš7oÞ›7o¨ ËÉÉqttTRRb2™žžžgΜ¡þ^‰ƒåx¨£ñĽ=ºcaaqÿþ}Içô#’&¦Ñh’º¢hÿwÎ&ÐÐÐ0hРÞ÷›~,ËÎÎN²?²,‘RàÅÆ?"Ï‹õÅ_ˆ±ÑçAŒ/îû]·ª^ú€ ÎÐW`9@ ô8ÐÇh½ßŸü«wÊüùóÉ—Ñù­^½º÷K#Æ8ö½;îaà€&€Ï Œq¤nUJ p”@à(ÀP# äsXŽçÈ‘#‡®­­UPP;vìŠ+ðÏ+u§µµ5;;;''çéÓ§ÊÊÊæææ³fÍrqqáß&$$¤²²RàL&óÒ¥K’..€d|òcZZÚ®]»GŽY__ôèÑšššß~û ÿü®0‡3cÆŒ›7oªªª:99µµµ]½zµ´´tñâÅ .$6{üø±¼¼¼Àúd°Æ²O;p¼ÿþîÝ»µµµsrr´´´B6løí·ß¶lÙ‚r^ØáÇoÞ¼9|øðŸþ—555S§Nýé§Ÿ<==­¬¬BÍÍÍoß¾õ÷÷OOO—t>ŸöÇÇs¹Ü¥K—â¨!¯ªªzæÌ.—Ûå[þøã„К5kˆ.I33³yóæuvv·¡?~Œ€?‡@âÓÿóŸÿHII¹»»)t:}̘1MMM]¾åÑ£GŠŠŠÖÖÖü‰fff¡'Ožà§õõõ!cccI—|zh%éÒøÌ}·ªy<^mm­†††††º¹¹9BèÉ“'#FŒ~WFFƒ!Xê;wî „ ñS8þý÷ßÓ§O¯®®VPP2dȼyólmm%]hð)Ô¯xBÜ Ÿ}Â=Žïß¿ïììž°¢ªªŠzõêU—ï2dŽ, W®\Ù½{·¬¬ì¤I“p îzܾ}û‹/œœœ˜LæÅ‹#"">L1oB$][` KJJ¢Ñh&L~iÓ¦M4íÖ­[’Î#b±XAAAø±›››½½}Ÿâúõë4-;;»»*êråÖÙÙ‰ŸÖ××Óh´™3gp8œŸþÙÍÍMWWWEEÅÎÎ.&&¦¡¡Ø`ûöíä½ÅgÏž£8ÉÉÉL&sذa}^Q}‚¿A?$'‹Åš2eФ3($WB¨¸¸ØÛÛ›ÉdêééÝ»wOÒù•øZ'|Â=Ž­­­!EEEt%%%„ÐÛ·oE³sÿþý›7oîììܺu+“ÉÄéÿý·¼¼ü²e˦OŸŽSÊÊÊæÍ›—’’âêꪧ§'rÏó‡ÏÁÇ///ïØ±cÁÁÁ’Έht:N§K:”ðx¼ÀÀÀüüüáÇGEEÉÊÊÞ»wo×®]¿þúëÕ«WñÀ‡¸¸8â-?üðƒššÚ´iÓˆ1Uß½{7!!ÁÕÕuÁ‚’®ƒ¾wûöí 6°ÙìwïÞYZZFEEÅÄÄß/êþ“êÚµk6lHNN¹$òòòÄ&“Élll”`®®_¿îíímll¼råJYYÙÌÌL77·;wî“ DºxñâúõëïܹÓÙÙieeµ|ùòê‰þZ°±ã'8ª©©Ñh´÷ïß ¤¿{÷ý·ß‘ÄÕ«W“’’>|¨««›’’âììL¼´wï^§M›–™™yþüy"šà“#//¿xñbeeeIçE„¢¢"Igª¬¬¬üüü+VlÞ¼™H¼y󦫫ëÌ™3ËËËBnnnnnnÄ«™™™†††©©©½9nmm-B(11ÑËËKÒuÐÇêêêÜÝÝ;;;ƒ‚‚ŒŒŒÎŸ?¿lÙ²âââãÇ÷f·ü'ÕóçÏsss—.]*é²"„УG:;;MMM‰DÜ "A»víâr¹………x×´iÓLMM³²²–-[FåíùùùãÆ355:uª¼¼|NNNppðž={¢££%[.ÐKŸpàÈ`0TUU…{›››B$ÿ}øð!55õ÷ß—““‹‰‰™={vw‹>òsttÌÌÌ|ðà¤Ë €øV¯^½víÚíÛ·÷ùÎ?|øÀ`0¤¤>á0âÁw·cbbøíìì¦L™òÛo¿½{÷®Ÿ"‡’““ë§rõ¨AqoY_u/[¶ìíÛ·W®\9r$Bhýúõ³gÏþå—_Ξ=ëëëÛOåíQÍ „dddúj‡ø€õë×÷áÿ\.—Çãõ¦E*++‡ BŒþWWW·´´|øð!Å·¯ZµJGG§¢¢÷ã¬^½zÈ!III8~ê>íxmmí¦¦&)=z„_êò-\.wùòå¿ýö›——×¹sç-Z$5òx¼ÎÎNáÕ|ðå÷ñ÷Ó@bÊ”)?þøãµk×H6+//ÐÑÑÑÓÓ À}f‹Åнvíš­­-ž.Æb±–,Y²bÅ 99¹Q£F>}šÃá¬ZµÊÊÊJEEÅÃÃãîÝ»ÄÒÒÒlll544Fµÿþ.óàáᇣµ´´ ¬ªª 622ÒÒÒòóó»páÿ~Š‹‹}||444† ²bÅ ü•ß·pÌTUU%¾iÓ¦Û·o÷2¼è®-fΜ‰‡e»ºº²X,á7¶¶¶&''[YY)((GGG?{öŒJ+ô¨Añùðã?ª©©ÉÈÈ 6,>>¾»J&o)~………cÆŒÁQ#¶hÑ"„ÐåË—¶ ‘––Æ7šBÙÙÙ4ÍÆÆ†Ø ..ŽF£Ý¸qñT3gÎ?~ÅÃÌÀ§ëîqDyyyÝ¿¿¤¤dܸq8…Çã±ÙluuõîF@ÿþûïç΋ŒŒ\·n]—Ô××ûúú:::þþûïüéøsgÀŽiŸöÓO?Y[[ýõ×ÿùϺì8qâDHHˆŽŽNDDFËÉÉqqqÉÉÉ Ä¬K$m±|ùr##£õë×oÙ²¥Ë%::úàÁƒÞÞÞ“'O®ªªÚ»woUUÕ•+W¨´õE9r䯿þ °µµ½råʦM›._¾\TT$°>yKñãp8 .X/v!+++°±¿¿ÿÑ£GKJJüýýB%%%¡ªªª¦¦&ôéèèØÙÙñ¿kùòå,kݺu›7o5jN¼}ûö¸qã¦OŸîíí}âÄ |£6##ƒJKýùçŸäÿŒ‘«­­•••UVV>räÈ«W¯¬­­»û—Cdó?~ÇŽsæÌ±´´ðQã}Êþúë/KKK??¿þù§ìÚµËÜÜ|óæÍÄ6ïÞ½«««{òä Çãr¹ÞÞÞÇomm%ÙmDD„¹¹ùálj”ŠŠ ;;;ww÷÷ïߋ̕¹¹¹¤+ô/’&F!ž„þH/çÄÄD„Pmm-ÇÛ´iB(-- ¿´qãF„ÐÍ›7y<^{{;‹Å211illį666›šš¶··óx<<‡#))©³³o`bb"##S]]Ÿâq~¶¶¶>|À)®®®¡ææfgjjjnnÞÑÑ_zóæ ƒÁX°`±«I“&áÇîîîvvvÂY¿~=B(33çÖÌÌÌÞÞž¸0ÛÚÚœœœLMM9N[[›±±±®®îÓ§Oñ« xrÛ¡C‡º«"oùçŸ"„f̘A¼wÿþýƒÆ›ÉÉÉyzz¦¤¤üùçŸÝ5‡ššÚˆ#ÈO3‘m‘››‹*--~ï»wïèt:gÏžÍd2¨´õÅçCJJ q +V „<Èß ä-Å¥©©ÉÑÑ‘N§?xð@१OŸ"„âââðÓaÆá9æÇŽÃE“’’š5k–ðI•——‡***"J:qâ~Êáp¬¬¬Œ»Ì‰‰‰««+ÊŒ3zó}êïï///¯®®NœlVVV×®]ërc‘͇ÊÉÉÁO¹\î°aà p÷èŠ011ñöönkkÃYRQQ9yò¤¥Û·o_BB‚ƒƒƒ¦¦fAAØµÔ¯Äøâ°ßõŸv£žžÞŠ+6mÚ4qâD77·úúú+W®X[[Ï™3‡Ø†ÍfÇÆÆš™™ååå566â¡ŽŠŠÞ[PPÐÔ©SBß~ûíìÙ³×®]{ðàASSÓ¿þúëæÍ› ßÿ=ü«>Ë–-ËÊÊJHH˜éûÝ»w3gÎüòË/ùotÈÈÈL™2E]]ÝÇÇçôéÓâŽTÚ‚ÄÂ… 'Ožœ——wñâÅüüüÝ»w[XX°Ùl555±["ƒÑÒÒŸBÞR]îäàÁƒsçÎURRÊÈȘ5kÉ Ž~~~›6mb³ÙeeeFFFFFF«W¯~óæMQQ‘«««ÈÕÙ°ÍOoooçJLøPUU›hkkgeeOœœBÂËãsÿª™ÀqE6_wÁuØ›+⫯¾JLL,++ &/¦//¯7†‡‡çææ~ýõ×Ôß >6ŸCàÃ÷ßüøñE‹}õÕWD"¾XYY9vìX"ñöíÛ¨/f†•––æçç§§§/Y²„H¤ÒãØÙÙþôéÓ’’þ¾ œ[eeeþ%ZîÞ½[YY©¦¦†ûu®_¿ÎÿsöĔ޾¢¨¨xöìÙ'OžðŽî¥SPPoϽi‹¦¦¦ÚÚZssóèèèèèh.—»cÇŽ˜˜˜]»v¹ººŠ× ݹ{÷nGGÍ·¶¶VWWó×9ÕRÂû}zëÖ­¶¶¶t:½:+++‡ôôôÀÀ@[[ÛÐÐÐŽŽŽÜÜÜ'Ož:tÿ¸Ü–-[BCCííí䥥³³³ûã7ÜÒÒÒªªªöîÝ;|øphÐ WW×.ò‘€åx¨£ñ`´A_³°° 8|¢Hš˜F£!I]R4«W¯{ÑVðƒ1Ž}oÀŽ{8 ‰àsc©ëãQŸ+%8J p”@à(ÀP# G@ Ž€øÉAú&É_ª†‚Я Ç€¾ÆãIæTRRF›0a‚ðK›6m¢Ñh·nÝ’tÅ!‹„»¹¹ÙÛÛ÷ù!®_¿N£Ñ²³³»«¢K—. ¿äããC£Ñ:;;ñÓúúz6sæLb‡óóÏ?»¹¹éêꪨ¨ØÙÙÅÄÄ444lß¾FêìÙ³b'99™Éd6¬Ï+ªOð7èÇ€ä¤b±XS¦L‘t%Œäê@{{{3™L==½   {÷îI:¿@2 p`ÉËË;v오sA N§Óé’Î%</000::ºµµ5***&&fðàÁ»ví277¿sçÞÆÁÁ!ެ¬¬¶¶6Љ‰IO{÷îÝ„„++«Õ«WKºúÞÅ‹=<<´´´ äêêzüøñÞï“ÿ¤ºvíZPPÑ@’2f̘¤¤¤î^íèè=z´“““d3‰º~ýº··w}}ýÊ•+ããã>|èææöâÅ ê{¸wïÞ”)S ÔÔÔ\\\rss%]& &¸U À"//¿xñbeeeIçE„¢¢"Igª¬¬¬üüü+VlÞ¼™H¼y󦫫ëÌ™3ËËËBnnnnnnÄ«™™™†††©©©½9nmm-B(11ÑËËKÒuÐÇòóóÇgjj:uêTyyùœœœààà={öDGG÷f·ü'ÕóçÏsss—.]*ÁbÞ¸qãÒ¥K$Í·víÚ«W¯Ž=Z‚™ÄvíÚÅår BÓ¦M355ÍÊÊZ¶l•·?xð`äÈ‘RRRS§NUQQ9yòdPPPFFÆ×_-é’ƒG„„„¿þúkíÚµý±ó>p¹\IQðÝ혘þD;;»)S¦\¿~ýÝ»wýt\<¤UNN®Ÿöߣíìì$nå÷ÞªU«ttt***¶mÛ¶aÃ†ŠŠ ###’ž¹Ù‡>|ø öÛ9ιsç}}}Ij¸   55•Áèƒþ.—ÛËÖ©¬¬2dŽBêêê–––>¤øö”””–––’’’Ÿ~úéû￯¨¨077ÿ,{Ê@¦L™ðã?^»vd³òòò€€==½€€Üg†±X¬ØØØk×®ÙÚÚÚÚÚâ”%K–¬X±BEEENNnÔ¨Q§OŸæp8«V­²²²RQQñðð¸{÷.±‡´´4EEE Q£Fíß¿¿Ë~üñG555™aÆÅÇÇwWÉä-Ehoo¿sçÎøñãUUUqŠ¢¢¢››ÛÓ§O[[[6 ‘––&¢óììlfccClG£ÑnܸøNª™3gŽ?!äîîÎ_{—.]ò÷÷g2™úúúóçÏÿ矺̡………@7aRRÒÈ‘#)¶iSS“¯¯oRRRcccwÛ<þ|Ú´iÑÑÑä{#oÊØØØŒŒ &“É`0ôõõ,XÀ_(êWÇË—/ ÄßFµµµÆÆÆ‹\]]­§§G´‹¬¬¬»»{SSÓË—/)î|Dx ¯™››K:  ‘41¾¨$59†$ω‰‰¡ÚÚÚG)((ØÛÛs8üÒÆB7oÞÄOsss †ÁÒ¥Kccc  Fnn.~ÕÄÄdòäÉ,ë믿Æ)šššëׯOIIa2™rrrÎÎÎŽŽŽiii , Ñh¶¶¶øíëÖ­Cyzz&%%­^½ÚÊÊ !tòäIbç“&MÂÝÝÝíììx<^GGÇ^>¿üò‹ŒŒLuu5Ç;wœ‹ÅŠ‹‹ûæ›oÌÌÌètúÁƒñNŽ=J§Óµ´´,X°hÑ"sss„СC‡º«¢ÒÒRá—¼½½BDýù矡3fà§8„•••]°`Áùóç[[[EžBjjj#FŒ¹I[TVV~ûí·¡-[¶°Ùlá÷FFFÒh4Ÿ5kÖÒéôQ£FQlê jbb¢¯¯ Xµj•‡‡Bh̘1\.W AÉ[Š_GGGUUÕ³gÏøSllllll„7ÎÌÌDåççã§ .DÑh´—/_â”áÇëèèàü'Uee%î¿Ü¼y3®=sssUUÕ˜˜˜-[¶àqø fbbâêêÊŸ2cÆ 1¾Oñü’ÄÄDt.—ûå—_ZZZ¶´´˜˜˜Œ=º»=ˆlÊ¡C‡ÊÈÈ,\¸ð‡~@EGGãW{tu˜˜˜x{{ã¼ÕÕÕ…‡‡ÛÚÚ666R,é¼yóètz]]~Êápìíí zZcýGŒ/îû]cß°'ÓÀñIŽ<oÓ¦M¡´´4üàØÞÞÎb±LLLˆ¯„ÆÆFcccSSÓööv‡çp$%%uvvâ LLLˆ0ŽÇãáq~¶¶¶>|À)®®®¡ææfgjjjnnÞÑÑ_zóæ ƒÁX°`±+áÀQÀúõëB™™™8·ffföööï߿ǯ¶µµ999™ššr8œ¶¶6ccc]]ݧOŸâWôôôÈGÝŽ<oÿþýƒÆ›ÉÉÉyzz¦¤¤üùçŸÝ5•ÀQd[àé]FºïÞ½£Óéü9œ={6“Élhh Ò ÔŸ)))ÄV¬XÂ!Ñ ä-ER ûöíKHHpppÐÔÔ,((ÞàéÓ§¡¸¸8ütذaxŽù±cÇpѤ¤¤fÍš%|Rååå!„ŠŠŠˆR#„Nœ8Ÿr8+++ccã.sÕßã¦M›deeoܸE8ŠlJ„PNN~Êår‡ †Ãµž^8plkkÃ'9§H½¤µµµ†††ß}÷ÝöíÛÝÜÜdddºü·AR p¤&Ç0à,[¶,+++!!aòäÉÄ %¬¢¢âÑ£GéééL&§0™LÜÝuëÖ-|3NWWwíÚµRRÿ ‹£££¥¥%~Œûœ"""¤¥¥qŠ——Wiiéû÷ï•••ËËËåääˆa[MMM¡÷ïßSÌù‰'Ö­[·`Á‚Ù³g#„nܸQSSsàÀyyy¼¬¬lLLLdddEE‡Ã©¯¯OMMÅ]b8ç‹/Ž'9Dxx¸ðÍÁÇ?~ü˜ä]‘‘‘‘‘‘·oß.,,,,,d³Ù………k×®]·n莔”^Z¨¾¾ßOÌÌÌÄs!‘­@½Aq®–/_N¼wݺu;wî<|øpxx8‘HÞR$eùî»ïð Ÿ.oŒêëëÛØØ"„^¿~]UUõóÏ?ÇÄİÙì   ’’.—‹{ÚD277Ÿ8q"~L§Óíìì zÚjçôéÓݽ(råååk×®MMMµ³³£²1ySšššNž<?¦Ñhööö'OžDUTTˆqu0Œ={ö¼xñ¢¬¬lâĉ¡¡¡‡êììYd“éÓ§oذ!!!§{{{~“ºp ÆîÝ»/^,°ÊIMM B^$à‘I555ø Þ‚?jD‘ B‡Â)˜ººzYYYAAÁ½{÷jjjîܹÃáp(fûîݻӦMsuuMOOÇ)¸Ãm?~ü{>|8ºÈµ!-Zäââ"xóæMòÀ‘¨(›¥K—~øðáĉ±±±ëÖ­=zô—_~)F3Qi‹îÈË˧§§/_¾œÅbY[[;;;ûùù7¸Ù Ô!dmmÍ?ŽSQQÑÂÂB`ÚyK‘”¥¦¦æýû÷—/_ŽŽŽ=ztuuµ–––À6þþþ©©©¯_¿Æ¯^^^®®®l6!TTTÄ`0ðH‘ðZùjPsMˆ9.---xìi—x¢Ö[mnnŽˆˆðññY¼x1•<‹lJBWîƒPϯ:NLlOJJJLL óòòYäéÓ§gggoÙ²%**JAAÍf/\¸ÐÉÉ©¼¼\CCƒJIÁÇ&Ç0=zÞ¼y¹¹¹'NœàOÇŸò¿ƒ¿A;::ðS555ñÚÞÞ>aÂ77·3gΘ™™-_¾¼ººš˜Aîõëתªª999Dà‚ã•ÔÔÔ?„8::ân²„¼½÷îÝ»)S¦ìÙ³‡?QFFfÊ”){÷îE‘tÆ£Ò$.\øçŸîÞ½ÛÆÆ&???88ØÆÆæùóç½iŠ †À4 ò–"ß›‚‚‚——ׯ_½zÕåâ~~~\.—Íf—””yxxܾ}ûÍ›7EEE®®®K×£ùéíííüO‰Y;ªªª$÷øDî6##£®®ÎÒÒróæÍ›6mÚ´iÓÛ·oÿúë¯M›6 ÐãÀõý÷ß?~|Ñ¢Eø 333CUVVŽ;–H¼}û6BÈ¢—G,--ÍÏÏOOO_²d ‘H¥Ç±³³3<<üéÓ§%%%üN8·ÊÊʾ¾¾DâÝ»w+++ÕÔÔ¾øâ „Ðõë×ÝÝ݉WoÞ¼Ù·Õ¨¨¨xöìÙ'OžÌ™3Gà%ÜK§   Þž{ÓMMMµµµæææÑÑÑÑÑÑ\.wÇŽ111»víruu¯ºs÷îÝŽŽ"šomm­®®æ¯s$ª¥vxúôéI“&eee………‰êêꨛ;•ÂÂÂòòò1cÆ „ÜÝݹ\î©S§nܸ‡ðö9þŸBýý÷ßDMöæV5¸·mÛÆŸøúõëøøxww÷ˆˆþt±/(„Pï¯| :.²È¯^½Bƒ€1üß[Ÿèq`€RUUMOOúôéO?ýD$:88¥¥¥½~ý§¼zõjÛ¶mÆÆÆ½ÿ@<OüÄrrrZZZDöĬ\¹òܹs#FŒàO·³³³°°Øºuë›7opJss³¿¿ll¬‚‚‚ƒƒƒ©©é¶mÛˆ/õÆÆÆíÛ·÷m5Òh´ÈÈÈ«W¯&''óß¾liiY·n]w?óHEoÚâþýû£GÞºu+~*%%…ãiii±[¡;iiiÄÓäääææf_$o)Ž5 !ô믿ògiß¾}¡.CEZZÚËË+??¿¢¢Ž#FŒPVVNII9ÀQì•GŸ={†§× „êêêˆ ßªîŽÈÝ®Y³F ÇŽ˜sñâE{Ó”b\åååø7vôèQ¼‘E>|¸¼¼üþýûù»iþùg„ð°ðñƒG®°°°½{÷þñÇDЬ¬lZZZXX˜ƒƒChh(ÇËÎÎnhh8r䈬¬l/çáᡨ¨8gΜ¨¨(}}ýË—/jjj–––ž9sÆßß¿Ëw>}zëÖ­¶¶¶t::+++‡ôôôÀÀ@[[ÛÐÐÐŽŽŽÜÜÜ'Ož:tÿ¸Ü–-[BCCííí䥥³³³IVÎ[ZZZUUUBBÂÞ½{‡Žgª^ºtéùóç«W¯vvvo·½i‹#F :tãÆuuuC‡½ÿþ™3g444"""ètº­@BWW7!!¡¬¬ÌÖÖöòåËNNNÓ§Oç߆Á`´”À™Læš5kðʈ¾¾¾4­   ¼¼|éÒ¥ü 4òó÷÷Ç£uqàH§ÓÝÜÜòóó ­­­»| îéܹsçóçÏùçñPÄ`0ÂÃÃ'L˜ÀåróòòˆÁ÷mÅkñž¥¥{zutttxzzZYYݼyó×_µ·· ¡ÓéäEVTTܱcÇÌ™3­­­ƒƒƒåä䊋‹Ùlvpp0•ÙBà£#éiÝŸ¡;EàøÔ—ãáWWW‡'ºë8òx¼²²2???mmmmmm??¿«W¯/ñ¯˜Óe îzÁËå`ÉÉÉ!¼,›ÍvvvVRR|øþçæÎÛ宸ÙÙÙ ôîÝ» ®®® ,t|DÆŒãååµnݺÞïŠN§ÓétüøÚµk6lHNN¶¶¶þ×Ê"pPþüôßQ>*·oßÞ°a›Í~÷eTTTLL ƒ!â¶££ÃÍÍF£]¾|¹—»êWׯ_÷öö666^¹r¥¬¬lff¦››Û;w´´´zº«.‹,àÞ½{ —/_~÷îµµõŠ+&Mš$Þ®@¿à¾fnn.é,€þÕ_MŒ¯ß.ÉÄÄD„Pii)â³gÏtuuétú³gϺۦººÚ‚F£UVV’ìŠÄ‰'BçÏŸï§¢ýûLLL&MšÔ›=TTTHII%&&öyÞòòòBEEEDVCBBú»BúqåÚµk¡C‡õyÆ>|¨®®®¢¢òÕW_%$$899!„¨œ!ß|ó BhôèѽßUï‘ÔOtt4Nüø1~úêÕ+55µ­[·Šqá" ¸ÿ¾’’’ŠŠÊ‚ âã㇠‚ÊÈÈcW="Ƨú€ý®‡[Õ \ÚÚÚáááUUUÝmcii™••Åãñ¾ûî;ñŽÂãñBrrr’.îÿúðáqw^¤ÎÎÎÎÎξ:4‡Ã9wî\bb¢¯¯/õ<|zTíÿ~Þ>|ø öÛ—-[ööíÛóçÏïÝ»wýúõeee³fÍÊÍÍ={ö,É» RSSºÅÛ9.—ÛËs¸²²rÈ!†††ø©ººº¥¥åÇ{ºŸ.‹, %%¥¥¥¥¤¤ä§Ÿ~úþûï+**ÌÍÍW¯^-Æ®@?À€ Gu$ÛŒ1ÂÅÅ娱c§§ûŸ9s&¾ÍäêêÊb±pbyyy@@€ŽŽŽžž^@@@yy9±=‹Åнvíš­­­­­­ð[[[“““­¬¬Œ£££Ÿ={F¼š––fcc£¨¨¨¡¡1jÔ¨ýû÷óïyÉ’%+V¬PQQ‘““5jÔéÓ§9ΪU«¬¬¬TTT<<<î޽˟üQMMMFFfذañññÝÅUUUÁÁÁFFFZZZ~~~.\è®6ššš|}}“’’Éë-$$DZZúÝ»wøivv6F³±±!6ˆ‹‹£Ñh7nÜ@yxxà1…3gÎ?~kb<¨‘ø#Iì5íEEEÅÇÇÇÇǯ\¹rÆŒ¸añâÅüÛtnܸ!táÂb3a_½„ÜÜ\b·ííí,ËÄÄ„øÖill466655mooçñx&&&¡¤¤¤ÎÎNá]½{÷ŽN§Ï˜1ƒH™={6“Éį©©©¹¹yGG~éÍ›7 cÁ‚ø©‰‰‰ŒŒLuu5~ºyóf„­­í‡pŠ««+B¨¹¹™Èÿ·õŠ+B8.!Çööv333{{û÷ïßãÍÚÚÚœœœLMM9Isˆ Ÿ>}ŠŠ‹‹ÃO‡ †ç¤;v MJJjÖ¬YøUþ@MxŒ#Bèĉø)‡Ã±²²266>"yYÈk^à #õj'oAþ£ç¶­­ÍØØXWW÷éÓ§øÕ††==½þ…5559::Òéôt¹Á¦M›deeoܸMúïJä "ÂP.—;lØ0‰Q?ÞÞÞmmmøJWQQ!ÂSЍ¹¶¶ÖÐÐÐÀÀà»ï¾Û¾}»›››ŒŒ ÿbÔwÕ#8RãÑhÿû€?¡.Òûÿ,ƒaaa±jÕª¥K—Š|# ç‡ð¬jüEE®¢¢âÑ£GéééL&§0™LÜõxëÖ-|‡NWWwíÚµRR] ¤‘’’¢Ñh—.]ª¯¯ÇwÊ233qçB¨¼¼\NNŽöÔÔÔ„zÿþ=ñvGGGKKKüw"FDDHKKã//¯ÒÒÒ÷ïß+++ãŒ-_¾œxïºuëvîÜyøðáððp"ñÆ555——Ç)²²²111‘‘‘Ôïu Ó××·±±),,D½~ýºªªêçŸމ‰a³ÙAAA%%%\.÷!‰dnn>qâDü˜N§ÛÙÙoF^–¡C‡’Ô<9êÕ.²)æ–ÃáÔ××§¦¦ânc|R-^¼8>>¾§ ÁápNŸ>ÝÝ«)EEE_ýummíÎ;ÍÌÌ„ßR^^¾víÚÔÔÔ.— èé®È«ËÔÔtòäÉø1F³··?yò$B¨¢¢BŒúa0{öìyñâEYYÙĉCCC:ÔÙÙ)²~¨!dbb2}úô 6$$$àooob Avú Žô)¡«WïêéÞD𥥥...bdðÉ“'!SSS"eÑ¢Eb쪦¦!$0xgª©©Á‘–……E—Q#BH^^>==}ùòå,ËÚÚÚÙÙÙÏÏoܸq222!uuõ²²²‚‚‚{÷îÕÔÔܹsG`P&­"„pà"œB°¶¶Æ»Å-,,&àŽÃÈÈÈÈÈH¬>~ü¸7#BÈßß?55õõë׸³ÖËËËÕÕ•Íf#„ŠŠŠ †··7•ýà[„îÊY’š'G½ÚE¶ ÅÜⱡÇçO'_ZR`ú1§¥¥¥Ëµ`0ß÷øñãE‹:uÊÌÌìüùóžžžÂÛ777GDDøøø,^¼˜$3TvE¥ºšž¸¬YÃ!TZZJ½ÉsûÅ_ „®_¿Îß^7oÞ$9zCCÿÓ¿ÿþ›È€È[±§Nš6mZhhè®]»TTTHŽ‚g.oÛ¶?ñõë×ñññîîîÔwÕ£ê FýÀ¢Óé"ëGd‘ùÓ_½z…þœHäe!©ùÞ”Ÿ‡‡y …$·t:}Ë–-¡¡¡öööaaaÒÒÒÙÙÙäkg2Œððð &p¹Ü¼¼<âly«ºººúÞ½{VVVÄø?Bppð„ 6mÚ´qãÆï¿ÿ~Þ¼yä5 rW=ª.’IKK÷´~:::<==­¬¬nÞ¼ù믿ÚÛÛ‡„„Ðét±ÿ7ÃøëGQQqÇŽ3gδ¶¶–““+..f³ÙÁÁÁÂó€ÄHzZ÷ghÀNÑ8>Å&¦²ø¢À:;4ÍÜÜ<22²¬¬¬§»âÇ¿VVVæçç§­­­­­íççwõêUâ%‘¿æ÷äÉ“Y³fËÊÊEFFK½°Ùlggg%%¥ÁƒGGG766fffjjjúúú ïw)eff)¸/ ÿú"Þ˜Íf;VUUÕÒÒ2..®­­­ËLVTTŒ7NGGG]]ÝÝÝýܹs"ëDärèÝ»w¬¬¬V¯^-é*—¼Û·o‡……éèè())1"--ÃáôrŸt:N§ãÇ×®] ºsçοY(ƒòç§ÿŽò1ëèè`0ÿVijjv·ýÛ·oçÍ›gdd¤¤¤4fÌÕcÆŒIJJ’táBèúõëÞÞÞõõõ+W®Œøð¡››Û‹/¨ïáâÅ‹ZZZƒ ruu=~ü8•wuYâí ˆ!é üKŽ9røðáÚÚZ…±cÇ®X±B]]dûÖÖÖìì윜œ§OŸ*++›››Ïš5ËÅÅEÒ埢ñ¯¯6£hÑ¢Eü§ñóçÏíííÓÒÒâââ´µµ»ÜæÞ½{“&Mš?¾‹‹ËСC»Û‰ÚÚZ„Pbb¢——W¿WëÇ­®®ÎÝݽ³³3((ÈÈÈèüùóË–-+..îåW]QQñøùóç¹¹¹K—.ý7Ë%pPþüôßQ>f=êììtvv655%•””ºÜ¸¹¹yĈ? a2™999~~~/^èµ½qãÆ¥K—>’‹h×®]\.·°°ÐÐÐ!4mÚ4SSÓ¬¬¬eË–Qy{~~þ¸qãLMM§N*//Ÿ““¼gÏžèèh’wuYâí ôÆ€ÓÒÒvíÚ¥¨¨8räÈúúú£GÖÔÔüöÛoòòò]nÏápf̘qóæMUUU''§¶¶¶«W¯–––.^¼xáÂ…’. }F[[;<<<--­ªªŠXZZfee9ò»ï¾ï6ÇCÉÉÉIº¸ÿëÇ CJŠÒý–ÎÎN„P_õŸ-[¶ìíÛ·W®\9r$Bhýúõ³gÏþå—_Ξ=ëëë+éŠé_=ªö?o!™¾Ú!þgiýúõTâ¼mÛ¶ÕÖÖîÝ»÷«¯¾B-Y²døðáË—//,,Dq8œÂ²²²;v£Jz‰Ëåòx¼ÞœÕ•••C† ÁQ#BH]]ÝÒÒòáÇß¾jÕ*ŠŠ UUU„ÐêÕ«‡ ’””Ôe´G^=Úèã5Ü·îß¿¿{÷nmmí?þøc÷îÝgÏž>}úíÛ··lÙÒÝ[>|óæÍádzÙì;wþúë¯ÇWSSûé§Ÿª««%] úŽê:::H¶1b„‹‹Ë±cÇĸ©:sæÌI“&!„\]]Y,N,//ÐÑÑÑÓÓ (//'¶g±X±±±×®]³µµµµµÞakkkrr²•••‚‚‚±±qttô³gψWÓÒÒlll544Fµÿ~þ=/Y²dÅŠ***rrr£F:}ú4‡ÃYµj••••ŠŠŠ‡‡ÇÝ»wù³ñã?ª©©ÉÈÈ 6,>>‡ªªª‚ƒƒŒŒ´´´üüü.\¸Ð]mŽ3GØ¢E‹B—/_Ø2$$DZZúÝ»wøivv6F³±±!6ˆ‹‹£Ñh7nÜ@yxxàÞ©™3gâÑîîîDm#„.]ºäïïÏd2õõõçÏŸÿÏ?ÿt—C’²tWóÂ%òÓÓj'iÁ.‹F^óÅÅÅ>>>C† Y±bEw͇²°°ˆð’’’ø›©§pàøÅ_PÙøÐ¡CºººÓ§OÇOMMMCBBØlößÿjjjòõõMJJjll¤²7òK 666##ƒÉd2 }}ý ðŸ ÔkìåË—ƒ "ž¶··×ÖÖSÉa{{û;wÆC=„¢¢¢››ÛÓ§O[[[…·'©žî ô ÞçnýúõæææG%R8ÎÈ‘#œœ:;;»|Ë´iÓÌÍÍ«ªªøùåssó={öˆ<¢¹¹¹¤ úWŸ41âQºú(n&Rbb"B¨´´”?ñÅ‹zzzRRR Ýmƒá¾öºº:òÍ„UVV~ûí·¡-[¶°Ùl—››Ë`0 –.]khhÈ`0rssñö&&&“'OÖÐÐ`±X_ýµð###i4šÏš5kétú¨Q£ðKëÖ­Cyzz&%%­^½ÚÊÊ !tòäIbÏšššëׯOIIa2™rrrÎÎÎŽŽŽiii , Ñh¶¶¶ÄÆúúú¡€€€U«Vyxx „ÆŒƒ»jLLL&Mš„· yn=J§Óµ´´,X°hÑ"sss„СC‡„ nbbâêêÊŸ2cÆŒÞ|?ÆÄÄÈÊÊ655>|x×®]%%%ííí]nùöí[ÉŸxàÀ„бcÇøñì“ÄÄD’㊼†*##³páÂ~ø! !-^y{{óx<.—[WWnkkÛØØH¥r:::ªªªž={ÆŸbcccccCþFá{WÂÄøT°ßõŸà8aÂKK˦¦&þÄåË—›››ÿç?ÿéò-®®®ööö‰%%%æææß~û­È#Ø“iàøtǨ¨¨øøøøøø•+WΘ1÷,^¼˜›.#Â7"„.\¸@l&Là«—››Kì¶½½Åb™˜˜ß1ÆÆÆ¦¦¦ø›ÕÄÄ!”””ÔåÿuïÞ½£Óé3fÌ RfÏžÍd2qàkjjjnnÞÑÑ_zóæ ƒÁX°`~jbb"##S]]ŸnÞ¼!dkkûáÜâêêŠjnn&²ÁÏ­X±!„ã"ploo733³··ÿþ=Þ¬­­ÍÉÉÉÔÔ”Ãáˆl”¦¦&GGG:þàÁ—ž>}ŠŠ‹‹ÃO‡ †ç¤ã`âÍ›7RRR³fͯòjyyy¡¢¢"¢Ô¡'Nà§ÇÊÊÊØØX83äe!¯yƒ ŽÔ«¼ùBžÛ¶¶6ccc]]ݧOŸâWôôôþµÀÑßß_^^ž$½••Õµkׄ·|ðàB(66–?ñüù󡌌 þD*£ÈK!DüëÂår‡ f``€k¯§5æííÝÖÖ†K§¢¢B„§=²oß¾„„MMÍ‚‚òÉk G»#uŸùGW[[«¡¡¡¡¡ÁŸŽÿ‘zòäɈ#„ß•‘‘Á`Ö žÊG éàSÄߊÁ`XXX¬ZµŠÊlMp~wxx¸ þZ"WQQñèÑ£ôôt&“‰S˜L&îz¼uë¾9¨««»víÚ.ÃIIIÑh´K—.Õ××ãûb™™™¸s!T^^.''G\¼MMM¡÷ïßowtt´´´Äq'bDD„´´4Nñòò*--}ÿþ½²²2ÎØòåˉ÷®[·nç·'oܸQSSsàÀbÀ´¬¬lLLLdddEEù½Î¢¢¢¯¿þº¶¶vçÎfff¯êëëÛØØàQn¯_¿®ªªúùçŸcbbØlvPPPII —ËÅ=F"™››Oœ8?¦Óévvv›‘—eèС$5OŽzµ‹lAйåp8õõõ©©©¸ÛŸT‹/ާ’a~çôéÓݽØezmm-—ËMJJÂCNž<;iÒ¤ªª*â¦*†K§¢¢ÂŸˆ·ÁÅï‘hjj:yòdü˜F£ÙÛÛŸ~ü¸»ÀññãÇ‹-:uê”™™Ùùóç===»ÜÌßß?55õõë׸³ÖËËËÕÕ•Íf#„ŠŠŠ †··7•:Çÿ'º›!²,$5OŽzµ‹lAйÅcC‡ΟN¾´$žE &a´´´|ìóx¼‡òeÄs\ŠŠŠää䈋Y³fµµµ-\¸0''göìÙ•#0ê´¹¹!$ÐßA…È 8ˆ w|ö¨ÆBt:˜ƒ’”””˜˜æååE^cüOkjjÞ¿ùòåèèèÑ£GWWWkiiõ´Ô}¾«. ­XŸyàˆ‡Ç*** ¤ãeÞ¾}+rû÷ïß¼ysggçÖ­[ù?ïH@˜8`Q_:G"ËñˆíÖ­[x`boë‡ÇCBý—8”!&èÿ§ÇoáÂ…“'OÎËË»xñb~~þîÝ»-,,Øl¶ššZppp~~þÈ‘#¿üòˉ':99988ôa%0Œ––þ6¥¦¦ ¯m.üÿ'vðàÁ¹sç*))eddÌš5KøæÁÏÏoÓ¦Ml6»¬¬ÌÈÈÈÈÈÈÃÃcõêÕoÞ¼)**ruuè»êÅùì"ËÒ]Íw7¿§ÚÛÛ©· yn‹‹‹‘ÐiF>¡»½½ÿ)1µBUUU Ö ­­••E|¨««›’’âìì,é %%%¡¡¡$QEøžlee娱c‰ÄÛ·o#jŸÂMMMµµµæææÑÑÑÑÑÑ\.wÇŽ111»víruuÍÏÏOOO_²d ±}oÖÖ¾{÷nGGÑÖÚÚZ]]íîî.\eeeþÅtîÞ½[YYÙeø{êÔ©iÓ¦…††îÚµKàî¤0•ÂÂÂòòò1cÆ „ÜÝݹ\î©S§nܸGö!ò²Ô<žÑ{¥¥¥Ô[<·¸ ðúõëüíuóæM’£744ð?Å3š…[ÕJJJQQQü‰õõõyyyžžžxn †;…o¡2Œ!C†”””ð'Óh4kkëþ«@bÔ˜| :.²ÆNŸ>=iÒ¤¬¬¬°°0"íQĉêÃ]ê>óÀ‘Á`¨ªª ÷,âk˜¤ûÇ©©©¿ÿþ»œœ\LLÌìÙ³»[ô€Ï[MMÍÔ©Si4ZBBBï÷æàà`dd”––…?ß_½zµmÛ6ccc*?Rwÿþ}—5kÖ$''#„¤¤¤ð÷œ´´4žMÂÿU““ÓÒÒ"ö÷GcccZZÚ7ß|ƒŸ&''777 üÒ ……ÅÖ­[ÃÂÂp¤ØÜÜìïïßÑÑ"°C÷Í7ßþþûïT–Г––öòòÊÏÏüø1¾¿9bÄeeå””‘ÅXð¼,•••ÝÕ|oÊb â£çÖÁÁÁÔÔtÛ¶m‘‘‘ººº¸5·oßNrôgÏžåååáêêꈘIä­jáDyyù¸¸¸‘#G^¸p×—ËMMMe0>>>ÂÛÏ™3gÉ’%ÄÑ_¼x‘““ãããÿ RV`—Ĩ±òòò÷¾=Š÷#²ÆF…úõ×_CCC‰>Î}ûö¡ÿö×Rׇ»Ô}æ#BH[[»¶¶¶¹¹™ÿÿûGá—º| —Ë]¾|ù¹sç¼½½×­[×·ã$øÈíܹO_moo¯ªª*++ûðáÃŽ;ø6Fl²²²iiiaaa¡¡¡</;;»¡¡áÈ‘#²²²"ß>bĈ¡C‡nܸ±®®nèС÷ïß?s挆†FDDNWTTœ3gNTT”¾¾þåË— 555KKKÏœ9ãïïßÓ¬êêê&$$”••ÙÚÚ^¾|¹  ÀÉɉXlc0ééé¶¶¶¡¡¡¹¹¹Ož<9tèphX]]}ïÞ=+++᥉ƒƒƒ'L˜ œ¼^îq¤Óénnnùùù†††ÝuGá(jçÎÏŸ?çŸÇ#yYHj¾7åçááAÞ‚G!É-Nß²eKhh¨½½}XX˜´´tvv6ù:ˆ #<<|„ \.7//8EÞª¦¥¥•””´råJ333œí³gÏÞ¸q#%%ßôß´iÓÆ¿ÿþûyóæ!„f̘ñË/¿DEE-\¸PMMmïÞ½ïß¿ã§EV É{¥¥¥{ZcžžžVVV7oÞüõ×_íííCBBèt:y1™Ì5kÖà•2}}}i4ZAAAyyùÒ¥KñpgúéÍ®@¿ô´î~—žžnnnž——G¤p¹\ggçQ£FëAØ»w¯¹¹9ùª$ìýãÓ]އ|ñEuvh4š¹¹ydddYYYOwÅ9¬¬¬ÌÏÏO[[[[[ÛÏÏïêÕ«ÄKüK$véÉ“'³fÍ266–••522ŠŒŒ$–za³ÙÎÎÎJJJƒŽŽŽnllÌÌÌÔÔÔôõõÞ3îRÊÌÌ$Rp_^oÌf³ÇŽ«ªªjii×ÖÖÖe&+**Ƨ£££®®îîî~îܹ.s~âĉî>‡“““»+,BHSS“HIMMEÍ;—3þåo¸\nDD„ŠŠŠƒƒÎjHHÿÆS§Ne2™ÝU/IYHj^à ËñP¯vò8ŠÈš/..öööÆÛªªªGŽAÝ/.ãââ’’’bll¬¯¯¿dÉÜ¿.úäî^NNŽ£££’’“ÉôôôÇb±ìììzùÒà#ÑÐÐ0hÐ ’.m‹e`` 0Ðp £Rc_|ñE—ë:}¢ÄøT°ßõŸÿ­j==½+VlÚ´iâĉnnnõõõW®\±¶¶ž3g± ›ÍŽ533ËËËkll|üø±¼¼¼Àxg,((hêÔ©’.Qƒ)ÇSÉIDATø@8À¿CxŽ3 5H|þ#BhÖ¬Yššš¹¹¹ùùùºººS§N]ºt)î}†Ç·¶¶VUU ¿ «0` ˆÀ!4a„.ÇžcÄE‡Ùù øûûSù!ðy˜?¾ÈÕ‘¿Õ«W“¯· >cŸÿÇ߀÷0p@ÀçÆ8R׃uáÀ@# G@ Ž€%8J p”@à(ÀP# G„¤¤$Úÿ¥ªª:räÈÌÌL.—Ûå6RRR–––Ó¦M»rå ù®]=99™Éd6LÒÕÐ7X,VPP¤sñÿ¹¹¹ÙÛÛw—Õ)S¦|<ù‘ ëׯÓh´ììlIgä“D^{ÅÅÅÞÞÞL&SOO/((èÞ½{’Î/èG80€„‡‡ÇÅÅÅÅÅ-_¾|„ >œ3gÎÊ•+»ÜfáÂ…:::G;vlFFFw»â7~üxáƒÞ½{7!!ÁÊÊjõêÕ’®É»xñ¢‡‡‡––Ö Aƒ\]]?Þû}Òét:Ž_»v-((èÎ;ÿf¡ÊŸŸþ;ÊÇi̘1IIIݽÚÑÑ1zôh'''’=p¹ÜüÑÖÖVIIÉÒÒróæÍÄ«÷îÝ›2eŠššš‹‹Knn®¤KŒ®_¿îíí]__¿råÊøøø‡º¹¹½xñ‚úzT¨·oßΛ7ÏÈÈHIIi̘1ÿÖVWWêëëO™2¥¬¬LÒÕó9â¾fnn.é,€þÕOMŒx¼þ» B¥¥¥ü‰Ïž=ÓÕÕ¥ÓéÏž=ën›êêj VYYI²+'Nœ@?¾ß ÷o311™4i’o<}ú4BÈÔÔ466võêÕæææ¡={öôaÞòòòBEEEDVCBBú»BúqåÚµk¡C‡õ_+**¤¤¤»Ûà›o¾A=º» :;;ÇG£Ñ‚‚‚V®\éêꊚ5k~õþýûJJJ*** ,ˆ2dB(##£ÿJD¥ö¢££étúãÇñÓW¯^©©©mݺ•âž{T¨·oß~ñÅ222‘‘‘‹/ÖÓÓSUU­¨¨À¯ËÊÊjkk/]ºtùòå .\ ’ 1>Õìw=ô80pikk‡‡‡wvvVUUu·¥¥eVVÇûî»ïÄ; ÇCÉÉÉIº¸ÿëÇÄÝy‘:;;;;;ûêЫV­ÒÑÑ©¨¨Ø¶mÛ† ***ŒŒŒH:¨>'=ªö?o>|ûíçܹs‰‰‰¾¾¾$e,((HMMe0$»úí·ßNŸ>‘‘qìØ±7–””„††þòË/555¡”””–––’’’Ÿ~úéû￯¨¨077ïeG>—Ëíå^YY9dÈCCCüT]]ÝÒÒòáÇßÞ£BmÛ¶­¶¶v÷îÝû÷ïß¾}{II F[¾|9BˆÇãÍž=[UUõÖ­[iii[¶l©¬¬ÔÑÑY±bEoJ„AàÀG†!B´÷¸8ªã¿&lĈ...ÇŽãp8=ÝÿÌ™3'Mš„ruue±X8±¼¼< @GGGOO/  ¼¼œØžÅbÅÆÆ^»vÍÖÖÖÖÖVx‡­­­ÉÉÉVVV ÆÆÆÑÑÑÏž=#^MKK³±±QTTÔÐÐ5jÔþýûù÷¼dÉ’+V¨¨¨ÈÉÉ5êôéÓgÕªUVVV***wïÞåÏÆ?þ¨¦¦&##3lذøøøîb‹ªªªàà`###---??¿ .t¹Y{{û;wƯªªŠSÝÜÜž>}ÚÚÚ*°qHHˆ´´ô»wïðÓììlfccClG£ÑnܸòððÀc gΜ‰G ¸»»µºté’¿¿?“ÉÔ×ן?þ?ÿüÓ]{‘”¥»š>(‘ŸžV;I vY4òš/..öññÑÐÐ2dÈŠ+HBC ///þ”¤¤¤‘#GR<É›šš|}}“’’»ÛæùóçÓ¦M‹ŽŽ600 ÙÕž={LLLfÏžM¤dggóx<333„PuuµžžqÈÊʺ»»755½|ù²Ë½‘_±±±L&“Á`èëë/X°€ÿÄ ^{/_¾4hñ´½½½¶¶ÖØØ˜bíõ¨P‡ÒÕÕ>}:~jjjÂf³ÿþûïGÕÔÔÌž=[[[¿ª¦¦QqûömŠ™”HºËó34`»¯Žþhb$ô ouyùÅ‹zzzRRR <Ò{Ð .DÕÕÕñzx«º²²òÛo¿EmÙ²…Ífóx¼ÜÜ\ƒa``°téÒØØXCCCƒ‘››‹·711™EÅÅÅá§Ã† ÃsÒ;†‹&%%E }ãÔ„Ç8"„Nœ8Ÿr8+++cccá#’—…¼æ*8R¯vòä? ynÛÚÚŒuuuŸ>}Š_mhhÐÓÓ“Tà¸iÓ&YYÙ7nàcu8>zô!4}útþÎN###â’¬­­544400øî»ï¶oßîææ&##Óå)"+Ÿ999ø)—Ë6l×Ĩ=ooï¶¶6œa"<¥‚z¡3ü÷ª †……ŪU«–.]*ò4šà-ôððp›nø«ˆ\EEÅ£GÒÓÓ™L&Na2™¸ëñÖ­[øûRWWwíÚµRR] ¤‘’’¢Ñh—.]ª¯¯Ç÷Â233qçB¨¼¼\NNŽCÖÔÔ„zÿþ=ñvGGGKKKüw"FDDHKKã//¯ÒÒÒ÷ïß+++ãŒá±SغuëvîÜyøðáððp"ñÆ555——Ç)²²²111‘‘‘$÷:¿ûî»ÚÚZ„O—7õôõõmll B¯_¿®ªªúùçŸcbbØlvPPPII —ËŽD"™››Oœ8?¦Óévvv›‘—eèС$5OŽzµ‹lAйåp8õõõ©©©¸ÛŸT‹/ާ’a~OiêR`` È=”——¯]»655ÕÎÎŽ|Ë·oß"„~ûí·   }ûö²ÙìèèèÉ“'WWW«««›˜˜LŸ>}Æ ø-ÞÞÞ7ÙùK^™¦¦¦“'OÆi4š½½ýÉ“'BbÔƒÁسgÏ‹/ÊÊÊ&NœzèСÎÎN‘µG½P8ó***ü‰xàGSS“¶¶öäÉ“srr6mÚ„ÿ§Ú·oßÎ;BÍÍÍ=mw@Gú’Ø#i¤O)â‰Ú ´´ÔÅÅEŒ=?yò!djjJ¤,Z´HŒ]á1þƒñ𦚚iYXXt5"„äååÓÓÓ—/_Îb±¬­­ýüüÆ'##ƒRWW/+++((¸wï^MMÍ;weÑ*B.Â)kkk¼[LQQÑÂÂB`È?îaŠŒŒŒŒŒÈêãÇIÇššš÷ïß_¾|9::zôèÑÕÕÕZZZÛøûû§¦¦¾~ýw8yyy¹ºº²Ùl„PQQƒÁðöö¦Rçø&#¡»…rD–…¤æÉQ¯v‘-H1·xlèðáÃùÓÉ—–˜ BÌqiiiÁƒt»Ä㉸暛›#""|||/^,²¢ð,ƒ>tè®ØqãÆ¥¦¦N›6-''gΜ9Ó§OÏÎÎÞ²eKTT”‚‚›Í^¸p¡““Syy¹†††ÀÞDV¦À‰A\t¸c¯Gµ‡¢ÓéÑÑÑøqRRRbbbXX˜———ÈÚ£^(|ÚŒÐÅA!ÞrçÎoÞ¼Á7Up $$$$&&ª©©‰¬|@Žô%‘¡›0ZWµ«þsëÖ-<0±—ûÁ_ý—8”!&èÊ/\¸pòäÉyyy/^ÌÏÏß½{·……›ÍVSS ÎÏÏ9rä—_~9qâD'''‡>¬ƒÑÒÒŸ‚¿ÝSSS…×6Ç«ŠPPPðòòÚ¸qcxxxnnî×_-°ŸŸß¦M›ØlvYY™‘‘‘‘‘‘‡‡ÇêÕ«ß¼ySTTäêêJL²!Gq>»È²tWóÄ\„^joo§Þ‚ä¹-..FB§YwÿGçJLWRUU’ÈÈȨ««›4i¾Gzûömggç¦M›ŒŒŒÌÇ5éââÂŽãϪ«««ªª8°hÑ"¢#|„ ÒÒÒþþþ{öìX•JevwbàNÊÕž€¯¾ú*11±¬¬,88˜¼özT(mmm)))Hx îÅ?®\¹rëÖ-mmmWWW|&‰Ý‚@ŽHRw"ïcŠ+**ð² ä+‰P'‡VVVŽ;–HÄs-,,D¾½©©©¶¶ÖÜÜ<:::::šËåîØ±#&&f×®]®®®ùùùéééK–,!¶c8áîÝ»DXkkkuuµ»»»pq”••}}}ùßXYY)þž>}zÒ¤IYYYaaaD¢ºº:ê¦ãÊÅÅEEE¥°°°¼¼|̘1!www.—{êÔ©7nàQ§}ˆ¼,$5'aô^ii)õ$Ïí_|º~ý:{ݼy“äè üOÿþûo"½¹U'#oÛ¶?ñõë×ñññîî¢¢©©©@Npœd``ðêÕ+„ÐàÁƒù_ÅOñmh±+S€µ'ˆN§‹¬½ŠÁ` 2¤¤¤„?±¸¸˜F£Y[[#„nݺ¥¢¢âääD,±~áÂæììL=ó@$XŽ@¦¦¦fêÔ©4ÔFFFiii¯_¿Æ)¯^½Ú¶m›±±1•©»ÿþèÑ£·nÝŠŸJIIáï6iii<›OÅrrrZZZÄî.jllLKK#ž&''777 üÒ ……ÅÖ­[ß¼yƒSš››ýýýcccv8jÔ(„Я¿þÊŸ¥}ûö!„ºü)iii//¯üüüŠŠ 8Ž1BYY9%%EäG1VL$/ IÍ÷æ ü(¶ > ynLMM·mÛFÄÛ·o'9ú³gÏðä„P]]'á[ÕÝY¨5kÖL, &Ç\¼xQxû¯¾úª°°÷“áÂnܸQJJÊËËkøðáòòòû÷ïçïýùçŸÑ{%ŨÌ.‰Q{åååø7†ç2;88ˆ¬½ !4gΜ?ÿü“h©/^äääøøøàšæÎkccCDÞÕÕÕYYYãÆÃ3{@_G$†¼OQRŽ;wîÄŸËíííUUUeee>|رcÇСC{¿sYYÙ´´´°°0‡ÐÐP—ÝÐÐpäÈYYY‘o1bÄСC7nÜXWW7tèÐû÷ïŸ9sFCC#""‚N§+**Ι3'**J__ÿòåË………ššš¥¥¥gΜñ÷÷ïiVuuuÊÊÊlmm/_¾\PPàääD, ‡1ŒôôôÀÀ@[[ÛÐÐÐŽŽŽÜÜÜ'Ož:tHx(!“É\³f ^ Ð××—F£”——/]º”F~þþþø7 qàH§ÓÝÜÜòóó q‹0ÜÓ¹sçÎçÏŸóÏ㉼,$5ß›ƒòóðð oA£ä–N§oÙ²%44ÔÞÞ>,,LZZ:;;›d‘E\üððð &p¹Ü¼¼<âlìå­j‘6mÚ´qãÆï¿ÿ~Þ¼y¡ 9rÄÇÇ'**ÊÀÀàÌ™3×®]ûæ›oð°à;vÌœ9ÓÚÚ:88XNN®¸¸˜Íf w|ЬL’,IKK÷´ö:::<==­¬¬nÞ¼ù믿ÚÛÛ‡„„ÐétòÚSTT$/”@ý̘1ã—_~‰ŠŠZ¸p¡ššÚÞ½{ß¿O,¡¿~ýzÿQ£Futt>|X^^þþçú¯ù(IOëþ Ø)úG_5±È˯¯O*‹/ ¬³C£ÑÌÍÍ###ËÊÊzº+~üËñ`eee~~~ÚÚÚÚÚÚ~~~W¯^%^ùk~Ož<™5k–±±±¬¬¬‘‘Qdd$±Ô ›ÍvvvVRR‹egg‡{ûÀ§®¡¡aРA$]Ú,ËÀÀ@`ðÀ¨ÔÞ_|ÑåOŸ1>Õìw=ܪ@2 àßCÜzj€É1€èqAþþþT~|æÏŸ/ð{$€ºÕ«Wà Û Œqì{vÜÃÀM ŸãHܪ”@à(ÀP# G@ Ž€%8Jà—cè±û÷ï[XXH:À¿ GÄ100À·ª%8J p”@à(ÀP# G@ Ž€%8J p”@à(ÀP# G@ Ž€%8J p”@à(ÀP# G@ Ž€%8J p”@à(ÀP# G@ Ž€%8J p”@à(ÀP# G@ CÒèGŽ9|øpmm­‚‚ÂØ±cW¬X¡®®Nåuuuþþþ‡¶µµx)$$¤²²R ‘Éd^ºtIÒÅŒO>pLKKÛµk—¢¢âÈ‘#ëëë=ZSSóÛo¿ÉËË‹|ïï¿ÿÞÝK?–——711áOTSS“tq$æÓïß¿¿{÷nmm휜---„І ~ûí·-[¶$$$t÷®æææœ:uêСCÝmðöí[ÿôôtIàcñiq<|ø0—Ë]ºt)ŽBñññªªªgΜár¹Ý½k„ QQQÝE¡Ç#„º¸O»Çñ?ÿù”””»»;‘B§ÓÇŒsêÔ©ŠŠŠ#Ftù® 6´··#„²²²ÊÊÊ„7¨¯¯GKº|‘O8päñxµµµüéæææ¡'Ožt8ºººâ/^ìr8þý÷ßÓ§O¯®®VPP2dȼyó„çÐ ŸpàøþýûÎÎNá +ªªª¡W¯^‰½ç'Ož „¶oßÎb±œœœþú믋/²ÙìÄÄÄÐÐP*{°°°H¹ÿ¾¤+ âþZ°>áÀ±µµ!¤¨¨(®¤¤„zûö­Ø{þûï¿ååå—-[6}útœRVV6oÞ¼””WWW===‘{€0øl­ØPòž£¦¦F£ÑÞ¿/þîÝ;ôß~GñìÝ»÷æÍ›DÔˆrvvž6mZkkëùóç%]nÉø„Gƒ¡ªª*ܳØÜÜŒ"æY÷GGG„Ѓ$]nÉø„G„¶¶vSSŽ =Â/‰·O×ÙÙ)¼šNG)++KºÐ’ñiŽ^^^%%%D Çc³Ùêêêöööâí³¾¾~È!_}õ•@ú7ÐÓðiŽS¦L‘’’úñÇñ¸F„ÐîÝ»_¾|9yòdiiiœÒÒÒòèÑ£§OŸRܧ‰‰ÉðáÃËËË9B$Þ¸qã—_~ÑÓÓóõõ•t¡$ãžUÒÓÓ[±bŦM›&NœèææV__åÊkkë9sæÛ°ÙìØØX33³¼¼<Š»ýöÛogÏž½víÚƒšššþõ×_7oÞTPPøþûï©ü6ÀgéÓîqDÍš5kË–-,+??ÿÕ«WS§Nýí·ß„wìKKËãÇOš4éåË—gÏž}ûöí¤I“òòòF-éâH ÇãI:Ÿ XÇøŒ ØïúO¾Çü; p”@àü¿öî?Ȫò¾ãøóÖ ˜FÝ@jÅLÙ5Йd«8Qi™4“Q3I I ÉHâh¤hª¡Ö8¶í‰SãØM†qPcišHâdâ0C$h›Ä”YÐ2FÐÂ(´Öݧœ{žûœç<çœçþ<¿Þ¯ÙÑåìsï=÷ìÝ{>÷ûü8¼à…à/Gx!8À Á^ŽðBp€‚#¼à…à/Gx!8À Á^ŽðBp€‚#¼à…à/Gx!8À Á^ŽðBp€‚#¼à…à/Gx!8À Á^ŽðBp€‚#¼à…à/Gx!8À Á^ŽðBp€‚#¼à…à/Gx™–÷ (¤ž-•Pyï,ÈÁM>‰Ð?_€Š¡«^ŽðBp€‚#¼‘H ÉT á&…TB)¡ÈŽ @p„CƒïÉŽ À:Žuáþ‚¼h¦FàX#éq0%5’&€ «¦”ª$Ö€Š#„ˆFÆ”€ü(3AR› ’ŽˆL…Ié’öIa€ª¢«ºîZ¼HŸ5µEp¬µö¦¼¨'‚c}u2Qšì@ Ñ&²#uCpDûÈŽÔ Á±¦XдŠàˆŽPt >XDZF¤4žjþS)J Á±N”ûŸfÉþk„®êºPB%v)K¡„ ¾Ú»gz«¨*ŽhAæe¬@…á+óÕtsPmtUÀ ÁÝÁHG*à/Gx!8¢kè­ ÚŽðBp¬“Þ¯–CÑ€ «KpܼyóÊ•+GFF.ºè¢›nºé7Þð¼áK/½4<<üÜsÏåý rV‹à¸~ýú›o¾ùÅ_\¼xñÌ™3·lÙrõÕWŸ8qÂç¶÷ßÞ»_2¨ªê_9fllltttppð‘G9ãŒ3„·ÝvÛÆï¸ãޝ}íkI·:vìØž={{ì±ïÿûy?ƒîÁE¹¶ hWõ+Ž›6mšœœ\³fM…k×®غuëäädÒ­.»ì²+®¸¢2©±Ï(:PIÕ¯8îØ±cÊ”)Ë—/×[¦NºlÙ²Ç{lçÎçwžóV·ÝvÛÿþïÿ !xàgžy&ï'QVXLÉŽ\Õ€2ªxpTJíÛ·oΜ9sæÌ1· !<˜—,Y|óä“Oæý$º@ ÙŸ* N„2!7*E1€²ªxp<~üøÄÄĬY³¬íBˆ×_½G;<ö±-]ºt|||ûöí‹-úÒ—¾¤ÛlÛ¶íºë®[°`Á~ðƒ¼÷·}ÎŒæG)ÉŽ }ÕŽBˆ«®ºêôÓOôÑGüñ¹sç^yå•kÖ¬ Vä€'©5¨.îÿ:ŽÎ©ÓÖÆÄŠ£]ydW7eãÊ1Ìò”Z.çú"¨þGtE-ºªÑ‘Ëa+w Ê”ÇÊÊ%¢)¡‚/÷e©¥ 5P^Gx!8À Á}D75eFp€‚c51ytËñT‡ŒÎd–ñ‰Í¹'I)¤"ÑPVÇŠ°Ò˜ûB2\«t€®jx!8¢¯"W—¥Bp¬ fÆ€^ 8À ÁýFo5%Ep€‚#r@Ñ€2"8V 3c@à…+Ç ¯Ìê”ÞjЦÁý¦CaR¯:Ã(&ºªà…àX)åšÃÜjÊ…à/Gx!8"OôVP"Gx!8VG¹fÆ€Ò!8"gôVPGx!8"ù%%O²qÉAô[RF,t‡µ”B1~PwÇŠ(Ë̘¤Ìÿ‰†d¡«…goµgd¤;P{G ÅH„tU£¦Ìòa •²kŠ„E¢Ž(Š ·º'#ã%à &Æ7êÆR6s$É!Á±òŸYRFñ ¨YÛƒ*I–ÔÁ¥!“§§¨”$§+ˆV« h6¶ÚX•Hçc‘&5ÀäHæÜjåújYÐ ­; EòŒi3 ¦T(õÝPiTQ9ΗûtM1é§f¹Ñû¯SUGpD±taŠŒÎpÎNgëGÖ7f1Ò¼­™ Í"%ÝÓ€:!8–3c¬Y,ñoÌfñšâÚæXËú0íPiGT—U_lcþJJ²4'ÊPŒÔÁ…ÓµÍîi=BÑ/Ï%ÍàVñé2úž…hé!(‚#*M'¹Öó\¼µ#KšÙQ0±Pq,ÇƒŠ 2œ9B±©Îê­¦Ö¨4‚c¹UufL悎~÷¢ì©0=z¥ꎀŠ"8¢ôÁ9¥cºëEA³¨éœm­·(%ÇG‹Yh´‹Žªùo•’Áú<=Åz¬FUPpTQ8ªQ»Sæ÷J(!…’ŽÈ(…QáË75šÍnqB$ ¨8–CÊ€?óG•ïØ‚¢å3«îHPrÇÒˆ‡ÂøÌ˜ŠÍ•imAGsbJ™Yntn/È~ààˆªH™˜’×þX'´–{$5ʆ1Ž(=%„Ï Â\£Gy4$¥BpD¡µ° cÑŠÈâ—( ´Ž(½F+Zd´÷’îi@é˪bó`:Qè£`®éÈ¥e%GpDÑeöV7Öq,ls^Z€"8¢ ›Éâ;fN¬ TŽ(ß)2ÅÌŽÎýŒO”)rÑ!ÁÈ “¬eÃà¥Tí™1‰ÅEå¹0OypB@©Q,)X ©ª–º£ûHŽÁ±4¬:œ³,Wá2d%õSs1k@QËÁJ„ÕîªN<íʹ˜5 l˜䇋YJ…àX>µ+7V{ê1³”]Õ( %*×[m"2 Š#ŠMÇ)YÑ`e^ÌÚï@ñQxÑ\%…¬XG½9E†¡€#8¢$*œ¨¸˜5 $ãX2ÕŸc&£÷¶šOÛˆY PHTQ0z¨Ÿ¹¨¡RB5§ÄT°·:éP˜1Z/Ü@NŽ(¤øÂ4U­8¶zÈÁÅftךª.EGŠ„àˆÂ /¬RÓ ¨¯.ôÝS€ä‡É1(0ëZ|Á6#?ê殺ãT¦%eDs{]ã4 Ç2©þ”êæS ³‘ž(clÔÓd‚«ÈÈX92ž#KI'æè$¡æ¡ 5ú‹®j’™C•ƒ­3>ßX—™ _ªPqܼyó¦M›öíÛwÊ)§\|ñÅ7ÜpÃìÙ³;¼É§>õ©ÿøÿ°nuÚi§ýìg?Ëû颩1E¦>‰’1Ž€\•>8®_¿þÞ{ï1cÆâÅ‹ÇÇÇ·lÙ²wïÞ7NŸ>½“›8p`úôéóçÏ7o8kÖ¬¼Ÿnm°öuœkÄ'ýTîà8666:::88øÈ#œqÆBˆÛn»mãÆwÜqÇ×¾öµ¶orìØ±£G~ô£ýÖ·¾•÷SD† ¬Ë#‚ 2‡6ê$möVÐ_åã¸iÓ¦ÉÉÉ5kÖP±víÚ­[·NNN¶}“!¬rcîê53¦f©HžHÍŽ  PÊwìØ1eÊ”åË—ë-S§N]¶lÙ‘#GvîÜÙöMÆÇÇ…guVÞÏBÄÂ" :rRâਔڷoßœ9sæÌ™cnB÷Üsy?ãzh£Ü(«²þŽSÒÑ ;ú®Äc?>11Ÿ°200 „xýõ×Û¾I ïºë®³Ï>û‚ .xå•Wž|òÉmÛ¶Ýzë­Ÿþô§}ömxxØÚ266–÷Cå˜c‹;úÊT 1ñÓzm•88ž8qB1cÆ kûÌ™3…Gmû&‡š>}úõ×_¿jÕª`Ë3ÏH)v?r·]9\ÎÇ’½Y±¥ U¤EyR²ù£È÷É¿}•zç2µsORfU—ýÍ@?uý\_%^Ž'pÕUW~úé>úèã?>wîÜ+¯¼rÍš5Áò:mßäœsÎù·û·o~ó›?ÿùÏ÷îÝ{æ™g~üãÿò—¿¹×%Ž÷e¢L–÷âÏ+eµH"&€º!8"'V/j®«V–ÕOÓÛÊ‘f /½'ºý߫ߢÜÒøoŠŒ;Š>5;›€‚#òà¬{õ ;5¸zu]z¥Ï_ÙyѼš_{¥G£ èõ¿t>ËñtrÿÂ/¼&­ø#bñ×™¸¼¨H,¥³€.€’"8Z­CºÂ¼’uÖ4v¯U¯Ã* g)®—o‰”$ÛMlf ²…åÁÏõx@ûŽÈC—D©{ÑQD‡˜9ÒÙÖ;ç)ï>âÜE.oí}]lçaIZcÜ9²ÃJ*Á¨™„á¤íÕë‹Ú¬A@™Ñw}/ÃPtl°êŽ™EǬ_Sº¡»yx<8Ÿ¬YÔ[<±2G@Mª‹_º:¶Å}Ý—Zõ´zÌàöœ¸í9‘¼ø]üGp,„”eÍU¡f–S©{Ñ1>ݺäc({¡lëŽkS6kã’Ù²f%[u@p,Šx¦±‚N½Ö¬îúfGg|1Ö×¥6)„ÊLöÆr<È|0É‹JŠàÔ…{‡±¶Ž’fy;¡`æ·(w%µ=2EGåBpDÿøÌ·èâƒ9k´n-ÍÈØ½kVR·–Â÷¯€™Ú ˆàˆŠ’î‹sÔ´·:áòÊ‘BclöŒò¥­¥Â¡2r¡ò˜¯ Ap,¨êå% q ¬ïHÇ»Ö(ìkJ.pÒ#²ù±&éáâŽèH³E ³c³Ü(¥ÐuD)ƒ™.î~j)ýçV#`.z­]ýu5 D(‚#:å<¥5WB2šÄÜÉ *%Âîi)b³¤uÖ¡“ºEñãÕê%YB@ñÑC…]¸¥VEÇf¶ÐõE!¤RJJíyKA1’Y2}¤¢ãPÍdRѱ¨^ªŒàXDË4rcaè‰Õi3¬+W ®“ui)„h s,á „jý×ÙúŒàˆÞ ú©‹&Èå)½¤«ö8¯¿’²Bë~‡³§­ÑáQr2J$/¢nm7'ÐX¿\ò"€\Ñ:—5þ©Ï‡º¦Uë°îh~®Ù+ÆGæË¼ŸYå$/¢.æÇˆXÿµùSB$€¾!8…Uâ*iÅËØÿÆ©LYñ‘ÒK*ÖÑ™ÖË¥p­y©¯FhdGEÿu~¬Ê1³gä‚àXÖ5©+P‹÷rdÇØ~V¤èèì¤îÎ=G³£×õ¬ÑÏ?eTEêâ’z$€n#8¢‡t¹‘åxúÆ:ÌÖR;ñ߀L£KŒv­Ñü'!²_œåFþªôÁ1öÚaaÞûU(:zÎÕ ³ª3“‡^úQƯdMçuWµq4## ­@^¢†¢#€n!8æLJé _ìT·‚ÿ6ÖÏ{—wµüÙ1༠uGwhDF= Ûø1}ÖÝäs(³ÑËEú#Sh Á=ä˜UnkcÂDËs *ŽÍøHj, ŠŽºeJÞ;€Ê2»E µ¸S±K¢d8CÂx:½|2úÂÖ诖ßR2õ• {ýRP9Gô Ù±CÎÐÓBcœÒ£$S¦Ô0ê±8¤TF4ä stU£'JzŠ*ã`G•¼½»½“zrL³«š1Ž}—<>íá\B\¿<èÈààˆ:J¯,°îŸõÒÏZceìÒ2ͺ£þ‘ÞH ì”c*=޹j«ošL ÀDpDíde££µ‡ö*Ðé-;}8g"1G:’KÅê¼f qþŽ€‹rg23Qö­GÛgÛÂãÍŽiýµB8©1/J%|þ±çà‹ØHÁ H.̪Üôõó%£çuUÀõSÌ‘ŽRFj¤Æ|…³ª­/'3#¶:@}PqJ èõk–Œ5cE"…×L|mœ^t,úë@÷Pqå^tLššP¸¢cc·bÓ®ÝϪˆûŽ8åQ€$2uCpÒô-;6.èß^®sÐ=mŽzD‘d¾œ”1(BoÉ\B¼ Ÿdô]Õ@†ÆšàRˆ`µ¼ÆVã{cÒL¥¯ÔXÄù æˆFsÔc|® cóÓ^³&ЈV^}¾¾€ž"8¢²³Gú¡QwtNF](¶H¥ô"ÛÊ XšÃÔ¨'ÊÄ G~@5Ñ:ã¤Î{½Áõ ¥ksöá‘¢‘Ÿ‚¨¤G:&%ò¤ò\ÑÊ“ÎýlVRõXTž¿’ôéÕ-Õ %c€R!8æ­\§N«b„€tç¶`6¶×½ÕÙâUȺoâ3Wã·¥èX`þÕA3AŠÔ¢#sk€² 8¢uz9• €”÷îôæ9ö£Ò¨µÄRc…c“Ñ5zú©[ˆÑ(˜Ìådt úåBpl*H/±íR´îJ:óé®êšfv 1±ºY¹bÒW7›ÅñqÖO+ûA¨‚#Ú%;ÉQõâÅ%cyÑKY´q‹Ýe.ôl0Æz6‹ŽÎ‰ØÈO‡ƒ Í;13¨J½+ôŠƒKæIºçTžq./ãîwŸßÙÌÌŽ7!„P*ˆƒ¡”ÙI-õ«+lÖT§m¥'<õh]»½_­äo è*Žh M ©çÁX'Qÿ>9×§ÄÒX½ÒÈŽ‚kÒËŒZ%—2²ùç`Œ¥nl9T»Á±ÒêŠ%}÷ã];J…W´ök‘4ž²n§F3;аçÚÕN²€h‘uR8Ö‚>zU¤…ýÛ/]_vYÕœŽ}⌮êr½WPéIdGþ®ƒï­azÁ©Mð š5¡ç’GJ¬øX6^»G 7/Û¹€WÕ6£޹ Tåä732š9Ò8i TX ñ-RÖ‡½žCc·SŽë¡²§W«æß”ÿÅitÁ­ Ü˜ zöÒŸg²–è¢c³·ZwLǯ7£¿ zþŒ©jÙ×ß7ö´¶°vcòN§ÉlÉŸ*àƒào¤ÆT±I0A¯´{5;NQqñu›áÏLÖ= «Ð+:þzªƒËu÷ƒñ5­Úûã¢ëðDpÌ}”•¢”ë\X®ñú…¿Üe[7‡HòɧTšQ/é'eúLgÂ3¤UòW挥¬Ù?J)J’€FpDý–ÍI7MãFÙ8ë¨`ÑølæJ=ª1uF¥,ÎjM6ó&­Ô£.Ë@Ö™ô++ÊxuÓüÞ ‘”$Q{Ç~+t¹1åZZ-ÏÁ‘•ã¬bT#6Ægõš =¢eñמþlãÒöI4\ÚÝ—ÌÈ.#…–Ò“\ KbECªê¬è˜9+Ž’$Šàˆ(³{šÞê4ñõãâ?M¿}'¥/Z˜9Z’_[´Øë˜Cc^›v yþÒ­µ~¬o<3¨×c… {ÑÙ"#8ö‰>ý»r@!ƒÃvR‡ÝšæŒÌ.«‚1ŽR_—0òØ  å<‘Á&õ0ÇèükkàŒ÷wû|dªq ¾,zñ·aͰÑÒZI’— ÊŒàØzd[¼Ÿº1‘¢€âÝÖÂ{Yï`ÞKÚpFóGÁdý}ä¡TìŽáÏ*4Ù±±AJe.VWû¾%Õ ðúÝ•’¤~¬”öÒãÞ(I¢×Ž}RôÑ‘}uõSWº™ø6m”¦Œ"ôªºÄ5Câ¯[YÏ:,v$'ÔÒ¼êzÇõ+0§Å芣Šß$>Ø×Ÿ”,ó^pÖ¢;-Ý6)Àe–$…èaÉ}@p쇒¥F}_«ú%Ý2ßj›3p…yv1ïèæþ Ò#>;ž.lLw¿ªõ¤x‘Ò:¼ ÿ-?»”ßÖ¯²Q’£«ÚùŽ$NˆÃÉ 8Ö—# $«ž‚7÷XÂp•%˜¥¡Œß¬»ª¥õ1)¾Œ_Êë¿í¾l†‚”\zE9-Þ%…T¥:yŸõI–>Ý%‚d‰TÇž+MÉÇœCWÑÓ[â[­1ß¶¤ó±.QS«þTë¹f¬Ðˆ]«Æý#+n‹8¥,éµ»T4óÖ¥0ç×:Òuàœ/'<æßd?§Þ'KA¸¬®)yï@ÈÆõ+¤^œÏùϼw3œ!DÅÏO-z}µÀä<‘ëçmeîcf[ü7øR¨ØW½¸^ä2øš¾ñ››´Í/k‹y#)õ—ã=k™´A'¤TaV³¾DÖAçoÖcéȨÇMš_*zäu<·§o¾oa($‚cwès³}ª¿Ï{ƒ´ãB° LóêU”ò:iQ~[ÍJÈØWÚóiîc§¿2©—0·sP¸Àd ßáƒ|¥ôSë6•ÿŒ™7Á—p&Ôþ<ôŒÌúê„2¢ ãiR¸ºùO)ƒAÚ2ÔëdÙáÌ0Ÿ£Ç+;/tU׋3‘HNþ-iÝQuôe­šÑØ’qºõìÏIÞeãýÙ}­j¿‹Z4Þ`Ug#"fkE™Ãø3¸ òѨ;â×,NY¦Ç9ÿ:ü¯2n›Ö'ž2J2}Aƒ®„Â’þÕ@×VüéXJ¿sóƒPc§#Ò­^§[åFŸUÍ2æ,vpXºØ žŽ=”×èFž´KGG'Ä4:¬eeÇé§ŒOú(^™®D½¸YÕ½)•E‡a¹.o#ìñ”¥9š™|3«2þLÔMœÄmÝy¼ºé[ÙJ²TY ¼dݼÓqœ•–°J–ïáÊ^K¼ídÓxÓˆúý³ídÙöîùÏUOO–6@‚c¯ä;'Æ9þF†‘ÑZ2°qv)ªŒQØÍó¢W6‰¤™„6*© ( ýc½ÞÌ!¶½~):W¶oTó¿zÇâ·wÿúŒêfŠšaŸ_cÇüÊ~f´RñE"ÏZ¹ÿ™ÒoíèÚæžÏ%Ø“¤çоˆÌ›W´ê™Yº:«ºÃ«Ô¨ÔûñI–¢•÷Å–’¥JÞ«°@¢¬oæEÌý‘,“K«Ý·Zïeûõ<N•ìÒiç 8½Aðb‰N¬V©÷Ðáû•òˆG™ÉÒÚ‡” ésÚi!¨Å—Ñ#C²V&òYºI˜“hóæÍ+W®¹è¢‹nºé¦7ÞxÃÿ¶2µ@2<<œý§ž eÖgS=$¿y—ödêŒy ™Ã“eö~f?Dö‘H…­ÔÐðpxO®Qz SK ±$ŒßŒïÓ²fUÛSpÂo†³ˆÌùgÖW£A|¸æµÆ›³‹¢deÚ£è{pÏLo«wchxH?–1­qªRáŽ5¾1ö³±2º'Ñ9mñп\ã7ª‚,ìÅéB‹1û;2TW/¤H?hÐÀJ“±å™¬Tš^…ñÓf3õšáXŸèÃg¥Âÿ:cº0â¸ù×l­_¡î¡Õ±÷ŒæÇë"Aß¿Ðã ÍÕG´Ž• ß±"ŸrÂßlôC¹JýŠ:ûcU£hØîÁl¼ƒ×ejc?ŒgÑø+1~ߺkÿ3ÿîIs¬ÈnÐ|¾áKÚúÖÁÑallltttppðG?úÑèèèüãU«V=ÿüówÜq‡ï]dÆŽÌ‚bÖO••>¿ÐàS©Š->¬+œÌ¤‰×ªÓ²©.­s'£Å?:ï¨9á@YoÍ7攇Nÿª›øJRÍs¼uÀŒÏôpÈZ*²ù¢MZÊG·ŒSHãQôê?R?µº¤]K¼ÏȤóÍ$\fÈñXÖCè›e=)¥»ÅÍZOôfLK7—Oj£Aø(*ë½è°A‡=ÝÑd¤1G²´f3ÁZ­\Ñ(òuÊ}ªPñ}›[áÒJ–Bÿ5EEø’ÆìŸð™*éÑÀl#ª5~©+Ž›6mšœœ\³fÍgœlY»víÀÀÀÖ­['''Óok„3÷ûGfƒ Üh7ˆÑEøghnÕ;[&УǹCíeê»^da‘žs|Vaˆ7k–‘®p£CÜ,#9š,¤ÜCc”Ù ÝgëÌÐæ¡HoÐØ:Þ@9þÛ<Ò¾­Ý@Dg§40ŸE7Df×»áÛ@ˆ¤'Òyƒ^LŸÝzÛvžCÍvjÙ|Å[§Ñæ=äyi‚ 8ÚfÍš%¥<~ü¸µýÍ7ßB ÄoÒ,7šïƒá7R5˜ÛÝ¥ïÔÍP}ËVf¢²n4ÃeÒ_gäzÓ ò,ÚýíøÜ¿O2ß%ï’•”ÖË,ÝmšïK ÷£ûÄÍÖH²ø=˜ñ´.£7·Þ ¬Ýp|´•-6Pîz\i Dò;fƒÎÎ^ :ßÉø¡ð¾¥ßm¿î„ý¦9[ÅùÒÕ›ÖÀNŠ‘‘Äs(ï‡ǘiÓ¦ Ä+‹ÇŽBèyÖkR†ùroÖÛhnwÜ¿þÞÚ’>ð(W™ƒ =3_MF(„OU’Õyê„W±¢§ñ±öˆÉxô´Xoné â÷‡l£^|$=…n5®$íßÀª û4è$èGêÐÉÏT%”cE<âg—º³è{‰O‹q-&Ç8 9r$HŠÚþýûƒeÜ8þ ;³ó}Jrƒ.$¨\ƒv3#Wèf‡0õKßIúºÂ5½¨µ¯à~2§¶ ‚2?Ä:£gKS@âwâsŸ­6°ÂkRˆÉl`½±'íFô¿… çŽ6h;è'%ãǪ½mœˆ…zQÌè*ëÑåÊyË"8º¬X±bbbâ©§žÒ[”RÛ¶m›={öÈÈH¼}$ÒÅßõ¬n”¶ÞUôŸ¶R}"ÖJ·’e‡ H¨ÕÔF6m£AbmµK D[q¶Õ³‰OæöÙ«6hé‰'̪ξÉ{H]Õ+W®¼÷Þ{ï¾ûî‹/¾8˜3::zøðá/~ñ‹'t’ó&i/(¥2ÚtÞÀg7 Ó@ü`èÏÊÌøX„f³j7(ÂÑæ×!„®¡% ³ž’Cƒðó¡³ùL;ov¬ÈŽB–ãI°aÆuëÖ½÷½ï]ºtéøøøöíÛ.\¸aÆY³få½kù 8&zì±Ç}ôÑçŸ~îܹçŸþš5k‚ê#@=à…É1ðBp€‚#¼à…à/Gx!8À Á±O^zé¥áááçž{ÎùÓÍ›7¯\¹rdd䢋.ºé¦›Þxã¼÷·è8bâÙ¡'NÜwß}—^zé?øÁ¥K—®^½úg?ûY¼GÒÇÿ÷ßzë­ÁÁüð‡?|Ýu×½ôÒKñfÌVý×ý×¹çž{à 7ÄÄÁôñ©O}j8梋.²šÕí`r­ê>¹ÿþû“~´~ýú{ï½wÆŒ‹/ß²eËÞ½{7nÜ8}úô¼÷º 8bãÙ‰wÞyç _øÂîÝ».¸à‚ÿùŸÿùÅ/~ñôÓOùË_þ‹¿ø ÝŒ#éãØ±c—^zék¯½¶`Á‚?ú£?:tèÐã?þÄO<üðÃð ›q0[¥”úêW¿úæ›oÆÄÁôtàÀéÓ§ÏŸ?ßÜh]y¸ŽS¡—Ž=ºcÇŽ[n¹ehhhhhh÷îÝVƒ^xáœsÎYºt髯¾lùú׿>44ôÿðyï{AqÄ:Á ²+|ðÁ¡¡¡?û³?;~üx°eÏž=çŸþûßÿþ_ÿú×Áޤ§à°ÜyçzË–-[†††>ó™Ïè-Ì6lذ!ø3ÿ›¿ùs;ÓÓÑ£G‡††þú¯ÿ:¥M=&]Õ½uÙe—]qÅßÿþ÷“lÚ´irrrÍš5gœqF°eíÚµ[·nœœÌ{÷‹ˆ#Ö ^]ñ£ýHñw÷wº¨°`Á‚k®¹fbbBwXs$=ýüç?Ÿ>}úµ×^«·|ò“Ÿ|Ï{Þó«_ýjbb"ØÂÁlÕÞ½{ׯ_Î9çÄÄÁôtàÀ!„Un´Ôó`{ë¶Ûn»çž{î¹çž /¼ÐÙ`ÇŽS¦LY¾|¹Þ2uêÔeË–9rdçÎyï~qÄ:Á ²+öïß?cÆŒE‹™,X „8xð`ðOޤ§Y³fýñÿñ»Þõ.sãÉ'ŸüöÛo¿ýöÛÁ?9˜-yçwn¼ñÆÙ³g¯]»6þS¦§ññq!ÄYg•Ò¦ž“1޽µdÉ’à›'Ÿ|2þS¥Ô¾}ûæÌ™3gÎsûÐÐâàÁƒçw^ÞÏ X8bâÙÿò/ÿ2mšýæù«_ýJqæ™g Žd+xàkËŽ;8ðÁ~0(èr0[õÏÿüÏ¿ùÍo6lØðîw¿ÛúÓ_:´jÕªßüæ7§œrÊÂ… ¯¹æš|àAƒÚL‚cžŽ?>11a´B !^ýõ¼w°p8b=Åáõ´páBkËöíÛGGGO>ùäüã‚#Ù–]»vmÙ²eÿþý»víú½ßû½uëÖÛ9˜-Ù½{÷w¾ó+¯¼ò / >̘8˜þ‚Þƒ»îºëì³Ï¾à‚ ^yå•'Ÿ|rÛ¶m·Þzë§?ýiQãƒIpÌÓ‰'„3f̰¶Ïœ9SqôèѼw°p8b=ÅámÃÄÄă>øo|cbbâ›ßüæi§&8’m{ä‘G”RBˆE‹ýÎïüN°ƒéïĉ7Þxã™gžù•¯|%©à`ú9tèÐôéÓ¯¿þúU«V[žyæ™k®¹æöÛo_²dɼyój{0 Ž]ðÎ;ï|ç;ßÑÿœ:uêÕW_ísÃY³fI)?nmP>µÀÄë)o«~ñ‹_üýßÿý‹/¾8wîÜÛo¿]åH¶áOÿôO?ó™Ï>|ø±Ç»ãŽ;vîÜùÃþpæÌ™LëÖ­{ùå—z衤µ`8˜þî»ï>kË…^ø¹Ï}î»ßýîO~ò“U«VÕö`»àÿþïÿ¾õ­oéž|òÉžÁqÚ´iñÏ%ÇŽBèYZÐ8b=Åáõ÷öÛoÿÓ?ýÓý÷ßÿ®w½ë¯þê¯V¯^mžª9’í‘Rž~úéW]uÕÁƒ¿÷½ïýøÇ?¾üòË9˜žž}öÙ‡zèÏÿüÏõ ¼8f‡Î?ÿüï~÷»{öì5>˜Ìªî‚éÓ§žþyÿÛ9r$xiû÷ï~”÷3+"ŽXOqx}LNN~å+_Ù¸qãŠ+žx≿üË¿Œx8’>öîÝû·û·[·nµ¶3Ö_}õÕàŸL{÷îBÜsÏ=ú'Ÿüä'…ÿþïÿ><<|饗Í8˜>”Rñ%u¦N*„8õÔSƒÖó`s¶bÅŠ‰‰‰§žzJoQJmÛ¶möìÙ###yï]qÄzŠÃëãþûïâ‰'>ûÙÏ~ûÛßNª+p$}¼ûÝïþ×ý×-[¶XÛƒ%ôÎ>ûìàŸLguÖ%QÁ* óæÍ»ä’K–-[4ã`ú_¸páç?ÿykû®]»„ÃÃÃÁ?ëy0 Ž9[¹rå”)Sî¾ûn}a¨ÑÑÑÇ_~ùå'tRÞ{WD±žâðfRJ=ðÀ§žzêW¿úÕ”fIƒƒƒÃÃÃO?ýôOúS½ñ…^xðÁgΜ¹xñâ` ÓÇ’%Kþúë…çwÞwÞyã7Í8˜>æÏŸî¹ç>ûì³›7oÖwíÚµaÆyóæ}ä# ¶Ôó`2Æ1góæÍ»á†Ö­[÷±}léÒ¥ãããÛ·o_´hÑ—¾ô¥¼w­ 8b=ÅáÍôÚk¯W°½âŠ+â?ýÄ'>qå•W ޤ·¯ýëŸýìg¯½öÚ‘‘‘ßýÝßýíoûË_þRño|#˜¢.8˜]ÅÁôtË-·¬^½úæ›o~衇Þ÷¾÷½òÊ+»wï>å”SþñÿQM©çÁœzë­·æ½µðÓŸþô׿þõÊ•+ßóž÷X?™?þ«¯¾úôÓOO›6í£ýèºuëâ ·BãˆuŽdÛÆÆÆ¶lÙòÎ;ïüÖåœsÎÑs«9’>/¹ä’×_}||üù矗R~èCºóÎ;/¸à³³ ¯½öÚÃ?<<<ü'ò'æv¦ÓN;í²Ë.{ã7öìÙóŸÿùŸ'Ÿ|òòåËïºë®÷¿ÿýf³L,š¤cŒ#¼à…à/Gx!8À Á^ŽðBp€‚#¼à…à/Gx!8À Á^ŽðBp€‚#¼à…à/Gx!8À Á^ŽðBp€‚#¼à…à/Gx!8À Á^ŽðBp€‚#¼à…à/Gx!8À Á^Žðòÿž)…ÂöFæÒIEND®B`‚statistics-release-1.6.3/docs/assets/gumbelinv_101.png000066400000000000000000000636221456127120000226510ustar00rootroot00000000000000‰PNG  IHDRhŽ\­AgYIDATxÚíÝy\Teÿÿñk\XAq…ÊÂ%·DAË-ÜrMsÁ%ËJ³\Rï’¼M-Sûugn·öEMïÄò‘{&Š ®)¹£,‚â‚(Š ŠÌÌï£ã8lÃ,œY^χßÇ—¹æÌ™Ïuξ»®s£P«Õ(‰ƒÜÀ: ‚#ôBp€^ŽÐ Áz!8@/Gè…འ‚#ôBp ¼ûî»þþþU«V­^½z«V­† 'W=ÿú׿ …B¡èÝ»w™ípéÒ¥Ò6-Z´ÐyëÑ£GK–,yã7j×®]±bÅFuïÞýÛo¿ÍÍÍÕÙòìÙ³Šœœœ<<¢ÃÝÝ]îÃÀâ0U  L½ÿþûšÔ²wïÞ»wïæææÆÇÇ÷ïß_j‹‹›9s¦Ü•–…·ß~;%%%%%å÷ß×4~úé§šÔ8bĈøøø‡^»vmÅŠU«VBäää 0 Ð®]»VÚaFFFZZÚˆ#¤ö«W¯þøãÅDÇ´iÓä><,Á@Ù9uêÔš5k¤Ÿ¸{÷îöíÛW­Zµ\¹r/¿üòÿþ÷¿aÆIïþïÿÓ|ª¨‹ ¤s5žfË~ýú%%% <¸AƒuêÔ4hÐéÓ§…‡0`@ƒ ªW¯ºwïÞBë¼víÚ;ï¼ó /x{{÷ïßß¾}·¹yóæøñãÛ´iSµjÕ^xá­·Þ:qâDiHÁkÿüóÏ-[¶H?O:uåÊ•/¿ü²££c­ZµF޹nÝ:é­„„„‹/¿óºuë®\¹Rsоúê«”͉`«˜ªPv–-[&ýP±bÅo¿ýÖÉI÷¯ ¹sç* éç[·nÕ¨Qð/JLLlÕªUff¦ôrýúõ»wïž1cƧŸ~úøñc©qïÞ½±±±{öìiß¾½ögÓÓÓCBB’’’¤—6lØ´iÓ÷ßÿî»ïj¶‰‰‰yûí·oÞ¼)½ü矒““ûí·?þøÛo¿5æiÆ«U«6}útw»wïÞ­[·k×® !NŸ>íççWâÇÿÛo¿IÇóÀ;w6¦<vŽà ììÞ½[ú¡W¯^ÞÞÞ7¨Y³æªU«Œÿ¢øøx‡—_~ùÊ•+wîÜBܺuküøñBˆ€€€ìììôôt!„Z­ŽŒŒŒ‰‰Ñþì±cÇ„žžž7þ믿}úT©R¥à[·n-ÕCBBÊ—/Ÿ——'„8zô(Á€1˜ªPFÔjõ¥K—¤ŸýýýÍýu›7oŽ¿qãFXX˜¦qÑ¢EçÎKKK9r¤Ô"MaëOKK‹=þ|Æ …J¥R3þ7oÞ<)5öíÛw÷îÝ_|ñÅÏ?ÿüÝwßIïFFF\óãÇ5£˜¾¾¾&9 …¢fÍšÒÏ7nÜ(¸A§N Þ‹çã?6á¹`3ŽÊÈÝ»w5K§ëÕ«§ýÖ·ß~[0»hÆÞ мyónݺ !Ê•+ׯ_?©ÑÍÍí£>B888 8PS•ÎgË•+·xñbirݺuçÌ™#µoÛ¶MªÇŽRËèÑ£5Ÿ1b„£££"--íÔ©S†•­ù¹ÐYÃT¯^½àþÀLU(#•*UÒü\ð–Ô¦U»vmÍÏš{Íx{{k. ,ô4’   :uêh^víÚUú!//ïòåË/¼ð‚fUJQÓ¾—.]jÒ¤‰eK‹¦M~ˆnß¾-ýàââRðÝBoÇS­Z5S};[BpPF*T¨P£F )?^û-év†BˆŒŒŒœœ#¿Kµ98è5Ç¢™Ø•T®\ÙÕÕõÞ½{Bˆ´´´5jhßa±PšE9¥U¾|yéãÚwÿÖvïÞ=鞎+V¬\¹²>»ÕÌP{yy|wíÚµ;v4¬`ö†©jeGs¹á¦M›2224í£G–îxéÒ%777y‹Ô¹077WJBˆzõ깸¸hÆÿøãÄ 4ÈàooÓ¦ôÃæÍ›5 Àµ5nÜØÃÃÃÃÃcÉ’%úìðÀÒÊ!Ä«¯¾*ï±`íŽÊ΄ ¤a¿{÷î?^ó4¥K—J÷šÑ¦>Ô¹Q;zšÐÙ³gµkعs§ôCùòå¥aQi¹Œ"??ÿ-îîînnnnnnÅ̃—HsÝdZZÚÒ¥KuÞݲe‹&×êÜE¨(šU;•+WnÛ¶­9ŽûApPvZµj¥¹âúõëCBBöíÛ'Íüþý÷ßï¾ûî|PðSuëÖ•~8räˆæúÂ_ýµ¨ÛwéñãÇ~ø¡4Úwýúõ©S§JíáááÒò—N:I-Ë–-S«ÕÒÏ7n¬^½º‡‡Gƒ îß¿oð·¿ù曚ýôÑG_~ùåõë×…yyy«W¯ÖÜ ý…^.~W7nÜ3fLtt´ôòwÞѾ† À5ŽÊÔœ9svìØ‘’’"„8tèPûöíÊ—/ÿðáCiƒÖ­[:tHû#Íš5“~ÈÍÍ ÎÌÌLHH0_‘¿þú«OãÆ=*¥@GGÇÙ³gKï~öÙg+V¬ÈÊÊÚ´iSXXXûöíÏž=«¹½âĉ\Y²`Á‚–-[æææªÕê/¾øâ‹/¾ðððÈÊÊÒ¬I¯X±btt´”bu :TZ„ôàÁ)qJjÔ¨1kÖ,ó1v‚GeÊÕÕõСC:tд¨T*MjìѣǦM›t>Ò´iSÍÝsrrr<˜àëë«™3-777‡ôôôÝ»wK©±|ùòË—/×Ü{ÒÝÝýÿþïÿ¤k1÷îÝ››+„;v¬ñOÙ~饗víÚ¥};žÌÌLMjlРÁÆ_yå•B?{íÚ5é:KíÔX­ZµßÿÝÃÃÇ €]!8(k^^^{öìÙ¼yó€êÕ«W¡B…êÕ«‡„„üôÓO›6mòôô,¸ø7**jöìÙ/½ôRåÊ•ƒƒƒ?úè£Ã‡›) uèÐ!666<<¼N:µjÕêß¿LL̈#´· ÿûï¿GÕ´iÓJ•*ùúúöîÝ;66öÇ,tAwiµmÛöÒ¥K .lß¾½§§g… üýý{ôè±pá .H·¨,ž££cµjÕ^}õÕýë_ ­Zµ2DZ`oš t€b0â½ ‚#ôBp€^ŽÐ Áz!8@/Gè…འ‚#ôBp€^ŽÐ‹“ÜÈ 77÷ÿû_ttôÕ«W«V­êççѶm[Í6lØðË/¿$&&VªT©}ûö“&Mrww—»vÙ(ÔjµÜ5”©üüüÁƒÇÇÇ»ºº6kÖìáÇǎ{üøñG}4nÜ8Íf .\²dIåÊ•›7ožššzùòå&MšDEE9;;ËÝyØ]püùçŸ###›5kößÿþWJ—.]2dÈýû÷7nÜ „HHHèÕ«W5¢££===…³gÏŽŠŠ2dÈ¿þõ/¹{ »»ÆqÇŽBˆéÓ§kÆ5j4vìX¥RyðàA©å—_~Q©T&LR£bêÔ©®®®Û·oW©Tr÷@vSRR*W®¤ÝبQ#!Ä•+W¤—ÇŽsppèСƒfGGÇÛ·oŸ8qBîÈÃîÇ,]ºÔÉI·×gÏžBÔ­[W¡V««U«V­Z5ímüüü„W®\iÞ¼¹ÜòPa_ù=Ïî‚c`` NËáÇ—-[V¡B…^½z !rrr”J¥›››Îf®®®Bˆ;wî”øþþþr÷˜GB‚ô}BB‚Ü¥ÈÀî‚£6¥R¹víÚ¯¿þZ©T~ûí·BˆÜÜ\!DåÊ•u6®R¥ŠâÞ½{úìÙ>ÿÇdÉüýý9)–†“b™8/ˆ“bQB$<ÍŽvÈ~ƒã‘#G"##“’’jÕªõÕW_µiÓFjwssS(999:ÛÿóÏ?âé¸#€²Çà˜——÷Í7߬^½ºbÅŠ~øáÈ‘#µïÎèäääêêZpd1;;[¡Yg `oì.8ªTªO>ùä?þèÔ©Ó_|QhôòòJLLÌÎÎvqqÑ4¦¤¤HoÉÝyØÝíxV¯^ýǼýöÛ?üðCQÇ;vT*•û÷ï×´¨ÕêØØXww÷àà`¹{ û ŽjµzÍš5U«V2eJ1›õë×ÏÁÁá?ÿùt]£bÙ²e™™™o½õV¹råäî€<ìkªúÖ­[iiiÎÎ΃.ønïÞ½‡ "„ðööž4iÒ¼yózôèÑ®]»ÔÔÔÇ=ZîÀ@Òƒ`Q8)–‰ób8)°ö¯^½*„ÈÍÍ=sæLÁw5 «…5jÔØ´iÓ¶mÛjÕª5dÈ &Hwä°Oö›6mªÿ­°ÂÃÃÃÃÃå.ÀRØ×5Ž0Á@/vþ jAp€žŽÐ Áz!8@/öu;‹åïï/w “þw‰@FGKAt°[ügX…BøùÉ]„<˜ª€^ŽÐ Áz!8@/Gè…འ‚#ôBp€^ްkûöíëÔ©“‡‡‡··wïÞ½/\¸ wEX.‚#,ѽ{÷ÆŽ[¯^½*Uª„„„>|¸¨-?~ìää¤x^5ôù–¿þú«S§N©©©S¦L™:ujRRR»ví222LÕ‹S§N 0 fÍšUªTiÞ¼ùÂ… óóóå>´ŽgUÃâdgg7oÞ<--­oß¾ÑÑÑ]ºtÙ³gOpppÁSRR”Je›6m|}}5UªTÑç‹–,Y¢R©bbbêÖ­+„xçw|}}׬Y3qâDã{‘œœÜ¡C¥RÙ»wïzõêýùçŸ'NÜ·oßo¿ý&÷À@G"//OQ¾|ysì|Á‚‰‰‰?ýôÓ°aÄãÇoÖ¬Ù'Ÿ|SpãÄÄD!Ä—_~Ù±cÇÒ~ÑéÓ§¥Ô(„pwwoܸqRR’Iz1qâÄ{÷î>|¸E‹R…#GŽ\¹råÎ;;wîlŽã€¹1U CøûûëµÈÈH)!oýúõµjÕ:t¨ôÒ××·oß¾±±±×¯_/¸±6lhÀeffV¯^]óòÑ£G‰‰‰õë×7I/bbbBBB´É| „8tèIö@Ù#8Â4._¾|üøqã÷“}ñâÅÐÐP…B¡i S©T…^阘˜X¡B…ªU«nذaéÒ¥FCõ¡T*œœ„jµ:%%eøðáµk׎ˆˆ0¾ùùùãÆ“’¢Fjjª¢B… ÆïY0U ËróæMµZíåå¥Ýèéé)„¸uëVÁí6l˜••%µ¬^½ºY³fz~ã£G*V¬(„pqqY³f‡‡‡ñ½prrš3gŽvË;wæÌ™ãèèØ·o_+¦@p„yåççoݺµ¨w{öì©Ó’““#„pqqÑntuuBܾ}»àU*Udddß¾}Ë•+÷ûï¿üñǽzõ:sæŒô©999-_¾<###..®Gýû÷_¿~½öx§½Ð±wïÞ1cÆ$&&þøã5*“€é-Úó饬©ÕŽ«T*µ_ªTªB7{ðàA¯^½Šþ Ýïüîß¿¯Ý˜-„¨V­ZÁ=ìÝ»·bÅŠš·""">|8nܸèèè‘#GêÓMGGÇQ£FI?GFFΜ9sÀ€}úô1¦iii|ðÁæÍ›5jô矆……éü°4\ãhÑÔj9ÿïÑ£GÚ/sss ÝÌÕÕU]´‚Û{yy988èÌJgff !j×®]p{ooo@ùÆo!Ξ=kÀ—ÖqÇÅÅ٠ɺuë^|ñÅãÇ/]ºôܹs¤F€µcĺvíšöËB—<‹ÒOò:99îß¿_»qß¾} …"((HgãÔÔÔ-[¶„……h¥áIÃGK7èvtt4²BˆÍ›7¿óÎ;ýû÷_²d‰ÎÌ;VŠàݸqcË–-o¾ù¦"999>>¾ÐÍ ˜ä=zôøñã5;ÏÈÈˆŽŽ~ýõ×}||t¶tvvþôÓO[´h±{÷îråÊ !T*Õ7ß|ãääôúë¯ëÓ‹£G^¼xÑÏÏOz¹qãF!DÓ¦Mì…Z­ž|åÊ•ƒ7nœ››ÛO?ý”““)½;oÞ¼¹sçΙ3gìØ±žžž‘‘‘S¦LiÔ¨Q×®]ÝÜÜvîÜyòäɯ¾ú*00P±nݺ÷ßĈ ,(ô»?~Ö³gÏ€€€øøøU«V\ø\Ú^œ?þÂ… š«'5úôé^vç Ó!8Â@-[¶ìÞ½ûÒ¥KóóóGíââ2kÖ,“ìÙÅÅ%66vÒ¤IÑÑÑYYY­[·^»v­æyƒ>¼{÷®æ ËÉ“'¿ð _ýõš5k*V¬Ø¤I“íÛ·wéÒEz7//ïîÝ»E])„hÛ¶mDDÄüùó£¢¢jÔ¨1f̘¹sç?F(Ý–üüùóçÏŸ×y«aÆG€•R”v4%ò÷÷OHH0÷GäåããS§N+-ÓŠ+Μ9³hÑ¢B{ѰaÃ]»vÉ[¡Õ}SIII)xùdÇy±@œ ¡âIfR(üýüìó¯nVUÖ=|øpÏž=¯Y 8–:t( àí·ß–»l×8Âï½÷žUÜb&44444´¨w§M›æææ&wX ‚# 1yòd¹K0Ñ£GË]Ö„©jè…འ‚#ôBp€^ŽÐ Áz!8@/Gè…འ‚#ìÚ¾}û:uêäáááííÝ»wï .È]–‹à‹Yü6÷îÝ;vl½zõªT©røða=wþ×_uêÔ)55uÊ”)S§NMJJj×®]FF†©Š?uêÔ€jÖ¬Y¥J•æÍ›/\¸0??_ƃ €‘ް\'OžW:*•J'''!„Z­NII>|xíÚµ#""ŒïB~~þ¸q㤤¨‘šš*„¨P¡‚IŽe©jX±›7oªÕj///íFOOO!„>£•’GU¬XQáââ²fÍã srrš3gŽvË;wæÌ™ãèèØ·o_¹ ÔB¨å®Á-šB(Œß‰ÁÔ¦øÉÏÏߺukQïöìÙÓ˜çää!\\\´]]]…·oßÖs'NNNË—/ÏÈȈ‹‹ëÑ£Gÿþýׯ_¯=„i|/öîÝ;f̘ÄÄÄü±Q£FÆUdAp´h&‰nf¢T*µ_µŠåÁƒ½zõ*²ƒj£:(Þ¿_»1;;[Q­Z5=wâèè8jÔ(éçÈÈÈ™3g0 OŸ>&éEZZÚ|°yóæFýùçŸaaaÆôyq# ôèÑ#í—¹¹¹…næêêª.š‘5xyy988èÌJgff !j×®mÀ¥¥Ùqqq&éźuë^|ñÅãÇ/]ºôܹs¤F° …0úß/ëň# tíÚ5í—E­b6ëTµ““S``àþýûµ÷íÛ§P(‚‚‚ Ø¡tƒnGGGã{±yóæwÞy§ÿþK–,Ñ™LÀJa 7nlÙ²åÍ7ßB$''ÇÇǺ™Y§ª…£G?~¼¦’ŒŒŒèèè×_ÝÇÇGŸ=zôâÅ‹~~~ÒË7 !š6mjd/ÔjõäÉ“ëÖ­»zõê‚1+Ep„œœœ®R©¶lÙRÔ]f¤I^~ï¼yóæÎ;gΜ±cÇ !†¾råÊÁƒ7ÎÍÍí§Ÿ~ÊÉÉÑ<¥pݺuï¿ÿþˆ#,XPèÞ?~Ö³gÏ€€€øøøU«V\ø\Ú^œ?þÂ… š«'5úôénÊ3@Y!8Â@-[¶ìÞ½ûÒ¥KóóóGíââ2kÖ¬2øÞ‡Þ½{Ws…¥‹‹Kllì¤I“¢££³²²Z·n½víÚàà`éݼ¼¼»wïuý¥¢mÛ¶óçÏŠŠªQ£Æ˜1cæÎküabb¢âüùóçÏŸ×y«aÆG€•R˜v4Bÿ„„sD^>>>uêÔѹ¸Ð2­X±âÌ™3‹-*´ 6ܵk—¼ZÝÙ7•””=¯(@Yâ¼X NŠ%xvG…B¨ÕvûW7«ªaË>|¸gÏž‚×,aË:ðöÛoË]¶€kaˆ÷Þ{Ï*n1ZÔ»Ó¦Msss“»F¬Á†˜û_²d‰J¥Š‰‰©[·®âwÞñõõ]³fÍĉ/~Û¶mÝ»w÷õõ2dˆ³³stttŸ>}–/_>jÔ(™+†"8ÂyyyBˆòåË›cçùùù111qqq‹/V©TÅoœ˜˜(„øòË/‹Ï—…:}út`` ”…îîî7NJJ2I/>û쳚5kž8qÂÕÕU1mÚ´ÀÀÀÈÈH‚#Àz1U CøûûëµÈÈÈ-Z˜dç·oßîܹsddä­[·JÜX Ž 64à‹233«W¯®yùèÑ£ÄÄÄúõëß…G={öÍ7ß”R£¢råÊíÚµ»zõjnn®IŽeG˜ÆåË—?n’]yyy©Õj!DBBBãÆ‹ß811±B… U«VݰaÃ;w‚‚‚^}õU=‡B•J¥“““B­V_¾|yÚ´iµk׎ˆˆ0¾ ŽŽŽÿý·‡‡‡¦%??ÿôéÓMš4qvv6ÉQ ìaÝ6l˜••%µ¬^½ºY³fzîáÑ£G+VB¸¸¸¬Y³F;íÌÉÉ)((Hú9***11që֭ׯ_ÿùçŸå>`ŽàhÙ 9¿]m‚Gºçççoݺµ¨w{öìiäþU*Udddß¾}Ë•+÷ûï¿üñǽzõ:sæŒfš¸xNNNË—/ÏÈȈ‹‹ëÑ£Gÿþýׯ_¯xþÈÓ‹Y³fIó鯿þºIæÁ ÁѲ™"º™‰R©Ô~YÔ*–ôêÕ«èþÛÁ½{÷V¬X±ZµjÒˈˆˆ‡Ž7.::zäÈ‘úìÁÑÑQ³`%22ræÌ™ èÓ§©zqéÒ¥œœœC‡5ªU«VçÏŸ÷ôô4²×€2£Ârÿ1.s,Ž=z¤ý²¨5®®®ê¢_†···&5JÞxã !ÄÙ³g ØÛ°aÄqqq¦íE¥J•:vì8wîÜ;wîlÚ´Éø^ Fa k×®i¿¼~ýz¡›™uª:55uË–-aaašÆììl!„a“ÂùùùBGGG#{±uëÖ^½z­Y³fÀ€šFwwwaŠAVäBp„nܸ±eË–7ß|S‘œœ_èffªvvvþôÓO[´h±{÷îråÊ !T*Õ7ß|ãääôúë¯ë³‡£G^¼xÑÏÏOz¹qãF!DÓ¦MìEË–-…«V­êß¿¿ærÉÿû¿ÿB´nÝÚ¨ã€|Ž0““ÓÀÃÃÃU*Õ–-[*T¨PèfÒ$¯ ¿wÞ¼ysçÎ3gÎØ±c===###§L™Ò¨Q£®]»º¹¹íܹóäÉ“_}õU`` bݺuï¿ÿþˆ#,XPèÞ?~Ö³gÏ€€€øøøU«V÷íÛ×È^xxxLŸ>]º·eçÎ Å®]»Ž=:a„&Mš˜õ¼`>G¨eË–Ý»w_ºti~~þèÑ£]\\fÍšUßûðáûwïj®°œtèÐóçÏWªT)00pìØ±×ÐØ{ Ž%ºråŠâ»ï¾óññiݺuzzúž={bccgΜٿ}öàïï¯Ó²cǹ»Ë•’’"w 2¸zõªÜ% œ ÄI‘™æŸõ„Âþ‰·+ÇB\¿~ÝÙÙyâĉC‡•ZâââÆŽûÕW_½öÚkÞÞÞ%îÁ>—èÃ`v{£ »í¸…ã¼X NŠ\žÜ‹GóϺB!ýo·ñÑAî,ÑO?ý¯IBˆ6mÚ¼óÎ;¹¹¹þù§ÜÕȃਯW_}UqñâE¹ ÁQ—Z­V*•*•J§]z ]ÕªUå.@G]©©©Ã† Ói?yò¤°ãkŽº4hЬY³£GnذAÓxòäÉ•+Wz{{óð:`·XU]ˆÏ?ÿ|äÈ‘3fÌX·n¯¯ozzz|||¥J•æÌ™ãìì,wuò`ı7þí·ßzõê•™™¹sçÎ{÷îõêÕkË–-­Zµ’»4ÙØõˆã¿ÿýïÿûß…¾åéé9oÞ<¹ „ÙíÛ·ïË/¿Œ/_¾|Ë–-ç̙Ӹqc¹‹ÀB1âK´gÏžÐÐPOOÏêÕ«¿öÚk¿ýö[1ß»woìØ±õêÕ«R¥JHHÈáÇõü–¿þú«S§N©©©S¦L™:ujRRR»ví222LÞÇ·jÕªuëÖ²LL…à‹³mÛ¶°°°´´´!C†Œ;öÖ­[}úôY±bE¡ggg7oÞ|ÕªUíÚµ9rdRRR—.]¤%ð%Z²d‰J¥Š‰‰™4iÒG}›ŸŸ¿fÍ“÷hÆŒGŽ‘÷¨JëÉcc …àCäååååå™içŸ}öYÍš5Oœ8±`Á‚Ù³gŸ8q¢^½z‘‘‘…n¼`Á‚ÄÄÄeË–­]»ö»ï¾Û¿¿B¡øä“Oôù¢Ó§OÖ­[WzéîîÞ¸q㤤$Óvg×®]ß|ó““]_° GÂßß¿cÇŽÚ-‘‘‘-Z´0~Ï=:{öì›o¾éêê*µT®\¹]»vW¯^ÍÍÍ-¸ýúõëkÕª¥y>¤¯¯oß¾}ccc¯_¿^âweffV¯^]û«ëׯoÂuóæÍwÞygÔ¨QuêÔ1ánÁ¦qùòåãÇ¿GGÇ¿ÿþ[{ÑR~~þéÓ§›4iRð^HÙÙÙ/^ U(𯰰0•J¥Ï•ŽJ¥RT«Õ)))ǯ]»vDD„©Ž‰Z­:t¨»»û¢E‹LµOdÄô,‹““SPPôsTTTbbâÖ­[¯_¿þóÏ?ÜøæÍ›jµÚËËK»ÑÓÓSqëÖ-=¿ñÑ£G+VB¸¸¸¬Y³ÆÃÃÃT}ùæ›obcc>\©R%™'Àt ¡¶÷‹ Ž0¯üüü­[·õnÏž=‹ùì¬Y³…¯¿þz¡3È999BíFiŽûöíÛzVèää´|ùòŒŒŒ¸¸¸=zôïßýúõÚC˜†õâèÑ£3fÌøæ›o^yåsdÊÁÑ¢)Œß…Šÿ¯*¥R©ýR¥RºÙƒzõêUäWûŸn—.]ÊÉÉ9tèШQ£Zµjuþüyi4QC¼ÿ¾vcvv¶¢ZµjzvÓÑÑqÔ¨QÒÏ‘‘‘3gÎ0`@Ÿ>}ŒéEvvö Aƒ^ýõ>ú¨TÇKÆ5ŽM-ëŸâ=zôHûe¡+W„®®®ê¢•x*UªÔ±cǹsçÞ¹sgÓ¦M:ïzyy988èÌJgff !j×®mÀ6l˜"..ÎÈ^,]º499¹qãÆ_ýõ¼yóæÍ›wïÞ½ôôôyóæ­[·ÎØÿY Fa k×®i¿,jsi'y·nÝÚ«W¯5kÖ 0@Óèîî. Øsrr Ü¿¿vã¾}û …æBÉRÉÏÏB8::Ù é^E ,ÐnÌÊÊš:uj‡ dØ1@^GèÆ[¶lyóÍ7…ÉÉÉñññ…nVÚIÞ–-[ !V­ZÕ¿Í…†ÿ÷ÿ'„(ôÉ+£G?~¼¦’ŒŒŒèèè×_ÝÇÇGŸ^=zôâÅ‹~~~ÒË7 !š6mjd/¦OŸ>}útퟚ5k:tÈÔ瀲Cp„œœœ®R©¶lÙR¡B…B7“&yõß­‡‡ÇôéÓ¥»BvîÜY¡PìÚµëèÑ£&LhÒ¤‰bÞ¼ysçÎ3gÎØ±c…Ç_¹råàÁƒÇçææöÓO?åäähî¾nݺ÷ßĈ:ƒ? ëÙ³g@@@||üªU«‚ƒƒûöíkd/ÖŽÇÆŠàµlÙ²{÷îK—.ÍÏÏ=z´‹‹Ë¬Y³L²ç/¾øÂ××÷‡~øñÇÖ¯_¯™¹~øðáÝ»w5WXº¸¸ÄÆÆNš4):::++«uëÖk×® –ÞÍËË»{÷nQ×_ !Ú¶m1þü¨¨¨5jŒ3fîܹ§ª€BÁ8ŠÉùûû'$$˜û#òòññ©S§ŽÎÅ…–iÅŠgΜ)ôÜ>>> 6ܵk—¼ZÝÙ7•””=¯(@Yâ¼X NŠ, qÔº£ÝþÕͪjز‡îÙ³§à5‹ÀGزC‡¼ýöÛr€-àGâ½÷ÞÓy^‹e -êÝiÓ¦¹¹¹É]#VƒàCLžŽ–Âßß_îŠCp´öù ô²”’’âãã#wX7¦ªJA¡»ùžá&ŽÅ 8@/Gè…འ‚#ôBp€^ŽO~/…B¨¹EGè‰à½JCm¿Ï$8@/Gè…à DQKª¡…འ‚#ôBp(ÑBp€^ŽÐ Á€{ñè…འ‚#ôBp€^ŽÀÞ±2FOGè…àPó<‚#ôBp€^ŽÐ ÁصR-©V(ä.WVGè…འ‚#@a¸‰cG`¿xØ`© ‚#ôBp€^ŽÐ ÁØ)VÆ”Á €¢îÅ£V¨í8m ‚#ôBpöˆ  @p€^ŽÐ ÁàyE-©¶{Gè…àì+c Cp€^ŽÐ Áz!8ûRÂŽE/©V(ä.]nGè…འ‚#°#ÜÁÑGè…àðO©.ÁØ æ©Dp€^ì:8&''ûûûÿý÷ß…¾»aÆ~ýú·mÛvÚ´iYYYr× '»Ž«W¯.ê­… Θ1#))©E‹UªTÙ¸qã˜1crsså.ÈG­PÛ÷\·“ÜÈ ;;ûâÅ‹›7o^¿~}¡$$$,[¶ÌËË+::ÚÓÓS1{ö쨨¨ùóçÿë_ÿ’»|`ˆ’/pdeLIìqÄ1<<|ðàÁE¥F!Ä/¿ü¢R©&L˜ ¥F!ÄÔ©S]]]·oß®R©ä.@ö8â8{öìG !Ö¬YWpƒcÇŽ988tèÐAÓâèè²yóæ'N4oÞ\îÈÀƒãk¯½&ý°gÏž‚ïªÕêÄÄÄjÕªU«VM»ÝÏÏOqåÊ‚#vHÁ½|ì38/''G©Tº¹¹é´»ºº !îܹ£ÏNüýýuZvìØ!wÏìÚÕ«Wå.º8)–‰ób8)&áë㓜’’Rô>¾¾)ÉÉ¢°Mºté"„"AöO¼]!8ê’–NW®\Y§½J•*Bˆ{÷î鳓„„¹û]>>>r—]œËÄy±@œ“(ñ0µôϺBñìg»ö¸8¦xnnn …"''G§ýŸþOÇìÕÇS§N¿©æ‚œœ\]] Ž,fgg !4묀µàêDS±šà8pàÀÿüç?J¥²à[YYY&L?~¼©¾ËËËëöíÛRRÔ®‹ðòò’ûHÈÃj‚£§§ç÷ß?`À€Ë—/k·ïܹ³{÷îÛ·o¯_¿¾©¾«cÇŽJ¥rÿþýšµZëîî,÷‘¦Æ­¿õc5ÁqË–- 8}út¯^½Ö­['„¸{÷îĉ?ú裻wïŽ9ò÷ß7Õwõë×ÏÁÁá?ÿùt]£bÙ²e™™™o½õV¹råä> ˜§6!«YU]¥J•/¿ü²k×®Ó§OŸ9sæ¶mÛ’““3335j4gΜ—^zÉ„ßåíí=iÒ¤yóæõèÑ£]»v©©©‡ =z´Ü‡@6V%­[·^¿~}Ïž==*„hÚ´iTT”9F#""jÔ¨±iÓ¦mÛ¶ÕªUkÈ!&LîÈ`Ÿj«šÑß¿ÿŒ3nܸtëÖ­ŒŒŒöíÛÏš5Ë¢Ö¬øûûsGK“’’Â]Ð, 'Å2q^,'ÅzÍSëw£B!„Z¡jaÇÿÖ[Í5Ž÷ïߟ6mÚ¨Q£233Ç¿aÆ-[¶tíÚ566¶{÷î7n”»@`³´S£=³šà(¥ÃFmذáý÷ßwtttuu]´hÑüùó Å´iÓFŽ)w¶Ìj‚cffæ˜1c~ûí·ÀÀ@íöðððÍ›7·nÝúÀr×,ë©MÎjǬ]»¶¨{(Ö¬YsÕªU«W¯–»F`m¸ƒciX͈cñwÞV(C‡•»F[f5Á@ÌS›ÁØ+æ©K‰à½€­ažÚLŽÅaB[ƒàìy°ô¬æ>ŽBˆíÛ·GEE]¾|¹¨çk>|Xî€ÌÌ1O­ܵk×:uê”/_^g›:È]&O‹)V;vì(ýpêÔ©S§NºMBB‚ÜeËÆÜ³¬&8öèÑCî€=âîßV¿ùæ¹KŠyê²a‹cL ”óÔLkë°Üǵk× !^}õÕFi^oðàÁrW ÊÃeÆrƒã—_~)„ˆŒŒ”‚£ô²xGP$Æf¹ÁñÃ?B¼ôÒKÒËO?ýTîŠìšåÇ>ø@ûåèÑ£å®Xæ©Ë‹c€0tžš{ñh#8keÖáF.‰,ˆà½€U*Åp#ƒ‡&Bp€^ŽÀú0Ü( ˽O‰ÔjuLLÌÕ«W›4i,w9ÀvHi“%Õ:¬)8ÆÄÄ|÷Ýw:u’î >cÆŒèèhé­Aƒ}ñÅ …Bî€Ù1Ü(«™ª>vìØûï¿á•J%„8wî\tt´««ëÛo¿]§NuëÖÅÄÄÈ]#€-³šÇåË—«ÕêéÓ§4HñÇ!æÌ™Ó±cÇË—/wéÒåçŸîر£ÜeóâQ12²šàxñâÅš5k:TzyäÈ‘òåË·k×NÑ Aƒ^x!99Yî€%1øi1ÌoÁj¦ªïÞ½ëáá!ýœŸŸîܹ_|±|ùòRK¥J•233官WY7²2¦ « ŽÞÞÞW¯^U*•Bˆ'N<|ø°eË–Ò[*•êêÕ«5jÔ»F`164« Ž-Z´¸{÷î÷ߟžžþý÷ß !BBB¤·V®\yçΆ Ê]#0#®n”Õ\ã8f̘͛7ÿøã?þø£⥗^’îÝØ¿ÿ¿ÿþ[!wÀ21ÜÈHe1¬fıvíÚÿûßÿ:tèP³fÍ×^{mÑ¢EÒ]333]\\æÎÛªU+¹kæÂp£%°šG!D£F–.]ªÓ¸zõêZµj98XMæeŠ1CVÆÊš‚£äîÝ»gΜ¹~ýº··wÛ¶m+T¨@jÀ¶•Ùp#óÔų¦àxûöíü1:::77W1lذ¶mÛöîÝ;((hΜ9îîîräFô3'««{üøñûï¿¿zõj—Þ½{kÚ===÷ìÙ3pà@)MÃÕ–Ãj‚ãÒ¥KãããÛ·o¿cÇŽ¹sçjÚùå—ž={^¾|9**Jn43« ŽGuttüꫯ*Uª¤ÝîèèøùçŸWªTiçÎr×L¬Ló4v²2¦(VÏŸ?ïãã£yê ¶*Uªøúú¦¦¦Ê]#Ãæg5ÁÑÕÕõÁƒE½›••UµjU¹k¦ÄÕ–Æj‚c``àõë×O:Uð­óçϧ§§È]#0™Ò¥F£‡™§Ö‡ÕÇ(ŠO>ùäìÙ³ÚígÏž0a‚¢W¯^r×äÀ$uY±šû8¶mÛvÔ¨QË—/ïÓ§¯¯¯âÏ?ÿŒ‹‹KJJR©T½{÷îܹ³Ü5Ó`’Ú2YMpB|úé§Íš5›7o^rr²"==]Q£F‰'jßÙØ“<`!KýXSpB„†††††fee%''çååùúúzyyÉ]0%‡¹À±xV%îîîÍš5“» `ze¼&ÆDû°V[µjUâ6‡–»LPVH|eÎj‚cvv¶N‹Z­V©TÒÏ5kÖ,ôÞàÀŠÈ»&†yêYMpþøc5g«Å-x,ŸGV­Z5lØðÊ•+W®\‘»`ˆ²_£³æ©õa ÁQáéé)„¨^½ºÜ…3cvY>¶srrÎ;çááQ¹re¹k¥Æ$µµ°šÅ1‡*´=++kõêÕwîÜéÔ©“Ü5€R“e’Z0Om« ŽÃ‡/æÝªU«Ž?^î€91I-7« Ž=zô(ê­zõêõêÕ«nݺr×JG®Ij"¨a¬&8~óÍ7r—LI®Iêe0O­/[XlœIS#óÜǽ{÷–ö#:t»j —R 7ô,†åÇwß}·´IHH»jP2ï¿£“B™§.Ë ŽÅ¬†ÖËB.m„,78²{gêÔÈp£‘ldqÌ”)SÂÂÂä®”€K­šåŽ8”••µ{÷îÔÔTöÜÜÜ]»v9::Ê] (޼d¸ÑxVoÞ¼9hРôôô¢6ÿüsggç .¬Y³fðàÁÓ§O—»F` æOy 7Æj‚ãþýû+T¨°xñb—°°°×^{ÍÇǧM›6B__ßY³fõïß¿Q£Fr— !ï¥ 7šŠÕ,޹~ýzƒ \\\„5jÔpww?sæŒôV¿~ýÜÝÝW­Z%w ,ˆ±V…Ϫ­W¯^JJŠô³£££¿¿ÿ©S§ä.è’wAŒ(,‹2Om0« Ž5kÖ¼|ùòƒ¤—uëÖ=~ü¸æ]…BqõêU¹kF(“IjR£1¬&8vêÔ)77÷ÓO?MJJB4oÞ<--íÀBˆÌÌÌ¿þú«víÚrמÃ$µ±šÅ1C‡ݹsgLLŒZ­^²dIHHˆ““Ó|дiÓ .ääätëÖMîÀ3²§F†MÎjF=<<Ö®];qâÄ—^zIQ»ví3fäååíåååëë+wà ËL 7ÏjFCBB¾þúëÄÄDíÆ*Uª´nÝšÔ€UbTÐÚXMp¼}ûöÿûßîÝ»8pÆ šåÕÀ¢è;Üh¶ÔÈp£ùXMpŒŽŽ>|¸——×É“'g̘ѶmÛÏ>ûLûŽ<@v–™a*V_zé¥Ï>ûlïÞ½«W¯0`@ùòåýõ×Áƒ¿ñÆË–-ËÈÈ»@ìŦF†MÅj‚ã“r^}õÕ/¿ü2..nÉ’%ááá·nÝúöÛo;tè ½n”1ÙScÑ…‘MÆÊ‚£†““Shhèüùó£¢¢üýý•JåÞ½{å. ;%ûs“ÔeÂjnÇ£#!!aÇŽ;vìHNNOG"M¸ÿ¾}ûž>}Z§ÑÃÃãàÁƒrwË"ûÍw“ÔeÅÊ‚ã¹sçvîܹ}ûöÔÔT©åÅ_ ïÖ­›§§§ ¿(--ÍÙÙ¹AƒÚnnnr¬“B!„ 5Z;« Žß|óÍÎ;¯\¹"½lРAxxxxxxýúõMþ]ÙÙÙ÷îÝëÚµë¢E‹äî7M¯áFsÎ"3C]–¬&8®X±BáééÙ½{÷ððð   ó}WZZšBg¸è°äÔÈp£9XMpìׯ_xxx‹-̾ Gš7ÇX&6CöÔXlm¤F³°šàøïÿ»Ì¾K Ž×¯_:tèùóç+Uª8vìØ—_~YîÀE°„ÔÈ$uÙ³šàX–¤+)¿ûî;ŸÖ­[§§§ïÙ³'66væÌ™ýû÷×gþþþ:-;vì»[víêÕ«r—]œËÄy±@xR|}|’SRRŠÝÆÇ×7%9Y”°•5øú$Q„¯orJrŠ0ÙWwéÒÅL½°:ÇB\¿~ÝÙÙyâĉC‡•ZâââÆŽûÕW_½öÚkÞÞÞ%î!!!AîN@—Ü%@'Å2q^,E”'cÅ—¤PµÚ|E?k,äžLR›ô» þ³^p„ÈNXë ÀÍê§Ÿ~Š×¤F!D›6mÞyçÜÜÜ?ÿüSîê…ÏPsi£¹õ%Ý`üâÅ‹r€ Fú¨æÓÉÉ)¦©ˆG¿ÀhŒ8`R…­[Ñs Ñ´K^ž~5³Ò0‚#&RDî+ñŠF“_Âøô{™•†‰0ZÑ‘Q‘5aQ0ÄëApÀPEÍ4¸øôKb„y(½b¯F,87]yQa~GJ£¤È(´R#y6†à€JʀڑѬyQ0% ù(–÷ÈQ<ù¿§ñÑœyQ!‚#EÐ32 !æ ‹B__éò"dÇ“cxžÎ“[ŠÚDëI0fº„Qú“œ’Ìã^`!Ž<Ð*Xò‹Gpر¢žøRØc]Ì5ë]‘Ö€à°?… 1ó @“GFÖGÃJö¤Àc‰÷\T˜.2’aíŽ;ð|<,fpñ¹IÿåäEØ ‚#ÀviåÅ'?–|gFÍVƦ<ò"lÁ`‹ÒÃ\ž-lÑóV‹ÆGFò"lÁ`CÏžä"Jy_nc"#‹£a'Žë§•¥°Xªìfpddpö†à°JO–G?Ñ¢A᯴)“ÁEØ/‚#Àj<[ë"O£¢áÑ­T .‚à°pÏÝ:G”tÓE=÷ùdo%nÆà"ð‚#À²h'E!EÄoÒ­ÿΥݔ° ƒ‹@áŽùyGn…B(LEI‘‘ÁE@G€<Š{|‹é†EÑ‘‘°”ÁPF ™ƒ.j SäEQXd$,Æ 8ÌH¯§B›:/Š‘‘Ë“ 8L©äaÅ‚›š./ ­È¨Ðª…¼˜Á`”R$E˜4/ ¡™„–žRMXLà(5½& ‹úŒéó¢æá/ µPú¸i%#8JVêaÅ‚Ÿ4åõ‹ÚÕ¨µvMdÌ‹à(„áIQçó&[­»ºT `G€Ï’žôÿ Ì{&¾ÿbá·Î!2rq»€<Šçþ¨ÕB­ÉÉ)ÒîKú°©Q»(õ³Ý©Ÿ¾ûäzFR# FÀ޲¨EŸÝ—µ_µšQFÀÀfé\§(LuÁ¡Ñy±To!2–ƒà¶ÃØ-zîÝ ý–öYZ÷î`)Ž`ÅÌ›…QsÛzÎAöAi{‡àÖÄìIQçkŒ‹<¸…ÈX8‚#X´2JŠO¿¬´7ã1xX±À~¤°hÜŽ,K¡wÉ1ú.7ú}¥Z’œ\ü×<_âùê »ö‘;ìVƒG“¹>—ê‹KJŠÏ•gº€Ç(#`uŽP¦Êt깘¯×;,š0)>ݹfϬ ÁÌK椨S„º¨Ûk?ÝÀG3„ŧß"퀵âÇ"mذ¡_¿~ÁÁÁmÛ¶6mZVV–ܰ:W(–ÑEŠ%–Rà닺T19%Ù©‘ ÛÀˆcá.\¸dÉ’Ê•+·hÑ"55uãÆ—.]ŠŠŠrvv–»4–Å" -èùRÌw©b å<ù:¶€ÇB$$$,[¶ÌËËkÇŽË–-Û¹sçСCO:5þ|¹K 3 P,ª²§¥˜|ùséÊa”°EÇBüòË/*•j„ žžžRËÔ©S]]]·oß®R©ä®@™*>&Ê<¾ø|e µP¨…\IñYQZy‘ÈØ‚c!Ž;æààСCM‹££cHHÈíÛ·Oœ8!wuÌÈr «òIR|šåJŠÏêbˆ°uG]jµ:11±ZµjÕªUÓn÷óóB\¹rEî˜L‰1ÑR’âóµj¢ìIñIiDFÀn°8FWNNŽR©tssÓiwuuBܹsGŸøûûë´ìرCîžÙµ«W¯Ê]tÉrR|}}´_&'§èl’Rн™½Z_õÓ- µHNI~RöÓ"S„éË-ÕyñõñB$?=j–tðl ƒÉ®K—.r—`)Žºrss…•+WÖi¯R¥ŠâÞ½{úì$!!Aî~@—ñ;i™û¤èñPËú_…´ðYÕZ«Ë°X}ÎËsk¥ùå2?þ“WÁÖ ŽÙ ‚£.777…B‘““£ÓþÏ?ÿˆ§ãŽ,lÏî3¦fí´(žæ0 ®›‡¾vŽà¨ËÉÉÉÕÕµàÈbvv¶B³Î€ì,îŠ%,t³­Z»Á²;ÀíÇÊËËëöíÛRRÔHII‘Þ’»:ÀNYÇzgš‹º“¢BH,½OzÁÂO ѱcG¥R¹ÿ~M‹Z­Žuww–»:À.XÓzgMͪ~®^E!÷è–»äâ»Cd ‹àXˆ~ýú988üç?ÿ‘®kB,[¶,33ó­·Þ*W®œÜÕ6Èc¢(f@Qsœ¢ºdÙ¸ƒ7€¢pc!¼½½'Mš4oÞ¼=z´k×.55õðáÃAAA£G–»4À<½6ñÙ*Q‹RBz…bQ±ªˆ§E[¸§§ÅÇšŠP¶q,\DDÄüùó}||¶mÛvçÎ!C†DEE¼¹#}:š˜œœbáp%(ÕI ïX!=}6ĘlQ·²`aq,Rxxxxx¸ÜUÖÇo‹#J5 XhW­¢“º]ÖôôBp`;Љûl]-¼ûR— tŽJÁJc¢(Kýdg+\Ô:R÷ÀGE²™˜( HŠÂv¢`V€‰i:$w%lÁ°MÄÄ"önƒañIϤ>É]ÛFpl1±¤¯±©ËŸëÙÓl­c,Á°JVzyâs1ÑG3ÅÄ'_f³ƒ‹Oú'õLî2Ø9XGöi?ÓΟlWÌSû’S’MŸ‹:F6Dñü ,1âXæKù­6>²ø¬£Rå.€=#82#&ôÝöW1°$G ¬ÙÂå‰Råeœdì), ò"‹DpÌËJå‰ÏJ±ÙÑEöXê®Üe@AGÀĬq@Ñ‚bâ“‚ìkpñI§5=–»( Á0Šm (ÊŸÔdaQX‚#P: (š´2; ‹Oz/õ[î2@G 8Ö8 h¹1ñI}OÊóÖp4Íqžþ``åŽÀs¬n@ÑÒcâ“* YLIIñ‘»®2=š w%`0‚#ìµ'EKŒ‰O µëihmLI°GØëJŠÖ1 ø¬\Ââ3 1°=GØ>…BHÔI,9ÏXYL|V·ÝÝj±äE6ÌAîÓS(žû£V‹ääµZH,Êó•*žÖøìÜSúó‡Øn§ÔOÿ€íaĶÀZfŸ­u@ñY˜‰.—0°GX%«HŠVŸtƒ°X8¦¤Ø!‚#¬ƒ5&E«Œ‰OzBX,y€=#8ÂBY~R´‘Ågý!,‡¼‚à‹báÑÅvŸuɲ¸eàFÐ 8BN>¬hƒIQõÅ#DpDY³ØÜbkSϺÝãV‹z!/@1Ž0;‹V´ÍÅçzh©!Ýò@G˜…e&ÛOŠÂR½¥"/@©a2˜Xž%E!l5) ‹<ô%/`9£úØ9£KQOðKNI¶µÔhi‡ÞJè<P*Œ8¢Ô,jxË.fŸŸõÖ’½UaJL‚à½XNb±¯¤ø¤Ï,ˆ6yL‹àˆâXBb±Ç¤(,)ª[!ò"˜ Áº,!±h‡E{IŠÂ2½5#/€¹ñ„¼ƒ‹v:¬(‹&@^€2Cp´kò†;V|Òy ¸ÀúqK(cG{$Wh±ßaÅ'ýgpÑ4b¹íˆ,yÑ®‡aєȋ ;‚£í+û¼HX|ö3aÑhäE°G›UÆyÑÞâà²E#/€"8Úš²L/„EM޼–Œàh#Ê,/ ‹æ@^«@p´zRŒ1k€!, ÁL´YÀº­•¹c aQÍåÉaõñᘀuq»”šB! ¡V?ùcâ?Ù½Býììïw…B÷(“MD!„Bµj!’SRä.P:Œ8Z3ÍJ3¸(ƒ‹æÅ”4Ø‚£u0GdÔäEû ‹‚+Í‹¼6†àhéLÉ‹ .šylÁÑr™62’\47ò"Ø<‚£%2ad$/JGÓGÍ…¼öƒUÕ–E{-¯Qû)°8Zîž•-Ͳè§G3%9Yîšlâù%Òvö¿0°SŒ8Z)äµ;_d2Úü_{Fp´ÆÏMK‘‘¼(w)6‹¼GK`Ì@£ý1²2ºLÚŽ2385Úé#ƒ‹e‚¼(ÁQ6†MOÛé#y±LÅ#8ÊÀF{b$/–é@s”Å#8Ê ´©Ñî"#y±¬0Ä(‚cY+Uj´¯ÈH^,+äE€aŽeJÿÔhG‘‘¼XVÈ‹#ËN©R£íGFòbY!/L…àXFôL¶?ÐH^,+äE€É-…GFòbY!/̇àXJn´Ù¹iòbY!/ÊÁÑìŠO¶9ÐH^,+äE@Y"8ÊÉÖÉ‹eˆ[vÊÁѼŠn´©ÔhØóQz 1dDp”‡¤F†Ë y` ŽfTÔp£-¤F†Ëy`QŽeͺS#CŒe‚¼°LÇ2e­©‘¼X&È‹ Gp4—‚óÔV™™’.,‘X‚c±¾ÔHd4?†Ö…àX¬)52+m~äE€•"8šE‰Ï´D 1šy`íŽfgÃDFs"/lÁÑŽ1+mf,yØ‚£yYèp#CŒæÄ#ÀVí ‘ÑlÈ‹›Gp4#Ën$2šy`?ŽfaYñŒÈh\°7Gs±ˆáF"£0İ[GEd45ò"G›Cd45¦¤m‹U>²ÆB1Ä€‚£YÈp#&B^ (GëGd4¦¤(Á±p}ûö=}ú´N£‡‡ÇÁƒå.íyÌMë§K—. …¾Å£\Š9)çÅqR`9Ž…KKKsvvnРv£›››Üuia Ñ8äEJ‹àXˆììì{÷îuíÚuÑ¢Er×R"£q˜’À0ÇB¤¥¥ !t†-sÓ†bˆ# ‘šš*„¨_¿¾Á{0Ë’j ¥B$$pà0’ƒÜX")8^¿~}èС-Z´hß¾ý{ï½÷÷ßËY“4ÐHj, ÅÓ?j!üüýå.«§P“E øì³Ï~ýõW!„ŸŸ_zzúÙ³gfΜٿÿ?îoꌒpñ¢¿ŸŸÜGÅš\LH„E€9ÙçRw‚c!†?qâÄ¡C‡J-qqqcÇŽuppضm›···ÜÈÀ®ƒc~~þòåË5/ÇŒSÔÆß|óÍŠ+¦OŸ®I“vÅ®Ç<~üXû†;*T(&8¾úê«+V¬¸xñ¢ÜUÈ³³sÁ ÔjµJ¥R(Ï­rttBT­ZUîªäÁªj]©©©Ã† Ói?yò¤0ÃÂkApÔÕ AƒfÍš=ztÆ šÆ“'O®\¹ÒÛÛ»sçÎr »^S” .Œ92333((È××7===>>¾R¥J?üðC«V­ä®@ÇÂedd|ûí·‡ÊÊʪ[·îË/¿üÑGÕªUKîºdCp€^¸Æz!8@/Gè…འ‚#ôBp€^Ž&³aÆ~ýú·mÛvÚ´iYYYrWdGJ{ðsssúé§7ß|ó•W^i×®ÝÈ‘#<(w'l1¿×®]kÖ¬Ù¤I“äî„­1ज>}úƒ> mÑ¢Å!CŽ9"w'lMiOJ^^ÞòåËûôé6~üøK—.ÉÝ »“œœìïïÿ÷ßË]ˆ ަ±páÂ3f$%%µhÑ¢J•*7n3fLnn®ÜuÙ…ÒüüüüáÇϙ3'##£uëÖ 6jíÂ… 7n×®ÝÍ›7¥–ÿûß~~~_~ù¥Ü¥Ù>þÚµkýüü ”““#µ\¼xñÕW_ 8wîœÜ²FþF¬\¹ÒÏÏÏÏÏïÓO?•»+¶Ã€“r÷îÝæÍ›¿üòËÇ—Zþþûï_|±M›6J¥RîÙƒÿú?~üãÇ¥–¸¸¸€€€7ÞxCîÞØ…{÷î;vìóÏ?—þŽŠ—»"0âh¿üò‹J¥š0a‚§§§Ô2uêTWW×íÛ·«T*¹«³qü;v!¦OŸîìì,µ4jÔhìØ±J¥’ k“0æ7âÒ¥K .lܸ±Ü°5œ”7fgg;¶Y³fRK“&Mºvíš™™yúôi¹;d 8)'NœB 6ÌÉÉIjiݺu@@ÀåË—ïܹ#w‡l_xxøàÁƒ×¯_/w!r"8šÀ±cÇ:tè iqtt ¹}û¶ôKó1à৤¤T®\9((H»±Q£FBˆ+W®ÈÝ![`ðoD~~þäÉ“ÝÝݧN*w'l'eß¾} …¢W¯^Ú_ýuBBÂË/¿,w‡l'¥V­ZB패V«ïÞ½ëàà ‰’0ŸÙ³g/^¼xñâÅmÚ´‘»Ùð¿3c©ÕêÄÄÄjÕªU«VM»ÝÏÏOqåÊ•æÍ›Ë]£Í2ìà/]º´àß°gÏžBÔ­[Wî>Y=c~#¾ÿþûóçϯ\¹ÒÅÅEî~ØÃNÊ™3gÜÝÝkÖ¬yüøñ“'OÞ½{·qãÆ:uÒ ÕÆ”7ß|3**jöìÙ•*Uzå•W²²²/^|õêÕð[S^{í5é‡={öÈ]‹lŽÆÊÉÉQ*•nnn:í®®®âùÿ.„ÉvðuZ>¼lÙ² *è ®ÀÿFÄÇÇ/_¾|È!mÚ´‘r|øðášÆ!C†L›6MîÁ^0Um,iù[åÊ•uÚ«T©"„¸wïžÜÚ2ã¾R©ŒŠŠ5jTNNÎܹs=<<äî“Õ3ì¤äææNž<¹nݺŸ|ò‰Ü=°Aœ”û÷ï !·mÛ6oÞ¼#GŽÄÆÆ~øá‡éééãÇç–Æ3ì7%;;{îܹ< 8pà믿îìì¼iÓ&–º£Ì0âh,777…B‘““£Ó.ÝLDúoG˜‰‘ÿÈ‘#‘‘‘IIIµjÕúꫯìùš2ì¤Ì›7ïêÕ«ëÖ­cÔ 8)+V”~˜;wnXX˜ôó|píÚµ7nݺµoß¾rw˺ö›2yòä¿þúkêÔ©#FŒZ®]»6pàÀ?þø÷ß÷õõ•»[°}Œ8ËÉÉÉÕÕµàfgg !4kå`ü¼¼¼Ù³g6ìÚµk~øáöíÛI¦bÀI9zôèºuëÞ}÷]–\˜‰'¥råÊ+Vtvv ÕnïÔ©“âÂ… r÷ÉêpR222öìÙÓ°aCMjBx{{¿ÿþû?þí·ßäîìÁѼ¼¼nß¾-ý¶k¤¤¤HoÉ]3àà«TªO>ù$**ªcÇŽüñÇ|À(—i•ö¤HϽX¼x±ÿS}úôBüþûïþþþo¾ù¦Ü²ü¦xzz–+WN¡Ph7J¿,ùùùrwÈ”ö¤Ü¾}[Ñ Avi ñÖ­[rwvàh;vT*•û÷ï×´¨ÕêØØXww÷àà`¹«³qüÕ«WÿñÇo¿ýö?üÀ°9”ö¤Ô¯_¿û󤥋ÞÞÞÝ»w ‘»C¶À€ß”ÐÐÐììì‹/j7J·‰áF›&QÚ“Ò AGGÇK—.©Õjíö„„!DÆ åîìƒÜw ·ééé7îÒ¥Ëýû÷¥–%K–øùù}ýõ×r—fûô9øÿüóOrrò•+WÔjµJ¥êÔ©S³fÍrsså®Ýf•ö¤tæÌžcZœ”sçÎùùùõë×ïöíÛRË©S§‚ƒƒ[´h‘™™)w‡l'åÝwßõóó[´h‘æá=/^lÕªÕ‹/¾˜˜˜(w‡ìÈôéÓíöÉ1,Ž1ooïI“&Í›7¯GíÚµKMM=|øpPPÐèÑ£å.Íöésðccc?þøãFmÙ²åÖ­[iiiÎÎ΃.¸·Þ½{2Dî>Y½Òž¹ëµ œ”€€€‰'.X° K—.Í›7ÏÉÉ9vì˜B¡˜={võêÕåî-0à¤üûßÿîÛ·ïâÅ‹·mÛxûöí¿þúK¥R͘1ã…^»C° GÓˆˆˆ¨Q£Æ¦M›¶mÛV«V­!C†L˜0Aº«Ì­TÿêÕ«BˆÜÜÜ3gÎ|—%2¦Âo„2़ûî»QQQqqqîîî;vüðÃ¥Ç,Á$J{R<<<¶mÛ¶dÉ’ìÝ»×Ýݽ}ûöï½÷ÞK/½$wW`/êç/• Åâè…འ‚#ôBp€^ŽÐ Áz!8@/Gè…འ‚#<3iÒ$ÿC‡•Ù®þóŸÿøûû¯]»VûS{÷î-ô]Á¬Ébcc宀r’»°k¡¡¡Íš5ÓóÝO?ý4;;ûܹsrÀ@NAAAAAA†½ eŒ©jVI©TæççË]Ø‚#«!-IJJš5kVóæÍƒ‚‚:tèðá‡ê,@‘6»víZ||ü[o½Õ¤I“«W¯jÞݶmÛØ±cÛ·oߪU«áÇÿ÷¿ÿU*•¿ëÀãÇ yï½÷öíÛ§³Affæ‚ ºuëÖ´iÓ¦M›vïÞ}îܹ7oÞ,í®–/_^Ìòíw¿þúkÿ¬¬,¥RéïïüÌ™3=R©TBµZ=eÊ”?þxÏž=jµÚÕÕõðáÃ_ýõàÁƒ³²²´?»yóæQ£FýñÇ+V¼{÷nLL̘1c¾ûî;Í™™™ƒ^ºtéµk×êÕ«W§N+W®¬ZµjРA¥Ý•þš7o>lذ *(ŠaƽýöÛݺuBìܹS{3µZ½eË!DÏž=å>Wl Á€•9yòd‡:ôÇœ8qbêÔ© …âÛo¿½té’öfŸþùK/½´jÕªƒÖ«WOñÛo¿mÚ´ÉÓÓsýúõûöíÛ¹sçž={^yå•“'O~ÿý÷ڟݸqcÇŽ9"}ÅäÉ“/^|êÔ)Í—/_ ;xðà¦M›~ÿý÷´hÑ"==}÷îÝ¥Ú•þ¦M›V©R%‡iÓ¦Mš4©uëÖnnnÇÏÌÌÔlvâĉôôô_|±aÆrŸ+¶†àÀÊxzzþ¿ÿ÷ÿÜÜÜ„ŽŽŽ#FŒ>^»±G+VÔ¼ÌÈȸyóf­ZµBBB´7óôôìСƒR©<þ¼¦±_¿~NNN¿âìÙ³ÒËqãÆ-Y²ä…^ÐlpëÖ­­[·¬¶Ä]©k×®Bk¶:??ûöíNNNÝ»w7ã9`¯¸+ããã£ÓR§N *ܸq#//¯|ùòR£4=­qùòe!Dƒ î°~ýúâù‘B__ßB¿âÖ­[|øpÀ€ÞÞÞš-¯\¹2qâÄH_õÿ÷NNNãÆBxyy !.\¸ ¹ ŽR©\¿~½t#îÜÜ\í/-~W†Q©T999š—ÒÚêüüü 橘SÕ¬L·nÝþøãV­Z5hÐ@šöupp˜8qbãÆ‹ÿ`ïÞ½:´yóæ·Þz«N:ÎÎÎIII*•*88x„ Ú[úûûïØ±c×®]>>>ééé¹¹¹NNN3fÌ–ÑøúúvìØq÷îݯ¿þz³fÍÔjuBBBVVÖàÁƒ£¢¢~ýõ×û÷ïÏ›7OŸ]ÀÍÍ-++kРAõêÕÓÜ~²[·n?ÿüsnnnýúõ_yå¹O›Ep`ezöì9xðàÿþ÷¿§OŸ®R¥JëÖ­ßyçÖ­[—øA‡ùóçwèÐaóæÍ.\ÈÈÈxõÕWCBB†.­ÑXµjÕŽ;vïÞ}öìYww÷öíÛ1B;}ûí·+W®Ü¶mÛñãÇëÔ©2bĈF)•ÊÍ›7;vLÿ]•ÖÔ©SgÏž””ôðáCMc³fÍjÔ¨qëÖ-†˜•¢˜•†`Q&Mšôûï¿/]º´C‡r×bYT*UÇŽ¯_¿¾{÷îÚµkË]›Å5Ž`õâââ®]»Ö¢E R#³"8€uËÍÍ]¸p¡â­·Þ’»6ŽkÀеhÑâáÇyyy 6”– æCp`5ºuëæççWð!~ö¬V­Ziii!!!_~ù¥Î09Ç@/\ã½ ‚#ôBp€^ŽÐËÿ”þu#Ù=IEND®B`‚statistics-release-1.6.3/docs/assets/gumbelpdf_101.png000066400000000000000000000660061456127120000226250ustar00rootroot00000000000000‰PNG  IHDRhŽ\­AkÍIDATxÚíÝyx wÿÿñÏIbI„†ØIŠH¨û޵ÖÚZK«b¯ZÚRnK‹*ªtKUѪåîb½i#ÊM|ëw£(¥¡%EÑ¢¶HÄREAlÉ™ßS§ÇÉ6g™3ÏÇÕ«W2gÎÌgæä$/ïÏrL’$  0>j7ú@p€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"G9r䈩0UªT±÷°ëׯÿÿïÿý¿ÿ÷ÿ._¾¬ö%jÈÛo¿-ßÒnݺyì¤ù½Ä¥J•jРÁСCÏ;Wèþ~~~!!!Mš4yûí·s¿¦J~ŠÆ¯öí`7‚#OèÛ·oLLLLLÌo¿ý¦v[·›7oî߿ѢEµk×Þ²eKÁ;çää\¹reÏž=|ðADDDRR’ÚÍà ~j7€v…††úûûçÞ^¾|yµ›×°¼Ä÷ïß¿pá‚ÙlBܺukèС‡.Q¢D~ûߺuËRhÌÈÈèÕ«Wrrr±bÅ 8…Ò¥K«}õìFp¯åË—·k×NíVÀ¬_â›7oŽ=zÉ’%BˆÓ§OoÛ¶­K—.ìöìÙwß}wéÒ¥BˆsçÎÍ›7o̘1Ÿ€ÞÑU ÀA[·nµŒW›8q¢¼ñæÍ›!!!òƆ æää¼ùæ›&“éæÍ›òíÛ·7™L·nÝðËÎÎ~çw*W®üÎ;ïXNqñâÅÑ£G7kÖ¬T©R>úh=öïßoÝËzõêuêÔ©~ýúU¯^½råÊ}ûö=tè"))©OŸ>Õ«Wä‘GÚ´ióÃ?Ø\E¡§°1xð`ùŒmÚ´±Þ¾bÅ y{@@€|uf³yåÊ•mÚ´©V­ZñâÅ«U«Öºu믾úêþýû?¿Q}ûöÍsh ½í/@É’%?ûì³"EŠÈß;v¬àý«T©²dÉK;?üðCùÂx3 ¬>|ØòûaëÖ­ïܯ_?yÏ€€€?ÿüS’¤©S§Ê[|}}÷íÛ'I’%SZ»yó¦$Io½õ–ümLLÌ /¼ ýÖ[oÉÿþûïCCCmžh2™ÆŽki€åÿüç?CBB¬÷,[¶ìܹs-1Èòô~øÁòt%§°±qãFy·"EŠdffZ¶ùD~èÕW_mРbܸqÉÉÉòö¯¾úÊú[Ù¾}û¾úê+ë-™™™Ï=÷ÜÅ‹…mÛ¶}ï½÷úöíëãã#IÒ¬Y³äîTk¼zõê?þñ2eÊÈ[._¾¯¿þºå‰r’B|ôÑG6íw âèpûó,Þ¿ÿèÑ£O?ý´å¡_~ù¥€ý­U­ZU~tĈ ŠÆŒãîŸdî@Å€SÜ¢E !Ä;wæÍ›'oüì³Ï,IQ‰€€€-[¶ôëׯI“&áááBˆM›6É 2IJÛK/½äëë+„8sæŒÍ²> 6ìܹ³¢H‘"½zõ’75Jáããc ^×®]“¿°÷–>hË,寧žz*00PѧOŸøøøøøøÑ£GËefffeeÉ__½zÕù;ïpû­ÉCNM&S‘"E"##7lØ oöÙgëׯ¯°%<òˆå¿.ZƬjùÊo!•âÅ‹[¾6™L ,øç?ÿi™óѵk×®]»Úu¢èèhËÐ:Ù‰'ä/:tèçSNž……Ü[‘‘‘––vìØ±ÚµkÛôS[Ž™‘‘±yóæ}ûö8p`ïÞ½7nÜpÕKãLû U·nݹsç*ßÿÊ•+òrh¶‘çO‘eD}!8È—Â…T¢¢¢žzê)K±*Ï5Y f3¯%33Ó2 ;?éééÖßZ¢5Ÿ|;U8…E‘"Ebbbäeh6nܱ}ûvy»eýš{÷î½ùæ›ÿþ÷¿³³³å-þþþåÊ•»té’½7Çåí·fêüüü¢¢¢š5k6zôhëêÏ?ÿ´-÷£,Çx‚#gýüóÏ–¹ÆBˆØØØÖ­[Ûu›ØXªT)¹>÷ÝwßÉ×6Ê–-ëL›Õýøã÷îÝ“¿nܸ±K®€f8%;;{èСò'ŽÈ~øá‡¥K—Zf‡8¦Fÿè£Z¶_½zU’$‘W׳'OѾ}{¹·:11qݺuòFK?µâ‹/¾¿øüóÏ;vì(móÐy²dhËXLYîR¥n‘–Ní%J4oÞÜg "&ÇpÊ'Ÿ|"O ´¬Ý=nÜ8ËçÑÙ°T§ Ö¾}{ù‹… Ê1H±fÍšGy$$$¤zõêÎtæroµâîÝ»ò D¾¾¾–‘7nܰt[òß/¿ü¢dž*UªÈ_üüóÏ–QŒÿ÷ÿ—{érÜ¢‚ýùçŸC‡MHH¿0`@©R¥ÜzFª£â _´YpÑbÞ¼yíÛ·OII±,‹8nܸ &,]ºôìÙ³W¯^}íµ×âãã-ûËcò¦L™räȑѣGÛ,ÍmãÍ7ß\¼xqFFÆÚµkÛ¶mûÄO9rÄ2ŒrìØ±ÎÏ®pò–ÞjyŠtëÖ­-#5K–,Y²dIùz,¨Ì¦M› þÌ™eÉžÛ·oGGGGGG§§§?~\•[”›åGâÖ­[.\°l/[¶ì”)S\~:š£öz@´EÉ:ŽBˆµk×J’ôÔSOÉ߆„„È£²páBË>›7o¶Öò3²ÜŸ“»%ÿûßÿ‚ƒƒsŸzذaf³YÞ'Ï#|ùå—òƺuëZ6þøãòF???»N‘Ÿ{÷îYF4 !æÍ›gýhŸ>}lŽnù”Â^x¡€ö[V²~®¥¾hýÉ1޵ßÞu)ôG¢L™2»wïvæô‚®jZ¾|ùwß}'ýæ›oÊÝ”/½ô’e¢ÆðáÃoß¾-={öì~ýú•+W®D‰uëÖ-`¾³E—.]~ýõ×—_~¹~ýúáááݺuKLLœ7o^žs¨àÌ),½ÕB›–ž={öc=&?ôüãµ×^;pà€¥/{ÅŠ–nèÜâââ¦NúØc•(Q"::zÔ¨QIII6Ï=v‹òãëë[¦L™Æ¿ýöÛÇüñÇÝz:a’ŒŒ¸Ðýû÷ׯ_/„°É” _G(BW5!8@‚#!8@‚#!8@‚#!8@‚#!8@‚#!8@‚#ñS»²zõêU«V%''<ñÄãÇ/]ºtûß¾}û¿ÿýoBB¹sçJ•*U«V­Aƒ5oÞ\íëPI’$µÛàv³gÏž?~‰%6l˜––vúôézõêÅÅÅùûûç¹vvv¿~ý<Ô Aƒ;wîìÝ»÷þýû£F9r¤ÚW ïŽÇ‰‰)[¶lBBB¹rå„S§N‹‹ëß¿ÿÛo¿çS¾þúëØØØ üç?ÿ‘ÃåÉ“'û÷ïãÆ5kÖDFFª}M*ðþ1Ž«V­2›ÍcÆŒ‘S£bâĉAAA7n4›Íy>eÓ¦MBˆÉ“'[J’5kÖ6lXNNÎO?ý¤ö¨ÃûƒãÞ½{}||Z·nmÙâëëÛªU«+W®ìß¿?ϧ¤¦¦–(Q¢N:ÖkÖ¬)„8{ö¬Ú /Ÿ#IRrrr™2eÊ”)c½½V­ZBˆ³gÏ6lØ0÷³,Xàçg{gŽ9"„¨R¥ŠÚ× /ŽYYY999ÁÁÁ6Ûƒ‚‚„W¯^ÍóYQQQ6[’’’.\X¬X±˜˜˜BO¡öu÷:~ü¸ÚMP—ÇÛ·o !J”(a³½dÉ’Bˆëׯz„œœœåË—ôÑG999Ÿ|òIHHˆ’óó‡IË"""xQ´†E›x]4ˆEƒ [$òòàl2™²²²l¶ß¼yS<¨;à矎=uêT… >üðÃfÍš©}Aªñòàèçç”»²˜™™)„°Ì³ÎíÞ½{üñ²eËŠ/þꫯ<8¿E Â˃£"44499933300в155U~(ϧ˜Íæ×_ý»ï¾kß¾ý»ï¾[@¾0ï_ާ]»v999;wî´l‘$)11±téÒÑÑÑy>eÙ²eß}÷ÝóÏ?ÿù矓dÞ{õêåããóÙgŸÉã… .LOOïÑ£G‘"Eä-·nÝJMM=wîœB’¤øøøR¥J½ñÆj·@C¼¿«ºbÅŠãÇŸ1cƳÏ>Û²eË´´´¤¤¤:uê 2IJObbâk¯½V³fÍõë×_¾|ùÌ™3þþþýúõË}´nݺõïß_ík‚ÝäO‚¦ð¢h¯‹ñ¢@;¼?8 ! T¶lÙµk×~ûí·*Tèß¿ÿ˜1cäyr“뎷oß>|øpîG™X ËÁQÑ¥K—.]ºä÷hçÎ;wî,]¿~}–ËÈÍûÇ8À%ŽP„àEŽP„àEŽPÄ(ËñP€ˆˆµ›5±ŸBG€ÑEDDŒŒ6(GW5!8@‚#!8@‚#!8@‚#!8@‚#!8ÕìØ±£}ûö!!!+VìÖ­Û±cÇÔn Bp¶®_¿>lذªU«–,Y²U«VIIIùíyÿþ}???ÓÃÊ–-«ä,¿üòKûöíÓÒÒÞxã‰'ž:uªeË–—.]rÕUüöÛo}úô)_¾|É’%6l8{öìììlµo­¾ñYÕà!™™™ 6|X~V¡üüü-ZtéÒ¥]»v=ûì³½{÷^¹r¥u½Ó«°ñÃ? :499yÞ¼y5kÖôÈ÷NGòõpzñ(I*d‡œœëoÍfsž»Ýºu+&&&ÿ³ØžF.øÝ¸qÃzcff¦¢L™2¹ðÃ?/^ÜòРAƒîܹ3räÈ„„„Áƒ+¹R__ß—_~Yþ:66ö½÷ÞëÓ§O÷îݹ ‹3gμòÊ+ëÖ­«Y³æÖ­[Û¶m«ðþ#OŒq _’¤Ú…º{÷®õ··oßÎs·   )¹÷ õññ±é•NOOBTªT)÷þ+V´ ”O=õ”âÈ‘#Üpy÷®]»œ¼ ÙŠ+êÖ­»oß¾ üþûï¤FçQq@—þøãëoóœò,ìïäõóó‹ŠŠÚ¹s§õÆ;v˜L¦:uêØìœ––¶~ýú¶mÛFFFZ6ÊåIÇ&GË tûúú:yBˆuëÖ 0 wïÞóçÏ·éy‡ÃŽèÒŸþ¹~ýúgžyF‘’’rðàÁùdXX˜ÍžþþþãÆkÔ¨Ñ÷ß_¤H!„Ùlþøãýüüž|òI%W±gÏž'NÔªUKþvÍš5Bˆúõë;y’$M˜0¡J•*Ë–-ËCá0‚#ºäçç÷ÜsÏuéÒÅl6¯_¿>¿UfäN^»Žüâ‹/.Y²¤_¿~#GŽ þòË/³²²bccåGg̘1}úôiÓ¦ 6¬\¹r±±±o¼ñFÍš5;uê¼yóæ|øá‡QQQBˆ+VŒ1⥗^š5kVžçºÿ~Û¶m»víyðàÁ¥K—FGGçžølïU=zôرc‘‘‘–ѓݻwïÒ¥‹ç^'ïBp@—š4iòôÓO/X° ;;{È!S¦Lqɑǟ‘‘Ñ´iÓåË—[>oðÎ;×®]³Œ°œ0a£>úÑGÅÇÇ/^¼^½z7nìØ±£üè½{÷®]»–ßøK!DóæÍ 4sæÌ¸¸¸²eË:túôéÎ×åeÉ=zôèQ›‡jÔ¨Apt˜ÉÞ… PÇW»xHjjjE›Œùºèñ÷vXXXåÊ•mF"jÓâÅ‹>ð¼áÇëb‰™6mÚ´iÓ&¿G'Mš¬va‚# Í&Ú¤¿wÈÿÞíA|$;ð˜ &¨Ý2dˆÚM€}ãã*85Êäì¨$JBbÔ#À»aPJRã_$“0)Ú•ìðnG  r­Q®;*Avx1‚#ŒHa¹Ñº‡ZyvÀ[a8vtR;„¢#À[¼å±øÖc#8ÂXœ,7Òa 02‚#çe¤èð>GˆKF7RtÁ°åªÏ€¡èð2G… 'S3K`LGà! ËtX€KìØ±£}ûö!!!+VìÖ­Û±cÇÔn Bp„!„‡‡¹uíÆPt k­ZµŠ-xŸëׯ6¬jÕª%K–lÕªURR’ƒÿòË/íÛ·OKK{ã7&NœxêÔ©–-[^ºtÉUÿí·ßúôéS¾|ù’%K6lØpöìÙÙÙÙ*ÞL/@py;pàÀO?ýTð>™™™ 6\ºtiË–-|êÔ©Ž;8p@ÉñçÏŸo6›·mÛ6~üøQ£F%&&fggÇÇÇ»¤ñ)))­[·Þ´iSÇŽÇŽ[´hѱcÇöêÕK훪o~j7л¦ÅȽÕj2ܽ{÷„E‹uÇÁ³³³·mÛ¶k×®/¾øÂl6¼ó¬Y³’““¿üòË^xA1zôè ¼þúëÛ¶m+ôD‡ŠŠŠªR¥ŠüméÒ¥k×®}êÔ)—\ÅØ±c¯_¿ž””Ô¨Q#!Äûï¿?xðà%K–lÞ¼¹C‡î¸oF@ÅÞÏd))©*6€Þj.Ñ®];ë-±±±rBrÞ•+W:tè{ùòåBw^¹re… (Þ³gÏÄÄÄ .úÜôôôGyÄòíÝ»w“““«U«æ’«Ø¶m[«V­¬ïÉ+¯¼"„ؽ{·KŽoLGà/¬ÂÃÚqúôé}ûö¹äP¡¡¡’$I’TèT•ÌÌÌ'N´iÓÆdõÛ°mÛ¶f³YÉHÇœœ???!„$I©©©/¾øb¥J• äü%dgg9RNŠiiiBˆbÅŠ¹ä.]Õ€'ÈEG—, ÚqñâEI’BCC­7–+WN¡¤Z)»{÷nñâÅ…ñññ!!!Î7ÌÏÏoÚ´iÖ[®^½:mÚ4__ßž={ª}ÛtŒà/'CLu[O5#ï¦î8—ük3;;{Æ ù=ÚµkWgž••%„ ´Þ$„¸råŠÂƒøùù-Z´èÒ¥K»vízöÙg{÷î½råJÓÃ:N^Å?ü0tèÐäääyóæÕ¬YÓù»jXG@×}ZL(:z¤å÷lNNŽõ·ùÍb¹uëVLLL¾èÜ?|åêà7¬7fff !Ê”)£ð ¾¾¾/¿ü²üullì{ï½×§OŸîÝ»»ä*Μ9óÊ+¯¬[·®fÍš[·nmÛ¶­3× Æ8›y¦ÈHGª¸{÷®õ··oßÎs·   )N¶!44ÔÇÇǦW:==]Q©R%(OÍÞµk—K®bÅŠuëÖÝ·oß‚ ~ÿýwR£ó¨8 Küñ‡õ·ùÍbvkWµŸŸ_TTÔÎ;­7îØ±Ãd2Õ©SÇÊ tûúú:ëÖ­0`@ïÞ½çÏŸoÓ™‡OôSËè­àBþùçúõëŸyæ!DJJÊÁƒóÜÍ­]ÕBˆ!C†Œ=ÚÒ’K—.%$$<ùä“aaaJž¾gÏž'NÔªUKþvÍš5Bˆúõë;y’$M˜0¡J•*Ë–-ËCá0‚#àL‘ày~~~Ï=÷\—.]Ìfóúõëó[eFîäuáyg̘1}úôiÓ¦ 6Lñâ‹/.Y²¤_¿~#GŽ þòË/³²²,ŸR¸bÅŠ#F¼ôÒK³fÍÊóh÷ïßoÛ¶m×®]###<¸téÒèèèÜŸí½Š£G;v,22Ò2zÒ¢{÷î]ºtqå+a$Gx-m&9ŠŽ\¥I“&O?ýô‚ ²³³‡ 8eÊœ÷Î;×®]³Œ° LLL?~|BBBFFFÓ¦M—/_-?zïÞ½k×®å7þRѼyóAƒÍœ93..®lÙ²C‡>}ºó5Âääd!ÄÑ£G=jóP5Ž3¹ö_!BDDD?~\íVà¡à˜ššš_§‰ cœÂ¨Jp”ð¢@EÆ|]ôø{;,,¬råÊ6ƒ µiñâŇž3gNžWQ£F-[¶¨ÛB~ôø3ã̪îrçÎíÛ·ç³"8Â;i³ŸZÆGW0ŽÝ»wGFF>ÿüój7®ÁGÀe˜"Àc†®‹%fÚ´iÓ¦M›ü4iRpp°Úm„Ž04µ†2E€“&L˜ v\`È!j7ö¡«^ˆ²î@p\‰x1‚#ŒKÝÎb¦Èt‡àEŽð6ªp¤·à­Ž€jè­è ÁÅj8؋฽կDp„WQ}€£½è­èÁŠaDàHo5(±cÇŽöíÛ‡„„T¬X±[·nÇŽS»E(ÁP½Õ´¬U«V±±±ìpÿþ}???ÓÃÊ–-«äà¿üòKûöíÓÒÒÞxã‰'ž:uªeË–—.]rUã·oßÞ¦M›råÊ=òÈ#-Z´øæ›oÔ¾ºç§v—ÑÝGиüôÓOíÚµ+`ŸÔÔÔœœœfÍš…‡‡[6–,YRÉñçÏŸo6›·mÛV¥J!Ä€ÂÃÃãããÇŽë|ã¿ýöÛ§Ÿ~:<<¼ÿþþþþ Ý»w_´hÑË/¿¬òmÕ3‚#à.ro5Y€;Ü»wOQ´hQw<;;{Û¶m»víúâ‹/ÌfsÁ;''' !Þÿý‚óež:%§F!DéÒ¥k×®}êÔ)—\Å›o¾Y¾|ùýû÷ !&MšKpt]Õ0 ®àHo5{EDDØµØØØF¹äàW®\éСCllìåË— ÝYŽ5jÔpàDééé<òˆåÛ»wï&''W«VÍùK¸{÷î‘#Gžyæ95 !J”(ѲeËsçÎݾ}Û%wɘ¨8à NŸ>½oß>—*44T’$!ÄñãÇk×®]ðÎÉÉÉÅŠ+UªÔêÕ«¯^½Z§NÆ+,…æääøùù !$I:}úô¤I“*Uª4hÐ ç/Á××÷×_ ±lÉÎÎ>tèP½zõüýý]r—Œ‰à/¡ÍNaz«x½äädŸ5jdddÈ["##—-[Ö A…G¸{÷nñâÅ…ñññÖiÏa~~~uêÔ‘¿Ž‹‹KNNÞ°aÃ… ¾þúkµo˜¾M{«µÖ‡@å…µ\ñïÎììì 6ä÷h×®]<~rr²ÙlŽíÙ³g‘"Eþ÷¿ÿ½öÚk111‡¶tÌÏÏoÑ¢E—.]Úµk׳Ï>Û»wï•+Wš¾óÎ\Å”)Säþô'Ÿ|Ò%ýàFFp î2ÈÉɱþ6¿Y,·nÝŠ‰‰Éÿúœ½À~ø¡xñâeÊ”‘¿4hÐ;wFŽ™0xð`%GðõõµLX‰}ï½÷úôéÓ½{wW]ÅÉ“'³²²vïÞýòË/?þøãG-W®œ“WmXLޱx¾ªÇJàÜäîÝ»Ößæ7ç#((HÊŸóͨX±¢%5Êžzê)!Ä‘#G8Ú /¼ „صk—k¯"  ]»vÓ§O¿zõêÚµk¿jââ€.ýñÇÖß^¸p!ÏÝÜÚU––¶~ýú¶mÛFFFZ6fff !ëÎÎÎBøúú:y6lˆ‰‰‰ïÓ§ecéÒ¥…+ЬFFp„7ðŽ ( s`—?ÿüsýúõÏ<óŒ"%%åàÁƒyîæÖ®jÿqãÆ5jÔèûï¿/R¤ˆÂl6üñÇ~~~O>ù¤’#ìÙ³çĉµjÕ’¿]³f¢~ýúN^E“&M„K—.íÝ»·e¸äW_}%„hÚ´©S÷ÝØŽ€Û1·€;øùù=÷Üs]ºt1›Íëׯ/V¬Xž»É¼.<ïŒ3¦OŸ>mÚ´aÆ•+W.66ö7Þ¨Y³f§N‚ƒƒ7oÞ|àÀ?ü0**J±bÅŠ#F¼ôÒK³fÍÊóh÷ïßoÛ¶m×®]###<¸téÒèèèž={:y!!!“'O–×¶ìСƒÉdÚ²eËž={ÆŒS¯^=·¾.Þ࡞À›4iÒäé§Ÿ^°`Avvö!C§L™âóÞ¹sçÚµk––&LxôÑG?úè£øøøâŋ׫WoãÆ;v”½wïÞµk× Xs»yóæƒ š9sf\\\Ù²e‡:}úôÜ]Õx÷ÝwÃÃÃ?ÿüóyóæùøøDFF®\¹Òºç0ÑÓïrÇW»ÆRh=/555,,LÅ਼âhœt+¿(j·¶Œùºèñ÷vXXXåÊ•wîÜ©vC ·xñâÇÏ™3'Ï«¨Q£Æ–-[Ôm¡?zü™q fUC÷èͺsçÎöíÛsY„NO`QÆ´{÷îÈÈÈçŸ^í†À5ãh s«(1|øðÀÀ@µ[Q¸6mÚ´iÓ&¿G'Mš¬va‚#Œ‚4À›L˜0Aí&¸À!CÔnìCW5à!ôVôŽà}cf Cp4Gæ¨v+°Ep€"GBxX¸fÆ0Ì kG@‹è­hÁ:ÆÌ<‰àx½Õý"8@‚#¼ŸI˜RRSÔn…ÝæÐ‚#PÍŽ;Ú·oR±bÅnݺ;vLí¡ Gè•~gÆ0Ì€ömß¾½M›6åÊ•{ä‘GZ´hñÍ7ß°óõëׇ VµjÕ’%K¶jÕ*))IáY~ùå—öíÛ§¥¥½ñÆ'NûlïÞ½W®\izx@W±gÏž·Þzëã?þç?ÿéî›lG@ò0Gâ/ qêŽF.ø7DNNŽõ·f³9ÏÝnݺ“ï) ü5tòäɬ¬¬Ý»w¿üòË?þøÑ£Gåj¢…\¼qã†õÆÌÌL!D™2e^¦¯¯ïË/¿,ûÞ{ïõéÓ§{÷îÎ\Efffß¾}Ÿ|òÉQ£FÙuÏQ0Æ8/IÕÿ v÷î]ëoóœ¹"„ ’òWèh×®ÝôéÓ¯^½ºvíZ›GCCC}||lz¥ÓÓÓ…•*Urà†¿ð Bˆ]»v9y ,HII©]»öG}4cÆŒ3f\¿~ýüùó3fÌX±b…³?FÅÞÌ;F2Ì@žþøãëoó›Ålo'ï† bbbâããûôécÙXºti‘WaÏÏÏ/**jçÎÖwìØa2™,%í’-„ðõõuò*䵊fÍše½1##câĉ­[·îÛ·¯c÷GtéÏ?ÿ\¿~ý3Ï<#„HII9xð`ž»ÙÛÉÛ¤I!ÄÒ¥K{÷îmhøÕW_ !òüä•!C†Œ=ÚÒ’K—.%$$<ùä“aaaJ®bÏž='Nœ¨U«–üíš5k„õë×wò*&Ož}zî®jh„I×ùýøñã111eË–MHHçyM:5..®ÿþo¿ýv~Ï’W+]·nÝÊ•+…¹+Ž™™™5êÔ©“cë…FDD?~\í{ãÍ”Wé,a+55Ua§‰ö¯ÅkhöE18c¾.zü½V¹re›Á…Ú´xñâÇçù'5,,¬F[¶lQ·…üèñgÆ%ô=«zÕªUf³y̘1–Õ&Nœ´qãÆüV%BtéÒ¥_¿~rjÌÓ™3g„6åFèŽ.’Ÿ=À»Ý¹sgûöí¹Ç,B§ôÝU½wï^ŸÖ­[[¶øúú¶jÕjݺuû÷ïoذažÏš:uª\`Ï=á_‘––&„píge`@»wŒ|þùçÕn\CÇÁQ’¤äää2eÊØ,1*ÏÌ:{öl~Á±E‹òÛ·oÏs98^¸paàÀG ˆŠŠ6lXî94€Ç0Ì€µáÇÛ|^‹6µiÓ¦M›6ù=:iÒ$æ苎ƒcVVVNNNî8ù“Ž®^½êð‘Ïž=+„˜;wnXXXÓ¦MÏŸ?¿}ûöÄÄÄ÷Þ{¯wïÞJŽa³eÓ¦Mjß0/–’’ššª`×0aÙïܹsj7¼ †*»ž‡®È hûE1.^½˜0a‚ÚMp!C†¨Ý„¿üÛµcÇŽj7P+tå)Z%J”°Ù^²dI!Äõë×>ò… üýýÇŽ;pà@yË®]»† öᇶhÑ¢bÅŠ…Á˜f=FùÈ}ë=5;Þ_’„ɦpŠŒf¯Â1^v9^ƒ×Tð}î?ë¹+D¡ãÉ1ÁÁÁ&“Iþxuk7oÞꎎùòË/“Ç5 !.\˜žžÞ£G"EŠÈ[nݺ•ššª|ž`õêÕ4h°gÏžÕ«W[68p`É’%+VìСƒÚmh|²3*Òñ¬j!DÅŠÇ?cÆŒgŸ}¶eË–iiiIIIuêÔ±žÞŸ˜˜øÚk¯Õ¬Ysýúõ ûÎ;ï <ø­·ÞZ±bExxøùóç<0mÚ4% ¸«9T¤ïà(„4hPÙ²e×®]ûí·ßV¨P¡ÿþcÆŒ‘WäqXíÚµ¿ùæ›O>ùd÷îÝ'Ož¬R¥JLL̨Q£*T¨ öåÜ‚‘H€&‰ž?W3ìŸ{€Â®êÜ5¹ÔÔTí/MçðÕé”.^âuÑ ^ 2ìßz}q€Ça5G€ZŽÐ ¦T .‚# ¬æÐ8‚#!8ÂÛxͤã0Ì  ‚#!8Â0G€–¡L©¶Ao5ÀóŽP„àh ½ÕÍ"8«aJ5j!8zÅ0G€‡ Á:`´)Õ shÁŠc˜#À“ŽðL©À­Ž€1Ì AG(BpôaŽ!8B댶šEp4ŠaŽ­!8@‚#¼„‘×âa˜#À3ŽP„àhÚBp„¦1¥í 8Þ€aŽ 8@‚# i shÁÞÀÈkñà1GÀK0ÌànG(Bp„v±ŒaŽ 8@‚#à=æp+‚#t)ÕxÁІ9´€àEŽ€Wa˜#À}ŽÐ(Öâ@kŽ€>0Ì :‚#!8BßX‹'7†9Ü„àEŽ€n0Ì .‚#!8B‹X‹ÇI s¸ÁŠ=a˜#@EGèkñàIGÀ;1ÌàrG(Bpt†a޵¡9¬Å€6¯Å0G€k ÁzeäµxæPÁŠoÆ0G€  ÁÚÂZ< 1Ìày~j7ð::r1@·Ž€‹XòbÁÑPán®#s4ì t€ ¡KÚJBrT-»yINNVûz/%IÂd¢×àVž Ž .|úé§{ôè±lÙ²«W¯ª}áÀ^Sn$6ÜÌsÁñ_ÿúW¥J•>üÁ´lÙrøðá›7o¾wïžÚwêóšä¦>I’” ^d˜#À~;ÓØ±c_{íµýû÷¯[·nãÆÛ¶mÛ¶m[``àÓO?óÏþSí[C"´ ˜G'ǘL¦ ¼÷Þ{?ýôÓ¼yó:wî|ïÞ½+VôéÓç©§žúâ‹/Ο?¯ö ‘xej¤Ãà6ê̪öóókÛ¶íìÙ³wïÞ=yòdÿ´´´¹sç¶k×nÀ€k×®ÍÉÉQûÎzedG€[x®«ÚFFFÆ÷ß¿iӦݻwggg !Ê–-[¤H‘={öìÙ³gÑ¢E‹/®P¡‚Ú÷ââE½²Üh!× ¼@y˜#ëb”ótpLOOß²eËæÍ›÷ìÙ#—CBBžzê©Î;7hÐ@±k×®Ù³g>|øwÞY´h‘Ú÷ñ\pŒß¼yó¾}ûÌf³¢L™2:tèÔ©SÆ }}}-»µhÑ¢Aƒ7Þ»w¯Ú7Þ˫˪…°‹ç‚ã”)S„ÁÁÁO=õT§Nš4ib­ùûû/^œ~jƒ Û¸ÙàRž Ž=zôèܹsÓ¦MóË‹Ö(7ÂÈR0Ì`Ïͪ޸qãîÝ»óK¯¾új‡Ô¾€×au€ëx.8feeÝ¿?¿‡Îœ9Ã"Žðc”Š‹dG€‹¸·«:11qøðá–oãâââããsïf6›%IªZµªÚwÚEª›Ð[ PνÁÑ××700Pþ:##£hÑ¢yîݱcǯ¿þº]»vjßx/•=\td˜# Pž Ž'Nœ(_¾üÀåoþùç¢E‹¶lÙRQ½zõG}4%%Eí»¯C8-Ö{x®«úÚµk!!!ò×ÙÙÙ¿ÿþ{ݺu‹-*o HOOWûn^H‡8ÏsÁ±bÅŠçÎËÉÉBìß¿ÿÎ;Mš4‘2›ÍçÎ+[¶¬ûξzõê^½zEGG7oÞ|Ò¤I Ÿ˜’’ñ믿zìFÁe¨¥)a•+åÞjµÐ.ÏÇF]»víÓO?=þü§Ÿ~*„hÕª•üÐ’%K®^½Z£F 7zöìÙo½õÖ©S§5jT²dÉ5kÖ :ôöíÛJž»lÙ2Ý"ä‰wnGM ŒçÆ8:tݺuóæÍ›7ožâ±Ç“×nìÝ»·\Ï4h;Î{üøñ… †††&$$”+WN1uêÔ¸¸¸™3g¾ýöÛù=+33óĉëÖ­[¹r¥Çn\‰r£†2\ÂsÇJ•*ý÷¿ÿmݺuùòå[´h1gÎyÕÆôôôÀÀÀéÓ§?þøãî8ïªU«Ìfó˜1cäÔ(„˜8qbPPÐÆå…òÔ¥K—~ýú‘a xtðš5k.X°Àfã²eË*T¨àãã®»wï^ŸÖ­[[¶øúú¶jÕjݺuû÷ïoذažÏš:uêÝ»w…ñññ»víòä]2 `ÚÄ¢<€¨ù‘ƒ²J•*¹ïà’$%''—)S¦L™2ÖÛkÕª%„8{öl~Á±E‹òÛ·oWûÁ~ÄRП (ŒGƒãÆãââNŸ>-åóÇ)))ɵgÌÊÊÊÉÉ ¶Ù$„¸zõª›®4""Âf˦M›Üt.Ý KUø1€aBéž?Ãö)çÎSûzU–’"L¦°””Ô‚w 3™„d÷ w /Š6ñºh/Šê:vì¨v´ÂsÁqëÖ­cÆŒ‘¿öõõõÌIå©Ó%J”°Ù^²dI!Äõë×ÝtÞãÇ{æu-,,Ìå{ðâ}ÞÝ+^mâuÑ ^uåþ³ž»Bdž Ž‹/B¼øâ‹#FŒ ~l2™²²²l¶ß¼yS<¨;BËoG«3$I2™LÃyð\pLNN®\¹òo¼á¾y0y\žŸ_PPPîÊbff¦Â2Ï…òP†»ÿþ7ªT©âÉÔ( ½r劜-ä!\¡¡¡n ÜŽrcþ”.¹#I+óòâ¡çããtòäÉ–Nt“víÚåääìܹӲE’¤ÄÄÄÒ¥KË+°Å²Ž€¼x(8úúú¾üòËééé³gÏöðöêÕËÇÇç³Ï>“Ç5 !.\˜žžÞ£G"EŠÈ[nݺ•ššÊ´5¡,€ynŒcçÎÏž=»pᤤ¤N:U®\¹hÑ¢6ûX/Óí*+V?~üŒ3ž}öÙ–-[¦¥¥%%%Õ©SgÈ!–}_{íµš5k®_¿Þc7®G -ŒòµM’¸Ÿ€‡y.8¶k×Nþâ·ß~ûí·ßòÜÇM«Ø 4¨lÙ²k×®ýöÛo+T¨Ð¿ÿ1cÆÈ+ò@!ÏÇgŸ}VÅëìÒ¥K—.]ò{´sçÎ;wÎó¡>øàƒ>P±å€*$!™$EG€5ÏÇ?þXí‹…ÎØ·ˆ#7Sᳪ¯]»vøðá .T¬X±yóæééé!!!jßÀ(ìûHj>À`Å£ÁñÊ•+óæÍKHH? ð…^hÞ¼y·nÝêÔ©3mÚ´Ò¥K«}7 [„÷!;ðÜrÜ÷ïß1bIJeË»uëfÙ^®\¹íÛ·?÷Üsrš„×#„è…$$“`5GÀß<,XpðàÁ'žxbÓ¦MÓ§O·l_µjU×®]OŸ>§öÝ Áîå½Y „ðdpܳg¯¯ï‡~`½Ý××÷wÞ ؼy³ÚwúD ð\p22Rí»¢ŸÚ!Ž):€áy.8öéÓÇd2½þúëGޱÞ~äÈ‘1cÆ!bbbÔ¾ DvcóÜ:ŽÍ›7ùå—-ZÔ½{÷ððp!ÄÖ­[wíÚuêÔ)³ÙÜ­[·:¨}7Ø’‡92l <¼ø¸qã4h0cÆŒ””!Äùóç…eË–;v¬õÊŽðb.îX¦ŸÚóX ÌÓ9ئM›6mÚddd¤¤¤Ü»w/<<<44Tí›è˜c=Ç `?>«ZQºté ¨}í€.Ù$EÇ‚ŸéÁ“M bÛ[Mä£rcp\¾|¹½OéׯŸš7úb°ìbÉ‹.¹fù –[èÚƒ¼•ƒãûï¿oïSŽ1Ú’¢ c,¥CËÁ•&HŠŽ`Hn Žò";ÖŽ=ºyóf__ß-ZT¯^Ý××755uçÎÙÙÙ*T˜4i’ÚwÐ÷EÆüØ$È‚NMvãqcp>|¸õ·gΜY¶lYDDÄçŸ^¥JËöóçÏ¿òÊ+¿ÿþûºuëžzê)µotÂÛ#‹ç#£ ɪ‚EyBO.>oÞ¼+W®|úé§Ö©QQ©R¥ÿûßBˆï¾û.==]í¨Ì$„Ižõì‘Ó¼¤·ôà?Ó_ßÙód€×ñ\piÖ¬Ùܹs/_¾|ùòeyc… ^}õÕnݺ©}+ÏÑWßtÁþŠLmðhpôññéÕ«WÏž=/^¼˜ššêççW½zu&ÄÀh4˜Ÿâ"鳆 °‹Gƒ£Ìd2•/_¾|ùòj_;<Ê5=™úïÕ`jt¹·Ú‹/à¹É1€ÁénötžäaŽù<& “éïI3¯£BÅ0 /ˆŒÊY&Íç’À ¨8B?tÛO­‹åšEu¬ŽBé¼ÁÚRÈZ<:¤‹Ôh—‚z«…mvd©pð&GÀ¼/5:€Ò#x ‚#tB‡ýÔºK.û˜\¢ôÞฅîR£] é­Î÷YdGÐ7‚#ávNu5롟ژ©ÑÊ:¿ÉŽ }GÀ)^™=9Ìñ¡ó’@ÛŽ€ã¼25ÚEioµâ(Jv-#8"5ÚÇÎìH| "8B+òX‹G½•Z½ÕÒ#hÁpåF ;æVÛ™FÉŽ 5GÀn¤F!;€¦¡UZí§6NjtKoµý%;€vá^ZŽ^ŽaR£]\µxþÇ';€&x–C•L²#hÁš¤ÉB¥Ëîš[Mv}"8Š05jÙÔå§v!ò\ÄQKH…’‡9Úñ"JR˜Cue‰—ÔCÅÚ£É~jÃRw%ð¼›ÄGË€JŽ@!¨o¹IjJŠÃ™”–UáF^P:$5*çîEyò:#Ù<Šà nì­vúÐdGð$‚#4FKUJÊž@vý 8y#5:Àó½ÕÎKvO 8B}_‹ÂÝs«]qt²#xÁZ¢™~jÊzDvw#8¶HÎp°·ÚE%M²#¸Áê!\Ãí+“@óŽÐ m$MÊ^€ìnBpþFjt ÇçV»®ªIvw 8PJƒŸ[]PkÉŽàjG¨L;kñPnÔ—†S²#¸ÁÚ öGR£k9µ8Ù´ŠàÀúê­þ«ÍdGp‚#@¹Ñ-´StdGp‚#ܾžgµû©adGpÁFG¹Ñ^ê­vÃiÈŽà$‚# ÔèVNõV ²#hÁ*“L‚~jxÙFp„šœ*G¹àì”ä¹¹Õî9ÙCp„A‘=ÃÙÞj76L“Ím#8Ð6·•7ÉŽ`/‚#\Oùê:j p¤Üè<®Nvm 8p/ÍöV?hž†Cp„áPntï(: ²#(Fp„zL& Ú@v%ŽP“äñÚåFU¸¦·ÚÍN²#Šà!5ºœG{«Ý>²#ŒàÀ4>Eƪzh%¨„àSºÇ8Rnôî/r’ ?GNñtoµGNIv€<aáaa”U§—Þê­ÕO[ÀSŽPƒòÏ–qÉÙ„HIMUûšáR©s’ÀÁê0 “ç×⛨Ð[í±K#;€‚#¼sb4Å•½ÕžŠ«dG° 8Âã<ÛO ÏP§èHvÏ"8•´– )7j¾¦ÈX5[‡W#8Ð3–:ÉŽ@p„×¢ÜèaªM‘!;€§áYZë̆tÚ[ý ñºm:8àx`-ʪ0BÑQÁ^ˆÔhDdGp??µ#¡ŸHB2…é{xKvÔñ5€¨8Âe4 )7ªKÍO‘ñø¹%J †à@)©)®Ÿ"£Fn%;0‚#<Å#IÊZàÅ]ï%“Ážæ)Õ04•r+Ù€á=(7ꎻt$;€{¸ž{«ÿºp²#¯Fp„G¸€#åFò²¢£ ;ðjG¸†FÖâv¨_t$;€«á (7BkÈŽ¼ÁîG5rWoµP¹ìIvà}Žð(w¬ÅC¹Q³Ôï­V»dG^†à}#5z7ÕFvàMŽp3ú©¢£ ;ð"G¸€Zár£7qoÑ‘ì®@pO ;ðGèåF½P»Ø§¡vèÁîÄGØÃíSdÈŽà‚#<Ç…kñPnÔ 6 5…ì@¿üÔn€ ¬^½zÕªUÉÉÉO<ñÄøñãK—.íäSzöìyèÐ!›g…„„üôÓOj_.àÍ䢣ËûÔ‰üÐ'ÝÇÙ³gÏŸ?¿D‰5JKK[³fÍÉ“'ãââüýýyÊ™3güýý«W¯nýÄàà`µ/WWÜÖOÍ_\=’+}š¹ ¦葾ƒãñãÇ.\šP®\9!ÄÔ©SãââfΜùöÛo;ü”ÌÌÌëׯwêÔiΜ9j_¢hàO0¼Š'ŠŽdGpˆ¾Ç8®ZµÊl63FŽ€Bˆ‰'mܸÑl6;ü”3gÎ!lÊÐþÐê—†jŽœ¹+ôBßÁqïÞ½>>>­[·¶lñõõmÕªÕ•+WöïßïðSÒÒÒ„ÕªUSûúôLåè—'>P31Vbº ýÐqp”$)99¹L™2eÊ”±Þ^«V-!ÄÙ³g~Š/\¸0pàÀF=ñÄÇÿõ×_Õ¾b}sIç#åF¸’f²£ ;Ð qÌÊÊÊÉÉÉ=a%((HqõêU‡Ÿ"'ȹs熅…5mÚôüùóÛ·oOLL|ï½÷z÷î­¤m6[6mÚ¤ö sŸ°ÔÔTÛMBØn ¹w³ÿTaŽäܹs*Þ X¤¤“),%%Uú¢¸äFAƒÂL¦Ô”µoŒB¤a KñÀUˆ7‹ñ¢¨®cÇŽj7A+toß¾-„(Q¢„Íö’%K !®_¿îðS.\¸àïï?vìØÊ[víÚ5lذ?ü°E‹+V,´mÇWûöxTXX˜’yî¦Ü_åFGâäÙáB–×¢€E’)ÌCëòhçgC¦zY];7¼(êÊýg=w…È tÜUl2™²²²l¶ß¼yS<(":ö”/¿üòàÁƒ–Ô(„hÖ¬Ù€nß¾½uëVµ¯[[òÊÈGäOKýÃZl}Ö´LÇÁÑÏÏ/(((we133Sa™4íäS,7n,„8qâ„Ú×mPŒn4 OL‘ùëLdGPDÇÁQzåÊ9öYÈã¢BCC{Š$I999¹WóñõõB”*UJí‹6"R£—ÑXNÓb›ÈŽ´IßÁ±]»v999;wî´l‘$)11±téÒÑÑÑŽ=%---**ê…^°yâ„Ç4Ø~j¸ŽçŠŽÚCv Aú޽zõòññùì³ÏäAŠBˆ… ¦§§÷èÑ£H‘"ò–[·n¥¦¦Z¦¤ú”êÕ«7hÐ`Ïž=«W¯¶œèÀK–,©X±b‡Ô¾h]rf-Ê^I’Dx¸Æûk¬è(ÈŽ´Ç$é¼8´dÉ’3fTªT©eË–iiiIIIQQQK–,±¬¹óí·ß¾öÚk5kÖ\¿~½Â§;vlðàÁéééuêÔ ?þüÁƒ>ÿüóǼÐ&EDDgVuåż*ŽªÇÔÔTæ$jòÚ´Û?бfyŠœ=Ö&Þ,Ä‹¢A†ú[oMßG!Ä AƒfΜöí·ß^½zµÿþqqq¹Wj´ë)µk×þæ›obbbÒÓÓ7oÞ|ýúõ˜˜˜õë×+IFçê?º”½XJJªÆ |BÖ)=ÐÝW5È8ÿ QXnNTŒ\ù÷º¥¦¦†‡‡i±è(´Xwžúwo âEÑ ãü­·¡ûŠ#¼åF¯§½êž¦Qw :‚#\G“ExOO¯Öj¤%;PÁnçX'#åFƒÐjBÓnËÈŽTDp *¬éHv€‡¡E” E«ñLÓäìÈmàaG8Èv@#á~¾”xÁšC¹Ñ€4Ï4Þ8²#"8Ðu>½šìB‚#\#ÿ~j{§TSn4,mg3­·ìÀ3ŽtF¢£ÐGvÔnûx‚#4„r£Ái;˜éÓe¸ÁŽx¨kšùÔð8ŠŽµ‘ìÀmŽÐ ʺf:h"Ù€»¡ ¤FØKµ¢£ ;0.‚#œS`?µcŸR ƒÓC*ÓG+™.ÀåŽPåF8FÍ¢£ÐMv¤ôÀ…ް“aànzˆdzj(Ù€«áWDHÊp†ÊEGý ;p ‚#-R^Ë£ÃZiKòÀiG¸‹’™1”QÝD2Ý4”!œEp„£êÍP¿ÃZ?ÙQ8àÕPnD¡ô”ÇôÔVº­8ˆàûPg„6©_túËŽ”Ø‹à‡8)7B!]…1Ý5—ìÀ>G^BEGAvàÍŽp‹‚§TSn„]t³4-Ö†<Pˆàû9×OMj„ô–Äô×b†<PÂOí€+ÉEÇB×õHS$ÝÍ&“„0……é©Å<‹Š#ìàüAÊp˜ÞJxzmtJj*ÝÖòCp„ôVAie¤£nÑm ?G¸^~…”á$ýÍ’±«ÑÃŒ¹è‰.c˜.-¥G¹aI8ÞOM¹¦¡¢£ÐqvdGVŽPJ·õàmtÙamW»µ‡nk2‚#Qû'Uâ%e,ãUYXz®"8ÂL–ÿú¤ì(¼¬Žúàš(=úApD^ì©42“ZæUƒí½$ý çÐ ‚#\€ÏŒ–ymv$>ð8‚#r¡Ü¯ã…E:oòø×• #8"_…HR#tÄ«&ÊØ{U:ļ@›Žxó¨á½¼9;zo|¤ôh Á²”àìh€Ò£w^ 7Gâ…e¸6">Ap„«~ê‚»¬ÝýòþìH|à6GØÔ½óòìèÕ¥GA|TEpÄM‹a€#tÊ›³£ðþÒ£ >*!8Â>”á5¼?;z{éQ#8"ùIð2ÞŸ¬¼ÿ … >Dp„‚åa\Þ¹¸cî+$>p‚#”Ê]nd€#¼ƒ!²#ñ€+¡¨ÜH'5¼›÷gGa”Q]+ñp‚#lÑk c2Dvê¹ÄGÀ ކG¹xÀ®ì¨ãøh¤Ò£x8>åš·!8¢ù¥F8Â+)ÏŽ”õE¢ ¸ÁÑØ +7Rk„yùúŽ6—j°ø(ˆ€sŽxa¨ì( ×sý×E‡ Œr#?ceGa¸žë¿.šá€üÔn4ªàÔÈG%;Z†—³£îß’$„SxÍ^Är©¦‡¿G£Ê«ÜH?5`Cy/®—Ô…HMI1fõQP€ 8"tRÖŒ–ÿºfã |üëÒ äàhH– MÞÐ%ØÉ(K<æyÙ†Œ‚$Æ8â!ÔüÈ!JÉxGáMÿ¾’/Øxÿ¾¾`$ ŽF”ÏŸ>“éÁ_<ù0Ütë+†ŽâAd4=ü-`4GØÇ«þö³$(…ÙQxӿȈ¹ ‚ ƒ!8Lî¼çàví¶¶\¼0z|ta莂¡€ýŒÛmm¹~A|‚.l ÁÑHòÝ(HŽ€# Ýmms ññ/$Hx7‚£Ñ™¬7¡lg¯«šNSXzôÎnkË-âïU{HB$¼ÁÑ0ò¯Šð1€“(=þ}È¿ ᕎÆ'5åFÀU(=þ}#ñño$Hx‚£q1¬p9JyÜ ëo-w‚ü†Þ ¯?b–ÔH?5àr”º2 V¬ïeHè Áш¨5zùß6ÀÕ(=æ{Gññ!tdC_ŽÞ.×.z¨±·ô(  ½/CG6tàèÕ KôSÐfˆžkë›"HyË£#;,ŒðQ»ð‡k†øK¸“$ýU}4¶ŠÜsmRºÚÎÉ÷Eá­1$IIˆ”ÔT“–ÿQqô^—s§FÊ€‡)øh žë¿¯™.ìBä9ŸFЗ #8z©ÂR£G¢Ü¸ó¿fº°!DBEGïÇl@kø(Œ Ò„HxÁÑY•óKôSª#>ŽiB$<€àèu¤F;F?5àfÊG÷7>м¤ D„ 7!8ze©‘r# 5Ê?`ÅÐñQ<|k(C*“_ˆäHØàè\2®‘r#ày û¯­ã£0f‚td;Âvyr#8z“IH’ü[@*d/µ›  @vÅGaää_7‚Žl‘#a/‚£·x]õ>§Ü¨Î±á‚)#DÚ‰B½‚âÔH¹Ðåý± ¾„Hg‘#‘ÁQÿ\]k”Mrl A B¤kœ#QÒŽ:g2™$I({»Rn¼ƒÂ.l›¤ AÊò ‘‚iŸÜ7‹(iG=3™L’ëÏQntÁá.lA‚´°¹e#C”4‚£^™„ö¤F…åFR# ;ʧ“ A1ÒÕ”DIAšÔ‚£.Ù;¢‘NjÀ”¯;A B¤Š‘‚鸼?WñžPÁQg ]¦Ñ¹ƒSn¼„Â2¤õ[þ¯F‚ÌKÁ9R%BšÔ‚£ž˜„ì/ÒI ™òùÄòo€ÔÔTSeÈÂä¾}DIWSž&ÒƒŽúðW¡Ñm©€( ‘y”!óz!JzD~wÐdÿSà‚£Öý…Ý¿t”§FÊ€Ñä?$Ìú!›ß Œ‰´ƒ’()H“®QÐí:ô,ä‡à¨]gtsÙÔœõ/˜ÔÔT“),¿G)F:%Ïßä&“;Ã~ŽeJA¬ÌÁQ‹ŠŒÂÁ_ mà…ó‰ (Fæ¹ò–ßoj«û¦dدà[Yp¬¬¥vãÕâ£vð7Óƒÿ$ëB#©€ªäßC–ÿL¦<þBH¶;J¹wTûRtÅê^¦¦¤òX¿p©Àÿ ‹Š£&Ø.²ãD¡Q¸“òîÖÜŸQgvä‘} þý^pv¤Z §Õdy»02*|6©€ )N“Rîó«Dò;ÊÎÄJ%G€áÑU¯Õ«W÷êÕ+::ºyóæ“&MÊÈÈpÉaM¹º¤ÿê•–ÿs´oZ(îÙ–Ïd´ßÈ;vT» °Å‹¢M.|]$)ïÿl;WM’å¿‚{º Ûëí²%¿—¤Ð±t‹ã*Žy›={öüùóK”(ѨQ£´´´5kÖœûL×(„X¸pazzz=Š)¢vëÔa’øàȼ,Y²dÆŒ•*UjÙ²eZZZRRRTTÔ’%Kr/Ó`Ç|­[·níÚµ¿ýö[… 7nž”ýâ‹/ø V­Zï¿ÿ¾ÚM3.Þ qýúõ½{÷¾óÎ;µjÕªU«ÖÁƒmvàíãy…¾(¼}žWè‹ÂÛÇÃ6mÚ$„˜ú(''ç“O> ~§‘½hÑ"Ë·¾¾¾C‡B|ùå—6{6kÖlÀ€‹/Þºu«åÝw 6™LYYY6ÛoÞ¼)üsžÇDxûhoµüüóϱ±±§NªP¡Â‡~h„jØw ÁÑ÷ïߟ3gŽåÛbÅŠÉÁ1O7^¼xñ‰'Ônµøùùåþ_ff¦Â2ý ZÀDkxûèo·ºwïÞǼlÙ²âÅ‹¿ú꫃¶^Ѱï‚£#üýý?n³Q’$³Ùl2™||9êëë+„(Uª”Ú­6–ÐÐÐäääÌÌÌÀÀ@ËÆÔÔTù!µ[gD¼At„·Öðöñ<³Ùüúë¯÷ÝwíÛ·÷Ýwó ‚Æ|§09ÆeÒÒÒ¢¢¢^xá›íBDDD¨Ý@ci×®]NNÎÎ;-[$IJLL,]ºttt´Ú­3"Þ :ÂÛGkxûxÞ²e˾ûî»çŸþóÏ?ϯ|hÌw ÁÑeªW¯Þ Aƒ={ö¬^½Ú²ñÀK–,©X±b‡Ôn ±ôêÕËÇÇç³Ï>“‡›!.\˜žžÞ£G"EЍÝ:#â ¢#¼}´†·‡I’_ªT©7Þx£€ÝŒùN1I’¤v¼Ç±cÇœžž^§NðððóçÏ}úÅ‹ó;¬téÒE±yóf›íëׯBÄÄÄøùù¥§§÷ë×oÁ‚üñGÕªU+W®|öìÙ¥K—öíÛ7##ٳϜ9sðàÁ›7oÎÎÎ.W®Ü¾}û>ýôÓþýû_¹rEÞáäÉ“]ºtY¹rå•+W}ôQI’ °mÛ6»N´`Á‚O>ù¤H‘"M›6 :pàÀÈ‘#7nܘçÎÑÑу¾xñâ´iÓ,?úè£ .Œ1¢^½zž~‘x;‚#}hÔ¨Q¹råΞ=ûûï¿[6šÍf9TuïÞ]±fÍšÓ§O·mÛö§Ÿ~Z»víÿþ÷¿ü±Q£FçÏŸÿþûï>õöíÛ-ZT¥J•Õ«WÿðÃ6lرcÇO}:¿ý‹)òÑGùùù½õÖ[—.]š|X!'׉'îÙ³GmY¤H‘Ñ£G¿úê«v®S§NÖßùúúJ’TÀS¢¢¢FŽùçŸvíÚõüùóo¼ñFõêÕÝõ06–ã uêÔ©^½úéÓ§?‘½iÓ&ÿÎ;[ö9þüŽ;öíÛwöìÙ3gÎ89´Q‘’’"ÿ?"""Ï.\¸ „ˆ3fÌž={ P¼xñ¨¨¨&Mš<õÔSQQQv®råÊ4ò_ÿú×Ö­[9Ò¸qã¾}ûºô®Àߎô¤K—.Ÿ~úé¦M›"""vîÜyýúõîÝ»[:¦W¬XñÁdggW­ZµaÆíÛ·¯[·njjêûï¿o×Yrrr,E¾{÷î !*Uª”_§sÅŠ…•+W^½zõvìØñóÏ?>|xÿþýóæÍëÙ³ç|`2™žºhѢܖ›7o^¾|Y‘’’ríÚµàà`÷¿Œˆà@O,ÁqôèÑr´¥ŸúæÍ›S¦L)Z´è‚ Z´hayÊŸþiïYþøã³Ù,.„˜4iRÁÏ2™Lò@Bˆ{÷îíܹóÍ7ßLHHhÛ¶m»víÜz[Þ}÷ÝK—.Õ¯_ÿþýï¿ÿþ¬Y³Üz:†ÅGzR­Zµºu릤¤:tèû￯V­ZÆ å‡:”““S¿~}ëÔ(L[)˜Mö–-[,_‡††–-[öÔ©SGޱÞ'''§G-[¶LOO?þ|Û¶m{÷îmy´hÑ¢íÚµ“góœ;wέ÷dݺu7n|â‰'âââjÖ¬¹aÆ܋€KèŒùä“Q£FU¬XQ^ß±U«Vk׮ݺuûꫯžxâ ÿcÇŽeee5oÞü‹/¾x÷ÝwÝw+–-[¶{÷î-ZXz !FU­Zµ7nÚ´IÕ €2¼<Ç­[·®\¹R¥Jå“ ÀPŽP„®j(Bp€"G(Bp€"G(Bp€"G(Bp€"G(òÿ•å´íSUÄcIEND®B`‚statistics-release-1.6.3/docs/assets/hist3_101.png000066400000000000000000000577531456127120000217230ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A_²IDATxÚíÝk”Õ¸ÿM 4AZø*4ŠˆDLF#¢¨IX—&’dEÆÄ»Ô2Act‰#HÄx v”% b¸$*Š—™%qш"•%-ž–F¹(-4ýQZÏuŸª]õÝ»êù¼Âc‚»«OŸzzïÚUmZ[[PJ…ôàÂZGh! …p€ÂZGh! …p€ÂZGh! …p€ÂZGh! …p€ÂZGh! …p€ÂZGh! …p€ÂZGh! …p€ÂZGh! …p€ÂZGh! …p€ÂZGh! …p€ÂZGh! …p€ÂZGh! ¥ô¡444(¥ÞxãN8A)Õ¿éH,ÂÜãÅ¢Ç+Ŧ¦&ïÞ¿"Dp7äÆb^ä#€èŽ`/ÍXÌE>ˆáÖñ{1dóeæcø¿ G°BàÉÅ’ü¿ H!Ž &ºXÌ‹õk!Ž7Ùµcò@`„#Ä!æÉÅ’ÈGŽÛb1»g”…pÜë0vÏÐD8€öO.ê`ý@q„#”ŒXÌE>(„p€2$5s‘rŽPšs—-šB>ÈD8@~é™\,‰Í×<„#|‰X,‚Í×G`.­<¬_©E8H)&C""¤±hù¤ á ùX‰Žù¤á ™2'5 6_‰G8HŽB+ÑY‰H±ùH0€ó˜â²ë×@òŽœÄ6W@’ŽœA,º‹|’p`5b1IØ=¸Žp`#Ú"Áü|dpáÀL.¦ ë×€sG’ˆE€CGX‰Fòpá &L.¢$ò°á BÄ"`ó5`-€yœò.,D80ƒÉED„õkÀ„#€àˆEĆ|l@8(+ÑB>²GZ˜\„=ÈG@ á  b6có5?ÂÀW‹p ›¯8Ž”bÚîcýˆá¤WCCCSSSïÞ½'Z$ùDŠpÒ%w%š“+’‡|"B8©ÀJ4Rˆ|Œ#Äb›  Ø| E8‰B,y±ù0‚p’€Ù@ë×@„#à*&ÀÈG Âp ±D>å"° D‡Ý3€>°“‹@œØ=è ‹‹€8Ö¯"G@±Xˆ|ò"\PØ|²Ž@|˜\\äý´ÖÕÕõîÝ›Ÿ\¤áD‹X’Á«FÖ r„# Î.@"±ù)G8Æ0¹¤—?"G bH3òiC8A° KøoÅ?ü|‘B>"=G@“‹°Gî¯.MMMä‹,Ž?Ò€pŠ!aÍw#ù"‹'_#ÙG ïC¿©©iĈÒcAªþÕ…|‘Åæk$á|ŽÉEXÂà[‘|Ç0†pDª‹°G¤³ƒä‹,Ž?ƒpDê‹°GÌïFòEÇ @8"-¸Ø –ÿÕ…|‘Åñ‡ÓG$™øðÙö« »gdqüá(ÂIC,Âö¿Ù=#‹ãçŽH~q‡%ìżX?•Åñ‡+G8ÌÑ34)¿º/²8þ°áÇ‹°GRßä‹,Ž?lF8 ɘÎA$5s‘/²Ø=;ްWzÎа_jÏßä‹,vÏÀ6„#ìB,¼s¿|òE À°áyœžaÞÅ‘/²8þG8B ‹_°±X.òEÇ‚GÄŠ34ìÁ¯.!‘/²8þA8"rÄ"ìÁ»Ñ8òE»—³”†ãùçŸÿöÛog½Ø½{÷—_~YzhÉÁ,á½)›H‘/²Ø½„ؤ4ßÿýÊÊÊ~ýúe¾ØµkWéq9éØ#3bxCÆ€|Ç0¢–ÆplnnÞµk×èÑ£ïºë.é±$±{ðn´ù"Ë;æuuu½{÷æøÃ¬4†ãû￯”ÊšnD¹X“‚%ˆEk‘²¼jäøÃ¬4†ccc£Rªoß¾Òq†njj1b„ôpjüêâ òQÇf¥7?øàƒ /¼ðÝwßíØ±ã1ÇsÙe— :Tzh6b:öàÝè.òE»—`JÃqË–-J©ßýîwýû÷?餓þþ÷¿¯\¹ò¥—^úÍo~óãÿXzt¶àó– “$+_3v/!¼4†ã|PYYyíµ×^xá…Þ+«W¯¾ì²Ën»í¶SN9¥W¯^ÒÃöàW—óó‘|‘Â0Kc8>üðÃY¯œ|òÉÿñÿñàƒþÏÿü_“)A,¼ӆ|‘ÅñGi Ǽ¾õ­o=øàƒï½÷žô@âÀéöàÝòEÇeI]8¶¶¶ò3Kð« Ò‰|‘Åî¥D"ÉÌÇçž{NñCiœ/E¾X€ à$! ó¶Îðƒ)L.…/²8þÉ@8Î#}ä‹,Ž¿ëGÀU¬D‘/²8þî"—0¹h¹ƒÿèý¡âð÷¤Ç‚ÒÈYì^ráØŽX´œ‹J©ÿm~Ãûéj "A¾Èò?ï°§1›åÅLÞ‹^>* Òl¾Ç°GÀ"L.ZÎïż±˜‹ H‘/²8þ–#aÄ¢åJN.êÈœ€$@¾Èâø[‹pd°m3#±˜‹|tNÖ列ŸZˆpâÃä¢åÊ]‰†|tŽ÷ÓZWW—ùˆ —ŸZ…p¢E,Z.¢ÉÅ’ÈGçôîÝ›õSYŽ€yÄ¢å¤b1›¯]D¾ÈâøË"c¸Çrñ¬DÀæk‘/²8þRG &ò½^CŸßúÿI¢Ö¯C¾ÈâøÇpÊF,ºëó2ë|‚²oÞ1{zùè¿?üðCNŸRÈYl¾ŽáèâS)12óQÙZEò1ï¯.MMMä‹,òE›¯ãA8Å0¹˜`_^YhÙ¤_´Þ¨üÔ,òEù"Žß "E8Ùü3nSSÓˆ#¤‡ƒÈÙ°~‹Yÿ6À)|G¾ÈâøG„p>Ç MÊ‰ä£æry˜÷$§OYYãG¤+ÑÈC>Ÿ\Œ§OYYƒG¤±ˆ’Œç£H,æâô)‹ã/‹Ë ‘ Ä"¿ùÚÎÛä‹,òE—ÿ†D8"ÉøhFxån¾¶dr±$òEù"Žß ‚!‘4L.""EÖ¯]‰Å\ä‹8òEÇ¿\„#’€XDl²Ö¯3_t§OYY}„#Æ*¤üoó3M˜¾ažô@ ãô)‹ã/‹ë7tŽp “‹@ÔÈYä‹,®ß(Žp„ˆE ~ä‹,òE¿AåE8Â^œ±qä‹8òEÇ? á»0¹؉ӧ,Ž¿,Ž¿p„áˆX1¹$ù"‹ÝKA8"rÄ"`ä‹,v/!f„£Úºuë˜1cFuÇwH%9ˆEØÃ{7f¾'aù"Ž `Ä#íáØÚÚzýõ×ïÞ½[z Á¬,‘õ«Kj¯FŠù"+k0.íáøðÿöÚkÒ£p“‹°¿ºX‚|”åóºº:Åñ‡i©Ç7Ι3gРA6l‹{8CÃüêb-òQVïÞ½½évÅñ‡9é ÇL:µªªjÚ´iãÇ—Ž8CüB>Êb÷ÌJo8ÞsÏ=ï¾ûî¼yó:wî,=«å=Cs Dpòsù"‹ÝK0%¥á¸nݺ?üáãÆ;ùä“ׯ_/=ë0{ðnL~ùÇ0BJc8îÝ»wêÔ©}úô¹îºë¤Çb&` b1ñ¼kïÈ)ä#Kc8Μ9³©©iÑ¢E•••Òc‘ÇöàW—´!_dqü@êÂñµ×^[´hÑW\1tèP鱈!aÞ _dqüQ–Ô…ãÆ•R÷ßÿý÷ߟùúSO=õÔSO 0àé§Ÿ–cT˜Î%ˆEä"_d±{ šRŽ}ûö=ûì³3_ÙµkתU«zõê5lذÃ?\z€†q††=8'¡$òE›¯QRêÂñ”SN9å”S2_Y¿~ýªU«†ž˜gU‹°ïF@¾ˆc…¤.“ŠÓ3ìÁ»¦/²8þÈE8ºX‚XDtÈYd"ÕàÁƒëëë¥GQÎа¿º 6ä‹,.?…‡pt±{ðn„ òE—Ÿ‚p´ް±«/â˜N-ÂÑ:œ¡a~uåÈYÿ"ËVSScüšHböàÝç/²8þ©B8–­¾¾¾¦¦Æÿs˜¿ŠéX‚XD/²8þ)A8á÷¢Weå#ghØ£¡¡¡©©IñVD‚/²Ø½”x„c(^2–ÌGböÈ}7òžDò/²Ø½”`„£…ò‘Ï,X‚_]Nä‹8&€“‡p4&3ù! øÕð/²8þIB8æmáR˜\ !_dqü“pœG,úÈY׎€“ˆE òE»—ÜE8.ás0ˆ|‘•µ{ N Û1¹DŠÍ×âú÷ïßÐÐÀñwá؈XâÇúµ,Ž¿GÀ",™âÈYËŽ€0& ‘/²8þÖ"Ä"à„¬Ý3ˆ»—,D8ñáãp‘Ÿ/L€‰`÷’UG ZL.‰Áú©,Ž¿ GÀÊ"_dqüõŽp±G>Ê"_d±{IáÇð# DêÊyz _¤/²Ø½Tá0¹DÊE•±iæ<¸þökÈ)ä‹8&€ó"a)bˆTÞXÌE¾ˆ#_dqü³ް Ó@¤ü^,÷1†œ>eqüeqü}„#ä1¹DJsrQ§OYYY—Ÿ¦áÄ")ƒ±˜‹|‘ÅîY)ÏG±ⓈTà•èÈY\~ „#"Çä"’—ƒ…Z0ÒÉÅ’ÈqL#N) ÇO>ùä®»îzýõ×›šš;ì°c=vÒ¤IGq„ô¸’ƒX„=¼w£ÓëJ^fæ£l,æE¾Èâø#i ÇæææüàÛ¶m0`Àé§ŸþÁ¬X±â…^øãÿxì±ÇJÎm,ZÁY¿º444$à=éâŒA¶N=Ù’XÌE¾ÈJùåwˆAÃñž{îÙ¶mÛe—]vÍ5Ÿ?PëOúÓþçÞzë­?þ¸ôèÜÃä"ì‘’_]¬­Fù(Ë;æuuuŠãÓÒޝ¼òJeeåå—_î¿òÃþðw¿ûÝúõë[ZZÚ¶m+=@7¤ä ûñ«‹µÈGY½{÷ö¦Û½ä[#ÒŽ]»v8p`‡2_üú׿¾oß¾}ûöUVVJÐRYk|A±è6_Ëb÷ÌJc8>òÈ#Y¯¬Y³æý÷ß?þøã©Æ\y?î¹€ñ#F¾ˆcF¤1}o¾ùæ²eËÞ|óÍÿ÷ÿþßÌ™3¥Gd Îа3U Ãî Yä#BJu8Ö××/]º´µµU)5xðà¯}íkÒ#’D,¼ϻöŽ|‘B>"°T‡ãOúÓŸüä'Û·o_¾|ùìÙ³×®]ûÌ3ÏrÈ!ÒãŠÓ9°±˜Bä‹,Ž?Hu8*¥Ú´isØa‡M˜0aË–-=öØóÏ?ÿ£ýHzP‘ã {ð« ÈYì^BYRŽ7nœ7oÞ©§ž:zôèÌ׬”úðÃ¥böà݈\ä‹,v/ASê±sçÎúÓŸ¶mÛ–Žï¿ÿ¾J⠟°±ä‹8&€Q\걺ºº¦¦fÕªU/¾øâ¨Q£¼7lØðè£rÈ!'žx¢ô à {ð« ‚!_dqüQHêÂQ)uë­·þìg?»üòˇ Ö»wï>úèõ×_WJÍš5«{÷îÒ£ ˆX„=x7ÂòEǹҎÇwÜ3Ï<ó»ßýîwÞy÷Ýw?üðï~÷»W^y値‡V6¦s` bÑ!_dqü‘)ᨔêÛ·ïwÞ)=Š€8CÃüê‚Ø°{FÇž”†£sˆE؃w#±{FÇ„£½8=üaÖOeqüS‹p´ °±û‘/²8þ)D8–­¦¦F)U__oðïä {ð« œC¾Èâø§ áX6/Ãç#±{ðnD/²Ø=“„c@ó‘*XÂ{+655)ÞHòE»gp E3™Î=rO¨¼'‘<ä‹8&€“Šp4 o>‹°ïF¤ù"‹ãŸ<„£1™ùØÐÐÀOd‹€|‘ÅñOÂѰúúúšš~0 …K»€BÈYÿd ç1¹è#_d±{Éu„#à$bƒ|‘Åî%wŽ€3ˆEÀ,òE\VÁÃ~„#`;&E€¨±~-«ÿþ 'Ž€˜\âG>Êâø;plA,6 _dqü-G8ÂX‰,D¾Èb÷’µG@“‹€G-ž±éÇÓ£ûûÙº!‹ÝK"˜‹€)G-ž‘õçxò‘|‘°=G Z,µFdÆâƒÇ_÷ßFšŠ|‘Æñ·á˜Çä"`DñXÌäý[ò1 8þ²GÀ b0ÅïÅⱘ‹|LvÏH!PøØŒÐŸ\,)3U\—?fþ#bÃî™øŽ@Ù˜\Œ0‹¹ü¿0¶Ý3Š|‘ÃplG@ ±i,æÅúuzpüc@8Űø²ESÈÇôàøGŠp²1¹ÿäbIäczpü#B8JˆEæÅ™%½˜…|Lv/G8"½˜Y¢Óÿ§ë¦o˜7qÝÝÊ…|Tl¾N4v/D8"uøìbãÅ™ýù¨Ø|L‡G8"˜\ÙŸÞØbC¾Èâø‡A8"±ˆEÀ*¶åcf,fŽ-6ä‹,Ž0„#’†•hÀfY‰sAæÆ¢8òEÇ¿\„#’€ÉEÀ-~´Å3)Õ©úÈYì^ÒG8ÂUÄ"Ñ­_[8¹Xù"‹ÝK:G8†T O_znl§OSùèb,æ"_Ä1\á0¹Äï<±þökTŒ§Ï`ù˜ŒXÌ‹|‘ÅñÏ‹p„¥ˆEÀ1Ÿ>5wÏØÙ¢)ä‹,ŽÂ!k‰ä£úêd‚'K"_dqü}„#äqÙ"àŠøOŸ¶ÝýQù"+k÷R:ŽÁä"à®øóÅ{òµô×m 6_ËJy>Žˆ±$ ù"‹Í×A8"rœW€#_ı~8¥4÷îÝûÇ?þqéÒ¥MMM‡zèÀ'L˜ðï|Gz\ÉÁä"ìá½S»®òEÇñHc88p`üøñëÖ­ëÒ¥ËI'ôÙgŸýõ¯]µjÕÕW_}å•WJÎaÄ"ì‘õnlhhà=”_þ%Žã¨¥1/^¼nݺN8ᡇª¬¬TJmܸqܸq÷ÝwߨQ£Ž>úhé:†•hX‚_]ìÁñ—åÿºººÌŒHc8>÷ÜsJ©éÓ§{Õ¨”0`Àe—]vûí·¿üòË„£Ž¦¦&ÿÏ|$A¿ºyõîÝ›õk—ÆplhhèÔ©ÓàÁƒ3_0`€RjË–-Ò£³WCCÃxâéKÏUŸG€&}ä# Jc8>ðÀíÚeáëׯWJõéÓGztÖq"0ÈG‘Æp<æ˜c²^yõÕWkkk¿þõ¯Ÿ{î¹Ò£³Âàisž¾ô\¯½^ôøþÁ*¥Öß~ôH‘|¬D‘)ᘩ¥¥åÑG5kVKKËoûÛîÝ»KHŒ?³¨”ºoÂÄÆý_IÆ,Þ¿òþ/ä#ŒcrˆùˆÀRŽýë_o¾ùæÍ›7÷ìÙó¶Ûn;ùä“¥G7¯ü¼uç"™XùƒˆE f<û¤4÷íÛwÇw,\¸°C‡“&Mºè¢‹üÖiuÙbãþPùˆÀˆE@ÏþAYÒŽ¼îºë^xá…3Ï<ó¦›nêÑ£‡ôˆâàÇâÓ—ž`r±¤Ì|T$Šb†°ë×БÆp\¸pá /¼ð³Ÿý즛n’K´òîq 9¿Xœÿ_aY˜\œ@>¢¸Ô…ckkë#¢Ô…ã¶mÛÞÿýÊÊÊ .¸ ÷ßžwÞyãÆ“cY{¢¥‡ó•‘iÃJ4 ä#r¥.½gåíÝ»÷wÞÉý·nm¬Î}Œ½=ɘ;*ò1Ù˜\’ŠÍ×È”ºpüæ7¿Y__/=ŠPrzϪ{߆yJ©+ç=¨\ÈGEA&±¤›¯áI]8:Jó íÅ™ýù¨˜€t@š±~r„£½OçØœÞ¨à&d"S‹p´Ž©é«òÑïÅÌ‘‘–#G>¦áX¶šš¥”Ù %£;Cg棊· 3»P¼\¡•hea÷LªŽeó’1|>Æ9ãw[ÔÄ¢£˜\»gR‚p (X>ŠŸž#Z¿™ÑDH޻ѻAñLaý:ÙÇP4óѶ |#ùÈ䢋òþêbÉÛ@’IE87Å'K Ä¢£lûÕ@JÉC8“™ ®ü„èä#+Ñ.²ÿW)A>& áhX}}}MMs?¹›¯™\t±ÀZl¾NÂ_ÊÜ|M,:„b®`óµëGäÑkÖjE8ÚÉENcýÚQ„#à b@Âd­_Ã~„#`;V¢Ø8´µ1Iú÷ïßÐÐÀì£GÀFL."¼‚QüÜI`ñÚ „#` b°ù"‹Í×–#IÄ"`'òE›¯­E88NÈÊÄ `ÛŽ@L˜\ÜÅî Yä£=G BÄ"$ä‹,Ž¿ GÀ^)E>J!_dqüó"a)&HeN.fõbòQù"‹ãŸ…p„EˆE Rú±˜‹|”E¾Èb÷’p„<~脉Å\ä£,òEVÖî¥t"!‰ßžˆºlÑ?oy÷¯_ºš‚Œ›¯Åõïß?µíH8BŸw€Af'Kj©>~ú†y-L@Êaýñ#Àv^æmÁ˜c1/Ö¯e‘ˆSÚÃñoûÛèÑ£/^"~™ùØÔÔDA¸”†cssó{ï½·|ùòÇ\z,Ìðcå–‘w{×Þ%FÞR´?!…Ý3ˆNJÃq̘1ÿøÇ?¤G ,oc¯Rê×/]íÇŠ-FÞ¯(sý:y_2Œ`ýÆ¥4g̘ñ¯ýK)õÈ#¬^½Zz8ÊãO.z{•RIš_, ùˆ’ÈG”Òp<å”S¼?¬\¹Rz,´ø“‹ŠBÊa[>fîã%ÈG‘Òpà„³*Æ*¥üm.6$‘Ͳ6_Ç|¸²n D;Ú‰|DH„#ëx+ÑÞ•âeè`ü^ŒaÒ†»H"]ˆÀGVð&ÕÛ\˜¯ /¢õkb11Ø|Gbü»-ªŒiÉøG osíSùÈ÷"ÁX¿†>Â@Üüm.%ï¶çªk²ËÇr'û¶ß.ý…"8ò:Gq¹ÍŶ]ÃŽÒ9Œab±qwé/a‘(Žp‹ú"ABns!È{@¹+Ñ~/‹‰D>¢Â€IþõE‚/<òÑÿŽ9úG’ÉÅ´aó5rŽó˜k7ÏjÜ/=¤›ÿ(—ØJŽÝ3ÁZ‰.”Ä"Ø|LiÇ[o½õÖ[o•EüXT?½gUŒå¬‰øÙð(vÏh*YØ™!^»y–ÿ:±ë×P„£+X)€%¬}” ë×¹lsñ’ñ’#§jþ_BäcÊŽöÊ;¹ˆÈÜæ¢”j©>^zDù‘FöDsQù˜Z„£]ˆEØ#ëQ.*g]XÙZ)ìž²¾#š—-r)J"Sˆp,[MMRª¾¾ÞàßÉJ4,á?ÊÅN´Êw'®,Ìêžä <¹XÖe‹N|¯!‹ÍשB8–ÍKÆðùÈä"ìáO.úrÑì›çö™Œ‚wç¶ù{ °ù:%Ç€‚å#±{dns©Ý<+LUؓŻÊÝ”Œb%:{¾×°ë×ÉF8†¢“Ä"ì‘{¥¼›€zµáb>–; ç¢èV¢ÃŒ‡|DäcRŽd棫=`‰¬G¹:Í{µáP>²iCIß›|DIäcòŽÆø3Žuuu ü„@–·Í%s‹Ž(òQ™«Š4L.ù½/Ù¶G¹°ù%±{&IGó&NœhvÏ5 )kr±%èYÜl>ªp“R©ÅLÓ7ÌëÛ~»RÛ/9rªÁÏGw/$EÔØ=“ „#ඬX4ø7g棊}ýš¬L}Ûo÷Žÿô ól[Î[öä#Š`ýÚi„#à¤Ìèø/F‘~/Æpù#“‹…dvK®,,^ö~à…Ž"gd>Ê¥ÐÙZE6WÑîb1‘+ ùfÁ¸¬Ëa?°ZÞ•è–¢ÿ—Hõa*£a"ùKÕYbx¬KÚbñ¬Š±ÿ}p‰ô(R§ÿþ Ì>:pl”w%º\Ñ­iËÇB ÂåŒ%5îï^üh›ý^§-3Mß0Ïûé#ãÇæk'Ž€-"Úæ"›: ÂÓuèíßk >óË÷)Ș±ùÚr„# )º=ÑYâÉGÿƒ%ˆ%Û>lf<Ó<¹Xœ4˜€”Âî;Ž€#+ÑDšÞ_[»yVÈ¿œ|,©Ü|T® Pa Þ!ª««Sä‹òÑ6„#“Ø&K2¸!77A\òµCtn´™÷ÆŠO}_ÞêãÕO{gö1~ä£=G BöÄb®ÀWê$ˆsO¾vWñmf}³¸·¢Ž"ul©>žÝ3‚ÈGŽ€a¹±hùÙZ3ÎÌPZþäë„ñö%GNõ_Ì:V„xI…î|”)s÷ ù?6_Ë"3¼5,•ï|ìÄÙ:ï ¬ošzt!›¯‹Ë ë8ïÝ“0úïO6_ËbóµÂ.kr±ø9؉i3o53ŠAÆùè¼,Ÿ÷ ¦PÙÇpïxØ|-Žõ똎@y¼Óï_ºZ:ÝZ;m–‹^Aaœ—?&ò ?ýià›¯Qò×/]=bÄéá¤ùÂÐ’µÝöï³b¾§x‚¸øäë’_”»#l¾NÒq‹Ùô ón4A©»³ÈÇŽ@AMMM—9Õ›\ôvSÿOÄŸåv•O¾Žn…Ýá§~5/°á÷åý±bñZ ù)Âø ï6¿ž–êã½ÛY‡i1œ­ÃG•mO¾V…#8yÝcübSòшâ?Vìž‘ÅæëˆŽ€R_ôâ-#ïÎ:˜šÓaülÅ¢mÌ. öEeÒKd! Ê"Ã#‘ Þžè_¿tµ7³è 6mfêvÖšŠ Ò’íÃfwÏä}øu‘¦)òt¸B‡y~òµJÖ„nœsöä£ò1 ‰•µ=}ü¼÷Ð “Jhý:óE{^¿.yªÎšÓŒEPòß¶½CŠΞ|”Âî™`G$Š‹¹Û\Š ¼êÃúuÞ»X[{¶ÖÏÇ`ë€m?\§z÷¦£–ùÆ.òðkÅî™ÐØ|-‹Ý3å"á¼ÌG¹ø+ÑÁNcW]£ÈÇB]åÄ£> åc°m.žÏluwñZ¥fÆQ$ÎüoVñ›R±ùÚ6_‹cýZáWù“‹¦å’)üåÁ‚F¿«œxÔG°G¹è¬DÇ|©€¸Øâ,ï7«q¿RÜ»'.¬_Ë"K"áÿ¹YÛ\"O>†¼ßÚvÖœ¨÷…ž€ø²Å8·º‹‹è{­ùÔß=Ã&¤ðÈGYäc„#lwVÅXoZe<÷Ïìübqm¾6»ÖlI>I¼S¤¦VœÉÇ‚½uæz§o˜×·ýöÌ+# ù(‹|Ì‹p„¥üÉÅB»¡cìʬ³lñMf[>–;cúÅ}¹-zt¡‹‚}¯ Þk&ïÑNÛµ§ÑÉýN‘RØ|…p„EüÉEoO´U ¯žWfžóäkUfCç®D[øäkéÆHoLèÝ©í‡ëz÷î­qÀ ]MÛÝûCîØ|-‹Í×>²n ãM.&à¦3yO:› ¢¡2t$os‰GEÞK¶N=ùÊyúÿ›û&L4ø_”û½Žú.ÖÙ¿ |±Õ½oûí®·cü>e}³Ø|-.k2…GHª««+tK.Ú+.k6ØöèÂ\Qì‰.~ ~ùû»)Eï_%)ýH*‚Ÿš’ßÙÄÌõÆðá¾ìY¿–Õ¿ÿÔ¶#áI%wFÛÏBl6Üú±ˆ²Î…1Äbñjþw ÑœVôþ•ëùXè›eª{ʽl1k®×]Qä£ñ2òñ#áÛîYX¤«Ü}òµ*ÿ¬Ű¯¯A»˜:e¦{Âÿ&àôŒc¦ð¿ÏÄððkòqJo8.Y²dñâÅ›6mêØ±ãÈ‘#§L™RUU%=(” »~­sò0²ùZäÉך£í9Ñšßk¿C6_f>†ÿÛ" _ôdxxåþ>C,$ùˆ¨¥4çÌ™3wîÜN:xâ‰Ë–-Û¸qã‚ *++¥‡†ÒâÌÇ`'«]Xü‹ÒùÒ“"ï÷:º .þßfÛdÈw{‘ßg¸NYÌÎÙG7Bï·Œ¼›‚„qi ÇúúúÚÚÚêêê¥K—öèÑC)5cÆŒ Ìž=ûÆo”tE—g ¤]XüëÒ<áÙ“Ó7Ì»rÞƒqNÚ¶~mð.ñJ)ïîÜñÜ*‘ÂÌÙGÊÿ™­Ý<«q÷éæ1 ãÒŽ‹/>xðàäÉ“½jTJM›6íÉ'Ÿ|öÙg§OŸ^QQ!=@”Á`>F7[ ˜šlmRȮۖadMOß0/Š{°§„mÉXäw<Ö¯a\ÃqÍš5§všÿJÛ¶mO=õÔåË—¯]»vøðáÒDÙ_Àç¥H=º0üe[RØv«E§ó±dRD=gŸÅ¬â¿ðº¬ HÈG”ºplmmÝ´iS·nݺuë–ùúÀ•R[¶l!Ý¥ye¡ÈuëYÿÅ`ù¨ŠN@†|”KøA†gsœ9”’Âà“¯Uá•\iþXÅsã°W“0"uá¸gÏž–––®]»f½Þ¥K¥ÔÎ;¥òž m¸n=ïËRÖúµñG¹”<Œ‘ê5kµw9£²5ξ²ùzêÉÒÃù’‘¤ð½¶êÇÊ”À¿[Ftã0#Wg}Q<º¥.÷îÝ«”êÔ©SÖë‡rˆRj×®]Ò„1Þƒ4l>±;Íø_QíæYÞ%ðÅÿ÷RIQ.ÿë²nÏ’Íׯw»kþ>#;g5#ϪÿScê›[è»É£ Xê±k×®mÚ´Ù³gOÖë»wïV_Ì;ÂiyÏj^AZ{’Ó9Í䞊<ùZ*)Ê•õÍÊüGûóÑ¿óÊyÆ9¨w»çý}&Ù±˜÷Ë7õWéç£ñXÔùï²~r¥.Ûµk×¥K—ܙſæf¥”¿ÏÎ)Þ4.>ùZéò>á-Τ(WYg5 ó1w£wænžˆˆÜJ3sÎÞÚŸû•üð‰b%:Ø ÉGèH]8*¥ª««7mÚÔÜÜܹsgÿEïiåÕÕÕÒ£CÊý¬´ÿÉ×Y_Z¹³±)7ÄCžÕÄë"¾Ñ;Î[#š³WvÿÈX.ëÃÇ»ã•'Š•è0ƒ$Q\ÃñŒ3Ψ¯¯¯««;ûì³½WZ[[_z饪ªªaÆI%„_2³ð\Xè‹*4Â’óOñ?º0ïa4{V‹ùÊBñXŒSÉ+'æì-×·ýv¿/9rªŠeÎ>òÅ¥1ÇŽ;wîÜ{ï½wäȑޞ˜ÚÚÚíÛ·Oœ8±}ûöÒ£C}PŠŸ KvU¡YŠ’EÏ£ s™ubDG5ÒõkËWmV¹e/þ#ãœB¿ãÅ* Ò޽zõš2eÊÌ™3Ï9çœ#F466¾ú꫃¾øâ‹¥‡†¯ˆgM9æsa€èž¥ˆ-ý/*ÎË æ#“‹eqè’)š—-Æ–;[`j–"/SùXÖï-ÌGGW¢ƒÝL*‘söV1~Ë#ù•æptH¡XÌåý$»’½f­ž1kµ7ÔÆýŸ_ÀçÝ›PV˜•8S“‹e 2Ò'_ø¢B2°B›¯0¹èOD•<Œ‰œ³·MÔ7Ð_¡.Ž|L9ÂÑ^~/Å\6çc‘>ǹŸC‡þJ\l±Xhåžftž|à¯Õdlù¨œ\,¤È÷ÚžÅÍ$=¥:KÔrÉäÄeäcjŽvÑŸ\,)3•èGO‘³ZnRØ–ªp÷”ÕU‘ÞÀ9ði&÷hG— RO¾Žá?§Üg¯+ûÂ"1ù(ò(—L6Ïãf~Ql¾N±l555J©úúzS¡ÁXÌåÿÇ?©ßUÅóQÙQÁ¼ó—ì4ã]]ª”ªÝ<+êwrCÊ:t ˆ3 Ùð(—LVåcñ^& Ó€p,›—Œáó1ðJt0ñ¬_‡ù¬ÌM ÍÕ¨å~QÅÏÖ"O‡Ë¤yšÉûðë8oý¨3Hx ­­JŠdùPûè~)ü^ë°³~„c@Áò1ÒÉEQä£Ù%³¼I!²~]ä۸ⱘ+ïi¦ä7+æCM÷hÒ9[sÐ߇ä‹ó²Ø¾×ágÈǤ"CÉÌGU  Åc1—‘|ŒzµQäòDz>+ý^¼äH{OØÞY0Øî™ØÖÙYu5‚ËLщ3ÙkL£û^ü;ÉǤ" ð{Ñ/HûJtòQê±W‘æcø=ÑÎ÷äý¢ü‚4»ùÚ”¬]öÆ’Ëð­,>goÃOº©ïu¤ìäcòŽæ=÷Üs555wÏDªäæk6oÏÇ(n cC>?«Ü| û‰¼!3ß hGtÎ>þAª2¿×1°óäë$!ÃÊœeôc±¾¾ÞøæëHem¾V–ýb9’ÜÝ3ú+ª=ʥРã9tN¶=ºщá iÃï–ñ|Q^AZû5ê?ùZ }§xòu2ŽAäÅ,¦6_ÇÌæ›‡{r§ÍН¨ŠÜ;ê³µ‘ùè¾í·‡9ÚÆßâ ¾í·_räÔ"söþR]hÖ˜õk§Žå)7ÉÇèY¿öoL¨9þˆöDÿÔŽâç£ ‹Q(¢q÷ð±>-Lã÷w¯ÝBòÑQ„cy‚ÅŸÎæk 9—™/êœeãÙ5ò4ÏÔN˜|TåO@ú¢ˆÈ"LÍõ–ûûL‚' Ñ|cÛpYs¦’?V6 2—Ÿ—.þIÿþý¥‡ƒÒÇødm¾v1•}=¹©Q|÷Œà õO3R§êÀS¤šMcù Ì fóQxC¦0óÒ9ÚâùXòÇÊæ)Rÿ¹vó¬ÆýÝÙ=ãÂQ€‹ëׂ.ÌUü¬–»xÝöÃuJ©Þ½{+ .Ë+r𱤫Ìn¾&A¢`ðRBsöÒ_¢E,ÌÇ`?Vâë)ôÛ{îïÉG;Žb\ÌG%º~­ÙUÞ¿ýâÖÜSk7Ïj¬>^)å]´r“)Nœ­¯_{ÿ—Úͳ m2€Fn´™{¾ey‰ç£©ßÁ¤ò±Ðï9E>ØÉG;%6ÿö·¿=zñâÅC‡Íý·K–,Y¼xñ¦M›:vì8räÈ)S¦TUU‰Œ“|,.ðžhÿÖÜþc],yòuîeùÙºÜ'_«/§{•·ÉÀ†RO¶rׯ ýXY2#e3¹^³»â"Zˆˆç{­3¹Xä¿Îî;%6.\Xè_Í™3gîܹ:u:ñÄ—-[¶qãÆ TVVJ–|Ìdö:".,닲ö–…©Ý}Ì.L¹âolý+ò±$ßBÃ\YÛQ|ø„ŒÅBƒ$í‘´plnn~ï½÷–/_þøãçýÔ×××ÖÖVWW/]º´GJ©3f,X°`öìÙ7Þx£ìàS¾ùº¬¯r÷¸Hå£þeóìYƒ,÷`Ï\od½±7¿Ïˆ3¸~-x5°‘Ÿ+ÑI>Ú iá8f̘üãEþ‹/>xðàäÉ“½jTJM›6íÉ'Ÿ|öÙg§OŸ^QQ!ý¤kóuÈ•èrÅ“!OvÎ÷yF‘£ù›Bò¿Yµ›gy›UÿUNü>#.L>Z•æå~øŸ\Ô!›¯e%-g̘ñ¯ýK)õÈ#¬^½:÷°fÍšŠŠŠÓN;Í¥mÛ¶§žzêòåË×®];|øpé¯àK.®_ël¾y”K¦âùì¿büƒÒ’|ÔyøuàÍ×MMMÞVwÅ4dhyßû•Š`óu¹?¶)Qn>f¾b•âßëøc±ÐB’ާœrŠ÷‡•+WæþÛÖÖÖM›6uëÖ­[·n™¯8P)µeË«ÂÑãb>ªœõkñXÌUèÉ×*Ð&ƒˆ>(Eò±ÜoVà¤h©>¾Èó9 CçhðR`I‘*…ò1÷ÇÊ{ÅÚ‡_g}¯óþú!^À¬_‹HZ8·gÏž–––®]»f½Þ¥K¥ÔÎ;¥XP2ò±äÿ>þ]yWâLm20;ÈH#5ü,)xòu¿YQ<{¦v󬬿ê‹CQü¾Tö_зývïûëß›"sÀöŒ™|ŒYºÂqïÞ½J©N:e½~È!‡(¥víÚ%=À¹{Æ’YŠâë×å>ü:º*£§ã'€`I‘u©rüuÅH>f$ÅÔðCJ˜¬«’÷¥²äºOÞdoÕȶ^ÌB>Æ&]áØµk×6mÚìÙ³'ëõÝ»w«/æí—€Ý3ÖÎRd}‚gn2°g¨!O3QϘf%…þÅ’Ãkÿ;5C U¦¿Yò±PR(û¦ âWüÇJüæáÅ•{Ù¢%›ùƒt…c»víºté’;³ØÜܬ”ò÷Y»Â­õ놆õE•›qúòlý•ÙG¥,[Q-ë4C,úÎJ ýAÂS(¢8Œ%·…i.¤ó{ì¾TöäcàèX5EZd„l¾ŽHºÂQ)U]]½iÓ¦æææÎ;û/zMS]]-=º ,ÏGïØ*¥ú÷ïï¿hÕ“¯UÑ@îî«ng]ü<Òy ýk ì?͈ÓIècîî™Àoò¼ÏÒL˜?V²ùhpO´C?×uuuJ©#FH$!RŽgœqF}}}]]ÝÙgŸí½ÒÚÚúÒK/UUU 6LztÁY•~,ª¯öb.Á'_+½@îTŠ…·³.t¶Ž´Ã$…å§™x›Ž!)B¾±3¿.k· ‡ù¢Œ|EîÝø¿é t,ü¹ö¿®¬‰FòÑ”Ô…ãØ±cçÎ{ï½÷Ž9ÒÛS[[»}ûö‰'¶oß^zta æ£~,æŠ3C>öJüÑ…%¿¨`_]q70Yxš‰™‘iਓB•ùÆ.9gïâ÷:†û'è?ùZ•$£~”Kî ¿×™ß¬B Ó^2’á¥.{õê5eÊ”™3gžsÎ9#FŒhll|õÕW|ñÅK͘87_ç]‰&º|4x°'K~Q!?Ä#Ýí.~š‰YD b<)2•|ck~QÎ힉¨š‹:?5²wçŽù{­‹¹ÈÇðRŽJ© &vØaO<ñÄŠ+zöì9nܸɓ'{³IÝæë0“‹%{ta®H?(ó±Ü‡_—•1ß)Ù×ÃÅÿ `IQ\î;XX¾{Æÿ¢ü3‘»üцG¹äŽPE󽋹2óQQejÓÚÚ*=Ä!d>F‹E”;ÿlAñ| ÐL ÙSã§™Ø.°»rÞƒ÷M˜˜õuIµ‘NRû;•¹ûRø^ÿnÿ±ÿ>–üño1›÷Éׂ#ÏbäçºÐe‹¦›€lhhˆólhÂ1]ÊÍGƒ+ÑaÏG>+sO3!k,Š/*Ф ²þ­£áØkÖê"_WœüïlÞ§•è+ò4õ«QYIaê»YnÊN‘fê¼?¶6|–ìWÿÏñÜO§Ü|$‘"ÅóQjr±¤Ì|´ö³2äd<7Ð ™ÁމÎ×ån8ú3ŽRŠ?J8Š9û˜ó1Ìw3ê9ûHõm¿½©©©wïÞªèJ´ø©Ž’‡1þXÌ¥Ÿ„#R'3­Å\–Üú±¸²ò1¶»s‡LŠG ÜÿáXýiãâ'ì0ïÀØò±ÜïfÔsö‘ÊûíÛ~û%GNõž|­J}7mþ„Ìýð‰z%:|$‘FþÎkeÁÝËâz>Š<ÊEsá¿äÀ¡»áè-UK%…þQÑÌÙ›ÍGUà¢Cñ'$eþWâ¼IjÖaÑ9Ú売©³ÏÇÔ†cwU§\¡X´äæášLm¾ŽTîžÿY‹µ›g¿²0XR„ߘbíeqŠúC70EýèÂ0# ¶!7æUZ³ßë{¢m{t¡>'b1›¯ó"SAgfѪgÏh²íÑ…Ed}‚7î7–FþžrO3Äb^fïcg|OtîöÛ˜Ÿ|­¯äRüæ{mä:壅+Ñeñ{‘»?zXªN¸`!èV>úìÉÇB'€¼§™ó4‘î‰Ö9[Gwe¤£KÕy¯q pÂ6‹ªÔ…ƒåްܝÅàúu&~ÌsY|TÑ=ÊEñ:Ì%Àñ8Ú‹…øù˜Ú¥j‘åÒÿh°ù:æèø#Œsj'aáèCMŠr¿^ÿÏÁö‘D·È.òuůÐϵ'ê»sk¾‹¢ûm!Á±˜ËÑó£„#JpôÇ#¶| sÐÉGñ»sûÒÿw“Žþ`”^Rø2½?„ÿb£¾FSÿË,>goy>Š?Ê%æÝ3®¯D—%ëY¾ŽžC"¡%ž'_Q>š=ä~‚·ýpwÛ6c/ê†é*ñ HÉÅÀ_ÁÉGbQóÿâÖù1ÂÑvûöí›?þ³Ï>ÛÐÐPUU5dÈ«®ºjÀ€²£r1U  Èxå¢ 'EKÕ!$Òk¤Ž%'5ßZ²³k}¯½¿VðÉ×a[‰¶êÑ…yåaªbQŠ?GÏúG«µ´´Œ7níÚµ½zõ2dÈǼfÍšŠŠŠùóçŸxâ‰Ò£sõÇ£d>Š<Ê%ïBn¾Žô‹ŠâDèz8[‰Î=’¶m1ò½.ôE‰<ù:€âO`ÒüO»’¾TÅ¢2z:sôü¨ƒp´Úc=vóÍ7=zöìÙíÚµSJ½òÊ+]tQŸ>}žþyéÑ}ÎѬ|´çQ.™B>ùZE?_eöïw7Ÿ¾ô\eñe‹Fû^kþ¿ìÌÇ’“‹Î=ùZiÜH¥ Ý}j𠏏ÕÖ®]«”úùÏîU£RꤓN:úè£ßyç;wvëÖMz€J}us™rç‡0†gÏ„ß ‘{ÿ^ËãL`úHžð3Á¹O´þ÷:À;Ðì³g„] {¢eïËõðkÿõÄÇ¢r𩨨ðSÒþÏ¡[~>œ2~U¢N>ŠÏWYòŒ 'ùf9qóÒÈ;PêÑ…"7Ðü^gÞ@§¡¡A)•àY3¹hKÕV«¯¯ÿñüo|cÆŒÇüÇ|ÿý÷/Y²ä'?ùÉ-·Ü"=ºbÜÊGO˜ÙÇØîÎ÷lÅ“¯ ²¬ÿ££KÕš÷qô”õfkó1Ø¥/†ÇsG÷(—`#Œô¿X|%:aùH,FŠp´Ý[o½5~üøþóŸþ+ãÆûÕ¯~Õ¶m[é¡•æb>*íÍ×1?ÊÅ—÷l-rŸpq–Iúÿ{ͿӆG†üº,¼gaîzt¡·•Û#rwnAš@¹—-:ÄblG«577_vÙeo¼ñÆàÁƒ‡ ²cÇŽU«VµmÛööÛo?묳¤G§+aù(þ(—âÒˆçî厼ø“¯UƲ]Â1¢Ô“€Ôé*k]˜ù;žwU_î¥öt¹ ý½ù(·ò‘ËãG8Zí²Ë.[¹rå´iÓ~ñ‹_x¯lݺõ§?ýéÎ;Ÿzê©#Ž8Bz€ep: ÍRDªÜiØŸªÔƒ4Ü Ç§/=×ßgé4Î| ùðkñ|´g%:˜`söÊÐ6/••™ÈÉÅ¿ýío£G^¼xñСCsÿí’%K/^¼iÓ¦Ž;Ž9rÊ”)UUURCµkƒ2}ôÑG+W®<ꨣüjTJõêÕëŠ+®¸é¦›þüç?_wÝuÒc,ƒs›¯½ÏM/3g)¢à¬lóµû¯Û ¦qwS·³..†á»*ºA–|c—µÍÅò‚,y#½Žß‹–L@&23-\¸°Ð¿š3gÎܹs;uêtâ‰'666.[¶lãÆ ,¨¬¬*áh¯;v(¥úõë—õº7ѸmÛ6éaùækÿ—lõÕʨïÝcdÉ̶|,òE%2ã<ÚÆË,ŠEÛØò1ðžh'n&•{C®D—Ëû$”ÊG‡æ‚inn~ï½÷–/_þøãçýÔ×××ÖÖVWW/]º´GJ©3f,X°`öìÙ7Þx£È˜ G{õëׯmÛ¶7nlmmmÓ¦ÿº÷ósÔQGI0”Ì HñOÍEÿc:À£ sEt}•x>êÌâ8qÓ™`¤òQ•$ã¹Â/êïuÛש޽U¸‡_»ò†ôF(rÃÅ8ó1ñ“‹™ÆŒóü£Èÿ`ñâÅœûìôéÓ+**â3áh¯ÊÊÊSO=uåÊ•wß}÷¤I“¼÷ÇÆï¿ÿþ¯}ík§Ÿ~ºô ÌÇB“‹:2' Ÿ­#=?å&EfÐ(ÓM,A\9[>*í#)²>kê{gr±º{ãþ/wL_räT W؃±ðQ.Ñåcªb1ÓŒ3þõ¯)¥yä‘Õ«Wçþ¼ç ŸvÚiþ+mÛ¶=õÔS—/_¾víÚáÇÇ?fÂÑj·ÞzëùçŸÿý÷¯X±â˜cŽÙ±cÇo¼qðàÁn¸áÈ#”1±åc˜XÌ¥ŸR›7s“"ó¡ÊŽGäÙÿÄ”Àbžë-Ò=–l6Eª¿ݸ߻(y»©gÏĬ,ŒÅ\ó1ñ+Ñ%rÊ)ÞV®\™ûo[[[7mÚÔ­[·¬Å 8P)µeËÂÙºwï¾bÅŠ¹sç®Zµê/ùKUUÕÈ‘#/¿üò!C†Hͼèò1Òí…òÑ’Su挬_G4_•’|T±¯_g¾h Í)Ò¼G¬äU.ŒáèÅ|Ù¢™ù¨ÊùtMíäb{öìiiiéÚµkÖë]ºtQ_}ª\œGÛuìØñÚk¯½öÚk¥S›¯ÍN.–”µ{FYvªÎR€|´*‚ep®·ˆ¬ï”=«®yå¾!KN.:÷äë"œ˜\,Isó5±ÌÞ½{•R:uÊzýCQJíÚµKdT„#llóu̱˜+3c»‰`¹4ó‘XŒHë×…ÊÆ¶‹öòúâ&©Û³.O ÿ”zòuɈżò®_³R×®]Û´i³gÏž¬×wïÞ­¾˜wŒá«é¬_Ûv£Z³›¯#R(g šàÈí¶µÊMŠðM£ßU‘N›“wf1óæðÇiðRÀ!îâJt0ýû÷grÑ víÚuéÒ%wf±¹¹Y)åﳎ{TÒ‡(-7Å'u„Ù|¼^kܯ”•7·Y°¤(7Ãt• ÷,Ô|”K—º¼T@ó{àÉÅ\yc±¦¦¦¦¦†v ©ººzÓ¦MÍÍÍ;wö_ô΀ÕÕÕ"C"áKný¨ÏÎ|,ô …=æÁ™SPîŠ(ÍNƼ~àîÜ‘N‘Fº{†XÌäÜÓÂìtÆgÔ×××ÕÕ}öÙÞ+­­­/½ôRUUÕ°aÃD†D8Âvy?wœû0²!5¤ÛÍà %…ëÂç£úâ)—™¡ ƒÔøQ.¹#ŒhížI|,ªò?{-Z˜ýÆŽ;wîÜ{ï½wäȑޞ˜ÚÚÚíÛ·Oœ8±}ûö"C"a#Íße•kF"ùXîÌM¤ù˜ÔXÌ`Ú,³«\|òµæJ´ì 3…yc3¹X.«žæ^½zM™2eæÌ™çœsΈ#_}õÕÁƒ_|ñÅRC"a‘óˆ.~EýäkebGªÙ|Œí.†¶Ñ™6ËÛUq^i¦ÌŒL.F=ÈâôwÏ‹á¹ø‰-n„ ‡vØO<±bÅŠž={Ž7nòäÉÞ죈6­­­ÒÇ0ÃÑ#SÑÝ@'·ltβ&ÍÞÃ(¶;"]9ïÁû&LÔ’*ûpœ•tfc‹Å⃌è?‘{´Y‰21ãˆäpôwÙë×1ÜfEÿÑ…éY‰ÀÿNÅï}E¦H#Z‰<Ȉò1ó¾TÞ•¦‰ïEn ƒ²ŽHš4ä£ìïsׯÛ~¸®wïÞ*\Ö$òyƒªpWÙœþÀú¶ß~É‘Ss/¸´áþðÆ7_ç®Dqsò"KÕH2G—]òæ£ §êL¹Ir“·€›Œ¥jýoVÈ+ £(ÈÜiãܦ·á˜%ؑԹl±øÃôÜâèG"¬ÂŒ#Ì{ûí·xàõë×ïÞ½»¦¦fÒ¤Ißþö·EF’€Í×>NÕYI1}üKŽ ²{ƶ6"ØlÚ,Š'_çQ'’1s`šùXÖe‹y¦ç&a3Ž0ìÅ_¼úê«<8dÈ.]º¼üòËøýï?jÔ(é¡9–>Ù»?ê\¶Xèz¸r7Ýqì5kµ‘ÿV˜ ÈùXr›KîH,òu‘AÙmÛN !Â&íÚµëÌ3ÏÜ¿ÿC=t '(¥Þzë­ .¸ sçÎuuuÒTŠ|Ô`14·6¼W¼Mš72t45wUë\E–FöD[õäë’ƒô˜ÝãbçdÂV¢÷íÛ7þügŸ}¶¡¡¡ªªjÈ!W]uÕ€¤Ç•v,UäeË–577_sÍ5^5*¥Ž;î¸Ñ£G?ùä“o¿ýöСC¥¨T:vÏrOtîƒ×¾XÂö6lgŸµ&ã.4~ž|]D 7бgý:©“‹---?ÿùÏ×®]Û«W¯#F|üñÇÏ?ÿüÿ÷ÏŸ?ÿÄO”]ª1ã“Æÿꫯþå/9üðåǢŹ|ôÌGS7ÐÉMõëÜ¿„ÇܯB…»/·Šþ:6ä£àݹãÏǤÆb¦Ç{ìæ›o=zôìÙ³Ûµk§”zå•W.ºè¢>}ú<ÿüóÒ£K5faÒ;ï¼SUUuøá‡¿þúëo¾ùæ'Ÿ|2hР3Ï<³²²RzhùeÎ>*w>‚ÃÏ>Ù–[|¾*æ'_'U¹³Y¿ øÿ醤Ho¬X„%r‰gö1 ±˜iíÚµJ©Ÿÿüç^5*¥N:餣>úwÞÙ¹sg·nݤ˜^„#ŒÙ·oß§Ÿ~zÔQGýæ7¿Y´h‘ÿzŸ>}îºë®c=Vz€%cóµæHÊ%¢|tî×ZSzöì©”Ú¹s§ÿJkkë'Ÿ|RQQá§$Dpôa̧Ÿ~ª”Ú´iÓ¶mÛfΜyÚi§}öÙgK—.½ï¾û~ùË_>ýôÓÖÎ;ú\¼üÑ?w怌n%º,Åó1äØÒ#wב÷%W¢¥ž|­L¯†{¬êÅ,™ù¨‚dÚ&óúÁ~°`Á‚3ftìØñøãÿøãï¿ÿþ¦¦¦Ÿüä';w–]ªŽ0¦C‡Þn¿ývÿæ;W]uÕÖ­[—-[öÌ3ÏœþùÒcÔâb>ª¯N@Jв_ÜÌMмÏ*DÞò¾¿Þñ²Žª*üͲäÑ…ú\‰Å\~/êO@‹Yjjj.\8~üøñãÇû/Ž7îW¿ú•ôÐÒŽp„1:uêСC›6mN?ýôÌ×Ï<óÌeË–mذAz€åq.½STnR”+ê;­äM f‹(>mìÄ£ õén,æUrý:µ+Ñ%577ß~ûíÿüç?pà€ôè‚°<ý1õÕÓR¹»gDå"µ£Â…Öñó–}˜|Tñ®_礗-š’•L.ê˜:uêo¼1mÚ´_üâÞ+[·nýéOzÍ5×<õÔSGq„ôÓ‹p„I§Ÿ~úüùóß{ï½ú/z›ã $=ºà¬Ú|](sÏGKžû—»Òšfo¸hÏ£ ‹ÈÊÇ„M.—‹Jú3Ä~}ôÑÊ•+:ê(¿•R½zõºâŠ+nºé¦?ÿùÏ×]wôÓ‹p„IçwÞüùóo¸á†¹sçz·Kxûí·zè¡.]º$`qAvóuàËíó>ùZY6É—æ|4xwîÀWƶ~íQ3MH|,ªÂ¿mZ»ˆa‰;v(¥úõë—õº7ѸmÛ6é¦á“Ž>úèk¯½öÎ;ïüþ÷¿?|øð={ö¬Y³¦M›63fÌøÆ7¾!=:cb[¿ÖŸ\,©øækÄ/ï2±©i`ãÏž )Ù+ÑYtV¢­ZİP¿~ýÚ¶m»qãÆÖÖÖÌkŸ¼uÔQGI0ÕGv饗vïÞ}Á‚«W¯®ªª:ãŒ3&Mš”ȧ‹F”c1¯]ˆBJN.šýŽÈæcjW¢õ? ½ƒl *++O=õÔ•+WÞ}÷Ý“&Mª¨¨PJmܸñþûïÿÚ×¾–µÿ1㑃€á?÷CÞø-ÛòÑÝGöšµZ8’ÆŸøhø•›©ŠEezÊ|Ì´}ûöóÏ?ÿƒ>èׯß1dzcÇŽ7ÞxãàÁƒ7ÜpÃ\ =ºTcÆ0 ØÂSÔ“‹%1ûhJÖÜž%±Xd„šÿ/ÍÍ׬DáŒÐŽJ©îÝ»¯X±bîܹ«V­úË_þRUU5räÈË/¿|È!ÒCK;Â0FgáI<s‘¦|qÍì8‹úÖ˜ú n¾NÕäbœ7С};v¼öÚk¯½öZéà+GÀ¼ÜËEV¢ËR JÀfêÌ¢Ò”‹”À›¯½Ë+¥j7Ï"t"h¹uÝRl›¯óv•»™; çÄ †4ׯó®Dë?LÏ-ìtŠ#“ ÍR¸•*šõk›'áŒ|i¹_”OÇÉ;È’+Ñ%¦ç&}„#`@ÉY Ë]Xˆ‘|´ç ¿èÿÒ‚]Yÿ—0cЄr·¹¸›Ä" áW£wý ž\ ,ð•…‘2²Ç%3•ÝéÜO_!o¿ýö<°~ýúÝ»w×ÔÔLš4éÛßþ¶ô  „#\°s£wý-¹{†XÔdÃúu7Ðñ{Ѷ ÈäM.¾øâ‹W_}õÁƒ‡ 2`À€—_~ù /üýï?jÔ(é¡!ùG@Œ‹ë×¹»g,_µVüùÛ tlX¿N^,úvíÚuýõ×·k×:á„”Ro½õÖ\pã7žvÚiÞCV€èŽ€0óQq÷GC¢ÎGÁ»-ŠäcbV¢‹X¶lYssó5×\ãU£Rê¸ãŽ=zô“O>ùöÛo:Tz€H8°ù˜fÆóÑžG¹Ä ž\Ìëÿ÷Û´isî¹çf¾8kÖ¬Y³fI ©@8_Úºuë˜1cFuÇwˆ €|L³›¯m~”‹ñÝ3i‹ÅLï¼óNUUÕá‡þú믿ù曟|òÉ AƒÎ<óÌÊÊJé¡!Gàs­­­×_ýîÝ»¥’¢Í×ÈUÖæk›c1WøÝ3ÎýP·oß¾O?ýô¨£ŽúÍo~³hÑ"ÿõ>}úÜu×]Ç{¬ô‘|„#ð¹‡~øµ×^“Å—’ºùšŠ¬_Û³LYë×iž\Ìõé§Ÿ*¥6mÚ´mÛ¶™3gžvÚiŸ}öÙÒ¥Kï»ï¾_þò—O?ý4óŽˆá(¥ÔÆçÌ™3hР 6H%›‹ë×±=º0ñò>ºÐÑ^ÌR$‰ÅB:tèàýáöÛo÷o¾sÕUWmݺuÙ²eÏ<óÌùçŸ/=F$á¨L:µªªjÚ´iãÇ—N~.æ£bý:·V¢ƒñóñûßÿ¾ÿ¢Cïð˜uêÔ©C‡mÚ´9ýôÓ3_?óÌ3—-[fáï½HÂP÷ÜsÏ»ï¾;oÞ¼Î;K¥ò1 \_‰.Kæe‹Î½±EôèÑã“O>iÓ¦Mæ‹Þ õ¤G‡ä#‘vëÖ­ûÃþ0nܸ“O>yýúõÒÃÑB>&O&}…V¢Ý³ÓO?}þüùï½÷ÞÀý×®]«”4hôè|„#RmïÞ½S§NíÓ§Ïu×]'=–²9z–%}Äb^Žn ‹Íyç7þün¸aîܹݺuSJ½ýöÛ=ôP—.]Î:ë,éÑ!ùG¤ÚÌ™3›šš-ZäîVDGϲ™ùX»9E7.NU,ªp¿Ø8:³µ£>úÚk¯½óÎ;¿ÿýï>|Ïž=kÖ¬iӦ͌3¾ñoHÉG8"½^{íµE‹]qÅÉxH—sgÙ††/û÷ïïß¾'©ÒyÙ¢2ñVtîƒK/½´{÷î ,X½zuUUÕgœ1iÒ¤H ©Ð¦µµUz €ŒG}ô–[n)ôo ðôÓOK1 kϲþ³CT¾ø™]¿ž1hBrü‹›9sfSSÓ¢E‹*++¥Ç$á  q>ù^22¹¨éµ×^[´hÑW\1tèP鱉Å#G>F$7™k,éÑG½å–[ ýÛ<ýôÓÒcœÇŒ#à’½{÷þñ\ºtiSSÓ¡‡:pàÀ &|ç;ß‘£—?Ú©øÌ"s½%õíÛ÷ì³ÏÎ|e×®]«V­êÕ«×°aÃ?üpéIÀŒ#àŒ\pÁëÖ­ëÒ¥Ë 'œðÙgŸ­Y³fÿþýW_}õ•W^)=:‚& `S‰mëׯÿáxÎ9çð¬jÀfg,^¼xݺu'œpÂC=ä]û¿qãÆqãÆÝwß}£F:úè£e‡ÇŠª¾ð—-2× @á8ã¹çžSJMŸ>Ýß1:`À€Ë.»ìöÛoùå—ÅÃÑÊj!Qìq!ÄŒpœÑÐÐЩS§Áƒg¾8`À¥Ô–-[¤G—¦ñÄ0›æÃ[ÜàÁƒ98€Y„#àŒx ]»ìŸYïÙ}úô‘]~éÌGn  ©Ø8ìÕW_½òÊ+÷ïßÿâ‹/vïÞ]z8%$;‰EiÀŒ#ख––G}tÖ¬Y---¿ýíoí¯F•ÐÙG6Hf÷üõ¯½ùæ›7oÞܳgÏÛn»íä“O–QÙœî-&¤á¸dß¾}wÜqÇÂ… ;tè0qâÄ‹.ºÈõgòº2I,€"‡Ÿø‡œ¹Ì<÷rçœïüÎ=w Åb1À¡Ô%½²A8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8¥>é$ ««ë‰'žxòÉ'?üðÃ1cÆ477/X°à¬³Îê{›K.¹äÍ7ßì÷Ç÷ꫯ&½|€dä.¿üòË«®ºª­­­±±ñÌ3ÏüÍo~³iÓ¦W^yåú믿öÚk{o¶cÇŽ†††É“'÷ý»MMMI/ 1¹ ÇU«VµµµrÊ)?þñBï½÷Þ¼yó–-[öñßøÆ7B{÷î={ö<ôzÒ"w¯q|þùçC·Ýv[©CS¦LY´hQwwwïiè;v„úr.wá¸}ûöQ£FM›6­ïÆ)S¦„vîÜYúcGGGáøãOz±)’»SÕ?üp}}ÿ{ýöÛo‡Ž;î¸ÒKá¸{÷îùóç¿óÎ;#GŽœ:uê¢E‹N>ù䤗˜B±XLz Û¸qãµ×^ûÛßþöç?ÿù¸qãBÿøÿøÓŸþ4„p '477ïÚµëí·ß®««»ë®».½ôÒC~–––¤ïPYíííI/!¹›8öÕÝÝýØcÝsÏ=ÝÝÝ÷Ýw_©C»wïnhh¸á†æÏŸ_Ú²aÆE‹Ý}÷Ý3gΜ4iÒ!?s>ŸL•ÓÒÒâ!-#gÙyHËÎCZ^ϲËí(w¯qìµiÓ¦ .¸`É’%ãÆûñü×ý×½zä‘GÚÚÚz«1„0cÆŒ+®¸¢««ëÅ_LzáÉÈc8~ñÅK–,¹òÊ+ÿë¿þëºë®{î¹çf̘qÈ¿uú駇¶nÝšôò’‘»SÕ===7ÞxãºuëÎ;ï¼;ï¼süøñýnP,{zz …B]ÝWªzĈ!„1cÆ$}’‘»‰ãŠ+Ö­[wÙe—-[¶l`5†:::¦Nzå•WöÛ¾eË–ã×4ä+‹ÅâÊ•+ÇŒsóÍ7è6“'O>å”S^{íµÕ«W÷nܲeËòåË'Mštþùç'}'’‘¯·ãùè£fÍšÕÐÐðÇüÇ?zÑEÍ›7/„ðî»ï.\¸pÏž=Ó¦M;ñÄwíÚÕÖÖ6räÈeË–qƇü*.^€Ú–Ûc}¾^ãøá‡†ºººÞzë­í½D椓Nzê©§î»ï¾_üâï½÷ÞqÇ7gΜ믿~âĉI߀ÄäkâX¹ý)r"·Çú|½Æ€aŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽD©OzW($ùՋŤï?@™G ’ª·d› ¼œª Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp J}Ò H@WW×O<ñä“O~øá‡cÆŒinn^°`ÁYgÕïf«W¯^µjÕ¶mÛFŽùgög7ÝtÓ1Ç“ôÚ“»püòË/¯ºêª¶¶¶ÆÆÆ3Ï<ó7¿ùͦM›^yå•믿þÚk¯í½Ùý÷ßÿ£ýhÔ¨Q§vZGGÇš5kÞ{ï½G}´¡¡!é{ŒÜª^µjU[[Û)§œ²~ýúù—ù·û·§žzª©©iÙ²eï¼óNé6ííí­­­&Lxþùç[[[_xá…ùóç¿ñÆ÷Þ{oÒËHLîÂñùçŸ!ÜvÛm½³Ã)S¦,Z´¨»»ûÕW_-mYµjUOOÏâÅ‹Ç_ÚrË-·466>÷Üs===I߀dä.·oß>jÔ¨iÓ¦õÝ8eÊ”ÂÎ;Kܼys]]Ý9çœÓ{ƒ#Fœ}öÙüñ믿žô=HFî^ãøðÃ××÷¿×o¿ývá¸ãŽ !‹ÅmÛ¶;vìØ±}oÓÜÜBعsç©§žšôH@îÂqêÔ©ý¶lܸ±µµõÈ#œ3gNaß¾}ÝÝÝMMMýnÖØØBøä“Ob¾JKKK¿-íííIßu`8Ös+wáØWww÷c=vÏ=÷twwßwß}ãÆ !tuu…FÕïÆ£G!ìÝ»7æ3ËD¨ë¹MÉü†ã¦M›¾ûÝï¾ÿþû'N¼ûî»g̘QÚÞÔÔT(öíÛ×ïöŸ}öYØ?wÈ¡<†ã_|ñƒü`ÅŠGuÔu×]·pá¾ïÎX__ߨØ8p²ØÙÙBè½Î orŽ===7ÞxãºuëÎ;ï¼;ï¼sМ0a¶mÛ:;;>úèÞÛ·o/}(é{ŒÜ½ÏŠ+Ö­[wÙe—-[¶ì@ãÃsÏ=·»»ûå—_îÝR,ׯ_Ì1ÇLŸ>=é{Œ|…c±X\¹rå˜1cn¾ùæƒÜlîܹuuu=ôPéu!„ÖÖÖ={ö\|ñÅGqDÒw ù:Uýë_ÿzÇŽ —_~ùÀ^tÑEóæÍ !Lš4馛nZºté…^8kÖ¬ŽŽŽ7N›6íꫯNú$&_áøá‡†ºººÞzë­í½°:„°`Á‚c=öé§Ÿ~öÙg'Nœ8o޼ŋ—Þ‘ Ÿ Åb1é5Ôš––ïã©R(„¤vu ~i rr{¬Ï×k6á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@”ú¤A…Âïþ§XLz)Õ#"ô–bIo/öÛ¤$PË„#À`TŠý ÜÞ÷/ŠH ¶G€¯*•ß°›¯ï_,Š!„ !ö;Ìd¨X,B±ìŸ !Â ÉØWéÓÊG û„#{…B5zN>Ù'«~ÆÉG Ë„#Kɦ[o>jG Süæ JÅ–x´‹ƒ¼ $@Š G gR5çÓŽ@¦G ORU%¥v”@G 7RX%¥óæÚH=áÔ¾b(¤·ÿ•ÚH;áÔºB¡Rp)L í¤›pjZúýhG Å„#P»2W%ÚH+áÔ¨ŒVc‰vRI8µ(ÓÕX¢ôŽ@Í©j,ÑŽ@ÊG ¶ÔL5–hG M„#PCj¬K´# õ´#¨59n쥎@M¨íj,ÑŽ@Ò„#}y¨F€Ž@Æåª D G ËrU%ÚHŽp2+‡ÕX¢„G€ ÒŽ@„#M¹7öÒŽ@Õ G ƒT#@„#5ª±—¡#P] ˴#PEÂÈãF€äG ;Tã  jŽÙ§ªŽ@F7$M8Y ÉШ<ᤞjŒ¤ Ž5D;•$t3nH ᤘjCG b„#@ÍÑŽ@eG ­ŒRF8©¤“¡#P FiG Ü„#>Æ©$”Qed蔕p ŠpÒĸ±ì ò޵N;e"Ô0nH7ᆎ@9Ô'½€BNÇÕl¹â€/—¿Ç8\ÂH\VcIïw±Øçq6†Á©j€ÜpÂ8<ÂHZŽÇÙ"òÄÐ8 ÂH”q#@vG 9ª1†ŽÀp G€ü)‹A;C&„7dpÈ£BpÂ2á$Á¸ ƒ„#Puª1%\% ‘p ŠpªË¸1U ¡ŽD©OzIúàƒfÏž½jÕª“O>¹ß‡.¹ä’7ß|³ßÆqãÆ½úê«I¯²Ì¸1…JCGÿ.@„\‡ãŠ+ô¡;v444Lž<¹ïƦ¦¦¤— PÚˆ“ÇpìììܺuëÚµküñÝ`ïÞ½³gÏ~à’^,Ôiqy Ç .¸à¿ÿû¿rƒ;v„új™¡#!á¸dÉ’Ï?ÿ<„°råÊ 6 ¼AGGGáøãOz¥PCD @öå1gΜYúŸ—^ziДÂq÷îÝóçÏçwFŽ9uêÔE‹ ¼† v:‡’Çp<¤;w†|ðÁN8áÌ3Ïܵk×K/½´~ýú»îºëÒK/ù ---ý¶´··'}· 9rȲ‡õÜŽƒØ½{wCCà 7Ü0þüÒ– 6,Z´èî»ïž9sæ¤I“ùd"I†Ž0˜‡õܦ¤7Ä#<ÒÖÖÖ[!„3f\qÅ]]]/¾øbÒ«ƒ¬"µB8Æ:ýôÓC[·nMz!•ä—&û+‹ÝÝÝ===ý¶1"„0f̘¤™bÜPC„cS§N½òÊ+ûmß²eKÈñk`8TcF: û›iÒ¤óÏ??é$ÃUÕƒ¸ãŽ;.\xûí·ÿä'?9ñÄwíÚÕÖÖ6räÈïÿû I¯2¸1Ó\^ ÆÄq'tÒSO=5gΜ={ö¼ð {÷î3gÎÏ~ö³3Î8#é¥$¦Pôe¹µ´´xGò.eê—sð/Ú…%¿>H·ÜëMˆ"r3¦ª.¯¾J8E8eeÜXc >„#Q„#P>Æ5ÉÐØO8E8ebÜXà ‚p ’pÊÁ¸±æ:€HõI/ȾýãÆdR&žet€Êb±P(„Ê>Ðþ!Í„#PNIõD-»Áÿ)+ÿ’¯z€4sª8<Žó¹â•Žo€(Â8 Æ9dè9&ˆ"á2nÌ-CGÈ+á@á ‹qcÎ:B. G¢G`èŒ †ŽG€(Â"ãFz:BÎG¢Gƒ¡#ä‰p†Âyj€ŽCGÈ áD3nÈ7áÀa3t„|Ž@ãF€ÜŽ”ƒ¡#ä€p"7B}Ò †¬úcbŸ/* 9 ÒÐÑSj—p„Lªê¡¹PÅß}A§"òÌ©j¢Gà œydH\"5M8E8fÜÈ0:BíŽDŽÀ72l†ŽP£„#Q„#`èµH8ƒqž€„#•aè5G870á@Å:BmŽÀW7p€J2t„">Œ80á@áìgÜH…8[ µB8E8!ãF*ÌÐj‚p Šp * !û„#à<5Q„#Õbè'!÷Œˆ#¨"CGÈ2áùfÜ@4á@u:Bf GÈ1ãF†B8E8B^7’ g«!›„#Q„#ä’q#‰3t„ ŽDŽ$ÄвF8Bþ8O À°G’cè™"!gŒ.á@¢ !;„#ä‰q#‡A84CGÈá¹aÜÀáŽDŽƤœ³Õ€(ÂrÀ¸‘L0t„ÔŽDޤF±X †Ž^ÂjóÔ”‰p E Á+!½„#Ô4ãFÊG82.¯†´ŽP»Œ(+á@ú:B* G¨QÆ”›p Šp„ZdÜH p¶Ò'×áøÁ´´´üò—¿ô£«W¯ž;wîôéÓÏ:ë¬[o½õÓO?Mz½IÊu8®X±â@ºÿþûo¿ýö÷ßÿ´ÓN=zôš5k®¹æš®®®¤— '†Ž2õI/ [·n]»víã?>è ÚÛÛ[[['L˜ðä“OŽ?>„°dÉ’G}ôÞ{ïý§ú§¤—‡â<5•‘ljã\pùå—¨C«V­êééY¼xq©C·ÜrKccãsÏ=×ÓÓ“ôòòÄÐÒ$Ç%K–|þùç!„•+Wnذaà 6oÞ\WWwÎ9çôn1bÄÙgŸ½víÚ×_ýÔSOMúÀ7P1y Ç™3g–þ祗^øÑb±¸mÛ¶±cÇŽ;¶ïöæææÂÎ;…#@U•†Ž~"‚Èc8ܾ}ûº»»›ššúmoll !|òÉ'1Ÿ¤¥¥¥ß–ööö¤ï9àà Pë¹%û+]:=jÔ¨~ÛGBØ»woÌ'‘‰ådèH¢Ös›’y¼8æàššš …¾}ûúmÿì³ÏÂþ¹#¤‘Ã*&û«¯¯oll8Yììì !ô^g @U¹¼R@8b„ üq©{mß¾½ô¡¤Wƒ1n ò„ã Î=÷Üîîî—_~¹wK±X\¿~ý1Ç3}úô¤W á8ˆ¹sçÖÕÕ=ôÐC¥×5†Z[[÷ìÙsñÅqÄI¯0n$'œ­†¤¹ªz“&Mºé¦›–.]zá…Κ5«££cãÆÓ¦M»úê«“^@b„ãà,Xpì±Ç>ýôÓÏ>ûìĉçÍ›·xñâÒ;ò@º7’+Þ—U(úö+·––ïãHE}å¸Y݃èÁ¿Z‚t ËÉÂ^ì—Ûc½×8B–9‚’C^éÉŽDŽd¡#$D8Bf9O @u G2ÈÐ’ !›Œ¨:á@6:BÕ GÈžb0n €Ì2t„êŽ5…B!7á@–:B GÈSá@áÙa܃r¶ªE8E8BF7ÂA:BUG¢GÈãF8$CG¨<á@á©gÜ‘ ¡Â„#Q„#¤›q# ‰¡#T’p Šp„3n„a0t„ŠŽDŽÔCG¨ áiå<5)#¨E†ŽPÂRɸ€ôŽÔ(CG(7áécÜ@* Gj—¡#”•p„”1n ­„#5ÍÐÊG8Bš7b€Zgèe"!5ŒH7á@:B9GHãFRO8†ŽpØ„#¤€q#Y È CG8<Â’fÜ@FGòÄЃp„D7Â’£!†Ž0\€(ÂbÜ 2t„aŽDŽãFHœ¡# p Šp„ª3n„”0t„!ŽDŽP]Æ*†Ž0€(ªȸRÈТ GrO;BáÕbÜ@Æ G0t„(ª¸€ìŽB0t„CŽPyÆÔá¦!C á „#Q„#T’q#dŽ¡#˜p Šp„Š1n„Œ2t„Ž0€v„ÁG¨ ãFjŽp€Á:ÂÂ*À¸€Z$à á«„#”›q#5J8BY©F¨1†ŽÐ‡p Šp„ò1n„šdèû G8í!áecÜ@­ŽÁЄ#”‡q#9 á°©FÈ CGrO8@4íH¾ G8<Æä†p€¡0t$Ç„#ãFòD8Âp©FÈ-CGòJ8ÀÐiGrI8°7?†ÅБüŽ0tÆäR}Ò H©K.¹äÍ7ßì·qܸq¯¾újÒK#iªèU:Ú'Âqp;vìhhh˜9饑Õ„W:’Âq;wî !<øàƒ'œp™gž¹k×®—^ziýúõwÝu×¥—^óZZZúmiooOún¥Z‚'y¾Ÿï]X±ê‹t‚ )BÅb¡PÕþÖµ¯¨‚‡õÜŽƒØ½{wCCà 7Ü0þüÒ– 6,Z´èî»ïž9sæ¤I“ùdâ0$²ï;x þÿø PŪ.ÐË¥ sŠÅª>s´¯¨Ž‡õܦ¤×8â‘Gikkë­ÆÂŒ3®¸âŠ®®®_|1éÕQuN?‘\%C­ޱN?ýôÂÖ­[“^)¦©i±¿b±ØÝÝÝÓÓÓoûˆ#BcÆŒIzT—q#ì'ûëèè˜:uê•W^Ùoû–-[BŽ_ÓOÅê¿^ ¨†ŽÔ.áØßäÉ“O9å”×^{mõêÕ½·lÙ²|ùòI“&þùI/€ÔÓŽÔ¨Bu/͆wß}wáÂ…{öì™6mÚ‰'ž¸k×®¶¶¶‘#G.[¶ìŒ3Î8ä_oiiqUõP%uBø`_·PõK©£ÏŸ[˜…%»°ÔdÙU¹'}¸j@nõ&Žƒ8餓žzê©9sæìÙ³ç…^Ø»wïœ9s~ö³ŸÅT#5ÂÎ8L†ŽÔ"ïã8¸ñãÇ/]º4éUe~ 5Çİ£€ÁGø*Õ”‘ÖÔᕤ©!Âú0n€ްŸj*ÄБZ! ò´#5A8BÁ¸M8‚jªÂБìŽäžjªF;’qªH;’e‘\+ãFˆåwU“cg©!cÕ•sgáwX“Y€,I*·Ê\zÚ‘lrªš¼²Ë’åÅŽdp$—T# p$T#†Ždp€ähG2E8’3Æ0\‘ö,5É™köŽ”ƒ @m3z$„ 9\’ ?ŒsO82\ö9䢙|Ž ý@ÎÉǼŽ …}½äcþG¢yM4ÉÇ<ŽJïï¼·;à@äc>GÌ÷?C²?‹!„àðQƒ„#ƒ‘Œ [±X(„¢VµH8Ò‡orÊ¥÷PbQC„#!ßÕTŒ—?Öá˜oFŒTGß| Ž;Y%óÊO~T_¿ó×Á‘(c„cÎøF d6 Ç|ðm @:)ÈL޵«÷;0ø& õdÇšãû €LXÁA--„cMð­@íé{D3Iá˜Yb€ü0†Lá˜}¿U‚ïriÐ1äÀQÂ1Å|?ÀAô;2:nVžpLÏx¶ƒwdp`-ƒº¤^«W¯ž;wîôéÓÏ:ë¬[o½õÓO?-çg/ù¯XüÊì×ÒÒ’ôjŠÇ³ì<¤eç!-¯œ>žýŽªÅâ G^†ÈÄqp÷ßÿ~ô£Q£FvÚikÖ¬yï½÷}ôц††!®AŸ—ºªlàÁ×1zˆLÑÞÞÞÚÚ:a„矾µµõ…^˜?þo¼qï½÷çÓ ü‰Ç3ÒÀ1zˆ„ã V­ZÕÓÓ³xñâñãÇ—¶ÜrË-Ï=÷\OOOÒ«H†pÄæÍ›ëêêÎ9çœÞ-#FŒ8ûì³?þøã×_=éÕ$C8öW,·mÛ6vìØ±cÇöÝÞÜÜBعsgÒ HF¡è\þWýïÿþïŸþéŸ~ýë_æ™gúnâ‰'î¸ãŽø‡X¸páÁ?CN/^ƒ¶nmonNãóßÂ, Ê®½½=é%$ÀUÕýuuu…FÕoûèÑ£C{÷î=ägÈç3 öKíóßÂ, 8\NU÷×ÔÔT(öíÛ×oûgŸ}BhllLzÉŽýÕ××766œ,vvv†z¯³Èá8ˆ &|üñÇ¥Rìµ}ûöÒ‡’^@2„ã Î=÷Üîîî—_~¹wK±X\¿~ý1Ç3}úô¤W á8ˆ¹sçÖÕÕ=ôÐC¥×5†Z[[÷ìÙsñÅqÄI¯ ÞŽgpË—/_ºtéüÁÌš5«££cãÆS§N]¾|ySSSÒKH†p< µk×>ýôÓo¼ñÆÄ‰O?ýôÅ‹—Þ‘ Ÿ„#Q¼Æ€(€(€(€(€(€(€(±Ìþçþç®»îúÖ·¾õÍo~ó/ÿò/ÿþïÿþƒ>HzQÙÖÕÕõÈ#”ÒY³f-\¸ðÕW_MzQ5âƒ>hiiùå/™ôB²jõêÕsçÎ>}úYguë­·~úé§I¯¨Fxf–…gÙ9ÄáX^ßúÖ·~ò“Ÿ„þüÏÿü÷ÿ÷Ÿ}öÙ .¸à­·ÞJziYõå—_^uÕUßÿþ÷?úè£3Ï<óë_ÿú¦M›,X°lÙ²¤—V V¬X‘ô2ìþûï¿ýöÛßÿýÓN;môèÑkÖ¬¹æškººº’^W-ðÌ<|vžeçÿ;EÊç{ßû^ssóøÃÞ-kÖ¬innþö·¿ôÒ²ê±Çknnþ»¿û»}ûö•¶lݺõôÓOÿÆ7¾ñŸÿùŸI¯.«öîÝ»yóæ;¹¹¹¹¹¹­­-éeÏ»ï¾{ÒI'Íš5ëW¿úUiKéÛÿŸÿùŸ“^Z†yf–‘gÙ9Ä—˜8–Ó/~ñ‹†††ï|ç;½[þæoþæk_ûÚÛo¿ÝÝÝôê2éùçŸ!ÜvÛm ¥-S¦LY´hQww·s.ÃvÁ\~ùå?þxÒ É°U«Võôô,^¼xüøñ¥-·ÜrKccãsÏ=×ÓÓ“ôê²Ê3³Œì<ËÎ!¾¤>éÔ”¦¦¦æææ£Ž:ªïÆ#<ò‹/¾øâ‹/z¿{‰·}ûöQ£FM›6­ïÆ)S¦„vîÜ™ôê²jÉ’%ŸþyaåÊ•6lHz9™´yóæºººsÎ9§wˈ#Î>ûìµk×¾þúë§žzjÒ Ì$ÏÌ2²ó,;‡øáXN+W®ì·eóæÍ;vìøæ7¿™Ÿ§Ty=üðÃõõýŸ¥o¿ývá¸ãŽKzuY5sæÌÒÿ¼ôÒKI¯%“ŠÅâ¶mÛÆŽ;vìØ¾Û›››C;wîŽÃã™YFvžeç_"+bË–-kÖ¬Ù¾}û–-[þèþhéÒ¥I¯(«¦NÚoËÆ[[[<òÈ9sæ$½:rjß¾}ÝÝÝMMMý¶766†>ù䓤vž”óC¼p¬ˆööö'Ÿ|²X,†¦M›ö{¿÷{I¯¨tww?öØc÷ÜsOww÷}÷Ý7nܸ¤WDN•.5jT¿í£G!ìÝ»7éÂWØy–WÎñÂq8¾üòËý×íýãˆ#®¹æš¾7øÛ¿ýÛoûÛ{öìY»ví½÷Þûúë¯?óÌ3¥ƒ ƒ:äCºiÓ¦ï~÷»ï¿ÿþĉï¾ûî3f$½ä´;äCʰ555 …}ûöõÛþÙgŸ…ýsGH ;ϲËù!^8ÇoûÛx ÷GyäÀCr¡P8öØc,X°sçÎÿ÷á….¾øâ¤ž^yH¿øâ‹üà+V¬8ꨣ®»îº… æêÕ$Ãó,exêëëN;;;C½×YC²ì<+'χxá8 íííý6¾÷Þ{Ë—/?ûì³gÏžÝw{颶_ýêWI¯:Õ}HC===7ÞxãºuëÎ;ï¼;ï¼Ó!9ÞRÊb„ Û¶mëìì<úè£{7nß¾½ô¡¤WvžeæßËû8–ÍÑGýÓŸþtÍš5ý¶ïر#„p '$½ÀLZ±bźuë.»ì²eË–Ùñ‘çž{nww÷Ë/¿Ü»¥X,®_¿þ˜cŽ™>}zÒ«;Ï2sˆï%Ëf„ ---¯¼òÊÏþóÞï¾ûîc=6zôèÓN;-éfO±X\¹rå˜1cn¾ùæ¤×_1wîܺºº‡z¨ôºÆBkkëž={.¾øâ#Ž8"éÕ‘wvžeçßË©êrúÞ÷¾wÙe—}ç;ß™>}úþá~ôÑGÿñÿB¸çž{\Å6 ¿þõ¯wìØÑÐÐpùå—üèE]4oÞ¼¤×HNMš4馛nZºté…^8kÖ¬ŽŽŽ7N›6íꫯNzi`çYñ%±œþäOþä™gžyðÁßzë­wÞyçk_ûÚ_ýÕ_]{íµ¥7ëg¨>üðÃBWW× ¿BÞµ$kÁ‚Ç{ìÓO?ýì³ÏNœ8qÞ¼y‹/ÎÏ••¤™g%8Ä—JoDç5ŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDù?ɈFhÔínIEND®B`‚statistics-release-1.6.3/docs/assets/hncdf_101.png000066400000000000000000000637521456127120000217470ustar00rootroot00000000000000‰PNG  IHDRhŽ\­Ag±IDATxÚíÝy\TõþÇñï°¨(²x‘EsÄIÍżš e¸äFez]233sËÝòªmfiVZ’×ÊåÚ5üeæZ¦"–¸$ærE\ EC`~œî4 ‹ÌÌÙ^ÏGÃwΜùÌ9óöó=çŒÁd2 à~\ä.ê@p€Mް Á6!8À&GØ„à›`‚#lBp€MŽÊãøñã†ÿùñÇ­î=sæŒùÞo¿ý¶Lk~íµ×¤öéÓÇvõêÕiiiiiiW¯^=wîܰaäñ .|òÉ'¥?ÄÊôéÓåÞ…àÀy ¿ú꫈ˆˆzõêU©R¥^½z;wþòË/ïÝ»WÒC®]»–žž^XX(ýxãÆôôts­X–GfeeMœ8±uëÖÕ«WoÑ¢Å[o½Uô¹îܹ3kÖ¬®]»téÒeúôéÙÙÙ%­3??ÿõ×_à^ýuË»bbbΜ93pàÀúõë?ðÀ 8zô¨"11ñé§Ÿ®_¿þßþö·ˆˆˆ]»vUp›kûöí7n”nO:uùòåÍ›7wuu >|øš5k¤»’““O:UúªêÔ©³|ùróñ”o½õ–Þ*P"”ݱcÇÌF¶oßnuoJJŠùÞõëכǟzê©bÿõïßß¼ÌÌ™3¥ÁÞ½{›L¦Þ½{]þäÉ“¥Ôf^CçÎ5jdõؘ˜Ë…÷ïßÿàƒ}Š:uêÄÇÇ[Õ!C¤Û3g묮E‹~~~–+©Y³æ¢E‹¬ú£ƒa×®]Ù&ÅêÛ·¯´L5nݺUtèèè-Z´hÑ"..Ζhp·nÝjËChÇ8¨¨ÁƒW­ZÕr$//¯èbk×®]»v­Â`0DDD<ðÀ‡’‚H\\ÜŽ;"##í[˜}êÕ«øë¯¿Þ½{Wñõ×_8p uëÖBˆÜÜܧžzJ:•¤J•*:uruuݵkWNNÎùóçŸ~úéS§NI“¼f¼páB±Owøða—æÍ›Ÿ?þ·ß~B\»vmìØ±BˆFegg_¼xQa2™fÏž½cÇûn“Ÿ~úIºÑ·o_OOÏ¢ lÚ´©L[¯cÇŽ•*U’våþýûüqûîjÄT5€ŠÊÈÈHù«sçÎ]lëÖ­Ò &üøã_~ùåÑ£G[µj% þòË/Å®ü›o¾1™Læ$$u¹ŒF£µ}ôÑGgÏžMLLLJJªR¥Š4xàÀéÆüùó¥Ôèååµ{÷î­[·nÚ´)11Qj^¾|ù­·Þ²Zá… 7n¼jÕªÄÄDó€fß}÷ÝáÇ/_¾lø>øàƒÿþ÷¿çÎ>|¸4"Ma—{›uïÞ=óa !!!vÙ­ƒ!00Pº}ùòå¢ téÒ¥èµxÆo—g LGNòôÓO¯ZµjÕªURN‘““#Ý–ZtöõðÿüòËÒí‡z¨C‡Òíôôt醹 ÷Ê+¯H=H!DÓ¦M'L˜`µ€YÕªUøá‡¶iÓÆ*¢…‡‡GGG !ÜÝÝcbb¤AŸW^yEáââòÌ3ÏHƒ7nܰï6±<"³V­ZöÚ€ûÛߊ®€ž1U  ¢¶oße9’žž^¿~}«Å¤¹Î¬¬¬mÛ¶}útaa¡‹ËŸÿÆ +)™Õ®]Û|Û|šZµj «A»oËùô¢Wí.·ÌÌL醗—WÑ{‹½y#Ð$‚#'ÉËË›6mÚ‡~h>'ÚÃÃÃßßÿêÕ«zFsb+öÇììì›7oJ·ƒ‚‚,ï2GÀ»wï^¹rÅò^«Ó_JY¿Ä2t:n›TªTÉÏÏïúõëBË«[ºyó¦ô,UªT©V­š-«5ÏP½wõêÕVÿ` yLUp’7ß|sÁ‚ùùù!!!K–,ùõ×_³³³{öì)W=^^^ÞÞÞÒíK—.YÞeþ±R¥J5kÖ´¼«Øt¨„mÒ®];éÆwß}Wì¥|zè!?????¿O?ýÔ–îÙ³Ç|’Ó#vìØüùó¥ÛO<ñ„Z¶I=ºté"Ý~å•WæÌ™#õMóòòV®\i¾öäƒ>Vúª._¾ü /ÄÅÅI?þãÿ°º&ÝâGÎàééééé)}!žôE&ƒaëÖ­eý~ûšÖ|1Î;wîXNÜ׬YsîܹŽÛÔ…Ž#g0 Ý»w—nçäälذáÛo¿­]»vDD„4hu”¡sxxx¬]»VºªNnnîÆ¿ýö[)5Ö«WoíڵŞM¬ØmÒ´iÓ~øÁò¤ïëׯ›Scýúõ×­[×¢E‹bk¾§å“Ö¨QcÆ ¥œ@oŽœdáÂ…M›6BH_¯2~üø¤¤¤'Ÿ|RºwÍš5÷ýeGxä‘GŽ9òÚk¯EEEøùùEFFΘ1ãèÑ£íÛ·WÝ6yôÑGOŸ>½páÂN:ùûûW®\Ùh4öêÕkáÂ…'Ož4OÍ—ÂÕÕµF<òÈk¯½–œœü÷¿ÿÝÑ€ŠL&“Ü5Ћ{÷îmܸQѧO¹kQ ¶ !8À&LUÀ&GØ„à›`‚#lBp€Mް Á6!8À&GØ„à›`‚#lBp¼ÔÔT£Ñøë¯¿Ê]€ÌŽ÷±råJ¹KP7¹ P¨ìììS§N}÷Ýw_}õ•ܵ(Á±x={ö¼|ù²ÜU(Á±xo¾ùæï¿ÿ.„XµjÕÏ?ÿ,w9ò#8¯}ûöÒ;wÊ] €"íÏh4Ê]têÔ©d¹K€^™ rW=’ñ}glØ09Yr Ž¡Ï7“’F•îCYþ,šLr—[êÝ)êeŽú˜5 U½ùÔF¡¿,eúóä 2þÕÓk“ˆàȯ”?¿êÊ‚pšòE@[âB3 *Îî9?OºDpœ­è_oþüÂÌÆDH‡O§*þøC{ 8ŽEL„¥ûæB¡¾Ø“ÍKòçrã›cû3þüÏd²þz`øË»àÏÿLż#þòŸÜ…ÃN ›þ3Ý÷a&“±aCþ|@!è8öaÙ8àÏ»~”ÔA$jÜ};…ü€F¡ [·nuКÍ|L”•ãvŠã‰Ú ˆjÜ/Qz4tî/<;ÊApʃ¼¨zˆ‰(1 ò» ‡cïã7ÞHNNnÞ¼¹Ü…@Š˜-¹ïñˆrˆ (ëQ†ŠCǰ g4j’UO‘h¨tG"8÷AdÔ’¢Öp½+À¹Ž@‰ˆŒÚ`IŠ*Vl+‘ßOÀ¹Ž@1ˆŒjGXÔ«¤È/$ Gà/ˆŒªf΋„EõaÒP‚#ð"£JÑ\T+Š€ !Ä倊Ð\T’" ~GèFu!/ª IЂ#tF£ZUƒom4à¢Ñ¨ äEu ,ºAp„ÑhT8ò¢ ]"8B_h4*œÉ‹ EXtà¡Ñ¨X´•‹°ÀÁzAjT&ZŒJDXP‚#t!$$˜?E1ƒ‚Ȩ(ƒ"X™ÿQÕPîJäâ"w€Ã "55Mî*ðƒ0„Á$L©i©¤Fù þg2 “)-5U0ùÏô¿ÿt‹àc†Z9Ì‘‘¼(¿¿†Å?þô­”˜H^4cªZFjTdT óÁ‹übóÎ~+lAp„f‘•€È¨äE@AR´‚#´‰Ô(;"£üÈ‹Ð=’¢Ý¡A¤FyeF^„Ž‘à­!5ʈÈ('ò"t‰¤èdGh ©Q.DFÙ¡?–a‘÷½“¡¤FYeÃ7¯C7h+*ÁAjt>"£éRÞrW¡'äEèaQùŽP=R£“Ñht6¦¤¡i„Eu!8BÝHÎDdt*ZŒÐ(XT5‚#›07í<´¡9´5ƒà£Ýè4‡È !,jÁjEjtÎÀ¬44Äœy7kÁªDjtÎ@‹š@sQ?ŽPR£Ðht8"#Tް¨OGA£ÑሌP3f¢uŽà•¡ÝèP4‹Èu¢¹3‚#Ô„Ôè84ˆs_ N4QÁF‡¡Åµ¡¹ˆÒ¡´„ÔèDF¨ ÍE؈àu 5:ÓÓAd„JÐ\D9¢ÑhDF¨ÍETÁ*@»ÑîHöÇÛÊF^„]¡t|Û©ÑÎh4BÁÈ‹°/‚# #ÔhgDF(yBp„¢Ñn´#öDd„"‘áhG(©ÑŽHvCd„òá4G@ûHöAd„Âá|G(íF»à F»á Å /BFG@³h4ÚF(yJ@p„ÑÜ©8R£¡!Dp° /B\ä.€ý‘+Ê`øãŸ/¤FÈÄð¿ÿLB¤¦¥ñF„BÐq„âÐn¬ RcEñ„|˜†Â¡,|dW©±B˜›†|¤ÈÈ› Gp´ƒÔX~DFÈ„#Ô…à¡ÝX¤Æòã§#/B¥Ž€ˉF#œ‹¼µ#8B)hú”©±œxÏÁ‰8„Ú@pÔÔX4á,´¡1G(­Ÿò!5–ï68-FhÁP+Rc™Ñh„ãÑb„¶!?@å@j,3Þgp0ZŒÐ‚# >¤Æ²¡ÑG¢Å]!8Bf´ÊŠÔX6¼Ãà0´¡CG@MHe@£ŽA‹zFp„œh• ©± xoÁh1G@H¶¢Ñ 2‚#dCKÈv¤F[ñ®‚]1+ X!8JGj´©öC‹(Áòà#ÞF¤F›0= û!2¥ 8ÊEj´ ÿ =0+ Ø‚àðAo RãýÑh„=ÐblGp”ˆÔxüûFdÊŠà(©ñþH¨"#P>G8Ÿø¥#5ÞÓÓ¨"#PGêÁ?;P^œûØÁNÅç~éh7–†wÊ…#`GG@)H¥!5¢ìˆŒ€Ýá<|ô—‚ÔX"jDÙ!8ò#5–ˆm ŒˆŒ€C™‘KDjDY' 8ÂIÈÅ"5–ˆw lFdœ†à@a8¨6#2NFp„3Ð<*íÆbð^mˆŒ€,Ž€ªGUªTyóÍ7÷îÝ››››‘‘ñÚk¯]¸p!&&ÆËËKî×Õ 5 AjĘ›´Aãý³œœœ‚‚«qoooñמ¢%£Ñ¸råÊ¡C‡:Ô<8hРéÓ§Ûø¼F£ÑjdëÖ­ro ' NKK“»†?]¸pÁÉÏ’š–š&´œ/8$$-5U”ðNpþN-ì¾_B‚ƒ…©iiBèû÷¡øe‘]·nÝä.A)4¥S§«U«f5îéé)„¸yóf±ÊÎÎ~çwîܹӤI“¦M›fffîÙ³gýúõÿûß»víjËó&''ËýÒåô¿S°Ü…üEp°³ëqþ3*‹Á L¦Ò7Þ7‘RÙk¿üå:;ìëŠá—E^E?Ö‹vˆtBãÁÑÇÇÇ`0äääXß¾}[ü¯ïXÔäÉ“ùå—©S§6LÉÈÈxæ™gÆ¿aƹ_”ŽIjf¨Á±Œ€&iüG777ooï¢Åììl!„ù>Þ××7,,¬èòõë×wuu=}ú´é¯~Òñ 4û FjÔ+"# ÚŽ111...ü±t\£"66öúõëýúõsww—Fîܹ“––&¶æááѱcÇôôô?üÐ|…ðÓ§O/Y²¤R¥Jr¿ EÓylÐ{»Qç»_¯ˆŒ€®hüä!D­Zµ&Mš4oÞ¼^½zuèÐ!===11±I“&#FŒ0/?~üøÐÐÐ7 !Þxãþýû/Y²dóæÍ7ÎÌÌüå—_ gΜùàƒÊý‚ P¤FR£q,# 7ÚŽBˆçž{®fÍšëׯ߼ysPPРAƒÆ']‘§X~~~›7oþôÓO÷ìÙ³k×.__ßN:5ªiÓ¦r¿@‘Húó—KíÐ ƒ‰?÷öf4õyG%‡‡´´4‡^M×íÆòîxGï”Ï}÷ ‘ÑùøeQ Ý~Öë¢ã8©Qî"à<ÌM:GpP^¤F=¡Ñ@a/ºúm7êv—ë‘€Á(?R#4¹i–ŽÊˆÔ¨4Ep„è3Hè´Ý¨Ï­3DF%!8åAj„V…³”Dû_9À>HZ'}y`jZšÜ…P.‚#*J‡qBíFîf=áû¦؈©j lHÐΛ`;‚#€R‘µ‹“`”Á(ݵIÚE£@9Q!ºÊ¤FhFåFpPR£FÑhPGÀ&új7’µˆF#€Š#8¢üHÚÄ~Õ"#{!8÷§£v#©Qs˜›`GGà>HP)ìŽàˆr"ch {T[h4p‚#P½´IB£€ãÝ#5jFEpDyè$iè¢Ý¨“}©48Á(ž.R#´‚F#ç 8:F»Qýh4p&‚#P ]´IêG£€“Qfä -`/ªF² 8Ö´ßn$5ªFr!8Aj„’Ñh /‚#ʆԡnì?5£Ñ@vGàOo7’U‹F#… 8ú@jT-”ÃEî &ÚÎo7BH…Ž# „æS£¶#¿F1= @Ž€Ö‘UˆF#e"8šn7’Õ†F#%#8ÂV$õaŸ© F Gp„Þi¶ÝHjTTà2£Ñ@-¸l¢ÕîíFÈŽÔ@Eè8šCjT ¦§¨Áú¥Ív#©Q%h4P#¦ª¡S¤FȈÔ@¥è8âþH#êÀ~R¦§¨Áz¤Ív#F#µ#8š@»QÙh4Ђ#tGƒíFR£²Ñh œƒû “({HÙH´„Ž#ôEkíFR£‚1= @{Ž`4hSÕÐÚpR#­¢ãˆÒL”‹}£HLOÐ6‚#ôBSíFR£"Ñh yLUjCjT$R#= ãˆi)Ÿ„‡h§Ý…az€~Ðq„ö„!5-Uî*ìõb4ç5Aj4²KèÁPR£Â0= @oŽÐ8íœCjTR#âG”¢,ì%á FºEp„–i§ÝÅ Ñ@Ϙªv£bèGh–FÚ¤Fe`zÁÅ"«({Bh4€„©jh“FÚPR#˜¥¢Ý¨¤F°ÄT54H íFR£Ü8¨Š"8‰E~ì¹Ñh€b1U ­ÑB»²"5@IŽ€ÂÐn”©JÁT54EõíFR£|8¨î‹àˆ¿ ·È‰­/` ¦ª¡ªo7B&¤F°ÁPÚ2!5€íŽÐu·I2!5@™pŒ#þDz‘Û]œ å@p„¨»Ý§£ÑåÃT5 +ÚNGj€r#8BõTÜn$5:©*‚©jü ãllqçâ F¨8‚#ÔMÅíF8F° ¦ª9Ðnt"R#Ø Áp:R£‘ÀŽŽBµI†yj”ŽÔöEpœK¥!]…H`wœµRe»‘Ôèœ@ Bp )4Àq˜ª†*ÑnD±HàPGgœ‚­ìx¤Fp4‚#ÔG}íFR£ã‘À 8Æ€ºq* 8 Á*C»–h4€31U­w¤Çbû:©œL/ǯ¿þzíÚµ)))U«VíÔ©Ó¤I“|}}KÈÑ£G—.]züøñÛ·oÆ1cÆ´iÓFîסwêk7ÂaHà|ºè8.\¸pæÌ™gΜiݺµ§§çºuë^xá…ÜÜÜR²cÇŽìØ±Ãßß?,,,))iðàÁ;vìû¥@Uh7: ©d¡ýà˜œœ°uëÖØØØmÛ¶ <øÈ‘#ï½÷^I¹yóæ”)SÜÜÜV®\ùŸÿü'66vÍš5•*Uzíµ× å~Aú¥²v#©ÑaH íǵk׎7Îßß_™:uª··÷–-[JJëÖ­ËÎÎ~ñÅ[µj%4kÖì‰'ž¸~ýúÑ£Gå~AöD¶ê@FÚŽpqqéܹ³yÄÕÕµcÇŽ™™™‡*ö!»wï6 ½{÷¶|÷Ýw“““›7o.÷ ‚ÉÀ@j¹iüä“É”’’R£F5jXŽ7lØPqþüùððð¢:v옯¯o``àÁƒ“’’nܸñÐCuéÒÅÃÃCî¤_jš§&5:‘”@ãÁ1''§  ÀÇÇÇjÜÛÛ[ñÛo¿}H^^Þ­[·4hðÏþsÍš5æñ:uê|ðÁ?ü°-Ïk4­F¶nÝ*÷Æ(VpZZšÜ5ØX©¨H©.\pb¥*U?lß)!ÁÁ©lSgqæ/ lÄN‘]·nÝä.A)4¥S§«U«f5îéé)„¸yófчܺuK‘’’ríÚµyóæuîÜùîÝ»qqq‹/;vìÆmé;&''ËýÒm,w ÷÷G»±b•:é• ÂdRÁ6U[vʽF5¼Q5Cô†"¯¢ëE;D:¡ñc}|| CNNŽÕøíÛ·ÅÿúŽVªT©"Ýxçwz÷îíããøòË/÷éÓçÂ… ›6m’û5Ù ªöÇ6µ7f¨@Q”ßÿý””;®ÐÍÍÍÛÛ»hg1;;[a>ÏÚRµjÕªT©âááa9Þ¥K!ÄÉ“'åÞHº£š£IöFj¥QVpŒíÞ½{¿~ýV®\Yìˆå™™)%E3ép©€€€bâïïïîîn0,¥êüü|¹7  ¤FP eÇ‘#GÖ®]ûرco¼ñF‡FµmÛ¶¼¼¼Š¬3**ª   !!Á>~Ô¨QæW¬X±jÕª¢‹šL¦ºuëÊ]/tè]ÒÀ³ù@¥äŽ®®®^^^Òí¬¬¬J•*U­ZµØ%}||¦N*w½p,¥ÏS“+€F#¨üÁ±}ûö‰‰‰Òm£ÑøÌ3ÏLŸ>]î¢Ø©4@þàhiøðáááárWÙÐnÔ*R#hƒ²‚ãäÉ“å.AãH>åǶ+/R#h†ÌÁqõêÕBˆGy$44Ôücé(oÍp¥·Q.¤FЙƒãœ9s„³gÏ–‚£ôcéŽíÆr!5€ÆÈÇŒ#„hÚ´©ô㫯¾*÷Š 5– ©´GæàøòË/[þ8bÄyë\˜§ÖR#h’²¾9Eã¬<ØjeGj­’¹ã¸k×®²>¤sçÎòÖ »Sn»‘ÔXv¤FÐ0™ƒãÈ‘#ËúäädykPR#h›ÌÁ±W¯^roÈŒv£f@ódŽóçÏ—{ è)Ej=àä 8í² 5€NðÍ1“Bç©IeAjýà›c”“AAj=á›c ÚªF£tˆoŽÑ²­ØR¶!5€>)úä˜;wîäååÉ]B¡íFØ€Ôº%sDZXGŽY¼xññãǯ]»æââR»ví–-[Ž=º^½zr—M£ÝhR#è™â:Ž‹-Љ‰Ùµk×µk×*W®\¥J•óçÏûí·ÑÑÑkÖ¬‘»:@×H sÊ Ž»wïþä“O\]]¼}ûö_ý5))i×®]ÇB¼ñƇ–»FØç©i7Þ© ¬à¸fÍ“É4qâÄ3fÔ©SÇ`0!‚‚‚&Ož_9h ml…?¶©`WÊ ŽÇ¯\¹ò!CŠÞ5hÐ ¾rPh7*©`wÊ ŽBˆÀÀ@7·bNÙ‘Î’ÉÉÉ‘»@¨îÛ¤F€#(+8†……?>;;»è]wîÜIKKkÒ¤‰Ü5JGj8ˆ²‚cLLŒÉdš6mZ~~¾åxAAÁôéÓ ¢¢¢ä®÷!ÿ<µ¾Û¤F€ãÈ|ǽ{÷ZþèêêÚ·oßuëÖuíÚ5&&&$$Ä`0¤¥¥ÅÅÅ?Þh4vëÖMÞ‚•Oß©IﯟÔp(™ƒãСC‹ÏÈÈX´h‘Õ`rrr»ví’““å­P&R#ÀÑd޽zõ’{ Àždž§Öq»‘Ôp™ƒãüùóåÞ€ê‘ΡÄïªB\¾|ùĉééé÷îÝ iÔ¨Q­Zµä. ÷A»mS\pÌÊÊú裾úê«‚‚ó ««ëÓO?=nÜ8ooo¹ T4ýf'ý¾rÚçQVp,((5jTRRRåÊ•»téR¯^=WW׳gÏîܹóßÿþ÷‰'V¯^íêê*w™€RΤ¬àøÅ_$%%µhÑâ£>ò÷÷7_»vm̘1III_|ñÅðáÃå.ÅsžZ¯íFR#ÀÉ”uð„„ƒÁðÁX¦F!DÍš5-Zäââ²{÷n¹kÔp>eÇ“'OÖ«W/((¨è]>øà‰'ä®Å ÝèìMjÈAYÁ±råʹ¹¹%Ý›››ëáá!wʥ˥G¤F€\”5jtåÊ•¤¤¤¢w;vìÂ… =ôÜ5BIô–I)+8J_$óÊ+¯X˸gÏž—_~YѳgO¹k„5Ùæ©I8—²ÎªŽŽŽŽ_¿~ýˆ#‚‚‚êׯ/„HOOÏÈÈBôìÙ³Gr×ȃÔ²‚£âwÞiÓ¦Í|péÒ¥K—.Iƒ5kÖ?~|Ÿ>}䮊¡³v#© Š Žƒ¡oß¾}ûö½zõêÙ³gM&Sýúõä® Å“ùkõÔPeÇ .Ö­[Wáïïou5G”B_ 8=½ZR#@9”£££ÿý÷Ÿ~úÉÏÏOîZp´ÔPeU*„8uê”Ü…@ÁtÓn$5”FYÁñµ×^óððøä“OîÞ½+w-€œHRÖTµ¿¿ÿûï¿ÿúë¯÷êÕ«W¯^uëÖõòò²Z¦sçÎr— !äš§ÖG»‘ÔP&eLjˆéÆõë×?úè£b—INN–»LÅÑGšÒËë$5KYÁQúæ@·H%SVpœ?¾Ü%À&2ÌSë£Ý€’)ëä+yyy999rW8 íF€Â)«ã(9}úô’%K>|ùòåÂÂÂÀÀÀ‡~x̘1=ôÜ¥AÚz‰¤F€â).8.[¶ìý÷ß/,,BT®\ÙÕÕõòåË—/_Þ±cÇ„ FŒ!wŠ£ƒL¥}¤F€*(kªzïÞ½ï¿ÿ¾Á`=++ËöÇfdd´jÕjÒ¤Iro¡bh¹%§Ý×Fj¨”².Çóì³Ï?~|×®]]ºtéׯ_pp°Á`HKKû¿ÿû¿Ë—/GGGß¾}{×®]æåCBBêÖ­{ßÕ.\¸ðÓO?­V­ZëÖ­ÓÓÓ×­[wúôé+VxxxÜ÷±&“iÊ”)·oß–{ÛÈv£]ꥬà-ݸzõê'Ÿ|buïæÍ›7oÞl9òꫯÞ÷ÊŽÉÉɱ±±qqqþþþBˆ7ß|sÅŠï½÷Þk¯½vß’¾øâ‹ýû÷˽aôG£íFR#@Õ”{õêU¦å4hpßeÖ®][XX8nÜ8)5 !¦Núí·ßnÙ²eÆŒ..¥MÖŸ>}záÂ…=ôÐÉ“'åÞ6P=R#@í”çÏŸo÷u8pÀÅÅ¥sçÎæWW׎;~÷Ýw‡ /éùùù“'Oöõõ:uêСCåÞ62sê<µFÛ¨‚NŽq“É”’’R£F5jXŽ7lØPqþüùRûÑG8qâí·ßöòò’ûu|¥"´ ¬Ž£ÝåääøøøX{{{ !~ûí·’xøðáÏ>ûlРAíÚµ;~üxYŸ×h4ZlݺÕ¯/8--Í«-ö©„sž+8$$-5UØû¹.\¸à„âKœê¼]¥òý¢@ìÙuëÖMî”BãÁ177WQ­Z5«qOOO!ÄÍ›7KzÔäÉ“ëÔ©3qâÄò=orr²s^`pp°žåyj'<•Á L&=s¶U1¯Iê5Êôì '×NAéØ/ ÄN‘WÑõ¢"Ðxpôññ1 999VãÒåu¤¾cQóæÍ»páš5kl¹^P f¨Z¢ñcÝÜܼ½½‹v³³³…æó¬-í߿͚5#GŽlÞ¼¹ÜåëŒæŽÙ$54FãÁQ™™)%E3éx³€€€¢ËŸ>}Z±dÉãÿôíÛW±aÃ£ÑØ£G¹_³qÝïò!5´GãSÕBˆ¨¨¨äää„„„îÝ»K#&“)>>Þ××7,,¬èòõêÕ3/)¹yóæž={jÕª(÷ úƒÖÚsÚz=¤F€&i?8ÆÄÄ|úé§üq§N¤sbbcc¯_¿þüóÏ»»»KËܹsçêÕ«îîî<ð@ûöíÛ·oo¹†ãÇïÙ³'<<Ü—™T8Úå@jh•öƒc­Zµ&Mš4oÞ¼^½zuèÐ!===11±I“&–ßU?~üøÐÐÐ7Ê]¯.i¨ÝHjh˜öƒ£â¹çž«Y³æúõë7oÞ4hРqãÆIÝGÀŽHmÓEpBôìÙ³gÏž%Ý]Ò½Mš4qÚuÅIóÔj7 mÚ?«Z“ÈZ D» yGÈJ+˜ÔЂ#ŠçŒyjR#ªBp*„ÔЂ#d¢‰v#© +Gƒë~Û‚ÔЂ£úh¡U§þ×@jèÁ(3R#@Ÿްæðyjõ·Ð'‚#P6´ºEpÄ_Ðn¼Où¤F€ŽUFå¹KÝH#8‰Ô{Iñ'.ßXR#‚àçQm»‘Ô€„à”†Ô€Ápì<µ:Û¤F,ÕDéK½u€¿ 8ţ݀‚#„pè<µ:Û¤FŠ"8ÖH‹àGRa»‘Ô@IŽàºß"5P ‚£j¨¯y§¶ŠI”ŽàAjÀG½sÔ<µÚÚྎíFlBpÔ5ڂԀ͎Ð5R#¶#8ªƒšZxê©•Ô@™õKç—o$5PVGØ•JÚ¤FÊàÝ!5P>GrÈ<µJÚ |Ž*@³#Ú”Áv¢†xKj "Žz¤Ïó©ITÁö øvcHp°¢ë@ ŽÐ>ƒ©iirW€êuÇþóÔÊn72C €½•NÙ© èÁ£ì`K»;"8ê‹ç©Iè ÁÚDjÀîŽ(/·I8ÁQGtrÝoR#BpT4å6õ”Z©Ç!8À&G½°ç<5íFt‰à 5àhG”‘"Û¤Fœ€à¨ Ú>ŸšÔ€s•K‰­=åÕDjÀiŽP1R#ÎDpÔ>»ÍS+¯Ýœ‰àµ¢Ý€“a…µI8ÁQã4y>5©YJY >%UCj@.G¨ ©µÌ>óÔJj7¹É]`+Ú”Àh4Ê]ì,99YîTƒà¨Yk7’(9CcŒF#ûÔFLUCH(ÁQ‰”ÒæSF¤F‚à¨Mš¹|#©å 8¢Êh7å 8B¹h7 (G ²Ã<µÚ¤F”†à%"5 @GÅ‘¿Ù'w¤F”‰à¨5j?ŸšÔ€bñWr·€b¡ ´@unÞ¼ùâ‹/Ö­[×ÓÓ³cÇŽ‰‰‰rWTŒŽ;Ξ=[î*´€à¨)§–µÝHjÕÉÎÎÿüóÏ;tè0|øð3gÎtëÖ-))Iîºþ"))é§Ÿ~’» 8BHà yyyyyyZù‚ RRRbccW¯^½hÑ¢„„ƒÁ0qâD¹_´Bäççÿý÷ÿüç?üñÂÂB¹ËÑ‚£²ÈÙò“ï¹Ià8F£1**ÊrdöìÙ­[·¶ËÊ¿úê«   ÁƒK?†„„ôïß?>>þÒ¥K¶<üÀ=zô 4ü•»»{ÅkËÌÌ|üñÇgÏž}íÚ5;oS#8j‡Jϧ&5€“={öàÁƒ_Ovvö©S§""" ƒy022²°°Ð–#·oßÞ¦M›£G6lîܹ-[¶B´lÙòÕW_0aBÅË 0™L&“éäɓܚ:ã&wPN¦”Ñ•+WL&S@@€å ¿¿¿â¾M¾»wï2$((hß¾}BˆI“&uíÚ599ùõ×_¯^½ºÜ/Å#8BN´@9òóó7mÚTÒ½O>ù¤ÕHNNŽÂËËËrÐÛÛ[‘™™Yús%$$dddÌ™3GJBˆÊ•+Ož<¹gÏžëÖ­:thkƒƒ5¢BóÔ2µI4ÆbÂÖÙJÿ+^PP`ùcIgŠÜ¹s§wïÞ%?…õsøùù !nݺe9˜-„¨Q£FéŸ={VѼysËÁfÍš !Ž;VñÚà GȃÔ@{›^~ÿýwËsss‹]ÌÛÛ»L , ÀÅÅÅjVúúõëBˆÚµk—þX!D~~¾å ”h]\Š9£¬µÁAŽ "OãOŽg%5€3eddXþXÒ)ÏevsskܸqBB‚åàîÝ» C“&MJ/)44TqâÄ ËA©×h4+^„à¨ê:ŸšÔNvùòå7öèÑC‘ššzøðáb+Çtðˆ#ÆŽk^ùÕ«Wãââºví\zI-[¶lРÁâÅ‹Gíãã#„ÈËË›?¾§§§´ªŠ×Gàr<úÆÉÔ nnnÏ<óÌ€ž~úé¦M›–t•Di:¸$Å>dèС͛78pàôéÓß}÷ÝÎ;çä䘿ÜoÍš5¾¾¾Å^[ÇÝÝ}Ñ¢E™™™-Z´xûí·ß}÷ÝöíÛ'$$¼ýöÛV§i—»68G8íFp¾6mÚtïÞ}éÒ¥ùùù#FŒðòòš;w®]Öìåå?iÒ¤¸¸¸¬¬¬¶mÛ®^½:,,Lº7//ïÆ%R˜˜8kÖ¬%K–ܽ{·E‹[¶lyüñÇåÞZ( ÁQõÊ?Oíôv#©da0¦M›6mÚ4óÈœ9sìµrooïØØØbï2dȽ{÷Š=KZ¶aÃG¿|£ÑHWÒ^˜ª†“@oîÞ½»sçNé+a  G¥pvûϹÏGjÚ»wo£Fž}öY¹ Ý0U ‡#5€ŒFeõå.N!÷€=é%8~ýõ×k×®MII©Zµj§N&Mšäëë[Êò¹¹¹ÿùÏâââ.\¸P½zõ† >÷Üs>ú¨Ü¯ÃZ9pädjÐÉ“'Ë]´CÁqáÂ…Ÿ~úiµjÕZ·nžž¾nݺӧO¯X±Bºl}QùùùC‡=|ø°··wÛ¶mïÞ½»oß¾={ö¼òÊ+£G–ûÕ¨ íF4CûÇ8&''ÇÆÆlݺ566vÛ¶mƒ>räÈ{ï½WÒCÖ®]{øðáV­ZÅÇÇòÉ'Ÿþù7ß|ããã³xñb«kÜ«’Û¤F´DûÁqíÚµ………ãÆó÷÷—F¦Nêíí½eË–’¾å}ëÖ­Bˆ3f˜[’¡¡¡/¾øbAAÁO?ý$÷ ú“¿0†Ô€Æh?88pÀÅÅ¥sçÎæWW׎;fff:t¨Ø‡¤¥¥U«VÍê{6¥oÕ<þ¼#Št^ÐYÏDj@{4~Œ£ÉdJII©Q£F5,Ç6l(„8þ|xxxÑG-]ºÔÍÍzË?~\Q§N¹_“ Ð$Çœœœ‚‚éÛÓ-y{{ !~ûí·bÕ¸qc«‘ÄÄÄØØØÊ•+—ò ë–ŒF£Õˆ4ý]²à´´´2½´àÔ´Ô4Q†G‡„¤¥¦Š2>Qy—ùå8Ú… ä.ÖØ)ÊÄ~>•þ±Õ­[7¹ T Géû1«U«f5îéé)„¸yóæ}×PPP°zõêwß}·  àý÷ß÷óó³åy“““ËZjpp°2RV´ÿD |í(+vŠ2±_ C¥¿í‹~¬í鄯ƒ£Á`ÈÉɱ¿}û¶ø_ß±ûöí›={ö™3g‚‚‚Þzë­víÚÉý‚*À)G72I €†i<8º¹¹y{{í,fgg !ÌçY•——7þü•+WV©Re̘1Ç/颲PæùÔ¤F´MãÁQ’’’mù…KÒ¡ Å>¤°°pâĉßÿ}—.]fÍšUJ¾´ g´ÿ¤F4Oû—㉊Š*((HHH0˜L¦øøx__ß°°°b²råÊï¿ÿþÙgŸ]¼x±£S#€Zh?8ÆÄĸ¸¸|üñÇÒqBˆØØØëׯ÷ë×ÏÝÝ]¹sçNZZšt.¡ÉdZµjUõêÕ§L™"wíÅ+ó<5íF€ÃܼyóÅ_¬[·®§§gÇŽå®èOGŽyúé§===ÃÃÃ.\˜ŸŸ/wQê¦ý©êZµjMš4iÞ¼y½zõêСCzzzbbb“&MFŒa^&>>~üøñ¡¡¡7n¼víÚ¹sç<<<Xtm}úô4hܯIYH [ÙÙÙáááçÎëß¿¿ŸŸ_\\\·nÝvîÜYÒœž3¥¦¦vîܹ   OŸ>uëÖݾ}û„ vïÞýÍ7ßÈ]šŠi?8 !ž{5k®_¿~óæÍAAAƒ 7nœtEž¢¤¾cnnî±cÇŠÞ«¾«Ün$5€Âååå !*Uªäˆ•/X° %%å‹/¾2dˆbìØ±­Zµš8qâŽ;ä~Ýb„ 7oÞLLLlݺµbΜ9Ç_¾|ù¶mÛüq¹«S-ì­aÆeZ¾L;A˜Ê¸Ë¹‹UôîIMM•»Xc§(ûå¾ÊúG^võë×oß¾½åÈ?ÿùÏððp»¬Üh4šGžþy—ŒŒ [¾ÿþîÝ»=WÕÍÍ­âµU¯^½sçΖ#ÒW Ïš5ËjÉrìSÕ½ ìEG%slCБk§×*uöìÙƒV|=ÙÙÙ§N0`€Á`0FFF.[¶,11±OŸ>¥?|ûöí=öX:u† V­Zµo¾ùæÐ¡C-[¶ŒŒŒtq©è9ùùù£G¶úbáôôt!DåÊ•´aõ€àÊãÊ•+&“ɪ_(]äÚµk¥?öîÝ»C† Ú·o_`` bÒ¤I]»vMNN~ýõ׫W¯^ÁÚÜÜÜÞ~ûmË‘ß~ûíí·ßvuuíß¿¿Ü[NÅŽjR¶ó©i7Ê"??Ó¦M%Ýûä“OZH_Ìfy™dñ¿oeËÌÌ,ý¹222æÌ™#¥F!DåÊ•'OžÜ³gÏuëÖ :´‚µYÙµk× /¼’’òÉ'Ÿ„††Ê°qµ‚àˆ2#5@Qa¨øJÊ­ô¶BAAå………Å.vçÎÞ½{—øEš~~~Bˆ[·nYJßÍV£FÒ >{ö¬¢yóæ–ƒÍš5B{rjYk3;wîÜË/¿üÝwß…††nß¾=22²|[‚£F9¬ÝHj€b)ð›`Í~ÿýwËsss‹]ÌÛÛÛT–ÏŽ€€«Yéëׯ !j×®]úc¥/òµºª¢”h‹=À±¬µIÖ¬Y3räHOOÏ¥K—>÷ÜsnnÄžŠb ª†¾ŸšÔj”‘‘aùã¥K—Š]¬¬ÓÁnnn7¶ün6!ÄîÝ» C“&MJ/Iš/>qâ„å Ôk4¯MñÝwßýãÿxê©§>ýôS«ùt”ÁQNÎø–j€î]¾|yãÆ=zôB¤¦¦>|¸ØÅÊ1-Z´9r¤««k\\ÜÁƒ?üðâ—u,Gm'Nœ8yòd£Fžþy«»úöíÛ³gOçîí 8ªƒìóÔ¤FP¯6mÚtïÞ}éÒ¥ùùù#FŒðòòš;w®]Öìåå?iÒ¤¸¸¸¬¬¬¶mÛ®^½Úü}ƒyyy7nÜ(éÊèèèÄÄÄY³f-Y²äîÝ»-Z´Ø²e‹½¾Ó%%%EqâÄ «Ùp!Dƒ ŽåFpÔ´I jƒaÚ´iÓ¦M3Ì™3Ç^+÷ööŽ-ö®!C†Ü»w¯Ø³¤%aaa6lpÄKîÕ«W9N¦Á}UôÊìÐû¬Ü…Àn˜ª–*2íFP»Q£FÉu1šˆˆˆˆˆ¹7ì‰à¨!öŽ¢¤FЀɓ'Ë]´ƒ©j¥“ë|jR#°BpÔ »¶I (‚#¬‘@±ŽŠfë<µ*N´*Gp”‡b“íFP‚£úÙ/„’@)ŽÊåäó©I tG•³S»‘Ôî‹à›ʦyjÚÀ‰ŽzGj6"8ÊÀ>B{¬…Ô¨ ›7o¾øâ‹uëÖõôôìØ±cbb¢ÜýiçÎþþþûÛßÚ·oÿÍ7ßÈ]‘êõ‹Ô¨ ìììðððÏ?ÿ¼C‡Ç?sæL·nÝ’’’ä®K!6oÞyîܹAƒ½øâ‹×®]ëÛ·ï²eËä®KÝŽJtÿ{q€Âäååååå9hå ,HII‰]½zõ¢E‹ Ãĉå~ÑB1mÚ´ÀÀÀC‡-X°àÍ7ß>þÒ¥K¶<üÀ=zô 4ü•»»{ ûý÷ß?Þ£Goooi¤Zµj:t¸páBnn®}·°®¸É]Ê®ÂíFR#èÙÙ³g}ú”þðíÛ·?öØcuêÔ6lXµjÕ¾ùæ›C‡µlÙ222ÒÅ¥¢-WW×_ýÕÏÏÏ<’ŸŸôèÑfÍšyxx8pãjÁQqý…1¤F€]\¹rÅd2Xúûû !®]»VúcïÞ½;dÈ   }ûö !&MšÔµk×äää×_½zõê¬ÍÍÍ­I“&Òí+V¤¤¤lÚ´éÒ¥Kÿþ÷¿åÞlêFpt¶Š¶ +öxR# $ùùù›6m*éÞ'Ÿ|Òj$''Gáååe9(M gff–þ\ sæÌ‘R£¢råÊ“'OîÙ³çºuë†ZÁÚ,Í;7%%Eѵk×zõêɲm5ƒà€XÌØ:[©=…‚‚Ë ‹]ìÎ;½{÷.ù¬ŸBš¾uë–å`vv¶¢F¥×{öìY!DóæÍ-›5k&„8vìXÅk³túô霜œ½{÷>ÿüóÿûßOœ8!µEQœ£,÷™§¦ÝJf2Éö_©~ÿýwËK:;ÄÛÛÛT²¢Ë¸¸¸XÍJ_¿~]Q»víÒK’4ÌÏÏ·”m±8–µ6+U«VŠŠzçw~ûí·õë×;f÷ëG½ 5€neddXþXÒ)ÏevsskܸqBB‚åàîÝ» ƒùøÂ’„†† !Nœ8a9(õFcÅkÛ´iSïÞ½W­ZõôÓO›}}}ÅýÚ“(ÁQ=*Ðn$5€ž]¾|yãÆ=zôB¤¦¦>|¸ØÅÊ15©8 ÁQyøª HG£Ýœ‰à¨06·I%¸yóæ‹/¾X·n]OOÏŽ;&&&Ê]ÑîÝ»çææfø«š5kÊ]—º¹É]€~UäGR#@ ²³³ÃÃÃÏ;׿??¿¸¸¸nݺíܹ3,,LîÒDZZZAAA»víBBB̃žžžr×¥nGg°µhÛr¤F€íòòò„•*UrÄÊ,X’’òÅ_ 2D1vìØV­ZMœ8qÇŽr¿n‘’’"„˜3gNTT”ܵhSÕh™Ñh´JN³gÏnݺµ]VþÕW_ uêÔ€ ƒy022rÙ²e‰‰‰}úô)ýáÛ·oì±ÇêÔ©3lذjÕª}óÍ7‡jÙ²edd¤‹‹[)))•+W®^½ú×_ýÛo¿5iÒä‘GqPçU?ŽjBj(Ç•+WL&S@@€å ¿¿¿âÚµk¥?öîÝ»C† Ú·o_`` bÒ¤I]»vMNN~ýõ׫W¯^ñòRRR\\\4h••%4jÔhåÊ•­Zµ’{Ë©ÁQlh7’•ŸŸ¿iÓ¦’î}òÉ'­Frrr„^^^–ƒÞÞÞBˆÌÌÌÒŸ+!!!##cΜ9RjBT®\yòäÉ={ö\·nÝСC+X›"%%¥°°pöìÙýû÷wwwß°aÃøñã{÷î}ìØ1©H”ÁQå8ŸšÔÊg¨ø*Ê«ôψ‚‚Ë ‹]ìÎ;½{÷.ñ)Š48üüü„·nݲÌÎÎBÔ¨Q£ô‚Ïž=+„hÞ¼¹å`³f̈́ǎ«xmBˆ]»vU©RÅ\ÉsÏ=w÷îÝÑ£GÇÅÅ >¼|ÛG‡ã‹`@'ûÇþ÷ß·ü177·ØÅ¼½½MeùÄ pqq±š•¾~ýº¢víÚ¥?ÖÃÃC‘ŸŸo9(%Úbp,kmBˆZµjY<öØcBˆãÇWx‹êÁQî-i7*"##ÃòÇ’Ny.ët°››[ãÆ,wïÞm0š4iRzI¡¡¡Bˆ'NXJ½F£ÑXñÚÒÓÓ7nÜÙ¨Q#ó Ô ­W¯žC¶²>­¬óÔ¤F@]¾|yãÆ=zôB¤¦¦>|¸ØÅÊ1=++KîŠP~ݺu“»Xc§(ûEØ)P‚cñ.\8sæÌ3gδnÝÚÓÓsݺu/¼ðBnn®­7LA»h Á±ÉÉɱ±±[·nݶmÛàÁƒ9òÞ{ï•i=¤F %Çb¬]»¶°°pܸqþþþÒÈÔ©S½½½·lÙRXXx߇Ÿ:•l2ƒ‰ òM!8ãÀ...;w6¸ººvìØ133óСC÷¼É@jÚCp´f2™RRRjÔ¨Q£F Ëñ†  !Ο?ÿ5ä~ à&wŠ“““SPPàããc5îíí-„øí·ßÉÔÐh4ÊýB`…}¢@ìeb¿(; Ap´&:]­Z5«qOOO!ÄÍ›7ﻓ"9Yî×`gLU[óññ1 999Vã·oßÿë;èÁÑš›››··wÑÎbvv¶Â|ž5€Þ‹™™)%E³´´4é.¹«Á±QQQ æ“Éïëë&wuò 8#&&ÆÅÅåã?–ŽkBÄÆÆ^¿~½_¿~îîîrW ®T]¼åË—Ï›7¯víÚ:tHOOOLLlܸñòåË‹^¦@'Ž%úî»ïÖ¯_äÈ‘   GydܸqÒyô‰à›pŒ#lBp€Mް Á6!8À&GØ„à›íæë¯¿Ž‰‰ {ôÑG§OŸž••%wEz—››ûÅ_ôèÑ£E‹:t>|øO?ý$wQøSFFF«V­&Mš$w!Bˆ£G¾üòË­[·4hо}ûä®Hïòòò>ûì³¾}û†……EFFŽ;öôéÓr¥S©©©F£ñ×_-ö^½}úícáÂ…3gÎûlРAíÚµ“r<ä•——wëÖ­ üóŸÿ\³fy¼N:|ðÁÃ?,w:e4W®\9tèСC‡š 4}út¹KÃtûéÏTuEI'OU«VÍjÜÓÓSqóæM¹ „(((X±bÅóÏ?Ÿ““óÎ;ïøùùÉ]‘NåææNž<¹N:'N”»üáÖ­[Bˆ”””Í›7Ï›7oß¾}ñññcÆŒ¹xñâØ±c5~r¨‚egg¿óÎ;wîÜiÒ¤É3Ï<ÓµkWõë×sª»rèöÓŸŽcEùøø †œœ«qé:#Ò¿< £}ûöÍž=ûÌ™3AAAo½õVI‡ªÀ æÍ›wáÂ…5kÖ0ªUªT‘n¼óÎ;‘‘‘Òí—_~9##cݺu›6mêß¿¿Ü5êÑäÉ“ùå—©S§6LÉÈÈxæ™gÆ¿aƹ „~?ýé8V”›››··wÑ[dgg !ÌgZÁùòòòÞ|óÍ!C†dddŒ3fË–-¤Fí߿͚5#GŽä| E©V­Z•*U<<<""",Ç»té"„8yò¤ÜêÑÕ«WwîÜÙ AsjBÔªU륗^ºwïÞ7ß|#wBÇŸþtí %%%;;Ûò˜å´´4é.¹«Ó©Â‰'~ÿý÷]ºt™5k–†‡ÕBúÒ éEËñ 6lذ!44tãÆrרSþþþ7nÜ0 –ƒRW8??_îêô(33SQ¿~}«q©ÑxíÚ5¹ ÄôùéOp´ƒ¨¨¨äää„„„îÝ»K#&“)>>Þ××7,,LîêtjåÊ•ßÿý³Ï>;kÖ,¹kBÔ«WÏü "¹yóæž={jÕª(wúñå—_ž:uJ:T"]L„kmÊ¢~ýú®®®§OŸ6™L–>99YÑ A¹ ÄôùéÏTµÄÄĸ¸¸|üñÇæïO‹½~ýz¿~ýÜÝÝå®NL&ÓªU«ªW¯>eʹkÁÚ·o¿à¯&L˜ „_°`ÁäÉ“å.P¿úôé#„˜9s¦ù<УGþë_ÿòööîÚµ«ÜÕ鑇‡GÇŽÓÓÓ?üðCóu¤OŸ>½dÉ’J•*YTéóÓŸŽ£ÔªUkÒ¤IóæÍëÕ«W‡ÒÓÓ›4i2bĹKÓ©k×®;wÎÃÃcàÀEïíÓ§Ï Aƒä®PŠFM˜0aÁ‚ݺu ÏÉÉ9pà€Á`xóÍ7ÿö·¿É]N½ñÆýû÷_²dÉæÍ›7nœ™™ùË/¿Μ9óÁ”»:üAŸŸþGûxî¹çjÖ¬¹~ýúÍ›7 4hܸqÒ9ùp¾ .!rss;Vô^N‘¬Œ9ÒÏÏoÅŠ?ÿü³¯¯oTTÔ˜1c¤oZ‚,üüü6oÞüé§ŸîÙ³g×®]¾¾¾:u5jTÓ¦Må. ¡ÃOƒÉd’»¨Ç8À&GØ„à›`‚#lBp€Mް Á6!8À&GØ„à›èˤI“ŒFã®]»ä.D|üñÇF£qõêÕr¶"8À&nr:áççתU+¹ [@Mš4iÒ¤‰ÜU@0U ŠSPPpïÞ=¹«kGê0sæL£Ñ8þ|«ñ£GÆvíÚåçç !®_¿¾`Á‚èèè–-[¶lÙ²{÷îï¼óΕ+WJZ­t®ÌÞ½{­Æ7nü÷¿ÿÝrä§Ÿ~zå•WºtéÒºuëÁƒüñÇVÙîâÅ‹³fÍŠŽŽnÑ¢EçÎ_xá…”òŠ>ûì3Ë“c¤J.\¸Û¶mÛ‡~8<<ü™gžÙ¾}{IkHJJjܸqÇŽoݺe¼}ûvçÎ7n|äȹw­!8P‡ž={ !¶mÛf5¾qãF!DïÞ½ÝÜÜ®_¿>pàÀ¥K—fddÔ­[÷8þüçŸ>`À€¬¬¬Š<û{ï½7|øðmÛ¶åççûûû4hPff¦´ÀéÓ§{öìùÕW_eff>øàƒ&“)>>þÿøÇŽ;ÊôDK—.}ÿý÷ÝÝÝÛ¶mëíí””4zôè-[¶»pXXØðáï\¹òöÛo›ß}÷ÝK—.½ôÒKÍš5söN uGêкukÿóçÏÿ÷¿ÿ5J¡ªoß¾BˆuëÖ={622ò§Ÿ~Z¿~ý† öìÙÓºuë‹/þøãå~ê;w~öÙguêÔùúë¯wíÚµiӦݻwwêÔéðáß|ò‰´Ì{ï½wçÎQ£FýüóÏëÖ­‹Ÿ1c†ÉdZ´hQ™žkíÚµ/¼ðBBBÂ_|ñÃ? :T±bÅŠ’–å•WBCC×­[— „Ø»wïþóŸ¦M›Ž5J¾}@³ŽÔÁÅÅ¥{÷îâ¯Mǃ^¹r%,,¬AƒBˆüüüˆˆˆW_}µZµjÒ^^^R«2==½ÜO=oÞúhëÖ­F£1!!áæÍ›}ûö5OL¯Y³æ7ÞÈÏϯ[·nxxx—.]~øá´´´9sæ”éY ÌM¾¼¼éß¿ÿo¼a0l|êJ•*•c³Ü¾}ûÚµkBˆÔÔÔ7nøøø8~WÐ#‚#51DZcÇJsÐæyêÛ·oÏ;·R¥JK—.mß¾½ù!—/_.ë³dddJ·CBB„U«V>}zé2 Ò5€„yyy Ó¦M‹‹‹‹ŒŒŒŠŠrèf™5kÖÕ«W[¶lyèС9sæ,X°À¡O@·8Æ€šÔ«Wïá‡NMM=zôè?þX¯^½ððp鮣G´lÙÒ25Šÿ¶R:«í~øÁ|;  fÍšgΜ9~ü¸å2ýúõëСÃõë×/^¼ùÔSO™ï­T©RTT”t6Ï… ºM¾ûî»-[¶têÔiÅŠ¡¡¡›6m*zÑ"° ‚#•‘N‘™1cFNNNÿþýÍãBˆ“'O^¿~])((øê«¯V­Z%„ÈÍÍ-vmuëÖB¬\¹2''GILL4_dG2a„ &œ8qB¹}ûö´iÓŽ;Ö¤I??¿   [·nýúë¯Ë–-3·*Ïž=»{÷n!„C¯§xùòå9sæT¯^}îܹîîîo¿ý¶««ëìÙ³+~p'ÅT5•‰ŽŽž7o^rr²««kïÞ½Íã!!!QQQ?þøc×®][µje2™’““³²²¸bÅŠÿû¿ÿ»uë–taK½{÷þòË/:Õ¸qã«W¯¦¤¤x{{þþûïÒ2}úôÙ¿ÿ7ß|Ó»wïÚµkûúú¦¦¦æääÔ¯__ºò¶‹‹ËôéÓ§N:þüýë_<ð@NNΙ3gL&Ӏ´)L&ÓÔ©S³³³ßzë-)77mÚtèСÿú׿fÏžýÁȽ¯h G*ãïïÿÈ#!:tèàïïoy×ûï¿ÿÊ+¯ÔªUKº¾cÇŽׯ_?cÆŒºººû€uêÔù÷¿ÿÝ¥K—={öœ:uªvíÚŸ}ö™ŸŸŸyƒÁðÎ;ï|øá‡‘‘‘………gÏž ž0aÂúõë}}}¥eúôéóå—_vêÔÉÃÃãäÉ“999>úè’%KfÍšå¸M±råʽ{÷¶oßÞ| §â•W^©W¯Þ–-[¶nÝ*뎠A†Ò/úqçÎÌÌÌ:uêØ~4è Á6aª6!8À&GØ„à›`‚#lBp€Mް Á6ùwÝcVA>áIEND®B`‚statistics-release-1.6.3/docs/assets/hncdf_201.png000066400000000000000000000616611456127120000217450ustar00rootroot00000000000000‰PNG  IHDRhŽ\­AcxIDATxÚíÝy|L÷þÇñïd‘DÈÖÈŠH*b©%ÖZ‚ˆ5–ÚÒV¹ªEµUíT©.Km©n–*â–ÖZŠHTŠ¢Ä%„K¤"™ùýqî_:Yœ¬çÌÌëù¸û˜ùΙs>県y÷û=ß3N'€g±Pº‚#d!8@‚#d!8@‚#d!8BÕΞ=«ùŸ_ýÕàÕK—.é_ݶm[‘Ö’Z·nÝLi[êQ¤Ì“'OV®\Ù¹sgooo[[[ÿîÝ»þùç™™™KæþwOÏÊÊÊÕÕµE‹³fÍÊûç”ï[ Lš4IéS`¥t€ŠL›6mõêÕÒã‡*]ÊÛ€¤ó¾oß¾®Fê?þèß¿ÿ•+Wô-‰‰‰‰‰‰;wˆXµjU÷îÝ _CNNNZZZZZÚÑ£G—-[¶sçÎ_|QéÝ‚9"8ÿï—_~‘õéÓ§B… JW„ÿª\¹r5„žžžJ×MBBBûöísÿ·¨••Uvv¶ôø¯¿þzùå—ûí·† æ}¯»»»âÑ£GúŽÆ»w…%&&ÚØØòÎÎÎJ ˜†ªÿwëÖ-éÁ”)S&L˜`mm­tEø¯×^{-)))))é§Ÿ~Rº hÞ{ï=}j|ã7N:õøñã”””Õ«WW®\Y‘‘‘ñÊ+¯äûÞõë×Kù·oß¾zõêo¼!µ_¿~}ÅŠ…¿ÅÀôéÓ•>0G˜ ­VûÃ?ûøøØÚÚúøø´oßþ»ï¾{úôiAoIMMMNNÖjµÒÓ{÷î%''ë»ò•ûò¦»wïNœ8±Y³f•+WnÔ¨ÑÇœw[=š={v§NÜÝÝÝÝÝ;vì8}úôôôô‚Ö™ýþûïW­Zõý÷ßÏýRXXØ¥K—X£FªU«0àÌ™3Bˆ¸¸¸W^y¥FÏ=÷\ppðÁƒKxLJ~xûôéóÜsÏÕ¨QãÍ7ßLII™6mš´³fÍ*Ò ó^ãX¤ãÿôéÓ•+W¶iÓÆËË«R¥Jõë×ÿ׿þõçŸê Ó»wìØQ£Ñr‘k W(g—‹úvõêÕW^yÅÕÕÕÃão߾ǎ+öé+äï°HÛ2`ž™}ûömß¾]zzôèóÏ?ŸwÕªU‹ŽŽÎ·ª×_]zÌuÓyÿåo‹ŒÄÝÝ]ZfذaÅøw/o Ôjµú˯çÎ+ç-@)"8BÕrÿkX8}pÔ_4qâDýzš4i"5~öÙgRK¾ÿâWªTIþ¿¼¹¿––.]*5ž;wNÿE¨ï|š3gŽÔâàà ÿj<}ú´¾dêÔ©y×Y·nÝuëÖÅÅÅ]ºtÉà¥;vètº¬¬¬:è-Z¤Óérrr†*µ¸ºº–ü˜¹ª… J-ŽŽŽ'Nœ 6l˜ÁW»ü ?þ­[·–ZæÍ›§ßD§N Þ+ÿ „+,êéxæ.[¶Lj©\¹r\\œÔ8~üxýÛõa®›6ø;”¿->2Òõ›ûøãuò<3êÿ›yÔ¨Qyß’¯ñãÇËÜ:P8fUÃÔ¼òÊ+Ò}OÚ¶m+µ¤§§gddHÿþûïRßâ /¼ðÎ;ïHk×®´wï^!Drr²Ô¸cÇéÁرcõ—èÕ¯_ÿÝwß•.Wß±cÇ'Ÿ|’{+VÜ»w¯A/¤iÓ¦Ò° µµuXXØþýû…NNNcÇŽBXXX¼úê«_}õ•âÞ½{¥~Ld®jÓ¦MÒƒwÞy'00P*lÉ’%?ýôÓíÛ·K÷|=óøëï“·víZOOÏîÝ»»»»¯]»öÎ;Bˆçž{®¨g¼„+,ê.?sõ×Éåîûœ?þ÷ß_£÷ïPþ¶JrÊLæ#“ûŠÌ|k+žçž{îêÕ«ëÊÁF#ïð’““ †É„]ºtBܽ{wÏž=Ç?yòä±cÇú(((hË–-UªT)ÒA(á ‹ºË…ïàÇõo4˜³Rò£mðwX¤mû”™ÒG¦B… ®®®RWtî»çvÿþ}i+¶¶¶ööörV{óæMéþÊÜÖ¯_ÏÝæQv¸LÍG}´páÂììl??¿åË—ÿùçŸééé={öTªGGGéñ7r¿¤Z¡Bƒ¨‘ïWމœUU®\YÕšô•©§¿SfYÔVkkë/¾ø"55uãÆÌ}䘘˜bü[ WXº»lgg§Ÿ*akôñ«Ø›6ø;,Ò¶ŠÍÄ>2­Zµ’üüóÏùÞʧvíÚ®®®®®®ú y «¿t²x]æ@Iaj–/_.=X¶lÙÈ‘#4h`eeuýúõâ­mðàÁ7ÿiß¾}E]I@@€ô@ÿË4Oýýý­¬Ê°û¿‰œUi4___éñôíÙÙÙÒåeeT[¾ž@¾4:Né€RöôéÓíÛ·‹š¹R<&%YÕ믿¾fÍ!ÄŠ+ô7È4ÃóUF»|üøñŒ1¢¹ÒÚ´œm53ü³ä 8(}o½õÖ±cÇ„­ZµÒÿHÝÇkÕª%¸ÅÆÆ2!Œ“c”>//¯S§N !N:U­Zµ°°°{÷îMžúè£'Ož!Ö­[÷Ûo¿)]€òŽùkÓ¦ôàÀJ×  ÇÒ t #v!á‚Ò%àtB§t Ê 8–‰„„¥K(&³/&ƒ“¢BœRÕIÑMß 7”èŒ*½¨ê¤°/ÅCp ¤ †y{§4/®Ó síÌ‚ 8PùfÄÂ.óÆDãê)ôŽÆ )>óâ6b"LÁ€(jRÿ ‹ÄD˜0‚#ÿ‹2'Ìa†Ž(ÌîÝ»•.†8)*ÄIQ!9'¥aQäÊ‹„Å¢â“bŽó¢Ï‹EºyBX(]€ÚÍ›7/!!¡aÆJ(ÐHÿÓ ô?¹oÔæï!5¼Ñã0qRcQêƒ.F /‚#À4oHZü/2’¼ŽS£á[œ_&2…ãG€éÐ_Åx9érÑÞ˜ëBF¡Ç` Šw!£ —( ‚#À¸rCp«bGF!þ;0  HŽãSÂÈ(èhŠ…à0&%‰Œ‚ŽF dŽ£!͘.æ{éhJŒà0t4j@p¨]I:©(=G€ª1< ¨Á R OjCp¨Q ‡§ýü|I@©ã·ªªSò‹/_NRz'Dp¨ˆFh˜ ¨CÕµ(ad¤F ŒÑãPR# ~G€òH€Q 8FjŒÁ $R#`DŽÅãBp(ƒÔ‚#@¤FÀåÔ)‚# \‘ãEp”R#`ÔŽ€rRòÔ@YG@y(•ÔHw# ,‚# Ì‘Ó@p”-R#`2Ž€2DjL ÁPV˜ ˜‚# L”Vj¤»P‚#@½H€ª¥AjÀ$¥ŒAjÀT¥‰Ô˜0‚# Ô0B ˜6‚#@uènÔ‰à( R&à( Ræ€àPº5#8JŠAjÀL% 5`>Ž€â+ÅÔHw# ~GÈBpÝ€¹!8ŠƒK3Dp(ŒîFÀXEÆ 5`žŽ€¢a0[G€bènŒ ÁPt7æŒà«tS#Ý€Ñ!8@‚#@º Áðlt7GÀ31“€„à(Wt7Æ‹à( ÝôŽ€òCw#`ÔŽ€ÑÝ 7‚# œÐÝ;‚# t70@pä£ÔS#Ý€ 8@‚#ÀƒÔòEp”9Æ©Ó@püÝ Bp”-º“Apü?º‚à(Ct7¦„àø/ºŽà(+t7&†à‚îF2 ÁP&ÝŒS¦‡àYŽ`îèn Á²À¬1™€|G@)cœ0UG0_t7(‚# 4Ñݘ0‚#˜)ºÁ²À•Qw#ãÔ€i³Rº€r²yóæM›6%&&V¬X±]»v“&Mrvv.dù¬¬¬ï¾ûn×®]IIIÎÎÎõë×çwüýý•ÞŘEcDDÄÌ™3/]ºÔ¬Y³J•*mٲ孷ÞÊÌÌ,hùœœœ×_}Á‚wïÞ òööÞ³gÏK/½tìØ1¥wJÝŠÇôƒcBBBdd¤»»ûîÝ»###÷ìÙ3xðàÓ§O/X°  ·lܸñĉݺuÛ»wï’%KÖ®]ûÍ7ß!fΜ©ôÞ(Æôƒã¦M›´ZíøñãÝÜܤ–©S§:::îÚµK«Õæû–'N!^ýu+«ÿå·lÙ²N:W®\ùûï¿•Þ!(&S(6ÓŽÇŽ³°°hß¾½¾ÅÒÒ²mÛ¶iiiR@ÌËÓÓS‘;#êtº{÷îYXXè£$ 7Æ©s`âÁQ§Ó%&&º¸¸¸¸¸än¯U«–âÚµkù¾«G¶¶¶}ôÑ‘#G233SRRfÍšuýúõ°°0¥÷ ŠîF%aâýg999NNN펎ŽâŸ}й¬]»vÈ!C† Ñ74húôé2·`в{÷n¥Fq\¿~]é`ˆ“¢BÆtR|ERRR­ºÌÖ\ÆtR̆ñž”®]»*]‚Z˜xp”¦NÛÛÛ´WªTIqÿþý|ß•žžþé§Ÿ>zô¨^½zõë×OKK‹Ýºuë‹/¾Ø©S'9ÛMHHPz×K¯¯¯Ò%À'E…Œâ¤ü·»± *ýß8µº‚Qœsc¤'%ï×zÞ"3aâÁÑÉÉI£Ñddd´?|øPü¯ß1¯É“'ÿñÇS§N}ã7¤–”””W_}u„ ?ýô“ŸŸŸÒ» ¿ÆÑÊÊÊÑÑ1oÏbzzºB?Ï:·Û·o8p fÍšúÔ(„ðòò5jÔÓ§OüñG¥÷ @&…îîîiiiRRÔ“.ÄqwwÏ»|ZZš¢FíRGcjjªÒ;ÅQvÓb˜O ˜ÓŽ!!!999111úNíìì˜wù5jXZZ^¼xQ÷Ï¥ëjÖ¬©ô(ÃôƒcXX˜……Å_|!]×(„ˆŒŒ¼sçN¿~ý¬­­¥–G%%%I³½ìììÚ¶m›œœ¼dÉýÂ/^¼¸|ùò *+½CPdÜ…@©0ñÉ1B//¯I“&ÍŸ?¿W¯^AAAÉÉÉqqqõêÕ>|¸~™èèè &øûûoß¾]1oÞ¼þýû/_¾|çÎuëÖMKKûã?´ZíÌ™3Ÿþy¥wT„qjÀ¬˜~pB¼ùæ›UªTÙºuëÎ;=== 4~üxéŽ<ùruuݹsçÊ•+ccc<èììÜ®]»‘#GÖ¯__é]€"£»@iÑèøOÅÒ`2÷qLJJ2Ò{n™0NŠ ©ü¤˜ç´•ŸódJ'Å”¾ë‹Äô¯q@© 8€)cœ@)"8ŠCÍãÔÊÁLÝJÁ²À4•iw#ãÔ€y"8@‚#d!8€ bZ €²@p 8f‹à¦†îFe„àYŽ€"`œ0gG0)ŒS(;GÈBpÓQÖÝŒSfŽàYŽ`"¸º@Y#8daœÁ²À0N  ÏÆ85Ap€LG0zŒS(GÈBpãVÝ\à@Bp€,GÈBp#Æ85€òDp€,G0VÜ…@9#8@‚# @\à 7‚#%Æ©”?‚#d!8òÇ85G0>ŒSPÁ²ÀÈÐÝ@)G@>¸À@^GÈBpcÂ85†§/‚#d!8€Ñ`œ€²Ž…àơܺ¹À@AŽ…àYŽ`˜@ Ž€ÿÇŽ Ap€,GP;Æ©¨Áð_ŒS(Á²@Õ§ GÈBpÁŽd 8€z1N @UŽ…àYŽ Rå9NÍŽä 8@‚#¨Ób¨Á²ÀÜq#™Ž :ŒSP'‚#d!8@‚#¨K9Ss#ùŽ…àYŽ "̧ fG0_\à HŽ…àjÁ85•#8@‚#˜).pPTGPÆ©¨Á² Á”Ç85£@psÄÌÅ@p€,GPãÔŒÁ²Àìp#€â!8€’§`DŽ…àYŽ EÆ©¹À@±Y)]@9Ù¼yó¦M›+V¬Ø®]»I“&9;;þ–3gάZµêìÙ³> 3fL‹-”ÞŘEcDDÄÌ™3/]ºÔ¬Y³J•*mٲ孷ÞÊÌÌ,ä-û÷ï0`ÀþýûÝÜÜOž<9xðàýû÷+½+Š1ýà˜éîî¾{÷îÈÈÈ={ö <øôéÓ ,(è-÷ïߟ2eŠ••ÕÚµk7nܹaÆ *Ìš5K«Õ*½CLó©ÓŽ›6mÒjµãÇwss“Z¦Nêèè¸k×®‚Rà–-[ÒÓÓß~ûí&MšH- 4èÖ­Û;wΜ9£ô@ñq#€’0ýàxìØ1 ‹öíÛë[,--Û¶m›––vâĉ|ßrèÐ!FÓ»wïÜŸ}öYBBBÆ •Þ!e˜øäN—˜˜èâââââ’»½V­ZBˆk×®5mÚ4ï»âãã=<<Ž?~òäÉ{÷îÕ®]»cÇŽvvvJïÁ85cdâÁ1###''ÇÉÉÉ ÝÑÑQñ÷ßç}KVVÖƒjÖ¬ùÁlذAß^­ZµE‹½ð r¶`в{÷n¥Fq\¿~]é`ˆ“¢BÅ9)¾"))I‰b}Únyã“¢BÆ{Rºvíªt jaâÁQš:moooÐ^©R%!Äýû÷ó¾åÁƒBˆÄÄÄÔÔÔùóç·oßþñãÇQQQË–-7nÜöíÛåô;&$$(½ë¥Æ××Wé`ˆ“¢BÅ8)JGóùû1Ÿ=5"FzRò~­çí!2&~£“““F£ÉÈÈ0høð¡ø_¿£[[[éÁ§Ÿ~Ú»wo'''wÞy§OŸ>ׯ_ß±c‡ÒûÀè)5NÍÌ%¤®àøùçŸ'&&–â ­¬¬óö,¦§§ !ôó¬s³···µµµ³³ ÎÝÞ±cG!Äùóç•>HÊPWpŒŒŒìÞ½{¿~ýÖ®]›ïˆÅàîîž––&%E=éww÷|ßâææfmm­Ñhr7J#ÔÙÙÙJ$e¨+8Ž1ÂÛÛ;>>~Þ¼yAAA#GŽÜ³gOVVVIÖ’““£oÑétÑÑÑÎÎÎù¾%888==ýÂ… ¹¥{÷Ô®][éƒÀ¸1Ÿ€ñRWp|÷Ýwýõ×ï¿ÿ~À€•*UÚ¿ÿرc[·nýÁœ:uªxë ³°°øâ‹/¤ë…‘‘‘wîÜéׯŸµµµÔòèÑ£¤¤$ýl¯>}ú!fΜ©ïõ>>½{÷~饗¼½½‹´ª¯¿þzþüùÞÞÞAAAÉÉÉqqquëÖýúë¯õ·éÙ¹sç„ üýý·oß.µ¬ZµjáÂ…ŽŽŽM›6ÍÈÈ8vì˜F£ ïÖ­Û37`2³ª“’’Œtœ 㤨P‘N 3cÊŸ2¥“bJßõE¢ÞÛñXYYuèСC‡QQQ .LNN^¼xñ’%Kš5kÖ¯_¿ž={ZZZÊYÕ›o¾Y¥J•­[·îܹÓÓÓsРAãÇ—îÈS#F¸ºº®Y³æ·ß~svv 3fŒ¿¿¿ÒG€qcœ€QSo£âîÝ»¿þúëîÝ»9"ÍJ©R¥ŠµµuJJŠ¢fÍš«W¯öôôTºLC¦ô_!¦ô_‡&ƒ“¢BòOŠ‚Á‘G(ΔNŠ)}׉{ïܹ³wïÞ={ö=z4''GáêêÚ¹sçÐÐÐ&Mš!~ûí·ˆˆˆøøø÷ßÿË/¿Tº^³ ®à¸nݺ={ö?~\«Õ !\\\ºtéÒ­[·¦M›æ•nÓ¦M“&Mš7o~ìØ1¥K¹èn`ìÔ?üðC!„““SçλuëÖ¢E‹‚®b´³³³µµUá85€©RWpìׯ_hhhË–-åÌz¡» <©ë>Ž»ví:räHA©q̘1]ºtQºF(æS0ê ŽOŸ>-襫W¯þõ×_J×F† ”凪£££GŽ©ºfÍšuëÖå]L«ÕêtºêÕ«+]/€™R>8ZZZ:88HïÞ½[¡B…Š+滤““ÓÔ©S•®ŠŒqj¦AùàØ¦M›¸¸8éq@@À«¯¾:}út¥‹€!åƒcnC‡mÚ´©ÒU ê Ž“'OVº0)ÌŒPŠŽëׯB4oÞÜßß_ÿ´pT¶f(.p`2ŽsçÎBÌ™3G ŽÒÓ¡pp3fŒ¢~ýúÒÓ÷Þ{Oé€ü)ßyçÜO‡®l=Pº§`JÔõË1€RÄÌ¥Káǃõ-íÛ·W¶fó¤pp1bDQß’ lÍ ãÔLŒÂÁ±W¯^JÈ¢pp Wú€iâG¥ŽÉ1P&§`zøåÈÂ/Ç@~9JãÔL¿&ˆ™1Ê‚ª'Ç­tfJ]ÁQáááae•Ï”i–LFF†Ò˜)uÇÀÀÀk×®¥§§ç}éÑ£GIIIõêÕSºF(Æ© ì¨+8†……étºiÓ¦eggçnÏÉÉ™>}zNNNHHˆÒ5˜)…ïãxäÈ‘ÜO---ûöí»eË–N:………ùùùi4𤤤¨¨¨k×®tíÚUÙ‚@嘠ì(‡ ’o{JJÊâÅ‹ Zµj• lÍæIáàØ«W/¥”.p`òŽáááJÈ¢®É1…›2eJ‡”®ÀL)Üã˜×Ý»wýõ×äädƒöÌÌ̽{÷ZZZ*] äC%ãÔÌŒP¦Ôoݺ5`À€¿þú« ¨tfJ]Áñ›o¾ù믿š5kÖ³gÏ;vüþûïï¿ÿ¾Ýùóç×­[7pàÀ3f(]#€™RWpŒ‰‰±±±Y¾|¹ƒƒC‡Ú´iãëëÛªU+!„ŸŸß‡~øòË/ûûû+]&üƒŸ¯ŸÆ© ¬©krÌ7jÔ¨áàà „¨R¥Š³³s||¼ôRXX˜³³ó7ß|£tfJ]ÁQaañÿ%U¯^=))Izliipúôi¥ •bf €²¦®àèááqåÊ•GIO«U«vüøqý«æúõëJ×ÿ šËI—•®ʃº‚cÇŽ333ß{ï½K—. !š6mzõêÕØØX!Ä;wþøãooo¥k0Sêš3xðà={öìß¿_§Ó­\¹²mÛ¶VVVï¼óNãÆÏŸ?Ÿ‘‘ªtfJ]=Ž®®®ëׯ÷Ýwëׯ/„ðööž9sfVVÖáÇÓÒÒBBBÞ|óM¥k€ÿ§’û~@ùPW£ÂÕÕuĈú§ èÙ³ç™3gÜÝÝýüü”®TŠ™1Êê‚cn=²¶¶®T©RË–-•®ÀÜ©18ž>}zÙ²egÏžMMMµ°°ðöönܸñèÑ£}||”. þãÔ̺®qB,^¼8,,ìàÁƒ©©©666¶¶¶×®]Û¶m[hhè† ”®À|©+8:thÅŠ–––ƒÞ·oߟþyòäɃ:T1oÞ¼S§N)]#€™RWpܰaƒN§›8qâŒ3ªU«¦Ñh„žžž“'Ož2eJvv6?9@%T5NÍÌåC]ÁñìÙ³666¯¿þzÞ— dggÇO(E]ÁQáááae•Ï”i–LFF†Ò˜)uÇÀÀÀk×®¥§§ç}éÑ£GIIIõêÕSºF3¥®à¦Óé¦M›–»=''gúôé999!!!J×êºÀÊÂ÷qJWÀL©pœÊŸê‚£F£éÛ·oß¾}oß¾}åÊNW£F www¥ë0wê Ž×¯_×jµÕ«WB¸¹¹ÜÍ ÇÌåO]Á144ôÉ“'‡vuuUºø/Æ©@¢®YÕþþþBˆ .(] ©+8Κ5ËÎÎnÅŠ?Vºüƒº†ªÝÜÜ>ÿüó÷ß¿W¯^½zõª^½ºƒƒƒÁ2íÛ·WºLf„qjÐSWp –ܹsgéÒ¥ù.“ t™ 0fÆP„º‚£ôË1P!uÇððp¥K@þÔ59Æ@VVVFF†ÒU0_\๩«ÇQrñâÅåË—Ÿ:uêæÍ›Z­ÖÃÃã…^3fLíÚµ•. À|©.8®^½úóÏ?×jµBKKË›7oÞ¼ysÿþýï¾ûîðáÕ.ÀL©k¨úÈ‘#Ÿþ¹F£]«Õ®]»VéÌ”º‚ã™3glmmœ÷¥T¬XñÌ™3J×`¦T³³³oܸáîînii™O¡žžž:†g” ÕŽS€‚T5MÅŠ¯]»vïÞ½¼¯¦§§_¹r¥~ýúJ— `¦T---ûöí«Õj§L™òäÉ“Ü/eeeM:U£Ñ :´x+ß¼ysXXX```ëÖ­§OŸ~÷î]ùïMIIiҤɤI“”>BÀÌJR×íx^{íµ³gÏ|¨ô±P~§€|©+8†††Jnß¾½bÅ ƒWwîܹsçÎÜ-ï½÷Þ3ïì˜éîîåææ&„øè£Ö¬Y³`Á‚Y³f=³¤o¿ýöèÑ£Jå©+8öêÕ«HË׬Yó™ËlÚ´I«ÕŽ?^JBˆ©S§nÛ¶m×®]3f̰°(l°þâÅ‹µk×>þ¼ÒÇ@aê Žáá᥾ÎcÇŽYXX´oß^ßbiiÙ¶mÛŸþùĉM›6-èÙÙÙ“'Ovvvž:uê!C”>6Ê ãÔPMŽ) :.11ÑÅÅÅÅÅ%w{­Zµ„×®]+ä½K—.=wîÜ'Ÿ|âàà ô~€ÌŒ 4uõ8–ºŒŒŒœœ'''ƒvGGG!Äßÿ]ÐO:õå—_4¨U«VgÏž-êv ZvïÞ­ôÁ(Žëׯ+] qRÊœ¯HJJ*Ò;Êñ¤øµ6³Å'E…Œ÷¤tíÚUéÔÂăcff¦ÂÞÞÞ ½R¥JBˆû÷ïô®É“'W«VmâĉÅÛnBB‚Ò»^j|}}•.†8)eç¿ãÔE?ÀåvR8ûòq¬TÈHOJÞ¯õ¼=DfÂă£“““F£ÉÈÈ0h—n¯#õ;æ5þüëׯoذAÎýzÌ„‰_ãheeåè蘷g1==]¡ŸgÛÑ£G7lØ0bĈ† *]>€Š˜xpB¸»»§¥¥IIQOºHÈÝÝ=ïò/^B,_¾<àúöí+„øé§Ÿzôè¡ô(+̧€Â™øPµ"$$$!!!&&¦{÷îR‹N§‹ŽŽvvv Ì»¼~IÉýû÷ccc½¼¼=<<”Þ!fŠ)ÕgúÁ1,,låÊ•_|ñE»ví¤91‘‘‘wîÜ6l˜µµµ´Ì£Gnß¾mmm]µjÕ6mÚ´iÓ&÷Ξ=Û´iÓ²¸Í$€±0ýàèåå5iÒ¤ùóç÷êÕ+(((999..®^½z¹«0::z„ þþþÛ·oWº^Ê`œžÉôƒ£âÍ7߬R¥ÊÖ­[wîÜééé9hРñãÇK½É,‚£¢gÏž={ö,èÕÐÐÐÐÐЂ^­W¯ž)Ý— xLV5<“úÇ©™@ Ž…àYŽÌúÇ©@%Ž…àYŽÌšQŒS3¥€J Á²˜/£§õ 8@‚#d!80SÆ2NÍ”jêAp€,GÈBp`ŽŒeœT…àYŽ ^ÌŒ *Gf‡qj(‚#d!8@‚#óÂ85Á²@¥˜R @mŽÌãÔPGÈBp`.èn€"8@‚#d!80 F7NÍ”j*Dp€,GÈBp`úŒnœÔ‰àYŽ…àÀÄã85Sª¨Á² Á€)3ÆqjP-‚#d!8€º03€j˜,Æ© t Á€i¢»JÁ² Á€ 2Þqj¦TP3‚#d!8@‚#Sc¼ãÔ rGÈBp`Rèn€²Cpµ`J5•#8@‚#ÓÁ85”)‚#d!8@‚#Á85”5‚#¨Sª¨Á€) »ÊÁ² Á€ÑcœÊÁ²@yL©`ŽŒãÔPnŽ…àÀˆÑÝå‰àYŽ…àÀX™Ì85Sª ‚#d!80J&ÓÝF„àYŽ…àÀø0N Š 8€’˜R Àˆº@)GÈBp`Lèn Á² Ó§fJ5ãBp€,GÆÁôºÀè Á²Æ©@ Ž  ¦T0:GjGw#¨„•Ò”“Í›7oÚ´)11±bÅŠíÚµ›4i’³³s!Ëgffnܸ1**êúõë•+W®U«Ö›o¾Ùºuk¥÷@1f#""V®\ioo߬Y³äää-[¶\¼xqÍš5vvvù.Ÿ=dÈS§N9::¶lÙòñãÇ¿ÿþ{llìØ±cG­ôÞæ…îFPÓªNHHˆŒŒtwwß½{wddäž={|úôé ô–M›6:uªI“&ÑÑÑ+V¬øæ›o~üñG''§eË–;wNéP†éÇM›6iµÚñãÇ»¹¹I-S§Nuttܵk—V«Í÷-»wïB̘1Cß%éïïÿöÛoçää>|XéÌÝ *¦;faaѾ}{}‹¥¥eÛ¶mÓÒÒNœ8‘ï[’’’ìííëÕ«—»Ñßß_qíÚ5¥w€)`J5cdâ×8êtºÄÄD—ÜíµjÕB\»v­iÓ¦yßµjÕ*++Ã#söìY!DµjÕ”Þ'e˜xpÌÈÈÈÉÉqrr2hwttBüý÷ßù¾«nݺ-qqq‘‘‘666½{÷–³Ý€€ƒiøÛè\¿~]é`È|NŠŸ¯ßå¤ËI"IéBž­X'Å7)ÉvÍx™Ï'ňïIéÚµ«Ò%¨…‰ÇÌÌL!„½½½A{¥J•„÷ïßærrrÖ¯_ÿÙgŸåää|þùç®®®r¶› ô®—___¥K€!ó9)F´§Å(ÕˆöÎHq„UÈHOJÞ¯õ¼=DfÂă£“““F£ÉÈÈ0høð¡ø_¿c!~ÿý÷9sæ\ºtÉÓÓóã?nÕª•Ò;˜ ¦Å€ ™xp´²²rttÌÛ³˜žž.„ÐϳÎ++++<<|íÚµ¶¶¶cÆŒ:thA7}0&…îî‰éééúFéÒ"ww÷|ߢÕj'NœøË/¿tìØqöìÙ…äKeÁä»™R ÀH™þíxBBBrrrbbbô-:.::ÚÙÙ9000ß·¬]»ö—_~yíµ×–-[Fj˜~p ³°°øâ‹/¤ë…‘‘‘wîÜéׯŸµµµÔòèÑ£¤¤$i¶—N§[·n]åÊ•§L™¢tí€92ùîF0^¦?Tíåå5iÒ¤ùóç÷êÕ+(((999..®^½zÇ×/=aÂÿíÛ·§¦¦^½zÕÎÎnàÀy×Ö§OŸAƒ)½O 0ýà(„xóÍ7«T©²uëÖ;wzzz4hüøñÒyò’ú333ãããó¾ÊÄj LÑÝjfÁQѳgÏž={ôjhhhhh¨ô¸qãÆ¦tF€Òbú×80fÒÝÈ”jÆ‹àYŽTÁLºÀ¨ Á€òèn£@p€,G(?L©`ÔŽÆ85 ‚#%‘Àˆ Á€bènãBp€,GÊ »ŒŽ•Ò€¹È÷^<J×@$$$(]‚q 8PÝ’€€¾®Åñßoò1T YŽÊÝ`¤Ž…à \ÑÝÆ‹àå!ß)Õ`\ŽÊÝ`ÔŽ…à œÐÝÆŽà <À Á@™£»Ñ”¦Tûúú†……û½}úôÑ?7ož««kýúõ•Þ§íEñ´þba ¬ øÏþ3kÖ¬:uêLŸ>]éZ`iiiii)=>~üxŸ>}Ξ=«tQù¸ÿþÛo¿]½zõJ•*µmÛ6..NéŠòѶmÛ9sæ(]…¹ 8([t7"_‰‰‰Bˆ>ø`À€J×¢€ƒ?~\z|ëÖ­­[·Þ¹sGé¢ ¥§§7mÚô›o¾ :tè¥K—ºvízòäI¥ëú‡“'O>|Xé*ÌÁ@"5¢ :NakkûÌ%µZmNNNim7++K«Õ*½÷¥&+++++«ŒV¾páÂÄÄÄÈÈÈõë×/^¼8&&F£ÑLœ8QéBˆììì_~ùåƒ>èÒ¥‹)Põ#8ŠìðáÃݺusuuõöö9räƒô/EDD4hÐÀÞÞÞÅÅ¥E‹ëׯÏûö7Þx£wïÞBˆ6mÚøúúæ» __ß &¬ZµÊÕÕÕÊÊÊÛÛ{Ô¨Q¹7tôèÑÐÐP//¯ÐÐУG¼÷øñã 6lذ¡Ô2nܸI“&988ØÚÚ¶hÑbÇŽÙÙÙÓ¦M«S§ŽƒƒCppðþóŸ"í…þýû[[[?|øPzºqãFFÓ Aýï½÷žF£‘z삃ƒ¥kßxã=z!Ú·oŸûPr„s  ÉÝ2gΜfÍš•ÊYþá‡<==,=õóóëß¿ttô7ä¼ýرc=zôðððÐü“µµuÉkKKKëҥ˜9sRSSKeg!Á@Y¡»ÑT>}º{÷îþþþÓ¦M{þùçW®\ùÞ{ïI/}ðÁï¾ûn•*U¦L™"ÅAƒýüóÏk˜8qâûï¿/„X°`Áwß}WІöíÛ7vìØ×^{méÒ¥5Z±bÅ»ï¾+½´mÛ¶Ö­[Ÿ9sfÀ€¯¾új|||ëÖ­·mÛ¦ïµk׺téòàÁƒ_|QjY·nÝwß}7cÆŒ9sæ\¾|¹ÿþíÚµÛ¿ÿˆ#þõ¯EGG¿öÚkEÚ ݺuËÎÎŽ‰‰‘žJâããÓÒÒ¤–ƒzxx4jÔÈàPH×ç}öÙgúCQÈ~¦+W®èÁK"==ýÂ… ÁÁÁFߨ¡C­V+çJÇ}ûöµhÑâÌ™3o¼ñƇ~ظqc!DãÆß{ï=ýI, wwwN§ÓéΟ?_òµ¡t(mµjÕRº„Rsùòe¥K€!#:)Bg.ÿÂ~R ù‡Öÿ¹¨Q£†bÛ¶mÒÓììì:uêøøøHOýüüjÕªõôéSéé½{÷¬¬¬F¥oïÞ½¥Ç[·nBÄÆÆ¾¡¨¨(é©V«­_¿~ÕªUu:Ý“'O|}}kÔ¨‘šš*½šššêãããçç÷äÉý{çÌ™“““£_[… Î;'=ýì³Ï„ 6ÌÊÊ’ZÚ´i#„HOO/Ò^ävýúu!Ä{ï½'=­_¿¾4aüßÿþ·´ ‹7ß|Szµ}ûö5’oß¾]qðàA9G8ïQjÓ¦Mî–!C†”Ê—û… „&LÈݸoß>!ĪU« off¦—————×7¤–ǹ¹¹IG¸IÁñƒ>(ÉJŠñI4Æo©°R:¸0Mt7–P®^žòöÌ;ÕªU«W¯^ÒcKKËFíÝ»WzzôèQ[[[+«ÿ~¹HmÅ«ÄÏϯ_¿~ÿ; šÀÀÀŸ~úIqâĉ¤¤¤E‹¹ººJ¯ºººŽ?~„ þù§4Pëéé9sæL ‹ÿXkÞ¼yíÚµ¥ÇÁÁÁBˆè‡MCBBbcc322*W®\¼½ðöönРÁþýû…wïÞÿꫯƌݧOŸ˜˜­V*gÇ 9ÂÅ–½cÇŽ‚^}饗 Z¤ýuppÈÝèèè¨? …ˆ‰‰III™;w®‡‡‡Ôbcc3yòäž={nÙ²Eж%© "8(}¤Æ’Só}kÕª•û©þ¶2Bggçß~ûmïÞ½çÏŸ¿xñâÙ³g³³³Ÿ¹ÂK—.Õ¬YSÿôÛo¿}ýõ×ónHŸ/^¼(„.^Ô“®&¼xñ¢r§F!„>e !¤¼˜·¥${!„èÖ­[xxøÝ»w¥žÔ6mÚDGG !>¾äµAAG@Ñ4úÉ“'}ûöݹsg³fÍ:wîÜ«W¯–-[J·ÎÝÝ}ݺuú§-[¶,|CR’Ðü³WVJWOŸ>•ž:99oBˆ®]»ÎŸ??::ú·ß~«^½zõêÕƒƒƒ§OŸ~ïÞ½ƒ¶iÓFê±+ö.¨àÜO333ó]ÌÑѱH ÌÝÝÝÂÂÂ`ê‰tÏ ooïÂßkgg'„0HÛR¢5HóÅ« "8(et7š­ØØØ;w.Z´hܸqúF9}u•*U8p ü ùûû !Μ9Ó®];}ãéÓ§…Jí…¢uëÖû÷ï?zôhÛ¶m…íÛ·×jµ?ÿüóÉ“'?ýôÓÒ8̆RRRr?-hÊsQ‡ƒ­¬¬êÖ­«Ÿë#9tèF£©W¯^á%I'èܹs¹¥¾Æ|OCÕF„à 4‘Í™4;¤N:ú–¨¨¨G•zgRãÆ«W¯1pà@ggg!Äßÿ½páBŸ‚~ǯ|öÂÚÚ:$$dçÎW¯^:t¨¢iÓ¦•+WþøãŸyc±oFxóæÍíÛ·K÷ô¹|ùò©S§ò]¬ÃÁÇ7nœ~å·oßŽŠŠêÔ©SAwPÒkܸqÍš5—-[6zôh©ë7+++<<¼R¥JÒªJ^”Bp€2dJ¿RýLÁÁÁöööÇ8p ··÷‘#Göïß_¥J•ØØØ]»vuëÖ­´6dccñÊ+¯4nÜøå—_Öét7nLIIÙ¼y³²{Ñ­[·üQ!õ8ZZZíܹ³ZµjuÔIÑjÅŠ·nÝzõÕW‹Z°••Õ«¯¾Ú³gO­V»}ûö‚Ž@1†ƒ‡ òõ×_8PÊß~ûmFF†þÇý6lØ0jÔ¨7ÞxcáÂ…o´¶¶^¼xqŸ>}5j4bÄKK˨¨¨ãÇ/Y²ÄÝݽTjƒR¸#€RCw£™«^½úÎ;«V­ºtéÒˆˆ;;»Ó§OòÉ'ééé‹/.ÝmõíÛ÷СCµk×þî»ïÖ¬YS·nÝÇÒkUn{!%Ë*UªèÇd¥Ü…t7¶jÕjÀ€{öì /FÁ-Z´˜1cÆ‘#G><|øðwÞy§´²ƒƒCttô+¯¼^³fÍèèhý}1³²²îÝ»WÐ%•¡¡¡qqq 4X¾|yxx¸££ã®]»J±6(ECÆ/u JWQ:’’’ž9$r¦Ú“bΩ±“Rx£)ýsEøúúV­ZÕàJÄr³zõêøøøE‹)}JªŸD³ýðÒãŠìñãÇ9ß&ƒà ˜sw#`žŽ9R§Nýï4ÂL09@I‘¥Œ9ÒàÇ]ÊMpp°tù&Ì Ác5yòd¥K€ya¨@‰ÐÝX³ºs@pP|¤F0+GÅDjsCp€,GÅAw#˜!‚#€"#5€y"8(R£LL©`zŽ…à ènsFp ©ÌÁ€,¤F(ë?þÐh47nTºòãëëÛ§OŸBxüøq­ZµNž<©t¥*•ššZµjÕ””¥ 1)GÏFj„ÇïÓ§ÏÙ³g•.Äh +¡¹sç–öîß¿ÿöÛoW¯^½R¥JmÛ¶‹‹SzïóѶmÛ9sæèŸV©RåÍ7ß3fŒÒu™‚#€g 5ƒyN©¾uëÖÖ­[ïܹ£t!FSXIܾ}{áÂ…“'O.‡m¥§§7mÚô›o¾ :tè¥K—ºvíª¶žÎ“'O>|Ø qüøñÛ·oÿý÷ß•®Ît†Ôˆ²¦Õjsrr”®¢ô+ÉÊÊÒjµeWíŠ+žþù&Mšè7—••UFÛZ¸pabbbddäúõë/^£Ñh&NœXv{'_vvö/¿üòÁtéÒ%ïwqqéÞ½û’%K”.ÓtE™™9oÞ¼:uêT¬XÑÇÇgذa7oÞB¼ñÆ=zôB´oßÞ××WZ8""¢Aƒööö...-Z´X¿~½~=¾¾¾&LXµj•«««•••··÷¨Q£>þÛo¿‹‹›8q¢¯¯ïìÙ³?ûì³-Z!>øàƒ9sætèСÿþOž<ùñÇ äààгgOiUûöí[¾|ùðáÃk×®½k×®+V<}úôË/¿Büûßÿ~ùå—Ÿ{î¹XXX¬[·î§Ÿ~Ò×ðÌ5_»v­K—.ŽŽŽ:u3fŒAayRɶmÛú÷ïïáá1`ÀFÕºu먨¨—^z)ﶤ–uëÖYZZΘ1ÃÊÊjáÂ…ýû÷oܸqvvöˆ#.^¼¸bÅŠ×^{íÔ©Srv¤ /^LNNnÕªU!Ë\¹råøñã%?ãééé.\v_ߨ¡C‡Õ«WÇÅÅ>}G:¶;w®V­Úo¼aooÿã?ž8q¢qãÆ:t°°(…Þ+wwwN'„HHH¨]»vÞZµjõôéÓèèhé¿PR:”¶Zµj)]B©¹|ù²Ò%ÀP¹¡ãß¹òž™ÿ¸Ý?>´´´2dˆ¾eèС®®®))):nûöíBˆƒJ/ùùùÕªUëéÓ§ÒÓ{÷îYYY5JzZ£F !DTT”ôT«ÕÖ¯_¿jÕª:îñãÇ>>>žžž×¯_—^MIIñòòBüðÃ2×|899ÙÇÇG±zõêÕ«Wç»ðÑ£Gmmm­¬þûE“––&„ÈÈÈÐ/àççׯ_¿ÿî¯F(u+ž8q"999<<ÜÛÛ[zÕÓÓsìØ±S§N•¹fOOÏ™3gÊïÐ*¤’¤¤¤E‹¹ººJ¯ºººŽ?~„ þù§4œw[Í›7×w} !  – ‰ÍÈȨ\¹ò3w¤ ÉÉÉ666ÎÎÎÅ8¹ÙÙÙ;vì(èU}OªžTƒƒCîFGGG}Á…ˆ‰‰III™;w®‡‡‡Ôbcc3yòäž={nÙ²Eж%©M&OOÏ«W¯ï½0@p`ˆÔXB¥2¥Z§ÀÎÎnÑ¢EÒ¨t½zõZµjÕµk×îÝ»W¨P!ïÂÎÎοýöÛÞ½{ÏŸ?ñâųgÏfggç^ V­Z¹Ÿê³—ÔÅ¥Ÿö!É}Ó™g®9  HàUrñâE!„tñ¢^ƒ ¤—¤à˜w[ú”)„òbÞ™;R[·n¹¸¸4Ìì)hjΣGz÷î]Кuyþv¥â ®LOOBä­ÁÀ•+W :€ñññ%¯M¦çž{Nº%Çäÿ@jDáF}åÊ•ÈÈÈ ìܹ³oß¾ 4¸uë–ÁbOž<éÙ³gPPЮ]»üýý'NœxîÜ9©›JÏÖÖ6ßMH=p¹¯¨¹Âœœ5;99i§ ªDJ*•XZZ !ž>}Z¼méRpÞ9ÔOž<Éý4333ß÷:::2™wywww ƒ©'Ò½ô]±³³B¤a)Ñæ›ì‹Z›LYYY666Å~;r£ÇÀÿ#5¢piii‰‰‰µjÕ6lذaôZíòåËÇŒ³råÊÙ³gç^266vç΋-7nœ¾QfwZÍš5…üñGûöíõÒl’®¹¨üýý…gΜi×®¾ñôéÓBˆ€€€®¼$;âááq÷î]­V›;~üDJASž‹:leeU·nݘ˜˜Ü‡Òh4õêÕ“sÏ;—»QêkÌ÷–ÑPuZZšŸŸ_ñÞ GÿEjÄ3%$$´nÝzÆŒóæÍBXXXHÙ.÷ð«ÔŸtýúu!D:uôíQQQ=’ÓoÔ¸qc??¿… ¾öÚkžžžBˆÔÔÔÅ‹K¯{ÍŸ«bãÆ«W¯1pà@é‚¿ÿþ{áÂ…>>>%ÿ½–’¢:uêhµÚäääÜ7ºyóæöíÛ¥¹Ã—/_ÖGmÅ>|ø¸qãô+¿}ûvTTT§Nò½½‘Á¬Y³æ²eËF-uÍfee…‡‡WªT)ß9Îe1T}íÚ5ý½„PBGÿ‡AjÄ35mÚô…^øôÓO/_¾ü /$$$ìÚµËÅÅeÀ€âƒ¶+V¬¸uëVpp°½½ýðáÃèíí}äÈ‘ýû÷W©R%66v×®]ݺu+d+ÖÖÖ ,xùå—_yåkkë7ê‡J‹±æÜ…½úê«ò÷ׯÆ&""â•W^iܸñË/¿¬Óé6nܘ’’²yóæ’}–ä[XXÄÅÅåŽnVVV¯¾újÏž=µZíöíÛ ªP.R©C† ùúë¯(å¿o¿ý6##Cÿã~6l5jÔo¼±pá¼§rñâÅ}úôiԨш#,--£¢¢Ž?¾dÉww÷R©í™NŸ>‘‘ѱcÇÒ]­ÙâGÀÜI¤FÈQ¡B…]»v½þúë¿ýöÛܹs<Ø©S§Ã‡Kñ¥U«V سgOxxxõêÕwîÜYµjÕ¥K—FDDØÙÙ>}ú“O>IOO×÷¢OŸ>û÷ï¯_¿þÚµk?ÿüó¬[·Nz©kÎ]XQw¹oß¾‡ª]»öwß}·fÍšºuë>|¸^1ùJrˆœ[¶lyàÀÜ-Z´˜1cÆ‘#G><|øðwÞy§äEJ¢££_y啨¨¨ðððš5kFGG¿øâ‹Ò«YYY÷îÝ+è’ÊÐÐи¸¸ ,_¾<<<ÜÑÑq×®]¥XÛ3‰fûá¥Ç0_¤Æ²P*÷âAn^^^¤Æ¼ú÷ï_©R¥­[·*]ˆxüøñ7n¬t!ù8}úô¹sçFŽ©t!¦ƒà˜)R#`Ô¬­­—,Yòá‡cÒOé:räH:u^{í5¥I>fÏž={ölýíÇQrLŽÌ©0½{÷>~üx|||ƒ FŽiðã.å&88XúµIMMuss›8q¢Ò…˜‚#`^˜@ ˜é¾HBˆÉ“'+]‹êT©ReÕªUJWajŽ€¡£PGÀ,ÐÑ(9‚#`úèh,7L©`Ú˜U ˜8R# ´Ðã˜,†§¥‹à˜ "# ,SÃØ4 ŒÓAG£1 Pº‹à˜"£cJuBB‚ÒU›¬¤¤$___¥«À?pRLÁ0nDF@¹!8ÆŠÈ(gGÀøŠ 8FCʋ—ÈP¿ÐH7ÙÑ Ýå¤ËJ—0Sô8êõß.FF¥¿R ÀÕ!/ԉਂ>, ò"@­Ž€b‹ãÂä˜mÞ¼9,,,00°uëÖÓ§O¿{÷®Ò) k×®J—`j¤i.¹'»Hÿ“¿NŠ qRTˆ“¢Bœ@cþ"""V®\ioo߬Y³äää-[¶\¼xqÍš5vvvJ—#“»[Qг0fô8æ#!!!22ÒÝÝ}÷îÝ‘‘‘{öìÜÝÝÓÒÒ¤¤¨—””$½¤tuÊ 8æ#$$$'''&&FߢÓ颣£•®@Ç|„……YXX|ñÅÒuBˆÈÈÈ;wîôë×ÏÚÚZéꔡÑñsùùúë¯çÏŸïí픜œW·nݯ¿þ:ïmzÌÁ±@?ÿüóÖ­[OŸ>íééÙ¼yóñãÇKwä0OGÈÂ5Ž…àYŽ…àYŽ…àYŽ…àYRRRš4i2iÒ$¥ 1w™™™ß~ûm=5j4tèÐÇ+]”ùÚ¼ysXXX```ëÖ­§OŸ~÷î]¥+2w|@Tޝ`¥t0:nÊ”)ú_î†R²³³‡ rêÔ)GGÇ–-[>~üø÷ß;vìèÑ£•®ÎìDDD¬\¹ÒÞÞ¾Y³fÉÉÉ[¶l¹xñâš5kììì”.ÍLñQ9¾JLÁÏöí·ß=zTé* 6mÚtêÔ©&Mš|õÕWR:¹xñâ Aƒ–-[Ö¡C‡:uê(] IHHˆŒŒtwwŠŠrssB|ôÑGkÖ¬Y°`Á¬Y³”®ÎLñQ9¾JLCÕx†‹/FDDÔ®][éB vïÞ-„˜1c†¾OËßßÿí·ßÎÉÉa<®œmÚ´I«ÕŽ?^JBˆ©S§:::îÚµK«Õ*]™â¢f|•˜ ‚# “=yòdggç©S§*] DRR’½½}½zõr7úûû !®]»¦tuæåرcíÛ·×·XZZ¶mÛ6--íĉJWg¦ø€¨_%¦„¡jféÒ¥çÎûú믔®bÕªUVV†ŸÙ³gÏ !ªU«¦tufD§Ó%&&º¸¸¸¸¸än¯U«–âÚµkM›6UºFsÄDµø*1%ô8¢@§NúòË/ ÔªU+¥kBÔ­[WŠ&zqqq‘‘‘666½{÷Vº:3’‘‘‘““ãäädÐîèè(„øûï¿•.ÐLñQ'¾JL ÁùËÌÌœgΜK—.yzz~üñÇüw|9srrÒh4íÒ}F¤~G(ˆˆzðUbzŽæîéÓ§‹-Ò?µ±±yë­·Ž=ºaÆQ£F5lØPéÍQ¾'Ezœ••¾víZ[[Û1cÆ :”ŽËŸ•••££cÞžÅôôt!„~ž5ÊUá«Ä$it:Ò5@uÖ¯_?wîÜ‚^õ÷÷ß¾}»Ò5š#­V;nܸ_~ù¥cÇŽ³gÏ& (¨W¯^‰‰‰qqq¹/öŸ>}ú–-[Ö®]Û¼ys¥ 4G|@Ô†¯“D#òáããÓ½{÷Ü-÷ïßõòò ôððPº@3µvíÚ_~ùåµ×^›={¶Òµ˜»„„„˜˜ý'E§ÓEGG;;;*]™â¢6|•˜$z!ËÙ³gûöíÛ«W¯ððp¥k1S:®sçÎwïÞµµµUºs—’’R£FÍ›7KsbV­ZµpáÂaÆñ;¼Šàbø*1ô8Æ!55õêÕ«vvvÌûjŸ>} ¤tfÄËËkÒ¤IóçÏïÕ«WPPPrrr\\\½zõ†®tifŠP>Ž€q¸~ýº"333>>>ï«Ì-o¾ùf•*U¶nݺsçNOOÏAƒ?^ê}Dù㔆ª 7€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GæeÒ¤ITºñÅ_¬_¿^éB@.‚#d±Rº0SÁÁÁ®®®Mš4Qº‹àʨW¯^½zõ”®Š€¡jPœœœ§OŸ*]"803gÎ 7h?sæL@@@«V­²³³…wîÜY¸pahhhãÆ7nܽ{÷O?ýôÖ­[­Vš+säȃöºuë¾øâ‹¹[>|ؾ}ûºuëž>}Zé“ÀÔ‡ž={ !öìÙcо}ûv!DïÞ½­¬¬îܹ3pàÀU«V¥¤¤T¯^½jժ׮]ûæ›o p÷îÝ’l}Á‚C‡ݳgOvv¶››ÛñãÇ—.]:hР´´4i‹/öìÙó‡~HKK{þùçu:]ttô¿þõ¯ýû÷iC«V­úüóÏ­­­[¶léèèxòäÉÑ£GïÚµ+ß…‡zëÖ­O>ùDßøÙgŸÝ¸qcÔ¨Q 4(ï“ÀÔ‡fÍš¹¹¹]»ví?ÿù¾Q«ÕJ¡ªoß¾Bˆ-[¶\¹r¥C‡‡ÞºuëO?ýÛ¬Y³¿þúë×_-ö¦8ðå—_V«VmóæÍܱcÇ¡C‡ÚµkwêÔ©+VHË,X°àÑ£G#GŽüí·ß¶lÙ=cÆ N·xñâ"mkÓ¦Mo½õVLLÌ·ß~»wïÞ!C†!Ö¬YSÐòcÇŽõ÷÷ß²eKLLŒâÈ‘#7n¬_¿þÈ‘#•;WLÁ€q°°°èÞ½»øg§ãñãÇoݺX³fM!Dvvvppð{ï½goo/-ààà uU&''{ÓóçÏB,Z´H߇çêêºhÑ"ww÷¨¨¨{÷î !Ο?/„ ³´´”–0`À¨Q£:vìX¤m5hÐ`âĉÒ.5JqåÊ•‚–·¶¶þì³Ï¬¬¬fΜyûöí3fØÙÙ-X°@_”"‚#£!EÀÜã¶Ò8u¿~ý¤§£G^¹råóÏ?¯_ 55uÇŽ%ÙèÝ»w“’’üüü f@W¬X±U«V™™™ñññB)¹N:õèÑ£ÒÕ–ÖÖÖãÆ3fL‘6×­[·ÜO---u:]!o©[·îèÑ£oÞ¼ùÒK/ýõ×_S¦L©Q£FYæÛñ0õêÕ«Q£Æ•+W²³³wïÞmggª_毿þ:tèÐñãǯ]»võêÕ^Ú(„¸|ù²ôÿù.pãÆ !Äœ9sÆôèÑýë_¶¶¶uëÖmÑ¢EçÎëÖ­[¤ÍU­ZµEŽ1bß¾}gÏžmÞ¼ù€Jõ¨Àÿ#80&={ö\ºtéîÝ»bbbî߿߷o_ýÀô† æÍ›—]½zõ¦M›vìØñ…^HJJš;wn‘¶’““£ïäËÊÊBx{{4èìåå%„¨ZµêæÍ›Ož>þĉ+V¬èß¿ÿ¼yó4ÌMW¨P¡‡åáÇ©©©BˆË—/ß»wÏÉÉ©ìOsDp`LôÁqܸqÒ´~œúáÇ~øa… V­ZÕ¦Mý[nÞ¼YÔ­¤¤¤hµZ鱟ŸŸ¢bÅŠÓ§O/ü]Fº"+++&&fÚ´iQQQ:t )ÓÃ2{öìÛ·o7nܸĉsçÎ]¸pa™n€ÙâGÆÄÇÇç…^¸|ùò™3g~ýõWŸ¦M›J/9s&''§qãÆ¹S£øß´•ÂŒhïÝ»WÿØÝݽJ•*—.]:{ölîerrrúõëtçοþú«C‡/¿ü²þÕ *„„„H³y®_¿^¦ÇäçŸÞµkW»víÖ¬Yãïï¿cÇŽ¼7-€RAp`d¤)23fÌÈÈÈèß¿¿¾ÝÝÝ]qþüù;wîH-999?üðúuë„™™™ù®­zõêBˆµk×fddH-qqqú›ìHÞ}÷]­Vûî»ïž;wNjyøðá´iÓâããëÕ«çêêêééùàÁƒ?ÿüsõêÕú®Ê+W®:tHQ¦÷S¼yóæÜ¹s+W®üá‡Z[[òÉ'–––sæÌ)ùÅCÕŒLhhèüùó,--{÷î­o÷óó ùõ×_;uêÔ¤IN—p÷îÝ®Y³æßÿþ÷ƒ¤ëäÖ»wïï¾ûîĉ!!!uëÖ½}ûvbb¢£££‡‡Ç“'O¤eúôésôèÑü±wïÞÞÞÞÎÎΗ/_ÎÈȨQ£†tçm ‹éÓ§O:5<<ü«¯¾ªZµjFFÆ¥K—t:Ý€ËèPètº©S§¦§§üñÇRn®_¿þ!C¾úê«9sæ,Z´HésÀÔÐãÀȸ¹¹5oÞ\äææ–û¥Ï?ÿ|ìØ±^^^ÒýÛ¶m»uëÖ3f 8ÐÒÒ2߬V­Ú÷ßß±cG ‹ØØØ .x{{ùå—®®®úe4ͧŸ~ºdÉ’:hµÚ+W®øúú¾ûî»[·nuvv––éÓ§Ïwß}×®];;;»óçÏgdd´nÝzùòå³gÏ.»C±víÚ#GŽ´iÓF¡§bìØ±>>>»víÚ½{·¢' € Ò~{00=JKK«V­šüIÐ`VŽ…¡jÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈò±JvƒT”TkIEND®B`‚statistics-release-1.6.3/docs/assets/hnfit_101.png000066400000000000000000001172431456127120000217700ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A€IDATxÚíÝw\GÃðYîP¤IGiQ)b±aÄ^Ñ ÆÄN¬1ÅÇQ#úÄãkóØ0–(Æ#¢Xƒ 5¨!*V¢ íöýct]¯ìíw¿ïÇ'7··7;»Üý˜Ý™eX–%ê˜è»P= 8€(Ž ‚#ˆ‚ࢠ8€(ŽÚÛ¹s'#ÎóçÏõ]Ù*mΜ9´¡z÷î­ék÷íÛ·gÏž={öäååq…ëÖ­£+lÞ¼¹¾7®ª+Oãkíùóç£Gvuu•J¥uêÔyùò¥¾›A3_~ù%m´¨¨(Z¢ôSµ™Õhó•þ~)ÒùQ¤t…Õ¨Ý*ByYä+’ÈOÝ úlÁg¾ÞIõ]€rûlÆ ôgºû ’ªÍ¬F›_¥~¿ªQ»6ýUê˜4NŽÚ«]»¶‡‡÷°°°ðÁƒôg—5jpO™˜ g·RÕ©S‡îggg}×”8tèý!,,¬wïÞü_–jJé!§j3 oó+ÚM‡tþ!©ßO]|æW&GíEEEݾ}›{øÛo¿uìØ‘þ|èÐ!}WP¹Û·o»¸¸Ô¬Y³Š¯³}zàÀuëÖˆˆ8vì˜Ö»^у&MšÔ¦M›:uê¼÷Þ{}ûöMOO×ncùòòòrrrd2}øìÙ³œœœÒÒR¹:—––~ñÅõêÕûâ‹/´Û}Z4š*wîÜ8p ““SŸ>}Î;§¸ŒÜ!§j36_d³«m%Ö p„ ü~ {òäÉ”)Sš5kfaaøÿ÷r7¶sð‹?lTÑôYÓ¹Æ/ç§E›èöˆ¥ÔþFkñ©Kåææ~ðÁï½÷ž‹‹Ë€Ž?®ªaùår_Uá3_‹=Ä‚Ž9r„kÕŒŒ ¹g7nÜHŸòôôä íííi¡³³3-)))133£…ÇŽ£…gÏž}ï½÷÷]ýúõSRRªÄEÏ:(®aäÈ‘ü…E¾‹øurKöêÕ‹ÿFƒ ¢åS§NXrÀ€JØ~ýúÑfΜ©øì‹/X–]»v-}¢õ†‡‡ûùùÉ-Ü¿õêU‹-ß‚a˜U«Vñ—T»uüšÚÙÙñ³··_±b…©©©Ü»pÇL9wÓo¿ýæè訸Ÿ~ú©Ë׫W/ŗܸqC®&~ø!ýyöìÙÚí>-M©sçÎ999ñ_R§Nnݺџ»víJ“;äTm¦Àæ‹lváVÒh ÂG¸Àï—ÀGMxxxÆ å^µlÙ2­~zX ·›Ú*©ýEÖôèRlürxZ´‰nX‘¿Ñ}êrnÞ¼¹\óššš®]»Ví¦É}Yèý3_»=Ãà¨3ÂÁñîݻܳ<`Y–š›’››Ë²ì… èCssó¢¢"–e ¸+)kÕªÕ¥K—nݺծ]›–899åç竪¿Ï’âààЮ]; ®äÀtIñï"~å ŽÛ¶mã~!;tè0lذÆsoñÛo¿±,ûèÑ£ììl®’ßÿ}vv¶L&c•}ˆh½îîî-[¶¬U«WröìYµ nffÖ³gÏ &´lÙ’–H¥Òëׯ‹ß:¹š˜˜˜ØÚÚÊ}`ùùù¹ººr#""Ê¿›ž?ÎýIÓ¡C‡yóæ <˜»N÷»ï¾Óhcåˆ ŽõêÕ㞢ßÊÚí>MMQQQ‘»»;·Q­Zµâ_ÖLt5mvÅVÒt ÂG¸Àï—Ú//¯   ‰DBÖ¬Y“~šiqð—?8 o¦vG—bã—çÀÓ®Mt{ÄŠüÖèSWé§¹¹9}(‘H®^½ªÑ—…Þ?óµûÐ3<Ž:#Y–õõõ¥ÏþòË/,ËîØ±ƒ~RÐÂ={ö°,ûí·ß҇ݺu£¯Š§%–––Üá{ùòeîÚ™3gªªÿ÷¡{÷î¯^½bYöï¿ÿæjÒ¶m[MßEü:ËGŒAK¦L™Â½°Y³f´pñâÅ\!†Ž9Â*~ˆh·ß|ó -¼~ý:÷9"ð—eÛ¶mé2 ,à ;uê$·6‘[ǯÉþýûY–-..îСW¸|ùr–eËÊÊFEKìììÊ¿›fÍšEKø½ß|ó -tssÓhc•Rº×øunÔ¨ÑæÍ›OŸ>}óæM­wŸ¦¦hÕªUt™:uêœ>}šNž<™[›À×°ªÍTU.²ÙZI‹5¨=ÂUm‚þ:W¬XA 7oÞÌ^¼xQ»ƒŸÿé!²2šn¦vG—\ã—çÀ+O›èðˆÿ-òS—ß&ÑÑÑôSèÎ; 4Ûñ_âß½">óËó¡gHpcåá¯Ó§OBèu'7vqq!„œ?ž+$„tîÜ™þ°ÿ~úÃĉ¹«7š4iòé§ŸÊ- @*•®^½šŽŠpqqùꫯhyZZÚ«W¯´{µë,nÞ¼yóæÍ“&M¢%ùùùôç'OžhºB-6°qãÆãǧ?7lØ0,,Œþœ““£ê] é?þøãÆéµü?þøcFFFFFF¿~ý´Ûºz¦ÉÔÔ´ÿþ´ÐÚÚzâĉ„îãõÙ³gåßM¿þú+ýaôèÑ\áˆ#hÒ;w._¾,~cµP»víÇ2¤eË–^^^Úí¾ò4gË–-ô~×BBB‚ƒƒƒÖ[§ŠÈfh%M× Å®–ŸŸmaBHÏž=¥Ò×ã/³²²è:ÿÕVKífjqt)6>G‹O‡mRž#¶â~£MMM¹O¡úõësŸBÉÉÉeeeZ¯VXE|æW\U/Ž•‡ ŽgΜ!o2bË–-CBBˆBpäÎÌ̤?téÒ…¿6.Yfeeq׌«Ò¸qãúõës¹U±,{ëÖ-íÞEí:Ë£K—.C† éÖ­ÛÉ“'§NY¯^½ëׯk½B-6PîâîÄ“@ks+ÏÌÌ5j”³³s³f;ùæ›—/_úûûsiºuüÓ[Ü%°...\w5W¨H‹ÝôçŸr s“Ø[XXpñ4ˆÜX-Ñ¿¦Ê³ûÊÓhŠMÁM›L©Q£÷¾:$²ÙZIÓ5hq„«åííÍýlaaÁí®ºýÕæ†Dp‚‚‚ä–Q»™Z]ŠÏÑâÀÓa›”爭¸ßhþÉ}®nÅÅÅýõ—Ö«VŸù×DÕ ‚cå §Ÿ={¶¬¬ì?þ ¼àxîܹW¯^eddB\\\5jDÉÏÏçî:#7=÷ñôêÕ+n– UäèÚµk[YYÑŸïß¿¯Ý»¯³œmU\\è•>T*>>~ܸqÜ|7,˦§§ùå—-[¶l×®wŸM·Né[‹œTÓÝ”ŸŸ¯vjåG‰ßX-È-ÐÉîӨѨ/^<|øPi3ò³¸NˆovVÒt Zájɵ°â:uû«-†ðfjwtÉ5¾Úf>ðtÕ&åiÚ´©T*½wïžÖ-¯“fVTTôàÁƒ 0`óæÍ><|ø07}7u™Î·N€Úݤˆ»t½´´ô=kkkkkk333ñ«•°ûI$OOOúóÁƒ¹r–eÅÌþ¨)1Í^Ñk¨º=ø‡ vÿ]üAŠ"éå誈6)Ï[¡¿ÑrŸB\ÝjÔ¨Aÿ|-Ï—…*:ß­•ü¡W•!8V*®+ñèÑ£„‰Dâàà@ÿêJII!„0 ÿÿ&7ÿÖÿû_n"ߌŒŒ%K–Пùײ¨R\\GþøãÚhÛ(ð¬NšQØõëלœœœœœoÞ¼I‘J¥;väQZ[[k½uZS»›qÞ¬_¿ž}3uóÎ;ëÖ­kggçááñï¿ÿŠÜX]©„ݧ= ÷¾ .¼víšÎßKL³Wôÿ~‰¤óƒßÌÌÌñ]uëÖÕt%ú:º*¢M´>bµûyT”””L˜0žOû矸éËùeQÉŸù•ü¡W•á–ƒ•ªU«VuêÔá>¾¹Qo!!!Ü¥M›6åOá;}úôÿû¿ÿËÉÉyþüyhhhdd¤D"9rä.ßÙÙyΜ9bÞúçŸöôôôóó;wî=Yibb2þüò¼‹ð:¹žÔ      Gq, °°°°°° l5jË–- Ãüúë¯Jo¢`mmM—üÏþsõêÕI“&ÉM´«Ûf@w܃JKKCCC»wïnkkû×_íÝ»—.@oŠ ÑÖé„ðnRôÙgŸmذáéÓ§»wïîСCûöí¯^½Ê@üôÓOmmm­­­Ål¬®TÂîSjÚ´iÿûßÿX–}öìYëÖ­[¶l™——wãÆŠx/1Í^ÑkP$ò÷K¤Ê?øÅÐ×ÑUm¢õ+òã‹Ò⨠ŸB 6<{ö,ý”H$_~ù%}V£/ }}ækÔD† =Ž•J*•¶oßž{ÈŽ\!×+I™™™mß¾ÎøPXX¸oß¾={öÐCßÝÝ}ûöí–––jß·]»vnnn¹¹¹¿ýöt–:G»wQ»Îàà`n≂‚‚“'Offfzyyqý"ª0 Ã݈¶  `ïÞ½{öìquuˆˆ …ükV¸ö-0 ‘“˜˜Ø¤Iòæ qqq.\àîè½eËîtFbbâ!CÌÍÍ7n,0z±üͨV«V­²³³ç̙ӼysSSS›ÐÐÐ 6=z”‹'~ëÊOÌnR}é񴯯ØàààÚµk{yyõîÝ;%%eÍš5ÜÕH"7VW*a÷)õÝwß7ŽþìààУG#GŽ´k×®"ÞKL³Wôäˆÿý¿ÂJ;øÅÓ×ÑUm¢õ+þ7ZÓ£"<<<%%%::º^½zÎÎÎ 8zô(7í9%þËBŸù•ü¡We1ì»·ŸC2gΜ Bzõêµk×®*»N¥JJJöíÛG ´ÿ¿¢·®Òv“‘8þüï¿ÿ>f̘ í|2†ý«­· ŽX¨8¸Æª(SSSþ^1ì­3øà˜‚‚‚²²2ÅA-VVV„'Ož(} ”+V¬ðôôlݺõßÿýûï¿§¤¤Ì›7oÀ€jßÔ××WßÛ +33SßUÐŽ………„sss¹r BÈóçÏ•¾êŸþ133ûôÓO‡ FKÒÒÒ>þøã… †††º¸¸¨}_ã<˜ª2___씪;¥jÂ~©‚°Sª £í$2ðSÕÖÖÖ ÃÈ•¿xñ‚¼éwT´iÓ¦‹/r©‘Ò¦M›>ø °°ðÈ‘#úÞ&ý0ðà(•J­¬¬{óóó !Ü8k1Z´hAùóÏ?õ½MúaàÁ‘âèèøøñcš9·oߦO).ϲlYY™âL=‰„R§N}o€~~pŒŒŒ,++KMMåJX–MII±±± R\>''§Q£F~ø¡\ù… ˆ_Ó`øÁ±ÿþ&&&+W®¤×5BÖ¯_ÿèÑ£¾}ûšššÒ’—/_Þ¾}ûÞ½{„fÍš={vÇŽÜJ.\¸°qãF—.]ºè{ƒôÃðo9HÙ¸qcBB‚««kXXXNNÎéÓ§5j´qãFnšžää丸8ooï}ûöBnܸ1jÔ¨Gùûû{yyýý÷ß/^¬]»öªU«Zµj¥öí0ü À°íw½á÷8BF޹téROOÏäää'Ož :ô‡~PœÜ‘Ó°aÃ]»võêÕëÑ£G|þüy¯^½öíÛ'&5*£èq¬dFûW€‘0Úïz£èq€òCpQ@GÁDApQ¤ú®€­)ªãœ[G ŽŸAÕþÚ§ª@GÁDApQ@GÁDApQ08@åaF¿`YVßmÕz*«¿ªÅÇÇ3 ­øTBBÃ0—.]ÒwÃOOÏÞ½{ӟ‚‚tþüñÃ0Û¶mSÕD'OžT|ªS§N Ô••ч999 ÃŒ1‚[ ´´ô»ï¾ svv¶´´ œ0aBnn.·ÀŠ+AÔbs,X`ggפI7”NðwhU pPyzzöïß_߬pÇ?=ŽðÚ¾}û~þùç>}úè»"êI$‰D¢ïZˆÂ²lÏž=“““›5k6dÈš5kÞ¸qcíÚµÿ÷ÿwæÌBHppðÔ©S¹—|óÍ7ÖÖÖ|ðWâáá¡éû^»vmΜ9¡¡¡cÇŽÕwT víÚEFFÎ;·ü«âTçÏŸÿòË/,X@wP%{þüùŒ3’““Ÿ>>ú®虪c€=ªVUáyóæB²³³Y–MHH „$&&Ò§-ZD¹xñ"˲EEEžžžyyyôÙ¼¼ûêÕ«Ö­[{yy•––¾zõÊÝÝÝÙÙùÞ½{ôÙÜÜ\BÈÖ­[U5‘€ÒÒRºä_ýE>|8÷ÚŸ~úé½÷Þ£‹ÕªU«C‡ .ü믿TíkkëácLí¾Ø½{7!äĉН}ñâ…D"á×pÔ¨Qvvv¹¹¹bö‚øJ‡… ro4mÚ4BÈ–-[ø;TxO 4Â7!óæÍSµÀ½{÷!S§N¥›4iBǘÿüóÏtÓLLLFŽ©xPíÛ·rìØ1n« !{öì¡KKKýüüÜÝÝ•¾©‡‡Ghh(¿døðá"¿mÿüóOBH\\¿ðÈ‘#„uëÖ).¯vgB’’’èC™LÖ¤I“zõêÑüº¸¸¸¸¸üóÏ?Ü spp ;ZŒ¨¨(333îWÆÏÏïüùó"_^Ñ´øâ6Úïzœª€w|úé§Mš4™3gÎÝ»wåžJOO¿}ûöäÉ“íììh‰ÝäÉ“oݺÅÍ×ãìì<{öl~'D‹-¸n¡ˆˆBÈàÁƒ¹Ó[ô¤^AA!äìÙ³éééRéë3!?æžcÏž=sçÎ;vì¨Q£!.\ÈÊÊš6mš™™] fÍš&L¸uëVzzzzzzNNΧŸ~êêêÊÕ|âĉÂo1hР© ÜÜÜ„_“}éÒ¥ÄÄÄN:?~Ö¬Y^^^4æjG̾PÅÄÄ„N-”““CK6lØ——çìì,f/ˆß¡´VS¦Lá^;wî\ ‹íÛ·óë#¼§´n"Bˆ««kÓ¦MéÕOŸ>ÍÈȈ‹‹377OII!„¤¦¦Êd²nݺ‰Y•O=èω$00ðåË—šÖ§´´tj\»YZZò_eeeÅí9jw–——Wß¾}éÏ ÃÑ÷ÿ©©©¹¹¹ü±““·ƒ¦OŸþðáÃ;wŠÙ.BHvv¶L&‹ÏÍÍÍËËûî»ïþþûï^½z=þ¼<»*NUÀ;¤RéúõëÛ´i3qâÄ]»vñŸÊÊÊ"„Ћ9ôᬬ,zJÔ××WîÔ—l!4^(–P666iii‡¾qãFVVÖÕ«WKKKEVûÚµk|ðAhhèòåËi 펊‰‰‰‰‰‘[øÎ;ôë³Y³fürµWÇß¶m[¹Â‹/Þ¹sGm ›6mÚ´iÓÉ“'ïÙ³'..nîܹ­Zµêܹ³»I̾PÅÌÌlùòåô„¬¿¿›6mºvíúþûïÓó†j÷‚øJñ÷÷矎477÷õõ½yó&á=%þê@¥¢¢¢–,YòôéSÚùJƒã±cǤRiÇŽŬÇÇLJÿPx ‰Ü¤3Üž—/_ÒkO•bY–¶¤ÜÕ“ùùù„[[[Å—¨ÝYrÕæ~7iצÈãŸv¢+=ØèÅ»j·‹¶v­Zµ¸­9rä«W¯Æ—””DÿÒƒêÁäµjÕêã?^³f ×[@Ñ/¹«Óè7hII }hmm­Ý›õéÓ'99¹yóæ;wîÑ£GëÖ­ƒƒƒÅ¼öéÓ§={ö´²²JJJâ‚ Í+K–,Qœ»Q£FÇWÜú~ñâň#:wî>>±±±±±±2™lõêÕ&LX»vmhh¨v{A•k×®•””pi¾°°ðúõëü6'êöT9wAÛ¶m---=zöìÙvíÚBÂÃÃe2Ù/¿üráÂz ¯Îño DáD—––îß¿_Õ«zöì)•J5jDñpŽ?Î0ŒâTäZÿÊ7£›Eÿt]¿~_HûéÁ¦v»rrröíÛסC???®œö¤ÒqlPàGPÂÊÊjùòå÷îÝ[µjWìææ–˜˜øôéSZòäÉ“eË–¹»»—vb:Žÿ½’””ôòåKµ=3fÌ8tèкuëBBBøå¾¾¾_ýõ³gÏhI~~~TTT\\\íÚµƒƒƒ½¼¼–-[Æ}©çååé|K†abbbΜ9³`ÁþéË—/_Î;WÕmÅ(ϾÈÌÌlÕªÕ×_Mš˜˜Ðô`jjªõ^P%///11‘{¸`Á‚üü|¹ÑÁÂ{ªœ»ÀÔÔ4222999==Ç:uê,\¸PíŽZOyÿþ}:¼†rëÖ-.ÑSºªÐeFý×_q/øðaRRR§N§U*ÏÎÒèønРÁªU«¸T\\¼dÉ :o‘Úí233›:uê˜1c¸îp™L¶dÉ©TÊM¿Õz@¹nÚ´é×_åJjÖ¬™˜˜8pàÀààà°,»mÛ¶ÜÜÜ;vÔ¬Y³œoann>zôè!C†¸ººž:uêèÑ£ööö'Nœ8pàNEÑþýû¿þú뀀‰DŸÁÎÏÏ/88xùòå={ö 0`@IIÉîÝ»ïÞ½»uëVzs¹¥K—0 ((hàÀ¦¦¦Û¶m«ˆ»Ÿ%&&fddÌ™3gÓ¦MÍš5£ãXOž<ùàÁƒY³fµiÓF»Õ–g_„„„4nÜxÑ¢E·nÝjܸqffælmm,‘H´Ø œçÌ™“––pêԩÇ·nÝš›¤’J¥{ªü» **Š^­Kƒ£D" KNN®_¿¾ª; ÒžÎ5kÖ>^qIí~e(SSSñÇ¿©©éŠ+z÷î8f̉D’””tþüùÿþ÷¿ŽŽŽb¶ËÁÁ!>>~ÆŒÞÞÞQQQÖÖÖ¼páÂÂ… Ë5T6}ë6@F;D8Õz:¾[·nÑË›èt]ßU¨@8U ¢ 8€(Ž ‚#ˆ‚ࢠ8€(Ž ‚#ˆ‚à¢àÎ1•ŠaôvÏAÜ·Ê Á ò0 Cô—Þ†Av€òÀ©j ñññ ÃDGG+>•À0Ì¥K—ô]GâééÙ»woúsXXXPPÎßâ?þ`fÛ¶mªšèäÉ“ŠOuêÔ‰a˜²²2ú0''‡a˜#Fp ”––~÷ÝwaaaÎÎΖ––&LÈÍÍåX±b#èàÁƒZl΂ ìììš4i¢ó†Ò þ­ *OOÏþýû뻂Nàøà 8ÀkûöíûùçŸõ] Q$‰D"Ñw-DaY¶gÏž±±±………C† ™0aÂ{ï½·víZŸ«W¯Òe‚ƒƒ§òÔ¬YÓÑÑ‘_âáá¡éû^»vmΜ9~~~³fÍÒwèÞåË—èäädaa’˜˜XZZZÎuòªóçÏ÷îÝ›ÛA•ìùóçü±›››……E»víNŸ>­—jè\Eì5¨|8U ¯™™™Mœ8±S§NuêÔÑw]Ô8v옾« ÖæÍ›“““§M›¶xñb®ðâÅ‹¡¡¡#FŒ8{ö,!$,,,,,Œ{vÆ õë×_²dIyÞ7;;›2oÞ¼ÈÈH}·ŽÝºu+<<¼¬¬¬wïÞnnnGŽùôÓO?¾k×®ò¬–P=xð`÷îÝ“'O®ü­ËÏÏ ¹sçN¿~ýììì’’’ºvíúûï¿WD{eª ½•=ŽðÚœ9sþþûïÙ³gWÄÊ‹‹‹e2™¾7QèÙí &ð û÷ïÿǼxñ¢‚Þ—^ÏZ«V­ Z¿F;´¬¬Œ;•_~Ÿ~úéóçÏ9²iÓ¦ùóç§¥¥9r÷îÝÚЯˆ–)..ÖúåË–-ËÎÎ^¿~ýO?ý´bÅŠÔÔT†a¦L™Rž*Éd2¶¿vªø^ñàµþýûwëÖmåÊ•çÏŸXììٳݺusrrrqqéÖ­í3£<==ãââΟ?@K&Mš4mÚ4KKËZµjµlÙrÿþý¥¥¥Ÿ}ö™ŸŸŸ¥¥eDDĵk׸5$&&6mÚÔÜÜÜÖÖ¶eË–?ýô“Ò:DDDИ—/_ _˜‘‘ѧO777‡®]»þöÛoüõ?~¼S§N¶¶¶5š6mZy¾ïU¡_Ørå —/_®Q£FyV®j_Œ1¢W¯^„ÐÐPOOOÅ.X°ÀÏϯvíÚîîî±±±÷ïß³4Ú¡ôxX¹r¥µµu5š4i2sæLU,¼§øŽ=Ú®]»æÍ›s%ãÇ'„œ:uJnÉ~ýú™ššré|Û¶m Ã4mÚ”[`êÔ© Ã\¸pðª#FtïÞÎo½“'OFEEÙÙÙ¹ºº~òÉ'ÿþû¯ÒêùúúÊõòÆÇÇók+lëÖ­ÎÎÎÆ £½¼¼úõë—’’òÏ?ÿ(]^xgÅÅÅ­[·ÎÎÎN*•ºººŽ;–_mŽÿsçÎuïÞÝÉÉIîwÍÔÔTÌv‰ßkPÅáT5¼Æ0̪U«üýý?úè£sçÎ)½ˆpÏž=ýúõsrr­8–HíÎ:räÈêÕ«GݰaìY³¦¤¤äÛo¿%ÿGŽéܹsýúõGŒann¾k×®ôôôààà:˜˜¨ïÒh¯AUÇ‚®ùøøè»  gªŽú+§·ªßçÍ›GÉÎÎfY6!!’˜˜HŸZ´h!äâÅ‹,ËyzzzxxäååÑgóòòÜÝݽ¼¼ŠŠŠX–¥c8âããËÊÊè5jÔ¸~ý:}H¯ó (..¦%¡¡¡„üü|–e½¼¼|||JJJèSÏž=“J¥cÇŽåVÕ«W/úsxxx`` â†ÌŸ?Ÿ²aÃZ[ooï   ‚‚úì«W¯Z·níååUZZúêÕ+wwwggç{÷îÑgsss]\\![·nUÕDJKKé’ýõ!døðáÜkúé§÷Þ{.V«V­:,\¸ð¯¿þRµ;¬­­CBB„1µûb÷îÝ„'N(¾öÅ‹‰„_ÃQ£FÙÙÙåææŠÙ âw(=.\ȽѴiÓ![¶láïPá=Ūóøñã-ZH$’?ÿüSî©{÷îB¦NJ6iÒ„Ž1ÿùçŸé¦™˜˜Œ9Rñ Ú·o!䨱cÜVBöìÙC–––úùù¹»»+­‡‡Ghh(¿døðá"¿mÿüóOBH\\¿ðÈ‘#„uëÖ).¯vgB’’’èC™LÖ¤I“zõêÑüº¸¸¸¸¸üóÏ?Ü spp ;Z {M/´øâ6Úïzô8À;>ýôÓÍ›7Ï™3§oß¾õë×ç?•žž~ûöíåË—ÛÙÙÑ;;»É“'ÇÅÅ]ºt‰öl9;;Ïž=›ß Ñ¢E‹† ÒŸ#""!ƒæNoEFFž8q¢   N:gÏž­U«–TúúséñãÇ„‚‚‘5ß³gÏܹsÇŽ;jÔ(BÈ… ²²²þ÷¿ÿ™™™ÑjÖ¬9a„˜˜˜ôôôÒÒÒœœœ%K–¸ººÒg'Nœ8sæL·4hP½zõä ·oß~çÎWÅÄÄÄÄÄ\¾|ùèÑ£GMII9zôèìÙ³çÎûÅ_h·›Äì ULLLèÔB999´kvÆ 6l ÏªÝ âw(­ÿú¼¹sç®Y³fûöíü®Dá=%¼-ÇŽû裲³³×¬Yãíí-÷¬««kÓ¦M=JyúôiFFÆwß}7a„”””Þ½{§¦¦Êd²nݺ‰ipŸ=zП%I``àáÇ5Ýk¥¥¥û÷ïWõlÏž=i;[ZZòË­¬¬¸!GíÎòòòêÛ·/ý™a˜   Ú­˜žž.þøOMMÍÍÍ?¾““·ƒ¦OŸ½sçÎáÇ«Ý.öTqŽð©Tº~ýú6mÚLœ8QnÀcVV!„^¼È¡WŒeeeÑ/x___¹SW\²!„Ðx¡XBÙØØ¤¥¥>|øÆYYYW¯^?[ǵk×>øàƒÐÐÐåË—Ó’7n7¡Mná;wîÐëÞš5kÆ/W;puüøñmÛ¶•+¼xñ¢ppäªiÓ¦“'O...Þ³gO\\Üܹs[µjÕ¹sg-v“˜}¡Š™™ÙòåËé Yÿ6mÚtíÚõý÷ß§\ªÝ âw(!Äßߟ§¹¹¹¯¯ïÍ›7ùËï)UÛrçÎñãÇÿòË/ÞÞÞGŽéСƒÒÅ¢¢¢–,YòôéSÚùš’’B9vì˜T*íØ±£˜÷ññá?ž Jn$ 7ŠèåË—ôÚS¥X–¥-)wõd~~>!ÄÖÖVñ%jw–\µ¹ßMÚµ)òø§èJ6zñ®ÚíÒt¯AU†àòZµjõñǯY³fÏž=ürú wuý-))¡­­­µ{Ó¢¢¢>}ú$''7oÞ¼sçÎ=zôhݺupp°˜×>}ú´gÏžVVVIII\p¡yeÉ’%Š3`7jÔèøñãŠÛ"æj-¼xñbĈ;w=z4WX£FþýûÛØØtêÔiÿþýÚG1ûBÀ¸qãúöí»oß¾ßÿ=99yýúõ¾¾¾)))ÖÖÖZRéË—/ù%Â{JéJ¶lÙ2fÌ ‹uëÖ9’ërSÔµkׄ„„”””´´477777·ˆˆˆY³f={öìØ±c¡¡¡´?O-ƧñÒ¬¬¬XÁ»79::š˜˜äååñ =zDáºùï¢vg©ª6m1‘Ç?í –‹¤4 Ó—¨Ý.Jü^ƒª » ”øê«¯víÚ5~üø?ü+¤'•®\¹Ò¾}{®ðòåË„__ßr¾ã‰'’““—/_>iÒ$®PLcYYÙ AƒîÝ»—ššÊnBk[§N.]ºp…×®]»r劵µuƒ !üñGxx8÷,7¤CWÌÍÍ}:}¸`Á‚üü|¹ÑÁÂ{Jn…,ËNŸ>½~ýú?þø£˜»™ššFFF&''ß¹s‡^üR§N… ª½ÀQë™Gïß¿¿oß>:§Ï­[·¸@&æ”îèÑ£'MšÄ½üáÇIII:uRœV©<;K£ã?88¸Aƒ«V­7nÝAÅÅÅK–,±°° •T»]šî5¨Ê@¹nÚ´é×_åJjÖ¬™˜˜8pàÀààà°,»mÛ¶ÜÜÜ;v”NˆˆssóÑ£G2ÄÕÕõÔ©SGµ··?qâÄèt*Šöïßÿõ×_H$þ v~~~ÁÁÁË—/ïÙ³g@@À€JJJvïÞ}÷îÝ­[·Ò›Ë-]ºtÀ€AAA455ݶm›Ü)BHLLÌÈȘ3gΦM›š5kFDZž-¼*ÎàÁƒ•¾û‚ ìììš4i¢ïfÐ OOÏÞ½{ë»o………©ªjÿþý«N}ôè?þ`fÛ¶mú®H…ö‚#@õÁ0ºúAƒM:uêÔ©S¦L‰ŽŽ¾yóæèÑ£g̘¡t™qãÆ999íܹ³}ûöëÖ­Sµ*¾îÝ»+¾éµk×æÌ™ãçç7kÖ,}·oÒ®]»øøx¬J"‘H$úóùóç{÷î}õêÕÊܹ7å×§âÞ¥JyþüùÇìææfaaÑ®];¹¿µ4ZX£UUG%%%­ZµjݺµÀ2ׯ_ïÓ§Oýúõ]]]û÷–ƹT*•û“ÕÞÞ^ß›eP¤ú®TãÇoÛ¶-÷ðÁƒAAA‰‰‰S§NuttTºÌ7zõêõÉ'Ÿ´mÛ¶qãÆªV% ;;›2oÞ¼ÈÈH}7@UqáÂ…“'OêªAŽ;ÆýüàÁƒÝ»wOž<¹27GîMùõ©¸w©:òóóCBBîܹӯ_?;;»¤¤¤®]»þþûïJ»]…ÖhUÕÔìٳϜ9ÓªU+U ¤¦¦vêÔÉÚÚzðàÁ‰dÛ¶m:uúå—_:tè@¹}ûvYYY›6m¼¼¼¸—XXXè{³ ‚#@5Á0„e_ÿ·R8::4(111##ƒ Žr6l¸yóææÍ›ÿç?ÿÑî4˲„ZµjUÎF©U\\,•JMLD)++#„èªÿ¬´´ôèÑ£iii«W¯æ®05{å×R£F í^¾lÙ²ìììM›6}øá‡„I“&5kÖlÊ”)GÕtaV%’L&cY¶"ú€µpøðá%K–H¥*“ ˲£F²²²ºtéýPš={v³fͦM›öÇ7ˆÎŸ?ˆVœªø[ UMu%%%Ë„„„´mÛöçŸ.--Õtý#FŒèÕ«!$44ÔÓÓ“ž={¶[·nNNN...ݺu;{ö,·¼§§g\\ÜùóçWXXX¸`Á??¿Úµk»»»ÇÆÆÞ¿Ÿ{611±iÓ¦æææ¶¶¶-[¶üé§Ÿøkž4iÒ´iÓ,--kÕªÕ²eËýû÷—––~öÙg~~~–––×®]ãWcåÊ•ÖÖÖ5jÔhÒ¤ÉÌ™3i¼P”‘‘ѧO777‡®]»þöÛoªZãñãÇ]ºt‰ÏËËn·~ýú™šš¾xñ‚>ܶmÃ0M›6å˜:u*Ã0.\ „DDDЩ#FЫÂÃùÖ&„œù÷ßU½¯À¶¨jyÅ7åê£i³ ìA¥›&ÜòÇïÔ©“­­m£F¦M›¦j÷B|}}åRH|||óæÍ‰8[·nuvv6l}èååÕ¯_¿”””þùGÓ…5ZQwÀÇÅÅ­[·ÎÎÎN*•ºººŽ;–¿ëÅ·!äܹsÝ»wwrr’;Gljj*²•!<øàƒbccëÕ«§j™Û·ogee5ŠûSÖÚÚ:...==ýòåËäMplРø÷± k>>>ú®è™nŽBäÿ)êȼyó!'Nœà>|øÐÅÅÅÄÄ$77WÕ2Ô¸qã!·nÝ^LÑ•+W¾øâ BÈÒ¥KSRRX–ݽ{·T*­W¯ÞäÉ“ãââêׯ/•JwïÞM—÷ððèÛ·¯­­­§§çG}¤¸Â˜˜†a:uêôùçŸ÷ìÙS"‘´lÙ’>5wî\BH‡âããgÍšåççGÙ»w/·f[[[{{ûùóç/\¸ÐÎήV­ZmÚ´iÑ¢EbbâØ±c† àvuu%„tëÖí³Ï>‹ˆˆ „´k׎vÞxxxôêÕ‹.yèСZµjyzzN:uúôéÞÞÞ‰dË–-ÂÍrãÆ BȼyóT-°aÃBHrr2¿ý†yôè-iÖ¬™““­Oxxx`` mmzÝäâÅ‹ik{xxøøøXYYM˜0aéÒ¥aaa„¥ «v[Tµ¼â›rõÑ´Ùö â»×vçΉÄÁÁaìØ±ãÇwrròññ!„lݺUqÃ=<W… ro4mÚ4BÍ%\p,**òöö *(( ‹½zõªuëÖ^^^¥¥¥»Cmp¼wï!dêÔ©ôa“&Mè˜t ž={fbb2räHú,?¨íÛ·rìØ1n« !{öì¡KKKýüüÜÝÝßQx[„[^îMå‚£øfÞƒüw®í«W¯ÜÝÝïÝ»GŸÍÍÍuqq©ˆàøçŸBâââø…GŽ!„¬[·N£…5Z•Úæ¢»>))‰>”ÉdMš4©W¯m+ñíSXXèâââââòÏ?ÿpMæàà@÷šH 5kÖ¼pá­›ªàH»±û÷ïÏ/?~ÍÈÈøî»ï&L˜’’Ò»wïÔÔT™LFûÔòññéÑ£ýY"‘>|Xq1ámiܸ±@Ë ßìj÷ ÈÚ–––æää,Y²„vÓƒjâĉ3gÎÔtG”––îß¿_Õ³={ö¤Õ³´´ä—[YYqõç^X£U¼——Wß¾}éÏ ÃíÝ»—’žž.¾}RSSsssçÏŸïääÄ5õôéÓ£££wîÜ9|øpµMD«:{öì%K– 7¸££cß¾}“’’èŸFßÿýš5k!ùùù„ììl™LO/çØ»wo\\\¯^½222h[Aù!8T"íÆµÐXƽVî¡îœ8qBäPh9wïÞ%„ð‡1ŠUÍ—••E‘»x‘^º—••E“–¯¯¯ª!fffË—/Ÿ2eЧ§§¿¿›6mºvíúþûïÓa 666iii‡¾qãFVVÖÕ«Wå.ÊäÒ*!„ÅŽ¿¿?´„¹¹¹¯¯ïÍ›7ùËЎØ˜˜˜˜¹ªÞ¹s§<Á‘µdÉ’§OŸÒÎÚÈÈÈÐÐД”BȱcǤRiÇŽŬ‡ž‚ä¨$¡v[Z^˜øfW»EÖ–^Ú¬Y3~¹ðÀd: ŠÃ ]zùò%½HW)–eé¶È]6J#Ž­­­Ò¦Pµ°F«Ó\r»žûµ¢]›"Û篿þ"*~g322Ä4Q~~þàÁƒ;uê4qâD"š5kž={FÏÐÍœ3gμyó¬­­ !ÇŽ«U«× #GŽ|õêÕ¸qã’’’F%fý ‚#@uÀ‰tluUréÒ%zab¹·’% ý—4Êptè׃*ãÆëÛ·ï¾}û~ÿý÷äääõë×ûúú¦¤¤X[[÷éÓ'99¹yóæ;wîÑ£GëÖ­éÅXº"•J_¾|É/¡±iÉ’%Šs›7jÔ¨œo×µkׄ„„”””´´477777·ˆˆˆY³f={öìØ±c¡¡¡"ûWDŽgW»-ªZ^Õx|M‰ßƒÂµ=~ü8Q8Ì„tñÒ¬¬¬XÁ?áMLLäF;=zôˆÂõç‰\X£U‰i.U»žvRŠlÚ§+Ii°¦/QÛDëÖ­»uëV¯^½è… „çÏŸ—••%$$¸¹¹)Þ5ÀÞÞþðáçOŸ¦«CCCéuss#„ÐSê|;w&„TÍ >«)G€j¢Â:Ë)===55uÀ€“hˆäííM¹råJûöí¹B:XÒ××WíË?~œíãã+“ÉV¯^=a„µk׆††&''/_¾|Ò¤IÜòZ ç\»v­¤¤„ë+,,¼~ýzxx¸âæÔ©S§K—.ü^¹rE8þŠÑ¶m[KKË£Gž={¶]»v„ððp™LöË/¿\¸p^uªCÂÛ"ÐòtˆFù8qBü®-rûÇð÷×Å‹Þ=77—ÿŬö<¬T*mÔ¨Qjj*¿üøñã ÃøûûË-/¼°F«Ò¨¹ähÔ>´©¯_¿Î/¤}ôwVmÑñÚË–-ã—?}útæÌ™áááŠÁñÒ¥K–––­[·æ& ÿí·ß†iÓ¦MNNξ}û:tè@GQ´S–^A:éxª:}#ík¬JÝYYYC‡efΜ9å_[pp°››[bbâÓ§OiÉ“'O–-[æîî.fŠãÌÌÌV­Z}ýõ×ô¡‰‰ ýæ355¥£Iø_'III/_¾dµ âyyy‰‰‰Üà äççËÝi000Ð××÷믿~öì-ÉÏÏŠŠŠ‹‹«]»v9ÛÊÔÔ4222999==Ç:uê,\¸PíŽZL)¼--_ž7å¹é»×688ØËËkÙ²e\þËËË[±b…À»ß¿Ÿ¾!„ܺu‹KQô<¬*t™Ñ£Gÿõ×_ÜË>|˜””Ô©S'þŒHá…ůª<¼FíÜ AƒU«VqM]\\¼dÉ :A’Ú&úüóÏåÆ^pƒc~ÿýwÅw3fLÓ¦M¹(ýúõÍ›7¿ÿþû...fffS§N3f w‚B&“щ!;uê¤å‘ ÐãPµÉu4Òh|ÔGïãš5kè÷VQQQFFFZZZqqñêÕ«ù·ÑZÍš5<`À–e·mÛ–››»cÇŽš5kª}yHHHãÆ-ZtëÖ­Ægff8pÀÖÖ–ÞaÂÜÜ|ôèÑC† quu=uêÔÑ£GíííOœ8qàÀ¨¨(M«êìì|¸uëÖÜ{”T*]¾|yÏž= PRR²{÷î»wïnݺU'ó-GEEíÚµ‹Bƒ£D" KNN®_¿¾bE{:׬YóàÁþ8µ„·E åËó¦|Â{Pî]j+‘H–.]:`À€   šššnÛ¶MxîL©T:hРèèh™L¶oß>îhT{–2|øð72dܸqÖÖÖ›6m*((àî'™°hÑ¢¯¾úêã?V»°ð³5—@…MMMÅ·©©éŠ+z÷î8f̉D’””tþüùÿþ÷¿ô*1M$L®‰æÏŸÕ²eËÞ½{—””lß¾ÝÌÌì¿ÿý/!ÄÁÁ!>>~ÆŒÞÞÞô8xðà… .\Xþ‹Cà-}ë6@F;D8Õî3ù¢Ü<; ÃøøøÄÄĤ¥¥iº*>þt´ösÞ(NU'&&®]»ÖÜܼyóæ999;wîÌÊÊúᇸ)¾°,;cÆ îÖ^`HÇáÚäþà˜ÌÌÌõë×;::þúë¯ëׯ?xðà°aÃ._¾¼téR1/ß´iÿV¹FËðƒãöíÛe2ÙäÉ“hÉÌ™3­¬¬8 v”_VVVbb"wWBHTT7¼O>ùdÈ!ú®@Uaø§ªÏ;ÇÍ AI$’víÚýòË/ééé!!!ª^XZZ:}út›™3gÒ;“BV¯^­ï*@å™>}º¾«P…x#˲ÙÙÙ¶¶¶rwd¢·Z¢cUùæ›o®_¿þÕW_ÉÝÀ8xcAAAYY™âMè͸ž¥¸|VV!dõêÕ¾oôéÓ‡²wï^___z×ví°„UûOß­ ’÷8B"##333SSSßÿ}Z²lJJŠMPPâòîîîÜ’ÔóçÏOœ8áââäää¤ï ÐÃŽýû÷_»víÊ•+Û·oOÇĬ_¿þÑ£G±±±¦¦¦t™—/_>|øÐÔÔ´^½z¡¡¡¡¡¡ü5\½zõĉ!!!"ïU ` ?8º¸¸L›6-!!¡Gaaa999§OŸö÷÷=z4·LJJJ\\œ··÷¾}ûtò¦ôŠFœzCbøÁ‘2räH{{ûÝ»w''';;;:tòäÉ´÷±‚ÐÈ(7 †! ¢$T_†?8†ŠŽŽþî»ïÎ;·wïÞÙ³gË¥Ænݺeffªênô÷÷ÏÌÌÔâ<µÜ–° aäþ)¾Jq¥ÿôÝ¢`Pâãã™wYYY5oÞ|Æ Ü-Ýå–111iذá|púôiáUq¬ôÝ,X`ggפI}7ƒnxzzöîÝ[ßµx+,,LéõÜ´ªýû÷¯:õÑ£?þøƒa˜mÛ¶é»"UÚ8Æ«ÅaÔJS _ÑÇŸƒ š:uêÔ©S§L™}óæÍÑ£GϘ1Cé2ãÆsrrÚ¹sgûöí×­[§jU|J'%¸víÚœ9süüüfÍš¥ï&׿˗/8ÐÉÉÉÂÂ"$$$11±´´´œë”H$‰„þ|þüùÞ½{kq7¬ò{S~}*î]ª”çÏŸüñÇnnníÚµ“û[K£…5ZU5¢Ñ‘/Ü¿ÿþ{DD„ƒƒCݺuCCCwíÚ¥ï38,”aåÛÐÇÇGqÅÅ”. vIUo UŠâ1 …Ê<æÍ›G9qâ¿ðþýûÎÎΉäþýûª–¹~ýº¯¯/Ã0W®\X•€={öBŽ9¢“ © <<ç«#äòÒIpä/†àh #8²,Ç¥:UËœ;wŽ2`ÀáU©²{÷n–¯hEEEeee".-----•+Ô:8öìÙÓÄÄäìÙ³\ÉÈ‘# !¿þú«®¶®ÊGš]ëw ŒŠŠŠŠŠŠ´®ØÜ¹s !›6m¢oÞ¼imm¡Å­J¤²²2ÅcX£ö)?Ž|áFhÚ´©““Ó³gÏèÃ/^¸¹¹Õ«WOmÅéjP @é½ ,XàççW»vmww÷ØØØû÷ïsÏ&&&6mÚÔÜÜÜÖÖ¶eË–?ýôÍ“&Mš6mš¥¥e­ZµZ¶l¹ÿþÒÒÒÏ>ûÌÏÏÏÒÒ2""âÚµküj¬\¹ÒÚÚºFMš4™9sfqq±ÒmÌÈÈèÓ§›››ƒƒC×®]ûí7U­qôèÑvíÚ5oÞœ+?~ôòòêׯ_JJÊ?ÿü£éÂ­Š¨;àãââÖ­[ggg'•J]]]ÇŽËßõâÛ‡rîܹîÝ»;99É]ÖÌÍy'Lü‘/ÜEEEW¯^íÞ½;w?assó°°°{÷îŠÜ_ ž¾“«RúWˆÈž!~£@ï#z«8Ãèq|øð¡‹‹‹‰‰Inn.+Ø•8nÜ8BÈ­[·X {¯\¹òÅ_B–.]š’’²ìîÝ»¥Ri½zõ&OžW¿~}©Tº{÷nº¼‡‡Gß¾}mmm===?úè#ÅÆÄÄ0 Ó©S§Ï?ÿ¼gÏž‰¤eË–ô)ÚQÑ¡C‡øøøY³fùùùBöîÝË­ÙÖÖÖÞÞ~þüù .´³³«U«V›6mZ´h‘˜˜8vìX†a¸…]]] !ݺuûì³Ï"""!íÚµ“Édì»=އªU«–§§çÔ©S§OŸîíí-‘H¶lÙ¢Xó’’’™3g&%%ñ éåY .”[xÆ „ääd~û3 óèÑ#ZÒ¬Y3'''ZŸðððÀÀ@ÚÚñññ„Å‹ÓÖöðððññ±²²š0aÂÒ¥KÃÂÂ!JVí¶¨jyÅ7åê£i³ ìAÅw®íÎ;%‰ƒƒÃرcÇïääDÏi*íQóðð å— >\ä·çóçφ‰‰‰áþïÿ#„üüóÏ-¬ÑªÄð7®Q£Æ¸qã¾ùæ›nݺBbccµhŸÃ‡3 ãææ6sæÌÿüç?ÁÁÁ„àà`Úòj›H£#_¸JJJ222è¥5ÜÊ›6mÚ´iSµÕ@£xȺ§*8Šÿ§øBŵé{+AH5 ŽC† ™9sæÌ™3g̘1|øðºuëB&NœÈ_Fi"\´h!ä·ß~ãS$÷ÕË៪.**òôôôððÈËË£Ïæåå¹»»{yyÑs…„øøx¥§5_¼x!‘H†ΕŒ5ÊÎÎŽ_///Ÿ’’úÔ³gϤR騱céC5j\¿~>\¼x1!$  ¸¸˜–ÐûäççsÕà«M›6Bs ‹ŠŠ¼½½ƒ‚‚ èb¯^½jݺµ———˜“ƒ?nÑ¢…D"ùóÏ?垺wï!dêÔ©ôa“&Mè˜t ž={fbb2räHú,?¨)žª&„ìÙ³‡>,--õóóswwW¬Œð¶·¼Ü›ÊGñÍ.¼ùï"\ÛW¯^¹»»;;;ß»w>›››ëââRÁñÏ?ÿ$„ÄÅÅñ 9BY·nF k´*µÍEw=×d2Y“&Mè)]Ú§°°ÐÅÅÅÅÅåŸþáš:,,ÌÁÁî5-ùâáû￟3gNpp°½½ýáÇվ)‚£xF1cU ~(´ÜIjnJH ¦†ŠÆ?“%•J}}}?ûì³É“'«}!ÃÈ_Y1hРzõêñKè•°ôôôÛ·o/_¾ÜÎÎŽ–ØÙÙÑ®ÇK—.Ñ3YÎÎγgÏ61Qr™‰‰ Ã0'OžÌÉÉqww'„lذvÎBΞ=[«V-©ôõ‡ÞãÇ !ÜË[´hѰaCú3íD|ãÆ¬¬¬«W¯Ê]”É¥UB .Š%ºZÊÜÜÜ××÷æÍ›üenܸA‰‰‰‰‰‰‘«ê;wTÇ;wîŒ?þ—_~ñöö>räH‡”.µdÉ’§OŸÒÎÚÈÈÈÐÐД”BȱcǤRiÇŽÅ´9=ÉQ5QŽÚmhyaâ›]íY[zmh³fÍøåÂSK–••ñr“›¾|ù’^¤«˲t[ä.ÍÏÏ'„ØÚÚ*m U k´*1Í%·ë¹_+Ú«'²}þúë/¢âw6##CLñwÚ#_|#deeœ:u*66¶U«Vׯ_wpp   ŽÕº ƒF}Ïj®"ÇÃ¥K—è…‰åm–% ý—4Êpt¬­­Ö0nܸ¾}ûîÛ·ï÷ßONN^¿~½¯¯oJJеµuŸ>}’““›7oÞ¹sç=z´nÝš^Œ¥+R©ôåË—ü›–,Y¢8·y£F”®dË–-cÆŒ±°°X·nÝÈ‘#¹î"E]»vMHHHIIIKKssssss‹ˆˆ˜5kÖ³gÏŽ;ÊV«V-1‹©ÝU-ïè訓æ-**¿…k{üøq¢p˜©úk„{wþCn¤…••?ú(rtt411ÉËËã>zôˆÂõç‰\X£U‰i.U»žu"Û‡öéÊER¬éKÔ6%òÈרj×®¹hÑ¢AƒíÞ½û£>R[ Á±šáºuØÏPééé©©© H9"Ñ3SW®\iß¾=WxùòeBˆ¯¯¯Ú—?~ü8;;ÛÇÇ'66666V&“­^½z„ k×® MNN^¾|ù¤I“¸åË3·öµk×JJJ¸þ°ÂÂÂëׯ‡‡‡+nN:uºtéÂá•+W”Æß_~ùåƒ>0`ÀÚµkåNÆ)jÛ¶­¥¥åÑ£GÏž=Û®];BHxx¸L&ûå—_.\¸@¯:Õ!ámhy:D£üNœ8!~ ×¶Aƒ„?þøƒ¿¿.^¼(ðî¹¹¹ü‡Ü(fµça¥Ri£FRSSùåÇgÆßß_nyá…5Z•FÍ%G£ö¡M}ýúu~!ík¤¿³bNU‹?ò…aÿþý½zõÚ¼yóÀ¹gmllÈ»]›PN˜Ž§úáßÃ÷˜ýÊÊÊ:t(Ã0sæÌ)ÿÚ‚ƒƒÝÜÜŸ>}JKžSSS:š„,¥’’’^¾|©õ×I^^^bb"÷pÁ‚ùùùrw ôõõýú믟={FKòóó£¢¢âââj×®-·B–e§OŸ^¿~ýüQmj¤™œœœžžNƒcHHH:u.\¨öGîL«xÂÛ"ÐòåyS>‘{¾‹pmƒƒƒ½¼¼–-[Æå¿¼¼¼+V¼ûýû÷¹{ÒÞºu‹KQô<¬*t™Ñ£Gÿõ×_ÜË>|˜””Ô©S'þŒHá…ůª<¼FíÜ AƒU«VqM]\\¼dÉ :A’Ú&ÒôÈh„–-[Bþïÿþ¿™ßÿ=!„N*:ǪHdob9M FeÍš5ô#»¨¨(###--­¸¸xõêÕ7.ÿÊkÖ¬™˜˜8pàÀàà`:£ø¶mÛrsswìØQ³fMµ/ iܸñ¢E‹nݺոqãÌÌÌØÚÚÿüs:Ëf—.]†9|øðÙ³g'OžÌŸåÊKßú På ÑÕæF»^ªét<“/ÊͳÃ0ŒOLLLZZš¦«âS¼sLZZZ×®]»vízæÌî)µ7e¹{÷îÈ‘#ÝÝÝk֬鿿ÃMõ’’’Ò¦M ‹÷Þ{/666//oÆ ööö]ºtQ\3íRÚ°aW²`ÁB"Ž.œ’’Ò¾}{++«† N:õÕ«WJ+™žžþþûï;99ÙØØ„‡‡:tHiÍé­•Z°`ª%„ØÛÛs%K–,!„Œ3†¿ú™L6xð`KKËàà`VÙc†jgg§ªy¶E ååÞTn:ñÍ.¼åÞEmË?~¼cÇŽô<¦••ÕŽ;ˆêéxÚ¶m»páBwwwWW×I“&Ñþuõ÷Ïž==z´···]tt4ÿ&ô÷eùòåbVû,ŸF<˲Ç·¶¶Ö¢}hSGGG׫WÏÎήcÇŽÝëH푯QÉd²ï¿ÿ¾E‹666ô^Õ"ïvƒéxÄcXœø×5__ßÌÌÌŠ~†0oR!íždU.¨ô)»¾éäÙñŒ^çÊçééH{û ºËÍÍ­[·®@—¶§§g½zõ䮫3jÛÇ0hñ¡]9ßõUNU.>"@$B€J@§¶UÐ> ƒc Kp{k¨Hèq4$,ú*ATT”˜á€aøä“OÄŒö0ŽÙ Â­^½ZßU€Ê3}út}W  Á©jÃsÖP! ²#è‚£¡BvÃ5ŽÕšÚhˆì:ƒàXm1„ˆšÁ›QYùù¥1k Cp4x*ÆY¿{ç‘7)c†kr!”zæw¬l¾¾¾ú®€Ž!8dÇÊcœw¾ƒ‡SÕFsô€ö ²#h ÁÑ!;€6&m!8+s7€fKXdGÁѨ!;€xŽ &7 ÝŠìÛkÑéb 8e#¨†eß–#;€Z8U „àbGÁ^Cva8U ¯ÑÔ(&;böpã„àoÑNGá\ˆ^I£…SÕðœ°UA²#(…àJ ;€"GPÙä 8€(Ž :€Á„ ;ÁDAp5Ðé‚#¨‡ì·>átˆì`äá5á[TBÔÞÆ NUƒX8a `äAÈŽÆ ÁDApÍ ÓÀh!8‚ÆŒFUƒÆhjT›1ÀÀ 8‚6h§£@4D—$€áÁ©jÐNXGв#€QApQ¡\Ðé`<¡¼Œ‚#ˆ‚à:€NGc€àºì`ð@GÐt:6G÷ªmô,¢ÓÀP!8‚ÆX /ÀFí2PíàT5ˆ‚ງQ2 Á*²#€áApQ¡¢ ÓÀÀ 8€(ŽPÐé`H0#T.2ªÍŽ˜ô Z@p„ D¡ð|àè’¨.pª*NXG¨ ÈŽÁDAp„J‚NG€êÁDAp„ʃNG€j Á*²#@õ…ࢠ8BeC§#@5e,wŽÙ±cÇöíÛ³³³k׮ݾ}ûiÓ¦ÙØØ,ÿìÙ³åË—Ÿ?þÞ½{ööö7ž0a‚———¾·@oŒ¢Ç111qöìÙ7oÞlÞ¼¹……ÅÎ;?úè£ÂÂBUËçççwïÞ}Ë–-„ˆˆˆºuë&''GGGgddè{Sª†0JÿñŸÒw@,ÃŽ™™™ëׯwttüõ×_ׯ_ðàÁaÆ]¾|yéÒ¥ª^òÍ7ßäåå}üñÇûöíKLLܺuëW_}UZZº`Á}oMuÂVø·Œ¾k ¢~pܾ}»L&›áJúôéãäätõêÕ²²2}o€~~pŽ„GGÇÇӤȹ}û6}Jqù¬¬¬Ï>ûìÀråþþþ„è{ƒôÃðƒcdddYYYjj*W²lJJŠMPPâò–––?ÿüóÎ;åÊïܹCñôôÔ÷*t:Tu†û÷ïobb²råJîòÄõë×?zô¨oß¾¦¦¦´äåË—·oß¾wï!ÄÑÑÑ××÷ĉGåVrãÆŸ~úÉ¢yóæúÞ ƒÄ¼IŒà?Ð'Ææ1Ù¸qcBB‚««kXXXNNÎéÓ§5j´qãFnšžää丸8ooï}ûöB._¾SRRT¯^½‡ž?ž²xñâîÝ»«};__ßJUÍ0L¹#3Ue×3 óú•w TýT•Ù0•ó]_øt<ÔÈ‘#íííwïÞœœìììüâÅ‹VVV­[·~õêÕ™3gNœ81qâÄqãÆé{k@h§#æt#gø§ª333ׯ_ïèèøë¯¿®_¿þàÁƒÃ† »|ùòÒ¥KU½dûöí/^lÖ¬YJJÊš5kþïÿþo×®]ÖÖÖ«V­º~ýº¾7@? ?8nß¾]&“Mž<ÙÁÁ–Ìœ9ÓÊÊêÀ2™LéK~ýõWBÈçŸÎuIz{{üñÇeee'OžÔ÷~àJGÃŽçÎ311 çJ$I»ví?~œžž®ô%·oß677÷÷÷çz{{BîÞ½«ï =`CS#ýAÕ?}W bø5Ž,ËfggÛÚÚÚÚÚòË}||!wïÞ Q|Õºuë¤Rù–¹zõ*!¤~ýúúÞ&Ðz£À•ŽŽ`ð <8”••Y[[Ë•[YYBž¥ô%2™lÊ”)‡êرãܹsò%'t:€q2üéx"##ËÊÊRSS¹–eSRRlll‚‚‚”¾äÇ*ys.Pªëž¤Ë¨Ü n[䦮T:žFU hrSÃ…Q2Pm 8V{Œò$*_øºsNñTµbo¢Ü(iAÓrËðÏ}Ë-FTœ¾Ó?ªXyÏI‰™&Ê ÁÑX0âûDÉ»1Km§ Úéx”Îs©0ߤª:+‰¼o^(ܽZ} ÓªGP <#‘ã—ç xëWuu#£6eŠ™Ì¼Jw:";@5€àÚRu7Esß„wY¤²§8W¹Ú(Iø“™ â1e•Ηú„àÚ81­HܹoþÙgÅ?üÅ䣤bŠUqÿF5UÕçYoLëU‚#T ¥s©ZVÝt<ò“Ì›áæÂ¹·À(G¨xšŒËá!×õ(0'¥šªÊ‘Â'£Åßw[÷g´5¼;@åBp„òbt×{Ç(»êQ`ù·½’JÓžÜhn~=UM9©têr1cÏuÖ„a£d JBp](OÎÑÕ®ô’ô DR¨Š¡úÑx2sB”÷2ò_+é’j郞ÓQõ•µ¥S 1'¬ ÊApC'æ.‹j_¨ê’GÜwŒ ‚#4î‚CxÝ“r}ü€¨4ª^­â¬æÊk*7ó9aÑéU ‚#ïÄ´ðm¢þ¤¶Ü¹i¥7Kd¦"â?Dv€*Á€¢âÞ‰Š”žæVq+m. ª¿×6@u€àð6ùÉÏI©óXBîF5ô6Ùr¯âÝ2Q®—Qà„µª›å ÓªG€×†QŸÐÂÂ%GzŸ—·%o‚ŸbLäæž$¼›âȯ›fGµsWÈMkÔCpÐ ÃÊÿ,ò6b®wdaß=Q.ß鈓ݠ?Ž`X±…—ù}ü©FÁ ºR™Y–a˜×“öÂ2ô²ÈwaÞÌ(þöEÜÀ›7µä 8T]4 /#¿€Â©dFô¹eºäÛK'11$¼ Á Jc‰š¦ò„µÈõ¿ÉÌ›LæíÍYåÙñõ •© ‚#@õ&t±£À«˜×ÿåú#•ÑæOñ(òn‡C,}Wôãmç⛇ÊqýŽ,ûúßë gÀè Ç ÚÓ¢ÓQiLTs5$¿Q`‚qL `¸Ðã`Ä £Ñ7Ò‘1ü>HUO©Z† Û šA#¨Ãu rÙQ®³Pà5èS0 ކ€v7¾ítÔmZSšÕ.ÌEL¢ú<5zªGA¯q¤;r€ëb½¢ïvÈ¡¡P`D6=˜ ú@pâ_É‹‰!ªGƒR£d„É]û¨ê44&†¨Î KX†ÕGv” vªr—E^ U‚#€!bt=>F--ŸâÄDݹláwD¯$@Cp€Ê%01$Q=j[.> L ‰ìPa Òñ/…¤ÅL ‰+ô wŽ€J'òjHîYnrò&e*B¦¨xèq€Ê…‰!ª-G¨ÚDN ©tœ Ò!€NáT5TIâ'†äžåŸÅH¸Û!€¶Ðã` Þ™÷Û0:Ú/…T;©8!¢²#hÁÀ°ïFE]Þ«Zo›¤ù¥Ü2j/…¤Äߺ!ÆsªzÇŽýû÷ jÛ¶í¬Y³ž>}*ò…·nÝòõõ½té’¾·TàN=+¸æFdË•ðŸâO ¤¸fœÑà1Šà˜˜˜8{öì›7o6oÞÜÂÂbçÎ}ôQaa¡˜×þøãú®>¨Ã »æÏÚÃÇ?‘-w)$Îhˆfø§ª333ׯ_ïè蘔”äàà@ùòË/øá‡¥K—Ι3GÕ«òóóÿüóÏ_~ùeëÖ­úÞPGéäáJ—y›` €†ßã¸}ûv™L6yòdš !3gδ²²:pà€L&Sõªèèè!C† 5T⯆”»;¶âˆlþ?n1¥åŠk0†ßãxîÜ9“ððp®D"‘´k×î—_~IOO Qúª/¿ü²¨¨ˆ²yóæ´´4}oèŽðÔr%JŸ0VY–ÍÎζµµµµµå—ûøøBîÞ½«*8†††Ò~ÿýw}o€QcÊ×X~ T:qoQùK$ÅL'Ž@ FÃÀƒcAAAYY™µµµ\¹••!äÉ“'ô¾¾¾¾r%™™™ún €êGó q¡ŽÆ;¹®Äò_ É_Ù(ůu£eàÁ‘677—+·°° „<þ¼‚Þ1 ÊÑnbH~ŽTz"Œ€â׺ÑFIŽÖÖÖ ÃÈ•¿xñ‚¼éwPN®“RÕ9nU7ETÌ—Š½žÕŠª–J¥VVVŠ=‹ùùù„nœ5À[\ÿ"71¤\(”›TœßÉŸ]Ààxp$„8::>~ü˜&EÎíÛ·éSú®TIr÷¨ºG6!oÃ%÷‘ —áÇÈÈȲ²²ÔÔT®„eÙ””›   }תÅþBµ=ˆüTÍøÈ羽 ?8öïßßÄÄdåÊ•ôºFBÈúõë=zÔ·o_SSSZòòåËÛ·oß»wOß•€ê‰ñ"ÿ懪fÇŒâP=øàBˆ‹‹Ë´iÓzôè–““súôiÿÑ£Gsˤ¤¤ÄÅÅy{{ïÛ·Oßõ€j…‹Œ3û(-'çµ Ú1üàH9r¤½½ýîÝ»“““‡:yòd:#€–”޹˜T\̰kn͘ª$†Å“®ùúúªÇQ7Ó—gß1:ÛõåÝ–rnˆî¶Eÿ;¥ŠmKUøp0˜ ‘OÂSB"8Tyb¾ë ’Qô8èÿÞ‰ì›;Ú°*®ed†%C@UƒàPÁ†°,?#2,a°ooˆÈò""COz¿ûÃêòD€v@äÝ¢ýÜõŠsõ°¯Ëi¦ä i @aøÓñèß»=…ª²àÛžHöm‚dUÍ̃‰! Ò¡Ç”cˆ¸8¢b)œT}KYS(ÍŽ\ÿ"åú EÍû(0à |@:„C8m0*c h‹ ‹\¸|ýƒÜs¹™€š*‚#“A—¸¼øNGãÛ§ßÌÉ?CÍ/T óû€Ž 8€0dÇJòvôô4;*#—ÑÑ•ÁÔBv¬ J¯z5¤šË‘j¤È[ר€àPm)½í!ÿ)g.NE 0ˆÁ‘ƒ¬¡Ðx'7ªÞD†yýÿrDCÐ z@$œ°®JøÉ£t.&мÃh@5GÙ±jPšêÔNߨtD¶ª•`bHPÁ4‚ìX \ï¨øÁÄ ‚#h Ù±Zž¸‡ë†TìbÄÄ ƒc@ +S(‘¾’µ¡‰}  z@µÑÙ¢j)¤â2Š7§Q%ÅL ‰ŽI‚àÊ0"'óCv4,ª&†T:VFüÄ`( ¹˜¨´§ðM9}Žå-èèY|=JáiA zBp€òÃ8ëjN1Æ »×‘\|$ KX¼¾×6óÎÁ¡|Yt[TŽ ÈŽÆ…&E†;Y;SÎ/Qú,TSŽ +ÈŽÆaØ7YP1råü§¸B®Rq˜ ZÀ<Ž C˜ßѰo3¡p|dØ×ÿär$T_èqÝBv4h =‚Œˆ.Bšß¹RÕ4=j'†TœÕ*‚#è‹þ% ¸K!¹ìH! a•Në#fbHÐ+G¨ aXs7-®QÕ¹lBx“þÈÍ.Ž>E€* ×8@… ±Aßµ½yÛ¿ø¦ÇQÙB¬’Ûd¿~Š;Ê-&7­¨èq€ŠÂ]ئïŠ@eS•gG¹SÒr7°z·É]Cp€ „~GEñzG¢âNÙŠO DF\(  k8U  =Ž wZàV‡Ü óúÌ…ˆŒ=ŽP~ŠBò÷§ßiDÇÁpÑP.ö)šá¬)gFDÊ ÁÊIéål ûî71 ŽjC!Îk¥qM|†S{.[± SÕÄ ‚#TŒ•òRœ¸‡ ˆr p=‘Ü8ô)è‚#TdGÐ’â)iUWCò—T:æFÕ«Ô&K¤OG¨dÈŽ %UW=*.&—¹Á4«•ëÎe ²!;‚ÆÄ_ ÉŸRÕÍ yk`ÞÍ”¯ï‰¨,h²*ž`‘2Á˜ 8€pó;">‚îqg«&÷¡±’y;+ù;wÓV|Ñ››(ʰZFÁôƒFFt=‚îÉu4ªžß‡þíòº€yû_¦œ‡$®†Ã…àú„ÓÖ cЉMt†cÞ ‘ŠO½îtä—+Y :!Á!8€ž!;‚qAªZ1Ar=‘ô©·'µ•¦D‘ôª!GÐ?þ-­ß™ß¼PAÞœ¦èe$¼.F./긗PÝ 8@•À]òHx#f†Av„ŠòîjÅÓЊåüîÆ· «º9Ú›ÖdG¨~ ’àv‚P…(‹kJÇÄpg¥åÆ\s§ªY¥Ã·ùñÑ ‚#Tñ—02„Á%PÕÈ÷2Ê?ͪœHUj|3¨·Gú„*Áªþ%z'7h†e”Íø(w·CòæTµp441LªG¨Š^_ò¨ãÁS<­Á,ªïX£ägt+Bu€àUƒÕPÝðï”­ô¶‡r÷ÎV¼A¢"‘óû zBÅCp(7îÄ´ªQÕ¹È-¦ö*IU}–rÕ@v„Š„à  Êîj(êUªâ¦Ò3ÚW=‚>!8”›Ò~>¹ùg´•¾DîŒ6Q6þF`µÂÐ1 ÚBpƒ†/G¨‚井^¨XÈ?©Í])ô¡‚!8T.¹sÐⓜ˜ÛÒˆ¦»iƒ¶*‘b\pÜéi~Ú“ë‰Ôt˜¶H— Áªœ·³ã; Œ–Ü)l^I Ó&¸›6ˆ‚àU ÿfƒ à ;‚ñRœ²œÃ´ ‘_!!*Ü`´ (ƒàPõh:L›¨ˆ€joˆÀš@p¨æø‘QÓaÚ¸›6hÁ šÓn˜¶ÀŒ?JW^þaÚ8£]ý!8€{;ÔF‹«)¡šÒn˜¶À UÈQ{7EÜÑ 8€áS E†K€*‹Q×ËÈ*,Ç2ŒÜ Yn®ïg)g¬Ê‡å?y|YU!8€áSûJX¡eX|Aµ |œ2„aå Ëð^¥ø —Þä~”æHµ7E$…Õ‚#–¨ÿR8³Pý1¬ØÂw†×h1$Q=…¤ÜÜz*U ‚#öMw ¾‡D»E ½9pŒS;ÔFé’匆œP1À ½=ǾyLÔP:•*JoŠHˆšK$‰†£mHù"ú/uÁŒŠ@|dT½Bnè Æ_ƒ?÷8Q=[‘šŽ¶)ç½m@GÀ©ŠÊ¯èçŽÁøk€×äN‹¿)"Gx´ áõt ŸW; Â¥î 8€ÑâÇGЦ7ET?¹BLä^" ÕöM"v´ .šTÁŒâ#@ÅSX"âJÉ73†È3 ˉºç倃àPQÞ‰\ºé³cú+£/P>;¢ÿÀX!8T¹Î<ÝÝ«Zn-•Ô¨Ëûn³8EP]!8TkŠÑŠáýWÕ2ú§6VÄÍ‘DÊ ÁÀ ñ½ê±Z^­(þ*Lm’¨.b¤n[Uû» UÖ¶ |9Ü«Z¥;vôïß?((¨mÛ¶³fÍzúô©¾kÚóõõÕw@vJ%RyÓmš¥øÿ ~¿¼Óå|ì;+TõOñ­S\ÒÇ×Gí +m[ÿ+ÿTù•QIe¿>åÞÕ‚£r‰‰‰³gϾyófóæÍ-,,vîÜùÑGê»^º¤4»(ý.4žïECWY¹¢Bp×}=ÁòÜoØ•ÈÌÌ\¿~½££ã¯¿þº~ýúƒ6ìòåËK—.ÕwÕ*œÀ·¦n:„ ÚBpTbûöí2™lòäÉ´dæÌ™VVVÉdú®3FÄ¿ ¤Ã¡×=šª½^LðY¨dŽJœ;wÎÄÄ$<<œ+‘H$íÚµ{üøqzzº¾kÆŠŽõ¯Z`_´ÞÏÛ…eU‚£<–e³³³mmmmmmùå>>>„»wï껂b(ôDVѰ¥Ur7ÐGàbMžs9‚¨èdÕwû¿»-",©ïêCe`ø·.BÈË—/ƒƒƒ4h°ÿ~~ù¶mÛ¾øâ‹éÓ§5Jx ?&233ùEÞóºÃ<ŽòèÐisss¹r BÈóçÏÕ®AîH¨²Äw=Š™%QÌbâ—4ÎÒH†±-ƶB#à(ÏÚÚša˜‚‚¹ò/^B¬¬¬ô]Aù]XÅÎn€Þ 8Ê“J¥VVVŠ=‹ùùù„nœ5€ñ@¾ ƒc”ptt|üø1MŠœÛ·oÓ§ô];€*JÌ\ʪ¦7ΛpT;ŽJDFF–••¥¦¦r%,˦¤¤ØØØé»vÕžøˆ)f̲FITü hP„à¨DÿþýMLLV®\I¯k$„¬_¿þÑ£G}ûö555Õw팈ÈþKñIT·}¢"£-ÝñU‡!¸‚R5Vh´o`:å6nܘàêê–““súôéFmܸÑÚÚZßUÐG•~ùå—Ý»w_¾|ÙÙÙ¹E‹“'O¦3ò'G×8€(Ž ‚#ˆ‚ࢠ8€(Ž ‚#ˆ‚à¨3;vìèß¿PPPÛ¶mgÍšõôéS}×ÈØnÚ´©{÷îaaa£F:yò¤¾+oåææ6kÖlÚ´iú®BÈ•+WÆѼyó¡C‡ž9sFß52vÅÅÅß~ûmŸ>}‚‚‚:tè0iÒ¤¬¬,}WÊHݺuË××÷Ò¥KJŸ5¶oGÝHLLœ={öÍ›7›7onaa±sçÎ>ú¨°°Pßõ2^¥¥¥Ã‡ÿꫯ>|غuë œ9sfäÈ‘«V­ÒwÕ€BX–1cw;xЯ£G<øèÑ£AAA.\6lØÑ£Gõ]/ãUVVöá‡.]ºôéÓ§aaa®®®ìÙ³ç¹sçô]5côã?ªzÊ¿ýY(·7n4lØ0,,ìÁƒ´dÁ‚>>>óçÏ×wÕŒ×O?ýäãã3xðà‚‚Zò矶hÑÂÏÏïÚµkú®°7nôñññññ™:uª¾ëbìž={pþüyZréҥƷiÓ¦¬¬Lßµ3RôlÒ¤I%%%´$--ÍÏϯsçÎú®šyþüù¹sç¾øâ úauñâE¹ŒóÛ=Ž:°}ûv™L6yòdZ2sæL++«Èd2}×ÎHýú믄Ï?ÿÜÌÌŒ–x{{üñÇeee8a­wYYY‰‰‰ 6ÔwE€BvîÜ™ŸŸÿñÇ7kÖŒ–4mÚ4**êÑ£GW®\ÑwíŒTzz:!äÃ?”J¥´¤uëÖ~~~ýõד'Oô];c=dÈ­[·ªZÀ8¿ýuàܹs&&&ááá\‰D"i×®ÝãÇé/?T¾Û·o›››ûûûó ½½½ !wïÞÕwíŒZiiéôéÓmllfΜ©ïº!„?~œa˜^½zñ /^œ™™ ïÚ)gggB?#²,ûìÙ3.JBEûòË/W¯^½zõê6mÚ(]À8¿ýqü•˲ÙÙÙ¶¶¶¶¶¶ürBÈÝ»wCBBô]Gc´nÝ:Å׫W¯Bêׯ¯ïÚµo¾ùæúõë7n´´´Ôw]€B222lllœœœÎŸ?áÂ…gÏž5lذcÇŽ\o=T¾îÝ»ÿðÃ_~ùeíÚµŸ>}ºzõê{÷î 8¿8•&44”þðûï¿+>k´ßþŽåUPPPVVfmm-WneeEÞý{*S£FäJNŸ>½~ýúš5kÊõ¬@eºxñâ·ß~;tèÐ6mÚÐúU\\üï¿ÿ6hÐ`Þ¼y[¶láÊëׯ¿|ùòÆ뻂FÊ××÷Ç>|øðáù¡C‡Îš5KßUƒ×ŒöÛ§ªË‹ž277—+·°° „<þ\ßRVVöÃ?ÄÆÆ,Z´ÈÎÎNß52R………Ó§O¯_¿þ”)Sô]xíßÿ%„dgg''''$$œ9s&%%e„ ÿý÷¤I“ |ph–ŸŸ¿hÑ¢—/_úûû4¨S§Nfff»wïÆP÷ªÃh¿ýÑãX^ÖÖÖ ÃÈ•ÓyFè_ GgΜ‰¿y󦳳óÂ… U]ª• !!áÞ½{[¶lÁ9Ъ£V­Zô‡E‹uèÐþ<~üøÜÜÜ;wîß¿¿_¿~ú®£1š>}úü1sæÌ#FÐ’ÜÜÜAƒÅÅÅíÝ»×ËËKßãýöGcyI¥R+++Å¿-òóó !ÜH+¨|ÅÅÅ_~ùå‡~˜››;a„ 5êÑÙ³g·lÙ2fÌŒ·¨RÌÍÍkÕªeffÁ/ïØ±#!äÆú® 1zøðáï¿ÿÞ A.5B\\\ÆŽ[RR²k×.}W1âoô8ꀣ£cvvv~~>ÿšåÛ·oÓ§ô];#%“ɦL™rèСŽ;Î;×€‡« zÓ :D‘_¾wïÞ½{÷z{{ïÛ·Oßu4RÏž=c†_H{…KKKõ];côøñcBˆ‡‡‡\9íhÌËËÓwá5ãüöGpÔÈÈÈÌÌÌÔÔÔ÷ߟ–°,›’’bcc¤ïÚ©üñСC111sçÎÕw]€BÜÝݹ_êùóç'Nœpqq rrrÒwWDDÄ÷ßÿçŸÒÑ Lsmê…‡‡‡D"ÉÊÊbY–è333 ! 4Ðwá5ãüöÇ©jèß¿¿‰‰ÉÊ•+¹û§­_¿þÑ£G}ûö555ÕwíŒ˲›7o®S§ÎŒ3ô]x-44tÙ»>ýôSBHHHȲe˦OŸ®ï ¯Þ½{BfϞͽråÊwß}geeÕ©S'}×Ι™™µk×.''ç¿ÿý/7tVVÖêÕ«kÔ¨!wQè‘q~û£ÇQ\\\¦M›–УG°°°œœœÓ§Oûûû=ZßU3RyyywîÜ1332dˆâ³½{÷:t¨¾ëPUøùù}úé§Ë–-ëÚµkHHHAAÁ¹sç†ùòË/ëÖ­«ïÚ© ôë×oõêÕÉÉÉ5züøñü!“ÉfÏžýÞ{ïé»vðšq~û#8êÆÈ‘#íííwïÞœœììì>¾D‰¼ÄJÙ²e•Þ<œŒ©jêuíÚ5ùÆÛo¿=f̘bÅŠ)]‘ê¼üòˉ‰‰‰‰‰6l0¾õÖ[æÔ8hРcÇŽeff&%%-^¼¸téÒBˆôôôÞ½{Û\àÊ•+å^¿~ýÒ¥Kƒ ’ǯ\¹òïÿ»à—X™4i’Ò›€“¸\nnîêÕ«###«T©R²dÉ*Uª´lÙò»ï¾»wï^~/¹qãÆÅ‹ssså»·nݺxñ¢¹gf“å©©©ãÆkÒ¤IéÒ¥4hðá‡æ}¯»wïN:µmÛ¶mÚ´™4iRZZZ~ËÌÎΞ2eJÅŠ§L™bùP¯^½ÎŸ?UµjÕŠ+öíÛ÷ĉBˆØØØÞ½{W­ZõñÇŒŒüñÇ‹¸MlÊ{ŒãŽ;bbbäÛ'N\²dIýúõ===ƒƒƒ‡ ²jÕ*ù¡¸¸¸³gϼðJ•*-Y²Ä|„å‡~h´ÃLXaª€ËõíÛwÍš5æ»—.]ºtéÒž={bbb¾ÿþ{›/yõÕWׯ_o¾Û¯_?!Ä™3gÂÂÂùv·nÝzî¹çNŸ>-ßýí·ß~ûí·cÇŽYÖpèС¾}ûž?Þ<²sçÎ;w®X±bÅŠyûÊ+¯|÷ÝwB“Éd9ÿÌ3Ï$''ËwW¯^½sçÎÉ“'¿õÖ[æøã?îÙ³g÷îÝÏ?ÿ¼ÃÛÄNæ¾`¹råÞ}÷]«G;wîÜ©S§¤¤$!ĉ'jÔ¨ñÈŽ5jݺuBˆ7nìß¿¿}ûöE)€¦8¨ÿþ=ö˜åHVVVÞ§­Y³FNH’$EFFV¬XñÈ‘#'OžBDGGïÚµ«U«VÎ-LîíU©R%((è·ß~ËÌÌB|ÿý÷‡’ÛrÿøÇ?äGJ–,ùüóÏ{zzþøãééé—/_îÝ»÷Ù³gå)]³Ã‡_¹rÅæÛ;vÌÃã~ýú—/_¾yó¦âÆ£FBÔªU+--í÷ßB˜L¦iÓ¦íÚµËÕÛä§Ÿ~’o¼øâ‹>>>yŸ°iÓ¦B-0""¢xñâòÎýå—_Ž€‘1U ÀAIIIñ»téRÞ§mݺU¾1vìØ;w~÷Ýw'NœhÔ¨‘<øë¯¿Ú\øºuëL&“9÷ìØ±Ãd2ÙÓn”}ùå—.\ˆ=zôhÉ’%åÁC‡É7fÏž-§F__ß½{÷nݺuÓ¦M±±±þþþBˆ«W¯~øá‡V ¼råJíÚµW¬Xk>ìÏlãÆÇŽ»zõªeàûüóÏÿûßÿ^ºtiÈ!òˆ<…íð6±Ç½{÷̆†††:¼K’$É·¯^½š÷ mÚ´É{-ž1cÆ8åݨ Á€kõîÝ[žÿ•›pBˆ´´´ôôtù¶Ü¢s®§žzê7Þo׬Y³E‹òí‹/Ê7Ì-·7ß|Ó|h`ݺuÇŽkõ³Ç{ì‡~ˆŠŠjÚ´©U kܸq§N„ÅŠëÕ«—|¸åHƒ Ž=j9òä“OZÞ-W®œ|Ã|ªM\\œemfíÚµ“O>wî\nn®‡Çƒ?­ÃÃÃóËa*T0ß6_•¦|ùò’$Y ºh›X²œaÏ{Õn‡¥¤¤È7|}}ó>jór<æÍ@OŽ\+++ëwÞùâ‹/ÌçD{{{\¿~ÝEïhNl6殮¥Ý¾}[¾myíCa333¯]»fù¨<‹mÏÛÉ,C§;·IñâÅýýýå3u,¯þméöíÛòû–,Y²T©Rö,Ö+ߨ¸q£Í‹ûÔ¬YÓßßßßßÿ«¯¾²gû÷ï7ŸöôôÓO;q;Ђ#×Z°`|cþüù¯½öZ½zõ¼¼¼ò;Cù‘ú÷ïõa;vì(ìBÌ'Ù˜¿™ÆênõêÕ½¼\8!ãÜmbeèСòK—.-\¸Ðêј˜sûÐ|m ‚Í›7O¾QªT©çž{Îu›€ú¸Ð;wÌ84Ÿò믿ÊW¥q€··wàÃÌçmØO>—EñÅ_9rD¾}òäÉÙ³gË·;v쨡mb¥K—.mÚ´‘o¿ùæ›Ó§O—;©YYYË—/0`€üГO>^ð¢®^½úꫯFGGËwÿùÏZ]¥€ÑpŒ#òñññññ‘¿þNþÚI’¶nÝZØïGq® &,]ºôâÅ‹·oßnÞ¼yëÖ­===wìØ!-Jppð{ï½§ém2gΜ¦M›fdd˜L¦©S§N:Õßß?555''G~BÉ’%£££===ó¾Ö|yλwïZNå?ñÄ3fÌpÝf  t¸$I;w–o§§§oذá?ÿùO… "##åA«£ ÝÃÛÛ{Íš5òUu222bbbþóŸÿÈ©±J•*kÖ¬±yî°†¶IݺuøáËÓÀ“““Í©±jÕªk×®mРÍך/ÏiYF¹rå6lØPÀB ‚àÀµæÎ[·n]!„üõ*cÆŒ9zôh·nÝäGW­ZõÈoLv…§Ÿ~úøñãï½÷^ëÖ­ýýý[µjõî»ïž8q¢yóæ:Ø&Ï=÷ܹsçæÎûüóÏ”(Q",,ì…^˜;wî™3gÌ“õðôô,W®ÜÓO?ýÞ{ïÅÅÅ=óÌ3®Þ,ÔO²úÒUpº{÷îÅÄÄ!zôè¡t-jÁ6 EGØ…©jØ…à»`‚#ìBp€]ް Áv!8À.GØ…à»`‚#ìBp€] ÂÂÂ~ûí7›~ÿý÷½zõ î¹ç&Mš”ššªt½J2tp\¾|y~Í;wòäÉçÏŸoÒ¤‰ÏÚµk_}õÕŒŒ ¥KPŒ—Ò( --íìÙ³7n\½zµÍ'ÄÅÅ-Z´(000::: @1sæÌeË–}úé§ï½÷žÒå(ÈÇ®]»FEEå—…kÖ¬ÉÍÍ=z´œ…'NôóóÛ²eKnn®Òå(ÈÇ™3gþõ×_Bˆ+VüüóÏyŸpèÐ!–-[šG<==#""6nÜxäÈ‘Æ+½ 0bplÞ¼¹|c÷îÝy5™LñññåÊ•+W®œåx5„—/_&8 ~’&¥kÐ#Ç‚¥§§çää”)SÆjÜÏÏOqóæÍG.!,,Lé•Àðââ\ú9..Né5TÁÑš|êt©R¥¬Æ}||„·oß¶g!ÆüŸIÍÂÂÂØ)jÃNQ'ö‹ ±Sç²ífØ&‘OŽ)X™2e$IJOO·ÿóÏ?Åß}G r’ÒèÁÑš———ŸŸ_ÞÎbZZšÂ|ž5P-pt‚£ )))rR4KLL”Rº:emhݺuNNξ}ûÌ#&“iÏž=eË– Wº:emèÕ«—‡‡Ç¿þõ/ù¸F!Ä¢E‹’““_zé¥bÅŠ)](óÔ®ÃYÕ6”/_~üøñŸ|òÉ /¼Ð¢E‹‹/ÆÆÆÖ©SgèСJ—mݺUé`¢Nìb§¨Ž$‰5”.BGÛüÄO¬_¿~óæÍÁÁÁýúõ=z´|Ec2tpüàƒ>øàƒüíÚµk×®]•®@-8Æè8ºÁv!8À.G ÌS»Áv!8À.†¾z„……)]œ,..NéÀX˜§v‚£Z3t&,,Œ} Цª`‚#Ð<æ©Ýƒà»`‚#ìBpÚÆŽnCp€]ް ÁhóÔîDp€]ŽP£Û·o>¼råÊ>>>±±±JWdCDDÄ´iÓ”®÷!8BuÒÒÒ7n¼téÒ-Z 2äüùó:t8zô¨Òu=äèÑ£?ýô“ÒU€Ñ1OífG8"+++++ËE Ÿ3gN||ü¢E‹V®\9oÞ¼}ûöI’4nÜ8¥WZ!²³³·oßþþûï·oß>77Wérp+‚#ÖºukË‘iÓ¦5iÒÄ) _½zupppÿþý廡¡¡={öܳgÏüaÏË:Ô¥K—   éaÅŠ+zm)))íÛ·Ÿ6mÚ7œ¼MP=‚#œãÂ… ‡.úrÒÒÒΞ=)I’y°U«V¹¹¹öé¸cÇŽ¦M›ž8qbРA3fÌhذ¡¢aÆo½õÖØ±c‹^^`` Éd2™LgΜqáÖØyj÷óRºà!×®]3™L–ƒBˆG6ù233 |ðàÁ   !ÄøñãÛ¶m7eʔҥK+½rhÁ®•½iÓ¦üíÖ­›ÕHzzºÂ×××rÐÏÏO‘’’Rð{íÛ·/))iúôérjB”(Qb„ ]»v]»víÀ‹X@=h7*‚à¨j³µ 0ø‰ÌÉɱ¼›ß™"wïÞíÞ½{þoaýþþþBˆ;wîX¦¥¥ !Ê•+WpÁ.\BÔ¯_ßr°^½zBˆ“'O½6 Žà¨jjŽ.ýõ—åÝŒŒ ›Oóóó+T ôðð°š•NNNBT¨P¡à×z{{ !²³³-åDëáaãpÞÂÖ€Áá ¤¤$Ë»ùò\Øé`//¯ÚµkïÛ·ÏrpïÞ½’$Õ©S§à’ªW¯.„8}ú´å Ük +zm•`žZ)G8èêÕ«111]ºtB$$$;vÌæÓ˜:tè¨Q£Ì ¿~ýztttÛ¶mCBB .©aÆժU›?þˆ#Ê”)#„ÈÊÊš={¶¼¨¢×€‘q98ÈËË«OŸ>}ûöíÝ»wݺuó»J¢<œ›/8p`ýúõ£¢¢&Mš4kÖ¬–-[¦§§›¿ÜoÕªUeË–µymbÅŠÍ›7/%%¥Aƒ}ôѬY³š7o¾oß¾>úÈê4m‡kÀÈè8ÂAM›6íܹóÂ… ³³³‡êëë;cÆ §,Ù××wÏž=ãÇŽŽNMMmÖ¬ÙÊ•+ÃÃÃåG³²²nݺ•ß!•:uŠ:uê‚ 2334h°eË–öíÛ+½µNÃ<µ‚Žp$Iï¼óÎ;ï¼c™>}º³îçç·hÑ"› 0àÞ½{6Ï’–…‡‡oذÁÕ«FW`4LUCc233wïÞ-% î&Iª¾è‰‹¡1¨U«ÖË/¿¬t!0O­,¦ªáˆ×^{ÍêË]Ü&22222Ré €ሠ&(]Àph7*Ž©j؅ເ0O­G؅ເÚ1O­GØ…àTv£z`‚#ìBpêÅ<µª¡F·oß>|xåÊ•}||"""bcc•®èãÇ÷îÝ;((ÈÇǧqãÆsçÎÍÎÎVº(ÜÁKékiii7¾téRÏž=ýýý£££;tè°{÷îððp¥K -[¶ÌÉÉéÑ£GåÊ•wìØ1vìØ½{÷®[·NéÒ@‡h7ª G8"+++++ËE Ÿ3gN||ü¢E‹V®\9oÞ¼}ûöI’4nÜ8¥WZ!ÆŽ{ûöí;v|ûí·Ó§Oÿù矼~ýúmÛ¶)].Gp„#ÂÂÂZ·nm92mÚ´&Mš8eá«W¯îß¿¿|744´gÏž{öìùã?ìyù¡C‡ºté$=¬X±bE¯m×®]–kúÆo!8à¤M ¸v£ 1U ç¸páÂáÇ‹¾œ´´´³gÏöíÛW’$ó`«V­/^Û£G‚_¾cÇŽvíÚUªTiРA¥J•Z·nÝ‘#G6lتU+¢þ™”=bĈÆ[^¼xQQ¢D mXÔƒàu¹víšÉd ´ Bܸq£à×fff0 88øàÁƒAAABˆñãÇ·mÛ6..nÊ”)¥K—.bm^^^}ô‘åÈÍ›7?úè#OOÏž={*½åp9‚#\+;;{Ó¦Mù=Ú­[7«‘ôôt!„¯¯¯å ŸŸŸ"%%¥à÷Ú·o_RRÒôéÓåÔ(„(Q¢Ä„ ºvíºvíÚ±6+?þøã«¯¾ÿïÿ»zõê l\Ð/æ©Õ‰à¨j’ üÌæääXÞÍÍ͵ù´»wïvïÞ=ß·0Y¿…¿¿¿âÎ;–ƒiiiBˆråÊ\ð… „õë×·¬W¯žâäÉ“E¯ÍìÒ¥Ko¼ñÆÆ«W¯¾cÇŽV­Z9¶…Ђ£ª™TüçÖ_ýey7##ÃæÓüüü H`yzxxXÍJ''' !*T¨Pðk½½½…VWU”­Í [›lÕªUÆ óññY¸páàÁƒ½¼ø€“ÑnT-~çÁAIII–wó;å¹°ÓÁ^^^µk×Þ·oŸåàÞ½{%IªS§NÁ%ÉóŧOŸ¶”{aaaE¯M±qãÆþóŸÿøÇ?¾úê+«ùttà]½z5&&¦K—.Bˆ„„„cÇŽÙ|šÓÁC‡5j”yáׯ_ŽŽnÛ¶mHHHÁ%5lذZµjóçÏ1bD™2e„YYY³gÏöññ‘UÄÚL&Ó„ *Uª´|ùrOOO6:íF5#8ÂA^^^}úôéÚµknnnLLL~×£q`:xàÀK–,‰ŠŠ’óß·ß~›žž>mÚ4ùÑU«V½þúëƒ š3gŽÕ ‹+6oÞ¼=z4hÐ`ذažžžÑÑчþâ‹/¬NÓv¬¶Ó§OŸ9s¦V­Z¯¼òŠÕC/¾øb×®]Ý»n'I¢ðÇ8é ÁjÚ´içÎ.\˜=tèP__ß3f8eɾ¾¾{öì?~|tttjjj³fÍV®\iþ¾Á¬¬¬[·nåwHe§Nbcc§Nº`Á‚ÌÌÌ lÙ²¥}ûöN),>>^qúôi«Ùp!DµjÕŽÝ#8ÂA’$½óÎ;ï¼óŽydúôéÎZ¸ŸŸß¢E‹l>4`À€{÷îÙ>~Ñ¢E+W®œ7oÞ¾}û$I7nœÒ+-„ï¼óNPPБ#GæÌ™3sæÌ#GŽT®\yÚ´iJ×€;ሰ°°Ö­[[ŽL›6­I“&NYøêÕ«ƒƒƒû÷ï/ß íÙ³çž={þøã{^~èС.]ºI+V¬X û믿N:Õ¥K???y¤T©R-Z´¸råJFF†s·0èíFíòRºèÄ… >\ô夥¥={¶oß¾’$™[µjµxñâØØØ=züò;v´k×®R¥Jƒ *UªÔºuëŽ9Ò°aÃV­ZyxõÏ$OOÏß~ûÍßßß<’}âĉzõêy{{»pã G¨Ëµk×L&S`` å`@@€âÆ¿633sÀ€ÁÁÁ BŒ?¾mÛ¶qqqS¦L)]ºtkóòòªS§Ž|{Ù²eñññ›6múã?þçþGéÍšA»QÓŽp­ìììM›6å÷h·nݬFÒÓÓ…¾¾¾–ƒòÔpJJJÁïµoß¾¤¤¤éÓ§Ë©QQ¢D‰ &tíÚuíÚµ,bm–f̘/„hÛ¶m•*UÙ¶¸ÁQÝ,¦kPàErrr,ïæææÚ|ÚÝ»w»wïžÿ;X¿…<|çÎËÁ´´4!D¹rå ®÷Â… Bˆúõë[Ö«WOqòäÉ¢×féܹséééxå•Wžyæ™Ó§OËmQ@h7j'Ǩ›É¤äOþúë/Ë»ùâççgÊ_ÞçzxxXÍJ''' !*T¨PpIò†ÙÙÙ–ƒr¢µy€cak³òØcµnÝúã?¾yóæúõë]óè©Qè8ÂAIII–wó;å¹°ÓÁ^^^µk×Þ·oŸåàÞ½{%I2_˜ŸêÕ« !NŸ>m9(÷Ê^Û¦M›ºwï¾bÅŠÞ½{›Ë–-+Õž@ŽpÐÕ«Wcbbºté"„HHH8vì˜Í§90}ºvíš››S¢D ›O“§ƒ µä.Y²$**JÎß~ûmzzºù"Û«V­zýõ× 4gΫ+VlÞ¼y=zôhРÁ°aÃ<==£££>üÅ_X¦íXmþþþï¾û®|ÅÊöíÛK’ôÃ?üòË/£G–¤@ߎpPÓ¦M;wî¼páÂììì¡C‡úúúΘ1Ã)KöõõݳgÏøñ㣣£SSS›5k¶råÊððpùѬ¬¬[·nåwHe§Nbcc§Nº`Á‚ÌÌÌ lÙ²¥}ûöÎZë©S§†††ÎŸ?ÿßÿþ·‡‡G­ZµV¯^m9s È‹v£nH›åtaaaqqq®~‰²BBB*V¬hu$¢Û,^¼øäÉ“Ÿþ¹Ò›¡ šÛ§î—˜˜øÈÃà~ìÒÁNÑCp”$ËÓF û<GÛ²²²¾ûî»-[¶$&&–-[¶nݺo¼ñ†|™™¹{÷n'6.¥‡Ôˆ¿q9rrr ðé§Ÿ¦¦¦¶hÑ¢B… Û¶mëÖ­Û¡C‡”. âÀµjÕzùå—•.áãhÃÿþïÿ9r¤cÇŽŸ~ú©———âÀC† ™}ÆŒ³aÆÐÐP¥ PÇ8Z»~ýúîÝ»«U«fNBˆòåË¿þúë÷îÝ[·nÒ jœ£cGk)))BˆªU«ZËÆ7n(] p¯‡¿oÐÈŽÖªV­êééyîÜ9«oñ–l¨V­šÒ ^´õàhÍÛÛ;""ââÅ‹_|ñEnn®>¾D‰¥K—þþûïoÞ¼Y§N§Ÿ~ÚEWÔ†àu¹víšÉd ´ v|ßcff怂ƒƒ<$„?~|Û¶mãââ¦L™Rºt颗ïááQ­ZµÔÔTy¤V­ZË—/oÔ¨‘Ò[ ÿv#Fp„keggoÚ´)¿G»uëf5’žž.„ðõõµôóóxöíÛ—””4}út95 !J”(1a„®]»®]»vàÀE¬MŸ››;mÚ´ž={+VlÆ cÆŒéÞ½ûÉ“'å"Ð1‚£ªIE_DüGdNNŽå]ó×3Z¹{÷n÷îÝó}‹>>ò¢ŠX›··÷[o½Õ¤I“;wÊ÷ÉÍÍ={¶——WÛ¶mÝ¿ @)´ ‹àyyyõéÓ§k×®¹¹¹111%J”°ù4¦ƒ¸dÉ’¨¨(9ÿ}ûí·éééÓ¦M“]µjÕ믿>hР9sæX½°X±bóæÍëÑ£Gƒ † æéé}øðá/¾øÂê4mÇj ˜6mÚÛo¿]½zõŽ;–)SfÛ¶mGýðÃk×®­à¾w2Vjä"Ž#8ÂAM›6íܹóÂ… ³³³‡êëë;cÆ §,Ù××wÏž=ãÇŽŽNMMmÖ¬ÙÊ•+Íß7˜••uëÖ­ü©ìÔ©SllìÔ©S,X™™Ù Aƒ-[¶´oßÞYk=a„'Ÿ|rÖ¬Y+V¬(Y²d½zõ¶lÙÒ¡C×oo”'¶„G ‹‹‹sõK”R±bE«#ÝfñâÅ'OžüüóÏ•Þ ÑÜ>u¿ÄÄÄG~÷c¿¨ªvбÚ"ߎ£aÿ‘ç+¡1™™™»wïnذ¡Ò…`8GhÌjÕªõòË/+]ŽáÚȃcáˆ×^{ÍêË]Ü&22222Ré †Cj„ 8Â1&LPºànLU€G0h»‘kñäAp1hj„-GØ…àòE»–ŽÀ6R#¬`‚#°ÁèíFN©¶…ë8ªEXX˜Ò%pŸÑS#òApTc~Qº;%&&†„„(]h©ùaªv!8€h7¢Gp©#8<ŒSªóApBÐn„Ž€Ô»`‚#FG»v"8`h¤Fkœ“?‚#ÆEjD¡`‚#E»…EpÀˆHpÁÃ!5æ‹3c Dp€]Ž íF8Œà€QGŒ‚Ôˆ""8!83æÑŽíFÁý#5Â)Žè©ÎBpàG»Ð3Úp"‚#ºEj„sÐ'R#œŽà€‘ ‡íCp€]Žè íF¸Á]!5ÂuŽè©Ñàh7‚#:Aj„«`‚#z@»n@p@óHŽãÇ 8 m¤F¸ Á #5ÂŽh©±¨˜§.$‚#ìBp@“h7ÂýŽh©QA’”.A1G4†ÔèàXxG´„ÔÐ R#”Ep@HÎÄ<µCް Á  Ý5 8 v¤F'cžÚQGT-4$„Œ• 8 ^’ ‰‰JWÜGp@¥˜¡v æ©‹€à€‘¡BGT‡Ôè*´‹†à€º¡ZGT„Ô5#8c`žºÈލíF¨ÁU 5BýŽ(ÔèrÌS;Á…‘¡G”DjtÚNBp@1¤Fh Áe¡9G@jt§ÎSKB2x×y)]€z8qbáÂ…§NúóÏ?ÃÂÂFŽÙ´iS¥‹è©EÇѶ]»võíÛw×®]áááGíß¿ÿ®]»”®  y¤F·â´§¢ãhÃíÛ·ß~ûm//¯o¾ù¦Q£FBˆãÇGEE½÷Þ{-[¶ôð mDj„¦‘lX»vmZZÚðáÃåÔ(„¨W¯^ÇŽ“““Oœ8¡tu­"5ºíFg#8Ú°wï^I’ºwïn98kÖ¬¸¸¸úõë+]@“HЦªm8yòdÙ²eƒ‚‚>|ôèÑ[·nÕ¬Y³M›6ÞÞÞJ—Ð$R#ôàh-++ëÎ;ÕªU{ÿý÷W­Ze¯T©ÒçŸþÔSOÙ³°°0«‘­[·*½f†våÊ¥K€5vŠ:±_\!4$$!11ÑÑ—³Sš˜ ßðtèÐáÁ8¿åƒàhíÎ;Bˆøøø7n|òÉ'-[¶ÌÌÌŒŽŽž?þ¨Q£bbbìé;ÆÅÅ)½°¢t °ÆNQ'ö‹sÝï5m«²Sã¬ífùk]R\\œa³#Ç8Z+Y²¤|ãã?îÞ½{™2e‚‚‚Þxã=z\¹reÓ¦MJÐ f¨Ãi1®Ap´VªT©’%Kz{{GFFZŽ·iÓFqæÌ¥ h©úCp´!  X±b’$YÊ3ÔÙÙÙJWÐR£’h7º ÁцÈÈÈ´´´³gÏZ9rDQ³fM¥«¨©zEp´¡GBˆÉ“'ß¼yS9qâÄ7ß|ãçç×¶m[¥«¨©Qa´]‰³ªm¨U«Öرcç̙ӡC‡Æ§§§:tH’¤™3g>þøãJWP/R#ôàhÛ°aÃüýý—-[öóÏ?—-[¶uëÖ#Gެ^½ºÒuÔ‹Ô¨<Ú.FpÌ×K/½ôÒK/)]@H0Žq ¨Hªàúv£$$“±w5Á€"!5Â8Ž8ŽÔ¨ÝèGDj„Ñp©QEh7º Á€B#5˜Ž©Q]h7ºÁ€B 5ÂȎ؋Ԩ:´Ý‹à€]HªCjt;‚#FjÁ€G"5ªíF%x)]ê% !HBðEÕB‚#ù¡Ñ¨^´ÂT56Õ‹Ô¨‚#ÖH€MGBjT5ÚŠ"8ð©(Á€ûHjG»QiG„ 5ª©QŽ»pG€¡q‰omPºÝÈÕ¿eG€qÑhÔ¥S#̘ª©(,‚#ÀˆHšA»QMŽÃ!5j©QeŽc!5#8 „Ô¨%´Õ‡³ª†Àew4FM©‘kñ˜úG£QcÔ”a‰©j€Î‘g!8ôŒÔ¨=´UŒàÐ-R£öÕàÐ'R£öU“czà Ôp"N©¶Dpè F­¢Ý¨LUôƒÔ¨U¤F 8t‚Ô¨U¤Fí 8ô€Ô¸–‚ãñãÇ ~ÂÖ­[•®àn©QÓÔÝnäÌ+Z Ž}úôù׿þ•“““÷¡ÔÔÔÑ£G5Jén%GF~±k•ºS#òÒRp øòË/{÷î}áÂËñmÛ¶uîÜyË–-UªTQºF€ûÐhÔ6R£i)8ÆÄÄôîÝûĉÝ»w_µj•âÖ­[cÇŽ}óÍ7oݺ5dÈ 6(]#ÀMHÚFjÔ&-]ÇÑÇÇgúôé;v|÷ÝwßÿýÍ›7'$$$''W¯^ý£>ª[·®ÒÜ„Ô(BKGY³fÍV¯^]®\¹_~ù%99¹aÆëÖ­#5€Ap*Œh¤ÝÈ™1yi/8îÛ·¯W¯^7oÞ¬S§N@@À‘#GFŒqíÚ5¥ë¸§ÂèFR#lÒRp¼sçΤI“^yå•äääQ£F}ÿý÷111;vܳgOçÎ×®]«t¢Ñ¨¤FÓRp”ÓaõêÕ¿ÿþû×_ÝÓÓÓÏÏïóÏ?ÿôÓO%Iš4iÒ!C”®à¤F= 5jŸ–‚crrò«¯¾ºnݺڵk[ŽwíÚuãÆÍš5Û¿¿Ò5œŒƒuBk©‘mÒÒYÕ+W® ·ùPPPÐÒ¥K—/_®tg"2ê„ÖR#ò£¥Žc~©Q&IRÿþý•®à4¤F 5ꈖ‚#À8H€ iiª`’‚Ô¨Úl7r€c~Ž¡Ñ¨+ÚL(SÕµ 5ê ©Qè8”Çô´ÞuŠàPF½ÑxjäÇ0U P©Qo4žQ0‚#@1¤F½!5êSÕpP£é"52O]0‚#ÀÝh4ê.R#‰©j€[‘uˆÔhtnÂô´>é(52OýHG€;ÐhÔ'¥F؃©j€Ë‘õ‰Ôh{êԩ¾<,,ÌjdëÖ­J¯“¡]¹rEé`â¡!! ‰…ûAö‹ =r§„„†&&$!ßi!4$4!1!Q8a›tèÐAéµQ ‚£ &L¨T©Ò¸qã[B\\œÒ+k!!!J—kì×ypLá72ûE…òÝ)7ÙgVîOR;i»äýµž·CdG>ùä“+W®¬ZµÊÛÛ[éZ Ð˜ž6 Žḣ6º'ÇXûå—_V­Z5lذúõë+] çÁ©J ãhíܹsBˆ ,X°Àr|Æ 6l¨^½zLLŒÒ5€ DF£à<˜Ñnt)‚£µ*UªtîÜÙräöíÛû÷ï/_¾|xxxPPÒ€5®ìm 4 Djt5‚£µæÍ›7oÞÜräÔ©Sû÷ïoܸñìÙ³•®¬Ñh4 Bjt‚#hF¡Ñu 8€&Ñh4 I 4v£{­N:\—€zÐh4I&Sbb"—i,©ÑmŽ %4‚#íFjt'‚#hFáˆF»‘ÝŒà@£Ñ(h4BÝŽ j4 „Fc!Ñnt?‚#¨‘Ñ@h4©QGP#概ÈèR£RŽ .4 „¹i‡Dp¡Ñh4EjTÁTF£Ðht©QqGPF£ ÑX¤F5 8€’h4‘±hH*ApÅÐh4 榋†Ô¨GPF£ ÑXd¤FU!8€»Ñh4"£3Õ†àîC£Ñ(˜›vR£ ÀˆŒFA£ÑIHêDp—cnÚˆŒÎCjT-‚#¸F£`nÚyHjFpW¡Ñh4ŠÔ¨rGp>†@dt6R£úÀ™ˆŒ†@dt6IHBR£úÀi˜›6gt6Bp' Ñh4]€Ô¨-G(*úGdt R£æÀq4õÈè2¤F-"8€#ˆŒúGdtN…Ñ.‚#sÓúÇ0.C£QÓŽP4õF£+‘µÎCé@¤¿üÒÓ-Iºßh$5º€$$ݤFù c¢ãÆÜ´ÎÑet1ÝDF  ÌMë‘ÑõHzBp€|ÑhÔ3"£ëqö´þÀzFdt ºDp€‡õŒÈè4uŒà07­g\šÑ-h4êÁ„ Ñ¨o4Ý…Ô¨{GFGdÔ3"£»0=mG†ÆÜ´n݈F£qFÝ"2ºF£!80"£n݈ÈhL|W5cáû¦õ‰¯™v/ynÚ˜©ÑàgçÓq`4õ‰.£{Ñh48‚#ý#2ê‘Ñí8 G:ÇyÓ:Ddt;èF"2º‘–ŽtˆÈ¨7r^DFwcnVŽt…Ȩ7´B£6è‡3ê ‘Q!DF€à@h4ê ‘Q!DÆG2øEÁ€Öu…Ȩg„=Ž4Œ¹iý 2*‡F#ìGp I4õƒÈ¨"# ‹à@cˆŒúAdT‘Ž!8Ð "£NpQFEQGÚÀáŒz@‹QQDÆ"â”jAp ~4õ€È¨("#œ…à@½ˆŒz@dT‘ÎEp FDF= 2*ŠÈW 8PgÔ6Î}Q‘Ñ8ÀQFp "4µ£ÒˆŒp5‚#U 2j‘QiDF¸Á€ÂˆŒÚFdT‘îDp $gÔ*dT"£Ûp€£Á€2BCB©Q‹h1ª‘JñPº†# ! ‘˜È/=‘¤ûR£r$!IB2 ©Š 8péï¹i~ãi‰œ‰ŒJ#2*…yjKLUpgÔf¥U@’‚‰i¨G.'‘5‡£ ˜[Œ ‰ ¤F¨G.Ä¥v4F’BääEEqî‹z0Om…Ž#—àpFù»Å˜˜ÀïIq #TŽŽ#'£Ë¨%\ŽQ¤ûŸºŒêB»1/‚#gâXFÍàÄu`VÚBpà45ƒÈ¨DF•£ÝhÁ@QµYiu`VšFpà8"£6ÐbTZŒB»1?GŽ 2j-Fu Å=!8(4΀Q;ZŒê@‹Q£h7€à h4ª-Fu Å#8° ‘QÕh1ª-F ÝX0‚#€G 2ª-Fu Å¨¤ÆG"8È‘Q½h1ªyDp`gÀ¨-Fu`JZ—h7ÚƒàÀF5¢Å¨´uŒÔh'‚#€ˆŒªC‹QÈ‹ºGj´Á€DF¢Å¨LI©±PŽ€ÑÕ…£ ÐbòCpŒ‹È¨.´•F^4 Ú…Ep Š“¦Õ‚£ÒÈ‹†EjtÁ0ª@^Ta42R£cŽ€U)i¥Ñb©ÑaGÛ222þ÷ÿ7::úÊ•+¥K—®Q£ÆàÁƒŸ{î9¥ëDdT-F¥‘!#5Áцììì;vÌÏϯY³f™™™Ü¿ÿ›o¾9bÄ¥« ‡È¨0ò¢ÒÈ‹°Dj,"‚£ kÖ¬9vìX£F¾ùæooo!Ĺsçúõë7þüV­ZÕªUK黯”´¢È‹°Â'Ò)<”.@¶nÝ*„x÷ÝwåÔ(„¨^½úðáÃsrr~úé'¥«Múû¤iþ…T€$Ýÿ1™øå~o}Ét° „àé4tmHLL,UªT:u,«W¯.„¸|ù²ÒÕÀuv”Á”´¢è/¢LO;Áц… zyYo™S§N !*Uª¤tu@¾˜›V`Ê!/â‘HÎEp´¡víÚV#±±±‹-*Q¢D÷îÝíYBXX˜Õˆ<ý ¥\¹rEé\+4$D‘˜(„HTº;i}§„„†Ê7„"Q+þ4±_BCîoü„ÄùF¢fþÇw„&vŠ …††!‹þéìСƒÒk£ÇGÈÉÉY¹rå¬Y³rrr>ûì3{^§tá°¢t .ñP—Qkë¨É’gJZƒëðªÝ/6ú‹*­ÔùT»STË¢Ñè„M—÷×zÞ‘A rðàÁiÓ¦?>88øÃ?|öÙg•®x€‰iwcJZ!ÌG£Pø¤ºÁѶ¬¬¬Ù³g/_¾¼dÉ’#GŽ2dˆù k@qDF·â¬%˜Ã¢ /¢08¢ÑÕŽ6äææŽ7nûöímÚ´™:uj@@€Ò÷݇¼¨š‹pF÷ 8Ú°|ùòíÛ·¿üòËS§NUºà®³ãäE%QD4݆àhÍd2­X±¢téÒo¿ý¶Òµ÷ÑhtúnG^DÑñÁu3‚£µ7n\ºtÉÛÛ;***ï£=zôèׯŸÒ5Â@ˆŒ.G‹ÑíÈ‹p "£"ŽÖäËeeddœÄªBpFdt ~Õ¸ ÍE¸ó*DpCdt>ò¢[Ð\„«U‹à(€ÈèdäE· ¹7 2ªÁp7¾ÆiÈ‹®GsnCdÔ‚#à>4ƒ¼èz4á6| µ…ฑÑ9èH¸Òý°"ynÁZ‹<”.Ð9éï¹iþmtœ$Ýÿ1™ø%ãto\É$L&aJHL 5Â¥ø@kGÀUè23X.Ñ‹P-F 8ÎGd,ò¢Ëpä"ÁgZOŽ€3Çï× ¹¥ð™Ö%‚#àDFñ»Å‹PŸi}#8EEdt„$…È7øÝâ<ÌDCYÂhœU 8Ž3¦ ÍâtÊÄ„~Ãô`›Þ?-šÔw’$Î’6:Ž€#è2sWNÅL4ÇgÚ°Ž@á ß-ÎCX„ð™Á°‘Ñ^ünqÂ"T‚Ï4ÌŽ€]$"ã#ñ»ÅI8Çj =ø³…Ï4 8@£ñÈ‹Î@s*Á#8ù"2„_/EFX„JÐ\„ýŽ€ DÆ|‘‹†°õàÓ ‡mã7L¡4QDGà>"£ äEG¡„E8Á 2æA^taêAX„‹ahDƇ °õ , Ž0("ãäÅB",B=‹p3‚# ‡Èxy±0‹P ˤ(øøÂíŽ0"£äÅB ,B%BCCÌ·ùàBYJ¸ChHˆüÆý'W’îÿ˜L÷‡ô`3I’L6› îfùÿbBB"\¨Á:' ! ‘˜hÐoÉ‹’_R$,Âͤ‡ÿp±üP¦ª¡[–Ó‰Jãö•g>º ÌAC 8ZZDp„ôXFή,aŠ#)BŽÐ#FFš‹ù#,BY$EèÁ:a¸ÈH^´Å2) Â"ÜŽ¤Ý#8BóŒÉ‹yÐV„‚HŠ0‚#4Ì@‘‘¼ø0Â"”BR„Á¡IF‰ŒäE „E(‚¤X"8Bc É‹òfà€E¸ULFÿÖŽÐ ýGFò"mE¸1(,‚#4@Ï‘Ñð_¤­wbÞ("‚#TM·‘ÑØÍÅûa1D’"\‰†"àt|W5TJþŽi“ÎR£¿9:ïWB'$&áDVßõlõuÏûÀ®BÇj$é//ÊŒô‹‹9h¸ÝD@G¨‹®æ¦—9µ.BLT‚àµÐId4ØÉ.´áty3¢0ć Ђ#”§‡Èh¤æ"mE8­D@[ŽP’æ#£1ò"mE8­D@ŽP†¶#£ò"mE­D@—Žp7 GF]çEÚŠp­DÀ8ŽpMFFýžìBR„Ȉ€ÁáÚ‹Œ:m.2 û‘äEp„ki,2ê./ÒV„=Έ!òôò!àL|å \EKߨ¯oÌûå~æ¥Kƒòò~/ŸÕWó%$$jÿCÀUè8Âù´ÑeÔÑÁ‹´‘—͉f¡ùÿÙ(ŒàgÒ@dÔÅd4I–8€Ûá*Œ!¡¡÷oió×)I‚&"àG•ªeüû®Ä„ͼȡŠFöÈ#-ÀmŽpœJ#£Íß´Z`•HŠF`3 æ—@qLUÃjœ˜ÖàÁ‹L@³ÌôàˆÂQ]dÔT^$)ꀾa/EFM]I‡/kÑ%"c"8âÑÔ5Ò\¤­¨'D°DpDATUŸIŠ:@@{a›ò‘QÅy‘¤¨Qù¥C¡ÆÿË@ް¦ddTëÁ‹$Em¡}.BpÄŠEFU69©Eåh€û!„R‘Qey‘¶¢ ‘@UŽFçîȨ¦Éh’¢z0¹ š@p4.·FFu4IŠÊÊ“CÌ·ˆ  G#r_dT:/>HŠ!ò*O\ÎþÉåÄÄÄG- "J÷‘þþ1¹45JÒƒ“éþûÖÑòí¥¿ßÞ”˜@jt"IÊ÷ǼÏóþ´ŽŽ£!¸£Å¨Ps‘Ùg×áÄ€‚£Î¹<2º=/’‹t°ÁQ·\Ý{f4I±ˆ ˆ†‚t( ‚£¹*2º«¹HRtC€uÅ%‘Ñõy‘¤h'Ò!@YGprdtñd4I1?L+ÔŒà¨yÎŒŒ.k.’-Ñ8hÁQÜ] žit‰à¨INˆŒÎžŒ6`R¤q0‚£Æ52:¯¹h„¤HãKGÍ(RdtF^ÔeR$`?‚£8‹<­¤ø÷f±ù(Ñûy(] " ! a*Tj”¤û?&Óƒ{ßN²ü1=´U',IÊ÷G®>!!Ñdµ>…Ø0@:ŽªU¸.££ÍE õ™S@qGÕ)Dd,ü‘‹jNŠDCTŽà¨"öFÆÂäEU%E¢!šFpT…GGF»'£•MŠDCtŒà¨°GDF;š‹nNŠDC ‹à¨˜‚"cyÑÕI‘hlâr<ùúþûï{õêþÜsÏMš4)55ÕYK¶}‘¼—ù;£9ý*9\¼Æê2>º¹~M‡”.ÖØ)êÄ~Q!v ÔƒŽ£msçÎýꫯJ•*Õ¤I“‹/®]»öܹsË–-óöö.Êbmtm5‹ÞS¤kœŽŽ£ qqq‹- ܺuë¢E‹¶mÛÖ¿ÿãÇúé§/ÓºËøpO2‰Âö Ø5Ê"8Ú°fÍšÜÜÜÑ£GÈ#'NôóóÛ²eKnnna—ö 2Z$;É$îÿ䟉†@UŽ6:tÈÃãeË–æOOψˆˆ”””#GŽØ¿œû‘Q’LVaÑ$LÂâŽd"õ#8Z3™LñññåÊ•+W®œåx5„—/_¶g!–‘ñï΢uR,8 €ÚprŒµôôôœœœ2eÊXûùù !nÞ¼ißb$!™ÂjÔBÔâÁ ³oIp’0¶¸ú°SÔ‰ý¢Bì¨ÁÑZFF†¢T©RVã>>>BˆÛ·o?r qqqBÈgÁÄ)½6NÃTµµ2eÊH’”žžn5þ矊¿ûŽDp´æåååçç—·³˜––&„0Ÿg `4GSRRä¤h–˜˜(?¤tuÊ 8Úкu뜜œ}ûö™GL&Óž={Ê–-®tuÊ 8ÚЫW/ýë_òqBˆE‹%''¿ôÒKÅŠSº:eH&.hË’%K>ùä“ *´hÑââÅ‹±±±µk×^²dIÞËôÁ1_7n\¿~ýñãǃƒƒŸ~úéÑ£GËWä0&‚#ìÂ1ް Áv!8À.GØ…à»`‚#ìBptšï¿ÿ¾W¯^áááÏ=÷ܤI“RSS•®È@ »ñ322¾ýöÛ.]º4hРE‹C† ùé§Ÿ”^ ½)Ê'"))©Q£FãÇWz%ôÆrâĉ7Þx#22²I“&ýúõ;xð Ò+¡7…Ý)YYY_ýõ‹/¾ÞªU«Q£F;wNé•0œ„„„°°°ß~ûMéB@pt޹sçNž<ùüùóMš4ñññY»ví«¯¾š‘‘¡t]†PØŸ=pàÀ>úèúõëÍš5«V­ÚÁƒ<þ|¥WE?Šò‰0™Lo¿ý¶ù›âá,ì”]»võíÛw×®]áááGíß¿ÿ®]»”^ý(ìNÉÉÉ0`À§Ÿ~šššÚ¢E‹ *lÛ¶­[·n‡RzUŒeùòåJ— ŠìÌ™35kÖlѢŵk×ä‘>ø FÓ§OWº4ýs`ã¯\¹²F}ûöMOO—GΞ=ûôÓOתUë¿ÿý¯Ò+¤EüD,Y²¤F5jÔxë­·”^ýp`§Üºu«qãÆõë×?|ø°<òÛo¿=õÔSÏ>ûlNNŽÒ+¤ÿó5jÔ¨{÷îÉ#?ÿüs­ZµÚµk§ôÚÂíÛ·:4eÊùߨcÇŽ)]‘è8:Áš5krssG Lœ8ÑÏÏoË–-¹¹¹JW§slü­[· !Þ}÷]oooy¤zõêÇÏÉÉaÂÚ)Šò‰8wîÜܹskÖ¬©ôJè;eíÚµiiiÇoÔ¨‘«t-Šáÿ³¢2™LñññåÊ•+W®œåx5„—/_nܸ±Ò5ê–cáÂ…yÿ…=uꔢR¥JJ¯“æåñå—_ž>}zÉ’%¾¾¾J¯‡®8¶SNž+çx8‹;%++ëÎ;ÕªU{ÿý÷W­Ze¯T©ÒçŸþÔSO)½NšçØ'%,,lùòå8p y°_¿~“&MRz…`LU•|ú[©R¥¬Æ}||„·oßVº@=+úÆÏÉÉY¶lÙ+¯¼’žžþñÇûûû+½NšçØNÉÈȘ0aB¥J•Ƨôè;åÎ;BˆøøøÍ›7òÉ'ܳgÏÈ‘#ÿý÷Q£FqɈ¢sì“’––öñÇß½{·N:}úôiÛ¶­··÷úõë9ÕnCDZ¨Ê”)#IRzzºÕ¸|1ùoG¸H7þÁƒ§M›vþüùààà?üÐÈǬ8‘c;å“O>¹råʪU«˜uvJÉ’%åüq«V­äÛo¼ñFRRÒÚµk7mÚÔ³gO¥WKÛû¤L˜0á×_8qâ Aƒä‘¤¤¤>}úŒ3fÆ ¡¡¡J¯ôŽcQyyyùùùåýë0--Ma>W®àðÆÏÊÊš9s怒’’F޹eËR£³8°S~ùå—U«V 6ŒS.\ÄRªT©’%Kz{{GFFZŽ·iÓFqæÌ¥×IóØ)ׯ_ß½{wµjÕÌ©QQ¾|ù×_ýÞ½{ëÖ­Sz`G' LII‘?íf‰‰‰òCJW§slüÜÜÜqãÆ-[¶¬uëÖÛ·oã7èr9WawŠü½ ,ûÛ‹/¾(„ذaCXXX—.]”^!=pà“P¬X1I’,åKvv¶Ò+¤…Ý))))BˆªU«ZËÆ7n(½B0‚£´nÝ:''gß¾}æ“É´gÏž²eˆ‡‡+]Î9°ñ—/_¾}ûö—_~yþüù´„]¡°;¥J•*&ŸºX¾|ùÎ;GDD(½BzàÀ'%222--íìÙ³–ƒòeb¸Ð¦Sv§T­ZÕÓÓóܹs&“Ér<..NQ­Z5¥WÆ ôÈõà÷߯Y³f‡îܹ#|õÕW5jÔ˜5k–Ò¥éŸ=ÿÏ?ÿLHH¸|ù²ÉdÊÍÍmÓ¦M£F222”®]· »Sò:yò$ßã\ì”ÿþ÷¿5jÔèÕ«WJJŠÿüsó—÷œ={ö™gžyê©§âãã•^!y÷Ýw ûÍ1œãåË—?~ü'Ÿ|ò /´hÑââÅ‹±±±uêÔ:t¨Ò¥éŸ=Ïž=cÆŒ©^½zLLÌ7.]ºäíí•wi=zôèׯŸÒë¤y…Ý)J×kì”Zµj;vΜ9:thܸqzzú¡C‡$Iš9sæã?®ô é;åƒ>èÙ³ç‚ 6oÞ\»ví”””_ý577wòäÉO>ù¤Ò+C 8:ÇàÁƒŸxâ‰õë×oÞ¼988¸_¿~£G–¯ªW+ÔÆ¿råŠ"##ãäÉ“yågá¡Bì”aÆùûû/[¶ìçŸ.[¶lëÖ­GŽ)Íœ¢°;ÅßßóæÍ_}õÕþýûüñDzeË>ÿüó¯½öZݺu•^…dzøP À&NŽ€]ް Áv!8À.GØ…à»`‚#ìBp€]ް Áv!8ÀãÇ ;pà€Ûõ¯ý+,,låÊ•–¯úñÇm> Ê"8€–ì߿Ϟ=JWÀ ¼”. -22Òßß¿Q£Fv>úÖ[o¥¥¥ý÷¿ÿUºpFDp%Õ©S§N:Ž= nÆT5MÊÉÉÉÎÎVº 0‚#ÍO9þüŒ37n\§N–-[Ž9ÒêùiIIIÇŽ{饗êÕ«wåÊó£›7o>|øóÏ?ÿÌ3Ï 8ð›o¾ÉÉÉÉû^û÷ï5jTDDDDDÄk¯½¶wï^«'$''Ï™3§S§N 6lذaçÎ?þøãk×®vQ_ýu§¿X>:kÖ¬°°°ÔÔÔœœœ°°°ðððI“&………­X±ÂêUsæÌ ûì³Ï”Þcô†à@cÞ}÷Ý+VdffV©R%55uûöíƒ^¼x±ÕÓNŸ>=pàÀ“'Oþõ×_¹¹¹B“ÉôöÛo3f÷îÝ&“ÉÏÏ/66vÖ¬YQQQ©©©–¯Ý¸qã+¯¼²}ûö’%KÞºuk×®]¯¾úê¼yóÌOHNNŽŠŠZ¸paRRRåÊ•+V¬xùòå¥K—öíÛ·°‹²_ãÆ P¢D I’ ðòË/wêÔI±mÛ6˧™L¦˜˜!D·nÝ”ÞWô†à@cŽ=Ú²eËlß¾ýÈ‘#'N”$é³Ï>;wîœåÓ¦L™R·nÝ¥K—þôÓO•+WB¬[·nýúõ«W¯Þ»wï¶mÛvïÞÝ Aƒ£G~ùå—–¯]»vmëÖ­<(¿Å„ <<<,Xpüøqó.\¸ÐªU«Ÿ~úiýúõ6lØ¿“&M~ÿý÷;wjQökÕªÕ¤I“{ì1I“&?¾Y³feÊ”9|øprr²ùiGŽùý÷ߟzê©jÕª)½¯è Á€Æ|ñÅeÊ”Bxzz4(***77wÁ‚–O+UªÔ×_ýì³ÏúûûË#Ÿþ¹bæÌ™áááòHppð—_~Y¢D‰Õ«W_½zÕüÚòåËÏ›7Ï××Wáåå5dȨ¨(!Äüùóå'dggGFF¾õÖ[¥J•’G|}}»ví*„¸xñ¢e\TQxzz¶k×.77÷‡~0nܸQѽ{w¥w"8И—^z©D‰–#ýû÷B;vÌrð…^(Y²¤ùîõëׯ]»aù´€€€–-[æääœ>}Ú<Ø«W///¯¼oqêÔ)ùîˆ#¾úê«'Ÿ|Òü„7nlÚ´)oµ\TuìØQXÌVgggoÙ²ÅËË«sçÎ.ÜŒŠËñИ«‘Š+–(QâêÕ«YYYÅ‹—åéi³ .!ªV­šwUªTw CCCm¾Å7îÞ½+wÿý÷½{÷>|øòåË—.]²:´±P‹*ЦM›–+Wî—_~IMM-[¶ìÞ½{oݺժU«råʹ|O0:Ž4F’¤¼#žžž¹¹¹–è‘g‡ÍL&S~ ôôôBÜ»wï‘oáááQ¬X1!ĪU«Úµk÷þûï?~üÉ'Ÿ±gQ(S¦Ljjjß¾}+W®l¾üd§Nþçþ'##£J•* 4PzÐ-‚#éÖ­[TTÔ7ß|sâÄ ŸfÍšýóŸÿlÖ¬Ù#_èááñé§Ÿ¶lÙrãÆgΜ¹~ýúÓO?1pà@ùü³¥K—nݺuçΧN*[¶ìóÏ??hÐ Ë@öÙgŸ-Y²dóæÍ‡®X±bDDÄ AƒªW¯ž““³qãÆC‡Ù¿¨Âš8qâÌ™3ÏŸ?Ÿ™™ilÔ¨ÑOu±Qºx±½{÷J7ZµjÕ½{÷%J(]‘ª¹¹¹ÙÙÙ !žûì³Ê•+öÙgúõêÕëÊ•+}ûö­V­ZåÊ•ûôésöìY!Dxxø»ï¾[­Zµ—^zÉÏÏïСC…<&ùbooÿÝwßé¢öÅ‹óÞ¾J•*«W¯Ö-¦üòË/-mE)€<0U  øôéÓgÓ¦Mº»W¯^½zõjhhèŽ;6oÞœãS† ¶mÛ6ÝÝ~ýú !.^¼èééù·»ÿþ믿~áÂéîßÿý÷ߟ>}Z¿†ˆˆˆ>}ú\¹rE7²ÿþýû÷¯[·nݺu¾¾¾Ù_öƒ>øù矅Z­V<**êµ×^KHHînܸqÿþýÓ§Oÿøãu)ðСC¡¡¡lݺuI~ÙÙÙ•/_þÆBˆ{÷îÉyÊØ±c·nÝ*„¸{÷î‘#G:tè`”J˜::Ž «ÿþÏó÷÷Ͼ٦M›¤„¤Ñhüýýû÷ï_·n]é¡ààà§P éСC.\¨Zµj³fÍJ•*% nÞ¼9""Bº––öÎ;ïH©±T©R:tèÔ©SéÒ¥…×®]{÷Ýwúè#!„••UïÞ½øá!Äýû÷‹ô˜´mÛ6Çñ7ß|³Q£F2_䥗^’þ€ÁrO–Œà °öíÛ'¥¸¸¸jÕªl&­“KJJÚ³gω'N:‘}.X¦+V >\¤aƧNÒyå•Wôïêfu§ÚDFFêצӾ}{)8^¾|9++ËÊêÙ䌷·wŽ©Q¡›ŒBè.US±bEFc0XDÇ$ouëÖ]¼x±üí¥ÙÍñr<º# À\“ôôôO>ùdÉ’%ºs¢íìì\]]ïܹSDï¨Kl9ÞMIIINN–n»»»ë?¤‹€?¾}û¶þ£Ò,¶œ·“è‡Îb;&ú©ÎÆÆ¦N:-Z´;v¬n²^Ý µ››[öGׯ_oðÿXÖ8(&_|ñÅÂ… 322jÔ¨±lÙ²¿ÿþ;%%¥k×®JÕãàààèè(ݾyó¦þCº»%J”(_¾¼þC9¦Cµý‹,^¾|ù×_zôHÖ¾|ùò³gÏ.æb¨GÅA£ÑtîÜYºššº}ûö_ýµR¥J~~~Ò Á*Ãâagg·iÓ¦5j!ÒÒÒvìØñ믿J©±jÕª›6mÊñ„bó;&º+qê¿c¹rå¶oßžÇÉ@,Á@1Y´hQ½zõ„VVV 4?~ü©S§Þzë-éÑ 6\ºt©ø«jÚ´é™3g>ýôÓ€€777ÿiÓ¦={VÕ£…kkëråÊ5mÚôÓO?ŒŒ|íµ×ŠóݨŸÆà»V è|øË/¿looïëë®tE9ðõõ9s¦ÒU˜‚#( ””Ÿü±U«VC† ¹råJÇŽO:¥t]Ï9uêÔü¡tf‚à€9KOOOOO/¢_¸paTTTPPÐúõë/^¦Ñh&Nœ¨ôN !DFFÆÞ½{ÿ÷¿ÿuèÐ!++KérÌÁsæéé ?2sæÌ&MšåÅ7nÜèîîÞ¿én5zöìzóæM9OˆˆèÒ¥K… 4ϳµµ-|m‰‰‰:t˜9sæÝ»w|L-ÁË{âĉ¿NJJÊ¥K—üüü4nÐßß?++KÎJÇ}ûö5kÖììÙ³ƒ š={v£F„5úøã'L˜PøòÜÜÜ´Z­V«½xñbM c£tÀ$ݾ}[«Õº¹¹éººº !^Øä{üøñ€ÜÝÝ;V¡B!ĤI“ÚµkùÙgŸ•-[VéCÎŽ@!222vîܙۣo½õ–ÁHjjªÂÁÁAÐÑÑQ‘˜˜˜÷{………ݸqcÖ¬YRjB”,Y200°k×®[¶l8p`!kC!8`z³µ Ðjóz433SÿnngŠ}:ÇÍ 0}Þ}÷Ýzõêåv•Di:879>eàÀ 4èÛ·ïÔ©S¿úê«6mÚ¤¦¦ê¾ÜoÆ ÎÎÎ9^[ÇÖÖvñâʼn‰‰ 6œ3gÎW_}Õ²e˰°°9s朦]àÚPè8`æš5kÖ¹sç+Vddd :ÔÁÁaöìÙFye‡ÐÐÐI“&'%%5oÞ|ýúõÞÞÞÒ£ééé÷ïßÏmIe§NÂÃÃg̘±lÙ²Ç7lØ0$$¤C‡J-ä…à€™Óh4Ÿ|òÉ'Ÿ|¢™5k–±^ÜÑÑ1(((LJ ðäɓϒ–x{{oß¾½¨wßÓÓ“®¤±0U ŠÄãÇ<(}% ÌÁ‰£GÖ®]û½÷ÞSº SÕ˜³#F|¹K±ñóóóóóSúÀ˜Ž˜³ÀÀ@¥K€ù`ª² Á² Á² Á²XÊu7oÞ¼iÓ¦¨¨¨Ò¥K·nÝzÒ¤IÎÎÎylŸžžþóÏ?‡„„ÄÄÄ8;;׫WoôèÑJï€b,¢ã¸hÑ¢éÓ§_¹r¥I“&ööö[¶l6lXZZZnÛgff0`Á‚III­ZµªT©Òž={Þzë­ˆˆ¥w@1æ###ƒ‚‚ÜÜÜvïÞ´gÏžþýûŸ9sfÁ‚¹=å—_~9yòäo¼ñûï¿/Y²díÚµ?þø£búôéJï €bÌ?8nÚ´)++kܸq®®®ÒÈ”)SCBB²²²r|ÊÉ“'… °±y:•ß¼yóÚµkÇÆÆÞ»wOéP†ùLjˆ++«6mÚèF¬­­}}}¥€˜»»»B?#jµÚû÷ï[YYé¢$B$''>üå—_¶··÷õõ Wº¢gΜ9óî»ïV¨PÁÞÞÞÇÇgÑ¢EJeÚÌ<8jµÚ¨¨¨råÊ•+WN¼V­ZBˆk׮帬.]º”*Uê‹/¾8zôhZZÚ7>ýôÓøøø^½z988(½O¨EJJŠÏ?þتU«!C†\¹r¥cÇŽ§NRº.!„ˆŽŽnÓ¦ÍîÝ»;vì8a„%JL˜0¡W¯^J×eÚ̼–ššš™™éääd0îèè(žï)êóôô\»víÀ¨ìׯßÔ©Se¾¯§§§ÁÈîÝ»•>->>^é`ˆEø\ÌOzzº¢D‰Eñâ .ŒŠŠúé§Ÿ  „;vlãÆ'NœxàÀ¥÷[L˜0!999<<¼I“&BˆY³f 2dõêÕ{öìéСƒÁÆ111y¼TÇŽ•Þµ0óà(:]¦Lƒq{{{!DrrrŽÏJII™;wî£G¼¼¼êÕ«—˜˜xäÈ‘mÛ¶½öÚkíÚµ{á›^º)ÝÐj•Þè©^½ºÒ%ÀŠ:ñ¹˜OOÏÊ•+‡……éFfΜ¹cÇ£\*dãÆîîîýû÷—îÖ¨Q£gÏž«W¯¾yó¦´î+o3gÎÿõ³ ü믿¦L™2hÐ i䯽{÷?~üöíÛkÔ¨‘÷›Öªå)ý†i4OGHõˆ=qâDá_'%%åÒ¥K}úôÑèþà áïï¿jÕªðððîÝ»çýô}ûöµoß¾J•*ƒ *S¦ÌÖ­[Ož<Ù¨Q#+«Â.¥ËÈÈ5j”þ`\\œ¢dÉ’Et`-™GGGÇìÅ””!„î+[¶l!k³±±™3gŽþȽ{÷æÌ™cmmݳgO¥œ 3óà(„pss‹ŠŠJIIÑ?¯EZÊ`ð».ILLBT«VÍ`\j4¾ð_BŽ´Ú§ÝGâ#@µ222vîܙۣo½õ–Áˆ4¡gpÚ¨4›'ý1ÍCXXØ7fÍš%¥F!DÉ’%»víºeËýs V›C‡ 6,**jùòå|\a˜p ˆŒŒ ëܹ³4¢ÕjCCC½½½³o_­Z5kkëË—/kµZýÞ»4û\³fÍ‚•!EFZ`Æ4BSø)­Èë¯Kff¦þÝÜ.cüèÑ£nݺåúÙþ€¹¸¸!ùä“O>ÑÌš5ËX/îèè”ãC xòäIŽgIK¼½½·oß^»üæ›o2§ZÌÿ¬j5ã$k€{üøñÁƒ5j¤t!0‚#(G­]»ö{ï½§t!0¦ªÆ„5 H1B©‹ÑøùùòúÇP‚#æ,00Pé`>˜ªV+€I 8ªÙ¨Á²Õ‚¦#P9‚#d!8ªMG fGÈBpTšŽ@µŽ…à¨:4€: ÁQh:LErròðáÃ_~ùe{{{__ßððp¥+zæàÁƒ~~~®®®/½ôRË–-·nݪtE&à (%%ÅÇÇçÇlÕªÕ!C®\¹Ò±cÇS§N)]—BìÚµËßßÿêÕ«ýúõ>|øÝ»wß~ûíU«V)]—i#8`ÎÒÓÓÓÓÓ‹èÅ.\´~ýúÅ‹‡……i4š‰'*½ÓBñÉ'ŸT¨PáäÉ“ .üâ‹/Nž<ùòË/Ïœ9SéºLÁQ¥˜­…§§g@@€þÈÌ™3›4ib”߸q£»»{ÿþý¥»5jÔèÙ³ghhèÍ›7å<=""¢K—.*TÐ<ÏÖÖ¶…ýûï¿çÏŸïÒ¥‹£££4R¦L™V­ZÅÇǧ¥¥÷[¥ Å*66öĉ…”””K—.õéÓG£×êð÷÷_µjUxxx÷îÝó~ú¾}ûÚ·o_¥J•Aƒ•)SfëÖ­'OžlÔ¨‘¿¿¿•Ua[ÖÖÖÿý·‹‹‹n$##ãìÙ³õë×·³³+ƒkîŽê%5µZ¥ë '·oßÖjµnnnúƒ®®®Bˆ»wïæýÜÇ0ÀÝÝýرc*TBLš4©]»v‘‘‘Ÿ}öYÙ²e Y›———t{Íš5QQQ;wî¼yóæÿýßÿ)}ØLÁ!DFFÆÎ;s{ô­·Þ2IMMB888èJSɉ‰y¿WXXØ7fÍš%¥F!DÉ’%»víºeË–²6}³gÏŽŠŠB´k×®jÕªŠ[³ApT5šŽ`J\œžçŸŠÌÌLý»YYY9nöèÑ£nݺåþ†o!M?xð@0%%EQ®\¹¼ëB4hÐ@°~ýúBˆsçξ6}—/_NMM=zôè|ðÚk¯]¸pAj‹¢89#ÑjûÉÓ¿ÿþ«7·³Cµ¹Ë¾½›››•••Á¬tBB‚¢R¥Jy—$-4ÌÈÈДmŽ ó[›Ò¥KÌ;÷Þ½{Û¶m+šß"ÐqÀÌݸqCÿnn§<çw:ØÆÆ¦N:aaaúƒ‡Öh4ºõ…¹ñððB\¸pAPê5zzz¾¶;wvëÖmݺuï¾û®nÐÙÙY¼¨=‰¼ÕŽÙj@!ݺukÇŽ]ºtBDGGŸ>}:ÇÍ 0cÆŒeË–=~ü¸aÆ!!!:t0Ö^Ϙ1£FK—.]¾|¹••UíÚµ7nܨ?sÐ0Óotžžž‘‘‘Æ}M‚c!ÅÄļpÞÅŒEø\^¨(þ#_¤ªW¯^¹reƒ•ˆÅfÕªUçÎûæ›o”> y)Àgjr¿ÆÂYÕ H<~üøàÁƒ5Rº ÁÑ4ðÕÕ“sôèÑÚµk¿÷Þ{J£a#ælĈ_îRlüüüüüü”>0&‚#æ,00Pé`>˜ª6ÌVe Á²M ³Õ@AGÈBp414€RŽ…àYަ‡Ùj ‚#d!8@‚£Ib¶?‚#(¸äääáÇ¿üòËööö¾¾¾áááJWôÔ“'Olll4Ï+_¾¼Òu™6¥ ¦*%%ÅÇÇçêÕ«={ötqq îØ±ãÁƒ½½½•.MÄÄÄdff¶hÑ¢FºA{{{¥ë2mGÌYzzº¢D‰Eñâ .ŒŠŠúé§Ÿ  „;vlãÆ'NœxàÀ¥÷[DEE !fÍš t-惩jSÅ2G€žžžÉiæÌ™Mš41Ê‹oܸÑÝݽÿþÒÝ5jôìÙ344ôæÍ›ržÑ¥K— *L(ÛÚÚ¾6)8Ö¬YÓ¸ÇÓÂÑqÀ²ÄÆÆž8q¢ð¯“’’réÒ¥>}úhô:þþþ«V­ ïÞ½{ÞOß·o_ûöí«T©2hР2eÊlݺõäÉ“5ò÷÷·²2Bc+**ªdÉ’e˖ݼyó½{÷¼¼¼š6mZDWËApqûöm­Vëææ¦?èêê*„¸{÷nÞÏ}üøñ€ÜÝÝ;V¡B!ĤI“ÚµkùÙgŸ•-[¶ðåEEEYYYÕ¬Y3))I©]»öÚµk7n¬ô‘3aG&ÍVkµJ×0 ;wîÌíÑ·ÞzË`$55Uáàà ?èèè(„HLLÌû½ÂÂÂnܸ1kÖ,)5 !J–,صk×-[¶ 8°µ !¢¢¢²²²fΜٳgO[[ÛíÛ·?¾[·nçΓŠD0eWžçÑFÈÌÌÔ¿›•••ãf=êÖ­[®¯Ÿ­Qáââ"„xðàþ`JJŠ¢\¹ryW+„hРþ`ýúõ…çÎ+|mBˆC‡•*UJWÉàÁƒ?~ãf˜:tèØ±cu/~çÎàààvíÚU¯^=ï’5jT³fÍ¥K—Ž5ÊÉÉI‘žž>þ|{{{é¥ Y›ÝÇܤI“ýû÷K÷ÉÊÊš?¾M»víŠÿ#0GÌœMïÞ½»víš••µcÇŽ’%Kæ¸Y¦ƒ¸zõê¾}ûJùï§Ÿ~JMM9s¦ôè† FŽ9hР… <ÑÖÖvñâÅÝ»woذá‡~hmm|âĉ%K–œ¦]°Ú\]]gΜ9yòd7ÞxÃÉÉiÏž=§NúòË/ëÔ©£àgaêŽ&Ùj@Þš5kÖ¹sç+Vddd :ÔÁÁaöìÙFye‡ÐÐÐI“&'%%5oÞ|ýúõºïLOO¿ÿ~nK*;uê>cÆŒeË–=~ü¸aÆ!!!:t0Ö^¾òÊ+_}õÕºuëJ•*U¿~ýŽ;ýñ6gšüþ ¼§§gdddq¾#Áñ…bbb^8o‚bƇ¢N|./Tüÿ‘/¤êÕ«W®\Ù`%b±YµjÕ¹sç¾ùæ¥C^ ð™šÜ¯±ð•ƒ H<~üøàÁƒ5Rº Á‰£GÖ®]û½÷ÞSº kÍ˹1b„Á—»??????¥Œ‰à€9 Tº˜¦ª ÁÑLH³ÕE‡àYŽ…àYŽæƒeŽ H ×q <==•.PÁѬð2PÔ"##‹ùcbbªW¯®ô~B0U ™Ž…àYŽæ†‹ò€"Bp€,GÈBp4CÌV€¢@p€,GÈBp€,GóÄ2G`tGÈBp€,GÈBp4[,sÆEp€,GÈBp€,GsÆ2G`DGÈBp€,G3Çl50‚#d!8@‚#d!8š?–9£ 8@‚#d±Qº€b²yóæM›6EEE•.]ºuëÖ“&MrvvÎû)gÏž]±bÅùóç>|èéé9f̘fÍš)½бˆŽã¢E‹¦OŸ~åÊ•&MšØÛÛoÙ²eذaiiiy<åÀ}úô9pà€«««··÷©S§ú÷ïàÀ¥w¥€Xæ ÏüƒcdddPP››ÛîÝ»ƒ‚‚öìÙÓ¿ÿ3gÎ,X° ·§$''Ož<ÙÆÆfíÚµ¿üòKPPІ J”(ñé§Ÿfee)½CÊ0ÿà¸iÓ¦¬¬¬qãÆ¹ººJ#S¦Lqtt É-nÙ²%%%eøðá7–FêׯÿÆo$$$œ={VéP†ùLjˆ++«6mÚèF¬­­}}}Ož<™ãS>¬Ñhºuë¦?øÕW_EFF6hÐ@éP†™Ÿ£Õj£¢¢Ê•+W®\9ýñZµj !®]»æãã“ýYçÎsvv®P¡Â‰'N:uÿþýW_}µmÛ¶vvvJïPa…Ðh„V«tÀd™ypLMMÍÌÌtrr2wttBÜ»w/ûSÒÓÓâCQVö?ëÙ;DÂÌ×8:99i4šÔÔTƒñ‡ŠÿúŽJ•*%ݘ;wn·nÝœœœ*T¨0zôèîÝ»ÇÇÇïܹSé}P†™GGGÇìÅ””!„î}ºî´ë³gÏþðÃŽŽŽíÚµSz‡”aægU !*V¬8iÒ¤yóæ½ùæ›­ZµŠ‹‹ ÷òò:t¨n›ÐÐÐñãÇ{xxìØ±CQ»ví &,\¸°cÇŽ>>>©©©æ‹/¾x饗”Þ¡BájŽ ÀÌ?8 !\¾|ùmÛ¶íÚµËÝݽ_¿~ãÆ“®È“›?üÐÅÅeÍš5þù§³³s@@À˜1c<<<”ÞÅh´tŸŒÍÓÓSµ×qÂB;Ž111\MmøPÔ‰ÏE…øPTHå닎ù¯q€Q-WsCp€,GÈBp€,GKÄ2GPGÈBp€,GÈBp´P,sùEp€,GÈBp€,GËÅ2G/GÈBp€,GÈBp´h,sò Á² Á²-çÇ™Ž…àYŽ…à–9YŽ…àYŽ…à!Xæd 8@‚#d!8@‚#žb™#ÈÁ² Á²ñ Ë@Ž…àYŽ…àYŽxçÇ€Ü ‹º‚ã×_¥tȺ‚cPPPçÎ{ôè±víÚ{÷î)]žQWpüðÃ+UªtîܹÏ?ÿ¼U«V#FŒØ³gOzzºÒuY–9€Ù(]Às&L˜0~üø“'OþöÛo!!!8pà€ƒƒCçλuëÖ°aC¥ °\êê8 !4MãÆÿ÷¿ÿýñÇË—/ïÔ©Szzú† Þ}÷ÝöíÛ/[¶ìúõëJ×`‰Tulllüýý-ZtôèÑiÓ¦ÙÙÙÅÅÅ-^¼8 àý÷ßß¶m[ff¦Ò5XuMUHJJÚ¿ÿîÝ»=š‘‘!„(_¾¼­­íñãÇ?¾råÊU«V¹»»+]¦’–9jµJ×ÔDÁ1!!á÷ßß³gÏñãÇ¥¶¢‹‹Kûöí;uêÔ¸qc!ÄŸþ¹hÑ¢sçÎ}öÙg+W®Tº^‹ ®à¸nݺ={öœ8q"++KQ®\¹:¼ñÆ>>>ÖÖÖºÍZ¶lÙ¸qã¦M›FDD(]2€¥PWpœ={¶ÂÉÉ©}ûöo¼ñF³fÍôó¢>;;»R¥J1O PlÔ{ôèÑ©S§æÍ›ç–õÑn,R,sÔuVuHHÈÑ£GsKcÆŒéСƒÒ5X(uÇÔÔÔ'OžäöÐÕ«W¹ˆ#€R”Ÿª 1b„îîš5kÖ­[—}³¬¬,­VûòË/+]/€…R>8Z[[;88H·“’’J”(Qºté·trrš2eŠÒõX(åƒcË–-ÃÃÃ¥Ûžžž½{÷ž:uªÒEAÎÏS>8ê2dˆÒU ê ŽJ—€œ)ׯ_/„hÚ´©‡‡‡înÞúöí«lÍ–Iáà8kÖ,!ÄÌ™3¥à(ÝÍÁ±8±Ìè(ÇŒ#„¨W¯žt÷ã?Vú€ g ÇÑ£Gëß:t¨²õ 7ê:9&;­V{àÀøøøúõë{{{+]€åR]p=88Xz¨OŸ>3fÌÐh4J×hYXæ$êú®êˆˆˆ‘#G^¼x1++KñÏ?ÿ;::¾÷Þ{•+WÞ°aÔ®ÀB©«ã¸råJ­V;mÚ´>}ú!öîÝ+„˜3gN@@@lllÇŽÿïÿþ/ @é2,‘º‚ã¥K—*T¨Ð¿éî±cÇJ”(ѪU+!DµjÕ^yå•èèh¥k°Pꚪ¾ÿ¾‹‹‹t;##ãŸþ©[·n‰%¤‘Ò¥K'$$(]£%’–9 §®àX±bÅøøøÌÌL!ÄÉ“'?~ܬY3顬¬¬øøøòåË+]#€…RWplÒ¤Éýû÷¿ýöÛëׯûí·B___é¡Õ«Wß»w¯fÍšJ×`¡ÔµÆqذa¿ýöÛòåË—/_.„¨W¯žtíÆwÞyçï¿ÿB ø !!aÑ¢EJׂœqp,™ºÖ8vêÔéÚµkAAAáááo¼ñFåÊ•K”(a°M›6m”.À©+8H7Μ9sæÌ™·‰ŒŒTºLK¤®àøæ›o*]r¦®à8þ|¥KÀ p5G,–º‚£Îýû÷Ï;wóæÍŠ+¾þúë ...J`ÑT—/_œ––&„0`À믿޽{w//¯9sæ8;;+] €…RÑåx„Ož<9räÚµkºwï®wuu=xð`ïÞ½¥4 €â§®à¸bÅŠÓ§O·nÝz÷îÝsçÎÕoÚ´é­·ÞŠ]³fÒ5‚«9`¡Ô?nmmýå—_–.]ZÜÚÚú³Ï>+]ºôž={”®ÀB©+8^¸p¡zõê9žcoo_£F¸¸8¥k°Pê ŽŽŽŽ=ÊíѤ¤¤²eË*]#€…RWp¬S§ÎÍ›7süΘ .\¿~½víÚJ×!Xæ€ERWp|÷Ýw5ÍĉÏŸ?¯?~þüùqãÆ !ºuë¦tJ]×q|ýõ×?øàƒ•+W¾ýöÛ5jÔBìÛ·ïÏ?ÿ¼råJVVV÷îÝ;tè tJ]ÁQññÇ7nÜxÞ¼yÑÑÑBˆëׯ !Ê—/?aÂý+; ˜©.8 !üüüüüü’’’¢££ÓÓÓkÔ¨áææ¦tQ–NÁQâììܸqc¥«@®¤óc´Z¥ëÅEáà¸~ýúü>¥oß¾x£Í›7oÚ´)**ªtéÒ­[·ž4i’ü¯½¾qãF×®]ýýýçÏŸ¯ìáPÂÁqÖ¬Yù}J‚ã¢E‹¾ÿþû2eÊ4iÒ$..nË–-—/_^³fÝ Ÿ«Õj'OžüðáCe€âŽÒEvô]¸paÏž=ÖÖÖ-[¶¬V­šµµuLLLXXXFF†»»ûÔ©Sóû‘‘‘AAAnnnÁÁÁ®®®Bˆ/¾øbÍš5 ,øôÓO_øôŸ~úéøñãÊ%5P88Ž1BÿîÕ«W×®]ëéé¹téÒ*UªèƯ_¿>zôèþùç·ß~kß¾}¾ÞbÓ¦MYYYãÆ“R£bÊ”)¿þúkHHÈ´iÓ¬¬òº’ååË—-Zôꫯ^¼xQÙ¥N,sÀ¢¨ëàË—/OLLüöÛoõS£¢R¥JK–,BìÝ»7!!!_¯aeeÕ¦M݈µµµ¯¯obbâÉ“'óxbFFF`` ³³ó”)S”>0ÊSWpâCQ\ÇŽ•.A-ÔëÖ­{äÈ‘C‡ùùù>>Š|Wµ./J Rµñ˜=•G#ªX±â¤I“æÍ›÷æ›o¶jÕ*...<<ÜËËkèСºmBCCÇ_tÓÐF!EFõ7 €¹2ÿà(„š@)…]»víÚµknvêÔ) ýxyye¿€“âôŠÇG–9` ,%8š+UÅG`ÞŽæ€øŠÁÑ|@‘R×W¢ðô¿Ï°XßW+4|o"fŽ£y¢ûŒŽŽ£9Óu•.˜‚£ùSd昂£E(ž…,sÀ¼-3× 0އ™kP0GKDëÁÑrEë‘eŽ˜1‚£E£õä#8‚U@‚#„ õd 8â£dG–9`®ŽxÓÖ 7GbÚäˆàˆœ‘€‚#rUàik–9`–ŽÈ ÓÖ@‡àˆ#;Ap„LdG@p„\ùZòÈ2GÌÁùÀ’G,ÁùFvÀ2QdG,ÁôÂìÈ2GÌ ÁÇ[`QŽ(N—ÀradG,ÁÆ‘cvd™#æ„࣡ï€y#8˜Ȏ˜1‚#ŒŒì€¹"8Âøô³#Ë0G úŽ˜¥ €ÙÒËŽZ¥kF@ÇEHº<¸Ðj˜­À Qä¤ì¨t °Ž(–<`òŽ(&œ.€©#8¢8Hå!;`ÒŽ(VdGLÁÅ쀉"8BdGLÁÅÄà»ÉŽ˜‚#CvÀ´¡$²#&„à…‘0GƒeŽÏÆÉŽ˜‚#Tì€ú¡dGTŽàˆb•ÛlõÓGÉŽ¨ÁêBv@µŽP²#êDp„‘P!‚#Š[ÞËŸmFv@eŽP/²#ªBp„ª‘P‚#ÔŽì€J¡™ËŸmOv@Ž0 dGGp„É ; ,‚#”‘ßÙê§Ï"; ‚#L Ù¥azÈŽ(‚à“Dv ø¡˜‚-s|öt²#ÅËFéÌPä¥Kò¾ŒY«t¥ù@ÇÑøEôF\€|¢ã“:ŽEÖ€¤ï@¾¡zEy"6Ùù˜ª†êäú2Ú"™ÂfΙè8Â{ ›¾#ra² ¦° ÉŽ¼SÕP£\g«sÛZ7]ˆ)læ¬ÈG˜ c4 é;‚#ÌNáV@’È SÕP©üÍVçøü‚ž‚Íœ59¢ãs§Õ !ªç³I߀ì,%8nÞ¼yÓ¦MQQQ¥K—nݺõ¤I“œóØ>--í—_~ Ž/[¶l­Zµüúë¯+½( ˜èèêÕ« ‘dG XDp\´hÑ÷ß_¦L™&MšÄÅÅmÙ²åòåËkÖ¬±³³ËqûŒŒŒž>}ÚÑѱyóæ?>vìØ‘#G>úè£Q£F)½7Dšg6ò ꯀ|ÑK“Ðgþk###ƒ‚‚ÜÜÜvïÞ´gÏžþýûŸ9sfÁ‚¹=eÓ¦M§OŸnܸqhhèòåËüñÇ­[·:99-]ºôÂ… JïŒAö|XùÇM›6eee7ÎÕÕU™2eŠ££cHHHVVVŽOÙ½{·bÚ´iº–¤‡‡ÇðáÃ333ÿøã¥wÆ#ï²#óŽVVVmÚ´ÑX[[ûúú&&&žeeÿ³ž½Cd!Ì<8:99i4šÔÔTƒñ‡ŠÿúŽy8vìØÌ™3¯\¹âîîþå—_¶hÑBéB±{~þZ«eÂ`¹Ì<8ÚØØ8::fï,¦¤¤!tçYg—žž>þüµk×–*Uj̘1C† Éí¢°ºŽ£F£B£%;,‘™G!„››[TTTJJŠƒƒƒnPZ3çææ–ãS²²²&Nœ¸wïÞ¶mÛΘ1#|‰âQ$W/p)Bh5!TRÅÇü/Ç™™¦Ñjµ¡¡¡ÎÎÎÞÞÞ9>eíÚµ{÷î}ï½÷–.]JjDd\ýócþÁ±W¯^VVVß}÷´®Q”УG[[[iäÑ£G111ÒikZ­vݺueË–Ì“EG!D×®]»víšÛ£:uêÔ©“t»Q£F\…ùòÜ—Êè_¾‡ø0/æ¿Æf£˜¾·º`µ|™5gÏÌÁ0Ãì(ˆsCp„)QsÓQä˜ñ`>,e#P<ž[ïøÜÏ}u!˦ˆàY®ÙQ<÷Õ…ÏÝÀ0U £òÙê§Eæ8gm°Ì_L Á(/ÎŽ‚ø01G ¨ÈÊŽ‚ø0G˜“˜­~ZªÌì(ˆ@pŠV>²£ >Tà“dBMGñ_v$>L—㊃tuž\/Ó“ós¸ô#@]Ž@ñÉë¹>‡K?Ô‚©j˜*Óš­~Vv¾–<ì0ó×EÑq4¾K‘‘ÆúÃNsÉ,¤ïøìÉzó×tŋޣñÕòôÔ a”MQþ@Aï;>}>ÝG€è8ªZ‘6” œ8ÔÓæ’²“‰öÝ ÕwÔí¿ û(>GËUà ‘¯ÄIœÉƒ²£ >ŠÁù–¯l"3e8ï˜tÓQ+; â# 8Q´dF9ùÒ\ÓѲ£àÒ€¢Ep„*È 8šÜŸ¬1ñXiÌì(¸ô# ¨pV5LF§Ÿ ÉŸB^Øó¬s~QN¾G˜‰¼»jšêÕ üÜbÜ£öŸ½.ËÆAÇæà…ß"S°ëe÷ŽEßQwŒè> ‡Ž#W‹O“ÿ§º˜§ÙÑø­GA÷P(G˜‰"º.On¯§ÉÿSòó¦O×mIvÄG@‚(†&eQ-y|ö\»?G˜•\ <_Mʼ‹-òì(¸v Ž@1É1‘½°=YÙñé;1 x‚# $yíI­&ÏZñ+‚#ÌŠJf«°#ÙF4B£É):ɾ9!8¦!·Ëô`é¤ì·$>žCp„¹1›¦c»–Óezä/,à!áäkÀŽ€‰‘sºŒñÓ$'_Ž0KfÜt|ºƒ:ÕZfš|Á‹2 Œà˜$c]¦'§³pdlF|‹Dp„y2û¦£(²oµÎGc’å`aŽ€ +òoµ~öF†žEÉÿò¢–$˜;‚#Ì–%4Ÿîi±}»ÌsojH£-®ËLBpÌ"Ù1[ zþë>æû䀊aÎ,§é(Ô‘õªyºüQ«W¡?Ç]½ú•Lƒ•Ò0);jr>1Z‘‚´O4Ý94Úÿ~¢cb¤šl?u"8ÂÌI¡ÅrHIMEÙñiY†ññùš ˆ’ NGÀ ©1;Šçãcžqž( êÄG˜?­Vh4Õ-d¥ã³½.š«<£²§õTÏÏå{ä\¨\eû fˆŽ#`¶T:mýŸ˜èè<æ¯eì]I(nGX„èè‹Zé¨OÍÙQˆ|Ì_ËØS¢$-¦ªó§Þiëg%þW˜Q¿~† n0.‚#,…E]Ó1‡Ý/®/',t¡Eûý×DI( ‚#`AÔu‘ð¼ -’d.ÇÄQrCp„±ð¦ãÓƒ þiëçÊÕk@×'G”€ÜaYȎ„¦­ŸU\´ó×/~ÿl#DI–‰àX(“™¶~VqñÍ_¿¸–l#DI–€à‹CÓQÇĦ­ŸÕ­p2碲%˜‚#`ÑLoÚúYé*j@æ\`¶Í‹6•#8ÂÑt4`ª­Ç§Õ«±™s¥Ïߥ% Àäaҭǧ;ð|R¨:A>-0ÛQ€Êa¡h:æÈ´[O÷AíSØyÕžm„( @Uް\dÇ™|ëñÙž˜Ìv^;‘m„( @AG90‡ÖãÓ=1½)ììP¶¢$€bCp„E£é˜ói=>ÝžÂ~Áže!J("GX:²cÞ̧õøl—Ìa û»˜m„( À(Ž^@×zæ…™'Èg»›m„(  ŽMGYÌmæúÙŽYV‚|¶ßÙFžîõêyoÀ’Y)]  RvÄ I3×aŽK«}ú£Ñ<ý±0Z!´BDÇÄhÿ»­B“í€%£ã Ìsæú¹=4ÛÓh €9núŽÀSLXç‹ÙÎ\?·“æM%KFpž!;æ—žsÃNZè"HùäDIAšÌÁxÙ1¿ÌæúÙ®’ åÊñ¸Ð˜ÌÁ€XP|$ÈbŽ0GÀMdzˆ…Ïíp¶)‘ùÀ7`rŽ@ÈŽ…a  ÷YoOiC‚Ì9nAšBprFv, Ëš¹6Üy&²Œ“€z\‘ ɢ㣠A-¦¹E-K‚¥Å„in ¼Ðt4â£,…Ti0.¾«x¾ÆÚˆ¤oƒ6Ûo»Îß±ÈöÕØüžmN?¾˜Ž#ðbôëi÷±ºewŸÚª@oƒŽ# }G£‹Ž‰¦ûhˆ6¤ÊЛ Ðqä¢ïXô×> :´!UL~oRО„Ù!8ù@v,"º¼hégÏ䈓²MAnŸf†àäÙ±Hqòu^rlC B¤ªå+PòABýXãä닚þÉ׬€Ì™n5$ "M“üÕ“|¨P:Ž@AÐw,Ì_ËE'Ò\äÚž¬^=_ÛE‡Ž#P@ô‹ È|È­É/«)‹Ž‰ÉW‡’E‡Ž#Ppô‹ È|3øÕ¤ivòø9)E„à Ù±øqŸÊmF[#ÍP~ÏòdJÈÃT5PXº)A'ÝŒ,SØ¡?£Íé5–D›û߃Ž#`R¿†Ö£" ¦°=ÈÐûÅ­N3ÒR`â[Ч´š"ƒ¤HŽT†Ì™î<6PG@1úñQð7ÎÔ#U$_íɼŸ OG@aº¿_$H“–wŽDIEäño)ï¯Oä! ‚# $Hs’=&æøÝÙ¤IÅäý¯‹X ä‚ਠÒ,å˜5¹\ „@©°ÂÄJ9¯˜,+¥ P¯Í›7÷êÕËÛÛûõ×_Ÿ:ujRR’Ò¡à:vì¨t ¡Õ>ýÑhžý˜ ýPŒKûìC~îGóÜgþì§Jâsy1­öÅ?ÜøP ts¶hÑ¢ï¿ÿ¾L™2Mš4‰‹‹Û²eËå˗׬Ycgg§ti°DúÍ ¾¿ÍäÖqÌ;;Ò§Tùÿ2edÇHÁÔ‚Žc"##ƒ‚‚ÜÜÜvïÞ´gÏžþýûŸ9sfÁ‚J—¼ ¯ó–w›KfKéÀódô/=kÕ*H/³@ÝM oÇlÚ´)++kܸq®®®ÒÈ”)SCBB²²²”®xŽÌù1X¨/Η—"/4UMÖ‡\è t2(rApÌADD„••U›6mt#ÖÖÖ¾¾¾‰‰‰'OžTº: /…ù{ ‘w¸¨åY«`Lš& 0¡³è2(iÕ¤°ÆÑV«ŠŠ*W®\¹råôÇkÕª%„¸víšÒ5ù&gY”Ñÿ³ÌZ,ó`Ä¥“¦•Y3šEþy«*;Ö²Ðo«&8JMMÍÌÌtrr2wttBÜ»wO΋xzZì—XªÊ ý?ƒMdžGªê¯þS¤Ÿ‹)E1V5¿ ‘&–¹‹Šš~}jYꟂ£¡´´4!D™2e Æííí…ÉÉÉ/|…ÈÈÈnP=5娥þ©g£!'''F“ššj0þðáCñ_ßÀ ÙØØ8::fï,¦¤¤!tçYX‚cÜÜÜ¥¤¨#=¤tuÊ 8æ 333,,L7¢ÕjCCC½½½•®@ÇôêÕËÊÊê»ï¾“Ö5 !‚‚‚zôèakk«tuÊÐh¹ÒZNV¯^=oÞ¼J•*µjÕ*...<<¼N:«W¯Î~™ ApÌÕo¿ý¶mÛ¶3gθ»»7mÚtܸqÒy,Á²°Æ² Á² Á² Á²fóæÍ½zõòöö~ýõ×§N𔔤tE–.--í§Ÿ~êÒ¥KÆ [µj5dÈ?þøCé¢ðÌ77njiý ŽÆ±hÑ¢éÓ§_¹r¥I“&ööö[¶l6lXZZšÒuY®ŒŒŒΙ3çÎ;Í›7¯Y³æ±cǼtéR¥KƒBhµÚÉ“'ë¾Ê:pà@Ÿ>}8àêêêíí}êÔ©þýû8p@éº,Wffæ€,X””ÔªU«J•*íٳ筷ފˆˆPº4K´víÚܲĿþZÚÅ‹_}õÕV­Zݾ}[ùüóÏkÕª5kÖ,¥K³\ëׯ¯U«VŸ>}RSS¥‘K—.5mÚ´víÚÿüóÒÕA»zõêZµjÕªUëã?VºKwÿþ}Ÿ œ8qBùûï¿ëÖ­Û¢E‹ÌÌL¥«³PÒÁÆŽûäÉiäÏ?ÿ¬]»vûöí•.Í‚$''GDD|öÙgÒ¬NŸ>m°eþõ§ãh›6mÊÊÊ7nœ«««42eÊGGǬ¬,¥«³P»wïBL›6ÍÎÎNñðð>|xff&ÖŠ»|ùò¢E‹^}õU¥ BlÙ²%%%eøðá7–FêׯÿÆo$$$œ={Véê,ÔÉ“'… °±±‘Fš7o^»víØØØ{÷î)]¥èÚµkß¾}7nܘÛ–ùןàhVVVmÚ´ÑX[[ûúú&&&JÿøQübbbÊ”)ãåå¥?èáá!„¸víšÒÕY´ŒŒŒÀÀ@ggç)S¦(] „âðáæ[·núƒ_}õUdddƒ ”®ÎB¹»» !ô3¢V«½ÿ¾•••.J¢¨}ñÅË–-[¶lY‹-rÜÀ2ÿúóûWXZ­6**ª\¹råʕӯU«–âÚµk>>>J×h‰V¬X‘ý?¯çÏŸBT©REéê,Ú·ß~{áÂ…Õ«W;88(] „âܹsÎÎÎ*T8qâÄ©S§îß¿ÿꫯ¶mÛV×­Gñëҥ˚5k¾øâ‹Ò¥K7lØ0))iÙ²eñññï¾û.ÿpŠMË–-¥Ìþ¨Åþõ'8Vjjjff¦“““Á¸£££xþÿ/¢8Õ©SÇ`$<<<((¨dÉ’§Ó§O¯\¹²_¿~-Z´r<”•žžþàÁƒš5kþïÿÛ°aƒn¼J•*ß|óMݺu•.ÐByzz®]»vàÀÔ öë×oêÔ©J—†§,ö¯?SÕ…%HMM;w®‹‹‹ÒY¨´´´ÀÀÀ*UªLœ8QéZðÔƒ„QQQ»víš7oÞ±cÇBCCÇŒsýúõ±cÇšùÉ¡*–’’2wîÜGyyyõîÝ»]»vvvvÛ¶mãTwõ°Ø¿þt ËÉÉI£Ñ¤¦¦ŒKבþŸtìØ±™3g^¹rÅÝÝýË/¿Ìm© ŠÁ¼yóâãã7lØÀ¨z”*UJº1wî\éöèÑ£oܸ±eË–;wöìÙSé-Q``à_ý5eÊ”AƒI#7nÜèÝ»÷øñã·oß^£F ¥ „åþõ§ãXX666ŽŽŽÙÿ¿EJJŠBw¦Š_zzú_|1`À€7nŒ3&$$„Ô¨ ãÇoذáÃ?ä| U)S¦L©R¥ìììüüüôÇÛ¶m+„¸xñ¢ÒZ¢;wî22RQ³fM¥ ÄS–ùן©j#èÕ«—••Õwß}§ûþ´   „„„=zØÚÚ*]%ÒjµëÖ­+[¶ìäÉ“•®OµlÙráó&L˜ „ðññY¸pa`` ÒZ®îÝ» !¦OŸ®;ôìÙ³?üðƒ££c»ví”®ÎÙÙÙùúúÆÅÅ-Y²DwéË—//[¶¬D‰‹   ËüëOÇÑ*V¬8iÒ¤yóæ½ùæ›­ZµŠ‹‹ ÷òò:t¨Ò¥Y¨»wï^½zÕÎήoß¾ÙíÞ½{¿~ý”®P‹ÚµkO˜0aáÂ…;vôññIMMˆˆÐh4_|ñÅK/½¤tuêóÏ?ïÙ³ç²eËvíÚU§NÄÄÄ¿þú+++kúô鯼òŠÒÕá)ËüëOp4ŽÁƒ—/_~Û¶m»vírwwïׯ߸qã¤sòQüâãã…iiiçÎËþ(§È>üðC—5kÖüùçŸÎÎÎcÆŒ‘¾i ŠpqqÙµk×÷ßäÈ‘C‡9;;·nÝzĈõêÕSº4<Çÿúk´Z­Ò5À°Æ² Á² Á² Á² Á² Á²X–I“&yzz:tHéBÄwß}çéé¹~ýz¥ ¹ŽÅFéÀBùùù¹¸¸4nÜXéB@.‚#(ÃËËËËËKé* ˜ªÕÉÌÌ|òä‰ÒU€!‚#Ó0}útOOÏùó猟={ÖÓÓ³E‹Bˆ„„„… vêÔ©Q£F5êܹóܹsoß¾ÛËJçÊ=zÔ`¼N:¯½öšþÈüñÑGµmÛ¶I“&ýû÷ÿî»ï ²Ýõë×g̘ѩS§† ¶iÓfذayìÑÊ•+õOŽ‘*‰ jÞ¼yݺu}||z÷î½oß¾Ü^áÔ©SuêÔñõõ}ðànðáÇmÚ´©S§Î™3g”þИ‚#ÓеkW!Äž={ ÆwìØ!„èÖ­›MBBBß¾}W¬XqãÆ—_~¹råÊ×®]ûñÇûôé“””T˜w_°`Á!CöìÙ“‘‘áêêzâĉo¿ý¶_¿~‰‰‰Ò—/_îÚµëÆ_yå­Vúþûï8p _o´bÅŠ¯¿þÚÖÖ¶yóæŽŽŽ§N5jTHHHŽ{{{2äöíÛsæÌÑ ~õÕW7oÞ9rdýúõ‹ûC`îŽLC“&M\]]¯]»öÏ?ÿè³²²¤PõöÛo !¶lÙëïïÿÇlÛ¶mûöíGŽiÒ¤Éõë×÷ïß_à·>xðàÊ•+«T©²yóæC‡íܹóðáí[·>}úôòåË¥m,XðèÑ£#FüùçŸ[¶l 6mšV«]¼xq¾ÞkÓ¦MÆ ûé§Ÿ~ÿý÷ !Ö¬Y“Ûö}ô‘‡‡Ç–-[„Gýå—_êÕ«7bÄå>+f‹àÀ4XYYuîÜY<ßt}úõ¨À3G¦¤k×®ß~ûíîÝ»===ÃÂÂ’““ß~ûmÝÄô† >ÿü󌌌—_~ÙÇǧmÛ¶uëÖ‰‰™5kV¾Þ%33S×äKOOBTªT)·IçŠ+ !*W®¼yóæS§N>|øØ±cçÎ;yòäòåË{öìùùçŸk4™o]¢D‰–‡Þ½{W}ÿþ}''§¢ÿ(X"‚#S¢ ŽcÇŽ•æ uóÔ>œ={v‰%V¬XѲeKÝSnݺ•ßw¹qãFVV–t»FBˆÒ¥KO:5ïgi4é@Bˆôôô°°°O>ù$88Øßß?  HËŒ3îܹӨQ£“'OΚ5káÂ…Eúv,k˜’ªU«Ö­[7::úìÙ³û÷ï¯ZµªôÐÙ³g3335j¤ŸÅ§­äÍ`Fû÷ß×Ývss+_¾ü•+WΟ?¯¿Mfff=Zµj•pýúuÿwÞyG÷h‰%¤³yâãã‹ô˜üöÛo!!!­[·^³f‡‡ÇÎ;³_´Œ‚àÀÄH§ÈL›6-55µgÏžºq777!ÄÅ‹¤‘ÌÌÌ7®[·N‘–––㫽üòËBˆµkצ¦¦J#ááẋìH&L˜••5a„ .H#>üä“OÎ;çåååâââîîþàÁƒ¿ÿþ{ÕªUºVellìáÇ…Ez=Å[·nÍš5«lÙ²³g϶µµ3g޵µõÌ™3 ¿¸²cª€‰éÔ©Ó¼yó"##­­­»u릯Q£F@@ÀþýûÛµk׸qc­V™””Ô·oß5kÖü¿ÿ÷ÿ}¼½½‹èPhµÚ)S¦¤¤¤|ùå—Rn®W¯ÞÀøá‡™3g~óÍ7JVÌ G&ÆÕÕµiÓ¦BˆV­Z¹ººê?ôõ×_ôÑG+V”®ïèëë»mÛ¶iÓ¦õíÛ×ÚÚ:Ç/¬R¥ÊÿýßÿµmÛÖÊÊêÈ‘#—.]ªT©ÒÊ•+]\\tÛh4š¹sç.Y²Äßß?+++66¶zõê&Lضm›³³³´M÷îÝþùçÖ­[ÛÙÙ]¼x155õõ×__¶lÙŒ3ŠîP¬]»öèÑ£-[¶Ô-ôB|ôÑGU«V Ù½{·¢3¤Éûò``9=z”˜˜X¥Jù'A€E!8@¦ª Á² Á² Á² Á² Ëÿ­í=EÒóJIEND®B`‚statistics-release-1.6.3/docs/assets/hnpdf_201.png000066400000000000000000000602061456127120000217540ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A`MIDATxÚíÝy|L×ÿÇñ3Y YšÈfKŠÔ.ÖÚEÔ¥b©µª¶–A-µTéj©Ø—ÐÅVE|K‹ B”†¢DIE"µ•ˆ%Hˆdæ÷Çý~ç7,nÖ{gæõ|ôÑÇÌ™»œ{ofæísϽ£Ñétx+¥;Ó@p€,GÈBp€,GÈBp€,G¨Ýùóç5ÿóË/¿½zùòeý«;wîÌ×’gΜ)ͬo|ðàÁˆ#¼½½mllÊ•+÷øñc¥w@‰ÊqŸ¨ÄêÕ«¥¾5iÒ¤øÖ²k×®;wîܹ399Y Ì—O?ýTÚi]ºt1§u©‡œ·Œá‡˜¡råÊ5jÔhäȑ׮]{îô666®®®Íš5›9sfö¿¥ÜVahÒ¤IJï-˜¥;¨Ë|°víZéñ£G”îJZÿþý¥ã~àÀÀÀ@.fãÑ£G§N:uêÔwß}÷Ã?¼òÊ+yLœ•••’’’’’³|ùò={ö¼üòËJo,Áø—ýû÷KZ·n\ªT)¥{„ÿ*W®\ÕªU…žžžJ÷( www;;;!ijgÏnÞ¼©Õj…?9rdll¬½½}nÓ?~üX_h¼wï^Ÿ>}âããK—.Ç*Œ8;;+½õ0Gà_nݺ%=˜2eJ×®]•îþ߀  t/€BÙ´i“¾ðüèÑ£qãÆ}ýõ×Bˆ+W®DFFvëÖ-é¯^½:kÖ¬o¾ùFqíÚµ•+W†„„ä½  È1ÆæI«Õ~ÿý÷UªT)S¦L•*UÚµk·nݺgÏžå6KrrrRR’TBÜ¿?)))333µoºwïÞĉ›4iR®\¹ |öÙgÙ×õøñãY³f½òÊ+îîîîîî:t˜6mZjjjnËÌÌÌüðÃ+V¬øá‡¾Ô§OŸË—/8°jÕª+Vìß¿ÿ¹sç„ÇïÛ·oÕªU_xá…€€€C‡rŸ~÷ÆÇÇ¿ð U«V:tè7>øài+fΜ™¯f㘯ýÿìÙ³U«VµjÕÊËËËÁÁ¡nݺo¼ñÆü¡Ÿ@ê˜~|B‡4Mƒ\ ¹@9›œß?°¿ÿþ»oß¾®®®={öûÌÒaCt€ºÅÆÆêÿ\8`ôj||¼þÕ;vèÛ_ýõÿà{÷î­ŸfÆŒRc=t:]=²OñâÅ<ú¦_B»víjÖ¬i4oŸ>} 'މ‰yñų¯¢R¥JQQQ9öêÍ7ß”Ϙ1Ã𥠸ºº.ÄÍÍmñâÅúo ‰F£9tèPaöInä,J§Ó=zÔ¨Ÿ¾¾¾úy¥’¿ÀU«VI7ÎïþòäIÓ¦M³/_£Ñ,_¾\šfêÔ©Ù'xôèQŽ{ ð Ì×áóvâÄ à ʕ+$=îܹsÿŒþóµ.Þ2ºç}ˆyyyI/M:UÎô†évïÞ½rfŠÁjgøèååUíß*W®¬U·lÙ¢ÿhß¾ýàÁƒëÔ©£Ÿì—_~‘&+Âà(©R¥J³fÍÊ”)£o‰‰‰‘¦LKK“Æç !Ê”)Ó©S§   ²eËJ-©©©FˬX±¢~9Fß‚B++«úõ뻸¸u¸fÍšÞÞÞú§…Ù'9’¹¨ôôtý7b©R¥Z´h¡j¸Qò˜Gp|îþ×Oigg÷Úk¯3¦Y³fR‹Í… t:Ý;wâããõeݺuñññZ­6ïC_°æ÷p}Z¥J}^~ùeýß›Dæò»êì‡ò×Å[&û‡˜Qª»wïžµµµôÒW_}õÜéu:V«Õ½ž3gŽœY€"Dp„Ú~ æMßzë-©eâĉúå4jÔHjœ7ožÔ’ã'¾ƒƒƒü_便K—J.\Ðê‹O³gÏ–ZÊ—/¯ÿj<{ö¬¾ ¢/6.³V­Z7n<~üøåË—^Ú½{·N§ËÈÈhß¾½¾qÑ¢E:.++kذaR‹««ká÷‰™‹Z¸p¡ÔâèèxêÔ)©cÇ7új—¿À¼ƒcÞû¿eË–RË'Ÿ|¢_…þ"Vý¼òÿ ¹ÀüŽçnàòåË¥–råÊ?~\j4§sXµÑß¡üuñ–‘ä˜êž={váÂÃÔ¿ÿþ{ÓÒÿƒyôèÑÙgÉQHHˆ( \3Ô·o_ilx›6m¤–ÔÔÔ´´4éñÝ»w‹|uêÔyï½÷¤Ç/½ôRëÖ­þùg!DRR’Ô¸{÷néÁرcõCôêÖ­;a„iÓ¦I|þùç†Ë,[¶ìÏ?ÿlT¥“4nÜX:-hkkÛ§OŸÈÈH!„““ÓØ±c…VVVýúõûꫯ„÷ïß/ò}"sQ[·n•¼÷Þ{þþþRÇ–,Yòã?Þ¾}»h×s÷zzºô`Æ žžž]»vuwwß°aÃ;w„/¼ðB~x!˜ßM~înÞ¼Yz`Xûœ;wîwß}WȽýïPþº sÈÌé-c¨C‡9¶wïÞ½aÆ2ò /üý÷ßR— Ö  ÀŽ0%Ùï„—””dtšLÑ©S'!Ľ{÷öíÛwòäÉÓ§OŸ8qâáÇ[éêÕ«ßyçÖ œ>}Ú°Åh$–þt˜þR›¸¸8þéuìØQú¼té’V«µ²úÿëÕüýýsü BžYÓßwÃËËK£Ñ5Ç>‘¹¨¿þú+û&ÛÙÙuêÔiÆ EÛ·çîÿN::uJ:Æ Óh4þþþ]ºtéÞ½{ŽCåì„Â,0¿›üÜ ÔïmÛo—*UªcÇŽ7n,̪³ÿÊ_Wa™9½ež«N:‹/–?}JJŠô |ùòÙ_Íñv<ÙÏÑCp„ÊÈÈøàƒ–,Y¢¿&ÚÎήB… òË!ù¥ÿúÉñijjꃤÇF÷ ÔŸ=yòäÖ­[†¯åÏcùÃoÐbÝ'r•ššª/É}—WªT©Èû–÷þBÌž=;55uíÚµOŸ>Bèt:éÆËŸ~úiëÖ­·oßîææ–¯PÈæw“óÞÀGég4ºf¥ð{Ûèï0_ë*ð!3³·Œ!ÃTgccS«V­-ZŒ7Îp çsýóÏ?ú¥e•Ûñ Xq;˜¡O?ýtáÂ…™™™¾¾¾+V¬øã?RSS³ß ­Ä”/_ÞÑÑQz|óæM×ôOK•*e5rüªSÃ>‘³¨råÊé¿¥³·zú;eGßrckk»lÙ²äää-[¶ 8ÐðNÈGŽ)ÀO±rE»Évvvú«%Œb>~xÕF‡ùZW™Ù[ÆÐ¦M›ÿçÒ¥K;wîœ2eJ¾RctttFF†ô¸`õr 0¨8 ­X±Bz°|ùòÎ;K~ V¾Áƒ]pmc“ï7ŽŸŸ_LLŒbÿþý­ZµÒ·ë¨¦zõêX¬"ûD΢4Ï… „Ô„ËÌÌ”†—SßrôôéSiàšµµõ믿þúë¯gff:thúôéÒA9|øp /°h7ÙÚÚÚÇÇG:·»oß¾-ZHíºߺ¥HV¯u†9½eŠ–þ¤¶½½½þ"- ÄPq„¹yøð¡¾Ä¥çþûï¿gÏ+2ÙÙÙ¹ÿ[®¥ÐßânÉ’%ÒØ8!Dllìüùó¥Ç†ÃÅÔ¼Oä/ªmÛ¶Òƒ… Jw6ÖétÓ§OOLL,¦¾åæÂ… žžž—/_BØØØtèÐA!­““Sö¹ôE"_`qlrãÆ¥†`Ÿ}öÙŸþYä{[æº ÉlÞ2EèŸþ9rdxx¸ôô7Þ(W®œ‚ýe¢âsãààààà ý\ǰaÃ6oÞ¬ÑhöîÝ[T?öP0“'Oþæ›o’’’ýܹs†C¸Ô¿Oä/jøðáèÙ³§———··wÏž==š}8 ¯—_~9>>~æÌ™Mš4ñòò²µµuvvnÕªÕÚµk###K—.mØ™V¨PÁÞÞ¾N:¹]x[ÈÇ&õÕWï¾û®ô¸B… Ý»w?pà€þ„E»·e®«Ìæ-S$¬­­]\\š6m:sæÌ¸¸¸—_~¹$×èit:Ò}ŠÞ³gÏvíÚ%þ}ÒÐÂá>)Ì¢Þ|óÍõë× !V®\©¿A¦¯bÚä“'O}îß¿?yòd)5Ö®][q.ÀTPqP,ÒÓÓ;vìý¥^xáàÁƒÒ2€ !8(.OŸ>ݲe˺uënÞ¼éêêZµjÕŽ;†„„˜ë¨80oGÈÂíx Á² Á² Á² Á² Á² Á² Á² Á² Á² ‹Ò0C~~~Jw£¸¸8¥»  ‚c±0›¿'???³Ù³ÁAQ!Š qPTÈœŠ9mK¾pª² Á² Á²‘—½{÷*Ýã ¨E…8(*ÄA1GÈBp€,GÈBp€,GÈBp€,GÈBp€,6Jw,—ŸŸŸÒ] „qqqJwÁ4@I|]ŠãŸpòqª² Á² Á² Á² Á²ùàããÓ§OŸÏ¬úÉ'Ÿ¸ººÖ­[Wém*ÔVLëÖ­ýýýs[~÷0PÜŽüùçŸ3gάY³æ´iӔ­­­­­¥Ç'Ož >þ¼ÒÊÁƒÞyçÊ•+;88´iÓæøñãJ÷(mÚ´™={¶Ò½°G€âãã…}ôQÿþý•î‹:tòäIéñ­[·vìØqçÎ¥;e,55µqãÆß|óMëÖ­‡ vùòåÎ;Ÿ>}Zé~ýËéÓ§=ªt/,Á N'„(S¦Ìs§ÔjµYYYEµÞŒŒ ­V«ôÖ™ŒŒŒŒŒŒbZøÂ… ãããÃÂÂ6mÚ´xñâ#GŽh4š‰'*½ÑB‘™™¹ÿþ>ú¨S§Næt@ÕàÈ·£GvéÒÅÕÕÕÛÛ{Ô¨Q>Ô¿Z¯^={{{—fÍšmÚ´)ûìo½õV=„­ZµòññÉq>>>ãÇ_½zµ«««··÷èÑ£ Wäáááååc4ïÉ“'ëׯ_¿~}©eܸq“&M*_¾|™2eš5k¶{÷îÌÌÌ>ø fÍšåË—øóÏ?óµFz÷îmkkûèÑ#éé–-[4M½zõô¼ÿþûFªØHcßzë­W_}UÑ®];Ã]‘Ç6äççhØ2{öì&MšÉQþþûï===,=õõõíÝ»wTTÔÍ›7åÌ~âĉW_}ÕÃÃCóo¶¶¶…ï[JJJ§NfÏžœœ\$ ™Ž€ü9{öl×®]«W¯þÁ¼øâ‹«V­zÿý÷¥—>úè£ &¸¹¹M™2EŠ;ƒ úé§ŸŒ–0qâÄ?üP±`Á‚uëÖå¶¢Œ;vÀ€K—.mРÁÊ•+'L˜ ½´sçΖ-[ž;w®ÿþýúõ‹mÙ²åÎ;õó^½zµS§N>|ùå—¥–7®[·núôé³gÏNHHèÝ»wÛ¶m###ß~ûí7Þx#**jÀ€ùÚ #]ºtÉÌÌ*ÌB ðN4Å7o‘°Q:¸LL5ºwï.=¶¶¶nРÁÏ?ÿ,=‰‰)S¦ŒÍ¿\¤b[ZZZÁVäëëÛ«W/é±F£ñ÷÷ÿñÇ…§NJLL\´h‘«««ôª««kHHÈøñãÿøãéD­§§çŒ3¬¬þÿÄZÓ¦M_zé%éq@@€¢ÿþúÓ¦ÑÑÑiiiåÊ•+ØVx{{׫W/22RqïÞ½ØØØ¯¾új̘1QQQÁÁÁGŽÑjµAAA…ÜÖ™™¹{÷îÜ^}íµ×ŒZ¤í-_¾¼a££££~‡äáÈ‘#7nܘ3gއ‡‡ÔRºtéÉ“'wëÖmûöíR´-Lß  ‚#¨‘ÁéÁ’¦Ó=g‚5j>ÕßVFáììü믿þüóÏ/^¼téÒùóç333Ÿ»ÆË—/W«VMÿôÛo¿}óÍ7³¯HŸ/]º$„/êI£ /]º$G???ÃÔ(„ЧL!„”³·f+„]ºt™?þ½{÷¤Jj```«V­¢¢¢„‡²±±éСƒœå䱇³3ºr(·+E?~,+Í‘.ÛQ—vŽÑØÊÔÔT!„‹‹KÞý¿råJn(66¶ð}ƒ‚Ž Fjþ®ÌíRè§OŸöìÙsÏž=Mš4騱c÷îÝ›7o. nË›»»ûÆõO›7ož÷Ф$¡ùw¸–ÒÕ³gϤ§NNNÛºo…¢sçÎsçΊŠúõ×_+W®\¹r倀€iӦݿÿСC­Zµ’*vÞùuØðizzzŽ“9::æ+¹»»[YY]z"Ý3ÈÛÛ;ïyíìì„Fi[J´Fi¾`}ƒ‚Ž€¢½gÏžE‹7Nß(§Vçàà0pà@ù+ª^½ºâܹsmÛ¶Õ7ž={Váçç§ÔV!Z¶lY¾|ùÈÈȘ˜˜6mÚ!Úµk§Õjúé§Ó§OñÅE±›Ý¸qÃðin—<ç÷t°M­Zµô×úH>¬Ñhj×®w—¤táÂÃF©Ö˜ãâTµ !8ІtuHÍš5õ-ááá?.òbRÆ +W®:pà@ggg!ÄÝ»w.\X¥J•Ü~ǯd¶ÂÖÖ600pÏž=ÿý÷°aÄ7.W®ÜgŸ}öÜŽ¾á?ÿü³k×.éž> gΜÉq²œ1bĸqãô ¿}ûvxxø+¯¼’Û”ô6lX­ZµåË—¿ûî»Ré7##cþüùÒ¢ ß7(…à(ööö#FŒ8p ··÷±cÇ"##ÝÜÜ¢££#""ºtéRT+*]ºthhhß¾}6løúë¯ëtº-[¶Ü¸qcÛ¶m¥K—Vv+ºtéòÃ?!¤Š£µµuëÖ­÷ìÙS©R¥Ü uR´Z¹rå­[·úõë—ßÛØØôëׯ[·nZ­v×®]¹íœ2dÈ×_=pà@)ÿ}ûí·iiiú÷Û¼yóèÑ£ßzë­… Íhkk»xñâààà ¼ýöÛÖÖÖááá'Ož\²d‰»»{‘ô Já>Ž€¢Q¹rå={öT¬XqéÒ¥¡¡¡vvvgÏžýüóÏSSS/^\´ëêÙ³çáÇ_zé¥uëÖ­_¿¾V­ZGÍ£jUb[!%K777ý9Yé î<Ê-Z´èß¿ÿ¾}ûæÏŸ_€7kÖlúôéÇŽ;zôèˆ#Þ{ï½¢ÚÉåË—ŠŠêÛ·oxxøüùó«U«¥¿/fFFÆýû÷sRtüøñzõê­X±bþüùŽŽŽEØ7(ECÆ/r~~~qqqJ÷¢h$&&>÷”JE… |PÌéãŠðññ©X±¢ÑHijvíÚØØØE‹)½ «ïD‹}óRqùöäÉ“ƒʼÞfƒàòíØ±c5kÖÔÿN#,Ç`ªFeôã.%& @¾ ‹BpÀTMž>ÞÅÅÅÅÅŰ½FBˆ«W¯æ8׫¯¾Z¦L™O?ýôرcééé7nܘ9sæµk×úôéS¾|y¥· TêäÉ“ÁÁÁçÏŸWº#&Ó±Bš3gŽ¿¿¿¿¿ ¬ëÁƒï¼óNåʕڴisüøq¥·>mÚ´™={¶þ©››ÛСCÇŒ£t¿ÌŠ™×ÏÒÒÒ²²²œœœŒÚÅ¿kІüüü6lØ0dÈ!C†è 4mÚ4™ëõóó3jÙ»w¯Ò;£ ®]»¦t`Œƒ¢BÉ­[·vìØ¢tGL¦c…qûöí… =z´Ö•ššÚ¸qã¿ÿþ»wïÞ®®®ááá;w>xð`ÉdV™NŸ>}ôèÑÀÀ@ÃÆOOÏß~û­Y³fyÏž˜˜˜Ç«;wVzûÔẪ£té´½½½Q»ƒƒƒâÁƒ9ΕššúÅ_<~ü¸víÚuëÖMII‰ŽŽÞ±cÇË/¿üÊ+¯ÈYo\\œÒ›^d|||”îŒqPÔÆ×÷¿GD§Sº+&H«Õêt:kkk¥;RÄ=ÉÈȰ±±±²*®3{+W®|ñÅ5j¤_¢T©Rű®… ÆÇÇûí·o¾ù¦bܸq5š8qbddd1m|™™™‘‘‘¿þúëŠ+²_ºàââÒµk×%K–lÚ´)ïåäý¹šýk={…ÈB˜ù©j'''F“––fÔþèÑ#ñ¿ºcv“'Oþý÷ß§NúŸÿügöìÙË–-Û³g½½ýøñã”Þ&j¤Ó Nh4ÿýÏŒ¥§§òÉ'5kÖ,[¶l•*U†þÏ?ÿ!Þzë­W_}UÑ®];ýwphhh½zõìíí]\\š5kføåíãã3~üøÕ«W»ººÚØØx{{=úáÇú >üÊ+¯¸¸¸ÔªUkÒ¤IR0Ò{î’Ož{öì„„„Þ½{·mÛ622òí·ß~ã7¢¢¢  sCrséÒ¥¤¤¤-Zä1Í•+WNžýŸþY£FÑ£GµÿöÛo5jÔ˜2eÊs×X£F ¥7ºÈ$$$(Ýã ¨PŽ¥Bèžûkr=²¶¶2dˆ¾eذa®®®7nÜÐét»víB:tHzÉ××·FÏž=“žÞ¿߯ÆFÿéZµjU!Dxx¸ôT«ÕÖ­[·bÅŠ:îÉ“'UªTñôô¼víšôê7¼¼¼„ßÿ½Ì%Ïž=;++Kj1ꘑ>>µk×nÑ¢Eçλvíšã5ÎÎοþúëÏ?ÿ|ñâÅK—.?>33ÓpéÎhzúì%•¸ô—}H ÿ©ÿÜ%ûùùå몔ÜzréÒ%!„4xQ¯^½zÒKRp̾.}ÊBH_4Ù[dnHnnݺet›9!DVV–áÓÜ~äâñãÇÒè‚é²ý±J7#(øÊÞ#W®\ÉmÆÆÆ¾o2½ð ÒH\ž™qBxyyMš4)!!¡{÷î³fÍ2dHhhhíÚµGŒ¡Ÿ&**ªsçÎï¼óŽôô“O>ñôô\±bE—.]Æ?xðà=zÜ¿êÔ©/¾ø¢ÒÀĘÙÇwß}÷Ê•+aaaõêÕÛ³gOÏž=ëÕ«wëÖ-£Éž>}Ú­[·Ö­[GDDT¯^}âĉ.\0º$±L™29®BªÀiþ½×ôáLÎ’³ß…-o¹õDJ*F=‘.»~öìYÁÖ•¯]”G‡®’høTº¯HvŽŽŽyœˆÌ>½»»»•••Ñ¥'wîÜBèK¹±³³B¥a)Ñæ˜ìóÛ7™222J—.]àÙaÈü+ŽBˆ¡C‡º¹¹íرcÏž=žžžƒ ‘ª9ruuݳgϪU«¢££:äììܶmÛQ£FÕ­[WéM`’ \wT›”””øøø5j >|øðáZ­vÅŠcÆŒYµjÕ¬Y³ §ŒŽŽÞ³gÏ¢E‹Æ§o”YN“ýþûï†?úuæÌ™Â/9¿ªW¯.„8wî\Û¶mõgÏžEq7–Âlˆ‡‡Ç½{÷´Z­aü2ú‰”Ü.yÎïé`›Zµj9rİñðáævíÚrvà…  ¥ZcŽ;°˜NU§¤¤øúúl^±ˆà(„èÖ­[·nÝr{5(((((Ȱ¥lÙ²&L(’ ¾ÀlÄÅŵlÙrúôéŸ|ò‰Bÿƒ®†§_¥z’tSôš5kêÛÃÃÃ?~,§nÔ°aC__ß… 0@ú ØäääÅ‹K¯xɹºÍ»'•+W 8p 4 ðîÝ» .¬R¥Jáï}]˜]T³fM­V›””dxƒ¡þùg×®]Ò½‡ôQÛHN1bܸqú…ß¾};<<ü•W^yî=e6lX­ZµåË—¿ûî»Ri6##cþüùÒ¢ ß·çÊÌ̼zõªþ^B($K Ž ,ó(:6nܸN:_|ñEBBB:uâââ"""\\\ú÷ï/þwÒvåÊ•·nÝ °··1bÄÀ½½½;éææÑ¥K—<Öbkk»`Á‚×_Ýßß¿oß¾¶¶¶[¶lÑŸ*-À’ ;Ö¯_?ùÛ[ºtéÐÐо}û6lØðõ×_×ét[¶l¹qãÆ¶mÛ ê³0»( ÀÊÊêøñã†ÑÍÆÆ¦_¿~ݺuÓjµ»víÊ­‡Òéà|uuÈ!_ýõÀ¥ü÷í·ß¦¥¥éÜoóæÍ£G~ë­·.\˜ýP.^¼888¸Aƒo¿ý¶µµuxxøÉ“'—,Yâîî^$}{®³gϦ¥¥uèСhk±ÌŒ#¨„ v,UªTDDÄ›o¾ù믿Ι3çСC¯¼òÊÑ£G¥øÒ¢E‹þýûïÛ·oþüù•+WÞ³gOÅŠ—.]jggwöìÙÏ?ÿ<55U_;ÌCpppdddݺu7lØðå—_>|øpãÆÒKX²aÇò»É={ö<|øðK/½´nݺõë×תUëèÑ£yTÅä+Ì.rvvnÞ¼ùÁƒ ›5k6}úôcÇŽ=ztĈï½÷^á;))_¾|TTTß¾}ÃÃÃçÏŸ_­Zµ¨¨(ý}+322îß¿ŸÛÊ   ãÇ׫WoÅŠóçÏwttŒˆˆ(¾=סC‡*T¨`t­ LSäÑ~~~f󓃉‰‰üºÚpPT(_¥DÉÍéã¢øÜ¸qã…^àâ#›7o~÷ÝwoÞ¼)퟊+D,1k×®]´h‘Ò{%5zõÕWõõÑàh±o^*ŽUóòò"5f×»wo‡;v(ÝñäÉ“ƒJ? £6gÏž½pá¨Q£”îˆù 8@‰2ƒÖP[[Û%K–|üñǸè§h;v¬fÍšúßQT•Y³fÍš5KûqÇ`’zôèqòäÉØØØzõê5ÊèÇ]JL@@€:#99¹B… 'NTº#f…à%Í<®°†H÷EBLž8[  X Á² ÁÌ Ã‚#d!8@‚#d!8€¹a˜#€bBp€,GÈb£tJȶmÛ¶nÝ_¶lÙ¶mÛNš4ÉÙÙ9ïYÎ;·zõêóçÏ?zôÈÏÏo̘1Íš5Sz;cÇÐÐÐ3f\¾|¹I“&Û·o9rdzzz³DFFöïß?22²B… þþþ§OŸ|X­Zµ>úhóæÍúöJ•*-Z´¨N:rÖëççgÔ²wï^¥wFA\»vMé.ÀE•|•îƒiu¬ØñNQ!Ó=(;wVº jaæÁQºtÚÞÞÞ¨ÝÁÁAñàÁƒì³<|øPŸœœ:zôèÊ•+ƒ‚‚2226oÞÜ·oߎ;®X±âúõëJ÷À©.8êÙØØ´oß>44ôرcÓ§O·³³KJJZ¼xq``ào¼±cÇŽ¬¬,¥û`AÔuªÚȽ{÷~ùå—½{÷;v,33Sáææfkk³fÍšµk×zzz*ÝM0yÒ0GNé~P75Ç;wîüüóÏûö틉‰‘ÊŠ®®®;v jÔ¨‘â×_ ýðÃ׬Y£t,‚º‚ãÆ÷íÛwòäI­V+„pqqéÔ©S—.]7nlmm­Ÿ¬U«V5jÚ´é‰'”î2€¥PWpüøã…NNN;vìÒ¥K³fÍ ó¢!;;»2eÊpž Ä¨+8öêÕ+((¨yóæ¹åEC” 1ÌÀs©ëªêˆˆˆcÇŽå–njөS'¥û`¡ÔÓÒÒž={–ÛKÿý77qPŠò§ª£¢¢F¥º~ýú7fŸL«ÕêtºÊ•++Ý_ ¥|p´¶¶._¾¼ôøÞ½{¥J•*[¶lŽS:99M:Uéþ€Ùb˜#€¼)[µjuüøq鱟Ÿ_¿~ý¦M›¦t§`Lùàhhذa7VºȺ‚ãäÉ“•îr¦ppÜ´i“¢iÓ¦Õ«W×?ÍÛÀ•í3€eR88Ι3G1{öl)8JOóFp€âÃõ1ò pp3fŒ¢nݺÒÓ÷ß_逜)ß{ï=ç#FŒP¶?Ⱥ.ŽÉN§ÓEFF^»v­^½zþþþJwÀr©.8FFF.^¼¸C‡ÒYì3f„‡‡K/õïßÖ¬YFé>€9c˜#€Ü¨ë·ªOœ81zôè‹/jµZ!ÄŸþîèè8`À€Š+nÞ¼922Ré>X(uU׬Y£Óé¦OŸÞ¿!Äþýû…Ÿþy``à•+W:wîüÝwß*ÝMK¤®àø×_yxx X(uÇ&MšÜ¿éҥׯ__ºt©¢M›6ÒK_ýõÝ»w«U«¦t,”ºÆ8Ž9ò§Ÿ~Z¹råÊ•+…uëÖ•îÝøúë¯ÿñÇBˆ¡C‡*ÝG ¥®Š£··÷–-[ÚµkçááѪU«E‹Iwm¼sçNùòå¿øâ‹—_~Yé>€E`˜#€ìÔUqBT¯^}õêÕF6lðôô´²RW̰(ª Ž9òööVº –NuÁ1""býúõW®\ÑåòsWÇWº–H]ÁñÀ!!!Òckkk¥»€ÿ§®à¸víZ!Ä!CFíèè¨twÀ¢I×Çärú€%RWpŒ¯X±â”)S¸@mT”Ïž={öðáÃJ•*‘THEÍÊÊÊÑÑñÒ¥KZ­Vé¾À˜Š‚£µµõðáÃïܹªt_Bppÿ¦®1ŽAAAW¯^ ;~üx—.]*V¬XªT)£iÚµk§t7,‘º‚c`` ôàìÙ³gÏžÍqš¸¸8¥» `‰Ô»wï®t3uÇùóç+ÝÀ¿p7Gzê Žz÷ïß½yó¦——WË–-ïܹãêêªt§,šê‚cJJÊÊ•+ÃÃÃÓÓÓ…o¾ùfË–-ƒƒƒk×®ýùçŸ;;;+ÝA ¥¢Ûñ!ž={6zôè 6”/_>88Xß^¡B…ƒöë×OJ“(yê Ž«W¯>sæLÛ¶m÷îÝûÅ_èÛ·nÝúÚk¯]¹reýúõJ÷,ws QWpŒ‰‰±¶¶þì³ÏÊ–-kØnmmýᇖ-[vß¾}J÷ÀB©+8^¸pÁÇÇ'Çë`|}}“’’”î#€…RWpttt|üøqn¯Þ»w¯\¹rJ÷ÀB©+8ÖªUëæÍ›9þfÌ… ®_¿^³fM¥û–ˆaŽ„Ú‚cß¾}5ÍĉÏŸ?oØ~þüù!D=”î#€…R×}[¶l9|øð5kÖôìÙÓ××WqàÀ_ýõòåËZ­688¸S§NJ÷ÀB©+8 !ÞÿýFÍ;7!!Aqýúu!„››Û„  ï쀦ºà(„¸wï^BBBFF†¯¯¯»»»ÒKÇVPcp”8;;7jÔHé^࿎›6mÊï,,ÀжmÛ¶uëÖøøø²e˶mÛvÒ¤IòöúÆݺukß¾ýüùó•Ý] R88Ι3'¿³ 8†††®ZµÊÞÞ¾I“&IIIÛ·o¿téÒúõëíììž;¯N§›2eÊ£G”ÝQŠS88J7Ù1táÂ…}ûöY[[·jÕªjÕªÖÖÖ‰‰‰GŽÉÌÌôôôœ6mZ~Wæîî^¡B!ħŸ~º~ýú Ìœ9ó¹³ûí·111Êî%5P88Ž5Êðéßÿ½aÃ??¿åË—WªTIß~ýúõ÷Þ{ïÏ?ÿüé§Ÿ:v옯UlݺU«Õ†„„H©Q1uêÔ;wFDDLŸ>ÝÊ*¯;Y^ºt)44ô¥—^ºxñ¢²; Ô€ëc §®€¯\¹2%%eéÒ¥†©Qáíí½dÉ!Äþýûïܹ“¯ež8qÂÊʪ]»vúkkë6mÚ¤¤¤œ:u*333'OžìììíååU¥J•ì/UªTIj×å矺:.>>ÞÅÅÅÅÅŰ½FBˆ«W¯æ1ïÒ¥K/\¸ðù矗/_^é &1Ì‘wŠ ™èAÉþµž½Bd!Ôuª:((H1yò䈈ÃSÒû÷ïÿý÷õÈçää¤ÑhÒÒҌڥÛëHuÇìæÎ{íÚµyóæÉ¹_ ¡é?Ðþ§ŸÀ¨]šXé^@QRWűW¯^ÑÑÑ{öì qssóõõÕh4 ·oßBtëÖ­W¯^ùÛ<GGÇì•ÅÔÔT!„þ:kC111›7o=ztýúõ•ÞÔBÊ‹ùšEš^ÊŽæZ}`iÔ…_~ùe‹-/^œœœœœœ,5zzzŽ3&88¸ twwOMM5¼ÆE “ãO`_ºtI±bÅŠ+V¶ÿøã?þøcõêÕwíÚ¥ôNPr ™üˆÌ‰ê‚£••UŸ>}z÷î}ëÖ­ÄÄD›ªU«æë‚#qqqGŽéÚµ«Ô¢Ó颢¢œýýý³O_¥Jý”’DGG{yyùûû{xx(½‡”"L{f¹›#`±T%ÆÃãHRZŸ>}V­ZµlÙ²¶mÛJ×Ä„……ݹsgøðá¶¶¶Ò4?¾}û¶­­mÅŠ[µjet Îùó磣£7nÌoU–£ç¦ŸKÍ ;°L* ŽEÈËËkÒ¤IsçÎíÞ½{ëÖ­“’’Ž?^»ví#Fè§‰ŠŠ?~<§¡HŠ5ÛI×͘"óŽBˆ¡C‡º¹¹íرcÏž=žžžƒ ‘ª`¤RÙ€‰²ˆà(„èÖ­[·nÝr{5(((ýÔ®]ÛœîË %–çL=;2̰Lêº#(EÆ[£”•ÞnÈ‚#ým½Kx½dG¦…àJ";0!G–Nñ±†&š¥aŽ, Á€ES<5JL4;°4G–K%©QBv ~GJU©QBv rG–H…©QbZÙ‘aŽ€¥!8°8ªMÓÊŽ, Á²X•—%¨Á€1‰Ô(1•ìÈ0GÀ¢X JSÉŽ,Á²X“+7J(:P‚#óg¢©Q¢þìÈ0GÀr Á€™3ér£DýEG‚àÀœ™Aj”¨ÁPX s,Á€Ù2›r£„¢#Ř'3K²#e Á€2Ër£DµEG†9–€àYŽÌ—%ª-:0{GfÅìS£„ì@G@Ñ`˜#`öŽÌ‡…”%”<‚#d!80Un”PtPŽ̦Fub˜#`ÞŽ`Â(:(IG&ÏÂËdG%†àYŽL›…—%ª*:2Ì0cGÈBp`Â(7ꩪèÀ\EŒ³Õ€¹"80U”PtPÜŽ…àÀ$QnÌEGÅŠà(z sÌÁ€é¡Ü˜ŠŽŠÁ€‰!5€RŽ`n(:(&G¦„r£ a˜#`~Ž`†(:(G&ƒr#(‹à扢#€"Gp`(7š"†9f†àf‹¢#€¢Ep`(7€Àœ)^täl5`NŽÔŽr#¨ÁÌœâEGfƒà@Õ(7€zÀü)[td˜#`6ŽÔ‹r#¨ Á,#Á€JQn4'œ­ÌÁ,EG…Dp€,GjÄyêbBÑ@a%aŽ€ 8PÊÅŠ¢#€#8@‚#u¡ÜX”*:r¶0uGÈBp "”K #Á²¨åƦHÑ‘aŽ€I#8@‚#U Ü¨F:È‚# Dq¶0]Gʣܨ ŠŽä#8@‚#…QnTEG2%aŽ€‰"8PåF0!Gg«ÈBp Ê–Œ³Õ€)"8„ è@‚#d!8Pç©U¨„‹Žœ­LÁ²(€r£j1Ò@Ž…à ¤QnT¹’,:2Ì0-GÈBpP¢(7šF:ÈÁ $ÎV&„à äPn4!dGp€,G%„r£É)±¢#g«SAp€,G%r#˜‚# Wœ­`ˆà ØQnó@pä…ûòÐ#8(^”!g«õ#8žƒ¢#‰Ò(!Û¶mÛºuk|||Ù²eÛ¶m;iÒ$ggç<¦OOOß²eKxxøµk×Ê•+W£F¡C‡¶lÙRéíPŒEÇÐÐÐU«VÙÛÛ7iÒ$))iûöí—.]Z¿~½]ŽÓgff2äÌ™3ŽŽŽÍ›7òäÉo¿ý=vìØwß}Wé­L ç©Í†Tt,î£)­Öñ'¨•ùŸªŽ‹‹ swwß»woXXؾ}û|öìÙ ä6ËÖ­[Ïœ9Ó¨Q£¨¨¨•+W~óÍ7?üðƒ““ÓòåË/\¸ ô(ÃüƒãÖ­[µZmHHH… ¤–©S§:::FDDhµÚgÙ»w¯búôéú’dõêÕßy第¬£G*½A€É ÜhféÀüƒã‰'¬¬¬Úµk§o±¶¶nÓ¦MJJÊ©S§rœ%11ÑÞÞ¾víÚ†Õ«WB\½zUé sƵՀš™ùGNïâââââbØ^£F !ÄÕ«W7nœ}®Õ«WÛØï™óçÏ !*Uª¤ô6¦r£Y*™‘ŽTË̃cZZZVV–“““Q»£££âîÝ»9ÎU«V-£–ãLJ……•.]ºGrÖëççgÔ"þ69×®]Sº 0f2ÅG$&&*݉’ÛZ ÚØ’8²E°?MæbIL÷ tîÜYé.¨…™Çôôt!„½½½Q»ƒƒƒâÁƒÏ]BVVÖ¦M›æÍ›—••õå—_ºººÊYo\\œÒ›^d|||”ÿ ü·(¥ön%õ”¢¢:Oñu:¡ÑøþÚjË9(&ÄDJö¯õì" aæÁÑÉÉI£Ñ¤¥¥µ?zôHü¯î˜‡ß~ûmöìÙ—/_öôôüì³ÏZ´h¡ô(ÆÌƒ£££cöÊbjjªBuvóçÏß°aC™2eÆŒ3lذÜnúÀcàÌ#‹eæÁQáîšZ¾|y}£4zÆÝÝ=ÇY´Zíĉ÷ïßß¡C‡Y³få‘/Å;êdþ·ã ÌÊÊ:r䈾E§ÓEEE9;;ûûûç8ˆ öïß?`À€åË—“|¡e!¸§#`™Ì?8öéÓÇÊÊjÙ²eÒ¸F!DXXØ;wzõêekk+µ<~ü811QºÚK§Ómܸ±\¹rS¦LQºï*bþ§ª½¼¼&Mš4wîÜîÝ»·nÝ:))éøñãµk×1b„~š¨¨¨ñãÇW¯^}×®]ÉÉÉÿý·ÝÀ³/-88xРAJo R”-Jqtäl5 Bæ…C‡ussÛ±cÇž={<== "Ý‘';©î˜žž›ýU.¬Ë"‚£¢[·nݺuËíÕ      éqÆ Íé.Œ@‰¡Üh¸¼°4æ?Æ`¢øÝj@mŽŠe'‹ÅåÕ€E!8Ô‹¢# *G…E¹ÑÂQt,Á² åFˆb.:r¶P‚#d!8(8ÊÐc¤#` ޵ãl5 GD¹F(:fà05 8(ÊÈEGÀ¼ Á@¾QnDНèÈÙj@qGÈBp?”ñ\sEp¤F°dG@ÑãòjÀ,ÈE¹jÀÙj@AG@± è˜‚#Y(7¢Š);Rt”Bp€,GÏG¹Æ kÀœ¦‡³Õ€"Žžƒr# ‰¢#`6Ž“DÑ(yGy¡Üˆ"AÑ0G¹"5Bå(:%Œà( 3@p3Ê(rdGÀÔ&Œ³Õ@I"8ÈåFŠŽ€I#8LEG Ä£ÜˆbEÑ0]GÿBj„)¢è” ‚# ¤QtLÁÀÿ£ÜˆSäÙ‘¢#PŽ…àà¿(7¢„QtLÁ€¤F(„ÁŽ€i!8ÌEG XPn„’(:&„àX:R#Ì EG ø £è˜ ¥;@I”¡Rv,ª¿FNh4>:þ´¢FŲËE¹ªR´'¬é9‚#`¡HP!;*Gp˜'.¯ŠÁ°D”¡Z5#8‡Ô•+ÂìHÑ(ZGÀ²aiÈŽ@"8T‡Ö€: B¹&„Ö€ KAj„É¡î¨ Á`þ(:E‚àXÊ0Qœ°T…à˜?R#L'¬õ 8fŽÔèQt ‰àP;ŠŽ€JsF¹f£¨²#EG 0Ž€Ù"5ÂÌÅóDj„Yâœ5 ,‚#`†H@Þ(:Cp˜NX "8æ†r#Ì'¬¥³Bj„…(’ìHÑÈ/‚#`>H°(dG ä3Aj„";%Œà˜R#,ã’DpL©($ŠŽ€LGÀ´‘NX%†à0ydG dF¹Ð#;%€à˜*R#`„ e€âFpL©ÈQá³#EG GÀô<âc£täƒFh„ 5yÓ Æ§Pÿ¾’²£Ž·ðoT“!”î`¨;EŽà˜NOù%³.L|$;FŽ€ 5£ºBy$;†Ž€Ú‘B";E…਩(dG Hõ"5EˆìÁP#iD?©(Z…¼\†ìÕ‘"#©(…¼\†ì GpÔ…B#P Ÿ‰°Lür  Òש(úìX€7ô‹2ü´ ,G@8= ”Rz„Ù#8%‡È˜„ÇG}éQa¦Ž@I 2&§ðñ‘ìóCpŠ‘0i…‰”a~Ž@q!2f£`ñ‘3×0?G è³D|Ž@‘Ñß@˜È˜1Ãø(d¿ß‰0G °È‹€Ò¿ßóU€4Œ‚ Dp ˆ¼@¨©Ï‹$H˜‚#?äEÙ s‹ SCpž/_ß,™áG„ü$L…•ÒP¯mÛ¶õéÓÇßß¿eË–Ó¦M»wïžÒ=R@çΕî‚b4B£ÿO'túÿ”î—E@>5¼S ?: ?Ròšå3h f0j8(($*Ž9 ]µj•½½}“&M’’’¶oß~éÒ¥õë×ÛÙÙ)Ý5£Os5dDf#·J¤ÈåÓÆ°âh”)FBATsæîî¾wïÞ°°°}ûö <øìÙ³ ,Pºk(2šý{Þ¸¬HjP|Œ>m²Oÿï4ÙfJ Á1[·nÕjµ!!!*TZ¦Nêèè¡Õj•îòG“Ãgl1‘¤@)Ù?ŽrûàúïôºçGIÒ$Š Á1'Nœ°²²j×®¾ÅÚÚºM›6)))§NRºwø¯Ü>XŸ‰‰T.·®\¥î_ÿå‘& —($Æ8Óétñññ......†í5jÔB\½zµqãÆJ÷ÑÄä=¼À,ÌϽÿ~êʘ6ŸÎš|Ü¢æŠàh,---++ËÉÉɨÝÑÑQq÷îÝç.᯸¿Š)*) ®(bŸŒÏš‚,µä÷†ZÄQ'P!???¥»c{PjˆűؿtÏÿèyÎEò¢Å´“Õàh,==]aoooÔîàà „xðàÁs—@%Ìû!Né(A–úŽgŒ£1'''F“––fÔþèÑ#ñ¿º#€"8³±±qttÌ^YLMMB诳°4Ǹ»»§¤¤HIQ/11QzIéÞ(ƒà˜ƒÀÀÀ¬¬¬#GŽè[t:]TT”³³³¿¿¿Ò½PÁ1}úô±²²Z¶l™4®QvçÎ^½zÙÚÚ*Ý;ehtÜs)'_ýõܹs½½½[·n””tüøñZµj}ýõ×ÙoÓ`!޹úé§ŸvìØqöìYOOϦM›†„„Hwä°LGÈÂGÈBp€,GÈBp€,GÈBp€,GÈBp„,7nÜhԨѤI“”KOOÿöÛo_}õÕ ´nÝzذaGUºS–kÛ¶m}úôñ÷÷oÙ²å´iÓîÝ»§t,o•ã«Ä Ø(ݘN7eÊý/wC)™™™C† 9s挣£cóæÍŸZ//¯I“&Í;·{÷î­[·NJJ:~üxíÚµGŒ¡t×,o dÓpíÚ5!DzzzlllöW¹n´ä :ÔÍÍmÇŽ{öìñôô4hPHHˆT}DÉã ” NU@nYŽ…àYŽ…àYŽ…àYŽ…àYŽ…àYŽ,ˤI“üüü:¤tGIJeËüüü6mÚ¤tG@.‚#d±Qº`¡\]]5j¤tG@.‚#(£víÚµk×VºœªÕÉÊÊzöì™Ò½cG¦aÆŒ~~~óçÏ7j?wŸ_‹-233…wîÜY¸paPPPÆ 6lصk×/¾øâÖ­[¹-VºVæØ±cFíµjÕzùå— [Ž=:vìØ:4iÒdðàÁË–-3Êvׯ_Ÿ5kVPPPƒ Úµk7räÈ'Nä±EkÖ¬1¼8Fêɵkך7o^§NÆ÷ë×ïÀ¹-áôéÓµjÕjÓ¦ÍÇõ=j×®]­ZµÎž=«ôA`nŽLC·nÝ„ûöí3jßµk—¢G666wîÜ8pàêÕ«oܸQ¹råŠ+^½zõ›o¾éß¿ÿ½{÷ ³ö  6lß¾}™™™*T8yòäÒ¥K ”’’"MpéÒ¥nݺ}ÿý÷)))/¾ø¢N§‹ŠŠzã7"##óµ¢Õ«Wùå—¶¶¶Í›7wtt<}úô»ï¾‘ãÄþþþÆ »uëÖ矮oœ7oÞÍ›7G]¯^½’>HÌÁ€ihÒ¤I… ®^½úçŸêµZ­ªzöì)„ؾ}û•+WÚ·oôèÑ;vüøãÑÑÑMš4¹~ýú/¿üRàU]§Ó-^¼8_ëÚºuëÈ‘#9òí·ßþüóÏC† B¬_¿>·éÇŽ[½zõíÛ·9rDqìØ±-[¶Ô­[wÔ¨QÊ+f‹àÀ4XYYuíÚUü»èxòäÉ[·nùûûW«VM‘™™ðþûïÛÛÛK”/_^*U&%%xÕsçÎB,Z´H_Ãsuu]´h‘»»{xxøýû÷…/^BôéÓÇÚÚZš¦ÿþ£GîСC¾ÖU¯^½‰'ZYYI›|øäÉ“W¯^ýûï¿ 9´Q‘ ýßÏÏ/Ç nÞ¼)„˜={vHHHLLÌo¼Q¦L™Zµj5kÖ¬cÇŽµjÕÊ×ê*V¬X€N¾ýöÛ8þ|Ó¦Mû÷ï_¤{þÁ€)éÖ­ÛÒ¥K÷îÝëççwäÈ‘ôìÙSbzóæÍŸ|òIfffåÊ•7nÜ¡C‡:uê$&&Ι3'_kÉÊÊÒù222„ÞÞÞ¹töòòBT¬XqÛ¶m§OŸ>|øðo¿ý{êÔ©•+WöîÝû“O>Ñh42W]ªT©ì–G%'' !îß¿ïääTü‡€%"80%úà8nÜ8é´þ<õ£G>þøãR¥J­^½ºU«VúYþùçŸü®åÆZ­Vzìëë+„([¶ì´iÓòžK£ÑH÷Bddd9räƒ>oß¾}```±î–Y³fݾ}»aƧNš3gÎÂ… ‹uu,c˜’*UªÔ©S'!!áܹs¿üòK•*U7n,½tîܹ¬¬¬† ¦Fñ¿ËVòftFûçŸÖ?vwwwss»|ùòùóç §ÉÊÊêÕ«WëÖ­ïܹsýúõöíÛ¿þúëúWK•*(]ÍsíÚµbÝ'?ýôSDDDÛ¶mׯ__½zõÝ»wg¿i ‚##]"3}úô´´´Þ½{ëÛÝÝÝ…/^¼sçŽÔ’••õý÷ßoܸQ‘žžžãÒ*W®,„ذaCZZšÔrüøqýMv$&LÐjµ&L¸pá‚ÔòèÑ£>ø 66¶víÚ®®®žžž>üã?Ö®]«/U^¹råðáÃBˆb½Ÿâ?ÿü3gΜråÊ}üñǶ¶¶Ÿþ¹µµõìÙ³ ?¸²ãT54wîܸ¸8kkë=zèÛ}}}ùå—W^y¥Q£F:...îÞ½{\¿~ýþóŸ‡J7Ö1Ô£GuëÖ:u*00°V­Z·oߎwttôððxúô©4MpppLLÌ?üУGoooggç„„„´´´ªU«JwÞ¶²²š6mÚÔ©SçÏŸÿÕW_U¬X1--íòåË:®ÿþþþþÅ´+t:ÝÔ©SSSS?ûì3)7×­[wÈ!_}õÕìÙ³-Z¤ô±`n¨801*ThÚ´©¢uëÖ*T0|éË/¿;v¬———tÇ6mÚìØ±cúôé´¶¶Îñ+UªôÝwßuèÐÁÊÊ*::ú¯¿þòöö^³f«««~FóÅ_,Y²¤}ûöZ­öÊ•+>>>&Lرc‡³³³4MppðºuëÚ¶mkggwñâÅ´´´–-[®X±bÖ¬YÅ·+6lØpìØ±V­Zéz !ÆŽ[¥J•ˆˆˆ½{÷*z ˜!MÞ·Ëñøñã”””J•*É¿, Á²pª² Á² Á² Á² Á²ü¶ hí~¤WIEND®B`‚statistics-release-1.6.3/docs/assets/hygecdf_101.png000066400000000000000000000770231456127120000222720ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A}ÚIDATxÚíÝy\TÕÿÇñ3€ n€!(nH n¥(Yî¢fî¹Q¹¤~ÕR3Í,—Ô2Ë—RÛ\òk®YŠ¿úæ^¦¢˜¦æ )Šâ¾©( Èpܺ³qaî,¯çÃG1çž™û¹g†™7÷ÞsG'I’òâ¡upG¨Bp€*G¨Bp€*G¨BpÜKBB‚î¿þú«ÑÒ3gÎ(Kÿ÷¿ÿi]¬ûÚ°aÃÿþ÷¿ÿýï)))jú/\¸P~Öžxâ {Õpÿþý ´oß¾R¥JÞÞÞ5kÖìܹó'Ÿ|’••eÔÓðE¥ðòò xòÉ'ß~ûmÓ­0{#ãÆÓúy`ÌKëÆúôés÷î]!ĶmÛÚ¶m[ôüñǽ{÷>wîœÒ’”””””´iÓ¦9sæ,\¸°sçÎÖA¯×§¥¥¥¥¥íß¿ÿË/¿Ü´iÓSO=UôÀ¾ŽàôÊ”)"„¨X±¢í–˜˜Øºuk9¹Ê¼¼¼rrräŸ/_¾üÜsÏýöÛoõë×7½oPP"##CÙÑxóæÍèè褤¤%JX¹‹­Ç€1U(DÉÉÉ÷ïß׺ ××·oßääääääŸ~úÉöG{óÍ7•ÔøŸÿüçÈ‘#÷îÝ»råÊâŋ˔)#„ÈÌÌ|þùçÍÞwÕªUr%7nܸpáÂþó¹ýÒ¥KóçÏ·~#“&MÒz\#8°fèСò gUªT1l¿|ù²r.Z||¼âí·ß–oöèÑãÚµkýúõ  úøãMùúõ믽öZÓ¦MË”)óè£öêÕëСC† 0''çwÞ©\¹ò;ï¼£tHJJêÑ£Ç#<2xðà+W®¼õÖ[ò]Þ~ûí|­K–‘‘1uêÔ§Ÿ~:(((((¨]»v“&MJOO7[Uttô™3gúõëR¹rå>}ú?~\±oß¾çŸ>$$ä‘G‰ŠŠÚ¹sg¾6\Þ%·µk×N§ÓeddXKç8Þ¸qãµ×^kÖ¬™¯¯oHHHÇŽ7mÚdýß¶mÛ† äŸ'Nœ¸dÉ’úõë{zzV¬XqÈ!«W¯–%&&ž:uÊúCU©ReÉ’%=zôo~øá‡ò†pbw"‡<Ù¶mÛŒ–&%%)KüñGI’¶mÛ¦´=zTéùÍ7ßȵjÕ’[¦L™"·´iÓæÑG5z«:nìØ±Jå»wï>pà@ùç)S¦ÈK÷ìÙ`x÷ÐÐÐçž{Ψ›ÊuI’´ÿ~Ó²…UªT‰5­ªAƒF”/_~Þ¼yÅŠ3ZÑÎ;Õ3qâDÓîÞ½k}@,X ߌŒŒTÖõóÏ?š>ÚСC­¼Bzöì)w+W®Ü;wL;têÔ©Aƒ 4ˆ‰‰Qó¢2ŒÎ[¶lQs‹à¸Ãìààà«ZµªQpÌÉÉQ‚ÎG}¤}äÆwÞyGnQb,00°eË–¥K—VZ6oÞ,÷¼}ûvùòå•”ùî»ïöéÓÇÃãï ÿýï°råÊʃÈ9)+++88Xn)^¼xÓ¦M•›FÁQåº233ås…ÞÞÞÏ<óL§NJ–,)·T¨P!==Ýt3=<<êׯ_®\9£dV»víJ•*)7£¢¢Ô“ššš””¤¬zÙ²eIII¹¹¹ÖÄ48®ËÏϯW¯^QQQʽV¬Xaé¢<ÝÖ󥥕i ÌÍÍ-^¼¸¼ô½÷ÞSs‹à¸Ãlëäà(IÒ«¯¾*·´hÑBnÉÍÍUv¶ÅÇLj‰ªK—.÷îÝ“$éòåËááárc³fÍäžÊ¹k½{÷V ûüóÏåÆªU«š>`:uV®\¹oß¾3gÎH’ôé§ŸÊí¾¾¾‡’$I¯×:Ô48ª\×´iÓä–²eËîß¿_nûÌôȬÊumܸQ^4zôhå4ÁÇ{lìØ±òÏJEddd§N„ÅŠ‹ŽŽ–ýüüF-×£ŒÛ­[·òULžLÄÔÖ­[åÞ|óM%þŽ5J>Ê|ÿþ}½^oz/Ã:vâÚâ‘G1}|Έà¸/ÓC†×íS4mÚTž£×ëþùg!„ü_!„rN¡¡zõêΤyæ™gä$I:{ö¬B™TñÌ3Ï(3lJ—.­D™Ó§O>`DD„Qˆ1|¥ÑÇÇÇð¦iO+ëJLL4}@!Dûöí•n¹¹¹†‹ F+W“ ÖétFù-&O¦bJ9]µY³fJc… >|øðá}ûöÉiÕˆúè£ò´$+®]»öòË/ÇÄÄÈ7_|ñEÃs(8%­§u(RÖ¯œbxZ›r9Ó; !êÔ©ct_£ë8·mÛV™ ááá‘ ÷ü믿”¯!nݺõÔ©S{÷î­ìl3½0d÷îÝÖuþüyåÒ€%K–ŒŠŠ2:ò«\ŽGåº233彡BŸ.]º<ûì³Ê |+V¼}û¶•ª–.]*7Ö«WOiŒ‹‹“½¼¼òUŒ$IÊ•›4i2kÖ¬ììlëbz9žëׯ+ƒÔ·o_Ãóúé'+/’cÇŽíû 0œLãíí}øða³¯ åâ Fg‹–/_^¹*Pž¯C‹à¸—GI’êÕ«§,}÷Ýw–*±¦eË–†—“Ó‚ ;ÿôÓOf'm >\¾Øµd5'I’ôõ×_~Wºtiå׆ߣf]’$ýþûïfÏ;¬V­ÚîÝ»M7³ÁQ}1ýúõ3\júÍ1F£aö›cþïÿþÏ×××t]“&MÊóugiâvHHˆ|K³/*³Ê•+·wï^õ¯C‹CÕÔRŽV ó©eåʕ۳gÏK/½Ô«W¯_~ùeذa†}ºvízôèÑ¡C‡6lذdÉ’¡¡¡=zôˆ?~ž3?dC‡ݶm[Ïž=ƒƒƒ+UªÔ³gÏ={ö˜{¡r]7>vìØÛo¿Ý¶mÛ   €€€6mÚLž<ùøñãÍ›7·×ª,fΜ9ýúõ ,UªT½zõ¬LÖ¶¢GÇ6lØOÈó¾Íš5;}úôœ9sZµjX¢D‰ðððnݺ͙3çäɓʑ}+<==Ë•+׸qã·ß~;11ñ©§ž²×ÐNúç<°nïÞ½M›6BÔ©S'!!ÁhéÛo¿=}út!D÷îÝøáM*8pàòåË…óçÏ>|¸Æã.‡=ŽÔÚ»w¯üƒ¥i1Eæå—_Žˆˆˆˆˆ9r¤Òx÷îÝ_~ùEþù±ÇÓ¶BpI\Ç@$IZ¸páÅ‹•oˆÖ<89rDqäÈ‘*UªDGGߺuküøñòüߺuëFFFjøàƒû÷ï !V®\ùÛo¿i]\YÁražï™fSî“g¹Ýö–¡~-ö*ÃÆµXê :I’ŒÊ°äÔh6ÕÉmf÷!>HÁ;¨[Ë¿›Ve¨_‹½Ê°q-Z–¡Ó IÊc-çBãÔhÜç߇5yVÜé×Þ¥ÍkÞ¼¹üÃŽ;´®®Ãú{ú\˜ç{¦•·2¹Ožälì mê×b—2l]‹0¨÷ïuIÒé„̤FÃnÂ\jü·ƒ¤–Ã–áƒØÔAÝZ µ õk±K¶¯E³2þy[ù';þ³˹ÐLj4èc澦«s“_{×Ep´¿ððp­K€ÃJ´ôò :]¢"<<üԩݰ¿;ž:•hØÍðOe롃[•QùûÃZþÙÊ#Èiìïý=Bgiêª$$ÝßG•Ç7[F‘LÝ(‚µ8HN±±òkÍLI>=õßGøçU©3é&÷Ð)K-Ρvç_{7È‘ÇB‘˜˜hûƒ@î¼CjtLCÙK‡§OJ”$!D¢¥GVßš”71K}”G°~’·•åÙÁÑʰ¾˰mc%ù Qsç,þó¹m°WÒbJxøóÜð8æ?÷”Ìo¬ÐYß¿•g•k–§eØ· ëk±± ÃuÐ2þyÁå±ù%(IBþ›CyÞ,þcxãá%òÿ% ¥ºÕ¯½ëâr<@á2<£F¡¼/ýS–š6 ƒ¬iéÏ`£ÙV:X/Ì–X†#oì?G¢ :œm¦üû÷³Z2hüûص$ IÙs©Ì–ýw‘\†ÁDZ!éÌl¬ÉÜäüv(šµä«Œ¢Y‹ã–!IB§3ó ÊaVÃwÓ7 ù$ùµÁäIüûúú·Õp®Œ¹¿jÜê×Þ¥BgôÞbøžcøOél´Èè^BÅÛÙ>–Λ´c‡-CûUŽ›®ÅdîÂßÙÿ$£˜ø»]n´4Æ4@˜N¦1Ju–æ&«ïP4k)@E³Ç-C2> üïù†¡ÐðÍåáFss¨Mr¡™s"îãV¿ö®Žà…<Ï¥¶ž ðvgÔÇÊ|{u°R†õES†£m¬²+Ñ05þý_e·¢É‘k£=”ÂÂl5Óu•@aen²ÊE³–—Q4kqÜ2LÞ̬åáÃÆÌåÂYœ+cµƒpÑ_{7À9Ž@a±r@ÙÙ3mŒó|7³2ùÏz‡<A}‡¢Y‹ƒ”¡ªÏ?3ZÌ/4:‹ÑìIl’ÅÝNÿ6Jy$ +3m­w°Tj¾úØq-¶”átk±sæ›™Cýð[•9Ôæ6ÛÇA~!‹è×Þõ±Ç°ÓDhzÄÙ´]Í_¹ù’çÃÂòžøï>Ð.e˜R+'¥™mQs¸Syd³?ç½!ΓŠÂÂá ¼Äè5¥þê<gäëÈ~íÃÃÂò~WDp„زe‹Ö%ØÊʹÔù ˆ¶ÿÅëãéh, ©š,heD¾Baú;2^¥6Qyu~ÿleŽ€T^çKå¹Ô¼-»ë§ª™a¸Hë­#Qy6Œ•¨yÇAþó0}úôÄÄÄúõëk]”¥ Ά?[Ÿ¶×ct˜Pi4]”ç‘hÀ"5—WP3MØp&Ƕ2:àcºÑÒ½àªL“_ž_‘„õw»Ÿ@ °Ç°‹<¯¶wfiî‹!2% ÈÊ»oF(G €¬|¿‹ÙvÁÛ¸ë ­ji‘š/ÿò'ÿï>ÉgÏj]4\‡ª2JnüÍ¥°(ï«0À»´ÃGÀÜû›KÝ”¥}‡Ö¿²EpTöÅ»ŠÁ°•Ûs©›2{ÜÙèÀ´Ö5ÂÕñîƒ"GplÂÕvÜ™Qv´r š ›˜}CáÝZ 86áj;nNÉŽœ¹ˆ¢Æ»´ÀäÈŸ<Ïnìb„í,]ÜËÒŽF H»á­ÛM˜~m ÙvÀ&f¿KšKÅBkª€‚SŽPsFØŸÑ ‹¤F8‚# gœÃˆÑydGØ_Káj(³³a¸¾7ìÀÒ©†í„Hh„àXcö|þò‡°|F#©¶â‹aàÀ8T XczM4R#LMæ‹€Q8øb8‚#÷kR#€¢ÃÃÀñ¼)oפFE„/†CâGÀ,íedï#ÜÁ®O‹¤Föaö<Þbà˜U ¤rwoòŒ(rvTÞDHpG¸ £7p9/½Ï€M”ý޼³Àáâä·t²#;Ps8ƒ·¸4‚#\™iL$;(8³‡3an„É1pY–"ïðì@y‹±tÍXÀᲈ ‹Ñ¦dG¸ ‚#Ü!€Ý˜=œAv„{p—s×®]»fÍš¤¤¤’%K¶jÕjܸqþþþVúggg/[¶lóæÍÉÉÉþþþ=öØ«¯¾Z³fM­· 5K‰ò*Ü€[ìqœ3gΔ)SΜ9óÄO”.]zݺu/¿ürVV–¥þz½~àÀ³gϾyóf‹-*Uª´uëÖgŸ}öÀZo À‘áf\?8&&&.Z´(((hË–-‹-Úºu뀎;6{ölKwùþûï:Ô±cÇ_~ùå³Ï>[±bÅ7ß|#„˜2eŠÖ[ ×ŽkÖ¬ÉÍÍ3fL`` Ü2qâD__ßÍ›7çææš½Ë¡C‡„ôòúûP~“&Mj×®}îܹ¿þúKë ІëÇxxx´nÝZiñôôlÙ²eZZšMU¬XQa˜%Iºuë–‡‡‡%Ü‹GI’’’’Ê•+W®\9Ãö°°0!ÄÅ‹ÍÞ«K—.ÞÞÞ|ðÁÞ½{³²²®\¹òöÛo_ºt)::ºlÙ²Zo€6\|ÿYff¦^¯÷óó3j÷õõïS4¾bÅŠAƒ 4Hiìß¿ÿ¤I“T®7<<ܨeË–-Z†»té’Ö%¸ÆÓîR»cHí‹ñ´Q‡´.ÁQ¸xp”§N—*Uʨ½téÒBˆÛ·o›½WzzúÇœ‘‘Q·nÝÇ{,---..îÇ|ê©§ž~úi5ëMLLÔzÓ]MõêÕµ.Á¥0žvÇÚCj_Œ§-L?ÖM÷¹ Ž~~~:.33Ó¨ýîÝ»âŸýަÆÿÇLœ8ñ?ÿùÜråÊ•^xáõ×_ÿé§ŸBCCµÞ, ¸ø9Ž^^^¾¾¾¦{ÓÓÓ…Ê-=ü}òù 5jÔÐzƒ´áúÁ1::ÚÃÃã‹/¾ÏkB,Z´(55µW¯^ÅŠ“[222’““åIg>>>-[¶<þügŸ}¦\!üôéÓ_}õUñâÅ£¢¢´Þ m¸øä!Dppð¸qãf̘ѭ[·-Zœ?~ß¾}uëÖ}饗”>±±±¯¿þzÍš57lØ „˜>}zïÞ½¿úê«M›6Õ©S'--í?þÈÍÍ2eÊ£>ªõhÃõƒ£bðàÁåË—ÿñÇ7mÚT±bÅþýû3F¾"Y›6mZ°`A\\ÜÎ;ýýý[µj5bĈÇ{LëMÐŒÎèL>Ø.<<œë8ÚWrr2W ³#ÆÓîR»cHí‹ñ´;·ý¬wýs`G¨Bp€*G¨Bp€*G¨BpàÄtB§u àFŽP…àÀÉXÚËÈÞG(lGNF’iFÔ $ø,(\GÎÇ(;’ h8%%;’ Èxi]¨¥æìFB$‚#§a •¼HX€¢Á¡jNI9Bmv® `:^ZÀCŽœÑydG(GNÆìlŽVÃ>ØÅXEpàdȈ(D’d>;(!Á€S#DÂþL³£N'$^i€GŒfGR#`€Ëñ „fv4š¶"áÞŽ!LB¡œIŠ€U`B9BÍ´ÀÁ€‡ž×hiž5à–Ž0 CvþApà–æPs¦# „ 8ð/"`Á®€ƒH 9xÁª  ÁÎÊìáiŽYPxŽpV¦×Çàe(TG81ÃìHj °áÜ”ìHj °yi]o*Ïn$J`_G8ÃD(¡f§#E€CÕpb†ç5ò]²6‚#œ•él²#…Šà§di5G«(<G8%"EàW@Ž   Áª  Áª  Áª  Áª  Áª  Áª  Áª  Á€ãÒ Ö%þEp€*GŽ…½Œà°Ž‹$$ÓìHšG@pàpŒ²£Nè$!i]€àÀ!)Ù‘ÔŽÃKë@«£ "@CGÁ4*y‘°‚CÕ‘r„Úì\Àt¼®€|#8p8Fç5’a7„EÀ6GŽÅìlŽVÃ>$É|v$Pê82" —ivÔé„Ä«P…àp3†Ù‘Ô䳪8.ö>žLGË-†í„HÀ*‚#À=…B9/’üàP5Àý(©‘i1@~nÆð¼F²#G€;1 CvT#8܆¥9Ôœé¨Cp¸ "`‚#À-"ü#8@‚#T!8@‚#T!8@‚#T!8@‚#T!8@‚#T!8@‚#T!8@‚#TñÒº€"²víÚ5kÖ$%%•,Y²U«VãÆó÷÷·~—ãÇ/\¸0!!áîÝ»ááá£FzòÉ'µÞ͸ÅÇ9sæL™2åÌ™3O<ñDéÒ¥×­[÷òË/geeY¹ËöíÛûôé³}ûöÀÀÀˆˆˆÃ‡0`ûöíZo €f\?8&&&.Z´(((hË–-‹-Úºu뀎;6{ölKw¹}ûö„ ¼¼¼V¬Xñý÷ß/Z´hõêÕÅ‹ûí·sssµÞ m¸~p\³fMnnî˜1cå–‰'úúúnÞ¼ÙR \·n]zzúðáÃ5j$·<þøã;vLMM=~ü¸Ö  ׎ðððhݺµÒâééÙ²eË´´´C‡™½Ë®]»t:]÷îÝ gΜ™˜˜X¿~}­7@.>9F’¤¤¤¤råÊ•+Wΰ=,,LqñâÅÈÈHÓ{ÅÇÇûûûW¨PáàÁƒ‡¾uëV­ZµÚµkçãã£õhÆÅƒcff¦^¯÷óó3j÷õõBüõ×_¦wÉÎξsçN5Þ}÷ÝÕ«W+íUªT™;wn½zõÔ¬7<<ܨeË–-Z†»té’Ö%¸ÆÓîR»cHí‹ñ´Q‡´.ÁQ¸xp”§N—*Uʨ½téÒBˆÛ·o›ÞåÎ;Bˆ¤¤¤”””3f´nÝúÞ½{111_~ùåk¯½¶aÃ5ûµÞtWS½zu­Kp)Œ§Ý1¤vÇÚãi ÓuÓ=DnÂÅÏqôóóÓét™™™FíwïÞÿìw4âíí-ÿðñÇwïÞÝÏϯB… ¯¾új=.]º´qãF­·É…†ò~€ö+8~òÉ'IIIv|@///___Ó=‹éééBežµ¡R¥Jy{{ûøøDEE¶·k×NqòäI­ @Ž-ZÔ¹sç^½z­X±Âì ˆ”––&'EErr²¼Èì]‹+¦Óé å#Ô999Z’»xxø­5€¢áXÁqذa•*UŠŸ>}z‹-FŒ±uëÖììl[³mÛ¶z½~÷îÝJ‹$I±±±þþþfž~êÔ)ÃFùÚ=µjÕÒzÜ…$ÇDNH’ÖeàÆ+8Ž;ö×_ýöÛoûôéSºtéíÛ·=ºY³fï¾ûî‘#G ö˜ÑÑÑ_|ñ…|^£bÑ¢E©©©½zõ*V¬˜Ü’‘‘‘œœ¬L:ëÑ£‡bÊ”)Ê^ÏãÇÿ÷¿ÿõõõ}úé§µ$7b˜IhN'9ê§qNNή]»Ö¯_¿}ûö{÷î !ªU«Ö½{÷gŸ}¶R¥Jùz¨%K–̘1£R¥J-Z´8þü¾}ûêÔ©³dÉå2=›6mzýõ×kÖ¬¹aùeáÂ…Ÿ~ú©¯¯odddffæt:ݬY³:vì˜çêÂÃÙUmGrvtÔשSJNNf~¥}1¤vÇÚãiwnûY︗ãñòòjÓ¦M›6m233cbb>ýôÓóçÏÏ›7ï³Ï>{â‰'zõêÕµkWOOO55xðàòåËÿøã›6mªX±bÿþýÇŒ#_‘Ç’aÆ,_¾ü·ß~ó÷÷oÛ¶í¨Q£jÖ¬©õ¨¸5g7’#(zŽ»ÇQqóæÍ_ýuË–-{÷î•g¥”/_¾X±bW®\BÔ¨QcñâÅ+VÔºLcnûWHaP³ÓѾØ÷`w ©Ý1¤öÅxÚÛ~Ö;âÇÔÔÔ_~ùeëÖ­û÷ï×ëõBˆ€€€öíÛwêÔ©Q£FBˆß~ûmΜ9ñññï¼óÎ×_­u½(,†ç5Êñ‘쀆+8®\¹rëÖ­ÌÍÍB”+Wî™gžéرcdd¤áQéæÍ›7jÔ¨qãÆкdÓ˜Hv@[Žßÿ}!„ŸŸ_ûöí;vìøä“OZ:‹ÑÇÇÇÛÛÛSÃ.,DR#r¬àØ«W¯N:5iÒDͬv7º0"ȱ®ã¸yóæ½{÷ZJ£Fzæ™g´®8{6Y뀃ÇÌÌÌXZtáÂ…Ë—/k]#€›ÒþPullìˆ#”›Ë—/_¹r¥i·ÜÜ\I’ªV­ªu½ìC't’à¤p&ÚGOOϲeËÊ?ß¼y³xñâ%K–4ÛÓÏÏoâĉZ× à¦´ŽÍ›7ß·oŸüsxxø /¼0iÒ$­‹P(,íedï#8탣¡!C†DFFj]€Â" É4#’ÀY8Vp?~¼Ö%(\FÙ‘ÔNDãà¸jÕ*!DãÆkÖ¬©Ü´®_¿~ÚÖ ÀFrv¤F*¾i (Ç÷Þ{O1mÚ498Ê7­#8ÎHNŠy¶“#aÂ"PÈ4Ž£FB<öØcòÍ7ß|SëP(LÏk4ÛØÄÒWÚ(;Ñ88¾ú꫆7_zé%mëPä#Ô†ÿÕº"¸ÓìHjìDZ¾9€Ë3JŠÊùŽ€ÝÈÙQFjìJã=Ž;wîÌï]Z·n­mÍ ÌìþEö;ÂþäìHjìMãà8lذüÞ%11QÛš˜¥tHj„­t:UíäHÀ6Çnݺi=çg”å¼hi® €‚Ò88Κ5Kë  ö2¢°Èa‘ì&Ç\ˆiL4œ+À6|s ÀUXÚ¹ÈGÀNøæ€« …Œoޏ"B$Pøæ¨âГc222²³³µ®Bh¾ÇѬcÇŽ}ùå— )))•*UjذáÈ‘#«U«¦uiîËáö8Λ7/::zçÎ)))%J”ðöö¾xñâÿþ÷¿N:­^½ZëêÜ—cÇ]»vÍŸ?ßÓÓsÀ€Û¶m;zôèáÇwîÜ9dÈ!ÄôéÓ9¢unʱ‚ãêÕ«%Izã7&Ož\¥JN'„¨X±âøñã'L˜““óÍ7ßh]#€›r¬à˜P¢D‰š.êß¿¿Ï±cÇ´®ÀM9VpBT¨PÁËËÌ”y–Lff¦Ö¸)Ç Ž/^LOO7]”‘‘‘œœ\·n]­kpSŽ£££%Izë­·rrr Ûõzý¤I“ôz}Û¶mµ®ÀMi|ǽ{÷ÞôôôìÙ³çºuëž~úéèèèÐÐPN—œœsñâÅððð:h[0€ÛÒ884Èlû•+WæÍ›gÔ˜˜˜Ø´iÓÄÄDmkpOÇnݺi=PEãà8kÖ,­Gª8Öäë&L˜Ð¦M­«pSïq4uóæÍ_ýõüùóFíYYY¿üò‹§§§Ö¸)Ç Ž×¯_ïÓ§ÏåË—-uèׯŸÖ5¸)Ç Žß|óÍåË—Ÿx≮]»nܸñ÷ßçw|||Nž<¹råÊ~ýúMž}útíÚõøñãAAA¡¡¡ZWà¾.8ÊÈÈ(V¬XéÒ¥›4i¢u-î΃ã±cǾüòË„„„””J•*5lØpäȑժUÓº4÷åXç8 !æÍ›½sçΔ””%Jx{{_¼xñÿû_§NV¯^­uuî˱‚ã®]»æÏŸïéé9`À€mÛ¶=zôðáÃ;wî2dˆbúôéGŽѺF7åXÁqõêÕ’$½ñÆ“'O®R¥ŠN§BT¬Xqüøñ&LÈÉÉá+´âXÁ1!!¡D‰4]Ô¿¾r@+Ž…*Tðò23eGž%“™™©unʱ‚cDDÄÅ‹ÓÓÓMedd$''×­[WëÜ”cÇèèhI’Þzë­œœÃv½^?iÒ$½^ß¶m[­kpS_ÇqïÞ½†7==={öì¹nݺ§Ÿ~::::44T§Ó%''ÇÄÄ\¼x1<<¼C‡Ú à¶4Žƒ 2Û~åÊ•yóæ5&&&6mÚ411QۚܓÆÁ±[·nZTÑ88Κ5Kë€*Žø]ÕBˆk×®8qâüùó< ­]»vpp°ÖE¸5‡ Ž7oÞüüóÏ¿ûî;½^¯4zzz>ÿüócÆŒñõõÕº@7åXÁQ¯×1âðáÃ%J”h×®]µjÕ<==Ï;·cÇŽo¿ýöĉ«V­òôôÔºLyÓ $$­«Ø“cÇ¥K—>|¸AƒŸþy`` Òž’’2jԨÇ/]ºtÈ!Z— КN'$þ2Ššc]|÷îÝ:nîܹ†©QQ¾|ùyóæyxxìÚµKëX¤:­K"Ç Ž'Ož¬V­ZÅŠM=úè£'NœÐºFIB2› ”°/$@cŽK”(‘••eiiVV–Ö5°Æ4;r²#ìF’ÌdGÒ$P„+8Ö®]ûúõë‡6]éÒ¥Zµji]#ìŒ÷|×c˜I°3£ìÈ™Ž@Ñr¬à(‘ÌèÑ£ÎeŒ‹‹{õÕW…]»vÕºFfè„ÎðŸÒh´Hë2á”ìHjŠœcͪîÔ©Sllì?þøÒK/U¬X1$$Dqþüù+W®!ºvíÚ¥K­k„ðnïzLw+Ê1‘ݰKÇ&ŒÚyg ™cG!ÄÇüä“OÎ;÷êÕ«W¯^•Ë—/ÿúë¯÷èÑCëê`òþÓwx¥ËPR#‡ªaFo J^ä-(Zu:]Ïž={öìyãÆsçÎI’¤u]°3ÓìHjtrX$;¢°Èo†ÿPT+8^ºt)77·jÕªBˆÀÀ@£«9ÂÅžãΛ¿Ë0‰dGؓћÙ(ZŽ;uêtÿþý={öh] …Ùó””ÓÜ| 8)K‘Ôû0›ÉŽ@r¬YÕ5kÖBœ:uJëBPX$ÉøŸÙv8)" —¥wÞ5€¢âXÁñí·ßöññ™?þ½{÷´®EAÞËhöš¾pv„Hp=Žu¨:00ð“O>yçwºuëÖ­[·ªU«–-[Ö¨OëÖ­µ.ö¡œÚ.8Ö ¿x¿´àXÁ1**Jþ!55õóÏ?7Û'11Që2a¦1‘쀃s¬à(s \ž¥€HjÀ‘9Vpœ5k–Ö% (pFŽ59ÆHvvvff¦ÖU p"p޵ÇQvúô鯾úêÈ‘#×®]ËÍÍ­P¡B½zõFU«V-­Kp_/^üÉ'Ÿäææ !J”(áééyíÚµk×®mß¾}ìØ±/½ô’Ö¸)Ç:T½wïÞO>ùD§Ó 0`Û¶mG=|øpllìСC=<<>ýôÓ½{÷j]#€›r¬àøí·ßæææŽ7nòäÉUªTÑétBˆ *Œ7nÒ¤I¹¹¹+V¬ÐºF7åXÁñøñãÞÞÞ 0]Ô§OŸ’%K?~\ëܔǜœœ«W¯yzzš)ÔãbÅŠSp4â@ÁQ§Ó•,YòâÅ‹·nÝ2]šžž~îܹÇ{Lë2Ü”GOOÏž={æææN˜0áþýû†‹²³³'Nœ¨Óé† R°_»vmtttDDD³fÍ&MštóæMõ÷½råJ£FƧõhɱ.ÇÓ·oß„„„;w¶k×®W¯^Õ«W×étÉÉÉÿ÷ÿwíÚµN:ݽ{wçÎJÿÐÐЪU«æù°sæÌY°`A©R¥žxâ‰óçϯ[·îôéÓË—/÷ññÉó¾’$M˜0áîÝ»Z €Æ+8vêÔIþáÆóçÏ7ZºiÓ¦M›6¶¼ùæ›y^Ù111qÑ¢EAAA111Bˆ>ø`ùòå³gÏ~ûí·ó,iéÒ¥û÷ï×z`´çXÁ±[·nùê_£F<û¬Y³&77w̘1rjBLœ8ñÿûßæÍ›'Ožìáaí`ýéÓ§çÌ™S«V­“'Oj=6s¬à8kÖ,»?æ<<€qñà(„ JKK““¢"99Y^dÚÿôéÓBˆ¯¾ú*ü={öBüôÓOááá]ºtÑzƒ´á⇪…mÛ¶MLLܽ{wçÎåI’bccýýý#""LûW«VMé)»}ûv\\\pppDDD… ´Þ m¸~pŒŽŽ^°`Á_|ѪU+yNÌ¢E‹RSS‡Z¬X1¹OFFÆ7Š+V¹råæÍ›7oÞÜðâââ"## ã2“ÎÂõƒcppð¸qãf̘ѭ[·-Zœ?~ß¾}uëÖ5ü®ÂØØØ×_½fÍš6lк^åúÁQ1xðàòåËÿøã›6mªX±bÿþýÇŒ#ï}€Jn…]»víÚµ«¥¥:uêÔ©“¥¥uëÖ庌®?«vAp€*G¨Bp€*G¨Bp€*G¨Bp€*G¨Bp€*G¨Bp€*G¨Bp8œê¡¡Z—À ‚#T!8ƒN§uò@pP:Ág<ìM’ÌdGÒ$àHއa”u:!IZ×à_GjYÚËÈÞGØ“’I€ãñÒºNC’Nè$ñÐg¹i ?VF."D€à Œ²#©v`š•¼HX ‡ªäœ©…D9Bmv® M±Ç@ÞÔœÝHˆ„×(gGö;ƒà o¦ç5šmlb6#’G¡jù£¡VŽYöAFÁ@>×Hv·Bp –ÙÙ0dG†ä³gµ.€GjY:£‘3ÀMaÜÁª  Áª  Áª  Áª  Áª  Á…K§Óº`'G¨Bp„ýYÚËÈÞGœÁö'If2¢N'$IëÊ€ Ž(FÙ‘Ô€ 8¢°(Ù‘Ô€kðÒº¸5g7"pRGØ“Q(Tò"aÀ¡jåµÙ¹2ÀéQ(ŒÎk$;àް?³³aÈŽ8;‚#ìÏÒœé€S#8¢ppG¨Bp€*G¨Bp€*G¨Bp€*G¨Bp€*G¨Bp-¾·pZG¨Bp>ö2.à(|’d>;(§Bp Óì¨Ó IÒº,ù@pÃìHjœ—Ö\š•#Ô†‹‘€3 80C't’àƒö`šå¼HRœ‡ª!„N0GEBIL‹œÁ€BHB2› ”°'ÃóÉŽ€"8ø›ivä€5ìÉt6 Ùp6Gÿ2ÌŽ¤FØ“¥9Ôœé8&Ǧ;MÛ ‘° p GÆ¡P΋$EB$à´8T à!Êj¦ÅŒüËð¼FKó¬n‹àào¦³aÈŽCGBXžCÍ™ŽÁ€D€ Gf#¦ŽP…àUŽP…àUŽP…àUŽP…àUŽPÅKëŠÈÚµk׬Y“””T²dÉV­Z7ÎßßßJÿ¬¬¬ï¿ÿ>&&æÒ¥KeÊ” ù$ @Íz™®hwÕ«W׺—ÂxÚC 85ë¿Â¦ën;ÛŃ£ŸŸŸN§ËÌÌ4j¿{÷®øg¿£¿ÿþû´iÓΜ9S±bÅ?ü°iÓ¦Zo€f\<8zyyùúúšîYLOOB(ó¬MeggÏš5kÅŠÞÞÞ£F2dˆ¥‹>¸ ŽBˆ   ¤¤¤ôôô²eË*ò© AAAfï’››ûÆoüüóÏíÚµ›:uª•| à>\ÿr¼jÕª¥K—nÙ²å¾}û ïn}©“n”#hÙ²å´iÓŒñ¹pv®Ž£bðàÁåË—ÿñÇ7mÚT±bÅþýû3F¾")y¿cVVV||¼éR&V€kKNNÖëõM›6 U•ŒôôôÈÈÈ .ôîÝ; &&¦C‡;vìÏ}²¾ÔI7Ê>|xÏž=mÛ¶5ltÒçÂéI°·°°0­K(\†¯åçB})={Vëv)Œ§Ý9ÝÚñmÊì‚Thï ÷ïß×ëõ…60’$I7nBlÛ¶ÍìÒ©S§ !–.]*߯±cÇâââîܹS¦LW”””äááQ£F›7oÊ-µk×^±bE£F®_¿.I’Ñ5€å«¶¥¤¤X_ªz$¥aÆ-[¶lñâÅ´×èx£Ôû¬icRRRnnî´iÓz÷î]¬X±Ÿ~úéõ×_ïÞ½{||¼ü¶†_'!þùöÚ´´4ëKÕl£$I#GŽüúë¯ 0xð`KÝŠr£Ô”*§F!„N§‹ˆˆøé§ŸìR¶…ý\À‚#òÁð3@Þ¯ÀNGgZ=Tø@óR_¶}Ÿ‹<Ùò\ À8T ›8ÈgTR²#©…Á5ÞÆÿè£Îœ9såÊ•ÞÞÞ?þøæÍ›å$Bˆ²eËÆÆÆŽ7.&&ææÍ›Mš4Yµj•ò-vÖ—fggߺu+++KM/¿üòÒ¥KgÍšÕ¿e:¹&•¯²‹’-Ï LW°˜+ÂÃõ®Â¥$''W¯^]ë*œ•á^F+È‘¶pº—(oSZY¼xq||üܹsµ.Ä-ÊV¯¿nûKÄ¡jÀÅIB2ü—g;€BrïÞ½;v4lØPëBÜ¢l‚#àF”#ÔFç;({÷î­]»¶½¾‘²¡ ÎqÜ…Ñyrvd_#Pd¢¢¢äï¼q.NZ6 {·`6#²ß/GÀ-XÚ³ÈG€zGÀíœM>«u §Dp€*G¨Bp€*G¨Bp€*G¨Bp€*G¨Bp@{Õ«WŽŽÖº G€}¸ÆWŸ?xðÀËËK÷°òåË+nß¾=|øðªU«–.]ºeË–ûöí3¼»õ¥ÊÍÍýâ‹/êׯ_ºtéZµjÍœ9óÁƒŽ_ö±cÇžþù *”.]:22rΜ9999*ËvØrj^Z€INNÖëõM›6 UK—.-ÿžžyáÂ…Þ½{ÄÄÄtèÐaÇŽy.ÕPnnn·nÝ6mÚÔ½{÷Ž;îÙ³g„ ‰‰‰ÿýï¹ì³g϶nÝZ¯×÷èÑ£jÕªÛ¶m;vì®]»~øáç}.œž{ ÓºWsöìY­Kp)Œ§Ý9ÝÚñmJH"ÏŸíèþýûz½¾0ÇFÚ¸q£bÛ¶mf—N:U±téRùæ™3güüü¢¢¢Ô,µ.$$¤wïÞ…´Qß|óbÑ¢EJËsÏ='„8uê”e+ôz}NNŽ}Ë~öÙg=<<öï߯´ úè#Ö¿þúë£>òôôìÝ»w<0‹à(Ks¨ Ûí"7n,§F!DTT”¢OŸ>rjB´mÛ6...33Ó(8æääÈç,šõì³Ïš6&%%åææN›6­wïÞÅŠûé§Ÿ^ýõîÝ»ÇÇÇgff !Ê–-kØß××W‘––f}©šm”$iäÈ‘_ýõ€ä“ùÌÊïFݾ}[±|ùò=z,[¶¬J•*±±±C‡íի׉'l/;44TNBNñÓO?Ù^¶‘;w¾üòËIIIóçϯY³æÑ£G õ¹€%G@A…B%/ÒÇ€€åg9/š¶˜ÊÈÈèÞ½»ÅMÌ”ºsçNooïråÊÉ7|ïÞ½‘#GÊÓr…wîÜ1쟞ž.„(W®œ\¥¥j¶qÆ ’$UªTiݺuï¿ÿ~ÕªUí²Qr˜~ôÑG¿ûî»âÅ‹ !:wî5’$ 4ÈÏÏÏö²ssskÕªbéòv|.¸zìqœ¥=‹²ÇQ><ª¾``à´iÓ&L˜P³fÍŽ;úùùmݺõðáÃ~øa:u„ƒ ’¯’3räH??¿¥K—fffN›6M¾»õ¥«W¯~å•WþóŸÿ|úé§y–ñÑG1âƒ>3±-%„xå•WÖ®]ûôÓO÷ëׯråÊ›7o>xðàøñãëׯoDzíû\œ8qâäÉ“µk×:t¨Ñ¢ž={víÚÕ–çFp\¥#ƒŽsÄîÀ5^lãÇôÑGgΜ¹råJooïÇ|óæÍò´!DÙ²ecccÇsóæÍ&Mš¬ZµJù;ëK³³³oݺ•••¥¦Œ—_~yéÒ¥³fÍêß¿¿2¼Àbcc'Mš·nݺzõê­ZµJ¹ò¥˶£¤¤$!ĉ'Nœ8a´¨F]»vµå¹@éòûW òž˜˜¨u.%99¹zõêZWá蔌húƒÆÓîœnHy›ÒÊâÅ‹ãããçΫu!nQ¶zøpÛ_"fU.¢h¾½@Ý»woÇŽ 6Ôº·(…„ฎ"øö¶wïÞÚµkÛë«)šàGX£Ó Îeppj¾½C¸ÊÉg€S‹ŠŠ’¿óƹ8iÙ($GÀ¹ñ·w܇ªaL§SÛGã°ßÞp G“$ã˜Èk§`öÛ;´. àRŽ0Ã0;’‚ÙÙ0dG€}až’INÁÁ¿½à˜ƒ¿Y:‹Ñ¨ €Û"8âoF‰P>BÍNGgÄ^F@!áP5Ì0<¯Ñt® pOG3 Cv‚à#–æPs´ñ"°„à€öªW¯­u@ް†òÁ%Ά~ðà———îaåË—W:ܾ}{øðáU«V-]ºtË–-÷íÛgxwëK5qæÌQQQ[¶lÇŽQQQ<òHóæÍøáÃ¥N÷\¸.ÇÀ¿’““õz}Ó¦MCCC•ÆÒ¥KË?¤§§GFF^¸p¡wïÞ111:tرcGDDDžKµRºtéþýû5fee­[·®zõê[¶bÓ¦M;w íß¿¿OLLLÏž=¿þúë¡C‡æY¶Ãn”Ó“`oaaaZ—àjΞ=«u .…ñ´;§R{¾M~ŽþgÊýû÷õz}¡®bãÆBˆmÛ¶™]:uêT!ÄÒ¥Kå›gΜñóó‹ŠŠR³ÔºÞ½{ö*Þ|óÍŠ+¦¦¦ÚX¶B¯×çä䨷ÈǼB… ·nÝ’oÞ½{·jÕª•+W–oÚñ¹(Ào„Û~ÖíÏm_L…Çé>•ãiwN7¤v~›Rò¢év2zôè7ß|³D‰ÅŠkܸñ† rjB´mÛ6...33Ó(8æääÈç,šõì³Ïš6&%%åææN›6­wïÞÅŠûé§Ÿ^ýõîÝ»ÇÇÇgff !Ê–-kØß××W‘––f}©šm”$iäÈ‘_ýõ€l©[6J‘ššúÑG3¦råÊr‹íe‡††Ê©Q¡Óé"""~úé'û–ýþûï'%% !ž~úéjÕªåY¶íKŽ€„dšIИQ"Tòbáìq P~–ó¢i‹©ŒŒŒîÝ»[Þ3¥îܹÓÛÛ»\¹ròÍÁƒß»woäÈ‘ò´\!Ä;w û§§§ !Ê•+'×ci©šmܰaƒ$I•*UZ·nÝûï¿_µjU{m”bÆŒ÷îÝ{óÍ7Ö–²Ã ozx˜? Ζ²OŸ>™™¹wïÞ¡C‡>õÔS'Nœ°^¶íK8ÇprvTn’áX”#ÔöÝö¾¾¾VNó7{—àà`£lѾ}{!DBBBPP‡‡‡Ñ±ÎÔÔT!D¥J•¬/US­$Ik×®]±bEFFÆk¯½fÇ’Ý»woÉ’%={ö4Ü@ÛËööö.¤çÂPÉ’%Û¶mûñÇÿõ×_?þøca?°„=Ž€ÓP²#©ŽÅè¼F9;:Æ÷ä÷ðèùóç7lØÐ¦M›Úµk+òžªjÕªyyyÕ©Sg÷î݆wÙµk—N§«[·®õ¥jªíÒ¥K·nÝ„ýû÷_¹rå† ºtébûF)Ö¬Yó×_ 2İÑö² 鹨¸qc÷îÝW®\ùüóÏ+òÜmI’ û¹€EZOëvAn;E¿ð8ݵNìEHBÍ¿ü>¬ÛŽgáqº!-Šë8Úõó%$$¤{÷îÊÍ#GŽ!/^¬´Èso¯]»ftÇ[·nåëðúõëÞÞÞ-Z´ÈÎΖ[ôzý /¼àåå%_îG¾XÏúõë•þAAAíÛ·—oZ_šç6*—ã¹~ýºŸŸ_õêÕåëÎØ¸QŠgžyÆ×××ôB˜6–møÔH’4hÐ ???ÛËNIIñòòzæ™g /©#Ï?zô¨}Ÿ .Ç£ÁÑþÜöÅTxœîS¹ð8,b<íÎ醴°Þ¦ mgDƒc̘1CQ­ZµáÇOœ8Qþ¢‘?üP^zûöíúõë—-[ö­·Þš1cFíڵ˔)³wï^5K¿ýö[??¿×_ÝÒ6^|þüùBˆÉ“'Ûk 333½½½;wîlºÈƲUÇ/âݨQ£I“&Mž<¹qãÆBˆ1cÆØþ\!8ªÇ¡jÀiÈG¨ ÿ«uEp6sÙ‘?þÑG9sæÊ•+½½½üñÍ›7ËÓb„eË–7n\LLÌÍ›7›4i²jÕ*å[ì¬/ÍÎξuëVVV–š2^~ùå¥K—Κ5«ÿþÊtr[ÄÆÆÞ»w¯eË–¦‹ìX¶}M:544ôË/¿œ?¾‡‡GíÚµ¿ûî;åȵ-Ï L'ñ&boáá቉‰ZWáR’““å/TugJR4ý!¿O»sš!ý'8ò6¥•Å‹ÇÇÇÏ;WëBÜ¢lõ ðá¶¿D̪v_Ž4ñy0›æYæñ«î0îÝ»·cÇŽ† j]ˆ[”BBpœ€¥=‹­FÞìú8îlïÞ½µk×¶×W#R64Á9Žî…œwdt}N<|Åf¨¨(ù;oœ‹“–BÂG÷bi×û#œ{Q…ÿ]ÒÜÁÑí˜fG>GפÓ=ôϰ „àèŽ ³#©Ñ¡0Ùö$Iý3l€!8º ³»”#W¦»$Pd‹( Žú]Òœ ÁÑ]ízPö8XÚ%"céª:JØéwI@Ý”¼Ç]Â4;òÅ0(KsßHŠì„àèŽ ?GÈŽÂ0;’aO¤FöCpt;¦{ÈŽÂÆ/„›â·@âàîÅÒ1+vIhEÍÙäHXctqo™Š_õððp­Kà|Žî…€èh C¡œåcÖ„EäƒéÃäõ«ž˜˜¨uÑyHNN®^½ºÖU¸Æö¡j÷Eˆ,zV&J†EK󬋸bE‚=Ž.‹'bº‹‘ýŽÈ›¥³Úy#`?G pYÊJ»¥¤F³~9F%/’U»•; P”Ìw6:0­up~|1 €"Apt)f?28f­9£ìhå4!Æ,]ÓÛè¦ÑžH²#€ÂApt5F¤Æ¢deF‹’9sæYŠz¦)Ðè·Úì/9Ù@áàGÄôJa)Gr™FäáÕvÌ^ÁßÒ½ÀÞŽÎÊt§ƒ¥n >Gldvgažs_ [äHŠîÈìŸqêÿ¶Sþä×€¦Ž.‚é•Öåy€¸ÀGÍ^7ÇR‹áµØSõÐЂü²™ýÒñO Tsv£Ê½`'œãhÑÚµk£££#""š5k6iÒ¤›7oª¼câ©SyôÈóÜ# Ú}øÏî+K³a$¡Ëã4'5§@´T{v?•m{)¯•Xê`xXÙRåüE¹ƒ•)w°v}ï"yRòO{¬Å.O½Ó”‘¯{°t £$ýûO„B£vÕ¡C­Kp)Œ'ì…àhÞœ9s¦L™ræÌ™'žx¢téÒëÖ­{ùå—³²² q•*>™ò½²hN¨/’µäýå+jÆÜÂÅt,uS³÷Ñøadƒ =õv(Ö4i¸Ã_Íe »åyD›Y/4Ep4#11qÑ¢EAAA[¶lY´hÑÖ­[ pìØ±Ù³g[¼Ož!ûŒ1º£Ngþ#Æ ÉìôJ»—Q4kc’ÎBvÌ^LçŸ=‹:¡:Ýß?tPÚ…•ý”J{ÑŒ¹;=õv(CMjr¡¥ËüýªùçŸáƒµ[šP´Žf¬Y³&77w̘1rËĉ}}}7oÞœ››kþ>y~„à3ÆBã³äóµû•¡ÁZò_†™ìX°17Ü¡¨û{è僅òZ ÷)JB’ûüÝè cî el-ŽY†°œ Íö1ªÐèŸÙvK³g\ú 5GFp4ãÀ­[·VZ<==[¶l™––vèÐ!‹wËó#$_Ÿ1wøw„ø·ƒN'„N§’á>‹B-£h6Ö¾e<”ó5æÊ¨첕'¶üûl<Âßg1 ÉqÇÜAÊÈïZ¹ a!šÝ¡h½]˜‹ªD†àhL’¤¤¤¤råÊ•+Wΰ=,,LqñâEëw¶xtÉj‡‡>MÄßG²”D¨|¦ü½Bþ(l6*ÑPó‡C¡²çGy$ ÷)fT†™Cäö¹›=õ,Ãô`±i»õ\(,La1»—1Ï}¥FÕ€v¸±ÌÌL½^ïççgÔîëë+„øë¯¿ŒïçÙT–t0ûi c5×9?k)¬NX†¥_“óuæ:˜ÎŒy¸ñï j¹·sç*#<,LùY¾N‚a‹åB õ W–†‡…ýý_Îèqävž(D¸|sÝÜSø?c»`¿e$š”‘xêTuJR¢é¶ÈíB.11QñPe©AãÀ‘p¨Ú˜ŸŸŸN§ËÌÌ4j¿{÷®øg¿£EÊG‚¥ãMê;˜ôy(5<ˆùÔXheéZì]†ùyÖV×b8æß17½FÓ¹ƒ”!Šè©/¬2Œ’b~O¬äÐ3gCp4æåååëëkºg1==]¡Ì³6ÃúGH:<ÜÇ85Úk-ù,£èÖR8egǼÖòPj4èðÐG's)CÑSoÿ2 œ -‘ àhFPPPZZšœÉÉÉò"ó÷Éó#¤`ÄÃ'–Ä5Ê0|Â,ãß µ §s)Ã^c^Äeä+€K 8šÑ¶m[½^¿{÷n¥E’¤ØØXÿˆˆó÷Éó#¤ÀÔ¬ÅeÊP¿ Ç/ÃYÆÜAÊP¿ Ç)Ã.%€S!8šíááñÅ_Èç5 !-Z”ššÚ«W¯bÅŠå}Û?B õ³3_kq2Š`-”‘_.³±v)܃Nâ Ñœ%K–̘1£R¥J-Z´8þü¾}ûêÔ©³dÉÓËô¸ ‚£EëׯÿñÇ;V±bÅÆ3F¾"€{"8@Îq€*G¨Bp€*G¨Bp€*G¨Bp€*^Zà:Ö®]»fÍš¤¤¤’%K¶jÕjܸqþþþZå|Ξ=Û±cÇ5kÖÔ¯_ßt)ƒ¬RVVÖ÷ßséÒ¥2eÊ„…… <¸Y³fFÝOõnݺ5wî܃^ºt©|ùòõêÕ5jThh¨Q7†´`®\¹Òµk×6mÚÌš5ËhCªRïÞ½?nÔ°gÏÃÆ3_Ž?¾pá„„„»w‡5êÉ'Ÿ4êãnCÊÀícΜ9 ,(UªTddäùóçÏ;÷øã/_¾ÜÇÇGëҜ̴iÓ¾ýö[³Á‘AV)''§_¿~GŽñõõmԨѽ{÷8ðàÁƒÑ£G9RéÆxª—žžÞ©S§”””š5kÖ¬YóêÕ«‡öòòúþûïëÕ«§tcH F’¤ìß¿¿[·nFÁ‘!U¯qãÆÙÙÙ!!!†~~~K—.Un2žù²}ûöÑ£Gçææ>öØc¾¾¾{öìÉÉÉ™?~›6m”>î8¤lvòäÉZµjµhÑâúõërËôéÓÃÂÂÞ{ï=­Ks·oß>pàÀ;ï¼väÈ£ ²z«V­ ëÓ§Off¦ÜrêÔ©Æ×®]ûÏ?ÿ”[Ï|‘çÓO?UZÖ­[öüóÏ+- i-Y²DþÅóÍ7 ÛRõnß¾öÚk¯YéÃxæË­[·"##ëׯðàA¹åèÑ£õêÕkÚ´©^¯—[ÜsH9ÇÑÖ¬Y“››;f̘ÀÀ@¹eâĉ¾¾¾›7oÎÍÍÕº:çеk×~ýú}÷Ýw–:0ÈêmÙ²E1yòdåOÞš5k>\¯×+­Ï|Ù»w¯Ïˆ#”–ž={V¨P!!!A¯×Ë- iÁœ>}zΜ9µjÕ2]ĪwáÂ!„ÑîF#Œg¾¬[·.==}øðá5’[üñŽ;¦¦¦*§¸çíàÀ­[·VZ<==[¶l™––vèÐ!­«s|ðÁW_}õÕW_5mÚÔlY½äääR¥JÕ­[×°±fÍšBˆ‹/Ê7Ï|ñóókÓ¦···ac‰%²³³³³³å› iäääŒ?Þßßâĉ¦KRõΟ?/„¨V­š•>Œg¾ìÚµK§ÓuïÞݰqæÌ™‰‰‰Ê™Tî9¤Lޱ•$IIIIåÊ•+W®œa{XX˜ââÅ‹‘‘‘Z×èš7o.ÿ°cÇÓ¥ r¾,\¸ÐËËøW;!!AQ¥JÁxæßÊ•+Z8páÂ… È»uÒ‚ùüóÏOœ8±dÉ’²eË-bHóEŽW¯^0`À‰'J–,Y§NáÇ+‡ñ̯øøxÿ *|øpÕªUg̘!·3¤päÈ‘¯¿þºÿþM›6•ÿ°1Äæ‹|0aÞ¼yÕ«WoÒ¤ÉåË—wìØûî»ï>÷Üs‚ņ̃ììì;wîÔ¨QãÝwß]½zµÒ^¥J•¹sçÊSâÜvH ޶ÊÊÊB”*Uʨ½téÒBˆÛ·ok] +` L¯×¯ZµjæÌ™z½þ“O> Œ§ cbb$IBÔ­[·xñâr;Cš_YYYãǯR¥Êo¼a©ƒ`HU»zõªÏرc  ·üöÛoÇÿðÛ7oÌxæË;w„III)))3fÌhݺõ½{÷bbb¾üòË×^{mÆ >>>n;¤œãh+???N—™™iÔ~÷î]ñÏ_°ƒ\0¿ÿþ{×®]?øàƒ€€€ÿþ÷¿:u’ÛÏ{á…Nœ87a„­[·öéÓG4†4¿f̘qéÒ¥™3gZºj Cš/K—.=r䈒…M›6}ñų²²¶mÛ&Ï|RNhþøã»wïîççW¡B…W_}µG—.]Ú¸q£pã!%8ÚÊËËË×××ôo‹ôôt!„2Ó ¶`ó+;;ûƒ>8pà•+WFµyófÃYGŒ§-t:]ùòåüüóÏ_»vmëÖ­‚!ͧýû÷¯^½zذaf¯ó/cHm׸qc!Ä©S§ã™O¥J•òöööññ‰ŠŠ2lo×®âäɓ‡”àhAAAiiiòkE‘œœ,/Òº:Á «—››ûÆo,_¾¼mÛ¶?ÿü󫯾jºS‡ñTïôéÓo½õÖæÍ›Úåyëׯ_—o2¤ê>}ZñÕW_…ÿ£gÏžBˆŸ~ú)<<¼K—.r7†T%I’ôz½éõ_<==…eÊ”‘o2žùX¬X1NgØ(¿—æääÈ7ÝsH Žvжm[½^¿{÷n¥E’¤ØØXÿˆˆ­«s ²z+V¬øùçŸûöíûå—_Zú«—ñT¯lÙ²ÿ÷ÿ·nÝ:£vùÊyÕ«W—o2¤êU«V­óÃäë*wîܹeË–r7†T¥óçÏשSgàÀFí‡B„‡‡Ë7Ï|‰ŠŠJOO—÷×*ä‹ì(—uÓ!Õú ä®àòå˵jÕêСÃ;wä– „……Íœ9SëÒœÏäÉ“Í~s ƒ¬Rnnn»ví5j”••e¥ã™/]»v ÿõ×_•–'N4lذaÆ)))r Cj‹øøxÓoŽaHÕëÓ§OXXØš5k”–C‡5hРuëÖÊ7H1žùò矆……EGG§¥¥É-ÇŽ‹ˆˆxâ‰'RSSå÷R¾«Ú>–,Y2cÆŒJ•*µhÑâüùóûöí«S§Î’%KL'êú)S¦È_ozòƒ¬Æ7Z´háããó裚.íÑ£GÿþýåŸOõŽ;Ö·oßDDDT®\ùÆBÌœ9S9®*R$$$ôìÙÓô»ªR•Nž<9dÈÔÔÔºu놆†^¾|ùÈ‘#%K–üòË/Ÿzê)¥ã™/ .üôÓO}}}###3338 ÓéfÍšÕ±cG¥©ç»ï¾«u ® """$$äúõëqqq^^^;vœ1c†é%m‘§íÛ·ÿùçŸÑÑÑ*T0ZÄ «‘˜˜¸nݺœœœæÔªUK™%ÃxªÔ¹sç¿þúëüùóÇŽÓétO=õÔ§Ÿ~Ú¤IÃn i¥¤¤|ÿý÷áááíÛ·7lgHU èÚµëÍ›7O:_¢D‰Ö­[Ï›7¯víÚ†ÝÏ|‰ŒŒ >{öl||üýû÷åßú'Ÿ|Ò°){  “c  Áª  Áª  Áª  Áª  Áª  ÁpDãÆ ß¹s§Ö…ˆ/¾ø"<<|ÕªUZ••£õHüM~jöîÝ«u!f¤¥¥=:22²uëÖZ×â:ôzýÓO?½|ùr­ Á€C›;wnñâÅ{ôè¡u!Nàƒ>غu«‡‡Çã?®u-®ÃÓÓsôèÑsæÌ¹zõªÖµÚ#8°&**jÚ´i7Ödí§OŸ^±bÅ«¯¾êéé©õH8ýû÷ !~øá‡Ï>ûLëZ\JçÎ+V¬øñÇk] =/­ àÐêÖ­[·n]­Ö¾lÙ²R¥J=óÌ3ZƒsÈÈÈ(Y²d¥J•´.ÄÕxxxôìÙó“O>¹téRåÊ•µ.Ð{^¯ðàAá=þ­[·Ö¯_ß©S§âÅ‹jÙÙÙ999…·!pݺuB¬\¹RëB{š2eJxxø¬Y³ŒÚ?Þ´iS9 ¤¦¦~úé§:ujذaÆ ;wîüñÇ_¿~ÝÒÃZšQ§N§žzʰeÏž=£Gn×®ÝO<1`À€/¾øÂ(Z]¾|yêÔ©:ujРAëÖ­_~ùåXÙ¢¯¿þÚprŒ\É¥K—-ZÔ¤I“zõêEFF¾ð ۶m³ô‡®S§NË–-ïܹ£4Þ½{·uëÖuêÔ9v옥;nÞ¼ùÞ½{O?ý´éPX/@ÍpÉ}’’’&MšÔ¨Q£zõêuìØqêÔ©7oÞ”$iåÊ• ˆŒŒŒŠŠš2eÊÍ›7MË‹‹‹{íµ×Z¶lÙ²eË#Fìڵ˴õ§C®áÊ•+GŽéÕ«×ã?~éÒ%+ÏŦM›†ÞªU«§žzjРAÿýïõz½¼hæÌ™ááá™™™™™™ááá–Äú @ý+í×_9rdË–-7nü /üðù¹¹F÷RÓÇöW¬š—´ík lРÁ?ü I’ÜÁ°§®]» !¶nÝjÔ¾aÃ!D÷îݽ¼¼RSSûõë·páÂ+W®T­ZµråÊ/^üæ›oúôéc6 ¨7{öì!C†lݺ5'''00ðàÁƒŸþyÿþýÓÒÒä§OŸîÚµëwß}—––öè£J’ûâ‹/nß¾=_+Z¸pá'Ÿ|R¬X±&Mšøúú>|xäÈ‘›7o6Û9""bÈ!ׯ_ÿ裔ƙ3g^½zõ•W^±2ã·ß~Óétõë×·±+&Nœ¸nݺÈÈÈK—.}÷ÝwÆ ›µk×þõ×_å–„„„:uê„……Õ«W/..Nnüã?j×®–––fTÀ+¯¼rûömI’ûìåË—'L˜b¥¿|Ñßßß^˜ixS^ÙF£ŽŽöòzèª B$$$¨:dݺuóöö¶Rä7®_¿^±bÅ–-[¶¶nÝZ¯×«?xjû ௿þ:wî\pppÓ¦M Û»téòË/¿Œ1Be{½b­w°ïï…ŸŸŸ"55UåX.‰ËñvV·nÝsçÎ%&&†‡‡çäälÙ²ÅÇǧS§NJŸË—/ïÚµëàÁƒ/^¼pá‚§6 !Ξ=+ÿ7<<ÜlùÚÅÓ¦M3fÌþýû_|ñEooï:uê<ùä“íÛ·¯S§N¾VW°+’ 6lÛ¶m 7îÓ§õÎòdz¯¯¯ 0¥ìôµÒ¨ÓéLûÈ;ŸŒJ*Q¢DJJJFF†Ê§CVµjUëEÊ{RÍæly¬úÕ¶¿’““…UªT1j/^¼¸²!júØëk½ƒ}/äà˜’’¢r¬—Dpì¯k×®Ÿþù–-[ÂÃÃwïÞ}ûöíž={*qdõêÕÓ§OÏÉÉ©Zµjddd»víêÕ«—œœüÞ{ïåk-ò~òÏÙÙÙBˆJ•*Y:æ,„¨\¹òÚµk>¼k×®ßÿ=>>þСCóçÏïÝ»÷ôéÓÍ&$³,]Ǻ»wïʺgÏž½uë–ü1l‰²]v)Àp¸lg:V:ÎÓÓÓÃãX±b*Ÿ™|¼Û +eˇVÕ_“¨`/á»ÿ¾¢X±bVÖ¢¦½^±Ö;Ø÷÷B~4뻇—GpìO ޝ½öš| Z9N}÷îÝ÷ß¿xñâ .lÞ¼¹rõ§©)®\¹¢L•w€•,YrÒ¤IÖï¥Óéäk !²³³wïÞýÖ[oÅÄÄ´iÓ¦mÛ¶…:,S§N½qãFÆ :ôÞ{ï}úé§V:?òÈ#BÛ÷Åš.ÛÉ;Õ ]½z533³J•*Å‹Wÿt¨!ïk4»[QÞiºûÓŠ¼ ‡®zõêBˆ .õ¹ÿþ¦M›Ê”)Ó®];5}ìøŠµÒA>?Õ^¿ò«±|ùò¶?§€óâGÀþªU«V¯^½³gÏ?~ü×_­V­šrÚÜñãÇõz}Æ S£øçô|ëŒRÔ/¿ü¢üT¾|ù3gÎÈçØ)ôz}¯^½Z´h‘ššzùòå6mÚ<÷ÜsÊÒâÅ‹·mÛVžÍcý ‚¶[¿~ýæÍ›[µjµ|ùòš5knܸÑô¢E†‚‚‚Ä?g:Œ•á²]LLŒr EÙŠ+„ròPót¨_—ühW®\‰‹‹3lOIIÙ±c‡§§§2Å:õ/+CW¡B…€€€ .üñdž}bcc'Nœ¸~ýz•}ìòŠÍ³ƒ}/äg­B… ù{­®…à yŠÌäÉ“333{÷î­´ËyèäÉ“JtÐëõß}÷üYYYfM>3lÅŠ™™™r˾}ûæÏŸoØgìØ±¹¹¹cÇŽU¦Jܽ{÷­·ÞН[·n@@@ÅŠïܹsôèÑÅ‹+;Î;'_¹ÚÊõmwíÚµ÷Þ{¯L™2ï¿ÿ~±bÅ>úè#OOÏiÓ¦YÙ¡X¶lÙš5k}Þ«¤f¸ltñâűcÇfdd!rss—/_¾lÙ2//¯‘#Gª|:òµº×_]1eÊeVÍõë×GuïÞ½çŸÞðÀ·j^yN§“'G¿õÖ[§OŸ–ÏŸ?/³üåjú¨¢< V³Evü½øóÏ?…ÉÜ)ÀÝp¨(:uš1cFbb¢§§g÷îÝ•öÐÐжmÛþúë¯O?ýt£F$IJLL¼yóf¿~ý–/_þÿ÷wîÜ‘/ b¨{÷îË–-;tèPÛ¶mëÔ©sãÆ¤¤$__ß *Èç“ !zôè±ÿþ~ø¡{÷î•*Uò÷÷?{ölfffHHˆ|åmI“&Mœ8qÖ¬Yÿýï+W®œ™™yæÌI’úôécå»Fl$IÒĉÓÓÓ?üðC97?öØcòŸL›6M¾ÐŒYM›6]¶lÙùóç-]”Ç5Ãe£ððð-[¶üòË/Õ«W¿|ùrVV–|±!¥Ô<ŸŽ|éÑ£ÇÞ½{ׯ_ß«W¯Ê•+ûøøœ9s&777""BŽhj¨y¨º^½zýþûïëׯïÚµkÕªU½½½Ïœ9“““ÓµkWe˜š>vyÅæÙÁŽ¿GŽÑétFß ¸ö8…"00°qãÆBˆ-Z.úä“OF,_ß±eË–?þøãäÉ“ûõëçééiö «T©òí·ß¶k×ÎÃÃ#..îÔ©S•*Uúúë¯ w\étº?þø³Ï>kÓ¦Mnnî¹sçªW¯>vìØüQ¹¨M=–-[ÖªU+Ÿ“'Offf6kÖ쫯¾š:ujá ÅŠ+öîÝÛ¼ysåDO!ÄèÑ£«U«¶yóæ-[¶XºcëÖ­…¦_—'5Ãe£o¾ùæwÞyê©§RSSýýý;tè°jÕ*éâjžõ<<vyÅæÙÁ^¿’$8p ^½zòÙ·€ÛÒÙqš!€"‘‘‘––V¥Jõ“ ”$I:tP¾)»Üg¸ìŽ¡3tàÀþýûϘ1Ãðà†Øã8™R¥JU­ZÕ>Ëu:Ý‹/¾øÇØ2qÇ}†Ëî:C?þøc@@€áÕX÷Dpà¸zõê¼lÙ2­ [KMMݸqãˆ# vSÀ•8.Ÿwß}÷»ï¾»råŠÖµÀ}}õÕW5kÖìÛ·¯Ö…Ú#8ph-[¶|ã7’’’´.nJ¯×ûøø|øá‡|bLŽ€:üýUŽP…àUŽP…àUþRú Ìgk¶"IEND®B`‚statistics-release-1.6.3/docs/assets/hygeinv_101.png000066400000000000000000000747631456127120000223420ustar00rootroot00000000000000‰PNG  IHDRhŽ\­AyºIDATxÚíÝy\TeÿÿñkTDd‹Ý PAÜÉ%—DSs ·L%52-ÍDsKM³2×R¿V¸e.¥XÞjn™Š+j·;*Š ‚[‚ * 23¿?Î}Ïoîqdñ˜×óá£ÇÌuΜùœs¾;ç\×Qét:<‹ZîP6`‚#LBp€IŽ0 Á&!8f!..Nõ_ýõ—ÑÒ+W®è—þë_ÿ’»XóµuëÖýë_ÿú׿îÞ½kÊúË–-“z­E‹ÅüêB6õøñã¥K—vêÔ©ZµjVVVuëÖíÖ­Û×_m´¦á™ž¥¥¥““Ó+¯¼òé§Ÿæß¯?bd„ rö –rø<|øP±{÷îàà`¹ËBˆÿûß}ûö½zõª¾%!!!!!aÛ¶m .\¶lY·nÝ ß‚F£IKKKKK;vìØwß}·mÛ¶V­Zɽ[ŠˆàeUÕªU===…îî©øøøÀÀ@)ËJ,--óòò¤×7nÜxóÍ7>ܤI“ütuu­\¹²âÑ£GúéééýúõKHH¨T©R!1âàà ß1ð?¸T  ä%%%=~üXî*Ê¿&%%%%%mÞ¼¹465~üx}j|çwN:•““sóæÍ•+WV­ZU‘••Õ¿ÿ7¸fÍiƒÿüóÏõë×ßyç©=%%%""¢ð™2eŠÜGÀ`ذaÒíe5jÔ0l¿qã†þγsçÎ !>ýôSém¯^½nß¾=hÐ '''oooWW×9sæäßò;wƌӦM›ªU«Ö®]»OŸ>'Nœ0\ÁpƒyyyÓ§O¯^½úôéÓõ+$$$ôêÕ륗^òôô »yóæ'Ÿ|"}äÓO?}®ï’`À€³gÏ !bccû÷ïïééùÒK/íÛ·ï¹v\Ú}JëØ±£J¥zôèQáäi7&þóÏ?cÆŒiÛ¶­§§ç믿¾mÛ¶Â{<ÿ¦vïÞ½uëVéõäÉ“W­ZÕ¤I ww÷wß}wݺuÒ¢øøøK—.¾ñ5j¬ZµªW¯^ÒÛ¯¾úJÚ5e€Bžd÷îÝFKôK7mÚ¤ÓévïÞ­o9}ú´~ÍüQj¬W¯žÔ2mÚ4©¥C‡µk×6ú&,,Ìð‹þúë/WWW£uT*Õ¸qãôëè72dÈéõ´iÓ¤¥‡rrr2ü¸··÷›o¾i´š‰ß¥ÓéŽ;–¿l!D5bbbòWÕ´iS£œ/^\¡B£/Ú·oŸéÅLž<9 >,ü€,]ºTzÛ¼ysýwíÚµËÅÅ%ÿÖ† VÈOHþMõîÝ[jqtt|ðàAþtíÚµiÓ¦M›6ŽŽ6åÇÌ0LïØ±Ã”P‚#` ÿyöðð¨ó¿jÖ¬ióòòôAgöìÙúí 0@jœ>}ºÔ¢5—€€}ËöíÛ¥5ïß¿ïìì¬O™Ÿ}öÙ€Ôêÿ\÷øá‡Œ6X½zuýF¤œ”íáá!µT¬X±M›6ú·FÁÑÄïÊÊÊ’nìBXYYuîܹk×®ÖÖÖR‹››[fffþÝT«ÕMš4qtt4Jf~~~ÕªUÓ¿ 2½˜ÔÔÔ„„ýWÿüóÏ Z­¶ð’?í~—½½}Ÿ>}‚‚‚ôŸŠŠŠzÚOHþMé OœOû1ËŸµZmÅŠ¥¥Ÿþ¹) 4GÀ,þó\8)8êtº?üPji×®Ô¢Õjõ'ÛÎ;'5&ªîÝ»çääètº7nøúúJmÛ¶•ÖÔߩַo_}aK–,‘kÖ¬™ƒõë×_½zullì•+Wt:Ý7ß|#µÛÙÙ8qB§Ói4šaÆåŽ&~×Ì™3¥[[ÛcÇŽIgΜÑïæäÉ“óWõÇètºÜÜÜ:è-Z$Õóî»ïJ-NNNÏUŒN§ÓnÃUÈÉŸöôßU«V­»wï5<í'ÄhS¹¹¹ú/ýꫯŠðcV` Ôÿ/ÊÈ‘#MüÉ /µ_ Ï{ì­·Þ’^>|8==]qòäÉÔÔT!„ŸŸ_ƒ ŒÖ·´´üþûï¥Ñ²³gÏÖ<''G±cÇ©å½÷ÞÓêwÞ±°°B\¿~ýÌ™3†´¶¶þóÏ? ôÊ+¯x{{ !Ö¯_/-úðÃýýý…jµúÿþïÿò_™5ñ»þøãiÑG}¤¿·¯Q£FãÆ“^ëWÐkÞ¼y×®]…*TèׯŸÔhooÿÑGIõè[FFÆsóLùH~;wî”^Œ?^G-]S~üø±F£1å» oñ4:­[/½ôRþí(CŽ€ÙÉ*Èp–>½6mÚH#c4Í®]»„Ò…ú{ 5lØÐp$MçÎ¥:.11Q¡Bѹsgý}”¹|ù²áýýý"‹áô•+W6|›ÍB¾+>>>ÿ…:uÒ¯¦Õj ^ŒÖÏãáá¡R©ŒŸ·˜gÊ@òÓ߮ڶm[}£››ÛÉ“'Ož<+¥Õg’MKLœÜiiiÒ [[ÛüK]]]=óÉK1#€‚©Tªþýû/X°@±mÛ¶þýû냣þL›!777÷ÖÖÖvvv÷ïßBܾ}»zõê†ÓH:©g4%33óÞ½{Òk£üd4ô;33Ó”ïÊÌÌ”ÊùæAԧÜœœ;wî.ÕDCúó3±:Äø€ø]ú=²··7e›OS±bE'''©°ÿ¿Bqÿþ}iNG++«*Uª˜²ÙÛ·oK/òB¬Y³F!Óžx‚#€§zë­·¤à¸}ûö:tH<å:µâÎ;†o³³³õ—#===mmm«V­úàÁ!Ä®]» ¼ÒªÕ!1ŠhU«Vµ²²’®z§¦¦…6új¿ËÖÖVmoݺe¸Á[·nI/*V¬hTÕó*ÂŽ?M™ÕèY[[gee !ÒÒÒ¼¼¼ŠSy›6m¤9·lÙ²páB£aãBˆzõêIApÁ‚üñ37xðàAý­“-[¶,NmäÂ¥jOÕ¬Y³:uê!îÞ½»`Áé_ý¯S !ââânÞ¼©ûçŸêt:!DÅŠkÕª%„6%„ÈËË«mÀÁÁÁÞÞÞÞÞ¾À§†è©T*}Ú»w¯¾=//oÏž=F+›ø]ú<ú“©FoëÖ­kiYÜÿÁ.掛N¥RéãïÑ£Gõí·oßnݺuëÖ­ƒ‚‚Œ®¼BGæõë×—-[f´tëÖ­úÓ‡íÛ·7eƒ‹/–^T©RÅðJ:€2„à 0ú¡Ò©Gñôà˜››;zôh)\ÞºukÒ¤IR{=¤ûê:vì(µ,_¾\Ê”Bˆ7¾ôÒKNNNžžžÒi¹BèÊ7ß|sñâE!„N§›:ujRR’Ñš&~—4ÌEñÿ÷úé¸Ï;7þ|éõ믿^ücX„7Ôü\ô‡è믿Ö»… ÆÆÆÆÆÆVªT©«êFºwﮯü£>úüóÏ¥±¹¹¹QQQú%k×®- T*ÄíÛ·‡-½}ûí· ï¡P–È=¬À‹Pø<)†7±é§ãÉÿA!Dýúõ>k4£‡‡Gpp°~èƒZ­Ž‹‹“Ö¼wïžþ¡Ã3fÌèÛ·¯þd[þ‰!CBBŒ¾ëÚµkú‰­­­ƒ‚‚Œ®üê§ã1ñ»²²²¤³¡BˆÊ•+wïÞý7ÞÐß®çîî~ÿþýBªúé§Ÿ¤Æ† ê<(5ZZZ>W1:N?ScëÖ­çÏŸŸ››[øÉ?Ï;wôßÕÕuàÀ†w nÞ¼ùi?!Î%~æÌ£³¡NNN†Ãk¬¬¬Nž}zذa/¿ü²µµµ··w¯^½bbb"""ž9òC2lذݻw÷îÝÛÃãZµj½{÷>tèP#-Lü®–-[ž9sæÓO? vuuurrêСÃÔ©SÏž=ûꫯ–Ô14±˜… 4ÈÅÅ¥J•* 64ý²²¡^½z={vĈ-Z´°±±ñôôìÞ½ûþýûgÍšU„­µmÛöòåË .lß¾½‹‹K¥J•|}}{öì¹pá‹/ê¯õÂÂÂÂÑѱeË–Ÿ~úi|||«V­Jê¨xñTºÿÞp:räH›6m„õë׋‹3Zúé§Ÿ~ùå—Bˆßÿ]– ‡ )„ˆˆˆxÿý÷e>^P~qÆÀ39rDzñ´a1/ÌðáÃýýýýýýG¥o|øðáŸþ)½nÔ¨‘¼@ùÆ<Ž ¦Óé–-[–œœ¬B´ìÁÑÃÃãÔ©SBˆS§NÕ¨Q£_¿~'N”Fû6hРyóæ25(׎ ¦Õj?øàýÛÞ½{ûùùÉ[Ò¤I“þúë/iôÉ'Ÿ|òÉ'Ÿè½ôÒKëÖ­“ž” (%GOemm——W£FÐÐPÔ&—Ê•+ïÞ½û×_ýùçŸoݺ%̓ةS§ððð (A Ž€I“`‚#LBp€IŽ0 Á&!8À$G˜„à“`‚#LBp€IŽ0‰¥ÜÈãìٳ˖-‹‹‹{øð¡¯¯ïèÑ£_yå£u6lذ~ýú„„kkëöíÛO˜0ÁÁÁAîÂd£Òétr×ð¢íÙ³ç£>Òjµ5²³³;tèP^^^DDD‡ôë,\¸péÒ¥UªTiÞ¼ùµk×®^½Ú¸qãÈÈÈÊ•+Ë]>€<Ì.8Þ¿¿cÇŽOž<ùᇚ5k&„8sæÌ Aƒlmm8 V«…ñññ!!!ÎÎÎÑÑÑ...BˆY³fEFF†††~úé§rï€<ÌîÇ7fff¾ÿþûRjB4nÜøõ×_OMM={ö¬Ô²~ýz­V.¥F!ÄäÉ“íìì¶oß®ÕjåÞy˜]pÜ¿¿J¥ 1lœ7o^|||“&M¤·ÇW«Õú,,,ÒÒÒNœ8!÷ÈÃìÇœ;wÎÁÁÁÍÍíï¿ÿ>yòdFFF½zõ:v쨿yQ§Ó%$$8:::::~ÐÇÇG‘œœÜ¼ys¹w@æsssûlݺuúö5j,Z´¨aÆBˆ¬¬,FcoooôY;;;!Ľ{÷žù-¾¾¾rï((]ñññr— ó Ž<B$$$ܽ{wîܹ999ÑÑÑß}÷ݘ1c¶nÝZ¹råììl!D•*UŒ>kcc#„¸ÿ¾)_dž?LJæëëK§( ¢Lô‹Ñ) d¶'‰ÌëG+++éÅœ9sBBBìííÝÜÜ>üðÃ^½z¥¤¤üñÇB{{{•J•••eôÙ‡Šÿžw0Cæ«T©beeU¹rå   ÃöŽ; !.^¼(„°´´´³³Ëf133S¡g `nÌ+8 !\\\*T¨ R© ¥‘1yyyÒ[WW×´´4))ê%%%I‹äÞy˜]p ÊÌ̼té’a£4ÉN½zõ¤·ÁÁÁæÀút:]LLŒƒƒƒ¿¿¿Ü{ ³ ޽zõBL›6M?>úìÙ³?üðƒÝk¯½&µôë×O­Vûí·Ò}BˆåË—§¦¦öéÓ§B… rï€<ÌBˆeË–}óÍ7vvvÍ›7ÏÊÊ:~ü¸J¥š?þ믿®_gÕªUsçέV­Z»ví®]»[¿~ýU«V埦'?†¿)PRR’———ÜUàÐ)ÊD¿(¢@fûo½yMÇ#1b„““SddäáÇ‚ƒƒG]·n]Ãuœ7mÚ´mÛ6ww÷ÐÐÐððpiFódŽÁQѧOŸ>}ú¾N=zôè!w¥Jav÷8 hŽ0 Á&!8À$G˜„à“˜ét>>/à# ñøñcFSª_ñÇ!vïÞ]àÒ3f!~úé'éí•+Wìí탂‚LYZ8OOϾ}û*p§L¤ÑhòòòJ¶ì'OžìܹsÆŒÒÉÑÏ>ûÌô²Ÿk§ÊîoD9˜˜(w 0F§(Ùþ5Å¥j…——ט1c&L˜`kkkeeõÊ+¯üñÇyyyŸ|ò‰ŸŸŸ­­mPPÐùóçK仄uêÔ)pé/¿üâîî>xð`é­··wß¾}cbbnݺõÌ¥¦Ójµo¿ý¶……Åš5kdß©Âyyy;vÙ²eNNN–––ÕªU9räƒJ¤ì´´´Î;Ïœ9óîÝ»Ï[vIõ@FGÑêÕ«þùç©S§Îœ9311±oß¾íÛ·ß³gψ#Þ~û혘˜–È%$$TªT©jÕª6lX¶lÙÁƒsss¥E™™™—.] R©Túõ;tè Õjccc _jz:îÝwß]»víªU« $ïN™²ñÝ»wôÑG\²dIÓ¦M#""ÆW"e»ººJÿÇyñâE£E/¦/òâGÑÇOŸ>]¯^=!„¥¥åĉ=ztüøñ *!Μ9sðàÁT­Zµ˜_” V«ëÔ©“žž.µøùùEEE5kÖìÎ;:ÎÕÕÕp}!ÄÝ»w _jâ·ëtº#FüüóÏ+W®2dHI½"ï”)?wî\tttŸ>}„£FjҤɎ;Jªò§y}ÁQÑ ÎÎÈ@§+liË–-¥Ô(„ B 0@JBˆàààƒfeeǼ¼<éö¾½ñÆù´ZíÌ™3ûöí[¡B…Í›7;6$$äܹsYYYB[[[Ãõíìì„iii…/5íèFµbÅŠÁƒ‡……=mµ¹S¦”ííí-¥F!„J¥ò÷÷ß¼ys‰”]ˆÒî €­ðè&/'''ýk)/æoÉïÑ£G!!!Oßßvxß¾}VVVŽŽŽÒÛ°°°œœœQ£FIÃr…F7ðeff !¥zž¶Ô”}ܺu«N§«V­ÚÆ¿øâ‹š5kʾS¦”íããcøV­.øŽ”"”]ˆÂvñû ÜãˆÊÎή±Z~ÄÃÃÃ([têÔIçêêªV«®u¦¦¦ !ªU«VøRSªÕét6lˆŠŠzôèј1c”°S¦”meeUJ}QˆÒî €pÆ/Ôó^½víÚÖ­[;tèàçç§o”ÎTÕªUËÒÒ²~ýú0üÈþýûU*Uƒ _jJµÝ»wïÙ³§"44tõêÕ[·níÞ½»¼;%c_®´û rÏT™Ã<Žžžž!!!ú·§NB¬\¹Rßòå—_ !nß¾môÁŒŒŒçúi¼s玕•U»vírss¥FóÖ[oYZZÆÅÅétºÅ‹ !¶lÙ¢_ßÕÕµS§NÒÛ—>sõó8Þ¹sÇÞÞÞËË++++ÿš/x§ž«kt:ÝСCííí‹_¶!iTµÑ<Ž%Øeî7¢øä“Oš7oþË/¿|þùçõë×B :´I“&ƒ š2eʼyó³²²ôÂ+|éºuëL™ªÆÅÅeöìÙIII³fÍ’}§L/»dû♊Ó€2KÕPº‰'Ö®]{Þ¼y«W¯¶²²jܸñöíÛ¥$B[[Û˜˜˜ &DGG§§§·nÝzÍš5ú§Ø¾4777###;;Û”2†þÓO?ÍŸ??44T?œ\–z®²_¤âô LPíÔ áëë_ÚA‰X¹rå¹sç-Z$w!fQ¶éøQRR’———ÜUàÐ) d¶Mq©æ+''gïÞ½/¿ü²Ü…˜EÙ€r€àóuäÈ??¿’z4"eÊ=îq„ù ’žyS¶”Ѳåg`‚#LBp€IŽ0 Á&!8À$G˜„à“`‚#LBp€IŽ@Á¼¼¼úõë'w(ÁJ÷äÉKKKÕÿrvvÖ¯pÿþý÷ß¿fÍš666±±±†/|©Œ´Zí·ß~Û¤I›zõêÍ›7ïÉ“'Ê/ûÌ™3ýû÷wss³±±iÞ¼ùÂ… óòòL,[±;0‘¥ÜÏ””¤ÑhÚ´iãíí­o´±±‘^dff6oÞüúõë}ûöurrŠŽŽîÒ¥ËÞ½{ýýýŸ¹TFZ­¶gÏžÛ¶m yýõ×:4iÒ¤øøø~øAÉe'&&j4š^½zÕ¬Ys÷îÝãÆÛ¿ÿï¿ÿ^vûðt(i>>>/à# ñøñcFSª_ñÇ!vïÞ]àÒ3f!~úé'éí•+Wìí탂‚LYZ8OOϾ}û–ÒNýøãBˆåË—ë[Þ|óM!Ä¥K—ŠY¶žF£ÉËË+Ù²ßxã µZ}ìØ1}KXX˜bÇŽÏ,û¹vªìþF”‰‰‰r—ctŠ™í_SÇ’gÁÑÓÓó£>?~|¥J•*T¨Ð²eË­[·>yòdòäÉõêÕ«Zµj```\\\‰|×âÅ‹…W¯^-p©¯¯¯»»»V«Õ· 6L­Vß¼yó™KŸ¹úà¨ÑhBCCÕjõêÕ«Kd§Ú´iãééù´Ì]̲ÃÃ×.]êàà „ðððøàƒ233K¤l©g [Nœ8!„˜1cFÉöE™û(OÈ( D§(Ùþ5Å=Ž(¢Õ«WÿüóÏS§N9sfbbbß¾}Û·o¿gÏž#F¼ýöÛ111,‘/JHH¨T©RÕªU7lذlÙ²ƒæææJ‹233/]º¤R©ôëwèÐA«ÕÆÆÆ¾Ôôt:ݻᄏvíÚU«V 4¨ø{ôøñã¿ÿþ»]»vyyy‡^¾|ùŸþùèÑ#SvÊ”íïÞ½û£>8pà’%Kš6m1nܸ◗—7jÔ¨?üаñÚµkBˆJ•*½˜¾E0ø«ÌÜp#ŠèáǧOŸ®W¯žÂÒÒrâĉ=:~üx… „gΜ9xðàƒªV­ZÌ/JHHP«ÕuêÔIOO—Züüü¢¢¢š5kvçÎNçêêj¸¾‹‹‹âîÝ»…/5ñÛu:݈#~þùç•+W2¤DÝ­[·rssU*Õ«¯¾züøq©±fÍšk×®mÛ¶mñË>wî\tttŸ>}„£FjҤɎ;Š_¶¥¥åìÙ³ [îÝ»7{öl ‹¾}û¾€¾ÈŽà¨h*!çÿÓè„®¥-[¶”R£"((H1`À)5 !‚ƒƒ<˜••eóòò¤{ ôÆoäoLHHÐjµ3gÎìÛ·o… 6oÞ}ú\¸p¡øe{{{K©Q¡R©üýý7oÞ\ü²ìÛ·oøðá uëÖ=}út©ö(…J%t:áë+wò 8*ZáÑM^NNNú×R^ÌߒߣGBBBžº¿ºöwß¾}VVVŽŽŽÒÛ°°°œœœQ£FIÃr…<0\?33Sáèè(Õ󴥦ìãÖ­[u:]µjÕ6nÜøÅ_Ô¬Y³DvJ Óµk×þå—_*V¬(„èÖ­Ûüùóß~ûíèèè®]»³l÷juÁw¤¡/$ׯ_ÿð÷lÙR·nÝÝ»wwèÐAü·÷K¯/JÀ=Žx¡ììì ¹å¶Àxxxe‹N: !âââ\]]ÕjµÑµÎÔÔT!DµjÕ _jJµ:nÆ QQQ=3fLIí”tŶmÛ¶Rj”´mÛVqáÂ…â—meeUJ}!„X·n]Æ ÿþûïeË–?^JÒN•j_”€3Žx¡ž÷òèµk×¶nÝÚ¡C???}£t¦ªV­Z–––õë×?pà€áGöï߯R©4hPøRSªíÞ½{Ïž=…¡¡¡«W¯Þºuk÷îÝ‹¿SUªTñöö¾yó¦a£ªªW¯^ü²K©/„[¶lyûí·ß|óÍ¥K—]w.í¾(‚ÜúË!3™Ž'$$DÿöÔ©SBˆ•+Wê[¾üòK!ÄíÛ·>˜‘‘ñ\?wîܱ²²j×®]nn®Ô¢ÑhÞzë-KKKiºi²ž-[¶è×wuuíÔ©“ô¶ð¥ÏÜGýt^øÒuëÖ9òwÞùæ›ožYÆìÙ³?øàƒY³fI™¸8;%„9rä† ^{íµAƒU¯^}ûöíÿý÷ĉ›4iR‚e—l_\¸páâÅ‹~~~Æ 3ZÔ»wï=z§/eÁJ7qâÄÚµkÏ›7oõêÕVVV7Þ¾}»4,Fakk3a„èèèôôôÖ­[¯Y³Fÿ»Â—æææfdddgg›RÆðáÃúé§ùó燆†ê‡“™““SLLÌ”)S<¸qãÆ† ®Y³F?óe –]‚„.\¸pá‚Ñ¢:uêôèÑ£8}(TÏ{¦Ïäëë_ÚA‰X¹rå¹sç-Z$w!fQ¶éøQRR’———ÜUàÐ) "Mý­Ó™í_SŒª†ùÊÉÉÙ»wïË/¿,w!fQ6”yÒ Žæ}ÆàóuäÈ??¿’z4"eÊ=îq„ù ’žyS¶”Ѳåg`‚#LBp€IŽ0 Á&aT5ÀÓI“~ aæ38JŽO!Múÿ2ÇàØ·oß³gÏ5:99:tȰeÆ ëׯOHH°¶¶nß¾ý„ ä®@6æ¯_¿^¹reOOOÃF{{{÷ .\ºti•*UZ´hqíÚµ7^¾|922²råÊr— ³ Ž™™™÷ïßýõ×-Zô´uâãã—/_îêêíââ"„˜5kVddä‚ >ýôS¹÷@f7ªúúõëB£ÓFÖ¯_¯ÕjÃÃÃ¥Ô(„˜}Z¿‚N§KHHpttttt4ü "99Yî=0;Ož<±´´Tý/gggý ÷ïßÿý÷kÖ¬icckøñ—ÊâÊ•+ª§ RlÙ’½{÷¹¸¸¼ôÒK¯¾úêï¿ÿn¸´Ìõ๘Ý=ŽRò[¼x±——WëÖ­oܸ±wïÞ˜˜˜Ï>ûìÍ7ßBdeei4£±2B;;;!Ľ{÷Lù___£–;vȽëeURR’F£iÓ¦···¾ÑÆÆFz‘™™Ù¼yóëׯ÷íÛ×ÉÉ)::ºK—.{÷îõ÷÷æR¹ØØØ„††5fggoܸÑËËK±e !¶mÛÖ­[7ooïÐÐÐÊ•+GGG÷îÝ{ÅŠÆ {fÙÏ»SIIIòî¬ÙJII‘»£S^/ƒhô’’’ºté"wiŠ¡33C† iÒ¤ÉÏ?ÿ¬o9tèP£Fš4irãÆ Nw÷î]Ÿ~ýú}pëÖ­>>>_ýõ3¿ÂÇÇçy«*ÂGâñãǦT¿â?þBìÞ½»À¥3fÌBüôÓOÒÛ+W®ØÛÛ™²´pžžž}ûö}1‡Q§Ó?ÞÝÝ=55µ˜eëi4š¼¼¼’-²qãÆnnnÒÛ‡Ö¬Y³zõêÒÛ싲ûQ$&&Ê]ŒÑ)/Èó„"³ýkÊì‚cæÍ›çãã#¥É'OžøúúvëÖÍh_~ùÅÇÇgåÊ•ÏÜš9GOOÏ>úhüøñ•*UªP¡BË–-·nÝúäɓɓ'׫W¯jÕªqqq%ò]‹/B\½zµÀ¥¾¾¾îîîZ­Vß2lØ0µZ}óæÍg.}æ>ꃣF£ U«Õ«W¯.ãyèÐ! ‹íÛ·›²SÏ,;<<|éÒ¥Ò´£|ðAfffñ‹ÌÉɱ°°6l˜aã Aƒ„YYY%Ûeî7¢nݺU§ÓU«VmãÆ_|ñEÍš5Kj§ôæÎ›““3~üx£[œ²¥©£ôŒÎ¯—HÙ—/_ÎÊÊ:räȰaÃZµjuáÂ…ÂË.þN”Àìîqœ>}º““Ó´iÓz÷î=~üø 8P­VÏž=[ÿj &$&&öìÙsÆŒC‡]¸paƒ Þ{ï=¹Ë/óììì ¹å¶Àxxxe‹N: !âââ\]]ÕjµÑµÎÔÔT!DµjÕ _jJµ:nÆ QQQ=3fL î”$''gÕªU½{÷6ÜÁâ—meeUJ}aÈÚÚ:88xΜ9÷îÝÛ´iSi÷@ Ì댣¢^½z¿ÿþû×_}äȑ˗/רQ#$$ä£>rww7\-,,ÌÙÙyÓ¦MÛ¶msww ×ψ"{ÞË£×®]Ûºuk‡üüüôÒ™ªZµjYZZÖ¯_ÿÀ†Ù¿¿J¥jРAáKM©¶{÷î={öB„††®^½zëÖ­Ý»w/þNé­_¿þÞ½{ï¾û®acñË.¥¾øã?BBBV¯^Ý¿}£4v[§Ó•v_AîaÝå™LÇ¢{êÔ)!„á\EÒØÛÛ·o}0##ã¹~ïܹceeÕ®]»ÜÜ\©E£Ñ¼õÖ[–––Òt?Òd=[¶lѯïêêÚ©S'émáKŸ¹úéxîܹcooïåå%Í;SÌÒëܹ³]þ‰0‹Y¶a×ètº¡C‡ÚÛÛ¿ì»wïZZZvîÜÙpJiìüéÓ§K¶/ÊÜoDyÂÌ/ D§—&ýyfû×Á±äuOŽE0wî\!D­ZµÞÿýÉ“'K㓾úê+iéýû÷›4ibkkûÉ'ŸÌ;×ÏϯjÕªGŽ1eéÚµkíííÇŽû´}4œ<""B1uêÔ’:†YYYVVVùg -~Ù&Ç"&ñnÖ¬Ù”)S¦N*Íc^ü¾0Ræ~#Ê2ŠÑ)ÅU §ÉÌö¯)³»T2gâĉµkמ7oÞêÕ«­¬¬7n¼}ûvýÓŸlmmcbb&L˜žžÞºuë5kÖ迾4777###;;Û”2†þÓO?ÍŸ??44T?œ¼8bbbrrrò/*Á²KÖŒ3¼½½¿ûˆµZíçç÷Ë/¿è¯\§/ ´¨TJiZæ¨tÍ’æëë_ÚA‰X¹rå¹sç-Z$w!fQ¶éøQRR’ôÌt(R,¥Íö¯)EŸqÔét.\8|øp|||jjêÝ»w­¬¬œÝÜÜš7oÞªU«—^zIîQ†åääìÝ»W? SYQFË” Ž)))«W¯þý÷ߟvÿþÚµkU*UÆ CCC»víZ±bE¹KFÙsäÈ??¿’z4"eÊ=Å]ª¾uëÖœ9svíÚ%„hÚ´©¿¿“&M¼½½íííííísssÓÓÓSSSÏŸ?êÔ©ãÇß¼yÓÉÉéƒ>¦c”»|!¸T ¿2⪨Ñ)Å¥ꥬ3Ž‘‘‘ .twwÿøã{öì)=ÊÖP… ªT©R½zõ¦M›8P§Óýý÷ß›6mZ°`Á¿þõ¯¯¾úªnݺrï@ù¤ˆStzQQQŸþùÖ­[‡ –?5æ§R©Z´h1k֬ݻw7jÔhÓ¦Mrï@¹¥¬3Ž;vì°°°(œœ¦OŸ®ÑhäÞP T*¹+€J ŽÏL:nÏž=)))7Î?\ÑB'P4æbT eÇüöìÙ³xñâŽ;Ž=Z1mÚ´èèhiÑ€f̘¡âA^eÝãhäøñã#G޼xñ¢V«Bœ?>::ÚÎÎnàÀÕ«W_·nÝž={ä®À\(úŒãŠ+t:ÝÔ©S  „æè™={vppðÕ«W»té²víÚàà`¹Ë0 ŠŽ—.]rss|Ë–-BˆFIs7¾ùæ›§OŸB„……É]#B0G·YPôÇjÕªýúë¯nnn¯¾úê¢E‹¤YSSSmmmç̙ӪU+¹kÿ¥Ó•Ö(ƒ¢Ï8 !êÖ­»lÙ2£Æ¨¨(wwwµZÑ© œQzp”dddœ;wîÖ­[mÛ¶­T©©àSzpLKK‹ˆˆˆŽŽÎÎÎB 2¤mÛ¶½zõjРÁìÙ³ä.À\(ú¼Ý“'OFŽekkÛ«W/}»‹‹ËÞ½{ßzë-)M™©T܉h—-[vêÔ©öíÛïØ±cΜ9úöõë׿ñÆW¯^ŒŒ”»Fs¡èàxìØ1 ‹¯¾úÊÚÚÚ°ÝÂÂbúôéÖÖÖ;wî”»Fs¡èàxáÂ///''§ü‹lll¼½½¯]»&wæBуcììì=zô´¥éééU«V•»F”„Y¸Qš}Ʊ~ýú·nÝ:sæLþE.\¸q㆟ŸŸÜ5 0¥7 7st›=EÇþýû«Tª?þ8..ΰ=...<<\"w(C›QÊ}©ºm۶Æ [±bEïÞ½½½½…»wï>|øð•+W´Zm¯^½:wî,wæBÑÁQ1~üøfÍšÍ;711QqãÆ !„³³ó¸qã gv@iSzpB¥§§'&&æææz{{»ººÊ]€Ù)ÁQâààЬY3N·gÏž;v4nÜØßß_î¢ÌˆÒƒãž={/^ܱcÇÑ£G !¦M›--0`ÀŒ3TÌ;ðB(zTõñãÇGŽyñâE­V+„8þ|tt´ÝÀ«W¯¾nݺ={öÈ]#€¹PôÇ+Vètº©S§0@±k×.!ÄìÙ³ƒƒƒ¯^½Ú¥K—µk×Ë]&Àœ¼ð+]^rï1 §èàxéÒ%77·ÁƒKo=Z±bÅvíÚ !<==k×®- µà…z±s%&%%yy‘¡оT‘‘¡Pu^^Þùóç6lX±bE©ÅÚÚ:55UîÌ…¢ƒ£‡‡GJJŠF£Bœ8q"''ç•W^‘iµÚ””ggg¹k0ŠŽ-Z´ÈÈÈX²dÉ7–,Y"„­ZµêÞ½{uêÔ‘»Fs¡è{‡¾eË–ˆˆˆˆˆ!D£F¤¹ß|óÍÓ§O !ÂÂÂä®À\(úŒcµjÕ~ýõ×ÀÀ@77·W_}uÑ¢EÒ¬©©©¶¶¶sæÌiÕª•Ü5̉Jõ‚GÆŠ¢è3ŽBˆºuë.[¶Ì¨1**ÊÝÝ]­Vtê(gÊXöÒétýõ×îÝ»¥KÕxa”~Æ‘G@ùÄßÞ@¤è3Ž16(›}©šG(‡¢ƒ#PEG9 Š¾Ç‘G(‡¢Ï8òÈAåPôGÁ#@ï…̘í%÷^P2¥GIFFƹsçnݺåááѶmÛJ•*‘˜£ÒŸÂ&))ÉË‹ô `JŽiiiÑÑÑÙÙÙBˆ!C†´mÛ¶W¯^ 4˜={¶ƒƒƒÜ˜ EŸ·{òäÉÈ‘#£¢¢lmm{õê¥owqqÙ»wï[o½%¥I(ÿ˜1€(:8.[¶ìÔ©SíÛ·ß±cÇœ9sôíëׯã7®^½)wæBÑÁñرc_}õ•µµµa»……ÅôéÓ­­­wîÜ)wæBÑÁñÂ… ^^^ú§²±±ñöö¾víšÜ5˜ EG;;»G=mizzzÕªUå®À\(:8Ö¯_ÿÖ­[gΜɿèÂ… 7nÜðóó“»Fs¡èàØ¿•JõñÇÇÅŶÇÅÅ…‡‡ !BBB䮀"©Tåí(€¢çqlÛ¶í°aÃV¬XÑ»woooo!ÄîÝ»>|åÊ­VÛ«W¯Î;Ë]#¥bò(iŠŽBˆñãÇ7kÖlîܹ‰‰‰Bˆ7n!œÇg8³#J›Òƒ£"((((((===11177×ÛÛÛÕÕUî¢ÌNއfÍšÉ]€ùRôàɾ}ûfΜùÏ?ÿHowïÞ=f̘mÛ¶É]€yQtpÔjµ&L1bÄÚµksrr¤ÆìرcìØ±ãÇ×qó;À‹¢èàø¯ýkóæÍ®®®³gÏvss“»víºdÉ’jÕªmÙ²eóæÍr×`.}㯿þªV«øá‡ºuëê+UªÔ©S'__ß®]»þúë¯o¼ñ†ÜeåÈ œ/ÐKî}þøã§­ „¨R¥ŠQ»âþýû¦|K||¼ÜÆ^è\Ó/v&í’òâ'ãfpe¢_ˆN‘WþÖóŸ!2ŠSϪž;wnJJʼyó*W®\à ööö*•*++˨]šµG:ï`†õϪîÝ»wÅŠ¥FéYÕ?þø£¥¥å¯¿þú\ã¸bÅ N7uêÔ!víÚ%„˜={vppðÕ«W»té²víÚàà`¹Ë0 ŠŽ—.]rss|øÊ•+Z­¶W¯^;w–»Æ§`G”Šá/E¦èà(„?~|³fÍæÎ›˜˜(„¸qã†ÂÙÙyܸq†3; ´)=8 !‚‚‚‚‚‚ÒÓÓsss½½½]]]‹³ÁŒŒŒE‹ýý÷ß)))ÎÎÎ 6=z´tFÓІ Ö¯_Ÿ`mmݾ}û &(úA5¥¬ G‰ƒƒC½zõ*T¨P±bÅâl'33³{÷îwïÞ­[·nPPЭ[·¶mÛ¶k×®_ýµaÆúÕ.\¸téÒ*Uª´hÑâÚµk7n¼|ùrdddåÊ•å>ò(ÁñÌ™3ß}÷]\\ÜÝ»wÕjuµjÕ^~ùåQ£FÕªU«[[²dÉÝ»wßÿý±cÇJ-¿ýöÛ'Ÿ|òå—_þòË/RK||üòåË]]]£££]\\„³fÍŠŒŒ\°`Á§Ÿ~*÷ñ‡¢GU !/^ܯ_¿}ûöݽ{·R¥JVVVÉÉÉÿú׿ºvíºnݺ"lðÈ‘#•+Wþàƒô-½{÷vss‹‹‹Óh4RËúõëµZmxx¸”…“'O¶³³Û¾}»V«•ûÈCÑÁqÿþýƒÞ½{÷éÓ§Ož<¹oß¾wß}Wñå—_ž:uêy·iooß¡C+++ÃÆJ•*åæææææJo?®V«õ+XXX¤¥¥8qBˆ' “¢ƒãºuët:ÝÇï6W¯^ýÍ7ß¶?~üúõëM›6•î_Ôét ŽŽŽŽŽŽ†«ùøø!’““å>*òPô=Žqqq•*U2dHþE¡¡¡ß|óM•1ÑÉ“'7nܘ””tòäÉš5kÎ;WjÏÊÊÒh4öööFëÛÙÙ !îÝ»gâö}}} ßîØ±C¶ã!RRRä.Æèe¢_ˆN)·—wÑ>˜””ô¼éÒ¥‹Ü»«ŠŽB777KËŠ”Fɤ¦¦yËñññÑÑÑ:NÑ Aý`íììl!D•*UŒÖ·±±BÜ¿ߤ­ëtñr:ñòò’»£S”‰~Q :¥@E¼èüüÇ2>Þø_u£ÓCæCÑ—ªýýý“““333ó/zôèQRRRƒ мñ·ÞzëÂ… œ4iÒÎ; ððáC!„½½½J¥ÊÊÊ2Z_Z*w0CŠŽýúõÓétŸ|òI^^ža»F£™2eŠF£ .ÎöU*•³³sXXXÿþýoß¾½sçN!„¥¥¥]þ3‹R~Õ³07ʺT}äÈ÷½{÷Þ¸qãk¯½Ö¯_?ooo•J•””œœìëëû¼÷\¾|yÕªU¯¿þºa»tæòÎ;Ò[WWׄ„„ÌÌL[[[ý:Ò-Å|h @Ù¥¬à8tèÐÛoÞ¼¹xñb£Æøøø6mÚä¿í ¶¶¶¿ýöÛÝ»w‚ãõë×…Á$ÁÁÁñññèÖ­›Ô¢Óébbbüýýå>HòPVpìÙ³g©nßÕÕÕ××÷àÁƒ{öìéСƒÔxñâÅ5kÖØØØ´hÑBjéׯßÒ¥K¿ýöÛöíÛKcb–/_žšš:lذ *È}䡬à8þüÒþŠ/¿üràÀ|ð¿¿õêÕÿù矿ÿþ[1oÞ<'''i &Ì;·gÏžíÚµ»víZlllƒ Þ{ï=¹€l”_€ÆÿñÇ‹/>wîÜ… ÜÜÜ:uê4jÔ¨ºuë®æìì¼iÓ¦mÛ¶¹»»‡†††‡‡Kg€¼xŒ\Ê@p¼wï^JJŠ4áb~Mš4yÞ ÖªUËèá1êÑ£G=äÞ{Ê<•PÉ]J†¢ƒczzúÇ|èСBÖy®Á1@œ ,¿þúëC‡YXX4lØÐÁÁAzV5d¡èà(¥ÆÕ«W¿üòËr×`îýä˜4mÚ”Ô ŠŽõë×ÏÿÌhÈBÑÁ±S§N/^,|p ^ Eßã8hРóçÏ¿ÿþûƒnÞ¼y•*Uò¯Ó²eK¹Ë0 ŠŽ ¹¹¹+W®\¹reë0À‹¡èà¸hÑ¢Ó§O[ZZ¾üòËr—@ÙÆDÜ(&EÇcÇŽU¬Xñ×_­_¿¾ÜµP07ŠC¹ƒcòòò’’’š4iBjPåG­V[¡B…û÷ïË]„Prp¬X±b=.]º´gϹk€²ïq »téÒ‡~Ø¿ÿ§MÇ(w™fAÑÁ±[·nÒ‹µk×®]»¶Àu˜ŽàÅPtpìÙ³§Ü%à?çÏŸ/w øEGÊœ’ŸdÛKî]þKÑÁ±U«VÏ\'66Vî2ø%;ÉvRR’—አèà˜™™iÔ¢Óé´Z­ôÚÍÍÍÉÉIîÌ…¢ƒãùóçZ4ÍÍ›7ÿüóψˆˆÇöÙgr×Àÿ§*žé‡rL¹€È¢FaaaK–,¹ÿþرcu:~?^„2õZµjU§Näääääd¹k0 e58 !\\\„/½ô’Ü…˜…²³²²ÎŸ?ïääTàsPâ=8æÈ‘#¶§§§GEEÝ»w¯cÇŽr×`.‡ZÈÒªU«Ž3Fî%¬ä'ÐPB yVuÍš5CBBjÔ¨!w€’ÇŒ6€2):8ò¬jå(«ƒcð‚)úŒ£bûöí‘‘‘W¯^}ÚDß<«àÅPtpܽ{wxx¸ôÚÂÂBîrÌš¢ƒãÊ•+…C‡9r¤Üå˜5EÇ„„„êÕ«Oš4I­æ^L™)7=yòäÁƒ5jÔ 5(rÏ8ªÕj;;»Ë—/kµZ²#äW*e{ɽWLâ(˜r™……ŰaÃRSS.\(w- P:¡+Ù?‰I‰%¾Íçý#÷AðTÊ=ã(„èÚµkrròòåËccc_ýõêÕ«W¬XÑhÀÀ@¹Ë0 ŠŽÁÁÁÒ‹3gΜ9s¦Àuâããå.À,(:8ò¬j0s*¡âª.€LÑÁ‘gU(‡rÇ@Q”£££5MÑ>{óæÍýû÷˽å–²‚ãwß}×µk×-[¶äææšþ©”””Y³fuîÜ911Qî=(·”uã¶mÛ-Z4iÒ¤Ï?ÿ¼k×®¯½öZ“&MªV­ZàÊ×®];räÈ–-[þýï{xx|÷Ýwrï¥(•ɱÀ¼)+8V®\ù“O>éÛ·ïÏ?ÿ¼iÓ¦_~ùE¥RÕ©S§V­Zvvv¹¹¹éééiiiqqq÷ïßBxzzN›6­OŸ>•+W–»|Ê c(YÊ Ž’ºuë~ùå—ãÇß¾}ûáÇccc/_¾œÀÀÀÖ­[«TœW(uJ Ž{{û 0@«ÕÞ¾};---55µråÊ/½ô’«««­­­Ü˜åG=µZíááááá!w!fMY£ª XG˜„à“”{”*Ùæ;ô*ÝÍ3”8‚#y2VRR’—W)‡G@‰âR5LR–‚cnnnVV–ÜU˜©2p©úòåËßÿý©S§nß¾­ÕjÝÜÜ6l8zôèzõêÉ]Pæ©„Š{&Rzp\¹rå×_­Õj…•*U²°°¸}ûöíÛ·÷ìÙ3nܸ÷Þ{OîÌ…¢/U9rä믿V©TƒÞ½{÷éÓ§Ož<3lØ0µZýÍ7ß9rDîÌ…¢ƒãÚµkµZí„ ¦NZ£F •J%„pss›0a”)S´ZmTT”Ü5˜ EdzgÏZYY <8ÿ¢X[[Ÿ={VîÌ…rïqÌËË»uëV­Zµ,,,ò/U«Õîîî™™™r— ³&ÛÔÙÈA¹ÁQ¥RY[['''gddØÛÛ-ÍÌ̼zõjûöíå.æŽ!Éó¡ÜKÕ½{÷Öjµ“&Mzüø±á¢ÜÜÜÉ“'«Tªwß}Wî2Ì…rÏ8 !·oß¾Ž;öéÓÇËËK¥R%%%ýöÛo·oßîÚµëÇ÷íÛ§_ßÛÛ»fÍšrW P>):8víÚUzñÏ?ÿDDD-ݶmÛ¶mÛ [ÆÏÌŽ¥DÑÁ±gϞϵ~:uä. ÜRtpœ?¾Ü%à?”;8ŠBp€I}©f®$§×ö’{g(ûŽP´’š^;))ÉË‹ð@±p©&1Ç3ŽÙÙÙ¿þúktttJJJÕªU}||ÂÂÂÚ¶mk´Ú† Ö¯_Ÿ`mmݾ}û &888È];€lÌ.8æåå :ôÔ©Svvv­[·ÎÉÉ9zôèÁƒ?úè£Q£FéW[¸páÒ¥K«T©Ò¢E‹k×®mܸñòåË‘‘‘•+W–{ä¡ôà¸}ûöÈÈÈ«W¯êtßëû\\¿~ý©S§š5köÃ?H)ðòåË¡¡¡ß}÷]‡üüü„ñññË—/wuuŽŽvqqBÌš5+22rÁ‚Ÿ~ú©Ü‡@оÇq÷îÝááá'Nœ¸wï^æS<ï6wìØ!„˜:uªþÜaݺußÿ}FsèÐ!©eýúõZ­6<<\JBˆÉ“'ÛÙÙmß¾]«ÕÊ}Tä¡è3Ž+W®B :täÈ‘vvv%²Í¤¤¤*Uª4hÐÀ°±nݺBˆäädéíñãÇÕju`` ~ ‹€€€-[¶œ8q¢yóær(:8&$$T¯^}Ò¤Iju‰]¶l™¥¥ñ^ÇÅÅ !jÔ¨!„Ðét ŽŽŽŽŽŽ†ëøøø!’““ ŽÀ<)78>yòäÁƒ 6,ÁÔ(„¨_¿¾QKllìòåË+Uª"„ÈÊÊÒh4öööF«I§<ïÝ»gÊ·øúúµH—ÈË(o/oY¾71)1I$•ȦRRRdÙ‚NQ&úEèÙuéÒEî”B¹ÁQ­VÛÙÙ]¾|Y«Õ–lvÔÓh4kÖ¬™7ožF£ùú믜œ„ÙÙÙBˆ*Uª­lcc#„¸ÿ¾)[Ž—÷è• •P•Ô,ÜÏ­Dgìfp¢S”‰~Q :E^ùÿYφÈL(wpŒ……ŰaÃRSS.\XÛ?zôh=fÍšåääôÃ?tíÚUj···W©TYYYFë?|øPü÷¼#€RîG!D×®]“““—/_ûúë¯W¯^½bÅŠFëa1Qnnîüùó£¢¢¬¬¬Fýî»ïÎÎhiiigg—ÿÌ¢4‚[?ÎÀÜ(:8K/Μ9sæÌ™×yÞ‹ÂZ­öã?ÞµkWÇŽg̘Q`tuuMHHÈÌÌ´µµÕ7&%%I‹ä>*òPtpìÙ³g‰o3**j×®]œ1cÆÓÖ Ž?pà@·nݤNãàààïï/÷Q‡¢ƒãüùóKvƒ:nõêÕU«V4iR!«õë×oéÒ¥ß~ûmûöí¥11Ë—/OMM6lX… ä>*òPtp,qwïÞ½~ýzåÊ• ”i¯^½BCC…&L˜;wnÏž=Ûµkwí򵯯Ø ¼÷Þ{rï€l”׬Y#„hÙ²¥ô(émá Œ€O#M…•}îܹüKÛ´i£æìì¼iÓ¦mÛ¶¹»»‡†††‡‡KgÌ“²‚ãçŸ.„˜9s¦¥·…{®àøòË/›>˜¦G=zôû<•PÉ](Ï”G-„hÔ¨‘ôvüøñrWTÆÈ6S7fC¥>>r!eÇ?üÐð-÷(‡rŸE!8À$G˜„à“`‚#L¢¬éxžI§ÓíÙ³'%%¥qãÆþþþr—SZ˜ÊR©„B§¾¾r—"¥Ç={ö,^¼¸cÇŽÒÜàÓ¦M‹ŽŽ– 0`ÆŒ*UùÌXLå €éÌûßgE_ª>~üøÈ‘#/^¼¨Õj…çÏŸŽŽ¶³³8p`õêÕ×­[·gϹk0Š>ã¸bÅ N7uêÔ!víÚ%„˜={vppðÕ«W»té²víÚàà`¹Ë0 ŠŽ—.]rssãX­Zµ_ý500ÐÍÍíÕW_]´h‘4kcjjª­­íœ9sZµj%wE¡ªÂÿ0‰# aø/´™Oâ(~ÆQQ·nÝeË–5FEE¹»»«ÕŠN½…#PVõ”%çλuë–‡‡GÛ¶m+UªT¦S#@Y¤ôà˜––-„2dHÛ¶m{õêÕ AƒÙ³g;88È] €¹Pôy»'OžŒ92**ÊÖÖ¶W¯^úv—½{÷¾õÖ[RšÀ  èà¸lÙ²S§Nµoß~ÇŽsæÌÑ·¯_¿þ7Þ¸zõjdd¤Ü5˜ EÇcÇŽYXX|õÕWÖÖÖ†íÓ§O·¶¶Þ¹s§Ü5˜ EÇ .xyyéŸ:hÈÆÆÆÛÛûÚµkr×`.íìì=zô´¥éééU«V•»Fs¡èàX¿~ý[·n9s&ÿ¢ .ܸqÃÏÏOîŸù½P¸BËÁ$ކû÷ï¯R©>þøã¸¸8Ãö¸¸¸ððp!DHHˆÜ5šD't†ä.Óé þCŠžÇ±m۶Æ [±bEïÞ½½½½…»wï>|øð•+W´Zm¯^½:wî,wæBÑÁQ1~üøfÍšÍ;711QqãÆ !„³³ó¸qã gv(®G›NéÁQ”žžž˜˜˜››ëíííêê*wQf§ G‰ƒƒC³fÍä®À|):8¶jÕê™ëÄÆÆÊ]&€YPtpÌÌÌ4jÑétZ­VzíææVàÜà( ŠŽçÏŸ7jÑh47oÞüóÏ?#""?~üÙgŸÉ]caTB%w ˜ÿö–&EÏ㘟……E5–,Yrÿþý±cÇê”=Љxa¤ñÑEø•±à¨×ªU«:uê$'''''Ë]KÁxB (gÊjpB¸¸¸!^zé%¹ 0 e58fee?ÞÉÉ©J•*r×`=8æÈ‘#¶§§§GEEÝ»w¯cÇŽr×`.‡ZÈÒªU«Ž3FîÌ…¢ƒcÏž=Ÿ¶¨fÍš!!!5jÔ»Fs¡èà8þ|¹KÀ(:8€r† ºË4eÇ}ûö=ïG宺LâÀÓ0ávÙ¥¬à8bĈçýH||¼ÜU˜eÇBFÃ@^Ê ŽŒ† “ž%²«¬>9F1iÒ¤:È]€¹PÖÇüÒÓÓÿúë¯k×®µgggÿùçŸr`.ïܹ3`À€7n}zåÊ•/^¼¸zõêAƒM:UîÌ…¢ƒã*Uªôý÷ßÛÚÚvèÐáÕW_õòòjÓ¦ÂÛÛû‹/¾xóÍ7ëÖ­+w™(ól£4(zpÌ­[·<==mmm…ÎÎÎçΓõë×ÏÁÁáÇ”»Æ‚1û7@FÒàeeþA™¦èà(„P«ÿ…5kÖLJJ’^[XXøúúž9sFîÌ…¢ƒ£››ÛÕ«W=z$½­Q£Æßÿ­_ªR©RRRä®À\(:8vìØ1;;{üøñW®\B4oÞüúõëB¤¦¦þûßÿ®V­šÜ5˜ EŽùdß¾}QQQýû÷¯X±âo¿ý6hРN:-_¾üŸþ‘»@3¢èàøŸÕê–-[~þùç‡^ºti=îÞ½ûõ×_Ž›@©*ÁQÏÒÒ2((hÁ‚‘‘‘¾¾¾fß¾}r`.=8ÆH||üŽ;vìØ‘˜˜(þ{&Rî¢ÌEŽçÏŸß¹sçöíÛ¯]»&µ4lذG]»vuqq‘»:s¡èà8þü;w&''Ko==={ôèÑ£GZµjÉ] ÌS©} <EÇ•+W !\\\ºuëÖ£G È]€ùRtpìׯ_=Z´h¡V—¥A< dÏšòš¹¦<•¢ƒã—_~)w Pr}6))ÉË‹ì `œÉ€IÌ:8&&&úúúž>}ºÀ¥6lèׯŸ¿¿Û¶m§L™’žž.w½r2ëàõ´E .œ6mÚ•+WZ´hacc³qãÆáÇgggË]2€l}c)ÉÌ̼téÒ–-[~ùå—Wˆ_¾|¹««ktt´4Uä¬Y³"##,Xðé§ŸÊ]>€<ÌñŒc= ô´Ô(„X¿~½V« ×O0>yòd;;»íÛ·kµZ¹Ë‡9žqœ5kÖãÇ…«W¯>|øpþŽ?®V«õ-[¶l9qâDóæÍåÞ˜cp|õÕW¥{÷îÍ¿T§Ó%$$8:::::¶ûøø!’““ ŽÊ.ž• 8Ì18.++K£ÑØÛÛµÛÙÙ !îÝ»gÊF|}}ZvìØ!÷ž™µ””¹K€±’íoo¦4URRR!KùeQ :Ev]ºt‘»¥ 8“†NW©RÅ¨ÝÆÆFqÿþ}S6/÷~Às+PÉv 'ÒLöŒÃÎ/‹Ñ)òÊÿÏzþ3DfÂÇÎÞÞ^¥Reeeµ?|øPü÷¼#€"8³´´´³³Ëf133S¡g `nŽpuuMKK“’¢žtW«««ÜÕȃàX€àà`FsàÀ}‹N§‹‰‰qppð÷÷—»:y Я_?µZýí·ßJ÷5 !–/_žššÚ§OŸ *È]€<U] &Ì;·gÏžíÚµ»víZlllƒ Þ{ï=¹KPæ&€ƒàX°°°0ggçM›6mÛ¶ÍÝÝ=444<<\š‘À<©tüzIóõõeG¥IJJ*ë³ ©TrW lüMVRÊÁ/KùC§(Ùþ[ÏG Ì(gÙˆ  Ìap LBp€IŽ0 Á&!8À$G  `‚k€`æqDYõœb3_ ÅEpD™ô¼—n™k€âãR5LBp€IŽ0 Á&!8À$G˜„à“0#þ¿çœR[N<€àˆÿA OÃ¥j˜„à“`‚#LBp€IŽ0 Óñ” /f†Eæâ… 8–¤: /.UÀ$Ç2@¥ât#Á&!8À$G˜„à“`æq|Ñ^ÌTÞ%Žà(æÖe—ª`‚#LBp€IŽ0 Á&!8À$ÇJ¥b.PV1cébºoPnKç@yÂ¥j˜„à“`‚#LBp€IŽ0 Á&aÇRÁ¼ß ü!8– æýå—ª`‚#LBp€IŽ0 Á&!8À$G˜„à“`‚#LBp€IŽ0 Á&!8À$G˜„à“`‚#LBp€IŽOµaÆ~ýúùûû·mÛvÊ”)ééérW„¢ëÒ¥‹Ü%À¢Lô‹Ñ)P‚cÁ.\8mÚ´+W®´hÑÂÆÆfãÆÃ‡ÏÎΖ».Ù ¿|ùrWW×;v,_¾|ç΃>sæÌ‚ ä. @6Ǭ_¿^«Õ†‡‡»¸¸H-“'O¶³³Û¾}»V«•»:y püøqµZ¨o±°°HKK;qâ„ÜÕȃàhL§Ó%$$8:::::¶ûøø!’““å.@–r 8YYYÆÞÞÞ¨ÝÎÎNqïÞ=S6âëë+÷~À¢@tŠ2Ñ/ D§@!ŽÆ¤¡ÓUªT1j·±±BÜ¿ÿ™[ˆ—{'J—ªÙÛÛ«Tª¬¬,£ö‡Šÿžw0CGc–––vvvùÏ,fff !ôã¬Ì Á±®®®iiiRRÔKJJ’É]€<ŽÖh4зètº˜˜¹«Á±ýúõS«Õß~û­t_£bùòå©©©}úô©P¡‚ÜÕÈC¥Óéä®A‰V­Z5wîÜjÕªµk×îÚµk±±±õë×_µjUþizÌÁñ©¶lÙ²iÓ¦3gθ»»·lÙ2<<\š‘À<`îq€IŽ0 Á&!8À$G˜„à“`‚c‰Ù°aC¿~ýüýýÛ¶m;eÊ”ôôt¹+2#Ï{ð³³³úé§îÝ»7mÚ´]»vï¾ûî¡C‡äÞ‰ò¦8¿7oÞlÖ¬Ù„ äÞ‰ò¦röìÙ?ü0((¨E‹¡¡¡G•{'Ê›çí”ÜÜÜ+VôîÝÛßß¿C‡cÆŒ¹|ù²Ü;av}}}OŸ>-w!2 8–Œ… N›6íÊ•+-Z´°±±Ù¸qãðáó³³å®Ë,<ïÁÏËË:tèìÙ³ÿùçŸÖ­[שSçèÑ£aaaß}÷Ü»R~ç7B§ÓMš4Iÿ¤x””"tÊž={ °gÏÿ“'Oÿüs¹K+ÿŠpð׬Yããã3`À€¬¬,©åÒ¥K-[¶ôóó;þ¼Ü;Tó7bÕªU>>>>>>ãÇ—{WÊ"tJFFFóæÍ›4iò÷ßK-§OŸnذa›6m4Ü;Tù¯¯1cÆ]ú;êÔ©SrW$Î8–€õë×kµÚððp©eòäÉvvvÛ·o×jµrWWÎáàïØ±C1uêÔÊ•+K-uëÖ}ÿý÷5 ¬KDq~#._¾¼páÂzõêɽåM:eãÆ™™™ï¿ÿ~³fͤ–Æ¿þúë©©©gÏž•{‡Êƒ"tʉ'„C† ±´´”ZZ·níççwõêÕ{÷îɽCå_= ôË/¿È]ˆœŽ%àøñãjµ:00Pßbaa––&ý’£ôáà'%%U©R¥Aƒ†uëÖB$''˽CåA‘#òòò&Nœèàà0yòd¹w¢¼)B§ìß¿_¥R…„„6Λ7/>>¾I“&rïPyP„NqwwBfDN—‘‘¡V«õQ¥gÖ¬Yßÿý÷ßߦM¹k‘ ?gÅ¥Óé Û}||„ÉÉÉÍ›7—»Ær«hÙ²eùÿ†‹‹BÔ¨QCî}*óŠó±dÉ’ .¬ZµÊÖÖVîý(WŠÖ)çÎspppssûûï¿Ož<™‘‘Q¯^½Ž;êOÕ£8ŠÖ)Ý»wŒŒœ5k–µµuÓ¦MÓÓÓ¿ÿþû”””þýûó[ó¼úê«Ò‹½{÷Ê]‹lŽÅ•••¥ÑhìííÚíììÄÿþ!J\Ñ~ýúõZbcc—/_^©R%£“+(‚"ÿFœ:ujÅŠ¡¡¡mÚ´‘r•yEûMñõõŠŠ:tèСCõ¡¡¡S¦L‘{‡`.¸T]\Òð·*UªµÛØØ!îß¿/wåYñ¾F£‰ŒŒ6lXVVÖœ9sœœœäÞ§2¯h’=qâÄ5j|üñÇrïA9T„Nyðà"!!aÛ¶msçÎ=zôhLLÌèÑ£oܸ1f̦Œ(¾¢ý¦dffΙ3çÑ£G 4xë­·^{íµÊ•+oÚ´‰¡îxa8ãX\ööö*•*++˨]šLDúG”’bü£GΜ9óÊ•+îîî_}õ•9ß³R‚ŠÖ)sçÎMIIY·n—AKC:ÅÊÊJz1gΜ:H¯?üðÛ7onܸñ?þèÛ·¯Ü»U¶í7eâĉÿþ÷¿'OžüÎ;ïH-7oÞ|ë­·ÆŽ»yófooo¹w åg‹ËÒÒÒÎÎ.ÿÿfff !ôcåPŠ|ðsssgÍš5dÈ›7oŽ=zûöí¤Æ’R„N9vìØºuëFŒÁ‹RR„N©R¥Š••UåÊ•ƒ‚‚ Û;vì(„¸xñ¢ÜûTæ¡Sþù矽{÷Ö©SGŸ…#GŽ|òäÉï¿ÿ.÷>Á,K€««kZZšôÛ®—””$-’»ºr®_«Õ~üñÇ‘‘‘ÁÁÁ»víúðÃ9ËU²ž·S¤ç^|ÿý÷¾ÿÕ»wo!ÄæÍ›}}}»wï.÷•EøMqqq©P¡‚J¥2l”~YòòòäÞ¡òày;%--MáééiÔ.h¼{÷®Ü;³@p,ÁÁÁæÀúNãàààïï/wuå\~TTÔ®]»øÝwßqJ¸47NIIÑ/ݶmÛûï¿ß¾}ûV­Z :ô‡~Ðh4ù¿ëàÁƒcÆŒ øàƒöïßo´Bjjê7ß|Óµk×—_~ùå—_îÖ­Ûœ9sîܹó¼›Z±bE!Ã_ —Λ7Ï××7==]£ÑøúúúûûO™2Å××wõêÕFŸúæ›o|}}¿þúk¹{ @yCpPÆL:uõêÕ999µjÕJOOßµkWXXØÊ•+V»páÂСCÏ;÷øñc­V+„Ðét“&M;vìÞ½{u:]llì¼yó ”žžnøÙ-[¶ 6l×®]VVV{öì>|øâÅ‹õ+¤¦¦4hÙ²e7oÞ¬Y³fõêÕ“““üñÇ<ï¦L×¼yó!C†TªTI¥R 2dàÀ]»vBìܹÓp5N·uëV!Äo¼!w_(oŽÊ˜“'O9rd×®]'Nœ˜`®˜Ž@ãååeÔR½zõJ•*ݾ};77·bÅŠR£tyZïêÕ«BOOÏü¬U«–øß3…ÞÞÞ~ÅÝ»w=z$e¼qãÆþýûÿþûïäääëׯÝÚø\›*ŽW^yÅÑÑñرcéééû÷ïÏÈÈèСƒ££c©÷óÃGeŒJ¥Êßbaa¡Õj 'è‘®ëétº§mÐÂÂBñäÉ“g~…Z­®P¡‚bݺu:uúì³ÏΜ9S»ví°°°üqúôé¦W«ßT1YXXtîÜY£ÑH÷Vr@©âŒ#€2&))ɨåöíÛYYYnnnÖÖÖOû”t®ÑèD‰t2ÒðÔ`þ¯¸uëVVVV5*V¬øðáÃ/¾ø¢bÅŠË–-{õÕW Ë0¥ZÃM•Èyýõ××­[·cÇŽ®]»îÙ³ÇÖÖ6((¨¤:ÁGeÎo¿ý–››kØ%„hذa!Ÿruuuvv¾yóæÁƒ ÛïÞ½»wï^ ???}ctt´ÑäŽÒW¼üòËBˆ³gÏj4š—_~Ù05 !.^¼˜ÿ{ ßT‰hÞ¼¹““Ó‘#G¢££srrºuëVR‘Œ”1·oßÏÌÌBhµÚ5kÖüôÓOjµzôèÑ…pìØ±BˆiÓ¦;wNj¹sçÎèÑ£srrú÷ïïáá¡_399yܸq=’¾"22ò矶´´5j”ÂÕÕUqñâEý$8æ—_~‘&âÎÎÎ6üÒÂ7U4Z­6++KÿV[——÷Í7ß®S(M\ªPÆtíÚu×®]­Zµòôô”.ûªÕêqãÆÕ«W¯ðöêÕëÈ‘#[¶léÓ§OõêÕ+W®|åÊ­Vëïïn¸¦¯¯ïŽ;þüóO//¯7ndgg[ZZN›6MFãííü×_½öÚkÍš5Óétñññéééƒ ŠŒŒüí·ßÿüs£!>Pâ“p#LBp€IŽ0 Á&!8À$ÿgV?ÑÓJVIEND®B`‚statistics-release-1.6.3/docs/assets/hygepdf_101.png000066400000000000000000000741651456127120000223130ustar00rootroot00000000000000‰PNG  IHDRhŽ\­Ax}:¤w]î¹yóæ¾}ûæÏŸ_³fÍŸ~úÉúÌyyy—/_Þ½{÷Ô©S£££wíÚ¥wõ؇ŸÞتL™2áááBˆJ•*ÙñeCCCýýý…wïÞ=þ|~~¾"++kÈ!‡.Uª”¥ù³²²”ŽÆ«W¯öìÙ399¹D‰Va¤lÙ²z7*3èqà@©©©wîÜÑ»žïùçŸOMMMMMýþûïíø²Ë–-“_öÌ™3ׯ_4h\~òäÉ-[¶X™ÿÒ¥K§Nú¿ÿû?¹üÌ™3sæÌ±¾#o¾ù¦Þ À ‚#k,ŸsVµjUuùÙ³g•ÓÑ>,„xë­·ä‡]»v½páBß¾}CBB"##CCC?üðCÓW¾xñâÈ‘#›6mZ¦L™G}´{÷îûöíSÏ ~ÁÜÜÜ·ß~»J•*o¿ý¶2Crrr×®]yä‘ðððAƒ;wnüøñòSÞzë­B-K–••5iÒ¤¿ýío¡¡¡¡¡¡mÛ¶}óÍ7333ÍÖªgÏž'NœèÛ·oxxx•*UúôéóÇ!víÚõÜsÏ…‡‡?òÈ#qqq¿üòK¡V\^…›7oÊÛ¶mk0²²²¬7ˆ¥s/]º4räÈfÍš…‡‡wèÐá‡~(ÚžPºtéÏ?ÿ¼X±bòÿþúËúüU«V]¸pa×®]å‡ï¿ÿ¾¼Ü›À›È!O¶yóf£©ÉÉÉÊÔï¾ûN’¤Í›7+%Tæü׿þ%Ö¬YS.™8q¢\Ò¦M›G}Ôè£fРAêýüóÏ¡¡¡Fó †Ñ£G+ó(/˜0pà@ùï‰'ÊSwìØ¢~zddd¯^½ŒfÓ¸,I’vïÞmZm!DÕªUMkõä“OU |ùò³gÏV¢•² _~ùE{eÆgZ‡›7oZo¯¾úJ~Ø AeY?þøc… L_mðàÁEÞCÂÂÂäIãÆÓ2¿:7oܸQËS¸2zï5`À€kÓ¦Ñ<­[·V‚Žº³êÇ”ÿP²šbË–-'Nœ¨P¡BË–-K—.-.\¸pãÆòß™™™½{÷¾xñ¢¢M›6ï¼óNŸ>}|||$Iúä“O.\hô‚{÷î]´h‘ºäöíÛ={öÌÈÈB/^¼iÓ¦aaa)))+W®4z®Æeݺu«W¯^'NœB”,Y²}ûö;v Bœ>}ú¹çž»qã†Ñ+8pàÊ•+uêÔ)W®œ\’žž>räÈ»wïÆÄÄT®\Y.”$iòäÉÚ+óúë¯'''Ë‹B,Z´HýÐRƒ˜ÊÌÌìÛ·ï¥K—„ÁÁÁÝ»w‹‹“'-X°`éÒ¥EØa®]»&W^Q£F -OiÙ²eñâÅå¿wïÞ]„…p-z'WN¥îì±Nîq”$éå—_–KZ´h!—äçç+m‡– •þ0!Ä3Ïûì3¹°Zµj¦/»téÒ]»v8qB’¤O>ùD. Ú·oŸ$IyyyƒVæWz5.KÉv»wï– :¤¬¦ÒÁ¦®Õúõë%IÊÉÉQîY³fÉõyá…ä’BUF’$%p«;ä¬4ˆi£²¬êÕ«§§§¶lÙRË¢,ýîÝ»GíÔ©“2éÿûŸ•ùÕªU«&O}饗4î„£FÒéý ô8(@ïÞ½å?~ûí·«W¯ !öïß/÷öÅÄÄÔªUËh~??¿/¿üRBöÁ(O¿}û¶Béz|ñÅ•gýßÿýŸ¯¯¯âÔ©SF×  øé§ŸúöíÛ¸qãÈÈH!„Ò³øòË/×­[Wáããóé§Ÿš™Õ¸¬õë×Ë“^}õUå4ÁÇ|ôèÑòßÊ Š tìØQQ¬X±ž={Ê…ÁÁÁ¯¾úª\¥Ý®]»V¨ÊÈ´ALmÚ´Iþãõ×_Wâï+¯¼òä“O>ùä“wîÜÉËË+pAò–ƒ¡X±b111J#téÒ¥^½zZª*„xä‘Gä?ŒÎàŽŽ€÷2í:yò¤élM›6•GÆäååÉG¨­§BÔ®][=’¦}ûöò’$¥¤¤!Ž;¦LRFØ”.]Z‰2ÇW¿`ݺu•SëdêWP ýýýÕMç´²¬¤¤$ÓB´k×N™M¾B9-/Zþ#,,Ì`0¶22mSÊéªÍš5S +V¬¸ÿþýû÷ïÚµKN«EP»víÙ³gkŸÿòåËò¦SCCCÃM(Gÿ¸®ã ƒá¹çž›1c†â‡~xî¹ç”à¨ô´©U¬XQý0 ((èúõëBˆ .T©RE2l‰Ü©0ƒ’™™yåÊùo£üd4ô;33S˲233åê “ë *éðöíÛ/^TOU¢šÅ_ã+£aƒ7ˆÙe)k¬å5ÍR_dÑÏÏ/66¶iÓ¦#GŽ,Y²¤ö¹pá‚òj¦S—-[_äp2‚#€‚õîÝ[Ž6l¸qãÆŽ;„…ãÔBeü„ìÖ­[Ê1ÊðððÀÀÀ2eÊÈcM~üñG³GZË—/¯~hÑÊ”)S²dIù¨wFF†z(´Ñ¢5.+00P‰¶çÏŸW¿àùóçå?Š/nT«Â*Š[b6³5Q@@@vv¶âòåËE«³í©nûöí999òß5²å¥¸U(Xýúõ{ì1!DzzúŒ3ä(`ö8µâÈ‘#çÎSþôÓO’$ !Š/^½zu!„üRBˆÜÜÜGUÊ–-löV" ƒÁ $¡­[·*å¹¹¹¦W¥Ö¸,eÒ™jô°F~~¶þÒ¶qŵ3 Jüýý÷ß•ò .4iÒ¤I“&qqqFGÞD9¨]ªT)õAsnŠà@e¨‡Üõ(,ÇœœœW^yE—çÏŸã7äòÎ;ËçÕµmÛV.™7ožœ)…kÖ¬yä‘GBBBÂÃÃM¯}c¤U«VòŸ|ò‰|%jI’&L˜ššj4§ÆeÉÃ\„Ÿ~ú©r9îÇôÑGòß:t°½ ‹°âJw]a)MôñÇ+‹gΜ¹k×®]»v•(QÂÊQu»¸páÂ!CV¯^-?ìß¿™2eºDNÀ¡jšôîÝ{êÔ©Bùhlllll¬¥™ÿóŸÿDDDÄÄÄìÙ³G>Níããóî»ïÊSÇ¿`Á‚«W¯~÷ÝwmÚ´iÕªÕ‘#G”»£G.plÄøñã.\˜“““žž^¿~ýƧ¥¥É#oLçÔ²¬±cÇþë_ÿJKK»~ýzóæÍããã}}}7oÞ,ßì¤R¥JF·¢)í+,Ÿ9eÊ”#GŽŒ9Òèºâzë­·/^œ™™™ššúä“OÆÇÇ_¼xñ矖§Ž1ÂöÕ15`Àù’“YYYÊQ~!Dùòå§L™âˆ%p6½¯À©¬_uO=ªZ¹Ž£¢víÚÊÔwÞyÇhªr•Á–-[*—î“ùùù}õÕWꙿÿþ{³ƒ6† –ŸŸoô‚ ¦+2þ|£,Uºtiå×ê;ÇhY–$I¿ÿþ»Ùó«W¯¾mÛ6ÓÕT×ê믿– k×®­nß¾]YýÂV¦o߾ꩦwŽ1j ³wŽùÏþdº¬7ß|³È{ˆõùÍ*W®ÜÎ;mY×Á¡jZ)G«……ñÔ²råÊíØ±ãÅ_ŒŠŠ íÞ½ûO?ý4tèPõ<;w>xðààÁƒëÕ«Ùµk×ÄÄÄ9sæ8òC6xðàÍ›7wëÖ-,,¬råÊݺuÛ±c‡Ùá—Õ¨Q£C‡½õÖ[ñññ¡¡¡!!!mÚ´™0aÂüѼys{µ¡ÆÊÌœ9³oß¾*T(UªTíÚµ‹vX¹k×®üñÇСC6lXºtéðððgžyæ×_}ï½÷ìµ:–øúú–+W®Q£Fo½õVRRÒSO=åè%pƒtÿ<°nçÎM›6BÄÆÆ9rÄhê[o½%ËNHHøöÛou©áÀ/^,„˜3gΰaÃtn/ð8ô8ÐjçÎò–†Å8Í!CêÖ­[·n]õ¹z7oÞüé§Ÿä¿üq}k‰Á1 IÒܹsOŸ>­Ü!Z÷àvàÀ!ĪV­Ú³gÏk×®;VQ«V­ èÜjà‰Ž ŸŸ?|øpåa·nÝbbbô­Òo¼ñóÏ?Ë£OÆ?~üxeÒ#<òÍ7ßÈwÊØÁ@Árss«V­Ú¯_?uJÓ‹¿¿ÿæÍ›ÿýï/Z´(%%åüùóòuÛµk7jÔ(³÷DØŽÁ1ЄÁ1ЄàMŽÐ„àMŽÐ„àMŽÐ„àMŽÐ„àMŽÐ„àMŽÐ„àMŽÐ„àMŽÐ„àMŽÐÄOï x èèh½«+))Iï*è€àèÞ¹39Ntt4MjG´§ÝѤvG“Úíiw^ÛIÄ¡jhBp€&GhBp€&GhBp„ظq£ÞUð(´§ÝѤvG“Úí {!8@‚#4!8@‚#4!8@‚#4!8@‚#4ñÓ»g‹ŽŽÖ» €kIJJÒ» îàÞˆ¯I@ÁO)í8T MŽÐ„àMŽÐ„àMŽÐ„àMŽÐ„àMŽè/""¢gÏžz×(Á€îÞ½ëççgxXùòå•®_¿>lذjÕª•.]ºeË–»víR?ÝúT7])WвeËÉ“'ºã¶pwÜ«`ƒ$½+a³ÔÔÔ¼¼¼¦M›FFF*…¥K—–ÿÈÌÌlРÁ©S§zôè²zõê§Ÿ~zëÖ­uëÖ-pª›®”+Ø¿ÿŽ;âããÕ…nº-Üž{‹ŠŠÒ» ž&%%Eï*xÚÓîÜ®Iô1儯”;wîäåå9tëׯBlÞ¼ÙìÔI“& !¾þúkùá‰'‚ƒƒãââ´Lµ.<<¼G.¸RÖݹsçÎ;ªöÝ»w7mÚ4iÒ$¹sôwÞÑ^íB­TÞ^û]Ï¡j@Ñ …+/šˆˆˆ‘#GŽ3&00°dÉ’7^¿~}nnîøñãcbbãââþüóO»,+99YñØc™ºbÅŠJ•* 0@~Ù£GÄÄÄóçÏ8U»üüüþýûûúú.[¶L÷•².::Ú¨#pòäÉ 6´Kµ/_¾Ü¾}ûÉ“'§§§¶ÚöÚ0Bp$™ÉˆŽ8f½téÒE‹M˜0aòäÉ)))=zôhÕªÕ–-[†Ú¿ÿÄÄÄçŸÞ. JNN.Q¢D™2eV­Z5wîÜíÛ·çääÈ“233;gP­s›6mòóówíÚe}jašTzá…–/_¾pá¾}ûê»REXÖÉ“'÷îÝk—j‡††Ê½\ýõ—Ñ$çl ˜âG€Mäì¨$EéxóæÍƒÖ¬YSáçç7vìØ¬¬¬={ö+VLqèСí۷߸q£L™26.(99ÙÇÇç±Ç»zõª\³dÉ’úõë_¼xQ’¤ÐÐPõü*TB¤§§[Ÿª¹1¥¡C‡.Z´hÁ‚´Wëy¥ìU»s¶€YG€­”~GÇiÔ¨‘œ…qqqBˆ>}úÈ©Q¿}ûöììl£à˜››+ŸÞgÖ³Ï>kZ˜œœœŸŸ?yòä=z+Vìûï¿íµ×>œ-„ TÏ$„¸|ù²õ©ÚšQ1bÄüùó 0hÐ K³9s¥ì´õŠXm+½-` ÁPZÎn´cˆ Qþ–ó¢i‰©¬¬¬„„K¯)™«ß/¿üR²dÉråÊÉ tûöí#FÈÃr…7nÜPÏŸ™™)„(W®œ\KSµ¬ãºuë$Iª\¹òš5k¦L™R­Z5ÝWJKµóòòÔóóóíUm+¬·¶íÛ–pŽ# ($é¡fËude|¨Ù§„……e‹víÚ !Ž9êããct¬3##CQ¹reëSµ5©´jÕª%K–dee9ÒVJKµïܹ£~xëÖ-{UÛ Go XB#ÀVòjõÿ.¢°‡GÓÒÒÖ­[צM›˜˜¥P^½ºŸŸ_llì¶mÛÔOùõ×_ C­Zµ¬OÕRÛgžy¦K—.Bˆ~ýú-]ºtݺuÏ<óŒ¾+¥¥ÚçÎS?´4lÙ¾‡ª½-`‘Þ×ò@^{m'Çq»‹ä¹8ÚÓîÜ®Iíû1¥|“˜þa/ááá ÊÃ!,X ”L:Uqá£'^»v­P߀/^,Y²d‹-rrrä’¼¼¼Þ½{ûùù9rD’¤Ù³g !Ö®]«ÌÚ®];ù¡õ©®£rÇ‹/GDDdgg›Îéä•*°Úêçž8qB¾®¸íÕV“GU]ÇÑŽÛ‚ë8jGp´?¯Ý™Çí¾•]íiwnפvü˜Rã[úÛvEŽE0mÚ4!DõêÕ‡ 6nÜ8ùF#ï¿ÿ¾<õúõëuêÔ ?~ü´iÓbbbÊ”)³sçN-S—/_üÚk¯YZGõÀçÌ™#„˜0a‚]Ж•*°Ú~~~¥J•êÝ»w¯^½Ê–-k÷n)³ÁÑ–ma„ਇªEg騴ë­.¬±cÇ>úè£Ó§O_ºtiÉ’%Ÿx≠6È#H„‰‰‰cÆŒY½zõÕ«W›4i²lÙ2å.vÖ§æää\»vÍÒ)€F† òõ×_ôÑGýúõS†“ë²RV»qãÆ:uš;wnnnî‹/¾8eÊ'l)[¶ŠÌ ¹ï›ÛUEGG'%%é] ’šš¡w-<íiwnפ|LéeÁ‚‡ž5k–Þ±[µ#""ªT©bt6¡Û)Â;ÂkßDŒªÀnß¾½uëÖzõêé]¯¨6„à€3ìܹ3&&Æ^·F¤ÚÐç8à qqqò=oÜ‹õj>Üè-ðlGPDcÇŽÕ» p*U@‚#4!8@‚#4!8@‚#4!8@‚#4!8@‚#4!8@‚#ú‹ˆˆèÙ³§Þµ @p؇Aô®‚ܽ{×ÏÏÏð°òåË+3\¿~}ذaÕªU+]ºtË–-wíÚ¥~ºõ©:ÊÏÏÿüóÏëÔ©Sºtéš5kNŸ>ýîÝ»®_íC‡=÷Üs+V,]ºtƒ fΜ™››«±Ú.»RnÍOï àBRSSóòòš6m©–.]Zþ#33³Aƒ§NêÑ£GHHÈêÕ«Ÿ~úé­[·Ö­[·À©:ÊÏÏïÒ¥Ë?üСC‡;v¼ñÆIIIÿüç?]¹Ú)))­[·ÎËËëÚµkµjÕ6oÞ>>K—.µËJ5mÚ4<<ÜRæ¶±ÚÍ›7W—¼óÎ; 4°Kµå-«.Ù·oŸbÒ¤IV»P+EpÔŽs6‘„¤>»Ñ ’ì¾”¥K—.Z´h„ “'ONIIéÑ£G«V­¶lÙ2tèÐþýû'&&>ÿüóvYPrrr‰%Ê”)³jÕª¹sçnß¾=''Gž”™™yìØ±¸¸8ƒáÁú¶iÓ&??×®]Ö§¢=%é…^X¾|ùÂ… ûöíkûݹsgïÞ½-Z´ÈÍÍýí·ßæÍ›÷ÓO?eeeiY©",îäÉ“{÷îµ½Ú¹¹¹#FŒxùå—Õ…iiiBˆ%J8g[Àç8l¥dG¥F!ÄÍ›7''Ç`04oÞ|Ïž=raµjÕ–/_Þ¬Y3»TÛüüü>øàuÉ•+W>øà__ß=z8a[À,‚# (,¡V—Û1D6jÔHNBˆ¸¸8!DŸ>}äÔ(„ˆß¾}{vv¶QpÌÍÍ•ÏY4ëÙgŸ5-LNNÎÏÏŸ³ »Rׯ_B,^¼¸k×®‹-ªZµjbbâàÁƒ»wï~ôèQÛ«­Q¶…Ú/¿ü2dÈäää9sæÔ¨QãàÁƒÝ°„à( £P¨äEõ8†„„(ËyÑ´ÄTVVVBB‚ÅUÌTõ—_~)Y²d¹rå䇃 º}ûöˆ#äa¹Bˆ7n¨çÏÌÌB”+WN®¥©ZÖqݺu’$U®\yÍš5S¦L©V­š]VJÓ>úèŠ+Š/.„èÔ©ÓG}Ô¿ÿÕ«WwìØÑÆjçå婿ççÛk[ÈN:õòË/¯]»¶F›7onÓ¦¸¿õ·-` ç8l¥¡6:ßQwAAAVNó7û”°°0£lÑ®];!Ä‘#GBCC}||ŒŽufdd!*W®l}ª–ÚJ’´jÕª%K–dee9Ò^+%±mÖ¬™œeÍš5B=zÔöjß¹sGýðÖ­[öÚBˆo¾ù¦víÚ{÷î;wîŸþ)§Fy¥º-` =Ž›×(gGõ;Va¦¥¥­[·®M›6111J¡ÜSU½zu??¿ØØØmÛ¶©Ÿò믿 †ZµjYŸª¥¶Ï<óL—.]„ýúõ[ºtéºuëžyæÛWªT©R‘‘‘çÎSÊ¡ªJ•*¶WÛè•ÏŸ?o—m!„X»vmÿþý{õêõÕW_wvô¶€Ezëö@^;DßqÜîZ'.Žö´;·kR·»ŽcxxxBB‚òðÀBˆ (%S§NB\¸pÁè‰×®]+Ô7àÅ‹K–,Ù¢E‹œœ¹$//¯wïÞ~~~òå~ä‹õ¬]»V™?44´]»vòCëS \Går</^ ŽˆˆÈÎÎ6³°+%IÒäÉ“}||••êÚµ«Ïl¯¶ú¹'Nœ/–n{µóóókÖ¬ž››kvÑvÜ\ŽG;‚£ýyíÎä8n÷­ìâhO»s»&uÐÇ”ƒ.ú-Ù‹`Ú´iBˆêÕ«6lܸqòFÞÿ}yêõë×ëÔ©8~üøiÓ¦ÅÄÄ”)SfçÎZ¦._¾<88øµ×^³´Žê €Ï™3G1a»4`zzzíÚµ‹/þÿ÷o½õVƒ „cÇŽµKµýüüJ•*Õ»wï^½z”-[Ö.ÝRGŽBÄÄÄüÝÄ÷ßoã¶0BpÔŽCÕûp‘ÃÓ6;vì£>:}úô¥K—–,Yò‰'žØ°aƒ<,F˜˜˜8f̘իW_½zµI“&Ë–-Sîbg}jNNεk×,hdÈ!_ýõG}Ô¯_?e8y‘…„„$&&¾ùæ›Û·o_³fMíÚµ—-[¦\ùÒÆj7nܸS§NsçÎÍÍÍ}ñŧL™bû†HNNB=zôèÑ£F“{ì±Î;Û²-PdIò„÷¹K‰ŽŽNJJÒ»%555""BïZxÚÓîÜ®Iù˜ÒË‚ >|¸Ñ…ràÙŽ ˆÆŽ«wàTª€&GhBp€&GhBp€&Ghâ —ãYµjÕÊ•+“““Zµj5fÌùëJIIéСÃÊ•+ëÔ©c4©Güñ‡QaHHÈŽ;ô^]}¸}pœ9sæW_}UªT©† ¦¥¥­Y³æøñã‹/ö÷÷/ð¹K–,±4éÔ©SþþþáááêÂàà`½W@7î“’’æÍ›ºzõê *!Þ{ï½Å‹Ϙ1ã­·Þ²ô¬ÌÌÌcÇŽ­]»vÅŠ–f¸~ýz‡Üî>ôŽãÞç8®\¹2??Ô¨QrjBŒ7.((hÆ ùùù–žÕ¹sç¾}ûZJBˆS§N !Œº¼œ{Ç={öøøø´nÝZ)ñõõmÙ²ååË—÷íÛgéYï½÷Þ—_~ùå—_6mÚÔì iiiBˆêÕ«ë½~oѳgO½kÀƒ£$IÉÉÉåÊ•+W®œº<**JqúôiKOlÞ¼y||||||åÊ•ÍÎ ÇóçÏ0 aÆ­Zµ>|øÁƒõ^cpmƒÞ5°ƒ»wïúùùV¾|ye†ëׯ6¬Zµj¥K—nÙ²å®]»ÔO·>U'Nœ0Xç²Õ–mݺ5..®B… <òHóæÍ¿ýö[õT·ÛÀÏqÌÎÎÎËË3°$„¸råJ‘_Y³gÏŽˆˆhÒ¤ÉÙ³g·nÝš˜˜øÎ;ïôêÕKË+DGG•lܸQïscgΜѻ …ö´;šÔ“¤¦¦æåå5mÚ422R),]º´üGfffƒ N:Õ£GÕ«W?ýôÓ[·n­[·nSõRºté~ýúÞºukÍš5.[m!Ä?üЩS§ÈÈÈ~ýúùûû¯^½º[·nóçÏ77wüøñ111qqqþù§]–•œœ,„xì±ÇÌN]±bE¥J•”/ˆÈÈÈ=z$&&ž?¾À©Úåçç÷ïßß××wÙ²eömIÙo¿ý6sæÌ… >òÈ#6V;:::>>^]2yòä† Ú^É;wî9rä™gžQ¾ÐK•*Õ¢E‹3gÎܺuËiÛFÜ88úùù]¿~ݨ<33S¡Œ³¶—F !Ž;¦÷z€‹1ÊŽƒ$»/déÒ¥‹-š0aÂäÉ“SRRzôèѪU«-[¶ :´ÿþ‰‰‰Ï?ÿ¼]”œœ\¢D‰2eʬZµjîܹ۷oÏÉÉ‘'ÉWs‹‹‹3¨Ö·M›6ùùù»ví²>µ0Í)½ð ˗/_¸paß¾}íÞ’·oßþûßÿÞ¿ù𫽪­8yòäÞ½{m¯§¯¯ïÁƒ§Nª”äææþñÇO<ñ„¿¿¿s¶L¹ñ9ŽBˆÐÐÐäääÌÌÌÀÀ@¥P>M!44´h¯)IR~~¾Á`ðñy(Uûúú !Ê”)£÷J{Ç|ïp%;:ìÝ{óæÍƒÖ¬YSáçç7vìØ¬¬¬={ö+VLqèСí۷߸qÃöOéäädŸÇ{ìêÕ«rILLÌ’%KêׯñâEI’Œ¾_ä~ŠôôtëS57¤4tèÐE‹-X°`àÀŽhÉÙ³gŸ9sfÊ”)òC»TÛüüüjÕª%ÿ½xñâäääõëן?~ùòåVÛeWʸwpŒOJJÚ¶m[§NäI’Ë–-[äSzÓÒÒÚ·oߨQ#£ûÊìß¿_˜õG¿ƒL¿}”€ ±t<Ú¨ÜNoÚFÉ©Q!îÓ§œ…ñññÛ·oÏÎÎ6 ޹¹¹ò9‹f=û쳦…ÉÉÉùùù“'OîÑ£G±bžÿþû×^{-!!áðáÃòÉQê® qÿ̨˗/[Ÿªe%I1bÄüùó 0hÐ K³a¥|ðÁ¨Q£ªT©"—Ø^ml©ö”)SäSþö·¿ÉËsô¶€%î{öìùÕW_}þùç­Zµ’‡¼Í›7/##cðàÁʧIVVÖ¥K—Š+¦¼I¬ ¯_¿þîÝ»W­Z¥\Rkÿþý . kß¾½Þ+í-L³#©p-FoH%/:æ¢ü-›–˜ÊÊÊJHH°¼fªúË/¿”,YR¹ÐÛ Aƒnß¾=bÄyX®âÆêùåó£Ê•+'×ÇÒT-ë¸nÝ:I’*W®¼fÍš)S¦T«VÍ^+¥˜6mÚíÛ·_ýu£†µ¥ÚyyyꇖnÀaKµ?ž½sçÎÁƒ?õÔSGµ^mÛW –¸ñ9ŽBˆ°°°1cƤ¤¤téÒeÒ¤IÿûßgΜY«V­_|Q™'11ñé§Ÿ6l˜ö—}ûí·CBB&NœØ­[·×_½OŸ>Ï?ÿ¼Ï| åذõyS¤FÀ¥)oQ³ceôde|¨Ù§„……e‹víÚ !Ž9êããct¬3##CQ¹reëSµÔV’¤U«V-Y²$++käÈ‘v\)ÙíÛ·.\Ø­[7õ Ú^í;wî¨Ê#WìXmY@@@||ü‡~xåÊ•ï¾ûÎÑÛ–¸w£bРAåË—ÿî»ï~øá‡J•*õë×oÔ¨QÊ·Š¦fÍšß~ûíǼsçÎãÇW­Z5!!áÕW_­T©’ޫ댾tÔÙQAˆ\ˆÑ;Kçšè¡°‡GÓÒÒÖ­[צM›˜˜¥P^½ºŸŸ_llì¶mÛÔOùõ×_ C­Zµ¬OÕRÛgžy¦K—.Bˆ~ýú-]ºtݺuÏ<óŒí+¥X¹rå•+W^xáu¡íÕ>wîœú¡¥aË…­öúõë–.]úÜsÏ)…eË–BH’äèm‹ô¾òÚk;9ˆN¸6œwq»‹º>·kRg\ÇÑ®ïÛððð„„åá„ ,PJä±·.\0zâµk× õ xñâÅ’%K¶hÑ"''G.ÉËËëÝ»·ŸŸß‘#G$Iš={¶bíÚµÊü¡¡¡íÚµ“ZŸZà:*×q¼xñbpppDDDvv¶éœ…])Eûö탂‚L/„icµÕÏ=qâ„Üwc{µÓÓÓýüüÚ·oŸŸŸ¯Êcç¦öF-rp,‚iÓ¦ !ªW¯>lذqãÆÉC-ßÿ}yêõë×ëÔ©8~üøiÓ¦ÅÄÄ”)SfçÎZ¦._¾<88øµ×^³´Žê €Ï™3G1aÂ{µavvvÉ’%;uêd:ÉÆjûùù•*UªwïÞ½zõ P:m'_Ä»~ýúo¾ùæ„ äëâ5Êöma„à¨Ûª†Sìr¥c_<ÙØ±c}ôÑéÓ§/]º´dÉ’O<ñĆ ”;Î&&&Ž3fõêÕW¯^mҤɲeË”ëxXŸš““síÚ5K§2dÈ×_ýÑGõë×ONn‹ÄÄÄÛ·o·lÙÒt’Õnܸq§NæÎ›››ûâ‹/*×ú±Ñ¤I“"##¿øâ‹9sæøøøÄÄĬX±B9rm˶@‘$¾Ší-:::))IïZ¸=uLTþ&;ÚEjjª|ƒZØ‹Û5)SzY°`ÁáÇgÍš¥wEìV툈ˆ*UªMèvŠðŽðÚ7‘{ª†3IÜ×íÛ··nÝZ¯^=½+âÕ†ƒp†;wÆÄÄØëÖˆTºàG¸””T!Üé8 ˜Š‹‹“ïyã^¬W{øðáF7hg#8€";v¬ÞU€Sq¨š¡3Wº9°†àpGGè@¾š·)%®Œà}˜fG.î €‹#8B7êìHjÀõ¡'n$€á:Žp*Kg1•“#G‹ŽŽÖ» ÜÁNe”å¼(³&,N“””¤w ššÁý¢ì†ö„½p¨ºQ‡EK㬀ë 8B¦]ŒdG\Á:°t`š£Õ¸2‚#t@@À¡3B$î‚àMŽÐ„àMŽÐ„àMŽÐ„àMŽÐ„àMŽÐ„àMŽÐ„àO`0è]¼Ášá®,õ2Òû€ƒá®$ÉLF4„$é]3<ÁnÌ(;’p(‚#Ü›’I8šŸÞ MËÙ„HìŽà÷c •¼HXÀ¡8T ÷¦¡6;VØÁnÌè¼F²#Ep„»2;†ì€ãá®,ÑÈ™Ž8Áž€°€  Áš  Áš  Áš  Áš  Áš  Áš  Áš  Áš  Áš  Áš  Áš  Áš  Áš  Áš  ÁšáXƒÞ5vBp€&GhBp„ýY:<ÍakÜÁö'If2¢Á $IïšáFÙ‘Ô€ 8ÂQ”ìHjÀ3øé]xg7’#pGGØ“Q"Tò"IÀ¡j8Šr„ÚìXàvŽp£óÉŽx‚#ìÏìhŽVàîް?2"‰àÇ"Dà1ŽÐ„àMŽÐ„àMŽÐ„àMŽÐ„àMŽôaÜ¿Ü Áš8½ŒàÖŽœG’ÙìH ·@pàT¦ÙÑ ’ô® `GΦΎ¤Fp#~zW€W°r„Z=‰ ®ŒàÀL¡œIŠàF8T @JjdX ¸‚#gSŸ×Hv7BpàT¦£aÈŽà.ŽÂÒh³'5r¦#¸‚#ç! €[#8°KGœÍ–"Àíá œAçfÏVäßà1ŽìÉ(;Ú˜4.…àE/£^”ìX„ÔHRWÆcà±$I B2É-f a#-g7j ‘rè4{›Žw€îŽðd¦Ù‘Ôè F©NÉ‹EH{¦Ù‘Ô.‚CÕðprv”‘CÉyE¾²·ú‰¤FpGx>9,’Ã(çÙžIà:8T diXŒQ99ÒîÌöZ:mÑìÓ ,$GB+~,@p„2ú²ó¢¥±2°#K©NcÚ3=¯‘NGp)ª†‡S‡EõùŽp4/ߨ<½È»á4nPTGx2Ó.F²£ë3=®Mv„Vfßákì‡àeéË‚oWfélHŽVC+£ìHjìŠàÅ—…;" ”ìHjìÁ1ð |w¸)r$´Òrv#€ÍŽ÷göb ‚°Ø‡ªžE9BÍh8ÀÞŽbt^£•ìH¦ àðfGÃÐïØÁà),Ѩ”Óû؆àpCF=K×qå ဠŽoÂÂxKp\µjUÏž=ëÖ­Û¬Y³7ß|óêÕ«Ÿ˜’’}ðàA½×¼ž½4s…p ¨œ?þøãääd]VræÌ™'N>>­[·VJ|}}[¶l¹víÚ}ûö5hÐÀì³Þ{ï½;wî!–.]úÛo¿9­•fØñVÔf¯N_# SïUm0êׯ_¿~ý‰'þúë¯k׮ݲeË7ß|óÍ7ßT¯^=!!áÙgŸ­\¹²—(IRrrr¹råÊ•+§.ŠŠBœ>}ÚRplÞ¼¹üÇÖ­[ÙD3ìu+j+W';858>XªŸ_›6mÚ´i“½zõêO>ù$--möìÙŸ~úiÆ »wïÞ¹sg___Û”——lT$„pÜ©–ÑÑÑF%7ntв¼Á™3gô®‚G¡=íŽ&µ;+M™š’rïƒ!5%¥¯›’"RSn©÷ÿV—{$vQ=ýôÓzWÁUè…W¯^ýùçŸ7nܸsçÎÜÜ\!Dùòå‹+¶{÷îÝ»wÏŸ?Á‚•*U²q)òÐéR¥J•—.]Zqýúu­]RR’£ÐÛDDDè]B{ÚMjwæ›Ô`’¡Ì I6tzÕV󪕵;Ó¯uÓ"/áìà˜‘‘ñÓO?mÚ´i÷îÝyyyBˆvíÚuìØ±~ýúBˆß~ûmæÌ™‡~ûí·çÏŸoã₃ƒ Cvv¶QùÍ›7Åý~G€{°ïfŽM…ç¼à¸téÒM›6íÝ»WË\®\¹öíÛwèСAƒê£ÒÍ›7¯_¿~£FöìÙc‡Õóó 2íYÌÌÌB(ã¬n À[Qp0çÇ)S¦!‚ƒƒÛµkסC‡Æ[:‹Ñßß¿dÉ’¶§–…††&''gff*…òy-¡¡¡N[}ÀÄA|[C?„E@Î ŽÝ»wïØ±c“&M´Œz±Kw£,>>>))iÛ¶m:u’K$IJLL,[¶lݺu¶úîÎyß°aÃÎ;-¥ÆW^y¥}ûöŽXnÏž=}||>ÿüsù¼F!ļyó222ºwï^¬X1¹$+++55•Ag€ua(T9ÀÃ8¯Ç1;;ûîÝ»–&:uêìÙ³ŽXnXXؘ1c¦M›Ö¥K—-Z¤¥¥íÚµ«V­Z/¾ø¢2Obbâk¯½V£FuëÖ9­A·# Éô5ǬÀ{868&&&>\y¸xñâ¥K—šÎ–ŸŸ/IRµjÕTAƒ•/_þ»ï¾ûá‡*UªÔ¯_¿Q£FÉWäP(FÙ‘Ô^űÁÑ××W’rõêÕâÅ‹˜388xܸqŽ«IçÎ;wîlijÇŽ;vìhvÒÔ©S§NêÐVÜ‹œ©¼cƒcóæÍwíÚ%ÿÝ»wï7ß|SïUPhZÎnÔ%D^À™œwŽã /¼`éÆÐ\œéyfËžÍyÁqìØ±z¯,;;ùÔÿëRíå{q`p\¶l™¢Q£F5jÔPZ×·o_½€5FáL—ìÈànЋƒã»ï¾+„˜}úLš4É`àŽ·4Ñ}p7x!§-iÏž=/½ôÒ_ý•ŸŸ/„øóÏ?W¯^ôüóÏW©Rå›o¾Ù²e‹Þ­À=˜Ü­w¥à迬r^ãüùó%Iš0aBŸ>}„?þø£âƒ>ˆ?yòäÓO?½|ùòøøx½€«³4¸›~GØ$™?<Í1k@áÌàxìØ±Š+0@~øûï¿/^¼E‹BˆðððG}4%%EïÖà,¥CR#ìÃ4;’ûœw¨úÚµk!!!òß¹¹¹þùgíÚµ‹/.—dddèÝÜ aÑSEDFê¹x9;ÊH€ŠózÃÂÂΜ9“——çëë»oß¾Û·o7nÜXž”ŸŸæÌ™òåËëÝ/ft‚£:;*‘ðnÎëqlذáµk×>ûì³³gÏ~öÙgBˆ–-[Ê“.\xåÊ•Ç{LïÖèG÷)’ôÐ?+…€·r^ã!CÖ®];gΜ9sæ!üqùÚ½zõ:xð bРAz·@?f¦èu¤X^®ÁÀ¡j@Íy=Ž•+Wþ÷¿ÿݺuëŠ+6oÞ|Ö¬YòU322?üðçžzJïÖèJ}r¡Ð;5š­àÝœzð5jÌ;רpÉ’%•*Uòñq^„¸.%¨¹BjTW‰~G@ß[Ê*W®¬wú±ÒŸ§Ë¨³ "5B'Ç 6,^¼øäÉ“’…wà®]»ôn€s™½Ú¶¥Itå¼à¸yóæQ£FÉûúúê½â—¤ŒJq…Ä$WàaÎ Ž ,Büýï饗‚‚‚ô^q€ë1JŠ®¨8/8&''W©Rå7Þ` À ³‘Ô¸'e¸»wïÞ¸q£jÕª¤F€ydDÀå9)Æùøø?~}zÞ¼y»víêСC•*UŠ/n4OëÖ­õn˜ç¼à/ÿqèСC‡™'))Iï€yÎ Ž]ºtÑ{ea\(ïá¼àøÑGé½²°’"^K‡{U_»víðáÃçÏŸ kÖ¬YFFFHHˆÞí­,]Ž—@ €Çsjp¼|ùòœ9sV¯^}ëÖ-!ÄÀ›5kÖµk×Zµj}ðÁeË–Õ»5 ‰iv$5à œw9î»wï¾ôÒKK–, ìÚµ«R^¡B…­[·öîÝ[N“p rv”‘ðÎ ŽsçÎ=pà@«V­6nÜøá‡*å+W®|öÙgOž<¹xñb½[… dGR#^ÂyÁq÷îݾ¾¾ï¿ÿ~@@€ºÜ××÷í·ßØ´i“Þ­ ý³R<óÎqßx0çÇØØØóçÏ›½gÌÑ£GÏž=£wk@ÓÑ0dG¼ó‚ãsÏ=g0þñ9rD]~äÈ‘Q£F !ôn ÌÒjŽVàñœwŽc³fÍ<þünݺEFF !6oÞüÛo¿8q"??¿k×®íÛ·×»5P0"^Ë©ýõ×ëׯ?mÚ´””!ÄÙ³g…åË—=z´úÊŽp#äH¼‡³o9wõêÕ”””œœœÈÈÈÐÐP½Óá^ÕBˆ²eËÖ¯__ïu@!808.[¶¬°OéÛ·¯žËß}÷ÝÂ>…ฃ0H‚3Xq`p”/²£vôèÑM›6ùúú6oÞ<<<Ü××755uÛ¶m¹¹¹•*UzóÍ7õn À{‘r`p>|¸úá©S§–,YýÅ_T­ZU)?{öìË/¿ü矮]»¶]»vz7à¥$!™ÍŽJ€ÂyŸ3gÎåË—?ûì3ujBT®\ùÓO?Büøãz7à½äì¨.!5Ôœ÷ïßV½zuÓIU«V•Ë%® èJI#λÏÕ«Wóóó%I2˜»«qfffÙ²eË—/¯wƒÞNÉŽ¤F `–nà x(çõ8Ö®];33ó—_~1´}ûö«W¯ÖªUKïÖ¼”AÔÿ¬º÷­9¸ çÇŽ; !ÆŽ»aÃõ!éüñõ×_Wfà|’”BÕ×hT@! ü÷rÞ¡êîÝ»oß¾ý‡~5jTùòå### CJJÊ¥K—„;wîÞ½»Þ­x;õy–ÆY»>KÕvÓÕË‘$3G¨9f ïàÔ[~üñÇM›6={vzzzzzº\X©R¥W^y¥k×®z7àíLs•›fG³ÕvÇë2ÊŽ¤Fx §GŸž={öèÑãâÅ‹©©©~~~ááá ˆ\¥\å¦aË(;’arv¤Fx§G™Á`¨X±bÅŠõ^wx^®R†‡“]Žû&-Kg7•»éÚèä¾_dâ¦IËÒju¹›®šÛóŒ÷˜éyfËÏEp„÷òŒ/2¨™ž×h¶:0; D¸óûP®¹úÀ 8ïr<€«QÎP2Â¥6<ƒr„ÚôVŠÐ‡é[Î}ó–QÍ-}š‡à¯æI_dP3:¯‘ìè*Ôo9÷}³™­9ÙÞàoç_dP3;†ìè*ä÷˜[¿Ù,ÕÜ}×ÐŒs{ÙÑ­¿È féŒFÎtÔ#‘Bp„7â‹Ì{õgv$²Ç (ñ€U ƒàoäÙ_d€ëRÆ Þr€[âGx;õ7g·dyËî†à¯Æà$–:éqÜ ÁÞ‹/2Àyx_àïÅ Þ{€Û"8BðE€GhBp€&GhBp€&GhBp€&GhBp€&GhBp€&GhBp€&GhBp€&GhBp€&GhBp€&GhBp€&GhBp€&GhBp€&GhBp€&GhBp€&GhBpÀa ½kØÁš¯©wF/#<Á»’$óÙ‘@ ÷Gp¼‚A UÀ&¦ÙÑ`’¤wµ[¯ É4#„A|“ÁÞèW“©³#©žÂOï p9;*I‘ÔØŸ•#ÔêI„H¸-‚#àE”~GR£‚¦°K=jÞÖÓfº²r^ôªF€G#8NãÙ„'ØD>,k¼-5šRR#MOAp<œQ"Tò¢7'EK½Œô>ÚÄ(•ä ;³08ð"J02;VÆ{0TÈQ”œDH2mK×èÜ =Ž€·0 FFce¼ C…ìÆRòæ± –r³·µ<Áð fƒÙ‘¡Bv`z^£Ùr¯âÍëOGp¼‚¥`äm‰¡BŽ¥œÕÇ)} ž…àÀ‹0TÈŒ’"ÙðD ޼NJjŠÞUp ²'³‘á €Ç!8ðFf‡ é])wf©g‘GÀ³x+C…ô®šG ,ž‹àÀë0TІàM޼½Œ Áš  Áš  Áš  Áš  ÁšaÁ w €Ë 8â!$E` Á‘$óÙ‘@ Ž0fš !IzW èÍOï ØÁªU«V®\™œœЪU«1cÆ”-[ÖÆ§ôèÑã?þ0zVHHÈŽ;ô^]g³£I@æöÁqæÌ™_}õU©R¥6l˜––¶fÍšãÇ/^¼Øßßß–§œ:uÊßß?<<\ýÄàà`½W×±L;MË ‘x-÷ŽIIIóæÍ ]½zu… „ï½÷ÞâÅ‹g̘ñÖ[où)™™™×¯_ïСìY³ô^E§2 …r^$)™{Ÿã¸råÊüüüQ£FÉP1nܸ    6äççù)§NBu7zõ¡jáîÁqÏž=>>>­[·VJ|}}[¶lyùòå}ûöù)iiiBˆêÕ«ë½~ºQŸ×hiœ5ð6n%IJNN.W®\¹råÔåQQQBˆÓ§Où)rp<þü€6lتU«áÇTl0²³³ÊoÞ¼)îw"í)_ýõ”Ô(„hÚ´iÿþýoݺµyóf½×Û©¼|H5èPsãàèççdÚ³˜™™)„PMÛøE£F„ÇŽÓ{½á<Ü€57ŽBˆÐÐÐË—/˱O!Ÿ“Z´§H’”——gz5___!D™2eô^i87`@áÞÁ1>>>//oÛ¶mJ‰$I‰‰‰eË–­[·nÑž’––;pà@£'îß¿_xñ9 ÞLIoæÞÁ±gÏž>>>Ÿþ¹|’¢bÞ¼yÝ»w/V¬˜\’•••ššª (+ð)áááõë×ß½{÷ªU«”íß¿áÂ…aaaíÛ·×{¥á$Ãâá0ªËðn<ªZ6f̘iÓ¦uéÒ¥E‹iii»víªU«Ö‹/¾¨Ì“˜˜øÚk¯Õ¨QcݺuŸòöÛo¿ð 'Nüæ›o"##Ïž={àÀ€€€>øÀÊ-°áa¸#FÜ»ÇQ1hР3fDDDüðÃW®\éׯßâÅ‹M¯ÔX¨§Ô¬YóÛo¿MHHÈÈÈØ´iÓõë×Ö­[÷ÔSO齺Ð7`@aèB±·èèh÷½Ž£kJMMÕñ dêÔ(Ÿïèîo}ÛÓ#ѤvçEMê”Ï/jOgñÚïz·ïqŠ0°?>Dà¶Ž€5f;ܽǀθH,ÜÁP„»à"±pOG@+>ÒØ‰…"8 ÂqUQ¼Ü{_Çà ¦ 르mTNÛÂUOcIð­{SgGRc‘YºµM 7Á¡j€6Ê9yD»P‡E.ô7A#à ,õ2Òû[i9»‘Y–.KcµO É4#’íÅ«[Òô¼F:mg) Òªpyª<„œ•‡^ul¦nIÜÃqU;" ÂmÏ¡dGR£ŒR¸Â{%7ß „àP5àî,Eu9!²Lþ{o縪CÑŒp+GÀ½™ž×h¶E ÎŽÞ›ÉÀGÀsÈáFý¿Þ5rKF¸ÊC:qﯼ¯;àõŽ€‡0JŠdÇ"3Û‰KK€`p àÌfDK#< úPµÞuýO`©?Œ~2[¨ã8)Áð<„E»0íÄ%;ÁŒY:=”PÀËÀÌ"8@È‘ #8@‚#4!8@‚#4!8@‚#4!8@‚#4!8@‚#4!8@‚#4!8@‚#4!8@‚#4!8@‚#4!8@‚#®Í`лÀ=G€ €eG\ .‰àÞ€âš$É̦acAoGðnfŠ £¸£Mc0IÒ»NðvGðz¦Ù‘Œâ"”MÃkðÓ» 9šQôe©¯W]΂NŽàÅL;MËÉ(NfÔàʶ`CÀÀ‹™Í(×!÷þªÿtÅ9Ž!„xèP5\QR´4Œ p"‚#àf ‚o—©wl¦Î(W`¶‘M½»áóîÊ4£Ptgé¨4G«¡+‚#àÌö2Òõ¨/Kíï~ÛÅÒ™s&Ž€M´\7Ãv’ŒâˆA$Á÷ºžL7ŠpÓíB@t}l#¸ ‚#`Kw³ûç¼:¦¸e:ñDFÙÑC¶ €eGïÅùKöâ´»‚)1ÅÒ‰§P6Ї¤F°Šë8z®æ Ž»+˜–³É+N¦åìF6 Dpô.–® K ,çÜL?ä>-:ugÔøJ^d£ðxG¯cšIEã仂©„Êñ‘˜â ”4ÏFà 8ÇÑ©ÏÉ#5Ú…ÒŒºøi"1;¤Nf´]Ø(<ÁÑK)÷#5ÚÎÑw³ÔEç–¾Ìn²#ÏÆ¡jo¡ñrƒäȲrW0{5&Ñ5YÚ.l/ŒGo!IýS &¡°œW0r‰ JIMÑ» à Go¤î ㆴvDòx6‚£×1=„JvZ½‹¥ïè*"8z"(2‚£÷"D€B!8@‚#4!8@‚#4!8@‚#x ®õï©Ø²p‚#4!8€G³ÔE€Â#8€G3{7zK·…á'ô@pOg”IžŸÐÁ¼€2ž„Ÿp:?½+p ‡2‰nŸp.‚#x(£¡äEâ…»ã'ôCp/ wG©ÿ‡ûâ'ôÃ9Žàp¡ë@W£¤hvPÜ”²qÙ¬p ‚#àBtŽðHfû žŸp:‚#8„¥ŸÎþy`éð%‡5Ý¥Ÿ€#ý™Mô>º;IH¦Ñ ’à«ö@F„Ž€þLñÂ3mYý7+QÃS±eá,GÀ%¨†þñö£lY6+ÀåxW!' â…Ðxv#€Û!8º!^x*£M¦lP6%wGpœÇøÒæâ…ÜïHÂðòÖTÿ¯w è8Çp êHav4.Ü‘QRdËpwGÀ±´ÜTÖ´#Š„áÌö/²e¸5‚#àXfoå >fméð%Ç4Ý¥-Ȗྎ€ÃeGëg:Â#±•x‚#à Jv4{“0Ü£ªGÑrv£ô>Â~ø]ÀÁŽ€£}ƒ+y‘ovNÉGì‚CÕ€3(=AfÇÊE§±gìà8œñh²#ì¨ÀqûðZ|ÐÀŽ‹O aöœì{²>n^ËÒ Ÿ>°Áp,Kßà|³Ãž·³L³#{lÃàbé Ài9»‘w>ÔÙ‘/ØŒàèQäÏÓÁ¼|P¸6,±t!k·K¬¡æwlCpô4FÙ‘Ôxù­®þÞÌtó";lÆ9Žˆ“\–ApN:°ÛþÀ¸}X§¤Fv ØŒGÁÉN€Û‘„döuá[[·Ï{BÕ-Ø1`GÁÉN.ËR(Ê9mð8¦Ù±Ð;ãöa…iL$;Â6ªö@ܤĥÈÉÀ¨Ô…z±uÇ @ÍR@d? èqô4fOvâSB_F½J¤F˜=»Q.TOb?Møè‡ÐãèQ¸I‰ËRz•HBHB2úg¶\ïjÂs¤¦¤è]xz= ';¹KcféR‚y—°4VF5‡èŒàè±ø~ÑQPò¢•d@0ðBrXÔš@WªœAIfÇÊÀk™ÆDã=„Mà4ìlЀà8œQ80J|V{-K‹š=I™vÁŽ„Â#8Že6¨³£¥ÑK|¤{<­‡¤vNh€½ðéƒÂ#8Že)<ÔiòéM6ð6„Hn$ áÓ…ÄàÀy¬„õ§7ŸÛ‚‰ÂYÔ×ûåÓ!8vSØñ°VŽ‘ ¤‡GXs#Q8ŽúfÖ€UG@7¦Ñ|tCíÁÕyä~ ûÿ$® ›i9»‘#˜ 86±ÔËX„«ñ)©‘ƒEPvo×bñéƒÂ 8¶2¾.£m©ñÞkòéí ¬ncƒ0„Á å.çfË›êÓ‡O%p¨ÚpøÒ•)ÙÑ.©ñÞkJ…›îÇÒy ƒ$³·¬äÔFØSa?}zÝju5÷:~îÿ3[®åuøˆöjÚ®¢wï~Öõ2Ò‰ÂÑòéCï#F£;1íž óÉ™Lïh4Õly¡ÐËè º†§zÇ{0ΰ;K½¦»%I^ŒG7Ãe¢]“ò]nv¬Œí¸_±Û3»ý”êy.7‰¦çÔš_ ½°í7½äSÉ ÐãèLe™–"AKïŽiO¤#ú„Œ~öó³Á XßH¦]8ÂÌÛØìŽTàþF¯$쌛^â>‚£{Ðöû+ð[Ùì7´C³£(裛v狈Œ4ÓèVǾ—ˆ¢_ÃÓh³²ï(QÜôæp¨ÚYïìWßSöb帞õ«íXú¶×׳Á`æ¦æ ár´Œ}Ñ|=k÷:·<®ŸcÖ("IzèŸÙrQÈÑ3|`¹?‚£ly7q¡V³ üj4;ƒö/TWÛqD_Ž#>º###ì^OgË›Öú‰É6\ÃSã¸~KçÝùäHÛg€ûQvTÓýÓÒ)ØEîŒ,pÿç›OW‰~f V­ZµråÊää䀀€V­Z3¦lÙ²šžYàÆÂ ŠU3X<­íþ‹K+j5ìü"®]APÝæ÷nêfüÙ$|¨Dìº"÷&Ê·±’@lß7¿.R uÿ¿$0§ÖR£†jpŠ‚ÕqýÊ^-Oµrh»ÀÃÙN˜j¸ÖR´ìçßNÝâå?´ìó.þ®/Ô‹x"zÍ›9sæÄ‰Oœ8ѰaÃÒ¥K¯Y³fÈ!·nÝ*ò üÉ`(ð –3.Ôêœ_r-Å.=w¨ÌDõøhõ?e³…m e.£ÁúÏ~Óîî›ÞI´TCK/£¥F7:Ã@Ýã¨úg°_uãúÕåÆùÀPp—¤íoIé†ôªjØg)fã‘¥3zÍÍo,\U@Ë'”=›Ã%6½ 8š‘””4oÞ¼ÐÐÐ7Λ7oÓ¦M 8tèÐŒ3,>§ ¯eIÌÏ¢”J’Qv|н¤y)v˜AËuÆ¿I±ñàKZ2˜ùÜ4ƒ¤”Émnú…j²ãoe綆ü·ùbæ£Ûêh0I¸Ö¦·ø"N¯†A˜ù%§Žz÷&š4ºÁpïLƒxø ƒûGú”ò‡Þ羚¬y]ÍŽë7m £¾Fuc˜fÇ{¯úà±ù{²«ê_Àï4-GÌ‹œ_ÕoaÏ®†+kéÂ;ÆçJX8ÛpïÚõ¦?±Œ—böÊìߪBuG€…Š:÷ÃÇ ÍX¹re~~þ¨Q£*T¨ —Œ7.((hÆ ùùùæŸSàIòw„Áò âAv|0¥À^&“¥Ø:ƒÐp:¿^K)h†{¡PÝæãHeå#My‘{sîÝøÞÃûáòÁbXëÝæ÷Ïe“„Á`üùf0„¤ä£=ð^jôˆMïˆjHÒÃÙÑ`ïxoλ‰ñ÷¥R~o &³ïºš9…Bù¸ôý]ãÁwø½‰— “ì(§FãÓëGªæ1›QÌ&ZûÎ`4gWC÷•Uv´{óÜ?úb„Ñ^{¯äþ§‡²ãýÔh¼sáRýšf~ÈIª3\äÃÇ ÍØ³gOëÖ­•__ß–-[^¾|yß¾}ŸVà%R¾¹U3¨>׿¨ŒËiXŠ­3ÍSà ÎYJA3§F¥ÍïgG£n–$¥RžA}$Ú ¦Õ0þ¨ÕµÍ|8K’¤ª• R£ÚͤF·ÝôŽ«†:;>HêF—»•…à wôu%š|ñظ®’ÌÎ`|®…áÁž/Ôû¿*G uW“IÜTgGÓd) ºþ€é<¶Ï`vO­†‹¯ìƒýRýc[Ýï¨Þë函™†Ka\‡¿Õ©Ñtm/âOGp4&IRrrr¹råÊ•+§.ŠŠBœ>}Úú“Mwú‡úìÅý¯v“P¨|Àă¿ƒ¬-¥Àjnõ<Î`ãRìT u(49L"Äý~Ó!¨âþÏh³7÷>˜LªañË9­aaeSç³{ <ƒÑ&£_/F3¸ì¦/t5L×J™Í䟒ť‡w+Õr¯©¼»Õ R~P s Õ¶-ƒdñEîïßÃC9Àì¹¼F%ª]Cý{É`únÒrýÓÑ9¦3Üë-hK/â‘Õp镽߉(Œ~lKï_^îá áÒ̧ÏýW6“žAçÆÀeggçåå• !®\¹büÓ^ë‡Ë-íS&ß1Âh~I˙͆‚æp ®W ‹mnt@F)h« r‘Ö°0ÏC¿/îï?Z÷Àg0;»‹mz3¨{¥{ßv–¾/ J"|héꗕ:ÒL’túºÊyèWѽŸZf.`PŽq«&™ÌsïU”C„³U~~Ù>ƒs–â"ÕpÙ•U~’<4ƒ$$ƒA½Ýß¹îíb÷&™þV7³™Ù§ þ¬z|øxGˆ$8“‡N—*Uʨ¼téÒBˆëׯ?ÁhGQö!K;ЃC«’éS%¥£^º÷…eþ÷Œæ¥Ø4C¿ºìU I²ø»­ jŒ»XÁôGªA=FisÓŸÔ.Ò–_äÁ3žÁ´¯MÉ2¦{ k­¬#«a”¡„dᦜרtַ惷ìý…˜y©{ý¸ÙòÏpÿt4ÓZ}ÿèóýþ3K÷åý/ÿû3¿§Ì¼ºÉ êk™ÎP`˜Æ¥x@5Ü`eï?6žAzø&¿‘î’6wf‘xð®¿w¤èÞ±ï‡fP"¹ú‡çâPµ±àà`ƒÁmT~óæMq¿ßÑ¢‡Oò°>ƒ™‘ ÒÃßó’ñyôEXŠ­3è»”‚fxè´E 3˜+#$3mn65êÞV_äAj|x3©ÑÂèZ+ë ÕP†yø|Gu£›Yˆ…L¯×»MCmåŒGº¨Ng4;Ù„ê8¦•ñ¼ÚÇvø"¶ÏàâÕp»••£Ï`òƒÜÌPñÐ;ÁÒ ~ü»ø‡G#8óóó 2íYÌÌÌB(ã¬Í0úíbî{Èhõ7·qjÔü"ŸA¯¥4ƒ™Ñ0fPgGãÔX¤j¸K›?”•Ö0ÊŽ.²²®P‡SãƒéF½kn°åžÁ ™io³#]$ñÐÑm“yL³ca‡ëšÎSà EXŠûVÃsVÖÜaœ{ÑðÁK¿Œ³£éh—ýðñtG3BCC/_¾,'EEjjª<ÉüsÌöx?ü=dv†ç@Yê3794V” ªF38§ê)h3¡Ð¤–fxphÛæj¸Q›[Cí{ ½ÚÜ~Õ°tßÒB”@éz[¾à,ÝAì¡BsóHª/ò¢ ×¢€WPÏP䥸c5¬¼ˆÕ°×ÊÚ·fß ’x0€ÆühõÅ õýðñ¦ìHp4#>>>//oÛ¶mJ‰$I‰‰‰eË–­[·®ùç˜ÝÛÔåEžAËR<¦š¡þ@ѱ6-ÅEÚÜEª¡}N©†Ñt³CgܽÉ-Î`(ÄÊ>˜Áêx^+3ø vYŠÛUÖª:ge‹V ³—·K›»Ê¾ 8šÑ³gOŸÏ?ÿ\>¯Q1oÞ¼ŒŒŒîÝ»+V¬àçÛ¾w:ôû¤PKq‘j8a)T£°úÈhMªQ=þøã£Â;v¨KhÏBùã?æÎ{äÈ‘›7oFGG¿òÊ+76šÇÛš” €ÛÇÌ™3¿úê«R¥J5hÐ --íäÉ“O<ñÄâÅ‹ýýýõ®š›™ùD)Y³fMTTÔsÏ=§”ФE¶páBùÿú믫ËiRí®_¿5räH+óО…ríÚµ Ô©SgïÞ½rÉÁƒk׮ݴiÓ¼¼<¹Ä;›”sí`åÊ•ùùù£FªP¡‚\2nܸ    6äççë];÷йsç¾}û®X±ÂÒ 4²v7nBL˜0AùÉ[£FaÆååå)­hÏBÙ¹s§¿¿ÿðáÕ’nݺU¬XñÈ‘#yyyr MZ4ÇŸ9sfÍš5M'ѤÚ:uJaÔÝh„ö,”5kÖdff6¬~ýúrÉO<Ñ¡C‡ŒŒ å”ïlR‚£ìÙ³ÇÇǧuëÖJ‰¯¯oË–-/_¾¼oß>½kçÞ{ï½/¿üòË/¿lÚ´©ÙhdíRSSK•*U«V-ua5„§OŸ–Òž…ܦM›’%Kª K”(‘“““““#?¤I‹ 77wìØ±eË–7nœéTšT»´´4!DõêÕ­ÌC{ʯ¿þj0Ô…Ó§OOJJRΤòÎ&epŒ­$IJNN.W®\¹råÔåQQQBˆÓ§O7hÐ@ï:ºæÍ›ËlݺÕt*\(sçÎõó3~k9rDQµjUA{ÞÒ¥KJöìÙsêÔ©'Ÿ|RîÖ¥I‹æ³Ï>;zôèÂ… &Ѥ…"ÇóçÏ0àèÑ£±±±Ã† S"íYX‡.[¶lÅŠ÷îÝ»ÿþk×®Õ¬Y³mÛ¶Ê‘¯mR‚£­²³³óòò‚ƒƒÊƒ‚‚„W®\Ñ»‚ž€F.”ØØX£’]»vÍ›7¯D‰ò¯gÚ³Èöïß¿fÍšÔÔÔýû÷W«VmÚ´ir9MZ˜?~¿~ýš6m*ÿ°Q£I E>˜0{ö숈ˆ&Mšœ={vëÖ­‰‰‰ï¼óN¯^½íYH9997nÜxì±ÇÞyço¾ùF)¯Zµê¬Y³ä!q^Û¤G[ݺuKQªT)£òÒ¥K !®_¿®w=\dyyyË–-›>}z^^ÞÇ"hO$%%­^½Z’$!D­ZµŠ/.—Ó¤…uëÖ­±cÇV­Zõÿø‡¥MªÙùóçýýýG=`À¹ä·ß~6lØûï¿ß¼yó°°0Ú³Pnܸ!„HNNNOOŸ6mZëÖ­oß¾½zõê/¾øbäÈ‘ëÖ­ó÷÷÷Ú&åG[ †ììl£ò›7oŠû¿<`#¹h~ÿý÷Î;¿÷Þ{!!!ÿüç?;vì(—ÓžEÖ»wï£Gnß¾ý7ÞØ´iSŸ>}äF£I kÚ´igΜ™>}º¥«–Ф…òõ×_8p@IBˆ¦M›öïßÿÖ­[›7o´g!)'4øá‡ ÁÁÁ+V|ùå—»vízæÌ™õë× /nR‚£­üüü‚‚‚L[dff !”‘V°\X999ï½÷ÞÀÏ;÷Ê+¯lذA=êˆö´…Á`(_¾ü Aƒž{î¹ .lÚ´IФ…´{÷îo¾ùfèСf¯ó/£ImרQ#!ıcÇíYH¥J•*Y²¤¿¿\\œº¼mÛ¶Bˆ¿þúKxq“í 44ôòåËò¾¢HMM•'é];A#k—ŸŸÿücñâÅñññ?þøãË/¿lÚ©C{jwüøññãÇoذÁ¨\·~ñâEù!MªÝñãÇ…_~ùeô}ݺuB|ÿý÷ÑÑÑÏ<óŒ<Mª‘$Iyyy¦×ñõõB”)SF~H{J… Š+f0Ô…òginn®üÐ;›”àhñññyyyÛ¶mSJ$IJLL,[¶lݺuõ®‡ ‘µ[²dÉ?þøüóÏñÅ–~õÒžÚþç?ÿY³fQ¹|弈ˆù!Mª]õêÕ;=L¾®BXXX§NZ¶l)ÏF“j”––;pà@£òýû÷ !¢££å‡´g¡ÄÅÅeffÊýµ ù";ÊeG½´Iõ¾¹'8{ölÍš5Ÿ~úé7nÈ%_}õUTTÔôéÓõ®šû™0a‚Ù;ÇÐÈåçç·mÛ¶~ýú·nݲ2íY(;wŽŽŽþù矕’£GÖ«W¯^½zééér Mj‹Ã‡›Þ9†&Õ®OŸ>QQQ+W®TJöíÛ÷ä“O¶nÝZ¹ƒíY(þùgTTTÏž=/_¾,—:t¨nݺ 6ÌÈÈK¼³I¹Wµ},\¸pÚ´i•+WnÑ¢EZZÚ®]»bcc.\h:PÖMœ8Q¾a¼éÉO4²—.]jÑ¢…¿¿ÿ£>j:µk×®ýúõ“ÿ¦=µ;tèÐóÏ?÷îݺuëV©RåÒ¥K{÷îBLŸ>]9®*hR9r¤[·n¦÷ª¦I5ú믿^xá…ŒŒŒZµjEFFž={öÀ_|ñÅSO=¥ÌF{Êܹs?ùä“    dggïÙ³Ç`0|ôÑG:tPæñÂ&õ}çwô®ƒ'¨[·nxxøÅ‹·oßîççסC‡iÓ¦™^ÒÚ²eËŸþÙ³gÏŠ+M¢‘µHJJZ³fMnnî%sjÖ¬©Œ’¡=µ íÔ©Ó•+WÒÒÒ:d0žzê©O>ù¤I“&êÙhÒ"KOOÿ÷¿ÿÝ®];u9MªQHHHçί^½zìØ±Ã‡—(Q¢uëÖ³gÏŽ‰‰QÏF{Jƒ ÂÂÂRRR>|çÎù]߸qcõ<^ؤô8@Ç@‚#4!8@‚#4!8@‚#4!8@‚#4!8@‚#4!8@‚#àŠÆŒýË/¿è]ñùçŸGGG/[¶L¯ ܺu+..nõêÕz·Ä=ò¦Ù¹s§Þ1ãòå˯¾újƒ Z·n­w]sæL•*Uô® 'zQ^^ÞÝ»w÷ú×®][»vmÇŽ‹/îÐ ääääææ:nEàºté"„Xºt©ÞtFpìiâĉÑÑÑ}ô‘QùüÝ´iS9 ddd|òÉ';v¬W¯^½zõ:uêôá‡^¼xÑÒËZûÔSO©KvìØñꫯ¶mÛ¶aÆ øüóÏ¢ÕÙ³g'MšÔ±cÇ'Ÿ|²uëÖC† Ù³g•5š?¾zpŒ\“3gÎÌ›7¯I“&µk×nРAïÞ½7oÞléöïßÛ²eË7n(…7oÞlݺullì¡C‡,=qÆ ·oßþÛßþfÚÖ+ ¥¹äy’““ß|óÍúõë×®]»C‡“&Mºzõª$IK—.0`@ƒ âââ&NœxõêUÓêmß¾}äÈ‘-[¶lÙ²åðáÃýõWÓy¬o¹çÎ;pà@÷îÝŸxâ‰3gÎXÙ?üððaÃZµjõÔSOýýïÿç?ÿ™——'Oš>}ztttvvvvvvtttݺu-½ˆõ@ûžöóÏ?1¢eË–5êÝ»÷·ß~›ŸŸoô,-óؾÇjÙ¥m_J… ž|òÉo¿ýV’$x1‚#`O;wBlڴɨ|ݺuBˆ„„??¿ŒŒŒ¾}ûÎ;÷ܹsÕªU«R¥ÊéÓ§ÿõ¯õéÓÇl@ÑnÆŒ/¼ð¦M›rss+T¨°wïÞÏ>û¬_¿~—/_–g8~üxçÎW¬XqùòåG}T’¤ÄÄÄþýûoÙ²¥P š;wîÇ\¬X±&Mšíß¿Ĉ6l0;sݺu_xá…‹/~ðÁJáôéÓÏŸ?ÿÒK/YÆñÛo¿ †:uêØX+Æ·fÍšððð œ9sfÅŠC‡0aÂÔ©S333£¢¢.^¼¸jÕªüãFO\»víàÁƒüñÇ’%K^»vmË–-C† ™={v¡6‡ìèÑ£ÿûß>|çÎÓ\%“$é7Þxíµ×¶nÝ*IRPPЮ]»¦OŸÞ·o_yŸiРÁÀýüüüüüøüóÏ›}{íï½÷ÞK/½´yóf??¿ƒŽ7î7Þ(ì<¶ï±ZÖÈ^uë^»víèÑ£…ÝÍ"°Ÿ¼¼¼æÍ›GEE9rD]Ø¢E‹¨¨¨ãÇK’ôÕW_EEE 6ìæÍ›ò ׯ_ïÛ·oTTÔªU«ä’×_=**JN ÊÃß~ûÍhq1117–ÿÞ²eKTTTÛ¶m<(—¤§§¿øâ‹QQQS¦L‘K† 5sæÌÜÜ\¹dÑ¢EQQQ]ºt±´FóæÍ‹ŠŠZºt©º&QQQ3fÌÈËË“×îý÷ߊŠêÝ»·¥ÉÉÉéÔ©STTÔ¯¿þ*IÒo¿ýÕ½{w¥f[²Aƒ:u2*×R-Í%ÏóóÏ?Ë%GŽ‰ŠŠª]»ööíÛåÂÿýï111QQQ—/_6ªÀK/½týúuI’îÞ½»`Áy6¥ñµlù¥š6mÚ¯_¿;v¤§§[j5kÖDEE5oÞ|ß¾}rɹsçzõê5yòde¶'Ÿ|òÉ'Ÿ´²¸hiºü1**ªuëÖþù§\rìØ1yWöX-óØe-p;¾/6nÜ5þ| ðbô8öäããÓ©S'ñp§ãÞ½{/^¼X·nÝÇ{L‘››÷ú믗*UJž!00PîªLKK+ò¢§M›&„˜5k–Ò‡2kÖ¬ÐÐÐÕ«W_»vMñ×_ !zöì© RîÓ§ÏK/½Ô¶mÛB-ë‰'žøÇ?þáãã#¯òK/½$„8yò¤¥ù‹+6}út??¿‰'^ºti„ þþþ3f̰2VúÂ… ™™™Õ«W·K,yî¹çÚ´i#ÿ[¯^=!Ä€š5k&Ö«W¯víÚB£ƒÈaaa³gÏ Bøùù½ð }ûöB|ñÅÚ7‡¬T©RóçÏoÚ´iHHˆ¥zΚ5KñÞ{ï)Ç +UªôÙgŸ•(QbÅŠ.\и¾vÙf̘!W&&&F.©Q£Æ¨Q£„‰‰‰Úç±Ë[à v|_DFF !’’’´·àyŽ€ÉP}ØT>Nݽ{wùáˆ#¾úê«G}T™!==}ýúõ¶,ôêÕ«©©©‘‘‘F# š6mzë֭Ç !ää:nܸݻwËg[+VläÈ‘¯¼òJ¡סCõà  ___Éê¹_±±±#FŒ¸pá³Ï>{öìÙ7Þx#<<ÜÊüòaIJeËÚ«f5hÐ@ýP^œÙB£ïÙ³§ŸßCW¥0`€âÈ‘#Ú7‡¬K—.%K–´RÉK—.]¼x±R¥J-[¶T—W¨P¡uëÖyyyÚžÚ¾\¹råäÉ“aaaM›6U—?óÌ3?ýôÓðáÃ5Îc¯=Öú ö}_ !2224¶à‘¸`gµjÕ ?yòdRRRtttnnîÆýýý;vì¨ÌsöìÙ_ýuïÞ½§OŸ>uê”§6 !RRRäÿ£££ÍÎ _»xòäÉ£FÚ½{wÿþýK–,Û¸qãvíÚÅÆÆjqE»"ÉСC7oÞ|äÈ‘FõéÓÇúÌò×sPP+`JéôµRh0Lç‘;ŸŒªT¢D‰ôôô¬¬,›CV­Z5ë•”{RÍæl¹GV{Gµí;@jjª¢jÕªFåÅ‹WVDË<öÚc­Ï`ß÷…ÓÓÓ5¶à‘Ž€ýuîÜù³Ï>Û¸qcttô¶mÛ®_¿Þ­[7%Ž|óÍ7S§NÍÍÍ­V­Zƒ Ú¶m[»víÔÔÔwß}·PK‘Ïð“ÿÎÉÉBT®\ÙÒ1ǰ°0!D•*UV­Zµÿþ_ýõ÷ß?|øð¾}ûæÌ™Ó£G©S§šMHfYº>Žu7oÞ”¿tSRR®]»& [âïﯬ—]* n.Û™¶•Á`ðõõõññ)V¬˜ÆÍ!“w[a¥Úò¡Uí×$*Ú nº;wî!Š+fe)Zæ±×k}û¾/äW³Þ= x<‚#`Jp9r¤| Z9N}óæÍ)S¦/^|îܹ͛7Wž¢ý45Źsç”A¸rX@@À›o¾iýYƒA¾"''gÛ¶mãÇ_½zu›6mâããÚ,“&MºtéR½zõöíÛ÷î»ï~òÉ'Vf~ä‘G„¶÷Åšm.ÛÉjjçÏŸÏÎήZµjñâŵo-ä¾F³ÝŠrg¤i÷§EØÔM!„8uê”Ñ=zô謬,!D~~þâÅ‹-Zäçç7bÄ›£P‹{íµ×„'NTFÕ\¼xñ•W^¹}ûösÏ=§>ðm…– À¦3 òàèñãÇ?~\.LKK“ïã,ßRË>>3fÌøøã[·n››{éÒ¥F;vÙ²e–ž›Uà ¥éäÊ̘1£E‹YYY—.]ªS§ÎôéÓÕwÚÔ2]öØg°×ûB’¤={öÔ®][>ûðZ;3àYYY—/_®ZµªöAÐnJ’¤§Ÿ~:$$D¹SvxOsÙM§¶gÏž~ýúM›6M}ðBô8n¦T©RÕªUó†ïrƒÁпÿÿýï¶ Üñžæ²;šNí»ï¾ Q_ðNG®«{÷îaaa‹-Ò»"ðjëׯ>|xÑ®` x‚#×åïïÿÎ;ï¬X±âܹsz×ÞëË/¿¬Q£ÆóÏ?¯wEý¸´–-[þãÿHNNÖ»"ðRyyyþþþï¿ÿ¾ߘƒc  ¿Ÿ  Áš  Áš ÉÿWýHw_¥¹äIEND®B`‚statistics-release-1.6.3/docs/assets/invgcdf_101.png000066400000000000000000000721771456127120000223060ustar00rootroot00000000000000‰PNG  IHDRhŽ\­AtFIDATxÚíÝy|L÷þÇñïd‘È¢‘ÅžTŒ¥E”ª–ØiCl¥(µVQ­ª–ÚZ7´WUQmQêv±T«\ní­J,ëT$¶ÚcII"’ÌïÃtL&1É,g™×óáqïäÌ™s>ç;Syû|Ï9£3 x7¹ €:`‚#¬Bp€Uް ÁV!8À*GX…à«`‚# MÇŽÓ=°yóf¹Ë‘ß®]»¬×ëK—.ýØc=óÌ3}ûöݽ{·ÜuÙ¼yó¤·µAƒÎßûÝ»w¿úê«6mÚ”/_¾dÉ’‘‘‘íÚµ›>}zff¦Ùš¦Ÿ@#   † ¾ÿþûW¯^µæ%fF%×ÈBxÈ]8Vzzzÿþýÿûßÿš.ܳgÏž={.\øÂ /,\¸0((Hî2Uà?þèÚµëéÓ§K’“““““×­[7sæÌyóæµk×®ð-äææ¦¥¥¥¥¥íÝ»wöìÙëÖ­{æ™gä>,E@p eÿýwttô¡C‡ŒKÜÜÜt:]nn®ôãúõë;vì¸yóæ’%KÊ]¬UJ—.]¥J!DXX˜3÷›””Ô¬Y³Û·o—xxxäääHÿú믗^zi÷îÝuêÔÉÿÚooo!Ä;wŒÆ7ntëÖ-99ÙËË«—˜ tæQ0ÃT5-{ýõש1::zÛ¶m7oÞÌÌÌräÈúõëûúúÖ©Sç£>ÊÎΖV0`€´Z³fÍL·ùÃ?H˽½½oß¾--¼téÒðáÃ5jäëëÑ¥K—?þøÃôU¦;½wïÞûï¿_¾|ù÷ß_z6;;{îܹÏ=÷\XX˜ÏO<Ñ»wïƒæ?¢Gî(?ÓFc=îÝ»g¶Bß¾}¥g«T©bº<77wéҥ͚5«T©’——W¥J•š6múÝw߇Èì¸L_Û£Giù»ï¾k\håaZ³ÚW_}%m¿~ýúÅ.¸wߢß~ûÍ8’cÆŒ1{vÍš5Æg“’’ ùuîÜYzªlÙ²ÆÏRá/ G@› ŽÍš5«Q£†Ù?#»uë&­¶~ýzi‰§§gzzºq›”–wéÒEZ²yóæ³íètº‘#G_ešWŒAm„ ƒ!++ëé§ŸÎÿZN7{ölÓñfGù 6LZ³dÉ’ýõWþ.^¼Øï+W®—›‘fºvíjñ¸L·™?8Zy˜V®f18©àÂß}‹ºté"­V¦L™¿ÿþ;ÿ 111uëÖ­[·îòåË ùmÛ¶Íøì† ¬y % 8ÚTxp”T®\¹aƦçöíÝ»×`0dggÏ$[µj•q›Ò©uBˆ~øÁ`0ܺu«lÙ²Ò’-Züë_ÿêÙ³§›Ûý`þóŸÿ˜í´B… ÆIÁÑø”··wÇŽß|ó͆ JK<<<Ž?.mÁÊåW½zui=zX?t?ýô“1±µhÑ¢OŸ>O<ñ„±òÍ›7›×#ƒ£•‡iåjùƒcQ .üݷȘÚ_}õU[>Fyyy%J”ž4i’5/ œã¸¨/¾øâôéÓ ‰‰‰Æô°oß>!„§§g§N¤%ÆîcJJŠt9­———tñìÔ©S¥ ºvíºyóæ‰'þðófÍ’Ö‹‹3ÛãùóçkÖ¬¹xñâ„„é,·­[·JO?~ÕªUŸþyBBBëÖ­…999›6m’ž-êŽ$ƒáäÉ“Òc½^oýÈlذAz0räÈÍ›7ÿý÷GŽyê©§¤…üñGQ‡ÚÊôr5»\È»Ÿß½{÷._¾,=Žˆˆ(êá[¤ÓéBCC¥Ç—.]Ê¿B«V­òß‹çí·ß¶ËÞWU®è‰'žxã7¤ÇÕ«WoÒ¤‰tÛ™3g¤…/½ôÒ·ß~+LB‰ñfmÚ´ñóó3}jРAÆ-÷ïßĈ¹¹¹gÏž=|øpíÚµO•*Uê·ß~+W®œq‰ñæ‹- k×®]HHÈ¢E‹®]»&„xì±Ç¤g‹º#ÉÍ›7—NWªTÉô©éÓ§¿ûî»fëïÚµë¹çžBtïÞ½eË–Bˆèèhé©ôôôŒŒ éñõë׋:ÚV¦•«åWÔ‚ùî›IOO7>6}ûlôØc={ÖlûŽà¸¢ÇÜôÇ2eÊHòòò¤-[¶ ¼qãÆ™3gNœ8Q½zucpìÚµ«ôàÏ?ÿ”´mÛÖâ^NžiÒ¤‹/ !²³³-Zd¼=çã?Uø¦.]ºôÚk¯-_¾\úñ•W^1=‡€ÂqŽ#€uëÖM:ÍQº2·Y³f¦ç)Ž;vÁ‚7nÜXµjU‹-š6mzìØ±µk×JÏŽ9²ðKj×®rùò圜œÆ·oß¾L™2§OŸ6~“žñËElÙÑ”)S6lØšš*„ˆoÚ´©››[‰%²²²¤5jo\ß×××××W —\ºt©N§Û°aCþùYãýn233£¢¢¢¢¢®]»–””T¼Ã´~4ÌX_°f̘ѰaÃÌÌLƒÁ0qâĉ'ݸqÃxézÉ’%—/_îîîžÿµ}úô‘®Uºs玔8%eË–wîÜG^«+„xæ™g’““ßÿý ”+WÎÓÓ300°qãÆ ,زe‹———]v²uëÖÕ«WwïÞ]ú*çÇ{,::ú»ï¾[µjUpp°ÙU½3gÎ|òÉ'¥C®S§ÎÛo¿˜˜hœ£_ºt©qbzáÂ…}ôÑ“O>éãã5|øð„„„ü[y˜Ö†ë ¶ÑsÏ=wòäÉ™3g6mÚ488ØËËK¯×wèÐaæÌ™'Nœˆ‰‰yäÜÝÝË”)óôÓO¿ÿþûIIIÏ<óŒ] à4:Æ’{÷î­Y³FBJJŠ^¯?tèÜ…ÈŒàø‹-’»Eð»…JOOÿóÏ?W¯^ýã?Ê] €"-‹½té’ÜU(ÁѲ>úèîÝ»BˆÅ‹ïÞ½[îräGp´¬qãÆÒƒ­[·Ê] €"íO¯×Ë]p¬¤¤$¹KÁÑ!\óÃä8z½ž!µ#ÆÓîR»cHí‹ñ´;—mq;X…à«`‚#À:U\Áh‹•áÏâƒÁª?®Š«ª¡6l»Ma<íŽ!µ;†Ô¾T?žEíð¹p°s4‚#pº"eA‚ b0Uý~øaRRR:uä.5°ïŒ°kÏ +G`kÚ„äqL:´/‚#@µ‹.ƒÆ¡BªBXÔ´‚"éP!ŽÅ#,jQ¥ŽE",jQcŽÅxÃaQeˆ.‚à›±¹ø ,¦¦¦†Ë]," º8‚#@ÌD+žÅŒH@tqG€åk.B Ȉ°ÁàxäEÅ #ÂG€Ãåv?&šœ1JF„-Üä. 9:Ýý?Ãý?p<Ý?ãþÏé HIMyðNð^À&tvBщòÏ8 át¶¡¿èxµMÿÈ]£–åïåº,‚# XÈ‹CLtÎÚ?†|o€ËbªPÌG;€Ù¼3¹ÐFVvùÁ`ò¢ýpz¢-¬ …|H‡à(”ô‹š_Å6 ¡h Ú„ª@pXB‹±¸h(ZôÈ\ÈMŽäÅ¢£¡Èô±ë 8„LI«%Eš…0"8€Ë#2>ж“"¹Ö#8€«bVº`KŠá…<Ëûëqpp=ܸےBn¸-wiV_èý«SRRóßš÷Å@p—aö=.¯og‘»4KÕñ«Mˆ†p¦ªÀpã¦sÐ ˆ…œnÈ»% 8€¦¹|dTÚÙŠ…_‰âÂoÔàå‘Q mÅ‚¢K¾!Ђ#hŽKFFYÂ"3Ëp5GЋŒÎ ‹¤CÀˆàêçJwdt\Xdrx$‚#¨™k´í ˆ@±@´m‹DÀ6ÚŒÿ„Åð¢…E‹Q‹#ÈŒàª"}Iˆ†Xì,¦¦¦Š¾]™ŒȈà*¡¡F£5ÓÐL4 DpÅÓJd4æE³°h)#†«ÿp r“»@ÁtºûsÓªQºûÇ Ó A  téÒÇgú'%%UîÂX@ÇIå]Æ&£u“…ª>&GPuFFNƒÉ”³Îpÿ Tv CpÅPOd|è¬D)/>sQ ÈŽ  ¾ÏNþ‹W †¯t aG›Âcâý§„EypIG"c!1ñŸuh.B@6rÌM[ÿY™¼àaGp:'6Í’¢5û$/(ÁœÈÁ‘±H Eó×’< ÁœÅsÓÅh(šo¼ÀjGp<û5mOŠ÷·C^PtGp0ÛöJŠ÷·F^`‚#8LѶœ¤XØfÉ‹ìàŽau£Ñ4,Ú÷Hò"û"8€½=ªÑhßÙgË»:A^`oG°+KF'$Åû;¢ÅÀ‘Üä.´B§3MÒOÆe¦ì¿ç»2îDî±´@Wð—Ep{Ðét ‹aÑ»%/Å¢³â¡à?.‹©j(>N„.\08ó{§™’ aMGÿrЇàE`~¶¢Ð ƒ!55Õ“+r!ÿy8ÁÁòírü­Óæ5p•4\¹PÉŽ`Á#î­è€o¶\-Fh¹PÕŽpŸµ7âvJj¤Åõ*<ò™V5‚#—V´omqüô4-F¨ÑÐe¸œb~ÅŸƒ´¡(DCXDpàlý>hG¦F"#dA4D1h–­aÑt+HÌJà îÈÂ-Ü/ŠŠoŽ 5öüîãVì[!_÷»zäwŸ¤¤¦òÝ'° :Ž´À>ÍÅüu@d´Q,…Ì,óy‚Ó¨•C¢é¦í·Qf¥a%Ò!Žà@eŒyÑQ«ØµÑH‹ù‘¡^Gêàð¼hÜv@dDA‘ÏÔ‹à@¹8]Ðþì±"£«! Âu(Ž“š‹ùwióþˆŒÚF@\%8þüóÏË–-KNN.UªTÓ¦MGXÈúÙÙÙßÿýúõëSSSŸ|òÉ7Þx#22Rîã´L†¼hܱm»Œ¸_9Bˆ@A\â>Ž3gΜ0a©S§4hàëë»bÅŠ×^{-33³ õsssûöíûé§ŸÞ¸q£I“&å˗߸qcÇŽ÷íÛ'÷¡Zc¼ç¢ém] »”jOIMᎌ*UȽ¹ñ!ŸöƒcRRÒüùóCBB6lØ0þü7öéÓçðáß~úiA/ùé§Ÿ8ð /üöÛoŸþù¢E‹¾ýö[!Ä„ ä>@#ìynë(îŽMoâ-Gé(]Q2"€‚h?8.[¶,//oĈÁÁÁÒ’1cÆøûû¯_¿>//ÏâK8 „èÛ·¯‡Çý©üFÕ¨QãôéÓׯ_—û€“¹¹˜¿šbU@dT8šˆ€ãh?8îÛ·ÏÍÍ­Y³fÆ%îîîÑÑÑiiiR@Ì/,,Laš ÃÍ›7ÝÜÜŒQ€õ”•½"£ÒÐDœLãÁÑ`0$''—)S¦L™2¦Ë«U«&„8wîœÅWµoß¾dÉ’}ôQ|||ffæ… ÞÿýóçÏwëÖÍÏÏOîcTCqyÑXVÑ«!2ÊŽŒ(Æûg¹¹¹fËýýýÅÃ=ESz½~Ñ¢EýúõëׯŸqaïÞ½Çgå~õz½Ù’ 6È=*vþüy¹KÐGgDD¸ô %%Uzš*÷1?‘š’R¤‚¤+¦SRS„©Âò ùˆÚWDx¸7[˜bé]SÌ'KéøˆÚèù矗»¥Ðxp”.öññ1[îëë+„¸uë–ÅW¥§§üñÇwîÜ©U«Ö“O>™––¶k×®U«V=óÌ3­[·¶f¿IIIrºÖ„çû-[8h<óÝ QaïšN' ëkz覌zÑâ±xラ©©æCÊÛ†¨-òÿZÏß!rŽ:.##Ãlùí۷Ѿc~£Gþã?ƌӿiÉ… zôèñöÛoÿòË/r ,²Ý±¨UZ]÷ñvü1‘!ÔEãç8zxxøûûçï,¦§§ !Œ×Y›ºråÊÖ­[«V­jLBˆråʽþúë÷îÝ[¹r¥ÜÇ(…BOa,¨Vëêã\F;²æ”Dê¢ñà(„ IKK“’¢QjjªôTþõÓÒÒ„UªT1[.5¯^½*÷2SS^4VlE•DF[Xyå µÓ~plÙ²ennîÎ;K ÃöíÛ£¢¢ò¯_¥Jww÷“'OþM#ßPµjU¹Êò¢±hëR#‘Ñz\Ý ¸,íÇnݺ¹¹¹}ùå—ÒyBˆùóç_»víÅ_ôôô”–ܹs'55UºèÌÛÛ;::úÌ™3Ÿþ¹ñá'Ožœ3gN‰%š7o.÷ÎfÖbT+R£±Ñ(w­ÊE+€‘Æ/ŽB”+WnÔ¨QS§NíСC“&MΜ9“P«V­Aƒ×Ù¾}ûÛo¿¹fÍ!ć~صk×9sæ¬[·®fÍšiiiüñG^^Þ„ üq¹pu\òRxõ…–Î0qý €Bh?8 ! P¶lÙU«V­[·.,,¬wïÞ#FŒîÈcQPPкuë¾úê«]»vmÛ¶-00°iÓ¦C‡}òÉ'å>À¬]Êö¨F#‘Ñ”YRdPBgPñ/…ÒëõÜÇѾ,ÜÑ 6(h<ÕÝb4=Œ‚ÀA‘QEQµ4U4¤ªÀxÚËþ®w‰Ž#€Â©¾Åhz$†Ëvi(°#‚#àº4Òb4=ž‚S£‹DFµ4¨ÁpEÚi1š’¥ãÑ|£‘†"g"8®E§B„k*2 Ë©Q«‘‘¤@FÚ¿#ñð½SRRå.ÇÞÇf)5jæ†Þ…ßCœ‰Ž# qœ•6;¼‡MFzŠ‹àh–Æ#£0OêŒ$EjAp4Hû‘QXH*ŠŒ$E*Ep´Ck·×)üP¤*$EÚ@p´À%ZŒ¦Gk0ÅGFÓ°¨Ð ˆŽ€º¹Vd¥F¥EFÚŠ4ਕËEFq?5*ªÑx?,†‡ ’"À}õ1Þ‘ÑÕR£Î ˆ4æ¿«bJjªK½\G@M\±ËøàÈuÙºŒÌA€„ਃëFF!OjäÒÈà(KGFqÿ¼Fç=a Gp”ËÅ#ニ`½—¸êH€µŽ€¹xdÆ»íäû*j;mü.<ÆPdG@YˆŒÿÜmÇ®©‘°¶#8JAd¦·õ¶Gj$,€}EpÌ”¬š“<øëÿQ·id¼—FRT7‚#P|4ÅÃ-ÆGßܛԸ’¢¦brñ”JšÔà.jÑ,‚#Pd®Üh´x cA7÷~ø•¤F@Ãh+º ‚#P4®™ ¹äÅšïž E´]Á°–k6-ßOçŸg­K®·­¡­‚#`WK>ÖÜU‡Ô¸ÚŠxÁx—j4ZyF«Nj¼¿*©PÚŠ( Á(ŒëЧ¤^Óê“]gøu£­k¹Bì)ê½p)  „EÁ°À¦§­o1š¼¤(©Ñr7 2„EØŠà˜ÓvàÑ !ÂÃEÑiºŸÃÃ¥ÿç¿JØÊMîeÑpàÑ ¡ DJjjQ¤F@=t& ÒŸÔÔR#삎#ðMž¢žÅ˜ïåœÔ(sÐp‚# „FOj,ÆYŒù¶PôÔ¨Éô (a2 8Œ:¶GFAj”ˆ°™áê´ulœ•~xS¤F@!‹P‚#\šf¢Ž]ZŒ&[ã¼F@^„E(Á.J3'5Ú72Šb§FÍdp@6„E¨Á®H!Ç‘QXù Ôæ¯ÔÄ€2 ,BeŽp9j9v<‘ñáÍwzZí ÈÀAÿGp„kQuȱ{‹ÑdËœÔ8ÍEhÁ.D½©Ñq‘QؘÕ;¦€3¡5G¸ •&‡FFAjì°-#8BûTzµ£#£ 5öÄi‹p Ghœã"£à¼FÀh.Âå¡eªKΉŒÂöÔ¨º‘솰—Fp„f©+Û8-2 !"Â#H@1 !„›Ü¡¢l£B'„ÁY¿ŽtB—’š"÷Aª 3ùcp⦀r¡AjINŽŒÂ.ç5ªepâËùÌ÷1U ­QK°Ñ9ýw©(g.V!8BSTlœy:£ÉNI@~œ¹ ÁÚ¡ü`#KdÜy0G^ЉàPxj”+2 {¥F…/ðhLFv@p„(9ÕÈ© ¹ØÁª§äTãü+`Þ;3ÔpYäEÀ!ŽP7ŦFyÂŽ©Q±C ˜c2p8‚#TL™‘FöÈ(Hp-4ç!8B­”iä›~P3ÔpäE@G¨’S£¾©Q£ Y¡>JË3 ‰Œ‚Ô-#/Š@p„Ê(-Ï(anúA%ÌPC{È‹€²¡&ŠJÊi4 »§FE 4\ŽN.=æs(‹›ÜÖRT˜‘ )‡ÔMÐ=øcšš¢˜ÿÂüƒŽ#ÔA9aFQFÁ 5TÉh@MŽPˆˆp%¤F¥EFáˆÔ¨œ„#/ªDp¬¢œ‹`LJ"5BuÈ‹€ºqŽ#”N§))©rà"©p ‡Î_TÞO¬Ep„¢ÉÞSÔE0&U9 5Ê>ÖÐ&ò" )LUC¹dO2 l4 R#Ô)i@›ŽP(y“Œ¯ƒyP3ÔP2ò" qG(‘ì©Q™¿ô•i7ÂVäEÀU¡82ÆÅ6½F(yp9Gà>Å6|Ø´QTäEÀu¡,rÅ…§F&©¡ JnÊp‚#D–£üß„LRCn´ÜGp„RÈ•þ›Ð©‘v#¼Àœ«ÇŸþyÙ²eÉÉÉ¥J•jÚ´é¨Q£ É‘#GæÍ›wìØ±Û·oëõú7ß|³aÆr‡f‘ ¨Ôç#/(K|sÌÌ™3'L˜pêÔ© øúú®X±âµ×^ËÌÌ,ä%[¶léÙ³ç–-[‚ƒƒ£¢¢ûôé³e˹ö¡ÌoÌW$3Ôp2¾åÀ#h?8&%%ÍŸ??$$dÆ óçÏ߸qcŸ>}>üé§Ÿô’[·n½÷Þ{‹-úé§ŸæÏŸ¿téÒ%J¼ÿþûyyyr9¹ù¥ÌoÌW¤ScxDíF˜0û"i(öƒã²eËòòòFŒ,-3fŒ¿¿ÿúõë J+V¬HOO2dÈSO=%-©]»ö /¼píÚµ#GŽÈ}@Z#KjT8zpZŒŠFûÁqß¾}nnnÍš53.qwwŽŽNKK;pà€Å—ìØ±C§ÓuêÔÉtá'Ÿ|’””T§N¹HSH2ÐéRSRä.ò¢Å ˜4~qŒÁ`HNN.S¦L™2eL—W«VMqîܹúõëçÕÑ£GCCC÷ïߟ˜˜xóæÍêÕ«·jÕÊÛÛ[îB1)ÿž;&¥:²Ý(EõÔT¹²àª¶ÒxpÌÈÈÈÍÍ 0[îïï/„¸~ýzþ—dggÿý÷ßU«Vý׿þµtéRãòŠ+~öÙgO<ñ„5ûÕëõfK6lØ ÷`(NDDxJJª5æüùó6í(<<%5U¡ü¸‘’š’ê°JÃ…HMMµq<‘ŸÂ‡4<ü¹çžû׿þuðàÁâm³[·nnnn_~ù¥t^£bþüù×®]{ñÅ===¥%wîÜ1½Ô´sçÎBˆ &»žGŽùÏþãïïߺuk¹ …Q]£‘Ij-F2Дú%''gÇŽ«W¯Þ²eKVV–¢råÊ:uêØ±cùòå‹´©o¾ùfêÔ©åË—oҤə3gjÖ¬ùÍ7ßoÓ³nݺ·ß~;22rÍš5Ò’yóæÍ˜1Ãßß¿~ýúûöíÓétÓ¦M{á…¹;½^ÏUÕ;À¤¦¦Zs= ©±€Ý˜»•ã ë9wHUt[ÒâãSj_Œ§Ý¹ìïzåÞŽÇÃãE‹-Z´ÈÈÈX¾|ùŒ3Μ93kÖ¬Ï?ÿ¼Aƒ/¾øbll¬»»»5›0`@Ù²eW­Zµnݺ°°°Þ½{1Bº#OA´páÂÝ»w¶lÙòÍ7ߌŒŒ”{TTÌÑm/Rc»¡Ý¨ܾ€ü”ÛqBܸqcóæÍ6lˆ—®J)[¶¬§§ç… „U«V]°`AXX˜ÜešsÙ…ÂÆôòÈ+«.5 Y'©é=؃‡Ô%ZŒfø”Úãiw.û»^‰Çk×®ýöÛo7nÜ»wonn®"((¨M›6111O=õ”b÷îÝ3gÎ)ýøî»ïÊ= Põž×(h7º˜ðð!„š?°`™ƒão¼aúã Aƒä­¶°oÏ‹ÔX”ýÑn”ËýË¥SSSÂUx6•²¾rêEj4)žÔè øª@®HæŽã¶mÛŠú’fÍšÉ[3MÕ©.€¸.™ƒãàÁƒ‹ú’¤¤$ykF~vìy©=5ÒnÔ4"#W'spìСƒÜ#!5B©ˆŒ „ìÁqÚ´irle¯ž—ÚS£ h7:‘þ¡¬oŽËÒ@j¤Ý¨9DF0Ç7ÇÀ&ô¼$2¤F†ÞˆŒ`߃âc’úAýô5ƒÈ…á›c 3µ§FyÐn´?"#<߃b²KtÑ@j¤Ý¨~DF°–¢¿9æÎ;ÙÙÙrWG!5w¯´íÅôÛ_¦Ä«ª><{öìcÇŽ]½zÕÍÍ­|ùòõêÕ6lXåÊ•å. ÷Ù]4¡ft 8×qœ5kV·nݶmÛvõêU//¯’%Kž;wîÿû_LLÌÒ¥K宸íFÕ¢ËŤ¬à¸cÇŽ¹s纻»÷éÓgÓ¦M‡JLLܶmÛÀ…~øáÁƒå®´¥C 5ª‘NŸ>²‚ãÒ¥K Ã;ï¼3~üøŠ+êt:!DXXØèÑ£ß{|œœo¿ýVîa+~oCœÎv ¬àxìØ1//¯¾}ûæªwïÞÞÞÞ‡–»FWgcÏK©‘v£ªÀn”…¡¡¡.Ù‘®’ÉÈÈ»@¸:î¿£DF°3eǨ¨¨sçÎ¥§§çêÎ;©©©µjÕ’»F—F»Q6´‹†È¡¬àØ­[7ƒÁ0vìØœœÓå¹¹¹ãÆËÍÍmÙ²¥Ü5¢˜´‘i7*‘Hæû8ÆÇÇ›þèîîÞ¥K—+V´nݺ[·n:.55uùòåçÎÓëõÏ?ÿ¼¼»2[z^¤FÛvL»ÑJÚø €rÉûõëgqù… fÍše¶0))éÙgŸMJJ’·fÊà ½ÀdŽ:t{`Ú´•ŠÈÎ#spœ6mšÜ#Ç"5ÂaˆŒàlʺ8¦pï½÷^‹-ä®Â»ç¥Ô('Úâ ÌÇünܸ±yóæ3gΘ-ÏÌÌüí·ßÜÝÝå..‡v£ÂÐhÙ(+8^¾|¹gÏžýõWA+ôêÕKî]Ž‹·åL´Í@fÊ Žß~ûí_ýÕ AƒØØØµk×îÙ³çƒ>ðöö>qâÄâÅ‹{õê5~üx¹k„U´‘¡DFPeÇ;wzyyÍ™3ÇÏϯE‹7öÙg…“'O~饗"##å.Ó…¸xÏ‹v£2ðÏP e]sñâÅ*Uªøùù !Ê–-xôèQé©nݺ~ûí·r׈GÓÆïyNmTV>M Êê8 !ÜÜþɲ•*UJMM•»»»ëõúÇË]  )^Ï‹ßóv@»‘¹iP$euCCCOŸ>}çÎéÇŠ+îß¿ßø¬N§;þ¼Ü5¢0šI´eÅ­v@¡”[µj•™™ùî»ïž:uJQ¿~ý³gÏîÚµKqíÚµ?þø£|ùòr×è*\¹ç%sjtå¡gn”MYSÕ}úôÙ¸qã–-[ ÃW_}íááñÆoÔ«Wïĉ111r׈ñ 6`nT@YÇ   %K–Œ9òÉ'ŸB”/_~„ ÙÙÙ¿ÿþ{ZZZË–-  wÐ8Ú²6sÓ  Êê8 !‚‚‚lü±gÏž±±±GŽ ‰ˆˆ»:WQŒôB»ÅB£ÔDqÁÑÔ;w<==}}}5j$w-(ŒfR#íFg­B+pJ އž={ö±cÇ®^½êææV¾|ùzõê 6¬råÊr—æ\+½˜8WR;fþ­®EYç8 !fÍšÕ­[·mÛ¶]½zÕËË«dÉ’çÎûßÿþ³téR¹«ƒDûp•ÀÎuÓ bÊ Ž;vì˜;w®»»{Ÿ>}6mÚtèСÄÄÄmÛ¶ 8Pñá‡à*”ø]ÕBˆK—.?~üÌ™3÷îÝ‹ˆˆ¨Q£F¹råä.J³¬0š ´í„F#¸ÅÇ7n|ñÅ?þøcnn®q¡»»{÷îÝGŒáïï/w€=h¡Ý¨™G¬¥¬à˜››;tèÐÄÄD//¯V­ZU®\ÙÝÝýôéÓ[·nýᇎ?¾dÉwww¹ËtQš‰ ´mF£\”²‚ãwß}—˜˜X·nÝ/¾ø"88ظüêÕ«o¾ùfbbâwß}7pà@¹ËÔ-t¾Št¼JHêtÍü PdʺøÎ;u:ÝgŸ}fš…eË–5k–››ÛŽ;ä®ÑE „àƒ.NYÇ'NT®\9,,,ÿS!!!?þøñãÇå®QSÔÝù*ÆñÒn´¡n!©\œ²‚£——WfffAÏfffz{{Ë]£+¢Ëäòø„PÚTu5._¾œ˜˜˜ÿ©£Gž?¾zõêr×µRD»Q}t¤F€‘²‚£ôE2Ç7;—q×®]o¼ñ†"66VîµÃÊ)SRƒ=©lžZzóUT0À±”5U³}ûöU«V 4(,,¬J•*Bˆ3gÎ\¸pAÛ¾}{¹k„*Ñn,:þÉ0§¬à(„øøã6løÙgŸ]¼xñâŋҲe˾ýöÛ;w–»:—£ì ”Ô¨šv#×Á,S\pÔét]ºtéҥ˕+WNŸ>m0ªT©"w]Z£š gÓÆ?¡¬àxþüù¼¼¼J•* !‚ƒƒÍîæ'ÓF‚ Ýh}‰BM¼çGQVpŒ‰‰¹{÷îï¿ÿ$w-Z¦‚ gÓÆ?Ž¥¬«ª###…þù§Ü…@#9‚v£•õiâÝ8œ²‚ãûï¿ïíí=wîܬ¬,¹k\·i²¦ªƒƒƒ§OŸþÁtèСC‡•*Uòóó3[§Y³fr—©nÖ4¿´%h7>²2M¼ÏçQVplÞ¼¹ôàÚµk_|ñ…Åu’’’ä.ÐR# È”¥o޼´(h7RSx¸ÐÄ› p6eÇiÓ¦É]‚Æ)1Æ8â0’•H'„!555<\îB*¤¬‹cÌdgggddÈ]…kÑF»Q)—Óy{6QVÇQròäÉ9sæ}6mÚtèСÄÄÄíÛ·¿úê«nnn3f̈—»F(š‚ÚJ™§&5ìFYÁñ‡~ÈËË5jÔøñã+V¬¨Óé„¡¡¡£F7n\^^Þ¢E‹ä®Q³ÈZÄ» °'eÇ#GŽ”,Y²OŸ>ùŸêÙ³g©R¥Ž9"wj¥”þ—C‘v£é`ö¦ à˜““sñâÅwww …º¹………4Ÿ}dBÄÐéýä-Ø™‚‚£N§+UªÔ¹sçnÞ¼™ÿÙôôôÓ§O?ùä“r— …¢ÝøÏH(dš£ àèîîÞ¥K—¼¼¼÷Þ{ïîÝ»¦Oegg3F§Ó 8°xÿù矻uëõÜsÏ7îÆÖ¿öÂ… O=õÔ¨Q£ä¡â+<É44„7à@ʺÏË/¿|ìØ±mÛ¶µjÕêÅ_ ×ét©©©ÿýï/]ºsûöímÛ¶׈ˆ¨T©Ò#7;sæÌ¯¾úÊÇǧAƒgΜY±bÅÉ“'.\èííýÈ× †÷Þ{ïöíÛr C»‘;5œ@YÁ1&&FzpåÊ•¹sçš=»nݺuëÖ™.y÷ÝwygǤ¤¤ùó燄„,_¾<88XñÑG-\¸ðÓO?}ÿý÷YÒwß}·wï^¹(F€3(+8vèСHëW­Zõ‘ë,[¶,//oĈRjBŒ3æÿûßúõëÇïæVØdýÉ“'gΜY½zõ'NÈ=6ŧùyj—o7jà=¨ƒ²‚ã´iÓì¾Í}ûö¹¹¹5kÖ̸ÄÝÝ=::zõêÕ¨_¿~A/ÌÉÉ=zt``à˜1cúõë'÷Ø‘Σ ‹cÁ`0$''—)S¦L™2¦Ë«U«&„8wî\!¯ýâ‹/Ž?>eÊ???¹ÃQ4:Ôn”åè]÷Ø2PVÇÑî222rssÌ–ûûû !®_¿^Ð <øõ×_÷îÝûÙgŸ=vìXQ÷«×ëÍ–lذA–ˆˆOIIMM-àéðð‚ŸSóçÏø\¸PÈ!„GD¤¦¤§!„HMM¢8»+lrŠÝØ!˜ónTŒàåÒ\»‘ÔP7‚#à¤F€êñ]ÕÚaqU½iEqíÆâÏS넪}øÁp(õFwÌ1U %ÒJ»‘ÔЂ£–[dÅð´†à¨Zºƒ£&Ú¤F€»#5´‰à¨Y„™0ðÍ"8BYT>OMjhÁQ ´t‚£š‘GpÔ&•F5·U:äÁ°©àŽP Õ¶IWApT½üñ† ãD 6À…¡Šk7ZYµúj øŽ€%ž§&5\ÁQkÔgTØnTã0`+‚£ºqG‡`X°ÄCîÕ¡Ýh^¯—»È)))IîTƒà™)nžúíFR# MDW¦×ëùX‰©jM!Ô8 piGÓÀ™xŠk7^¬jJÀ!Ž€‰Ã8©‚£†¨.Ú¨§Ý¨º¡À!ŽÀ–Û¤Fî#8ª•ÚOpTI»‘ÔÀ?ŽAÀ±•…$Πð‚#`©sGÈ@ñóÔ¤F, 8fóÔ¤F,#8ª’ÙùxêJ:Ên7ªk,Àᢣ£ãââä®â!·nÝ2dH¥J•|}}£££ YùðáÃÝ»w õõõ­_¿þÌ™3srrä>#8Âå©ýup˜ÄÄÄßÿ]î*’žž^¿~ýo¿ý¶I“&>Þ.å‚è8ªyÇEªwúôéýû÷ÛeS!!!ƒA‘””T½zõ"½vÓ¦MmÚ´©X±bÿþý}||V®\yàÀzõêµhÑÂÍÍÖvUzzúŸþÙ³gONg\Ø¢E‹ $$$tîÜÙt圜œaÆկ_ßtá™3g„^^^v(DpTõž’§ÔyjR#ØGVVVß¾}ÃÂÂöìÙ*„5jTëÖ­“’’>øàƒÒ¥KÛ¸ýË—/ †Ó…ÁÁÁBˆüÍQ)S¦˜.¹~ýú”)SÜÝÝ»ví*÷P©Á.L§Aj m999k×®-èÙŽ;Úq_;wî¼pá¤I“¤Ô(„ðòò=ztllìŠ+úõëgcmB???Ó…þþþBˆ´´´ÂkÛ¶mÛk¯½–œœ-„¨S§ŽéÂÚµk !Ž=j{mAAABˆ¿ÿþÛtazzº¢L™2mçìÙ³o¼ñÆêÕ«###7mÚÔ¢E ;²«!8Âe©(u’O º{÷®é™™™Wó÷÷·o:,„···ÂìF‰R¢µx‚cQk qss3›•¾v횢|ùò_²téÒÁƒûúúΛ7oÀ€$›0|*£Ò•Øn•»pá‚é/+Ϊ–¦€?nºPê5êõzÛkóðð¨Y³æÎ;MîØ±C§ÓÕªU+ÿV¯^ýÊ+¯¼ôÒK_}õ•Ù7Їà×D»€ê]ºtiÍš5íÛ·B¤¤¤“{ì£5~f삯T5%µÕ’´@Ѳ²²¶nÝZ¯^=¹ ŽjE*¢¦Æô J_£F—_~YîB Îq„)©Ýš2tèP¹î/Ó¼yóæÍ›Ë=Á®€v#­=z´Ü%À1U ÍcVû 8ª†ê®§VÆ<µ*† u 8BÃNÌS`‚#BíFzØÁ®v#6#8ª4+0HØÁQÔÕ/“{žšÔ€C¡1–R£ºr7JEp„ÉÚn¤×€U†dTd´°‚#ì‰v#FpTZfV( 52v`›èè踸8¹«P_mZEp„Ðk‡HLLüý÷ßå®B}µi˜‡Ü ždš§Vø¨€Cdgg !J”(áˆçäälÙ²e÷îÝsæÌÉËË“ûXUS›+ 8B»˜§ ]z½¾B… ;wî4.‰‹‹[³f;}ûlßxZZZÛ¶m‹ýò}ûöÅÅÅíß¿ÿòå˦Ë=<<îÝ»'om°ÁöA»äuúôéýû÷ÛeS!!!ƒA‘””T½zõ"½vÓ¦MmÚ´©X±bÿþý}||V®\yàÀzõêµhÑÂÍÍ'ÈÙRlGp„zši7€ÓeeeõíÛ7,,lÏž=¡¡¡BˆQ£FµnÝ:))éƒ>(]º´ÜÂVG¥#ÿ€^#X%''gíÚµ=Û±cG;îkçÎ.\˜4i’”…^^^£GŽ]±bE¿~ýd¬ vApT %%¹¿œ:AÄmö¡:÷^ø_­¹¹¹¦?t¥È;w:uêTà.ìú·åéÓ§…uêÔ1]X»vm!ÄÑ£Gå­ vAp„)9EÐeý«øawïÞ5ý133ÓâjþþþNK`ÞÞÞBˆœœÓ…R¢µx‚£3kƒ]a+§·I „.\0ýñâÅ‹Wsætpdd¤âøñ㦠¥^£^¯—·6ØÁêbEjdž€k¸téÒš5kÚ·o/„HII9xð ÅÕœ9\¯^½ªU«Îž={ذaBˆìììiÓ¦ùúúJuÊXì‚oŽQ4c¢É&„`À”‡‡G=zöìÙ½{÷'Ÿ|ÒÓÓÓâjÒtpAбߥK—Ž92ÿSžžž³fÍJKK«[·î”)S>ù䓯ïܹsÊ”)!!!N¨ ŽFÇ6á²KÆ Ûµk7oÞ¼œœœAƒùùùMž<Ù ûÍÎξyófA§TÆÄÄ$$$Lœ8qΜ9YYYuëÖ]¿~=·ìÖ ‚#Ô‚v#‡þôÓO zɲeË<øÔSOmß¾}îܹß~ûíÊ•+fÏžmv7|—å”vcQR#íFOûÁqÙ²eyyy#FŒ––Œ3Æßßýúõ}ü† „ãÇ7¶$###‡ ’››ûûï¿;¹~zn@!´÷íÛçææÖ¬Y3ãww÷èèè´´´X|IjjªO­ZµLJß¿yîÜ9¹ÈEÐn@q4~Ž£Á`HNN.S¦L™2eL—W«VMqîܹúõëçÕ¼yó<<ÌGæØ±cBˆŠ+:§r%g!ÇÏSÓf@‰4322rss¥ïY7åïï/„¸~ýºÅWÕ¬YÓlIBBÂüùó½¼¼ ù.vSz½Þl‰4ý]á©©©Bþàr„ ‡–žoûçÏŸ/´ÇÖ£=…'Š!µ;†NVøï‘çŸ^î•BãÁQú&M³å¾¾¾Bˆ[·n=r ¹¹¹K–,ùä“Orss§OŸdÍ~“’’l/><<ÜìÜo7:°"†üG\à ètÂ`PЩ„¢>TÚÀÚC g*üó–ÿ×zþ‘‹Ðxp ÐétfËoß¾-ô ±gÏž¸¸¸S§N………ýûßÿ~öÙg\¿ëMÙºÞ Žþþþù;‹éééBãuÖùeggO›6mÑ¢E%K–|óÍ7XÐMa?EOJ>ÍÑxpB„„„$''§§§›~5“t*CHHˆÅ—äåå½óÎ;¿þúk«V­&NœXH¾t5Îú¶ DÚ¿OË–-ssswîÜi\b0¶oßeñ%‹-úõ×__~ùåÙ³gË’]²F»¥Ó~pìÖ­›››Û—_~)×(„˜?þµk×^|ñEOOOiÉ;wRSS¥‹ø ÃâÅ‹K—.ýÞ{ïÉ]»²8²ÝÈ© PÑÑÑqqqrWñ­[·6oÞ<88ø±ÇkܸñÊ•+å®È…hªº\¹r£Fš:uj‡š4iræÌ™„„„Zµj 4ȸÎöíÛß~ûíÈÈÈ5kÖ\½zõìÙ³ÞÞÞ½zõÊ¿µÎ;÷îÝÛ9•»L˜*ÖÒnÇKLLüý÷ß[¶l)w!ÿX·n]»ví"""z÷îííí½|ùò.]º|ýõׯ¾úªÜ¥¹íG!Āʖ-»jÕªuëÖ………õîÝ{ĈÒyò“úŽ™™™GÍÿ¬ó/¬ ¿ììl!D‰%±ñœœœ-[¶ìÞ½{Μ9}=¯\ÆŽzàÀéÖ(ãÆ«Y³f\\ÁÑ9\"8 !bccccc z6&&&&&Fz\¯^=»Ü…Qc6Oí2}U°+½^_¡BÓ3øãââÖ¬Y³oß>Û7ž––Ö¶mÛb¿|ß¾}qqqû÷ï¿|ù²ér{÷îÙRØÝ»w;Ö¿ã õ|||š4i²dÉ’ÌÌLî⮡HÅMÌS@>§OŸÞ¿¿]6b0„IIIÕ«W/Òk7mÚÔ¦M›Š+öïßßÇÇgåÊ•¨W¯^‹-ÜÜl½²ÂÝÝýСC¦_Æ‘““säȑڵk“ƒà¨8 EÜ…`¬¬¬¾}û†……íÙ³'44T1jÔ¨Ö­['%%}ðÁ¥K—¶qûµjÕ’/\¸099yíÚµ/^üá‡ä>tWApT(˜Á¥ÝΓ“³víÚ‚žíر£÷µsçÎ .Lš4IJB//¯Ñ£GÇÆÆ®X±¢_¿~v¬mòäÉÉÉÉBˆÖ­[W®\Ùáã!Á2q` @t:Ùvý¨$çææšþXÐU,wîÜéÔ©SÁ;±ç߯§OŸBÔ©SÇtaíÚµ…/9µ¥¶“'OfddÄÇÇ¿úê«Ï<óÌñãÇùÂ'Ðþ}a#eÍSÓnàdƒlåîÝ»¦?fffZ\ÍßßßP0ûŽ–t¢aNNŽéB)ÑZ<ÁÑÆÚJ•*Õ²eË?þøúõë«V­²ï±À":Žp>Ú`.\0ýñâÅ‹WsæTudd¤âøñ㦠¥^£^¯·½¶µk×vêÔiñâÅÝ»w7. ön¢ GÆíFR#íF0qéÒ¥5kÖ´oß^‘’’rðàA‹«9sªº^½zU«V={ö°aÄÙÙÙÓ¦Móõõ•ê´±¶†  !¾ýöÛ—^zI÷à,‚ï¿ÿ^ѨQ#»0ò#8*‹´Û‘Óî‘€ÓyxxôèÑ#666//oÍš5^^^W“¦ƒí¸ß¥K—¾þúëýû÷Ÿ1c†ÙSžžž³fÍêܹsݺuìîî¾|ùòýû÷þùç!!!¶×4~üø¸¸¸ ´mÛV§ÓýöÛo{÷î1b„t&%à€*5lذ]»vóæÍËÉÉ4hŸŸßäÉ“°ßììì›7otJeLLLBBÂĉçÌ™“••U·nÝõë×Ûr;q3'NŒˆˆ˜={öܹsÝÜÜjÔ¨ñã?šÎ\áŽ(½ç©mk72O ÓétcÇŽ;v¬qɤI“ì» ½^Ÿ¿#Ø·oß{÷îY¼JZõË/¿8î¨ûôéÓ§Om…ãªj8“Ô YYY[·n­W¯žÜ…@GX¦¨»ð„GDÐn…ˆ¯Q£ÆË/¿,w!SÕpÚ`gC‡õóó“e×Í›7oÞ¼¹ÜyGs!ËæÒéRSRÂå> P”Ñ£GË]\SÕ ¢œË?5O ‚à‡²C»Q)i—Gp„ãhnÖ×Fp„9ÍSÓn@IŽÊ¢¡†!Ž0c§v£=R#íF†à¨Ä$ pGØ“ÔhÁÿ°Ç<µR# X”‡à;¢×€–DÞØÅ]x@áްÚ [·nmÞ¼yppðc=Ö¸qã•+WÊ]Ñ?nݺ5dÈJ•*ùúúFGG'$$²òáÇ»wïêëë[¿~ý™3gæääÈ}*FpTõ·Øì—Õ? vëÖ­kÑ¢ÅÙ³g{÷î=dÈ«W¯véÒeÁ‚r×%„éééõë×ÿöÛo›4i2pàÀS§N=ÿü󉉉WNIIiÖ¬Ù† žþù‘#G–(Qbäȑݺu“û ÔÌ{«V­ZQ_"½2¾ÂÖÛ¯vKŸÉ””'ˆ¶1žvÇÚ“‡´oËîîÝ»wïÞuÐÆk×®zóæMéÇÛ·oWªT©B… r´Á`0Lœ8QñÝwßI?ž:u*  yóæWîØ±£››ÛÞ½{K  „ذaƒéjÅø¨ñ3cta;Úàlz½¾eË–¦Kâââ4h`û–ïÞ½{ìØ±öíÛûûûKK|||š4irþüùÌÌLk¶°oß¾öíÛ‡††êæééi{y?þøcXXXŸ>}¤#""ºvíº}ûö‹/æ_yË–-ÑÑѦÃòÆo!âããm¯Ä5yÈ]î“ñ AÛ.‹áÔFP„Ó§Oïß¿ßöí¸»»:t(((ȸ$''çÈ‘#µk×ööö~äË7mÚÔ¦M›Š+öïßßÇÇgåÊ•¨W¯^‹-ÜÜlmW¥§§ÿùçŸ={öÔétÆ…-Z´X°`ABBBçÎMWÎÉÉ6lXýúõMž9sFáååe‡wIG(íFPZµjI.\˜œœ¼víÚ‹/þðÃ|mVVVß¾}ÃÂÂöìÙ*„5jTëÖ­“’’>øàƒÒ¥KÛXÛåË— CHHˆéÂàà`!ÄÕ«WóÈ”)SL—\¿~}Ê”)îîî]»v•y”U‹à[Ðn¥ËÉÉY»vmAÏvìØ±×Nž<999YѺuëÊ•+?r_;wî¼pá¤I“¤Ô(„ðòò=ztllìŠ+úõëgcmB???Ó…Ò”zZZZáµmÛ¶íµ×^KNNž;wndd¤c[ûŽ®Î†yj»¦FÚIgû&lPø_‹¹¹¹¦?æååY\íÎ;:u*p…þÝ{òäÉŒŒŒøøøW_}õ™gž9~ü¸ÔÞ+ÈéÓ§…uêÔ1]X»vm!ÄÑ£Gm¯Mš@ÿûï¿M¦§§ !Ê”)SÐvΞ=ûÆo¬^½:22rÓ¦M-Z´(..Ž‘‘ Ë ëŸÂݽ{×ôÇ‚®\ñ÷÷/ä"ÙGŽ@©R¥Z¶lùñÇ_¿~}ÕªU…¯,iv£D)ÑZ<Á±¨µ…„„¸¹¹™ÍJ_»vMQ¾|y‹%-]ºô‰'žØ¿ÿ¼yóþïÿþÔh#:Ž.v#¨×… L´xY±(útðÚµk;uê´xñâîÝ»ŠGµ'…ÒðñãÇMJ½F½^o{m5kÖܹs§éÂ;vèt:ãy™¦V¯^ýÊ+¯¼ôÒK_}õ•Ù7ŠIîûiPQïí$l¾‰b±wÏö®÷QŸCn’g_Œ§Ý1¤vÇ}©J•*BˆÕ«WK?ž:uÊ×××â¯õ›7o)\½zÕÃãmÛ¶yyyÆ…/¿ü²âСC…W•]µjÕ°°°7nHKîÞ½íëë{éÒ%Ûk3 ³fÍ2=ðË—/‡„„´iÓ&ÿšyyyÕ«W¯R¥JNNNáesGëÑq„Üh7@±xxxôèÑ#666//oÍš5ÝbFš¶~³AAAãÇ—î Ù¶m[N÷Ûo¿íÝ»wĈÒÙŠK—.}ýõ×û÷ï?cÆ ³×zzzΚ5«sçÎuëÖóÌ3Ç.dýÓ§O !êÔ©cº°víÚBˆ£GÚ·6È‚‹c4˺v#“ÔP8ƒ¬ s÷î]Ó ºrÅßßßP°G©R¥Z¶lùñÇ_¿~}ÕªU…¯,™““cºPJ´Op´±68GWæ°ÔH»ïÂ… ¦?^¼xÑâjE^»vm§N/^ܽ{wãÂÀÀ@aE 022RqüøqÓ…R¯Q¯×Û^dGp”‰ƒÏ=”óìFR#8Å¥K—Ö¬YÓ¾}{!DJJÊÁƒ-®VÔéà†  !¾ýöÛ—^zI÷àëq¿ÿþ{!D£F /©^½zU«V={ö°aÄÙÙÙÓ¦Móõõ•ê´±6ÈŽà貘¤uóððèÑ£Glll^^Þš5k¼¼¼,®&M[¿Ù   ñãÇKw…lÛ¶­N§ûí·ßöîÝ;bÄélÅ¥K—¾þúëýû÷Ÿ1c†Ùk===gÍšÕ¹sçºuë<ØÝÝ}ùòåû÷ïÿüóÏCBBl¯ ²#8ÊÀÑ÷â±¢ÝÈ$5¨^Æ Ûµk7oÞ¼œœœAƒùùùMž<Ù.[ž8qbDDÄìÙ³çÎëææV£FüÑ8s}óæÍ‚N©Œ‰‰IHH˜8qâœ9s²²²êÖ­»~ýú¶mÛÊ=Z°‚#ì‡ÔN¤ÓéÆŽ;vìXã’I“&ÙkË}úôéÓ§Ågûöí{ïÞ=‹WIK¢¢¢~ùåG¾^¯§[é|\U­5r¶. ++këÖ­õêÕ“»È€àèj˜¤Ø$>>¾F/¿ü²Ü…@LUËÁa±€v#©ŠF¯×Ë] G#5€]$%%É]‚c¥¦¦†‡‡Ë]´€©jX‡Ô€Ë#8:}¯Œqj»‘ÔŽ*EjÎGpt"ÇÞ¤›Ô‹à¨>–Ú¤Fàp\U­2NJÒù˜¤F`‚àè$:{¤»|©QºÜÆ©‘Èò!8:‹Í'8ZJLOç!8ªƒ3R#ÓÓ P\S Ÿþ¹[·nQQQÏ=÷ܸqãnܸQìMÙxG‡§Fî~£Q©©ñù矗»Ma<íŽ!µ;†Ô¾OØ ÁѲ™3gN˜0áÔ©S 4ðõõ]±bÅk¯½–™™YÌÍÙ0OýpjÔÙ95*>2å 8Z””4þü 6ÌŸ?ãÆ}úô9|øð§Ÿ~êäJLR£12Ú)á@-X¶lY^^Þˆ#‚ƒƒ¥%cÆŒñ÷÷_¿~}^^^Q·V¼yjÐ=HvŒR^$2€¢#8Z°oß>77·fÍš—¸»»GGG§¥¥8p È›+â<õƒÈ(½Ê‘Ñy‘ÈŠŽàhÎ`0$''—)S¦L™2¦Ë«U«&„8wî\‘¶få ‰ºûmEø'2ŠM¢Å°H^6àv<æ222rssÌ–ûûû !®_¿þÈ-$%ýùàÖÜÖæ>ƒ0¾Â¨È3ÜújÕ xBïÈs½&ŽB9O»cHíŽ!µ/ÆvAp4']:íããc¶Ü××WqëÖ-+¶Q¬ÆžÍÝÀ$ÇpeLU› ÐétfËoß¾-ô\ÁÑœ‡‡‡¿¿þÎbzzºÂx5€«!8Z’––&%E£ÔÔTé)¹«ÁÑ‚–-[æææîܹӸÄ`0lß¾=000**JîêäAp´ [·nnnn_~ù¥t^£bþüù×®]{ñÅ===å®@:÷ö³ä›o¾™:ujùòå›4iræÌ™„„„š5k~óÍ7ùoÓà"ŽZ½zõªU«>öôÓO1Bº#€k"8À*œã«`‚#¬Bp€Uް ÁV!8À*r ?ÿüó²eË’““K•*Õ´iÓQ£FÊ]” uܺvízäȳ…AAA¿ÿþ»Ü‡¢)))/¼ð²eËêÔ©#w-jbý¸ñ-¶ÌÌÌŸ~úiùòåçÏŸ/]ºtµjÕ ðÜsÏÉ]—ÒcÜø”ÏÍ›7?ûì³ýû÷Ÿ?¾lÙ²O<ñÄ›o¾!w]NEp´™3g~õÕW>>> 48sæÌŠ+Nž<¹páBooo¹KS´bŒÛÙ³g½½½«T©bº¯‚´Þ¢E‹ä.A•¬7>¢Å“““Ó¯_¿ƒúûû7jÔ(++kÏž=»ví>|ø°aÃä®N¹Š7n|J‹!==½}ûöW¯^ŒŒlÞ¼ùŋ׭[÷믿þôÓOO<ñ„ÜÕ9‘6;qâDõêÕ›4irùòeiɇ~X­ZµI“&É]š¢cÜnݺU­Zµ·ÞzKîÚÕçÖ­[ûöíûàƒªU«V­ZµƒÊ]‘:uÜøˆÛ’%KªU«Ö³gÏŒŒ iÉŸþùôÓOרQãÿþïÿä®N¹Š1n|J‹Gú 5cÆ ã’+VT«V­{÷îr—æTœãhË–-ËËË1bDpp°´d̘1þþþëׯÏËË“»:å*Ƹ={Vaö¯dX#66¶W¯^?þø£Ü…¨LQÇh±mذA1~üxã„Cddä!Crss™?-D1ÆOiñÄÇÇ{{{:Ô¸¤K—.¡¡¡ÇŽËÍÍ•»:çaªÚöíÛçææÖ¬Y3ãww÷èèèÕ«W8p ~ýúr¨PÅ·3gÎ!*W®,wíêóÑGݽ{W±xñâÝ»wË]ŽjuÜøˆ[jjªO­ZµLFFF !Î;'wuÊUŒqãSZ<ÕªU+Y²¤éB//¯ìììììl×93àh+ƒÁœœ\¦L™2eʘ.¯V­šâܹsG‹Š7nÒßw/^ìÓ§ÏñãÇK•*U³fÍ!C†pÇ#5nÜXz°uëV¹kQ“¢ŽÑb›7ož‡‡ù¯¤cÇŽ !*V¬(wuÊUŒqãSZ<‹/6[²oß¾³gÏÖ­[×uR£àv<¶ËÈÈÈÍÍÍN±¿¿¿âúõër¨PÅ7éгfͺråJ£F‚‚‚¶nÝÚ³gÏeË–É}@€|DmP³fMéßF óçÏ÷òòêÔ©“ÜÕ)W1ÆO©'L˜Ð«W¯¾}ûVªTiêÔ©rWäTtm•™™)„ðññ1[îëë+„¸uë–Ü*TñÆíâÅ‹ÞÞÞ#GŽìÓ§´d÷îÝC† ù÷¿ÿݸqãråÊÉ}Xpu|Dí"77wÉ’%Ÿ|òInnîôéÓƒ‚‚ä®H¬7>¥6JJJZ¾|¹Á`BÔªU«D‰rWäTtm Óé222Ì–ß¾}[<èŸ!¿âÛwß}wðàAã_vBˆgŸ}ö•W^ÉÌÌÜ´i“ÜÇðµƒ={öÄÆÆ~ôÑGAAAÿùÏbbbä®H¬7>¥6êÑ£ÇñãÇwíÚõÞ{ïmܸ±gÏžÒo.Ap´•‡‡‡¿¿þYzzºÂx½0ÌØqÜž~úi!ÄŸþ)÷1–ñµRvvöG}Ô·oß .¼ùæ›ëׯöÙgå.Jì2n|J‹D§Ó•-[vÀ€Ý»w¿téÒÆå®Èy˜ª¶ƒäääôôt???ãÂÔÔTé)¹«S®¢Ž›Á`ÈËËÓétnnýƒÇÝÝ]Qºti¹®Ž¨-òòòÞyç_ýµU«V'Nä_ÝV*ê¸ñ)-ž“'O~óÍ7ÑÑÑ/¼ð‚érézöË—/Ë] óÐq´ƒ–-[æææîܹӸÄ`0lß¾=000**Jîꔫ¨ãvæÌ™š5köíÛ×lybb¢B¯×Ë}@pu|Dm±hÑ¢_ýõå—_ž={6©ÑzE7>¥Åãçç÷ßÿþwÅŠfË¥›b†‡‡Ë] óí [·nnnn_~ù¥ñ,‡ùóç_»víÅ_ôôô”»:å²fÜîܹ“ššzþüy!D•*Užzꩽ{÷þüóÏÆ$&&~óÍ7åÊ•kÛ¶­ÜWÄGÔ. ÃâÅ‹K—.ýÞ{ïÉ]‹šX9n|Jm¢×ëwíÚµeËãÂ'N,Y²Ä××·Aƒrè<:é² Øè›o¾™:ujùòå›4iræÌ™„„„š5k~óÍ7|õgá9nëÖ­{ûí·###׬Y#„8qâÄÀ¯]»V«V­ˆˆˆ¿þúëàÁƒ¥J•š={ö3Ï<#÷ѨÄ ~þùçeË–q϶")hÜøˆÚÅ•+Wš4iâííýøãç¶sçν{÷–»F%²rÜø”ÚÅáÇ_~ùå{÷îEEEU¨PáÊ•+û÷ïB|òÉ'íÛ·—»:çáGû0`@Ù²eW­Zµnݺ°°°Þ½{1Bº³ QÔq«^½úÊ•+§OŸòäÉŠ+vêÔiøðáaaar Ñâ’ša™™™GÍÿ,—ȤxãÆ§´xj×®½víÚY³f=zôøñã¡¡¡mÚ´6l˜ô==®ƒŽ#¬Â9ް ÁV!8À*GX…à«`‚#¬Bp€Uް ÁV!8À*G®eÔ¨Qz½~Û¶mr"¾üòK½^¿dɹ k`¹ Õ¼yó   §žzJîBÀZGG­ZµjÕª%wPLU€âäææÞ»wOî*ÀÁ€:L˜0A¯×O›6Ílù‘#Gôzý³Ï>›““#„¸víÚŒ3bbbêÕ«W¯^½víÚ}üñÇ—/_.h³Òµ2ñññfËkÖ¬ùÌ3Ϙ.ùý÷߇ÞªU« ôéÓçË/¿4Ëvýõ×ĉcbbêÖ­Û¬Y³×^{mß¾}…Ñ×_mzqŒTÉùóççϟߨQ£'žx¢~ýú=zôØ´iSA[HLL¬Y³fttôßÿm\xûöífÍšÕ¬YóðáÃr¿i´†à@bcc…7n4[¾fÍ!D§N<<<®]»Ö«W¯yóæ]¸p¡R¥J*T8wîÜ·ß~Û³gÏ7nز÷O?ýtàÀ7nÌÉÉ Þ¿ÿ_|Ñ»wï´´4i…“'OÆÆÆþøãiii?þ¸Á`ؾ}û+¯¼²eË–"íhÞ¼yÓ§O÷ôôlÔ¨‘¿¿bbâ°aÃÖ¯_oq娨¨^¾|yÊ”)Æ…Ÿ|òÉÅ‹_ýõÚµk;ûM uGêРAƒàààsçÎýßÿýŸqa^^žªºté"„X±bÅéÓ§[´hñû￯Zµê—_~ÙµkWƒ þúë¯Í›7{×[·nýúë¯+V¬øóÏ?oÛ¶míÚµ;vìhÚ´éÁƒçÎ+­óé§ŸÞ¹sgèС»wï^±bÅöíÛÇo0fÍšU¤}-[¶ìµ×^Û¹sçwß}÷Ûo¿õë×O±pá‚Ö>|xddäŠ+vîÜ)„ˆÿé§Ÿž|òÉ¡C‡Ê÷^Ð,‚#upssk×®x¸é¸ÿþË—/GEEU­ZU‘““Ó¼yówß}×ÇÇGZÁÏÏOjUž9s¦Ø»ž:uªâ³Ï>3öð‚‚‚>ûì³åË—ß¼ySqâÄ !D·nÝÜÝÝ¥uzöìùú믷jÕªHûª]»ö;ï¼ãææ&ò믿.„8}útAë{zz~òÉ'&L¸råÊøñã½½½?ýôSc`GGª!E@Óy[ižúÅ_”~6lØW_}õøãW¸zõêÚµkmÙé7RSS#""Ì®€.UªÔ³Ï>›™™yôèQ!„”\ÇŒ³wï^élKOOÏ·ÞzëÍ7ß,Òî^xáÓýýýÝÝÝ C!/©Y³æ°aÃ.]ºÔ±cÇ¿þúë½÷Þ«R¥Š£Þ®ÛñPZµjU©RåôéÓIIIz½>''gÆ ÞÞÞ111Æuþúë¯;vìß¿ÿܹsgÏžµñÔF!DJJŠô¿z½Þâ /^BÄÅÅ1bïÞ½¯¼òJÉ’%kÖ¬Ù°aÃ6mÚÔ¬Y³H»«P¡B1нcÇ!„Cï§xéÒ¥I“&•.]zòäÉžžžS¦Lqww‹‹³ýäNÈ©j*3uêÔ¤¤$ww÷N:—GDD´lÙróæÍ­[·~ê©§ CRRÒ7zõêµpáÂÿþ÷¿ÿý·tcS:uúþûï8вeËš5k^¹r%99Ùßß?44ôîÝ»Ò:;wÞ»wïÊ•+;uêT¾|ùÀÀÀ”””ŒŒŒ*UªHwÞvss7nܘ1c¦M›öŸÿü§B… §N2 ={öŒŠŠrÐP †1cƤ§§ÿûßÿ–ró“O>Ù¯_¿ÿüç?qqqŸ}ö™Üï­¡ã@e‚ƒƒŸ~úi!D“&M‚ƒƒMŸš>}úðáÃË•+'Ýß1::zÕªUãÇïÕ«—»»»Å/¬X±â?üЪU+77·]»výùçŸåË—ÿú믃‚‚Œëètº?þøóÏ?oÑ¢E^^ÞéÓ§ÃÃÃG޹jÕªÀÀ@iÎ;ÿý÷M›6õöö>qâDFFÆsÏ=7gΜ‰':n(-Z߸qc㉞BˆáÇW®\yýúõ6lõ AºÂo®ãÎ;iii+V´þ"hp)GX…©jX…à«`‚#¬Bp€Uް ÁV!8À*GXåÿu醡ˆ³¶IEND®B`‚statistics-release-1.6.3/docs/assets/invgfit_101.png000066400000000000000000001452401456127120000223240ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A€IDATxÚìÝyX×þ?ð3$l"‹6A ´QdsW@)àRw6më‚­Q©¸¡TQ\QÁ_[·Ò«m]¨¢U¬¢‚¨\ .(*V+z©J­HUdK~œ{ç››@2 `\Þ¯§Orf2s–Éäã™sN‰DB”ÑÒtàõ€À8Aàœ pN8'€“×>püùçŸnžùD$vìØ±oß¾}ôQAA¦ó¥²WªY9~è8âøÅÑF·G|mQ|MgÞRáááOŸ>%„?~Üßß_ÓÙN.\˜ššJÿ¦Í÷Fj®˜¯QññùRIuuõ¤I“öíÛ'xîܹsçÎ}ÿý÷ÁÁÁßÿ½@ Ðt6AÃ6>VÔk8¶k×ÎÞÞž}YSSóàÁúw§NtttØMZZ¯}÷êÏÐ榕••¦óM8vìýÃÛÛ{Ô¨QÒŸ¯×T“—\sÅ|KŠÿ¶ùçŸ|||.^¼È¦hii1 ÓØØH_9rdĈ'NœÐÓÓÓtf9yÅ›µÕ³§Ùò¾âµÝ&$o–ãdzE+))‘ßañâÅtëÈ‘#5YÕܺuëÅ‹¯Ô1[R™íÛ·§ï=~üx«×Õ¦ÉfÒȕ̶ڡC‡4]+êHLL¤ù R£˜¯Qññùân„ ì·†ONNNuuu]]Ý… BBBØMóçÏ×tN_K?tq¼°ÛèöˆõVwÂýý÷ßsæÌéÑ£GûöíÝÝÝ¿ûî;‰Ô0J’hhhøüóÏmll>ÿüsv‡Ìš5«ÿþ†††ï¼óΘ1cŠŠŠäÏÂq7iÒ§¾ÿþøñッƒ……ÅêÕ«å÷öìÙ’%K,,,,,,W]]­Þ1›NÓçΫ ób±x×®]~~~vvvzzzvvv¾¾¾Û·o¯¯¯§;,\¸aöIßàÁƒ†¡ÃÅš,¢j?~î„àX:霌7î÷ß?~¼½½½MxxøåË— !gÏž µ··ïر£ŸŸ_NNŽÚM¯ÞõƱ°Ò*++ïܹ#‹é˪ªª;wî444Ÿ•šOJkNyyyhh¨@ °´´=zô¿þõ/ù}d.¹æŠ© ø«½å÷ŽW¸‚Ï—Òâs?Ë”)Sèn~~~Òüé§Ÿhz»víØ“¶°r¸_®jÜl/]º´sçNúwXX؉'hhh¨­­íææ¶{÷î>úˆnݽ{·ôUºp¹—r,&—Ýš¼‘ªša5î¢D­Çr©ñÅAUTT|ðÁï¼óN§NBBBN:Õܵ§ ^…¯-5îÛmEÓ‘k+ãÞãèëëÛ¥K™Úذaƒüž#GŽdï‹/¦[Oœ8aaa!óv†a>ûì3éÓqÜ­¹L4èwÞ‘yûäÉ“¥w.,,”߇Ò¹sçÜÜ\5ŽÙÜ¿ÕÂÂÂhzll¬‚=¥ÿ.mìØ±t‡ Èo}úô©D"Ù²e }Ù³gOµ èëëëìì,³ó¸qãTø‹/z÷î- †a¾úê+é=•–N:'îîî2ã¢ÌÌÌ6nܨ­­-s–œœœVi&.×÷ÂJ9r¤ü[®]»¦ô“¢jó©QiMú׿þeii)ýCCÃ!C†Ð¿ÙΙK®¹b*(>Çjoùý„ã®àó%OþÇñ,GŽ¡)ÚÚÚÕÕÕì§L™BÓGÝ*•ÃýrUïfE÷ÔÓÓû÷¿ÿ-¿ÃŸþ9ñ¿>|¨Þ­@é½”c19îÖäT¥ «qUûCDZ\*}q°éÕ«—ÌýG[[{Ë–-ª¶‘Æ¿¶Ô»o·‘·7p¤<<4…Ïç—––r/LN´´´ÜÜÜLMMe>íÎÎÎÖÖÖìK??¿–7Çëcaep å?)ê5Ÿª•&¯¶¶ÖÎÎŽ-Tß¾}¥GB“V U­vµï'¯pŸ/y ¾qŸ¥®®®C‡4%##ƒ= [Ï?þøc«TÇËUí›-Û}&áLÕ[÷{©âbrÜM¾YÕ¸wï¢jè8–K¥/Ž&o¤ô%Ç»råŠJm¤ñ¯-õîÛmä­7nÜHÙG„ .ÈïÙµk×;wž={ö÷ß—H$qqq4]úßj_|ñM´µµ¥)wSœÉaÆÑñmÿþ÷¿E"M0`Ý3!!¦±WØ¥K—Ø>› ¨zÌ–Ž“&M¢)sæÌaߨ£Gš¸víZ6±ÉÁ"òŸ@õ øÅ_ÐÄÒÒRöC¨àŸe  û$&&²‰2GãX:éœ>|X"‘ÔÕÕ 4ˆMLII‘H$l÷Œ@ hy3q¼Þ8¶IM¶š‚OŠzͧj¥Éûꫯè>†††gÏž¥‰³gÏf¦à;LÒüH¦&Ó9V{Ëï'*]ác)þÆU|öãðÉ'ŸÐ”ßÿ¦èêê>yò¤U*‡ãåªÞÍV,³½K–,‘p¦ê­@é½”c19î&߬jÜ»T½‹¶äCÇý¦Äñ‹Cº ǧ7Òòòòwß}W¦E¸·÷³·Å×VKîÛ­îíãèììÙüŸ8q‚þñÞ{ïµJåp¼\Õ»ÙVUU±S§mmm¥7­_¿^~1àÓ§OÓ­­~£ãXLµ?¼ªfXk¬%º¶»)ikk³7ÒÎ;³7ÒÌÌL¶é[][|mµ]©áí Ù¿Û·oÏ>“¿˜<<<:uê$rãÆ úG`` {Oiß¾=û^}rÜM—Î;³/é‰äÖ­[„ëׯËl¢Þ{ï=öìˆ~ŽÇl‰ÀÀÀñãÇ2äôéÓ±±±þþþ666¥¥¥jPÊŒ,aŸxÊì&“mötS¦L±²²êÑ£Ç_|ñìÙ³nݺ±£vT-ôsU}}}úG§N†‘I”§F3q¼Þ8V òŸ5š¯%•&_ìšÃ„ö¼­HÕ¹Ú÷–W¸”žÅßߟ>­¾sçεk׈TàÈ~µ¼r8^®êÝlÙ§‡„Å+¥Ëhõ÷[—ÝZža5®±–|èÚî¦Ô­[7éñlÞêêêþøãµ«X[|mµ]©áí e–ud¿–äÉ Õ¯®®Vºöï_ýÅq7Å;È\ íÚµ366¦ß¿¿ººšþ‘[AŠýö}ñâ»°%—c¶°VëêêæÌ™cnn¾~ýúìì솆µ»yÔ+ LS*hYVBBBTTýW)!D"‘­X±¢OŸ>>>>ì7Šª¥kòÔ×Uµ™¸_o «ùOJË›O¥J£ž>}úðáÃ&«Q:oj|ÌÕ»Ÿ(¨".W¸”žE[[›úI‡Þž¼U*‡p»\Õ¾Ùêêê²##e¢(###ûÿ’Ž/©Ö½Ñq,&÷ÝäµðÞ¥ôkᇮínJ2™100`o¤åååjV6úÚj»*RÃÛ8r'Ó„FFF†††ôïcÇŽÝlJxx8ÇÝŸZæÚª©©a'óÛÛÛ±Ÿ?ÿüSzOö¥ŽŽ{gärÌÖÕŠ+6lØÐÐÐààà°iÓ¦‹/VWWÓo5¨W@5hkkùå—•••»wï?~<;꟒——Ç.™Ñº¥SLÕfâ~½q,¬ä?)/§ùdèëë³Ks³_f{Co-j|ÌÕ»Ÿ´n¶[ ;–à×_-))¡µÍöD¶¼r·Ëµ%uÈŽ£ÍÈȾZ¦NzûöíÛ·o—••™˜˜È¼«Õo?•jxÛúÞÕÂ]ÛÝ”dþ™]SSÃæGfpBki£û^ÛU‘8ªƒ`ÛÐÐðŽ”:˜˜˜˜˜˜Ð§iwSàÊ•+ìˬ¬,‰DBÑÑÑ¡óר9ìoZȼtttd‡or<&{ï–C&s;hÒ¦M›è_}õÕ§Ÿ~êêêÊçóïÝ»§vU«Q@UÕÖÖ>xðàÁƒµµµ!!!;wî|øðaVV»ö»îW«—N¥Í$Ëõƽ°­â%4Ÿ<' éßGeÓ% —ÕUÕòyË )ƒ¦_`¹¹¹¿üò M”nÕ¢q¿\Õ>ÑìÙ³iö“'OfÍš%½6'µuëVéO"ÅñVÀñ^ʱ˜-ùð¶õ½«%º6½)ÉÜHÙ¼éèèзäû®9­~ß{É÷m¥8ªcðàÁômÛ¶Iþ»føÏ?ÿܱcG@`ooÿÏ?ÿpßMºººèè躺:BÈŸþ9þ|š>|øp:è›]"ëÿý¿ÿÇ.u[RR’””Dÿ–nÂñ˜ì“…sçαÃVöíÛ§ôóÿÏ?ÿ°ÏƒØáo¿ý–­¸Œ ¶ªQ@U•––ZZZZZZZYYÑi¡|>ðàÁìì]Úß ^éÔ¦´™äq¹Þ8¶µ¼„ækRÏž=åÏ»råÊ«W¯¶ú¹Zþ1oùPüùj!öiummíúõë !<oĈ­U4î—«Ú'êÛ·ï'Ÿ|BÿÞµk—Ï©S§èƒï‹/~òÉ'ì”÷[Ç{)Çbªýá}9÷.µ?tê•‹ã…]__MWÒþóÏ?Ùå[ø}÷’¿¶^ò}[©×þ·ª5báÂ…©©©?ÎÈÈ4hÐÀ¯\¹ÂΓúì³ÏèÈVŽ»)¶oß>¡Pèììü¯ý‹>¬ÔÒÒZ¶lÝ:oÞ¼ï¾ûîÎ;Ož<ñòòò÷÷çñxǧ+Ú[YYÅÇÇ«zLv†šš¿þú‹í«@ûöíÛ·oOï¹S¦L¡¿!ñ믿6ù{&&&tÏåË—_¹reÖ¬Y2+<·¤€*quuµ°°xðàACCƒ——×°aÃLMMÿøãƒÒè/ ¨TºV¡¸™äq¹ÞLLL¸¶µ¼„ækÒܹsé:‚UUUýúõëÓ§Oee%ÀÑêZþ1o•… ŽŸ¯–7nÜwß}Gþ;3×××Wzœb ‹Æñ³Ù­Zµê×_½}û6!äÌ™3ÔÒÒÒÑÑa—/èׯߙ3gØý¹ß 8ÞK9“{mÈx9÷.µ?t*•K ›ÞH»téRXXHÿýÀãñV¬X¡R©töV¿ï©Ýômåe®ýó¨ý[Õ츱]»v)Þ“:xð`“1þ´iÓ¤×Úå¸[s™ôññ‘‡Áçó¥W½—H$çΣëVȰ³³ËËËSï˜ìŠ',ößô Öq •#û£d}ô{ŠñãÇKï¦` ~U Èe9.gΜiîI–¯¯/û;ÑK×dNÒÒÒh¢‹‹ ›˜ŸŸÏ6ªÍÔäY¸\o Û$Åë86ùIiIóq¬´&Mœ8QæŒì¬ÆV\Ç‘cµ·ü~¢ÒÞäçKž‚ð8~ޤW'„lÞ¼¹‹¦ÒåªÞÍ–ºÿ¾¯¯o“gyÿý÷ÙÇùùùtî7:Ž÷RŽÅ丛|³¶äÞ%ávmɇŽ{+süâ` bbb"3µNGGçÛo¿m²tŠÛˆûÙ%mðµÕ’ûv«Ã£j5 >üâÅ‹‘‘‘žžžíÚµspp5jTnnîæÍ›¥ÇwsÜ­9¦¦¦§OŸž:uª“““……Ř1c²²²Ø+TïÞ½/]ºïïïoaa! ´hѢ˗/{yy©wÌï¿ÿ~ÅŠÝ»w700ððð˜9sæÙ³gå'<ÊKNNîÞ½;ùïÄÄij®~úé'öY@rròøñãÍÍÍ \\\L›Uµ€jèÛ·ïÍ›7ããã{õêÕ©S'mmí:xyy¥¦¦fgg³Ù¸—®å¸4“<.×Ƕ–—Ð|Múæ›oØ_“377ÿý÷?îããÓçjáǼUŽ ƒûç«…¤çVkiiÉ÷|´°hÜ/×–œÈÂÂâäÉ“¿üòKhh¨­­­®®nÇŽ}||ÒÒÒ222ÌÍÍe~Ìû­€ã½”c1Õþð¾œ{—Ú:îåRõÂöõõÍÍÍ>|¸••UHHHvv6»ºJm¤ÒÙ[ý¾÷’ïÛŠ1’ÿWG|||bb"!däÈ‘û÷ïeÙ¤úúúC‡‘—ßyþR´ué^Z3½%Ο?òäÉO>ù„®G ÐZ^»ÝKË0>to<Œq„V¦­­ýºÜIQº7^Ïž=Ù1û­èµ»¼´ ãC÷ÆÃ£jà#p‚À8Áäà=ŽÀ Gà#p‚À8Aàœ pN8'€ŽÀ Gà#p‚À8Aàœð5WTUUUJJÊùóçïÝ»gffæââíàà é|h #‘H4‡WNuuõ!C*++ÿüóÏââb>Ÿ¿{÷nMç@3𨺠_|ñEeeå´iÓ:”œœ¼k×®U«V544$&&j:kƒÇ& 6ìÞ½{gÏžÕÓÓcø÷ß_¸pÇãi:ƒ€1ŽM011qrr’Ž !ºººuuuuuuúúúšÎ € plÂÎ;eRþõ¯•——»»»#j€·GEŠ‹‹þùçÛ·oÛÚÚ®Y³†Ë»D"‘¦3mëúõëšÎ‚ pTäúõëéééth·nÝttt¸¿QÓy£ˆD"Ti+B}¶:Ti«C•¶.Ôg«{k;‰0«Z‘°°°ÒÒÒüüüùóç=z4<<üéÓ§šÎ€f pT‚a33³É“'‡††Þ¿ÿèÑ£šÎ€f p”UVV¶páÂ#GŽÈ¤wëÖòàÁMg@38Ê222Ú·oßÏ?ÿ,“^^^N …šÎ €f p”eaa!‰òóó³³³ÙÄk×®ýðÃíÛ·ïÕ«—¦3 øå˜&\ºt)""¢¾¾ÞÃÃÃÆÆæáÇçÏŸ'„¬]»vذaJߎÉko¶·ö»=ŽMpuu=|øðСCÿþûשּׁ¬¼÷Þ{à5¼©°ŽcÓììì6lØ é\¼BÐ㜠pN8'€ŽÀ GàËñ´>‘H¤é,€ ÞÎÕ¼Õ€À MàðºÀ¿ö¹Ã£jà#p‚À8Aàœ pN8'€ŽÀ xy†Ñl$‰¦ë^cèqx©$šûO„„†a†.¿iÍš5 Ã\¼xQÓ5G„Bá¨Q£èßÞÞÞ­~Šß~ûa˜Ý»w7WE§OŸ–ßÀ0Lcc#}yçΆa&MšÄîÐÐÐðÍ7ßx{{[YY¹»»GGGWTT°;lܸ‘QèèÑ£j'11Q tïÞ½Õ+ªUH7è«@ÁE% Ç§é ¶¹æ®±Xìèèhkk»jÕ*Mç4#üÇ¡C‡öíÛ§é\pÂãñx<ž¦sÁ‰D"1bDdddMMÍøñ㣣£ßyç-[¶899]¹r…îãéé+EWW×ÂÂB:ÅÞÞ^Õó^½z5>>ÞÙÙ9..NÓuІ|||ZåPÒÕùóçGÅ6ÐPº–¨ªªrww·´´Œ‹‹ûá‡Ô;È“'O¦M›fkkÛ¾}{Ÿ³gÏ6·g}}=ŸÏ—ù·“™™™¦«þªà?ôõõgΜ`hh¨é¼(‘““£é,pµsçÎÌÌ̹sç®]»–M¼pá‚——פI“ !ÞÞÞÞÞÞìÖÔÔÔÎ;'%%µä¼7oÞ$„,]ºÔßß_ÓuÐVŠ‹‹OŸ>ÝZ”¾¨_Kë­{ÊAŸnGGGK'º»»7îûï¿úôi}#Òñ¬zzzmT.•”>Ço­Nↆ†ììì‚‚‚M›6‰Åâ6*`Kj†¢££óê”N,K$’Ö?Ã0111AAA999¾¾¾*½wÆ 7oÞLKKûè£!³fÍêѣǜ9s²³³åw¦ÿæY¶lÙ«4ƒ¼·î&Í7nÜ!C¾üòËóçÏ+Ø­°°pÈ!–––:u2dí3£„BaLLÌùóçÝÜÜÜÜÜhʬY³æÎkdd¤§§×§OŸÃ‡744,\¸ÐÙÙÙÈÈÈÏÏïêÕ«ì’““]]] LMMûôéÓÜs1???ÚWñìÙ3ŃKJJFmkkknntâÄ éãœ:u* ÀÔÔ´k×®sçÎ¥_ù­‹ÆL%%%2ékÖ¬¹té’Úá…⶘4iÒÈ‘# !^^^B¡Pþ555‰‰‰ÎÎÎíÚµ³³³‹ŒŒ¼ÿ>—VP©Aéõðå—_š˜˜èèètïÞ}Á‚ÍU²â–’öèÑ£ÀÀÀ„„„ÊÊJÅõ3vìXmmí§OŸÒ—»wïfÆÕÕ•Ý!66–a˜ââb"uQMš4iذa„___éÚ;}útpp°@ °¶¶þôÓOÿùçŸ&O*‰d"ž„„„^½zqlSî¥ãÒX111[·n|>ßÚÚzúôéÒÙVõúohh „|ýõ×ËÂÚµk—••Õ‡~H_:88Œ;677÷Ï?ÿ”ß™Žï¾û®ªg—D­ÍÉÉIÓY kî šžÓ\†—.]J¹yóæíÛ·ÛµkçááÑÐÐ@7­^½šráÂú2##ƒÏçÛØØÌž=;&&¦sçÎ|>?##ƒnµ··3fŒ©©©P(üøãiŠ©©©™™Ù²eËV®\)ôôôú÷ïß»wïäääéÓ§3 ãææFß¾dÉBÈ Aƒââ✠!d>räHú·¯¯¯»»»D"©¯¯O“òí·ßÚØØèèè”––J$’cÇŽééé …ÂØØØyóæ9::òx¼Ÿ~ú‰äçŸæñxæææÓ§OŸ1c†¥¥¥““!d×®]ÍUQ~~¾ü¦ÁƒBØûã?!'N¤/i«««;}úôãÇ×ÔÔ(½~LLLzöì©t7mqùòåÏ?ÿœ²nݺÜÜ\ù÷FDD0 °hÑ¢#Fðx¼>}úplî jooommM2dÈÂ… ýüü!>>>´LºA·Ts®]»FYºtis;¤¦¦B233é˨¨(BÃ0ýõMéÑ£‡¥¥%Í{Q]¾|™Ž,\»v-­={{{'''ccãèèèuëÖÑqô —gooïåå%2qâD5¾m•–ŽKc¹¸¸èèèDEE}ñÅC† !„DFFÒ­*]ÿ!¤¯¯_UUŽ OžŸ?}útöPò£ŒeË–BRSSin=<<ž?N·¾xñ¢_¿~ /^¼°³³³²²ºwïÝZQQÑ©S'ţ͎‰ä‡~xçwènzzzƒ Z¹råüÑ\sp •¶EFFFs‘îÓ§Oy<žt§L™"***¸´÷¥×ÃÊ•+ÙÍ;—B#B¶A·”‚JPZÝ»wK_vïÞÎ1§ñJUU•––ÖäÉ“å/ªC‡BrrrØRB8@_6448;;ÛÙÙ5yÒ—8*m,BHzz:})‹»wïnccCkX¥ë_"‘<~üXWWwÒ¤IZZZÛ¶mã^7nBbbb¤?NÙºu«üþÁÁÁúúú:t`?\ÎÎÎçÏŸWµU‚À‘;Œq€ÿñÙgŸíܹ3>>~̘1;w–ÞTTTtûöí””@@Síîºxñ"}geeµxñbé¡o½{÷îÒ¥ ý›ö9…‡‡kkkÓÿüüüçÏŸêééñùÿ¹/=zôˆòüùsŽ9?pàÀ’%K¦OŸ>eÊBHqqqYYÙ?þ¨¯¯OwÐÕÕŽŽŽˆˆ(**jhh¸sçNRRí£9Ÿ9sæ‚ œ",,ÌÆÆF&qÏž=ååå ÞqéÒ¥ììììììÜÜÜìììÅ‹/Y²„ö ªK[4GKK‹.-tçÎ;;;BHjj*íœ#„(mî Js5gÎö½K–,Ù¼yóž={ÂÂÂØDÅ-Åý!¯Š[ª%#!„N~üø1í|õ÷÷÷òòÊÍÍ%„äääðù|:Ò@)ú—¥x¢ »¨'ÅÎqyöì{Ú$‰êëó+m,™l³ŸMÚ ¨Òõ¿}ûv‘Häêê:nܸ3fܸqƒ\i¡èå!3$´ººšbjj*ÿ–œœ===vÓäÉ“_¼x•žžNÿMš…É1 «oß¾Ó¦MËÈÈ8pà€t:ýb“ùýú Z__O_š˜˜¨wÒÚÚÚáÇ{{{9rÄÑÑqΜ9¥¥¥;?~}:nÜ8™É:::ãÆKKK#„(èªQŒK[(õÇlÛ¶ÍÕÕ533sôèÑ®®®>>ßÿýòå˵´´”ŠÏçwíÚ5//O:ýÔ©S ÃtëÖMfÿ;wî:thРAt¢E»'é° Ð8ô8@ŒSRRîÝ»÷ÕW_±‰žžž¶¶¶ÉÉÉ?¦)ÿý÷† ìììZþ€tƒô·Ezzú³gÏ”öÄÌŸ?ÿرc[·níÙ³§tº»»»H$Z¿~}UUM©®®މ‰i×®§§§ƒƒÃ† Ø/õÊÊÊV_À’N&=wî\bb¢ôãËgÏž-Y²¤¹Ÿyä¢%mqýúõ¾}û®_¿ž¾ÔÒҢу¶¶¶Ú­ÐœÊÊÊäädöebbbuuµÌ/ *n©6¶¶¶¿¿fffQQ {öìihh¸råJ¥Õ^Fñþýûtz !äÖ­[l@FŸê6GÕ³´¤±Tºþ%ÉŽ;\\\ºvíJSBBBîÝ»G—LâR¨©S§þñÇl<|ø0=== @~­(}}ýØØØO>ù„í8‹ÅIII|>? @½æ€Ö…GhZhhhZZÚ¯¿þʦèêê&''‡††zzz†„„H$’Ý»wWTTìÝ»WWW·…§óóó300˜:uêøñã­­­Ïœ9“mff–ŸŸäÈ‘ààà&ßuøðáõë×»¹¹ñx<éìœ===SRRFŒáææR__Ÿ‘‘q÷îÝ]»vÑ—[·n]HHˆ‡‡Ghh¨¶¶öîÝ»9®œ§’äää’’’øøø´´´=zÐy¬§OŸ~ðàA\\\ÿþýÕ;lKÚ¢gÏž...«W¯¾uë–‹‹Ëõë×9bjjÎãñÔh¬¬¬âãã ÜÜÜΜ9“••Õ¯_?v=?ŠÏç+h©–7App0­KGçíí™™Ù¹sgù/ŠötnÞ¼ùÁƒÒóx8âóùaaaNjŇb[„>Õmy‰(õ>2”¶¶6÷ëÿäÉ“åååtÉjôèѳfÍš6mZDDÄòåË•jâĉß~ûíøñ㣢¢LLLÒÒÒž?Îþšâš5kV¯^½jÕªiÓ¦™››'$$ÌŸ?ßÑÑ188ØÄÄäèÑ£ÅÅÅ+W®dÃVÐ,ô8@³6mÚÄNt¥F}êÔ©.]ºlß¾ýûï¿ïÚµëéÓ§Õè,‘gkk›™™iccóÅ_$''ëëë_ºtiÕªUÕÕÕ :éZÁ/^œð¿~úé'BHPPÐÙ³g»wï¾sçÎï¿ÿ^(=z4$$„¾wÔ¨QÙÙÙÝ»wß±cÇúõëÿùçŸ;w¶zêëë;vlË–-æææ'OžÜ´iS~~~Ïž=O:•˜˜Ø’#«Ý:::GŽùè£ –-[–““púôi¡P¨^+(ЧOŸ¬¬¬ªªª7Þ½{766öäÉ“òcé·T ÑÊÌÌŒ}ˆO'ƒ+ènìß¿xxøÑ£GÕûáÇ>}ú,Z´èÌ™3§OŸž:uêŒ3Z¥ 2ZØXܯÿï¿ÿž"Ý«V­zúôéÅ‹¹„ÂFFF¹¹¹¡¡¡éééIIIï¾ûnnnnß¾}éÖ/^TUU±CçÍ›—žžnaa±sçÎÔÔÔ:9rdáÂ…mQ‡ ¦ÿõ”H$º~ýº¦sšÔÜ5À0Œ?oŒZÓ6ß;vly¿)H …îîî2sóßxB¡ÐÆÆFfHß+׿_Üoíw=Uºô1ÀÛ ×?p‡GÕÀ z^*¦å‡xMÓ_½{«|úé§2¿’ð&Aàðò`ˆ!¼U6mÚ¤é,hÀ¼yó4€6„GÕÀ Gà#p‚À8ÁäÍc˜ÿ™h‹ùðjBà¨a2?%‚µZà•…GÕÀ Gà#p‚1Ž/•Ì\¨— ó® …8¼< ÃÍo à v€–À£j à >\~Óš5k†¹xñ¢¦óH„Bá¨Q£èßÞÞÞ­~Šß~ûa˜Ý»w7WE§OŸ–ßÀ0Lcc#}yçΆa&MšÄîÐÐÐðÍ7ßx{{[YY¹»»GGGWTT°;lܸ‘QèèÑ£j'11Q tïÞ½Õ+ªUH7è«@ÁE% Ç§é ¶¹æ®±Xìèèhkk»jÕ*Mç4#üÇ¡C‡öíÛ§é\pÂãñx<ž¦sÁ‰D"1bDdddMMÍøñ㣣£ßyç-[¶899]¹r…îãéé+EWW×ÂÂB:ÅÞÞ^Õó^½z5>>ÞÙÙ9..NÓuÐú.]ºjiiÙ¾}ûž={&''744´ð˜ÒÕùóçGÅ6ÐPº–¨ªªrww·´´Œ‹‹ûá‡Ô;È“'O¦M›fkkÛ¾}{Ÿ³gÏ*ØùäÉ“~~~æææ;vôòòÚ¿¿‹2ð¨þC__æÌ™†††šÎ‹999šÎW;wîÌÌÌœ;wîÚµkÙÄ .xyyMš4©°°âíííííÍnMMMíܹsRRRKÎ{óæMBÈÒ¥Kýýý5]­ìÖ­[¾¾¾£F²µµ=~üøgŸ}vêÔ©†ÒÕƒ222fÏžýÆ”®%LMM÷îÝ+‘H‚ƒƒ“’’Ưꪫ«{öìY^^>vìX@žžtòäÉ&»x333‡êàà0aÂ}}ýôôôÑ£Gýõב‘‘šª†Gøøøøÿûß‹/n‹ƒ×ÕÕ‰ÅbMQèÓíèèhéDww÷qãÆýöÛoOŸ>m£óÒñ¬zzzmt|•´±±‘}”ßrŸ}öÙ“'OŽ?ž––¶lÙ²‚‚‚É“'gdd¨÷@¿-j¦®®î•*X,nyý3 sñâE5þÙ¶aÆ›7onÛ¶í‡~ظqc^^Ã0sæÌirç… ZZZmذaÅŠEEE¶¶¶ -Ì?´ŽðãÆ2dÈ—_~yþüy»2ÄÒÒ²S§NC† ¡}f”P(Œ‰‰9þ¼›››››M™5kÖܹsŒŒôôôúôésøðᆆ†… :;;ùùù]½z•=Brr²«««©©iŸ>}š{.æççGû*ž={¦xP`IIÉèÑ£mmmÍÍ̓‚‚Nœ8!}œS§N˜ššvíÚuîܹ-ù¾oýÂ.))‘I_³fÍ¥K—tttZrðæÚbÒ¤I#GŽ$„xyy …Bù7ÖÔÔ$&&:;;·k×ÎÎÎ.22òþýû\ZA¥¥××_~ibb¢££Ó½{÷ 4WÉŠ[JZvv¶O¯^½Ø”3fBΜ9#³çرcµµµÙè|÷îÝ Ã¸ºº²;ÄÆÆ2 S\\L¤.ªI“& 6Œâëë+]{§OŸÖÖÖŸ~úé?ÿüÓdöD"‘L/oBB‚tnã^:.³uëV@Àçó­­­§OŸ.mU¯úÄü믿æXÖ®]»¬¬¬>üðCúÒÁÁaìØ±¹¹¹þù§ÌžµµµW®\6l˜±±1M100ðöö¾wï^MMªç…¶€GÕð Ã|õÕWݺuûøãÿõ¯59ˆðÀcÇŽµ´´ g&==}À€ééé#FŒ ;ܽ{700ÐØØ8 €¦ìܹ“Çã-Z´ˆÏçoذaìØ±žžž Ÿ|òIYYÙæÍ›#"".\¸@YºtiBB AƒÆŽ[[[»ÿþ &59k‡ÒÕÕMKKc_ŠÅâÏ?ÿüáÇvvv„¬¬¬÷ßßÊÊ*44TKKkÿþý;wî #„ìÛ·/$$¤cÇŽáááZZZ;wî}hâ¥K—†úá‡<øÀ[¶l‹Å[·nåÒRüñ‡âŒ©W:.uüøñM›6M:µK—.GŽÙ¼ys}}=üÔ¸þ·oßNÙ¿ÿ“'OØÀN©êêê7nЫ”M4hPjjêÙ³ge&Hñx¼‹/ é:¹|ù²«««¾¾>Ç3BÛ’@ksrrâ¾3!D"õZäÍÐÜ5@dÚû%ÿ×üÕµtéRBÈÍ›7%Éš5k!ÉÉÉtÓêÕ« !.\H$µµµB¡ÐÞÞ¾²²’n­¬¬´³³spp¨­­•H$tGBBBcc#ÝÁÞÞ^GG§´´”¾¤ãüÜÜÜêêêhŠ——!¤ººZ"‘888899Õ××ÓMUUU|>úôéì¡FŽIÿöõõuww—/ȲeË!©©©4·ŽŽŽÏŸ?§[_¼xѯ_?‡†††/^ØÙÙYYYÝ»wn­¨¨èÔ©!d×®]ÍU‘ tÏ?þøƒ2qâDö½?üðÃ;ï¼CwÓÓÓ4hÐÊ•+ÿøãæšÃÄĤgÏžŠ¯1¥m‘‘‘AÉÏÏ—ïÓ§Oy<žt§L™"***¸´÷¥×ÃÊ•+ÙÍ;—òÓO?I7¨â–’(óèÑ£Þ½{óx¼7nÈlºwï!$66–¾ìÞ½;c¾oß>Z4--­É“'Ë_T‡"„äää°¥&„8p€¾lhhpvv¶³³k2?ööö^^^Ò)'NTûÞ® t\‹’žžN_ŠÅâîÝ»ÛØØÐVéú—H$?ÖÕÕ4i’––Ö¶mÛ¸áÆ„˜˜éÄãÇB¶nݪàÛ·o÷ôô433ËÊÊR¯9Ré‹[í·¼Ðãÿã³Ï>Û¹sg||ü˜1c:wî,½©¨¨èöíÛ)))l€@ ˜={6ùD{¶¬¬¬/^¬¥õÃ`z÷îÝ¥Kú·ŸŸ!$<<\[[›¦øûûççç?þÜÐа°°POOÏÿÏ}éÑ£G„çÏŸsÌù–,Y2}úô)S¦BŠ‹‹ËÊÊ~üñG¶£BWW7:::""¢¨¨¨¡¡áÎ;IIIÖÖÖt«••ÕÌ™3,X àaaa6662‰{öì)//W𮈈ˆˆˆˆK—.egggggçææfgg/^¼xÉ’%Ÿþ¹zÍÄ¥-𣥥E—ºsçíšMMMMMM¥[•¶÷¥¹’ʶdÉ’Í›7ïÙ³Gº+QqK).KNNÎÇ|óæÍÍ›7;::Êlµ¶¶vuuÍÎÎ&„<~ü¸¤¤ä›o¾‰ŽŽÎÍÍ5jT^^žX,2d— wrrzÿý÷éß<ÏÝÝ=++KÕVkhh8|øps[Ùn{Ž¥ãÒXcÆŒ¡3 ãááA»‹ŠŠT½þwíÚU[[;{öì[·n¥¥¥M:•c¡h~ŒŒŒ¤Ói‡%Íps–/_NçxÐ ^àðùümÛ¶õïßæÌ™29ËÊÊ!tð"‹Ž+++£_ð"‘H:j$„H?u¢á…| Õ¡C‡‚‚‚¬¬¬k×®•••]¹r…û*$W¯^ýàƒ¼¼¼RRRhʵk×ȃ6™ËËË鸷=zH§+]rÆŒ I¼pá‚âÀ‘­(WW×Ù³g×ÕÕ8p &&fÉ’%}ûö}ï½÷Ôh&.mÑ}}ý””ú@¶[·nýû÷ :t(p©´¸7(!¤[·nÒã8 D"Ñï¿ÿ.½â–j®,ååå3fÌøå—_?>hР&w£?~L;_ýýý½¼¼rss !999|>ðàÁ\*ÜÉÉIú¥âÕ df¢°³ˆž={FÇž6I"µ>?ÇÒ)m,™l³ŸMÚ ¨Òõ¿}ûv‘Häêê:nܸ3fܸqƒ\i¡èå!3$´ººšbjjªàŒeeeÏŸ??sæLdddß¾}KKK[8ºZ&Ç€¬¾}ûN›6-##ãÀÒéô‹Mftý­¯¯§/MLLÔ;immíðáý½½9âèè8gΜÒÒRŽã¨?~_f†â–jò ?ýô“‹‹Ëùóç·nÝzõêÕæâ*BHPPX,ÎÍÍÍË˳µµµµµõóó»téRUUUNNŽ——ÇÒ©4?½¶¶Vú%;«ÃØØXÁ@UKÇ¥±šË¶ª×YYÙÙ³gCCC !cÆŒÑÒÒ¢ã¹ÊÂÂBKK«²²Rú€ýõ!„íïlN»víüýýW¯^ý÷ßÓÑ qèq€&¬Zµjÿþý3fÌøè£ØDú°ìòåËd/]ºD‰D- Ù²e‹ÌPy 022ÊÎÎ.,,ôññ!„øúúŠÅâ_~ù¥¸¸˜ámuÒ? DaçsyTͽtjd!ª^ÿ4L¤£¥¥¥Ï÷ß¿|ùr---¥…âóù]»v¥3“X§Nb¦[·n2û>|xäÈ‘;wî¤ç¢:tè@þ·G4=ŽÐccã”””{÷î}õÕWl¢§§§­­mrròãÇiÊßÿ½aÃ;;»–ÿ Çàìì̦¤§§?{öLé·Åüùó;¶uëV™¹¨îîî"‘hýúõUUU4¥ºº:888&&¦]»vžžž6l`¿Ô+++7nÜØºÕÈ0LDDĹsç¥_>{ölÉ’%ÍýÌ#-i‹ëׯ÷íÛwýúõô¥––´µµÕn…æTVV&''³/«««e&Ò*n)™J$’yóæuîÜyÇŽJ£FZ(ÿÌÌÌ¢¢"8öìÙÓÐÐpåÊ•J8ª½òèýû÷éôBÈ­[·Ø€Œ>ÕmŽª¥kIc©týK$’;v¸¸¸tíÚ•¦„„„Ü»w.™¤´P„©S§þñÇl<|ø0=== @~­(:ý»ï¾“. [ûõë§^s@ëB#4-444--í×_eStuu“““CCC===CBB$ÉîÝ»+**öîÝÛäZ!*ñóó300˜:uêøñã­­­Ïœ9“mff–ŸŸäȺœŠ¼Ã‡¯_¿ÞÍÍÇãI¯`çìììéé™’’2bÄ77·úúúŒŒŒ»wïîÚµ‹þ¸ÜºuëBBB<<_AKɰ´´ôÚµkÎÎÎò¿#2zôè&ñàà`:Z—Ž<ÏÛÛ;33³sçÎò=^íéܼyóƒä—RŠÏ燅… >\,:tˆmúTWÁU*zJ[[›ûõòäÉòòrºd›™Y³fM›6-""bùòåJCÕ‰'~ûí·ãÇŠŠ211IKK{þü9»¦÷š5kV¯^½jÕªiÓ¦ ‚E‹Ñ•/†ÉÊÊ*,,œ={¶ôœ IšžÖýÂr<ðZ/Ç#íÖ­[t¢+]އ*(( ²°°°°° :wî»IzÅœ&Sh× ].‡JLL$„Ü¿_"‘äææöïß¿}ûöï¼óNdddeeejjª™™Y`` ¤™åxØ©02ØXŠŠŠ†jiiÙ¡C__ßcÇŽIgïÔ©Sƒ¦ÂŒ÷îÝK.ÇÓäê6tv…‚åxž={¶eË–~ýú™™™ikk[XX 6,//¯¹æà²Ò¶P°D"¹{÷îäÉ“íììtuummm#""Øv¸·‚Ò¥;çææ8ÐØØ¸K—.±±±/^¼hòÚPÜR,™q·Ò›+,!ÄÌÌŒM¡?çøÉ'ŸHï&½X,722òôô¤Y;v¬ôÎ&LMžÎÞÞ~À€+W®´³³³¶¶ž5kV||<Ç{»ª¥S©±$ÉĉMLLØ—¯:^åÚµkÒ‰ëÖ­377§Á1—¢UUUM:ÕÑÑQ  >¼¨¨ˆÝD?\)))låoß¾½wïÞ:t ¿UÝÜ A­ËñpÇH0h µ‰D¢ëׯsÜ™aé`0ŒãÐÜ5À0 Ñ`ó2¸ºšUQQѱcÇ–÷›‚4¡Pèîî®ÁYÖT©mlld†ô½âpý«ôÅ­ö[Þ xT @èÒÇo'\ÿÀG€—‹iù!4#À˃'ÅðV ¦¿z÷VùôÓO¹L÷xM!p€6±iÓ&MgAæÍ›§é,´!¬ãøJbÂà‰&¼Z8'€ޝ†! ‘Hð´^)˜ój‘s+;bB.hÇWËÿür ûíƒШ·"p¬©©Ù½{wzzú½{÷ œœ&Ož<`Ào;vìåË—eÁéÓ§Û4«ÿ ÙH‘ö8"j€WÀ›8644Lœ8ñÂ… ÆÆÆýúõ{ñâŹsçòóógΜÕÜ»ÊËËõõõe–®511yyùfcGDðjxóÇ={ö\¸p¡Gß|ó¾¾>!¤¬¬l„ _}õÕ AƒœåßR]]ýäÉ“ààà””MgàUñæÏªþõ×_ !‹-¢Q#!ÄÑÑqÚ´iÍ=w.//'„hä—²"5!†v:bnõ„Ñ4MW¼ÞÞüÀñöíÛݺu“Nttt$„ܽ{·É·Ü¹s‡bgg÷òs+!RϦ5¾‘èZKù¯y à >\~Óš5k†¹xñ¢¦+Ž…ÂQ£FÑ¿½½½=<nܸï¿ÿþéÓ§môHW„ÕÓÓk£r©Ô ´÷¨µ:‰.\hiiYTTdllL‰‹‹ëÚµkBBB ÇV¬BˆŽŽN “•••””$ÿÄL b±X"‘´°þ†‰‰‰ ÊÉÉñõõUé½6l¸yófZZÚG}D™5kV=æÌ™“-¿3ý7ϲeË^©óÈ­¿µ¡ä[t?wîÜðáÃW¬X!¾ùæ›!C†4·gZZÚ… ب‘Ò¿ÿ>ø ¦¦æøñãš.@[7nÜ!C¾üòËóçÏ+Ø­°°pÈ!–––:u2dí3£„BaLLÌùóçÝÜÜèСP8kÖ¬¹sçéééõéÓçðáà .tvv622òóó»zõ*{„äädWWWSSÓ>}úüðÃMæÁÏÏöU<{öLñ À’’’Ñ£GÛÚÚš››8qBú8§N 055íÚµëܹséW~ë¢1SII‰Lúš5k.]ºÔÂ𢹶˜4i}¢âåå% åßXSS“˜˜èììÜ®];;;»ÈÈÈû÷ïsi•”^_~ù¥‰‰‰ŽŽN÷îÝ,XÐ\%+n)Vmmí•+W† F£FBˆ··÷½{÷jjjdv;v¬¶¶öÓ§OéËÝ»w3 ãêêÊîË0Lqq1‘º¨&Mš4lØ0Bˆ¯¯¯tí>}:88X X[[úé§ÿüóO“9‰D2OBBB¯^½TjÙ|ðÁ‘‘‘666Š÷TÜX111[·n|>ßÚÚzúôéÒÙVõúohh „|ýõ×*•…²k×.+++ö[ÕÁÁaìØ±¹¹¹þù§üÎ4p|÷ÝwU= ¼$’·@mmmbb¢H$rssûâ‹/ž?®ÆArrrœœœ-Z¤tO'''î‡%„H¤þûO‹Hÿ^CÍ]´589¦¹ /]º”róæÍÛ·o·k×ÎÃã¡¡nZ½z5!äÂ… ôeFFŸÏ·±±™={vLLLçÎù|~FFÝjoo?fÌSSS¡PøñÇÓSSS33³eË–­\¹R èééõïß¿wïÞÉÉÉÓ§OgÆÍ;}É’%„Aƒ%$$ÄÅÅÑÕ²<È|äÈ‘ôo___www‰DR__Ÿ&åÛo¿µ±±ÑÑÑ)--•H$ÇŽÓÓÓ …±±±óæÍsttäñx?ýô=ÈÏ?ÿÌãñÌÍͧOŸ>cÆ KKK'''BÈ®]»š«¢üü|ùMƒ&„°5öÇB&NœH_ÒVWWwúôéǯ©©Qzý˜˜˜ôìÙSén ÚâòåËŸþ9!dݺu¹¹¹ò`& `Ñ¢E#FŒàñx}úôáØ ÜÔÞÞÞÚÚš2dÈ… úùùB|||h˜tƒ*n)iõõõ%%%÷ïß—Nquuuuu•ß955•’™™I_Òµ{†ù믿hJ=,--i~Ø‹êòåË „µk×ÒÚ³··wrr266ŽŽŽ^·nW@¯pyööö^^^Ò)'NTéÛV,¿÷Þ{]ºtyö왽½}ß¾}›ÛSic¹¸¸èèèDEE}ñÅ´»$22’nUéú§è !}}ýªª*îÅyòä Ã0Ò‰?þø#!dß¾}òûGGGëêê>zôhÏž=[¶lÉËË«­­å~:õ¨ôÅ­ö[Þ o~hÒØØ8cÆ ''§éÓ§?xð@éþb±¸¡¡¡±±Q&=//ÏÉÉiõêÕJ€À^ßÀQ"‘¬Y³†’œœL7I޵µµB¡ÐÞÞ¾²²’n­¬¬´³³spp wv:‡#!!ýÙÛÛ³aœD"¡ãüÜÜÜêêêhŠ——!¤ººZ"‘888899Õ××ÓMUUU|>úôéì¡äGË–-#„¤¦¦ÒÜ:::zxx°ÿV|ñâE¿~ý^¼xagggeeuïÞ=ºµ¢¢‚DQ8*Ð\à(‘H~øá‡wÞy‡î¦§§7hР•+WþñÇÍ5—ÀQi[ddd4é>}ú”ÇãIçpÊ”) ¢¢‚K+poPz=¬\¹’=Ñܹs !4"dTqK)¨„íÛ·ÇÇÇ{zzš™™eeeÉïpïÞ=BHll,}Ù½{w:ÇœÆ+UUUZZZ“'O–¿¨:DÉÉÉaKM9pà}ÙÐÐàììlgg×d®Z8®Y³FWW·¸¸˜MA਴±!éééô¥X,îÞ½» ­a•®‰Dòøñc]]ÝI“&iiimÛ¶{qnܸA‰‰‰‘N¤ï¶nÝ*¿pp°¾¾~‡Ø—³³óùó繟Q ¹{óÇ8îØ±ãØ±cô_fJݹs'00°wïÞ;vìN§Ï2ÞÚ1 ðöøì³ÏvîÜ?fÌ™•ŠŠŠnß¾’’ÂŽ´»ëâÅ‹ôaœ••ÕâÅ‹¥‡¾õîÝ»K—.ôoÚç®­­MSüýýóóóŸ?nhhXXX¨§§Çêzôè!äùóçs~àÀ%K–LŸ>}Ê”)„âââ²²²ü‘]ÃUWW7:::""¢¨¨¨¡¡áÎ;III´KŒæ|æÌ™ ,Ppа°0ùG‡{öì¡‹¿6'"""""âÒ¥KÙÙÙÙÙÙ¹¹¹ÙÙÙ‹/^²d íT—¶hŽ––]ZèÎ;tݱÔÔTÚ9GQÚ Ü”æjΜ9ì{—,Y²yóæ={ö„……±‰Š[JAY–/_Nk4¹€šµµµ««+H÷øñã’’’o¾ù&:::77wÔ¨Qyyyb±XÁ°%iNNNï¿ÿ>ý›Çã¹»»gee©Új ‡nnëˆ#hý/^¼8))ÉÝÝ]é•6–ƒƒÃ˜1cèß ÃxxxÛ¶mýû÷Ÿ9sæþýû¥7•••BdÖ¥¢#ÆÊÊÊè¼H$’™0!= †ò)T‡ ²²²®]»VVVvåÊ:¦Š‹«W¯~ðÁ^^^ì>]»vü7h“Ù¹¼¼œŽ{ëÑ£‡tºÒµ!g̘!ÿ3÷.\P8²åêê:{ö캺ºÄÄÄ,Y²¤oß¾ï½÷žÍÄ¥-𣝝Ÿ’’2gΡPØ­[·þýû :”¸TÚ Ü”Ò­[7éqœ"‘è÷ß—ÞGqK)(KYYÙóçÏÏœ9Ù·oßÒÒRsss™}èDàÇÓÎW//¯ÜÜ\BHNNŸÏ§# ”¢qYŠ'šÈ,%#‹éÏž=kn5BˆD"©®®˜9s&—\)m,™l³ŸMÚ ¨Òõ¿}ûv‘Häêê:nܸ3fܸqƒ\i¡èå!3$´ººšbjj*ÿ–œœ===vÓäÉ“_¼x•žžNÿMšõ†Ž•••ôW§›\>`Ô¨Q&L „äææÆÄÄ8::ÒÇŸþù”)S/^üÓO?988üûßÿ¾páB»víV­ZÅþƒà Ö·oßiÓ¦mÞ¼ùÀÒ鉄"ó 4ô´¾¾ž¾Tû'ÝkkkG™™Ù«W¯÷Þ{ïý÷ßïׯŸ§§'—÷>~üxĈÆÆÆééélàB㕤¤$ù°»vízêÔ)ù²´ú¤ï§OŸNš4é½÷Þc»ghÆÆסC‡€€€Ã‡«8ri ¢¢¢ÆŒsèС“'OfffnÛ¶M$åææš˜˜¨Ý ñùügÏžI§(n)ÅGk×®¿¿ÿêÕ«ÃÂÂ222>þøc™‚‚‚Ö¬Y“››[PP`kkkkkëççWUU•““ãååűK¥ùéµµµÒ/ÙY;ÆÆÆ…+¬mݺõÖ­[#GŽdozòäIccãš5klmmÃÃÃe΢´±šË6í¤ä~ý—••={–v3fæÌ™Û·o_±b—BYXXhiiÉ¬Âø×_BØþNiòK—ÐÏ]€4î é—ššù)„þýû7ù®.]ºìß¿ýúõgΜ)++ëܹóÈ‘#gΜiee¥é¼$«V­Ú¿ÿŒ3èòýɥ˗/8M¼téiQùùù™™™)))³fÍb¹ô8666†……Ý»w///OºÃ‰æÖÐÐPúAÁÕ«W/_¾lbbBçlþöÛoÒ ‹\¸p¡u«ÑÀÀàèÑ£wïÞ•)Ú Ó®];õŽÜ’¶xôèÑÍ›7œœ"#####Åbñ¦M›¢££·lÙâåå¥^+4çêÕ«õõõl4_SSSZZ*³˜‹â–’9àáÇG޹sçÎÐÐP6‘އk2|0`€‘‘Qvvvaa¡!Ä××W,ÿòË/ÅÅÅto«“þY B;wXéS]:¯yÆ Òé?^°`¯¯¯Là¨öG†üwÎ2÷ëûöí„Zç–––>>>ßÿýòå˵´´”ŠÏçwíÚ5//O:ýÔ©S Ãȯ¯~çÎC‡ 4ˆNô¡h÷¤F~Î š éA–o LŽ×zr k×®]ä¿=ˆtrÌ‹/lmmþþûoºÏ£Gìíííìì^¼x!ùßù+”L ýf¢“W¨ÄÄDBÈýû÷ÓÒÒ!Ge7íÝ»—òÑGÉJzB·}ûv™BÕ×׋D"GGÇÇÓ”'OžØÚÚZYY544ÔÕÕ988têԉΑH$>¤ã[wVõ'Ÿ|BY¾|¹ô<§OŸ¾ÿþût ¡ü¹LŽQÚ &ÇÐ¥%¥×ˆ¸|ù2!dÅŠ*µ‚â•üwrÆš5kØ­qqq„ï¾ûNúPŠ[J&ó•••|>?00N…¦è3î‹/6YW£Fzçw´µµé”ކ†CCC:L³¤¤„ÝM~rLvv6[ê±cÇJs„  ÉÓÑRÿòË/ôåï¿ÿN—ê”H$UUUª~+˜£jcI$’‰'š˜˜H$•®±Xlkkëââ¦lÚ´‰rìØ1Ž…¢KòuòàÁ ‹÷Þ{O¾P<ÐÓÓóööf§[Ñòùü+W®HÚ &Çp÷†÷8€ÚBCCÓÒÒ~ýõW6EWW799944ÔÓÓ3$$D"‘ìÞ½»¢¢bïÞ½ººº-<ŸŸŸÁÔ©SÇomm}æÌ™ììl33³üüü#GŽ7ù®Ã‡¯_¿ÞÍÍÇãI¯`çìììéé™’’2bÄ77·úúúŒŒŒ»wïîÚµ‹þ¸ÜºuëBBB<<?,,løðáb±øÐ¡Cl‹(}ª«õ>2”¶¶6÷ëÿäÉ“åååtÉjôèѳfÍš6mZDDÄòåË•jâĉß~ûíøñ㣢¢LLLÒÒÒž?N×<"„¬Y³fõêÕ«V­š6mš¹¹yBBÂüù󃃃MLLŽ=Z\\¼råJ¥ãà%ÑtäúB#¼=މäÖ­[t\/»Ž£D")(( ²°°°°° :w%=މ$77·ÿþíÛ·çw"##+++SSSÍÌÌ%Íô8²Sad°+° :ÔÒÒ²C‡¾¾¾´„uêÔ©ÁƒÓÆÆÆ´Ã¦u{%ɳg϶lÙÒ¯_?333mmm ‹aÆååå5××qTÜ z%ÉÝ»w'Ožlgg§««kkkÁ®°Ã½”6(Ý977wàÀÆÆÆ]ºt‰¥¢ò‡RÜRÒÄbñöíÛ{÷îÝ¡C‡Ž;zyy)Xz–bffƦПsüä“O¤w“îq‹ÅáááFFFžžžÕ{ °råJ;;;kkëY³fÅÇÇ«ým«x9•K"ÕãHq¼þéx•k×®I'®[·ÎÜÜœÇ\ RUU5uêTGGG@0|øð¢¢"výp¥¤¤°)ééé½{÷nß¾½@ 4hБ#GÔ«=îÐãÈ#ÁO!·6‘HÄý'†‘n†Óa˜ÿüD5û¼Vš»Í6(ƒÏ{³***:vìØò~S& ÝÝÝeææ¿ñ„B¡Ì¾W®•¾¸Õ~Ë›ª_=^:.¿Að¦ÂõÜ!px¹þwý €×G€—OŠá­L§¿U>ýôS™_Ix“ p€6AmyÛÌ›7OÓYhC­ü3 ð¦Bàœ pN8'_mt1p€WGà#p‚À8Aàœ pN8IHH`þ—±±q¯^½RSSÅbq“ûhiiuéÒåƒ>8{ö¬âC±ÂÃÛ<{bb¢@ èÞ½»¦«¡u…ÂQ£Fi:ÿÇÛÛÛÃ㹬Ž7îÕÉýöÛo ÃìÞ½[ÓyE5W?b±ØÑÑÑÖÖvÕªUšÎ#¼$^m¼6SXXXlllllìœ9s†þûï¿O:uþüùMîeiiùóÏ?8pëÖ­ÍJÚ°aÃäOzõêÕøøxgg縸8M×ï+ÄÇÇ'!!¡UÅãñx<ýûüùó£FºråÊË,‹ÌI¥óÓvgy5qiÖ'OžL›6ÍÖÖ¶}ûö>>>2ÿ0S¼õ嫪ªrww·´´Œ‹‹ûá‡Ô;ˆz…j²2KKKGݹsgkkëqãÆh¶~ÞLhmNNNÜw&„H¤þûÏK¹4]&PJ×€ ÚìJXºt)!$??_:ñþýûVVV<ïþýûÍíSZZ*‰†¹|ù²‚C)pàÀBÈñãÇÛ¨h/Ÿ½½ýÈ‘#[r„¢¢"--­¥K—¶zÞ:DÉÉÉa³:vìØ¶®™“¾šg9þWª±±±±±±µNÝÐÐpìØ±¥K—rÏÛA¥jùy«««Sûí*5ë† nÞ¼¹mÛ¶~øaãÆyyy ÃÌ™3‡ËVõˆÅâ–_à ÃÄÄÄ\¼x1''GÕ÷ªT(•)‘H¦L™bll|ñâÅäääuëÖ]¾|ÙÒÒrîܹ-,È@àÍ¢Q]}}½‚}zöì9`À€}ûö544¨züI“&9’âåå% ibaaá!C,--;uê4dÈÂÂBv¡Psþüy777777ùÖÔÔ$&&:;;·k×ÎÎÎ.22òþýûìÖäädWWWSSÓ>}úH?Y …³fÍš;w®‘‘‘žž^Ÿ>}>ÜÐаpáBggg###??¿«W¯JgãË/¿411ÑÑÑéÞ½û‚ š‹-JJJFmkkknntâĉæjãÑ£G •••ŠëmìØ±ÚÚÚOŸ>¥/wïÞÍ0Œ««+»Cll,Ã0ÅÅÅ„???:¦pÒ¤It´€¯¯/[Û„Ó§O kkëO?ýôŸþiî¼ ÊÒ\ÍËŸ”ͪծ ›,šâš?uêT@@€©©i×®]çΫ 4‰DþþþÒ) ½zõ"ÜpoVBÈ®]»¬¬¬>üðCúÒÁÁaìØ±¹¹¹þù§Ò­ò_ð111[·n|>ßÚÚzúôéÒMϽ~(úñÿúë¯9V Ç"s¯ÌÛ·o—••M™2Å‚¦˜˜˜ÄÄÄ]ºtIÕ\"šîò|áQ5´É# z´ÍÅÐäóå‡vêÔIKK«¢¢B¢ðtTT!äÖ­[U_¾|ùóÏ?'„¬[·.77W"‘dddðù|›Ù³gÇÄÄtîÜ™ÏçgddÐýíííÇŒcjj* ?þøcùFDD0 °hÑ¢#Fðx¼>}úÐMK–,!„ 4(!!!..ÎÙÙ™rðàAöȦ¦¦fffË–-[¹r¥@ ÐÓÓëß¿ïÞ½“““§OŸÎ0 û$ÎÞÞÞÚÚš2dÈ… úùùB|||Äb±äU;vLOOO(ÆÆÆÎ›7ÏÑÑ‘ÇãýôÓOŠ«åÚµk„Ï4SSS !™™™ÒõÏ0Ì_ýESzôèaiiIóãëëëîîNk›Ž [»v-­m{{{'''ccãèèèuëÖy{{Bš¬X¥ei®æåOÊæGÕjWЂògQœÛŸþ™Çã™››OŸ>}ÆŒ–––NNN¤™G±ööö^^^Ò)'NTãÛSi³>yò„a˜ˆˆéÄü‘²oß>Å[å¦ô‚wqqÑÑÑ‰ŠŠúâ‹/† B‰ŒŒT£~(:ËJ__¿ªªŠ{¨Z(•I;;“““¥wûùçŸ !ô©ˆbxTÍ"’Ö×’À±é°ãë¦un(Í]НµÐhoüøñ ,X°`Áüùó'NœØ±cGBÈÌ™3¥÷i2"\½z5!„Ž%¢»É“ùêeedd°‡­­­ …ööö•••tkee¥ƒƒCmm­D"±··'„$$$466ÊêéÓ§<oâĉlÊ”)S |œœœêëë馪ª*>Ÿ?}útúÒÞÞ^GG§´´”¾\»v-!ÄÍÍ­®®Ž¦xyyBª««Ùl¬\¹’=}Fã6p¬­­uttôððxþü9ÝíÅ‹ýúõspphhhPÐJ#Œ{÷îBbccéËîÝ»Ó9éô»¶ªªJKKkòäÉt«t &?Æ‘ràÀú²¡¡ÁÙÙÙÎÎNþŒŠË¢¸æeN*8r¯vÅ-(}Ź}ñâ…••Õ½{÷èÖŠŠŠN:iMÑÕÕŽŽŽˆˆ(**âþ¬Sžµµµ««kvv6!äñãÇ%%%ß|óMtttnnî¨Q£òòòÄb1íCRÊÉÉéý÷ß§óxÜÜÖ#F¨t4Z###éDcccZXÅ[妴ºÆŒCÿfÆÃÃãàÁƒ„¢¢"Uëg×®]µµµ³gϾuëVZZÚÔ©S9Öª…RÀÂÂb̘1ééékÖ¬¡ÿjÚ¾}ûæÍ› !ÕÕÕ* Càðr©1»¥¹·¨z(ef~~þ€Ô(ÓÝ»w !lÊŒ3Ô8TYY!Dfð"ºWVVF#-‘HÔdÔHÑ××OII™3gŽP(ìÖ­[ÿþýƒ‚‚†ª££CéСCAAAVVÖµk×ÊÊÊ®\¹"3(“V !4p‘OauëÖ–200‰D¿ÿþ»ô>´S$"""""B&«ååå-  !ÁÁÁIII?¦µþþþ^^^¹¹¹„œœ>Ÿ?xð`.Ç¡ YÍ-”£´, j^1îÕ®´9æ–Ž íÑ£‡tºâ¥%e¦°Ó2ž={Fé6I¢â?íhÁeƘҠÇÔÔTñVù£)­.™¦g?V´P¥úÙ¾}»H$ruu7nÜŒ3nܸA®´~T-”b›7o®ªª¢Mh ÄÇÇ/]ºÔÄÄDÕC^.5º e:Û ¯±….^¼H&¶¸n$D®ÿ’†2ìÅßQQQcÆŒ9tèÐÉ“'333·mÛ&‰rssMLLF™™Ù«W¯÷Þ{ïý÷ßïׯŸ§§g+VŸÏöì™t ›’’’ä×6ïÚµk O´fÍšÜÜÜ‚‚[[[[[[??¿¸¸¸ªªªœœ///Úm£ÇùìJËÒ\ͳ3Z¨¶¶–{ *Îí©S§ˆÜeÖÜ¿FسK¿¬©©¡«*`aa¡¥¥%3í㯿þ"„X[[+ÞªFu5×ô´“’{ý”••={–V3fÌÌ™3·oß¾bÅ .õ£R¡”233ËÊÊ:{öìÅ‹-,,¼¼¼h[ÛÚÚ¶VAàð:¡!#]”畉‹ŠŠòòòBBB؇bjstt$„\¾|yàÀl")‰”¾ýÑ£G7oÞtrrŠŒŒŒŒŒ‹Å›6mŠŽŽÞ²e‹——WfffJJʬY³ØýÕ˜κzõj}}=ÛVSSSZZêëë+_CCÃÀÀ@é7^¾|¹å]  022ÊÎÎ.,,ôññ!„øúúŠÅâ_~ù¥¸¸˜Ž:mEŠË¢ æé–ËÏÏçÞ‚Šsûî»ïB~ûí7éöºpá‚‚³WTTH¿d'ü¶î£j>Ÿßµk×¼¼<éÄS§N1 Ó­[7Å[[R]2T­ŸíÛ·BBCC !–––>>>ßÿýòå˵´´”ÖJ…RêâÅ‹FFFýúõëׯM9qâÃ0ýû÷WõP –ãy¼ÜÕûàUÄ0ÿ·Žã«t1”••M˜0a˜øøø–ÍÓÓÓÖÖ699ùñãÇ4åï¿ÿÞ°aƒ—©»~ýzß¾}ׯ_O_jiiÑo>mmm:›„N,¥ÒÓÓŸ={¦vwQeeerr2û211±ººZæ—ÝÝÝE"Ñúõ뫪ªhJuuupppLLL»víZXWÚÚÚþþþ™™™EEE4pìÙ³§¡¡áÊ•+•pTcÅDÅeQPó-9©4Ž-HÏ¢8·žžž6l`ã¿ÊÊÊ7*8ûýû÷éäBÈ­[·Ø(Š>ŠmŽÅœ:uêüÁžëáÇééét!Å[Õ¨®&©T?‰dÇŽ...l'zHHȽ{÷èâG\ê‡{¡”úä“O\]]Ù(¿´´tçÎC‡¥3{ µ ÇàÕFÃDövÏÎŒÑÍ›7Ó[|mmmIIIAAA]]ݦM›\\\Z~p]]ÝäääÐÐPOOωD²{÷îŠŠŠ½{÷êêê*}{Ïž=]\\V¯^}ëÖ-—ëׯ9rÄÔÔ4<<œÇãL:uüøñÖÖÖgΜÉÎÎ633ËÏÏ?räHpp°ªYµ²²Š/((pss;sæLVVV¿~ýصè(>ŸŸ’’2bÄ77·úúúŒŒŒ»wïîÚµ«U~s/88xÿþý„8òx|¸Ìï)Þ*M¥ ^"‘Lœ8ÑÄÄDÕúùè£!×®]“N\·n¹¹9³¹ÔŒ‚BÉׂʔH$ÇŽ£¥¶µµŒŒdW6U ËñpÇH^™‘Ro ‘HtýúuŽ;3 #ÛM¶È«4¦ ”Ré€×ŽP(tww§½}𺫨¨èر£‚.m¡Phcc#3ïí¡´~Þ jÜ´ßÚû<UÀÛ àCý€ LŽNÐã šàà`.?„o†O?ýTæ§MÞfT³iÓ&Mg^žyóæi: ¯<ªN8¾&°8hGà#p‚À8Aàœ pN8¾Z0q^Y€ޝ,å…ÀHBBó¿Œ{õꕚš*‹›ÜGKK«K—.|ðÁÙ³gŠÞäÙA÷îÝ5] ­C(Ž5JÓ¹ø?ÞÞÞÍeuܸq¯N~4è·ß~cf÷îÝšÎÈ+ª¹ú‹ÅŽŽŽ¶¶¶«V­Òtá%AàðŠbÃå¿VŠ§ßˆêª9‡"„äää°Y;vl[WˆÌI_ͳœ?ž²k×®¶ËaQQ‘––ÖÒ¥KìóäÉ“wß}WGG'""bæÌ™:u266.**â²µM)®±Xèææ¦Æ‘>Lqppˆ‰‰‰‹‹srr"„|ýõ×Jß8oÞ}ú>|¸¡¡aáÂ…ÎÎÎFFF~~~W¯^•ÎÆ—_~ibb¢££Ó½{÷ 4[”””Œ=ÚÖÖÖÜÜ<((èĉÍÕFvv¶O¯^½Ø”3fBΜ9#³çرcµµµŸ>}J_îÞ½›aWWWv‡ØØX†aŠ‹‹ !~~~tLá¤I“èh___¶¶ !§OŸÖÖÖŸ~úé?ÿüÓ\”¥¹š—?)›U«]A 6Y4Å5êÔ©€€SSÓ®]»Î;WAh(‰üýý¥S¤›I±G&$$TVV*Ýy×®]VVV~ø!}éàà0vìØÜÜÜ?ÿüSéVyŠ/ø˜˜˜­[· >Ÿomm=}úté¦ç^?ýøýõ׫…ª­­½råʰaÃŒiŠ··÷½{÷jjjš{׃>øàƒÈÈH› Ô¡é.Ï7UÛñ¨úáÇ:uÒÒÒª¨¨(|E¹uë–DÅGÕ—/_þüóÏ !ëÖ­ËÍÍ•H$|>߯ÆföìÙ111;wæóùt{{û1cÆ˜šš …Â?þXþ€ Ã,Z´hĈ<¯OŸ>tÓ’%K!ƒ JHHˆ‹‹svv&„‰³···¶¶&„ 2dáÂ…~~~„±X,ùßGÕÇŽÓÓÓ …±±±óæÍsttäñx?ýô“|Îëëë,Xžž.HGh­\¹RfçÔÔTBHff¦tý3 ó×_Ñ”=zXZZÒüøúúº»»ÓÚ¦½/k×®¥µmooïäädll½nÝ:oooBH“«´,ÍÕ¼üIÙü¨Zí ZPþ,ŠsûóÏ?óxÖlòQ¬½½½———tÊĉÕøö¼ví!DÁ£ê'Ož0 !øã?BöíÛ§x«üÑ”^ð...:::QQQ_|ñÅ!C!‘‘‘jÔEgYéëëWUUq¯“úúú’’:†Mquuuuumî-b±ø½÷Þëҥ˳gÏìííÙGÕjJUs‡@¤õ!p„×4p?~ü‚ ,X0þü‰'vìØ‘2sæLé}šŒW¯^M9qâ»›<™¯^VFF{ØÚÚZ¡Phoo_YYI·VVVÚÙÙ988ÔÖÖJ${{{BHBBBcc£ü¡ž>}Êãñ&NœÈ¦L™2E ÐÀ×ÁÁÁÉÉ©¾¾žnªªªâóùÓ§O§/íííuttJKKé˵k×BÜÜÜêêêhŠ——!¤ººšÍ†t<7wî\BKØÀ±¶¶ÖÑÑÑÃÃãùóçt·/^ôë×ÏÁÁ¡¡¡Ai£3ŠË¢¸æeN*8r¯vÅ-(}Ź}ñâ…••Õ½{÷èÖŠŠŠN:iþøã›7onÞ¼ÙÑÑQf«µµµ««kvv6!äñãÇ%%%ß|óMtttnnî¨Q£òòòÄb1íCRÊÉÉéý÷ß§óxcÆŒ_~ùÅÑÑñøñムjr·ààत¤ÇÓÎZ//¯ÜÜ\BHNNŸÏ/ÁÅ‹éÀÄ–ÖDBäú/i(ÃNÐ111Qp„¨¨¨1cÆ:tèäÉ“™™™Û¶m‰D¹¹¹&&&£GÎÌÌìÕ«×{ï½÷þûï÷ë×ÏÓÓ³+Ïç?{öL:…†MIIIòk›wíڵɃüôÓOŸ|òIûöí·nÝ:yòd™I£Ò‚‚‚Ö¬Y“››[PP`kkkkkëççWUU•““ãååÅNPŒã|v¥ei®æ-,,Z¥zkkk¹· âÜž:uŠÈ]fÍýk„=»ôKv²…±±±ªÑ¡ZZZ2shþúë/Bˆµµµâ­jTWsMO¯:îõSVVvöìY:Xy̘13gÎܾ}ûŠ+Ô¨ŸvíÚùûû¯^½:,,,##ãã?–ÞºuëÖ[·n9’i „÷TœÛwß}—òÛo¿I·×… œ½¢¢Bú%;‹¹uUóùü®]»æååI'ž:uŠa˜nݺ)ÞÚ’ê’¡jýlß¾J±´´ôññùþûï—/_®¥¥¥´~>ŠmŽÅœ:uêüÁžëáÇééét!Å[Õ¨®&©T?‰dÇŽ...l'zHHȽ{÷èâGJë§OŸ>„ï¾ûN:c4•ùIBÈ¢E‹dfi°“cNž<©Ò¡ %Ðã*ؼy3ýÞª­­-)))((¨««Û´i“‹‹KË®««›œœêéé"‘HvïÞ]QQ±wï^]]]¥oïÙ³§‹‹ËêÕ«oݺåâârýúõ#GŽ˜šš†‡‡óx<ƒ©S§Ž?ÞÚÚúÌ™3ÙÙÙfffùùùGŽ V5«VVVñññnnngΜÉÊÊêׯ»ÀÅçóSRRFŒáææR__Ÿ‘‘q÷îÝ]»vÉ%,--½víš³³sdd¤Ì¦Ñ£G>\>ÁÁÁt½8òx?,,løðáb±øÐ¡CìÕØòGÕkÖ¬Y½zõªU«¦M›F™8qâ·ß~;~üø¨¨(“´´´çÏŸ³KX+ÞªRu)È’¶¶6÷ú9yòdyyù²eËØ”Ñ£GÏš5kÚ´iË—/W\?`Ñ¢Et]ÌÀÀ@†a²²² gÏžM7ËÔOK­FÓÓºß@m¸+ò¼^Óåx/¾(³ÎÃ0NNNªJšôr"„\»vM:qݺuæææ4ÎVZ-b±xûöí½{÷îСýié³È×LÓH/Ç£øPŠa9î žý·6‘HtýúuŽ;3 #ÝŒÒјUý:PéhÇéÒ¯Â䘷P(tww§½}𺫨¨èر£‚.m¡Phcc#3¸ðí¡´~Þ jÜ´[å>ÿ:£j€W"B€—€.m ÍAý€ LŽNÐãøºÁàšÌå‡pàÍðé§Ÿr™çð–@à šM›6i: ðòÌ›7OÓYx…àQ5p‚À8Aàœ pN8'€ޝ!º”#ÀË…À8ÁàM«©©Ù½{wzzú½{÷ œœ&Ož<`ÀMç @c86¡¡¡aâĉ.\066îׯߋ/Î;—ŸŸ?sæÌ¨¨(Mç@3𨺠{öì¹páB=rss7oÞüÝwßíß¿ßÄÄ䫯¾*--ÕtîZ_BBó¿Œ{õꕚš*‹›ÜGKK«K—.^ ‹úJ[IDAT|ðÁÙ³gŠÞäÙA÷îÝ5] ­C(Ž5JÓ¹ø?ÞÞÞÍeuܸq¯N~4è·ß~cf÷îÝšÎÈ+ª¹ú‹ÅŽŽŽ¶¶¶«V­Òtá%AàØ„_ý•²hÑ"}}}šâèè8mÚ´ÆÆÆÓ§Ok:wm%,,,66666vΜ9Çÿý÷ß§N:þü&÷‰ŠŠ²´´üù矸uëÖæ%mذaò'½zõj||¼³³s\\œ¦+@óNž<éççgnnÞ±cG//¯ýû÷·ü˜<Çãѿϟ??jÔ¨+W®¼ÌBÉœT:?mw–WŠzÍêãã“ R__Ïçóeþ=fff¦Á¢UUU¹»»[ZZÆÅÅýðÃ-<š|‘å=yòdÚ´i¶¶¶íÛ·÷ññ‘þ‡ë+X?o$<ªnÂíÛ· ºuë&èèèH¹{÷®¦so/†I[ÆŒÒy×®]9rä§Ÿ~:`À—æ¥ÀÍ›7 !K—.õ÷÷™•ù ÊÌÌ:t¨ƒƒÃ„ ôõõÓÓÓGýõ×_GFF¶ä°999ìß<ÈÈȘ={öË,—ÌI¥óÓvgyu¨×¬ÅÅŧOŸ–ùPܾ}»±±±ÿþlbûöí5X:SSÓ½{÷J$’ààत¤ñãÇ«}¨&‹,£ºººgÏžåååcÇŽéééAAA'Ož¤}د`ý¼‘86aëÖ­|¾lÍÐÈvîÜYÓ¹ƒ·Û:v”faa–œœ\RRÂŽ2ºté²sçÎ^½z-_¾\½Ç|‰„¢§§÷²Š¥D]]ŸÏ×Òâô4¦±±‘ÒZýg .´´´,**266&„ÄÅÅuíÚ5!!¡…ãkA¥jùy#„èèè¨÷v•𵡡!;;»  `Ó¦Mì(ýWÖ²eËZñ_Yb±X"‘´ðf&&&&(((''Ç××W¥÷*.²Œ 6ܼy3--í£>"„Ìš5«GsæÌÉÎÎn£úy¯â§Tãºvíêää$röìÙmÛ¶éêêŽ9’ËDr4]&uШ®¾¾^Á>={ö0`À¾}ûT=þ¤I“ègÊËËK(ÒÄÂÂÂ!C†XZZvêÔiÈ!………ìþB¡0&&æüùónnnnnnò¬©©ILLtvvn×®]ddäýû÷Ù­ÉÉÉ®®®¦¦¦}úô‘~²& gÍš5wî\###==½>}ú>|¸¡¡aáÂ…ÎÎÎFFF~~~W¯^•ÎÆ—_~ibb¢££Ó½{÷ ÐðB^IIÉèÑ£mmmÍÍ̓‚‚Nœ8ÑänµµµW®\6l /!ÞÞÞ÷îÝ«©©‘ÙyìØ±ÚÚÚOŸ>¥/wïÞÍ0Œ««+»Cll,Ã0ÅÅÅ„???Ú3iÒ$:ZÀ××—­mBÈéÓ§ƒƒƒµµõ§Ÿ~úÏ?ÿ4×^ ÊÒ\ÍËŸ”ͪծ ›,šâš?uêT@@€©©i×®]çÎÛ\óBD"‘L ’ЫW/.W¸JÍJyôèQ```BBBee¥üV½ûî»\NM”]ð111[·n|>ßÚÚzúôéÒMϽ~(úñÿúë¯9æc‘eìÚµËÊÊêÃ?¤/ÆŽ›››û矪Q?*Á×úÿ‘€B Û·oïÖ­[—.]>Ìå-NNNÜO‘Hý§B‹ í^a*]\fþn-K—.%„äççK'>|ø°S§NZZZÍíCÑÕnݺ¥x7y—/_þüóÏ !ëÖ­ËÍÍ•H$|>߯ÆföìÙ111;wæóùt{{û1cÆ˜šš …Â?þXþ€ Ã,Z´hĈ<¯OŸ>tÓ’%K!ƒ JHHˆ‹‹svv&„>>´óÆÞÞ~äÈ‘tÏcÇŽééé …ÂØØØyóæ9::òx¼Ÿ~úI>çõõõ%%%÷ïß—Nquuuuu•ß955•’™™)]ÿ Ãüõ×_4¥G–––4?¾¾¾îîî´¶é²µk×ÒÚ¶··wrr266ŽŽŽ^·n··7!¤ÉŠUZ–æj^þ¤l~T­v-(ŹýùçŸy<ž¹¹ùôéÓg̘aiiI; víÚ%_p{{{///锉'r¼W«Ô¬Ò®]»FYºt©tbtt´®®î£GöìÙ³eË–¼¼¼ÚÚÚæŽ ô‚wqqÑÑÑ‰ŠŠúâ‹/† B‰ŒŒT£~(:ËJ__¿ªªŠKÍp,²´'Ož0 !øã?BöíÛ§jýÈPã¦Ýê÷ùׂEΞ=ìää4pàÀÓ§Os|GxMÇñãÇ/X°`Á‚óçÏŸ8qbÇŽ !3gΔާɈpõêÕ„'N°»É“ùêeedd°‡­­­ …ööö•••tkee¥ƒƒý°··'„$$$466ÊêéÓ§<oâĉlÊ”)S |œœœêëë馪ª*>Ÿ?}útúÒÞÞ^GG§´´”¾\»v-!ÄÍÍ­®®Ž¦xyyBª««Ùl¬\¹’=Ñܹs !4.aÇÚÚZGGGçÏŸÓÝ^¼xѯ_?‡††ͱ}ûöøøxOOO33³¬¬,ùîÝ»G‰¥/»wïNç¤Ó¯Ïªª*--­É“'Ó­ÒÚ¡C‡!999l© ! /œíììäϨ¸,Šk^æ¤2#÷jWÜ‚ÒgQœÛ/^ØÙÙYYYÝ»wn­¨¨èÔ©S[Ž*5«´&£¨àà`}}ý:°+ggçóçÏ7y¥Z»víüýýW¯^–‘‘ññÇËì´fÍšÜÜÜ‚‚[[[[[[??¿¸¸¸ªªªœœ///Ž],ç³+-Ks5ßÜ||UÕÖÖroAŹ=uê‘»ÌOè®­­•~ÉÎk166V)úQÚ¬ŠÑçÅÒÞ{ï=òßE?T­®æšžvRr¯Ÿ²²²³gÏÒÁÊcÆŒ™9sæöíÛW¬X¡Fý(faa¡¥¥%3‡æ¯¿þ"„ÐÎQîõ-ÀQ–D"Ù¹s§¡¡¡ÌºÇФ¢¢¢¼¼¼ùE¬TEWK½|ùòÀÙÄK—.B¸Ìa|ôèÑÍ›7œœ"#####Åbñ¦M›¢££·lÙâåå•™™™’’2kÖ,v5¦³®^½Z__Ïö‡ÕÔÔ”––Ê,DB‹chh(ýÆË—/ˇ¿‡9räÎ;CCCÙD:Z«É¯ÞeggúøøB|}}Åbñ/¿üR\\LG¶"ÅeQPó­õÏïüü|î-¨8·tÖío¿ý&Ý^.\PpöŠŠ é—t/áð(VÕfUàÎ;‡4hæBÑþ6ùß*U— Uëgûöí„Z@KKKŸï¿ÿ~ùòåZZZ­û¨šÏçwíÚ5//O:ñÔ©S ÃtëÖM¥ú–@à(«²²²¼¼\__¿É…LG5aÂMçÞ º_òšŽÍ)++›0aÃ0ñññ-?š§§§­­mrròøñãé—ëßÿ½aÃ;;;.?Rwýúõ,Z´(11‘¢¥¥E¿ù´µµéléo”ôôôgÏž©ÝRYY™œœŠUµYÐ××íի׉'hÅŠÅ⤤$>Ÿ ^u5I¥ú‘H$;vìpqqa;ÑCBB¦OŸ~âĉ€€€Ö}TM™:uê¬Y³Ø¶xøðazzz@@€P(|øð!÷ú–@à(‹~ÞjjjJJJä·öïß_ÓФ͛7Ó髵µµ%%%uuu›6m’þÙµéêê&''‡††zzz†„„H$’Ý»wWTTìÝ»WWWWéÛ{öìéââ²zõê[·n¹¸¸\¿~ýÈ‘#¦¦¦ááá<ÏÀÀ`êÔ©ãÇ·¶¶>sæLvv¶™™Y~~þ‘#G‚ƒƒUͪ••U|||AA››Û™3g²²²úõëÇ./Gñùü”””#F¸¹¹…„„Ô××gddܽ{w×®]òC Á¢E‹è ÃdeeΞ=[zFiÁÁÁôÇëh#ÇóööÎÌÌìܹ³Ì_±hµyóæHÏãQJqYÔ|KN*ÍÏÏOq ÊœEAny<ÞºuëBBB<<Ÿ6|øp±X|èÐ!öjTú(Vi³®Y³fõêÕ«V­š6mšâ077OHH˜?¾££#-ïÑ£G‹‹‹W®\)?òAiu)8‘¶¶6÷ú9yòdyyù²eËØ”Ñ£GÏš5kÚ´iË—/oá£j™ú™8qâ·ß~;~üø¨¨(“´´´çÏŸÓ•˜TªhMOë~a9h•e¸4pk]\_”Yg‡a''§ˆˆˆ‚‚U%Mz9ª   ((ÈÂÂÂÂÂ"((èܹsì&é%›t÷îÝÉ“'ÛÙÙéêêÚÚÚFDD°K½äææöïß¿}ûöï¼óNdddeeejjª™™Y`` ü‘i—Rjj*›BûÒè‚|tçÜÜÜwéÒ%66öÅ‹Mf²¨¨hèС–––:tðõõ=vìXs™‹ÅÛ·oïÝ»w‡è+X6–bffƦ$%%B>ùäéݤ—¿‹ÅáááFFFžžž4«cÇŽ•Þy„  ¹3*(‹‚š—9©Ìr<Ü«]q ÊœEiÍŸ:ujðàÁ´cÛØØxïÞ½¤ùåx °råJ;;;kkëY³fÑþu 7Š›•~^RRRdÞÕÜÚ4ééé½{÷nß¾½@ 4hБ#Gš;¯J¼D"™8q¢‰‰‰ªõCÁåÚµkÒ‰ëÖ­377§q6ÇZj®ÈòõSUU5uêTGGG@0|øð¢¢"õêG–ã᎑´ÞÀU D"Ñõë×9îÌ0Œt0*õÞ3 Aó½’TºšÃqÞ4®€—O(º»»ÓÞ>xÝUTTtìØQA—¶P(´±±‘Z÷öPZ?o5nÚ­rŸáQ5À+ !ÀK ?¤¡~@~«8A#€j‚ƒƒ¹ü¼>ýôS™_+x›!pPͦM›4xyØE—€àQ5p„À8Aàœ p|I$„á¸Ø@K!pN8'€ŽÀ h"‘HÓYheZßõë×5€Ö‡GÕÀ Gàãkk€ÀË‚À8Aàœ pN8'€ŽÀ Gà#p‚Àñõ‡5Àà¥@àœ pN8'€ŽÀ Gà#p‚ÀQÃ$­s,åm#p‚À8Aàœ pN8'€ŽÀ Gàã›k€@Càœ pN8'€ŽÀ Gà#p‚À8AàøÁàЖ8'5ŠA!¼68'€ŽÀ Gà#p‚ÀñÍ‚¥ Í pN8'€ŽÀ Gà#p‚À8Aàœ p|ã` ph€ŽÀ Gà„¯é ¼T·nÝ Þ³g›››â=ÇŽ{ùòe™D@púôiM@3Þ®ÀqÇŽ÷,//×××···—N411iÍÜ0 &²Àkä­«««oܸñË/¿ìÚµ‹ãþOž< NIIÑtÞ^oEà8|øðû÷ïsß¿¼¼œ"ÓÝð–{+Ç+VÔÖÖBvîÜYPP tÿ;wîBììì4q€WÈ[8zyyÑ?Nž<Ée8þùçŸ~øaiii»víºví:mÚ4¥Sj^tè¤D¢é|Àå­Uu÷î]BÈÆ…Ba¿~ýþý©©9~ü¸¦s ¹êÝ»7!äÆšÎ€f p”%‘HÅb±L:Ç#„j:ƒšÀQÖ;wºvíúÑGɤ“×kL~“ZGByöìÙíÛ·ïÝ»G±··ïÑ£GaaáÞ½{ÙŠ‹‹¿ýöÛN:j:³šYÕ„’››ãèèxèÐ!BÈçŸ>eʔŋÿôÓOÿþ÷¿/\¸Ð®]»U«Véëëk:³ªÀjŽÐzÐãØ„.]ºìß¿äÈ‘ýõ×Ñ£GŸ@‹aVõ›¥É^LLŽ€Ö€Ç7†9@ëAàœ pN8'ßtæ­#p‚À8Aàœ p| `˜#´ŽÀ Gà#p‚Àñí€aŽÐb€ŽÀ Gà„¯é @+`äÆ/J$"—D†È§pƒÀQÚ €“>fÁ@[À£jà#p‚À8Aàø6Á2àЀŽÀ Gàã[Ã@]€ŽÀ GàãÛÃ@-€ŽÀ Gàã[ Ã@u€ŽÀ GàãKÇ0D"Ñt&0ÌT†À8Aàœ pN8¾Å0ÌTÀ8Aàœ pN8'ßn˜œ!pN8'€Žo= sn8'€ŽÀ GÀ0Gà#p‚À8Aàør1 ‘H4 u pB†9€r€ŽÀ Gà#ü†9€B|MgàUÄ®1´„`š<¼-8ˆcا8æãr/ÞxT­Ä­[·D"ÑÅ‹5P„Hÿ§é ¼~8*±cÇMgá%Â0GhU7­ººúÆ¿üòË®]»4€WǦ >üþýûšÎÀ+cÓV¬XQ[[KÙ¹sgAA¦³š$=ƒ#àm†À±i^^^ô“'Oj:/Ð:äg@+žÍn•i"ÂGx;!pl"‘H&åúõëšÎ7t~ŒäM ŒÂÈD{ò)\¶ÒD„où¯õ·Ç6ñÚ„‰o¶ò¤ÃGxãÉ­¿µ¡$–ã7í8l£®A6|D o ô8ÂKñÃèÖ¢àáu«ü€ À«#Èy#†9¾œ¨‘Õ\ø¨4è­€×Èÿoïîc¤¨ï8Žÿ~ÖÅZÑ–={˜¶ÔB|mljl4¡Uj}‚“c´hc5­µMSL0Z5ÑÄ’ôbP“zH5QAŒ©!>¡¡>TZr€¥Z°…(´¶w¿þ1;3¿yÜß<ìÎþ_¹(7»;;3·wûÙïï‰àˆzʘ•P&‘Î÷, ÔÁ±ƒª_Æ«+·e¯ä¥N~ ÔÁµÒáêVÍ’ê# NU0V7Ǫ)OjtXcºy ¨©h<Í[ø<ŽaMÕRJ}“"ÅO$—˜m™•05ú)jäuÙÐRä{}ÝQqD4)«Rw¬DürªE)Qy•H²# ºŽˆP‘vêj¥F ÙPQGD°©Ë=J¦Š©Ñˆ@14QQß^šJduS£…é•Cp„Æ·Ø Stt¾mj4RÕJÒÊõaïUOÀ€îAp„—Ó6­”›#} ²Ý‡P£õÝCUÛµ.ÄG@ÉÚ¯±d-Ô•ÈŽžI¥ÞÉ6õ¢£ÓlMv”ƒc«dƒcê­ªˆ]‹Š#ôæi‹¯ïc!Õ¹4[ÊŒàˆ0¾!2Eë]hô¡ÙPZG„Ñ‹‹E·V¡dàô;°Â{ÒfkR& ŽME¥S ︖N=§2 ÍôŒtÁJÐÇ1µ˜ +.€ò`T5J-Ÿvjå~É¢ûk&?vÅhk@Ia¦èžŽ]Žì(‚c§T¶©·@…‹)+;¢#Œuª§£žÈI:fê‹àˆrq"ñ(ŠùhkòES5’ §c9ÐåP‚#ʈŠZKdG@çª";:Œ>ŽH¨ýCdœrc!kýU ÙÐIG”[ký•Ša.¤qÐG$×΢#H—èRpéíFG &h¶´Á©´g^jf‘mEpj…ìh‚#ÒÊ»èH¹1/¬j hÇ@&¾©Vµ´ÁMiæ½Éox5§5[sý-:³²£I($»Z¢#²É£§#‘¥ÝèïÈÁ¨?†ZrApDÁ(7vÙÁ™µg2päŽiz;¢m+;WåÆSBQz¤Æ¨jä!¿yyÃ7Ýfê¹6͇Z £âˆÂ]‘R %ܯl¨;R 8"'ôt¬²# )‚#ŠA¹± .H„àˆüPt¬ †ËÌQÊeÃ`‚QÕÈëKɤ ÈPk@KG æÌ³ Ù¦jtѤÌèïˆApDÞ"Sq µD!8¢£(7VC­¡ŽhŠŽµ@vø08m¦ ²¦ÜX9ÎpÃÉÏêàˆö`^žºpRcËPHyjàˆ@× âØ~]6¸XÙmÑÍh{—]„šs~ÀüH ËPqD¤fí0ÃÃíÇ*!$Ù± ¤·jÅB~¤ÐM¨8¢¤ó”‡r¿dö~$Ãä ‹NÚé"u(°Û3•²¬¥”Ír,HX# —€îApD»Hå‰Òj¥µºŽÈŽÐ%Ž£õ}ËRtN•±9W)j5ÅìîÐ ƒ82ð8V{´§¤è¾2$*D†Îß®•œ•kvİë{i‡$>2Φth¶€Ê©pܶmÛÊ•+§M›öØcsÌ1BˆåË—¯ZµêÎ;ïüùÏúƒ8pà‚ .¸çž{Š>ü6*Wj´(•hŒgvÜ騼K«È‡)=@UÔ¿ãÐÐÐèèè²eˬÔ(„¸å–[úúúÖ­[7::ú]»v !|寔 Jh…hKjLÝNvxRX±µ/m¡Býyœ{Ðý±¢èòUQÿà¸iÓ¦žžžsÏ=×Ù2f̘ùóçïß¿ÿ7Þ}Èðð°âÄO,úØÛ¥ŒµF‡RÊZPXCv´/{»Š8þðøèNYêóîrÎDE N̓£RjÇŽS¦L™2eо½Ñh!vïÞú(+8îÝ»wÑ¢EsæÌ9çœs®¹æš?ýéOEŸM>*ž¼‹e+™¬©ÇGbH…X£­‹> @œš÷q }”(ï½÷Þ“N:éŒ3Îxÿý÷Ÿþù 6üò—¿üÞ÷¾gò¼ýýýÍ5¢¿_±mÛ¶¢/†íL2ßµâ¼Ù1Íì󵿳‹Ž¥ì9#f”û¶Þõj>,„?~¼oû„ „}ÔÞ½{{{{o¼ñÆE‹Y[^~ùå¥K—Þ~ûígŸ}öôéÓ[>¯ËÔDZµFµìu§mÍ"^¥S¯%ÓÌ…3%#f”E°úÓµQ²æMÕ“&M’R:tÈ·ýã?vÝ1èÁܲe‹“…gžyæUW]uøðáçž{®ès2%ß¶ïM¸}ïñÖ\馇ôž²ÛvMûuQ¬Æèø/ýÎôz€²©yp;vl___°²xðàA!„3ÎÚÄܹs…ï½÷^ÑçdÄ7÷LÅjR6¿¼”v“%åÎéþX¬1eSóà(„˜6mÚþýû­¤èعs§uSðþJ©‘‘‘àL=cÆŒBLœ8±èJ¬B©QÏƒÍ ¡]k”ÊúV ë¿­:Äœµ²ÿ›|MU.d­è¥Gé~ªˆû*ú ¶êÏ;1‘‘^xÁÙ¢”Ú°aÃäÉ“gÏž¼ÿðððÀÀÀâÅ‹}Û7oÞ,ªÒ§Áž@»3^çÛN­´`×ࢵS+)e~}FNIj,Œ^z4oìä®þÁqáÂ…===÷ÝwŸÕ¯Q±råÊ}ûö]|ñÅGq„µå“O>Ù¹sçž={„3fÌ8í´Ó^{íµÕ«W;;Ù¼yóàààôéÓÏ?ÿü¢O(±¼‘ZÙQÙÇÖ÷ouÖ*l qƒd…ª·¥&½ E(€Â™¯îVaƒƒƒ+V¬8þøãçÍ›7<<¼qãÆÁÁAgšžµk×Þpà 3gÎ|ê©§„[·n½úê«÷íÛ7kÖ¬“O>ùý÷ßß²e˸qãî¿ÿþÓO?½åÓõ÷÷›ª–Rê7K·\˜€¾©”°ísz:¶ÜcüaHßYxt*ŽÁ¸O,EÌ¢C¡¯¤78F¯Mh˜D¢.‹o lûôíÍ ÖDôœšð^¤;ɾ‡†Ó "Ž  <ïõݤþG!Ä’%Kî¼óΓN:iíÚµ}ôÑ•W^¹jÕªà䎎SN9åñÇ_°`Á¾}ûÖ¯_àÀ <õÔS&©±<:Sk÷›´5û·õ%…PR*ƒ•g™èågâQ€,ÑüJ݉3P ®¨8vXGiÏ}¨”’¾zŸÙB#¦â¨ÇTÝsT¦•¿jl¾ÿ§JŽU/õ•ä0<¯·ˆy©8è*ލ•zôÅ“ßZÙ±ãÇbW*s™–™Qz€Î#8ÖGLœjÓðêΗvœ>Ž+•K!„w‚ šªK…y “ލ*-Òuø‰¥Utl~%;BgþœÒ#ñÚàXžrcX5.÷¢c)z’)ºÆL~çq†úVŠYÄË€–k耱Er#=Sät ë¬[ Bj#mò#Ñ"NŽ„ôœÒcñŸj ŽŽ5á”͇׊Uz4™«U(c.TÒˆ§ìGéßF︋²}çéËÌ},P+Çš öÀË%S–±¢cžû´jã–¾û7¿Ý·ï±ÎEẊactsRú¾P ÊŽíT`û©Î;bÑGÓæ3¸æJ ™ðGá]9F»AÍäLž]”á…QAú¤¡&3AK‰r'À‡àX+ÎàÝËÊŽ"Ý,Ýí9"7;úZ³Ñ NéÑù·I(¤T ¡ŽHN•»1\&EÑ1On…Ì)}e½ˆ¾Ï]×±5 =>Rc:Ô”Sz,:2bsÉlû_‰OÌÝŸRî  #‚c}±_¹iÙ±„”ý_©}™aNŸL˜-R£©IÉjä§Ü(šåF©„’ž›:L.•oàMp£÷¾Ä0æÒ!8¢n¤­H!„JH%„´¢¤Ý²PÁ Á#gó œ%ÍÓÙ1Ý#$Ep¬ Ú©uÊû«â¨ìú’ìTäÊR™ ™Í‡™ Û 8æƒàˆD*¼ê‰ÛTÝÉ'uþ˜EܹIÆ®ôãMÚ„>%™%´ˆ`ˆàˆšsZ«­¦j%›Ë3v îè鼘jqÏYø&ôÉtøUMÿmŘkh‰àX j§®Ä ?w„}…¬ÈXå–}ÙüO¦ìKv çÄG†Î@Óñ æ¤6ªÚîìØ¬86Ëx¥gØ•2žÓ‡Èh„Y{ ˆŠ#º‹ÞB]ù–(L{bnGÉV#²{‘ [ˆêûȂ׺Á±ò:U6«d;µ}jžØøXÈ 4)®{Ȉlg#C³ÍbŸžùBãcËPH©@-!DëøØùÙ9œ“öï°ÃÏ8.»’4u¡3 Ž€‡qõ±“ì Íýú$;3whv.çU–‹Óa ÐåŽÕÖ¡~jJtWPpâ£7cIg¥‘N‹óìÙ&ôñ>ÒݽY‡È¨ýT²è˜ VÐŽpéø)CÀ¨.)…6¡{þÎj×¥©J¶>•Д'¥°ÇÔønŠ=±î͋ޫÀ´áºÁ±Âò®â™éP}-éyª.K ΰkëä•[ê«òLÚùÙ/$ßk)d`MV¯!>è.G´ }¹±{Ø ÖÍD`Íºí ²èC4•eh¶ð}VÈs\v}*—ÄG]‚àØ6,%\J))¥…¨Td4:ÅVÉ2"µò³”Ò[”UÉ.N}²£`ä5€.@p¬ªÎe1BÊK_íZT$AJí¿Á¡Ù‰~´Þ%³…[\sv› ù¾e^­*}䵈(@2…8€Š"8Fœ¦êæ(“TÝ ™BÜS/ ÍNX ô‘þÁÝ*é0í:ÍŽo¿6 …Lú lŽ@,)¥ø|Ó€[­´n|¬B2ý•0‰xa+Z<—¦%e ÷g‹ÑQÇçi¿&¨4‚c%u²ºès-žÒ&*²FUjGÞ†Úò­[Xˆ˜aÚþ[Òǵ̗²Õê:ѰØ,Tº@©2¶ :²kcìÂ3Jzæ<ª–ìŸUó9åŸ hìÖ?PyZÿ šþY{@¥®›ßÕ¤”iëPBo|eo¿–éDgzV_Óu’éÇõ{U3†7^Ñ~  rŽÕSÏ‘¨õãÄG{ù+ºEGghvŽS´Ë’Ù-° ½&­ž$ãÔW¡Kçt‚¯ýšø üŽ£xˉ5Ças Ö¸l»£¤ôÕ&K¬ Kfû÷¯"jÝ?2Ïá5Åc €ª 8"œ¬Bš©{~l߸ìÔs@VwxMêbyðQ2°9íÎZ|M:€†É tÁ±bÚÚNí‰#þ§!Gf ­­âÄG•ª©º¢ckŒNÍøå˜‡¼YøLÕQ2ßÃÏk_n‚ŒïmÜ22ˆ@¾ŽhÒ*a7ps$oE Ùõ[}Ák§â¨ì~B”}$M¦k ý7ã6¡B_¶Áûx¿×Ó^ÆYÚ5¸›14J…àVl“f¶ÐYÄõáÌ ²¢?£¼°1h ÜÁ{•ýZ›°IŠBp¬’v§®î,ƒå×YmýÛ^ð:¤›côg=zÚßViÉì×Ç{¾é&jÙØí¯G6ó«òl´Èôܲe¦ÁÝNGËØdq#8í§õq´HѪU: }ÑÓé?t½ì’Ò¯Fôµç³“tÿï†R­[º³>kHŸL߯¨Ê¢>‹xü=OG`PuG4Qn,){Ê+)Xì&ok°vâw÷êŽË½$MÂeÒu·=O¸›g²"³´X{F¹ ™;CjÙ²=™´Bp¬ æýîjJé ÚdøÍŽ1ÓIv <ÞiR^eoLñÛšíð­Ï}v6NÜSàTþ=ê·Ò«€…à!„ý¶ƒü´u"Ìæø_Sµ4êcWé%³ã®‰q/ɼ>ƒ5ƒšw­jë¹EhVëÆMy îvž"¤Õ;þÎÂs"Êz´s éR ÀAp¬ÊUÔŽv?wùÑ^ã,?£=)k<¹OØ¥1ê%Ù¡ÃÐ(^G–up·5Ö§9HG)ÖR»é5 9‚#„¤ P~RJ­}9²^è‹)¡C³­[2/™]ÑÆîøé$í'—UpZ îNt\*j³¾g“Á4Yç¤äƒ.PcÇö0k4Ì)migµëV‰+Âé;‘ÁjeüŽ+ûI#~:ÉBm=ƒ»ÍÊÕʽC`ŒŽ=ÚÆ3b'8¡wešÜfµ$;uEp¬€ö.3XÕù¤»ŒR2$ù%y]hKfûg O•–ºùu“s/ÉÀvß„”*òáZZ ŒÑ±·„ÿˆœ†l÷ÇèAž`Jö`…´Y>£ù•DO ”Ž@×вcsƒR)Ïðçž8œj6v[´nƒÄÖé‰*6ócÔŠŽZ0uæzJùAÀÛîìн4…|Ä ê ´Á±«y[©PwÚ’Ùzb“Á‘ÁA6Ò鹀蚎’‘íÝI»[.rÓ2÷8O wCZeFßO:p‡d?Ò\²š³“ì{#;¹#8–øºYö9}ô=4 P&Óñ´dÓÜl/`ã.ŸXelª#Ëߥ}tô÷’NúÔºQ†í¡Õþ ûó•u€w?ÇîE¹±|SfÙƒÐFØ8£³UôŒƒß{§?w¦ ‹yM'YÑšeüàîD«à´rã— ]&[ºFü§–åÊø†êd¹÷ËÇ ¢'j†àtø6Ý[𝗤ðÍC\ÆÍ ”¤{e7 îŽYŰÝct"Ž!ŽåÄ/'ỂYi:)Ú…I=¨©æø^=KFL ÔžÁÝ9^“j±Û—›Á.ºÅ¼EÕL†ÄN%}ë ¨ëÖÄýÝÓæ¤Œ™ÕÒw´Ò[ª4¸fc¬l;¡ð‰\Kª}óßRnD¾·îܺÙEM5 [; ½±[$\'¯1:•–}FwW‘W^é?Ö6Më¨õ³ Y"Ü Å<Á·I¯PŠŽeØ…Ï 8–N^³H‘¸‰Y›NRˆV…ºÐ»­æÐÜ·{ YÇèäÒÕ²õÕh}´ 0j? ³‡øÒ›l^wû…цT`òGÕÓÔ¸5¤Ýày3G+[Í2—”¡ðÉÒDYKª]ÙQµå2ˆÞÐlå-£Y¼sRú»‡+O >·»F_Ô¢/Ozµ˜k“õDvµl}UCgüqç879ŽJYîùa·*»Ø­D«çŠJŸI_^z¼grkcÂme(:–aŽ`<é%íBÇ’Q±ëËÕäÏ|ÂÓÐlÞRü‹îÜ-ì¦êÈ¿þÚ´A¡eK£Zc`Zu÷ß…vµ¬,ßBEÞMI©E·¤Ï!cåt[6vKmtŽP-úˆØXc~ÜþùS…ÄõÙšRí*©ðAKúIüÖ”­ð)BËäÆŸ¥nm4'8–WÖ]]ú2G ļîÜwĤûLÑFì}“0£ãÛƒUõ±ç©ΜêvM*C&'"D¦öî[ÌÝç ähÃDAï)d3£„e›+EnhK³üUWþ«!D«ü*‚!)ðoCžÃF'¯C^{@jǑڻ€x™wG&ïÊÞ©Îýé(CWK÷ÛT]-‹â™…GJkˆŠ£“í7öa0h¶Ç sjìV±¯%µܾ#ñí$õ˜ñèéGeúûçivÏv:y]“t¿bÖNú»5¿KGﴛ닒Q7¨ÐÁÝ-;J†´˜§¨±f ®£#ZvµŒ8—dÓ¡·§Å1P'&-Úb.¬ä×2üE>M¯I†Â§þ[õ2°¶Ñ´…׺Îßnc»ª28ì;z.ñX×ÇSøly a—7IÒSþ±áöaèOÑrFô\ª§¥-|šPÑ;é×îÓUµ‚c{$ùÕjùwÙäEéë¡å䘺? €üMÕfíÝÚc¤ô&¤”³ZŠÈ=Héé ŸJÊð󰇋@áÓð\´g͵ðÙœ§É½)Å$—V¨õüom‰ªçyÒXTá³Õ™¨°Ì—¤Å<ºðé¿fñ£…¼» ‰ÑIGà{òkÊÈ¥]‡ì{@RÇ"éŒô¿òáwnþíŠf¨µ—¹K{5ÿ §è ±Œ5K‘¤l™g‹yËÓ1ë¯)ôs‘Í´g=E\áÓø¢x ŸB$œÚÝw-h=>íÃWÜö Ò“V‚ù‰ô#²Ï Yú DO»+”L–™2¥«Îš!ot*YáÓùAh+Ú·|lwõ´«ŠŽÇÂØs6x>ûjžßð4[…Á:*¦X(24¨åÒbžtŒyü¹ƒèéû(1ÚxM á¦ÎÐ)Ž”ûOï­þ¬)|Ší°eWOÍ⯶sßaK%¢Æèè;q¯ª;°'$¿&øM$<}ú믭žÕè™Ì ŸNôÔ[Ý N-z'ú\&æ×FŠF£;+—Çbt棉dÆo ”ZõsÙ‰ç5Ñè¾ y—¤H‚c§¥úh ˜>_±P[©çT×çôÉ¥ð™.¿&{f§â¶Ý½XZ-¶Û¨›ô#Qvl=Es¨N¼¸²¥3>)xqìü*̧û¶ë¯F—74¿Z7OŸžP¯ü»Mº‡”;·îþî|3'8vT'˹̠ ÆbÂV‚þ(÷߉ ŸBø ŸéOÍéWi>2GúîìkÙLx4Í>…¾ójf¶˜è)µÄS:)[:ë÷¸[”ç\<½a£&¶tçH ›¢(¬vüG¦_\å~Â1»¶ÞIL“åWíiB;!˜<Ú—_ûƒsNuGß°ž¢ ¼V¯^½páÂÙ³gŸuÖY?ýéOÿùφÞM éûŠÞ9yƒóeý»jþµr¾Ì´ì=S5þ®0«-¸ž¹ã’†’J%mvw¢R£¿!UÊ?dJû»š(}*ø²¦„–Ö~Tü¤ÍÌ'¥”Ò©a*™&«\ˆªÑßPÖ:ë¾±Î1ðå¬çÿ¼³°4ê>ƒSUîx|þ¥]_ýKy ™ìAî–b'á'%Ò|Ъ(‚c¸»ï¾ûÖ[oýË_þ2gΜ &¬Y³æ‡?üááÇCï¬ÿ²Ù¿ìÊ·1¾Öèü‘òý ƒ?U÷÷ÖΙ×]€‹^“j'vñ2ùpfëËêý™è‘Ê©£å*ûH’”œýÙoÉÇVû¯FÒ‡¹ïMÞ›´ôéÛò>¼±ÒÙLÒ§›ÉTHÅúd"í›Â° {EùžºõN‚‡áO´]“Á1Ô¶mÛV®\9mÚ´gžyfåÊ•ëׯ_´hÑ›o¾yçw¦Ø[ÂAЉöìùýôü†›¦M¨9™<}z>³')|êÕJÿˆ¾¼e¼C·zšþØC;2TÂCdðnžÂ‡ÿj8{ˆ/|†7â)ïÅ“$ýíuQù5íõÓjÉ¢¹Ã®Ep 1444::ºlÙ²cŽ9ÆÚrË-·ôõõ­[·ntt4æÎÇAg™¯Ü;5꿾ßO@›d_°;Q~õUÅôIË–Îça)Ê–¹äWg'-«§þw7··€öߨÂgT~õ/–‘$}újÉ]‹àbÓ¦M===çž{®³e̘1óçÏß¿ÿo¼ò½„Öסù‹‘O{qó5ímÔMTÍÒ_5ãŽXJX=Õ÷àɯéNÊ7l?ácí>‘nÓvº·@½hªÕP“¥Ow'¹½ÅW ÁÑO)µcÇŽ)S¦L™2EßÞh4„»wïŽz >9˜§Ð˜ösªwpLó5 @Kú˜KOÙ2íÛS¶Ž§"mÿ_~Mwz~M÷¦êîÄéþØM V‘ê2Ÿ|òÉ×¾öµ/~ñ‹O?ý´¾ýÑG½í¶Û~ò“Ÿ\}õÕúvg­$çW°¿¿ßüé@mÛ¶MÿVfë‰ZÌãèg ?~¼oû„ „}T³UZ)á¼’¬UA›ýKââ4z©uÉ+PæÃe|‹ìÀ›,oÁ‚£ß¤I“¤”‡òmÿøã…}}}­wa%H{Eù¢O€ä•´j63qÕýÆŽÛ×׬,âˆ#‚÷·&ЗBò}µ$#WÇôÌžP ¦ã 788¸bÅŠã?~Þ¼yÃÃÃ7nœ4iRчP ‚c¤'Ÿ|ò‰'žxóÍ7;sç.[¶Ìš‘ ;`„>Ž0Bp€‚#Œ`„à#G!8ÀÈØ¢ >V¯^=44´cÇŽqãÆsÎ97ÝtÓäÉ“‹>¨ HzÝ.¹ä’·ÞzË·qêÔ©/½ôRѧR ýë_/¸à‚¡¡¡¯|å+EK•˜_7^¢©>|øÑG}ì±ÇöìÙ3qâÄF£±dÉ’³Î:«èã*»×Wi:ÿú׿î¹çž×_}Ïž=G}ô©§žzÝu×|òÉEWGóq÷Ýw?ðÀãÇŸ3gÎðððš5k¶oß¾jÕªÞÞÞ¢­ÔR\·]»võööΘ1CßÈRæzè¡¢¡’̯/Ñtþ÷¿ÿýà?زeK__ßgœñïÿûÕW_}ñů¿þúk¯½¶è£+¯t×Wi ¼ð ÿñÌœ9óßøÆÞ½{×®]ûì³Ï>ú裧žzjÑG×A ™mݺõ”SN™7oÞ|`mùõ¯Ýh4~õ«_}h¥–âº8p ÑhüèG?*úØ«çÀ›6mºí¶ÛF£ÑزeKÑGT I¯/ÑÔyä‘F£qÙe—:tÈÚòÞ{ïÍ;÷K_úÒŸÿü碮¼R\7^¥éXïP¿ùÍoœ-kÖ¬i4—^ziчÖQôqÌÁÐÐÐèèè²eËŽ9ækË-·ÜÒ××·nݺÑÑÑ¢®¼R\·]»v !|Ÿ’a⢋.ºâŠ+~ÿûß} “ôºñMí™gžBüìg?sfΜ¹téÒ‘‘ÚOc¤¸n¼JÓyå•Wz{{¯¹ægËw¿ûÝc=öwÞ)úè:‡¦êlÚ´©§§çÜsÏu¶Œ3fþüùO>ùäo¼ñõ¯½è,©×mxxXqâ‰'}ìÕ³|ùòÿüç?Bˆ‡~øå—_.úp*#éuã%šÚÎ;Ç?kÖ,}ãÌ™3…»wï.úèÊ+ÅuãUšÎ¤I“Æg?ûY}ã‘Gùé§Ÿ~úé§ÝÓ3à˜•RjÇŽS¦L™2eо½Ñh!vïÞMp •îºYïöîÝ»hÑ¢wß}wܸqK—.eœGKgŸ}¶õ矾èc©’¤×—hj¿ýíoÇŽõ¿%½óÎ;BˆN8¡è£+¯×Wi:?ü°o˦M›víÚõÕ¯~µ{R£`:žì:422ìSÜ××'„øè£Š>À’JwݬÐ÷Þ{ï‡~xÆgL:õù矿ì²Ë†††Š>!@^¢ XŸ7n\¹rå‘G¹`Á‚¢®¼R\7^¥mÞ¼ùÖ[o½âŠ+/^üùÏ~ÅŠEQGQqÌêðáÃBˆñãÇû¶O˜0AqàÀ¢°¤Ò]·½{÷öööÞxã‹-²¶¼üòËK—.½ýöÛÏ>ûìéÓ§}Zèv¼Ds122òÈ#ÜqÇ###wÝu×Ô©S‹>¢j0¼n¼J3Ú¶mÛc=¦”BÌš5ë3ŸùLÑGÔQT³š4i’”òСC¾íü±°ëgJwÝ|ðÁ-[¶8ì„gžyæUW]uøðáçž{®èsx‰æàÕW_½è¢‹–/_>uêÔßýîwßþö·‹>¢j0¿n¼J3úþ÷¿ÿî»ï¾øâ‹7ß|óúõë/»ì2ë«K³;vl___°BvðàA!„3^>9^·¹sç !Þ{ï½¢Ï ÇKÔЧŸ~º|ùòÅ‹ÿío»îºëÖ­[wæ™g}PËuãUšˆ”òè£^²dÉ¥—^ú÷¿ÿ}ýúõEQçÐTƒiÓ¦íØ±ãàÁƒGu”³qçÎÖME]y%½nJ©ÑÑQ)eOçϘ1c„'N,ú„Ðíx‰f1::úãÿøÙgŸýæ7¿ù‹_ü‚O݆’^7^¥élß¾}pppþüù\p¾ÝÏþÁ}€CÅ1çwÞÈÈÈ /¼àlQJmذaòäɳgÏ.úèÊ+éuX¼x±oûæÍ›…ýýýEŸº/Ñ,zè¡gŸ}öòË/¿ÿþûIæ’^7^¥éuÔQøÃÖ¬YãÛnMŠyÒI'}€CpÌÁÂ… {zzî»ï>§—ÃÊ•+÷íÛwñÅqÄE]y™\·O>ùdçÎ{öìB̘1ã´ÓN{íµ×V¯^íìdóæÍƒƒƒÓ§O?ÿüó‹>!t#^¢¹PJ=üðÃ'N¼ù曋>–*1¼n¼J³›6mZÿ‹/¾øÇ?þÑÙ¸uëÖGyd„ sæÌ)ú;GZÂÑàààŠ+Ž?þøyóæ oܸq```pp¥?ãµ¼nk×®½á†fΜùÔSO !¶nÝzõÕWïÛ·oÖ¬Y'Ÿ|òûï¿¿eË–qãÆÝÿý§Ÿ~zÑgS ·ÞzëêÕ«‡††˜³-‘¨ëÆK4~øá¼yóz{{¿ð…/oýÎw¾så•W}ŒedxÝx•æâÍ7ß¼üòËÿûßÿΞ=ûsŸû܇~øúë¯ !î¸ãŽ /¼°è£ëú8æcÉ’%G}ôO<±víÚãŽ;îÊ+¯\¶l™5³ b$½n§œrÊã?~×]w½òÊ+Û·o?á„,Xpýõ×wÜqEŸ /Ñ´¬bØáÇß~ûíà­ ‘‰’îºñ*MçË_þòÓO?}ï½÷¾ýöÛï¾ûî±Çû­o}ëÚk¯µÖééT`„>Ž0Bp€‚#Œ`„à#G!8ÀÁFŽ0Bp€‚#Œ`„à#G!8ÀÁFŽ0Bp€‚#Œ`„à#G!8ÀÁFŽ0Bp€‚#Œ`„à#G!8ÀÁFŽ0Bp€‚#Œ`„à#G!8ÀÈÿÜãw <+OIEND®B`‚statistics-release-1.6.3/docs/assets/invginv_101.png000066400000000000000000000654111456127120000223370ustar00rootroot00000000000000‰PNG  IHDRhŽ\­AjÐIDATxÚíÝy|L÷þÇñï$!"!¡i"JI*ÆV$(ZB¢vŠÖÖR{‹ê¢ziu¡áª¶·¥ÚK«×U×RnKùU¬Uª”X*Qz5DBì;Q1Éüþ8:Æd’Lf;Ûëùð¸7ùΙs¾ßsf:ï|¾çœ1˜Íf”ÄGî@ŽpÁ!8À!G8„à‡à‚#Bp€CŽpÁДßÿÝð—üQîîÈoûöí#GŽ4*T¸ï¾ûZ´h1xðà;vÈݯR›;w®tX›5k¦„Þºuë‹/¾èСÃ=oÞ¼ *HíF£Ñ²|Q¯É¬¬¬¡C‡Zš9sf‰O ;‚# )v?qß~ûm©¥gÏž—/_7n\Ó¦Mƒ‚‚5j4mÚ´¼¼}úH‹­[·Nj)S¦Lvv¶eÇ—ÚŸ|òI©åÇ ·YÁ`7nœåYÖyÅÔÞ~ûm³Ùœ››ûÈ#ž1 ³g϶Ž#*l̘1Ò’åÊ•;uêTáΜ93ä/çÏŸ·´[#­õîÝÛ×Y88:8L³KÕáâ¾]…7úä“OJ-•+W¾~ýzá§téÒ¥qãÆ7^¾|y1¯I‹Ÿ~úÉòèúõëy M)>8JjԨѼysësûvïÞm6›óòò,ç­ZµÊ²Né,7!Ä×_m6›¯]»vÿý÷K- ï¾ûîÓO?íãsç ÿþ÷¿m6Z­Z5ˆ¤àhy(  G/½ôRóæÍ¥??¿C‡IkppC…Õ©SGZ¦ÿþŽïºÿþ÷¿–Ä–0hР Xzþã?ÚŒ«Äàèà0\¬p†+m‡‹?úvÞ¨%Ç1•פEAAAÙ²e¥G§L™âÈSȈÛñúòÙgŸ;v,999%%Å’öìÙ#„(S¦LÏž=¥Kõ1##CºxÖßß_ºTöƒ>.kèÝ»÷?þ8yò䯿þzÖ¬YÒò‰‰‰6[|Xú¡cÇŽv·räÈë<c2:vì¸oß>!DZZÚðáà CLLLçΟxâ ë³ýJ»!Iùòå-?¾³t1¤­\¹reÆ {÷îMIIÙ³gÏõë×ÞÛÓÁÅ\ïp‰G¿D–‹¦K»o‹wéÒ%éé/voÇcé</#8:b0ŠùUü5[-×­[g4¥‰Ô2eÊtïÞ]‘m}?»¤R™Eá›l'&&fggÏ›7ïÖ­[B³Ù¼oß¾}ûöM›6­uëÖ+V¬¸ÿþûØÄßßÿþûï—bÍ¡C‡¬ªX±¢å|ÍóçÏ[Šs’¼¼¼‰'~úé§–[„……?Þ¹½íÈ0_¬°Òv¸Ä£_¢²eˆ††J»ÝúîßÖ®]»&õ§\¹rެÖ2C]øB(!Ä’%K¤Â*%àG÷èÓ§ôÃúõë<(¥©)„¨X±¢¥ì´qãÆt{ž~úiëÚ§ÿüç?/\¸ðßÿþwÀ€ÖwrÞ¶m›ôUrNlÈ"!!AúaÕªUÖ)ê¹çžËÌÌÌÌÌLÇ÷†Óv¯nݺYŽËË/¿‡€2qŽ#[}úô‘Ns”®ÌmÛ¶­õyŠ'Nœ7oÞ•+WV­Z•ЦM›ßÿ}Íš5Ò£ãÆ+þÂ…† †‡‡Ÿ;wÎd2µjÕª[·n•+W>vìØ÷ß/-`ù*W64}úôõë×gff !vîÜÙ¦MŸ²eËæææJ ´lÙrçΖ僂‚‚‚‚¤p9|øð¥K— †õëמµÜï&'''&&&&&æâÅ‹iiiÎ Óñ½aÃñ»ÝŒ3š7ož““c6›'Ož>>…‹^Ý»wß¿ÿˆ#bccË—/Õ«W¯­[·~þùçŽ\«Û¢E‹ôôôwÞy§Y³fU«V-S¦L¥J•Zµj5o޼͛7ûûû»eCááá[¶lY½zu¿~ý¤¯r¾ï¾ûâââ,X°jÕª°°0›kxgΜùðÃKCnԨѫ¯¾š’’b™£_ºt©ebzáÂ…Ó¦M{øá‡cbb^~ùåäääÂ;8LÇ÷† Ç;ìv=öØ‘#GfΜ٦M›°°0£ÑøÄOÌœ9ó?þèÒ¥K‰kðõõ­\¹ò#<òÎ;拉¥µhÑÂC]à^ó_g€Îݾ};))I=A¬4ªë0µ#8À!LUÀ!G8„à‡à‚#Bp€CŽpÁ!8À!G8„à‡à‚#â'wêêÕ«Ÿ|òÉÞ½{Ožûì³ .Œ5*))iæÌ™Ë–-›>}ºÉdúûßÿ.w×dCÅÑŽnݺüèÑ£:uJII±»pFFFÛ¶mׯ_ß©S§qãÆ•-[vܸq}úô‘{ŠÇ<5P$?¹;UÊËËB”-[Ö+7™L›7oÞ±cÇœ9s äë=f̘‘žž¾`Á‚Áƒ !^yå•&Mš¼öÚk›7o.¼ð¸qã®]»–œœÜ¬Y3!Ä”)S†>þü 6tìØQî¡€¦pIµwPq„3ŒFc»ví¬[¥xäºK—.uìØ111ñÂ… N<}Ïž=ݺu«R¥Šá^eÊ”q½oË–-‹ˆˆ4hôkTTTïÞ½·nÝzæÌ™Â oÞ¼9..Îz·¼øâ‹Bˆ;wºeGàeTáÇŽÛ»w¯[Vn6›…iiiuêÔ)Õs7mÚÔ¡C‡êÕ«:400påÊ•ûöí‹MHHðñqõϤìììÇ?ýôÓƒÁÒ˜0oÞ¼äää^½zY/l2™ÆŒÓ´iSëÆãÇ !üýýݲ£x€öç©•}zÊ”)RjBøûûO˜0¡{÷î+V¬2dˆ‹}»yó¦¢bÅŠÖÁÁÁBˆK—.ß·Ÿ~úéùçŸOOOÿüóÏ£££Ý8j¼†à¨hV3¢2(þ­üü|ë_‹ºŠåÆ={ö,zîücîØ±cBˆFY76lØPqðàA×û*„¸~ýºucvv¶¢råÊE­'++ëÅ_\½zuttô¦M›Ü8dn¥äY\‡+c¼†à¨hJ®‘ߺuËúלœ»‹»7# @as£D)ÑÚ=Á±´} ÷ññ±™•¾xñ¢â°û”¥K—Ž92((hîܹÆ óóãP1>Æà¤Ó§O[ÿj÷²báÝ©ji øÐ¡CÖR­Ñh4ºÞ7??¿zõêm۶ͺñçŸ6 õë×/¼†Õ«W?ûì³}ûöýâ‹/l&¸P#‚#œtöìÙ¤¤¤nݺ !222RSSí.æÍ©êØØØZµjÍž={̘1!!!Bˆ¼¼¼üãAAAR?]ïÛsÏ=÷Ê+¯X~þüùåË—·oß>22²ðÓ'L˜P½zõE‹ùúúºq˜<ƒyj dG8ÉÏϯÿþÝ»w/((HJJ*ê3nŸª^ºté /¼0tèÐ3fØ.Ê-ƹñ (w.GO]R]l‡tûŸn¾r*“››»eË–ØØX¹;@K”¨!8BevîÜY·nÝgžyF‹‰ó"pŽ#œ1zôh¹î//÷@ŽpÆ„ ä^æ©õ2NxSÕ@­ø²A/#8À!G€ž1«\‹¢G8„à‡ºÅ<µºqeŒ÷Ð>2r)pÆeÑŽ}"J¥Fp€CŽ@NÌ «Á CÌS«WÆÈ‚àE‹‹‹KLL”»êëž@p„r¥¤¤üòË/r÷B}}ÀCüäîT)//OQ¶lYO¬Üd2mÞ¼yÇŽsæÌ)(({¬ªé‡énžZw†Çá £ÑX­ZµmÛ¶YZ“’’öìÙãúÊ/]ºÔ±cG§Ÿ¾gÏžÄÄĽ{÷ž;wκÝÏÏïöíÛòö  t\ªS,‚#ÜãØ±c{÷îu˪ÂÃÃÍf³"--­N:¥zî¦M›:tèP½zõ¡C‡®\¹rß¾}±±± >>n81վ܅+cäBp„väææ<8""b×®]UªTBŒ?¾}ûöiii“&MªP¡‚Ü LÛ* >u!8³L&Óš5kŠz´GnÜÖ¶mÛNŸ>=eÊ)5 !üýý'L˜Ð½{÷+V 2Dƾ GE3ƒŒ[/~ ??ßú×¢®¹qãFÏž=‹Ü„[ÿÌ}Úú×3gÎØ]Ì›ÓÁÑÑÑBˆC‡Y7JµF£Ñ(oßî•12"8ÂIgÏžMJJêÖ­›"###55ÕîbÞœŽ­U«Öìٳnj"„ÈËËûÇ?þ$õSƾ |s œäçç׿ÿ§Ÿ~º_¿~?üp™2eì.&Mʼní.]º´R¥JãÆ+üP™2efÍšuéÒ¥ÆOŸ>ýÃ?lÕªÕ¶mÛ¦OŸî…¾P6ælQ®ñ. G8©yóæ]»v;w®Édzî¹ç*V¬8uêT/l7//ïêÕ«ERÙ¥K—äääÉ“'Ï™3'77·qãÆëÖ­ã–Ý Lä4Õ!8ÂIƒaâĉ'N´´L™2Ž›0…+ƒ¾}û¶Ý«¤%111ßÿ½§‡o·oOãGy1U •ÉÍÍݲeKll¬Ü .:§Öé°á1G¨ÌÎ;ëÖ­ûÌ3ÏÈÝt‡©j8côèÑ+V”eÓññññññrïêBÝ p‚#œ1a¹»¼©j ž½2†k¼@phóÔ ENS#‚#ÚDd†Ûà‚#@Ã(ºi·þV‚#BphåF8ŒKu£‹û8æääü÷¿ÿ]¾|ùÉ“'+T¨P»víaÆ=öØcÅ<¥wïÞ°i ýå—_ä €<´M&Ó!CRSSƒƒƒ[¶l™››»k×®íÛ·¿üòËcÆŒ)êYYYY5kÖ´n ‘{48DáåÖÒø8ÁQ!´¿ùæ›ÔÔÔ&MšüûßÿB9rdàÀ³gÏNHH¨[·ná§dgg_»v­sçΟ|ò‰ÜÝ8GáÁ P%íŸã¸~ýz!Ä[o½%¥F!Dttô¨Q£òóó‹šwÎÊÊBØ”tNûÁ133300°~ýúÖÑÑÑBˆ'NØ}ÊñãÇ…5jÔ»ïqqq‰‰‰r÷â[¶l‰ »ï¾ûZµjµråJ¹{€—h?8Î;wÙ²e6¿ÿþ»¢zõêvŸ"Ç3gÎ 4¨Y³fmÚ´=zôþýûåŠî¤¤¤(íj¤µk×&$$dee 8pÔ¨Q.\xòÉ'çÍ›'w¿Ø`ž¥Á%ÕÓþ9ŽõêÕ³iINNþòË/ýýý{öìi÷)R%rÖ¬Y‘‘‘-[¶tèP)5 ![·n½dÉ’œœËI´NˆŒŒt}¿©‘n®pê?.!̪ĽJ{PîT\•ºþ*ð•¢{ž~Y¿þÂë…+D:¡£à¸k×®ÄÄÄ£GFDD¼÷Þ{>úhQK.X°À¦åÑG}öÙgçÍ›·iÓ&Kš„µcÇŽíÝ»×-« 7›ÍBˆ´´´:uê”ê¹›6mêСCõêÕ‡¸råÊ}ûöÅÆÆ&$$øø¸zb†¯¯ïþýû­ÿÞ0™Lhذ¡+©µÐEpÌËËûÇ?þ±hÑ¢råʽôÒKÇwâcþ‘G™7oÞáÇå Š”››;xðàˆˆˆ]»vU©RE1~üøöíÛ§¥¥Mš4©B… .®ßÏÏÏr•ÕÂ… ÓÓÓ׬YsæÌ™¯¿þZî¡à ÚŽ¯½öÚÆüñÉ“'‡……¿¼Ùl.((0 6*___!„ëáCoL&Óš5kŠz´GnÜÖ¶mÛNŸ>=eÊ)5 !üýý'L˜Ð½{÷+V 2Ä}›:ujzzº¢}ûö\€( —Åh ·þVíÇE‹mܸñ™gž™UÓxp”Šˆ999vg*‹º°ºN:+W®üøãwîÜyäÈ‘êÕ«÷ìÙóå—_Žˆˆ{@ röìÙ¤¤¤nݺ !222RSSí.æÍ©êØØØZµjÍž={̘1!!!â¯ë¢‚‚‚¤~ºØ·æÍ› !¾ú꫾}ûþ:‹à?ÿù¢eË–nßÃNpTÇØØXGn©Ø¥K—.]ºX·„……}ðÁrw_Ñüüüú÷ïß½{÷‚‚‚¤¤$»‹IÓÁnÜîÒ¥K_xá…¡C‡Î˜1Ãæ¡2eÊÌš5«W¯^79r¤¯¯ïòåË÷îÝûé§Ÿ†‡‡»Þ·ÐÐзÞz+11±Y³f;v4 ?üðÃîݻǎ+I @V /´Z ñàÏiÞ¼y×®]çÎk2™ž{+N:Õ ÛÍËË»zõjQ§TvéÒ%99yòäÉsæÌÉÍÍmܸñºuëÜxfêäÉ“£¢¢fÏžýùçŸûøøÔ­[wÙ²eÖ3×hÁN2 'Nœ8q¢¥eÊ”)îÝ„Ñh,\óÌ3rw”Há šŸÚ1U gŒ=ºbÅŠ²l:>>>>>^î@Q–í 8Â&L» -cžZ™˜ªºÄÄyéªÆ<5à=G4‚ O#8Ô‹¤¤&ŽÏ s‚£b€þp‚£SŽpÁ RÌSÞFp  ŽJFp¨åF[ìxÁxœ²®EQVoÔ„à”‚yj…#8T‡YY@G(Ñ–-[âããÃÂÂî»ï¾V­Z­\¹RîÝuíÚµQ£F=øàƒAAAqqqÉÉÉÅ,üÛo¿õëׯJ•*AAAM›69s¦Éd’{8‰àÅY»vmBBBVVÖÀGuáÂ…'Ÿ|rÞ¼yr÷K!²³³›6múÕW_µnÝzøðáGíÔ©SJJŠÝ…322Ú¶m»~ýúN:7®lÙ²ãÆëӧ܃Ԏr£ì”RàGW˜ánµk×öÂSäuëÖ­[·nyhå 6¬R¥ÊÕ«W¥_ÿüóÏ|°ZµjrÚl6›'Ož,„X°`ôëÑ£GCBBâããí.Ü£GŸÝ»w[Z† &„X¿~½õbª;úî’‘‘!w`‡Ž‹î>¹9(Êß)Ž$áq¸#üèö?ÝTá £ÑØ®];ë–ÄÄÄfÍš¹¾æ[·nýþûïݺu –Z[·n}òäÉœœGÖ°gÏžnݺU©RÅp¯2eʸ޽eË–EDD 4Hú5**ªwïÞ[·n=sæLá…7oÞg½[^|ñE!ÄÎ;]ï  WTÖT‰ŸføÉÝhıcÇöîÝëúz|}}÷ïßji1™Lhذa@@@‰Oß´iS‡ªW¯>tèÐÀÀÀ•+WîÛ·/666!!ÁÇÇÕ?“²³³>üôÓO KcBB¼yó’““{õêe½°Éd3fLÓ¦M­?.„ð÷÷wÃÀëŽP??¿úõëK?/\¸0==}Íš5gΜùúë¯K|nnnîàÁƒ#""víÚU¥J!ÄøñãÛ·oŸ––6iÒ¤ *¸Ø·sçÎ™ÍæððpëÆ°°0!Ä…  dúôéÖ-—/_ž>}º¯¯oïÞ½eÞË <܈GŽð,“É´fÍš¢íÑ£G1Ï:ujzzº¢}ûö5jÔ(q[Û¶m;}úô”)S¤Ô(„ð÷÷Ÿ0aB÷îÝW¬X1dÈûvóæM!DÅŠ­¥)õK—.ß·Ÿ~úéùçŸOOOÿüóÏ£££=³³ÍcžÚ>öK)0kî‚£¢\_… Šcåçç[ÿZPP`w±7nôìÙ³ÈMûî=räÈÍ›7wîÜ9bĈ-Z:tH*ï娱cBˆFY76lØPqðàA×û&M _¿~ݺ1;;[Q¹rå¢Ö“••õâ‹/®^½:::zÓ¦M uââE3Ëú¯x·nݲþµ¨+W‚ƒƒ‹¹8«Ä=P¾|ùvíÚ½ÿþû—/_^µjUñ K'AÚÜ(QJ´vOp,mßÂÃÃ}||lf¥/^¼(„xàìviéÒ¥ 4Ø»wïܹsÿ÷¿ÿ‘PVäGÅN:}ú´õ¯v/+¥Ÿ^³fMÏž=/^ܯ_?Kc¥J•DIåI!„4|èÐ!ëF©Öh4]Ÿ_½zõ¶mÛfÝøóÏ? Ëy™ÖV¯^ýì³ÏöíÛ÷‹/¾°™àýpdr˜UCîûiîãX³fM!ÄêÕ«¥_=d÷åtõêÕR½ü.\¸àçç×±cÇ‚‚Kã3Ï<#„Ø¿ñ½ÊËË«U«VDDÄ•+W¤–[·nÅÅÅ={Öõ¾™ÍæY³fYüܹsááá:t(¼dAAA:ujÖ¬i2™Šï¶ê޾»¨á~z¤Ôã¢ëO«ŠÂ÷ŽÆîà(Ñíº©8ÂI~~~ýû÷ïÞ½{AAARRRQ·˜‘¦ƒ_mhhè[o½%ݲcÇŽƒá‡~ؽ{÷رc¥³—.]ú / :tÆŒ6Ï-S¦Ì¬Y³zõêÕ¸qã‘#Gúúú._¾|ïÞ½Ÿ~ú©Í¥ÐÎõM1dÈùóç0`̘1!!! ,¸yófbb¢ôè|ðþûïOŸ>}Ô¨Q‡úã?êÖ­;bÄ›•<ùä“Ý»w÷êÑ ]LáÛŽpRóæÍ»ví:wî\“ÉôÜsÏU¬XqêÔ©nYóäÉ“£¢¢fÏžýùçŸûøøÔ­[wÙ²e–™ë¼¼¼«W¯uJe—.]’““'Ož>>>>^îŠ@¬†—ጠ&ÈÝz@.‚›0Oí&LUy0O­:G€2QnT=Ê|ÚCp€Cލ’ÚK²j¼}#ŽR{(´‰à‡JC¹Qû˜§V)‚#p?›&ŠB¹Ñ!ì&Ȃ༊û~«Á ÔÑàVÌ—»ÁJ´eË–øøø°°°ûU«V+W®”»GvÄÅÅ%&&ÊÝ ¼‡àÅY»vmBBBVVÖÀGuáÂ…'Ÿ|rÞ¼yr÷ë)))¿üò‹Ü½4†r£vSécžZÕüäîT)//OQ¶lYO¬|âĉUªTÙ·o_pp°âÍ7߬W¯^bbâˆ#ä·0™L›7oÞ±cÇœ9s äî"b;„yj âgÆvíÚY·$&&6kÖÌõ5ߺuë÷ßïÖ­›”…­[·>yòdNNŽ#kسgO·nݪT©b¸W™2e\ïÞ¥K—:v옘˜xáÂ÷ïV”Š#ÜãØ±c{÷îu}=¾¾¾û÷ï µ´˜L¦4lØ0  Ä§oÚ´©C‡Õ«W:th``àÊ•+÷íÛ›àãã†?“ÂÃÃÍf³"--­N:Ü¡€îPDÓæ©ÕŽàeñóó«_¿¾ôóÂ… ÓÓÓ׬YsæÌ™¯¿þºÄçæææ<8""b×®]UªTBŒ?¾}ûöiii“&MªP¡‚܃x óÔžAp„g™L¦5kÖõh=ŠyîÔ©SÓÓÓ…íÛ·¯Q£F‰ÛÚ¶mÛéÓ§§L™"¥F!„¿¿ÿ„ ºwï¾bÅŠ!C†¸±oÜŠr£¦Ù4Œà¨pY·^Üû>??ßú×¢®¹qãFÏž=‹Ü@±ÿi9räÈÍ›7wîÜ9bĈ-Z:t(,,¬˜å;&„hÔ¨‘ucÆ …toß@.êMÙÌSkÇ(œYÖŹuë–õ¯E]¹l.Z‰ã/_¾|»víÞÿýË—/¯Zµªø…¥“ M&“u£”hížàèb߸‰zƒ”Šš§ÇPq„“NŸ>mýë™3gì.VÚéà5kÖôìÙsñâÅýúõ³4VªTI8PŒŽŽB:tȺQª5F×û€ÎᤳgÏ&%%uëÖM‘‘‘‘ššjw±ÒN7oÞ\ñÕW_õíÛ×`¸3SÿŸÿüGѲeËâ»[«V­Ù³g3&$$D‘——÷ü#((Hê§‹}à”õ‚yjm 8ÂI~~~ýû÷ïÞ½{AAARR’¿¿¿ÝŤé`ÇWúÖ[oIw…ìØ±£Á`øá‡vïÞ=vìXélÅ¥K—¾ð C‡1c†ÍsË”)3kÖ¬^½z5nÜxäÈ‘¾¾¾Ë—/ß»wï§Ÿ~îzß@vÊÚòÏËß-#8ÂIÍ›7ïÚµëܹsM&ÓsÏ=W±bÅ©S§ºeÍ“'OŽŠŠš={öçŸîããS·nÝeË–Yf®óòò®^½ZÔ)•]ºtINNž$5¢GÐR£âxù¸­ÜHjDÑŽ ¤F½#5Â;üäî€WeddtîÜù›o¾iÔ¨QñKöîÝûÀ6¡¡¡¿üò‹ÜƒÀ=lS"©%ÑWp\´h‘ƒKfeeÔ¬YÓº1$$Dî@a”•È›GÅ=åFR# èàøÛo¿5lذ˜Ö¯_ß©S§ד}øðáÕ«W/[¶Ì‘ífgg_»v­sçΟ|ò‰ÜûŠGjÔ;R#¼IÑÁ±ÿþ/¼ðÂèÑ£}}}mºråJbbâºuëÒÒÒJ\O÷îÝÏž=ëøv³²²„6åF”Æ•Ôx7+’á0Eǰ°°Ï>ûì§Ÿ~ú裬c܆ /]ºT£F GÖ3mÚ´[·n !/^¼cÇŽ—?~ü¸ÂÁ•€|(7*”š ©¥¡è«ª“’’úõëwàÀž={.]ºTqõêÕqãÆ½üòËW¯^>|ø÷ßïÈzZµjÕ®]»víÚ=ðÀŽ,/Ç3gÎ 4¨Y³fmÚ´=zôþýûåÞ`MMážà†IjR#JIÑÇ   )S¦tîÜù­·Þz÷Ýw×®]›‘‘qñâÅèèèéÓ§?üðÃÚî‰'„³fÍŠŒŒlÙ²å©S§¶lÙ²uëÖwß}·o߾ެÁh4Ú´¬_¿^Ö}©w'Ož”» °ÅAqEddTff†™n_3ÇÅ="#33Ývt씨ȨŒÌŒLg_QQ‘faÈÌÈî맆9rA…N(:8JZ¶l¹lÙ²=zìÞ½[»páÂ2eÊxn‹gΜ 7nÜ Aƒ¤–;vŒ5ê½÷ÞkÕªUÕªUK\ƒ#g^ÂË"##åîlqPœeÂì¹ÇqqÑR°[w£ÍA¹Sktz ƒYa6s¤Tøc½p…H'=U-Ù¶m[Ÿ>}._¾\¿~ý°°°}ûö3æÜ¹sžÛâ‚ RSS-©Qñè£>ûì³999›6m’{àƒÁ ÌÌPÃ9ŠŽ×¯_óÍ7GŒqñâÅW^yåÛo¿MJJêܹóÖ­[»víºbÅ ovæ‘GB>|Xî½@ç8µQѼpx\:µ‘“áEG)FGGûí·/¼ð‚¯¯oppð'Ÿ|òÑG †7ß|søðánߨÙlÎÏÏ/((°i—n T¡B¹÷ =#5ê©òRtp¼xñâóÏ?¿råÊzõêY·wïÞ}õêÕ-[¶Ü¾}»Û7züøñzõê <ئ=%%Eèøœ @jÔ;·¤FÒ#\¡è‹c–,Yc÷¡*Uª|õÕWŽ…`ñnܸqþüù2eÊT«V­fÍšMš4Ù½{÷·ß~Û§Oi”””ùóçW­ZµcÇŽrï€B)7Ú“á&ŠŽE¥F‰Á`°¾~Å[·n}õÕW£££“’’„“&M>|øÛo¿½téÒ¨¨¨S§N¥¦¦–/_~úôérïú¤ÜLïp²Üh0!HpEOUË¥N:+W®ìÙ³çÅ‹7lØpíÚµž={&%%µhÑBî®Ð'R£Þ9ŸÍ÷\@Må.2˜y¹›Ñhä>ŽJ“™™É­é”†ƒâ0¯¦FŽ‹ÓLU€õÎC©‘ ÷¢â²#5ª’›C©‘›{CŽÈÉÑÔHd„0U ò¢Ü¨kޤÆÈ¨(çR#inGp‘ÕÊ-G®äÔh0ƒ!3#Cîáw@.¤F]s(5šÍN× )7Â8ÇdAjT1×^ ©‘ë` TGð>R#ŠF© Fp/#5ê]‘åF÷ Ÿð‚#¥àbð/.5’õ xGð&ʺf?5ºûŒF"(<‡à^CjT=Wa‘©‘”õ 8€wuÍNjôÌ¥ÓQxÁ¼€Ô¨NEû©‘|"8€§‘uÍ65zòÄQxÁ<ŠÔ¨k÷¤Fnë õ#8€çµÃ‰ci›‰ŒP?‚#x©Q×î¦Fo‰¦ð‚#%(í÷¤FÒ4„àž@¹Q¿î¤FïžÑH@…wÀíHšRªÃi³AAŽƒ6À½Húu'5z=2Rn„×ÀHZSŠ#j0˜wÛÆÀ]Hz%ë )7›Žà¤F *ù  BH×Âpô¡ >rw4€Ô¨Kƒ0›åM”áeTÀE¤Fm*î¸þ57mû=Ô€ÖÀ¤F±ŠŒBîÔH¹ÞGp§‘5ËΡµº†B#t‹àÎ!5ê‰UqO!©‘r#dAp'uãÞ[í($5r!8@i‘5îÎ.twFå¤FÊ ÁJ…Ô¨…¢™rR# #îãŽ#5jÁpç+85Rn„Œ¨8€ƒHšVô×**5ò"8€#HÚuÏ}vl³ÒR#åFÈ‹à%"5jTÑUF!„A„àK¨{ x¤F-²­´Ò –^Sn„¼ŽP R£æQeT~j”€àE!5jK±Ów—Rjj¤Ü% 8€]¤F ))2Z¶bS# G(ŒÔ¨ŽU…â/…¡Ü… 8€ R£&”"2 A¡p Á¬‘ÕÏáÈh¡ðÔI¹ ÁW€©Qå †;sºç,årƒAdddÊÝ à*Ž Q~„@ÑJ_ewÎkä ¥@Å©QÅJ_eB„AJ ?ê\¥¡â¤FurªÊ(¬î¹c{€êè©Qm å=§jqÖ©Qážr#ˆà@Ï”`ÅÙãg+ûN€*è©Q=\‹Œ¢ÐWÂ(ÿØSn„2è4×ÉDz¸©p‚#½Q~l€Â=‘QðõÓ€[è ©Qñ\»öåž5Ù;©Qù¯ÊP2‚#ýP~fÐ77•﬌B#àG:AjT0·FFQtjTþ‹€r#Žà@”tÉ}³ÒwW©æ{î¡|GšGjTw—וּØéi^€ëŽ´´ $(1ÞYqI…Få¿(7BŽ´Š›5*‰gJŒwÖÍu0€·h’ò LºáÉÈ(KÊ5Pn„Zhòs‚xlVúîÔ|Ì=!5B=Ž4†Ô(7—ïlÄáéi^€ùÈÝ¥ËÈÈ0û÷ï—»#AHÁpçŸÙìÑÔ(mF3©‘r#Ô…Šc -Z$w8Hù!A£¼Rb¼³)m]Cj„êíËÎÎ>|øðêÕ«—-[&w_”ˆ ¨åàù³ïÙZéÏhä/ ÀíŽöuïÞýìÙ³r÷€#ˆ^çÅã –¾Ð¨ü—åF¨ÁѾiӦݺuK±xñâ;vÈÝEQ~<Ðï–ïlS+—NÛŽ‹Ôu"8ÚתU+é‡-[¶ÈÝE!5z…yñΖ=£‘Wà!G06-ëׯ—»SºvòäI¹»[.”ÈȨÌÌ !2å‡ÖX—Ȩ(!DfFÆß3½··£"£„™™ÎâÈÈL/ö¶Ô£‹ŠÌÈ(Eù/˜ì:uê$w”‚àèiiirw¶"##åîl9{Pî\ Ã!õ)/ q§ÄèýÝ|·ÐèԶúúøk’ºtÝã¿`ò*ü±^¸B¤GêÂ$¤Ç BŠ3ò|çú¼>âàT„TàV7î¾;1íý^ƒY˜µwÌ=c䚨GjAjt7ù®z±íˆ›.VøK„Ô 8P>îïíVŠÉ‹wºã¦/ƒQxj´à@áÈîãõw—ÐÞ£Ñþ`)7BŽ”ŒÔè +1 DF…¿PHÐ ‚#ÅRxP<ååÅ;ýrÓÜ´Õ ýB!5BK¸ªºÿûßÓÒÒ5j$wG]1(> (˜t‰ô_WI+*³H=ÓUj4†Š#¥! 8E©õÅ»twdTÊЂ#E!5–’âó¢ðäE0 ¹¡=GÊ¡ð 0 »DÚ~=yÝ4/ÀûŽ”€;5:L %F¡³[íØß”¡EG²£rä•äÅ;õüéŒ Ñ¡UGòRx›ªò¢ðV¡Qá/R#4Œà@‘‘QBeù¨-/ /ÎM“qG²0dff(;ÈAÁ·`,¡ã õXîŽð,‚#ïSxÍÈëT›…gîé]ìæýÒ¡ÜÍcª€7qõ´ÎGßÓ}¯_7MjdGpà5 ÿÜ÷•çE!Ó­vþê!5B'޼@÷…FKX*΋‚»3Ôý 8ð4…—Š<:tÕï|_6­ã× ,G¥ËO|måE!w¡Qá¯!ÊЂ#Ñßô´æò¢;2 R# 0Gž ð{÷ŽUƒyQ( 2*©:Dpà^º)4j4/ %EF%ÿýAj„>¸‘’?èÝ2>\]äø„AD*"2 e¿˜HÐ-¾9€[”ýAïâà }³‹æRƒå `223äî‹Ô­¾˜u£âÀuý”×îdô=£TÌÄ´U—”Ô›ÂÝ£Ü#8p‘Â?å.ò¢PddŠ=‘¡sGNÓÐu0Z?yÑv¸ŠŒŒÊGjŽœ£ðƒƒÐKqñ•üª"5‚à ôÔ_hÔ_^ŠŒ‚Ô¨Á@©(ùýøŽëk2úž¡+>2 e¿°H€Á€ƒÔYhÔeqñîèÕ©P‚#G(ù“½pgõ[\¼»T…²_[¤FÀÁ@ñÔShÔwqñînPOd¤F@mŽŠ¡äuKÉ‹w¨+2 e¿¼H€]Gv)»ÐÈdô½TŽÔ…àÀ†‚##ÅÅBÔ[n$5Å 8°¦¼OsŠ‹öîä{UFF¡Ä×Ù_#5Å"8(©ÐHX,šzKŒVCPhïI@‰Ž„R>Ê™‰.–"£PÊKÍ^ÇH€Ž€ÎÉ]h¤¸èmDFAjÔàè–¬‘Ñ`ˆ”~àãºXš‰Œ‚Ôh‚Ü éCÜ»Ÿ–ÃÝfsfF×E±ì)³0“=Û1R#PT½ñz¡‘3KCK%F«A)t<¤F ´Ž€®xëœ3KO“‘Qm!8:áùB#aÑ)j¿#cI£Sè¨H€sŽ€æy822í,­–­¨Ð±‘§móÌg7ÅE×h>2 R# QG@«Ü]h$,ºLÛ³Ò÷ŽT¡#$5."8ÚãÖÈÈL´;è¡Äh5X…Ž“Ô¸Žàh‰›"#ÅE7ÑO‰ÑjÈJªôŠæµ ¸Žàh†kÙ„E·ÒU‰ÑjÔJ0…FÀŽ€8[h$,º›KŒ \µâ÷"8ªæÔç5§-z€>KŒ]¡Ã&5nGpÔ«4Ÿ×=C·%F«= Ð‘“O 8jäX¡‘°èIz.1Zí%ŽŸKaÏ!8êRRd$,z%F ŦF^ø€çµ(62rÚ¢çQb´Fjô‰à(_‘‘â¢WPb,ŒÔèÁP¸{?£ ‹ÞB^´K™·Ýá¤FÀkŽ€býõMXô.¦¤‹B¡ÁP ƒå„àSÑK(1Ô@…±ŠŒ|zyÑ LLO² 8r»ó(ýb¶úD^tbOj$2² 8r¸ç´Å{þžÆ)ŒŽS`¡QYo±s‹2«9ÚD‰±´˜™ždGp<¬È[s+ðsYƒÈ‹ÎQà«“B# GÀJ¸…F#/:-*2R(ïÕIjÂGîZa0Üýg6ßýwïB•rø ôË1°¹{¤2!223µ×,o)J@p\àPX¼³(‘ÑsÈ‹n¡ØéiR# LU¥TêïqabÚS˜v¾F¹P&‚#à˜"¯q)î9ÒäîºÖÝK±…F DpŠæü—D=‚[0ºÒR#…F@áŽÀ½œ‹wž/=Sîah‡¥¾(ˆŒn¥ÀW*…F@ùŽ€ëañÎZ¤çË=`>Ú£(4pÁ:æÌi‹öW$­EîñhyÑÓ”öb%2êBp„θ§¸xwuÒŠä•ꑽC…F"# .Gè€ÁiùÙmSDF7 /zÒ^¯•âàÐ.«[sgfd¸ï>ÂÜÊÛUÒ‰ŠŒâ~ÝÞ¡´×+·õÔK/Ço¿ýö›o¾IOO/_¾|›6mÆ_©R¥b–ïÝ»÷lCCCù幇‚b¹y&ÚvíÒzå¤ZÙÔ333E¤K+D‰”ö’¥Ð¨.‚ãÌ™3¿øâ‹ÀÀÀfÍš?~|ÅŠGŽY¸pa@@@QOÉÊÊ ¨Y³¦ucHHˆÜC=ž ‹w¶!­]óÑrQÔDF@´ÓÒÒ¾üòËðððåË—‡…… !¦M›¶páÂ>úèwÞ±û”ìììk×®uîÜù“O>‘»û(šÛ®‰.nýÀÇ]épóEy)ê"# %Ú?Çñ›o¾)((;v¬”…o¼ñFppðºuë ì>%++KaSn„"XN[´œ$åÁ£åÄ0>ñe9<滇‡½çUJ;—ÓÑ~pܳgOÛ¶m--¾¾¾qqq—.]Ú·oŸÝ§?~\Q£F ¹ûŽ¿‹ž­2*ê“W çE¹{¤SŠzáZÞ²´DãÁÑl6§§§W®\¹råÊÖíµk×Bœ8qÂàxæÌ™Aƒ5kÖ¬M›6£GÞ¿¿Ü£ÑïïnRaŸ¼JG^Tƒ’Îh´~×ПãxóæÍüüüµ !._¾l÷YR œ5kVdddË–-O:µeË–­[·¾ûî»}ûöud»F£Ñ¦eýúõrï ˆŒŠ²üœ™‘q÷ÌL×|òäÉâ¶%„ÈÌ”¶èê¶´-*òî1ʸ³ÇD¦S;­øƒÇEEFfdf 7½v]9.QQ‘BˆŒŒLá†w-îâÍ"»N:ÉÝ¥ÐxpÌÉÉBÚ´ !®]»f÷YgΜ 7nÜ Aƒ¤–;vŒ5ê½÷ÞkÕªUÕªUKÜnZZšÜCW{—¹¸ý>-‘‘vWy÷*‚Hn S4ûWF»¼Ç"Ùé®ñÐË׉ãrï0V÷ãÍ"¯Âë…+D:¡ñ©êƒÁpóæM›ö?ÿüSüUw,lÁ‚©©©–Ô(„xôÑGŸ}öÙœœœM›6É=& ñöL´í晘.žÕ¹LF+Ž¢^¾LLú¡ñàèçç\¸²˜-„°\gíˆGyDqøða¹Ç¤r2œ¹hÛ…}æ*WF+œ¢^¾\èÆƒ£"<<üÒ¥KRR´ÈÌÌ”*¼¼ÙlÎÏÏ/|§___!D… ä:yõ²è";ÁvŠAqQI€®h?8¶k×.??Û¶m–³Ù¼uëÖJ•*ÅÄÄ^þøñãõêÕ~üxrrrýúõŸ{î9Ë2[·n}õÕW£££“’’„“&M>|øÛo¿½téÒ¨¨¨S§N¥¦¦–/_~úôéÅ|½µÞyã K×!©7rwC)ø@5R΋˜¯  Ñ~ÅQ1lذ>ú(22ríÚµ—/_8pàÂ… ßÜÑ¢N:+W®ìÙ³çÅ‹7lØpíÚµž={&%%µhÑBî¡(R&£ïvHIÙ÷…â¢J)çEL•€5ƒ™ÿ¸›ÑhÔþ}W_ÅWg233õs4û÷\T]ÇÉ^e´ªŒÊÁ›EtñYoö§ªá6†»s û0‘ý£V~ÌDk€B^ÇÒ·¿¥½Ë(ƒ.¦ªáe]ìbÛ9ÅLèÉ5~f¢µ@!¯céÅ”‘‘©¬w9%!8¢Š;yñžÎ)æ£V–ÁsíPÈë˜8ˆ©jÜK‰'/ÞÓ?©srwÃûÃf&ZkòRæDF¥Bp„BùyQ(æsÖ›&,j“^Ê*xÇP$‚£î)½à` OŠí¡Û¬Žk¢áåDFå¾ã(ÁQ¯TPpP‡¬×†JqQã”ðj&2pÁQgT…2>d½0H¢.ÈþjVÇ›€JõAÚŸ•&,ê‡^Í”¸ÁQëÔñÑ!{QÆ£c#,ê‹ì¯fuü@Ž¥šÙ?d=70®qÑÙ_Íêø;€š5GJ˜ÇóĨ(.ꔼ‘Q5'P?‚£V¨æ£Cö¢ŒÛÇCXÔ/ÙÿRÇ߉4„à¨~êøèýÖ½ƒ!,ê%FúDpT35EF…wÒ‘a!ó@äE²#8ª‘ÑK ,â_ÍäEÊApTu|€¨{Vš°k2¾šÕñv 3G• ÄèÙ~qò"ØEpT<DFU– ‹°K®¿~È‹Tà¨lƒ²?FTVb$,¢(rýõC^ .G¥Rz¡Q5‘ñNXŒ”º«‚ÛȋP*>rw… w JüH1üõϬäÔh¸³ a0 ³Y˜323H°°y{í•ay]Jïo%¾Å XT•DÑUF¥—™†F‰¨/€‹ŽŠ¡ÐÓ•{á‹uR„E¼îBpT…•Xb¤¬ÇÉ’ VÎ(î= .#8ÊM‰…FeEFÂ"JEÞ¼¨¸w3¸ÁQ>Š+4*hVš°ˆÒòþË—â""8ÊDY…FE” ‹p‚—ó"a€Îå ”Ô(‰‘°'X_å弨ˆ7.ȇàèuŠHr– ‹pÅEÁÑ»äOòDFÂ"œãåâ"aŠGpô"9S£ ³Ò„E8Í›¯WÂ"8Žàè-²¥F¯– ‹pš7‹‹„EpÁÑ+äI^ŠŒ„E¸ÂkÅEÂ"¸Žàèy2¤FGFÂ"\qçÕ)<ù25Üó”„Ep¹;72üõÏì‰cƒ0Xþ™…ÙòOîQC …^ ™™nõ¬^¦fó=ÿ®£âèa^*7zªÄHe®ðÎi‹ÌA€×=É©Ñý‘‘°Wx!,2 r!8ª—›#£%/Q*÷¦8¼zHŠ Gñ`¹Ñm‘‘â"œãé²"I”‰à¨.nˆŒ„E8ÁÓeE’"¨ÁQ-\ŒÌD£´Qqô,R£'=Ql_ BˆÈ"ŸÂñÀ1T=Ä „™Ôè"CÑD;åCƒE322)à"*ŽžBjtãåCˇö¯zfgàaGO!5Zs0Ú\Œbó,¢!ò"8z„Á©o"V;GÒaáë”­ˆ†(ÁÑ#4\n,>uÿK3Ñõ"8ƒSÈ…hÁQ§ Î>L4@·ŽZæDáðN.$€BŽªWªtx·^H4¥DpTÇÓá=SɤCà>Ge18ð€íY†¤CàGÙŠm%¥á»ª‹ôí·ßöéÓ'&&æ±Ç{óÍ7¯\¹âÊÚ á²ô¶ß¹Ì({F§NäîlqP”‰ã¢@(ÁѾ™3g¾ýöÛGmÖ¬YPPЊ+žþùœœœR­Ä&&Ú͈jAp´#--íË/¿ _¿~ý—_~¹aÆAƒýöÛo}ô‘ƒk°Ɉ@åŽv|óÍ7cÇŽ “ZÞxãàààuëÖ8²Â"Ђ£{öìñññiÛ¶­¥Å××7..îÒ¥Kûöí“»wò 8Ú2›Íééé•+W®\¹²u{íÚµ…'Nœ»ƒòàv<¶nÞ¼™ŸŸbÓ,„¸|ù²#+1r¶8( ÄAQ&Ž‹qP G[Ò¥Ó6íAAABˆk×®•¸†´´4¹à~LUÛ 1 7oÞ´iÿóÏ?Å_uG"8Úòóó .\YÌÎÎBX®³Ð‚£ááá—.]’’¢Eff¦ôܽÁÑŽvíÚåççoÛ¶ÍÒb6›·nÝZ©R¥˜˜¹{ ‚£}úôñññùç?ÿ)×(„øòË//^¼øÔSO•)SFîÞÈÃ`æëMì™?þ|ðÀ´nÝúøñãÉÉÉõêÕ›?~áÛôèÁ±H«W¯^µjÕo¿ýñÈ#Œ;Vº#€>àÎq€CŽpÁ!8À!G8„à‡à‚£Û|ûí·}úô‰‰‰yì±ÇÞ|óÍ+W®ÈÝ#)íÎÏÉÉY°`A·nÝ7nܺuëáÇÿòË/rBk\yGœ>}ºI“&ãÇ—{ZãÄA9pàÀ‹/¾߬Y³îÚµKîAhMiJ^^Þ¿þõ¯'Ÿ|2&&&!!á•W^9räˆÜƒÐŒŒ £Ñ¸ÿ~¹;"‚£{Ìœ9óí·ß>zôh³fÍ‚‚‚V¬XñüóÏçääÈÝ/](íÎ7™LC† ™>}úùóç[¶lY«V­]»v 6löìÙrE;\yG˜Íæ×_ÝòMñp'ÊæÍ›Ÿ~úéÍ›7‡……ÅÄĤ¤¤ 4hóæÍrE;J{PòóóüÑG]¹r¥uëÖ<ðÀ† zôè±gϹ‡¢/‹-’» ò1ÃeüñG:uZ·n}îÜ9©åïÿ{íÚµ§L™"w״ω¿dÉ’Úµk?ýôÓ7oÞ”Z>üÈ#Ô­[÷ÿûŸÜÒßóçϯ]»víÚµÿö·¿É=ípâ \½zµiÓ¦5Ú»w¯Ô²ÿþ <úè£ùùùrH œþÏ×+¯¼rûöm©eÇŽuëÖíСƒÜ£Ñ…k×®íÙ³gÒ¤IÒ£RSSåî‘ ¨8ºÁ7ß|SPP0vìØ°°0©å7Þ^·n]AAܽÓ8'vþúõë…o½õV@@€Ô=jÔ¨üü|&¬Ý•wÄ‘#GfΜY§N¹¡5N”+Vdgg5ªI“&RKÆ ;wî|ñâÅÈ= -pâ ìÛ·O1xð`???©¥eË–uëÖ=vìØåË—åöuïÞ}À€Ë–-“»#r"8ºÁž={|||Ú¶mkiñõõ‹‹»té’ô&‡ç8±ó333ëׯoÝ-„8qâ„ÜÒ§ß&“i„ •*Uzã7ä„Ö8qP~þùgƒÁгgOëÆ?ü0--­Q£FrH œ8(BëŒh6›¯^½êããc‰’ðœiӦ͙3gΜ9>ú¨Ü}‘ ¯3W™ÍæôôôÊ•+W®\Ùº½víÚBˆ'N4mÚTî>j–s;îܹ…ÿ ûûï¿ !ªW¯.÷˜TÏ•wÄgŸ}vèСùóçW¬XQîqhŠsåàÁƒ•*UªR¥ÊÞ½{SRR®^½Z§NÇÜRª‡+œ;(ݺu[¸pá´iÓÊ—/߸qã+W®Ì™3çäÉ“ýúõã]ã­Zµ’~زe‹Ü}‘ ÁÑU7oÞÌÏÏ ±i÷þ]·snç׫WϦ%99ùË/¿ô÷÷·)®À N¿#RSSÿõ¯ 8ðÑG•r<Üʼnƒ’——wýúõZµj½ûî»K—.µ´W¯^ý“O>iРÜcR=çÞ)F£qÑ¢EC† 2dˆ¥qàÀo¾ù¦Ü‚^0Uí*éò·ÀÀ@›ö   !ĵk×äî –¹¾óóóó.\8bĈ›7o¾ÿþû¡¡¡rIõœ;(999&L¨^½úk¯½&÷4ȉƒrýúu!DzzúÚµk?øàƒ]»vmݺõ¥—^:uêÔ+¯¼Â-#\çÜ;%;;ûý÷ß¿qãFýúõû÷ïß¾}û€€€U«Vq©;¼†Š£«BBB ÃÍ›7mÚ¥›‰H;ÂC\Üù»víJLL}ºÿþ¯¾úê÷ß%÷° }T]åçç\ø¯Ãììl!„åZ9x‚Ó;?//oÚ´iƒ>}úôK/½´nÝ:R£»8qPvïÞ½téÒ‘#GrÉ…‡8qPË•+oÝþøã !þøã¹Ç¤zN”óçÏoÙ²¥V­Z–Ô(„¨Zµê /¼pûöí•+WÊ=&èÁÑ ÂÃÃ/]º$½Û-233¥‡äîÆ9±ó ^{íµ… ¶k×nãÆ/¾ø"U.÷*íA‘¾÷bΜ9Æ¿<ùä“Bˆï¿ÿÞh4vëÖMîiï”°°°2eÊ ëFéÍb2™ä”ö \ºtIQ³fM›v©Ðxá¹] 8ºA»víòóó·mÛfi1›Í[·n­T©RLLŒÜ½Ó8'vþ¢E‹6nÜøÌ3ÏÌž=›’°'”ö Ô¨Q£ë½¤K«V­Úµk׸¸8¹¤N¼Sâãã³³³>lÝ(Ý&†mºEiJÍš5}}}9b6›­ÛÓÒÒ„µjÕ’{@йï@®§NªS§N§N®_¿.µ|ñŵk×þðÃåîšö9²óÿüóÏŒŒŒ'N˜Íæ‚‚‚ǼI“&999r÷]³J{P ;xð ßã^N”ÿýïµk×îÓ§Ï¥K—¤–ß~û-&&¦Y³f/^”{@ZàÄA9rdíÚµ?ùäË—÷>|¸E‹ 4HOO—{@:òÖ[oéö›c¸8Æ ªV­:~üø>øà‰'žhݺõñãÇ“““ëׯÿÜsÏÉÝ5ísdçoݺõÕW_ŽŽNJJºpáBVVV@@À€ ¯­W¯^”{LªWÚƒ"wuÁ‰ƒR·nÝqãÆÍ˜1£S§NM›6½yóæž={ ôiÓî»ï>¹¤N”¿ÿýï½{÷ž3gÎÚµkëÕ«wéÒ¥_ýµ  àí·ß~衇ätàèÆ »ÿþûW­ZµvíÚˆˆˆŽ;Vº«<­T;ÿäÉ“Bˆœœœƒ~”KdÜ…w„9qPFŽºpáÂ;vTªT©]»v/½ô’ô5Kp‹Ò”ÐÐеk×~ñÅÛ·oÿé§Ÿ*UªÔ¦M›Ñ£G?üðÃrza0ß{ª`ÇÀ!G8„à‡à‚#Bp€CŽpÁ!8À!G8„à‡à®ñãÇÆ;wzmUÿüç?Fã’%K¬ŸõÓO?Ù}äEp5Ù¾}ûÖ­[åîò“» kñññ¡¡¡Mš4qðÑ¿ýíoÙÙÙÿûßÿäî8="8€œêׯ_¿~}ç/cª€*åçç›L&¹{úBp Ò…#G:ujÓ¦Mëׯ߶mÛ—^zÉæi±Ó§O§¦¦>õÔS 6ø`µjÕNœ8ñÕW_=ýôÓ¥]•ãš6m:xð`ƒÁ0xðàgžy¦K—.Bˆ 6X/f6›“’’„=zôûXЂ#•IIIiÛ¶íÎ;7nܸoß¾7ÞxÃ`0|üñÇGޱ^lÒ¤I?üðW_}õË/¿<øàƒBˆ•+W®Zµ*,,lÙ²e?ÿüó† ¶lÙÒ¸qã”””Ï>ûÌú¹+V¬h׮ݮ]»¤ML˜0ÁÇÇgΜ9¿ýö›ecÇŽ%$$üòË/«V­úþûï·oßÞ¬Y³S§Nýøã¥Z•ãÞ|óÍòåËûøø¼ùæ›ãÇoÙ²eHHÈÞ½{/^¼hYlß¾}§NjРA­Zµä>V´†à@eÂÂÂ>ýôÓ!„¯¯ïСC PPP0gÎëÅÿõ¯=ú裡¡¡RË'Ÿ|"„˜6mZLLŒÔñÙgŸùûû/[¶ììÙ³–çV­ZuÖ¬Y+VBøùù >|À€BˆÙ³gK ˜L¦øøø¿ýíoRKÅŠ»wï.„8~ü¸u7J\•+|}};tèPPPðÃ?XW¯^-„èÙ³§Ü €¨ÌSO=åïïoÝ2hÐ !DjjªuãO~~~…7ñûï¿K¿Ž3æ‹/¾x衇, \¸paÍš5…{[âª\Ô¹sga5[m2™Ö­[ççç×µkWzÅíx¨Ldd¤MKµjÕüýýÏž=›——W¶lY©Qšž¶8v옢fÍš…WX£F qo¥0**Êî&.\¸pãÆ ©ÊxêÔ©ŸþyïÞ½'NœÈÊʲ9µ±T«rEóæÍ+W®¼{÷î+W®TªTé矾zõjBBBåÊ•=~$èG*c0 ·øúúXß Gš¶0›ÍE­Ð××Wqûöí7áããS¦L!ÄÒ¥K;tèðî»ïþöÛo=ôаaþúê«I“&9Þ[˪\äëëÛ±cÇüü|éÜJæ©xG*“™™iÓröìÙ›7oV©R¥|ùòE=Kª5Úœ€(‘Б֥Á›8sæÌÍ›7«W¯^¶lÙ?ÿüsêÔ©eË–;wn«V­¬»áHo­Wå–Ò¹sç¥K—®_¿¾K—.›7o®X±b||¼»÷:AÅ€ê|÷ÝwyyyÖ-‹-B4hР˜g…‡‡ßÿý§OŸÞ¾}»uû… ¶lÙâëë[·n]KãòåËmnî(m"66VqàÀüüüØØXëÔ(„øã? o·øU¹EÓ¦MCCCwîܹ|ùòÜÜÜ®]»º+’€ ‚#•9{öìØ±c³³³…K–,Y°`ÏK/½Tü_}õU!ÄÛo¿}ðàA©åܹs/½ôRnnn¿~ýªV­jYòĉãÆ»qㆴ‰… þç?ÿñóó3fŒ"<<\ñÇXn‚“ŸŸ¿lÙ2éFÜ999Ö-~UÎ)((¸yó¦åWéÚj“É4cÆ Á<5Obª€ÊtéÒeãÆ-Z´¨Y³¦4íëãã3nܸ:uêÿÄ^½zíܹsõêÕO=õTµjÕŽ=ZPP3vìXë%Fãúõëøá‡ÈÈÈS§Nåääøùù½ýöÛÒe4QQQíÚµûñÇÛ·oߤI³Ùœ––våÊ•,\¸ð»ï¾»~ýú|àȪœråÊ•§Ÿ~úÁ´Ü~²K—._ýuNNN57n,÷! YG*Ó£Güûßÿ>pà@PPPË–-Ÿ}öÙ–-[–øDŸ>ú¨mÛ¶«W¯þã?Ο?ÿÈ#ÄÅÅ 2Dº>Æâ«¯¾Z¿~ý?þøûï¿WªT©M›6C‡µdüñüùó×®]»wïÞjÕªÅÅÅ :4:::??õêÕ{öìq|U¥õÆoL›6íèÑ£¹¹¹–Æ&MšÜÿý.\ ÜÀ£ Å\iŠ2~üøï¿ÿ~îܹmÛ¶•»/ÊRPPЮ]»3gÎüøã<ð€ÜÝ Yœãª·cÇŽÓ§O7kÖŒÔÀ£Ž n9993gÎB<õÔSr÷€ÆqŽ#¨X³fÍrssóòòjÕª%}Y6xÁ€jtéÒ¥víÚ…¿ÄOÏ"""²²²âââ¦L™bs‰¸ÇÀ!œã‡à‚#Bp€CŽpÈÿ剦œ“&A“IEND®B`‚statistics-release-1.6.3/docs/assets/invgpdf_101.png000066400000000000000000000653301456127120000223140ustar00rootroot00000000000000‰PNG  IHDRhŽ\­AjŸIDATxÚíÝy\TeÿÿñkX4T@ Ü¡E3ÅÝw”[Ì}ßZ\ÊÌÒ2»5Ô2+-+5ͬ\Ò\ný¦æ’iæ*?ÑÔ%@Dq_Hq`~œœÆa3çÌÌëùðqßÌ5gæ|Î5“¼½®s£Ñét(Œ‹ÒÀ> Á² Á² Á² Á² ÁpX§OŸÖ<ò믿*]Žò8ðòË/{zz>ùä“-Z´>|ø¡C‡”®«È–,Y"}¬M›6-±~ yzz6nÜø¥—^JOO/t{777ŸæÍ›ÿ÷¿ÿ½víšÌ]šüꫯZ·n]¥J•råÊ=óÌ3C‡5 Ô+tGùýñÇ«V­’~0`À¯¿þÚ¶m[OOOww÷gŸ}öÇ>|¸ôì?þhøÂ¼¼¼µk×¶oß¾fÍšO<ñDÍš5Ûµk÷ý÷ßë»Èè¸ _;pàÀü'äɨ½ûî»:.;;»Y³fùÿjÒh4 .4<9;ÊoüøñÒ–O<ñÄÅ‹óo‘‘1â‘«W¯êÛõƒ‘Fúôécò¸ ßsÀ€Rû›o¾)µÈ=HÑÁÝÝ=**JjÑ>&''§¦¦ !J—.ݽ{w!Äܹs¥µ}úôùõ×_g̘ñÃ?,X°@Ú>::Úhééé!!!«V­Š•NtÛ»w¯ôÔ´iÓ6oÞüùçŸÇÆÆvêÔI¡ÕjwïÞ-=[ÔIt:ݹs礟ƒƒƒå÷ÌŽ;¤&Mšô믿~ÿý÷'Ožlܸ±Ôøÿþßÿ+jWËõâ‹/êßyäÈ‘'NÌÍÍMKKûã?4h ªL™2¿üò‹áÈ_VV–ôÃÊ•+ýýý»wïîëë»råJéú8O>ù¤ôlQw$¹}û¶>ÐÔ¨QÃð©yóæ½ùæ›FÛ8pà¹çžBôïß¿C‡Bˆ°°0é©ÌÌÌû÷ïK?ß¼y³¨½-ó0en–_Q .ôÓ7¯cÇŽ&ÛÿóŸÿ„††Êì“'Ÿ|2--M*µ¨ý @)GÀI=õÔS†+V¬(ý ]ZE<š­¾uëÖùóçÏœ9S§N£yj!ÄÙ³g¥ºtébr/çÎ3Ìs52š/îÒ¥‹´À%11QZ‘Ó¨Q£nݺýç?ÿ1<Û¯¨;’”)SFÿsþËM›!íåÖ­[;w‹‹?zôèßÿmqoËpà€´}ÿþý6 Ôß}qøðáùûÍpKýø¨¾3e¦ÌÍòß9FfÁEýô ý:Éüú™T±bŘ˜kv ä1U ÀÃ+»¸¸äôŠŒŒùdXXØwß}·yóæÊ•+-ìýôÓOŸyæéŸ}öÙ×_=>>^?G¿fÍýÄôŠ+Þÿýgžy¦lÙ²5š0aBlllþÅã2S~o‘_°²\]]+V¬Ø¬Y³ÿþ÷¿‰‰‰-Z´Pº"E£Ñ=:[ ÷ðáí[·Š‚'ˆÕÆî `Ž…©jÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈâ¦t*uûöíÏ>û,...==½R¥Jõë×õÕW•® @1N§t ª“™™qíÚµ      ŒŒŒøøx77·ü±~ýúJW  ¦ªMøâ‹/®]»6f̘­[·~úé§k×®3gŽV«={¶Ò¥(†Gzô葞žûÄOèÛ¶m{óæÍãÇ»ºº*] €8ÇÑ„òåË×®]Û05 !J—.“““““ãáá¡t 8š°jÕ*£–£G¦¥¥5lØÔœÁÑœøøø7¦¤¤ÄÇÇרQcîܹr^¬tá x%&&*]‚Žæ$&&nذA: ´^½z¥J•’ÿB¥kw(ÁÁÁt© ÑŸ6G—Ú]j[ô§Í9í «ªÍ0`@BBÂÞzë­;w8ðîÝ»J  ‚c!4M¥J•FÕ¿ÿË—/ïܹS銔Ap4vîܹ©S§n߾ݨ½^½zBˆ+W®(] €2ŽÆ¼¼¼þ÷¿ÿmܸѨ=--M tÊ 8óõõ >pàÀž={ôgΜY½zu¹råš6mªtÊ`Uµ ³gÏ4hÐØ±c5jT­Zµ«W¯ÆÅÅ !>úè#¥«sF;vìPº‡BÚ]jst©mÑŸ°FMhРÁ¶mÛºwï~óæÍ_~ùåÊ•+;wþ¿ÿû¿=z(]€bq4­fÍšóçÏWº aIJ Á² Á² —ã@+]””˜˜¨t öàpvÁÁÁägÆ?äcª² Á² Á² Á² Á² Á(,,,::Zé*sçÎ1cÆÔ¨Q£\¹raaa±±±f6þã?ú÷ïïççW®\¹&Mš|úé§Z­Vé#°cG`Z||üÁƒ•®â1™™™Mš4ùöÛoÛ´i3zôè¿þú«k×®ñññ&7NNNn׮ݎ;ºví:iÒ¤R¥JMš4©oß¾J„sSºPd999BˆR¥JÇ›kµÚ={ö:thÑ¢EyyyJëcæÏŸŸ””ôÝwß >\ñÚk¯5nÜø7ÞØ³gOþ'MštçÎØØØ¦M› !fΜ9zôèåË—ïܹ³K—.JŠ]bÄûÜ¡CÖèèh)YïÆ]ºt‰ŽŽ¾víš/?zôh=üüü4sww·¾¶µk×úûû6LzاOŸ}ûöeddäßxÏž=aaa†ÝòÊ+¯!bbblÒQNˆGAjjj\\œMÞÊ××W§Ó !ëÔ©S¤×îÞ½»sçÎÕ«W9rdÙ²e7mÚtìØ±ÐÐÐððpk‡«233Ïž=;pà@F£o _¶lYlll¯^½ 7ÖjµãÇoÒ¤‰aãùóç…¥K—¶IG9!‚#°ìììáÇûûû>|ØÏÏO1yòäN:%&&NŸ>ÝÓÓÓÊ÷¿råŠN§óõõ5l¬\¹²"ÿਛ›Ûœ9s [nÞ¼9gÎWW×>}ú(ÝUöŠà¨0FètJp\Z­vÛ¶m=Û³gOîkÿþý—.]š9s¦”…¥K—ž2eJddäÆGŒaem÷ïßBxyy6z{{ !nܸa¾¶ß~ûí¥—^JJJZ¼xqPP Ú©•$¥F²#¨–ÁŒhI+ôWCnn®áÂV±Ü»w/**ªà½Øò7PjjªâÙgŸ5llРâÔ©SÖ׿ãã#„øûï¿ 333…+V,è}ÒÒÒ^yå•-[¶íÞ½;<<܆‡ìlŽHÍÿ°ðàáì¬,“›y{{Û6šááá!„0ºP¢”hMžàXÔÚ|}}]\\Œf¥¯_¿.„¨ZµªÉ—¬Y³æå—_.W®Ü’%KFåæFò± Ý€]ºté’áC“ËŠEÉNUKSÀ †ÒXcpp°õµ¹¹¹…„„ì߿߰ñ÷ß×h4õêÕËÿ[¶l:th¿~ý¾úê+£ nX†à¨ý 5³Õ \¾|yëÖ­=zôB$''?~Üäf%9UúôÓO/\¸püøñåË—Bäää|üñÇåÊ•“ê´¾¶_|ñµ×^ÓøÕ«W7lØÐ©S§€€€ü/Ÿ2eJõêÕW®\éêêjÃÃtfGì’››Û€"##óòò¶nÝZÐ%fl>U½fÍšqãÆ9rþüùFO¹»»/X° W¯^ 6|ùå—]]]7lØ÷ùçŸ-…¶¸¶#F,_¾|ðàÁR6ýî»ïîß¿¯¿)âܹs?üðÃ9sæŒ3&!!áÌ™3uëÖ}á…ŒÞäù矌Œ´é§á,ŽØ¥æÍ›wïÞ}É’%Z­öÅ_ôòòš5kV ì7''çöíÛR;cÆŒE‹egg7lØpûöí6¼M‹——×¾}û&Ož¼aÆ[·nµlÙrõêÕ5’žÍÎξ}û¶tögRR’"!!Áhê\ñôÓO-£)±fGpppbbb¡›NO3Um^JJJþ9XŒþ´9ºÔæJ¸Keþ½­*ÕªU3:Û¯Ä,[¶ìÔ©SŸ}ö™ÒÝ`|ìñ;cÜrAvvöÞ½{CCC•. 8€"ˆ‰‰©[·î Aƒ”. àGU`a5 HÆŽ«ÔõeÚ·oß¾}{¥;Ê 8`¦L™¢t pFLU+ƒñE`wŽ…àYŽ…àYŽj!]‘@µŽ…àYŽ…àYŽ…à ­töW›£"8Óâãã<¨töW›sSºüKº”£N§tÕËÉÉB”*Uª8Þ\«ÕîÙ³çСC‹-ÊËËSúXí¦6g@pÀþW«Vmÿþýú–èèè­[·=zÔú7¿qãF—.],~ùÑ£G£££ãââ®\¹bØîææöðáCekƒ•Ž `X`s©©©qqq6y+___N'„HLL¬S§N‘^»{÷îÎ;W¯^}äÈ‘eË–Ý´iÓ±cÇBCCÃÃÃ]\lp‚œ5µÁzG`ÙÙÙÇ÷÷÷?|ø°ŸŸŸbòäÉ:uJLLœ>}º§§§ÒÂZG™V«Ý¶m[AÏöìÙÓ†ûÚ¿ÿ¥K—fΜ)¥F!DéÒ¥§L™¹qãÆ#F(Xl‚à@4B£àÞuÂ܉M¹¹¹† Z)rïÞ½¨¨¨waÓs§RSS…Ï>û¬acƒ „§NR¶6ØÁ€™nÊzðàáì¬,“›y{{—XóððBhµZÃF)Ñš<Á±$kƒM°K—.]2|˜‘‘ar³’œ B$$$6JcÁÁÁÊÖ› 8`—._¾¼uëÖ=z!’““?nr³’œ }úé§.\8~üøòåË !rrr>þøãråÊIu*Xl‚;Ǩ‹t p åææ6`À€öïßÿ™gžqww7¹™4\ ö»fÍš *Lš4)ÿSîîî ,¸qãFÆ çÌ™óÑGµnÝzÿþýsæÌñõõ-ÚPÜqÀ.5oÞ¼{÷îK–,Ñjµ/¾ø¢——׬Y³J`¿999·oß.è”ʈˆˆØØØ3f,Z´(;;»aÆ۷oç’݃à€]Òh4S§N:uª¾eæÌ™¶ÝEpppþ‘¿áÇ?|øÐä*iI£F~úé§â>|“µ¡¸1U Š ;;{ïÞ½¡¡¡J@ÄÄÄÔ­[wРAJ0U €ý;v¬———"»nß¾}ûöí•î(ƒà€ý™2eŠÒ%À1U YŽ…àYŽªÃÍc€: Á² ‹S\Ç1++ëÇܰaCzzº§§gíÚµGõÜsÏ™yIŸ>}Nžûì3¥ËP Ç?ÇqÇŽBˆiÓ¦I©Q4f̘ÜÜÜ‚æÓÒÒ„FÃNÎñƒcJJJÙ²eëÕ«gØ$„¸pá‚É—œ?^Q³fM¥k@aaaaÑÑÑJWñ˜½{÷¶oß¾råÊO>ùdëÖ­7mÚ¤tENÄñƒã’%KÖ®]kÔxúôi!DõêÕM¾D ŽÆ kÚ´iÛ¶mÇŽ{âÄ ¥€¯¶U¡?ÿüsxxxZZÚ!CÆŒsíÚµçŸ~Ù²eJ×å,ÿÇ£–ØØØ¥K—–.]:**ÊäK¤‘È ´lÙòâÅ‹{÷îÝ·oß{ï½×¯_?9; 6j‘fÌ…B¤¤¤˜yr²Ðh’“ ÙÌy¤§§+]‚C¡?mŽ.µ9º´P999BˆR¥JÇ›kµÚ={ö:thÑ¢EyyyJëc¦NêççwìØ1ooo!Ä;ï¼ý /Xó¶æ5wíÚUéãV ÇކrssW¯^ýÑGåææÎ›7ÏÇÇÇäf“&M6l˜ÔrèС1cÆ|ðÁ­[·®R¥J¡;JLL4ól@@€œjenæ$è Û¢?mŽ.µ9ºÔ¼àààjÕªíß¿_ß½uëÖ£GZÿæ7nÜèÒ¥‹Å/?zôhttt\\Ü•+W ÛÝÜÜ>|hMa<8}úôÈ‘#¥Ô(„([¶l›6mV¯^••¥_Ì`óß·ü¿Öó9 ' އŽŽŽþ믿üýý?øàƒV­Z´åwß}gÔÒªU«¡C‡.[¶l÷îÝú4 €z¤¦¦ÆÅÅÙä­|}}u:"11±N:EzíîÝ»;wî\½zõ‘#G–-[vÓ¦MÇŽ wq±ö9WW×'NŽûhµÚ“'O6hÐÀšÔùœ"8æää|üñÇ+W®|â‰'^}õÕÑ£G[ðõjÖ¬Ù²eËΞ=«ôÑ RÙÙÙÇ÷÷÷?|ø°ŸŸŸbòäÉ:uJLLœ>}º§§§•ïïææ¦_íºbÅŠ¤¤¤mÛ¶eddüðÃJº³püà˜——÷ÆoìÚµ«cÇŽ3f̨\¹²ùíu:]^^žF£1ú‡‘«««Âú/=%I«ÕnÛ¶­ g{öìiÃ}íß¿ÿÒ¥K3gΔR£¢téÒS¦L‰ŒŒÜ¸qãˆ#lXÛ¬Y³’’’„:uâB(%ÆñƒãÊ•+wíÚ5hР3fÈÙþüùó]ºtiÖ¬ÙÊ•+ Ûããã…ŸÓNJ£Qrïfo5–››kø° U,÷îÝ+h1¨BgÓ»™¥¦¦ !ž}öYÃÆ !N:eÛÚÎ;wÿþý˜˜˜^x¡E‹ …Ž Áz~9N·jÕ*OOÏ·ÞzËÌf÷îÝKII‘ñÕªU«qãÆGŽY¿~½~ƒøøøåË—W©RÅš“…MRô/$@at:%ÿ˜õàÁÇYYY&7óööÖ̶½% ¦Õj ¥DkòG+k+S¦L‡>üðÛ7onÞ¼Ù¶Ç“|ÄñÚµkÒ]§œÿÙ^½z 2D±oß¾×_=((hëÖ­BˆéÓ§=úÝwß]³fM``àÅ‹?^¦L™9sæØöÜ[ºGÿ @‘\ºtÉðaFF†ÉÍJrªZº¿FBB‚a£4ÖhrÊ®¨µmÛ¶-**jÕªUýû÷×7V¨PAØzèqðà( "fee™!/hau:u6mÚ4oÞ¼˜˜˜sçÎU¯^=**j„ þþþJÿ¸|ùòÖ­[{ôè!„HNN>~ü¸ÉÍJrª:44ôé§Ÿ^¸páøñãË—//­O-W®œT§•µ5oÞ\ñí·ßöë×Oóè,‚ï¿ÿ^ѲeK›÷0òsðàjþ’Š’ˆˆˆˆˆÖʕ+Ï;·dŠdÐ`77·DFFæååmݺµtéÒ&7“¦ƒm¸ß5kÖŒ7näÈ‘óçÏ7zÊÝÝ}Á‚½zõjذáË/¿ìêêºaƸ¸¸Ï?ÿÜ×××úÚ|||¦M›Ý´iÓ.]ºh4š_~ùåÈ‘#'N”ΤDqsðà¨fæÃ¢N'4šBÏo8¯æÍ›wïÞ}É’%Z­öÅ_ôòòš5kV ì7''çöíÛR;cÆŒE‹egg7lØpûöí6\!0cÆŒÀÀÀ… .^¼ØÅÅ¥nݺk×®5œ¹F±"8`—4ÍÔ©S§Nªo™9s¦mwœDpøðá>4y˜¤Q£F?ýôSñõ°aø‡R|U5°­ììì½{÷†††*]@pES·nÝAƒ)]ÀTµ*°>P$cÇŽõòòRd×íÛ·oß¾½Òe°?S¦LQº8#¦ª ÁQLL»Cp€,GÈBpT iaõc-:¡ÑXöf¶Gp€,GÈBp€,GÈBp€,Ç¥Ñþö‰à¨"ù¯È G`lïÞ½íÛ·¯\¹ò“O>ÙºuëM›6)]Ñ¿îܹ3f̘5j”+W.,,,66ÖÌÆüñGÿþýýüüÊ•+פI“O?ýT«Õ*}vŒàóóÏ?‡‡‡§¥¥ 2d̘1×®]{þùç—-[¦t]B‘™™Ù¤I“o¿ý¶M›6£Gþ믿ºvíorãääävíÚíØ±£k×®“&M*UªÔ¤I“úöí«ôAØ3l­víÚ=%õ·™N¦¶Grr²Ò%8úÓæèR›+á.5ó÷¶j=xðàÁƒÅôæ 4ðóó»}û¶ôðîÝ»5jÔ¨V­šÒ­Óét3fÌB|÷ÝwÒÿþú«|ùòíÛ·7¹qÏž=]\\Ž9¢o5j”bÇŽ†›Yð°ÇïŒM0â¨jÜu`Rppp‡ [¢££›6mjý;?xðàôéÓ=zôðöö–ZÊ–-Û¦M›ôôô¬¬,9ïpôèÑ=zøùùiçîîn}yk×®õ÷÷6l˜ô000°OŸ>ûöíËÈÈÈ¿ñž={ »å•W^BÄÄÄX_‰srSº`©©©qqqÖ¿««ë‰'|||ô-Z­öäÉ“ 4ððð(ôå»wïîܹsõêÕGŽY¶lÙM›6;v,444<<ÜÅÅÚáªÌÌ̳gÏ8Pc0¬¾lÙ²ØØØ^½zn¬ÕjÇߤIÃÆóçÏ !J—.mƒwJGð/77·zõêI?¯X±"))iÛ¶m?üðC¡¯ÍÎÎ>|¸¿¿ÿáÇýüü„“'OîÔ©SbbâôéÓ===­¬íÊ•+:Î×××°±råÊBˆk×®å?9sæ¶Ü¼ysΜ9®®®}úôQ¸—íÁG¦Õj·mÛVг={ö4óÚY³f%%% !:uêT³fÍB÷µÿþK—.Íœ9SJBˆÒ¥KO™2%22rãÆ#FŒ°²¶û÷ï !¼¼¼ ¥)õ7n˜¯í·ß~{饗’’’/^T<íøŽê"]Ê‘k„€J({ž¹ù_¹¹¹†óòòLnvïÞ½¨¨¨waö¾çλÿ~LLÌ /¼Ð¢E‹„„ix¯ ©©©BˆgŸ}Ö°±AƒBˆS§NY_›4þ÷ß6fff !*V¬XÐû¤¥¥½òÊ+[¶l Ú½{wxx¸€¥X@tŠþ1ïÁƒ† Z¹âíímf‘l¡=P¦L™:|øá‡7oÞܼy³ù¥“ .”(%Z“'8µ6___£Yéëׯ !ªV­j²¤5kÖÔ¯_?..nÉ’%þù'©ÑJŒ8`—.]ºdøÐä²bQôéàmÛ¶EEE­ZµªÿþúÆ *ˆÂ†'…ÒpBB‚a£4Öl}mnnn!!!û÷ï7lüý÷ß5þ¼LC[¶l:th¿~ý¾úê+£ nXHéë9 k®ã¨ãRަp‘<Û¢?mŽ.µ9®ãX¨Zµj !¶lÙ"=ü믿ʕ+gò×úíÛ·‹®]»æææÖ¥K—¼¼<}ã Aƒ„'Nœ0_UNNÎÓO?íïïëÖ-©åÁƒaaaåÊ•»|ù²õµétº ø•+W|}};wîœ˼¼¼:uêÔªUK«Õš/›ë8ÊLj#vÉÍÍmÀ€‘‘‘yyy[·n-è3Òt°ü·õññ™6mštUÈ.]ºh4š_~ùåÈ‘#'N”ÎV\³f͸qãFŽ9þ|£×º»»/X° W¯^ 6|ùå—]]]7lØ÷ùçŸ-…¶¬6!Ĉ#–/_>xðàñãÇ—/_þ»ï¾»ÿ~tt´ôìܹs?üðÃ9sæŒ3&!!áÌ™3uëÖ}á…ŒÞäù矌Œ,ÑOËQ°KÍ›7ïÞ½û’%K´Zí‹/¾èåå5kÖ,›¼óŒ3.\¸xñb—ºuë®]»V?s““sûöí‚N©Œˆˆˆ1cÆ¢E‹²³³6l¸}ûö.]ºØê¨½¼¼öíÛ7yòä 6ܺu«eË–«W¯nÔ¨‘ôlvvöíÛ·¥³?¥õà FSçBˆ§Ÿ~šàhMQ“> œ˜˜hò)Fèt…¬›Îÿ¬ô*g–’’ tŽƒþ´9ºÔæJ¸KÍü½­ZÕªU3:Û¯Ä,[¶ìÔ©SŸ}ö™ÒÝ`|ìñ;c¬ªE½wïÞÐÐP¥ Žª£Sú²a˜S·n]i¹ œ ç8`ÆŽ«ÔõeÚ·oß¾}{¥;Ê 8`¦L™¢t pFLU@‚#d!8@‚cIÓȸo=€  ÁÑètBÃ¥€ÒŽjÄ5À€  Á² Á²€±½{÷¶oß¾råÊO>ùdëÖ­7mÚ¤tE&„……EGG+]…s!8€ÇüüóÏáááiiiC† 3f̵kמþùeË–)]×câãã<¨tNÇMé@‘åää!J•*Uo>uêT??¿cÇŽy{{ !Þyçèèè^xAéãZ­vÏž=‡Z´hQ^^žÒå8F°?ÁÁÁ:t0l‰ŽŽnÚ´©õïüàÁƒÓ§O÷èÑCJBˆ²e˶iÓ&===++KÎ;=z´G~~~šÇ¹»»[_Þ7ºté}íÚ5Ûw+ È£Jé¿«µtów¹ 555..Îú÷quu=qℾE«ÕžüðÛ7onÞ¼ÙüÆÒIZ­Ö°QJ´&Op´²6”|øð&L˜0~üx¥«PÁÑ„uëÖ?~¼qãÆß|󇇇âܹsC† Y¸paxxxݺu•.@,Ž1aÇŽBˆiÓ¦I©Q4f̘ÜÜ܃*]€2Ž&¤¤¤”-[¶^½z†AAABˆ .”p1\ʨSÕ&,Y²ÄÍ͸gNŸ>-„¨^½ºÒÕ(ƒàhBHHˆQKllìÒ¥KK—.%çò_ÖaÇŽB!RRRŠ\P@€þUÉÉB£ HN.ú›Ø³ôôt¥Kp(ô§ÍÑ¥6G—Úýi¥®]»*]‚Z ‘››»zõê>ú(77wÞ¼y>>>r^eæÊ–]ÁèUNxU'<äbEÚ]jst©mÑŸÖÈÿkÝi/üIp4çðáÃÑÑÑýõ—¿¿ÿ|ЪU+¥+P ÁÑ´œœœ?þxåÊ•O<ñÄ«¯¾:zôhý kçDp4!//ï7ÞØµkWÇŽg̘Q¹re¥+PÁÑ„•+WîÚµkРA3fÌPºµà:ŽÆt:ݪU«<==ßzë-¥kPF]»v---ÍÃÃcðàÁùŸíÕ«×!CJ¸$éà:¥{89‚£1ébWYYY§NÊÿ, «€Ó"8 5sF5Ðé„F#tŒ@€’Å9Ž…àYŽ…àYŽ…àYŽöAº8€‚ŽvIº”#@I"8@‚#d!8@‚#d!8@‚#d!8Ú .å”Ep€,Ǥ:¾×%‹àYŽ…àYŽ…àYŽö„K9 ÁÑŽq)GP’Ž%„„ìÁ² Á² ÁÑÎp)G ‚#d!8Ú7.åJ Á² Á² Á²í—rŠ 8Ú=®ÈJÁ² Á² Á²¨+8Λ7/))Ié*`‚º‚ãÒ¥K»wïÞ»wï•+WÞ¼ySérÔ‹K9€’§®àøòË/W­ZõÔ©S³gÏnÓ¦ÍØ±cwîÜ™““£t]jÇ¥@ pSº€ÇLš4éõ×_?vìØ–-[¶oß¾gÏž={öxyyuïÞ=**ªaÆJà¼Ô5â(„Ðh47~ï½÷<¸xñ∈ˆœœœ5kÖôïß¿sç΋-ºxñ¢Ò58#ÕG=77·ðððO?ý4&&fÚ´içÏŸ_°`A‡†ºyóæÜÜ\¥kp"ꚪ6rëÖ­_ýuÇŽ111Z­VQ©R%ww÷#GŽ9rä믿^¶l™¿¿¿Òe85ÇëׯÿòË/;wî|XÐSiii\Ä@)ÊOUïÛ·oìØ±ú‡+V¬XµjUþÍòòòt:]5”®ÀI)]]]½¼¼¤ŸoݺUªT©2eʘܲ|ùòo¿ý¶Òõ8)åƒcëÖ­ccc¥Ÿƒƒƒ ðÎ;ï(]”}àŠ< $) =ºI“&JWa¯¸"(Vê ŽS¦LQº˜¦pp\½zµ¢Y³fAAAú‡æ |¸T©RmÚ´BÔªUë©§žJNNVºF'¥®©êÛ·oûøøH?kµÚ?ÿü³~ýú¥J•’ZÊ”)sýúu¥kpRêq¬R¥Jzzznn®««ë±cDz³³›7o.=•———žž^©R%kÞ?99¹[·nëÖ­{öÙgÍoÙ§OŸ“'O5úøøûì3¥»@-Ô«V­úã?~òÉ'gΜyúé§£££¥«6^¿~ÝËËëwÞiÑ¢…oyùòeùÛ§¥¥ !Œ†œœº‚£"((hÉ’%F+W®ô÷÷wq±p)Ïûï¿ÿàÁ!ĪU«:TèöçÏŸBÔ¬YSéÎPÕG“ªV­jÍË[·n-ý°wï^9ÛKÁ1##cذa eÊ” 3fL¡Kj˜ê‚ãöíÛW¬X‘ššª+`}Glllq×páÂ!Ä‚ Z¶lyñâŽ{÷îÛ·ï½÷ÞëׯŸœw6nJLLII)®Šó€bÜ—ÒÓÓ•.Á¡ÐŸ6G—Ú]j[ô§•ºvíªt j¡®à¸{÷î‰'J?»ºº*UFFF†‡‡Ç¤I“ô—"?tèИ1c>øàƒÖ­[W©R¥ÐwHLL4jÑPLë„Ð<¾°:ÀÁV_ï9'úÓæèR›£Km‹þ´Fþ_ë&Fˆœƒº‚ã²eË„#FŒ7nœ···Re|÷ÝwF-­Zµ:tè²eËvïÞ­O“NE]wŽIJJªV­Ú[o½¥`j,H³fÍ„gÏžUºe¨(8>|øðï¿ÿ®^½ºÅ«§mB§ÓåæææååµKSçžžž Ö  GooïsçÎåm%éüùó!!!Ç7jN|N€Š‚£««ë /¼pýúõO?ý´„w}ïÞ½””iÑY­Zµ7n|äÈ‘õë×ë7ˆ_¾|y•*Uºté¢t?(C]‹c""".\¸°téÒØØØnݺU«V­T©RFÛ´k×ÎæûÝ·oß믿´uëV!ÄôéÓGýî»ï®Y³&00ðâÅ‹Ç/S¦Ìœ9s<<<”î$Ó¸c5(nê Ž:t~øã?þøã“Ûä_osuêÔÙ´iÓ¼yóbbbÎ;W½zõ¨¨¨ &øûû+ÝCŠQWpüÏþS¬ï?{öìÙ³gçoˆˆˆˆˆ0l©\¹òܹs•îQWpüøã•.¦©+8êݾ}ûÔ©SUªTyî¹ç®_¿îãã£tQNMuÁñÆ‹/Þ°aCVV–bøðáÏ=÷\¯^½êÕ«7gΜ *(] €“RÑåx„>7nÜÊ•+½¼¼zõê¥o¯\¹òÞ½{  ¥I˜$-¬þ÷¡Nh4¿€1uÇ%K–?~¼mÛ¶;vìøðÃõíëÖ­ëÙ³gjjêŠ+”®Ñ8àÔ9âêêúÁ”)SưÝÕÕuúôéeʔٹs§Ò58)uÇ„„„€€“ë`Ê•+xþüy¥kpRê ŽÞÞÞ÷îÝ+èÙ[·nyzz*]#€“RWp ÉÈÈ0yϘ„„„‹/Ö­[Wéí ëc€ ©+8öïß_£Ñ¼ñƧOŸ6l?}úôĉ…QQQJרjF «lH]×q|î¹ç^xá…¯¿þúùçŸ BìÞ½ûСCýõW^^^¯^½ºté¢tNJ]ÁQñæ›o6nÜxîܹÉÉÉBˆ‹/ !*Uª4iÒ$Ã+; „©.8 !Ú·oß¾}û[·n%''çääúúú*]€³Scp”T¨P¡qãÆJW€(W¯^]Ô— ؜ꂣD£Ñøùùùùù)]þ¡®Å1P-‚#d!8: î¬Dp€,G‡%-¬°‚#d!8@‚£a} °Á±D踉 °{GGÆú`CGÈBp€,GçÂú`1‚£ƒã4G`+GÈBp€,G§ÃiŽÀ2GÈBpt|¬6Ap€,GgÄiŽÀGÈBpt œæ¬Gp€,GÈBptR¬EEp€,GgÁú`%‚#d!8:/NsEBp€,G'ÂiŽÀGÈBptjœæä#8@‚£sá4G`1‚#d!8:;Ns2 ‹›Ò ¤I§9êÌn£1u&¤®GpÄ?³Õ:"£ÉŒ¨O“$HœÁÿ0%ú§ Ý8$‚#„Bè4òƒ ´%ñgÃâgdt5GÐM‘óŸNètB§ —†À9FhtBgñEyôñQéãÅŽàèÔ¤Ôhýû0ô€3 8"99988øÄ‰Jbc.Êc³3zÀá ±råJ¥K(ùžMn!CvÀ±ªÚ´ÌÌ̳gÏnÙ²eíÚµJ×b{Ò u1å;}vdÁ5†àhZddäåË—•®Â^é¯×CvÀ‘M{ÿý÷‚#”'+;ª95þ{$Ì\Áª`>;ÚAjüçHz8,‚£#+Òéƒ ÎV?* €ì¨Ñ¤$'—\¶9†ˆà1‘íb†ÚôÁ0ôp4G¨‹µ×wT†„àè°,¸5‹â³ÕÊx”íw¸ñ±ãaèà ŽP#Ð9Hjü÷zØ=‚#TI£:Çš³ =ìÁÑ1Y0O-QÅlõ£±FG;ßQBvØ-‚#TÍ‘³#ñ`o¸W5T&ß©:¡ÓX8€ª^ú;\;ÒyœGLj£²xžZ¢äluA*9%ÙÇÓÖ;Cp,~Ž6V¦ Çœ³L[ì Á²”ÄÐXaó¶ŽœzØ‚#LÈ?[]ìäíç°ÙQ0m °GGcå ŽêGv@)G˜V¢KdЏ¸Øñ³#ñ JGØ%ÏŽ =T‰àˆ"(–”@pDáJô.26¨Ö ²£š?€ã"8:{ºEu± 7ê9~vêïEp„…Tž[ÈŽØÁ²Øl‰Lñ7ÔLvÀ–ްœúC‹eG•‡@p„\6t,ÁáFƒ²#;ª?ÅìÁÑ(¸2Æ.âŠSdGa'ÀžQV :*1ÜhP9Ùka-{É*dG¬DpDÑX8è¨èp£AñΔ‰[#8Ú=5\úÛŽ¹œ(;Úѧ°GY‘Õ1ÜhP¿sdGaW‰`ް ûŠ(dG,@p„%Š0訲áFƒCp²ìH|Xà›±»±-çÊŽv÷ñÔ‡àhß”¼ô·­î^­();:Q|$;¬@p„-'µÎS?V³Ð9×Ð#Ù`)7¥ €“Õ å‹N 6*‘CÕØC ¨#ް±‡´ì-8ϸcJr2Ëe 8Â*Žq¦£Áá8Kvd¹ ÀGØžNgÃÿï<ÙQpÊ# hŽvL%çä4èh¿„ì€IGÀg¼LñP‚#lÀxÐQ£:½d9Ýezìý?‚#lÃÁVÉ—ÓdGÁ´5 GØšÁ²ÇÈ!dG$G{¥’•1†L::FqÆìèÀÖ¸s ä0Ÿ!Ô•_‹‰>;ª-¯ÏÑê„°ãk*Š Á1 ‹:™[ê„Ð茳†4€å DŠŒ*ë-¶v”O`#Gä'AùqÁ`KF§Ó˜hw NtWkAv<†saH#„Fu™O§ùç4þ8È™Žÿ!§<œ#Žu”Ñä{ü34¥û'~êßMŸu3tÅ)'Dp´K¶ž*Õó´²þê<5‹Í)gÃTµ“ÓØ,5>) ¸¸N£1œÅvL[œÁÑ™Y:£9f/ëh|¤]sº[;Ø)«ÙŽN«¸§§åÐ=ž í˜sÝØZ8Ür'€<GçdëÔXÀ©o²ï%ã8ñÑé²#ñœ ÁÑ •èXcQîCèñ‘ik€#8Ú»[Æ[Ä{XÛýéL[ÁÑÙÃpc±\¢ÅîOtÆìH|GÇuŠb bt¦ö-ï²€:!D@€-®O®ÀQs‘p€CaÄÑyOj”Š8aý˜””d;}dÚàHŽÅ‹ß¡…*JÒ°×Ék§[1ô58(‚£“PÃU ºŒocñѹ†Ym Šàhg,ZR]l©±è'´Y3aïì2>2ô°_β8fýúõëÖ­KJJ*S¦LÛ¶m'Ož\¡B3Û÷éÓçäÉ“F>>>TúPìž eL¾™x”•R•W±NØá5•,=ZVÌ€CqŠàøé§Ÿ~õÕWeË–mÚ´éùóç7nÜxîܹ+Vxxxô’´´4Zµj6–/_^éC±€*&©Ø4;ŠÇã£PáñšªØÉ\“À!8~pLLL\ºt©¯¯ï† *W®,„xÿý÷W¬XñÉ'Ÿü÷¿ÿ5ù’ÌÌÌ;wîtëÖí³Ï>Sº|+†(`]ÀпÌ> nèQš³&>€=süs×­[———7qâD)5 !Þ~ûmooïíÛ·çåå™|IZZšÂh¸Ñ>©q¸QRÐB[¬©°§Óè¬GVÌ€ýsüàxôèQ—víÚé[\]]ÃÂÂnܸqìØ1“/9þ¼¢fÍšJ×n%õ¦F‰Y›y{ûˆN·àš3`·<8êtº¤¤¤Š+V¬XѰ½víÚBˆ .˜|•322† Ö´iÓ¶mÛŽ;öĉJš¦5m4Om»EÖfö`7ñ‘¡G€Ê9ø9Ž÷ïßÏÍÍÍ¿¨ÅÛÛ[qóæM“¯’å‚ Z¶lyñâŽ{÷îÛ·ï½÷ÞëׯŸœý?ú1Qz¸cÇO€HII‘µa@`JJ²²6¶¨¹•*YM@@òãï–œ,4š€ääÓÓÓ­ÞÉ?÷-LII.¦>±EW$ !4!DrqÖiuÚäh“4!DJ²z?ùTÑ¥Ž….µ-úÓJ]»vUºµpðà˜••%„([¶¬Q{¹rå„wîÜ1ùªŒŒ I“& 6Lj9tèИ1c>øàƒÖ­[W©R¥Ðý&&&J?H£*ú‡Ö °ù–Å]I¡tBhL-²ÐkÚbwöqÛëÍïèrq=äªNà( ®UÑ¥Ž….µ-úÓùŒ9Ÿª._¾¼F£¹ÿ¾QûÝ»wÅ£qÇü¾ûî»ãÇëS£¢U«VC‡ÍÊÊÚ½{·ÒǤűžºØç¬ w¥Ÿ¼Vïl©sÍ\sÖ#Ø ŽnnnÞÞÞùG333…úuÖr4kÖLqöìÙ¢U Ì9‰j_cR fGñ(>ªúôGý¢ÇœõvÂÁƒ£Â××÷ÆRRÔ“ÎÏóõõÍ¿½N§ËÍÍÍ¥WWW!„§§§Ò¤´âœX,(;ß ‹ÝÄG¥ )CeèÔÎñƒc‡rss÷ï߯oÑétûöí«P¡B£FòoþüùáǵÇÇÇ EÏi½¤Ú.‡õLfÇää”bŽvz(Îñƒcß¾}]\\¾üòKé¼F!ÄÒ¥K¯_¿Þ»wowww©åÞ½{)))Ò¢³Zµj5nÜøÈ‘#ëׯ׿I||üòåË«T©Ò¥K¥Èñ•융ўÕ{ú£sÍ\3ôªä૪…UªT™ê?uF@ Œ8B¥×·ê ˆÆ%~Êcþº„ª bô‘5× ‚#ì†Z³£Pá|œ%>2s %‹àèyžÚ®€h¦‚ì¨/P¨gÒñã#k® d!ƒ:B™DÍT³\¦ …J$ñ`+,ŽqÎ2Üh¨ Ëô¨ìš-*ZCãøKgÔ÷ñ€ãaÄÑ8óµxÌPñ)&‹j€ügô1À¡Gz€bÈ# £¾¦WÐPžZ/Øb4©X}É)ÉŽ<úÈ%{ Ø0âhïœqžÚ™S…zC¯*N‚tðs9ñŠÁŽ@õ«­Í.Q,AÆGáx ’ø6Ep„YêŽ]†ìaµu¡å ¥¤>/:椺ǟÀŽíš³ÏSç§³¿iëüG Q2A:l|´‡C€šáhÌO[ »‰ J&H‡¿fæ¬CpT;%¯Åc'ctùÙçŠóG#J>A:ìü5ñ,Ep´_ÌSÂQ† H¢L‚t´Hâ#ÁŽÌðºÛ†ÑÀÎ3Cþ)J D:椠„Q{›Ð5ñf®ó™xt|ù‹i¯7I|yŽp7sÿø$%4 é€ÄG( ÁÑNq‚£%tæÚäQ ƒc% gÒ±¾ `[GUSlIµ=OßÊ9â£á±Š†4€öž ¿ Âq¾`%‚#œ”3ÅG£CÔ˜l·Õžh [ÿ p¸/XÆEé`bž§vèáF#:ƒsk×ý{î£ÃÑ¥¤$ºÆTØb7B§:ÐH”>j+æÑÂA¿ #Ž€Ã¯›1è’âšËv¨)lŽùŽ€N7s]PƒnÈßnå%Arú#'ÆTµÝažº4}k8Qés•:ƒ?šÇÿØäÝuŽ0‹­Ó1 À 1â¨^JÞ¥Ú¹Mßê:åJ £ƒ´å`¤ƒŒAêtBˆgúNpfŒ82s{¬ÝyGš Œ´òMí~ 2%9Ù©¥8-FaÀ¹ç© âô§?¤ Ó"…Ń‘ùÇ …} C:å 4§Bp´/Ü0F1†ñQ䛿vú•ff´…_Zðh—Ù|-8(‚#Pœþ(-s¤CòµàpŽx„yê¢`²(l“#íx’¯GAp´#ÌS«±AŽ´ËaH£¯…à›ÀþUŠkñØ ­`UŽ´ËaHþaÀn!„`žÚ6òß¿Oja¤©(ÌçHa&JÚß0$ÿ°`oŽ€í‘ m'>$irR¨6Dòµ`?Žö¢8Opd¸±Ø ‹Aц$í)Dòµ zG $ ‹M¡C’ÿnc7!’¯µ"8%*‚”‰ ¶#'J"…ªr$_ *CpT£]RÍ<µBLÞ°Ïd‚¤k™ì>M¾§U¼¶† @Žv+8:8Óß9!²80ùx¦WÙ`$ €¢Ž€Š˜†„Hƒ­™\ m4Í­1ü?%s$ €ŽÅH£þBæ©U¬ÐÉ0d‰ÐÐ*õþ?ŸA@€¹‹¹@¾JŽ‹Ò PêŸ(v:ƒ?šG„NèýÑhþýƒaø™èRR’ÿpŒþ”LE¦¾`SŒ8:1†í“é‘HƒIS£´À‡\‚ëkƒ[ jäloÓB†P,ŽªÃ]ª!_A!Òð)’ƒRtäHƒg5æ^m›"XcÀ–ŽÅIÍáF‡Sà U rä£äðèŒ<¾%È|ŽÌ·A1dJÖX°ÁQå8Á2#¿b!“Ú ÊÿïÊ¢¤Á†fÞUîî™Ë` ÇNÁp)GrJŠ~yô'ÿ –U”<ÝcË[t:¡Ó&®TàÙ?&÷Ê+EÀˆ£SbžÚé™”~d}úœýôÓ¯¾úªlÙ²M›6=þüÆÏ;·bÅ ¥KS5 ú---ÍÃãV­Z†Ü R¾•+W*]‚]’ßo|E-£ÕjGŒqüøqooï–-[fgg>|øÀ&L?~¼ÒÕ©—eýÆ·Ô™™™=zô¸víZPPPûöí322~þùç]»výøãõë×Wºº¤ƒÕΜ9S§N6mÚ\¹rEj™={víÚµgΜ©tiªfA¿Ý¹s§víÚ¯½öšÒµÛŸ;wî=ztúôéµk×®]»öñãÇ•®È>µßøŠZlõêÕµk×8pàýû÷¥–³gÏ6kÖ¬nݺþù§ÒÕ©—ýÆ·Ô2Òo¨ùóçë[6nÜX»víþýû+]Z‰âGX·n]^^Þĉ+W®,µ¼ýöÛÞÞÞÛ·oÏËËSº:õ² ßÒÒÒ„FÿJ†‘‘‘ƒ^»v­Ò…Ø™¢ö_Q‹íرC1mÚ4ý„CPPИ1crss™?5Â~ã[j™˜˜±cÇê[žþy??¿Ó§Oçææ*]]ÉaªÚŽ=êââÒ®];}‹««kXXØ–-[Ž;Ö¤I¥ T) úíüùóBˆš5k*]»ýyÿý÷}ZQ½zu¥«S/ úo©eV­ZeÔrôèÑ´´´† :Oj\ŽÇz÷ïßÏÍÍÍN±···âæÍ›J¨R–õ›ôè \½zµeË–>>>{÷î8pàºuë”> @¾¢V ‘þݨ»téÒÒ¥KGEE)]zYÐo|K­ÿî»ïÊÍÍ7ožÒÙ™ýÆ·ÔJ‰‰‰6lÐétBˆzõê•*UJéŠJ#ŽÖ*_¾¼F£¹ÿ¾QûÝ»wÅ£ñ3ägY¿}÷ÝwÇ×ÿe'„hÕªÕСC³²²vïÞ­ô1|EmàðáÑ‘‘ï¿ÿ¾Ï7ß|¡tEöA~¿ñ-µÒ€8ðÖ[oíܹsàÀÒo.'Ap´–›››··wþ²ÌÌL!„~½0ŒØ°ßš5k&„8{ö¬ÒǘÆWT¦œœœ÷ßøðá—.]zõÕW·oßÞªU+¥‹²6é7¾¥E¢Ñh*Uª4jÔ¨þýû_¾|yçÎJWTr˜ª¶__ߤ¤¤ÌÌL///}cJJŠô”ÒÕ©WQûM§Óåååi4—ÇþÁãêê*„ðôôTú€àìøŠZ#//ï7ÞØµkWÇŽg̘Á¿ºe*j¿ñ-µÌ¹sç–/_Ö­[7Ãvi=û•+W”.°ä0âh:tÈÍÍÝ¿¿¾E§ÓíÛ·¯B… 5Rº:õ*j¿?>$$døðáFíñññBˆàà`¥Îޝ¨5V®\¹k×®Aƒ-\¸Ô(_Qûo©e¼¼¼þ÷¿ÿmܸѨ]º(f@@€Ò–‚£ ôíÛ×ÅÅåË/¿ÔŸå°téÒëׯ÷îÝÛÝÝ]éêÔKN¿Ý»w/%%%==]Q«V­Æ9rdýúõú7‰_¾|y•*Uºté¢ôÁñµ N·jÕ*OOÏ·ÞzKéZì‰Ì~ã[j=__ßàààìÙ³GßxæÌ™Õ«W—+W®iÓ¦JXr4Ò² XiùòåsçέZµj›6mΟ?²|ùrnýi^¡ýöóÏ?¿þúëAAA[·nBœ9sfôèÑׯ_¯W¯^``àÅ‹?^¦L™… ¶hÑB飱ï¾ûîúõë×­[Ç5ÛŠ¤ ~ã+jW¯^mÓ¦‡‡ÇSO=•ÿÙ^½z 2DéÕHf¿ñ-µ‰?þøcРA>lÔ¨QµjÕ®^½'„øè£zôè¡tu%‡smcÔ¨Q•*UÚ¼yóÏ?ÿìïï?dȉ'JW–Eí·:uêlÚ´iÞ¼y111çΫ^½zTTÔ„ üýý•>@¾¢–’ò²²N:•ÿY–ÈIJ~ã[j™ lÛ¶mÁ‚§NJHHðóóëܹóøñã¥ûô8F ç8@‚#d!8@‚#d!8@‚#d!8@‚#d!8@‚#d!8@‚#ç2yòäàààß~ûMéBÄ—_~¼zõj¥ ¹ŽÅMéÀIµoßÞÇǧqãÆJr@õêÕ«W¯žÒU@0U ª“››ûðáC¥«cGöáÝwß þøãÚOž<ܪU+­V+„¸~ýúüùó#""BCCCCC»wïþá‡^¹r¥ ·•ÖÊÄÄĵ‡„„´hѰåàÁƒ&LèØ±cÓ¦M‡ öå—_e»‹/Θ1#""¢aÆíÚµ{饗Ž=j戾þúkÃÅ1R%éééK—.mÙ²eýúõ›4i2`À€Ý»wôñññ!!!aaaÿý·¾ñîÝ»íÚµ ùã?”þÐ8‚#û)„عs§QûÖ­[…QQQnnnׯ_ùäÞ½{cÇŽ=tèÐÆ÷íÛ7mÚ4N·`Á‚"íkݺu/½ôÒþýû¿ûî»_~ùeĈBˆ+V´ý„ ‚‚‚6nܸÿ~!DLLÌ?þøÌ3ÏŒ;V¹Ï €Ã"8°...Ý»w:ÆÅÅ]¹r¥Q£FO?ý´B«Õ¶oßþÍ7ß,[¶¬´———4Tyþüy‹w=wî\!ÄgŸ}¦Ãóññùì³Ï|}}7lØpûöm!Ä™3g„}ûöuuu•¶8pà¸qã:vìX¤}5hÐà7Þpqq‘yܸqBˆÔÔÔ‚¶wwwÿè£ÜÜÜÞ}÷Ý«W¯N›6ÍÃÃã“O>Ñ—6Dp`7¤h8o+ÍS÷îÝ[z8~üø¯¾úê©§žÒopíÚµmÛ¶Y³Ó[·n¥¤¤­€.S¦L«V­²²²N:%„’ëÛo¿}äÈélKww÷×^{íÕW_-ÒîºuëføÐÛÛÛÕÕU§Ó™yIHHÈøñã/_¾Ü³gÏ‹/¾õÖ[µjÕ*®Ï€sãr<ìF½zõjÕª•ššš˜˜¬ÕjwìØááá¡ßæâÅ‹¿ÿþ{\\Ü… ÒÒÒ¬<µQ‘œœ,ýopp°É 222„ÑÑÑ'N}út³fÍhÓ^€Ø“ÈÈÈ/¾øbÇŽÁÁÁû÷ï¿sçÎóÏ?¯Ÿ˜^³fÍìÙ³µZm5š4iÒ±cÇúõ매¤Ìœ9³H{ÉÍÍÕòåää!ªV­ZФs•*U„ÕªU[¿~}||üï¿ÿ~øðáS§N;vlñâÅ}úô™={¶F£‘¹ëR¥JYÐ-wïÞ½víš"99ùöíÛåË—/þ€3"8°'úàøÚk¯IsÐúyê»wïΚ5«T©RK–,iݺµþ%—/_.ê^.]º”——'ý(„(S¦Ì;ï¼cþUFº"''gÿþýS§NݰaCxxx‡е[f̘qõêÕÐÐÐcÇŽÍœ9sþüùź;N‹sØ“š5kÖ¯_?99ùäÉ“¿þúkÍš5›4i"=uòäÉÜÜÜÐÐPÃÔ(-[1ÏhFû—_~Ñÿìëë[©R¥¿þúëôéÓ†ÛäææöîÝ»M›6ׯ_¿xñbxxx¿~ýôÏ–*UªC‡Òjžôôôbí“-[¶lß¾½mÛ¶+V¬ Ú¶m[þ‹€MØi‰Ì´iÓî߿ߧO}»¯¯¯âÌ™3ׯ_—Zrss×®]»jÕ*!DVV–Éw«Q£†båÊ•÷ïß—ZbccõÙ‘Lš4)//oÒ¤I RËÝ»w§NzêÔ©zõêùøøøûûÿý÷ß'NœX¶l™~¨255õ÷ßBëõ/_¾þøã‚‚‚Å‹'»!I&8ÖâÙgŸMvRB‹d7 Emذaùò导òÊ /¼ì¶mùðŽùÓ>Kv+¢HpÜ™ÁƒÿýïOv+¢üiŸÕš…K ‚cõÆŽ»eË–(ЦL™2oÞ¼d7Èh5gG©ˆàX½ãŽ;.ñÃ[o½•ì¶ì4;J@œdžWPPì&4°ågL¬º1ÆÕÉn¤³jêîÀ)EÃ;^²Wù†WŽØ8xÉ^QÚýŸMBQQQ²›‚c£H§SÖÍo–=tb5Û£ÿ9«UûhÃ*((H§!M:ãÙàvH³n~3ÚIeeÝ<¥(™˜bLÌ5¦ë?¤WiÃ2ž .ý&‰ ŽÔdg©1ªpV«a NjˆŒ e˜uó”¢á£(r…ˆŸàHõj=•+{èDÙv]`•=tâòáÉn+©|8ÕHœÀ³`";&»ÕЄ…¿ûJ\¡NÜ+“ìVGp¤²úMÊŽPouM‰ŸeG ~‚# Fv„FUõ“wdG f‚#ÿbW+6Rvt3`Ã2ž nW†4°èvöyéš½J–ñ¤¡Žü÷¸@Ìv15&8%-³#‚²ÊÊʒ݆tÓD?.«S£ !4]Mô\¿ëÌ8Òð,v„˜): ‚#Qdºb§è€¦Hp¤QN`æ? Šh¢G‹ÓÄLÑMpÌt®—AÌÐt Ž4"ó3E4ªÉnÉdæb¦èRJAAA²›@ªÈÌÏÖ©Á‘Æ•˜ÿp¦„Ø(º@û9|Tå-D8—ª3—S ÄLÑMàH£³è b¦è€F"8f(33E¤Á‘8˜ÿ€4 8f"3³ø‹Î»5 1މ‰ù2V²æøÐàÇŒã:5P?‚#ñ1ÿ1St@Ã3‹éFˆ™¢£1L™2eàÀíÛ·oÕªÕpþùç/X° Ögüñ=zô9~øž5ËËË6lXµÝsÏ=Y4kÖ¬k×®^xá»ï¾ïXR7‚#4ÿøÇ?Î<óÌ /¼pÉ’%={ö¼øâ‹;uêôÒK/{ì±cǎݱcG ÏmÞ¼yóæÍCþJøž»èÜsϽå–[n¹å–k¯½vß}÷>}ú 'œðÄO>}þüùÆ [¶lY Må”ÑÐòóó“Ý„êE7ý)ÙMH¡f@ RäÕž"ÍH5)ûu JKK;¬¬Q£FmÙ²¥|ûªU«z÷îEÑ/~ñ‹d·ñ_téÒeèСÕ>4f̘(ŠæÌ™Sqã‡~XPP••µdÉ’ãϘ1#Š¢·ß~{ÛYCS|ý43ŽÐ4Lžþøã‰-yyy7Þxãüùó»wïÞ½{÷(Š Pqåâ{ï½wÊ)§´mÛöÈ#¼ë®»üñ¬¬¬Å‹WÚ3qœ'žx¢]»v-Z´èÔ©Ó5×\³qãÆòãyä‘999mÛ¶ýþ÷¿ÿÜsÏíJ9显}ûþþ÷¿ß¾}{ÍÇÿÑ~tÆgDQÔ¿ÿ¼¼¼Æh UµHvˆ‰ú3EGÃÚ¶m[QQÑÀ[·n]í§œrJVVVÅkÖ¬4hPnnî~ðƒJ;¿þúëC† Ùo¿ý.»ì²Í›7ÿêW¿ª8…YÉo¼ñØc]qÅ]»v}õÕW'Nœ¸mÛ¶'Ÿ|2Š¢1cÆÜsÏ='žxâðá÷lÙòÒK/9rï½÷üðÃò-Ó§O¿çž{î¸ãŽfÍþåciié7ÞØ©S§>ø mÛ¶Q]wÝuGuÔÎŽ¼téÒiÓ¦}öÙQ]{íµÝ»wíµ×=ûì³ùùù³fÍjÑ¢EE·Þzk»ví^{íµ]Éjûï¿E«V­ÊËË«áø‡~xqqqE½zõêׯ_#5†J\ª& \8ƒ˜)º4PVVVë>-[¶,)))ÿu¿ýö«š£(Z¸páßþö·Q£F%RcEݺu>|øÎ{ÐA%RcEYYY=zôøöÛo¿¾ÿþû ,Hµ(ŠÖ­[EÑæÍ›w¥§YYYå?×éøÑ*1ã˜\2ƒ˜)º&-‰!»†—M~~~Ë–-‹ŠŠv¶CIIIqqñi§V¾¥   jjŒ¢hùòåQyä‘7~øá5ü銿VZ±bŲeËÊ×&ÖÛš5k¢(:è ƒêzüÆh •Ž$GbþÙHA©ù_SË–-óóóß{ï½õë×çææVÝá7Þ(--=âˆ#Ê·ìl5äÖ­[«n¬áƒwß}÷j·oٲ嬳Κ9sfÏž=O>ùä!C†ôîÝû{ßûÞ.ötñâÅ-Z´èܹsŽßH¡Á #x·–n¾ùæK/½ôÞ{ï}衇*=´mÛ¶Ñ£Gçää\sÍ5µ'±PrÙ²e'œpBùÆz|Œöœ9sfΜ9a„n¸¡|ã.Nò-X°àwÞ9çœsZ´h1{öìðã7Fc¨ÊÇôçT1St4’K.¹¤oß¾………·ÝvÛ¶mÛÊ·¯Y³æ¤“N***ºóÎ;;wî\ëqŽ:ê¨<ðá‡Þ°aCbËÊ•+_|ñź¶ç“O>‰¢¨[·nå[¦M›¶iÓ¦å˜ÕZ±bÅÈ‘#³²²î¼óÎðã—––6Fc¨–G€LaÒ±©ËÊÊš>}úå—_>~üøÉ“'÷êÕ«sçÎK—.?þ¶mÛî¿ÿþÑ£G‡§U«V………#FŒ8úè£GŒQRRòì³Ï}ôÑsçÎÍÎÎoÏ€rrr®¸âŠ .¸ S§NùË_Þ|óÍöíÛÏ™3çÕW_=õÔSk=Âĉßþ²eË–¥K—Λ7oëÖ­=öXbÁe­ÇO\‹Ÿ8qâ矾ë!„G’ÆmžuÕ¡C‡W^yeòäÉݺu›;wîSO=õñÇŸyæ™ï¾ûîí·ß^í­0Õ6lØë¯¿¾ß~û=úè£ï½÷^aaá!C¢(jÓ¦Mxc8à€™3gvîÜùW¿úUaaavvö_ÿú×ûï¿Æ ?üpÈž{î¹xà˜0aBqqñ™gž9{öì«®º*ðø}úô9ï¼ófÍšõ‹_üb×Cˆ,S¸ ®   †»Þb–â³ )Þ<¨‡U§xóâ”RÿWÇlÛ¶mýë_÷Ûo¿Ž;–o¼æšk~ûÛß®_¿¾üãl2G=^ ûú1㙥yóæ'tÒ\P¾eýúõ/½ôÒé§Ÿž©‘:I&W«!fŠŽ(Šš5kvýõ׿ýöÛÇþùç ?þøo¿ýö¦›nJvÓHuÞX¤3פ fŠŽ¦b̘1íÛ·òÉ'/¿üò–-[öèÑãé§Ÿ>æ˜c’Ý.Rà'1éxýõ×'»!41.U“d.œAÌPo‚cÚrÉ b¦è€´'8Dp$ù\8ƒ˜): ~Çôä’ÄLÑ™@p ˆàHJpá b¦è€zv•ëÔ@†ÓsÐG€ åj5PW‚#©Â9 Rœà˜n\§†˜)ºL¶|xǤüÝ)S¦ 8°}ûö­Zµ:à€Î?ÿü ìÊóòò† –øùøãïÑ£Gƒ´óž{îɪ Y³f]»v½ð ß}÷ݤŒ»Np€zÊŸöY­Ù±aÃå?þñ3Ï<ó /\²dIÏž=/¾øâN:½ôÒKÇ{ìØ±cwìØxœùóç6lÙ²eUjÞ¼yóæÍ°Íçž{î-·ÜrË-·\{íµûî»ïôéÓO8á„'žxb×›JüZ$»ðW«MÞ@lÝ®KdÇüiŸUûh ÕCYYÙÙgŸ=wîÜQ£F7n·ÝvKlÿïÿþïóÏ?ÿŽ;îhÕªÕ-·Ür¨Ï?ÿüå—_5jTÕ‡Þ~û톢뮻®oß¾å¿~ôÑGC‡½úê«ûöí{øá‡ïJS‰ŸG€ú“ºˆv>ïØ°©1Тɓ'Ï™3ç†n(,,,OQuéÒåí·ß>øàƒï½÷Þµk×&{ûœrÊ)úÓŸÊÊËË»ñÆçÏŸß½{÷îÝ»‡wä˜cŽéÛ·ïïÿûíÛ·'¶yä‘999mÛ¶ýþ÷¿ÿÜsÏ•·¹jSw¶31 TÌŽ‘·mÛVTTtì±Ç¶nݺÚN9唬¬¬µ€7ß|ó=÷ÜEÑøñãûÛßÖ°çÿøÇž={.Z´è‡?üá~ô£?þxРA/¼ðBùkÖ¬4hÐÆ=öØ:u稣ŽÚ¾}ûš5k¢(3fÌM7ÝÔ¾}ûÛn»íꫯ޸qãÈ‘#_yå•j›ZÃÎÄÀGR‹W3E׀ʳcƒ§Æ(ŠV¬X±mÛ¶®]»îl‡œœœN:}øá‡µêðÃ/..Ž¢¨W¯^ýúõÛÙn[·n½öÚk»uë6wîÜììì(Šî½÷Þü¿ÿ÷ÿFŒ‘¸fúôé÷ÜsÏwÜѬYݦ¢ößÿ(ŠV­Z•——÷ì³ÏæççÏš5«E‹QÝzë­íÚµ{íµ×\µ©5ìÜàcNU‚cúð_?ÄLѧ²²²Z÷iÙ²eIIICýÅ… ®X±âßÿýß©1Š¢V­Z]ýõ‰OÿéÙ³gEûí·_=RcEYYYå?¿ÿþû»ï¾{"FQ´nݺ(Š6oÞ\íë´3 Np€†Q~…º1.Uççç·lÙ²¨¨hg;”””ŸvÚi õ?úè£(ŠÎ?ÿüóÏ?¿ÒC«W¯NÇ‚‚‚z¤Æ(Š©:è (ŠÚ´i3oÞ¼?þñ}ôÑŠ+–-[V¾ö±ª:íLƒI9.œAÌ]ƒ¨kþŒžúiÙ²e~~þ{ï½·~ýúÜÜܪ;¼ñÆ¥¥¥GqÄÎŽ°eË–:ýÅÄÛ¿øÅ/ªóÐCMü°³—µZ¼xq‹-:wî¼eË–³Î:kæÌ™={ö<ù䓇 Ò»wïï}ï{;ëBøÎ4ÁvUÕ˜ØÙñæ›o¾ôÒKï½÷Þ‡z¨ÒCÛ¶m=ztNNÎ5×\S¾±´´´â>+V¬¨ÓŸ;äC¢(Úk¯½ T¾ñoûÛ’%Kê,XðÎ;ïœsÎ9-Z´˜={öÌ™3'L˜pà 7”ï°³IÄ9sæ„ïLcpWuš0[1St”ÛY@ ù^™:¹ä’Kúöí[XXxÛm·mÛ¶­|ûš5kN:餢¢¢;ï¼³sçΉ{ì±Ç²eËÊ¿KæwÞ™?~¥VJ–•uÔQ=ôÐ7ß|“زaÆSO=õÆoÜc=êÝ‹+VŒ92++ëÎ;è“O>‰¢¨[·nå;L›6mÓ¦M•Öt&š¸3ÇŒ#Ô_ÍÓŠ ;•5}úôË/¿|üøñ“'OîÕ«WçΗ.]:þümÛ¶Ýÿý£G.ßùä“Ož0aÂgœ1tèÐ?þøÑG­8M˜øyâĉŸþù¹çž[íŸkѢń Î<óÌîÝ»ŸsÎ9Û¶m{ùå—׬Yó /Ôé; 'Nœ8cÆŒ(жlÙ²téÒyóæmݺõ±ÇK|mÌ€rrr®¸âŠ .¸ S§NùË_Þ|óÍöíÛÏ™3çÕW_=õÔS+6µÖíß™ÿUFCËÏÏÿF7ý)ÙýÖ#2Kú½DÓ¯G5KÊÿÕ eòäÉ øÎw¾³Ûn»uîÜù¼óÎûÏÿüÏJûlÞ¼ù†nèÔ©SâþåáÇßsÏ=­[·N«ZcÆŒ©9²²²òóóÏ?ÿüyóæUÜmöìÙ}úôÙsÏ=¿ûÝï^~ùå_|ñÅSO=Õ¾}ûAƒUmjÍ;×O=^ Múõ³+²ÊÌî6´‚‚‚îzk$éwÕ,ýzD:IË×gZvªIù¿:)6mÚ´iÓ¦}öÙ'Ù I]õx1dÎë§—ªÓA¦ýw@¸œœœœœœd·‚4áæ‚ޤ¨ÄË%»AP+Á±Ésb¦è€Œ%8Dp ˆàHê²â b¦è€š ŽM›µV@lG€:ðn Èd>€ UPPì&@#8’Ò+®Lð@l2§è2óûâ`¹T @Á± ËYHŠÈp‚#AGR–ƒ˜):`gG‚ŽM•µV3E 8Dp¤ °â b¦è€j Ž›$k­ fŠ $8Dp¤i°Tb¦è€ªG‚ŽMEú3E 8Dp¤É°â b¦è€JG‚ŽMŒµV3EPNp ˆàHSbÅ$‘àÀNy·T$86%ÖZAÌ@E‚#AG‚Ž41V\AÌPNp ˆàØdX¤1St•Ž"8ÒôXª1St@‚àØ4Xk1StU Ž"8Ò$Yq1St@$8Hpl,Ò‡˜):€j Ž"8ÒTYª1St€à@Á1ÕY¤1St;#8Dp H‹d7 &S§N}ñÅW®\¹Ç{œp £GnÓ¦M û>|É’%•6¶k×nîܹÉî ÿ'±TßUEˆ¢ƒ —Á±°°ðñÇÏÉÉéÙ³gqqñôéÓW¬X1yòäììì=eõêÕÙÙÙ]ºt©¸±uëÖÉî @Ò¤p,**š4iR‡¦M›¶Ï>ûDQ4vìØÉ“'?øàƒwÞygµOÙ°aÃúõëO=õÔ &$·ñÞÙCÌ@ Òã‹/¾XZZ:jÔ¨DjŒ¢èöÛoÏÍÍ}õÕWKKK«}ÊêÕ«£(ª4ÝáÒ?8~ðÁÍš5ëß¿ù–æÍ›÷ë×oݺu ,¨ö)ÅÅÅQxàÉn;@ IóàXVV¶råʶmÛ¶mÛ¶âöüüü(ŠÖ¬YSí³ÁqíÚµ]tQÏž=O8á„«¯¾zñâÅÉî ÕðU3E™,Í×8nÞ¼yÇŽUojÉÍ͢諯¾ªöY‰@ùðÃçååõîÝûÓO?}ë­·fÏž=f̘sÎ9'äïTÚRTTTׯ[k© êi=c¥yp,))‰¢(''§Òö=÷Ü3Š¢õë×Wû¬µk×fggßtÓM]tQb˼yó®ºêªûî»ï¸ãŽëرc­·1H:ïÖ€jU=­gl”LóKÕ­[·ÎÊÊÚ¼ys¥íß~ûmô¿óŽU=óÌ3‹-*OQõéÓç /,))yã7’Ý'€äHóàØ¢E‹ÜÜܪ3‹6lˆ¢¨ü>ë½zõŠ¢hùòåÉî@r¤ypŒ¢¨C‡ëÖ­K$År«V­JÄLÑAÆJÿà8pàÀ;v¼óÎ;å[ÊÊÊfϞݦM›=zTÝ¿¸¸øÐC½øâ‹+m_¸paãšk­ fŠ VéGŒѬY³Gy$±®1Š¢I“&}ùå—gŸ}vË–-[6mÚ´jÕªO>ù$Š¢.]º}ôÑï¿ÿþÔ©S˲pá§Ÿ~ºcÇŽƒ Jv‡’#Í搜¢¨cÇŽ£G7nÜ!CŽ?þøâââwß}÷°Ã»âŠ+Ê÷™={ö7ÞxÈ!‡Ì˜1#Š¢»îºë²Ë.»ãŽ;žþùƒ:èÓO?]´hÑ{ìqÿý÷×ðõÖé-ýg£(ºôÒK|ðÁ¼¼¼™3g~õÕW#GŽœÄLÑÔ‰à@Á€ ‚#éÆR}ˆ™¢ƒÌ!8DpLéCÌ@] Ž"8’†,Õ‡˜):È‚#AG ¹3 Ç”à¤>Á€ ‚#éÉR}hp‚# À»5È‚#AÇäsg ÄLÑÔà@Á€ ‚#iËR}ˆ™¢ƒ´'8DpL2‹ô!fŠ ÞG‚ŽIg–êC̤7Á€ ‚c2Y¤1St»Bp ˆà@Á€ ‚#iÎ=ž3EiLp ˆà˜4î):€]$8Dp ˆàHú³Tb¦è ] Ž“Ã"}ˆ™¢Øu‚#AG‚ŽÉîñ„˜):HK‚#AÇ$pw'ÄLÑ4Á€ ‚#AG2…¥ú3EéGp ˆà7‹ô!fŠ ¡Ž"8Dp$ƒ¸Çb¦è ÍŽ@:sg @cå4]‚#AG‚ŽdKõ!fŠÒ‰à@Á1>):€†%8Dp ˆà@Á‘ŒãOˆ™¢ƒ´!8DpŒ‰»;!fŠ Á Ž"8’‰,Õ‡˜):H‚#AG‚Žqpw'ÄLÑ4Á€ ‚#AG2”{ø`²›;UCv\>¼cþ´Ï’Ý@š<Á±/¾øbiié¨Q£öÙgŸÄ–Ûo¿=77÷ÕW_---Mvë`§ªÍŽ™ÝÁ±|ðA³fÍú÷ï_¾¥yóæýúõ[·nÝ‚ j}úò3&:‡‘,•²c&¤Fb#8VVVV¶råʶmÛ¶mÛ¶âöüüü(ŠÖ¬Y“ìB-ʳ£Ô@Ãj‘줜͛7ïØ±£uëÖ•¶çææFQôÕW_…¤   Ò–¢¢¢d÷Œ ’ÈŽR#@ƒ¨zZÏX‚ce‰[§srr*mßsÏ=£(Z¿~}­GÈŸqµ˜Ø%îñLeˇw,8pJ‘ìHjK§¢#½U=­gl”t©º²Ö­[geemÞ¼¹Òöo¿ý6úßyGHeåsµ~FÔ‰àXY‹-rss«Î,nذ!Š¢òû¬!5UºB ÙÑ”@lÇjtèÐaݺu‰¤XnÕªU‰‡’Ý:Ø©j×5fBv ‚c5¸cÇŽwÞy§|KYYÙìÙ³Û´iÓ£Gd·ªWÃÝ0²# Bp¬Æˆ#š5köÈ#$Ö5FQ4iÒ¤/¿üòì³ÏnÙ²e²[Õ¨õjÙ€]'8V£cÇŽ£Gþøã‡ r÷Ýw_rÉ%………‡vØW\‘ì¦Ñ¸šî—ç†Ü=íkRPÓ-:ÈL>ާz—^ziûöí_~ùå™3gî·ß~#GŽ5jTây2“à¸SƒÄLÑAê"8MŒEú3EG9Á€ ‚#¤'ËÅhp‚#AGØ)“v3E)Np ˆà4%î):*"8Dp ˆà5q'ÄLÑA*"8M†»;!fŠŽJG‚Ž¡–êC̤,Á€ ‚#P wÆP•à4 ÎaI'8Dp ˆàµs'ÄLÑAj"8M€;c fŠŽj Ž"8BKõ!fŠRà@ÁøîŒagG Õ9‡¤Á€ ‚#AGåOˆ™¢ƒT#8DpRš;c fŠŽŽ"8BXª1StRG‚Ž@ê²H ¥ŽÀÿðnš Ž"8BݸÇb¦è uŽe‘>ÄLÑQ+Á€ ‚#AG¨3Kõ!fŠR„à@ÁÒMz,oO^@¢è!8Dp ˆà@ÁêÃ=ž3E©@p€LçÎ Ž@ÊqHM‚#AG‚ŽPO–êCÌ$àiËY€†%8©Å13EG8Á€ ‚#AG‚ŽPî>˜):H.ÁH!éCÌu"8Dp ˆà@Áv‰¥ú3EI$8@†rg u%8©Â9 Å Ž"8®²Tb¦è YG‚Ž@Jpg ÄLÑQ‚#AG‚ŽÐ,Õ‡˜):H Á€ ‚#|éCÌõ#8Dp ˆà ÃR}ˆ™¢ƒø Ž$³Hb¦è¨7Á€ ‚#AGh0–êÞGš*ïÖ f‚#LéCÌ»Bp ˆà@Á’W3Eqj‘ìÄdêÔ©/¾øâÊ•+÷ØcN8aôèÑmÚ´©aÿáÇ/Y²¤ÒÆvíÚÍ;7Ù]HŽŒŽ………?þxNNNÏž=‹‹‹§OŸ¾bÅŠÉ“'gggïì)«W¯ÎÎÎîÒ¥KÅ­[·NvW ­X¤1Stì¢ôŽEEE“&MêСôiÓöÙgŸ(ŠÆŽ;yòä|ðÎ;ï¬ö)6lX¿~ý©§ž:a„d7 U¤ÿÇ_|±´´tÔ¨Q‰ÔEÑí·ßž››ûꫯ–––Vû”Õ«WGQTiº Ã¥püàƒš5kÖ¿ÿò-Í›7ïׯߺuë,XPíSŠ‹‹£(:ðÀ“Ývš$Kõ!fŠb“æÁ±¬¬låÊ•mÛ¶mÛ¶mÅíùùùQ­Y³¦Úg%‚ãÚµk/ºè¢ž={žp W_}õâÅ‹“Ý€dJó5Ž›7oÞ±cGÕ›Zrss£(úꫯª}V"P>üðÃyyy½{÷þôÓOßzë­Ù³g3æœsÎ ù»•¶%{0 µX¤1StõVõ´ž±Ò<8–””DQ”““Siûž{îEÑúõë«}ÖÚµk³³³oºé¦‹.º(±eÞ¼yW]uÕ}÷ÝwÜqÇuìØ±Ö¿+&@Ú¨zZÏØ(™>ÁqûöíO>ùdù¯Í›7¿òÊ+[·n••µyóæJ;ûí·ÑÿÎ;VõÌ3ÏTÚÒ§OŸ /¼ð©§žzã7ÊÓ$@FIŸà¸mÛ¶ŠŸžÓªU«+¯¼²E‹¹¹¹Ug7lØEQù}Ö!zõêõÔSO-_¾<Ù¥ H,ÕwIb£è é³³³«½@Ü¡C‡•+Wnذaï½÷.߸jÕªÄCU÷/+++--ÍÊÊjÖì_îjÞ¼yE{íµW²; 5qî ñ¤ù]ÕQ 8pÇŽï¼óNù–²²²Ù³g·iÓ¦GU÷/..>ôÐC/¾øâJÛ.\eðšhX.ÄLÑÑ Ò?8Ž1¢Y³f<òHb]cE“&MúòË/Ï>ûì–-[&¶lÚ´iÕªUŸ|òIE]ºt9úè£ßÿý©S§–dáÂ…O?ýtÇŽ ”ì$Gú\ªÞ™Ž;Ž=zܸqC† 9þøã‹‹‹ß}÷ÝÃ;ìŠ+®(ßgöìÙ7Þxã!‡2cÆŒ(Šîºë®Ë.»ìŽ;îxþùç:è O?ýtÑ¢E{ì±Çý÷ß_Ã×[¤·ôŸqŒ¢èÒK/}ðÁóòòfΜùÕW_9ròäÉU?ܱ\×®]_z饡C‡~ùå—³fÍZ¿~ýСCg̘qì±Ç&»+4¾Êb¦è é?ã˜0xðàÁƒïìÑÓN;í´ÓN«¸eŸ}ö7n\²[ B2bÆH)éCÌ Ep ˆà@Á‹¥ú3EMp ˆàÄÊ"}ˆ™¢£ ŽÎ\¹  ޤo– Q ŽÐˆœÃH'‚#k­ fŠŽ†%8Dp ˆàË2Gˆ™¢ƒÆ#8Dpbb‘>ÄLÑÑàG‚Ž¡ÑYª1StÐHG ÖZAÌAp ˆà@Á€ ‚#ÄÁR}ˆ™¢ƒÆ 8Î"}ˆ™¢£‘Ž"8BL¬¸‚˜):hp‚#謵‚˜):à@Á€ ‚#ÄÇŠ+ˆ™¢ƒ†%8Dp‘Eú3EG£"8B¬¬¸‚˜):h@‚#AG ±Xk1St46Á€ ‚#AGˆ›¥ú3E Ep…µV3EG G‚Ž! ¬¸‚˜):h‚#AG áY¤1StÄCp ˆàÉaÅÄLÑÁ®æ’ÄLÑÁ€ ‚#¤³4*Á’ÆŠ+ˆ™¢ƒ]$8 ɬ'ÄLÑ'Á€ ‚#ÄÕjØ‚#$“sMˆà4k­ fŠŽ˜ Ž!É\­†˜):¨7Á€ ‚#Ð0¬µ‚˜):â'8Dp„ä³â b¦è ~Ghz\§&)G 8‡dÁÒœKr4ÁR‚x1StP‚#°«\§†˜):’Ep ˆà©Â…3ˆ™¢ƒº]â’ÄLÑ‘D‚#AG‚ŽB¬¸‚˜):¨Á¨?k­ fŠŽä"8Bjqá b¦è œàÔ“Kf3EGÒ Ž!å¸p1StHpêÃ%3ˆ™¢#Ž!¹p1StBpêÌ%3ˆ™¢#EŽ!E¹p1StP+Á¨—Ì fŠŽÔ!8Dp„ÔåÂÄLÑAÍG \2ƒ˜):RŠà@ÁRš g3E5P.™AÌ©Fp ˆà©Î…3ˆYŠéFRàq@p„& Eæ? s(:¨–àÔÎt#ÄLÑ‘šGhÌt‚#P 3d¦$¾[St¤,Á€ ‚#4®VCÌT"85qÉ b¦èHe‚#4%æ? fŠ*2ó1St¤8Áš˜Í8ß@#1éåG z’(ÄLÑ‘úGhzÌ@Ì$Ž@5Ì|@ÌM‚àM’ùˆ™¢ƒHpª2ó1St4‚#4Uæ? fŠGà_˜ù€˜):šÁš0ó³/:©‘¦Ep„¦­aOcÎaP+oØÈd‚#ð?¤Fˆ™¢£É¡Ékù'0§èÈX‚#¤§ˆ™ Öd&Á±üqAAÁâÅ‹“ÝŒVPPì&¤•ªãiæcy‰6¸´Ò˜‹.íÇ“Ø޵xöÙg“ÝRï“ÔõSïIGEGÓÕ"Ù HQ6lX¾|ù+¯¼ò /$»-ЈœÀ`W”gÇð:Rt4i‚cõü÷¿ÿ=Ù­€FT׳P­DÆA©‘¦Np¬Þرc·lÙEÑ”)SæÍ›—ìæ@sö‚†•˜z¬¡¬¼U#=ŽÕ;î¸ã?¼õÖ[Én ìªÊ+±Î˜èì ®R¡•ÏDVüš:Á±Q¸­ÁÒ]uÆÄüW—ÿV0#ÙíI;^¢ ®)i~…Ÿ³¢‰Q•×]Ò‹®)Ž')HplxEEEÉnTç!¯Lˆº#½dtpܾ}û“O>YþkóæÍ¯¼òÊd7 EetpܶmÛ„ ÊmÕª•à°3³³³]Vä›c"8Dp ˆà@¬²²²d·€&ÀŒ#AG‚Ž"8Dp ˆà@4ŽS§N1bD=úöíûÓŸþô믿ÞÙžüqAAÁâÅ‹w¶Ãï~÷»K.¹¤±\RRòÌ3ÏœqÆGuÔñÇÙe—Í;·Òþß|ó͘1cûüà?¸ñÆ?þøãÔÒ.Òð^‡·ÍxÖµãQ}öÙgG}ôèÑ£ é® éðáà ªèÛ·¯!­ßxFQ´dÉ’ë®»nÀ€={ö9rä{ï½Wk¯3v¸ë®»òóóóóó-ZTíѾþúëÃ?ü‹/¾hÔ#?÷ÜsùùùçwÞæÍ›._¾¼W¯^ݺuûÛßþVñoýò—¿,?ÂôéÓóóóøÃ¦Â†tÁ†gxÛŒgxÇË=ýôÓ‰¾ßrË-5wÜÖÐñõë×çççßpà µ͆ôú›o¾9æ˜cºwï>þüÄ–Å‹~øá}úôÙ±c‡ñ¬ÇV롇êÖ­Û’%K i]¥mp¼÷Þ{óóó§OŸ^¾eûöí={öìÝ»wÅÚëׯ_~;û'Ÿ:uêÈ‘#ûÈ^xa~~þÒ¥K+î8·=ù䓉_O?ýôîÝ»—””Tܧ_¿~‡~øöíÛ“>¤!]0¤á½o›ñ ïxÂòåË8âˆ!C†ì,8ÒÀŽ/Y²$??¿°°°Ö£Ò^ÿú׿ÎÏÏŸ8qbÅ'Ž=ºj÷gxÇ+ùðûuë6a„:ž±CZ«´]ãøÁ4kÖ¬ÿþå[š7oÞ¯_¿uëÖ-X° |ãØ±c{ì±Ç{¬OŸ>5íµ×^;å”SûÈ«V­ÊÉÉ9ì°Ã*îpÈ!‡DQ´f͚į­[·>ñÄwß}÷Šû´jÕjëÖ­[·nMú†tÁ†÷:¼mÆ3¼ãQmß¾ýÖ[omÓ¦Íí·ßÒqCZCÇ‹‹‹£(:ðÀk=š! éõŸÿü第¬¡C‡V|âøñã‹ŠŠºwïn<ë1¤•ìØ±ã§?ýéw¿ûÝk®¹¦†ŽgìÖ*=×8–••­\¹²mÛ¶mÛ¶­¸=???Š¢5kÖsÌ1‰-Çw\⇷ÞzkgGÛ°aÃ{ï½wß}÷5ê‘£(zâ‰'Z´¨ü/²lÙ²(ŠößÿįS¦L©´Ã|°zõ꣎:ªÚU1iH ix¯Ûf<ëÔñ(Š~õ«_}øá‡O?ýôÞ{ï]kÇ iÍOǵk×^tÑE~øá{ìq衇^uÕU•RŽ! ìõÒ¥KÛ´i³ï¾ûΟ?áÂ…ß|óM×®]O:é¤J 3žuêxEÏ=÷ܲeË~ó›ß´lÙÒÖCzÇÍ›7ïØ±£êÒìÄ2د¾úªNGûÓŸþtÄGì³Ï>zä(Š=ôÐJ;¼û&MjÕªU¥wŸQ-\¸púôé«V­Z¸pá0nܸTÒÀ.Òºöºæ¶Ï:u|Ñ¢EO>ùäÈ‘#ûôé“øÏºæŽÒš;ž˜#yøá‡óòòz÷îýé§Ÿ¾õÖ[³gÏ3fÌ9çœcHë4ž[·nݸqãÁúè 7Ü0cÆŒòÙ&ãY¿Žÿæ7¿ùúë¯oºé¦š;ž±C"=×8¶nÝ:++kóæÍ•¶'>w£êí÷5ظqã¼yóN>ùäÆ>rEï½÷ÞàÁƒÇŽÛ®]»_ÿú×§vZÕ}Î=÷Ü?üpΜ9·ÝvÛ¬Y³Î;ï¼>U$þ!­¡ †´½®¡mƳN7nÜ'Ÿ|2~üø.÷Ò:uü™gžY´hQyjŒ¢¨OŸ>^xaIIÉo¼aHë4žåkÚxà¡C‡¶nÝzß}÷½îºë† öÉ'Ÿüá0žuÒJ½{úé§{öìÙ£Gš;ž±C"=ƒc‹-rss«¾'ذaCEåÓÅ!Þzë­Ã;lß}÷mì#'lݺuìØ±_|ñgŸ}výõ׿úê«5¬·ÍÊÊjß¾ý¥—^úÃþðïÿû¬Y³RaHkí‚!­_¯wÖ6ãÞñ÷ßÿùçŸÿñ\iù]Í7¤õèx¯^½¢(Z¾|¹!­Óxæääì¾ûîÙÙÙ ¨¸ÏI'EÑG}d<ë:¤͘1cÓ¦MÆ «µã;¤!Ò38FQÔ¡C‡uëÖ%þË­Zµ*ñPøq^{íµòÏmì#—––Þ|óÍ“'O8pà믿~Ýu×UšY±bÅ¿ýÛ¿½úê«••¸9ëóÏ?OúÖÚCÞëÀ¶Ï: iE=öXù÷FœuÖYQýÇüGÅï0¤á/++Û±cGiii¥'6oÞ<Š¢½öÚËÖµ×ûì³OË–-³²²*î“èÂöíÛg=†´ÜÔ©S³³³«½jlHÃ¥mp8pàŽ;Þyçò-eee³gÏnÓ¦MÕ9êÙ´iÓœ9s*ý“7Þ‘Ÿ}öÙ×_ýüóÏôÑG«}C³÷Þ{ÿþ÷¿Ÿ>}z¥í«W¯Ž¢(///éCZk ix¯CÚf<ëÔñ<ðô•¸#²cÇŽ§Ÿ~z¿~ý i]‡´¸¸øÐC½øâ‹+=qáÂ…QÒºözÀ€6l(Ÿ¬MH|þK×®]g=†4¡¨¨hÙ²e'žxbÕ•‹†´NÒ68Ž1¢Y³f<òHùj€I“&}ùå—gŸ}v¥;ðkðÖ[o”/înÔ#—••M™2e¯½öºí¶Ûvö¬:Ì™3çÍ7ß,ßøÑG=÷Üs{î¹gÏž=“;¤!]0¤á½i›ñ¬SÇ;î¸_þ«ÄùcŽ9æ—¿üå­·ÞjHë:¤]ºt9úè£ßÿý©S§–?káÂ…O?ýtÇŽçKCZ§^'.¤ÞqÇå·î.Y²ä׿þunnî~ðãY!M˜={vô¿‹(jíx&i­Òó®ê(Š:vì8zôèqãÆ 2äøã/..~÷Ýw;ì°+®¸"ü ¿³²±üÅ_$¾ïõ‚ .¨ºÿ°aÃFŽEÑÏþóóÏ?ÿꫯîÑ£GçÎÿñÌŸ??Š¢ñãÇW½+æ! é‚!­S¯km›ñŒ¡ã†´æŽßu×]—]vÙwÜñüóÏtÐAŸ~úé¢E‹öØcûï¿?qÎÖ©×ݺu»é¦›~ùË_žrÊ)ÇsÌæÍ›?øàƒ¬¬¬±cÇ~ç;ß1žõîøÜ¹s£(:úè£C:žÉCZ«´ ŽQ]zé¥íÛ·ùå—gΜ¹ß~û9rÔ¨Q‰{éC”””üùÏNLBÄpäO>ù$ñÐÒ¥K«>¥|Ùì‘Gù‡?üáá‡^ºté‡~¸ï¾ûž|òÉ×^{mâCç“;¤µvÁÖµ×5·ÍxÆÓqCZsÇ»víúÒK/=ôÐCùË_V¬X±ÿþû:ô'?ùÉ~ûígHë×ëÿøÇíÚµ›PÊgGR#€fmÁqñâÅÑÑÑÑÑÑÝ»w/±ÃÉ“'µZmpp°¡ÅÆÆ¦W¯^éé鉉‰òû@Í3ÎŽ¤F5ÏVéT±ž={J/†ì †©+8 !ÜÜÜÒÓÓ¥hpåÊi‘ü>P“7‡šì &©.8öëׯ°°ððáÆ½^ïâââïï/¿ÔãÔ¨™uÀkÇTýò¾šY¤²#€£ºà¢ÕjW®\)ݳ(„ˆ‰‰¹sçÎÈ‘#kÕª%¿Ô 9Ïkd– €š¡®YÕBww÷ˆˆˆÈÈÈaÆ¥¦¦;vÌÏÏoòäÉåê£fÌ´t|-KñPÈWÐ ðE„…R]pBLœ8±aÆ۷oß¹sg“&MBCCÃÃÃ¥§í”«€ªhôz½Òc°6< @õÑÌ: _Þ·øk5Iµ¿ëUw#X.’"e Á² Á,•ñcÀ À203€âÔøG„ÞÞÞJæBÏÖ©‚#@Tû>Ç!äãR5d!8€c~ €šDp ÀÌæ€àYŽ…à–ÛÔ‚#d!8€¹cf 3Ap€,G,ÌW_}Õ¯_¿† Ö©S§yóæcÇŽMLL,óSAAAþþþrÖ/¿gé<==GŒQ⢅ jŒhµZŸqãÆ;v¬f%ʇàù1êqëÖ­çŸ~ܸqçÎ œ0a‚‡‡Ç¶mÛºvíºxñâÂÂÂR>kccccc#g+ò{VÒèÑ£gÏž={öì7ß|³qãÆqqq½{÷þì³Ïd~üÔ©S#FŒ¸páB þV5–A¯×9òÈ‘#ááá‘‘‘µk×–Ú¯^½:vìØyóæÕ©SgöìÙûø¡C‡dnH~ÏJš6mZ= o/^¼8|øð©S§öèÑ£mÛ¶e~üæÍ›Û·o¯™ÑBpÆÌ3c`›eHBˆ–-[:t¨U«V‹-ºqãF5m½¨¨¨ô3š•çããóÕW_éõúþóŸÕº!TÁ˰lÙ2ggçùóç_T»ví%K–Ü»woõêÕR‹§§çŒ3N:Õ¡C‡:!úôéc|çâñãÇŸyæWW×öíÛÿãÿX½zµF£9sæŒIOi=Ÿ}öYƒ lmm=<<Þxã{÷îÖÕ¾}{WW×§Ÿ~ú믿®Ì>ôèÑcëÖ­¥¯ÿoûÛsÏ='„öôô¬ŽÁ 8.U€5nsäܤËÏÏ×étýúõsvv.±Ã3Ï<£ÑhŒoøKKK4h““Ó€L:ÿðÃÆ kҤɫ¯¾š““óÉ'ŸŸÂ4±oß¾èèèÉ“'ûøøìÚµëÓO?ÍÏÏ_³fbÁ‚ .ìÛ·ï¨Q£=z´mÛ¶ÐÐÐúõë:´Â{Ú±cÇ#Gޤ¥¥yzz–²þY³fyzzΟ?ÿƒ>xúé§«i00ApÀ$''çççûøø<®ƒƒƒƒ‡‡Ç¯¿þjh‰‹‹[¸pá¼yó´Úÿ¹ÀXTT4cÆ “'Oººº !¦M›Ö±cÇÇ­ùüùó[¶l9r¤âÍ7ßìСÃîÝ»¥E6lðòòÚ³g­­­bΜ9 4ؽ{we²Z³fÍ„W®\ñôô,eýmÛ¶MMMBtéÒ¥W¯^Õ4˜àR5@¯×—Ù§V­Z¹¹¹†·Mš4)ž…III¿üòKxx¸”…¾¾¾£FzÜjŸ|òI)5 !4¿¿ÿýû÷¥·'NœHLL”‚š"==]‘““S™=Õh4†×åZu &8ãæ‹«ÏŠPðÙF¥|¹½¼¼jÕª¥Óé×!77755uÈ!†ooïâ©QqéÒ%!DûöíK™ÅìååeüÖx...GÝ»wïÅ‹“““/\¸`¸7±ÂÒÒÒ„O>ùdy×_ƒ ‚#ÿÃ<Ãz­Zµ¼¼¼Ž?ž••åääT¼Ã¾}ûŠŠŠÚµkghyÜÝyyyÅKyp£]‰í=zá…vîÜ8pàÀaÆuëÖ­S§N•ÜÓ3gÎØÚÚ6mÚ´\믦ÁÀÁ¬óc¬Þ¬Y³&Nœ¸hÑ¢åË—›,ÊÏψˆpppxã7Ê\t£ä… z÷îmh¬Àc´vîܹbÅŠ°°0Cc%Oò%&&>|øÅ_´µµ—¿þê ŠãG,Ã+¯¼Ò£G¨¨¨·Þz+??ßО––Ö¿N÷î»ï6mÚ´ÌõtìØ±E‹}ôQvv¶Ô’’’²iÓ¦òŽçÚµkB___CË–-[}ú888Lž<ùå—_öððøé§Ÿ8аaÄ„„]»v <¸Ì5|úé§;vìBù$**ÊÞÞþìÙ³ï¿ÿ~vvöG}$g _ýõ’%K–,Y²bÅŠÔÔÔçŸ>>>~Ê”)2×ß½{÷1cÆìÙ³géÒ¥• äÐp ·Êy{{—2ë dª@p$kʧæZŸŸöìÙ&Mš¸»»ßxã/¿ü2++Ëð8õ¨À7ƒj¿8ãÖCš£ô(`îlllú÷ïÿòË/Z²²²¶mÛöì³Ïª05¢\ލ‹V«>}ú¡C‡Fõí·ßFEEÝ¿æÌ™J æŽÿX : ,hذáš5k&MšT«V-ÿõë×(=.˜;‚#˜#îVDµ’N:NŸ>]éÀÂp©¬ ·9¨>GÈBp€,GÈBp³ÃÌæ‰àÖ†ù1ª Á² Á²À¼TÉÌnsPŽ…à@]å®Èv¿úê«~ýú5lذN:Í›7;vlbbbeVèéé9bÄéuPP¿¿•ŒsáÂ…#Z­ÖÇÇgܸqÇŽS両òŽT×–ëefǪ —·nÝzþùçÇwîܹÀÀÀ &xxxlÛ¶­k×®‹/.,,”¹žS§N1âÂ… ÅÙØØØØØTá˜G={öìÙ³g¿ùæ›7Ž‹‹ëÝ»÷gŸ}Vù¡¢æÙ*=,˜”½¶\/qi)‹*@¯×9òÈ‘#ááá‘‘‘µk×–Ú¯^½:vìØyóæÕ©SgöìÙrVuóæÍíÛ·‡‡‡_tèСª=DÓ¦MëÑ£‡áíÅ‹‡>uêÔ=z´mÛ¶2CEÍãŒ#˜‘*ü›1Ì©1;ïXµ©Q›eHBˆ–-[:t¨U«V‹-ºqã†ÒÇ£ >>>_}õ•^¯ÿç?ÿ©ôXPnG*«xv¬òÔ(„X¶l™³³óüùó‹/ª]»ö’%KîÝ»·zõj©ÅÓÓ3$$ĸÏßþö7éÅsÏ='„öôô4YUŸ>}Œïq<þü /¼Ð¼yóF=óÌ3û÷ï7,òôôœ1cÆ©S§:tèСCù;УG­[·H-QQQíÛ·wpppuu}úé§¿þúkØ‹õqQŽTãìX©1??_§ÓuíÚÕÙÙ¹ÄÏ<óŒF£‘s/à¬Y³.\(„øàƒ¾üòËRzîÝ»700ðôéÓ/½ôÒßþö·ß~ûmРA7n4tHKK4hн{÷ºvíZ®Ý騱cAAAZZšbÁ‚3gÎlذá[o½5uêÔ{÷î…††þç?ÿ)q¨¥tF àGª†!;VyjB$''çççûøø<®ƒƒƒƒ‡‡Ç¯¿þZæªÚ¶m›šš*„èÒ¥K¯^½×-//ïÍ7ßôõõ=r䈽½½bÑ¢E}úôùûßÿ"M ‰‹‹[¸pá¼yó´ÚòŠjÖ¬™âÊ•+žžž6lðòòÚ³g­­­bΜ9 4ؽ{÷СC‹µ”ÎU~ÌQÁ  ×ëËìS«V­ÜÜܪÚbRRRrrò7ß|#¥F!D:u¦OŸ.=ý'00PѤI“ ¤F!„F£1¼>qâ„…éééBˆœœœ?X®Î¨rG0U83F"Í©Úu¢†+ÔÕq©ÚËË«V­Z:îqrssSSS‡ RU[¼xñ¢bìØ±cÇŽ5Yôûï¿KÁÑÛÛ»©Q!]¤~òÉ'…...GÝ»wïÅ‹“““/\¸`¸÷±¸ruF•#8PŒÃbéÏ詘Zµjyyy?~<++ËÉÉ©x‡}ûöµk×îqkxôèQ¹¶(MÜ^ºtiñu¶iÓFzñ¸.ËtæÌ[[Û¦M›>zôè…^عsg``àÀ‡ Ö­[·N:=näwFu 8PYÅcbudÇY³fMœ8qÑ¢EË—/7Y”ŸŸáààðÆo‹ŠŠŒû$''—ks­[·BÔ«WoРA†Æ_~ùåܹs΋’ÄÄÄÇ¿øâ‹¶¶¶ñññ;wî\±bEXX˜¡ÃãN"&$$ÈïŒêÀ¬j*åqQÎß•)—W^y¥GQQQo½õV~~¾¡=--­ÿþ:îÝwßmÚ´©ÔX·nÝ .þ–ÌáÇO:e²B“di¢cÇŽÞÞÞË—/¿{÷®Ô’=xðà3fÔ­[·Â{‘œœªÑhÞ}÷]!ĵkׄ¾¾¾†[¶lyðàÉ=ÒPevFõáŒ#X3ns¬n¥ŸV¬ÚóŽ&..nÒ¤I|ðAlll—.]š6mzþüùS§Nåçç¿ÿþû†Î\±bÅsÏ=7|øðß~ûmÕªUƧ ¥×Ÿ~úéÍ›7G]âælmmW¬XñüóÏwèÐáÅ_ÌÏÏß¾}{ZZÚÆËõ7 ?ýôÓ;v!=ztþüù£GæååEGGK6¦OŸ>“'O~ùå—=<<~úé§4lØ0!!a×®]ƒ6j™«í댿èQÕ¼¼¼”Ë#fî·¸5[4‹®Õ±±±}úôyâ‰'j׮ݴiÓ1cÆüüóÏ&}rrrÂÂÂ<<<¤ùË£FZ¸p¡³³³´´¨¨h̘1õë×ïÔ©“^¯oÙ²åðáÃ¥EÁÁÁ;v4¬'11ñÙgŸmܸ±‹‹Kppð?ü`Xdü©-X°À8rh4//¯±cÇ=zÔ¸[|||÷îÝŸzê©I“&ݾ}{íÚµ 64hPñ¡–Þ¹b*ðÍ`Ñß?•¡Ñsv·ªy{{—2ë JT}ç9ãX"õÔê%%ÅÕÕÕdºŒ———"--MéP†ºfU»»»×«Wïüùó·nÝ2\†ÎÏÏÿᇄ·oßBäää:;;›|ÖÉÉI‘‘‘!gCÅñÀô=Š“æÇpe(/žÜd ®à¨Ñh&Ožüá‡N:õÿø‡——×Õ«W—/_ž’’"„xøð¡øë|¤ƒƒƒÉg…YYYr6DL 1°Å­«6Jª+8 !&MštõêÕ­[·¾øâ‹R‹»»û¤I“Ö®][¯^=!„³³³F£ÉÉÉ1ùàýû÷Å_çTHuÁÑÆÆæý÷ß 9yòä;w|}}ûöí»uëV!ÄO666½zõJOO—r'¨ ·9¨.8>÷Üsvvv‹/þé§Ÿrss¯_¿þî»ï^»v-$$¤~ýúB½^Ÿ’’âêêêêêjüA///!DZZšÒ{  [¥PÓ¼½½7lØðÊ+¯¼òÊ+†ÆÐÐÐwÞyGz““SXXèììlòA'''ñ¿§*KߊI‹N§Sz×@Eÿµ®Zª ŽÙÙÙK–,yðàŸŸ_»víÒÓÓ¶oßÞµk×!¤©Ó&tttBdeeÉÙ 1«Qü׺j£¤ê‚ãœ9s~þùç¹sçþío“Z®_¿>zôè3f|ÿý÷O>ù¤³³³F£ÉÉÉ1ùàýû÷Å_çÀ3c¨ºîq¼uëÖÁƒ[µjeHBww÷7Þx#??Û¶mB[[[''§âg³³³…†yÖ *Ì ÔÓÓÓ…-[¶4iòÉ'…·oß–Þº¹¹¥§§KIÑàÊ•+Ò"¥w@ê Ž-[¶´±±INNÖëõÆíÒ½ ­Zµ’Þöëׯ°°ððáÆz½>>>ÞÅÅÅßß_éP†º‚£½½}¯^½RSS?þøc㼓““£££k׮ݧO©%$$D«Õ®\¹Rº¯QsçΑ#GÖªUKéP†ê&Ǽ÷Þ{£FŠŽŽÞ¹sg›6mÒÓÓþù碢¢yóæ=õÔSRww÷ˆˆˆÈÈÈaÆ¥¦¦;vÌÏÏoòäÉJ€9bf •P×G!Dƒ vîÜùúë¯;88:tèÚµk½{÷Þ´iÓË/¿lÜmâĉ˖-óôôܹsgFFFhhhlllñ‡;€z0?€êÎ8 !êÖ­;sæÌ™3g–ÞmèСC‡Uz°æBugP1GÈBp€JQÕÌnsTŽàYŽ…àYŽ…à§ª™1æÇjFp€,GÈBp€,G@ùp›# ZG¨ ÎŒ rGÈBp€,GÈBp”ócu"8@E03€  Á² ÁPÌTˆàåÆÌêDp€,GÈBpT·9jCp€,G(fÆP-‚#d!8@‚# â˜¨ Á² ˜@ÍŽ…àYŽ€Ja~  GÈBp¹˜@厅à¨,nsT‚àYŽ…à²03Ž…à¨ÌÔ€àYŽ…àecf ‚# ªp›#`õŽ…àYŽ…àe`f HŽ€*ÃüÀº Á² ÁJÃÌ0 8ªóc+Fp€,GÈBp€ÇâG0FpT1ns¬Á² Á² dÌŒG@Õc~ `•Ž…àYŽ…à%`fLåq›#`}ŽÅVéÔ¨ÜÜÜŽ;>niëÖ­wìØax»yóæM›6¥¤¤Ô­[·wïÞ...Jï€bÔ5¯¯oñö¼¼¼Ë—/;99Z¢¢¢V¯^íàà˜šš—œœkoo¯ôN(C]ÁÑÎÎnûöíÅÛ?üðëW¯¾ýöÛÒ[Nãææ¶eË–F !/^»lÙ²wß}WéP÷8Š‹/®]»öõ×_oÛ¶­Ô²iÓ¦¢¢¢ððp)5 !æÎëää´k×®¢¢"¥Ç  Ú13¦ª0?°2jŽ………ï¼óÎSO=õÆoOž<©Õjƒƒƒ -666½zõJOOOLLTzÈÊP{püúë¯/\¸ðöÛoתUKjÑëõ)))®®®®®®Æ=½¼¼„iiiJ@êºÇÑă¢££»téÒ½{wCcNNNaa¡³³³IgiêLFF†œ5{{{›´èt:¥wTDñ_몥êàøùçŸgffΜ9Ó¸177Wáàà`ÒÙÑÑQ‘••%gÍÄD¬Fñ_몒ê½T}ïÞ½õë×úûû·;;;k4šœœ“þ÷ïßw`ŘSµ˜XõÇ;v'N\¶l™§§çÎ;322BCCccc‹?ܱD?-Í3¼ÎøÞ“׼浽Nïýªâcà5¯ymþ¯UK£×땃µñööæ9Ž€…âŒc5áÀÂʨöw½Ï8 Ž€jÇüÀ:àÿár*”ŽàYŽ…àYŽ€šÀüÀ kοÿýoF3uêÔ—Nž ,ns,ÁÑLùúúž:uªS§NvvvõêÕ މ‰)o!D^^Þüùó»uëV¿~ývíÚMœ8ñ?þ0YIAAÁÌ™3œœ>øàƒJŽüáÇóæÍëÒ¥‹£££ÏÒ¥K‹ŠŠJßVé#BìØ±£_¿~7®W¯^ÇŽ?þøã‚‚™BÜ»woæÌ™;w®W¯^‡^ýõÛ·o?nü™™™S§Nõóósqq0`€Þu €RŽæëÎ;üõ×_ûôéÓ­[·Ÿþùõ×_õÕWËÕ'##£k×®‹-ÊÎÎ2dˆ½½ýçŸÞ¹sç3gίçÍ7ßŒŠŠ*,,¬[·neÆ\TT4lذõë×ûùù5êúõësæÌ‰ŒŒ,e[eŽ0&&fèСGŽñööîÙ³çåË—ÃÂÂæÎ+s£iii;vŒŠŠÊÍÍ2dˆV«‰‰iß¾ýùóç‹ÿêÕ«þþþ«W¯ÎÉÉéÓ§Ï7BBBŠgqXfÆ€,zT5//¯Û7nÜ(„˜2eJ‰K'Mš$„زe‹ô¶gÏžBˆÆŸ={VjIMMõóóB8p@~ŸiÓ¦ !–/_nØÐÖ­[µZíàÁƒ +©]»¶››ÛîÝ»åìÝÚµk…³gÏ.¾HOÇŽïܹ#µ$&& !Ú·o_ʶÊa‹-œoܸ!½ÍÌÌlÔ¨‘££caa¡œŽ;V±páBÃú¥ Ø¿èlmm¥×/½ô’",,¬  @j‰ŠŠ’~RÖ®][åß*0bæ~¥‡ jX‡Çý®·zǪW…Á1::Ú¸ÏÁƒ…Æ “Ù'33ÓÖÖ¶G&Û B¤¤¤V+sïÊ Ž&´eË–76î`¼­2GXTTdggçáá‘““cXúË/¿;v,??¿Ìþù矦mÛ¶EEEÆúöí+„8þ¼Þ(8Þ¸qCѺukiÍÝ»w'8Z=ÒLáPÃ:¨682«Ú¬=ûì³ÆoƒƒƒëÕ«÷믿Êìó믿Ô­[÷³Ï>3îóðáC!ÄÅ‹Ÿzê)çªjÌ]»v5~ëèè(mÎx„†×rF8jÔ¨¯¾úªM›6/½ôR¯^½ºvíêëë+s£:N¯×4H£Ñw8pà.^¼( 5 F1dÈ[Ûÿù¹2dÈÑ£G«êø*'ÍáÆÀBÍZ“&MLZš5k–’’"³Ï•+W„{÷îÝ»woñ•§¥¥I/´Z­‡‡G• ¸N:NNN¥t0Ù–œ®[·. à‹/¾ˆŒŒŒŒŒ´±±éÞ½û‚ ¤³†¥oôÚµk%"i ©©©ÆÒǦM›štvww¯’ƒ€¥crLÍqqqBddd”¸4==]áêêjÜøçŸšt»~ýºI *¥”xæÏŸ_âÙæ)S¦HýµZ­V[5ß &'öŠ3Ù–œÖ®];,,,))éÏ?ÿܺuëÔ©Sxâĉ27*¥@)“ZLâróæÍ…&ºKü8¬ 'À@&‚cÍéÔ©“âèÑ£&—n…÷îÝ;räˆV«íܹ³qû®]»Œß9räîÝ»&jKé#ý{èÐ!“Í­Zµjúôé‹°5©ÌþöÛoÒ3qÜÜÜFŒñÉ'Ÿ¼ÿþû………»wï.sýÞÞÞBˆ½{÷êõzãö~øÁ°uãÎf×®]………Æí{öìQú8`Ž5§Aƒ#FŒ¸víÚØ±cOb]¹reäÈ‘·nÝ ­_¿¾ñG,XðË/¿H¯¯]»&ýëÿû¿ÿ“ÙÇÍÍm̘1ñññ+W®4ôÿî»ï¦M›orvSeŽÐÁÁaÙ²e3gÎÌÌÌ4>bBà š¥¯ôèÑgÏž]²d‰¡qÍš5ûöíëÝ»wûöí;7lØpìØ±:î­·Þ2<rÕªU?þø£ÒÇ °*<°\ÜãX£Ö¯_ÿÛo¿mÛ¶í¿ÿýo›6m4hpýúõK—.ôìÙóÓO?5î¬Õj›5kdcc“:xð`ù}–.]zâĉéÓ§¯Y³¦}ûö7oÞÜ¿¿££ã—_~©ôÁrFèææ6qâÄõë×·nݺwïÞõêÕKJJ:{öl@@Àˆ#ä¬?22òرcï¼óηß~Û®];N÷óÏ?»¹¹GUƒÅ‹'$$,_¾|ûöí:uJIIIJJrvv¾{÷®ÒÇ åqƱF9;;'&&~þùçÁÁÁÙÙÙ ùùùƒ Ú²eËáÇM¾­Õjããã§L™òÇ$$$´oß>::zÆ åêãááqúôéY³fÙÚÚnݺ5%%eܸq§OŸö÷÷Wú`ÈatttTTT³fÍ8°mÛ6FóÞ{ïíß¿_æ³Ê›7o~æÌ™°°0›ï¾û.//ïµ×^;wî\Û¶m‹wnÑ¢ERRÒ”)Sììì¶nÝš””äççgrÌP-ɽ_¨JÁ (.U@‚#@Ì,Á² Á€J13Ê‹àP·9‡àYŽ…àYŽÔˆ™1PG€b˜X‚#d!8@‚#d!8PfƘns,Á² Á² Á€º03Æ 1?°GÈBp€,GÈBp€,G*Â̳ÅüÀ" Á² Á`¸Í0GjĄ́$‚#d!8@‚#d!8Ìóc3Gp  ÌŒ€Ê#8@‚#d!8@‚#ÀŒ0?0gGÖ™1P%Ž…àYŽóÂmŽ€Ù"8ÌŽ”‰€¹±UzP½˜c¡¤¯š”ù fB¥ÁñܹsŸ}öÙ… îß¿ïíí=}úô§Ÿ~Ú¤ÏæÍ›7mÚ”’’R·nÝÞ½{GDD¸¸¸(=pPâ#`VÔx©úÀcÆŒ9pà@£Füýý“’’ÆàÀÿ\‰ŠŠš7oÞåË—ãââ^{íµÜÜ\¥Çj¤_Þ—‹×€9PÝǬ¬¬·ÞzËÖÖvݺu;wBœ={öå—_~÷ÝwƒƒƒµZ­B§ÓÅÄĸ¹¹mÙ²¥Q£FBˆÅ‹ÇÆÆ.[¶ìÝwßUz@¥8û(Nugãââ²³³§L™"¥F!Dûöí|çÎsçÎI-›6m*** —R£bîܹNNN»ví***Rz@ÕŒÏ>r¨aª Ž?þø£F£>|¸qã| Óé:tè ½=yò¤V« 6t°±±éÕ«Wzzzbb¢Ò{ ˜c­¤øÈõk †©îRõùóç]\\7n|êÔ©¤¤¤»wïúøøôïßßÞÞ^ê ×ëSRR\]]]]]?èåå%„HKK Pz'ÿׯš¤®à˜——wïÞ½V­Z-X°àÛo¿5´7kÖlÅŠmÛ¶Bäää:;;›|ÖÉÉI‘‘‘QæV.=÷©á¿¿^;¦J/t:Ò{V‹øˆjåíí­ôÌ…º‚ã½{÷„)))·oߎŒŒ ~øðá–-[V­Z¶cÇ{{{iê´ƒƒƒÉg…YYYenÅkÇTCLÔˆOÿß‹bWR(mPµˆ¨&ÅÏþ¨6Jª+8ÚÙÙI/–,YÒ·ïÿ«)Ó¦M»~ýz\\ÜÿûßQ£F9;;k4šœœ“ÏÞ¿_üuÞQ¾R*×ãnÊ¡Ø@e꣮àèàà`gg§ÑhúôécÜÞ¿ÿ¸¸¸‹/ !lmmœœŠŸYÌÎÎBæYWÞãÊY)wySrafŒšê ®à(„hÔ¨ÑÝ»w5q£43¦  @zëææ–’’’]¿~}CŸ+W®H‹ª{„œ¤€ªB|ª–ê‚cŸ>}¾üòËK—.I³¤%ÒCv|||¤·ýúõÓét‡~öÙg¥½^ïâââïï¯ààË{’’* ‚øTÕÇ#F|ùå—óæÍ[½zµôÀsçέ[·ÎÉÉiÀ€RŸÕ«W¯\¹²wïÞÒœ˜˜˜˜;wîLš4©V­ZJïA ¸ê e2Ž‚2Tˆê‚£¯¯ïÌ™3?üðÃgžy& ''çäÉ“fñâÅO<ñ„ÔÇÝÝ="""22rذaAAA©©©ÇŽóóó›–ÉÛÛÛrŸÚÈIJX fÆ@â#*Æ¢×W†Jƒcµ²Öo&ãLI‘…ù#8B>â#ÊËZ×—Iu—ªQaÆ%•_ɬ ³g™´JI¿¼o)µÀé—÷•Šõ x‚#*ˆìÀ*Rp©€ân T¯qÆÇIGÖ³€ Î8¢R¤’ÊÇX1žQYdGjÀ“ÃÁ¥jT ®YP®_CÍŽUï§¥y†×ß{ªäµTFÍg<¼VùkÃÙ 3¯­ïµ!>šÉxx]ïU‹¿SõTû4yÁTV˜¾ Qó¸x­6šY¼vLUçïzîq`=HPÏîQ©ÎxïPz áR5ª7;BA¤F(‹{Õ€:CpD#;BTs˜ ⣣΂#ªÙ€Êa­¸ÇÕ‚‡;¢&ñÍóēí uFBpDu!;¢fðm3ǓíuÆ€àÀ‚QÍaA˜|m¡¨3ƸÇÕˆ›Q­¨æ°D†Û•d¡Î˜ 8¢zQQM¨æ°hÔF‹@)ŽàˆjG}D•£šÃ Pa‰ލ ÔGT!R#¬µÑœQjJDpD ¡>¢JPÊae¨æ‰Ró8GÔê#*‰R«Dm47”šRXJ9¬ÙÑ|PjJGpD¢8¢b(å°z”Gs@©)Á5âˆò¢”C%(Ê¢ÔÈAp„(ŽRæƒàe!©jCmT ÕF&‚£öíÛ7f̘֭[×­[×ÃãW¯^Ÿ|òI^^žÒã*ÛßÿþwF3cÆŒ—¦¦¦j4šF”¹ª   ÛQQ ê8Ô‰ìXó¨6òkT~~þ„  °qãÆŒŒŒ€€''§cÇŽýßÿý_»víÒÓÓ«p[üñG­Zµ^ýõ*\ç¸qã„7n,***¾tË–-Bˆ_|ÑÖÖ¶z#T€:5#;Ö$ªM¹kÔ›o¾ûä“OþôÓOééé?þøã/¿üòÛo¿ >üÒ¥K/½ôRÕn®   Ä„Wa>>>þùçÁƒ‹/ݼy³bìØ±òWHq€Qk©±¼Ž5çÒ¥Kk×®uww?uêT×®] íM›6ݸq£¯¯ïþýûÏœ9S5çååéõúšÙ‹ñãÇ !¾ùæ“ö´´´'N´hÑ¢[·nåZ!ÅÅQÊAy¬~”š 8Öœ+Vèõúy󿹏¸˜,ªS§ÎÛo¿Ý¿ÿ .óòòæÏŸß­[·úõë·k×nâĉüñ‡aiPP¯¯ojjjß¾}íììêÔ©ãëë»lÙ2éãÔ©S›6m*„X»v­F£ùì³Ï䯳  `æÌ™NNN|ðAñ½=z´­­íÖ­[=zdܾe˽^?vìXF#µ$$$Œ1¢qãÆuêÔiÞ¼ù /¼püøñLÏó5µê˜46lØPæÑ€5¡”dG˜=ªš——W‰í5BÜ»wOÎJÒÓÓýýý…mÚ´y饗…nnn§OŸ–:ôìÙ³yóæ¾¾¾nnn&Lxå•WêÕ«'„X¼x±^¯?xðà?ÿùO!D·nÝV®\yþüy™ëôññyíµ×„Ÿ|òI‰c{î¹ç„Û¶m3n”N4ž;wNz»ÿþ:uêÔ®]{РAãÆ ÒjµööögÏž5lËÖÖÖðÚÎÎNÌÜo¼Â€€€ È<°&ßôü\TJÕÇý®·zǪWâ7Óýû÷…7–¹’iÓ¦ !–/_nhÙºu«V«|(„¸xñâSO=%µ˜ÌD©[·nå×\úðìììBBBÖ®]»}ûvé=Ò|êÑ£Gú„„„!òóó/_¾œ’’¢Óébcc+vèä–‹û2I÷;ò“RIÃJ"8Öúõ뻸¸Ü¸qãþýûŽŽŽÅ;¤¦¦N›6­yóæ«V­ºråŠbïÞ½{÷î-Þ3--Mzaccãêê*s2שÕj=<<Ê\Ûøñã×®]ûÍ7ߌ7îúõëGíÞ½»§§§¡ÃåË—#""öîÝ{ÿþýÚµkûúúúøøœ={¶Ì5*£þ¯yâ2GËEd";VG¯ò˜U]s† &„x܉·;vìØ±#??_áîî.„˜?~‰g‰§L™"}Ä0Y™ëÔjµZmÙß={ölÙ²å¾}ûnݺ§×ëßxÿþý.]ºìÞ½{ÆŒ.\ÈÉÉ9}úô¢E‹dUªŒwîÜ)×Èa¡¨ã@¹0Ϻ¨6U‚àXs¤¿Ô·páBC$2xøðáÊ•+…Bøúú !:dÒmÕªUÓ§OÏÈȨÀÖ«v&44´  `óæÍ›7o¶±±‘®MK222f̘±hÑ¢6mÚØØØ!Jÿ»8………†·ÌòIMý½:F³B*€ìkN‡F}ëÖ­N:ÅÇÇÚoÞ¼9f̘‹/¿ð B77·1cÆÄÇÇKiRòÝwßM›6->>^þåiñ×€U»N‰twãªU«Ž92`Àé&N‰t*ôÖ­[†–¬¬¬·ß~[aœ 6lXPP°k×.ém~~~xx¸ú;ò«cä0¤F ÂÈŽåEÁ©2JÏαB¥Ì´ÊÉÉ>|¸tä{õêÕ¾}û:uê!Ú´i“ššjèyíÚ5iÎGûöíCCC  Õj¥Ƴ’ Œa“™™)„puu KHH¨ð:KñôÓOKûb2ûþýû­ZµB<ýôÓ3fÌ uuu}öÙgëÔ©ãææ&=UÇx[ÿþ÷¿…uêÔ }óÍ7}}}5M³fÍ4h Í}+sä°8Ì*Ÿ#™ªã@©vV5Á±ê•ùÍôÝwß >¼E‹vvvÍ›7ïß¿ÿG}”ŸŸoÒíÞ½{³fÍêÔ©Sݺu==='L˜`üè™2ƒ£^¯_¼xñ“O>éèèøÕW_Ux¥Xµj•Âø¹<W¯^3fL“&Mœƒƒƒ7lØ ×ëÿùÏ6hÐ  ø¶bcc;vìhoo/­0:::44ÔË9, ¿í€*Á’Õt”T5úšúÇêáíí­Óé”…EÒëõ×®]kР” %\_°2|A*ÄTéªïø¨öw=÷8ÂŒHW¨S£àVëÂ/9 jQ!KAÁ©GX*£u ˆÕ ‰šDp„e 2ÀãP!‹ãªÕ„à‹Ae´hq ZQ!QpªÁ@µ£ˆ5€ì(¡àT+‚#, eÑQÄC‘¤àT7‚#, eѲPĦæ"IÁ©GX5—EËB¡Î"IÁ©GX$u–EËBD‘D5!8ÂRQÍ©PœªŠ$5§ÆaÁTU-0*)’ÔœšDpP•¨à€Y±úìHÍ©aGX6«¯‰–… ˜!+®“ÔœšGp„ųâšhY¨à€Ù²Ê:IÍQÁÖÀ*k¢e¡‚fŽ:‰*Ap„• &*ˆÔ †Qv”Bp„õ ;*‚ò X «)’”Tå°,V);Ê"8ªXAM´ ”oÀYt¤ì(ŽàkcÑ5j€…ÖIR£9 8 YhM´,TpÀ¢Y\¤æ˜ ‚#¬“ÅÕDËB¬u@p„Õ¢&VR#`5,¥NRvÌÁÖÌRj¢¡|VÆüë$eǬÈEù¬’9gGÊŽ¹!8ÂÊ™sA´,”oÀŠ™g©¤ì˜!‚#¬ŸyDËBù¬ž¹•JÊŽy"8BÌ­ ZÊ7 ”J”‰àµ  V ©P3)•T³e«ô0jÔ¨sçΙ46hÐàÈ‘#Æ-›7oÞ´iSJJJݺu{÷îáââ¢ôØQ)RA¤ÉÇáTHñRIå1gj Ž¿ÿþ»½½}Ë–-ßFEE­^½ÚÁÁ!000555...99966ÖÞÞ^éá5„Ú ¨–‚Ù‘ÊcæT³³³³²²¼bÅŠÇõÑét111nnn[¶liÔ¨‘bñâű±±Ë–-{÷Ýw•ÞTŠâÿ“¶%5ÊcþTwãï¿ÿ.„09ÝhbÓ¦MEEEáááRjBÌ;×ÉÉi×®]EEEJï*ËLîà1gÔn5_*©<AuÁ155UÑ¢E‹Rúœèèè(„ÈÊÊ’³b¢¥ ;ãP(Qµ–J‹¨<Å­«6JªîRõ_|qúôiCjBtïÞ}ܸq¹¹¹ûöíB8;;k4šœœ“Þ¿_üuÞ°>Q»(¥š®YSy,Žê‚c‰ºté"„¸té’ÂÖÖÖÉÉ©ø™Åììl!„až5¬wðj7ª¼ZRy,‘º‚£^¯/,,,þH!D½zõ¤·nnnéééRR4¸r労Hé@ÕSyv¤v© «%•ÇB©+8¦¦¦¶iÓf„ &íIIIÂè~…~ýú>|ØÐA¯×ÇÇÇ»¸¸øûû+½¨ªÍŽÔnå¢Új ‰º‚cË–-;wî|âĉ͛7“’’Ö¯_ïîî>hÐ ©%$$D«Õ®\¹Rº¯QsçΑ#GÖªUKé@uQa5$5¨€ÊWKŠåÒèõz¥ÇP£.^¼øê«¯Þ¹sÇÏÏïÉ'Ÿüã?NŸ>]·nÝU«VuíÚÕÐmýúõ‘‘‘AAA©©©ÇŽkÓ¦Íúõë‹?¦§8ooofU[.õ”3õì)€êPábÅGµ¿ëÕuÆQáãã³mÛ¶áÇ߹sgÏž=YYYÇß±c‡qjBLœ8qÙ²ežžž;wîÌÈÈ •“‹`…€‚*vÞ‘âcéTwƱ¨ö!VC ¬)ܪD¹‚ 5¥FÕþ®WÝÀ2YM]€ê&ÿÙàÖ”ÕLu—ª@RáÌB5#8€J)3;rºÑj@5"5Z‚#¨¬Çt$5Z‚#¨ų#©Ñú@Õ0ÎŽ¤F«Äãx@•1dGR£UâŒ#¨JDF+FpUŒìh­Ž…àYŽ…àYŽ…àYŽ…àYŽUï§¥y†×ß{òš×¼æ5¯yÍk+{­Z½^¯ô¬···N§Sz º¨öw=g Á² Á² Á² Á² Á±æüûßÿÖh4S§NUz å°nÝ:MYÞ~ûm!DPP½½} ¯ò ªU«V)¤¯Úºuëjx×0C¶Jf­iÓ¦Ï<óŒámZZÚ… Z¶léããchôòòRz˜ &QšAƒ 4Èðvݺu“&M5jÔÒ¥K•¨i\ª€,G³sïÞ½™3gvîܹ^½z:txýõ×oß¾--3fŒF£IHH0t:t¨F£ 1´ìÛ·O£ÑŒ9Rz›——7þünݺկ_¿]»v'Nüã? ƒ‚‚|}} fΜéääôÁTrð>œ7o^—.]}||–.]ZTTTú¶J¡bÇŽýúõkܸq½zõ:vìøñÇÈÜhédz¸ÌÌÌ©S§úùù¹¸¸ 0 ..®†¿ú˜3‚£yIKKëØ±cTTTnnî!C´ZmLLLûöíÏŸ?/„7nÜ ‰‰‰Qú›³¡GUóòò*±}ãÆBˆ)S¦”òÙ±cÇ !.\hh‘‚KÿþýõzýÍ›75MPP´èôéÓBˆ&Mš!Î;'5vïÞ]£Ñ\¿~]¯×O›6M±|ùrÃÚ¶nݪÕj,½íÙ³gíÚµÝÜÜvïÞ-g×Ö®]+„˜={vñE={öBtìØñÎ;RKbb¢¢}ûö¥l«Ì¶hÑÂÙÙùÆÒÛÌÌÌF9::ÊÙhéÇSZƒ­­­ôú¥—^B„……H-QQQÒÉÚµk«ö›`Ñ÷»Þê«^…ƒãŸþ©ÑhÚ¶m[TTdÜÞ·o_!Äùóçõz}@@@­Zµ|888¸^½zÒmŽBHÁñÊ•+Bˆ½{÷îÝ»·ø¶ÒÒÒ¤Z­VZåÕ©SÇÉÉ©”&Û’3ÂuëÖ|ñÅ‘‘‘‘‘‘666Ý»w_°`tÖ°ôÊ9žÒǦM›štvww¯’ƒ€`rŒ‘R‹”`ŒI-RÜéÒ¥ËO}zÖ¬Y¶¶¶[·nMII7nÜéÓ§ýýý•> rGÕ¬Y³lÛ¶M£Ñ¼÷Þ{û÷ï—ù¬r9ÇÓ E‹IIIS¦L±³³ÛºukRR’ŸŸß† ”>H˜ Éí_¨%%ÅÕÕÕÕÕÕ¸ÝËËK‘––¦ôØ”a«ôpúôé5kÖ„††vïÞýÂ… &Ksrr MÚœœ„r6aõÓå¬~­_AKÇWÐ ðE„%R]pÌÍÍ3gN³fÍfÍšõ¸B“vGGG!DVVV™›ÐétJï%@ÕS]pŒŒŒ¼víÚ·ß~koo_bgggF“““cÒ.=µG:ï BêºÇñĉß~ûí믿ޡC‡Çõ±µµurr*~f1;;[a˜g  6ê ŽÉÉÉBˆèèhð Bˆï¿ÿÞÛÛû¹çž“º¹¹¹¥§§KIÑàÊ•+Ò"¥w@êºTÝ¢E‹gŸ}Ö¸%+++!!ÁÝÝÝßß¿qãÆRc¿~ýt:ÝáÇ õz}||¼‹‹‹¿¿¿Ò;  ^¯Wz Jºpá /¼0lذ¥K—¯_¿Þ¯_¿–-[nÞ¼YšóÙgŸ}øá‡“&M*ñ¯Z¨ºÎ8Êäîî9lذ   ÔÔÔcÇŽùùùMž¡¡¡ÇWzD(Ÿ¼¼¼5kÖ¼ð þþþ}ûö KNNVzP(Ûo¿ýæíí}æÌ™—nÞ¼9$$Äßß¿Gï¼óNff¦Òã­^G”­  à•W^yÿý÷oݺխ[·V­Z?~|âĉ«V­Rzh(7½^ÿÖ[oÝ¿_é |80f̘4jÔÈßß?))iüøñPz\«°°p„ Ë–-ËÌÌ òððسgÏóÏ?òäI¥‡†2lذáq‹¢¢¢æÍ›wùòåÀÀ@GGǸ¸¸×^{-77Wé!W'=P–¯¿þÚËËk̘1999RË¥K—ºtéâëëûË/¿(=:”Ïúõë½¼¼¼¼¼fÏž­ôX ×Ý»w:tèpêÔ)©åÌ™3mÛ¶íÞ½{aa¡Ò£ƒ,R! ËÏÏ—ZŽ=êëë;pà@¥‡†’eeemÒáâÅ‹>>>AAA7oÞ”ZÞ{ï=//¯E‹)=öjÄG”m÷îÝBˆ¿ÿýïöööRKëÖ­§L™RXXÈkË’œœåãã£ô@P>qqqÙÙÙS¦Léܹ³ÔÒ¾}ûÁƒß¹sçܹsJ²$&& !&L˜`kk+µtëÖÍ××÷êÕ«J%:tèË/¿¼qãÆÇuØ´iSQQQxxx£F¤–¹sç:99íÚµ«¨¨HéáW‚#ÊvåÊ???ãÆÖ­[ !ÒÒÒ”ä*((˜3gŽ‹‹Ëܹs• ÊçÇÔh4Ç7nüàƒt:]‡”diÒ¤‰Â8#êõú»wïjµZC”„YY¼xqtttttt÷îÝKìpòäI­Vlh±±±éÕ«Wzzºôÿ«Ä7+ÊöÙgŸ¯k.\B4kÖLéÑA®O>ùä×_]¿~}ýúõ• Êçüùó...7>uêTRRÒÝ»w}||ú÷ïo¸ó÷ÜsÏÅÆÆ.^¼¸nݺ;vÌÌÌŒŽŽ¾víÚK/½Ä¤yêÙ³§ôâàÁƒÅ—êõú””WWWWWWãv///!DZZZ@@€Ò{P-Ž([›6mLZŽ;S§N“S 0[§OŸ^³fMhhh÷îÝ¥ÐK‘——wïÞ½V­Z-X°àÛo¿5´7kÖlÅŠmÛ¶Uz€ÅÛÛ{Æ ¯¼òÊ+¯¼bh }çw”*"''§°°ÐÙÙÙ¤ÝÉÉIüï©e+Ã¥j”Oaaallì¤I“rrr–,YÒ A¥G„²åææÎ™3§Y³f³fÍRz,(·{÷î !RRRvîÜyüøñøøøéÓ§ÿñÇaaaV>ÓŠdgg/Y²äÁƒ~~~£G0`€½½ýöíÛ™o¡¤=“vGGG!DVV–Ò¬.œqD9?~|áÂ…—/_nҤɿþõ¯ÇÝösyíÚµo¿ý–+›–ÈÎÎNz±dÉ’¾}ûJ¯§M›výúõ¸¸¸ÿþ÷¿£FRzŒ(Ûœ9s~þùç¹sçþío“Z®_¿>zôè3f|ÿý÷O>ù¤ÒDù8;;k4šœœ“véagÒyG«ÄGÈ’——·xñâ &\¿~}úôé»ví"5ZŠ'N|ûí·¯¿þ:³(,”ƒƒƒ½½}Ÿ>}ŒÛû÷ï/„¸xñ¢ÒDÙnݺuðàÁV­ZR£ÂÝÝý7ÞÈÏÏß¶m›ÒD¹ÙÚÚ:99?³˜-„0̳¶>œqDÙŠŠŠfÍšõÃ?ôïßþüùVüó`•¤?M!Í 4nÿþûï¿ÿþûÖ­[ïØ±Cé1¢ 5º{÷®F£1n”Î(=:”-==]ѲeK“véDãíÛ·• *ÂÍÍ-%%%;;ÛxzÓ•+W¤EJ®ºQ¶ 6üðÃcÇŽ?¾ÒcA¹µhÑâÙgŸ5nÉÊÊJHHpww÷÷÷oܸ±ÒDÙúôéóå—_^ºtIš°)‘ž÷ÁS9-BË–-mll’““õz½ñt:¢U«VJѯ_?NwøðaCÕëõñññ...þþþJ®ºQ½^ÿÕW_Õ«Wï­·ÞRz,¨ˆž={*!¹páBBBB@@ÀÒ¥K•d1bÄ—_~9oÞ¼Õ«WKÏþ8wîܺu뜜œ  ôèP6{{û^½z}ºV«B$''GGG×®]Ûä&XŠÕ«W¯\¹²wïÞÒœ˜˜˜˜;wîLš4©V­ZJ®ºQ†Û·oÿþûïööö/¿ürñ¥#FŒ UzŒ€•óõõ9sæ‡~øÌ3Ïäääœ}ºôœ`4h°sçÎÕ«W'$$:tÈÅÅ¥wïÞS§Nm×®ÒCCÅMœ8±aÆ۷oß¹sg“&MBCCÃÃÃ¥³ÖJ£×ë•,ã€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,ÿ¸˜ÊE´£>IEND®B`‚statistics-release-1.6.3/docs/assets/jackknife_101.png000066400000000000000000000267321456127120000226070ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A-¡IDATxÚíÝ}pUåÀñç&a5ÌËòRÒe[B·–ò²©¸kÝ-°»ŠØÑÒZ-«‹²­µvGìbQt­¦-u‚V duVeœ:YÔ¢8ЬFb™ðR¦h1qYoîþq§™lúˆ†Cr?ŸéÍsOÂóK‚ùrî97©L&àƒä%½zá@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@”‚¤7ð1kmm}ä‘GÖ­[·wïÞþýûWTT,X°àì³ÏîxÌœ9s¶oßÞé ðüóÏw\Y»vmuuuCCCß¾}Ï9çœ%K–”––&=@bzU8¾÷Þ{_ûÚ×êêꊋ‹'Mšôî»ï¾øâ‹Ï=÷Ü5×\sÕUWµ¶{÷îÂÂÂaÆu|ß’’’Žo®\¹òÞ{ï-**š0aBcccMMÍÎ;«ªª “ž ©L&“ô>6¿øÅ/~ðƒŒ7îg?ûY¶ðvîÜ9oÞ¼·ß~»¦¦æÌ3Ï !477O˜0á‚ .¸óÎ;õqêëëgÍš5pàÀuëÖ 4(„°lÙ²ªªªyóæ}ï{ßKzJ€dôªkŸzê©Âw¿ûÝöó‚#FŒX´hQ:nz÷îÝ!„N§;©®®nkk[¼xq¶CK—.-..Þ°aC[[[ÒS$£W…ã®]»ŠŠŠÆŒÓqqĈ!„={ödßlll !œ~úéïóq¶lÙ’——7}úôö•üüüiÓ¦iÒ¤}ûö=ûì³µµµ7ß|óÅ_BhiiI§Óî• !‡:ôÛ9rdÒŸ  {Õ××'½…ôªpì(N?øàƒ·Ýv[:¾ýöÛ ]ß¿aaáµ×^;þüìÊ /¼°hÑ¢[o½uÊ”)ååå­­­!„¢¢¢N°_¿~!„¦¦¦˜?=7¿™B#GŽÌÙÙs|ü\ž=ÇÇÏåÙs|ü\ž=äðI¢^uc»_|qæÌ™Ë–-0`ÀÏ~ö³¿û»¿kèþûﯫ«k¯ÆÂäÉ“/»ì²ÖÖÖgžy&„PRR’J¥ZZZ:}ÌLJ?wÈA½-9²lÙ²Ë/¿ü·¿ýíÕW_½aÆɓ'à{Mœ81„ðÆo„ Š‹‹»žYlnn!´ßg kzÕSÕmmm×]wÝÆÏ;ï¼ïÿû]#/“É´µµ¥R©¼¼ÿWÌùùù!„þýûgß}’ ½çWþþ÷¿Ÿ:ujaaá§>õ©®^tÑEóæÍ !¼þúë .»Óak×®­®®nhhèÛ·ï9眳dÉ’ÒÒÒã8 wôªp|ï½÷¾öµ¯ÕÕÕOš4éÝwß}ñÅŸ{î¹k®¹æª«®j?låÊ•÷Þ{oQQÑ„ kjjvîÜYUUUXXø¡ŽÈ)½êæ˜êê꺺ºqãÆÕÖÖþøÇ?þùÏþ裖””Ü}÷ݯ½öZö˜úúúÊÊÊÁƒ?õÔS•••O?ýôüùó_yå•+V´œ˜crM¯ ǧžz*„ðÝï~·ý¼àˆ#-Z”N§ŸþùìJuuu[[ÛâÅ‹ ”]Yºtiqqñ† ÚÚÚâÈ5½*wíÚUTT4fÌ˜Ž‹#FŒ!ìÙ³'ûæ–-[òòò¦OŸÞ~@~~þ´iÓ<¸uëÖøcrM¯ Çûî»ïá‡î´¸cÇŽÂСCC™L¦¡¡¡¬¬¬¬¬¬ã1áOqs @êU7ÇŒ=ºÓÊæÍ›+++O9å”Y³f…ZZZÒétIII§ÃŠ‹‹C‡Š<æ9²ÓJ}}}ÒŸàxtý±ž³zU8v”N§|ðÁÛn»-Nß~ûí !´¶¶†ŠŠŠ:ܯ_¿BSSSä1H&@¯ÑõÇzΦdï Ç_|ñ?øÁ›o¾9dÈ[o½uòäÉÙõ’’’T*ÕÒÒÒéøÃ‡‡?SŒ9 õ¶pxð`¶ÛíÚµ+ûPü1¹¦W…ãš5k6nÜxÉ%—Ü}÷ÝÇ:58cÆŒt:½iÓ¦ö•L&S[[[ZZ:vìØøcrMï ÇL&óÀôïßÿ†nxŸÃæÎ›——·jÕªì5‹!„ÊÊÊÌž=»OŸ>ñÇäšÞsã[o½µ{÷îÂÂÂK/½´ë£]tѼyóBåååK–,Y¾|ù…^8uêÔÆÆÆÍ›73æŠ+®h?8æ€\Ó{ÂqïÞ½!„ÖÖÖW_}µë£í7V‡,X0pàÀÇ{lýúõC† ™7oÞâÅ‹³¯¶ó¡ŽÈ)½'?ÿùÏÇ¿zâÌ™3gΜùÑȽçGº•p Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp JAÒè^©Tê¨ë™L&é­ô0ÂèåÒûGt]̲3é}ô<žª Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp JAÒè.¿ùÍo.¸à‚êêê³Î:«ÓCsæÌÙ¾}{§Å<ÿüóWÖ®][]]ÝÐÐзoßsÎ9gÉ’%¥¥¥I˜^ŽkÖ¬9ÖC»wï.,,6lXÇÅ’’’Žo®\¹òÞ{ï-**š0aBcccMMÍÎ;«ªª “ž ½-›››ßxãÇüá‡>ÖMMM\pÁwÞy¬R___YY9xðàuëÖ 4(„°lÙ²ªªª+V|ï{ßKzD€dô¶kgΜy饗«C»wï!t:ÝØIuuu[[ÛâÅ‹³ÕBXºtiqqñ† ÚÚÚ’ ½íŒã²eËþçþ'„ðÀ¼ð ]hll !œ~úéïóA¶lÙ’——7}úôö•üüüiÓ¦=þøã[·n?~|ÒS$ ·…ã”)S²ÿçÙgŸ=êÙpÜ¿ÿüùó_{íµ¾}ûŽ=zÑ¢Eí÷Ðd2™†††²²²²²²ŽïXQQBسgprSo Ç´gÏžÂ]wÝ5|øðI“&íÛ·ïÙgŸ­­­½ùæ›/¾øâBKKK:ît¯L¡¸¸8„pèС˜?eäÈ‘Vêëë“8]¬ç¬œ Çýû÷^{íµóçÏÏ®¼ð ‹-ºõÖ[§L™R^^ÞÚÚB(**êôŽýúõ !455Åü)2z®?Ös6%{ÛÍ1èþûﯫ«k¯ÆÂäÉ“/»ì²ÖÖÖgžy&„PRR’J¥ZZZ:½ãáÇßÎ;ä œ Ç£š8qbá7Þ!w=³ØÜÜBh¿Ï ×äV8f2™t:Ýõ%uòóóCýû÷Ͼ9xðàƒfK±Ý®]»²%=@2r+G}ùå—wZß¶m[èp½ÂŒ3Òéô¦M›ÚÈd2µµµ¥¥¥cÇŽMz€däV86lܸq/½ôÒÚµkÛ·mÛ¶zõêòòòóÏ??»2wîܼ¼¼U«Ve¯k !TVV8p`öìÙ}úôIz€däÜ]Õ7ÝtÓÂ… o¼ñƇzèŒ3ÎØ·o_]]]ß¾}øÃ¶ÿêòòò%K–,_¾ü /œ:ujccãæÍ›ÇŒsÅW$½}€ÄäÖǨQ£}ôÑY³f8pàé§Ÿnjjš5kÖO<ñ…/|¡ãa ,X±bÅðáÃׯ_èСyóæUUUu}qG€ÜÑkÏ8ÞrË-·ÜrËQ4hÐòåË?ð#Ìœ9sæÌ™IÏp²È¹3Žá@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@”‚¤7ÀñH¥RÇz(“É$½; wŽ=Uzÿˆ®‹ùCv&½/ ×òT5Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q ’Þ •J%½€„#ÀI.•J—šÓuý™Ìº¤·äOUE8E8E8E8E8E8E8E8E8¥×†ão~ó›‘#Gþú׿>ê£k×®;wîØ±cÏ>ûìï|ç;øÃŽï€ÜÑkÃqÍš5ÇzhåÊ•7Þxã›o¾9a„~ýúÕÔÔ\yå•­­­ö€œÒÛ±¹¹ùå—_þþ÷¿ÿ‹_üâ¨Ô××WVV<ø©§žª¬¬|úé§çÏŸÿÊ+¯¬X±âCkz[8Μ9óÒK/}øá‡u@uuu[[ÛâÅ‹ ”]Yºtiqqñ† ÚÚÚâÈ5½-—-[vÏ=÷ÜsÏ=“'O>ê[¶lÉËË›>}zûJ~~þ´iÓ<¸uëÖøcrMo Ç)S¦Ì˜1cÆŒŸüä'»>šÉdÊÊÊÊÊÊ:®WTT„öìÙy @*Hz'TKKK:.))é´^\\B8tèPä1häÈ‘Vêë듞8]¬ç¬Ü ÇìmÑEEEÖûõëBhjjŠ<æÉDè5ºþXÏÙ”ìmOU¿¿’’’T*ÕÒÒÒiýðáÃáOçcŽÈA¹ŽÅÅÅ]Ï677‡²÷Pǃr+Cƒ>xð`¶ÛíÚµ+ûPü1¹&çÂqÆŒétzÓ¦Mí+™L¦¶¶¶´´tìØ±ñÇäšœ ǹsçæåå­Zµ*{Íb¡²²òÀ³gÏîÓ§Oü1¹&·îª!”——/Y²dùòå^xáÔ©S7oÞ½}%??Ú´iܺukÒ$#GÃqÿþýóçÏŸ0aÂ9çœóo|ã׿þuû™L¦¡¡¡¬¬¬¬¬¬ã;VTT„öìÙ“ôÉȹk³åw×]w >|Ò¤Iûöí{öÙgkkko¾ùæ‹/¾8„ÐÒÒ’N§;Ý+B(..!:t(æO9rd§•úúú¤GŽG×ë9+çÂqÿþý………×^{íüùó³+/¼ð¢E‹n½õÖ)S¦”——·¶¶†ŠŠŠ:½c¿~ýBMMM1ŠL€^£ëõœMÉœ{ªúþûﯫ«k¯ÆÂäÉ“/»ì²ÖÖÖgžy&„PRR’J¥ZZZ:½ãáÇßÎ;ä œ Ç£š8qbá7Þ!w=³ØÜÜBh¿Ï ×äV8f2™t:Ýõ%uòóóCýû÷Ͼ9xðàƒfK±Ý®]»²%=@2r+G}ùå—wZß¶m[èp½ÂŒ3Òéô¦M›ÚÈd2µµµ¥¥¥cÇŽMz€däV86lܸq/½ôÒÚµkÛ·mÛ¶zõêòòòóÏ??»2wîܼ¼¼U«Ve¯k !TVV8p`öìÙ}úôIz€däÜ]Õ7ÝtÓÂ… o¼ñƇzèŒ3ÎØ·o_]]]ß¾}øÃ¶ÿêòòò%K–,_¾ü /œ:ujccãæÍ›ÇŒsÅW$½}€ÄäÖǨQ£}ôÑY³f8pàé§Ÿnjjš5kÖO<ñ…/|¡ãa ,X±bÅðáÃׯ_èСyóæUUUu}qG€Ü‘sgCƒ Z¾|ù6sæÌ™3g&½Y€“EÎqàøäâG€Ü”J¥’Þг G€r^jN×Åg2ë’ÞÐ3xª€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(Io8qR©Ô±Êd2Ip„Ür^jN×Åg2ë’Þ=€§ªˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆRô€“B*•:êz&“Izkœ,„#Béý#º.æÙ™ô¾8‰xª€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(Io€^"•Jë¡L&“ôî€pàc“Þ?¢ëbþIï øxxª€(€(€(€(nŽàX7«ºS•D¼ÏÝÓ@ï&¡g8/5§ÓÊ3™uIoŠÜÕõ2øž„à©j¢G¢xªz0×>p"9ãxLk×®;wîØ±cÏ>ûìï|ç;øÃ’ÞQ0räȤ·[ã§÷èú¿Dfß=â•DþÜ“D.çûÒ'½³sB Ç£[¹rå7Þøæ›oN˜0¡_¿~555W^yekkkÒûHŒp<ŠúúúÊÊÊÁƒ?õÔS•••O?ýôüùó_yå•+V$½5€ÄÇ£¨®®nkk[¼xñ Aƒ²+K—.-..Þ°aC[[[Ò»H†p<Š-[¶äååMŸ>½}%??Ú´iܺukÒ»£ÇH}xIoN4G gqWug™L¦¡¡¡¬¬¬¬¬¬ãzEEEaÏž=ãÇOzôÇz‘ä£ÞÂ’?dgÒû…õÅíý“SÊËvtòÎ;ï|þóŸÿô§?ýä“Ov\ä‘Gnºé¦ë¯¿~áÂ…ïÿÜh½^}}}Ò[H€3Žeo.**ê´Þ¯_¿BSSÓ~„ÜüNz=×8vVRR’J¥ZZZ:­>|8„P\\œô’!;+(((..îzf±¹¹9„Ð~Ÿ5@®ŽG1xðàƒfK±Ý®]»²%½;€dÇ£˜1cF:Þ´iSûJ&“©­­---;vlÒ»H†p<йsçæåå­Zµ*{]c¡²²òÀ³gÏîÓ§OÒ»H†—ã9ºÕ«W/_¾ü“ŸüäÔ©S7oÞó™Ï$=M·ßQ&“¹á†>œô'nöÝ»w6¬ãbýEµÇ1þ/ùËk®¹¦­­í¯þê¯FŒñüóÏÏŸ?ÿÇ?þñ¹çž›ô4Ý8{*•:óÌ3»®9räÍ7ß,..NzšnáÃ{ýõ×G5uêÔßýîwÙ•[n¹¥¢¢â_ÿõ_ß罚šš¶lÙrÓM7UTTTTTÔÕÕ%=GbŸŠž%Ç¿ÜÇ1þƒ>XQQñÿø---Ù•7Þxcâĉgžyæÿ÷'=P÷Ξ=àŽ;îh_©©©©¨¨øêW¿šô4'büŽV¯^ýæÿçþç¤G9³755UTT|ûÛßNzïÉŒÿÇ?þqüøñguÖË/¿œ]ùõ¯ý™Ï|fòäÉét:éºwö£ºýöÛÏ<óÌíÛ·'=ÐÇÏ5ŽÇ£ººº­­mñâŃ Ê®,]º´¸¸xÆ mmmÇz¯™3g^zé¥?üpÒÛOþSÑ³äø—û8Æê©§BßýîwÛÿ>bĈE‹¥ÓéžõœÝqÌþ«_ýª°°ðßøFûÊW¾ò•O|â;vìH§ÓIÔíã·Û¹sçÊ•+G•ô'nöÝ»w‡:n졎cüšššæææE‹7.»òÙÏ~ö‚ .8pà@×§ïOf˵×_ý§?ýé׿þõžø<ÃŽÇcË–-yyyÓ§Oo_ÉÏÏŸ6mÚÁƒ·nÝz¬÷Z¶lÙ=÷ÜsÏ=÷Lž<9é þTô,9þå>ŽñwíÚUTT4fÌ˜Ž‹#FŒ!ìÙ³'éºwö’’’sÏ=÷ÔSOí¸xÊ)§9räÈ‘#IÔíãg½÷Þ{×_}iiéÒ¥K“âÄÍÞØØB8ýôÓ“Þ{2ãÿ×ýW*•š5kVÇÅÛn»­¾¾¾g]ÞýѨ¥Óéï|ç;ŸúÔ§¾ùÍo&=M·p㇖ÉdÊÊÊÊÊÊ:®WTT„öìÙ3~üø£¾ã”)S²ÿçÙgŸMzˆ„?=H޹oüû  ó[vìØB:thÒ3uïì<ð@§•-[¶ìÞ½ûsŸû\Ϻê÷£üíþ÷ÿ÷×^{mõêÕ§vZÒsœ¸Ù³á¸ÿþùóç¿öÚk}ûö=zô¢E‹zV6÷ø¯¾újiié'>ñ‰—_~yÛ¶müãGuÞyçåη}»|pÇŽ?ÿùÏûôé“ô@ÝB8~h---étºëõÎÙk`:”ô}*̘ðø£Gî´²yóæÊÊÊSN9¥Ó ‰“ÙGüÒoÛ¶­¦¦f×®]Û¶mûË¿üËåË—'=Ð ¿®®î'?ùɼyó&Ožœý×Bs|³gϦßu×]ÇŸ4iÒ¾}ûž}öÙÚÚÚ›o¾ùâ‹/Nz¦îÿÈ‘#o¿ýö§?ýé›o¾ù¡‡j_:tèwÞÙƒž®ýèÿÁçwî¹çž‰'öôçšÞ‡püÐZ[[CEEEÖûõëBhjjJzƒ>f<‰ÆO§Ó>øàm·Ý–N§o¿ýö$=Ó š½¾¾~ݺu™L&„0f̘?û³?Kz 1~kkëõ×_?tèÐë®».é Nôìû÷ï/,,¼öÚkçÏŸŸ]yá…-Ztë­·N™2¥¼¼<鱺qü·ß~;„ÐÐÐðÖ[o-_¾|úôéï¾ûîºuëî¾ûîoûÛO<ñDO9ïøÑÿ‹÷óŸÿüøÃµ×^›ô(ÝH8¾Ÿ÷Þ{ï'?ùIû›ùùùW^yeIII*•jiiétpöU'zç½÷Ç ŸŠ\˜±ûÆñÅðƒ¼ùæ›C† ¹õÖ[{Ö?Á?âìÿðÿðÕ¯~õÀ?þøŠ+¶nÝúä“OfüôÇ7þòåË÷îÝûÐCõ”Pøg¿ÿþû;­Lž<ù²Ë.ûéOúÌ3Ï´×äÉï8Æo¿¨÷ßþíßÚ_|ç[ßúÖoûÛššš'Ÿ|rΜ9IÕ]³wôöÛo¯^½z„ cÇŽMz”n$ßÏÿþïÿÞyçíožrÊ)W^yeAAAqqq×y477‡ÚïÃʹð©È…»cü#GŽüèG?Z³fÍ©§žzõÕW/\¸°Ç•ÄGÿÒ§R©.X°`Ïž=¿øÅ/ž~úéÙ³g'=V7ŽÿÒK/=ôÐCßüæ7{ÜU}}öc™8qâOúÓ7Þx#険wü¢¢¢SO=5•J}ñ‹_ì¸~ÞyçÕÔÔ¼þúëIÏÔ³wôÄO¼óÎ;]tQÒst/wU¿ŸÂÂÂú^yå•ìúàÁƒ<˜ýNj·k×®ìCIïú„Ê…OE.ÌøñŽßÖÖvÝu×UUU͘1cãÆßúÖ·z\5ßì;wîü—ù— 6tZÏÞ`þ»ßý.éº}üÂ=÷Ü3òO¾ò•¯„þó?ÿsäÈ‘_þò—“¨gÏd2étºë˵äçç‡ú÷ïŸô@Ý;~aРA}úôI¥R³ñß{、êÞÙÛ­]»¶°°ðK_úRÒCt/áx`À€ªªª^x¡´´tÆŒW_}uOüÎ?ŽÙß}÷Ý­[·žvÚiŸþô§“Þ~·Ke_f ÞŸkˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆò›÷Y‘蟬ïIEND®B`‚statistics-release-1.6.3/docs/assets/jackknife_201.png000066400000000000000000000405431456127120000226040ustar00rootroot00000000000000‰PNG  IHDRhŽ\­AA*IDATxÚíÝ{|UÕ7à I¹S©$"F Ö ¢­Tk½a½ð±jmµ^AÄ¡V[íGQ+Ìh­bë´Ø òʫԾ¥¢xE¯5‚R*CU@!BP!9ï{æLLBØ„“œÛóüEÖ>—½÷Ú'ùò[kíSH$ìH›tïÙAp Á€XGbˆEp Á€XGbˆEp Á€XGbˆEp Á€XGbˆEp Á€XGbˆEp Á€XGbˆEp Á€XGbˆEp Á€XGbˆEp Á€XGbˆEp Á€XGbˆEp ÁqÞ{ï½òòòW_}5Ý;f‚ãÜwß}éÞ€ŒP”îÈPUUUï¼óÎ#ÿüóÂþð‡gŸ}6Ý»~‚cã?üðèýë_Ó½/ApL½òòòtïв*++Ó½ i 8¶ˆü¼˜2Yyy¹NÉ4:%3é— ¤S2Pމ܎€XGbˆEpØ9ï÷ëtïBzŽ;¡`Ò²Gœî½HÁ‘¼`AbÒ)™I¿d Bæâ*˜´0ñË#Ó½i#8îÀõ×__YY9dÈtï@š ŽÄ"8‹àKžOp ‚#1 Ž;¦ÜG€’#EéÞˆ¥¼¼<Ý»@Îr—õ˜G²@yy¹4-d‡µ åÆ$CÕÛ%5Ö¥âЈ‚I CRc]‚#ÀÿŠòb#8|‰È¸=æ8ü73›¦âð¿#Ô4ApòBcL†ª€|'5Æ$8‹à-ëÓO?íСCAAÁ¥—^ZoÓ>ûìsâ‰'¦{ߟ#FTTT¤{2E ]yÙ—_~¹  àh¹ÝË:uÏIC×_}×®]ZæŒ5ñšûì³Ï¸qãZçÀSuhu_'…ûïZÍ‚#´¬‡zè³Ï> !Ìž=»¦¦&½;óÒK/xâ‰o¾ùæYXXXXX˜Þ½Í-t6Rõ²)yø×F6zë­·®¹æš\uÕUáËg,Užª×ÜÅý‰y1ìð]RuqÖ{#¿Xr€à-kÖ¬Y………'Ÿ|ò‡~¸hÑ¢ôî̇~8oÞ¼uëÖíð‘O>ùäK/½”Þ½Í-t6Rõ²)yø×F6Z±bEáÚk¯=ýôÓ×ÏXª™Fp„4gΜmÛ¶vÚiGqÄW¾ò•¹sçnݺµÑGî³Ï>—]vÙäÉ“;wîܾ}ûƒ>øOúÓ¶mÛ~ò“Ÿ 0 sçΣG~ë­·’ñÅ¿ýío÷ìÙ³wïÞßþö·_|ñÅä¦-[¶\ýõ Ø}÷Ý÷Þ{ïóÎ;ïƒ>!œsÎ9Çw\aÔ¨Qûì³OÓ{>zôèº3œ&Nœx÷ÝwwíÚµ¨¨¨OŸ>^xá§Ÿ~š|ðo¼qÒI'íµ×^Ý»w?æ˜cþò—¿Ô}©iÓ¦pÀ;v,--=øàƒÿøÇ?Ö=ê‰'¾ôÒKC† 2dÈ®Ÿ–¾×wÜÑ¥K—ÝvÛmðàÁS¦Lùâ‹/âlÝ©³ñ /sÌ1¥¥¥pÀÏ~ö³»îº«  àÕW_ÝÅ“üÔSO}ôÑ¥¥¥œ!„oûÛ?ùÉOFB9rdmmí·Æ??þx»víúöí{ÅW\xá…]ºtéÞ½{aÙ²e .þËÎ;·°°°{÷î^xáÅ_ܳgϲ²²Âý÷ß_ïuþüç?'»cÒ¤I]»víܹóŠ+š>? ¯¦»u{×XCMŸ¦¯ä¦·6}Nêzýõ×ö³Ÿ…n½õÖèè’g¬éÅo~󛺟ً.º(„PPP°nݺ¨eèС={ö¬w‘4|;}û–••_rÉ%·Þzëˆ#B^ð;üîÔÅÿWAÃOb½‹³¬¬¬S§NÇwÜO~ò“#Ž8"„0tèЭ[·F[O9唺{xöÙgwéÒ¥Ñ7ªû²M÷oÓŸˆ”kÆ_™ìýô‹ÇÔËÛ‹©ådé)ýÇ?þQPPðï|'úñ‘G !œuÖYÉÔ Ž»í¶Ûßþö·èÇ›o¾9„0dÈ/¾ø"j9üðÃCUUUŸþù>ûìÓ·oßµk×F›Ö®]»÷Þ{÷ë×ïóÏ?ß´iSaaáÙgŸ|—üà]»v]³fM"‘xôÑGCO>ùd£;ÜDp !<øàƒÑµµµƒþêW¿šH$>ÿüóþýûWTTTWWG[?ûì³C9¤_¿~Û¶mK$ýúõ+++‹þÀ$‰ 6]xá…u_ùºë®«©©ÙÞ.Å<-1ßëÆoL¾øäÉ“CQjzk̳QSS3pàÀ~ýú­_¿>ÚúÖ[oí¶Ûn1ƒãö^ö³Ï>Û{ï½{õêµzõêhëš5kz÷îÝ0+lÛ¶màÀ_ûÚ×¢ÿ«$‰hZí%—\²ÃóS÷Úhº[›¾Æêjú„4}%7½u‡ç¤žyóæ…/^ÜðÌ7ñ¡X½zuáŠ+®ˆ~9úwAAAEEE4~÷Ê+¯,_¾|òäÉ:tˆ¶¶k×î’K.yï½÷–.]BxñÅ—.]ZTôß_Rµ~ýúè(’¯Ü«W¯«¯¾ºM›íþ.ŠyZâ¼W×®]'Mš”üñç?ÿy§NfÏžgk̳ñÖ[oM˜0¡´´4Ú:`À€SN9eOòÒ¥KW­Zuùå—G5Ñè¤5¼»SaÙ²eo½õÖ¥—^ †FŽùÛßþväÈ‘qÎORÓÝÿkú„4}%ïpkÌs²+úôésÀ,\¸0„ðÉ'Ÿ¼ñÆ'NìØ±cÇŸ~úéÚÚÚ¨¶CeeeÇ|ôïÂÂÂiÒ¤}öÙgРA‡zè1Çsì±ÇFežf‹ÆÂ’’]Þ~ûíÂgœqÆgÔ{Ê?þñáÇ—””<ûì³þóŸß~ûíåË—¿ùæ›Û¶m«û°òòò&RcüÓBØá{ 4¨îyèØ±cyyù»ï¾gkœ³ñÎ;ï$û"iÿý÷ßÅ“½ìСCënmôfxÑ#£ªXÒ¹çžóü$í°[c^cMŸ¦¯äh=Äö¶Fs…㜓]4vìØ[n¹å“O>‰ª•cÆŒ9üðãàøä“OuÔQq^§^çÆ¼%ͻᄏï¾û&üÝï~ý#ÎwèÐa§~4ýIÜÿý“ÿåÿóéˆz°yvø{,lÿAz Žd·Œý’¨ÊÊÊhÊ|4ŧ®ûï¿¿Ñà÷‰BAAAÝÆèïPô×ô¢‹.:ùä“}ôÑ¿þõ¯óçÏŸ1cFyyù¢E‹zôèÑì7ÝÞrÔèÐ-·ÜR/¬„øù矟tÒIóçÏ>|ø7¿ùÍã?þC9è ƒê>¬K—.)9áqÞ«¡¢¢¢& ?ÛÛº½³ÑèâŒøw­ÛÞËF°ëõx£D£¨û¾yç§én ±¯±¦OHÓWrÔ¾½­ñÏÉ.:æ˜c¦NºhÑ¢gŸ}v¯½öÚk¯½F}ÕUWmذáÉ'Ÿ<üðË‹‹ã¼Nót÷èÑãøCòÇC9ä¹çž‹à;õ«`g?‰EEEÛ;¨í ªÔµÃßcÍ>i´4ùZDTn¼çž{êN ©®®Þc=y䑿REú÷ïBxýõ×ë6F+gËËËׯ_ÿ /´k×î¼óÎûãÿ¸jÕªÛo¿½²²ò®»îj‰ÃŒvf=öøV{î¹ç† ºté²xñâùóçOŸ>ýÅ_¼þúëÏ<óÌh’\KìIœ÷zë­·ê®jß²eËßþö·dU£é­qDCêõnª¼ëw–ŽjN/¿ürÝÆeË–5|d´·u—™‡nºé¦«®ºj§ú¢én5}Bš¾’›Þÿœì¢Ã;¬sçÎ .|ê©§¢ÿQ£FÕÖÖ>òÈ#¯¼òJÌqêfëÔ©Ó™uôë×/þ§öWA½útôéˆú(„PïVYq*‘M÷o‹žUv‘à-bÖ¬YíÚµ«7¿­C‡'žxbuuu4a¼y:è ½öÚkÚ´iŸ|òIÔòñÇßvÛm{ï½wEEEeeå7¾ñäàx›6mF¾<¤›ÂûDxàååå¿üå/7lصTUU;vâĉ»ï¾{´¶ Z½yðÁ7oÞR+Î{­]»vÚ´iɯ¿þúªªªä·,6½5æÙØ{ï½ÿíßþ­ªª*jY±bE£³$wÊAÔ¯_¿Ûn»íŸÿügrWÿíßþ­á#+**öÚk¯éÓ§'wà½÷Þ»îºëV¯^³/¢k£énsÅ9!M_É;ÜóœÄ´½EÛ¶mÇŒ3þü¥K—FÁqذa{ì±Ç7Þ¸Ã Ž»òAÛÞsãxj|ðÁ·ß~{òÇ_üâUUUÑÝÔwß}÷7ß|3y«Å§Ÿ~ºá-¾¾QÓýÛìóF+0T ©·téÒwÞygܸq GÎ8㌙3gÞÿýßûÞ÷š÷âíÚµ›6mÚ÷¾÷½ƒ:èÔSOM$<ðÀš5kæÌ™Ó®]»aÆí¿ÿþ7ÝtÓ{ï½·ÿþûWVV.X° ´´4úíϯýë?ü0¹jgWMŸ>ý»ßýî!CN=õÔ­[·Î›7ïý÷ß¿ÿþû GݱcÇþð‡gžyfŸ>}ž{î¹… vëÖmñâÅ ,;vl Ïyœ÷êÕ«×5×\óì³Ï2ä¹çžûóŸÿ|È!‡œuÖYÑ+4½5~׌7nèСãÆÛ²eË}÷Ý7tèÐgžy&¹Ê¤Ú¶m{ë­·žzê©ßûÞ÷Ú¶mûÀ¬]»¶á#Û·o?}úôSO=uèС§œrJAAÁüÇýìg?Ûm·Ýš>?õ®&ºµék,þ iúJ!4½5æ9Ù¡~(ÆŽûÐC…¢àXXX8bĈùóçï¹çžƒ jÞk6{â_ ©ýU°ûî»_~ùå‹/4hгÏ>û—¿üå[ßúÖI'Bøæ7¿9}úôãŽ;î„Nxï½÷~õ«_Õý½·½7Úaï7mêÔ©7ÝtÓ¿þë¿^pÁÍètvIº—uç ¼]¢ßr²î”F÷ªHÞA°®mÛ¶uïÞ½]»v6l¨w;žä¿‰D4öô›ßü&Ùrýõׇ>øàƒèÇgŸ}ö˜cŽéÑ£G=Ž9æ˜^x!ùÈ÷ßÿÜsÏÝ{ï½Ûµk·×^{qÆÉÛÙÔÖÖž~úé;w>è ƒî[·ã©»o‰/ßn#‘H,]ºôØcíÙ³gIIɨQ£žxâ‰ä¦E‹zè¡:uúÚ×¾vÞyç­]»ö7¿ùM·nݾõ­o5úÊMìÒOKœ÷Z´hÑGQ\\¼ß~û]qÅŸ}öYÝ7ÚÞÖ:ùË_FŒѹsçC9dæÌ™S§N !|ôÑG n§^ö©§ž:ꨣ¢åÒÅÅÅsæÌ ݺ/‘H<óÌ3G}t×®]{ôèqüñÇ¿ñÆqú¢áµÑD·6q5Ôô iâJÞáÖ&ÎI=MÜŽ§éEt°!„nݺ%[n¹å–Âù矿½Þ¬÷š oX3~üø®]»6úv;ÜŸøCü_ /¿zç•W^ùë_ÿúCÙc=|Í5×$ïëT]]}Ùe—õéÓ'š°xÊ)§\wÝuÉK·ÞÕ»V›èߦ?×^{maúôé‰q;žø -0f”çÊËË+++Ó½9Å)e×í³Ï>x`T:ÚÙ­1mݺõµ×^ëÕ«Wt_½È…^øûßÿ~ãÆ®Yi†5kÖ|å+_‰S•I»Ö9!ÙuNR+£|óæÍ›7oŽnðžušñW&oÿ0™ã………GuÔ™gž™lÙ¸qãC=tì±Ç¦0$õîÝ;C‚B†œì:'©•QÞ±cÇ,MìÁ 5Ú´isÉ%—<ùä“§œrʬY³¦M›6bĈM›6]~ùåéÞ5'H ‹c€¼0vìØèKÌš±5¾k¯½¶[·n÷ÜsÏyç×¶mÛŠŠŠ{ï½wذaé>ú´qB ǘã˜zy;ï¡å8¥´sã3T @,‚#±ŽÄ"8‹à@,‚#±ŽÄ"8‹oŽ! TVV–——§{/ ß Žd‡ü¼A? LZBHüòÈtïH>€¬Q0i¡È˜F‚#3àd:…Æ aU5ѤÆÌ!8™KjÌ(†ª€LdRcRq2”Ô˜iG ã¡ÎL‚#±˜ãdŠh^c0H©G ƒˆŒ™ÌP5ÌkÌ|‚#~ÉAj2™¡j ÍÔ³…ऻ|gÁH‘1 Ž@k36¥G õ(4f5Áh% ÙÎíxˆEpZƒrcˆEpZœrcn°8hA–QçÁh"cî€s•ऒéŒ9ÌâbQqRÃu΀0B U»JjÌ‚#°K¤Æüa¨hŽhFc0©1ŸŽÀα&oªvšÔ˜ŸG`'˜Ñ˜ÏG .©1Ï Ž@,R#Ç;\@Mž€í²€šºG qƦ©ÇGbQqê3BM£Gà‰Œ4!_‚ãœ9sfÏž½bÅŠÝwßýˆ#Ž˜h)ÊìPîÇÙ³g×ÖÖN˜0¡{÷îQË”)SŠ‹‹,XP[[ÛèS–.]Bøþ÷¿_TôßCù‡rÈ€þþ÷¿üñÇé> H±‚I ¥FâÈýà¸dÉ’6mÚŒ5*ÙRXX8räÈõë×G±¡^½z…êfÄD"±aÆ6mÚ$£$ä†(2JÄ‘ãÁ1‘H¬X±¢´´´´´´n{YYYáý÷ßoôYÇw\ûöío¸á†çž{nË–-kÖ¬¹æškV¯^=nܸÎ;§û˜Ò#ÇëgÕÕÕ555]ºt©×^\\¾\S¬«¼¼ü¾ûî;ûì³Ï>ûìdãøñ㯺ꪘï[^^^¯¥²²2Ý'êó%Ôq4ü³ž·r<8FK§;vìX¯½S§N!„76ú¬ªªª›nºióæÍƒ  €ôÈýà8nܸ6mÚÜqÇѼÆÂŒ3Ö­[wòÉ'·mÛ6jÙ¼yóÊ•+W¯^BèСÃÈ‘#W­ZõïÿþïÉ;„/_¾üÎ;ïÜm·ÝFî€]¢ÜH³Ô««å¤{ï½wêÔ©}úô1bĪU«žþùÞ{ï½ÉÛôÌŸ?âĉýû÷ôÑGCëÖ­;å”SþùÏöíÛwàÀëׯùå—kkk¯¾úê3Ï&5’‚#d…FÒÈGÈR#é¥âÙÁð4i§âY@j$Žé¤F2„àMj$s޹¤F2ŠàJj$Óމ¤F2àGj$3 ŽY¤F2–àDj$“ Ž)¤F2œà!újÈd¾«Ò,ŠŒjd>ÁÒ#YbÉ‚#¤éŒd#sˆEp€Ö¦ÜH– UId/s •X=M¶ 5(4’GhY ä ÁZB#¹Äâh)R#9Fp€!5’{GH=©‘œdŽ#¤’¥0ä0ÁRCd$ç ŽƦÉæ8‹à»*¤†œg¨v‰Ajò‡àÍd5 ùFp€æPh$™ã;Mj$?©8ÀN0 ‘GØäÝv¤FòœàÛ%2B]‚#4ÂÀ44$8@}MC£Ü޾Ä÷Âö¨8@¦3B ‚#ü7‘šf¨Lj„XGòI“¡jòšZ#ħâ@þ’a§Žä)©v–à@>’¡Ìq ¿ø.Ah6Á€<¢Ð»ÂP5ùÂmw`©8Ôaש8û¤FH Á€'5BªŽä2©RHp gIZ‚#±Žä&åFH9Á€ä–ÐÜÇ€\£Ö-Dp w(4B‹ÈQdTh„%8Å’%F‘Zà@VRb„ÖgU5ÙJj„V&8}¬›†´0T @61B i$85!½ UÜ£ÒNÅ€, Ö™@Å€L'5B†Pq sY Ep ‰ŒG2‹ÈKp ƒ˜Î™,_‚ãœ9sfÏž½bÅŠÝwßýˆ#Ž˜|x§NæÎû£ýhË–-Mؽ{÷ 7Ü0sæÌñãÇ_sÍ5>eãÆGuÔÖ­[ûÛß:4„ðÚk¯yæ™;w~úé§Û´ÙAÚ.//¯¬¬L÷qd3ÉFyû·>÷+޳gÏ®­­0aB”CS¦L)..^°`Ammm£O™;wnUUÕ\¥ÆÂ0vìØuëÖ½þúëé> €ÜU¥Fȹ—,YÒ¦M›Q£F%[ G޹~ýú¥K—6ú”§žzª  à„N¨ÛxóÍ7WVV2$Ý#ŒMCÖÉñÅ1‰DbÅŠ¥¥¥¥¥¥uÛËÊÊBï¿ÿþ°aÃ>ë7Þ())éÙ³çK/½ôÊ+¯lذa¿ýö;ꨣ:tèîÈR#d£ŽÕÕÕ555]ºt©×^\\Bøøã>å‹/¾øôÓO÷Ýwßk¯½vÖ¬YÉö=÷Üsúôéûᅵ÷-//¯×’Ÿ3! 4ü³ž·r<8FK§;vìX¯½S§N!„76|ʧŸ~BX±bÅÚµk§N:jÔ¨Ï>ûìÁüÕ¯~uÙe—=úè£qêŽb"䌆Öó6JæøÇ.]ºTWW×kß´iSøŸºc=íÛ·þqÓM7p ]ºtéÙ³çÅ_|â‰'®^½úOúSº 맆,•ãÁ±¨¨¨¸¸¸ae±ªª*„\g]WÇŽÛ·oß¡C‡Ñ£G×m?ꨣBo¿ývº ‹¹_#dµª!ôèÑcÅŠUUU;wN6®\¹2ÚÔèSºwï¾aÆ‚‚‚ºÑõ¶mÛÒ}@ÙJd„l—ãǘ1cjjjž~úédK"‘X´hQIIIEEE£O=ztUUÕ;ï¼S·1ºwÏ~ûí—îÈJѾ¬–ûÁqܸqmÚ´¹ãŽ;¢y!„3f¬[·îä“OnÛ¶mÔ²yóæ•+W®^½:úñÄO !\}õÕÉeׯ¿þúoûÛâââ£>:Ýe’ÃÓÊír¨ºwïÞ“'Ož:uêñÇ?bĈU«V=ÿüóƒ úá˜|Ì¢E‹&NœØ¿ÿG}4„0`À€Ë/¿ü¶Ûn;æ˜c† V]]½dÉ’‚‚‚n¸á+_ùJº ›ž†\’ûÁ1„pî¹çvëÖmÞ¼yóçÏïÕ«×øñã'L˜Ý‘g{Î?ÿü®]»Îœ9óÙgŸ-))3fÌ%—\Ò¿ÿt @Ö06 ¹§ ‘H¤{rMÞ~ñ9@’B#¹-oÿÖçþGRBp –¼˜ã@ëHÎk4N 9Ip ¢È(/BnØU–Â@žh>…FÈ+‚#Í!2B²ª€f’!ߎì4“!? Žì©ò–àÀN!ŸY@,VÂ#;¦ÐCÕìPò‹<§â@SÔ$G¶K­¨KŀƩ5õ¨8ЩhHÅ€ÿVw`ZjpF Á ¯‰Œ@|æ8ä;©ˆIpÈ_VÀ;ÅP5@>rƒF G€übR#Ðl†ªòŽÔ4Š#@^HŽMK@³ ޹L^RHpÈq"#*‚#@n²H9Á ¹A#ЬªÈ5R#ÐBG€œâÎÞ@Ë1T ¬žZàõŒM­CpÈb–N­IpÈV @+²B#‚#@–QhÒÅíx²‰Ô¤‘à5¤F ½G€ì 5i'8‹Å1™Îj CŽÊ·™FpÈDf4ÈG€Œ#5™IpÈ,R#± Ud3Ì'8¤™EÓ@¶ÒFd²‹à"#G€Öfù ¥¬ª Á U)7ÙËP5@+1¯Èv‚#@kPhr€¡j€'5¹AphYR#3G€”ü"A€ 8´«a€cq @‹0B äÁ Å\%8¤’B#ÃÌqH©Èm‚#@jH@ÎRÀmw€|`Ž#À.±È‚#@3‰Œ@¾všÈä'Á`çXä-‹cv‚Ôä3Á .©Ès‚#@,R#€à°cR#@ˆIpØåF€ˆàÐß%ä>ŽHæEµF€$Á q"#@=†ªˆEp¨Ïj€FªáË‹`¤F€F ŽJŒ±Ž@^‹ R#@‚#¿vŠàä#…F€f¼£ÐÐ|x§NæÎû£ýhË–-qž›H$þå_þeÓ¦Mé> ù¤F€”ÈýàXYY9cÆŒ=z<öØc3fÌxüñÇÏ:ë¬×^{íÖ[oóôßýîw/¾øbºh¦‚I ¥F€TÉýà8{öìÚÚÚ &tïÞ=j™2eJqqñ‚ jkk›~îòå˧M›¶ß~û¥û €æˆ"£Ô*¹—,YÒ¦M›Q£F%[ G޹~ýú¥K—6ñÄmÛ¶]yå•%%%S¦LI÷A;!ª2*4¤\Žß<‘H¬X±¢´´´´´´n{YYYáý÷ß6lØöž{ûí·ÿío»÷Þ{;wîœîãbñ}0-*ǃcuuuMMM—.]굇>þøãí=qÙ²e÷ÜsÏøñã=ôÐ7ß|sgß·¼¼¼^KeeeºOä¦(,FDF %4ü³ž·r<8FK§;vìX¯½S§N!„7nïYW^yåž{î9iҤ潯˜­Ãx4Ð þYÏÛ(™ãÁ±K—.ÕÕÕõÚ£ÛëDudž¦NºzõêY³fuèÐ!ÝG)r|qLQQQqqqÃÊbUUU!¹Îº®_|qÖ¬YçŸþ!CÒ½û@S”ZYŽWC=zôX±bEUUUÝ5.+W®Œ65|üòåËCwÞyçwÞY·ýá‡~øá‡û÷ïÿ裦û˜ ™ÑF¹ÇŒSYYùôÓO{ì±QK"‘X´hQIIIEEEÃÇï½÷ÞÉGF6nܸxñâÞ½{WTTôìÙ3ÝyÊŠi€´Ëýà8nܸ»îºëŽ;î8âˆ#¢513fÌX·nÝyç×¶mÛè1›7oþè£Ú¶mûÕ¯~õðÃ?üðÃë¾Â›o¾¹xñâaÆÝrË-é>ÈG"#@†ÈýàØ»wïÉ“'O:õøã1bĪU«žþùAƒýð‡?L>fÑ¢E'N4 ™FdÈ(¹Cçž{n·nÝæÍ›7þü^½z?~„ QõÈL"#@*H$éÞ‡\S^^î>ް‹¬˜2YÞþ­ÏñÛñ*‚#q”2“à@,y±8Èuïï @¦ôKæE#Ô™LpÒÉmw²ˆà¤E0ÙEpÒ@¡  Ž@«²—à´cÓYÍ}V"5d;G e¹Õ@ÎdF#@.1T ´,© g¨8©gx ' Ž@ŠY«G eÌhÈm‚# 9Ïâ ¤F€| 8‹àì*åF€GÈ_R#;Ep„<%5°³ UCÞñÅÓ4àùE¡€f3T yDj`WŽÄ"8B¾p¿Fv‘àyÁ‚vÅ1ûLm %T!ÇI¤ŠŠ#ä,ÃÓ¤–à9¥î ‘€Ô!w• E Žõ’UF©€%8B.h‚#d1Ë_hM‚#d%‘€Ö'8B61€4!ˈŒ¤‹àÙÁØ4i'8B¦È‚#d4÷ô sŽq|m ™Ip„ bT€LÖ&Ý;|‰Ô@Æ!S˜Î@†!#Hd>ÁÒOj +ŽfR#ÙBp ÁÒI¹€,â>ŽnÙ@Ö¡µ‰Œd)ÁZ•±i²—9ŽÐz¤F²šà­$¡€ìe¨ZƒZ#9@ÅZœZ#¹AÅZ–Z#9CÅZÔ@.ˆEp s!õ’«aŒSKGH1óÈU†ª!•Üy€¦â)£Ö@nSq„ÔPk ç©8®Š"£Z#9OÅR@j ¨8Bó©5WGhwj åKpœ3gÎìÙ³W¬X±ûî»qÄ“'O.))iâñ[¶lyà|ðÁÕ«Wï±Çeeeçž{îa‡–îã ÍäEòY^ÇiÓ¦Ýu×];v>|øªU«æÎ»|ùò™3gvèСÑÇoÛ¶íì³Ï^¶lYqqñ!‡òÙgŸ½ð ‹/¾ôÒK/ºè¢t éaTr?8VVVΘ1£G>ø`÷îÝC7ÜpÃÌ™3o½õÖk®¹¦Ñ§Ìž={Ù²eC‡ýío…ËåË—?þW¿úÕ‘G9`À€t­Í  äêêÙ³g×ÖÖN˜0!J!„)S¦/X° ¶¶¶Ñ§<öØc!„Ÿþô§É’dÿþý/¸à‚šššgžy&ÝDk“ ’ûÁqÉ’%mÚ´5jT²¥°°päÈ‘ëׯ_ºti£OY¹reÇŽ T·±ÿþ!„÷ß?Ý9>TH$V¬XQZZZZZZ·½¬¬,„ðþûï6¬á³î¾ûúgæÍ7ß !ì¹çžé>&ZyPWŽÇêêêššš.]ºÔk/..!|üñÇ>kàÀõZžþù3f´k×î„Nˆó¾åååõZ*++Ó}2Ø "#I ÿ¬ç­Ž[¶l !tìØ±^{§NB7nÜá+ÔÔÔüñ¼ùæ›kjj~ùË_víÚ5ÎûЉÙKd ž†Öó6JæxpìÒ¥KAAAuuu½öM›6…ÿ©;6á…^¸îºëÞ}÷Ý^½zÝxã‡zhºˆÖ 5@£r<87¬,VUU…’ë¬úâ‹/n¹å–û}ûö—\rÉ~ðƒíÝô‘\b54!ǃc¡G+V¬¨ªªêܹs²qåʕѦFŸR[[;iÒ¤'žx⨣ŽúùÏÞD¾$$¿ &¨5@“r?8Ž3¦²²òé§Ÿ>öØc£–D"±hÑ¢’’’ŠŠŠFŸrß}÷=ñÄgœqÆÏþótï>-ÈtFØ)¹Çw×]wÝqÇGqD´&fÆŒëÖ­;ï¼óÚ¶m=fóæÍ}ôQÛ¶m¿úÕ¯&‰?üá{ì±Ç¿üË¿¤{ßI=õEh¶Ü޽{÷žsæÌ:ììK›rƒŠc#*++g̘ѣGÇ{lÆŒ?þøYgõÚk¯Ýzë­;ûRR#3ÇFÌž=»¶¶v„ Ý»wZ¦L™R\\¼`Á‚ÚÚÚø¯#5¹DplÄ’%KÚ´i3jÔ¨dKaaáÈ‘#ׯ_¿téÒ˜/"59Fp¬/‘H¬X±¢´´´´´´n{YYYáý÷ßO÷¤‡Å1õUWW×ÔÔtéÒ¥^{qqqáã?Žó"“–=úãòGÓ}0ÔaYbÒ)™I¿d B†ëÛ²eK¡cÇŽõÚ;uêBظqã_¡²²2„~Y™îCH%CÕõuéÒ¥   ººº^û¦M›ÂÿÔòàX_QQQqqqÃÊbUUU!¹Î ߎèÑ£Çúõ룤˜´råÊhSº÷ =ÇFŒ3¦¦¦æé§ŸN¶$‰E‹•””TTT¤{ïÒCplĸqãÚ´isÇwDóC3fÌX·nÝÉ'ŸÜ¶mÛtï@z$‰tïC&º÷Þ{§NÚ§OŸ#F¬ZµêùçŸ8pà½÷ÞÛð6=yBpÜ®GydÞ¼y¯½öZ¯^½¾þõ¯O˜0!º#@~ˆÅGbˆEp Á€XGbˆEp Á1eæÌ™3nÜ¸ŠŠŠÃ;쪫®úä“OÒ½G¹lË–-¿ûÝïŽ;î¸L§´‚÷Þ{¯¼¼üÕW_mtkªº —ºÉ ÀScÚ´iwÝuWÇŽ‡ ¶jÕª¿ÿýïpÀÌ™3;tèî]ËAÛ¶m;óÌ3—-[V\\ûlÉ’%[·n½ôÒK/ºè¢äÃâtŠŽk ‰D⬳ÎzñÅ?þø[n¹¥î&Òú.\x饗ÖÖÖ<¸¸¸ø™gžÙ¶mÛ¯ýë#<2ùýÒšjjjÆ¿téÒÞ½{<ø“O>Y²dI›6m~ÿûß><ù0Ò:®»îºÿüÏÿœ={ö!CêmJUäZ7%Øeo¿ýö~ûí7bĈ?ü0j¹þúëËÊÊ~ñ‹_¤{×rÓÿøÇ²²²ÓO?½ºº:jyçw¾þõ¯0à­·ÞŠZâtŠŽk!÷Þ{oYYYYYÙW\Q·]§´¾ 6 6lÈ!/½ôRÔòꫯî¿ÿþ‡zhMMMÔ¢_ZYôì²Ë.ÛºukÔòì³Ï0à›ßüfò1:¥¥mܸqÉ’%?ûÙÏ¢_VË–-«÷€TuAîu“¡ê˜={vmmí„ ºwïµL™2¥¸¸xÁ‚µµµéÞ»ôØc…~úÓŸ&ÿ»Ö¿ÿ .¸ ¦¦&9`§St\KX¾|ù´iÓöÛo¿†›tJë›;wnUUÕ\0tèШå€;vìºuë^ýõ¨E¿´²¥K—†¾ÿýïE-‡rÈ€þþ÷¿üñÇQ‹NiißùÎwÎ<óÌûï¿{HUä^7 Ž)2Œ5*ÙRXX8räÈõë×G¿ H­•+WvìØqРAuû÷ïBxÿý÷£ãtŠŽK¹mÛ¶]yå•%%%S¦Li¸U§´¾§žzª  à„N¨ÛxóÍ7WVV&æôK+ëÕ«W!™C‰DbÆ mÚ´IFIÒÒn¸á†;ï¼óÎ;ï<ôÐC}@ªº ÷ºIpÜU‰DbÅŠ¥¥¥¥¥¥uÛËÊÊBC Ý}÷Ý ÿ›øæ›o†öÜsϯSt\K¸ýöÛÿö·¿ýë¿þkçÎëmÒ)iñÆo”””ôìÙó¥—^ºçž{n¹å–GydË–-Éè—ÖwÜqǵoßþ†nxî¹ç¶lÙ²fÍšk®¹fõêÕãÆ‹>8:¥~øácÆŒ3fLŸ>}nMUäd7¥{²^uuuMMM—.]굇/ÿŸ’T8p`½–çŸ~ÆŒíÚµ‹*+q:EǥܲeËî¹çžñãÇzè¡QޝK§´¾/¾øâÓO?Ýwß}¯½öÚY³f%Û÷ÜsÏéÓ§ï¿ÿþA¿¤Cyyù}÷ÝwöÙgŸ}öÙÉÆñãÇ_uÕUÑ¿uJÚ¥ª r²›TwUô÷Ž;ÖkïÔ©SaãÆéÞÁWSS3sæÌóÎ;¯ººú¦›nêÚµkˆ×):.µ¶lÙrå•Wî¹çž“&MÚÞ‚Ni]Ÿ~úiaÅŠóçÏŸ:uê /¼°hÑ¢K.¹ä¿þë¿.»ì²èlë—ÖWUUuÓM7mÞ¼yРA§vÚÑGÝ¡C‡yóæ-\¸0z€NI»TuANv“Šã®êÒ¥KAAAuuu½öM›6…ÿù_-ä…^¸îºëÞ}÷Ý^½zÝxãÉ©*q:EÇ¥ÖÔ©SW¯^=kÖ¬íÝ`B§´¾öíÛGÿ¸é¦›’7ß¹øâ‹×¬Y3wîÜ?ýéO§œrŠ~i}W^yåË/¿„зoßzíýúõ !¬]»6úQ§¤]ªº ÷ºIpL1cÆÔÔÔ<ýôÓÉ–D"±hÑ¢’’’ŠŠŠtï]ºï¾ûžxâ‰3Î8ãW¿úÕöþǧSt\ªì½÷ÞÇ~Ùá‡BèÝ»÷±Ç;räÈèa:¥õ=ºªªêwÞ©ÛÝ$y¯MýÒšúöí[XX¸|ùòÄ—¿¶­²²2„°ï¾ûF?ê”´KUä`7¥ûä¹à¿þë¿öÛo¿cŽ9æÓO?Zîºë®²²²›o¾9Ý»–ƒjkk:ꨡC‡nÙ²¥‰‡Åé×rÞxã†ß£SZß[o½UVV6nܸõë×G-¯½öZEEÅðáÃ×­[µè—Vvþùç—••MŸ>=ùå=ï¼óÎ7¾ñý÷ßÅŠQ‹Ni5?ýéOýæ˜TuAîu“ïªN{ï½wêÔ©}úô1bĪU«žþùÞ{ï½ ᳋>úè£#FtèÐák_ûZí'žxâøñã£Çé×BÞ|óÍ“N:©áwUë”Öw÷ÝwßvÛmÅÅÅÆ «®®^²dIAAÁ-·Ü2vìØäcôKkZ·nÝ)§œòÏþ³oß¾\¿~ýË/¿\[[{õÕWŸyæ™É‡é”ÖqõÕWÏ™3§ÑïªNUäX7^{íµéÞ‡\PQQÑ·oß?üpñâÅEEEcÇŽ:ujÃ{ ³ë*++çλmÛ¶³ß~û%WÉÄé×BÖ®]ûÀ”——ó›ß¬Û®SZß°aÃz÷îýÞ{ï½ñÆŸþù7¾ñÛn»íàƒ®ûýÒšvß}÷SO=5„ðÁ,[¶lë֭Æ »ù曣EKI:¥u,\¸ð­·Þ7n\Ïž=ëmJUäX7©8‹Å1Ä"8‹à@,‚#±ŽÄ"8‹à@,‚#±ŽÄ"8‹à@,‚#±ŽÄ"8‹à@,‚#±ŽÄ"8‹à@,‚#±ŽÄ"8‹à@,‚#±ŽÄ"8‹à@,‚#±ŽÄ"8‹à@,‚#±ŽÄ"8‹à@,‚#±ŽÄ"8‹à@,ÿxôM‹”UyuIEND®B`‚statistics-release-1.6.3/docs/assets/kmeans_101.png000066400000000000000000000330261456127120000221320ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A5ÝIDATxÚíÝm¬Õ}ๆÔÜ0¦¼«nT©¶K%P ó’”ÐJA"”¬ ™Æ%ADT®mTªºD)•q(Tl¡× *"„hÅ´*âV¸Ä5Ä[H $­Â)øúöÖÍzwvöìîìÌ™™çŠâ½×ë3gæîüîÎËÔììlƒÌ)»Tƒà@Á€ ‚#AG‚Ž"8Dp ˆà@Á€ ‚#AG‚Ž"8Dp ˆà@Á€ ‚#AG‚Ž"8Dp ˆà@Á€ ‚#AG‚Ž"8Dp ˆà@Á€ ‚#AG‚Ž"8Dp ˆà@Áq°7ÞxãüóÏ_³fMÙ (“à8ÀìììºuëÞyç²P2Áq€GyäùçŸ/»å³ìÝ»÷Þ{ï=ûì³Ën@ùǾ>¼víÚ Ü~ûíe· |Ç–Ý€xÝÿý/¿üòÃ?|â‰'–Ý€ò ŽévíÚµyóæ+V,_¾|÷îÝCýÝ%K–”Ý|`²öìÙSvJ 8¦8tèÐÚµk.\¸zõêÑÞ¡™S %K–èŸlºh ]”Mÿ ¤‹²éŸ[$SlذáÀÛ¶m›žž.»-±09¦ÛóÏ?¿mÛ¶?þã?>ï¼óÊn @DT»íÝ»7I’|ðÁì|ýÉ'Ÿ|òÉ'-ZôÔSO•ÝF€ŽÝ>üá_y啯ÝÆÒà˜âðáÃ7Þxã®]»æÏŸÑEýüç?ß¹sçŽ;¾ð…/ÜrË-e· ‚Bs œvíW2Ž){ì±]»vþù_ûÚצ§§“$Ù»wïŠ+xàË/¿üœsÎ)»%0Æ1Å3Ï<“$ÉwÜÑJI’,Z´èæ›ož™™yöÙgËnÔÓÔÔ€ÿ(ŠcŠ}ûöÍ›7oéÒ¥/.Z´(I’ýû÷—Ý:¨§C&dÇÒ Ž)zè¡cíî™Ý»w'I²pá²[õ$ÆOpLqî¹çv½òÜsÏmÚ´iîܹ×\sMÈ;,Y²¤ë•={ö”}Xå³Ó ¢­8öÞÖKp`fffëÖ­wß}÷ÌÌÌ=÷ÜsÊ)§„ü-1b&»”ËN3cÊîœÖW³÷ƒva«÷¶ÞØ()8fÙ¹sçwÞùꫯžyæ™wÝu×òåËËnÙ…Š3óIŒIpL÷Þ{ïmܸqË–-ÇwÜ­·ÞzÓM7µgXPœ¨Àî éÛÖ¢€¹¼?Á1Å‘#GV¯^½}ûö+®¸býúõ§vZÙ-‚&Rœ¨Àî ÌŽ@CŽ)¶lÙ²}ûö믿~ýúõe· ‚c·ÙÙÙG}ô„NX·n]Ùm!äøðR ŽÝÞ|óÍ×_}zzú†nèýêµ×^»bÅŠ²Ûé¢]Ɉ‡ÏÆ!8v;pà@’$‡z饗z¿jb5À$ô¦™~ùFÕ|©½§ó '8vûèG?jF ™Ê ïÙo^ŽjY†qÖ"ˆd.šó?Á€_Þ*-’ü7¹ÆSº9e7€jPq ¶¬$ù&Šöi]íeì4ÓùzŽ1®ëá{?]_’#!•à4ŽLP®~ã&‹9/!ÿºß+ c¢âÄ(ãf×·1š‚Ÿõ 8‘’Z&§_ßö¼¨(Á€¨uGmj%¡>Œè§®Ú¡ÐšäP.ÁjB¹…ª _+(‹à…Àl4éßÊŠhÇeäe¸ÑNŸ¹h„b1ðÆ<éT'TÚ8§Ï©'u¢â@NÊBŽÔV×Xóo`L‚#Ma$ŒÉG‚¨89ܯô[]‚# É*›ñ éÃI+Mp€£Œ¶¶‘‡Jr&%D®_¬of܇¡Ž'{Õ›ÞiËBŠŽÙß .!G€<V­šœQú=Ñîü£âÄIpÈÙÀPXJ*jÍê*Ê.:æµU 4œàH팹 0ÔWÈOƒRAp¤^R's&â#4BÿÝ«'Xn̈ÚR8õ#8Rýb.‹C“Œ?L3uƒæÞ% þ¡x\#伌CüÔ1(vXz¬\‚#5âsòKÜI-ýû¾»èØùÇá§$96>ÎA±#(,ÒզǪHp¤, 9ÉØ¦Kç\ÆÚàUTƒC˜‘®öGj¡÷"¨ˆ_ÄJÌEG“©!_‚#0œÀÝw„öú¨›VѱõÊnK¤r™Õûž]+ºS?‚#µ`#ÀgAùd¥“àHí¤nvëâQL!J­&Ap¤Fz—r´ú7eð„.CÈ2=½_òC ‘©µÖ#låF óµg¢µ€ TˆàH´7‰I}1æû9‘©åÖE®kÝzêGp¤:saµnæÄJl|úêGp¤L»†`“ØÓrä ,‘àÀ/丛s„BÇh¡dœ>™P ÿ Z'´Z­­Á€áT´Þ“8²spû«¿-ßVMô{-G]ïVÑK… ‚#ÍPé" ÄĪÑôÓ»Ö’Ë ~æ”ݪAÅ‘Z0÷&¬–K1¡›Ip¤.úeG›Ç@N,¯S3íó•qâútŸ©%8R#­ìØû"Gk4zZÃPGêÅçLŒà@™<à† ­ÜÜÖ‡áÜ¡ºG€*ƒ.Í8Ô†|£BRî ¥º5*ÐLˆ>„Zh´ì:_Èš5!ï_J5Q “Ü ŽÐ£ó³VÙj­°q«`Nš5ê‹!8B‡ÞÕÂ-qTVÓVJç°W5| •»>xù@Ž$IfeQv€$I<ª† ý6†&ñ T‹±t4™à2B?%mÆÒÑX‚#TÒÀxÚþ†&‡þ®^Êè´&÷R8Á*¥ë3Ïç°Ÿ^‰2º´ý(Eù³ÝK—ôR Áª£÷3¯wý (CÓ–}Aßڡ s_úÄv=!æÆÇÉ2ïì+=iÁZ'?ÁÄð‰žÑ€øƒï˜zs͘ÛÕ]õî½A|èÀÐGH’¤c±ÆÞ»h³SEÉr?)©o˜}ö»Töb¨ú"2•n¿çÔÔ†àè7Œ¼ôQc“ëÀUÙ‡í–ì7LÂ*‘U>U_D¦¢í/ñziwHœ=3¹ã |Žp´Šf‚Ú?­.þû½y»šj ™J\'Ó¥›pø…¡|4æ+»?eǦ ,à¹4¨1Á¢×̘’û!‡¼aÕºÚŠÅxx*J½ ŽfE H‚#TAv•#—"Yl³‚r/þ…¼aërªM*VQà&~ÙßV|Rl¶+ñ ŽP©I%¯»Aí¦%\g¹/uTRŽóÏÆ0=¼É¿Â@<G€Iê·ˆÒ/ˆB@eŽÓ•ÛC$;ÇJN)ëVIàvÕPW‚#4›éÃÕ•ÛìZ’sŒ§°âK‘¬›‚#4žéÃ¥è ‹#eGç(˜àÔpúpù¦¦’döèràlÒ]ì}…ò)âBÁ±¯o|ã=öØ+¯¼òË¿üËûØÇÖ¬Y³`Á‚²“$,æê¨îLì˜ò}”¬ºgCÞ¥‚cº{ï½÷«_ýê¼yó.¼ðÂ×^{í‰'žØ»wïßýÝßMOO—Ý4èÇ:/ á¨i1S݃`$. 3§ìÄhÏž=›6m:ýôÓŸyæ™M›6}÷»ßýÃ?üÃÿøÿøò—¿\vÓ C+vtþ75¥ì©öÙi©¶v%²ý¿]Q &‚cŠÇ{ìÈ‘#·ÝvÛi§ÖzåöÛoŸ?þw¾ó#GŽ”Ý:H~AºˆñH=½‘±{'Y“¦uígÿLŽà˜â…^˜3gÎÇ?þñö+ÇsÌe—]öÓŸþôÅ_,»u$‰GS1În}P® {ÆÀ„ŽÝfgg_yå•“O>ùä“Oî|}ñâÅI’ìß¿¿ìÒxmiBæ¨D‰©³ÜÎØþ¯«úíQt4pØ:_Èßò ZLŽéöî»ïÎÌÌœtÒI]¯ÏŸ??I’Ÿýìg!o²dÉ’®WöìÙSö‘1¼ìG”"uúH„¤wÊK¿hØn|dÙ1°9ý:>¶ãè½­7–àØíСCI’Ì›7¯ëõã?>I’ƒ†¼‰˜X©Y$€’ÑþNUiöÀƒJ=1v^ɧU©MÊhyg.ÊSØ‘e]˜”ÞÛzc£¤àØí¤“Nšššz÷Ýw»^çw’êŽÔ\Æ’(å”qÚ³CŽ+ãJ95ýº:µµß\TkǬt»{ì±óçÏï­,¾ýöÛI’´çYSs±”p½KV¢ÙU4°&±9u ‡. „É1)N?ýôŸþô§­¤Ø¶oß¾Ö—Ên—AÚ©1£\ZcñàÀs×ïißna x‚cŠO|â333ßÿþ÷Û¯ÌÎÎ~ï{ß[°`Á²eËÊnÉdoŒU©½däZªÄy y˜ÞõÇÔçÚakI x‚cŠë®»nΜ9_ùÊWZã“$Ù´iÓ[o½õéOúCúPÙ­k¶Î½7š¼WJêBßí!táÙ¥BbkyH¶ëms{ötçuÛÎŽ–¨›B,Lš1Ž)Î:ë¬5kÖlذáꫯ¾ôÒK_{íµçž{néÒ¥ŸýìgËnZ³õÛ+%©H9*wýrIcUå2¨D#+«sˆi?~n`d‚cº•+Wžzê©ßüæ7Ÿ~úé3ÏÒ@Y²³Z çe`šŒ¡‘c0ÆzdO}¥DýFµ d…Pq¤ Â'"ä•ÚÙqø¹®eŠ¿&—Ë1&q RK½H:ëè} ZƒþšMp¤ Jw˜Pâ¿ý÷‹¼‘7{„ÃŒA¿=¦{+£‘4`<‚#u1ÑdY­íûzÓL‘­m`Zê·Üz•Ŷü ÁúËÞ‚%òdP|ó&]éL-ì11zè%8REŽÞë (•ÎŽEšè*›ý¨S ¤p¨@‚#ÕÑ/«åž»âNÃÓIHo¢«lfüÝâ{ÜuСÚþl:¦C %8R)©¯ò}šZ6ëWN+=µLZI}Låž…RûgcCnì#4™àHÕLô–ܹ[Yï+©ÛMD•¢òå1}¶RûG÷ON`2v h&Á’$ HŠß™=z¯~‹Ý$Ã<}žè*›Ñ&ÔÂöÀdH]C”~Oª§NÙ•Æ!Lo@l'ƒ†…’ˆ†Ë&Mp„a(2fäž©n¯V¤å©+ܧ @"8B_Mؾ¯Ÿâ÷x¬–zx¿‘½‡ Ð2§ì@Ä:7Ž Yܱ6B¶ éì„ìïŸhî(å\ Û?u¡â™º¶ïËžÓä"ÜäVÙ8Q)PÜ .FbäÙ$@CŽ$IpæËþ†Æ¦Æ–É­²™:u=¼·36žÉ«…uÑ/Ÿw>ΚLp„ô[X§sÝ™æmˆçäBXï)OâdÔ¸ßä!°@ƒ ŽÐ!5 66ô«ó%£öɱ¯·IñȽ¢'8Bц0Ö²È4r¯Ë8šc–WÿDÃG ›àØÜ˜yh;}ÿæ#üÓ©-§5:õ!ckt¸ÀÐG¤·Øb~n¸ì!† YDÉ… ýŽÐ_ÆlÜÚ'ÅbÂñ¤0 yÿ&œM†ár€ ‚#ô1°TVãÛK¿Çñ‰›*@£ ŽÐ_Ƥ‡gÇì¥v†:êºvQ½tmŠAp„4]f¥~Q/cNCÎi¦‚gºÓfŸˆšà=RóÄ8‹EG(õrhC•Z#©Ëö[¿½ô†5ÒÀ^Wõ„˜ Žp´VÐéwïŠ$ årŒ©¯×XÕÏZ!ê} ã¡a¢Z§)¼Fœ ` 9e7¢4°èXQŵVw¥ö˜ÔP5*Ž0’‡žìCáÀ 1¨ ÁúÈÎX×Ð3¹zj]{Œª ¿À]³ÐKp„þRWr)¾ÖØu£+à_Ϙ=ã^:¬âOƒ„œ„êH‰!S¿Ç¬]Æ ýã¦. T@zë­¶Zòp4½'KøªLp„£¥>¡nÿ1p’ÇøÛ«dµŒ­Ç×¹QÆÆ9 ÔïÕcE' ©Gª¦€4ÓïÖž“þá ¤…ûûµ&#ggǼ-ä0Vc÷:êKp¤:ŠÜ05™eìàø½GÔï¯g¯C>þ¡e,>N¦E.jJp$M„+§¤Þ‰'º àÈÅÂÎw˜\€çͳW©ö¯0EG šGz ;䮬&µÕø<¹C yà¨4Á‘£e ªKd‹\U®3kÐ)ŠËªNp¤CmbA%VÎmžJÈ—`2G¢’Ú!¬¬…sgLa¥ ü­ Š×d¸JüæŒDpdÑ>¬l§ÆŒÅkrov‰á@¦L•Ú-^®õfÍs¨5Á‘èåû&y³—¶¿U…݆«^$‹m›ÄŒúwRÓ8[åœüæ#©‹RòA¿9Cáé·vç+1<ø›Ð6¯aF‡—X&Oݯrü–ļ£O–sŠ­Ï ZG†Qnñf̵²'º´Í8á 7^ôÛðpÒ $[pBr<–Ôß1"é«r—5Š"8Ò!æOöðmËj^éïãPã̱FØÈÒo üÈžõ&8Ò#Ú:Pø6€ªÖ¼I7¬°k©³ÛK¿€Ç<Œœ]õ£ªCpäh©7¡xJã´¡Ä;k´Yƒ®ÜÝÚÈ÷7·~+póžÀxG  “¨Ö{aškàÇ#—Ædl=á!CcŽ0IUyȘ·©Àõ}¾­qý5PFZªåV˃‚Z¡Tõ½AÎŽz\¡¡³ÿ?\Û齕^¨Á&¬Þó6úôìÔÔÔìÑ/…üÅ©©©‘g#蜖¦Öò¡t‚#L^¿µkÛ+kÿ¡ILï@p¤4M{âVï£ë55õÿEÇΕ·“EÖ<ËÍY˜©i?J@©G ׯêãÁSmijËbí¯¨æL—ià1B”GŠO¤`B:NbwÑqÀß3ºqH ÖTýG©²‡`ƒ>jOp$&•½[0g9Ù}XƒN®ì¬²M‹y³ôÔ¶5s„6ýŽÀ•IÑ›Moš¼Ôe½š0~˜T‚#Š»NµRƒ¢cÒ³"AÕ§‚*Xóe²G`²•‡Ö¨ûvsŽª`NÙ  Iú-gH£4*ôLˆ% $‚#«´LÓ*:¦~»rã¤èÀxTMLÜêꡲóaSZÛ{h &8R¬ìHAmôÔgÓŠ‹ñ–ã_¦>{îK<íêEp¤p©û×ø>ר9¡©©«ª²L}Æ–Ü‘´¨Á‘2ôî#\Ëû\£òq€®éÕñ–FDç±9[rq)O½oo©Ù"ªÌAm¸¢€¢˜U 0ðYgSµF:&SSSSS³I”¯%{€þT¡p­;¶ŽºóAº‰ð·!È‘ày“„R}Ð-ÝÉÄ£ck•Rõ 'ð‰HÕ“qŽÀäźçÄÈj ?ˆdš*µ¸$8ý Ž@¢*:\¦>’vŽ©»û01áƒ5]/"8BÞ¢Ê@1¨boÔl™úÞ…«²È9¥ ¹ LjÁ ×´»rEƒHm–©ïíü·úŠž2`òG˜€~{Á%ÍK¢í–8[(ûÁz´}DLp„ÉHÝ .©x¡r,DäJp„I[²}V¨ôùoCeÁ>¶©7ŒMp¤G u¡~ï«’]"{Ðo*O$Í‹AêXOC9Z×'i¡t©ï+qu…l>^â ;Eº2õxc8wP5‚#Hýµ›0¹«ßµTÊxÁ®1ßåujö#’û0sÊnqh}°úl…JhÿÀ¶l‡ý!Íøþš¥Æqºè¡â)¶ Õ;ž¤3;¶¿XhŒ|ºÏøb;}Pq‚#a8( Âö’ý¯ Û ?ÑÀGüF™BÒXœ?DýšBÏðé%8¢šU6pãé$I¦¦š»Ì–Ï·Qé3R Ž„ñÉ ¥ ù1ìÍI~xü˜U 0H+õ{ì[X2ë÷è¹óõÔ¥XÉ XÃ0TI’$`G8h¸Ô5MãÉ©™2žæ•+c¡o]Cù@¿ìèƒuÒª²“JUÚ9Q]ù,—NÈ«c{‡36ó¥Jݵ(ÑE04Á‘©E ¬U•ýsSÛ™4òòÈ÷‡íØxFÂé›àÈÑ|°¦_>ˆmhF;“£“Š’ä°úm œ ¹Kž­A¢ŽPž7.¥m©á²±%É@#/åÝ~½sBL¢«"ŽP†¨rá82ò2Xîºb×4] Lžåx Jý^)˜,2!#wlöBß&8c˜n#IÀ1hÛ³ž‡íºYSW“çQ5Àä¥.™•{ø¨8B”" ŠXãK}ØN¹wogQ o*ŽÐ<ù®›CÀÜh³§‡Ò»èw$¿{õ"8BJÜã1ß§{,¬Êq)ïÞz’Ì}öF%8BIúÝ×'Z(gÅé~q³wô^¢îÕÑ˽%feøÎÔ˜ú@ ?‚#”'uÿÜ‚Scç¿;ìn%„»œÐ¾úéìÆö+2VÏxÿ&gw W‚#”­*7õìÊh×å•¡vTê6º(àäA}1Õ$Rݰë;–ÈàW¨Áš!$^Œ™r2†ßÑÏh]ÿÒÞ‘šfê@-ŽÐ “£ïëÑæ•ØônÓ›¥ÆçsêÑæ`U 8Ã+,¯ôF« ÅŽ®ÁˆÉÑýÖžX³ç¹ãÌÁ¢'8“1~>è·úLR…€Õ;[(9ºÙo‘£|MJreËAhŒìù+±%Œ~í™­ÀDœìÆg<´í­A”ñWb;§@õ©8B“ \Dzü·j¿á8šxÂ—Ì |«ë0 (•àHô [»!RsÉh½šc ­“ñ´hU•>oøå'8·5PŽ˜c áß­è•PãU»ëz\ÀÇt‡úú׿þøã8pà„NX¼xñÊ•+/¾øâ²ÛÕ$ÃîØKYœ‹¸†jS>|øÆoܵk×üùó/ºè¢Ÿÿüç;wîܱcǾð…[n¹¥ìÖ5Iö 0÷]âÔðësààׯö Ô‚à˜â±ÇÛµk×ùçŸÿµ¯}mzz:I’½{÷®X±â¸üòËÏ9眲Øï. ¿7ãìÇÌàW¨/Ëñ¤xæ™g’$¹ãŽ;Z©1I’E‹Ý|óÍ333Ï>ûlÙ­ƒzi-%Óþ¯%þw²Ùþ¬ö"AÿUý ÇTûöí›7oÞÒ¥K;_\´hQ’$û÷ï/»uP©ÃX»v[I•ˆ ýÖ÷Nª‹Ã{¨Á1ÅC=tì±Ý=³{÷î$I.\XvëˆXÍöŽ›¨Œ%²;e×·UeÛ˜®cé|%õ0+z€@óŽ)Î=÷Ü®Wž{î¹M›6Í;÷šk® y‡%K–t½²gÏž²‹Iê½ßW¢*V–íŒ{ÿRÁD•}˜‰eJ¡zoë%8033³uëÖ»ï¾{ffæž{î9å”SBþ–˜8®s_¢Še{Ç%¢ÀتÞÙÁ·à£K}D^õ†Éë½­76J6:8>|xóæÍí?sÌ1«V­êü†;wÞy篾úê™gžy×]w-_¾¼ì&ŸŒÛ¡l“P›Yó½ÚK<¨JâÐèàøþûïßwß}í?Î;·ß{ï½7nÙ²å¸ãŽ»õÖ[oºé¦ö k RA`U @žæ"õB-±=ð7œŒ™htpœžžN}¦|äȑիWoß¾ýŠ+®X¿~ýi§VvK›*þA`• …#Qµ’z$²SZß•“=àŽýlÙ²eûöí×_ýúõëËn î[ê7X3)<èÄ–«ªn`fŒ}t.€ï6;;û裞p ëÖ­+»-P ð™Îã3ú3*Ežz âT»½ù曯¿þúôôô 7ÜÐûÕk¯½vÅŠe·‘hTqcüJïÒ1GG„´ß•T“àØíÀI’:t襗^êýª‰Õq©ô Q)>ÄdL~*=56j¨_éTŠàØí£ý¨U«¡{Џ+gˆpòS׆‡ý¾4ð¸BÆy¤c8ÕGŽTP¿…N’˜*g¥4¦Šâé¢ìm²§¦ê|B+´Þ>P*Á‘j¸"]ñé@P¡{­’R[¿_†#[öû Ç©†!8R5ÑÞäâl:¯«ñkoõïÇTôû  ˜àHí¨ Œ,£ßÒ¥ù.L“úý¥wcj–uê0‚#$É "™è|ÐCõF%úÍ©‚ ŽP¬KP]‰¼…£xP–¹®ë©r%8B*QÔ‰ª1¹¨D·Ç@‡ƒØrÚ‰3d #Sëšœ¡º=dåÅ8¯.€¢ŽTMucVÕ·n…°Ö2l·§¾"/$IâQ5•Ô¯ðçæ15ÐÛ±uíêÖ¥Õ¯Y­Ä 0‚#ÕT­ü•®W¥6¾¬}zÆoù@Ñn¢ Á‘ʪÙ]<Îñs!ëÆÖæñE¸‰6@G˜¼€UËV®1s­ÓÐÃ䂨82¤Ôùj3µR®«ëÓjÒŽ £_DÊXÑÎP®Áö*v;@ÄG‚eDe§©ÓuõÛ¤éöI¨Ðš@®GÂ¸Ñæ¢wº®^-€nÏ—-¡ÁGr¢è®B½”}Z«uÆ+ÔÔ˜ ÜÂQ?C­™U dê·bµR#¹¸®'Pw*ŽÀ ÕÚ§€‰b"! Yºó¨šœ¸[@½ùT ¥ùªÜ^Ø5X×›àH°ìµ”Ý- \ïŒ)É@Ž £7;ºÛQºÊMÜIýE«½ØdäšMpdH]lÝä(W壸¢MÌÏ^¬1æ–9ž{‘È^ŒÚ…: ©•QO 1G šªXº‹°I£ñäšJpˆIœ‘7µ@óŽ@~ [b¦ÑÊ¡µ#8I’ä‘ùR—˜)1EXº‹°IáñRg6 5Ý¡ß7gO‡ŨÊ`ËAh¶VºJÍ|] ²õ‹h¢[¯Œ^v¸©8ã˜uâ>[äጅ¾#ï%Á­Ò™/»máÍ.eIÂÔjnœý ÐAp*+u exòKýζþ *kç¼®Wªâúáeê“ð aV5Ð_HÕmàäk¥;€º¡Á†Zp§,SS¿ø¯H•è€byT ׯ"^)ì·Ð÷˜3”Ç™øÀŽÐlý&û|¹w’J2^ÂKm@aSž ûW*EpÒËŽ–™òJZ¦<DIp’$iÞó_é`x&ÇMÕoúKk"ŽL ÐCňLø@ãg;[ÿ Cp" s¬ЉÁ<ª ˆà@ÁˆOö®-f®”Dp¢”1åYj(‰É1@¬LyˆŒàDLLˆ‰GÕ"8Dp ˆà@Á€ ‚#AG‚Ž"8Dp ˆà@Á€ ‚#AG‚Ž"8Dp ˆà@Á€ ‚#AG‚Ž"8Dp ˆà@Á€ ‚#AG‚Ž"8Dp ˆà@Á€ ‚#AG‚Ž"8Dp ˆà@Á€ ‚#AG‚Ž"8Dp ˆà@Á€ Ç–Ý`HSS¿øÿ³³e·€¡R¦¦Ž ‹­)>Pª¡:ºRc’$³³ÉììQ5H˜Á*¢75¶ÉŽBp„*ÈHPÁjAÑ€É"8Dp ˆàµ`ö “'8öÆoœþùkÖ¬)»!5±dÉ’²›»”.2÷åh®¢lúg ]”MÿÐà8ÀìììºuëÞyç²BãõËŽSSÊÖƒ<òÈ#Ï?ÿ|Ù­€$IúdG‘€¢¨8fÙ»wï½÷Þ{öÙg—Ýø@kÁÎÿ (‚c_‡^»ví‚ n¿ýö²ÛP>ªûºÿþû_~ùå‡~øÄO,»-åÓíÚµkóæÍ+V¬X¾|ùîÝ»‡ýëæ£eÓ?é¢tQ6ý3.ʦH%8¦8tèÐÚµk.\¸zõêþúž={Ê>€ü5:8>|xóæÍí?sÌ1«V­J’dÆ ضmÛôôtÙmˆE£ƒãûï¿ß}÷µÿ8wîÜU«V=ÿüóÛ¶mûüç?Þyç•Ý@€ˆLÍZÎãh[·nýâ¿Øï«‹-zê©§Ên#@ ]qLõáøÊ+¯ì|åàÁƒ;vì8묳–-[vÆg”Ý@€r¨8¶{÷îO}êSW_}õÆËn @i,@Á€ UDÅ€ ‚#AG‚Ž"8Dp ˆà8Ao¼ñÆù矿fÍš²—ÿùŸÿùË¿üËO~ò“ùÈG~çw~çOþäO~ô£•ݨ¸:tè‘GiuÑ¥—^zÓM7=ûì³e7*F?úÑ–,Yòïÿþïe7$ßøÆ7®»îºeË–]|ñÅögößÿýße·(R®œT>yrÿJÇÉ™]·nÝ;ï¼SvCâòöÛoò“ŸÜ¶m[’$¿ýÛ¿ý+¿ò+O?ýôUW]õÒK/•Ý´X>|øÆoüë¿þëŸüä']tÑoüÆoìܹsåÊ•<ð@ÙM‹Î–-[ÊnBDî½÷Þ?ÿó?õÕW/¼ðÂã?þ‰'žXµjÕ¡C‡ÊnWŒ\9½|ò äþõÿf™Œ‡~xñâÅ‹/þÓ?ýÓ²Û‘/}éK‹/þ›¿ù›ö+O<ñÄâÅ‹?ó™Ï”Ý´XlݺuñâÅððî»ï¶^ù¯ÿú¯ßú­ß:çœsþó?ÿ³ìÖEáàÁƒ/¼ðÂ_üÅ_´~ÄvíÚUv‹Ê÷Ãþðì³Ï¾ôÒKüã·^iý¬}ñ‹_,»iqådðÉ3ûW‹ŠãDìÝ»÷Þ{ï=ûì³ËnHtþõ_ÿuzzúsŸû\û•O}êSgœqÆîÝ»gffÊn]žyæ™$Iî¸ãŽéééÖ+‹-ºùæ›gff<6j¹êª«n¸á†ø‡(»!yì±ÇŽ9rÛm·vÚi­Wn¿ýöùóçç;ß9räHÙ­‹…+'ƒOžÜ¿ZŽ-»5tøðáµk×.X°àöÛo¿ñÆËnN\N:é¤Å‹wÜq/Î;÷½÷Þ{ï½÷ÚXM¶oß¾yóæ-]º´óÅE‹%I²ÿþ²[…¿ú«¿úßÿýß$I}ôÑù—)»9Qxá…æÌ™óñ¼ýÊ1ÇsÙe—}ë[ßzñÅ/¸à‚²WNŸ<¹µŽù»ÿþû_~ùå‡~øÄO,»-ÑyôÑG»^yá…^ýõ|ä#Íù©ËöÐC{l÷æîÝ»“$Y¸paÙ­‹Â%—\Òú?ÿüÏÿ\v[¢0;;ûÊ+¯œ|òÉ'Ÿ|rçë‹/N’dÿþý‚c‹+'ƒOžÜ¿ZÇœíÚµkóæÍ+V¬X¾|yëGŽT?øÁžxâ‰}ûöýà?øµ_ûµ 6”Ý¢Xœ{î¹]¯<÷Üs›6mš;wî5×\SvëˆÑ»ï¾;33sÒI'u½>þü$I~ö³Ÿ•Ý@*À'O¸†ß¿Ç<:thíÚµ .\½zuÙm‰Ýž={üñÙÙÙ$I–.]úK¿ôKe·(F333[·n½ûî»gffî¹çžSN9¥ì£ÖÔéyóæu½~üñÇ'IrðàÁ²HÅøäÉÖðû—à8ŠÃ‡oÞ¼¹ýÇcŽ9fÕªUI’lذáÀÛ¶mkTÕ:U¿.jûýßÿýÏ|æ3o½õÖ·¾õ­/ùË/¾øâ·¿ýíÖ}®!vÑÎ;ï¼óÎW_}õÌ3ϼ뮻–/_^v“ãêÚN:餩©©wß}·ëõÖr`­º#jø'Oˆ†ß¿ÇQ¼ÿþû÷Ýw_ûsçÎ]µjÕóÏ?¿mÛ¶Ïþóçw^Ù ,_ju}ÏÔÔÔ©§žºråÊýû÷ÿýßÿýw¿ûÝOúÓe7<Š.zï½÷6nܸeË–ãŽ;îÖ[o½é¦›ø«HÈ%D˱Ç;þüÞÊâÛo¿$I{ž5dóÉ®É÷/ÁqÓÓÓ{öìézqïÞ½I’<øàƒ>ø`çëO>ùä“O>¹hÑ¢§žzªì†—ßE?üðe—]ö{¿÷{¯·æñýøÇ?.»Õ…Jí¢$IŽ9²zõêíÛ·_qÅëׯoì]¿_ÿêôÓOå•WÞ~ûíÎ9yûöík}©ìÖQ>y²¹µ ޹ùð‡?|å•Wv¾rðàÁ;vœuÖYË–-;ãŒ3Ên`ùN<ñÄüÇ|óÍ7»~ð^ýõ$I~ý×½ìFaË–-Û·o¿þúëׯ__v[¨ŒO|â{öìùþ÷¿ßþšýÞ÷¾·`Á‚eË–•Ý:*À'O6÷¯6Á17—\rI{­‡–Ý»wïØ±ã‚ .ظqcÙ­‹Âé§Ÿ¾dÉ’;vüÓ?ýÓå—_Þzñ‡?üáÖ­[?þø /¼°ì–ovvöÑG=á„Ö­[Wv[¨’ë®»î«_ýêW¾ò•}ìc­±V›6mzë­·þèþèCúPÙ­#v>yrÿj)Ô—¾ô¥ë¯¿þsŸûܲeË~õWõ'?ùÉ¿ýÛ¿%Ir÷Ýw›¸—$É›o¾ùúë¯OOOßpà ½_½öÚkW¬XQv‰ÑYgµfÍš 6\}õÕ—^zék¯½öÜsÏ-]ºô³ŸýlÙM£|ò„pÿj)Ôoþæo~ûÛßþÛ¿ýÛ—^zéå—_>ãŒ3~÷w÷–[niíOÀ’$9tèÐK/½ÔûUÓɰråÊSO=õ›ßüæÓO?}æ™g®X±â¶ÛnkÎLOÆá“'„ûWËTk!"È6§ìP ‚#AG‚Ž"8Dp ˆà@Á€ ‚#AG‚Ž"8Dp ˆà@Á€ ‚#AG‚Ž"8Dp ˆà@Á€ ‚#AG‚Ž"8Dp ˆà@Á€ ‚#AG‚Ž"8Dp Èÿ „:8´IEND®B`‚statistics-release-1.6.3/docs/assets/kmeans_201.png000066400000000000000000000745541456127120000221460ustar00rootroot00000000000000‰PNG  IHDRhŽ\­Ay3IDATxÚíÝwxÕÛÿñ³I„0@5`@¤÷P²€Ò{¯v¥ˆVl€Š* *(Mi Ò , $- 4‘%¶¿?æqûÝÝìn²³{f7ï×õ\ÏfÏιgâW>Þ3gFg4àˆŸìàŽp ÁN!8À)G8…à§à‚#œBp€SŽp Á@Þ$&&êyå•W„sæÌQþؤI“ö3xðàÛ·o !âââÚ·o/û°ÈDpåË— ²Þ^ºti!D‰%ªU«&„¨P¡‚ìJµÈMçÇôK¹s玩G˜ššÚ¿ÿS§N.\XöqðbGù·xñb;-¨!C† 2DvÔ¬YsýúõBˆ:uêxxj7ó_ʹsç&Mšôý÷ß !Ο??{öìqãÆyø0øîqà.6ïáËÌÌüúë¯[µjV¼xñ‡~xøðá ¹íäúõë/½ôR£FŠ/^¿~ýï¿ÿÞh4ZŒ¹|ùò‹/¾Ø²eË%JÔ¨Q£oß¾0`~ÓdVVÖ;ï¼S©R¥wÞyGÑ£G!Ä<жmÛ|i‡©U9?öU®\yÞ¼y¦[E?øàƒ;wî˜>ÍÉÉY²d‰^¯¯Zµj‘"EªV­3þüÌÌLeÀĉu:rZÑ¡CNgڃïðAFÈ‹#GŽ˜þggä×_­ kܸ±²åÞ½{M›6µþ‘N§›9s¦é‹o½õ–²=&&¦fÍšƒ?ÿüsóY6mÚT¾|yëN˜0Áz‡½zõzì±Ç”Ÿßzë-£Ñ˜™™Y¥J•Ñ£G›;Y¤“gÆÎÔù>?yý¥lÙ²ÅôéúõëMÛ `óï…~ýú)^ýuëOoß¾íä×ø:Ž<çý÷ßß»w¯"((¨gÏžcÇŽmÖ¬™Âh4¾øâ‹Ç·¿eË–ãÇW¯^½AƒþþþÊÆ‰'fdd(?§¥¥ 4èòåËBˆvíÚMžø`||¼"++«F¦íׯ_7B›/¶ñp‘Ò§6­*V¬Xtt´òó¬Y³”fΜ٩S'åçóçÏ;¹O¿ÀKÑqà!ÇŽ ­P¡Âßÿ-„èСÃSO=¥ Îë>;tè üðÍ7ßÿ{0øÏ?ÿüÀ„„„T«V-¯wݹ£H‰SÿóÏ?Ï>ûìŠ+”?>\éÑÞºuËt_I«Bˆ¿þúËþctLmËü}€ ãÀCêÖ­[¾|ùË—/geeµjÕª[·neÊ”9sæÌo¿ý¦ 0½àÄy'Nüî»ïRSSW­ZÕ®]»¶mÛ&&&þþûïʧ&L°³RÇcEzxê#F(Z¼sçÎ¥K—LÛË–-ûÞ{ï)?/^¼xñâÊ¢O=õÔO?ý¤ÓéÖ¯_oó¥/ÁÁÁÊÈ÷Þ{/11ñÅ_ÌÓ×ø‚#ñóóSâ]zzú?ÿüóÝwß™óꫯæuŸ¥K—ž?þˆ#nܸ±eËóW¤Œ9ròäÉZ(ÒÃS_¼xÑzc™2e~ûí7ÓN×µk×¥K— !îÞ½«dÓêÕ«W­ZUy–¤yâlÛ¶íâÅ‹…»víÚµkרQ£ *äü×ø.UðœæÍ›Ÿ:uêí·ßnÒ¤IXXX¡B…J—.ݪU«ï¾ûnóæÍ… ÎÇ>»wïžðôÓO7lذhÑ¢Õ«WïÝ»÷Ö­[gÏžíÌzÏ)ejÿ2eÊ4mÚôí·ß>qâDóæÍÍ?}øá‡…~~~õêÕ?~||||Ïž=•Oúé'Ó£Žbcc‡Z®\¹bÅŠÕ©SGYêîü×øé® @’™™¹fÍ‘ßëï.~€7"8À)\ª€SŽp ÁN!8À)G8…à§à‚#œBp€SŽp ÁN!8À)G8%@vžžž¾téÒ+Vœ?¾D‰‘‘‘O>ùdtt´¯ôë×ïðáÃCBBvìØ!ûhäðýà˜••õøãÉÎΞ6mšÍÔ(„¸téRPPЄ FŒ¡lÙ¹sçÈ‘#?øàƒV­Z………É>€73e2SŸÏMG‡³˜ éçøþ¥j“={ötïÞ}êÔ©!!!sçÎíÒ¥Kn#øá‡ƒšR£¢e˖ÇOOO‹‹³3íF€³ÌcœÃþŸûfñLð"8fddL:õ±Ç»xñâØ±c×­[ײe˼î¤iÓ¦Bˆ“'OÚcŒ‘}¬o`ÝbtG«Ïá,6‘;ß¿T““óÒK/mܸ±C‡“&M*W®œýñF£1''G§ÓùùýOªö÷÷B”(QÂÎwé8œâ™+Âg±9€«ÕÈïw.\¸qãÆ!C†Ìœ9ÓajBœ={¶víÚ=ö˜Åöøøx!DTT”ïÒqäF¤Ç*—óñàh4-ZT¢D‰×^{Íΰ;wîœ>}úüùóBˆjÕª5jÔhï޽˗/7 ˆŸ7o^XXXÇŽí쇎#Øg\¼˜?ŽçßÿmݺuPPP5¬?íÝ»÷°aÄk×®?~|DDÄš5k„Çê©§®^½úÐCU¯^ýÂ… ,Z´èÌ™3›7onF²#<ŠÇñÀÛð8xÇcÍÇïqTšˆéééGޱþ4·%25kÖ\¹rå´iÓvíÚ•””T¹rå^½z½ð *T°?©ø0ï8zÙEÇÞ†Ž#¼Gk>~£‡‘€#8ª‰UÕÀ‡à‚#ÀsxàÕŽp ÁN!8¼ÞK.y{K€sŽ/Ad#8¼„Á`#;j3MzK@ÕÄÀÀ!—V[dG½^4ù*o©È#^9¨2²#<ŠW ©ðÖAS&Óxó–:‘ ^9hà¨&R#<àìhÿR¯v’™ÃKÒÚ)Ž­UFv„Gá…è8Â[­q£šHà«/1Ý/hs­ŒvxK@^ÕcŒ‘]hKG‹U&šÍdÞR'GG5Ñq‡\]Uíp‹xK@ÕDÇRáGá=9Ì[êœCpTGpÈÕ{ÈCpTGpHŽ#Žp ÁN!8ÞLÏ%?€çà‚#œBpTã‡xཎjâq<àã¼ÁQMtÀ!:Ž€÷"8ª‰Ž#8¤NÇQï(}º>ÀÉ1Z JÞr°žÁÙÈÁQMtÀ!:Žÿƒ€¯BpTGHÀ£Q XÇ,‹-ù`±Ñá7H>fqx°ž)ÃgØ:pN'»,m!8ª‰Ž#$0ÔÅÛå¿éh0X†<ƒÁ¥ÖcPç¨1‹ÃƒõL>Ãêlèt:£Ñ(»,mጨŒìO#8 ¹z›£éo÷Ü"Ž“” `sŒ²Ý4Ì]'ÂQªœ göàƒõfgƒŒdà¨&R#$ 8Â;å9;Ú¿~jÝ9ˇ;Q+T¹>‹*uzæ`½…ݳAX2!8ªŒìO#8 Éï8 á¸Á晜본ÞqôØÁz‹ÿΆ1&Fv)šÃ=ŽOsiaµéªnn B‡Äÿ^#¶?‹[WŠ8,Ãõ³‘§Øe1æ8vž–ÿŽc^²ØŒSæcò7@³àò,άÊð%ÿ{6XRmàð´|vm® ±^4m€ÍuÖy  ×gqælx  _bu6¸ÏÁà%TÉ4wâ™ääú,½FYeøΆX£2ÇÀÓX/¤Î[7cqŒ5:ŽOã­ƒ€—"8<Ž#ॎjâ:58ƒŽ#ॎjŠ1ÆÈ.¼GÀKÕDÇœAÇðRG5ÑqgÐq¼ÁQMtÀt/EpTGpGÀKÕDÇœAÇðRG5ÑqgÐq¼ÁQMtÀ¨ã¨WãHUÙIÁÁér'‚£šè8€3|¿ãèzv±¹"‘œ 8<Í÷;ŽƒeŽÉk¬±¹ƒ¯nW¸~Îá‚#ÀÓ|¿ã(þ7Çä/󹾇‚†3æ~GÜC .®$S"9Éõs»tF£Qv >…õ1ð4×bà•|¶éèðò¨3ÆþNˆDT9ç¶cbd›æÈ.Pàøljÿ›QLͼ6ÀLƒ•/Òt´O•sçp©ài¾¿8FüïÕRëužÙCAÃs?‚#j³nwåµûes$!;\?çpÁQMÜàNòñ¦£ë‘ÅæHBvpr<‚Å1*#;ÂÓXïäË·9ÂW°8ÆG5‘ÀI>Þq|ÁQM¼rèiÛÀ+Ñq¼ÁQMt!—ªáè8Þˆà¨&:Žà$:Ž€7"8ª‰Ž#8‰Ž#àŽj¢ãN¢ãx#‚#@:Ž€7"8À)G8…à§/ÇÀ÷Ñ;ºÓT©Ó—¨ƒÕ‚#fˆzÄéÒ ‚#@í>ŽÇ`°SÌ·8 „ãÖ;ÉG6r8‹ÏpæœÃ#Žjâàà$M?ŽÇ"¦èõÂ`Py€Å›\¯Ó—¨ƒÕ0Ñh”]ƒO!;BÞX o£ÝŽãÿ/ñ¿ÿYåP\`ãJrfŸáÙƒ5ÆÄÈ>`Í!8ª‰Ô9HðNZÌŽö¯~Ú¼`š§Îp&9,×È;X‚£5‚£ÊÈŽƒìo£ÅÔhY¢û;ަv£+^é8º ÁÑ÷8ª‰Ô9HðBš¾ÇQ˜ÝB—[QÅÂ…V¥ÃY|I:X­"8ª)Æ#»H<Ê^HÓG‹þŸÍÐêù Cgñ%ê`5Œà¨&:ŽƒŽ#¼v;޹­€¶óGUˆ¼_~u8‹/)P«aÜã¨2²#ä ;ÂÛhºãèIøàž={ž|òÉ™3gÚÿ"‡zÞ<o¢wæé¹>žç™_ ¿zw¢ãhòeË<بQ£¹sç !’’’† 6sæÌvíÚÕªU+·/Òq„¼ràtmX¿~½âÍ7ßTR£"""bäÈ‘ÙÙÙ;vì°óE:ŽƒŽ#¼uH/ FXo´±—<€ç9ó›uÇ,üêÝ€àhÃéÓ§‹+öÐC™oŒˆˆBœ;wÎÎé8B:ŽðƒÕßã¶¡× ƒÁÞ˜| €ç9ó›U}~õîAp´aΜ9K–,±Ø˜˜˜(„¨\¹²/Òq„tá%Ìÿf·ý׺ãfcò=žçÌoVÅYøÕ»Îh4Ê®Á ìÞ½{̘1™™™›7o ÉmGÈAÇÚæø‚¡n¤Ú”1ð0ÏüRÜ6‹1&FýsâåŽdgg/^¼ø“O>ÉÎΞ6mZ—.]ì';B‚#¼Šò·¼òW¹åmŽÖ#ìì· …Ã߬ZS¨4 ÁÑ—ªíÙ³gO÷îݧN2wî\‡©`Ÿ)9äÚ$2]dÌm„i@n{q8R8þÝ«1¿z7#8Ú–‘‘1uêÔÇ{ìâÅ‹cÇŽ]·n]Ë–-eÞÍüÆ3Û³;aqïšÃUpü»Wu ÷ÍRàñGrrr^zé¥7vèÐaÒ¤IåÊ•“]x=Û  ް?ÀzŒÃð<‡¿YUð«÷‚£ .ܸqã!C&Mš$»ðŽÿw8‚à¥øÅùÇX2>úhjjêöíÛ‹)’ׯ³8°8^Ëöâ@XcŽ£¥+W®¤¤¤ :ÔúÓÞ½{6Lv-?^‘žž~äÈëOY" ,‚£¥† ž8q"ßå:5ða<ŽGM¼rrðÊA€GÕDÇr°8àG5Ñq„táµ,žä@ãŽj¢ã9è8<‚à¨&:ŽƒŽ#À#Žj¢ã9è8<‚à¨&:ŽƒŽ# =ÿ½H@pTGÈAǾǹèi'ÕDÇòÏap±9 ¯q‡xd޳<"8´Á`°Ì1´9ÀÇ[5ÎR p6GG€f˜ç›¡ÐáUf)P8È ‚#@KL9&·ãp€“³rÒT9¥(d€­+¤æ[¬¯¨ [²]Ÿ¥@ál ïŽ 0Å¥ hÝs8 ¯³ˆÿòhMHªœR0\ªh†yŒË­Ëh€*³(œ äÁð~<¾Áºùg‘cÈ÷,gyDpT€ü³Yl^­vø­¼ÎR`q6G:£Ñ(»ŸBv„4¼?ÞI/È.Ð(cLŒì4‡Ž£šH†Ôp?‚£šxå ¤á6G€ûÕDÇÒÐq¸ÁQMt! G€ûÕDÇÒÐq¸ÁQMt! G€ûŸ@Çà~GÀ'Ðq¸Áð tîGp€SŽ€OàR54Cï¨ýíp€:ÓøÒѺ¾Ïœ.üRàNGÀ'p©Fr ! Áð t!›uαؒۃp:! ާñgÊp½NUÖ3§K ¿x ÁQM<ÒÐq„l9G¯CÞ¨3/­ë;ñÌéÒÈ/¡3²kð)dGHCv„˜òCnÉÁæ½ÈcÎp8–VõY<°íÌâYƘÙ%hÁQM¤FHCj„<ö/KÚ¼âjcëÓxËÑzæ`U)ÃujÁÑÁQedGHCv„ÐqT¿N:Žò­q£šH†Ô 0ÝÛ–[ßÍáu¦ñ¥£u}'ž9]ù¥ÀýŽjŠ1ÆÈ.«ª!›ÅŠëüàp€:ÓøÒѺ¾Ïœ.üRàG5Ñq„4t!›õõIëuÆ¿¢Â4¾t´®ïÄ3§K#¿x÷8ªŒìiÈŽðZy¾Çðîq´FÇQM¤FHCj¸ÁQMÜãi¸Çà~GÀ'Ðq¸Áð tîGp|G€ûà‚#à¸T p?‚#à¸T p?‚#àè8Üà¨&iè8Üà¨&iè8 z/úï oª(@Žj¢ãiè8Üà¨&:ކŽ#rgݼÓh;ÏfY­( Žj¢ãiè8"wÃÿ¤/½^´ù…jºV €"8ª‰Ž#¤¡ã»L‘LëIÌ<;j½V  ÒFÙ5ø:ކŽ#lqx™W#ÁL/ jÕH¡(`Œ11²KЂ£ÊÈŽ†ì»LÁL›L/ÌÊRjÕf¡(HŽÖ¸T øR#ì2]õ58jíÉgªUë…Áð ÜãˆÜYÜ+¨éìh^«¦  (‚#àè8"wÖ—|5zØz5ŒF  .‚#@ˆ‰€æŸÀ¥j8Á›‚™7Õ  GÀ'p©à~GÀ'Ðq¸ÁQM<ÄÒÐq¸ÁQM¼rÒÐq¸_€ìþ‡ÑhÚ¸q£¢~ýú 4¨W¯^õêÕƒƒƒƒƒƒ322RSS¯^½zôèуîÛ·ïâÅ‹!!!£F2dˆŸŸ¶.µ“!©ÞŒà "8Z“,X[¡B…>}úôèÑ£\¹röÇÆýû÷¯Zµê÷߈ˆøàƒ"""$Öoì™ÈŽðZGhÁÑšäàøÈ#¼ð ]»vÍkïðêÕ«³fÍ zå•W$ÖoÔ™HðfGhÁÑšäà˜íïï/ëëî@v„LdGx­<Gë[j#8Z“| ‹±Ôü¤F8¢WãŸUv‚¼á¤C3´µ¸DqýúõC‡%äBvuöðGÈÄ£‘ ×S‡Í=H3Z©ƒƒEÁ¥­ç8¦¦¦¾ôÒK;vì°3æÄ‰²Ëob0X^×Íëe^×÷ •#ñ"ê`á=´§M›¶cÇÿ:uê”.]Z§ÓÉ®|Bù‹æ1Ff€ÑJ, (ùÏq4§×ë/_¾¼hÑ¢† Ê®%Ÿ¸Í2q›#ìR²£+ñÃõ=äºç<-Žq_T VcXcM[Ç[·nÕ¯_ß{S#hõMqæ[œI#®ïÁGâÑRd¬/)¼¶‚cíÚµÓÒÒdW¾Ã”1L}«|Üàhڃ钷œ5Q‹M[«ª}ôÑãÇÛ_À6®S#wæaÑü~GOîA+GâE ÔÁÂKh«ã8tèУGŽ9rĈ7.V¬˜õ˜¦M›Ê.Ð$½ì›¬[Œym]Ù܃„ÕZ©ƒƒEÁ¥­àxãÆS§Nedd|÷Ýwß}÷Í1Z~+c ©¹p=iØÜƒÌ«Õ’ëà`QpikUõ¤I“–,YаaÃÒ¥KÛóÅ_È.Ó²#d";›ñºjh «ª­i«ã¸wïÞÀÀÀ¥K—Ö®][v-ùAj„L¤Fx9åB¬ì*Ø£¡Å1YYY§OŸ®W¯ž—¦FÁ+!¯„—#5Ú§¡à˜““S¨P¡›7oÊ.$ÿè8B&:ŽðrÁ?ÀÖi(8vïÞýäÉ“›7o–]K>Ñq„Ltáåè8Ú§­{Ÿ|òÉ“'O>ÿüóÌíq<1¾S•Ž#d¢ãp3m­ªŽŠŠr8FËãdGÈEv„7£ã­aUµ5mu{ôè!»Àk‘n¦­Ž£ ã™ÈŽðft¡5t­ihq ´L‹ÁqË–-S¦Lù÷ß•?ÆÅŽøâ‹k×®u}ÏÉÉÉQQQ Göë×/ÊJtt´ìs ¶‚cNNÎ+¯¼òÜsÏýøã÷îÝS6ÞºukýúõãÇùå—]¼°¾páB'G¦¤¤Õú_²Ïߤ÷È]ÎÌâpŒë¥:µÔ ï´µ8æ×_ýí·ßÊ—/?nܸÐÐPec—.]Š+öÑG­^½ºuëÖ={öÌënÓÒÒNž<¹zõê%K–89þæÍ›;wž>}ºìSÀ—éõ ûú–á¡:µR€\i«ã¸téR??¿¹sçöéÓ'00PÙX¸páG}ôûï¿Xºti>vÛ½{÷¡C‡:™…)))BˆjÕªÉ>|œÁ`Ù8sGÍzŸ[–a= ¥:ÞƒgêàmÇäääððp›W„«V­Z£Fäää|ìvêÔ©³fÍš5kVË–-öìYeƼNÄ’jÈÄ’jïdž…ÜÔP³ˆ[6gqX†3;q½ OÔÀÚ ŽEŠ1ÝÚhíÞ½{þþþùØm«V­Ú·oß¾}ûŠ+:3^ Ž—.]1bD“&MÚ¶m;jÔ(g–ÔðÊAÈÄ+½–’|ÜLqËÎ,¦1ä»T§öà:ä—¶îq|øá‡ãââŽ;V«V-‹’’’RRRZ·ní2Î;'„˜1cFxxx‹-.\¸`0¶nÝ:yòäØù"GÈDÇѫؼ¾j¾Q•Däp‡ß²yqØ|Œ3u:s°z½Bïp„Kup™¶‚cŸ>}âââF=uêTóËÊýõ×ĉF£g^-séÒ¥    &Œ1BÙ²sçΑ#G~ðÁ­Zµ Ëí‹1Ʋ#¤ÑÈŽ^Ä<ç˜úkªwЬg¹G,evëf_žv’ï2 †ÿî¾:¸L[—ªÛ·o?bĈ‹/>ñÄz½~ĈO=õÔ#<2dȳgÏvïÞ½{÷î(ã‡~8xð )5 !Z¶l9|øðôôô¸¸8;_$5B&R£w2‹¹µÕTœÅNçÎawâb¡÷PòK[ÁQñæ›o~õÕWÕªU»xñâž={¶oßž’’òþûïòÉ' kÚ´©âäÉ“vÆp#dâG/dÝbtG²˜ÅæÚe‡e8܉*ex¢.ÐÖ¥jÅ#<òÈ#\¿~ýôéÓ÷ïß Õétž™Ýh4æääèt:?¿ÿIÕʺœ%JØù.GÈDÇÑ Ù¼ÐªúÕW›K“óZ†Ã¸^†‡êàÍuMÊ”)Ó¨Q£–-[V¨PÁc©QqöìÙÚµk?öØcÛããã…QQQv¾KÇ2Ñq„#ªD,×wâÔ"/2HŽ+V¬ÈÎÎÎßw/^¼¸mÛ6UʸsçÎéÓ§ÏŸ?/„¨V­Z£FöîÝ»|ùrÓ€øøøyóæ………uìØÑÎ~è8B&:ŽÞL;)H;•Ð ÉÁqæÌ™]ºtY½zuFF†óß:þüÔ©S;v옿ç[Ûºuk§NFŽ©üñwÞ yë­·úôéóòË/}öìÙJX…Ó¥­àؤI“7n|ùå—.\øòË/…mÚ´Q>š7oÞõë×|ðAÙ5(¼åoy‹®–›6O{ö–S ´µ8æÂ… Ý»w¿sçŽòLJ~xùòå:nÀ€ Bˆùóç7oÞ\v™ö°8’±8ÞÌw.UÃ'°8Æš¶:Ž+V\ºtiLLLhhh«V­¦OŸ®<µñêÕ«%K–üè£4ž|˜¶:޹¹páB… üü´sm¢ãÉè8›Ñq„¦Ðq´æQLQ±bER#ø<Ÿzà‹d`iýúõ?þøcJJJn­Ð­[·Ê®1W1Ʋ#äG@ã´7nÜøâ‹/Ê®"ÿHŒëÔðr¡';Z¦­{ ?|øðgžy¦|ùò²Ëɲ#$#;›‘¡)ÜãhM[Á±qãÆ%J”Ø´i“WÜÑhÔÉHð~dGhÁÑš¶òY©R¥ªU«æ¥©QcŒ‘] 6=㻑ÓVD«[·îÉ“'5ÕÍ:ŽŒŽ#¼«ªÓVp1bDjjêW_}%»|¢ãÉ ^ÇQ¯˜A É«ªwíÚe±eèС_}õÕîÝ»»téR©R¥ÀÀ@‹-Z´[³tؤ×;xƒ³ÃNŽq}®Ïâ"VZ&98>þøã6·ïß¿ÿþý6?:qâ„Üšíà9Ž€ØL6ž;Δáz^t8‹*YPzXüŸbH€†IŽ=zô}xƒ!ÏùLVǸc€;fñ艥ãh˜¶Çãè8B²³>FI6Ê]}»eΔaú4·4æÌû³˜¸uRR#4ƒÇñXÓVplРÁ!C^y囟Ž;öäÉ“6l]¦=GHV`‚£ò#Žóe8£ÖwÏâdGhÁÑš¶^9x÷îÝÌÌÌÜ>JII¹pá‚ìÈd½pØb‹gBÃ2~ËÔÛSw€;fùÇ­[·Ž5Jù9;;[§ÓÙ|xNNŽÑh¬R¥Êü!·`ûè8B²ÓqÔÊuUm\ªNt¹T äGkòŸãèïï_ò?BˆÀÀÀ’¶‡‡‡¿ù曲ë ŸyôÉ­ñ¦‘2Žq}€ù÷•á1<Ð2ù—ª[µjµ{÷nå稨¨Aƒ½ñƲ‹ ]Î,^ÖH6Ç8܉‹³¸£ žX:Ž€†Éï8š{ê©§š7o.»Šüã:5à63”Çñ8Üè°ªü p8‹êexG@ËäßãècÈŽ¬ÀÜã_EÇÚÁ=ŽÖ$_ª^¼xq^¿2tèP¹5ÛAj„d¤Fx?h™äŽcTTT^¿¢åW ²#¤#;ÂË‘¡t­Iî8Ž7Îb˱cÇ6lØàïïߪU«jÕªùûûŸ>}úÏ?ÿÌÊʪP¡‚Æ×Í!©ÞŽ# eÚºÇ1%%eРA!!!3gά\¹²iû… žþù£G>úè£_~ù¥ì2í!;B2²#¼©ÚAÇÑš¶VUÏž=ûÚµk_~ù¥yjBT¬Xñ‹/¾BlܸñêÕ«²ËÌ©\Īj@Ë´ãããêV­jýQåÊ••íšj‘Zˆ1ÆÈ.¼G@Ë´SSSoß¾[4LKK+]ºtÙ²ee— p:Ž€–i+8Ö©S'--mË–-Ömß¾=55õ¡‡’]#Àè8Z¦­àØ¥K!Ä«¯¾ºnÝ:ó¾ãÆ_~ùeÓ€¯¢ãh™üwU›ëÛ·ïöíÛ×®];nܸ²eËV¯^]§Ó%''ÿûï¿BˆîÝ»÷íÛWv7¢ãh™¶:ŽBˆiÓ¦½ÿþûeË–½råÊž={vïÞýï¿ÿV¨Páƒ>øä“OdW  Ò;j9àúÛ‰Ff MÚê8 !üüüú÷ï߯_¿Ë—/Ÿ>}:  Zµj,ˆàaz½0\ Ê,؃vfQðp@Ë4×qTètºÐÐÐ-Z4iÒ„ÔÀó ­5ó-äo×÷hd–ÿÛ-©Ð0ÉÇÅ‹ !š6maú£}C‡•[³<ð%JZ2uÚ¬»n8?‹ë{p± Ì"è8Ú&ù•ƒQQQBˆ)S¦ 4ÈôGûNœ8!±`‡ÈŽŒWªÍ”êrËI8?‹ë{pq'Z™…àmà•ƒÖ$ǯ¾úJ¡×ë•4~ûí·¿òÌ3ÏH,Ø>R#ä#8ªÁþEX›×m-¸8…*;Q+ÛyfËIɎЂ£5ÉÁ1+++ @s t\Av„dGµy ãhj7ºrý—Ž# :‚£5É‹c7nüÄOÌž=ûÀ™™™²Ï†«HŒÔ¨6S’Ë­Ëèp€óS¨²“|ïA;³žh˜äà˜žž¾sçÎéÓ§<¸qãÆ?þø¬Y³þúë// ‘1ÆÙ% `ÓÓ§Q“EÿÏæ hûò:…*;qSªóÌ,ÿ7G@«$_ªþùçŸ<ÿ÷ßçä䘶)R¤~ýúÍš5kÚ´iݺueŸ(§Ðq„&ÐwTCžVkäqŒ¾ôLG²#´€KÕÖ$G“Û·o'$$(!2!!!--ÍôQáÂ…M!²^½z‘dGÈGpôBž|¶ö‘¡GkZ ŽæŒFcrr²"'°Arp>|øŽ;’““÷îÝ»wïÞ€€€úõë·lÙ²eË–uëÖõ÷÷—}~ð4ñ8žË—/ïØ±cçλvíºzõª²±xñâÍš5kÙ²etttxx¸ìÅãx ã—ãY<ÐÇcMÁÑÄh4žqâD|||||ü_ýuñâEÓGõêÕkÖ¬™ìí‰1Æ¡YÖm³‚ÜH³yìæ€ûÍ’ÓÒÒ8pàÀ„„Ó}Bˆ€€€ºuë6oÞ¼Y³fõë×/R¤ˆìb 5BË ÇÁ¨à°8Ö'Äá¸G@³$ßãØ­[·S§N™×àïïÿðÃ7kÖ¬Y³f 6 ’}Šò†ìùìÞã¨ÿïC2øïlXgDóʧ‚3æA¤Fh÷8Z“£¢¢„þþþ=ôPÓ¦M›7oÞ¨Q#ï}8©š`õŽ–Y¨HäÌÙ°?¦@.YȎЂ£5ÉÁñã?nÖ¬YãÆ‹/.ûT¨ƒìùè8æ…Ãn"íFÏ#5B#ŽÖüäNÿÚk¯ÅÄÄÏ0]uØT+ Ì/Uç6@9cœ.O2N7 Q’ƒ£‰1ÆÈ.È•ÍÅ™ù ±y6€‚†àÖ[ òåWëÕ0ŸUTO—çÑt´‰à  r˜‰‰`à8D"sΜ Î(Žp ÁN‘üÊÁ-[¶äõ+1~¨ã>Lrp|î¹çòú•'NÈ­ÙŽc Ùø*ÉÁ±G²Ï€šHÀ‡I~å ï!;B>Àƒ/àŃŽWZó¦Å1¯½öZ»vídWa©ø0É—ª­¥¦¦nÚ´éìÙ³ÛÓÓÓÿøãÙÚÃ=Ž  Ú€6i+8^¾|yðàÁ.\ÈmÀСCe×h©Taz²# AÚºTýý÷ß_¸p¡I“&ï¾ûn³fÍ„ï¼ó·~øØcùûû1âwÞñpIÉÉÉQQQ Î Ž1Æxüœ¥×Æ–ž)C# ŽãŸþY¸páY³f•,Y²]»v­Zµ oÙ²¥¢zõêï½÷Þ€"""F[ÁQáç÷ÿKªR¥ÊéÓ§•Ÿýýý£¢¢:ä™2ºwï>tèÐ%K–È>€—1\ O®ïA­äc ‹¶¢ÊOÒÖ¥êÐÐÐ3gÎܹs§X±bBˆÊ•+ïß¿ßô©N§;þ¼g*™:uêýû÷…‹-Ú¹s§ìxó´”¿K´Ê”/æû"¯ëe¨R§ÊÑVDZC‡ééé/¿üòßÿ-„hܸqJJÊöíÛ…W¯^ý믿*V¬è™JZµjÕ¾}ûöíÛ{lFÀ—¸˜ù„YÞr%i¹^†*uz  ð muGŒ±aÆ͛7Ư¿þºM›6Ï?ÿ|Æ ?~÷îÝ.]ºÈ®€mïùs&6YïÄõ=äc'.ÖéÌ·‘¼‘¶‚cHHÈâÅ‹þù第,!DÅŠßzë­÷Þ{oÇŽBˆöíÛ?ù䓲k`›y25áòÚf3 V¾˜¦£*e¨[§ûÊÓÖ¥j!DHHÈsÏ=7fÌåƒÞ»wï?ü°nݺY³fÉ.€æñÈzuˆgö ÖN\ŸÂe€Çh+86hÐàÓO?µØX¼xñ-ZT¯^}ìØ±;v”]#{l®,öðÔÚI>¦pf5x/mÇ»wïfffæöQJJŠ·j\FªD+ä³ÜÖP{¸ ð$ù÷8nݺuÔ¨Q¦?.X°`Ñ¢EÖÃrrrŒFc•*Ud×kOŒ1†ì(4’ÿ<ÝÎB‚àäGåU1BˆÔÔÔÀÀÀ¢E‹Úüúë¯Ë®×R#ðaòƒc«V­vïÞ­ü5hР7ÞxCvQùDÇT¡4i-ÒÖ=ŽO=õTóæÍeW‘¤FP…A°þÐ"Ñh”]ƒ 7nÜ8räÈ¥K—¢££¯^½"»(§!Ÿ¿qá#è;B.cLŒì4Gþ¥j ×®]›={öŠ+ÒÓÓ…=öXtttïÞ½zè¡?ü°téÒ² ´‡ÔMÐÈŽwÐÖ¥êÌÌÌÑ£G/\¸°dÉ’½{÷6m/W®œÁ`4h’&5+Æ#»wÑVpœ3gÎÁƒÛ¶m»~ýú>úÈ´}Ù²e={öŒà¨&:ŽÀ‡ÕDÇø0‚£šè8FpTGàÃŽj¢ã|ÁQMt€#8ª‰Ž#ðaG8…à§à‚#œBp€SŽjâq<À‡ÕÄãx€#8ª‰Ž#ðaG5Ñq>Œà¨&:ŽÀ‡ÕDÇø0‚£šè8FpTGàÃŽj¢ã­ÐdWðAG5Ñqu„^v þ?‚#œBp€SŽp ÁN!8À)G8…à§ÕÄÀ€#8ª‰€FpTGàÃŽj¢ã|ÁQMt€#8ª‰Ž#ða² ð)tÖ"Ÿ{Nv pàäœ9²KðG5ÅcÈŽk'Nœ]r%»¯Á¥j5‘€#8ª‰{€#8À)G8…à{ôB/» GX",›ްd‹ìH”‚à›Ì³£^è  »" Á¶™²#©(xsŒš¼ýà6/I›o$DPÑqT“·?Ü ¦ÿf1Ñ|#x˜Û¬=nÊ”):+aaa>úèÖ­[U™¢uëÖ 4} È3:ŽjòöŽ£‰ù}Ê5kR#‰ B¯çßB7hРJ•*)?gee%''¯[·...Î`0´mÛÖÅûûûûûû»µþ6mÚ´oß~Ò¤Iž9]ÁQM1ÆÈŽÖ1‘ì@.R£Ï?ÿ|tt´ù–5kÖtïÞýý÷ßw=8nٲŭÅÇÇÇïØ±£}ûön>I—ªÕä©Qär##©€D\­Öˆnݺ•(Q"11QÊì999ÙÙÙöÇdeemܸqòäÉ;vÌÉÉ‘R§o#8ªÉÛïqm¢ã¨EŠ1ýñÈ‘#}úô©R¥J¹rå:uê´iÓ&óÁ{öìéÔ©S™2eêÖ­ûÎ;ï|ýõ×:.!!A¡×ëÍïqÜ»wo—.]BCCúté²wï^ÓGáááãÇŸ3gNHHH@@@ÅŠG}ëÖ-›å]»v­cÇŽS¦L¹råŠìS囸T­&ßè8š£Ñ0Ù°aCjjêã?®üñ?þèÑ£G… èçç·råÊŽ;.Z´hРABˆ7*Ÿ>õÔSwïÞýòË/mîö×_íׯ_hhèàÁƒu:ÝŠ+¢££W¬XѳgOe@\\ܬY³žy晚5k®[·nöìÙ™™™ß~û­õ®Ê—/o4…'Nœ¨Y³¦ì惎jò{Ú§ûïAcLŒ›¦˜={öš5k”Ÿ333“““W¯^Ý£G©S§ !222ÆŒS«V­;v !Þ}÷]½^ÿæ›oöïß_§Ó?¾bÅŠûöí+S¦Œâù矯_¿¾õ,ãǯT©Ò¾}ûBBB„o¼ñFãÆ'L˜Ð¹sg%k9rdÅŠ}ûöBŒ3¦^½zëׯ—ý( Žx›W–(/^l±%00°[·nJLŒOJJúñÇ•? ! .}zúôéJjB„„„Œ7nüøñ Mš4BT¯^]IBN× Aƒß~ûMƉ÷8àmÜ×e4·}ûvãrrr’““Ûµk÷ì³ÏÆÅÅ !Ž?.„2dˆù³‡ "„HII9yò¤¢nݺæ;¬S§Žõ,IIIBˆzõê™oT¾¨|$„ˆŒŒ4ÿÔÏô" G¼g²£‰N§ Ÿ6mÚúõë C‡”‹ÈŸ~úéÃ?l1¸víÚ›7o¶Þ‰Í7*·$êt:ë‘™™™ÊÍ—ã@.‚#pJ5„ÉÉÉBˆˆˆ!D‰%:vìhpôèÑÇ+ SÍŸøhó9>Ê~>l>òСCBˆ¨¨(ÙG K4{€S„BˆúõëGEEM›6íÆʧiii;w?~|Ñ¢Eëׯ_µjÕ3f¤¥¥)Ÿž:ujÙ²eÖûlذa•*UbccSSS•-ׯ_ÿüóÏ«V­Ê; 5ˆŽ#pŠ¿¿±bÅN:%„˜>}zÏž=ëÕ«7`À€ÌÌÌU«V;wnÉ’%Êëcccû÷ïߨQ£þýû§§§/\¸°Q£F¦%Ø&… Ž8p`Æ  `4—.]zñâÅåË—.\XöÃG଺uë:thÁ‚BˆN:íÞ½ûá‡^´hÑ‚ ÂÃÃ7lØ0`ÀedïÞ½7nÜX¡B…™3gîÙ³'66¶GBˆÒ¥K[ì³OŸ>Û¶m«Y³æüùó,XP»ví;vôêÕKö±ÂrSªÏ[¾|ù²eËN:U´hѶmÛ¾òÊ+ÖÿàšëׯßáÇ-6†„„ìØ±Ãηxˆ#4ÄÀ+Úà;¼ýÍ1‘Ï=wâÄ ÙUxTffæ¡C‡*T¨fÚ8zôèùóçß¼yS¹ä­QQQ'ç̱ÞîáH^A[¿97‰ýú믋+Ö¤I“³gÏþüóÏIII ,°è–›KII ªV­šùÆàà`ûÀ€ë…ž·Ë,øûûwèС~ýúÃÿýqóæÍ•+WvíÚUk©yâû¿¼'N|óÍ7åË—_±bE¹rå„S§N]°`ÁgŸ}ööÛoÛüJZZÚÍ›7;wî<}úô<ÍUÐR#x†Aè½½éXÐøùù;ö½÷Þëׯ_ß¾}ÿùçŸï¿ÿþöíÛ&L]\âû÷8.[¶,''gܸqJjB¼þúë¥J•Z·n]NNŽÍ¯¤¤¤!,ÚΈ1ÆÈ>\Ñ ½Ã- R£7š~ãÝ»w³³³­µ”*UJqýúu›ßRåŒ3ÂÃÃ[´hqáƒÁ°uëÖÉ“'›ž2`SAè8Ú¼$mÚH‚À‡ùxpLOOB+VÌb{ñâÅ…7oÞ´ù­K—.M˜0aĈÊ–;wŽ9òƒ>hÕª•ù“,„UÕæÑ¼@âã—ªƒƒƒu:ÝÝ»w-¶ß¾}[ü×w´öÃ?|xzzz\\œé|>5š3]¡¶¸ßø*Ž¥J•²î,*¯Î4­³vFÓ¦M…'Ož´3¦àÜãhq_#Ù€‚Àǃ£¢|ùò×®]3½d]qúôiå#ëñF£1;;ÛúI=þþþBˆ%JÈ> ùl®†ájµæèùTæûÁ±}ûöÙÙÙþù§i‹ÑhܺukéÒ¥4h`=þìÙ³µk×~ì±Ç,¶ÇÇÇ !¢¢¢d|dD &ߎýû÷÷óóûꫯ”û…ß|óÍÕ«Wûöí[¨P!eË;wNŸ>}þüy!DµjÕ5j´wïÞåË—›v?oÞ¼°°°Ž;Ê> m!DPpøøªj!DXXØ+¯¼òñÇ÷èÑ£uëÖgϞݽ{÷C=ôÌ3ϘÆlݺuüøñkÖ¬B¼óÎ;O=õÔ[o½õÓO?U¯^ýÂ… ,Z´è‡~hçõÖ7ᕃ€Fø~ÇQñä“O~öÙgááák×®½~ýú°aÃ,X`ýpG“š5k®\¹²W¯^W¯^ݰaÃÍ›7{õêµfÍ^” 2Ñh”]ƒO)POäÖXêŸâ½MÇÈçž;qâ„ì*ò`Ê”)“'O¶ØX¡B…:uê¼ùæ›mÛ¶u}ŠÖ­[ß¾}[Y? ]TTÔÉ9s¬·ÍÞW …ï_ªøïMÞkРA•*UR~ÎÊÊJNN^·n]\\œÁ`p=;úûû++QÝ¡C‡¦NºuëÖÛ·o׬YsèСcÇŽ  ð¨ƒó¨&Úà&ÜæèyÏ?ÿ|tt´ù–5kÖtïÞýý÷ßw=8nÙ²Å5'''ÇÄÄdgg÷îÝ»J•*qqq&LضmÛÊ•+=uÚ|\¸ÇÑc ÎÀÀÃHZЭ[·%J$&&J™=''';;Ûþ˜ &ܼy3..î‡~x÷ÝwwîÜùä“O®ZµjÆ Rjö=G5Ñq71ðz*m(R¤ˆéGŽéÓ§O•*UÊ•+שS§M›6™Þ³gO§NÊ”)S·nÝwÞyç믿Öét B½^oþ4å½{÷véÒ%444,,¬K—.{÷î5}>~üø9sæ„„„T¬XqôèÑ·nݲYÞæÍ›Û´iÓ¤IÓ–çŸ^±k×.ÙgÎGp©ZM1Ʋ#4Do`} |G-ذaCjjêã?®üñ?þèÑ£G… èçç·råÊŽ;.Z´hРABˆ7*Ÿ>õÔSwïÞýòË/mîö×_íׯ_hhèàÁƒu:ÝŠ+¢££W¬XѳgOe@\\ܬY³žy晚5k®[·nöìÙ™™™ß~û­Å~²²²ÆŒÓ¸qcógÏžB.\XöÉó¬ªV©ÚBj„oñÞìèŽUÕ¦¿qÜq—”²ªzèС•+WV¶dff&''¯^½ºK—.K–, ÊÈȨS§NñâÅwìØ¡<äøþýûz½þòåË'OžÔét?üð½{÷öíÛW¦L!ıcÇêׯŸ‘‘qðàÁzõêéõú7nÄÇÇgddÔ¬YÓh4îÛ·/$$DqõêÕÆûûû;v,000<<üÌ™3+V¬èÛ·¯Âh4Ö«W/55õܹsäúõë;wþ믿Ž;‘Û0VU;Ž£š `ÇÑæ{«@uÞ›ÝÁ3×,^¼ØbK```·nÝ”˜Ÿ””ôã?š^Q¸pá±cÇ2äÀ~~~Gýâ‹/”Ô(„¨U«V¿~ý~üñG‹}8pàôéÓÓ§OWR£"$$dܸqãÇOHHP.:W¯^]IBN× Aƒß~ûÍñYÚ²åÙgŸ=uêÔìÙ³í¤Fä ÷8ªÉ“©Qïòí>ÎìÁõY´0À=Žæ<³sûöíÆÿäää$''·k×îÙgŸ‹‹B?~\1dÈ™!C†!RRRNž<)„¨[·®ùëÔ©c=KRR’¢^½zæ•/* !"##Í?õós^RRRzôè¡×ë…qqqÏ=÷œNWApT“»ÿ—l3cå5x9Ÿ¿ª—æè8Úä±§yètºðððiÓ¦ ! ƒB¹añÓO?]o¥iÓ¦Ö;±ùàFå–9Ng=233Sù£ùr‡~úé§:uêìß¿Μ9Gm×®gNQApô&a°È[ù¸Rls'®P½ 0GÇÑBŒ1ÆóÏ€«Q£†"99Y¡\ü-Q¢DG3•+W¾qãFpppÍš5…î±ùe?‡6ßxèÐ!!DTTT^+\½zõðáûuëvüøñgŸ}–ç~«ŽàèeÌóV¾ï/t¸×xìXtµ@ÉaJ7±~ýúQQQÓ¦M»qã†òiZZZçÎÇ_´hÑúõëW­ZuÆŒiiiʧ§NZ¶l™õ>6lX¥J•ØØØÔÔTeËõë×?ÿüóªU«š?¯ÇF£ñÕW_­\¹òÂ… K–,)ûlù&’¸×0oÈ™ç-å'S—Í&ŸùNÎâ™2$œ_€#þþþÅŠ;uê”" `úôé={ö¬W¯Þ€233W­Zuîܹ%K–(¯Œíß¿£Fú÷ž¾páÂF™–`›.\866vàÀ 60`€Ñh\ºtéÅ‹—/_ž×gè;vìøñãµjÕzúé§->êÓ§O÷îÝeŸ?_@pôæqJÉXùXwâú ÀóêÖ­»k×® Œ1¢S§N»wï~ûí·-Ztÿþýzõê}ûí·<òˆ2²wïÞ7nœÀcÇÐ ÿ: :Ô´åæÍ›+W®ìÚµ«ÖR#ò„àèM¬ÛrùÈ[6wâúÕËx/??¿±cÇnÙ²¥_¿~?ýôSlllëÖ­oß¾=aÂÙ¥Á%¤~5¹û:µÍh•çà¸c€êe€9ƒÐ{õÕêhòäÉeË–ýöÛoŸ~úéB… 5hÐ`Þ¼y/’†×áG•´WBÓ¸Ç>Ä«Sc¼ÇÑ»p£ó¸T­&R#¸ ´€à¨&Ï?Ä ¯î8>ƒà¨&:Žà&t- 8ª‰Ž#¸ G@ Žj¢ãnBÇЂ£šè8FpTGpšŽ€tG5Ñq÷á6G@:‚#À;Ðq¤#8¼G@:‚£·Ò;ú/oרR¨…Ž£ÇL™2Eg%,,ìÑGݺu«*S´nݺAƒ²y »ä^è vÿƒÛáÏ”ðƒ ªT©’òsVVVrròºuëâââ CÛ¶m]ܹ¿¿¿¿¿¿;Ê6 ï¾ûnbbbvvv­Zµ^zé¥Þ½{{øÔù0:ŽÞÄ Ö>ó-[=¼v ™TÇ¥j{þùç?ýOll쯿þúË/¿Æ÷ßßõoÙ²eÿþýª×¼víÚvíÚ¥¤¤ 6läÈ‘W®\éÓ§Ïwß}'áôù(‚£—±mÖÍ?רR¨ŽKÕÒuëÖ­D‰‰‰‰RfÏÉÉÉÎζ?fâĉ¡¡¡øüóϧNzàÀ*UªL™2EJÁ>‰àè}L¡-·¸æúUÊuÑqÔ‚€€€"EŠ˜þxäÈ‘>}úT©R¥\¹r:uÚ´i“ùà={ötêÔ©L™2uëÖ}çw¾þúkN— „Ðëõæ÷8îÝ»·K—.¡¡¡aaa]ºtÙ»w¯é£ðððñãÇÏ™3'$$$  bÅŠ£G¾uë–um÷ïßOLLìÖ­[©R¥”-ÅŠkݺõùóçÓÓÓeŸ9Á=ŽjrëÀm^ 6m´yù8O”1®—á¾3 €3=ÙQ® 6¤¦¦>þøãÊÿøã=zT¨PaàÀ~~~+W®ìرã¢E‹ $„ظq£òéSO=u÷îÝ/¿ü200Ðænýõ×~ýú…††·lÑ)?ÄĨÿ÷ø”)S&Ož>>))éÇ45ó .}zúôé¦NaHHȸqãÆŸÐ¤I!DõêÕ•Ô(„Ðét 4øí·ßìÿÞ{ï:uJñÈ#T­ZUö¹ôÜã¨&¼rÐ"¢Y_€v}€*e@ôü ŸBjô°íÛ·ÿ““““œœÜ®]»gŸ}6..Nqüøq!Ä!CÌŸõ8dÈ!DJJÊÉ“'…uëÖ5ßa:u¬gIJJBÔ«WÏ|£òEå#!Ddd¤ù§~~ŽÓKRRÒ;wâââ’’’š7oþï¿ÿÊ>>‚à¨&t­{Ö‹¦] JÐ.U÷°ªZ"N>mÚ4!„Á`B(7,~úé§ë­4mÚ4##Ãz'6ܨÜ2§Óé¬Gfff*4_Žã¼¢E‹¶oßþ£>º~ýúªU«dŸBApT“:Ž&ƒšëT)ÔBÇÑ\LŒQù?ONZ£F !Drr²"""BQ¢D‰Žf*W®|ãÆàààš5k !,Ücó9>Ê~>l¾ñСCBˆ¨¨¨<•÷ûï¿*ThéÒ¥æK—.-þ‹§pÁQMž¹Ç &:ŽÒ!”nbýúõ£¢¢¦M›vãÆ åÓ´´´Î;?¾hÑ¢õëׯZµêŒ3ÒÒÒ”OO:µlÙ2ë}6lذJ•*±±±©©©Ê–ëׯþùçU«VÍë; ›5k&„øþûïÍcâüùó…-Z´}ò|‹cÔcŒ!;€›Ðq”Îßß¿X±bÊ¢“€€€éÓ§÷ìÙ³^½z ÈÌÌ\µjÕ¹sç–,Y¢¼N066¶ÿþ5êß¿zzúÂ… 5jdZ‚mR¸páØØØ6lØpÀ€F£qéÒ¥/^\¾|yáÂ…óT^HHÈ›o¾9eÊ”&MštìØQ§ÓýñÇ{÷î7nœÅÝ–È7:Žï@ÇQ êÖ­{èС !:uê´{÷î‡~xÑ¢E ,ß°aÀ”‘½{÷Þ¸qc… fΜ¹gÏžØØØ=zˆÿ®›ëӧ϶mÛjÖ¬9þü Ô®]{ÇŽ½zõÊGy“&Mš?¾¿¿ÿìÙ³¿þúëÀÀÀ%K–ÄÆÆÊ>m¾ƒç8ªŒŽ#4„Å1ð-ÞÛqtÇs5.33óСC*T 3m=zôüùóoÞ¼©\òÖžãè<:Ž€ïâq<ð-t½ˆ¿¿‡†jÚróæÍ•+WvíÚUk©yBp*óóó;vì–-[úõë÷ÓO?ÅÆÆ¶nÝúöíÛ&L]\Bêxï½T]0Mž<¹lÙ²ß~ûíÓO?]¨P¡ Ì›7¯qãÆ²ë‚KŽïÀ+½‹Òt;v¬ìB &.U¼©Žà¨&–T€û°8Žà¨&啃z—ÿÕæÌŽq}€Z;q÷` «ê!8ªÉÝG2òŒG9·Ðtä"8ªF§Ó)G“¼æ<›ãÍ7„ÁzŒÅw ÈÇNòq°Äb· ãßÂmŽ€\GÕFNgú£^è yüœu.´Þ‰Å ÈßNòz°ùØœBǾ…Ž# ¯T™);æ;)qJÉU¹íĹÜ:À”íò½'Ö•=À1²#|ˆ—v à+½ ¯tÁQæFkÎD"‡Wim^¤Vw€3œ™E•ƒu±Nü¤FøoÌŽG#8:à¨2×;ŽÂ¬éh€pgÇQ•2œ¨)@v°Á™dæzzSeÏ”0±¾Æeóª—ëžþùèèhÓ?Þ«W¯Q£FEGGשSÇá×/_¾¼jÕªqãÆÉ>aPG¼‰Åû&Ü”­Õ¬YsÑ¢EF£ñ½÷Þ“} Á/cÊŽKŠÆGGGÿòË/YYYÊ–ØØØºuë+V¬L™2Íš5[¼x±²ý‰'žèÖ­›"&&&<<Üþ`x‚#ÞÁ|ÁŠõFÏÔP¿~ý¬¬¬sçÎ !&OžMys$Ÿ`Þ\4%E¿È£råÊBˆÓ§O‡‡‡/\¸022rÆ BˆW_}5$$dýúõÝ»w¯S§ÎÙ³g…M›6mÓ¦ÂÎ`Ùçy@pTÓÝÙ%ÿ‹Ôø"å µùÿ÷äÔ¦Ÿ÷îÝ[¤H% !®]»&„¸{÷®Í/æi04‹à¨¦c ÙÚBǾÅK_9¨.‹¤èáì¨\¤®^½º¢téÒ;wîüã?Ž?ž”””˜˜hº÷ÑZžC³¸ÇQM¤Fh©¾…WÚ̈žì8&$$TªTéþýûÝ»woݺõºuë"""^zé¥cÇŽ•*UÊæ·ò4ZFÇQMt¡9tá[è8Zô=<ûþüóÏlݺuíÚµÓ§OñÅMrk"nß¾ÝùÁÐ2:Žj"5BsHð-t%JJJ6l˜N§{ûí·…çÏŸBÔªUË4`ÅŠwîܱˆ³999ΆöÑqT““G›ïzVÃYú裦OŸ~öìÙž={nݺuäȑʧUªTY»vm¥J•¾üòËØØØ   C‡}øá‡iii3fÌB´lÙrðàÁ6løôÓO†·ðèþ‚ÀNv4uøÜÚ곞Åb:Ï” !;‡xiÇ1ò¹çNœ8!» ä***êäœ9ÖÛ11²KÓ:Žžcýÿþ·²Þ ÿél1‹u:ôLÐ R#| G@.‚£G™‡6÷5üL³ä6…gÊ>†Å1ž`ÝÒ3;åªD7›CûÝDw”|ÁÑ,™ÔTOi72ÚœÚe_Å¥jO3Å5÷ÝYhºúlg”MÐóð)^º8Þˆ•16±ªZ}QQQ¹­ž³x!½;Þ.j½sëYœRuq>UÇ)U§T]œOu8qBv r-)K§‹+f±½xñâBˆ›7o:ÜCý‡ ø6.U[ ÖétwïÞµØ~ûömñ_ß "8Z (Uª”ug1--MaZg PÐm(_¾üµk×”¤hrúôiå#ÙÕÈAp´¡}ûöÙÙÙþù§i‹ÑhܺukéÒ¥4h »:9Ž6ôïßßÏÏ﫯¾RîkB|óÍ7W¯^íÛ·o¡B…dW ‡Îh4Ê®A‹æÍ›÷ñÇW¬X±uëÖgϞݽ{wíÚµçÍ›gý˜€‚à˜«Õ«W¯ZµêСC*ThÚ´é¸qã”'òLG8…{à‚#œBp€SŽp ÁN!8À)G8%@v¾&99¹sçÎË–-«W¯žìZ¼[zzúÒ¥KW¬Xqþüù%JDFF>ùä“ÑÑѲëòV7nܘ>}úþýûÏŸ?_¶lÙ:uêŒ;¶zõê²ëò/^ìÞ½{»ví>ýôSÙµx±~ýú>|ØbcHHÈŽ;d—æ­>}BCC³³³eWçÝ’’’bcckÖ¬)»¯—’’"„°h7"ß~þùç´´´‘#G*©QQ·nÝÎ;_½zÕú~äÏñãÇ¿ûî»çž{®@]º¡ã¨Ž©S§Þ¿_±hÑ¢;wÊ.Çë>}ºX±b=ôùƈˆ!ĹsçdWç}‚ƒƒ###‹)b¾±pá¦t޼ÊÊÊzõÕWK—.ýúë¯?þøã²ËñngÏžBT­ZUv!>bÛ¶m:®W¯^æ?ùä“O>ùDvi>";;û7Þ¨Q£ÆèÑ£e×âQGu´jÕJùÁ`0È®ÅÌ™3' ÀòÎÄÄD!DåÊ•eWç}-Zd±eß¾})))õë×'5ºâË/¿øàäÉ“úé'ÓöÊ•+OŸ>½@]Wu“;wîÌš5«iÓ¦-[¶”]‹§¡uÙÙÙ‹/þä“O²³³§M›"»"/vâĉ+VF!ÄC=(»"o•žžþꫯV®\ù¥—^’]‹¸téRPPЄ FŒ¡lÙ¹sçÈ‘#?øàƒV­Z………É.ЛܺuKqêÔ©+W®|üñÇ111÷îÝ[±bÅÌ™3_|ñÅ5kÖÐwtÑ÷ߟšš:aÂÙ…HÀâhÚž={ºwï>uêÔ¹sçvéÒEvEÞmРAÇŽÛ¾}ûk¯½¶aÆÁƒó™üùøãÏŸ?ÿÉ'Ÿð°Z~øá‡ƒšR£¢e˖ÇOOO‹‹“]—1ÝÐüÑGõêÕ+88844ôùçŸïÝ»÷ùóçÿýwÙz·[·nÍ›7¯I“& 4]‹GhTFFÆÔ©S{챋/Ž;vݺuðŠ€;ètº²eË>ùä“üçŸ6lØ »"ï³wïÞŸ~úé¹çžãö;wkÚ´©âäÉ“² ñ2ÅŠ+R¤HPP^¯7ßÞ¡C!ÄñãÇeèÝÖ¬YsçÎÞ½{Ë.D.UC‹rrr^zé¥7vèÐaÒ¤IåÊ•“]‘KJJš7o^›6m:wîl¾]Y´~ùòeÙzŸ¤¤$!ĬY³fÍše¾ý·ß~ûí·ß Ô;$Ôb4srrt:Åóýýý…%J”] ÷)W®Ü7t:ùF¥Až••%»:ï¶|ùò   N:É.D‚#´háÂ…7n2dȤI“d×âõJ–,ùË/¿\¹rÅ"8*Í —] ÷©Zµj×®]ͷܼysûöíaaa 4 •] ÷9{ölÇŽ›6mjñò­øøx!DTT”ì½^¯Ÿ?þÉ“'###M8 „à±£®8qâDbbb×®]‹+&»9ŽÐ£Ñ¸hÑ¢%J¼öÚk²kñåË—ŠŠÚ¾}ûæÍ›M¯;~üøâÅ‹‹/Þ¤IÙzŸV­Z™žÀ¥HLLܾ}{ãÆyWuþT«V­Q£F{÷î]¾|yÿþý•ñññóæÍ ëØ±£ì½OïÞ½çÏŸÿÖ[o}ýõ×eÊ”B>|xîܹ¥J•zä‘GdWçŶnÝ*þ»‰¢`"8Bs®\¹¢¼²vèС֟öîÝ{ذa²kô2ï¿ÿþ!CFÕ AƒJ•*ýûï¿û÷ïB|òÉ'¬R‡F¼óÎ;O=õÔ[o½õÓO?U¯^ýÂ… ,Z´è‡~È ¤|¨U«Ö„ >ÿüóN:5nÜøîÝ»ûöíÓétS§N}àdWçÅ”·—™ÞÇS¡9çÏŸB¤§§9rÄúS–ÈäCݺuÿý÷3f9r䨱c¡¡¡>úè˜1c”—ñZP³fÍ•+WN›6m×®]III•+WîÕ«× /¼P¡BÙ¥y«çž{.$$dÁ‚;wî,]ºtûöíÇŽËÿê]qïÞ½”,YòÁ”]‹4:å‰n€}<ŽN!8À)G8…à§à‚#œBp€SŽp ÁN!8À)G8…à ’’’¢¬Ô¬YS¯×?ùä“üñ‡gÊxå•W¢¢¢¶lÙb¿Î È>aNÈ®]»Ü´ÿôôt½^¿bÅ wHvvö#<²`ÁwO@.‚#€<Óét¡f‚ƒƒ/^¼¸cÇŽçŸþ7ÞÈëÞ¶oß¾uëVÙÇä!>ØéÓ§öîÝÛÝùûû¿ð ±±±—.]òØÑð¼Ùð>AAAéçÆ³gÏþá‡~þùçŽ;¶mÛÖù½½üòËiiiG•}XžàɃMJJZ¸páÇìïïïéºví:{öì>úhÆŒ˜€t¨ 88xâĉ111BˆuëÖÉ.B1þübÅŠuìØÑ3ÓùùùõéÓgãÆçÏŸ—}èÜ…à@5­[·Büý÷ß² q—ìììÌÌLÙU8寫W¯îÒ¥K```¾w’‘‘‘••åüø=z!-Z$ûè¸ —ª¨&;;[‘““c¾qÇŽK—.=zôèÍ›7kÕªÕ´iÓçž{®P¡BBˆO>ùdîܹʰ¨¨¨¢E‹ÆÇÇ !®^½º`Á‚¸¸¸þùGQ¡B…Ö­[?ñÄåË—wGÙv*B¼òÊ+¿ýöÛ¦M›Ö®]ûÝwßݼy³D‰>øàÓO?Ý¡CóýüöÛo«W¯NHH([¶lÆ ÇŒóöÛooÛ¶mÙ²eõêÕËí`ñññ ,8tèÐÍ›7|ðÁ'Ÿ|òÑG5}záÂ…o¾ùfß¾}/^ ŽŒŒ|æ™gš4ibç Ö­[wïÞ½GyÄú£M›6ýòË/‡¾wï^õêÕسgO???óãýý÷ßçÍ›·zõêÌÌÌððð¦M›Ž7.88xñâÅ7nuêTeísÅŠCBBâããwîÜùé§Ÿš{ýõ×>YªT©„„„äääcÇŽ=øàƒ¿üòKÍš5###<¸|ùò‹/Λ7Ïü‹ 48pàÀ±cÇj×®í¾ØHc§ˆŒŒ4h2fݺu‘‘‘111GŽQ¶>|¸uëÖÊ<˜ÛÁšvþÅ_äää(;ï½÷"##‡®ŒyöÙg###ccc³²²”-óçÏŒŒìÑ£GnǕݸqã®]»Zl߸q£RçÑ£GM'J©Ót2•’jÕªµiÓ&eKbbbíÚµ###ëÔ©³}ûveã_ýU«V­ÈÈÈk×®™O±~ýúÈÈÈo¿ýÖåÖh÷8ȳ»wïš?Çñá‡îÞ½ûï¿ÿ.„xâ‰'š7o® ûøã…Ó§O¯[·®²%$$dúôéåË—_±bÅ7lî<++K¯×¿üòËÅŠS¶”,Y²{÷îBˆ³gϪ{ ÎWX·nÝ—^zI¹žëçç7zôh!Ä™3g”Occc…S§N}衇”-uêÔyçwœ,£qãÆcÇŽU®íúùù=óÌ3Bˆ””åÓãÇ !ú÷ïoZ=xðàÑ£G[\(7÷Ï?ÿ¤¥¥U­ZÕbûgŸ}¦ÔY«V-eKDDĸqã„ËähjgÖ®]»aÆBˆ#FDGG+6lX§N!„ÅR˜êÕ« !Nœ8¡îo €Fp©@žét:‹Û ‹/ѧOŸ6mÚ([RSSOŸ>]½zuS–R-Z´eË–+W®fÌ‹-W®\QR©ºòT¡é’´¢T©RþþþF£QqíÚµ3g΄……µlÙÒ|LûöíK–,™––æ°’.]º˜ÿQ9·ÊÎ…>øà?ÿüóúë¯;¶aÆ… zñÅíìðÚµkB‹Ëúׯ_·Yg·nÝ7n\¤Hó76ÿ£²+›Mu*‚ƒƒ…W¯^Uý÷@ ŽòÌú9ŽÖ’““•ÿes€'E_¸paÛ¶mû÷ï?wî\JJJjjª;Ž"OVªT)·ý(}GëöžN§«\¹rbb¢ÃJìì\1eÊ”qãÆíÝ»wøðáEŠ©]»v³fÍ}ôQ;7*¹­T©RæOŸ>-„¨\¹²ÅàÀÀÀ*UªXl4µ{íl´¹üE ŽW®\qü à…ŽÜ"##CQ±bÅÜ®¨†……ÙÜþÓO?½ÿþûYYYUªTiܸq‡êÔ©súôéwß}Wb…vj£ìÇfŠ2-U¶Ïþs*Uª´|ùòøøømÛ¶íÙ³çÈ‘#˜={v¿~ýÞÿ}›ó™ 3¹ÿ¾Â|QŽ;(“Zô/ø ‚#·Pîu+Z´hž^Bxûöí÷Þ{/00pΜ9沕çòh¡Bk5jÔf·$š;wîœ*¥êtº† *7fddüùçŸ'N\±bE»víÚ·oo=^YnÑ© ·Yçýû÷×®][¢D ;7M:O™´lÙ²ª8­aq ·(_¾|Ù²eÿþûo‹kµÙÙÙ}ûömݺµÍÛà>œÝ°aC‹Û•"Z¨ÐZ¹råÊ•+wþüù½{÷šoß²eKn €œwáÂ…víÚ 0À´%00°}ûö]»vV SÌMüw§£IhhhHHHJJÊ_ýe¾}ëÖ­¯¿þúêÕ«U9«ÊI Ueo´†àÀ]&L˜““3a„cÇŽ)[nß¾=qâÄ#GŽ<ôÐC!!!¦‘999wïÞÿ%žãÇ›B[vvö’%K”—‘¤§§ËªÐ>eaòĉOž<©l9~üø”)SL ¥Í›Ö*T¸uëVBBÂwß}gz²ú™3g¶mÛ&„0-·P²dɈˆ‹@¬ÓéLu&%%)Ïž=ûÑG !Ôz3¡òn‹e4|—ª¸KïÞ½÷îÝ»råÊ^½zU¬X±téÒÉÉÉwïÞ­V­Ú‡~hœšš:xðà*Uª|ùå—íÛ·ß´iÓ#<Ò¨Q#£ÑxâĉÔÔÔ¡C‡.X°à—_~¹uë–ò g¤§§çöˆlåi‘NVèPŸ>}¶oß¾víÚ=z( MRRRZµj¶ÿþ%Jäv°÷ìçç÷Æo¼þúëŸ~úéܹs+Uªt÷îÝ¿ÿþÛh4<¸Aƒ¹}±eË–óçÏ?{ö¬ùª¾}ûîÙ³gõêÕÝ»w¯R¥J‘"Eþþûשּׁ¬îÝ»[¬ìηƒêt:Ó#™ø‚#wÑét}ô‘^¯_µjÕ±cÇΜ9Þ±cÇ#F(«7¯¿þúÔ©Sÿþûï{÷î !¦M›6oÞ¼µk×îß¿¿R¥JmÚ´yâ‰'"""²³³W¯^½oß>ç 0.\°ù‘òÊi'+tæHccc›5k¶fÍšÄÄÄR¥J5j̘1}ûöÿ»ºÙâ`Ñ»wï *Ì›7ïÔ©SÇ ‰ŽŽ2dˆ×Æ!bbbæÏŸ¿k×.óàèçç÷ÙgŸµmÛö·ß~;zôhZZZ½zõ¨¼cÚuF£qß¾}uêÔ1é_¢³x ¯®\¹’““S®\9ó5ÎÙÙÙÍ›7ÏÌÌü믿LÏîö£ÑØ©S§Å‹{lÒ}ûö 6ìã?îÕ«—‡€gp#¸ê…^hÓ¦ÍÎ;Í7nݺ5--­C‡žOBN7|øð¿þú+·4î°jÕªµ®zÐ ‚#¸J¹ÔûöÛooß¾ýþýûÿþûïêÕ«_}õU!DïÞ½eUÕ·oß°°°ùóç{fº«W¯þþûï£F²ÿXJ^KÕ ‚÷ßñâŦ…ÏBÿqãÆ=û쳫ڶmÛ˜1c6lØÛãÖUôî»ï>|xéÒ¥N>ö€7"8€:NŸ>ý矞?^§ÓU¬X±}ûö+V”]”øá‡ªW¯nz‡¸›dggþùç½zõŠˆˆ}Ä܈à§pAN!8À)G8…à§à”ÿº¢Y†”IEND®B`‚statistics-release-1.6.3/docs/assets/kmeans_202.png000066400000000000000000000550731456127120000221420ustar00rootroot00000000000000‰PNG  IHDRhŽ\­AZIDATxÚíÝy|L÷þÇñïI"Ä–DƒˆÚBû.ˆP[«¸”jµ¶´¸½¥J•¶è¦­j‹ÛÒê%­­jk{Q[QKìK¢DD‰­b‰%“óûãüîܹ3“ÌIf2çÌÌëù‡Çä;ßù~?ç;aÞÎ6’,˰ÅKëàŽP…àUŽP…àUŽP…àUŽP…àUŽP…à h%[^ýu!Äüùó•Û´iS¤)Þyçå…ýû÷/éÍéÙ³§2ל9s¸2Û¶m³Ù¿ØëSøÔF>>>AAAmÛ¶}çw®\¹RìÁׯ_ÿïÿûßÿþ·=ƒp>Z(ƒáêÕ«W¯^=xðàܹs7lØÐ®]»bŒ3hР[·n !¶nÝÚ­[7­7 €–ŽŠ¯jÕª~~~–íBˆ *Ô®][Q­Z5­+Õ£Zã›rûömã>Âììì§Ÿ~úÌ™3¥K—Öz»¸0‚#€â[¶lY!» }úíÛ·Ïæççÿøã]ºt©U«V™2ejÕªÕ¹sçE‹=xð@é0eÊI’”ãÔBˆîÝ»K’dÁæË¸!ŠâĉÆ@¶nÝZHÏo¾ùFéÖºuk¥åîÝ»‘‘‘–ÿI’4wî\ã ß~ûm¥½sçÎõë×7ëüÅ_˜Î²mÛ¶ªU«Z8aÂËûõë÷ÜsÏ)ß~ûmY–E}SvìØa|vÓ¦MÆöZý\xê©§”“'O¶|öÖ­[*_Àý°Ç€ó|ôÑGBøùù=ñÄcÇŽmÛ¶­B–åW^yåÔ©SfýwìØqêÔ©ÐÐÐ-Zx{{+S¦L¹ÿ¾ò8''çÙgŸýóÏ?…]»v}ï½÷ äåå%Ëò_|k6àáÇ-ZdÚâãã“––6wîÜb©’åÔö¯J:uòõõU+ã !V®\¹råJ!„$I]»v‰‰1¬_½zõöíÛ…¯½öÚ™3gÊ–-«´/Z´Èø£š—p?Gŧ»4óꫯÔÿ÷ßW¼õÖ[¿üòË?ÿùÏýû÷?úè£Bˆ¼¼¼­[·Z¾dΜ9gÏž=zô¨1uÝ»w/))Iy}Ú8²ÕSRRLƒc‹- nÅ(R% §B\½zUyP±bEÓËÎÎÞ¼yóáÇããã:tóæM•Úùr.Šà ø ¿¥÷ß?''gÁ‚÷îÝBȲ|ôèÑ£GN›6­cÇŽkÖ¬©\¹²iãAR…rÔ(''ÇxÁoA”}uFAAA/R% §&G¨Ý¿Ê”)ÿüç?•¸B??¿*Uªüõ×_j´óå\ç8pžR¥J}õÕWW®\Y±bÅ!C”û„+vïÞ­|Q¡z+V¬P¡‚òxË–-g¬4héKÌ¢§ŠÔÃÔqqqÆË‰Œ{.§M›öÅ_äåå…††Î›7ïØ±c999}úôQ9¦/à¢ØãÀIîÝ»wýúu!„··÷À˜——·cÇŽ·ÞzK¹Ôw×®]E³^½zñññBˆ¼¼¼ºuëÛ¯]»&˲ÂêÛ8¹Hͧ6^-T®\¹:(çÍ›§<˜;wîã?®<ÎÈÈP9¦/à¢ØãÀI’’’‚ƒƒƒƒƒ«U«vöìY!„O÷îÝGŽ©t(ê˜Ý»wW|ûí·òn ¾fÍš‡z(((¨víÚE=ë®$ŠÔpêË—/ÿãÿX½zµòã°aÔ}´7oÞ4ÄWÒªâÈ‘#…ßFǸ۲x/àØãÀIš6mZµjÕ?ÿü3///::úoû[¥J•Ο?¿víZ¥ƒñ NÔ›2eÊ‚ ²³³ùå—®]»>òÈ#‰‰‰¿þú«òì„  ¹RÇiE:yꘘåV‹·oß¾té’±½råÊ~ø¡ò¸|ùòåË—WÎ9räòåË%IÚ´i“Õ/} Pz~øá‡‰‰‰¯¼òJ‘^À8‰———ïrss/_¾¼`ÁÓg;wîüÆouÌÀÀÀE‹ÅÄÄ\¿~}ÇŽ¦_‘2jÔ¨÷Þ{OE:yê‹/Z6VªTiíÚµÆ t$IêÝ»÷Š+„wîÜQ²ihhh­Zµ”{Iš&ÎGydÙ²eBˆ}ûöíÛ·oôèÑ¥J•Rÿrî„CÕœ§]»vgΜyçwÚ´iRªT©ÀÀÀèèè lß¾½téÒųOŸ>ÇŽûûßÿÞ²e˲eˆ††öïßçÎ_ýµšëQœS¤&S{{{WªT)22òwÞINNn׮鳳fÍjÒ¤‰ÂËË«Y³f¯¾új||üO<¡<»|ùrã­ŽfÍš5dÈ*Uª”+W®qãÆÊ¥îê_ÀHƳ‚åÁƒëׯÅ=þnç˸"‚#TáP5T!8@‚#T!8@‚#T!8@‚#T!8@‚#T!8@‚#T!8@‚#TñѺgÈÍÍ]±bÅêÕ«322*T¨>bĈ:ò’§žzêøñãfAAA{öìÑzk´áþÁ1//ïùçŸOHHð÷÷oß¾ýÝ»w87nܸ1cÆôªôôt??¿Úµk›6h½5·"I’,Ëz˜Å9•ÀÕ¹p\¹reBBB«V­.\èçç'„HII:tèܹs»víÚ AË—äääܸq£gÏž³gÏÖº|€ÒI^$,¢¨ÜÿÇM›6 !Þzë-%5 !ÂÂÂFe0 :ž.„0ÛÝ€£È²,I’i‹ÙΙÅ9eÀ¸pLMM-W®\£FLÄ.\°ú’´´4!D­Zµ´®à¶LC[Éíù³9‹sÊ€ÛpÿCÕóçÏ÷ñ1ßÌÄÄD!D5¬¾D Ž—.]Љ‰IJJ*[¶lÆ GÕ¬Y3­·à>”ÐVÒqÍæ,ÆìHj„Mžø‹ýû÷3æÁƒÛ·o ²ì0eÊ”Ÿ~úIQ§NðððÌÌÌÄÄD//¯÷Þ{oàÀ6LjˆÐzúuúôéBž wÎ,Î)Ã%''k]‚Ü£)ƒÁ°lÙ²O?ýÔ`0|þùçVS£âÒ¥K~~~&Lˆ‰‰QZöîÝ;jÔ¨éÓ§GGG‡„„ØœÈ3™JNDDKê@¬§Ã±¤ç!KjÜÏW¢;m΢´³Ó±H}úL›6-((háÂ…½zõ*¨ç÷ߟ`LBˆ¨¨¨aÃ†åæænݺUëí¸Ógy‘ŠÓfqNpïß¿?mÚ´çž{îâÅ‹cǎݸqcTTTQ‰ŒŒ¶öü †åο’ØÕgs«ÈŽ(„ûªÎÏÏŸ8qâ–-[ºwï>uêÔ*UªÞ_–åüü|I’¼¼þ'U{{{ !*T¨ õ\žsŽÛœÅjŽV£î¿ÇqÉ’%[¶lÔÕw(¨ÍŽÝ{f±¹±Î)Ãm°6ùh]¶~Ñr_Q!¯2{¶ AL„±CIl‹eö¯FQË(¹u¬†JG€ 0ýä¶úqn³ƒ¥åìÂ;”жãs‘6¶„Êp'¬†Jª¸ãÄBö2ÞA˜$ƒB:(ƒ”èµ6˰5Š4‚VÂ#ÀeõB«qÊ´Oñ:8|[Š7‹šuBî„Õ°‰àp ]ÈRÈ–-V¯³.R‡Ú–¢Î¢f5œP†;a5Ô 8\ƒC>Åm✬`ÿ,ßéä2Ü «¡ÁàzìÏjR‚’„~Š~*ÑV£ G¨Bp€*G¨Bp€*G¨Bp€*G¨Bp€*G¨Bp€*GJŠ$I:Äs°\%Šà€ƒÙŸ]¬Ž@$*‹ãGL–e³SÔXcuY–µÞ2ý²Í¡ÁÇ3Í1ÅË|öàiX1' 8P"”àbO‚1&!2Jö¯9 ç£u¸›ç&ª 4–ƒuâ5‡JGÆ4£wu˜±³òBv:Î!k•8T €ã™Ëë6œ3‚§aÅœ€à€ƒYîî*êÞ/«#„ aÿšC ‚#fd±:I¨,Žs()I3D¢"a¹JÁª  Áª  Áª  Áª  Áª  Áë$IÒ¼ƒCêt'µ±:Dp࿈z:ÄréÁ€ÿ’eÙ2¦˜¶Øì ¬³ËAŠ‘lÎâ6Ô¬9œƒàÀÿ0‹)’$ɲìØf}¬v°¿NwâQ«gGÌcJAÅþJa_R3‹Ûð¨Õ-­ @/¬ý46Z=`Z¤jæU‰l–¡Åâ•ÚXý#8ðÿLSˆÕhbSJ%n)iWçQ«ªÀœ1ɲÑQ écîÄ£6V·Žü³ýV¯€vlQ¬0dswâQ«gGþ« +  ùÑ!DѿڜÅxÔÆêÁ€ÿ*è„E›‹×Áá5»=ÚX"8 b\ Áª  Áª  Áª  Áª ŠÖèTnnîŠ+V¯^‘‘Q¡B…ððð#FtèÐAëº4Cp´"//ïùçŸOHHð÷÷oß¾ýÝ»w87nܸ1cÆh]¸6«_]Ô>öw€ó9çMá­/QG+V®\™ÐªU«… úùù !RRR†:wîÜ®]»6hÐ@ë4À9ŽVlÚ´IñÖ[o)©Q6jÔ(ƒÁ°gÏ­«—$IR1:˜5Zö)j8Ÿšw¶$fá­/ G+RSSË•+רQ#ÓÆ°°0!Ä… ´®\’,Ë…‡<«ÌŽ9šõ)F8ŸšwÖá³ðÖ—U[1þ|ó•ILLBÔ¨QCëêÀU™~´[ý\W:(í}ð)v8ŸÍ·Þ±³ðÖ—VV•ýû÷3æÁƒÛ·o *¼sDD„ecrr²ÖÚ°yÄÐr”Ã;(}´^ ãœ7Å ³ðÉnÄG òeË>ýôSƒÁðùçŸÛL Ïüe«Ì>¶•yËCÌEí`Öh³œOÍ[ïØYJè­·üX·%=Á±0xÿý÷Ïž=[­ZµéÓ§GEEi]¸6ct(è`¢Ò.I’Í b³4aó­wȼõ%àhÝýû÷gΜ¹dÉ’2eÊŒ;väÈ‘Æ+¬ÅcüDÓ›¬ö±Ùš°ùÖ;j ã¼õ%„àhE~~þĉ·lÙÒ½{÷©S§V©REëŠÀåY½Ú΢Ð#ÚµÀÉl¾³Á[ïG+–,Y²eË–ÁƒO:UëZÀMØü·¿ô‰7ÎpGs²,/]º´B… “&MÒºpCjb)Ó-9çMá­/Qìq4wåÊ•ôôt??¿!C†X>Û¿ÿ¡C‡j]#€Žæ222„¹¹¹'Nœ°|– «€Ç"8škÙ²%wa°Ä9ŽP…àUŽP…àUŽP…àUŽ×#I’Ö%žˆàÐ'äB¢§jº`3¸XíPÔ¸C<2Åj ¨Ž]eÙ,ǘýhµƒ,ËŽÅ£°(*‚#@/LsŒÕPh³ƒCfñ(¬Š„àÐcŽ)(ÁØì rANú‡,)<„Ö`å©i‹åUaí@¶ý³h½ NÅj ŽícвÐr˜ÍEEü'zlBrÈ’ÂÓp¨ ¦1® ½Œ…wpÈ,…Õ@‘º`¹óÏ,ÇØìPìY´ÞtͰ(*‚#@¬F«G«m¾ª¨³x,VEEpèŽÍ@câ!3™aA Áª  Áª  Áª  Áª  Áª  ÁàH’$ÙÙÁ!³°±/C'³@[G€kÐI.!„Á“`tÌZlv°I–eû±Ÿš2t²±ÎY.=¼)p‚#ÀÌ‚Ž$I²,©ƒCfac¿\:ySàG€cDAÑÁf‡ÌÂÆ:¹tò¦À |´.àÚ¬—46Z=äjö*5QÃæ,l¬úµb:ySàLG€]LóÕÐ`³ƒCfac¿\:ySàLª8†ñ0e!;Þ ïàYØXç/—NÞ8Áàf'·Y›2 ëüåÒÉ›ç 8Àò¥å…Æ6_bÿ,l¬ÃËÐÉ,Ð ‚#À‘l†‡¤ DWÙXç,—NÞ”(‚#T!8@‚#T!8@‚#T!8@‚#T!8@‚#T!8@‚#x I’´.Á K< ÁªÀÍYî½Óçþ<«Ué³TÀcÀÍɲl¿$I’eYë¢lשçREp÷gÌd:b¦ÙQ神ÉGë%ÅæÁ_ý$3³}¢fôS'àáŽà¶Ló–ÎC˜e©ú¬ðpª÷g<ìky¡ÞKÕy€g"8€›3;YPÏÙÑ´T=× x,‚#¸9Ëc¾ú< ly5Œ>ë<Á  ÄD@ÿŽà)\(™¹P©€G!8@‚#T!8@‚#TÑ×7ÇȲœ””´wïÞää䬬¬+W®”)S¦råÊÁÁÁ­[·n×®ÝC=¤uJ/Á1##céÒ¥?ÿüóõë×­vøá‡$IjܸñСC{õêåëë«uÉžEÒü–—.]úä“O¶lÙ"„hÞ¼y‹-š5kpÿþýìì쬬¬“'O&$$:tèâÅ‹AAA£Gvì˜OË–-µ.ÜŠCb‡N²‹NÊ`cáiô<èëë»bÅŠ† j] þ‡Ž.ŽÉËËKMMmÖ¬©@‡tóóóK•*uãÆ ­ €: ޾¾¾}úô9}úôöíÛµ®æôuŽãˆ#NŸ>ýòË/?óÌ3ÝŽ§sçÎZ— à‰ôuG¨ˆˆ›}ô;žˆˆý ŠÍc?ëõµÇ±oß¾Z—ëôgΜ©u °NGÇ@ÏôwìØñþûïÿõ×_Ê[·n}å•W6lØ`ÿÈç΋ˆˆ8vì˜ÍžO=õT„…:h½6šÑסêüüüI“&­]»V1|øp¥ñæÍ››6mÚ´iÓöíÛgΜ)IR±Ç_²d‰Êžééé~~~µk×6m Ðz…¸'IrÆ¥Šjf±ÙÇþRuR€bÐWpü÷¿ÿ½víÚªU«Ž?>88XiìÕ«W¹rå>ùä“uëÖuìØñ‰'ž(ê°999§OŸ^·nÝ?þ¨²ÿ7zöì9{öl­—€;ÓIúÑIJÓI ¡¯à¸bÅ //¯… †……K—.ýØcEDDôêÕkÅŠÅŽ}úô¹|ù²úþéééB³Ýàp²,›…¡’ÈF–cšµØ,òC1JÕI졯àxîܹ:u꘦F£ZµjÕ­[÷ܹsÅvÚ´i÷îÝB,]ºtïÞ½6û§¥¥)3j½ÜŸ†”Ç%”Ìò–ÕYLûØìP¼RuR{è+8–)SæîÝ»={÷î]ooïb ­<øý÷ßÕôW‚ã¥K—bbb’’’Ê–-Û°aÃQ£F5kÖLëà†”0T¢ÈO ™ÅØÇf‡b—ª“2›¾‚c“&M¶nÝš””Ô A³§RRRÒÓÓ;vìè„2.\¸ „˜3gN:uÚ·oŸ™™ùûï¿ïܹó½÷Þ8p š,¿Ç3ï/  V¯ó3mtH$²9‹ÍW™îµÚGMj6Ö²ÃËŠMÍ7Ûy}Ç'Ÿ|rëÖ­/½ôÒ´iÓ¢¢¢ŒíGŽ™2eŠ,ËÎùj™K—.ùùùM˜0!&&FiÙ»wï¨Q£¦OŸbsb"€Â™É' 8Ï᳈‚3–2»åÞ¾" Rì2ÌŽ>—D@±Y~¬{l”ÔWpìÖ­[LLÌâÅ‹‡R£FR¥J¥§§+W«ôéÓ§OŸ>N(ãûï¿7k‰ŠŠ6lØ‚ ¶nÝjL“`?³œTB‡_³4…icá} ÄUÊPlú ŽBˆ·Þz+22ò³Ï>;þüÅ‹•Æ   ñãÇ0@ÃÂ"##,Xpúôi­W€û°Ì=%†Šzñ²š>ŨS'e°‡î‚£âÑG}ôÑG¯]»–ššzïÞ½:uêÛsßï"‘e9??_’$/¯ÿùZ府 *h½<܇ÕÄãðdõÚ䢖asW)€=ô•*UªT©’óçMKKëÑ£Gdd¤Ù×ÌÄÇÇ >§€pHƲ5#ØìC^4¡ñwU¯^½Ú`0ïµ/^ܵk—Cʸ}ûvjjjFF†¢víÚ­Zµ:xðàªU«ŒâããcccCBBzôè¡íŠpKú‰Aú©€içÎÛ«W¯uëÖÝ¿_ý«222¦M›Ö£GâÝÜÒÎ;üñQ£F)?¾ûî»AAAo¿ýö“O>ùÚk¯ 4hðàÁ^^^ü±ŸŸŸ¶+ ƒã† :wîvìX!ÄÛo¿½zõjå©AƒM:•ÿ´pÓÏ~ð+¥ÚS§šµ9‹ýe¸VnI_‡ª:ôÒK/:u*??_qòäÉÕ«Wûûû<øá‡^¾|ùöíÛµ®€û“þC˜a4mÔ É„Õâ²±6gqHn£ðÕðÀ›Ñ×Çýë_²,¿õÖ[ƒ BlÙ²EññÇwëÖíüùó?þø?üЭ[7­ËàæÌÚšµè‡eÅ(ÕæÆÚœÅ!e¸ VîM_{OŸ>SªT)!Ä|}};vì(„¨]»vݺuÏ;§u<ˆéÑ[­kQU§ñðhIl¬ÍYR†Û`5à–ô¯_¿¤<ÎËË;yòdãÆ}}}•–²eËfeei]#Oazjšž?ûÍN¡+^©67Öæ,)Ãm°pWú Ž!!!ƒAqôèÑ»wï¶mÛVy*???##£råÊZ×À#X½jXë¢TÕYŒRmn¬šYì/ðpWú ŽmÚ´¹~ýú—_~™™™ùå—_ !:uê¤<{íÚµzõêi]#à*ókèØ-ÒÈ®²tŠA_÷ÈÌÌìÓ§ÏíÛ·•›4i²jÕ*I’xìØ1!Ä¢E‹Úµk§u™6DDD$''k]()ûY¯¯=ŽÕ«W_±bEç΃ƒƒ£££gÏž­œ’••U±bÅO>ùDÿ©À]ékcA233«U«æå¥¯˜[ý_Âc?ëõuÇ‚T¯^]ë<î‚ã¦M›~øá‡ôôô‚v…îܹSë<‘¾‚ã–-[^yå­«€ú ޱ±±Bˆaƽð U«VÕºü—¾‚ã™3gBBBÞ|óMW¹Àsè+8úûû׬Y“Ô CúŠhM›6=}ú´KÜ!ÀÓè+8ÆÄÄdggõÕWZÀ5(ß 9Êà!4>T½oß>³–!C†|õÕWû÷ïïÕ«×Ã?ìëëkÖ¡}ûöÚÖ E%I6¾mÁf•}ìÁþY¸1ƒãóÏ?oµýðáǶú”gÞ¨€‘Õdãü¸£¦ ûó¢ÍY’ ‹TÒ88öíÛWëàbdY.j>Óª ›}J¢CIÌ ƒãÌ™3µ^®Ç4èhqÔ”¡ôQ[í£²C!³˜Å¾š„Þ.ŽiÑ¢E!QrìØ±=zôкFº`LBÚF5eØLcj:>‹±C‰Îúºã;w}ú 0@ë<”¾‚£âóÏ?ŠŠš3gΕ+W®\¹¢4V«VmìØ±ýû÷׺:žH’¤Â/˳ÙÁþ)œ6ˆNf O:ýû/ËòŸþ™ššêããS»vm׺ &"""99Yë*ØÅ4YJ6;iûG°g̸ý¬×ÝG…$IÁÁÁÁÁÁZÀC)·w0KH¦-6;oûG(Æ :™€þi—-[&„ˆŒŒ 3þX8¾«€s˜¥%Ëœd³ƒúY졤÷:g:§ñßüˆˆ!Äûï¿ÿì³Ï,œþ÷ {ìîkÀ-S]AÿZÚì ~ûG°sÌèŸÇ~Ök¼ÇqìØ±Bˆ&Mš(?*÷ÜmYýÓÌd³ƒS8dGe;çÌÀ%h¼Ç1//ÏÇG§çY›Çþ/pKNØãhÜÝhÏñ_ö8Î䱟õ‡¶Ö­[·hÑ"22²mÛ¶Mš4)Uª”Ö ÿ¥$9Ó?‹ÚAýÂŽìhú™€žisss÷îÝ»wï^!D™2eŒ!²iÓ¦„HÚ2ËF6¯€.Fœ²yÁCêtÎjðÿµ_³fMBBB||üÙ³góóóíeÊ”iÞ¼yÛ¶m###›6mêëë«õBÇî¾ÜI‘® æà€§ñØÏz½üý¿uëÖ±cÇ”yìØ±œœãS¥K—6†ÈfÍšé?Dzì/€b#®Åc?ëõøO•,ËçÎSBdBB‚éÎÈÒ¥KÿñÇZhƒÇþ2à!<ö³^W4K’T·nݺuë0 77wëÖ­ß|óÍ™3g„÷îÝÓº:¥Çà(ËrRRÒž={vïÞ}ôèÑ(í!!!:tк:¥£àxåÊ•={öÄÅÅíÝ»÷êÕ«J£ŸŸ_TTTtttttthh¨Ö5x.ƒã½{÷Ž9g¼]»veË–ÕzM`…ÆÁqذa{öì9wîÜÁƒ<èããÓ¼y󨨨¨¨¨¦M›z{{k½>øº¸ãŸþ¹gÏž½{÷îÛ·/++Ki,_¾|Û¶m£¢¢:tèP§N­k,½·Âc?ëudY>}ú´">œ››«´wèС}ûöíÛ·×ÿéûË€‡ðØÏz}GS<ˆß³gÏž={•/‘$éÔ©SZ—fƒÇþ2ÁUðív¦Ô¬+ÀŒÇ~Öëè>ŽfJ•*U«V­ììì»wïÞºu+55UÁ¿ÝZÑWp4 ÉÉÉññññññG޹xñ¢ñ)__ßfÍšµmÛVëWe¹ÛÌ“w¤YÝvÓF›ÀisrrŽ;vôèÑ£G;vÌx^£ÂÇǧiÓ¦íÚµkÛ¶móæÍË”)£u±€ “eÙf0òf«a¹ 6;€Ò88þío;sæŒé¿ÅÞÞÞMš4iÛ¶mÛ¶m[¶léçç§ñ nD C‚ ô¿«! XÓìÈŠ€Ð<8¦¤¤!¼½½5jÙ®]»V­ZqpÀ±Œñ¨ FŠD–«a ÓÆÕ0íc.´ÞІÆÁqĈmÛ¶mݺuùòåµ^ Àm™oµlô(–'zZ6Z®˜Ç.˜Ò88Nš4Ië<ˆr¼ÕôO­+Ò~A„µÓM;(ϲ\ „ðÒºNbõâ­‹Ò’é‚X] ›ÀÓOaõâ­‹ÒŒåD›÷*òäåÁ€'²™‰‰`‰àx"‘)5«ÁŠ€‚àUŽPEãÛñìØ±£¨/éܹ³¶5x&ƒã‹/¾XÔ—$''k[3€gÒ88öíÛWë€*Ç™3gj½PÅ•.Ž™4iR×®]µ®ÀCi¼ÇÑRvvö¶mÛÒÒÒÌÚsssûí7ooo­ ðPú Žþùç Aƒ233 ê0dÈ­kðPú:TýÝwßeff¶iÓæƒ>hÛ¶­âÝwßýøãŸ{î9oo˜wß}×É%;w.""âØ±cZ¯ àb$IҺ畡“€’¦¯=Ž»wï.]ºô¼yó*V¬Øµk×èèè:uêDEE !BCC?üðÆ……9³¤%K–h½*€ç’$É=¾îÏm6€‡Ó×ÇK—.Õ®]»bÅŠBˆÊ•+ž8qByêé§Ÿ üî»ïœSINNÎáǧNúÃ?h½*€+±ß›CöÞ9a Õ)ÌÙ ÀÍèk£ÂËë¿Y¶fÍš©©©Êcooˆ?þøÃ9eôéÓçòåËZ/àzdY6Û»VÔmöà¨AìŸÂ e€3é+8Ÿ?þöíÛåÊ•BÔ¨QãðáÃÆg%IÊÈÈpN%Ó¦M»wïžbéÒ¥{÷îÕzaW¢¤%åqñr’iÞ*vÒ²¿ ‡Ôé„2Àiôu¨º{÷î¹¹¹¯½öÚÙ³g…­[·NOO‹‹Bdee9r¤zõêΩ$::º[·nݺusÚŒ€;±3ó “¼eOÒ²¿ ‡Ôé„2À9ôµÇ1&&fóæÍÛ·o—eù›o¾éÔ©“ÏË/¿Ü²eËS§Nݹs§W¯^ZרJDD„Y _± ·góœ?5±ÉrûG(Æ vÖ©æU„HÀ…X~¬{,}Ç   eË–­Y³&//OQ½zõ·ß~ûÃ?ܳg¢[·n#FŒÐºFUˆ‰ð@fgò kgø©Dya1v::¤ ÇÖYrepËu’ú ŽBˆ   _|Ñøã AƒúôésüøñªU«†††j]Û̲T1Ò’éKŠ·ì/Ã!u:¡ p}ãØ¢E‹™3gš5–/_¾}ûö¡¡¡cÇŽíÑ£‡Ö5(ŒÕ+‹<‚£)Æ–·ã)é2À™ôïܹóàÁƒ‚žJOO/äÛèýÁÈ!ÑÊ ù¬ k¨\8“ö‡ªwîÜ9zôhã‹/^ºt©e·üü|Y–kÖ¬©u½TÑIþsNt³9 €{Ð>8z{{+_#„ÈÎÎöõõ-[¶¬Õž“'OÖº^¥}pŒŽŽÞ¿¿ò8""âÙgŸ}óÍ7µ. æ´ަFŽÙºuk­«€:½1Äõë×Oœ8qéÒ¥:deei]”ZÜÇ7江õúÚã(„¸zõê×_½zõêÜÜ\!ÄsÏ=סC‡þýû7jÔèã? Ôº@¥¯ÛñóÌ3’$Mœ8111Ñ´=11qüøñBˆ~ýúi]#€‡Ò×};tèð÷¿ÿý_ÿúדO>*„غuëÞ½{Ïž=›ŸŸß¿ÿ=zh]#€‡ÒWpB¼öÚk­Zµš1cƹsç„™™™BˆÊ•+O˜0ÁôÎŽp2ÝG!D—.]ºté’}îܹû÷†V­ZUë¢<ƒ£"00°U«VZW€ÿ§‹à¸sçÎ7*'2†‡‡?ñÄíÚµÓº(üíƒã›o¾¹fÍã'Nœøé§Ÿ†>yòd­KÀiûí7%5vîܹcÇŽƒá·ß~;tèÐwß}Õ©S'­×ÿOãû8._¾\ñüóÏÏŸ?èСÏ=÷Ü’%Kz÷î-„øé§Ÿ´^ü—ÆÁ155U1zôhc‹$I£FB¤¤¤h[Li/]º`ÚX»vm!Ä­[·´­ ¦4޲,—.]Ú¬Ñ××WÛª`I_ßU Ý"8@‚#TÑþàþùg‹-Ô·ÇÇÇk]2€'Ò>8ʲ|çÎõíЄÆÁqýúõZ¯TÑ88†……i½P…‹c  Áª  Áª  Áª  Áª  Áª  Áª  Áª  Áª  Áª  Áª  Áª  Áª  Áª  Áª  Áª  Áª  Áª  Áª  Áª  Áª  Áª  ÁªQI’´.èÁæ‹À*‚#Ìɲl–‰’@a•iv”$I–e­+Ú#8Â:cv$5…Ö@G¬’6m$DàÉŽø/Ó\¨¡f§#0âP5¬0=¯ÑòZà™Ž0gy5 Ù‚#,Y=0ÍÑj@p€*G†ÀˆàUŽP…àUŽP…àUŽP…àUŽPÅGëœdÕªU+W®€^¸ÿ9Ž+W®ÌÏÏ?~¼’…“'Oö÷÷߸qc~~¾Õ—¤§§ !Ìv7”$I6[€›qÿàxèÐ!//¯Î;[¼½½;uêtõêÕ£GZ}IZZš¢V­ZZ×®_²,›&EXà Ü<8ʲ|æÌ™J•*UªTÉ´=<<\q᫯R‚ã¥K—bbbÚ´ióÈ#Œ=úرcZo¾³#©áæç8Þ¹sÇ`0X^Ôâïï/„¸víšÕW)rΜ9uêÔiß¾}ffæï¿ÿ¾sçÎ÷Þ{oàÀj戈0kINNÖz1Ãê!ic# à~,?Ö=–›ÇÜÜ\!D¹råÌÚË—//„¸qã†ÕW]ºtÉÏÏo„ 111JËÞ½{G5}úôèèè›óºML´d É‹O`ù±î±QÒÍUH’tçγö[·n‰ÿìw´ôý÷ß'$$S£"**jذa¹¹¹[·nÕz›ôÂx„Úì|Gà®Ü<8úøøøûû[îYÌÉÉB¯³V#22Rqúôi­·IÌÎk$;à Ü<8 !ªV­zõêU%)¥¦¦*OYö—eÙ`0XÞ©ÇÛÛ[Q¡B­7H{V¯†áh5nÏýƒc·nÝ ÃîÝ»-²,ïܹ300°E‹–ýÓÒÒ6løÜsÏ™µÇÇÇ >§ÁÏäþÁñé§Ÿöòòúꫯ”ó…ß~ûmVVÖ€J•*¥´Ü¾};555##CQ»víV­Z8%ÑÁáe½!8º*ûƒ—šìO™NØàG¨Bp€*G¨Bp€*G¨Bp€*G¨Bp€*G¨Bp€*GW%IRIwpHÀm]‰s² ýe·Dpt%²,[†6Ó›„µØWÔ ¨fà~Ž.Æ,´I’$˲c;8¤ à~Ž®ÇÚ ŠköwpHÀÍøh]Ô²z,ØØhõðq‘:(}ì/Cëu%…àè2L3™Õ f‡”܇ª]ñÐp!;íìà2€›!8º³ -C›ýRp?GcyPØò¢i;;8¤ à~Ž®ÊfP³¿ƒCÊnƒàUŽP…àUŽP…àUŽP…àUŽP…àUŽP…àèx§OŸ¶sI’ìïcG RÒ#ç 8º2ÐÁÑa,S]QsžÕþ¦²,Ûœ¥$:c',p2‚£Ã˜¥:I’dY¶g«ƒØœÅáŠ7ˆ– 8ÁÑ‘Œa¨Ø1È4N4ˆÍYØÁžAœ°\À™|´.À~lWM$*踭é 6g±³C!Oi;—Kå ÀùŽ`tŠ¡¬Ž`Äòèpá³ØßÁLñÊpÂrMp¨Ú‘Œ‡\ Ú3§rÂG°9‹ýLû» ç,p‚£Ã˜¨W¼0d:HA×P>‹ýR†s– 8ÁÑ1¬^ÞQÔïV/^.Ò,jʰÙÁþ2Ô°àdGÇ0 =áááöb‡bç0ûËn‰à¨Gj’™ýéÍ!³8§  G¨Bp€*G¨Bp€*G¨Bp€*G¨Bp€*G¨BpÔ€$Iz˜Å9e·Ap€*GçÑjG£Y ;@ñG–e'd8³Y$I’eÙùe÷Cpt*ÓÐfé>KAS8§ àf|´.À#tøØØîèfuÇaá{K¢ எÎ`È” æð”f: š,XBewÅ¡jg3Ƶ’;³Ðxô¹YœPp3G§2=¡°„B›Ù9‹VgqBÀýÇêÎ%=…°v ¼¤Ën‰àèZànÎ;׳gÏ•+W6kÖLëZ\[nnîŠ+V¯^‘‘Q¡B…ððð#FtèÐAëº\Õõë×gÏž}øðጌŒÊ•+7nÜxìØ±¡¡¡Z×å&.^¼Ø§OŸ®]»Îœ9SëZ\ØSO=uüøq³Æ   ={öh]š«:~üøüùóoݺ1vìØ¶mÛj]”KÊÍÍmÞ¼yAφ……­_¿^ë„àè`K–,Ѻw——÷üóÏ'$$øûû·oßþîÝ»ˆ‹‹7nܘ1c´®Îõäääüío»råJXXX—.].]º´aÆ-[¶¬X±¢qãÆZWçòdYž4i’ñ«íQlééé~~~µk×6mä‹^‹mûöíãÆËÏÏoÒ¤IXXØž={bbb¾þúë®]»j]šë‘$©Aƒ–í÷ïß?{ö¬¿¿¿Ö:ÁÑ1rrrNŸ>½nݺüQëZÜÁÊ•+ZµjµpáB???!DJJÊСCçÎÛµkW«{Qˆ/¿üòÊ•+£FzõÕW•–Ÿ~úiÊ”)}ô¿±öûþûï<¨u./''çÆ={öœ={¶Öµ¸ƒ7nLš4ÉÇÇgáÂ…­ZµBüñÇC† yçw:wîìåʼnjES¦L™_~ùŲý‹/¾8þü”)S´.ÐyøÕqŒ>}ú 2„Ï`GÙ´i“â­·ÞRR£",,lÔ¨QƒƒVŰoß>??¿Ñ£G[ž|òÉàààÄÄDƒÁ uu®-%%eÖ¬Yõë×׺——žž.„0Û݈b[³fMNNΨQ£”Ô(„hÚ´iÏž=³²²,Ï@ñœ:ujÁ‚/¾ø¢Gºa£cL›6íÞ½{Bˆ¥K—îÝ»Wër\^jjj¹rå5jdÚ&„¸pá‚ÖÕ¹ž€€€ððð2eʘ6–.]úþýû÷ïß7¦sU^^Þo¼8yòäçŸ^ër\[ZZš¢V­ZZâ&víÚ%IR¿~ýL?ýôÓO?ýTëÒÜ„Á`xóÍ7ëÖ­ûÒK/i]‹S#::Zyðûï¿k]‹;˜?¾ù/gbb¢¢FZWçz–.]jÖrèСôôôæÍ›“íñå—_&%%ÅÆÆV¬XQëZ\ž/]º“””T¶lÙ† Ž5Š ‹çĉÁÁÁ‡Ž¿~ýzýúõ»wïÎ_yGY¶lYbbâwß}WªT)­kq*‚#ô¨aÆf-û÷ïÿöÛoK—.möhI||üš5kRSSãããkÖ¬9cÆ ­+ra ÿú׿†¥ü¯öP&Ì™3§N:íÛ·ÏÌÌüý÷ßwîÜùÞ{ï 8Pëê\Ìýû÷oÞ¼Y¯^½÷Þ{oùòåÆö5jÌž=Û£Ž«–Û·oÏ›7/222**JëZœà½3 Ë–-ûôÓO Ã矤uE.,99yõêÕ², !5jäëë«uE®*77÷7Þ¨Q£ÆÄ‰µ®ÅM\ºtÉÏÏo„ 111JËÞ½{G5}úôèèè­ t%7oÞBœ9sæÊ•+3fÌèܹóÝ»wW¯^=wîÜW^yeýúõìw´Ówß}—=a­ ÑÇ@×8ЧOŸiÓ¦-\¸°W¯^ZWäÚž}öÙ¤¤¤¸¸¸I“&mÞ¼yРAÜD¦xf̘‘‘‘ñé§Ÿòì(ßÿ}BB‚15 !¢¢¢† –››»uëV­«s1Æš?ùä“~ýú¿üòËýû÷ÏÈÈøõ×_µ.еݼy366¶M›6-Z´Ðº ¡S÷ïߟ6mÚsÏ=wñâűcÇnܸÑ”I’*W®>>666$$¤GZèzú÷ï¿hÑ¢·ß~û›o¾©T©’âøñã .ô÷÷ôÑGµ®Î…íܹSüç$ ÏDp„î\¹rEùÊÚ!C†X>Û¿ÿ¡C‡j]£‹ùè£>~ñâÅüñÇ7êÕ«7bĈÇ{Ìølffæ·ß~{èС‹/„‡‡¿ð mÚ´)d£6nÜx÷îÝG}Ôò©mÛ¶ýôÓOÇ¿{÷nhhè3Ï<óÄOxyy™nﯿþ»nݺÔ©S'22rüøñË–-Û²eËÉ“'+T¨Ð¡C‡‰'G®R¥JóæÍþùçI“&I’Tom8†,ËÊUÕáááÆÆÏ>ûlÁ‚²,W«V­J•*‡>pàÀîÝ»çÍ›÷ÐCµnÝ://ïǼÿ~LLŒ’Õ²²²† rþüy??¿ÚµkçççŸ?þ»ï¾Û²eËš5kLcŠC^¡±ÛüùóW®\Ô¾}û .ÄÇÇ3föìÙ={öT:¼÷Þ{Ë—/BT¯^ýîÝ»+W®Ü²eKõêÕ#XÝXÅöíÛ—-[~þüùøøø±cÇΙ3çñÇB¤¤¤<óÌ3·oߨ[·nVVÖÎ;wíÚ5oÞ¼®]»´]{÷î•$©Y³ffíÓ¦MS®}®^½zPPбcÇâãã÷îÝ;sæLÓn“'O>~üxxx¸¿¿ÿ±cÇÎ;—””T¯^½Ÿ~ú©~ýúááá «V­ºxñbll¬é [´hqôèѤ¤¤† –Ü/ÍÈ ÚéÓ§ÃÃÛ7onÚxïÞ½äääW_}5<<<<<|ß¾}JûöíÛÃÃûwï~ìØ1¥åÊ•+/¼ðBxxø‡~h|yÛ¶m4h`üñ›o¾ 5jÔ­[·”–7n 2$<<|ÕªUJËk¯½þûï¿©NKj*Tæ ÿì³Ï ƒ,˃aúôéáááÏ>û¬ÒgãÆááá;w>qâ„ÒrüøñŽ;*/LHH(hcƒÿóŸÿÌÏÏWÿðÃÃÃÇ ¦ôùÇ?þ>kÖ¬¼¼<¥eÑ¢Eááá}ûö-h» CëÖ­{÷îmÖ¾e˥Γ'OJ©Ó¸˜JI 4ضm›Ò’˜˜Ø°aÃðððÆÇÅÅ)GŽiРAxxøÕ«WM§Ø´iSxxø¿þõ/»×èç8(²;wî˜ÞDZI“&}úôùõ×_…Ço×®ÒmÆŒBˆÙ³g7mÚTi š={vÕªUW¯^}ýúu«ƒçååuéÒåµ×^+W®œÒR±bÅ>}ú!ÒÒÒ»!ê+lÚ´éĉ•ã¹^^^/½ô’âüùóʳ³fÍBL›6­Q£FJKãÆß}÷]•e´nÝzìØ±Ê±]//¯^xA‘žž®<{êÔ)!ÄÓO?m¼8zРA/½ô’ÙrS—/_ÎÉÉ©U«–YûgŸ}¦ÔÙ A¥%,,lüøñB³ËäŸyæãî̆ ¶lÙRÓ¡C¥±eË–7B˜] *„HNNvì;@'8T  È$I2;ݰ|ùòaaaO>ùd§N”–ìììÔÔÔÐÐPc–R”-[6**êçŸ>qâDtt´åàcÆŒ1k¹r劒J«HI+üýý½½½eYB\½zõüùó!!!QQQ¦}ºuëV±bÅœœ›•ôêÕËôGem•Á…õêÕ»|ùòäɓǎÛ²eKŸR¥J½òÊ+… xõêU!„Ùaýk×®Y­óoû[ëÖ­Ë”)cÚØºukÓ•¡¬6ëT!²²²þ~Ђ#€"³¼£¥sçÎ)FDDXíPÈ¢333wíÚuøðá .¤§§ggg—ÄV©Â‡~¸ q”ýŽ–»÷$IªQ£Fbb¢ÍJ \ñþûï?þàÁƒÃ† +S¦LÆ Û¶mûØcr¡’ÛüýýMSSS…5jÔ0ëìëë[³fM³FãîÞB­^þ¢Ç+W®Ø~¸ ‚#€qÿþ}!DõêÕ :¢bµ}ùòå}ôQ^^^Íš5[·nݽ{÷Ƨ¦¦~ðÁVXÈMm”q¬¦(ã¥Ê…+üŽ9?üðªU«âããwíÚuàÀ'N=zô믿~ê©§>úè#«óúùù 3ºwïžÂô¢œ’ Lj¶ÿ€Û 8(ʹneË–-Ò—ÞºuëÃ?ôõõ?¾élå¾úh«V­dYNNNÎÎÎ2dÈâÅ‹úé§›7o*÷ÐQ#77· [d+w‹TY¡MO>ùd\\܆ úöí«\h’žžrøðá *´±6GöòòzóÍ7'OžüðÃwîÜ9{ö¬,˃ jÑ¢EA/ŒŠŠZ´hQZZšéU; 8pàÀºuëúôéS³fÍ2eÊœ={6//¯OŸ>fWv[BB‚$IÆ[2p3G%E’¤O>ù¤K—.¿üòKRRÒùóçëÔ©Ó£G˜˜åê ÅäÉ“§M›vöìÙ»wï !>ÿüóØØØ 6>|øá‡îÔ©ÓðáÃàúuë:¤¾Y–333­>¥|å´Ê Õlé¬Y³Ú¶m»~ýúÄÄDÿÑ£G3fÀ€â¯n6ÛX5ú÷ï_­ZµØØØ3gΜ:u*((¨C‡ƒ.äkc„;w^´hѾ}ûLƒ£——×gŸ}öÈ#¬]»öäÉ“999Íš5{æ™g”Ÿ,ˇjܸ±é—îp'’Ù-¸EuåÊ•üüü*Uª˜^ãl0Úµk÷àÁƒ#GŽïÝí4²,?þøãAAAË–-sÚ¤‡:tèŒ3úõëçäíàœãö7n\§NöîÝkÚ¸sçΜœœîÝ»;?5 !$I6lØ‘#G º€¦$üòË/AAAŽ:ê @‡Ž`/åPï;ï¼wïÞ½¿þúkݺuo¼ñ†¢ÿþZU5`À€E‹9gº¬¬¬_ýuôèÑ…ß–€KãP58ÀG}´lÙ2ã…ÏBooïñãÇÿãÿаª]»v3fóæÍÝnÝ>øàƒãǯX±Båmϸ"‚#8FjjêîÝ»322$Iª^½z·nݪW¯®uQâûï¿ 5~‡x 1 _|ñE¿~ý´Þb%ˆàU8 UŽP…àUŽP…àUþEÂÄûè9·wIEND®B`‚statistics-release-1.6.3/docs/assets/kmeans_301.png000066400000000000000000000531441456127120000221370ustar00rootroot00000000000000‰PNG  IHDRhŽ\­AV+IDATxÚíÝw|uâÿñÏ&z „Ѓ’• JQAï@ˆ¨?NŽ®§ ¢ˆ ðûì³Ïrrr‚V ׯ_ŠŠ²üæÿû_ _qÑ¢EÒkµnÝ:h»©9M®ÿ^ýué`=öØc%ÞYù*WÃÊß±^U` ZÐÞwß}7`ÀûœtæÌ™3gÎlÞ¼yþüù‹-úÃþä"%%%ýúë¯Bˆ;v<òÈ#ÁyÑO?ýôÖ­[ò«W¯ž2eJwÜ 49¸Á¤ù*äkÐ-Ž0»ŒŒŒN:ÙŸä""~ÿƒê‡~4hÐÑ£Gµ.f0|üñÇö?®Zµ*ЯX¡B… 4hÐ 66V뽇:BûÅ; 8Âì&Mš$5N!ž|òÉ#GŽÜºuëÇ\ºti… „7oÞyòdycAAÁ{ï½×¾}ûZµj•/_>!!áü£}Ì_ÿúW‹Å"Ÿz»téb±Xnܸ!ß!;;û/ùK»ví*T¨p×]wõïßÿСCîÊSXXøòË/שSçå—_ö\kÖ¬),,BØ·¦¸lt,q”ßÍ݈±3gÎôíÛ·Zµj 49rä?þ(U‹Åb™6mšónþòË/'Nlݺu… Z¶l9kÖ¬‚‚ç 8pàÙ³g‡ Ö Aƒ:uê$%%ýç?ÿBìÛ·oðàÁ 4¨V­Zçοøâ ‡}ñªÎ=ÆóÁUX±ÎŠ‹‹W®\Ù¹sçúõë—)S¦~ýú:uúàƒ\VB‰Õ%ÉÊÊĀިëׯŸôA¨Zµêõë×ïУG–-[¶lÙríÚµÒ–©S§JéÓ§»-’!C†HÛ'Mš$m¹uëV›6mœ?†‹eáÂ…Ò}^xáç;üúë¯ÒowîÜãüð &ȯk_žáÇK·§Nê¹*|ðAéžãÇæ™g¤Û wS² ÊïöÞ{ïIÛ[µj%oܳgOtt´ý£6l8hÐ ‡‘w³S§N7vx¡:WHË–-ž¹zõêo¿ýv©R¥ ùÅ_È÷ªÎ=ÆÃÁUXc.É•ã`À€Þ–PràÀš5kÚß¡B… =zônwïÞ]ÅTÐjØóçâÛo¿½ë®»œ[·nÝ/¿üÒó;Vauùsˆý 8ÂÔäÓUrr²Â‡øå{FEE=þøãÏ=÷\Û¶m¥-'Nœ°Ùl—.]:sæLÙ²e¥í|ðÁ™3gŠ‹‹m6ÛµkתW¯.møá‡_y啤¤¤°°ÿë7X¶l™Ã«Ô©SG>9yŽçÏŸ·X,Ò=¿úê«íÛ·Ëüïÿër÷=ì‚ò»9Ÿ†óòòjÕª%m,]ºt»víävD~ IýúõÛ¶m[¦LyË·ß~ë|ϰ°°-ZT­ZÕáäݸqãÚµkË?vîÜYz¬·uî¹0®Âs&· [,–‡~øOúS³fÍä×ݹs§·ÕuûöíúõëË/}ÿý÷7hÐÀþ±‚£¨à×°óçâæÍ›ò>–)S¦[·n=zôŸ¤fÍš¹¹¹îޱʫËçC è Á敟Ÿ/¹Ïš5Ká£ü Žr«ÞÌ™3å»uíÚUÚøÎ;ïÈË—//mܱc‡¼ñÅ_”6Ú·$½óÎ;ÒÆzõê9”GѤI“´´´}ûö={ÖÃN½õÖ[ÒýkÔ¨QTT”ŸŸ_¹reiËôéÓíï©pÞÍù4ù¤tŸ‰'Êï»ï>iãìÙ³½-áÂ… ¥-*TØ·oŸ´qܸqÎIÈo¨ Õ°‡ÏÅŒ3¤í+V”ô±cÇäöé^xÁÝ;Vyuù|ˆ]aŒ#ÌË~ô’C³V€È‹Ø¥¦¦¾ÿþûÙÙÙÒíôôôôôôx~øÖ­[¥O=õ”¼ñÉ'Ÿ Bdee;vÌþþeË–ýüóχ Ö¶mÛ† zxæ>úHºñøã‡……•*UªgÏžÒ‡aŽ wÁç=]½zµtãÏþsbb¢",,ìoû[5Ü=¤Y³fþóŸ¥Û÷ÜsO‡¤ÛçÏŸw¸g«V­¤ÄR¥J 8PÚX¹rå±cÇJ/$gý«W¯úVçÊ £Ö{cðàÁiiiiiiùË_¤-¹¹¹7oÞ”n_¹rÅÛê’G"Ú7‰½õÖ[üºòm娠հÌùs±iÓ&éWcÇŽ•/&$$L˜0Aº-ßÁ™òêòóãèÁæ%Íñ”g)ænݺI7222F{ß}÷½óÎ;7nÜhÚ´©Ã0)gò|‚nݺÉËt—/_¾¨¨HÚ~úôiûû'&&*9Ÿ8qBž/Ïï‘oœ| ‚YÃ2‡ÏEnnîµkפÛ«3ÊiܺuKj tàUuùóñôƒàSk×®tcÆ Î+’!î¹çžèèèèèhyl“?J•*õ÷¿ÿ=''gÕªUÆ «R¥Šü«¯¾úÊ~Õg+V”[t¶oß~Æ•¤¤$û‡(<§®\¹Rº‘››)5ù”+WNîY³Ž wÁ·=­P¡‚ï©Åb‰‹‹“nïÞ½[Þ^XX¸k×.owM¨sgþ¼7þñH7.\øì³Ï6oÞ<""âûï¿÷­$áááò!ضm›¼Ýf³9/oé̇TpjØ3«Õ*ݰ_OÀþÇFÙ_ÿƇêòÿãèÁ¦Ö³gÏ.]ºH·ÇŽûꫯJm ùùù©©©òbowÝu—4QÃ%¹Ojÿþýò€§O>ùÄáÌqâĉš5kÖ¬Y366öìÙ³Bˆˆˆˆ.]ºÈ3yå‰ÌöìgªÊE]¼x±Íf“n¯[·®ZµjÑÑÑ 4¸~ýº·5 ÷S—*Uªi‚‚ø­ÑQá.ø¶§9OÌ›7ïäÉ“B›ÍöÒK/;wNͯX ê\&\ŸkìúõërÓ¬üwËwß}çOÎnÕª•tãoû›¼ ÷¬Y³þûßÿ–øX>PÁ©aÏä5íw9==}Μ9Òmûñ‹¾U—? @W"ü ÀÐæÍ›×¶mÛ¼¼<›Í6}úôéÓ§GGGÿòË/òØü2eʬ]»VŽPÎä¥Oòòò/]º$·—5oÞ<&&&;;»°°°}ûö={ö¬Zµêÿþ÷?ùÚeöž©\¹²4öëµ×^;~üø_þò—R¥Jýõ¯]ºté/¿ü²~ýú‡~ø¡‡:~ü¸<ßs„ ÎËzV\\,Ïbþãÿ¸lÙ2‡;ôíÛwýúõBˆÕ«W¿õÖ[ wÁ«=uð׿þõý÷ßÏÏÏÏÉɹï¾ûÚ¶m{þüùÌÌÌà½!œÊ£n W×ç+_¾|ùòå¥g“.Íb±X¶nÝê²›X¡É“'ôÑG6›íêÕ«<ð@Û¶msrr¤¯„·¨àÔ°Ãï¦L™òÏþóüùó×®]kß¾ý#<¾cÇi fll¬|½"Ÿ«ËŸ /Z¯hï믿v7û¸AƒÒÊ2—«6Ê˸È6l(7¥Èë8~óÍ7îúÝ:uêtëÖ-ù ‡ fÿ[ùÊ1ÿú׿\¶L<óÌ3Ò*Ç6÷ëJ:Û¹s§ü »vír¾Ãš5kä;|óÍ7ÊwAáÝ\^‡cÉ’%§ùòåËwîÜYºí¼Ž£òu×íï¹|ùric³fÍìß ÒÆˆˆy£?uî\wWù{ÃóuŸ6l(W×ðáÃ}(áˆ#ž³\¹rò4a €ûð Z {þ\ìß¿ßå’Uõë×ÿꫯ仹|Ç*¬.Ÿ1 +tUâÁ<}úôüùózè¡5jDFFZ­ÖÞ½{ÏŸ?ÿäÉ“r7–~øá믿žP®\¹ÄÄıcÇîÛ·ÏyRóý÷ßæÌ™iÓ¦µnݺV­Z¥J•ªR¥Jûöí—.]ºk×.yº¥bþüùÆ «Q£F¹råš5k&ÏüíÕ«×Ñ£G“““ï½÷Þ²eË6lذoß¾_~ùå»ï¾ëÃôRy ºÚµk»ÄÙ³gÏŠ+J·¥Þj…» |O%''ïØ±£_¿~µjÕª]»v¿~ýöìÙãòZmÁ¡n 7×ç›?~BB‚øí¢8ãÇ?|øðã?.b—YwgÙ²ecÆŒ‘nרQ£wïÞ;vìèØ±£Â‡{û N {Ö¦M›cÇŽM›6í‘G‰‰‰‰ŽŽ~øá‡_zé¥ÿüç?íÛ·W¥ºüùPúa±ý6¦tkøðá~ø¡âÝwß•/¥ IAAÁÆ…ÚÝܽ{÷ÓO?-ÿñ¨.˜Á€ŽŒ=úÀBˆvíÚÉsûõ×_ããã¥i_ýµ|é6@19€ŽÔªUëÈ‘#Bˆ#GŽÔ­[wàÀW¯^2eŠ”›6m*Ob-Žt$//ïÑG•'©Ø«V­ÚîÝ»¥ñ|MèËíÛ·W­ZõÁdff^¼xQZÌïÑG7n£Ç@[G(Âr<P„àEŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽP$BëèT^^ÞªU«Ö®]ûý÷ßW¨P!>>~äÈ‘>ø ÖåÐŒÅf³i]Ý),,6lØ‘#G*Uªtß}÷ݺuëÀcÇŽ3fŒÖ¥Ð-Ž.¬^½úÈ‘#÷Ýwß²eË¢¢¢„§OŸ~â‰'.\øðÃ7nÜXëh€1Ž.lݺUñÒK/I©QѨQ£gžy¦¨¨hÏž=Z—@´8ºpîܹråÊ5mÚÔ~c£F„.\кtàÈb¹ãG† ‚£ ‹-Šˆp¬™ãÇ !êÖ­«uéੇÉ1ŠìÛ·o̘1»v튎Žö|g«Õªuy˜È©SÎããù"+##Ãÿ'1ZKPTT´bÅŠÙ³g¥¤¤”˜%æ|3ŽÕj¥JUD}ªNÃ*u×ÜhôCìU•ÚW!.ñ©Wi‰Žžì߿ƌgÏž5kV»ví´.ÜÁf£«ú Ù ‚£kùùùsæÌIMM-S¦ÌsÏ=7jÔ(y†5蜩’“sn&;Cpt¡¸¸xâĉ۷oïÒ¥ËôéÓkÔ¨¡u‰À-37:švÇ­]HMMݾ}ûСC§OŸ®uY d4°wd³ÙÒÒÒ*T¨ðüóÏk]€'$f ÈXŽÇÑÏ?ÿÜ¡C‡¨¨¨»îºËù·}ûö}â‰'óá…¸R" ŠàðZ]®zHŸAf†}Dèa9€š|ˆ’ðˆ§uN{ä?˜ -Ž©’Ì·6M€"IfFp &ìˆ4ýÌv. ï1 ŽNÛ‰ ÞO?3(C¯MÄÀ3‚#ÜAW¡Vÿû|›§¬.Þ €3&ÇІN™Ü °ƒr6Ûÿ|{?˦qöhq  Úr «~a2" -Žð]NNÎË/¿Ü¼yóJ•*U«V­M›6)))·nÝ’ï×·o_­‹ ín/485r`GøèàÁƒÍ›7íµ×„ èѣǕ+W&MšôÀܼySÝêÛ·ïñãÇUß…Ž;Θ1#h5}"#Bbæw‚Åòû?À3‚#|‘››Û»wïëׯ¯Y³æØ±cË–-KMMÍÈȘ2eÊ‘#G¦L™¢âkegg¯_¿þÒ¥KêîÂáÇ÷ìÙÔZ37wÃàìÏXZ´t2ÀÎTŒ2´Ô oš~á‚#|±|ùò‹/Λ7oÀ€òÆððð7ß|Ójµ®X±¢  @ë2ºVXX¸}ûöW^y¥[·nÅÅÅZzáçÜ„þ„áÁ1t² gáÂ…µk×1b„ÓkZ–.]:wîÜëׯ;ü*..nàÀö[ž|òÉ*UªH·óòòfΜٸqã²eËÖ¯_?99ù§Ÿ~’îÓ³gO!D§Nâââ¤;§§§÷ëׯ^½z5jÔèÞ½ûÎ;í_eüøñlÑ¢E‹-œK~ùòånݺ͘1#'''xÇn0‰Õ´\f2=5³ý Á'Þ"8†¨@~\½zõÔ©SmÚ´)]º´óoÛ·o?jÔ¨ªU«zõœÉÉÉ/¿ürݺu'L˜˜˜¸|ùò>}ú!&Nœ( Cœ={ö| „øüóÏ[·n}äÈ‘Áƒ?ùä“™™™Ýºu[¹r¥üT.\èÖ­Ûõë×ï¿ÿ~çЉ‰±Ùl6›íäÉ“«"øƒ3èËñ˜€Ú‹Øž?^!·ÿùïÆ«V­>|ø?ÿùOiKrrògŸ}vñâÅfÍšI/צM›Ž;æçç3¦qãÆ{ö쉊ŠB¼úê«;w~饗.„X·nÝŒ3¦NÆßE†d’–8¬Îqׄ®.ÛCàÌjj !TŒeaaa‹eÏž=RFB,]º4'''66Öជ>}úôäÉ“¥Ô(„ˆŒŒ|î¹ç233:$m‰%5†`¶~a}Reµ,=ÌrCppr Qü®W¯žâìÙ³.›½iÓ¦Ó§O+¨¨¨ deeÅÅÅ%$$<ýôÓŸ~úi~~¾ó=¥þå¡C‡Zì :T‘••%ÝÇjµ’Âpë;!Ï <£«:tìÓ]¯^½o¿ý6??ßy˜ãÒ¥K§NºvíÚFy~žÛ·o˷njӿÿ7îÞ½{óæÍ‹/¶Z­_~ùeLLŒýC¤—›3gNBB‚ó5iÒDºQ¹rå@W-TÄY МŸC—³Üøh‡*fà‹gŸ}ö‡~X´h‘Ãöâââ5kÖX,–Ž;:?Êaù¹UòòåËû÷LNN^±bÅùóçßy猌Œ÷Þ{Ïá¤0Z¡B…nvêÖ­{õêUò"Ÿ»Ži:¬CÁ¾xê©§ªV­úüóÏøá‡òÆ¢¢¢_|ñèÑ£#FŒ¨^½ºÃCÊ–-{üøqi|¤⫯¾:xð t;##ãþûïOII‘~ ëÔ©“¢T©RòÃ¥ÐÙ²eK«Õš’’rõêUi{nnîc=6~üø²eËj]+‚‡u:á®e‘ÇPEW5|Q­Zµõë×÷éÓgøðá³gÏnݺuXXØÞ½{Ož<Ù¬Y³ 8?äÑG]°`AÏž=ûôé“™™¹páB¹°U«VÍš5{óÍ7333›5k–‘‘±eË–ªU«&%%‰ßºžß}÷Ýììì!C†,X°àñÇoѢŠAƒ Ö¯_áÂ…•+WJSª˜:Fò«æå„àuèÐáØ±co¿ýö† Ö¬YS®\¹øøø¹sçŽ;Ö¾¥P6kÖ,›Í¶víÚmÛ¶Ùl¶$$$ÌŸ?_Qºté-[¶LŸ>}çΟ|òILLL×®]§M›&­øÓ®]»¤¤¤M›6={vÈ!Ý»wß·oß´iÓÒÒÒn߾ݢE‹%K–tíÚUëú<úT§·ò”óš>æÙw²Ø8¼j³Z­~ˆqݸqãÆ5jÔк ~1Õ!tÅ]ß´†g3—EâìÚL{ ÅÁV®\¹råÊi] æü&1S5:Â<Ž€ÀR7´ùp±M&Ð’˜U 0¯–Žw™Õ’:̈\ÊBpˉ,êÒanÓ¶H$E]ÕãÑ[XÔ[y0àj!8€Ù·-é0è¡éËå˜HÖ•ZôPçatU€Q9D&ä3‡bè¤TÁÙY@]´8€!é0&º¤“Õ¡M§L¾ûP-Ž:Œ’&PÄD-Ž€À"ÇuޡŠÉe2 .(Z D•Ðù}öìÙmÛ¶B|þùç½{÷Žw@ ÚC©ð]Õ¡OõoÆ¢¢"!„s,óYXX˜ÅbÙ³g”…K—.ÍÉɉu¸çáÇOŸ>=yòd)5 !"##Ÿ{î¹ÌÌÌC‡I[bcc]¦Fg_|ñÅý÷ßàÀ… 6jÔHåj …çM³€à‚ch èb½zõ„gÏžuùÛìììM›6>}ZùFEE-X° +++...!!áé§ŸþôÓOóóóïyòäI!ÄСC-v†*„ÈÊÊ’îcµZKLYYY½{÷îܹ³bÇŽO?ýtë !Š ·8Ó|ª»×¥yP ]Õ!+p'°èèèzõê}ûí·ùùùÎ×.]:uêÔµkז؆wûömùö˜1cú÷ï¿qãÆÝ»woÞ¼yñâÅV«õË/¿Œ‰‰±ˆôrsæÌIHHpx¶&MšH7*W®ìùu?þøã§Ÿ~º|ùò‹-9rdDŸøÈyÀœ™9O ~ŒvwDLèÑâ_<ûì³?üðâE‹¶¯Y³Æb±tìØÑùQÅÅÅö?Ê­’—/_Þ¿dddrròŠ+Ο?ÿÎ;ïddd¼÷Þ{Ï …Ñ *t³S·nÝ«W¯–˜%6løãÿسgÏ“'OŽ=šÔ?ùpíÍ›å!”ö€Gøâ©§žªZµêóÏ?ÿá‡Ê‹ŠŠ^|ñÅ£GŽ1¢zõê)[¶ìñãÇ¥ñ‘Bˆ¯¾úêàÁƒÒ파Œûï¿?%%Eú1,,¬S§NBˆR¥JÉ—BgË–-­VkJJÊÕ«W¥í¹¹¹=öØøñãË–-[b±m6Û”)SêÖ­›ššZ±bE­kfdª|4Ù;çøNs# "š[à‹jÕª­_¿¾OŸ>ÇŸ={vëÖ­ÃÂÂöîÝ{òäÉfÍš-X°Àù!>úè‚ zöìÙ§OŸÌÌÌ… Êm„­ZµjÖ¬Ù›o¾™™™Ù¬Y³ŒŒŒ-[¶T­Z5))IüÖõüî»ïfgg2dÁ‚?þx‹- TPP°~ýú .¬\¹RšRíÙ‰'Nž<Ù¸qãääd‡_õëׯW¯^Z×+`FöùR•GR‡àuèÐáØ±co¿ýö† Ö¬YS®\¹øøø¹sçŽ;Ö¾¥P6kÖ,›Í¶víÚmÛ¶Ùl¶$$$ÌŸ?_Qºté-[¶LŸ>}çΟ|òILLL×®]§M›&­øÓ®]»¤¤¤M›6={vÈ!Ý»wß·oß´iÓÒÒÒn߾ݢE‹%K–8/ÙèÒ™3g„'Nœ8qâ„ïî¾ûn‚#Íe \h,ýèrp¡’ýÒÃÈHÊYl|FÕfµZ322ýãºqãÆ7jÔ¨¡uAübªCµ¸ëº ¯aßÖf. Ê´gZlåÊ•+W®œÖ¥4às³œ!ø°#ª ‚äJ0@0†QbL¤³(‚#C££É#Ž·M°%^&øhï„ÙÀQ@ÓÙžòEÔ•gDÀ!8À4oÄ2ÕC^ÐR£ËP2+B €ÀïÜ­˜ÍÈ= 8ŒŠëÄAFW5üNù;_h¯gÁJ@4Ñ] ç ««â@W5ÜÁáÜO-Ž¡ÀbáÒ‘€šøxð`‹-Z´h!=÷ß~Û£Gš5kÖªU«Gß~û­üä;w¶ãøïÿ»k×®U«VmÒ¤ÉäÉ“óóóå_åååÍœ9³qãÆeË–­_¿~rròO?ý¤Ýу‰ÈSf憆3"´±Oh’²£ü¿ºO~õêÕS§NõíÛ·téÒοmß¾}ûöí¥ÛŸþyïÞ½cccöé§ŸvëÖ---mÈ!ÒvìØñüã©§žºçž{¶lÙòî»ï,Y²dâĉqqqÓ§OŸ={vÛ¶m¥;_¸p¡[·n•*UêÚµ«â³Ï>0`@Íš5“’’,ËÚµk|ðÁµk×>þøãEúä“O T­Zµ¤¤¤°°°´´´ýë_òo“““?þøã.]ºôïß?==}ùòåéééûöíÓú"Ôx&H“¡‡cŠP`ƒÚâããƒð%t|9"„˜0a‚ç»Ý¾}»Q£F‰‰‰7oÞ”¶Üºuëhذaaa¡ÍfkРbíÚµÒo‹‹‹êÔ©#ý¸qãF!Ä_|!ý(ÝyÆŒEEEÒ“ÇÅÅ5hÐ ''GºCNNNýúõ6lxûöm›ÍÖ©S§–-[J/Z¿~ýØØØï¿ÿ^ºç?þX«V-!ÄÊ•+ýõ×ððð#FÈÅ5jTttô?þ¨É!CÂõ?ww€¹;ÊÓÐcÚ³]Õ!KnqTý™¥ñˆaa%¼y>|úôéÉ“'GEEI["##Ÿ{î¹ÌÌÌC‡I[6lØ¿¹À‰‰‰¿þú«»'Œ:uªôº‡:wîܸq㢣£¥ßFGG7.33óèÑ£ö:tèÐùóç'L˜P»vmùyÆŽ+Ý ³X,{öì9þ¼´eéÒ¥999±±±;2Àïì› l¶;þ!”h{LY*"8†&¹‡:Ù±^½zBˆ³gϺümvvö¦M›NŸ>}òäI!ÄСC-v†*„ÈÊÊ’îoÿXÏaÔjµÊw8}ú´Bì(iÞ¼¹ü+Ù©S§„÷ÝwŸýFyøcTTÔ‚ ²²²âââž~úéO?ýÔ~$tËpçB² á™ZôvèMUùPcCøF›Ú#£££ëÕ«÷í·ßæçç;s\ºtéÔ©S×®]+ýjΜ9 ÷iÒ¤‰t£L™2Ê_·råÊö;%œ®‚#-Üè0¡;""Âùžö u̘1ýû÷߸qãîÝ»7oÞ¼xñb«Õúå—_ÆÄĨUc€KzËe’°b³énO]–Çb1×Û*¢Å1Ը̈ª·;>ûì³?üðâE‹¶¯Y³Æb±tìØ±Q£FBˆ *t³S·nÝ«W¯ÚG@ßHOþŸÿüÇ~ã±cÇ„V«Õ~ãÝwß-„øî»ïì7JÃ4…—/_Þ¿dddrròŠ+Ο?ÿÎ;ïddd¼÷Þ{*VTçüvÖÛÙÚ%:£íâùCp )ZÕÍŽO=õTÕªUŸþù?üPÞXTTôâ‹/=ztĈÕ«WoÙ²¥ÕjMII¹zõªt‡ÜÜÜÇ{lüøñeË–UøBÅÅÅ.·ß{ï½õêÕ›?þ/¿ü"m¹råʼyóêׯïp¥Á{ï½·aÆóæÍ»xñ¢´%''çí·ß–ngddÜÿý)))Òaaa:uB”*UJµ£‚`1I1"SCüy Û‚Aÿèª%öG«Øg]­Zµõë×÷éÓgøðá³gÏnݺuXXØÞ½{Ož<Ù¬Y³ !""",Xðøã·hÑbРAëׯ¿páÂÊ•+•\ Pj•|÷Ýw³³³åå{d‘‘‘óçÏøàÃ?lҤɞ={úôéã|Ͼ}ûîÚµ+!!!555%%åúõëiiiÒ¯J—.½eË–áÇïÝ»÷ÕW_ýâ‹/ºvíºgÏiÕq„ ÓNËÐ3‚~Ð8Tu jžÏ—y¨¿:4¬VkFFF bÏÛvÄ@¬ n?þøcµjÕZ%}àç!ƒÿÎOÞÑÎg2³¾ý5¦üÁXÌù3íY€®êPàm 4mjBHK#øó.fJ©&¨s ÐU ”Ñq”»å~ªŽB­\ "‚c 233­V«ÃUìiÒ(˜Õ¤.?M|ÄBÁ±©©©Z€_8‡IÐ!&Ǹ–››{êÔ© 6¬\¹Rë²ðÙ14èvV“É'Œ›mMŽàèZ¯^½~úé'­K&容Q·ÙÑp…|Cptíõ×_¿}û¶"--mïÞ½ZÌÅÝõNtÈèR‡©]kß¾½tc÷îÝZ— „¡R#ŽUÇ€°Z­[J\_Þù!`f†¸È²ZFáÎÑ2‚c@x{"s^¶&Ÿ8†¨IC\øÉù4mÚ(Ip•¹›Ò>µ"i…<ŽBÁüÐÖ&oC!Cë4AÃPø0â;Åe›+`,GZs8yó\êœI°ç¡Y0‚#M¹¼Ep ‹«#Ãàìß¼sC`G0#ͯb뾦C‹£[kÖ¬Y½zõ™3gÊ–-ûÐCMž<¹J•*Z ( Ž0b"`P´8º6þü©S§ž={¶uëÖåË—_·nÝèÑ£óòò´.P95üêÏ0!Þª€þ]ÈÈÈX¼xqLLÌÖ­[/^¼mÛ¶?ýéOÇŽ›;w®ÖEìx¸‚½€€ 8º°zõêâââqãÆÕ¨QCÚò /TªTiË–-ÅÅÅZ—€)Ø7"ù+¹rti^%"8ºpàÀ°°°N:É[ÂÃÃ;vìxùòåC‡i]:ÀŽÍvÇ?‰Ë”A£#œ¸|ûí¥ÁÑ‘Íf;sæLÕªU«V­j¿=>>^qá­  ôi>å9²#Q0fU;ºyófQQQåÊ•¶WªTIqåÊ%ObµZ¶dddh½g0 ®þlp¡—Ýá] £p>­›ÁÑ‘4uº\¹rÛË—//„¸víš’'!&ð™Ëä@CΧuÓFIºªU®\Ùb±Ü¼yÓaû¯¿þ*~kwôŽ^@@Ðâè(""¢R¥JÎ-‹¹¹¹Byž5 w„E#sntäxJ¨@[´8ºsùòe))ÊÎ;'ýJëÒ0 §<€;Gyä‘¢¢¢¯¾úJÞb³Ù¾üòË*Uª$&&j]:0)3L6tŽàèÂÀÃÂÂþþ÷¿Kã…‹/¾téRÿþýK•*¥uéÀŒÜeD²#LŒqt¡V­Z“'O~ë­·z÷îÝ¡C‡óçÏïÛ·¯iÓ¦O=õ”ÖE“r7Ùœ~| ˜Ž®9²zõêëׯ߼ysllìO<1nÜ8iEs"8ºÕ«W¯^½zi] ³bæ$'L64Gp„þ0d 0û½ç,èò·¤I h˜# JBsËÿ ‡êô¿v9>@à¡3|åC‡x[ê&‚#t†N&èË`BZQI€j—ã£s´àca¤Iãíô€j7‹…Cf´8Bøþ€®ø÷†”s$M,.¹¬]¯ªœ/ Ãáýoh´8B—8@çܼE9#êßFD££Q $ëzy~s7ŒÓ¤Ä¿Úõñ!ТQ@Nk¤Uí:gzŽs¸»z$ 1Ž ÿGì&ÄgÄ@hq€âŒ¨[ !Еl\GP“»FG–éŽ $ECà0žíÐh‡)€Ž@ˆ"•%ñ% ÀlŽ€|ÎgÎm–ϘÀ>€WXŽP•Ÿ]_jõœÑ‚#àÕóY@[?H“ÿµé6ŸÑ'ðÁP›Â|æ|7ƒLŽüàçzÁŒwDIÀĘ<µUéç+Y?% )‡?oYbþ «P•n8à7‚#àb"}sù-ÅW|FpÔÆW2 Dµ1z€n¸üBâ[ >#8~àÛ`&̪TQÒç pЇuÃø@ÃGÀ?føfõÀàøC-G ` ú7¾»I˜Ú@`0Æ ç%w08‚#hnÐU „¡{{ý¼7<`Öƒ#8pâó$LçÄI6òÀ(KÀoŽ@¸l´3VD0Vi v\ÆGpÜ WÑ[†î × õc&|© WüoÒÃ9Á ë™ Ç€¡0«PÆpýŒÁ_ˆkâzFU˜›óGÐp_*€ 8.ðuŽà J0ºª'!°Và ¹&®gTˆYýe8å+DEN¼ýk”¿¿ [tU®ý«šá†€Î8þÜ}"¹^)ôŒGÀ b}`Õ&èÁQœgQò¡¤}:GW5!8 t@çŽèˆòi4@ðÐ/R#t…É1è aºEpBŽÃ´LNA•ÐU „çÅfUÃø~õ‡~‚š;_èI@—æ–×iU÷]¯ÿO9t‚àÓpø–õóK×þR_|ã™~b¢~J}Óÿ—ïe(DW5Ì$p_ê¤SÊ=׆žË†À3DFdB|Fp¼œ‘mÎ? ”.§ÔègrŒÞ0è €™ƒƒ©óø© „]MIÑÂbਅLÝõ WHÀ7G@%Ahn BFôðºœjeø; !ŒàxOÃÓë¿À|Œ¸î Î‹øŒYÕ€OÔ£íÛ‹í%´:2ut†àø*@Ë©ÉO®|;0þ”4ApôJ“FM _×ËîIà7ü¹h‚1ހ޹k_ ôú/='h~,ôuý 8JÁNÿÓ¿!8ðHÝ`Gw3|€NPÞˆ¨I°s™MÍÐ=©ÿu¢Í$äßn€*˜à7îRc Ó$§hèã€K´8¡NùêÉî6W1ØyµvºZ¯«Ï¦$Ör×b" -Ž€)¹;O?µ“ W¤IÀ-Ž€))kª» 'EÝ^®Îeã« †ßp4gGwâl óÑðúó€±Åô0T·2ègz²NŠ¡AX˾âh._¿ÇÓç&}žuÒe¬-j@78€LŽAˆ²Xîø§ÊêÅ"„° lê?§Vèr…H€OŽ0?S‹V *x-K²c žÓ«èÁ¡Hõ8â®*˜mW®^Ë~?ÕÊyöÏðìœ ´ÙîøðÁ¦r[ÎûãÎs~Õ²#‰ Œà#Pe´¢ŸÁECåî|E—/ïOÎsùØ£GgwúǬjèžCšQ2×óšl>/ £‡ ã”]¶Ú¼/ª»Ôؼyó`8´8– 33Ójµ°Ñ>ð¡QÍCd1x¶*íŽÁHã£Å±©©©ZÁÜT_¹Ðà1Ñõ¾º侮Ý1¨©‘5ÀÀÈޮ忿ž:ujÆ +W®Ôº,<ã®Dý[ó9;j™FCpt­W¯^?ýô“Ö¥€›ÑŠª‡<ƒ¦F‡ð>;jßCmÜȦDptíõ×_¿}û¶"--mïÞ½ZêñÉŽÜp>­›6Jš:8.Y²Dþ1<<|ôèÑZ Þð-la¶?;¢Ò3Ø_“P…Ô¨¼ÛWú•s1m`¦Ž ,ŒŒŒ$8‰W”ѧ€¥(—ÙÑú©Q½ò›Ë ÁeêàEŸrHQ’WŒÒG”ì¨Í¸FwÍ«Á< z›©aêà㬯˜ÊãðÝ…6ŸS£o󣊡·¿@—¸V5LÆ(ùÀÛrºOiî®[Ý¢E ¯K¥<¯{.¿óoÕJ^±Ù~ÿP€G“ºW”Q%7ø¼. ó¾øVÅ«|ÛÿÖ¦üÝeT«ü>0ÊÀG–ÏÃÔtØG˜!wÏiB›ýWXí,Ó zâé:¶ðÕjeÎé¨;hO¹×貇ڦ¤´îbhàvSI£²þj€˜ö\ÏGàNËÿŒÉÃl××­¾ÔÃÂÝÚ Ì„àxdÀìXâj—ÁÊâê‰îÐ*ÎhQ¶ŠîæPR#c;ÆŸl¡på¯g­}bV>îÓ8GzÃZÀ[G„οà5œYlGéz6›°XAS´å0÷\Éáþ%°CLH ·`´8Âô º°† (zn¦u^O•.lZÑ@hq„a©ØÐb”°hÜbËE¥‘fE:BÁ€÷öA{û—´ßîCWxÈs¹4=5£{Œ&€AZø&zmÙP¾»‹ô8?s¯„<­{f”q¸`,Œq„añu«g~It7‚“±îpÅeãMŠPBp„‘t^K@é?Zù\½í ŒW«é:GW5 ްhÏ(§ ]Ìúìgüãnü`8´8!D?1ËsI¤³¨óÅN<ŸZõ³w`VGA§¼í¥ÄHÒ$ ÂÝTÞÂ0ºªÝój¬s—˜Vç%wk7ºì´ó­O«]ÓI À賆Ñ}s¾ ±’ì¨Êk©•‡žGõ ×AÆiþÑü- øƒ®j@ÇB2£¸;m·/$¸B‹#`4þ¯zí²eÑe÷±ÿ—™Vø ÒÝôß§óâ@€#Såz!Á¿þЇ€¨ó&FýG[$‚# c^]†Xaþ hîQÞl©ó€è•PÚðˆ1Ž€¡Øg/£Jš4IS1€‰Ñâè›»¾QuSšËaŽÞ&$ótã’˜ÁÐ=ucŠqÇ´FpŒIÅæ=ó¢ŸË³°6èÁ0,ŸSZ@™ŠOüéÞŽ@¨0tÆ2ÊàHUÖ?Ã"8FÙÅCjÔU££—€ÐÂr<tŒdzBp )#vR®ð ‚#MyhS¤¹t†1Ž€XAÆ~.â£U!õYN$Z?ÐS 0ZU1ÓÖ7†¨4‡FGC”TEp|Es£ ˜]Õ€¯È“!8ª"MBÁð1`&ŒqüCv˜ÁfàB ]Õ@`8̹f 6Àøhq‚…H€ÁÑâ@‰í‹4@ ˆàEèªÀáÚt.ixqB‡²ÑoP†G 0JLc:I‚~s€R´8c Îh’¸B‹# ý47zÞ®ä·Ó Å 4Ú¹|Yb㨆#2ºA‹#`2ÎùDP†à@Â%€®jÀŒ<§@%k !Ș®@Ž0=NÉβ#uBav.5$' ¢žð. Œqb8-Ðâ8¡9ǺõõƒÊ Z'œ’¢Ñ L†àscQC刉Zá] @7èªô!8½À>Ï•öp­BBLPÉôàÓÓç)9ÌŸ&C%×*„:ºªB/°Ë%]¼BFÓ#8z¥Išô QL†®j@¯tËtX$@Ñâè€VŒ ðÁÐ%Õ#KºüFW5 AˆqîfF  Á0Z~ «Š ]Õ&8×Q -ŽP„à 0ü¿È!@gŽP„àEŽP„à 0¸È!„‚#aGC#„Z -Ž®ååå­ZµjíÚµßÿ}… âããGŽùàƒj].Í](,,1bÄ‘#G*UªôÀܺukÿþý_ýõرcÇŒ£ué´AptaõêÕG޹ï¾û–-[%„8}úôO<±pá‡~¸qãÆZ@ŒqtaëÖ­Bˆ—^zIJBˆF=óÌ3EEE{öìѺtÚ 8ºpîܹråÊ5mÚÔ~c£F„.\кtÚ «Ú…E‹ED8ÖÌñãÇ…uëÖÕºtÚ 8ºÐ¤I‡-ûöí[¼xqdddŸ>}”<ƒÕjuØ’‘‘¡õn_8ŸÖM‹àX‚¢¢¢+VÌž=»¨¨(%%%::ZÉ£ˆ‰„ çÓºi£¤©ƒcaaá’%KäÃÃÃGm‡ýû÷Ϙ1ãìÙ³±±±³fÍj×®ÖEÐŒ©ƒcAAÁ‚ ä###åà˜ŸŸ?gΜÔÔÔ2eÊ<÷Üs£F’gX˜“©ƒcTT”Ë>åâââ‰'nß¾½K—.Ó§O¯Q£†Ö%О©ƒ£;©©©Û·o:tèôéÓµ. €^°Ž£#›Í–––V¡B…çŸ^ë²è-ŽŽrrr²²²¢¢¢† æüÛ¾}û>ñÄZ—@GGßÿ½"///==Ýù·L¬¦Epttï½÷² #€3Æ8@Z ³XîøÑfÓº@(B‹#\©Ñåt‰àEŽ@¹k\¤Ñ`G ˆÜ gd˜#ÀŽ€ÖHƒ 8ÁELËñAGv-ŽP„GÀ8X9 )Zƒ`É€ÖŽ€a%ÁEpŒ€ŒÐ‚#` gèÁ0,Ò$ ¸Ž€AZc9À8ÈŽMÑâEŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽ®]½zõ•W^éÙ³gË–-»ví:~üøÌÌL­ e^V«Uë"„êSuT©ê¨RuQŸP ÁÑ…ÜÜÜž={~üñÇBˆÎ;W«VmóæÍ½zõJOO׺hš!8ºðÎ;ïäää<óÌ37nœ?þÊ•+ßxã™3gj]4Í]øæ›o¢¢¢ž}öYyK¿~ýjÖ¬yüøñ¢¢"­K ­  G•+WŽ/S¦ŒýÆÈÈÈüüüüüü¨¨(­  ‚£ iii[8••Õ²eKR#0-‹ÍfÓº úuøðáuëÖ;wîðáÃuêÔY¼xqƒ J|“×yZA´8z’‘‘±víZ)[7mÚ´téÒ ¥uÁÔgêÇÂÂÂ%K–È?†‡‡=Úá>6›íÒ¥K6l˜;wnõêÕ7mÚT¾|y­  SǼ¼¼–-[Ê?FFF;vÌÝg̘ñÑGÍš5«ÿþZ@¦îªŽŠŠrîV>}úôûï¿ß±cÇÇ{Ì~{Ó¦M…ÙÙÙZ—@¬ãè¨bÅŠŸ|òɺuë¶gee !âââ´. €6ŽŽbbb¬Vë×_½k×.yãÉ“'W¬XQ¾|ùÖ­[k]@m˜zŒ£;ÇŽ:thAAAbbb:u~þùçƒ !fϞݳgO­K  ‚£kçÏŸûí·ÓÓÓ³³³kÖ¬Ù¸qã1cÆ4jÔHërh†àEãEŽP„àEŽP„àEŽP„àEŽ*»zõê+¯¼Ò³gÏ–-[víÚuüøñ™™™ZÊØòòò–/_.Ui‡FµgÏ­ "233­VëÑ£Gµ.ˆQ­Y³fàÀ‰‰‰>øà‹/¾øË/¿h]¢Á;S|yªŽS¼ 8ª+77·gÏžü±¢sçÎÕªUÛ¼ys¯^½ÒÓÓµ.šQŽ1â7ÞøùçŸxà»ï¾{ÿþý#GŽ\¸p¡ÖE ©©©ZÁÀæÏŸ?uêÔ³g϶nݺ|ùòëÖ­=zt^^žÖå ¼3ýÇ—§ê8ÅÿÔ3sæÌøøøyóæÉ[Ö­[?xð`­‹fT+V¬ˆOJJºyó¦´åÔ©SmÚ´iܸñÿû_­KgT×®];pàÀË/¿äÈ­Kd<'Ož¼çž{:tè-m‘>þ¯¾úªÖE30Þ™*âËSuœâ%´8ªé›o¾‰ŠŠzöÙgå-ýúõ«Y³æñãÇ‹ŠŠ´.!mݺUñÒK/EEEI[5jôÌ3ÏÑçâ³^½z 6låÊ•ZÄÀV¯^]\\Sò.…o"""*Uªäܲ˜››+„çYÚâË3pÌ|Š'8ú"***##ÃaãéÓ§ßÿýŽ;>öØcöÛ¥ImÙÙÙZ—Z×\V©¢¸¸xâĉ۷oïÒ¥ËôéÓ9%+ç®J¡Š˜˜˜3gÎäææV¬XQÞxîÜ9éWZ—àËSeœâe¬ã¨šŠ+~òÉ'ëÖ­sØž••%„ˆ‹‹Óº€†”ššº}ûö¡C‡.\¸/>èÇ#ÈÉÉÉÊÊŠŠŠ6l˜óoûöíûÄOh]F˜T­Zµ&OžüÖ[oõîÝ»C‡çÏŸß·o_Ó¦MŸzê)­‹ðåœâ%G55oÞ|Ó¦Mo¿ývzzú‰'jÖ¬ù裎3FZ¬Þúþûï…yyy./!ÏÜ@hkäȑիW_¿~ýæÍ›cccŸxâ‰qãÆ™gf%ôŒ/Ï@à/±H ž1ÆŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠüÍž:"ÙbIEND®B`‚statistics-release-1.6.3/docs/assets/kmeans_302.png000066400000000000000000000333331456127120000221360ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A6¢IDATxÚíÝy”õ½7à@ad "¨WÜ"ŒˆI4îÑј˜#ÆårQñfш&^—„ä;šˆ\’`ŽxÍ®‘£®b¼AñÊHA9I\QAafúý£’J§gjfzºªºžçÌ=5Ý=ß®®éúÌ÷Wõ«šB¡À–tKº²Ap Á€XGbˆEp ÁÒhéÒ¥5›Ñ­[·ºººÓO?}Ñ¢E‰Ô6iÒ¤°’ãŽ;®’¿÷Š+®ïI'TƧ3gÎ9çœSWW×·oßm·Ýöàƒþò—¿üÌ3ÏTò¥UÀoûÛ_ÿú׿þõ¯×®][®çŒ³%´º%÷èÑcРAtÐW\Ñ™zºâEmë‘t@û …—^z饗^úÍo~óë_ÿúè£Nº¢¬Z·nÝW¿úÕ_ýêWÅ çÍ›7oÞ¼_üâÇwÜ/~ñ‹Aƒ%]fyœvÚiï¿ÿ~?þxâÛLSSÓ›o¾ùæ›o>÷ÜsS¦LyôÑG>øà¬¿(È ÁÒnÈ!µµµáíÆÆÆµk×~ôÑGA|ðÁ&LX¸paÒfÒ{ï½7jÔ¨â®m·nÝjjjšššÂo{ì±/~ñ‹O<ñD¯^½’.¶JD[ò|õß~ûí1cÆ,_¾¼gÏžIl™¡jH»»ï¾{Å?¬Zµê­·Þ:õÔSÃ-Z´è•W^IºÀLúÆ7¾¥ÆQ£Fýþ÷¿çw6lذpáÂÿøÿ—?óÌ3W]uUÒ•VhK^³fÍÊ•+¿úÕ¯†ËW¯^ýãÿ8éê€XGȘm¶ÙæÜsϾýÛßþÝnnn¾ï¾ûŽ:ê¨]vÙ¥W¯^»ì²Ë‘GùóŸÿ|Ó¦MÑ}Š|ûí·'L˜pÀôíÛwŸ}ö¹öÚk‹ïZ¹r娱c ´ýöÛŸ|òÉóçÏß\a|ðÁĉ?ûÙÏ2dÈ!ÇsÌ¥—^ºnݺâûD¿}̘1/¿üò¸qãvÝu×vÚé´ÓNûãÿÁܹsÇŽ»ë®»n»í¶GuÔïÿûÍýº¯}íkáS :´xù_þò—èXº%K–´úØÅ‹OŸ>=¼}ê©§>ñÄŸùÌgúöí»ÕV[}êSŸºÿþû¿üå/‡?½ÿþûKûúë¯_xá…‡zhß¾}?þñŸrÊ)/¼ðB«¯1æn×666^yå•;í´Ó•W^óM¿ä’KjjjÂ!Ý Ž9昚šš>ø ~íÝâ:tèO~ò“èpÕk¯½¶¸¤N¾¨8@€ô)Núh—]v öèÑãàƒÞu×]‹Å…õë×G?êÕ«×ç>÷¹/|á Ûl³M¸dûí·_·n]ËßÞ­[·O}êS,Ù»1âßþíߢo:ꨒdžÁ±±±1J<×]w]´N;í´pá•W^¹¹Õ»çž{†÷9õÔSã¿)ï¾ûîvÛm>°¾¾þª«®:í´Óºuûû¸Í]wÝÕÞ5ÜÞ'Üi§¢' ƒcœ7ý7ÞX¾|yôvüüç?_¾|ysssüâo íÚ’ …BssóÖ[oþô{ßû^ü-¹óèÁÒ¨xw»ãŽ;îñ»í¶[´³2dÈÒ¥K£‡DGŒM˜0!Z¸ß~û… o¸á†pIq¬ùá.üóŸÿ%›)S¦„ §L™.éÛ·ïܹsÃ…]tQ˸põÕW‡Kúõ륢ŋG=Å‹/¾¸åoä‘G …ÂÆëë룅·Þzk¡Phjj:묳Â%ƒ *yl …Âý×…KŽ8âˆpIsssôK—,YÒêºmnnîÞ½{xŸ‰'ÆS.½ôÒðQÅ«þð‡áÂwÞ¹½k¸O¸×^{MŸ>}îܹa§9æ›^(úôéÓ2½Å, þ–Ðö–Ü28 …wÞ9üé7¾ñvmÉ›{Qñt€c!íþú׿.ÿ‡+V¬_¿>‚=÷ÜsñâÅ{íµWt·±cÇNŸ>}úôé^xa¸dݺuრxë­·Jžvï½÷Ž‚×ž{îyÄG„·_}õÕðƽ÷ÞÞ8ÿüó:è ðöõ×_?xðà’§zä‘GÂ\pÁÞþÄ'>ñ­o}«ä‘ý÷ß?èÜj«­ÆŒ.0`À\A·nÝ¢€ÞyçÍ­™è>Ï<óÌÛo¿Á‚ Þxã FŒ1räÈVõÎ;ïD§NG©%4yòä–“>ýôÓáOgΜÞ8ûì³£‡|õ«_ cèÊ•+/^Ü®5ÜÞ'Üf›mþçþgܸqtÐî»ïÞ7½DÌâo °í¶ÛF•‡7:ù¢:ùp m¦ãLzñÅëëëŸ}öÙ¾}û†K>÷¹ÏAðöÛoÿîw¿{þùç,X0þü÷Þ{osÏPrHb4dÜÜÜÞx饗ÂÅÓ;o½õÖÇ{ltfI¨¡¡¡¸†È±Çö´–-[ÖÜÜAP<M6´ãŽ;ÖÔÔ”,lá‡:tèÐU«V555Íš5kìØ±³fÍ ´¹£Ü‚ ˆZ¶A´kâèh…”¼ÌȲeË>ùÉOv` Ç|Â}÷ÝwÇw,¾C{ßô޽¢ø[B¼ùæ›á~ýú•åEuòá@ÛGH»âÉׯ_ÿ›ßüfܸqÍÍÍK—.½ãŽ;¾ýío‡?Ú¸qã%—\òƒü ±±1\R[[;xðà5kÖ´ú´QDkõÛ÷ß?z`ÉY%g1¯[·îÝwß oï°ÃÅ?ŠÒá‡~øúë¯ÿ´ä×…Š“e555cÇŽ½é¦›‚ xôÑG‹ƒcÔÅl©gÏžÛm·]ÿüç?ÿ¨_¿~ÑÑ{kÖ¬‰ÚTáËŒÎáÝœ°Ùs wà [ÎFÞÞ7½Äß:æµ×^ oDG¬væEuþá@Û UC–l³Í6§žzêa‡~û§?ý)úѤI“n¾ùæÆÆÆÝwßýöÛo_´hѺuëFݱ_T[[µP²Çbb¨_¿~ýû÷oÏ TüíÖ[o„Q^Ñhõc=öÞ{ï…ÃÊmŒS‡¢£*zè¡âWwöÙg‡ .[¶lÀ€%/3jîΚ5kyk¢órâèÀ¶LÛyÓcKè€9sælܸ1¼}àvþEuþá@Ût!{¢ÃÂÂûB·ß~{xcÊ”)ŸÿüçÃÛ«W¯îدèÞ½ûn»íŽAÿîw¿;ôÐCÃå…B%TWW÷ÜsÏA0kÖ¬Ã?}úôéÓ'Œ>guÖ½÷Þ[SS3sæÌÎ\*ã;ßùÎ=÷ÜS(ÞyçC9ä ƒZ»ví‹/¾Øòžÿïÿý¿Ÿþô§¯¾úê»ï¾{øá‡}ôÑÝ»wüñÇÃ\»Ã;\qÅ]·6N=õÔk®¹&‚ðĽöÚ«ødó͹îºëfΜ¹bÅŠ ž}öÙÏ|æ3ݺuÛzë­£P~È!‡<ûì³Å¹ä’Kþû¿ÿûí·ß~衇êëë?ó™Ï,]º4:aü[ßúVË9)ÛÖÉ'l×›>`À€ðžßÿþ÷—.]zá…nµÕV1 ˆ¿%´íK_úRxfÒ|P|TÃvÛm÷ýï¿,/ª+þ€‘ô|@@+Úžýnܸqá†ÚÔÔ.Œfì¾ûîGuTxûË_þrx·–³!†¢¾Ý·¿ýíháW¾ò•’çìÝ»÷±ÇÞ.ž½oÞ¼yá1%vÙe—?üáÑÝZýí?ûÙÏÂ…{ï½w´pΜ9áÂ=z´]y¡P(žáùª«®Š¹’_{íµ#<²ÕÆN8áõ×_oÏ™3'zÈo~ó›’cCçž{n8ût{×pgž0þ›^¼Í„¢‹¬Ä) ][B«øì³Ï–ñEÅ8Іª!{¢ÉSV­ZM×|Ë-·|âŸþqE–o~ó› ,øâ¿þôÞ{ï&U‰ï®»îŠ®Î7xðàN8áñÇ5jTË{xà‹/¾âŠ+Ž>úè!C† 4¨¾¾þ²Ë.ûãÿX|Ôc‰2YÐæùÔ%† òä“O>üðÃcÇŽÝyç{öì¹í¶ÛŽ5êg?ûÙC=4xðà–×â=zô¢E‹¾öµ¯}úÓŸÞf›mvß}÷“N:é©§žúñÜêyâ[ÔÉ'Œÿ¦ßrË-ãÆÿüóO>ùä9çœÍ´—6Ï>ûlxÒÆ^{íµtéҤ˩¨.zÓ[U±-¡“/ª’ëòFp2ïæ›ož0aBW]uÕĉ“. j99ȪB¡pÇw¬Zµêæ›o—lñ|j:CÇȪ¦¦¦âùO>ùä3f$]@5Óq2l›m¶ill:tègœqÉ%—$]@•Óq Óñ‹à@,‚#±ŽÄ"8‹à@,‚#±ŽÄ"8‹à@,‚#±ŽÄ"8K¤ H© 6Üÿý>øàêÕ«ûöí;|øð3Ï<ó°ÃKº.€ÄÔ …¤kHÆÆÆqãÆ-\¸°ÿþûí·ß‡~8þüM›6]pÁçw^ÒÕ$CDZ<ðÀÂ… ÷Ûo¿»îº«¶¶6‚eË–qÆS¦L©¯¯1bDÒ$À1Ž­˜9sf—]vY˜ƒ 6lعçžÛÔÔôôÓO']@2ÇV¬X±¢wïÞ#GŽ,^8lذ V­Z•tuÉ0TÝŠ;GÒ5³téÒ †štuÉprL,sçÎ=ï¼ó6mÚ4{öìAƒµ}纺º¤ërç¥ãÞþÛ¯'] äBCCCÒ%$@Çq šššî¾ûîn¸¡©©iòäÉ[L¡|nL]§®®Î*-#ë³ì_¥5fG·«ãÍM|•Vë³ìrÛ$rŒc[æÍ›7zôèI“& 4è®»îú¾tE­(L®Oº t[·qãÆo¼qÚ´i½zõ:ÿüóÏ:ë¬è k€Êyv {®9_ P‚c+š››'L˜0kÖ¬cŽ9fâĉƒNº"¶¬fÂlÙº”àØŠiӦ͚5ëôÓOŸ8qbÒµ°Ňx]Ê1Ž¥ …ÂôéÓûöíûÝï~7éZØ2]F¨Óñ”Z³fÍGQ[[ûñ¼åOO:é¤3Î8£ígpòT·Üîë U—Z½zu6lX²dIËŸzè¡I Á±Ô§?ýé|þÐ6Ç8‹à@,‚#±ŽÄ"8@2j&Ì6{9Ù"8@¢È(;’!‚#±ŽÐ>ás';…Ñ•]2‘  ƒ:Ÿ¥F²Å•c¨QŒ«XûÈGhy‘ÜÒq ³*ßêK\~^)蔲Ì&Sü$2¤–à@§&×§d&B‰ºšc )Ë &¤Ygr›Ì™ ãÿ*_:¦,ëÍʇôÓqpñ7þI_Ú 8ÀßùÚf¨¨L Df¢H€¤ŽòbbÒvhit†xzJ‚T1T @2Ò9.ìúÑÐGÈ»^û‡ŽÑqf~ÇÜŠ2а’,}Ä'8iaï•CÆ…ÓÀ[@|‚#ö^,ƒl‘à$̾ §õKLNŽ’g ‚#ÐYÎËÎ CÕÄ"8‹¡j ³ŒPç„à@&9¨*Op {R8]¼ K8Æ€ìIs8Ka¨…rȰ&È–åb¨€LjW>+îvQ°“ÉÁ€.çø?¨†ª¨~Q`ÍOr­™0;üJºªŠŽ#¹ŸÈ8A‡.£ãÕ&W)™JÒqȶ°·”ò òòª’uNWÐqȰhDÒÐ$P‚#±Ž–Ó…9Æ ÛDF btˆEÇ€|qè0GbˆEp Ç8tŠæ2Ç;¦ãÐq®×äŠàÐqzWéT3avø•t!PmG€2 ÞSªŒŽ#@*¸JMõñžR}G€TБª>ÞSª¡j€Êi{àRΨ>ÞSªŒŽ#@ bV±š ³Ã¯¤ ò •²#ÕÇP5@åÈ‹¹’ª·;L±©*‰,¨œd—¾@½OÊÅP5UŽ$Ë(oY‚¬|:Ip D–4Ha7”l1T @%&×ËŽI‘)Á€ _ ëG «¤€ \hû’-@'åä”yœT?‡ÖA—ŠþÄü­U=Á¨~º e!8nÁ+¯¼RWW·hÑ¢¤ :¥0¹>üJº¨BÑ_–?±ªçÇ-˜6mZÒ%@Ú‰Œ9!8¶nݺu/½ôÒÃ?|ß}÷%] @~9« REplÝèÑ£_{íµ¤«Èµâ3-j&Ì–!q‚cë&MšôÑGA0}úôgžy&érò¨øb3)OY©:IplÝá‡ÞxòÉ'“® ¿2—ÃtF©n‚c—¨««+YÒÐÐtQt9©±*µÜ­ç–àØ%ÄD€\‘«[ËÝzn£¤yˆEÇ  œäŽ#@9%r­Þš ³Ã¯¤_=PåG€r*{ÇQ"ÒCp(ƒ.¡Ž"£ì¤cÊÃÑ@ÕÒ+ºtJÛ©Tf*£¦P($]Cµ©««3#T±Üîëã@G8krÈP5@f¤g¶Èâ³v,&=+rBÇ {´ú¬H„à=‰7Ø¢¬$ñ•°E&f§úªÈŒTE¥4“† WtˆEp CÕÐ%Œ¤S}tˆEp€r4´Ap€¿+žØ<éZ GbàïÒ0±9¤™³ªàŸDFhƒŽ#±ŽÄ"8‹cªV4§L%Û ©#¡* Ž9Õ±2%Ó&’˜!G€RÅéGò蘚 ³­:¨>‚#@åä§Võ/òIp(U˜\_êU¾þ¬¯±Ê«Ž-üZ‘‡y¿Æ¬¼´âKcg¥frNp §òs䔋y*§0¹>üJºR¡xKHÉ éÐ6GÊO3¯½¬(2AÇ /j&Ì®L[Kó,¾ÄóbŶ ªCM¡PHº†jSWW×ÐÐt¥*ÙÔqÌS–vXn÷õ†ªr¡Â]¥.M!R)$ÅP5@.TeÆ2ÆÚIÑVQ•›]AÇ /ª/Tß+ª<ëvÈY’b¨€XGbˆEp Á€XGb u®ã %GhEeGˆ˜h‹‹ƒÑq  ÂQÝjÛuç–ªæÍ¥Ãt u"c +Á€v ;OÅ1¢0¹¾åBªƒ÷”ˆà@ûŸ5R’“.­­jÃò®!8 :>Oº%µœ@ûdô¬‘Âäúld*ì’:Ž´[†XI©ª\&×û×’¥ã¤ˆX@¨Š·„*~iäà$Ï®  U‹à@,‚#±Žy& 2œÙ&2ÒfÐÚEÇq³~ùË_Ž3fß}÷=ì°Ã.½ôÒ·ß~;銠-$Y¤_Ù"8¶î–[n¹üòË_~ùå8 OŸ>3fÌ?~ü† ’® 6KLj̉"£ìYa¨º S§N2dȃ>8xðà &Mšô‹_ü⦛nºâŠ+’®þ…¼@Åè8¶âhnn¾è¢‹ÂÔÁÅ_Ü¿ÿÇ{¬¹¹9éê .ƒ€lQx¿¤þýˆ~¯ÿ +ÇVÌŸ?¿[·nGyd´¤{÷î£FzóÍ7_xá…¤«ƒX ’ .? Ùb¨ºT¡PX¾|ùÀX¼|øðáA¬Zµjÿý÷OºF œò ¤àXjýúõMMM (YÞ¿ÿ Þzë­8ORWWW²¤¡¡!éWF¾&ׇ±CæÈ(­bH–»õÜK…§N÷îÝ»dyŸ>}‚ x÷Ýwã<‰˜HˆŒ™E q-wë¹’Žq,5`À€šššõë×—,ÿý÷ƒô*Æ?@zè8–êÑ£Gÿþý[v×­[Atž5@W´ÑqlÅ!CÞ|óÍ0)FV¬Xþ(éê’!8¶âè£njjúÃþ-) O=õÔÇ>ö±}÷Ý7éêr-œ Ô Á±cÆŒéÖ­Û~ô£ð¸Æ ¦NúÆoœrÊ)[mµUÒÕäWq^”¡òãØŠwÜñ;ßùÎõ×_ 'qį¾úêܹsGŽyöÙg']@®ŸlîP¨¼šB¡t )õðÃ?ôÐC‹/Þa‡<ðÀ‹.º(œ‘g‹êêêLÇU,·ûzÇÍ=zôèÑ£“® -ã@,:ޤ”Ø mGÒÈÉ’7¼´º5¡2 U“F>úI›hî@ÿÕt…h­v~õzƒ Ké8’R²#Ð>: K™Ž§ür{Š>T·v¥vrà5‡¬±¼ÉúѹÝ×ë8Ä÷f´´2š輚 ³½ûâG€®R’ % -IÙ¢ãÐUŠ÷ˆò"“3Jp(³V÷ˆÅYÈ(Á ¢4ZR¥8Í{k`‹G€ ‘K€¬sr ù¥y±âÐq ×DFˆOÇ€Xt!IY¿v¹¢ãeÐùY»b¢ÓMP^‚#tVY’Y—veGÊBp„²Im>3@Y8Æʦù¬K#¼@y ŽÐYò9a¨€XG¨~æX ,Gè,³Þ)}@ù¤¢“G(ŸÈT7ÁÊÆY2@:EŸN>¦è$gUCgù ÒÏ'e¡ã@,‚#Ð:güPBpZáLZˆEp„.”ÝÑ^ç`Ð’à]%룽…ÉõR#ÅGb¡«äv´7»ôà•@¦ ŽÐ…r8Ú›õúб~€,·ÿ(€êà’ƒ°YQOÈ>>¾Âäúp½Yi­²ZrΧ Y'8Bëªc$1‘ gP­ UCëª ý8Ü€òÒq„ͪ‚ìe$8BÕr¸!¤?F²Np„jf/å¿>ÒÉ1Ž.P&µGb ]r{ÁRÒÏ1Ž:"#é¤ã@,‚#±ŽÄ"8‹“c  Es¿9¾€2Òq„jSú ì˜âs´;3¯dç¥êtf+:ŽäKªG¶Ç£4¬Æ4Ô7:Ž@»i­ÓɦU¦æ¦*Õ …¤k¨6uuu IWåW|$Ÿ¤  9</or»¯7T ”ÃäTüJó󪈪†ÎêÒѨ¤F»Œ²Ag8€j%8BguÝŽ¡Óu»4Ø9M:¯0¹^j¤úª†Jp—¶œ¡rxp¤Ž#¤WR£]FÙh•Ž#¤Z«Ñ-ºæX×;‘€–GȤœ;£“©"8þy€4pŒ#±è8•f £G Tłݧ’,RÅP5°Y]=¸\¸HOÊx; m:Ž k"vQ°“#ærO‘¶HpJI0䜛c¨¨~áøc ûI.Ò“NÞØG€$É(éá½€-!ìèªà™Ï:™(;or¨J‚#ÐA­Áh„ºx¨Z^¨‚#´žuÒ/ÙjÛhÓ¶œ5©ä[­G€Œrr AÒ!,¢5\œ8­ör)âÖ*ÐuG2/Ïçð&øª£kùäsÍäSM¡PHº†jSWW×ÐÐty¡Ñ’E1gjçJ'9*)·ûzG Òâ„A¶—ÈT€“cȶŒž×ÂyC©>&¥¢ è8’yFjur¬ys2&KÖ93Œì¡ ¥íèÀ2Öã¤lªƒÿÈ(CÕPmÒ<–æÚ «µœâ2Gp„j“ž=SËJ:_›£ZÉ:›.™f¨ªVöO¨a‹ãÚix]жa²Kp„*”‰ÝR«ÑX6@šª°¹€˜‰È [:ŽÕwftÅÂV”tu[–¶óÖ*Cp„´«ä4•ÌCÙ\ÆÓÜ2T Ð>Ù¼¤ãiê–1¯tig1øUüÒÚ 8B´S:™Ò\€øGȵ’Ô(DÐÁòH@ G Ì¤R€j%8B¶IiTŒà¤HÎÈÈ.ó8id’m€ÒqR¡$)¦¶ãX}—ˆOÇH^Vú‹Å—Lº€Ž@òŠx…Éõúyéd¨H…L„Å®¸ü#@†Ží 2y&8Bg™A€œpŒ#tŠ“$ÈÁ:E—€ü0T %;:ŽÄ"8‹à@,‚#±ŽÐ…j&Ì6_UCp„®EFÙ€ê`:¨˜ ëGè*› ˆ5fËŽd‘¡j¨4©€ŒÒq„ IU^4n@è8BîÄúèèÑ£—,Y’ti‰[ñÃþpíÚµçž{îoûÛ[n¹å¾ûî»îºë¯¹æš¤KHŒàØŠgŸ}¶¶¶öë_ÿz´ää“OÞ~ûí—.]ÚÔÔ”tuÉè‘ti4`À€áÇ÷êÕ«xaÏž=7nܸqãÆÚÚÚ¤ H€àØŠéÓ§—,™?þÊ•+÷Ùg©È­šB¡t éµ`Á‚3f¬X±bÁ‚;í´ÓÔ©SwÝu×->ÊÉkPõ’.!:ŽmihhxðÁÃl=räÈ­·Þ:棒. ürÝqlll¼óÎ;£o»wï>~üø’û …7Þxãᇾ馛¶Ûn»Gy¤OŸ>I€\Ç 6ì³Ï>Ñ·={ö\¼xñæî|õÕWßsÏ=×^{í)§œ’tá ÈõPummmËaåeË–ýä'?5jÔqÇW¼|äÈ‘A¼þúëIW ó8–êׯ߯~õ«3f”,_¹re»í¶[Ò$Cp,5dȺºº9sæÌž=;Zøâ‹/Þ}÷Ý}úô9à€’. ¹>Æqs/^|úé§oÚ´iß}÷Ýi§Ö¬YóüóÏApà 7üñIW Á±u¯¾úêm·Ý¶dÉ’×_}ûí·1bÄyç7lذ¤ëHŒà@,Žq Á€XGbˆEp Á€XGbËìw޹ꪫŽ?þø}öÙ糟ýì7¿ùÍW^y%颲mÆ ?ûÙÏÂUzÄGœuÖYO?ýtÒEU‰W^y¥®®nÑ¢EI’U¿üå/ÇŒ³ï¾ûvØa—^zéÛo¿tEU–Y><ËÎ.>ËkݺuÇü½÷ÞÁQGµí¶Û>ú裣G^²dIÒ¥eUccãW¾ò•ë®»nÍš5‡rÈ{ì1oÞ¼3Ï|øØ±c“.-«î¾ûîáÇŸvÚiëׯ—¼ôÒKxàˆ#þô§?%]]V½ûî»óçÏ¿òÊ+‡>|øð… &]Qö¼øâ‹{î¹çGñú믇KÂ?ÿï}ï{I—–a¶Ì2òáYvvñ!ÇrzöÙgkkk¿þõ¯GKN>ùäí·ß~éÒ¥MMMIW—I3gÎ ‚à²Ë.«­­ — 6ìÜsÏmjj2æÒa£G7nÜ}÷Ý—t!öÀ477_tÑEƒ—\|ñÅýû÷ì±Çš››“®.«l™eäóììâC=’. ª 0`øðá½zõ*^سgÏ7nܸ1úë%¾+VôîÝ{äȑЇ ÁªU«’®.«&MšôÑGA0}úôgžy&ér2iþüùݺu;òÈ#£%Ý»w5jÔÃ?ü /ì¿ÿþI˜I¶Ì2òáYvvñ!Á±œ¦OŸ^²dþüù+W®ÜgŸ}ò³I•×wÜÑ£GéVºtéÒ †štuYuøá‡‡7ž|òɤkɤB¡°|ùò8°xùðáà Xµj•àØ1¶Ì2òáYvvñ!Á±K,X°`ÆŒ+V¬X°`ÁÎ;ï|ýõ×']QVíµ×^%KæÎ;uêÔž={žxâ‰IWGN­_¿¾©©iÀ€%Ëû÷ïÁ[o½•tàó å|/8v‰†††|°P(A0räÈ­·Þ:銪ASSÓÝwß}à 7455Mž}‚ x÷Ýw“.þ…ÏòÊù.^pìˆÆÆÆ;ï¼3ú¶{÷îãÇ/¾Ã©§ž:vìØ7Þxãᇾ馛^xá…Gy$ܩЪ-®Òyóæ]}õÕ/¿üò;ìpíµ×zè¡I—œv[\¥tØ€jjjÖ¯__²üý÷ßþÑw„”ðáYv9ߊޱiÓ¦[o½5ú¶gÏž-wÉ555Ûm·Ý™gž¹jÕª{î¹çw¿ûÝ)§œ’táéÕÆ*ݸqã7Þ8mÚ´^½zþùguV®Ž&é°8[)Ó£Gþýû·ì,®[·.‚èö±í»ï¾IW><ËÌ.>"8–Í!CêêêæÌ™3{öìhá‹/¾x÷Ýw÷éÓç€HºÀì) Ó§OïÛ·ïw¿ûݤk1f̘nݺýèG? k ‚`êÔ©o¼ñÆ)§œ²ÕV[%]yçóììâ#†ªËéšk®9ýôÓ¿þõ¯ï»ï¾;í´Óš5kžþù n¸ág±uÀÚµkW®\Y[[;nܸ–?=餓Î8㌤k$§vÜqÇï|ç;×_ý 'œpÄG¼úê«sçÎ9räÙgŸtiàóKØÅ‡Çrúä'?ùÈ#ÜvÛmK–,ùóŸÿ¼ýöÛ{ì±çw^8Y?íµzõê 6lØÐê%äH²Î<óÌí¶ÛzôÑGwØa‡3Î8㢋.ÊÏ™•¤™Ï®`ª '"€¶9Æ€XGbˆEp Á€XGbˆEp Á€XGbˆEp Á€XGbˆEp Á€XGbˆEp Á€XGbˆEp Á€XGbˆEp Á€XGbˆEp Á€XGbˆEp Á€XGbˆåÿ)*ð7­ÁIEND®B`‚statistics-release-1.6.3/docs/assets/kmeans_401.png000066400000000000000000001420061456127120000221340ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A€IDATxÚìy|Eúÿk’@á !HBP@‡€ ‡AE‘ËpEv刺,¢Üìz€QtYäˆ_EQQ`…4®+ž( †Ã Ä@üq,#,9’ôïÖÞNWuuõ1Ó3“ÏûÅKgª««žªéd>yªž§<’$ŒqÛ@8! €Ž@G „#ÂT/.^¼áùÿ÷ÿþŸ·{\¶l™ÜW—.]|9ÒÇ+Ã3fŒæjii©ruÙ²e¾4Œi¡BXXXttôÍ7ßüä“O[n|Ó¦Mï¿ÿþûï¿o§¯6Ⱦ†fÍš™jÓÎÃÆ [O¯Bii髯¾zçw6mÚ´V­Z-[¶¼ûî»-ZtåÊMÍ'Ÿ|R6uèС޳ÇñÇ€€#Ìmð)ï½÷ÞÕ«W•·ÿüç?gÍšå¶Q^çÿøÇäÉ“o¾ùf· 1¦¢¢âܹsçÎÛ»wïÒ¥K·lÙÒ­[7 íŒ=ú×_%„|üñÇ·ß~»}ÃoÐßðÃ~óÍ7éééê¿îŽ;vìØ±-[¶,Y²dÙ²ewß}7f áªï¼óŽúíºuë¼-ëÖ­Û¼ysBH||¼[£–$iÊ”)»víòx}ú$&&ÖªU+111--í­·ÞRfCžFEsÜqÇGiÁðv~ƒ„K—.Í;·oß¾±±±±±±wÜqÇc=VRRbjÔ>þøce×ã_þò¹ð×_ŽŽ– ;wî\QQAt6ç”3@ºA³Ï¤ÈsÎò¦M›ä×ùË_ÞxãöíÛ‡††ÆÇÇO˜0Aù(??ÿûï¿×kDo×ãèÑ£åò™3g:2K2ü=åååsæÌ¹îºëæÌ™#hþ‚@µ¡Gòc?uêÔ?ýéOòëvíÚiª]½zµk×®ô‹ÇãYºt©Ùj¯¾úª\Þ¹sg¥pçÎÑÑÑê»Z´h1bÄùõOœ3ؼ¼<¥f«V­äYYYŠñÊÕW_}U¹ë“O>‰¥G4mÚ4¹Âo¼!&%%)w5nÜX.Œ—K®]»¦¬½~þùç†~üñÇš«Ÿþ¹rõßÿþ·R®Ì’†ôôt¹‚"­Ôüú믂·ÓðÜ»wïõ×_OWhÖ¬ÙöíÛ? zøî»ï>¹fíÚµüñGI’ž}öY¹$44tß¾}z›ÈSÊ Ý ©gRð9§6l˜\'**êâÅ‹t…tèСC‡6lÐ6dȽ™Q£FÉå3fÌpd–D~p4öÜÿýêIüe€?᪠'NœPvø}ùå—Û¶mS~;÷ÝwêšÊï÷ˆˆˆÁƒ«ÃJÂÂÂŽ9bªýÕ{åÊ•&MšÈ…5kÖ¼å–[”·š/T¯.11ñæ›o®U«–R²wï^½ñªuÉ?þñúõë˲ãôéÓ’Žpüå—_ xÛm·=õÔS£G ùm]âõ×_—$éÔ©SÊEEE’$ýðÃj#Ïœ9#IÒþýûå·‘‘‘¥¥¥†ÒÊ©²²²fÍšòÕ§Ÿ~Z.TÜÃç¶Ûnûãÿضm[¥‘O>ùD’¤Ÿþùرcµk×– ßzë­cÇŽUVV ÞNÃiðòåËò@BH­Zµúõë7`À¥f\\\II‰Èd(‹ŠŠ6l(Wž2eJIIITT”òV©ÆÑyœ§”3@Nƒ†Ï¤øsN£ˆ°ÌÌLÁp;ÂÑæ,‰üà¨{¹îºë4“ øËÂTþþ÷¿Ë¿ˆcbb***ÊÊÊ4h —Ì;W]SqLΛ7O)ìÛ·¯\øâ‹/šªFõ.^¼X.©_¿~nn®$I™™™ôªúKZiðÈ‘#Ê÷4Ç¡Ñ% .”_3FÒŽ=ö˜\¢v¿½øâ‹raBB‚\’’’"—|ðÁ’$­_¿^–bráûï¿/IÒk¯½&¿0`€ …t…„„ùêŸÿüg¹DÙû8}út¥ÚM7Ý$.X°@)¬S§ݲøí4̳²²äÂzõê)‚éСCŠ›í/ù‹ÈðõP;k•)­U«Öĉ ¢vÈÑ›àSª7@¾pä?“âϹ†²²2¥ÎsÏ='‰aG8Úœ%ÁõÔµiÓfõêÕ»wï>~ü¸)pìqÕ…üãò‹Áƒ‡„„Ô¨QcàÀr‰f›£’"nÕªUo¼ñFQQ‘ü://////==ÝT5šþóŸò‹‡~¸cÇŽ„ÿû¿ÿ‹‰‰Ñ»¥mÛ¶?ü°üºU«V½zõ’_Ÿ8qBpø“'O¾á†!kÖ¬Ù³g³Î¿ÿýoùÅ< Ž7.44”ròäÉC‡B”ï³Ý»wB¾þúkÙBÙŸ´oß>¥rçwZþÈ5j$¿Pö Ž9rõêÕ«W¯~ôÑG•KÊÆÍóçÏó´y;ÍæÍ›å<òˆ² °]»vÓ¦MÓT°Ï„ zöìI¹zõª0ôÒK/)R†‰å§ÔÃgÒÂs.£ÞªqRz ›³$øƒ£P»ví>úè¾ûî»ùæ›[´haß| „#¨9rDÙf®ì”W^=zTý›½_¿~ò‹üüü &ÄÇÇßtÓM/¾øâ¥K—n¼ñF%CŠ`5e;¿Ò!$""BýVƒf²LYYY)85k֔ޒ$É‹›|ÔhŒ:uêÈ„‚‚¢޲•5âÍ7ßܹsgB G¥²Î;'¿¨W¯žbØ}÷Ý7`À€;wΘ1ãöÛo¿îºëŽ9"Ø ÍÛiòóó•–ÕåŠ\.((ùŒbcc›³P/Ë©ÚkÔ¨¡” ûìÍ7ßÜ»woå›L°š†’’ų¥ùòà¢É¿h-ãàÁƒo»í6¢“𧤤D3ÉÏ?ÿLIKK #„ìÝ»·¢¢â›o¾!*áøõ×__½zU^‡mÒ¤I›6m,j?þø£üBÙñVVV6}úô˜˜˜Ñ£G/Z´èÓO?-//7ô`)ؼž±_~ùE~­IsØ´iSùÅÕ«Weï½t<šœímÚ´Q{p§L™bزµ§Tþ3ií9—©Y³¦²Ö¯w¶Ó/¿ü"'ŠWÇ5[ÆÎ,‰ÿà(h†l€pÕ‚µk×Ê/JJJÂÃÃe—@dd¤²B¤Ž5jÔx饗Ћ‹×­[wß}÷)A „/¿üRIá!XMCݺu7’æëDDaØdÉ’%òž}eW–B½zõO϶mÛŽ±=z´\SŽ-))ù׿þ%/,*ÂñçŸþ׿þ%§e±ãnܱc‡²×M 8}öÙg/^\^^Þ¢E‹—_~ùàÁƒ%%%÷Üs`›6o§gL9"„œ={V}Iy[³fM%lÂ>{öìÙºu«òVÙaÉÁÚSj›Ïù-·Ü"¿øàƒ˜™’Zµj­ì´ƒYÿÁQ ÿðsëcÀŽ øùúë¯ ³|?~\öœ•––•––Ž1bõêÕ?ýôÓG}¤h—/¾øB¼ÇãIJJ’_öÙgJyyyù§Ÿ~êí©HMM•£gžy¤lÌõ*6lØ Aƒ (Ú;î¸C~ñÒK/BêÔ©Ó¦M%Êäå—_–_ØÙàøÂ /È/"##•Ð¥å¥K—Nœ81555,,ìôéÓ‚mÚ¼F‰Ré«ß¶lÙRöÎÚ§¼¼üÁT/|þùço¾ù&çËO©}l>çÊfÁ“'OÒg©oÚ´Iy€o½õVŽ ò‹ .¨Ëúé'ggIü‡‰‹€pÁ²N]£F z™¼üît¸aÃùíþðÙ£sñâEÅw¥Ho¾ù†/D·¥µÛ9 B  ¿ø¿ÿû?%Ûs^^ÞóÏ?/¿¾ë®»,R-Z$ïÄ­W¯ž’5zÆŒœuLkO©z€v°óœ8Pyyä‘§Ÿ~Zvâ–••­ZµJI‚xýõ×Ëa7L”5ñ={ö(Ûß}÷]uŠPGfIüÇÁ ×p;¬ïRQQ¡l±?~<]aÈ!òÕÄÄÄÊÊÊŠŠ eG]\\\ffæ¬Y³FŒ¡¬»É9«I¬„&'NœP2Ö®]»OŸ>rd¥ŽÇ0Ÿ 'ÙÍ‚ ÔÝ)éxΟ?¯¬‘¥¥¥Í;7==]q–Ì™3GiáÚµkê†Ù³gËåJÞfBHûöíùÚÂ&MšÜpà 7Üpƒf³`ãÆ‹‹‹åú•••JqíÚµ 4xð`õ1ÖêÜ7Jª¼îÝ»?ÿüóeee¦n§¡”$éòåˉ‰‰ryDDÄÀ)—ÄÇÇÿòË/¦†OóÑGI’tüøqåƒxú駯^½ª¨¢ûî»OiSó°‰?¥zä¤ã1|&ÅŸs&‡Ò8ꢣ£•?ó!µjÕÚ¿¿RŸ6L^CP èÑ£‡â!V›j–pô¦Î”¸„#r>ùäå{âÓO?¥+Èie¾úê+I’¾úê+½¥¥´´´«W¯Ê7 VcžóÚk¯©Ãc !uêÔéÓ§æ ÕK±´´T«>9æ_ÿúÓ½ñ§?ýIÎu¬ $3"„¼ûî»rásÏ=§ùVæ`˜È0**JþD賉[´h¡ÌÛý÷߯ÔTŽZ‘‘Oø¿†Ù $I{öìÑè!™ÄÄÄ/¿üÒÎðerrr$IRý£££å¤âË—/Wê|øá‡z›àSª7@;ÂQü9×cÇŽzéxš7o¾yófue¦aŠUêO\q*¦Úœ%Á½©3e®ƒ¥jä(áÃM›6en‡8p ²t+¯VwëÖíØ±cO>ùd—.]š4iR£F† öìÙsÅŠŸ~ú©â£¬Æ$33óã?6lX“&Mš6m:lذ;w2Ïó5kÖTÖR5ÜsÏ=ÌÌÌìÔ©SíÚµ[´h1tèÐíÛ·¿òÊ+šýêÀ%øWŽ¡+ˆÕµk×'Ÿ|2??¿[·nê«K–,i×®!$$$¤}ûöS§NÝ¿¿’’æwÞQV$—,Yrß}÷ÅÄÄDFF¶mÛV ¿†Ù !¤k×®‡zòÉ'o¿ýöØØØèèèÛn»íñÇÿöÛoå´‹öY³f²iò¯ý«ìë7nœ"X'Nœ¨„yiJõh›Ïy= –,Yrë­·ÆÄÄ„‡‡§¤¤ 4hÉ’%GUö pxûí·Ÿ}öÙvíÚEFFvìØñ‘GÙ½{7Ôl–Äpl~L¸ŽGb¥søžûï¿ÿí·ß&„¼òÊ+ÊQÚ@õk×6mÚDTi8}y;°žsG|̓>(çǾå–[–.]*þúë¯ÉÉÉrÀŽ;”8b<ç%Î䉈ӤI“B8ЬY³áÇ_¸paÖ¬Yò·é7Þ¨^ð @Ás@P#¾æÊ•+wÞyçŽ;èK5úì³Ïä}x4xÎJ pÒÒÒuëÖ½õÖ[………gÏž•“½ÝyçS¦LÑK²@Àç€àÂt<@G „#Âá„€pB@8! €Ž@G „#Âá„€p4æÌ™37ÝtÓÌ™3Ý6ÀM  $iöìÙ¿þú«Û†¸ „£+W®Ü»w¯ÛV¸„#‚‚‚%K–´jÕÊmCÜÂQ—òòòY³f5lØð/ù‹Û¶¸O˜Ûø//¾øâ‘#GÞxãzõê¹m €û@8²9pàÀk¯½6f̘[n¹åðáæîMII¡ óóóÝ€- \¹reÖ¬YÍš5›>}ºµ |@82øûßÿ~úôéwÞy'""Âm[üÇhÙ»wï;ï¼óÐCµoßÞm[ü$InÛà_¬Y³æé§ŸÖ»Ú²eËM›6ñ[HIIÁR5‚,UkILL¼ûî»Õ%¿üòËŽ;š4iÒ±cǸ¸8· pG-={öìÙ³§ºäðáÃ;vìèܹóóÏ?ï¶u®=Ž@G ‚cœÁ1JàqB@8! €Ž@G „#'Çø)))n›@°¬Xà8Žþ¾äpdTÇÁR5Âá„€pB@8! €Ž@G „#ÂáÌx<Þm¿¸¸xΜ9©©©õë×oÔ¨Q×®]-ZtõêU¥BRRÒСCÝž8„#°È¾}ûRSSŸyæBHzzú€Ο??cÆŒîÝ»_¾|ÙÙŽ†zøðaLJлwשּׁ,ŸÍè@8z^Fg½%%%ƒ ºxñâúõë:ôú믯Zµ*??Ö¬Y˜5k–ƒ}åääüüóÏÎNÔþýûwîÜél›@pálHC#zQ÷2uêÔ}ûöµoß¾}ûö´åçÎëׯ_VVVqq±> X€p Níè ÕxáÂ…ï¿ÿ¾k×®5kÖ¤¯öìÙs„ QQQ¦ÚÌÌÌœ3gN³fͦM›Ö±cÇ•+W2„2}útyâ‚ Þzë-BÈG}Ô¥K—Œ9rܸq………ýúõ[»v­ÒÔ©S§úõëwñâÅnݺÑÅÆÆJ’$IÒÑ£G½úÁG˜ÛÇÙÝ興?þøðáÃCCC !7nÌÊÊzâ‰'BBðwà$øf $©Ê?f¹#TTTB”e!!!gçβF$„¬X±¢¸¸8>>^Ssÿþý3gΔU#!$<<|òäÉ………¹¹¹rI||òÈ#jO¡ÂsÏ='IÒ† >üðCI’ÒÓÓÛµk·dÉBHÍš5·nÝ:wîÜO>ùäÝwßíÛ·ï“O>)gü¹å–[F½yóæãÇ5ªÿþ»wï~òÉ'W¯^]ZZÚ¾}û×^{­oß¾nÏÀ+ÐÚªñHÞóJUWRRRòóó½}KàréÒ¥K—.ÅÄĸmrªÕUÐ#¯Yë9 >Gàk"#####ݶHÈ’ª×pà0#c4…БøGþˆf_#ÁR5~ÒñðkÔbQÖŽn[@õ€ÿB»¡pG~ŠÞÂ4V«p G~ "þ„#€"Âá„€pB@8! ƒo§:+..ž3gNjjjýúõ5jÔµk×E‹]½zU©””4tèP·§Îá,²oß¾ÔÔÔgžy†’žž>`À€óçÏϘ1£{÷î—/_v¶£¡C‡>|Ø©:4räȸ¸¸:uêtîÜyÉ’%åå徟@ à€p 6ô¼ŒÎzKJJ tñâÅõë×:tèõ×__µjU~~þ¬Y³80kÖ,û***ÊÉÉùùçŸi­°°0--íßÿþwÿþý§M›V³fÍiÓ¦ >ÜAƒp©ð*ŽÁó0.½Ó,³råʳgÏ.^¼8==]) ?~JJÊš5k®]»æöL°™6mÚ/¿üòñǯ\¹òé§ŸÞµk×øñãsrr>üðC·MüÇ D£W„¥K—6mÚtìØ±šrdzbÅŠ… ^¼xQs)))IãØ7n\Æ å×W®\™7o^ëÖ­k×®˜˜˜™™ùã?ÊuHIKKKJJ’+çåå 6,!!!&&¦ÿþŸ|ò‰º—©S§îÛ·¯}ûöíÛ·§-ÿôÓO{÷îÝ¥K¥äá‡&„|õÕW^ÿ`ð¾YgBH˜Û¯ hGo¨Æ .|ÿý÷C‡­Y³&}µgÏž={ö4Ûfffæ;ï¼sÇwÜ{ï½yyy+W®ÌËËÛ½{÷ôéÓ“’’æÎ»`Á‚›o¾™òÑG 4(>>~äÈ‘!!!ï½÷^¿~ýV¯^=jÔ(¹©S§Nõëׯ~ýú}ûöÕôR^^>iÒ¤Î;« Oœ8A ÷ÞÇ€W‘Þ5?éÞøÙÇàAÄëàȉ¬´ÿŸ}.]º´nݺûï¿ÿÍ7ß”K233ßÿý³g϶mÛVî®k×®½{÷.++›4iRëÖ­wîÜAyúé§ûôéóøã><44”²qãÆ¬¬¬'žx"$DëP ûÛßþ¦.9þüßþö·ÐÐPõš;‡F;B5¼–ªƒ‰HêÌrG:ª¨¨ „вÌ2!!!gçβF$„¬X±¢¸¸8>>^Ssÿþý3gΔU#!$<<|òäÉ………¹¹¹rI||„?þø¡‡rvŠð âQÿ3,÷4¶ù›y>XªB4þæþ';DGG'$$ìÝ»·¬¬ŒÞæ¸bÅŠ'žxbÆ †>¼ÒÒRåõ¤I“î½÷ÞM›6}öÙg[¶lY¾|yJJÊöíÛcccÕ·ÈÝ=ÿüóíÚµÓ´Ö¦MùEƒ øý¾óÎ;=ôP:u–-[6~üø°0ü€@…Þ×È,÷dóhÛôÊ~<ŽÁS#:îwœ8qâþóŸeË–iÊ+++ׯ_ïñxz÷îMßUYY©~«x%Ï;·gÏžðððÌÌÌ5kÖœ8qâÅ_ÌÏÏõÕW5-Èb´nݺýT4kÖìÂ… †zQæƒ>øÃþ0pàÀ£G>øàƒP hðê:ƒSæ1Õ¡\î‡6h ƒ ½¿ÚýkþˆŠŠš={öÛo¿­VTT<öØc;vlãÆ5·Ô®]ûðáÃòþHBÈ—_~¹oß>ùu~~~·nÝ-Z$¿ IKK#„Ô¨QC¹]:tHIIY´hÑ… äò’’’»îºkêÔ©µk×6žIš5kV³fÍV­ZU¯^=o}øæ:ƒÛF‚¸[€5j”““3dÈûï¿Á‚]ºt Ùµk×Ñ£GÛ¶m›Mßrçwfgg8pÈ!………K—.U|„;wnÛ¶íüùó Û¶m›ŸŸ¿uëÖ¨¨¨Ñ£G“ß—ž_yå•¢¢¢Q£Fegg<¸}ûö#FŒ¸víZNNΩS§Ö®]+‡Tó9räÈÑ£G[·n™™©¹4lذ{î¹ÇíyÀ œu¬ÿFN“œœìƒ[üÓ§OÏœ9³U«V‘‘‘111={ö\¸paYY™R¡yóæC† ‘__¾|ùÑGmÚ´©Çã!„¤§§gee5hÐ@¾zêÔ©ñãÇ'&&†‡‡'$$ddd9rD¾TYY9zôèzõêuêÔI.ÉÍͽûî»ãââ6l˜––¶mÛ6f4ï¿ÿ¾Þ¼yóÜžNà0úce"ùãouA«üÓx€$áïQ‡IIIÉÏÏ÷ö-Ë¥K—.]ºã¶! È©V?V þée´Ê?¨ÁR5› .dggïÛ·ïôéÓ7nÛ¶íäÉ“[´há¶]Á@ddddd¤ÛVœø§ðY7‡j @p ƒ’’’¾óÎ;„>}ú4jÔhË–-÷ÜsO^^žÛ¦¸„#ƒ_|±¸¸øOúÓ¦M›–,Y²víÚ¿ýíoåååóæÍsÛ4×€pdðÕW_EDDLœ8Q)6lX\\œ:› qäÕjf’ ¹ëÔØãÈ AƒÉÉɵjÕR†‡‡—•••••)§$G–†´v„d €€pd°zõjMÉ×_}òäÉ:@5€ h yìß¿ãÆ?üðÃþýûþþ÷¿ Þ˜’’¢)©†iAd@8òÈÏÏß°aƒœêòÆo¬Y³¦ønÛà0Žá1jÔ¨#GŽìرcöìÙ~øáèÑ£ýõW·pG<OãÆÇ?räÈüñÃ?tÛ"w€pÔRPPð׿þuëÖ­šòo¼‘RTTä¶îᨥ^½zï¾ûîÆ5å'Ož$„$%%¹m €;@8j‰MIIÙ±cǧŸ~ª=ztÍš5uêÔéÒ¥‹ÛšÁc¿ ÅÅÅsæÌIMM­_¿~£FºvíºhÑ¢«W¯*’’’†êö,À Ì›7/,,lâĉ£Fš1cÆÿøÇaÆ]¹r%+++::Úmëü…}ûö¥¦¦>óÌ3„ôôôœ?~ƌݻw¿|ù²³ :ôðáÃN5øÙgŸõéÓ'&&¦Q£F={ö|ï½÷|?{@ áÈ 55uóæÍwß}÷ùóç?ú裢¢¢;ï¼óý÷ß8p Û¦ àe/£LIIÉ Aƒ.^¼¸~ýúC‡½þúë«V­ÊÏÏŸ5kÖfÍšå`_EEE999?ÿü³#­mÙ²å¶Ûn;yòä˜1cþô§?6lÅŠ¾˜5 ÀñÈI ƒ¤¤¤˜ÍãháòÛÑ ô ‡ø¿ÿû¿G}tÙ²e>ø º\’¤Ö­[ýôÓO5jÔHJJêСƒM—ÞæÍ›øùçŸßzë­ö-oß¾ýO?ýtôèÑúõëB.]ºÔ¦M›ÊÊÊS§N99AÀpøÇ <ŽÁ‰TÕïè´j$„,]º´iÓ¦cÇŽÕ”{<ž+V,\¸ðâÅ‹šKIIIÇW—Œ7®aÆòë+W®Ì›7¯uëÖµk×NLLÌÌÌüñÇå:²£7--M‰LÊËË6lXBBBLLLÿþý?ùäu/S§NÝ·o_ûöíÛ·o¯±¡´´ôðáÔU#!$22²W¯^§OŸ¾råŠO> €ÁÉ1AŠ¢½ /\¸ðý÷ß:”y”NÏž={öìi¶ÍÌÌÌwÞyçŽ;î¸÷Þ{óòòV®\™——·{÷îéÓ§'%%Í;wÁ‚7ß|3!ä£>4hP||üÈ‘#CBBÞ{ï½~ýú­^½zÔ¨QrS§Nêׯ_ýúõûöí«é%44ôàÁƒêªåååß~ûmjj*N! p "<åNˆÈ'NG3]ºtiݺu÷ßÿ›o¾)—dff¾ÿþûgÏžmÛ¶­Ü]×®]{÷î]VV6iÒ¤Ö­[ïܹS–zO?ýtŸ>}üñáLJ††B6nܘ••õÄO„„hêaaar>NBÈÛo¿}ìØ±Í›7Ÿ={öÿø‡Sc‚,URÕÌr'¨¨¨ „вÌ2!!!gçβF$„¬X±¢¸¸8>>^Ssÿþý3gÎT„ááá“'O.,,ÌÍÍ•Kâã㙪QÃ3Ï<óÌ3ÏäæævèÐ!11Ñ©±A „c¢¬PKÎÇY'$$BŽ?μZTT´yóæ‚‚ñ#""²³³Ož<™””Ô®]»‡zè½÷Þ+++£k=z”’‘‘áQ‘‘‘A~ÏÐNIIIµ—.]úøã ºuëöÓO?9,ï$„|ùå—ûöí“_çççwëÖmÑ¢EòÛ´´4BH5”ÛeÑÙ¡C‡”””E‹]¸pA./))¹ë®»¦NZ»vmC³å¸ì7ß|S-ßzë-BH÷îÝœ AT5°B£Frrr† rÿý÷/X° K—.!!!»ví:zôhÛ¶m³³³é[î¼óÎììì2¤°°péÒ¥Š°sçÎmÛ¶?~aaaÛ¶móóó·nÝ5zôhòûÒó+¯¼RTT4jÔ¨ìììÁƒ·oß~Ĉ×®]ËÉÉ9uêÔÚµkåj>ÑÑÑ?þxVVV—.]úõëçñx>ú製{÷N™2%55ÕíIü 8Mrr²nñNŸ>=sæÌV­ZEFFÆÄÄôìÙsáÂ…eeeJ…æÍ›2D~}ùòåG}´iÓ¦‡’žžž••Õ Aùê©S§ÆŸ˜˜ž‘‘qäÈùReeåèÑ£ëիשS'¹$77÷î»ïŽ‹‹kذaZZÚ¶mÛ˜=2©¬¬|ë­·ºvíÚ°aCù¬êµk׺=‘À+èø38rÐyÜ?rп¹téÒ¥K—bbbÜ69ÕêÇ |–ª¯‰ŒŒŒŒŒtÛ ˜Á1@G „#Âá„€pB@8! €Ž@œˆâ!õ[‰àØ^P½€p„ðF)Ò%7Xª<ýFLQ\\ùDÝËÔ©S÷íÛ×¾}ûöíÛ۱ܰ—eË–EGG‡……5mÚôÏþ³|#m0Ó¤½{÷0 ..®I“& Ø»w¯ÒxŸ>}Ô{¿øâ‹¾}ûFEEµiÓfæÌ™eeeÎ~”ÕY,JDRþ|TkGh¿%Ð3PÍATup"kGå¿Î6~áÂ…ï¿ÿ~èС5kÖ¤¯öìÙ³gÏžfÛÌÌÌ|çwî¸ãŽ{ï½7//oåÊ•yyy»wïž>}zRRÒܹs,XpóÍ7B>úè£AƒÅÇÇ92$$ä½÷ÞëׯßêÕ«G%7uêÔ©~ýúÕ¯_¿oß¾–-7ìåã?~ùå—xàV­Zmݺõ•W^¹víÚk¯½FL›ôþûï§§§ÇÅÅ=Úãñlذ¡G6lsæŒ$I›6m"„|þùç’$•––¶lÙ²cÇŽ—/_–k^½zµ{÷î-Z´(//—{!„deeUTTX¶\°— 6ÈW+++ÛµkwÝu×ÉoÕÓ&•––&%%5oÞ¼¸¸X®P\\œ˜˜Ø¢E‹ÒÒRI’ÒÒÒ:tè wš˜˜úôi¹æ™3gš4iBY»v­7>Ù CïÇŠH?†ü "‘n›؈L ¿ŽúªÞk,U-ŠÇÑñ–å]}!!Ž=¨F `c¢Ù×(9½Ó1:::!!aïÞ½eeeôfÁ+V<ñÄ6lhÙ²%¿ÒÒRåõ¤I“î½÷ÞM›6}öÙg[¶lY¾|yJJÊöíÛcccÕ·ÈÝ=ÿüóíÚµÓ´Ö¦MùEƒ lZ.ÒK­ZµÄgLm’üAhÔ¼œ¸QÐF×tÐÑ[=ù¶–¿àîK¶9@âŸp6ŠO²Ò>¸àK(Ø`jDÇýŽ'NüÏþ³lÙ2Myeeåúõë=OïÞ½é»*++ÕoÛ¹sçöìÙž™™¹fÍš'N¼øâ‹ùùù¯¾úª¦YŒÖ­[·ŸŠfÍš]¸p£ÍZn¿rãß~û­ºðСC„””uá 7Ü@ùæ›oÔ…ò6MàUñK]Ïæ€ˆ?£Ž¾WÿãO²¦2³Üí‘`Ç ‚ãYtV;>ðÀQQQ³gÏ~ûí·•ÂŠŠŠÇ{ìàÁƒcÇŽmܸ±æ–Úµk>|XÉzøå—_*i®óóó»uë¶hÑ"ùmHHHZZ!¤FÊí²èìСCJJÊ¢E‹.\¸ ——””Üu×]S§N­]»¶S–Ûï…P*Y¡S§N K–,ùïÿ+—œ?~ñâʼn‰‰šeèN:µhÑbñâÅgÏž•KŠ‹‹_xá§>ÄêI°.àB ú ͦR6³2v ‚KÕÁƒáz´ƒ«Õ5ÊÉÉ2dÈý÷ß¿`Á‚.]º„„„ìÚµëèÑ£mÛ¶ÍÎΦo¹óÎ;³³³8dÈÂÂÂ¥K—*Þ»Î;·mÛvþüù………mÛ¶ÍÏÏߺukTTÔèÑ£Éï뼯¼òJQQѨQ£²³³ܾ}û#F\»v-''çÔ©Sk×®<¦OÄò°°0;½h Ö\ _²dÉÈ‘#;uê4bÄI’Ö­[wæÌ™õëׇ‡‡«kÖ¨QcáÂ…#FŒèرãÈ‘#kÔ¨±nݺââb§>D€‘Ý“êÿºmæq;¬;ñŸt<ÞæôéÓ3gÎlÕªUdddLLLÏž=.\XVV¦TP§ã¹|ùò£>Ú´iSÙñ™žžž••%§ã‘$éÔ©SãÇOLL OHHÈÈÈ8räˆ|©²²rôèÑõêÕëÔ©“\’››{÷ÝwÇÅÅ5lØ0--mÛ¶mÌíXn¶%µm0Ó¤]»võïß?66666¶ÿþ{öìQ.)éxd¾øâ‹;î¸CΔ^¿~ýõëפビއ“éQ€—P-ú„óÙ¡AJJJ~~¾·o \.]ºtéÒ¥˜˜· 0Μ9Ó¨Q#WpàÿX1ý=p/¡~´ô^`©øšÈÈÈÈÈH·­<äÔßÀ)˜›ñ^ñêó ×9p@8ª)øÎ2œ<;Ä Ï <Ð ª@`!d^^,ÖKf¬aøXÂá P;á PÑ[JvPPbµ5ŽZØ!Ç ÞÂ@`£ÖŽŽ«FÈPÔ €€„v4ÒåÐ|8 „#€€D# ­¥]ôå±Ñ¥ Q G,þ<ÄcAêiGg€Ó]`"޵³æA´v¥`GzÔ—ÎNœÁ1Á‰Çó¿Þ ++Ë£"$$¤U«VøÃvïÞíöÐIRRÒСC½×~¯^½:v쨼7o^ttt»víèK¦øæ›o<Ϻuë¼asqqñœ9sRSSëׯߨQ£®]».Z´èêÕ«>›4¼­½8 t8‰uäsbÔÿ4’sV5rý€ÀÂ1ñxªüòóž|5jÔŒ3f̘1iÒ¤¸¸¸7Þzë­Ë–-¼}ß¾}C‡=|ø°ÛfŽÐÐÐÐÐPùõwß}÷ä“O¶nÝú±ÇÓ\r›µoß¾ÔÔÔgžy†’žž>`À€óçÏϘ1£{÷î—/_ö;9ôîÝ;++ËñfA ç±óžϬ$…OXª*d(Uý%¿•Õ¤³<üðÃ=zôPÞ=ztÈ!'NìÑ£GÛ¶m o/**ÊÉÉ™2eŠË³f’Ï?ÿ\y}ìØ1BÈSO=uûí·k.9ˆ‰*))4hÐÅ‹ׯ_Ÿžž.VTT<öØc ,˜5kÖK/½ävrØ¿ÿÎ;å@ƒàJ1³š²-Ò”°cÞbGbÁð8zêPv=z•V­Z­^½Z’$Ù¹U$‰R«V-· ÑeåÊ•gÏž]¼x±¢ !¡¡¡óçÏOIIY³f͵k×ܶ‘Myyù¶mÛžzê©~ýúUVVºm ô¼jw üÚ¾ÔS7ÙªŽÁƒ7|Šféܹs=Þ}÷Ýòòr¹dÉ’%©©©‘‘‘QQQ7ß|óš5käòqãÆ 8’–––””įÌäÀ÷ÜsOlll\\Ü Aƒ:ĬÆióÊ•+óæÍkݺuíÚµ333üñGÃK}úô‘72Ž7nÈ!„ž={ÊCP.Éäåå 6,!!!&&¦ÿþŸ|ò‰Ú°/¾ø¢oß¾QQQmÚ´™9sfYYÓ~æDíÝ»wÀ€qqqMš40`ÀÞ½{õfiéÒ¥M›6;v¬¦Üãñ¬X±báÂ…/^Ô\JJJ>|¸Æ†† òg†i'g’’’¦Nºoß¾öíÛ·oßž¶üܹsýúõËÊÊ*..6ý PµÔãÇP›mªT7 «>p:B:tèP^^~êÔ)BÈSO=5mÚ´ÆÏž={âĉ/^3fÌ|@™>}º¼kmÁ‚o½õ¿2ÍÇܽ{÷Çÿñ3fÌW_}Õ«W¯ãÇkªñÛÌÌÌœ3gN³fͦM›Ö±cÇ•+WÊBIaúôésæÌ!„,\¸P‚š>ú¨K—.9rä¸qã ûõë·víZùê»ï¾{Ûm·:thôèÑ·ß~ûêÕ«im§ô¢™¨÷ß¿Gß~ûíèÑ£G•——×£G÷ߟ¾÷Â… ßÿ}×®]kÖ¬I_íÙ³ç„ ¢¢¢L}¾z3CÛÉŸBÈ©S§úõëwñâÅnݺÑÅÆÆJ’$IÒÑ£G-?(h¤ž…S =UÂ=†å'pšäädÜB#òa:õ?õÔS„;vЗæÏŸOùä“O$IjÑ¢Erròµk×äK.\ ûóŸÿ,¿Ý´i!äóÏ?—ßò+«)//oÓ¦Íõ×_þüy¹dûöí„É“'K’Ô¼yó!C†¶ù믿†††Ž;Viv„ ÑÑÑgΜá\’$)--­C‡ryNNŽz”K¥¥¥-[¶ìرãåË—åKW¯^íÞ½{‹-ÊË˯^½š˜˜úôiùê™3gš4iBY»v-=^õD•––&%%5oÞ¼¸¸X¾Z\\œ˜˜Ø¢E‹ÒÒRÍ „L›6ÍðUOZóæÍÓÓÓÕWÇŽÛ Aþ¤Ñvrf@î…’••UQQÁ·MŽO=õ”ðãùŽüXC$¢þçlk†ÿ¬5.RÓòUü xÃxT^ͽ{÷æææ†…ýƒuîÜ9Bˆ^$¯xå|÷Ýw<òˆ²~Ú»wï×_½wïÞâm†„„x<ž;wž8qB¾ºbÅŠâââøøxÎ%ÁIØ¿AAÁÌ™3#""ä’ðððÉ“'ææææææž8qbÚ´iM›6•¯ÆÇÇ?òÈ#"-çææþðÃS¦L‰ŽŽ–K¢££§L™RXXxðàAM劊 y¤N}¸â3ßeÔO<ñ„ƒæ@Gvû©ÿÙôáé¥×a¾5Õâ¡D>PÝ@Tu5Â7› åEê-ZB6l¸k×®>úèèÑ£‡Vö>ÒˆWþþûï !rêD…ñãÇ›j3""";;{úôéIII7Þxã-·ÜÒ¿ÿ»ï¾»fÍšœK‚“ ;É2222224—Nž<ù믿Bnºé&u¹`È‚‚BˆfS`jjª|©K—.êò„„B½‚/STT´oß¾äää–-[ ŽK|fø3 Û™’’ÕÆ\,æ\²Ö‘²Z­¹Ä4ÉÐfÅHþ-J¿Žœ‘€»@8‡9xð`XXØu×]WZZ:lذ-[¶téÒåÎ;ï4hP÷îÝ;uêļËTe9ŽDñ#êaØæ¤I“î½÷ÞM›6}öÙg[¶lY¾|yJJÊöíÛccc9—D&ARÏ?ÿ¼FÝBÚ´ióÅ_ª®Y"ì”$‰¾WNIÇGGGG'$$ìÝ»·¬¬ŒÖv+V¬xâ‰'6lØ`(KKKE&M|ä 42¨ˆ/;‹>ZFóZ<½ŽžÀ5ÁYÕ (€pdsåÊ•uëÖmذáôéÓuëÖMNN?~¼:g¡"Ǿ¸X››ûå—_Ž1",,lûöí[¶lÉÎÎ~ôÑG• zNÄ;vˆWNNN&„|÷Ýw½zõR çÏŸ_RRòÜsÏ ¶yîܹcÇŽ%''gfffffVVV¾üòË“'O~õÕW~øa½KsçΙYŠÕ­[·_¿~Jáwß}÷í·ß6hÐà†n „|óÍ7iiiÊUy?¢`Ëß~ûí­·ÞªÊå)))tý‰'þõ¯]¶lÙäÉ“Õå•••ëׯ÷x<ôú¾|UýVvsò'M33ü)bø‰}Ö‚)aÊ9ưG(E`ˆAyyùرcÿö·¿ýôÓOÝ»w¿á†öìÙ3~üø¥K—ºmšzqÓr°Ÿ·5eAAÁ˜1c<Ï“O>I9}ú4!¤uëÖJ… 6\ºtIªj‡¬Q+ËtìØ1!!!;;»¤¤D.),,ÌÊÊ’Qà·™ŸŸß­[·E‹É—BBBdW£F Î%Á©èСCJJÊ¢E‹.\¸ —”””Üu×]S§N­]»v§NZ´h±xñâ³gÏÊW‹‹‹_xá~›òDuêÔ)!!aÉ’%ÿýïåòóçÏ/^¼811‘¹ØýÀDEEÍž=ûí·ßV åà;vlãÆ5·Ô®]ûðáÃòþHBÈ—_~¹oß>ùµÈÌÈvòg@pA°Ẫ轼6z Äôr³Í–Á>R¿Gÿüç?8pÓM7½þúëòÖ~Y-]ºô¶ÛnS ?„©½$_yå9¶´´4//o×®]eee/¿ü²|lLŸ>}"##xàûiÓ¦_}õÕ§Ÿ~Ú¸qã;vlݺõ®»î’=O¯¼òJQQ‘aeu¿µjÕÊÎÎ1bÄM7Ý”žžîñxÞ|óͰ°099Ž¿ÍÛo¿½mÛ¶óçÏ/,,lÛ¶m~~þÖ­[£¢¢FÝ´iS½K‚3–=xðàöíÛ1âÚµk999§NZ»v­|,áÂ… GŒѱcÇ‘#GÖ¨Qcݺuœl…ê‰5jÔ’%KFŽÙ©S§#FH’´nݺ3gά_¿><<œ¾·Q£F999C† ¹ÿþû,XÐ¥K—]»v=z´mÛ¶ÙÙÙô-wÞygvvöÀ‡ RXX¸téRÅGعsgÎÌhìäÌ€WG (úL­u ZkÇÔ¶E渘¹!!.A°ávX·?ò‡?ü!999//O]øÆo$''¿öÚk†·»•ŽÇ—Èéx<OrrrFFÆ®]»ÔÕ¶oß~Ë-·Ô©Sçúë¯ÏÌÌ,..^±bEãÆûõë'IReeåèÑ£ëիשS'ÃÊ4;wîìÛ·otttllì Aƒ”ÏKY†ßæ©S§ÆŸ˜˜ž‘‘qäÈùFÎ%‘t<2¹¹¹wß}w\\\Æ ÓÒÒ¶mÛ¦¶ÿ‹/¾¸ãŽ;äÀðúõë¯_¿žè¤ãÑL”$I»víêß¿llllllÿþý÷ìÙÃÿ¼NŸ>=sæÌV­ZEFFÆÄÄôìÙsáÂ…eeeJõ¤]¾|ùÑGmÚ´©¼“2===++KNÇßÚNÎ ¨{äƒt<Á„&õŒSmlÚàTwÊ]ò äÙ± x |ŽGrý°ÿ£W¯^—.]R’†ÈìØ±c„ £F’³sHIIÉÏÏ7Õ£…[@ÐpæÌ™F1ý…îréÒ¥K—.ÅÄĸmˆEðcåWˆ/û`û£Ù¸i³-#\Ú1<ä·Y¤_—ÀR5ƒeË–Ñ»‡&„4kÖÌmë@°!§þöC"#####ݶœhåupÈ,¨F‡‘ª*E¨F?‘’.Da÷îÝË—/§ÏcBÇ·Âó¨&˜Ê¡­ü——êt¡ø[Mu¡7XdÞq é÷ȨFÿÂÑ€ŠŠŠ5kÖ,X° ¢¢bÑ¢EÊq| Õ½ÁjÌHgÍ1ÓŽØÉÔŽœ…L± §£]}ú¶mÛî¸ã޹sçnT)ˆÃ9Lxmá•y5ߨ¾Ñ{׳ÍB À:¥íè@82XµjÕ¶mÛ222Ï—€@‡#DNU±ãZ£Wûêbנߨ05"´£ÛàÈA-’$­^½ºnݺ³gÏvÛð ¬È§¹]¯N” ½kÐñ¡ Zãx¿ÀÉd9ð ð8j)..>yòdDDÄ}÷ÝG_:tè˜1cܶœÄþV<Ãý|zÔqÓ±¸»ýßÂÀ3ê7@8j9}ú4!äÊ•+yyyôUV€eøYÕÔêš=n€j „£–N:! #xÃþ ëÜ{ Ú!ŸÔ¢üsd§æÁ0túœuãâCs|® eP€p NÔ_ Þh?++Ë£"$$¤U«VøÃvïÞíöÐIRRÒСC½×~¯^½:v쨼7o^ttt»víèK¦øæ›o<Ϻuë¼asqqñœ9sRSSëׯߨQ£®]».Z´èêÕ«>›4àWÈJHýÏ©_ÊáÌî MR7â³Ù@ì ¦€p B4ß Þ“£Fš1cÆŒ3&Mš·qãÆ[o½uÙ²e‚·ïÛ·oèС‡v{ÂÌ*¿þî»ïž|òÉÖ­[?öØcšKbs¢öíÛ—ššúÌ3ÏBÒÓÓ pþüù3ftïÞýòåËþc'Í¡C‡FŽW§NÎ;/Y²¤¼¼ÜAƒ«'zÉ ×W'îuSÿÚq4îA2âƒ2UNÛÌiîFÔ`cPÁÜ!$žÃÖ,?üp=”·G2dÈĉ{ôèѶm[ÃÛ‹ŠŠrrr¦L™âö´™ãóÏ?W^;vŒòÔSOÝ~ûíšKbg¢JJJ tñâÅõë×§§§Ë…=öØ‚ fÍšõÒK/ùƒ4………iiiC‡MHHøøã§M›öÅ_¼÷Þ{N\}àÄ)+(jÏðiì÷l­æÁӦμ±ÙÕxƒ ;)|mÒªU«Õ«WK’$;·ª’$BjÕªå¶!º¬\¹òìÙ³‹/VT#!$44tþüù)))kÖ¬¹víšÛ6²™6mÚ/¿üòñǯ\¹òé§ŸÞµk×øñãsrr>üðC·M ZqIï€tÛ4š 9š_qÖÄn@ wp üá×\çÎ{ôèñî»ï*KŠK–,IMMŒŒŒŠŠºùæ›×¬Y#—7nàÀ„´´´¤¤$~e&¸çž{bccãââ tèÐ!f5N›W®\™7o^ëÖ­k×®˜˜˜™™ùã?^êÓ§¼‘qܸqC† !„ôìÙS‚rI&//oذa 111ýû÷ÿä“OÔ†}ñÅ}ûöŠŠjÓ¦ÍÌ™3ËÊʘö3'jïÞ½ ˆ‹‹kҤɀöîÝ«7KK—.mÚ´éØ±c5ågÅŠ .¼xñ¢æRRRÒðáÃ564lØ?3L;93””4uêÔ}ûöµoß¾}ûö´åŸ~úiïÞ½»t颔<üðį¾úJøy¬ÖÐ( Áh¶?úø·Š©ƒ¡5r”ÑYþeèâÀ «¾ÙÞ¡C‡òòòS§NBžzê©iÓ¦5nÜxöìÙ'N¼xñâ˜1c>øàBÈôéÓ³²²! ,xë­·ø•i>þøãîÝ»>|øüã˜1c¾úê«^½z?~\Sßfffæœ9sš5k6mÚ´Ž;®\¹R‚üK Ó§OŸ3g!dáÂ…òÔ|ôÑG]ºt9pàÀÈ‘#ÇWXXد_¿µk×ÊWß}÷ÝÛn»íСC£G¾ýöÛW¯^Mk;¥ÍD½ÿþû=zôøöÛoG=jÔ¨¼¼¼=z¼ÿþûô½.\øþûï»víZ³fMújÏž='L˜eêóÕ›ÚNþ BN:Õ¯_¿‹/vëÖMÓKyyù¤I“d¥¨pâÄ BHxx¸é‡²ZÂüy· ¨ü0pD= õnÇÑÛ1‚þ‹‡õ§€Ó$''ûà"š"uDxê©§!;vì /ÍŸ?ŸòÉ'ŸH’Ô¢E‹äääk׮ɗ.\¸öç?ÿY~»iÓ&BÈçŸ.¿åWVS^^Þ¦M›ë¯¿þüùórÉöíÛ !“'O–$©yóæC† 1ló×_ ;v¬Òì„ ¢££Ïœ9ù$IRZZZ‡äòœœõ<(—JKK[¶lÙ±cÇË—/Ë—®^½Ú½{÷-Z”——_½z5111>>þôéÓòÕ3gÎ4iÒ„²víZz¼ê‰*--MJJjÞ¼yqq±|µ¸¸811±E‹¥¥¥š8@™6mšáªž´æÍ›§§§«¯Ž;¶AƒüI£íäÌ€Ü !$++«¢¢Bä‘;wî\×®]CCC¿ÿþ{‘ú’C?VŽü#¯þ¯x}u‰ÿÀ·‡HDþç¶™îAL–`xÃx<ÿûÛvïÞ½¹¹¹aa¿Å`;wŽ¢É+^ùÀß}÷Ý#<¢¬ŸöîÝûõ×_ïÝ»·x›!!!gçβ‹²bÅŠâââøøxÎ%ÁIØ¿AAÁÌ™3#""ä’ðððÉ“'ææææææž8qbÚ´iM›6•¯ÆÇÇ?òÈ#"-çææþðÃS¦L‰ŽŽ–K¢££§L™RXXxðàAM劊 y¤N}¸â3ßeÔO<ñ„ˆyŸþy·nݾþúë¥K—¶lÙÒ©á šzõV¼A½Õ ×]w|©b^õͰãážï\-§8„c5Â7› åEê-ZB6l¸ÿþ¹sçŽ9²S§N­[·æ¤S¯üý÷ßBäÔ‰ ãÇWǶ‘}òäɤ¤¤víÚ=ôÐCï½÷ž¼ÑsI£GB222ÔÙ.322!'Ož”í¿é¦›Ô·&€,(( „h6¦¦¦*—Ô$$$Bè|™¢¢¢Í›7ÓwqŸþ ÈuRRR UãÉ“' Ô§OBÈÇüÐC‰[[má¬Òò—nùÉýa5ÔꉠýÛ:ô@:à0 »îºëJKK‡ ¶eË–.]ºÜyçƒ êÞ½{§N˜w™ª,+Ũ‡a›“&Mº÷Þ{7mÚôÙgŸmÙ²eùòå)))Û·oå\™yOáóÏ?¯Q·„6mÚ|ñŤªk–û%I¢ï•“GÒñÑÑÑÑ {÷î-++£·9®X±â‰'žØ°aƒ¡¯´´TdÒÄg@~Ñ A~¿ï¼óÎC=T§NeË–?Þð¯>ð5SF)·¡F¤G×ÑKNiÍlZqúóØÕv˜) ÔÀü",ÿ–tÜÜÜ/¿ürĈaaaÛ·oß²eKvvö£>ªTÐs"îØ±C¼rrr2!ä»ï¾ëÕ«—R8þü’’’çž{N°ÍsçÎ;v,99933333³²²òå—_žI9}ú4!¤uëÖJ… 6\ºtIö™)ÈE°²LÇŽ²³³KJJä’¬¬,¹~›ùùùݺu[´h‘|)$$D–q5jÔà\œŠ:¤¤¤,Z´èÂ… rIIIÉ]wÝ5uêÔÚµkwêÔ©E‹‹/>{ö¬|µ¸¸ø…^à·)OT§N–,YòßÿþW.?þüâÅ‹™‹Ý<ð@TTÔìÙ³ß~ûm¥PN~ðàÁ±cÇ6nÜXsKíÚµ>,ï$„|ùå—ûöí“_‹ÌŒl' 'P’¤Y³f5kÖlÕªUŽ«Æà@d)YS¢hG:a¡:C8s¥;P‚”mþ¢Ó»Ý±…o½†þ;£hÇ1Ø`þ‚ó’d|å•Wä@ÚÒÒÒ¼¼¼]»v•••½üòËò±1}úô‰ŒŒ|àî»ï¾¦M›~õÕWŸ~úiãÆwìØ±uëÖ»îºKö<½òÊ+EEE†•ÕýÖªU+;;{Ĉ7ÝtSzzºÇãyóÍ7ÃÂÂää8 ü6o¿ýö¶mÛΟ?¿°°°mÛ¶ùùù[·nŠŠ=ztÓ¦Mõ. ÎLXXXvvöàÁƒÛ·o?bĈk×®åääœ:ujíÚµò±„ .1bDÇŽGŽY£FuëÖ뵦ž¨Q£F-Y²DÞ²9bÄI’Ö­[wæÌ™õë×3óÔ4jÔ(''gÈ!÷ßÿ‚ ºté²k×®£G¶mÛ6;;›¾åÎ;ïÌÎÎ8pà!C —.]ªø;wîÌ™œ0œÀ#GŽ=z´uëÖ™™™šKÆ »çž{¼ñ<j¿£à©'jí¨×¦¦â«>Àp€3“@¯à  ·Ãºƒ·Òñø9‚ÇãINNÎÈÈØµk—ºÚöíÛo¹å–:uê\ýõ™™™ÅÅÅ+V¬hܸq¿~ý$Iª¬¬=zt½zõ:uêdX™fçÎ}ûöŽŽŽ4hP^^ž\®Î,ÃoóÔ©SãÇOLL OHHÈÈÈ8räˆ|#ç’H:™ÜÜÜ»ï¾;..®aÆiiiÛ¶mSÛÿÅ_ÜqÇr`xýúõׯ_OtÒñh&J’¤]»võïß?66666¶ÿþ{öìá^§OŸž9sf«V­"##cbbzöì¹pá²²2¥‚zÒ._¾üè£6mÚTÞI™žžž••%§ãáÏ m'gÔ=Ò0ÓRÊÌ›7Oð)ÕüX饘 ¬Ô-Jºþ?ú. #ÕÜå'e˜ŽÇK-;<ä÷ü8ÎN*±q1<’„¿t&%%%??ßÛ·€ áÌ™35òü֗.]ºtéRLLŒÛ†X„þ±¢ýsAàHÓÛ³¨²ú¿âÍÒSd?¸#³­· Ñfû†£³õ´.FÛœ¾ó®MàXªÀeäÔß~Hddddd¤ÛV8‰F<‡jäǯˆ‡ÑJäÑu,¨F‘t³xcCŽˆa¶V«é›<:åÌjœv4WõÔ!T#pG@ÃLOª‘¨Ôž¸vdê9¢jmÇ6½M–ĶÎsü³…N>3Šj4ë#‘›Ì-°vàG@8‚‘sPKGÒ®SC¿#}£^‰fN¬ &N›þ—í <ªðj=í¨'%U šùupG@ð£ñ·Ñ…„¡3Oo|–‘Ѱ—@ Óv|å—¾QO;rÚ×Üb'Rú˜ÂP]Ð$— íBÁwæ)nBÎ$6å‡x;Ñû‘Pe^¬rÉ)Õh§5ÚNø÷pT 4ŽºÕŽzÙéš‚½âÍ;²]Rd¤É#éKÌ’ph Õàh­ŒÉ”UzëãÞþMÅú¿Â´hÜo‚’+ aJÍaƒ®«@³pöngcV¨Y1þ¦‰JZÙ÷í9b²È94z>Nßç!gÆúÒ“p7j "X*Ê ÐYu”B_G;a¿ƒMWARþ/U¹êáÞå.´òw:JUÇèÕO˜ëcÍw Ü´ÐÉ_4>È€V"{þø¾:/a(F½á#4Ý ¡÷Kã“ó¨Ê Uè,†izøÃ¿]®é·Ÿ¤_îWZâ¶à-èH~bšB9rZýÏ©ðGÒåF縃‡ëýâÔ×ÔqKô®2Kú«ØšÌríPÀãZ4y¿Õ‹³$78Šäkä̆Þ]FŸèí>T«vk-;2}Þ/SžH ½ˆÀ?F¤#‘BÁ<ä6ÁFÆàÂühYQ*„ŽôRh‹’呞=åǼÊl–Sß§¯¡ˆ¡W¨™:ÒbHbõÅt.Ú™ ßhGSVÑóü ,U+deeyT„„„´jÕêøÃîÝ»Ý6$%% :Ô{í÷êÕ«cÇŽÊÛyóæEGG·k׎¾dŠo¾ùÆãñ¬[·Î6Ï™3'55µ~ýú5êÚµë¢E‹®^½ê³Isõz.©ê‰T— zQ>–u˜Ú«ž"¦ÎÓ,Žó—žÕs«—´ÜæâµwÕ§ÞŠ¶U­²ƒ·Òm¹w%š[p3¢åŒ?þ°^,[¥üó«@U ƒëŸ5jÔŒ3f̘1iÒ¤¸¸¸7Þzë­Ë–-¼}ß¾}C‡=|ø°ÛóeŽÐÐÐÐÐPùõwß}÷ä“O¶nÝú±ÇÓ\r›µoß¾ÔÔÔgžy†’žž>`À€óçÏϘ1£{÷î—/_ö;i>ûì³>}úÄÄÄ4jÔ¨gÏžï½÷žý6™çVŠÞRÿSk>³ãR'EWO”ÆÉT~‚ÝñO54´Í×Sü{ßÚÌr¢R<´¥Ö?üp=”·G2dÈĉ{ôèѶm[ÃÛ‹ŠŠrrr¦L™âæt™çóÏ?W^;vŒòÔSOÝ~ûíšKbg¢JJJ tñâÅõë×§§§Ë…=öØ‚ fÍšõÒK/ùƒ4[¶l¹ûî»[´h1f̘ˆˆˆ 6 6ìµ×^ËÌÌ4ÛR­¾X!2j× ³-k´£ffø³ÄŸFGfXcŒ¦wg§‚î›çwÔ8™þH g8gX;rÌŒ/1\WÏÙ¸%àsàq . 7}{“V­Z­^½Z’$Ù¹U$‰R«V-· ÑeåÊ•gÏž]¼x±¢ !¡¡¡óçÏOIIY³f͵k×ܶ‘Í_ÿú׸¸¸ÜÜÜÅ‹?ûì³¹¹¹ YYY–t%1ã8î~Sû, ¼¢¾äâ ÔËâjߪ/tü‹œ¤‰RU¡¤ïŒ4ìZ0& ¾ž×ø ŽA„üNéܹs=Þ}÷Ýòòr¹dÉ’%©©©‘‘‘QQQ7ß|óš5käòqãÆ 8’–––””įÌäÀ÷ÜsOlll\\Ü Aƒ:ĬÆióÊ•+óæÍkݺuíÚµ333üñGÃK}úô‘72Ž7nÈ!„ž={ÊCP.Éäåå 6,!!!&&¦ÿþŸ|ò‰Ú°/¾ø¢oß¾QQQmÚ´™9sfYYÓ~æDíÝ»wÀ€qqqMš40`ÀÞ½{õfiéÒ¥M›6;v¬¦Üãñ¬X±báÂ…/^Ô\JJJ>|¸Æ†† òg†i'g’’’¦Nºoß¾öíÛ·oß^cCiiéáÇX¿~}¹$22²W¯^§OŸ¾råŠÙÇR&°¢54PpYo£'sW¨? –¦wI 8ŽÇ‹Na£¼ÐÛ¤)4»äªÙãÈÿ¬©+ß|°œu|ÃÝ–«Êx 8Mrr²na òa:ô?õÔS„;vЗ&MšD),,”$iîܹ„Ûn»-++ë±Çkݺ5!ä_ÿú—$Iß~û­ì=Z°`ÁöíÛù•i>úè£Zµj%%%͘1cúôéÑÑÑõêÕ;vì˜$IÍ›72dˆ\ßfFF†ÇãéÛ·ïã?>xðàÐÐЛo¾ÙðRZZZ‡ä!Ì™3‡²páByÊ%I’¶mÛ¦X8kÖ¬–-[†††¾óÎ;òÕ7†††ÆÄÄüùÏ~øá‡ãââ’““ !k×®ÕŒ”ž¨œœœ°°°ë®»nÊ”)S§NmÖ¬YXXXNN=Kÿýï !C‡5ü@Õ“Ö¼yóôôtõÕ±cÇ6hЀ?3´ühÞ¼ù½÷Þ•””ôàƒjì¹víZ^^Þ?þ¨.IMMMMMJù±ò?ˆÎ±R®®@~æ«xÅtþZ¢®¦©Ï+h§¡I"#UªZ¿J×$UoQý»øÍŠü³c¹‹è‚è× ¬Vð98O5ŽóçÏ'„|òÉ'’$µhÑ"99ùÚµkò¥ .„……ýùÏ–ßnÚ´‰òùçŸËoù•Õ”——·iÓæúë¯?þ¼\²}ûvBÈäÉ“¥ªˆÓ毿þ:vìX¥Ù &DGGŸ9s†sIªªsrrÔó \*--mÙ²eÇŽ/_¾,_ºzõj÷îÝ[´hQ^^~õêÕÄÄÄøøøÓ§OËWÏœ9Ó¤I¦pÔLTiiiRRRóæÍ‹‹‹å«ÅÅʼn‰‰-Z´(--ÕÜxàÀBÈ´iÓ ?PAáÈŸœ{!„deeUTTðm{ë­·ž|òÉN:5nÜø£>~HƒV8J,)¦'Ú$aE%WSþ«ykh‰¸Ö,dÞeV"«oÖU*â-¨_ªM9}£MkéÖZc Êå€W0‚¥jà0Ïÿ–öîÝ›››ö[ Ö¹sç!z‘¼â•8ðÝwß=òÈ#ÊúiïÞ½_ýõÞ½{‹·âñxvîÜyâÄ ùêŠ+Š‹‹ããã9—'aÿþý3gÎŒˆˆKÂÃÃ'Ož\XX˜›››››{âĉiÓ¦5mÚT¾ÿÈ#ˆ´œ››ûÃ?L™2%::Z.‰ŽŽž2eJaaáÁƒ5•+**ä‘:õáŠÏ ”Q?ñĆæ=óÌ3Ï<óLnnn‡K@C¯Ïê%Ü&bÛ"•°~Êt=K4íX0€oóvñ€n¦ÝÚÕge=TÌ&ƒ}Ìru‰HÖ ê¿ô[½ö‰_l[²’ÖCãTÖ”3ð&ŽÀaN:EiÑ¢!¤aÆû÷ïŸ;wîÈ‘#;uêÔºukeï#xåï¿ÿž"§NT?~¼:þð͈ˆˆììì“'O&%%µk×zï½÷䆜K‚=z”"¯ê*dddBNž<)ÛÓM7©oLYPP@Ñl LMMU.©IHH „?~œÙTQQÑæÍ›é»8ˆÏ ä:)))"¢¶  àÒ¥KüqAAA·nÝ~úé'qƒƒÍö>SI51D',Z<ώ僿ŷ'{cmÙJÅÈhFJp¦ªSzÑìØ£»æÜhx5sG ‹¨U¸x`Þ(°µÑÿ€p¬NøäÊÁƒåx¥¥¥÷ÜsO¯^½¶nÝÚ²eËéÓ§9rD‰uÐ`ª²¬T?¢†mNš4éÿý¿ÿ·|ùòÔÔÔ-[¶ 6,55µ¨¨ˆI„š5kBžþùStíÚU¶\íš%Â~AI’è{åä‘t|ttttBBÂÞ½{™ÚnÅŠÔ *Ò̤Ȥ‰Ï€\§Aƒ‚óY»víÛo¿}þüùçÏŸ—·uÖnqÕHgð6 9§=‹´ú$,Iª¾yrOÀe_¯b,­ Kè(åzyy8ŽCÎ[æíþ %á2o§Gá?§ÚB„cPá™åææ~ùå—Æ Û±cÇ–-[²³³÷îÝ;oÞ¼ûî»OÞ߯¼ÑTe9Žä»ï¾SΟ?_ÎÂ-Øæ¹sçöìÙž™™¹fÍš'N¼øâ‹ùùù¯¾ú*ç’à<´lÙ’R·nÝ~*š5kváÂ… Üpà „o¾ùF}‹¼Q°åo¿ýV](‹¿””ºþĉÿóŸÿÐYÙ+++ׯ_ïñxèõ}ùªú­â•Ÿþ sóæÍ5jÔМ£#ïL¥sp£ùÃÀ>(.ÚÔÚQOíq¢°•Åt¢r4ö®È\LÕnA$q†Ëq¹©ïUŸ=hÇíã9ó˜ ³‚¤ãÐõƒo7 á\èýt žUe‚‚‚1cÆx<ž'Ÿ|’rúôiBˆÈ,³aÆK—.i¾øe"XY¦cÇŽ ÙÙÙ%%%rIaaaVV–܈¿Íüüünݺ-Z´H¾’––F©Q£ç’àTtèÐ!%%eÑ¢E.\KJJJîºë®©S§Ö®]»S§N-Z´X¼xñÙ³gå«ÅÅÅ/¼ð¿My¢:uê”°dÉ9bšrþüùÅ‹'&&2»xਨ¨Ù³g¿ýöÛJ¡œüàÁƒcÇŽmܸ±æ–Úµk>|XÞIùòË/÷íÛ'¿™ÙNþ NàÍ7ßLyóÍ7ÕÀ[o½EéÞ½»à§¸H’d¨• ‚[‰JÕÑõ5ð×…iŸ¢z+$gÁZ]î G£OÐbcsdšc™Ã!ÜΞ4ãK¤ªc¤4pœtHú %NóÊ+¯È´¥¥¥yyy»ví*++{ùå—åccúôéùÀÜwß}M›6ýꫯ>ýôÓÆïØ±cëÖ­wÝu—ìyzå•WŠŠŠ +«û­U«Vvvöˆ#nºé¦ôôtÇóæ›o†……ÉÉqømÞ~ûímÛ¶?~aaaÛ¶móóó·nÝ5zôè¦M›ê]œ™°°°ìììÁƒ·oß~Ĉ×®]ËÉÉ9uêÔÚµkåc .\8bĈŽ;Ž9Rv­뵦ž¨Q£F-Y²DÞ²9bÄI’Ö­[wæÌ™õëׇ‡‡Ó÷6jÔ(''gÈ!÷ßÿ‚ ºté²k×®£G¶mÛ6;;›¾åÎ;ïÌÎÎ8pà!C —.]ªø;wîÌ™œ0œÀèèèÇ<++«K—.ýúõóx<}ôÑÞ½{§L™"oè ¬›"kG=÷*ç’Pã:½ˆ˜ª9KFP³–Û‘ ËõŽ]!ý>䟧W_ðx‰u#ÇruãA°ªèö=n‡u!®¥ãñ!r:Ç“œœœ‘‘±k×.uµíÛ·ßrË-uêÔ¹þúë333‹‹‹W¬XѸqã~ýúI’TYY9zôèzõêuêÔɰ2ÍÎ;ûöí;hР¼¼<¹\Y†ßæ©S§ÆŸ˜˜ž‘‘qäÈùFÎ%‘t<2¹¹¹wß}w\\\Æ ÓÒÒ¶mÛ¦¶ÿ‹/¾¸ãŽ;äå×úõë¯_¿žè¤ãÑL”$I»víêß¿llllllÿþý÷ìÙÃÿ¼NŸ>=sæÌV­ZEFFÆÄÄôìÙsáÂ…eeeJõ¤]¾|ùÑGmÚ´©ìÓJOOÏÊÊRò8rf†¶“3ê™TVV¾õÖ[]»vmذ¡|V5sr8øÉ•¹41š{Y¿¢éBÁ$ˆzwæÜaö¢ÉÄO ¤¹ËÔœhz14L.â·è‚éõÞ 6«—ô‡SÇ©:>!.ÚÅÖŸ­€IJJJ~~¾·oAÙ3g5jÄôºË¥K—.]ºã¶!Q~¬ô’¹x¯k½Sž­ÄWu.êùùGEë—s85\‚ÑÖz݉ô¥74æ:»æƒ†ñɉ4B§Î1UGÝ…úükÃ:NÑñ9 o(ÀR5®#§þöC"#####ݶÂ.zÅZîÁ[˜ÂÈþš5g…Z­ÿÔ=ª/© é·ê³ªù{•hõ• ‚³'®é“zcñGôD³D³]2jèë0è3à5 A ?PCD¸XS{ʽê–Û‘~•á/Ѿ@½lÞL#-T7E{MÉtËڑӦ؄úÄõÅ—Çšmîñ‰PG@Ðb=ÚB‰Z&žªâî\˜sœ½é‰³ìÔà^Ÿ-†ZPxœøµŽdVðÆ øf8>'¾ùh°î} ÕA]ãWc¾ÖZÞæh9˜Z½ mjì"Ãaæúæ´lÝó*r£ˆžsP[è5e*æÚ÷Z‡ãï´iÞüCÏÈã¨Ý]†y Õ粨/éeÆæ£‹’~~GNÖMGÍEzŒœƒ¡™£ ÓCØI0–‘ÌAÍIÖš3²]1Þ{-Ó4½:FÉr`x€ -¡˜®;õUú­ú¿¦ý|”‹Qâæw¤­¥%3F}U$°švã|.Fª†?nã“Lv!2 ¯îÂ4lÙ~ï>–œóf€€p6Ì8kIdÌJF¢¿0­hGþæKÎÎE½$Þâéxhê-/£…¯uºlGô„á‘ ¦võGŽnC3«˜aoᨦXØäg'ÛT ß­¨§5ik˜S½ì<|g*Ñ÷¿ªÑ8ðÈÔž9·ŽZMaaagÇžeÝcå“ÅìyG@ÐâT ³ÙDÙü@"=.F+ªQ“‡°–È5³A—ˆx •£¨™ó#2|zJ…$–4sÕ•vÔ ŠÀq±¦±ñÎADv7BD: „£¿’’â¶ f3 2¡kr’Îø&玦;M z‰œ8A1sw#±átdj_ºÒÿzwò‹6ƒ¯ÍjGu›üxo+Ë`Z+g¦"Á2:ÂÑ/Àyƒ€†™ñ˜TƒU½åKkc×sòYV¦n×Ô´sÒ 'nÚð¿Cg*혤Cj ? Ž:d{C[©«·8íç—qñ«\7ÕOl°l¶'¸”±_ဟâ S'€à 5‹§öÙ˜7³÷rÎ8¡eœ©–zbÚÐÍNDzñZ$°ZäÐB³3ÃÙ4I‘<:“c9JÚq1Á(‚ b Ãn¼‡YËýÍp ½ „#þKuPŠ„僪5«±ÄäB9ݵˆVSwD¯h«Q\†z™&5['õ¦…c•zG£ÞtiGªw¨‰È~GÆ\œƒùh8QÞ® çòôóÌ‚èuß‚àA|ÿ#K1埩¬7ô¨é¦ÈÓd WºcšGÌÿeÂws>½ÅhÈÖmA­DB[ôêH,ŸŸø/Dì^›Æû :Sw€Ê,Éd9°„#8†"™>Bw©jô¡D˜Æƒ¨–­´…zî@ š‰°”W†¯Iú£)g7È<¸Ù²ü2Œ³qgw©ê¿ 8Fáß`©œD¢®¦)Ñ“’†ÇÒ»5z‘ÞãhvDÌ·œÃ 9֮ϒm'Ç#¨¼90Ú•¼-†Æ€@8‘óT4¯iÏœ¦šSNGº³ÐBzÂNoç¥`6ð…ŸõÆšm|ÌLŠ’Q ü¤9†¶A ‚`KÕ¦¤¤ø`íÚµnÛ@ 'Y,È#ûg½8ÿ46”ªœ«šF8GšjœEÄiBž¶°l(“¶øà¹Ó;ä†þ >‘Í=÷Üóã?ºmî#"×ø1z ±9íˆßâUø9tøÉhèPkîFΩ*v2Š›ÎH‰‘þÍ0JŸŸI­j‚—4G­¹v¸ª"8.?‘†ðq.Žlž}öÙÒÒRBÈêÕ«wíÚå¶9¸†È¢­Ù Õ¤SsœÕO›Ò…á`ù E,¤ý|tSü!ë[mç(K½$ᆷˆêM„AôŒø™Ñn!™\ƒ¶ìÀû@8²éÙ³§üâ³Ï>sÛ\ÆpÑÖòÒœFÜRІGBû :9¶f¼œc9ÓâúQ–þ°‡Õ4Êþ©CnªáèRRR4%ùùùn€u8{õl¶i¿Aû>QMkšFKæòGDc-õ7G²3]¶‚\–nŽÐ(Þ8uˆ·È®J¦ßÑ«¶!.áè ApÀÏÿl¿Af¹}ÿ%qHÝ2¥õzÔ£\4å!kŸ%¿k¿>˜ÑÇŽ4×(’x\µ˜óÁçÉ÷‰ð;Ž]D6ÙÒ(z÷ÚyŽûD™«çJ 0ÔÌ݄ւš!h_5ºœêˆã âÀaÚ‡Ç/§o÷T}ámkÅ}¢ ºá‚V02–S2sÖØ€,b ݳ þÀ560=©†1ㆎ^ Þ}¤}Eb6æÚ—C1Ì£RÏœM¦ˆ¾î´i¼a9D$Pá0ÆNšn‘ ˆvÔ§a¡Èz dž>BC×£Ù}G/ß$fðµ)]îõ ½LÝ_yÔ¼„ÈAÁð¢£5‰×Ô› O€ßpÀY´e¾åß«Wh*C ó.Í–DkCÓ´ÌY&:¾CûÓK_ÕhG=Ô\NJA3œ\Úægê6GÚçÀ ©ö™vÔ+·pr7gPœfsOZHÐãä4òýXz«±©ú_"æ¬r<§eºÜlJÁUlgñ‰z£S¢ß¯WÇ lá0¡†p\«Y8ŸPÐIdG9Ùœ ³’]=.Ã|+Ãw›1÷8ª¥ƒú*-•™ Ç{ €¼´AЕüä®XÂé×O6! $AÒ;LJJ ò8à ´FälÈÓ,¼rdŸåÍ^§‚ü‚ Þ<ðÏ'¤çÇZª Ãéîócî¥Ì€XuTì~‰€·Ìq_š[Ç­j·,&ÇàïžO¨®Ã̘-Ò,¬w‹˜¡‘‰z;JÕ%L©m˜´\Ïyi%C»¤£5ëÎzª‘ãÌãGa :«œ•wnmôŽ›í½­À ÞÅ‘$/"çŠèKÿÁ0š‡–z´+‘9·‘g6i9m¡õSy$?¢‡*!\¥åЋÌ[|ƒ+ÎV°@8¼ˆ^ iõÊé|ÄŒ¸ñ}©õÂŒ^7\·y„#ÑWDÌEª®­M:CL&—f:óD:õ®lôÿ6îÌ@;,ޝÀIòB„Sè ˳È1€Ù”ˆ1–¡áÏ 'ÐGsj"ÑQ“ÌQ ÚÉ×|ŽÅP{ôKh¹£ÙûHß"Iã?øfw Ñ™–À"mŽïá êÒ¨FN/ο¶Ÿ:ÇTGœ°=éF‡¶ðS<š»ÙÔßSoiR³‘>…Y=CXÑìšµ—°y"Ÿe!ÿ¼ïÒa†Ÿ`` §:ápSÎ-¾ŽÞ×h!£™hÊùÇÙˆ©¶\Ý2=:³hí³ò¹ŠÇÆzXJ‘^Å&ª:RU=Äžaöè åA;üÌ&´œòš_ͯ´£Íù­G@8¼ƒ•=‹ê·ÌŽœ:ÿÚ¬m„ÝLÃÙˆIkGN¬Yñ͹J«U‡ó~ÿÞÍoòQíM4 Žñ’²Ö¦^Œ`ƒü”×~¢ù|‰dCF—€pø/—áªFïiGM2Eu93~Ep«"]h(øÄÇˬ¦wXr¯ë%â+½ugõk‰º¤——ÇÐ Éi‡–#?ÉÞí†û‰ê·„^³öû>Ž?…éc#:‘ÅüðÇ ‚Ö3ƒ™ÓÛ°GûÈ)§“øpLa´ÀqÅ1ß2C­9!Ø£FKh2Õ§[Òʰ_¾ØòEè ‚u\A „#À ü˜eqWŸˆgÎld±ÒëÐÛ(õÊù •xj½‰ÕSÏ"SjêS0=oôI0ÖîÕ@‹'ŽœÒ8«ôê{±,~²ßμ‰ zá ÄäÑ Ö3Bso¡“ìÐºŠ¨TŽ©~½±f­Ù­(žÌ߈©‰þ±åÃÔŽzËëz¶ JRùWS ÉÙj¬I©b?ÆumçzÚsÁÙ0Nü Gª;ÌÃë8ù¥ ¥,9Öé-• 6KôÕŒ¡©†WíL= Mz|{41‚nK>tà¹Æþƒšƒ µƒòP–úó8îIfµ? ‰W›'¾Ë³šãW[€C@8P­1Sb¸‡O“\†°dŸž zëÑŸ™…pS1„>Z]Nt¤¦Ž D¥áÍão—4̤ìåÍ’ZjJ¼ïu†¡?Ì-ëú&H ŠÙþVàg@8P}ñÁ!"œ|ÝfÏ•æK+¾6ÖEÆÅßiö˜Î-|?®^ަM‘£w4—ØÑ0üS¤5!Ò£ƒÿù‰~ËSÍr†#”íqo¢,gÏX " lœM1-¿Ð ÝñzÚñ .m[}ô‹ˆÁv®ÒáÈ\ø¶’ú[P=ˆoe“ª¦xä´é3˜ÆøCÔ3_£û¦wËqQ ð qÛ€;˜•PâÒ„_(¯„*로BN³6CFœš=¾U"IvÄ»,¤+èeÁä×>SQé©u9ý‚T-Qä#ñ¾"ñTýGPc¹¤²…©œ…ÌᛯDýó%Þ‹‹<ޝ£VTâÎ9Ž:4”€f3øXaibMЉ÷Nä/ôkŽö¦¤áÌ}"mž•ü1È0$¦Ú1éƒíƒ?¨Æ•HŸg£yÁ,4¥ù5þ/¿<åþ? àŽ!Dœ|‚Ç–ÐR†³ÑTзúFa‚C°6-ôÐÄ'ÍTGâz”³”£ªMŸjhv; ¤£Ì$êµ—0L ©‰›fj*X08à4½3!@láðœVMè1?¬X³„mmÿŸWµ£å«fgRdùÛÚ¹µØ#+ñtP6qB2šòáyô•½­¬#ÓÞÐê¹VKÇEê„#ÕkÊ0Å£¦ ½:ôÆ;ÃÄ:Ö†iÅ‹f4R_bêkþù«Û†Y“ŒPCÍWÕîß %¦4[%á65É&‰N§Õñs}@á`£§-,gFÔ‹¢i™s€²ƒªQ=ïá`a‰lzÆDô±f󢩴>œ¡ëµ\Ó”V9§"&‰¾ Ô³\-"™¿ KøV·~©†v¬N@8xT_Q’C¿£õŽ!»Õ…ö­[kÖp€¦ê[ŽÅñLi(x¢  ©à‰ÞÂìr§µ ˆ†‹ËLÝ)UÕŽDÿjuÃZ\. ðwdɨ‹t‰eô¢%¼ePQ-Ždj©a_j)ÁÜCDõZÓ;ÔQ3œôìÞÅ‘åNfŠÁ K8&i6>1|jpèá€_ãñ0¢\¼d W–nýa!Ó*³GÚXCoiž™NœrNTèå’ÔÛÂèÀèhݦÙ;¨·ÑnÄlnmAéFëTBùõö;ý«®/Ñz/§ýÁ½J 8þ _JR•õkà†I‚ìÃÙ'ªñÒ%LSiËéëÞš/¦ÈPG"SF³Y­&ú÷ \ÕfFk½enu_f¢#QV9Õ2sŠ@µG€ï°£Ã—qfSÛxÕEÊn¡3¨3ïâG‰œ­4§nH·ŽÄª#(2Lͨž‡O8%$Iÿ‹}!F)%m¸Wãµµi’x8¨®@8ª#ü8Óˉ®,dJÒW£4¢É—)ÞœlG•SŠÍK*ÉÈ)hx¯Þü[Ðq+‘¡ï§]Ó>´cõKÕø)"[ƒ~µÚZC‘fù1ãz±#þ‰^˜‘R(¿ÐÔá4§»RiígÑdRTÛÌ Q-ÿ>9žß%¤îíühkå’}%r”Ÿåù±` D!0Â?ž(ô½¦ôxªü³o‰zÓÞÿZófÊæ™^Ÿ7£™–h‚`è}êšÌ6™¦ˆîAô±ÈðTÕô©3z±Òê]€ÊPä¿É”Bñ ,³?’Žåfã„ðXª €¡½’†Z‹Û à c4BǾjä~ÃÌwèT×6‡¯‰•ff2¢«оΞ (Ø#?ªFs„4еtæHñÏo‰QêB³ÎW>šõ_HCàß@8TÈ~JZ®yCPÒ’Q`RîÑŽ´¥—ŒE²^Ûš=Ÿ|c3Ït12úðK ð_ôT ŒÞú/}—㪑ˆJ×J‰b†fÍZ\5*ÿå”{OêÙ<_ÑŽœ”è€Â6 ÂðªÊaÆa¨]ßÌ@~›I¿)þI‰öÃDDv7šMxiľ ðk¬yÕrÍ—‹×ÉhY5ÖÚ«¦Ü7èåÓ¶™¦‡ãt—ªš™ñ5>ö;Ò!ÌJáqÚ©ŠÇã‘þ÷çNÕ·|4ÇÆØ‘YL=Jü[·AVÇàÿÈòKóO$àšxS5Ò±;œCnìXb6TE3UüÍ@ª†*+W-¨7úFSª‘cºx­9«-‹ ½8Vˆôof‹Ã’‰’$yh>3³£—Òb[>>‘Ó”58;8¡!GÉ¥·r­)wPGêù5åBÚAK8"L½NÍÉÂÈ/1žIõFwªI¯M;& ×IΔz<šz§&\MŒXVíß^ÐM9ëŠcva=碬µ—ô²‚s¬µbk7'§Y/M»¦}oŒŽ t 1Ú%iµRÔjbe”~•rA3è“Qô‚Bªf&L„³ÿ¿þËŒï¦o¡Os1”zogLFMÒÐôøuwÝÑ…Ž Y¶×IZW;ÒÃ7«° HÏž¡v$ŽN»Ó ª Ž!ê¨gµ#3ò†è'âQ«F f¨wþµôaI ‘œÞšBfeB‰WŽUêvô¼’ÄÑ&0QêÞ S†g¼¬WS]⥑ÑPÃ67KFÏŸA‘91‹$Vn˜ŸÈ&zRËӀ€`ƒÖgÞÓŽ|mª‰ª¶`F½õ[Æ=Ê‘æ!D²"ËÄoQË2õ9~šƒ¤¤ñ‘gÇ£-4ºM4xÙÇ‚V´Ä ºÍ,× JAs¯aã.â Y ‚ÇTè)3o„Ȩå£^¬ŒÆSÇáhãŽåÖ(Õ(24ËÑÇšì?ôÙ-Öσ¶Íoƒòh ûç1Á^%EíD”TÿDþ¢g•R™.¤-÷*œx½±xªÎžSEòõ8 óI *ð8Tø2ó©êq$”XäÇY…Þ°(i£p¼:^:èË0õ’4grôFAËÊ*RXGÒùµVéäz4Öš¦ÖyMLSU½HÌûá87Z€V¥ôØ­u$amjíØT µ^¡5ǧ8"qñŽÇÎ{;¸„#A? ·÷`úð4ýzÕ Án‘ólØ"Xx!Z/8ó’P£zN2k_Ìz+§œ€z9ÕPYþ”EâZ¼„ƒkÇ´sQÝ”¿)*ÚëìH›~5FàŽ|w³>¿‚)øQ)J/iGæâ¸º\0*œ·T-y<ìc±ÍØi6ž†³bkçkÞB0²ºš¦)f¹9ªZ¡^evöÉ1¬}G¯ûû=G&±ýç‡òz€j`Æl;èeLô͸è„DŠ[”#£ Í3»͘³gø½Ç^˜º#‰Ô‹Å‚†Ù†.LÚÓi¶/ÎŽLþ~JËCã¨7~eûÊLþÛúá@0`!ES!‰¬áú?Ìýê˜nænK½ ‘–a.I3¬U %"y5¨†­Y°&ú‚RS™7cÁBº#žs|ÛŸÞ%Gú2ÜÊ™IÇ7Œá¿$£É‘ÌTÁ„# 3ÇRÂ×""Îâ=ª·¿S]Fø‹H:òûj5ñH‰ã¢~­98[ýV‰ §£ž¶óªŒàT¦ iÛ8½Xólivr¶ßYh_p¥#?ªFW¦;‚µÐ%Iÿ/ÿ4£Â€†ö™©½kf#?‚Ãq©e±zï£ø ¿iGZeê; µZ\U³ŠcROC8žïF°Ë81lV<û4²œIÐ&صeèýšô[uMËxÊE>\‘(~,|W3 uY¿~ý?ÿùÏcÇŽÕ®]ûÖ[o9sfÆ Ý6 €ÿ¡t⚬4¾W™N…ì0•¡ÏŒ¡ÇËß)I’‡xˆ¤Ió#yü¸Jh¶çw¢]Ô–¨/x›«#2ÂBL‘AL®oÒ.@Ž€3»xʙådËhVÞ‰VavAÓ–P« Â‘Í’%K^}õÕÈÈÈ.]ºœ8qbãÆo¿ývDD„Û¦@7µºŽLÀ9}²Ãw1 œ¯H-4+‹Ý;êEV‘<Ê'¨\úífý-h"놺£¥îÒ”;»,kg¥RD?Yö Ò—ÔBÖÇ{ò4];èTfNâ C„¸m€?’ŸŸ¿|ùòØØØÿûßË—/ÿðÃÿøÇ?:tháÂ…n›@dç™úŸú’RÁNy.-ôËÔp–©œ»ÔSDÓð‘~÷ÒgÉÈËкkÖD²®ƒéÕU ÛãN®kIÂùJÔþ®G³ÉùW_;FÊÔ@8j «_¿>íY,))!„(qÖÀY‘ªÕû7¯àž<½à_˳§çS;&ýä£tÍÒ…š9íp«çˆtaJL±Åp¿ÝIÕ$¶U#³#˨¢Ö”¨HMËy³}’@Pƒà±±±çΓ•¢Â?ü _rÛº`Cñiþ¹•GÐõ© “¶h.i §N\ØéeL¤c‡ŠáÃ\:W[«WŸ3"ºÎ®x"5Ô½®y¡±ÐôÓËO¶§‰•ÑÔ1ÌË(Ø)…ãTºõ?!u ‹7Ú°€pdpûí·WTT|ùå—J‰$IÛ·ooذaÇŽݶ.¨à|=WCí¨§ÿ¬‰BÁ9á/šuaåö?2NEæð5®Y¢“j‘Ù‘æ­ø<«Ï-¤µ¦éÏH/Ù}U“)šT}«·Š­;:o5²UnY/Ý3–Y¯³HfÚçÏ€S Q"j  ><$$䥗^’÷5B–/_þóÏ?ß{ï½5jÔpÛºjD5ÔŽj˜É½ í‡Ó»ä½ñ*ýÒšLSYí‚¥m£Šœ‰Ž»WdÆÐôâò¤ªNAÃrÑ©g™d!òÆþ*°Ï’Aº <£ ÁGMš4™9sæßÿþ÷AƒõêÕëĉ»wï¾ñÆxà·MÕõrª÷S4ª‹Þ$ ÞçÇ4ÃAÃè­‡œöiW(!<Û”ÆÕ«áJü{íÅFCúåü=‘DGl‰g„öžÛŒŸô‡N Ê,NÀM‰`PýðH~²ÑÝÿøàƒrrr:ßµk×)S¦Èy IIIA:D¾Yý!’×÷¨5—Rp«Õ-¡L¥ldiÙZujIÁ'Dm3_ÿiä8ßNNpŒÈ0t5kÖë]Îi„°ZÁò¸ÄÃY4é*;±Aø+ŽÎá(H5Žf‡ì=G£c±ÀU||óøÝijªU¯æ.½‘ ΰa²qŸ Çÿ5ÍÝi(¶L©œa/"Üoû9Õð3°T \ÃORZÃ{Ǩ8îVi\£½Ì£þ(-¤W¹dàL[BXÞSºeÃlG† 5™í{ñÁÖ(EÃDö„Žäè1Ì­ÃL ˜¿ª €àÂsè-‰£eM ØôÛ‰ç&TÇ,‹'ý9ÐOäA½f­Eps’oÛß9Ê9§Ñ…?„8+¼ü»D܇vŽ4´Op,UŒ ªø/~èä$…áäâÌJè¸Lcˆ‘“ÏT0µÙäA†£V éZ¯ANBÁqñûÕYóJšš±V¨¢Cˆ¡ö¶ˆ”ªÚ¯—à6ŽÀM”Lx4~¨mÓg£)¹QPci"l±\¤k:,Fð8›AÓD¥\ùÙÅ}„}±ex®´%oñ{}¯YfÀR5p›»ë|‰¡ ã,VJbGú ¦©’À9Ëœpf#âƒ=â™e°žlµ¹‚L‹Bæ¨9Ã7;^‹Ø?™‹íÔ.CqcôªÙÑGp~ëBÊAøÞ&:aµïÇÎߨ'x¯fD´§“ý‘xÁÈÉ—.ûbØ‹f¤ªß‘™«œ3^gòb2+ä£Â‘Vq&ªÆ|Ž8?ô„YÁñ5MA·¨ú5ÍѬc•ï)´›l8Rz9G]ëY+.õø½‹ÇéÅt[œgõ–ÿ¨7›^F(Q¼ö8à †Y] tDDŠo°£Ïëãœà§×‹ Ö1»R/Ø&ç¬?Á3%©Ê§£žÃüŽêŽÌØ ½{ÕÕ17“Fãùý¿zŸ [rŠ¿OѦU"Á=‡€ÇÇ0¥¢œ=ãÎ,ô¾@³Éw ËéKÖòõ¢—dG|Jiíh*+¸zéŸyÎ!=jÃ`p»Ó¢'Ô\”SŠIÞ8LEäÔœj¦8„#¢X³ #mõ"H|)5&‰¬PkÅ,7¼ÅÙ2Ó÷vd¸à.2(M;Ì äü^ÄOÊ1‡ªEØyÃN=a pGÌÁO¬­—Ê‘Yèä%«e‘­{šØSІwÑçëpÂG,–Ù£e×/1ù‰F½h6•êͤÙ~cÉEʫÔêaêÈrÄ€p€am½|‡†)¯íœ€'Ž^ŠAB´nN—NÄWÇ̶ȌøqðÈŽ1"åâÕfmÍz…}Y]´£#0—¼átT£w–#æØÂÓ0=‹ü Žš åu5M#â;ùªH¯g; ߉("š™­9«™"̲¯›œÌ—Ì݆[0UÕÕ:ÿ9æPF3˜`G~ÃTZޤáM½ü"Q½šÞ9.RSã%\ùb茤GÇ ²¯9˾Ö}¬¥Ø4 uÒXeØ8T£iìç?DĨ8bƒ~N€O€pà7Ì;›ÍžÃÑ…š¨^ÃN™©³íxªY7•ÑÆ2üd™LßžÈxíîè…:ÖŠ9gm’Ñ ö› J°x äqàËòN-òÔkЂûí4yp4‰`Ô…ÖAÞ‚ Ó|Lå çÔ!&´’7Ñœp QÒD¥-Æ pQ|«Ì}®Ö’ï8ž1>à©VÒÇ#\(UýgX€0ð8PNˆ«&ÂC)TßÈ<Fãääjáû½üÓ)¥^’æïÚôª –±¸#žØR³ Á²©%è%x‘iô¨nÄ´Û@8`:2—¹Ê¬('ËúÉ~àˆ^Œ°Þ–>G´‹Þa3–#Nø}y) ¤?™‘¦&s¼zëÔê¹ÿkÁ£f‚~¢Ì¦:×;Ê«@8 ¤ #aÕ¯M…ôª»ðRÂ:˜×lâFÁ!ð'V3™‚–;UÍðFf.qSMѳ*ò7‰ˆB5µûÖAZAGÏ:ÄœXhG`Gþ‡oÂ;˜ýò“HÛ?5?ÖÄÔtñ+h¶u{ëËŽ 8ç†SÁIlÉÔ‘Ή¿ $VЖ#]ô&láÀo¨¿Ôõ²äèÁ×y¦rë¨Û´<:ÑF;*ÕlF„hfS‡ãÇœ("à Ôä3ŸI½Ý‡fU£ÆNf^k²³ûÖ»¨'Ü~¿H+h¤:þ„#„8”æFoO›¡rpÌHgS)*M Y3LÃt•´gN=†>?ZÜ–X4+þÔuÌæ×(cÎ^OÍÀWá ˽("iiâˆXAZA;XNuŽ©á€Á·¸ø×¼¢c,œ_"Rßòúµa¢o¦2³Ù…ÚCF¶‡jŒè ¦tM¾wQ×7;Õœ²¦¶"p¶ŠZ~®¬àÑ_ú´ øD[¡l ©ž©ÎŸáC¥¥AãmòÞ÷:ßRUvˆ¬ÛjäÇ©c®çätëˆã;¤·i2×Ùù¿ùÛ …¦²-F é}ˆzWÇ£š¸àj b…^le–HuüGPݱ¼7Q]P›#½­éBBÉ,A!+²±OOfI’VSÛÆ™aNvLælsäߨÖš¥sbä)+#~—f&­µé§ ­ 50QÀ?€p€£T2tœ,!Ze¦–>>ÐŽzåzÛùc7\HeºýˆŽÜáìÌÓÈDÍdò}~L‡œ Îc zÍz4óÓ´°ÝSo­\y6ÌÂÙ!j!òÝe¹)˜V'ãà¯àÈAþ·î©|µk¼zгŠV<šìD+Ûéh´`‰f ›p%‘f¬%÷!¤Êí´l¥½›‚™õªÑ{R™uLÍž¡ÿÕ–ÛT?ØÊ?ãáˆx%B,<Þœ´‚t5õ?´H1 \GP­¡÷áéíŸcŠ0³Ùd¼7 ÃrȳñÅô½ÌusŽ©ÌÌA†þKÃÉÑÛŽ)8™–?S³{"…³·Ò TÈ{+Ȇiõ¢¶±¨ €ßá€þ‚¯¸ÏgÑDVoÕ˲LÕh(ª,dF¤9si˜îÅÐçg3‘áNPËÙE°Ó²¡ÜéÂw¸}g675´#þ„#ºÈÔoõàçt k¹$™á ê†Ñ¾"á5êP_q«è8½ÂðDêcyöwpzƒÀvq èBGP}\%\ý$’lÙ<›·Ê¿aRC==§—ÄGÏ}(Î7XÜNºSÍòmÐ zo8³XnÇ`ªùî=·œŽøŽà78N,uè ³‚å½€z¨£pôrrnQ[EG+Ë%´?R3µ¨2»¸Éiܰ¾F½©C[ôÌ +è 5zß§º;~¨"L͆›h†@Tr\|>éŽl®×  Iñ¨^@ºPÇT_ô’ΪßÓü :Gs¡Ì=ˆü˜½g"àëbî;ÉÑÜÎLröPj篤Ó^Lff5sC‚ˆgÔTžEõ]„TyHôRêp>_MÁ¨&;› oˆ¥¡¨Þ@8‚àÁG sÕ’^åd¾&Ä„Id¦rõ1—Œ5k¸")u4 ¾zùsÎ èæHFºèËGà ü@=^=ÃÄ£m8`èM5gÔ†-øbC¤Ú¹èŽF°€j„#6ÌÿÒ7Òî7‘ä2–WuùÐRò>6Œh&”Ǒө ªÓó\jÚ¡å”#òˆ#Ô4º¿ªngò§š3œðs½»œ“€ê „#`ø«®D@|pÜij¨ÙhÈì…©ÌÆ\óÓé˜hz¡Ó° Î`‰Îb(SZ *C©ª®¦IÖô·`d7í·Ó œ¶Aï£Ô¼5 “âü}Ÿ@u›‚¶`œ·{J&zO5FäüÇ€†Ž‡¥¿ø õgË e¢´©©©nM#F-„Ójb/4åj³9AÊô9«í‚{õâ„ø›Aiãé6™u,hG:rE3 jƒ5íÓo5•5CV?$̉¥Ñú‚èm!Л ½¸(sîIõNGoû%¨œ%pxA`ÃÜ€h6ªƒè‹ºš`èµR·FXŽ1Í™íë-1«[ÖëÔ”OÔø¢ÇÁµ~þìé…~‹L¡Ü–š“ÊŸzîg³»Ålξ[ÑÕ£_¨¾ä½õqºà@8‚€G­ ì( 7Ò:ÀpϜ޷¸žàcÆyè¡~«6@cÑQH† ÓÖºøÄÚoЬ7.Í:2­ -ä|úœ°$³cѳŸ8õ—s_#ñ•€ó±L„NÀ Ž P‘A"_–†^@³Q´‰•¬é……£·‹ÑpZøNPÚa¦©ÃÇ”_“9^Ãúv´#G¨q>þk½8fwü³XöJªnÝ E5_X ¢0 ö8‚@…³ YnvõSÄeH¿¦w@òÛ$FÎ$:|Gù¯ægZ4÷jÊi©-8]â«ðê:ùå`:=^~¹ÚÍ$þÉa¸¹“¹ÑP}»ƒ[ ÷˜ 6¢þGHU¥·1@шA6L zK„"72µ `Ü zõYD1¥†zœÖj¯d•o}ýñò×mÍjG†³¡gS½Ú~It’Æ0z£ÞL2£på©/gF±JRŠ£é+hDß­4ÃÀi°T æW2]Gð»–³:ÌiŸîˆö® ¶@X"˜^ˆ×´ÌóЫÀ÷ Æ^0 é:œ-†´ïÍY7$mš3ÛjY©‰³ÑÜN·Ìÿ›Áš˜9ü•zí%õ~†* ¹`<ÀO€Ç6z!¦à§e¡_ë­b–Ôà»Öø«œêÛÕ/” „°ëЯ åTSwÄ™æ52-猔©¢4¾RoK+ÏžFÍç.8Lz»üös¨óùµåö`œNGX@8‚FÏ5¨çâ Y&FÛïÄ)4Jˆé¦ºeŽ÷ˆ¯Õ“Fˆ9Éœzw ÇSE4+öðÐ ñ ]%p$)èÂ_° „#`D¢VÅC8ûó˜ýÒ;iß§v»˜~þk£¶BΗ­üåo:È0î[3tHŠ¢³ýGr™õÑú›ýÛ8 ëöš6YîÚüþBÄ›q G`° …Ri(ô¨ %ýjŒÍ|SÔA8lSf€pþ‚÷¾ª­ùùLÙÉÑŽtkÚ‘œ[£…š»8c×JŽj¤nñÈ¡2ª5kž<%”6¥_ˆø™Â°>_Ú_Ktäc *EÇaL‚ˆßŽ)ÅìkGÇu'´#¶pƒ5ÍÇpŽ›GClÑŽ:k-Ó–órÌ© DW–i¾ùÁ@t4Œüm¬ÄÊ0=‹üBPßs„;ay.i½.ò'D9MM”X~»ß>xCf3Ž^ûfe]Ú«@8°šê=ÃÃ_¬ÁñÞI’®+Ë0Ô†öÉé]bŠQ¦Ÿ?pµ»”¶J'PFñ5þ¯yŽ–å{:iÍj(ÝØiù®)÷“gÕ2âå-ð[ƒ"~;gç“îžjô†T ]˜_Q~ò}ìøw'¿Mk£¦›UJôÄíwÔ kà÷Ë÷·7äïVIt/òšµìwäˆTÃÙЬûëÉlVp§)½Ž¸0}·ŽwáŒóÏJß:9â·œÂØ‚ïIò«/cGŒ3E1€vrŸ— ™òHs‰¾×p,L!¢ÙΨ©&¯Y®‰«ÇÂ¸à§Æñ¿ª?ÍkÃM!âÙõ´·Øa<„0ߌԩPú@€á¬c(;L}‡‰,MúøûØÙ5ë§‚”9QL8KÞDGXXÓ÷êŒSùaÝœYÕÛ¤(8±f#åéÏŸ±åEî5ŒjWÆëê?{ÔFzÉã(žIà[ AµÆšöܱÇi“ËFо=âƒÒ˳ÌwVªiúߌÈ\Qå¤ï1„/CéŽèÍŽÌÏ×¾Ö†c Îb½¡…¦à(Tɹ ©UǦéé÷BD´à68«Ú€Â”””ƒºmˆßá¥}T̯({G[Žƒ¦[5 ¦zËЦ¦EÓŽÈÒ³^$Sv0'Â*£`˜9†Df[ÐIÒŠ`u¹Þü3g•ƒÈ‚Xx̘–X{bù¨'M’~Wqò,IDÒûœÊã¨nÄf˜6À6ð8°jÕ*·M`,¬„êíQsz•ïâ‡Y¨ÛÑô¢T`úÕ8‘–küiaZ¨ se™99´ýê^Äx5RFoéÞ9¾@æ,ñá?<†1é>ì{›SÇ«;Œi·4Ûè”k™tð3 Ù”””|ÿý÷|ðÁÚµkݶÅO±¶„ªWMݬ¾¹EÔSjÊ5–k´]“Ží™XµúÔƒï•Ô«¦kL( §73ü üT8œºÍÿÀ …8=3þÂ¥·XoA5Õ´[“¡‚}U™[Úè%Õè`ãK@8²¹çž{~üñG·­~˜~;o‘Óž3¦OŽùe,»Ãtž1%?RÄlt!ºÒè«aæ$ð#”ùQÌtûLaªQÛ„©F¦y|÷$³Ü&"ŸŽ…¿¯Ìîøäo·5k°©ñjµ£ã@ à@8²yöÙgKKK !«W¯Þµk—Ûæ'|Íäí¨uœ„`@·àVK½ˆiÓ‘é’d¶¦6[d\„h51½ä­©©YV–$†¤c®êšÚçњœÅYúFfÁ?9¼ô,Ùwºs\°zˆw¤!d ÎF €áȦgÏžò‹Ï>ûÌm[üþ§ˆã4kÎw-_œé VÝå93“Ãq¤1£1 ÷ù Bë?uû̽†üÁòã¬õ6/2癣uø>WïýÉáûýŽü)³þfk?Œ–íTC ½BJJЦ$??ßm£¼‚¡kÍÁfE`®ú1·¸±¯gƒå9KV šm­/Ú3Ê÷òÝ{tM~\íà$ú²ÒpÕì.=ÿä°6ùf»ã¨F cá|¬ÄiM  @µÂÑ+«Ldb!.ÕßÇLµÊñÑ÷êˆ_¬7fƒˆJê1m°£ ÐøAõ½í¤>zõ\9庙j-ËËË_{í5åmhhèƒ>è¶Q‰Ÿ|'ñQêZæÂ±Fëhwÿh¶ ª[ Ýut ‰ah°¸ "ˆD:k¦Èp¥XD_ò½Ô"Û„ÿW‡5íhV5j60·pŒç—{Û{ ¨>TkáxíÚµììlåmxx8„c€bùKZ­uÄ—PÅ-aF:3ïâtM,Is=ŸŸ¡ý6{äo5¼×Ðê%ôâlD‚¢ø¡å|ôüÊâ[69yéØ&hG€MªµpŒˆˆ¨VkÊÕÓ‘–!Òˆ^B¹ù˸D_c9ò¯ Ã šiDdª5C£1ô­úRëØÙ©µ{ü¸õFÕ°Ž.`3ˆÁ&£¶ÊñÑ1÷Ê…tTŠGøk #%:+¿Ì˜kMN›üyP$½pÏ|èm…"wÙ‡ðN¼©· sܘ¯fÞÜý)+ÕÚãü¯ú™¼—²D¯ ~ü,ß*GÌàDF &ßQ×·¼ëNÓ¬ ²ñŸŒ—ƒÏW¨W» p4GàœÈ_/Å\;²}ÐÚ—½žwÍ÷ø˜*PíçSŸ†ûôà{.Õ»ˆÊ)IºFŠwasVÜ^)¸V¯¦…ɇ:øxkè­ºõ(èK³fÚYâÕÑ©_h…i{DàxLéä;"‹Îœ°kMGö™õb*Ì\ñPk;5œÞÀKx$üŽqš””ÄÜø¾hϰè%á¨nA©®\™.³fÐòŽάæTîC§ô–a& ;z”£Ëÿl@(4À¯€Ç ñ' ?¢o`ú½Ô¯-ˆ½`j¥Gk†qÚq6˜‰ds¢&tþè ½¼PÂöWýœr†iîbÚà Xñg4~2zt|#±7^ ^áôHì}4´4d¦l€@ÂtP°Ù¯¦Ȳ¶ãìó_½¥ÛdÌ™ïa¸ã9:ú-ßlójøÓÅßà7‡š2Ë9mò 5I„õè |„#Nìˆ?Z+ØÜâ¦4BËMZrþD2æÛ{æøBÖpk&3é';#1ÒaeD`.kÊ-Ì0Ý? \óÂpBÀE AÂÙAh*µ7là§T4TLÕh(ÔhlÆ) † E[õл¶<ùÖR295"‹øàÿ #<ø! ü¯swÓÐ[­¶fžÚ[郑ª3>j¤žúŸ^ïÌ­~z#² ³wÁ°zÍ-?KIM»™ P€ÇçÑÛÃÇyMt4Šf§ ç^ßd‚Ô,ãÂs㩃¬õT2? å…ufD3§e=‡®åPA?¥>8pxAPáŸßÁê“Qh}#U=7…¾×²gÎpÕ˜‰`G=Ÿ™f}Vptv>8¾J#bGÑÐFÒYkQ>àÿÀã=q`-ã Ù» \Ћ–`z™âÌl¶©IÜÝhÇg¦'’˜“ìHãü– ‰8ªNÐ;1.Öòø _qeöFA˜ù¼$¿‚Rع˜Ý àÿ@8‚€AdKœã;ÆLe‰Úá¸ë4mÚ<…EpJÍN‚Æ J'-2ååäzÔ3@ð'¢Ùìdzi¢ª1=‘”ú` GH8²%NÃ\†êš„8&5ŠP/z†YŸ‹ÍÌbcsM_\öiÒRêõÎqø .y¸è¹„ µ#g £á"µ÷°$ä~e¼í¸ŽÀß1µ%N¹äƒMc†®2ñÕdÃoeMšÎjµ^¶ j¤Õ*G «…'tš6@0Κ¾ÄlœéŠÖ“‰üéå·Lßâ !Ewê?Dðd ¿cvKœx>ÄÓ=ËÉÎlYnJ£Š4n?ͽzÞY¿ ¸5ëŽâWæO&ž­ÅÓˆ´LÁ«JÎ0—¸„#$·Ä·OpéWo_#ß$½¹^oÕ8 õ‡¡ÿnŠÓsÔ|׵υ)¬™åöÑxœÄ·‡º‚—‚„„# 8aîÂß9'¨ZC€ù²LdM_£á˜‹ÑDG1Õ˜f¦áZ¶…—tS´„µé“ã„É»õŒ)ëÄ÷ãª989¾ÿÆ2Œð^à­Æ}haìô&HMËœ-Œšê{5…z¡9̇‘9Å,øàôšUZö¨ÎÝv=°Q)¿Gxø³Ûƒ‰¢çÓÛŽ)âmŒÒKièÿ3ÜãH \f#†¯-¦ô’·µEpŽ%>ö´q"åÀu w è/<Î &ÑÑ:z)løp¼J†Á×t}Ã47‚[õ2ïð¥¡ø%³ðå/3ŠÈT=1ó™zñ] Ž÷Ëÿ|÷à ŽÀaZ)Òð…Äèìf¾!¬5e½(iSsÊE”œY©Ä ÜÖ\²³‘ÙÓ¿«¬¹›B0ÝOÃü«ÃÀâ@8‡ÑûŠ è¯¾å"¡Ð‚½hvïÙÌäÇYzfÊS~܉ˆœUrñ€ôÂq÷câÊp|“{ @8ç¡¿ÎZ5ŠŒ‚¯9_ÃL­Quü8k=™NtV¨9YÁ‰=o-|IUj¨VM}†i€Ì64ØÏ`L³pGà4n­êð=$’ ǩƙðçY³Î\O§7 Z0žŸ3Ȕ͂]0ƒc'PV«ƒÏßð+ ·àìµ ¬)f02¿Î[>ß›&áç’º)/©.õÐ,ÿ]¡7¥‚-èiâ ÉbhÖ3 fpNb¸šŽÔ‹’6Tüôz±æíS;E4(+MomôöÕ*3ÂF°kÂ’ÎÁDÐŽG@pà$šÑj9B'”6ÄOò3³dslfªF=I­—PÆBx g†9ÊÒADô1aiSÁ…xf_š†³P+˜«xWÅ-4 âÇZLŒãÉwhíH‚wEÛŸÿ„CL„#pÎö|,ì)ôö£¤ù>WFaîü#¬mˆ|Sõt!Çr 9wøså=L…™aí¡ áÐñ=ˆé €€p㬈øÇ·:å 2½¥Iˆc9‚„œDŸ^èH6o#âúuÖ0ן·jbz, uD3–<1åXòö0ÍFI‹LÿH;û™ÞJ¦6u}níÌ3ýìoá¬à­`‚Ž%ß»»˜QÀލ.zwÝ‹©Öô 9Í@‘jkùÙkDÂ,wZ誎À4-El;¯ž¼bg=©zM‰|/Vc¦§Q£·f(ßÊ‚®_ÁXif›Ž^|qûçH ›ªÈãÌÁOnâx/~•lÏño8æ ²¢ÿô2š2U/u¢º¦ÍmßÀŒ§ö«ÇÃO?PùùQ[ú­8ù!.ð+àqNâÈ¢’S{ ýNnpÇ£pLu­©é'˜úsEL~Îyµ©J4,Äm  „#0^¢|ëaÿX q-†^FN_š6íG¿:«Þ˜ËÐþyŽÀ"øæã%§—H|3>†s/?ŽDa£'@E6t2{±6¦z·“P€G¼²ˆIïkôRzS^@ÁÐæù~Dß٬׸žãSÓ²—Ž“®&G€/pÕSéi,w¡‰ÕðqpŒN¡žG®l6ƒžÏOàb*±Žá`«áDà AõÅPýxcK¢}í"²,Ë1ž“UG#û¬Í€ÞnH‘©VG€Ï€p€: óª¦|~Ìc®†óýv„è.%ëµ,2L‘rCÃø?Ž š"’…[0“6§ïA{-ìtdéV/ÞE< ‘aÈ6ßl3¡:qBÜ6?…ã³æ$s\¾¨·NÊÿ8cwøÙqÒ:šu®ouwس¾G0C€ýodùq*dDoá›8o¤ùP ÀÇ@8`·âs-dùñÍ9."q֎σ¥j;‹Â†ðî³ñ÷Ð=»˜Àãª)†.CÞ<ç,?ôü«KêÙÆÉé·S @ „#†÷²üxµM½“càn€ÂT_ô6Šä¾vÑéxì‹ÆÂ9™ÚGP­a.È fôÂHÅTo îm¬­×@Pá/ØNp›Xë…™­†|íc}¬‰ wjÔÞC/„œ@>ª%Žè¢·ŠêŸŠ¢ `/Á<8ѯào'õ7 >Â>V–µçDAB´òÑМ¨Qêî*3èB pdsåÊ•uëÖmذáôéÓuëÖMNN?~|=ܶ 9z9k,Gêø¡oŒsøú¿Äÿd.GåååcÇŽ=pà@ýúõ»wï~õêÕ={öìØ±ã‘G™4i’ÛÖ G£ýJó95@ j¥¨—ñÑOu|ŸðpdðÏþóÀ7ÝtÓ믿A)((3fÌÒ¥Ko»í¶Ö­[»m r?âÙŸQÓ•³jªÃ¨ @Á‘ƒ þýïBüqY5BZ¶lù§?ý©¢¢bçÎn[‚Y6)ÿ˜åz7Ê,¿Í•¨Þà¨7Nu!X€<Ž ~øá‡ÈÈÈo¼Q]زeKBÈ©S§Ü¶'^=‹Ï?}xŠUêŽZiʶQSö@õ‘Á²eË´3søðaBH³fÍܶ?ê}~†ê$@wÚqN‘ñƹÛ¶èÄ€WñHø½(ÀîÝ»'MštíÚµO?ý4::š_9%%….ÌÏÏw{ 0`úálžèçH3H|ÔÖz!fÜ™œDß~>¥à%àq4 ¢¢bÍš5 ,¨¨¨X´h‘¡j”LÖà¤c´, BâX5ÁÝœ.˜Çƪ3ÕZ8–——¿öÚkÊÛÐÐÐ|P]aÏž=YYYÇî¹çn¹å·MA?#ÿ.½Ãñü_âXµÙf-o Ô„ùÿ|€÷¨ÖKÕW®\éСƒò6<<üСCòë²²²çŸ~ÕªUµjÕÊÌÌœ0a‚amHJJ <ŽÀ>4Ÿ_(èWxo%T+ªµÇ1""‚©ð*++§OŸ¾mÛ¶;î¸cîܹ111n[ ª#Ä ôR„vËTká¨ÇªU«¶mÛ–‘‘1wî\·mØÂò¶Q4ŽZ$IZ½zuݺugÏží¶-$âÑ'>ÀK( zᨥ¸¸øäÉ“÷Ýw}uèСcÆŒqÛFüfÄ1|{4@8j9}ú4!äÊ•+yyyôUV ‡ž@ôŸua°šjUí%U ª!ž„€!nG€/Фш@8ì‚eh¨&@8ìo"T ¾^I €Žà¯VÃÝÁ„#ÀdíHËG¨Fpr À1dèWgUpG€Ã@)@°‚¥j „#Â=ŽøDh ð²dÔ(Ef!°¤9xG¼Ž^"C%y ô#Ð3‰¹gÁG@À#'§5"ÿ<fpÀ»:½ nAo’1½à Ž€ÀÒ|„#Âá€wÁ:)€ Â—AÊ„#^‡ãt„3Ò>†>]Hsp G|SÜÈ‚š@ €“cð´v„dt enq¨#xG|Œ÷PÎo¤ 8„# x€R¯‚=Ž@G „#Âá„€pB@8! €Ž@G „#œÁãqÛð2Ž`ˆE@µÂ¬#IlíA J À´vôxˆ$¹mxG°‹Z;B5‚GpY,B5‚›0· €@Edw#t$ ˜€p‹¨E¡¬å5kˆE@°‚¥j°‹Z,êÅY@á¶ ]ŒÐŽ€`¬£·0Õj@PáÖ@T+ À "A„#Âá„€pB@8! €Ž@G „#› .<õÔSìСCß¾}§NZXXè¶QÕ—””·M*0ŸŽƒ)uL©³`>§ÚN)„#ƒ’’’¾óÎ;„>}ú4jÔhË–-÷ÜsO^^žÛ¦¸„#ƒ_|±¸¸øOúÓ¦M›–,Y²víÚ¿ýíoåååóæÍsÛ4×€pdðÕW_EDDLœ8Q)6lX\\ÜáÇ+**ܶÀÂÜ6ÀiРArrr­ZµÔ…áááeeeeeenàŽ V¯^­)ùúë¯Ož<Ù¡C¨FT[<’$¹mƒÿ²ÿþ7þðÃû÷ï¿îºë–/_Þ¼ysûªm¤PMÈÏÏwÛw€Ç‘G~~þ† dm}ã7Ö¬YSð.· pžjíq,//íµ×”·¡¡¡>ø ¦Ž$I?ÿüó|°páÂÆoÞ¼¹N:nàÕZ8^¹r¥C‡ÊÛðððC‡éUÎÊÊúÇ?þñÜsÏÝ{ï½nàÕz©:""‚^V.((xã7z÷î}×]w©Ëo¼ñFBHQQ‘ÛV¸ò8j©W¯Þ»ï¾»qãFMùÉ“' !IIInàŽZbccSRRvìØñé§Ÿ*…G]³fM:uºtéâ¶îP­÷8êqèСŒŒŒk×®uìØñºë®ûé§ŸöíÛGY°`ÁÀݶÀ Ùœ8qâ…^ÈËË+**Š‹‹kݺõ¤I“Z¶lé¶]®á„ÀG „#Âá„€pB@8! €ŽsáÂ…§žzjàÀ:tèÛ·ïÔ©S Ý6*°¹råÊÊ•+å)íիׄ vîÜé¶QABaaaJJÊÁƒÝ6$PY¿~ýðáÃ;vìØ£GÇ{ì¿ÿý¯Û x2¿<_ñÂÑYJJJøÎ;ïBúôéÓ¨Q£-[¶ÜsÏ=yyyn›¨”——;öoûÛO?ýÔ½{÷n¸aÏž=ãÇ_ºt©Û¦«V­rÛ„fÉ’%O<ñÄñãÇ»téR§N7>øàƒW®\qÛ®`O¦}ðËÓqðÿpŽyóæ%''/^¼X)Ù¸qcrròÈ‘#Ý6-PY³fMrròèÑ£/_¾,—|ÿý÷]»vmݺõwß}ç¶uÊ/¿üòõ×_Ï™3'99999ùÀn[x=z´U«V½zõ***’Käÿ§Ÿ~ÚmÓ<™‚_žŽƒ¯xx䫯¾Šˆˆ˜8q¢R2lذ¸¸¸Ã‡WTT¸m]@òïÿ›òøãGDDÈ%-[¶üÓŸþTQQ5ËÜsÏ=÷ÝwßÚµkÝ6$€ùç?ÿYYY9eÊ”˜˜¹ä/ùKýúõ·nÝZYYé¶u žLÁ/OÇÁW¼L˜Û 4HNN®U«–º0<<¼¬¬¬¬¬LùéâüðÑ‘‘7Þx£º°eË–„S§N¹m] òì³Ï–––BV¯^½k×.·Í H¾þúë´´4¥$44´wïÞ|ðAnnnçÎÝ60 Á“é øåé8øŠ—pt’Õ«WkJ¾þúë“'OvèСúsÛ–€D’¤cÇŽEEEEEE©Ë“““ !§N‚p´žLÁ/OÇÁW¼ „£WØ¿ÿÆøá‡ýû÷'$$üýïwÛ¢@¥M›6š’Ý»w/_¾<<<|È!n[ª)—/_®¨¨hР¦¼~ýú„óçÏ»m øåéEªùW<„£WÈÏÏß°aƒ$I„o¼±fÍšn[ TTT¬Y³fÁ‚‹-ŠŽŽvÛ"PM‘C§###5åuêÔ!„üòË/n@ðËÓYªùW<„£ÊËË_{í5åmhhèƒ>¨®0jÔ¨‘#GþüóÏ|ðÁÂ… sss7oÞ,©&†SºgÏž¬¬¬ãÇÇÇÇ?÷Üs·Ür‹Û&û;†S ,Ó AÇsùòeMù¯¿þJ~÷;à'à—§ãTó¯xG+\»v-;;[yN%{<žÆ?þÔ©SÿøÇ?>üðÃ{ï½×mÃýΔ–••=ÿüó«V­ªU«ÖäÉ“'L˜P­v“XFä)Ö «_¿>íY,))!„(qÖ¸ ~yzêüáh…ˆˆˆüü|MaAAÁo¼Ñ»wï»îºK].µ¹mµ_ÜRBHeeåôéÓ·mÛvÇwÌ;_ÉâèM)p„ØØØcÇŽ•””Ô«WO)üá‡äKn[~y: ¾âÇÑ1êÕ«÷î»ïnܸQS~òäIBHRR’Û$«V­Ú¶m[FFÆÒ¥Kñ‹ø·ß~{EEÅ—_~©”H’´}ûö† vìØÑmëÀ/O‡ÁW¼„£cÄÆÆ¦¤¤ìرãÓO?U =ºfÍš:uêtéÒÅmI’V¯^]·nÝÙ³g»m U>|xHHÈK/½$ïk$„,_¾ü矾÷Þ{kÔ¨á¶u ºƒ_žŽƒ¯x,U;ɼyó222&NœØ±cÇ뮻~Ú·o!dÁ‚ˆb³@qqñÉ“'#""î»ï>úêСCnj㶠šÒ¤I“™3gþýï4hP¯^½Nœ8±{÷îo¼ñpÛ4ðËÓ+à+^ÂÑIRSS7oÞü /äåå9r$..îÎ;ïœ4i’œ¬˜åôéÓ„+W®0Gl p—ñãÇ7nÜ8''gË–-ñññcÆŒ™2eJõ‰¬þ ~yz|ÅËxäDDðÁG „#Âá„€pB@8þÿvë@@¿õ E,âÀ"Ž,âÀ"Ž,âÀ"Ž,âÀ"Ž,âÀ"Ž,âÀ"Ž,âÀ"Ž,âÀ"Ž,âÀ"Ž,âÀ"Ž,âÀ"Ž,âÀ"Ž,âÀ"Ž,âÀ"Ž,âÀ"Ž,âÀ"Ž,âÀpChhðfá‹IEND®B`‚statistics-release-1.6.3/docs/assets/knnsearch_101.png000066400000000000000000001056101456127120000226270ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A€IDATxÚíÝw\÷ÿðO2EA‘©(‰ (n‘àB¨ âBÁmë*îj[ÐVk]ÐúuÕѺqϺ(8PTDQ'*ˆ"2ï÷Ç}¿÷»&Žä¼ž>úŸ\îÞ÷¹Kòòs#Š¢@E´ø.ªGàÁ8ApN€GàDUÁ1%%EP‘ï¾û޲nÝ:ú϶mÛVjóçϧ_Ø¿Uw“¯¯/½¬ßÿ]‰=söìÙ §W¸ä/š¡­­mjjÚ¾}ûùóçgee)<ó£G:tèСCU™IW*$$DêÙ‚‚æÙuëÖ©³0UàØÉªë“ªìÜß°ê|k«_™}Xæ–UE?,\¸ž§¯¯¯œz>|øðõ×_[[[kkkåååÉo×@Ü?‘øúìâQ·#ǽˆ£ZØÿ «l_)1?°ióÝÀ³’’’wïÞ½{÷.!!aÕªUÇŽëСƒó:tè§OŸ!gΜéÞ½;/ë²cÇŽÐÐÐöíÛó²t5P “k|ŸÔ šðöaûá‡6lØ@?¦ “ß®¸w©¦u¾hÔv¬…ý¯0 é+uGsss}}}ÙvBˆ‘‘‘­­-!ÄÒÒ’¯^Ðd*êf£äåå1ÿvÉÎÎ4hÐÇuuuù^oEP5mÚ´K—. ¾kÑÊí¼[«NÓú°ÌzN:E?ðôôìß¿¿ŽŽŽüv¨^”¾5m¯šŠ¶‹:‚ãöíÛåDãaÆ 6L eTE‹-Nœ8AqvvVó¢UÔ?ìòìÙ³°°°¿þú‹’™™¹fÍšiÓ¦©y5•åÊ•+;wîÔü=J”Ø'Õâݪá4­ˬçõë×ôƒ9sæ|õÕW¶ÛãÇ­¬¬4ùŸßJߎš¶WMEÛ…ÿ‹cÊ<_TT´víÚ.]ºXYYÕ­[×ÅÅeøðá·nÝ*o&ïß¿Ÿ9sf›6mêÖ­ëææö×_Éþ”âëׯ§NÚ©S'##£fÍš 0 11‘=ûŒ¢âââ 4nÜxÁ‚„€€BHÆ ½¼¼.R9‹VJÿÈפI“M›61çQ-Z´ˆ}ÊKiiitt´··wÓ¦Mõôôš6m*‘H6oÞ\TTDOðÃ?æxG=3‡ _®tsæÌùüùs…“U¸?p,^ζ㾠 7¨üNV[Ÿ”wÆÌÇû÷ïß°aC[[Û1cƼxñ‚.X ÌŸ?_vA\Þ°´/^ >¼Y³fVVVƒ¾pá‚ì4yyyaaa={ö477777ïÑ£Ç?þ˜››ËžFþfRà 5lØ0z†ìÏe???º±oß¾Lc§NèÆyóæÉö!Ç-Ë½ÇØ222† bjjjaaxíÚ5Ùi¤êÉÊÊzúôiii)ýlNNÎÓ§O‹‹‹Ëkç¾óTýžCvvöÌ™3Û¶mkddäææ¶hÑ"ŽŸHlåM9nÜ8zAMš4aOÿüùsæüàääd©’^½zljjjooonn¾xñbÙ%*åÓ@Ž ß nG¥ìEW¤êßw Æ›7o¦NÚ¹sçúõëÛÚÚúúú;vL±Í$…©dРA= ¶µµmܸñСCïܹC¹råÊ!Clmm6lèííS©…Êé«ÊæŽý oóQªA¿©hgΜ‘3åÚµkéÉ<<<è–/_¾´k×NvÂU«V1/¤?… !‰¤E‹R¯X±‚½”³gÏš››ËÎpÆŒ²3ìׯßÈ‘#éÇóæÍ£(ª¨¨ÈÆÆfÒ¤IÌÄ‹äØ3r­pÿTv£°÷ã'N0íƒ.ó}2pà@z‚ï¿ÿ^öÙOŸ>q|¹÷4f7ˆˆˆ`úŠyvíÚµ•Ú8/gÛq\— *¿“ÕÖ'²{#EQñññ¦¦¦ìWÙÛÛ3]Çt÷7,3eÛ¶m›5kÆž¬N:ìš)ŠJHHš†Ö¤I“ØØX.›I±7Ô¦M›èÉììì˜ÆFÑ–––tKQQs¢NLLŒlÊÙ²•úˆ“uíÚ5 öKŒŒŒüüüèǽ{÷.s›öë×O¶žû÷ï—×Î}ç©ú;…Ý!ŽŽŽR4¨²o–ò¦(¸äŽý óibpdzA__¿oß¾ìSûµµµïÝ»'5ÍÞÞÞÝÝ](ÒêêêÐS~øðù@ïÖ­[xxøÐ¡Cµ´þ;ÚºqãF©6nܘ™-ó¹VÞ^"¿HŽ=#gÑ ÷Oe7Jii)s¦ËO?ýD7îÚµ‹Ù]ºuë6bÄöÁú³gÏRõöíÛ‡Л7o~øðaii)Ç—+qOÛ±cGýúõ !™™™T9!‰ãþÀ±x9Û®²;žœ *§“ÕÙ'²{c~~¾••ݨ££Ó©S'æO©w÷7¬Ô”fff]»v544¤ÿ …)))ô”Ÿ?¦Ïà!„èééùøøøùù1½daa‘››[áfRì õìÙ3f>¯_¿¦(êñãÇì²_¼xAQÔÍ›7é? é”êC9[–{É*((hÚ´)³:t`:ЦÄàXõØÊÎÖ´iÓöíÛëéé1- •z³”7eqq1ó-þ믿2Ó:”n\°`œ}µnݺLËñãÇ+õSøãã{¡RÁQὨêk•ýø•¿KHõ¿±±ñ€¼½½™É¶nÝZ©Í$‹]‰–––««kƒ ¤úÙÑÑÑÚÚšùÓÛÛ›ûB¹|PpÉûAþæSGp,Ó´iÓÊÛá:wîL·üòË/Ì {öìI7®\¹Rv;ýþûïtã¶mۘƤ¤$ºñǤ[ØÿRY¹r%Ýhcc#;C''§mÛ¶]¹råÑ£Ge® Ç"å÷Œlp”]´ÂýÃqÑl666ô³ÌØêèѣ閙3g2“µiÓ†n\²d ÓÈ|V²çÌýåJÙÓΜ9³lÙ2úqHHUNHâ¸?p,^ζ㸠î´ÌNVgŸÈî+V¬ [êׯŸ˜˜HQTIIɸqã˜E”å¿aÙSúûûùò…¢¨ŒŒŒæÍ›Óýúõ£§Œˆˆ [êÕ«Ç|Cܾ}›ùÿ÷ß_áfRø %‹éiŽ9BQÔž={!ÌEH‡¢(jýúõôŸ~~~åõay[–{ÉZµj=‘‘Ñ•+WèFö¹Ër¾òåìie¶WýV90ÛåÞ½{LP`Éq|³”7å·ß~K7zzzÒ-¥¥¥Ì~•œœ,[RŸ>}è}õùóç̾ѹsçJõ’Â{#÷÷÷ΩÊ^TÅ5>~åïLÿ7mÚ4++Kª±k×®•ÚL²Ø•üóÏ?EvëÖiŒŠŠ¢(ª¤¤dìØ±t‹©©ieZáE…ùc?Èß|š[·nM·ˆÅâ7¾zõŠ¢¨W¯^%'''''¿|ùRª³™å~üøQ[û¿WüìÙ³Gj†'Ožd¦üôéóowú`3CƒçÏŸË_AŽEÊïÙà(»h…û‡ã¢ÙÜÝÝégé„AQÔ‰'¶mÛ¶mÛ¶ŒŒ ºåÇÌ ?‰¸¿\){Ú™3g èx!®\¹RfHâ¸?p,^ζ㸠îT±à¨Ä>‘Ý™›7Í;—yáçÏŸ™C!²Á±Â7,3e:už={ÆLL'3BˆŽŽNqq1EQÌÁ©#‹-¢Û]\\¸o¦Ê¾¡˜lA¯ûìÙ³é%Òc®óçϧ(ê›o¾¡§¡¿6(…‚c…=&«K—.ô4?þø#ÓXPPÀl%ǪÀVvÎÎÎì—3ßg³gϮ웥¼)ãââèF¡Pøþý{Š¢nܸ!»9˜’´µµ™ Š¢öïßO· ‚üü|îë¨ðÞÈý½À½sª²Uñc­²¿îLèdgÖ—/_º¹¹¹¹¹µoßžþHḙd1•°ßGkÖ¬¡™1ïÓ§O3ûL¥öª¢ .ù¡²ýPææSÇÅ1æææ¶2dGq>>>ôƒÔÔÔ±cÇZZZ¶iÓfåÊ•yyy-[¶”:ß‚âààÀ<®[·.3\RRB?xðà3gæÔæºuë2¤¥¥±gèîî.u¸­êErÄ㢠!ïÞ½£Ô«WYVpp°ŸŸ_||ü¬Y³ºwïÞ¸qã{÷îqœ¡b/gÎçe0‰¶B:::ôEQô?Nd§á¸?T¶xÙmÇ}A*Ú Jïù/dõõõÙJ©ð ËhÙ²%ûà s·áÂÂÂ'OžÐ=&»tBH¯^½˜²™ëÊÛL ÷?óåtõêUB}Ñ@ûöí=<<!ׯ_gÙ+€{Én¦Ó!:::LÏ(QÕ?`+;©3ù˜o©m]:u¢¯Œ)))¡o^ÃܦÌsïœÙWÒ0;EQéééÜ×Qá½Q÷B…ª²Uñc­²¿î>¤0ci„ ‹›7oÞ¼yóÊ•+tJSø“Á>ÍœßleeÅ‹½;aÕJã’8öƒüͧŽà¸}ûöÇ2ʼ֒1yòdæ^E%&&.\¸°}ûö]»v•½a:s*Mê~u¹¹¹ÞàôíÛ·ì?¥ÎlUJ‘ñ¸hBÈ«W¯èÌù=………3gÎ433:tèòåËÏ;W\\\æyµeªâËÓ·o_ú}©g¹ï•-^jÛq_ê6¨ÒûDö…ïß¿§K}`I]ŽÊ&ÿ Ë&õíbhhHŸ¯IÉÈÈÈÍÍýðáý§Ô]ʘÏî/_¾0w¡É¾Åî‰DBþ%$$”””Ð#RLp¼víÚ—/_èÑ_+++''§Jn4EzŒöéÓ§7oÞ”Ù‡r¶‹bªþ«À¤z@÷mC† ¡Óœ2ÁqРA²ÓKõ³³¯¾zõJÕŸнä«â^TŵÊ~üÊß%Øýcll\ÞLþ$”³hšÔ[Xé ¥U˜8ö©hóñ;YuêÔùÏþ“••µk×®àà`ú>á´‹/Ò?TÈ]½zõŒŒŒèǧNzXæ”g—!å© ‹Ž‹‹+,,¤3G=.\¸bÅŠââb{{ûÕ«Wߺu+77×ßߟã<«ør…EFFÒoTæÔ ÷ý¡²ÅKm;î RÑUEŸH122bÎ%’úh«ÔWTy˜ÉÐòóó™O=›zõê1ßÍ/_¾dOÉü©££Ãœ ^æfªJÿ׫W~§äææ>|˜¾é ß¾}{øðaú† UnT€¾¾>s¡óÝOc:PYªþ«ðî§jAAAôƒãÇüø1>>žâèèØ²eKÙ‰¥vøüü|æ&8¶¶¶ªþ4Pì½ _÷¢*~¬)÷»ÃÈȈ¹¬„9°Vf7ªWTâB+ÌûT´ù4.8¼~ýúõë׃޶mÛ›7oNŸ>ÍD™2oä&sN}qqq3cccccã2ØFÍEò¾hæg¸ ™AìÕ«WÓV­Z5qâÄV­Zikkgffrœ§b/1bÄ«c߃‹V­ZÑ×gH%Çý¡ŠëÎqAjÛ—”Ò'RýøüùóL{qqñ¹sçª^sJJÊ‹/˜?OžMŸ¢££C_˜¬êOƒª¿¤Te/ªúÇZÕ?~Ùs,›>±„öêÕ«Ž;vìØÑÛÛ›>¨ÍË®¨¶…rì‡ 7ŸÆÇ{÷îYXXXXXXZZ>zôˆ¢­­Ý£GæB$ùã«eb>ÜÿüóOæ¯}ûö5lØÐÔÔÔÖÖöãǼÉã¢_½zõÍ7ßìÝ»—þsøðáô?€>~üÈ #åääÐnܸ!?0Ã–Š½œ¢¯¯oþo 6¬ìJýüóÏÌ™šR¸ì _Ù)¶A™NVgŸ”ùBæ–ø+V¬¸ÿ>!„¢¨¹sçJÝ›F1EEE¡¡¡ô ÝË—/™;™ùûûÓ'â0÷“ûã?˜›å&''/]º”~Ì>7«LU|C1C‰ôŽááá! ÍÌÌèÄÆÆB÷_•UlËÊ¢G=¥zfÑ¢EwïÞUÊüÙªþ«ôhźTvJfБ¹5AyÁ±°°044”žÃË—/çÌ™C·3ûªê> hU/ÈRx/ªâÇšR>~¥0ŸTË—/gþñyåÊ•+W®èêêÒdTº+–G…*üAÁ¥*Ü|êøÉÁJiÕª•¹¹ùëׯ‹‹‹»téÒ§OŸ ´Ñ¨Q£Ÿþ™~\·nݺuëÒ§_Œ;vçÎàĉeþ英±1=åÏ?ÿœ’’2uêÔJ½\éÌÌÌæÍ›G_è*…Ëþ@_¿VÅâ¹,ÈØØ˜û•íd©›Êª´OÊ[ÇM›6feeµiÓ¦}ûöOŸ>¥¯PŠýû÷ÛÙÙµhÑ"!!þô … .¤Ÿ={ö_ýõôéÓ>téÒ¥{÷îB¡ðÌ™3ô*XZZÊ9—šVÅ7T‡ŒŒŒ˜uæVgìEÈ/£Š[VÖwß}·cÇŠ¢rrr:vìØ¾}û¬¬,:Ù+]Õ?`•þ]©.•3ePPÐ/¿üB¡xÉÉÉIιªô¾êèèxíÚ5ú8µ––ÖO?ýÄ}+õi ¥êïY ïE•z[©ç»cþüù[¶lÉÍÍ}üø±››[÷îÝ_¿~}öìYúÙÉ“'sßL ×Pî ­ú—~¨póiâ À/_¾\ÞÀ¬D"¡o”Eýûnéì2w(ŽŽf>\æ?q&L˜À\$_Þ ËıHŽ=#gÑ ÷üE—©Aƒ—/_f¿„9=œaooÏÜ/täȑ̔ÁÁÁìÉè;Ús¹*ö´‚‚ö¥vì_á²?p,^þnÃeAÜ7h™¬Î>)óÖ-ëׯ—úðª[·.ÓQ²·ã©ð ËLill,uR¹ŽŽÎ¦M›Ø/¿zõª½½½lÙM›6½xñ"3™œÍ¤ðŠÖ§Ofúýû÷ÓÌ=P!³fÍbO_f–¹e+õ'kÔ¨QR«chhÈ4Wâíx8î;TMéСÃÇçÏŸß¶m[++«:uꘘ˜téÒeÆ çÎSì—ãýýýoݺ5nܸ֭[ØÛÛ÷ïß?66vÍš5Š]‘§Š"yY´P(lРA»víæÏŸŸššÊÜ–éââBþw+üéÓ§ß¼y“ùÞ;w2÷ˆŒŒ 633344tvv¦¿ï¹¿\ttt˜Ã4R¸ìJ)žË‚¸oÐ2;Y}R¦qãÆ9s&00ÐÊÊÊÚÚ:000>>¾ÌŸ«ª,‰Dëïï߸qcKKËÁƒŸ;w޹30­]»v·oßž?~÷îÝÍÍÍMMM»uë6wîÜ;wî0w¡“¯Šo(ö…/ìÇ2'(OÕ·¬¬72ã(fffgΜéÚµkÕç,«ê°JÿˆæÞ¥ò§d")çzjZƒ âãã¿þúk‘Hdnn>`À€Ó§O?¾²ëX•½±êïY ïEUüXSÅwGÿþýïܹ3~üø¶mÛÖ­[×ÖÖ¶OŸ>.\`Ž`pßLJÇq¡Jù àÒò7Ÿ€*ë¦nŒ¢¢¢£GE¿WñåÕzÝk³‘#GnÙ²…²fÍš &ð]NíuýúõóçÏ?¾¼Ó[A¾Ë—/wêÔ‰âää”’’"õìüùóécÙýúõ;pàßŪ /{>~5–Æãš¦N:UyßVñåÕzÝkƒo¾ù†¾Çu§N˜(ûôéóëô°ðÅÃÃ=ü •uùòeúAy—ÅÔ¼ìEøøÕXŽ 8++«¤¤$BHRRR“&M ”““3{ölúŠ«–-["µ@uDQÔºuëž={Æü{mŽlŽ ¸9sæœ={–>Ýû‡~øá‡˜§6l¸sçN•žï  "¥¥¥'Ndþ d~( –CpÅéëëŸ9sf×®]›7oNOOùò%}ã±^½zM›6 çÕAõe``P\\ܤI“ö¿ˆj9\œhâíx@!8'ŽÀ ‚#p‚àœ 8'ŽÀ ‚#p‚àœ 8'ŽÀ ‚#p¢ÍwòÄb˜ÇJÂw9òÊÓü QT‘€¢(¾k5ÉÏÏßµk×Þ½{333ŒŒD"ј1c:wîÌw]å’Še4͉(¯ÆWRk‹âââààत¤úõë·iÓæË—/×®]+**š2eÊäÉ“ù®@Z™‘‚Á{¶Ððò4¿B /ʃàX[ìØ±#""¢M›67nÔ××'„¤¥¥…„„|üøqß¾}ŽŽŽ|ðÿä§ ¿Ù¢Â 5¼<~+Ôðò@\S[œ8q‚2wî\:5B&L˜PRRÏwuÕ —ÜÃe€jÁ±¶xüø±¡¡aË–-Ù„gÏžñ]@¥!™•§fôLÍX €šWU×ëÖ­ÓÖ–ÞÜ)))„&Mšð]ÀÿCbPA /‡ƒ±}ª5ÇÚÂÉÉIªåÊ•+þù§®®n¿~ý*|¹X,.³=55•ï55Ap¬JJJ¶oß¾dÉ’’’’åË—›ššry2"¨‡„’`PJ øºúÛ ZÃ9޵ÎÕ«Wýýý.\hjjºqãF???¾+P®º-OÍ虚±5Fk‘ÂÂÂ¥K—nݺUOO/44tìØ±ÌÖÀ—13䨑0âX[”––Μ9sË–-Ý»w?uêÔ·ß~‹Ô«ÂÔ…X&Ÿ†w †—r 8Ö[·n=uêÔ°aÃV­ZeffÆw94!UH(IyeÈyJÍ*ðÊùðË1µEQ½zõÊÎÎŽ‹‹ÓÓÓS`b±Ç/¤ kZª@yJ¬PË)ŽµÂ›7o<==õõõ›5k&ûlÿþýCBBäÏÁpqL­™™IÉÏÏONN–}¶S§N|ÕFŒ8.ŽN€GàÁ8ApN€ÜÇ”O,ó]¨nÍVË!8€J aÔH¸­o-‡CÕÀ ‚#p‚àœ 8'ŽÀ ‚#p‚àœ 8'ŽÀ ‚#p‚à ¸ëׯ÷ïß?%%…ïBÔÁ@q¯_¿>xðàÛ·où.@€G¨bbôª˜y~~þ/¿üâèèh``дiÓqãÆ½zõŠy699900ÐÆÆÆÌ̬wïÞgÏž¥ÛGݧOBˆD"±³³£üüü,,,¬¬¬üüü8.%22²U«V††† 4hß¾ýöíÛùîriŽP ¨(/2Æ·`Á‚&MšÌ˜1ÃÝÝýï¿ÿîׯýÔéÓ§Û¶m›””4dÈÑ£G§§§ûøøDGGBfΜAY²dÉæÍ› !‡êܹó;w†”œœÜ¹sçC‡U¸”ððð3f4jÔhΜ9'NüøñcHHÈ‘#Gøîx€PÅw P ˆÅâÔÔT¾«€jCéRÁQ"Qæ—W^^^ýúõ‡þ×_Ñ-ãÆ;tèÐíÛ·6lèìì\·nÝøøx}}}BHAA··÷ëׯ}úÄÄÄxyy¶hÑ‚¢¨k×®™ššBÞ¾}ëáá! ïÝ»WTTTÞR,--›5k¦­­’’¢­­Mùðჩ©é7ß|³jÕ*n§ÊÃ×A-‡G¨í´´´A||üÓ§Oé– 6deeYZZÞ¼y3--í»ï¾£S#!DWW7444===11Qj>‰‰‰?ž6m !¦¦¦Ó¦MKOO¿uë–œ¥BéÔHy÷î!äóçÏ|÷ À¿ 8@5£ÜáFBˆ¾¾~TTTFF†‹‹Ëøñã8PXXH¹ÿ>!dذa–aÆB222¤æ“––Fquue7¶jÕŠ~JÎR!&&&7oÞ 2dHëÖ­‹‹‹ùîiiÚ|P1¥‡E)“'O0`ÀÑ£GÏŸ?ìØ±?ÿüS,ÇÆÆêèèB–.]êââ"õ'''©úì/à_GÕ…B!!¤¨¨HÎRŒ;Ö¶mÛ^½ztìØ±uëÖÝÀÀ€™Cii)!¤uëÖ666‘‘‘ÙÙÙtûû÷ïW¬XÑ´iSwww9KÉÌÌ$„8::23Ü»wo^^.`MƒG¨í<<<œ/^œžžîì윚šzüøñ  :T[[;**ªoß¾®®®ƒ.**:xðà³gÏ¢££écÐô¸ãš5k^¿~IŸ¤8xð`Š¢víÚõâÅ‹={öèêêÊYŠP(444üú믃ƒƒ­­­/_¾|îܹFÅÅÅ?~Ü××—ïø €‘HÄw PT»gÏž3¦iÓ¦ººº666Æ »wïólbbâW_}eaaabb"‘HN:ÅÇ1))ÉßßßÜÜÜÂÂ" àöíÛÌS ~~~VVV~~~ å/gJÙÚªÁ@e†3ù‰Mýrl¬v”"ƒ‚‚(Š:pàÓ’’’’’’2|øp¡Pxúôé¶mÛ&%% 2dôèÑééé>>>ÑÑÑÌÄÏž=óññùøñc‡!ãÆ[°`A“&Mf̘áîîþ÷ß÷ë×Ov¡gÎœéØ±cJJʈ#BBB._¾ìééùèÑ#BÈ¡C‡:wî|çΡC‡%''wîÜùСC²3©pJ©ÚªŠà@$ñ]T'JÿÐ çÏ3ÿ)½Ú‚‚ooo¦eÞ¼y„äää‚‚ww÷ÏŸ?ÓO}ùò¥cÇŽöööÅÅÅEÙÚÚB"""JJJ(Šúôé“P(5j3«±cÇššš¾xñ‚¢(‰DâææFQTqq±““S³fÍÞ¿OOK -((°³³³µµÍÊÊ¢ŸÊÊÊjÚ´©½½}AA½Ä~ýúÑeW8%»6¥À×A-‡G¨íttt/\¸ðöí[ºe×®]íÚµkÙ²åÍ›7ÓÒÒ¾ûî;}}}ú)]]ÝÐÐÐôôôÄÄDºÅÒÒrÞ¼yZZZ„---@ÿôéSúÙ 6deeYZZ²—˜””t÷îÝ)S¦˜˜˜Ð-]»vݸqc×®]?~ˆìàà@122òaiÒ¤INNN™™ìÝ»wW¯^ÕÕÕ7nÜöíÛŸ>}ºråÊÔÔÔµkײ'‰D„»wï²/^üã?ÒK¼sçû)ú‚k±XÌnä>%€² 8BHPPPaaáܹsŸ>}J§&„¸¹¹‰ÅâåË—çääÐ-¹¹¹¾¾¾Ó§O700Ijjj‡–/_Nÿ©¥¥%‘H!uêÔaOæîîncc•››K·¤§§GDDdff¶nÝÚÆÆ&222;;›~êýû÷+V¬hÚ´©ÔÏrŸ@Yp¨€B:wîܸqã5kÖXYYõìÙ“nÔÖÖŽŠŠêÛ·¯««ëàÁƒ‹ŠŠ<øìÙ³èèè2<ÐÃÃÃÙÙyñâÅéééÎÎΩ©©ÇoРÁСCÙ“éééEEE <¸M›6ýõ—¶¶ö‚ tuu###‡ ÒºuëÁƒSµk×®/^ìÙ³GWW—=îS( F!D  2„¢¨#F°CaïÞ½¯\¹âââ²mÛ¶-[¶ØÙÙýúõë®®®®®®tãÕ«W{÷îÝ AƒV­Z-X°`íÚµàÖ­[„Ù×®[·ÎÔÔT[[ÛÚÚzÒ¤I?~¤ŸeOIIJJò÷÷777·°°¸}û6óTddd«V­ 4hо}ûíÛ·óÝP‹ 8@mDQÔ˜–””””””áÇ˞wøìÙ3Ÿ?vèÐrêÔ)//¯ÔÔÔ±cÇzzz®\¹2,,¬¼9sfÊ”)Æ [¹r¥››Ûš5kf̘Qæd;vLII1bDHHÈåË—====zD Ÿ1cF£FæÌ™3qâÄ?†„„9r„ï.„Zƒà@$ñ]T'JÿÐ8OÎ3ÿ)½Ú‚‚ooo¦eÞ¼y„äädŠ¢$‰››ÝnkkK‰ˆˆ())¡(ª¤¤ÄÉÉÉÞÞþÝ»wôwïÞÕÑÑ!„$%%•ùÚ½{÷Ò–––º¸¸4nܘþ“™²¸¸ØÉÉ©Y³fïß¿§ŸŠ%„„††Reoo/‰ŠŠŠè§rrr´µµ'Mš¤ô>)¾j9Œ8@5#ˆQî utt/\¸ðöí[ºe×®]íÚµkÙ²¥ìÄ–––óæÍÓÒÒ"„ܼyóîݻӦMkРý¬££ãÀË[½½ý€èÇÀÝÝýÓ§ORÓ$%%ݽ{wÊ”)&&&tK×®]7nÜØµkWBHBBBbb¢¶ö¯m}÷î!äóçÏjì~¨ÕHPPPIIÉ¡C‡!‰‰‰iii£F*sJ±XL§FBȃ!­ZµbOàìì\ÞRD"ûOf>lô<]\\ØcÆŒ¡ó¨‰‰ÉÍ›7Æ ÒºukGGÇââb¾;jG¨f$”Déóôöö633Û·o!$::ZWW7((¨Ì)™Ç………²ȹ£žž^…•ÐódÆÙ üýý===?îàà0sæÌ{÷îÕ¯__é½PÜǪ %Qúj6¡P8hРõë×çääìÞ½»_¿~Ì‘b9Z´hAIIIñòòbSRRªR =*y÷î]OOO¦qñâŹ¹¹Ý»w?vìXTTÔÔ©S™§0âê„G¨$”„þOEó *,,œ;wîÓ§OË;N-ÅÍÍ­iÓ¦¿ÿþ{nn.ÝòðáÃÝ»wW¥ www›¨¨(fžééé™™™™™™„GGGfâ½{÷æååQ¥¢>‚GBéܹsãÆ×¬YceeÕ³gO./ÑÕÕŒŒ4hP›6m ”ŸŸ¿uëÖ6mÚÄÇÇëëë+V†žž^TTÔàÁƒÛ´i3pà@@ð×_ikk/X°@GGÇÐÐð믿¶¶¶¾|ùò¹sç5jwüøq___¾»j>Œ8Bˆ@ 2dEQ#FŒàþ³Ñýû÷?uꔥ¥åªU«®^½@ár¤[ΔyKuWK¶,”#Ž  …=zôfZ>|øpàÀ¯¾úªF¦FGiii…††ÆÄÄ 8pçΑ‘‘žžžŸ>}*ó‡jü{@qááá5Z¿~ý¸qãêÔ©ãîî¾iÓ&¾ëP GÅÑƒŽ¡¡¡| 8T œ 8'8T]í¥§§ûúúîÞ½ÛÕÕUþ”………›7o>~üøãÇMLL\\\¾ýö[¾×ø$õnªûM¥”§j8 ß¾P³áý[#aıÚÛºu+—ÉJJJF޹lÙ²ììlOOOkkë“'OöíÛ÷Úµk|¯ðFöc=F£ÒŸ®byå5B™4|ûB͆÷oM…Çê*77÷ÁƒGŽ‰ŽŽæ2ý®]»}}}—-[Fß]ìòåËcÇŽ7oÞÉ“'ù^P7ùß1‚ÞäTH?Å{…šLó·/Ôlòß¿Øýª5Œ8VWþþþÁÁÁS#!$11‘2räHæž´;vttt|òäÉû÷ïù^Ð8ü `XBÕÐà:î]Øýª5Œ8VW .,(( „lÛ¶íÒ¥KNoiiIagDŠ¢rrr´´´ðóÀF««.]ºtïÞ½{÷îÖÖÖ\¦ïÓ§žžÞÂ… /_¾œŸŸÿâÅ‹ùóçgff4¨^½z|¯ ¨UÍøç~ÍX U@Ï8î~ØK«/ 5Õb±xëÖ­£F5jÓòã?rŸƒl#~ê¾ãëT$|£¨N5 8Ö¹¹¹‹/ÎËËkÙ²¥‹‹Ë»wïâââ<Ø¡C‡ž={r™2bmƒTQ³aû€k‹Ù³g߸qãûï¿=z4ÝòâÅ‹   éÓ§>|ØÞÞžïþKBI¸ :"÷ÈçééùéÓ§›7oªs¡xÿÖx8DZVxóæÍùóç›7oΤFBˆ••Õ¤I“ŠŠŠ8Àw VøÈ®Ù°}& …B!—)¯_¿Þ¿ÿ””¾K†jÁ±Vx÷î!ÄÖÖVªhÌÊÊâ»@P«ê.ß%Tc111ׯ_ç2åëׯ<øöí[¾K†jÁ±V°µµ …iiiE±ÛéÓ›7oÎw nòsƒ„’ð,*\zuÉ=|©pûò] WEÉÏŽµ'Y–”””””T}>¥¥¥J™xÿÖlŽ5V^^ÞãÇ333 !úúú]»v}úôéüQZZJO––¶zõjooo¾‹”—5ä3]NyR¡†+¯—ª]ïÉÉŽ@êÃUtíÚ5???SSS‘Hôõ×_?yòD ìÚµ‹bgg7hÐ öÄ£G611aþLNN ´±±133ëÝ»÷Ù³g™§ììì¦OŸ~ýúuWWWWW×àà`ƒ¼¼½qãÆ×®]355%„üøã3fÌðõõÕÑÑ‘šOrròÞ½{ @™%„´k×®k×®UÞÂPÓQˆD"¾K€ê¤¼ ~¿ò>|XfU×®]#„,Y²„ݸxñbBHtt4EQ¶¶¶d?;jÔ(cccŠ¢®\¹BÙ±cûÙ;vBè×ZZZ–””0Ï6¬nݺùùùEÝ¿ŸòÓO?•Y˜­­­©©iAAÓòéÓ§ºuëöïßÿòåË„¨¨(öô‘‘‘Ìr%‰››3{{{ö”#FŒ ë§(Š>0S•- µÎq€Ú.--âááÁntssãòZ:ù 6LÀ2lØ0BHFF=X,ÖÒúÿ/ÜAƒ}úôéÔ©S„;v‚òæß²eKöð¡¡¡¡X,~ôè]³««+{âV­Z1«#E$±ÿd×ÀU@m÷åË"s¶ü› ÐèT·téRÙ3œœœèÆÆÆìöÞ½{íÝ»7 `ÇŽ;w®ÔU)ÚÚÚyyyE•WsQQ‘ì«ôôôxë_¨A@}(EV³¯†Qú•1ô]Énܸ!‘H˜Æ[·n±§anIAcFõ!FFF>>>̳wïÞ½sçŽT^dèééùûû9räâÅ‹>üî»ïäÔv÷îÝ¢¢¢:uêÐæççß»wO"‘Ð˽s玗—3ñíÛ· !b±X‰À†‘jÐtRI‘ªèþޕզM ‹+V¼|ù’nÉÊÊúý÷ß™ RRR˜; ^¼x‘¹·¶›››X,^¾|yNNÝ’››ëëë;}útƒò–8hРœœœI“&éêê{ö,::ZÎÁnúhurròÀ˘¤YZZΟ?ÿÒ¥K®®®—/_>}útÇŽGŒ¡¥¥9dÈÖ­[<˜¢¨]»v½xñbÏž=ººº•Z}º€5kÖ¼~ýš¹…@™0âšKN:Tî¸ãðáÃ;&‹7oÞüÏ?ÿmܸ‘yvÑ¢ES§N½sçÎĉ—,YB(2ÏöîÝûÊ•+...Û¶mÛ²e‹ÝÉ“'å#êééÑ·Ý.ïöŒöíÛŸ>}:''ç÷ßöìÙ¬Y³ÎŸ?O_ÚxáÂ…-ZlÞ¼yË–-NNNñññýúõ«ìºwêÔièС'Ož\ºt©²új*%Ÿ&5•X,¦Ÿ€ ¥|h(ý\ÆJ¹qㆇ‡Gttô!C˜Æ¼¼¼¼¼<33³ªÏß××÷Úµk/_¾dÎ_”eggçæævàÀ¾:A¾j9Œ8€†ÒÀ¡ CCC¥¤ÆG>}:((HNjÐ@Žê“‘‘êçç'¦L™Âw9•ƒ‹cÊ`bb2pàÀÆ+w¶»víÒÕÕݾ}»ÔM¹eùúúÚÚÚòÝÿç8'8©*5¶l-‡CÕÀ ‚#p‚àœ 8'ŽÀ ‚#p‚àœ 8'ŽÀ ~r4]DD„TKXXßEÔFŽ ¹èÈ(Ëk•¡jÐPaaae¦Cº]v$’vvvýû÷¯p2OOOww÷òž½qã†@ صkßk ‚#h":5ÊŸFs²#B¡P(ò]@• 8€Æá’iÕ(;ÆÄÄ\¿~ï*ªÁ *---))á» ¨i zSÖ crrr`` ™™Yï޽Ϟ=ËIIIþþþæææ·oߦ۽½½Ùç8^¸p¡gÏž 4prrúî»ï 9C‰ŒŒlÕª•¡¡aƒ Ú·o¿}ûvv©Ó§O_·n©©©¶¶¶µµõ¤I“>~üÈ×ÖWUÓ§OXZZ2DKKëÀ>>>Û¶m ªÔ|Μ9ãïïoii9bÄŠ¢6oÞìé陘˜Ø¬Y3ödû÷¤¤»wïN™2…9ŠÝµk×7víÚ•=YbbâÓ§Og̘ammM·XZZN™2…c1 ‰‰‰ÚÚÿ=føîÝ;BÈçÏŸ™ùÛÛÛ0€~,ÜÝÝ?}ú¤Îþ„ ‡ª ¶»ÿ>!dذaÆ “z*##£mÛ¶çóàÁBˆ‹‹ »q̘1eNÖ¦Mv#súc…Ř˜˜\ºtéôéÓ÷ïßOKKKII)..fO&‰Øjia”Áª7î÷î)ŽŽ!déÒ¥R™âääTæK dé \˜±ÀòÐv#ïäSPPxìØ±¶mÛöêÕ+  cÇŽ­[·fO¦§§§‚n Á4}´Zm¿(èàà@122òññaïÞ½{çÎcccúÏÒÒRöKÒÒÒdçCõݽ{×ÓÓ“i\¼xqnnî¢E‹˜–æÍ›Bnܸ!‘H˜Æ¤¤$.ÅÄÅÅ;v,**jêԩ̳R#Žªƒà 8©SñðÓÉê§”|éææ&‹—/_>dÈ:)æææúúú 8b``’’RRRBÿôËÅ‹¯_¿ÎdJ†»»»MTTÔСCëÕ«GIOOˆˆº•OëÖ­íííW¬X1lØ0KKKBHVVÖï¿ÿÎ¥˜ÌÌLBˆ££#3·½{÷æååQÅ÷¦€ZÁ@tdd_ÆÁýúõKOO_µj•lj$„èééEEE <¸M›6ýõ—¶¶ö‚ ؓթSgÙ²eƒvww2dH:uvíÚ•••Å¥oooCCï¿þ:88ØÚÚúòåËçÎkÔ¨Q\\ÜñãÇ}}}ùÞnPÓñ}Y7T¸ÿ#<<œ¹ù ó¸ÌÆÚLYåu¦*:911ñ«¯¾²°°011‘H$§NbžúüùóÔ©S­­­é!{;Z|||Ïž=MMMÍÍÍ’““évæv<´ .ôèу¾þº~ýú{öì!„DGGWXLlll§NêÖ­Û¬Y³qãÆeeemذ¡Q£F>>>²ÅPÿ¾sPÕáë –PÜÄbqjj*ßUð=ÄE?–ý¿ì”µr?4dïÎÃWßæååååå™™™)qž/^¼hذ¡®®./kTYø:¨å¡b1‚汄’ð]ods¡ &&<66ÜË‹þ?%‘ ;Ò/j*lÙZ÷vyb1ìÔHþ"j9©‘BgGALL™g=Ô ŽP®ò2¢lš¨U"""½¼11e>+•jª†²q‰†8l µ‡œ H8BÂccË›¦°ÆÍš [¶–Ãíx*>B]æSL‚¤Ñç;ò]/€2áP5”G¢ª©jŒ8‚âb18Z µ}¸9"""\fpQVxl,ûJ¾kPŒ8TBXX}µœi˜K­jGP†¡VaÊÉŽR©ÃP“ 8Bd)p“Ú|pAà‚#Wtv¤$’ FKý„ (ó»Ž|P{á>ŽP.ù×VcTj&ÒÁEööR-Ìĵ3>*ýnø-G û8Örq„rɉ†HP›Ñ‘…’HÈÿÎhüï±±L;brI%EUŒ;FDDmmí¬¬,Ùg/]º$ÁöíÛéOOOwww.s¶³³4ho}WQÜW€ 8‚|²QBI¡vb sÀTê€5ÙcJQf7ªè˜uIIÉþýûeÛ÷íÛ'Õ" …B!ß}£5fE@=¡tR/È • !”DÂþ°ŽP#5*…œnTEv433Û³glûþýûÍÌÌØ-111ׯ_ç»{” Æ¬¨‚#@%È9`*{8•ïb«½ ÷ҳc```LLŒÔÑê7n|¸P(dΕ$„$$$øùùYXXXYYùùù%$$0ÅÔ©SçÓ§OôŸ»ví­Zµb^8kÖ,@póæMBH~~þ/¿üâèèh``дiÓqãÆ½zõŠK쨂#€"˜øHþw5"£Uê@¿³£­­m»vívïÞÍnÜ·o_@@€žžžœž9sfÊ”)Æ [¹r¥››Ûš5kf̘!5 EQcǎݱcǦM›‚ƒƒéÆC‡uîÜùÎ;C‡ JNNîܹó¡C‡!¾¾¾ÅÅÅ/^¤§¤$''¿{÷Žn‰‰‰±°°pss#„Œ7nÁ‚Mš4™1c†»»ûßÿݯ_?.TÀH$⻨Nªø¡®¢‰åÌ„òðáÃ%K–…Â7oÞÐí·oß&„ …ÂQ£F1s;v¬©©é‹/ä µ"\à렖È#hJ¿iРAì£Õûöí344ôññ‘ÿ*{{ûл»;sˆ™BQÔäɓׯ_?|øð1cÆ0퉉‰?ž6mš©©)Ýbjj:mÚ´ôôô[·nY[[·jÕêܹs„ìììäääéÓ§ÆÆÆB.^¼XZZêççGÑÒÒñññOŸ>¥ç³aƬ¬,KKKùT‚#h".ÙQ—®ÛÚÚzxx0×VïÝ»·OŸ>òSBD"ûO-­}½=ztãÆÖÖÖûöíËÈÈ`ÚÓÒÒ!®®®ì‰é³é§|}}“’’²³³ãââ(ŠêÞ½{—.]è࣭­MŸy©¯¯•‘‘aggçââ2~üøVX@e!8€†’ŸUwãAƒ?>+++555%%eàÀ¾D~²¤(jÏž=[·nÍËË›:u*»"ØÓwU,**"„ôîÝ»´´466öâÅ‹666666ÞÞÞ·oßÎÉɉ‰‰éÒ¥KýúõéWMž<ùÉ“'þùg«V­Ž;تU«×¯_Ë/ ²@s•—Uz›Læhõ¾}ûôõõ}}}«8Ã>}úx{{‡„„0§KB!wîÜaOLŸU)‹ !;w®W¯Þ¹sç.\¸ÐµkWBˆD")--=räÈÍ›7éãÔ„wïÞ]½zUWWwܸqÛ·oúôéÊ•+SSS×®]+¿€ÊBp&›U}su;;»6mÚìÙ³gß¾}~~~†††Uœ!säzùò寯ÆS¦LÉÏÏ'„´nÝÚÆÆ&222;;›žàýû÷+V¬hÚ´)}‹œ:uêtïÞýرc‰‰‰tpôðð022Z´hs‚#!$55µC‡Ë—/g'‘Hè—Ë/ ²@Ó±³£z~’‡>Z˜˜Èå85wfff¿þúëãÇ.\HÑÕÕŒŒÌÈÈhݺõœ9sfÏžíîîž™™¥««K¿Ä××÷Ñ£GEEEtp …žžž÷ïßoÒ¤IË–-éi<<<œ/^>>Û¶m ¢ç|ûöíž={J$’ &\ºt)22òÂ… W®\4hÐŽ;Ž?>pà@zÊèèèÒÒÒáÇ«¨ž   íÛ·8p`òäÉôSRRRRR¾ûî;¾78T¨Øû÷ïG-’‹ï+V-ŠÍQÅðððððpîW±Úââb''§fÍš½ÿžn‰%„„††RekkK9tè3±££cÓ¦M)Š*((ppppwwÿüù3ýì—/_:vìhoo_\\̼véҥ̲fÍšEY·n]~~¾‘‘QPPóTëÖ­TWOAA‰‰‰··7³ÄyóæB’““Õ¶e¡ºÃˆ£Ê-_¾<>>^(:;;›˜˜¾+Ðtôb…‡§é¡Çª7&%%ݽ{÷÷ß711¡[ºvíºqãÆzõêÑŠD¢€€ú±P(tss;}ú4!äæÍ›iii;vìÐ××§ŸÕÕÕ 6lXbbbÛ¶m !æææÓ¦Mc–¾víÚ#GŽ|óÍ7þþþ‡þò勞ž^jjjbbâO?ý¤Òzÿþûï·oßšššBvíÚÕ®]»–-[òºµ¡:ApT9:5nÛ¶­uëÖ|×PÈ¿F‰g=>xð€âââÂn3f óX$±ŸbNF¿ÿ>!dذaÆ “šgFFµµÿÿÛÖÐÐP,§¥¥Bè£Õ§N  "$$D¥õmܸñСCcÇŽMLLLKK[½zµr¶ÔŽ*÷ñãG777¤FÐÙ‘È +*÷Z™ÂÂBB;ÞIÑÓÓ+³þů¥K—J…}ºÝòêÕ«•+W2/ùé§Ÿrss‡Jÿ9hРœœœI“&éêê}ÚÖÖvþüùìü§§§×§OŸ;wÒ·oTC=`È!Ë—/1b~r*K@•sKjP–°°°èèhmmíÖ­[—w*ÉüÁw™‹ÅH· SÖC8bïrìøÈnQõ©¬òª­Io+__ßk×®½|ù²N:|×R1|Ôv|ßH²æëÝ»·³³sJJ ß…T îøZô݉«~b.Ø{smÙPÕ;¤²>4jüçáÇB¡pòäÉ|¾j9\£ZÅÅÅ?vuu•s_eaÕ=žËÜÚFê±&«cŠeÊÈÈ õóóS¦Lá»NU«´´´N:>|PÝ"ÒÓÓÅbñ­[·¸L|çÎo¿ýÖÛÛ»mÛ¶!!!W¯^­ð%‚˜AL̃uë肘uu^M ˆ‰‰ˆˆ÷ò¢û *%›™/ÜË+""BS³cMUPP°k׮ϟ?oß¾]ê†Þ ÁQµtttüýý|xìØ±ß~ûíêÕ«±±±¡¡¡ÏŸ?Ÿ:uj~~¾b³Ej,O¸—s uÏÆÆÒð]&Ô(ìC.»óþEjîU®´´ô»ï¾?~üŽ;¾|ùB7~üøñĉÓ§OŸ5k–®OÒÓÓ£,^¼¸_¿~ÆÆÆß~ûmÿþý333ÿùç©é‘ªæ&;•zÿâ85T ‚£Ê:tèðáÃæææ¿þú«……Ýèçç·råJkkë#GŽ>|XÕ5êéééëë{{{³Û{ôèA¹ÿ>ßTÓpùæF:%b7WÙƒ‘k€ÊÂ9Ž*·k×.--­7:880ººº½zõ‹Å~~~»víêÛ·¯ªË033ËÉÉìFúʘââbfˆÜ#ŸÔIfì?ÿûÍ(óúæ¤F¦E=Wôs¹T/Ž*—žžnggÇNŒ¦M›6kÖ,==] ex{{oÞ¼ùÁƒì¶JLL$„´hÑBvz:–w_¤Fî˜ïlÙ/oU ³#%‘Ðï_æ-ì½°/©VQ|Ä­þj$ªV9===æÔFY_¾| …ªXn^^ÞãÇ333é?û÷ïO™7oÞû÷ïé–;wîlܸ±~ýú={ö,o&eD¤FŽ(‰„} sÅ :TAê8uDDDxl¬ìP7{÷áj¨,Œ8ªœ‹‹Ë™3gîÝ»çèè(õTZZZFF†§§§*–;}út‡£GBg̘±bÅŠÞ½{{xx|þüùÚµk`áÂ… 6”3úk?P)ô÷÷ÒMê¹ÿ"Äw6(ì~%½â¦ßP5qT¹ÀÀ@BȤI“¤~ß寓'O¦(JE?-#küøñ‹-²´´¼téÒÓ§O»wï~àÀ___¾{¨f¢¸¼§ðå *Âì]ÌïP³Ÿe~Ÿš`¸‚ߪV‡… nÙ²…beeÕ¤I“:uêddddddBüýý—-[ÆwÈ#@5ÂdG"s:#û)€ÊBpT“Ó§O/[¶ìÉ“'L‹©©é´iÓ  ¥U Æ}ª2¶ *Õêýû÷?.((°³³³°°º9Ž&Cp\£V 4hРßU(¢$­vöîÝ[RR¢Øk_¼xqá¾נ ŽÊ·jÕ*??¿#GŽrUffæÂ… }||Ôs?p€ÊÂ9ŽÊ—ŸŸµuëVCCC??¿ž={ººº•9ñÓ§O/_¾|äÈ‘7nXYY…‡‡wíÚ•ï5(ÎqGUIKKÛ¼yó‘#G¾|ù"š7oÞ´iS“úõëfgg¿{÷.%%åÇ„[[ÛáÇ0€þñh „àŽª•““süøñK—.]¹r%77WêY‡N:I$’Ž;jøÖŽ€à¨&¥¥¥¯^½z÷îÝÛ·oõõõ6lhnn^¯^=¾ëâ Áp;5ÑÒÒ²²²²²²â»áªjàÁ8ApN€GàÁ8ApNpGu8qâÄŽ;222Ê»Ýzll,ß5TÁQåN:5uêT¾«¨*G•Û´i!døðá_ýµ¹¹9ßå(ÁQå>|heeõã?jiáŒR¨ÆU®~ýú666HPÝ!ͨ\«V­æò,”Ù?ôöÿe'æ±ÂjZ_@µ†s•oÚ´iR-÷îÝ;yò¤P(ìÒ¥‹­­­P(|üøñÅ‹‹‹‹---5üºAL !„¬[÷ß„P ßEÉ”ÇÂoy²ƒ=RR¬a3öHaz/<66ÜË+<&&œAL ¿(»}c1$œ0ÿ£4´}útîܹ}ûö 4à»(€JCpT9@@QT~~þ‰'Þ¾}ûâÅ‹víÚ999 …B¾K¨\U­r¹¹¹×¯_¿víZBB½{÷èÖ†††­[·n×®]Û¶m]\\´µ5=Áãªj@pT«¼¼¼ÄÄD:D&''Bôõõ“’’ø.­Ž úÆ«r><¯¯ï±cÇø®@Éy——wíÚµóçÏïß¿Ÿ¾¸æg2Gûvýe~~2 ;@Í£éGHk ú÷c._¾|éÒ¥Û·oÓ¬ëÔ©Ó©S'///¾«®ÜÝÝoÞ¼I?¦Ï`f?ËŽ•ÖÖÖ|  dŽ*·qãÆK—.ݸq#??Ÿn177§®ºS§N|•˜˜Øºuë2³#;5Ž7nýúõ|  d8T­rb±˜" ]]]%‰——W‹-ø.J‘µÀ¡j;;B(ŠBj€Ú#Ž* ‘H<==ëÕ«Çw- ²ãŽÌSHPƒaÄ8Áˆ#€,©qG‚Ô5‚#p‚àP&öX#‘{€@‹ïª+©ÔXf @M‚à vFlذa™í5 ‚#@¥I] óöí[ww÷2Ÿ¨I*§Ìk¨‘ ÆCp¨9wÞAv€÷qT¾˜˜˜Ê¾D"‘ð]5pòúõksssRÎwØ÷wÄÖPóàv<ÊGÿTL¥hþnp;Æ›7oæÎ+ç~­[·NLLä»LåÈ£òð]¨™™™ü»|#5@M…Gà#Ž€‹cx6gΜnݺñ]@Åp¨Z²³³Ïž=ûôéS©öüüüÓ§O …B¾ ¨‚£Ê½~ýzèСϟ?/o‚àà`¾k¨‚£Êýõ×_ÏŸ?oÛ¶­¿¿ÿ?ÿüsõêÕ èëë߿۶mÁÁÁsçÎå»F€Š!8ªÜÅ‹uuuW¯^]¯^½nݺuéÒÅÎήS§N„{{ûŸþyðàÁ|— P\£r/_¾´µµ­W¯!¤Q£F&&&ÉÉÉôSƒ 211ù믿ø® bqT-­ÿè666?¦ …B±X|ûöm¾ Šˆˆ`ÿÆwEÕ©<Ð(Ž*gaañäÉ“¼¼“Sž†TšÁQåzôè±nݺY³fÍš5«Y³fG‹‹ëÒ¥ËÛ·ooܸammÍw dìtÈÎgRšP“™ò¤ü*–••Õ«W/‘H4~üxŠ¢233œœ\]]GݱcG‘HôŸÿü‡ï+&‰ø.¡Ú—z,ûÙ)Qh>\£r¦¦¦Û·oŸ1c†‹‹ !ÄÚÚzÞ¼y………ñññïÞ½ëÞ½û˜1cø®±zÄÄ0ÿñ]KƒvtUÌÿË;4ÌWyL†{y±Gy)4‚£:˜ššŽ?~òäÉôŸC‡MHHøûï¿?¾zõj}}ýªÌ<==],ߺu«R¯zñâE›6m¾ûî;¾û¦JdÃ"¿ñ±ÌÔîåE ÷ò å=;J•'ÛšPh&G•sww_ºt©Tcݺu;vìhooêããS•ùoݺµ²/¡(jΜ9Ÿ>}â»oªDN@ä}è1"""ÜË«¼2˜á=õWÅ>¯‘.ɵ啇ì \£rŸ?.***社Œ 9¿F(Gnn9]Ù×þý÷ß |wL•T 11”D¢Î’˜ëKè?ÃccËœŒÝÎL¬¶+QØK —­ÍË«ÌòhŽ*;qâDæÏ-[¶lÛ¶Mv²ÒÒRŠ¢lllX„¿¿ÿ«W¯xaZZZddd‹-îß¿Ïw?ÕLÌ`ž,©±=J"Q[8“ºÏ— ÕYT Ž*! 韊!„dggëèè”9¥±±ñ÷߯À".\XPP@Ù¶mÛ¥K—8¾ª¸¸xöìÙ&&&ßÿý¨Q£øî'ÕRÿ #-""‚ü; Ê›R½èãÎáÜÊ‚à¨]ºt¹rå ýX,ýøãJ_ýàüùóÜ_µråÊ{÷îmÚ´‰ÉµÕï§0–çÿ7sgá±±ì+iÔV^XXÇò"þW!û”P›!8ªÜرc=<<ø®‚B’’’Ö¯_Ò©S§”””ʾ\,Ë6¦¦¦ò½Zšˆ>YPN8£Ÿå+ˆ1ç2–W!S<¢"°áªj•›={v·nÝ!999qqq{öì‰'„¼}ûVeäççÏž=»I“&3gÎTl©eQç*0x9Í{àPêB6©L©þÓIù‘‘]ÝÏšó‰À;Gux÷îÝ/¿ü"‘HÆŽ;oÞ¼ØØXBHÿþý'L˜­ž~ûí·ÌÌÌ%K–Tñ¶‘Õˆúó¥w®Qç!`¦<ù=ÃŽ¼8B lŽ*WTT4iÒ¤­[·Ö«W¯ÿþL»™™Ùùó烂‚òóóU]CBBÂÎ;ÇïêêÊwÔpt8£$9‡ªédF_³¬æÔX©h‹ÔRUnݺuIII^^^'NœX¼x1Ó¾{÷î¾}û>yòdË–-ª®!--²zõjñÿB>,‹ûôéÃw'UZ…£‰<7ʆ³ðØXú?v£Ôí¸Õ\';×–YûÚ‚£Ê%$$…ÂE‹IÝ‘G(.X°ÀÀÀàäÉ“ª®¡iÓ¦_ý}Q¶••ÕW_}ÕµkW¾;Ir¢!ï'AÒ‘‹.ƒŽhÿý/6–iW,cGÛòÊ£‡BÙåaܸªZåîÝ»ggggjj*ûTݺuíííŸüß½_†B‡³ˆÿ: _±Œ./,,,üîåÅ@gÿŸ¿Í‚à¨rõë×ÏËË+ïÙììl###U,766vúôéGå»T‹÷ñE6fT ^RåÑ7G¤ïŒHÔ>îXæ9Žì ÙçA"5€ªV9''§—/_Þ¾}[ö©{÷î=þÜÑÑ‘ïA™ØaK*¨IE1^b³Ð°°°òÊcÿ€! (Šïj¸øøø±cÇ6iÒ$**ªeË–b±xäÈ‘?þøcJJÊŒ3ž}šN‰ÄÓÓ³¤¤äôéÓ×®]û믿:uêTMß7W¾;wBFµnݺ‘#Gnݺõ«¯¾"„ìß¿Ÿïê„à¨|ô=w&NœÈ´‚ &BÒÒÒø®@AŽÊ÷òåKcccv£­­-!äÓ§O|W  Gå£(JWWWªQGG‡ïºªÁ8ApN€ÜÇQ%^¿~íîîνýæÍ›|— PG• (êóçÏÜÛ4‚£ò=z”ï”ÁQùø.@ùpq p‚àœ 8'ŽÀ ‚#p‚àœ 8'ŽÀ ‚#p‚àœ 8'ŽÀ ‚#p‚àœ 8'ŽÀ ‚#p‚àœ 8'Š¢ø®4š &Fª…’Hø.ªÚ”P“ 8B¹d3CC™æWP“ 8BÙäd2áLÃ˨‘pŽ#p‚àeà2ž§ùjÆZhGP_É ‰€ŽÀ ‚#(ޝ«OpÕ /¡ 5#™ÕŒµÐŽÀ ‚#(ˆßñ<Œ&¨nò”wý²†ä6 / †Áˆ#ÈSfÓœX¦áåÔ0qNÄbqjj*ßUŸ0✠8'ŽÀ ‚#p‚àœ 8'ŽÀ ‚#p‚àœ 8'ŽÀ ‚#p‚àœ 8'ŽÀ ‚#p‚àœ 8'ŽÀ ‚#p‚àœ 8'ŽÀ ‚#p‚àœ 8'ŽÀ ‚#p‚àœ 8'ŽÀ ‚#p‚àœ 8'ŽÀ ‚#p‚àœ 8'ŽÀ‰6ß@U¥§§ûúúîÞ½ÛÕÕUþ”ùùù»víÚ»woff¦‘‘‘H$3fLçÎù^ƒNÃþ“’Hø®@AŽÕÞÖ­[¹LV\\}ºƒƒÃÑ£G³²²222ôõõƒƒƒe§ìß¿HHßõÖLȈP“ 8Ö ô¸c~~~rr²ì³¸°¸PÅw P ˆÅbÜÇ –Ã9ŽÀ ‚#p‚àœ 8'ŽÀ ‚#p‚àœ 8'ŽÀ ‚#p‚àœ 8'ŽÀ ‚#p‚àœ 8'ŽÀ ‚#p‚àœ 8'ŽÀ ‚#p‚àœ 8'ŽÀ ‚#p‚àœ 8'ŽÀ ‚#p‚àœ 8'ŽÀ ‚#p‚àœ 8'ŽÀ ‚#p‚àœ 8'ŽÀ ‚#p‚àœ 8'ŽÀ ‚#p‚àœ 8'ŽÀ ‚#p‚àœ 8'ŽÀ ‚#p‚àœ 8'ŽÀ ‚#p‚àœ 8'ŽÀ ‚#p‚àœ 8'ŽÀ ‚#p‚àœ 8'ŽÀ ‚#p‚àœ 8'ŽÀ ‚#p‚àœ 8'ŽÀ ‚#p‚àœ 8'ŽÀ ‚#p‚àœ 8'ŽÀ ‚#p‚àœ 8'ŽÀ ‚#p‚àœ 8ÖFéééb±øÖ­[|¢Lb±˜ïª1ô^¡«Xè=P'ÇÚhëÖ­|—Õ6߀úäææ>xðàÈ‘#ÑÑÑ|×Õ‚c-âïïÿêÕ+¾«€ê Á±Y¸paAA!dÛ¶m—.]⻨fk‘.]ºÐΟ?Ïw-Pý 8'©©©šážæW¨ÉÐ{U„¬"t`Uhx復¦ò]( ‚#p…w>@-‡Ûñ'ŽÀ ‚#p‚àœ 8'ŽÀ ‚#p" (Šï Àˆ#p‚àœ 8'ŽÀ ‚#p‚àœ 8'Ú|P /^¼ð÷÷ïÖ­ÛÒ¥KåOyçÎuëÖ¥¤¤|úôI,‡††¶oßžïòùDZ 7oÞ|üøñÇ›˜˜¸¸¸|ûí·|—¯YxçΩFSSÓøøx¾KÓ ôR~~þ®]»öîÝ›™™idd$‰ÆŒÓ¹sg¾W…UÜ͸fp„àÕEQsæÌùôéS…Sž;wnÊ”)¥¥¥...ñññ#FŒX³fM·nÝø^ >qìÀ’’’‘#G&&&ZYYyzzfggŸµ÷LLL$„Œ9’N„Ž;:::>yòäýû÷|¯‡¦ÈÈÈ „Hzéĉ„¹sçÒ©‘âàà0a„’’’Zx@Uv3îoy€JAp„j ¸¸xöìÙ&&&ßÿ}…_¸pA ôë×ݸdÉ’ÔÔTWWW¾W…•ê@KKKB;#R•““£¥¥ÅDIxúô)!¤iÓ¦|¢Ñè¥Ç¶lÙ’ÝHŸ_ûìÙ3¾WHÝÞÍ*õ–¨| @5°råÊ{÷îmÚ´©^½zNœœœlbbbaaqýúõ›7oæää´hÑ¢GÌF-T©ìÓ§Ï–-[.\h``àææ–½zõêÌÌÌ!C†pyy-A£¿|ùrĈ÷îÝ300prrš0aB­ýÇI™è¥uëÖÉþû$%%…Ò¤I¾WHÝÞÍ*õ–¨Œ8‚¦KJJZ¿~}HHH§N*œ¸°°ðãÇ 4^¶lÙ† fÍšåïœÌ÷ªð£RH‹Å[·nÍÉÉ5j”›››··÷ž={BBBÂÂÂø^ B~ýþûïoÞ¼éØ±£©©éùó燺{÷n¾KÓ ô’“““H$b·\¹råÏ?ÿÔÕÕ•:ŒP(¶›Uö-P)q–ŸŸ?{öì&MšÌœ9“Ëô?~$„<|ø0++ë·ß~“H$_¾|Ù»wïªU«¦NzôèÑÚ6îXÙ$„äææ.^¼8//¯eË–...ïÞ½‹‹‹;xð`‡zöìÉ÷ iŠ—/_êëëϘ1cĈtË¥K—&L˜°hÑ¢.]ºXYYñ] F¨b/•””lß¾}É’%%%%Ë—/755å{…ÔMTà-P9€ sttLJJ¢ÿLNN‰D³fÍ*oúOŸ>‰D"‘HtöìYvû?ü ‰öìÙÃ÷ ©[e;¢¨ñãÇ‹D¢M›61-ÏŸ?÷ôôlÙ²å£Gø^!¶dÉ‘H´yóf¾ Ñh{éÊ•+¾¾¾"‘ÈËË+>>žïª5ˆüTà-P)8T š+!!açÎãÇç~Þ˜¡¡¡žžž¾¾¾··7»½G„û÷ïó½Nj¥@¾yóæüùóÍ›7=z4Óhee5iÒ¤¢¢¢ð½N­]»v„ð]ˆF«°— .\8räÈ/^„††?~‡\Ùät oy€Ê¡jÐ\iii„Õ«W¯^½šÝ~øðáÇ;88=zTöUfff999€ÝH¡...æ{ÔJ|÷î)ëöööö„¬¬,¾×I#PUZZ*¤n * !FFF|¨ë¥ÒÒÒ™3gž:uªGaaafff|¯oè@Å>3*Á4WÓ¦M¿úê+vˇââ⬬¬ÜÝÝ-,,Ê|•··÷æÍ›Åž¾7am»¥™hkk+ ÓÒÒ(Šb‡ïÔÔTBHóæÍù^'ðôéSŸvíÚmݺ•Ý~óæMBˆX,æ»@ X/mݺõÔ©SÆ ÃÅX t bŸ™•Ã÷±r€J(ó|OŸ>¥§§?{öŒþóîÝ»"‘hРAïÞ½£[nß¾íîîÞ¶mÛ·oßò½<ãÒô9ŽQQQ%%%t˃:tèàììüðáC¾×@S :T$íÞ½›iILLtss“H$Ÿ?æ»:MÁ¥—Ø»_iii=Ú´i“ŸŸÏwí¡²( ç8‚ÒaĪ½ØØØéÓ§3Gag̘±bÅŠÞ½{{xx|þüùÚµk`áÂ… 6ä»XM$Õ¿üòËÀW¯^}ìØ1''§wïÞݸq£´´tÞ¼yÍš5ã»XM±`ÁúgwîÜiooÿüùó¤¤$ƒ_ýµ¶]¹/—^bï~YYYôO3Ëέÿþ!!!|¯“Fw ßõB­€à5ÐøñãMMM·lÙréÒ%“îÝ»‡††Ò?>255=vìØÚµkãââbbbLLL¼¼¼&NœèââÂwi¤E‹X¾|ùåË—ÓÒÒš4iÒ¯_¿)S¦Ð¿»´ÊöRff&!$??¿Ì»®ÖÂKd°›PÅw P àv<À ‚#p‚àœ 8'ŽÀ ‚#p‚àœ 8'ŽÀ ‚#p‚àœ 8€r¤¥¥‰e´hÑÂÛÛ{̘1§OŸVOß}÷X,މ‰Qx5£ë¹|ù²b/ÏÏÏ÷ööÞ»w¯ªë,))éÙ³ç–-[ÔÝA I@™‹±±ñ‹/âãã¿XCø2 CIDATýöÛü±²s‹‹‹‹å{”L¹+¥££Ó¿U—- §L™ùòåKU/ 4–6ß@¢¯¯/•ŠrrrÖ¬Yó÷ßïÛ·ÏÇÇÇËË‹ûÜfÍš•››{÷î]¾WK™”¸Riii[·nýí·ß„B¡*ÿꫯ֬Y³xñâßÿ] ‹ „GP-ccã~øA"‘BŽ?Îw95ÊæÍ› }||Ô³8--­ÀÀÀS§Neffò½êÀGPOOOBÈ£Gø.¤ªJJJŠŠŠø®‚BrrrŽ9âçç§£££ðL ‹‹‹¹O@Ù¶mßküÀ¡jP‡’’BHii)»1>>~×®]wïÞýðუ£c»víÆ_§NBÈ’%K6nÜHO&‹ nÞ¼Iyûöí–-[Μ9óêÕ+Bˆ¥¥¥§§çèÑ£ÍÍÍ«RžœJ!ß}÷ÝáÇϞ={ìØ± 6|øðÁÈȨyóæãÆëÑ£{>‡>räÈ­[·5jÔºuëÉ“'ÏŸ?ÿÂ… »wïvuu-o¥h7oÞܲeËíÛ·?|øÐ¼yó1cÆôêÕKNÍÇÿòåKÏž=eŸ:{öìþýûïܹóåË{{û!C†ôíÛWKK‹½:ÿüóϦM›Ž9RTTdgg×®]»iÓ¦oß¾ýÔ©SwïÞ522êܹóÌ™3MLL˜9›™™¹¹¹8p`Μ9@mûhGP9Š¢è«ªE"Ó¸lÙ² 6Peiiiffvýúõ«W¯^¼xqõêÕ 6ôðð(..ŽŽŽ.,,1báÞ¾}üäÉ}}}[[ÛÒÒÒ'Ožüõ×_§NÚ·o;ßTŠüJ˜ÉÖ­[·{÷nSSÓŽ;>{öìæÍ›“'OŽŠŠòõõ¥'ß¹s'!ÄÚÚúË—/»wï>uꔵµ53‡2WŠvîܹíÛ·›˜˜ˆD¢'OžÜ¼y344ô÷ßïÝ»wye_ºtI ¸ººJµ/\¸¾öÙÚÚÚÔÔôÖ­[7oÞ¼téÒÒ¥KÙ“}ÿý÷wî܉Dõë׿uëVzzú½{÷š7o¾ÿþ-ZˆD¢¤¤¤={ö¼xñbÓ¦M캻»'&&Þ»wÏÉɉ‡ øE(ÃD"‘››»±   55uúôé"‘H$]¾|™n?wîœH$êѣǭ[·è–¬¬¬¯¿þZ$ýüóÏÌËÛ·oïèèÈü¹víZ‘H4a„OŸ>Ñ->|‰D{öì¡[fÍš%‰ÎŸ?_^Rp©„~‰H$Z¶lYII EQ%%%‹-‰DAAAô4ljD‰$99™n¹s玧§'ý¤¤¤òVŠ™ùüQZZJÏü矉DÇ/o-JJJ<<<¾úê+©öS§NÑeܽ{—Ù.tÌ*ÓKttt<{ö,Ý’’’âää$‰œãââèÆ7n8::ŠD¢wïÞ±qâÄ ‘H´~ýzUïQ pŽ#(ÓçÏŸÙ÷qtqqñ÷÷ÿçŸ!£GîС=Ùo¿ýF‰ŠŠjÕªÝbjjenn¾wïÞœœœ2g^\\ìíí=kÖ,CCCº¥^½zþþþ„§OŸ*V0÷JZµj5sæLú€¯––Ö¤I“!Ož<¡ŸŒŒ$„,\¸°eË–t‹³³ó‚ 8–áááJüÕÒÒúúë¯ !åMÿêÕ«ÜÜܦM›Jµ/[¶Œ.ÃÑÑ‘nqpp˜6m!Dêj÷!C†tëÖ~ìääÔºukBȈ#:wîL7¶nÝÚÙÙ™"u)Œ½½=!$55U±€j ‡ª@™Ôé†uëÖupp ìÚµ+Ý’ýøñc{{{&cÑ :uêtàÀäää.]ºÈÎ|òäÉR-YYYt*UL¥*aIÓêׯ/ )Š"„¼{÷îÉ“'VVV:ubOÓ½{÷zõêåææVX‰ŸŸûOºé™—éÝ»w„©£óïß¿/³Œ>}úxxxèéé±=<<ØÒ³*³Qª cccBÈÛ·oîv¨¾@™dïã(+==þ¿X,.s9·˜~þüù… ®_¿þìÙ³ŒŒŒìììªT[©J7n\Þ|èqGÙñ?@ФI“””” +‘3ó2ѹ­~ýúìÆÇBš4i"5±ŽŽŽT#3j+§±ÌË_èà˜••U©‚ f@pu+,,$„X[[K]’̰²²*³}çοüòKqq±‡‡G=œ?~üÓO?©¡9w½¡çSfÌb®e–¯²·ÔÑ××g–Ë((( „°¯¹Qz¡Rã—PK 8€ºÑ'ÉTêG?}úôóÏ?ëèè¬[·Ž} ›¾/:+‘Õ¬Y3RÎ)‰Ïž=Sr÷B¡/÷–pµ³³+³Œ‚‚‚cÇŽ•—+…^h£FT±^ ápq ¨›¹¹y£F=z$u ·¤¤dÀ€žžžež?wçÎ’’’Ö­[Kþxÿþ}5W"ËÌÌÌÌÌ,333!!ÝSÞ…>UïCò¿3¦¦¦7nÜ`·ÇÆÆ~ÿý÷GŽQÊ¢é>±°°PÅz€†Cp̘1£´´tÆŒ÷îÝ£[>}úôÃ?$''·lÙÒÔÔ”™²´´ôóçÏäQéþýûL˜+))‰ŽŽ¦Å$??_Õ•ÈG_¹üÃ?ŸÙ}ó™fPEå©¢wàŽBp€‚#¤ …à)G=eggÊóì³Ï !–/_®¾ìܹs…VñÒK/©o:t¨»›“˜˜¨®kñâÅNU¡ö:Ü9òæÏŸ¯®"11±¢ïÝ´iÓÆ7nÜxñâE7UO—ʘzÇg1·°°P›»|ùr½Ûí,É~s_Ÿ8ó!—ß Tæî¢òÙìC›[Ö™~p²mîjþøc6„9ö rçч€KpŽ£w°yvNQQÑ[o½Õ«W¯ˆˆˆš5k¶mÛö¡‡:xð`Y…üöÛo3gÎìØ±cÍš5ãââÞ}÷]ëN^¸páé§ŸîÑ£G­Zµš7oþàƒ8pÀ|óÓDŠ‹‹gϞݸqãÙ³g !,„¸óÎ;ûôéãp%Ëj¯õº¤sÌååå5*44´aÆÆ Û·oŸÍÅJKK×®]Û·oßÈÈÈjÕªEFFšL¦Õ«W© üùÏ6 ê1&!D¿~ý Ã7$ß^цØßvö+ãÏ?ÿüÍ›7Ë]¬ÜϘdçØùHȯ¨Üîu²ß\Õ'eãxâĉ¡C‡ÞyçÍš5{ôÑGÏž=«VØ`0¼ôÒKÖ+’Ù ¨Îž=ûÐC5oÞ<""bäÈ‘ßÿ½õ27nܘ3gν÷ÞÛ Aƒ ôë×ï/ùK~~¾ù2ö7“ßÓ¤¤$µ@ó8`Àuâ< MìÑ£‡:qÖ¬YÖ}(¹eå{ÌŽQ£F©«ŽŠŠúõ×_µéåîjìTÒ%ŸùÅ,¸j¿¤rÉ÷ý×_}úé§{öìyÇw4kÖ,11qóæÍeÕß%›Õ)ÐOVV–¶!¶mÛfgÉ·ÞzK]¬S§Nê”[·nuéÒÅzƒ †¥K—joT÷˜B“ÉÔ¢E ‹…ßxã óµlß¾½AƒÖΘ1úÀ!C†<üðÃêß³fÍR¥¨¨¨iÓ¦O<ñ„¶°d%eÚkg½wŽMûöíkذ¡ù»jÕª5`ÀõïþýûkKŽ9Òæwjøðáê/¼ð‚õÜëׯK¾½B )wÛÙ¯Œ…?üáêO=õ”̧WûhÍ›7O«¹6÷­·ÞªÐgL²sì|$$W$Ó½ê7÷õ‰õ‡\Q”´´´ÐÐPówEGGk]§u…üN@[²sçÎÍ›77_¬jÕªæuV%==ÝbU“&MvîÜ)³™ûž®ZµJ],**J›X¿~}ubxx¸:¥¨¨H;ù'55ÕºílÙ í6-˜·WòÚk¯©Sî¸ãŽììlmI™]L%þüË/fÁ…û%W}ß·nÝf]¤I“¬Kp`³ÂÁQOÎGí;òÀ˜Ÿ†xôèQ‹ÅTÑÑÑñññêËàààÂÂBuÉ«W¯j;ß»ï¾{îܹcÆŒ©Rå?cÒ+W®´(°qãÆZ±Ú·×‚d%+Ô^ëõ:Ü9Ö ###µ%»u릞¥Ñ‚ãºuë´àÝwß=~üxóôÛ·oWåÒ¥K'Nœ¨^½º:qõêÕ'Nœ(--•|»|Cd¶ÊX«hpüè£î¸ã!DõêÕÏœ9£”’$?cíëDE?Ìvº·Býæ¾>±þDDD¨ƒ‚‚zô衽´øVÊï,– »ë®»jÔ¨¡¾ ÐrÏÍ›7µ¯FµjÕ  õRÆ óóóËÝLŽ}OOŸ>­•sáÂEQNž´³eå{ÌÎNO Žß|óº5¿ýöÛŠîjd*éðç_r1;mt~¿äòï{:u|ðÁ¾}ûjË|ðÁý"À>‚£žÌflš6mšº¤õÏFÏž=Õ)/¿ü²Và½÷Þ«N\²d‰:Åü«²xñbuâš5k´‰™™™êÄ¿üå/êóÿä-Y²DØ´iSë[µjµfÍš={öüüóÏ6(YIkv² õzîkK—.U—©U«Öž={Ô‰Ó¦M³Ø›+Š2aÂuÊÌ™3µ·wìØQ¸`ÁmbÍš5Õ‰æÿ7|»dC$·]Y•±VÑà¸mÛ¶¿ÿýïêßãÆSÊI’õ”ì; ÉÉN$ûÍ}}bý!ã7Ô)wÜqÇE)))™4i’¶ ›ÁÑþNÀ|ÉAƒݺuKQ”¼¼<íó ¢Í›7OR»víôôtuâ¡C‡´Ð^x¡ÜÍäð÷Ôh4ªË|ùå—Š¢|úé§Bí"¤7*ŠòÎ;ï¨/ PV–µeå{ÌšypüùçŸëÕ«§¾|çwÌ“ßÕÈTұϿü~Âk÷K.ü¾GFF^¼xÑbíwÝu—ó›æŽzr&8vèÐAb4W®\yþüyEQΟ?Ÿ•••••uîÜ9u1í«Ò²eKm½×®] üÏuQŸ~ú©Eß|ó¶äõë×µÿ±þwëÖMòâ‹/jo¼yó¦öYµŽåî´%«V­zúôima5™ !‚‚‚Š‹‹EÑŽTZmxå•WÔémÛ¶•ßLýž>õÔSæmî¹çÔ5ªc®/½ô’¢(úÓŸÔeRRRÔw9Ëí1kÚ{ûõë×®];õïçž{Îb1ù]M¹•tþó_î~Âk÷KÎßµ”iþŸsçÎÅÅÅÅÅÅuíÚUýÐ:³YaŽ‹cëUŒ;vÀ€iiiÏ<óÌ=÷ÜÓ¸qã£GJ¶Bòí’ ©è¶+×<0vìØ±cÇÊßn:((H`SEýîµ_ÏŠö­õGB~E2Ýë0ö‰ý7jCBBÌ_Z(w' iݺµùAíëpûöíÿûßjY¯]¡}SŽ?^ZZj39ÜÿÚàÖÞ½{…ê5%]»víÔ©“bÿþýÚDó… ßcÖ¶mÛvèÐ!õoíp¿F~WS.‡?ÿö\»_rþû~âÄ õm(TѰaÃŒŒŒŒŒŒ={öhQÕùÍ ÁUÕžãÃ?ÿ5jÔPÏ×Bäåååçç_½zU}iqODí7øÖ­[.\0ŸeýÍu¸ÿM&“:J”žž^RRò¯ýK˜Ç}ûöݺuKýˆˆhÕªU7š#=fß‚ Î;§½¬Ð®¦\Ž}þÙo¸v¿äü÷]û4Ö©SG¦Ç\µYýÁÑ[U­ZõÿøÇŋ׭[7vìXõ>áª~øA}P¡¼ÚµkתUKý{ëÖ­'l3fŒù[d¾l®­¤»×¤þm~Ë !„¶cÒÌŸ?ÿ7Þ(..ŽŽŽ~óÍ7<˜ŸŸ?hÐ ÉVH¾]¦!l;÷INNVwÊÚ FùzV´o->ò+rÇçÓM}b¡V­ZÕªUSÿ¶øu·ˆkŽ9þ¼ùË‚‚í+дiÓÚµkk9Ò<™¿ Ò®W°¹™œéÿÚµk«ÇÊóóó¿øâ õ@Zp¼téÒ_|¡ÞÉÅ™áFçõéÓG¸½qã†ù(@…v5årìóïÌ~õû%'¿ïµjÕÒ.º|ùrem[¿FpôJ……….\¸páBaaáÈ‘#׬Yó믿~ûí·Ú‰G6oºfŸvþ{qqqs3uëÖ­S§N:ul>ئ’+éÖõDEE©óÍ7ÚtEQRSS-~óÍ7Õ?–.]úøã·k×.00ðÌ™3’•”y»|C\¾íÖ®];õú ‹äQ¡z:Ù·’+ª´Ï§KúÄ‚zG@õï;vhÓ‹‹‹¿ûî;çëœ}öìYí¥öu R/þÕ.OÙºu«ùµ—111Ú©c69ÙÿýúõSÿøÇ?þ!„¨Y³f«V­´sÝ´G~]%::zÆ Z^|÷Ýwµ#×ÚÕ8@òCåØgÏåû%'¿ïƒA»-”zê‚êüùóÝ»wïÞ½{ß¾}-Κ€“Ž^éèÑ£ 6lذaxxøÏ?ÿ,„ ìׯßĉÕ$GìÍi;â·ß~[;ë³Ï>»óÎ;CCC›5kvíÚ5Ý+éîõª#Bˆÿ÷ÿþŸv—ÚW^yåÈ‘#æ‹]»vMæ¹råŠúÇ¿þõ/û¿Ù·oß®ÐÛåâÀ¶Ó*cÓW_}µnݺuëÖÉÜ ØÂßþö·ÚµkÛœ%SOÇúÖ9ö9±ßonê›oÔn³ÿÆoüôÓOBEQ^|ñE‹{Ó8¦¨¨hÊ”)ê Ý¹sç´» 4H=]L»Ý ù7%++káÂ…êßæ§îÙääþAJT?:u  kÚ´©bçÎBƒÁ ÿdgǶ¬íÚµ«[·î„ ¢££…¥¥¥Ï<óŒ6WrWãX%%?TŽ}ö\»_rÉ÷]û.,Z´HûïYrròž={öìÙlqlN⑃^©]»v 4¸páBqqq¯^½X¯^½ÿûß_|ñ…ºÀСC+ZæŸÿüç+VüþûïŸþùÝwßݧOŸìì쯾úJ;cÆ ;WêTZ%ݽÞgŸ}ö£>RåÊ•+Ý»wïÚµëÅ‹Õ_es5kÖ¬Y³¦zÏĉ?þøcƒÁðõ×_[<ôEU§NuÉ¿ýíoÙÙÙO?ý´äÛå"¿í¬+SµjUë:O›6M=ßü©§žÒ.”6kÖ,õBW 2õTE¾oË"³¢:uêÈN$ûÍM}RVW­Zuûöí‹/vìØ±k×®§NÊÍÍ­ÐÆ²ãŸÿügTTT‹-ÒÓÓÕ0þ|uîsÏ=÷î»ïž:uêêÕ«½zõºçž{¶mÛ¦>Ô$<<ÜÎùÙ*'÷ݺu«U«––l´ûvêÔ)//Ï|ö«áä–-WÕªUçÌ™£Þ°úÛo¿Ý²e‹©%w5ŽURòCåØgϵû%—|ß_zé¥÷ß???ÿäÉ“qqq÷ÜsÏ… ¶oß®Î}òÉ']¸A!OŽÑ•37ÿñÇË:þh2™Ô°)¶c Òn6»víZmâ_|aóù“'OÖîx\V6IVR¦½vÖëpçØôÈ#X¼¥FÚ/í£F²X,::Z»ëìÃ?¬8vìXóÅÔ§>H¾]¾!2Û®¬ÊXsà>Žæ³ ÍŸ)bþÄ™zJvŽý¢ÌŠä»W²ßÜ×'6o%óÎ;ïXˆš5kje};žrwÚ’uêÔ±¤ Zµj•ùÛ÷îÝ«Ž¥YˆŒŒüᇴÅìl&g¾§Š¢ 8P[þŸÿü§:Q»â™gž1_ÞfÚܲÚmZ°~oqq±öœ’V­Z©·†Q¤w5­¤ü‡J~1‡7\¥}ßÿùÏjçÝš3¿Û‘3›æ¿õVݺu;qâÄK/½Ô¹s爈ˆªU«Ö­[·W¯^+V¬øî»ï´ëÝ*dРAœ4iR‡ªW¯=tèÐ;w.[¶Ì±ëÎÜQIw¯wåÊ•ÚÿPümÛ¶»îºËb±äää¶mÛ !ªT©Ò¾}ûéÓ§gddhÏÉýøãµ[Q$'';6,,¬FmÚ´Q%ß.ßÉmg³2.¤²´ SOù¾µCfEòÝë|¿9Ù'6Mš4iÛ¶mÆ ‹ˆˆhԨѰaÃÒÒÒl> ®¢L&ÓÎ; Ô¸qãððð‘#G~÷ÝwÚšU]ºt9tèÐK/½tÏ=÷4hÐ 44ôî»ï~ñÅ>¬Ý¤Ð>'÷澘8Ú\ ,•ðÐî—~äÈ‘+V¨Kîj«¤ä‡Ê±Ïžk÷K.ù¾:ôðáÃ=öXçÎkÖ¬Ù¬Y³~ÿý÷Ú9\È ð`oÀÊþýûwìØñØc•uj𢍍hÓ¦MÂÑcîN¾Ý·Ñ9{øá‡ßÿ}!IJeË&Ož¬wuP™]Ïãûî]Žà}þô§?©÷¸îÑ£‡öüºë×¯ÇÆÆª÷ÄÙµk—ùýÀ%¸8¼ODDDff¦"33³I“&#FŒ¸råÊsÏ=§¦ÆÖ­[›´WaļOAAÁ}÷Ý·k×.ëYwÞyçŽ;ÔóÆÀµŽà• ×­[·zõêÜÜÜsçΩ÷Æ»ï¾û¦M›æÏ'Ìp+‚#¤p;H!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€”@½+€ÊsåÊ•”””ýû÷Ÿ9s¦~ýúmÚ´™2eJtt´ÞõÞÁ (ŠÞu@eÈÏÏ0`ÀÅ‹cbbbbbÎ;—‘‘¸nݺ6mÚè];à8Tí/–,YrñâÅÉ“'oÚ´)99yíÚµ¯¾újqqñË/¿¬wÕ€w`ÄÑ_ 8ðÌ™3{öì©V­š6±OŸ>¿ýö[fff@@€ÞžŽsýE:ubccÍS£"88øöíÛ·oß Ñ»‚ÀÓýÅš5k,¦ìÛ·////..ŽÔdýNFFÆgŸ}vòäÉŒŒŒ¦M›¾þúë2ï26§çääèÝ PIŽ~'''gýúõê¹­­[· ’£Þuzââ¤(Ê¥K—¾üòË¿ÿýïõë×ÿꫯjÖ¬iÿ-F£‘à€Ÿãv<þÈ`0Ô¯_ÿÑG5jÔùóç¿ùæ½k¼ÁÑ/?~üÏþó–-[,¦·nÝZqá½+¼ÁÑ/Ô®]ûŸÿüçgŸ}f1=//O¥w€ 8ú… Æ]»v}÷ÝwÚÄŸ~úéÃ?¬Y³fçÎõ® ð\ã/:”””TTT߸qã_ýuÿþýBˆ  8°Ü·sq 8ú‘S§N-^¼8++ëÂ… 6lÙ²å“O>#ó^‚# 8B ÁpŽ#¤ …à)GH!8@ ÁRõ® |F£Qï*BÁ­ÙüÁ¼?ØðÜÖ×Ïq¨RŽBp€‚#¤ …à)GH!8@ ÁRŽBpx–ýû÷:4;;[Dpx– .|þùç—.]Ò»", …à~*5Õ þsSù/¿ürË–-«W¯9iÒ¤óçÏks³²²† Ö´iÓ°°°þýûoß¾]>a„ !L&STT”:1==}À€ 6Œˆˆ0`@zzºäZ’““ÛµkW£FzõêuíÚõÃ?Ô»×ïFpç¦ì8iÒ¤Ù³g7iÒdÆŒñññï½÷Þ!CÔYß~ûmçÎ333G5a„ÜÜÜ„„„µk× !fΜ9oÞöØc6l¸}û¶â§Ÿ~B$%%Ì$%% !òòò,Ê9~ü¸¢}ûöæÛµk§Î²³!Dݺu322æÌ™3jÔ¨:´lÙ²¸¸X[ ÞèÃÝÙñÉ'Ÿ|ðÁ7mÚ´cÇŽÍ›7¿ýöÛF£qçÎAAABˆ… ¶mÛÖâ-­Zµ²˜¢žOe0üÏõ€€!DQQ‘µÔ©Sgذa›7oîܹó}÷Ý7xðàîÝ»wèÐAçN¼Áàz—/_>qâDllì¤I“&MšTZZúæ›oN™2å­·Þºÿþû…µjÕJHHЖ?räÈáÇëÔ©cQNLLŒâðáÃ}úôÑ&:tHa4í¬¥W¯^›7oNIIyúé§µ72â8‰CÕ×ËÉÉéÖ­Û¢E‹Ô—UªT1™LBˆªU«ÆÅÅÆE‹]¹rE›ŸŸŸ˜˜8}úôêÕ«k%”–– !:tèдiÓäääßÿ]þÛo¿½ñÆ‘‘‘ñññvÖræÌ!DË–-µׯ_ãÆ . œÁˆ#Àõ:uêÔ¦M›×^{-77·M›6999[¶l©W¯Þ˜1cSRRxàöíÛ9²¨¨èóÏ??}úôÚµkÕcÐê¸ã²eË.\¸0zôèäädõ$Å‘#G*вnݺ³gÏ~úé§ÁÁÁvÖP£F?þñcÇŽmÔ¨Ñ?þøÝwßÕ¯_×®][¶lILLÔ»‡ï¤bccõ®à×¼ñ;xúôéG}422288¸iÓ¦IIIGÕæ8pàþûïoذaݺuM&ÓÖ­[µY¥¥¥cÆŒ©]»v‡Ô)»wïîß¿ƒ 4hпÿ½{÷ʬeçÎ=zô¨Y³fóæÍ'MštñâÅ+VÔ¯_?!!Aï¾ñbÞøQ„ qGHáÆ]€¾øÂCðQôsœã)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽ/Ö»wïøøx' ‰ŠŠ:t¨ÞM¼ÁàÅô®à/õ®ŽKMMÕ» €!8€Ÿ2ü_äRL&½ëÀ;p¨üÁ ƒvãÆ«R¥ÊÙ³gÍ'¶iÓ&<<¼¤¤D‘••5lذ¦M›†……õïßûöíÚbQQQÓ§Oß¿ûöíÛ·o/„(((xùå—[¶lY½zõÈÈÈI“&?^]¸oß¾æç8fff4¨Aƒ 6}útBBµk׺uë&„˜4iÒìÙ³›4i2cÆŒøøø÷Þ{oÈ!Ö+ݶm[÷îݳ³³Ç?nܸü±wïÞ?ÿü³bãÆ={ö<|øð˜1cF••Õ³gÏ7ZRî’uü‹HˆÕ» €_sÇwPìØ¡ýsyá………uëÖíÛ·¯6eÖ¬YBˆ¬¬¬Â˜˜˜øøø›7oª³nݺս{÷èèèââbEQš5k&„˜7o^II‰¢(ׯ_xä‘G´¢&NœzöìYEQL&S\\œ¢(ÅÅÅ­ZµjÞ¼ùo¿ý¦.¶sçN!Ä”)S £¢¢š5kvñâEuÖÅ‹###£££ Õ52D­v¹Kš×Íñsàçq¸^PPаaþÿþûK—.©SÖ­[×¥K—Ö­[gdd?~üÙgŸ QgO™2%77÷Àê”ðððY³fU©REQ¥JƒÁ––vêÔ)uîŠ+.^¼n¾ÆÌÌÌ#GŽL:µnݺꔻîºkåÊ•wÝu×Nž<9mÚ´ÐÐPuVhhè´iÓrssúè£Ã‡?~ü¸Ââ”ÄvíÚ !ÔY™%Íëø®ª¸Eß¾}ÃÂÂ>û쳉'®]»688xôèÑBˆ   !ÄÂ… -Bž¢U«VêuêÔ1Ÿþä“O>øàƒ›6mÚ±cÇæÍ›ß~ûm£Ñ¸sçÎ h˨Q20ÐÆïš¢(BƒÁ`>Q½ûcQQQE—´¨àWø?À-FŒ±}ûö+W®|òÉ'C† Q"ÇÄÄ!jÕª•`¦I“&W®\±™É._¾¼wïÞàààI“&}øá‡§NZ²dINNÎ[o½e¾Xll¬âÈ‘#æ_{íµ¿üå/ê>l>K½àÚh4šO”_ðOG€»Œ=úöíÛ/¾øâ©S§ÔãÔBˆ¸¸8£Ñ¸hÑ¢+W®¨Sòóó§OŸ^½zuëBrrrºuë¶hÑ"õe•*UL&“¢jÕªæ‹ÅÇÇ7mÚ4%%%??_’››;oÞ¼3gÎtèСiÓ¦ÉÉÉ¿ÿþ»:ë·ß~{ã7"##-W(¿$àŸ8T p—ž={6nÜxÙ²e÷Þ{¯:1000%%åhß¾ýÈ‘#‹ŠŠ>ÿüóÓ§O¯]»ÖæÃ;uêÔ¦M›×^{-77·M›6999[¶l©W¯Þ˜1cÌ«V­ZJJÊÈ‘#;vì8|øpƒÁðî»ïΞ=;88899yÔ¨Q:t9r¤¢(ëÖ­;{öì§Ÿ~l^ˆü’€bÄà.ƒaÔ¨QŠ¢Œ?Þ<öïßÏž=mÛ¶]³fÍûï¿õÍ7ߌ9Òf!AAA[¶lyøá‡wïÞý׿þ555õÞ{ïMKK‹ŠŠ²XrèС;wŠZ±bŪU«ºté²gÏž?üáBõï-Z¬^½úý÷ßoÕªUZZšÍ›AÊ/ ø!ƒz"0`ŸÑhÌÉÉÑ»€ÿâ;ÁGÑÏ1â)GH!8@ ÁRŽBp€‚#¤ …à)GH!8*[ïÞ½ãããÝý^gÖÀ&‚# ²¸û½Î¬€MzWàwRSS+á½Î¬€MŒ8¼^iiiII‰Þµ|ÁàzãÆ«R¥ÊÙ³gÍ'¶iÓ&<<¼¤¤¤oß¾ÚÙ‡QQQÓ§Oß¿ûöíÛ·o¯NÜ»woÿþýëÕ«×®]»Ù³g¿õÖ[ƒáàÁƒBë÷._¾<44400°Q£FO<ñĵk×Ô¹æK !233 Ô Aƒ† <øÐ¡CÚ¬ääävíÚÕ¨Q£^½z]»výðÃõî?ÀC®7zôhEQ6lØ MÉÎÎÎÎÎ~衇¬Ï;<}útBBµk׺uë&„غukŸ>}rrr&NœØ»wï%K–Ì™3§¬mÛ¶mêÔ©IIIK–,‰‹‹[¶lÙŒ3l.Ö½{÷ìììñãÇ7îÇìÝ»÷Ï?ÿ,„˜;wîŒ3êׯÿüóÏ?þøã×®]7nÜ—_~©wI$ÄÆÆê]À¯¹ã;¸CìÐþ¹¼ðºuëöíÛW›2kÖ,!DVV–¢(&“)..NÞ¬Y3!ļyóJJJE)))iÕªUttôåË—ÕŽ9$„ÈÌÌ´ùÞõë׫/KKKÛ¶mÛ¸qcõ¥¶dqqq«V­š7oþÛo¿©³vîÜ)„˜2eŠ¢(ÑÑѱ±±EEEê¬+W®>ñÄ.ïßÀÏŸcÄüQª!Õ­å 6ìûï¿¿té’:eݺu]ºtiݺµõÂááá³fͪR¥Š"##ãÈ‘#Ó¦M«W¯ž:·e˖Ç/kEÑÑÑ>ø ú·Á`ˆ¿~ýºÅ2™™™GŽ™:ujݺuÕ)wÝu×Ê•+ïºë.!DzzúÿsµèåË—…7oÞtkÿ^Šàp‹Ñ£G—””lܸQqàÀãÇ?òÈ#6—4jjB;vLÑ®];óÚ´iSÖZbccÍ_jå˜SËlÛ¶­ùÄG}TÍ£uëÖÍÈȘ3gΨQ£:tèвeËââb½;ðPGðG&ÅäîUôíÛ7,,ì³Ï>B¬]»688xôèÑ6—¬S§Žö÷íÛ·­°s;ÆjÕª•[µLmLÑ\aaá Aƒz÷î½eË–˜˜˜™3g=zôŽ;îpwç^Šû8€¿sSˆ 1bÄ;ï¼såÊ•O>ùdÈ!Ú‘b;Z´h!„ÈÎÎîÓ§61;;Û™š¨£’GŽéÝ»·6ñµ×^ËÏÏ¿çž{6oÞœ’’òôÓOk³qʈ#ø)“bRÿ¹o£G¾}ûö‹/¾xêÔ©²ŽS[ˆ‹‹‹ŒŒ\¼xq~~¾:åĉŸ|ò‰3ÕˆoÚ´iJJŠVfnnî¼yóΜ9sæÌ!DË–-µ…ׯ_ãÆ EQÜ×-€÷bÄà.={ölܸñ²eË"""î½÷^™·'''1¢cÇŽ#FŒ(((øàƒ:v옖–âX5ªU«–’’2räÈŽ;>Ü`0¼ûgÏ ªQ£ÆÿøÇ±cÇ6jÔèÇüî»ïêׯ¿k×®-[¶$&&êÝ…€gaÄà.ƒaÔ¨QŠ¢Œ?^þ±ÑC‡ݺukxxøÒ¥K÷îÝ›œœñÄ«W¯¾zõªÍ \P™ü磛qx€€€~ýú;V›rõêÕ 6Üÿý¤F@wG€©R¥Ê”)SRSS‡þñÇ'''÷îÝûúõë6$ ’ñ¿7€g™;wnýúõßyçI“&U­Z5>>~ÕªU:uÒ»^Ž£:N™2EġjH!8@ ÁRŽBp€‚#¤ …à)GH!8@ Á)½{÷Ž×»€žŽH YrÿþýC‡ÍÎÎֻʀ‹À 'ðg©©©û÷ï—YòÂ… Ÿþù¥K—ô®2àbGð#Š¢Ø‰†ƒAQ½ëXIJJJJJJœ/§´´Ô%å^àþ¥¬ìèŽÔ¸oß¾„††ÆÆÆþñü÷¿ÿm0Ö­['„ˆŠŠ1b„ùÂ&L¨[·®ö2++kذaM›6 ëß¿ÿöíÛµYQQQÓ§Oß¿ûöíÛ·o?vìØêի߸qC[à—_~ xê©§¬«¤¾÷ÿøG:u‚‚‚Ú¶mû /ܾ}[[ ==}À€ 6Œˆˆ0`@zzº6«oß¾Ú9Žj9Ë—/ lÔ¨ÑO}ZñÕW_ 8055µOŸ>®ý$莟§bccõ®à×ì|=óGdß¾}Bˆ ˜O|íµ×„k×®U¥Y³fÇ7ŸûÈ#Ô©SGQ”={ö!>úè#ó¹}ô‘"==]}oxxxII‰67))©fÍšŠ¢üôÓOBˆ¿þõ¯6+Ö¬Y³ÐÐÐÂÂBmÊõë×kÖ¬9tèÐüQ‘’’b¾|rr²¶^“ɧ•m¾äøñãÕú+вiÓ&!Djjª>wâçÀÏq¨àzÇBtêÔÉ|¢ä¡j5ù%%%Ì$%% !òòòÔeŒFc•*ÿý 1bÄõë×·nÝ*„øè£ øqãÊ*¿uëÖAAAÚË5jÆŸþY­sûöíÍn×®Ö ±±±æ/Íëøª@½+ðA·nÝV7÷±ÄÂÂBõ5Õ-\¸°mÛ¶Ë´jÕJý£N:æÓû÷ï_«V­õë×<ø£>êÙ³g…®J ¼qㆢ(eÕ¹¨¨Èú]ÕªUÓ­À»)­¶¸ÆåÇüáBüë_ÿ2™LÚăš/SZZjþRÕ‹‰‰BÔªU+!!A›{äȑÇ[äEMµjÕ ôå—_þðÃ'NœxöÙgíÔíÈ‘#EEEU«VU_=zÔd2©ë=|ø°ù‰‰‡BFvà½W¿c»÷wt@ÇŽ6løÆoœ;wNrñâÅÅ‹k T¯^=;;[»â?ü Ý[;..Îh4.Z´èÊ•+ê”üüüÄÄÄéÓ§W¯^½¬5Ž1âÊ•+O<ñDppðÈ‘#íÔíâŋꙋª—_~9??èС:thÚ´irròï¿ÿ®Îúí·ßÞxãÈÈHÇž4h‘ŒÀˆ#ø—²ÕìèªqÇêÕ«/X°àᇎ5jTÕªU×­[W»vmmûî»/%%eàÀC† ÉÍÍ]ºt©6š˜’’òÀ´oß~äÈ‘EEEŸþùéÓ§×®]kç`·z´:++køðáe LªÂÃÃ_zé¥Ý»w·oßþÇüöÛo»wï>~üø*Uª$''5ªC‡#GŽTeݺugÏžýôÓOƒƒƒ+Ô|µË–-»páÂèÑ£]³åÀˆ#øûÑеãŽ=ôÐæÍ›FãêÕ«¿úê«Ñ£G¯\¹R›ûÊ+¯<ýôÓ‡~üñÇ,X (jsû÷ï¿gÏž¶mÛ®Y³æý÷ߊŠúæ›oì#V«VM½ívY·oÔtíÚõÛo¿½råÊâÅ‹OŸ>ýÌ3ÏìØ±C½´eذaßÿ}‹-V¯^ýþûï·jÕ*--mÈ!m{=ÆŒóÍ7ß,\¸ÐUý xîã)ܸ ЗK¾ƒº?Qð_ÿúW§NÔû8joܸqãÆ°°0çËOLLÜ·oß¹sç´ó­EEEÅÅÅmذAÇ~ðjüø9FÀ_xæHA5\’þùço¿ývôèÑvR#'Þ-//oÊ”) 0 S§NÕ»:€/ãâ@%©[·îðáÃ7nìÚb ×­[üá‡ZÜ”ÛZbbb³fÍôî À[qŽ#¤pR  /¾ƒð|ý#ŽÞª  `ݺuëׯ?sæL­Zµbcc}ôÑž={ÚyËðáÃ>l11444--MïÖ|Mª!ÕbŠI1é])8‹à蕊‹‹yä‘ÌÌÌ;{÷î·nÝÚ»wï®]»¦Núä“O–õ®¼¼¼‹c4öïv€¬S£6‘øèÕŽ^é“O>ÉÌÌìØ±ãÊ•+CBB„Ç7nÜÒ¥Kï¾ûî–-[Z¿%??ÿêÕ«‰‰‰)))zWà³lFF‹ÈŽÞ‹«ª½Ò×_-„xñÅÕÔ(„ˆ‰‰™mó-§NBDFFê]wà­8Tí•–/_h¹í²³³…Mš4±ù58ž;wnüøñG­^½z«V­&OžÜ¾}{½[ðå§Öãhµ—"8z¥V­ZYLÙ³gÏÛo¿\Ö3UÕ‘ÈÅ‹GEEuïÞý—_~Ù±cÇÎ;çÎkÿñ¯£Ñh=‘›2à?Ž^¯¤¤äÃ?\°`AIIÉ¢E‹BCCm.vîܹ3fŒ?^²{÷îÉ“'¿òÊ+½zõŠˆˆ(wEdDüç8z·½{÷4hþüù¡¡¡+W®0`@YK¾÷Þ{™™™ZjBôèÑ㡇*((ضm›ÞíøÉЧö^Gouûöíùóç?üðÃgÏž2eÊ–-[zôèQÑBºté"„8vì˜Þ­^€CÕ^©´´tæÌ™[·níׯߜ9sÂÂÂì/¯(Jii©Á`¨Råþ« „¨U«–Þ PÙæÍ›g1eΜ9zW €§#8z¥>ø`ëÖ­III’;úS§N%$$téÒåƒ>0Ÿž‘‘!ʸꀯR#£õÞ£¬épLïÞ½¯_¿®îf틊ŠêÔ©Ó§Ÿ~êÀ\¤†.ëòjR{;U{EQÖ¬YS«V­çŸÞÎb7nÜ8yòä™3g„Íš5ëØ±czzºù®'##cÕªU z· @%™7oÞœ9sl¦CuºõH¤oÛ¿ÿСCÕÛ™¹V@@€zTÇ?Ù ˆ¤FÀˆ£÷¹xñ¢úÔé±cÇZÏ:tè¸qã„;wîœ>}zLL̦M›„³gÏž8qâ¬Y³>þøãèèè_~ù%33³zõ꯾úªöø¾MMö—Q³£ÿŒ;^¸páóÏ?Ÿ6mšËKNMMÕ»q:#&ú$‚£÷Q ²²²¬ç–u‰L‹-6lذhÑ¢üñøñãMš42dÈÔ©SÃÃÃõn€Ê ]žKKKEñêá7hàªö>:tÈ)ÛÌ™3ÕÅ ““£7ªÂÂÂ^ýõï¿ÿþðáÛ7o~õÕWIÜ'**júôéË—/ lÔ¨ÑO}útBBµk׺uëVni“&Mš={v“&Mf̘ÿÞ{ï©Ùš9s¦zNç‚ V¯^íÚ&˜ÛºukŸ>}rrr&NœØ»wï%K–XlŽC‡Ýÿý111þóŸ›7oþÖ[o=óÌ3æsï½÷Þ   É“'‡……%''÷îÝ»¸¸X±qãÆž={>|x̘1£GÎÊÊêÙ³çÆ%7E7åS ±±±zWðkN~çÎëÖåmjÖ¬™býúõêËÒÒÒ¶mÛ6nÜXQ”˜˜˜øøø›7oªsoݺս{÷èèèââbEQ¢££ccc‹ŠŠÔ¹W®\ |â‰'ÌKž7o^III¹¥]¿~= à‘GÑ*6qâÄÐÐгgÏ*Š¢–IMMuyL&S\\œ¢(%%%­ZµŠŽŽ¾|ù²ºä‘#G‚‚‚„™™™ÚZ6nܨÎ-..nÙ²edd¤y.\¨ÕJ͔˗//,,ŒŠŠjÖ¬ÙÅ‹ÕY/^ŒŒŒŒŽŽ.,,Tß;|øpó=òÈ#uêÔ±Ù’ø9ðsŒ8,¹êòêèèè|PýÛ`0ÄÇÇ_¿~]‘‘‘qüøñgŸ}V»8/88xÊ”)¹¹¹B¤§§8p 0ð?'â_¾|YqóæM­äðððY³f©÷¦µ_Z•*U CZZÚ©S§Ô¹+V¬¸xñ¢ä¹:7A“‘‘qäÈ‘iÓ¦Õ«WOÒ²eËáÇ›/;xð`õ€¸¸¸7nhs4h`~ùÎܹskÖ¬ùå—_8pàäɓӦMÓ6:mÚ´ÜÜ\óƒàv˜w# ƒÏ À’«mÇÆÆš¿ÔÊO?ý$„HJJ2˜IJJBäåå !êÖ­›‘‘1gΜQ£FuèСeË–ê‘YÑh”,-$$$%%%///**ªmÛ¶=ö؆ nß¾íî&hÔ§sµk×Î|b›6mì¬Åâ*œ6mÚhZQ£F £ÑxüøñãÇ !,NOTW¤Î*—y72¸ªà.ÕªU³9]=P»pá¶mÛZÌjÕªUaaá°aÃ6oÞܹsçûî»oðàÁÝ»wïСƒùbuêÔ‘,Mñä“O>øàƒ›6mÚ±cÇæÍ›ß~ûm£Ñ¸sçÎ ¸© æ/m†T‹hXÖZÊX­Z5EQ„ƒÁºä¢¢"›o,,,,«Gð}žvwƘ˜!D­ZµÌ@päȑÇשSg×®]›7oNIIyúé§µ¹#Žò¥]¾|ùĉ±±±“&Mš4iRiié›o¾9eÊ”·ÞzË™±¿Ró%[´h!„ÈÎÎîÓ§6±B·ÏÎÎ...Ö Ž=zß}÷©u8|ø°yɇf+--5/Jr$( Ô€Êg4-ZtåÊuJ~~~bbâôéÓ«W¯®Þ­¶eË–Úòëׯ¿qã†:ÀVÑÒrrrºuë¶hÑ"uV•*UL&“¢jÕªZ éÊù&X,¹xñâüü|uʉ'>ùäùu?~É’%ÚË¿þõ¯ùùùcÆŒéСCÓ¦M“““ÿýwuÖo¿ýöÆoDFFªwª^½zvvvII‰:÷‡~Ø¿¿›¶)ü#Žàä+al2000%%åhß¾ýÈ‘#‹ŠŠ>ÿüóÓ§O¯]»6  oß¾5jÔøãÿ8vìØFýøãß}÷]ýúõwíÚµeË–ÄÄÄ •Ö©S§6mÚ¼öÚk¹¹¹mÚ´ÉÉÉÙ²eK½zõÆŒ#þïXí²eË.\¸0zôhW5Á|Éàààäää#FtìØqĈ|ðAÇŽÓÒÒ$ÜU½zõ3fìÚµ«uëÖ»wïÞ¾}{BB°aÄÉÉÉêi #GŽTeݺugÏžýôÓOƒƒƒ…÷Ýw_JJÊÀ‡ ’››»téRŽMÃYz_Ö ïÀý}¹ê;Xî}v\r#U³f͆ b>Åü^0Š¢8pàþûïoذaݺuM&ÓÖ­[µY;wîìÑ£GÍš5›7o>iÒ¤‹/®X±¢~ýú 6K¶_ÚéÓ§}ôÑÈÈÈààà¦M›&%%=zTUZZ:f̘ڵkwèÐÁµMÐnÇ£Ú¾}{ïÞ½k׮ݽ{÷÷ßÿõ×_Büú믊­›æŒ7.44T«ÃsÏ=·lÙ²îݻתU«mÛ¶/½ô’v£"EQvïÞÝ¿ÿ 4hРÿþ{÷îÕfݼyóé§ŸnÔ¨‘zäðáÃçÍ›g~;ën,?~Π”1ò˜3999z×ð_.üª÷Ù±S,k:œTTTtèСðððˆˆmâO<±zõê«W¯š_.í>7nܸqãFXX˜óEñsàç8T $ÕªýmRLîX… ­oÓHdt“€€€~ýúÅÅÅíØ±CrõêÕ 6Üÿý•“…5jÔ¨Q£†Þ=_@p`ͧ¸5>¢T©ReÊ”)ûÛ߆þàƒž?þÝwß½~ýºöèBÀ‹@Ö©Ñ|–›²#*ÍܹsëׯÿÎ;ïLš4©jÕªñññ«V­êÔ©“Þõ*Œà:³“ÿ»@¬TQðLê ã”)Sô®à,îã)GH!8€žÊ=N žƒà)GÐWLð"GH!8@ ÷q™“ýKdLŠI…ÑhÔ»¦üAQ½ë/ÀSíw++;r¤^ln6üÁRŽ@å0+dÝYdG¶@p„‚#àâH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRލwÿ‘jHµ˜bRL.,ÐÉÒ\^ ËÛëá<¿½.ÿÀÀ÷EÑ»ðF£1''GïZ¾Ì:U¨þñvme•æò}5¬xx{=¼zðGH!8ne'–©*ôûíÚÒ¼¢@çáíõðêÁ£pŽ#è¬ÜŸmX£ç¬özWõàiŽ{d‚á÷±}¡!8€ÿåößxßhí…ï!8€žôJ þ¶^½ø[{áóŽà¸Ü€Ž 'Éç39öúv{áóŽàSt‰ ä߯ö…†à~§B9€ÐàÛØ¾¨‚#è¬Ü_îŠþ´Û_Þ àÚ]Þ^çùíuù>Œ'Ç@ OŽ*»ŸUíd6/vm¾Q<¼½.ß¾ðIGH!8U@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ê]¼|  ðXG*FÇdF(„¾ŽBpÀ×00 7!8àk¸/Ü„à)G*FÇñ<†¡/‚#ÿåÉÌšEpàØ^ºÇ2“b²SÝ«ßfPEï:À Æœœ½k•ÊâÚdOËd<«•à)GÀ¡jH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRލwþ+ÕªýmRL.,Íó t¾4—sy{á{ Š¢è]x£Ñ˜““£w-ø‹Œ¢q8¬Ø,ЙèãÚ]Þ^—syÂ'!…àÀ…ÊJQ*Šk ôð깜‡W…s•Ê~L‘YÀÝzuõ\Îë‡JFpà¿dr’/e)k/œDpxù¤â™Æ7Z@pT½’¿­p‚#¤•G¯Ktým½€›G>oùF2óVÀø/™ çK9ÏßÚ '•ªÜRјâò½ºz.çáÕC%ãÉ1“c¸t¾†®Å#!ƒà)Gî`VœÏ(ÑÇà ôÀLæòöÂ÷!…à8ÇRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ê]Tž‚‚‚uëÖ­_¿þÌ™3µjÕŠ}ôÑG{öì©w½€Ê“jHµ˜bRL.,е¥yZõÀ (ŠÞu@e(..;vlffæwÜѱcÇ[·níÛ·¯¨¨hêÔ©O>ùd¹o7999z7pŠu,S9§Ê*Íå:œö\^ ýÅG}4oÞ¼Ž;®\¹2$$DqüøñqãÆ]»ví³Ï>kÙ²¥ý·áÕì„}ZïÚÞD&u‘Ìø$.ŽñË—/ ´ÜÜÙÙÙBˆ&Mšè];À|#Ã¥R%/ûF{x&‚£¿hÕª•Å”={ö¼ýöÛÁÁÁC† ‘)Áh4ZOäÄGø ùdæòõúU{x5‚£?*))ùðÃ,XPRR²hÑ¢ÐÐP™w‘áÛü-Eù[{¸ç8ú½{÷4hþüù¡¡¡+W®0`€Þ5üšd€#çðG?rûöíùóç?üðÃgÏž2eÊ–-[zôè¡w¥·Ó%ré˜óˆ˜Ü‡CÕþ¢´´tæÌ™[·níׯߜ9sÂÂÂô®àA*¶LŠÉÛ/@!\p #Žþâƒ>غukRRÒÒ¥KIð7ös’)ʵ–»¼k $5pOŽñ Š¢Üwß}¿ÿþû®]»ªU«æ@ <9¾Áµƒ¶9îèÚ=íá×üÁÑ/üú믽{÷ iÞ¼¹õÜ¡C‡Ž7Î~ GÀ9Ž~áÌ™3Bˆ‚‚‚¬¬,ë¹\"d0â)Œ8.Ž€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ %Pï €·J5¤ZO4)&èLižß^^‡Gp„Íegºc¦R.ÐÃÛ À Âì§¥Šf©rÓ¡îáÌë Ò bü-'ù[{ØAp×ó·°åoíüÁô$¹Hf<ÁRŽ 'ngÀ‹À /x‚#TŒL†ó¥œçoí`ÁtFêà-ŽPaö£žAÐÎ[LŠI÷déòöðREQô®¼€ÑhÌÉÉÑ»€Ç±¸KŽ“ÊßUíòöð:GH!8U@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€”@½+ö¤Rµ¿MŠÉ…¥¹¤@o¯¿qùöõðŒ‡WOðyöEEQô®¼€ÑhÌÉÉÑ»ð/?Ї~lè9?f.o¯¿qùöõÆŒ‡WÏ£jÇ!…àˆJVÖ¯ŽÊß—èáíõ7®í@Ïß^C¯œÁ9Ž<Žý_™Ü] ‡·×ßTrê¾9<üãáÕƒ“Žü—L¬!úÀox%ù_nßø÷V¸ƒ¿õŒo´×7Z៎<‹^¿(þ¶^ãoýÌçnBp€‚#Ï¢×—þ¶^ãoýÌçnBpà•äŸ|ã—Ì7ZáþÖ3¾Ñ^ßh…"8ð_2™†Ü¿EpàqÊýU®èÏ¶Ë ôðöú›Jî@Ý7‡‡`<¼zpOŽžƒÊÇ#=­†ŽGz~õ<ª†p ÁRŽÐ‹ùÏó?9?føæÚöú—o_ÿÀxxõŸg_Dp„‚#àGH!8@ ÁRލwÀ  gÞÎeˆ|Á,YÇD'“ŸË ]@ˆÿÍv.OuÖºuuà&GþKÇôf¾:B$oApàw´ ædJ›7ožõÄ9sæT´›!’ Àø5–9ŸÉÔÈh3#Ú™%C«›«ª .Ä#!…G«¹pO2Λ7Ïáì覚€ó¸#_f0 ƒò\R¦L"œ3gŽÍÙ¥Õ\mˆ»» ìcÄRqô©†T‹)&Ťw¥<”;õZ#RSÍ_*&“ýå=°Q à)GO`UdG nJW)Ð"2š3.ÏŽîk ”‹CÕ€w(+5ª³ìÌõ+æ¦][²|j,w®ó8x @/GÀ Ëå¾Èè$WìhM‹z7€!8ðz•eÝ=è¨aè@e"8>Â?G%µF½+¢'†Tnx:ÿL„2ˆŒæ´ìHŸp‚#ïCB²Iíò4÷áP5àé$ï¶ã?7åñÌ‹`<g=p‚#oâ-Ãiw¯ìµsÖ#÷ 8ð’+ ÝqpÙz’¸Áð&ÅdÿH´Ï§Öýêi‹Û1ÚÏŽú7þOMÈŽ\Šàx ›é°ÜLé<ä¤FÉìèîç V§<p!®ª¼‰ÏgDkrxÚ&û#‹žÿSO®¶à"Œ8ð\ž–uÜ÷üÀJÀakÎó¬2<–ÑhÌÉÉÑ»ð/ž–5jv,k4QK–2ÜhÁc{€W`)GT2ÏÏ7e =zf^4çù} Àc±û€‚#*ÉÆÝèaŽáGž…LS 8߀cŽ<©±Ò8€à)Gž‚áÆJÆ #€Š"8ð¤F]TOŽ ?R£Ðïþ>jv¤ÿÈ 8ЩEæŽândG’ØS@ ÷q„›W$iíî'_³!ÈàGÐ|t÷c²9Ù€ þ‹ )Œ8zCjªÅÅdÒ»Röªg¿†~>ÊeËݾŒ;Â\ª!ÕbŠI1é])ø8öBpô6c™ÊâcE«ççE&5jÌ;ЭÙÑÏ7Š±ŽŒ²#ÜŠCÕ€0¤¦ÚIÂn樴zrõ<œçl_X{;©±Ü¹€“Žœå@¬adËc‘}ÙîCpPttw_%G(„¾Ž€§“Œ\^”Ìn4?OÑ·/ƒŽÊBpP©H^ìè현›Oç WLÃ}ؾp®­†›áùƒáF•ç)VþöeЀ5‚#gÉd¯Èµ^ÁÝ÷‡‡c(ú"8^À7RÃeñØíË £—"\Â}ØC OŽñe]Wë!±£ÜŸ-XŒÊlßÊnd«y¬².!5­q¼†Í€è!©Q­‰ue´‰äkg:zæöeÐÑcYD“b"5ÂÝõ®€ Ð=Fø@ =™ýÞãìFX &¢ò1)ª†3n´Ct´Ÿe–q6 »H!8Â$r• õŒ¶ ûH!8ÂÄIÖ7wÔ=2ªØ‚Tì …à‡‘9|Û€àªjH"8p#†©À—åㆎÁ’¸8W2¿.xîܹžvœÚâ²eç¯Yvm{U5¨8ýR¸ªå²¾ã Á`˜;w®ðŒôcó†ˆZPs †v tUiÎè&œ´ ø9vBp„e…-dè›~$Í"_½r ¬P{=ÿÉ1掀¿S ±±±zWJ=m“ÅÆÎ’ºTϱ%=¿@·âWðsüßÑëåææ&&&~òÉ'íÛ··¿äðáÃ>l11444--­Üµxòˆ£!5Uû[1™ô®Ž—µ×¼4 ´¨ûo}ûŠ;, ¬ÐÀžóìUÏV{Ë­žõ©†ÿ)Ф¸²ÀŠ–V qüWU{½>ø@rɼ¼¼–ÿ+&&Fï8Κj‘¬§ø—·×ú½*­ÜXf=eΜ9Ö×T'«Wnj´žR¡S ©o·˜¢oï©nÊø7®ªöVùùùÇŽûòË/×®]+¹üÕ«WSRRô®»k؉8†ÔTßzty{Ë*P^ÑíWÏgË$Û«†³rö¬#£Å,‹ÁÂr«g¿@­4Éꀛ0âè­ 4vìXÉÔ(„ÈËËB4kÖLF¹c>6îèòö:_ ÃñE—a3o¯Ô(¹TF½Õüùó …kÖ¬Ù½{w¹ËŸ:uJ©wÅáƒl¤®¾}ÅŽËTæ £[‡ådbœù0!ø F½U¯^½î¹çž{î¹§Q£F2Ë«ÁñܹsãÇïܹsŸ>}üñƒêÝ7ò±AG¶—žñFZZÕýLGNsüÁÑ_œ>}Z±xñâ_ýµ{÷î¡¡¡;vì3fÌ'Ÿ|"Y‚Ñ]Úâ9ÀóÛë·ý\ ÉÌ|@”Ãм‡ªýŹsçBBBf̘1~üxuÊîÝ»'OžüÊ+¯ôêÕ+""¢Ü<öv< r0âè/Þ{ï½ÌÌL-5 !zôèñÐClÛ¶MïÚUŒï]1í™íõÛ~®„Ë–Í59€!8úµ.]º!Ž;¦wEÜÂos —ô ¾Ñ^-_r;:"8úEQJJJJKK-¦!jÕª¥wáÝd’Y%§7·ž§(3FÈ8"ŸDpô §NjÕªÕÃ?l1=##C¡×5.Î(7…øÆ “ûÚë|ö’™Õ½xÌKÓeÀ̽íµbžeÚ[nÊô´Ê…Õ€ß"8ú¬7nœÿdPÌvs@YŒF#÷qDYÔa3m0Ì`°Ü±X, oõXÀ\Ïž=ï»ï>!„š -ZªŽDª³~ûí·Å‹;_=Ý;Ð&ë­ Àð͇‚#Ê¥…óHá9‰ÇfM«^Ïž=wïÞ­¦CuPn0´‰S§N•IåÖÄs:ÐÁðO|ó!…àIóæÍ›;w®v<×ÓÅI™WOÍŽâÿ5êËŠ¦Æ²ªçL Ýàø'¾ùBp„óÛ ZÄ&ÇîDhÿ¾†èBÖ©QýÛâ:kßÞ»ŽÿÄ7RŽ(‹u³)䟳,4õzpsY©Qå?Ù‘àø'Îqà,™7gÎëãÎÖÔ8èÂ]®¸¸XýÃæwÌïÑC®à{8Çp/CjªùKÅdÒ»FöªWÑZû©jÅš—¦F½ Ú¯ž:/  ¸¸xÆŒeݯ1--­gÏžiii•Y+¸Iª!Õü¥I1é]#@gk€U;À:ôh<$>–UCÉêY„¶ÿ–Ö·¯Ø±£¬íD½2 ´[=½ŽYû9Ÿ?TmÍáÏ8T ¸…ÔXîÜÊ©ž:ÈTO2ä¹£@û•G%ðçÔXî\À·ØàT2Û±Côí[ÖL™sɅй°ƒà¸žLîñ¥l¤o{õºJþŒp ¿EpüŽfVÎSôÀV€Ï#8°M¯dF"Ep`›‡\ú ðGú3?OQ2°’k ò}è˜{*cÕVV»o¥ÜDZ’ùü½xdp+Gø-‚#àz>0V¡&8ù°À£ ;Ž€[ØÏRº'Kç«gq×¶W1™<¼áÛìgG’%üÁp—²Â‡„ž²Â™|õ$³£äó­oÇXVõ$ œQV:$5ÂÏqª ¤ð¬jØd?·Yœ 'ò*I•?Lj#ǹü©-ò’ òñGHaÄv¨QÏ:Æ©£SZ¬ÐP¢åíÏ…[1âø9vBpD¹¬G çÎ;wî\‡^YCDF?Ç.RŽp 9×°5pŽ#¤ …àÀE1 z×.Àqj‚àIG@9n "8p/ŽV€Ï 8@ Á€Û1èèÕ8N @Cp€þ‰rRS-¦(&“ KsyΔF{/°Ì1jåØp̱G@™l†•cÙÂà ôðêy~{Ë_#Ä ±Õ˜cÛì¤ M…âE¹º¶4Ï/ÐëWÑ¥VJñ6l28Ç•A&¦È,ã-ü­½’¸D¼Á6øF¦‘o…o´WžŽí%;z†X#8Âqzårž3‹à0‚# Ëß’™›ÚË £W`¸€MG8ÎM×Þ²^?_/Àcaƒo$ùVÐÞÊ®*ƒŽžáFe!8¢2È$ÝÓ í©€]G8HßÜSùk§½..ŸAGðBüÏö”uy„'<øÄåÕ£½ÎXá 0¸åaØ"ìcr¸ûáÈžö¨eÚ[™£›ÄÂæP.vb4srrô®|aÅs°-”‹s艓=©€ ‚#‘uGj ‰à~Ô@Á€þt¯@pàÈŽº`¸@…x ²c%#5¨(‚#Bv¬4¤F 8ð,dÇJ@jà‚#Cvt+R#‡x"²£›8ƒàÀC‘]ŽÔÀIGž‹ìèB¤FÎc?‚rRSÍ_*&“Þ5²WC¯žgÖÐóÛKâq}À%Ø•À‹ ñôãáÕ+«†žS=/j/¹ÇôWao‚2•ËTº§¯®ž'ÔÐëÚKúq ýÀ…8Ƕ•›Ê]ÀŸ«wà|ÇŠ2 ¤F®Ep\O&¶úR´­´öªÙ‘ø(CŒ¤F®Ep„ ¾‘i|£° †!²£} 4p‚#§W2#‚ìXOp«@½+ŽÐ²#!ICdànŒ8Âqz]ìc×#ÃaÚakFhP9ްÁ7’™o´åâ¬G®ƒPiŽ€ëÉdV_ʵžÐ^ÿzd @%#8¶ræõÍ=^=çëïc*§½~uäZ‹Œ¤F•‰ÿªÂÏbž‡×ÐëçÃíõáëf|¸i<Áå3Oz¼¨zžYCn¯e,koDp„£Ñ˜““£w-Gø@Þò&ð ÜÇ€Só–vâ£Å/o¬3ßFpà´ìå£w^QI~ˆàÀ¿xì¤ùÅàžS+0Gpà, -&V&Œ°P‚#¿f×,né¦$W9kw 8ÀXd8›7¯PÎs¾ð(G°Íf«ÐciȈ| Á*€,ÀŸñ¬jH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ Å (ŠÞu@eËÍÍMLLüä“OÚ·o_î†ÔT‹)ŠÉäðª­Ks²@¿e4srrô®þƒÍáQØž†-âKqôG|ðÌb†ÔT›9ÏæDÉ+4x”@½+€Ê“ŸŸìر/¿üríÚµå.l?Ì©s+4RXnŒ;àáŽ~dРAçÏŸ×eÕ2cŠdG<ÁÑÌŸ?¿°°P±f͚ݻwÛY’cÇÀÁÑôêÕKýcÇŽ.)1Bü ÁN1RË-_îÊÒ „ »< ›Ã£°9< —Tû‚#§˜LBnw yì› žŒÛñÀ@kGT™$JZÀÃá rþ†àÛ“ÉN4t 5Ú 1ÏGp„=6óœÃ!ÏfµŸP€çàªj”Ã婎˜€—bÄR Š¢è]xF …à)GH!8@ ÁRŽBp€ž)gÏž4hÐÝwß½páB½ëâG$»}øðᇶ˜š––¦w |Ý® º-¥—Ç/_¾<;;ûúõëF£qÊ”)]»vÕ»RpÁåSåù矿~ýºÞñ/òÝž——Ò¬Y3ó‰uêÔÑ»>Žn×…ÝΖÒÅwß}7uêÔÒÒÒ¶mÛÆÄĤ¥¥?~Ù²ewß}·ÞUƒSŽ(ß{ï½—žž®w-üŽd·ççç_½z5111%%Eï*ûº]t;[JW¯^}þùçW®\Ù±cG!Ä¡C‡ÆŽûÒK/™L¦*U8M΋±ñPŽãÇ'''·hÑBïŠøùnÏËËBXŒ¦ÀÝèv]8Ðíl)]|öÙgùùù“'OVS£¢]»v‰‰‰—.]²>mÞ…à{Š‹‹Ÿ{uë¾ð z×ÅT¨ÛO:%„ˆŒŒÔ»Öþ…n×…ÝΖÒÅ÷ßo0† b>qÁ‚999íÛ·×»vp ‡ªaÏ’%KŽ=ºjÕªÚµkë]?R¡nWÏ;7~üø£GV¯^½U«V“'OfïìVt».èv¶”.²²²êÖ­Û°aÃýû÷gdd\¹r¥E‹ýúõ Ñ»jp#Ž(Sffæ;ï¼3nܸ=zè]?RÑn?}ú´bñâÅ¿þúk÷îÝCCCwìØ1f̘O>ùDï¦ø2º]t;[ªòݾ}ûÚµkõêÕ›;wîØ±cÿþ÷¿¯X±â™gž4hPVV–Þµƒ³q„mÏ=÷\“&MfΜ©w]üˆÝ~îܹ3fŒ?^²{÷îÉ“'¿òÊ+½zõŠˆˆÐ»M¾‰n×…ÝΖª|×®]Bœ8qââÅ‹¯¿þºÉdºuëÖúõë—.]úôÓOoÚ´‰qG¯Æˆ#l{ýõ×Ïœ9³`Á¾á•Énï½÷233µE!D=zè¡‚‚‚mÛ¶éÝ ŸE·ëÂngKU¾jÕª©¼öÚkC† ©S§NÆ Ÿzê©¡C‡ž9s櫯¾Ò»‚p Á6¤§§üñÇ=ö§U&v{—.]„ÇŽÓ»Mþ…n×…ÝΖr«5jT«V-$$¤oß¾æÓûõë'„øé§Ÿô® œÂ¡jØpüøq!Ä›o¾ùæ›ošOÿâ‹/¾øâ‹˜˜˜M›6é]Gä@·+ŠRZZj0,î‹ „¨U«–ÞmòMt».èv¶”^®\¹b0Ì'ªRŠ‹‹õ®œBp„ ‘‘‘÷ß¿ù”«W¯îÚµ+""">>¾aÆzWÐ79Ðí§NJHHèÒ¥Ë|`>=##Ca4õn“o¢Ûuá@·³¥ôÒ·oßÕ«W;v,66V›xàÀ!wöz !+++66ö™gžÑ»"þÅf·_¿~=77÷ôéÓêË1cÆÄÆÆ~òÉ'Úˆ‹‹3™L7oÞÔ»>‹n×…L·óñGމ1bÄåË—Õ)‡Šïܹó¥K—ô®œbPEïì /=lذÁƒ/\¸Pïºø›Ý¾yóæéÓ§kG®ú駉'^ºt©uëÖÑÑÑ¿üòKfffõêÕ—.]Ú­[7½[à³èv]Èt;_±|ùò7ÞxãŽ;îèÔ©ÓÍ›7÷íÛg0.\˜˜˜¨wÕà.޼[‹-6lØ0dÈK—.}óÍ7W¯^2dȦM›øQt+º]t;[J/=öØ+¯¼¾{÷îS§NÝsÏ=6l 5úF …GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ åÿž~ëæ9ªIEND®B`‚statistics-release-1.6.3/docs/assets/kruskalwallis_201.png000066400000000000000000000217331456127120000235470ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A#¢IDATxÚíÝ}Uõ}øñsqÙ O† ÒR‰ã²<ˆ–¢¦"µ¢Ø„&Î@ÛD(±:SH›è¬!5é„T0FS«­d`4j©“ŒÑ¨L›d} ƒ¸I©ºÁ6ˆB\KXîï«û[/+ûv÷{ï¹¯×ø‡ž–Ï=€÷Í÷{ι…b±˜@Wú¤€ê Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"©K=@…:pàÀ}÷Ý÷øãïØ±cðàÁãÇ¿öÚkRÏL¡X,¦ž¡â´µµÍš5kýúõÇ?~ü/ùËuëÖõéÓç¾ûî;÷ÜsSO†pìÄ¿ýÛ¿}ùË_ž6mÚ×¾öµººº,Ëž}öÙ«¯¾zĈO>ùdêéÒpc'Ö¯_ŸeÙg>ó™R5fYvþùç3æ¿ÿû¿ßxãÔÓ¤!;qê©§fYÖ±‹Åâž={úôéÓž’µF8vâŸøDß¾}-Zôì³Ï¶¶¶îܹó‹_übKKËå—_>`À€ÔÓ¤áÇÎmÚ´éÊ+¯üõ¯Ý~dÖ¬Y7ÝtÓ 'œÐåmllL=>Ѓ¶oßžz„4l¼vbß¾}·Ür˯ýëqãÆ?~÷îÝMMMßûÞ÷~ÿ÷ÿÒK/|‡šýýÑØØèü™SÔ%§èÈœŸ.9EGæüt©fO‘pìÄüùóò“ŸÜxãù—Y:²sçÎO}êSŸÿüçyä‘ÓO?=õ€ ¸Æ±Ü/~ñ‹§žzêŒ3Îh¯Æ,ˆþ×ý׿ùÍo¾ûÝï¦ áXn÷îÝY–9²ìxi¡q×®]©HC8–9rä 'œÐÜÜ\vÛPéR†3Î8#õ€iÇrõõõ^xáË/¿üOÿôO‡*lnn¾ûî»ßÿþ÷O™2%õ€ixO'^ýõO~ò“¯½öÚÈ‘#ÇŽ»{÷îŸüä'‡Z¸páÌ™3»üá5{§Ôˆš}¯·â؉!C†üà?˜3gN¿~ýþó?ÿ³¥¥åÿðW®\©F€¼²âØýjöo!P#jö½ÞŠ#!€á@ˆp ÄgUï(ÞõŸî åÝ„#eY– å¥XêHùÈ;lUUc–eÅbV,–/CRÄ#Ô¼N«±vä€áµíÈËÐpºb·š,Ë„#Ð5«’dY& ÖYM$L8" æyÑÑ>5ïŽÀ{´c¡ éÈGY–uÖŽ’‘wŽÀ;”"Gd«€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„Ô¥H¯PxÏ/‹©‡£bG¨hGHºœ  P+Ÿp€*ï¨*rþsC8@E+UiÙ/u•×וWª@{>橱rörjp€ªQ,æd‰.¯¢ G¨&9Xz¬êákœp€êS¥KÕ83 G¨Jo·cò§õíÔª±š G¨JïløVUˆUWår9ô’övª”p€êS½÷—hǪ& ÊTo5–hÇê% šT{5RÕ„#ÐÛ,:V)áU#OËÚ± G¨yªÆíXu„#TüUc‰v¬.Â*]^«‘ª#€”,:Vá­–µcµðYÕPéDB8@EëýåÆZXã䨨ª D8b«(¿Œ²ãÚ¶¦pÔ!!¶ªŽ„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„Ô¥ rmÞ¼ùž{îÙºuëþýûçÍ›÷‘|$õPÉXqìÜš5k>ýéO¯Y³fèС&LذaÃìٳ׬Y“z.€d Åb1õ gïÞ½S§NýÍo~³lÙ²‰'fY¶iÓ¦™3g0àÇ?þqŸ>]ÔvccãöíÛS¿ §Ôì{½ÇN<üðÃûöí›;wn©³,;묳¦M›öúë¯oÞ¼9õtiÇNüèG?* Ó§OïxpÉ’%Û·o?ûì³SO†›c:±eË–Áƒ6ì…^ذaÞ={F=uêÔúúúÔ£$ãÇr?~ügœqî¹ç®X±¢ýøˆ#î¸ãŽ3Ï<³ËïÐØØxøÁÚ¼rÀ;{;áXn÷îÝ“&MʲlàÀ7ÝtÓE]ôÖ[o­Zµê®»î>|ø£>ÚåºcÍ^0 5¢fßë]ãX®oß¾¥¹å–[¦OŸ>hРaÆ]{íµ3fÌhiiyì±ÇR†p,ׯ_¿¾}ûÖ××O™2¥ãñ©S§fYöâ‹/¦€£V(é H8vbèСï{ßû ïþIi‡úàÁƒ©§à¨‹ïú§ì$;1eÊ”}ûö½ôÒK®_¿>˲ѣG§ž áØ‰3fdY¶páÂ7Þx£tdóæÍË–-8pॗ^šz:€4<DZcÆŒ¹þúë¿þõ¯ìc;çœsÞ|óÍuëÖ …E‹}ðƒL=@±ssæÌ2dÈ·¾õ­gžyfðàÁ—\rɼyóRÏŒç8v¿š}¶@µ(ÜÃq©Ù÷z×8"Ž„GB„#!€á@ˆp D8"Ž„Ô¥€nP(¼ç—|(3Ð]„#@t¬ÃBA,=ÂV5!€á@ˆp ÄÍ1¤t„ûÁsöóºc‰ޤT,ÖÄmà©úº—­jèYµPÆÔá@b¥EG ò GèA–Éá@z¡*Gè)–Éá@E°è•O8P)rÖŽ–Éá@ˆp ‚äfÑÑr#¹$ñ‘ƒT–|aÏøzoµ¾z„p€îT­ÕXJÆÃG¯Ö×C°U @ÅÉÍ•ŽU£T‡¢_ :ŽÐmò¹<§y‡p i¨@ºGµ.7VëÜ$àæ*T±˜UÛªc~ó+÷ºÓ„#•««©Uª«rÛE¢P5’e™­j*–VJ# {¸¡‡Ü³U 5¯½y;}xæócx›p Ù§îm¥Ó]vÞý2ðnÂxGÙv»jäÝ„#t›<<µ¦º§§g¹9€á@Å©úE;È)áÝÉCyÈ1á@ˆp ²Ø§†Š%ŽÐÍ\æH^ GB„#ÄŽPÉ„#t?»Õä’èYIê!ÉOj¥rO8ô¸Z(ªnIUûÔPálU" G¸Ì‘üŽ„G*‚ ¡ò Gè)v«Éá@ˆp =ûÔP„#!€ãe½ð\æHžGB„#@ϲàÔ% –P-„#ÇEöuÉ_È áÐãt€cwüË,¡ŠG€Þ`ÑȺÔP­ºk±PRCµޤ”dŸÚþ8[Õ½Än5Pí„#Ç¢Ô áÐ{,:UM8pÔ,7BmŽ½Ê¢#P½„#!€£cŸj–pèmv«*%8 –¡– G€,:ÕH8e¹jœp D8¤a·¨:u©¨Q…BVÌ Yõ´c!³K µN8ô¶ÒBc±˜eU•bÅÿ3?P[„#@/ÉGrµß!Z!z\.«ôròQÃ@pèYíi•ï[a<©jpèY½“SG¨R=táêèžã@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆpìÚÎ;'Nœø·û·©à ïú§ìT—z€JW,,X°ÿþÔƒpìŠÅÔ@.Xqì½÷Þ»víÚÔS¤'¤¹¹ùöÛo=ztêAÒŽïéàÁƒóçϨ(¶ªŽ„ت†.$Ù£tH8B×rU.à ÂV5!ºP,æ|A®PÈÿ’*ÝB8B×rÜŽª€8á@ˆp„\.:Znà¨GˆÊY;vW5æì´tJa”GB„#…ܬ®YBàG8:¹iÇn”ïs"²Ú G¨9J€c#á¨Uõ›jà˜ G8UÝŽ=!¯'Dgt$¡†È ŽG]ê Z•ÖØŠYÕ¬³²¢jàxG8>UÔb=œ¸o—tõœ.åìå?[ÕpŒª®*òz"½F8ÝF›ä›p„"ìâªnE G8ª€$îdQ Ç„#µª^nvUýK Ðs„#!ÂjNO/:ZÔÈ+áGÇ&fîù%x/€áG!7kQv«8ÂàÿËÍß z‚p„¨œ%…EAŽ–pz„0Èáð¶œ-*t»ºÔX’5¡$?éqA.“¢´(˜¿×@ŽÔD7Ø3M¢X¬ºS_Žƒp„®åxY®G …¬X]'®ç_k€ãçÇZW w0HÞW¨Î+kâOÀ1ŽPëº=•JÉXuÕØs' 7„#t¡WÎÊÇé*µ£|(ãG {”2+ÕXRz!ùè`€î"Éù3Yºå¥YyêR^ åûOÀÑŽÐ…Þ†ª+•ªø¨´_ò˜ã×$ãRŠ*‹²µ@8Ç%É:\¾×8*–»ªÉ²ü>D^@7²âé^íh_*„p„ô¤!UÁV5!‘·åï2G8@÷²U T—TáTiP lU"É'8@·³UݹÖÖÖ‡zhÕªU---ýû÷5jÔUW]uÁ¤ž«g•îÑ[@§„c'ö©€"É'—9@·Ž„GB„#oËߎv« { GB„#!€áH–åñÇ—9@7Ž„GB„#¹Ý§.±[ ÝE8"Ž„ÇZ—ï K\æÝB8R—zÒ³DÇZ×ûûÔµ°9¹d«€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp„ÊS(¤ž:!Ž„Ô¥€šP¶õZöŸÅbêù€áHo†¶ª±â©uzõá-Ûšp„Ô/ÂBA&PlU"Ž„GB„#!Â*[ª¨H€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"ŽïéÛßþöå—_>a„ .¸à¦›núå/™z¢œhllL=B¥sŠºä™óÓ%§èȜދpìÜí·ß¾páŸýìgçž{îI'ôðÃÿÕ_ýUkkkê¹’ŽØ¾}ûÒ¥KO9å”'žxbéÒ¥O>ùäìÙ³7mÚôµ¯}-õhÉÇN¬\¹òСCŸûÜç†Z:rã78ðñÇ?tèPêéÒŽX·n]Ÿ>}.ºè¢ö#'œpÂ…^¸{÷îõë×§ž áX®X,þô§?=ùä“O>ùäŽÇG•eÙ«¯¾šz@€4êRPqÞ|óͶ¶¶Aƒ•8p`–eo¼ñF䛸íÈœŸ.9E]rŠŽÌùé’StdÎŽåJ·N÷ëׯìøI'”eÙÞ½{»üÛ·oOý"ºŸ­êrƒ * o¾ùfÙñýû÷gï¬;Ô áX®®®nàÀ‡¯,îÛ·/˲öû¬jpìÄ)§œ²{÷îR)¶Û±cGéK©§HC8vâ’K.ikkûñÜ~¤X,þð‡?ôÐC«V­jiiéß¿ÿ¨Q£®ºêª .¸ õ\dÏž=wÜqÇ /¼ÐÒÒò¡}èÌ3Ïœ7oÞé§Ÿžz®J´sçÎË.»ìâ‹/¾õÖ[SÏRA>ùÉOnÞ¼¹ìà!Cž~úéÔ£UŠÍ›7ßsÏ=[·nÝ¿ccã¼yó>ò‘¤ŠÊ"éU÷ßê*ÑÁƒ¯¼òÊ78ðüóÏë­·žþù¦¦¦ë®»îšk®I=]EØ·oß'>ñ‰]»v544L™2åµ×^ûÁ~°zõê‡zèÌ3ÏL=]e)‹ ,Ø¿êA*Î+¯¼R__?räÈŽ}l»5kÖ\wÝu‡?~|CCÃÓO?={öìù—¹øâ‹SFŽô†}ûö½ôÒKßÿþ÷ÿýßÿ=õ,•håÊ•7nœ8qâ²eËêëë³,knnž5kÖ]wÝuñÅ3&õ€éÝyç»víš;wîç?ÿùÒ‘ï|ç;÷w÷•¯|Åoª2÷Þ{ïÚµkSOQqöíÛ·wïÞiÓ¦ÝqÇ©g©D{÷î]°`A]]ݲeË&Nœ˜eÙ¦M›fΜùÅ/~ñ¢‹.êÓÇ…m¼ÍozÃe—]6sæLoðïå‰'žÈ²ì _øB©³,khh˜;wn[[›M´’gŸ}¶¾¾þ³Ÿýlû‘?ù“?6lØÖ­[ÛÚÚROWAš››o¿ýöÑ£G§¤â¼òÊ+Y–•-7Òîá‡Þ·oßܹsKÕ˜eÙYg5mÚ´×_ýðý}j™GzâE‹þïÿþ/˲xà™gžI=NÅÙ±cG¿~ýÆ×ñ`CCC–e¯¾újêé* AƒFÕ·oߎO<ñÄ8p =¸kÜÁƒçÏŸ?xðào¼ñÊ+¯L=Neyùå—³,;í´ÓRR¡~ô£ …éÓ§w<¸dÉ’%K–¤Ê"é “'O.ýËSO=•z–JtÏ=÷ÔÕ•ÿaܺuk–e#FŒH=]ExàÊŽ¬[·î•W^ùÝßý]ÕØîÎ;ïܶmÛòåË z–ŠS Ç×^{möìÙÛ¶mûÀ>0vìØ¹sçºQ¯dË–-ƒ6lØ /¼°aÆ={öŒ=zêÔ©þ|QF8BzcÇŽ-;òÜsÏ-]ºôÄO,[`Æ ?üðŽ;6lØð;¿ó;‹/N=Q¥Ø¸qã7¿ùÍY³fMš4©ô·:*-Þãßøð‡?|þùçÿüç?ê©§~øÃ~éK_ú³?û³ÔÓ%vàÀ_ýêWgœqÆ—¾ô¥+V´1bÄwÜáþ3:ŽPYÚÚÚ|ðÁ%K–´µµÝvÛmC† I=QeÙ¾}ûªU«ŠÅb–eãÆ{ÿûߟz¢ŠÐÚÚ:þü#FÜpà ©g©P¯½öZ}}ýõ×_?{öìÒ‘gžyfîܹ_ýêW'Ož<|øðÔ¦ô«_ý*˲Ÿþô§»víZ¼xñE]ôÖ[o­Zµê®»îú›¿ù›G}Ôº#íÜäù矿ì²Ë-Z4dÈeË–ýñÿqê‰*Χ>õ©mÛ¶555-X°àÉ'Ÿüô§?í¹3Y–-^¼¸¥¥eÉ’%Þàß˽÷Þ»qãÆöj̲lÒ¤IñÑÚÚúÿñ©§K¬ýêá[n¹eúôéƒ 6lص×^;cÆŒ–––Ç{,õ€TááÀ‹-úÌg>³sçÎyóæ=þøã“&MJ=T…* úЇ®ºêª?ÿó?ÿŸÿùŸ'Ÿ|2õD‰­]»vÅŠsæÌq¹ÞÑ:ï¼ó²,{饗R’X¿~ýúöí[__?eÊ”ŽÇ§NšeÙ‹/¾˜z@*ˆ­jHïСC7ÜpÃêÕ«§NzóÍ7:4õD•¥¹¹yùòå^xá´iÓ:/݇þ¿ÿû¿©L¬¹¹9˲»ï¾ûî»ïîxü‘Gyä‘G}ôÑÔ3&V,:T(ÊžGx 'dYÖ¿ÿÔ¦7tèÐ={ö …ŽK ØL=D8Bz÷ßÿêÕ«¯¸âŠ›o¾9õ,•hÀ€ßùÎwvíÚUŽ¥'ó}øÃN=`b§vÚÇ?þñŽGöîÝÛÔÔ4|øð & 6,õ€é½üòËýèGÏ;ï¼²¯Ú°aC–e©LoÊ”)÷ÝwßK/½4jÔ¨öƒëׯϲÌcAéH8BbÅbñèß¿ÿ‚ RÏR¡N9å”ÆÆÆ¦¦¦5kÖ´úÙ‹/¾øàƒžtÒIçž{nê›øÁ¦žŽ "!±–––,ËZ[[·lÙrøWÝ"SrÖYg=öØcßøÆ7¶lÙ²mÛ¶aÆýÑýÑ5×\Sú|èÒèÑ£¿ûÝïÞvÛmÏ>ûlssóˆ#¦OŸ~Ýu×zê©©G«sæÌ2dÈ·¾õ­gžyfðàÁ—\rɼyóü£L¡ô8482ã D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€ÿQÊ5ËÎIEND®B`‚statistics-release-1.6.3/docs/assets/kruskalwallis_301.png000066400000000000000000000213441456127120000235460ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A"«IDATxÚíÝq”õ}øñïÞa’;‘;B¸™F4©G¡£!*QDkj¥-HŠcGÅŽŽxÓN&„fœÄ¤dZÈÐ2£ÎÀ?ÄZ™©­4-)zµ¢ÑVˆ6‘#¨9À$‡ÎݘcPîö÷ÇÆËeoxܳ·Ïë5üß=n>{»Ç¾ù>û|¸¡¡aéÒ¥‹-*­ìܹ³­­måÊ•sæÌiii9ågÈíó©jµ¶¶zPª¥:y\ª¥ åöAqð Ö¯_¿{÷îjL)Íž=ûÎ;ïöØc'ºéÁ|à^ýõ+®¸bìØ±O>ùäâÅ‹=šõÈ™Éã¡êžžž½{÷nÙ²åñǯøëÖ­›~üø™3gf=@6„c .¬««[³fMé})¥uëÖuuuÝ|óÍçœsNÖÓdÃYÕ´´´,[¶lÕªUóçÏ¿æšk:;;_xá…3fÜ{ï½YáXÙÝwß}þùçoÞ¼ùé§Ÿž2eÊwܱdÉ’Òy`D .åH•(=‡[kk«ë80l„cõÉík½÷8"Ž„GBœU Õ¤P8õ¢seȈp€j24 UMÕp¨€á@ˆCÕP-*¾¿±Xiݱk2! ZTÎAoq¤j8T @ˆp€ªVHö©Â€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#ƒ YOT/á@Ș¬€,Š=Öê²XÌzF„p ïDχTý]Ëpq¨€á@ˆCÕ9VñcÙ¢ã¸À„#@Ž ÂBA)'âP5!€á@ˆp D8"Ä)Õœ&'âçŠËñ#!øɼü0òŠÅ_??=ý΀jÌ጗ ¤š•žŠž“§ËW,‡ª€”m=¡óI8À¯iLjBA5æ—p€ßÐŽ'WJFÕ˜[Â~‹v<G(WjGù8˜j$ G¨¨t@V;–¨FJ„#œvLª‘A„#œLžÛÑ Ô”qðÊn¹å–W_}µlqâĉÏ=÷\Ö£0ÒŠÅð?ª!…T”Œ”Ž•íß¿¿¡¡aêÔ©ƒ›››³ž € rÙPµœ¿»Î Ç zzzº»»çÎûÐCe= Ëó±Z?Œ‘2ÞãXÁþýûSJeÛäfJù~—'e„c)¥ .¸ ëAÈŒóBÓŽ”8T]A)>¼hÑ¢×^{­±±qúôémmm—^ziÖ£0$ãP¥vôeÉ9áXÁRJ?üð…^xÕUW|¸¡¡aéÒ¥‹-*­ìܹ³­­måÊ•sæÌiii9åg‰£T>Ã(nà˜u®¾JC_Ös›’ÞãXÁúõëwïÞ=P)¥Ù³gßyçGݾ}{ÖÓp¶¨Æ?Œ1Ï„cÔ¬Y³RJ{÷îÍzÎ ÕxZ´c> ÇrÅb±¯¯¯¿¿¿l½¾¾>¥tÞyçe= ÃÌ ÔgF;æp,×ÙÙ9}úô»îº«l}×®])ÇïijO©–Nù«æ•’Q5ží˜7±ÜÔ©S/»ì²_|qÓ¦M‹»vízôÑG[ZZn¸á†¬¥Z*û5tNN;æJ!‡?|ó”öìÙsÏ=÷tuu͘1㢋.:xðàîÝ»×®]{å•Wžò¯·¶¶:«NÉ‘Áê”ÃÇ%‡wyØåðk˜Û×z;ŽL›6í©§žZ°`AWW×¶mÛº»»,X°uëÖH5Ô*×q¬lÒ¤I«V­Êz €*bÇ€á@ˆCÕä“‚!H8kÕ:pÏY¦j9T @ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D82&ë€_+¢ëÅbÖ³’Kª…¤Ê9T @ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@Ș¬€³©P¨°X,f=ŒJ‘ÚU(TnÄ­'åP55ê$uX,VÞ‰NJ8’KÚNŸCÕÔ"£©J£å+Õ?§ïoÈŠp9Šçëþ®…æP5!€áH-rî œÞãH.åãì™êçêŸ0O€Ó ©Q¥MÇ_<÷òìªþ®%/|?S5„#µëD¬ýû gD8RÓ4" 'Ç"Ž„x#T“Šgõ•-z7Ž#ä$‰"(_À¡÷0w›ÑÁ¡j€‘ã§}ò 2'F”v<3ªªpiÚ¥„#ÕÎv#T ᛎqªª‡pȆvŒP)¹øUD8dF;žœj„j#²¤OD5BŽÓŽÀh!¨:¶¡: G€ìÙtL5BÕŽUA;–¨F¨f ZhGÕUN8T‘<·£j„ê'“õü–b1åpױж¡ú G€êRÈeCª†ÑÀ¡j€*’çxÊóû;a´ŽÕ"ÏÕX¢¡Ê G¨M^€GÕXâ© ÕL8T ã2¤¡j G¨Y^}ÏØÈW£NFáµL;Ž ªq(O]¨N.ÇsB›6mÚ¸qã¾}ûÿàþ`Ù²eãÇÏz(8m¥`]7Â_.ΉxêB²ãXÙƒ>øÀ¼þúëW\qÅØ±cŸ|òÉÅ‹=z4ë¹àLؼ‰SUÅSªp¬ ££cݺu“'Oþ÷ÿ÷uëÖmÛ¶mÑ¢E¯¼òÊêÕ«³ 8‹TcÒŽPU„c7nìïï_²dɤI“J+÷ßSSÓ3Ï<Óßߟõtp&¼úðá Ç ^z饺ººë®»n`¥¾¾þÚk¯=räÈË/¿œõtp†´ãÉÙn¬ZžºP=„c¹b±¸oß¾ &L˜0aðúÅ_œR:pà@Örj…BèWy>ÕXå _F/áÈÙ"ËøR0Ú GÎ.ùèîP3„##á7çͤÜ]¶§Š’€Ú  ƒ¶Ür×PE;ŽÔ áÈYç=Ž×P„#g‘TÌu.í„#g…d<×¹`ôŽ 3UtJŽ\0J G†:-ò€QG82 ÔÏ“Œ"uY@=†¯£‚p Ä¡j†G!w?rG82 ªÿH««'À‡çP5!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€1Y@6 …Ðz±˜õ @ÕŽ9¥Ó%‘Pqsk袔¨fÂ Š 89€á@ˆCÕÔ o§€³A8Rƒ!œ U"Ž„GBœSÙ-·Üòꫯ–-Nœ8ñ¹çžËz4€lÇÊöïßßÐÐ0uêÔÁ‹ÍÍÍYÏáXAOOOww÷ܹsz衬g¨ÞãXÁþýûSJeÛ9'+èììL)]pÁYPEª® އ^´hÑk¯½ÖØØ8}úô¶¶¶K/½4ëÑ2#+8pà@Jéá‡¾ð ¯ºêªƒîØ±£½½}ùòå·Þzkä3´¶¶–­tttd}·€31ôe=·„c‡nhhXºté¢E‹J+;wîlkk[¹råœ9sZZZNùd"ÔŒ¡/ë¹MÉ\‡ãñãÇ¿õ­o ü±¾¾~ñâÅ)¥õë×—}äìÙ³ï¼óÎGydûöí5 +¹Ç÷ßðw>úі±¢Y³f=òÈ#{÷îÍzj€lä:†n>‹ÅþþþB¡PW÷[§œ×××§”Î;L§ȆËñ”ëììœ>}ú]wÝU¶¾k×®”ã÷4ÇrS§N½ì²Ë^|ñÅM›6 ,îÚµëÑGmii¹á†² …b±˜õ UgÏž=÷ÜsOWW׌3.ºè¢ƒîÞ½»±±qíÚµW^yå)ÿzkk«³ª †åöµÞŽcÓ¦M{ê©§,XÐÕÕµmÛ¶îîî lݺ5Rµ*×'ǜĤI“V­Z•õUÄŽ#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@H®Ãñ7ÞhmmýÑ~TñÖM›6-\¸pæÌ™W_}õW¾ò•wÞy'ëy9s­­­Y@9Juò¸T! Õ#×áøØcè¦|ðxýõׯ¸âбcÇ>ùä“‹/>zôhÖ#dfLÖd §§gïÞ½[¶lyüñÇ+~@GGǺuë&OžüÄOLš4)¥´bÅŠï|ç;«W¯þÚ×¾–õøÙÈãŽã¼yón¿ýöUcJiãÆýýýK–,)UcJéþûïojjzæ™gúûû³ yÜq\±bűcÇRJ6lعsçÐx饗êêꮻúúúk¯½vË–-/¿üòå—_žõ=È@ÃqΜ9¥ßìØ±cè­Åbqß¾}&L˜0aÂàõ‹/¾8¥tàÀáäSÃñäz{{ûúúš››ËÖ›ššRJo¿ývä“8® yPª¥:y\ª…*!Ë•N>÷ÜsËÖÇŽ›Rêîî>ågèèèÈúN ¿š ÇãÇë[ßøc}}ýâÅ‹#±¹¹¹P(ôöö–­¿ûî»éƒ}G€ªÙp|ÿý÷zè¡?~ô£ †ã˜1cššš†î,öôô¤”γÈ›š dž††3>d;°R,ÛÛÛÇ?sæÌ¬§Ȇp¬`áÂ…uuukÖ¬)½¯1¥´nݺ®®®›o¾ùœsÎÉz:€lÔì¡ê£¥¥eÙ²e«V­š?þ5×\ÓÙÙù /̘1ãÞ{ïÍz4€ÌÇÊî¾ûîóÏ?óæÍO?ýô”)Sî¸ãŽ%K–”®ÈO…b±˜õ ŒÞã@ˆp D8"Ž„GB„#!.N{ä‘Gþáþ!¥ôw÷w .Ìzœüzúé§¿üå/—-¶´´üîïþîm·Ýö‡ø‡Y˜k;wî|â‰'þïÿþïç?ÿù¸qã>ùÉOÞxã·Ýv›²:ò†~§Ô××O˜0᳟ýì}÷Ý7cÆŒ¬$ï„#5îßþíßJ¿ùîw¿+37eÊ”OúÓ¥ß?~üðáÃíííííí_þò—ÛÚÚ²ž.Ž?þÕ¯~uóæÍ)¥¦¦¦ßÿýßçwvïÞý?ÿó?6lø—ù—æææ¬gÌ£Áß)==={÷îݶmÛŽ;¾úÕ¯ÞvÛmYOG® GjÙž={öîÝû{¿÷{]]]/½ôÒ[o½õ‰O|"ë¡ríºë®[¾|ùà•çž{®­­míÚµ .üøÇ?žõ€¹óo|cóæÍ¿ó;¿³zõêÏ|æ3¥Å·Þzëoÿöo·oß¾dÉ’õë×g=c•}§ô÷÷oݺõë_ÿúßüÍßLš4É=òGjYi»qÁ‚7Þxc±XܺukÖQîꫯž5kÖ{ï½÷Úk¯e=Kîüìg?Û´iÓ¤I“þõ_ÿu SJŸøÄ'|ðÁO}êSÏ?ÿüž={²“TWW7þüµkצ”~øa?+˜ GjVéÿèõõõög6wîܔҖ-[²Š êêêRJcÇŽÍzÜY¿~}±Xü«¿ú«qãÆ•Ýô‘|ä¾ûî›={öOúÓ¬Çä×®¾úê™3gîÙ³ç…^ÈzòK8R³žþù_üâ³gÏž8qâg?ûÙÉ“'ïٳǫ`µùáøÃþðâ‹/¾ä’K²ž%w¾ÿýï§”nºé¦Š·ÞtÓMÿôOÿ4oÞ¼¬Çä7>ÿùϧ”öíÛ—õ ä—÷8R³¾ûÝï¦^ …Â7Þøío{Ë–-K—.Íz´üjoo8 æý÷ßë­·öíÛwÅW¬^½º´ïȈ9zôè‘#G&NœØØØ˜õ,Dµ´´¤”öïߟõ ä—©©MGýþ÷¿ßØØøGôG¥•£ÕÞ”¡C‡íøÀÿ÷—6N:;;_|ñŬGË_üâ)¥É“'g=§aâĉéƒÇ2!©MÛ·oïííý¾ÐÐÐPZùÌg>3eÊ”C‡½üòËYO—_ñÑ1ÈîÝ»¿ýío744,[¶Ì;PGXév 2ºtuu¥”&Mš”õ ä—p¤6•Χ޼ysë¦M›vøðáä™jÒÐÐpå•Wþýßÿ}Jéÿñ³'_ÆŽ;nܸ_þò—½½½?àСCmmmßøÆ7²ž”ß(ý#öÉO~2ëAÈ/áH êêêÚ¹sçÇ>ö±ÿ÷Ûn¼ñÆ”Ò3Ïøü¤®®®¥K—¾ñƳfÍúã?þã¬Ç$‹Åï}ï{ý×RZ²dI¡PÈz"òËŽ#µæõ×_ÿñ|þùçWüOùüùó׬YóƒüàW¿úչ瞛õ°¹3ør<)¥ÞÞÞ={ötww·´´|éK_ÊzºýéO¯ZµÊe’21ø;¥»»»££ãW¿úÕG>ò‘åË——.åYŽÔšË7Ö××½õ‚ .¸ä’K^yå•ÿøÿ¨¸%ÉYuèСC‡ ü±¾¾þ /¼é¦›¾øÅ/ýá%Œ€}ìck×®ýÁ~ðä“Oþä'?yå•W>þñ_~ùåŸÿüço¿ýöŠßDŒ€Áß)uuu&L˜3gÎ}÷Ý7cÆŒ¬G#ï ®i@„c„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8òÿ 4å¡™õúIEND®B`‚statistics-release-1.6.3/docs/assets/laplacecdf_101.png000066400000000000000000000626551456127120000227440ustar00rootroot00000000000000‰PNG  IHDRhŽ\­AetIDATxÚíÝy|uþÇñoš"°—¥å£U(¯"ˆ€-°Ê jEAPDQn\uAUŠ .‡°XVvå\å( EŽŸJC¹)­•--Mòûc0†6mÓ6ÉLæûz>xì&“™Égfšöíç;31X­V”ÆGíàŽp ÁN!8À)G8…২àèÑ£†?lÞ¼Ù“oýÖ[o)ïÛ»woµwƒcyyyóçÏÿË_þR§N*Uª4lØð‰'žøøãsss Íi¿m|}}CBBZ¶lùÖ[o]¾|Ù™E 7nœÚû€F@C~þùçÆ1âûï¿?þ|^^^JJÊúõëß|ó͆ ®[·®Ô5˜ÍæÌÌ̽{÷¾÷Þ{‘‘‘{öìQ{›è‡¯ÚnINNîСõk×lS|}} ”ÇçÎ{ê©§víÚõàƒ]6,,ÌÏÏOqýúu[£1++«ÿþ)))•+W.a‘B‚‚‚ÔÞ4ŠŽ#Ý2™LyyyjWQo¾ù¦-5¾ð ¼qãÆùóç¿üòË;ï¼S‘““óôÓO;\vùòå&“Éd2¥§§Ÿ>}ú…^P¦Ÿ={ö‹/¾(y‘B&Ož¬öž QGZg±XV®\S¿~ý*UªÔ¯_¿C‡ÿüç?oÞ¼i›ÇþÌÅ‹/0 $$$""",,ìÃ?tÉ[(ÒÓÓ_{íµ6mÚ4hРk×®ëׯ/ºÂK—.½öÚk­[·¾óÎ;ï¹çž¾}û8p ä~øá‡µk×*'Nœ¸hÑ¢|Ðh4ÖªUkèС+V¬P^JNN>~üxÉ«ª[·î¢E‹l'qþío»~ýºŠG€~XÀãŽ9bû-ôÃ?”<óSO=åð×W¿~ýlóL:U™{Ï=÷šsÈ!EçìÕ«W™ÞÂjµþïÿ -:Û‹/¾h?ÛæÍ›Ã Íc0ÆŽ[ÂföéÓG™388øêÕ«EgèÖ­ÛC=ôÐC%$$8³·mÛf{uãÆåØóPGš¶jÕªU«V ! CllìÀï»ï>奄„„-[¶šË–-'Ož m×®]õêÕ•‰‹-Ú¸qcß";;{À€éééBˆÀÀÀ¾}ûÆÄÄ(/}ùå—Ë–-³ÍöÌ3Ï\ºtIûÎ;ïÄÅÅùøøX­ÖÙ³g/Z´¨¸2~üñGåAŸ>}l•Û[·n]RRRRRRß¾}ÙuíÚµ»ãŽ;”Ç{÷îUáàЂ#M³¾±cÇnÞ¼ùŸÿüçáÇ~øaeâÏ?ÿ\t‘'Ÿ|òôéÓ‰‰‰ÉÉÉ‘‘‘ÊÄ÷Þ{¯‚o1cÆ å¢“úõëŸ8qBÉ”¶Ó.\Xh¶~ýúmÞ¼ùí·ßþúë¯çΫ¼:mÚ4‡5ܼySÉšBˆˆˆ—ì:ƒÁP³fMåñÅ‹‹ÎЩS§¢÷âyýõ×]uìèWUд§Ÿ~ºcÇŽBˆvíÚ)S²³³srr”Ç¿ýö[¡ù}}}çÍ›§\D\»ví>ø@Þµk×7ªT©Rî·Ø´i“òàÍ7ß Q5J9Ç1//Ïl6F[ 6l˜í-^xá…1cÆ˜ÍæÓ§O:tè(TCvv¶íqíÚµ]µ÷îºë®Ó§OZ?”Á€¦=þøãBˆ¬¬¬M›6íß¿?))iß¾}W¯^-nþûnݺ…BX­ÖÔÔÔ¨¨¨r¿EJJŠò M›6¶‰5kÖLJJ²ŸÍvåŠí­ 9qâDÑà¨\4­(z×îrËÌÌTøûû}Õáíx‚ƒƒ]õîô‡à@Óòóó'Mšô÷¿ÿÝv;C??¿ÐÐPå\âlƒ³ŠªU«\¹rEqñâE‡ÁÑ™·ÈÎÎVV"„ ,®Úììlû»0:”‘‘QtâwÜ¢¼têÔ)‡ ^¹rE©°J•*ÕªUsfïÙF¨‹^¬#„X¾|¹Òj'qŽ#M{ÿý÷gÏž]PP1oÞ¼_~ù%;;»{÷îÅÍo;SP‘››k¥mРA¹ßâÎ;ï¬ZµªòØÖÆ+ÊßßßÖ;üßÿþ—âH\\œÃe[·n­<øî»ïŠÞHѸqãùóç;³ëvîÜ™ŸŸ¯<~ä‘GÜrxH†à@ÓæÍ›§<øüóÏGŒñÀøúúž={¶¸ù=zþüyÛÓï¿ÿÞjµ !î¸ãŽúõë—û- ƒí.??ýô“múÅ‹[µjÕªU«˜˜‹Å"„¸÷Þ{•— î±èðËZ„Ý9‘§OŸ^°`A¡W×®]kk¶oßÞ™]g»"§ZµjöÃëPnGÚuõêUÛÀîï¿ÿ®<øù矋ޅÇ&??Ô¨QJ§íÂ… &LP¦wïÞÝh4Vä-lqíã?¶e¸9sæìÙ³gÏž=•+WöññBtêÔIy)>>^ɬBˆÕ«Wßu×]!!! 4(îÍ'Ÿ|Ò¶ìèÑ£§OŸ~áÂe‹–.]:hÐ å¥{î¹'::ºäývñâÅáÇ'$$(OŸþyûs( Ü8Ç€Êh¶·|ùò-ZT¯^]9kPùöƒÁ°qãF‡#¹6ÿþ÷¿ÃÃÛ4i²oß>eœÚÇÇgúôég®^½º“oñÖ[o-Y²$;;Ûd2=ôÐC;v¼téÒæÍ›•WGŽ©<˜4iÒ—_~™••µfÍšØØØöíÛ=ztݺuÊ«cÇŽ-áê“Ù³g·lÙ277×jµ¾ýöÛo¿ývHHHVV–ÙlVf¨R¥JBB‚ÃlÛׯ_W§¢Fï¾û®Z€Þ¨}r2²ÿþ’âlÛ¶Íjµýj戈Û· ¤¬Ðö}0íÚµ«W¯žýü¾¾¾óçÏ·½uÑoŽqò-¬Vë¿ÿý€¢¥Nž<Ù~ëþûßÿ:¼€æå—_¶X,%ï™;ww;ž ¬[·®L»188x÷îÝÅ-Â7Ç(+†ªhÚœ9sî¿ÿ~!„σ>øúë¯'%%õìÙSyuÅŠ…¾¸988øÇ6lX£FÂÂÂúöíûý÷ß¿ôÒK.y‹Þ½{>|ø¥—^RZ¡ 4xòÉ'·oßþþûïÛ¯°{÷î¿üòË‹/¾Ø¬Y³ªU«FDDôîÝ;11ñ‹/¾0 %oo›6mNœ81gΜöíÛ‡††V®\922²GsæÌ9vìX·nÝJÝcF£188ø‘Gyë­·’““}ôQµ!ý0Xÿ8´éæÍ›k×®BôîÝ»¸yÞzë-å»azõêõí·ßºã-œã@ë*Uªäî<ç·`¨N!8À)G8…‹cà:Žp ÁN!8À)G8…à§à‚#œBp€SŽp ÁN!8À)G8…à§K‘ššùË/¿¨]€ÊŽ¥Xºt©Ú%h‚¯ÚhTvvöñãÇ¿û+Wª] €&ëÞ½ûŋծ@CŽŽ½ÿþûyyyBˆeË–íÚµKírÔGptì±ÇSlݺUíZ4àèz‘‘‘j—ðÇ'«]ʬQ£ÈädÁÑ-äüaBd¤¤¿GÀ¡—Áà²UY­jo œcvG=²‘Ú娃Ûñp‹Áàì?«UX­¢Q£HåAEþÁåœ>ŒeûgÜÔÞDÕÐqH¤äN!1NSnëð•…ÌÁÎÝŽ*.  UTÖ HþÓ ‚#Àë‰Ds&u€àð>…’"1ÑÝJÍ…º …N6E%½4†à¸ÐÆÕ.êàÐ{€6“¢Î} éÐsaùNtr;¥½ñÁ QöaQ#IQŠ ˆO‡e ‚šÞ¯ÅíxJñÞ{ï%''?øàƒj²(tËîYS¥ÞVFÝ[ÌÊòÏZÆp:ŽõÑ\¬8‡}DµšˆNv9Ô^‡àP-/˪hLôdF,5r<õŠàPÉ‹Î+”ÝÉ…(Áà9´çÖ¤Xr4äà 8G€'Ðb,•k“"Ñî@p¸‘±öa±I±„tÈþ†;îBdt¨a±¸€È®…‡®Gd,ÄɰH@„Æ®Dd´)9,:̈ì6hÁàDÆ[ûáLh ‹G1Qúý¯DpT‘Ñ®¹øç×ÝÙOôà¨åK¥åþÇCëmÿè”Ú¼•Á Wj4ù—j2Yÿè1ZI:¦ü¬Ûÿ“ÁPJdÔqj,m‰‰:W4&*?ëöÿdÅP5 ÌtÙh,ÔD²Þö’A¸ùë¡¡¦BDýýp»ÁPzº¦„¤øÇ …¯†NË‹àp–W7¿!yQoŠž’è½?Çj#8œâu©±Ô†¢£E’ÖŠnCp”Î[R£}^(S½DF¯g½â‡Õ;%ÑøIåh+Þ¾8£Ò^‹¶¢Ž€bi³ÑXî¶âí+¡Åè…h+ªàpL;©±‚mÅ"k#2zÚŠCp8 zjtI[±È:‰ŒÞ€¶¢†…©•ÝÿX3‘QÛ‹^‚งS£ûÂâë'2jaÑ òLjtwXüã]ˆŒÚCXôrGÀ-îN¶Èàî¼@dÔ[^$,z9‚#@·¥FÏ4íގȨ4õˆàp}jôXsñö75ÕGsQ׎×ðpsñö·¦Ñ¨*š‹Ò 8€ì*ØnT¥¹h÷îDFõÐ\”Á¤VîÔ¨n^DF‘%Fpy•55ª8]¤Ngô,£!„ 8€´œOª7o/†F£Ñ\ÄíŽÇ4•ÿ(‰F£GQ ‚#Ȩ„v£ó¢ ÑèäE”†àÒq˜µ™ÿ¨F£;‘á4‚#È¥PjÔr^4ÝŠ¼ˆ²#8€¤”Ô åÈ@£Ñ]”ÈH^DÙ@"ƒV/ˆŒ‚Ôè´QaG­Èà YŒái#/ÂuŽ s¶þb¿ZÐSÕÒht†¤ájGЧBW½%B‹nCp½)z £öS#ÃÓ®A‹nFpÐøuJ¬œFcÅÐb„§Àë•|•´ÆÛ¤Æ ¡ÅÏ"8€·r¦ÅHjÔ'ZŒP Á¼W܈щ­ 5–-F¨ŠàÞ¤L‘Q³íF.…)"#4€à^À{/|q´-4Ë‚Qih Á4­Ü£ÒÚl7’Ë€#´‡à¥oß"R£sˆŒÐ*‚#hNÅ#£Û¤F§¡mGЗtI^‰Èo@põééÚG[Gj,×¾À«@M.?‘QkíFRc±h1 @ú»öÅÑ6’!2ÂkÀÓÜ5Õn$5:@d„—#8€çÈÐeücKI·#2BŽà ˆŒÚi7’oCd„ŽÀ½äé2þ±½¤Æ?¡;Gp#ƒ§"£FÚ¤Æ?iä.Ep·­Ñ(H64¡_Gp1 #£ 5ÞÚ DFèÁ\F­È¨ú (©‘ÈIÀäì2þ±ír§F"#dBp€ 1!ÂÃUL ê¶¥NC¸ 2B.>j^L¹h:ÕdR»xœÁ ¬VSjªÚuEÇÊC#cÓ´ÕØlƦ!/‚#”F"£êdLDFHàeà±z;UŒzíFIS#‘Ò#8€Sh4ÚH—i4 8@)ˆŒöäJDFàvG(‰¦Æ¦o+LSéR#‘¸Á£Ñ(/@1Žà€f·Ê£ÝèÆí¤Ñ‹à·¡Ñè©‘F#P‚#ÜBd,ŽþS#‘pÁ„ÐüØôm¥2”êZìPÀiG²£ÑX2=·i4eDp 5/j4Þ*سÝ1§F"#PFG’¢ÑX*ݦF@yÈÈëp@ÈÅ«žÌ<:l7Òh*Œà@"4¤ÏÔHd*ÌGíÀCHN"5(GúçÕÃÓná§ž\Šà@çh4–‰®ÚdmÀÕŽtKFOÒOj¤Ñ¸Á€>é¬ÑHï¬ ØY€ÛÈ¿ùæ›U«V¥¤¤T­Zµ}ûöãÆ *aþüüüþóŸ6l0™LAAA÷ßÿ«¯¾Ú°aCµ·€St–=C'íFR#àNR\U=gΜ©S§žµ7@) ¤ÆrÑCj4H€»é?8&''ÇÇLJ……mܸ1>>~Ó¦M>>:t°M1íÚµËÌÌTbQµjÕBØgD«Õúûï¿ûøøØ¢$M!5–©€ót­VkJJJppppp°ýôF !Μ9ãp©'Ÿ|²J•*ï¿ÿþîÝ»sssÏŸ?ÿÖ[o={¶ÿþþþþjo€Ûèþ¤FrQ±8©ð8÷ÏrrrÌfs```¡éâöž¢½ÈÈÈ¥K—ûL9¯QŸ‘‘Ñ·oßJ•*)S®_¿n2™”‹ãüüüÚµk—––ö÷¿ÿÝv‡ð'NÌ›7ïŽ;‰Q{ƒIÉ–݇Ô Üt~qŒ¢víÚãÆ›1cF=Ú¶m›––¶gÏž¦M›6Ì6Obbâ믿ްaõk× !Þ{ï½~ýúÍ›7oýúõQQQ™™™?ÿü³Åb™:uê=÷Ü£öÒ‘çRÆ¥0€Æè?8 !† R£F5kÖ¬_¿¾V­ZÏ=÷ܘ1c”;ò8²~ýúùóçïܹsÛ¶mAAAíÛ·1bÄý÷߯ö¦Ò¡ÑèZÞÔn¤ÑhÁÊÇÒÕ"##¹£œL&wts-oIî8ônJM^½$5ò©—–´ëõŽ#/å-©Ñ‹TÁ€‘]ŽÔ âŽ4‡Ô(ov’wËï ÅÅ1¼P»‰´¹€ðGZA£Q^4/ÁP5M 5ºÖÛ¤FÀ{¨ÔhO®%×Ö^à@e¤F·Òt»‘Ôx‚#5‘ÝŠÔÀµŽTCj,J–4%ËvzCp R£»i·ÝHj¼Á€ Hò"5ÞŒàÀÓH Ñv#©ðrGEj,Îc•Î7Á€ç=C‹íFR#  GBj”©Ð ‚#O 5zŒæÚ¤F@GŽÜŽÔè }æ+}n /‚#÷"5z’¶Ú¤F@wŽÜˆÔ(/R# GGîBjô0 µI€N¸©±Lt´tµ1nCpàz¤FÏÓJ»‘ÔèÁ€‹‘åEjôŽàÀ•HªÐD»‘ÔH€àÀeH壇ĥ‡mP:‚#× 5ªEýv#©Á€ åEjdBpPQ¤F©Ün$5’!8¨RcyqôòâÒ”Á@ù‘Õ¥f»‘ÔH‰à œHò"5²"8(R£¼H€ÄŽÊŒÔ¨êŒS“¹” ©Ñ…¼,†yY¹\à  H¡B»‘Ô€à'8‹v£FÐn ‚#§]Îk˜× ÀíŽJGjÔO·I씂Ô(/R#€Û”„Ô(/R#€"ŽŠEjÔÏS“8Bpà©Ñ­4Ì4]5À;¨óƒ`‡àÀÚò¢Ý xG…‘5ÈCíFR#€܆Ôèg- €†ü‰Ô(/R#'ÜBjÔ,·S“8‡à§A»QÃh7Ђ#R£Gi+§i«ZGpdGj”©@©‘5ÎãÔ¤FeGp€SŽ€¼h7jíFZCp$EjT…&›&Šà•Ž€ŒHò"5¨‚#h‘ÛoßeGp¤C»Q^´T Á ©Ñ+¸¥ÝHjPaG@"¤Fy‘¸Á©Quª…7R#!8€¶pY Í"8R Ý(/Ú\‡àè©Q^¤F.EptŽÔè]§ eGðz´¸ÁÐ3ÚÞÅ•íFR#7 8ºEj”©€{à‚# O´½ŽËÆ©i7p‚# C¤F­ñ\–#5p'‚# 7¤Fy‘¸ÁÔÇíx‚# +´åE»€ûý 5Ê‹ÔÀ#Ž 2Æ©x ‚# ´5ËíÝ@Ú<…àè©Q^¤FDp51N À‹¯G»Q^´xÁðn¤Fy‘xÁðb¤FoÇ85ïBp7rW[v#5oE»Q^¤F*!8^‰Ô¨ŒSð:Gð*´¨‡àxÚò"5PÁTÀ85oä«vòÍ7߬Zµ*%%¥jÕªíÛ·7n\PPPÉ‹>|xÁ‚G½víZddä¨Q£Z¶l©öv´½‰‹ûƒ´¨MŠŽãœ9s¦NzòäÉ-ZT¯^}õêÕÇÏÍÍ-a‘-[¶ÄÅÅmÙ²%444:::))iàÀ[¶lQ{S ;R£¼H4@ÿÁ1999>>>,,lãÆñññ›6m8pà¡C‡fÍšUÜ"W®\™0a‚¯¯ïÒ¥Kÿõ¯ÅÇǯX±âŽ;îxë­·,‹ÚÀë1N ÀKé?8®ZµÊb±Œ3&44T™2qâÄ€€€ 6—W¯^ýòË/?üðÃÊ”x k×®‡V{ƒ /Úò¢Ý@ô÷íÛçããÓ¡C󣄯®]»ÌÌÌ8\dûö탡W¯^ö?úè£äää|Pí ‚¤Hò"5Ð _cµZSRR‚ƒƒƒƒƒí§7jÔHqæÌ™æÍ›]êÈ‘#AAA5kÖÜ¿RRÒï¿ÿÞ¸qãN:ùùù©½A¼ãÔ¼—΃cNNŽÙl ,4= @ñÛo¿]$??ÿêÕ«÷Þ{ï;ï¼³bÅ Ûôºuë~òÉ'÷ÝwŸ3ïYhÊÆÕÞp»³gϺiÍáá©&“Ií DqúˆˆðT‡‡-\80Ã#"L©©‚ƒ¯UîûÔCSºté¢v Z¡óà¨\:]­ZµBÓ«W¯.„¸råJÑE®^½*„HII¹|ùòŒ3:tèpãÆ„„„Ï?ÿüµ×^[»v­3}Çäädµ7êwù:o R»aÍp!‡‡¾¸ŸgN aµrà5ΟzhMÑ?ëE;D’Ðù9Žƒ!''§Ðôk×®‰?úŽ…T©REyðá‡öêÕ+00°fÍš¯¾újï޽Ϟ=»nÝ:µ· €cœ€WÓVpüøãSRR\¸B__߀€€¢Åììl!„í:k{ÕªU«R¥ŠŸŸ_LLŒýôN: !Ž;¦öN‚\¸&F^\@{´ãããŸx≾}û.]ºÔá ˆå–™™©$E声°0‡‹„††VªTÉ`0ØOTF¨ ÔÞI© )Ú Ž/½ôR:uŽ9òÞ{ïµmÛvĈ›6mÊÏϯÈ:;vìh6›wìØa›bµZƒ‚‚¢££.“}üøqû‰Ê½{7n¬öNà­Ê0NM»€&i+8Ž;vóæÍ_ýu\\\õêÕ·lÙ2zôè6mÚ¼óÎ;,ß:û÷ïïããóÙgŸ)ç5 !âãã322úöí[©R%eÊõë×M&“íâ¸Þ½{ !¦Njëz>|øÿøG@@@çÎÕÞIíFy‘h•ÁªÕ_OÛ·oÿî»ï¶lÙrãÆ !Dýúõ{õêÕ³gÏ:uê”iU‹-š1cF:uÚ¶m›––¶gÏž¨¨¨E‹ÙnÓ³~ýú×_½aÆk×®U¦,X°`öìÙÍ›7ÏÉÉÙ·oŸÁ`˜9sf×®]K}»ÈÈH®ª–“Édráõ•G/RôÐ;Ì~Îv ŽÞõŸzxiÿÖk÷v<¾¾¾±±±±±±999 ³gÏNKK›;wîßÿþ÷-ZôíÛ·{÷îF£Ñ™U 2¤FkÖ¬Y¿~}­Zµž{î¹1cÆ(wä)ÎK/½²dÉ’]»vuìØqÔ¨Q 6T{¯@¤Fý!5Ðív…YYY›7oÞ¸qãîÝ»•«RjÔ¨Q©R¥óçÏ !î½÷Þ/¿ü²V­Zj—Y˜´ÿWõH^Ç™Ž£SÁ‘Ôèmè8JKÚ¿õZì8fdd|ÿý÷›6mÚ»w¯ÙlB„„„üå/éÖ­ÛÃ?,„صkל9sŽ9ò׿þuáÂ…j× mÇeË–mÚ´iÿþý‹EüøãwíÚµyóæö£Ò=öØÃ?üÈ#ìÛ·Oí’£Ý(/Ú4O[ÁñÝwßBþå/éÚµkË–-‹;‹ÑÏϯJ•*§€¢øÂú ­àØ·oßnݺµjÕÊ™«^h7Bh7êCyZ‡´xmÝÇqÆ »wï..5Ž5êñÇW»FÀ]Hò"5ðÚ Ž9997oÞ,î¥Ó§OŸ;wNí l§ êU'&&Ž1ÂötÉ’%Ë–-+:›Åb±Z­õêÕS»^À-h7Ê‹v#ï¡~p4þþþÊ㬬¬;jÕªç œ8q¢ÚõHJýàøØcíÙ³GyùÌ3ÏLž}ú¬^½ºsçÎýû÷ˆˆ0 &“)!!áÌ™3‘‘‘]ºtQ·`('8Ð=•ƒãàÁƒN?þüܹs MLNNnݺurr²º5ΠÝ(/ÚôKåàØ£Gµ÷œ¢rpœ9s¦Ú{p=Úò¢Ý@×´uqLÉ&L˜«vàˆ•èŸÊÇ¢²²²6oÞœ––Vhznnî÷ßo4Õ.(íF ED„ +íFú§­àxéÒ¥¸¸¸sçÎ7ÀÔ®@RÚ Ž‹/>wî\‹-ºwï¾nݺŸ~úé¯ý«ŸŸß±cÇ–-[6`À€)S¦¨]#PÚ’²¬A»€îi+8îØ±£råÊóæÍó÷÷}ì±ÇÂÃÃ[·n-„ˆˆˆx÷ÝwŸzꩆ ª]&€Œ´uqÌ… 4hàïï/„¨Q£FPPБ#G”—ú÷ï´xñbµkŠNÇIN´HB[ÁQáãógIõêÕ3™LÊc£ÑyèÐ!µ ”¶‚cÍš5O:uýúuåiݺu÷ïßo{Õ`0œ={VíÇ B¤þñß9‹Á`àÔVrÐVpìÔ©Snnî›o¾yòäI!DóæÍOŸ>½sçN!DFFÆÏ?ÿ\§Nµkàšy Ž=ihëâ˜nÚ´iË–-V«uþüùíÚµóõõ}õÕW›5kvìØ±œœœnݺ©]#–šj"\í*Àí´Õq Y¾|ùرcï¿ÿ~!D:u¦NšŸŸÿã?fffvìØqÈ!j×F»Q^Üñ€d´ÕqB„„„¼ôÒK¶§qqqÝ»w?|øpXXXDD„ÚÕÀm  V‘Êé­¤ ¹àhïúõë•*Uª^½z«V­Ô®pŒv£¼nµ jמ£ÅàxèСÏ?ÿüèÑ£—/_öññ©S§N³fÍFŽY¿~}µK—¶ÎqBÌ;·ÿþÛ¶m»|ùråÊ•«T©ræÌ™ÿüç?ݺu[±b…ÚÕ·¡Ý(/În %mÇíÛ·ñÅF£qàÀ?üðÃ/¿ü’””´mÛ¶¡C‡ !Þ{cª]#Üb+ÿí@&Ú Ž+V¬°Z­o¼ñÆ”)SêÖ­k0„µjÕ?~ü„  øÊAhíFyÑn +mÇ£GV®\yРAE_zî¹çüüüøÊAšB† mG!DÍš5}}\²£\%“““£v€´eFT 1mÇèèè3gÎdgg}éúõë&“©iÓ¦j×Bp‚#)i+8öïßßjµNš4©  À~ºÙlž}ú¬^½ºsçÎýû÷ˆˆ0 &“)!!áÌ™3‘‘‘]ºtQ·`i©ìpúùóççÎ[hbrrrëÖ­“““Õ­’£Ý(/Ú¤§rpìÑ£‡Ú{ÊŒÈIåà8sæLµ÷P´åå¨ÝH €l´ø]ÕBˆ‹/þúë¯iii7oÞŒˆˆhÒ¤IíÚµÕ. ²#5Ê‹„B Ǭ¬¬O?ýtåÊ•f³Ù6Ñh4>ýôÓcÆŒ P»@²cœ€´´Ífóˆ#’’’*W®Ü©S§úõëÆS§Nmݺõ믿þõ×_—/_n4Õ.2¢Ý(/Úðmǯ¾ú*))顇úôÓOCCCmÓ/_¾±OBˆ5jÌ;×ÇÇgûöíj×Ñn”íF°£­àxìØ±úõëתU«èKaaa÷Üsϯ¿þªv¤Æ Žd¦­àX¹råÜÜÜâ^ÍÍÍõóóS»FH‡v£¼Jl7Ò‹ !mÇ&Mš\ºt)))©èKGŽ9{ölãÆÕ®@RÚ ŽÊÉŒ=ºÐ¹Œ;wî|õÕW…Ý»wW»FÈ…v£¼Þñ›qjrÓÖUÕݺuKLL\³fͰaÃjÕªÕ A!DZZÚùóç…Ý»wòÉ'Õ®!5Ê‹qhpD[ÁQñᇶlÙò“O>¹páÂ… ”‰5jÔxýõ×{÷î­vuòÒ\p4 }úôéÓ§Ozzú©S§¬Vkƒ ÂÂÂÔ® Ò¡Ý(/ÚP mdzgÏZ,–zõê !BCC ÝÍTÄ Ž ­àØ­[·¼¼¼ü1$$DíZ 5Úòr®ÝHS€œ´uUuÆ …ÇW»¦­àøÖ[oùùù}ñÅ7nÜP»È‹v£¼Šo$2N BkCÕ¡¡¡üñ_ÿú×=zôèÑ£^½zþþþ…æéСƒÚeBÏHòbøJ£­à£<ÈÈÈøôÓOΓœœ¬v™2ÒVpT¾9P íFyÑn'h+8Μ9Sí 0Np…¶.Ž)$???''Gí* Úò*c»‘î$ii«ã¨8qâļyó}úX,– &äååÙ¿”ŸŸ?qâDƒÁ0tèÐò­ü›o¾éß¿ttt›6m&Ožœ••åü²çÏŸøá‡Ç§ö‚‹Ñn”éÊE[·ãyöÙg=ºmÛ¶N:õíÛ7<<Ü`0˜L¦ÿûß/^ìÖ­Ûµk×¶mÛf›?""¢^½z¥®vΜ9óçϯV­Z‹-ÒÒÒV¯^}âĉ%K–øùù•º¬Õj0aµk×ÔÞ7< mÇnݺ)ÒÓÓ¿øâ‹B¯®_¿~ýúõöSÞ|óÍRï옜œ–*„xÿý÷—,Y2kÖ¬·Þz«Ô’¾ú꫽{÷ª½càz´åE»ÊK[Á±GešÿÞ{ï-užU«VY,–1cÆ(©Q1qâÄÿüç?6l˜2eŠOIƒõ'Nœ˜3gNãÆ;¦ö¾+‘åEj€ ÐVpœ9s¦Ë×¹oß>Ÿ:ئÆvíÚ}÷ÝwhÞ¼yq Œ?>((hâĉƒV{ßð(Æ© ( ]ãV«5%%%88888Ø~z£F„gΜ)aÙO?ýô×_ýàƒüýýÕÞ¸íFyU¸ÝH¿€ä´Õqt¹œœ³ÙXhz@@€â·ß~+nÁƒ.\¸ð¹çžkݺõÑ£GËú¾‘‘‘…¦lܸQí!„ˆO5™LîYùÙ³gÕÞ>+<"”š*œ?øáÂÑOJ¸Ã½´8ô’èÒ¥‹Ú%h…΃cnn®¢Zµj…¦W¯^]qåÊ•â–?~|ݺußxãò½orr²Ú›Žb…‡‡{éÊQAÎ[ãÔáeX ‡^Zzý³^´C$ ÇÀÀ@ƒÁ““Shºr{¥ïXÔŒ3Ξ=»bÅ gî×/ µ¼cWÐù9޾¾¾E;‹ÙÙÙBÛuÖööîÝ»bÅŠ—^zéÁT»| ÑypB„……eff*IÑF9K),,¬èü'NœBÌ›7/ò}úôBü÷¿ÿŒŒ|òÉ'ÕÞ ”íFy•±ÝÈõÔPU !:v옜œ¼cÇŽ'žxB™bµZƒ‚‚¢££‹Î_¿~}ÛœŠ+W®ìܹ³víÚÑÑÑ5kÖT{ƒP¤Fy1H ®£ÿàØ¿ÿùóçöÙgíÛ·W®‰‰ÏÈÈxñÅ+Uª¤ÌsýúõôôôJ•*Ý}÷Ý=öØc=f¿†£Gîܹ³yóæî¸Í$oAýÇÚµk7nÆŒ=zôhÛ¶mZZÚž={š6mjÿ]…‰‰‰¯¿þzÆ ×®]«v½p=Úò*{ÖcœJ ÿà(„2dH5Ö¬Y³~ýúZµj=÷ÜscÆŒQºÐ=R£¼è€«¬übuµÈÈHî㨞 Ž&“‰;ºiH¹‚c ÇÖÇ¡—‡^ZÒþ­×ÿUÕíFy¹:5Á:Fj”ƒÔàG(YÁzE»Q^åxŒS@©ŽÐ!R£¼h €;à‚#ô†v£¼*ÐndœœAp„®åÅ 5¸ÁúAj”—›S#¡G²cœœDp„NÐn”ý@ð‚#ô€Ô(/R#xÁ€Ô§çáõh7ÊË#íFzš`Cp„w#5Ê‹@Gp /Æ© LŽðb´åE»Ô@p„·"5Ê‹Ô*!8Â+‘ååºÔÈ85”ÁŠEsìá}h7Ê‹v#¨Šà/Cj”Ý?PÁÞ„Ô(/R#hÁ€t§€ò!8ÂkÐn”—JíFºœPÁÞÔ(/âhÁ^€Ô(/7¤FÆ© ÜŽp ÁZG»Q^´@cŽÐ4R£¼Ô>µQí÷-"8B»Hò"µ€&¡Q¤F¸ãÔPAGC»´Šà-¢Ý(/·¥FÚPqGh©Q^šé5j¦Ð‚#´…Ô(/ÂhÁBj„›0N .Ap ´À¡´ååæÔH»\…àM 5ÊK{½FíUZAp„úHò"£€W!8Be¤Fyy$52N .Dp€SŽPíFyÑn/Dp„jHòÒð©. ÔGp„:HòòT4£Ý.Gp„ Hò¢¡ÞŒàO#5Ê‹Ô^Žà"5Ê˳©‘qjp‚#ÜBKJFp„çÐn”íFЂ#<„Ô(/úx Gx©Q^O´À}Žp;R£¼¼ª×èUÅ€:Žp/R£¼b ;G¸©Q^*¥FÆ©À­ŽpR£¼è5€Ná¤Fy©—i7€»áz¤Fyym¯Ñk "8ÂÅHòR5|Ñn 8•H蘯ÚÐÚЩÈÈHµK€Û%''«]‚× 8Âeh7ÊËËÏôòòáv¤ Ý‹ŒŒä(;‰¡j¸©Q^jÇ.Úà1G¸©Q^j§F€'QQ¤Fyi 5ÒnO"8¢BHòÒ@jd;ÀÃŽ(?R£¼´‘¶h7€‡QN¤Fyi#5<àˆò 5ÊK3©‘v#xÁeFj”—fR#ª 8¢lHòÒRȢݪ 8¢ HòÒRjॶoßÞ©S§Úµk÷îÝûرcjW„2#8ÂY¤Fyi,5ÒnTtåÊ•—_~¹^½zÕ«Wo׮ݞ={œ\ðçŸîÔ©SZZÚ„ &NœxòäɶmÛ¦§§»¼ÂvíÚM›6Míý¤[G8…Ô(/¥F¶ PQvvvóæÍ/^ܶmÛ¡C‡ž>~ùòåsçÎݱc‡Á`xã7œYöðáÃQQQuëÖUž5nÜøäÉ“.)¬  àÿûß;ï¼óøã[,7m>Á%S"#¥e¤DF¥F¥ŠŒŒìر£ý”iÓ¦µhÑÂ%+_¹re­Zµ¨<ˆˆèׯ_bbâ… J]6##ã®»î²=ÍËËKII©_¿¾K ËÌÌ|üñǧM›vùòeWíI8DpD±h4ÊK{Æ[uÑnÊîÔ©Sû÷ï¯øz²³³?c0lccc-‹3g:šÍf___!„Õj5™Lƒ®S§Î!C\²aaaV«ÕjµrÁ»ùª]4ŠÔ(/­¦F¶P×¥K—¬VkXX˜ýÄÐÐP!„ó}¾¼¼¼*Uª!üýý—-[¢öf¡lŽp€Ô(/ ç)Ú€k¬[·®¸W{öìYhJNNŽÂßßß~b@@€"33ÓÉ7õõõ]¸pazzú®]»zôèñÔSO­\¹Ò¾…YŽÂàIGFj”—†S# 5·GO+ù“j6›íŸw±Èõë×{õêUü[~¥;xõêUû‰ÙÙÙBˆàà`'+7/¾ø¢òxÚ´iï¼óÎÓO?ݧOŸŠOâG܆Ô(/m§F×¶µ½­ðÊÅcjý+Y^^žýÓÜÜ\‡³X‹Wtþ°°0ŸB£ÒBˆ:uê”c4H±k×® O¢ãˆ?‘å¥í$Å 5P&çÏŸ·ZÜ%ÏeöõõŠŠÚ±c‡ýÄíÛ· †¦M›–£Î‚‚!„Ñh¬`að$‚#n!5ÊKÛ©@Y]¼xqíÚµO>ù¤"55õàÁƒg+Ljð°aÃ^{í5ÛÊÓÓÓ:wîîLa{÷î=~üx£F”§«W¯B4kÖ¬â…ÁcŽ‚Ô(3ͧFÚ@Yùúú>óÌ3Ý»w·X,k×®­\¹²ÃÙ”á2­yðàÁ‹-0`ÀÈ‘#¿úꫜœÛ÷û­X±â•W^yá…fÏžípñ›7oÆÆÆöìÙ³I“&\¼xqttt¿~ý*^<†à(;åôn> 2RÎí—ï·³æ£2PQ-[¶|â‰',XPPP0lØ0ÿwß}×%kö÷÷OLL7n\BBBVVV«V­–/_­¼šŸŸÿûï¿wJ¥¢M›6C† ™5kÖ’%KjÔ¨1|øð?ü°èP5´Œà(5òò’ôD»(ƒÁ0iÒ¤I“&Ù¦LŸ>ÝU+ˆwøÒ AƒnÞ¼yäÈ‘‹‹‹‹‹sß¶GFFÒ­t+®ª–©Q^^’x—7nlݺµè9‹Ð‚£¤HòòžÔèŽv£÷l=à}vïÞݤI“gŸ}VíBàF UˈÔ(/ïÉM Rå3bĈB_îâ1111111Ž:yòäÀÀ@µv \E–àøÍ7߬Zµ*%%¥jÕªíÛ·7n\PPP óçææþë_ÿJHH8{öìwÞÙ¨Q£!C†´iÓFíípR£¼¼'5(·ñãÇ«]‚cÆ S»¸€ÁqΜ9óçϯV­Z‹-ÒÒÒV¯^}âĉ%K–øùù9œ¿  `ðàÁ hÕªÕ7~úé§;wŽ=zäÈ‘joMùqµ¼¼íjÚ Mú?Ç1999>>>,,lãÆñññ›6m8pà¡C‡fÍšUÜ"«V­:xðàÃ?œ˜˜øÅ_,^¼øÛo¿ üüóÏýõWµ7¨œ”F#Še¤4½'5º{OÊMÿÁqÕªU‹e̘1¡¡¡Ê”‰'lذ¡¸ï}߸q£bÊ”)¶–dÆ _~ùe³Ùüã?ª½AåÁð´¼¼0+ÑnÍÒpÜ·oŸO‡lSŒFc»ví2338àp“ÉT­ZµBß¼Ù°aC!Ä™3gÔÞ 2#5Ê‹Ôp)ŸãhµZSRR‚ƒƒƒƒƒí§+_”yæÌ™æÍ›]jÁ‚¾¾…÷ÌÑ£G…uëÖU{›Ê€“ååm'5z€¦hÐÇœœ³Ù\ôúÿ€€!Äo¿ýæp©¨¨¨BSöìÙ_¹rå¾vÝ^ddd¡)Êð·'E„‡§šLB“‡ßXbgÏžU»!„ˆ0¥¦ !„ÉË~DxDª)Õ䮟Ùp“ÛvˆF=€r+ù÷C—.]Ô.P+t•o̬V­Z¡éÕ«WB\¹r¥Ô5˜ÍæåË—ôÑGf³ùã? qæ}“““ÕÝð[ÃÓááê–!¡pÕ÷¹Á ¬Vµ‹(WáÊ µ;KwëÑQÿШ€’?ÂEÿ¬íIBçÁ100Ð`0äääš~íÚ5ñGß±?ýôÓ´iÓNžûù矓¡uÞŸÝÝnôþ=Z¡ÿàØ¿ŸÏ>ûL9¯QŸ‘‘Ñ·oßJ•*)S®_¿n2™”ë"­Vë²eËî¼óÎ &¨]»S ¤Fi :ÈD Ròؾ}{§NBBBj׮ݻwïcÇŽ©]ÊLÿCÕµk×7nÜŒ3zôèѶmÛ´´´={ö4mÚÔþÛÖ_ýõ† ®]»öòå˧OŸöóó0`@ѵõîÝû¹çžS{›þDd”—÷GFAj¼Ð•+W&L˜°~ýúß~û­Y³f}ôÑ£>êÌ‚?ÿüs§Nêׯ?a„ʕ+ùå—mÛ¶=zô¨«Fö:ôþûï'&&^»v­qãÆ 5jTÑ»2£‚¤Ø¡C† ©Q£Æš5kÖ¯__«V­çž{n̘1ÊyŠRú޹¹¹GŽ)úªv.¬æ:©é"5z» p¡ìììæÍ›Ÿ>}º_¿~!!! ]ºtÙºukq§~Ù›?¾ÅbÙ²e‹òUÏ?ÿ|DDIJeËÆŽ[ñÂRSS;tè`6›{÷î]¯^½~øaìØ±Û·oÿöÛoÕÞgºc…«5jÔÈÝoÁaÓ¦ÔÔT·¿‡V½|l…G~=³·úè+¯¼â’Âzöìéãã³wï^Û”!C†!6nÜèÌâå8Ê^÷ƒá*ú?ÇQž–—Ò=ÓEAjÀM"##;vìh?eÚ´i-Z´pÉÊW®\Y«V­*O#""úõë—˜˜xáÂ…R—ÍÈȸ뮻lOóòòRRRêׯï’¶lÙÒ®];ûÍ|õÕW…»wïvÉúaCpô&\#/]\ãyì3@qêÔ©ýû÷W|=ÙÙÙlj‰1(7ŽBk±XöìÙSêâf³Y9ãÐjµšL¦ÁƒשSGé VPAAÁÈ‘#•¤h“––&„¨\¹²«w§ì¤8ÇQˆŒòÒ]ü¡Ýx£K—.Y­ÖB·@V.m¹|ù²“+ÉËË«R¥ŠÂßßÙ²eN~‘oÉ|}}?øàû)¿ýöÛ|`4ûõë§önÓ‚£à:yyù÷Á8Þ&R#tÁ _I¹¹äCTPP°nݺâ^íÙ³g¡)Ê÷÷Ú›†øãË{333|S__ß… ¦§§ïÚµ«GO=õÔÊ•+í[˜å(¬mÛ¶ ><%%å‹/¾hذaÅw쵎F£¼t×hô0öÜJËÿýc6›íŸZ,‡³]¿~½W¯^Ån`‘ÏÒ¼zõªýDå+|ƒƒƒ¬Íh4¾øâ‹ÊãiÓ¦½óÎ;O?ýtŸ>}*R˜ÍéÓ§_}õÕï¾û®aÆ?üðCll¬[ö¯Ü8ÇQÓHòÒiê¡Ýx@^^žýÓÜÜ\‡³”pñlÑùÃÂÂ||| Jgdd!êÔ©SŽ: $„صkW S¬X±â¾ûîÛ¿ÿ‚ þïÿþÔè&t5ŠáiyéqxúÖ–‘8þ¼ýÓâ.y.눰¯¯oTT”ýWø !¶oßn0š6mZŽ: „F£±‚… !¾ûî»çŸþ©§žš?~¡Át¸ÁQ‹h4ÊK§Fáñﬧ ”îâÅ‹k×®}òÉ'…©©©t8[9F„‡ öÚk¯ÙVžžžžÐ¹sçððpg Û»wïñãÇ5j¤<]½zµ¢Y³f,ÌjµŽ?¾nݺK—.-CáZGm¡Ñ(/ý6x˜¯¯ï3Ï<Ó½{w‹Å²víÚânI£Œ—i̓^´hÑ€FŽøÕW_åääL›6MyuÅŠ¯¼òÊ /¼0{öl‡‹ß¼y366¶gÏžMš49xðàâÅ‹£££‹^ø\ÖÂ~ýõ×cÇŽ5iÒÄvö¤MŸ>}ºwïîÁ}¯G­ 2ÊK‚ÈH»ð¤–-[>ñÄ ,(((6l˜¿¿ÿ»ï¾ë’5ûûû'&&Ž7.!!!++«U«VË—/·}ß`~~þï¿ÿ^Ü)•Bˆ6mÚ 2dÖ¬YK–,©Q£ÆðáÃ?üðÊ÷SRR„¿þú믿þZè¥{ï½—àèZGM`lZ^dNm<Ì`0Lš4iÒ¤I¶)Ó§OwÕÊâãã¾4hР›7o9r¤„Åãâââââ\»½=zô(këåÆUÕ*ãË`ä%Ç—ÁyܸqcëÖ­EÏY„žÐqT‘Q^DF¡Rj”c×Z´{÷î&Mš<ûì³j7"8ªƒ3å%ÁT4bĵîGSÜ«“'O Tk·ÀUŽžFd”—d‘‘v# ŠñãÇ«]‚cÆ S»¸ÁÑ£›–—d‰†S@—ŽB£Q^’5©ô‹àèvDFyÉ…ª©Q²®.¨€àè^ŒMˋЂ£»Ðh”—”Æ[›N»tàèzÇ““i4Ê)<"BI#£àÔFßãz"#ùã)ƒA ¦ÔTR£:ïN»<‚àT˜[$N.ô@ U ñéŒîR#Hƒà” ‘QÙ HŒS€Ç0T ”‘ÁÀØô­=¡ÔÀ‹lß¾½S§N!!!µk×îÝ»÷±cÇÔ®eFpœFd´ßÚH´»råÊË/¿\¯^½êÕ«·k×nÏž=N.øóÏ?wêÔ)--m„ 'N|8**ªnݺÊÓ   ÆŸôÐCß3(ÁÒ#2–Fk©Ð ÿÒ0›ÍöO-‹ÃÙ®_¿Þ«W¯â·¯ð*ÝÁ«W¯ÚOÌÎÎB;Y›Ñh|ñÅ•ÇÓ¦M{çwž~úé>}úT¤°ìì츸¸Î;=Ú½{œã©q.£4˜i7%ËË˳š››ëp¶€€kñŠÎæããShT:##CQ§NrÔ9hÐ !Ä®]»*XØ‚ RSS7nüÑG͘1cÆŒW®\9wîÜŒ3V¬X¡âÐ%:Ž]Fçh05(ÕùóçíŸwÉsYG„}}}£¢¢vìØa?qûö탡iӦ娳  @a4+X˜rû¡Ù³gÛOÌÊÊš8qb‡âââ\¸oAp„Ll§Ñ ÍÔH»(Õŋ׮]ûä“O !RSS<èp¶²Ž !† öÚk¯ÙVžžžžÐ¹sçððpg Û»wïñãÇ5j¤<]½zµ¢Y³f,lÊ”)S¦L±Ÿ^³fÍÝ»w{`oˆà9Ðb,#R#à½|}}Ÿyæ™îÝ»[,–µk×V®\Ùálʈp™ÖÚªU+µ÷–0T ×a0ZU^Úe¼U<©ðN&“Él6·nÝ:""Â6±zõêÎ,;þ|‹Å²eË–ºuë !žþùˆˆˆeË–;ÖµEN:õ§Ÿ~zôÑGÕÞ[z@pD…‘ÕÆE0lòóó…wÜq‡gÞ.%%E1}úôŽ;–uÙÇGEE)©QÔ¸qã“'Oº¶Âï¿ÿ~æÌ™¾¾×`¨åÂÉ‹ÚàÕcÓníFÀu"## e¸iÓ¦µhÑÂMo§Ç{ï½·ËfddÜu×]¶§yyy)))õë×way—.]zþùç_|ñÅ»ï¾ÛM{@6G8ÍaXä¾Jô©p¿S§Níß¿ßM+OII©\¹òwÞùÍ7ß,X°`çÎJËÓf³YiZ­V“É4xðà:uê 2ÄUµY­Ö}òÉ'nÚ| ѹEi‰Ö¯>ñ¶ !5^.%%ÅÇÇçÞ{ïÍÊÊR¦4iÒdéÒ¥?ü°“kÈËË«R¥ŠÂßßÙ²e!!!®ªmæÌ™‰‰‰{öì©ZµªÚûI?ŽpÄyQ[ôt:#©^ÍPñUT€K>:ëÖ­+îÕž={:³’””‹Å2mÚ´~ýúUªTé¿ÿýï믿ޫW¯#GŽ8³__ß… ¦§§ïÚµ«GO=õÔÊ•+ †Ûvp9JÝ»wïÔ©SgΜùÐC¹boá‚#þ@XÔ6=EFAj„÷ÓòϯÙl¶j±XÎvýúõ^½z»E>¢'Ož´?—ñ«¯¾4hжmÛªT©¬L2dÈ7FŽ™0tèPgª5/¾ø¢òxÚ´iï¼óÎÓO?ݧOŸŠ”š×¹sçÑ£G»Ë…à(7¢7ÐYd¤FÀÍòòòìŸæææ:œ- ÀZ–bXXزeËlO•Û"Ö®]»ÐlùË_„G-Gåƒ zçwvíÚU(8–µÔ ¤¦¦öêÕë£>R¦\¹rÅl6Ϙ1£^½zqqqÝÅ#8ʇ°è=ô©p¿óçÏÛ?½pá‚ÃÙÊ:þ[½zõØOIKK[»vmlll“&Ml³³³…å»8º  @a4+XªrÎìÙ³í'feeMœ8±C‡ÇŠ 8ʰèmt©ðˆ‹/®]»öÉ'ŸB¤¦¦óÌ3Ý»w·X,k×®­\¹²ÃÙÊ:þ[Thhè´iÓ&L˜Ð°aî]»nÚ´)))éoû[TT”bÅŠ¯¼òÊ /¼P¨ùgsóæÍØØØž={6iÒäàÁƒ‹/ŽŽŽîׯŸËK…«u„¶¢7Ók‹ñÏ $5žÒ²eË'žxbÁ‚Æ ó÷÷÷ÝwÝô^ãÇ¿çž{>úè£eË–U©RåذaC—.]”Wóóóÿý÷âN²B´iÓfÈ!³fÍZ²dI5†þᇪ†v½mE]Ð}d¤FÀ³ äI“&Mšd›2}út÷½]ß¾}ûöíëð¥AƒݼyóÈ‘#%,ç“M&“»ßB|sŒW±ÿî–B_ߟeoc;:øö—’6Ó@jäuãÆ­[·=gÞ‹Ž£¶ÑSÔ#ZŒ·¶”ÈÈm÷îÝMš4yöÙgÕ..CpÔ’¢~éûÂÛKjÔ0bĵ«¸%&&&&&¦¸W'Ož¨v(‚£ª E¾³Š¿´º#[^ü\ó³ ¨büøñj—à¬aÆ©]ÊŒàèY4e"Ïôm[M£ô‹àèN4¥$a‹ñÏm'5€®]/ùøqÆê$d.„”yQ0< ràv<®Ù¨÷Ç‘„ý푬šjJ•05Úß  ot2“y0ºƦ@*GÀ)¶°(È‹BƦ@JG X„E‡ˆŒ -‚#pÂb ˆŒSdd¤Ú%ZAp‹¥#2BZÉÉÉ%¼j2™ÂÃÃÕ®ð‚#$EXt‘`Cp„,ì“¢ ,–Æv÷z"#À†à}*IÑ9äE@ ŽÐ ŠÄ4 TGxŸ¢ÝDAR,ûoS'2JEp„¦‘Ýñh@ù¡dD·¢¹¨8‚#<Êa:T]ްp-‚#\¬„h(H‡nf¸}ß®å£vÚõÍ7ßôïß?::ºM›6“'OÎÊÊR»"õ„¡ÔVa-áŸÚ[à^]ºtñäÛÝû…v7<ÆÃ‡ÚÁ¡‡lè8:6gΜùóçW«V­E‹iii«W¯>qâÄ’%KüüüÔ.ÍõJîÚÓ}òÓ,ƒ£CD4xG’““ãããÃÂÂ6nÜ¿iÓ¦:thÖ¬Yj—V g:‚eíÊÓ/T] ÉáñÀÃŽ¬ZµÊb±Œ3&44T™2qâÄ€€€ 6X,w¼cù_E" qÐÜ9~%$´€àèÀ¾}û|||:tè`›b4Ûµk—™™yàÀR?ž|Ü3èa¥ÈãÇ“Ë I‡oAp,Ìjµ¦¤¤ÛOoÔ¨‘âÌ™3¥®¡Qd#_¹¦ëê¥ÈF" …ãâ˜ÂrrrÌfs```¡éBˆß~û­Ô5(m'TD£F‘j—à@¤EE:3ôˆC/-=¤Bp,,77WQ­ZµBÓ«W¯.„¸råJ©k ½ä Éj c¨º°ÀÀ@ƒÁ““Shúµk×Ä}G  óõõ (ÚYÌÎÎBØ®³ ÁѰ°°ÌÌL%)Ú˜L&å%µ«PÁÑŽ;šÍæ;vئX­ÖÄÄÄ   èèhµ«PÁÑþýûûøø|öÙgÊyBˆøøøŒŒŒ¾}ûVªTIíêÔa°r °#‹-š1cF:uÚ¶m›––¶gÏž¨¨¨E‹½M€$ŽÅúî»ïÖ¬YsèСZµj=òÈ#cÆŒQîÈ '‚#œÂ9Žp ÁN!8À)G8…à§à‚#œâ«v:‘ššÚµk×U«V=øàƒE_ýæ›oV­Z•’’RµjÕöíÛ7.((Hí’ábýúõ;|øp¡‰!!!?þø£Ú¥Á]øhˉ»løoàèK—.-î¥9sæÌŸ?¿Zµj-Z´HKK[½zõ‰'–,Yâçç§vÕp¥Ó§Oûùù5hÐÀ~"ßQ©c|´¥Å‡]6ü‰·Gp¬ìììãÇ÷Ýw+W®t8Crrr|||XXXBBBhh¨âý÷ß_²dɬY³Þzë-µË‡Ëdgg_¹r¥k×®Ÿ|ò‰ÚµÀøhK‹»<øïç8VH÷îÝ PÜ”bÕªU‹e̘1Ê”bâĉ6l°X,j——9}ú´¢P:ÆG[Z|ØåÁŸx‡ŽòþûïÏ›7oÞ¼y­[·v8þ}û|||:tè`›b4Ûµk—™™yàÀµË‡Ë¤¥¥ !êׯ¯v!ð>ÚÒâÃ.þÄ;ÄPu…<öØcʃ­[·}Õjµ¦¤¤ÛOoÔ¨‘âÌ™3Í›7W{ àÊß’ . 8ð×_­ZµjTTÔË/¿ìðLjx;>Ú2ãÃ.þÄ;DÇÑrrrÌfsÑ3¦„¿ýö›ÚÂeΜ9#„˜;wnzzz«V­BBB¶nÝ·jÕ*µKƒëñÑ–v(¤ý=@ÇÑrss…ÕªU+4½zõêBˆ+W®¨] \æÂ… ~~~cÇŽ8p 2e×®]/¿üòßþö·Ç{¬víÚjWâ£-3>ìPHû{€àXº‚‚‚… ÚžÆáÇ;³``` Á`ÈÉÉ)4ýÚµkâÿ(w)î‡á«¯¾*4gëÖ­Ÿþù/¿üò‡~°ý>ðÑ–v(¤ý=@p,ÝÍ›7ío»P¹re'ƒ£¯¯o@@@ÑÿìÈÎÎBØ.‚)ÓÃ#<òå—_?~\íªáb|´Qv Iû{€àX:??¿äääò-–’’’íïïo›h2™”—ÔÞ2”™Ã«Õj±X ƒÏm' F!ÄwÞ©vÕp=>ÚrâÃ{rþàâ÷êØ±£ÙlÞ±c‡mŠÕjMLL ŠŽŽV»:¸FZZZTTÔ Aƒ MOJJBDFFª] \¶œø°Ãžœ¿ŽîÕ¿ŸÏ>ûL9éAŸ‘‘Ñ·oßJ•*©]\£Aƒ?üðÞ½{¿ùæÛĤ¤¤E‹Õ®]ûñÇW»@¸m9ña‡=90Tí^µk×7nÜŒ3zôèѶmÛ´´´={ö4mÚtذaj—Wúë_ÿ:tèЩS§®X±"""âܹs¬Zµê| ão,•miña‡œ¿Œï¼óŽÚ5èÁ–-[þïÿþ¯ÿþ5kÖ,ôRtttƒ .]º´sçN__ß®]»Î˜1Ãþ|è@HHH÷îݳ²²Ž?~äȑʕ+wèÐaîܹMš4Q»4¸ m9ña—âí¬V«Ú5À pŽ#œBp€SŽp ÁN!8À)G8…à§à‚#œBp€SŽp Á€\ƹmÛ6µ Ÿ}öYddäòåËÕ.œEp€S|Õ.$òðë]8‹àêhÚ´iÓ¦Mծʀ¡jгÙ|óæMµ«€Â޼ÃÔ©S###gΜYhúáÇ###[·n]PP „ÈÈȘ={v·nÝš5kÖ¬Y³'žxâÃ?¼téRq«U®•Ù½{w¡éQQQ>ú¨ý”üqôèÑ:ujÑ¢ÅÀ?ûì³BÙîܹso¿ýv·nÝzè¡: >|ß¾}%lÑÂ… í/ŽQ*9{öl|||«V­î»ï¾æÍ›?óÌ3?üðCqkHJJŠŠŠj×®ÝÕ«Wm¯]»Ö¡C‡¨¨¨C‡©}Ðè Á€wèÞ½»bÓ¦M…¦¯]»VÑ«W/__ߌŒŒ,X°àüùóõêÕ»ûî»Ïœ9³xñ⸸¸¬¬¬Š¼û¬Y³†ºiÓ¦‚‚‚ÐÐÐýû÷úé§Ï=÷\ff¦2É'ºwï¾råÊÌÌÌ{î¹Çjµ&&&>ÿüó[¶l)Ó-X°àã?®T©R«V­’’’F޹aÇ3GGG:ôÒ¥K|ðmâG}táÂ…W^yåðôA wGÞ¡E‹¡¡¡gΜù¿ÿû?ÛD‹Å¢„ª>}ú!V¯^}êÔ©ØØØüqÍš5ÿýïwîÜÙ¢E‹sçÎmÞ¼¹Üo½uëÖ… Ö­[÷›o¾Ù¶mÛºuë¶oßÞ¾}ûƒ~ñÅÊ<³fͺ~ýúˆ#víÚµzõêÄÄÄ)S¦X­Ö¹sç–é½V­Z5|øð;v|õÕWßÿýàÁƒ…K–,)nþÑ£G7lØpõêÕ;vìBìÞ½û_ÿú×ý÷ß?bÄõŽÝ"8ð>>>O<ñ„¸½é¸ÿþK—.EGGß{ï½Bˆ‚‚‚˜˜˜7ß|³ZµjÊ þþþJ«2--­Üo=cÆ !Ä'Ÿ|bëá…„„|òÉ'aaa ¿ÿþ»âرcBˆþýûFež¸¸¸W^y¥S§Nez¯xà7ÞðññQ6ù•W^Bœ:uª¸ù+UªôÑGùúúN:5==}Ê”)~~~³fͲ•.Dpà5”h?n«ŒS÷íÛWy:räÈùóçßsÏ=¶._¾¼nÝºŠ¼iVV–ÉdŠˆˆ(ttÕªU[·n››{äÈ!„’\'Nœ¸wï^ålËJ•*½öÚk£F*ÓÛuíÚÕþi@@€Ñh´Z­%,5räÈ‹/öìÙóܹs&LhР»Ž¹q;^£iÓ¦ 48uêTrrrdddAAÁÆýüüºuëf›çܹsÛ·oß¿ÿ™3gNŸ>]ÁS…©©©ÊÿFFF:œáÂ… BˆiÓ¦3fïÞ½Ï?ÿ|•*U¢¢¢Z¶lù—¿ü%**ªLow÷Ýw—£È—^zé‡~8zôè#<çÒ½"8ð&Ý»wÿôÓO7nܹcÇŽ+W®ôéÓÇ60½bÅŠ÷Þ{¯   ^½zÍ›7ïÔ©Ó}÷Ýg2™¦OŸ^¦w1›Í¶&_~~¾¢N:Å :×®][q÷ÝwóÍ7IIIÛ·oÿé§ŸŽ9ràÀ/¾ø¢_¿~ï½÷žÁ`pò­ï¸ãŽrì–k×®]¾|Y‘ššúûÿPÁ€7±Ç×^{Mƒ¶S_»víÝwß½ãŽ;,XðØcÙ¹xñbYßåüùó‹Ey!„¨ZµêäÉ“K^Ê`0(÷BäççïØ±cÒ¤I ±±±;vtënyûí·ÓÓÓ›5kvàÀéÓ§Ïž=Û­o@ZœãÀ›Ô¯_ÿ¾ûîKMM=|øðæÍ›ëׯ߼yså¥Ã‡›ÍæfÍšÙ§FñÇe+%+4¢ýý÷ßÛ‡……Õ¨QãäÉ“GµŸÇl6÷íÛ·mÛ¶ç΋}ê©§l¯ÞqÇ;vT®æ9{ö¬[÷Éwß}·aÆöíÛ/Y²¤aÆëÖ­+zÓ"p ‚#/£\"3eÊ”œœœ~ýúÙ¦‡…… !Ž;–‘‘¡L1›Í+W®\¶l™"77×áÚêÕ«'„XºtiNNŽ2eÏž=¶›ì(ÆŽk±XÆŽû믿*S®]»6iÒ¤#GŽ4mÚ4$$¤V­ZW¯^ýå—_¾üòK[«òÔ©SÛ·oB¸õ~Š/^œ>}úwÞùî»ïVªTéƒ>0Ó¦M«øÉPCÕ¼L·nÝf̘‘œœl4{õêe›ѱcÇÍ›7wîÜùᇶZ­ÉÉÉYYY X²dÉ¿ÿýï«W¯*7ֱ׫W¯þóŸèرcTTTzzzJJJ@@@Íš5óòò”yz÷î½wïÞo¿ý¶W¯^uêÔ JMMÍÉÉiРrçmŸÉ“'Oœ8qæÌ™ÿøÇ?î¾ûœ“'OZ­Ö¸¸¸èèh7í «Õ:qâÄììì¿ýíoJn¾ÿþûüücÚ´iŸ|ò‰ÚÇ €ÞÐqàeBCCyä!DÛ¶mCCCí_úøãG]»vmåþŽíÚµ[³fÍ”)S `4~`ݺu¿þúëN:ùøøìܹóøñãuêÔY¸paHHˆmƒÁðá‡þýïµX,§N ;vìš5k‚‚‚”yz÷îýÏþ³}ûö~~~ÇŽËÉÉiӦͼyóÞ~ûm÷튥K—îÞ½û±Ç³è)„=ztýúõ7lذqãFU2”|{0Çõë×333ëÖ­ëüEÐ ‚#œÂP5œBp€SŽp ÁN!8À)G8…à§à‚#œòÿSá*ÖUˆérIEND®B`‚statistics-release-1.6.3/docs/assets/laplaceinv_101.png000066400000000000000000000612141456127120000227720ustar00rootroot00000000000000‰PNG  IHDRhŽ\­AbSIDATxÚíÝwxTÕºÇñ5I¤Æ4CAJ"$4•P”"‘,”ЫQJ("é Š‚ àQ‘âåÀ•pô‘4tA@!˜B¯@„”™¹lÇd&Óv™ïç9÷>™53{Þ½7ŸïÚkÎh4 àA<ä.ê@p€Uް ÁV!8À*GX…àÀu~ûí7Ý_vìØáÊ~÷Ýw¥ÏíÚµ«Ü‡á.\(Ö´iÓBOåææ.X°àù矯Zµj¹råj׮ݡC‡O?ý4''§Ð+ͬ‰——W``àÓO?ýî»ï^¿~Ýš·2f̹e!8€>|¸N:¯½öÚöíÛ/]º”›››’’²iӦѣG×®]{ãÆÜ‚^¯¿qãÆ>üðȈˆ}ûöɽOTÏKîÀ­=üðÃ5kÖBT©RÅ4˜œœÜºuë?ÿüÓ4âååUPP ý|ñâÅ^½z%%%=ùä“E7\¾|y!ÄÝ»wMÆÌÌÌž={¦¤¤”-[¶„·âïï/÷á ,thMzzznn®ÜUX륗^JOOOOOÿþûïMƒ£G6¥Æ=zôÞ½{—.]úúë¯~øa!DvvvïÞ½-npÕªUÒ¯]»vîܹJã.\øê«¯J~K!'N”ûðP‚#…2 kÖ¬‰ŽŽ®Q£F¹råjԨѺuëÿüç?ùùù¦×˜_¹xåÊ•¸¸¸ÀÀÀ°°°ààà3f8ä#$×®]1bDË–-}}}kÖ¬Ù®]»M›6ÝàÕ«WGŒÑ¢E‹‡~ø±ÇëÞ½û/¿üRr E¯qüá‡6lØ ý<~üø%K–<ù䓞žžUªT4hÐêÕ«¥§’““OŸ>]òÆ«U«¶dÉÓe}ôÑÝ»we:Ÿ4Á®râÄ Ó_>?üðCÉ/îÕ«—Å¿µzôèazÍäÉ“¥Á˜˜˜Ç{¬Ð+ãã㋾²K—.¥ú£Ñ¸mÛ¶   ¢/}ú\½zU3eÊ”¾}ûzxxÆ9sæ,Y²Äú}ÿù知ºuëfÚs7n€–°ª€õîÝ»M›6Bˆ¨¨(i$+++;;[úùæÍ›…^ïåå5þ|iÉpHHÈÇ,Mø&%%Ý»w¯\¹r6ÄÖ­[¥F(ýüæ›oJ×8æææêõzOOOS 2dˆé#8räH½^îܹcÇŽ=ñÄÜñ¬¬,ÓÏ!!!Ž:ž<òȹsç mJ‹à@‰^xá!DffæÖ­[:täÈ‘ƒÞ¹s§¸×7hРZµj…Þ.„0iiiõêÕ³ù#RRR¤Z¶li¬\¹ò‘#GÌ_fZ§búèBþøãk‚£´hZRô®Ý6»qã†ôƒOÑg-ÞŽ' ÀQŸ@3Ž”(//o„ ÿú׿L7/,_¾|PPt­aQ¦©XI… |}}oß¾-„¸råŠÅàhÍGdeeIBøùùWmVV–ù=-ÊÈȰfÇË”)(½øÌ™3_sûöm©æråÊU¬Xњ͚f¨‹.ßB¬ZµJj¾@ɸÆ€MŸ>}Μ9aaaóçÏÿõ×_³²²bcc‹{½éº@INNŽiNVº½¶mñðÃW¨PAúÙÔ´+ÊÇÇÇÔ)ܶm[Š%}ûöµrß[´h!ý°~ýú¢7BÔ©S'00000д"»d?ýôS^^žôóSO=å€ÓÀ](Ñüùó¥¾üòË×^{í‰'žðòòºpáBq¯ÿí·ß.]ºdz¸}ûv£Ñ(„(S¦L5lþNgºËÏþýûMãW®\iÞ¼yóæÍ£££ ƒ¢V­ZÒS™ñ÷÷÷óóóóó³øÕ,™®’øÀ5'€VÈÃ|fÙ\NNŽN§ëСÃÿýßÿ !²³³¥/q «Q£Æ®]»„æyHuæÌ™sçΙ6ëååõÅ_X\#„°þ#‚‚‚–-[6pàÀÛ·o_½zõ¿ÿý¯i#'N4]éïïÿŸÿü§_¿~·nÝúñÇÍ¿¬eذaS¦L)ÕÁyüñÇ·oßÞ«W/Ó­©Y³æ—_~Ù°aCël@@À÷ßoº؆©jJ4wîÜÇ\áááñä“O¾ýöÛGŽéܹ³ôìêÕ« }Ms@@ÀÏ?ÿp rï.’|útDx¸£¶.„5ÿˆžN>aÕk-½ýtrx¸½ÿ\''';j¯U„àX˜´tºbÅŠ…ƽ½½…·oß¶f#îù‡IÉ"""8)JÃIQ&΋)ý¤èt,ÏÊŽ£NØõ¡:½ÿR»m“ÈÇ”ÌÏÏO§ÓeggÿóÏ?Å_}G „Zg|UX²R óòòòõõ-ÚYÌÊÊB˜ÖYDzþG{?H'÷®ªÁÑ‚ààà7nHIÑ$==]zJîêäAp´ M›6z½~Ïž=¦£Ñ˜˜˜èïï)wuò 8ZгgO/¾øBº®Q±hÑ¢ŒŒŒîÝ»?ôÐCrW€2Èt£7â=XUmAHHȘ1cfΜ٩S§V­Z={vß¾}õë×2dˆÜ¥ÁF[¶l‘»ÆIQ&΋qR GËâãã+UªôÝwßmÚ´©J•*/¿üòÈ‘#¥;ò¸'·Ž~øá‡~Xܳ±±±±±±r×€"©óF<°×8ù¹ì^<°ÁV!8€R’ožÚþ%Õ̱ۃà«`‚#¬âÖ·ãQŽˆˆ¹K€Ó%''Ë]8 º1‚£R*4/""‚³ q/µ`ª¨ßR-;‚#°óÔîà«`‚#°óÔnàÜÑ×NG '+ïÅÃ’j% 8+ЬÁV"8BkvïÞݶmÛÀÀÀ®]»ž:uJîŠÐ‚#”èöíÛÆ «^½º··wTTÔ¾}û¬|ãáÇ۶m{öìÙqãÆ?>55µU«V×®]sx…QQQS§N•û8€«0O !Á ”••Õ¤I“¥K—¶jÕjРA©©©/¾øâ‘#G¬yï‚ ÃÎ;ÇŒóÖ[o%&&¬\¹Ò±9rä矖û8€aeŒBa‹¼¼¼¼¼<'m|Μ9)))‹-ZµjÕgŸ}¶gÏN÷Î;ïXóÞãÇ׫W¯ZµjÒCÿ:uꤦ¦:¤°‚‚‚mÛ¶M™2å…^0 NÚ}p+V.©†Ba‹ˆˆˆ6mÚ˜L:µiÓ¦Ùøš5kªT©Ò¯_?éaXXX=/_¾üÀ÷fdd<òÈ#¦‡¹¹¹)))5jÔpHa7nÜxá…¦NzýúuGIPæ©ñ‚#ãÌ™3‡²;YYY§OŸŽŽŽÖét¦Á˜˜ƒÁ`Í•Žz½ÞËËKa4ÓÓÓ PµjÕøøx‡ìcpp°Ñh4,¸¸'/¹ þáêÕ«F£188Ø|0((Ha}Ÿ/77·\¹rBŸ•+Wʽ[ùÑ9µÁÎUPP°qãÆâžíܹs¡‘ììl!„ù ¯¯¯âÆV~¨——×âÅ‹¯]»–””Ô©S§^½z­Y³Æ¼…iCaশX£GEûgÔqµ’ÿ¢Ðëõæ‹[,r÷îÝ.]ºÿ…?CêÞ¹sÇ|0++K`eåžžžƒ–~ž:uê”)Sz÷îÝ­[7{ \ã¨hF£œÿ+Ynn®ùÜœ‹/óõõ5¯è냃ƒ=<< ÍJgdd!ªV­jÃ1ìß¿¿"))ÉÎÂGØèÒ¥Kæ‹[ò\Úa//¯zõêíÙ³Ç|p÷îÝ:®~ýú6ÔYPP „ðôô´³0pGNž§æ^<ªCp„®\¹²aÆŽ; !ÒÒÒŽ=jñe6Ì2dĈ¦_»v-!!á¹çž µ¦°œ>}:<<\z¸nÝ:!D£Fì/ 7Gp„¼¼¼úôék06lØP¶lY‹/“f„Kµå,Y²$..îõ×_÷óó[¶lYvv¶éûýV¯^=|øðΙ3ÇâÛóóócbb:wî\·nÝ£G.]º422²Göp=VÆ( Á6zúé§;tè°pá‚‚‚!C†øøø|ðÁÙ²Obbâ˜1c233›7o¾jÕªÈÈHéÙ¼¼¼[·nwI¥¢eË–ñññ³gÏ^¾|y¥J•†:cÆŒ¢SÕ€PÀzj( Á6Òét&L˜0a‚idÚ´iŽÚ¸¯¯ï¢E‹,>Õ¿ÿüüü'N”ðö¾}ûöíÛ×yûA·à†XU •¹wïÞ®]»Š^³p$͵5·Cò 8BeöîÝ[·nÝ—^zIîBv±fI58* SÕ°Åk¯½VèË]\&:::::º¸g'Nœèçç'×a@ÛްŨ±cå.Á²!C†È]¨Óº(SÕ° ÁV!83Š™§feŒ€«ñ-Õ*EpQL»ÊDpGv‚#P.pT&‚#BЗÃ`‚#pi»‘%ÕêEp€UŽÐšÝ»w·mÛ6000$$¤k×®§N’»"@é°2F±ŽP¢Û·o6¬zõêÞÞÞQQQûöí³ò‡nÛ¶íÙ³gÇ7~üøÔÔÔV­Z]»vÍQ…;v¬wïÞ•+WööönÒ¤Éܹs ä>Z`7–ÅÀ:^r–••Õ¤I“sçÎõèÑ#000!!áÅ_ܵkWddäß»`ÁƒÁ°sçÎjÕª !^yå•°°°•+WŽ5ÊþÂÒÒÒZ·n­×ë»víZ½zõ~øaÔ¨Q»wïþöÛoå>f€b‘ŠˆŽ#l‘—————ç¤Ï™3'%%eÑ¢E«V­úì³ÏöìÙ£ÓéÞyçkÞ{üøñzõêI©Qáïï_§NÔÔT‡6jÔ¨Û·oÿðÃË–-›6mZRRR||üwß}·uëV' p×+VƨÁ¶ˆˆˆhÓ¦ùÈÔ©S›6mê¯Y³¦J•*ýúõ“†……õèÑ#11ñòåË|oFFÆ#>Þþ ^ýu))šœ={VQ¶lYGNpæqQ\ãe¹zõªÑh 6 B\¿~ÝÊäææ–+WNáãã³råÊÀÀ@û óòòúøãÍGnÞ¼ùñÇ{zzöèÑCîÀ+M'töoÄf™)(((ظqcqÏvîܹÐHvv¶ÂÇÇÇ|Ð××WqãÆ +?ÔËËkñâÅ×®]KJJêÔ©S¯^½Ö¬YcÞ´¡°B~üñÇ¡C‡¦¤¤|õÕWµk×¶ÿ@óÔŠGpT4%ÿòèõzó‡ƒÁâËîÞ½Û¥K—bw°ÈüˆÔ¼sçŽù`VV–" ÀÊÚ<==,ý.=\·n¢Q£Fvf4ÇŽ[­Zµ+V¡ûq£òa#//¯>}úÄÆÆ † 6wKiF¸T[0`À’%Kâââ^ýu??¿eË–eggO:UzvõêÕÇ8pàœ9s,¾=???&&¦sçÎuëÖ=zôèÒ¥K###‹.|.ma'OžøÀ![öññILL3fLBBBfffóæÍW­Zeú¾Á¼¼¼[·nwI¥¢eË–ñññ³gÏ^¾|y¥J•†:cÆ û{„)))Bˆ“'OžÕ¿ÿüüü'N”ðö¾}ûöíÛ×±ûÛ©S§Ò¶N@¡dj7òeƒÀªj¨Ì½{÷víÚUôšE€ªq£*¡2{÷î­[·îK/½$w! Nîtu£;í«‹0U [¼öÚkrÝ&:::::º¸g'Nœèçç'×a@ÛްŨ±cå.Á²!C†È](˜R[pÌS«SÕÀéX£ GX…à€{Pê<5T„àäÄŽ*BpÀ ¸_»ÑýöØŽÀ¹X£G´NÁÍ7æ©Õ…à«Ð4·¡:G´KÙ©‘yjÕ!8BkvïÞݶmÛÀÀÀ®]»ž:uJîŠÀ­É²2FÙYÅŽP¢Û·o6¬zõêÞÞÞQQQûöí³ò‡nÛ¶íÙ³gÇ7~üøÔÔÔV­Z]»vÍáæçç7kÖ¬yóær*(é ŽFp„âdee5iÒdéÒ¥­Zµ4hPjjê‹/¾xäÈkÞ»`ÁƒÁ°sçÎ1cƼõÖ[‰‰‰+W®tx‘“'OÞ¿¿Ü‡ TŒyj5"8ÂyyyyyyNÚøœ9sRRR-Z´jÕªÏ>ûlÏž=:îwÞ±æ½Ç¯W¯^µjÕ¤‡þþþuêÔIMMul…Û·oŸ5k–———“Ž8íF8Á¶ˆˆˆhÓ¦ùÈÔ©S›6mê¯Y³¦J•*ýúõ“†……õèÑ#11ñòåË|oFFÆ#`À€ªU«ÆÇÇ;j7Fc¿~ýüýýçÍ›çŒÃŽ¡˜vcq+cœ:O­˜½× æÚ ,W¯^5ÁÁÁæƒAAABˆëׯ[¹‘ÜÜÜråÊ !|||V®\è¨òfÍš•˜˜¸oß¾ *È}¨p5‚£²™uÝdàˆÿ^+((ظqcqÏvîܹÐHvv¶ÂÇÇÇ|Ð××WqãÆ +?ÔËËkñâÅ×®]KJJêÔ©S¯^½Ö¬Y£ûçÁ,maBˆLžZ¹rå½{÷ºàh€U”Ôn,¶F'ÏS«á¨Á6òòòêÓ§Oll¬Á`ذaCÙ²e-¾Lš.Õ– °dÉ’¸¸¸×_ÝÏÏoÙ²eÙÙÙS§N•ž]½zõðáÃX¨ùg’ŸŸÓ¹sçºuë=ztéÒ¥‘‘‘=zô°¿0P4œà=ýôÓ:tX¸paAAÁ!C|||>øà‡lÙÇÇ'11q̘1 ™™™Í›7_µjUdd¤ôl^^Þ­[·Š»¤RѲeËøøøÙ³g/_¾¼R¥JC‡1cFÑ©jPZGØH§ÓM˜0a„ ¦‘iÓ¦9jã¾¾¾‹-²øTÿþýóóóOœ8QÂÛûöíë‚‹ÓÓÓý`-åµ-®Œa=µÚ±ª*sïÞ½]»v½f8Á*³wïÞºuë¾ôÒKrŠ¡¼v£å2ßnTÉ‘P1¦ªa‹×^{­Ð—»¸LttttttqÏNœ8ÑÏÏO®Ã2 +Á…ްŨ±cå.Á²!C†È]€[kSÕ¨–zÚ,‹Ñ‚#Ðõ¤h#8 Nê J´5ƒà€ )85r£†`‚#j£àv£…b™§Ö‚#ª¢ªÔè2× 8g¡Ý¨1GÔCñ5VÆhÁ•P|j,\/íFÍ!8BûvïÞݶmÛÀÀÀ®]»ž:uJ¤¶D­bG¨@~~¾———îŸ*UªdÍ{>ܶmÛ³gÏŽ7nüøñ©©©­Zµºvíš3ŠlÖ¬YóæÍå>Z4Špð’»àÁÒÓÓõz}‹-ÂÂÂLƒÞÞÞÖ¼wÁ‚ƒaçÎÕªUB¼òÊ+aaa+W®5j”c‹œkÖ,//~¡ZÆT5lQ(ÃM:µiÓ¦Nú8)8ÖªUˆ÷fdd<òÈ#¦‡¹¹¹)))5jÔp`yW¯^}å•Wüè£:épg¡aaªh7šse»Q%ÝX 8Â1Μ9sèÐ!'m<%%¥lÙ²?üðÚµk.\øÓO?I-Okèõz©h4ÓÓÓ PµjÕøøxGÕf4ûõëçïï?oÞ<'í>·¦Ó¥§¥É]p3kP””ZµjeffJ#uëÖ]±bEãÆ­ÜBnnn¹rå„>>>+W® tTm³fÍJLLÜ·o_… ä>N 'ÓŽ\ݨaG8WAAÁÆ‹{¶sçÎÖl$%%Å`0L:µG=ôÐ÷ßÿöÛowéÒåĉ¾¾¾ÖlÁËËkñâÅ×®]KJJêÔ©S¯^½Ö¬Y£Óéì,õÀ“'Ož5kVÆ e:À4Mš…MO—»à>‚£¢éìß„Jþ¯E½^oþÐ`0X|ÙÝ»w»téRìG¹,%55ÕüZÆeË–õïßÿÇ,W®\@@€4ïÞ½×_=!!aРAÖì‹§§çàÁƒ¥Ÿ§N:eʔ޽{wëÖÍžR³²²úöíûÜsϽõÖ[:ä`F×ݨ΃¤bGESòïBnn®ùÜœ‹/óõõ5–æw:88xåÊ•¦‡ÒmCBB ½ìùçŸBüöÛo6TÞ¿ÿ)S¦$%% Ž¥-uáÂ…iii]ºtùä“O¤‘Û·oëõú™3gV¯^½oß¾öbîLmˆotGØèÒ¥Kæ/_¾lñe¥ÿõööŽ‹‹39{öì† bbbêÖ­kÌÊÊBض8º  @áééig©Ò9sæ˜fffŽ?¾uëÖGnˆ«5à]¹reÆ ;vB¤¥¥=zÔâËJ;ÿ[TùòåGÝ´iÓ;v<ôÐCBƒÁ Ý4ñ¹çž³¦Ôœ>}:<<\z¸nÝ:!D£Fì,uÒ¤I“&M2 ­\¹òÞ½{qÀ¸µµá>Ž–õèÑãøñã…þùg¹KS //¯>}úÄÆÆ † 6”-[ÖâËJ;ÿ[TPPÐÔ©SÇW»vívíÚùùùmݺõÈ‘#}ôQ½zõ„«W¯>|øÀ 5ÿLòóócbb:wî\·nÝ£G.]º422²G/@µ©ÑõíFÕ*#8ZvîܹòåË׬YÓ|ÐÏÏOîºäé§ŸîСÃÂ… † âããóÁ8鳯ŽûØc}òÉ'+W®,W®ÜO<±yóæ_|Qz6//ïÖ­[Å]d)„hÙ²e||üìÙ³—/_^©R¥¡C‡Î˜1£èT5À6ÒŽò.è„k-ÈÊʺ}ûv»ví¸¥s t:Ý„ &L˜`™6mšó>®{÷îÝ»w·øTÿþýóóóOœ8QÂÛûöíë‚‹Ó¹e;©¶‡ÆÕn‚oޱàܹsBˆBíF(Ö½{÷víÚUôšEPÕ¦FYp´dAp´àìÙ³ÂÖ»p½½{÷Ö­[÷¥—^’»°ƒÊsíF7ÁTµRp¼|ùr¿~ýNž}ZîBZ¡òÔ¨“éÖ*?lêFp,Ìh4êõzƒÁPh\º_ôÃ?,wM þ@…Ž…={¶^½zýû÷/4~äÈáÆ×4`Ž;~»'‚ca5kÖlܸñÖ®]kM´åÅ!T‚#N¦‰ÈcÞnäFÿüóÞ½{Ÿ9sÆ||ëÖ­:tؼys5ä®PÜÓÓÓ××wÞ¼y³gÏÖét'N4hÜ5€{SmdÔv‹ñïÓ¢±}ƒb(18fdd :ôÛo¿­W¯žùxllìúõë›7oþÓO?É]#¸+Õ^ΨÕ£P}ój¢ÄUÕ«V­ŠŒŒ´øTåÊ•—.]ºbÅ ¹k÷£Î¥¹ÒBi¡Åœîþž>'%|Á `'%ÇâR£D§Óõë×OîÀ¨02j8/ Užh„ƒ#@AÔ61­Õ{1Šâ[ŒÿÜ}-î9ƒà(†ªúZn1†……Þß5­íÔG‰‹c2SÏj‹B«¤µ”M7ÖIKK·òTÐn„³ SWdÔp^4Uqà^Ž!ÄýÀ’ž–¦ð¨¢Õ1ÚŸi7ÂŽàöÔ01­Õ)iGõIp ….ŽÙ¼yóòåËÏœ9c,æwhß¾}rך ìEÓZ]òbÍúh@”øá‡‘#GJ?{zzÊ]h”‚M“K·YÚp%ǯ¿þZ1`À€áÇûúúÊ]hŽR#£&ó¢), %r t”SRR}ôÑqãÆyxp &8”"#£öò¢+Ã"íF¸’â’Y~~þ;wªU«FjGRØ ÝßËB4²ÞE§³°Ò…ÔQ\ÇÑÃÃÃ××÷?þ0 dGp%u5Ü\TÆœKqÉÌÓÓsðàÁsçΕ»P9ÅtµÔ\4ï,Ê{›nÚp=Åu…íÛ·?þü¢E‹öíÛ×®]»G}´L™2…^Óºuk¹ËSF—Q3ýE¸%Ç6mÚH?;vìØ±c_“œœ,w™ HrGFSX*Ï‹ ‹´! %ÇN:É]¨“|wóÖ@sÑ<) E†Å¿K%5B&J ޳fÍ’»P™ªÎ‹*JŠ€B(18JÁå‘Q½“ÑÚHŠ´!#EÇU«V !žzê©Úµk›–,..Nîª@n®Œjl.j#)þcH•"‚ã´iÓ„S§N•‚£ô°dGnÍU‘QuÍEí%E@Qß|óM!Äã?.==z´Ü€R9?2ª(,ЉBëI‘v#d§ˆàøÆo˜?2dˆÜ€ò892ÞÏ‹¡Š‹îÜP$5B ÷Í1€Âœö0E¿0:-=Mî½-¼ßÅ}´[¥F@!ÑqXæ„.£bg¢ÝmÞ¹Th7B!Ž HŒJ ‹E3¢ãöUƒÂBC96P‚#(Œã"£Bn C+Ð ®qÅpĵŒE/[tej,zUbÑ I¥¢"-=]î*€ûè8€Ø×e”e&šéf.m$6B9ÔFãÎ;/\¸ðÄODFFÊ]8Ž­‘Ñ•a‘Œ( Ä@wîÜùÙgŸµmÛVº7øäÉ“¤§úöíûþûïë,þ5*RúÈè‚°ZtŒ@¢Äk<8|øðS§N !Äï¿ÿžàëëûÒK/=ú裫W¯Þ¹s§Ü5€Js-£Åk’-^˜––Î%‰J@»ʤÄà¸xñb£Ñ8iÒ¤áÇ !¶mÛ&„øøãßÿýÿûß:î¿ÿý¯Ü5€M¬‹ŒŽ ‹¢Å5+dD… 5B±”8U}úôéÊ•+÷ë×Oz¸ÿþ2eÊ´jÕJQ³fÍÇ{,-Í_l°víÚo¾ù&%%¥B… Ï>ûì˜1cüýýå>6TëAÓ™†æbDN¥ÄŽã­[·¥Ÿ ~ÿý÷ ”)SF©P¡BFF†³k˜;wîäÉ“SSS›6mêíí½nݺ¡C‡æääÈ}l¨Pñ]F›;‹45Œv#”L‰Á1$$äÂ… z½^ñË/¿Ü»wïé§Ÿ–ž2 .\¨T©’S HNN^´hQppð–-[-Z´uëÖ~ýú;vlöìÙrªb)2–*,–* ’5€Ô…SbplÚ´é­[·>ÿüó‹/~þùçBˆ¨¨(é©%K–ܼy³V­ZN-à›o¾1 #GŽ ’FÆïëë»yófi½<À?#ãÃ"‚Ô5Pbp:thÅŠ¿ú꫘˜˜<þøãÒ½{õê5kÖ,!D||¼S 8x𠇇GëÖ­M#žžžQQQ7nÜøå—_ä><”í¯Ä§3Š¢aQèŒDXDj„*(18V­ZõÿþïÿZ·n]¹rågžyfÞ¼yÒ]322|||f̘ѬY3ç}ºÑhLII 0Bœ?^îÃ@©t:¡ÓéŒBŠŒâþOÿ‹Dª¦ÄUÕBˆÚµk/\¸°ÐàŠ+ªT©âááܰ›­×ëýüü ûúú !nÞ¼iÍF""" lٲũe£d.\»¦“*Œ:£N!tF!eF!DZZºH³ðEqÊÿÎamœÕ MK/öO'Ev/¾ø¢Ü%(…Bƒ£äÖ­['Nœ¸|ùrHHHË–-Ë–-ëìÔ(„–NW¬X±Ð¸···âöíÛÖl$99Y†ã……††Ú¿8–ŠNJáÛÜï?–.`”z†ýßý“»dÛ©è¼hÃýIê;'E^EÿY/Ú!r Ž7nÜøê«¯¤׿ÿ–-[víÚµ~ýúü±Sï§èçç§Óé²³³ ÿùçŸâ¯¾#­*îÛLÆ"÷Y´õ;¦s\ÚuQâ5ŽùùùÇ_±b…O×®]MãAAA»víêÓ§Sï§èåååëë[´³˜••%Õ ÷áàV®bFô¿¬†Ö ë¿0´D‰ÁqáÂ…G}öÙg·lÙ2cÆ Óø7ß|Ó¹sç3gÎ,_¾Ü©߸qCJŠ&ÒÅ'ÁÁÁr¥`ÃmnJºuNi¾cx ÚP%Çxzz~ôÑG*T0÷ôô|ï½÷*T¨°uëV§ЦM½^¿gÏÓˆÑhLLLô÷÷—n @iì¼âƒoÊMd„£‘¡FJ Ž'Ož 5}ë 9ooï°°°³gÏ:µ€ž={zxx|ñÅÒuBˆE‹eddtïÞý¡‡’ûðnÍ7ʶö\ˆŒpR#TJ‰‹c|}}ïÞ½[ܳ™™™?ü°S  3fÌÌ™3;uêÔªU«³gÏîÛ·¯~ýúC† ‘ûØnÄâ:;Ã[á.ÖT@^„£‘¡^Jì8Ö«WïòåËÇŽ+úÔÉ“'/^¼X·n]g×?{öìÐÐÐM›6ݼyóå—_^¾|yÑ›;°_©šˆ¶l¿4ß ýšè2 HP5%v{÷î½mÛ¶wÞygÞ¼yõë×7ÿöÛo£FBtéÒÅeÄÆÆÆÆÆÊ}0Mùgñþ}霑ÍJ×Y,Z"y,QbplÙ²åàÁƒ/^Ü­[·°°0!Ä?ü”””ššj0ºvíú /È]#€xàDszzºcïil{X4¯˜Èg¢ÝµSbpBŒ=ºqãÆ3gÎLKKB\¼xQQ©R¥Q£F™ßÙ€8ãbDk?Úΰh¾DF8© Ðà(„ˆŽŽŽŽŽÎÌÌLKKËËË ãŠ€ìd̈ÿ(C˜¾ñÏÎÅ2DF¸©Ú Üà(ñ÷÷oܸ±ÜUnªhL”1b9¦¹Xh߈Œp R#4C‰Á±Y³f|;}ûä.Ð…´ W娰h¾«²ïÜ©Z¢ÄàXè»þ„F£Ñ`0H?W®\Ùâ½ÁXOQ­Äµ9#,šï¶rvn€ÔQbpüý÷ß èõúK—.mß¾ý«¯¾ÊÍÍ2eŠÜ5j¢ä˜øw‘Žºl±„C À݆¦‘¡=J¼xQžžžÕªU‹ÿüóÏoß¾ýöÛoù(†5wÒV‹·ævÊáPÔnÃ=¡IêŽ&Íš5«U«ÖùóçÏŸ?/w-€R¨%&Þ¯ö¯JÃBìý{Ž‹¨–Ê‚£"((HñÈ#È] 6•©hg1-=͹ÇHɇZG»Z¥ÄkKýûï¿V¬XQîZ)t…¢Š²—¹û‘\Ëù‘¡aJ Ž{÷îµ8ž™™¹bÅŠ›7o¶mÛVî'RoR¼_¿S—¹û©DF(©Ú¦Äà8`À€ž}øá‡GŒ!w€#©=) Yš‹6‘JAj„æ)18vêÔ©¸§ªW¯Þ¥K—jÕªÉ]#`/ó°¨ÞÌ#Osñï'2BAHpJ ޳fÍ’»Àñ4ÐV¼¿#26ÿ.‚Èe!5ÂM(18š¡¶âý}‘·¹øwDF(©îCÁñÇ,í[Z·n-wÕ€eZ ‹B9yQ¡P¤F¸EÇW_}µ´oINN–»jào ‹BQyQ¡\¤F¸EÇVÊ¥á°(’ï—¥ÓÈñ…æá†Y µÐ^XJk.þ£2P.R#Ü“ú¾rpܸq111rW÷bñËýÔ®èwÊ]‘yq|g Ô·¥ˆŽcQ™™™;vì8{öl¡ñœœœíÛ·{zzÊ] ´O“ÍE¡äþâýúè2BéHpgJ ŽW¯^íÛ·ïÅ‹‹{A\\œÜ5B³LyQcÑEéyQ¡¤F¸9%Ç¥K—^¼x±iÓ¦±±±7nÜ¿ÿ{ï½W¾|ùS§N­\¹2..nÒ¤Ir×­!/ÊZ%‘ê@j”÷ìÙS¶lÙùóçûøøÄÄÄ<óÌ3¡¡¡-Z´B„……}ðÁ½zõª]»¶ÜeB È‹rJd„:H¿QüI”¸8æòåË5kÖôññBTªTÉßßÿĉÒS={öô÷÷_ºt©Ü5BÝŠ.vÑ å®w)"4,LkG%5ù“ eG!„‡Çß…U¯^===]úÙÓÓ3""âØ±crUÒ|^4EF¹Ëy`¹:¡Ó¥§¥É]ð`LOæ”+W®|æÌ™»wïJ«U«vèÐ!Ó³:îÂ… r×5ÑéDXX¨;äEµDF­h©(D‰Á±mÛ¶999£GNMMB4iÒäܹs?ýô“"##ãðáÃU«V•»F¨€y1--]KAE}yQ¡>¤F (%.ŽéׯßÖ­[wîÜi4,XåååõÆo4jÔèÔ©SÙÙÙíÛ·—»F(š†W\H«^Ô‘ÿ.Z»çÚEj,RbÇ100pÕªU£FzüñÇ…U«VIII1ôöönÞ¼9©æh1*”VÏ ´NGjD‰ÁñÆÿþ÷¿;tèЧOŸµkך–W&Z½«ŽPÕ-UOd„Zq³FÀJ Ž  >räÈäÉ“[¶l9aÂó;òÀi5™¨»Åx´xbàh4VRbp|üñÇ'L˜ðã?®X±¢wïÞeÊ”ùßÿþ÷üóÏ/Z´èÚµkryh;2ªµÅxþ:7€ ‘ë)18Þ¯ÌÃã©§žš6mZRRÒ‚ bcc¯_¿þé§Ÿ¶nÝÚ|Ý Ü;DF¹k±y4znà6H@©(78šxyyEGGÏž={ùòåz½þÇ”»(¸ˆ&c‰f¥ïï‰æÎ Ü Ka(ñv<…$''oÙ²eË–-iiiâ¯N¤ÜEÁé4y/ß[§ðžhñôÀÛ(78þþûï[·nݼyóÙ³g¥‘ ÄÆÆ¶oß>((HîêàDšÌ$DF@9H€Í”gÍšµuëÖóçÏKkÖ¬[£F ¹Kƒsi2“h'2 Á h©°‡ƒã×_-„ êСClllýúõå®® ½L¢µÈ(4êáftBR#`%Çž={ÆÆÆ6mÚÔÃCkw`?eÝýžˆŒ€‚ÐhB‰ÁñÃ?”»¸ˆÆ2‰¦ZŒ÷wIs}`¸%R#à(J ŽpZÊ$ÚŒŒBC¡nŒÔ8Á2ÐR&!2ŠÅE€Ãájk4j*2 m¸7€3á:ZêdÑh”ŒÔ8 Á.¢™N–#£ÐÐéÛczp*‚#œN3,ÍFF¡‰ÓÐhœàçÒF'K›‘QhåôBR#àG8‘b‰–#£ Ñ`zp‚#œB±Dƒ‹¦ïï˜ú=ð€+áxˆ%4å£Ñ¸Á¦öÔ¨ÙÈ(Ôn34YáHjO&Zž›4¡¤F@.G8ŒªS#F@˜žäEp„c¨:œÐhTF# ;‚#ì¥êpB£P€BaU‡€*Ðh”ƒàÛ©75ÒhTF# 4GØH½ùD³F¡æ³A£P ‚#l¡Ò|¢ñF£`zA£P,‚#JM½©Q›‘Q¨ö”–Ðh”ŒàˆÒQcDÑ ¥Ñ(F@ù<ä.p.©Ñ˜–ž&w!ÎØ70IЩÑÈŸf@áè8¢T×ndzP>€Ša-uÖÁÊGdT‡à«¨.5j32 µ  x,‚ÔˆàˆSWV!5 G£P/‚#@]Y…Ô(F@ÕŽ(‰Š² 5 G£Ђ#´€F# dDF@3Ž(–Z ©P2æ¦-!8Â2µ$ͦF¦§¡~4í!8ÂR£Ü;¦’ƒÈhÁª¤ñ¥0¤F¨sÓ€†Q˜òs‹fB G(F@óŽøåçR# @DFÀM¡&šM,…š17 ¸‚#þ¦ð†—–S£’;P<€»!8â>…§R# (DFÀ=¡¤F@9ˆŒ€;#8BeR# \θ9‚#`H€BÐh ŽP2m¦FPCmˆŒLŽîN±/ͦFenÀ"#€BŽP"R# /"#‹ŽnM™I†ÔÈ‹0ŠCp„²é„¡¡üaP¹ €lfH€\t5ÓÒÓ宀rÑqœ‰ÔÅãrFÖ#8º)æ ¶x”3DF¥Ep„"W"2° ÁÑ)-ÒWbÑ4›!3R#à24؉àèv•jH€k8ÁpR#”‡ÈÀŽîEQÁFkíFE\€ÈÀ Ž©p"#'!8ºådR#à$DFNEp„«‘g 2p‚£» Þ8‡ @dà2G¸”¦Ú¤FÈÈÀÅŽnA! ‡Ô8 ‘€,ŽpR#àDF2"8¥Dj„LˆŒdGpÔ>%äí´•p4á~ˆŒ‚à§#56#2P‚£Æu†C ×"2P ‚#œK#íFR#\KGd HG8‘FR#àB4(ÁQËh“9Ç.Ad |G8‹FÚ¤F8‘€Zá¤FÀDFêBpÔ,2½8‚p&"#5"8Âñ´Ðn$5ÂiˆŒÔ‹àhY=Ž?^h000ð矖»4«{ìÂáƒs¨ÁѲsçΕ/_¾fÍšæƒ~~~r×¥Zh7¥ûë~1¨ÁÑ‚¬¬¬Û·o·k×nÞ¼yr×¢2ZH´á8´h ÁÑ‚sçÎ ! µU„äc;Ž„È@“Žœ={VQ£F ¹ QÕ·Ip"# #8Z ÇË—/÷ë×ïäÉ“*T¨W¯Þ°aÞ|òI¹KƒÓa7"#Í#8Zpþüy!ÄgŸ}Ú¼yó‹/îÚµ+11qÊ”)½zõ²f …F¶lÙâÂ=MOOwáÇ !DXhXZzZºpõçZéÂ… %<–ž–&\~ÐÜ\É'E]ÂBC…iééB(õwÀjZ:/šÁI‘Ý‹/¾(w JAp´àòåËåË—5jT¿~ý¤‘¤¤¤aÆ}ôÑGÏ<óLHHÈ·œœ,Wñ5ÎB]ÿÑ¡¡2|¨£ÊSxñZ¥Ãþ.£úwç¯ýÐÈŽh 'E^EÿY/Ú!rn /^lzèéé9tèP!IJeË ½²E‹¯¼òÊ×_ýÃ?˜Ò$LÔ}u#“Ô° ÓÜ[Çüü|óî”-[V Ž=õÔS_ýõéÓ§å®ZqHp7DFnË­ƒcùòå‹6ŸF£Á`ÐétæãžžžBˆ‡~XîªKB *ŽJ‰ÈÀÍyØ¿ 9{öl½zõú÷ï_hüÈ‘#¯i(ŽºÛ€ÕtBè„0’¸7‚ca5kÖlܸñÖ®]k}úòåËgÏžýî»ïÊ]>œˆÔ@ ܱãW\jB|óÍ7ƒaäÈ‘RjBŒ?Þ××wóæÍƒAîòá,¤FJæŽÇéÓ§çææ !V®\™””TôôððhݺµiÄÓÓ3**jýúõ¿üòK“&MœZž‚/ÔdÝÀZîŸyæé‡]»v}Öh4¦¤¤˜‡‡‡ !Ο?ïìàYÐnàÜ18–,;;[¯×ûùù÷õõBܼyÓšDDDØQB²=o?|:<">>¦Áôôté)¹÷ @îxÇjÓ¦^¯ß³giÄh4&&&úûûGFFÊ]€<ŽôìÙÓÃÃã‹/¾®kB,Z´(##£{÷î=ôÜÕÈC³SÕö 3fÌÌ™3;uêÔªU«³gÏîÛ·¯~ýúC† ‘»4Ù-‹¯T©Òwß}·iÓ¦*Uª¼üòË#GŽ”îÈàžtF¾&VàGX…à«`‚#¬Bp€Uް ÁV!8:ÌÚµk{öìÙ²eˉ'fffÊ]‘)íÁÏÉÉY¶lYÇŽ6lتU«AƒýüóÏrï„ÖØóqéÒ¥Æ3FîÐNÊñãÇßxãèèè¦M›¾üòËû÷ï—{'´¦´'%//oñâÅݺu‹ŒŒŒ‰‰1bÄü!÷N¸´´´ˆˆˆ_ýUîBd@ptŒ¹sçNž<955µiÓ¦ÞÞÞëÖ­:thNNŽÜu¹…Òü‚‚‚|üñÇ×®]kÞ¼y­Zµöïßÿå—_ʽ+ÚaÏo„Ñh7nœé›âá(6œ”;wöíÛwçÎAAA‘‘‘GŽéׯßÎ;åÞí(íIÑëõýû÷Ÿ={vfff«V­ªV­ºuëÖÎ;üðÃðððiÓ¦É]šöÙpðW­ZÞ·oßììliäôéÓO=õTݺuÿýw¹wH ìüX²dIxxxxxøèÑ£åÞí°á¤Üºu«I“&O>ùä¡C‡¤‘_ýµAƒ-Z´ÐëõrïØü×׈#òó󥑤¤¤ºuë>ÿüórï[¸}ûöÁƒß{ï=é﨣GÊ]‘ è8:À7ß|c0FŽ$Œ?Þ××wóæÍƒAîê4Άƒ¿eË!ĤI“Ê—//Ô®]{ذaz½ž k‡°ç7â?þ˜;wn:uäÞ ­±á¤¬[·.++kذa7–Fžxâ‰víÚedd?~\îÒNÊ/¿ü"„èß¿¿———4Ò¼yóºuëž9sææÍ›rïöÅÆÆÆÅÅ­Y³FîBäDpt€ƒzxx´nÝÚ4âééuãÆ é—ÎcÃÁOOO¯X±býúõÍk×®-„8þ¼Ü;¤6ÿFŒ;Ößßüøñrï„ÖØpRvïÞ­Óéºtéb>øÉ'Ÿ$''?ùä“rïØpRªT©"„0ψF£ñÖ­[¦( ç™>}úüùóçϟߢE ¹k‘ Îìe4SRRÌÇÃÃÃ…çÏŸoÒ¤‰Ü5j–máÂ…Eÿ†ýí·ß„ÕªU“{ŸTϞ߈Ï?ÿüäÉ“K–,ñññ‘{?4Ŷ“râÄ ÿÊ•+:tèÈ‘#·nݪS§NÛ¶mM­zØÃ¶“Ò±cÇåË—OŸ>½B… 6ÌÌÌœ?þ… z÷îÍo <óÌ3Ò»ví’»Ùí•­×ëýüü ûúúŠþw!ζƒ_¯^½B#ûöí[´hQÙ²e 5W`›#Ž=ºxñâ—_~¹E‹Rއ£ØpRòòòîܹS«V­)S¦¬^½Ú4^­Zµyóæ5hÐ@î}R=Û~S"""V¬X1`À€˜_~ùå‰'ʽCpLUÛKZþV±bÅBãÞÞÞBˆÛ·oË] –ÙðõzýòåËœ=cÆŒÀÀ@¹÷Iõl;)999cÇŽ­V­Ú;ï¼#÷h 'åÎ;Bˆ”””M›6Íœ9sÿþý‰‰‰o¾ùæÅ‹GŒÁ-#ìgÛoJVVÖŒ3îÞ½[¿~ý>}ú<÷ÜsåË—ÿî»ïXê—¡ãh/???N—]h\º™ˆôߎp;þþýû§NšššZ¥J•>úȯYq ÛNÊÌ™3/\¸°zõj¦AÁ†“R®\9é‡3fÄÄÄH?¿ñÆ—.]Z·nÝÆ{ôè!÷n©›m¿)cÇŽ=|øðøñã(\ºt©OŸ>o¿ýö÷ß&÷nAûè8ÚËËËË××·èfee !Lkåà 6ü¼¼¼éÓ§÷ïßÿÒ¥Ko¾ùææÍ›IŽbÃI9pàÀêÕ«_}õU–\8‰ '¥bÅŠåÊ•+_¾|tt´ùxÛ¶m…§N’{ŸTφ“ríÚµ]»vÕªUË”…!!!ÇÏÏÏÿöÛoåÞ'¸‚£߸qCúm7IOO—ž’»:³áà †wÞygùòåmÚ´Ù¶mÛo¼A—˱J{R¤ï½˜?~Ä_ºuë&„øþûï#"":vì(÷i ¿)AAA=ôN§3”~Y äÞ!-(íI¹qㆢfÍš…Æ¥Fãõë×åÞ!¸‚£´iÓF¯×ïÙ³Ç4b4ýýý###å®Nãl8ø+V¬Ø¶mÛK/½ôå—_Òv†Òž”5jtø'iébHHH‡¢¢¢äÞ!-°á7%:::++ëôéÓæƒÒmb¸Ñ¦C”ö¤Ô¬YÓÓÓó?þ0æãÉÉÉBˆZµjɽCprß\ .^¼X§N_|ñÎ;ÒÈ‚ ÂÃÃ?ùä¹KÓ>kþŸþ™––vþüy£Ñh0Ú¶mÛ¸q㜜¹k׬Ҟ”¢Nœ8Á7Ç8– 'å÷ßïÙ³ç7¤‘cÇŽEFF6mÚ4##CîÒNÊ«¯¾>oÞ<Ó—÷œ>}ºY³f 4HII‘{‡ÜȤI“Üö›cXã!!!cÆŒ™9sf§NZµjuöìÙ}ûöÕ¯_È!r—¦}ÖüÄÄÄ·ß~»víÚ6l¸~ýú¹sçÊ—/Wtk]»v}ùå—åÞ'Õ+íI‘»^·`ÃI©[·î¨Q£æÌ™óâ‹/6iÒ$;;ûàÁƒ:núôé<òˆÜ;¤6œ”?ü°GóçÏß´iS½zõnܸqøðaƒÁ0yòäÇ{Lî‚[ 8:F|||¥J•¾ûî»M›6U©Råå—_9r¤tW8[©þ… „999'Nœ(ú,Kd…߲᤼úê«Ë—/OJJò÷÷oӦ͛o¾)}Í¢´'%00pÓ¦M ,øé§Ÿ~üñGÿgŸ}öµ×^{üñÇåÞ¸ ñŸ—J±8V!8À*GX…à«`‚#¬Bp€Uް ÁV!8À*GX…à3fLDDÄÞ½{]¶©/¾ø"""bÕªUæïúñÇ-> ò"8€šüôÓO‰‰‰rWÀMyÉ]¸µèèèÀÀÀÆ[ùìèÑ£³²²~ÿýw¹ àŽŽ §úõëׯ_ß¶gÀŘª Jz½¾  @î*À½¨†´p$55õƒ>hÒ¤Iýúõ[·nýæ›oZ€"½ìÒ¥KGíÞ½ûOÛ¬Y³üûßÿÖëõE?ë§Ÿ~1bDTTTTTÔk¯½¶{÷îB/ÈÈȘ3gNûöí5jÔ¨Q£:̘1ãêÕ«¥ÝÔâÅ‹KXþbþì'Ÿ|‘™™©×ë#"""##'Nœ±råÊBïš3gNDDħŸ~*÷ 5G*3iÒ¤•+WÞ»w¯F™™™Û¶m‹ÿúë¯ ½ìäÉ“ 8qâDnn®Á`BÆqãÆ½ýöÛ»ví2¾¾¾ûöíûä“Oâââ233Íß»~ýúÁƒoÛ¶­\¹r·nÝÚ¹sçСC?ûì3Ó 222âââ.\xéÒ¥êÕ«?úè£çÏŸ_ºtiß¾}K»)ë5iÒ¤ÿþeË–Õétýû÷饗ڷo/„غu«ùËŒFㆠ„;w–û\Ђ#•9räHëÖ­÷îÝ»mÛ¶_~ùeüøñ:îÓO?ýã?Ì_öÞ{ï=þøãK—.ýù矫W¯.„øöÛo¿ûî»   5kÖìÞ½{ëÖ­»víjذá‘#G>ÿüsó÷®[·®M›6û÷ï—>bìØ±óçÏ?vì˜égΜ‰‰‰ùù矿ûî»ï¿ÿþ§Ÿ~jÚ´éÅ‹wìØQªMY/&&fâĉ*Tððð˜8qâ˜1cš7oîççwèСŒŒ ÓË~ùå—‹/6hРV­ZrŸ+ZCp 2AAAÿú׿üüü„žžžŒ‹‹3 óçÏ7YÅŠ/^Ü¢E‹ÀÀ@idÞ¼yBˆéÓ§GFFJ#UªTùüóÏË–-»fÍš+W®˜ÞòÙgŸùøø!¼¼¼ '„øòË/¥DGG=ºbÅŠÒˆOll¬âìÙ³æe>~éÒ¥ï½÷žõÕš6e'OOÏ^xA¯×K×V2O À©è8P™ôôôB#W®\ÉÎή\¹r… Š{—Ôk,t¢DjFš·‹~ÄåË—³³³«U«V¦L™?ÿüóƒ>(S¦ÌÂ… Ÿyæó2¬©Ö|S9 íÚµ[½zõ–-[Ú·o¿sçNŸèèhGu‚Ž#Õùßÿþ———g>²bÅ !Dƒ JxWppp¥J•.]ºôÓO?™_¿~}×®]žžžuëÖ5 &$$º¹£ô5B?~\¯×7jÔÈ<5 !N:UôsKÞ”C4iÒ$00pïÞ½ ÷îÝëСƒ£")Bp 2W®\9rdVV–Â`0¬ZµjÙ²eo¾ùfÉo|ûí·…“'O>qâ„4rõêÕ7ß|óÞ½{½{÷ 1½òüùó£Fº{÷®ôË—/ÿÏþãååõúë¯ !‚ƒƒ…§N2ÝG¯×¯Y³FºwNNŽù‡–¼)Û †ììlÓCimuAAÁœ9sóÔœ‰©j*Ó¾}ûmÛ¶5kÖ¬fÍšÒ´¯‡‡Ç¨Q£êÔ©Sò»víºwïÞõë×wïÞýÑG-_¾|jjªÁ`ˆŒŒ9r¤ù+#""¶lÙ²}ûöÐÐЋ/æääxyyMžýôÓ%K–lÚ´éСC>úhTTÔÀk×®­×ëׯ_ðàAë7UZãÇŸ>}zjjê½{÷Lƒ7®T©Òõë×i7p*] + @QÆŒóý÷ß/\¸°uëÖr×¢,ƒ¡M›6—/_Þ±cGÕªUå.€fq#¨^RRÒ¥K—š6mJjàTGP·œœœ¹sç !ºwï.w-4Žk@Åš6mzïÞ½¼¼¼ZµjI_– ÎCp íÛ·/ú%~î¬J•*çÎ‹ŠŠš6mZ¡%>àp,Ž€U¸ÆV!8À*GX…à«`•ÿÚXbM£lIEND®B`‚statistics-release-1.6.3/docs/assets/laplacepdf_101.png000066400000000000000000000605111456127120000227460ustar00rootroot00000000000000‰PNG  IHDRhŽ\­AaIDATxÚíÝy\TõþÇñï.(2@ Š+”’Xý­Ü¬\r×Ê\35—[©åšÝÄ5Móæ-Å®™ËÕ«xó‘šZ©¡¦¤¦^—e—TRLdf~œ§aÀÌÌ9sÎëùðуùÎY¾çÌöîó=‹Áb±à~¼”î<Á² Á² Á²(àäÉ“†?íØ±Ã«~ûí·¥õöêÕKéÝPä>±U¥J•Æ9òâÅ‹÷ÞÇÇ'88ø‰'žxûí·¯]»&s¶&Nœ¨ôž ^GPµ›7o>|xéÒ¥?üðwß}WüÄ&“)++ëÀï½÷^dddbb¢ÒÝ )>Jw`/44Ô××Wq÷îÝË—/›Íf!Ä­[·FŽyâĉʕ+5ý­[·¬…Æììì~ýú%''W¨P¡˜UØ Tzë¨Gš•––vçÎ¥{Q«W¯NKKKKK»xñbNNΰaäösçÎíܹ³˜é322Ο?ÿÒK/Ií/^üì³ÏŠ_…iÓ¦)½õÔ‹à@íÌfóÚµkÛ·o_§NŠ+Ö©S§]»v_~ùåÝ»w­ÓعxåÊ•GDD„††Îž=Û)«ddd¼þúë-[¶4uëÖíܹó7ß|SxW¯^}ýõ×[´hQ¥J•|°OŸ>‡.Ýæûùù-Z´¨\¹rÒÃÓ§O?}­Zµ–-[f=‚óƒ>¸uë–›^*ZÇP5µëß¿ÿºuë¬ÏŸ?þüù„„„Í›7¯_¿ÞnâÜÜÜV­Z¥¤¤Hsrr¦NzöìÙýë_e_Åwß}7pàÀŒŒ ëºÒÓÓ·mÛ6|øð¥K—Z'Û¹sç‹/¾xõêUéáÍ›7SSS¿úê«ñãÇôÑG¥Ø¾¾¾!!!¿þú«âúõërfyýõ׿úê+!ĵk×öîÝûÌ3ϸøU  T¨Úºuë¤Hg0:tè0xðàGyDz*>>¾ð¸íÎ;SRRªV­Ú¦M???©qÙ²eÛ¶m+ã*rss  ¥Æ€€€>}ú´oß^zêóÏ?_µj•u²^xAJ:t˜1cFÿþý½¼¼,Ëüùó—-[VŠpãÆ k ­W¯žœYÚ´iS¾|yéï¸ëå qGªf |&LرcÇ—_~yüøñÆK?ÿüsáYž}öY©^˜””)5¾÷Þ{e\Åœ9s¤óNêÔ©söìY)SZ´V­“õíÛwÇŽï¼óοÿýï… JÏÆÆÆ–hó NŸ>=pà@“É$µ<þøãrf4 ÕªU“þ¾råJá :vìXøZ<ãÇwö @Sª jÏ?ÿ|LLŒ¢M›6RKnnn^^žôwáq[ŸO?ýT:8,,lÖ¬Y½{÷BìÛ·ï÷߯X±b©W±}ûvé7ß|388XúûÕW_•Žq¼sçŽÉdòöö¶ÆÐ#FXWñÒK/7Îd2?þرc=öXñ[ݱcG‡íÝ»woÔ¨‘Ì]÷Àœ?^Úw¼Tt€à@Õ¤ƒó²³³·oß~èС#GŽúÈ: ¼`Á‚ÄÄÄÄÄÄ *xyy ›óZââ⤤(„ذaÃ<\·nÝbÐtŠ+W®Œ92>>^z8hР*Uª¸tôƒŠ#… <¸R¥J…ÛW¯^Ý´iS???é¨Á—_~yÍš5ƒaÛ¶m…oèbë¿ÿýoxxxƒ <(S{yyÍœ9ÓáÄ~~~2WñöÛo¯X±"777--íñlj‰¹zõêŽ;¤gÇŽ+ý1uêÔÏ?ÿ<;;{ãÆ:thÛ¶íÉ“'·lÙ"=;aÂWœ€b݇·nݺ|ù²µ=$$äÝwßuÁ‹@§Ž&Ý¥°Û·o †®]»þç?ÿBäåå}ýõ×Bˆˆˆˆ:uêìÚµKa’$mÚ´9wîÜùóç­‹õññY´h‘ÃÓb„òWQµjÕåË—¿ôÒK999W¯^ý÷¿ÿm]È´iÓºuë&ýøå—_<øÆ?üðÃ?ü`lÔ¨Q3fÌpÛ> úú믭W€²c¨€ª-X°àÑGBxyyýßÿýßøñã9Ò£GéÙ5kÖX/# úñÇGŒQ¿~ýÐÐÐ>}ú|÷Ýw¯¼òŠSVÑ«W¯ãÇ¿òÊ+R)´nݺÏ>ûìîÝ»ßÿ}ÛvëÖíÿûßðáÃ5jT©R¥ˆˆˆ^½z%$$|öÙgƒÁ¥»ËÛÛ;((¨Y³fo¿ývRRÒ“O>éÎ €æ¬‡à€:ݽ{wóæÍBé4‡Þ~ûméÞ0={ö”îÑìôUª våÊ•sužsÃ*@ª€,GÈBp€,œY¨8@‚#d!8@‚#d!8@‚#d!8@‚#d!8@‚#d!8@‚#d!8@‚#d!8@‚#d!8@‚#d!8@¥; A‘‘‘Jw¸VRR’Ò]PÁÑ%ôùfBdd$/½>ñÒë/½né¶HÄP5d!8@‚#d!8@‚#d!8N³mÛ6¥»eðÒë/=ô†àYŽ…àYŽ…àYŽ…àYŽÅGé ^‘‘‘Jwî””¤t<Á€â)4ÿ=¡jÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBpî°{÷îŽ;‡……õêÕëôéÓJ÷%FpråääŒ5ªvíÚ~~~mÚ´ILL”9ãÏ?ÿܱcÇôôôÉ“'O™2%%%¥uëÖNïa›6mbcc•ÞOšEp²äææ6iÒä‹/¾hݺõË/¿œ’’Ò©S§#GŽÈ™wñâÅf³yçÎ'N|íµ× V­ZåÜ9räÇTz?iÁíÈÏÏÏÏÏwÑÂçÏŸŸœœ·zõê… îÙ³Ç`0¼ñÆræ=~üxTTT­Zµ¤‡?üpJJŠS:VPPðí·ßΘ1ã™gž1›Í.Ú|‚#ZcÛÛ´iS§,|íÚµÕ«W+„HMM=zô¨ÃÉJ1">>/¼ðB·nÝÌfóæÍ›+T¨àp2iD¸DK:tè²eË 0vìØ€€€åË—çååYïï·fÍš1cƼôÒKóçÏw8ûÝ»w;tèУG =zô‹/¾ˆŽŽîÛ·oÙ;·!8 )O<ñD×®]—,YRPP0bÄÿwß}×)Kö÷÷OHH˜8qb|||vvvóæÍW¯^-=›ŸŸãÆ¢©B´lÙrذaóæÍ[±bEHHÈÈ‘#gÏž]x¨jFp@S ÃÔ©S§Njm™9s¦³n4ãââ>5dÈ»wïž8q¢˜Ùû÷ïß¿×m{dd$ÕJ—â¬jà¿ÿþû®]» ³-!8'Ø¿ƒ ^|ñE¥;b¨í=z´ÝÍ]ܦ}ûöíÛ·/êÙiÓ¦(µ[à,G´cÒ¤IJwÁ±#F(Ý8CÕ…àYŽ…àYŽ…àYŽ…àYŽ…àYŽ…àÜa÷îÝ;v  ëÕ«×éÓ§•îJŒàäÊÉÉ5jTíÚµýüüÚ´i“˜˜(sÆŸþ¹cÇŽééé“'Ož2eJJJJëÖ­322œÕ±cÇŽ=ÿüóÕªUóóókҤɂ ”Þ[ä£t€gÈÍÍmÒ¤Éùóçûöíß©S§]»vEGGßwÞÅ‹›Íæ;wÖªUK1hРˆˆˆU«VM˜0¡ìKMMm×®ÉdêÕ«WíÚµ¿ÿþû &ìÞ½û«¯¾RzŸi G´#?????ßE Ÿ?~rrr\\ÜêÕ«.\¸gσÁðÆoÈ™÷øñãQQQRjB>üðÃ)))N騄 rrr¾ÿþûåË—Ïœ9sß¾}Æ Û¸qãöíÛ]´+t‹à€vDFFÆÄÄØ¶ÄÆÆ6mÚÔ) _»vmõêÕ,=ŒˆˆèÛ·oBBÂåË—ï;offæ<`}xçÎäää:uê8¥c;wîlÓ¦ífþíoBìß¿ß)ˇÁ-;wîÜ¡C‡Ê¾œÜÜÜ3gδoßÞ`0X;tè`6›åéh2™|||„‹%--mèС5jÔ6lXÙ;VPP0vìX))Z¥§§ !*T¨àìÝ©wãîïêÕ«‹%44Ô¶±jÕªBˆk×®É\È;w*V¬(„ð÷÷_µjUpppÙ;æãã3kÖ,Û–ëׯϚ5ËÛÛ»oß¾Jï6­!8Pba(ûBJÍ",e_HAAÁ–-[Šz¶Gv-yyyBÛF£Ñ(„ÈÊÊ’¹RŸ¥K—fddìÛ·¯{÷îÏ=÷ÜÚµkmK˜¥è˜~øaäÈ‘ÉÉÉŸ}öY½zõʾ£`‹à@‰9%º¹ˆÉd²}h6›NvëÖ­ž={¹û ”ªƒ¿ýö›mcnn®"((Hfß¼½½‡.ý;cƌ矾wïÞeé˜Õùóçÿö·¿mÚ´©^½zßÿ}‡\²õcД;wîØ>¼}û¶ÃÉŒF£¥h…§ õòò²•ÎÌÌBÔ¨Q£ý2dˆbß¾}eì˜dÍš5<òÈ¡C‡–,YòË/¿]„Š#šò믿Ú>,ê”ç’ŽûøøDEEíٳǶq÷î݃¡aÆ¥è§tnooï2vL±iÓ¦Aƒ=÷Üs‹/¶L‡sД+W®lÞ¼ùÙgŸB¤¦¦=zÔád¥1bÄ믿n]xFFF||üSO=.§c8sæLýúõ¥‡6lB4jÔ¨Œ³X,“&MªU«ÖÊ•+ ÇP8ÁMñññyá…ºuëf6›7oÞ\Ô%i¤á-yèС˖-0`Àرc–/_ž——+=»fÍš1cƼôÒKóçÏw8ûÝ»w;tèУG =zô‹/¾ˆŽŽ.|âsI;vêÔ©Ó§O7hÐÀzô¤UïÞ½»uëæÆ}¯}G4å‰'žèÚµë’%K FŒáïïÿî»ï:eÉþþþ 'NŒÏÎÎnÞ¼ùêÕ«­÷ÌÏÏ¿qãFQ‡T !Z¶l9lذyóæ­X±"$$däÈ‘³gÏ.{099YqêÔ©S§NÙ=õÐC‹à€¦ †©S§N:ÕÚ2sæLg-Üh4ÆÅÅ9|jÈ!wïÞ=qâD1³÷ïß¿ÿþÎÝÞîÝ»—´tŠRã¬jà¿ÿþû®]» ³-!8'Ø¿ƒ ^|ñE¥;b¨í=z´R×£iß¾}ûöí‹zvÚ´iJí8 Áí˜4i’Ò]plĈJwNÀP5d!8@‚#d!8@‚#d!8@½\ŽgýúõëÖ­KNN®T©RÛ¶m'NœXÌô}ûö=~ü¸]cppð?þ¨ô¦(CÁqÁ‚‹/®\¹rÓ¦MÓÓÓ7lØpöìÙ+Vøúú5Ëùóç}}}ëÖ­kÛÈ•K€ži?8&%%ÅÅÅ…††ÆÇÇW­ZUñþûï¯X±bÞ¼yo¿ý¶ÃYrsssrr:wîüñÇ+Ý}µÐþ1ŽëÖ­3›ÍãÆ“R£bÊ”)F£qëÖ­f³Ùá,çÏŸBØ•tNûÁñàÁƒ^^^íÚµ³¶x{{·iÓ&++ëðáÃgIOOBÔ©SGé¾ »wïîØ±cpppXXX¯^½NŸ>­tPbŽ‹%999(((((ȶ½~ýúBˆ .8œK Ž—/_ùä“Í›7WzWi“ÆqÌËË3™L…Oj1Bˆëׯ;œK ” . oÞ¼ù¥K—víÚ•0cÆŒçž{NÎz###íZ¶mÛ¦ô΀Ë]¼xQé.@¼ôЉÜÜÜ&Mšœ?¾oß¾ÁÁÁñññ:uÚµkWttô}ç]¼x±ÙlÞ¹sg­Zµ„ƒ ŠˆˆXµjÕ„ œÛÉéÓ§ÿôÓOO>ùd‰æJKK+æÙN:9oz&ÇÛ·o !*W®l×îçç'„ÈÉÉq8×åË—}}}'L˜0xð`©eß¾}£FúàƒZµjvßõ&%%)½éPFxx¸Ò]€""Â-¥;!„ÈÏÏB”/_Þ Ÿ?~rròòåˇ "„xýõ×7nüÆoìܹó¾ó?~<**JJBˆÀÀÀ‡~8%%Ź=üî»ïæÎëãSâxSü·wáŸõÂ"ÐøPu@@€Á`ÈË˳k¿yó¦ø³îXØòåË=jMBˆ-Z 4èöíÛßÿ½ÒÛ@‘"##cbbl[bcc›6mê”…¯]»¶zõêÖßLjˆˆ¾}û&$$\¾|ù¾ófff>ðÀÖ‡wîÜINNvîéW¯^4hÐðáÃkÖ¬éÄÅ–ƃ£Ñh,\YÌÍÍBXϳ–£Y³fBˆ3gÎ(½M”À¹sç:Töåäææž9s¦}ûöƒÁÚØ¡C³Ù,çHG“É$-KZZÚСCkÔ¨1lØ0gm¦ÅbpàÀúõëûõë'MpäÈ‘eË–………=óÌ3Jo@T|>”Éd²}XÔÝ.nݺճgÏ¢·Ï~¥êào¿ýfÛ(úewÍ»bx{{>\ú;66vÆŒÏ?ÿ|ïÞ½ËÒ±ÜÜÜþýû?õÔS¯½öšk÷,ôÃÂÂ&Nœ8gΜîÝ»·nÝ:===11±aÆ#FŒ°N“0~üøzõêmÞ¼Yñ÷¿ÿýå—_ž>}úš5k""".]ºtôèÑJ•*Íš5«˜Û[Ð'e O@awîܱ}(]`¤0£Ñh)Iü õòò²•ÎÌÌBÔ¨Q£ý2dÈŒ3öíÛgKÚ±%K–¤¦¦öìÙóÃ?”ZrrrL&Óœ9sj׮ݿ'î[h?8 !† ²qãÆo¾ù¦zõê7nœT}tèá‡þꫯ>úè£ýû÷Ÿ={¶V­Z={ö|íµ×ªW¯®ô¦P£ÔÔ4ƒ+ò@-~ýõWÛ‡Eò\ÒaŸ¨¨¨={öØ6îÞ½Û`04lذý,((žBP–ŽIW š?¾mcvvö”)SÚµkGpt2 œ­~ýúJwÊHMMUº P€–ÔÔT¾MµÊã¾ÒëÖ­+„Ø´i“ô0%%E*”žòÆ% .´]øÕ«WCCCŸ~úi™ó÷÷OJJ²¶Ìž=[±víÚ²w¬ðºž|òIù;­¯²Ç½1œEGôÃÇÇç…^èÖ­›ÙlÞ¼ys… NVÒa!ÄСC—-[6`À€±cÇ,_¾yòä)S¦¤¤¤´nÝ:##Ã|òÉ'›7o®ôÞÒ¥;|xÍš5]´ô†à¥d0‹EéN÷sîܹC‡¹háÉÉÉ*T¨R¥Êúõë—,Y²wï^©ä)‡Éd’ ‹%--mèС5jÔ6l˜³úf±XøñÇ»hóuˆÊ-8‡t»j¢$t%99ÙËË롇ÊÎΖZ4h°råÊÆË\Â;w*V¬(„ð÷÷_µjUpp°³ú6wîÜ„„„ÄÄÄJ•*)½Ÿ´ƒà€lÙ²¥¨g{ôè!g!ÉÉÉf³966¶oß¾åÊ•ûúë¯Çß³gÏ'NF9KðññYºtiFFƾ}ûºwïþÜsÏ­]»Ö`0”±«˜>}úܹsüq…v°6( CÙQZÅ×µM&“íC³Ùìp²[·nõìÙ³ÈU*ž§¤¤Ø˸|ùò!C†üðÃ+V ’‡ öûï¿;6>>þå—_–³-ÞÞÞÇ—þŽ1cÆóÏ?ß»wï²t577·ÿþO=õÔk¯½æ¤]Ž?( Õ•pçÎÛ‡·oßv8™Ñh´”äЊÐÐÐU«VYJ—E ³›ìé§ŸBœˆŠŠB¬Y³f̘1/½ô’]ñÏêîÝ»:tèÑ£Gƒ Ž=úÅ_DGG÷íÛ×é]…³Д'žx¢k×®K–,)((1b„¿¿ÿ»ï¾ë¢uMš4éÁüðÃW­ZU±bÅÇ{lëÖ­:u’žÍÏÏ¿qãFQY !Z¶l9lذyóæ­X±"$$däÈ‘³gÏ.}>5dÈ»wïž8q¢˜Ùû÷ïÓÒÒ\½ àÎ1À%~ÿý÷]»v>fž‹à\bÿþý 4xñŕ¡j( î.u=z´¿¿¿Ò½øCûöíÛ·o_Ô³Ó¦M Pº(‚#8 ·«†â&Mš¤tä1b„Ò]@‰1T YŽ…àYŽ…àYŽ…àY¸Ž#ʼnŒŒTº €Z(RRRR1Ϧ¥¥…‡‡+ÝGÀ}ª€,G(1î+@ŸŽàLÒíª@“Ž…àYŽ…àYŽ…àYŽ…àYŽ…à%ÃýèÁœŒ»Ð*‚#d!8@‚#d!8@‚#d!8@‚#d!8@‚#d!8@ p¿AzFpç㮃4‰àYŽ…àYôׯ_߯_¿èèè–-[N›6-;;[þ¼¿þúkãÆ'Nœ¨ôF(IÁqÁ‚Ó§OOIIiÚ´©ŸŸß† FŽyûöm9óZ,–É“'ß¼ySéP˜öƒcRRR\\\hhè¶mÛâââ¶oß>xðàcÇŽÍ›7OÎìË—/?pà€Ò <íÇuëÖ™ÍæqãÆU­ZUj™2eŠÑhܺu«Ùl.~Þ³gÏ.X°àá‡Vz#”§ýàxðàA//¯víÚY[¼½½Û´i“••uøðábf,((˜4iR``à”)S”Þåi<8Z,–äää      Ûöúõë !.\¸P̼Ÿ|òÉ©S§fÍšåïï¯ôv(ÏGé¸V^^žÉd °k7Bˆëׯ5ãÑ£G—.]:pàÀ-Zœ>>F£±pe177Wa=ÏÚÖÖ¬YóÊ+¯üßÿýŸÒÝPG!DhhhVV–”­¤BCC OöìY!ħŸ~ù§Þ½{ !¾þúëÈÈÈgŸ}Vé P†Æ‡ª…111III{öìéÚµ«Ôb±X£££ O_§Në”’œœœ½{÷†……EGGW«VMé P†öƒc¿~ý/^¼hÑ¢¶mÛJçÄÄÅÅeff>¼\¹rÒ4·nÝÊÈÈ(W®\Íš5[µjÕªU+Û%œ¥¥¥qE7m3„ï̢^ú¢¦‡fð©×-ÝþÖkÿ¬jp R ÀU,a0(Ý p‚#d!8@‚#d!8@‚#d!8@‚#d!8@‚#Ü·Ap—âæ1´„àYŽ…àYŽ…àYŽ…àYŽ…à÷Ámc@Bp×âæ14ƒàYŽ…àYŽ…àYŽ…àYŽP®þ VGÈBp—ãæ1´àYŽ…àYŽ…àYŽ…àYŽP$n¶Žà\€ Á² Á²¨+8~ôÑGÉÉÉJ÷¨+8ÆÅÅuíÚµOŸ>+W®¼~ýºÒÝÀ=ê Ž¯¼òJ5Nœ8ñÞ{ïµnÝzôèÑÛ·oÏÏÏWº_>Jwà/&L˜0~üøÃ‡oÚ´iëÖ­;wîܹs§¿¿×®]{öìùøã+ÝA:ÂÕ¿ÀŽÁ¢ÖïÅ‚‚‚Ý»woÚ´içοÿþ»¢N:={öìÑ£G5”î]q"##“’’”î––®t/à4òƒ£ü—ž0ª1|êuK·¿õꪶåããÓ¡C‡ ìß¿ÿ­·ÞòõõMOO_¸paLLÌ Aƒ6nÜh2™”î#€Ž¨k¨ÚNvvöŽ;¶mÛ¶ÿþ‚‚!DHHH¹rå8pàÀ¥K—~þùçÕ«WWº›º Æà˜™™ùÝwßmß¾ýÀRY188øé§ŸîÒ¥KãÆ…ûöí[°`Á‰'þþ÷¿/]ºTéþ肺‚ãªU«¶oß~èÐ!³Ù,„ zæ™g:wîܤIoooëd­Zµjܸq³fÍ<¨t—ôB]ÁñÝwßB<ýôÓ;w~â‰'ló¢-__ߊ+2N à6ê Ž}úôéÒ¥KóæÍ‹Ê‹¶(7¸“ºÎªÞºuëþýû‹J¯¾úê3Ï<£tè×Í€ÂÔóòòîÞ½[ÔSçÏŸ¿té’Ò}€Ò³X„Á t' ´”ªNHH=z´õáŠ+V­ZUx2³Ùl±Xj×®­ttJùàèíííïï/ý]¾|ùJ•*9œ2 `Ê”)J÷@§”Ž­ZµJLL”þŽŒŒ|á…¦M›¦t§`Oùàhëå—_nÒ¤‰Ò½€ê Ž“&MRº pLáà¸zõj!D³fÍêÕ«g}X¼(Ûg}R88Μ9S+GéañŽŠP88¾úê«BˆG}Tzøæ›o*½C€«€c Ç¿ýío¶GŒ¡lÀÕ¤k€Lx"uS˜ÅbÙ¹sçÅ‹{ì±èèh¥» _ª Ž;wî\¸paÇŽ¥QìéÓ§ÇÇÇKOõïßÿwÞ1p».%¨ë^Õ3fÌéÓ§Íf³â—_~‰7/¾øbÍš5׬Y³sçN¥û Sêª8.]ºÔb±¼õÖ[ýû÷B|ûí·BˆY³fÅÄÄœ;w®S§Nÿþ÷¿cbb”î&€©+8ž9s¦Zµjƒ–þôÓOåË—oݺµ¢nݺ>ø`jjªÒ}Ð)u U߸q#88Xú»  à—_~yä‘GÊ—//µTªT)33Sé>蔺*Žaaa/^4™LÞÞÞ‡þý÷ߟxâ é)³Ù|ñâÅÒ-yýúõëÖ­KNN®T©RÛ¶m'NœXÌô7nÜøøã:$­ô‘GyõÕW#""”ÞC\Žkå@QÔUqlÚ´é7>ùä“K—.}òÉ'Bˆ6mÚHO-[¶ìúõë=ôP)»`Á‚éÓ§§¤¤4mÚÔÏÏoÆ #G޼}ûvQÓçææ>ûì³kÖ¬B´oßþøæ›oºuëvâÄ ¥÷-.åG]ÁqäÈ‘•+Wþì³Ï:tèpàÀG}TºvãsÏ=7wî\!İaÃJºÌ¤¤¤¸¸¸ÐÐÐmÛ¶ÅÅÅmß¾}ðàÁÇŽ›7o^Q³|òÉ'×®]5jÔæÍ›,X°víÚY³f¼÷Þ{Jï!Ũ+8Ö¨Qã?ÿùO»víªU«ÖªU«?þXºjcff¦¿¿ÿìÙ³Ÿ|òÉ’.sݺuf³yܸqU«V•Z¦L™b4·nÝ*]ô§°ýû÷ûúúŽ=ÚÚÒ»wïjÕª>>F£±pe177Wa=Ϻƒ!$$dذaÏ?ÿü•+W¶oß®ôN \Ê€'RQp¼{÷îo¿ýV«V­Ò=]”ÐÐЬ¬,))ZI‡…††žþìÙ³S§Nݺu«]{Æ …W¯^Uz?(CEÁÑËËËh4ž={¶¨Ë+–NLLŒÉdÚ³gµÅb±$$$JW·ãïïÿßÿþwÆ víçÏŸËtLEÁÑÛÛ{øðá™™™ ,pâbûõëçååµhÑ"é¸F!D\\\fffŸ>}Ê•+'µÜºu+--M:9.44422rïÞ½;wî´.äôéÓ«W¯öóókÚ´©Òû @ê:9¦K—..\ˆ‹‹KLLìܹsÍš5 ŸÈl{)o9ÂÂÂ&Nœ8gΜîÝ»·nÝ:===11±aÆ#FŒ°N“0~üøzõêmÞ¼YñÞ{ï½øâ‹£GŽŽŽ®Y³fFFÆ¡C‡„~øapp°Ò; @ê Ž111ÒÇŽ;vì˜ÃiJq¥›aÆ…„„lܸñ›o¾©^½úÀÇWÌÉÑ=öØ–-[.\xâĉS§NU«Víé§Ÿ;vl½zõ”ÞCŠQWpìÞ½»‹–Ü­[·nݺõl—.]ºtébÛR§Nùóç+½?TD]ÁqîܹJw€~qG(žº‚£Õ7Nœ8qùòå°°°–-[fffrp!‘.åHTàAT³²²>ûì³øøxénC† iÙ²e¯^½6l8kÖ¬ÀÀ@¥; S*ºâîÝ»cÆŒY¹r¥¿¿¯^½¬íU«Vݵk× /¼ ¥I¸Ÿº‚ã’%KŽ=Ú¶mÛmÛ¶Íž=ÛÚ¾nݺ=zœ;wnÅŠJ÷@§Ô8àííýÁTªTɶÝÛÛûïÿ{¥J•¸U4€RÔO:îð<??¿ˆˆˆôôt¥û Sê ŽF£ñÖ­[E=›]¥J¥û@›8ÁîK]Á1**êòåËïsêÔ©K—.5hÐ@é>€ÓHWäO¡®àøüóÏ †7ÞxãäÉ“¶í'Ož7nœ¢gÏžJ÷@§ÔuÇ–-[>|éÒ¥½{÷ŽˆˆB|ÿý÷ûöíKII1›Í½zõzæ™g”î#€N©+8 !Þ|óÍÆÏ™3'55UqéÒ%!DHHÈ„ l¯ì7S]pB´oß¾}ûöÙÙÙ©©©ùùù¡¡¡Jw @ïÔ%7VºøƒÂÁqõêÕ%eÀ€Êö@ŸŽ3gÎ,é,GN§àE¥+òp IAáà(]dÇÖ©S§¶oßîííݪU«ºuëz{{§¥¥íÙ³§   zõêÓ¦MS¶Ãº¥pp=z´íÃóçϯ\¹222òŸÿüg­Zµ¬í—.]úÛßþöË/¿lÚ´éé§ŸV¶Ïú¤® €öÙgYYYŸ|ò‰mjBÔ¨Qãÿø‡âÛo¿ÍÌÌTº›z¤®àxäÈ‘°°°:uê~ªV­ZR»…C” ®Ëñdgg›Íf‹Åbpt÷ÖÜÜÜÀÀÀ¥»  Gêª8>òÈ#¹¹¹?üðCá§öîݛݰaC¥û Sê Ž]ºtBLš4iëÖ­¶CÒß~ûí›o¾iœHñ«áHWäõS×PuŸ>}öîÝûÍ7ߌ7.$$$""Â`0¤¦¦fdd!ºuëÖ§O¥û Sê ŽBˆ>ú¨E‹ .¼víÚµkפÆêÕ«¿ú꫽zõRºwú¥ºàèååÕ¯_¿¾}û^½z5--ÍÇǧnݺœ 8ÕG‰Á`¨V­ZµjÕ”îþ ®“c ZGº¦ø)ÕàAŽ <®ÈÀ# Á² Á² Á€~9ëZ<áJo ¸ÁT+òP?‚#”‰ARÓR ‚Ð@ûŽ…àYŽPza°‹Â",ŒVÐ<‚#d!8Ð)g]‹Ç‰8±€Ê ”¬ãÔF«hÁ² ÁJÃnœô€àNÃaŽ´à@TxJ5¨ÁJÌuãÔ\‘€šÀ™­ aGÈBp€’á|jºEp'c´€Vè§T@é Ü0N͉ÕT‹àÎÇh5M"8@‚#ÈÅùÔtŽà.Áh5í!8ÐN©€R#8€,î§æÄjêDpWa´€Æ Áî¯ÔãÔh Á²èˆRÍù1Tˆà÷QÆó©­ GÈBp€,G(ŽS®ûÍh5m 8Ð :3Ô‰àErçm ãÄjjã£tÜdýúõëÖ­KNN®T©RÛ¶m'NœXÌô·oßþÏþñâÅ*UªÔ¯_ذa-[¶Tz;x*i´ZÁ e§‹à¸`Á‚Å‹W®\¹iÓ¦ééé6l8{öìŠ+|}}N_PP0tèУGÆæÍ›ÿþûï?ýôÓÞ½{_{íµ±cÇ*½5ÊÐþPuRRR\\\hhè¶mÛâââ¶oß>xðàcÇŽÍ›7¯¨YÖ­[wôèÑÆ'$$|öÙg_|ñÅW_}ðÏþóÔ©SJo7qzSdx:íÇuëÖ™ÍæqãÆU­ZUj™2eŠÑhܺu«Ùlv8˶mÛ„o½õ–µ$Y¯^½Q£F™L¦üQé P†öƒãÁƒ½¼¼ÚµkgmñöönÓ¦MVVÖáÇÎ’––V¹rå† Ú6Ö«WOqáÂ¥7@ixè)Õœ@U4~Œ£ÅbINN ²m¯_¿¾âÂ… Mš4)<×’%K||ì÷ÌÉ“'…µjÕRz›¸ƒ‹NdáMãÁ1//Ïd2صF!Äõë×Îe×’˜˜W¡B…ž={ÊYodd¤]‹4ü m»xñ¢Ò]@1ÂÓÒÒJ2¹?}É^ú’,¹4=‡ñ©×‰N:)ݵÐxp¼}û¶¢råÊví~~~Bˆœœœû.Ád2­^½úÃ?4™L}ôQpp°œõ&%%)½éPFxx¸Ò]@‘ä¿:Kòb–è¥/éû„÷•šñêèAáŸõÂ"Ðxp 0 yyyví7oÞÖ‹ñÓO?ÅÆÆ¦¤¤T¯^ýƒ>hÑ¢…ÒÀã1Z Àsi<8úøøÆÂ•ÅÜÜ\!„õ<ëÂòóóçλråÊŠ+¾úê«/¿ürQ} ~zf ¨Æƒ£"44499977×ßßßÚ(0êp³ÙüÆo|ûí·;v|çwŠÉ—´Ç åÀ¥« ¾Ô@û—㉉‰1™L{öì±¶X,–„„„ÀÀÀèèh‡³¬\¹òÛo¿}ñÅÿùÏ’$ÚŽýúõóòòZ´h‘t\£"...33³OŸ>åÊ•“Znݺ•––&g±XV­ZU¥J•É“'+ÝwÑþPuXXØÄ‰ç̙ӽ{÷Ö­[§§§'&&6lØpĈÖiÆ_¯^½Í›7_»víüùó¾¾¾ (¼´^½z 8Pémà*n;m…Sdx"íG!İaÃBBB6nÜøÍ7ßT¯^}àÀãÆ“®ÈS˜Tw¼}ûö‰' ?ˉՀÇáApƒ…/Tg‹ŒŒä:Žú”––ÆÝTH~p,u °Ô/½ü5Õ‰O½néö·^ûÇ8À)Ž…àB¸ñ´[Ò)2Jo:ÈEp eNDpeÊ™EGéþ1 ,‚#d!8Ð;.Ä 2@aœ"ÀSh–ÆÎŒá0GŠ#8Ð5•ŒSStàŽ…à@¿TRn”Pt ~GÈBp M;3FÂù1”Ep Sª§–0Z @厅à@TXn”Pt fG¤É@qGº£Úr£¤ø¢#çÇPÁ²è‹ÊË fGZ£9E€:èˆ6Êæ@)GP#ŠŽTˆàYŽôÂãÆ©):P‚#MÑÀ™1rp˜#Eè‚Ç•%¨ Á²hŸ‡–%¨Á€vèäG ‡9p?‚#óèr£„¢#• 8@‚#-Ó@¹QBÑ€h„®p”p˜#7#8Ð,Í”%(ŽàYŽ´IcåF EGÊ"8Ðà(á0GîDp Aš,7J(:PÁ²h†ËŠŽ”BpàñlpÔ|j,ŒÃ¸ Á<EGŠ 8ЖÀŽ<›~/ÄCÑ€Ûh„ËÖìÈaŽÜƒàYŽ´@‡åF Ö܉àÀƒéöÇ­àGO·åF EGnCpàÙtžÀŽ<ãÔV¸Á€£Ühea1p˜#—"8@‚#e¡ÜøRÑQé^Ð2‚#ĘlQØ3\ÇGéaB„‡Sþrõ” †p!TržŽEX ƒPÉž 9T'~¨SÓÒ ‚S[ÝÁ £ƒ°XÒRS…Á –ZŸ3¬¸ Á(+ÛòŽE ÙÑ-TQà³½ Å¢’›·¨bÏÐ(‚#P&ÉŽ.¥–r£ÃËHª#;Rtà"G ” E¤F ÙÑETqáFiTº¨ÊžJ²#¸'Ç¥!çìkvT:æhÂ7Œ‘³zkvT®£Ò½d”Ù´…Š#PbòÏYåGçR> É­Šò(­™ûp:‚#P2¥¸Ò ÙÑ)<)5Z1l @[ªä*˸3ÃÖ΢Ì8uYƶfÀ€sQqd1ü9î\j [—…’éGʪe‰}J [ßË« Xp‚#pN¼Ù±”ONÁ°5ÏÇP5PWŒ/3l]jn§vÅø²BÃÖ Xp*Ž@‘Ê><]†­åS&ñ”}xº(n¶¶]Öœ‚à8`pêðtQÈŽ÷¥djt)†­x&†ª{nˆŒV [ËçŽqjwŽ#»}ØškeGÅø w¦F ÃÖEqwÊqÝðtQ\?lm·x¬”‘^‚ãúõëûõëݲeËiÓ¦eggËœ155522òÿûŸÒ[—sÏðtQ,v·¦Æâï=íjR¸s×È5Ù@Yè"8.X°`úôé)))M›6õóóÛ°aÃÈ‘#oß¾-gÞ•+W*Ý}¸ƒë΃‘Òc1\˜ëÜ_h,Ì•¥G§àDÚ?Æ1)))...444>>¾jÕªBˆ÷ßÅŠóæÍ{ûí·‹š+77÷Ì™3›6mZ»v­Ò[×RÛ!†E Ÿ*á¦r£r7tqÌ]G=r°#€RÓ~Åqݺuf³yܸqRjBL™2Åh4nݺÕl65W·nÝ @jÔ<5 Óù°µûR£â…ÆÂÜu±¬”Žö+Žôòòj×®µÅÛÛ»M›6›6m:|øp“&MÎõþûïß¹sG±jÕª}ûö)½p>µíXþì¤j{è"S£“Ç©ÕVh,LÊŽÎ롳—@¿4-KrrrPPPPPm{ýúõ….\(*8¶jÕJúc×®]JoœÏSëq>O P®¶fÀ@)h<8æåå™L¦€€»v£Ñ(„¸~ýº‹ÖiײmÛ6¥w„""<\‘š––æ‚…_¼xÑéËLBaOuI—Õ%"<"5-5MÞÒð²¿báBˆ´ÔTá‚=銗^¤¦ ! †´ÔTg,ÎÁ>L©†pCjšS–¯S.yé¡>:uRº j¡ñà(:]¹re»v???!DNNދ֛””¤ô¦Ã{…Æðp­"Ü5K¶aš.=þQý*´ÿþ,–mÇ:g)ÅqÑK/,–pg”-a0„^†EX áÔËÄU/=Ô¤ðÏzá ‘Nh<8 †¼¼<»ö›7oŠ?ëŽÐ øZzôô qÈ…c¦ê?¢ñ¾¤Îk`Cx>ŸUíããc4 Wsss…Öó¬¡mêpàÀqãÆIWä–hòpF™´w§™’•5y8£LÖø(o®  x‹n¿m]&22’ë8º™JêmiiiŠ_ÑM%»BF?ï“Nä!uÔÛÔðÒËß÷Ý·dGùTñÒC ºý­×EÅæ)9ÉmÊÍæ¨V’ófÈŽ€ž¡$"£ •=>ÊJœ£÷N‘‘ÉŽ€n¡ "£Ê•:>Þ?OÊ%”÷—Ó«åÅG²# OG¸•áÏ?øµñ%Å% ß/>!Ñ#ȈdG@‡ŽpJŒžKf|,2C>(7ª„ãk:ÚÆGáàE$;zCp„˵Á6>Š¿¾ aB8HȨ ÖWÐÑ Jvt…à"2jõÕ´¾¸ŽCƒ¼ÈH¹QUî#™"Ư¥ì(þÏm!8Â%ˆŒšgS€üëëL•QóÅG)2Rz4à'#2ê‡5%üñ¢—02RnT!ùw¯.*>’m#8Â98]ZoîåéVBî¥èF¡³gÈŽ€¶QV”uèd`_m²>û—‡Ž—@¹Q­JPt´Gb0!,²# YG”‘QŸ Â`ùóæÒ'¸ïå{Hše¹W„6XÈŽ€QbŒJë—TO²d,æò=P¹Òíæÿã˜WΔ´†àˆ Ä¨_¥=WÚÁå{(7z‚²fGñǻŠ%=k €šqôëÏ“ –²^¢ï^Ò" ¼—tCzãÜ‹‚ x6‚#ŠC‰Q¿lªDÎ<ÑáÏ"o-õsBÑѺ(a¹wÈ#HÀ“á%FýúkYȹ·±M!霜Åç\ QÜý¯¨Á÷ð+®_Ž~ÅÝpE»# ï=MûËÝeìî-H€g 8BÆ õ¬ˆqC§§Æâ W%º$ÜɉEÇ?hw…p»I|Ôà¨k”yô«è2s‡§­k“™ÂV!eGa÷6cðG=âWY¿î÷«¬’~0„­y¶þË aªFpÔ~ƒõKÆo°+ Ö•—ú§Ÿ©N/:þ±ØbnlM‚T‰à¨}üâê—ì_\×wN®µ«ö-p—fGQÌÿ´ 5!8j¿¯úU’ßW×…knC‚Të²£ó/$H@ŽZï©~•ü×T%G4– Rcî_z¼7) P ÁQ#øíÔ¯Rývº´Ðhí—{~ÍIî䢢ã ÿ³ô(d¾9I€Û=¿”úU†_J7Ý–m‘ ÝÃ¥ÙQȹ¶ë“„ ¸ÁÑólþæ«Q_ 6/~©~ÝPh ¥F[…¤àÃâT®ÎŽ¢D#×v=“”ùÃÀ!‚£Ç ˆ¢_Î(¢¸'2 ¤F[¶áä\îÉŽ¢Ôo]ÛžQ†œ‡à¨jÔKôË©õ> ÆYÈöP¥¹¶_Ù€ÓÕˆ6ýrö›Û Öî«ÿ™lgqCÑñÞºJ7r]¸Ç²Ò"8ª¿aúåšß07GFá!©Ñ–ÃlÁ°$Üœ…³Þز!¸?‚£’ø­Ò/WþV¹?2 Lv8²ÔÜ™…sã£u¬Ëî‡àèn„E]sñÏ’"‘Qx~j´ÃXvI¹9; WÄGë–H(CE 8º??úeûó#\ø ¤TdšK¶Ë–ÏýÙQ¸.> Ʋ"]…ŸýrïÏŒ‚‘Qh:5Ú!DÞ—"ÙQ¸4>Z7ÌÊ]ÿ+¨–ÁÂûÞÙ¤ïv«¾(Q“P62 =¥ÆâvÂ_ê~(ü®p÷‡‚b¤ŽEFF&%%)Ý x)Ý ªÉ÷‡. ÷þY,ÂbIKMuχ´V‹°gÂ"DjZšô‡ÁæŸ>IuGÅÖ.,Ò…{ îy¬Ÿzi³­ÿíb¨MéQ*ëo¡âWó&5¥¨m¡§b¤RcÖ÷:àêÁë¢6ÛJéï ÀuŽ@ÑTóí¯ø¨ô½ž”ÝžÄn'éêÈHkÝQ%ñQ¸ùãc·ÙŒhCCŽÀ_©ì+^=‘QPh,½#¥·ŠâïëgGÉÅHhÁº§ÊïqõŒJßë’Ò @KŠ)F måHŇ­ïõDÁ¤Ý±¥Êï GèLáãÖUöM­ªã½^©ã·_«ŠÏ‘Âã¤z²£PIò/*6G Õ}AGh‡ü½ò…¢:¦ô‘j:Txg{zIR ‡<ÚwI%Hûnꆇ|ƒA?ŽÐOûÿuÕýnÙuO5…"Ó@IR%‡<Ú÷ê¯H¡ÂO"%I¨ ÁžÌc¿CÕû+eí¡ÊêC°uß’¤Pk”TaéñŽ©?AþÑ­û•$…úv.´…àÏáùßjÿM²öSee!Ü—EIu–ïuÏSä½%áVG¨•†¾û<æˆB£†¨J7¿BRÓR­ß¶_ J÷ËyŠú2/êËZGÅ2ó] §ÐáÁG8ÙmˆG•v fE½‰ %Ÿåg=°úh³iƲ…‡]½µEl¿ZGpÄŸø´bW6ðôoë+¬××îSÌ[LN¦´Â3ß±E…Háùß$÷Ûò¢·Ž_M 8êIñƒ|nµûýî¡õhR 2¥å/ížûþµû&Ñê÷ŒŒQªL)øòR‚£¶ðÙ+!mƒ{tÁ:TüûÔP†yU…é@ñ_Rü´© ÁÑsÈ9è˜ÏO± *ÜcäEh’õíìð.ç¤ u~ ŠÏ‘B£_S%S–X)g ( ‚£:ð¾w½}ÿ’¡Öw¸í{^λÞ#ÂeáMÑÛWY‰ÉùÊãGÖyŽ®$ÿ¼_ËÆáÅ/tòÝJ^„n9LÅM/c™ò/'ã¾[ìȈ’B7ßx¥ä¬p)iÚEpt¾¤3g8ÁEŠº:šÞ¾1m¿ßx—…¤(íGCþL¬*<ܹ‹•·4Ëã뱬ä¿c¤÷YýúJ÷X\Üù"ë×çªÊea(ò²†".D«‹]]ÔåÕXuj—¬K‹©iiE]]ΕҋÿWÂþ8þz,êëTé×Ê“éûË—Š#Püw–N‚à}ÙýÚéøk (¿œ:£ô§©t+,K¸»wQÌ"VÎ÷0J‡Šc‘Ö¯_߯_¿èèè–-[N›6-;;[éyŒbJ†Å=½|Ø©S§Òï´ûݵjV–—np߻啚K_z9µÌR×8‹_ÀŸ“÷MîîWê@Åѱ ,^¼¸råÊM›6MOOß°aÃÙ³gW¬Xáëë«t×#ÿk£ß8ü•"nSøã¦½O¥Sún(v1¥¼)¹{NDÅѤ¤¤¸¸¸ÐÐÐmÛ¶ÅÅÅmß¾}ðàÁÇŽ›7ožÒ]sŽûVKQ&ÔFÉЉŠÙ•÷9üTó)Ö‰²”|ø¾³ŸI:ãÄWÆ´G,J©_‰bölýú‘¤C@~êKT³,þDÑ牗äŸÓ2(ÑÑŠcíY,–äää      Ûöúõë !.\¸Ð¤I“â—P?²~RR’ÒÛ¡"êü$ÛpµRÏðµéäž» b)"•Þ,eíååå™L¦€€»v£Ñ(„¸~ýú}— \Àª~}5~º"]Ó©H-ªÇK¯[®xéÕymiƒšÈ=ê|Ü€àhïöíÛBˆÊ•+Ûµûùù !rrrî»Ïý2—á» 1:ýiãG{ƒ!//Ï®ýæÍ›âϺ#€íùøøÆÂ•ÅÜÜ\!„õìzÃO¼-‚£s¬\¹²¨§,X°xñâÊ•+7mÚ4==}Æ gÏž]±b…¯¯¯Ò½†3?Þ××·nݺ¶Ü£RÃøhëv½á'ÞÁ±LrssÏœ9³iÓ¦µk×:œ )))...444>>¾jÕªBˆ÷ßÅŠóæÍ{ûí·•î>œ&777''§sçÎü±Ò};ðÑÖ->ìúÁO¼CãX&ݺu0`@Qo)!ĺuëÌfó¸q㤷”bÊ”)F£qëÖ­f³YéîÃiΟ?/„°«@@Ãøhëvýà'Þ!‚c™¼ÿþûŸ~úé§Ÿ~Ú¢E ‡|XéîÃiÒÓÓ…uêÔQº#p>ںŇ]?ø‰wˆ¡ê2iÕª•ôÇ®]» ?k±X’““ƒ‚‚‚‚‚lÛëׯ/„¸páB“&M”Þ8‡ô[rùòåÁƒŸ:uªR¥JQQQ£Frx$5<m=ãîüÄ;DÅÑ…òòòL&Sá#¦F£âúõëJwNsáÂ!ÄÂ… 322š7o¼k×®þýû¯[·Né®ÁùøhëvHtû=@ÅÑ…nß¾-„¨\¹²]»ŸŸŸ"''GéÂi._¾ìëë;a„ÁƒK-ûöí5jÔ|ЪU«°°0¥;g⣭g|Ø!Ñí÷Áñþ –.]j}èíí=räH93 †¼¼<»ö›7oŠ?ÿ§ž¥¨7ÃòåËí¦lѢŠAƒ>ÿüóï¿ÿÞúm࣭g|Ø!Ñí÷ÁñþîÞ½k{Ù… *È Ž>>>F£±ðÿväææ !¬'aÁƒ”èÍЬY³Ï?ÿüÌ™3J÷NÆGvø°ën¿Ž÷çëë›””TºyCCC“““sssýýý­iiiÒSJoJÌá›Áb±˜ÍfƒÁàåõ—ƒ†½½½…UªTQº×p>>Úúć¶ôù=ÀÉ1®c2™öìÙcm±X, ÑÑÑJ÷Αžž5dÈ»ö#GŽ!"##•î œ¶>ña‡-}~]«_¿~^^^‹-’zBÄÅÅefföéÓ§\¹rJ÷ÎQ·nÝÆ8p`ýúõÖÆ#GŽ,[¶,,,ì™gžQºƒp>>Úúć¶ôù=ÀPµk………Mœ8qΜ9Ý»woݺuzzzbbbÆ GŒ¡t×àLÿûß_~ùåéÓ§¯Y³&""âÒ¥KG­T©Ò¬Y³4|ÇR=㣭[|Øa¥Ïïï3f(Ý-عsç/¿üÒ¯_¿jÕªÙ=]·nÝ«W¯îÝ»×ÇǧsçÎsæÌ±=Ü­[·ììì3gΜ8q¢B… íÚµ[¸paƒ ”î\…¶>ña×!~âm,‹Ò}€àGÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp /'NŒŒŒüᇔîˆX´hQddäêÕ«•îÈEp€,>Jwtª}ûöÁÁÁ7Vº# Á”ѰaÆ *Ý (†ª@uL&ÓÝ»w•îØ#8ð Ó§OŒŒœ;w®]ûñãÇ###[´hQPP „ÈÌÌœ?~—.]5jÔ¨Q£®]»Îž=ûêÕ«E-V:WfÿþývíQQQO>ù¤mË?þøÚk¯uìØ±iÓ¦ƒ^´h‘]¶»téÒ;ï¼Ó¥K—Ǽ]»v#GŽ>>Ó§OÏÈÈxë­·|}}çÍ›gí8Á€Ç" í¸­4NݧOéáØ±c/^üàƒZ'¸víÚ–-[ʲÒììì´´´ˆˆ»3 +UªÔ¢E‹Û·oŸ8qB!%×)S¦8p@:Ú²\¹r¯¿þú«¯¾Z¢ÕuîÜÙö¡Ñhôöö¶X,ÅÌ5vìØ+W®ôèÑãÒ¥K“'O®[·®«^úÆåxxŒ† Ö­[÷ܹsIII‘‘‘Û¶móõõíÒ¥‹ušK—.íÞ½ûСC.\8þ|mB¤¦¦JÿŒŒt8ÁåË—…±±±ãÆ;pàÀ Aƒ*V¬õÄO<ýôÓQQQ%Z]Íš5KÑÉW^yåûï¿?yòd³fÍú÷ïïÔ½÷x’nݺ}òÉ'Û¶m‹ŒŒÜ³gONNNïÞ½­ÓkÖ¬yï½÷ j׮ݤI“Ž;>òÈ#iii3gÎ,ÑZL&“µÈ—ŸŸ/„¨Q£FQƒÎaaaBˆš5k®_¿þÈ‘#»wïþé§ŸNœ8qøðáÏ>û¬oß¾ï½÷žÁ`¹êòåË—b·Ü¼yóÚµkBˆÔÔÔ7n¸þ¥ GGžÄ_ýui Ú:N}óæÍwß}·|ùòK–,iÕª•u–+W®”t-¿þú«Ùl–þŽˆˆBTªTiÚ´iÅÏe0¤k !òóó÷ìÙ3uêÔøøø:ÄÄĸt·¼óÎ;5:|øðÌ™3çÏŸïÒÕÐ-ŽqàIêÔ©óÈ#¤¦¦?~|ÇŽuêÔiÒ¤‰ôÔñãÇM&S£FlS£øó´•âÙh÷ÝwÖ¿CCCCBBRRRNžø@ÊÍ>úèСCÿõ¯ÅÆÆ~üñÇJ¿V´†Š#SµjÕfÍš !Z·n]µjUÛ§>úè£×^{-,,Lº¾c›6m6nÜøÖ[o 0ÀÛÛÛá kÕªõïÿ»cÇŽ^^^{÷î=sæL5–.]lÆ`0Ìž=ûÿøG‡Ìfó¹sçÂÃÃ'L˜°qãÆÀÀ@iš^½z}ùå—mÛ¶õõõ=}út^^^Ë–-?ýôÓwÞyÇu»båÊ•û÷ïoÕª•õ@O!Äk¯½V§N­[·nÛ¶MÑ €Š¿<èÇ­[·²²²jÕª%ÿ$hЂ#da¨² Á² Á² Á² Á²ü?‚СåFqÚIEND®B`‚statistics-release-1.6.3/docs/assets/logicdf_101.png000066400000000000000000000701161456127120000222640ustar00rootroot00000000000000‰PNG  IHDRhŽ\­ApIDATxÚíÝy\õÇñï¢xqüPÄP1ûi˜yæ™W˜JT¦i)Væ‘YžØÏŸf¥Yi—™–GæU–úó>¡45Åp“@Ô¼ñ EØýý1º­°À»;³3¯çƒÇï·;;3û™YFÞ}¾3³:£Ñ(€¢¸È]œÁV!8À*GX…à«`‚#G;qâ„î¾íÛ·;øÝ,X ½uóæÍ‹»ì† ~üñÇüñÊ•+6YaAîܹ3þü'žx¢FåÊ• êÙ³çG}”••UÈÎ4qssóõõmÑ¢ÅÛo¿m^j!‹ä1vìX‡~*œ„›Ü€Óèׯ߭[·„Û¶mëÔ©“Þå×_}úé§OŸ>mš’”””””´iÓ¦Ù³g/X° gÏž…¯!777-----í—_~ùâ‹/6mÚôØcɽó¨Á€¶TªT©nݺB®P¯×·oß^Ч77·œœéñ_ýõÌ3Ï8pàá‡ο¬ŸŸŸ‡‡‡"##ÃÔh¼~ýzdddRRRÙ²e Y$ooo›ì*ÃP5myþùçSRRRRR~úé'®ð­·Þ2¥Æ—^zéèÑ£·oß>þüÂ… +Uª$„ÈÌÌ|öÙg-.»|ùr©’Ë—/Ÿ9s楗^’¦Ÿ;wnÞ¼y…/’ǤI“l½ã¨Á€ÒeddL™2¥K—.~~~~~~;wž4iRzzzþ9“’’úôéó¯ý«nݺƒ>þüĉ¥“öÞ~ûmi‹§$Þ½{wþüùmÚ´©^½zÅŠzè¡^xá·ß~3Í ­Çé:wî¬Óé222DÁç8^¾|ùõ×_oݺµ§§gݺu»wï¾iӦ·tÛ¶m6lO˜0aÑ¢E?ü°«««¿¿ÿ!CV¬X!½¤×ëÿøãÂWU«V­E‹õéÓGzúÞ{ïIÕ@i0T @Ñ<د_¿?ÿüÓ4eûöíÛ·o_¶lÙ²eËÚµkgš~àÀ§žzêêÕ«Bˆk×®-^¼x÷îÝaaaE¾Å;wÚµk÷Ë/¿˜¦$$$$$$,_¾üóÏ?íµ×JPöÖ­[ pùòeéizzzjjêæÍ›£¢¢¾üòË‚–2õ}||¢££ó¼Ú³gÏ=zœ?^qüøñààà"Ëxýõ×øá!Ä•+WöíÛ×µkW[>´…Ž#åÊÊÊzæ™g¤ÔX®\¹®]»öèÑ£|ùòBˆ³gÏ>ûì³ÿý·4çíÛ·###¥ÔèîîÞªU«êÕ«'''¯ZµªÈw™>}º”=<<žzê©‘#G¶hÑBa4_ýõ“'O !Þzë­¤¤$é­…ß|óùÓ<ÒÓÓû÷ï/¥F//¯ˆˆˆ:H/-\¸pÙ²eU²ÿ~éAß¾}+V¬˜†79räÈ‘#ÖìÀvíÚ¹»»KÍ“1” Á€rÍš5Kº¸¸råÊ{öìÙ¼yóÆããã}}}…/^|ï½÷¤9çÍ›'µâ<==ããã÷ïßöìÙ¨¨(kÞeçÎÒƒèèèuëÖ}úé§ñññ]ºtBääälÛ¶Mñ¯ý«^½z..÷þͬQ£F½zõt:ÅΜ9Sº6¥N:§NZ³fÍŽ;Lg Ôq¼{÷î¥K—¤Ç6Ù:®ZµjÒã‹/æŸAsÏã7Þ°Õ'@eŽ”kãÆÒƒQ£F™Î |衇ƌ“gSgqĈM›6B¸¸¸|úé§U«V-ò]L7G\ºté¢E‹¤ô¶téRiÀúé§Ÿ.nÙ[¶l‘¼õÖ[RÆBŒ9òßÿþ÷¿ÿýï;wîäæææ_Êü¬ÍêÕ«Ûjþë_ÿÊ¿~(Îq \z½^zçä¼'žxBjà:uÊ`0¸¸¸˜.1ŸÓÃãk×®K—.-ü]ºvízøðaéí† ¢Óéš6mÚ½{÷^½z=úè£%(;))IzкukÓÄjÕª9r¤¥¤‹¦%ùïÚ]biii҃ʕ+çÕâíx|||lõîT†à@¡ÒÓÓoÞ¼)=Îs‹Ä5jHnß¾}éÒ¥ *\»vMš’§WW«V­"ßhêÔ©ééé .¼sçŽÂh4>|øðáÃï¾ûnÛ¶m×®][¥J•’•íååeý‚îîî¾¾¾Òišæwÿ6wóæM鞎åÊ•«P¡‚5«5Pûùùåuùòåö»“9õa¨€BU®\ÙÓÓSz|áÂó—LOÝÝÝ«T©R©R¥råÊIS¤àeb:k°eÊ”ùüóϯ\¹²råÊþýû›ßûzïÞ½Åýò½J•*™.š1uû¬ÔªU+éÁúõëïÞ½›† øúúúúúΟ?ßšîÛ·/;;[z\²î)˜#8P®éÁÿþ÷?ó馧AAAnnn:. @šbºÒE‘““³cÇŽÂßâÎ;—.]ºtéÒ;wžyæ™eË–]¾|yëÖ­¦˜µgÏžbÕ¬ÓéêÕ«'=þùçŸMÓ/^¼Ø²eË–-[vèÐÁ`0X\vèС҃3gÎ,X° Ï«6l0µüqkŠùä“O¤*T07€’!8P®=zH>ýôSé4D!DBB¬Y³¤ÇÝ»w—˜‚ÔÇ,Ý@Çh4FGG§¤¤þ‰‰‰ÕªU«V­š¿¿¿tß77·Î;2DšÁâp³©g‘©˜>úÈõfÏž_¶lYÓÕÙy<ùä“;w–5jÚ´iRo5;;{éÒ¥ƒ ’^ªW¯žtP!.^¼øòË/¯Y³Fzú /˜ŸC %dÇJHH0ýT½zõú–üüóÏF£133³N:ÒœO>ùäSO=e:·ÏßßÿæÍ›Ò:SSSM7,,_¾|‡òÜÑfòäÉÒœ¦AÞ°°0£Ñ˜››k:ù¯ZµjQQQãÆ{æ™gLcßÓ¦M3U^³fMibË–-gÍš•…F£ñÒ¥K¦+Qüüüžþyóóúé§BvαcÇò\­âëëëêêjzZ®\¹#G޾3óœZ¥J•+W®X\dÛ¶mrÿ:p&GŽf\ ²k×.iæŸþÙâM ëÔ©³wï^óÕ~ùå—eÊ”1Ÿ§bÅŠ¦;oFc\\\þ+‹%íÛ·¿}û¶é-ú÷ïoþê­[·,®Ðh4~ÿý÷¦4ÍMš4©Èý³oß¾‚nÇS·nÝ7kgúøøÄÅÅ´Á@±pU5E{ôÑG;6sæÌ$$$äææ6iÒ¤eË–ãÇÏ3öüÉ'ŸÄÇÇëtº-ZL™2åÛo¿5?ëÑ¢Ç{,))iþüù›7oþ믿®\¹R±bÅÐÐÐ_|qðàÁæwùž={¶bëÖ­8 !úôéöî»ï>|811Ñ××·qãÆãÆkÛ¶m‘›ÜºuëS§NÅÄĬ[·.11ñæÍ›uëÖ éСðaÃÊ–-[ä\]]===ëׯߵk×Q£F™î% ¥¤3r×ö2hР%K–!æÍ›÷ꫯÊ]87.Ž /¿ürÓ¦M›6m:|øpÓÄ[·nmݺUzüÐCÉ]#8=†ª¨AõêÕ=*„8zôh­Zµ"##oܸ1nÜ8éªäÐÐа°0¹k§ÇP55ÈÊÊzâ‰'öíÛ—ÿ¥ýë_;wî¤ã¥Gp wîÜY¹rå7ß|“œœ|áÂ__ߺuë>ñÄ£G¶ø5Í€â"8À*\«`‚#¬Bp€Uް ÁV!8À*GX…à«`‚#¬Bp€Uް Á±ÉÉÉ!!!¿ýö›Ü…ÈŒàX„¥K—Ê]€"¸É]€B¥§§ÿñÇëׯÿî»ïä®@Ž–…‡‡_¼xQî*„àhÙ»ï¾{çÎ!IJeË8 w9ò#8ZÖ¦MéÁÎ;å®@޶"w œþ½Ü%°VHpˆ^¯Åc–àhÚüeR²áJ¦ÚEWÒrW.„PñçâÌó¡èJü«[9~¥÷žZíÀjÖüeUFþƒ¦Ø$óÍ~um’!9T‰àùôg“¿„pˆ|AP_x44õ›iM4Ÿ‡ßt„€Ð<]¾c?@©étEÿü‡ä™bþ#Œ~…­üæ7ÅEÇ€öäi¿ðw6UÊî`~èõ…¬’ß_8GÚPHû(>ëû…y„­°àŸàºƒP:ŽÐ„Í›7Ë]òrćÂI[ÅÇÁ’ŸÅb ‡ÿ¬ÐÒÄB֗‡Å 8PÓŸeÂ"ŠIöŒ(CÕE˜>}º^¯øá‡å.@QòD…²r”¹+´îªÀyÑqàäè/ÂjyŠ¥i%Þ[áƒOù„ê8-é6«Q0’"`[GNˆÈˆ‚™‡ÅÒ'EÁEV€ÎqàTÌOî+è<Å’¯°€ó¡q¦_4¹ ‘ Á€“ 2âA„EØ[þÛtš~Ñä.M6 UP<¦qÃаŸü}D-Ä‚(‘B³¼h“°(¸Bˆ|I‘˜h ‚#¥ÒñW]ÓlÞ\äEÍ#)–Á€òÐhÔ0û5¿SšdIŠ¥Gp 04µJŠŒ¶Ê‹‚ÿÑ0¢ý(ç5‰óQzŒA; Á€2ÐhÔò"J‰¶¢,Ž€Ô¨% I£4Ly‘°( ‚#Yñ7_3h1¢Äh.*Á€|h4j-F” ÍE"8G@` TȈ⢹¨p|W59èDJrŠÜEÀŽÌ¿BÚ6+ä»ÊU-ÿ—A“•‰àÀá¡V/ÎÆ‘QGdTµüyQîŠP†ª8©Q¥•†õ8yÑy8©Ql¿)*E^T‚#G! ¨‘4*mË !øMQò¢š8©Qu›FáÈ‹ªÄÅ1ìÔ¨.\1©ùzÓõ_ZEp`g¤F!2¢y.‘–»ÛnÛƒ÷ °íùN…¡jöDjT{œÎÈo‡:H£Òj ‹Â_”éüŽ€"p:#,RçYŒæÃÐäÅ|Žì††’ó#2Â"¶i.Z‡àÀ>Hαiä¡Â#y±˜Žì€€àäh4"µµÉ‹%Ep<€F#Ì©*2’KàÀÖˆ NK§BÐh„D=‘‘¼h;ÜÇ€M‘–ÔhLNN±Ù ¹A£ÓRÉí¹ù¢Ðq`;¤F§Åð4$jè2Ò_´'‚#h×Á@¢žÈH^´'‚#¡Åä„h4B¨ 2Òbt ‚#[ /8!R#œ;2’å@pÍaxjˆŒäE9”&§B£Qãœ82ÒbT‚#€Ò!58R£–9}d$/*Á´‚Ô¨YDFØ Á@)œ'5j–³FFF¥•Šà*G£Q³¤o‘»ŠâM‹QÑŽJŠøà HÚä”F"£3 8€j‘5Èù"#£ÒN…à DHŠGjÔ '›¦Åè„ŽŠ¡x¤F­q²F#‘Ñi@mHšBd„#!BÙHšâLcÓDFU 8€zµÃ™DF!8(r„‚‘µÃiDFÕ!8€5ÂiDF•"8°QB©HáF"£ªÀ¹‘µÀ9DF 8°iB‘lžøœ•&0 È…p‘»@ ٣טœ’"÷fá:¡Ó ]rJ²Ü…R¢îÞ/"©Qެ@»Qy¡V=éŒFåö‰ŒšÄP58R£º)ýŒF¦5Œà (d …!5ª›¢/&2jÁœ ©QÝ”›‰ŒBÀ‰ULÑÃÓ6ÿ̓Ó"8(ÉB1H*F£΂àN€Ô¨b MDFXBpP0Â…2ÕJ¡ÃÓDFŒà€ ”Ûh$2¢`G +¥ ´UI‰©‘F#¬@på"5ª’âR#‘V#8€B‘ÕG‰'526â 8°„ˆ!7R£úÐh„ @qH꣬ÔHdDIäCÊlJq©‘Ȉ’"8€²ÐnT¥F(5‚#(©QM”u) FØÁÀƒò!5ª F¨ÁÔ¨&JIDFØÁ€²Pj JDFØÁäG»Q5‘i4ÂnŽ 3R£j(%5a7G÷7ä@jT ùS#FØÁ€ÒRDj$2ÂþŽ Ú* ˆ›5’á(GB‡ H* ˆF£`xŽCp $‘‰Œp,‚#ZU2 ÝèìdN4!‚#8©ÑÙÉŸ‰Œ ÁŠÔèìäL4!7‚# yäÀj2§F"#äæ"w !´© ãBjtj²¥F.@0< ¥ ãhѰ‚Œ©Q)ÉÉrïà‚#8íFç%oj”{ëhe¨zõêÕ«V­JJJ*_¾üã?>vìXooïBæÏÎÎþæ›obccSRR¼½½zè¡#Fɽœ©ÑyÉ“¹zJ¥‰ŽãìÙ³'OžüçŸ6oÞ¼bÅŠk×®}ùå—³²² š?77wРA~øáõë×Û¶m[£F-[¶<õÔS”{S›"}…’-5¤F(“úƒ£^¯‰‰ñóóÛ¼ysLLÌ–-[xìØ±?ü° EV®\yøðáîÝ»oݺõÓO?]ºtéâÅ‹…“'O–{k8ÚNJÎÔ(•úƒãªU« ÃèÑ£«V­*M™0a‚§§gll¬Á`°¸ÈáÇ…ƒ rs»7”ß²eˆ ž>}úÚµkrogBjtR2¤FŽÔåSpùd¹råÞ}÷ݸ¸¸¬¬¬óçÏ¿ýöÛç΋ŒŒ¬\¹²ÜÛÀiÐntF²¥FÀ¨¼–™™™››ëåå•gº§§§x°§h.$$déÒ¥/¾øâ‹/¾hš8`À€I“&Yù¾!!!y¦lÞ¼Yî¡iç⯏ )))2 ú%00 9Ù–û80 À¦ë³LõŸKá“S’S„ã€ÀÀ”ädQè«ñE ºuë&w J¡òà(]:]¡B…<Ó+V¬(„¸yó¦Å¥ÒÓÓg̘‘‘‘úÐC¥¥¥íÛ·oݺu=öX—.]¬y_½^/÷¦#¯€€¹KPF dÞ'ªÿPl¾ŽÙcªÿ\ r¯×è°­¿ÏkÞP³ŠBäÿ³ž¿C¤*Ž^^^:.333Ïô[·n‰û}ÇüÆ÷믿N˜0ᥗ^’¦œ?þ¹çž{ã7~úé§ÀÀ@¹7 €Ò1Hít=BÍð4œ“ÊÏqtssóôôÌßYLOOB˜®³6wùòå;wÖ¯_ß”…Õ«Wíµ×îÞ½ûÃ?ȽM#5VRypBøùù¥¥¥IIÑD:MÈÏÏ/ÿüiiiBˆºuëæ™.5¯\¹"÷P:ÚÎ…ÔXOýÁ±S§N¹¹¹{÷î5M1»wïööönÚ´iþùëÖ­ëêêzêÔ)ヶt~CýúõåÞ  Ôˆ!öDjt.MÜ©ÎOýÁ122ÒÅÅåóÏ?—ÎkBÄÄÄ\½z5""¢L™2Ò”ŒŒŒ””é²5víÚ¥¦¦~ú駦;„Ÿ:ujîܹîîî:t{ƒNˆ;5BT~qŒ¢zõêcÇŽ9sf¯^½Ú¶m›šš:tèPÓ<»wï~ã7‚‚‚6lØ „˜>}úÓO?=wîÜM›65jÔ(--í×_5 “'O®W¯žÜ@¹h7:ǵi4B-Ô…ƒ®R¥Êºuë6mÚäïï?`À€Ñ£GKwä±È××wÓ¦MóçÏß·oß®]»¼½½üñaÆ=ôÐCro Pj$»!8R#P:#¿Í¶Â}•&%%…» Ý£˜à¨¾EíFõ}.9WjÔȇâ\4û·^G°7u¤FpPj¼o¹7°%‚# %„hžãR#‘j¤þ«ªÀÞh7: R#PJG€&Ò#8@©Ðnt ¤FÀ&Ž€fGì€Ôˆ¡\P9»·¹€šAp€¢Ý葉ŒÐ †ªm ’@“H€m $h7*©°9‚#@…H€= Øh7*©°‚# ¤›"5j©Fp¨Š}Û¤Fh·ã€b Ý¨pvLܬ 8êG0fØ75†ªÀz´•ŒÔ8Á€‚‘3G° íF%³W»‘Ô<ˆà¨Ù@j†àE£Ý¨X¤FÀ‘ŽgEjŒàE Ý¨-¤F `G@½ˆ'¶@ŠP,»´ù¼BÀ¡Èó6AjdAp€1H­L¤F@.G@¥H(P)R# #‚#XF»Q+H€Õާaûv#©(‚#X@»QH€ìŽ€R :¤F@ ŽíFõ#5%Bp(Û¤F ¤ŽðÚJCj”ƒà¨9*Bj…àÿ Ý¨f¤F ÔŽ…²e»‘ÔØÁî¡Ý¨(¤F@Ž€ºU  ¤F@™Ž íFµ"56Ep(‹ÍÚ¤FÀÖŽ@»QAH€’!­ÀÉ‘…#8Ð:ÚjCjì†àPÛ´I€=híF… 5Nà©pG@-ètIC=ø,‡ 8€ÍÞKÀíFR#à(G€lH€s!8Ð(.‹QR#àXG@È,pB¥m7’‡#8Ð"Ú²#5Έàp4R#ऎ4‡v£s#5ò!8ÎØ§Rªv#©Á€¶Ðn”©pjG€3 5 @p !´åe›ï¤ ‚#àäH.p R*@p ´©P ‚#ÀîJÞn$5JBpØ©P ‚#M`œÚùå!8ÎŒðÅ+a»‘Ô(Á€úÑn” ©P‚#@IH€‚¨íF¹”¤ÝHj”à8-ò ŒÔ¨Á€šÑn"8lŒv# VGªE»Q¤F@ÅŽY‘çApœ½/(R±Û¤FÀ©¨ãÔŽGjTà©pBG*D»ÑñŠ×n$5Ήà8!R †ÔhÁ€ÚÐn;!8J…v# GªB,q0R# )G( ãÔ6CjœÁp6(F1Ú¤F@ŽÔƒËb‰ÔhÁ`O¤F@EŽT‚v£#YÛn$5êBpœ Y Pì鸞Gj@cK‰øTÕ!8€ôv  5 eG€µH€Æ8=.‹QR# ^nrà «W¯^µjURRRùòåüñ±cÇz{{¾ÈñãÇ,Xpâĉ[·n…„„Œ9²E‹ro´8YYÕn$5ª¦‰ŽãìÙ³'OžüçŸ6oÞ¼bÅŠk×®}ùå—³²² YdÇŽýúõÛ±cGÕªU›6mzäÈ‘îØ±CîMíFÇ 5ZŽz½>&&ÆÏÏoóæÍ111[¶l8pà±cÇ>üð¹yóæøñãÝÜÜ–.]ºråʘ˜˜+V¸»»¿ýöÛƒAî ‡úƒãªU« ÃèÑ£«V­*M™0a‚§§glllA)píÚµéé鯾úê#<"MiÒ¤I÷îݯ^½züøq¹7À?èp9íFõǃº¸¸´oßÞ4ÅÕÕµ]»viii‡¶¸Èž={t:]ïÞ½Í'~ðÁz½þᇖ{ƒØãÔ%Dj´AåÇƤ¤$óéÁÁÁBˆ³gφ……å_*!!ÁÛÛ»Zµj‡:räÈ74hйsg¹7F¢LŠn7’ÍPypÌÌÌÌÍÍõòòÊ3ÝÓÓSqíÚµü‹dggÿý÷ßõë×ÿïÿ»bÅ ÓôZµjÍ™3§qãÆÖ¼oHHHž)›7o–{ghÚ¹sçä.¡´D@JJŠÜUØRé?”ÀÀ€äd[î•À€›®Ï)åù\“S’SD{% 00%9Yh}·Ù— þsvݺu“»¥Pyp”.®P¡Bžé+VBܼy3ÿ"ÿý·"))éÊ•+3gÎlß¾ýí۷׬YóÅ_¼þúë6l°¦ï¨×ëåÞtä w l‚í·ÈæûD};¹ô;¡°}¢Ó £‘]æüfÊ+ÿŸõü"Pù9Ž^^^:.333Ïô[·n‰û}Ç<Ê•+'=˜1cFïÞ½½¼¼ªU«6bĈ>}úœ;wnãÆro!¸ CXû=14CYÁñ£>JJJ²á ÝÜÜ<==ówÓÓÓ…¦ë¬ÍU¨P¡\¹r:t0ŸÞ¹sg!ÄÉ“'åÞIàœÚ ?eǘ˜˜ž={FDD,]ºÔâ ˆ%àçç—––&%Eé,&???‹‹T­ZµL™2:Î|¢4B““#÷N‚&Ñ ƒÒMRVp|å•WjÔ¨‘0}úô¶mÛ6lË–-ÙÙÙ¥Yg§Nrss÷îÝkšb4wïÞíííÝ´iS‹‹tèÐ!==ý?þ0Ÿ(Ý»§Aƒrï$ŒSÛ]íFR# UÊ Žcƌپ}û·ß~Û¯_¿Š+îØ±cÔ¨Q­[·þïÿ{ôèÑ’­322ÒÅÅåóÏ?—ÎkBÄÄÄ\½z5""¢L™2Ò”ŒŒŒ””Óek}úôBLž<ÙÔõ<~üøW_}åééÙ¥K¹wÈŠÔh˜Î¨Ôã?''gÏž=ëׯ߱cÇíÛ·…uêÔéÝ»÷SO=U£Fb­jÑ¢E3gάQ£FÛ¶mSSSããã5j´hÑ"Ómz6mÚôÆomذAš²`Á‚?þØÓÓ3,,,33óàÁƒ:nÖ¬YÝ»w/òíBBB¸ªZiRRRœûšD56ÄJü¡Ðn´«”””À€ÀÛ¤F98ý¿`j¤Ù¿õʽ››[ÇŽ;v옙™¹fÍš?þ855õ“O>ùôÓO›7oîêêjͪ\¥J•uëÖmÚ´ÉßßÀ€£G–îÈSW^yÅ××wÉ’%ðööîÔ©ÓÈ‘#ƒ‚‚äÞ+Ð$r ¨°Ô@ó”ÛqB\¿~}ûöí›7oŽ‹‹“®J©R¥J™2eΟ?/„¨_¿þÂ… ýýýå.3/ÍþWˆ’9÷¯«48–ìC¡Ýho…ÝH»Q&Îý/˜Jiöo½;ŽW¯^ݺuë–-[~ùå—ÜÜ\!„¯¯ïO<Ñ£GGyDqàÀÙ³g'$$üç?ÿùòË/å®TB'tÉ)ÉÂbD!5PZp\¶lÙ–-[:d0„>>>]»víÞ½{XX˜ù¨t›6myä‘G}ôàÁƒr— *!õ-» ©€BiÁñwÞBxyy=ñÄÝ»woÑ¢EAg1zxx”+WNãÔì‡qjyܧ¬àÑ£G–-[ZsÕ íFhÑQ੤Ff”uÇØØØ¸¸¸‚RãÈ‘#»ví*wäA»d§¬à˜™™y÷îÝ‚^:sæÌ_ý%w 6´XIþ¡êÝ»w6ÌôtÉ’%Ë–-Ë?›Á`0µk×–»^PR#ëÉ]]]+W®,=¾~ýº»»{ùòå-Îéåå5aÂ¹ë Æ©ÔÀùƒc›6mâãã¥Ç!!!Ï=÷ܤI“ä. PÒ ìÌr»‘Ô òGsC† “» ÊB»ÑN,¦Æ€À@R#€‚(+8Ž7Nî`™ÌÁqùòåBˆG}4((Èô´pýû÷—·fŽD»ÑN ¤NINæK‘Dæà8mÚ4!ÄÔ©S¥à(=-ÁìB é))¥_µ’98Ž9RñÐCIOßzë-¹w tÆ`7Ú\À 2Ç#F˜?:t¨¼õPÆ©íÔ Ä”õÍ1G#5°šÌÇ]»vw‘öíÛË[3Ç Ýh~O XAæàøÊ+¯w½^/oÍतPJ2Ç^½zɽE¢9 5(&™ƒã¬Y³äÞ”ˆqj›ËÛn$5(>.Ží!5(¾9€âÐn´9®‰`|s ¨ƒÔl…oŽ”‡þì‡Ô øæÊÂ8µm=Ðn$5(E_“‘‘‘-w  ¤F¥&sÇÑ¢cÇŽ}ñÅ'Nœ¸r劋‹K5š5k6|øð:uêÈ]û¢Ýh[ÿ´IlAqÇO>ù$22r×®]W®\)[¶l¹råΞ=ûã?öèÑcÅŠrWØŸÆ“l‡+©Øœ²‚ãž={æÍ›çêê:pàÀmÛ¶ýöÛoGŽÙµk×!C„Ó§O?zô¨Ü5°šböž`#Ê Ž+V¬0o¾ùfttt­Zµt:ÂßßܸqãÇÏÉÉY¼x±Ü5pZîÞ2H À”Oœ8Q¶lÙAƒåiÀ€ÇŽ“»Fp¤F6¥¬à(„¨V­š››…Kv¤«d233å.€]pYŒM·]gFR#›SVplÚ´éÙ³gÓÓÓó¿”‘‘‘’’*w€=i9ìÀF¸&€ý(+8FFFƉ'æää˜OÏÍÍ4iRnnn§N䮀íѳ=ö);ù>ŽqqqæO]]]ûöí»víÚ.]ºDFFêtº”””5kÖœ={6$$¤[·nò À)h¶uË 5»’98¾øâ‹§Ÿ?þ“O>É3Q¯×·jÕJ¯×Ë[3(©€½É{õê%÷ 3.‹±éƓؑÌÁqÖ¬Yrï@14wPZ÷¯‰ÑÉ]5SÖÅ1…?~|ǎ宀-Ñn´éÆÓn`_2wó»~ýúöíÛSSSóLÏÊÊÚºu««««Ü€âè„Ψ¤Fö¦¬àxéÒ¥~ýúýõ×_Íп¹ke!5peÇÅ‹ÿõ×_Í›7߸qãÏ?ÿüŸÿüÇÃÃãäɓ˖-ëß¿tt´Ü5°Æ©m‚ÔÀa”÷îÝ[¶lÙ¹sçV®\¹cÇŽmÚ´ hÕª•"00ðwÞyæ™g‚‚‚ä.°mF”ç5p e]sáÂ…ºuëV®\YQ¥Jooï„„é¥ÈÈHooïÅ‹Ë]#Û  ÝÎEYÁQáâòOIµk×NII‘»ºº†„„;vLî@1h7p,eÇjÕª>}:##CzZ«V­C‡™^ÕétçΓ»FPR#‡SVpìܹsVVÖ[o½õçŸ !ÂÂÂΜ9³oß>!ÄÕ«Wýõ×5jÈ]#ÐéDrrŠ-W¨µqjN§­  ʺ8fàÀ[¶lÙ±c‡Ñhœ?~»víÜÜÜFŒѬY³“'OffföèÑCî;Ð\êAéèt:£0òKÀá”Õqôõõ]¾|ù˜1czè!!D5&Ožœ½ÿþ´´´N: ûìèÑ£===å.@£”sss‡ väÈ‘²eËvîܹN:®®®§OŸÞ¹sç·ß~›˜˜¸|ùrWWW¹Ë`-ÎÖ+ÚOYÁñ믿>räÈ¿ÿýïÏ>û¬jÕª¦éW®\9rä‘#G¾þúë!C†È]&Ù¨vœšˆ À(ëà{÷îÕétsæÌ1OBˆ*Uª|òÉ'...{öì‘»FÀFT›€P|¦FÚKYÁñäÉ“uêÔñ÷÷Ïÿ’ŸŸ_½zõ宀µ¸,ƺ­"5pÊ ŽeË–ÍÊÊ*èÕ¬¬,¹kÛa„€SQVplذá¥K—Ž9’ÿ¥„„„sçÎ5hÐ@îX…vc‰¶‘v#ESVp”¾HfÔ¨QyÎeÜ·o߈#„ááár×6B»€³QÖUÕ=zôؽ{÷ºuë†êïï_·n]!Djjêùóç…áááO>ù¤Ü5¶ …î —/5Òn |Ê ŽBˆ3f´hÑbΜ9.\¸pá‚4±J•*o¼ñFŸ>}䮀U§.j{Hœ’â‚£N§ëÛ·oß¾}/_¾|úôi£ÑX·n]???¹ëa„€ÓRVpúè#N7pàÀmÛ¶ýöÛoGŽÙ½{wTT”‹‹ËÇ'w@)8}‚u N´85eÇo¿ýÖ`0Œ;6::ºV­Z:NQ­Zµ±cÇNš4É`0,]ºTîäE»4BYÁñøñãåÊ•8p`þ—úõëW¾|ùãÇË]#Šv#õRPpÌÉɹp႟ŸŸ«««…B]\üýýœ3@ÉHTMAÁQ§Ó•/_þìÙ³7nÜÈÿjzzúéÓ§zè!¹ËðÆ©í¸/@a]]]ûöík0ÆçÎó—²³³'L˜ Óé† R²•¯^½:22²iÓ¦­[·ž4iÒõë×­_öüùó<òÈØ±cåÞCprNˆ`…BS#íFê ¬Ûñ<ÿüó'NœØµkWçÎ#""t:]JJÊ÷ßñâÅ=zܺuk×®]¦ùk×®]äjgÏž=þü *4oÞ<55uíÚµ§NZ²d‰‡‡G‘ËÆñãÇߺuKî}(íFkv©€j(+8öèÑCzpùòåyóæåyuÓ¦M›6m2ŸòÖ[oygG½^ãçç·fÍšªU« !Þ}÷Ý%K–|øá‡o¿ýv‘%}ýõ׿üò‹Ü;@~Ê Ž½zõ*Öüõë×/ržU«V †Ñ£GK©Q1a„ü1666::ÚÅ¥°ÁúS§NÍž=»Aƒ'Ož”{ߊC»ÑšA»€š(+8Κ5Ëæë[­ZµŠ+†……Íž=;''GßU hˆ·I€‚¥¤¤äææ¶jÕ*00Ð4±bÅŠòV•œœÜ¾}ûÜÜÜ>}úÔ®]{Û¶mcƌٳgÏ?ü óþrfGŠGjJ-;;[áîîn•'%% !¦M›Ö©S'¹7ôcÆŒ¹yóf|||óæÍ¥ò† ²hÑ¢-[¶tíÚUîêœCÕ@é8Ï•1Îz~ ³Ö (KHHHžT7uêT)Q•žëׯ_‚e³²²¦OŸÞ°aÃòåËשS'**êâÅ‹6©jÇŽíÚµ3߯#F!âââl²~m¢ã „‘™m”i7ù>}úСC6YURRRÙ²e+Uª´zõêk×®…††>úè£Vv7£¢¢V¬Xѹs爈ˆ„„„¯¿þ:!!!>>¾”%åää ><,,Ì|bjjª¢lÙ²vÙ¡Ú@p4Á)Ûv¤FÀI$%%¹¸¸Ô¯_ÿúõëÒ”† .]ºô‘G)|ÁŒŒŒ•+W4hñâÅÒ”¨¨¨üñÂ… þþþ¥)ÉÍÍíý÷ß7ŸríÚµ÷ßßÕÕõé§Ÿ–{‡91‚#€’°{»‘ÔÈ$''gãÆ½úÔSO埘””d0¦NúôÓO—)Sæ§Ÿ~zã7z÷îàééYÈ{¹¸¸ètºýû÷§¦¦Ö©SG±páÂ… Ú¤*s»vízùå—“’’æÍ›$÷>vbG œäGçk7:_ÅÀ?t:ÙÞºðã&77×ü©Á`°8[FFFïÞ½ ~ ï±k×®råÊùøøHO|ûöíáǯY³fÈ!…”äáá1gΜ7ß|3 44´U«VݺuëÙ³gþaîT%9sæÌˆ#Ö¯_´mÛ¶Ž;Út—kÇ(6ûfÛ¥FÚ…Ñ(ÛOáîܹcþ4++ËâlžžžÆ‚Y\¤zõê¦Ô(yâ‰'„'Nœ(rw >üôéÓ111Mš4Ù´iSß¾}›4iréÒ¥ÒW%„X±bEãÆ:´`Á‚ßÿÔXzt•s²æ©°›óçÏ›?½pá‚ÅÙŠ;(œššºaÆŽ;6lØÐ41==]!>"---)))888*****Ê`0Ì;wäÈ‘óçÏŸ2eJiªB¬_¿þ…^xæ™gæÏŸ_¹reÇîlÕ"8(;¶I€=]¼xqÆ O>ù¤"99ùèÑ£g+î °‡‡Ç[o½Õ¼yóíÛ·—)SFa0fÍšåææÖ¥K—ÂKÒëõ­[·ŽŽŽž>}ºÂÅÅ¥}ûöBi=¥©Êh4Ž7®V­ZK—.uuu•kŸ«Á()g8ÁÑ™ÚÎT+à”ÜÜÜž{î¹ððpƒÁ°aÆ‚îJ# [¿ÚªU«N:uüøñAAAÝ»w÷òòÚ²eË‘#GÞ{ï½F !V¬XñÚk¯½ôÒKüqžeÃÂÂ7n|ìØ±"ÏÊÊš>}zÆ Ë—/_§N¨¨¨‹/–¾ª;wîœ8qâÉ'Ÿ”R£¢B… mÛ¶=wî\VV–Íw¯vð]Õ€uÙnT;O“;9}úô¡C‡J¿©WµjUó‰Õ«WB?~¼I“&…/µbÅŠÎ;GDD$$$|ýõ× ñññ¥¬ÊÕÕõ·ß~óõõ5MÉÉÉ‘êñðð°ÏÕ‚#à¬Ñn$5š× A!ÄFmš¸sçN!Ä…  _6##cåÊ•ƒ Z¼x±4%**êǼpá‚¿¿iªrss •/Y²$))iãÆ.\øöÛoåÞaÎà ¤H€åäälܸ± WŸzê©û¬i¢···(ª=‰Â'#ç µN'„ 5NêâÅ‹6lxòÉ'…ÉÉÉGµ8[ …_yå•'NèõzébêÄÄÄeË–õìÙSzZ½^ߺuëèèèéÓ§ !\\\Ú·o/„(S¦L)«jÑ¢…bñâÅÏ<óŒNwïäo¾ùFaJ·(‚#P…SËÆ!ä¤FÀ~ÜÜÜž{î¹ððpƒÁ°aƲeËZœM.Öš§M›Ö½{÷-ZôéÓçîÝ»«V­òððøôÓO¥WW¬XñÚk¯½ôÒKüqžÃÂÂ7naÂOOÏØØØ‚¾ß}óæÍBˆèèhSK2((èÕW_ÍÍÍÝ¿¿Ümq\jÔéÜkLNIvÌ{lEýÁñàÁƒ¦¯0’¸ºº¶k×.--íðáÃIII©P¡Bhh¨ùÄ   !ÄÙ³gåÞ 8Š¦Æ©¥ÈÈ5 P*?ÇÑh4&%%ùøøøøø˜OBœ={6,,,ÿR ,psË»gNœ8!„¨U«–ÜÛ qP»ÑFAjg¦òà˜™™™››ëåå•gº§§§âÚµk—jÔ¨Qž)ñññ111eË–-äÖÍ…„„ä™" C.çÎ+î"" %%EÆš’“mYB`@@þõ¦$' Gmi`@`rJrŠH%úPà|.ЦÂÿµíÖ­›Ü*…ʃ£ô͘*TÈ3½bÅŠBˆ›7o¹†ÜÜÜåË—ðÁ¹¹¹}ô‘¯¯¯5ï«Í¯!R¸â}‹šN£2ñšÍ¿ùíÞ¿¿·Ã6ò^¯Ñìýøj;eâsþkŸÿÏzþ‘F¨<8zyyétºÌÌÌ<Óoݺ%î÷ ñóÏ?O:õÏ?ÿô÷÷ï½÷Zµj%÷A+ì>HíØáiÁ5¨‚ʃ£›››§§gþÎbzzºÂtu~ÙÙÙ³fÍZºti¹råFŽ9dÈ‚nú8R# DT…~~~IIIéééæ_µ$ÊàççgqƒÁðæ›oþïÿëܹó”)S É—P'¹¯§¶c»QޝŸ&5€j¨ÿv<:uÊÍÍÝ»w¯iŠÑhܽ{···wÓ¦M-.²téÒÿýïÏ?ÿü_|Aj„ƒÙ75:ðž;÷ßÔê¡þàéââòùçŸKç5 !bbb®^½Q¦LiJFFFJJŠt-¡Ñh\¶lY¥J•Æ/wí€í8|xZ-ILLìÛ·o­ZµjÔ¨yàÀ¹+zÀÝ»w{ì±–-[Ê]ˆÓSÿPuõêÕÇŽ;sæÌ^½zµmÛ6555>>>44tèС¦yvïÞýÆomذáÊ•+gΜñððèß¿þµõéÓgÀ€roìIÖqj»´åž¤F@KöîÝÛ¥K//¯~ýú¹ºº®\¹²K—.ë×¯ïØ±£Ü¥Ý3yòäŸþù±Ç“»§§þà(„úè£åË—§¦¦V©R¥K—.Ó§O¯V­š­6üÒ¥K/¼ðBTTÔÖ­[íµsµDýç8Å ß8µ;ƒ:\›BjœÅéÓ§:Túõœ={Vä»Ã]õêÕ…Ç/rñ¨¨¨ÿüç?µjÕ3fLÓ¦M¿þúk+¿¤ÍF£qàÀÞÞÞsæÌ±ñîÓ*­t%³}j4ÊÑi$5šÔ A!ÄFmš¸sçN!Ä…  _6##cåÊ•ƒ Z¼x±4%**êǼpá‚¿¿ék›5kÖîÝ»ãããË—//÷~R ‚# 3›§FY†§©P‹œœœ7ôêSO=•gŠŸŸ_DDÄš5kfΜ9xð`£ÑøÍ7ßÌ›7OÜÿºB¸¸¸ètºýû÷§¦¦Ö©SG±páÂ… –¾*!Ä/¿ü2yòäY³fýûßÿ–{§ªÁ¸Oîû~—ºþ{WO˲¤FàéH”K¡ÿݘ››kþÔ`0Xœ-##£Áb‹ãóæÍ»qãÆ„ &L˜ „ðöö~ûí·ÿûßÿzyy^¯‡‡Çœ9sÞ|óÍ€€€ÐÐÐV­ZuëÖ­gÏžù/â)nUéééýúõëҥ˨Q£ì³¯5ŠàÈÉfýÁû+"52“©åo;wî˜?ÍÊʲ8›§§gqÏv©R¥ÊÖ­[ãã㥠«Û´i³gÏ!DíÚµ‹\vøðá6lعsç¦M›bbbBBBvïÞçÛÝŠ[Õ‚ ’““{÷îýÁHSnÞ¼™››;sæÌÚµk÷ë×Ï{\Ž€ll“ÍnÓHjPˆóçÏ›?-èÄ ÿöÛo•+WnÙ²¥éÛÛ·o×étEÞÃ.---)))888*****Ê`0Ì;wäÈ‘óçÏŸ2eJiª’n?ôñÇ›O¼~ýú„ Ú·oOp,1‚# „pÚqjùÎh¼÷þ¤FÀy\¼xqÆ O>ù¤"99ùèÑ£g+ÁPõ+¯¼râÄ ½^/]L˜˜¸lÙ²ž={JO ¡×ë[·n=}út!„‹‹Kûöí…¦¯v+qUÑÑÑÑÑÑæSªU«çÀ]®BG@6ˆ|®ÂñÑ—Ô877·çž{.<<Ü`0lذ¡lÙ²g+ÁPõ´iÓºwïÞ¢E‹>}úܽ{wÕªUŸ~ú©ôêŠ+^{íµ—^z)OÿOÖ¸qã3f$''7nÜX¯×ÇÆÆúøøäï– *Ø÷qdPÚÔ¨Ó‘W‹-¢££ãââöïß?tèÐ#FØjÍO<ñÄæÍ›k×®½xñâM›6õíÛ÷÷ß^ÍÎξqã†ÅS*ÝÝÝccc tàÀiÓ¦íÚµ«K—.û÷ï7- ¥¡ã8:vÙ 5ÊýŸÝ¤FÀétº‰'Nœ8Ñ4eÚ´i¶Zy—.]ºtébñ¥Aƒݽ{×âù !jÖ¬ùÕW_9`óSRRð.ªGÇpù÷&;¶ÝHjP,·oßÞ¹sg³fÍä.6@Çp¨’· XÒ‘©Q'tBR#€b‰‹‹kذáóÏ?/w!°‚#4ÏÉ«„©Ñì†;òÕN£pnÆ «\¹²,oÝ¡C‡:Ƚ`GÀAJžå>£Qç7nÜ8¹K€¡mJ¾}cÁF×NjHŽ€#¯oXTd¤F€Ž€Ý;557© ‚#4Ì!ù«©ÑŠF££ªæj€G@”q̽Zh4,!8B«”Ón´®Ñè°ªI€‚{):5'2 R#@nGÀ.¬JÅ›&5dGp„&Ù9…‘ ‹Ùh´½\ ° Á°±ÂRcñ#£pHj$2¬Ap„öÈõm1JºnÚlgÖr‘»@U,‡C®Ä©Ñ~)W't¤F¶b0>ÿüó‡~¸bÅŠ 4øàƒîÞ½+wQâØ±cÏ>ûlµjÕ*V¬6{ö윜¹‹rnGhŒ=Û¡)2*/5…‘ÔÀ& C¯^½FU¯^½#FT©Reüøñ¯¾úª¼U%''·oß~óæÍݺu3fŒ»»û˜1c"##åÞ[ΡjÀ6ò¦ÆÎøÀ 휹sÈ.;;[áîîn•/Y²dãÆ111C‡•¦<û쳋-š0aBPP\›|xXX˜ùÄÔÔT!DÙ²eíµO5€à”Ê?©Ñ‘Q8› .dggëtº6mÚýôÓrï3'Fp„fØ!‘ÝK6ŠŒö©‘›{(žœœœ7ôêSO=•gÊÍ›7…K–,éÓ§Ï7ß|S«V­Ý»wGEEEDD$&&z{{ò^...:nÿþý©©©uêÔB,\¸páÂ…¥¯*]»v½üòËIIIóæÍ“ñ´K 8%¤Ó £”ÊltwF;¥F"#à`:ùÞºð£=77×ü©Á`°8[FFFïÞ½ |‹|ÿâUªTIQ¯^½ï¾ûNºø¦gÏž³fÍzá…Ö¬Ycº\Æ"9sæ¼ù曡¡¡­ZµêÖ­[Ïž=ó_ÄSܪLΜ93bĈõë×mÛ¶­cÇŽ6ßíšÂÅ1Є€ÀÇ'Î(J{Ìë³ujä:@.Fù~ wçÎó§YYYgóôô4,ÿü~~~BˆÖ­[›§=i:11±ÈÝ5|øðÓ§OÇÄÄ4iÒdÓ¦M}ûömҤɥK—JY•dÅŠ7>tèЂ ~ÿýwRcéÑqŠÉvÓÿ¬Ò©‘È óçÏ›?½pá‚ÅÙŠ;(\¡B…ÀÀÀ<+¿r劢fÍš…—”–––””e0æÎ;räÈùóçO™2¥4U !Ö¯_ÿ /<óÌ3óçϯ\¹²÷´š¡:‘’œ J½BWØHɪ³eÄãŒF¹xñ↠ž|òI!DrròÑ£G-ÎV‚AáAƒM:uÏž=íÚµB †3f¸¸¸ä¹P~z½¾uëÖÑÑÑÓ§OB¸¸¸´oß^Q¦L™RVe4ÇW«V­¥K—ºººÊ²ÃU‰àXá~—Ñæ_7móÔHdP77·çž{.<<Ü`0lذ¡ »ÒHƒÂÅZók¯½¶zõê.]ºôïß¿fÍš±±±‡7nÜÃ?,„X±bÅk¯½öÒK/}üñÇy kܸñŒ3’““7n¬×ëccc}||úõëWʪOž<Ù°a訨a1S›¼©‘ÈpRÜŽNBº±ŽÅ[æ'µ™Öa³ºŠóþÒ6pŸêsìØ±gŸ}¶Zµj+V ›={vNNŽÜEý£]»vS§N•» 5 8BÙòäÅÒ%>{Ü©Ñh]j$2P±äääöíÛoÞ¼¹[·ncÆŒqww3fLdd¤ÜuÝsäÈ‘ýû÷Ë]…J0T E²þFëÚ}Ö¬¬JÕY5'Óä—-„pww·ÇÊÇŒsóæÍøøøæÍ› !¦M›6dÈE‹mÙ²¥k×®rmrNNÎŽ;80wî\ƒÁ W*CÇJRÜþ¢u©Q§ÉÉ)Žo4Òe !!!:u2Ÿ2uêT)ç•ÞŽ;Úµkg¾¶#F!âââŠ\6++kúôé 6,_¾|:u¢¢¢.^¼h“ªÒÒÒºví:uêÔ+W®ØpOjG(@É.‘¶"5š.¤II±Q¥R™EÌsosÈ‹”ìôéÓ‡*ýzrrr†f>155UQ¶lÙ"ŠŠZ±bEçÎ#""¾þúë„„„øøøÒæççg4…z½¾AƒvÚZCp„|J}K"WïàK§• Annnï¿ÿ¾ù”k×®½ÿþû®®®O?ýtáËfdd¬\¹rРA‹/–¦DEEýøã.\ð÷÷—{Ë`Ág“¼Xhˆsü½‰ŒT#''gãÆ½úÔSO¾ø®]»^~ù夤¤yóæ>³‹‹‹N§Û¿jjj:u„ .\¸p¡Í«‚­á(6ì/•ÖhdT€ºÒ¯¢¤ ý§(77×üiA׋dddôîÝ»Àw(ø_Ø3gÎŒ1býúõAAAÛ¶mëØ±c‘õzxxÌ™3çÍ7ß  mÕªU·nÝzöì™ÿ"žWÛââØ“ébÝOGˆÂrœ#ïÑh~á ©ÀŒòýêÎ;æO³²²,Îæééi,XA+_±bEãÆ:´`Á‚ßÿÝšÔ(>|øéÓ§cbbš4i²iÓ¦¾}û6iÒäÒ¥K6© 6GÇv`¿“ Èq›¦ÅÀy?Þüé… ,ÎV‚Aáõë׿ð Ï<óÌüùó+W®l}IiiiIIIÁÁÁQQQQQQƒaîܹ#GŽœ?þ”)SJYìàÑ™Í8ö?þ36ÍYŒœÝÅ‹7lØðä“O !’““=jq¶â ÆqãÆÕªUkéÒ¥®®®Å*I¯×·nÝ:::zúôéB—öíÛ !Ê”)Sʪ`'G”ޝŒ~ð½ò:4i1P 77·çž{.<<Ü`0lذ¡ {åHƒÂÖ¯611ñäÉ“ 6ŒŠŠÊóRß¾}ÃÃÃW¬XñÚk¯½ôÒKüqžÂÂÂ7n-Z´èÙ³ç‚ rrr†Z¹råwÞy§ô«MJJB$&&&&&æy©~ýúáááÙÙÙ7nܰxJ¥»»{llì”)S¶oßþý÷ßûùùuéÒåí·ß{oÁ2‚#¬#ßH´¤F»FFò"Óét'Nœ8q¢iÊ´iÓJ¿Ú^½zÞ 4hÐÝ»w,¾Z³fͯ¾úÊ®B·ÒV¸ª³xM´|©Ñ¼[­øÁus•4ØÞíÛ·wîÜÙ¬Y3¹ Ðqăäí,Z¨G£½ºŒÒÿëè/€=ÅÅÅ5lØðù矗»ØÁÊ ‹ÿv/ÙÙ)2’hǰaÊu£êСC‡äÞ° ‚£&éüZE…ÅŠ:ûtÖÜ'Ôeܸqr—5 8j†bÛŠùʼWœ-ú:ÓIŒ÷צÜm@á¸8F½Ì/m‘÷ê–âÔkV}qV«º·2!ed£É))roNŽ£Š8ÅtÁU…}uÑë1Eߞαý8‚£3sΤ˜§|£ÙM·‹›õÌ¢0 cA_0 l‚àèTœ<)æÙˆ"£°6ñå ‹¦¥KѬV!8*Xž˜(œ5)æÙš¼aEâËÅýÛw ò"ŽBpT uÅÄü›eak Î}æIQógâiÀùµî^R4Ä“]ÑñuÝÿÿ¼+j@pÔ–üg"J±®x1ï:ïÅNݽU‘P'‚£ÚXˆ†¼l,åuÞŒ;ë„bâýÈTŒàè|ŠŒ†¦‡2¢Õá® ÷0rÆ"ZEpT–"Bá½™,äµ2b1Ã\± ™‹h7/ÐêÕ«###›6mÚºuëI“&]¿~½Ä«Ês+ìB~îÝ[WàQÍo¸må]Æuÿ-þ2“sêÖ­›Ü% />eâsQ >(GËfÏž=þü *4oÞ<55uíÚµ§NZ²d‰‡‡G‘Ëþ¡ÿ#OãÐüÒ]áãÌÒü%¹”¹0E¯û+€¢Ðq´@¯×ÇÄÄøùùmÞ¼9&&fË–-m a?*Š2ñ¹( ‚à˜WVV–¢B… y¦W¬XQqóæÍ"× ×ëåÞÛc¨:////N—™™™gú­[·Äý¾#€órssóôôÌßYLOOB˜®³Ð‚£~~~iiiRR4III‘^’»:y-èÔ©SnnîÞ½{MSŒFãîÝ»½½½›6m*wuò 8ZéââòùçŸKç5 !bbb®^½Q¦L¹«‡ÎX¬ïEÖŒE‹Íœ9³FmÛ¶MMMoԨѢE‹òߦ@#ŽZ¿~ýºuëŽ;æïïÿ裎=Zº#€6`Îq€Uް ÁV!8À*GX…à«`7¹ P›§Ÿ~úøñãy&úúúîß¿_îÒ´hõêÕ«V­JJJ*_¾üã?>vìXooo¹‹Ò4EINNîÞ½ûªU«~øáü¯røÈ¢…ÃÇÁ²²²V®\¹fÍšsçÎUªT)88xðàÁ­[·Î3›ÖŽ‚£9sÆÃãnݺæù¢BYÌž={þüù*ThÞ¼yjjêÚµkO:µdɹKÓ.EYºtiA/qøÈ¥…ÃÇ‘rrr^|ñÅ£Gzzz¶lÙòöíÛ?ÿüó¾}ûF5|øpÓlZŽWä‡Âáã`Ë—/îׯ_ff¦4å?þxôÑG6løûï¿KS´y¤pŽ£-9sF‘ç?!‹U«V †Ñ£GW­ZUš2aÂOOÏØØXƒÁ wuÅ¢áááýû÷ÿî»ï šÃÇñŠüP8|lóæÍBˆèèhSï0((èÕW_ÍÍÍ5 Í#…àhK©©©Bˆ:uêÈ]ÄÁƒ]\\Ú·oošâêêÚ®]»´´´Ã‡Ë]Fq€(Ä»ï¾;wîܹsç¶jÕÊâ >ŽWä‡Âáã`)))*T 5Ÿ$„8{ö¬ôT›G ç8Ú’t`_¸paàÀ‰‰‰åË—oԨѫ¯¾jñÄsØÑhLJJòñññññ1Ÿ,„8{ölXX˜Ü5jˆB´iÓFz°sçÎü¯røÈ¢ðEpø8Ü‚ ÜÜòf¤'N!jÕª%4|¤Ðq´%é¿B>ùä“Ë—/·lÙÒ××wçÎýúõ[µj•Ü¥iKfffnnnþsÆ===…×®]“»@âq >ÊÄáã`5’" I|||LLLÙ²e{÷î-4|¤Ðq´¥ .xxxŒ3fàÀÒ”¼úê«ï½÷^›6mªW¯.wZ‘••%„¨P¡Bžé+VBܼySî5ŠÄ)pø(‡Œrss—/_þÁäææ~ôÑG¾¾¾BÃG Á±$rrr¾üòKÓSWW×—_~Yñõ×_癳U«V/¼ðÂÂ… ·mÛf:Úao^^^:.333Ïô[·n‰ûÿ9Çãq >ÊÄá#—ŸþyêÔ©þù§¿¿ÿ{ï½g: U³G Á±$îÞ½;gÎÓÓ²eËJÁÑ¢G}táÂ…üñ‡ÜUkˆ›››§§gþÿàKOOB˜.ƒp€( ‡áð±«ìììY³f-]º´\¹r#GŽ2dˆùÝ5{¤KÂÃÃC¯×ç™h4 ƒN§sqyàÌQWWW!D¥J•ä®Z[üüü’’’ÒÓÓ+W®lš˜’’"½$wuZÄâD8|”†ÃÇñ Ûo¾ù¿ÿý¯sçÎS¦L±µy¤pqŒÍ¤¦¦6jÔhРAy¦9rD"wÚÒ©S§ÜÜܽ{÷š¦ÆÝ»w{{{7mÚTîê´ˆĉpø( ‡ã-]ºôÿûßóÏ?ÿÅ_Ô>Ôæ‘Bp´™ºuë>òÈ#¿üòËêÕ«M9²hÑ¢êÕ«wíÚUîµ%22ÒÅÅåóÏ?—N7BÄÄÄ\½z5""¢L™2rW§E N„ÃGi8|Ìh4.[¶¬R¥JãÇ/d6m):£Ñ(w êqòäÉ!C†\½z544400ð¯¿þ:zôhùòå¿øâ‹Ç{Lîê4gÑ¢E3gάQ£FÛ¶mSSSããã5j´hÑ"¾ÚU. J3yòäÕ«W¯Zµ*ÿ½9|äRЇÂáãH—/_nÛ¶­‡‡G½zõò¿Ú§OŸH5x¤¸þ÷¿ÿ•»õðõõ ¿~ýúü‘P¶lÙöíÛòÉ' 6”»4-jÚ´iݺu/]º´oß>77·îݻϜ9ÓüL8ˆÒìØ±ã÷ߌŒ¬V­Zž—8|äRЇÂáãHz½~íÚµ999—-iРéÚj )t`Îq€Uް ÁV!8À*GX…à«`‚#¬Bp€Uް ÁV!8Ж±cdž„„ìÚµKîBÄ矲|ùr¹ k`7¹ êСƒ¯¯ï#<"w!`-‚#È#44444Tî* ªÅÉÍͽ{÷®ÜU@^GÎaòäÉ!!!³fÍÊ3ýøñã!!!­ZµÊÉÉB\½zõã?îÑ£G³fÍš5kÖ³gÏ3f\ºt© ÕJ×ÊÄÅÅå™Þ¨Q£Ç{Ì|ÊþýûGÕ¹sçæÍ›8ðóÏ?Ï“íþúë¯)S¦ôèÑãßÿþwûöí_~ù僲E_~ù¥ùÅ1R%ç΋‰‰iÙ²eãÆÃž{î¹mÛ¶´†#GŽ4jÔ¨]»vÿý·iâ­[·Ú·oߨQ£cÇŽÉý¡P‚#ç.„زeKžé6lBôîÝÛÍÍíêÕ«ýû÷_°`Áùóçk×®]³fͳgÏ.^¼¸_¿~ׯ_/Í»øá‡C† Ù²eKNNNÕªU:ôÙgŸ 0 --MšáÔ©Sáááß}÷]ZZZ½zõŒFãîÝ»_xá…;vë,XðÑG•)S¦eË–žžžGŽ>|xll¬Å™›6m:dÈK—.½ÿþû¦‰|ðÁ… ^{íµ&Mš8úC vGΡyóæU«V={öìï¿ÿnšh0¤PÕ·o_!ÄÚµkOŸ>ݱcÇýû÷¯[·î§Ÿ~Ú·o_óæÍÿúë¯íÛ·—ø­wîÜùå—_ÖªUkõêÕ»víÚ¸qãž={üñ£GΛ7OšçÃ?ÌÈÈ6lØÖ®]»{÷îèèh£ÑøÉ'Ÿë½V­ZõòË/ïÝ»÷믿޺uë‹/¾(„X²dIAó5*((híÚµ{÷îBÄÅÅ­\¹ò¡‡6l˜|ŸÕ"8p...={ö6:téÒ¥¦M›Ö¯__‘““Ó¡C‡·Þz«B… Ò •+W–Z•©©©%~ë™3g !æÌ™cêáùúúΙ3ÇÏÏoÍš57nÜBœøà77·É“'_¾|9::ÚÃÃãÃ?4•6Dpà4¤h>n+SGDDHO‡>þüzõê™f¸råÊÆKó¦×¯_OII Ìstùòå[µj•••• „’ë„ ~ùåélË2eʼþúë#GŽ,ÖÛuïÞÝü©§§§«««Ñh,d‘F >üâÅ‹O=õÔ_ý5~üøºuëÚë3 mÜŽ€Ó ­[·îéÓ§õz}HHHNNÎæÍ›=<=''§víÚaaa;wnܸqJJÊ´iÓŠõ.¹¹¹¦&_vv¶¢F :W¯^]Q³fÍÕ«W9rdÏž=?ÿüsBBÂáÇçÍ›÷ôÓOOŸ>]§ÓYùÖîîî%Ø-·nݺråŠ"99ùÆ^^^öÿ(hÁ€31Ç×_]ƒ6SߺuëwÞqww_°`A›6mL‹\¼x±¸ïrþüyƒÁ = B”/_~Ò¤I…/¥Óé¤{ !²³³÷îÝ;qâÄ5kÖtìØ±S§NvÝ-S¦L¹|ùr³fÍ>úè£Q£FU¯^]º¿c»víÖ­[Ý¿WWW‹_X«V­o¿ý¶sçÎ...ûöíûã?jÔ¨ñå—_úúúšæÑét3fÌøôÓO;vìh0NŸ>0f̘uëÖy{{KóôéÓç›o¾yüñÇ=<ûŒVZPPMiô’“WÌ·¨øÞ_²^ÏUÔ’ûZU/å–¢•š¶oª3ðæ {þü9!ääÉ“þþþªÎp²lÙ²””ú7m¾6I^1ߢⷙû«mDµ¥huØN p|:tè`ccü¬©©yøð!ýÛÜÜ\CCƒÙ¤¦†>à7®®.mM333UçqâÄ ú‡Ï˜1c$ﯷT£—œ¼b¶½â¿J¿¯UòAÑ6Jñ†œäAàø:ݹs‡yyêÔ©ÁƒÓ¿Oœ8ѽ{wUgPiîܹcnn®©©ù†³%ÂÃÃÃÃÃU‹7ΛÓL̿ʖ,Y2|øpUgG ½ää³íÿõPú}­’жQŠ7äì ú·ÞtOž}ºhÑ¢>}úèê꺸¸¬]»–9»RM ®®¾uëVö†Ë|J«üÃV±O›ö £ p™9WWW>ŸO_jjjÖÖÖJíiiiÉìO? Ÿ={fllLS ´zõê°°0f å×_MÀq·&3Ù¹sçtìØ‘I9vìÝóÅ‹ÌO--­¡C‡6¬C‡4ÅÔÔ´ªªª¹ÇlIà˜ššÊ|. 4hÊ”)=zô`NqêÔ)±XüèÑ£ÒÒR&“;wî,--‰DâÆ>Ë. µµu¿~ý´´´˜”üüü&+\[[{Ô¨Q‘‘‘ýúõ£) ¸¸˜{é¤r¢¦¦æììldd$õ¹éäädaaÁ¼ôóóky3q¼Þ8V —ÀQöNQ¬ùš[i²jkk­­­™Bõïß_r$4QjàØÜjWøó„ãÎr±\ùÌUĽÉjjjÌÍÍiº†††§§'óR²tbÖ‰å"lÖ…dŒ7ÎÏÏÉÉwß}§ôK¥5JÑèí¯££C_òùüëׯ7ëSZå¶Š}Ú´gU YãæÍ›iâ®]»˜ÄË—/ËîÙ­[·]»v]¸pá·ß~‹ÅË—/§é’ýL_|ñM´²²¢)wcÏä{ï½÷òåK±XüÇ8::ÒD///ºgll,MÑÓÓcîÕ«W¯2ÝK—.mî1[8N›6¦,Z´ˆycïÞ½iâúõë™D&:yò$“(ûY¦X¿øâ šX\\Ì|œ±ü×ËË‹îÇ$Hcé$srôèQ±XüêÕ«Aƒ1‰IIIb±¸¡¡aÆŒ4E(¶¼™8^o Û¨F[åNQ¬ùš[i²¾úê+º®®î… hâÂ… ™£±DòŠ)/cµ·üó¤YW¸¼"H‘½Š¸7Ù¦M›hо¾~AAmˆˆ&“,#÷‹ãS‡ÖÖÖR‰ hKEé¥lâ#FÐÛÿîÝ»ï¾û®T3qÿ”æ~öÖø°mɧMû„1Žo4''§ùóçÓ¿G%üg2SII‰Ôž:tÈÌÌœ8qb¿~ýììì!?ýôÝ4sæLf·iӦў˻wï^½z•ûn,Á–-[è¬ssóÏ?ÿœ¦çåå½|ù’rôèQš2þ|f¨JÏž=?úè#ú7³÷c¶ÄøñãwíÚµk×® Дªªª/^пŸ ”£Ã<ñ”ÚM*ÛÌéf̘affÖ»wï/¾ø¢ººº{÷îÌø§æ–Nò¹ª¶¶6ýÃÜÜœÇãI%ÊR ™8^o «Ù;EækI¥ÉV³z3!DCCƒ9¯5÷6Wøó„¡ÀÎ÷&“Ì6³›¶¶¶Ô¥ô‹°´´”þÁtqBLMM /\¸ÀŒG’Ò’K¥õn¥îÝ»Ki`òöêÕ«ßÿ]áòkÛÖ«¢¶ ãMjYGækI–Ôè着ª&×þ}ôèÇÝØwº¯:tè ¯¯Oÿ~ðàAUUý9"³óíûòåKf .Çla­¾zõjÑ¢E;w Û¸qcVVV}}½ÂÝ<ŠPª)YZ–;wî\f½±X\PPðÙgŸõë×oÀ€ÌÏ-4·tžšãz¢Ím&î×ÇÂ*@öNiyó5«Ò¨çÏŸÿõ×_V£d,® ÜæŠ}ž°T—+œ{q86YUUÓÅ.s©då^„’Ù600àþÆ^*­w+IeFGG‡¹ýïÞ½«ða9Ö¡?l[¯ŠÚ*Žm„ÔÍ §§§««Kÿ>qâDicÂÂÂ8îÆ~j©»´¦¦†YÁÆÆFOOù4ùóÏ?%÷d^jhh0cƹ³…uõÙgŸmÚ´©¾¾ÞÎÎnË–-W®\©ªª1b„bGS¬€ PWWÿòË/+**RSS'NœhhhÈlÊÍÍe–RnéØ5·™¸_o «Ù;åõ4Ÿmmmfin&, ˜¯FeQà6WìóD¹Ùf)Ç&ÓÕÕe´IŵR—n£”{êêê2s8?~Ìý-¼TZïV’úÇaMM “+++…Ë¢•îÖÖ«¢¶ c›Å U®¯¯G‚¡¡¡}šÆq7ׯ_///g^fffŠÅbBˆ†† ÈÌ™`~ÓB꥽½=3|“ã1™/6©1dR¬Ú²e ý㫯¾úðÃ{õê%îß¿¯pU+PÀ檭­}øðáÇkkkCCCwíÚõ×_eff2«H0+¨)½t,šl&Y\®7î…UŠ×Ð|²ø|¾­­-ý›úF‹Å\Vl®–ßæ-?‚ql2ÇTòéÓ§™Ýêëë³²²ØO¡ô‹Çã1ÏL/^¼È¤?xðÀÃÃÃÃÃÃÏϯÑçø-¹TZõV’ºý™¼ihhÐ7¶äSZ¥ß­¯ùÓ¦m@àØf1?N³}ûvñ× ß¿§N„B¡ÍßÿÍ}7¯^½ŠŒŒ|õê!äÏ?ÿ\²d M1b²Ã,6öÿ÷ÌrÁEEE ôoÉ;É<£¹xñ"3èÀM~’þý÷ßLßóqöË/¿°‘Мȣ@›«¸¸ØÔÔÔÔÔÔÌÌì·ß~#„‚Áƒ3³wéÃ/ÅJ§°&›I—ëca•å54_£ÜÝÝeÏ»víÚ7n(ý\-¿Í[~ì÷—,îM6pà@úǦM›nÞ¼I‹Å+V¬ü)¯F)v²„ÉÌÆ™îºÄÄÄ .\¸pASSSÞh…/•Ö(£®®.22’®¤ýçŸ2Ë1¶ðSú5ؾæO›¶?9Øf-[¶,%%åéÓ§éééƒ 8pàõë×™g}ô#Ìq7v°µµurrúùçŸéÃJ55µ5kÖЭüñ¿ÿýï²²²gÏžy{{ûûûóùü“'OÒß033c~¼û1™õejjj\]]]]]=zÄŒ›fѱcÇŽ;Ò[3fÌØ½{7Çûé§Ÿýպ租~zýúõ H­ðÜ’6K¯^½LLL>|X__ïííýÞ{ïýþûï?þø#Ýþ6C³J§ìÍ$‹Ëõf``À¥°Êòš¯Q‹/þá‡Äbqee¥‡‡G¿~ý***hp£t-¿Í•òA!…ãý%‹{“-[¶ì›o¾yõêUEEEïÞ½ûõëWVVÆe‚Ç;®Y‰‰‰ùöÛo«ªªîܹãâââïïÿðáÃS§NÑ­sçΕ—…/•Ö(…$zûwíÚ5??ŸþËÏçöÙgtk³>¥UõaÛ¬*‚ÿPõz@í÷u¥–¿bÆíÙ³‡}OêÇlô_K³gÏ–\k—ãnò29`À©-@ò÷ÄbñÅ‹é¢R¬­­sss;&³â ÃÎÎŽéaYÇqüøñ²odVâ}ÿý÷™SLœ8Qr7–3hn¹,l&åüùóòžúúúÒÕÔ¸—®Ñœìرƒ&öèуI<{ö,ÓÍm¦FÏÂåzãXØF±¯ãØèÒ’æãXiš:uªÔutt˜ù¡J\Ç‘cµ·üó¤YWx£÷—¬FɱÉÄbñ¿þõ/©¤cÇŽÌÁ²Ž#÷‹ûŘQz’–/_.f¥ð¥¢ôR0Ía`` ÕEª¡¡ñÍ7ß4ÚîŒF?¥›U‡Jÿ°mɧMû„GÕmÙˆ#®\¹áææÖ¡C;;»1cÆäää$''K~縛ëÙ³§ŽŽŽ««ëüùó/\¸ 5´Q‰‰‰={ö$ÿýñ¨¨¨ÂÂÂQ£FÑ­»wïfžª$&&Nœ8±sçÎ:::=zô`™6ÛÜ* ÿþ¥¥¥111}úô177WWW744ôööNIIÉÊÊb¦r/]Ëqi&Y\®7Ž…U–×Ð|úú믙~¦Î;9òäÉ“ hsµð6Wʤp¿¿dqo²ˆˆˆ“'OŽ;ÖÜÜÜÂÂbìØ±çÎkô'æ¤p¿¹d̘1×®]›5kVŸ>}:vìhccóÞ{ï9s†é¥“GáK¥5JAùúúæääŒ1ÂÒÒÒÌÌ,444++‹ùŠû§´ ?l_ó§M[ êÈÞVìoÎ1õêÕ«8p Õ«IZ»t¯­™Ú‰ŸþyýúõÏž=SuFÚ‘)S¦Ðk899YÕyi\*ð&ÀGhÔÕÕÛðÈ•¶]º¶ÇÝÝ™ýÊõÁüüóÏ„OOOæ‡ûž?ž™™Iÿ¦Ýóo \*ð&@àm“¹¹ùåË— !—/_îÒ¥KHHHeeåÇL—ýëÞ½;â0€æÂGh›–,YÂŒ{[¶lÙ»ï¾ëîîNW§êÔ©ÓîÝ»1‚  ¹Ðãm“¶¶öÉ“'SSSwîÜyûöí?ÿü“®:9dÈ… êéé©:ƒožø¿K¹°À£jà#p‚À8Aàœ pN8'€ŽÀ Gà#p‚À8Aàœ pN8'€ŽÀ Gà#p‚À8¨:m£££ª³­ëÖ­[ªÎ‚ plíóbz“9::¢QÞ4h”7Úå „FyµÛN"<ªN8'€ŽÀ Gà#´ ˜øB£¼™Ð.o 4 ¼98'€ŽÀ Gà#p‚À8Aàœ pNªÎ@›åèè¨ê,'Xe#Ž­ŸDo>ü;Ÿ;<ªN8'€ŽÀ Gà#p‚À8Aàœ`p€×Çã©6b±XÕuo%ô8¨€Xuÿ±ˆåñx#FŒÝÏãñ®\¹¢êš#¶¶¶cÆŒ¡ûøø¸ºº*ý¿üò ÇKMM•WEçΓÝÀãñè˲²27mÚ4f‡úúú¯¿þÚÇÇÇÌÌLOOÏÅÅ%22²¼¼œÙaóæÍ‹‹‹£ ÔJ§ZÏž=[²dIFFÆ“'OÜÜÜÖ¯_ß¿ÿF÷¬««ÓÖÖfþF …ÂŠŠ U8À?ikkÏŸ?? @WWWÕyiBvv¶ª³ÀÕ®]»222/^¼~ýz&ñòåËÞÞÞÓ¦MËÏÏ'„øøøøøø0[SRRºté’Ð’ó–––BV¯^íïï¯ê:h-………çÎSV%/ª‡¦§§/\¸°Í”N…ªªªÜÝÝïÞ½, ÓÒÒOŸ>Ýhÿî;w<==íìì˜ÄŽ;ªº@G³|ùò•+WnÞ¼Yéõê•@ PSkwƒdèÓíÈÈHÉD—o¿ýöùóç­ô¥HdzjiiµR¹šÕ ´IYÄõõõYYYyyy[¶l‰D­TÀ–Ô !DCCãÍ)H$‹Åªê¤ß´iSiiéŽ;Þÿ}BÈ‚ z÷î½hÑ¢¬¬,Ùé?xÖ¬YÓ"æ¶§Ý}|»aÆ}ùå——.]bÙ-??ذa¦¦¦æææÃ† £}f”­­mTTÔ¥K—œiÊ‚ /^¬§§§¥¥Õ¯_¿£GÖ××/[¶ÌÉÉIOOÏÏÏïÆÌ{õꥣ£cddÔ¯_¿ï¿ÿ¾Ñ<øùùÑîŠêêjöAEEEcÇŽµ²²êܹs``à©S§$sæÌ™€€##£nݺ-^¼˜~å+™ŠŠŠ¤Òããã¯^½ªpxÁÞÓ¦M=z4!ÄÛÛÛÖÖVö555qqqNNN:t°¶¶Žˆˆxðà—VhVƒÒëáË/¿400ÐÐÐèÙ³çÒ¥KåU2{KIzüøñСCccc›||¬®®þüùsú255•ÇãõêÕ‹Ù!::šÇ㉋jÚ´iï½÷!Ä××W²öÎ;$ -,,>üðÿÿþ»Ñ“:::J=±±±}úôáØ¦ÜKÇ¥±¢¢¢¶mÛ& ……Åœ9s$³Íýúg¿`ØíÙ³ÇÌÌlÊ”)ô¥]pppNNΟþ)»3 ß}÷]އ×J Êæàà ê,ÀAÞ•@T=9F^†W¯^M)--½sçN‡\]]ëëëé¦uëÖB._¾L_¦§§ KKË… FEEuéÒE ¤§§Ó­666ãÆ322²µµýàƒhŠ‘‘‘±±ñš5kÖ®]+ µ´´<==ûö훘˜8gÎçììLßNÇr 4(66vùòåNNN„ü‘9øèÑ£éß¾¾¾...b±¸®®n‡„o¾ùÆÒÒRCC£¸¸X,Ÿ8qBKKËÖÖ6::úã?¶··çóù»wï¦Ù¿?ŸÏïܹóœ9sæÍ›gjjêàà@Ù³g¼*:{ö¬ì¦ÁƒB˜ûý÷ß !S§N¥/i«©©9gΜ“'OÖÔÔ4yý¸»»7¹K[\»ví“O>!„lذ!''Gö½ááá</ `ÅŠ£FâóùýúõãØ ÜÔÆÆÆÂ‚2lذeË–ùùùB @;À$”½¥ä¹yó&!dõêÕòvHII!„dddЗsçÎ%„ðx¼Gє޽{›ššÒü0Õµk×bcc !ëׯ§µgccãàà ¯¯¹aÃ:®€^á²lll¼½½%S¦NªÀwn“¥ãÒX=zôÐÐИ;wî_|1lØ0BHDDÝÚ¬ëŸå‚a÷ìÙ3.™øÃ?B8 »dd¤¦¦æãÇ÷îÝ»uëÖÜÜÜÚÚÚæV]³(ðÅÝn¿ë8*_»½˜@ÊÛ8ŠÅâøøxBHbb"Ý$8ÖÖÖÚÚÚÚØØTTTЭÖÖÖvvvôÃÎáˆmhh ;ØØØ0aœX,¦ãüœ_½zES¼½½ !UUUb±ØÎÎÎÁÁ¡®®Žnª¬¬sæÌa%8JY³f !$%%…æÖÞÞÞÕÕõÅ‹tëË—/=<<ìììêëë_¾|immmffvÿþ}ºµ¼¼ÜÜÜœ=pd!/p‹Åßÿý;ï¼CwÓÒÒ4hÐÚµkÿýwyÍÁ%pl²-ÒÓÓåEºÏŸ?çóù’9œ1c†P(,//çÒ Ü”^k×®eN´xñbB™eo)–Jh2´ºÿ>!$::š¾ìÙ³'cNC–ÊÊJ55µéÓ§Ë^TGŽ!„dgg3¥&„:tˆ¾¬¯¯wrr²¶¶nô¤¯3pl²±!iiiô¥H$êÙ³§¥¥%­aî×?ûÃî×_%„DEEI&žúh×®]111ãÆëÒ¥‹ä¦‚‚‚;wî$%% …Bš" iwו+WèÃ833³•+WJ}ëÛ·o×®]éß´Ï),,L]]¦øûûŸ={öÅ‹ºººùùùZZZÁ>?~LyñâÇœ:thÕªUsæÌ™1c!¤°°°¤¤ä‡~ÐÖÖ¦;hjjFFF†‡‡Ô××—••%$$Ð.1šóùóç/]º”å&L°´´”JÜ»wïÝ»wYÞ~õêÕ¬¬¬¬¬¬œœœ¬¬¬•+W®ZµŠö *€K[È£¦¦F—*++³¶¶&„¤¤¤ÐÎ9BH“­À½Ai®-ZļwÕªUÉÉÉ{÷î0a“ÈÞRÜòʲ°°èÕ«K÷ôéÓ¢¢¢¯¿þ:222''g̘1¹¹¹"‘ˆöÃ5ÉÁÁaäÈ‘ôo>Ÿïââ’™™ÙÜüÔ××=zTÞÖQ£F5÷€M6–ݸqãèß<ÏÕÕõÇ$„p¿þY.˜&KD3£§§'™®¯¯ÏäVJii©H$Š¥Ã ~üñǨ¨¨Ñ£GÑw !p€F‚íÛ·{zzΟ?ÿàÁƒ’›JJJ!tð"ƒŽ+))¡_ðŽŽŽR&˜È†Bà ÙÊÐÐ0///33óæÍ›%%%ׯ_¯¯¯ç˜í7nLž<ÙÛÛ;))‰¦Ð´Ií|÷î]:î­wïÞ’éM® 9oÞœ¸l²¸7(!¤{÷î’ã8uttûí7É}Ø[ª%#!$(((!!áéÓ§´óÕßßßÛÛ;''‡’-èHƒ&ÑǸ ö‰&R«É0s\ª««éØÓF‰›¿>“%•mæÞ¤¯– ¦ÉÑkCjC† 9r¤‡‡‡››—÷>}útÔ¨QúúúiiiLàBã•„„Ù°»uëvæÌÙ²(}Ò÷óçϧM›6dÈ™3g2‰!!!†††GU,päÒ,æÎ;nܸ#GŽœ>}:##cûö펎Ž999 ·G ººZ2…½¥ZxºÀÀÀøøøœœœ¼¼<++++++??¿åË—WVVfgg{{{sìÇjÖüôÚÚZÉ—555ô}}}¢C–³4ÙXò²M;)¹_ÿò.ö™˜˜¨©©IMôyôè!„éì”D—K¢7ÈõëוUo 0Ž ×çŸ~ðàÁyóæÑ4({{{Bȵk×È$^½z•âèèØÂ3ž={6###))iÁ‚L"—dž†† &Ü¿?77·sçÎR¹ÕÕÕ:t(“xãÆk×®Ði›¿üò‹¯¯/³õòåËÊ­FãÇß»wO2p¤hOL‡;rKÚâñãÇ¥¥¥"‘hË–-‘‘‘[·nõööV¬ä¹qãF]]Í×ÔÔKÖ9iª¥ZØ^^^zzzYYYùùù „øúúŠD¢Ã‡Ò!¼J'ù³@„fú°rU+|ËÿN[æxý³\0+V¬`/‘@ èÖ­[nn®dú™3gx<žìâêeeeGŽ4håCÑîIúˆT Ëñ€\úúúIII÷ïßÿꫯ˜D777++«ÄÄħOŸÒ”'OžlÚ´ÉÚÚºå?Hç1H~a¤¥¥UWW7ÙC³dÉ’'NlÛ¶ÍÝÝ]2ÝÅÅÅÑÑqãÆ•••4¥ªª*(((**ªC‡nnnvvv›6mb¾Ô+**”¾€%Ozñ⟸8ÉÇ—ÕÕÕ«V­’÷3\´¤-nݺտÿ7Ò—jjj4zPWWW¸䩨¨HLLd^ÆÅÅUUUIýÒ {Kµ° ÔÕÕýýý322 hàèî«»víÚ&8*¼ŒâƒèôBÈíÛ·™€Œ>Ø•§¹giIc5ëúg¹`¸”hæÌ™¿ÿþ;S!ýõWZZZ@@€ìBQÚÚÚÑÑѳfÍbzÍE"QBB‚@ P¬-@‰ÐãlÆ¿cÇŽŸ~ú‰IÑÔÔLLL?~¼››[hh¨X,NMM-//ß·oŸ¦¦f Oççç§££3sæÌ‰'ZXXœ?>++ËØØøìٳǎ jô]Gݸq£³³3ŸÏ—\ÁÎÉÉÉÍÍ-))iÔ¨QÎÎΡ¡¡uuuééé÷îÝÛ³gýq¹ 6„††ºººŽ?^]]=55µ5~Ö,11±¨¨(&&fÇŽ½{÷¦óXÏ;÷ðáÃåË—{zz*vØ–´…»»{=Ö­[wûöí=zܺuëØ±cFFFaaa|>_V`aff“——çìì|þüùÌÌLfI?J °´TË› ((ˆŽÖ¥#ŸÏ÷ññÉÈÈèÒ¥‹¼_¤=ÉÉÉ>”œÇÑ@ ˜0aˆ#D"Ñ‘#G˜Qî£jÅnJ]]ûõÏrÁp)ÑÔ©S¿ù曉'Î;×ÀÀ`ÇŽ/^¼  Bâãã×­[÷ùçŸÏž=»sçα±±K–,±·· 2008~üxaaáÚµk[>hZ=ŽÐ„-[¶0]©±cÇž9s¦k×®;wîüöÛo»uëvîÜ9:KdYYYeddXZZ~ñʼn‰‰ÚÚÚW¯^ýüóÏ«ªªX:érÁW®\™ôO»wï&„^¸p¡gÏž»víúöÛommm?Jß;f̘¬¬¬ž={~÷Ýw7nüûï¿wíÚ¥ô:ÔÖÖ>qâÄÖ­[;wî|úôé-[¶œ={ÖÝÝýÌ™3qqq-9²Âm¡¡¡qìØ±÷ß?//oÍš5ÙÙÙçγµµU¬Xôë×/33³²²róæÍ÷îÝ‹ŽŽ>}ú´ìX:ö–j!B3ñédp–îFOOϰ°°ãÇ+öÃýúõ[±bÅùóçÏ;7sæÌyóæ)¥ RZØXܯ– †K>õôôrrrÆŸ–––ðî»ïæää0¿UýòåËÊÊJfTèÇœ––fbb²k×®””CCÃcÇŽ-[¶¬5*š‹§Ä÷åèèxëÖ-UçTOÞ•ÀãñTx×ñš¶ÙN”——wêÔ©åý¦ ÉÖÖÖÅÅEjn~›gkkkii)5ªï מ¯¾¸Ûíw=Uü‡ì\N€ö×?pGÕÀ zT€×òC¼%‚‚‚è¯Þµ+~ø¡Ô¥´ ^7 1„veË–-ªÎ‚ |üñǪÎ@«À£jà#p‚À8Aàœ pN8'€ŽÀ Gà¿ <žÊ~t¿[ Càðºñx<¢ºàÇã!vÅàQ5üGll,Ç1b„ì¦øøxwåÊUç‘ØÚÚŽ3†þíãããêêªôSüòË/</55U^;wNvS@@Çkhh /ËÊÊx<Þ´iÓ˜êëë¿þúk333===—ÈÈÈòòrf‡Í›7óX?~\âÄÅÅ …ž={*½¢”B²Aß,•­­mHHˆª3ØêX®‚À¤9räÀªÎ'|>ŸÏç«:œˆÅâQ£FEDDÔÔÔLœ8122òwÞÙºu«ƒƒÃõë×é>nnnÑ455MLL$Slllš{Þ7nÄÄÄ899-_¾\Õu |W¯^?~¼©©iÇŽÝÝÝëëë[xLÉ‹êÒ¥KcÆŒa¨ ”Nµž={6{öl++«Ž;0àÂ… ,;Ÿ>}ÚÏϯsçÎ:uòöö>x𠪳ÿGÕðÚÚÚóçÏÐÕÕUu^š­ê,pµk×®ŒŒŒÅ‹¯_¿žI¼|ù²··÷´iÓòóó !>>>>>>ÌÖ”””.]º$$$´ä¼¥¥¥„Õ«Wûûû«º”ìöíÛ¾¾¾ cÆŒ±²²:yòäG}tæÌ™F’ÕÇÓÓÓ.\ØfJ§BUUUîîîwïÞ  …iii§OŸn´7##cøðávvv“&MÒÖÖNKK;vì¿þõ¯ˆˆU—ÐãÿóǬ\¹²5þêÕ+‘H¤ê"ª}º)™èââòË/¿<þ¼•ÎKdzjiiµÒñ›Õ  Ì£ü–û裞={vòäÉ;v¬Y³&//oúôééééŠ=ÐošyõêÕU:‘H¤Äúo®M›6•––nß¾ýûï¿ß¼ysnn.Ç[´hQ£;/[¶ÌÔÔ´  `Ó¦MŸ}öYAA••Ull¬ª2’8À?„„„ 6ìË/¿¼téËnùùùÆ 3555776lí3£lmm£¢¢.]ºäìììììLS,X°xñb===--­~ýú=z´¾¾~Ù²eNNNzzz~~~7nÜ`Ž˜˜Ø«W/##£~ýú}ÿý÷æÁÏÏvWTWW³ ,**;v¬••UçÎO:%yœ3gÎuëÖmñâÅ-ù¾—‡~aI¥ÇÇÇ_½zUCC£%—×Ó¦M=z4!ÄÛÛÛÖÖVö555qqqNNN:t°¶¶Žˆˆxðà—VhVƒÒëáË/¿400ÐÐÐèÙ³çÒ¥KåU2{KIÊÊÊ0`@Ÿ>}˜”yóæBΟ?/µgpp°ºº:§¦¦òx¼^½z1;DGGóx¼ÂÂB"qQM›6í½÷Þ#„øúúJÖÞ¹sç‚‚‚„B¡……Ň~ø÷ß7š=GGG©^ÞØØXÉܲã^:.µmÛ6¡P(,,,æÌ™#™mî×?ûÃnÏž=fffS¦L¡/íì삃ƒsrrþüóO©=kkk¯_¿þÞ{ïéëëÓŸû÷ï×ÔÔp<´<ª€àñx_}õU÷îÝ?øàƒŸþ¹ÑA„‡ 655 ãñxiii^^^iii£F¢;Ü»woèСúúú4e×®]|>ÅŠ`Ó¦MÁÁÁnnnõõõ³fÍ*))INN¿|ù2!dõêÕ±±±ƒ ®­­=xðà¤I“ôôôµCijjîØ±ƒy)‰>ùä“¿þúËÚÚš’™™9räH33³ñãÇ«©©>þüùóÙÙÙRëR±·”¤úúú¹s纻»K&–••Ñ‹Ajç   ýû÷çææBrss !EEE?îÔ©!$;;ÛÔÔÔÅÅEò]‹-²µµ]µjÕúõëûõëG¯^½:|øð)S¦ <øÐ¡C[·n‰DÛ¶mãÒR¿ÿþ;û?Æ+—Æ:yòä–-[fΜٵk×cÇŽ%''×ÕÕýë_ÿ"ͼþY.vUUU¿þú+½D™ÄAƒ¥¤¤\¸pAjvŸÏ¿råŠP(”¬k×®õêÕK[[›KB냲988¨: ðFw%BˆXuÿÉ¿ëW¯^M)--‹Åñññ„ÄÄDºiݺu„Ë—/‹ÅâÚÚZ[[[›ŠŠ ºµ¢¢ÂÚÚÚÎή¶¶V,Ó9±±± t ââbú’Žósvv~õêMñöö&„TUU‰Åb;;;‡ºº:º©²²R Ì™3‡9ÔèÑ£éß¾¾¾...²Y³f !$%%…æÖÞÞÞÕÕõÅ‹tëË—/=<<ìììêëë_¾|immmffvÿþ}ºµ¼¼ÜÜÜœ²gÏyUÄ¢¾¾žîùûï¿B¦Nʼ÷ûï¿çwènZZZƒ Z»víï¿ÿ.¯9 ÜÝÝÙ¯±&Û"==röìYÙ÷>þœÏçKæpÆŒB¡°¼¼œK+poPz=¬]»–9ÑâÅ‹ !»wï–lPö–7åñãÇ}ûöåóù¿þú«Ô¦û÷ïB¢££éËž={Ò9æ ESSS›>}ºìEuäÈBHvv6SjBÈ¡C‡èËúúz'''kkëFócccãíí-™2uêT…¿sYJÇ¥±!iiiô¥H$êÙ³§¥¥%­aî×?ûÃî×_%„DEEI&ž}ZTTôõ×_GFFæääŒ3&77W$ 6ŒK…;88Œ9’þÍçó]\\233›ÛjõõõG•·•é¶çX:.egg7nÜ8ú7Çsuu¥ÝŠܯ– ¦ÉÑÌèééI¦Ó'Ñ4·ò|úé§t‚W@@=)¨Gh„@ ؾ}»§§çüùó¥&r–””BèàE1VRRB¿à%£FBˆäƒ'^ȦP†††yyy™™™7oÞ,))¹~ý:÷UHnܸ1yòdoo襤$šróæMòß Mjç»wïÒqo½{÷–LormÈyóæyyyI%^¾|™=pd*ªW¯^ .|õêÕ¡C‡¢¢¢V­ZÕ¿ÿ!C†(ÐL\ÚBmmí¤¤$ú@¶{÷îžžžÃ‡§.›lî JéÞ½»ä8NGGÇß~ûMrö–’W–»wïΛ7ïðáÃööö'Ož4hP£»%$$<}ú”v¾úûû{{{çääB²³³ÁàÁƒ¹T¸ƒƒƒäKöÕ ¤f¢0³ˆª««éØÓF‰%ÖççXº&K*Û̽I;9^ÿ,L“%¢×†ÔxЪª*Bˆ‘‘K–””¼xñâüùóýû÷/..náÐh9LŽ€ÆõïßöìÙéé釒L§_lR£Óè7h]]}i`` ØIkkkGŒáããsìØ1{{ûE‹3cäÙ=}útÔ¨QúúúiiiLàBã•„„„ŸdôíÛ—vÒH•E*äm¹çÏŸ‡„„Ð!e :4“¥·†—¶`1wîÜßÿ}ûöí½zõÊÈÈ;vl¯^½>|Ø’VàH HMÂ`o©F²{÷î=z\ºtiÛ¶m7nÜWBE"QNNNnn®••••••ŸŸßÕ«W+++³³³½½½9–®YóÓkkk%_2;ôõõYž6·t\K^¶›{ýË»`š,‘‰‰‰ššZEE…äÑ=zDa:;åéСƒ¿¿ÿºu랥)Ož<Ù´i“µµuËÎcprrbRÒÒÒª««›üÂX²dɉ'¶mÛ&5ÕÅÅÅÑÑqãÆ•••4¥ªª*(((**ªC‡nnnvvv›6mb¾Ô+**6oÞ¬Üjäñxááá/^Œ‹‹“||Y]]½jÕ*y?óÈEKÚâÖ­[ýû÷߸q#}©¦¦F£uuu…[AžŠŠŠÄÄDæe\\\UU•Ô\Zö–’: X,þøã»téòÝwß55ÒBùûûgddÐÀÑÝÝ]WWwíÚµMpTxåÑÐé5„Û·o3}°+OsK×’ÆjÖõÏrÁ4Y"BÈÌ™3ÿýw¦Bþú믴´´€€Ù…¢èöÿûß’Eعs'!ÄÃÃC±¶%B#°?~üŽ;~úé'&ESS311qüøñnnn¡¡¡b±855µ¼¼|ß¾}®Ò,~~~:::3gΜ8q¢……Åùóç³²²ŒÏž={ìØ1ºœŠ¬£GnܸÑÙÙ™ÏçK®`çäääææ–””4jÔ(ggçÐÐкººôôô{÷îíÙ³‡þ¸Ü† BCC]]]ǯ®®žšš*õ@M)‹ŠŠbbbvìØÑ»wo:õܹs>\¾|¹§§§b‡mI[¸»»÷èÑcݺu·oßîѣǭ[·Ž;fddÆçóhfff111yyyÎÎÎçÏŸÏÌÌôðð`–ô£KKI°¸¸øæÍ›NNN²?%2vìØFñ   :Z—Ž|>ßÇÇ'##£K—.²^íéLNN~øð¡ì’@M&L1b„H$:räÓ"ôÁ.Ë›U:ÅnJ]]ûõÏrÁ4Y"BÈÔ©S¿ù曉'Î;×ÀÀ`ÇŽ/^¼`ÖôŽ_·nÝçŸ>{öl¡P¸bÅ ºìåСCy<^fff~~þÂ… %Wß•Qõ´î6¨ÝNÑ)oõr<’nß¾M'ºÒåx¨¼¼¼ÀÀ@“ÀÀÀ‹/2›$WÌi4…v½Ðår¨¸¸8BȃÄbqNNާ§gÇŽßy爈ˆŠŠŠ””ccã¡C‡Šå,ÇÃL…‘¬ÀRPP0|øpSSSCCC__ß'NHfïÌ™3ƒ¦ÏÂôõõ÷íÛGX—ãitu:»‚e9žêêê­[·zxx«««›˜˜¼÷Þ{¹¹¹òšƒËr}º———ä>ÁÁÁ×®]“z£P(}ú”••íß¿¿¤¤äÛo¿ÕÖÖntÿúúú©S§^¾|Y__ßÃÃãåË—/^<{öìüùóçÎËìv÷î]mmm©Ek T]\•y»Ç[·nmß¾ÝÄÄ$--­sç΄Ï>ûìÛo¿Ý°aCLLL£oÙ»wïåË—{÷îýõ×_Óತ¤dÒ¤I_}õÕ Aƒœœœ!UUUÏž= JJJRuÞo÷ǽ{÷ŠD¢… Ò¨‘²téR}}ýcÇŽ‰D¢FßòÓO?BV¬XÁtIÚÛÛÏž=»¡¡y }÷î]BH;ü,x=xª¦ê €·ÕÛ8þüóÏjjj¾¾¾L ŸÏ0`ÀãÇ }Ë;wtttºwï.™hooO¹wï}YVVF±¶¶Vuù í‹UöŸ|±±±<oĈ²›âããy<Þ•+WT]qÄÖÖv̘1ôoWWW¥Ÿâ—_~áñx©©©òª¨Ñ±Î<¯¡¡¾,++ãñxÓ¦Mcv¨¯¯ÿúë¯}||ÌÌÌôôô\\\"##ËËË™6oÞÌñ?~\âÄÅÅ …ž={*½¢”B²Aß,•­­mHHˆª3ØêX®òV?ª‹Å¥¥¥FFFFFF’é„{÷î¹»»Ë¾kÛ¶mt©¯_¿NéÒ¥ }IÇ?ÿüsÊ”)ÅÅÅ:tèÖ­ÛìÙ³U]h€VwäÈ‘Œ;VÕiŸÏçóùªÎ'b±xÔ¨Q½{÷ž8q¢¦¦æÍ›7·nÝúïÿûâÅ‹ôŸ²nnnÑÑÑÌ[¾øâ ƒÉ“'3) <¹qãFLLŒ··÷œ9sT]Êwúôé5kÖ\¿~½¡¡ÁÉÉiÑ¢E-A%/ªK—.}öÙgqqqR} ¯Y]]Ç;þ¼ ³ÑrÏž=[²dIFFÆ“'OÜÜÜÖ¯_ß¿yEÖÖÖfþF …ÂŠŠ UÞæÀñÅ‹ ²Vôõõ !Ož!ÄÇÇÇÇLJٚ’’Ò¥K—„„„–œ·´´”²zõjU×’edd >ÜÎÎnÒ¤IÚÚÚiiicÇŽý׿þÑ’ÃJ^T>LOO_¸p¡jKºråÊ‹/Ê‹±ÞUUUîîîwïÞ  …iii§OŸn´÷Î; žžžvvvLbÇŽU˜Ù¯õvë-kjj!:::RéôÚzöìY“Ghhhøþûïׯ_ßÐаqãF¡PHÓÿüóOmmí>úhÊ”)4%//oöìÙk×®õöö677oòÈáí³|ùò•+WnÞ¼Yéõê•@ PS{»É(€>ÝŽŒŒ”Ltqq ùöÛoŸ?ÞJ_Šb±˜¢¥¥ÕJåjVƒÒ$eu/[¶ÌÔÔ´  €v,_¾¼[·n±±±- •X3„ '333!!AöA™D"‘X,VU'ý¦M›JKKwìØñþûïB,XлwïE‹eeeÉîLÿÁ³fÍš7ç<²_ëí6”|‹?¾ x<Þ‹/¤ÒŸ?NþÛïÈââÅ‹#FŒøì³Ï„Bá×_=lØ0fÓŽ;._¾ÌD„OOÏÉ“'×ÔÔœ>>÷ïß§} ’‚ƒƒÕÕÕéW!$55•ÇãõêÕ‹Ù!::šÇ㉋jÚ´iï½÷!Ä××W²öÎ;$ -,,>üðÿÿþ»Ñ:::J=±±±}úôiVË>|øpòäÉ–––ì{²7VTTÔ¶mÛ„B¡@ °°°˜3gŽd¶¹_ÿì »={ö˜™™1_¬vvvÁÁÁ999þù§ìÎ4p|÷Ýw›U]ðšˆßf}ûöõöö–Jܾ}»ƒƒÃ?þ(ï]µµµqqqŽŽŽÎÎÎ_|ñÅ‹/¸œ+;;ÛÁÁaÅŠMîéàà êŠ7‚¼+Þx*œ#/ëW¯&„”––Þ¹s§C‡®®®õõõtÓºuë!—/_¦/ÓÓÓ¥¥åÂ… £¢¢ºté"ÒÓÓéV›qãÆÙÚÚ~ðÁ4ÅÈÈÈØØxÍš5k×® …ZZZžžž}ûöMLLœ3gÇsvv¦o_µj!dРA±±±Ë—/§‹d1w´ÍèÑ£éß¾¾¾...b±¸®®n‡„o¾ùÆÒÒRCC£¸¸X,Ÿ8qBKKËÖÖ6::úã?¶··çóù»wï¦Ù¿?ŸÏïܹóœ9sæÍ›gjjJÇIïÙ³G^={VvÓàÁƒ !Lýþûï„©S§Ò—4„ÕÔÔœ3gÎÉ“'kjjš¼~ ÜÝݛܥ-®]»öÉ'ŸB6lØ““#ûÞððp°bÅŠQ£Fñùü~ýúqlî jcccaaA6lزeËüüü!  `’ ÊÞR’êêꊊŠ”ÝA$Õ××744H¥çææ:88¬[·®É\µÛ‹ ¤¼½£X,Ž'„$&&ÒM’cmm­­­­MEEÝZQQammmggG?ÜéŽØØXæ>²±±aÂ8±XLÇù9;;¿zõЦx{{BªªªÄb±ƒƒC]]ÝTYY)æÌ™ÃJ6p”²fÍBHJJ Í­½½½««+óOÄ—/_zxxØÙÙÕ×׿|ùÒÚÚÚÌÌìþýûtkyy9ŽÂ8²8ŠÅâï¿ÿþwÞ¡»iii 4híÚµ¿ÿþ»¼æà86Ùéééò"ÝçÏŸóù|ÉΘ1C(–——siî J¯‡µk×2'Z¼x1!„F„Lƒ²·K%ìܹ3&&ÆÍÍÍØØ833Sv‡û÷ïB¢££éËž={Ò9æ4d©¬¬TSS›>}ºìEuäÈBHvv6SjBÈ¡C‡èËúúz'''kkëFsÕòÀ1>>^SS³°°%pl²±!iiiô¥H$êÙ³§¥¥%­aî×?ûÃî×_%„DEEI&Ò'xÛ¶m“Ý?((H[[[òGàœœœ.]ºÄ½öš #woñ£jBˆ¿¿CCCnn.“"‹srr å­§ðÝwß8q"<<ü«¯¾bV”TVVÖ­[7:C}ŠÑnÇ4@{óÑGõìÙ3&&†Y¦ŠQPPpçÎ… 2Â…BáÂ… o߾ͬ×cff¶råJÉ¡o}ûöíÚµ+ý›ö9………©««ÓúPŽ<ÉÏÏ/((`u=~ü˜ÙÄÅ¡C‡V­Z5gΜ3fB KJJ/^Ì,ݪ©©yûöí‚‚‚‚‚‚²²²>úˆv‰ÑœÏŸ?Ÿý&Lˆ–aeeÅþ®ðððÒÒÒ+W®$&&\ºtiùòåvvv4ÌU —¶GMM.-Dב „¤¤¤TTT˜™™qiî JsµhÑ"潫V­êرãÞ½{%óÃÞR,ùôÓO?ýôÓ‚‚—F—Q³°°èÕ«K÷ôéÓ¢¢¢¨¨(œœBHnn®H$’­ÄÂÁÁaäÈ‘ôo>ŸïââR]]ÝÜV«¯¯?$Ý'??åÊ•ñññ...M°ÉƲ³³7ný›Ç㹺ºÒ÷ͺþY.˜&KD3£§§'y@:Ì€æVJii©H$Š-//¯¨¨øúë¯ÿøãÑ£Gs™½­í-žC Ùºuë—_~9pà@:´|ûöí=Šˆˆ`>¿ª««ÿúë/uuuú¬]»véêê.Y²DÞ1mllz÷¿oß>fÉ®ÂÂÂo¾ùÆÜÜ|èСª.4Àë ¶oßîéé9þüƒJn*))!„H­NEGŒ•””ÐQ\ŽŽŽR&˜È†BoOÙÊÐÐ0///33óæÍ›%%%ׯ_¯¯¯ç˜í7nLž<ÙÛÛ›ùÙ§›7oBÂÃÃÃÃÃ¥v¾{÷.ýúìÝ»·dz“kCΛ7Oê×í !—/_¦¿ÀŽ>N]¸pá«W¯:µjÕªþýû2DfâÒòhkk'%%-Z´ÈÖÖ¶{÷îžžžÃ‡§.›lî JéÞ½»ä8NGGÇß~ûMrö–b)KIIÉ‹/Ο?Ñ¿ÿââbÙN   „„„§OŸÒÎWooo8fgg :Ò Iô1.ƒ}¢‰Ôj2ÌÏRTWW3‹xÈ‹ÅUUUaaaMþ†j²±¤²ÍÜ›´#ãõÏrÁ4Y"zmH­ªª"„H-¨Geggkii1›¦OŸþòå˹s禥¥Ñ‚ ½Ý£¹¹ùâÅ‹ãããGŽéããSVVváÂ…îݻϜ9“Ù''''**ÊÞÞþÈ‘#ôG¨'Nœ({´1cÆLš4‰òÉ'ŸÌ˜1cåÊ•»wï¶³³ûã?._¾Ü¡C‡Ï?ÿ\ÞO`´=ýû÷Ÿ={vrr2Ó B‰ÅbBˆÔ/ÐÐoкº:úRáv¯­­;vlFFFŸ>}† 2räH777.ï}úôé¨Q£ôõõÓÒÒ˜À…Æ+ ²+`wëÖíÌ™3²eQú¤ïçÏŸO›6mÈ!’M!!!†††GU,päÒ,æÎ;nܸ#GŽœ>}:##cûö펎Ž999 ·G@ª¯Ž½¥ØÖ¡CÿuëÖM˜0!==ýƒ>Ú!000>>>'''//ÏÊÊÊÊÊÊÏÏoùòå•••ÙÙÙÞÞÞMΧ¤š5?½¶¶Vò%3kG___̺ÿ¶mÛnß¾=zôhfñ¦gÏž544ÄÇÇ[YY………I¥ÉÆ’—mÚIÉýú—wÁ˜˜˜°—ÈÄÄDMMMjÆGB˜ÎNI²«—Є.º ªõvŽ„éÓ§§§§gdd˜™™Mš4iáÂ…ò¶ #]jjjdç6B<==é]»v=xðàÆÏŸ?_RRÒ¥K—Ñ£GÏŸ?Ÿ>Áh?>ÿüóƒΛ7Orðý¥¥k×® 8I¼zõ*QÆX޳gÏfdd$%%-X°€IäÒãØÐÐ0a„û÷ïçææJv8ÑÜêêêJ>.¸qãÆµk× è´Í_~ùEò¨._¾¬ÜjÔÑÑ9~üø½{÷$GŠöÄtèÐA±#·¤-?~\ZZêàà!‰¶lÙ¹uëVoooÅZAž7nÔÕÕ1Ñ|MMMqq±d“¦ZJê€G=zô®]»ÆÏ$Ò!qF0^^^zzzYYYùùù „øúúŠD¢Ã‡Ò!¼J'ù³@„fúp}}ýÑ£Gå½kÔ¨Qt^ó¦M›$ÓŸ>}ºtéR___©ÀQá[†üwÚ2ÇëŸå‚Y±b{‰A·nÝ$Ç•BΜ9ÃãñdW/++;räÈ Aƒè,ŠvOâÝÞªdÙµÛ³ å­žÃØ³gùo"óòåK+++;;»'OžÐ}?~lcccmmýòåKñ?ç¯PR)ô›‰N^¡âââ!<رc!äøñã̦}ûöBÞÿ}ÙCIÎc CèvîÜ)U¨ºº:GGG{{û§OŸÒ”gÏžYYYÑY¯^½²³³377gøÿõ×_téåΪž5k!äÓO?•œçñüùó‘#GÒqc²ä29¦É¶`™C—–”\)âÚµk„Ï>û¬Y­ÀÞ âÿNΈg¶._¾œòïÿ[òPì-%•ùŠŠ @0tèP:š¢Ï¸¯\¹Òh]3æwÞQWWß¾}»X,®¯¯×ÕÕ¥Ã4‹ŠŠ˜Ýd'Çdee1¥–<æ¤I“„Ba£§£¥>|ø0}ùÛo¿Ñ ±X\YYÙÜ/e–É1Ím,±X4112dˆl‰>|¨¥¥åããÃ̵¢ÿ,ׯ_·LŽáî­ïq€V5~üø;vüôÓOLЦ¦fbbâøñãÝÜÜBCCÅbqjjjyyù¾}û455[x:???™3gNœ8ÑÂÂâüùóYYYÆÆÆgÏž=vìXPPP£ï:zôèÆù|¾ä vNNNnnnIII£Frvv ­««KOO¿wïÞž={èËmذ!44ÔÕÕuüøñêêê©©©­ñ³f‰‰‰EEE111;vìèÝ»7Çzîܹ‡._¾œyÜÑ\-i ww÷=z¬[·îöíÛ=zô¸uëÖ±cÇŒŒŒÂÂÂø|¾­ÀÂÌÌ,&&&//ÏÙÙùüùó™™™’kåBKKIP(®X±‚®Œ8tèP—™™™ŸŸ¿páBÉ%ÑѺ´Ç‘ÏçûøødddtéÒEÞ/ Ò/%''?|øp„ Í-µ@ ˜0aˆ#D"Ñ‘#G˜iòQu³(vËPêêêܯ– †K‰¦NúÍ7ßLœ8qîܹ;vìxñâ]ðˆ¿nݺÏ?ÿ|öìÙ;wŽ]²d‰½½}PPÁñãÇ ×®]Ûä xT¹¶Aíö_! ¥mô8ŠÅâÛ·oÓѽÌ:Žb±8///00ÐÄÄÄÄÄ$00Pr¬–ô8ŠÅ✜OOÏŽ;¾óÎ;)))ÆÆÆC‡Ëéqd¦ÂHaV`)((>|¸©©©¡¡¡¯¯ï‰'$³wæÌ™ÁƒÓúúú´ÃF¹=Žb±¸ººzëÖ­ÆÆÆêêê&&&ï½÷^nn®¼æà¸Ž#{[°ô8ŠÅâ{÷îMŸ>ÝÚÚZSSÓÊÊ*<<œYa‡{+4Ù t眜œêëëwíÚ5::švˆÊн¥$‰D¢;wöíÛ×ÐаS§NÞÞÞ6™da !ÆÆÆL ý9ÇY³fIî&Ùã(‰ÂÂÂôôôÜÜÜÄÍïqôòòZ»v­µµµ……Å‚ bbbþÎe_ާY%–èq¤¸_ÿ, •••3gδ·· …#FŒ(((`6Ñ;+))‰IIKKëÛ·oÇŽ…Bá AƒŽ;¦XÕq„Gîxbåý»(GGGüä ùWÇ#*¼ïx¸ëå*//ïÔ©SËûMA’­­­‹‹‹ÔÜü6ÏÖÖÖÒÒRjTß®=_ÿ |q·Ûïz<ªø.¿DÐVáú.8¨Â?׿x+ pxÝð¤Ú•   :Ÿ]ùðÃ¥~( m@à­hË–-ªÎ‚ |üñǪÎ@«x»«^ŽÀ Gà#p‚À8Aà T<Þÿþh[8´‚ÿþ*4@[‚À@©hȈîFh‹8´ÄŽÐ!pN8ÀÄÆÆòþI__¿OŸ>)))"‘¨Ñ}ÔÔÔºví:yòä .°ŠÖèÙãââ„BaÏž=U] Êakk;fÌUçâ|||\]]åe5$$äÍÉ ýòË/</55UÕyC¡~€ ph<^+NŽiå‡à&LˆŽŽŽŽŽ^´hш#~ûí·™3g.Y²¤Ñ}æÎkjjºÿþnÛ¶MÞ¡$½÷Þ{²'½qãFLLŒ““ÓòåË[µto—ÄÆÆ*åP|>ŸÏçÓ¿/]º4f̘ëׯ¿Î²HT2?­w–7—f-..;vl—.],,,BBBòòò$·Þ¼y3$$ÄÒÒÒÀÀÀËË+==]Õez­•óìٳٳg[YYuìØqÀ€Rÿjeß -'PuÚ(88¨:Š˜7ož——óòáÇ®®®‰‰‰ÑÑÑ&&&îsóæÍÑ£Gøá‡^^^=zôw(¥¥¥„Õ«Wûûû«ºÞ………çÎSV…dgg3?|ø0==}áÂ…¯³8R'•ÌOëå Ä¥Ysss ÂÂÂø|~jjj@@ÀáÇ Dùõ×_ûô飦¦6iÒ$==½üq̘1Û¶mûàƒT]¸×Q9UUUîîîwïÞ  …iii§OŸ¦Øì[A)ÐãÐ Zo9Ú—ùgÞ˜˜˜L˜0¡¡¡¡¨¨HÞ>]»vݵk—X,þôÓO;‹X,&„hii½¶r±{õêót¾I Ê:u}}ý‰'V¯^=tèPîyhšUí¯?o¯^½RøíÜ›U,Ϙ1C__ÿÊ•+‰‰‰6l¸víš©©éâÅ‹ék×®­®®ÎÍÍýꫯ>ÿü󂂇vÕ‹D"%^íW9„M›6•––nß¾ýûï¿ß¼ysnn.Ç[´h—­   4ª«««cÙÇÝÝÝËËëÀõõõÍ=þ´iÓFMñöö¶µµ¥‰ùùùÆ 3555776lX~~>³¿­­mTTÔ¥K—œeXSSçääÔ¡Ckk눈ˆ0[{õꥣ£cddÔ¯_¿ï¿ÿ^òÈ ,X¼x±žžž––V¿~ýŽ=Z__¿lÙ2'''===??¿7nHfãË/¿400ÐÐÐèÙ³çÒ¥KåÅEEEcÇŽµ²²êܹs``à©S§äÕÆãLJQÁ^oÁÁÁêêêÏŸ?§/SSSy<^¯^½˜¢££y<^aa!!ÄÏÏvºL›6Žðõõej›rîܹ   ¡Phaañá‡þý÷ßòÎËRy5/{R&?Í­v–l´hì5æÌ™€€##£nݺ-^¼˜%4ttt”ê ‹íÓ§á†{³Þ¹s§¤¤dÆŒL¿ATTTAAÁÕ«W !ÅÅÅæææLCkjjúúú>~üøÑ£Gý‚ŠŠÚ¶m›P(sæÌ‘lzîõÃ~Ó)«r!{öì133›2e }iggœ““óçŸ6¹”C Êæàà ê,À¡U®z϶λzõjBÈÙ³g%ÿúë/sss55µòòryûPsçÎ%„ܾ}›}7Y×®]ûä“O!6lÈÉÉ‹ÅéééÀÒÒráÂ…QQQ]ºtééét›qãÆÙÚÚ~ðÁ² çñx+V¬5jŸÏïׯÝ´jÕ*BÈ Aƒbcc—/_îääDùñÇ™#¯Y³fíÚµB¡PKKËÓÓ³oß¾‰‰‰sæÌáñxÎÎÎÌ΄aÆ-[¶ÌÏÏ2`À‘HD·Ž=šîyâÄ ---[[Ûèèè?þØÞÞžÏçïÞ½›½ZnÞ¼IY½zµ¼RRR!’õÏãñ=zDSz÷îmjjJóãëëëââBk›Ž![¿~=­m}}ýÈÈÈ 6øøøB­Ø&Ë"¯æeOÊä§¹ÕÎÒ‚²gaÏíþýûù|~çÎçÌ™3oÞŸOo4±X\__ïêêjiiÙèÑš¼à{ôè¡¡¡1wîÜ/¾øbذa„ˆˆê‡å¦Sbå<{öŒÇã…‡‡K&þðİoe?µ×íö»£òµÛ‹ ¤(íJ äÿ5š¨¤8’F{'N\ºtéÒ¥K—,Y2uêÔN:BæÏŸ/¹O£áºuë!§Nbv“%õÕË £ûéakkkmmmmll***èÖŠŠ kkk;;»ÚÚZ±XlccC‰mhh=ÔóçÏù|þÔ©S™”3f…BøÚÙÙ988ÔÕÕÑM•••`Μ9ô¥††Fqq1}¹~ýzBˆ³³ó«W¯hŠ··7!¤ªªŠÉÆÚµk™ч‰4.aÇÚÚZ{{{WW×/^ÐÝ^¾|éááaggW__ÏÒM~‰Þ¿ŸM_öìÙ“ÎI§ß‘•••jjjÓ§O§[%µ#GŽB²³³™RB:D_Ö××;99Y[[Ëž‘½,ì5/uR©À‘{µ³· äYØsûòåKkkk33³û÷ïÓ­åååæææ*iG]HHˆdâ¼yó! b±¸´´´K—.–––Ÿ~úéæÍ›}||444äý;¤É ž’––F_ŠD¢ž={Ò´YõÃÞôJ¬œ_ý•%™xòäIBȶmÛØ·²Ÿ#w˜ðÆ£ƒ¥MÒ—­0}[òI–@ ptt\¶l—Ù<™‘—&L°´´”L¡_Tì îܹ“””$ iŠP(¤]W®\¡ÍÌÌV®\©¦ÖÈ`555wîܹ²²2kkkBHJJ íœ#„äççkii ÿùè{üø1!äÅ‹ÌÛûöíÛµkWú7íD SWW§)þþþgÏž}ñâ…®®.͘äð©U«V%''ïÝ»w„ LbaaaIIÉ?ü ­­MS455###ÃÃà ¸?ë”eaaÑ«W¯¬¬,BÈÓ§O‹ŠŠ¾þúëÈÈÈœœœ1cÆäææŠD"Ú‡Ô$‡‘#GÒ¿ù|¾‹‹Kff¦ìnìeéÑ£Kͳã^íM¶ ÇÜÖ××—••%$$ÐnczQÍŸ?éÒ¥Ímˆúúú£GÊÛ:jÔ¨fÍÄÄdܸqiiiñññ4îß¹sgrr2!¤ªªŠbcc3eÊ”Ï>û,&&†¾eðàÁò&”4Y]vvvãÆ£óx-ûÖfX pPf·È{KsÕT yöìYŽS¡¥Ü»wbggǤpŸU-©¤¤„"5x‘Žè*))¡‘–££c£Q#!D[[;))iÑ¢E¶¶¶Ý»w÷ôô >|¸††!ÄÐÐ0///33óæÍ›%%%ׯ_—”ÉD«„¸È¦0ºwïNKéèè8::þöÛo’ûÐN”ðððððp©¬Þ½{·%#!$(((!!áéÓ§´³ÖßßßÛÛ;''‡’-Ìå8ÿ\@ÞB9M–…¥æÙq¯ö&[cnéØÐÞ½{K¦³Ï½•š>ÂL㨮®¦ƒt%nþ?í’““+++iÇ?-rLLÌêÕ« !S¦LIMMݰaÃĉ;tè““3wî\üü|###©C5Y]RMÏÜV´÷Žcý°ÜtÊ­zUH À¥ñ´‘‘ûÖæ¶ȃÀ u°/Ç£@7¡lçb«®Ù|W®\¡[xú]"ÕICf‚ý•gîܹãÆ;räÈéÓ§322¶oßîè蘓“c``0vìØŒŒŒ>}ú 2däÈ‘nnnJ¬@P]]-™Bæ„„ٵͻuëÖÂÓÆÇÇçäääååYYYYYYùùù-_¾¼²²2;;ÛÛÛ›v·4‰ã|ö&Ë"¯æ™y-T[[˽Ùs{æÌ"s™Éû×svÉ—555ô}}}¢CÆÆÆ™™™.\¸r劉‰‰··7Í­••UQQÑ?ü0oÞ<¦«{ĈêêêAAAÿú׿¤Ö[åR]òšžvRr¯–¦Wb嘘˜¨©©IÍ¡¡³‚,,,Ø·*±Ú9Žo›7,^¤ rssCCC™‡b ³··'„\»vmàÀL"OêèèØäÛ?~\ZZêàà!‰¶lÙ¹uëVooŒ¤¤¤ 0û+0 œqãÆºº:¦?¬¦¦¦¸¸Ø××W¶8ºººC‡•|ãµkרÃ_.¼¼¼ôôô²²²òóó @ñõõ‰D‡.,,¤£N•ˆ½,,5O§h´ÜÙ³g¹· {nß}÷]BÈ/¿ü"Ù^—/_f9{yy¹äKf¢®rŸÆB®\¹¢§§çáááááASN:Åãñ<==銧ï¼óŽäþô¥ìÓØfU—”fÕKÓ¯X±B‰•#ºuë–››+™xæÌ×½{wö­ÍmËñ¼=x¼ÿ­ãø—rlRIIɤI“x<3èª%ÜÜܬ¬¬Ÿ>}JSž33ÓÃÃYCŽIII£Frvv ­««KOO¿wïÞž={”ò›{AAA$„ÐÀ‘ÏçûøødddtéÒE^/ íéLNN~øð¡ä<ž&±—…¥æ[rRI~~~ì-(u–Üòùü 6„††ºººŽ?^]]=55•}A@0a„#FˆD¢#GŽ0WcËUÇÇǯ[·îóÏ?Ÿ={6!dÍš5AAAýúõ3fL]]ÝÞ½{µµµÿïÿþ¢££³eË–iÓ¦uïÞ}ìØ±ZZZgΜÉÉÉ;v¬lï]“ÕÅ’%uuuîõÃÒôJ¯œ©S§~óÍ7'Nœ;w®ÁŽ;^¼xÁüJ!ûVPUOënƒÚí}øBÞº+Ëâ‹Rëìðx<‡ððð¼¼¼æJ’är}RRRD"Q£û¨©©uíÚuòäÉ.\`?#,,¬Ñ³ÇÅÅ …ž={ªº”ÃÖÖv̘1ªÎÅÿøøø¸ººÊËjHHÈ›“úå—_x<^jjªª3ò†BýAàð†ã—ÿ”xÆ &DGGGGG/Z´hĈ¿ýöÛÌ™3—,YÒè>sçÎ555Ý¿ÿÀ·mÛ&ïP’Þ{ï=Ù“Þ¸q#&&ÆÉÉiùò媮rÕ»zõêøñãMMM;vìèî˜X__ßÂcòù|>ŸOÿ¾téÒ˜1c®_¿þ: %uRÉü´ÞYÞLuuuýû÷÷ðð`Ù§¸¸xìØ±]ºt±°° ÉËË“|»@ ú÷˜±±±ª‹¥ ˆe߇¥rHëÜ> I ê @Ĥ‰^LåŽóæÍóòòb^>|øÐÕÕ5111::ÚÄĤÑ}nÞ¼9zôè?üÐËË«GòÅ¢´´”²zõjÿV¯Ð7ÛíÛ·}}}ÆŒceeuòäÉ>úèÌ™3lÉa³³³™¿>|˜žž¾páÂ×Y.©“Jæ§õÎòfZ¹råÅ‹û÷ï/o‡ÜÜÜ€€ƒ°°0>ŸŸššpøðáAƒBîܹÓÐÐàééiggǼ¥cÇŽª.–ž;wŽýC€½rZéöI€‰‰É„ ‹ŠŠ˜ÀQJ×®]wíÚÕ§OŸO?ýT±ÇXb±˜¢¥¥¥êâþÇ«W¯š§g2 „eõŸ}ôÑGÏž=»páBŸ>}!kÖ¬™1cÆ7ß|süøñ¡C‡ªºbZW³ªýõ碡¡ÑÂãdff&$$r¿|ÅbñŒ3ôõõ¯\¹B︕+WöîÝ{ñâÅ¿üò ù￲֬Y£Äe‰D"±XÜ}À\Ô××geeåååmÙ²…£Xå´çÛçµyïOx£Ð¨®®®Žewww//¯(ðThÚ´i£G&„x{{ÛÚÚÒÄüüüaÆ™ššš››6,??ŸÙßÖÖ6**êÒ¥KÎÎÎÎÎ⬩©‰‹‹srrêСƒµµuDDă˜­‰‰‰½zõÒÑÑ122êׯß÷ß/yä ,^¼XOOOKK«_¿~G­¯¯_¶l™“““žžžŸŸß7$³ñå—_hhhôìÙséÒ¥4¼UTT4vìX++«Î;ž:uJ^mdee 0€~íQóæÍ#„œ?^jÏàà`uuõçÏŸÓ—©©©<¯W¯^ÌÑÑÑ<¯°°âççGÇN›6Žðõõej›rîܹ   ¡Phaañá‡þý÷ßòrÈRy5/{R&?Í­v–l´hì5æÌ™€€##£nݺ-^¼X^óB¥µØØXÉfââáÇ“'OŽˆˆ°´´”·Ï;wJJJf̘Áü;ÍÀÀ **ª  àêÕ«ä¿ã»ï¾Ëñ¤ì|TTÔ¶mÛ„B¡@ °°°˜3gŽdÓs¯ö›ŽÝãLJQÁ¾g“•Ãýö…¡Ç@IÞò™1òTTTìÝ»WMM­ÑM’‹‹Ë¹sçîÝ»'Žp±hÑ"++«5kÖlذ~â:t(88ØÔÔ4,,ŒÇ㥥¥yyy¥¥¥5оåÞ½{C‡Õ××=`DDÄîÝ» 81(›ƒƒƒª³ª s7)åJ â¦oR.ûp±zõjBÈĉ—.]ºtéÒ%K–L:•† óçÏ—ÜçìÙ³²o_·n!äÔ©SÌn²¼½½=uzz:sØÚÚZ[[[›ŠŠ ºµ¢¢ÂÚÚÚÎή¶¶V,ÛØØBbccdõüùs>Ÿ?uêT&eÆŒB¡°¼¼\,ÛÙÙ988ÔÕÕÑM•••`Μ9ô¥††Fqq1}¹~ýzBˆ³³ó«W¯hŠ··7!¤ªªŠÉÆÚµk™-^¼˜²{÷nºuôèÑ´8ööö®®®/^¼ »½|ùÒÃÃÃÎή¾¾¾ÉFyüøqß¾}ù|þ¯¿þ*µéþýû„èèhú²gÏžtNúhÑÔÔÔ¦OŸN·úúúº¸¸Ð¿9BÉÎÎfJM9tè}Y__ïäädmm-›ö²°×¼ÔI%óÓ¬jgoAɳ°çöåË—ÖÖÖfff÷ïß§[ËËËi²gÏÙ²ÛØØH]½S§NmÖwh||¼¦¦faa!=ZÿþýÝvÔ…„„H&Òn³„„±X¤­­mhhÈÜVNNN—.]jôhM^ð„´´4úR$õìÙÓÒÒ’Ö÷úaozînÞ¼IY½zµ¼š¬),·>®Ûíw=zà$Ÿd GGÇeË–q™m ÕÍF™0a‚Ô#9úEÅ®  àÎ;IIIB¡¦…Â… FEE]¹r…vIš™™­\¹²ÑÁpjjj<ïܹseeeÖÖÖ„”””””º5??_KK‹aöøñcBÈ‹/˜·÷íÛ—éóðóó#„„……©««Óÿ³gϾxñBWW—flÑ¢EÌ{W­Z•œœ¼wï^É®ÄÂÂÂ’’’~øA[[›¦hjjFFF†‡‡°?ëÌÎÎþàƒJKK“““ííí¥¶ZXXôêÕ+++‹òôéÓ¢¢¢¯¿þ:222''g̘1¹¹¹"‘hذa\ÝÁÁaäÈ‘ôo>Ÿïââ’™™)»{YzôèÁRóì¸W{“-È1·õõõeee t«™™Ùüùó—.]Ê%Ã’êëë=*o+í&ÏÏÏ_¹reBB‚T°,“qãÆ¥¥¥ÅÇÇÓ¸çÎÉÉÉ„ªª*BHii©H$Š¥c~üñǨ¨¨Ñ£GéëëK­Éê²³³7ný›Ç㹺ºÒnÅ‚‚îõÃrÓq©Iì·( #€ 4k4—¹°É9ÚgÏžå8Z }Š$9Ó“û¬jI%%%„©'ãtè^II ´åM¡ÐÖÖNJJ¢O-»wïîéé8|øpú,ÏÐÐ0///33óæÍ›%%%ׯ_—”ÉD«„¸È¦0ºwï.ùˆPGGÇÑÑñ·ß~“܇v¢„‡‡‡‡‡KeõîÝ»òÇ»wïΛ7ïðáÃööö'Ož¤3Fe%$$<}ú”vÖúûû{{{çääB²³³ÁàÁƒ¹Ô¹ƒƒƒäKy“$š, Kͳã^íM¶ ÇÜÒ±¡½{÷–Lg_Z’΂b0Ó8ª««é ÝF‰Å⪪ª°°°€€€ùóçsiŽäääÊÊJÚñO‹³zõjBHvv¶–––‘‘Ýyúôé/_¾œ;wnZZÚŒ3¤ÕduI5=s[ýúë¯Üë‡å¦k²r¸T÷Ê¡8Þ> ŽÊÐÌŽMFoÿ;0áqYއû[Ï•+W˨®•#™þKÊ0t$¿$dÍ;wܸqGŽ9}útFFÆöíÛsrr ÆŽ›‘‘ѧOŸ!C†Œ9ÒÃÃÃÍÍM‰• ª««%ShØ” »¶y·nÝ=ÈîÝ»gÍšÕ±cÇmÛ¶MŸ>en```|||NNN^^ž••••••ŸŸßòåË+++³³³½½½e» Åq>{“e‘Wóòæã7Wmm-÷dÏí™3gˆÌeÆ>¡»¶¶VòeMM ýC__Ÿ=Ú¶mÛíÛ·GMŸÂBž={ÖÐÐoee%»$¾±±qffæ… èÜaoooš[+++òß!}’† B‘]½’KuÉkzzÕq¯–¦W :dÁ^9¤9·( JPPP››ÚòiúPéÚµkdé”IGGÇ&ßþøñãÒÒR‡ˆˆˆˆˆ‘H´eË–ÈÈÈ­[·z{{gdd$%%-X°€Ù¿%‹߸q£®®Žé«©©)..öõõ•-Ž®®®äj 7nܸvíZ£áïáÇ'OžºuëV===ö xyyéééeeeåçç0€âëë+‰>\XXHG*{YXj~ÕªUJÉÀÙ³g¹· {né¬ä_~ùE²½˜iO*//—|ùçŸ2`K'#oÚ´I2ýéÓ§K—.õõõ• ¯\¹¢§§çááÁ,~êÔ)çééYVVväÈ‘Aƒ9991ûÓ§´ô±ÂÕ%¥YõÃÒô+V¬Pâ£jöÊ!ͼ}@1 ¥JJJ&MšÄãñbbbZ~4777++«ÄÄĉ'ÒOž<Ù´i“µµ5—©»uë–——׊+âââ!jjjô›O]]Î&‘üÆMKK«®®V¸G¤¢¢"11ñã?¦/ãâ⪪ª¤~iÐÅÅÅÑÑqãÆãǧ‘bUUUPPP]]]pp°ÔÅbñÇÜ¥K—ï¾ûŽË¢zêêêþþþwïÞ¥)ÝÝÝuuu×®]ÛäGöóÅ^–k׮ɫù–œTǤgaÏ­›››Ý¦M›ÂÃÃÍÌÌhknÞ¼™åì<8rä]ñçöíÛLÕäÓØ+V¬X±B2ÑÖÖÖÔÔTÞ1³fͺ~ýú­[·hçbqqñ®]»†nnnþ×_EGG÷éÓçÔ©S´bE"]Rv…–\ðͪ–›NéªY*§¹·(#4[rr2¾Z[[[TT”——÷êÕ«-[¶HþlŒÂ455Çïææ*‹SSSËËË÷íÛÇeM ww÷=z¬[·îöíÛ=zô¸uëÖ±cÇŒŒŒèïLèèèÌœ9sâĉçÏŸÏÊÊ266>{öì±cÇè¢6Íbff“——çìì|þüùÌÌL)S¦Hî#’’’FåììZWW—žž~ïÞ½={öÈ~·ß¼yÓÉÉ)""BjÓØ±c™%T$Ñ_Å =Ž|>ßÇÇ'##£K—.òÖ|¡QTrròÇe—bÁ^–šoÉI%ùùù±· ÔYXrËçó7lØêêê:~üxuuõÔÔTöuÁ„ FŒ!‰Ž9Â\M>ªnR||üºuë>ÿüóÙ³gBÖ¬YÔ¯_¿1cÆÔÕÕíÝ»W[[ûÿþïÿ!;wŽ]²d‰½½=-ïñãÇ ×®]+;ò¡ÉêbÉ’ºº:÷úaiú×Y9 Ü> UOënƒÚíýv­±[é-]Ž§Ñ¥v¤öaðx<‡ððð¼¼¼æJ’är~üX2qÑ¢E?ÿüs£oñöövuu•JÌÍÍuppøä“Oš<£ƒƒƒª ­qS·O+] ­wÓ®^½šröìYÉĘ™™ñùüÈÛ§¸¸ØÑÑ‘Çã]»våP,:D9yòd«îu³±±=z´oþ|sss}}ý‚‚ºõ·ß~344ÔÓÓ{ÿý÷cbbhŒ¥ØÅöæÔãã?&„ôïß_Þ­T9 |\·Ûïú6Þã(‹KKKŒŒŒŒŒ$Óégñ½{÷}×¶mÛöìÙ#•Hÿ Û¥KU— Þª{HÍ#DLï5žÑÄÄd„ EEEòöéÚµë®]»Äbñ§Ÿ~ªØYÄb1!DKKë5–ŒÍ«W¯ä=‘ÕÐÐÐÐР¬S/[¶ÌÔÔ´  `Ó¦MŸ}öYAA••Ull¬ª«äuhVµ¿þ¼½zõJ±÷ŠÅâ3fèëë_¹r%11qÆ ×®]355]¼xq£ûoÚ´©´´tûöíßÿýæÍ›sssy<Þ¢E‹èÖ>úèÙ³g'OžÜ±cÇš5kòòò¦OŸžžž~üøq…K'‰”x +,333!!A `›}ñú+¤´ñÀñÅ‹ Réúúú„'Ož4ú®nݺÑÈ’qáÂ…íÛ·kjjŽ=šËye¨º&G£ººº:–}ÜÝݽ¼¼8 ÀS¡iÓ¦Ñ;ËÛÛÛÖÖ–&æçç6ÌÔÔÔÜÜ|ذaùùùÌþ¶¶¶QQQ—.]rvvvvv–=`MM™AêOÈIDATM\\œ““S‡¬­­#""}¸\áwîÜ)))™1c†‰‰ M100ˆŠŠ*((¸zõªìþ{öì133›2e }iggœ““óçŸB²²²  yêyóæBΟ?ßèÙÙ/ø¨¨¨mÛ¶ …B@`aa1gÎɦç^?ì7>œƒ¦kܾ}[ÜÌGÕ×®]ûä“O!6lÈÉÉ‹ÅéééÀÒÒráÂ…QQQ]ºtééét›qãÆÙÚÚ~ðÁ² çñx+V¬5jŸÏïׯÝ´jÕ*BÈ Aƒbcc—/_îääDùñÇ™#¯Y³fíÚµB¡PKKËÓÓ³oß¾‰‰‰sæÌáñxÎÎÎÌ΄aÆ-[¶ÌÏÏ2`À‘H$þç£ê'NhiiÙÚÚFGGüñÇööö|>÷îݲ9¯««+**¢£˜”^½zõêÕKvç””BHFF†dýóx¼Gє޽{›ššÒüøúúº¸¸ÐÚ¦ý—ëׯ§µmccãàà ¯¯¹aÃBH£ÛdYäÕ¼ìI™ü4·ÚYZPö,ì¹Ý¿?ŸÏïܹóœ9sæÍ›gjjJ» }kccãíí-™2uêTŽß¡ÙÙÙ„ÄÄDÉÄýû÷BhW½¤gÏžñx¼ððpÉÄ~øràÀººº¥K—¦¥¥In¥£`×®]+{ê&/ø=zhhhÌ;÷‹/¾6l!$""Búa¹é¸‰DC† éÚµkuuµ¼GÕÊ­IxTÍ]ëêê‡.•¾gχ””ö·_¸p!((ÈÁÁaàÀçÎãxÒv{1µ}’_òþ–ð–Ž'N\ºtéÒ¥K—,Y2uêÔN:BæÏŸ/¹O£áºuë!tØÝM–ÔW/#==9lmm­­­­MEEÝZQQammmggW[[+‹mll!±±± ²‡zþü9ŸÏŸ:u*“2cÆ ¡PH_;;;‡ºº:º©²²R Ì™3‡¾´±±ÑÐÐ(..¦/ׯ_Oqvv~õêMñöö&„TUU1ÙüB¢Oi\Â޵µµööö®®®/^¼ »½|ùÒÃÃÃÎή¾¾ž¥9vîÜãææfllœ™™)»Ãýû÷ !ÑÑÑôeÏž=éœôТ©©©MŸ>n• ÔdÇ8B:D_Ö××;99Y[[Ëž‘½,ì5/uR©À‘{µ³· äYØsûòåKkkk33³û÷ïÓ­åååæææ­8Ò¾7©. Ú– µó¯¿þJ‰ŠŠ’L„233[¹r¥šZ#ƒmÔÔÔx<Þ¹sçÊÊʬ­­ !)))´sŽ’ŸŸ¯¥¥Å ¢züø1!äÅ‹ÌÛûöíÛµkWú7íD SWW§)þþþgÏž}ñâ…®®.Í3¸Š²jÕªäää½{÷N˜0I,,,,))ùᇘÏMMÍÈÈÈððð‚‚–gŸ~úiii)!$ €DŠ……E¯^½²²²!OŸ>-**úúë¯###srrÆŒ“››+‰hR“FŽIÿæóù...™™™²»±—¥G,5ÏŽ{µ7Ù‚s[___VV–@»éE5þü¥K—rɰ¤úúz:¥©Q£F2117n\ZZZ||< åwîÜ™œœLþûe$‰–EOOO2‘] …•”ýÁ”––&''ÛÛÛËž½Éê²³³7ný›Ç㹺ºþøã„‚‚îõÃrÓ5Y94“+W®LHHpqqa¯jåV(¦Ž„“ÒÒÒªª*ÉKíÎ;tS£o‰D‹-:qâÄàÁƒW­ZÅ_B»ÃÄŽ- ðûyRš.AS;œ={V±I¢³Íìì옔yóæ)p¨’’BˆÔàE:t¯¤¤„FZŽŽŽF„mmí¤¤¤E‹ÙÚÚvïÞÝÓÓ300pøðá„CCü¼¼ÌÌÌ›7o–””\¿~]jP&­Bhà"›ÂèÞ½;=,¥££ãèèøÛo¿IîsóæMBHxxxxx¸TVïÞ½Ë8–””¼xñâüùóýû÷/..–ý, JHHxúô)í¬õ÷÷÷ööÎÉÉ!„dgg ‚Áƒs©s©QÝòÊi²,,5ÏŽ{µ7Ù‚sKdžöîÝ[2}iI©é#Ì<žêêj–áïb±˜’œœ\YYIûòi)bbbV¯^-;Ÿ\jŒ)/%gyÞ½{wÞ¼y‡¶··?yòä Aƒ={“Õ%ÕôÌmEûö8ÖËM×dåTUU………ÌŸ?Ÿ4E¹•Šiû£¿¿ÿ­[·rss‡NSÄbqNNŽ¡¡¡¼{à»ï¾;qâDxx8ð?Êè_Tàýò:[©ÓQ1W®\¡[xúE+ÕICf‚Žì×­¤¹sçŽ7îÈ‘#§OŸÎÈÈØ¾}»££cNNŽÁرc322úôé3dÈ‘#Gzxx¸¹¹)±Auuµd ›d×6ïÖ­ûÑ:tèàïï¿nݺ &¤§§ðÁR;ÆÇÇçäääååYYYYYYùùù-_¾¼²²2;;ÛÛÛ›™dÃŽã|ö&Ë"¯æåý+½¹jkk¹· {nÏœ9Cd.3yÿaÎ.ù’™®¤¯¯/nêcŽ7¸pá•+WLLL¼½½i¬¬¬¤ö411QSS«¨¨L|ôè!„éüÛ½{÷¬Y³:vì¸mÛ¶éÓ§Ë›†Ì¥ºä5==&÷úaizöÊÙ¶mÛíÛ·GM‡(Bž={ÖÐÐoee%õ{J¬PXۯЭ[·~ùå—ìØ±#!dûöí=Šˆˆ`þ[]]ý×_©««Ó±»víÒÕÕ•Zñà?˜OÒw=¶%¹¹¹¡¡¡-ÿ˜¦•®]»6pà@&‘N>å2“ññãÇ¥¥¥"‘hË–-‘‘‘[·nõööÎÈÈHJJZ°`³K¾qãF]]óIRSSS\\ìëë+[]]Ý¡C‡J¾ñÚµk²áïÑ£GG½k×®ñãÇ3‰†††ä¿ñ´///==½¬¬¬üüüB|}}E"ÑáÇ é¨S%b/ KÍ+ëágÏžåÞ‚ì¹}÷Ýw !¿üò‹d{]¾|™åìååå’/é4^Âíiì•+Wôôô<<<˜¥­O:Åãñ<==¥öݺuËÍÍ•LÝØØ8===##ÃÌÌlÒ¤I .¤½²èVSSÓèrDzÿ:„öEö·mý\5GÉÉÉtújmmmQQQ^^Þ«W¯¶lÙÒ£G–\SS311qüøñnnn¡¡¡b±855µ¼¼|ß¾}šššM¾ÝÝݽGëÖ­»}ûv=nݺuìØ1##£°°0>Ÿ¯££3sæÌ‰'ZXXœ?>++ËØØøìٳǎ jnVÍÌÌbbbòòòœÏŸ?Ÿ™™éááÁ¬0G ‚¤¤¤Q£F9;;‡††ÖÕÕ¥§§ß»woÏž=²ßmB¡pÅŠtÀ¡C‡òx¼ÌÌÌüüü… J.Ð()((ˆ.8B{ù|¾OFFF—.]hŒ,E%''?|øPrO“ØËÂRó-9©$???ö”: Knù|þ† BCC]]]ǯ®®žšš*õ T¶ø&L1b„H$:räs5ryT½fÍš   ~ýú3¦®®nïÞ½ÚÚÚÿ÷ÿG·ÆÇǯ[·îóÏ?Ÿ={6!dêÔ©ß|óÍĉçÎk``°cÇŽ/^Е†Š‹‹oÞ¼éää!uбcÇŽ1¢YÕÅ’auuuîõÃÒô\*‡]+U(NÕÓºÛ v;E¿ávã(åJàr&eÝÆ\_”Zg‡Çã988„‡‡çåå5÷P’$—ã¡òòòMLLLLL/^¼Èljò×üîÝ»7}útkkkMMM++«ððpf©—œœOOÏŽ;¾óÎ;)))ÆÆÆC‡•=2íR’\·‹v¨ÐuéÎ999Ô××ïÚµkttôË—/ÍdAAÁðáÃMMM }}}Oœ8!/ó"‘hçÎ}ûö544¤¿UÍþ otN’±±1“’@™5k–än’Ë߈D¢°°0===777qc?98iÒ$¡P(ïŒ,ea©y©“J-ÇýÚÙ[Pê,MÖü™3gL;¶õõõ÷íÛGä/ÇãååµvíZkkk ‹ Ðþu1g'Nœ 9·²²Šˆˆ`–Ûÿ÷~IJJbR*++gΜioo/ GŒÁü¤ýqÎFÅÅÅÉž´Y¼X,ž:uªõÃÒôÍ%µOëUŽ$,ÇÃOÜ.ûKZ•££ã­[·T hMÜžM+åJà8Ž·ñëgkkëââB{ûàmW^^Þ©S'–.m[[[KKK©ÑuíG“õó¶SàãºÝ~×·‹GÕo/D„¯A£c úG6²‹Z£“Ú-ŽMŒyäõýT ¼á‚‚‚¸ü´ ~ø!–w ³eËUg^fÑ%€vN­å‡€ö#p‚À8Aàœ pN84ƒ˜´Ó§ €#ŽÀ hEŽŽŽªÎ€Ò ph-·nÝ’MäñxR¿aØÂ¿nú€øDP<ªN84OÕP!ŽÀ Gà#p‚À8AàÐ։ń‡Y= €ŽÀ Gà#p‚À8AàÐ`b5(Gà#p‚À8Aàœ pN8´˜X -†À8Aàœ pN8'€Ží&V@Ë pN8°«:oŽÀ Gà#p‚À8AàО`EhŽòñdüGà#p‚À8Aàœ phg0±…À@ˆñSÕÿƒÀ8Aàœ pN8'ÚL¬… pN84kñÈ@àœ pN8'€ŽíV䀿Cà SªƒÀ8Aàœ pN8'þ©ýÌ5ÆÄjh&Žh …)Õ¨:J°oß¾½{÷–––vèÐaàÀ‹/644äòÆÛ·oíÝ»×ÙÙYjSppðµkפ…Bá¹sçT]\ÕxëÇÄÄÄ­[·êèèôéÓ§¬¬lÿþý%%%ß~û­¶¶v“ïýî»ïämº{÷®¶¶¶d¢ª‹ ¯ÖqhÌÛ8Þºukûöí&&&iii;w&„|öÙgß~ûí† bbb佫ªªê×_=|øðž={äíðìÙ³   ¤¤$UZ™Ô ?fØßÓ?0Þî1Ž{÷î‰D .¤Q#!déÒ¥úúúÇŽ‰DòÞ5bĈ‰'Ê‹ !wïÞ%„Hu7BÛD{ÅâÿüÇ$þ÷%&0ÞîÇŸþYMMÍ××—Iáóù 8|øpAA»»{£ïúì³Ïjkk !»víÊË˓ݡ¬¬Œbmm­êòÁkÁô2J=ž¦¬Ûö¼cZ@<—nÞâÀQ,—––I¦;88BîÝ»'/pôöö¦œ>}ºÑhàøçŸN™2¥¸¸¸C‡ݺu›={¶ìh#$ŸPÓ(ª]…Síª°ÐoqàøâÅ‹††Ù +úúú„'Ož(|ä{÷îB6oÞlkkëááñÇœ>}:''gõêÕ¡¡¡\Žàèè(•rëÖ-UW(Bök½Ýz‹ÇššBˆŽŽŽTzÇŽ !Ïž=SøÈþù§¶¶öG}4eÊš’——7{öìµk×z{{›››7y„‰o%Éi1x† ÿ%ûµÞnCÉ·xrŒÇ{ñâ…TúóçÏÉû³cÇŽË—/3Q#!ÄÓÓsòäÉ555'OžTu¹¡HŽq¤ÓbÚöÐF)í­¼ ¨·8púúú²=‹UUU„fžµ²ôíÛ—ò믿ªºÜÐ:¤:Ñ× ã- !&&&?¦‘"ãÎ;t“bNjв«ùðù|Bˆ®®®ª ­ Ñ0±­ÆŽ<Þ?þcÊK&4æíýýýrss™±Xœ““chhèêêªØ1ËÊʺuëöþûïK¥’v<¦¡]h'ƒ™+%—®”JhÌÛ8†„„¨©©}ùå—t\#!dûöí=7nœºº:M©®®¾sçÎýû÷9ÓÆÆ¦wïÞùùùûöíc ¿ùæssó¡C‡ªºÐÊ ;®‘é€ã-žUM177_¼xq||üÈ‘#}||ÊÊÊ.\¸Ð½{÷™3g2ûäääDEEÙÛÛ9r„ãa?ùä“3f¬\¹r÷îÝvvvüñÇåË—;tèðùçŸsù l€·¢F`õv÷8B¦OŸ¾aÃ[[ÛŒŒŒ'OžLš4éÛo¿•]ܱYºvízðàÁÑ£G?zôèøñãÏž==zô‘#Gú÷ï¯êâ(ÓÕО} ÊæèèˆußJ=¨åñx’Iäñ¤÷åý£Ç±Ñór?´ŽÐŽ!Úkî¤]ˆT#(ˆé|+é0­àõCà2ÄbÒTpF{þTÒÿGÏ‹Ÿ´xý8B»„)Õ-ÓÚñb³‚BöA“x´  D ^àFŽ§Ž ^'ŽÀÕ›¨ýg¼ã”#€6NMÕ€·Ã›5Rb"ÆT€×#4íÍŒà5Càrðþ·Ú¢F ¡=”j… p6ènG Q#HÂr<Ð8ž˜×ûs‚JƒX u p€Æ‰‰ømÊ#<1úJ”ª  úÏÚà Tèq„væ-íB{½$‡6òx„_â7£ÿÊæEüŸM£  \ÚEúáÄÒ‡xü#´•É! mÑé \Ú–N8ÚE×fâ-Zt:( Æ8À´É«-ÅÁ*‡À‘5¾!ƒ[±#€²àQ5´qÌDöÝÚ^o+€Ò!p„öSªåh“©%59Ø]’\ p„6Eví˜6ñ¬µuIETt’2S“m¦ú0Q å8BÛÁãñÞÈucÞhòb©6^!vh!LŽN8´_\ºßx„ˆÛPÏ-fX´Gh703æŸÚíC[ÄŽ CàíbGÅ p„ö‡(áÚmw#´fU´;M,ˆÝ>âḬPGhèèFt:B¸,…-³ª…GÕí‹ÝlFªê|àø9»»¼taƒP0FjË¢ðGCâ MŒø‹ ÒĪØHjhšZ´±%­ZÛZš ±[³1 ‰.šhÅSBP‹’ÕÖº€% ¢ —¾¸{~ܹgÎ}?3sgîÛ÷“ÍföîÌ;/÷Þç>çœçŒŒŒìرãðáÃ[¶léééI|ìÖ­[³Þ| KJÔÂOÏ’Ò…ŒÂèš;Òœ  ²Ê8 Ìš5kûöí3gÎBlܸqË–-=ôÐ}÷Ýõ¨3gÎ:tèÅ_|î¹ç²~hM©ÇÄ$¼ô4zìI·¦Tþ6ëòQõ89z.oR’*¬üMÕCCCãããëׯw¢F!Ć z{{wîÜ9>>õ¨ë¯¿þæ›o&jDq¥5ÎC¹MÕ¥Xm¼d¬ \ù3ŽûöíëêêZ±b…^ÒÝݽ|ùò_|qÿþý—_~yè£6nÜøŸÿüGñÌ3ϼùæ›Y¿ cʘ]ðTòÀQ)uäÈ‘¾¾¾¾¾>sy¿âøñãQãÒ¥K»víÊúE‘R å4©êq,-¥Íj'|,}Jó@¨’Ž£££cccÓ¦Mó-ïííB|úé§mzÞùóçû– gýf 2”ñ[ˆ]¥±*]DZÅH´ˆhÁÓze•}ºMÏK˜˜eÿ è¤ài½²¡dÉÇL›6MJ9::ê[~öìYáæR!NN£dÀ§äÇ &ôöö3‹gΜBèqÖ@ DÊQTi˜Ô“â¨Úí*´Î@¢’g…³fÍ:uê”)jGuþ•õÖé¨w†ˆR¨Ú4/„>PÞ¢PyåW®\966¶gϽD)µ{÷îéÓ§/Z´(ë­C{‘gK]EG‹Tñ5@ˆòŽ«W¯îêêÚ¼y³Ó¯Q100pòäÉU«VMœ8ÑYòùçŸ=zôÃ?ÌzcæÕ åÐ6%ïã(„˜3gÎ=÷ܳiÓ¦ÿû¿ÿ[¶lÙÈÈÈÞ½{.\øýï_ßg÷îÝwÝu×¼yó^z饬·hQc*êAUô¿ ÂÊ8 !n¿ýöóÏ?ÿ…^xùå—gÏž}Ë-·¬_¿Þ©È³¾VD½þ·óoZ¬Td¨`êæÏŸOÇLHéXÜz©jß:ó¹Ba¤ÍzÝzQCOÜBß •l©:¦?&k| Û½B8*E=pu•=×—¿#€tI!„¬b»-e€À(8z7:…À(0ɘÎ"é â`¥£ª‚²Jn)!EÇ[«•R¶2D¦¸œ¤#£dT#k1о„Œ)F›;¨,šªB"pt#P8¢PB«Lë?‹ÓÁ®6Qµ ¶BÈ"gu7Çâ¾@4ú8¢h¢F`Èâ„ÎöªZøˆ*"®PLŽ( ;êìc¡»9–ë ¤ n¬:IOV…DGœîQWœWÙ¢ÆØKuÕK ×ftÿðýO¸£ JRÅ@58¢€|íÔ¢HÃbJ(8 Æ÷ÑT/dÔtP(¥ôM9¨”*Oíw•AS5Š)j`uþ•,ÝX{Q*<é[í¨1‘'% E@àˆ EPò†¨Ñ±#€b!pD13(©Ðˆ=¯ Dèã¤Æ**TBŠ2¶V×Þ‚âUÊœ“t¤³#€B pÒsúw‚ÿ ‰ÒNCì¥CS5Ð •H)G,°;A&èé (È8¢€ŠÙÁ±ä‚Q#S¬à™RÕ¯.¤Ý¬„Î*,ïɇ uŽ@ÛU"Ý+Î× Ð¬ï¦e=tú4Hü9Q£Mìh‰¨&šªö"j„Y‹ }¿õOØ#„èÚ‰ÀEChQTilµÝëtb¼¸ÄŸS^÷NeÛ,WØP$Z•€#ÐF¤« “Ê ?;Ÿt”d:ª"pÚ…¨±:’£(eÞ%2kîd2~µÒý­„q#¸B›íÌ6P ŽA¡ÐN],Ù­ŽYVÍl†1–%ê‰ÒJ¢œÊðî“y*Ä»·= ƒO•L\ÒèöûÚ¾UÒ›x ¹Eà´éÆŒùÂÄö÷¶Œ‰¢dý.Q¤žØÖüþè4¤¹$f3ÌçÚžÝÕRÁ@#>¢ÆRPF¾,lVF ¯y©ç°VB4S%>¯ÞN›H4iÓëo…2Þ%ÑÈ›LÈGð"<½Ý¦Ì¢»vÕ¹!8fÅöU´ò&è@V©Úí¤ÆtA oïFû7­ÝS­#pDAä¾ZnŒ’§nŽñ¥dêQŽòæÚ’Ʋx^®7©)ë+ôÞ)â™ã×m¹–w‹Ë šOÕÂgç‹¶eÄò†ž€àÈ#¢ÆH.»äëŸW‹ù|ƒ …Ó;ÕmP¶ …•÷ѱ£ª•2¦Òd›¾]qõ‚/0ö%+o–1q´´XOÄ[ K޲—R½î¤gñÝ 宜íÑ[Ù²ò\­‹©ÎSÆv¿‡I/¹ÁWän¶ñ[ؽi´h"pD䦡3rI7ÆKLÑ¥P¯;¹ì¢(Í—¼ŽMv^x‚0íç°yÉMŒûV#·,] ódf¨Ä޹¦ThÌQ Ü•MÒ1çô säMh)“rúà€’!p¬8­tº2Jtê7*Iç«¶±âÊ. a•´nd,K6ò;&Tá1ú…ˆË‰Fõ†d 9G 5JäùDž#ÍŽ­n0X¿E)™FƲ \c£mìûÍÞfÒf¶CbG uŽÈ½œwpäÔÔ~ €ò,mœçdµÃsÛJ´›Ë£øyIïY)Cà¸mÛ¶¡¡¡#GŽLš4éšk®¹çž{¦OŸÞâCn¼ñÆwß}×÷¨3f¼ñÆY¿\ B¬+³$Ö¥dr.jZKo>¯0aUÓ|©¡…! ôÉEQøÀñ‘GyòÉ''Ož¼xñâ‘‘‘;v>|xË–-===­<䨱c===sçÎ58mÚ´¬_.PdJ5=Ô7´Ó›ªÏò’üÔ… ¦ªÃzdzä k'\–R!ÝU&mUìÀqxxx```Ö¬YÛ·oŸ9s¦bãÆ[¶ly衇î»ï¾¦ræÌ™Ó§O_wÝu>úhÖ/±òrÞN–$Ì„5³K3_ˆœUÏiQþGÉt”þd¥Tî‚}Ò±ù/PI]Yo@K†††ÆÇÇׯ_ï„€Bˆ 6ôööîܹs||¼é‡;vLáK7h«º€20²þWeÏ÷ÕÈßħ¬‡ÎH»ÖpU Ö} kÅ÷íÛ×ÕÕµbÅ ½¤»»{ùòå§NÚ¿ÓB\tÑEY¿> têy¿ät£0Æ;W6@ŒQ©Ø1ô'ØaF™æ7'*‚ô¹ Èú¥¹SàÀQ)uäÈ‘¾¾¾¾¾>sy¿âøñãM?Ä Oœ8±f͚ŋ_sÍ5?øÁþö·¿eýŠ«‡vêò‹H')%ÂâEoµF÷·RF „PUøÚè°¦ôñŠþ±ì2k¶YGEõ¯–Rõîã8:::66°ÒÛÛ+„øôÓO›~ˆA>öØc_ýêW¯¼òÊ>úh×®]»wï~à¾óïØlÛüùó}K†‡‡³~ÃN%éHnLîâÞÁÁ1%-Çþ„NžXMÕ: M-ŒGUà[…pÁÓze8p}ºé‡œ8q¢§§çî»ï^³f³äÍ7ß\·n݃>¸téÒ9sæ$nab«r™k”Ôö°Óð›ÔÈg͇€ÖùÚ¯ë)I‹é…øîUSð´^ÙP²ÀMÕÓ¦M“RŽŽŽú–Ÿ={V¸IÄæòôÓOTè¹E Ý%*ëÍÌ‹Ävh©¼'ëàù^)3$‚†Y„ŠýÚÄ|gì`1þ(pà(„˜5kÖ©S§œ°O;zô¨ó¯æ¢” VóéîîBL:5ë H%¨m#~î`éÖëVR û–J©bGE¤ûIAHcÿµ‰ü¢Fä,I7Z±Ç•+WŽíÙ³G/QJíÞ½{úôé‹-jî!### ,¸í¶Û|üðÃýë_>|á…Þpà wÞyçìÙ³³~¹eçÓæñ1‰³ýJ'°ä DbœÄd—·^wm”zäXu "¯c§¢Þ¢™¡ßvI~eWøŒcUö*$ÁñÔÄŽfãÇZFÌMé'A˜î U=“âÍëÄ×Röœ>¥JéTY-Ý(ÜÏÉ™ÅÍ4“qlm…²ÑÏ=lýåÌ86´Â˜71ô›OàX•=×>ãˆâ Γæ‰0D–“$&#+&d<@L“tôj”Ói,˜ïQR&Ö^FcTrO ¾ä ’âÐà¬=æLÙÄŽ(%Gd)¬£œ7ܑ݈ÂÛë+žÿô©””ÒÉ5ê>Ž63v aÒ ãrêYob±éïvpå·™ÈETìQÕ(9s|LU*ݘ<TÔîY2´myãDæYoE‘5rð NEcS¸‡…CÆ9ãË”’JIw˜shk]‹™§ƒ£¾]Ñ7½Sh°ÎœÙ~M•vGäH†Ó F¡½QŸ-É[8lÖAº±­È;¶Uü+t Mèš~  “È8e­ë &ÕbŒZ»}L©Ì‘5ÈyÇ\ñ% ãñ±!WÈ8%Ý™óC!õ¦êö£cgwliüŽ¿[ÈìâÞ5ؤ-Ì8¢äBÊŒ{”’žJ='ÿ›àLúv&«§c"9E ¨Ihb6v½Ú­Àp›ø14Ä‹ÈG”]x?>ç?µÆ»¸&¼b³ÝÄb ´yYµ9EÈ{˜úT¥µþ”$ÛŒ¤c|sFÝ+P GEÜÈ#ªËæ œÿºšô\›Ä…9{Ê‹Ø1K—\¾&ì†>'"KtƒcPBNµ:C )¤óSÐsg#1S)1ð2sv²WeÅ1P&Ÿ||f¶ »C(>W´G”S­Ä´of-îY3y»•Ù¢ÕDÎÂɲßb6ê<²ÿH|éCËñ7|äh7GTŽ“k,î95¦«“ÛGÐ{ú28‘cìT0™%béé˜e3ëIqóîEe=MÍ<4‚®h?GTŒÅ=SÆœêÁ–”ɯ/öìUÌnhRäTmä½çotLäÎî\×W*þþ@ÚQ1¥8¾z`*%õèâçêÒš®–¢ÆÊHO¢š$gŒ EV3©hÐ>ŽÈ ‡-¯„îI20ܲ;¦=C Äê˜(ÆYçMCQ2Âî\ Ž@~$wm7Ï Yý}abªñ*Cs:رè‚Éa¦¢A›8"#RrØ2$Æ'%sš«Â›ªy—aØ1W¢ …«à=ÍEfzÄàÀ‹8ùᯧ?6Á7C`ý!!s–q¦@2bÇœˆù¤”–»³2†`‹è6Ept–ßXûZUŒƒ¢¿…º^ò×)U^”בžÚkGǺRU%u.VîŒÎAÆà«€ GtPgC™ƒb¸²‰M0OJÅGØJMDʈKÃ7󵯤°éUýA¹CàˆŽëHºÑ©ñ]õ‰^Täa¼š¹7sÊìj¾Ù)rµÓŠid×a ÈÄû>ôqDg™Ñ@ã!JHw²ÁxD#pDûùã$Oø˜.'†Ò×à¡CŒS*Umi½+”R*åÉÕx2ŠFv°½tˆAòvµ›ùK½È-eqÑE wù®š»€ ЬG´“s¦=巣ޣ[M¤c/ϲ㸧j·52·^(¥‡Þû˜K"SR}郞êä‹.†ÔäVSÑs‰ë'v¬G´ŸNéRÿ™’Ú«s§­äzÝ4ý´Ê—™öå­‘3A(}½&üå?-úT °Bh¡sœŽè”¶55ê¾OxÈð¤£R"é ËD/1¤RBJ¥¿0¾vjÚ¬³"…T”/*ûƒcTUN\ß_ET`e"û’!pDSG­¯2ƒ‰.’[¨UÒØè%Y°_c¾?hSËTŠÝºu·æèöÒ–%@àˆö“ÞA$Q=ØšXqÚç°ø²á Žéݱw;kÄŽ%#µ/l>Ú¨‘4ÊḇcÑQ¢&I³¡XjÓÙ+!¨”^ªð`tLÌD/Ípæ]4¯:)¦–)ç˜lqd=<šåÄ©(^dÑÁãQ ƒcd­7åCõAÍÛVCËr[2æ’ŽI=–O½!U#güuÑ8¢ÍÒÊÐl¢±‰«ýUÍ­×ÍD/©ðµM>挑FìX*ÖÅcÖà9æ»·  .s‹Àíd5š•ã›ÀZ;KÅÅŽ2lŒŠMÕë®ìD/é rN%ð|‰éòH•Òr³ ì¤ 9“ŽÒ»ÿÃ9dŠÀ¹ Ü:ŒQG„ÖÚÅh‘¾‡Q¯;oˆsÆìòè¹ð &Eì¿QJMT¾£vØì\Y¿¬ê"pDÛ¤wv?-©ø˨¤£4~ÇÌ» ”YHU_ÝÅVg÷*¶æÚ‘ƒÅEØzh¤Î9G´GªQc\s˜y0 oŽl¡ŽÏ~˜£^w¾tÌ1z=VDtñ¼gTEñø4¤MÏôÆk¨¡UŽhƒ”Nê‰ÍÓg-¤9rÅ~&@êuç±cç)«É™(ôXqÝ­wLÿ0D‹•#‘S–瞄ދž²‹zÕF(âÂ>åN—õ›dNÙŒ·Õ{zDuoÄàĆ"©¢¸läúi!pDÒ›JØíå$7¤ˆ.“RÙEWEÒ1Ç”PR;"A0é^Ý" —i!pDâÊ"8§ðÖOäÊ{Ãâ°ÑjÙÅÄ×LÙÅœ1¿‡Ês[Pë(G8QCÑZð§¢Û¾¥÷ta_ß-"p„­àзÅW†N“ÜVåm¬=X½!°1¡¦JI³?¢e_¯›„V.)ïízï(bG W¬Kç4p¡á´º6aÆš´8"=ëÂøNŠN$êœæ¥1…YOX£™w´-»H½n œŠ=f³¤ÅhÙ „”ºµË“}ˆ8/¦‹ÀÍS",š¡Z`O©›`$ýtþ(<é( Mв’º€¼t«Ë/©«éþ- 'aSMÇv¾³@|u›¤#õ}8¢yþ‰^”Òù¹Zè'ãF·$Õëö<‘Ž-£ö|s4½+ÅsæÐ±c£=Ð! ÌJ±/ uR‰êäÄ! ]Žhžg(œrÆB›çiOßG³n‚þe6U»«ôóRz2B=;…ÕQ@FG«(ÝÃÁéà(•û ›$9àîæ|8p¥R2tmÒ{R©}ù"zRßÇ#šW‰âìÕÖS9›” £ZÖ‚O½z½j»]ØM½îJ Ma5€NÉ:2¢1Ñ¡d|}£KT (¬ue½('©#•µÊÙíœ%îžg?t›¤tóAJªÚ³ÏÃ¥”BH«@û8*Z¨3â rs~¦™Ó{·nbPT GǸç¨À÷Mù›³{T˜ÓmW Gĉ ÔŒiû”¬-„JÔÓÚ“µÌfðGHi¶S£"tOY%ëuù‹N=Jc…tþúãvFáD_1ÑgÕÂB?V ŽÐãHò‰¯ÔÈ8V‘ýuXüE› [âö-óÌÃqm¥›ª…‘§›cáøz?Mk¥_“¯‹¤ ûW•‘qD¸ÚÀ—ø´2GP×–MÕî²Ð‡Šz»ËhQ­Ó­¾]»Á÷ªê E 3’êû„&#ÍûT cåÄÌå§{µ;WüîÉØ±"…òLæ¦{„}Ý›ï.\£ dŒ$üËßá•€²8‚í×€ ñÓÊiE·PWùÌDSuy´Ø«W^:tëáèá/ÂWvѬÏÉL*¡Â nÅ¢ÙTÏAû„L>IÔX(fûul’9 Q×XaÈfëû„Þ§ô«Å×¥7i&iïXfcji%uÆ1æh^ËBFÍã ºd ,Ú-$ïèÔ~âš$[qžq_‹ð‘9 ö#p,›K™4êÝ{B8©Àz?ï݉_œ'©—R=â/Vì)ÝdÃwlaô Ú"©¾#æôZ©¤#cÞ5\*d ž^¼²~Ûwô•ºž¢ÿ¹”R:XÔËdD˲ÿéeLƱ"»²å¹21Á4$Š Þ©FEÕKaq À13) ֻΠï»áKOÖ‚K§;£>³ét6¬ɳɲ"/jYm3^TÊ>rÚ(¢zhÛð1![IEqDHLßT'éȨê\kºÊ¨wæ>eó s'ô3þr»I)”’JÏhÎ Ã hŒÓIW˜ßðÚ?¼A$ Í=^%Ý‹Šâh†tvØ’* pL™eA]ªÅ¯Zè××&†ÁÇêiZTxÑ<üÙVð6[œC æø¶0ô Û<ËEÜu§^½@ÔÂÇúþXŸ4ÉM½“˜ÌE÷‹u‘h˦9çVÈ=m;@8¶…Ñ­&x5\Ïí™)¾È.‰^qùÆÈæ6£iYƒ‘žôâBùE]‰ð^»z‘¬u‰­BÅ<4åÐÞ^ÚtšD8¶J-Ëέ~Ñ&:Ç$û.‰¡í2F‡›À.ÑhkvïUkI‰Ú‹tÝÐ~„fMÿy"XŽÎ)Îè]õºKæÎZÍÑfíŸÆÕEFu/>½·Dy:/Évm¶ÍÅ̉zzè¨GUÒmè)ômX¦2MO¦*³HTX£Xa¿è>ª¸¨=ÇDÚ¶mÛêÕ«-ZtõÕWÿüç?ÿì³Ï"îX¢Ü6,wTJ`>t=´3Å;ųV¥¤1Å<Ú{—ZEo7ÕQÀƒxÇôÏïÏzàW E&ökÔ; žÛûã{°s¬¨Íùž'JŠùýi~. Œ¨³{+Z_¡9àO¯Ó}ˆˆ›s8i ës^GM~í}(EpäMhó÷üùóS|¸g;V˜ô¹è7Çø˜ÌÅ;ˆÓµéÊÙ‘†.©Çp<òȽ÷ÞûÁ,^¼xÊ”);vì¸ãŽ;Î;gùp©DðÛ©ô¨d3Aè;Á8õûèGé¡F{™;ŠÐ7–йxR4`¢›§t‹ùcÐ-Ëõ@E)á‘BøŽÂ\vº5G¹%o^ºã¾S_¡ù6vv…UŠH\¡eØÁôþ (½£ª[xzŸcï¬åúíT”â«UVŽ!†‡‡fÍšõÊ+¯ üùÏ^³fÍ;ï¼óÐC…? pdw¢CTðÜÙw: =»¸¿õ‰!Ø=¿^=Ç—¼tÿ¤zÐ!ñQ”»ƒ×‹ûÃÞ<‡_¸üSãòÐû$©¦038n¤ÞðÝÈ #ƒïà5¹wIÃ+ld kÙ÷0®êÍWžòlñ[èÛHÛé@/…÷ÐmÓ•ŠÓ‘ú•I!.uŠ€À1ÄÐÐÐøøøúõëgΜé,Ù°aCooïÎ;ÇÇÇÃvÄ÷5oIïqß÷úí j gîÞÔ“:)tò똻×ûŸ(󧶪¨Ÿ@yéÛÆw´ñ§0£šÑ…'5{7†G¢ñ9Ñ€r¢vR_aü³ù[0ý‹:Ñ:©"n;¬·°ž°Tnk•Qõ·žÂ4ãÎÔ_œÎǧ˜˜Ìù ˈÀ1ľ}ûºººV¬X¡—tww/_¾üÔ©Sû÷ïy€>ëé^êbcu°K¢/—àòeÍå!ÁÞôw:@Ÿc4\ ¨ý?º@I4ê§V~,æÑFšW’a[X_³{;>µ™¯bs¢HÔ÷p3m.´õ¬PÖ×Ùô =±rü õ›æï½ZoSÖ¹7ýÛ–%¯Ðüv%m¡Õ Ãz=—D- é UŸ2×ê%û"Ñú[|Õ¡WJ¶;ÏçâÛW¨T;VsíTJŽ~J©#GŽôõõõõõ™Ëûûû…ÇzXíé¶I ·C}£]ãwfc€L%´3z~d ð~x›²/¹èvš m§<™:yéI†æ/͹·•×ú"Ñú cr¢ú ÑG¼ˆHTÿ®WŸˆm£V¨ôûÐÔ ƒ±rü CcqåŽnS²ÿ5Û"y…þGÇm¡Õ }Y‰W:¾ÄýV$¾äúŸÁ©È|ß^ß÷ÙÓòs7û{úZóÓXaâÇWVÉuö«æóÏ?ÿæ7¿ùõ¯ýOú“¹üù矿ÿþûúÓŸ®]»Ö\.õL¦îßvø(¬ááa!êgÿz™ˆùPØ}:ìܹsÏ?ÿüöíÛ?üðéS§ö÷÷ß~ûíW_}µïnUÛSSvìØ±žžž¹sçš ™¨0<òÈ“O>9yòäÅ‹ŒŒìرãðáÃ[¶léééÉzÓª‹$W¶nÝõ/vŸ¬Ä|(ì>ôÅ_|ï{ß;xð`ooï•W^ùïÿû­·Þzýõ×ï¼óÎþð‡únUÜSÒsúôéþþþÿøÇYoÔûï¿É%—,[¶ìã?v–üæ7¿éïïÿõ¯õ¦U;HNœ>}zß¾}÷ßÿÁƒ}w`÷é¼Ä…ݧÞ}öÙþþþ›nºittÔYrèС%K–\zé¥ï½÷ž³¤š{ }ÓtìØ1!„ïr™_¿~ýÌ™3%6lèííݹsçøøxÖ[WQì 9qýõ×ß|óÍÏ=÷\ÔØ}:/ñCa÷é°W^yEñ‹_üBççÍ›·nݺ±±1Ý7 š{ cšFFF„]tQÖ±oß¾®®®+Vè%ÝÝÝË—/?uêÔþýû³ÞºŠbɉ7>ñÄO<ñÄUW]zvŸÎKüPØ}:ìèÑ£“'O^¸p¡¹pÞ¼yBˆãÇ;VsO¡cšœûĉkÖ¬ùç?ÿ9iÒ¤ ¬[·.´ã9ÚG)uäÈ‘¾¾¾¾¾>sy¿âøñã—_~yÖÛXEì 9±téRçÆ®]»‚ÿe÷ÉDü‡"Ø}:î÷¿ÿý„ þéÿø‡â /ÞSÈ8¦É¹ yì±Ç>ùä“+¯¼rÆŒ»víºé¦›†††²Þ´j öïííB|úé§Yo`E±ƒ»O>±ûtØ‚ œPÛ»wïÀÀÀyçwà 7ˆ ï)dÓtâĉžžž»ï¾{Íš5Î’7ß|sݺu>øàÒ¥KçÌ™“õVŹsç„“'Oö-Ÿ2eŠâôéÓYo`E±ƒ»O>±ûdhllìÙgŸýío;66öðÃϘ1CTxO!plÆ_|ñ‡?üAÿÙÝÝ}Çw!ž~úiß=¯ºêª[o½õ©§žzíµ×ôÞŽv›6mš”rttÔ·üìٳ½D籃»O>±ûdå­·ÞúÕ¯~õÁÌž=ûÁÔP+»§86ãÿûߣ>ªÿ<ï¼óœÀ1Ô’%Kžzê©C‡e½Õ2a„ÞÞÞàß™3g„zøò€$oØ} „ݧ­þûßÿþîw¿Ûºuë—¾ô¥ýèGk×®5«3VvO!plFOOÏðð°o¡Rj||\JÙÕåé9ÚÝÝ-„˜:ujÖ[]-³fÍ:räÈ™3g¾üå/ë…Guþ•õÖU;H°ûä »Oçÿä'?yõÕW¿õ­oýò—¿ «¹§08&5### ,¸í¶Û|Ë8 „˜?~ÖX-+W®Û³g^¢”Ú½{÷ôéÓ-Z”õÖU;H°ûä »OçmݺõÕW_ýîw¿ûøãG¥«¹§8¦fîܹ—]vÙÛo¿½mÛ6½ðÀƒƒƒsæÌ¹öÚk³ÞÀjY½zuWW×æÍ›î&Bˆ“'O®ZµjâĉYo]±ƒ»OÞ°ût˜Rê™gž™:uêÏ~ö³˜»UsO‘J©¬·¡<ÞÿýµkמvŸNúä“O–-[ÖÓÓóµ¯}-øßoûÛ·Ür‹s»‚{J÷<õ6”ÇŒ3®¿þúÏ>ûìСCÿûßÏ;ï¼+V<öØc—^ziÖ›VE‹-š;wîÇüúë¯O˜0áºë®Û´i“ÙÆ’7ùË_Þ{ï½Õ«Wå+_ñý‹Ý'+Q »O' ïØ±ã‹/¾ø$Ì%—\¢ÇVWpO!ã+ôq€GX!p€GX!p€GX!p€GX!p€GX!p€GX!p€GX!p€GX!p€GX!p€GX!p€GX!p€GX!p€GX!p€GX!p€GX!p€GX!p€GX!p€GX!p€GX!p€•ÿê÷Œ8ÐÝÎïIEND®B`‚statistics-release-1.6.3/docs/assets/logiinv_101.png000066400000000000000000000634421456127120000223300ustar00rootroot00000000000000‰PNG  IHDRhŽ\­AféIDATxÚíÝy\TÕÿÇñ3€(Bl©ˆiŠ hEbæF(®!ndfš¦¢-j‘¦¹ÔÏ4-mQ+S$Ór‰r)K´ÔÌ Ó¯šaHˆšKŠ )(23¿?®ã0àe˜™;Ëëùà÷ýÍœ¹sï¹÷2òîsî=£Òjµ¸¥;û@p€,GÈBp€,GÈBp€,GVräÈÕ¶lÙbå­/Z´HÚtË–-+úÞ 6|ÿý÷ßÿýùóçͲBù}»qãFbbb—.]î»ï¾jÕª5iÒ$&&æÃ?,***çð긹¹Õ¨Q£U«Vo¾ù¦~çËy‹ñãÇ[í°}nJwlÝ€®^½*„øé§Ÿ¢££­¶ÝÿýïO>ùäñãÇu-ÙÙÙÙÙÙ)))sçÎ]´hQLLLùkP«Õùùùùùù¿þúë§Ÿ~š’’òØc)s8‚#§pÏ=÷4hÐ@hk+4ºª¬¬¬¨¨()°JÜÜÜJJJ¤Çÿý÷SO=µ{÷î‡z¨ô <<<„×®]Ó/]ºÔ¯_¿ìììªU«–ó~~~f9\„¬"##C÷/ÏO?ý¤tw*ÀËËËúÝîÑ£‡îp :ôСC%%%§OŸ^¼xñ=÷Ü#µ‡„„è–/ëðž8qbèСº—æÎ{×·@Y¸Æ€ºvíÚÔ©S;wîЩS§É“'”^2;;»OŸ>÷Þ{oƒ † vúôéI“&I—è½ùæ›Ò2F¯#¼yófbbb»víêÔ©ãååõàƒ>û쳿ýö›ni=º²_§NT*Õµk×DÙ&þóÏ?¯¼òJÛ¶m}||4hн{÷”””ò÷´ôª~úé§ 6H'Nœ¸dÉ’‡zÈÕÕ500pøðáÉÉÉÒKYYYþùgù+¯W¯Þ’%Kúôé#=}çw¤þ€ ª`‹öíÛ7`À€¿þúKײeË–-[¶¬X±bÅŠ‘‘‘ºöÝ»w÷êÕëÂ… Bˆ‹/.]ºtûöíwÝÄ7"##ýõW]KFFFFFÆÊ•+çÏŸÿÒK/™ÐíüqРAÿüóô´   ///--->>þ³Ï>“¿ž… Jüýý§L™bðjLLÌOñÄÕ«WBœúHzàéé©?’Bp`sžxâ éÁÇ,]†(„ÈÈÈxÿý÷¥ÇÝ»w—èbÓœ9s¤ t´Zí”)SrssËßDfffíÚµk×®(ÍûãææÖ©S§áÇK nÖíŒÒuæÃ?Ô»¹s禧§§§§W­ZUwwö]õèÑ£S§NÒã—_~yúôéRµµ¸¸xùòåC† ‘^jÔ¨‘tKP9Ξ=;räÈ5kÖHOŸ}öYýk( B¸Æ€lt6Ä•+W>úè£&LXºti^^Þ•+WÚµkíêêúÓO?I_y¨û>˜I“&-Y²¤¸¸øüùó-Z´hÕªU^^^NNÎ];мyó€€€sçΕ””´k×®GþþþÇÿᇤt_µ"„ðõõ•¾<æí·ß>räÈ+¯¼R¥J•Òë|óÍ7—-[VPP››ûðÃGGGŸ;wnË–-Ò«£FªÐ!š3gN«V­ŠŠŠ´ZíÔ©S§NZ£FK—.énÍ®V­Úš5k\]]Ë9¼×®]Óî¯Y³æÛo¿m¥s À!)ý‡œ…þ7#—å矖޻w¯Ñ) ëׯ¿cÇýÕ~öÙg1ÎËËK7óöo¼!-¦»0""BjÙ³gOéûˆ%QQQׯ_×mbàÀú¯^½zÕè µZí·ß~«»@SßäÉ“Ë92FW¥ÕjwîÜYÖt< 4ظqc…¯¿¿ÿž={Êz ßU @*ŽlÑ£>zøðáÙ³gïÞ½;##C­V7oÞ¼uëÖ¯¿þºÁHk|||ppðG}”žž®R©Zµj5uêÔ¯¾úJÿªG£{ì±ìììÄÄÄ´´´¿ÿþûüùó^^^¡¡¡Ï=÷ܰaÃôgùž;w®âǼvíZPPP9#Î}úô‰ˆˆ˜9sæ233kÔ¨6a„öíÛ›pÚ¶m{ìØ±¤¤¤uëÖeff^¹r¥Aƒ!!!:txñÅ«V­z×5¸ººúøø4nܸk×®/¿ü²nvI0J«Õ*Ý0³!C†,[¶L±páÂ^xAéàævläÈ‘ááááááúW^½zõÇ”?øàƒJ÷CÕìX:u:$„8tèP½zõúõëwùòå &Hw„„††FDD(ÝGp U°cEEE]ºtÙ¹sgé—î½÷ÞmÛ¶Qq3"8°o7nÜøæ›o¾üòËœœœ3gÎÔ¨Q£Aƒ]ºtIHH0ú¥Ì“ 7Ç@‚#d!8@‚#d!8@‚#d!8@‚#d!8@‚#d!8@‚#d!8@gާOŸnÑ¢ÅøñãK¿´zõê~ýú…‡‡·mÛvòäÉ—.]Rº³Jrêà¨Õj_ýõ«W¯–~iîܹo¼ñÆ_ýÕ²eK//¯µk׎9²¨¨Hé.(Æ©ƒã_|ñ믿–nÏÊÊJJJ HKKKJJÚ´iÓàÁƒ>üÁ(ÝeÅ8op>¾J•*Jï€2œ+8ÊT§NñãÇÏž=»gÏžíÛ·ÏËËKOO 1b„Ò]ƒ‰ÒÒÒ”î qRlçÅqR`;ŽÆ 6¬fÍšëÖ­KII 4hPBB‚T}pNÎCCCËš+66666VéØ çº«@‚#d!8@‚#d!8@‚#d!8@‚#d!8@‚#d!8@‚#d!8@‚#d!8@‚#d!8@‚#d!8@‚#@E¨TJ÷@1GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÙT*¡Õ*Ý Å Á² Á² Á² Á² Á² Á² Á² Á² Á²äQ©„V«t'”Dp€,GÈBp€,GÈBp€,nJw@—/_ž7oÞþýûO:U³fͰ°°1cÆ4lØÐ`±Õ«W¯Zµ*;;»zõê?þøøñãýüü”î;€bœ®âXPPУGääd!D‡î½÷Þ”””ØØØŒŒ ýÅæÎûÆoüõ×_-[¶ôòòZ»víÈ‘#‹ŠŠ”î>€bœ.8~òÉ'çÏŸá…6lØ0wîܯ¿þúÝwß-))™1c†n™¬¬¬¤¤¤€€€´´´¤¤¤M›6 <øðáÃ|ðÒÝPŒÓÇ={öxxx¼øâ‹º–¾}ûÖ®]ûÈ‘#jµZjYµj•F£IHH¨U«–Ô2qâDŸÔÔTF£ô(Ãé‚£¯¯oÇŽ«U«¦ßXµjÕâââââbéé¾}û\\\¢¢¢t ¸ººFFFæçç8p@é=P†ÓݳbÅ ƒ–}ûö8qâá‡öððBhµÚììlýÅ‚ƒƒ…'OžŒˆˆPz'àtÁQçàÁƒk×®ÍÍÍ=xðàý÷ß?{öl©½°°P­Vûúú,ïãã#„¸xñ¢œ•‡„„´¤¥¥)½ÇNíÔ©SJw†8)¶‰óbƒ8)ŠëÖ­›"ëÏ?C‚ƒE©?ñNÅyƒcVVÖš5k´Z­"44ÔÝÝ]j—nöôô4XÞËËKqåÊ™+Wzÿ`(((Hé.À'Å6q^l'EY·þ¬«Tº¿ï!ÎîG§Ÿ~:33sçί¿þú¦M› põêU!„¯¯¯J¥*,,4X^zUª;8!ç ŽB•JU³fÍaÆõïßÿìÙ³›6mB¸¹¹ùøø”®,!t÷Y8ç ŽÇŽ›4iRjjªA{hh¨âܹsÒÓ€€€üü|))êäææJ/)½@I*¡Rº Šq®àèííýí·ß®]»Ö ýĉBï ’èèhµZ½cÇÝZ­vûöí~~~áááJï€2œ+8„„„ìܹsëÖ­ºÆ£G®\¹ÒËË«eË–RK¿~ý\\\æÏŸ/]×(„HJJºpáB\\\•*U”Þ e8Ý]Õ3fÌxæ™g^|ñÅðððºuëþóÏ?û÷ïB¼÷Þ{5jÔ–©S§ÎøñãgϞݳgÏöíÛçå奧§‡††Ž1Béî(Æé‚cóæÍ7nÜøÑGedddffÖ®]»K—.£FjÒ¤‰þbÆ «Y³æºuëRRR ” ÍÈàœœ.8 !êׯ?gΜ».«tg€ P©„V«t'”ç\×8ÀdGÈBp€,GÈBp€,GÈBp€,G€r1‰ãŽ…àYŽ…àYŽ…àP6n©ÖCpK%TZá¼9’àYŽ…àYŽeàΘ; Á² ÁÀ.p,…àYŽ…àYŽ¥p£1GÈBpE%TZáÔeH‚#d!8܉ Ë@p€,GÈBpÐÃ8uÙŽ…àYŽÿaœº\G€»cöoAp€LG!ãÔwGp€,GÈBp`œZ‚#d!8§w·r#sñHŽ…àœW7ÊFp€,GÈBpNLÆ85wÆè Á8+n‹© ‚#d!8§D¹±âŽÀùÈNÜ£àYŽÀÉ0Hm*‚#d!8gR‘r#8 8§Á uå Á8‡ –§.àœƒÔæ@p€,Gàè*^ndœÚ(‚#ph R›Á²€ã2©ÜÈ8uYŽÀA1HmnGàˆLM”ËAp‡Z£e€c!5Z ÁàÆ©Ëç¦tPTTôÍ7߬Y³æÔ©S÷ÜsOppð°aÃÚ¶mk°ØêÕ«W­Z•]½zõÇ|üøñ~~~J÷”‹r£%9]p,))yî¹ç:äããÓºuëëׯïÝ»wçÎ/¿üò¨Q£t‹Í;711ÑÓÓ³eË–yyyk×®=vìØ²eË<<<”ÞP†Ê¥FÊwåtCÕ«V­:tèP‹-¶oß¾páÂ¥K—~÷Ýw¾¾¾Ÿ~úiff¦´LVVVRRR@@@ZZZRRÒ¦M›|øðá>ø@éî€2Pk´<§ ŽiiiBˆ)S¦èj‡Mš4yá…Ôjõ®]»¤–U«Vi4š„„„ZµjI-'NôññIMMÕh4Jï(¥Ò©‘r£Nsss===CCCõ›4i"„8yò¤ôtß¾}...QQQº\]]###óóó8 ô€;‘­Åé®q\´h‘››á^9rDQ¯^=!„V«ÍÎÎö÷÷÷÷÷×_&88XqòäɈˆ¥wü‡j+rºàøÀ´¤§§'%%U­ZµwïÞBˆÂÂBµZíëëk°˜ââÅ‹r¶bÐ" ‘C)§NRº 0ÄI±MœÄI)GPƹ99"7·2+iÔ0'7'W”¹’nݺ)½£¶Âé‚£>µZ½råÊ÷Þ{O­Vøá‡5jÔB !<== öòòB\¹rEΚ³²²”Þ9 Rº 0ÄI±MœÄI1N¥Z­YMùG¸ôŸõÒ"'á¼ÁqïÞ½Ó¦Mû믿ßyç6mÚHí¾¾¾*•ª°°Ð`ù«W¯ŠÿêŽ@I*•Â,#Ô\ÝX!΋‹‹ßÿýåË—W«Vm̘1ÇןÑÍÍÍÇǧte±  @¡»Ï(Ã|5š–UB+} ”âtÁQ£ÑŒ7nóæÍ:uš:uªÑ ]PPàíí­kÌÍÍ•^RzpbÜ £(§›Žgùòå›7o~æ™g>ýôӲʇÑÑÑjµzÇŽº­V»}ûv??¿ððp¥÷geÖÔÈ µ œ+8jµÚ+VÜsÏ=¯¿þz9‹õë×ÏÅÅeþüùÒuBˆ¤¤¤ .ÄÅÅU©REéÀ)‘m€s UŸ?þĉ,ýjŸ>} $„¨S§ÎøñãgϞݳgÏöíÛçå奧§‡††Ž1Bé=Àù˜ïV˜[ë#5šÊ¹‚£4VQQQFFFéWu7V !† V³fÍuëÖ¥¤¤4(!!Aš‘X5Úç Ž<òˆücccccc•î2NÌ©‘rce8WpöÁÜÃÓ·ÖJj¬‚#°1–ž&5VžsÝU l©Ñ†Qq¶Á2ÃÓ‚Ôh>G`,v÷4©ÑŒŽ@Q+4 R£¹q#PŽTh´ŸÔ¨ºõNŠŠ#P‚% ‚Z£e€uY82 R£Å€Yþ+I–CpVaùB£ 5ZÁX˜µ"£‚ÔhQG`1V‰Œ‚B£µ€eXþrÆ[Û!5Z Á˜› ‚ái+bp`>*•Eçô¾cSB¥Zk¦Fiöo«TQmG`Öª2 Ê!8€Ê±bd\Ѩ(‚#0•Õ#£ Ð¨(‚#¨8"£S"8€Š°ndŒMÛ‚#AÊ‹ÂÚ‘QPh´%GP.«—…MFF•ZiF'Fpe 2âNGP ‘Ñh{öoAp·)q!£°‡È Á(Sbö¹ÀQBpÀ‰)Tbö¡à€SR¨Ä(ˆŒöŒà€3Q®Ä(ˆŒöà€sP®Ä(ì<2ÞºÀÑéo©Gœ ”…ÝFF 8àˆÍ‹ÂÎKŒ( ÁÇbCÒÂ"£4N Á‡@‰–GpÀžÙF^uåF°CäE(à€ý /BQGlyQ™½v¦½•‡à€­R©„A‚¼¨0.pÔqQºàN*Õ­­Vhµ¹99ÖÞþ=ÐJ=pÊÔH¹Ñ(*ŽØÆ£m©±,GE^´mŒSë#8`uº°(È‹6‡rc9ŽX‹ÍyQÊŽX˜ÍäEÂâ]Qn,Á Pz0šâ¢ R#åÆÒŽ˜¢ÅEÂbePk”ƒà@åØLq‘°K#8`Š‹¤t¹‘qj£ŽÈ¦hq‘°h!¤FùŽ”Kñ°ô߯ ‹À¥ÂwU`Ì_}ëÇ:[¾½m•Vhsrsœö £-Íhj¤ÜX*ŽüG¡â¢þ´ ²h-¤FÎÍÂ"IÑʤCÏA7Áà|‹N¬œ‹)7ÞÁà”‹ŒAÛRc%ŽËêa‘¤h³Êž&5ÊDp8EÃ"IÑ61玹öϺa‘²¢}¹kj¤Ü(Á`Ÿ¬IŠvJÎÝÓ¤Æ !8쇵Â"IÑÞÉœp‡ÔXQG€m³JX$): ù‘Q(ð’và°=–‹$E‡$ó& lƒ…Ã"IѱÉÿ2Rce QÝ‘äÌþÇœ¤è$*ôý¤ÆJ"8¬ÈbeEƒ˜(HŠŽNw¾åGFÁE•FpX˜eÂ"E§U¡ã­·Ph4‚#ÀÜ,0MAÂÔÈ((4šÁ`æ.+RP„NEG¥o¿‘B£¹&1kY‘‚"Œ2¡Äxë-ƒàÍLeEb"Êgr‰Q-Œà(›9ÊŠÄDÈT™¼(ˆŒVá¢t””““òÛo¿}uõêÕýúõ oÛ¶íäÉ“/]º¤tÀ*TªÛ?Zí?2WpÇ*TZõð‡wPý÷£ýï§ÂkÐûm…E9uÅqùòåe½4wîÜÄÄDOOÏ–-[æåå­]»öرcË–-óððPº×`nzeÅ QአE˜¦’õÅ[+¡Êh]6Zq<|øpù ¤¥¥™¼ò‚‚‚ýû÷O:õ«¯¾2º@VVVRRR@@@ZZZRRÒ¦M›|øðá>ø@éfRFY17'ç.ﻳšHA¢2G}ñÖª¨2*ÁFƒãÓO?=þ|µZ]ú¥K—.%$$¼òÊ+&¯<66vàÀ_ýuY ¬ZµJ£Ñ$$$ÔªUKj™8q¢OjjªF£QúØ€I òž¼hb"Ì¢tX¬d•‘Ȩ ޵jÕúä“Oú÷ïüøqýöM›6ÅÄĤ¦¦Ö¯_ßä•Ïœ9sÁ‚ ,hÓ¦ÑöíÛçââ¥kquuŒŒÌÏÏ?pà€ÒÇä)')–ñ÷V%T ƒaf,.ÞZ¡ŠÈ¨< Ž6lèß¿ÿï¿ÿÞ»wïääd!ÄåË—ÇŽûòË/_¾|yøðá?üðƒÉ+o×®]tttttô}÷ÝWúU­V›íïïïïï¯ß,„8yò¤ÒÇÊ&;)–.%J11'7‡˜ˆÊ0oqñÖ:ïü†‚lôæ//¯éÓ§wïÞ}Ê”)o½õVJJJNNÎ… š4iòî»ï>øàƒ–Ûtaa¡Z­öõõ5h÷ññB\¼xQÎJBBB Z*sQ&*ïÔ©SJw†8)fÔ°¡þÓ;®PÌÍÕ=lÔÐà9¹F®e̹œdû'¥aPîqοx¹&®Loµ o­6''WÜñmmݺuSlÛ6ÆFƒ£¤uëÖ_ýu¯^½~ýõW!Ä#<²lÙ²*UªXt£EEEBOOOƒv///!Ä•+Wä¬$++K‘#†réý»ÁI1E¹+JTÖmÎe{΋ ²µ“bðvço¡ºZê^i…w¿ôŸõÒ"'a£CÕ’;vôë×ïâÅ‹¡¡¡µjÕ:pàÀ¨Q£Î;gÑúúúªTªÂÂBƒö«W¯ŠÿêŽ`Uå@sÿ ¬CUÆ0´½¸ŠÑöÙhpü÷ß'OžáÂ…W^yeõêÕ6lèÞ½ûöíÛcbbÖ®]k¹M»¹¹ùøø”®,!t÷Y€•}_ 1Ö¤²Ì5‹†[Qq£Ý°Ñà(¥Ã&Mš¬^½ú¥—^ruuõññ™7oÞ| R©&Ož<|øpËm= ??_JŠ:¹¹¹ÒKJŽÈXRTiÅ­b"¬Eeõ°H^´/6/\¸0räÈï¾ûîÐo]¿~}ëÖ­wîÜi¹­GGG«Õê;vèZ´ZíöíÛýüüÂÃÕ>6B©¤x;&þ—KgDb"ÌNe•1èÛ›«ØD¢°96W®\9nÜ8£÷ÁÔ®]{éÒ¥S¦L±ÜÖûõëçââ2þ|éºF!DRRÒ… âââ,}kG¦—ZA)Vcå¤xk£…ÞU]~aO¥R <Ør[¯S§ÎøñãgϞݳgÏöíÛçå奧§‡††Ž1BéÀ®Üy´Jï%¹VSÞÐݮކIŠÃFƒ£â† V³fÍuëÖ¥¤¤4(!!Aš‘Êd,)ê2":aªR-ÖüÅ#,:<§Ž3f̘1cFY¯ÆÆÆÆÆÆ*ÝG¶­TRÔ/%òwV TAñv‹ÎÄ©ƒ#ȧ›U[«ÿ‡úο“üÑ„¥)[P¼Ý ¢³"8€ú_¾"%E½B"'a%·~ õ¾‹EÁ_>Ââm*!‚•îƒBlô®j°&ƒ)µ…J¥U ÝOé/kÌNeìGºÓ9'7×Òw=ïR™óÐ+}° *Žœ‹ÊÈXߣςr ,ÎFFœ {UÞ¡B8¶Ò1ñöÍ+ ¼Á*TÆmçŽÏ*„àÀq”…î/äËðGæfãQ”ª) >¨ ‚#{u—˜(¤?’”S`¶Ÿoõ“Ñg˜Á€0~a¢Ñ?Ó ¼ÁÜì%#Þê-IÑÒ¤»–B”î†BŽlÎÝK‰w,ÍßI˜}eDÁÐ3¬Žà@a‹‰‚¤3P•Ñnã¿LÄD(ŽàÀªnÇÄÿ¦4ÖÊùcÍ4Lb§ñVço÷þÖ§…ß}(Ž ÀXÊp a•n áœÜéAïdêaT€ªÜ ´KÿØ •ªÌßúœœ\~÷a#¨80› :ßñf qwv]A¼½Ævƒ_yû ²·ß6s#80Q¥bâ­U0 #Te¿d¿%\˜GBp ‹b¢(uÑ?›c”ïØ#J‰ptGF˜'&ÞZ—ñ²bnnn kƒ½q°òá­*c¯ÈˆÎéÇ©Á€Ä )šW+:#‡L‡·v"" ‡à8#so­‘«Ÿ§Ã[;HFD9(7 !Ž€30L”Và2¯ p˜sÌ@3`2æqPYS'ê~L]o+ò÷ÖÞ¨ÊþÉÉ͵£¹ï²›*ã?Z­ñ L”ÿCŰ{)(Þ^;cÐöÊ´‘å\¥»mÊžRA¬…àØsÞÈbdíŒAÛ U¹¯:Þ™# B”õ;`Ù¤((+Ú4‡¿%ÅpËÞa~7¡R㎀-²xR„EÛâléPP>„] 5–Bp”gÙ‹oo†1h%9Û°ò­½¦|ûEj4†à(ÀÅ[[¢¬hUNX8¤C8$RcŽ€5X/) ¢e9gáPá<¤_u~«Ë@p,E?,Z6) ¢™9gáPÜú=2>8¿Vp ï† À³)gÚmËl¯Œ!ƒªÜmÙ? ¬i±¥ß£œœ\&dž3R‘e¡â˜Îªз6Ie±œ¶p(Yäclº"Ž@(a±Ñ|ŠBp„}S8, ½xb3aÄy"WŽŒ¤h“ް?6…’ñÄI"…CÀ)”þ¤ó·IGØ ]^T&, ÅŠ‹ÎI‡€s!&Ú-‚#lšS> –J‡·''Ëè?m|äíwUÃ)6/÷íXð¶èŠÞÂl_äß­œ““ËÝÊ€ã¨Ð?m°[Ta+”/. óF;êi3² 8/‡A¹ŽP˜ ]¹(*•z/#’ç圳ÿC‚#”aCy±â!È‘2"épRåÎfe¯ÿ¢Áòް*»Ë‹“Ë ˆ¤CÀ1©î¶Ÿ}˜„àkP‰˜Ì¹™ø°9*y?Zy?€m£â3JŒJÕõ¦¼ÕÒýÈU¤gF{K°}2«ƒ>¼p&G˜N©!iƒÒmöm£‘€(ƒ,˜Á¦°f‰ÑÈ],æþ~3t’ŒXS…R „Ï#`GT€uJŒem#/’ó«hä(„àY,Zb¼Ëгry‘ŒT˜ µ@AìÁå±P‰QîEŠRp³VR+ɈpjD@¥aœÙKŒúƒî²RË—)%¹T$ÞžkšO€RŽ0d®Èhʽϖ)1ªTBÜù½ dDØ%ÓJ€¢b¹¦”ƒ Àq›þôݦ®¡ÌÉnË}Û³]Wr/ŒÍ¡““ËìÙ°2ç‹6yiæ”`1T!D媌ƒ6òæÊ–¹0бJýl ÁÑÙ™+o­ÂÄÈh‰‰¨,òÈFpt^&DFÝ_X3Te'>’"d!ÿ€åQ…"£Š‹·V$«ÄÈÐ3˜lÁѹȌf(.Þ^×]"£~X$&:”r#`(ãÖ]~ÀVqWµ³sÇ´ÑÛ7+·Uã÷J—¾ë™ûmîÎÍÉå`°/T‚Ë~õóMömx!#×)ÚÆ‚9e‚£Ã+glÚüyQÜ1*­RÝÞIÑ‚Hk!8:¬²"£Eò¢¸UÒZ­úÓ§¢Aã °‚£c2:6-óÇ ½ÈHX4®BYc°UGGSºÐh‰ã­i½Ò¢3¦ùqÐÀŠA¡Ñ¼%Æ;&ÍqàÑhâ e 8–iõêÕ«V­ÊÎή^½úã?>~üx???¥;U&ýB£yKŒF¾êEšAÇÉ …ö¹gXÁѸ¹sç&&&zzz¶lÙ2//oíڵǎ[¶l™‡‡‡Ò]3BWh4W‰±Ì¹Mý‚ië…rÜškÚ&;€½`p#²²²’’’ÒÒÒ’’’6mÚ4xðàÇðÁJwÍ)5êO·lúªÊ™‘»Œ©¼­¹Ÿf˜kTÁшU«Vi4š„„„ZµjI-'NôññIMMÕh4J÷î*¡B[ÉÈX:/yÙ ‘±¹P€Ø·oŸ‹‹KTT”®ÅÕÕ5222??ÿÀJ÷î•Þ°±i©é.yQX 2V&¥ iµÚììlýöàà`!ÄÉ“'•î zl›¨îžuË™‰†8(nŽ1TXX¨V«}}} Ú}||„/^”³’ƒ–´´4sõ°aPPNn®"·¢ol$„Èɹõ¾Ü2ÞÔ°¡"7'§Ì%n-d´=7§ìwU´ÇæsêÔ)Ŷ2pRlçÅqR×­[7¥»`+Ž†ŠŠŠ„žžží^^^Bˆ+W®ÈYIVV–%úvû¦é   ¼Ëp> »,­Õ.dô†å2j„A¢}³¦ Š4X'Å6q^l'EY¥ÿ¬—®9 ‚£!___•JUXXhÐ~õêUñ_ÝQ*!„±/,ï-šÜ¿ÿÚµk{yyEDDÌ;·¤¤DéNÙ7†ª­K%„¸ãkat©‘[av*77W­V·iÓ¦aƺF///e{•““¥V«ûôésÿý÷ÿôÓOcÇŽýå—_¾ûî;…—=#8Z‘të´Iß2]îjI€»(..B¸»»[båÙÙÙBˆéÓ§GGG+½£·;öÊ•+ééé-[¶”º7|øð%K–lÚ´©k×®J÷Î^1T­$3”IBBB RÝ´iÓ¤DUyRplܸ± ï-**š1cF³fͪW¯^¿~ýøøø³gÏš¥W[·nŒŒÔßÇÑ£G !öìÙc–õ;'*ŽÖRF¹‘ÔPÄñãÇ÷ïßo–UeggW­Zõž{îY½zõÅ‹CCC}ôQ™ÕÍøøøäääN:ÅÅÅedd|ñÅééé•ìRIIɨQ£"""ôóòò„U«VµÈuG«06>­*¡Ò’ö.;;ÛÅÅ¥qãÆ—.]’Zš5k¶|ùò-Z”ÿÆk×®}óÍ7C† Yºt©Ôÿý÷ߟ9s&00°2]rss{÷Ýwõ[.^¼øî»ïººº>ùä“J0;Fp´<•nŠoÃôHjØš’’’7–õj¯^½J7fggk4šiÓ¦=ùä“UªTùá‡^}õÕÞ½{gddøøø”³-•Jµk×®¼¼¼úõë !/^¼xñb³ôJßÏ?ÿ|x9]òðð˜7oÞ¸qã‚‚‚BCCÛ´iÓ­[·˜˜˜ÒÃÜ&ôJrâĉѣG¯_¿¾I“&?ýôSÇŽÍzÈ7ÇXåFp2Z­b?å»qã†þÓ¢¢"£‹ùøøhËfô-uêÔÑ¥FI—.]„G޹ëá5jÔñãÇ“’’š7ož’’Ò·oßæÍ›Ÿ;w®ò½B$''‡……í߿ѢEüñ©±ò¨8*@U™)yH“œ>}Zÿé™3gŒ.VÑAá¼¼¼ 6tìØ±Y³fºÆ‚‚!„4ú\ŽüüüìììàààøøøøøxF³`Á‚1cÆ$&&N:µ2½B¬_¿þÙgŸ}ê©§½½½­{°ÁÑ’Ê*7jM¥&5LuöìÙ 6ôèÑC‘““sèÐ!£‹UtPØÃÃãµ×^kÙ²å–-[ªT©"„Ðh4ï¿ÿ¾››[çÎËïRVVVÛ¶m§L™2cÆ !„‹‹KTT”BZOez¥Õj'L˜P¯^½åË—»ºº*uÌÁÑÚL/7’•àææöôÓOÇÆÆj4š 6”5+4(,µµjÕš6mÚ믿ޤI“îÝ»ûúúnÚ´éàÁƒï¼óÎ< „HNN~饗†:g΃÷FDD„……Íš5+''',,,+++55ÕßßÀ€•ìUffæÑ£G›5koðRß¾}ccc: vàhU*•©åFR# rZµj³hÑ¢’’’#Fx{{¿ýöÛfYó„ 5jôÞ{ï­X±¢ZµjÍ›7OMMíÖ­›ôjqqñåË—^Réîîžšš:uêÔ-[¶|ûí·;w~óÍ7ƒ‚‚*Ù%iNòÌÌÌÌÌLƒ—7nLp4ÁÑbʾ-ëS©T“&Mš4i’®eúôéæZy\\\\\œÑ—† róæÍŒŒ £¯Ö­[÷óÏ?7ûÎöìÙ³S%£LÜUm=¦ )7ìÖõë×·mÛöÈ#(ݘÁѪL™¼‘Ô°g{öìiÖ¬Ù3Ï<£tG` Uàø^|ñE¥¦¤éСC‡”>0‚£eé.p”ê†þ6Ês˜0a‚Ò]€#`¨Ú2ŒÝSáqjR#°%Gk @p´U„M`cޤ?^]±qjR#°=G‹#Ç@p´=$M`“Ž…àhwV +p#åF`«Ž–U±Hj6Œàh)Ʀ°cG›A¹Ø6‚£ÅUø›°7™™™}ûö­W¯Þ}÷Ýׯ_¿Ý»w+Ý#!„ضm[‡jÕªuï½÷¶k×î»ï¾SºGvàhA¨!RnØ­;v„‡‡ïÞ½ûÉ'Ÿ0`@zzzçηnݪl¯RRR:vìxâĉAƒ½ð çÏŸïÛ·ïâÅ‹•>ZöM¥%¯˜[HHHVV–J¡Z­¼Š#ÁÑÂrssƒ‚‚”îîÀI±Mœ™¤ê•îE !ÜÝÝ;f­VråʕÇ!._¾Ü¢E __ßÿýï îòC=ôÏ?ÿ=zÔÇÇGqíÚµx@£Ñœ>þ±ÇËÌÌ4X‡|Ü£(Êàp´B«ÔOù»qã†þÓ²îñññÑ–Íè[jÖ¬ùã?îÞ½{áÂ…ß~ûmVVVXX˜âþûï¿ëá5jÔñãÇ“’’š7ož’’Ò·oßæÍ›Ÿ;w®ò½ÒW½zõèèèY³f]¼xqݺuVûep}úܼysÕªUü±ôjrròK/½4tèÐ9sæ¼1""",,lÖ¬Y999aaaYYY©©©þþþ ¨d¯jÔ¨1eÊi®Ê®]»ªTªüñ×_MHH¸ë A(×8ZßR °­Zµš2eÊž={víÚ5bĈѣG›kÍ]ºtIKK»ÿþû—.]*]§øÇ辂¨¸¸øòåËF/©twwOMM2dÈîÝ»§OŸþóÏ?wîÜy×®]fùú¢©S§~ùå—®®® .LLLtwwÿúë¯çÎk­ãí˜øÊAó ù3+K¨„Ж)7Zߢfƒ8)¶‰ó"“Ý}ã\PPPݺuwìØ¡ÈÖ/^œ‘‘1oÞ<¥ƒq|å |T€]¿~}Û¶m<òˆÒ€íÙ³§Y³fÏ<óŒÒpsŒ¥”7û7ãÔëzñ޽½Ùt‡:tè ô€yp|&LPº p U@‚#d!8Z8ûDp´fÿ†àhªÊ¯À¶­‹qj`·Ž…àYŽ…àhE\àìÁ²@eefföíÛ·^½z÷Ýw_¿~ývïÞ­tîpóæÍÇ{¬uëÖJwÄî@¥ìر#<<|÷îÝO>ùä€ÒÓÓ;wî¼uëV¥ûuÛo¼±wï^¥{áÜ”î€cÒj™`CŠ‹‹…îîîf_³V«>|¸Ïo¿ý „xã7Z´h1~üøÿýïJï·Büøãï¿ÿ¾›™Ç ¨8Z wÆ”­ß2mÚ´–-[V~͹¹¹ÇŽ>|¸”…¾¾¾¯¾úê>|×·͘1£Y³fÕ«W¯_¿~||üÙ³g͸ãçÎ{öÙgãããëÖ­kÎꬎ8£ãÇïß¿¿òë9yò¤¢V­ZúuêÔBüþûïw}{||üÿýßÿÕ«WoìØ±ááá_|ñEï޽͵Z­vðàÁ~~~óæÍ3óásV”m-B%TZA}àøš6m*„ؽ{wBB‚®qÛ¶mBˆ3gΔÿÞk×®}óÍ7C† Yºt©Ôÿý÷ߟ9s&00°ò}{ÿý÷·oßžžž^½zu¥“ƒpêà˜““Ó½{÷U«V=ôÐC¥_]½zõªU«²³³«W¯þøã?ÞÏÏOé.`Y%%%7n,ëÕ^½z´ÄÅÅ­Y³föìÙÆ Ójµ_~ùåÂ… …åoËÅÅE¥RíÚµ+//¯~ýúBˆÅ‹/^¼¸ò½Büúë¯o¼ñÆûï¿ÿðÃ+}P‡SÇåË——õÒܹs===[¶l™——·víÚcÇŽ-[¶ÌÃÃCé^l˜JÑ{#˽˜^­Vë?Õh4F»víZ9ƒÅZc›X¸páåË—'Nœ8qâD!„ŸŸß›o¾ùÖ[oùúú–ß_yóæ7.(((44´M›6ݺu‹‰‰)}OE{UPP0`À€Î;¿üòË–9ÖNʃcAAÁŸþ¹~ýú¯¿þÚèYYYIIIkÖ¬‘.Ú˜9sæ²eË>øàƒ7ß|Ó”Mrg 8 þ×þÆúO‹ŠŠŒ.æã㣭à^Ô¬YóÇLOO—n¬n×®Ý/¿ü"„¸ÿþûïúÞQ£FÅÅÅmذaÛ¶m)))III!!!Û·o×ÝjcZ¯-Z”““Ó»wï÷Þ{Oj¹råŠZ­ž={öý÷ß?`ÀkqGäŒÁ166¶ü;¶V­Z¥Ñht—úNœ8ñûï¿OMM2eŠ‹ wìÏéÓ§õŸ–u¢ ƒÂ¿ýö›··wëÖ­u3loÙ²E¥RµiÓ¦ü.åççgggÇÇÇÇÇÇk4š Œ3&11qêÔ©•é•4ýМ9sô/]º4qâĨ¨(‚£Éœ18Μ9Sú¯®+VÚ~ß¾}...QQQºWW×ÈÈÈõë×8p ""Bé= ÂΞ=»aÆ=z!rrr:dt1†ªŸþù#GŽdeeI7Sgff®X±"&&FzZެ¬¬¶mÛN™2eÆŒBÝß*UªT²WS¦L™2eŠ~KPPPíÚµ÷ìÙcÅC18¶k×Nz Ýóe@«Õfggûûûûûûë· !Nž}nÞ¼¹jÕ*?þXz599ù¥—^:t¨AýO6kÖ¬œœœ°°°¬¬¬ÔÔTÿÒAzKpÆàX¾ÂÂBµZ]úz^!ÄÅ‹e®'$$D÷8KˆÜÜ\¥÷Ì©:uJé.À'Å6q^X«V­bbb-ZTRR2bÄooï·ß~Û,kîÒ¥KZZÚ[o½µtéRÿ¾}ûΚ5ëÞ{ï•^-..¾|ù²ÑK*ÝÝÝSSS§NºeË–o¿ý6  sçÎo¾ùfPP•Nù¦»uëfåþØ,‚£!é7ÛÓÓÓ ÝËËKqåÊ™ëÉÊʺýD¥²þg86ˆ“b›8/ŽJ¥RMš4iÒ¤Iº–éÓ§›kå;wîܹ³Ñ—† róæÍŒŒ £¯Ö­[÷óÏ?·Âî— Ëÿµ¿ãoºâÎòSqØàXRRòÙgŸéžºººŽ9RÎ}}}U*Uaa¡AûÕ«WÅuÇŠá–j€»~ýú¶mÛºvíªtG`oÞ¼©ÿýBU«V•ÝÜÜ|||JW¥YL ¾R ”oÏž=Íš5{æ™g”îÌÀaƒ£‡‡Gé²LÙÙÙÞÞÞºF©Äm0­váÅ_Ôÿ£fM:tèСƒÒæÁ”„FDGG«Õê;vèZ´ZíöíÛýüüÂÃÕî6a„^xAé^ÀîèׯŸ‹‹Ëüùó¥ë…III.\ˆ‹‹+=³€“pØ¡êʨS§ÎøñãgϞݳgÏöíÛçå奧§‡††Ž1Bé®(†àhܰaÃjÖ¬¹nݺ”””ÀÀÀAƒ%$$H3ò8'§Ž3f̾ãÈ¨ØØØØØØÊnƒ¹x€£àGÈBp€,GÈBp€,GÈBp€,G‹Ð ¦àކà*K£ÑÌŸ?ÿ¡‡òòòjÚ´é{ï½wóæM¥;%>Ü¿ÿÚµk{yyEDDÌ;·¤¤DéNÙ7‚£%1û7À h4šž={¾üòË5=ztÍš5_ýõ^xAÙ^åääDEE¥¥¥uëÖmìØ±îîîcÇŽíׯŸÒG˾9õ7Çà$Š‹‹…îîî–Xù²eË6nܘ””4bÄ©¥ÿþK–,™8qb“&M”Úå±cÇ^¹r%==½eË–BˆéÓ§>|É’%›6mêÚµ«R½²wTp|!!!ÑÑÑú-Ó¦M“Uå}öÙg 4>|¸®å›o¾ÑjµrRcQQÑŒ3š5kV½zõúõëÇÇÇŸ={Ö,½Úºukdd¤þ>Ž=Z±gϳ¬ß9QqÀ?~|ÿþý•_Ï7öïßß¿ÿ’’’ýû÷gddµiÓÆÓÓSÎÛããã“““;uê—‘‘ñÅ_ddd¤§§W²W%%%£FŠˆˆÐoÌËËBT­ZÕRÇÔ €éΜ9S\\¬R©Úµk·oß>©ñþûïÿꫯڶm[þ{¯]»öÍ7ß 2déÒ¥RK||ü÷ßæÌ™ÀÀÀÊôÊÍÍíÝwßÕo¹xñâ»ï¾ëêêúä“O*}ÌìÁÜVRR²qãÆ²^íÕ«—AË•+W„Ë–-ëÓ§Ï—_~Y¯^½íÛ·ÇÇÇÇÅÅeffúùù•³-•Jµk×®¼¼¼úõë !/^¼xñâÊ÷ÊÀÏ?ÿûìš5kt·Ëåáá1oÞ¼qãÆ…††¶iÓ¦[·n111¥oâ©h¯tNœ81zôèõë×7iÒä§Ÿ~êØ±£Ù»SáæÌI«ÜOùnܸ¡ÿ´¨¨Èèb>>>Ú²•^> @Ѷm[ý´' RgffÞõp5êøñãIIIÍ›7OIIéÛ·oóæÍÏ;WÉ^I’““ÃÂÂöïß¿hÑ¢?þøƒÔXyTp §OŸÖzæÌ£‹UtPØÓÓ³aÆ+?þ¼¢nݺåw)???;;;888>>>>>^£Ñ,X°`̘1‰‰‰S§N­L¯„ëׯöÙgŸzê©ÄÄDooo+iGFpÀ)œ={vÆ =zôBäää:tÈèb& 2dÚ´i¿üòKdd¤B£ÑÌš5ËÅÅÅ` Ò²²²Ú¶m;eÊ”3f!\\\¢¢¢„UªT©d¯´Zí„ êÕ«·|ùrWWWE¸C"8àÜÜÜž~ú騨XF³aƲf¥‘…+´æ—^ziõêÕ;w8p`ݺuSSS÷ïß?a„‡zH‘œœüÒK/ :tΜ9oŒˆˆ ›5kVNNNXXXVVVjjª¿¿ÿ€*Ù«ÌÌÌ£G6kÖ,>>Þॾ}ûÆÆÆ*qÁÑbø¾A€-iÕªULLÌ¢E‹JJJFŒáííýöÛo›eÍ5jÔØ¾}ûäÉ“wîܹvíÚ°°°•+W>óÌ3Ò«ÅÅÅ—/_6zI¥»»{jjêÔ©S·lÙòí·ßtîÜùÍ7ß ªd—²³³…™™™¥¯³lܸ1ÁÑdGœ‚J¥š4iÒ¤I“t-Ó§O7×Êýýý¾4dÈ›7ofdd}µnݺŸþ¹Ùw¶gÏž­›BîªtýúõmÛ¶=òÈ#Jwf@p´gÏžfÍšéF®aתÀñ½øâ‹JMIÓ¡C‡:(}`Gß„ ”îCÕ…àYŽ…àYŽ…àYŽ…àYŽ…àYŽ…à*ëðáÃýû÷¯]»¶——WDDÄܹsKJJ”îÔm‘‘‘Ó¦MSºŽ€àh*•Ðj•îÖ““•––Ö­[·±cǺ»»;¶_¿~J÷ë–ƒîÚµKé^87¥;,®¸¸Xáîîn‰•;öÊ•+ééé-[¶BLŸ>}øðáK–,Ù´iS×®]•Úå’’’­[·îÞ½{Á‚F©n8*Ž8¾èèhý–iÓ¦I9¯ò¶nÝ©¿¶Ñ£G !öìÙs×÷͘1£Y³fÕ«W¯_¿~||üÙ³gÍÒ«üüü®]»N›6íüùóf<’NŽŠ#Îèøñãû÷ï¯üzJJJF¡ß˜——'„¨Zµê]ߟœœÜ©S§¸¸¸ŒŒŒ/¾ø"###==½ò ÐjµBˆ¬¬¬¦M›Zè0:‚#0››Û»ï¾«ßrñâÅwß}×ÕÕõÉ'Ÿ,ÿ½×®]ûæ›o† ²téR©%>>þûï¿?sæL`` Ò{#Žà¶’’’7–õj¯^½ÊûÏ?ÿ>>>>^£Ñ,X°`̘1‰‰‰S§N­d¯` GœÂÙ³g7lØÐ£G!DNNΡC‡Œ.VÑAa­V;a„zõê-_¾ÜÕÕµB]ÊÊÊjÛ¶í”)Sf̘!„pqq‰ŠŠBT©R¥’½‚…p nnnO?ýtll¬F£Ù°aCYsåHƒÂòW›™™yôèÑfÍšÅÇǼԷoßØØØäää—^zièСsæÌ1X """,,lÖ¬Y999aaaYYY©©©þþþ ¨d¯`!GœB«V­bbb-ZTRR2bÄooï·ß~»ò«ÍÎÎBdfffff¼Ô¸qãØØØâââË—/½¤ÒÝÝ=55uêÔ©[¶lùöÛo:wîüæ›o)}´`Á§ R©&Mš4iÒ$]ËôéÓ+¿Úž={–_ 2dÈÍ›7322Œ¾Z·nÝÏ?ÿÜ¢;BµÒ\¸«XÐõë×·mÛöÈ#(ݘÁXО={š5köÌ3Ï(ݘCÕ8¾_|±Bå˜Q‡:tè ô€yp|&LPº p U@‚#d!8@‚#d!8@‚#d!8@‚#dapL¢tk#8PaYYYVÛVnnnPPÒ{ ÁP5d"8@‚#d!8Z†V«tÌŒàYŽ…àYŽ…àYœ18}ñÅ=zôxøá‡Û·o?|øð]»v•^lõêÕýúõ oÛ¶íäÉ“/]º¤tÇaºnݺ)Ýâ¤Ø&΋ â¤Àv8ÝW–””<÷Üs‡òññiݺõõë×÷îÝ»sçΗ_~yÔ¨QºÅæÎ›˜˜èééÙ²e˼¼¼µk×;vlÙ²eJï€2œ®â¸jÕªC‡µhÑbûöí .\ºtéwß}çëëûé§ŸfffJËdee%%%¤¥¥%%%mÚ´iðàÁ‡þàƒ”î>€bœ.8¦¥¥ !¦L™¢«6iÒä…^P«ÕºëU«Vi4š„„„ZµjI-'NôññIMMÕh4Jï€2œ.8æææzzz†††ê76iÒDqòäIéé¾}û\\\¢¢¢t ¸ººFFFæçç8p@é=P†Ó]ã¸hÑ"77ý>r䈢^½zB­V›íïïïïﯿLpp°âäÉ“J.8>ðÀ-éééIIIU«VíÝ»·¢°°P­Vûúú,æãã#„¸xñ¢œ­„„„(½£0ÄI±AœÛÄy±AœØ§ ŽúÔjõÊ•+ß{ï=µZýá‡Ö¨QCQTT$„ðôô4XØËËKqåÊ•»®6++Ké=0?‡ Ž%%%Ÿ}ö™î©««ëÈ‘#õØ»wï´iÓþúë¯ÀÀÀwÞy§M›6R»¯¯¯J¥*,,4XáÕ«WÅuG'ä°ÁñæÍ›óæÍÓ=­Zµª.8¿ÿþûË—/¯V­Ú˜1c†®?;£›››OéÊbAABwŸ5€³qØàèááatÈX£ÑŒ7nóæÍ:uš:uªÑ ]PPàíí­kÌÍÍ•^RzÏ”átÓñ,_¾|óæÍÏ<ó̧Ÿ~ZVù0::Z­VïØ±C×¢Õj·oßîçç®ô(ù‚£V«]±bÅ=÷Üóú믗³X¿~ý\\\æÏŸ/]×(„HJJºpáB\\\•*U”Þ e¨´Z­Ò}°žþù§}ûö5*ýjŸ>} $=^²dÉìÙ³ï»ï¾öíÛçå奧§?ðÀK–,)=M€“pØk:uꔢ¨¨(##£ô«º«…Æ «Y³æºuëRRR ” ÍÈàœœ«â“9×5Ž0Á² Á² Á² ÁÑlV¯^ݯ_¿ððð¶mÛNž<ùÒ¥KJ÷ȉTôà}ñÅ=zôxøá‡Û·o?|øð]»v)½ަ2ŸˆÓ§O·hÑbüøñJï„£1á¤üþûï£GîСCË–- ´wï^¥wÂÑTô¤öÙg}ûö ïØ±ã+¯¼rìØ1¥wÂéäää„„„üöÛoJwDGó˜;wîo¼ñ×_µlÙÒËËkíÚµ#GŽ,**Rº_N¡¢¿¤¤ä¹çž{÷ÝwÿùçŸÖ­[7nÜxï޽Æ ûôÓO•ÞÇQ™O„V«}ýõ×ußs1á¤lݺuÀ€[·n­U«VxxøÁƒ¼uëV¥wÅqTô¤¨Õê!C†|ðÁ—.]jß¾ý}÷Ý·iÓ¦^½zíÛ·Oé]q.Ë—/Wº ÊÑ¢ÒŽ=Ú´iÓöíÛŸ;wNj™1cFppðôéÓ•îšã3áà¯\¹288xÀ€………RËŸþùè£6kÖì?þPz‡A%?K–, ~íµ×”ÞÇaÂI¹|ùrDDÄC=´ÿ~©å·ß~ kÓ¦Z­Vz‡Éÿ|½òÊ+7oÞ”ZvïÞݬY³.]º(½7NáÊ•+ûöíû¿ÿû?éߨC‡)Ý#Pq4ƒU«Vi4š„„„ZµjI-'NôññIMMÕh4J÷ÎÁ™pðÓÒÒ„S¦LñððZš4iò /¨Õj¬Í¢2ŸˆcÇŽÍ;·iÓ¦Jï„£1᤬]»¶  à…^hÑ¢…ÔÒ¼yóîÝ»_¸pá÷ßWz‡ 'åÀBˆ!C†¸¹¹I-­[·nÖ¬ÙñãÇ/^¼¨ô9¾ØØØ~ýõ×JwDIG3Ø·oŸ‹‹KTT”®ÅÕÕ5222??_úÃrL8ø¹¹¹žžž¡¡¡úMš4Bœ:,Óþ¢E‹Jÿ {äÈ!D½zõ”Þ'»W™OÄ'Ÿ|’™™¹dÉooo¥÷á˜vR222üüüj×®½ÿþƒ^¾|¹iÓ¦:uÒ•êQ¦”=z,[¶læÌ™Õ«Wøá‡/]º´`Á‚S§NõïߟO´k×Nz°mÛ6¥û¢‚ceªÕj___ƒvqçÂìL;ø<ð€AKzzzRRRÕªU Š+0ÉŸˆC‡}öÙgƒ jÓ¦”ãa.&œ”âââÿý·qãÆo½õVrr²®½^½zóæÍ SzŸìžiŸ”åË—?÷ÜsÏ=÷œ®qРA“'OVz‡à,ª®,éö7OOOƒv///!Ä•+W”î #«üÁW«ÕË–-‹/,,œ5kV5”Þ'»gÚI)**š0aB½zõƧô8 NÊ¿ÿþ+„ÈÎÎNII™={öÞ½{·oß>f̘¿ÿþû•W^aʈÊ3í“RPP0kÖ¬k×®…††>ýôÓ;wöððX·n·ºÃj¨8V–¯¯¯J¥*,,4h—&‘þÛRɃ¿wïÞiÓ¦ýõ×_ï¼óŽ3_³bF¦”Ù³gŸ:u*99™aPK0á¤T«VMz0kÖ¬Ž;JG}úôéµk×nܸñÉ'ŸTz·ì›iŸ” &üïÿ›8qâСC¥–Ó§O?ýôÓ¯¾úê?üаaC¥w ŽŠce¹¹¹ùøø”þ¯Ã‚‚!„î^9X‚É¿¸¸xæÌ™C† 9}úô˜1cRSSIæbÂIùõ×_“““Ÿþyn¹°NЧ§gµjÕ<<<:tè ßÞ©S'!ÄÑ£G•Þ'»gÂIù矶mÛÖ¸qc]jBÔ©S祗^ºyóæwß}§ô>Á)Í ??_ú´ëäææJ/)Ý;gÂÁ×h4ãÆ[¶lYttôæÍ›GM•˼*zR¤ï½X°`AÈúöí+„øá‡BBBzôè¡ô9>)µjÕªR¥ŠJ¥Òo”>,%%%Jï#¨èIÉÏÏB4hÐÀ ]*4ž?^é‚S 8šAtt´Z­Þ±c‡®E«Õnß¾ÝÏÏ/<<\éÞ98þòåË7oÞüÌ3Ï|úé§”„-¡¢'¥~ýú1w’n]¬S§NLLLdd¤Ò;äLø¤tèС  àÏ?ÿÔo”¦‰a¢M³¨èIiР««ë±cÇ´Z­~{VV–¢qãÆJÒ3;‚¿ÿþ»iӦݺuû÷ߥ–ÄÄÄààà÷Þ{Oé®9>9ÿêÕ«999'OžÔjµ¦S§N-Z´(**Rºï«¢'¥´ŒŒ ¾9ƼL8)üñGppp¿~ýòóó¥–LJ‡‡·lÙòÂ… Jï#0á¤<ÿüóÁÁÁóæÍÓ}yÏŸþùØc………egg+½CNdÊ”)NûÍ1ÜcuêÔ?~üìÙ³{öìÙ¾}û¼¼¼ôôôÐÐÐ#F(Ý5Ç'çàoß¾ýÕW_mҤɆ Ο?âÄ –^[Ÿ>} ¤ô>Ù½Šž¥ûëL8)Íš5;vìœ9sºuëQXX¸oß>•J5sæÌ{ï½Wér&œ”3f<ùä“ ,HIIyàòóóÿ÷¿ÿi4š7Þx£Q£FJïœÁÑ<† V³fÍuëÖ¥¤¤4(!!AšU–V¡ƒêÔ)!DQQQFFFéW¹EÆ\øDØ NÊóÏ?_£FeË–íÞ½ÛÏÏ/::z̘1Ò×,Á,*zRjÔ¨‘’’’˜˜¸sçΟþÙÏÏïñÇñÅ|ðA¥wÎB¥½óR À(nŽ€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,G¸müøñ!!!{öì±ÚªæÏŸ²råJýwýüóÏF_eÀžìܹsûöíJ÷€“rSºàÔ:tèP£F-ZÈ|õµ×^+((øã?”î8gDp%…†††††šö*XCÕì’Z­.))Qºà\Žì†tãÈ_ýõöÛoGDD„††FEE3Æài±Ó§O:t(..®yóæ§NÒ½š’’ò /<þøã=öØsÏ=÷ù矫ÕêÒÛÚ¹sç+¯¼ùâ‹/þòË/ \¸paΜ9O<ñÄ#<òÈ#ÄÄÄÌš5ëܹs]ÕgŸ}VÎí/ú¯¾÷Þ{!!!—.]R«Õ!!!ááá“'O Y±b…Á»æÌ™òá‡*}Æ8‚#;3eÊ”+V\¿~½~ýú—.]Ú¼yó°aÃ/^l°XffæsÏ=—‘‘qãÆ F#„Ðjµ¯¿þú«¯¾ºmÛ6­Vëã㓞žþÞ{ï 8ðÒ¥Kúï]¿~}||üæÍ›«U«vùòå­[·Ž9ò£>Ò-páÂ….Z´èôéÓ÷ßݺuOž<¹téÒTtUòEDD 2¤jÕª*•jÈ!Ï<óÌOùDÿ½k×®ŽŽÞ»w¯´‰ &¸¸¸,X°àðáúŽ?Þ±cÇ]»v­[·î‡~عsgË–-ÿþûï-[¶ThUòuìØqòäÉÕ«Wwqq™òööB¸¹¹ >|àÀBˆO?ýTZ ¤¤¤C‡¯½öš§§§Ôâíí+„ÈËËÓïÆ]WU®®®]ºtÑh4?þø£®qýúõBˆÞ½{+}¢8 ‚#;WµjUý–Áƒ !:¤ßسgÏjÕªéžþóÏ?çÎ ŒŒŒÔ_¬V­ZQQQjµ:33Sר¯_?77·Ò›8räˆôtÔ¨Q‰‰‰5Ò-pþüù7–îí]WUIÝ»wz£Õ%%%©©©nnn111<œÓñ°3AAA-uëÖ­ZµêÙ³g‹‹‹ÝÝÝ¥FixZçøñãBˆ ”^aýúõŕ† ÝÄùóç¯]»&Uÿþûï_~ùeÿþý'OžTØ•JUºÅÕÕU£ÑèOÐ#ëhµÚ²Vèêê*„¸yóæ]7áââR¥J!Drrr—.]Þzë­Ã‡7jÔhذaK—.ý¿ÿû?ù½Õ­ª’\]]»víªV«¥k+§`QTØ™ÜÜ\ƒ–³gÏÖ®]»zõêe½Kª5\€(‘Š‘ú¥ÁÒ›8sæLaaa½zõÜÝݯ^½úöÛo»»»/Z´¨]»vúÝÓ[ýU™å€tïÞ=999--í‰'žØºu«··w‡Ì}Ô@*Žìηß~[\\¬ß²|ùr!DXXX9ï ¨Y³æéÓ§wîÜ©ß~þüùmÛ¶¹ºº6kÖL׸f̓ɥM<òÈ#Bˆßÿ]­V?òÈ#ú©QqôèÑÒÛ-UfQ£F={ö¬Y³æúõë111护`€àÀΜ={6!!¡  @¡ÑhV®\ùÅ_¸¸¸Œ3¦ü7¾úê«Bˆ7Þx###Cj9wîܘ1c®_¿Þ¿ÿ:uêè–}útË–-I,Šàö­¨¨hîܹBˆ¸¸8¥ûÀÁq#ر–-[^¿~½¸¸¸qãÆÒ—e€åØ'žx"88¸ô—ø9³ÀÀÀ'NDFFNŸ>Ýà0;nŽ€,\ãYŽ…àYŽ…àYþÛ¾†ÍX]IEND®B`‚statistics-release-1.6.3/docs/assets/logipdf_101.png000066400000000000000000000700661456127120000223050ustar00rootroot00000000000000‰PNG  IHDRhŽ\­AoýIDATxÚíÝy\TõþÇñïbàÂrQ5ÅRÌ›¹å¾ ¹e©¨en¥äuÏ,M33Í23ÓÊRÑÔ\2QË® îf.úS3 Qq Í+às~Æa€sfÎ,¯çƒÛeΜsæ{Îá̼ý|Ï÷ŒN’$ÅMëÀ1 ÁŠ ÁŠ Á€­8qB÷ÀÎ;müê ,_ºAƒÅ]vãÆ?ýôÓO?ýtùòeUVXÈž1V®\¹zõê <øüùóEÎïááШQ£I“&·³ð—06vìXŽ‚àJõîÝ»k×®]»v=~ü¸-_÷Ö­[GŽY¸páO<±}ûöÂgÎËË»zõêÁƒ§M›ž å.à\<´nØT¹råªW¯.„ ²Ïʽ¼¼„÷îÝËÈÈÐëõBˆ¬¬¬Áƒ'&&–)S¦ ù³²² …Æëׯ÷ìÙ3%%¥téÒ…¼„ ???7€3!8p-/¿üòË/¿lÏ+”­\¹222RþýÖ­[¯¿þúâÅ‹…gΜٵkW—.] ™ÿܹs“'O^²d‰âüùóóæÍ=ztá/JÐU ÀÞeeeMž<¹]»vmÛ¶}çw233óÏ™’’Ò­[·ýë_Õ«W8pà_ý5aÂùº½I“&Éó˜½$ñÞ½{óçÏoÖ¬YpppÙ²eŸ|òÉ~ýúýöÛo†äõܺuK~ضm[N—••% ¾Æñï¿ÿ~ýõ×›6mêããS½zõŽ;nÞ¼¹d{ lÙ²sçÎ-Uª”üðäÉ“…Ï_µjÕÅ‹wëÖM~øÑGÉM Qq`×:Ô»wï?ÿüÓ0eçÎ;wî\±bÅŠ+Z´ha˜~àÀ^xáÊ•+Bˆk×®-Y²dÏž=õë×/ò%îܹӢE‹ƒ¦$&&&&&®\¹rîܹÆ +A³·oßÞ·oß¿ÿþ[~˜™™™žž¾eË–èèè… –`…^^^*Tøë¯¿ä­S²È믿þã? !._¾¼oß¾öíÛ«p<¸6*ŽìWNNN¯^½äÔøÈ#´oß¾S§NÞÞÞBˆsçνøâ‹ÿûßÿä9o߾ݳgO95zzz6iÒ$88855566¶ÈW™6mšœ½¼¼^xá…‘#G6jÔH!IÒ믿.—÷Þzë­””ù¥…ß~û­ñC™™™}úô‘S£¯¯oTTTëÖ­å§-Z´bÅŠìŠ7n\ºtIþ=44TÉ"-Z´ðôô”7ŽÅPbGökæÌ™gΜB”/_þ—_~Ù²e˦M›„/^üè£ä9çÍ›'Wã|||öïßîܹèèh%¯²{÷nù—‰'®_¿þ‹/¾HHHh×®"77wÇŽBˆýë_=ö˜›Ûý÷ÌÊ•+?öØc:Îì g̘!O©V­ÚéÓ§×®]»k×®wÞyG~¶¸ÇÜÜÜ“'OöíÛ7//OžòÔSO)YP§ÓUªTIþýâÅ‹ùg;ÜM¼ñÆjF΃àÀ~mÚ´IþeÔ¨Q†+Ÿ|òÉ1cƘÌ`¨,Ž1¢nݺB77·/¾ø¢bÅŠE¾JNNŽüËòåË/^,ö–/_.wX÷èÑ£¸ÍÞºu«üË[o½%g\!ÄÈ‘#Ÿzê©§žzêÎ;†XCª+UªTÍš5 [úüóÏ?ýôÓ [ò¯ýKþÅì%¡P\\ãÀ~%''Ë¿˜\Ÿ÷ì³ÏʼӧOëõz77·S§NåŸÓËË«}ûöË—//üUÚ·oäÈùå ¤ÓéêÖ­Û±cÇ矾aÆ%hvJJŠüKÓ¦M +UªtôèQ wHíÚµ?ÿüsåó_½zUþ¥|ùòùŸ5{;  À‰Ø©ÌÌÌ›7oÊ¿›Ü"±råÊò/·oß¾téR™2e ãE‚ƒƒç¬Zµj‘/4eÊ”ÌÌÌE‹ݹsG!IÒ‘#GŽ9òá‡6oÞ|ݺu*T(Y³}}}K¼ùÆ©ÎÃãV­ZMš4yýõ×yäå+1ôPæ–Ûñ(.ºªØ©òåËûøøÈ¿gdd?exèééY¡B…råÊâ”<>ÆÀ0 ¤¥J•š;wîåË—W¯^ݧOãÛ_ïÝ»·¸ß¿W®\9àCÁ¯V®\™öÀéÓ§úé§·ß~»X©qß¾}wïÞ•/YéLدððpù—mÛ¶O7< õððÐét!!!òÃH!Dnnî®]» ‰;wî\ºtéÒ¥KwîÜéի׊+þþûïíÛ·’Ö/¿üR¬6ëtºÇ{Lþý×_5L¿xñbãÆ7nܺukùk`¬ÍЩ]¦LãNs(1‚#ûÕ©S'ù—/¾øB¾ Q‘˜˜8sæLù÷Ž;Ê¿´lÙRþå³Ï>“o #IÒĉÓÒÒ ‰¤¤¤J•*UªT)((H¾ï‡‡GÛ¶m $Ï`¶»ÙPÉ3ËИY³f:‹gÏžPºtiÃèl+¹xñâàÁƒ×®]+?ìׯ_¹rå¬úŠ\×8ÐRÿþýÍÞ qåÊ• 67nÜ’%KÒÓÓoÞ¼Ù¬Y³ÈÈHww÷;vÈ߃dø>˜ &,^¼øîÝ»—/_®W¯^£FÒÓÓSSS‹l@:u/]º”››Û¬Y³çž{ÎßßÿÌ™3ÿýïå ß¿"„ðõõ•¿<æƒ>8qâÄ믿nø6c“&MZ¶lYfffZZÚSO=yéÒ¥;wÊÏ>ܪ{2++˸g¿B… |ð5^€ "8Ð’|óÅüä[äxyyÅÆÆöîÝ;555''gãÆ†ªU«¶bÅ Ã`áG}ô«¯¾6lؽ{÷²³³åë²eË6hÐÀ¸ó:?77·õë×·iÓ&''çâÅ‹‹-2~¶U«VãÆ3»oß¾üOýë_ÿÚ½{7G°Á€“¸sçÎêÕ«¿ýöÛÔÔÔŒŒŒ€€€êÕ«?ûì³£G6ûMÍ€â"8@Ç@‚#!8@‚#!8@‚#!8@‚#!8@‚#!8@‚#!8@‚#!8@‚#!8@‚#!8@­à„ÂÃõn°®ääd­› ‚£U¸æ“= ç ØŠ}â¸Ø!ŠrÙ"]ÕP„àEŽP„àEŽP„à—°eË­›SûÄq±CØ‚#!8@‚#!8@‚#!8@‚#!8@­€ã ׺ PSrr²ÖMp GJ‚¨á4øg€rtU@‚#!8@‚#!8@‚#!8@‚#!8@‚#!8‹Ü»wÏÃÃC÷° *hÝ.qüøñ_|±R¥JeË–­_¿þìÙ³sssµn”c㻪€EÒÒÒòòòš4iR£F ÃIJeËjÛªÔÔÔV­ZåååuëÖíÑGݱcǘ1c~ùå—üQãýåÈŽ8¿»wï !<==­±ò””!ÄÔ©S###µÞÐŒ3ææÍ› 4›7hРŋoݺµ}ûöZ·ÎQÑU €ó 7IuS¦L‘•åäàøøã—`ÙœœœiÓ¦Õ¬YÓÛÛ»ZµjÑÑÑ/^T¥U»víjÑ¢…ñ6Ž1B¯Êú]G\Ñ™3g>¬ÊªRRRJ—.]®\¹5kÖ\»v-""¢aÆ «›ÑÑÑ«V­jÛ¶mTTTbbâÒ¥K,lRnnîðáÃëׯo<1==]Qºti«ìP×@pIIIqss{üñǯ_¿.O©Y³æòåËëÕ«Wø‚YYY«W¯0`À’%Kä)ÑÑÑ?ýôSFFFPP%Mòðð˜>}ºñ”k×®MŸ>ÝÝݽGZï0FpÿÈÍÍÝ´iSAϾð ù'¦¤¤èõú)S¦ôèÑ£T©Rÿýïßxã®]»&&&úøøòZnnn:nÿþýéééÕªUB,Z´hÑ¢Eª´ÊØÏ?ÿ+„8qâD‘{løðágΜ‰‰‰©S§ÎæÍ›»wï^§NK—.YÞ*!ĪU«j×®}øðá üñǤFËQqÀ%üõ×_Æ322ÌÎVÜNáôôô7¶iÓ¦fÍš†‰™™™B¹÷¹W¯^MII ‹ŽŽŽŽŽÖëõ_ýõÈ‘#çÏŸ?yòdKZ%„ذaC¿~ýzõê5þüòåËÛvg;-‚#.áâÅ‹7n|î¹ç„©©©ÇŽ3;[q;…½¼¼Þzë­ ìܹ³T©RB½^?sæLvíÚÞ¤äää¦M›Nœ8qÚ´iB77·V­Z !äõXÒ*I’ÆWµjÕåË—»»»kµÏÁ—àááñÒK/uéÒE¯×oܸ± »ÒÈÂÊW[±bÅ)S¦¼ýöÛ¡¡¡;vôõõݺuëÑ£G?úè£Zµj !V­Z5lذW_}õ³Ï>3Y¶~ýúµk×þøãSSSk×®œœçïïß»wo [•””tòäÉš5kFGG›<Õ½{÷.]ºhtÁ—ШQ£Î;/X° 77÷µ×^+_¾ü| ÊšÇ÷Øc}òÉ'+V¬xä‘GêÔ©סCùÙ»wïÞ¸qÃì%•žžžqqq“'OÞ¹sç?üØ®]»I“&…„„XØ$ùžäIIIIII&O=þøãÇ#8àt:Ý„ &L˜`˜2uêTµVeö©Ü»w/11Ñì³UªTùæ›oTߨ矾XJ(Ĩj`E·oßÞ½{÷ÓO?­uC ‚#°¢øøøš5k¾üòËZ7* «ç7tèP­nIÓºuëÖ­[k½ ‚#ÎoܸqZ7΀®j(Bp€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"G(Bp–JJJêÞ½{ÕªU+W®Ü³gÏhÝ"!„ؽ{wëÖ­+V¬ø¯ý«Y³f?þø£Ö-rxG`‘½{÷Ö­[÷À=zôèÝ»wBBB»vívíÚ¥m«6oÞܦM›³gÏöíÛwÈ!—/_îÞ½û¢E‹´Þ[ŽM'I’Ömp6áááÉÉÉZ·IKK ѺxÅ>q\r¸·ú»wï !<==U_³$Iááá7oÞ<~üx`` âÆõêÕóõõý¿ÿû? 7ùßÿþ÷ßÿ}òäI!DVVV­Zµôzý¹sçLæ,ÁÑt¸?µPqÀù…‡‡GFFO™2eJƒ ,_sZZÚéÓ§ $§F!„¯¯ïo¼qäÈ‘ãǹxNNδiÓjÖ¬éíí]­Zµèèè‹/ZÞª;wîœ8qâ¹çž“S£¢L™2Í›7?þ|NNŽê»×uxhÝ 3gÎ>|ØòõȼŠ+O BüþûïuêÔ)|ñèèèU«VµmÛ6***11qéÒ¥‰‰‰ ¶ÊÝÝý·ß~ 0LÉÍÍ•Ûãååe=ꎠäžxâ !ÄFm˜¸{÷n!DFFFáËfee­^½zÀ€K–,‘§DGGÿôÓOAAA–´ÊÃÃ#""Bþ}Ù²e)))›6mÊÈÈøî»ï´ÞaŽàþ‘››»iÓ¦‚ž}á…L¦FEE­]»vÆŒ”$éÛo¿7ož"33³ð×rssÓétû÷ïOOO¯V­šbÑ¢Efǯ·UÆ>øàƒ””!D»víäWA‰P“Nè´ziI6à5//Ïø¡^¯7;[VVV×®] | scjçÍ›wãÆñãÇ?^áçç7iÒ¤÷ßß××·ð{yyÍ™3çÍ7ß ‰ˆˆhÒ¤I‡:wîœO Zepúôéìììøøøèèègžy&))ɤcÊ185IBÒê§ð†Ý¹sÇøaAcD|||¤‚™]¤B… Û·o?pàÀ¼yó~øá‡äääÚµk !}ôÑ"w×ðáÃÏœ9S§NÍ›7wïÞ½N:—.]²¼UƼ½½###?þøãk×®­_¿Þf ·Š#.᯿þ2~XЈ%èþí·ßÊ—/߸qãÆËSvîÜ©Óéš4iRx“®^½š’’­×ë¿þúë‘#GΟ?òäÉ–´jÓ¦M]»v]±bÅ‹/¾h˜èçç'Š*O¢pG\ÂÅ‹7nÜøÜsÏ !RSS;fv¶t ÿç?ÿ9qâDrr²<˜:))iÅŠ;w–"99¹iÓ¦'Nœ6mšÂÍÍ­U«VBˆR¥JYتF !–,YÒ«W/îþÅß~û­ÂnQG\‚‡‡ÇK/½Ô¥K½^¿qãÆÒ¥K›Mî.Öš§NÚ±cÇFuëÖíÞ½{±±±^^^_|ñ…üìªU«† öꫯ~öÙg& Ö¯_¿víÚüqjjjíÚµ“““ãââüýý{÷îma«&Nœ(ß«²}ûö:nûöí=zt‘wB!¸Æ—ШQ£‰'ÆÇÇïß¿ÿµ×^1b„Zk~öÙg·lÙòè£.Y²D¾Nñ?þ0|ÑÝ»woܸaö’JOOϸ¸¸8p`êÔ©?ÿüs»víöï߯Ê×Mž<ùÛo¿uwwŸ7oÞüùó===¿ÿþûÙ³gÛj;'¾rP}.û5DöŒoQ³CûÄqQÈáÞêCBBªT©²wï^M^}Ñ¢E‰‰‰sæÌÑz7˜ÇW*GÅXÑíÛ·wïÞýôÓOkݨ€à¬(>>¾fÍš/¿ü²Ö €ó:thùòå5yéÖ­[·nÝZëup~ãÆÓº ptU@‚#!8@‚#!8@‚#!8@g¸ãš5kbccSRR¼½½[¶l9vìX??¿BæÏÉÉY½zõÚµkÏŸ?_®\¹°°°6mÚÔxž=züþûï& ìß¿_ëÍІÃÇÙ³gÏŸ?¿L™2 4HOO_·nÝéÓ§—-[æååevþÜÜÜW^y娱c>>>7¾}ûö¯¿þºoß¾Q£F >Ü0ÛÙ³g½¼¼ªW¯n¼¬¯¯¯Ö›  ÇŽÉÉÉ111k×®­X±¢âÃ?\¶lÙ§Ÿ~:iÒ$³‹ÄÆÆ;v¬^½zß|ó.OŸ>Ý·o߯¾úªM›65kÖBdffÞ¼y³cÇŽsæÌÑzì…c_ã«×ëG-§F!Äøñã}||âââôz½ÙE¶lÙ"„˜8q¢¡$:dȼ¼sæLÂ2OZZaïÀ:tÐz#ì…Çœœ!D™2eL¦—-[VqóæÍ"×——·råÊO>ù$//oÖ¬YòôŒŒ //¯1cÆôïß_žràÀ!C†|ôÑGÍš5 .rÍÉÉÉZï˜ Ѻ Ð !„Dˆ.DþÅuØïAqm§^¥J•½{÷¦L™2eãÆ‡²pÍiii§OŸž0a‚œ…¾¾¾o¼ñÆÈ‘#?^§NÂÏÉÉ™5kÖÊ•+ÓÓÓ+T¨Ð®]»iÓ¦UªTI­ ¿téR¿~ý¢££·oß^Èl…ÿÙçÿXÏ_!rÜUíëë«Óé²³³M¦ßºuK<¨;â×_íҥˇ~ðÍ7ßtêÔÉðÔÒ¥K;fHBˆ&Mšôë×/''gÇŽZo7œ‹NéAX”ÑiÝ$®áÌ™3‡¶|=r7a”ªL.²ä¿#r~ÑÑÑï½÷^ÕªUÇŒS·nÝ¥K—:-'IRÿþýýüü¸MŠZ88zxxøøøä¯,fffŠ|ÁÆîÞ½ûá‡0௿þ9rd\\\“&MŠ|¹†  !N:¥õvÉèÌÕÉŽÊOù×Ö­[·¾}û !Þ{ï½Aƒ½ûV­ªQ£Æ… Ž;æíí=}úô‚¾PEGªú믿Œta :…ûí·òåË7nÜØp‡í;wêtº"‡\½z5%%%,,,:::::Z¯×ýõ×#GŽœ?¾IÇ`q[%ß~è³Ï>3žxýúõñãÇ·jÕªwïÞ6ÚéNDZƒ£bàÀ*TX¿~ýæÍ›ƒ‚‚úöí;zôhùŽ<ùÉuÇœœœÄÄÄüÏþ¾Ÿxâ‰üqÖ¬Yñññ§OŸ®Zµj×®]G¤õæÂ)háâÅ‹7n|î¹ç„©©©ÇŽ3;[ ºªÿóŸÿœ8q"99YL””´bÅŠÎ;y»äää¦M›Nœ8qÚ´iB÷Áº Kܪ‰'Nœ8ÑxJHHH¥J•âããm¸ËN*ª²â ç>Žö&--ÍŽnMW¬àè¼)Ó¾ à¸(äpoõ!!!çÏŸ/]ºt—.]ôzýÆK—.}ýúuUbÀ¶mÛ:vìÜ­[·{÷îÅÆÆzxx$$$ÈK«V­6lØ«¯¾jRÿBܽ{·^½zIII½zõª]»vrrr\\\^^ÞáÇUÿ;,$8–àh:Ü€ZûGÀñ8o`ç5j4qâÄøøøýû÷¿öÚk#FŒPkÍÏ>ûì–-[}ôÑ%K–È×)þñdžäw÷îÝ7n˜½¤ÒÓÓ3..nÀ€˜:uêÏ?ÿÜ®]»ýû÷ó¯»åð]Õ€“ãJG*Ñét&L˜0a‚aÊÔ©SÕZy»víÚµkgö©Ü»wÏìEbBˆ*Uª|óÍ76Øü¿T QqlˆÀõܾ}{÷îÝO?ý´Ö ŽÀŠâããkÖ¬ùòË/kݨ€®jÀîÑ[ ÀbC‡5þ–5[jݺuëÖ­µÞPÁ°ÂíŒ7Në&ÀÐU EŽ€#{«ÐÁ° ú©ŽàEŽ€ƒ · 5‚#`}ôSœÁŠÇAo5@SG(Bp¬Œ ΂àEŽ€Cá2G€vŽ€5ÑO À5èõú¹sçþûßÿ.[¶ìO<ñÉ'ŸÜ»wOëF‰ãÇ¿øâ‹•*U*[¶lýúõgÏž››«u£ÁXD¯×?ÿüó£Fzì±ÇFŒQ¡B…·ß~{È!Ú¶*55µU«V[¶léСØ1c<==njӳgO­÷–cóкÀêîÞ½+„ðôô´ÆÊ—-[¶iÓ¦˜˜˜×^{Mžòâ‹/.^¼xüøñ¡¡¡Zmò˜1cnÞ¼™Ð A!ÄÔ©S ´xñâ­[·¶oß^«V9:*Ž€£á2GÅihРÔիWK’¤$5æääL›6­fÍšÞÞÞÕªU‹ŽŽ¾xñ¢*­ÚµkW‹-Œ·qĈBˆøøxUÖ8VÃŽìØ™3g>lùzîܹsøðá_|177÷ðáɉ‰!!!Mš4)S¦Œ’Å£££W­ZÕ¶mÛ¨¨¨ÄÄÄ¥K—&&&&$$XتÜÜÜáÇׯ_ßxbzzº¢téÒÖÚ§.€àJ.##ãîÝ»:®Y³f‡’'>úè£ß}÷]Ó¦M _6++kõêÕ X²d‰<%::ú§Ÿ~ÊÈÈ ²¤UÓ§O7žríÚµéÓ§»»»÷èÑCë}æÀŽà¹¹¹›6m*èÙ^xÁdÊÍ›7…Ë–-ëÖ­Û·ß~[µjÕ={öDGGGEE%%%ùùùòZnnn:nÿþýéééÕªUB,Z´hÑ¢E–·ÊÄÏ?ÿ|ø™3gbbbêÔ©³yóæîݻשSçÒ¥K¶J¶jÕªÚµk>|xÁ‚üñ©ÑrTp ýõ—ñÃŒŒ ³³·S¸L™25jÔ0YùåË—…UªT)¼IW¯^MII ‹ŽŽŽŽŽÖëõ_ýõÈ‘#çÏŸ?yòdKZ%„ذaC¿~ýzõê5þüòåËÛpO;3‚#.áâÅ‹7n|î¹ç„©©©ÇŽ3;[ :… 0eÊ”_~ù¥E‹B½^ÿñÇ»¹¹™Ü(¿äää¦M›Nœ8qÚ´iB77·V­Z !J•*ea«$I7n\ÕªU—/_îîî®ÉwJGÀ1q™#€bòððx饗ºté¢×ë7nÜXÐ]iäNáb­yذakÖ¬i×®]Ÿ>}ªT©wøðáqãÆýûßÿB¬Zµjذa¯¾úêgŸ}f²`ýúõk×®ýñǧ¦¦Ö®];999..Îßß¿wïÞ¶*))éäÉ“5kÖŒŽŽ6yª{÷î]ºtÑâ8‚#.¡Q£F;w^°`Annîk¯½V¾|ù>ø@•5ìÙ³çwÞÙ·oߺuëj×®½råÊ—_~Y~öîÝ»7nÜ0{I¥§§g\\ÜäÉ“wîÜùÃ?¶k×nÒ¤I!!!6)%%E‘”””ÿ:ËÇœàXbGÀ ¨°?:n„ &L0L™:uªZ+÷÷÷Ÿ?¾Ù§ pïÞ½ÄÄD³ÏV©Rå›o¾Q}cŸþùâÖM¡£ª€ݾ}{÷îÝO?ý´Ö Ž€ÃâK«8‚øøøš5kz®áÐèªÀù :T«[Ò´nݺuëÖZ糖ਠ؟qãÆiÝ8ºª ÁŠGÆø€  ÁP#c΋àEŽP„à88ÆÇl…àEŽ€zpjG(Bp–:~üø‹/¾X©R¥²eËÖ¯_öìÙ¹¹¹Z7ê-Z´˜2eŠÖ­pGÀñ1>€¦RSS[µjµeË–:Œ3ÆÓÓs̘1={öÔº]÷=ztÿþýZ·ÂIxhÝ`uwïÞBxzzZcåcÆŒ¹yófBBBƒ „S§N4hÐâÅ‹·nÝÚ¾}{­6977w×®]øúë¯õz½VÍp2T•02€ ŒŒ4ž2eÊ9çYn×®]-Z´0^Ûˆ#„ñññE.›““3mÚ´š5kz{{W«V-::úâÅ‹ª´êêÕ«íÛ·Ÿ2eÊåË—UÜ“.ŽŠ#®èÌ™3‡¶|=¹¹¹Ã‡¯_¿¾ñÄôôt!DéÒ¥‹\<::zÕªUmÛ¶ŠŠJLL\ºtibbbBB‚å ”$I‘œœüÄOXi7º‚#(9éÓ§O¹víÚôéÓÝÝÝ{ôèQø²YYY«W¯0`À’%Kä)ÑÑÑ?ýôSFFFPPÖ[3Ž€Sè+ ŽÜÜÜM›6ôì /¼Pøâ?ÿüóàÁƒSRRæÍ›ZøÌnnn:nÿþýéééÕªUB,Z´hÑ¢Eª· j!8 * ïrPè¿óòòŒ4^$++«k×®¾‚Tàkœ={vĈ6l ݱcG›6mŠl¯——ל9sÞ|ó͈ˆˆ&MštèСsçÎùñ”¸UPƒc5Pí` i÷S¨;wî?ÌÉÉ1;›T°‚V¾jÕªÚµk>|xÁ‚üñ‡’Ô(>|ø™3gbbbêÔ©³yóæîݻשSçÒ¥Kª´ ª£â€Køë¯¿Œfdd˜­Â6lèׯ_¯^½æÏŸ_¾|yåMºzõjJJJXXXttttt´^¯ÿúë¯GŽ9þüÉ“'[Ø*XÁ—pñâÅ7>÷ÜsBˆÔÔÔcÇŽ™­¸Â’$7®jժ˗/www/V“’““›6m:qâÄiÓ¦ !ÜÜÜZµj%„(Uª”…­‚•p /½ôR—.]ôzýÆ ºWŽÜ)¬|µIII'Ož¬Y³ftt´ÉSÝ»wïҥ˪U«† öꫯ~öÙg&3Ô¯_¿víÚüqjjjíÚµ“““ãââüýý{÷îma«`%GÀY0°@¡5jÔ¹sç äææ¾öÚkåË—ÿàƒ,_mJJŠ")))))Éä©Ç¼K—.wïÞ½qã†ÙK*===ãââ&Ož¼sçÎ~ø!00°]»v“&M ÑzoÁ<‚#.A§ÓM˜0a„ †)S§Nµ|µÏ?ÿ|áµÀÜ»w/11Ñì³UªTùæ›o¬ºááááT+Õ¨jÀbÔù `·oßÞ½{÷ÓO?­uC ‚#°¢øøøš5k¾üòËZ7* «ç7tèÐbÝ(GE­[·nݺµÖ;ê 8N„ñ1 0nÜ8­›g@W5!8–¡ÂpG(Bp€"G(Bpœ‹<°+ 8@îãX€!Õ€ ׺ €­¹Jp\³fMlllJJŠ··wË–-ÇŽëççWÈü999«W¯^»víùóçË•+6pàÀ¦M›j½»œœl³×JKK Ñz‹!\$8Ξ={þüùeÊ”iРAzzúºuëNŸ>½lÙ2///³óçææ¾òÊ+ÇŽóññiܸñíÛ·ýõ×}ûö5jøðáZo €6œÿÇää䘘˜ÀÀÀ-[¶ÄÄÄlݺµÿþÇÿôÓO Z$66öرcõêÕÛ³gϼyó–,Yòã?úúú~õÕWIIIZo€6œ?8ÆÆÆêõúÑ£GW¬XQž2~üxŸ¸¸8½^ov‘-[¶!&Nœh(I†††2$//oÿþýZoPV¬Ãùƒã¡C‡ÜÜÜZµje˜âîîÞ¢E‹«W¯9rÄì"iiieÊ”‰ˆˆ0ž*„8wîœÖ  '¿ÆQ’¤””ãéaaaBˆsçÎÕ¯_?ÿR ,ðð0Ý3'NœBT­ZUëm‚Ý`H5ÀÅ8ypÌÎÎÎËËóõõ5™îãã#„¸víšÙ¥jÕªe2%!!!&&¦téÒ]»vUòºùïÑ wC+çÏŸW}!"$--Më-s¼¶Xã Àr;ÄAÑ\‡´n‚½pòà˜““#„(S¦ŒÉô²eË !nÞ¼YäòòòV®\ùÉ'ŸäååÍš5+ @ÉëÚò6 PÈ7³°çdØsÛ«‘.ˆãb‡8(ÚÊÿ±î²wñtòàèëë«Óé²³³M¦ßºuK<¨;â×_2eÊŸþôÑG5iÒDë ”‘èI¨ÏɃ£‡‡‡OþÊbff¦Â0Î:¿»wïΜ9sùòå<òÈÈ‘# TÐM\„“G!D```JJJfffùòå åË¿Í.¢×ëß|óÍmÛ¶µmÛvòäÉ…äK×áü·ã‰ŒŒÌËËÛ»w¯aŠ$I{öìñóó«[·®ÙE–/_¾mÛ¶—_~ù«¯¾"5Â<:‚®ÇùƒcÏž=ÝÜÜæÎ+_×(„ˆ‰‰¹råJTTT©R¥ä)YYYiiiò°5I’V¬XQ®\¹·ß~[ë¶Øçïª;vìŒ3žþùæÍ›§§§'$$DDD¼öÚk†yöìÙóÆo„††nܸñòåËgÏžõòòêÓ§OþµuëÖ­oß¾Zo€œ?8 !X¡B…õë×oÞ¼9((¨oß¾£G–ïÈ“Ÿ\wÌÉÉILLÌÿ,«á0X P›KG!D—.]ºtéRг:uêÔ©“üûÓO?Í]òsþk  ‚#P|t\ÁŠ Áp^òÀjTBp€"G(BpЉ!ÕWEp€"G(Bpœ«ê!8@‚#!8ÅÁj€ #8@‚#!8@‚#àì¸#@%G(BpcH5Àµ ÁŠ Áp ¬¨àEŽ€2 ©¸<‚#!8@‚#!8®Õ‹ ÁЏG(Dp€"GÀe0°`‚#!8@‚#P†T „ 8@!‚#!8@‚#àJ¸#ÀG(Bp Åj°]pœ5kVJJŠÖÛ €²]pŒ‰‰éܹsTTÔòå˯]»¦õ† xlÿóŸÿT®\911qÚ´iÍ›7:tèÖ­[ïÞ½«õ€"6{¥1cƼñÆGŽÙ°aC\\Ü®]»víÚU¾|ùÎ;wíÚõ©§žÒzW®AâÂM@ ÙtpŒN§«W¯Þûï¿¿ÿþyóæuêÔéîÝ»«V­zñÅŸ}öÙ¯¿þúÂ… Zͨj6mÚÌž=;>>~âĉ^^^éééŸþyddd¿~ýÖ¯_Ÿ——§õžÀCl×Umâúõë;wîܲeK|||nn®¢B… ¥J•:xðàÁƒ.\¸hÑ¢   ­÷\]º±up¼råÊöíÛ·nÝzðàA¹¬ðì³ÏvêÔ©^½zBˆÌž=;11ñ½÷Þ[¸p¡Öû÷Ù.8®X±bëÖ­‡ÖëõBÿöíÛwìØ±~ýúîîî†Ùš5kV¯^½† :tHë€Ø.8~ðÁB__ßgŸ}¶cÇŽ52΋Ƽ¼¼yäú©ka`5 Dl£¢¢:uêÔ¸qã‚ò¢1ÊöÆv£ªãâââãã J#GŽlß¾½Ö{²]pÌÎξwï^AO={–›8¾Й ÀìÛU½gÏž¡C‡.[¶lÅŠùgÓëõ’$=úè£Zï ȺÁÑÝݽ|ùòòïׯ_÷ôôôöö6;§¯¯ïøñãµÞ(uƒc³fÍäßÃÃÃ_zé¥wÞyGëM@IØnTõ Aƒêׯ¯õöBpG@IØ.8Ž7Në@ÉY18®\¹RѰaÃÐÐPÃÃÂõéÓGë!¨Æ`†ƒãÔ©S…S¦L‘ƒ£ü°pG»eÅà8räH!Ä“O>)?|ë­·´ÞX”œƒãˆ#Œ¾öÚkZo,JÎvƒcò“$i×®]çÏŸ¯S§NݺuµÞ€‹a`5 ˜lwíÚõù矷mÛVîÅ~÷Ýw×®]+?Õ»wïÉ“'ët:­w̳ÝwU:thذa'OžÔëõBˆ?þøcíÚµ>>>/¿ür•*UV­Zµk×.­÷ d»ŠãÂ… %Iš8qbïÞ½…Û¶mBLŸ>=22òÌ™3:tøî»ï"##µÞ!¸˜g»àxêÔ©J•*õïß_~øë¯¿zzz6oÞ\Q½zõÇ{,55Uë½€Ù®«úÆòï¹¹¹üñGíÚµ===å)ÞÞÞW®\Ñzo @¶«8Ÿ?>//ÏÝÝýÈ‘#·oßnÔ¨‘ü”^¯?þ|… J¶æ5kÖÄÆÆ¦¤¤x{{·lÙrìØ±~~~JLMMíØ±cllì¿ÿýo“§zôèñûï¿›L Ø¿¿Íö`u ¬‡í‚cƒ ¾ÿþû/¿ü²gÏž_~ù¥¢E‹òS‹/¾víZË–-K°ÚÙ³gÏŸ?¿L™2 4HOO_·nÝéÓ§—-[æååUä²Ë—//詳gÏzyyU¯^Ýx¢¯¯¯Ív€½±]p)ß»±W¯^¿ýö›bàÀÅ]grrrLLL``àÚµk+V¬(„øð×-[öé§ŸNš4© ¥233O:µaÆï¿ÿ¾ nÞ¼Ù±cÇ9sæØlÿØ9Û]ãX¹råÕ«W·jÕªR¥JÍš5›3gŽ|ׯ+W®”/_þã?~æ™gŠ»ÎØØX½^?zôh95 !Æïãã'ßôǬ.]ºôéÓ§ Ô(„8{ö¬¤ÜWA×-°é ÀCCC,X`2qùòåAAAnn%‰°‡rsskÕª•aŠ»»{‹-6lØpäÈ‘úõë›]êÃ?¼sçŽbÅŠÈ?Czzº¢Zµj¶Ü9vN˯”U®\¹d J’”’’âïïïïïo<=,,Lqîܹ‚‚c³fÍä_vïÞmv98fddôïß?))ÉÛÛ»V­ZC† É?†ÀuØ48ÆÅÅ-[¶ìÌ™3’d¾/0!!AùÚ²³³óòòòXñññB\»v­Äí>>ù+‹™™™BÃ8kµ4lØPqêÔ)[ì,h…!ÕÌFÁñÞ½{ÿûßÿªV­Z²ÑÓ ¼zõªœ ä ¶K¶NI’òòòòßÍGî^/W®œmö€½±Qptssóññ9}út!·W,ÈÈȼ¼¼½{÷¦H’´gÏ???ùîâ%žž^«V­˜L?zô¨páklÝÝÝ£££¯\¹2{ölWÛ³gO77·¹sçÊ×5 !bbb®\¹UªT)yJVVVZZšò!iÕ«W¯W¯ÞÁƒ׬Yc˜xôèÑÅ‹·oßÞ6{ ÀÞØnpL§NÎ;“бcÇ*UªxzzšÌc|+o%‚ƒƒÇŽ;cƌ矾yóæééé ¯½öšaž={ö¼ñÆ¡¡¡7nT¸Ú÷Þ{oРAï¾ûîªU«jÔ¨qáÂ…cÇŽy{{OŸ>]ÉW`FââN€"¶ Ž‘‘‘ò/Ç?~ü¸ÙyJp›V¨Paýúõ›7o êÛ·ïèÑ£å;ò”ØO<ñã?Κ5+>>þôéÓU«VíÚµë¨Q£‚‚‚l¶»ì® {q«nìØ±EÎ3sæL÷‡ÂÃù£½IKK+ú.h®\uÓbÛØÇÅqPìË~ÖÛ®âè¡Àeið]Õ7nÜHLLÌÈÈnÚ´é•+W´Þ(‚MƒãÕ«WçÍ›·víZùÛ дiÓnݺEDDLŸ>ÝÏÏOë½€Ùî›cîÝ»7lذåË——/_¾[·n†é+Vܽ{÷K/½$§IVP(ÛÇ ;v¬eË–[¶lùøã Óccc_xá…3gÎ,[¶Lë½€Ù.8òöö6žîîîþÞ{ïy{{oݺUë½æÊCªPÆvÁ1)))$$Äì8˜²eËÖ¨Q#==]ë½€Ù.8úøødeeôìõë×Ë•+§õÞ@lkÕª•‘‘aö;c’’’.\¸P³fM­÷ d»àøâ‹/êtº7ß|óĉÆÓOœ81zôh!D×®]µÞ€ c`5 (¶»cÓ¦M£££.\ؽ{÷5j!vìØqàÀ?ÿüS¯×wëÖ­}ûöZï Ȧ7ë­·êÕ«7cÆŒÔÔT!Ä… „*T3fŒñ`‡lý•ƒ­[·nݺõõë×SSSïÞ½[£FÀÀ@­w\÷â@ ¾«ZáççW¯^=­·Å`Åà¸råÊâ.Ò§O-w fÅà8uêÔâ.Bp´$Ñk(Œƒ£|“cIII[·nuwwoÖ¬YõêÕÝÝÝÓÒÒöîÝ›››ôÎ;ïh½7P +Ç¡C‡?<{öìòåËÃÃÿúꫪU«¦_¸paĈüñdž ž}öY­wÌ³Ý ÀçÍ›wõêÕ/¿üÒ85 !*W®üÅ_!¶mÛvåÊ­w\³(c»àxôèÑàààjÕªåªjÕªòtIâÀNÙîv<ׯ_×ëõ’$étf¾×,33ÓÏϯB… Zï˜g»ŠcíÚµ333þùçüOíÛ·ïúõëZï ÀåñÕ€‚Ù.8vêÔI1nܸ¸¸8ã.émÛ¶½õÖ[†`Ÿl×Uµo߾͛7=ºB… 5jÔÐét©©©ÿý·¢K—.QQQZï Ȧ_98kÖ¬&Mš|þùç—/_¾|ù²<1((häȑݺuÓzWÀ%1¤ÅlÝÜÜzöìÙ£GK—.¥¥¥yxxT¯^1Á¦ÁQ¦Óé*UªT©R%­·Å`»Á1« 8@‚#\#c(‚#!8@‚#!8ȇÕsŽPDƒ€v!Õ¶¥3S 1;§¤ì¸(/‰rœ@-TX‘NwÿG’LRSÓòO”¤1¿Â?’âÃ" Qq >CìSX>4fXD^‰üÐûJP>4,¢+é2‚#5§= GFUÒž¼â#”Á€9RI.•»¤Udh‚šyôÁšñЉà@*»û+B»ûÕGâ#hŠà—ÄjUY¯ÐhÂÕz9C|äÏ”`T5€’3Œ˜Vm… bœ<òZEÜï¢â „lVhÌÏU,=Òm E¢â …â4L÷['©\z”(=@QŽŠGõîiaÁU†t[€-ƒá;`T[¡ÅcSÈŽ`3G¸ÆÐ–”• –¯’ì¶Ap ˆê©±FHˆŠë³Rv$>€1‚#€¢Y£Ö˜š–¦n#­‘)=€1‚#€‚IBØÓP˜¢Û«vvdG0BpPGI†Ö’ÀJŽp1ŒŒ)Õ˜mv¿5²#@Äz¨ócœ5XÁ€edGPÁ€Ó";€ºŽL=TnT#+ixe)ÙTDpð'è¤6AvµáJ40vÏùR£Œìª 8¸ÏYS£Œì–#8ÂÙS#@GE¥Fg©­Qt ¨ÏnËdG°Á.Ãn³ŒÖ\­“šì%Fp\š«¥FÙJ†à¸.×L€#8pE Ž€‹*^¹QA,r¸r#ÙŠ‹à¸":©edG(‚#\BH‡Ì5ÖAj” Á€K£èÊ×B¹1?²#(Dp\ˆE©Ñ\r‚Ôh%dGNÉU‚ãš5kzöìY·nݦM›¾óÎ;ׯ_W¸`jjjxxøo¿ý¦õ–R½ÖèLT/:€Sr‰à8{öìwß}÷Ï?ÿlРAÙ²e×­[7xðàœœ%Ë._¾\ëæÃb:‘–š¦u#œ“•é°€"yhÝ«KNNމ‰ \»vmÅŠ…~øá²eË>ýôÓI“&´Tffæ©S§6lØðý÷ßk½€ ¸´Q 9;ª¸£$'ÝQ\–óWcccõzýèÑ£åÔ(„?~¼O\\œ^¯/h©.]ºôéÓ‡Ôç@j¨Âù+އrsskÕª•aŠ»»{‹-6lØpäÈ‘úõë›]êÃ?¼sçŽbÅŠÐz#ûà4ŠŽP'Ž’$¥¤¤øûûûûûO Bœ;w® àجY3ù—Ý»wk½€E(7Ù âäÁ1;;;//Ï×××dºâÚµkVzÝððp“)[¶lÑzg¸¨!i©içϟ׺!Ú¨Q#$55-M½¡A!"D­õÙ÷A Qs¯ !BÔ^¡ÕØ÷qqQÍuèÐAë&Ø 'ŽòÐé2eʘL/[¶¬âæÍ›VzÝääd­7ÿ 1üש¾á*®ÐnŠ$ .Då¢cHˆ£íö¸¸2жò¬ç¯¹'ãëë«Óé²³³M¦ßºuK<¨;ÎÊÔ®ƒ»ó@~N=<<|||òW333…†qÖ€ó±Ö¥ÄpaN…W¯^•“¢|±Q`` Ö­`¿(:€ 玑‘‘yyy{÷î5L‘$iÏž=~~~uëÖÕºu°2WËÊHjµÀ˜óÇž={º¹¹Í;W¾®QsåÊ•¨¨¨R¥JÉS²²²ÒÒ\wà-œ ©`%N>ªZNà§`?Ÿ¢n©Ñ¾ B|\ÁŠfa$rQ«ˆ€“#8öÂáËö™e,¦V r‘ì(ˆ€S#8vÁáS£3"úX‚ø8%‚# j³RÜq¢£Q ‰€S!8Ú£Üh?¬q\0; â#àDŽ€Æœ*5:DŠ)±ÆÚˆ€pÓº =ÐIB²Mš‘‹Žj®Ð¡¾[ÞÏ:Gj2€áà¶¾u¿ùÎTntL:¡“S£-_Ôų£BÎŽÄGÀáÐU hÆ)¿‰ÎÐgª-z®GDÅpvQntÚ—-û¦Í¢èø Ùô\Ž„Š#  :©µâÄ%.Ç›dÈŽNy\gBp„#sÐIhÄÞ¢‰ê·æqhô\®j@”mOó¾i³è°Î×~z®»FplÍùS£…MÆMkÈÎvÉ61×€"8pföYh4¦zÑÑ9PzìÁËîêlÊZíôåF»á@…F:¬ ÞJ€}ap `;¤F›q”Ȉ"Íp@{@Å€hWòr B£1ŠŽEm¥GÀ.¡ÜhöEc!ÈŽEmW=Ú£«ŽÉÑB©ÑÚ¸ÿŸYŽ{Kð‚·ˆ[…Z¢âÀá9t¡Ñ#¬• ôhˆàX‹–mÒQê W4‚kÅÛÅU€Žp@Ž‘›4Ö5S£M8M¡ÑÙQñvQzlk+⛈­„«Ü`ÀU€-Gâ`åFë Íp²¾i£ û§r&ߺPE’:I’ /á\ÿ á^€Ík¡“Zu_X*¼:ߟ‹ºB÷³cQ- Ž+)=6@p„£qôDjTƒÕ“Ì&3û d·$---ÄÎ_ÈfQz¬ŒàÀÞ9FÉ$l©³äQ2*•ü ÄìKZa­„Ò#`=G@}”ÿañeŽvZ=Ê_“³NÒ,;šmŠ{ ¤›Ié° ‚#Š#(R£zngE#ã¨dO!Iù÷€ýíJ€êŽì‘]ÔŠì£sÖŽŠŽE6ÔÀ>v ô¨à¨‰r£ÅÏ)Z~ÌÛ_ÙL8Pv4n±1­÷ª\z$;–#8ª!5ª±ÉZt,jk”p¼ìhÒzö6ÝÖ€*Žpö£Hjl²mkBNz7l{g6DÚäÐm XŽà@{¶+9Bq± Ž]t,h“d6<.”KPn,B¡ Å g).:av4l˜õ¥G ÄŽpvñáV@ÓHm¬5?¼%/º–üeH+Ý#“3@ñh£FH aîBGîŒVÂi‹Žf7UfµcJ·5P\nZ7pl”•’ãÉ?›©KMKUóÓZ§»ÿ#Iÿü8)9;ª¹Â‡Žý1>¦†­Ú¶K†ø HG8{ S¤Æm£NÍþÁüyÑ5¸\v4Þr+$H9;"9CWõš5kbccSRR¼½½[¶l9vìX??? éÑ£Çï¿ÿn²T@@ÀþýûµÞ\Ø Rc‰¶Q¥ÈÈÅ‹PûRHFÌJ8|pœ={öüùóË”)Ó AƒôôôuëÖ>}zÙ²e^^^–,röìY//¯êÕ«/èëë«õæŽJ'tB’…ÊäE#VºØ1Uëí*ÉŽ©ñçÁU@á;8&''ÇÄÄ®]»¶bÅŠBˆ?üpÙ²eŸ~úé¤I“J¼HffæÍ›7;vì8gέ7vZˆ£ÜXÌ­³,0’ `•ìâ¨{Y¥Ié(„c_ã«×ëG-G@!Äøñã}||âââôz}‰9{ö¬¤Ü‹¹u|»äõ‹Å¢úÅŽ©ii¡ŸÉu%[#fs;8:tÈÍÍ­U«V†)îîî-Z´¸zõê‘#GJ¼Hzzº¢ZµjZo쩱8›–oŒÂ!&C^€’±l #f€ü88J’”’’âïïïïïo<=,,Lqîܹ/"ÇŒŒŒþýû7hРeË–C‡ýí·ß´Þb—dg©ŠÔXœMÓÉeŸâ,ã¢C¤-äº#¬•nOÉbs³À„_㘗——ÀŠâÚµk%^DNŸþyHHHãÆ/\¸°{÷î={ö¼ÿþû½zõRÒ¶ððp“)[¶lÑz‡9¤’––fùzΟ?¯V‹TiÑúÔ^¡ïìš–š&Ìlšá˜JHò/i©f8Ý>±¶ÔT¡Ó…¤¦ªv²¤ ¡ Iu²ñà,äAvüçO®ðåDª.D'„HMÓfìzï`(¡:hÝ{áÀÁ1''GQ¦L“éeË–Bܼy³Ä‹dddxyy3¦ÿþò” 2ä£>jÖ¬Yppp‘mKNNÖz÷8;Yσr£:í†r£Jh'þé›.h³$¢ ¹?‹TjGØœ$ .D•*­|²8ö@™Âþää©`¯Ý1¢ÙˆµÞ Q2ù?ÖóWˆ\„wUûúúêtºììl“é·nÝŠˆ%[déҥǎ3¤F!D“&Múõë—““³cÇ­·Û•ØS?.Ô ¶¨8wöÖéBjÔ ?Z]ôY ‹×…ÍU€GŸü•ÅÌÌL!„aд…‹4lØPqêÔ)­· 5*Ø"W4 Hl…N<¸5‰ÑT¾KÚ%HÎòg\Òí/ì»° ÝÖ|Ã5œ›ÃWíËþ+DMj:÷ßë¤Æ¶Bg>2–hg¥¥¥…Ôq†ýbÇJð—\øÉâɪ1÷÷oÒ#G;䲟õ_qTÇ0êüLK)”„|yžŠGÉÕ‹Ž&ä=ûðé@éÎàûãtŸK޾AUP,(1BdG«“LÏŽû_3cÍ«­‡ÐIýpãN¬Tb$ƒØÙÑF.@J¥G8!‚#쌦G¤Æ‡¯{é¼wxdGÛ1*@JBI¢ôgBpî#5µ\'éäÆÙÑÖ ÿG|„ 8BÞr™ÄF/Gú°!²£ìn‰â=œÁöD£ Rãý½ ムÅAvTÊÜlÀááêHò'™–ýhDR½èˆâ‘ ¸æpLGØ -¢ƒK§Æ•ù ,®¾rtXkN’NÒ‰ûý×ò$öÁ®ËES£Ñ÷ qYdGÍݿףdå;^j#8Â>ð™cwÙ×-BÈ6Gv´ÿÜ*<ß]ĵn`Á.Ê…Êù*!#;Ú‰‡¾¥14°onZ7Ѐ«¤Fîþ¦J’I¡ÑS£:`[’Q©:+ä0–ˆ|Vê„Q^”ä³°Tal»œ?5P« Ð³¨;Ú‡J÷'IBˆ °TáZœ<5š+1 !tBg¿…FcT«4BÝÑ~J:£]˜–šJv‚Š#´fÃäå´©±Ðj„} ‚½¢îhWþ4c² ¹Z£âWá„©Q®=˜+1>h¡ÎñR#¥*íPw´7ùKžxø Hj°!*ŽÐ”­ÂW!N•‹ºa—3¢d$Iètjž,Ô-t¿ôRÀÍM|`sTáüt:‘šš¦æ µú 4)1šo›ƒ\ÎXêTšJMM£îhoRÓR ¬>Ê(@ÂVŽÐŽõó—!e9T« ØŒ‚»¤Úæà‘ö>kûdzË3sÐ… «£«NË‘QØ85*î~r¶¾i:8µÆX»eæ–=ff¢ ÖBp„F¬üâØ…Æâ ™t¶È»Av´[†1×¢ÈsŸQØPÁNÈQSc1ßÜ<2’2ìÙÑž;> $T@p„¬ùÑᩱ˜ÝINaO ×;ªuZIš\õἊ]ØPÁNÅÁRc‰þõïx·f,1ÊSöÁÐÛ©bv[UxÃð  %Dp„ÍYíãÂaRcI߬)4BCt[Û?EãfZ€.lÁNÂR£oÍ® ö„ìhÿŠ×sýÏb$H(Ep„mYáSBõkuT¾Ë²7b׌°KdG‡PÂø(H(ÁŽÍ~ ¿íï#Yز££(y|$HˆàRûÃÁNS£Å%P"#ìC­ˆEñQ0¦ŽpTv—Õøw9‘Ñìë¢F•ÞF‰ŒpDt[;Õ⣠Aº.‚#lBÕÔh…FõÞ4‰ŒŠ(ìÝÖG…ø(H®‹àG¢qj4¼? uÞ"‰ŒÅCv´Wt[;"uâ£0— !Ò™a}j¼ý[ã²l¥íRûßÓºûõ"#œ ÝÖŽÈ8> µ¤  éÌް2•R£ê‘QÙ.+¼ñQb´Q¾Ñmí  oJª½GÑ‘í¼ްw¶îž¶ÎÛ‘Q5dGûF·µCS­ÿúŸ5’ ÁÖdÙ›½MGO[íMÈD·µCS?> ¤ó 8Âj,NV/4ZóRn.d´"B„# ÛÚÑ©yùãCëe0c#8ÂîX¥ÐòÏú¬üï]JŒ¶@vtt[;õ/ügÕ ¦qHGXGIßÚ­Uh´þ?m)1fQztÖ*@Þ_eH‡á¦uàŒJ”u:•S£NnˆN'tº´ÔT!I÷Ôß\Nè¬w:[1ÄØ=ùÜЩw¼¤ÇŸ?3¼ÑÉï{VxéŸùSAÅ¿¨àµ•45ªêt:¡ÓÉ‘QÂJaQ<È‹†Èh—@ÈŽÅT[!Ú1ŽVIB˜I„H;@W54¦ZÖƒ7$ 9»Z­›ƒ«í;:ÃU‚žk§`Å+ z®†´#G¨ª8á*|x<|5Œµ?<¸ŠPƒfœu¯€|蕸RcG¨GñÛ¶E‘±€7 ë}fíEGÇÄ çcR€¶I‚iSG¨¤8©±Øçu¡o Öû¨ KÚa“ê=׆ңàÏAS6êÂþçõ‘¶Cp„”}fïãAÁÉo¥JŒ‰ìè°ˆNÌv]Øÿ¼$!Òºް˜‚Ok¥ ŠOrk|$ÙÑ‘˜M»°zaB¤úް®¢?Šy2«þ1@^t*dGG|tnš%HAˆT Á–)øCºÀ·~“q)>iÕ}ë'/:-²£ã#>:=-¤(8D rdÑް@ÏfÞî-ûçZo÷Æw©%/:3²£S >º‚ü Rh"ÅÈ¢QRæ>˜ÿy‹7ù*’ž~ª¼Åë„N„Èëá]ÀeñÑE¿?kÙ#D1²(|å ŠOgî#Y§:$t’Ðýó‚|=´áEJ|¦%`jZ*©ÑåðmtNÄø›çÔY!ßvmÇL¾ÛZ_iXt;þ 3þæCþòC‚#ŠÉ8ÍŸB'EÃê-‰ŒÆ§µ¡5Zï2h‡ìè\ˆ®&‚Ô,D ¡ÖÇœ££«Šét÷ßcœ¶:!©xçˆ+Qú¬ŽqçµP£ÿиóZðÇb—Ìvd Þóµ@pDÁLÿQ/ Ièt÷ÏRµJy%{³æÅ@vtF&_Y¬V|\þh÷‘Ú"8ÂH!Ëgg ¾-°W“_¤óó’âkŒHWFˆ´=‚£ Ë•Ùw\Ýýÿ¨‹õvÌTcˆü9#“¤°ø-ˤ)øÃ±{„HÛ 8º …1ñáÙ¥ûÿSåŠ^¶è99áa5t[;;$!ÒšŽÎÈì€Ceï½Õªñùªä­Öd”'6¬‹nk×@‚„¬ )ø¸)‚£ã+f)±ðuH†î<ËRcáo¬œºÐÝÖ®„ “>ŒJ€àèP,(%¾>Éä°¤«,èm”“öˆÒ£‹!AÂ9²Žv© ›Ûª1>¥°ïá,Qæ¡oüg"§_?ç’ò'HaÙûkþ)øƒr@äH%ŽZS»ˆXä‹Ht QŒ÷9“7GÃÙeôÏnN08⣫2û½Äª$HAÒñž#ÃD˜Ö ÔÁÑ& ùz,«}m‘ÒI+þ°ÔðHGL„s >º6Û”!\Ëä“.\„kÝ"mÕ—|êTawÒ¶¦â½ß)ø€4¥~4àˆ.Ïl2ÿSÅXáÃéΆCsÓºN(<,Ìf_…®Ó=ô£è5uFƒ¦þjÐ錞7ÌòàçþºµÞÁ€õI†Îè,_˜É{¹É[n ×iôcò– Ø?*ŽÆ¢þÊß#Ôm" þù ã»çð0“·\Ëë‘…#q°KG»Vâ[4>t£|ÝýetR¾2#oL@‘TºYœírdHˆàOö®j;bÒ bÒõœ¿Zgf‰û?’$Ýý$äù}Ìä€Rù;#…÷k— wÛðFš––¿_›¿Ah‚Š£6”Ü„§È7™‡¿FI!Œ{¡už&jâ†+PÆlÅÑ’;°r/5%sª 8ZWÑO2óD¾«[¤Âç1‹ÒƒeŒ`eÜ÷ŤÀÁi‹RýÀ…|¾8Úß©ö\öLáGófÏžýî»ïþùçŸ 4([¶ìºu뜓“£dÙ°ð0ÉÌÕ‰†{ÙHr•° Ÿü—!Jº~ÌÌÀ®˜œÀ\•†’2|r„……+¹€²Èë)¥‚t ~Ap4+999&&&00pË–-111[·níß¿ÿñãÇ?ýôS%‹ŸJN.^.|8#*Z€£Pø ‡$ý£$\"¦¤àGI¸äÏÙé͈Õëõ£G®X±¢>>qqqz½¾ÈÅÃÂà 9ñŠ8Û$b"àìJð™ Ÿ’pY¬ˆiöӈɻÃ!8šqèÐ!77·V­Z¦¸»»·hÑâêÕ«GŽ)rñäSÉÅŽ†dDÀÅ©Uêáƒŧ>>Bˆk×®)YIxx¸ÖÛS;ÄA±Š0Í^9Y犃Lm Y$»fTQ¿Ø¢Þn ×îDÓÁÑ”|¸a6W¶WäAáô±±•+W†……õîÝ;;;[žrêÔ©† Ö¬Yó?þ§¸æ™Â5Žj:{ö¬Â䟃ÐDll¬^¯=ztÅŠå)ãÇ÷ññ‰‹‹ÓëõZ·ÎEq‚؉.]ºôéÓçûï¿/hNÛ+ò púØØ–-[„'N4ÔCCC‡ ’——g¸6À5Ï‚£šÒÓÓ…ÕªUÓº!‡rsskÕª•aŠ»»{‹-®^½zäÈ­[ç¢8Aìć~øõ×_ýõ×Mš41;§íyP8}l,--­L™2ÆCCC…çΓºæ™Â5Žj’O쌌Œþýû'%%y{{תUkÈ!f/<‡õH’”’’âïïïïïo<=,,LqîܹúõëkÝFWÄ b'š5k&ÿ²{÷îüÏrúh¢ðƒ"8}lnÁ‚¦éĉBˆªU« >S¨8ªIþWÈçŸþ÷ß7nÜ8 `÷îݽ{÷ŽÕºi®%;;;///ÿ5ã>>>Bˆk×®iÝ@Å â8}ì§ÕªUKŽ€ 111¥K—îÚµ«pá3…Š£š222¼¼¼ÆŒÓ¿yʆ òÑG5kÖ,88X뺊œœ!D™2eL¦—-[VqóæM­è¢8A§}âôÑP^^ÞÊ•+?ù䓼¼¼Y³f>SŽ%‘››»páBÃCww÷Áƒ !–.]j2g“&Múõë·hÑ¢;vÎvX›¯¯¯N§ËÎÎ6™~ëÖ-ñàŸƒ°=N‡ÀécŸ8}´ò믿N™2åÏ?ÿ úè£ ¡ºì™Bp,‰{÷îÍ™3Çð°téÒrp4«aÆ‹-:uê”Ö­v!>>>ùÿÁ—™™)„0 ƒ=à±7œ>„ÓǪîÞ½;sæÌåË—?òÈ##GŽ4hñÝ]öL!8–„——Wrr²ÉDI’ôz½N§ss{èÊQwww!D¹rå´nµk LIIÉÌÌ,_¾¼abZZšü”Ö­sEœ „ÓÇÞpúØž^¯óÍ7·mÛÖ¶mÛÉ“'› ‚®y¦08F5éééµjÕ0`€Éô£G !ÂÃõn k‰ŒŒÌËËÛ»w¯aŠ$I{öìñóó«[·®Ö­sEœ „ÓÇÞpúØÞòåË·mÛöòË/õÕW•]óL!8ª¦zõêõêÕ;xðàš5k =ºxñâàààöíÛkÝ@×Ò³gO77·¹sçÊ—›!bbb®\¹UªT)­[çŠ8A§½áô±1I’V¬XQ®\¹·ß~»Ù\óLÑI’¤uœÇÉ“' tåÊ•ˆˆˆ5j\¸páØ±cÞÞÞ_}õÕ3Ï<£uë\ÎâÅ‹g̘Q¹råæÍ›§§§'$$ÔªUkñâÅ|µ«V8AìͻᄏfÍšØØØü÷äôÑJA…ÓÇ–þþûïæÍ›{yy=öØcùŸíÖ­[ß¾}åß]ðLqÿý÷µnƒóèÒ¥Ëõë×O:•˜˜XºtéV­Z}þùç5kÖÔºi®¨nݺիW¿téÒ¾}û<<<:vì8cÆ ã+Q`cœ öf×®]üñGÏž=+Uªdò§V :(œ>¶”œœ¼nݺÜÜÜ¿Íyâ‰' c«]ðL¡âE¸ÆŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁЏ–±cdž‡‡ÿüóÏZ7DÌ;7<<|åÊ•Z7”"8@­.ªuëÖõêÕÓº! Á´¡u+ èª»“——wïÞ=­[¦Žûï¾>sæL“é¿ÿþ{xxx“&Mrss…W®\ùì³Ï:uêôôÓO?ýôÓ;wþøã/]ºTÐjå±2ñññ&ÓkÕªõÌ3ÏOÙ¿ÿ¨Q£Ú¶mÛ AƒþýûÏ;×$Û]¸paòäÉ:uzê©§Zµj5xðàC‡²E .4#·äüùó1117®]»výúõ_zé¥;v´†£GÖªU«E‹ÿûßÿ oݺժU«Zµj?~\ëƒÀÙ8†.]º!¶nÝj2}ãÆBˆ®]»zxx\¹r¥OŸ> ,øë¯¿}ôÑ*Uªœ;wnÉ’%½{÷¾~ýº%¯þé§Ÿ4hëÖ­¹¹¹+V<|øð—_~Ù·oß«W¯Ê3œ>}ºK—.ßÿýÕ«W{ì1I’öìÙÓ¯_¿]»vë…,X0kÖ¬R¥J5nÜØÇÇçèѣÇ‹‹3;sݺu téÒ¥éÓ§&~òÉ'Æ «S§Ž­gGpà4hP±bÅsçÎýñdž‰z½^UÝ»wB¬[·îÌ™3mÚ´Ù¿ÿúõëÿûßÿîÛ·¯Aƒ.\عsg‰_z÷îÝ .¬Zµêš5k~þùçM›6ýòË/-[¶ýôÓ¬¬¬¡C‡8p`ݺu{öì™8q¢$IŸþy±^+66vðàÁ{÷î]ºtéöíÛ_yå!IJeË šÔ¨Q¡¡¡ëÖ­Û»w¯">>~õêÕO>ùäСCµ;VœÁ€cpssëܹ³x¸èxøðáK—.Õ­[÷ñÇBäææ¶nÝú­·Þ*S¦ŒýôSC3@EGCŽ€Æý¶r?uTT”üpøðáóçÏì±Ç 3\¾|yÓ¦M–¼èõë×ÓÒÒjÔ¨a2ÚÛÛ»I“&999‰‰‰B9¹Ž?þàÁƒòÕ–¥J•zýõ×GŽY¬—ëØ±£ñCwwwI’ Y¤V­ZÇ¿xñâ /¼páÂ…·ß~»zõêÖ:\·ãà0"""ªW¯~æÌ™äääðððÜÜÜ-[¶xyyuêÔÉ0Ï… ~ùå—ÇŸ;wîìÙ³^Ú(„HMM•ÿnv†ŒŒ !Ä”)SF}ðàÁ~ýú=òÈ#µjÕjԨѳÏ>[«V­b½\•*UJÐÈÿüç?;vì8qâDÆ {÷î­ê^€8’.]º|ùå—[¶l ß»wïÍ›7»wïnè˜^µjÕ´iÓrss}ôÑúõë·mÛ¶víÚiiiS§N-Ö«äååŠ|wïÞBT®\¹ Nçàà`!D•*UÖ¬YsôèÑ_~ùå×_MLL³êËpY\ãÀ‘T«V­víÚ©©©¿ÿþûÎ;«U«V¿~}ù©ßÿ=//ïé§Ÿ6NâÁ°•™ôhoß¾Ýð{```… þüóÏ'NÏ“——Õ¼yó+W®\¸p¡M›6½zõ2<ëéé)æ9þ¼U÷Ɇ âââZ¶l¹lÙ²ÐÐÐM›6å¿i¨‚àÀÁÈCd&Nœ˜Ý£GÃôÀÀ@!ÄÉ“'¯\¹"OÉËËûþûïW¬X!„ÈÉÉ1»¶G}T±|ùòììlyJBB‚á&;²1cÆèõú1cÆ$%%ÉSnݺ5a„ÄÄĈˆˆ€€€   ÿýï¿ýöÛ¢E‹ ¥Ê3gÎüòË/B«ÞOñâÅ‹S§N-W®Ü|PªT©éÓ§»»»O™2Åò‹; ?ºª8˜N:͘1#99ÙÝݽk×®†é5jÔˆŒŒÜ¹sg»víêÕ«'IRrròõë×ûôé³lÙ²~øáÿûŸ|cc]»výöÛo9Y«V­¿ÿþ;%%ÅÇǧR¥JwîÜ‘çéÖ­ÛÁƒüñÇ®]»V®\ÙÏÏ/555;;»zõêò·ÝÜÜÞyçñãÇÏœ9ó›o¾©R¥JvvöŸþ)IRïÞ½ëÖ­k¥]!IÒøñã333?úè#97?ù䓯¼òÊ7ß|3eÊ”9sæh}¬8*ŽLÅŠ6l(„hÞ¼yÅŠŸš5kÖ¨Q£‚ƒƒåû;¶hÑbýúõ'NìÓ§»»»Ù/¬Zµêwß}×¶m[77·}ûö:uªråÊ . 0Ì£Óé>þøã/¾ø¢M›6z½þÌ™3!!!cÆŒY¿~½ŸŸŸùdíÚµ=ôÜ€"À•*UªQ£†"44TLNNn×®O%¹¹¹Òë¿þú«OŸ>;wî|à ¿7$$ÄÇÇG‘••en4^¹r%...%%ÅËË«„·XpÈÁ 4LU€ ž~úi£Ñh4úé'nð¥—^2§Ægžy&))éÆçÎûì³Ï*Uª$„ÈÎÎ~òÉ'‹|ïÒ¥K¥JÒÒÒþüóÏgžyFZ~öìÙ¹sç–ü “'Ovô GN—••õꫯvìØ1$$$$$$66vòäÉ™™™…×LIIéÑ£Ç=÷ÜS£FÁƒŸ;wîå—_–.›{å•W”°÷"/I¼}ûö¼yóZµjV±bÅ ôïßÿ?þ0¯ mÇébcc CVV–(þÇ´´´^x¡eË–~~~5jÔèÔ©ÓÚµkKé¦M›V¯^-½ž4iÒ_|ñÀ¸»»‡††2äÛo¿•¾•œœ|üøñ’7UµjÕ/¾øÂ|µè[o½%U @ïL`£Ã‡›ÿ²iÓ¦’WÞ³gOÍš5 ÿǧjÕª‰‰‰×ܱcGPPPÁu"##ûôé#½ž:ujÉ;š:uª´f÷îÝ·÷yóæIKš4i"-¹qãF³fÍ ïÂ`0|òÉ'Ò:“&M*¼Âõë׋ܠÉdúå—_‚ƒƒ ¿eèС%ž={J«^»v­ð ;wnذaÆ W¬Xaͩܲe‹ù»ëׯ·ãìÐ:Žœ(''§OŸ>'OžBx{{?úè£;w._¾¼âÌ™3O>ùäµkפ5oܸ—žž.„(W®\‹-ÂÂÂN:µlÙ2…ïý7ÞØ³gÂÇǧ[·n£FzðÁ…&“é…^8vì˜⥗^JII‘v-„øúë¯ ~i!33³oß¾iiiBÿ^½z=üðÃÒ·>ûì³%K–WÉŽ;¤={ö¬X±báÖ¬YsàÀôêÕËšئM›råÊI¯¥1Ð9‚#'š9s¦t{¯¯¯ïÖ­[ׯ_¿f͚ݻwK½½ .¼õÖ[ÒšsçÎ=wîœÂÏÏo÷îÝ;vì8sæÌСC•¿÷Í›7K/¦L™²jÕª?üp÷îÝ;vBäæænÚ´IqÏ=÷Ô¬YÓÍíÎrÃÃÃkÖ¬i0ŠÜàŒ3¤{SªW¯~âĉ+V$$$˜¯\¸pa‘ïº}ûöÅ‹¥×‘‘‘9}ƒ¡J•*Òë .^Ašs·0vìX‡ì€8Ñš5k¤£G6_Ã× AƒqãÆY¬`îí92&&Fáææöá‡9c«¨½›ޏxñâ/¾øBJo‹/>|øðáÇ{÷îmkÙ6l^¼ôÒKæÙóQ£FI³Ì7oÞÌËË+ü®‚Wm†……Ù}Ð,ÜsÏ=…·@·Žœ(99Yzñè£\þÈ#H/Nœ8‘ŸŸ/„0ß®QpM‹7šo%1“ržkö^$ó:ÉÉÉC† mܸñG}”••U¿~}sÇÎz)))Ò‹–-[šV©REšeÞ½{·»»{áwI7MK ?µÛnÒ __ßÂß ©QH`` £ö@ixŽ#gÉÌ̼zõªôÚâ!…áááÒ‹7n\¼x±B… —/_––Xt˪V­ªð½O›6-33ó³Ï>»yó¦Âd2íß¿ÿþýo¾ùfëÖ­W®\Y¹reûÊö÷÷·þåÊ• ’.Ó,øôï‚®^½*=ÓÑÛÛ»B… ÖlÖþ|Áo™¿,W®\åÊ•+Uªäíí--‘¢™ùº=ÅîÝÓÓóã?¾téÒ÷ßß·o߂Ͼ޶m›­¾W©R%óM3ænŸ•Z´h!½øùçŸoß¾]x…ºuë™oå.ÙöíÛoݺ%½.òÎqzCpàDQQQÒ‹_~ù¥àró—µk×öðð0 Òó½&BˆÜÜÜ„„„‚o0`À…»IwŸ¸fï…ݼyóâÅ‹/^¼yófŸ>}–,Y’––¶qãFsÌÚºu«MGÌ`0˜ŸôÛo¿™—_¸p¡yóæÍ›7øá‡¥éõ† &½øóÏ?çÏŸoñÝÕ«W›Û‡mÛ¶µ¦˜>ø@zQ¡B…‚óæt‹àÀ‰:wî,½øðÃ÷ïß/½>|øðÌ™3¥×:u’^˜£Ì{ï½'=ÂÆd2M™2Åh4Ü OÈÝÌwo¸`ï…=z´J•*UªT •žûãáá;dÈi…"§›Ím¼"™‹™={¶9êÍ™3g÷îÝ»wïöòò2ßmá‰'žˆ•^=zúôéRoõÖ­[‹/8p ô­š5k–pa¨äÂ… Ç_±b…ôeÿþý ^C @¿ä~$õ)øè°°°ZEùí·ßL&SvvvõêÕ¥5}||žxâ‰nݺ™¯® ½zõª´ÍÔÔTó#Ë—/ÿðÃ[æ¹ïéÓ§›+¼÷Þ{¥…Í›7Ÿ9sæ­[·LE=üâÅ‹æ;QBBBž~úé‚×þôÓO%„ƒZ|xtPPPÁ›i¼½½8Pò©´¸$´råÊ—.]*ò-<Ђ#›ŒÅÙ²e‹´òo¿ýVäc«W¯¾mÛ¶‚›]¸p¡§§gÁu*V¬h~öµ}Ÿãð½Îy»ví²ÈjfíÚµ»qã†y}ûö-øÝ>9æ¿ÿý¯ùÍ‚&Ož\êÙÙ¾}{qã©Q£Æš5kl:•»ví*î-G@o˜ªà\Íš5;xðà+¯¼Ò¡C‡   öíÛO™2åСC­Zµ*¸æÐ¡C7mÚÔ³gϰ°°ðððž={îØ±£Œ÷d¸`ï=ôPJJÊ+¯¼Ò´iÓ°°0OOÏ€€€V­Z}öÙg ^^^æ5ç̙ӷoßààà *Üwß}ÅÍ8 !zôèqèСgŸ}¶iÓ¦+V¬Q£ÆO<±uëÖ7ß|³ÔzZ¶lyâĉ9sæ´mÛ688ØËË+**ªk×®sæÌ9vì˜yú¾îîîÍš5{å•W’““z衲œZb0™Lr×Å8pà¢E‹„sçÎ}î¹çtµwP:Žaøðá111111#FŒ0/¼~ýúÆ¥× 4ÐêÞ@-x8E KJJB$%%U­Z5..îï¿ÿž0a‚t_pýúõ›4i¢Õ½€Z0U @rrryä‘íÛ·þÖ=÷ܳyóf§öüäÝ;¨Á€Rܼyóûï¿ÿúë¯O:uþüù   5j<òÈ#cÆŒ)òƒ’µ´wP‚#¬ÂÍ1° ÁV!8À*GX…à«`‚#¬Bp€Uް ÁV!8À*GX…à«KqêÔ©¨¨¨?þøCîBdFp,ÅâÅ‹å.@<ä.@¡233?þóÏ?÷ÝwrנǢuéÒåÂ… rW  Ç¢½ùæ›7oÞB,Y²dçÎr— ?‚cÑZµj%½Ø¼y³Üµ(ÁÑñ¢¢¢ä.8Wrr²Ü%È€àèúüaBTT§^Ÿ8õºÅ©×-Ý6‰xÐ4ƒþéG HŽÊg&'Ô¦Ó†#Á¸€)ÐeCpö²>’5àŠbM($ê Áp˜õë×Ë]äÁ©×-ÕŸú’£!¡…кâ"Ñ6âq<¥xã7’““x๠ 4Å=;ÆTÌ?ÀFtP§Â}D² œŒà€â9×LL„ËP‹¤HF„2P’"Ô€à€HŠP!‚#®R0,’¡BGEˆŠÒ뇥»\rr²Ü%ÐÂ"4„ਠ pÂ"4Šà€#¡GÊÀœ ‹Ð‚#¶3!D„ˆ /BWø¬j¬SèÓŸ§Œr׸GJ#ÍGÓ\„î(×/w#8p7ò"P ‚#ÿ`J(Á {´ëpW5ì´uëÖØØØ   °°°=z;vLîŠÀvn‘&5¥"8Âûöí‹MMM8qâ¤I“Nž<Ùºuë´´4GmÿêÕ«Ï=÷\µjÕ*V¬Ø¦M›Ý»w·æíÛ·=<< w«\¹²ÜG€âŒŒ¬ÃT5ì1oÞ¼üüü„„„ªU« !ú÷ï¹dÉ’qãÆ•}ã™™™Mš4ùóÏ?{÷î´bÅŠÇ{lóæÍ111…W6yyy-Z´ˆŒŒ4/¬X±¢ÜG€R1+ ”Áö8tèPtt´”…uëÖ=yò¤C6þÞ{磻¤|õÕWB¼ð 7~ñÅ ¯œ’’"„˜>}z‡ä>*”_€2cªöHOO¿çž{Ì_Þ¼y3%%¥zõêÙøwß}:`ÀéËÈÈÈÞ½{'&&ž?¾ðÊRp¬U«–܇€‚1+ 1rna¼¼<!„Éd2ƒ ¬b‘ù©)ÁQÑ ²^Fa*íÈÝÝ}èСÒëiÓ¦½öÚkO>ùdÏž= ®“••Õ½{÷âwa¹©myíÚµ‚ 333……·°eËoooó·|ãÆ#F¬X±bÈ!r>² Ñˆ‘ˈkÍd’óŸM¤; wîÜi±ÜÏÏÏT¼ÂÛ qss³˜•NOOB„‡‡^?,,Ì"P>òÈ#Bˆ#GŽÈ}ö¸—3¢E^¤ÈOŠ}è8Â1rss…îîî…—Û4Uíáá½mÛ¶‚ ·nÝj0êׯo±rjjêêÕ«Û·o_¯^=óB©=é¨[¼¨]Fܶ¢óa§={ö?~¼N:Ò—+W®B4jÔÈb5[§ª…Æ {á…V¯^ýÄO!ÒÒÒV¬XѱcLjˆ‹5}||^z饦M›þú믞žžBˆüüü™3gzxxtìØQî#À%¸œ$E"8ÂN·oßnß¾}·nÝêÕ«—””ôå—_ÆÄÄôîÝÛb5iªÚ¦-4è‹/¾èÛ·ïˆ#üýý¿úê«ìììiÓ¦Iß1cÆ;ï¼óöÛo?÷ÜsÁÁÁÓ¦M›8qbíÚµ;uêäïï¿aƼõÖ[ÑÑÑr!NF£Qß †E~ \†à;µlÙrðàÁ³fÍZ´hQåÊ•‡þÎ;¶ƒ¯¯obbâøñãW¬XqåÊ•æÍ›/]ºÔüyƒ7nÜøûï¿oÞ¼)}9a„š5k¾ûî»K–,ñöö¾ÿþû×­[÷ØcÉ}x8F]",ÊÎ`k7¥ŠŠŠJNNvö[äQ«V­7Ê]ˆmœ}œFcáùtè§Þ¥”ÔhäÔ»€2âêþp; G€zÐhÔe†E‚#@”Ôh„3Uà{Lž<Ùßß_î*èF",ªÁö6l˜Ü%Ð R£¶UàP*¦§5Äœ9ŸªFp(Fõ£¹¨=G€òՌ梆JÂô´j‘õ€àP jÃd´ÞÊ@jTš‹ºEp(©Q È‹ 8äFjT6ò"ÌŽùp+Œ‚‘QÁ ŠD^D Ž9†¼k¸É]ÔjëÖ­±±±AAAaaa=zô8vì˜ÜPR£’þ9!&N JCp„=öíÛ›šš:qâÄI“&ú¨ÜCàh¤F™ðÈ#8SÕ°G^^ž‡‡‡Âd2ÆAƒ…‡‡<Ø! 1™L&“‰ní 5º—0Âè8Â~7oÞôööBøúú.Y²$((HîŠ(©Ñµh1ÂyŽŠfø÷¢˜JûÏŽ‡‡ÇÂ… ÓÒÒvîÜÙµk×>}ú|÷ÝwÃ]5çææ®Y³¦¸-tëÖMÆpR£«p#\€à¨h¥F7y¹»»:Tz=mÚ´×^{íÉ'ŸìÙ³gÁu²²²ºwï^ìMŠ €²"5º-F¸ ×8Â1(„عs§År???Sñ䮀3‘«ábtá¹¹¹Bww÷ÂË™ªôˆÔèLÌJC.GØiÏž=ǯS§ŽôåÊ•+…5²X©j@HNì4äEp„n߾ݾ}ûnݺիW/))éË/¿Œ‰‰éÝ»·ÅjÒTµÜÅ€ê¡\ã;µlÙræÌ™»wï~ùå—†¾yóæÂSÕt‡v££q!#”ƒŽ#ìï¼íGEEÑ­T†Ôè8\È"8„Ôè ÌJC±ŽG 5:‘ Gp„=&Ožìïï/wƒÔXfDF¨Áö6l˜Ü%P RcÙ¡"GäAd„êe@»Ñ.DF¨Á`/R£íˆŒP5‚#À.¤F¡G€íH¶ 2B3Ž8 ‘Cp؈v£ˆŒÐ$‚#À¤F+p UG€ÕD¥¡Ñm#8àDFè›Ü@­¶nÝÖ£GcÇŽÉ]'£ÝX Ã?džÃÍ#8Âûöí‹MMM8qâ¤I“Nž<Ùºuë´´4GmÿàÁƒO>ùd•*U*V¬Ø¤I“9sæäææÊ=h@ßHE‰Œˆ 2BW˜ª†=æÍ›—ŸŸŸPµjU!Dÿþý###—,Y2nܸ²oüÔ©SíÚµËËËëÑ£GµjÕ6mÚ4nܸ­[·þðÃrþeâ”Ñ!w!€ëaC‡EGGK©QP·nÝ“'O:dããÆ»zõêîÝ»›6m*„˜>}ú!C¾øâ‹ 6<úè£rÐ%Úw3_Îh”»ÀŘª†=ÒÓÓï¹çó—7oÞLII©^½ºC6žÐ¦M)5JFŽ)„صk—Üãt‰ÔX—3Bçè8ÂyyyB“ÉtúôéÉ“'‡‡‡<¸ì[ÎÍÍ1bD“&M .LMMBxyyÉ=nºF„ްßÍ›7½½½…¾¾¾K–, *û6=<<Þ~ûí‚K._¾üöÛo»»»÷îÝ[îúCVBð¨àGe3äÜ»©”ÿHzxx,\¸0--mçÎ]»víÓ§Ïwß}g¸»æÜÜÜ5kÖ·…nݺ•¼‹-[¶ ><%%eîܹµk×–óh:DjBp€ŽÊVZt“—»»ûСC¥×Ó¦M{íµ×ž|òÉž={\'++«{÷îůØþùçŸ#GŽüùçŸk×®½iÓ¦öíÛË=\@gˆK4B¸9Ž1pà@!ÄÎ;-–ûùù™ŠWÜÖ¾ýöÛûî»ï÷ߟ?þÿþ÷?R#ã& HtáÒºÝÝÝ /·uªúçŸîß¿Ÿ>}æÍ›çëë+÷È]Òw»QߣJBp„öìÙsüøñ:uêH_®\¹RѨQ#‹Õlª6™L&L¨ZµêâÅ‹ ÇPp*榒a§Û·o·oß¾[·nõêÕKJJúòË/cbb ßø,MU[¿Ù£G;v¬^½zæ«'ÍzöìÙ¥K¹Ç è€^nz7`‚#ìÔ²eËÁƒÏš5kÑ¢E•+W>|ø;ï¼SöaJJŠâèÑ£GµøV­ZµŽ€Óé2=Ñh¬¤—à¸|ùòeË–¥¤¤”/_¾mÛ¶ãÇ(aý[·n}ýõ×ëÖ­3 49r$ƒ±ïØmvíÚÕ¦%”‘.£2`']ÜU=gΜ©S§ž~\üóùz£ñà(Ý:]¡B‹å+VB\½zµÈweff¾óÎ;YYYõë×oРAFFÆöíÛW­ZõÐCuìØÑšý&''Ë=t-""BÕÛ‡b©øÔ„0‰¡Úú­¢Î9G*>õ°Zrr²0þýÚd…:D:¡ñàèïïo0²³³-–_¿~]üÓw,l„ ûöí›4iÒ3Ï<#-9wîÜSO=5vìØŸ~ú)22Rîa¬Â“½QVæ¼È3†…š¿ÆÑÃÃÃÏϯpg133Sa¾Ïº ´´´Í›7תUËœ…aaaÿùÏnß¾ýÃ?È=&pM_ôÇ}0°“Áðï?“éÎ?!4…!!!RR4“.t )¼~FF†¢FË¥Fã¥K—ä tšŽÄp‚"Ã"y±íÇ:äååm۶ͼÄd2%&&ÄÄÄ^¿Fîîî'Nœ°øà;é²ÅZµjÉ= pf+µ‹¶Ó~pŒ‹‹sssûøã¥ë… ,HOOïÕ«—§§§´$++Ëh4J7Çùøø´iÓ&55õÃ?4?!üĉŸ~úi¹rå~øa¹(ÓÓ(a± 4~sŒ",,lüøñ3fÌèÚµkëÖ­SSSwïÞ]¿~ýaÆ™×ILL;vlíÚµW¯^-„xã7z÷îýé§Ÿ®]»6:::##cß¾}ùùùS§N­Y³¦ÜGÐbSN‹c‚ƒXÜ {i?8 !\¹råU«V­]»644´_¿~cÆŒ‘žÈS¤   µk×Λ7oûöí[¶l hÛ¶íóÏ?ß A¹‡Ž ¹„ÅÝÓ(aÑ &¥£EEEÙúG;Þ"»­[·NŸ>=))©\¹r>øàÛo¿]·n]¹‹*…³³Ñhä‰nú¤¾S¯­à(ãhÔwêõÀ%ÐQãn‡ÐEÇ·oß¾ØØØêÕ«Oœ8ÑËËë³Ï>kݺõ‘#GŠ|ÂQYܾ}»uëÖƒa×®]rÐ R#´‡æ¢«hÿæ8üyóòóóÆ?zôèÄÄÄÜÜÜ%K–8|GS§Nýí·ßä.%âîip›‹ëÑq„=:]µjUéË€€€ºu랟E‹¹ÂåË—‡zß}÷U¬Xñ¾ûî›8qâµk×ä®Z!Z·níãã#wÅêß¿¿Á`øë¯¿ì’l$ßÿ½Á`øüóÏå.¤šJÜ1¢ny¶ø'wšBÇQ¿>úè#¹KPœ¼¼¼>}úäääÄÇÇשS§ð 999>ø`JJJ‡:uêtúôéY³fmÙ²eçÎîîîr—”N;©‘.£Ž1õ,#‚£îüý÷߇Zºtéüùóå®EqΜ9såÊ•§Ÿ~ú‹/¾(r…o¿ý6%%eÔ¨Q~ø¡yÉÓO?ýÃ?ôîÝ[îòíÍ7ß|饗‚ƒƒå.D%´“Ȩ?$Eå`ªZw4hЦMRc‘òòò„¾¾¾Å­°yóf!İaÃÌKúôéãååõÇÈ]»œnݺe*í¯xµjÕxà"§›­y»ÂG§Zˆ£LLë€ÅÔsáÙg¹ Ô5‚£‚\ºtiÈ!÷Þ{¯¯¯o»víf̘qþüyƒÁàØ÷ÙgŸ­ZµjÕªU±±±v¼ý™gž1 «V­*¸ðÚµk>>>¡¡¡RðÚ¾}{=ªT©âååU­Zµž={w%e‘—å5mÚ´råÊæ/oݺõꫯ6oÞÜ××·Aƒƒ¶¸NnõêÕ:t¨R¥J¥J•6løá‡æææWÿµkׯ׸qãJ•*=ðÀÏ>ûì¥K—¤o=ÿüóµjÕBÌ›7¯¸Ã~ñâE!Ľ÷Þk^’}ëÖ-//¯âöXêѰ©þRW¾qãÆÔ©S›5kV±bźuëΜ93??ßšáÇÇÇ †íÛ·›WîÒ¥‹Á`ˆ‹‹3/Ù´i“Á`èÕ«—tîêÕ«—ššÚ¾}{ooo//¯zõêÍš5«àî 6lXÁkm}»…R*®]»6zôè vêÔiÍš5ãÇ7 ûöí³f Ö”wåʕ矾~ýúýû÷_¹r¥5•[Å9ùNõ©Ñ|9#4‡‹ÕÄG«S§Žï:wî\½zõ CÓ¦M{õê.„²Ý¼yóœQçСC…»wï¶é]6lBôíÛ·àÂÅ‹ !&L˜`2™~ýõW//¯råÊ=úè£ýû÷oݺµ›››ÏÁƒ¥•[µjåááa~ííím±‹&MšI¯322bbb„ÑÑÑO>ùdÓ¦M…!!!IIIÒ R¼óòòjÓ¦Íc=V±bE!Ä‹/¾Xdñþùgdd¤¢^½z}úôiذ¡¢J•*‡2™L›7o~õÕW…­Zµúøã>\x ­ZµBܸqüd„ žžžG5™L§N²X¿Ô£aSý%¯ÜªU«råÊuìØ144tРA¬T©’â­·Þ²fø_ýµâµ×^“VÎËËó÷÷BåççK §L™"„øì³Ï¤ÝU«V­^½z!!!4h´»7ß|³„Ÿ·³gÏš«µéílJý©8þ|ݺu… 4ˆ‹‹«]»¶Á`¨W¯žâ÷ß·f ¥–g4«W¯.„¨Q£F=¤]´oßÞ||ÊÄ ÿaV÷ë…0)õ¯UáßzXCÜ9©wþÉ]Ž=ìû[¯ª<[ gßÓSO=e0–/_.}yãÆ>}úHá^QÁ177788Ø××·`xzüñÇ…Rx’.õûí·ßÌßýì³Ï„Ó¦M“¾´)8Ž9R1{ölówÿûßÿº¹¹uêÔIú²zõêþþþçÏŸ—¾¼råJpppÅŠóòò ÿôÓO¬Äd2-X°@ èÒ—)))Bˆçž{®¸á›ƒã?ü0jÔ¨fÍšÕªUKÊ"¦¢þ„”z4lª¿ä•¥Ú6l˜žž.­°ÿ~!Äý÷ßoÍð/^¼h0Z·n-}+))I*„’¥ÉdjÑ¢…Á`8wîœyw 4¸té’ôÝÇ{xxÔ¯_¿„Ÿ·‚ÁѦ·ü±)õ§âÙgŸB¼ýöÛÒ—yyyÒ[ÌÁ±Ô-”ZÞ“O>)„xá…rss¥S?gÎi Ž*þ½‚#£„àh% $E G8Œ?L/^ôôô|ì±Ç .üûï¿JŽsæÌ™U¼k×®•¼Sû‚£Éd1b„â矖¾ÌÈÈðôôlÞ¼¹ôå²e˾ù曂ëïÚµK1räHéKëƒã•+W<<6Õ_êÊRmëׯ/ø®5jT©RÅÊá7iÒÄÓÓ3++Ëd2Iwÿ¼ÿþûBˆ>úÈd2eeeyzz6jÔ¨à¡X½zuÁ­EGG›C¿…"ƒ£õo7ÿØ”úSqùòeûï¿¿àH³²²î¹ç)8–º…RË;þ¼¢víÚæÓ$ú-Z8 8Òn¼S´Ò#£„àXí%E º ŽÜU­III·oß~øá‡ .ôóók×®Ý?üPÜ»^~ùå7n÷ݧžzJšÊt¸øøøO>ùdÅŠO<ñ„båÊ•·oßj0ÜuwÞ#<’pìØ±úõë[_Ûܹs?üðÃÔÔÔüñÕW_ݼyóÑ£G ¯VòÑ0 Ö×oåÊ=ôPÁ/+V¬(.k†ß¹sçßÿ}Û¶m>úèÖ­[«T©2xðà—^ziË–-#GŽÜ±cÇíÛ·¥î²YóæÍ ~Y¾|y›N±o/õ§"00077·cÇŽGZ¾|ù|píÚµÖl¡fÍš%—'ëÎ;{xÜõŸÐÎ;ïܹӦ#àê»´‘›¦U«à½Ï\˜¨UGEHOOBY,—& ‹“““#Kµ-Z´¨V­Ú?þxûömOOÏï¾û®|ùòæ‰õ“'OŽ?~ãÆ×¯_/W®\½zõêÖ­{ðàAë·oúç†ÑhBlܸqãÆ…W;sæŒâóÏ?oÒ¤ÉW_}5cÆŒ3f¸»»·hÑâµ×^“i={¶ÈC*]Nšššjëqðôô¬U«–t‰áøñãçÎ+µ¬ *õhX_¿5+{yyùùùY­5ÃïÔ©ÓôéÓýõ×G}tÛ¶míÚµ«T©RÓ¦M·lÙb2™¤;Ê Gww÷ÀÀ@[[ß^êOÅÕ«W‹©y‰5?W%—'u Þ#% ³ûh8‰*S#‘Q=xJŽqWµ"H¼/_¾l±üܹsr—VƒÁðÔSOýý÷ß¿þúëùóç·lÙÒ»woé6ׯ_oÖ¬ÙúõëÇŽ{äÈ‘ìì줤¤éÓ§Û´})F‹þ ¿úê«EvË¥Éâråʽð ¸páÂÿûßçŸ~ÿþý<òÈž={,6+ý™—þä$-‘N}Ú´i#„øßÿþg±Üš£a}ýÖ¬lÑM´uøÍš5»çž{’““/^¼(«}ûö‡Þ²eKåÊ•¥ûHJÝ5ì{{©?Ò .\°x£tG¼5[(µ¼jÕª !  NáÃkûAqdÐSYjä¦i5à)9 8*BDD„bË–-æää”<íåããc(žÝŸíføøx!ÄÊ•+—/_žŸŸÿÌ3ÏHË·oß~ùòå±cÇNŸ>=::Zú0•ŒŒŒ6•››+=ÄGrîܹ?ÿüSz-ÍÃZ!Ä'Ÿ|2jԨ˗/Ÿ:ujüøñÒcPBBBzôèñÑG½ýöÛyyyëׯ·xWTT”bãÆ¦»ÿ2ýòË/æ}YÉâ 8R" ±X­Ô£aSý6­\˜5Ãwss{ôÑG8 ] aŽBˆÕ«WïÝ»·S§Nnn2ÿG£ÔŸŠèèh!į¿þZð»999æx]ê¬9˜ƒaݺut…Ò3BM©‘ T0’",¡Zµj±±±ëÖ­3? .77wܸqiii⟧Röú믿S¼žb]²7n$'''''—°NÆ ëÖ­ûÃ?,Y²$22²mÛ¶Òr©I#•-¹zõêË/¿\Ü(*W®œ››»nÝ:éËÛ·o3ÆœlBBBâãã?þøcó[~üñÇ‘#G&&&V¨PaÖ¬YãÆ»råŠyi"Ò|™šYHHÈSO=uðàÁwÞyǼpáÂ…›6mjÛ¶íý÷ßoý!;v¬ùõÍ›7ß{ï=!„ù ˜•z4lªß¦• ³rø;wÎÏÏï½÷¥‹>[´háåå5gΜÜÜ\‹ eQêOEppðSO=uàÀé¼!L&ÓäÉ“Í'¢Ô-”ZCåÊ•Ÿ~úéäää‰'šŸìøÉ'ŸlݺUîã6DFE")¢$rߣAöÝiµoß>???ƒÁаaî]»JsaÒS÷jÔ¨ñÕW_9¼Îâîªþý÷߅柋3mÚ4éGhúô鿅ם_—ž¡ýàƒŽ;¶_¿~?þ¸——WHHˆôô“‚wUÿý÷B//¯~ýú1Bz’eÕªUÍ·Öž={VJE÷ß¿~ý:vìèææV±bÅýû÷K+H7åÜsÏ=={ö8p €š4i"Ýl!55µFBˆ <ýôÓ7B„„„˜7cå]ÕÁÁÁM›69räðáÃ¥sÔ¹sgS¡û+­96Õ_òÊEÞ¢~ß}÷IwU[3|“ÉtéÒ%©§Ø­[7óBé¶-+W®<…H >J©ÈŸ·‚wUÛôö‚ë—úS‘ššZµjU!D£Fž~úiénèÇ{Lqüøqk¶Pjy§OŸ–žãX³f͸¸8)dKO¾´ÿ®jÇý÷XÿeWÉMÓ¥ÒÆ]Õš¿Út{W5?Žg÷Sjjjß¾}ëÕ«W¡B…ZµjM˜0!--­I“&aaaï¼óŽÃë,cp<~ü¸ÂÍÍ-55µàòÓ§OÇÇLJ††úûû·k×nñâÅ&“éõ×_ jÒ¤‰©ÐŸäE‹5lØPúüooïO?ý´_¿~Óõk×^|ñÅF•/_>""bàÀÒS$7nܘ3gNÆ ýýý}}}xà7ÞxãêÕ«Å•}õêÕ^x¡aÆ*ThРÁðáÃÓÒÒÌßµ28¦¦¦öéÓ' ÀÇÇ'&&æ­·Þ’ËRøOH©GæúK^¹ÔàXêð%>ø ¸û‡¯¿þº¢mÛ¶‡B®àXêO…ÉdJOO2dHdddhhèÓO?}üøqé1–æ‡\–¼kÊ»|ùòsÏ=W¿~}é"„úõëÿüóÏJŽ*øÏº&"£D¥Á‘¤Xvº ŽŽUò<¯òýõ×_QQQׯ_wÙM&ÓÙ³gƒ‚‚ ¡¢´nÝzûöí7nÜ(ò3F£t¹*äµcÇŽŠ+>ðÀ6jÔ(55ÕÜRu œœœ}ûöµlÙ²Lw 9èšD¥_Ú¨¹Gí¨è·žgå8–þÖÛ‡kQ„ƒÚt³HÙI3Ô OP‹ÿüç?>ø`ÁG,ýòË/èÓ§3nîñññ /ã=æÚÇåŒ.WÂ}-r—ã9ްô¿ÿýoìØ± .”»ÀNÓ§OïÙ³gãÆûõëwÏ=÷=ztÅŠÕªU7nœÜ¥9—BÛšë2*mE8Á–¢££;&w U­ZµºuëÒ[R¸nݺ%$$¼ûî»Ë—/OOO Š‹‹›={v•*Uä.­ŽH|ÊMDF'#,•Ž€ –.]*w °JÛ¶m ? IÔ˜i4: Ÿ×EdtÚŠP‚#ȪÌÝBeµ™›vÂ"ˆà*¦ ÔH£±Ì˜ƒ†òé%8._¾|Ù²e)))åË—oÛ¶íøñãJ~Ë¡C‡æÏŸäÈ‘ëׯGEE5Jz02(„RR#‘± h+B]tñÇ9sæL:õäÉ“M›6­X±âÊ•+‡ž““SÂ[âãゃƒcbb80`À€„„¹‡@[”ýÊ2žÎh3¯õÒ~pLNN^°`AHHÈúõë,X°aÆ|ø7ÞhݺõóÏ?¿aÆ[·n•e›:tÈËËÛ¶m›y‰ÉdJLL ˆ‰‰)ò-?üpffæñãÇ .”žÝS·n]¹Ýq]jÔß ‹€M”Ç÷믿~óÍ7ñññ+VLHH=ztË–-_{íµ¤¤$û¶çææöñÇK×5 !,XžžÞ«W/OOOiIVV–Ñh4ßÙ£G!ÄÔ©SÍ]ÏC‡}þùç~~~;v”û P9ÅÎSë&2Ù\”»(@ &¥þ7"77wëÖ­?ÿüsBBÂ7„Õ«WïÞ½{·nÝÂÃÃmÚÔ_|1cÆŒðððÖ­[§¦¦îÞ½;::ú‹/¾0?¦gíÚµcÇŽ­]»öêÕ«¥%óçÏï½÷üüüš4i’½wï^ƒÁ0sæÌN:•º»¨¨(îªÖ§;÷WBl;õ6GWäL< ÑIZä·^·tû·^¹ãñððhß¾}ûöí³³³W¬XñÞ{復¦~ðÁ~øaÓ¦M{õêÕ¥Kwwwk65xðàÊ•+¯ZµjíÚµ¡¡¡ýúõ3fŒôDžâ<ûì³AAA‹-Ú¹sg@@@‡FU»vm¹ }qQjÔnd4çEzаÉÝ·9¡N¹K”‰r;ŽBˆ+W®üúë¯ëׯߵk—tWJåÊ•===Ï;'„¨U«ÖgŸ}*w™–tû¿B@ïA·l8õ¶$A§§F6]ù9.üÖ«WÉѰÔ_ Ýþ­WbÇ1==}ãÆ6lسgO^^ž"((è‘GéܹsãÆ…;wîœ3gÎáÇÿïÿþoáÂ…r× *¤­F#ú‡ÂÊ Q$eÇ%K–lذá÷ßÏÏÏB>úè£:ujÒ¤IÁYéV­Z5nܸY³f{÷î•»dp '¶5Ôhd&Z爆®§¬àøúë¯ !üýýyä‘N:=øàƒÅ]Åèãããíí­Àyj(–Õaй©QåNi.êM éPå?˪¤¬àØ«W¯Î;7oÞÜš»^h7€ TÞh¤¹¨a4UDYÏq\·nÝ®]»ŠK£FzôÑG宜Ë)íFu>£‘.j‰ÁPì?“©¤Peu³³³oß¾]Ü·þüóÏ¿þúKîÀ.ÖåAǧF6i.ªÓÊš'pLLL|þùçÍ_.Z´hÉ’%…WËÏÏ7™LÕªU“»^Põ\ÑÈ•‹*B:Ô3ùƒ£»»»¯¯¯ôúÊ•+åÊ•+_¾|‘kúûûOš4IîzÀYÙnTI£‘æ¢b‘Q$ùƒc«V­vïÞ-½ŽŠŠzê©§&Ož,wQàPVDB§Feÿm'/*é¶’?84dÈ&MšÈ]¸šÃR£‚LFË…tRVpœ0a‚Ü%€j)²ÑHsÑeŠ ˆÊû¡€ŠÉ—.]*„hÖ¬YíÚµÍ_–¬oß¾òÖ ¶)­è€v£òäE'¡}yɧOŸ.„˜6mš¥/KFp %ŽIʈ LF;íC(“ÌÁqÔ¨QBˆ H_¾ôÒKrPe4i.–ê"sp9rdÁ/‡ &o=à`%vËÔn”»ÑH^´ Ú ¬›c@?TšÉ‹%# BÛdŽ[¶l±õ-íÚµ“·f“LÓÓäÅ !D„ÅB"´Mæàøì³ÏÚú–äädykkßT´³ÝèÚF#7»Ü9Å7FcDD„m›ÔLæàصkW¹¸š=©Ñ…FÝ6™eJ%spœ9s¦ÜGÏ%F]åÅ"3"(7Ç€sÓW´¹ÝèäÔ¨ù¼HFˆOŽ×±-5:szZ“y‘Œ8ŸŠäœF£fò"ŸNPTkÑÚv£ªÎ‹dD@9øäpR£ã2‘êò"P8Eß“••åééY®\9¹ —pPjTE^$#j¤ÄàxðàÁO>ùäÈ‘#—.]rss oԨш#ªW¯.wi`…BÝÅÒÛšž–"£óbá˜HFÔHqÁñƒ>øôÓO¥×^^^îîîgΜ9sæÌš5k¦N/w`«RcÙb”¢ZŒ´ s“»€»lݺuîܹîîî Ø´iÓüqàÀ-[¶ 2DñÆo$%%É]#8TR£A¤&a’þÉR¾Å?“©ˆ´AYÁñÛo¿5™L/¾øâ”)SªV­j0„¡¡¡&L˜8qbnnî—_~)wP¢»Œ%µÍ9Ëæ=È–­‰‰4LYÁñÈ‘#^^^,ü­~ýúùøø}:++Kú²jÕª¿ÿþ»ù»ƒáìÙ³r×@w ?G˜ Âd0 “É LaLÑòã‹ÿ AÐ0euƒ‚‚–.]:nܸ !ÂÃçNzëÖ­;vdddtèÐaðàÁr×@#¬ùtó*w}ÖË¿Oj¦"?Ÿ4JYG!DPPгÏ>kþ2>>¾K—.‡ ‰ŒŒ”»:*fÓg´X¶ nŜ帘â‚cAYYYžžž+VlÞ¼¹ÜµP;>ͯ¤4¬Ý h”ƒãÁƒ?ùä“#GŽ\ºtÉÍÍ-<<¼Q£F#FŒ¨^½ºÜ¥Pº‚aѦŒWl‹Ñ¼Ý»>~ZÐu CʺÆQñÁÄÅÅmÙ²åÒ¥K^^^ÞÞÞgΜùñÇ;wîüí·ßÊ]Å)îhëScW1ÞGáÔú£¬à¸uëÖ¹s纻»0`Ó¦MüñǶlÙ2dÈ!Äo¼‘””$wägÍ}-¥o¤È_ŠÜÓÓ „PZpüöÛoM&Ó‹/¾8eÊ”ªU« !Dhhè„ &Nœ˜››ËGºUƶâ]›*K‰Œ…R#íFz¦¬àxäÈ//¯þV¿~ý|||øÈA@?Ê>]Ä6­i1šw_òΈôGYÁQQ¥J"nÙ‘î’ÉÎΖ»@Nä9è"6kå¬tÁ:ŠÚ%Y€Î)+8ÆÄÄœ9s&33³ð·²²²ŒFcýúõ宀ƒ9¼­xׯ­œ•¶(ˆÔEQVpŒ‹‹3™L/¿ürnnnÁåyyy“'OÎËËëСƒÜ5p§†Å;»°©ÅX°2ëž÷HŠ C2?Çq×®]¿twwïÙ³çÊ•+;vìi0ŒFãŠ+Μ9õØcÉ[0»Ùý„EÛöR¼­©¯˜ÊŠ dŽƒ *rù¹sç>øà‹…ÉÉÉ-Z´HNN–·fÖsMX¼³¯’Ÿà]j¡Å×Gj‰ÌÁ±k×®ræÊ°xge‰ŒÂö'5$è•ÌÁqæÌ™ràú°xg¿eŒŒ¢ôÔHJ3%~VµâÂ… GMMM½}ûvddd½zõÂÂÂä. À]ä ‹wö^öÈ(øT°â‚ã•+W>úè£ï¾û.//ϼÐÝÝýÉ'Ÿ3fŒŸŸŸÜzg΋²$.ûï})r¥¡ˆv#H:¦¬à˜——÷üóÏ8pÀËË+66¶zõêîîî§OŸÞ¼yó7ß|sôèÑ¥K—º»»Ë]& ;ò6ïÔà£y 6/¿téÒ¨Q£8ðÕW_ 2Dî2]PBX¼S‰#£`z짬€oÛ¶Í`0¼ÿþûS£¢råÊ|ð››ÛÖ­[å®Ð8g?—Û¶bì{ˆwÉónm2™jÔ¨"w]€Ò)¼¹øo.ˆŒÂ 7P*@iÁñìÙ³ùùùÕªUB[<Í@ajÉ‹Âe‘QØ™I†P*eÇÎ;ß¼ysÇŽAAAr×(šŠò¢ped<¬œHYwU×®][qüøq¹ J±OÒ)¶`çÝ.]Üѱ렔Òn¤ B¥ÇW^yÅÇÇgîܹ7nÜ»@AT—…‹#£(Ócwˆ…`%eMUÏž=ûÿþïÿºvíÚµk×jÕªùúúZ¬Ó®];¹Ë\D]óÑÿ–íʉé;»dz\AYÁñᇖ^¤§§ôÑGE®“œœ,w™€s©4/ Y"£(kj,½ÝHCþ¡¬à(}r  OêÍ‹B®È(è5€K)+8Μ9SîWSu^¼3a!2 ¤Fš‰`eÝcáÖ­[ÙÙÙrW8…ïw)bÿÜ#Ǿ]’‰–P€²:Ž’'N|úé§III.\ÈÏϯR¥Ê}÷Ý7jÔ¨ºuëÊ]PVè/Þˆ\sÓwvÏ 5È@qÁñ³Ï>›={v~~¾ÂËËËÝÝýÂ… .\HHH7nܰaÃä.°“5väŒÂÇ‘N"ØAYSÕ»víš={¶Á`0`À¦M›þøã$&&:ÔÍÍí½÷ÞÛµk—Ü5¶±˜’V5W?š±ˆ 4q@µ”¿ùæ›üüüñãÇO™2¥jÕªƒAQ¥J•ñãÇOž<9??ñâÅr×XE—0þ;Ù#£päô´µíFÚ’p7eÇC‡y{{0 ð·âããË—/èÐ!¹kJ¡¥¼(…©Pˆ‚®qÌÍÍ=þ|õêÕÝÝÝ ×ÍÍ-44433Sî2¢ Bˆ¡‰«ïŒHÞkï*…[a@Ôq4 åË—?sæÌßÿ]ø»™™™§OŸnРÜew)8%}ê”Q3ñF]Æ;¥825ÚÐn¤3 …((8º»»÷ìÙ3??âĉ7oÞ,ø­[·nMš4É`0 2ľ/_¾<...&&¦eË–“'O¾råŠõï=wî\ãÆÇ/÷‚²hlJúßqÉøhÆ"ª¡× ¢ ©j!ÄÓO?}äÈ‘-[¶ÄÆÆöêÕ+""Â`0Æÿþ÷¿.\èܹóõë×·lÙb^?22²Zµj¥nvΜ9óæÍ«P¡BÓ¦MSSSW®\yâĉE‹ùøø”ú^“É4qâÄëׯË}l šycCSÎÜô‚œé!@)+8vîÜYz‘––6wî\‹ï®]»víÚµ—¼ôÒK¥>Ù199yÁ‚!!!+V¬B¼ù曋-š5kÖ+¯¼RjI_}õÕž={ä>0PÍ<ˆ±ˆ¡)-2 ¹S#Š¢¬àصkW›Ö¯U«V©ë,[¶,??̘1RjBLš4éÇ\·nÝ”)SÜÜJš¬?qâÄœ9sêÖ­{ìØ1¹ d£á£PfdÌP€B)+8Μ9ÓáÛÜ»w¯››[»víÌKÜÝÝÛ´ióóÏ?ïß¿¿I“&Ž177w„ “&M4hÜÇ2Ðp‹ñΕs-ã¿59å Ó@‡PÐÍ1Î`2™RRR .¯S§ŽâÌ™3%¼÷£>:zôèÛo¿íëë+÷8àjšù¬—b¨¨;`þ-K˜ ÅPVÇÑá²³³óòòüýý-–ûùù !._¾\Ü“’’.\د_¿-Z9rÄÖýFEEY,Y¿~½Ü¥‹ŒŒ^œ:eB¶½ýìÙ³rÀŠ1FD !NO !ŒÂÆ:SDd¤ñÔ)›ºUCŽ8e´a»"–ՅPÉ©‡3pêuâ±Ç“»¥ÐxpÌÉÉBT¨PÁbyÅŠ…W¯^-î]&L¨Zµê‹/¾hß~“““å:lSh‚4¾íDDØùFWŒ±àåŒJ+Ó`&“3ŠºÓ=´ñ¼Øq•|êáTœz=(üg½p‡H'4ýýý Cvv¶Åréñ:Rß±°3fœ={öÛo¿µæy=P;Í_Èxg˜ œ˜þ·8%Ý Ã<5Oã×8zxxøùùî,J]h¾Ïº ={ö|ûí·Ï>ûì< wùp.Í_Èxg˜Ê¼œñßúœ˜ àXŽBˆŒŒ ‹¹–.` )¼þ‰'„Ÿ~úiÔ?zöì)„øé§Ÿ¢¢¢žxâ ¹„²*ø!:‰ŒúL‡ÓøTµ¢C‡ÉÉÉÛ¶m{üñÇ¥%&“)111 &&¦ðúÕ«W7¯)¹zõêöíÛÃÂÂbbbªT©"÷€`?ÌJ Å>ѲJç¦FÚàpÚŽqqqóæÍûøãÛ¶m+ݳ`Á‚ôôô¡C‡zzzJëdee¥¥¥yzzÞ{ï½­ZµjÕªUÁ-9rdûöíMš4qÆc&áú‰ŒBá—3þ[¥"S#aJ¤ýà6~üø3ftíÚµuëÖ©©©»wï®_¿~ÁÏ*LLL;vlíÚµW¯^-w½p0½EF¡üF£`†ÔJûÁQ1xðàÊ•+¯ZµjíÚµ¡¡¡ýúõ3fŒÔ}„†Êù©‘¾!8‰Á¤“¿«.Åså%Wd4²<ÑMsÓwjuE¯ÑõóÔrzÈŽS¯[ºý[¯‹Ž#ôCW]F¡®F£PvjXà 2*×5€ú¡zz‹ŒB]sÓw*vQj´¿ÝH£¬@p„Šé32 u5…R#À:G¨’#£Pi£Qèï<€v¡2úŒ"4Kß[YÚô*À:G¨‘QM¸´ˆàÐgdjœ›¾S·«S#Cp ‚#MÏ‘Q¨±Ñ(T˜I`5‚#”K·³jm4 Ÿ3Ђ#”ˆF£Ü…ØW½ ©‘v!¸ÁÊ¢ÛÈ(TÝhªí5<ÀG(…Î#£Po£QÈ–I}àbG(‚JÛU¸Ú#£ 5€Ž!37Õ…Ê#?ÙlDp„lt…ÚBÎÔHäY!U7ªÊ:v 4…¾O!èÁ®F£‘ÔXÖ;¤ÝHÓlGp„Ké¹K¥‘F£ÐDjØ…à¡ÑHj¨Á® ç°¡F£ÿDÒnyá\zn4 R£b‘@À.G8‘–’†Íc×Òô´PĹ$ì€ìŽp Ú‰Œ‚Ô¸ƒàÇS@Ìoìk4 -žNB(Ø‹àGÒy£12"RS‘Q(%5’ô@!Üä.Ú!e Ä 9Æ. a8e<%w!Ž•"R#@9ŽpƒA×Cº¢‘^£³ ql»‘î%”SÕ(+Å ™†¯±û`îŒJ)'•˜ŠBpD™(&`È1víÝsg`:>©€a'ߣÍF£PVjt|»‘&” ÁöPRºpùصÚhú>¯+a3=§ Í6…âÎ+ÍAP m–.\;vR£ËÊqFj$Š@™Ñq„µô|Q£–§§…âR#@±Ž°Šž£…–B‰§–Î (SÕ(ò¢… ÇNjÔÒ(8G”B?ÑÂràÚžž =µ<P2‚#Х󋵩`‚#ЦÈ\᪱“5†@ BpDô–+þ¸æ§§…rÏ.é”àKJÍθæBÇgàÜU»è6We.ÍyíF:™à8tñ/ç gŽZÓÓBÑg—hjApÄ ÎεB¯gàhLUC½æ R£8·ÝH3Šà…ç §šÔ¨ä:P¦ªuMŸøÖËEBé© :GýÒg¨ÐK£Q¨à;½ÝH?©jR|¨pΨI”ÁQô*HŠB7Ôˆ©jÝQC¨pôõsQ£PÇ vEj$™€õE ¡ÂÑCÖO£Qèò\ˆ©jÑa¨ 5*íFP/‚#4‹Ô€c1U­ºÊúº¨Q¨éìÒ U#8ê‚zr…#««F£PÓÙuQj$œ€Ó0U­}êÉŽ,©§!8jœ®r©QÉ耵LU¹¢Ìƒ%5*˜ëR#ùœ‰k5KU¹¢l#ÕÛ­0BOg $GmÒO®Ð]£Q¨ïìÒÍ`ªZƒÔ–+Ê0RR# "¢€“¡V¤FU Ë€–µF…Ñ®a’Õ€ÔCpÔF »†IjDa¤Tp>nŽÑ=D =Þ@-Ôzj r =GPg´°qŒ:l4 µžZW§FR*¸SÕP¦F”„à¨êìIÙ2@ݦFužZÚ UGÕSg´°e€¤FU‘!5TÀUŽê¦ÎhaËI(ÁÊEjTz mGSmº°nt¤Fµ‘'5’UÀ…Žj¥ÚtaÝèH(ÏqT% § >âûÎàU|^iü€¡ úm4 u§FÙWÀµ˜ªV­ R£ÜE”¡|òèÁQeT0Š©QµdKÄUp9‚#äGj”»¬BpTMf R£ÜE”mtý@OŽ©Qî"Ê6S#‰ä@pT õÇŒB#"5 *GuÐ^Ì 5Ê]D™A»ô‡àå.¢Ìƒ ¹€.U@I£ÀpH¨ÁQé4–4HráˆqÈÛn¤Û ò!8ÂuHráˆqÛ@ÇŽŠ¦•°!©Q3'R^äVÁ®@j”» …Øúæ!w.²|ùòeË–¥¤¤”/_¾mÛ¶ãÇ(aýœœœï¿ÿ~ÅŠgÏž­T©R:uܲeKWÖ¬™¼Aj”» …Ôº§‹à8gΜyóæU¨P¡iÓ¦©©©+W®|¸ðwtcµC©Qî"œ0,r D“ÿþÉ+**ÊÖç8ª.‡‹üŽÑhTõÝ”•UM)Ô~êa7N½nÙñ·^´#ŽÔ(wΙšr@Gù©+Šå.Â9#SZjT\A!ް ©Qî"œ32BÀ:G™©(å.™aR£ÜE8mp l7*±&€GXƒÔ(wN ` ‚£œT‘IHrá´Á)35*´,€G”ŒÔ(w(ÁQ6Ê%¤F¹‹pæø”Ù×ShY€;Ž@!¤FŠBpDÑôÛn$5R Gy(<œ@aGX"5j˜r›zÊ­ ð/‚#îBjÔ0² ŒŽ2PlD!5j˜¢S£¢‹ü‹àˆ;HF08ÁB!#R-¨ÁÑÕTHÚF08 ÁzEjT¥×¸ ÁQïtÚn$5`;‚£K)-®5L©Q%îâ!wS£Á „ÐCjÀŽ:¥ÓÔ¨›È¨‚^ž JXbªZHÚF$8 ÁÑu]HÚ¦ŽÔ¨Ž*–ŽúBjÔ6òÀ©ŽÐ4R£©¦P€%‚£Žè®ÝHjÀ¡Ž."{†!5BH¸ fG] 5ja àGí#5j›šR£šjà¨q¤FmSSSS­€¢]AgaF>:;Ð$1€‹ñ‘ƒZ¦£v£þ>„Ze©QeåŠFpÔ,}¥F=EFA È„©jm"5j˜úR£ú*à¨A¤F #ƒdDpt:ýeWÑß‘UejTeÑ€¢µF/íFR£*¨²h@±ŽšBjÎCpÔR£†©²s§Ê¢%áq<¡‹Ô¨¿‡5Þ·˜*‹”‚àè\ºìŽ9‡^%  LUköÛ¤FuQkÝ€RUÔ¨UjM_j­P:¦ªÕÔ¨I!é  <GÓxjäV5Rwõ€RH—Í2Ñë±SwîRwõ€Òq£Zi¹ÝHj@‘ŽªDjÔÕ§FÕP:‚£úµGõ¡KõX…k¡ z½Fh t©~kUF›íF½6¡  *LU« ©Qc´µ0€µŽÎâð8DjÔ-$.-Œ`¦ª!}_Ô(4¸H ?GuÐZ»‘F£ÚidÛ0U­¤FÍ nTŽ£Òi*5êxzZh)5jg$Ûá*ún4 Íd-R#èÁQÑ´ÓnÔwjÔÎÈ55€ÍŽÊ¥‘ÔÈô´Ü50€£J;©QÇ‘Qh)h‘G'Ñq^â(¡½”¥µñìDpT"Õ·™ž–»Æp‚£âh!5ê52FFD¥,R# Ç1ôœ Bœ255xR#ànGeQq»QŠŒºLMF,  PVLU+ˆZS#W4Ê]£¸ÁQ)Tœu…&ó©P ‚#ìE£QîÀÅŽŠ ¾v#F¹ËpÖØ´90€cå§²Ô¨ãF£–#£ 5JGp„-ôÝhÔìÈ5žˆCp”™jÚ4å.ÉÃÓìØFp”“:R#‘Qî2œ;B-à`GÇ;~\¨”Ïo³f̈́Ǘ{L\„ßz¹uëÖ›o¾9pàÀsçÎ5jݺu-Z´»(W#8:@HHHFF†”$ÌŒF£ô-¹«CYÙz~M&S^^^á'õ¸»» !*Uª$÷€8¿õzŸŸÿâ‹/.Z´¨C‡¿üòËÈ‘#õùGèСC^^Þ¶mÛÌKL&Sbbb@@@LLŒÜÕ¡¬l=¿©©©ÑÑÑ´X~àÀ!DTT”Üà`üÖëÁâÅ‹ùå—§Ÿ~ú“O>Ñót"ÁÑâââÜÜÜ>þøcéº7!Ä‚ ÒÓÓ{õêåéé)wu(+kÎoVV–Ñh<{ö¬¢F7Þ³gÏòåËÍ9pàÀ_|öè£Ê= Ào½®˜L¦%K–TªTiâĉr×"3îªv€°°°ñãÇϘ1£k×®­[·NMMݽ{wýúõ‡ &wipkÎobbâØ±ck×®½zõj!Äÿýßÿ 2dêÔ©ß~ûmddä_ý•””T¾|ù·ß~[ŸS€öð[¯+—.]’>‹¼oß¾…¿Û£G~ýúÉ]£‹cðàÁ•+W^µjÕÚµkCCCûõë7fÌé‰-Ð[Ïoݺuøá‡Ù³gïÚµëĉU«VíÞ½ûèÑ£CCCå §à·^Û¤ÖrNNÎáÇ WW·ÈL&“Ü5@¸ÆV!8À*GX…à«`‚#¬Bp€Uް ÁV!8À*GX…à@_Ƶe˹ üqTTÔÒ¥Kå.¬Ep€U<ä.têᇠjܸ±Ü…€µŽ úõëׯ__î*ÀLU€âäååݾ}[î*ÀÁ€:L:5**jæÌ™Ë:Õ¢E‹ÜÜ\!Dzzú{ï½×¹sçF5jÔèñÇçw.^¼XÜf¥{evíÚe±<::ú¡‡*¸dÇŽ£GŽmÚ´é€>þøc‹l÷×_½úê«;wnذa»v톾wïÞF´pá‚7ÇH•œ={vÁ‚Í›7¿ï¾ûš4iòÔSOmÚ´©¸-8p ::ºM›6×®]3/¼~ýz»ví¢££<(÷I 5GêÐ¥K!Ć ,–¯^½Zѽ{wôôô¾}ûΟ?ÿܹsÕªU»÷Þ{Ïœ9óå—_ÆÇÇ_¹r¥,{Ÿ5kÖ!C6lØ››üûï¿ôÑGýúõËÈÈV8qâD—.]¾ûŒŒš5kšL¦ÄÄÄþýû'$$Ø´£ùóçÏž=ÛÓÓ³yóæ~~~1bĺuëŠ\9&&fÈ!/^|ûí·Í ß}÷ÝóçÏÿç?ÿ¹ÿþû]}’hÁ€:4mÚ488øÌ™3ÿûßÿÌ óóó¥PÕ³gO!ÄÊ•+OŸ>ݾ}û;v¬Zµê§Ÿ~Ú¾}{Ó¦Mÿúë¯_ýÕî]oÞ¼yáÂ…U«V]¾|ù–-[Ö¬Y³uëÖ¶mÛ&%%Í;WZgÖ¬YYYYÏ?ÿüÎ;W®\™˜˜8eÊ“ÉôÁØ´¯eË– >|Û¶m_}õÕÆ $„X´hQqë=ºvíÚ+W®Ü¶m›b×®]ßÿ}ƒ žþyùÎÍ"8P77·Ç\ÜÝtüý÷ß/^¼S«V-!DnnîÃ?üÒK/U¨PAZÁ××WjU¦¦¦Ú½ë3f!Þÿ}s/((èý÷ß Y±bÅßÿ-„8vì˜"..ÎÝÝ]Z'>>þ?ÿùOll¬Mûºÿþû_|ñE777iÈÿùÏ„§OŸ.n}OOÏwß}×ÃÃcêÔ©iiiS¦Lñññ™5k–¹ p ‚#Õ"`Áy[ižºW¯^Ò—#FŒ˜7o^Íš5Í+\ºtiÍš5eÙé•+WŒFcdd¤ÅÐåË—oÑ¢ENNÎáÇ…Rr4iÒž={¤«-===_xá…Q£FÙ´»N:üÒÏÏÏÝÝÝd2•ð–èèè#F\¸p¡[·nýõ×ĉkÔ¨á¬s@ßxÕ¨_¿~5NŸ>œœ•››»~ýzŸÎ;›×ù믿¶nÝúû￟9sæÏ?ÿ,ã¥BˆS§NIÿ7**ªÈΟ?/„˜6mÚ˜1cöìÙÓ¿ooïèèè|ð‘G‰ŽŽ¶iw÷Þ{¯E>ûì³›6m:räH³fÍâããzÔà_GjÒ¥K—>úhýúõQQQÛ¶m»zõjÏž=ÍÓß~ûío¼‘››[­Zµ&MšÄÆÆÞwß}F£qúôé6í%//ÏÜä»uë–"<<¼¸Iç°°0!Ľ÷Þ»|ùòlݺõ·ß~;|øðþýûçÎÛ»wï7ÞxÃ`0X¹ëråÊÙqX®_¿~éÒ%!Ä©S§þþûoçŸ zDp &æàøÂ /HsÐæyêëׯ¿þúëåÊ•›?~«V­Ìo¹pá‚­{9wî\~~¾ô:22RQ¾|ùÉ“'—ü.ƒÁ =HqëÖ­mÛ¶½üòË+V¬hß¾}‡œzX^}õÕ´´´Fíß¿úôéï½÷žSw@·¸Æ€šT¯^ý¾ûî;uêÔ¡C‡~ýõ×êÕ«7iÒDúÖ¡C‡òòò5jT05Šn[)™ÅŒöÆͯCBB*W®|òäÉ#GŽ\'//¯W¯^­[·NOOÿ믿ڷoß§OówË•+סCénž³gÏ:õ˜üüóÏëÖ­kÛ¶í¢E‹j×®½fÍšÂ-‡ 8Pé™)S¦dgg÷îÝÛ¼<$$DqìØ±ôôtiI^^Þwß}·dÉ!DNNN‘[«V­šbñâÅÙÙÙÒ’Ý»w›²#7n\~~þ¸qãŽ=*-¹~ýúË/¿|øðáúõë…††^»ví?þøì³ÏÌ­ÊÓ§OoݺUáÔç)^¸paúôé•*Uzýõ×===ß~ûmww÷iÓ¦•ýâN(Œ©j*Ó¹sç3f$''»»»wïÞݼ<22²C‡¿þúkÇŽ7nl2™’““¯\¹Ò·oßE‹ý÷¿ÿ½víšô`‚ºwïþõ×_ïß¿¿C‡ÑÑÑiii)))~~~UªT¹yó¦´N=öìÙóÃ?tïÞ=<<< àÔ©SÙÙÙ5jÔž¼íææ6yòäI“&Íœ9óóÏ?¿÷Þ{³³³OžüðÃöíÛçççŸ>}:""bܸq«V­ ÖéÑ£Ç×_ݶm[ŸcÇŽegg·lÙòÓO?}õÕWw(/^¼k×®V­Z™/ôBŒ=ºzõêëÖ­[¿~½¬' €J~<èGVVVFFFÕªU­¿ t…à«0U «`‚#¬Bp€Uް ÁV!8À*GX…à«ü?:~œk^^|IEND®B`‚statistics-release-1.6.3/docs/assets/loglfit_101.png000066400000000000000000001415521456127120000223200ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A€IDATxÚìÝw\×þ7ð³ìÒ¤*‹4¥%4EšŠJQ `ÔX01**бD"$ÄØÁ›Ä’`¢¿`A±Fñ*†€¢€Š b×HTúîóǹwž½»° KY„ÏûÅ»gÎΜ23ûåÌÌYŽP($ÍQwàÝ€ÀXAଠpV8+€ެ>|˜ÃΫW¯!ÑÑÑô­¿¿¿¼ËþÎkMcž|ÌçóõõõþøãÉ_4›®®îÖ­[Ŷ’‘‘Ñ&ÝÄfc_YQ'N”üÈÍ›7›=RZÚ}24Z£þøã}}}ÑhhhŒ=š¾öõõ¥ÙÄv¹¦ª)¥ú,›½õç–{¸”ãKÊ©Ft/bÙeB¡0;;[¬³ÌÍÍ™c„©]S:fë’g6‡@KOSgÏžíÝ»·äGÂÃÃ¥7‚l;j{Ô‚éŽÁƒ‹u¢¢âŽ;¤wœPâ;Bî§zÙÎuï4޲`82'GGG.—Kß*++×ÔÔˆåìÓ§“ŸžŒ^½z¥««KSFŽÂÜC¹k×.º–Ùš-dïÞ½‡®®®Î¤œ>}šæ|ûö-s‹§ŠŠŠÏèÑ£{ôèASôõõ+++[ºÎÖŽÉÉÉÌ‘9räÈéÓ§ÛÚÚ2›øõ×_…BáóçÏoß¾ÍrÏž=·oßÂÆÎ&2WÐÄÄdÈ!***LJnnn³ ®ªª:a„ˆˆˆ!C†ÐW\\̾vb%QPP°··ïÕ«—Ø™ËÆÆÆÈȈyëééÙúnb¹¿±¬¬6£ä‘"[÷µ´Ñ$ÕÔÔ˜˜˜0•:t¨èФMÇ–6»Ìç–{¸”ãKÊžÏìE컬ªªÊÐЦ+))¹¸¸0oEk'EÇl]J„$åhÑiJ´µµµ'MšäééÉ”äçŸnóµ=jÑèÉGMM¾år¹7nÜhÑw„ÜOõ²ëÞieÑ¢ÀqëÖ­41))‰I,((ÌÙ¯_¿¤¤¤K—.ݹsG(®ZµŠ¦‹Ž3}óÍ74ÑØØ˜¦°Ì&½cÇŽ­®® …þù§••Mtuu¥9ccciЦ¦&s´\»vùG|ÅŠ-]gkÇ™3gÒ”¥K—28p Mܰa“ÈCçÎc%Ï&²Uð›o¾¡‰ÅÅÅÌ EÊ¿˜®®®4O\\“8jÔ(±µ±¬hIN:% kkkGŽÉ$&$$…†††Ù³gÓ>Ÿßúnb¹¿±¬l£í5)GŠlÝ×ÒF“ôÝwßÑ<—.]¢‰‹/fÖ&åû¸©j6•βÙ[>iÑÞTÄHîEì»lË–-4EKK+//öNxx8SHÇöغd³?Xž¦˜411)//K>|x{ì¨m^ ÑlܸqôäóðáÃ÷ß_¬›ØG°ßz{œê[s®{GáÇöecc³páBúz„ <ÞžF*--ËÙ£G´´´°°°!C†˜››BþýïÓEsæÌa²Íœ9“Ž\>|øðÚµkì³IÁãñ¶mÛFŸŠ044üúë¯izNNNuu5!äÔ©S4eáÂ…ÌÍ" X²d }Íd`¿ÎÖNJJJJJZ´hM©¬¬|ûö-}ý÷ß·t…2TÐÖÖvÁ‚ôµµµµ»»;}ýàÁƒ¦¶RUUE_üüóÏ?þø#}âçŸ.,,,,, ”­vƒ ¢—œ'OžLµµµéާ  Àœg+**ZßM,÷7–••ä‘"C÷µ¦Ñû÷ï§/DÇÖ¯_ßèÅÄVjéa.óù„!ÃÎû.;xð }±`ÁGGGÚ;ÿú׿ZÓȳõ6?Μ9C_DEE1NDD„ƒƒƒƒƒCMMMCCC£lÍŽÚ~²¢¢"sòéÛ·/sòIMMmª"­×§úök¢N cû²°°`^«««3—À$ GGG±‹ ·nÝ¢/|||˜ ÆÕÕÕ™ÏÒè“e6)lmmûöí˼õññ¡/„BáÝ»w !%%%b‹¨>ø€ÙsG?Ëu¶†OXXØèÑ£³³³£¢¢¼¼¼úôéS\\,ó e¨ Ø]2ÌO±lbÅf67{ölƒ~óÍ7oÞ¼éß¿?sRKk'z]UUU•¾044äp8b‰’dè&–ûËÊÊ@òH‘¡ûZÓh’MÁÌŸLQRRb¶Û†Zz˜Ë|>aȰ‡³Ç¾ËD‹ÍdSUUû óƒÆy³õFµù!pûömú‚â"„èëëçççççç_ºt‰¹JLkvÔö;û÷ï/zCS¶ÚÚÚû÷ï˼ZéÚãTß~MÔi!pl_bÓ:2_K’Äî¿®¬¬lvîßçÏŸ³Ì&=ƒØžÝ£G---úúÉ“'•••ôçpˆÄlXÌ·ouu53‡›u¶²Ukkk—.]Ú»wïÍ›7§§§×××Ë<![źRJÏ2bccçÏŸÏÌw# óòò¾úê«!C† >œùÁƒ–Ö®ÑM³œO´¥ÝÄ~cYYH)­ï¾5õúõëgÏž5ÚŒ¢±x›á0—í|"¥‰Øìáì«Ã²Ë*++™!v±8XæFî°­·í! ZlmmmölåŽÚ~²XaÔÔÔ˜“ÏÇe^-Ë6lÃS}û5Q§…À±³Û555544èë³gÏÞnLHHËlÒ7-vœTUU1˜ššjjj2Çó_ý%š“y«¤¤ÄܵÍf­l«¯¾újË–-õõõæææÛ¶m»zõjeeå¸qãd[›l”¢¢â·ß~[^^žœœÖ³gOfÑ… ˜é‡Ú¶vÒµ´›Øïo,++É#¥cºOŒªª*357óÅL1_NmE†Ã\¶óIÛ[JuXv™††sK™X\+¶ëv­·í! ¡¡Á<ÃñâÅ ölåŽÚ~²Ø¿¦UUULyŒe^­ít®h¿&ê´8v^ÌÍÂõõõï‰èÙ³§¶¶¶¶¶6½šÆ2›7nÜ(++cÞ¦¥¥ …BBˆ’’}yf‚ùM ±·Ìí›,×É|±‰ÝC&vjkÔ¶mÛè‹ï¾ûî“O>±³³ãñx?–¹©e¨`KÕÔÔ<}úôéÓ§555AAAIIIÏž=KKKcæq`æ0kóÚIÑl7Ib³¿±¯l›è€î“ÄårÍÌÌèkææ3BˆP(d3ûcKµþ0oýÚË.ãp8L#ÿöÛoL¶úúúôôtÑNŸ>ýÉÿ}„±½·.©Í‡Ã\3ýý÷ß™ô'Ož 6lذažžžÞEКµ]d±“S6%%%ú_kk¾#šÒæçŠ>×u;/æÇi¾ÿþ{áç ?|ø°ŽŽŸÏ755ýçŸØg“¢¶¶6""¢¶¶–ò×_-_¾œ¦7ŽÞ4ÃL÷õ¯ý‹™.¸°°pãÆôµè­3,×É\%ùý÷ß™[pŽ9Òì¹ìŸþaþûgN(W®\‘~*§%iŠ l©ââb}}}}}}ƒ;wîBx<ž··7óô.½ü$[ídÖl7Ib³¿±¬l[é€îkÔ Aƒ$·»víÚ¢¢¢6ßVëóÖ¯A éÇ—$ö]6bÄúbË–-7oÞ$„…ÂÏ>ûLô§¼!ªªªzÿKGG§Ã¶.I¶C@z32…Ù¼y33\éÒ¥K—.)++7u¯…Ì;j{Ô‚QWWAgÒþ믿˜é[ùÑÁ§ú>×uøÉÁÎkåÊ•‰‰‰/_¾¡PXQQ1lذ!C†”——Óð¢Íµþ0o“…–Ç—$ö]¶råÊü±¶¶¶¼¼|àÀC† yðàA+°ë€­³<Þ[ÔŒÑÑÑÿ÷ÿWYYyïÞ=//¯§OŸþúë¯téüùó›*ŒÌ;j{ÔB=ùX[[çææÒÿ[¸\îW_}E—¶è;B^§ú5Q×!ïù€ÞIìçq›€Š¹oìÀÒsR'Nœhôÿ•¹sçŠÎµË2[S…>|¸Ø=%<Ot¡Pøûï¿ÓI=Ę˜˜\¸pA¶u23ž0ÌÍÍ™q)ó8K~™ ÷Ã?d6&šMÊÏ ´´‚l¦sñâŦ®zxxÐùÌØ×®Ñ’ìÞ½›&ÚÚÚ2‰YYYL´´›Ý ›ýee%}ÇF”ÖtËFkÔŒ3͍¦¦Æ<¡Ù†ó8²löÖŸOZ´‡7z|Ijt,»L(þðÃbA€ºº:sDÈöË1m¾uÉ.f°?M9r„¹KOÔªU«¤7‚Ì;j›×‚émmm±!R%%¥ü±Ñ½ŽÑèwD‹Ú°ÍOõ­9×½£p©ºS7nÜÕ«WÃÃÜœzôèannîï™¹}ûvÑ›ßYfkJ¯^½²³³çÌ™cii©§§7iÒ¤´´´?þX4³³óµk×¢££½¼¼ôôôø|þÈ‘#?ûì³ëׯ»¹¹É¶Îÿû¿ÿûꫯ  ¦¦æèè¸páÂK—.‰= Ú¨øøøÿþøGddd~~þ„ èÒýû÷3×5âããÃÂÂz÷î­¦¦fkk+å±Ù–VPC‡½}ûvttôàÁƒ {öìéææ–˜˜˜žžÎ<”Ǿv­Ç¦›$±ÙßXV¶­t@÷5j×®]ÌHOïÞ½ÇîܹáǷǶZy˜·Éİ?¾$±ï²ðððsçÎdgg7ú#ojëìöÍèïïýúõ?þxðàÁêêꦦ¦cÇŽ=þ<3J×™wÔö¨åáá‘™™9nܸ>}ú¥§§3?@±ÿŽã©¾ƒÏu‚¼#Wéƒgª­­=räÈ‘#GÚ½™ä¡½k×aÝÔMüñÇ6lxõꕼ ÒLŸ>îÃÛ·oïn[—vTh¸ÇÞIŠŠŠ]óÞ‘nP»®gРAÌóж>úè£?þøƒâââÂütÞëׯÓÒÒèk:<ß%·Þæ°£B›@à”¡¡aAA!¤   oß¾“'O®¨¨øôÓOéÄ{ýû÷o×HH¾[èœp#tRË—/gî<[¹råûï¿?hÐ :;•ŽŽÎþýûÛõ2ùn sˆ#tRªªªçÎKNNÞ³gÏÝ»wÿúë/:ëä|°xñbMMÍ.¼u€Î‰#üïL°RàR5°‚ÀXAଠpV8+€ŽÀ G`#°‚ÀXAଠpV8+xýúu±D>ŸŸ-ïÚÈG(Ê» í«²²rôèÑåååýõW~~>ÇKNN¶µµmêSÎÎεµµ¦¦¦¢‰ÚÚÚ»wï–w…ä£ë8~óÍ7åååsçÎŒŒ¤)GŽY¹re\\ÜýHeeå«W¯üüüä]|€Î¢ëßãxñâEUUÕO>ù„I Ð×׿qãFCCC£yøð!!Dl¸ ›ëú#ŽÚÚÚ–––***¢‰ÊÊʵµµµµµªªª’yðà!ÄÄÄDÞeèDº~à˜””$–òÇ<|øÐÁÁ¡Ñ¨‘ü7pü믿¦OŸ^\\Ü£G~ýúÍ;×ÞÞ^Þµ›®ÿp #??ÿðáÃ÷îÝËÏÏïÓ§Ï÷ßßÔÅè•+W9r„bfffiiùçŸÞ¸qCAA!&&&((¨Ù YYYÉ»®Ð¾JJJä]9èú#ŽŒ’’’””(÷ïß_II©©œýõ—ªªê’%K¦OŸNSrrræÎ»víZ777CCC6Û’wuA¬¬¬Ðõݺ¾ÛB×w[Ýv¨ë?Ø2eJqqqVVÖòåËÏœ9òúõëFsîÞ½»  €‰ !...Ó¦M«ªª:wë Ý(p$„p8]]ÝY³f?yòäÌ™3ì?ëììL¹uë–¼+ ]ºx਩©yäȑÇ‹¥Ó™ÍÌÌ$?òàÁƒ~ýú}øá‡béùùù¤ßÓÐÅG===++«¬¬¬ôôt&ñæÍ›{÷îUWW>>ò®€|týéx®]»ZWWçèèØ§OŸgÏž]¾|™²aƱcÇÒ<©©©‘‘‘'Ož$„ܼysöìÙÏŸ?ïß¿¿¹¹ùŸþYPPУGï¾ûnèСÍnÙtmÝö»¾‹8BìììN:5f̘¿ÿþ;--íéÓ§|ðÁñãÇ™¨Q’µµõÑ£G'Nœøüùó3gμzõjâĉ'Ožd5tU]ıãuÛÿBº‰nû]ßõG M pV8+€ŽÀ G`…'ïtAøiJ€wK÷œ[GÚÎAï ü·Ï.U+€ŽÀ G`#°‚ÀXAଠpV08@Çáp8ò-€P(”wÀ; #ŽJ(¿?)bcc9θqã$­_¿žÃá\½zUÞ-GÌÌÌüýýékwwwGGÇ6ßÄ•+W8NrrrSM”-¹hÔ¨Q§¡¡¾}ðà‡Ã™9s&“¡¾¾~×®]îîîšššeeeL†­[·r¤:sæŒ Õ‰‹‹ãóù hó†j¢ÚHÙ©ÌÌÌ&Ož,ïv)‡!äüùóÞÞÞ|>ßÐÐÐßßÿæÍ›ò./ÈFà?NžŸoddôÉ'ŸüóÏ?Mm÷ܹs...êêêVVV³fÍzþü¹¢¢âž={Xv+û ²é¯ÈÈÈ;wòù|gdd4oÞ<Ñ’³?ž?®££Ã¼­©©¹}û¶‰‰I;U :-\ª€ÿàp8ß}÷]ÿþý?úè£?þø£Ñ›?¨¯¯ÂápRRR\]]SRR&L˜@3ÝÛÛûøñãôºíÎ;%7zêÔ©€€++«ˆˆˆ§OŸ8p ;;»Eclì+Ȧ¿Î;·mÛ¶9sæX[[Ÿ>}zûöíuuu?üðiá!ÐÐÐÀãñ!B¡ðþýû«V­222š5kV{T :5!´5KKKy䬩}€Èû©ê¦ C¹}û¶P(\¿~=!$>>ž.Z·n!¤  @(ÖÔÔ˜™™™šš–——Ó¥ååå&&&æææ555B¡>ÃÛÐÐ@3˜šš*))Ó·ô>?{{ûÚÚZšâææF©¬¬ …æææ–––uuutQEEÇ›7o³ª‰'Ò×’ùâ‹/!‰‰‰´´ŽŽŽoß¾¥K«««‡ fnn^___]]mbbb``ðøñcº´¬¬ÌÐÐràÀ¦šHŠúúzšóþýû„3f0ŸÝ»wï{ï½G³©¨¨Œ9ríÚµ÷ïßoª;´µµ $}k¶/Ž;FÉÊÊ’üìëׯ¹\®h gÏžÍçóËÊÊØôû¥ûÃÚµk™ -[¶Œ²ÿ~Ñ•ÞSR>ÕÓT†ÇB¢¢¢èÛÐgÌ9B«¦  0kÖ,ÉêäÉ“„ŒŒ ¦Ö„ãÇÓ·õõõ666&&&’[lhh077wqq©ªª¢)ÙÙÙô°Ý»w [¨Ù ²é/BHJJ }+ ЧOÚÈ-:LMM½½½«««éž¬©©yâĉ–Öˆe¥:ž _ÜÝö»#Žð?–,Y’””=iÒ$æ~&*//ïÞ½{ |>Ÿ¦ðùüÅ‹GFF^½z•Žl¬^½ZAáÿßãììÌ 0xzzBBBBiŠ——WVVÖÛ·o544rssUTTè¨!äÅ‹„·oß²,ùñãÇ׬Y3oÞ¼Ù³gBòóóKKK÷íÛ§ªªJ3(++GDD„††æååÕ××?xð`ãÆFFFt©ÁÂ… W¬X!eS¦LéÓ§XâÁƒ>|(åS¡¡¡¡¡¡×®]KOOOOOÏÌÌLOO_½zõš5k>ÿüsÙº‰M_4EAAN-ôàÁ:4›˜˜˜˜˜H—6Û ì;”–jéÒ¥Ìg׬Y³}ûöƒŠ%Jï)éu‘ÎÈÈÈÎÎ.==òòåËÂÂÂ]»vEDDdffúûû_¸pA Œ=šÍª,--ÇO_s¹\‡´´4Él999wïÞ]·nsw©‹‹K`` 3ÁM}}ý©S§šÚ 3rÏ^³ýenn>iÒ$úšÃá8::Òaż¼<÷Ã?<{ö,''güøñAAAhhhhÛJAg†ÀþÇûþûï]\\.\xôèQÑE¥¥¥„zó"ƒÞ1VZZJ¿à­¬¬D£FBÙBhx!™BõìÙ3'''--íæÍ›¥¥¥7nܨ¯¯gY좢¢iÓ¦¹¹¹%$$Ð:°Aƒ6±Ì>¤÷½ 8P4½Ù¹!,Xàêê*–XPP =pdÊÎÎnñâŵµµÇŒŒ\³fÍСC?øàº‰M_4EUU5!!^íß¿¿‹‹‹¯¯ï˜1cè —Íöû%„ôïß_ô>N555+++±'*¤÷TkGBˆŸŸßÆ_¾|I_½¼¼ÜÜÜ233 !<ÏÛÛ›Íz,--Eß65íÑÄÁƒ3ã›7oèí§¶|ŠþfûK¬äÌáyëÖ-ÒòC€Ë冇‡Ó×±±±111ÁÁÁ^^^m[)èÌðp ˆ:tèܹs;vüøqÑtú vwý­««£oµµµeÛhMM͸qãÜÝÝOŸ>maa±téÒââb---6Ÿ}ùòå„ ´´´RRR˜À…Æ+7nü·ggg:B#V±·õ^¿~=yòdz?CIIiòäÉôÖL)ã4Ò±é )æÏŸÿþýï¿ÿÞÎÎ.555 ÀÎÎîéÓ§­é–x<žØÒ{ª•›óõõ™™™.\066666öôô¼víZEEEFF†››ËÚ±|>ù%ÉiiiI¹ØÒڱ鯦JÞúCàÃ?$„äää´m¥ “È#4â믿>zôè‚ èweaaA¹~ýúˆ#˜Äk×®B¬¬¬Z¹Å¬¬¬ÔÔÔ„„„E‹1‰lF¦L™òøñã .ˆ>nBK«¡¡áããÃ$]¿~][[ûý÷ß'„\¹rÅÃÃYÊ<ÒÑVÔÔÔΜ9óèÑ£9sæˆ-¢£t=zômÍ­é‹/^ܾ}ÛÒÒ2<<<<<\ lÛ¶-""bÇŽnnn²õBSŠŠŠêêê˜h¾ªªª¸¸X´ÍIs=ÕÊ.puuÕÔÔLOOÏÍÍ>|8!ÄÃÃC üòË/ùùùôÞ6D/ý—””ØÚÚ2‰¢ÏÔ·í¥j™BHëº!.—Ûæ×ß¡3CàÐÒÒJHH˜2eÊwß}Ç$:99ÇÇLJ……õìÙ“ò÷ßoÙ²ÅÄĤõ?HŸc½Æ—’’òæÍ›fG,–/_~öìÙ={ö 4H4ÝÁÁÁÊÊjóæÍÁÁÁ4þ¨¬¬ôóó«««£›››oÙ²%44ÔÀÀ€R^^¾uëÖ¶mF‡ºsçθ¸¸•+W2×7ß¼y³fÍš¦~æ‘ÖôEII‰««ëgŸ}GQPP ¡ƒ¢¢¢Ì½Ð”òòòøøøO?ý”¾‹‹«¬¬û¥Aé=ÕÊ.PTTôòòJMM}øð!½ùuРAk×®möG¦trrÒÑÑIHH;v¬²²2!¤¨¨èСC促Äm{©º5ý%Ã!››{ëÖ-æÚ÷áÇézÚüú;tf qÁÁÁ»wïþ÷¿ÿͤ(++ÇÇÇ;99 …Âäää²²²C‡ÑïÈÖðôôTSS›3gNXX˜‘‘ÑÅ‹ÓÓÓuuu³²²NŸ>M§S‘têÔ©Í›7ÛÛÛs¹\Ñéëlllœœœ&L˜`ooTWWwìØ±G8p€þ¸Ü¦M›‚‚‚ƒƒƒ“““Ûc†¹øøøÂÂÂèèèÝ»w8>ÄšýôéÓU«V¹¸¸È¶ÚÖôÅ Aƒlmm×­[w÷î][[Û’’’Ó§O÷êÕ+$$„ËåÊÐ RDGGçääØÛÛ_¼x1--mذaÓ§OÍÃãñ¤ôTë»ÀÏÏÞ­KG¹\®»»{jjjß¾}›úEA¿nß¾ýéÓ§N Ôuuõ˜˜˜ˆˆgggŸ—/_&''«©©ÕÔÔìÚµËÁÁ>¸ÝúJQ²5”¢¢bKººº‘#GN˜0ÁÆÆ¦  à§Ÿ~rtt är¹ˆ»ÜãMÚ¶mó +pþüykkë={öüßÿý_¿~ý²³³¥ 6°gllœššÚ§OŸo¾ù&>>^UUõÚµk_ýuee¥”QúÃzW¯^ú¿öïßOñõõ½téÒ€’’’þïÿþÏÌÌìÌ™3AAAô³þþþééé øùçŸ7oÞüÏ?ÿ$%%µyªªªž={vÇŽ½{÷þí·ß¶mÛ–••5hРóçÏÓ?™ÉÜJJJ§OŸþðÃsrr¾øâ‹ŒŒŒQ£Fegg›™™ÉÖ R 2$--­¢¢bëÖ­=ŠŠŠúí·ß$o¤“ÞS­Dã']]]æ">}\Êp£‹‹KHHÈ™3gdøáÇ >|X[[ûÇ<þüøñã³²²ÜÜÜîÝ»W\\Ü&5b´²¿Zz¸ººnܸñÒ¥K+W®LOOÿè£~ûí·wåWã¡­pð_B›³²²*))‘w)@žšÚ8Ž7®5­¬¬LGG§õ㦠ÊÌÌÌÁÁAìÙ|蜚=ÌÌÌÞÿýF'!êdøâî¶ßõ¸T @è¼ÇÝ` —ª€Œ8t(NëWðŽðóó£?y]ÀªU«Z?;t:n1„neÛ¶mò.´ɹH¡{Â¥j`#°‚ÀXAଠpV8+€ŽÀ G`¿С8¹ýè ~·Z #@Çáp8D~Á‡ÃAì­KÕ@bcc9θqã$­_¿žÃá\½zUÞe$fffþþþôµ»»»££c›oâÊ•+'99¹©&ÊÎΖ\4jÔ(‡ÓÐÐ@ß>xð€ÃáÌœ9“ÉP__¿k×.wwwMMM‡ˆˆˆ²²2&ÃÖ­[9R9sF†êÄÅÅñùü´yCµ Ñí ¤ìTfff“'O–w;‚”C€rþüyooo>ŸohhèïïóæMy—ä#üÇÉ“'9"ïR°Âår¹\®¼KÁŠP(œ0aBxxxUUUXXXDDÄ{ï½·cÇKKË7nÐ>ÞÎÎNMM­W¯^C† Ù»wo£eðôô¤·£½yóFúM………ÆÆÆ½{÷öõõýõ×_E×sþüùQ£FõêÕ«_¿~Ë–-«­­móV¥ßÖ………béëׯ¿víš’’RkVÞT_Ìœ9sâĉ„777333ÉVUUÅÅÅÙØØôèÑÃÄÄ$<<üÉ“'lz¡EJ÷‡o¿ýV[[[IIiÀ€+V¬hª‘¥÷”¨ôôôáÇ<˜IY°`!äâÅ‹b9™è<99™ÃáØÙÙ1¢¢¢8N~~>Ù©fΜ9vìXBˆ‡‡‡hëeggûùùñù|##£O>ùäŸþiª„çÎsqqQWW·²²š5kÖóçÏ÷ìÙò[_¼xáãã[^^Î&¿ôþŠŒŒÜ¹s'ŸÏçñxFFFóæÍ-9ûCàùóç:::ÌÛšššÛ·o›˜˜°¬û^ƒN—ªà?8Îwß}׿ÿ>úè?þhô&ÂãÇêë뇄„p8œ””WW×””” &Ð =òññÑÒÒ5jMIJJâr¹Ÿ}öÇÛ²eK`` ““S}}ýÇ\ZZº}ûöÐÐЂ‚BHLLLllìÈ‘#kjjŽ=:uêTMMÍFŸÚ¡”••wïÞͼŸþù³gÏè÷YZZÚøñã ‚ƒƒŽ=êãã“””4eÊBÈ‘#G‚‚‚tttBBB’’’Nœ8Ñæ­:yòäÄÄDÿÙ³g¸ººÒQÀÞ½{÷îÝ»5k–ÒK—.566þâ‹/6mÚ$úUÍß¿¿··÷¤I“ wïÞ]XXxéÒ%6½À¾C !‡úóÏ?GmooéÒ¥õë×_¼x1##Cl^*é=%ª¾¾~þüùƒ M|ðàÝÄ2ûùù>|øÂ… ~~~„ .B _¼xAc ŒŒ }}}ÑO-]ºÔÌÌlÍš56l2dM¼víÚ˜1c¦OŸîíí}üøqzÝvçÎ’m{êÔ©€€++«ˆˆˆ§OŸ8p ;;»E‡zzztÀ¸¤¤ÄÚÚZzæfûëܹsÛ¶m›3g޵µõéÓ§·oß^WW÷Ã? <" ïß¿¿jÕ*##£Y³f±©Q‹z :;!´5KKKy䬩}€B„òûkúx‰‰!„ܾ}[(®_¿žO­[·ŽRPP  kjjÌÌÌLMMËËËéÒòòrssóšš¡PHŸáˆmhh LMM•””Š‹‹é[zŸŸ½½}mm-Mqss#„TVV …BsssKK˺º:º¨¢¢‚ÇãÍ›7YÕĉékÉŠ|ñÅ„ÄÄDZZ GGÇ·oßÒ¥ÕÕÕÆ 377¯¯¯¯®®611100xüø1]ZVVfhhH9pà@SM$E}}=Íyÿþ}BÈŒ3˜ÏîÝ»÷½÷Þ£ÙTTTF޹víÚû÷ï7ÕÚÚÚƒ ’¾5ÛÇŽ#„deeI~öõë×\.W´„³gÏæóùeeelz}‡Òýaíڵ̆–-[FÙ¿¿h‡Jï)as^¼xáììÌåroݺ%¶èñãÇ„¨¨(úvÀ€ôó#GŽÐª)((Ìš5Kr§:yò$!$##ƒ©5!äøñãôm}}½‰‰‰daÌÍÍ]\\ªªªhJvv6ýl÷îÝÍÖE }l9&&FJžfû‹’’’Bß ‚ôéÓ‡6r‹SSSooïêêjº'kjjž8q¢¥5bÓkr!Ãw·ý®Çˆ#ü%K–$%%EGGOš4‰¹Ÿ‰ÊËË»wï^BBŸÏ§)|>ñâÅ‘‘‘W¯^¥#[«W¯VPøÿ·Á8;;3£&žžž„EEEšâåå•••õöí[ ÜÜ\:ªAyñâ!äíÛ·,K~üøñ5kÖÌ›7oöìÙ„üüüÒÒÒ}ûö©ªªÒ ÊÊÊ¡¡¡yyyõõõ<ظq£‘‘]j``°páÂ+VHÙÄ”)Súôé#–xðàÁ‡JùThhhhhèµk×ÒÓÓÓÓÓ333ÓÓÓW¯^½fÍšÏ?ÿ\¶nbÓMQPP S =xð€Í&&&&&&Ò¥Íöû¥¥Zºt)óÙ5kÖlß¾ýàÁƒ¢C‰Ò{Jz]222>úè£Û·ooß¾ÝÂÂBl©‘‘‘]zz:!äåË—………»v튈ˆÈÌÌô÷÷¿pá‚@ =z4›·´´?~<}ÍårÒÒÒ$³åääܽ{wݺuÌÝ¥...Ì7õõõ§Njj+ÌÈ={Íö—¹¹ù¤I“èk‡ãèèH‡óòòd8x<Þ?üðìÙ³œœœñãÇ8p ¡¡¡E•’ÞkÐÉ!p€ÿÁãñ¾ÿþ{—… Š=ðXZZJ¡7/2èc¥¥¥ô ÞÊÊJ4j$„0‘ !„†’)TÏž=srrÒÒÒnÞ¼YZZzãÆ ö³uM›6ÍÍÍ-!!¦ÐÑ´‰e~øð!½ïmàÀ¢éÍÎ ¹`ÁWWW±Ä‚‚é#ÓPvvv‹/®­­=~üxddäš5k†úÁÈÐMlú¢)ªªª ô‚lÿþý]\\|}}ÇŒCo¸l¶Øw(!¤ÿþ¢÷qª©©YYY‰=Q!½§šªËÇ,XðË/¿XXXœ;wnäÈ‘fóóóÛ¸qãË—/éà«———››[ff&!$##ƒÇãy{{³ipKKKÑ·MÍEûÅÆÆF4qðàÁLàøæÍzûi£„-Ÿ¢¿Ùþ+9sxÞºu‹´üàr¹áááôulllLLLpp°——ËJ±ì5èÌðp ˆ:tèܹs;vüøqÑtú vwý­««£oµµµeÛhMM͸qãÜÝÝOŸ>maa±téÒââb---6Ÿ}ùòå„ ´´´RRR˜À…Æ+7nü·ggg:B#V±·õ^¿~=yòdz?CIIiòäÉôÖL)ã4Ò±é )æÏŸÿþýï¿ÿÞÎÎ.555 ÀÎÎîéÓ§­é–x<žØÒ{ªÑ•ìß¿ßÖÖöòåË;wî,**’øúú ‚ÌÌÌ .{zz^»v­¢¢"##ÃÍÍeíX>ŸÎŒü‰ä´´´¤\lic²é¯¦JÞúCàÃ?$„äää°¬û^ƒÎ #ŽÐˆ¯¿þúèÑ£ , ß ½¨týúõ#F0‰×®]#„XYYµr‹YYY©©© ‹-bÙŒ8644L™2åñãÇ.\}Ü„–VCCÃÇLJI,**º~ýº¶¶öûï¿O¹r劇‡³”y¤£­¨©©9sæÑ£GsæÌ[DGézôè!Ûš[Ó/^¼¸}û¶¥¥exxxxx¸@ ضm[DDÄŽ;ÜÜÜdë…¦ÕÕÕ1Ñ|UUUqq±h›“æzJr¿üòË´iÓ‚‚‚vìØ¡©©)½®®®šššééé¹¹¹Ã‡'„xxx‚_~ù%??ŸÞÂÛ†è¥ÿ’’[[[&Qô™ú¶½T-óQCiý!@7ÄårÙTªE½Gh„––VBB”)S¾ûî;&ÑÉÉÉØØ8>>>,,¬gÏž„¿ÿþ{Ë–-&&&­ÿ@úƒè5¾”””7oÞ4; ³|ùò³gÏîÙ³Gì™M++«Í›7Óø£²²ÒÏϯ®®Ž>lnn¾eË–ÐÐPBHyyùÖ­[Û¶9NhhèÎ;ãââV®\É\ß|óæÍš5kšú™G6ZÓ%%%®®®Ÿ}öY\\!DAA†ŠŠŠ2÷BSÊËËããã?ýôSú6..®²²Rì—¥÷”Ø …Bá§Ÿ~Ú·oߟþ™Í¯)**zyy¥¦¦>|øÞü:hÐ µk×6{ƒ£ s(:99éèè$$$Œ;–>/\TTtèÐ!òßAâ¶½TÝšþ’áÈÍͽuësíûðáÃt=ÍVª¥½Gh\ppðîÝ»ÿýï3)ÊÊÊñññÁÁÁNNNAAAB¡099¹¬¬ìСC­ŸSÃÓÓSMMmΜ9aaaFFF/^LOO×ÕÕÍÊÊ:}ú4NEÒ©S§6oÞlooÏårE§¯³±±qrrJHH˜0a‚½½}PPP]]ݱcÇ=ztàÀúãr›6m rtt VTTLNNf9m^‹ÄÇÇFGGïÞ½{àÀô!Öììì§OŸ®ZµÊÅÅE¶Õ¶¦/ dkk»nݺ»wïÚÚÚ–””œ>}ºW¯^!!!\.W†^ÂÀÀ :::''ÇÞÞþâÅ‹iiiÆ ›>}ºh'¥§ÄVX\\|óæMæN;F@@@£¸ŸŸ½[—Ž8r¹\ww÷ÔÔÔ¾}ûöïß¿ÑbÓøuûöíOŸ>•œH uuõ˜˜˜ˆˆgggŸ—/_&''«©©ÕÔÔìÚµËÁÁ>¸-[§K’í¨¡[zÔÕÕ9r„ 666?ýô“££c`` —Ë•^)z :/y?ÖÝI½|ùrÍš5cÆŒ±··÷öö^¼xñ;wX~¶Û>¢Œwz:QwïÞ¥ºÒéx¨œœ___======__ßßÿY$:cN£)ôB.‡¢ƒ^Ož< …™™™tÚä÷Þ{/<<¼¼¼<11QWW×ÇÇGØÄt<Ì£0b˜XòòòÆŒ£¯¯ß³gO³gÏŠïüùóÞÞÞtÄNKK‹Ž I™Ž§ÑÙmèÓR¦ãyóæÍŽ;† ¦«««¨¨¨§§7vìØ .4Õl¦ãi¶/¤LÇ# =z4kÖ,eeeccãÐÐPf†ö½Ðl‡ÒÌ™™™#FŒÐÒÒ²¶¶ŽŠŠª®®ntßÞS ±ûnEÅÅÅ5UYBˆ®®.“BÎñã?Í&:@  ÑÔÔtrr¢E ÍŸßT¿>|xøðá:::–––aaaEEEnnnFFFûöícÓ­ 6Óñ´¨¿„BáŒ3´µµ™·ì:Ͼ}ûœœœÔÕÕÍÌÌæÎ[QQÁ¦"2ôZÃt<ìq„m÷¯O—QYY9zôèòòr ‹¿þú+??ŸÇã%''‹Þ¶Ò++«’’yWä©©}€Ãá9pYžÙì&ÊÊÊttt0qÛ233sppÀ¿š=ÌÌÌÞÿýF'!êdøâî¶ßõ¸T݈o¾ù¦¼¼|îܹ‘‘‘4åÈ‘#+W®Œ‹‹;pà€¼KmÎ{ Ðmá–0O#.^¼¨ªªúÉ'Ÿ0)úúú7nÜhåÄŽüþZ#ŽÐÖÖ¶´´›ûJYY¹¶¶¶¶¶–ùm€–•bèVüüüèOÞA°jÕ*™gi…®c#’’’ÄRþøã‡:88 j`iÛ¶mò.´ɹH¡{Bà(M~~þáÇïÝ»—ŸŸoll¼~ýz–”œ€·{ÞB дþ7º ŽÒ”””¤¤¤ÐË‹b¿¸Úìå]vh’_ëÝ6”ÄÃ1ÒL™2¥¸¸8++kùòågΜ yýúµ¼  ›ÁáptuugÍšüäÉ“3gÎÈ»DòÀQ\iiéÊ•+OŸ>-–N™êéÓ§ò. €| p§©©yäÈúÛí¢>|H133“wä£8===++«¬¬¬ôôt&ñæÍ›{÷îUWW}ž={vùòeBȆ ø|¾¼K ql„Ý©S§ÆŒó÷ß§¥¥=}úôƒ>8~üøØ±cå]4¹ÁˆcãLLL¶lÙ"ïR@WÃáÈù£ñ›‡ÐqèXB¡ÜþšËápÆ'¹hýúõçêÕ«òn8bffæïïO_»»»;::¶ù&®\¹Âáp’““›j¢ììlÉE£Fâp8 ôíƒ8ÎÌ™3™ õõõ»vírww700ÐÔÔtppˆˆˆ(++c2lݺ•#•lÅÅÅñùü´yCµ Ñí ¤ìTfff“'O–w;‚”C€rþüyooo>ŸohhèïïóæMy—ä#üÇÉ“'9"ïR°Âår¹\®¼KÁŠP(œ0aBxxxUUUXXXDDÄ{ï½·cÇKKË7nПÇãÍ›7O´äìçÏŸëèèˆvÄíÛ·MLLXVª¸¸ØÐÐi|eee/^<þœå ³B[³´´”w@ΚÚè!'LJcš*pLL !äöíÛ÷îÝëÑ£‡££c}}=]´nÝ:BHAA}{ìØ1×§OŸÅ‹GFFöíÛ—Çã;vŒ.5554iR¯^½ÌÌÌ>úè#šÒ«W/]]Ý/¾øbíÚµ|>_EEÅÅÅÅÙÙ9>>~Þ¼yÇÞÞž~|Íš5„‘#GÆÆÆ®ZµÊÆÆ†râÄ få'N¤¯=<<„Ba]]Ýn?þøcŸ>}”””Š‹‹…BáÙ³gUTTÌÌÌ¢¢¢>ýôS .—»ÿ~º’Çs¹ÜÞ½{Ï›7oÁ‚úúú–––„4ÕDYYY’‹¼½½ !L‹Ý¿Ÿ2cÆ ú–†°ÊÊÊóæÍ;wî\UUU³û¶¶ö AƒšÍ&¥/®_¿þùçŸB6mÚ”™™)ùÙÐÐP‡3jÔ¨Ï>ûl„ \.wÈ!,{}‡šššBF½råJOOOBÈðáÃX‡Jï)Quuu………Ož<M±³³³³³“Ìœ˜˜HIMM¥oçÏŸOáp8ÏŸ?§)Ô××§åavªëׯÓñË 6ÐÖ355µ´´ÔÒÒŠˆˆØ´i½¯€îá’Nž<ÉDÉ3gÎTUUµ´´TPPؽ{w³}*†>}#%O³ýekk«¤¤4þüo¾ùfôèÑ„ððpº´E‡€©©©···P(wïÞ2eн½}yy9˺Ì;—ËåÞ½{—¾­¯¯§3%·´MÚ‰ _ÜÝö»cÛë¶;0ÞÝÀQ(®_¿žO‰Ž555fff¦¦¦Ì·Eyy¹‰‰‰¹¹yMMP(¤ÏpÄÆÆ644Ð ¦¦¦L' é}~öööµµµ4ÅÍÍRYY) ÍÍÍ---ëêêè¢ŠŠ 7oÞŸ_VVƦØw(ÝÖ®]ËlhÙ²e„2*½§¤4ž={¢££œœtuuÓÒÒ$3<~ü˜Eß0€>c~äÈZ5…Y³fIîT'Ož$„ddd0µ&„?~œ¾­¯¯·±±111‘ÜbCCƒ¹¹¹‹‹ óBvv6}æ¦Çfû‹’’’Bß ‚Ðp­¥‡ «««éžLïSd_—Û·o÷íÛ·OŸ>_~ùåÖ­[ÝÝÝ•””ýß@.8²‡‡cà,Y²$)))::zÒ¤IÌýLT^^Þ½{÷˜ŸPâóùt¸ëêÕ«ô9 V¯^­ ðÿoƒqvv¶¶¶¦¯é˜SHHˆ¢¢"MñòòÊÊÊzûö­††Fnn®ŠŠ ÷ŸóÒ‹/!oß¾eYòãǯY³fÞ¼y³gÏ&„äçç—––îÛ·OUU•fPVVŽˆˆ ÍËË«¯¯ðàÁÆé-ùÂ… W¬X!eS¦LéÓ§XâÁƒéoÙ7%44444ôÚµkéééééé™™™ééé«W¯^³f ”›¾hŠ‚‚ZèÁƒôRcbb"œ#„4Û ì;”–jéÒ¥Ìg׬Y³}ûöƒN™2…I”ÞSRêòå—_Òg€FÕè5S###;;;úû±/_¾,,,ܵkWDDDff¦¿¿ÿ… „k–¥¥åøñãék.—ëàà––&™-''çîÝ»ëÖ­cî.uqq d&¸©¯¯?uêTS[™0aBK÷„fûËÜÜ|Ò¤Iô5‡Ãqttø@†nbÓMQUUMHHXºt©™™Yÿþý]\\|}}ÇŒCo¸l¶Øw(!¤ÿþ¢÷qª©©YYY‰=Q!½§¤Ô¥´´ôíÛ·/^ :thqqqïÞ½ÅòøùùmܸñåË—tðÕËËËÍÍ-33“’‘‘ÁãñèÍ¢×pMÍEû…^/f <˜ ß¼yCo?m”°åSô7Û_b%gÏ[·n‘–\.—yz=666&&&88ØËË«ÙJMŸ>=99yÓ¦Maaa=zôÈÌÌœ?þ°aÃrss{õêÕÒZƒáá7tèйsç;vìøñã¢éô @ì÷oè7h]]}«­­-ÛFkjjÆçîî~úôi ‹¥K—3@H÷òåË &hii¥¤¤0 W6nÜøo ÎÎÎt„F¬.b!oë½~ýzòäÉ?üðƒh¢’’ÒäÉ“wïÞM‘2N#›¾bþüù÷ïßÿþûïíììRSSìììž>}Úš^`‰Çã‰=!½§¤¯­G^^^ëÖ­ûûï¿Ð××W dff^¸pÁØØØØØØÓÓóÚµknnn,kÇòùtfäO”h$§¥¥%å"`K“M5UòÖ~ø!!$''§ÙJîÛ·ï“O>Yºt©¾¾¾¦¦æ¸qã¾ÿþû;wîˆÐùaÄñõ×_=ztÁ‚ô»²°° „\¿~}ĈLâµk×!VVV­ÜbVVVjjjBB¢E‹˜D6#Ž S¦Lyüøñ… Dœhi544|||˜Ä¢¢¢ëׯkkk¿ÿþû„+W®xxx0K Ú¶ÕÔÔΜ9óèÑ£9sæˆ-¢£t=zômÍ­é‹/^ܾ}ÛÒÒ2<<<<<\ lÛ¶-""bÇŽnnn²õBSŠŠŠêêê˜h¾ªªª¸¸X´ÍIs=%¶ÂS§NMœ81)))88˜IìÙ³'ib¸ÎÕÕUSS3===77wøðá„@ðË/¿äççÓ[xÛ½b^RRbkkË$Š>Sß¶—ªe>j!­?膸\n³•úûï¿ !̾}K¯­Ã;#4BKK+!!aÊ”)ß}÷“èäädllF¿ªÿþûï-[¶˜˜˜´þés ¢×øRRRÞ¼yÓì0ÌòåËÏž=»gÏžAƒ‰¦;88XYYmÞ¼988˜Æ•••~~~uuuNNNæææ[¶l 500 „”——oݺµm›‘Ãᄆ†îܹ3..nåÊ•ÌõÍ7oÞ¬Y³¦©Ÿyd£5}QRRâêêúÙgŸÅÅÅBhè ¨¨(s/4¥¼¼<>>þÓO?¥oãââ*++Å~iPzO‰­pÈ!„Ÿ~ú)((ˆ-£3Ý 6L²ŠŠŠ^^^©©©>¤7¿4HCCcíÚµÍÞà(ÊNNN::: cÇŽUVV&„:tˆü7®mÛKÕ­é/ÜÜÜ[·n1×¾>L×Ól¥¨ªªºwïÞO>ù„6 !d×®]„É{? “Cà Þ½{÷¿ÿýo&EYY9>>>88ØÉÉ)((H(&''—••:tˆù2™§§§ššÚœ9sÂÂÂŒŒŒ.^¼˜žž®««›••uúôi??¿F?uêÔ©Í›7ÛÛÛs¹\Ñéëlllœœœ&L˜`ooTWWwìØ±G8p€þ¸Ü¦M›‚‚‚ƒƒƒ“““YN›×"ñññ………ÑÑÑ»wï8p }ˆ5;;ûéÓ§«V­rqq‘mµ­é‹AƒÙÚÚ®[·îîÝ»¶¶¶%%%§OŸîÕ«WHH—Ë•¡¤000ˆŽŽÎÉɱ··¿xñbZZÚ°aæOŸ.š‡ÇãIé)±òùüÏ>û,66vðàÁ>>>'---77wñâÅ¢4Šòóó£wëÒG.—ëîîžššÚ·oßþýû7ú¿nß¾ýéÓ§¢Ïñ4K]]=&&&""ÂÙÙÙÇÇçåË—ÉÉÉjjj555»vírpp nËÖé’d;j(EEÅ–uuu#GŽœ0a‚MAAÁO?ýäèèÈår¥WJMMmÛ¶m3gÎìß¿@@€ŠŠÊùóç333dxäLÞuwAÝö}`¼ÓÓñˆº{÷.}Е™ÇQ(æääøúúêéééééùúúþþûïÌ"ÑsM¡Âèt9ô¢ÓòeffÒi“ß{ï½ðððòòòÄÄD]]]aÓñ0ˆaf`ÉËË3fŒ¾¾~Ïž==<<Ξ=+Z¼óçÏ{{{Ó;---:2Ô¶ó8 …Â7oÞìØ±cذaºººŠŠŠzzzcÇŽ½páBSÝÁrGé}!e:¡PøèÑ£Y³f™˜˜(++‡††23ì°ï…f;”fÎÌÌ1b„–––µµuTTTuuu£û†ôž%öìÙãììܳgOú[Õv™he !ºººL ý9Ç?þX4›èt< $$DSSÓÉɉ500P4óÔ©Sù|~S[<|øððáÃutt,--ÃÂÂŠŠŠÜÜÜŒŒŒöíÛǦ[l¦ãiQ …Â3fhkk3oÙt:ž}ûö999©««›™™Í;·¢¢‚}u²²²üüü 555wìØ!}º¥Ž„éxØãÛî_ ¬¬¬JJJä] §¦ö‡CäxÄqp¼7©¬¬LGG§õ㦠ÊÌÌÌÁÁAìÙ|蜚=ÌÌÌÞÿýF'!êdøâî¶ßõ¸T @è¼ÇÝ` #@ÇúßÉ/Þ!:®C·âççGòº€U«VÉ|ÈçóSRR|}}ûí7±aÚ¶ÝIZiÇŽ ==½oß¾„iÓ¦™››'%%-Y²¤ƒÛ‡eëAk`ÄàÁá¡°½EéééM™2¥¡¡¡°°°©<ÖÖÖIIIB¡ðË/¿”m+B¡¢¢¢Òaõ’®¶¶–¹:߬††††††¶Út}}ýÙ³gcbb|||Ø—¡khQ³¿sZÔ³[¶l¹}ûö÷ß¿wïÞ­[·^¸pÃá,]ºT†U±$Z¹_¿~½_¿~4j$„ôìÙÓÚÚúÎ;ß>Ò—B›@àM¢Q]]]”<ƒ ruu=räH}}}K×?sæÌ‰'BÜÜÜÌÌÌhbnnîèÑ£õõõ G››Ëä733‹ŒŒ¼|ù²½½½½½½ä «ªªâââlllzôèabbþäÉfi||¼ššZ¯^½† ²wï^Ñ5/Z´hÙ²eššš***C† 9uêT}}ýÊ•+mll455===‹ŠŠD‹ñí·ßjkk+)) 0`ÅŠµµµÖ±°°0 ÀØØ¸wïÞ¾¾¾¿þúkS­ñâÅ ŸØØØòòréí¨¨¨øúõkú699™ÃáØÙÙ1¢¢¢8N~~>!ÄÓÓ“·Ìœ9“Þ-àááÁ´6!$;;ÛÏÏÏç}òÉ'ÿüóOSÛ•R—¦Z^r£LyZÚìRz°ÑªIoùóçÏ5ªW¯^ýúõ[¶lYSÝG;wÎÅÅE]]ÝÊÊjÖ¬YÏŸ?WTTܳgOó»x {–ràÀƒéÓ§Ó·æææ™™™ýõWKWEšÛç###wîÜÉçóy<ž‘‘ѼyóD{Ÿ}=þ\GG‡y[SSsûöm“ŽoéK¡m¡­YZZÊ» gí²Уµ}ŽÙ˜˜BHVV–hâ³gÏ ÊÊÊšÊCÍŸ?Ÿr÷î]éÙ$]¿~ýóÏ?'„lÚ´)33S(;vŒÇãõéÓgñâÅ‘‘‘}ûöåñxÇŽ£ùMMM'MšÔ«W/33³>úHr…¡¡¡gÔ¨QŸ}öÙ„ ¸\î!Cè¢5kÖBFŽ»jÕ*Bȉ'˜5÷êÕKWW÷‹/¾X»v-ŸÏWQQqqqqvvŽŸ7o‡Ã±··g2BF½råJOOOBÈðáÃ]:qâDšóìÙ³***fffQQQŸ~ú©……—ËÝ¿¿ôf¡ÄÄÄ4•!11‘’šš*Úþçùóç4eàÀúúú´<´µéÝc6l ­mjjjii©¥¥±iÓ&wwwBH£ Ûl]šjyÉ2åii³KéAÉ­H/íáǹ\nïÞ½çÍ›·`Á}}}KKKBÈ$+~òäIæßƒ™3gªªªZZZ*((ìÞ½›íƺg_½zÅápBCCE÷íÛG9räH‹VÅfŸ·µµURRš?þ7ß|3zôhBHxx¸ Mdjjêíí- ÁÝ»w§L™boo_^^ÞÁíþõ$ÉpÒî¶ßõÛ^·Ý™€Ñ6û!ÿó×hz¡Ñ^XXØŠ+V¬X±|ùò3fÐ!„… Šæi4"\·n!ä×_e²IrssktÓÇŽcV[SScfffjjÊ|å”——›˜˜˜››×ÔÔ…BSSSBHlllCCƒäª^¿~Íårg̘Á¤Ìž=›ÏçÓÀ×ÜÜÜÒÒ²®®Ž.ª¨¨àñxóæÍ£oMMM•””Š‹‹éÛ 6BìííkkkiŠ››!¤²²’)ÆÚµk™ -[¶ŒBã&p¬©©±°°ptt|ûö-ÍV]]=lØ0ssóúúz)ÝÑì×çãÇ !QQQôí€è3éôÛ±¢¢BAAaÖ¬Yt©h vòäIBHFFSkBÈñãÇéÛúúzÉ-J¯‹ô–Û¨XàȾ٥÷ èV¤—¶ººÚÄÄÄÀÀàñãÇtiYY™¡¡a£QQCCƒ¹¹¹‹‹KUUMÉÎΦ÷´GàxëÖ-BHdd¤hâ¹sç!;wîlѪšm1Úû)))ô­@ 0`@Ÿ>}hs±o"áÇêêjz°kjj2áiG¶ûÖ“„À‘=<ÐY …„ü÷ÖF6é­&z‹ÇãYYY­\¹’ÍÓ‰;/§L™Ò§OÑú-%]^^Þ½{÷ø|>MáóùtèñêÕ«ƒ&„¬^½ZA¡‘Ûl8Nvvöƒèe²ÄÄD:8GÉÍÍUQQáñþsÒ{ñâ!äíÛ·ÌÇ­­­ék:ˆ¢¨¨HS¼¼¼²²²Þ¾}«¡¡A &zãÔš5k¶oß~ðàÁ)S¦0‰ùùù¥¥¥ûöíSUU¥)ÊÊÊ¡¡¡yyy´:²122²³³KOO'„¼|ù²°°p×®]™™™þþþ.\t©Y–––ãǧ¯¹\®ƒƒCZZšd6éu±µµ•ÒòÒ±oöf{eiëëëmØz G€w é¤<&vÌËË»páBPPP£_±-baaA¹~ýúˆ#˜Äk×®B¬¬¬šýø‹/nß¾mii.¶mÛ±cÇ77·ÔÔÔ„„„E‹1ùex œQTTTWWÇŒ‡UUU{xxHVGCCÃÇÇGôƒ×¯_—þ²áêꪩ©™žžž››;|øpBˆ‡‡‡@ øå—_òóóé]§mHz]¤´<}>£õ²²²Ø÷ ôÒ¾ÿþû„+W®ˆöWAAA£«¢WÞKJJD§) ªm/Uóx¼~ýú]¸pA4ñüùó§ÿþí×bbZÔD¢âr¹Ù>mØz ¦ãxp8ÿǜʱY¥¥¥S§Nåp8ÑÑÑ­_›“““±±q||üË—/iÊßÿ½eË6ó÷–”” :tóæÍô­‚‚ýÚSTT¤O“ˆ^pLIIyóæÌc!åååñññÌÛ¸¸¸ÊÊJ±_tpp°²²Ú¼ysEEM©¬¬ôó󋌌ìÑ£G+ÛJQQÑËË+555//Žƒ ÒÐÐX»vm³78Ê0ÿŸôºHiùÖlTˤ[‘^Z'''ssó-[¶0S´”——oݺµÑí:99éèè$$$ÔÔÔД¢¢¢C‡‘ÿÓKÕM‘¡¦sæÌ¹ÿ>}Ö‡òìÙ³”””Q£F‰Î Ô†-ÖT­Ù7•››K/pS‡¦ëéàöi«Ö)0âйÑ0‘9×3OÆÈÉöíÛéI¹¦¦¦°°0''§¶¶vÛ¶m¢ã12SVVŽvrr  …ÉÉÉeee‡RVVnöム²µµ]·nÝÝ»wmmmKJJNŸ>Ý«W¯.—«¦¦6gΜ°°0##£‹/¦§§ëêêfee>}ÚÏϯ¥E500ˆŽŽÎÉɱ··¿xñbZZÚ°aØÙã(—0aÂ{{û   ºººcÇŽ=zôèÀmò›{~~~G%„ÐÀ‘Ë庻»§¦¦öíÛ·©ñ:Ò¹}ûö§OŸŠ>ÇÓ,éu‘Òò­Ù¨(OOOé=(¶)¥år¹›6m rtt VTTLNNnjAuuõ˜˜˜ˆˆgggŸ—/_&''«©©ÕÔÔìÚµËÁÁ>!Þš~\¿~ýºuë¾þúë¹sçBf̘ñã?†……ÍŸ?_[[{÷îÝoß¾•á§›m1)ŸUTTdßDT]]ÝÈ‘#'L˜`ccSPPðÓO?9::r¹ÜŽlŸ¶j=FÞuwAÝö}`¼sû›ÉÅæÙáp8–––¡¡¡999-]•(Ñéx¨œœ___======__ßßÿY$:Eb£=z4kÖ,eeeccãÐÐPfª—ÌÌL:‡ó{ï½^^^ž˜˜¨««ëãã#¹fzU.11‘I‰‹‹#„ŸßÔ¥ÔEJË‹mTl:öÍ.½ŶÒlËŸ?ÞÛÛ»gÏž„---:ˆØè\3B¡ððáÃÇ×Ñѱ´´ +**rss322Ú·o_³½ÙlÏÒC&!!I©¨¨˜3gŽ……ŸÏ7n\^^žl;I‹öy¡P8cÆ mmmšˆNdzoß>'''uuu33³¹sçVTT´¨qÚª}Ø´ž$LÇÃGØiî”ê2¬¬¬JJJä] 'ì]›™™™ƒƒíƒw]YY™ŽŽ›!ín«Ù&233{ÿý÷Èé]!ÃI»Ûžçq©º/:¯5H&Qx8XÁˆ#@Ëøùù±ù!€nbÕªU­Ÿa ÞZfÛ¶mò.@'2gÎy:.U+€ŽÀ G`#°‚ÀXAଠpV8+€Ž@bcc9ÿKKKkðàÁ‰‰‰ Ñ< ÖÖÖÓ¦M»té’ôU1BBBÝz\\ŸÏ0`€¼›¡m˜™™ùûûË»ÿŸ»»»££cSE|øp±·ÄôíÛ×ÈÈhòäÉ999ì—ÊÅ•+W¼½½xçΞ={jjj~øá‡ÑÑÑÆ #„ȶª¦œþ¼²²²žžÞâÅ‹—.]Ú§OŸ=züúë¯l–¶+)MÎår>|Hßþý÷ßÚÚÚ›7of¹æíùÒSæö‘á¤Ým¿ëyò\Û]}}ýŒ3 ´´´† V]]ýûï¿gee-\¸pþüùM}êáǪªª¦¦¦¢‰ÚÚÚò® @ÇÑÓÓ›2eJ|||aa¡žž^£y¬­­“’’üå—_Êv™O(BTTTä]Ýÿ¨­­åñx ¬®Æ444BÚjülÉ’%¯^½ºtéÒàÁƒ !_|ñÅìÙ³üñÇ3gÎøøøÈ»aÚW‹šý³eË–Û·oïÞ½ûÃ?$„,Z´hàÀK—.MOOË) gÏž­¥¥uõêUzЭ^½zàÀË–-»råŠô¥2O …ÂÖìÆ×¯_ïׯ_ß¾}éÛž={Z[[ß¹s‡åÇ[´çKiÌvj'ïȵÝíÝ»×ÒÒ2$$äíÛ·4åÖ­[ÎÎÎ666EEE~äÕ«W–––‹-’m‹Ýö¿`tG¡P¸xñbBÈéÓ§…R‡]]]y<^]]°…#Ž3fÌ`ÎE¦¦¦4ñ÷ß÷óóÓÓÓ300ðóóûý÷ß™ü¦¦¦‹/þã?ìììììì$WøöíÛ/¿üÒÚÚZUUÕØØxöìÙýõ³tË–- èÑ£GÏž=“’’D×¼pᨨ(eeeEEEggç“'OÖÕÕ­X±ÂÚÚZCCÃÃÃãÆ¢Åøæ›oÔÕÕlmm—/_^SSÃ,,¹~ýº¿¿ß¾}uuu}||¤Œ­Ò­ˆ¦äååBÖ¬Y#–sÒ¤I<ïŸþ¡o8@0`“aéÒ¥„: ãáááààÐhkÓǬ¬,___CCùsçVVV6UB)uiªå%7Ê”§¥Í.¥Ý‘¤·|ff¦··wÏž=mll¢¢¢èͦFÓÒÒ† ¦¦¦fii9sæÌòòr·{÷n6;¹P(´²²200 ñ®  PVV&–“[+W®Müæ›o!W¯^•¾´ÑMKßç/^¼cÇŽž={B ?ùäÑÞgßDï½÷žè®[]]Íçóׯ_ϲ}ØïùÒS†öa`Ä‘½®ùï¨ÿûß„Ï>ûLUU•¦XXXÌ;·¡¡!;;»Ñ<|ø"6ÜÐÝ”——ùäŸþ™:uê/¿üÂ|6))iÏž=Ÿ}öYllìÝ»wGŒ‘žžþñÇO›6-33344”É|èСˆˆˆáÇ/_¾\WWwýúõ£F …båIKK}úÐæbßDtUÞÞÞÕÕÕô`×ÔÔŸOSø|þâÅ‹###¯^½Jï200X½zu£7Ã)((p8œìì옘˜BéÒÜÜ\æl@çÞ¾}Ë|ÜÙÙÙÚÚš¾öôô$„„„„(**Ò//¯¬¬¬·oßjhhЂÑËÁÔš5k¶oß~ðàÁ)S¦0‰ùùù¥¥¥ûöíc.w(++GDD„††æååÑê4%##ã£>º}ûööíÛ-,,Ä–ÙÙÙÑ;ä^¾|YXX¸k×®ˆˆˆÌÌLÿ .‚Ñ£G³étKKËñãÇÓ×\.×ÁÁ!--M2›ôºØÚÚJiyéØ7{³=Ȳ´õõõ<ظq£‘‘]j``°páÂ+VH®*''çîÝ»ëÖ­cnÃuqq dîè­¯¯?uêTSµ›0a-¡¦¦¦hº––SQzzz“&MJIIY¿~= ý÷ìÙ³}ûvBHee¥ô¥’[o¶ÅÌÍÍ'MšD_s8GGÇ'NBòòòØ7ƒÇãýðÃÏž=ËÉÉ?~|PPФ·XŠô=_zc¶´}@6]?pìׯŸXÊ¥K—¾ÿþ{eeeæ–:ܽuëV33³aÆýù矿ýö[fffLLLPP›ZYY‰¥”””È»%@þZ:{›üì×)$Bé²²²\]]e¨=dÌÍÍ™” ȰªÒÒRBˆØhvvvt´¬¬¬šz„BUU5!!aéÒ¥fffýû÷wqqñõõ3fŒ’’!¤gÏž999iii7oÞ,--½qã†Ø|L´J¡‹d £ÿþtµ”ššš•••ØÓt*»ÐÐPÑkÜÔÇ› >|¸`Á‚_~ùÅÂÂâܹs#GŽl4›ŸŸßÆ_¾|Ik½¼¼ÜÜÜ233 !<ÏÛÛ›M›[ZZоmê ‰fë"¥å¥cßìÍö ËÒ¾~ýš2pà@Ñô¦¦–¤û¤hâàÁƒ™ÀñÍ›7M}•B„B!­Î?ÿü#šNã˜^½zI~dûöítìŸÖ::::&&†>)}©˜f[L¬÷™#‹ì±l"—Ë §¯ccccbb‚ƒƒ½¼¼¤·h×4»ç7Û˜-jŸ‘üZﶺ~à(ª¡¡aïÞ½6lhhhؼy³èéIÔ_ý¥ªªºdÉ’éÓ§Ó”œœœ¹sç®]»ÖÍÍ×K‡0Õlè&ŠC8Íæg“§\½z•Ç㉠1ÊÒ>B!‘¿¤¡L]]}+ý `þüù“&M:yòäo¿ý–ššúý÷ß[YYeffjkk¤¦¦<øƒ>?~ü°aÜœœÚ°x<Þ›7oDShØ´qãFɹÍ%ÿ¡¥öïßÿñÇ«««ïܹsÖ¬Y’WK¾¾¾ëׯÏÌÌÌÉÉ166666öôô\µjUEEEFF†››†iËçÙ›­KS-ßÔóø-USSþ¥—öüùóDb7kê¿‘F»@4üÒÒÒ ¥ƒzzz åå墉ϟ?'„0ãy¢tuuÓÒÒ.]ºD vss£666nviK[¬©Þ§µfÙDúðÃcbbrrr¤·ÅrÏo¶1Ù·OKI~­wÛP²Ž¿ÿþ{llì;w Ö®]ëââÒTÎÝ»w‹¥¸¸¸L›6-11ñܹsL4 „¼¼¼ .I‰rX¢W¦®_¿>bÄ&ñÚµk„Ý9úÅ‹·oß¶´´ Û¶m‹ˆˆØ±c‡››[jjjBB¢E‹˜ü­™[»¨¨¨®®Ž«ªª*..öð𬎆††è”"EEEׯ_o4üýå—_¦M›´cDZ‹q’\]]555ÓÓÓsss‡Nñðð¿üòK~~>½ë´ I¯‹”–_³fM› ++‹}J/íûï¿O¹råŠh4º*z彤¤ÄÖÖ–I,,,-ƒôK±<¯_¿~Ì“LÔùóç9Nÿþý%?rõêUMMÍaÆÑé !¿þú+‡Ã¡ßYÒ—ÊÜbbZÔD¢âr¹Í¶iÉžßlc²oYתšR[[ûÕW_}øá‡eee§OŸ–arvv&ÿÀª´´têÔ©'::ºõksrr266Žùò%Mùûï¿·lÙbbbÂæGêJJJ†ºyófúVAA~í)**Ò§ID/8¦¤¤¼yó†ÍXH£ÊËËããã™·qqq•••b¿4èàà`eeµyóæŠŠ šRYYéççÙ£G± …ÂO?ý´oß¾?ÿüs³Q#­”——Wjjj^^  ¤¡¡±víÚfopdÿD0˺HiùÖlTˤ[‘^Z'''ssó-[¶üõ×_LonݺµÑí:99éèè$$$ÔÔÔД¢¢¢C‡‘ÿÓKÕM¡™3gÎýû÷éã;„gÏž¥¤¤Œ5ÊÌÌLr‹ü±]YY}[\\œ””4fÌz±KúRZ¬©Z³o"*77WôûñðáÃt=ͶOK÷|éɾ}@f]ÄQ ,]ºôìÙ³ÞÞÞkÖ¬{P_’P(ô§xEÓéõ2z_<@·µ}ûvzÊ®©©),,ÌÉÉ©­­Ý¶m›èxŒÌ”••ããッƒœœ‚‚‚„BarrrYYÙ¡C‡$'æ4hÐ [[ÛuëÖݽ{×ÖÖ¶¤¤äôéÓ½zõ ár¹jjjsæÌ 322ºxñbzzº®®nVVÖéÓ§ýüüZZTƒèè蜜{{û‹/ÒyþÄ.Gðx¼„„„ &ØÛÛÕÕÕ;vìÑ£G¼•°¸¸øæÍ›666Ì]bŒ€€€qãÆI–ÁÏÏïèÑ£„8r¹\ww÷ÔÔÔ¾}û6:”Eþ{¡ûöíOŸ>}ާYÒë"¥å[³QQžžžÒ{Pl+RJËår7mÚäè謨¨˜œœ,võ“¡®®áìììããóòåËääd55µššš]»v988Ð'Ä¥~ÆŒ?þøcXXØüùóµµµwïÞýöí[:!dýúõëÖ­ûúë¯çÎKùâ‹/üüü† âïï_WWwðàAUUÕýë_4³ô¥-j1)VTTdßDT]]ÝÈ‘#'L˜`ccSPPðÓO?9::r¹\éíÓìž/Ö>Ò“}û€ìäýXw»Û½{·¥¥eLL Ëü÷îݳ´´œ:uªXú¿þõ/KKË£G6»†nûˆ>0ÞÑéx¤ÏÚ-6χñ´´ ÍÉÉiéªD‰NÇCåääøúúêéééééùúúŠM.ý'ø=z4kÖ,eeeccãÐÐPfª—ÌÌLuuõ÷Þ{/<<¼¼¼<11‘N -¹fzU.11‘I‰‹‹#„Ð__¤™333GŒ¡¥¥emmU]]Ýh!óòòÆŒ£¯¯ß³gO³gÏ6Zrѹ*ÅÄÅÅ5UYBˆ®®.“²qãFBÈÇ,šMtú@¢©©éää$lì'§NÊçó›j^)u‘Òòb›Ž‡}³KïA±­4ÛòçÏŸ§³[B´´´è bS€>|xøðá:::–––aaaEEEnnnFFFûöí²SQQ1gÎ >Ÿ?nÜ8Ñߤ‡LBB“röìYZSccãðððçÏŸ‹®JúRQ-Úç…BáŒ3´µµeh":Ͼ}ûœœœÔÕÕÍÌÌæÎ[QQÁ¦ešÝó%ÛGJc¶¨}Da:ö8BY¯Ô¼„Bá|@<”rø›7ož={¦¨¨Hïî ½råJ\\ÜäÉ“i†üüüY³fikk§¦¦2ó;4ÅÊÊ Çtsm²°|\º3<Óݘ™™988ÐÑ>xו••éèè°Òî¶šm"33³÷߿щœÞ2œ´»íw}¿T]^^Nu:,,Lr©¿¿ÿÔ©S !™™™‘‘‘ôÜçŸ>{öìÕ«Wïß¿ßÜÜüÏ?ÿ,((èÑ£Ç×_ÝlÔÐVtÜýÖ,4ˆêâ#½;¸ªªJô!8FSÈX[[=ztóæÍ/^,--íÛ·ïĉ.\h`` ï ÈMœœØŒ$=Zì!ÄÞ½{¯_¿^ÞÅ€ÎÈÏÏ¿eÀXµjUëg؆wEÚܶmÛä]€NdΜ9ò.tœn1#´G`#°‚ÀXAଠpV8+€ŽÀ G`#ØØXÎÿÒÒÒ|øp±ÿͤ/•‹+W®x{{?xð`ùòå+V¬¸s玻»û³gÏØ|öÎ;Mý«éééÙèGŠ‹‹úöíkdd4yò䜜fQ]]Ç[®®®¼[¨KáÉ»À‡a{®Á‚®®®ÌÛ§OŸ:::ÆÇÇGEEééé5šçæÍ›'Nüä“O\]]mmm›Z•·oß&„ÄÄÄxyyudcvB©©©cÆŒ177Ÿ:uªªªjJJJ@@À?üÞšÕfdd0¯Ÿ>}zìØ±Å‹wd½Ä6*ZžöÛJ生ŸŸ-}W¯¬¬4hÐÇù|~JJН¯ïo¿ýF‡i¥/•—;v‚ôôô¾}ûB¦M›fnnž””´dÉ’f?«®®>uêT±ÄªªªÃ‡›™™Iæ¿pá¨Q£´µµCBB¸\nrrò¨Q£~ùå—‘#GBîÝ»×ÐÐàââbnn.º 96N׃ÀàÝ@£ÆöŽEéééM™2%>>¾°° ÅX[['%% <øË/¿”í2ŸP($„¨¨¨tTµšQ[[ËãñX]ihh „´ÕøÙÊ•+õõõóòò´´´!«V­êׯ_lll+ÇwB‹šýS__Ÿžžž““³mÛ6æÞ¦lÙ²åöíÛ»wïþðà !‹-8pàÒ¥KÓÓÓ›]*@  [³_¿~½_¿~4j$„ôìÙÓÚÚúÎ;l>«§§÷óÏ?‹%.[¶ÌÀÀ`ãÆbéB¡pöìÙZZZW¯^¥'¥hÓf7C%IDATÕ«W8pÙ²eW®\!ÿýGô‹/¾À?¢í§k¥Ð&hTWWW'%Ï Aƒ\]]9R__ßÒõÏœ9sâĉ„777ft!77wôèÑúúú†††£GÎÍÍeò›™™EFF^¾|ÙÞÞÞÞÞ^r…UUUqqq666=zô011 òä ³4>>ÞÎÎNMM­W¯^C† Ù»w¯èš-Z´lÙ2MMM•!C†œ:uª¾¾~åÊ•666šššžžžEEE¢ÅøöÛoµµµ•”” °bÅŠÚÚÚFëXXX`llÜ»wo__ß_ýµÑl5557nÜ;v, !jjjîîî?®ªªË¨¨¨øúõkú699™ÃáØÙÙ1¢¢¢8N~~>!ÄÓÓ“GÍœ9“Þ-àáá!:–“íççÇçóŒŒ>ùä“þù§©þ’R—¦Z^r£LyZÚìRz°ÑªIoùóçÏ5ªW¯^ýúõ[¶lYSÝG;wÎÅÅE]]ÝÊÊjÖ¬YÏŸ?WTTܳgËýüÅ‹>>>±±±åååÍf>pà€ÁôéÓé[ssóÀÀÀÌÌÌ¿þú«Ù¥’¤ïó‘‘‘;wîäóù<ÏÈÈhÞ¼y¢½Ï¾‰ž?®££Ã¼­©©¹}û¶‰‰ Ëö“““ÿã?Š®“ºwï^iiéìÙ³™eµµµ###óòò®]»Fþ8¾ÿþû²mXB[³´´”w@ÎÚ| M¼n+111„¬¬,ÑÄgÏž*((”••5•‡š?>!äîݻҳIº~ýúçŸNÙ´iSff¦P(ûì³ &p¹Ü!C†ÐEkÖ¬!„Œ9266vÕªU666„'N0kîÕ«—®®î_|±víZ>Ÿ¯¢¢ââââìì?oÞ<‡cooÏd622"„Œ=zåÊ•ôN¬áÇӑSSÓ‰'ÒœgÏžUQQ133‹ŠŠúôÓO-,,¸\îþýû%K^WWWXXøäÉÑ;;;;;;É̉‰‰„ÔÔTÑöçp8ÏŸ?§)Ô××§åñððppp ­Mï®Û°ammSSSKKK--­ˆˆˆM›6¹»»BmØfëÒTËKn”)OK›]JJnEzi>Ìår{÷î=oÞ¼ èëë[ZZB8 Yñ“'O2ÿÌœ9SUUÕÒÒRAAa÷îÝ-=Ðè##111Mexõê‡Ã MÜ·o!äÈ‘#Ò—J®­Ù}ÞÖÖVIIiþüùß|óÍèÑ£ !ááá24‘©©©···P(wïÞ2eн½}yyyKÛG(VUUYXX̘1£Ñ¥ô>‡øøxÑÄÇB’’’„BaDD„²²ò‹/<¸cÇŽ .ÔÔÔ°Ù® 'ínû]À±íuÛ ïhà¶bÅŠ+V,_¾|ÆŒôßý… Šæi4"\·n!ä×_e²IrssktÓÇŽcV[SScfffjjÊ|å”——›˜˜˜››Ó³¿©©)!$66¶¡¡ArU¯_¿ær¹¢_9³gÏæóù4ð577·´´¬««£‹***x<Þ¼yóè[SSS%%¥ââbúvÆ „{{ûÚÚZšâææF©¬¬dбvíZfCË–-#„и„ kjj,,,ß¾}K³UWW6ÌÜܼ¾¾^JwìÙ³'::ÚÉÉIWW7--M2ÃãÇ !QQQôí€è3é4z¨¨¨PPP˜5k]*¨Ÿ¦ðù|:ôxõêÕÁƒB V¯^ÝèÍp ';;ûÁƒô2Ybb"œ#„äææª¨¨ðxÿ9é½xñ‚òöí[æãÎÎÎÖÖÖô5D QTT¤)^^^YYYoß¾ÕÐР[ºt)óÙ5kÖlß¾ýàÁƒS¦LaóóóKKK÷íÛ§ªªJS”••#""BCCóòòhuõå—_Ò+n£FjôzŸ‘‘‘½­íåË—………»v튈ˆÈÌÌô÷÷¿pá‚@  HͲ´´?~<}ÍårÒÒÒ$³I¯‹­­­”–—Ž}³7Ûƒ,K[__ÿàÁƒ7ÒacºS-\¸pÅŠ’«ÊÉɹ{÷îºuë˜Ûp]\\™;zëëëO:ÕTí&L˜À¦´:ššš¢‰ôî…/^H_*¹¶f[ÌÜÜ|Ò¤Iô5‡Ãqtt|(%p,--}ûöíÅ‹ÃÃÇZ\\Ü»wo±<~~~7n|ùò%¬õòòrssËÌÌ$„dddðxÝF …-ûÖ]ì6SõêÕKúRɵ5Ûbb½ÏYth“e1¸\.ó WlllLLLpp°——ûöY¿~}uuuTT””­lß¾½¢¢‚^¡uŒŽŽŽ‰‰ÑÖÖ&„ddd¨¨¨0­1kÖ¬êêêùó秤¤Ìž=»E}MAàÐqd&ljp±#¯nÖÕ«W鉭\ý¿¤¡ ó€ýzhÊüùó'MštòäÉß~û-55õûï¿·²²ÊÌÌÔÖÖHMMËàëë»~ýúÌÌÌœœccccccOOÏU«VUTTddd¸¹¹±_aù<{³uiªå›z¿¥jjjØ÷ ôÒž?žHìfMý7 ׉ ¿´´´ZJ¡§§§   ö ÍóçÏ !FFFÒ—ÊÐbMõ>­5Ë&jÔ‡~“““À²}ª««üñÇ€€€Fƒ`½ãÒ¥KôÁj777Ú¡ÆÆÆ„z=]Ô|@éü|¾C8@«äåå]¸p!((¨Ñ¯Ø±°° „\¿~}ĈL"}XÒÊʪٿxñâöíÛ–––áááááá`Û¶m;vìpssKMMMHHX´h“_†ÇÀEEEuuuÌxXUUUqq±‡‡‡du444|||D?xýúuÉð÷Ô©S'NLJJ fé­Z~ﺺºjjj¦§§çææ>œâáá!~ùå—üü|z×i’^)-OŸÏh½¬¬,ö=(½´ô‘Û+W®ˆöWAAA£«¢WÞKJJD§)-,,-C^ªæñxýúõ»pá‚hâùóç9Nÿþý¥/mM‹‰iQ5ŠnˆËå²oŸƒþý÷ßÍŽ ^½zUSSsذaÆ £)¿þú+‡ÃqqqyðàÁÉ“'GŽ):BLGde~Ä$a:€ÎKʰ¢°¾ÛPiiéÔ©S9Ntttë׿äädllÿòåKšò÷ßoÙ²ÅÄÄ„ÍüÆ%%%C‡ݼy3}«  @¿öéÓ$¢_')))oÞ¼‘y¬¨¼¼<>>žyWYY)öKƒVVV›7o®¨¨ )•••~~~‘‘‘=zô[á!C!?ýô“h‘è„/̤(EEE//¯ÔÔÔ¼¼<84HCCcíÚµÍÞàØìT‚’¤×EJË·f£¢Xö ÝŠôÒ:99™››oÙ²…™Â¦¼¼|ëÖ­n×ÉÉIGG'!!¡¦¦†¦:tˆü7 §—ª›"CMçÌ™sÿþ}ú¬!äÙ³g)))£F¢Ó I_*C‹5UköMDåææÒ Ü}ÒÙÉɉ}ûìÛ·OKK«©_‹a|üñÇvvveeeômqqqRRÒ˜1c UUU£¢¢>þøcæ…@ ظq#Ç5j” }ˆ#´ÀöíÛé—VMMMaaaNNNmmí¶mÛDÇcd¦¬¬ìää$ “““ËÊÊ:¤¬¬ÜìÇ dkk»nݺ»wïÚÚÚ–””œ>}ºW¯^ô&ÔÔÔæÌ™fddtñâÅôôt]]ݬ¬¬Ó§Oûùùµ´¨ÑÑÑ999ööö/^LKK6l3»Åãñ&L˜`ooTWWwìØ±G8p@òVB>ŸÿÙgŸÅÆÆ<ØÇLJÃᤥ¥åææ.^¼Xt‚FQ~~~ô7 iàÈårÝÝÝSSSûöí+9þDÑ‘ÎíÛ·?}úTô9žfI¯‹”–oÍFEyzzJïA±­H)-—ËÝ´iSPP££cpp°¢¢brrrS3,ª««ÇÄÄDDD8;;ûøø¼|ù299YMM­¦¦f×®]ô qÙ*E­_¿~ݺu_ýõܹs !3fÌøñÇÃÂÂæÏŸ¯­­½{÷î·oß2¿R(}i‹ZLJ‘Ù7UWW7räÈ &ØØØüôÓOŽŽŽ\.—MûTUUeffzyyI^kŸ/¾øÂÏÏoÈ!þþþuuuTUUý׿þEéÝ»wllìòåË-,,è.qæÌ™üüüµk×6{s´€¼ëí#úÀh“}€ÍÁÙV0›ÉÅæÙáp8–––¡¡¡999-]•(Ñéx¨œœ___======__ßßÿY$:Eb£=z4kÖ,eeeccãÐÐPfª—ÌÌL:‡ó{ï½^^^ž˜˜¨««ëãã#¹fzU.11‘I‰‹‹#„ÐyiæÌÌÌ#FhiiY[[GEEUWW7Zȼ¼¼1cÆèëë÷ìÙÓÃÃãìÙ³M^ ìÙ³ÇÙÙ¹gÏžô·ªúD´²„]]]&…þÒÆÇ,šMtú@¢©©éääD‹(šyêÔ©|>¿©-J©‹”–Û¨Øt<ì›]zŠm¥Ù–?þ¼··7½@KK‹"6Õà‡>|¸ŽŽŽ¥¥eXXXQQ‘›››‘‘Ѿ}û„-Ñèt<ôIHH`R***æÌ™caaÁçóÇ———'š_úRQ-Úç…BáŒ3´µµeh":Ͼ}ûœœœÔÕÕÍÌÌæÎ[QQÁ¾eNŸ>MY¿~½ä"Éö9{ö,­—±±qxx83})•’’âì쬮®ÎçóGŽyúôi6Àt<ìq„mwW/PVVV%%%ò.ÈS›ì,¯Dãîxffft´Þueee:::l†´»­f›ÈÌÌìý÷ßot"§w… 'ínû]KÕ"B€ ù.ˆA(<¬`Ä eüüüØü@7±jÕ*é¬BW‚À e¶mÛ&ï"t"sæÌ‘w ãàR5°‚ÀXAଠpV8+€ŽÀ G`€´ +++y !ph{%%%ò.@ÛÃ¥j`#°‚ÀXAଠpV8+€ŽÀ G`#°‚ÀXAଠpV8+€ŽÀ G`#°Â“w:/‡#™( å].ù@à •D˜Èáp;@÷„À±qUUUÉÉÉ)))?ÖÐа´´œ5k–«««¼Ë 7Q__?cÆŒ‚‚--­aÆUWWÿþûïYYY .œ?¾¼K qðàÁ‚‚‚îÚµKUU•RZZ:uêÔï¾ûnäÈ‘666ò. €à©êFüûßÿ&„|öÙg4j$„XXXÌ;·¡¡!;;[Þ¥ޏwïžššZÿþýE-,,!=’wéä—ª±sçNO¼enܸAéÛ·¯¼K‡€¼ px÷ v¹@àðn ƒŽÝvÌ:ƒîõTõÝ»wýüü|øPUUÕÔÔT4Q[[[Þ5›n8VVVÞºuë—_~9pàËü¯^½òóóKHHwÙ‡AGèxÝ"p7nÜ“'OØçøð!!Dl¸ä AÓh —n8~õÕW555„¤¤¤œœœfó?xð€bbb"ï‚HƒAGè`Ý"ptss£/~ûí76ùiàø×_MŸ>½¸¸¸Gýúõ›;wn³Ô@;Ax$Úˆ@^ºEàØR="„lݺÕÌÌlذaþùço¿ý–™™Äf VVVb)%%%ò®tA":€ä×z·…À±ýõ—ªªê’%K¦OŸNSrrræÎ»víZ777CCÃf×€0Údhˆx #I~­wÛP€7b÷îÝLÔHqqq™6mZUUÕ¹sçä]:€n’tBü tŽl9;;Bnݺ%ï‚@÷‚¸:\ª' ‡ÃQPøŸ¨šËåB444ä]@èv8-Lh'q÷àÁƒ~ýú}øá‡béùùù¤ßÓ /o6ýGþ÷5@{CàH!oÞ¼¹wïÞãÇ !¦¦¦ÌÍÍ=tè“!??ÿÇ444ôññ‘waþw7@Ã¥jBÉÌÌŒŒŒ´°°8yò$!äóÏ?Ÿ={öêÕ«÷ïßonnþçŸôèÑã믿VUU•waä#ް¶¶>zôèĉŸ?~æÌ™W¯^Mœ8ñäÉ“C‡•wѺ\§èT8B!NËmÌÊÊ ó8´ )#‡Ã!’§/NŸÓ:`+o¢%[Ax Ðñºíw=F “B<ÐÙ px·áè0€ŽÐá:5@'„Àà‡«ÕÐ18+ ÓÁuj`Ð:G`#t.nè´8t¸Z í #°‚À:\§n% :@»BଠpèR0èí#t¸N ÐÉ!pùÃÀ;#È¢Æ6‡«ÕÐN8€ü qà]€Àä ñb;Á #´Ž :ïŽ 7nx· p€ÎƒŽm í m#È3܈qG€wGèD0HֶОж8€`”à]„ÀäI2‚Ä @§…À:†;qhCp ŽÙd‰©æû‘­ÅHF‹$Á1ç¤`‘k1¡èä}‹Á5õ#D@J)”’L äÁ±0˜$&ÐNÚ\Ÿ0´x9Bp,â#h} É±Þ €&‚cYÙ‘øm´S@Á‹Í.=ÖŒäK >Ž ãc6H½yN5A@dŽ(³ã£7;RnL‡š¡P3\6†vjÁÕ‚f|´¶S  “ب²Žàg˵‹½‘é …Ô …š–ø±ÿRÙ¿Mÿ¢@p„»èè¬>:Ã"ÕÇüò …åvj%ªÃ¥¤jâ³È‚#ü¸ú;º¯IER»k£ò» Žf÷kt5^“ ÃJ ‹AS¤”,V äÁÚì–kOó$'³‚:ê Áqý ‘|ýrƒà=véQJá9PPg‡¹fæbÔ[ãý›æî±²•³>@Q›k  Bù5USýOó«Æ»T~¶†Q®éO6I¹4O(:ù@pD0ט˜àiz”(îˆ+e}ž{·ítk£–B(¡¤²tê¯ú³&ï.D¤“™CpD0U£ù²jcÐÌቊ¨¸å¼Y+T¥0/M”ÓX§UN¢œKBêŽéEÑÈ‚#ÌIåš×u·Âf%TÎÓrt5Þ{¨:ì³»ó4¯Üÿ´ ÍÒç^”}Oy zŽ0-•ñ±žýÚœü±d¦õVÚO½c‡U6ÖÎA¤(:YGpD4r6õc Îu±E.ßrcyê®U« )¥\]Bc>4@“Žˆ’s±Q+>Öú³öÜ7Þ\½ÌÔë;åw\M=Ú¾]BÉ‘…BÑÈ4‚#baªýÚÐêvÞ<Öc¯öNÕwHpÓ”c0µð=¿7ò…ße@Žl¦i›IÒL…¶¤Á1ªíE#c副fÉ6úPøìYJHÏ1ó»]ý«ºn§ÖÁ¦æq/$} sŽˆo÷ÇXò¢ ¼TKÚŠ@ÉG|DC9Þ§çõ &‚#âXùÚ»ýÏæø–"Ígqçó(•¬®X¥v¯ˆç È‚#’ã¬5JY):ªAsNº¾W”†7Q•Ìë[ EG CŽHš³_£¡Z£ÉõŠçüÍóRz YcŒ¤ôOH3éh­!G¤‰3>Ö?›  ±=;θÙÔ¤(:YCpDjØIÑ·š CZ¥):êËë™›6i²”%€”#8"œIÑ™Sˆû7l….dGm ^U#lškÑf¶H#”£åš‡ H9‚#’æj’.ªö%[•·Iûô"S2ovæöœíÛ¢­Ÿó˜-²^¾¯4ú;YApD2*§Rû¬m«>«T¢3/–·s²1¢°©±òTQ‘Êùúäቃ•y¬”+Jp<|øp__ßåË—'Ož¼jÕª;wNŸ>=äï{ì±O>ùĵqÆŒï¿ÿ~Ò‡’A¥)õDUu…ª?³—Æ«kMóË"vA‹4æû¢(MúÄ‘f ¬+DpÜ»wïË/¿ÜÖÖ¶xñâ¡¡¡7ÞxãÒ¥Khmm ºÊ•+WZ[[çÎëÜ8mÚ´¤¥ dðz&Ò^âYo ¼²q.¯‘F£ ÄÕF¦{¶È˜rvû§ñxAE•ÿà800ÐÓÓ3kÖ¬#GŽÌœ9SÑÝÝ}àÀ={ö<ûì³¾W^»ví‹/¾˜ôb±¨y¾q £qoAñD9Ee`¶È´.†®ó¥cOøkIz"×××7>>¾cÇ+5 !víÚÕÞÞ~âĉññqß«\¹rEá*7"NR•.ÂÑÇQ—5¡½MÕíÊʯ „ ºÓ´ò«MÉÒ N¦¹™ ”Ò,ÿÁñܹs---«W¯¶·L˜0aåÊ•·nÝ:þ¼ïU†††„<ð@Òû^DRHkÉëÒg|ô ‘¾Û†¨ÊW–ªIŽlÙH­œG¥ÔåË—;:::::œÛ;;;…W¯^õ½–oܸ±yóæÅ‹¯Zµê?øÁG}”ôÑäœuŠUB>c¸¬ÓŒûþA‘PnŒˆ3D*QiÔn,DºbhÐ%éƒ6þæî€\ÈyÇ{÷îyµ´·· !nß¾í{-+P¾ôÒK>øàÒ¥K¯_¿~òäÉS§Nýò—¿üÖ·¾¥s¿]]]ÎvvvŠ‹“~0R-do\S‹Ó ±‹z¶ÈüG<%xÐè¦tEt\§õ"ËypB´µµ¹¶O™2E1<<ì{­7n´¶¶>ýôÓ›7o¶¶œ9sfûöíÏ?ÿüòåËçÌ™Só~œÿLù Çd…¬;>:Ÿ—âr(7&µnµ‰g#Hàr2Þ7,³ˆ’ë´. %sÞT=mÚ4)å½{÷\Ûïܹ#ÊuG¯W_}µ¿¿ßNBˆeË–=ñÄ£££ï½÷^ÒÇ”+V¡1ÖÔèÌ‹ÎæD)…”Å9u“SÒ ôâ·¾:•f¿–´ÐºÐf ¤J΃ãĉÛÛÛ½•Å‘‘!„=ÎZÇ’%K„iq6'Úæi÷ÉR:´c¢klµRB))*ãrššCñ£0Ìõ>TŽ‹Lÿl‘q";é‘óà(„˜5kÖ­[·¬¤h´~åý{¥ÔØØ˜w¦ž &!¦Nšôež}*{Þ;»£!3òØ3É&w§8;Rn4Å5&äR÷ Už`@ŠæÆÖ€AùŽkÖ¬;}ú´½E)uêÔ©éÓ§/\¸Ðû÷CCCóçÏß²e‹kû… Dû4˜âl›,ϨªyÍp£ÚâÝ[;A ÁÜ=H„õêc¶HŠŽ@Jä?8nܸ±¥¥eß¾}V¿F!DOOÏÍ›77lØ0iÒ$kËÝ»w¯]»&„˜;wî¢E‹>üðÃÇÛ7ráÂ…ÞÞÞ9sæ<úè£IPVUfÛB„–j„4Ô^\s—<‚wÞ3¯xH‚t–6Ó‡rc¦Í™ô~ÅsìÅ8N Ýdæ/èííݽ{÷}÷Ý·bÅŠ¡¡¡³gÏΟ?¿··×ž¦çøñãO=õÔ¼yóŽ;&„øë_ÿºmÛ¶›7o.X°à¡‡º~ýzÿäÉ“÷ïßÿÕ¯~µæÝuuuyGUû.föÁOó½ÔÕQ R) !ðlmìƒDÜ·ªk§kÞûÆ+`ì@BPDÿ‚¹ïŸ6|Ï1Ü‹ÿ]Dp,w­|a/lh`:žZ¢™>Ã÷ÄÿXÌ>\"à»™Ñ{jòžë "ÿG!ÄÖ­[÷ìÙóàƒ?~üöíÛ›6m:pà€wrGÛÃ?üæ›o®_¿þæÍ›ï¼óÎðððúõë;¦“áâ*4抳NêÚXþÙy*¶>$»Ïy|& „£Ùp]ÎtO͈³ˆ“géÁW4ó¨8:¶73Sqô»Ñª*UǽÄSq4}Ê¥âØ‚#j 5¦‹·#£RÞE±e©Lèw !ƒµƒþØ»v"q¦ùOúãù­ö­UµYÓ„ ˜BpDRcêø%¶¦Îˆš9²Ü[R†ÿYÃh Gµ°¡Þ+EUj5øöÀaˆ6à‹àv§Æ¤wu“J5ÞÕÙ^]hTŽÿVîËÌÓh/äú»îƒ&¤dzÀÁþˆŒ¢*Gúžt™%‘ó_ØÐ³UU†lÓTD‡à7úŒgš¬µ@vÝ­rVé1àf¥_é§‘c·‹!Â)ìI]$•³„ÁžŽ¬»Â"8¢¢2çNõtkU¹2ã¼á,$hÚ ÖÁ‘Nú”~Ü·)Ã{Rz'3Œ¿É¡8#”5•5¶KT¾ÌXßtÌ|†±î6ЉàˆgãNÈb“óI#R5ËÚ7T^Ø0hTuøµ…;ö)ïJ‰ž¿q¯»mþщfedõ¬—;3*圜WP‚#„ KP.KOªkæ;ƒ5=rECßI¼ƒ A]r…£+…õ¡''®Jú€T"8‚Ôr[È¢ÛÕ?ÓÔ³Ê#ºj½È¥ž¼|TÇBcÎÜ0\nLD@ƒ¸s EÇñÖyãvBeN耩ýRð~6º–·~jv‘ä3q"8…ƬËÏJåæé #òξRªÕ5Çw»ñI0Íe ®ôÇ­{ˆ´ýùéÍvf?WkÞão3‚cA‘s%£åF×ízúP–±ifNt OJÑÄìh’5žZãÑ/½€då•ÐÐDR¡UIaOðz`ŽqdÁ±phžÎ™åwé­¹ñ7ÂwŽ[D1êƒóŸ¸ÑÓ^’ÐV™ôÑĽWn¹2©d`-È‚cþU}ÓÕ_½!Ef—ì‹§Öâ‡Ò³š¢pÌõ×\t•õN]ÔÔÁ0éxmF©âè7ÌÛUžLä+==)Q‚c(Ï?³3`³Ïo<™«^öyÝg är”¾YÍ­ÂgÒLJ†˜,=êÜ›«@žT‡EzRBÁÈ0>Ëë`ϺŽ;ñ9zRª€ ƒJ7[ýÏȧʧè!iE©º×çlš+À-âEñ "8ãlN+ýOóhF¹VÁiâ’Ž55&3´3 âqÞÑWB¸fãM盽ãoBþ0‹à˜w|Œä9±ÎÓ¹hrÔ³ï ‘AsR:«–¼=3+ÙˆæcÿÃÞ66Bœž”¹Ap̳ò”%IïÌñL-e&HÀÉÌÛ"ׄ”•þ”žç.lNÊ ÄÍVy9ePPê2ßÞ]甚ÀÑ“2Žö¾Rîß)Þ…yÄw4r5ëe8Yésàþ{ÿ9)÷%Däká„v5üÐ!J5Û»?SóC8‚cö~§,wÆ·æ Cþ„̤¤(:&.hÝíÆn,hNJßžšž©…2ó:ÈÜ+6|}£L}©ó®‚cÿ3é]Cªó†^Sy•¹ÓRáøõ¤4Vv ]ÿFJéÿÕÑ9°#tØGåp¢nÏë š_W‡,åõPAåÉJ LëK@?òRUmÁ1WJkðŽÈÔHÑ1IñÄ)gÅ1| ‚o4ÇU*¯“½sÓ nÏÄdj—Þ’Qô*¯«þ醕 ¥Þdæ®kŃž”1 8愵¤-Ô¹d3Ÿ^Å3_$&¦ã‘öúྥG½qÑÀ×Ô ú¥wôOº¹V˜‰hI]I­t)ýã©ÒÒ°FŒ 8æAi9TJM¹ã¬j„|ÊF>×4ÒÃ[Œ´(kVÙ)d¡ÀÛôÞ`­iŒR«*>J)„PÁ ‹IU¾bh­‘#Ksð¦Á1ó4§9@æpú›·;céÑ„-»?eC í8oG…/ÝGdöp´Û÷¼y»å:žŽ"y„Ô“Òšõ^±!8fßÌrŒÔM‘´LÚM%¡qç= ÿ4ệ2$?…tÜ Ù¥fŽOJ¡”½K™{ÿ¦­Û_øy-do©¤Ä€à˜U¼=òŠÑÓH’kIÓë46»;" û–÷Âú8ÅPjtDU¾/iv4]tô9•¤»®2ϹòÌ_¬˜ÑØ4‚c&‘ó*s… äo\ˆ.C”c\¯|ïâ: ôq­Y¾q½·‹²ÕÕS%„t Y3öðŶLy<¢‰§Þ“£·{eÍ(É6Á1{HyEjD:™xg {pwÔÇÜÍÑwr™Rè Z¹Çú¿³êé´äx;K{{¥¯Ð}¨::S\ÏND¿5Ï¡$ËÇ,¡Scž™i ˆ†ùž”Î\Ñ|éÎûõ¥+©‚úTÏôÔÔ9¯j%A–¯k'NßP®BF ‘ÅAè>íÅ•î UìÄÌ'b£=t’e§èŒäÁJ=‚cfؽ7¿ )úqdTÄ,iç|é®QÕ†Þh•öokuu&.o“ÎFqo‚tïyÀ?+eNƒEA±D¢ÙgÍÅÊOGàŽQNfÞ<%T—èJz/’ApÌ»y:äk“ùeSn*ÒÇ•á¤5Û™wœ£›d`E0ø¾¤õÿ±á¾Ë”—o¹ô;k‹ß¬ìþƒ‹·nt‡ùj»Ý¤&3G(‚cЩ1¿H@dü¦½T~ËL7rÛ•ë{êš~š}Ÿ;Šs5h1@ß5]ôǤ{~ÛÔ¢Ažxj¶ä¡Ù ŽfSNùÕhOyiãW×lJèðpU.:6U: ª :% ¹tZªwÑ ý¿iø˜„òo^hsySÒ žNÇô¢Ð˜[ŠB#uͦ8¦7wÍVÕ ÊŽX*Ï|²ŽwÑ Ý°å:Š ¾ŒB»Ù½êjµšÝÝ¿ò½‹&Çœ#8¦©1¯dés-éýbUSùˆrôq¤IÝ ‡ñLÇSs/„Ðmvwí¼ —µ¦ðôþÃ]Z’Þø 5f úªÏj¶òBU‡ÈÈ?>œRFúa%ei¬’Ù›µ–²ÁùOï.!•ßÅu]kW½—¢"8¦‹õz$5æTªfj”’ÞwÉSå‹¥culœ·KwåŠAåLùÙÎH—SßKQÑT"DÆ|ž‘/º…Æ€‰9’> IòY»4€Ú“\{˜x]ÓŒÛc·•‘þšž]qÞWTs¿»Vƒ ž- 8¦©1¯hžçâ4ÇÚ†UÛü‡i'³Óq檇ºó!lÁ1H¹áþ^Ë€&Ô_*s}àÔwn±ï.óS?T'T*ŽÆLy%sðÉ Ý¼EGé¿è¶RƳ”VƒxÕžEvæ+pÄ“D¡1g¤ã¿•f):hH„ÑÊúdòlvu¦”u­®§AœÏÄì"8&GQhÌ ç' Ï(ƒBÖ6i>{y»CÆ™çbh“©úCŽÆØKdvŠNïr™ö¿•½Ä§ô¬ªiý5ö,ð†Å Ú€F[ø9Œì¿º Ï¨mוŒÝ—îuël‡qÌãh’5¹“ýƒ}R¨òEªÒÖÜD¬™¯ÔÒqáIPJJçEH¿†¢›õ÷GÔžOÑÞ?¾µ›EÅ1VÑOušm©øf­@PcßÂKÑ@š…|‚…~|Éê›ð‚ãs›I/šAÅ1ÐáÇ7nܸpáÂGyäç?ÿù¿ÿýïzoÁUܲjÆÅFb¸—xîBï ¨³ž(­}t>麺º¢?¤O}añÔ‡‘Ò·]ÍÙz#ÊKà¸.ÍÞ³#ž6R×D0‚£¿½{÷>óÌ3ûÛß/^ZãEpô100ÐÓÓ3kÖ¬·ß~»§§çwÞÙ¼yóǼgÏý©*nÉHRcžÄÐHíýêüv[ÝwÇïêÁ«H;¿I{?«>  }dÀEªÿ…ó¦Òo|?E¥ÏŸ º&‰³1G}}}ããã;vì˜9s¦µe×®]ííí'Nœ¯ë¦d”´x¦øy!HÛ\Ÿ#õE:V¸G*ø"Œ~ï®@àm שk )ý[)¦ëhÊ)‚£sçε´´¬^½ÚÞ2a„•+WÞºuëüùó:·à[ŠÞ55úiRÇ;Ü;Š]˜k|4Ãxk¸ö]Ô5ý.L‚b!8º)¥._¾ÜÑÑÑÑÑáÜÞÙÙ)„¸zõjÒ;XâzoDO#½—ºÚ}†­Ô¼ˆb¿Ï Y©œ4#MLÁ$ÓfºÜ½{÷Ë_þò¾ð…ßÿþ÷Îí¯¿þúsÏ=÷ÓŸþtÛ¶m¾W´×d¹700ô.$€yݬ¡Ómmm®íS¦LB ×¼…‹¾Õp{½˜æW úêfö+]nî%ä¦2ö%¬æG:ŸùÍ#8ºM›6MJyïÞ=×ö;wî!ÚÛÛïØ»‚׫Ÿ˜S{ñ¼@>8gF ÿ3>ó›Apt›8qb{{»·²822"„°ÇY'(lŠso‰xî%‘ óE<ãcÖ¬Y·nݲ’¢mppÐúUÈ¥"h8–¢4ôŸ×vIl¹)0‚àècÍš5ccc§OŸ¶·(¥N:5}úô… ]ËJ„Êg,VåÒü¾ÕžâßDŠç^j2r/šc®@MG7nliiÙ·oŸÕ¯QÑÓÓsóæÍ 6Lš4)èZ¾+ÎùÎeߤxf%ÍÓ½#˜ŽÇ_ooïîÝ»ï»ï¾+V ={vþüù½½½Ó¦MKz×’Ap tôèÑ·Þzëã?ž={ö’%KvìØaÍÈPLGh¡#´ …à-Gh!8@ ÁZŽÐ21éÈÇ÷õõ]¾|yòäÉ«V­Ú¹sçôéÓ“Þ)SïóûØc}òÉ'®3fÌxÿý÷“>öé§Ÿ®]»¶¯¯ïK_úRÒûóôŸ_Þõ¹7::úúë¯9räÚµkS§Níììܺuë#<’ô~ÅŠàhÆÞ½{_~ùå¶¶¶Å‹ ½ñÆ—.]:pà@kkkÒ»x~¯\¹ÒÚÚ:wî\çF–¬Ì¥ƒ&½ ˆþóË»>ßþ÷¿ÿ}÷»ßíïïooo_ºtéþóŸ>øàøÃ“O>ùÃþ0齋ÁÑ€žžžY³f9rdæÌ™BˆîîîìÙ³çÙgŸMzïЬžß‘‘‘áááµk×¾øâ‹Iï>¢222rñâÅ£G¾öÚkIï Ì«÷ùå]Ÿ{}}}ýýý‹-zå•W¬ªÁ¥K—6mÚ´ÿþ¯}ík_üâ“ÞÁ˜ÐÇÑ€¾¾¾ñññ;vX©B±k×®ööö'NŒ'½whVÏï•+W„®Ârfݺu?þ8©1¯ê}~y×çÞÛo¿-„øÅ/~a·5Í›7oûöíccc…ê@ÅÑ€sçε´´¬^½ÚÞ2a„•+W=zôüùó_ùÊW’ÞA4¥çwhhHñÀ$½ïˆPww÷gŸ}&„8tèЙ3g’ÞVïóË»>÷ÛÚÚ,XàÜ8oÞ¿¼ësï7¿ùÍĉîÔôç?ÿYqÿý÷'½wñ¡©ºY÷îÝóvnooBܾ};éDS{~­oŸ/½ôÒ?ÿùÏ¥K—Θ1ãäÉ“ßþö·ûúú’> ‘à]Ÿ{óçÏ·J¶³gÏöôô|îsŸ[¿~}Ò{*ŽÍB´µµ¹¶O™2E1<<œô¢)=¿7nÜhmm}úé§7oÞlm9sæÌöíÛŸþùåË—Ï™3'éÃ`ïúBûíoûë_ÿzllì…^˜1cFÒ{*ŽÍš6mš”òÞ½{®íwîÜ庲«±ç÷ÕW_íïï·ÏBˆeË–=ñÄ£££ï½÷^ÒÇÀ<ÞõÅñÁ¬[·®»»{ÆŒ¯¼òÊ׿þõ¤÷(VÇfMœ8±½½Ý[yBØãp‘QŸß%K–!.^¼˜ô1ˆ ïúœùïÿÛÝݽeË–¿ÿýï?þñOœ8±lÙ²¤w*nGfÍšuëÖ-+IØ­_%½whV½Ï¯RjllÌ;SÏ„ „S§NMú€Æ»¾ÆÇÇò“Ÿ8p`Íš5ï¾ûî~ô£b®ñAp4`Íš5ccc§OŸ¶·(¥N:5}úô… &½whV½ÏïÐÐÐüùó·lÙâÚ~áÂ!DWWWÒÀ0ÞõEpðàÁwß}÷;ßùÎþýû‹ÜœHp4`ãÆ---ûöí³ú½ !zzznÞ¼¹aÆI“&%½wh–Îó{÷îÝÁÁÁk×® !æÎ»hÑ¢?üððáÃö\¸p¡··wΜ9>úhÒÀÞõ…¢”:tèÐÔ©Sö³Ÿ%½/ cTµsæÌÙ¹sçîÝ»¿ño¬X±bhhèìÙ³ ,øÞ÷¾—ô®Áç÷Ô©SO=õÔ¼yóŽ;&„xî¹ç¶mÛöÌ3Ïüîw¿{衇®_¿Þßß?yòä_ýêWÅlÚò‡w}¡üë_ÿ²Ö"üñǽ¿ýæ7¿¹iÓ¦¤÷1&G3¶nÝúùÏþ­·Þ:~üøìÙ³7mÚ´cÇkÆä@½ÏïÃ?üæ›o¾ð üã/]ºtÿý÷¯_¿þÉ'Ÿœ={vÒ‡ ¼ëóÍ*-ŽŽþéOòþ¶PCd¤R*é}@ÐÇZŽÐBp€‚#´ …à-Gh!8@ ÁZŽÐBp€‚#´ …à-Gh!8@ ÁZŽÐBp€‚#´ …à-Gh!8@ ÁZŽÐBp€‚#´ …à-Gh!8@ ÁZŽÐBp€‚#´ …à-Ghù?`èJKR{_IEND®B`‚statistics-release-1.6.3/docs/assets/loglinv_101.png000066400000000000000000000614261456127120000223330ustar00rootroot00000000000000‰PNG  IHDRhŽ\­AbÝIDATxÚíÝy\TÕÃÇñ3€Šl"æ® ¨%n¹’ fjî[¸‡Kö¨¹”Kh¿Ô²4-[Í¥´ÓRÓrßP\È-%µwDqA„až?nMã°Ýî,Ÿ÷Ë?fÎܹ÷œsGçë9÷ÜQi4ÆNé À2 Á² Á² Á€\þù§ê_{÷îUº:ÿxçw¤*õìÙ³øŽ²dÉé(Mš41ô½[¶lùå—_~ùå—Û·o›d‡òë–™™¹xñâ_|±R¥JNNNµk×îÒ¥ËÇœ‘‘¡·¥îÉÕrppðòòzþùçßyçÝÊð=“'O.¾“ ä9(]°raaa<BìÙ³§}ûö%vÜßÿ½OŸ>—.]Ò–ÄÇÇÇÇÇoÛ¶máÂ…K–,éÒ¥KÁ{P«Õ©©©©©©ÇŽûꫯ¶mÛÖ¬Y3e:€y 8@áÊ•+W­Z5!„¯¯¯¹í0Ï]ÅÅŵiÓF ¬‡ììléñµk×úõëóÜsÏåÞ¡³³³âáÃ‡ÚÆ´´´¾}ûÆÇÇ;::ð=&é.æBòœ={VûOÇž={”®Î?f̘!U©GJ×%o...%ßi/¿ü²öd½ú꫱±±ÙÙÙׯ_ÿæ›oÊ•+'•h·Ïïä^¾|ùÕW_Õ¾´páÂBßÀŠq#€âòðáÃwß}·C‡>>>>>>¡¡¡ééé¹·ŒïÙ³gùòå«U«~ýúõ·ß~[ºHîwÞ1‡£çyaVVÖâÅ‹[µjåçççââR¿~ýÁƒÿñÇÚ ¤ýh‡ýBCCU*ÕÇEþ&&''?¾eË–nnnÕªUëÔ©Ó¶mÛ niî]íÙ³gË–-ÒãiÓ¦-_¾ü¹çž³··÷õõ>|øš5k¤—âââ.\¸PðÎ+W®¼|ùríõ£|ðT¶‰©jÅâøñãaaa Ú’½{÷îÝ»7222222$$D[Ó½{÷””!Ä;wV¬Xݸqc3?zfffHHȱcÇ´%gÏž={öìêÕ«¿üòËÿû¿ÿ3¢Ú»wï4hPrr²ô4===))iÇŽ#FŒX¶l™üý|ýõ×ÒOOÏéÓ§ë½Ú¥K—Î;_¿~]qæÌÿBw8~üø7 !nß¾}èСŽ;åì°\Œ80½ŒŒŒ~ýúI¹ÍÉÉ©cÇŽ;w.S¦ŒâÊ•+ýû÷¿ÿ¾´åãÇûöí+å¶Ò¥K·hÑÂÏÏïâÅ‹?ýô“™ýý÷ß—R£³³s÷îÝÇ÷üóÏ !4ÍøñãÏŸ?/„xë­·âãã¥C !¾ÿþ{ݧzÒÓÓ(¥Fww÷Þ½{·mÛVzé›o¾‰ŒŒ”߇–ôêÕK;Q®këÖ­§N:uêTïÞ½åì0$$¤téÒÒcݬ ÀÖ˜Þüùó¥Å¼®®®رcÇÖ­[9âåå%„¸yóæ| mùõ×_KC_nnnGŽ9|øð•+WFŒaþGß·oŸô`úôé›6múüóÏ9Ò¡C!Dvvöž={„åË—¯Y³¦Ý?ÿÒVªT©fÍš*•*ÏΛ7OZ‰RµjÕ¿ÿþ{ýúõQQQÒ«òG³²²nݺ%=®Q£†IN¨J¥ªX±¢ôøæÍ›¹7fáõLœ8Ñ$G`>ŽLoëÖ­Òƒ7ÞxC{á]ýúõ'Mš¤·vloìØ±ÁÁÁB;;»Ï?ÿÜÛÛÛÌ®½âªU«–/_.eµU«VIÖ}úô1´Ú;wõÖ[RÆBŒ7®Aƒ 4ÈÌÌT«Õrö£{§ŸŸŸÑݨ§|ùò¹÷ÀÖ˜^\\œô@ïb¸_|Qzð÷ßçää!´‹3t·tvvÖ{£vý‡–”óJæèyÒn7|øp__ßF}ñÅ>¬[·®v|N¾øøxéAË–-µ…+V”æ”9boo/g?ÚEÓBˆÜwí6ZjjªôÀÕÕ5÷«>>>Õrñôô4Õј Ç0±ôôô{÷îIõnRX©R%éÁãÇoݺU¶lÙ;wîH%zcc•+W6ó£Ïš5+==ý›o¾ÉÌÌBh4š“'Ož|¸´AžÓÍÚA»ýÎ;ï´oßÞÇÇÇËË«]»vÓ§O?sæL«V­t·1bÄž={zõêåççW©R¥^½z>|¸ˆ+0JàèÍš5‹çwš4iâççWªT)V­Z}óÍ7QQQŽŽŽÚ-.\8pà@ooï²eËÖ«W¯€çž={ž9sæµ×^kÒ¤‰‹‹KµjÕ^~ùåÌ™3LjNhÙ²åßÿ½páÂ^xÁÛÛÛÑÑ1  [·n .<þ¼vB¿öööžžžM›6}çwâââš5kV”“À ¨4Òu}C‡]¹r¥â믿=z´MÌ#Ž”4jÔ¨àààààà1cÆh ..NéF*Àæ‚£.µZ½zõê>úH­VüñÇ^^^BˆŒŒ !DÙ²eõ6vqqBÜ»wOΞmóÃdÎ8)憓bž8/f¨Ð“¢Rñ½£O%TÅÕ'*U\\œÍÙnpyòdþüù«V­rrr7nÜðáÃuïÎèàààææ–{d1==]¡]g `kl.8æää¼ùæ›»ví }÷Ýwó ‚>>>ñññééé®®®ÚÂÄÄDé%¥[ Q\+clžÍÝŽgÕªU»ví0`ÀW_}•ßðaûöíÕjõÁƒµ%&::ÚÃÃ#88X适¨„Jé*X-Û Ž&22²\¹rS§N-`³¾}ûÚÙÙ}ùå—ÒuBˆ¥K—¦¤¤ôîÝ»T©RJ7@¶5U}ûöíË—/;;;80÷«={ö4hÂÏÏoòäÉóæÍëÖ­[ëÖ­“’’Ž9R·nÝ‘#G*ÝIúÅ ˜NŠy⼘!N ̇mÇ«W¯ !222Ξ=›ûUíÂj!Dxxx… 6mÚ´mÛ6__ßAƒM˜0Aº#€m²­àذaCùwuêÚµk×®]•®2€¹°­k°2¶ýx(iGÈBp€,GÈBp€,GÈb[·ã1[JWÁVÈ¿ÐCp4š@@ (˜ª€,GÈBpÀRñ³1(aG`=TB¥¤éâBp€,GÈBp€,GÈBp€,GéÀ¡¡¡^^^~~~={ö<þ¼Ò5Å‹àcüþûï¡¡¡IIIS§N6mZBBBëÖ­“““Mµÿ{÷î=ºJ•*...!!!GŽÉoˬ¬,ÕÓ*T¨ t`…ø­jcñâÅ999QQQ•+WB <¸F‘‘‘“&M*úÎÓÓÓ7n|ùòå>}úxyy­_¿þ¥—^Ú·o_pppîÕju‹-jÔ¨¡-tqqQº‡°BGãÌ™3AAARjBxxxÔ©S'!!Á$;ÿä“Oâãã¿ûC‡ !ÆߨQ£7ß|3***÷ÆñññBˆÙ³g·oß^é^€ÅÏÆ ä1U c¤¤¤”/_^û4333>>¾jÕª&ÙùÚµk}}}‡ "=­Q£FŸ>}¢££oܸ‘{c)8ÖªUKé.Àúa µZíàà „Ðh4‰‰‰Ã† «T©RxxxÑ÷œžž~áÂ…¶mÛªT*ma»vírrrò¼Ò1>>ÞÑѱ\¹rëÖ­[²dÉ¡C‡ž»}ûö—^zIéîÀ ©  B¡âââŠû-ʪ^½z­ZµvïÞ­tE cqýlÝs_~Åq^ÌPž'…Ç<•Ä5Ž*•Ðhlö …UÕ…àY¸ÆƈˆˆpwwWº DaŒ‘#G*]PÒ˜ª€,GÙl{5;Á@6•Jé(‰à€…á&ŽP Á² ÁXƒ’ø½A›Gp€,GÈBp€,GÈBp„‘8êåååçç׳gÏóçÏ+]#P¼Ž0Æï¿ÿš””4uêÔiÓ¦%$$´nÝ:99Ùä ™5k–ÒÍ3ÂÝ¿¡ ‚#Œ±xñ✜œ¨¨¨É“'¿ñÆÑÑÑÙÙÙ‘‘‘¦=Ê©S§>¬t[À?”®,Ò™3g‚‚‚*W®,=õðð¨S§NBB‚Ivž³hÑ¢œœ¥Û þAp„1RRR´©Q‘™™ß³gO“ì<55µcÇŽJ7ècªÆP«ÕBF“˜˜8lذJ•*…‡‡›dç>>>F£Ñ°à³Âˆ#Œ—™™éää$„puuŒŒôòòRºF ÍšJ¨|øòåËwîÜÙ±cG¥›€íbªÆHII)_¾¼öifff|||ÕªUM²ó¨¨¨)5JÆŽ+„øí·ß”n7À¶ÙüâvFa µZíàà „Ðh4—.]Šˆˆ¨T©RxxxÑ÷œ=f̘Æë&%% !•n7ÀìðCÕ%‰àãeff:99 !\]]###½¼¼Š¾O‡?üP·äÎ;~ø¡½½}Ÿ>}”n16àhÞT*%^Øh¼ƒƒÃ²eË’““cbbºuëÖ¯_¿µkתž®svvöÖ­[óÛC÷îÝ >ÄþýûGÿõ×_×®][ÉÞåØü)ÌÁѼ™÷¿ööö#FŒÏš5kæÌ™ýû÷ïÕ«—î6>ìÑ£GþíË·—/_;vìæÍ›k×®½gÏžvíÚ)Ý\l‹c`C‡BÄÄÄè•»¹¹iò—ßÞÖ¬YS¯^½'N,Y²ä¯¿þ"5`q„iH7è¶··Ï]nèTõæÍ›ܯ_¿Å‹»ºº*Ý2ð‚#ŒtìØ± .øûûKO7lØ „hذ¡Þf†NUk4š)S¦T®\yÕªU¹c(PÁFÊÊÊj×®]÷îÝcccW¬Xœ{á³4U-·çÎ;þ|`` öêI­^½zuíÚUév`»Ž0RË–-ÃÃÃ,X°råÊ *Œ5jîܹE#ŒBœ;wîܹsz/ÕªU‹à€‚Ž0^XXXXX˜i÷Ù­[7ƒF(@‰aU5f­Fêü‡f‚àY˜ª†1"""ÜÝÝ•®ÀÖñCÕ%ŒàcŒ9Ré*€’ÆT5d!8@‚#d!8@‚#æK¥/&*] àGÈBp€,GÈBp€,GÈBp„‘8êåååçç׳gÏóçÏ+]#€mᇪKÁÆøý÷ßCCC“’’¦N:mÚ´„„„Ö­['''›ü@YYYÍš5kÞ¼¹Ò-¨TBC.‚9!8‹/ÎÉÉ‰ŠŠšúè#©äÞ½{jµzÞ¼yUªT Sº¡PB¸‰#ÌÁ¦‘-„°··Ï]nÐTõ“'O„Ÿ|ò‰naZZÚ´iÓÚ´iCpHøÙEa¤cÇŽ]¸pÁßß_zºaÃ!DÆ õ63tªzúôéÓ§O×-©^½zÅŠûí7¥[ €­³éàxñâÅN:ýôÓOÏ=÷œÞK}úô9sæŒ^¡——×áÇ•®µ¹ÈÊÊj×®]÷îÝcccW¬XܧO½Í ªf˦ƒãªU«ò{éòåËÎÎÎÕªUÓ-twwWºÊf¤eË–ááá ,X¹re… F5wîÜÜSÕÀjØbpLOO¿páÂæÍ›×®]›ß÷îÝëÔ©wŸ.XXXX \t˜˜˜¨tC€¶»vízóæÍ6¸|ù²Bo¸ÀÆÙbpœ3gNff¦"222&&&÷IIIBÓþò2òq/˜'[ Ž­Zµ’ìÛ·/Ï ¤àxãÆ!C†œ;w®L™2AAA£Gν†ÆfEDDpÅ'¶Æƒc¡®\¹"„øì³ÏªW¯Þ¼yók×®íÛ·/::zæÌ™ýúõ“³‡€€½’;v(Ý,S9r¤ÒU0WLš«W¯*]äób6ªkÿ½â¤ä­zÉý“þÒK/IâòúŠ·)Ç<ܸqÃÙÙyÒ¤IC† ‘JbbbFýÁ´jÕÊÏϯÐ=ÄÅÅ)Ýä­zõêJWÿát˜'΋™Ð=œ”<•X·ü÷µ®RIm6>Ú)]sôÝwßÅÆÆjS£¢E‹ƒÎÈÈØ³gÒµPÁQ®¦M› !.\¸ tE°uüÞ RŽú4Z­ÎÉÉÑ+—nm]®\9¥+  ‚£¾¤¤¤   ¡C‡ê•Ÿ:uJØð5 G}ÕªUkԨѱcÇÖ­[§-cÆŒ5kÖÔ¨QãÚµk±±±eÊ”ùðÕ®€2qÌC:u6nÜØ£G”””;wÞ»w¯G[¶liÖ¬™ÒUPŒM8¾ÿþûï¿ÿ~ž/y{{Ï›7Oé ˜F ÁF:pà@hh¨———ŸŸ_Ïž=ÏŸ?¯t@ñ"8¿ÿþ{hhhRRÒÔ©S§M›–кuëäädSíÿüùó}ûö}æ™gÜÝÝ[¶l¹iÓ&¥[ 0Üý[A6}#Œ¶xñ✜œ¨¨¨Ê•+ !\£FÈÈÈI“&}ç.\hÒ¤‰Ý Aƒ\]]ýõמ={.Y²dÔ¨QJ·Š÷â9#8ÂgΜ ’R£ÂÃãN: &Ùù|ððáÃØØØgŸ}V1sæÌgŸ}6""‚à€²˜ª†1RRRÊ—/¯}š™™_µjU“ìüܹs~~~RjB8::¶iÓ&555%%Eév`ÓŽ0†Z­vppBh4šÄÄÄaÆUªT)<<Ü$;oذáÍ›7µÇ:~üø3Ï<ãåå¥t»°iLUÃx™™™NNNBWW×ÈÈHS»·ÞzkëÖ­!!!¯½öš««ëúõëÿüóÏï¿ÿ^éæ`ëŽ0žƒƒÃ²eË’““cbbºuëÖ¯_¿µkתT*Ým²³³·nݚߺwïž»°ZµjC† ™3gÎ;ï¼#•„††¶oß^éæ`ëŽæMUô]AaËúìííGŒ!=ž5kÖÌ™3û÷ïß«W/Ým>|Ø£G|×ÒÁ!C†üøã ,8p`™2e¢££ÇŒÓ¼yócÇŽyzz*Ú#Ø4®q4oEÿbèСBˆ˜˜½r777MþrïçìÙ³?üðÃ믿þæ›oV¬XÑÕÕµk×®K—.MHHX¶l™ÒçŠ÷â™cĦ‘-„°··Ï]nÐTõ;w„5kÖÔ-”ž¦¦¦*ÝJlÁF:vìØ… üýý¥§6lB4lØPo3C§ª5jäìì¼zõê×_ÝÑÑQ*üöÛo…-[¶TºÑ…ñ³1Ê"8ÂHYYYíÚµëÞ½{```llìŠ+‚ƒƒûô飷™4U-·eË–]´hÑ«¯¾Z·nÝ^½z9998p ::ºW¯^y®¤%†ka¤–-[Ο?ÿÈ‘#o¿ývTTÔ¨Q£öíÛ—{ªÚÆ ;tè¿¿ÿêÕ«?û쳌ŒŒÅ‹ÿôÓOJ·[Lj#ŒV{nÙ²å¶mÛ”nx #Ž˜–TÃü SÕ0FDD„»»»Òµ%ŠàcŒ9Ré*P²¸˜€©jÈDp–»+ŽàYŽ(Ëç`Ž…àYŽ…û8š‹€€¥«P‚£Yˆ‹‹Sº V.11±zõêJ×ËÆT5 cIµÜÄÑ Á² Á² Á²P÷â!8sÇMÍÁ² Á² Áۤ–…àYŽ…àÌ7q4GÈBp€,G”Á’jX‚#ÄùóçU*ÕÑ£GKø¸­[·.Uª”Ò­Ïמ={êÕ«çìì¼råÊ<7¸sçΈ#êÕ«çââR¯^½©S§Þ¿_éZ !DëÖ­•®E¾¬R©®]»ftëÌùc#ùñÇU*Õ·ß~«tEÀÄ”®”÷Å_(]³£V«ûõë—‘‘æïïŸ{ƒŒŒŒçŸ>>>¾}ûö:uºtéÒ‚ öïßcoo¯tõ(GÛu÷îÝ3gά^½zÉ’%J×Åì\¹r%--mÀ€Ë—/Ïsƒ5kÖÄÇÇ7îóÏ?×– 0`ãÆ}úôQºúfmΜ9o½õ–··÷Õ«W•® À0LUÛ®úõ뇄„ó¤V«…®®®ùm°oß>!ÄÈ‘#µ%ýúõsttüã?”®»’ž-mܪU+íc'''½C4nÜØËËKzœšš,„ êß¿“&M„>>>±±±ÒR¼stt y饗\\\„o¾ù¦ôêÅ‹u÷|ùòå5j!ûõë× A!DÅŠÏœ9£ÑhöíÛ÷î»ï !Zµjõå—_ž={6wó[µj%„xüø±¶dÊ”)¥J•:wî\žÝUho\=oܪU«Ò¥KwèÐÁ××wذaC‡-W®œâƒ>Óüï¿ÿ^1sæLicµZíîî.„ðòòÊÉÉ‘ §OŸ.„øæ›o¤ÃU©R%00ÐÇÇgèСÆ “7gΜ>oW¯^•NŠ¡o×ýØú©¸qãF:u„õë×ïÛ·oíÚµU*U`` âĉröPhõ«V­*„¨V­ZÏž=ëÖ­«R©Úµk§í‹£÷—ÅGþ7°Ÿ¡1›¬¢sΊø]o¹ÌædX‘"~˜^yå•JµnÝ:ééãÇûõë'¥|³ ŽÙÙÙÞÞÞ®®®ºá©K—.B)}¤[Ø’ëׯ_¾|Yz,ÍÃêu‹⫯¾7nÜ;w.^¼8yòdé6(>>>={öüâ‹/>üðCµZ½cǽw!vïÞ­yúŸí]»vi%“Þp¤Dâã㣷Y¡½aPý Ú879Í·³³ëرã©S§¤ $´ÁQ±eË–ãÇwêÔÉÎNá= ýT !öîÝ«ûjFF†6^º9©R©¶oß®ûÑBH÷PtÜ‹ÇÜÍK•*UBCC·oß®½\vvö¤I“’““Å¿w¥Îí½÷Þ››¿îb]°ÇÇÅÅÅÅŰMƒ êÔ©³qãÆÈÈÈ5j¼ð R¹4H#U[rïÞ½·ß~;¿VT¨P!;;{ûöíÒÓ¬¬¬ &h“OXXXttô—_~©}Ë/¿ü2vìØèèhOOϲeË.X°`Ò¤IiiiÚ ¤‰HíejZ>>>¯¼òÊéÓ§çΫ-\¶lÙž={^xá…gŸ}V~Mœ8Qû833ó“O>Bh;A«ÐÞ0¨þmœ›ÌæwîÜ9''ç“O>ñôô”.úlÑ¢…££ãÂ… ³³³õ.pTD¡Ÿ ooïW^yåÔ©SÒyBh4šˆˆí‰(t…Ö¡B…  ˆ‹‹›:uªöÎŽ_}õÕ”î(J¯Î±BE\iõûï¿»¹¹©Tª tëÖMš “îºW­Zµï¾ûÎäÎoUõ‰'„Ú…Ïù™5k–ôYš={¶¶ðÁƒÒ=´Ÿþù‰'4ÈÓÓ³K—.ŽŽŽ>>>ÒÝOtWUÿøãBGGÇAƒ3Fº“eåÊ•µKk¯^½*¥¢gŸ}vРA:t°³³sqq9yò¤´´(§|ùò½zõ:t¨€7n,- Ö[“˜””T­Z5!Dýúõ ШQ#!„öv32WU{{{7iÒdìØ±£F’ÎQçÎso,§7 ®¿ž‚7Îs‰z½zõ¤UÕrš¯Ñhnß¾-)vïÞ][(-ÛrppHKKÓíŠÜÝ[)åùyÓ]UmÐÛu·/ôS‘””T¹re!DÆ   ­†~饗„.\³‡B«wéÒ%é>Ž5kÖìÛ·¯tWHéΗ¬ªF úúµå“bFKª5¬ªÖh¸Oq(ú‡)))iàÀeË–­U«Ö”)S’““7nìçç7wî\“W¸ˆÁñÂ… B;;»¤¤$ÝòK—.………ùúúº»»·iÓfÕªUæ½÷Þóòòjܸ±&×WòÊ•+4h ý~Œ““Ó¢E‹ ¤›îß¿ÿæ›o6lذL™2Õ«W:t¨tÃÉãÇ.\Ø AwwwWW×çž{îý÷ß¿wïžôjîvïÝ»7~üø ”-[¶~ýú£FJNNÖ¾*38&%%õë×ÏÃÃÃÙÙ988øƒ>È}÷™½Qpýõ¼q¡Á±ÐæKžþyñô=ß{ï=!Ä /¼ ×JÇB?&%%eøðá5jÔðõõ0`À… ¤ÛXjorYðäTïÎ;£G®[·®tBݺu7oÞLpDÁŽ2™Qp|úœÙlpTi¸:×Ô žÞµ ×®] xðàA‰Q£Ñ\½zÕËË+÷/Ebb¢tý¨©´nÝúСC?.à7Q0“Ÿ”Ü>ìââòÜsÏé6lØ0))I;¤jBÉÉÉUªT)âj!e•Ày0pqŒ-Ÿ3ºÆñésfMßõáGäôéÓ-):i†Ú´©6ëÿþïÿžþyÝ[,íÚµëÔ©Sýúõ+ŽÅ=ÎÎÎU«VµèÔˆ’Á’jX.îãˆ|ýõ×_'N\¶l™ÒŒ4{öì^½z5jÔhРAåË—?wîÜúõë«T©2iÒ$¥«‰àˆ|?^éZ˜©*UªÔ©S‡±%3×½{÷¨¨¨>úhݺu)))^^^}ûöýøã+V¬¨tÕÎŒæ©ñ/‚#`ŒÕ«W+]Èò /ä¾AÀ8\ãYŽ”VÆÀ¢ Á²€ÙaIµy"8@‚#d!8PBXR KGp€,GÈBp€,G`^¸Ù"8PX+@p€,GÈBp€,GÈBp Ø±2F>–T›3‚#d!8@‚#d!8@‚#Å‹•1°G`.XRm掅àYŽâ2Õ(FDX‚#d!8³À’jóGp€,GÈBp ¸°2V†àYŽ@y¬Œ±GÈBp€,GŠ+c`}Ž…àYŽ@a,©¶GÈBpÀôX«Dp€,GÈBpJbeŒ!8`b\àkEp€,6/^¼ðÇäùêºuëúöíܲeˈˆˆ´´4¥ë  $›Ž«V­Ê聾 Θ1#!!¡I“&...6l5jTFF†ÒUPŒ%ÇÓ§O¼ÁŽ;äì'==ýĉï¾ûî?üçqqqK—.õññÙ±cÇÒ¥KwîÜ9dÈÓ§O/X°@é>ÀªXÀÊ.YÕaIÁñ•W^ùòË/Õjuî—ÒÒÒ&L˜0~üx9ûéÚµëÀ×®]›ß?ýôSNN΄ ¼½½¥’iÓ¦¹¹¹mß¾=''Gén˜5b¬˜%Gooï/¾ø¢ÿþ—.]Ò-ß¹sg—.]¶oß^µjU9û™3g΢E‹-ZÔ¢E‹<78~ü¸]›6m´%ööö!!!©©©'OžTº”aIÁqË–-ýû÷?sæL=Ö¬Y#„¸{÷î¤I“Þxã»wï>ü×_•³ŸV­Zµoß¾}ûö•*UÊýªF£‰÷ôôôôôÔ-÷÷÷B\¹rEénP†ƒÒ0€‹‹ËìÙ³;uê4}úô™3gnÛ¶íâÅ‹)))µk×þðÃëׯo’£NŠy⼘BõÄÄDîÎÊOJuaÚî*† æñµn³,)8Jš7o¾víÚîÝ»;vLѰaÕ+W–*UÊTû—–N—-[V¯ÜÅÅEqïÞ=9;‰‹‹SºŸ ¯zõêJWú8)æ‰óRÿ^àhâ>´Ö“òÏʳo\î¯u›’–4U-9xð`ß¾}ïܹS·n]ooï“'OŽ3æÖ­[¦Ú¿»»»J¥zôè‘^ùƒÄ¿ãŽ6È’‚ãýû÷#""FŒ‘’’2~üøuëÖmÙ²¥S§NÑÑÑ]ºtÙ°aƒIŽâàààææ–{d1==]¡]g `k,)8Jé°víÚëÖ­û¿ÿû?{{{77·O?ýtÁ‚*•*""bøðá&9Ojjª”µ¤+0|||”îeXRpLII5jÔÆƒ‚‚tË»víºyóææÍ›:tÈ$jß¾½Z­>xð ¶D£ÑDGG{xx+Ý 3Å b·þF.–W¯^ýæ›o湦bÅŠ+V¬˜>}ºIÔ·o_;;»/¿üRº®Q±téÒ”””Þ½{›p€e±¤UÕö©Tª!C†˜ä@~~~“'Ož7o^·nÝZ·n””täÈ‘ºuëŽ9Ré>PŒ%Ç’^¡B…M›6mÛ¶Í××wРA&LîÈ`›l:8¾ÿþûï¿ÿ~~¯víÚµk×®J×`¸À¶À’®qÖ•1ŠàYŽ…à@Qq#lÁ”(.p´\G€|0˜ü4‚#d!8P$ŒIÁv Á”VÆX4‚#d!8`<.p„M!8@‚#(!\àhéŽ…à€‘¸À¶†àYŽ $p£ 8@‚#ÆàGØ ‚#@^øÏA.GPì¸ÀÑ: Áƒ1‡ ÛDpÅ‹yj«Ap€,G Ã<5lÁ²@1âGkBp€,G ÀްeGÈBpÅ… ­ Á¹˜§†#8äÂÿòBpÅ‚yjëCp€,Gdaê 8@‚#0=.p´JG Ç<5 މàLŒyjkEp€,G ÁŽ€„àLÉæ©ù¿B>Ž…à@A{´ŽÀd¬ažù#8@‚#ùbžÐEp¦Á<µÕ#8@‚#ycžÐCp&`=óÔü!GÈBp Œ:¹@QYÏ<5 Dp€,Gô1O ä‰àŠ„yjÛAp€,GžÂ<5‚#0žµÍSóÿ† Á€ÿ0ÞdknDaŽ…àYŽüƒyjƒ0OmƒŽ…à „`̹pG„ 3ˆyjÛDp€,G`†mÁæ©YŽÀ 7Ú2‚#ÀÖ1ÜÈDpà?²€\ÌSÛ8‚#À¦1ÌÈGp²0Ü‚#Àv1Ü„à Çp#Á€Ág™ŽET Ep…`ž‚#d!8lóÔò1Ü-‚#d!8lÃòÙÄp#ÙŽ…à°-Œ.ÉgÃ0Á²@nDnG€ ažúøL‚àô1܈<¶‚¡% ˆŽà) 7"?G€M`¸yàca ‚#øÃ(Á²Ö I™nDÁŽÀ&ñÿ ÃVŽx Ã(Á²ÖŒáF™n„Gl-¦FþKa‚#Àj‘ Ó"8`Ólq¸±hTJW@AG€ub¸09‚#¶ËF‡ù_…±Ž+D0ÃFS#Š€àYŽkÃp£¶;ÜÈ磎…à°* 'Éa»Ã(‚#¶…Ô£9(]3Õ§OŸ3gÎèzyy>|XéªòÅp# ÁG¤hŽy»|ù²³³sµjÕt ÝÝÝ•®EÂp#Š‚à˜‡ôôô{÷îuêÔéÓO?Uº.¹K*©EÄ5Žy¸|ù²Bo¸X6þoQdÇ<$%% !ªV­ªtEr Åp#ŠŽ©ê%&Cp”«iÓ¦Bˆ .(]ä"5´Žú4Z­ÎÉÉÑ+···B”+WNé þÃ@P’Žú’’’‚‚‚†ªW~êÔ)‘תÌÃÿ࿦CpÔW­ZµF;vlݺuÚÂS§N-_¾ÜÏϯcÇŽJWðò@H(¬ªÎÃÿþ÷¿áÇϘ1cÍš55jÔ¸víZlll™2e>üðCggg¥k‚Ô™ø ˜#Žy¨S§ÎÆ{ôè‘’’²sçÎ{÷îõèÑcË–-Íš5SºjŽáFFóæíí=oÞ<¥kÈ£H 5þ‡Š©1â€õ 57•°éþ%8, £Hù!5¢¸–„Ô¹ø¬‚#Ö€áF”‚#Àb0„”R£>>+Ńà€e#5¢Ä–!¤<‘óÀg¥Ø€$'Rcø¬'‚#‰Ôˆ’Gp˜;† Ÿ•bFp˜5’@žn„"ŽXRcÞøOFñ#8ÌI 7R#Dp˜)Rcn¤Æ|ñq)G,©1_¤Æ’Bp˜#’€R#ÌÁ`vHzH)Á‹JØúi 8`ÖjT¯AjÌÿÉ(YG€y! èR ÕÅÄ‹J×øÁ`FHº˜¡.—GpÀ‘ AjTÁ`.HZ¤ÆBðYQÁ`HZ¤F˜-¥+©ñ*¡B ÁÇE9G̲ÅT5@a$Aj”IÑÏ wÿG€²H‚Ô(Ÿ3@p(†$ H2ñY1G€2H‚Ô(Ÿ³ÁâÀj¹Hæ„àP€‡å²ñŠùaªPÒl< å2§ Kª%G@‰2§0 DóI2ÙøÅ\1U (9¶¸¨Ñ¶üA1oGŠ 5š1¦ª%Äfó©Ñ6û)±Œ8J‚m榧 c®ŸVÆhÅÎ\ó@1·šFƒØæ§ÄÒÅËó†Q©„6÷)±LG@1²ÍÔHd4€ÙD˜§ÖÅâ@q1ûHP M&5Ä?"ŽG@±°µHÀô´a˜ž¶LG€éÙ`j$2Àr>ÌSë!8LÌrR)Ë@£Ah´pG€)ÙNj$2Ìv>Ö‹à0Û ÌMÆ2™§Îà0 I 4ÌF>¶à0[ÈDFƒYæ@ã?ug¸1/G@QÙHj$2À’## @p‰Õ§F c‘‘áÆüƳîÔHd4ŒUDFŒà0’§F"£Á¬èÓÀpcŽcXQNxº]DFCY×@#©±`G€Á¬85å’ò¢°žÈ9ŽÃXejd ÑÖ5ÄøTËn, Á —U"£¬ò m©Q‚#@ëh$2Àª#£ 5ÊFpÎÊR#‘Q.Û¸‘Ô(ÁP«IR^DF9¬}ˆñ¿†’ ApÄ:R#CŒrÙÆãÍ%5ˆàÈ›u 9岎ómP‹I†³Sºs$ 4ZtŠP •t_FRcATªþXúù6´ÝEI*£ßiñqè³ôéiF gcSÒO5]j·ÒÕ°PGÀjÔ¨.,6K°ö¥p6œÿé"cÑ0U ø‡J%.^L´ÄD¡;+Mj̃Þ|´%žã¢÷©ÑŽ!,szúß4Ä…Œù /JÝðod´Ñö›SÕ`ë,q5-W1æK¥³pòNj1àrF“cÄlše­¦eˆ1_¹-å¤Sß(£mOx3â6ʲb̃‹ya”±XÀYÊ,”ÖGẊ¶_è”bEpÛbäE]ÕkÔøï‰™Ÿ9%”è£mÏS ®q›bæW4ê]ÂhÓ©Q{Í¢J•xñ"—-æ¦b¹´Ž`´ 'ÌyñߎP±Æ¥`ª\y‘Þ)aLU€õ3ÏÈÈ|ôS, ¦¡óe.×/Úü<µ 8€u3Ã+m:/’eÓí)³è&R£‚àÖÊÜ"£íæEÖAËfva¹À ™ÏÜ´ÍåE½1EAX,ˆ^g™oO1Üø/‚#XshTéäëÏ‹Ì>Âb’¢^- ¢%„àVBñÈhƒ‹ (Èò’¢^í-¬ÆÅŽàOÁÈhýƒ‹ ("W¬¶ØÏù 8€S*2Zíà"в©ò*´†Î"2ˆà©ä#£µ .ªòJ>ÄļXmF̳‘ÖÖ0#8€…)ÉÈh=a‘¡DTù”[sO‘ Dp‹Q2‘ÑâÃ"C‰…±Å€˜_ãm¢Í¦Dp PÜ‘ñ¿°XÝr¢*ŸüCFÌ?Jl«ƒHŠ&Ep³V|‘1Ï‘ÅÄÄDQ]é6ç× zl;  óf=ëºÍÁÌTqDFsŸ†fQê½çÕóÈò¶Õ#¹Ùôt»’ì”®à)*Õ?4ä%ÕûS©„JóÏ^5J¦F•*ß?MÞ¬ˆJÆÍÓ.&&jrÚù}d[ý¢$FÀ\˜jˆÑ\†miøP%{K+l¼qäte~Ž ¼"FFÕÓ_Â%Uùÿ[~@$F~ ºÌR@1ÚÐehÄ*Ѥ¨*0XN:4(ÕüÓ8¥ë¬#:KØrÙ‚#(ÀÐ!ÆâMŠ:Ñ0¯UæHù2.ó鱕΂ÁŽPrd1ªr}ù5)Ê5LLL¬^½äîÇctȱž`#£ ªt‡$ëé˜#‚#»BóbQU…¥â5,Ê—„“ à­ J8Í 8@qÉ//< Xœ¹PÎ- 9xQúÈ5.fm’CpÓË‹ª\¹ï©˜øÏ‹Æ,@)Ž‹Ù Ü*áÜVh” ‚#˜Æ? P£ú/ÙH+`ro©[$c°P“ßý‹¡…_NGnlÁta8íŸ@¥2>¶ë’Àåt @pPâTBºP´Äª–DÓ<=áüÏ–*YÞ¬ŠÁ°jŠ_Ž–'yl™¼²O%ºB×—HoQý3wœ{ýŠJ#4:éQ“Ç1ÀÊb`>q­XO¤ˆïÏ5jLeåÅA! º”0WFT‰§×¯h¢2Ó›a@ !8Âzé„’ž5ËlQ¼ãy†+èZ:SÄÁ¼z ïÝæy+Ý*@BpD‰+±Ñ8/{ ½Þß´]¥pøÉ• :ENjyfÄBïªMX€‚Qs§2oVõ iªmÍÄL’æ D,´„E(ÁÑ1ËØÆW©©Ÿe÷–AY°C–*ÿócÜ/8À8G dÆw€S„¬þ(ldË:;©Èƒ‚%ZYS§Ã:ƒ°Æ!8šŸB¿ë­î;¯†D-ôG}ónÁÓK–žª¬©?Ùz½e~–‡à¨œü2€Å~½ÿ,¶ÅEch “}dŽš<Í“ ¸KÞ—©y«‘Í»AÅÏò‡ hk“æ[ ’"”,‚cñÓ~·™Á·šühc•U”õÊj}aŸ”‹†OÕ*W¥¬¨ËÀ2‹“ô=WRßmr’ŽÍ~ÏV¯Qð7Xu$1Ï\¨_Ib"˜‚c±Q™>¦ümo[ߪŽ&^¼h ‹c䱈\¨_gb"X‚cñ(Bj,à;ßš¿I‹ûÁÄD¥[h…†Ba–¹ð©&üׂÿ¢<1,Á±xÈþTÿV³g®w“6Or¡0ûPøT‹òiöT[É=’À–KšE-­Î³²ã ÍgA!; ‹J„úm,, ¬Á±„˜ÓÒê<ëG4€-ÄAý&çßb>`;ŽÅKù¼(3Úü—¿ü,(¬(êwéP ‚c1*†uÕ¹QXܱÉ/ü>>;vìXºtéÎ;‡ rúôé ÈÜC!ßã ™#†ó”óGéæ¹»Œê,ƒú€’ApÌÃO?ý”““3aÂooo©dÚ´innnÛ·oÏÉÉ1xwrBAÉ2:ù%ÿYh,ROÉ‚sFpÌÃñãÇíììÚ´i£-±·· IMM=yò¤Ü½[L,r’1>ù™aþ“Ùæ âJ2öV‰à¨O£ÑÄÇÇ{zzzzzê–ûûû !®\¹"k/º‰C[f‚Ñ+ľB“ŸijYRd¶Ùß?€Ø@±8FߣGÔjµ»»»^¹›››âÎ;rv¢Òˆ<~MPe¢eÖÅÜþþÅ|S ]Ùù›¢¤pRÌçÅ qR`&Žú222„eË–Õ+wqqBÜ»w¯Ð=ÄÅÅåý‚Å _Å}Àú0U­ÏÝÝ]¥R=zôH¯üÁƒâßqGDpÔçàààææ–{d1==]¡]g `kŽyðññIMM•’¢Vbb¢ô’ÒµPÁ1íÛ·W«ÕÔ–h4šèèhàà`¥k  ‚cúöíkgg÷å—_J×5 !–.]š’’Ò»wïR¥J)];e¨4ܪ./Ë—/Ÿ7o^¥J•Z·n””täÈ‘   åË—ç¾M€ 8ækóæÍ›6m:}ú´¯¯oÓ¦M'L˜ Ý‘À6 ×8@‚#d!8@‚#d!8@‚#d!8@‚£É¬[·®oß¾ÁÁÁ-[¶ŒˆˆHKKSºF6ÄÐÎÏÈÈøî»ï^~ùå ´nÝzøðá‡VºÖ¦(#®_¿Þ¨Q£É“'+ÝkcÄI9sæÌرcÛ¶mÛ¤I“Aƒ=zTéFXCOÊ“'O–-[Ö«W¯àààvíÚ?þï¿ÿVº6çâÅ‹üñ‡ÒQÁÑ4.\8cÆŒ„„„&Mš¸¸¸lذaÔ¨QJ×Ë&ÚùÙÙÙÆ ûðÓ““›7o^«V­£G†‡‡õÕWJ7Åzåo„F£™:uªö—âa*Fœ”¨¨¨°°°¨¨(ooïàààS§N 2$**Jé¦XCOŠZ­:tè‚ ÒÒÒZ·n]©R¥;wvïÞýøñãJ7Ŷ¬ZµJé*(Gƒ";þ|:uZ·n}ëÖ-©äý÷ß÷÷÷Ÿ={¶ÒU³~FtþêÕ«ýýýÃÂÂ=z$•\¸p¡iÓ¦ýõ—Ò ²Eü±|ùrÿ·ÞzKé¦X#NÊÝ»w7nüÜsÏ8qB*ùã?êÕ«×¢E µZ­tƒ¬Ñÿ|?>++K*‰‰‰ |ñÅ•nM¸wïÞñãÇÿ÷¿ÿIÿFÅÆÆ*]#0âh?ýôSNN΄ ¼½½¥’iÓ¦¹¹¹mß¾=''GéÚY9#:ÇŽBˆéÓ§;;;K%µk×=z´Z­fÂÚ$Šò7âï¿ÿ^¸pa:u”n„µ1â¤lذ!==}ôèÑ5’Jž}öÙN:¥¤¤œ9sFéY#NÊÉ“'…C‡uppJš7oxéÒ¥;wî(Ý ë×µk×®]»VéŠ(‰àhÇ·³³kÓ¦¶ÄÞÞ>$$$55UúKŽâcDç'&&–-[¶nݺº…µk×B\¹rEéY£ÿFdggO™2ÅÃÃcÚ´iJ7ÂÚqR8 R©zôè¡[øÑGÅÅÅ=÷ÜsJ7ÈqR|}}…ºQ£Ñܽ{×ÎÎN%Q|æÌ™³hÑ¢E‹µhÑBéº(†ÏYQi4šøøxOOOOOOÝr!Ä•+W7n¬t­–q¿dÉ’ÜÿÂþùçŸBˆÊ•++Ý&‹W”¿_|ñŹsç–/_îêêªt;¬Šq'åìÙ³+V°åkVLȸ“2oÞ¼«W¯®Y³†iÐâ`ÄIqrr’Ì;·]»vÒã±cÇ^¿~}Æ [·níÓ§ÒͲlÆýM™2eÊï¿ÿ>mÚ´W_}U*¹~ýú+¯¼2qâÄ_ýµFJ7 ÖÇ¢rpppssËý¿Ãôôt!„v­ŠƒÑÿäÉ“9sæ :ôúõëãÆÛ¾};©ÑTŒ8)ÇŽ[³fÍk¯½Æ’‹bbÄI)[¶¬“““³³sÛ¶muËCCC…çÏŸWºMψ“’œœ¼oß¾ZµjiS£ÂÏÏïÿþïÿ²²²6nܨt›`Ž&àã㓚š*ým×JLL”^RºvVΈÎÏÉÉyóÍ7W®\Ù¾}û]»v;–Q.Ó2ô¤H¿{±hÑ¢€õêÕKñ믿¼üòËJ7Èñ7ÅÛÛ»T©R*•J·PúË’­tƒ¬¡'%55UQ­Z5½ri ñöíÛJ76àhíÛ·W«ÕÔ–h4šèèhàà`¥kgåŒèüU«VíÚµkÀ€_}õCÂÅÁГRµjÕ.O“–.úùùuéÒ%$$DéY#þ¦´mÛ6==ýÂ… º…Òmb¸Ñ¦IzRªU«fooÿ÷ßk4Ýò¸¸8!D­Zµ”nlƒÒw ·×®]«S§ÎK/½tÿþ}©dñâÅþþþ}ô‘ÒU³~r:ÿÁƒ/^¼råŠF£ÉÉÉ mÔ¨QFF†Òu·Z†ž”ÜΞ=Ë/ǘ–'寿þò÷÷ïÛ·ojjªTrúôéààà&M𤤤(Ý k`ÄIyíµ×üýý?ýôSí÷\¸p¡Y³fõêÕ‹WºA6dúôé6ûË1,Ž1??¿É“'Ï›7¯[·n­[·NJJ:räHݺuGŽ©tÕ¬ŸœÎŽŽž8qbíÚµ·lÙrûöíË—/;;;80÷Þzöì9hÐ ¥Ûdñ =)J××&qR'MšôÉ'Ÿ¼ôÒK7~ôèÑñãÇU*Õœ9sÊ—/¯tƒ¬'åý÷ßïÓ§Ï¢E‹¶mÛ”ššúûï¿çää̘1£fÍšJ76àhááá*TØ´iÓ¶mÛ|}} 4aÂé® (nuþÕ«W…gÏžÍý*KdL…¿fȈ“òÚk¯yyy­\¹2&&ÆÃã}ûöãÆ“~f &aèIñòòÚ¶mÛâÅ‹:´ÿ~^xáõ×_¯_¿¾ÒM­Piž¾TÈ‹c Á² Á² Á² Á² Á² Áþ3yò䀀€ß~û­Ävõå—_¬^½Z÷]û÷ïÏóUPÁ,É¡C‡¢££•®å tÀ¦µmÛÖËË«Q£F2_}ë­·ÒÓÓÿúë/¥+À@IuëÖ­[·®q¯@ cª€ER«ÕÙÙÙJ×l Á€ÅŽ$$$¼÷Þ{7®[·n›6mƧ·EÚìúõë±±±½{÷~öÙg¯^½ª}uÛ¶m£G~á…š5k6lذo¿ýV­Vç>Ö¡C‡Æòúë¯8p@oƒ”””O>ù¤sçÎ 6lذa—.]æÎ{ëÖ-CwµlÙ²–¿è¾úÑG¤¥¥©Õꀀ€àààˆˆˆ€€€ÈÈH½w}òÉ'ü±Òg €µ!8°0Ó§OŒŒ|üøqÕªUÓÒÒvíÚþÍ7ßèmvîܹaÆ={6333''G¡Ñh¦N:qâÄ}ûöi477·#GŽ|ôÑGLKKÓ}ïæÍ›GŒ±k×.''§»wïFEE5ê³Ï>Ón’’2pàÀ%K–\¿~½J•*Ï<óÌ•+WV¬Xfè®äkܸñСCU*ÕСC йsg!ÄÎ;u7Óh4[¶lBtïÞ]ésÀÚX˜S§NµiÓæ·ß~Ûµk×É“'§M›¦R©>þøã¿ÿþ[w³ÿýïõë×_±bÅáÇ«T©"„ظqã¦M›¼½½×®]{àÀ;wîÛ·¯Aƒ§Núâ‹/tß»aÆöíÛ=zT:Ä”)Sììì-Ztúôií—.]j×®ÝáÇ7mÚô믿:t¨I“&×®]Û»w¯A»’¯]»veÊ”±³³‹ˆˆ˜W¬ Á€…ñööþüóÏÝÝÝ…ööö¯¾úêÀsrr-Z¤»YÙ²e—-[Ö¢E ///©äÓO?BÌ™3'88X*ñõõýâ‹/×®]{óæMí{ýüü>ûì3WWW!„ƒƒÃðáÃ(„øê«¯¤ ²³³Û¶mûÖ[o•-[V*quuíÚµ«"))I·…îª(ìíí_|ñÅœœœÝ»wk 7oÞ,„èÑ£‡Ò' €"8°0½{÷vttÔ-2dˆ"66V·°[·nNNNÚ§ÉÉÉ·nÝòõõ ÑÝÌÛÛ»M›6jµúܹsÚ¾}û:88ä>ÄŸþ)=3fÌâÅ‹kÖ¬©ÝàöíÛ[·nÍ]ÛBwUD:u:³ÕÙÙÙÛ·owppèÒ¥K1ž¶ŠÛñ°0Õ«W×+yæ™goÞ¼ùäɓҥKK…Òô´Ö¥K—„ÕªU˽êU«Š§G kÔ¨‘ç!nß¾ýðáCi”ñÚµk8qâÄ•+W._¾¬wi£A»*ŠçŸÞÓÓóرciii¸{÷n»ví<==‹ýL°=Œ8°0*•*w‰½½}NNŽî z¤Ùa-F“ßííí…YYY…ÂÎήT©RBˆ5kÖ¼øâ‹3gÎ<}útÍš5ÃÃÃW¬Xñ¿ÿýO~mµ»*"{{ûŽ;ªÕjéÚJæ©+FX˜ÄÄD½’›7o>zô¨bÅŠeÊ”Éï]ÒX£Þˆi0Rwh0÷!nܸñèѣʕ+—.]úÁƒï½÷^éÒ¥—,YÒªU+ÝjÈ©­î®LÒ!:uZ³fÍŽ;:wîåêêÚ¶m[S÷:Áˆ#‹óóÏ??yòD·dÕªUBˆzõêð.Ÿ *\¿~ýСCºå·oßÞ·oŸ½½}`` ¶pýúõz7w”ѰaC!Ä™3gÔjuÆ uS£âüùó¹[ð®L¢qãÆ^^^¿ýöÛúõë?~Ü¥KSERÐCp`anÞ¼9a„ôôt!DNNÎêÕ«¿ûî;;;»qãÆüƉ' !f̘qöìY©äÖ­[ãÆ{üøqÿþýýüü´[^¹reÒ¤I>”±råÊï¿ÿÞÁÁa̘1B!Äùóçµ7ÁQ«Õk×®•nÄ‘‘¡{ЂweœœœœGiŸJk«³³³?ùäÁ<5€âÄT5 Ó¹sç]»v5kÖ¬ZµjÒ´¯Ý¤I“êÔ©Sð{öìùÛo¿mÞ¼¹wïÞÏ<󌳳sBBBNNNppð„ t· رcÇîÝ»«W¯~íÚµŒŒ ‡3fHËhjԨѾ}û½{÷vèСQ£F&...--màÀ+W®üùçŸïß¿?oÞ<9»2‚»»{ZZZXXX•*U´·Ÿìܹó?ü‘‘QµjÕ (}ŠX-‚# Ó½{÷~ûí·gΜqqqiÞ¼ùàÁƒ›7o^èíìì,XЦM›Í›7Ÿ?>99¹iÓ¦!!!Æ “ÖÇh­X±bÇŽ{÷îýóÏ?=<<^xá…W_}U7}üñÇË—/ß¶mÛ‰'žyæ™W_}µvíÚjµzóæÍÇ—¿+CM›6mΜ9 ?Ö6jÔ¨B… ·oßf¸@±R°ÒÌÊäÉ“ýõ×%K–´iÓF麘—œœœöíÛ߸qcïÞ½•*URº:¬×8€Å‹‰‰¹~ýz“&MHŠÁ,[FFÆÂ… …½{÷Vº.¬×8€kÒ¤ÉãÇŸ›õÏŸ??iÒ¤o¾ùFqáÂ…ùóç92û]Ð †ªØÜÝ»w'MšôÒK/ùúúúúú†††Ž?þöíۙ׌/Y²¤¿¿ß¾}ÿþûï÷Þ{O>sîý÷ß×ÂÞ-ž’øèÑ£ 4iÒÄÏϯH‘"5jÔèÙ³çüa\AÞÎ;w仡¡¡ƒáîÝ»"ës“““GŒѸqcoooÿ¶mÛþòË/y;EŠ™7ož»»»|÷äɓٯ_¡B…¥K—O6mšÜT âÀ¶:qæÌã’;vìØ±#22222²Y³fÆåÑÑÑ:tHIIB\¿~ý›o¾ÙµkWݺu5¾÷4kÖìàÁƒÆ%Ç?~üøŠ+æÍ›÷Ö[oå¡ÙÛ¶mëÑ£Grr²|÷öíÛIII›7oîß¿ÿâÅ‹ó°AR¥Jýý÷ßrï”}Z¾RÌ©S§2¯éááaö@ãT#9çÙgï׉‹‹ëׯ_Ù²eëÔ©óå—_Þ½{·ZµjÆ¢rñññòÆ–)SæÈ‘#Gމ‰‰quuÍÛÓQ½zõÏ?ÿ\ùú×®]“oxyyeþ«¯¯¯&%J”È[Û8&ǰ•Û·oߺuK¾mv‘ÂråÊÉ7îß¿åʕ… gløùù™®Y¡Bï}Ê”)·oßþúë¯ø¦Ytss iԨш# *¤|#Æj__ßÌår<€Qq`+^^^ÞÞÞòíK—.™þÉx·@¥J•*Z´¨1ÐÈ3TŒŒS:4»www÷yóæ]½zõÇìÞ½»éå¯÷ìÙ“Ûßß+Z´¨qÒŒ±à—+V¬H|âôéÓ?ÿüóرcs•÷îÝûðáCùvýúõóÜ΄àÀ†‚ƒƒå[·n5]n¼äææf0ä%ƹ&Bˆ´´´¨¨(ÓöêÕëòÓäÙ'öÙ{f<¸råÊ•+Wpà€qùåË—6lذaÃ_|Q^·5ã váÂ…MÍèÁ€ µk×N¾ñÅ_>|X¾}üøñ™3gÊ·Û¶m+ßhÞ¼¹|ã³Ï>“/a#IÒ„ M7èáááû4ã;ì=³'N”)S¦L™2eË–•¯ûãææÚ¯_?y‹ÃÍÆJžEÆÆÌž=Û8XúèÏ?ÿ1b„ñ×\L½ÿþûË–-»}ûvbbbÍš5[µjuåÊ•;vÈ2dˆMŸÇ»wì—*Uê£>²Å8$ réøñã9~¶üúë¯òÊ ̼B¥J•öìÙcºÙÅ‹›©"EН}=qâÄì[5qâDyͰ°0ãB«ï}Á‚ò’ºuëÊKöïßoœ†b¦E‹÷ïß7î¢{÷sçŽÅ J’ôßÿþ×x‚¦©ñãÇ+|^¶oßžÿç±D‰û÷ïÏÏ.8†ªØVýúõ=úþûï·jÕÊ×××ÇǧeË–&L8vìX“&ML×ìß¿ÿöíÛ;vìèççW®\¹Ž;îÛ·/ŸÓ2ì°÷^x!>>þý÷߯W¯žŸŸŸ»»{ñâÅ›4iòõ×_GEE,Xиæœ9sºwï^ºtéÂ… W¯^=›çðððcÇŽ½ùæ›õêÕ+R¤ˆ¿¿ÿ«¯¾º{÷î©S§Úúùruu-Q¢Dýúõßÿý¸¸¸^xÁÖ{à@ ’$©ÝÈRïÞ½—-[&„˜?þ AƒtµwÐ*Ž4aàÀµjÕªU«–é9|wîÜÙ¶m›|»FκwpLŽ  ~~~±±±BˆØØØ *téÒåæÍ›ï¾û®|øðáÇj7@G "##Í–:tèܹs5kÖ$5Ý"8fçÈ‘#k×®MLLS»BÅŠ ÁŠ ÁŠ —ã@£‚ƒƒÕn‚^ÄÅÅ©ÝÇ@p@‹‚ƒƒI3öA@WŽ¡j(Bp€"G(Bp€"G(Bp€"G(Bp€"G(BpÛÉ“' Ãì¼ß¦M›º»»«Ýû,mß¾½zõêË–-³¸Âõë×û÷ï_½zõ"EŠT¯^}ìØ±ÿüóÚ­Bˆ¦M›zxx¨ÝŠ,õìÙÓ`0\¼x1ϽÓòËFöã? †%K–¨ÝGµ{÷îÐÐP??¿ððð“'OªÝ"XÁpl_~ù¥ÚMМôôô®]»ž9s&""¢råÊ™WHMMmРÁ’%KÊ”)3xðàªU«Îš5+444==]í¶Ží÷ß MJJ;vì¸qãΜ9Ó´iÓäädkmÿÖ­[ƒ ªX±b‘"Eš5k“Õš=rss3<­T©Rj!‡ÇoUéæÍ›ÇŽ[±bÅÂ… Õn‹æœ?þÆݺu[ºt©Å~øá‡øøøaÆ}ñÅÆ%ݺuûé§Ÿ:wî¬vó5mêÔ©£G.]º´Ú F-X° ###**ªB… Bˆž={FFFŽ5*ÿ¿}ûvݺuÏ;×¹sgŸ5kÖ´iÓfçεjÕʼrbbbzzz£F ‹)¢örxGÀ!Õ¨QãÂ… j·B£ä¡——WV+ìܹS1`Àã’®]»þßÿýßü¡çàøðáCwwwƒÁÍ:+V¬X±bž®ñÞ!ÿŽ;"§F!DñâÅ«T©ræÌ«lü³Ï>‹ÿöÛo{÷î-„1bD:uÞy稨¨Ì+ÇÇÇ !>üðÃV­Z©}Tœ CÕ€•]½zµ_¿~åË—÷òòjѢŌ3.]ºd0¬[üúë¯×­[·nݺÐÐÐ<<üÿþïÿ úuëLþóÏ?eË–•ƒ×Þ½{ÃÃÃË”)S°`ÁŠ+vìØ1«3)-ž–W¯^=ÓQ¡‡Nš4©aÆ^^^5jÔèÛ·¯Ùyr6lhÕªU™2eŠ-Z³fÍ/¾ø"---«öÿóÏ?£FªS§NÑ¢EŸþù7ß|óêÕ«òŸüì³Ï !,XÕa¿r劢|ùòÆ%÷îÝ{øðaÁ‚³ÚcŽG#WíÏqåû÷ïOœ8±~ýúEŠ©R¥ÊÌ™3322”t?""Â`0ìݻ׸rûöí C—.]ŒK¶oßn0:uê$?wU«VMJJjÙ²e¡B… ,(Ü›îÎÔ€LÏqÌíÃÍäøªøçŸ†^£F%J´mÛvãÆcÆŒ1 ¿ÿþ»’-(iÞ7\­ZµâÅ‹¿ôÒKk×®UÒrd%%%¥dÉ’Æ»<ˆ¯T©’U6¾råʲeËöêÕK¾عsç]»v]ºt)óÊrp”? `M¬­råÊfK8Ì:‘ð÷ßW­ZÕ`0Ô«W¯S§NåÊ•BÈÙnÁ‚¶Øiÿþý…111¹zÔ–-[„Ý»w7]¸|ùr!Ä»ï¾+IÒŽ; ,X @Ö­[÷ìÙ³iÓ¦...G•WnÒ¤‰›››ñv¡B…ÌvQ·n]ùöµk×䱤×_½^½zB__ߨØXy9Þ,X°Y³fmÚ´‘‡“Þyç‹?wîœ<öTµjÕ®]»Ö¬YSQ¦L™cÇŽI’´sçÎI“& !š4i2oÞ¼ãÇgÞB“&M„÷ïß7.y÷ÝwÝÝÝOœ8aq9©S§*oömÒ¤I^z饲eËöéÓ§wïÞE‹BL›6MI÷¿ûî;!ÄäÉ“å•ÓÓÓ‹+&„ðññÉÈÈN˜0Añõ×_Ë»«X±bÕªU}}}{÷îݧOywS§NÍæõváÂcksõpÓ—MޝŠK—.U©REQ£F.]º †ªU« !~ûí7%[ȱy‰‰‰r¦ñ÷÷¯V­šÁ`hÙ²¥ñøä(!!AÉjy“ùÛDûüýýCCC%IÊÈÈHHHxã7žþù«W¯æË·nÝ2 ݺu3]øý÷ß !þûßÿf^ذa ¼víÚªU«,X°gÏždµñ<jG|v¬‚Dc}GÝ’?% ÃêÕ«å%÷ïßïÚµ«ü?iš Žiii¥K—öòò2 O¯¼òŠBOòˆíŒýú믅S¦L‘ïæ*8:T1{ölã_ÿûßÿº¸¸´mÛV¾[©R¥bÅŠ]ºtI¾{ãÆÒ¥K)R$===sã»uëfÚI’-Z$tù®\i4hPVÝ7ÇŸ~úiذaõë×öÙgå,bQŽG£\¹rÊÛŸ}gå¶Õ¬Y3%%E^áðáÃBˆçž{NI÷¯\¹b0š6m*ÿ)66VQ¶lY!„œ,%IjÔ¨‘Á`øûï¿»«Q£†ñ«ýøñãnnnÕªUËæõfsõpÓ—MޝŠ7ß|S1}útùnzzºücpÌq 96ïõ×_BŒ1"--M^2gÎyǼ‘ƒãýû÷åÃèååõ¿ÿýÏ*[>uê”âí·ß6]¸}ûv!ÄÂ… 3¯ß¶m[âÅ‹+eU«VÍêmNpTŽDc}GÝ:tè»»{›6mLÞ¼ySþäÊ*8Ι3gVÖþùçŸìwš·à(IÒ!C„ëׯ—ï^»vÍÝݽaÆòÝU«V}ÿý÷¦ëïß¿_1tèPù®òàxãÆ 77·Æ›­Ð£G!D|||FFF¡B…Ê•+wïÞ=ã_ÿú믘˜˜G™=êòå˃¡zõêÆú™L®ÉõEåÁqРAò7Ч§g—.]Ξ=kqýìFFFFÁ‚¶?ÇÎÊmÛ¼y³é£üýýË”)£°ûuëÖuww¿{÷®$Iò쟹sç !¾üòKI’îÞ½ëîî^»vmÓC±aÃÓ­…„„C¿‹ÁQùÃ/›_ׯ_wss{î¹çL{z÷î]yô·ß~Ëq 96Oß 2{š5jDpÌ398¦¥¥-^¼xêÔ©òÿŽvíÚÕì+IÒ£GÖe-ó–åÿ š4i’éÂC‡™ÖãM,Xð‹/¾øû￯^½ºdÉ//¯òåËß¼yÓ*‡ÚŸ«`r `5ýõ×£G^|ñEÓ…ÞÞÞ-Z´øé§Ÿ²zÔ{ï½gü¿óÌÞxã MŒˆˆøê«¯Ö¬Yóꫯ !Ö®]ûèÑ£¾}ûÊ•O‰{ôèÑ™3gâãããâⲺ bŽNœ8‘––æééivº¡Üë“'O>óÌ3;wŽŒŒ”›5kö /È#’™ÅÅÅI’Ôºuk³Y/¿ürTTÔÉ“'«U«¦¼móçÏÿâ‹/’’’~þùçI“&íܹóĉ>>>f«e4 CÛ¶m×­[§¤ýƒAIg_xáÓ»EŠ‘—’î·k×î·ß~Û³gOëÖ­wïÞ]¦L™¾}ûŽ=ú×_:tè¾}û=z$5lØÐô®§§g®žâ<<<ÇWE‰%ÒÒÒ^zé%Óžzzz6hÐà—_~Q²…gžy&ûæ8qBÑ®];7·§¾ Ûµk«#`*Nò‘¤œ×quu•ÿC1eʔɓ'¿þúë;v4]çîÝ»aaaYïÅ|7òÓìz«·oßB”(Q"ó~ýõ×B… ÿÔ·oßû÷ï2dÍš5ýúõSíð9>‚#`57nÜO>ÝLÉ…YIMMU¥µ5ªX±âÏ?ÿüèÑ#ww÷•+WzzzÖÏœ93f̘m۶ݹs§@U«V­R¥ÊÑ£G•oßø¹Ÿ˜˜(„ضmÛ¶mÛ2¯vþüy!Ä’%KêÖ­ûí·ßΘ1cÆŒ®®®5šhy~xޝŠ_ýUqùòe³åòŒx%[ȱyòu…2ÿ ŽÅ)ºÈ3ùŠ®®®™—oܸ1«GuèÐÁl‰››[HHÈž={LîÞ½Û`0dgHJJÚ°aCË–-MËùryÒZS¼u‹ËñV#_ºLþÂ3JMMÍ~ØËÃÃõ<ÿ¶›Bˆµk×®^½:##ãÿþïÿäå{÷î½~ýúÛo¿ýᇆ„„ÈŸø×®]ËfSiii¦?»ò÷ߟ;wN¾-p›!ÄW_}5lذëׯ'$$Œ3F¾ Н¯oxxø—_~9}úôôôôÍ›7›=*88X±mÛ6³ZÅÖ­[ûRÈì 8r"‘Ó¿©FBBÂôéÓ¶?WÍLI÷]\\Z·n}äÈù cpBlذáСCmÛ¶uqQùÃ?ÇWEHHˆbÇŽ¦MMM=xð Â-(9˜ƒaÓ¦Mf¿$_syvðàAy"‹L~µ×®]Ûl5y¨:+·<`À€³gÏnذA¾›œœ¼fÍš—^z) ÀlMÑ£G¿ùæ›=’—dddÌœ9ÓÍÍí¥—^Rû96‚#`5~~~¡¡¡›6m2^ .--mÔ¨QòÏmeõsv}ôÑ'YËæ*ÖÙ»ÿ~\\\\\\6ëÔ¬Y³J•*?ýôSddd```óæÍåår‘ÆôWÂnݺõÞ{ïeÕ‹R¥J¥¥¥mÚ´I¾ûèÑ£‘#G“¯¯oDDÄ®]»æÍ›g|ÈÏ?ÿûLa<F9Â… /^¼XaûsÕÙÌv¿]»vŸ}öY‰%äbL£F ,8gΜ´´4³U‘ã«¢téÒo¼ñÆ‘#GäçE!IÒøñãODŽ[ȱ ¥J•êÖ­[\\ÜØ±cWvüꫯvïÞ­öáql=jÙ²å!CæÍ›×¿ÿñãÇתU+ó¥õå¡ê¬XÜrŸ>}žþùîÝ»?þÓO?mѢŽ{÷¦L™"ÿuƌŋ_°`¢téÒS¦LÙ³gOPPÐàÁƒß{コuë®\¹Rþß?µƒS{vŽbVµn%$$üþûïÞÞÞƒ¡fÍš¯½öš<&_uÏßßÿÛo¿µúN³šUýÛo¿ !ŒŸ³büÌýðà ïܹ#_5·Aƒo¿ýv=J”(ñÊ+¯,XÐ××W¾ú‰é¬êüQQ°`Á=z 2D¾’e… ŒSk/\¸ §¢çž{®G/½ô’‹‹K‘"E>,¯ OÊ)Y²dÇŽ{÷î- ºuëÊSƒÍ$%%ùûû !jԨѭ[·:uê!|}}—›Q8«ºtéÒõêÕ:tèÀåç¨]»v™WVr4äÙ3 ÛŸ}g-NQ¯^½º<«ZI÷%Iºzõª\SìСƒq¡>>-[¶Ü´iSV›eVµr$ë#8ê–ü’””Ô½{÷ªU«.\øÙgŸ}÷Ýw“““ëÖ­ëçç÷É'ŸX}§ù Žòˆ’‹‹KRR’éò³gÏFDD”-[¶X±b-Z´X¾|¹$I}ô‘Oݺu¥L_ÉË–-«Y³¦üû1… úÏþÓ£GÓôðÏ?ÿ¼óÎ;µk×öôô èÝ»·|ÁÙýû÷çÌ™S³fÍbÅŠyyy=ÿüóüñ­[·²jö­[·FŒQ³fÍÂ… רQcàÀÉÉÉÆ¿* ŽIII]»v-^¼¸‡‡G­Zµ¦M›–ùê9 ÆÉ“'•·?ûÎæs쾬Aƒâék~ôÑGBˆæÍ›› µ‚cޝ I’RRRúõëX¶lÙnݺ:uJ¾Œ¥ñ"—ÙoAIó®_¿>hРjÕªÉ'!T«VmýúõÇ<3^ܱ•3H45ËA› Ž4y–˜˜˜ùT]¼x188øÎ;vÛ£$I.\ðññÉü „šÒ´iÓ½{÷Þ¿?›ßÌ­=õÎaß¾}EŠyþùçMÖ®];))ÉXRµ¢ÔÔÔäääŠ+æjºMŸúÌß&Úðì³ÏZœê®ey8ÔŽøìXç8Úƒ$©yÍ-èÖÑ£Gs5Y$ÿäj§F8Š·Þz«Aƒ¦—XÚºuë‘#Gºvíj‹É=•*UÊçsÀéq9À9ýõ×_o¿ýöâÅ‹ÕnG~øaÇŽëÔ©Ó£G’%Kž8qbÍš5+V5j”ÚMC–Æ/Ÿ$ gEpœSHHÈÉ“'Õn…FU¬X±J•*Ô–4®C‡QQQŸ~úéêÕ«SRR|||ºté2{öì2eʨÝ4diÀ€j7¶Ep ;+V¬P» P¤yóæ™/@EœãEŽP„àEŽP„àEŽP„àEŽP„àEŽP„à¬f÷îÝ¡¡¡>>>~~~ááá'OžT»E°&‚#°Žßÿ=444))iìØ±ãÆ;sæLÓ¦M“““­¾£fÍšM™2EíîêÁXÇ‚ 222¢¢¢ÆŒ3|øð]»v¥¥¥EFFZw/GŽÙ·oŸÚ}Õ)7µœÄ±cÇBBB*T¨ ß-^¼x•*UΜ9c•§¥¥EEEEGGÿç?ÿÉÈÈP»¯:EpÖ‘’’bLBˆÄÇLJ‡‡[eã×®]kݺµÚ]Ô;†ª€u¤§§»¹¹ !$IJLLìÓ§O¹råúöík•ûúúJ’$InTDÅXÓƒ *$„ðòòŠŒŒôññQ»E°‚#Æ *î]Rö+¸¹¹-^¼8999::úµ×^ëÚµëÊ•+ †§Úœ––¶qãÆ¬¶Ð¡C;ˆlp09F7u¹ººöïß_¾=eʔɓ'¿þúë;v4]çîÝ»aaaYvPÒtõŒs€­ôîÝ[m¶ÜÛÛ[ÊšÚ­F–¨8[IKKB¸ººf^ÎPµ#"8«9xðà©S§*W®,ß]»v­¢víÚf«1Tí ŽÀj=zÔ²eË:T­Z566ö›o¾©U«VçÎÍV“‡ªÕn,rs€Õ4nÜxæÌ™111ï½÷^TTÔÀwîÜ™y¨ŠŠ#°¦ˆˆˆˆˆÛm?88˜j¥Z¨8@‚#a¨XÇøñã‹+¦v+`CG` P» °-†ª ÁŠ ÁŠ ÁŠèâr<©©©?þøãš5k.\¸P´hÑÊ•+÷íÛ·qãÆÙ<¤sçÎÇŽ3[èãã³oß>µ{ çŽiii}úô‰õöönذáýû÷8°wïÞáÇ2$«G;wÎÃÃÃßßßt!5zæüÁqÕªU±±±uêÔY²d‰‡‡‡âôéÓ=zôøê«¯Z¶lYµjÕ̹}ûö­[·Ú¶m;wî\µ› ÎŽãæÍ›…&LS£"((hРAéééY;Ÿ;wNaVnÌ'IƒÚÇ œ?8&&&.\¸Zµj¦ ƒ‚‚„çÏŸ·ø¤¤$!D¥J•Ôn;f÷îÝ¡¡¡>>>~~~ááá'OžT»E°&çŽ .\¹r¥ÙÂ?ÿüSQ¡B‹‘ƒã¥K—zõêU¯^½æÍ›<ø?þP»+hÚï¿ÿš””4vìØqãÆ9s¦iÓ¦ÉÉÉÖÚþÑ£G_ýõ2eÊ)R¤nݺsæÌIKKS»Óúâüç8†„„˜-‰‰‰Y´hQÁ‚ÃÂÂ,>D®D~þùç 6¼xñâÎ;wíÚ5yòä®]»*Ùipp°Ù’Í›7 ˜˜¨öñ€ ]¸pAí&@<õºÅSofÁ‚QQQri¦gÏž‘‘‘£FÊÿÆZ´h‘žž^±bÅíÛ·5j÷îÝ?ýôSþ7žýt›6mìuµÎùƒ£©ôôô+V|úé§ééé³gÏöññ±¸Ú¥K—<<>>K–,i×®]Vk~ûí·±±±ÆÔ(„hÔ¨QÏž=SSS·oß®v?Ш”””’%Kï>xð >>ÞZs¢¢¢š5k&§FÙСC…û÷ïW»ß:¢‹àøðáéS§öîÝûï¿ÿ6lئM›5j”ÛÔ¯__qêÔ)µ{€F¥§§»¹¹ !$IJLLìÓ§O¹råúöí›ÿ-§¥¥ 2DNŠFòœ„‚ ªÝoqþ¡êŒŒŒwÞygëÖ­¡¡¡“&M*]ºtöëK’”‘‘a0\\žJÕ®®®Bˆ¢E‹ªÝ!4íÁƒ… BxyyEFFfubX®¸¹¹MŸ>ÝtÉõë×§OŸîêêÚ¹sgµ{¬#Η/_¾uëÖnݺMš4IÉúIII­[·®_¿þòåËM—9rDèøœ€†¨{e`IÊþïnnn‹/NNNŽŽŽ~íµ×ºvíºråJÃÓmNKKÛ¸qcV[èСCö»øõ×_?þ|ù{°'Ž’$EFF-ZtìØ±Ù¬v÷îÝäädww÷òåËûûûשSçàÁƒ«W¯îÒ¥‹¼Â‘#G–.]êçç—ÿÓoȯœ¢›º\]]û÷ï/ßž2eÊäÉ“_ýõŽ;š®s÷îݬ®m"„²îà¹s熺~ýú   íÛ··lÙRíîê‹“Ç«W¯Ê¿:ݽ{÷Ì ïÑ£‡b×®]o¿ývPPІ „|ðA¿~ý&NœøÃ?^¼x166ÖÓÓsúôéÆŸŸ9êÝ»÷äÉ“£££Í‚£···”ûøûÃ?¼ùæ›EŠY¸paß¾}åó)aON~Äå+l¥¦¦?~<ó_³š"S¥J•Ÿ~úiöìÙû÷ï?}út… †^¶lYµ;€#‘/Ð-Ï0[žÛ¡êõë×÷ìÙ³k×® ,ðòòR»g:åäÁ±víÚY]RÑT»víÌ®ÎSºté3f¨Ý|ÌÁƒO:U¹reùîÚµk…µk×6[-·CÕ’$½ûî»*TX¾|yæ »qòàìéÑ£G-[¶ìСCÕªUccc¿ùæ›ZµježøœÛ¡ê'NœmÚ´»wïÆÆÆ>÷ÜsBˆÉ“'?÷ÜsãÇ'8ÚCÕÀ:RRRJ–,i¼ûàÁƒøøøJ•*Yeã'Nœðóó“S£¢`Á‚-Z´¸víZJJŠÚýÖ‚#°Žôôt777!„$I‰‰‰}úô)W®\ß¾}­²ñÚµk_¾|911Ѹ¯C‡•/_ÞÇÇGí~ëCÕÀš>^íV€ª­ UÚ Ž‹-zå•W:uê´|ùòëׯ«ÝüK[ÁñÍ7ß,W®ÜñãÇ?þøã¦M›T»]4‰qj°/7µð”Q£F½ýöÛ‡^¿~ý¦M›¢¢¢¢¢¢¼¼¼^yå•°°°š5kªÝ@° ‰X @‹ ’¤ÑO¦´´´Ý»w¯_¿>**êþýûBˆJ•*………uèС\¹rj·.;ÁÁÁqqqJÖ4„V?ò"111 @íVè‰f¢•MžzÍôÙà]¯[ʿ댶†ªM¹¹¹µlÙrΜ9û÷ïŸ0a‚‡‡GRRÒçŸÞªU«ž={®[·.==]í6P¹ ìN[CÕfnܸ±cÇŽÍ›7ïß¿?--MQªT)ww÷ƒtèÐ[o½uòäÉŒŒ !Ä_ýµfÍooïnݺ•/_þ‡~ˆŠŠR»:¥­ŠãâÅ‹%Iš0aBDD„bëÖ­BˆéÓ§·jÕêìÙ³mÚ´ùþûï[µj¥v3ôH[ÁñÔ©SeÊ”éÕ«—|÷À hÚ´©Âßßÿ™gžIHHP»ÔÀ­ŒÑjªÒÖPõÍ›7}||äÛiiiýõWõêÕ ( /ñôôLIIQ»:¥­Š£ŸŸß… ÒÓÓ]]]>|ÿþý ÈÊÈȸpáB©R¥ò³ý„„„¶mÛ®ZµêùçŸÏ~ÍÎ;;vÌl¡Ï¾}ûÔ>HêÐVp¬W¯ÞÊ•+¿üòË.]º|ùå—BˆfÍšÉZºtéõë×›7ožŸí/_¾\ášçÎóððð÷÷7]X¬X1µ K Κb´€z´¸~ýúùóçÏŸ?_Q£F ùÚ]»výã?„}ûöÍÃfoß¾}êÔ©õëׯ\¹Ráú·nÝjÛ¶íܹsÕ>$Z¡­àX®\¹üqÖ¬Y'Ož|öÙg§L™"_µ1%%ÅËËküøñ/¼ðB6Û¾}ûË—/+_ÿܹsB³r#€Îi+8 !‚‚‚.\h¶pùòåeË–uqÉãTž©S§>xð@ãúIIIBˆJ•*Ù§Ëüê €Üa´€J4-*W®\~Þ¤IùÆÎ;•¬/ÇK—.õêÕëĉžžž!!!ƒ ÊqJ ë#!€fh.8nÚ´iÙ²egÏž•²(ÁÅÄÄØº çÏŸB|þùç 6¼xñâÎ;wíÚ5yòä®]»*ÙBpp°Ù’Í›7gûˆ€ÄÄD[÷ ¶váµ›à„áÝaÿ§Þ!‹ð®×‰6mڨݭÐVpܾ}ûÈ‘#åÛ®®®j5ãÒ¥K£F2^Š<::zРAÓ¦MkÒ¤‰ŸŸ_Ž[ˆ‹‹ËíNÔê/¬ˆçÑâ¨Ú»‘’0P‹Õ‡x}"Ÿ2­g®é„¶‚ã×_-„èÓ§Ï[o½åíí­V3¾ýö[³%5êÙ³ç×_½}ûvcšÐmýrL|||ùòåÇŽ«bjÌJýúõ…§NR»!€žp‚#h‰†‚ã£GþùçŸ *äyö´UH’”žžž‘‘a¶\:/Z´¨Šm€És«ÀŽ4]\\¼½½OŸ>9´ÙSRRRHHHï޽͖9rDèøœ GWW×þýû§¤¤Ì™3Çλ¾{÷nbb¢<9Îßß¿N:\½zµq…#GŽ,]ºÔÏϯuëÖj'@7§ÑÖä˜víÚ?~Ñ¢E111mÛ¶-_¾|ÌÖiÑ¢…Õ÷»k×®·ß~;((hÆ Bˆ>ø _¿~'Nüá‡/^¼ëéé9}útµ<Á•ÀØ—¶‚c«V­äG=zô¨Åuòp¥›ÜªR¥ÊO?ý4{öìýû÷Ÿ>}ºB… aaaÇ/[¶¬ÚG@5IK?u7f̘×™9s¦ÚÍÌApppÒ-¿:è¹¢›59N-MͧÞqŽ’Sâ]¯[yû®wÚª8j?°òBŒV°#mG£›7o?~üÒ¥K~~~7NIIñññQ»Qº¦¹àxíÚµùóç¯Y³&55UÑ»wïÆ‡‡‡W«VmúôéÅ‹W»:¥¡Ëñ!=zôÖ[o-_¾ÜËË+<<ܸ¼téÒ;wî|ã7ä4 øW`/Ú Ž .ŒmÞ¼ùæÍ›?ùäãòU«VuèÐáìٳ˖-S»l“ö@“´<èêê:mÚ4OOOÓå®®®|ð§§ç–-[Ôn#€Ni+8ž8q" Àâ<˜"EŠ&%%©ÝFÐF«Ø…¶‚£··÷Ý»w³úë7Š-ªvtJ[Á1$$äÒ¥K3æÄ‰/^¬ZµªÚm`cœàZ¥­àøúë¯ †wÞyçÏ?ÿ4]þ矎9R¦vmE’„‘&yÆh5ÛÓÖu7nÜ¿ÿÅ‹wìØ100P±}ûöèèè3gÎddd„‡‡·nÝZí6è”¶‚£bôèÑuêÔ™1cFBB‚ââÅ‹BˆR¥J5ÊôÊŽœãÔ aš ŽBˆ_|ñÅ_¼qãFBBÂÇ}}}Õnh¿[ ÀÆ´eÅ‹¯S§ŽÚ­Àc*Ç+Väö!Ý»wW·Íú¤rpüðÃsû‚#à´fÍ?F«Ø’ÊÁQ¾ÈŽ©'NlÙ²ÅÕÕµI“&þþþ®®®‰‰‰{öìIKK+[¶ìøñãÕm0€n©lz÷ܹsË—/þꫯ*T¨`\~ñâÅ¡C‡þõ×_ëׯùå—Õm3€>iëàóçÏ¿víÚ—_~iš…åÊ•ûâ‹/„[·nMIIQ»™¶Â5ÀXW`3Ú ŽGŽñóó«T©Ræ?U¨PA^.Iœ¼8#ÎÌÍÓÖåxnܸ‘‘‘!I’ÁRåíöíÛÅ‹/Uª”ÚÍÐ#mU«W¯~ûöí_ý5óŸöîÝ{ãÆjÕª©ÝFÐ4v5o;sªø™mÈêÙQžh“ÁtN…¾gWHÔì8)‚£mQw„Nè¼Ðh‘c—I¾,!8ÚÙNOßåÅì0r ÀÉíìge°˜ ’OsÔ‘k‡l4Û"8Ú‰µ²#§9B;žÎJœÁ1üq\\ÜóÏ?ŸÿMQw„3¡ª˜ŽZz€'ŽvEv„s 5æ‡#•ɹžFp´7²#š!ÇÔH¨T€Ò#EpTA>³#§9B-œÔh]ŽQz$á0ApTuG8*‰¶@é€c!8ª†ì¢45’.óÄ1J@pTWž³#£Õ°'Ò hºô¨Ý–°7‚£Ê¨;BãHöD逯ÕGv„f‘íO£¥G-¶ € Žš@v„å:53­‡Ò#m"8j…œ•ÇGNs„MU§ÑÒ#}#8jˆ$$JÐR£vh(;j¨)TCpÔ²#Ô•ÇÔHØ´†­hÁQ‹fGF«auÄ?mÒʰµ&@MG¢îû#5j± €êŽÚEv„=‘ÃÖÔEpÔ´§Z3Z «Èoj$uÚ‘ÊÃÖ”=}#8jS­ak¤>GD~  ‚£c ;ÂFHŽKµakB+ cG‡‘Uvd´yfÔHöTVf[Ð ‚£#¡î+"ï9 ²#qÐ+‚£ƒÉí/‘ ³­ØÁÑñdž.Ãh5rÅš©‘ª [°‚££bØyCÒsnöËŽ¤T@—ŽŒakä©Q¶`;GÇf¶f´9"5ꇆ­):úCpt [CDQm#×°:‚£“„$$†­‘%2ž>Ù<;N!8:IHÂ@éõŒSXÁÑÙ0l 3¶J¤QÇaÛS):zBpt*òf[Èt#€ü#8:§Ì ‡‘a†akùDptfdG=³mj$“:,› [SÌtƒàèlÌ.èȰµ>‘ë=’€¼!8:?†­dfåak¢( G'dñWd(=ê‡ÍËÔ3…~`€!8ê¥G= Ô!·¬– ¡€u‡Ò£#5"oˆ|"8:'‹£Õÿþ•Ò£3²Sj$œ:)ëœòHœÁQ¿(=:âòSäˆàè´²/:>^‡Ò#€§å7;’=§Fp¥G‡G¹ÖÅÌÈ ÁÑ™)):>^“ңòkj$¢êF¾†­):΋àˆQzt89Ø €‚£“S^t|¼þ“Ò#ñQûH°ƒ<[9'Ep„Œ\ª^1Û€ÁÑùå¶èøï)=j)v–ëìHØœ‘›Ú €¦IBBÈÙQ"¨h©ª0FA^~€nQqÔ…<?œ‘k-Q'5’U!„Èí°5EGÀé¡#×Z@~ƒÝ"8êE>‹Ž7œkU‘¡Jg[“1çBpD®1r­;$VXÂlk@‡Ž:b•¢ã¿[£ôh_„7hSÎÙ‘t 8fU닜%+æ\[‡‚8o$Ét5k=…ŠšGbE˜m èÁùE|Ì’Ò_ Ïá =Nn¦«åîç€xR`sò‹,ËÿËø?ÀIuǺEÇ7«çøø$Ƙ+Ëß¶¹Úr6)“L «"NsaMº˜vm0˜ÿ“ä~K‰ ÆÛÊd¦M2û—¹/ò¿;K @îd9Ûš3§@ÅQlTtüwûNV}4«ØÙ1Ú<¶eÕ—»üdF•vr04/‡akŽŒà¨S¶ÎŽÂ$>:dvTk&ŠiTüÞ5vÙðävæñn¢$²eaØš‘lÀña[Æ+>:@|Ô@Xü·-Zøz5mDæ¢^!Ž‚ÙÖ€ó!8ê—ŠŽw¤ñ‘kcÒLôÑDjÌ‘Ùá¢$ K̇­):Žà¨kvËŽBkñQKÅE'AIY{ªôHvÁv¥r|Ô^qÑB5ò•šÿvdS’Ôðñ‡0cpG½³gÑñßšÄGaŸé Sƒùk5› ˜kþyµ<.=JBræ×:àÌŽP'; “¼hä#”ÿm¬~¾I)FêO0àÐŽPŸõǯ*/>n²¦¾PíÜŠ‘:ęހc"8BõŠŽOµÁ*ñÑA†¤‘%Š‘zÂÅz‡CpÄcZÈŽ"ÏñÑKŒO5_SßšjMVÅHÇ|¢ñ”'g:jê {GüK#ÙQä*>:~‰‘oM¥‘ÎG $‰Ò#à0ŽÐ®&_;~d¤Æ<#D:.Ö8 ‚#ž¢¢ã¿MÊ<ùÚ)"£Ðæ×¤Û”B¤C3™%ÃOÚGp„9 fÇÇ { I¿=m"D:8J€Æa³£I•Q²óÅÃmÔ!¾mé(2]š‡Ò# YGX¦¡ìhi`Ú·iŸ´ù¨ÑfY!Rã,eGáÔ/IÀAé%8®^½zÕªUñññžžžÍ›73fLñâųY¿sçÎÇŽ3[èãã³oß>µ»b?êgGç2ªüã×yëß…ê"D:J€Öè"8Ι3gÁ‚… ®W¯^RRÒÚµkOŸ>½lÙ2¬rîÜ9Ó…ÅŠS»+º‘Ëé/*üøuž{¦Ù¯@í¶Ì–‘Ú‘ÅoÉPz4Åùƒc\\Ü¢E‹|}}׬YSºti!ÄÔ©S—-[6kÖ¬÷ßßâCnß¾}ëÖ­¶mÛÎ;Wíæ«L…¢c>fL;úø5Tf1D’ í)ëß!¤ôh„‹Ú °¹U«VeddŒ9RNBˆqãÆy{{oÚ´)##ÃâCÎ;'„0+7ê–$™ÿz°­ Sj¾¿ª%!IB2<Þ¢}Z¯¬‹|í9 ùu(¿úÿ *É$>P‹óÇC‡¹¸¸´hѸÄÕÕµY³f×®];|ø°Å‡$%% !*Uª¤vÛµÂÙÑJ‘ñ©f?ùò×H‚ÔtjÔtãTeL„HûÈ)Êç ÔâäÁQ’¤øøø%J”(QÂtyåÊ•…çÏŸ·ø(98^ºt©W¯^õêÕkÞ¼ùàÁƒÿøãµ{£&fGc¡Ñv:AÚnGÙõ’`æ‘ö¡ ;µ8ù9Ž÷îÝKOOÏ<©ÅÛÛ[qýúu‹’åçŸаaË/îܹs×®]“'OîÚµ«’ý›-Ù¼y³Ú#¿„Áh­  !„"Ñj›Í® "Aaxüu“˜`Ýí_¸pÁâòÀ€€„D»ô0O…fÛ§M ÿ¾x †€'·¬ü¢Ò§ã;F>І€€Uß[Y½ëádÚ´i£v´ÂɃcjjª¢páÂfË‹)"„¸uë–ÅG]ºtÉÃÃcÔ¨Q½zõ’—DGG4hÚ´iMš4ñóóËq¿qqqjwÝ&$I Ö)>©2ä{K¹î…qM€õga˜wèq­1ÀþÍW³‘ ’”˜˜(ÃfÕX…$ JÞ—’†€¡jEŸ·dþZÏ\!Ò 'ª.V¬˜Á`¸wïžÙò;wîˆ'uÇ̾ýöÛØØXcjB4jÔ¨gÏž©©©Û·oW»O*³Â˜µíǦ•öEc'AÂ0–m-Š'Â0r Ø““G777ooïÌ•ÅÛ·o !Œó¬•¨_¿¾âÔ©Sj÷I}ùÊŽ6˜c…Ùì$H8µÑšè˜8!Ò¾˜s ؇“G!„¯¯ïµk×ä¤h$Ÿ=ãëë›y}I’ÒÓÓ3_©ÇÕÕUQ´hQµ;¤ ƯÂ\ÐL¡1»~YµI$Ãc„ȼÉ}¤ôØšóÇV­Z¥§§ïٳǸD’¤]»v/^¼V­Z™×OJJ éÝ»·Ùò#GŽŸÓ™ñKPM³ìš5†°#5:F+ !2Wò”‰€í8pìÒ¥‹‹‹Ë¼yóäó…‹-JIIéÔ©“»»»¼äîÝ»‰‰‰òä8ÿ:uêríp5»+ŽaΆ}©2¢m¯º£qoBC@€é]ÀéQq„%ê›V+´ÃáR£™¬*‘#a¦•H[#íXw”%$&R€„®PqD&8ßPSÕGÇN™ZoVqdn ìÍÖÅHûÖMw+8ý:@pÄÓ4´;5*ÕÜAŽ„d3½Fäãm¯RvÄGèÁ&´”TŒŸsÙlŠ‘‚ ;°bŽT/; â#œÁBµËz ˜ÆGû´ÔáSc¾‘#¡²|^îGÕì(žŽB÷Ÿ'pGh´Ðh‘±™¶ºÎ­Ýr$T–‡“#ÕÎŽÂdç Ꮊç8©Ñ”MǯÕþ¢qŒ>#¡&åƒÚȎƆâ#ÁQß35ÙbüZ_1އ 5å˜#5óÆfüŽŽà¨cžÌƯE>¤f¾\òGÝ GBMs¤áÉ55ð¹Çø5ÁQ¯œ%5šÊçˆ[N+û)ˆ’°©?$! WïÃ$ÁQ—œ15šÊöó¤FGèIæ˜H”„=<>ß1ÓKËn?Š˜u»7ä黀õÇÙS£‘ò!lGÈZNŽ( ;±8WÆF×!ÏSëHhÁQO4±FÉ>A:Ujt¢Î%a+9γÎ>G ›Šš …ó¼­á Žº¡›Bc62'H§ŠN”-"JÂjružl‡¶²ZÇJÍ|¼Ã§ï*rQ»° RãÓ$IHÒã/ƒÁBAAzüLþûïÉóùï?µÛ­’³cÞ^ &/ºÄ„!Iæ¯;4ÖØ^^ÓPG 5Zò¸Ü¹é ƒùÎ^nTHIURP˜„ÌxFaþ_vÝfZ@ptv¤FK²?9Þž¿ˆm«þà ‹‘4‰Ùâ§erœ¸-òõùB‚„ŠŽNÔhIŽß’Ó”!‘Ò$žb‡Ÿ%´M”$AÂþŽÎ‹ÔhI®¾,–!…ÖB$åF+!Mêšd÷(J¢¤PúqC‚„ݩђüD,†HR£)M“Y® ‡aÅSóØK;Îea’ [cVµ3"5ZbůÓy¼¶œI Ê<›;!1Áâœn¦u;Icó–¥L/7ƒ¥š¥~0¶@ÅÑé-±]áéJd€ÅåŽ×+ä‰òÁnAyRËì?l»æå®0I ÖEÅѹ31Ø1_%$$fU°IÇxªd¡d$eUž¤H©’öJ948ç¤d0PƒDþQqt"¤ÆL´s¶’•O‹$5:¾l*Ž)µBã¥ÇŸeaòߤÉ:ŽØE¨‚àè,H™h*\e5·F¨>½Ú“U@̦I¦´ÕgÌX¹;OuãñƒA˜„HÉñ®d »"8:Rc&ZþœÏïoLh¹o°¥<)s| qèÒcν3ý­§Ë¶ù 84‚£ã#5fâXÉ*Ç«¹=µ‚cõ ö’}4¤TiNVzÌ©£2 cÙY²Í×n©ñiÎQȪ$ù¸êÁsŽ\¢Ti5Î]z´Ô]£Ç/)‹¥n©ñiÎZ ø÷I~ò„3|kÉs©RÉÓ±ô(œô'Û~‹§§c›$³8J§CptX¤Æ§9kj´ØC«þV¥s¡~“¥1>&¨Ý•º.ž‹ËM–æ2P >¹´Žàè˜HOÓUj´Há%ŸÉ°*½'KIÿܤ>å.D>õȬW!SjÁÑ‘Mèb¼(¯¹˜4 Õå?Y*ÙˆŠôñI”ƒ¬B¤Èí!SjÁÑÑM8¡ÑTž&Ű=%¡Pá¯é¨™/õzâcVÌŽAÙm—L©>‚£C!5š 5ZçµCË&Bõó%ñ1 V+Ff·–Ÿñ¢¨+»B¦$„’Áx!Ö\ —ç¼q§¦~=™µÔ¨·¡çM9Êñ•N²„c3ý ¨\FÁ<)2kfŸ#…~?>íŠà¨a¤F½å(}õ6×òŸ,•l°¹ÜŸþ˜‡˜çqJœ™JIÒŽZ¥ûÔ¨¯B£ 5Z’wŒò“)õýþƒí™ÆGaý·žóŸC'ÎK’‚Ú|#8j©QoïmÝuX5ÊßXDLØƒÉøµùÕZdïÄ™Ïýf»M‹íT´²BpÔ}§F=õÕa‡‘ˈ tm‚&,Ò^‚Ì}òÕâüO6WØ€¸³Z 2‚£Æè85ê1AQht ’$”fÇ<\{H¯Ÿ ºäø 2¯ýÎo?­u#¹%¤É¬µDß©Qw=×cŸ!DžR`ž¯s©×O§ ×™gÖìÎ&€Lv¡ÓË5D¯©Q§…FÝõù’çφ|^Y]—ŸIÚC‚´/…4Xívª…ਠºL:OaGùü\±Ê/úèï³Íf2'HÁç ìà¨úKúŒzì6˜U>™¬û{’:û°Ì‚éA  û"8ªMg©Q¿Ù‰B#ôʺŸp6úYsþ¦ û"8ªJO©QבQ§=¬ÏF™ùÈ£ŠfÓÛã“Þb2óŸ€ü!8ªG©Q×£(DFÀAäùÃXᕘlT(UÚr$¬‡à¨¤F]§&]w€9;ÞgŸS¥§ÿjõLëì_nzGpTƒ³§F]§&]w€&äêF²v=ÒÎåUE}ä3ÙzŽv缩Q×£ÒBƒzí<‡•ý¸¶Èõgº¿âl‘e+ëõ à.j7@gœ15žü“žüÓ“þ'&$ªÝÈ)Ó?ƒ¥E’¬ÿO·¨8Ú‘s¥F½×£ÒôÁâ§œ!7+ÉíÅYR#y‘CY~(ÁÑ.<5rYY(’Û@™ã¡1œã˜¥Õ«WwéÒ¥V­Z7?~ü7ò¸!ÇLK'/:^7¬u”‚6mÚ¨Ýb¨ƒ§^·xê•’rúgPð@ÅѲ9sæ,X° páÂõêÕKJJZ»víéÓ§—-[æáá‘» 9Tj¤¬Æer@J>os•ù· *ŽÄÅÅ-Z´È××wóæÍ‹-Ú²eK¯^½Ž=:kÖ,µ›fe*‹Ùp9–-s[¤®™{G V­Z•‘‘1räÈÒ¥KËKÆçíí½iÓ¦ŒŒŒ\lHKåF‹ïÅ$‡ô$W)3‰S¯Ž:tÈÅÅ¥E‹Æ%®®®Íš5»víÚáÇ•nE¥Ô¨0 9aLÊþ.éáòMa¾Ô+‚£9I’âããK”(Q¢D Óå•+WBœ?^ÑV¬”óPbw¼WxžGö\ëýÀa09ÆÜ½{÷ÒÓÓ‹+f¶ÜÛÛ[qýúõ·w*NëÔ±õx‚+[iCj÷DnE°6Ú»ã©×-žzè ÁÑ\jjª¢páÂfË‹)"„¸uëVΛÐCܳž8§v€" U›+V¬˜Á`¸wïžÙò;wîˆ'uG"8šsssóööÎ\Y¼}û¶Â8Ï@oŽøúú^»vMNŠF‰‰‰òŸÔn€:Ž´jÕ*==}Ïž=Æ%’$íÚµ«xñâµjÕR»uê 8ZÐ¥K—yóæÉç5 !-Z”’’Ò©S'wwwµ[ ƒ¤™Ÿ6Ñ”¥K—Θ1£\¹rM›6MJJЉ‰ YºtiæËôèÁ1Këׯ_·nÝÑ£GË–-[¿~ý‘#GÊWäÐ'‚#áG(Bp€"G(Bp€"G(Bp€"G(â¦vœÇêÕ«W­ZïééÙ¼yó1cÆ/^\íFÁjrûüvîÜùرcf }||öíÛ§vW`e mÛ¶]µjÕóÏ?¯v[`}ÊŸ_ÞõN/55õÇ\³fÍ… Š-Z¹rå¾}û6nÜXívÙÁÑ:æÌ™³`Á‚Â… ׫W/))iíÚµ§OŸ^¶l™‡‡‡ÚMƒäáù=w‡‡¿¿¿éB~²Ò)-_¾\í&À†”?¿¼ë[ZZZŸ>}bcc½½½6lxÿþýìÝ»wøðáC† Q»uöCp´‚¸¸¸E‹ùúú®Y³¦téÒBˆ©S§.[¶lÖ¬Yï¿ÿ¾Ú­C~åáù½}ûö­[·Ú¶m;wî\µ›[¹}ûö©S§Ö¯_¿råJµÛëËíóË»Þé­Zµ*66¶N:K–,‘«§OŸîÑ£ÇW_}Õ²e˪U«ªÝ@;áG+XµjUFFÆÈ‘#åT!„7nœ··÷¦M›222Ônò+Ïï¹sç„f…8™öíÛwïÞÔè¬rûüò®wz›7oBL˜0Á8Ö4hРôôt]@ÅÑ :äââÒ¢E ãWW×fÍš­_¿þðáÃuëÖU»È—<<¿IIIBˆJ•*©ÝvØÐÔ©S¿¼ë^bbbáÂ…«U«fº0((Hqþüyµ[g?Çü’$)>>¾D‰%J”0]^¹re!Äùóç Ž-oϯüréÒ¥^½z8qÂÓÓ3$$dРALžp&Mš4‘oìܹSí¶Àúrûüò®wz .ts3OMþù§¢B… j·Î~ªÎ¯{÷§g>ýÙÛÛ[qýúuµˆ|ÉÛó+ÿßç矞œœÜ°aCŸ;wFDD¬ZµJí° ÞõN/$$D.ÅÄÄ,Z´¨`Á‚aaaj·Î~¨8æWjjª¢páÂfË‹)"„¸uë–Ú D¾äíù½té’‡‡Ç¨Q£zõê%/‰ŽŽ4hдiÓš4iâçç§v·Xïz]IOO_±bŧŸ~šžž>{ölµ[d?Tó«X±bƒáÞ½{fËïܹ#žÔ¥à¸òöü~ûí·±±±Æï!D£Fzö왚šº}ûvµûÀúx×ëÇÚ·o?uêTŸ%K–´k×NíÙÁ1¿ÜÜܼ½½3Wžnß¾-„0ÎÃ…ƒ²âó[¿~}!Ä©S§Ôî;á]ïd>|8uêÔÞ½{ÿý÷߯ Û´iS£FÔn”½­À××÷Úµkr’0JLL”ÿ¤vë_¹}~%IJOOÏ|¥WWW!DÑ¢EÕî+ã]¯ï¼óβeËZµjµuëÖ¡C‡êó7>ŽVЪU«ôôô={ö—H’´k×®âŋתUKíÖ!¿rûü&%%…„„ôîÝÛlù‘#G„ÁÁÁjw€•ñ®×ƒåË—oݺµ[·n_}õ•ž‡ ŽVÐ¥K—yóæÉç½ !-Z”’’Ò©S'wwwµ[‡üRòüÞ½{711ñÂ… Bÿ:uêùä“+W®dµYy®ÌþýûÍ–‡„„¼ð ¦KöíÛ7|øðÐÐÐzõêõêÕkÞ¼yfÙîâÅ‹“&Mj×®]Íš5[´h1pàÀC‡eӣŋ›NŽ‘[ráÂ…E‹5lذzõêuëÖ}ã7¶oßžÕŽ9Ò¬Y³þùǸðÎ;-Z´ 9zô¨ÚOgCpàÚ·o/„زe‹Ùò 6!ÂÂÂÜÜÜRRRºwï¾pá¿ÿþ»bÅŠåË—?þü7ß|qãÆüì}Ö¬YýúõÛ²eKZZZéÒ¥ûí·/¿ü²G×®]“W8}útûöíW®\yíÚµgžyF’¤]»võìÙ3***W;Z¸páìÙ³ÝÝÝ6lèíí}äÈ‘!C†lÚ´ÉâʵjÕêׯߕ+W¦OŸn\øé§Ÿ^ºté­·Þzî¹çìý$pvGŽ¡^½z¥K—>þü_ýe\˜‘‘!‡ªŽ; !Ö®]{öìÙ–-[îÛ·oݺuÿûßÿöîÝ[¯^½‹/îØ±#ϻ޹sçâÅ‹+T¨°zõê_ýuãÆ»wïnÞ¼yllìüùóåufÍšu÷îÝÁƒGGG¯]»v×®]&L$éóÏ?ÏÕ¾V­Z5pàÀ={ö|ûí·Û¶mëÓ§bÙ²eY­?|øð   µk×îÙ³G±ÿþü±FƒVï¹à´Žƒ‹‹Ë+¯¼"ž.:þöÛoW®\©U«Ö³Ï>+„HKK{ñÅG]¸pay///¹T™”””ç]Ϙ1C1wî\c ÏÇÇgîܹ¾¾¾kÖ¬¹yó¦âäÉ“Bˆ.]º¸ººÊëDDD¼õÖ[¡¡¡¹Ú×sÏ=÷Î;︸¸È]~ë­·„gÏžÍj}ww÷O?ýÔÍÍmâĉÉÉÉ&Lððð˜5k–±`EGCŽ€¦ã¶ò8u§Nä»C† Y°`Á3Ïüá‡~öÙg6ÝÝâGޤR¥JÕ«WOHH8vìØŽ;*UªT·n]ùOÇŽKOO¯]»¶ijO¦­dÏlD{Û¶mÆÛ¾¾¾¥J•:sæÌŸþiºNzzz§Nš6mš’’rñâÅ–-[víÚÕø× ´jÕJžÍsᛓõë×oÚ´©yóæË–- Ú¸qcæ‹€U8yŠÌ„ îÝ»×¹sgãr___!ÄÉ“'SRRä%ééé+W®ŒŒŒB¤¦¦ZÜZÅŠ…Ë—/¿wïž¼$&&Æx‘Ù¨Q£222FuâÄ yÉ;wÞ{ï½ãÇW«VÍÇǧlÙ²ÿüóÏüñõ×_K•gϞݽ{·¦×S¼|ùò‡~X´hÑ>úÈÝÝ}úôé®®®S¦LÉÿÉCÕL»víf̘çêêf\تU«;v¼ôÒKuêÔ‘$)..îÆÝ»w_¶lÙÿûßþùG¾°Ž©°°°ï¾ûîðáíZµ INNŽ÷öö.S¦ÌƒäuÂÃÃ<øÓO?………•+W®xñâ ÷îÝó÷÷—¯¼íââ2~üøqãÆÍœ9sÉ’%åË—¿wïÞ™3g$IŠˆˆ¨U«–…$IãÆ»}ûö´iÓäÜ\£F>}ú,Y²dÊ”)sçÎUû¹àl¨8p0¥K—®_¿¾¢iÓ¦¥K—6ýÓìÙ³‡îçç'_ß±Y³fëÖ­›0aB÷îÝ]]]-þ`… ¾ÿþûÐÐP—½{÷ž:uª\¹r‹/öññ1®c0>ùä“/¾ø¢eË–gÏž 5jÔºuëŠ/.¯þÝwß5oÞÜÃÃãäÉ“÷îÝkܸñþóŸI“&ÙîP,_¾|ÿþýMš41žè)„>|x¥J•6mÚ´yófUŸ(NÈýåÁ@?îÞ½{íÚµ *(Ÿ ºBp€" U@‚#!8@‚#!8@‚#!8@‚#!8@‘ÿÔ–KK ÇŠ—IEND®B`‚statistics-release-1.6.3/docs/assets/logncdf_101.png000066400000000000000000000612121456127120000222660ustar00rootroot00000000000000‰PNG  IHDRhŽ\­AbQIDATxÚíÝy|L÷þÇñïd!!²¸‘ˆ=©dˆZb½ÔTÓ¦µ¥­R”j©RÔV´~h«¨­­-íÕWKܺµ·ŠX*EQË%D"b'EDd2¿?ÎíÜéd›$3s–y=}ÜÇÌwÎÌ|Î7s“·Ï÷œ3:£Ñ(€â¸È]Ôà«`‚#¬Bp€Uް Á@):uJ÷§ŸþYîr4ëÝwß•&¹gÏžÅnüðáÃeË–uëÖ­zõê¡¡¡O?ýô¼yó²²²,¶4ÿñ™¸¹¹ùûû·jÕêÝwß½yó¦5O±0~üx¹' €@#~ûí·zõê >ü§Ÿ~ºråÊÇ“’’¶lÙ2nܸÐÐÐÍ›7û ƒ!==ýàÁƒï¿ÿ¾^¯OHH{Ÿ(‹›Ül 11±cÇŽ÷ïß7¸¹¹åææJ·/_¾üüóÏÿòË/7ÎÿÜÀÀ@OOO!ăLÆÛ·oÇÄÄ$%%•/_¾ˆ§Xðóó“{&ØGЂqãÆ™Rã+¯¼rìØ±ììì+W®|ñÅ•*UBdff¾ð >wõêÕ))))))7nܸxñâ+¯¼"_ºtiéÒ¥E?ÅÂäÉ“åž vDpà <˜6mZ×®]»té2yò䌌Œü[&%%õìÙóoû[:u|åÊ•wÞyG:„îÝwß-ú]̼}ûöÛo¿Ý¢E‹J•*5iÒäÃ?|ôèQ)ª2ÍÜÜÜ÷Þ{¯Fï½÷žùC111çÏŸïׯ_:ujԨѷoß'N!^xá…:uêüíoëÔ©ÓîÝ»Í_9//ïÛo¿íÔ©SíÚµ=<¨ÓévïÞmzeÓ~YèÓ§Oï^Ø^÷êÕKÚ¦råÊ÷îÝË¿ATTT“&Mš4igÍÏ<ànÛ¶­?qšÄ1Žì.++ëù矿pá‚ÂÃãC‡®®®»wïÎÌÌLKK{á…Ξ=+-§fggÇÄÄܺuKQ®\¹æÍ›_¸p!99999¹¤o*EŸÚµkW­Zõ÷ßÏÎÎB¬[·îСC-Z´(QU&‡¾téRowìØ1—Ƨ¥¥ýñÇBˆ›7o¾õÖ[Bˆúõëgdd\¾|Ya4§OŸ¾sçN!ÄÚµk×®]+„Ðét:uªQ£Æ‘#G¤p·sçÎÎ;[¹³û÷ï—nôêÕËËË+ÿÖœc®}ûöåÊ•ËÉÉBùd¿~ý¢¢¢öïß?nܸÈÈÈ5jœ>}º¤Ók¾žžÿªÝ¥–žž.ÝðööÎÿh```|L“ @«8Æ€}eddܽ{Wºdþ)legg_¿~½bÅŠ¦6›E>«Y³fIß×”Ø ¼k}UæZœþRÄëK\\ŠúÇyNNÎ;ï¼óÉ'Ÿ˜®¶èéépãÆíi¹råüýý¥C¥Å÷üîÞ½+½‹‡‡GÅŠ­yYÓ u```þGW¯^Y¢:hGöåíííãã#ݾzõªùC¦»åÊ•«R¥J¥J•LG"J1ÈÄt Ÿã«2¨ÀtXj|ðÁüùósssCBB–,Yòûï¿gddDGG—â¥Ú´i#ÝØ¸qc—ò©W¯ž¿¿¿¿¿ÿ²eˬyÁ}ûöIgÆ!Z¶liý jGv§×ë¥?þø£ù¸énhh¨›››N§ –FvíÚeÚ,77W: ÙdÀ€×þjÇŽvªÊ~Ó²dÉéÆâÅ‹‡Þ¨Q#77·ÂÎÚ.ÚСC¥/^\¾|¹Å£›6m2µ;tè`Í .Z´HºQ±bÅ'žxÂ~“@]ŽìN:kDñÉ'Ÿ9rDº}òäɹsçJ·Ÿzê)é†)ÖÌŸ?ÿÌ™3B£Ñ8eÊ”””óôôô ü+Ó™ö¨ÊîÝ»gꪚN—ùí·ß,"²•žyæ™.]ºH·G5cÆ ©oš““³råJÓµ'{ì±üƒZ¸víÚk¯½'Ý}ùå—-®IÀ™qŒ#0`@… ò¯^½ºeË–&LøòË/SSSïÞ½Û¶mÛÈÈHWW×;vH_Idú>˜wÞygÅŠ9997oÞlÖ¬Y«V­RSSKqGkX_•=xyyyyyI_(}¹‹N§Û¶m[I¿3Ædþüù­ZµÊÊÊ2Ó¦M›6mš¿¿ÿíÛ· ƒ´‡‡G\\œ««kþçš~|<0_¸¯R¥ÊÌ™3í7 T‡àÀ¤‹/æ—••%„ðôô\»vmß¾}“““³²²L_Ž'„¨]»öªU«LçíÖªUkñâÅo¼ñÆ£G233¥k//¯-Z˜/^Û„õUÙƒN§{úé§¿ûî;!Dffæ?ü „ ©]»¶´§G^«aÆ?ýôÓóÏ?oúY˜'Z§NÅ‹7iÒ¤Àçøã«\¹ò?üPÄù@œKÕ¡eË–Ç÷Ýw###ýýý;wîûì‚ Μ9cZš/‚««kåÊ•[¶lùî»ï&&&þýï·÷$PÑh”»(ÆÀ¿ùæ!ÄÒ¥K‡ &w96óèÑ#©ÓÙ³gO¹k€â(Èk¯½&}%`›6m/^, Þ¿?,,LZºÝ·o'ù€\8Æ€‚T«VíØ±cBˆcÇŽÕ¬Y3&&æÎ;&LRcƒ š7o.wà¼è8P¬¬¬nݺíÛ·/ÿCûÛßvíÚ%Á€²<|øð»ï¾ûú믓““¯^½êïï_§Nnݺ=Ú®§9ŠEp€U¸¬Bp€Uް ÁV!8À*GX…à«`‚#¬Bp€Uް ÁV!8À*Çb$''ëõúßÿ]îBdFp,ÆÊ•+å.@Üä.@¡222Ξ=»qãÆo¿ýVîZàX°èèèk×®É]€‚ öÁ<|øP±jÕª_~ùEîräGp,XÛ¶m¥»ví’»E 8Úž^¯—»p:‰gÏÊ]œˆ>,,11Qî*d@p´ çü0Ù^¯gJmˆù´9¦´4t:¿ Ñ(÷.)QÛsÖ&—ã؈NW‚ÿŒÆ"þÓ‡…½Aÿ°?:ŽëÛ#$½ZGp˜)"’ §Gp'–?&’ŽàNƒ˜ l89*°mÛ6¹KÐæÓæ:¥Öœ¢T RÕb>K­°Ó»ä®K6GÐuÆDÀ‘Jrò¿®°ÓøåÞ Ù‹ñþûï'&&6nÜXîB ……EÀ™”= ­Á1Ž BæG+’¡iV® òƒàêaÊ‹„EhE±¹D¨(GP6š‹P¹¢£!¹P]Ž TRd$,Bñˆ†Îƒà Ãz4©ˆtH4tGPò"”¡°€H:„ 8€üX’†ˆ(‚#È„#%$8$ÿ ¥ÀÀÀá,.Ö ØN—¼NNIæÒÖ° ‚#8ydÊÌʯE‘»LhKÕàȈ2ËT"¡Fp;#2¢Tˆ‰P ‚#Ø“´0 ‡˜U 8€}ÐhD‘,’"1ª@p[#2¢ $EhÁlеiü‰¤í!8€Ðhtz$EhÁÊ*8$D"£“2‹$Eh€²ÑéR’“IΣˆ nË]`wG(ŽhtE|5‹Ü¥ÅR5” G4jkÐ@~G(9EXŠFp€"5j a°Á¬Æò´VÒ!8€uh4ªŸ)/Ò!8€HªEs°!‚#‡Ô¨B4{ 8@‘HªB^ìŠà…#5ªyp ‚#„¨ƒÇ#8@>4Œæ" #‚#ü©Q‘È‹€À ©Qy¤ÈH^”€à"5* -F@Ž „ 5*Åób0yP"¹  5ÊM'tÒFa4 crJ²Ü(GNÔ(+aT„à‡0jDpàÜh7:-F@½Žœ©Ñh1@pà¬HŽB‹Ð ‚#§Dj´?ZŒ€ö8R£Ñb´ŠàÀÉí‰ÈhÁ€3!5Ú ‘pG@éq #àTŽœíF›¢Å8!‚#ç@j´"#à´Žœ©ÑFˆŒ€“#8ŠGd Ž´vcÙ˜h©± ˆŒ,h©±´ˆŒ Dpü‘@Ž4Švc ‹à@‹H%Ad`%‚#8/"#€!8ÐÚÖÑ ‘@‰h ©Ñ 4”Á€†‹CdPGp DFeGp ´ ÇáŒlÂEîv¤:R#`C:Ðéä.B>Gš@»1Sd$5¥&ÅDóÿŒF§þeÃR5õ#5æC—(‹n"¿Z,@S8 °^þEg’bÑŽTŽv£@Ñh(–Á€š‘ÿD£Ȇ¢Í@݈Œ€ E{#8P-Ú¬MÃ鑌àªD£Ή¤(/‚#urîv#F8’¢¢¨§FÐ<’¢’@5h4B“HŠ*Bp 6NÙn¤Ñ-!)ªÁ”ŽF#4À<,’Õ‹à@Uœ¯ÝHj„JÑVÔ$‚#(ËÓPÚŠšGp ÎÔn¤ÑU ­èlŽ 8¤F(mEgFp ÎÑndy D[&GP PÚŠ(Á€8A»‘ÔÙQ,‚#ÈŒåiȈ°ˆ!8P`À€ãÇüñÇ…=å»ï¾;räÈSO=õÓO?}òÉ'+W®üòË/…S§N•{o§¡¡uj–§Q „E(“öƒãÚµkóòòF Lš4ÉÇÇgëÖ­yyy>åÈ‘#Bˆº¹ýw)¿uëÖõë׿páÂü!÷PR#¬W`sPíÇC‡¹¸¸tìØÑ4âêêÚ¾}ûôôt) æ$„0ψF£ñÎ;...¦( ÀŽ´Òn$5¢X¬DC]4FcRRRåÊ•+W®l>&„HKK+ðYÏ<󌇇Ç|pàÀ¬¬¬+W®¼ûî»—.]Љ‰ñöö–{Ÿ¨×÷FÑ‹P)÷Ï233 ƒ¯¯¯Å¸økOÑœ^¯_¹rå Aƒ dìß¿ÿäÉ“­|_½^o1²mÛ6¹'CÅ.]º$w š¢ðù  IIN))rRS’œ’,„HjÚ EQø§´tÌ¿÷/9ù¿Ÿ Ç|Ò59ŸŽÔ½{w¹KP GéÔéŠ+ZŒ{yy !îÞ½[à³222>úè£4hРaÆéééûöíÛ°aÃßÿþ÷®]»Z󾉉‰rïºÖ—ýE`¢ðùTxyE×üßF£úö@qÔø1(é:í):zï43Ÿ²Èÿg=‡ÈIh<8úúúêtºÌÌL‹ñû÷ï‹?ûŽùM˜0á·ß~›4iÒ+¯¼"\¹råÅ_3fÌ?ü"÷nÚ¥ò£Yž†„ .B«4~Œ£›››OþÎbFF†Âtžµ¹7nìÚµ«nݺ¦Ô(„¨V­Úo¼ñèÑ£ï¿ÿ^î} P¤Fpä"4OãÁQ˜žž.%E“””é¡üÛ§§§ !êÔ©c1.5oÞ¼)÷Ú¥æv#©Ñ™q 8íÇÈÈHƒÁ°wï^ÓˆÑhŒ÷ó󋈈ȿ}:u\]]Ï;güëÿõ¥ãêÖ­+÷PœàR£³áš‹pNÚŽ111...Ÿ}ö™t\£"66öÖ­[½{÷vww—FùÄt…ðsçÎ-Y²¤\¹r:u’{‡Rm»Q'tÒ9Ôp,FÃÉiüä!DµjÕÆ?{öìgŸ}¶]»v©©© 4:t¨i›øøø1cÆ„††nÚ´Iñþûï÷éÓgÉ’%[¶l OOOÿí·ßòòò¦NúØcɽCDZ¡æ²;šWșрÓÑ~pB <¸J•*6lزeKPPPÿþýG-]‘§@þþþ[¶lY¶lÙ¾}ûvïÞíççסC‡áÇ7lØPî] :¡B°B­mäEÀ‚ÎÈÿlM¯×sGÛJIIá d6¤ÄùTÛ:µÅ©0JœR•“qJ5y%>¢6ç´ë¢ã6Ä ÔšDs°Á€ÜTÕn$5j y(‚#X‹Ô¨äE tŽd¥žv#©QÈ‹@ x¤FU#/¶Bp •´I*E^lŽàE!5ªy°‚#ŠÔ¨"äEÀŽd¢øujR£ZH‘QÙŸ&@#ŽPR£òÑbà@Ên7’•Œ¼ȈàAjT&ò" GøR£ÒE!8p8¥®S“…S^"8€¤FÅø³ÅLdÈEî8E¶I²ÓéþûŸÑ(ŒF‘œœ"wE @Ç€³#5Ê‹%i@EŽpÖ  FG¤¼ujÚŽG‹P/‚#çEjt$ZŒ€8ŠÂÚ¤FÇ /ZBpàŒHÀ’4 =GN‡ÔhW´ #8pŬS“í‡# yGN„Ôh'DFÀI8 R£Í±* 8‚#ûSÀ:5©Ñ¶h1Ήà°-FÀÉØíFM Å@h©±ŒˆŒLŽ´ŒÔXj¬JÈàÀžd]§&5–-F…!8Ð&Rc)à@ƒH%Ed` ‚#»QÀùÔ(2(‚#­¡Ýh ZŒJàÀ>dj7’‹EdPjGÚAj,‘@h©±DF6Ap`_§&5†ÈÀ†Ž Aœ. ÀŽTv£9ZŒì‡àÀÖ»NMj4!2°7‚##5þwˆŒ‚à@­H‚ÈÀ±ŽlНt"#Ç#8P%gn7È…à@}œ65È‹àÀv²N휩‘È@ Ž hDFÊAp &NÕn$2P‚#±ÿ:µó¤F"#e"8P'IDFJFpE 2P>‚#[°ó:µæÛ\7€*(¶S#F*Bp hNDFªCpPf¬³–‘€J(—öÚDFªFp PKDF@pP6öY§Ö^j$2Ђ#ØFZBp 8Úh7hÁ@Øa V©‘È@«ŽDí©‘È@ÛŽ`œ@óŽJËÖAI½íÆ`A£€p‘»Bµ©Q§:HNN!5pG(%©åJdà`À€ãÇüñÇ…=åîÝ»'Ntss[¹råwß}»fÍšråʽûî»yyyrï Žo7ª$Ü€ºi?8®]»6//oôèÑÒȤI“|||¶nÝZX \¿~}FFưaÚ5k&4jÔè©§žºuëÖ‰'äÞ!@éœu:R#8ˆöƒã¡C‡\\\:vìhquumß¾}zzú‘#G |Êž={t:]=ÌçÌ™“˜˜Ø¸qc¹wÀÿ°< ޤñ“cŒFcRRRåÊ•+W®l>&„HKKkÞ¼yþgzôè;wêÕ«×¥KOOO¹wp¸vóÖnä<p<ÇÌÌLƒÁàëëk1îãã#„øã?ò?%''çÞ½{uëÖý¿ÿû¿5kÖ˜ÆkÖ¬¹páÂÇÜš÷Õëõ#Û¶m“{2TìÒ¥Kr— )%šÏ`!RRRJðêÁ%ܾTBB‚““S„ö+«ðµ9¦Ô¶˜Ï2êÞ½»Ü%(…ƃ£têtÅŠ-ƽ¼¼„wïÞÍÿ”{÷î !’’’nÞ¼9{öìŽ;fggÇÅÅ-^¼ø­·ÞÚ´i“5}ÇÄÄD¹w]k‚ƒƒå.ASJ4ŸÖoüßv£=VfFe}$øˆÚSj[ÌgYäÿ³ž¿Cä$4~Œ£¯¯¯N§ËÌÌ´¿ÿ¾ø³ïhÁÃÃCºñÑGõèÑÃ××·jÕªo¾ùfÏž=/]º´yóf¹÷ p ’¬S;`‘š#@^Ê ŽóæÍKJJ²á º¹¹ùøøäï,fdd!LçY›«X±¢‡‡‡§§g§NÌÇ»té"„8sæŒÜ“8)NÙ)+8ÆÆÆ>ýôÓ½{÷^¹re –B```zzº”M¤c° |J@@€»»»NZû“´B››+÷$Jd×v#Ü…PVp|ýõ׫W¯~òäÉ÷ß¿]»vÇß¾}{NNNY^322Ò`0ìÝ»×4b4ãããýüü""" |J§N222Ξ=k>(]»§^½zrOà\XžåPVp;vìÏ?ÿüÏþ³oß¾^^^;wî5jÔO<ñÿ÷ÇŽ+ÝkÆÄĸ¸¸|öÙgÒqBˆØØØ[·nõîÝÛÝÝ]yðàAJJŠé¤³ž={ !¦Njêzž8qâÿø‡O×®]åž$ÀQ¬îòÙ¯ÝH£EgTêoåÜÜÜ={ölܸqçÎÙÙÙBˆÚµk÷èÑã¹çž«^½z‰^jÅŠ³gÏ®^½z»víRSSÂÃÃW¬XaºLÏ–-[ÆŒºiÓ&idùòåóçÏ÷ññiÞ¼yffæ¡C‡t:ÝܹsŸzê©bßN¯×sVµm¥¤¤p>  Y;ŸÖ¥6;¥Fu]¦‘¨Í1¥¶Å|ÚœÓþ­WîåxÜÜÜ:wîܹsçÌÌ̸¸¸ùó秦¦.Z´è“O>iÑ¢EïÞ½£££]]]­y©ÁƒW©ReÆ [¶l êß¿ÿèÑ£¥+òæõ×_÷÷÷ÿæ›o~ùå??¿ÈÈÈ‘#G†††Ê=+€S Ñʤ܎£âöíÛ?ÿüó¶mÛ8 •R¥Jww÷+W®!êÖ­ûÅ_É]¦%§ýWˆýðoeÛ²j>åk7ª15òµ9¦Ô¶˜O›sÚ¿õJì8Þºuë§Ÿ~Ú¾}ûÁƒ ƒÂßß¿[·nQQQÍš5BüòË/ ,8yòä{ï½÷ùçŸË]/ÛP×ò48!eÇU«Vmß¾ýðáÃyyyBˆÊ•+?ùä“O=õTóæÍÍW¥Û¶mÛ¬Y³–-[:tHî’çeÛv£àl”gΜ)„ðõõíÖ­ÛSO=ÕªU«ÂŽbôôôôððPà:5à$Hà„”{÷îÕºukkÎz¡ÝØ‹sËÓ "ʺŽãÖ­[8PXj9rä“O>)wlÖnäâÞ .Ê Ž™™™=*ì¡‹/^¾|YîØËÓ :ò/UÇÇÇ>Üt÷›o¾YµjUþÍòòòŒFc­Zµä®кâ]ÙÛ,O€JÉ]]]½½½¥Û·oß.W®\…  ÜÒ××wÒ¤Ir× 85›¤F"#¨”üÁ±mÛ¶ Òm½^ÿâ‹/NžuêÔÍ›7]\\ªW¯Þ´iÓ#FÔ®][îÒ§Æò489Åu-Z³{÷î›7o–/_ÞÃÃ#--íßÿþwTTÔš5kä®и"Ú¤F€²‚ãž={–.]êêê:`À€;vüþûïGݽ{÷!C„ï¿ÿþ±cÇä®Ð³¦Ôøç rŒ# ”Í=xðÀÝÝÝËË«uëÖrר’e¯QºÿçÅ (%ÇãÇ/^¼øÔ©S7oÞtqq©^½zÓ¦MGŒQ»vm¹KÔÄ<5Òn”²ŽqB,Z´(&&f÷îÝ7oÞ,_¾¼‡‡GZZÚ¿ÿý﨨¨5kÖÈ] ×°9eÇ={ö,]ºÔÕÕuÀ€;vìøý÷ß=º{÷î!C†!ÞÿýcÇŽÉ]# ©ñÏv#e¢¬à¸fÍ£ÑøöÛoO™2¥fÍš:N4a„‰'æææò•ƒ@± í5Ò„”²‚ã©S§Ê—/?pàÀüõïßßÓÓ“¯Š–?ÒnØŠ²‚£¢jÕªnnœ²#%“™™)w€rÑRØ•²‚cDDDZZZFFFþ‡ššúèÑ£úõëW«VMî¢! OqÁñöíÛŸ~úé·ß~k0Lƒ®®®/¼ðÂèÑ£}||ä._Ñ©‘Ej€(+8 †áÇ=z´|ùò]ºt©]»¶««ë… víÚõÏþóôéÓ«W¯vuu•»L@NôrQVpüꫯŽ=Ú¤I“O?ý4 À4~óæÍ‘#G=zô«¯¾2dˆÜe²)65Ðn$ilDYß»w¯N§[¸p¡yjBT©ReÑ¢E...{öì‘»F@6$@€¼”Ïœ9S»ví   ü>öØc§OŸ–»F@Ö¤FŽnØ•²‚cùòå³²² {4++ËÓÓSîÐk(²‚cýúõ¯_¿~ôèÑü|¸ÿ~¹kdS¢ÔH»à0Ê:«:44TqöìY¹ dc³^#MK€­)+8¾ûžžK—.ÍÎΖ»@% {´ޤ¬¥ê€€€yóæ½÷Þ{Ï>ûì³Ï>[«V-ooo‹m:vì(w™€]Ð"(œ²‚c§N¤·nÝúôÓO Ü&11Qî2Û+Ej¤Ýp0eGé›cgcû^#ÝK€(+8Î;WîG#ãÔBY'ÇXÈÉÉÉÌÌ”» @‰X§8ž²:Ž’sçÎ-Y²äرc×®]ËËË«Zµêã?>räÈzõêÉ]`c´*¢¸àøÅ_Ì›7///OQ¾|yWW×k×®]»vmçÎcÇŽ:t¨Ü6SêÔXL»‘4 °e-U8p`Þ¼y:nÀ€;vìøý÷ß=ÿꫯº¸¸ÌŸ?ÿÀrרé :Ê Žÿüç?óòòÆ?eÊ”š5kêt:!DÕªUÇ?yòä¼¼¼•+WÊ]#`eIÝ‹²‚ã‰'<<< ÿ¡¾}ûV¨Páĉr×”½F€J)(8æææ^½z500ÐÕÕµ€B]\‚‚‚Œü½…Ê•15ßn$–ìFAÁQ§ÓU¨P!--íÎ;ùÍÈȸpáBÆ å.(=B@Õ]]]{õê•——7qâćš?”““3iÒ$N7dÈÒ½øºuëbbb"""žxâ‰É“'ß¾}Ûúç^¹r¥Y³fãÇ—{†àì8º /e]Žç¥—^:uêÔîÝ»»téÒ»wïàà`N—’’ò¯ýëÚµkQQQ÷ïßß½{·iûZµjû² ,X¶lYÅŠ[´h‘ššº~ýúsçÎ}óÍ7žžžÅ>×h4Nœ8ñþýûrÏ Tv#@픣¢¢¤7nÜXºt©Å£[¶lÙ²e‹ùȸq㊽²cbbblll```\\\@@€âƒ>øæ›o>þøãwß}·Ø’¾ú꫃Ê=1P½²§F«Ú„S€=)+8>ûì³%Ú¾nݺÅn³víÚ¼¼¼Ñ£GK©Q1iÒ¤ÿûß[·n2eŠ‹KQ‹õçÎ[°`A½zõΜ9#÷Ü@ňsmPVpœ;w®Í_óСC...;v4¸ºº¶oß~ãÆGŽiÞ¼yaOÌÍÍ0a‚ŸŸß¤I“ $÷Ü@­l’9º  :9ÆŒFcRRRåÊ•+W®l>&„HKK+⹟~úééÓ§gÍšåíí-÷~@­è5´DYG›ËÌÌ4 ¾¾¾ã>>>Bˆ?þø£°';vìóÏ?ïß¿›6mN:UÒ÷Õëõ#Û¶m“{2TìÒ¥Kr—P!!ÁÉÉ)))e~àä”äQÌ ‡„¤$' +ÞO¥ó©dL©Í1¥¶Å|–Q÷îÝå.A)4³²²„+V´÷òòBܽ{·°gM˜0¡fÍšo¿ývéÞ711Qî]ךàà`¹K³l+_Çú·Sé|*SjsL©m1Ÿe‘ÿÏzþ‘“ÐxpôõõÕét™™™ãÒåu¤¾c~³gϾtéÒš5k¬¹^P [-Rst#@94~Œ£›››OþÎbFF†Âtžµ¹ƒ®Y³æõ×_oܸ±ÜåC­8´ IŽBˆÀÀÀôôt))šHÇæßþܹsBˆ%K–èÿÔ«W/!Ä?ü ×ëŸyæ¹wJgÃÔX‚v#Y`_ªBDFF&&&îÝ»÷é§Ÿ–FŒFc||¼ŸŸ_DDDþík×®mÚRr÷îÝ}ûöU«V-""¢jÕªrïüÐ0íǘ˜˜eË–}öÙg:tΉ‰½uëÖ«¯¾êîî.móàÁƒ7n¸»»×¨Q£mÛ¶mÛ¶5…S§NíÛ·¯yóæö¸Ì$´Ä¶©‘£J£ýàX­ZµñãÇÏž=ûÙgŸm×®]jjjBBBƒ Ì¿«0>>~̘1¡¡¡›6m’»^…Ò~pB <¸J•*6lزeKPPPÿþýG-u[‘³ÝÈ9À!œ"8 !¢£££££ {4*****ª°G4hÀuQ4’Àhÿ¬jÀÞlž9º LG Läï5Ê_ÀYÒ³Gf£ÝP,‚#¬BpJ‰%b€³!8¥a§ÔXâujÒ+ÀŽ@‰‘ÖΉà”ŒýR#§ÅŽà«PV»‘%s€ck‘ÓNŽàXÅ®©‘£ª@pŠG¯ApdWÊv#aàpG $4$G (öNÝP‚#P(z˜#8²)}»‘H Á(Ù G HÝP‚#`‰^#"8á˜ÔX¦v#Á ‚#¬Bpþ‡^E 8ÿå°ÔÈi1•"8B¨¨×¨šBDpŠv#@½Ž]<¬Bp„³sdj,k»‘„ ÁN$€õŽ€ƒpt#@íŽp^´(‚#œ”ƒS£ Úä\€ÜŽpFd0JàØG7´à§C»€Ò!8¹8>5Ú¦ÝHÚ(ÁV!8‰ж ,Žp²¤FN‹h ÁNAݽFuWЂ#`/´Cp„öѰÀ&ŽÐ8¹R#íF€ö¡eZè5jaAplv#@“ŽÐ,ZuØÁÚ$cj´e»‘ð P‚#¬Bp„i¤Ý€Â¡5¬î`'Ghм©ÑÆíF"0@aް ÁÚA‡»"8B#dOœÐ<‚# H²aò!8B dOY´΀àÕ“=5à$Ž@YÙ¾ÝH(ÁêFÄÀaŽP1%¤FŽn8‚#¬Bp„Zi¶Ý¨„  G¨á Ç#8B}’9ºàlް Á*£ñv£Bv€‚¡&Ä*dDpJŒ£ΉàÕÐ~»Qû{P7‚#ÔL€ìŽ@ɰN pZG¨@HH0íFdGp„Òét"99Eî*þ,Æ~íFãŠGp€UŽP4Eµá8ºàäŽP.E¥Fv‚#`Ú¡PôàP‚#”Hi©‘v#‚àÈOi1€B¡8JËQ´¡,JKÀ„àÅîíF’2@=ŽPBJFp„R(05rt#æް ÁŠà¤íFî6…#8B~Ä'Tà€£ÈÏMîdݺuk×®MJJªP¡B‡ÆïççWÄöYYYß}÷]\\Ü¥K—*Uª6xðà'žxBîýÐ çm7:ïž2Ðëõr—EKLL”»upŠà¸`Á‚eË–U¬X±E‹©©©ëׯ?wîÜ7ß|ãééYàö¹¹¹ƒ :vì˜OëÖ­³³³ýõ×}ûö5jĈrï¦(3;Ñn4‰d€Âðï ëi©:11166600pÛ¶m±±±Û·o0`ÀñãÇ?þøãž²víÚcÇŽ5kÖ,>>~éÒ¥_~ùå÷ßïëë»xñâÓ§O˽CòÐ~p\»vm^^ÞèÑ£¤‘I“&ùøølݺ5//¯À§lÛ¶M1eÊSK244tذaƒaÿþýrïv8u»Q™;@‘´:äââÒ±cGÓˆ««kûöíÓÓÓ9RàSRRR*V¬Ø AóÁÐÐP!DZZšÜ;¤'TGãÇ8Ƥ¤¤Ê•+W®\Ù|<,,L‘––Ö¼yóüÏZ¾|¹››åÌœ:uJQ³fM¹÷ vÄÑAãÁ133Ó`0øúúZŒûøø!þøãŸn1’[¾|ù=zXó¾ù³•–¿! NNNII±vûK—.9¨²`Q‚²Êô>z£9n>SjsL)¬èßÉÝ»w—»@¥ÐxpÌÊÊBT¬XÑbÜËËKq÷îÝb_Á`0¬^½zΜ9ƒaÞ¼yþþþÖ¼/çîáÏEêà=+8¸dÛ—¦0©Ýh÷÷ùï8à}Šà€ùt6L©Í1¥p¤¢?oùÿ¬;í‰Ø޾¾¾:.33ÓbüþýûâϾc~ýõ×éÓ§Ÿ?>((èÃ?lÓ¦Ü; G777ŸüÅŒŒ !„é<ëürrræÎ»råJ‘#G2¤°‹>¢D{N G7P,G!D```RRRFF†···iP:”!00°À§äåå½ýöÛ?þøc—.]¦M›VD¾JL±Ù€âhÿr<‘‘‘ƒaïÞ½¦£ÑïççQàSV®\ùã?¾ôÒK‹/&5Úb#íF¬¡ýàãââòÙgŸIÇ5 !bccoݺջwowwwiäÁƒ)))ÒI|F£qÕªU•*Uš8q¢ÜµkŠbS#8¡»wï6¬V­Z^^^íÛ·OHH»¢´oß~úôérW¿ÐþRuµjÕÆ?{öìgŸ}¶]»v©©© 4:t¨i›øøø1cÆ„††nÚ´éæÍ›/^ôôôìׯ_þWëÙ³gÿþýåÞ'Ø’CÛÄg ‘‘Ѽyó‹/öéÓÇßß?..®{÷î»ví*l!NGÝ¿dd¤Ü…à/´…ƒ®R¥Ê† ¶lÙÔ¿ÿÑ£GKWäÉOê;fee}Ó¦M‡*û‹ûí·AAA „ôéÓgÅŠW¯^ *ö釚>}úáǯ_¿n>îææöèÑ£2Ö–žžþä“OÚ|>a+Ú?ÆP %'hŠwá…Ç—ýu222Ξ=Û©S'Ngìܹs^^ž5G:îØ±£U«V'Nœxå•WfΜٴiS!DÓ¦MÇ7vìØ²—h4Fã™3gì8›(-gé8B.JK´8¡ëׯF‹ ÒI—¹yófÑÏÍÎÎ8p`PPЯ¿þZµjU!Äøñã»v횘˜øÞ{ïUªTIîƒÝaGJN  ¹¹¹›7o.ìÑçž{ÎbDú65ók‹?¿J-==½è÷Ú»wï•+Wf̘!¥F!Dùòå'L˜½~ýúAƒ•±6(ÁNÊÑíFB4 Hf«µ2(ú·‚Á`0¿[Ø™"<èÑ£GáoaùþþþBˆ{÷î™J_¨V¹rå¢ ¾pá‚¢qãÆæƒ5BxFiIkƒòa/$%ʧä_S>4¿›••Uàf>>>%J`...«Ò·nÝBT¯^½èçJß¾›››k>(%Z—Κ(imP>‚#ìBá©‘£(ß•+WÌï^½zµÀÍJºìææn~¾¶bÏž=:®AƒE—*„8}ú´ù ÔkÔëõe¯ ÊGpìOá9€"]»vmÓ¦MÏ<óŒ"99ùرcnVŠåà¡C‡¾õÖ[¦¿qãF\\\×®]ƒƒƒ‹.©iÓ¦uëÖ]¼xñˆ#|}}…999sçÎõòò’^ªìµAá¸lOá1‰v#Upss{ñÅûöíû /4lØÐô5¹¤åàÂø”Aƒ5nܸ_¿~“'Ož3gNÇŽ333M_î·fÍ??¿¯­ãîî¾hÑ¢ôôô&MšÌš5kΜ9mÛ¶Ý»wï¬Y³,NÓ.umP8:Ž(Q«V­ž~úéåË—çææ:ÔÛÛ{æÌ™6yeooïøøøñãÇÇÅÅݾ}»uëÖ«W¯6}ß`NNÎ;w ;¤2***!!aÚ´iK–,ÉÎÎnÒ¤ÉÖ­[¹d·ó 8ÂÆh7æ{KeÏ¥Òétï¼óÎ;ï¼c™1c†­^ÜÇÇ'66¶À‡øèѣϒ–DDDüðÃöÞ}½^OWRXª†-‘‘@í²³³wíÚ%}% `à'ÂÑP¬Ô¯_ÿ¥—^’»(KÕ°Ú`R”ÊðáÃ-¾ÜÅa:uêÔ©S'¹' Ep„m(? Ñn "&L» ,UÀ*GØíÆBÞUñó@IQV¤#œÁÚÇÑØÁe¢üv£l©QùS@ QzD#œ ÁZÆ"56DpD)Ñn, ³Ð"‚#4‹v#¶EpDiÐPÀ QbªHr¶U1A”Á§s÷îÝaÆժUËËË«}ûö rWTšÚ=zäææ¦û«*UªÈ½Zæ&wPUtÓh7@222š7o~ñâÅ>}úøûûÇÅÅuïÞ}×®]r—V²ÚRRR C›6mBBBLƒ^^^rï„–QªEœ@rrr„åÊ•³Ç‹ÏŸ??))髯¾8p â­·ÞjÖ¬ÙÛo¿½sçN¹÷»dµ%%% !f̘)wá΂¥jG¯×[„¡éÓ§·hÑÂ&/þí·ß 0@ºÒ§OŸøøø«W¯ZóôC‡=óÌ3U«VµX#vwwwpmRp¬[·®M¦Ö 8ÂZ´­x{5ÌuºpáÂáÇËþ:gÏžíÔ©“N§3 vîÜ9//Ïš#wìØÑªU«'N¼òÊ+3gÎlÚ´©¢iÓ¦ãÆ;v¬ƒkKJJ*_¾|¥J•Ö­[·|ùò}ûöIZØKÕ° ‰´áúõëF£100Ð|0 @qóæÍ¢Ÿ›=pàÀ   _ýµjÕªBˆñãÇwíÚ511ñ½÷Þ«T©’ƒkKJJrqq©[·îíÛ·¥‘úõë¯\¹²Y³fòN²†¡ÝÀ åæænÞ¼¹°GŸ{î9‹‘ÌÌL!„···ù "==½è÷Ú»wï•+Wf̘!¥F!Dùòå'L˜½~ýúAƒ9¸¶¤¤¤¼¼¼éÓ§÷éÓÇÝÝý‡~3fL=Nž<)= 6GpDñh7Z…iÔI'te‘Ò)úߺƒÁün^^^›=xð G…¾E¾ßKþþþBˆ{÷î™fdd!*W®\tÁ.\B4nÜØ|°Q£FBˆ“'O:¾¶Ý»w{xx˜¸gÏN× Aƒ¢K Bœ>}Ú|Pê5êõz×–ššºiÓ¦Î;ׯ_ß4(µ'k×®]¶¹Gጰµ°°0¹K°…|@’““‹©Ó(w¡ ™)ë;Ÿ()¦Ôæl>¥ªûÍ\§N!ÄÆ¥»çÏŸ—®kË;wî”ô¯ü¢E‹Ì_üúõëݺu+¶ªœœœºuëݾ}[yøðaûöí½¼¼®]»æàÚ®_¿îááÑ®]»œœiÄ`0¼øâ‹nnn§N*Ñl—â㡺O”­p9J-M4ùÛ`nnn/¾øbß¾}_xá…† v•Di9¸0>eРA7îׯßäÉ“ç̙ӱcÇÌÌÌéÓ§K®Y³ÆÏϯÀk븻»/Z´(==½I“&³fÍš3gNÛ¶m÷îÝ;kÖ,‹S¡íTÛìÙ³ýüü–-[&„˜>}úÞ½{CCC‡þÎ;ï4oÞüÛo¿1cFxx¸Ü?=Íb©(3µDlªÒªU«§Ÿ~zùòå¹¹¹C‡õööž9s¦M^ÙÛÛ;>>~üøñqqq·oßnݺõêÕ«Mßé—““sçΩŒŠŠJHH˜6mÚ’%K²³³›4i²uëÖ'Ÿ|ÒV{]tmÙÙÙwîÜ1ý9a„Ç{lΜ9«V­òððhÔ¨ÑÖ­[»wïn¿ tFþàÙš^¯OLL”»Š²RTJII .¸N%´5YV(b>Q:L©ÍÙ|JU÷›988¸FGû9Ì_|qòäÉ… Ê= RЇê>Q¶ÂR5  – Dj›ËÎÎÞµk—ô•0€‚#øŸÔ¯_ÿ¥—^’»(Ç8Â’Z:hŠh7€} >Üâ T¦S§N:u’{ PGü…ZR£R0_ìc„ r—€¥j¨íFàˆÿQKûL)©Q-ó€ñ_¤ P4‚#T†v#r!8Bõ¤ ¥¤FœÁªI ”œÁªA»yZzg¤FdGptjjIʬœÁ*B»Ù—Zg:¡KNI–» S5*™5ì€àè¤È?àÌîÞ½;lذZµjyyyµoß>!!AîŠJYÛñãÇ_xá…ªU«zyy5oÞ|Á‚¹¹¹ÒC=rssÓýU•*UäÞ?us“» (Ò91)"EîB¤jˆÛ´ ##£yóæ/^ìÓ§¿¿\\\÷îÝwíÚ!wi%«-99¹cÇŽƒ¡gÏžµjÕÚ±cÇØ±c÷ìÙóý÷ß !RRR C›6mBBBLOñòò’{UÎ[ “»„b¨åÇ.Œÿ-499YîZ¤‚T2qÅQÊ|jSjs6ŸRåÿf¶ððáÇÚéŧM›&„øê«¯¤»çÏŸ÷õõíÔ©“Ü;]âÚž{î9—ƒšF,„ضm›Ñhܼy³bÇŽži)>ªûDÙ KÕNG-]3Å]G-@ôz}dd¤ùÈôéÓ[´ha“ÿöÛoƒ‚‚  Ý éÓ§O||üÕ«W­yú¡C‡žy晪U«Z¬»»»;¸¶;w¶oßÞ|ZÞ|óM!Ä„IIIBˆºuëÚdÒ !8:ÂO)1qävá…Ç—ýu222Ξ=Û©S'Ngìܹs^^ž5G:îØ±£U«V'Nœxå•WfΜٴiS!DÓ¦MÇ7vìXGÖ–››;bÄ))𤦦 !Ê—//„HJJ*_¾|¥J•Ö­[·|ùò}ûöåää”}Ç8B‰×n­¸~ýºÑh 4 Bܼy³èçfgg80((è×_­Zµªbüøñ]»vMLL|ï½÷*UªäÈÚÜÜÜfÍše>òÇÌš5ËÕÕµOŸ>Bˆ¤¤$—ºuëÞ¾}[Ú ~ýú+W®lÖ¬™|h~7++«ÀÍ|||Œ%Ù…ÀÀ@‹•ß[·n !ªW¯^ôs===…¦ %J¤DëâRÀY¨mÍš5¯¿þº——×òåËìæö¿`S­Z5‹»uë&„8uê”õ%ÁÁÑ)¨%üÐn“+W®˜ß-ì”ç’.»¹¹…‡‡ïÝ»×|pÏž=:®AƒE—$-Ÿ>}Ú|Pê5êõzÇ×¶qãÆ—_~ùùçŸ_¶l™Åwjjê¦M›:wî\¿~}Ó Ô¼¬]»v‰0‘ûz@¤´k;©å‡lºjc~²]$O-sWB\tÐæ˜R›ã:ŽuêÔBlܸQº{þüyéÊÕù·¼sçNIÿÊ/Z´Èüů_¿Ø­[·b«ÊÉÉ©[·nPPÐíÛ·¥‘‡¶oßÞËËëÚµk®-//¯^½zuêÔÉÍÍÍÿèõë×=<<Úµk—““# †_|ÑÍÍíÔ©SsGëÑqÔ8z Rnnn/¾øbttt^^Þ¦M›¤KÌäWÒå`!Ä AƒV¬Xѯ_¿#Føúú~õÕW™™™Ó§O—]³fÍo¼ñÊ+¯ÌŸ?ßâ‰îîî‹-êÙ³g“&M^ýuWW׸¸¸Ã‡òÉ'§BÛ©¶Ù³gôÑG³fÍ6lØéÓ§Ïœ9S¿~ýW_}ÕâEzõê=}úô‰'†††>õÔS¾¾¾Û·o?zôè‡~î ¡!?…¦Fµ„nÕªU«§Ÿ~zùòå¹¹¹C‡õööž9s¦M^ÙÛÛ;>>~üøñqqq·oßnݺõêÕ«Mßé—““sçΩŒŠŠJHH˜6mÚ’%K²³³›4i²uëÖ'Ÿ|ÒV{]tmÙÙÙwîÜ‘Žþ”®ï}úôi‹¥s!Dݺu£££'L˜ðØcÍ™3gÕªU5Úºuk÷îÝmüsr2º’þSÅÒëõ‰‰‰rW!„z’O±Á1%%%88ر5©dîJE†ùÔ:¦Ôæl>¥ÊùÍl¥ààà5jXíç0_|ñÅÉ“'.\(÷48H)>ªûD٠ߣYjI> m7€³ÊÎÎÞµk—ô•0€‚£6‘ËV–J¦ìàÀõë×饗ä.JÄ1Ž © 3|øp‹ëË8L§N:uê$÷@¡Ž¤Šä£ÐÔÊ0a¹K ÀRµÖËV™¦™5E±‡Ô€JµC±G¹©‡à¨¤Æ2§†@VG8©µ#8jòc© 8ªžòc©m 8ª›òc©Íàà*¦üØCj z½^îÕ#8ª•òc©€r$&&Ê]‚œRRR‚ƒƒå®Z@pT%…ÇÐ !@ÉÕGù©Q¹‘Q(~úP0NŽQ…ÇR#FÇQM”{”¾<-”=}¨ÁQ5{T…‚§õ 8ªƒbcÒצş§Â(súP‚£Ò)6öÐhÀÙM™±G5‘Q(2q ZGåR`j$2à̸O¡Ö­[ñÄOLž<ùöíÛ{kNq©Q'tÒጲ¤ÆîÝ»[W埧¨¹SkçVcJmŽ)µ-æ¶Bp,Ø‚ ¦Nzþüù-Zxyy­_¿þµ×^ËÊÊrÀ[+*ùèþ›Åd‹ŒVJdÀîŽHLLŒ ܶm[llìöíÛ püøñ?þخ﫜F£E^TndÔ鈌8 Á±k×®ÍËË=zt@@€42iÒ$Ÿ­[·æååÙã•~tÿKaÊ΋:e^$2àÇ:tÈÅÅ¥cÇŽ¦WW×öíÛ§§§9rĆo$c¿L÷—üõ—°¨¸¼¨Ó%ž=[@X$/àXGKF£1))©råÊ•+W6 B¤¥¥•åÅ-šýòOþ\XDL”3,ꊭT'ŒF}XaÙq9K™™™ƒÁ×××bÜÇÇGñÇû ÿmÄ2õèŠ}±R²"^Ùí½KBfÅFz!„^¯—»XMa>mŽ)µ9¦Ô¶˜OØÁÑ’têtÅŠ-ƽ¼¼„wïÞ-þ%èŠY-Qî€õXª¶äëë«Óé233-Æïß¿/þì;8!‚£%777ŸüÅŒŒ !„éûL:®Q{ëÖ­Þ½{»»»Ë]€|éÒ¥*Uª<þøã#GŽ ‘».‡"8ÚÆ‚ –-[V±bÅ-Z¤¦¦®_¿þܹsß|ó§§§Ü¥)Z)æíâÅ‹žžžuêÔ1ä« ­·råJ¹KP%ëçhéäææ4èØ±c>>>­[·ÎÎÎþõ×_÷íÛ7jÔ¨#FÈ]r•nÞø”–BFFÆ3Ï|¸i¤W¯^U«V=uê”Á`»:Ça©Ú:äââÒ±cGÓˆ««kûöí7nÜxäÈ‘æÍ›Ë] B•bÞRSS…µk×–»võùàƒ>|(„XµjÕ/¿ü"w9ªQÒyã#Zj)))+VlРù`hh¨"--Mîꔫ󯧴t|}}ÃÂÂ<<<ÌË—/Ÿ“““““ã¢6a0V¯^=g΃Á0oÞ<¹+R+çOi%&&ÆÅÅF!Dƒ Ê•+'wEEDZ¬|}}u:]ff¦Åøýû÷ÅŸý3äWºyûꫯŽ;fúe'„hÓ¦ÍË/¿œ••µcǹ÷ à#j¿þúkttô|àïïÿü#**JîŠÔÁúyãSZF/¾øâéÓ§÷íÛ7qâÄíÛ·÷íÛWúËå$Žeåæææãã“¿C–‘‘!„0/ 6œ·–-[ !Ξ=+÷>ã#j¥œœœ>ø`àÀW®\9räÖ­[Û´i#wQ*`“yãSZ":®J•*ƒ~á…®]»¶}ûv¹+r–ªm 000)))##ÃÛÛÛ4˜’’"=$wuÊUÒy3yyy:ÎÅå/ÿàquuBTªTIã#Zyyyo¿ýö?þØ¥K—iÓ¦ñ¯n+•tÞø”–ιsçV¬XѾ}û§žzÊ|\:Ÿýúõërè8tm 22Ò`0ìÝ»×4b4ãããýüü"""ä®N¹J:o©©©ááá´?zô¨B¯×˽Cpv|DËbåÊ•?þøãK/½´xñbR£õJ:o|JKÇÛÛû_ÿú×úõë-Æ¥‹bË] ãm &&ÆÅÅå³Ï>3å{ëÖ­Þ½{»»»Ë]rY3o>þå—_Þ¹sg‰ÞhùòåóæÍswwoݺµÏÑ£GGŒ±uëÖ7Žˆˆ2dÈõë×gÍšeœ3gÎÕ«WßxãF9ú‡@ëŽÔ¡E‹iiiÿùÏLƒyyyR¨êÕ«—býúõ.\èܹóþýû7lØðÃ?ìÛ·¯E‹—/_þùçŸKýÖ»víúüóÏkÖ¬¹nݺݻwoÞ¼yÏž=:t8vìØÒ¥K¥m>þøã >ü—_~Y¿~}||ü”)SŒFã¢E‹Jô^k×®}íµ×öîÝûÕW_ýôÓOƒ B|óÍ7…m?jÔ¨ÐÐÐõë×ïÝ»WqàÀï¾û®aÆÇ—ïg@³ŽÔÁÅÅåé§Ÿm:>|øúõëuëÖBäæævêÔiܸq+V”6ðöö–Z•©©©¥~ëÙ³g !.\hêáùûû/\¸0000..îÎ;Bˆ3gÎ!bbb\]]¥múöíûÆotéÒ¥DïÕ¨Q£·ß~ÛÅÅEÚå7ÞxCqá…¶wwwŸ3gŽ››ÛÔ©Soܸ1eÊOOÏ?þØTØÁ€jHÐ|ÝVZ§îÝ»·twĈË–-{ì±ÇLܼysóæÍeyÓÛ·o§¤¤„„„Xœ]¡B…6mÚdee>>U«V}øð¡´MÏž=<øý÷ß÷èÑ£zõê~~~ÉÉÉ™™™uêÔ‘®¼íââ2yòäI“&Í;÷ÿøG5233ÏŸ?o4ûöía§©0“&MÊÈÈøðÃ¥ÜܰaÃAƒýãÿ˜>}úÂ… åþYÐ:ŽT&  eË–BˆvíÚ˜?4oÞ¼Q£FU«VMº¾cûöí7lØ0eÊ”~ýú¹ººø€5kÖüç?ÿÙ¥K—}ûö={¶zõêŸþ¹¿¿¿iN÷ÑG}òÉ';wÎËË»páBppðرc7lØàçç'mÓ³gϯ¿þºC‡žžžgΜÉÌÌ|â‰'–,Y2mÚ4ûMÅÊ•+8жm[ÓžBˆQ£FÕ®]{ëÖ­Û¶m“õ@ƒtE_ œÇƒÒÓÓkÖ¬iýIÐàTް KÕ° ÁV!8À*GX…à«`‚#¬Bp€UްÊÿB¿Ù逥OËIEND®B`‚statistics-release-1.6.3/docs/assets/lognfit_101.png000066400000000000000000001433021456127120000223150ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A€IDATxÚìÝwXW¿ð3ìÒ¤Š+Ui ˆ Dl (Rl ˆ‚%¢ŠŠbD1Ĩ¨`ÞØrI®ILÔˆ-*F1¢hÔ`CQAc F‰‰€Ô½œ7s7Û˜]—òý<>>»³ggN™Ýýqæœ3ŒP($õÑPw y@àœ pN8'€ŽÀ G8p€áæõëׄ¸¸8ú4$$DÝyoöR™ÇŽ;räÈ‘#GŠ‹‹Ù;wî¤;ìÓ§º ×Ô©åL~ýúõŒ3¬¬¬ø|¾AYY™º«A1Ÿ|ò ­´ÀÀ@ºEê)'«˜Í¨øR?_’ð}¨Z ©OŽ''G¿`éÀ×û»ÇWw]xxø›7o!§OŸ2dˆº³œ,_¾<%%…>¦Í×"É*f3*>>_­œzOœ~ïG´iÓÆÖÖ–}ZQQñüùsúØÒÒRKK‹}IC]¹MmM uç¤8uê}àåå"úùj¦¤žr²ŠÙòŠM™Ê¿Õû‹¯÷F…ÀQ¿ýöûôçŸ:t(}|êÔ©nݺ©;ƒ*óÛo¿YZZjkk7ñ}6DDDDDD„ºsÑä4fbÿ*[ºtéðáÃÕzÊÉ*fË+>4e*ÿ>Tï,¾Þ:ÆÞ‘¿þúkÑ¢E½{÷Ö××wuuýßÿý_Ñ›=Šþ¨©©ùè£:tèðÑG± ž?>þ|ƒN:;677Wò(“‰=ôü1qâD@`oooff¶nÝ:Éôeee«V­òóó333333:tèŠ+JKK•Û§¬Q/ááátûâÅ‹åd¾®®nïÞ½>>>666:::666ÞÞÞ_ýuuu5M°|ùr†aØ+}C‡e†“5FѾzõjÑ¢E}úô100puu]»v-{tYª««wìØáééiii©¯¯ß£GÉ“'_¿~]ÑÒ‰ædܸq÷ïߟ8q¢­­m‡ÂÃÃoÞ¼I¹xñâøñãmmmÛµkçãã“™™©tÓ+w¾q,¬¨âââGÕÕÕѧ%%%=ª©©!>) 5Ÿ•&ËãÇÇ/ÌÍÍÇŒsùòeÉ4b§œ¬bÊ)>Çjoø÷ Ç3\Îç‹;.MF†„„´k×ÎÖÖvÚ´iEEE4 ÃÄÅÅÉ?Š¢ŸYE¿Äê¹ç—Ï>wJœœT½^%¾`©¢¢¢É“'wêÔÉÒÒ2,,ììÙ³²*Vt»ØïBSøzWâû­%‚²NŸ>ÍVc^^žd‚•+WÒW½½½»té"Vó›7o–LüÞ{ïÑÇ+W®¤¯þüóÏfffbogfáÂ…¢‡ã˜LV&}}};uê$ööiÓ¦‰&¾té’dBHÇŽ³²²”اhÁE4aº=66VNʰ°0©guhh(M°lÙ2ÉWß¼y# wìØAŸº»»+]@oooggg±ÄãÆ“Sáoß¾íÛ·¯ä!†Ùºu«hÊzK'šWWW@ š¬}ûö[¶lÑÔÔ;Jff¦Jš‰Ëùƽ°¢‚ƒƒ%ßrçÎz?)Š6Ÿ•&ÕåË—ÍÍÍEßb``DÐdb§œ¬bÊ)>Çjoø÷ Ç3\ÎçKÎWèYıɄBáùóçÅËÞÞžýŒ°¥“E¡Ï¬¢'’d=7ðSè³/öå©’““ã‡W¡/X6Ã}úô«^MMÍ;vÔ[4±ßµ½+÷ýÖ pT÷À‘ýšëÕ«Ç£Oµµµ+++ÅRvèÐMO¿€^¿~ݾ}{ºÅ××wõêÕáááìÊ/¿ü’îc²z3ijj:hÐ }}}vˉ'hÊòòrvˆ§ŽŽŽ¿¿PPP›6mèssóÒÒRE÷ÙÀqß¾}ì§Ô××wÊ”)Ý»wgñóÏ? …Â?ÿü³°°Íä×_]XXXWW'”öÍ¢tmllúõë§££Ãn¹téR½®««;zôèèèè~ýúÑ-|>???Ÿ{éÄr¢¡¡áââbbb"ö-æììleeÅ>õññix3q<ß8V —ÀQò“¢\ó)Zi’*++mllØBõïß_t$4Qià¨hµ+ý}Âñ —óù’sæ³g÷&«¨¨°´´¤Ûµ´´<<<ا¢¥“ƒûgV‰I²žrŽ)úÙ—8*}rrüð*ô+õ GOO>åñx·nÝRèwAí_ïÊ}¿µ•§Pà¸e˺q÷îÝìÆk×®I¦ìÚµëîÝ»/^¼xÿþ}¡P¸bÅ º]ôoÍÿüç?t£µµ5ÝÂ1™üLŽ1âíÛ·B¡ð÷ßwrr¢HSÆÇÇÓ-†††ì'çÆìßÓË–-StŸ ###é–E‹±oìÝ»7ݸaÃv# >}šÝ(ùÍ¢\ÿóŸÿÐùùùì—‹œ?7HÓ$$$°ýüüÄöƱt¢99~ü¸P(¬ªªòõõe7&'' …ÂÚÚÚéÓ§Ó- áÍÄñ|ãXX©¤¶šœOŠrͧh¥IÚºu+Mc``pñâEºqÁ‚ìÞäü6Ë*¦¬í«½áß' ᲊ Fò,âÞd›7o¦[ŒŒŒrssiëDEE±™T(p”_"åN$±znÈ9¦èg_NàØ““û‡—ã¬hŒ9’~á<~ü¸sçÎbáþ»ÀýèñõÞï·f cßggçyóæÑÇ£Gæóÿ;'©  @,e›6mÒÓÓ'NœØ¯_?{{{BÈO?ýD_š1c›,22’ö\>~üøÆÜ“ÉÁçó·mÛFgEXZZ~úé§t{NNÎÛ·o !ǧ[æÍ›ÇéÑ£ÇÂ… éc6÷}6ÄøñãwïÞ½{÷îùóçÓ-¥¥¥åååôñ_ý¥è•(`÷îÝçÎKwéÒÅËË‹>~ô葬£TTTÐß~ûíW_}Eç@|ûí·yyyyyy¡¡¡Ê•ÎÝÝ^~ÒÔÔ7nÝhllLO< ö;·¤¤¤áÍÄñ|ãXX%H~R”h¾†TkÏž=ôhÃúõëMMM•.,Š~Ì•þ>a)q†sǽÉ~øáú`îܹ½zõ¢­óÙgŸ)QÉõ–H‰I²žYJœc*üfkÈÉÙx^MMMö §cÇŽìNZZZmm­Ò»•¯1¾Þ¯Šš8Žï‚ƒƒûX__Ÿ½ …< „ܽ{Wì%jذaì!Øý÷Ùþþþ'N :þ|llì!C:t蟟¯ô•( Øˆöj”X2±l³‡›>}º……EïÞ½ÿóŸÿ”••uëÖ¤héD¯yéêêÒ––– Èm”¤D3q<ß8V ’Ÿ%š¯!•&YìZÊ„---ö¸*¤èÇ\éï–g8wÜ›L4Ûl2]]]±7²S"X4ÊT¨DJœH’õÌRâSá7[CNÎÆûðvëÖMôâ>›·ªªª‡*½[ùãë½ñª¨‰Càø.ˆ-ëÈ~eHF]ZZZïÚ¿þù'ÇdòˆåmÚ´122¢ÿøãÒÒRz;"±2ûÍøöí[v .ûl`­VUU-Z´ÈÔÔ4<<|Ó¦M555Jwó(W@±¦”Ó²¬øøø9sæ°ëÝ…ÂÜÜÜO>ù¤_¿~ƒ bo~ h餚ãz¢Š6÷óca• ùIixó)TiÔ›7o^¼x!µEcq•Pâc®Ü÷‰œ*âr†s/Ç&+--e»ÙÄâ3%*Y~‰”;‘Äê¹Þ“Ž©ê›­'gã}xÅ2£§§Ç~á<~üXéÝÊÑH_ïWEMǦEìÔ444400 O:U(Mxx8Çdò-ö™©¨¨`)°µµ544d?ÛÏž=MÉ>ÕÒÒbÇÝsÙgëê“O>Ù¼ysMM½½ý¶mÛ®_¿^ZZ:räHåö¦\• ©©ùùçŸïÛ·oâĉmÛ¶e_ÊÎÎf—RméäS´™¸Ÿo «ÉOÊ»i>1ºººìÒÜì4ÅþP©Šså¾OT›m9ÅáØdìð2±¸VìÔ}—¹’SÏ ¤ªÏ~OÎÆûðŠý9ZQQÁæÇÚÚZ…5Éj¤ï‡Æ«¢&cSÇ®©©é$¢mÛ¶ÆÆÆÆÆÆôJÇdrܺu«¨¨ˆ}šžž. !ZZZt^;g‚½§…ØSvø&Ç}²_¸bcÈľæ¤Ú¶m}°uëÖ>ø gÏž|>ÿéÓ§JWµTTeeåóçÏŸ?^YY¶{÷î/^¤§§³k:°ë™©¼trÔÛL’¸œoÜ «ï ù$ñx<;;;úøäÉ“ìv¡PÈeõGE5ücÞð=¨Ç&c†­ä3gΰÉjjj222Dß8eÊ”?þMt £jsÕxÕ¢ªÏ~CNÎFýðŠ}á°yÓÒÒ¢©6äwA•7ë;þ~kR86uìÍi¾øâ á?k†8p ]»vÀÖÖöï¿ÿæžLŽªªªèè說*BȳgÏ–.]J·9’œg—þúì³ÏØå‚óòòécÑa4÷É^1ùå—_Øá8¬÷{íï¿ÿfûØ/—_ýUì‡D2?r^U¢€ŠÊÏÏ777777·°°¸ÿ>!„Ïç:”Yill¬té”Vo3Iâr¾q,¬ª¼ƒæ“ÊÝÝ]ò¸k×®½}û¶ÊÕðyÃ÷ ‡üÏ—$îM6xð`ú`óæÍwîÜ!„…Â?üPôV^„]]]³k×®¢¥P׉D©ö³¯ôɩ܇—ã P]]MWÒ~öì»cÞñ×û;þ~kRpËÁ¦nùòå)))¯^½:|ø°¯¯ïàÁƒoݺÅÎÿZ¸p!±Ë1™|´³³svv¾|ù2½X©¡¡±fÍúê’%Kþ÷ÿ÷Ñ£G¯_¿öôô2dÇ;}ú4]©ßÂÂBêÍäï“]c¢¢¢¢W¯^½zõúóÏ?ÙQÌrèëëëëëÓ[Ó§Oß³gÃ0?ýô“Ô;+Ó”üñ­[·æÏŸ/¶únC ¨ž={š™™=þ¼¦¦ÆÓÓsĈ&&&>üñÇiz§…J§ò›I—óÍØØ˜KaUå4ŸT‹/þþûï…BaIIÉ€úõëW\\Lƒ•køÇ\%_b8~¾$qo²åË—õÕWUUUÅÅŽ{÷îׯߣG>Á®¹j ªýì+}rrü¦¢”8èN—.].]ºDÿVáñxŸ|ò }U¡ßu}½+TE-º×jƸ¯ã(¶;nlïÞ½òSR?þø£Ô¿]fÍš%ºÖ.Çd²29hÐ ±ñ%|>_t5¡PøË/¿ˆ-6AÙØØdgg+·Ov5 –½½=Û/"gÇñãÇK¾ÑÇLJ>~ï½÷ØCLœ8Q4™œ[ (Z@.ËŒ‰¹pႬ«ÞÞÞtm3š“]»vÑÝ»wg7ž;wŽmE›IêQ¸œo +•üu¥~RÒ|+Mª©S§ŠQOO­©Âu9V{ÿO:Ã¥~¾$IÝ'Ç& …ÿó?ÿ#èë볟îë8r)Q¿xŽ5䳯““û‡—ã,›accc±éAZZZ_}õ•Ôv­ÉßîGox³Jž* ù~kÖp©º9räõë×£¢¢ÜÜÜÚ´icoo’••µ}ûvÑAÙ“Ébbbrþüù3f8::š™™;6==}æÌ™¢iúöí{ãÆ¸¸¸!C†˜™™ __ß?üðæÍ›žžžÊíó›o¾ùä“Ozôè¡§§×«W¯yóæ]¼xQÎ,EVRRR=È?7fˆ‰‰¹zõêèÑ£é«{öìa¯q$%%Mœ8ÑÔÔTOO¯{÷îr¦4*Z@%ôïß¿°°0..®OŸ>–––šššmÛ¶õôôLIIÉÈÈ`'èq/]Ãqi&I\Î7Ž…U•wÐ|R}ùå—sæÌ¡MMMGuúôéAƒ5Ʊø1WÉÄpÿ|IâÞdQQQ§OŸ3fŒ¥¥¥••Õ˜1cΟ?/õ†o §®‰­O~ö•>9¹x=¼½½³²²FŽÙ¡C ‹°°°ŒŒ vÙsŠûï‚¿Þßñ÷[¢îÈԌ㟭jß§TUUU}zß¾}_ýõƒž={FW6lØ‚ ÕA€V„þ³,€¸T œ pN8'€ŽÀ Gà#p‚À8Aàœ pN8'€ŽÀ _Ýh¢***öíÛ—ššúôéSGGÇiÓ¦ 8PÝùPF(ª;MNMMÍĉ¯]»fddÔ»wï·oß^¾|¹ººzÞ¼ysæÌQwîÔ=ŽRüðÃ×®]ëÝ»÷—_~©««K)((˜4iÒÖ­[}}}ÕA5ÀG)~úé'Bȇ~H£FBˆƒƒÃ¬Y³jkkÏŸ?¯îܨG)~ûí7==½nݺ‰ntpp „>þþýûk×®õððPwŽÔ£tUUU‰‰‰ß~û­ŽŽNttôôéÓÙÖ­G)êêê-ZtêÔ©¡C‡®ZµÊÔÔTÝ9P?ŽR|ûí·§NŠˆˆXµj•ºóÐT`GqB¡p÷îÝK—.Uw^š,Ç#îÅ‹^^^ººº:u’|5$$dÒ¤Iò÷€Ék-[«ý­Ç¥jqOŸ>%„TTTäååI¾Š‰ÕÐj!pçææÖ:ÿ†c€ŽÀ Gà#p‚À8Aàœ`9)œœœÔxw°G¤Ã—@+Îîp©8Aàœ pN8'€ŽÀ Gà#p‚ÀÃ0Œ. Õ]Ðz¡Ç@ à Q×?9âãã†9r¤äKëׯgæúõëꮆazöìÉ&ˆeæêÕ«D䤊ŒŒ1b!ÄÛÛ[´öΟ?(¬¬¬>øàƒ¿ÿþ[êA­"±Ñ“‘‘‘mÛ¶åxìÝ»×ÂÂbÊ”)ô©½½}hhhVVÖ³gϸ¼ýòåË#FŒ077ûøhjjªüèƒ ¢Q#5wî\BÈ… È?ä;wæXph¾ÐãÐr0 ³uëÖnݺ½ÿþû—/_–Ú?täÈ‘ÐÐPssóððp†aRSS˜šš:zôhšàÉ“'þþþFFF~~~tËîÝ»y<Þ‡~Èçó7oÞêææVSS3sæÌ‚‚‚íÛ·GDD\»v²zõêøøx__ßÐÐÐÊÊÊC‡Mš4ÉÐÐPê¬J[[{×®]ìÓººº>úèÅ‹666„ôôôQ£FYXXŒ?^CCãСCþþþ»wïž0a!äàÁƒaaaíÚµ ×ÐÐØ½{÷?þ¨òZ7n\JJJHHÈôéÓÇŒ3pà@Ú hjjjjjÚ=Ëi‹E‹Y[[¯Y³fãÆ¢?Õ¬¨¨¨={ö :tìØ±yyy»víÊËË£Ôêmî JÙ¿ÿï¿ÿäâârñâÅõë×_¸p!33Slyù-%ÆÌÌŒö§Þ½{·K—.rª(00ðÀÙÙÙ„ììlBH^^ÞË—/ÛµkGÉÌÌ477wuu}×¢E‹ìììV­ZµaÆ~ýúÑ7nÜ>|ø”)S†zäÈ‘;vÔÕÕíܹSêqª"¥•––Þ»w¶>»Ñ××7%%åâÅ‹õN<:}úô°aÃ:vì©§§wèСÜÜ\777___.½¤ ½¦¦fΜ9îîî¢=zDÑÖÖ&„jkkìß¿ÿ¯¿þêÖ­[ß¾}øg4QBP5GGGugJV#õM©ÊýÀ®^½šRXX( ׯ_OIJJ¢/­[·ŽríÚ5¡PXYYigggkk[\\L_-..¶±±±··¯¬¬ …tG|||mm-M`kk«¥¥•ŸŸOŸÒq~...UUUt‹§§'!¤´´T(ÚÛÛ;::VWWÓ—JJJø|þìÙ³Ù]ÓÇÞÞÞ®®®’Y³f !$%%…æÖÁÁ¡W¯^åååôÕ·oß0ÀÞÞ¾¦¦æíÛ·666OŸ>¥¯YZZBöîÝ+«Šä¨©©¡)>|H™:u*ûÞï¾û®S§N4™ŽŽŽ¯¯ïÚµk>|(«9ŒÝÝÝåŸcõ¶ÅáÇ !çΓ|ï›7ox<žh§OŸ.ŠŠŠ¸´÷¥çÃÚµkÙ-^¼˜²gÏÑ•ßRr*áÎ;„Õ«WËJðôéSBHll,}Ú£G:ÇüàÁƒ´hÓ¦M“<©Ž;FÉÌÌdKM9rä}ZSSãììlcc#õ ŠVQhh¨èÛ§Njll,äàÞ½{„˜˜ѧOŸ&„ìܹSþ{+**,-----Ÿ={ÆÖ¹———©©)ÍX£](¾|ù²oß¾<ïÞ½{B¡000PWWW´«ÕÙÙùÊ•+\rÒ(ñÃÝjëq© ¥Y¸pa=âââžÿ¿—2^¾|ɾÄÅ‘#GV­Z5{öìéÓ§B®^½ZPP°xñb]]]š@[[;::úÁƒ¹¹¹¹¹¹=Z¸p¡••›óyóæÉ?Ä„ b%X[[ËWDDDaaáõëד’’üüü®\¹²bÅ {{{æ*‡K[È¢¡¡A—¢]>„”””ââb .­À½Ai®-ZľwÕªUúúú?üðƒh~ä·”ÒUD±²²êÙ³'r÷êÕ«¼¼¼˜˜==½¬¬,BHvvv]]]PP—]9::Ž5Š>æñx®®®eee²+TE²ÔÔÔ‘݃¡¡¡è»ŒŒŒØV“#;;»¨¨hÖ¬Yæææl/Y²äÅ‹hì£gfföïßÿòåË[·nupp „ÖÕÕÅÇÇùå—¿ÿþ{ppðëׯr@„KÕ- ŸÏÿâ‹/<<<æÍ›G'<² !tð"‹Ž+(( —DœœÄ®s±‘ !„þvJn¡Ú¶m›“““žž~ç΂‚‚[·n±«uÔëöíÛ“'OöôôLNN¦[hwTDDDDD„XâÇÓqo½{÷Ý^ï\Ô¹sç8Plãµk×?~\o{öìÙ³gÏ TUU9r$&&fÕªUýû÷6l˜ÍÄ¥-dÑÕÕMNN¦d»uëæáá0|øpze°ÞVàÞ „nݺ‰^pÔÓÓsrrºÿ¾hù-%¿,õ LLL|õêí|2dˆ§§' 333ù|þСC¹ìÇÑÑQô©ü‰> U‘,eeet ªTB¡îSl¨eii)!ÄÄÄDþÎi¿¸Ôó‡ŽÇm¤£?~üxîܹGupp8}ú´¯¯/Ýž™™©££Ã¾qÚ´ioß¾3gNjj*ý;Z Ž-PÿþýgÍšµ}ûvÚµÀ …Dâæ7ô´ººš>566Vî •••cÆŒIKKëӧϰaÃF5`À777.ï}õêÕèÑ£ŒŒRSSÙ_e¯$&&J®€Ýµk׳gÏJ–Eå`ß¼y9lذ3f°µ´´Æ×¶m[??¿ãÇ+8ri 9æÌ™3vìØcÇŽ9s&--í‹/¾prrÊÊÊ266Vº8âóùb}uò[ª‡ X¿~}VVVNN޵µµµµµÏŠ+JJJ233===i'Y½o~º˜ÊÊJúÀÈÈH(÷VOfffb3„þüóOBÛ. íÜû“€NQ§Ÿ‚Æ8úž={fΜ©¯¯¿sçÎiÓ¦±½Ú„:JDý\4‹¥4A!Z¦O?ýôСCsçÎ¥ mPô¢ÒÍ›7Ìn¼qã!ÄÉÉ©G_AŒžžÞÉ“'Ÿ}ºuëVv£›››µµuRRÒ«W¯è–¿þúkóæÍ666 _p˜ÎcýåHMM-++Öwí¥K—ž:ujçÎbs6]]]œœ6mÚTRRB·”––ÆÄÄ´iÓÆÍÍÍÞÞ~óæÍìÒ!ÅÅÅ*_À’a˜ˆˆˆ_~ù%!!½'!!¤¬¬lÕªU²nóÈECÚâîÝ»ýû÷ß´i}ª¡¡A#9MMM¥[A–ââ⤤$öiBBBii©Ø”[ù-ÕÀ&ÐÔÔ2dHZZZnn. ÝÝÝ Ö®][ïÇw°Hd›6mnݺŞÙÙÙìbXôb±,4ÍŒ3>|H§òB^¼x‘ššêçç'u &Qnnn;wÞºu+[çUUU‰‰‰úúút)"Õ](.Y²¤cÇŽß~û­XÔHÑÕÕ9s&ÛY^WW—˜˜ÈçóÙÅ Å@#@‹5~üø]»výôÓOìmmí¤¤¤ñãÇ»¹¹……… …Â}ûöíß¿Ÿ®©Ñ>>>zzz3f̘8q¢••Õ… 222Ú·oîܹ'NÐåT$?~|Ó¦M...<Ot¹Aggg77·äääÑ£G»¸¸„……UWW>|øÉ“'{÷î¥7—Û¸qcXXX¯^½Æ¯©©¹oß¾z×TBRRR^^^\\Ü®]»z÷îMçqŸ?þùóç+V¬ðððPn· i ww÷îÝ»¯[·îÁƒÝ»w¿{÷î‰'LLLÂÃÃy<ž­ ‡……E\\\NNŽ‹‹Ë… ÒÓÓ À®üGñù|9-Õð& ¤£uiàÈãñ¼¼¼ÒÒÒ:vì(«gŽötnß¾ýùóçR—R•aÆ%''1"88øÁƒ[·ne;Yë½XL™:uêW_}5qâÄ9sæïÚµ«¼¼œ½ãž={fÏž¹yóf±7jjjnÙ²%$$ÄÕÕuæÌ™</55õÊ•+Ÿ}ö™™™™J޾~ýúuëÖ}úé§³fÍÊÏÏ¿s玳³sTT”ØNÆŒ3räÈøøø¥K—:88Ÿþ|+++:\5444>>žãr55µoß¾úúúÀ××÷ĉŠfF°wŒPÙë ‹““ÓÝ»wÕ hYÈ0Œ?0Ì?3*@RQQQ»víÞo ¢ììì\]]ÅææƒTeeeeee \^RJJJ^^ž¬¿¯@U”øánµ¿õã-¥¥%¢FP#===•Goß¾=sæŒj'Å4G€¦èÂ… ÎÎÎ’«c¨&Ç(@(Š-¼ЂÒ›õZøøøÐûÖ4ƒQ†ÐzlÛ¶MÝY€¦—ª€ŽÀ Gà#p‚À8Aàœ pN8'€Ü9@1ê½å î[j„À@ Ã5Fn¸K6¨.U´ñññ ÃŒ9Rò¥õë×3 sýúuuç‘ØÙÙ…„„ÐÇ^^^½zõRù!~ýõW†aöíÛ'«ŠÎŸ?/ù’ŸŸÃ0µµµôé£G†‰ŒŒdÔÔÔ|ùå—^^^†††®®®ÑÑÑEEEl‚-[¶0rŸ/öQûöíÕ]ð®áR5@Ë¡««;oÞ½pá³gÏ:t¨!»=©ž?~øðá ¨»¬õ(--uwwüøqhh¨@ HMM 8sæLcôÇ7ðè¿ýö[mm­‡‡‡½½=»Q___ÝUïG€–#..nÅŠ+W®Ü²e‹Êw^UUÅçó54ZÝe zu;::Zt£««ë¸qã¾ùæ›7oÞ4Òo'¥££ÓHåR¨Aéu|Uu/\¸ðõë×/^ìÓ§!dÍš5Ó§OÿꫯNž<éïïßHåmì*RÎæÍ› wíÚõÞ{ïBæÏŸß»wïE‹edd¼ƒ*ttú—Ìš5kZÞ_2 V÷Ђ7.((èóÏ?¿r劜d—.] 277·´´ ¢}f”]LLÌ•+W\\\\\\è–ùóç/^¼ØÐÐPGG§_¿~ǯ©©Y¾|¹³³³¡¡¡ÏíÛ·Ù=$%%õìÙSOOÏÄĤ_¿~ß}÷Ô<øøøÐ^²²2ùƒóòòÆŒcmmmjjðóÏ?‹îçìÙ³~~~&&&]»v]¼xqUU•Êk•ÆLyyybÛׯ_ãÆ --­†ì\V[DFFB<==íìì$ßXQQ‘àììܦM›¨¨¨?þøƒK+(Ô ô|øüóϵ´´zôè±lÙ2Y•,¿¥Dedd 4ˆFÔܹs !.\Kª©©ùæÍútß¾} ÃôìÙ“MË0ÌÕ«W‰ÈI9bÄBˆ···hí?>00P XYY}ðÁÿý·Ôì)ZEb£'###Û¶mËñØ»w¯……Å”)SèS{{ûÐÐЬ¬¬gÏžqyûåË—GŒann.öñÑÔÔTùÑiàØ¹sgŽEƒ– =Ž-Ã0[·níÖ­Ûûï¿ùòe©ýCGŽ 577g&55uàÀ©©©£G¦ žóæÍ¡¡¡nnn5553gÎ,((ؾ}{DDĵk×!«W¯Ž÷õõ ­¬¬­««ûè£^¼xaccCIOO5j”……Åøñã544:äïï¿{÷î &B<Ö®]»ððp Ý»wÿøã*¯ÕqãÆ¥¤¤„„„LŸ>}̘1¤½€¦¦¦¦¦¦ Ù³œ¶X´h‘µµõš5k6nÜ(`±¢¢¢öìÙ3tèбcÇæååíÚµ+//P«·¸7(!dÿþý¿ÿþ{PP‹‹ËÅ‹ׯ_áÂ…ÌÌL±u©ä·”¨ššš9s渻»‹n|ôè=Ä8p ;;;00’MÉËË{ùòe»ví!™™™æææ®®®¢ïZ´h‘ݪU«6lØÐ¯_?ºñÆÇŸ2eÊСC9²cÇŽººº;wJm…ªHi¥¥¥÷îÝ£­ÏnôõõMII¹xñb½NŸ>=lذŽ;FFFêéé:t(77×ÍÍÍ××—K/©¢G/,,ÔÖÖ600Ø¿ÿ_ýÕ­[·¾}û6ð'h–„ jŽŽŽêÎ4”¬F$„¡úþÉþÀ®^½šRXX( ׯ_OIJJ¢/­[·ŽríÚ5¡PXYYigggkk[\\L_-..¶±±±··¯¬¬ …tG|||mm-M`kk«¥¥•ŸŸOŸÒq~...UUUt‹§§'!¤´´T(ÚÛÛ;::VWWÓ—JJJø|þìÙ³Ù]ÓÇÞÞÞ®®®’Y³f !$%%…æÖÁÁ¡W¯^åååôÕ·oß0ÀÞÞ¾¦¦æíÛ·666OŸ>¥¯YZZBöîÝ+«Šä¨©©¡)>|H™:u*ûÞï¾û®S§N4™ŽŽŽ¯¯ïÚµk>|(«9ŒÝÝÝåŸcõ¶ÅáÇ !çΓ|ï›7ox<žh§OŸ.ŠŠŠ¸´÷¥çÃÚµkÙ-^¼˜²gÏÑ•ßRÂú¼|ù²oß¾<ïÞ½{b/=}ú”KŸöèуÎ1?xð -š††Æ´iÓ$OªcÇŽB233ÙRBŽ9BŸÖÔÔ8;;ÛØØHÍ¢U*úö©S§×[j¡PxïÞ=BHLLŒèÆÓ§OBvîÜ)ÿ½––––––Ïž=cëÜËËËÔÔ”fLåG ÔÕÕíLuvv¾rå —c5}Jüp·Úßz\ªhi.\Ø£G¸¸¸'Ožˆ½”››ûÛo¿-X°@ Ð-`Á‚<`×ë±°°X¹r¥hEß¾}»téBûøøBÂÃÃÙkatÀSyy9!äÒ¥K¹¹¹|þ/e¼|ù’}‰‹#GެZµjöìÙÓ§O'„\½zµ  `ñâźºº4¶¶vttôƒrsssss=z´páB+++6çóæÍ“ˆ &ÄJ°¶¶–ÿ®ˆˆˆÂÂÂëׯ'%%ùùù]¹reÅŠööö4ÌU—¶ECCƒ.-D;ê!)))ÅÅÅ\Z{ƒÒ\-Z´ˆ}ïªU«ôõõøáÑüÈo)ùeÉÌÌìß¿ÿåË—·nÝêàà öª••UÏž=é»W¯^åååÅÄÄèééeeeB²³³ëêê‚‚‚¸T¸££ã¨Q£ècçêêZVV&+±BU$KMMÍÙØ=оËÈȈm59²³³‹ŠŠfÍšennÎÖù’%K^¼xqàÀÆ8zaaa]]]|||QQQqqñ—_~ùûï¿¿~ýšKýC‹KÕ- ŸÏÿâ‹/<<<æÍ›'6Mµ  €B/²èˆ±‚‚zIÔÉÉIì:ÙBèo§äªmÛ¶999éééwîÜ)((¸uë÷5Vnß¾=yòdOOÏäädºåÎ;„ˆˆˆˆˆ±Ä?¦ãÞz÷î-º½Þ¹¨sçÎ8p ØÆk×®=~ü¸ÞöìÙ³gÏž ,¨ªª:räHLL̪U«ú÷ï?lØ0%š‰K[È¢««›œœL/ÈvëÖÍÃÃ# `øðáôºa½­À½A !ݺu½©§§çäätÿþ}Ñ4ò[JVY?~}Ú××Wj²ÀÀÀÄÄÄW¯^ÑÎ×!C†xzzÒÀ133“Ïç:”K…;::Š>•?ÑG¡*’¥¬¬ŒT•J(Ò}Š µ,--%„˜˜˜Èß9í—zþÐñ¸*?zff¦ŽŽûÒ´iÓÞ¾};gΜÔÔTú—´Z þýûÏš5kûöí´k% ‰Ä]é/huu5}jll¬ÜA+++ÇŒ“––Ö§OŸaÆ5jÀ€nnn\ÞûêÕ«Ñ£G¥¦¦²¿Ê4^ILL”\»k×®gÏž•,‹Ê'À¾yó&22rذa3fÌ`7jii7®mÛ¶~~~ÇW.päÒrÌ™3gìØ±ÇŽ;sæLZZÚ_|áä䔕•ell¬t+pÄçóÅúêä·”ÔìÙ³gæÌ™úúú;wîœ6mÛ?*) `ýúõYYY999ÖÖÖÖÖÖ>>>+V¬())ÉÌÌôôô¤dõj¼ùéb*++é###¡Ü{„š™™ihh‹nüóÏ? !l?º,´sWìO‚ºº:òϧ@åG§ã@DÑ3¿Y,– *„À eúôÓO:4wî\ºÐE/Þ¼ysðàÁìÆ7nBœœœxÄsçÎ¥¥¥%''ÏŸ?ŸÝȥDZ¶¶v„ OŸ>ÍÎÎnBsk`` ºDËíÛ·oÞ¼illLgwþúë¯ÞÞÞì« Ÿ¯ FOOïäÉ“Ož< )ÚaÓ¦Måöܶxùòeaa¡££cTTTTTT]]ݶmÛ¢££wìØáéé©\+Èrûöíêêj6𝍍ÈÏÏ­sR_KIîóèÑ£“'O Û±c‡Ø¥RI444ÌÈȸtéÒ Aƒ!ÞÞÞuuuG½zõ*«^4\cѾdBHMMÍñãÇe½kôèÑ|>¿k×®tÆëìÙ³ ÃtëÖMþAiççç‹n¤}ôüQíÑ=ztìØ1___gggv#힤óØ õÀG€–ÉÈÈ(99ùéÓ§[·ne7º¹¹Y[['%%½zõŠnù믿6oÞlccÓð‡é<Ñß•ÔÔÔ²²2ùÝ„¥K—ž:ujçÎb3m]]]œœ6mÚTRRB·”––ÆÄÄ´iÓÆÍÍÍÞÞ~óæÍìÒ!ÅÅÅ*_À’a˜ˆˆˆ_~ù%!!½'!!¤¬¬lÕªU²nóÈECÚâîÝ»ýû÷ß´i}ª¡¡A#9MMM¥[A–ââ⤤$öiBBBii©Ø”[ù-%¶C¡P¸dÉ’Ž;~ûí·õF´PC† IKKËÍÍ¥£»»»ÁÚµkëà(Ò5†6mÚܺu‹=7²³³ÙŰèÅbYhš3f<|øNå!„¼xñ"55ÕÏÏOêL¢ÜÜÜ:wî¼uëV¶Î«ªªõõõéRDª=º®®nllìÌ™3Ùî𺺺ÄÄD>ŸÏ.¿­zZ¬ñãÇïڵ맟~b·hkk'%%?ÞÍÍ-,,L(îÛ·¯¨¨hÿþý’+¡(ÊÇÇGOOoÆŒ'N´²²ºpáBFFFûöíÏ;wâÄ ºœŠ¤ãÇoÚ´ÉÅÅ…Çã‰.7èìììææ–œœ`Àvå?ŠÏçËi)±æççß¹sÇÙÙ9**Jì¥1cÆH Äéh]8òx>>¦¦¦íÚµóôô00P XYY}ðÁÿý·Ô*ZEb£'###Û¶mËñØ»w¯……Å”)SèS{{ûÐÐЬ¬¬gÏžqyûåË—GŒann.öñÑÔÔäòö—/_úûûÇÇÇsÌ0.U´ Ãlݺµ[·nï¿ÿþåË—¥"}úH¾7**jÏž=C‡;vl^^Þ®]»òòòèð¸z[{ƒBöïßÿû¸¸\¼xqýúõ.\ÈÌÌ[a@~K‰âñxׯ_ì–ššš›7oöìÙSWWW,q``ಳ³ !ÙÙÙ„¼¼¼—/_¶k׎’™™innîêê*ú®E‹ÙÙÙ­ZµjÆ ýúõ£oܸ1|øð)S¦ :ôÈ‘#;v쨫«Û¹s§Ô¦Q¨Š”VZZzïÞ=ÚúìF__ß”””‹/Ö;ñèôéÓÆ ëØ±cdd¤žžÞ¡C‡rssÝÜÜ|}}548õ ™™™ÑŽí»wïvéÒ¥ÅÖBªæèè¨î,@CÉjDú™Qã¬jY^½z5!¤°°P(®_¿ž’””D_Z·n!äÚµkB¡°²²ÒÎÎÎÖÖ¶¸¸˜¾Z\\lcccoo_YY) éŽøøøÚÚZšÀÖÖVKK+??Ÿ>¥ãü\\\ªªªèOOOBHii©P(´··wtt¬®®¦/•””ðùüÙ³g³» ¦½½½]]]% ²fÍBHJJ Í­ƒƒC¯^½ÊËËé«oß¾0`€½½}MMÍÛ·omll,,,ž>}J_-**²´´$„ìÝ»WVÉQSSCS>|ø2uêTö½ß}÷]§Nh2__ßµk×>|øPVs»»»Ë?Çêm‹Ã‡BÎ;'ùÞ7oÞðx<ÑNŸ>] qiî JχµkײZ¼x1!dÏž=¢ *¿¥äTÂ×_çææÖ¾}ûôôtÉOŸ>%„ÄÆÆÒ§=zô sÌrõêÕ‚‚‚ï¿ÿžíˆÒÖÖŽŽŽŽˆˆÈÍÍ­©©yôèQbb¢••}ÕÂÂbÞ¼yË–-“sˆ &tèÐAlã?üðøñc9ˆˆˆˆ¸qãFFFFFFFVVVFFÆÊ•+W­ZõÑG)×L\ÚB º´Ð£Gh×lJJJJJ }µÞVàÞ 4W¢CîV­Zµ}ûö~øA´+Q~KÉ)ËÇLçùùùÑ‚ˆ±²²êÙ³gFF!äÕ«Wyyy_~ùetttVVVHHHvvv]]]PP— wtt5j}Ìãñ\]]ÓÓÓe%V¨Šd©©©9~ü¸¬WGMÅÐÐPt;½‚O[MŽìì좢¢5kÖ˜››³u¾dÉ’‘#G8p`êÔ©õK¥HBàÐÒðùü/¾øÂÃÃcÞ¼yb«œBèàE1VPP@àœœÄ®s‰^U¤¿’[¨¶mÛæä䤧§ß¹s§  àÖ­[555³}ûöíÉ“'{zz&''Ó-´„mb‰?~LǽõîÝ[t{½sQçÎ;pà@±×®]“8²Õ³gÏ TUU9r$&&fÕªUýû÷6l˜ÍÄ¥-dÑÕÕMNN¦d»uëæáá0|øp:à²ÞVàÞ „nݺ‰ŽãÔÓÓsrrºÿ¾hù-%§,ååå.\ˆŠŠêß¿~~¾äÕÿÀÀÀÄÄÄW¯^ÑÎ×!C†xzzfeeB233ù|þСC¹T¸£££èSù«A)TE²”••ѪR …BºO±¡–¥¥¥„ù;§ýâRÏ:·Þ£s)€$Ž-PÿþýgÍšµ}ûö#GŽˆn§¿b£Óè/huu5}jll¬ÜA+++ÇŒ“––Ö§OŸaÆ5jÀ€nnn\ÞûêÕ«Ñ£G¥¦¦²¿Ê4^ILL”\»k×®gÏž•, Ç¡]ܽyó&22rذa3fÌ`7jii7®mÛ¶~~~ÇW.päÒrÌ™3gìØ±ÇŽ;sæLZZÚ_|áä䔕•ell¬t+pÄçóËÊÊD·Èo)ù{kÓ¦Í!CÖ­[7a„Ç¿ÿþûb Ö¯_Ÿ•••““cmmmmmíãã³bÅŠ’’’ÌÌLOOOv’|7?]Lee%}`dd$?>333ÓÐЛ˜òçŸBØ~tYhç®ØŸtf4ýÔ{tå ph™>ýôÓC‡Í;÷½÷Þc7:88BnÞ¼9xð`vã7!NNN <â¹sçÒÒÒ’““çÏŸÏnäÒãX[[;a„§OŸfgg‹v8ÑÜøûû³oß¾}óæMccãÎ;B~ýõWoooöÕ†ÏW£§§wòäÉ'OžˆŽí.jÓ¦r{nH[¼|ù²°°ÐÑÑ1*****ª®®nÛ¶mÑÑÑ;vìðôôT®d¹}ûvuu5ÍWTTäçç‹Ö9©¯¥ÄvxüøñàààÝ»w?žÝH§!K thhh˜‘‘qéÒ¥AƒB¼½½ëêêŽ=zõêU:„W½Ä²¡}Ʉåj>ŸßµkW:ã‡uöìY†aºuë&ÿ ´ÎóóóE7Ò¾FzþàR54Ž-“‘‘Qrrò„ ¶nÝÊntss³¶¶NJJš8q"ý©þ믿6oÞlccÓð‡é<gggvKjjjYYY½ÝK—.=uêÔ×_íîî.ºÝÕÕÕÉÉiÓ¦MãǧñGiii```uu5åjoo¿yóæˆˆ BHqqñ–-[T[ ÃDDDìܹ3!!aùòåìõͲ²²U«VɺÍ# i‹»wï8ðÃ?LHH „hhhÐHNSSSéV¥¸¸8))iÉ’%ôiBBBii©Ø„_ù-%¶C:Íùÿ÷ÃÂÂØׯ¿þš2`ÀÉ hjj2$--íñãÇtð«»»»ÁÚµkëàøÖ&lӦͭ[·jkk鹑}åÊZ \.Ϙ1cþüùÇŽ£ë½xñ"55ÕÏÏOêL¢ÜÜÜ:wî¼uëÖ9sæÐÃUUU%&&êëëÓ]áR54Ž-ÖøñãwíÚõÓO?±[´µµ“’’Æïææ& ÷íÛWTT´ÿ~mmíÎÇÇGOOoÆŒ'N´²²ºpáBFFFûöíÏ;wâÄ ºœŠ¤ãÇoÚ´ÉÅÅ…Çã‰.7èìììææ–œœ}üýý†IOO¿téÒ‚ DhHGëÒGçåå•––Ö±cGY=s4–Ú¾}ûóçÏ%—R¡aÆ%''1"88øÁƒ[·ne;Y¹\,ž:uêW_}5qâDÿíÚµ«¼¼œ] }Ïž=³gÏŽŒŒÜ¼y³Ø555·lÙâêê:sæL—ššzåÊ•Ï>ûÌÌÌŒãÑ”€ÀZ²mÛ¶‰­7f̘³gÏvéÒå믿þæ›oºvízþüy9=ÜY[[§¥¥uèÐá?ÿùORR’®®î7>ýôÓÒÒR9tRíõë×'ýÛž={!/^ìÑ£ÇîÝ»¿ùæ;;»“'O†……Ñ÷†„„dddôèÑãÛo¿Ý´iÓßÿ½{÷n•ס®®î©S§vìØajjzæÌ™mÛ¶;wÎÝÝýìÙ³´ÃOiJ·…––Ö‰'Þ{|œœ5kÖdffúùù?ÞÎÎN¹V£_¿~ééé%%%[¶lyòäIllì™3g$Ç’Êo)1«V­úúë¯y<ÞöíÛwìØ¡¥¥µwïÞ¤¤$Yy ñnûöíÙ‹øt¦³œîFððð“'O6ðÆõZ»víüùóoÞ¼ùÁlذ!000&&†ûÛ ³²²ÆŸššš˜˜Ø¹s第¬þýûÓW«ªªJJJ$×E§‚‚‚.^¼Ø³gÏmÛ¶%&&8qbîܹZ^‘¨œ““ÓÝ»wÕ‹æƒaHÓ; e5"£ÞÜ2øÀÊTTTÔ®]»†÷›‚(;;;WWW±¹ù UYYYYYYׄ—”’’’——Ç.5D‰îVû[Ghþ=±@ –––ˆAôôôT5¾}ûöÌ™3ªÐ@ãjE;ðšWàØ¼r ÍÖ… œ%WÇP#Ž À•bhUéÍú@-|||èhN€¦#¼s’=v’ŽˆÏš€mÛ¶©; д p„wކ‰b¡!û´IΕ‚É1 ¢]Œ óßÇô¢F€¦ #¨‰hìÈ>FÔЄ!p„¦†ŒR',³]’ VAMDâaCÃf·4@k‚ÀÔ‡Ñ(þ#%'Y# P7Ž >bÓ«EˆvFbà#@Ó€åx@M¤†ƒb#E{Å:M¼sèq„¦Gj×£Øvxç8B“$2Š]¶FÔ &Z‚øøxæßŒŒŒúôé“’’RWW'5††F—.]&Ož|ñâEù»b…‡‡K=zBB‚@ èÑ£‡º«A5ìììBBBÔ‹ÿçååÕ«W/YY7n\ÓÉýúë¯ ÃìÛ·OÝi P™ GhòZÒ|êF.Ë„ bccccc-Z4räÈû÷ïϘ1céÒ¥RÓÌ™3ÇÜÜüÀƒÞ¹s§¬]‰1b„äAoß¾çìì¼bÅ u×o2hРøøx•ìŠÇãñx<úøÊ•+!!!·nÝz—e;¨h~ï(Í×ëׯgÍšemm­¯¯?hÐ ±?ÌJ¬Ð®š…ÊuãÆñãÇ›››ëëë»»»'%%ÕÔÔЗª««ù|¾Øß·íÛ·WwùZ8LަŠ]š‡] GêM®AÄܹsÈ>}þüy¯^½’’’bccÍÌ̤¦¹sçNppð|0pàÀîÝ»ËÚ•………„Õ«W2DÝÐT\½zõüùóªªÌÌLöñóçÏ>¼`Á‚wY±ƒŠæ§ñŽÒL•––º»»?~ü844T ¤¦¦œ9sFj­üÄ íªQ¨\<ðöö®­­ ±¶¶>}úôÂ… Ïž={èÐ!BÈo¿ýV[[ëááaooϾE___ÝEláÐãêSo(¶XOËèz|‡¥033›0aBmmm^^ž¬4]ºtÙ½{·P(üøã•;ŠP($„èèè¼³rÉWUUÅ^¯Wmmmmm­ª]SSsêÔ©Õ«WûûûsÏCË Pµ·àLnÞ¼¹°°ð‹/¾øî»ï¶lÙ’Í0Ì¢E‹”H¬Ð®8ª««Sá ÿªháÂ…¯_¿>}úô®]»Ö¬Y“““3mڴÇŸ>>·oßÍÆçŸnll¬¥¥Õ£GeË–UUUI-c^^Þ˜1c¬­­MMM~þùgYµñòåKÿøøøââbùõª©©ùæÍútß¾} ÃôìÙ“MË0ÌÕ«W !>>>´3&22’Žðööfk›rþüùÀÀ@@`eeõÁüý÷ß²Ž+§,²j^ò l~­v9-(µhòkþìÙ³~~~&&&]»v]¼x±¬æSâÜ6Ù¶m[ÂÍÞ½{-,,¦L™BŸÚÛÛ‡††fee={öLÑÄ íŠÔ÷鈉‰Ù¹s§@ àóùVVV³gÏ=O¸W&!äòåË#FŒ077»F¬©©©ò*ÊÈÈ4hPŸ>}Ø-sçÎ%„\¸pü8vîÜ™cë€jAÕÕ…fB¡ÓïÝž«Òˆ´SÕ«WBÎ;'ºñÅ‹–––EEE²ÒPsæÌ!„uêTccc.‡×¯_3 !ºñûï¿'„>¾¶¶VrWoÞ¼áñxS§Ne·LŸ>] ÐÀ×ÞÞÞÑѱººš¾TRRÂçógÏžMŸÚÚÚjiiåççÓ§6l „¸¸¸TUUÑ-žžž„ÒÒR6ô·‡Z¼x1!„Æ%làXYYéààЫW¯òòršìíÛ· °··¯©©‘ÓõŽOŸ>%„ÄÆÆÒ§=zô sÒéogII‰††Æ´iÓè«¢Ú±cÇ!™™™l© !GŽ¡Okjjœmll$(¿,òk^ì b#÷j—ß‚¢G‘ŸÛ·oßÚØØXXX<}ú”¾ZTTdii)'pTèÜP:p¼wï!$&&FtãéÓ§ !;wîT(±B»ª·néyÂF`uuu=zôèС­Xî•YQQaiiiiiùìÙ3¶]¼¼¼LMMií©¶Š$½|ù²oß¾<ïÞ½{B¡000PWWW´?ØÙÙùÊ•+\r"#w˜И¤Nè½1·J‰^œâóùNNNË—/ç2Û€‘y9a„:ˆn¡¿=òåææþöÛoÉÉÉ€n´ëñúõëôz“……ÅÊ•+54¤Œ“ÑÐÐ`æüùó=²±±!„¤¤¤ÐÎ9BÈ¥K—tttøüÿ~k½|ù’R^^ξ½oß¾]ºt¡i'bxx8{ùlÈ!çÎ+//700 VµjÕªíÛ·ÿðÃ&L`7^½zµ  àûï¿×ÕÕ¥[´µµ£££#""rssE/Ÿ)ÊÊʪgÏž„W¯^ååå}ùå—ÑÑÑYYY!!!ÙÙÙuuu´[¨^ŽŽŽ£F¢y<ž««kzzºd2ùeéÞ½»œš—{µ×Û‚s[SSóèÑ£ÄÄDÚmLOªyóæ-[¶¬á™”SÒšššãÇËzuôèÑ´,†††¢ÛŒŒØÂŠ’ŸX¡]Ÿ{{û±cÇÒÇ ÃôêÕëÇ$„äæær¯Ììì좢¢5kÖ˜››³í²dÉ’‘#G8p`êÔ©ª­"1™™™ï¿ÿ~aaáöíÛ!………uuuñññtìÇ?þœ——G÷ #€‚”˜Ý"ë-Šîª¾@óܹs§B‹yòä !Dtf"÷YÕ¢ !bƒéн‚‚i999I !ºººÉÉÉ‹-²³³ëÖ­›‡‡G@@Àðáõ´´!mÛ¶ÍÉÉIOO¿sçNAAÁ­[·Äe²Ñ*!„Æ’[Xݺu£»¥ôôôœœœîß¿/š†vFDDDDDˆeõñãÇ  !‰‰‰¯^½¢µC† ñôôÌÊÊ"„dffòùü¡C‡rÙ½ªÈ’µPN½e‘Sóòq¯öz[cnéØÐÞ½{‹n—?×X¡sC–²²2:¢W*¡PH÷)6Æ´´´”bbb"5K²+´+.u+vž°ŸAÚȱ2>|Hd|Àé <ÕVëñãÇsçÎ=zô¨ƒƒÃéÓ§}}}éöÌÌLöÓ¦M{ûöíœ9sRSS§OŸÎ¥MA AMšïÂ:Êe[¬¼M¬ø×¯_§\7B"ÑICv‚ޱ±±œ=Ì™3gìØ±ÇŽ;sæLZZÚ_|áä䔕•ell}ú 6lÔ¨Q  ã«T…Ïç—••‰n¡aSbb¢äÚæ]»vmàáÖ¯_Ÿ•••““cmmmmmíãã³bÅŠ’’’ÌÌLOOOŽ]&ç³×[Y5Ï.äÔ@•••Ü[P~nÏž=K$N3Y¨$çô‘‘‘PîÇÖÌÌLCCCljÔŸþIaûó8&VhW\êVÖyB;)9V&í IéDuúÕVµgÏž™3gêëëïܹsÚ´il¯*!„^R5lØ0BH X ´)CàÍD³^Ä‘Íy“,BnnnvvvXX˜è7²rèõ£›7o<˜ÝxãÆ Bˆ““S½oùòeaa¡££cTTTTTT]]ݶmÛ¢££wìØáéé™–––œœ<þ|6½ÓÀY·oß®®®f»š***òóó½½½%‹c``àïï/úÆ›7oʹ8p ¡¡aFFÆ¥K— Dñöö®««;zôèÕ«Wé¨S’_95Og]4ܹs縷 üÜÒY´¿þú«h{]»vMUu%¶díG'.Uóùü®]»fgg‹n?{ö,Ã0ݺuK/?±B»R¨nÅ(T™´]òóóE7Ò¾FúWmBŽ=:yòä°°°;vˆ]à~ôèѱcÇ|}}éL Šv^ÒáÐH°À;!º†ySZ²  `Ò¤I ÃÄÅÅ5|onnnÖÖÖIII¯^½¢[þúë¯Í›7ÛØØpYµøîÝ»ýû÷ß´i}ª¡¡AÌ455élÑ_ˆÔÔÔ²²2¡²xqqqRRû4!!¡´´TìNƒ®®®NNN›6m*))¡[JKKcbbÚ´iÓÀºÒÔÔ2dHZZZnn. ÝÝÝ Ö®][ïG%#”_95߃ŠâØ‚ô(òsëææfoo¿yófv—âââ-[¶4°E¨6mÚܺu‹]ì0;;ûÊ•+ô1½+ M3cÆŒ‡Ò‰>„/^¤¦¦úùù‰.ŸÄ’Ÿ˜û®òéP¨2ÝÜÜ:wî¼uëV¶]ªªªõõõéjJª­"¡P¸dÉ’Ž;~ûí·bQ#!DWW766væÌ™ìÕŒºººÄÄD>Ÿïçç§’“¤j]=Ž< üᇤ. '*44ôæÍ›bÁùóçÕ]hžDפ$"qä;·}ûvú•]YY™———““SUUµmÛ6ÑÛÆ(M[[;))iüøñnnnaaaB¡pß¾}EEEû÷ï×ÖÖ®÷íîîîÝ»w_·n݃ºwï~÷îÝ'N˜˜˜„‡‡óx<==½3fLœ8ÑÊÊêÂ… íÛ·?wî܉'ͪ……E\\\NNŽ‹‹Ë… ÒÓÓ À®-GñùüäääÑ£G»¸¸„……UWW>|øÉ“'{÷îUÉ=÷éÚ"4päñx^^^iii;v”ÚûBþ¹Ð¿}ûöçÏŸ‹Îã©—ü²È©ù†T”ü;ŠœÜòx¼7†……õêÕküøñšššûöí«wíLކ –œœ...£ÿí½÷Þãr”V;E_1Jœ{ïðtmvÈeñE±uv†qttŒˆˆÈÉÉQtW¢D—ã¡rrrÌÌÌÌÌÌ~ùåö%Ñ%¥zòäÉ´iÓlll´µµ­­­#""ØUT²²²<<<ôõõ;uêU\\œ’’Ò¾}{É=Ókm)))ì–„„BÈüÁ&ÎÊÊ9¦ñ§× Z%¾ó[íÏzáÝ”j€f #@KÏü›‘‘QŸ>}RRRص¥ÄÒhhhtéÒeòäÉ/^”¿+Vxx¸Ô£'$$‚=z¨»TÃÎÎ.$$Dݹø^^^½zõ’•ÕqãÆ5ü¨Ñ¯¿þÊ0̾}ûÔ‘–• r ph, a¸üSá'L˜»hÑ¢‘#GÞ¿ÆŒK—.•šfΜ9æææy<]G–råÊ•[·n½ËB‰T4?w”æëõë׳fͲ¶¶Ö××4hØfÊ%4hP||¼ºK¦ž*bUWW÷ïßÀ€¢ëêê>ÿüs}}ý.]ºlذ¡ººZÝåké„ jŽŽŽêÎB¦’S®ñÏ[•4"ÖŸO.i¸X½z5!äܹs¢ÿøã ÷ÇÈJ“ŸŸïääÄ0ÌÍ›7åìJŽ#GŽBNŸ>­’‚4¶¶¶ÁÁÁJ¼ñþýûmÛ¶544|ï½÷âââè/œr»’…®ü™™Éf544´±+Dì Mó(W®\!„ìÝ»·±kC¾×¯_wîÜYKK+""bÞ¼y–––FFF¹¹¹ Iœ››«¡¡±zõêwVŠF­L…ªHÔ’%K!ýû÷g·ÔÖÖ>œa˜¥K—zzzB¦M›¦D®”øÎoµ¿õèq„f7äÆÌÌl„ µµµyyy²ÒtéÒe÷îÝB¡ðã?Vî(B¡¢£££îâþWUU•äŸd©­­­­­UÕ¡.\øúõëÓ§OïÚµkÍš5999Ó¦M;|øðÉ“'Õ]+N¡joÁ™Ü¼ysaaá_|ñÝwßmÙ²%;;›a˜E‹)‘¸¦¦æÔ©S«W¯ö÷÷WU¶ëêêTx¿ƒ*b¥§§'&&òùÿZCð›o¾9~üøÎ;<¸nݺììì°°°¯¾úª  @½elÙ8´d4ª“íÆÝÝ}àÀTâ¢jdddpp0!ÄÓÓÓÎÎŽn¼téRPP¹¹¹¥¥ePPÐ¥K—Øôvvv111W®\qqqqqq‘ÜaEEEBB‚³³s›6mlll¢¢¢þøãöÕ¤¤¤ž={êé陘˜ôë×ï»ï¾Ýóüùó/^lhh¨££Ó¯_¿ãÇ×ÔÔ,_¾ÜÙÙÙÐÐÐÇÇçöíÛ¢Ùøüóϵ´´zôè±lÙ²ªª*©eÌËË3fŒµµµ©©i@@ÀÏ?ÿ,«6222 Ô§OvËܹs !.\Kª©©ùæÍútß¾} ÃôìÙ“MË0 ½a•SIG x{{³µM9þ|`` @ °²²úàƒþþûoY9”SY5/yP6?ŠV»œ”Z4ù5öìY???“®]».^¼XVó)qnˆ ŒŒlÛ¶-áfïÞ½S¦L¡OíííCCC³²²ž={¦hâ—/_úûûÇÇÇs9´üOGLLÌÎ;ŸÏ·²²š={¶èy½2 !—/_1b„¹¹¹ØhMMM•WõüùóÉ“'GEEuèÐAtûÿüÏÿØÚÚNŸ>ݲoß>¡PèààÀ±½@êîòlZm÷5'ª:åùÔm—ª_¼xaii©¡¡QTT$”{ zΜ9„¼T}óæÍ>úˆ²qãÆ¬¬,¡Pxøða>Ÿß¡C‡ ÄÄÄtìØ‘Ïç>|˜¦·µµ;v¬‰‰‰Ýûï¿/¹Ãˆˆ†aüüü>üðÃÑ£Góx¼~ýúÑ—V­ZEñõõ_±b…³³3!äÇd÷lbbÒ¾}û5kÖ¬]»V èèèxxxôíÛ7))iöì٠ø¸¸°‰­¬¬!AAAË—/÷ññ!„ 4¨®®NøïKÕ§NÒÑѱ³³‹]²d‰ƒƒÇÛ³gdΫ««—-[–šš*ºñСC„µk׊%NII!„¤¥¥‰Ö?Ã0þù'ÝÒ»wosssšoooWWWZÛt Û† hmÛÚÚ:::EGGoܸÑËË‹"µbë-‹¬š—<(›E«]N JE~n8ÀãñLMMgÏž=wî\sssGGG"ãêª¢ç†ØÕÿ©S§sù8¼~ýša˜ˆˆÑßÿ=!äàÁƒJ'¾sç!Dþ¥êz?Ý»w×ÒÒš3gÎþóŸ   BHTT”•™žžÎ0Œµµõ²eË>þøc777Bˆ››m&ÕVUWW7lذ.]º”••ÙÚÚ²—ªß¾}«¥¥5yòäÊÊÊóçÏïܹóÔ©SoÞ¼áÒR’p©š;Žª×jO¦ú©0ÚCàøo4Ú›8qâ²eË–-[¶téÒ©S§¶k׎2oÞ<Ñ4R#ÂuëÖB~þùg6™$OOO©‡>|ø0»ÛÊÊJ;;;[[Ûââbújqq±½½}ee¥P(´µµ%„ÄÇÇ×ÖÖJîêÍ›7<oêÔ©ì–éÓ§ øÚÛÛ;::VWWÓ—JJJø|þìÙ³éS[[[--­üü|útÆ „—ªª*º…Ž*--e³!Ï-^¼˜Bã6p¬¬¬tppèÕ«Wyy9MööíÛØÛÛ×ÔÔÔÛ(/_¾ìÛ·/Ç»wïžØKô§±±±ôi=èœtúÛYRR¢¡¡ÁÕ Ô$Ç8BŽ9BŸÖÔÔ8;;ÛØØHfF~Yä×¼ØAÅGîÕ.¿E"?·oß¾µ±±±°°xúô)}µ¨¨ÈÒÒRNà¨Ð¹¡tàxïÞ=BHLLŒèÆÓ§OBvîÜ©tb.c½ŸBûWM]]]=:tè@+–{eVTTXZZZZZ>{öŒm///SSSZ{ª­"jýúõÚÚÚW¯^¥aÇß~û2eÊÑ>~kkkîã³E!pä·h9D/Nñù|''§åË—/X° Þ72cF'L˜ vUˆþöÈ—››ûÛo¿%'' ºE ЮÇëׯÓïw ‹•+WjhH'£¡¡Á0Ìùóç=zdccCIII¡s„K—.éèè°ƒœ^¾|I)//gßÞ·oß.]ºÐÇ´1<<œ½|6dÈsçΕ——ÐŒ‰«ZµjÕöíÛøá‡ &°¯^½ZPPðý÷ß³÷ÕÖÖŽŽŽŽˆˆÈÍÍý¹’”™™ùþûïnß¾]ò™••UÏž=322!¯^½ÊËËûòË/£££³²²BBB²³³ëêêh·P½GEóx}Ú××Wj²ÀÀÀÄÄÄW¯^Ñ’!C†xzzfeeB233ù|þСC¹Ô9½ªÈ’µPN½e‘Sóòq¯öz[cnéØÐÞ½{‹n—¿´¤Bç†,eeetD¯TB¡îSlŒiii)!ÄÄÄDj–8&®W½u+vž°ŸAÚȱ2>|Hd|Àé <ÕVQiiixx¸ŸŸß¼yó$÷F£üN:íÝ»—ž¨Ã‡OLLœ¿¬¬Lt ý5JLL”\Û¼k×®Rw²gÏž™3gêëëïܹsÚ´ib“@E¬_¿>+++''ÇÚÚÚÚÚÚÇÇgÅŠ%%%™™™žžž´¦^ç³×[Y5off¦’ê­¬¬äÞ‚òs{öìY"qšÉúkD%9§ŒŒŒ„r¿sÌÌÌ444Äæ²üù矄¶?O¹Ä ¯[Yç =E9V&í IéŒoúÕVÑÎ;pà@Ñ?o蟻ùùù U (#4Ã0ê| rssé2r¢Žè5Ù›7o<˜ÝxãÆ Bˆ““S½oùòeaa¡££cTTTTTT]]ݶmÛ¢££wìØáéé™–––œœ<þ|6}CÖÖ¾}ûvuu5ÛÕTQQ‘ŸŸïíí-YÑ7Þ¼ySjø{ôèÑÉ“'‡……íØ±Cìbœ¤fdd\ºtiРA„ooﺺº£G^½z•Ž:U!ùe‘SótÖEÃ;wŽ{ ÊÏmçÎ !¿þú«h{]»vMUu%¶ö »¶K½×aù|~×®]³³³E·Ÿ={–a˜nݺ‰¥W(± ëVŒB•IÛE,,£}ô®Ú*¢“»7oÞ,ºñÕ«WË–-óöö···/**}•†¤ ÿäÀr<­ZAAÁ¤I“†‰‹‹køÞÜÜܬ­­“’’^½zE·üõ×_›7o¶±±ár“º»wïöïßÓ¦Mô©††ý1ÓÔÔ¤³Iè\Q*55µ¬¬L¨l¯sqqqRRû4!!¡´´TìNƒ®®®NNN›6m*))¡[JKKcbbÚ´i#¶C¡P¸dÉ’Ž;~ûí·õF´PC† IKKËÍÍ¥£»»»ÁÚµkëà¨Äª~òË"§ærPQ[E~nÝÜÜìíí7oÞÌ.àR\\¼eË–†dÕ¦M›[·n±‹fggÓÕ°É?×ae¡if̘ñðáC:чòâÅ‹ÔÔT???Ñå“X %nxÝJ¥Peº¹¹uîÜyëÖ­l»TUU%&&êëëÓÕ”T[E~ø¡Ø´ vrÌ™3g!ï½÷^FFí¦'Ϻuë444† ¢’“¤B#¼;Œj¯VƒR¶oßN¿²+++óòòrrrªªª¶mÛÖ½{÷†ï\[[;))iüøñnnnaaaB¡pß¾}EEEû÷ï×ÖÖ®÷íîîîÝ»w_·n݃ºwï~÷îÝ'N˜˜˜„‡‡óx<==½3fLœ8ÑÊÊêÂ… íÛ·?wî܉'ͪ……E\\\NNŽ‹‹Ë… ÒÓÓ À®-GñùüäääÑ£G»¸¸„……UWW>|øÉ“'{÷î•J˜ŸŸçÎgg稨(±—ÆŒ3räHÉ<ÒõzhàÈãñ¼¼¼ÒÒÒ:vì(«Ï‰ötnß¾ýùóç¢óxê%¿,rj¾!åãã#¿ÅŽ"'·<oãÆaaa½zõ?~¼¦¦æ¾}û8.vX¯aÆ%''1"88øÁƒ[·ne{—ë½K™:uêW_}5qâÄ9sæïÚµ«¼¼œ½[àúõë×­[÷駟Κ5«ÞÄ*¬[9ïÕÔÔä^™ššš[¶l quu9s&ÇKMM½råÊgŸ}F‡4¨¼Šä›={öþýûýüü&NœØ¡C‡'N\¹reÉ’%R׈•Q÷´î¨µMÑ'„¹ýSñùÖ˜go3]ŽGþ:bëì0 ãèè‘““£è®D‰.ÇCåä䘙™™™™üòË/ìKõÞÍïÉ“'Ó¦M³±±ÑÖÖ¶¶¶Žˆˆ`WQÉÊÊòððÐ××ïÔ©STTTqqqJJJûöíýýý%÷L¯µ¥¤¤°[!ôî‹4qVVÖàÁƒŒŒºtéûöí[©™ÌÍÍ>|¸¹¹yÛ¶m½½½O:%5çôÖ‹R%$$È*,!¤}ûöì–ÄÄDBÈÌ™3E“‰.SWWnhhèææ&”¶v̤I“¬ê•S95/vP±åx¸W»ü;J½5öìÙ¡C‡ÒɳFFFû÷ï'²—ãážÉòòòùóç[YYÑa¡¡¡ñññ—ã¡JJJf̘áàà FŽ)z3=úáJNNæ’˜Åe9…>B‰5†¸W&m—‘#GvèÐA  :ô§Ÿ~â^9JT‘XSŠÞrP(¾|ùræÌ™Ýºu344ôððøî»ïÍ …åx¸c„ê˜^в999ݽ{Wݹxw¸qdþ™<¡ª7Þä•4"ÇéÒMarLkcggçêêJ{û ¹+**j×®—.m…”•••••™ššª»|ïT#UfÓ§Äw~kû­gáR54[ê›XÍ5ƒˆ]­ZåôôôôôôÔ]¸w­‘*ZLŽNÐã­N`` —ဎÐêlÛ¶MÝYh–p©8AàÍïGà#p‚À8Aàœ pN8B3‡‰Õï Gh;4>ŽÀ GhZýëøøxæßŒŒŒúôé“’’RWW'5††F—.]&Ož|ñâEù»b…‡‡K=zBB‚@ èÑ£‡º«A5ìììBBBÔ‹ÿçååÕ«W/YY7n\ÓÉýúë¯ ÃìÛ·OÝi™P½ÀBàÐrL˜0!66666vÑ¢E#G޼ÿþŒ3–.]*5Íœ9sÌÍÍ80xðà;wÊÚ•¨#FHôöíÛqqqÎÎÎ+V¬Pw¨ß™3g|||LMMÛµkçééyèС†ï“Çãñx<úøÊ•+!!!·nÝz—…;¨h~ï(-ÉëׯgÍšemm­¯¯?hÐ ±?Õ”K\]]Ý¿ÿ¨»pj¨¢üüü1cÆtìØÑÊÊjܸq999tûýû÷eýÑëãã£î"¶|ug@q²:E· …êÎ¥´ Ò¨Ùš;wîÀÙ§ÏŸ?ïÕ«WRRRll¬™™™Ô4wîÜ þàƒؽ{wY»’£°°²zõê!C†¼ËÊl‚ÒÒÒ†noo?iÒ$]]ÝÔÔÔ1cÆüÏÿüOTTTCv›™™É>~þüùáÇ,Xð.Ë%vPÑü4ÞQZŒÒÒRww÷LJ†† ‚ÔÔÔ€€€3gÎHíµåžxåÊ•¿üòKÿþýÕ]¾w]EÙÙÙ~~~ÆÆÆááá<oß¾}~~~GõõõÕ×ן4i’XúŠŠŠØÙÙ©»”-Gxw„äŸØ®Q½0-ºɧM;veff6a„¤¤¤¼¼<6pÓ¥K—Ý»w÷éÓçã?Vî:”P($„èè輫bÕ£ªªŠÏçkhpºœR[[KQUÿÙòåËÍÍÍsssŒŒ!+V¬èÚµk|||ÇfA¡joU™Ü¼ysaaá®]»Þ{ï=BÈüùó{÷î½hÑ¢ŒŒ ¥§§§'&&òù*ø¯«« …Ñ…ÜU$ §OŸnddtýúuú¶råÊÞ½{/^¼ø×_533ûöÛoÅÞ²xñb ‹ÄÄD5°…iÒrh„BÕôÊÔÈ0âAdëF£ºêêj9iÜÝÝxðàÁššE÷Lñôôdÿ¦¿téRPP¹¹¹¥¥ePPÐ¥K—Øôvvv111W®\qqqqqq‘ÜaEEEBB‚³³s›6mlll¢¢¢þøãöÕ¤¤¤ž={êé陘˜ôë×ï»ï¾Ýóüùó/^lhh¨££Ó¯_¿ãÇ×ÔÔ,_¾ÜÙÙÙÐÐÐÇÇçöíÛ¢Ùøüóϵ´´zôè±lÙ²ªª*©eÌËË3fŒµµµ©©i@@ÀÏ?ÿ,5Yeeå­[·FŒA£FBˆžžž——×Ó§O+**憆jjj¾yó†>Ý·oÃ0={ödÄÆÆ2 sõêUBˆíz‰ŒŒ¤£¼½½E{PΟ?(¬¬¬>øàƒ¿ÿþ[V{É)‹¬š—<(›E«]N J-šüš?{ö¬ŸŸŸ‰‰I×µ·· ÍÊÊzöì™r‰Ÿ?>yò䨨¨:È?´üÏKLLÌÎ;ŸÏ·²²š={¶è™Ã½z !—/_1b„¹¹¹ØbMMMÕVÑo¿ýVPP0}útö/acc㘘˜ÜÜÜ7nHî9'''))髯¾j×®Ò-â„ jŽŽŽêÎÂ;Erû§úóÝ!} ºý«¼‰ŒÇª²zõjBȹsçD7¾xñÂÒÒRCC£¨¨HVjΜ9„ÈO&éæÍ›}ô!dãÆYYYB¡ððáÃ|>¿C‡ ,ˆ‰‰éر#ŸÏ?|ø0Mokk;vìX;;»÷ß_r‡ Ãøùù}øá‡£Gæñxýúõ£/­ZµŠâëë¿bÅ gggBÈ?þÈîÙÄĤ}ûökÖ¬Y»v­@ ÐÑÑñððèÛ·oRRÒìÙ³†qqqa[YYB‚‚‚–/_NÇ? 4ˆö¾ØÚÚÓ”§NÒÑѱ³³‹]²d‰ƒƒÇÛ³gdΫ««óòòþøãÑ-={öìÙ³§dâ””BHZZšhý3 óçŸÒ-½{÷677§ùñöövuu¥µOÙ°a­m[[[GGG##£èèè7zyyB¤Vl½e‘Uó’eó£hµËiAÉ£ÈÏíx<ž©©éìÙ³çÎknnîèèHÙ»w¯dÁ=7BCCEß>uêTccc.I¯_¿f&""Btã÷ßO9xð ‰ëêê† Ö¥K—²²2[[ÛþýûË:t½Ÿ—îÝ»kiiÍ™3ç?ÿùOPP!$**J‰êMOOgÆÚÚzÙ²eü±››!ÄÍÍ6œj«ˆ“HJJÝxàÀBÈîÝ»ÅWTT888L:•KK)ñßÚ~ëYU¯µL9åTÆcU¡ÑÞĉ—-[¶lÙ²¥K—N:•þ‘=oÞ<Ñ4R#ÂuëÖB~þùg6™$OOO©‡>|ø0»ÛÊÊJ;;;[[Ûââbújqq±½½}ee¥P(´µµ%„ÄÇÇ×ÖÖJîêÍ›7<Oô‹~úô逾öööŽŽŽÕÕÕô¥’’>Ÿ?{ölúÔÖÖVKK+??Ÿ>ݰa!ÄÅÅ¥ªªŠnñôô$„”––²ÙX»v-{ Å‹Bh\ÂŽ•••½zõ*//§ÉÞ¾};`À{{ûšš9Íñõ×_ÇÅŹ¹¹µoß>==]2ÁÓ§O !±±±ôi=èœtúKYRR¢¡¡1mÚ4úªh vìØ1BHff&[jBÈ‘#GèÓššgggÉ#Ê/‹üš;¨XàȽÚå· èQäçöíÛ·666OŸ>¥¯YZZÊ :7T8Þ»w#ºñôéÓ„;w*‘xýúõÚÚÚW¯^¥Y•8Öûy!„¤¦¦Ò§uuu=zôèС­jîÕ[QQaiiiiiùìÙ3¶¥¼¼¼LMMi}ª¶Šh/ø¸qãD7Î;—’˜˜(–xݺuºººOž<á’ ŽÜaŒ#4ì5kɱMƒØ¸ÆÆé(z)ŠÏç;99-_¾œËlFâºÿ„ Ä.„Ñ_ùrssûí·ääd@@·Úõxýúõ>}úB,,,V®\)uœ™††Ã0çÏŸôè‘ !$%%…vÎB.]º¤££ÃŽëzùò%!¤¼¼œ}{ß¾}»téBÓNÄððpöbÙ!CÎ;W^^n``@3¶hÑ"ö½«V­Ú¾}û?ü0aÂvãÕ«W ¾ÿþ{]]]ºE[[;:::"""77—Gª?þ˜Îòóó£ceeÕ³gO:„ëÕ«Wyyy_~ùetttVVVHHHvvv]]íª—££ã¨Q£ècçêêšžž.™L~Yºwï.§æåã^íõ¶ ÇÜÖÔÔèС\êœ^CdÉšåPoYäÔ¼|Ü«½Þä˜[:6´wïÞ¢Ûå/-©Ð¹!KYYÑ+•P(¼ÿ~çÎÙ-»ví¢(6ꔆ8&&&R3)+qiiixx¸ŸŸß¼yó¸ä¶ÞÚ;sØO%íäX½>$2>òyyy\*M~©%ß²}ûö’’zi…3..nõêÕÆÆÆ¢ÉÖ¯_ÿöíÛØØX.u AàûØÄ&hÓ>*QY‹ïrzu½®_¿N&6p?B!:ÿ¯V ¡ ;AGìû]Ìœ9sÆŽ{ìØ±3gΤ¥¥}ñÅNNNYYYÆÆÆcÆŒIKKëӧϰaÃF5`À:šJUø|~YY™è6%&&J®mÞµkWù{kÓ¦Í!CÖ­[7a„Ç¿ÿþûb Ö¯_Ÿ•••““cmmmmmíãã³bÅŠ’’’ÌÌLOOOv’|ç³×[Y5/k>¾¢*++¹· üÜž={–Hœf7Wº²²’>022ʽ aff¶{÷nöé€ÌÌÌ444Š‹‹E“ýù矄¶?OôírïܹóÁƒÁÁÁôR;!äõë×µµµëׯ·¶¶[œŸKmË:sh'%Çê¥]Âb!)½é} —Jã^E„:üãâÅ‹tbµ§§'=¬­­Ù4oß¾ýꫯƌ#5ô„BàC%Ñ/#ö"uÓ»NÝôåææfgg‡……5|uBÈÍ›7Ìn¤³œœê}ûË—/ £¢¢¢¢¢êêê¶mÛ½cÇOOÏ´´´äääùóç³é•˜κ}ûvuu5ÛÕTQQ‘ŸŸïíí-YÑ7Þ¼yS2ü=~üxppðîÝ»ÇÏn¤³q¥þp8ÐÐÐ0##ãÒ¥Kƒ "„x{{×ÕÕ=zôêÕ«tÔ© É/‹œš§s,îܹsÜ[P~ni¯Þ¯¿þ*Ú^×®]SU]±7[¢h?:áp©Z__âĉbÛ»víš-ºåìÙ³ ÃtëÖM,%ŸÏ—“øúõë„Í›7‹¾úêÕ«eË–y{{‹Ž Õ¶…ª—¶T~~¾èFÚ×H?òõVšüRK¾åúõ놆† `?ÿù矆ñðð`ÓüðÃýõ×ôéÓ¹”…åx‘œXYØ€ ß*TPP0iÒ$†aâââ¾7777kk뤤¤W¯^Ñ-ýõ×æÍ›mll¸Ü¤îîÝ»ýû÷ß´i}ª¡¡Aº455él:3”JMM-++*û§BqqqRRû4!!¡´´TìNƒ®®®NNN›6m*))¡[JKKcbbÚ´i#¶Ã~ýúBþ÷ÿW4K_ý5!Dêí=455‡ ’–––››KGwwwƒµk×Ö;ÀQ,²áB~YäÔ|C*Šc Ò£ÈÏ­›››½½ýæÍ›ÙåZŠ‹‹·lÙÒì±Ú´isëÖ-ºÀ'!$;;ûÊ•+ô1½ê*‹¬Θ1ãáÇtê!äÅ‹©©©~~~R—¤–“øÃ?›£ÀNŽ9sæŒrµ-•BÕëææÖ¹sç­[·²-UUU•˜˜¨¯¯O×WâRi UÑÌ™3{öìYTTDŸæççïÞ½{øðátúõý÷ßán1=Ž­ËöíÛéteee^^^NNNUUÕ¶mÛDo£4mmí¤¤¤ñãÇ»¹¹……… …Â}ûöíß¿_[[»Þ·»»»wïÞ}ݺu<èÞ½ûÝ»wOœ8abbBo¡§§7cÆŒ‰'ZYY]¸p!##£}ûöçÎ;qâD`` ¢Yµ°°ˆ‹‹ËÉÉqqq¹páBzzú€Ø•ä(>ŸŸœœ>>ò[Pì(rrËãñ6nÜÖ«W¯ñãÇkjjîÛ·OìZ§Ò† –œœuꔬÌ×ÕÕ}ýõ×}ûömÛ¶-½WµÔÕaD Kiß¾=»…ÞßbæÌ™¢ÉD—¿©«« 744tssJ[;fÒ¤I@Öå”ENÍ‹Tl9îÕ.¿ÅŽRoÍŸ={vèСt0€‘‘Ñþýû‰ìåx¸g²¼¼|þüùVVVt_hhh||¼ÒËñP%%%3fÌppp#GŽÌÍÍe_¢·ääd.‰%Ë%g9…>/B‰U‡¸W/m©‘#GvèÐA  :ô§Ÿ~jÔ*:uê-šµµuTT»ú)uâÄ BÈúõëÊ–ãáŽbL˜ª999ݽ{Wݹxw†áx12{©**਒Fäx%ŸÀwÏÎÎÎÕÕ•ööAsWTTÔ®];.]Ú )+++++“œßÚ4Rõ65J|ç·¶ßz.U4D„ï€èà6ÒÓÓÓÓÓSwáÔ¯‘ªš/ŒNÐã-ES½m 4A\n„b8@«³mÛ6ug YÂ¥jà#p‚À8Aàœ pN8'¡¡K9@ã@àœ`p霜œÔ€¦#€wïÞUwš\ªN8'€ŽÐ²`E€FƒÀ8Aàœ pN8'€ŽÀ Gà#´8XÊ q pN8'€ŽÀ Gà#p‚À8Aà-–rh€ŽÀ Gà#p‚À8Aàœ p„ +ò¨Gà#p‚À8Aàœ pN8'€ŽÐra)G•Bàœ pN8'€ŽÀ Gà#´hX‘@u8'€ŽÀ Gà#p‚À8Aàœ p„–K9¨Gà#p‚À8Aàœ p„ÖócŒ¯î @ëÂpà„B¡º3 ÿ‚ÀÞ-ŽÑ jûéŠ< CŒ4.UC+€ëÔª€À±{ölÊ”)}úô­î25?Íå:µPäß¿žþ³*ý´ÐºµðÀ‘Ïçÿ_{÷,UYøqüyS@½\BAŒ¯ÊÈ^S¯"%Š¡0)% jd(aƒSâ(Jš?JÇœF*HE'5¥éNaމ’N)S9ä/FHQäG1WA3À•ë0Þû|ÿ8{Î>ç÷³»g÷œ³û~͆{î³gŸsö×gŸ_§¥¥Åß²¸wï^!„3ÏÚÄØ±c…›7oNû˜².p!žbv”t‘c …ƒÞ½{·•Û¶m³þä/¯”êîîö¯ÔÓ»wo!Ä!‡’öå•ÊóŸ­FGš\ãlj'vww?÷ÜsÎ¥ÔªU«Z[[ÛÛÛýå;;;Gu饗z¶¯[·NÔxLC4ÇŬû]üSÞRH›þÿ@i×€$5~pœ6mZ¯^½î½÷^k\£bÑ¢E»víºð 8àkË'Ÿ|²mÛ¶íÛ· !Ž>úèSN9å•W^yì±Çœ¬[·®££cèСçœsNÚT½ÚT©TØO~[…§Ñ1x,¤ï€Æb|Ź<ëèè˜?þ‘G9~üøÎÎÎÕ«W5ª££ÃY¦gÙ²e?øÁFŒñÔSO !Þzë­Ë.»l×®]£G>|øŽ;Ö¯_߯_¿ûî»ïË_þrìݵµµU6«:©@'c:…µûIâ’ƒRšöâJaݳgnµrþ讣iÅy{ŽB*¡|Í…þ1G.E3¼¾  UüYŸwßâ(„˜5kÖwÜqÌ1Ç,[¶ìƒ>˜1cÆâÅ‹ý‹;:FŽùÄOL:u×®]+V¬Ø³gÏÔ©SŸzê)“ÔØ˜ž¨'äì.Ðãg5:ÊØ¼@ƒjŠÇ:kÀÇÈ–ßâhQvM¤ö«^Ç̵8ZÛ­åÀŽ™GhP´8u&óÕÜhQRE‹# I‘.'‚5Àœr\ƒ_r0Gê•›²“ÏB:©3ƒfE<ŽHÓg¡ÎkY 2% 9ÑUTxbvÚAãɸX @£"8"#¤6Ï:ëhq4'‚#ê/¬?:©€¦EpDÖd=>fºrÔÁ1šiJuôô—,ÔcV5êh@.'ù UàJ}d]ÕÈ$™ÝoXŽдŽ@Í(!³±ž9‰ 85Ch4‚có`Â2¨ Á1}: G lR1?ÐŒŽÈ$–ã {Ž0BpD©r×q¤ß€: 86‰Fž“Jj” {:EpD¤„¯7h¬Ì;U4:P{Ç”5rK`åd]ÕŠy4Ô Á ‚FGjàÔ m¡€ÆBpDÎÉR¯výc–—B „àØ *HYæš8i±òbëJh4‚#²ã##¨‚#GýScÌE«¥äX@!8¦)Ókñ8+8æ¤ÃÚbOót dUŸ´+€, ˈúöÌ/›Öî˜JLWBI!™"h Gøx¢¡ók~š•;&¦6öQ»ª£;¬‰•€¼ 86¼rÚœ¾i³bZ×4¨sX(³¶;•Vµit”v£bpí„BD4:2#Gø(UŒ‰ú0Çl¦F!„”ÑÌÂ@R:¬É1h|)®@#!8¦& -aµÌwÐ’Úé²Ó®U!8ÂÇ ‹Ö¿V‡µÈ}‚t®.S‹³šc©dG@¾1ÆAôs¸š£ÅÓ¦¶Ä#0D‹cc«¨?¥º2±“c<Òê’ö÷M—¶‹ØeŒÒf @%˜U]oÄ„ìð?V‹£j& Ë”ó© G:Zeiƒä-Ž©!AfVXÓcq{\·r9©ÑÞ•Š É4@늰˜Ñ…“HéÖÎ0ÇrZ…ˆœa͂ဌ «:Vd¡‡2ûüM*dô§’e…EI:ä-ŽõSßæF7£¬®®üb54FϘ±næDF.!h`Ç41¥6-þs.¥Œí¹.öV‹ñ0ðf4=²$8 ûŽuR}@”ÑcìT\rî© ×â ãäÅRÓcÔy®jÙqÇ”•×è»&  =¦ s¯Ôãψö%Ë›ãÙÙ]Çz¨wtñþÕ žL-eøé•Ìz40fU×[À¢Ó‰ Rc=8“ã-‰=ŒÊ¾è YCp¬9¦¿ä”ÙÚžøXÜRåÜj²# ›èª®ù+rKÖnf<ƒDp¬9Ï'Ö ™R­‘eœ ç•It$;²†à؈²Nó!¬ŸZ ÏéUîÅÝs«ãïGZ7 +KŸ5 ;Ž@²œøhÒèè\pFª ÖM'5ÆÆG&u@pª–­)2 „9“kZ%õÁ¬êº¢¹™¯7SýŽ˜d È‚#P±ú­õMvd]Õ@5bZ­Å Íû¬]ók¼÷Ä$k@ʎаOy⚥Hö|’颫¨­²šc'cÓg HÁ¨¹D¦È”öFv¤„àX?L©F(¥ô§G줲# G ¤öÅ c –&ÐõFpjF9—TVouhŸµRJà}­kEv¤„YÕ°1¥º–¬)2&e¬¡—£ñ.fG®I¨‚#P3î,î47ÄG_j·ã£²ó`±‘Q»zµ«Q’kꀮj ~*¸zµ*†Heõ|+¡¬aÿ_øú¬ ‰€!8Ù¥Ü×’ÑgÏxAj}Öu¼" ÉÐU]'¬ÅÓœôÙ0Îå=Mö£?Â'ÍXÙ‘' VŽ@ ^«ÚúÕµ]©ˆ6BÏŸô黕r.tH„$Žà!SªkÈib”î‰2®4)¥ ?ÿaÐî’Vzw¶Éõ¬õò˜#85§gGd5ô–EiÿëdÇÀÄYî HYÎõ_? ¡šs¢Œc¬²zœµ©â.ZXΞ ã`¢—ädÁ¨“ R£)‹‹òØwäü¡"õ•–>q:¸éË"8ÖÓà4::Mæ}ÖqISEüAjìVF¥íYi)“öB@ ‚#PsÑ05Æ’ö4ê°›[ŽÊý£šä @GpRø,™ÈöB%ÜùÒ³Š8é`ˆàÖâIGrÙQÙ×$ ¹#­ Q/Tèü©ô¯³E+Iï5@GprÏp¤²›•P®Ev”²¾<s¤çOØŽ@jit,w¤sUk×-­Hi52*÷´ìJ«G'84ž^iW@½)á¹²Œ'ãIûGÅ\à0\¹ËŒràXs´» BmVvôœÔPÌ·U !íeOd]Õ@ã J‰¤@Ó/AN¹èYÛ,3¹CplzL©N›«ÑÑúOˆT¾x&‹—›qÔ»c™¾lÈ#ºªôIÑzVJúš£Óaô_ËV ¨=Zư<¸òÿÒÌ©‚ot7RÙÙ1®>ôP@.l°S"áñ*(¤¹»ª#“^q1ŸØ¾e%Tp"Ô£¤ ¸Yè­L®|H€z"8ÖV"Ÿj«î¡QxG7:2· wå—'Tî(´ÿTy`²šjÊÇÇ|(6æ áX«K!„RÅFGçÿÅK ¦ŠÌ»ªÃëªÜIQÙ?Nc¤§ƒ;Á+òº€›šÈ%MOªÇ #ޥЖO`gž©3ʽvùÝxý‰(Cv€¤ô•fU;ŽIEúõcbŽ#b±Ó«C¤ŒÝuu˜» æãؼjÁTÄÉŽY¤"G'ªØz›gaOI¼ó/ú㿉É:ä&F ‚#¾â˜'/f=;Š ø(EÈ nW‰ÈýFeRwzKª™Ðdî¶É‘,4 ‚c“RRÖå*É0¦÷Mgª·Úž½ãkãeÍ–Å8¢°½˜t…W|ˆ† Ž5Å' Ê gDg5Ç,dÇÒ:Ž•¶K˜d5}Ù&éMo’ôWZúÚHUÜÎM^Å&«ñn 1›Ehã¢g{ê1¥)§Š°ÅÀ³&ݵBÈ ëbkG¿«È=„Ÿ+»ž ;PҼɴšFGÃdiXHÁ±YXëZ=ÔÖ%¥BéÝ£ÙŠ#B¸¯(#²~Ik%”Œì ž5=BO“¤û®]±Ò0)&8'Í–RGpl.Ö¸FéoÁ´5f˜';z~ÍU)õ_Ín(DL›¥QWup³¸¥¶Êºô§p¥¬+n‹e€*ˆn&É’9:ò‚àØt‚³cVSŠ2Ëh tŸ4¾•S2ò&U´GêÉÛóŸÀbq×ÝöœUûFG—,j  ÖŽù …LêýžùÔ9£?R}Ö5Ï”}¶A©Ä“ £•ÑǪš$«? ²œþîè›ûw1G§ØjØPZ¼±’R:B/HTõPKÒ'ÐÌ޵’à{k±ïO&™…Ýô˜Òé1ÿGç2ÖBd ²Ì£±AŠrz±NúŒ¸‡à¿™Ÿ%»=Þ|t£}8ÛÃ&wûoevúâ._îzi'rFzÌ&GpL™L)ºI{—ÊÔ’¤ ËsåÈ|>jþ^ìrdM’2¹seÞ1¹ÛÓN–,õI½ST9ÔÒð 0…hTÇô¾{ÊäÞeeà’ȲÀëÊ„%¡œJ‚4&´I2xóÀjUÒÜ蹫²šÜ"tu—õ˜ú 'Ò XÖª–ÁÕžºQ_› …*Ã+€ÊóA&4ê>`ZLñ¼Á懕 ­åÁ…säS¡*L~ÎDl«#Û¼%2hZ´õ‡À» ìLØ©P , TÖz“aô2å6šzš-÷VáØ÷›ª DON*UÈžßyt±'†O YG ?œ¤èdÇÀÙÖéLÁ.-d\÷¸Y/ÚŽfd‡ÞV™m”žÿE´u‰Øën® ”&)Ù1a³vÊ­aY«ZÖáój$2Uˆ†O4‚cH}BAB›‘}žÆÅ²z®sKnI¼ÜûUãUì»7i±Id“«)Fµôl1\ð<¸@9ÏÒj®½}'Õ´­š,{ÄSä ÁȉÀfE¡õMëñÑ?¯V¿y‡´ê늗"]m>*cW2H±¥1•i‰í¨±÷0cááÒók2MõÉ2B‚;©ÃLvÃ_Q=‚cM$øâ±š«Gsc¾EŒLÕ[­ú¢-!‘©ô¥Ææ-ÃfÅR_vrkTU á“eØŸô-aáÒS ¢¡¯*°å¾»Ön@§ùÕ&Soø¬g~­²y•üš}ÇôÅN—–ãýÍœgu½AÑÿ¸;###ög5e&ú”‰Ÿéb<2/ªK–Â.Ë '4§.Ñ¥÷0óÑ·Ú»Vtz੬òÀ³Öf™ˆºåךªÏð&NE 8fBX›¢ÞÜXî§8a±é8sbôøX³Y29{‚yø2ñ¹,•;L—7«Z›R¥PÑc¤6H b¡S¨ÝŸôe¥ [¦IÇ´1#t¿†:…oz{àVÖèXŸ†Ï:ç×jâ©a~5©ª¬¢@ìX;)4kÓ&Á±ñåìó, ®O»ö—õ}])뛉Ñ5‡bƒŽ¯@Ò3`<¬Ç‰ª›ñ3!<þZ-þÿÐFO!q—y1éӚݧ¤“Bý÷ïÿ4w­îäÌ ž((K· «‰rGAi^Àaž5öHï=‡ã?:Ïá¾ :Qaôs|/2äühë­†ž@tA;)¯€¶ÒBÃb 4g4×+í d×c=6mÚ´öööÓO?ýÇ?þñÿþ÷¿Àb²8¬¬ô¶=ðÇzz~fGnŒøØ`¤.´µ¥]…üð‡Eý…B!ÚÚÚ„R•žxú3К’ÔàÚøÚ:÷[¬¨ö#…’®íÂqb+Y@ û^ìv%ל°W·_[ìS4öÅè,Ìu,åÖc[ú‘®_õ“öcŸ¨ˆc‘Þ‡Ïû¨c»Ê*ë;çz(>(…¶‚¶ûÁÒïH»÷ƒX ç(´¸ž`ÖŸTÐNôÓ%=™)ðœëçJ?çZå9ä _M x6°Ž×9ŸÂ~yþuΆsøÎ©(´®„œÌâNŠ÷R* ýPÀ™ç¼ÿ¯ý8¯¥Š ”¶[Ïõ°8/“·ˆFBp ¶páÂ[n¹å_ÿúש§žzðÁ/]ºôûßÿ~WWW`a÷[¤÷}Ç_F·ªìifþ‰Nscs‘R !­u±‹ÿج¿kÍ2ö‡w1#:?ºâ§¦”þÈóÍÄ`$eõLûÎʬ…þÑèyÁ†}9¥OšpÕÄ^Æ®jHç«k)Y…KWšTÊ,•I“šUzBO–UŸsm'UGù°ý¸"žvÎí?I;ŽG܉¿€óª×ÿc¿,TéOJI¥Ü%•«€ýÈú ¸vâ¾—¤ž¹¾diп{:ß Joe®ÄîKÉ".¿†§d)„ï½"‘#Í>‚c€M›6-Z´hðàÁÏ<óÌ¢E‹V¬X1sæÌ×^{íŽ;îH`ïf•bÛ{<ô~ÏÞ‹o(AŸýh(JIßç}`»„Ð>UüÏ4½RjoËúÉù6Rù³ËpÄž/}º¾÷«˜v«õ4‘skUC…4J‰bÈM–öÉô6K¸ƒ½ëWéŽþ".¬Ç÷3T8àÕÝli%W+Zl»(¦2+£èu×þ-ûA1>ØÒx…ðÛDÝ‹Oõ‚¾sîiþtݧÓðÖ:ö®ô ,(íD;Xe\=}:oBàbó«ý¯p?ô"è¡·« ½ÉRKŸ•äW»€ý¨øЃŸ`Î+5¾ú9÷?"®Ç.¨@Ã#8X²dIOOÏܹs?üpkËM7ÝÔÒÒ²|ùòžžžˆJíõYçg’¬OúÒlDëåa¿Y×ý\"ŠO-Gz¾‡èO!ýÙùU:WÖ{r„ýi'Cºz ”ªrü}Ù¢üE×¥´êŸÔת°dصZ¬bE%¼ }îŽGißRë^ è£cݯ“,…öC;çíÙÎqJwr5jjM›ÉlõÇ^Î;mh5jø~måW)¥‚¥”ÅÎ !ô_µ:´˜ä×ÈÓáú:!ep~õˆÎ¯ãœOaýŠßã̪áy‚‰üZ³Ç'ëŽÖ¬YÓ«W¯ &8[z÷î}æ™gîÞ½ûÕW_ ¸þ™çYBO_œ9èó²ôu\¹~? Ïrçfú¼~+½YÈÓDý-P#핯]QRëªÖÛ=?¥'˜>¨,â×°þ©otÿH­Úþ~váéˆÕ>][IK[\ã dhÝ<ôXÞWÀ?B@ÿµÔ)î@¥ð¦)W²Ôf–¸Z=µöRåúOÔÁVz6ûCDñcÞÛzínÏvp5’i7‰L–* €«wÕÎ*q«Üï«Ö­ž¾'˜ëlH!” ž+i'±jØ´¸Ïy@ g §Âyº›ï”²ŸYÞ³á…WÃnRñÝDÙɵTU_w/Á/aíAÑ%ð^üÿñ?Á´'—kT@±URÔ ˜Uí¥”ÚºuëÀ¨o/ BˆwÞyg̘17ô\¦Wù»0<HÝï †­&ú­ü½ÕοzO"‘~ÅnW÷÷ÐÂz_›ûåt*ÿûoð¾Œß[õdéÜÐs}ÅÒ‡„U§V¾ƒ’ÅR”tŸ Ï+ËUO}Â_Ôñëhú ”>Àõ»vÿ__ÉÕýÒvÖ÷Z=hÎi y¥/ ¤öþ¢UL‹X®Âî¾2&çܽ“‚Œ½ß>«Ô9ã9i¾EOÂà¹Q*#½eª|Zó·Jå­²÷"ð³Ãzõxv¨·MTøBÐÿsÎUؽØÕþGAú ï¡4úÑ;´ êÊ Ñeš'í@|òÉ''Ÿ|ò±ÇûôÓOëÛ}ôÑ[o½õ†n¸ì²ËôíÎ{®Ó\?¿äܦM›„(6Ç¿Ù5ÁZ½¬©Óýû÷÷l?øàƒ…{öì ¼•Ô¾uùŸIBØ_g<ß™Šeb Øw!•P\[<}|=€ ýi£oñ?å<Í~ÏIÿüeM¤@-ï¥ÔD^@T÷ªwµ–{/åT£Œ{ÉÈÁ6z5Ìî%C쨰ƒU±DÌ9qŒî%‰jló}½  ¥Ü·oŸgûÇ,„hii‰ß…>Ø9úµ;ñ<§sþ^ÿSH&‡qòeDž“AGž’"®'¨ú—›ÉëÑWFºFÍ9§Ëõ«I™òlÄ×Åß|ê~Γ¯†ùÁf¤¥{ñ%K÷⩯@%)Ù»!œgsp®2)PfÕ]Àð^*:çÛÝJ±Ë» ½úôéÓÒÒâoYÜ»w¯™g­óLÎ×_¢ö3É7W4âÕ3.$°Dÿ“?&z†hx†Wabôxž`añÑ3€ÝÏß`éÿïywŽ}!ò¿¦üÒPÍ^n¥Þ(ÏNÂÒƒ¯@Ÿ˜–,¥ç}Ãü`#Þ[bφþ¸Çî*ñj„ŸóšTÃ{°µ¬FÅç<Ó½;Yúþ•aì;òæWO¢wR^Uv~uÞÄôsà/ DèãÒ Ž¼uëÖ½{÷zè¡ÎÆmÛ¶Y ¾´§aÆ~^z ØïVöUd¯ÕHðœ§óÐË€ÏP{·Ra-¦Ëð×cÀN´_¥»©Q±O€‰'vww?÷ÜsÎ¥ÔªU«Z[[ÛÛÛ}Åí§r_Ø­ô«ýL )à»X“ûÇÞè¹·à_tyžäúöÀÿ‡ÝÊÿkb_,Up:ª¢¿Ò{ ¼|_ÀÆÀ&e¤pÞX<ë“ë+–» èe<´-¦ì-Âί±Õ8ɱ}¢J}úò ø«Ý Ô½Ôùœg¤†}C#8˜6mZ¯^½î½÷^k\£bÑ¢E»víºð 8àyÏjaž»çIÿèï‰|â ²#NìSºâç|Y¯¦Ê ˜Tµ>Õ0ÛIpèÌÞUeo¬Ô~ŠÂßiKwâɯ‘ïÕFÕ¿—è1÷¸BgêK5´š4<–ã ÖÑÑ1þü#þøãÛ·o?äC …¬Y³N?ýô´ë•c~øáÝwß½víÚíÛ·vØaÇüœ9s†žv½Ä»ï¾;eÊ”³Ï>û—¿üeÚuÉ«o~󛯿þºgã Aƒ^xá…´«–c¯¿þúƒ>øÆo|üñÇmmmsæÌùÒ—¾”v¥êŠà˜Œ… >ðÀýû÷?õÔS;;;—.]ºeË–Å‹÷íÛ7íªåÞC=”vrï³Ï>ûîw¿»~ýú–––ÓN;íÓO?}ùå—Ÿþù«¯¾úÊ+¯L»v¹´wïÞóÎ;oçÎ#FŒ8묳Þ{ï½eË–­\¹òÑG=þøãÓ®]î)¥n¼ñÆ?þ8íŠäÛÛo¿Ý·oߣ>ZßÈ…s«ñ÷¿ÿýꫯîééùâ¿8bĈ^xaæÌ™¿þõ¯Ï>ûì´«VG U{ë­·FŽ9~üø÷ßßÚrûí· …Ÿþô§iW-ÇöìÙ³fÍš[o½µP( …õë×§]£{øá‡ …ÂôéÓ÷íÛgmÙ¼yóرc;î¸7ß|3íÚå’õ¿ë®»œ-K—.- ]tQÚUkÖ ÿ‡?üaÚuÉ«={ö …k®¹&íŠ4Ž?üp̘1'žxâÚµk­-ÿüç??þøqãÆuww§]»úaŒc–,YÒÓÓ3wîÜÃ?ÜÚrÓM7µ´´,_¾¼§§'íÚåÕ”)S.¹ä’?þñiW¤<óÌ3Bˆ›o¾Ùi1bÄìÙ³»»»é´ªÌK/½Ô·oß+®¸ÂÙrÁ 2ä7ÞèîîN»vù¶eË–… Ž92íŠäÛÛo¿-„ð47¢K—.Ý»wïìÙ³O9åkË 'œ0yòä]»vù‡40‚cÖ¬YÓ«W¯ &8[z÷î}æ™gîÞ½ûÕW_M»vy5oÞ¼ûï¿ÿþûï7n\ÚuɽmÛ¶õïßôèÑúÆ#F!Þyç´k—K 8ûì³:è }ã¸ÿþýû÷§]»ûì³Ïn¸á†ÖÖÖ›nº)íºä[gg§⨣ŽJ»"ãÿø‡”rêÔ©úÆ lÚ´©©†à3ƱZJ©­[·8pàÀúöB¡ „xçwÆŒ“vséŒ3ΰþóì³Ï¦]—Ü{ðÁûôñ¾Øßxã !İaÃÒ®].ýáðlY³fÍÛo¿}ÒI'1²¹¿úÕ¯6nÜØÑÑq衇¦]—|³‚ã{ï½7sæÌ7öë×oÔ¨Q³gÏnªˆ“¬ 6´¶¶2díÚµëÖ­ûðÃGŽ9iÒ¤f{É«µoß¾îînÿpã––!Ä|v1jÔ(Ï–Õ«W/Z´èÀô|{F¹Ö­[·téÒmÛ¶­[·îÿþïÿæÏŸŸvrlýúõ¿ùÍof̘1nÜ8ë‹ *fu&ÜsÏ=ÇsÌi§¶cÇŽgŸ}vÕªU·ÝvÛ·¾õ­´k—?û÷ïÿ裎=öØÛn»í‘Gq¶6ìî»ïnª)qÇjuuu !ú÷ïïÙ~ðÁ !öìÙ“v—îîî‡~xÁ‚ÝÝÝwÞyç AƒÒ®Q¾mÚ´éñÇWJ !Fý¹Ï}.íåUWW× 7Ü0lذ뮻.íº4‚÷Þ{¯oß¾×^{íÌ™3­-/¾øâìÙ³ö³ŸqÆC‡M»‚9óÑG !¶nݺsçÎùóçO˜0áÓO?}üñÇï»ï¾k®¹æ©§žjžvGÆ8VkÀ€RÊ}ûöy¶[ IXíŽ@F¼üòËS¦L™7oÞ Aƒ~ûÛß~ík_K»F¹÷ío{ãÆÏ?ÿü7Þ¸bÅŠéÓ§³ˆLeæÏŸ¿}ûö 4ÏpMýîw¿[¿~½“…ãÆûÎw¾ÓÕÕõ׿þ5íÚå3 ù¿øÅÔ©S 0dÈ«®ºêüóÏß¾}ûÓO?vë‡àX­>}ú´´´ø[÷îÝ+„pæYéÚ¿ÿ¼yó.½ôÒwß}wΜ9Ë—/gÖQR¤”‡vجY³.ºè¢ÿüç?+V¬H»FùóÊ+¯<òÈ#—_~9#ðjjìØ±BˆÍ›7§]‘üéß¿ÿAÔ·oß³Î:Kß>iÒ$!Ä[o½•vë‡à˜€ÁƒïÞ½ÛJŠŽmÛ¶YJ»v€èéé¹îºë/^û,íÚÕc0qâÄM›6=÷Üs_ÿú×­-J©U«Vµ¶¶¶··§];@<ôÐC+W®¼øâ‹ò“Ÿ¤]—Fp衇þéOÚ¹sçäÉ“õíÖÊyÇsLÚÌŸ£Ž:Êyÿ´ìÙ³çùçŸ:th{{û!CÒ®`ÎtvvžsÎ9cÇŽõ\ykݺuBˆ¶¶¶´+˜KguÖïÿûÍ›7[«¦X¬E÷škÙÑ´W o;vì9rä¹çžûÑGY[xàB¡°`Á‚´«Ön¾ùf®SžžžI“&rÊ)]]]i×¥qL™2¥­­íoû›³eãÆ'Ÿ|òÉ'Ÿ¼sçδk×6lØÀ•cª1}úôB¡°dÉgË«¯¾zÒI'M˜0Á¹‚Êòæ›o …iÓ¦íÞ½ÛÚòÚk¯µ··Ÿzê©»víJ»võC‹c†zýõ×ÏŸ?ÿßøÆøñã;;;W¯^=zôèï}ï{iW ;wî´.Y{É%—øÿzþùçϘ1#í:æÏí·ß~ñÅ_qÅííí_øÂþûßÿ®]»V±`Á&ª# n½õÖË.»ì–[nyä‘G†¾cÇŽõë×÷ë×ïç?ÿ9#U*sÜqÇ]{íµwÝu×¹çž;f̘}ûö­Y³FJ9oÞ¼Ïþói×®~ŽÉ˜5kÖa‡öä“O.[¶ìˆ#Ž˜1cÆÜ¹s­y€tmß¾]ÑÕÕµaÃÿ_™"S™N8áé§Ÿ¾çž{6lذqãÆ!C†|õ«_½òÊ+­ëñ©9räOhРŋ¿øâ‹­­­'Nœ3gN³½ê¥R*í: ˜U #G!8ÀÁFŽ0Bp€‚#Œ`„à#G!8ÀÁFŽ0Bp€‚#Œ`„à#G!8ÀÁFŽ0Bp€‚#Œ`„à#G!8ÀÁFŽ0Bp€‚#Œ`„à#G!8ÀÁFŽ0Bp€‚#Œü?Úá(9îzËIEND®B`‚statistics-release-1.6.3/docs/assets/logninv_101.png000066400000000000000000000603041456127120000223270ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A`‹IDATxÚíÝyXTåÿÿñ{EA A\„QqÃ575×(-w̵E3sI-—453­\*M­¬D¿šâ§~îš¹k¸¤äŽ"¸j‚ & óûãÔ4Û0 çÌÌóqu] ÷ÌœyŸsçÅû>çŒJ£Ñ (rë@p€AŽ0Á!8À G„à x.\¸ ú×o¿ý&w96ëƒ>6rïÞ½ zÌÊ•+¥Ç4oÞ\ï®Ç¯X±¢K—.ÕªU+S¦Œ¿¿Ïž=?ÿüóŒŒ ½GêîP-'''–-[~ðÁ÷îÝ3ä)z&Ož,÷&`~G°5üñG:uFý믿&&&>~ü8&&fÇŽ“&Mò÷÷ß¾}{‘KÈÉÉINN>qâÄG}¤V«###å^'Šà$w#•/_ÞÇÇGáíí­ŒŽŽîСÃßÿ­qrrÊÎΖn'$$ôë×ïØ±c5Ê»@///!Ä£G´Æ”””¾}ûÆÄÄ8;;ò=+V”{ó0?:Ž`­ ·eËíà¤I“´©qøðáQQQ™™™‰‰‰ß~ûmùòå…éééýû÷ÏwëÖ­“ø×_ݼysøðáÒx||ü×_]øSôL›6MîÍÀüŽ,ëÑ£G³fÍzþùç½¼¼¼¼¼:wî>>Õ«W8pà¹sç„‘‘‘ýû÷÷ññyæ™gBBB8 »äÜÜÜ 6„„„ÔªU«L™2µjÕêСÃ?þ˜·ÎÂå=ÆqïÞ½Û¶m“n¿ÿþû«W¯nÔ¨‘£££··÷È‘#ׯ_/Ý}åÊ•Â^£FÕ«Wk°üøã=zdÁ7 « €â8þ¼ö½{÷þà'N<ûì³yÿå©Q£ÆÁƒuyôèQÝÇøùùõë×Oº=cÆŒÂ_hÆŒÒ#;tèP·n]½—ëÛ·¯Ui—Ù«W¯¡C‡êV¢½«qãÆzeW®\yéÒ¥¥J•ÒT©TÐ.Y»^zúôé“ï«´Ö+V¬Ó¬Y3iäå—_–F*UªôðáüOéÑ£GãÆ7naÈÕ¼»ví2â=À–pŒ#KÉÈÈèׯßõë×…eÊ”iß¾½££ãÒÓÓoݺտÿ+W®H“§™™™}ûöMJJB”.]ºY³fׯ_-î‹JA§V­ZUªTùóÏ?333…›6m:yò¤Ô–3¼*­S§NÅÇÇçûrQQQ5ºuëÖýû÷…÷îÝ7nœ¢nݺiii BF3{öì}ûö !6nܸqãF!„J¥ ©^½úéÓ§¥(±oß¾Ž;½Í=*Ýxùå—]]]ó>À3ct—.]:++Kqâĉ®]»]ÀT5KùôÓO¥|ææævèС]»vmß¾=22RjÑݹsçã?–ùõ×_'&& !ÜÝÝ###=zëÖ­×^{͸×ýòË/¯_¿yæÌ™2eÊHƒ'Ož,nUZñññõêÕ[»vmdd¤ö°?­­[·FEEݹsG7ð-Y²äâÅ‹7oÞ9r¤4"Ma !víÚ%ݘ8qâo¿ýöã?ž;w®iÓ¦ÒàüaôòäÉÝ»w¥Û~~~fÙ‰*•ªJ•*Òí;wîä}@çÎó^‹g„ fyuJCp`)ÚæÖ;ï¼£=¯Aƒ'NÔ{€ÔB¼ýöÛAAAB‡/¾øÂÓÓ³¸/Z¿~ý·ß~[º]§NvíÚI·oܸQܪ´Ê–-û믿†……µlÙR/5kÖ¬GBˆR¥JõíÛW¬P¡Â;ï¼#­Å€¤ÁÔÔTéFÿþý×®]»víZ©1)„HKKKOO—nKmKãè£YµjUvÝSžy晼Ë`ŸŽ,%::Zº¡7¿Ù¥KéÆÕ«Wsss…Ú5téââ¢÷Dí¹ ZRÊÔ¥wðb¥J•¤Ò «*­   ‚rXµjÕt –nT­ZU¥Ré juíÚ5,,¬GG4iR§NªW¯~éÒ%Ó7¸î {Þ«v-99Yºáææ–÷^///Ÿ<´›€áG‘––öàÁé¶îU…NØÊÌ̼{÷n¹rå´m6½|V£Fâ¾®6±åû£áUéÞ«wúK!Ë—88ö7yVVÖÔ©S¿øâ íµ]\\<==ÿúë/·yéÒ¥=<<¤CE¥éø¼lß¾½! \ºt©t£\¹rmÚ´±Üf`Ž,E:kDñÅ_œ>}Zº}þüùO?ýTºÝ½{wé†6Ä,Z´èòåËBF3}úô¸¸8ݺ¸¸x=M{Þ†%ª²„‡j»ªÚÓeþøã½ˆl´^x¡sçÎÒíwÞygΜ9R'5+++<<\{5ÊgŸ}6ïá¡zîܹóÆoDDDH?¾úê«zW)`‡8Æ€ñ† R¶lÙ¼ãëÖ­kѢŔ)S¾ÿþû7n7ßZ©R¥-[¶r†ûÁT5 jÑ¢ÅÙ³g?øàƒN:yyyyxxtìØqúôéçÎkÛ¶­î#_{íµ½{÷¾üòËU«V­V­ÚË/¿|ôèQ axU–°xñâ !¤¯œ™0a™3g^zé%éÞõë×ù-ÒEjÓ¦ÍÕ«W/^ܾ}{OOOgggµZýâ‹/.^¼øòåËÚÉúB8::VªT©E‹|ðAttôsÏ=géÍÀ*¨4Ü5@þ†ºfÍ!Ä×_=jÔ(¹Ë1›'OžHÎÞ½{Ë] Á€üÞxã é+[·n½lÙ2iðï¿ÿ¦n9Â)½ ;Žq ¿ªU«FEE !¢¢¢jԨѷoßÔÔÔ)S¦H©100°Y³fr× ã@222ºtéräÈ‘¼w=óÌ3û÷ï— È‹à@?~üÓO?ýøã±±±·oßöðððññéÒ¥Ëøñã-zš3ÀpG„ËñÀ G„àƒ`‚# Bp€AŽ0Á!8À G„àƒ`‚# â$w •ššºdÉ’S§NÅÇÇW®\¹~ýúcÇŽõóó“».Ù¨4Ü5(NZZZ=îÝ»çïïïïïûöí3gÎ899ýôÓOõë×—»:y0U/¿üòÞ½{£FÚ¶mÛâÅ‹7lØ0þüììì>úHîÒdCÇ1/¼ðB|||ddd™2e´ƒíÛ·¿ÿ~TT”£££ÜÈ€cóQ¡B…€€ÝÔ(„pvvÎÊÊÊÊÊrqq‘»@ó±víZ½‘“'OÞ¼y³qãÆ¤F€½Q©„}NOª„J#ìrÍ ÆTuaΜ9³y󿏏¸3gÎT¯^}ÕªU>>>E>K­VË]80É•è+ê€B-w2 ãX˜èè興)[–.]Úð'Ê];ž¢V«Ù)JÃNQ&ö‹ɾSì³ã¨ªB6»Ý6‰8«º0 ¸téÒ‘#GÞ{ï½Ý»w8ðï¿ÿ–»(JŽ}¦F„àX•JU¹rå#FôïßÿÎ;»wï–»"yõ]½zuêÔ©;wîÔ Bܽ{WîäApÔçææö¿ÿýoóæÍzã7oÞBøúúÊ] €<Žú¼¼¼Ôjõ‘#GöíÛ§¼|ùòºuë\]]›7o.w”p„ΪÎÇG}4hРѣGU¯^ý¯¿þ:uê”báÂ…rWcìÚµKî ¢Lìb§@9è8æ£aÆ۷oïÙ³çýû÷ýõ×»wïvéÒåÿý¿ÿ÷ /È]€lè8æ¯V­Z‹-’» dÃ<5ò¢ãƒžÂ·T„àƒ€>pD¾Ž0Áár<Š V«å.Ê-w ì óÔ(ÁQ)(ˆZ­æíP¦ª`‚#øóÔ(Áà?\ý»G„àƒÀ?8À…#8À G„à„`ž 8À G(уFU³fMWW×àààÈÈH¹+ÊGppðìٳ宀’Cp„⤥¥5kÖìûï¿o×®ÝÈ‘#¯]»Ö­[·3gÎÈ]×SΜ9sôèQ¹«³ažZÂÕ¿ Gp„1²²²²²²,´ðE‹ÅÄĬZµjݺuK—.=|ø°J¥z÷Ýwå^i!„ÈÎÎÞ³gχ~صk×ÜÜ\¹Ë Da µZÝ©S'ݑٳg7oÞÜ, ß°aƒ··÷!C¤ýüüúôésðàÁÛ·oòô“'O¾ð UªTQ=­T©R¦×–œœÜµk×Ù³gß»wÏÌÛÅ#8Â<®_¿~êÔ)Ó—“––våÊ••J¥ìرcnn®!G:îÝ»·eË–çÎ>|øÜ¹s›4i"„hҤɤI“&Nœhzy^^^F£Ñ\¾|Ù‚[JóÔ0“ÜO¹{÷®F£ñòòÒôôôBÙäËÌÌ:t¨··÷ñãÇ«T©"„˜ݺuÛ¿PPÜ¥¯¶¸¸¸œœœÖ­[ûùùi]]]å^ ŒDp„1²²²„¥K—¶ÄÂ-ZóÃ? :T1nܸ¦M›¾ûî»ûöí“{½‹W[LLŒbΜ9:u’»p Ý3`ªÆP«ÕzahöìÙÍ›77ËÂ7lØàíí=dÈéG??¿>}ú::zæÌ™åË—/áÚbbbj×®’’"Ô­[7<<¼iÓ¦òndvˆyj˜Á–•½}ûö‚î}饗ôFÒÓÓ…nnnºƒîîîBˆäääÂ_ëðáɉ‰sæÌ‘R£ÂÙÙyÊ”)¡¡¡›7o6lX ד››;{öì>}ú”*UjË–-&LèÕ«×ùóç¥gdÇ)ÕÅBpT4•P™¾£þ‹”““£ûcnnn¾{ôèQ¯^½ |‰<ÿzxx!>|¨;˜––&„¨T©Rá_¿~]ѨQ#ÝÁ†  !Ο?_òµ8p L™2Ú»FŒ‘™™9f̘ˆˆˆ‘#G ¬ ÁQÑ”ü7ÐãÇuÌÈÈÈ÷aîîîšâÌŽxyy988èÍü&%% !ªU«Vøs]\\„ÙÙÙºƒR¢upÈçp^K×VµjU½‘.]º!.\¸`ø‹€é˜§†¹a¤ÄÄDÝ :幸ÓÁNNNõêÕ;|ø°îà¡C‡T*U```á%ùûû !.]º¤;(õÕju ×vãÆmÛ¶uìØ±nݺÚA©=Y«V-Ó¶=2ÑÀÜJà)òòññBlݺUúñÚµkÒu­ó>255µ¸o¿¥K—ê.üîÝ»^^^]ºt)²ª¬¬¬Úµk{{{§¤¤H#?vuu½sçN ×v÷îÝ2eÊ´k×.++KÉÉÉ0`€““Ó… еµ­îía ØØX¹K@>Ø/ dúNáÓ¾BcÌÖ±Õ™‹Äåx`$''§ 8°ÿþ 4(è*‰ÒtpAò}ʰaÃ5j6mÚ´… vèÐ!==}öìÙÒ½ëׯ¯X±b¾×Ö)UªÔÒ¥K“““7n<þü… ¶mÛöðáÃóçÏ×;ÚBµ-X° bÅŠ+V¬BxzzΞ=ûðáÃþþþ£Gž:uj³fÍ6lØ0gΜzõêɽ÷Øæ©aFLUÃH-[¶ìÙ³çÊ•+³³³_ýu77·¹sçšeÉnnnœçÎÓôðð8zô¨Ük ÛŽÙÙÙÆ ‹ŠŠrwwoÕªUffæñãÇ9òÎ;ïŒ3¦ gݼyÓÅÅÅÇÇGw°B… r¯ €ll?8nܸ1**ªiÓ¦ß}÷‹‹‹âêÕ«ƒ^¶lYÇŽëÖ­›÷)iii<èÞ½û’%Kä.€b`žÚœc4Û?Æq×®]BˆéÓ§K©Qáïï?jÔ¨œœœ‚æoÞ¼)„Ðk7Ø9ÛŽqqqåÊ• Ôô÷÷Bܺu+ߧܸqCQ«V-¹k·_<5jTÍš5]]]ƒƒƒ###å®ÈÈÚΞ=Û¿ÿ*Uª¸ºº6kÖlñâÅÙÙÙÒ]Ožxð 22²yóæBˆ9sæŒ9rõêÕ»wïîÚµkLLŒ4Ø©S§"_7..NîU7¿øøx¹K@>Ø/ Tœâk“ÿ\˜—Ÿ¯_l\lœ(ƆêÖ­›ÜU+†ÆždggÿøãuêÔÙ¾}{A:th£F~üñGíÈÑ£G4hШQ£„„„"_%  ¸…ñyùøø´mÛVwäÃ?lÖ¬™Y®V«½½½sssµ#¯½öšƒƒCbb¢!O?qâDÏž=½¼¼ôÞêNNN%\[ùòå;tè ;rúôi!ĬY³4ÍÒ¥K…ׯ_/òE­îía ØØX¹K@>Ø/ dàN±³tã ¶”­þË\$Û?ÆQëøñã¡¡¡óæÍóððøî»ïzôèQÐ#øá‡¨¨¨!C†hGZ·nýꫯfddìÝ»WîõP¨ëׯŸ:uÊô夥¥]¹r%$$D¥Ri;v옛›kÈ‘Ž{÷îmÙ²å¹sç†>wîÜ&Mš!š4i2iÒ¤‰'–dmÙÙÙcÆŒyûí·u¥£ œ…111ÎÎÎåË—ß´iÓÊ•+9"õqP,ÛŸªBdee}úé§áááeÊ”;vìÈ‘#µgX®E‹ß~ûí•+Wä^w÷î]F£×/ôôôBÜ»w¯ðçfff:ÔÛÛûøñãUªTBLž<ùùçŸŽŽž9sfùòåK²6''§ùóçëŽÜ¿þüùŽŽŽ}úôBÄÄÄ888Ô®];%%Ez@ݺuÃÃÛ6m*Ϧ`Í8-%Ãöƒcnnî»ï¾»gÏžÎ;Ïš5Kú˜/„F£ÉÍÍU©TOµc…¦‡{“½}ûö‚î}饗ôFÒÓÓ…nnnºƒîîîBˆäääÂ_ëðáɉ‰sæÌ‘R£ÂÙÙyÊ”)¡¡¡›7o6l˜Œµ8pà7Þˆ‰‰ùú믥“úcbbrssgϞݧOŸR¥JmÙ²e„ ½zõ:þ¼´L”Æöƒcxxøž={ 4kÖ,CãÆ®]»¶hÑ"<<\wüÌ™3"¿³^,KgJT…þõš““£ûcnnn¾{ôèQA'! !4y^ÂÃÃCñðáCÝÁ´´4!D¥J• ¯÷úõëB½“ß6l(„8þ¼\µÝ¼yóí·ßÞºu«¿¿ÿÞ½{;vì(8p L™2Ú'Ž1"33s̘1#GŽ àÒß&²ñc5ÍÚµkË—/ÿÞ{ïò°GÅÅÅI§­ùøø4mÚôĉ›6mÒ>àÌ™3«W¯®Zµj×®]Kxäü¯P?Öý1###߇¹»»rŒmÞÇ{yy988èÍü&%% !ªU«VxIÒÚ %J¤D«×?.±ÚÖ¯__¿~ýS§N­\¹òâÅ‹ÚÔ(„¨Zµª^ÜìÒ¥‹ø÷ZQ`8æ©Qbl¼ãxïÞ=é[§ÃÂÂòÞÛ»wïÁƒ !<8aÂÿmÛ¶ !fΜ9räÈ3f¬_¿ÞÏÏ/!!!**ªlÙ²óçÏ7âàH[•˜˜¨ûãíÛ·ó}Xq§ƒœœêÕ«wøðaÝÁC‡©T*½«¸ç%M_ºtIwPê5æÛ*¶tm[·n}õÕWûõë·bÅ ½ î7nlÛ¶MïK/¥æ%Wž(—ܧu[ÖüP°Ï>ûLzØöíÛzöì©}âÝ»w§L™Ò®]»úõëwïÞýý÷ß7ðZ0»¹bëÖ­Ò×®]“®\÷‘©©©Å}ûIשÑ.üîÝ»^^^]ºt)²ª¬¬¬Úµk{{{§¤¤H#?vuu½sçN ×–››[§NŸììì¼÷Þ½{·L™2íÚµËÊÊ’Frrr àäätá½[ÝÛÃ@\öE™Ø/ TøN±õOr33˵x4¶û/s‘TºÛæ¦V«£££-ýyùúúÆÇÇ;;;‡††ææænÛ¶ÍÙÙYŠk¦/<---888..n̘1*Tøá‡âãã÷ìÙóÜsÏ !Ö¯_ÿÖ[o >|Ñ¢EyŸ»cÇŽÞ½{{{{¿ùæ›ŽŽŽ§Núâ‹/ô.‹c¡Ú,XðÉ'ŸÌŸ?Ô¨Q/^ ¬[·nË–-õòòË/‡††.\¸ð½÷Þ«U«V÷îÝ+T¨°{÷î3gÎ|üñÇS§NÕ{¼Õ½= çëë+wÐÇ~Q Âw óÔ†3ã޶ú/s‘l|ª–Ó²eËž={®\¹2;;ûõ×_wss›;w®Y–ìæævðàÁÉ“'GDD¤¤¤´jÕjݺuÚïôËÊÊJMM-èÊ=zDFFΚ5kùòå™™™7Þ¹s§L-¼¶ÌÌÌÔÔTéèOé‹a.]º¤7u.„¨]»vhhè”)Sž}öÙ… ®]»¶L™2 6ܹs'_NP2:Žæg'ÇêÕ«ëíWb¾ýöÛóçÏ/Y²DîÍPB¬îía :[ÊÄ~Q Bv íÆb¡ãh:?«¶'33sÿþýÒW€’Dp„•ùý÷ßëÖ­;hÐ ¹ ™Ñn,®àhãcŒ=Zïú2%&$$$$$Dî €="8ÂS¦L‘»°k´! ¦ª`‚#°qàh.G¬ óÔ Á!8`Mh7óÔfDp€AŽX ÚÁáàJ¡V«å.[ÃŽæEpT„èèh¹K°qqqq¾¾¾rW&až²cª!8`h7yj³#8À G”Žv#‚àƒP4??_ÚFàGK 8À G”K¥±±qrWüƒàl óÔBp€AŽ(WáÒ€MažÚrŽ(íF(Á!8 8´Æ<µE`‚#ÊB»ŠEp6‚yjK#8  ´¡dG` h7–‚#JA» Gp€AŽ(íFS0O]2Ž0ÁùÑn„U 8ëÆ²³³‡ åîîÞªU«ÌÌÌãÇ9räwÞ3fŒÜÕ;Rf£Ðv£Ý#8æcãÆQQQM›6ýî»ï\\\„W¯^âââÊ•+¨;èïï/„¸uë–ÜÕŠv£YÐnT2¦ªó±råJ''ý-sáÂ!D5ä®@Ç|Ô«WOo$22rÕªUÎÎνzõ2d jµZoDšþ†\âããå.úØ)ÊÄ~1šŸŸoll\\œù—lW;ÅÏ×/6.6NX`;š [·nÚÛÑù}ÊÛ‚crrrÖ­[·p᜜œÏ?ÿÜÃÃÃgEGGË]8ôùúúÊ]ô±S”‰ýb4Ëm:»Ú) \Ù§>ÖUªèèh»ÍŽÇÂ?~|öìÙ×®]óööþøã[·n-wE%âèF³àèFå#8æ/++ëÓO? /S¦ÌرcGŽ©=Ã]¤F³ 5Z‚c>rssß}÷Ý={ötîÜyÖ¬YžžžrW ?‚c>ÂÃÃ÷ìÙ3hРY³fÉ] @Ñh7šíFkÁuõi4šµk×–/_þ½÷Þ“»€¢‘aoè8ê»wïÞÍ›7]\\ÂÂÂòÞÛ»wïÁƒË]#¶ƒv£!8ê“.—•‘‘qþüù¼÷rb5@B»Ñ,¬,5Úý^'8êkÒ¤ WaÈ‹c(6»o<™‡•µAp ¸HfAj´FG„à@1Ðn4 ÚVŠà€¡HfAj´^G„à€Ah7šíF«Fp%„ÔhíŽv# މÔhVßnä}@p%ÀêS#„G G› Ð"8P R£YÐn´G`A¤F[Bp ´MGj´1GòAjò"8‹°©v#I!ŽäEH0M¥Fü‹àÀSH¦#5Ú*‚# Bpà?´MG»Ñ†ø©Ñt¤FÛFpæa³©‘?)þEp@²Él65BÁR£©Hv‚à°w¤FÀ@G`Úöƒà°k´Mdû©‘·ˆ‚#À~ Ldû©OSnp<{öláصk—Ü5`¿HvH¹ÁqÀ€_}õUNNNÞ»RRRÆ?nÜ8¹kX1Ú¦ 5Ú'åGOOÏ/¿ü²ÿþׯ_×ß½{wÏž=wîÜY«V-¹kX+R£)ì(5òFyšrƒã¶mÛú÷ïîܹ^½z­_¿^‘šš:qâÄwÞy'55uäÈ‘[¶l‘»F€U" Æq’»€¹ººÎ™3§{÷îÓ§OÿðÃwìØ›””äïï?þü È] öÈŽÚÈC¹GI«V­6lØP©R¥'N$%%5iÒäçŸ&5ŒF»Ñ¤F;§ôàxøðá¾}ûÞ¿?00ÐÓÓóôéÓcÆŒ¹{÷®Üu¬©Ñv—y»ä¡ÜàøðáÃiÓ¦½öÚkIIIãÆÛ´iÓ¶mÛºwï~ðàÁž={nÞ¼YîV†` »KÈrƒ£”ýýý7mÚôÖ[o9::º»»/Y²ä³Ï>S©TÓ¦M9r¤Ü5`H(78&%%½ñÆ?ÿüs½zõtÇCCC·nÝÚªU«#GŽÈ]#ÀjÐn4š¦FÞ1ùQîYÕëÖ­ Ê÷®*Uª|ÿý÷ááár×°d£ÙijD”Ûq,(5JT*Õ!Cä®`HF#5Brƒ#‘]§FþÚ(Á`ËƱëÔˆ‚6‹ÔhR# BpØ&R£qH¼u Apÿ 5¢pG€ ¢gdR#ФÜë8 !vîܹfÍšëׯk øíŒŒ”»F€â@jüïžB)78îÝ»wüøñÒmGGG¹ËX>÷@j„”¿ýö[!İaÃÞzë-www¹ËXR£Hÿá Tåǘ˜˜êÕ«¿÷Þ{ˆ €EQ, ÍdOžè Âôt±ñf2åžsòäÉ·Þzëòå˹¹¹Bˆ‹/FDD¸»»4¨zõêëׯ߷oŸÜ5,…ú‚HFRc1ðf2åv¿ùæF3}úô !öìÙ#„˜?~§N®_¿Þ­[·ÿû¿ÿëÔ©“ÜeÌú‚0= y)78^¹r¥J•*C† ‘~<~üxéÒ¥Ûµk'„ðññyöÙgccc‹»ÌØØØîÝ»oܸ±Q£F…?²OŸ>çÎÓôðð8zô¨Ül©1_LO‰÷“Y)78¦¦¦>ûì³Òíììì‹/Ö¯_¿téÒÒHÙ²eoÞ¼YÜe†‡‡øÈ›7oº¸¸øøøèV¨PAî­6ŽOù|Ñh4ï'sSnp¬Zµj|||NNŽ££ãéÓ§333[¶l)Ý•››_¹re•––våÊ•­[·nذÁÀÇ?xð {÷îK–,‘{3€áS>_~¾~¤Fcð~²åžÓ¼yóÔÔÔ/¿ü2!!áË/¿BKw­^½úþýûµk×6pQ¡¡¡aaa¦F!„ÔËÔk7,ŠOù¼TB¥ªØ¸bšÞO¢ÜŽão¼±uëÖ¯¿þú믿B4hÐ@ºvc¿~ýþüóO!Ĉ# \Ô¼yó?~,„X»ví±cÇŠ|ü7„µjÕ’{€½àS>/íôtœˆ“»kÃûÉb”«U«öÓO?}öÙg—/_®]»öìÙ³¥«6&%%¹¹¹M›6í¹çž3pQmÛ¶•nìß¿ßÇKÁñöíÛC† ¹téRÙ²eëÕ«7jÔ¨"O©Oy=œcÞO–¤Üà(„ð÷÷_¹r¥Þ`xx¸···ƒƒ'Ùoݺ%„Xºt©¯¯o«V­öïßðàÁ?ü°_¿~†,A­VëìÚµ«D·ž/w ÐÇNQ&™ö‹o\MµøùúIsÓÚF#¿,†óõó‹‹æ~;uëÖMî5S EGIjjêùóçoß¾]µjÕ6mÚ8;;[45 !nß¾íââ2qâDíÅ€Ž;6jÔ¨?þ¸mÛ¶U«V-r ÑÑÑro6èóõõ•»èc§(S ï—ÛC¼ty6¿,Q©„Fc‰-•÷c=o‡ÈN(:8&''ýõ×Bˆ¡C‡¶iÓ¦wïÞóçϯX±¢…^÷‡~Ðiݺõ«¯¾úí·ßîÝ»W›&&bRQ‹ î˜Dú bÞL–§Ü³ªŸ>>M›6=qâĦM›´8sæÌêÕ««V­ÚµkW¹7 X7>ëF³à$åžãîîþèÑ£‚îMII1ã¬ñÁƒ'L˜àïï¿mÛ6!ÄÌ™3GŽ9cÆŒõë×ûùù%$$DEE•-[vþüù...ro°b|ÖsF3àTù(·ãX¯^½Û·oŸ={6ï]—.]JHH¨[·®…^ºN:?ÿüs¯^½’’’vïÞýàÁƒ^½zmÛ¶ÍðKŽò"5Òh4N…‘•r;Žýû÷ß³gϻᄏdÉ’ÀÀ@íø… &Nœ(„èÕ«Wq—ùÑG}ôÑGyÇ{ôèÑ£GÝOOÏ Ƚ ÀvØyj¤Ñh4@¹Á±M›6¯½öÚ7ß|óòË/ûùù !öîÝ{ìØ±k׮忿öîݛà ÀZ‰Œ¦²ó÷b(78 !&MšÔ´iÓ ÄÆÆ !„•+Wž8q¢î•JfÏŸø4ÍÞßC £èà(„ III‰ÍÊÊòóóóòò’»(€¡ìöŸÈhLO+ŒÒƒ£¤bÅŠM›6•» @ñØsj$2šÝ¾L¹ÁÑS˜###å.?ûüЧÑh4•J¹Á1--MoD£Ñh¿ °J•*ù^ v˜‰ŒæAdT6åÇ‹/êäää$&&þúë¯_ýõãÇ?üðC¹käÃ>S#‘Ñ ìð­cm”{ð¼kÔ¨1bĈ/¿üòÁƒ&LÐðö…±·~¾rÚúµ‘‘Ôhmd´Ÿ·Ž5³Êà(„ðôôB<óÌ3rø‡ý¤F"£y­rq,DzzúÅ‹=<<Ê•+'w-!ì,5’ÍÀ~Þ1¶E¹Áñ÷ßÏw<%%%<<üþýû;w–»F€v“8oÚ<8oÚš)786¬{Ë—/?nÜ8¹kØEj$2š‘Ñú)78¾øâ‹ÝU³fÍ^½zÕ¨QCîÀÞÙ|j$2š‘ÑV(78~úé§r—(Œm§F"£ym‹rƒ#@Él>5MEd´E Ž(îS:tè wÕ`l85Òh4•”‘Ñ6)(8¾ùæ›Å}Jtt´ÜU€}±á.‘ÑT6üæÀ¿ 9 ¶Úh$2šŠÈh79”Ì&S#‘ÑTDF;c­_9øÞ{ïuìØQî*À^Ø^jäkM"}[ _hÔqÌ+%%å·ß~»qã†ÞxFFƯ¿þêèè(w`l,5Òe4 -Fû¦Üàx÷îÝ&$$ô€°°0¹kÛgK©‘Èh<Ε†BÉÁñûï¿OHHhÞ¼yhhèöíÛ?>sæL—Ë—/¯]»6,,lúôér×6ÎfR#‘Ñx´¡C¹ÁñðáÃÎÎÎË—/wssëØ±cÛ¶m}}}[·n-„ðóó›;wn¿~ýüýýå.l–m¤F"£‘h1"?Ê=9æöíÛ>>>nnnBˆÊ•+W¬XñüùóÒ]}ûö­X±â÷ß/w`³l 5rú‹‘tÏz±ö7ÌM¹G!„ƒÃ¹¶fÍšqqqÒmGGGµZ}öìY¹ Ûdí©‘.£1h1ÂÊí8V©Råúõë=’~¬Q£Æ©S§´÷ªTªøøx¹k[ãççkÕ©‘.c±é]XÇz÷=J„rƒcçÎ322&MštíÚ5!D³fÍnÞ¼yäÈ!DRRÒüQ­Z5¹k›¢R‰ØØ8+MDÆâ!/Â(ʪ2dÈîÝ»÷íÛ§ÑhV¬XìääôöÛo7iÒäòåËééé=zô»F°R„ø÷˜ kÂÄtñp–4L ÜŽ£‡‡Çºuë&NœØ A!DµjÕf̘‘••uôèÑäääN:1BîÀFXéô4]Æbà»^`Êí8fgg{xx¼ùæ›Ú‘†††ž;wÎËËËÏÏOîÀFXcj¤Ëh(NyY)·ã¼pᘘÝAWW×V­Z‘À\¬.5Òe,š¶¹È!Œ07åÇäääï¾û®gÏž Ø´i“öôj€Yhs…UÐF!"cò†EkÙ»°Ê ŽÆ óòò:sæÌŒ3Ú´i3uêTÝ+òŒfE‡ºéæE"c>h.¢)786hÐ`êÔ©ïß¿éÒ¥ÿ÷¿ÿ………uéÒeÕªUýõ—Ü€µ²–F#-ÆÂ!åÇêsphѢŜ9sŽ;¶bÅŠÐÐÐ{÷î}þùç:tÐ=o` «HDÆüqð"ä¦ôà¨åääòÙgŸ­Y³F­Vçää8p@î¢ÀÊ(?5óòõóãàE(„r/Ç£'::z×®]»víŠÿv"å. ¬†Â¯ú,]^Gp…]ÿ^I'.6Ö××Wîj!”/^¼¸{÷î;wÞ¸qC©_¿~hhh=<==宬ƒ’\‘ñ)ÚË. ˜oßç¥Üàøé§ŸîÞ½ûÖ­[Ò>>>¡¡¡¡¡¡µjÕ’»4°&ŠMDÆ7D~aP$åÇo¿ýVáééÙ³gÏÐÐÐÀÀ@¹+ë£ÀÔȬô¿‚ïtõQnpìÛ·ohhhóæÍ¬æ P¥¥FZŒ4aí”?úè#¹Kk¥´Saì:2aC”ÆQN£Ñ~g¥ ‹°QG°) IöØb$,ÂÀvÈží®ÅHX„!8€-ý F;j1aÇŽ`õäm4ÚEd$,B‚#X;¹R£ÏJë&EAXþApk%×ô´Í¶i+E!8€U*ùF£m¶ ‹@qÀú”pj´©#sЀ Ž`eJ,5ÚN‹‘¶"`&G°%sP£-äEÚŠ€eÀ:”@£Q%TÂ×:ó"I(r(šES£J¨¤ÿ4B+÷ºg£hÿÓhžú€eÐqE³èô´•õB[Á”ËBF«9Š‘¤( ÁÊì©Ñ ò"IP6‚#(ŽÙ§§•;%MR¬ Á”ÅŒF%¶IŠ€5#8€R˜«Ñ¨ ¼¨ͲzäCpE0½Ñ¨ˆ¼HC°iGŸ‰©QÎCIŠ€=!8€œL™ž–§ÅHRìÁdc\£±Dó")ÐApÑh,™¼èëç÷ÔÏÄD:ø®j(iÚ¯V6èÁ:_$-ýgæRžþ/.6–/}P‚#”(ç§ÍŸóÄħ2"I@Q˜ª€bàô´9§¤9‘€Y $Ùh4C^äDFpË*¼Ñh|^$&(qãX„ØØXµZýçŸÊ]«TÐy0ÆœòÂá‰äFDZááár—À*åÛh,F‘†"å!8æ/--íÊ•+[·nݰaƒÜµ°>zG4‰‰¬Á1¡¡¡wîÜ‘» ÖG·ÑX`^$&°NÇüÍ›7ïñãÇBˆµk×;vLîrX©Ñ¨ú7þ“U*!¸,[@pÌ_Û¶m¥û÷ï—»V@¥B£!Tâ©9jAL`;Ž¡V«õFvíÚ%wQv->>^î Ï6vŠö›5⟔«ÿ ¸8¹Ë,ÛØ/6†"»nݺÉ]‚R-"::Zî Ï××Wî ÏúvJžcU!TÝ–¢µ­R>¬o¿Øvмò~¬çíÙ ‚#ä'ïù+BF÷|•4+ÍD4»Ap€¢Osþ7/ª¤ó]T*¡âØEö‡àÀþ|5œ|¯§Sä·N€­"8°uÅ¿hbA×_Tq’4ûFp`[L¸¶v!ßïBdAp`Å 8¥xËй4wAßÈÜ4Hެ„Y¿¦¯è/ÖyMR#Hä.@é>úè£èèèFÉ]`gT*ýÿ4ýÿŒXê¿‹Ó.¥ðŒ}°Mt(€Y»‰ù,Þ°þ¢^9DFÐCpP²þ͈O}†e2Zqó¢ 2@¡˜ª`IÏ8ÇÅÆš2é\à 꼘!óÑzÅ27 … ãÀ|,<ã\Ø+¿¹˜·p"#ŽàÀXòÅÄÿJ0-/j׃Ȇ 80€9®˜hÎrÌ‘F(&‚#€<ÐJ̧(®Ô]ÜUTÀj€5!8vO‘1ñ¿êÌÔ\Ô[c%­"X ‚#`g”ÿ+ÓyQÐhÓ›f%1ñŸbÍ:ï–PðÚ€ 86ĪbâU[¦¹øÔK07 æ@p¬–uÆD-?_¿ª¶X^4À¬øæÀJü,–øþK­„Î ÄÆÅëk]ŒÛ`V²aÀ:E²‰˜øßÚäù@Kw‰Œ` LU `å“ή–å^ÌçE9œ,†à”8‰ÿ¬œ%ÏŒ.â¥9œ,ŒàX˜MÇÄÿÖRŽæâ¯Nd€ApÌÊ>bâ«+k^DF(YGÀvÿYiù&£õ+ápF(YG 8ô’¢=ÅÙ›‹OC£ä@p f— ŧ6€bš‹ÿ•DdùvÜP|j3(©¹ø_UDFÁvÌîŠz”™‘ƒà{BC1NFëWÈ0 GØ´“¢¯ô?È¿Û\|ªH 0|W5lKßïKÑÝ4%ð…Ñ&•Ê—M€"Ñq„•cö¹(VÑ\ü¯ZºŒ `GX’¢”äb>5@ñŽP<’¢Á¬«¹ø_ÙDF°G(I±˜¬4/ "#X‚#€¤X|Ö8­ÇÏÏ—] Ö…³ª!“üÎ}æ4Ú"å=-ÚS£´±±qr(‚#JJÊ!)ÉŠ.£Sôºp°fLUÃ’tç I Åd½G.æ¿:ÎÖàs#,šÀŽ\Ìg¥ˆŒ`+Ž0¢il¬¹øßzÀ¶a,¢Él5/ "#Ø(‚#Šƒ°h2›œŒ~j‰Œ`»Ž( aÑl¸¹øß:ÀÖ‘¢9Ø|sñ¿5%2€} 8B‡6/L`ÍÅÿV–Èö„àh÷h.š‰]åEAd»Dp´W4ÍÁ~&£ŸZk"#Ø+‚£!/šƒ½5ÿ[q"#Ø7‚£} /šÌ>›‹ÿ­>‘@p´qäE“Ùmsñ¿-@dü‹àh‹È‹&#/ "# ‚£ !/šÆÎ'£uù"8Ú>çM@sQo%@!ŽÖŒ£ È‹zˆŒ€"­òÆ"/êᯀáŽÖ†ÈX|*¡¾ÿÜ&/jñV—ƒÜÀ`*•P©„FÃG½Tÿl2•Fhbãb5BCj”ðV‡Ž£5 5TLF‚·ÀGeãsÞ`äÅÂñV˜Žà¨T|Ά¼X$ÞJs!8*ŸóEáJÝâ­0/‚£’ð9_(š‹â ; !8*†tš+ò /Ž?=EpT>íóC^,ÞD€@p”Ƨ‘‹‹È(1GY‘ÿE^4‘PÂŽò!5’¹/¹ebß©‘¼hZŒyå`¯©‘¼h4"#@ Ž%ÎþR#yÑDF€rK–¥F)2’ÀŒ"8– »I´MA‹ XÇ’b©‘¼h""#@áŽ%¦S#yÑtDF€U 8ÂxÂh"dX‚£åÙ\»‘£éh1¬ÁÑÂl(5’͂Ȱ^ö7mÚ´qãÆ˜˜˜²e˶oß~òäÉ+V,äñ}úô9wîœÞ ‡‡ÇÑ£Gå^0%m:f¥6À.‚ãâÅ‹W¬XQ®\¹æÍ›ß¸qcóæÍW¯^]³f‹‹KAO¹y󦋋‹î`… Š÷ÂVÞn¤Åh´6ÃöƒcttôªU«¼¼¼"""<==…óæÍ[³fÍgŸ}öÁäû”´´´tïÞ}É’%r—/ZŒfAdع °¸7æææŽ?^JBˆ÷ßßÝÝ}çι¹¹ù>åæÍ›B½v£=P •ôŸFhHFSý»5R#À¦Ø~pæàÁƒ&Lð÷÷ß¶m›bæÌ™#GŽœ1cÆúõëýüü¢¢¢Ê–-;þüB¾Þú)r$¾'ÐDª¾š›¼@þl¿ã(„1bÄgŸ}æëë»cÇŽû÷ï}ú´ÜÕȃà¨O£ÑÄÄÄTªT©R¥JºãBˆ[·nÉ] €<œä.@qÒÓÓsrr*T¨ 7îîî.„¸ÿ¾! Q«Õr¯ô±Sˆ¢Lìb§@!Žú¤S§Ë•+§7îêê*„xðàA‘KˆŽŽ–{%Ì©j}*TP©Tééézãÿý·ø·ï`‡ŽúœœœÜÝÝóvÓÒÒ„Úó¬ì Á1^^^ÉÉÉRRÔŠ‹‹“î’»:yóÑ©S§œœœÃ‡kG4ÍÁƒ+V¬$wuò 8æ£oß¾_}õ•t\£bÕªUIII¯¼òJ©R¥ä®@*F#w J´zõê T«V­]»v7n܈ŒŒ¬W¯ÞêÕ«ó^¦ÀN ´uëÖ_~ùåìÙ³ÞÞÞ-Z´?~¼tEûDp€A8Æ!8À G„àƒ`‚# Bp€AŽf³iÓ¦¾}ûµiÓfÚ´i)))rWdGŠ»ñ322~øá‡^x¡qãÆíÚµ9räÑ£Gå^ [cÊoDbbbÓ¦M'Ož,÷JØ#vʹsçÞ~ûíæÍ›<øøñãr¯„­)îNÉÊÊúæ›o^~ùå   Ž;Ž7îêÕ«r¯„݉U«Õþù§Ü…È€àh‹/ž1cƵkך7oîêêºyóæ7Þx###CîºìBq7~vvö°aÃæÏŸÿ×_µjÕªvíÚÇ1bIJeËä^ÛaÊo„F£yï½÷´ßs1b§ìÛ·oàÀûöíóôô :sæÌ!CöíÛ'÷ªØŽâœœ¡C‡~öÙg)))íÚµ«V­ÚîÝ»_z饓'Oʽ*ö%<<\îä£É._¾\§NvíÚݽ{Wùè£æÌ™#wi¶Ïˆ¿nݺ€€€¦§§K#W®\iÑ¢Eݺu/^¼(÷ Ù#V¯^0iÒ$¹WÅv±SRSS›5kÖ¨Q£S§NI#þùgýúõ[·n““#÷ Ù£ÿù7nÜ“'O¤‘cÇŽÕ­[·K—.r¯]xðàÁÉ“'gΜ)ý%wE2 ãh7nÌÍÍ?~¼§§§4òþûï»»»ïܹ377Wîêlœ×®]BˆéÓ§»¸¸H#þþþ£FÊÉÉaÂÚ,Lù¸zõêâÅ‹ëÔ©#÷JØ#vÊæÍ›ÓÒÒFÕ´iSi¤aÆݻwOJJ:wîœÜ+d ŒØ)§OŸB :ÔÉÉIiÕªUݺu¯_¿~ÿþ}¹WÈö…†††……mذAîBäDp4ƒ“'O:88tèÐA;âè蜜œ,ý’ÃrŒØøqqqåÊ• Ôô÷÷BܺuKî²FÿFdggO™2¥bÅŠï¿ÿ¾Ü+akŒØ)‡R©T½zõÒ\¸pattt£Fä^![`ÄNñööBèfDF“ššêàà ’°œyóæ-_¾|ùòå­[·–»Ùð>3•F£‰‰‰©T©R¥J•tÇ„·nÝjÖ¬™Ü5Ú,ã6þÊ•+óþ {áÂ!D5ä^'«gÊoÄ—_~yéÒ¥Õ«W»¹¹É½6ŸrþüùŠ+V©RåÔ©SgΜIMM­S§Nçε­z˜Â¸ò /¬Y³fÞ¼yeË–mܸqJJÊòåËãããû÷ïÏoM hÛ¶­tcÿþýr×"‚£©ÒÓÓsrr*T¨ 7îîî.žþ»fgÜÆ¯W¯žÞHddäªU«œõš+0‚Ñ¿QQQß|óÍàÁƒ[·n-åx˜‹;%++ëáǵk×þðÃׯ_¯¯Q£Æ’%Kêׯ/÷:Y=ã~SÔjuxxø°aÆ ¦BÄÄÄìØ±cÁ‚Ç?xðàØ±cÆÇ%#LgÜoJZZÚ'Ÿ|òèÑ£ÀÀÀ<ÿüó...¿üò §º£ÄÐq4U… T*UzzºÞ¸t1éoGXˆ‰ÿøñã³gϾvíš··÷ÇlÏǬ˜‘q;eÁ‚ñññëׯgÔŒØ)eÊ”‘n|òÉ';v”n¿ýöÛ‰‰‰›7oÞ¾}{Ÿ>}ä^-ëfÜoÊ”)Sþøã÷ßøðáÒHbbâ€&L˜°eË???¹W ¶Ž£©œœœÜÝÝóþu˜––&„О+K0zãgeeÍ›7oèС‰‰‰cǎݹs'©Ñ\ŒØ)'NœX¿~ý›o¾É)bÄN)W®\™2e\\\BBBtÇ;wî,„¸|ù²ÜëdõŒØ)ýõ×þýûk×®­MBˆªU«¾õÖ[Ož<ùùçŸå^'Ø‚£xyy%''K¿íZqqqÒ]rWgãŒØø¹¹¹ï¾ûîš5k:uê´gÏž·ß~›.—yw§Hß{±|ùrõ¿^~ùe!Ä–-[Ôjõ /¼ ÷ Ù#~S<==K•*¥R©t¥_–ììl¹WÈw§$'' !|||ôÆ¥Fã½{÷ä^!Ø‚£têÔ)''çðáÃÚFsðàÁŠ+É]3b㇇‡ïÙ³gРAË–-£%l ÅÝ)µjÕêù4éÔŪU«öìÙ388Xî²Fü¦„„„¤¥¥]¹rEwPºL Ú4‹âîGGÇ«W¯j4Ýñèèh!DíÚµå^!ع¯@n êÔ©Ó­[·‡J#+V¬X¸p¡Ü¥Ù>C6þßÿ{ëÖ-F“››Û¹sç¦M›fddÈ]»Í*îNÉëüùó|sŒy±S.^¼зoßäädiäìÙ³AAAÍ›7OJJ’{…l;åÍ7ß X²d‰öË{®\¹òÜsÏÕ¯_?&&Fî²#Ó§O·ÛoŽáä3¨ZµêäÉ“,Xðâ‹/¶k×îÆ‘‘‘¯¿þºÜ¥Ù>C6þÁƒ'L˜àïï¿mÛ¶{÷îݼyÓÅÅ%,,,ïÒz÷î=xð`¹×Éêw§È]¯]0b§Ô­[wâĉ‹-êÖ­[³fÍÒÓÓOž<©R©æÍ›÷Ì3ÏȽB¶ÀˆòÑGõéÓgùòå;vì¨W¯^rròü‘››;cÆŒgŸ}Vî‚] 8šÇˆ#*W®üË/¿ìرÃÛÛ{ðàÁãÇ—®ªK+ÖÆBdddœ?>|"c.üF(;åÍ7ßôððX³fͱcÇ*V¬Ø©S§±cÇJ_³³(îNñððرcÇŠ+Ž9ràÀŠ+¶oß~ôèÑ 4{U`/Tš§•òÅÉ10Á!8À G„àƒ`‚# Bp€AŽ0Á!8À GøÏäÉ“Õjõï¿ÿ^b‹úꫯÔjõºuëtŸuàÀ|ïyÀš9räàÁƒrWÀN9É]ص¦M›xï¤I“ÒÒÒ.^¼(wáìÁähܽP˜ª`•rrr²³³å®ì Á€ÕN¹víÚܹs›5kØ¡C‡±cÇê€"=,111**ê•W^iذa||¼öÞ;vŒ5ª}ûöÏ=÷ܰaþûœœ¼¯uäÈ‘qãÆ=úСCzHJJZ´hQ=š4iÒ¤I“ž={~òÉ'wïÞ-ùæ›BNѽwáÂ…jµ:%%%''G­VM›6M­V¯]»VïY‹-R«ÕŸþ¹Ü{ €­!8°2Ó§O_»vmfff­ZµRRRöìÙ3bĈo¿ýVïa—.]6lØùóç?~œ››+„Ðh4ï½÷Þ„ öï߯ÑhÜÝÝ###.\–’’¢ûÜ­[·¾öÚk{öì)S¦Ljjê¾}ûÞxã¥K—j””¶råÊÄÄÄš5kV¯^ýÖ­[ßÿýÀ‹»(Ã5kÖlèСÎÎÎ*•jèСƒ êÑ£‡b÷îݺÓh4Û¶mB¼ôÒKrï+¶†àÀÊœ9s¦C‡¿ÿþûž={NŸ>ýþûï«TªÏ?ÿüêÕ«º›9sfƒ ¾ÿþû£GÖ¬YSñóÏ?ÿòË/žžž6l8tèÐîÝ»÷ïß߸qã3gÎ|ùå—ºÏݼys§NŽ?.½Ä”)S–/_~öìYí®_¿Þ±cÇ£GþòË/[¶l9räHóæÍ~ûí·b-Êp;vœ6mZÙ²e¦M›6yòäV­ZU¨PáÔ©SIIIÚ‡>}:!!¡~ýúµk×–{_°5GVÆÓÓó‹/¾¨P¡‚ÂÑÑqøðáaaa¹¹¹Ë—/×}X¹rå¾ùæ›Ö­[{xxH#K–,BÌ›7/((HñööþòË/7lØpçÎís«V­ºtéR777!„““ÓÈ‘#ÄË–-“2iÒ¤råÊI#nnn¡¡¡Bˆ7nè–Qä¢LáèèØ¥K—ÜÜÜ_ýU;¸uëV!D¯^½äÞQlÁ€•yå•WœuG† "„ˆŠŠÒ|ñÅË”)£ýñ¯¿þº{÷®··wpp°îÃ<==;tè““séÒ%í`ß¾}œœò¾Ä… ¤ÇŒ³bÅŠgŸ}Vû€{÷îmß¾=oµE.ÊDÝ»w:³ÕÙÙÙ;wîtrrêÙ³§÷{ÅåxX___½‘êÕ«;;;ß¹s'++«téÒÒ 4=­uýúu!„OÞÖªUK<Ý)ôóóË÷%îÝ»÷èÑ#©Ë˜pèСS§NݺuëæÍ›z‡6kQ¦hÙ²e¥J•Nœ8‘’’R±bÅC‡¥¦¦vìØ±R¥JßìGVF¥RåqttÌÍÍÕ½@4;¬¥Ñh Z £££âÉ“'E¾„ƒƒC©R¥„ëׯïҥˇ~xöìÙgŸ}vĈßÿýÌ™3 ¯V»(9::víÚ5''G:¶’yjEÇ€•‰‹‹Ó¹sçNzzz•*UÊ–-[г¤^£Þˆ©©ÛÌû·oßNOO¯Q£FéÒ¥ÿþûï¹sç–.]zåÊ•mÛ¶Õ-Ãjue– Ò½{÷õë×ïÚµ«Gûöísss 1÷V!è8°:ÿûßÿ²²²tGÂÃÃ…õë×/äY^^^•+WNLLR­VïÚµë×_õõõMHHÈÈÈprrš1c†tŸŸ_§N~ûí·çŸ¾iÓ¦&:::%%%,,lÍš5ÿûßÿ>|¸`ÁCe„ *¤¤¤ 8°fÍšÚËOöèÑãÿþïÿ222jÕªÕ¸qc¹w›Ep`e^z饰°°ï¾ûîܹs®®®­ZµzõÕW[µjUä>ûì³:lݺõòåËýõW‹-‚ƒƒ‡ &£õý÷ßïÚµë·ß~»páBÅŠÛ·o?|øpÝ@öù矯^½zÇŽ§Nª^½zppððáÃýýýsrr¶nÝzòäIÃU\ï¿ÿþ¼yó®]»–™™©lÚ´iåÊ•ïÝ»G»€E© 9ÓeòäÉ[¶lY¹re‡ä®EYrss;uêtûöíß~û­Zµjr—ÀfqŒ#X½cÇŽ%&&6oÞœÔÀ¢Ž`Ý222/^,„xå•W䮀ãG°bÍ›7ÏÌÌÌÊʪ]»¶ôeÙ`9GV£Gy¿ÄÏžy{{ß¼y388xΜ9z§ø€Ùqr Â1Ž0Á!8À G„àƒüxÒU è:|IEND®B`‚statistics-release-1.6.3/docs/assets/lognpdf_101.png000066400000000000000000000526271456127120000223150ustar00rootroot00000000000000‰PNG  IHDRhŽ\­AU^IDATxÚíÝy|Lgÿÿñk² dÁ"±%©H…Úb)µ%QkÝ–¢¥ Õªj©¥¥¡¥tAŠÖÝZnJÜí¯¨¥)"TН¤%DB¨D’ˆ$óûã´Ó1Yœ$3sÎÌy=}ô1sÍ™9Ÿ3g’¼]×¹®Ñéõz܃ÒÀ6 Á² Á² Á@%}¤gÏž•V9sæLÉ-]\\Lž¸råJ“î.)e3¹xÑ0‚,í¨BU´k×Îp½  Ã`´T°tÃÇÇG§Ó™4ôíÛwäÈ‘ 8tèÐo¼Ö¨Q£S§NYâ´jÕjÙ²eò·ÏÊÊ’n¸»»—|ÔËËË·Ã; ÀޱŽ#ËÊÉɹqã†tÛÛÛÛø!CØÊÏÏ¿råJ­Zµ Ýl&ù¬qãÆݯ!±•zW~UÆšL)çõ%åýã¼  `æÌ™Ÿ|òIaa¡ÔâââR¿~ý?ÿü³*o¸ñ"‹NNNAAA]»v}õÕW ƒõrF¨½¼¼J>ºaư°°ª ÀFÑãÀ²ÜÝÝ=<<¤ÛÆîV«V­^½znnn†p#Í10Lï°~UÆ•š+í½÷Þûøã ýýý—/_þÛo¿åää 4¨Š/k¼ÈâÙ³gÿßÿûo¾ùf…RãÁƒ ¤Û:u2ã!°uG(ÝØ³gq»án@@€“““N§óóó“ZöíÛgج°°ÐdŠñèÑ£/ß+**ÊBUYîmY¾|¹tãóÏ?Ÿ8qbëÖ­œœL¾TZ†AíZµj=òÈ#J—@EŽ,Nš5"„øä“OŽ?.ÝNHHøàƒ¤Ûýû÷—nôìÙSºññÇK«UëõúÙ³g§¤¤¿ ‹‹‹×½ “9,Q•%ܼyÓЫj˜.óÿ÷æZ…§r._¾ü /DFFJwŸyæ777ë 6\ãÀ F-­€hbÆ :uš>}úþóŸ´´´7ntëÖ-,,ÌÑÑ1**JúVoooÃ÷ÁÌœ9sÍš5W¯^ îܹsZZZrr²%j–_•%¸ºººººÞºuK1~üø7êtº]»v™ë;cä3œ»Û·oÚ׫WoþüùV.€Ê˜´øbIyyyB—Í›71"999//oûöí† š6mº~ýzÃÔÝ&Mš|þùç/½ôÒÝ»wsss¥kWW׎;^›…üª,A§Ó 8ðÛo¿BäææþðÃBÿ¦M›JGjrå¥å”zîêÖ­ûÃ?”3€61T À:uêôûï¿¿ýöÛaaa^^^žžž¡¡¡³gÏ>qâD·nÝŒ·|î¹ç¢¢¢žxâ Ÿ† >ñć²Ð ùUYÂ’%Kzè!!„ƒƒC›6m^{íµ¸¸¸Ç\ztãÆ†Å‰¬ÃÑѱnݺ:uzûí·~øakî€MÐéõz¥k€û3fÌÚµk…+V¬˜0a‚Òå˜ÍÝ»w¥žÎÁƒ+] ÜÁ€Š¼ð ÒWvíÚõóÏ?—oݺռysièöàÁƒÌó¥p#ñññ‰BÄÇÇ7nÜxèСׯ_Ÿ>}º”[¶lÙ¡C¥kí¢Ç€ŠäååõéÓçàÁƒ%ú׿þµoß>é¢@€"ŽÔåÎ;ß~ûí7ß|“œœœ‘‘áéééëëÛ§OŸ)S¦Xtš3ྎ…åx Á² Á² Á² Á² Á² Á² ‹“Ò¨T^^Þ·ß~™žžîææÖ¼yóqãÆ=òÈ#J× ^¯WºÕ),,9rd||¼‡‡Gppp~~þÑ£GïÞ½;yòäI“&)]€2èq,ÅæÍ›ããッƒ¿úê+!ÄÙ³gGõù矇††¶hÑBéÀ5Ž¥Øµk—böìÙRjBL˜0¡¨¨èСCJW  ‚c)RRRjÕªÕ²eKãÆ€€!Ä… ”®@ U—båÊ•NN¦ïÌÉ“'…7Vº:e09F–ØØØI“&ݽ{wïÞ½žžžåo¨t½À²•.Aô8ÞGQQц /^\TTôÑGÝ75J´ùaR³ÀÀ@NŠÚpRÔ‰ó¢BœÒl'Á±<¿þúkDDĹsç¼½½,XеkW¥+P Á±t|ðÁºuëjÔ¨ñÊ+¯Œ?Þ0Ã@›Ž¥(..~ýõ×÷ìÙÓ»wï¹sçÖ¯__銔Gp,źuëöìÙóôÓOÏ;WéZÔ‚uMéõúõë×»¹¹½ùæ›J× "ô8šºzõêùóç]\\FŽYòÑÁƒ5JéQaÒ·AU8)êÄyQ!N Ôƒàh*==]‘———PòQ&VÍ"8šjß¾=Ëe”Ä5Ž…àYŽ…àYŽ…àYXŽ`ÿ•.ªÆJ|2š@2@Yøw…| U@‚#d!8@‚#d!8@‚#d!8@‚#d!8@‚#d!8 97nܘ0aB“&M\]]{ôè«tE¥èÑ£GDD„ÒUàG´%''§C‡ÿùϺwï>~üøsçÎõë×/..NéºîwèÐ!¥«€)‚#ªSPPPPP`¡ÿøã“’’V­ZµaÆeË–ÅÄÄètº×_]éƒBˆÂÂÂ={ö¼óÎ;}ûö-..Vº˜"8 :aaaÆ-;v4Ë‹oÚ´ÉÛÛ{ôèÑÒ]ÿ!C†DGGgddÈyúÑ£G{ì± èîåìì\õÚ²²²úöíqõêU3¿§0‚#6 55õرcUœœœ3g΄„„èt:Cchhhqq±œ+£¢¢:wî|âĉgŸ}vþüùíÛ·B´oßþ7Þ˜:ujÕËóòòÒëõz½þôéÓ|7QYNJ¬çÊ•+z½ÞËË˸±~ýúBˆûvòåçç3ÆÛÛû×_mРbÚ´i>úhbbâœ9sÜÜÜ”>8XÁVXX¸cÇŽ²}üñÇMZrss…îîîÆBˆ¬¬¬ò÷séÒ¥yóæI©QQ½zõéÓ§4hëÖ­cÇŽ­bmP?‚#@»ŒFk ×—÷hQQ‘ñݲfŠÜ¾};<<¼ì]˜îÃÓÓSqóæMãÆœœ!DݺuË/855UѦMãÆÖ­[ !ª^ÔàÐ.5G—;wîßÍËË+u3 %0///“QéÌÌL!DÆ Ë®‹‹‹¢°°Ð¸QJ´¥Ìš¨hmP?‚#jtéÒ%ã»eMy®èp°““SPPPLLŒqãt:]Ë–-Ë/) @qêÔ)ãF©¯100°êµAýލÑåË—·oßþØc !’““ãããKݬÃÁÏ?ÿü«¯¾jxñ?ÿü322òÑGõóó+¿¤öíÛ7kÖìóÏ?Ÿ4iRíÚµ…|ð«««ôRU¯ *Çr<¨‘““ÓðáÃGŒ1lذ‡z¨¬U¥áಔú”±cǶiÓfäÈ‘³fÍZ¼xq¯^½rss _î·qãÆ:uꔺ¶Ž³³ó²e˲²²Ú¶m»páÂÅ‹wëÖ-&&fáÂ…&Ó´+]TŽGÔ¨sçÎ\¹reaaáóÏ?ïîî>þ|³¼²»»{ttô´iÓ"##³³³»té²aÆvíÚI\¿~½¬K* ;wîÜåË—ççç·mÛvçÎ}ûöUúÝ‚•P#N7sæÌ™3gZæÍ›g®÷ððXµjU©3æîÝ»¥Î’–´k×î‡~°ôáÒ+©B U€äççïÛ·OúJÀÁüãðáÃ-Z´xúé§•.jÄP5ª3qâD“/w±š¥ß¨ÁÕ™>}ºÒ%¥`¨² Á² Á² Á² Á² Á²М7nL˜0¡I“&®®®=zôˆUº¢ÊÔv÷î]'''ݽêÕ«§ôØ3'¥ V•““Ó¡C‡óçÏ2ÄÓÓ322²_¿~ûöík×®Ò¥U¬¶”””¢¢¢®]»úûû]]]•>{Fp@u „ÕªU³Ä‹üñÇIII_ýõ˜1c„¯¾újppð믿¾wï^¥»bµ%%% !æÍ›¦táZÁP5ªh†""":vìh–ß´i“··÷èÑ£¥»þþþC† ‰ŽŽÎÈÈóô£G>öØc 40#vvv¶rmRplÖ¬™YÞÈApÀ¤¦¦;v¬ê¯“““sæÌ™Ngh -..–s¥cTTTçÎOœ8ñì³ÏΟ?¿}ûöBˆöíÛ¿ñÆS§NµrmIIIÕ«WwssÛ²eËÊ•+<(õÔÂrª@C®\¹¢×ë½¼¼Œëׯ/„¸zõjùÏÍÏÏ3fŒ··÷¯¿þÚ A!Ä´iÓ}ôÑÄÄÄ9s渹¹Y¹¶¤¤$‡fÍšeggK--Z´X·n]pp°²o²#8`à wìØQÖ£?þ¸IKnn®ÂÝÝݸÑÃÃC‘••Uþ¾bbb.]º4oÞ<)5 !ªW¯>}úôAƒmݺuìØ±V®-))©¸¸8""bÈ!ÎÎÎ?üðÃk¯½ž = fGphšNèªþ"•£úr-**2¾[\\\êf·oß/szÓ]xzz !nÞ¼iܘ““#„¨[·nù§¦¦ !Ú´icÜØºuk!DBB‚õkÛ¿5 7.??Ò¤I‘‘‘ãǰ‚#@ÓÊOo ºsçŽñݼ¼¼R7óðð(™ÀÊáåååàà`2ò›™™)„hذaùÏuqqB7J‰ÖÁ¡”Y–®ÍÇÇǤ¥OŸ>Bˆ“'OÊß)*„à€]ºtÉønYSž+:ìääcÜxàÀNײeËòK Bœ:uʸQêk ´rmiiiÛ·o mÑ¢…¡QêžlÚ´iÕÞ{”MskÞ¼¹Ò%ÀTrr²Ò%À'Eìõ¼ØÜof___!ĶmÛ¤»çΓֵ.¹åõë×+úW~Ù²eÆ/~åÊ//¯>}úÜ·ª‚‚‚fÍšy{{gggK-wîÜéÑ£‡««ëåË—­\Û•+WjԨѽ{÷‚‚©¥¨¨høðáNNN'Ož¬Ð»]‰‡Í}¢Ì…åxP#''§áÇ1bذa=ôPY«$JÃÁe)õ)cÇŽmÓ¦ÍÈ‘#gÍšµxñâ^½zåææFDDHnܸ±N:¥®­ãìì¼lÙ²¬¬¬¶mÛ.\¸pñâÅݺu‹‰‰Y¸p¡ÉTh Õ¶hÑ¢:uê|ñÅBˆúõëGDDÄÄÄLœ8qæÌ™:tØ´iÓ¼yó‚‚‚”>{v‹¡jÔ¨sçÎ\¹reaaáóÏ?ïîî>þ|³¼²»»{ttô´iÓ"##³³³»té²aÃÃwú\¿~½¬K* ;wîÜåË—ççç·mÛvçÎ}ûö5×Q—_[~~þõë× WNŸ>ýX¼xñúõëkԨѺuë;wöë×Ïr':}E®Z…‰‰‰JW{¤¤¤øùù)]îÁIQ'{=/6÷›ÙÏϯQ£F&WûYÍ—_~™°téR¥ß+©ÄÇÃæ>QæÂP5øG~~þ¾}û¤¯„LÀ?>Ü¢E‹§Ÿ~ZéB F\ã€êLœ8Ñä T¬&$$$$$Dé7*Ep@u¦OŸ®t @)ª€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,G4çÆ&LhÒ¤‰««k=bcc•®¨’µýþûïÆ kР««k‡–,YRXX(=t÷î]'''ݽêÕ«§ôñÙ6'¥ V•““Ó¡C‡óçÏ2ÄÓÓ322²_¿~ûöík×®Ò¥U¬¶äää^½z <¸I“&QQQS§N=pàÀwß}'„HII)**êÚµ«¿¿¿á)®®®J¢ÓÃÜš7o®t 0•œœ¬t 0ÅIQ'{=/6÷›ùÎ;wîܱЋÏ;Wñõ×_KwÏ;W»ví¥ºÂµ=þøãGŽ1´Œ7N±k×.½^¿cÇ!DTTÔ}wZ‰‡Í}¢Ì…¡jT'000,,̸%""¢cÇŽfyñM›6y{{=Zºëïï?dÈèè茌 9O?zôèc=Ö A“Q`ggg+×¶wïÞ=z¿-/¿ü²âðáÃBˆ¤¤$!D³fÍÌò¦ABpÀ¤¦¦;v¬ê¯“““sæÌ™Ngh -..–s¥cTTTçÎOœ8ñì³ÏΟ?¿}ûöBˆöíÛ¿ñÆS§Nµfm………“&M’’¢AZZš¢zõêBˆ¤¤¤êÕ«»¹¹mÙ²eåÊ•,((¨ú¨q\〆\¹rE¯×{yy7Ö¯__qõêÕòŸ›ŸŸ?fÌooï_ýµAƒBˆiÓ¦=ú裉‰‰sæÌqss³fmNNN .4n¹víÚÂ… ‡ "„HJJrpphÖ¬Yvv¶´A‹-Ö­[¬Ì[oŽØ°ÂÂBéb¾R=þøã&-¹¹¹BwwwãF!DVVVùûЉ‰¹téÒ¼yó¤Ô(„¨^½úôéÓ ´uëÖ±cÇ*XÛþýû_xá…¤¤¤+V!’’’Š‹‹#""† âììüÃ?¼öÚkááá Òk¢Žm3µ6½¾œ‹ŠŠŒï—ºÙíÛ·ÃÃÃËÞƒé.<==…7oÞ4nÌÉÉBÔ­[·üzSSS…mÚ´1nlݺµ"!!A©ÚΟ?ÿòË/oÛ¶- ***44Tjß¿5 O7n\~~þ¤I“"##Ç/P)GØÃoÿrÀ=ÔúãÎ;ÆwóòòJÝÌÃÃC_‘Cðòòrpp0ùÍÌÌB4lذü纸¸! %J¤DëàPʬ +Ô¶qãÆ_|ÑÕÕuåÊ•ãÆsrú'Øøøø˜lܧO!ÄÉ“'å—GØ îŸßþÆ·À6]ºtÉønYSž+:ìääcÜxàÀNײeËòK’†€O:eÜ(õ5Z¿¶mÛ¶=óÌ3O=õÔ_|a2À––¶}ûöÐÐÐ-Z¥Î˦M›VødÀ@éõ€ìf×vRRÉOò½-öº4M㤨“½ž›ûÍìëë+„ضm›t÷ܹsÒÊÕ%·¼~ýzEÿÊ/[¶ÌøÅ¯\¹âååÕ§OŸûVUPPЬY3ooïììl©åÎ;=zôpuu½|ù²•k+..~ðÁ}}} K>zåÊ•5jtïÞ½  @j)**>|¸““ÓÉ“'M6fGùèq„í+µQ¯§ß€Msrr>|ø AƒŠ‹‹·oß.-1SRE‡ƒ…cÇŽ]³fÍÈ‘#'MšT»ví¯¿þ:777""BztãÆ/½ôÒ³Ï>ûñÇ›<ÑÙÙyÙ²eƒnÛ¶í‹/¾èèèyìØ±O>ùÄd*´…j[´hÑûï¿¿pá &œ:uêôéÓ-Z´xî¹çL^ä‰'ž4hPDDÄ›o¾пÿÚµkïÞ½;..nÁ‚AAAV:…öˆà€uîÜyàÀ+W®,,,|þùçÝÝÝçÏŸo–WvwwŽŽž6mZdddvvv—.]6lØ`øN¿‚‚‚ëׯ—uIå€bccçλ|ùòüüü¶mÛîܹ³oß¾æ:êòkËÏÏ¿~ýºtõ§´¾÷©S§L†Î…Íš54hÐôéÓxàÅ‹¯_¿¾F­[·Þ¹sg¿~ýÌ|ž4FWÑ à¾•®B3ÊïVüûÑ””???¥kÅ=8)êd¯çÅæ~3ûùù5jÔÈäj?«ùòË/–.]ªôÛ`%•øxØÜ'Ê\øæðüüü}ûöI_ ˜ 8–Ý÷*FéJG€l‡nÑ¢ÅÓO?­t!P#®q@u&Nœh²¾ŒÕ„„„„„„(ý@¥ްwR§cr²Òu@LŸ>]é€R0T ›Åj;XÁ²0T Ðëýèž Êèq„m"`uGÈBp„&¤$'³ #UDp€,GØ .p@ ̪hB`` Ò%6à;B†®J@“•.¡òRRRüüü”®‚¡jÈDp„­¡×…¡%Òh5¨‚#d!8@‚#l 8 ‚#4†Ë¨,‚#d!8@‚#d!8@‚#l‡¹¦T3?€J!8@'¥ °ªäääþýûoÞ¼¹M›6åo9dÈ'N˜4zzz:tHéƒP†¶‚ãºuëdnyþüy___ãÆÚµk+}ŠÑDpÌÉÉ9sæÌ¶mÛ6mÚ$sû7nôïßéÒ¥J×Ë.säKh¨MÇAƒ]¾|YþöçÏŸB˜t7Baä<”¦‰àøÞ{ïݹsG±~ýú_~ùå¾Û§¥¥ !š6mªtá*¢‰àØ­[7鯾}ûäl/ÇŒŒŒÑ£GŸ:uªfÍšAAA&L¸ï”;¦‰àXQ.\B,[¶ÌÏϯK—./^Ü·o_ttô;ï¼óÔSOÉy…ÀÀ@“–]»v)}X¶ÍOˆ”””J?===ݼ/ˆª+yR œâ¤(®_¿~J— ÇRddd¸¸¸L:uôèÑRË/¿ü2a„ tëÖÍÇÇ羯˜˜¨ôAØ!???s>]¯÷ãºI¥UñœÂB8/*ÄIQVÉ?ë%{ˆ4‚ÀKñõ×_ÇÇÇR£¢k×®Ï<óL^^^TT”ÒÕ(ƒà(W§N„gΜQºM¢k 8šÒëõEEEÅÅÅ&펎ŽB777¥ PÁÑTZZZPPИ1cLÚãâ℆¯i 8 !ÄíÛ·SRR¤ik¾¾¾ÁÁÁGŽÙ²e‹aƒ¸¸¸5kÖøøøôíÛWéba>Ò÷Çy˜U-„ÑÑѯ½öZ@@ÀöíÛ…sæÌ?~ü[o½µqãFÿ‹/ÆÇÇ׬YsáÂ…...J   zKñàƒ~÷Ýwááá™™™»wï¾qãFxxøöíÛ~øa¥KPŒNÏdUs dG3«ò¬ê”””ÒWAc¾¶rÊ<)PçE…8)*¤Ù¿õô8BõÈv¨ÁÚÆüd#8@‚#d!8@‚#d!8@‚#ÔÍ kñ0±yŽ…àYŽ…àYŽóc…àYŽP1+¬Åd#8@‚#d!8@‚# „`b5÷Gp€,GÈBp€,G¨‹8 2GÈBpþÆÄjÊEp€,GÈBp€,GÈBp€,G¨’R‹82±€² Á² Á² Á¸«(Á²¡>J-âÊEp€,GÈBp€,G &VP‚#d!8@‚#d!8@‚#T†Õ¿P+‚#d!8¥aEJ 8@‚#d!8@‚#d!8@‚#P&Vp/‚#Ô„Õ¿P1‚#d!8@‚#d!8@‚#P6&V`„àYŽ…àYŽ…àÕàkcP7‚#d!8åbEþFp€,GÈBp€,GÈBp€,GÈBpî‡yB¡|m ªGp€,GÈBp€,GÈBpd`b5GÈDp€,GÈBp€,G¨_€- 8@‚# +ò4O]Áñ£>JJJRº ”B]ÁqÕªU|òÉ'×­[wíÚ5¥ËÀ?Ô_|ñņ &$$¼ûî»Ý»wŸ8qâîÝ» ”® ÂIéî1uêÔ×^{íøñãÛ¶mÛ¹sçÞ½{÷îÝëîî>pàÀððð¶mÛ*] €v©«ÇQ¡Ó邃ƒßyçC‡­X±bÀ€7n6lXŸ>}–/_~ñâE¥kÐ"ÕG''§ÐÐÐ%K–>|xöìÙ...iiiË–- {æ™g¾ÿþû¢¢"¥k„Æ0± mêª6‘ýóÏ?ïÚµëðáÃ………Bˆzõê9;;9räÈ‘#«W¯þòË/½½½•.@Ô333úé§Ý»w9rDêVôôôìÓ§Ï€‚ƒƒ…¿üòË’%KæÌ™³zõj¥ëEÕðµ1ØuÇõë×ïÞ½ûرcÅÅÅBˆºuëöíÛ·ÿþ:tptt4lÖ­[·àààN:=zTé’´B]ÁqþüùBˆÚµk÷éÓ§ÿþ;w6΋Æ\\\jÔ¨Á85€Õ¨+8>ùä“ èÒ¥KYyÑÝÖ¤®YÕ;wî<|øpY©ñ•W^éÛ·¯Ò5h”º‚cnnîÝ»wËzèüùó,â…±"@ÔªŽŽŽž8q¢áîÚµkׯ__r³ââb½^ߤI¥ëÐ(僣£££»»»t;;;»Zµj5kÖ,uËÚµkϘ1Céz4JùàØ­[·ØØXév``àðáÃgÍš¥tQ0¥|p46~üø:(]J¡®à8}út¥K€uñµ1Ø…ƒã† „:u 0Ü-ßÈ‘#•­@›ŽóæÍBDDDHÁQº[>‚#&­ÈCG)@{ޝ¼òŠ⡇’î¾ñÆJ¿!(ÂÁñå—_6¾ûüóÏ+[Ê¢®É1%éõú½{÷¦§§·nݺ]»vJ— ]ª Ž{÷î]¶lYïÞ½¥Qì·Þz+22RzhĈsçÎÕñ…oJP×wU=zô¥—^:}útqq±â?þˆŒŒôððxúé§5j´qãÆ½{÷*]#€F©«ÇqõêÕz½~öìÙ#FŒBìÙ³G±pá°°°ÔÔÔ~ýúý÷¿ÿ SºLh«š¤®àxæÌ™ Œ=Zºû믿V«V­{÷îB__ßx 99Yé4J]CÕׯ_÷ôô”nþñÇ­ZµªV­šÔR³fÍÌÌL¥kÐ(uGŸôôô¢¢"!ÄñãÇóóó;wî,=T\\œžž^¯^=+—”œœøÛo¿)ýÞØ#F{°)ê Ž;v¼~ýú§Ÿ~zñâÅO?ýTÑ£Gé¡5kÖ\»v­Y³fV.iݺuJ¿+ª ®k_xá…mÛ¶­X±bÅŠBˆ‡zHZ»ñ©§ž’úüÆgJrrrΜ9³mÛ¶M›6)ý®¨‚º‚cÆ ¿ýöÛ?üðôéÓÍš5‹ˆˆVmÌÌÌtwwŸ5kÖÃ?lJ tùòe¥ßQWpB¬\¹Ò¤qݺuÞÞÞÖXï½÷îܹ#„X¿~ý/¿ü¢ô»õaE€ö¨.8–ªaÆVÞc·nݤûöíSúèTAuÁqçÎk×®MMMÕ—Ñ—«t÷hÒ²k×.¥‹R?!RRR¬³¯ôôt›®ß.Y⤠ê8/*ÄIQ\¿~ý”.A-Ô£¢¢¦L™"ÝvttTºœÊKLLTºÛàççgÓû²fýv‰7P8/*ÄIQVÉ?ë%{ˆ4B]ÁñË/¿BŒ;ö¥—^òððPºüC]Á1))©Q£Fo¾ù¦5çÁ@å³»wïÞ¼y³qãÆ¤FØib5š¡¢ˆæàààááqöìÙââb¥kå±– ¶FEÁÑÑÑñ¹çžËÌÌ\²d‰ÒµÀ”º®q0`À… V­ZÛ¿ÿFU«VÍd›^½z)]&€©+8†……I7~ÿý÷ßÿ½ÔmXé@ê Žÿþ÷¿•.ÁÔ»ï¾ûî»ï*]€òÔ?øà¥K@éÔ ®_¿ž‘‘áããóÈ#dffzzz*]P‚´"ÓÃÚ ºà˜••µbÅŠÈÈȼ¼|¸”&`}ê Ž+W®ŒïÙ³ç®]»Þÿ}CûæÍ›üñÔÔÔµk×*]#€F©+89rÄÑÑqÁ‚5kÖ4nwttœ3gNÍš5wïÞ­t0® À©+8ž:uÊÏϯÔy0®®®þþþiiiJ× Qê Ž·oß.ëÑììl777¥kî%M¬@Ôƒ‚‚222JýΘS§N]¼x±E‹J× Qê ŽÃ† Óét¯¿þúÉ“'ÛOž<9eÊ!Dxx¸Ò5h”ºÖq|ä‘Gž{î¹Õ«W?ñÄþþþBˆ¨¨¨_~ùåܹsÅÅŃîÛ·¯Ò5h”º‚£â7Þ^´hQrr²ââÅ‹BˆzõêM:ÕxeGX™ê‚£"$$$$$$;;;99¹  ÀßßßËËK颴NÁQR§Nàà`¥«À_Ž6l¨èSFŽ©lÍ€)iE–4Ø;…ƒã¼yó*ú‚#€"ŽÒ";ÆN:µ{÷nGGÇnݺùúú:::¦¤¤ÄÄÄz{{Ïš5KÙ‚a%:çt¢ô´õ‚><TDáà8qâDã»çÏŸ_·n]``àçŸÞ¸qcCûÅ‹_~ùå?þøcÛ¶m}úôQ¶f˜‘Ë ˆå? ¬L] €¯X±"++ëÓO?5NBˆ† ~òÉ'Bˆ={ödff*]&Ì@'t:¡Ó }9¹PzTÚRéz€Ê‚c\\œOÓ¦MK>Ô¸qc©]ÏÛwßÈhÌ•®­S×r<ÙÙÙÅÅÅz½^§+%%äääÔ©S§^½zJ—‰ªªÄè³!;ªtäš‰Õ PWc«V­rrröïß_ò¡ƒfgg·lÙRéQ%Ué8¤ëe©+80@1}úô;wIïÙ³ç7Þ0l%PWñEÈŽ(E]CÕO>ùäÁƒüñÇ)S¦Ô«WÏßß_§Ó%''ÿùçŸBˆAƒ=ùä“J׈J2Kj”HÙQ¥cÖØ/uG!ÄG}Ôµk×eË–]½zõêÕ«R£··÷+¯¼2xð`¥«C%™=ç‘°>ÕG‡¡C‡2äÊ•+)))NNN¾¾¾Lˆ±iJxdG¬LuÁQ¢Óé4hРA¥ ª©+;2±`ïÔ59öÇ4Ø™;Z1W«!8Âæ‘°‚#,HEãÈ Êްk¦F:°‚#ìÙK#8Â"¤V>;J«°SGØå³#ö‹àócN v‰à{C§#Bp„™©¡»‘ì€% ÁætŸîF+~•³bŽL¬Ø/‚#ìÖ˜Á²a6j˜c‚NG̈à;GvÀ\Ž0v7órRºÀâôB¯ó³b®•&V[kþ8VC#4!9%™kªˆà3`œ- 8B+˜%@QU6ÔÝHv *ްæ‹`ãŽÐ+u:òÕ{DpD•ØÐ85¨"‚#4‡+¨‚#´ˆì@%QyŒS )GhŽTÁ° &VìÁ•dãÔt:P!GhÙùŽ…àˆÊ¨ð8µŠ¿oNGd"8@‚#`±NG&Vì Á²Qav°OI\éÀ}¿(Á²Q1v9Nm@§#å 8–ÄÄj€!8÷ Ó€² ÁPÉ Uü}ƒ¥¢Ó€RR(‰àXócö‚à”ŽNGL!—}¯àî‹à”‰NGŒ Á²hvœšNG Ž€å1±`ŽÀ}Ð逄ਠ:r^¶öµ1¥"; „pRºXŠqR”’›Iv”ç4{#0Fp´CR@,™ MZÊÚ ¥’: Ð-#8Úù#ÃÆÝÄG‹“æÇðFlÁÑ~T.å£Ó qG;QÅάrâ#Q H˜Uèõ,8xL¯hÁј÷Ú9);ËBvhÁÑæYbÆ]Á{ °qGÛfÑyºz=8–ŽNG€6q [ ÁцYgYÀ* [ÛïÊ…t:4ˆàh«¬ɸ<!ÙÑDe:y¶Œàh“¬ÓÝXrf ±-#8¢bȎƸÒ )GÛ£ø„V7FvhÁ•Á áhÁÑÆX­»QÎÒßdGIÅ:y×6‹àˆ*! GTÙQp¥#@޶Dñi1e)=;ª¶\P)G”BÎŽ&èw¤Ó`÷Ž6CýýwdG¹Ù‘w `›Ž0'vŒà3ÓxvdÀ`Ç޶AýãÔÆ4ž°WG˜ªÄ̘’l(暎{Ep„i¶ßñþÙ‘^Y€ "8ÚÛ§6F:ÀžaYšÍŽ XìÁ÷0ËŽBÜÓMªÙì€!8ªíŽSÓfv¤Ó`gް²c‰Ç4ùŽlÁÖCRÀ¦aUÌŽ X솓ÒXÉ–-[6oÞœ””T³fÍž={N›6­N:ål?dÈ'N˜4zzz:tÈše[ùG³ÍŒ)—”íàÂM´FÁqÉ’%_|ñE­Zµ:v옖–¶uëÖ³gÏ®]»ÖÅÅ¥¬§œ?ÞÅÅÅ××׸±víÚJŠÐZv”:K åZ{#6ÎþƒcbbâªU«¼¼¼"##ëׯ/„xï½÷Ö®]ûᇾýöÛ¥>%''çÆýû÷_ºt©ÒåÛ-صFRS™ÙÛaÿ×8nÞ¼¹¸¸xÊ”)RjB̘1ÃÃÃcçÎÅÅÅ¥>åüùóB“îFë³û®(½^‹—<`»ì?8=zÔÁÁ¡W¯^†GGÇ=zdee?~¼Ô§¤¥¥ !š6mªtíš ìÈ,€­³óà¨×ë“’’êÖ­[·n]ãöæÍ› !.\¸Pê³¤à˜‘‘1zôèŽ;öìÙsâĉ¿ýö›ÒGcYæH­`g©v²#6ÍίqÌÍÍ-***9©ÅÃÃCqíÚµRŸ%ÊeË–ùùùuéÒåâÅ‹ûö틎Ž~çwžzê)9û 4iÙµkWÅË÷KII±Þ›å'̵;?Qá—JN:_r²¥Ž7==ÝB¯\±ÃÉ:?]rJ²ñ‘ûét)ÉÉ•Q›¥’“œâ¤(®_¿~J— vóòò„µjÕ2iwuuBܸq£Ôgedd¸¸¸L:uôèÑRË/¿ü2a„ tëÖÍÇÇç¾ûMLL4Ký~~~Ö|»Ì¸»J¼”^/t:?Ë]Öiå7³ÌÃzŸiç®Jj³>͸Êq^Tˆ“¢¬’ÖKöi„U×®][§Óåææš´ßºuKüÝïXÒ×_oHBˆ®]»>óÌ3yyyQQQÖ©ÜîgÆ”Š1kÔÌ΃£“““‡‡GɞŜœ!„ažµ:uBœ9sFéc²õ¬£…ìÈ,€²óà(„ðòòÊÊÊ’’¢tž——WÉíõz}QQQÉ•z…nnnJýÓ\vÔÂì‚ýǰ°°¢¢¢˜˜C‹^¯ŽŽ®S§N»víJnŸ––4fÌ“ö¸¸8¡ák¬Œ(€ Ùp:t¨ƒƒÃgŸ}&]×(„XµjUffæ“O>éìì,µÜ¾};%%Eš¶æëë|äÈ‘-[¶^$..nÍš5>>>}ûöµBÍÚ¼ÀÑ„ÝgG¬6ÇÎgU !|||¦M›¶hÑ¢ÿûßÝ»wOKK‹mÙ²åóÏ?oØ&::úµ×^ ؾ}»bΜ9ãÇë­·6nÜèïïñâÅøøøš5k.\¸°œ¯·†ÙÙý79ó=„Ûbÿ=ŽBˆqãÆ}øá‡~~~?þøãµk×FµvíÚ’‹;<øàƒß}÷]xxxffæîÝ»oܸ¾}ûö‡~XéC±3g³f=»ïwÔØql›NoÇý9 ¬â:ŽVîfSsp4×K¦¤¤¨v´¿Þûî\-šOŠ–q^Tˆ“¢BUÿ[o£4Ñãh[´—îOê£Keaôz»Îe– ÀVaKì8;*]÷GpÔ:››Õk¯ÙQ§öy`;Bp„í±Ëìh[ñ MGuafŒLv™…\ìP3‚#l•½fGT‹à³²n—©½-Ó£×ëut:Ô‹à¨i673¦$û[¦‡ÕyªEp„= ;`GØ ;ËŽ¨ÁQE˜R]Eöÿ>:*Dp„]±‡ìh8²#@eŽÚe3cJeoS­P ‚#ìmOµ6*NG€ªa·l8;Ù Gµ°‡™1ê;ûÈŽ¨„“Ò–õwvôSY¦­È!½½^ °-ô8j”¦‚ˆ^/’“Sl©ë±DO)Ö5 8B+l}ØšìPÁÂJ=TÁÚbÓ+õÐéPÁQÔ7ÙÎÙ@v,£D²#@AG-ÒÔ̘²Øî°5Ù ‚#´Ë¦‡­°>‚#ÌÄf‡Û՛ˮŒNG€"Ž€M[“ÖGpÔ.p,•-[“VFpTžÍŽñÚ!›ëz$;¬‰àÜC]]**‚#P lt:¬†à”Ά†­ÉŽë 8j 3c*DÃÖò* ;¬€às°ë >¶ÒõHvXÁ¸?Ut=Ê©“ì°$‚£Â캫ÎÞ(Öõh¡ G ÔßõH§#ÀrŽÂÌsQùUdG€…Ê0t=ª3>’–@p*Ïz#×ß Ù`vGT™æ'ø¨¶ë‘ì0/‚#`ª¹&;̈à¨$kvÕ13Æ ,;r]Ù—&;Ì…à˜™:»¨:‚#`~j¹¦Ó`GÀRÌ«0NvTÁ°,õ|Ù ÙPEGM`fŒâT2rMvTÁU£ùEå3ÏÈu•{/ÉŽ€J#8*†Ä¥Mj˜7CvTÁP@•â£9.™$;*àhÿ¸ÀQµ”í}$;*Šà(LÁøHvTÁP…ŠÅGó-ðCvÈGpTD‘ÞG²#@&‚#ª€™á–aýøHvÈApT†Õ3cl×}⣹¿Ž†ì¸/'¥ PéRD´ô?6 Ù‘lJE#`Jï}´Àw`ë…ž®G@Yèql†qd¤”éw˜ 8Ú3þöÛ%C^Ôé,xvÉŽ€’ªFe1¥Zizý_£Õš|͘5ÀÁ°y–[»‡ì0ÆP5`ãôz¡Óéõza™Ë³À/,ÄøòGa¾øÈ2= ÁÑnÑK¤!ÒXµQN4ûüké³Ä‡ 4ŽàØ-³w@2l ÇäÀ.”»¸ñúáUœCÃtÐ2zQ)\§iƒL: Eeû ¹ä4‹àhŸOD9ª>„Í% M Uö¢â_]]Å!l†­@kèq´6Æx¡6UÂfØ4…àØ‘ëòTôÙ’ %H†­@;ŽvÈâÂé5µw•Ht=€ûRµNÇ’/&‘“ éz»Gppò$]`ÇŽ€Ý1k§cÉ×–ÏÂ6Ù]`¯Žö†¿Ö°ã°Xj7$]`Ž€=²d§c©{“˜$HºÀέʦ#ÛÃ1hƒu³£aŸ’{²éz;Ap`~%²õBž®G°m|å ]aL÷¨ø—Z¨ é?¡Óÿõí†Ê¨ zX‰^/ ]:!„¿Þ¨`Ž€]SâJÇûõw|”n—³²@UªFE¨/‚àþÔ1`]RrJ²´da,[ªÔð@mèq´\à[d²Üc©ËC z"@Ž€¨rÀúŸêþ^îQÜ»d!Ô†àh=*þà PwveÇGCù&£Ø*>&°7GȦîØûP~|ük›{›É‘`5G;Áޏ?Õw:þS©Œøh|XÆÔË!8Zb;ÙQT0>¢‘`^GªV¹øø×sÔ³"8ÚÆ©Q6ÕéøOÕFñQTû’%i€ý"8fûŽ÷…; Kßii;¡c€½"8Ú6Æ©QUö•E‰Ha­yO tL°SG@óì.;þuX*Hÿ#¯c²œ@ ޏ{Œ0e§Ùñ¯ƒSS‚¼§°2ª {€j­ÁB‘§†9ÙuvüëÕš Më¬H÷¤ S°"‚#€¿i ;þu 6’ 啕ìò`5G”K1ÿ²£ÐJè(™ …-„HÓ£¨ÈwùO€òmãÔ°)Shìß Æ?M6Ô yŸƒªx'¥B?-yCpPÍ [—rèvÑ yŸc,ûhRRRt:¿Ê=€Ý#8¢lZÍ ø‹†³ã_o@iÝÂîBd)^îñ•Û[)ëØ.‚£MbœV¢±KË{'Ê‘B9Òô­q¸÷ —šÿ@¶ŠàhqÚî²íÓä%å3IŠšêŒ”é¾9Ý–r^€•m•º 0F×cÙ茬™Ÿ#™ùRþ ¨"‚#yèz”¡œÎHAެ8ùŸ5ù³¢¯ ÀÁÑÆÐÝ…ÑõXåçHA”4ŸŠ~ š@åT¡ëQðç´bJÆD¢¤R,4+½#@å޶„îF¨ñÑäDIAšTJÆ+8«¸_ÀBŽ–Eƒ3Ž‚¿rfPjF,5M ¥-¨âÏÄß?[~Uy~.aFG›Aw#ÔËð™¡Ò2ÊúÙ'PÚ=é‡)%%ÅϯòÙ±Š½žeUm"8ÚR#lÖUÑ@Yþ³`¯Ìþƒhö$jÑja^GæfÒiÒË+?–+…É÷aÑŸf‹¦R+‹]rPºõÚ²eËСCÛµk÷È#Ìš5+;;»¢¯`®þ;º«®_¿~J— Izý?ÿétý÷7NŠRô÷œÓÿš6×ýs¶ÊûOéãÐMý°èõVýOÖg½´ÿ4‹ÇÒ-Y²ä‹/¾¨U«VÇŽÓÒÒ¶nÝzöìÙµk׺¸¸X¹R#ìD‰nÈDÁO¥dþΩhv¤#*Téß@J—®zK‘˜˜¸jÕ*//¯]»v­Zµj÷îÝ£Gþý÷ß?üðC+WBj„úû_úÍ›—þï}؈ŠvîT¶g‡ÞM@EŽ¥Ø¼ysqqñ”)Sêׯ/µÌ˜1ÃÃÃcçÎÅÅÅÖ©Aú]iñÔ(ýN&5BAò‡Ž`ãª2¢X•ÐÏàXŠ£G:88ôêÕËÐâèèØ£G¬¬¬ãÇË|‘Jç1Cd´`j4üÚ”~'ªRÅk‘`,t…›…ò(vŒkMéõú¤¤¤ºuëÖ­[׸½yóæBˆ .tèÐÁì;5þ­a‘¼hò×”°[$óskéìÈQÏe—÷ÉŽ‰¾¢¢žO‚úMåææÕ®]Û¤ÝÃÃCqíÚµû¾Bâ™3B§Ó !ÿÇüÞ¬ù;6o~ï}-^ӨɣV9‹œ“O»¹%Ú{§æ_“–`]Ä¥Uü3oá_5ªEp4•——'„¨U«–I»«««âÆ÷ õuH$*]öD³X¹ÆÑTíÚµu:]nn®Iû­[·ÄßýŽDp4åäääááQ²g1''Ga˜g  5ÇRxyyeeeIIÑ %%EzHéê”Ap,EXXXQQQLLŒ¡E¯×GGGשS§]»vJW  ‚c)†êààðÙgŸI×5 !V­Z•™™ùä“O:;;+]€2tzõMVƒ5kÖ,Z´¨aÆݻwOKK‹ Z³fMÉez4‚àX¦mÛ¶}ÿý÷¿ÿþ»··w§N¦L™"­È MGÈÂ5Ž…àYŽ…àYŽ…àYŽÅIéìÇ–-[6oÞœ””T³fÍž={N›6­N:J!„HNNîß¿ÿæÍ›Û´i£t-Z———÷í·ßFFF¦§§»¹¹5oÞ|ܸq<òˆÒuiÝõë×—.]zìØ±ôôôzõêµjÕê•W^ñ÷÷Wº.üåÒ¥Kƒ ýàƒ”®EÓ† râÄ “FOOÏC‡)]šõÍcÉ’%_|ñE­Zµ:v옖–¶uëÖ³gÏ®]»ÖÅÅEéÒ Ö­[§t BˆÂ±cÇÆÇÇ{xxtéÒ%??ÿ×_=xðàäÉ“'Mš¤tuÚ•““óØc]½z5 $$$##ãÇܳgÏ·ß~ÛªU+¥«ƒÐëõo¾ùæ­[·”.âüùó...¾¾¾ÆZû.b‚£$&&®ZµÊËË+22²~ýúBˆ÷Þ{oíÚµ~øáÛo¿­tuÚ•““sæÌ™mÛ¶mÚ´IéZ „›7oŽþꫯ¤S={vÔ¨QŸþyhhh‹-”.P£>ýôÓ«W¯N˜0áµ×^“Zþ÷¿ÿÍœ9óÝwßågG ¾þúë#GŽ(]DNNÎ7ú÷ï¿téR¥kQ×8šÁæÍ›‹‹‹§L™"¥F!ÄŒ3<< `„ EEEšèQ›Ã‡»¸¸Lœ8ÑÐòÄO4hÐàäÉ“EEEJW§ugÏž]²dɃ>¨t!çÏŸB˜t7jÁÑ Ž=êààЫW/C‹££c=²²²Ž?®tuÚõÞ{ï-_¾|ùòå]»vUº!DJJJ­ZµZ¶liÜ „¸pá‚ÒÕiWíÚµCCCkÔ¨aÜX½zõ‚‚‚‚‚¥«Ó´ÂÂÂéӧשSgÆŒJב––&„hÚ´©Ò…(Œ¡êªÒëõIIIuëÖ­[·®q{óæÍ….\èСƒÒ5jT·nݤûöíSº!ÄÊ•+œLçœ>~õêÕ£FêÚµ«ôï+(KY¶l™ŸŸ_—.].^¼¸oß¾èèèwÞyç©§žRº:ë!8VU^^ž¢V­Z&í®®®Bˆ7n(]  FEEE6lX¼xqQQÑG}äéé©tE‰‰‰‘‘‘z½^ѲeËjÕª)]‘våååMŸ>½qãÆ¯¿þºÒµà/...S§N=z´ÔòË/¿L˜0aÁ‚ݺuóññQº@+áǪª]»¶N§ËÍÍ5i—–Núûõ×_ ôÞ{ïyzz~õÕW Pº"!ÄðáÃO:uðàÁ7ß|s÷îÝ#FŒ` ¥,Z´(==}ñâÅ\- _ýu||¼!5 !ºvíúÌ3ÏäååEEE)]õ«ÊÉÉÉÃãdÏbNNŽÂ0Ï€¢  à½÷Þ3fÌ¥K—^yå•;w2uIUt:]½zõÆ7lذ˗/ïÞ½[銴èÈ‘#7n|ñŵvñœ-êÔ©“âÌ™3Jb= U›——WRRRNNŽñõË)))ÒCJW¨Eqqñ믿¾gÏžÞ½{Ï;—V©ÁÙ³g׬YÓ£Gþýû·K“߯\¹¢tZtöìY!„´(„qû?üðÃ?lß¾]é5G¯×ët:‡{zÜ…nnnJh=G3 KLLŒ‰‰8p Ô¢×룣£ëÔ©Ó®];¥«Ôbݺu{öìyúé§çΫt-ø‹»»ûÿþ÷¿«W¯šGiÉ:???¥ Ô¢¦M›þšHnܸqðàAŸvíÚ5hÐ@éµ(--­oß¾:u2ù*²¸¸8!D`` ÒZÁÑ †úÅ_|öÙg={ö”æÄ¬Zµ*33ó¹çžsvvVº:@ôzýúõëÝÜÜÞ|óM¥kÁ?¼¼¼<¸wïÞÐÐP©ñôéÓ6lpuuíØ±£ÒjQ·nÝ «‰INžräÈ–-[†*5ÆÅÅ­Y³ÆÇǧoß¾Jh=G3ðññ™6mÚ¢E‹þýïwïÞ=---66¶eË–Ï?ÿ¼Ò¥jqõêUék^GŽYòÑÁƒ5Jé5êÝwß}úé§'NœØ®]»FýùçŸÇŽB,^¼˜Ùî€Áœ9sÆÿÖ[omܸÑßßÿâÅ‹ñññ5kÖ\¸p¡¦æ0ÍcܸqõêÕûþûïüñGooïQ£FM™2Eê} „HOOBäåå%$$”|”)2 jݺõŽ;–-[–pêÔ© ôéÓgÒ¤IÒ—ú<øàƒß}÷ÝG}tøðá³gÏ6nÜ8<<|òäÉÞÞÞJ—fU:iÉ. |,ÇYŽ…àYŽ…àYŽ…àYŽ…àYŽ…àYŽ´eÚ´iû÷ïWºñÙgŸnذAéB@.‚#dqRºÐ¨OOÏàà`¥ ¹Ž Œ–-[¶lÙRé* ªÕ)**º{÷®ÒU€)‚#ÛðÖ[o~ðÁ&í'Nœ ìÚµkaa¡"33óã?0`@ûöíÛ·o?pàÀ÷ßÿÊ•+e½¬4WæðáÃ&íAAA?ü°qË¡C‡&OžÜ»wïŽ;Ž=ú³Ï>3Év/^œ;wî€Ú¶mÛ«W¯^xáèÑ£åÑêÕ«'ÇH•¤§§¯ZµªK—.­ZµêСÃðá㢢Êz…¸¸¸   =zܼyÓÐxëÖ­^½zýþûïJŸ4ö†àÀ6 4H±{÷n“öíÛ· !ÂÃÜœ233G޹råÊK—.5iÒ¤Q£F.\øÏþ3bĈìììªìýÃ??~üîÝ» ëׯìØ±O?ýtÔ¨QYYYÒgÏž4hЦM›²²²xà½^ýÌ3ÏìÝ»·B;Z¹råG}äììÜ¥K¸¸¸I“&íܹ³ÔÛµk7~üø+W®,\¸Ðиxñ⌌Œ—^z©uëÖÖ>IìÁ€mèØ±cýúõ/\¸ðÇ‹‹‹¥PõÄO!¶nÝšššzèСï¿ÿþ‡~8xð`ÇŽ/^¼øóÏ?Wz×ûöí[½zuãÆ·lÙ²ÿþ;v8p gÏžñññ+V¬¶ùðÃoß¾=qâÄ_~ùeëÖ­ÑÑѳgÏÖëõË–-«Ð¾6oÞü /ÄÄÄ|ýõ×?ýôÓØ±c…k×®-kûÉ“'lݺ5&&Fqøðáo¿ýö¡‡š8q¢rç €Ý"8° ÷v:;vìÊ•+íÚµkÖ¬™¢°°0$$ä7Þ¨U«–´»»»ÔU™––Vé]/Z´H±téRCž§§çÒ¥K½¼¼"##¯_¿.„8}ú´bèÐ¡ŽŽŽÒ6#FŒx饗z÷î]¡}µnÝúõ×_wppù¥—^B¤¦¦–µ½³³óâÅ‹œœÞzë­?ÿüsöìÙ...~ø¡¡ 0#‚#›!E@ãq[iœúÉ'Ÿ”îNš4é‹/¾xà \½zuÇŽUÙivvvJJŠ¿¿¿É èš5kvíÚ5///!!A!%×3f9rDºÚÒÙÙùÕW_}å•W*´»þýûßõððpttÔëõå<%((hÒ¤I—/_~üñÇ/^¼øæ›oúúúZêÐ6–ã`3Z¶léëë›ššš˜˜XXX¸k×.—¶¹xñâŽ;váÂ…óçÏWñÒF!Drr²ôÿÀÀÀR7ÈÈÈBDDDL™2åÈ‘#Ï<óL5‚‚‚:wîܧOŸ    í®Q£F•(òÅ_ŒŠŠ:yòd§NFŒaÖwþAp`K ôé§ŸîÚµ+000&&æÆO<ñ„a`zãÆï¾ûnaaa“&M:tèлwïV­Z¥¤¤Ì›7¯B{)**2tò!6lXÖ ³¢Q£F[¶l‰‹‹;pàÀ¯¿þšpüøñ+V 2äÝwßÕét2w]­ZµJ¼-·nݺzõª"99ùúõëµk×¶ü© EG¶Ä_}õUi Ú0N}ëÖ­ùóçW«Vmåʕݺu3<åòåËÝË¥K—Š‹‹¥ÛþþþBˆš5kΚ5«ügét:i !DAAALLÌÌ™3###CCCÃÂÂ,ú¶Ì;÷Ï?ÿlß¾ýñãÇçÍ›÷ñÇ[tw4‹kØ’¦M›¶jÕ*99ùĉ?ÿüsÓ¦M;tè =tâĉ¢¢¢öíÛ§Fñ÷´•ò™ŒhÿôÓO†Û^^^õêÕ;wîÜÉ“'·)**zòÉ'»wïž™™yñâÅÐÐЧžzÊðhµjÕ¤Ù<ééé}O¶mÛ¶sçΞ={®]»6 `ÇŽ%-³ 8°1Ò™Ù³gçææ2ÄÐîåå%„8}útff¦ÔRTT´iÓ¦õë× !òòòJ}µ&Mš!Ö­[—››+µÄÆÆÙ‘L:µ¸¸xêÔ©§N’Znݺ5sæÌ„„„–-[zzzz{{ß¼yó·ß~ûòË/ ]•©©©BXt=ÅË—/Ï›7ÏÍÍmþüùÎÎÎ .tttŒˆˆ¨úÅPCÕlÌ€-Z”˜˜èèènh÷÷÷ ûùçŸ}ôÑàà`½^Ÿ˜˜˜=räȵk×þïÿ»y󦴰ޱðððo¾ùæøñãaaaAAAþùgRR’‡‡Gƒ îܹ#m3xðà#GŽ|÷Ýwááá 6¬S§Nrrrnn®¯¯¯´ò¶ƒƒÃ¬Y³f̘ñÁ|õÕW5ÊÍÍ=wîœ^¯1bD»ví,ôVèõú3fäää,X°@ÊÍ=ôÐØ±c¿ú꫈ˆˆ¥K—*}®ØzؘúõëwêÔIѽ{÷úõë?ôÑGMž<ÙÇÇGZß±GßÿýìÙ³GŽéèèXê6nÜø¿ÿýoïÞ½òÈ#Ë—/Ÿ;w®åÞŠuëÖ>|¸[·n† =…“'OnÚ´éÎ;wíÚ¥è‰`‡tå/Úqûöí¬¬¬ÆËŸ šBp€, U@‚#d!8@‚#d!8@‚#d!8@‚#d!8@–ÿâ÷sÞuiIEND®B`‚statistics-release-1.6.3/docs/assets/manovacluster_101.png000066400000000000000000000331321456127120000235350ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A6!IDATxÚíÝyxUÕ¡ðá@…„Y@ ÖË 9Q (RP뢢¢ XÁöÆÇ¡‚Öê§-Ø *êu¤W½ŠV¡•A´R*3BETf1PIe&œïóÜ<Ü`)ÑÂûþeVΰörŸäÇÞgŸ¤%“É%=î pdŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽ©÷¾_}õÕc=öþûï¯Y³¦nݺ͛7¿ùæ››4ir»tïÞýÃ?,6X§N™3gƽ5ñHK&“qÏá»UPPÐ¥K—/¿ü2+++++kýúõ¹¹¹+V5jTóæÍt¯6mÚìÚµ«Q£FûÖ¬YóÅ_Œ{ƒâQþ8>ùä“_~ùeNNNÿþýS#ãÆ»ë®»î»ï¾W^y¥Ä»lÙ²¥sçÎ=öXÜÓ(+Êÿ{gÏž‘‘qà 7\qÅ?üá—,YRXXXâ]V­ZEQ±ÃG¹òıfÍš‰D¢råÊûVªTi×®]»víÊÈÈØÿ.yyyQ5lØ0î¹”!å?GŒQldþüù«V­:í´ÓJ¬ÆèÃqýúõ}úôYºtifffÓ¦MsrrN=õÔ¸· 6åÿâ˜"¹¹¹¯¾úêÊ•+sssô£=ûì³:}×]w7.Š¢Æ'‰µk×.Y²$==}РAW_}õ!Ÿ(;;{ÿÁe˖އ¥üq,²lÙ²±cǦB¹Y³fÇsÌn¹~ýúŒŒŒôéÓ'52kÖ¬œœœ!C†´oß¾Aƒ!Ï÷攲£èˆcEÉd2??üøñ?üpݺu'NœXµjÕÀû>ôÐCÏ=÷ÜÝwß]T“’-€ò§ü_U½¯´´´ºuëöíÛ÷šk®Ù°aÔ)SÂïÛ¦M›(Š–/_÷FÄ£œ‡ãŠ+îºë®I“&oÖ¬YE_|ñÅþwI&“………{÷î-6^¡B…(ŠªU«÷6Ä£œ‡cõêÕÇ÷ꫯO}RcãÆ÷¿K^^^Ó¦M¯½öÚbã¹¹¹Ñ.|8”óp¬W¯^vvöŒ3Þ}÷Ý¢ÁO>ùdäÈ‘U«VmݺujdëÖ­+W®\³fME5jÕªÕ¼yóÆŒSt—ÜÜÜáÇ7hÐà /Œ{›âQþ/ŽY¼xqÏž=wïÞݲeËýèG7n|ÿý÷£(:th×®]S·yë­·ú÷•5a„(Š>ùä“~ýúåçç7kÖ¬I“&k×®]´hQffæ°aÃÎ<óÌC>£‹c€r©œqŒ¢¨E‹'N¼øâ‹7oÞüöÛoñÅ\pÁo¼QTû;ùä“_{íµnݺåççO™2eË–-ݺu›0aBH5”Wåÿˆã÷ÏG \*ÿG(€ € € € € € € € € € € € € € € € € € € € € € € € € € iÉd2î9”7iiqÏJâµÀaª÷Ê'¿¡)ƒÒÒì™§ª""""""""""""""""""""""""""""""R1î ”Q_}õÕc=öþûï¯Y³¦nݺ͛7¿ùæ››4i÷¼b“–L&ãžC™SPPÐ¥K—/¿ü2+++++kýúõ¹¹¹+V5jTóæÍy÷´´È¢RÙ38LNU—àÉ'ŸüòË/srr&L˜ð裾òÊ+÷ßÿž={î»ï¾¸§GKеk×5kÖÌ™3§råÊEƒ;vܼyó¢E‹*T¨pð»;®CÙdÏà0yc jÖ¬™H$ö­Æ(Š*Uª´k×®]»veddÄ=A€ÇŒ1¢ØÈüùóW­ZuÚi§©Fà¨%&77÷ÕW_]¹rennîüÇ<øàƒwÌÎÎ.6²lÙ²¸·à°ǃY¶lÙØ±cSomÖ¬Ù1Ç~ǸçPÊ\sÉd2??üøñ?üpݺu'NœXµjÕƒßÅ%”MöL“ã9„´´´ºuëöíÛ÷šk®Ù°aÔ)Sâž@<„cq+V¬¸ë®»&MšTl¼Y³fQ}ñÅqO ±¸êÕ«7îÕW_-6¾jÕª(Š7n÷â!‹«W¯^vvöŒ3Þ}÷Ý¢ÁO>ùdäÈ‘U«Vmݺu܈‡‹cJ°xñâž={îÞ½»eË–?úÑ6nÜøþûïGQ4tèЮ]»òî.A l²gp˜„cÉòòòüñ>úè‹/¾øáxÊ)§ÜxãYYY!÷õ뙲ɞ ÀaŽ¥Ï¯gÊ&{&‡É{"âOrHK‹{å…•,ÎøG-áÈ‘Á¯jÊñ Íœª ˆp ˆp ˆ÷8ÂQÇ»ô“<Þ¯ G4áG#¿¼‰…æ†#SÕŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽ©÷¾Û·o5jÔØ±c׬YS­ZµD"Ñ·oßvíÚä.Ý»wÿðË Ö©SgæÌ™qo @<Ê8îÙ³ç¿øÅ¢E‹jÔ¨qÖYgíØ±cîܹ3f̸å–[n¼ñÆÝkÕªU5Úw°fÍšqo @lÊ8Ž=zÑ¢E­Zµzþùç322¢(Z±bE¯^½† öÓŸþô”SNÙÿ.[¶léܹóc=÷ôÊŠòÿÇÉ“'GQt÷Ýw§ª1Š¢¬¬¬œœœÂÂÂw^µjUEÅ7åÊ8®\¹²J•*Íš5Ûw0+++Š¢Õ«W—x—¼¼¼(Š6l÷ÜÊòªú™gž©X±øf.Y²$Š¢N8¡Ä»¤Âqýúõ}úôYºtifffÓ¦MsrrN=õÔ¸· 6iÉd2î9|ßæÌ™sã7îÞ½ûÝwß­S§Îþ7¸ë®»ÆEQãÆ‰ÄÚµk—,Y’žž>hР«¯¾úŸ–%ÙÅ—-[÷vÁÒÒ¢£o?ýYOâb߃#]ù?ⸯ‘#G:´°°ð‘G)±£(Z¿~}FFÆ€úôé“™5kVNNÎ!CÚ·oß AƒC>‘LÊŸ£èˆãܹsï½÷ÞÏ>û¬~ýúC† iÛ¶í7ºûC=ôÜsÏÝ}÷ÝE5y þI]ê,i鲞ÄžGºòqLE»ví@¹TÎÃ1™LŽ1¢Zµj¿ýíor³­[·®\¹rÍš5Q5jÔ¨U«VóæÍ3fLÑ rss‡Þ Aƒ /¼0îmˆG9¿8fãÆ:tÈÈÈ8ñÄ÷ÿîå—_Þ«W¯(ŠÞzë­þýûgeeM˜0!Š¢O>ù¤_¿~ùùùÍš5kÒ¤ÉÚµk-Z”™™9lذ3Ï<óOêÝߥΒ–.ëI\ì{p¤+çïqLDܾ}ûG}´ÿwt‰ÌÉ'ŸüÚk¯=òÈ#³gÏ^±bÅ 'œÐ­[·[n¹¥~ýúqo@lÊùÇXø'u©³¤¥ËzûéÊù{(-€ € € € € € € € € € € € € € € € € € € € € € € € € € € € € € € € € € € € € € € € € € € € € € € € € € € € € € € € € € € ãž@µ}ûöQ£F;vÍš5ÕªUK$}ûöm×®]ÜóˆMZ2™Œ{eΞ={~þóŸ/Z´¨F­ZµÚ±cÇüùówïÞ}Ë-·Üxㇼ{ZZdQK—%-]Ö“¸Ø÷àHçˆc F½hÑ¢V­Z=ÿüóQ­X±¢W¯^Æ ûéOzÊ)§Ä=A€xc &OžEÑÝwߪÆ(в²²rrr gΜ÷ìâ!K°råÊ*Uª4kÖlßÁ¬¬¬(ŠV¯^÷ìâáTu žy晊‹¯Ì’%K¢(:á„âž@<\dΜ97ÞxãîÝ»ß}÷Ý:uêüÆiiQ"‘]lpÙ²eqoÄÌêK—õ$.ö=8Ò9âx………#GŽ:thaaá#úhÿﺰ8j9âXúü“ºÔYÒÒe=‰‹}ŽtþV5A„#A„#A„#A„#A„#A„#A„#A„#A„#A„#A„#A„#A„#A„#A„#A„#A„#A„#A„#A„#A„#A„#A„#A„#A„#A„#A„#A„#A„#A„#A„#A„#A„#A„#A„#A„#A„#A„#A„#A„#A„#A„#A„#A„#A„#A„#A„#A„#A„#A„#A„#A„#A„#A„#A„#A„#A„#A„#A„#A*Æ=ïÕçŸÞ¹sçÑ£GŸzê©¿e÷îÝ?üðÃbƒuêÔ™9sfÜ£+_~ùåÀ[®Zµ*##£Q£FûÖ¬Y3î-ˆÍQŽË—/?~ü+¯¼xû-[¶tîÜù±Ç‹{îeÅQŽ—\rɆ Âo¿jÕª(ŠŠn8Êá8xðà;wFQ4bĈY³fòöyyyQ5lØ0!GE8¶oß>õÓ¦M ¹}*ׯ_ß§OŸ¥K—fff6mÚ4''ç—Ô”cGE8~S«W¯Ž¢èñÇoܸñYgµvíÚiÓ¦MŸ>}РAW_}uÈ#dggY¶lYÜ›pX„c Ö¯_Ÿ‘‘1`À€>}ú¤FfÍš•““3dÈöíÛ7hÐà €òÇ€—àÅ_\´hQQ5FQÔ¶mÛÞ½{oß¾ýwÞ‰{vñŽ¡Ú´iEÑòåËãž@<„cqÉd²°°pïÞ½ÅÆ+T¨EQµjÕâž @<„cqyyyM›6½öÚk‹çææF%]õp”ŽQE[·n]¹råš5k¢(jÔ¨Q«V­æÍ›7f̘¢äææ>¼Aƒ^xaÜ“ˆ‡«ª£(ЦOŸÞ¿ÿ¬¬¬ &DQôûßÿ¾_¿~÷ÜsÏ_ÿú×&Mš¬]»vÑ¢E™™™÷ßFFFÜ“ˆ‡#Ž%8ùä“_{íµnݺåççO™2eË–-ݺu›0a™gž÷Ôb“–L&ãžCy“–YÔÒeIK—õ$.ö=8Ò9â@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@ŠqOàˆ—–÷ ŽÖê’ɸg&J_ö”–´4»e—SÕŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽއðùçŸgggðÁqO fÂñ^~ù帧P&TŒ{eTAAÁòåËÇÿÊ+¯Ä=€2A8–ì’K.Ù°aCܳ(C„cɼsçÎ(ŠFŒ1kÖ¬¸§?áX²öíÛ§þcÚ´iqÏ LŽß‰ìììb#Ë–-‹{R‡E8~'d"Pþø8‚G‚G‚G‚G‚G‚G‚¤%“ɸçPÞ¤¥EµtYÒÒe=K%¥Ù(Ëq ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp HŸ'ð=3fÌèÑ£?ýôÓÌÌÌŽ;þæ7¿©U«ÖAnß½{÷?ü°Ø`:ufΜ÷¦Äã¨ÇG}ôé§Ÿ®R¥JëÖ­óòò^}õÕ+V¼ôÒKºËªU«2225j´ï`Íš5ãހؤ%“ɸçðÝZ¶lY·nÝêÖ­;vìØãŽ;.Š¢Áƒ¿ôÒK½zõúÝï~Wâ] Z·nݹsçÇ{ì[ø î­ˆS9¿8fÛ¶m………û_ÔR£F(Š6oÞ\â½RAùøã7nÜø¬³ÎZ»ví´iÓ¦OŸ>hР«¯¾:äy³³³‹,[¶,îÅ8,å<·oßEQ•*UŠW­Z5Š¢-[¶”x¯õë×gdd 0 OŸ>©‘Y³fåää 2¤}ûö 48äóÊD ü)秪kÖ¬™––¶mÛ¶bã_ýuô¿Ç÷÷â‹/.Z´¨¨£(jÛ¶mïÞ½·oßþÎ;ïĽMñ(çáX±bÅ5jìd±   Š¢¢ë¬C´iÓ&Š¢å˗ǽMñ(çáEQ½zõ6mÚ”*Å"+W®L}kÿÛ'“ÉÂÂÂý?©§B… QU«V-î ˆGùÇsÏ=·°°ð½÷Þ+I&“Ó§O¯U«VË–-÷¿}^^^Ó¦M¯½öÚbã¹¹¹QIW½%Ê8^uÕUéééO=õTê}Q=ûì³ùùùW^yå~ðƒÔÈÖ­[W®\¹fÍš(Š5jÔªU«yóæ3¦èArss‡Þ Aƒ /¼0î ˆGùÿ“ƒQ >üÁ<þøã;tè——7gΜ¦M›>¼èczÞzë­þýûgeeM˜0!Š¢O>ù¤_¿~ùùùÍš5kÒ¤ÉÚµk-Z”™™9lذ3Ï<óOç¯E•:KZº¬g©³¤”"»eYù?âEQß¾}~øáÆ¿õÖ[›7oîÕ«×K/½´ÿ‡;9ùä“_{íµnݺåççO™2eË–-ݺu›0aBH5”WGÅÇï™,–:KZº¬g©³¤”"»eÙQqÄ€Ã'"""""""""""R1î @qiiqÏÀæÇ'™Œ{˜p ,RG§£<šË>§ª""""""""""""""""""""""""""R1î ß­´´¸gPîf›LÆ=ƒ˜G(ÿŽÚÐùޤ¥¥KêT5A„#A„#A„#A„#A„#A„#A„#A„#A„#A„#A„#A„#A„#A„#A„#A*Æ=²k̘1£GþôÓO333;vìø›ßü¦V­ZqO 6iÉd2î9”E>úèÓO?]¥J•Ÿüä'yyyÿüç?[´hñÒK/eddò¾ii‘E-]–´tYÏRgIK%-]Ö³ÔµKêTu –-[öì³ÏÖ«WoòäÉÏ>ûì”)Súôé³xñâ‡~8î©ÄF8–`ôèÑ{÷î½õÖ[;î¸ÔÈwÞY£FI“&íÝ»7îÙÄC8–`þüùééé:u*©P¡ÂÙgŸ½iÓ¦… Æ=;€xÇâ’Éä§Ÿ~zì±Ç{ì±ûŽ'‰(ŠV¯^÷âáªêâ¶mÛVXXX³fÍbã5jÔˆ¢hóæÍ!’÷v”+‰DdEKÕ2»hi³¤¥Ì«¾tYÏïÀ²¸'áXÜöíÛ£(ªR¥J±ñªU«FQ´eË–C>B2µûG»h©³¤@ùçTuq5kÖLKKÛ¶m[±ñ¯¿þ:úßãŽG!áX\ÅŠkÔ¨±ÿ‘Å‚‚‚(ŠŠ®³8ÚÇÔ«WoÓ¦M©R,²råÊÔ·âž@<„c Î=÷ÜÂÂÂ÷Þ{¯h$™LNŸ>½V­Z-[¶Œ{vñŽ%¸êª«ÒÓÓŸzê©Ôû£(zöÙgóóó¯¼òÊüàqÏ þVuɆþàƒüñ:tÈËË›3gNÓ¦M‡¾ÿÇô%„ã?þõ×__¼xqýúõÛ´isë­·¦>‘àè$â=ŽŽŽŽŽŽŽŽ%xë­·²³³ Tâwï¹çžììì)S¦ì;˜——w÷Ýw_vÙe§Ÿ~z»ví~ö³Ÿ=þøãzŠçž{.;;;;;{̘1qoîa­ÒA¬X±¢Tž¨gÏžM›6ý¶eìØ±ßÇÂÔ7Ý‘Êý‚”úFHçÎãž`yvæ™gfggïÚµë[?Â÷ðs ŒËÉÉÉÎÎ^¸paÜ)£–-[6xðà®]»¶nݺU«Vݺuûío»téÒ¸çUUŒ{åÁ›o¾yçw6mÚ´C‡Û¶m[±bÅŸþô§—_~yĈ'Ÿ|òþwyã7Šî{ÕUWŽß^ýúõO:餿U¥J•¸gw„ù;ßÔöØþð‡qOí(òÅ_œsÎ9Ý»wÿÃþ÷\(üñgžy¦°°°B… 7®V­ÚêÕ«—.]úúë¯÷èÑcàÀiiiqϱüއkÍš5¿ûÝï233Ÿ}öÙÓO?=5¸wïÞQ£FÝ{ï½7ß|ó¤I“*Vü?ëüÉ'Ÿ,_¾ü”SNÉÏÏŸ?þ† ŽÜ_Z:u:СY¾‘o±#ñ-Øcˈ½{÷Æ= ʃ'žxâOúSFFÆwÜqÅWT®\95>sæÌþõ¯­^½ú€âžfùáTõáš;wîŽ;z÷î]ôË>Š¢ôôô=z\tÑE«V­Z¶lY±»¤7vëÖí¢‹.J&“&Lˆ{#¾'»wïþ>ÿÄå÷üt‡é[ìHeÓ‘µì6Ÿ£Áá¼I HÙÜ·W¬XñôÓOsÌ1cÆŒéÙ³gQ5FQÔ®]»‘#Gfff¾ð ¥ø†Ÿ;v”úV”͵=áx¸Ö¯_EQ… öÿVŸ>}n½õÖcŽ9fßÁ½{÷N˜0¡B… ]»vM½­jüøñqoÄw¨gÏž;w^·n]Ÿ>}~üã7oÞ¼sçÎÏ?ÿü¾¶nÝzß}÷¥Þ›rýõ×ÿýï:thvvö’%KöÀ ÜxãíÚµkÞ¼y§Nnºé¦>øà=]AAÁ Aƒ.¾øâÖ­[_wÝuÅÞ®—ÀiÀ€ÙÙÙ ,(únêO·ÜrKÑȬY³²³³o¾ùæÔ—»wï~â‰'®¹æšÓO?½k×®ÿïÿý¿/¾øbßÇYƒ?HȲRRXXxÿý÷·jÕê¹çžKþ^·cÇŽ‡~øŠ+®8í´Ó:wîüÀlÙ²%|…Ë“Aƒ}öÙQ3&;;û•W^ Yä"wÜqGvvöG}´ïàÛo¿ýàƒƽqß«Ýò£>ºüòËüã·lÙ²wïÞ£FúR–_ÚþóŸ ¯¿þú¬¬¬ý¿[¯^½;k×®+W®, ùiVì‡@j077÷‚ .8õÔSÛ´i““““——·gÏžaÆ]yå•©×u±‹gmËò~îÌ×áúñEÑóÏ?_»víK/½tß7ö~úéû=J™={öÆ;tèP§NÚµk׫Wï“O>Y±bE‰;}ù°cǎ믿~Ë–-ݺuKKK›2eÊСCwïÞ““EQ~~~ïÞ½?ÿüóD"ѶmÛ¥K—æää4iҤćš3gÎ/ùËd2yÆgÔ®]{íÚµûÛßÞ{ï½1cÆ$‰§[»vm¯^½Ö­[wüñÇŸqÆÿüç?ýë_ŸqÆq/RèŽtöÙgOœ8qöìÙ­ZµŠ¢hïÞ½©ˆœ7o^2™L½gÞ¼yQuìØ1Š¢-[¶üâ¿øøãO:餎;®^½úÕW_>}úóÏ?ŸzÓdÈ‚òA¹ìG–{ï½wÔ¨Q©£‡¿×mÞ¼¹OŸ>+V¬H$?ýéOW¬Xñ /̘1cìØ±©§Yár£K—.ÇwÜã?Þ²eËK.¹$µ'‡,rÊE]ôÆoL™2¥yóæEƒ©ó6—^ziÜ÷ý Y±ýë_×]wÝÎ;Ï8㌊+æææÎ›7ïƒ>2dHøƒ”ñ—ö?þñ(Šz÷î} ôèÑ£GE_¾ÖŠýˆ¢hÓ¦M¿üå/ëׯ߳gÏ¥K—N›6mùòå‰DbáÂ…çw^Æ 'Ož|Ï=÷Ô¯_¿}ûö‡¿¶ez?O²Ÿ‰'&‰–øÝ»ï¾;‘HLž<¹hdàÀ‰D"‘H4kÖ¬W¯^O>ùdê´c‰w¿ãŽ;‰Ä›o¾™úrðàÁ‰Dâ‘G‰{£¿å*uêÔé?KrÏ=÷¤nÖ£GD"ѵk×Í›7§FRïï¼øâ‹S_þþ÷¿O$Ï<óLêËÂÂÂ?üá©õüè£RpÊ)§¤¾{óÍ7'‰>ø h©áSO=øt·Þzk"‘¸ï¾ûöìÙ“yñÅSO7f̘x—4dGÊÏÏÏÎÎîÙ³gêË¥K—&‰víÚ%‰åË—§¯¹æšììì7&“ÉÔb>¼è¦NzòÉ'_ýõá rÈ9ä²—Ùc‹^ì=zôhÖ¬YÛ¶mß{ï½¢;þ^7hРD"ñì³Ï=Âý÷ߟH$^xá…À>ÒqƉDbçΩ/7lØH$î¾ûîo´È©Ÿ;wî<ýôÓÏ?ÿü¢[nݺµE‹]ºt‰{+¿[ÿùŸÿ™H$,X¾b©/[¶,5²víÚ‹/¾8‘HÌ™3ç=H™}iïØ±#;;ûŒ3οKÈO³ý¤Öá–[n)ú9Ù·oßÔò®_¿>5ò—¿ü%õ³´TÖ¶,ïçŽ8–‚Aƒ]qÅ'Nœ;wîû￟:ÞS¹råóÏ?ÿ¦›njÔ¨QÑ-·oß>uêÔÌÌÌóÎ;/5Ò¹sç?ÿùÏãÇïß¿ÿ‘xÙ׺uëÖ­[·ÿxÆ ÷ýò¶Ûn«U«V꿳²²7nœŸŸEQAAAêtÕ/ùËÔwÓÓÓo¿ýö &|õÕWû?l—.].¸à‚-Z¤®Ý¼ysÈÓåçç¿õÖ[ 6¼óÎ;‹N _{íµ“&MÊÍÍ{-ƒv¤Úµk7kÖlÑ¢EÛ·oÏÈȘ?~E¿úÕ¯û¬°°°]»vûFsFFÆ©§ž:}úôý碋.Š¢hÏž=«V­ÊËË[¹rå믿þž.Š¢Ž;{+aÇŽËB8Fa;RÇŽ?úè£ ´oß~þüùuêÔ¹òÊ+xàyóæõêÕkáÂ…{öìI§N-oFFFÑÛÈRvîÜEÑ矞ھ ‡|¢¬9в—)!{l›6möýòð÷ºýwò5j½Û,|…˱ÀE.ºñøñã§L™’ú…:a„´´´®]»Æ½ß«ÀKý((Ò¦M›*Uª¤~†?H™}igffFû´Z‘“O>¹èj˜½{÷Μ93õß᯵b?¢(JOOß÷•˜Z„ÆhYmËì~.×öíÛÓÒÒŠþgW¯^ýœsÎ9çœsn¿ýöAƒ7î±Ç{úé§SßM]Oýúë¯ï¿?þH Ç*T¨Q£F‰ßZ³fMEuëÖ-6¾ÿHʪU«†:sæÌmÛ¶ýà?8ñÄ›4iRìrãƒ<ÝÆ£’>±ï¸ãŽ‹{‘¾ÁŽtöÙg6löìÙíÛ·_°`Aê7A‹-æÎ›L&çÎEQ§NŠ–wæÌ™E?7÷µ~ýúªU«rAù ‡\ö#Kzzz½zõö9̽î@;y±r…Ë·E.Ò¡C‡ÌÌÌ)S¦ÜtÓM_}õÕÌ™3[·n½ÿa§#×¶mÛÖ®][¥J•ƒlTàŠíÿí~ýúyyyáR–_Úµk×®V­ÚÆ7mÚT»ví¢ñ_ýêW¿úÕ¯Rÿ½nݺsÎ9'õ߯µýDQ”––¶ÿYÁôô^a|øk[f÷sáX‚êÕ«GQTâ©Ò¢ñš5k¦¾lÛ¶mffæþ{a¥J•~ó›ßŒ7nùòå©‘üüüY³fU®\¹K—.ûÞrÛ¶m“'Ož4iÒ=÷Üs´}P_êŹÿYýÿEѶmÛºwï¾sçξ}û^|ñÅ7®P¡ÂÊ•+'Mšøt©—Üþ«~ùå—q¯Ä7Ø‘Z´hQ³fÍÙ³g¯\¹2??¿uëÖQy晹¹¹+V¬˜7oޱǛºÔ&µ¼7ÝtSÑÖŤ.¬9ø‚òAÊ™´´´}þ^—úͽÿ)×"GÛ ïï›.r¥J•Î9眉'æååÍš5kÏž=eáü])Z¸pa¿~ý:uêôÌ3Ï îû‘:á+öå—_Ö¯_ß‘7¦þsøûvìÒÓÓS× þå/9ÐËgß³I¯µb?¾…RYÛ2»Ÿû8ž4kÖ,Š¢ÜÜÜÔáë}mݺuáÂ…ééé©ÛDQ”ŸŸ_âŸÚ°aCEÇ|êˉ'žþù÷ÿ_?þxÆ ¿úê«ÔÕaG•O<1Š¢Ù³gï;¸cÇŽÅ‹ïã ¤.ˆûõ¯}ÒI'¥Î®¨ïKÔ¸qã´´´üã………ûŽÏ˜1#î•ø;Rzzz‡–.]úöÛoGQTŽQM›6mñâÅgŸ}vê§^ê­{©÷JîkäÈ‘üã·lÙ² ‡|¸Wî»uø{]‰ ¸}ûöSO=õg?ûYtÔ¯pô­9upêÔ©'N<æ˜c.¸à‚¸7¢4¥LûíÚµk£ÿ=?¾bÅ~­,\¸°   õƒ÷ð÷í² ÿþ•*Uz饗Š}rMÊ¿ÿýïG}´èËïíµVZk[6÷sáX‚Zµjþù6l¸í¶Ûö}é®Y³ææ›oÞ´iÓ¥—^š:ÇEQê=¶ýû÷Ÿ6mÚ¾²lÙ²»îº+Š¢Ÿÿüç©‘¢ÏýÞÿ/¹ä’¨¼ c‰j×®}ñÅüñÇ/¼ðBj$™Lþ×ýW‰GS§ öýÖ¿ÿýïGy$Š¢bÝs Ç{lê½~øá¢Ï!9rdê“x…ïHQuìØqïÞ½/¼ðB5Ro¸nÙ²å1Çóâ‹/¦ÎSGQT§N®]»Î›7oĈE÷ýÛßþö‡?üaÞ¼y5jÔYC>HÜ+÷Ý:ü½®nݺ;w^¼xñK/½T4øßÿýß;vìH½ûþ¨]ᢙ‹E>ûì³322FýþûïŸsÎ9©ÓDåÆI'T©R¥¥K—.Z´(52{öìþóŸÇw\ê´IøŠ=ù䓟~úiê¿7lØ0pàÀ(Šúôéó¤,;á„rrr zõê5~üø}gþþûï÷êÕkõêÕE#ßÛk­´Ö¶lîçG׉ÑpC† Y½zõÛo¿ý÷¿ÿý¤“NªU«ÖÆW®\YXXتU«}ß\á…Þyç<ð@NNNõêÕ5jT©R¥µkצ.ÑOýÙ(Š>ûì³%K–Ô­[÷¬³ÎÚÿé.½ôÒ§žzêÝwßݺuë‘õ'ž§OŸ~ Oó:ÿüó¯¼òÊC>Âí·ß¾páÂx`üøñMš4Yºté¦M›:tèðÞ{ïÕyJ«V­6l8f̘åË—·lÙróæÍÓ§OOÓÛo¿Ý°aÃ}/”;,X°`øðáï¼óNÓ¦MW­ZõñÇW¯^½ÿ®À·¸#¥´oß>==}óæÍçž{nê'T¥J•Z¶l9wîÜ *´k×®è–wÜqÇâÅ‹ÿøÇ?Ž=:;;{Ó¦M³gÏÎÌÌ,úÙ9䃔c¥²×¥pðàÁ¯¿þúI'ôé§Ÿ.Y²äÄOìׯ߾78zV8uUÖôéÓܹsço±È•+WîÔ©SêÄ_9WŠ*W®|Ûm· 2¤OŸ>íÚµÛ½{÷¼yóÒÒÒ~ÿûß§n¸béééõë×ïÞ½{«V­*T¨°`Á‚¯¿þúÒK/M}{©ìÛeÁ 7ÜPµjÕ‡~øöÛo¿ï¾û7n\±bÅÏ?ÿ|Ó¦MiiiwÞyçÿüÏÿÝøûy­•ÖÚ–ÍýÜÇ’U¯^ýµ×^»ÿþûÏ8㌯¿þzÁ‚»wïîСÃO<ñ—¿ü¥èšè”ë®»nܸqW_}uíÚµ?ýôÓ?ü0Š¢.]º >¼(1ß|óÍ(Š.»ì²ÿ4HÆ [´h±cÇŽÔÉÇ#Ⱥuë¦@Ñ…{× Aƒ×_½{÷îsæÌ9å”SF•:SSìß/¾øb×®]×­[7nܸ 6ÜsÏ=Ï<óÌ 7ÜPXXø—4hðÆoôèÑ£R¥Jo¿ýöÇœ••5tèи2ŠÂv¤”Zµj¥ÞŘ:O’:[ݪU«}ÿUZ¯^½7Þx£oß¾+V|ûí·óòò.»ì²7Þx£iÓ¦á rÈ)ÇJq¯ëÝ»÷ž={¦NºsçÎ~ýú=ºè'ÉѶÂÕ«Wïß¿õêÕÇŽ»víÚo·È©JÕ¨Q#•Aå̵×^;lذæÍ›/X°àã?þÉO~2räÈóÏ??õÝÀKKK1bÄÏ~ö³/¾øbÁ‚ÙÙÙƒ z衇¾Ñƒ”}iii}úôyíµ×®¼òʪU«.Y²dþüù_}õU«V­^zé¥ë®»î'?ùIÑ¿Ÿ×Z)®mÜÏÓ’GΟG¤\Z¸pafff±?qùå—¯]»vΜ9‡ùåƒÛ±cÇæÍ›ëׯ$~‚æwÁ‚p™7o^ïÞ½?ì(Ô³gÏE‹}üñÇqO$Å>¤âˆV÷sG‰Ù Aƒ®ºêª}?“yÆŒüq—.]¾ÓjŒ¢¨råÊ 4IE,G×^{-*Kçï(;öýSGº2¸Ÿ{#1ûõ¯}ÓM7]~ùå—^zi­Zµ>ûì³É“'7hÐàHy{ ð}Ú»wïŽ;>üðÃ7ß|³qãÆÅ>?ʇ²¼Ÿ Gbvî¹çþùÏ~î¹ç&Ožü¯ý«V­Z;w¾óÎ;ëÔ©÷Ô€2góæÍ©Ë¿ÒÒÒî¸ãޏ§߉²¼Ÿ{#GŒíÛ·?ôÐC_}õÕW\±ÿ_¦È¶mÛ «U«÷Dø6Êò~.ââ‚G‚G‚G‚G‚G‚G‚G‚G‚G‚G‚G‚G‚G‚G‚G‚G‚G‚G‚G‚G‚G‚G‚G‚G‚G‚G‚G‚G‚G‚G‚G‚G‚G‚üó[8ë¹þ‘IEND®B`‚statistics-release-1.6.3/docs/assets/mhsample_101.png000066400000000000000000000550321456127120000224630ustar00rootroot00000000000000‰PNG  IHDRhŽ\­AYáIDATxÚíÝy˜ÕøÿÓ ÍÒì *4 ¸$lBG q}µ £`L„ÑiDI$?ÄQ„Ö'aŒ[æçòįq¢qžÆ¯Ä ƒ"" *Qviš¥—óû£°<}ιu‹ÛÕ]u«Þ¯ÇÇé>]UŸªÛA>sÏçó¹9RJ¤“ö ;8ÀGøBâ_Hà ‰#|!q€/$Žð…ľ8ÀGøBâ_Hà ‰#|!q€/$Žð…ľ8ÀGøBâ_Hà ‰#|!q€/$Žð…ľ8ÀGøBâ_Hà ‰#|!q€/$Žð…ľ8ÀGøBâ_Hà ‰#|!q€/$Žð…ľ8À—ü°o ¢Ž;öøã¿ôÒK[·n-..ÚºóFã®]»Â¾A€p8êúôé“——·iÓ&mßÙ}îÛ·oØ7G]aaá¨Q£>ûì³ßþö·õõõÎâ¦M›zè¡‚‚‚1cÆ„}ƒá 9Æb÷îÝW^yåÎ;ûôésÆgìÙ³çÿøG}}ýìÙ³¯½öÚ´§Ób‰ÄÑ®ººúøÃÊ•+·nÝZ\\<`À€_üâƒös.‰#ˆ%Çà‘8€X¢Æ¾8ÀGøBâ_Hà ‰#|!q€/$Žð…ľ8ÀGøBâ_Hà ‰#|!q€/$Žð…ľ8ÀGøBâ_Hà ‰#|!q€/$Žð…ľ8ÀGøBâ_Hà ‰#|!q€/$Žð…ľ8À—)eØ÷7æ^ö-€&ô?õÏ„} !‘Úøœ+3^l̹„ŽBB:6QMèx‡nŠ(IÀV5|!q€/Ô8Gb/¡eŽaï•ÇPÔJ.$trBÇþ Mè,’lUÀGøBâ_hŽ Í1ÄÍ1FÔju $trBÇþ Mè,’lUÀGøBcð¨q ö¨qD0¢VrAè„< ¡“:öHhBgi”$`«¾8ÀGøBsLðhŽ öhŽA0¢V«Kè„< ¡“:öHhBgi”$`«¾8ÀjƒG#±G#‚µ’ B'ä œÐ±@B:K£$[Õð…ľ8Àšc‚Gs ±Gs ‚µZ]B'ä œÐ±@B:K£$[Õð…ľPã ûÂAâhѵk×-Zää䨋ÎummmØwj-æÍ›÷øãÿå/)))q—,YòÛßþvîܹ?ùÉO¼O§Æ¢ÆZ¹è5Ž0Qãˆã>üðÃ’’’«®ºjÏž=Îʺuë†zöÙgïÞ½;íéQ+¹ tBÐÉ ûldèÆ”3JjšÇÌ0ŽÇbàÀåå奥¥guVuuõêÕ«srrî¹çžN:…}wá q´ûùÏÞ¹sç'žxâÍ7ß,..7nÜôéÓûõëö}„†Ä1¥+®¸âŠ+®û.¢‚æ˜àÑ!jdŒÍ10у`D­V—Ð y@B''tìÐèÀû`$Í1‰ MsLf˜ã_Hà 5ŽÁ£ÆšMST4š¨q„‰G#j%„NÈ:9¡cÿ€ÖEÿEŠÛNö¹h==ROMè슒lUÀGøBâ_hŽ Í18ÿM09¾”¶–ú`àÍ1FÔju $trBÇþ­‹ìƒ¡9†ÐÍ% ت€/$Žð…ÇàQãKUãè¿¢ÑD#ƒG#j%„NÈ:9¡cÿ€ÒV}h¯\ì4Õï"5Ž„nú(IÀV5|!q€/$Ž€æ“3cEÆ?:šc‚Gs 4’Ù “SÔF«Ñ+há÷Šæ¹4Ç qhŽA0¢V«Kè„< ¡“:(Ê+ÝE§CE]‘¶^–胡9†Ð!EI¶ªÍM.«îJçÌX! û¦¤Gâš;’5Ù‚ÇàQãþY'{ÛÇzû¯h4Q㈠Qãˆ`D­ä‚Ð y@B''tÖ= [¿¨ÖŠòJg}bÛÉZ£”rb§©Úbi÷›Ì(ÖEk£ÏrÆŸ:EBgW”$`«д̊FŸg…}ãt$Ž€&§U4:Ý0îbf™%€æGâhî;ˆNÖ˜3c…ÚLíæŽtXQFsLðhŽ+ÿ}09Åíå¡ê+mZ‹cµ~¢ÈKw‹¬:d.҃Ơ9ÁˆZ­.¡ò€„NNèì}@g ·Ûã|íô²¸‹Î¿KO¹Y;×\‘©šc1ë»)ž:™¿ë臦9&3lUBcîJ³O D‰# ùhm1ÖEšc€È¢Æ1xÔ8€U^Q‘eÕ6Ö;§Mk¿5 å!K9#³¾8jŒ¨•\:!Hèä„Ί4k ÕrFuÑ-^T KO¿U®Ô8~;<Ü6ëÛZãûœÐQˆ’lUš\ÚÉ;îŒñM™£¶­^JP „„ÄдÌÑŒî pí5YTSIõR‚¬‰#  ¹I¡Ù £~–Œû#÷ÉÐÑ<šc$JnAÙebŸõ]ÔÆ²híƒi](jŒqß55Ú‚6$ü¸c5æZ]UUدâ†æ#jµº„NÈ:9¡£ö€ÖÙÚÖ¶•ÒSnÖ:c¤”¥f©£¿9`–zŒÚC“6Jcf}gÅ NèÈFI¶ªÍ'ÕgR[?¢ZÛÑf¾#:G@³Ò:c\fŒÏ>k͆ÇàQã iÌŠÆ+gô©ú°¹f–9Ê*Ëpf}#pÔ8"Q+¹ tBÐÉ âÚËm·­%‰n9£Ã™ã=qðlmE”W:G6¨zl8Ü#45Ž„+J°U h>ÞÃtÌq©cω# i39k £–ª‹'”bh$Ž€x¿ èÝCªÏ:ìg £9&x4Lj«¼¢"iÎú..–‡ô~”œâö–óm}0²E¾¹˜cNÿ)šcöÐWl}04Ç p4Ç Q«Õ%tBÐÉ âÚû`ºß¤~ëŽõV¿uL6GýV[ônF9~nÐ}0Q{Á ]Q’€­j@c©ÛÊÚÈn탪ÝÍhíalv»Ù³¢ƒÄÐXZzç&‹Ú§¨'j_ÓD5ŽÁ£Æ@\噋9m,³¾E‡¶æZ}ë–>åVµ¬î?h¹æ¾}ú åŒhÔ8"Q+¹ tBÐÉ ÝlhVª…†ßV~Sè.ŠòÊ Ï½K6,[”RŽy·%ʰ9ê·ÇK$O¿U;lb§©~î°)^ŠØÿ/*™¡©qÌ [Õ/©J Sí5ku~*ÍšHÑDâðâÑžâþHËüÔV?Ý-Î1d@ô‘8ÒðÎ…Ñ £þHÐ ÄÍ1Á£9@<äè+'÷‡ô)Üu½»å¨ÖÛ·6/XßÂònE^u%ôŽÝ¢>-\î?`)«ôÙã4Ç yЃ`D­V—Ð y@B''tóôÁH¥åÛ>˜†=+κÚ#Ê+/FO˜/昱cæY¢ žm^Ó÷m=ž½/8¡CMsLfت¤¡Íôv¿ÐJÝ‘ÝÖµÓ¯­[Øf¬TWÐÌHé¹) µ‘Å#™Óh<êÍÓì•¡5ŽÁ£Æ@Ö1Ë…9EúdïœíÍÃê:·3kÚ[.˜[So.¶Ø]m.æìÚg.ÊCz9c]UUX¯@#‚µ’ B'ä œÐMÅZAXzÊÍÚÊ…çÞå–-ºE£.Z Õ2:‹æÇŽ™§•BJ)KÌrÝÓ'všª]³yf}7Û NèÐCS㘶ª'@Û³VÇñ¨ÇxŸ®ÍwÔÆ†»×ô.vÐüH¾hyž6ëÛãx–z el¸9 ’Áà@¤8ÒË U%íGΤzÃ@dÑ<šcd¼¢"s1§Xo…©>³gË=GµÅC'æ®>ä®3 ¶|)Z³¾¿ø§(h¡/³¾ã¾šcŒ¨Õê:!Hèä„nŠYßÎÀm½eØmÑÚ3âŠûÌsGþh¡Å.N /=åfµWÆYŸØv²vÁØÿZ ƒ(IÀV5à8ëæ²µñE­wô8W¥Mw[dœsµ^aÛ¿¦E‰#ÄŸÿ”Ëç€ní0?ýզiõ[ótõß>ï @ó Æ1xÔ8ˆ2ë¬ïÜâbs±¾ggmåH÷Öæaµ…–÷ rk-¹þ󈹘·s¹(÷0÷H¡ÆÁˆZÉ¡ò€„NNèŒËªÁ‰¦j‹¢¼râàÙÚ¹¢¼rô„ùê‰RÊsÊkň¢¼òœ²ÅÚŠ:¼ÁXïÁ³ÍùáNy¥l8Ü,ÄŒý¯•Ð1ˆ’lU@Rh{Áâ›c­šÐÝ8V1/"Œ2DíDuKZ(•‹æüp÷­€@Ô8@‚¨Ù›–·©³¸ÕE³IŬ5t®&lŸ“ªT1Õ HÆ}QFâ‰c}KÏ| P(Ižõ"Ö7#Íwý¿ƒHÖDÍ1Á£9@DXû`rŠÚ˜‹5ß9µÅîjmqßâÖ_Õ¨+N+hQåëoV{kÍÅÂm-÷³kŸ¹Xûå—æÍ3ë‘Bs ì¾øâ‹aÆÝzë­>Z­.¡ò€„NNhÿçNl;Ù\,=ýøÍÔæ•±c湸M*f×ËÐ+´sÝæ·-ÆùG» óïÒÓoµÎúÖnF”W&ð×JèDI¶ªÓRÞ~ûíUÌ€ æ,FŸƒ»½ µ&ë~·uT¸9Ü‘Ýj ÊHÓxì±ÇÞyç°ïª„ÑL µÜN͵ÙÝf{H7»Ûš­’5YG/›6mºâŠ+N=õÔ>úhÒ¤I÷ÝwŸŸ³¨qyEEæbN×Îæâ±S:š‹U'µÔVjŠrÌìUE_5 >ßk.ʯv›‹ÌúFôQãˆjjj.½ôÒQ£F½ùæ›%%%Ô8f{èØ? ¡“ÚϬoGé)7ˆƒµ¥”ž{—ó…ºxÞi‡I)ßR¡Õ#™V¡^Ðù÷y?^d¢Íú–Rj³¾œ;×NO௕Ð1ˆ’lU§ôàƒnذáÞ{ïm×®]Ø÷饚#l“º­ÛÖæðuf¸6[½‚ùS5–u¤y E D‰£ÝÚµk—-[VVV6bĈ NïoûÄ_ªiÛi«½Ó5ëG¼h'ºsŽOT#Z×Ɉ#q´8|øðm·ÝÖ«W¯3fdv…†°Ÿ @Üx ñö8À=Ì|+Q¤þBë”oë[ŒfŒõνû¬ÉÈ¢9ÆâÎ;ï|úé§—/_>dÈ!Äúõë/¿üršcDDnA9 ;¯c±¬:¤Ù­‹yz]Næâ?Ï/j³³^[<Ð77_¿¤Èµ ö…»ôsÛ~Zm–÷Ù—æbý>Ëpf}#úhŽ”R®Zµª¤¤äpW>øàšcb:öHèä„Vû`܆’‰¦ª‹ÎúÄÁ³µ~)åˆ+îS¿u|K…zàÚaNsŒzÔE Ì(¥f™4g}»h]lþ×–ÐÉ MsLfتÖmÚ´IñÐC¹å‰—_~¹â…^èß¿ÿ%—\ö À·R DT‡/¦Ýùõs€vm%Õ–´Ç¥RD²O D‰£®wïÞ74räH!DÏž=/¾øâQ£F…}ƒÐ@ª²BíCY¬çZ{®½C¨7³Ió‘âãjRE!w¢ŒÇô¨q)¹æbNQË¡=»™kKÚ[{噋µ¶KÐWÚRcÖúKå¢üâŸæ"³¾‘¥¨q„5Žñû$trB;•‚šÒÓo5 G]´@óº­C¼Kþ½B6 .¥ì?G_54³TUn»ŒšÉ¥êSq*|¤‰óÉø!q€,æóA©oCšýçÝÈb .|´iÈR4ÇæM*¿[7yHÌ];¤o‹ûµÅ¯Æô,Ú¡w®8­…yͯO“-åèªD]+ýȶŸYþÖh¿ù°¶ÒbóNó0f}#NhŽA0¢V«Kè„< ¡ãÚl(±öŒy·v˜(¯6Å2¯»ï½j[ŒóïS+»ßº_œq»>Üîã|=qðl-Š(¯T’Göµ%t’CÓ“¶ª ûøé;1Ë…­-Æ:*Üã¯ÕÑÖ¢IAu#_$Ž}ügfj%¢µFË)Í@©Ê"Õ«™õŽ‚JG ލq 5ŽdŽûÎ-.6«éÛÃ\Ü7 µ¹øõé–(u--~™c.vØ\§­´ýø€åŠ;¾´DÙk©q²5ŽFÔJ.$t B[çc›Å‚Ï6nŸS¶ØýÚ­A,ù÷匎ÞKʆµŒ¢¼òÔŠÅÒ6*\­eå•cÇÌS ¥§Üìc>‹º˜Ì_+¡£šÇ̰U ÙÇÿ:k…ŒÚpõHó¥ÝuÚY¹UÑGâåo™ ™Z³¨•0š³¾Õ‰±ÎbÔÚ\Ì/¬ß¦ºÕ°_KÁ q€ˆò~¯Nû´@¡¼¹è~«þÛÚ@­ûVV£Ï>kÉAsLðhŽ™¼¢"iLÃÎ=¹§Üß ûäð¹} ·Ôû|RGs4÷—cj[îÐÇ}íVk†n±'ßìé¶J¿Ðiýóô‚-–V˜ú/wé+ÌúFŒÐƒ`D­V—Ð y@Bgoh·}dbÛÉÒ˜ì]zú­Z‡Ê¨‹hWå•ï°ÌúîýÈÙpз(¯ìýø½ÚoQ^Ù÷Þ í\Q^yÞɆ3î¬oõ&ŸõàkKhB7g”$`«Bfn kûÂj=¢Éãã§EÃGõ¡t½¨ãµ‰f½£9-@r8@sóHõÔbÄT¹½/kV1š4K!…-kL‘ÜH,jƒG#€Ì䙋9];k+Õý»˜‡íÚÂ\¬>­Æ&¿Þ\k±£¥¹Øy­åÈöî×—˜õD¢ÆÁˆZÉ¡ò€„ήÐZ^cñ.í~“SP¨–Žy·V’8dZƒzDçß½—.Ôj¥”%ÏÎU§|;_¸…êμµB½çG£'ÌW”¶Yߢ¼Ò:·<™¿VBgQhj3ÃV5„Ãc«7Õ‡G«»É©F3zLÞÑ6£ÓÞ€÷Í cS@ì‘8@8ÌAŒŽTùœy¼9Üœõm­k4#Š=RL²F H ÖôNÅÌ\ÍìbÑ.+lŸèöÊhI¡5‹UïÖãN$Í1Á£9@Z¹æbNÉi9»ôž’½ãOkûéauå“Ë Û}’£Ÿ\ºwÿŽvÚZ‡ž_>b ?ÐÊ Ývƒ¥·æ¤¿í=ÚCï×iõÑNóHsÖ·`Ü7âŽæ#jµº„NÈ:»B;³¾n7ÌÄÁ³ÕÎçGç”-V;fDyå©‹µc¤”C^œ-•ÎçŸ!/Î6»múüv‘Ù—sÖäÅÚ¹RJwÜ÷··ÝiªynÔ^[B:¬(IÀV5„CÝ¡ž›ÔÖ©ÛÍî¥Ü}jçŸT—Jû#ï›a|#X$޵ßY+I4çu›§«‹Zu£P>Fû©ÇÝytçhwîqKb‰ÇàQã -ë¬oÑçdsmßbme×0Ë©íJüÜ>ðIs±óšs±Ó?l×4Æ}3ëÉD#‚µ’ B'ä ÙÐÖùØî$m© ÓuÑs^wÿ9Z‘âÏÏÑêEyåE¯M×V¤”%ÏÎUC8ÿxG…WJ9zÂ|5„v“îŠ6·Üùz|ΕÍPøµ_+¡³=45Ž™a«š›9ׯc:£KÛÎöˆcNíQK*­6ín‘kã{Ì®6÷¬Í$‰#Ï»ÚÏM³ÜœÌ¬4³:53?6F¤«\ ‡2ª—u³IG{$Ž<ïÔJm‚VO1Q¯–6wtsÐTúÓNí6³XîlóÍH±GsLðhŽ+· Àœz×±XVÒìÖÅ<}ç¤Þí?©Ñ·][Wðqƒ‘ÝÃðáÚž¤Ö§x¯õ–6ïê¬ßÏ{mÍú­¶ ëfÖ7àæ#jµº„NÈ: ¡Í>Q^9±ÓTõ[ç‹ Ï½K›à-Ê+‡L«FƒË©OÍÓÚV®y{Šv˜Ó£­H){/](6ÁH)Ïš¼X]Tgk÷©Þ¹öÈêé±ÿµ:–¡iŽÉ [ÕЄÔesc×lRÑ6¸ÕÚDsÖwªXê¹Ö#ÝK©×·^<Õ¼F³\@8@“³¦_æ¤nu=ÕÁ)]ªªJµýŽZªO¬ñè¡¶à@ÌPãg} Æ}ß ÆÁˆZÉ¡ò€„ŽBè‰m'›‡•˜å|¡Ö)ž÷ãEÒ(gìóÛEZ¢(¯¼ü_¸8§Ü¶öJó°³_ú•z}gÑ.ÓÍúå•¥§ÜlÖ8ª%›Î)Þ¯ƒz…8ýZ ËÐÔ8f†­jhB©¦ê¨‹æ‘©.eî#[7šýl.›q½w¨ý Þˆ=Gh*fƦN^T1Z;sÊ£5)4ƒZïDýÂ:…Ñ:ú1ÕýH&Gh©†ck=Ô©²1í³^Ìîq‚-)fŽ{]Õ ¢9&x4lj•ß­›<¤Ïú>zþ€VŸï×÷élžž7åË/6tÓ9îÞÞšºÒ³pëÜóôWwö3¿~[Ÿ4Þã-f} 9ÁˆZ­.¡ò€„n¢ : Ö#'´¼F›­]Úý&ó°ÑæË†³¥”ýçT¸ßºÿ|ïfº+î ×OÔú`¦­¹Ú2ëûñ{ÍŽ™aS*´&)åÄÁ³ÍûqÚz´Ç‰ñ¯•Є¦9&3lU€ï6ÿ[ºjY¡÷³ÏÏ•V¥½C­/G›à­.2‘€GHÚÀ5&ÁJÛIíÔzçŽÖÏnI5š[mÄ1SÉx Æ1xÔ8 aŽûÎ-.6;òËîç[F…wi)4üQÏuæâçG;j+yÿ;æa^oi.vYµ×ò0Ÿn7×ꪪšè¥b€G#j%„NȺñçz”3ŽÏ¹Rš-¥œØiªvØ„asÌs‡ÞX¡Mðå•§>5O*匵œÑýé£ Çz]ñof9cÉ¿WhçÊof}ˆ5Ž¥§Ü,GgÖ·6<¿VBºÙ¢$[Õp\ÚrÆ´ÛÇ"õÇR»÷ž¿cý6mõ¡¹múc`N·~ Gø–w9£ÏÖÊEu˜¢;CÑLàü_S½Cõ‚a¿â‰ÄtÖÏPQß·Ë,wôù)/~NTc™qµwFSÝY&€EsLðhŽâ'· À|×Qo…94²_ëmúðMeí:|œ£-î¿àˆå#]]}š¹Þ¥ÅAmåÉí皇mÃÒ…Óóuý¶™õ ‚æ#jµº„NÈ:ð ªí#Nïˆëx—Éé·jçŽüÑBó°S+ˆc½¥”ׯþ™6Á[”W¾ºµŸÙõbv̘³¾¥”ê¬ïoÛwÏVïDõØ_+¡ ÝtQ’€­j°pË­Õ‡êÐìT§[3«$­Ÿ:í~~´õ²Ú¹æm[d¾7€Æ#qŸOmñ¨wTS´´×ñN=½oÀÚmm‘I5úN5ŽÁ£ÆˆsÖ·"÷äžÚJÕ™]Íþø~ž¹8öËXï²Îoš‹ÖªÇ%ïŽÖV˜õ 43jŒ¨•\:!Hè@Î5ËÚ¬o§XpÜÈ»eáÙgÞZ¡#Ê+Ï~éWÚLoQ^ùâ–3ÍrÆw>í­ãüsÑkÓµ•þs*´¸²á¬o÷G¥ÝoÒ“ßÌúnþ×¶‘‹„&tô£$[Õpœ÷µV˜¨m‹Óv¬3q|F¶ÉÞê•S2úŒ'ŠÄ„ðQ×hmj + Õ« ãã[¬×Ñ®fÞ•0rVõ†ÕüÌn€Æ Æ1xÔ8YÍZΘSÔÆ\¬ØÛ\üò¼Öæbá8Ë”Ä9%ÑVºæ4»ó³Iæâ–§j+=Þ²Ì\lµn›¹X¿oŸe‘‘À ¢ÆÁˆZÉ¡ò€„ê‚Ö1‡¥f™‹ç”Ðè|+Ê+{?²À,güÝGcÌrÆ/·÷T§0:Ç?úñótgj£T”Wž5y±z€óµz‡ßÎql;Ù¬qL毕Єn†(IÀV5¤WÕ¿£uÝ£ÖÐ畵°¶n|kÇ‹Šhý–=k"q€àg°¶ÿF3«³Nðöø°ií\ïqåÐH$ŽpÔ~”£r„¿´,UWõDëçÊX?«Æ:ëÛû¶ 1hŽ Í1@VË+*Æ@ì#“Î1<Ø+_Ñrÿ·ÿýrL­yØÌï½l.^U´Ñ\ükusñη~h.vyUïàéü¶¥ÿF~ñOs‘Yß@ hŽA0¢V«Kè„< ¡38W…íô‘8ãµ5½Y )Ê+Kž+6Ç\óö³fë¶îjŒs¤»¨ö¸˜³¾qßZ»ÌØ1óÜ÷šê¬o÷‹ÆÌúÎÞ_+¡ V”$`«Žó¿é¬ S)w{:ÑÐZ÷ŒùAÕêEú  ‰8À·¼S.m¶º®]ÄlmöžûêÊæñæ¬oó&Ã~Ä5ŽÁ£ÆÈjÛþßæâ‘SjÌÅ–í|û͆¶Îÿ=ëÂÍ#ï9éE?¡oúÄò_sÖ·⤿1 6|¡­0ëh:Ô8"Q+¹ tBÐ't˜G9£[¹¨V^ôÚtóH­¢QJùâ–3¥RŒè,Öíì'–Bº³¾µƒJJmýœ²ÅZÕcé€YæXoëÜò¤ýZ Mèp£$[Õ’è„ÆÓxéóã­Ýy:æÔF3–µ~ÑûþÙžÐÐûN´êT—õóÞ$ˆæ˜àÑd kŒ|Ð\ìÛe·¹8ºóÇköB¼»½—³R1ÔR,ÿƒÖGÍÅ'v1ï|ýGæb·WóÍÅŽïêã¾™õ 43šcŒ¨Õê:!HhëŠÛD2òG ÍsݱÞêúèÅ_úèŸÿüç:,Y²dÆ a߀㬹£wƦÖ#jµ6í_2»ëaÚ×êDÆT°FAâhñòË/ !î¸ãŽÂÂBg¥_¿~7Þxc]]Ýo¼öÝø–Ù‰¢Èös5wÔÞð3ó¹´ïe¦ÙmÞ•N}ïÓÚ"CÖ "hޱ¸à‚ :´fÍuqåÊ•×_ýO~ò“¹sçzŸNs A»n²Ìú><ÚÒ¶rÖÉÛÌÅï¶m°øÌçÄz\;l`‹6湿?pru]¶èL׸ƒÄU…ÿ·­¶Òã¥õÛwh‹õÇŽ5ÃËÀEs Ž[¿~ýƵÅ?üá%%%Ë–-K{zÔju Lxhµ¡Díq×=šcÔ#Ey¥Ó¶"Nç^¸~¢l8Ü:îûƒÏ{Zç„KcÖ·Û£váhÍ1ÎjsLÒ~­„&tvEI¶ª-Î8㌒’uåí·ß^ºtiË–-/½ôR?Wèoû™€8KU‰hNgÔ~$”ªG?3½gn{)Z¯–ê>Ý[ û¥€HÓ¨««{â‰'¦L™R]]=þüÎ;û9k£!ìçâÌ: [4œã­®kÍ1ê¢Çõ5þk(S]Çü¬š°_HHƒG/«V­š;wî–-[zôè1oÞ¼#Fø9‹G t¹ZÍ_#kGtØb.þ¢½>*|CÍ!ç‹õÇz¨ëŸÕÿÎÆÔ8 !º,y³©_CÞ¨qÄ·Ž=z÷Ýw÷ïßÈ!>ø`uuµÿs£VrAè„<`C;%€æ‘;MÕŽå•#´P+(”Rö~d4ª/zmº9¯{ë¶îfñ¢9îû¶µWšc½o[{¥ú­óµE6¬›ìýȳsä&ê×JhBgo”$`«Ú¢¾¾~ÆŒO<ñĸqã^yå•iÓ¦¹syD„÷Þ®6£ÑZݨ)Òí)«?JULé1Ü:”Q”êYØ¿)$ŽO>ùä+¯¼rÍ5×,Y²¤k×®aß]ÚŠ@ïO|Iu¼H1FQ ­`ŽôHµƒSÝ¡÷TsŸµ•ÐHuRÊ?ýéOmÛ¶½ýöÛþvi3B­'&Õ§Âh+êéi£¨ÉŸ;?¼s‹ƒÞ§Xg}›?²vùzh„æÝW_}uÁž~úéæO/»ì²²²2ï+Є+¯c±ûuÝÞ}ÎG&c¹m’å?€ƒún?R—¯->Òo¹yäúcÐú¨º²xïiæa»k,Ý-èa¹àæ“ÍÅ^/䘋­^x§©_FÞhŽ”Rþãÿ(ImÑ¢Ei¯µZ]B'äzbÛÉê·¢¼²tÀ,õ[çŸsÊ›‹ýçT¸ +ò›>•G?¡fÎúvþyq˙ڹêXo­ÛF6œRîÌúÖôŸS¡=‹ûÔê¹IøµšÐÙ% ØªÖ 6lcj3fÌû¤d6¾¤úhiá9ñ„ê­óÃÝ@ÚÞô U+²C jHÄ„6OÛMæÌ®ñMNv䔑¢3F+‹F¢™ª9F;À¬§Tð“; z«D5ŽÁ£ÆhNyEEæbÎIÝÍŽguÑV¾SkvçÿÇ\üiÛ]æâKÕ-ݯÿs×y©îpÿQË<¯Í»,C•ó¾¥²×]Ìú¢ˆG#j%„NÈ&!ô„–ט‹¥Ýor¿v ÇŽ™ç~ëªåŒîjõ¡uÖ·Ç¢(¯¼æí)²a)dɳsÕbDçkg̸lX§¨•3ZŸšGB:»¢$[Õ²’u“WÁãnk{ÐûÅÖËjÛÖæ ïTÃí[ÞþðD÷µ ©‘8È&i“<-YÔÆ"jŸÚ"N°Æ:dQ啿)<¦y"¹#€Ð‘8ˆ §£Åû­‘ÅãCV¼/e¾Ÿgí}1W¬³Áµ72Í{8Ñ6mŸ!w"šc‚Gs ÐDr ,‹ÅÅÚʱ'™‡}1ª•¹xúØ­æâ’Óü¼~åß¾7h“âÝí½<;zÀºÕç-ÌÅÞóß5ë æå(šcŒ¨Õê:!›ÐN—‰y¤(¯œØv²6p[JY:`–ÖÈrÖäÅ꥜/z?~¯ÙÝâÌúÖNÿr{OóÈß}4ÆÞû‘ê‰RÊ!Ó*dÃV)åÈ-ŒÈkKhBºI£$[Õ¢%Õ\nm¢aªÛn墵®ÑzeïЩ­Ÿ-”½l¶•ĉ#€È±v´x¤‰.³rQû©w\k‘¥B4LFÝGsÊ7¹#€˜¡Æ1xÔ8MÄç¬ïÝçu±ž¾kŒ^,xçù1»¨õ§æâ3UýÍÅûÞ(U¿íðž¥lQÑv›>f¼hã^ùÅ?Í#몪šîÕ,jŒ¨•\:!³Ðάo­X°´ûMêlç€Ñæk“½ÙÚîŠóogÖ·vä;ŸöVË^Ür¦VË(Ê+Ï~éWÒ¨†<óÖ´ÒL÷"þ‡™Çþ×JhBG'45Ž™a«@D¥eè± lÎkLÅ9 ÕÜouÎNª¢FuBüÞw=n²‰#€ˆòNÚÔyŠÖNùÞ~¦ˆ[SOk¥—¬@\‘8ˆ³EØ2¼´è§ ë6¿0/hž®…Kõ‘ƒomæu, 4Çæ ñ|ÎúBùŽ>|{ëµ²Õ'-µEë¬ï;{¿`.~U×Ö\œûñÍÅ–(Þß/_]éövµyXþ†ÏÌEYuÈ\dÖ7EhŽA0¢V«Kè„<`lZûxk‘b×[{ÙîYZŒ¹+m­‰¤Ì@ü8ˆ -{KÕ¶b&—ê·f¶g~„ŒÔ£Z댱Ö2šƒÇ™û –¨q 5Ž@ãYg}‹>'›k»Îí¨­ì¹à¨õš7õµ•³[bö§Ý#ÌůÇ\<éµ:s±èƒ¯´•úí;ÌÃ(g²5ŽFÔJ.ÌÞÐÖÀÒSnÖ ¥”άoç·â°äß+´•±+þM­Ptþyôãê,qç§Ná£vä©OÍ3 ‡ÞX!$商ÍÑ’Oì4UýÖùi2­„&tÄCS㘶ªD”ZPhVªp¬³¸ÕEë‡Gkõ‘'ZXégÀ8eŽb†Ä@t©¹£µTQÍÞ´ºFë Hkk‹ðü‘ºWF½É°_*h$Ž"MKˬ .ê“foGõú­÷¦ZI•M@,Ñ<šc€bŸõÝ­‹¹xd@sqÇúé.^ýáþîÚâÿsò*óÜ]5–Yß¿_û}s±Ãë­ÌÅnÏo©ïÙY[ÌùLo…©Û»¯i_Aa 9ÁˆZ­.¡ò€Ù:Õ¬oç µfØ” ­E”Wªã¾•ik®VÏu~´pýDõ,çŸïýÏLÙ°3F”WöŸS¡ å•N_ŽÖ¯SÚý&í¶ŸõÝÈזЄ&tsFI¶ª„/Õ>¯9X1ÕçS[ç/šÛÜÚYÂ_u£úmSÊ 6H„Ïcª¶Û£MêÖú©…¿tÐ<Ë¿]dÎú>ïÇ‹´ÐRÊÒ³ÌùáZu¦(¯Læ¯•Ð„ÎÆÐÔ8f†­jb~Æ´VPh~*´h8ÇçTk½£ð1÷1m9&ĉ#€h1óB3w<¡ šóº=B[J÷6Ü´RëÚ!k$Ž¢%Ufæþ?îOkÊNÕFc¦5âXg‰“5Hšc‚Gs J#g}ï<ßrz»óvi+ýŠwÜj¿¶¸ù%Êšœn.vÃrçþw·¹X¿õóã‰êªªšìõ!4Ç Q«Õ%tB0+BOì4UýÖé5Ñf};ÿ>kòbiô²ô^ºPí•q¾¸èµéÚ°îkÞž"Nÿå•§>5Oß-Ê+‡L³Ìú¾ðÜ»´›qï\ëQ{}œõdþZ Mèl MsLfتsšwª>ëÇU{>ªM-ÚÆtª™‘ê‘Ú”oµ1UD>®@8hZ~>šEÍÌ<ê…­ëYû©ÚOãK[4¿U'›×´Ö5Ré ö¨q 5Ž€‡¼ŽÅúRÏnæa{†›‹»FÔ™‹ƒúëS¸;´¼íäT¨Îÿ˜ Mèì MsLfتЬ<æ,zo]Ô†‡ ãæ…Q ií•ñÞ’N{3$Žš‰ÇG­xw·X?Æ<Ìü„‘¢GëíqM€†ÇàQãë o‡1îÛ:ë{÷0ËšÚŸ¶ßOè¯?¶\°ËË‘Åÿ»Ï²úévs­®Ê2@’Qãˆ`D­ä‚Ð yÀpCkã¾eÃYßniàè óÕcœõ3o­p¿vK{?²@«\”R–<;WC¼{/]¨-™V¡M—RŽy·l8¾[”W–v¿I•‹æ³DíOÂÿ¢MèlŒ’lUÈ„ÿ]Maóƒ¡ÍÓÝÉ8Ö©àêpÿóº½ÇFR!q ïî³mÅ<7Õ1©æ„›SÁÍ!Þ©R@5Gô¨§x#q¡T¹£Ÿ÷ðÜìMëq¶Žæ6ßkôèkñ˜+nF| œšc‚Gs ÈŽSrZÎ}^·uÖ÷îïXf}hÍݲýs1ï½¶Õ½kµÅëòµ•Îk«Ís[lÞi.Öï³tÌ0뀆æ#jµº„NȆZ”W:ã¾Õ.g¶¶æ¼/Òå•}ï­P;`Ž7Ç<~¯9¼÷# Ô¼£B*]/¢¼rÔE ÜcÜJO¿U]<~“©g}Gùýÿ¢Mè,’lUÈ9…1Õ'JkÌ Ž"EŒõÊn9£ùqÒæG`k_˜ß²O þ‘8ÈPÚê@ïnëoó35)J!=n@­¤4“HrGð‰ÇàQ㈲Œû6} !œÑÁ\Üý]Ëÿ[Óó¨%L­åÈÖŸ´0»¼§—H¶Þ¸ËÖ>0Úúµz°z5­œÑÜ}¶šEë¼ï]iÆ€@Z$Ž2dö¬ˆŸcÍ,­å†Ö¤Pí›1»d´XÖ[ÕF…‡ýÊ@¶"q‰T]&ê§¼h‰öuªOp±ææ¹Ö·*S}ð ÇõþÑ<šcoæ¬o!Dn·.ÚÊ×gŸÜj¯Þ¡²gP+óܯO³üW¨¾¨Î\ìôN~Uo}±×ߪö)Ô‹ÿ×â½ãKó‚²ê%4³¾ø@s ‚µZ]B'ä›-´3ë[_TÆ};]&#®¸Omyqϸ½ÂíAq[^N­X¬+¥t¦‚«Í1RÊaS,Í1ãFÞ­u½”v¿É¼C­§'‹^ðØÿ/ŠÐ„ŽM”$`«@cYç/ŠtmÎbÔv¥­Ý0T(@ˆH4JÚnmÑI ÝOѰæŽÂÖa£æ‘´¼@ó Æ1xÔ8"Þ,³¾…eÜ÷Á’öæQûû晋‡»Yþ+”w4Ç\l·Å¹ø£js±ÅæÚJý¾}æa”3È5ŽFÔJ.lŠÐÖº@·‚P­V7òn©TŠòʳ&/–Ê$F«w4'Dúœãȉ#€`×­u¨¨Ù›ÖÅ"R·N«?Uϵf¢aÎêÿ-L@cÐ<šcöYßŖ昚¾=´•ÝßmÝ¢JÿÏË¡“rêóõse¾y=Qh×-ÚRc9rÕæœz#Žüj·¶RWUÕ¼/€˜£9ÁˆZ­.¡ò€MÚí2Q'l—˜¥ Ü–RŽºh6ÙÛénÑ€¼£BýÖ1ø–c½/F\qŸlØ#¿3®2’7Ϭï¦xÁ#…ЄŽwhšc2ÃV5€ô´šBk‰¡»³l­_ôØž¶ºF‘bWZ;’©àМHø’*w´&mfS‹–5z/¦ê¤Öޱf–€¦CcJÏ<óÌÓO?½yóæÖ­[ÿûߟ9sf±­´ËD#b#¯¨È\Ì9©»¹X}šþ§ãÀi-ÌÃŽY†‚‹üC–ŶÛê,‹°ºÃR)«ô‹2ë@°¨qÄ·***JJJ†:uêÔ &”””\yå•ÕÕÕ~ÎZÉ¡ò€ í1ë[«h¼ðÜ»œ/ÔjÅó~¼H=Æà­#Ê+ÝrFõ çýx‘ÂùÚ‰¢ž+¥,=åf­êQ»sg=+^ðèG!4¡ãšÇ̰Um±qãÆ¥K—vëÖíå—_^ºtéßþö·Ÿþô§ëÖ­[´hQØ·„Àœé­NɱŽrTGê¨×Ê.³:vÑú™ÔÖÂGïÉ;ìY@“"q´xúé§ëëëo¹å–®]»:+³fÍjß¾ýK/½T__öÝ!ÐJ ÝEaŒé¶&‘©šiÌãÍë»§¨S¾=²C¦9@Ó!q´X½zunnîèѣݕ¼¼¼Q£FíÙ³gÍš5aßë;‹Ú›©†u«Ùžv¼wžg~ Ý0"šctRÊAƒ¿ñÆêúÒ¥K/^<þüË.»Ìû 4Ç ùŸõ]×»›¹x°Okmåhqn½m²·¹Øf§åü¶ŸV›‹y;÷˜‹µÛ¾0ožVMæH)eUUUIIÉE]¤­ÿ×ýWIIÉüǤ½Âøœ+K ‘ªNfèØ?`#C»³¾U¥§ßª~ë´ªŒ3O“½Ï)[¬Žïå•Co¬Ð}›‡9‹ÎS…V¯0±ídí‚¢¼2K_ðèG!4¡ãšæ˜Ì°U­;|ø°¢M›6ÚzQQ‘âÀ~.²ÑöceŽQ´þȺ³¬¦µÚ¤Š%Rìekã$Ã~a AHu:tÈÉÉ©®Ö·Éªªª„íÛ·Ïä¢@–Ój ½[›=® ý¶–*Z›©]dŠ"j-Î=÷Ü‚‚‚×_]]\¶lÙ¢E‹-ZôÃþÐûtj‘ì³¾»v6ÒÑ\¬:©¥¶RS”cÖ¢Êòœ¢/Žš‹Ÿï5åW»ÍźªªP^1 G#Žûá8pàÀ¨‹¿úÕ¯JJJV­Z•öô¨•\:!è?´Ç¬oÍÄÁ³ÕoúÂQ-p¿u ÍâÅsʈµŒ¢¼rô„ùæ¬ï‰ƒg›•‹;MõyçÑÁ³4 ¡ ïÐÔ8f†­j‹qãÆÕÕÕ©ï8J)_{íµâââ¡C‡†}w@sðØAVÐö¬=f=jKí~mž"Ø€¨"q´¸êª«rss÷»ßU}³¶téÒÝ»w_qÅ-Z´hܵì`Žìöè†ñ©è’#@!q´èÙ³çÌ™3?ùä“I“&Í™3gòäÉ÷ßÿ Aƒ¦Nö­ÍÇú1€æO…‘ü™sÂÓÆbš7dšcRúË_þòüóϯ[·®GçœsÎ-·ÜRdë0уˆË+*’Æ|lë¬oÙŲx¸W[sñHGÛ°o›Ö_Õh+-wÚº[v|i¹ŸªCæ"³¾„‚æ#jµº„NÈúmŸõ}ÊÍæâ…çÞ¥ ñå•#´P=Æùéˆ+îÓVœíô Ãæh}02E_ŽÏ>˜¬xÁ³4 ¡ ïÐ4Çd†­j^Ôá‹æžuª]l÷xa«bdc²‰#€4Rãö˜®Ž Ouµ° p¨q 5Žˆ8û¬ïb˧"Õõèd.îÞÊ\¬Ï·ŒûÎ?\¯­´úgµyXîËXïú}û,‹”3ˆ jŒ¨•\:!h]´V Zgk—˜e.Ž3O~S³(¿)XuѳNÑ îyá¹wY¢Ø*)­5—Yú‚Ç) ¡ ïÐÔ8f†­j^Ôýhó‹T;ÎæÐG@ 8ðb­bT?Æ;/ô¨ƒdGvÞŸ:è'w$k€˜¡9&x4Ç :RÍú–5úbNḴíÌÅÚÂ<ŸÑ[î9j¹¥{´¹ï€yX]U•€£9ÁˆZ­.¡ò€ÖEû¬oÛÀ퉃g›‹NsŒTúc¤”£'Ì7Qáî·¢¼²ôô[-Ql}9™õ-#ö‚Ç) ¡ ïÐ4Çd†­jvî´Ç޳ºI­Îýf‡b‰Ä€]ª¹ßg]+pt¾%k€¸¢Æ1xÔ8":ì³¾Û´1e—bs±¦sks±¾…åÿálqÀ2š;o÷×z”ý–rFYuÈ…YߢG#j%„NÈÊoŠÕZC³¦0Uõá„asÌÅq#ïÖ.(¥´Oö0K¯q´UR^Î(ù»ŽýšÐY% تâ&Õ|œœ+Òî#[OT/è1µQ½2»ÕK$Ž@ ¥Ëmå‘V:ô¨wLuÁ°_ @HxÒrGk/‹yJÒ¦›a¿€ÀÐ<šc–Ü‚}%Õ¬ïšZm±¾½¥c¦®u K”šzs1ï@µå†ö4×ê÷íÓW胅hŽA0¢V«KèØ< Ú}b)Ê+ÍÖ“Òî7i­-ÒÖÈ"S4Ç8‹ÚJÌ24[a¬³Ç³ëlèØ? ¡ ¥Q’€­j kdö©ÐÖ³üë¶À4$‰#M¬Y`ÚžÜ1m]£õŠ ™¨q 5Ž‹µÆÑr\‡¶æZ}ë–~£Tµ¬ÚÊå!}²w]UUØ/ƒG#j%„Žåš³¾¥RVè®—žr³z€³n­qœ8x¶Å^ÎØðšZhí›á¥ˆýï:HhBgi”$`«ÈVÞŸ"m=ÅÝbÖ†u³ï ðƒÄÈV'Tï˜öRa? 8ÙÇ£ë%ƒió²XÑ<šcÐ Ì>!Dޱ˜SÜÞrrëBsM¶È·\И.„Õ‡-§ï;`Y´MöfÜ7€x 9ÁˆZ­.¡ãô€nS‹Özr¼Á¥ÓTí\k#‹½åÅŒEÚZaâñ‚G3tìЄÎÒ(IÀV55øTh@¸Hì¶ë…@S£Æ1xÔ8¢Øk‹Úè+mZ[N¶Õ8ÚYËU[«™‹”3ˆ1jŒ¨•\:–hÜ–þkO¿Õ²ØˆrÆf{êdþ®ø€„&t–FI¶ª,ã§–‘zG@S q²LÚ>˜Ìf€‰#}¼‡x“5šÍ1Á£9Í ¯¨È²ZÐB[°7Ç!Z´°,ÖÔh ôÁ@*4Ç Q«Õ%t¶? µÅiŽqç;_—v¿I;ÌÞã»ÆÚ‚û<ú¡cÿ€„&t–FI¶ª,æÖ;²C h$Ž@¶rRF'w$k4jƒG#‚eŸõm]l£ù>£XËűs­®ª*ì—ÂG#‚µ’ BgûÚk;M•RŠòJ·ÌQ«qtÖͪGy"åŒ>g}7ÅS'ów©(„&t¼CS㘶ªlåìP»eŽên5›×€¦@âd+75TG‚çÌXáfi??†˜œG û˜ ŸõãdÌ7ÕcxWp¢hŽ Í1ÈXnA9IÛÞSÔÆ²Ø¢@ø#klóºViëͬo4Ç (Q«Õ%t= Ç¬o}Ñhpå•;MuzbÜŽ³‡F6AL#Ÿ:™¿ëèG!4¡ãšæ˜Ì°U Ä»ïìŽutŠ­G†}³€lEâD”ÿ O«VÔF‚«Í×f]#y$À?jƒG#2æÖ·(h‘yÛXoÊà„Pãˆ`D­ä‚ÐYô€f¡¡(¯ô¨qT+¥Qøèœë8ªsÂ(Ú¹É|Á³4tìЄÎÒ(IÀV5iÖ‰9Îþ²÷<µêѼ ³x q²€uþ¢Ÿ¬QýšrF@#‘8YÀïíçB³WF(o4ºŸOH 8Q4Çæd¬Išch…€&@s ‚µZ]BgÑz ×'{[;f”EçHõ‚î¹Q{jBG3 ¡ ïÐ4Çd†­j hó½ýœbÎkTWاd€ÄÈæ|ï:ݬŒ¤ÆjƒG#2v5ŽþPËM„G#j%„΢ÔjªÄTåŒÚoi+‘´Mª¡›®ð1+^ð, û$4¡³4J°U DTÚÉ;i·›ýlF3à‰#Q~Rº´™e؈G ¶h‹æ˜àÑ?r Ì&•F6ÇHß]/ôÇ@#у`D­V—ÐÑ|@kÛŠÏEQ^é,jý1î‘Í<ëÛÿS:‹¢šÐñMsLfت²[¼hía‡ÐDHlå$ˆZîè.†}w€¢Æ1xÔ8ÂÜFŒõöZFh"Ô8"Q+¹ t4°15ŽÒVÎ(Ê+£ÿԄ΢(„&t¼CS㘙ü°W§Nš 5Ž@L8u$‘€¦Ccð¨q„MQãHE#4jŒ¨•\:šØÈG皢¼RåèbŽc¼CÇþ Mè,’lUÙÊ:yÇ:£€@8YÌœ×覌ŒrŽÄÑîðáÃ=öØ%—\òÝï~÷‚ .¸þúëßxã°o Ñ’ö-½¦~Ï/UjÈÛ€&BsŒEmmíµ×^»víÚöíÛ>üÈ‘#«W¯®©©ù×ý×›nº)íé4ÇÀF6ÇÐá¢9Ç=õÔS%%%W_}uuuµ³òñÇŸsÎ9üðÃÓžµZ]B7iµ7%Õ¢ÿæ˜lyjB‡:öHhBgi”$`«Úâå—_BÜqÇ………ÎJ¿~ýn¼ñƺº:6¬¡±î S_ˆ%G‹­[·¶iÓfРAêb¿~ý„Û¶m ûî9jîHq! ƨq´øðÃóóóKJJÔŇ~¸¢¢bæÌ™S¦Lñ>Gøa­q¤r²5ŽHé­·Þ6lØàÁƒwíÚ•öàñ9W–"UØ‘ÌÐMÅÅÀזбŒBhBÇ;45Ž™É;qºººº§žzjáÂ…uuu‹/îܹ³Ÿ³6nܨ­ð6d¼åÌXá~Tôø°o€&’èı¶¶vÙ²eî·yyy7ÜpƒzÀªU«æÎ»eË–=zÌ›7oĈaß2¢ÈÍ…rñØ ïÿ}Øw@“HtâXSSóÀ¸ß¶lÙÒM;vß}÷=ùä“­Zµš>}úõ×_ïvX*5kô^ ÛÑcQ__óÍ7¿òÊ+ãÇŸ3gN×®]Oètv¥ˆ=šcpÜc=VRRrçwfvzÔju ÝDå•ÞGºcÀcÿÚ:–QMèx‡¦9&3ÌqÔI)ÿô§?µmÛööÛoû^ii7£Ù­ÄL¢k­víÚõùçŸ^{íµæO/»ì²²²²°ï Ô8êÖ¬YsõÕW§úé 7Ü0cÆ ï+Pã@ìQãˆ`D­ä‚ÐÁ^Э\4d8¡ã…ЄŽwhj3C#pbÔO¦V1‚{$ŽÀ 3sG²F@8™PsG²F@BÐ<šcˆ=šcŒ¨Õ꺉.è W{e´#N謎BhBÇ;4Í1™a«hzeÉAâdÂÍ /è•$5ŽÁ£Æ€Ø£ÆÁˆZÉ¡ƒ½ u¸³(Ê+ÂǤ½¶„ŽeB:Þ¡©qÌ [ÕÀ HµªÒ€8!qüòS¹Hi# Æòþ kx$…j¯Ìø°ï€&BsLðhŽ öhŽA0¢V«Kè&b®-Æþµ%t,£šÐñMsLf¨q…^@r8òN ÉñCcð¨q ö¨qD0¢VrAè„< ¡“:öHhBgi”$`«¾8vT( !qìÒv·Y’†æ˜àÑ@ìу`D­V—Ð<×™æ­.ºó½#õ€„NNèØ? ¡ ¥Q’€­j mÏÚýXj’†ÄHÏÍÉIFcð¨q ö¨qD0¢VrAè/èV7Fð œÐ±@B:K£$[Õ@zn#Ÿ@ H2G ­®‘ÜX$Ž€k7 ¹# ™hŽ Í1ÄÍ1FÔju Ù¹™õÁ„ø€„NNèØ? ¡ ¥Q’€­jÀŽyhHà 5ŽÁ£Æ€ØKfc~Ø7CŸ÷[·qãÆ°ï `lUÀGøBâ_Hà ‰#|!q€/$Žð…ľ8ÀGøBâ_Hà ‰#|!q€/$Žð…ľ8ÀGøBâ_Hà ‰#|!q€/$Žð…ľ8ÀGøBâ_Hà ‰#|!q€/$Žð…ľ8ÀGøBâ_Hà ‰#|!qLoÇŽÇŸ9sfØ7‚Ìõïß?ì[€Ž_J4ñ{‰ ~)”Ø_ ‰cRÊÛo¿½ªª*ì‰c=öØ;ï¼ö]„ÄÑ˦M›î¿ÿþ„}#á#qL©¶¶ö¶Ûn+..ž5kVØ÷¾ü°o º|ðÁ 6üñl×®]Ø÷>G»µk×.[¶¬¬¬lĈëׯ?ÑÓÛleüR"ˆ_J4ñ{‰ ~)Q³qãÆ°o!$އ¾í¶Ûzõê5cÆŒ NOìÿ˜@¼%:q¬­­]¶l™ûm^^Þ 7Ü „X°`ÁöíÛ—/_^XXö=DE¢ÇšššxÀý¶eË–7ÜpÃ;ï¼³|ùò_þò—C† û"$GJö=DËSO=u×]w¥úi¿~ý^|ñŰï ‰~ÇѪwïÞ_|±ºràÀ•+WöìÙsèСݻwûÂÁ;Žé­_¿þòË/Ÿ4iÒ}÷Ýö½„†àð…ľ°U _xǾ8ÀGøBâ_Hà ‰#|!q€/$ŽÁ{ÿý÷§M›6f̘³Ï>»¬¬lÕªUaßرcÇðáÃgΜö$ÝáÇ{ì±K.¹ä»ßýî\pýõ׿ñÆaßTr=óÌ3W]uÕСC¿÷½ïýú׿޷o_Øw”tü‰¸ÄþUBâ°+V\}õÕ+V¬èÚµëСCß{⦅þô§+V¬û¾pœ”òöÛo¯ªª ûF’®¶¶vòäÉ÷Þ{ïW_}uþùç÷íÛwÕªU×]wÝ’%K¾µ$ºÿþûgÏž½eË–³Ï>»¨¨è¹çž»á†>ö}%@".É•ä‡}±ràÀÛo¿=??ÿ‘G>|¸bݺu×^{ío~ó›Ñ£Gçæ’¦‡ï±Ç{çw¾ ˆ§Ÿ~zíڵÇä‘G …›6m*++[²dÉØ±cö &ÈÆ—.]Ú­[·gŸ}¶k×®Bˆ{î¹ç‰'žX´hÑo~ó›°ï.¡øqIþ«„T&HÏ=÷Ü×_}ã7:Y£â;ßùÎ~ðƒÝ»w¿ÿþûaßĦM›î¿ÿþ„}#/¿ü²âŽ;îpþRBôë×ïÆo¬««c?®™=ýôÓõõõ·Ür‹“5 !fÍšÕ¾}û—^z©¾¾>ì»K(þ€DYÂÿ*!q Òßÿþ÷œœœK/½T]\¸páÆ‡ öÝ%]mmím·ÝV\\ÙªU«éÓ§_ýõ ÿÏq(òóóÛ·oo¾³øõ×_ !Ü>k4?þ€D •¸H3QXX¸qãFs½k×®û÷ïÏÉÉÑBÔÖÖ†}×ñgý½lÚ´IñÐC=ôÐCêú /¼ð /ôë×ïÅ_ ûÆã,Õ–úúú3f¼òÊ+ãÇŸ3g Jˆºuë¶yóæ¯¿þZ-öߺu«ó£°ï.¡ø5üUâ"q Ò˜1cüñ?þØiHt8ó,;ð)t½{÷¾øâ‹Õ•¬\¹²gÏžC‡íÞ½{Ø7˜PO>ùä+¯¼rÍ5×Ì™3'ì{IºqãÆmܸñõ×_wÿ¤H)_{íµâââ¡C‡†}w Ũá¯WŽ”2ì{ˆ 6\zé¥C† ùÃþà̶xÿý÷ö³Ÿåçç¿ôÒK:u û!„ëׯ¿üòË'Mštß}÷…}/ %¥œ0a¾}ûV®\é#,;vì7n\Ÿ>}žyæ§'æá‡®¨¨˜2eJ?‡7 ø’ûW ï8iàÀåå奥¥guVuuõêÕ«srrî¹ç²FÀµk×®Ï?ÿ¼°°ðÚk¯5zÙe—•••…} Ò³gÏ™3g.X°`Ò¤I\pÁgŸ}ööÛo4hêÔ©aßZBñQFâ°Ÿÿüç;w~â‰'Þ|óÍâââqãÆMŸ>Ý÷À±}ûv!ÄáÇ?øàó§ô6¿ë®»®K—.Ï?ÿü_ÿú×=z”••ÝrË-λh~üA”±U __Hà ‰#|!q€/$Žð…ľ8ÀGøBâ_Hà ‰#|!q€/$Žð…ľ8ÀGøBâ_Hà ‰#|!q€/$Žð…ľ8ÀGøBâ_Hà ‰#|!q€/$Žð…ľ8ÀGøBâ_Hà ‰#|!q€/$Žð…ľ8À—ÿw ùf럽 IEND®B`‚statistics-release-1.6.3/docs/assets/mhsample_201.png000066400000000000000000000277251456127120000224740ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A/œIDATxÚíÝ}˜•uøñ{†AAÐyP üév93‘M›&^èîZjËåK.$e¦v¡¬Ñºye†’¸mM»VŽf‚¬\ñì®¶)J¡¡d#ƒBæÃ ˆC¡3ç÷Çɉ†¾ gæ>ç>¯×_pÏ9ð½Ï5Îýöó=÷¡ •JEp(…q/€Ü """""""""""""""""""""""""""""""""""""""""áÅ_¬ªªúõ¯÷Bb&¡®®.î%d…¢¸¥ZZZ^xá…%K–üä'?‰{-YA8ví‚ .xå•Wâ^@Ž]»í¶Ûþô§?EQtß}÷=þøãq/ ~±kguVú?ûÙÏâ^ @VŽ™WUU÷€ô /„<¬²²2î•=¨¾¾>î%Ä@8öˆüüfê9UUU^Ò òzvOAAÁŸuã!á® é_¤R©¸×ž{|—f–×3ãòvH$áÏÉÖ‹ñîãÓO—@G€êf2vrã‘|A8t!3ɸ/ùä>áÐYAAA&“q_ïæ£vr‘pø‹Ì»tãF@.Žä7f–×ó@zpи?£Çƒò]šY^O2¥0îd…^­ÆïŽr‚ÿÙÍ<—9'žjìp×?Š!·äíµÞÄÈw1Wcdîä á䯂‚‚ø«1M;¹ÀÍ1@žÊ–dìpãœ‰#²®ÓÌì&²‰v²˜pòN–Ž;hG [ G ¿d{5¦iG + G äF5¦iG ûG _äR5¦iG ËG /ä^5¦iG ›G ùrµ²ŒpÈn†Ž@ÖŽ@Â%aܨì $KB5¦iG G ±’SÙA8äCG nÂH¦d޵#+á$P2«1M;ñŽŽ@Ò$yܘfèÄD8‰’üjLÓŽ@„#A„#ù2nL3tzp"¿ª  g:½K8I¿ãFíô"á@áä¼ü7¦:½E8¹-ß«1M;½B8D89̸ñ/ ž'"\eÜØ™¡#ÐÄ#“T#@ïŽ bèô$áäãF€XG€d1tzŒprŒqã¡iG gG‚G —7†2tz€p ˆpr†qãá1t2M8D8¹Á¸±; ŒŽŽ@0nì>CG s„#A„#팔¡#!€ ÂÈjÆ™aèd‚p ˆp²—qc&:GL8D8Yʸ1ó ##"ldÜØS # "¬cÜØ³ @v1nÈZ ÿØ­ºE8D8YÄ>uï1tŸp ˆp²…qco3t“p ˆp²‚qc< Ã!"ø7äáßìVÁ„#A„#3ûÔñ3tÂG‚G NÆÙÂÐ "Ø7fCGàP„#A„#A„#ûÔÙÈn5pP€ ˆqcö2tL8D8½Í¸ G GþšÝjà„#A„#ЫìSçCG +€ Âè=ƹÄÐØp ˆp HQÜ è% .\°`ACCÃ1Ç3nܸ3f”––äñ{÷îýÑ~´bÅŠÆÆÆÒÒÒ‘#G~á _¨¨¨ˆû< ‡Ù§Î=7iÒ¤ãŽ;.îs‚ÜcŸ:·Ù­Þ•ðùYkkk[[[III§ãÅÅÅÑ_Ï÷UUUUWWwå•W^yå•'Ož|óÍ7þ½UUUŽÔ××Çýbݱÿe=o%<Ó·N0 ÓñFQ´k×®.ŸÕÒÒòo|ã­·Þ1bÄÈ‘#›››×®]»xñâ~ô£çž{nÈß+¡ƒqcø\òÛþ—õ¼MÉ„‡cIIIAAAkkk§ã»wïŽÞ;îïÆoüÕ¯~5sæÌþçNyùå—/½ôÒ믿þ§?ýéûÞ÷¾¸O  cQQQqqñþ“Å–––(Š:î³Þ×k¯½ö³Ÿýì”SN鍯(І öùÏþí·ß~øá‡ã>'€x$<£(*//onnN—b‡ÆÆÆô—ö|sssE'Ÿ|r§ãéAã믿÷ A.±On‘ò!'L˜ÐÖÖ¶fÍšŽ#©TjõêÕ¥¥¥ÕÕÕû?þä“OîÓ§ÏæÍ›;½›'ýþ†SN9%îˆGòÃqÒ¤I………óæÍK¿¯1Š¢ÚÚÚ¦¦¦‰'öíÛ7}ä­·Þjllܾ}{Eýû÷;vìÖ­[¿õ­ou|BøæÍ›¿óïuÔQgŸ}vÜ'9ø aòâ.¹{î¹göìÙïyÏ{ÆŒ³uëÖuëÖ >üž{îéø˜žåË—_ýõK—.¢¨©©éÿñÿð‡?œ|òÉÇonnþÕ¯~ÕÞÞ>kÖ¬+®¸â]UU•»ª!މtׄ|¸jÀ!åíµ>áwU§M:uРA‹/^¾|ùСC'Ož\SS“þDž.p ˗/ÿîw¿»víÚÿû¿ÿ+--7nÜÕW_=räȸO 6y1qìeyû!°/ãÆÄ2t„<¾Ö'ÿ=Žd„p2ϸ ‘„#‡Ã:BŽŽ@†Ù§N>CGÈW€ € ÂÈ$ûÔùÂn5ä%á@ádŒq#@² GºÅn5äá@ád†}ê|dèyF8D8D8`Ÿ:Ù­†|""#eÜ'„#GÆn5ä á@áûÔD‘¡#ä á@á@átŸ}jþÂn5äá@át“q#@¾ŽdˆÝjH:á@át‡}j€<$È»Õh€ Â8lö©9CGH.á@á@áûÔšÝjH(á@áãF€|&èv«!‰„#A„#Ê>5@žŽô »Õ8€ ÂbŸšî0t„dŽŽŽÀ¡Ù§¦ûìVC‚G‚G‚GàìSs¤ìVCRG‚Gà`Œè èyv«!„#A„#p@ö©Ø—p WØ­†Ü'"®Ù§&ó !Ç G‚G‚G  ö©é)v«!— G‚G‚G 3ûÔô,»Õ³„#A„#A„#ðWìSÓìVCnŽŽÀ_7p€8Ø­†$"?³O ÀÁ Gbb·rp ˆp¢È>5q1t„œ"""ûÔÄÊn5äá@á@áùÎ>5ñ³[ 9B8D8D8B^³OM¶°[ ¹@8D8D8Bþ²OMv±[ YO8D8Bž2nàp G²†ÝjÈn€ Âò‘}jº¡(îô’… .X° ¡¡á˜cŽ7nÜŒ3JKKþ”gŸ}ö{ßûÞ¦M›vïÞ]UUuíµ×þíßþmÜçt7ò‘¤|ðƒ<ï¼óšššž}öÙ¸O éÜ[ Ù*ùá¸~ýúÂÂÂñãÇwéÓ§ÏØ±c›››7lØÐåS~þóŸ\tÑEû¼ãŽ;êëëO;í´¸O  ¿9&•J544”•••••í{¼²²2Š¢mÛ¶5jÿg=÷Üs¥¥¥C† ùå/ùôÓOïܹóÔSO=çœsú÷ï÷ Á‘²OMnp‹ d¥„‡ckkk[[[III§ãÅÅÅQíØ±cÿ§ìÝ»÷Í7ß<å”Sþíßþíè8~â‰'Þ}÷ÝøÀBþÞªªªNGêëëã~1€îØÿ²ž·Žé[§ ÐéøÀ£(Úµk×þOyóÍ7£(jhhxýõ×gÏž=~üø?þñ=ôÐüùó¿øÅ/.]º4dî( 1ö¿¬çmJ&ü=Ž%%%­­­ŽïÞ½;zwîØI¿~ýÒ¿øÆ7¾qÑE•”” 2ä _øÂÅ_¼}ûöeË–Å}NÐ}ö©É%n‘ì“ðp,***..Þ²ØÒÒEQÇ}Öû0`@¿~ýú÷ïöÙgï{üœsΉ¢è·¿ýmÜ焇cEåååÍÍÍéRìÐØØ˜þR—O»¥¥å…^Ø÷`ú³{N=õÔ¸OºÉ>5¹Çn5d™ä‡ã¤I“ çÍ›—~_cEµµµMMM'NìÛ·oúÈ[o½ÕØØ¸}ûöôo/¾øâ(ŠfÍšÕqÛõ³Ï>û_ÿõ_ÅÅÅçž{nÜ'„ßUEѰaÃf̘1{öì /¼p̘1[·n]·n݈#®ºêªŽÇ¬^½úú믯¨¨XºtiEïÿûo¸á†»îºëþáFÕÚÚº~ýú‚‚‚Ûn»íøãû„â‘üpŒ¢hêÔ©ƒ Z¼xñòåˇ:yòäšššô'òÈg?ûÙN8áÞ{ï}üñÇKKK'L˜píµ×VTTÄ}*ÐMö©ÉU> ²‰ÿ3¯ªªÊç8’m„#9ì® .Ud›¼½Ö'ÿ=Žd„p„ä3n$·¹·²†p ˆp„„3n S„#YÏn5dá@áIfŸ€ Žä»Õ„#A„#$–}j’ÆÐâ&""!™ìS“Lv«!V€ € ÂÈ>5If·â#""!iìS“|v«!&€ € ÂÅ>5ùÂn5ÄA8D8Br7У„#¹Én5ô:á@á aŸ€ž&ÈYv«¡w G‚GHûÔä/CGèEEq/௤R©çŸþñǯ¯¯ojjzýõ×ûõë7hР!C†Œ5ê£ýèñÇ÷òT¶„ãöíÛï»ï¾‡~xçÎ]>àÇ?þqAAÁ>ðÉ“'üã?ꨣâ^2@~)H¥Rñ®àøÃ7¾ñGy$Š¢}èCÕÕÕ§vÚûÞ÷¾’’’’’’½{÷¾ñÆMMM¿ùÍožyæ™õë׿üòË'œpÂÕW_}ùå—fãV{UUU}}}Ü« ا†è® ±_ÎÈ+y{­9ï½÷Þ¹sç:ôSŸúÔ…^8xðàƒ?>•Jýò—¿\¼xñ²eË***¾þõ¯WTTĸþ.åí7qŽ éey{­ybWWWwë­·.]ºô3ŸùÌ!«1Š¢‚‚‚Ñ£GßvÛmÿû¿ÿ;räÈŋǻ~€üóı­­­OŸ>q=½‡äíÿ… ãFø3CGzQÞ^ëcž8vʾ7üñ+W®<ÈÓè9ÙusÉ¥—^:oÞ¼¶¶¶ý¿ôÆoÔÔÔ|ñ‹_Œ{EŒèMÙŽƒþö·¿}É%—üîw¿Û÷øªU«>ñ‰O¬X±â¤“NŠ{d%Ÿ=/»ÂqéÒ¥—\rɳÏ>{ÑE=ðÀQíܹó†n¸îºëvîÜ9mÚ´Ÿþô§q¯ OÅÿ9Žû{â‰'¾üå/ÿþ÷¿?ýôÓ_|ñŦ¦¦ŠŠŠÛo¿}äÈ‘q/-HÞ¾a–^fŸ:s ½%o¯õÙ5qL;ãŒ3~ò“Ÿ”••=õÔSMMMþð‡~øá\©Fbc·zX6†ãš5k&Mš´cÇŽ#F ±hÑ¢¸ÙÂ>5tÍÐzRv…cº+**.\øùϾOŸ>ÅÅÅwß}÷œ9s n¾ùæiӦŽF€<•]áØÔÔ4}úô‡~xøðáû¿à‚ –,YrÆg¬]»6î5ä©¢¸ðWî¿ÿþêêê.¿4dÈüàuuuq¯âgŸæ†G ²ñ3C ²kâx jL+((˜2eJÜkÈS1‡ãC=Ôå?0âå—_þùÏïúòGÌá8þüüãK–,Ù»woø³¶oß~Ûm·ýýßÿý‹/¾ïú¡÷Ù§†Cso5ôŒ˜ßã¸|ùò»ï¾û¦›nºõÖ[?þñŸ{î¹§vÚ±ÇÛ僷nÝúÄO,Y²äW¿úÕ°aÃæÏŸ?vìØx×?²âíÛ7oþÑ~´dÉ’?þñ§œrÊI'TZZZ\\¼wïÞ7Þx£¹¹yÓ¦M»v튢èä“Oþ§ú§‰'öïß?î…w-oÿ"zq#„òÏÒ“òöZŸᘶsçÎ+V<þøãëÖ­kiiéôÕŠŠŠ3Ïæ÷8ÞrË-EEEO=õÔ[o½÷KÀÁÄŽÇü]wÝÕñÛªªª+®¸âæ›oŽùU`?ÙuWõ´iÓF÷* ëØ§†îso5dNv…ã7Þ÷èZÌwU‡dÜ@–Ž$Ý fù¿U ¹B8D8BV³O ™aè™ ""!{Ù§†L²[ GL8D8B–2n ÛGò†Ýj82€ ²‘}jè)†Žp„#A„#A„#dûÔгìVCw G‚GÈ.Æd-á@þ±[ Ý""!‹Ø§†Þcè‡O8D8D8B¶°O ½Ín5&á@áYÁ¸€ì'Ècv«ápG‚GˆŸ}jˆ“¡#ŽÉ—p\¸pá¤I“ª««?ö±Ý|óÍo¼ñFøs_~ùå|ä#3f̈û$â”á8wîÜY³fmÙ²eôèÑ\´hÑôéÓ÷ìÙòÜT*uÓM7íÞ½;î“ ±ìSCüìVC˜ä‡c}}}mmmyyùÊ•+kkkW­Z5eÊ”7Ι3'äé?üáŸz꩸O ~ÉÇ ´··×ÔÔ <8}dæÌ™ÅÅÅ+V¬hoo?øs7oÞcÇŽmnnÞ°aÃAžøÎ;ïÜx㥥¥3gÎŒû$â—ðpL¥R eeeeeeû¯¬¬Œ¢hÛ¶myî·¿ýíçŸþöÛo?î¸ãâ>€øŽ€žÕÚÚÚÖÖVRRÒéxqqqE;vì8Пyæ™ïÿû“'O>óÌ37mÚt¸oUUU§#õõõq¿dûÔ]nx´   •J޲Îþ—õ¼•ðpLß:=`À€NÇEÑ®]»ô¬o¼ñÄOüÒ—¾Ô½¿W&@bìYÏÛ”Lx8–””´¶¶v:žþxôÜq³gÏÞ¾}û<пÿ¸Ï€Ä2n ç$ü=ŽEEEÅÅÅûO[ZZ¢(ê¸Ïz_O=õÔ<ðÙÏ~ö´ÓN‹{ùô.÷VÃA%<£(*//onnN—b‡ÆÆÆô—öüæÍ›£(úÎw¾Sõ®O}êSQýô§?­ªª:ÿüóã>!€x$|«:Š¢ &Ô×ׯY³æŸøDúH*•Z½zuiiiuuõþ?餓:™¶k×®µk×6¬ººzÈ!qŸI`Ÿ²—[dàÀ’Ž“&Múîw¿;oÞ¼qãÆ¥ï‰©­­mjjúÌg>Ó·oßôcÞzë­×^{­oß¾ï}ï{Ï:묳Î:kß?aÓ¦Mk×®5jÔwÞ÷ÙÄ&ùá8lذ3fÌž=û /3fÌÖ­[×­[7bĈ«®ºªã1«W¯¾þúë+**–.]÷zI>ãFrTòÃ1Š¢©S§4hñâÅË—/:tèäÉ“kjjÒÓGèÌn5€ÿ02¯ªªÊç8r&ŽîšàúÈAäíµ>ùwUCVQ|.tE8D8Bï1n § GèŠÝjØp ˆp„^bŸr¡#ü5á@á½Á¸€Žp`v«a€ Âzœ}jÈm†Žð.á@á=˸€ÄŽp(v«!Š"á@ á=È>5$‡¡#G Gè)Æ4†Žä=á@á=¸€äŽÌn5ùM8D8BæÙ§†$3t$ G‚GÈ0ãFH>CGò•p ˆp ˆp„L²O ùÂn5yI8D8BÆ7B~1t$ÿG‚GÈ ãFÈG†Žäá@á`Ü@>ŽpìV“O„#A„#)ûÔï É€ ÂŽˆq#E†Žä á@áÝgÜü…¡#y@8D8B77o„#dˆÝj’N8D8BwاºfèH¢ G‚G8lÆÀÁ:’\€ Âq#ph†Ž$”p ˆp„Ã`Ü„2t$‰„#A„#„2n Ï Gèv«IáAŒ@8@1t$Y„#šq#DÂz–¡# ""áìSGÊБ¤ŽŽp0Æ@f:’€ ÂȸÈ$CGrŸp ˆp„®7™gèHŽŽŽÐãF §:’Ë„#A„#tfÜô,CGr–p ˆp„¿bÜôCGr“p ˆp„¿0nz¡#9H8Ÿ©F88á11t$×Gˆ"ãF  >†ŽäáÆ@¬´#¹C8D8’ïŒø:’#„#A„#y͸ȆŽäá@áHþ2n²‹¡#YO8D8’§ŒldèHvŽä#ÕÝ  ›:’ÅŠâ^@/Y¸pá‚ Ž9æ˜qãÆÍ˜1£´´ô ß³gσ>øÐCmß¾ýØc­¬¬œ:uêÇ>ö±¸Ïƒ 0n²Ý ¤R©¸×åE8Î;÷»ßýî€F½uëÖE‹mÞ¼ùÞ{ïíß¿—çw®¼òÊgžy¦¸¸øŒ3Îøãÿøä“O®]»öºë®»æškâ>€x$«º¾¾¾¶¶¶¼¼|åÊ•µµµ«V­š2eÊÆçÌ™s §,X°à™gžùÈG>²zõêÿøÿøÁ~ðð×””ÌŸ?ÿùçŸû„8"Æ@n°aMVJ~8.X° ½½½¦¦fðàÁé#3gÎ,..^±bE{{{—OY¹reE_þò—;F’ŸûÜçÚÚÚ~ñ‹_Ä}BñH~8®_¿¾°°püøñGúôé3vìØæææ 6tù”ÆÆÆŒ1b߃QmÛ¶-î¢ûŒ\bèHöIø{S©TCCCYYYYYÙ¾Ç+++£(Ú¶mÛ¨Q£öÖ÷¾÷½¢¢Î¯Ì¦M›¢(:ñÄã>'ºI5ÀJx8¶¶¶¶µµ•””t:^\\EÑŽ;º|ÖðáÃ;Y·n]mmíÑG}ÑE…ü½UUUŽÔ××ÇýbkÜ^ö¿¬ç­„‡ãž={¢(0`@§ãŒ¢h×®]‡üÚÚÚî¿ÿþ;­­í›ßüæ 'œò÷ÊÄlcÜä*í˜ö¿¬çmJ&<KJJ Z[[;ß½{wôîÜñ ž|òɯ~õ«[¶l:tè׿þõ3Ï<3îˆMÂñ¨¨¨¸¸xÿÉbKKKE÷YïoïÞ½wÞyg]]]¿~ý®½öÚiÓ¦èCÉ~Æ@n3t$k$<£(*//ohhhii9î¸ã:666¦¿ÔåSÚÛÛ¿ô¥/=òÈ#çœsÎ-·Ür¾$û©FÈ”äÏ„ ÚÚÚÖ¬YÓq$•J­^½º´´´ºººË§ÔÕÕ=òÈ#—_~ùüùóU#ñóÑÇ1vªH¦»&¸pgƒ¼½Ö'ÿ=ŽÞéH¬„# dÜ$™v$>€ ‘¤1n’ÏБ˜GE5ùB;á@áHr7ùÅБ^'IÕä#íH$q#¿ éE‘œ§|§é-€ ‘ÜfÜE†ŽôáHS¡éy‘\¥ — GH CGz˜p$'7tM;Ò“„#¹G5Œv¤ÇG‚GrŒq#À¡:Ò3„#¹D5„ÒŽôáHÎP‡G;’i€ ‘Ü`ÜІŽd”p$¨F€îÓŽdŽp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp$ÛD7<÷*á@á@á@á@á@á@á@á@á@á@á@á@áIwãq/‚$ŽŽŽŽŽŽŽ)Š{ÙkáÂ… ,hhh8æ˜cÆ7cÆŒÒÒҸǮÍ;wÖ¬Y[¶l=zôÀ-Z4}úô={öĽ.€ØÇ.Ô×××ÖÖ–——¯\¹²¶¶vÕªUS¦LÙ¸qãœ9sâ^@l„c,XÐÞÞ^SS3xðàô‘™3g¯X±¢½½=îÕÄC8vaýúõ………ãÇï8Ò§OŸ±cÇ677oذ!îÕÄC8v–J¥ÊÊÊÊÊÊö=^YYEѶmÛâ^ @<ÜUÝYkkk[[[III§ãÅÅÅQíØ±#䩪ªŠû<’å® q¯ ·UVVº6qä„cgé[§ ÐéøÀ£(Úµk×!ÿ„úúú¸O ólUwVRRRPPÐÚÚÚéøîÝ»£wçŽyH8vVTTT\\¼ÿd±¥¥%Š¢Žû¬òpìByyysssº;466¦¿÷êâ!»0a„¶¶¶5kÖtI¥R«W¯.--­®®Ž{uñŽ]˜4iRaaá¼yóÒïkŒ¢¨¶¶¶©©iâĉ}ûö{uñ(H¥Rq¯!ÝsÏ=³gÏ~Ï{Þ3f̘­[·®[·nøðá÷ÜsÏþÓ'„ã-Y²dñâÅ7n:tèé§Ÿ^SS“þD€ü$â=ŽŽŽŽŽŽŽŽ¶sçÎû·;ÿüó?ô¡{î¹×_ý‹/¾÷¢rÛž={~øÃ¦_Ò1cÆL›6í¿øEÜ‹Jˆ_|±ªªê׿þuÜ ÉU .œ4iRuuõÇ>ö±›o¾ù7Þˆ{E á;3#üðÌ8—øH8fVKKËùçŸÿÀDQtöÙgüñË—/¿à‚ ž{—–«Þyç+¯¼òöÛoíµ×Î8ãŒSN9åÉ'Ÿœ:uêüùóã^ZÔÕÕŽ„6wîÜY³fmÙ²eôèÑ\´hÑôéÓ÷ìÙ÷º’Àwæ‘óÃ3ã\âÿ,Eæ|ík_«¬¬¼ë®»:Ž,Z´¨²²ò’K.‰{i¹êþûﯬ¬¼ì²ËZ[[ÓG^xá…ÓO?ýýïÿo~ó›¸W—«víÚµ~ýúý×­¬¬¬¬¬|æ™gâ^Qîùío{ê©§Ž3æÕW_MIÿç뭷ƽ´æ;3ƒüðÌ8—ø4ÇLzâ‰'ú÷ïõÕWwùÔ§>5dÈM›6µµµÅ½ºœ´råÊ(оüå/÷ïß?}¤¢¢âsŸû\[[›=—n»à‚ ®¸âŠŸüä'q/$‡-X° ½½½¦¦fðàÁé#3gÎ,..^±bE{{{Ü«ËU¾33ÈÏŒs‰O+Š{‰RRRRYYÙ¯_¿}}ôÑ{÷îÝ»woǽ„kll0`Àˆ#ö=XQQEѶmÛâ^]®ºí¶Ûþô§?EQtß}÷=þøãq/''­_¿¾°°püøñGúôé3vìØ%K–lذaÔ¨Qq/0'ùÎÌ ?<3Î%>M8fÒ}÷Ý×éÈúõë_zé¥}èCùó-•YßûÞ÷ŠŠ:—nÚ´)Š¢O<1îÕ媳Î:+ý‹Ÿýìgq¯%'¥R©†††²²²²²²}WVVFQ´mÛ6áØ=¾33ÈÏŒs‰OŽ=âé§Ÿ^´hQccãÓO?ýÿþßÿ›={vÜ+ÊUÇïtdݺuµµµG}ôE]÷êÈS­­­mmm%%%ŽGQ´cÇŽ¸~xö <¿Ä ÇQ__ÿÐC¥R©(ŠFŒqÔQGŽ¢$hkk»ÿþûï¸ã޶¶¶o~ó›'œpBÜ+"O¥o0`@§ãŒ¢h×®]q/þŠž™•ç—xáØï¼óÎ÷¿ÿýŽßöéÓgúôéû>àÒK/½ä’Kššš–,Y2gΜ 6,[¶,}Q¡K‡|IŸ|òɯ~õ«[¶l:tè׿þõ3Ï<3î%g»C¾¤t[IIIAAAkkk§ã»wïŽÞ;B–ðÃ3ãòü/»ãí·ß¾ûî»;~{ôÑGïI.((4hÐÔ©S·mÛöãÿxÕªU'NŒ{áÙë /éÞ½{ï¼óκºº~ýú]{íµÓ¦MË«w“t[Èw)ÝSTTT\\¼ÿd±¥¥%Š¢Žû¬!^~xöœ|¾Ä Çîèß¿}}}§ƒ›7o¾çž{ÆŽ{Þyçí{<}SÛ«¯¾÷ª³Z—/iEííí_úÒ—yä‘sÎ9ç–[nqIw —”Œ(//ohhhii9î¸ã:666¦¿÷êÀÏ s‰ïàs3æ¸ãŽûïÿþïE‹u:þÒK/EQô7ó7q/0'ÕÕÕ=òÈ#—_~ùüùóýà#{L˜0¡­­mÍš5GR©ÔêÕ«KKK«««ã^øá™a.ñ„cÆ”——WUU­]»ö±Çë8øÛßþöþûï8pàèÑ£ã^`îI¥R÷Ýwß±Ç{ÓM7Žø+“&M*,,œ7o^ú}QÕÖÖ655Mœ8±oß¾q¯Ž|ç‡gƹÄw°UI_ûÚ×.¿üò«¯¾ºººú½ï}ïk¯½öË_þ2Š¢;î¸Ã]lÝðú믿ôÒKýû÷¿âŠ+öÿêÅ_tèÐÉ“'×ÔÔäÏ•d3?<{‚K|ZAúƒˆàà¼Ç€ € € € € € € € € € € Âàð<ýôÓÇ;vì›o¾Ùqp÷îÝãÇ>|øÆã^ @Oއ§ººzÚ´i¯¾úêí·ßÞqðŽ;îøÃþðùÏþƒü`Ü è)©T*î5䘷ß~ûâ‹/Þ¼yóþçŽ3æ‰'ž¸òÊ+GŽùàƒöéÓ'îÕôáпùÍo&Mšt ',\¸ðÒK/ݱcÇâÅ‹O>ùä¸×ЃlUtÇðáï¹æšW^y哟üäïÿû›nºI5‰gâÐMmmm“&MÚ´iÓé§Ÿ^WW÷rzœ‰#@7íÞ½ûõ×_¢èÅ_ܹsgÜËèq ›n¹å–×^{íÃþpSSÓ­·Þ÷rzœpèŽ%K–¬X±bܸq÷Þ{oEEŲeËV­Z÷¢z–÷8¶W^yå‚ .H¥RË–-+//öÙg/¹ä’’’’eË–•––ƽ:€žbâpxR©ÔÌ™3[ZZþå_þ¥¼¼<Š¢‘#G^yå•ÍÍÍ_ýêWã^@އ§®®î‰'ž8묳&NœØqðºë®;餓V¬X±råʸÐSlUÄÄ€ € € € € € € € € € € € € € € ÿjk»æf÷8IEND®B`‚statistics-release-1.6.3/docs/assets/multcompare_101.png000066400000000000000000000557751456127120000232230ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A[ÄIDATxÚíÝy\Tuÿÿÿ÷0‚ ’ìŠ ã¾…k.¨h‰ÁOmQÓ‹LíJMÔÜKÛ®253ñ¢4ËÔÜ-M/Í5ÃÜ-ÜÅPÀ 7Pd˜ßçúÌ— Pžsf÷[·nÌ{g^gæŒçÉû¼ÏûèL&“ÅFé  GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈb«tÈ`0(]¨XIIIJ— ‚c…°ÎIÍ ŠÚ𡨟‹ ét:“ɤtøVÛIÄ©jT-00Pé€ÿ"8@‚#d!8 jÉÉÉJ—üÁUcŒ#Ôƒà«ÀU¢*ć¢N|.*ćõ 8@‚#ª¦Óé”.ø/‚#ªÆìßP‚#d!8@‚#ªÆG¨ÁUcŒ#ÔƒàYŽ…à€ª1ÆêAp@Õãõ 8@‚#d!8 jŒq„zP5Æ8B=Ž…àYލc¡GT1ŽP‚#d!8@‚#ªÆG¨ÁUcŒ#ÔƒàYŽ…à€ª1ÆêAp@Õãõ 8@‚#d!8 jŒq„záܹsƒáرcJI§ûŸÿ &Œq„zaéÒ¥J—¬dR$;(­Ò¨ÔÍ›7“““7nܸjÕ*¥k€ ó€(=E_€"Ž¥ »té’ÒU t:g«¡ÇÒM:õÞ½{BˆeË–íß¿_ér È9­ÓÑé¨8R#ÔƒàXºvíÚI?ìܹSéZTàX! C±–¤¤$¥‹ Z¼èD=5Óñ…”<¬[-‚c… &(ª¢ÌD¨ªš­cWò°nµQ’éxP5R#ÔƒàÖJN!²(‚àYŽ`ÅL¦ö)>ä)<]Ü«êAp«W2 Õ„1ŽP®ªÈB#daj¨òg0˜ÇP^˜ÇQ…¬öXO#ªFj„z Á²P5æq„zP5Æ8B=Ž…àYލc¡GT1ŽPÍß«Úd2%$$ìß¿?)))++ëêÕ«•+Wvssóôô jݺuõêÕ•®Àh88¦§§/[¶lݺu999¥.°bÅ N×°aƆÚÙÙ)]2€†iòö—/^œ>}úöíÛ…M›6mÖ¬Y“&Müýý«U«V­Zµüüüìì쬬¬S§N=zôðáÙ™™®®®Ã† {ã7ll*üì¼ÕÞ¿P¸Wµ Yí±^{ûâ’%KfÏžíååÕ»wïððpww÷‡/o2™Ž9²~ýúM›6|ñÅZ¡ÕîLX «=Ök/8víÚuäÈ‘=zôxܾ쬬¹sç:88Œ?¾B+´Ú +aµÇzíG£Ñ¨×ë•úu9¬vgÀJXí±^{Óñ<<ö]ºt);;»Ì¿€Ú0#ÔC{ÁQRPP°aÆaÆíܹ³hûöíÛÛ´iþÝwß(]&OJsçaÁ49ÏÕ«W###ãââ„={öüŸí±µ5™LIIIIIIÛ·oŸ={¶¯¯¯ÒõXíõ8ƈˆˆ¸¸¸êÕ«1"((¨è³o¼ñÆöíÛ'Nœèää?f̘ÂÂB¥K°Ú ŽëÖ­;w¯ïÚµk###KÞÆ××wРA›7o®Q£ÆÉ“'×®]«tÉ”c¡Ú Ž›7oBŒ3ÆËËë!‹¹¹¹M™2E£tÉ”c¡Ú ŽçÏŸBtìØñ‘K¶iÓF§Ó¥¦¦*]2€%Ð^p¼r劓““ƒƒÃ#—tpppqqÉÈÈPºdK ½àX½zõ[·nݺuë‘KÞ¸qãúõëÎÎÎJ— @Ù1Æ꡽àèããc2™Ž?þÈ%=*„¨Y³¦Ò%PvŒq„zh/8††† !¾þúë{÷î=d±ÜÜÜ3f!^zé%¥K°Ú ŽaaaÞÞÞ'Ožœ0aBNNN©Ëdee3æìÙ³®®®Åf@Ùè´Ø~ôèÑAƒݹsÇÑÑñ7ÞhÑ¢EÍš5ÝÝݯ^½zþüùǯX±"//ÏÞÞ~þüùmÚ´yÊåYíÏA§ÓäÁÚ²Yí±^«ûâéÓ§ÇŸð üüü¾üòË&Mš<ýÚ¬vgÀJXí±^“÷ªB¬[·î?þؼyó©S§.^¼x÷îÝJ•*yyy¾ôÒK¡¡¡z½^é2,‡Vƒ£B§Ó…„„„„„HoÞ¼YµjUæ,¨ Ú»8æAœœœHËÃÑ ê¡½à¸fÍ£ÑX¶ßÍÌÌܽ{·Ò[ÀcÐèÕ°HÚ Žß~ûmhhèÆóóóåÿVzzúÔ©S_|ñÅsçÎ)½𤽫ªóòò¢¢¢–.]Z¥J•ÐÐЮ]»6iÒ¤jÕª¥.œ––vàÀ7þõ×_ÞÞÞŸ|òI‡*ºB«½Ò +aµÇzíGÉéÓ§úé§7Þ½{W§Ó=÷Üs¾¾¾...ÎÎÎùùùÙÙÙ×®]‹¿qã†ÂÏÏïÿøÇ+¯¼âààðj³Ú P˜ÇQ…¬öX¯í}1''gË–-û÷ï?xðàÍ›7‹=жmÛààà6mÚ<Í‘ÅV»3`%¬öX¯íàhVXXxéÒ¥k×®eee988T¯^ÝÃÃÃÉÉI‘b¬vgÀJXí±^Ãó8eccãííííí­t!K{WU`U˜ÇêAp@Õ,cP,Á² ÁUcŒ#Ôƒà€ª1Æêa!Óñe2™bbbÒÓÓ7nܬY3¥Ë°–cbbæÌ™)„˜2eÊš5k¤§úõë÷ñÇÓÉðä4ªúðáÃÇOLL,,,Bœ:ujÍš5ÎÎÎo¼ñFÍš5W®\£t”ÝPÍ÷8þðÃ&“iòäÉýúõBlß¾]1mÚ´.]º¤¦¦¾ôÒK+V¬èÒ¥‹ÒePFŒq„zh>8&''{zzFDDH:dgg×¾}{!„ŸŸ_:uÎ;§t–@ó§ªsrr\]]¥Ÿ N:Õ°aC;;;©ÅÑÑ1++Ké,惣··wzzºÑhBüý÷ßwïÞmÕª•ôTaaazzº›››Ò5PvŒq„zh>8¶hÑ"''':::###::ZÑ¡Cé©… ^¿~ý¹çžSºFÊŽ1ŽPÖwÇŒŒŒ°°°;wîH5jôË/¿ètº×_ýرcBˆŸ~ú©uëÖO³$ƒÁ””¤ô*ŠÕë5ßãX£FÕ«W{zz¶k×.**JêÒÏÊÊrrrš>}úSN–Jó=Ž’‘‘áååec£@2¶Ú¿BA§³ØƒµvYí±^óÓñ8.X°@1pàÀáÇ;;;+]åŒ1ŽPÍÇ3gÎÔ¬YsâĉŠ\@E#5B=´¶îß¿ëÖ-R#@EÓvÞ²±±qvv>}útaa¡ÒµX8mG½^?dȬ¬¬Ù³g+] ‚{UC=4?Æ144ôÂ… ßÿýÁƒ»wï^³fM;;»bË+]&eÄG¨‡æƒc—.]¤Ž?~üøñR—±Î¹ÝÊ—æƒcxx¸Ò%XÍÇ™3g*]ˆy¡šŽf—.]JHHHKK»ÿ¾¿¿½zõ¼½½•. €'Ej„zXBpÌÎÎŽŽŽ^µj•Ñh47êõú>}úŒ=šÛÉ” ÍG£Ñ8lذ¸¸8{{û___½^ŸššºsçÎ+V$$$,_¾œ{X<9ÍÇÅ‹ÇÅÅ5mÚ4::ÚÝÝÝÜ~õêÕÈÈȸ¸¸Å‹//ïAÏæåå988<î: xôèQggç6mÚܽ{÷СC{÷î9rä»ï¾«ô€š”¼žÔB|,‘æOU׫WïòåËqqq%Ÿ:yòdzzzݺuw?ÿüóÑ£GŸþù]»vÍ›7oÑ¢EëÖ­«V­Ú·ß~[¶þK°@:xÈ=”¹½rùá^ÕPÍGéÎ1#GŽ,6–qïÞ½#FŒB„……=î:·nÝ*„˜|xbbbaa¡âÔ©SkÖ¬qvv~ã7jÖ¬¹råʘ˜˜2¬6??êÔ©o¾ùffffddä–-[Hðxè',Žæ{øá“É4yòä~ýú !¶oß.„˜6mZ—.]RSS_zé¥+VtéÒå±ÖYXX8vìØíÛ·‡„„|üñÇÅnf‚Nǧ‡1ŽPÍÇäädOOψˆéá¡C‡ìììÚ·o/„ðóó«S§Î¹sçwK—.ݾ}ûo¼ññÇ+½} bÊŽ¤œrEj„zhþTuNNŽù‚•‚‚‚S§N5lØÐÎÎNjqttÌÊÊz¬šL¦eË–U­ZuâĉJo¨^ÉLCÊ,—æ{½½½ÓÓÓF£^¯ÿûï¿ïÞ½ÛªU+é©ÂÂÂôôt77·ÇZáÕ«WÏŸ?ïààпÿ’ÏöêÕkÀ€Jo4¨ I°šŽ-Z´XµjUttôk¯½-„èСƒôÔÂ… ¯_¿Þ±cÇÇZazzº"//ïäÉ“%ŸåÀSÆG¨‡æ÷ÅŒŒŒ°°°;wîH5jôË/¿ètº×_ýرcBˆŸ~ú©uëÖO³$ƒÁÀ<ŽX0«=Ök~Œc5V¯^ìééÙ®]»¨¨(iÖÆ¬¬,''§éÓ§?åÔ`©4ßãø ^^^66 $c«ý++aµÇzÍq|5j(]å€1ŽPíÇåË— !Z¶l`~øp¥^ €&¡Úû#Fº­ø§Ÿ~Ú·o_!ï.ãO¹3Ùj»¯°V{¬×^cdd¤¢Q£FÒÃqãÆ)]€UÐ^£úYí_!€ŠÀG²Úc½æ§ãIOO?þ¼ÒUPQHPíª.&44ôÞ½{ûöí3ß±Aó=ŽÒµÕÉÉÉJ`á4?üðC‡yóæÝ½{WéZ(ÒÑ5Ðü©jww÷Y³f}ôÑGááááááµjÕrrr*¶Lpp°ÒePFŒq„zh>8vêÔIú!+++::ºÔe¬óº'€ò¥ùà®t VAóÁqæÌ™J—@bG¨‡æ/Žy¸‰'vîÜYé*(;R#ÔCó=ŽBˆììì?þø#--­X{^^Þï¿ÿ®×ë•.Àh>8^¾|¹_¿~Z ÿþJ×` 4-Z”‘‘Ñ¢E‹°°°M›6:tè£>rppHLL\¶lYÿþý'Ož¬t”c¡šŽ{öì±··Ÿ;w®““SçÎÛµkW»ví¶mÛ !üýý?ûì³×_]º» ZDj„zhþ☋/úùùI“~»¹¹¹¸¸œÕ¯_?GGÇ'N(]#€%Ðvp,((¸xñ¢‡‡‡^¯/eÛll¼¼¼øC  \h;8êt:GGÇ .äää”|öæÍ›©©©ÒÄàhc¡ÚŽz½¾wïÞ………'N¼wï^ѧòóó'Mš¤Óé¬t™”§Î šŸŽç7ÞˆÿóÏ?CBB^yå•Úµkëtº”””_ýõÒ¥K¡¡¡·oßþóÏ?ÍËûûûתUK骴Gów12 µü¸qã*zfG«½ VÂjõšïq ¬åŸ{î9¥Kà1p¯j¨‡æƒãÌ™3•.€ Dj„zhûâ<5šïq”\¿~===ýA“5iÒDé4OóÁ1;;{ìØ±ûöí{È2Ö9|`ãõÐ|pœ5kÖ¾}ûôz}Æ ]\\˜%`aHPÍG)5.[¶¬yóæJ×`É4qÌ­[·š6mJj¨hšŽõë×ÏÍÍUº * £° šŽÝºuKLL|øÅ1hc¡šãØ¿ÿS§N :4"""((¨J•*%—iÙ²¥ÒehžæƒcNNΙ3gòóó,X°`Á‚R—a:€'§ùàuìØ1[[ÛæÍ›»¸¸(]åŒy¡šޱ±±vvv«W¯®_¿¾ÒµPþHPm_SPP’’Ò¤IR#@EÓvp,,,¬T©Ò7”.Àòi;8ÚÙÙ………%''ÇÄÄ(] ‚y¡šã8hРäää#FôéÓçAÓñ+]&eÄG¨‡æ/Ô2 \æ)OÇc0˜ fµÇzÍ÷8†‡‡+]€UÐ|pœ9s¦Ò%P˜Çê¡ùàhvéÒ¥„„„´´´û÷ïûûû׫WÏÛÛ[é¢xR¤F¨‡%ÇìììèèèU«VFs£^¯ïÓ§ÏèÑ£•.Àh>8ÆaÆÅÅÅÙÛÛ‡„„øúúêõúÔÔÔ;w®X±"!!aùòåz½^é24OóÁqñâÅqqqM›6ŽŽvww7·_½z5222..nñâŃVºLʈ1ŽPmO.„سgN§‹ŠŠ*š…nnnsæÌ±±±Ù½{·Ò5Pv¤F¨‡æƒcbb¢¯¯¯——Wɧ<<<êÔ©“ t–@óÁÑÞÞ>//ïAÏæåå988(]#€%Ð|p¬W¯ÞåË—ãââJ>uòäÉôôôºuë*]#eǽª¡šŽÒcFŽYl,ãÞ½{GŒ!„ SºFÊŽ1ŽPÍ_Uºk×®õë׿ýöÛ^^^~~~Bˆ´´´ÌÌL!DXXØË/¿¬t–@óÁQ1}úôV­ZEEE]¼xñâÅ‹R£››Û{ï½×«W/¥«°55Ô•+WRSSM&“ŸŸŸ‡‡‡Re †¤¤$¥ß €…`G²Úc½%ô8š¹»»›Í­#5B=4qŒäÏ?ÿüôÓO¯\¹"=ܱcǨQ£6oÞ¬t]–Có=Ž………'Nܰaƒâ­·Þ’oݺµuëÖ­[·ÆÄÄÌœ9³ äääDEE9r$==ÝÍÍ­aÆ‘‘‘þþþJo®–•üøMÑ|ãþóŸ 6xxxL›6ÍÓÓSj ŽŽ®Q£ÆÆ¥LùXnÞ¼ùòË/¯\¹RÑ©S§êÕ«oÞ¼9,,ìäÉ“Jo®f•šÝ™™ d`G¨‡æƒãêÕ«mll~üñÇÞ½{ÛÙÙIöööݺu[´h‘­­íêÕ«wÑÑÑW¯^:tèo¿ý6{öìU«VM›6­  àóÏ?Wzsµé!ÿäétÄGx8Æ8B=4Ï;W»v퀀€’OùúúÖ©Sçܹs»Î888 6ÌÜÒ»woOOÏøøx£Ñ¨ôk ¹K¡ù1Ž•+W¾{÷½{÷®^¯ÜuV«V-00°råÊEíííóóóóóó¹ù5°NšŽ5Ú±cGBBB½zõŠ=uúôéóçÏ·oßþq×¹lÙ²b-‡>þ|Ó¦MIB§ãBxæq„zh>8öîÝ{ÇŽÇŸ:ujÛ¶mÍíýõ×ûï¿o2™¤›Y—M\\ÜÚµkSRRâââjÕª5cÆ ™¿h0е<ÕiBµxvX=5ó¯3•!5*®äaÝji>8véÒ%""bÉ’%o½õ–···O¥J•Ο?þüy!DXXXXXX™Wž””´fÍéÛ AóÅ7r~QÉ7EUÿÄÈI„ª*€ÿUò°nµQÒBz¿ÿý÷¯¾ú*55ÕÜâêê:zôèW^yÅÆæ‰.2™LYYY7nüꫯÜÜÜ6mÚôÌ3Ï<üW¬ö6D¥#8,ŽÕë5ßã(éÚµk×®]¯_¿ž’’rïÞ½Úµk{zz–ËÄW:ÎÍÍmРA.\X±bŶmÛ^yå¥7`Eãõ°à(yöÙgŸ}öÙ'\ÉéÓ§.\Ø¡C‡îÝ»moРâòåËJo¥Ö˜Lètä_Cx(R#ÔCóó8–;''§_ýuíÚµÅÚ¥A“µk×Vº@ 2™˜ù×í 8çááa0öîÝcnLLL\¾|ù3Ï<Ó¢E ¥ Ô¬bñ!i¨’Eª./Ÿþùo¼1lذfÍšÕ¬YóÊ•+GŽB|ùå—®®®JW§e$Ex|Œq„zÐãXŠÆoÚ´©Gׯ_ÿý÷ß/_¾Ü­[·ÿüç?/¿ü²Ò¥¬©êAcé|}}¿þúk¥«Píõ89Òü°Y³f3gÎTº(˧½àxûöíƒfddHsssïß¿¯tQT”r™–(Úo;räÈmÛ¶ !…¹¹¹¶¶¶¿`\\ÜÓ¬Ðjg“ÀJXí±^{c?þøc[[ÛØØØ;wî(] €Ñ^p¬^½zÑËV Cÿþý?øà¥ë°pÚ ŽÅ <8((Hé*¨(ÌãõÐ|pœ0a‚ôÃ¥K—ÒÒÒîß¿ïïï_¯^=ooo¥«àI‘¡šŽBˆìììèèèU«VFs£^¯ïÓ§ÏèÑ£•.Àh>8ÆaÆÅÅÅÙÛÛ‡„„øúúêõúÔÔÔ;w®X±"!!aùòåz½^é24OóÁqñâÅqqqM›6ŽŽvww7·_½z5222..nñâŃVºLʈ1ŽPíM^Ìž={t:]TTTÑÔ(„pss›3gŽÍîÝ»•®€²#5B=4}}}½¼¼J>åááQ§N„„¥k°šŽöööyyyz6//ÏÁÁAé,æƒc½zõ._¾\êMOž<™žž^·n]¥k ì¸W5ÔCóÁ1<<\1räÈbc÷îÝ;bÄ!DXX˜Ò5PvŒq„zhþªêÐÐÐ]»v­_¿þí·ßöòòòóóB¤¥¥eff !ÂÂÂ^~ùe¥k°šŽBˆéÓ§·jÕ***êâÅ‹/^”ÝÜÜÞ{ï½^½z)]€…°¨©¡®\¹’ššj2™üüü<<<”*Ã`0$%%)ýf,ó8ªÕë-¡ÇÑÌÝݽØlŽh©ê¡ù‹cðt ÁUcG¨ÁUcŒ#ÔƒàY4?þð¶nݪt–@óÁ±oß¾ß|óÑh,ùTvvöèÑ£G¥t”c¡šŽîîîÑÑÑ}úôIMM-Ú¾mÛ¶=zlÙ²Å××Wé(;Æ8B=4ûí·>}úœ8q¢gÏž+W®BäääŒ3fäÈ‘999ƒÞ°aƒÒ5X ¹‹Ñ&Ožœ‘‘ѲeËsçÎeeeL›6­Q£FO¿«½ VÂjõšïq”´iÓfÕªUÏ>ûllllVVVóæÍ×­[§Hj |1Æêa!ÁqÏž=¯½öÚõë×4hàîîþ÷ß¿ûî»—/_Vº.ž”eœ„eÐ|p¼uëÖ|0dȬ¬¬Q£FýòË/¿ýö[÷îÝwíÚÕ£Gµk×*] €…ÐüÇ:\¾|9 àË/¿¬_¿¾¹}ãÆÿú׿nÞ¼Ù®]»üñi–dµã°V{¬×|cVVÖ?ÿùÏuëÖMBˆ°°°7¶iÓfïÞ½J×@Ù1Æêa«tOjùòåÍš5+õ)OOÏE‹-]ºTé(;­Ÿ„%Ñ|ãƒR£D§ÓEDD(]#€%Ð^ãòåË…-[¶ 0?|¸þýû+]5€æiïâƒÁ „øôÓOûöík~øpOyøªÕ˜TN{k‹gµÇzíõ8FFF !Ì“{7N銨@¤F¨Ä”?«ý++aµÇzÍ_“žž~þüy¥«°|Ú;U]Lhhè½{÷öíÛçêêªt-”?Æ8B=4ßã(][œœ¬t!TR#ÔCóÁñÃ?tpp˜7oÞÝ»w•®À’iþTµ»»û¬Y³>úè£ððððððZµj999[&88Xé24OóÁ±S§NÒYYYÑÑÑ¥.c×=,c¡šŽáááJ—@"5B=4gΜ©t VAóÇ4kÖì!Ù122òÅ_TºFK ùà˜››{ÿþý=uþüùŒŒ ¥k ìt:Ò%ÿ¥ÉSÕ»ví6l˜ùá’%K–-[Vr±ÂÂB“ÉT«V-¥ë ìãõÐdpÔëõæ9w²³³íììK]²Zµj“&MRº^K ÉàØ®]»ƒJ? †¾}û~ðÁJ`á4‹8 !²³³ÿøã´´´bíyyy¿ÿþ»^¯Wº@K ùàxùòå~ýú=dÎþýû+]#€%Ð|p\´hQFFF‹-ÂÂÂ6mÚtèС>úÈÁÁ!11qÙ²eýû÷Ÿ8îÙ³ÇÞÞ~îܹNNN;wn×®]íÚµÛ¶m+„ð÷÷ÿì³Ï^ýõ€€¥Ë ŒHPÍß9æâÅ‹~~~Ò´Žnnn...'Ož”žzíµ×\\\-Z¤t–@óÁQacóÿ¶¢V­Z)))ÒÏz½Þ`0?~\é,惣§§gjjê;w¤‡>>>GŽ1?«ÓéÒÓÓ•®€²ã^ÕPÍǼ¼¼qãÆ={Vtþüù½{÷ !²²²þúë¯5j(]#eÇG¨‡æ/މˆˆØ¶m[LLŒÉdúî»ï:tè`kk;bĈæÍ›'&&æææ†††*]#€%Ð|£««ëòåËnjӨQ#!D5¦L™’ŸŸ¿oß¾k×®uéÒeРAJ×` ,sj¨Û·oŸ8qÂÃÃÃßßÿ鿺Á`HJJRú=XæqT!«=ÖkþTu©žyæ™6mÚ(]å€Ôõ°àxýúõôôô}µš4i¢tš§ùà˜=vìØ}ûö=dëìL(_š޳fÍÚ·oŸ^¯oذ¡‹‹ “], c¡šŽRj\¶lYóæÍ•®€òGj„zh~:ž[·n5mÚ”ÔPÑ4ëׯŸ››«t–OóÁ±[·n‰‰‰¿8æ eff>ÿüóãÇWz[Ö¨ Ã÷uºRþžœæÇ8öïßÿÔ©SC‡ˆˆ ªR¥JÉeZ¶lYæõ›L¦‰'Þ¾}[é X©Çãø Œ¨Ó FKâ i>8æääœ9s&??Á‚ ,(u™'™Žgñâű±±Jo%²<¼g‘ìˆ'¤ùàuìØ1[[ÛæÍ›»¸¸”ïÊOŸ>={öìºuë&&&*½¡ Ó|pŒµ³³[½zuýúõËwÍ&Lpqq™4iÒÀ•ÞP€•’?£œŒt:âIh;8¤¤¤•{jBDGG'$$,\¸ÐÉÉIé X/æq„zh;8VªTéÆ徿£Gþðà hÛ¶m||üãþºÁ`(ÖÂmÀRiî‚eõ¬•H\ò°nµ´íììÂÂÂÖ®]Ó¹sçòZm^^Þ„ |||ÆŽ[¶5Àz¨'ýÈL„ê)X+JÖ­6Jj;8 ! ”œœ8†‡‡—ï OŸ>-„˜;wîܹs‹¶oذaÆ ¿ýö›Ò @éÞéHjÄÒ|pœ9sfù®Ð×××Ü‹)¹qãÆÞ½{½½½›5kæéé©ôð0ÊŽ¤F<9ÍÇr×®]»víÚm‰ß»woPPP¹‡TIþG3iñ¢ñ‘ÔˆrAp@ÕÊ<Æ‘°ˆrg£tÐz­AƒÌË@#ª¦cnF¨ÁUã^ÕP‚#d±„1Ž[¶lY²dIjjêƒþ&;xð Ò5hžæƒãŽ;F-ý¬×ë•.€rV†y ¢ùà¸`Á!ÄÀ‡îìì¬t9”3R#ÔCóÁñÌ™35kÖœ8q¢ ã5*¶ÃÖýû÷oݺåããCj¨hÚÎ[666ÎÎΧOŸ.,,Tº*ó8B=´õzý!C²²²fÏž­t-TÆ8B=4?Æ144ôÂ… ßÿýÁƒ»wï^³fM;;»bË+]&€æi>8véÒEúáøñãÇ/uî4 ðä4ÃÃÕ.€ Ä<ŽPÍÇ™3g*]ˆÔõÐöÅ1xj´×ã¸|ùr!DË–-Ì®ÿþJW  yÚ6a0„Ÿ~úiß¾}Íî)_c0¸P^ã¨BV{¬×^cdd¤¢Q£FÒÃqãÆ)]ˆÔõà˜ògµ…`%¬öXÏÅ1…à€ªq¯j¨ÁUcPÔƒàYŽ…à€ª1Æê¡ùà˜žž~þüy¥« ¢0Æ꡽ À‹ ½wïÞ¾}û\]]•®À’i¾ÇQºcurr²Ò…X8ÍÇ?üÐÁÁaÞ¼ywïÞUºÊc¡š?Uíîî>kÖ¬>ú(<<<<<¼V­ZNNNÅ– VºLʈ1ŽPÍÇN:I?deeEGG—ºŒuÞM |i>8†‡‡+]€UÐ|pœ9s¦Ò%Pt:g«¡šŽf999'Ož¼xñ¢··÷ /¼••Å= @j„zXBp¼víÚ¼yóÖ¬Y“——'„xóÍ7_xá…^½z5hÐ`Ú´i...J` 4?Ïýû÷‡¾téR''§^½z™ÛÝÝÝwîÜÙ·o_)Mà i>8Ο?ÿèÑ£;vܺuëôéÓÍí?ÿüóÿ÷ÿý©©©K–,QºFÊŽy¡šޱ±±z½þ‹/¾ptt,Ú®×ë?úè#GGÇmÛ¶)]#eÇG¨‡æƒcBBBíÚµK½æ™gžñ÷÷OKKSºFK ùàèìì|çÎ=›]µjU¥k°šŽõë׿xñâñãÇK>•‘‘Q¯^=¥k ìãõÐ|pìÓ§N§;vl|||ÑöøøøÑ£G !zöì©t”c¡šŸÇñ…^2dÈ?üлwo!ÄŽ;öïßöìÙÂÂÂ^½z½øâ‹J×` 4…ãÆ{þùçg̘qîÜ9!DFF†ÂÍÍm̘1EgvÀ“°„à(„èÔ©S§N²³³Ï;—ŸŸïïïïáá¡tQ”îU õ°à(qqq©[·n¥J•ììì”®€òAj„zXHp<~üø·ß~õêU›5j4oÞüÝwßõõõUº4 ¡ù«ª…sæÌyíµ×þüóÏ«W¯ÚÛÛW®\ùÂ… ÿùÏBCCW®\©tuBóÁq÷îÝóæÍÓëõ;vì8vìX\\ÜŸþ9xð`!ÄçŸ~ôèQ¥k ì˜Çê¡ùà¸råJ“É4vìØÉ“'ûøøHß.//¯ &Lœ8±  `Ñ¢EJ×@Ù1Æê¡ùàoooÿæ›o–|jÀ€¥ÞTKóÁQáééik[ÊU>ÒU2¹¹¹J` 4›5kváÂ…›7o–|êÎ;))) 4PºFÊŽ1ŽPÍÇ×^{Íd2½ÿþûEÛFã|`4»té¢t”c¡Ú›ÇñÀEêõúÞ½{¯]»¶k×®¯½öš¿¿¿N§KIIY³fÍ…  ÃK/½¤tÉ–@{w12 û+IIIO¹Â§üŠài²Úc½özÃÃÕ.€§‡{UC=´gΜ©t <=¤F¨‡æ/ŽÀÓ¡½ÇR]¿~===ýA“5iÒDé4OóÁ1;;{ìØ±ûöí{È2Ö9|`ãõÐ|pœ5kÖ¾}ûôz}Æ ]\\˜%`aHPÍG)5.[¶¬yóæJ×`É4qÌ­[·š6mJj¨hšŽõë×ÏÍÍUº * £° šŽÝºuKLL|øÅ1hc¡šãØ¿ÿS§N :4"""((¨J•*%—iÙ²¥ÒehžæƒcNNΙ3gòóó,X°`Á‚R—a:€'§ùàuìØ1[[ÛæÍ›»¸¸(]åŒy¡šޱ±±vvv«W¯®_¿¾ÒµPþHPm_SPP’’Ò¤IR#@EÓvp,,,¬T©Ò7”.ÀòiûTµ]XXØÚµkcbb:wî\Žk~õÕWOœ8Q¬ÑÕÕ•yOc¡ÚŽBˆAƒ%''1¢OŸ>šŽ'88øqW{þüy??¿¢ÕªUSzsòVrbaŽO€Ê¡šÿ#Æ`0ùä“×_]ÎJ޼´Î‘ø<;¬6ª*˜'åȹ ÂJh>8Þ¼y³X‹Éd*,,”~öôôtuu}Üu^¼xÑÁÁa̘1RËþýû‡úÅ_´k×ÎÛÛû‘k &¢ê‰>2¡z E•<¬[m”Ô|pˆŸŸßóÏ?ûË/¿˜ãââ.\èííýâ‹/*½Y@91™JO‡j ƒ’¡š¿8æÀ¥¶ggg/]ºôúõë!!!»Î>úhðàÁS¦LY¹r¥¿¿FFÆÑ£G§M›æàà ô劌¨c¡š¿Pëá玫V­ºbÅŠÀÀÀÇ]í•+WfÍšuàÀììlŸ&MšŒ9ÒËËKfILÇ€³Úc½æ{r¯êZµjõìÙÓÇǧ «uwwŸ1c†Ò "šŽq¯jÔƒy¡–|q €ÔõÐ|£bË–-K–,IMM}ÐWëqïU €’4wìØ1zôhégiŽnTÍÇ !8|øpggg¥Ë œ1Æê¡ùàxæÌ™š5kNœ8ÑÆ†ñš Dj„zh;lÝ¿ÿÖ­[>>>¤F€Š¦í¼eccãìì|úôéÂÂB¥k°pÚŽz½~È!YYY³gÏVº*÷ª†zh~Œchhè… ¾ÿþûƒvïÞ½fÍšvvvÅ– VºLʈ1ŽPÍÇ.]ºH??~üøñã¥.cw“(_šŽ¹W5Ê‘æƒ#÷ªX6æq„zhûâ,©êAp€,GÈBp@Õ˜ÇêAp@Õãõ 8@ÍÇ´´4¥K° šŸÇ±[·n¾¾¾:u  ªT©’ÒPž˜Çê¡ù}±I“&wïÞ•~®R¥J»ví:vìØ±cGWWW¥J2 Üä fµÇzÍÇû÷ï=zôСC‡:zôh~~¾B§Ó5lØ088888¸AƒOùz4«Ý™°V{¬×|p,êÞ½{qqq‡:xðàñãÇ „®®®ûöí{šeXí΀•°Úc½æÇ8eooߺuë 4nÜx×®]k×®ÍÏÏÏÊÊRº.ÊŽ1ŽP ŽwîÜù믿¤Ö§N2B½^ߨQ£Ö­[+]eGj„zh>8Κ5ëСC'Ož”¢N§ hݺu›6mZ´hQµjU¥ °šŽßÿ½ÂÁÁáå—_~á…Zµjõì³Ï*]€Ò|p”F~äååmݺ5+++33³eË–õë××ëõJ—@9`Œ#ÔCóÁ166öÈ‘#‡ŽÝ½{÷Î;…UªTiÞ¼yË–-[´hѨQ#[[Ío&Àj‘¡õGÌ;wþþûo)DžÍ2¬ö}¬„Õë-ª+®J•*íÛ·oÞ¼yóæÍwîÜù믿æçççåå)]€%°à(Ý?æÀû÷ï?~ü¸t…u¥J•Ú¶mÛ±cG¥« ìãõÐ|püñÇ÷ïßÿ×_™{=<<¤ÛU·mÛÖÑÑQéx"¤F¨‡æƒã—_~)„ÐëõÍ›7îØ±cݺu•. Ài>8†‡‡·oßÞÉÉIéZ,™æƒãÌ™3¥.]º”––vÿþ}ÿzõêy{{+]OŠ1ŽPÍG!DvvvttôªU«¤kb$z½¾OŸ>£GvvvVº@ÊŽÔõÐ|p4Æ ‹‹‹³·· ñõõÕëõ©©©;wî\±bEBBÂòå˹‹ À“Ó|p\¼xq\\\Ó¦M£££ÝÝÝÍíW¯^ŒŒŒ‹‹[¼xñàÁƒ•.@ól”.àIíÙ³G§ÓEEEMB77·9sæØØØìÞ½[é(;N§t Ài>8&&&úúúzyy•|ÊÃãN: J×@Ù1Æê¡ùàhooÿ› æåå988(]#€%Ð|p¬W¯ÞåË—ãââJ>uòäÉôôtæ(šŽáááBˆ‘#G˸wïÞ#F!”®€²cŒ#ÔCóWU‡††îÚµkýúõo¿ý¶———ŸŸŸ"---33SöòË/+]#eÇG¨‡æƒ£búôé­ZµŠŠŠºxñâÅ‹¥F77·÷Þ{¯W¯^JW`!,ê.FW®\IMM5™L~~~J•a0’’’”~3@E±Úc½%ô8š¹»»›ÍQqúô退¥K Œ¸W5ÔC«ÁñÌ™3±±±)))Ï<óL«V­Z·nm~*55õÊ•+:îÖ­[±±±?ýôS9´‹ÔõÐdpœ;wî7ß|c4Í_|ñÅY³f¥§§5Ê:»Ž*šö‚ã¡C‡æÌ™#„ðôôlРâøñãÛ¶m«S§ÎŽ;’““íííkÔ¨áèèhkkëââÒ¤I¥K°Ú Ž?þø£"<<|Ú´i¶¶¶Bˆ¼¼¼#FÌ;Wöé§ŸV©REé2(Œq„zhoðsçÎ !&L˜ ¥F!„ƒƒÃ{ï½'ýüÑG‘–„ÔõÐ^pÌÌÌtrrrss+Úèïï/„¨^½º“““ÒX&íG£ÑèèèX¬Qj©T©’ÒÕX,íG¬ ÷ª†zP5Æ8B=Ž…àY´7£âòåËÍš5“ß§tÉ”ó8B=4M&Snn®üv´‹ÔõÐ^püí·ß”.Ài/8(]€5ââTy¡GT1ŽP‚#d!8@‚#ªÆG¨ÁUcŒ#ÔƒàYŽ…à€ª1Æ꡽;Ç<5'Nœ˜?~||üíÛ· Cddd«V­”. x€¢Ç†C–…1ŽPzKÓ¯_¿˜˜ww÷fÍšÅÅÅEDDÄÄÄ(]P‚N'ŠõFÐ9¨:þŽ)éÆ!!!÷ïßÿñÇŸþy!ÄñãÇû÷ïïää´gÏ›G¤mƒÁ””¤ôFÀ:<$#òÕ€ cµÇzzK±víÚ›7o:TJBˆÆwïÞ=++ëĉJWüŸ‡÷,ÒïX Æ8B=Ž¥Ø½{·N§ëÙ³gÑÆ/¿ü2))©I“&JWÈÆÁ°œ„zpqL)Nž<éâââééyäÈ‘¸¸¸œœœºu놄„888(]ð…€§Ž1ŽÅåçç7jÔè¹çžkÑ¢ÅÊ•+Íí>>>QQQ 6|ä CÉFë aˆkeÆ?54‹#»Á±¸k×®µmÛVáììüÁß½{wÍš5ß~û­··÷o¿ýöÈ~G«0‹§Jf„å hŸNÇÁZu¬öXÏÇâ*W®,ý0}úôž={V«VÍÓÓsĈ½zõJOOß´i“Ò¬ ©êAp,®J•*•+WvppèÔ©SÑö!Dbb¢ÒBº 8–ÂÝݽR¥JŦ?ÎP(] áP®Ž¥èÔ©ÓÍ›7“““‹6þý÷ßBˆºuë*]ðž I€¥`G¨Á±½zõBL™2åúõëRˉ'~üñGggç®]»*]P„ÉTz@$5„1ŽPæq,E½zõÆŒóõ×_¿ôÒKAAA¹¹¹‡ÖétS§N­^½ºÒÕ%pP<ÇÒ½óÎ;®®®K–,Ù¿¿‹‹K—.]"##”® @1L Uþ¬vn'@E`G²Úc=cP5R#ÔƒàYŽ…à€ª1#Ôƒà€ª1ÆêAp€,GÈBp@Õãõ 8 jŒq„z Á²P5Æ8B=ލc¡GÈBp€,GT1ŽP‚#ªÆG¨Á² ÁUcŒ#Ôƒà€ª1ÆêAp€,GÈBp@Õãõ 8 jŒq„z Á²P5Æ8B=ލc¡GXƒÁ t (ŽEø\TˆêAp€,GT-99Yé€ÿ"8 jJ—üÁ² ‹Ž‹üË—¿ÊQrr2g«U())Ié@p€,œª€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,¶J`iòóóúé§-[¶¤¤¤¸¸¸4jÔhĈJ×qâĉùóçÇÇÇß¾}Û`0DFF¶jÕJé¢ð_™™™aaa;wž9s¦ÒµXµ¼¼¼Õ«W¯Y³&==½jÕªƒ zá…”®ËJýòË/?ÿüó™3g;vì8~üx¥‹²j|A„úO>ùDé,‡ÑhŒˆˆX»vm¥J•Z´hQ©R¥Ý»w¯^½ºeË–5jÔPº:«3dÈsçÎùûûûùùÅÆÆ®]»¶Aƒµk×Vº4“Éôî»ï¦¤¤ †nݺ)]Žõ*((ˆˆˆX³fÑhlÙ²¥““SllìºuëlllZ¶l©tuVgöìÙ_~ùåíÛ·[´h‘——wàÀØØØ°°°J•*)]š•â ò_&”ŸåË—Ž5êþýûRËþýûëÕ«×­[7¥K³j999AAAMš49räˆÔrìØ±† ¶mÛÖh4*]L . 7nœÒµX5é_°~ýúåææJ-ÉÉÉ-[¶¬W¯Þ©S§”®Îº$&&Ö­[·}ûö—/_–Z>ÿüóÀÀÀýë_J—f½ø‚HãXžþþûo!Ä›o¾ikûß1mÚ´©W¯^jjêõëו®Îz­]»öæÍ›C‡}þù祖ÆwïÞ=++ëĉJWgíNŸ>={öìºuë*]ÄÖ­[…“'OvppZ†j4÷íÛ§tuÖåçŸ.,,=z´»»»Ô2iÒ$ggç-[¶*]•â "!8–'///!DÑŒh2™rrrlllÌQOßîÝ»u:]Ïž=‹6~ùå—IIIMš4Qº:«VPP0a—I“&)] DJJJ•*U4hP´Q¢}áÂ¥«³.‡¶±± 6·èõú:\»vMê¡ÀÓÇDBš)O/¿üò’%K¦NêèèØ´iÓììì¹s禧§÷éÓÇÉÉIéê¬×É“']\\<==9—““S·nÝó_PJtttBBÂÂ… ù‚¨ÁüùóKþ‰/„ðññQº:+b2™Îœ9óì³Ï>ûì³EÛ….\ RºFkÄDBp,OƒaéÒ¥8p ¹qÀ€|ðÒ¥Y¯üüü[·n=÷ÜsŸ|òÉÊ•+Íí>>>QQQ 6Tº@ëuôèÑ~øaÀ€mÛ¶•þñ…²êׯ_¬åàÁƒßÿ½½½}±{T¨ÜÜ\£ÑX­ZµbíÎÎÎâOjáiâ "áTuyºyóæôéÓïܹӠAƒ¾}ûvíÚÕÁÁaýúõ111J—f½nݺ%„8sæÌæÍ›g̘qèС]»vEFFfddŒ5*//Oé­T^^Þ„ |||ÆŽ«t-(…Ñh\²dÉ!Crss§OŸîêêªtEVDúw©J•*ÅÚŸyæ!Ä7”.Vý¡Ç±, ~øáóC½^ÿÏþS1a„¿þúkÒ¤Io½õ–ôTfffß¾}ß{ï½ 6øûû+]¸…+õs©\¹²ôpúôé;w–~1bDffæÚµk7mÚôꫯ*]¸%{ЗeÆŒééé+W®dÀÀÓ÷ ÅìСCŸ~úéÙ³g½¼¼¾øâ‹¶mÛ*]²u©V­šN§ËÍÍ-Ö~ûömñýŽP•AŽeqÿþý¨¨(óC{{ûþóŸW®\Ù¹sçsÏ=gNBooïáÇüñÇëÖ­£g¥¢•ú¹T©R¥råÊ:®S§NE Y»vmbb¢ÒU[¸R?”ØØØ•+W>œ‹“Qê‡"ýœŸŸ?sæÌ¥K—V®\922rðàÁ$û§ÏÖÖÖÙÙ¹dÏâÍ›7…æë¬ñôñDzqppHJJ*ÖxíÚ5!„ŸŸ_±v©£ñêÕ«JWmùJý\„îîî999:®ØÂBˆ‚‚¥«¶p¥~(§OŸBÌ;wîܹEÛ7lذaÆ€€€ß~ûMéÂ-Ùƒ¾)………cǎݾ}{HHÈÇL@Q‡‡Ç™3gnÞ¼Yôº±””é)¥«³R|A$Çrãçç§×ëOŸ>m2™Šféèçž{Né­W§N~úé§äädéšD‰4¥Ó*Â××·GE[nܸ±wï^ooïfÍšyzz*] •ZºtéöíÛßxã?þXéZ¬]—.]’’’öìÙcþ¦˜L¦]»v¹¸¸4kÖLéê¬_‰Îd2)]ƒå:tèÎ;‡icc#„8}útDDÄí۷ׯ__§N¥ ´R ={ölÒ¤Éwß}'MoqâÄ ižö-[¶T¯^]é!âãã{÷îνª•b2™ºuë–½wï^óÈ`(%33³K—.~~~¿üò‹tMÌüùó¿þúë!C†Œ?^éê¬_3‚cyÊÊÊzõÕW/^¼èççW¿~ýk×®ýõ×_………S¦Léß¿¿ÒÕY5éß\ggç   ÜÜÜÇëtº™3gvïÞ]éÒ ÁQ®\¹Ò¾}{‡RÿÄíÕ«×€”®Ñº,\¸pÆŒ5jÔhß¾}ZZÚÁƒëׯ¿páÂ’Óôà)à bÆ©êòäêêºyóæï¾ûnïÞ½þù§‹‹KÇŽ‡ Ö¨Q#¥K³vï¼óŽ««ë’%KöïßïââÒ¥K—ÈÈHiÆBˆôôt!D^^ÞÉ“'K>kmתÁ AƒÜÜÜÖ¯_¿yóf//¯Œ=Zê}ÄÓÇÄŒGÈÂà…àYŽ…àYŽ…àYŽ…àYŽ…àYŽ…àX‘k×®92(((88XñÍ7ß †åË—?ü·æÍ›'g1õ¹]*7~üxƒÁðçŸ>d™bèÓ)éÀOíM(¶ï•üdK¾Où=¬ ÁÖâàÁƒÃ‡ïܹsÓ¦M{ôèñÍ7߯bËL›6ÍPšŽ;>ÖkmÚ´©^½zIIIJotqS§Nݶm›MãÆ•®EuöîÝ»k×.¥«x<ýªÿ=)ù°“ÊV逧aúôé‹-Bxzzz{{§¤¤DGG?~|Μ9æÅÒÒÒä¬í·ß~[¼xñÙ³g}}}{÷î=`À›ÿ÷7ؽ{÷¾úê«W_}Õ`0(½ÝÅÅÆÆ !Ö­[W£F !D§N\]]Ÿþy¥ë*geÛ®qãÆÝ¼yóÔ©SJ—ÿŠ} åNmïIÉO¶ä;PÑï `åް|Û¶m[´h‘««ëìÙ³[¶l)„¸téÒ„ víÚõÕW_}øá‡æ%SSS…‡vrrzÐÚ¢££¿ùæ__ßN:9sfêÔ©ñññ3fÌ0/°xñâ7nŒ5Jéí.Å;wÍÔ 4hÐ@é¢ÊŸ¥nWIÅ>P‹Wò“-ùXÛ{‘R£ÂÓÓ3::ÚÅÅå?ÿùO^^žÔh4/\¸àêêúÔxåÊ•¹sçöèÑcË–-_ýõ† ¼~ýúãÇK deeÍŸ?ÿwÞquuUj{Fãýû÷•zu•×£ªb`aØ»` ްp÷îÝ;}ú´^¯/6NÑÙÙ¹U«V·nÝ2áÊÌÌ,((¨]»öCÖ–””TXX®×륖^½z !âã㥇sæÌqvv8pàcùǼûî»:thÙ²eß¾}×­[WXXXl™Í›7:´cÇŽ­[·8pà?þXtŒ¦tÕBzzú÷ßߦM›† õíÛwÇŽÒ_~ù¥Á`ÈÍÍÍÍÍ5 Íš5BüðÃ%/"Y»víàÁƒ[µjõÒK/½ÿþûçÏŸ/µæ}ûö92$$¤E‹ß|óMÑCæ#ëy¬møk•Tl»d¾9ÙÙÙF£ÑüæÈßÌÌÌÌ£G¾òÊ+7NOOŸ2eŠÁ`˜9sf±ªNœ8a0Ú¶m[PP „ÈÊÊúúë¯CCC›7oÞ¼yó=zLŸ>ýòåË2÷™R?Pù»J±š´þRß!D\\Ü{ï½×¥Kéܾ}û~d2÷½¢ŸlÉwà!ïI>GMìêÀÓÇ©jX¸»wïF[[Û¢Ã%•+WB˜ÒG??¿íÛ·ÇÄÄ\ºtÉ××·qãÆ={ö4ÇDƒÁ`cc³qãÆ:H+ܸq£¢nݺBˆäääµk×Μ9ÓÞÞ^~…S§N]²d‰¢F®®®ÇŽ‹‹‹Û¿¿9y˜L¦I“&­_¿^ááááìì|ðàÁüþûïóæÍsqq1¯jþüù?ÿü³««k›6m.\¸÷î»ïFEEuïÞ=((¨  @:âöïß¿R¥J%+),,;vìæÍ›…NNN÷îÝûõ×_wíÚTlɯ¾újÁ‚&“ÉËËËÝÝýÈ‘#‡Ú³gÏܹs«W¯.§™Û.ÿµé‘oΪU«òóó#""ÌoŽÌ—NHH;v¬Ôu]XXöË/¿lÛ¶müøñE øí·ß„={ö´µµÍÊÊêß¿jjªƒƒƒŸŸ_aaajjê¢E‹¶oß¾víÚ¢Ÿéƒ”úÊßUŠÕü õ—|O„111Ë—/wqq LMM‹‹‹ŒŒœ3gÎK/½TæLþ¾÷wàùçŸ/u'/Ûç¨Ý]¨X&ÀÒuìØ100pÿþýEsss;tèøùçŸK-K—. lܸqàÿêÕ«Wjjªùÿýï¾øâ‹ãÇïÕ«W``àøñ㥧Þzë­×_½°°P~mÛ·o >uê”Ô’œœÜ¾}ûÀÀÀ;wJ-k×® l×®Ýßÿ-µdff¾þúëŸ~ú©Ô2nÜ8©Ú¯¾úÊh4šL&£ÑøÅ_öíÛ×ürM›6mÚ´©ùá÷߸lÙ2éáÏ?ÿ#mEjjjXX˜´fób111!!!ÇŽ“Z®^½úöÛo~öÙgò둳ír^«¤bÛ%óÍiÕªU½zõÌåofÛ¶m °oß¾«W¯J+o×®]```||¼ymF£QÚ´Ó§O›L¦ï¾û.00pèС·oß–¸qãFÿþýùå—¢+7¿¥*öÊßUŠÕü ÅÞó;ùïÿ[ÚCŒFãgŸ}øüãI>2™û^±O¶ä;P²¥ÌŸ£&vuàéãT5,ß믿.„øè£Ì‡^¹reÔ¨Q—.]BܸqCj4_RýÉ'ŸÄÄÄÄÆÆþøãÒáìØ±æ“}‘‘‘_}õÕ3Ï<óûï¿LžøàI^Nζ—×k•Á“¿´98Ž5J:m>O}ûöíÏ>ûÌÎÎnþüùEOŃXOmW)÷÷Mæ¾÷Ôêyòß-Jå»:ð¸ãË7þü—^ziÙ²eE·nÝš““Ó¬Y3él‘½½ýäÉ“‡ –œœ\t1“É$ÍQרQ£RWž––¶lÙ²Q£FI11;;ûÒ¥K]»v5÷-õèÑ£R¥J¥Þ´ÍÓÓÓÕÕõüùóýõWÑö]»vMš4IšèÇÃÃÃÍÍ-33sïÞ½E—¹zõêÎ;õz½y¸ýrssóòòºråJ±9ù222öìÙc~(ÕsöìYóÔ•£ÑøÊ+¯´oß^ÊÙ$ÛŸüµÊàÉ_Ú××·aÆçÎ;qâÄüáëëkžYæÄ‰F£±yóæÅð%&&>yÍOaW)÷÷Mæ¾÷Ôêyòß-Jå»:ð¸ް|Ò%®óæÍ‹‹‹B˜L¦½{÷Jw|÷Ýw¥e*Uª4`À!ĨQ£Îœ9#5Þ¾}ûÃ?Œ‹‹kÖ¬Y×®]K]ùÌ™3k×®mîLrqqñôôܱc‡ù†4Û¶m»ÿ~ýúõKþ®N§“®¬|ÿý÷OŸ>-5¦¥¥I—i¿øâ‹RË{ï½'„˜2eŠy€üåË—###ïÞ½Û§OŸr<‡)„øè£ÌÉãÂ… #FŒ&¬63fLaaá˜1cÌ[ܾ}ûý÷ß?yòdƒ d^¥+sÛËåµä+,,ÌÍÍ-¯—–ÅNž<977÷ÕW_5·KW“$&&šÓ€Ñh\µj•ô·yÏ)ƒŠØUо'r”í}“¹ï•Á“|޼«eÆ©jX¾–-[FDD,Y²¤_¿~µjÕºuëÖõë×…‘‘‘íÛ·7/öÎ;ïìÛ·/>>>,,¬fÍš¶¶¶iiiF£Ñß߯Œ%çBÄÆÆþþûï .,:ëã?>|x×®][·n}íÚµ4lØðµ×^+µ¶W^yåСC7n «U«VåʕϞ=[PPf¾¢W¯^ظqã+¯¼R³fM‡³gÏ6kÖL: •ó <ØÅÅÅÉÉI:ïéååUtl~¯^½bcc×­[׳gÏ5j¸¸¸œ;w.77×ÏÏoÚ´iò_Næ¶—ËkÉQ­Zµììli'‰ŽŽ~ò— 1cFRR’^¯ïÙ³§¹Ýßß¿K—.üñG×®]Ÿþy“É””””Ý¿ÿ%K–üú믷nÝ*z÷ó2|‚嵫{OdÖP†÷Mæ¾W¶÷¤ÌŸ£¥îêÀ“ 8Â*Lž<¹qãÆË–-;sæLÕªUƒƒƒû÷ï_lÖ’gžyfÕªUK–,Ù¼yó… „Í›7oÓ¦Í!CJ½ŒÉdš>}z§N^xá…¢í;w^¾|ù¿ÿýï?ÿüóÙgŸ!!!55µvíÚ/¾øbDD„ƒƒÃã¾Ü÷½¼^KŽI“&M:õìÙ³wïÞ-——vwwoÙ²åÁƒÛ·oïîî^ô©Y³f-\¸póæÍGŽ©Y³f‡Þzë­€€£Ñ¸qãÆÃ‡?É'XŽ»J±÷D޲½o2÷½2x’ÏÑRwuàIèdÎñ ¤üü|½^_¾éM=®^½ªÓé8G†§}P-‚#dáâÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈòÿT0ï—\uÿôIEND®B`‚statistics-release-1.6.3/docs/assets/multcompare_201.png000066400000000000000000000517611456127120000232130ustar00rootroot00000000000000‰PNG  IHDRhŽ\­AS¸IDATxÚíÝwTTwþÿñÏ0‚B¤Š b`b‹J°Æ‚JÖ²‰—u5ÙØ°ݘ˜5jÄ%ÑÄuUì&nLŒƒ16, Š"`¥Z‰XA‘a~Üó›å ˆD.÷ÞçãìÙÃܹ3ó¾-óòÎû~®Áb±àAl”.ê@p€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,¶J A&“IéÀ£•ššªt 8>úÜ™j2“ÉÄF©iØ(5Û¥b£Ô@ƒAé”ÁOÕ t Ê 8@‚#d!8TÌÉ“'•.AG€Š¡ÇÐ2.H¬Ø(5Û¥b£ æ 8@‚#@ÅÐãYèqÊCp€,G€Š¡Ç²Ð㔇àYŽC#d¡Ç(Á²*†GÈB#P‚#d!8T =Ž…G <GÈBp¨z =Ž@yŽ…àP1ô8@z€ò Á bèq€,ô8å!8@‚#@ÅÐãYèqÊCp€,G€Š¡Ç²Ð㔇àYŽC#d¡Ç(Á²*†GÈB#P‚#d!8T =Ž…G <Ç8{ö¬Éd:zô¨Ò…€î ÿû%`ÅŠJ—%Ã"ñŠÒm£­ÒÔP7nÜ8yòäæÍ›×¬Y£t- oåDƒAX,J×=Òm£êƒ£ÅbINNÞ·o_jjjNNΕ+Wj×®íæææééÔ¡C‡zõêUâmÃÂÂ.^¼¨ô€î=ð´"Ù¨F*ŽYYY+W®üî»ï®]»Væ «V­2 -Z´|xÓ¦MsæÌùïÿûÉ'Ÿøûû?ê"M&S‰)©©©J¯9êÄ% ¤çUÄÏôÕ¢ô×:=Žª±bÅŠ>ø W¯^2Ï †¶mÛ¶mÛvüøñ ,Ø´iÓäÉ“u‘ÄDUFçÉ@f(ÔùZÂ#Vúk½t”Ô õÇ­[·ÆJ¼ÐÕÕuúôéf³Yé%T)R#P]Ô7Žcù©ñâÅ‹¹¹¹•~9Àé¶ÇQ}ÁQRXXøý÷ß1¢ÄÅ+Û·oïØ±cxxø—_~YXX¨t™€‡ÃÙDÔHô8ªÉ•+W¢¢¢„½{÷þ?Ëckk±XRSSSSS·oß>oÞ<¥ë<‹å¾ŽÄJ z©ïŒ£ÙlŽŒŒLHH¨W¯ÞèÑ£ƒ‚‚Š?;hРíÛ·O™2ÅÉÉ)))i„ EEEJ— x8eDR#PíÔ¿ûgÏúøølܸ1**ªôa|||†ºeËooïãÇoܸQé’Íb)ù?@9ô8ªÆ–-[„&Lðòò*g677··ß~[§tÉ@StÛã¨¾à˜‘‘!„èÖ­ÛçìØ±£Á`HKK{˜ûè£RSS[µj¥ôr(L}ÁñòåËNNNœÓÁÁÁÅÅ%;;[é’´@}Á±^½z7oÞ¼yóæç¼~ýúÕ«W•.h =ŽªÑ°aC‹Å’˜˜øÀ99"„hРÒ%M¡ÇQ5BCC…Ÿ}öÙÝ»wË™-//oÖ¬YBˆ_|Qé’´@}Á1,,¬~ýúÇóÍ7¯]»Væ<999&L8s挫«k‰ÂP9‹ ‡Â:räÈСCoß¾íèè8hР¶mÛ6hÐÀÝÝýÊ•+‡ZµjU~~¾½½ýW_}Õ±cÇj.Ïd2¥¦¦*½’À£b0¨2AUÁ‚«t±O:5yòääääûÍàëëûé§Ÿ*2ŒÁmÓíw½*ïU-„ð÷÷ÿî»ï~ùå—-[¶œ8qâÂ… wîÜ©U«–——W@@À‹/¾j4•.@;Ô…ƒ!$$$$$DzxãÆºuë ¥ëÐ&Çœœœ”.èã8ªÆ† Ìfså^{þüùß~ûMé%êÆ8ŽªñÅ_„††nÞ¼¹  @þ«²²²>þøã^xáìÙ³J/€*©ïªêüüüèèè+VÔ©S'44ô¹çžkÕªUݺuËœ9==}ÿþý›7oþý÷ßëׯÿÞ{ïuíÚõQW¨Û+­Ð Ý~׫/8JN:õŸÿügóæÍwîÜ1 O>ù¤‹‹‹³³sAAAnnîŸþ™””týúu!„¯¯ïßþö·~ýú988TCmºÝ™Ð ÆqT¥k×®ýôÓOûöí‹¿qãF‰gýýý;uêܱcÇê¼Úšà€¶éö»^ÝÁѪ¨¨èâÅ‹þùgNNŽƒƒC½zõ<<<”ºÎZ·;:¡Ûïz ÇcccS¿~ýúõë+]€f©ïªje1Ž#daG <GÈBp¨z ‹n{52Oq‹%...++ëé§ŸnÓ¦Òåh„‚c\\ÜüùóCBB¢¢¢„o¿ýö† ¤§øî»ïVçmc´Jõ?U:thäÈ‘)))EEEBˆ'NlذÁÙÙyРA 4X½zu\\œÒ5MÑm£êÏ8~ýõ׋eÚ´iBlß¾]1cÆŒž={¦¥¥½øâ‹«V­êÙ³§Òeí ÇQ­Nž<ééé)=8ÚÛÛçççßïÙüü|¥kÐÕǦM›^ºt)!!¡ôSÇÏÊÊzê©§”®h =Žj%Ý9f̘1%z÷ìÙ3zôh!DXX˜Ò5MÑm£ê¯ª ݵkצM›^ýu///___!Dzzúùóç…aaa/¿ü²Ò5hꃣbæÌ™íÛ·ŽŽ¾páÂ… ¤‰nnnãÇïÓ§ÒÕh„¦î´xùòå´´4‹Åâëëëáá¡TÜ«mã^ÕZàîîîîîn±Xâââ¶nÝúôÓO·iÓF颀ÖÐã¨bqqqóçÏ ‰ŠŠB¼ýöÛ6lž8pà»ï¾k0”®@õTUõ¡C‡FŽ™’’RTT$„8qâĆ œ Ô AƒÕ«WÇÅÅ)]#€¨þŒã×_m±X¦M›6pà@!ÄöíÛ…3fÌèÙ³gZZÚ‹/¾¸jÕªž={*]&ÐÝŽã¨úàxòäIOOÏÈÈHéáìììºté"„ðõõmÒ¤ÉÙ³g•®hŠn{UÿSõµk×\]]¥¿ Oœ8Ñ¢E ;;;iŠ££cNNŽÒ5hêƒcýúõ³²²Ìf³â?þ¸sçNûöí¥§ŠŠŠ²²²ÜÜÜ”®@ TÛ¶m{íÚµ˜˜˜ìì옘!D×®]¥§–,YrõêÕ'Ÿ|R逦è¶ÇQõÃWfgg‡……ݾ}[zزeËõë× †W_}õèÑ£Bˆÿüç?:t¨Î’mÓíw½êÏ8z{{¯]»688ØÓÓ³sçÎÑÑÑÒ¨999NNN3gάæÔ Uª?ãx?ÙÙÙ^^^66 $cÝþ+Ðíw½ê‡ã¹ooo¥KÚ¤ÛGõÇØØX!D»víüýý­Ë¡tÕ@;t;Ž£ú~ª6™LBˆ÷ßÀ€և嫿“ɺ=} €Nèö»^}g£¢¢„-[¶”Nš4IéŠtA}gk>Ýþ+0tš T?OVVVFF†ÒUÑm£ú~ª.!44ôîÝ»{÷îµÞ±‚êÏ8J×Vëöªx€j£úàøÎ;ï888,\¸ðÎ;J×tA·g¬TßÚyþüùäääéӧשS'<<¼Q£FNNN%æ ®Î’¸8mÓíw½ê{»wï.ý‘““Sæ<úÜ´UKõÁ1<<\étAõ?U×@º=} €N0Ž£6M™2¥GJW4…qU,77÷—_~IOO/1=??ÿçŸ6J ªŽ—.]8p`vvöýfˆˆˆPºF-P}p\ºtivvvÛ¶mÃÂÂ~üñÇLŸ>ÝÁÁ!%%eåʕӦMSºF )ºÇQõÁq÷îÝööö ,prrêÑ£GçÎ7nÜ©S'!„ŸŸß‡~øê«¯Jw—¨ºíqTýÅ1.\ðõõ•ývsssqq9~ü¸ôÔ+¯¼âââ²téR¥kÐÕG!„Íÿ–¢Q£FçΓþ6&“)11Qé´@õÁÑÓÓ3--íöíÛÒÆ >|Øú¬Á`ÈÊÊRºF )ºíqT}p ÉÏÏŸ4iÒ™3g„AAA{öìBäääüþûïÞÞÞJ×4E·=Žª¿8&22rÛ¶mqqq‹åË/¿ìÚµ«­­íèÑ£SRRòòòBCC•®@ TÆÑÕÕ566v„ -[¶Bx{{¿ýöÛ{÷îýóÏ?{öì9tèP¥kÐmÞiñÖ­[ÇŽóðððóó«þOç^Õh›nïU­úŸªK((((,,|ì±Ç:vì¨t-@›èqT·S§N-X°àÈ‘#/^,**òôôlÑ¢ETTÔSO=¥ti¡…à¸xñâ¹sç !ìííFãÅ‹/^¼7a„×_]é´@õÇìß¿îܹƒ!22rÇŽGMHHصk×k¯½fccóÙgŸíß¿_逦0Ž£Z­Zµª¨¨hòäÉÓ¦Mkذ¡Á`BxzzNž<ù­·Þ***Z±b…Ò5MÑm£êƒã±cÇj×®Yú©:::;vLé´@ÝÁ±°°ðÂ… F£±Œe³±ñòòÒçÕòUNÝÁÑ`08::fff^»v­ô³7nÜHKK“¨*ô8ª’ÑhìÛ·oQQÑ”)SîÞ½[ü©‚‚‚©S§ †aÆ)]&ÐÝö8ª~8žAƒ%%%ýúë¯!!!ýúõkܸ±Á`8wîÜ·ß~{ñâÅÐÐÐ[·nýúë¯Öùýüü5j¤tÕê£úæ˜L¦ Í?iÒ¤G=²#·@Ûtû]¯ú3ŽááášÿÉ'ŸTºd nºíqT}pœ={¶Ò%}Ñm£º/Ž@µQýGÉÕ«W³²²îׯ٪U+¥ P=ÕÇÜÜ܉'îÝ»·œyôÙ¾ zÕjîܹ{÷î5-Z´pqq‘îU ðèè¶ÇQõÁQJ+W® Tº-SýÅ17oÞlݺ5©àQS}plÖ¬Y^^žÒUÑm£êƒãóÏ?Ÿ’’RþÅ1UˆGµŠˆˆ8qâÄðáÃ###ƒ‚‚êÔ©SzžvíÚ)]&€ê©>8^»víôéÓ‹/^¼xq™ó0ÀÃS}pŒŽŽ>zô¨­­m`` ‹‹‹ÒåíÓm£êƒãÁƒíììÖ®]Û¬Y³*|Ûüüüµk×nذ!++«nݺC‡}öÙg•^\P‰Ò£êÞçæ^€Ñã¨J………çÎ ªÚÔXXX8dÈ#GŽ8;;wìØñÎ;سgϘ1cF¥ôB@W潤‰ÄG@ÍÔ‹ŠŠjÕªuýúõª}ÛuëÖ9rä™gžùæ›o„§N>>F£1--mçΫV­JNNŽ5zÏ¢¢¢‰'nß¾=$$äÝwßuwwWz)@%,–üZ­Ë_÷ÍP}p\¶lYBBBëÖ­cbbŠ'¼+W®DEE%$$,[¶lذazÏ+Vlß¾}РAï¾û®ÒËj#ECn9MÓí8Žê\±{÷nƒÁ]â¼ ››Ûüùómll~ûí· ½¡ÅbY¹reݺu§L™¢ô€jY,%ÿh=Žj•’’âãããååUú)&Mš$''Wè ¯\¹’‘‘áààQúÙ>}ú 8þ÷¿ÿýþûï=<8Ö®]ÛÚÚXÚ;wŒF£Ò5hêƒcË–-³³³“““K?uêÔ©ŒŒŒfÍš)]#ÐzÕªoß¾Bˆ‘#GîÛ·¯øôßÿ}Ô¨Q‹Eº™5@UÑm£êïÙ³gddäòåËÿñÔ¯_¿aƵjÕÊÈÈÈÈÈB„……………)]#€¨>8 !¦M›Ö®]»9s椥¥?^šèêê:nܸ~ýú)]€FhêN‹W¯^=wîÜÝ»w7nìééi0)ƒ{U mÜ«Z žxâ‰'žxBé*€Æé¶ÇQõÇ z Á bDzÐã”G}Á188x̘1Ö‡mÚ´™={¶ÒEhŸú‚ã­[·âãã³³³¥‡yyy÷îÝSº( #ºíqTßð•cƌٶm›ÂÑÑQ‘——gkkkggWÎKª³B@Ûtû]¯¾Àß}÷][[ÛƒÞ¾}[éZtD}Á±^½zŸ}ö™õ¡ÉdŠˆˆxë­·”® @ãÔK6lXPPÒUÑm£êƒã›o¾)ýqñâÅäääôôô{÷îùùù5mÚ´~ýúJW4H·ã8ª>8 !rsscbbÖ¬Yc6›­FcÿþýÇçìì¬tZ úàh6›GŒ‘`ooâããc4ÓÒÒvîܹjÕªää䨨X£Ñ¨t™ª§úà¸lÙ²„„„Ö­[ÇÄĸ»»[§_¹r%***!!aÙ²eÆ SºL ºíqTßà%ìÞ½Û`0DGGOB77·ùóçÛØØüöÛoJ×4E·=ŽªŽ)))>>>^^^¥ŸòððhÒ¤Irr²Ò5hꃣ½½}~~þýžÍÏÏwppPºF-P}plÚ´é¥K—ʼ©àñãdz²²žzê)¥kšB£Z…‡‡ !ÆŒS¢—qÏž=£GB„……)]#ÐÝö8ªþªêÐÐÐ]»vmÚ´éõ×_÷òòòõõB¤§§Ÿ?^öòË/+]#€¨>8 !fΜپ}ûèèè .\¸pAšèææ6~üø>}ú(]€F,‹Ò5T™Ë—/§¥¥Y,___¥Ê0™L©©©J¯ 𨠚JPòiጣ•»»{‰Ñªœn{Uq ªÁ²*†q =Ž@yTËŸaëÖ­J× ªŽ øüóÏÍfsé§rssÇ7vìX¥kšB£Z¹»»ÇÄÄôïß?--­øômÛ¶õêÕë§Ÿ~òññQºF )ô8ªÕ?üпÿcÇŽõîÝ{õêÕBˆk×®M˜0a̘1×®]6lØ÷߯tZ ‘æì߿ڴiÙÙÙíÚµ;{ölNNŽ¿¿ÿŒ3Z¶lYýÅpËA´M·ßõ ŽBˆË—/ÿå/¹zõª"00pùòåµjÕR¤ÝîLè„nïU­úŸª%»wï~å•W®^½Ú¼ysww÷?þøcÔ¨Q—.]Rº. Aô8ªÕÍ›7ßzë­×^{-''gìØ±ëׯÿá‡^zé¥]»võêÕkãÆJ ª?ÑÚµk×K—.ùûûúé§Íš5³Nß¼yó|pãÆÎ;óÍ7ÕY?U mºý®WýÇœœœþóŸß}÷]ñÔ(„ Û¼ysÇŽ÷ìÙ£t@St;Ž£­Ò<¬ØØØ6mÚ”ù”§§çÒ¥KW¬X¡t@SèqT«û¥F‰Á`ˆŒŒTºF-PßÇØØX!D»víüýý­Ë¡tÕª§¾‹cL&“âý÷ß0`€õaùª¹}U· ³è„nÇqTßǨ¨(!„õ–0“&MRº" /ºíqÔi^~¤8〶éö»^õÇdeeedd(]€ö©ï§êBCCïÞ½»wï^WWW¥kº ÛqUÆQº¶Z·ÛT?Ýö8ª>8¾óÎ; .¼sçŽÒµh™êªvwwŸ;wîôéÓÃÃÃÃÃÃ5jäääTbžàà`¥ËP=Õ_UÍ8Ž š1Ž£Z…‡‡+]ÐÝö8ª>8Ξ=[étAõÇ´iÓ¦œìõ /(]#€¨>8æååÝ»wï~Oedddgg+]#ÐÝŽ¨ÊŸªwíÚ5bÄëÃåË—¯\¹²ôlEEE‹¥Q£FJ× 4…G51Ö1wrssíììËœóñÇŸ:uªÒõh*ƒcçÎãã㥿M&Ó€Þzë-¥‹Ð8UÇ↠¤t@GèqT«7ß|³œg§L™rèС¸¸8¥ËÚA£ŠåææþòË/ééé%¦çççÿüóÏF£Qé´@õÁñÒ¥K,g̈ˆ¥kÐÕÇ¥K—fgg·mÛ6,,ìÇ8zzz¦¥¥Ý¾}[zذaÃÇ[Ÿ5 YYYJ×4E·=ŽªŽ!!!ùùù“&M:sæŒ"(((##cÏž=BˆœœœßÿÝÛÛ[逦è¶ÇQõÇDFFnÛ¶-..Îb±|ùå—]»vµµµ=zt```JJJ^^^hh¨Ò5hêÏ8ºººÆÆÆN˜0¡eË–Booï·ß~»  `ïÞ½þùgÏž=‡ªtZ`°X,J×PõnݺuìØ1??¿êÿt“É”ššªô:ŠÁ Íõ@ªÿ©ºL=öXÇŽ•®h=ŽêvõêÕ¬¬¬ûeÿV­Z)] €ê©>8æææNœ8qïÞ½åÌÃÇOõÁqîܹ{÷î5-Z´pqq1 JW4N·ã8ª>8J©qåÊ•J×tA·=ŽªŽçæÍ›­[·&5|xdddPPP:uJÏÓ®];¥ËÚ¡ÛGÕÇk×®>}º  `ñâÅ‹/.s†ãxxªŽÑÑÑGµµµ tqqQºÍR}p=uêÔ'Nôïßÿ~ÃñWgI&“‰ë¸Ð0ƒAõ ª’ ®öÅ6™Lœ§šcÁmÓíw½ê¯ªWº]P}pœ={¶Ò%肺/ލ~ŒãYÇ(Á²*†GÈB#PÕã(„øé§Ÿ–/_ž––v¿»àÄÇÇ+]#€ê©>8îØ±cܸqÒßF£Qér€öé¶ÇQõÁqñâÅBˆ!C†Œ9ÒÙÙYér€öé¶ÇQõÁñôéÓ 4˜2eŠMUök^»v-::úðáÃYYYnnn-Z´ˆŠŠòóóSzq@!„ÁPrÊ}zu  ©ûâ˜{÷îݼy³aÆU›oܸñòË/¯^½Zѽ{÷zõêmÙ²%,,ìøñãJ/1”•ï7ª”ºƒ£³³ó©S§ŠŠŠªðmcbb®\¹2|øð~øaÞ¼ykÖ¬™1cFaaáG}¤ôнr"Ù¨.ºíqTwp4¯½öZNNμyóªðm÷ïßïàà0bÄ딾}ûzzz&%%™Íf¥€Ž=0’jA£Z…††fff.Z´(>>þ¥—^jР]‰y‚ƒƒ+ôž?þx@@@íÚµ‹O´··/(((((pppPz¡ úàØ³gOéÄÄÄÄÄÄ2çIMM­Ð{®\¹²Ä”C‡edd´nÝšÔtKõÁ1<<üѽyBBÂÆÏ;—ШQ£Y³fÉ|¡Éd*1¥¢á@…ñ+­DëKÈQ½J­ë¶ÇQõÁqöìÙîÍSSS7lØ Ý¦yóæ¥/ç…J¯@ô&ä„B=¬ z•þZ/%uBÝǽyóæBˆK—.)½è˜Åò€_«ù¨ô8ªFTT”¢eË–ÒÃI“&Uíû;99}ûí·W®\)322„7Vzзr²#©¨.Œã¨£G.þðõ×_¯Ú÷÷ðð0™L{ö쉋‹ëÑ£‡41%%%66ö±ÇkÛ¶­Ò+€îI±x|$2¨ê ŽÕà£>4hЈ#Ú´iÓ AƒË—/>|Xñé§Ÿººº*]!‹`°ðŸž²¤§§ÏŸ?ÿøñã—.]òôôlÚ´é¨Q£¤®Ê2™L Ç€† :MP:]ìGŠà€¶éö»žq Á²*F·ã8ª>8feeI#,TÆqT«ÐÐлwïîÝ»—r)ÕŸq”†ÈÑíc€j£úàøÎ;ï888,\¸ðÎ;J×tA·g¬T?Žãùóç“““§OŸ^§NðððF999•˜'88¸:KÒíØNè„n¿ëUßãØ½{w霜œ˜˜˜2çÑ禨ZªŽáááJ—  ªÿ©ºÒíéktB·÷ªVýG«k×®?~üÂ… õë×öÙgsrr < Œã¨bþùçÂ… 7lØŸŸ/„øûßÿþì³ÏöéÓ§yóæ3fÌpqqQº@-Pýp<÷îÝ9räŠ+œœœúôécîîî¾sçÎHiIõÁñ«¯¾:räH·nݶnÝ:sæLëôuëÖýå/IKK[¾|¹Ò5MÑí8ŽªŽ4Ÿ|ò‰££cñéF£qúô鎎ŽÛ¶mSºF )ºíqT}pLNNnܸq™×Á<öØc~~~éééJ× ªŽÎÎηo߾߳¹¹¹uëÖUºF-P}plÖ¬Ù… K?•œœœÝ´iS¥kšB£Zõïßß`0Lœ81))©øô¤¤¤qãÆ !z÷î­t@StÛã¨úqŸ}öÙ×^{í믿îÛ·¯ŸŸŸbÇŽûöí;sæLQQQŸ>}^xá¥kÐÕG!ĤI“žyæ™Y³f={V‘-„pss›0aBñ‘ð04u§ÅÜÜܳgÏøùùyxx(U÷ª@Û¸Wµ¸¸¸<õÔSµjÕ²³³Sº Yô8ª[bbâ_|‘””tåÊooïÀÀÀQ£Fùøø(]€F¨þªj!Äüùó_yå•_ýõÊ•+öööµk×ÎÌÌüïÿºzõj¥«ÐÕÇß~ûmáÂ…F£122rÇŽGMHHøõ×_‡ &„øè£Ž9¢t@SÇQ­V¯^m±X&Nœ8mÚ´†  !„——×›o¾9eÊ”ÂÂÂ¥K—*]#ÐÝö8ª>8&%%ÙÛÛÿýï/ýÔàÁƒʼ© *JõÁQáééik[ÆU>ÒU2yyyJ ªŽmÚ´ÉÌ̼qãFé§nß¾}îܹæÍ›+]#ÐzÕê•W^±X,ÿú׿ ‹O7›Ío½õ–ÙlîÙ³§Ò5MÑm£úÆqÜ¿ñ‡F£±oß¾7n|î¹ç^yå???ƒÁpîܹ 6dffšL¦_|Qé’´@}7Ì1™L}I5ß[ mºý®WßÇððp¥Kº¦ÛGõÇÙ³g+]Ð5Ýö8ªþâTõq,ÓÕ«W³²²îׯ٪U+¥ P=ÕÇÜÜ܉'îÝ»·œyôÙ¾ zÕjîܹ{÷î5-Z´pqq‘îU ðèè¶ÇQõÁQJ+W® Tº-SýÅ17oÞlݺ5©àQS}plÖ¬Y^^žÒUÑm£êƒãóÏ?Ÿ’’RþÅ1UˆGµŠˆˆ8qâÄðáÃ###ƒ‚‚êÔ©SzžvíÚ)]&€ê©>8^»víôéÓ‹/^¼xq™ó0ÀÃS}pŒŽŽ>zô¨­­m`` ‹‹‹ÒåíÓm£êƒãÁƒíììÖ®]Û¬Y3¥kº ÛGu_SXXxîܹV­Z‘5uÇ¢¢¢Zµj]¿~]éB´OÝÁÑÎÎ.,,ìäÉ“qqqJ×ô‚Gµ:tèÉ“'GÝ¿ÿû Ǭt™@;tÛãh°X,J×ðPL&Óç©æáxL& aºý®WýÇððp¥KÐÕŸq¬tû¯tÂ`Ði‚R÷Å1ÕO·=Žªÿ©ºC‡œ'>>^é2TOõÁñÆ%¦X,–¢¢"éoOOOWWW¥kÐÕÇ'N”˜b6›ÏŸ?ÿóÏ?/\¸ðîÝ»ï½÷žÒ5MÑí8Žìq4 6:thLLÌõë×ǯÏöUðˆè¶ÇQƒÁѪC‡O>ùdfffff¦Òµ¨ž–ƒ£ÂÝÝ]Q¯^=¥ P=-Ǽ¼¼'N¸ºº–yB€ÊÑm£ê/ŽÙ¿™ÓsssW¬XqõêÕ¥kš¢ÛGÕÇ!C†”ólݺuÇŽ«tZ úàXνª5jÔ»wï† *]#€èôN‹÷ª@Û¸W5d¡ÇQÅ~úé§åË—§¥¥Ý/ûs¯j€‡§úà¸cÇŽqãÆIF¥ËÐ,ÕÇÅ‹ !† 2räHggg¥ËÚÇ8Žjuúôé L™2ÅÆ†~MPtÛã¨î°uïÞ½›7o6lØÔð¨©;oÙØØ8;;Ÿ:uª¨¨HéZ4NÝÁÑh4¾öÚk999óæÍSº ô8ªUhhhffæ¢E‹âãã_zé¥ ØÙÙ•˜'88Xé2€vè¶ÇQõÁ±gÏžÒ‰‰‰‰‰‰eÎÃ}\žêƒc9÷ª@Òé)îU €¶q¯jÈ¢ÛG‚#d!8@‚#@ÅèvG‚#@ÅÐã”GõÁ1==]étAõ€?ÿüó>>>Ý»w ªU«–ÒÓm£ê‡¯lÕªÕ;w¤¿ëÔ©Ó¹sçnݺuëÖÍÕÕU©’mÓíw½êƒã½{÷Ž9ràÀ9r¤  @a0Z´hܼysƒÁP%évg@'tû]¯úàXÜÝ»w8Ÿ˜˜XXX(„puuÝ»wou–¡Û Ðíw½¦‚£äæÍ›‡Þµkׯ¥Õ¼iu»3 º½Wµê/ޑܾ}û÷ß—~°>qâ„ÙlBÆ–-[vèÐAéꀦèvGÕǹsç8pàøñãRX4 þþþ:tèØ±cÛ¶mëÖ­«t¡úà¸hÑ"!„ƒƒÃË/¿üì³Ï¶oßþ‰'žPº( R}p”š òóó·nÝš““sþüùvíÚ5kÖÌh4*]Ð&ÆqT«7n>|øÐ¡CLNN–~°®S§N```»víÚ¶mÛ²eK[ÛjÍÇ\€¶éö»^õÁ±¸Û·oÿñÇRˆ<~üø½{÷„GŽ©Î2t»3 ºý®WýOÕÅÕ©S§K—.;wîüöÛo òóó•® @ 4¥ûÇì߿߾}‰‰‰ÒÖµjÕêÔ©S·nÝ”®hŠn{U¿ùæ›}ûöýþûïÖ3‹Òíª;uêäèè¨t@kÇQ­>ýôS!„Ñh îÖ­ÛSO=¥tQ¤úàÜ¥K'''¥kÐ2í\U}ñâÅäääôôô{÷îùùù5mÚ´~ýúŠT¢Û+­Ð îU­b¹¹¹111kÖ¬‘®‰‘Æþýû7ÎÙÙY逦Ðã¨Vf³yĈ ööö!!!>>>F£1--mçΫV­JNNŽå.2OõÁqÙ²e ­[·Ž‰‰qww·N¿råJTTTBB²eˆ ¦t™ªg£tk÷î݃!::ºxjB¸¹¹ÍŸ?ßÆÆæ·ß~SºF )ºÇQõÁ1%%ÅÇÇÇËË«ôSMš4INNVºF )ºíqT}p´··/禂ùùùJ× ªŽM›6½téRBBBé§Ž?ž••ÅxàUBõÁ1<<\1f̘½Œ{öì=z´",,L逦è¶ÇQõWU‡††îÚµkÓ¦M¯¿þº———¯¯¯"==ýüùóBˆ°°°—_~Y逦è¶ÇQõÁQ1sæÌöíÛGGG_¸páÂ… ÒD77·ñãÇ÷éÓGéê4BS7̹|ùrZZšÅbñõõõððPª n9€¶éö»^SÁ±L§Nò÷÷¯ÎOÔí΀Np¯j•9}úôÁƒÏ;÷Øcµoß¾C‡Ö§ÒÒÒ._¾l0nÞ¼yðàÁÿüç? åª=Žj²`Á‚Ï?ÿÜl6[¾ð sçÎÍÊÊ;v,gûõÇÌŸ?_áééÙ¼ys!Dbbâ¶mÛš4i²cÇŽ“'OÚÛÛ{{{;::ÚÚÚº¸¸´jÕê!?ñüùóaaa=zô˜={¶ÒKÀ`ø?uùS@ŸÔ¿ùæ!DxxøŒ3lmm…ùùù£G^°`",,ìý÷߯S§NU}œÅb™2eÊ­[·”^nÔ %R£4…ì:£ÛqÕ7øÙ³g…o¾ù¦”…ãÇ—þž>}z¦F!IJeË<¨ôB£f(­Óï÷@‹tÛ㨾àxþüy'''77·âýüü„õêÕsrrªÂÏ:uêÔ¼yó¸i!„DCÔÍf³££c‰‰Ò”ZµjUá¾ùæ›...S§NUz¡¡$K€Ö©¯Ç±ÚÄÄÄ$''/Y²¤jÏbB•…€btÛãHp,Û‘#G¾þúëÁƒwêÔ)))©¢/7™L%¦èh =g,í-;×ý@Y_ëºíq$8–!??ÿÍ7ßlذáĉ+÷:Љ¥i2jÈL„š\vнÒ_륣¤NË0kÖ¬¬¬¬Õ«W;88(] j‹Eƒg¨ UÇK—.µiÓFþô„„ùo~ðàÁÕ«W9òáG‡¾pºtC·=Žê»Ew%NWè‡ãØØØ>øà~ÏúûûÿðìP×?UkÕÏ8ªíPTšn¿ëÕwÆñ¹í!ùøøôêÕ«ø”ëׯïÙ³§~ýúmÚ´ñôôTz@!R.¼_|$5t@}ÁÑßßÿ‘¾çÎ;wî\|JRRÒž={‚‚‚¸W5Êhv$2tC}ÁPItO·=Žê»s €²Ç÷Õ¼ys}6ÀÇGÈBp¨z ‹n{ Ž…àYŽC#d¡Ç(Á²*†GÈB#P‚#d!8T =Ž…G <GÈBp¨z =Ž@yŽ…àP1ô8@z€ò Á bèq€,ô8å!8@‚#@ÅÐãYèqÊCp€,G€Š¡Ç²Ð㔇àYŽC#d¡Ç(Á²*†GÈB#P‚#d!8T =Ž…G <GÈBp¨z =Ž€–™L&¥K@Il”š‰íR±QPs Á bèq€,ô8å!8@ƒÅbQº­áò7´íäÉ“úLPGÈÂOÕ…àYŽ…àYŽ…àYŽ…àYŽ…àYŽ…àYŽ…àYŽÅVéÔ-??íÚµ6lÈÊʪ[·n@@ÀСCŸ}öÙâóüõ¯=vìX‰ºººîÝ»Wéò5KÎvB¬_¿~ݺu§OŸvttìÖ­ÛäÉ“]\\”®]ûΞ=ûÒK/­[·®U«V%žâ`QJ9Ep¤(ã¢Fáp 8V^aaá!CŽ9âììܱcÇ;wî8p`Ïž=cÆŒ5j”u¶ŒŒ __ßâ¯}üñÇ•._³dn—yóæ}ùå—uêÔiÛ¶mzzúÆO:µ|ùr¥—@ãV¬Xq¿§8X”RÎFáHQÇEÍÁá „TVlll@@ÀÀóòò¤)'Ožl×®]Ó¦MOœ8!M¹~ýz@@Àرc•.VGäl—”””§žzªK—.—.]’¦|ôÑG|ðÒåkÖõë×:4}úô€€€€€€#GŽ”žƒ¥š=p£p¤(Žã¢æàpÐãXy[·nBL›6ÍúO ÿáÇ›Ífë/BˆÿRÄ#%g»¬[·®¨¨hܸqîîîÒ”©S§:;;ÿôÓOEEEJ/6………EDD¬Y³æ~3p°T¿nŽÅq\Ô‚cå;w®N:Í›7/>Ñßß_‘™™)=LOOBøøø(]¬ŽÈÙ.‡²±± ¶Î`4»víúçŸþñÇJ/6}üñÇ ,X°`A§NÊœƒ¥ú=p£p¤(Žã¢æàpÐãXy_}õ•­mɘ””$„hذ¡ôP:æ/\¸™œœìèèØ¬Y³áÇ—ÙŽ*ñÀíb±XNŸ>ýÄO<ñÄÅç Bdff)½Ô¹sgé;w–9Kõ+£p¤Ô5‡ƒg+¯Y³fÒc¿hÑ"{{ûÞ½{KS¤S\óçÏ¿|ùrÇŽ]]]wîÜ9pàÀuëÖ)]¾f=p»äåå™ÍæÒ­åÎÎÎBˆ«W¯*½:ÅÁRÓp¤Ô5‡ƒg«†ÙlŽýôÓOÍfóܹs]]]¥é.\ppp˜0aBdd¤4eß¾}Çÿä“O:wî\¿~}¥ ׸2·K~~¾¢N:%f~ì±Ç„ׯ_Wºjâ`©i8RjŽ‹‚ÃÁŠàø`………_ýµõ¡Ñhüç?ÿY|†¼ÿþûgΜñòòúä“OŠw -[¶¬Ä»uêÔéoûÛâÅ‹wìØaý*¡ÒÛåñÇ7 yyy%ÞðÖ­[âÿÿó•óÀR–G¤Ò…#¥:Ýo3q\ÔVÇ»wï^tt´õ¡½½½õ?»³gÏ^±bEíÚµ£¢¢† &g0§víÚ-^¼øäÉ“J/™ºUz»ØÚÚ:;;—þâ7„ÖËåP ål”Êá`yx•Þ()Õ©B›‰ã¢úq8üoU(]€ 888¤¦¦–ž^TT4qâÄíÛ·‡„„¼û÷‹ÅRTTd0llþO/©ÑhBÔ­[Wé%S·Jo!„‡‡ÇéÓ§oܸáäädxîÜ9é)¥—LÅî·QˆƒåÑ©ôF)Õ¨ÌÍÄqQ£p8H¸8¦òV¬X±}ûöAƒ}ñÅe¦“ôôôfÍšýýï/1=!!Aa2™”^mzàvBôìÙÓl6ïÞ½Û:Åb±ìÚµËÅÅ¥M›6J/q°ÔL)Ê⸨Q8$ÇJ²X,+W®¬[·î”)Sî7¯¯ï3Ï}ú }ú!’’’¤‡óçÏwvv2dH…Šüå—_FÕµk×víÚ 0à»ï¾+***1Ï–-[†Þ­[·: 2ä›o¾)Þ£)]µ••µhÑ¢Ž;¶hÑ"((hÀ€;vìføôÓOM&S^^^^^žÉdjÓ¦â믿.}ÉÆ‡ Ö¾}û_|ñ_ÿúWFFF™5ïÝ»w̘1!!!mÛ¶ŒŒüüóÏ‹e>°ž -{ùŸUZ‰å’¹rrssÍf³uåÈ_ÌóçÏ9r¤_¿~O?ýtVVÖÛo¿m2™fÏž]¢ªcÇŽ™L¦N: !rrr>ûì³ÐÐÐÀÀÀÀÀÀ^½zÍœ9óÒ¥K2÷™27¨ü]¥DÍ÷{ÿ2׉"!!aüøñ={ö”ÖäöíÛr“ÉÜ÷ŠoÙÒk œuR‰í¨Š]¨~üT »sçŽÙl¶µµ-Þ†(©]»¶Âú !58úúúnß¾=..îâÅ‹>>>O?ýtïÞ½­1Ñd2ÙØØlÞ¼¹k×®ÒnÞ¼YñÔSO !Nž<¹qãÆÙ³gÛÛÛ˯ðã?^¾|¹ÂÛÛÛÕÕõèÑ£ ûöí³&‹Å2uêÔM›6 !<<<œããã÷ïßÿóÏ?/\¸ÐÅÅÅúV_}õÕºuë\]];v옙™™0jÔ¨èèè—^z)((¨°°Púƈˆ¨U«VéJŠŠŠ&Nœ¸eË!„““ÓÝ»w¿ýöÛ]»v•˜sΜ9‹/¶X,^^^îîî‡>pàÀîÝ»,XP¯^=9õÈ\vùŸõ@\9kÖ¬)((ˆŒŒ´®™œœ1//¯k×®}ô‘4eÅŠO?ýtÀÿÕ§OŸ´´4ë ÿýï¼ð “'OîÓ§O@@ÀäÉ“¥§þñ¼úê«EEEòkÛ¾}{@@@ppð‰'¤)'OžìÒ¥K@@ÀÎ;¥)7n èܹóü!M9þü«¯¾ðþûïKS&Mš$U;gγÙl±XÌfó'Ÿ|0`ÀëǵnݺuëÖÖ‡‹- X¹r¥ôpݺuAAAqqqÒR¤¥¥………Iïl-... $$äèÑ£Ò”+W®¼þúë~ø¡üzä,»œÏ*­ÄrÉ\9íÛ·oÚ´©õ¡üÅìÔ©ÓàÁƒ÷îÝ{åÊéÍ;wî””d}7³Ù,-Ú©S§,Ë—_~0|øð[·nI3\¿~=""" `ýúõÅßܺ*ÊTbƒÊßUJÔ|?%Ö‰uMþûßÿ–ö³Ùüá‡üío{˜M&sß+±eK¯ÒS*½U±«ÕŸª¡}¯¾úªbúôéÖ‹C/_¾øàƒîÝ»KKáããóÅ_XO¸J¤+¢££­Ã¸ººFGG{xxlذáÚµk2둳ìò?ë*ºrät:u¾þúëN:I­666½zõBlÛ¶Í:ÏáÇ/]ºÔ¦M›'Ÿ|RQXXؽ{÷I“&Õ©SGšÁÉÉ),,LȾ´¿Lòw•5WHPPPTT”´‡ØØØ¼þúëBëÏÊ•Ødò÷½J¨ôv¬ÐkkÔ®»»{pp°ÙlNNN¶N´þ.&qvv6‹EN1—.]ºr力››õGIÆ ;wîl}˜››{îÜ9??¿·:::vêÔ)??ÿøñãrꑳìú¬ªÐÊ©ÐG‡‡‡KmVRüé§Ÿ¬S¤ß©ûõë'=5jÔ—_~Ù¤Ië W®\ùñÇå/NiÚUJ×,_hhhñ‡BiMVn“ÉÜ÷*áa¶£zwuà‘¢ÇÚg4—,Y²fÍšü155ÕÙÙ944Tº:>>ÞÙÙYš­ÌûLÔ­[÷ÕW_]°`Abb¢”Ê´zõêìììo¾ùFz˜0þü¤¤$—ž={FEE9::–~Õ¹sç„ 6,1ÝÎήQ£FÒßÒI __ßÒ/÷ññÿ÷Uƒ *½–¤büüüJŸ1õõõµž9{ö¬ôÿ÷¥òÂ… rꑳìú¬ªÐÊ©ÐG[ ¶jÞ¼¹¯¯oZZZjjªÉd*,,ܺu«ƒƒCñÈ•ýÛo¿>|8333###77W~yeªÐ®Rºæ*Y“•Ûd2÷½Jx˜í¨Þ]x¤ŽÐƒÁ0pàÀŸ¸hÑ"!Dñ³>e’®³>þüýf¸qãFLLÌ!Cêׯ/„عsçˆ#êÕ«÷ì³Ïæää,Y²$>>~íÚµvvv%^x÷î]!D™×©X•s¾Pú¯øE—¥?B>[[[iEÝïƒ$Booï2ßGZ ¬GβW賨B+§B]æøMaaa111[·n5™L»wï¾~ýzß¾}­§·W¯^ýÑG6jÔ(((($$¤E‹çÎûàƒäYB…v•rÆœz˜5Y¹M&sß«„‡ÙŽêÝÕGŠàí;þüÝ»w½¼¼ŠÿuïÞ=é–»­ZµBܺuë·ß~«]»v=J¼<''GüÿøX¦ ØÚÚ¾ñÆÒÃ÷Þ{Ïd2­ZµJJ ›7ož4iÒúõë#""J¼PzÏÒcŽÜ½{wË–-uëÖ ‘N •Ù÷&aòóó«’µ$}tæ£锉Dú8GGÇ·Þzëa>NβWÕgUÂô58Ž;Vú Úú;õ­[·>üðC;;»¯¾úªøO±Å{+¡Úv•*_o2÷½j«çá_[\ ßÕŠ¢ÇÚ÷ÕW_½øâ‹+W®,>qëÖ­×®]kÓ¦ôk‘½½ý´iÓFŒqòäÉâ³Y,iŒº–-[–ùæééé+W®;v¬sss/^¼øÜsÏYÏ-õêÕ«V­ZeÞ´ÍÓÓÓÕÕ5##ã÷ß/>}×®]S§N•úñððpss;þüž={ŠÏsåÊ•;wFk»ýCrssóòòº|ùr‰1ù²³³wïÞm}(ÕsæÌëЕ³Ùܯ_¿.]ºH9ûä/ûÃV%<üGûøø´hÑâìٳǎûå—_|||¬#Ë;vÌl6–hàKIIyøš«aW©òõ&sß«¶zþµÅÕð]¨(‚#´OºÄuáÂ… B‹Å²gÏéNƒ£F’æ©U«ÖàÁƒ…cÇŽ=}ú´4ñÖ­[ï¼óNBBB›6mž{î¹2ß|öìÙ7¶žLrqqñôôܱc‡õ†4Û¶m»wï^³fÍJ¿Ö`0HWVþë_ÿ:uê”41==]ºLû…^¦Œ?^ñöÛo[ä/]ºuçÎþýûWáoXQQQBˆéÓ§[“GffæèÑ£¥«­&L˜PTT4aÂëÅ·nÝú׿þuüøñæÍ›Ë¼JWæ²WÉgÉWTT”——WU-5ÅN›6-//ï¯ý«uºt5IJJŠ5 ˜Íæ5kÖHÿ¶±î9•ð(v•âëDŽÊ­7™û^%<ÌvÔð®T?UCûÚµk¹|ùò6jÔèæÍ›W¯^BDEEuéÒÅ:Ûo¼±wïÞ¤¤¤°°° ØÚÚ¦§§›Íf??¿Y³f•?\qðàÁŸþyÉ’%Å;±Þ}÷Ý‘#G>÷Üs:tøóÏ?÷ïßߢE‹W^y¥ÌÚúõëwàÀÍ›7‡……5jÔ¨víÚgΜ),, ³^HѧOŸýû÷oÞ¼¹_¿~ 4ppp8sæLQQQ›6m¤/¤ªbý aƹ¸¸899I¿{zyyïÍïÓ§ÏÁƒ¿ûî»Þ½{{{{»¸¸œ={6//Ï××wÆŒò?Næ²WÉgÉñøãçææJ;ILLÌÃthhè¬Y³RSSFcïÞ½­ÓýüüzöìùË/¿<÷ÜsÏ<óŒÅbIMMÍÍ͈ˆX¾|ù·ß~{óæÍâw?¯Ä¬ª]¥Ä:‘YC%Ö›Ì}¯rë¤ÒÛQ«»:ð0ŽÐ…iÓ¦=ýôÓ+W®<}útݺuƒƒƒ#""JŒZòØc­Y³fùòå[¶lÉÌÌBvìØñµ×^+óN0‹eæÌ™Ý»wöÙg‹OïÑ£Gllì¿ÿýï_ýõ‰'ž6lØèÑ£ï×;occ3gΜnݺ}ÿý÷'Nœ¸qãF«V­ú÷ï^bžàààÍ›7§¤¤\¾|¹]»v]»v2dÈÃrWº˜Ž;nÙ²%))Iúæ~þùçäBƒÁ -ø¦M›’““ÓÒÒ7nü /DFF:88TôãÊ_öªú,9¦NúñÇŸ9sæÎ;UòÑîîîíÚµ‹ïÒ¥‹»»{ñ§æÎ»dÉ’-[¶>|¸Aƒ]»výÇ?þáïïo6›7oÞ|èС‡Ù‚U¸«”X'rTn½ÉÜ÷*áa¶£VwuàadŽñ ´‚‚£ÑXµé­æ¸råŠÁ`à72T?ö= Æ"8@.Ž€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,ÿ¶Ïu4HÀIEND®B`‚statistics-release-1.6.3/docs/assets/multcompare_301.png000066400000000000000000000577461456127120000232250ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A_­IDATxÚíÝy\TeÿÿñkÑ„HV7ˆ‚qW ×\0±ƒ¯ËmjøóöÖºK÷íÎʺËr-Œ²2+s·´º5× 3w-qC6PÜQ\A‘a~œû;òeœ‹9¯ç£GæÌaÎç,rÞsë\Ç`±Xp/Z€ªàUŽP…àUŽP…àUŽP…àUŽP…àUŽP…àUŽP…àUŽP…àUŽP…àUŽP…àUŽP…àUŽP…àUŽP…àUŽP…àUŽP…àUŽP…àUŽP…àUŽP…àUŽP…àUŽP…àUŽP…àUŽP…àUŽP…àUŽP…àUµ.À™L&­K+99Yë4@p¬ú<˜df2™Ø)²a§ÈÉ`0X,­«ÀÿÁ? é¶‘ˆKÕ€»‚‚‚´.€¼ŽP…àUŽ€»RRR´.€¼Ž€»èãÀ‚#t%ÄN‘ûEBìȃàUŽ€» ƒÖ%Áp£°'Ç„¢pS#é@‰hq½3D‘ Ô\¯P"‚#èZi±xš‚#èÑÀ}!8JE²PÁtŠPà~qW5”?{ÊdUb]¸ ¨G(U"ǨL„Ub]T.U€N‘Ü/‚#T!8JE«$€ÂŽ _¶s!©@GÐ5‹¥ä€HjPwUˆ‰T¡Åp—¡J Û@#GÀ]Ú”ŽàUŽP…ซ>Žl 8î¢#ŽP…àUŽ€»èãÀ‚#à.ú8°àUŽP…ซ>Žl 8î¢#ŽP…àUŽ€»èãÀ‚#à.ú8°àUŽP…ซ>Žl 8î¢#µ.@R¹¹¹+W®\µjUfff­Zµ‚‚‚† òä“Oj]Z+Ò,Í— =!8– ??ðàÁpsskß¾ý­[·öìÙ³}ûö‘#G¾öÚkZW€FJìÉ`0õƒàX‚ï¾ûîÀO<ñÄW_}åââ"„HMM8pà§Ÿ~úÔSO5jÔHë ¢ ®V£d6ú¿*oqäè}K°qãF!Ä”)S”Ô(„ |õÕWÍfóŽ;´®*©€ Ǥ¥¥Õ¬Y³I“&…' !N:¥uuT:n·‡‚KÕ%úâ‹/‹n™„„!Dýúõµ®)ÑÙQŽ%hܸq‘)»wïž?¾³³sÏž=Õ|‚Éd*2%99YëÕ€{£cå±Ë6¼*´R÷sœ?­ëÁñÌfóÒ¥KgΜi6›çÌ™ãáá¡æ·ˆ‰ª(Rcå©Z›Ze"¬Z+¥ZñÓºn£$ÁÑ–={ö¼óÎ;Ç÷õõ}ÿý÷;tè uEÈÊNS# #8–,//oÖ¬Y‹/®^½zttôСC­wX ;KUº Cp,AAAÁ¸qã6oÞ6uêT///­+€JBG”‡>K°xñâÍ›7¿øâ‹S§NÕº¨T¤F”J96Jlwä°Ñ Æq,Êb±,Y²¤V­Z“&MÒº$S<#’õ„Ç¢.^¼xòäI—¨¨¨âïöêÕkàÀZ×€vHŠ:Fp,*33S‘››{äÈ‘âïrc5ûFG6‹jÕª£0Ð-R#¤Ž‹%11qçÎÉÉÉYYY/^¬^½º§§§OHHH»víj×®­uz!ipÌÌÌ\²dÉ?þxåÊ•gX¶l™Á`hÚ´éÀÃÃÜœ´.ÀÎI×—åìÙ³Ó§Oß¼y³¢eË–ÁÁÁ-Z´xøá‡~øá¼¼¼ìì쬬¬£G8p`ß¾}gΜñðð6lØ‹/¾èà ÅMâ&“‰‹Ýª(ú8jèö\/׈E‹}ôÑG¾¾¾½{÷ŽŒŒ¼çÈÛ‹åÏ?ÿüé§ŸÖ­[øþûïj½ú=˜Ð Ýžëå ŽÝ»w9rd=î·í0++kÞ¼y...&LÐz%ô{0 º=×ËÍf³ÑhÔê×Ë‹n&tB·çz):ZÙŽ}çÎËÎÎ.ó¯îÉPâå@![pTäçç¯Y³fذa[¶l)<}óæÍíÛ·ŒŒüüóÏóóóµ.ìT—¡ÈFºáx.^¼/„èÙ³çÿ©ÕÑÑb±$'''''oÞ¼ù£>òóóÓº^½«ÅÑl64(>>¾víÚ#FŒ )üî‹/¾¸yóæI“&¹ºº&$$Œ;¶  @ë’ôB®àøã?ž8qÂÏÏoõêÕÑÑÑÅ ãçç7dÈõë××­[÷È‘#«W¯Öºd°+ôq`ƒ\ÁqýúõBˆ±cÇúúúÚ˜ÍÓÓó7ÞBÄÅÅi]2Øú8°A®àxòäI!D—.]î9gûöí CzzºÖ%è…\ÁñÂ… ®®®...÷œÓÅÅÅÝÝýôéÓZ—  rÇÚµk_¿~ýúõë÷œóêÕ«—/_vssÓºd°+ôq`ƒ\Á±~ýú‹åСC÷œóÀBˆzõêi]2Øú8°A®à.„øðÃoß¾mc¶œœœ3f!ž}öY­KÐ ¹‚cDDD:uŽ92qâÄ+W®”8OVVÖØ±c?îááQd„pTƒlW%80dÈ›7oÖ¨QãÅ_lݺu½zõ¼¼¼.^¼xòäÉ}ûö-[¶,77×ÙÙù‹/¾hß¾½Öõ–@·>` éÎ €„t{®—ñDjjê„ K›ÁßßæÌ™-Z´ÐºÒ’éö` ­Â·µÈ÷§°+º=×K÷¬j!D``à?þøÛo¿­_¿þèÑ£gÏž½uëVµjÕ|}}ƒ‚‚ž}öÙððp£Ñ¨u™ ‘"7C+/‰Ê—ŒÁQa0”—×®]«U«ƒD@‰Jûëh0”'¹nŽ)««+©Jdû¯ãýþíä-ä Ž«V­2›ÍeûÝ3gÎüñÇZ¯Tªryv| ¹‚ã§Ÿ~¾víÚ¼¼<õ¿•™™9mÚ´gžyæÄ‰Z¯H‡6DåE®»ªssscbb/^\³fÍðððîÝ»·hÑ¢V­Z%Μ‘‘±k×®µk×þõ×_uêÔyûí·;wî¬õ¡ã;­ûCäª42‹€{Óí¹^®à¨HMMýöÛo×®]{ëÖ-ƒÁðøãûùù¹»»»¹¹åååegg_ºt)!!áêÕ«Bÿÿ÷ÿþ_Ÿ>}\\\´.ü¿t{0¨|*£­ú¿ôŒã¨¡Ûs½¼ ®\¹²aÆ;wîÞ½ûÚµkEÞ ìСChhhûöíeëÊ­Ûƒ @å+÷à@ Ýžëå ŽVçλtéRVV–‹‹KíÚµ½½½]]]µ®«Tº=˜T>5ÁQú?ó@Õ£Ûs½¤ã8æààP§N:uêh]HÇb¡#&€Ê#×]Õ€ûe»Añ~›eëü@*G¨òJK‡e¸H-ÿ%ª—ª÷DÞP hq€*GÀ]ôq`Áp}ØPÅú8Z,–¸¸¸ÌÌÌæÍ›k]€ŽÈãââæÎ-„xã7V­Z¥¼5`À€©S§rU rH}©zß¾}ÇOJJ*((B=ztÕªUnnn/¾øb½zõ–/_§u`Wø6À©[¿üòK‹Å2eÊ”!6oÞ,„øàƒºuë–žžþì³Ï.[¶¬[·nZ— öƒ>Žl:8¦¤¤øøø 4Hy¹gÏ''§N: !üýý{ì±'Nh]#€^H}©úÊ•+ÊÏùùùGmÚ´©“““2¥FYYYZ× RÇ:uêdffšÍf!Äþýûoݺնm[å­‚‚‚ÌÌLOOO­k»BG6H[·n}åÊ•ØØØÓ§OÇÆÆ !:wõõ×__¾|ùñÇ׺F°+ôq`ƒAæ¿§OŸŽˆˆ¸yó¦ò²Y³fßÿ½Á`xá…<(„øöÛoÛµk§u™E™L¦ääd­«E·çz©[ëÖ­»råÊÐÐPŸŽ;ÆÄÄ(×P²²²\]]§OŸ.aj°WR·8–æôéÓ¾¾¾’¦^Ý~ ` †*y^*™nÏõRÇSšºuëj]Ø'R#dŽ6lX´hQzzziËvïÞ­uº upüõ×_G­ül4µ.@פŽ ,B Žl:8;v¬^½z“&M’ö>°3¤F6ÈÈîܹsýúõúõë“d o&spppssKMM-((кHFãK/½”••õÑGi] èϪ`ƒÔ}ÃÃÃO:5þüÝ»w?÷ÜsõêÕsrr*2OhhhE—qæÌ™ˆˆˆ§žzjÖ¬YZo(ªxÒ{nŠôq`ƒÔÁ±[·nʇ:tèP‰óTô¸í‹eÒ¤I7nÜÐzc@ Jl4(;@i¤Ž‘‘‘Z— .\¸wï^­«€ظªLvP¤Žš_NMMýè£6l˜””¤õÆ€ÿãž}Ë–Ç€ RG«sçÎ%&&fddܹs'  Q£FuêÔ©è…æççOœ8ÑÝÝ}òäɃÖz@e 5°Aöà˜»bÅ ³Ùlh4ûõë7zôè }œLlllbbâ×_íêêªõfОÔÁÑl66,>>ÞÙÙ9,,ÌÏÏÏh4¦§§oÙ²eÙ²e‰‰‰K—.­ gX8pàË/¿8p`‡î÷×M&S‘)}€rd7#ÒÈ¿"´o¢J(~Z×-©ƒãÂ… ããã[¶lëååe~ñâÅèèèøøø… :´Ü—›››;qâÄúõë7®lŸ@Lª´*‘fÔ„Bú8墸i]·QRÞÀ…Û¶m3 111…S£ÂÓÓsîܹüñGE,wÆŒ™™™3gÎtqqÑz@¥"5°Aêà˜””äçççëë[ü-ooïÇ{,11±ÜºwïÞåË—¿òÊ+-Z´ÐzHDêKÕÎÎι¹¹¥½›››[-‚©©©BˆyóæÍ›7¯ðô5kÖ¬Y³&00ðçŸÖzÀ°Xîqµš¦CåNêàØ¨Q£-[¶ÄÇÇyëÈ‘#™™™ñ¼A??¿=zžrõêÕí۷שS'88ØÇÇGë­ÿe#;–95ÒÇ€ RÇÈÈÈ-[¶Œ9rÚ´i;w¶Nß¾}ûo¼!„ˆˆˆ(÷…vìØ±cÇŽ…§$$$lß¾=$$DóÉ %ã‰<«@‘:8†‡‡oݺõ§Ÿ~zùå—}}}ýýý…gΜBDDD<ÿüóZ×Ú#ì¨RG!ÄôéÓÛ¶msöìÙ³gÏ*===njӫW/­«Б*Ó—åÂ… ééé‹ÅßßßÛÛ[ërl1™LŒã Š¢# †nÏõ²·8ZyyyyyyY,–¸¸¸76oÞ¼ø3€Dj`ƒìÁ1..nîܹaaaÑÑÑBˆ7ÞxcÕªUÊ[ ˜:uªAþ'jة߷oßðáÓ’’ „G]µj•››Û‹/¾X¯^½åË—ÇÅÅi]#€^HÝâøå—_Z,–)S¦ 0@±yóf!Ä|Э[·ôôôgŸ}vÙ²eݺuÓºL°ôq`ƒÔÁ1%%ÅÇÇgРAÊË={ö899uêÔIáïïÿØc8qBëÀ®Ø õ¥ê+W®xxx(?ççç=z´iÓ¦NNNÊ”5jdeei]#€^HëÔ©“™™i6›…û÷ï¿uëVÛ¶m•· 233===µ®@/¤Ž­[·¾råJllìéÓ§ccc…Ö~ýõ×—/_~üñǵ®ì CU°AêNЧOŸŽˆˆ¸yó¦ò²Y³fßÿ½Á`xá…<(„øöÛoÛµk§u™EévPPtB·çz©[ëÖ­»råÊÐÐPŸŽ;ÆÄÄ(_…³²²\]]§OŸ.aj°WR·8–æôéÓ¾¾¾’¦^Ý~ @'t{®—z8žÒÔ­[WëÀ>1Ž#ä ŽK—.B´iÓ&00ÐúÒ¶¨¨(­«ûAj`ƒ\ß,M&“âwÞéß¿¿õ¥m6ë¶ùÐí¹^®Çèèh!D³fÍ”—ãÇ׺"ü—\-ŽöA·ßBØú8jèö\/éÉŠÌÌÌ“'Oj]è©€ r]ª."<<üöíÛ;vì°>±Z‘ºÅQ¹·:%%EëB wp|óÍ7]\\>ûì³[·ni] èϪ`ƒÔ—ª½¼¼æÌ™óÖ[oEFFFFF6hÐÀÕÕµÈ<¡¡¡Z— öCÎ>Ž%¦Y)+ìœÔÁ±k×®ÊYYY±±±%ΣÏ{š@?Jk5ÈŽ@e“:8FFFj]@K¶¯œ“J&upœ5k–Ö%€¾0Ž#¤¾9ƶI“&=õÔSZWvEªÔ¨æFnæ*“Ô-ŽBˆìììß~û-##£ÈôÜÜÜ_~ùÅh4j] €^HÏŸ??`À€Ó§O—6CTT”Ö5@Õcg­tUeudjÌÊHêàøÍ7ßœ>}ºuëÖëÖ­Û³gÏ[o½åââ’””´dÉ’¨¨¨)S¦h]#T=6ŒT}U&BiêìŸÔÁqÛ¶mÎÎÎóæÍsuu}ê©§:vìøè£vèÐAðî»ï¾ð ÊÓeåBžÔ(„°Xîeª°RßsöìYeÐoOOOww÷#GŽ(oõíÛ×ÝÝý›o¾ÑºF½:8 !îVØ Aƒ´´4åg£Ñh2™:¤u€ d»A‘æF ’I}||ÒÓÓoÞ¼©¼¬_¿þŸþi}×`0dffj]#Ø ŸU]Z:$5•Oêà–››;~üøãÇ !BBBNž<¹}ûv!DVVÖ_ýU·n]­k»"UÇBU•ð€Ê'õÍ1ƒ Ú´iS\\œÅbùüóÏ;wîìèè8bĈV­Z%%%åä䄇‡k]#€^HÝâèáá±téÒ±cÇ6kÖLQ·nÝ7Þx#//oÇŽ—.]êÖ­Û!C´®@/$¯K¥7n>|ØÛÛ; @ëZJf2™’““µ®ÊBªqiéö\/õ¥ê"òòòòóózè¡öíÛk] Ø'R#ª@pLMM7oÞÎ;WPPàããÓ´iÓèèè† j]€ŽÈ,X0gΜ‚‚!„³³³Ñh>~ëÖ­/½ô’ƒƒÃ‡~¸k×.­k»"á8Žä!up\¶lYAAÁ„ ¦L™R¿~}åϙτ ^ýõ‚‚‚Å‹k]#Øú8°AêàxøðáêÕ«4¨ø[ ¨Q£Æáǵ®@/ä ŽùùùgÏžõöö6%ÔíààëëË7c€J#op4 5jÔ8uêÔ•+WŠ¿{íÚµôôte`p@y¡#ä ŽF£±wïÞ“&Mº}ûvá·òòò&Ožl0†ªu™`W¸’À©‡ãyñÅ~ÿý÷°°°>}ú<ú裃!--í‡~8wî\xxø7~ÿýwëü 4кjû$õ£¥L&Ó}Í?~üxFvÔícˆÐ Ýžë¥nqŒŒŒ¼¯ùüq­K€ªgU°Aêà8kÖ,­K}!5°AÞ›c ©[—/_ÎÌÌ,íKp‹-´.@¤ŽÙÙÙãÆÛ±c‡yôÙ5*}Ø upœ3gÎŽ;ŒFcÓ¦MÝÝÝ–*©€ RG%5.Y²¤U«VZ× wRßsýúõ–-[’d u‹cãÆ¯]»¦ÕÒ>üÅ_$$$ܸqÃd2EGG·mÛVëM‹>ޏ·"=Ç8`ôDêǧŸ~:))ÉöÍ1$..nÀ€qqq^^^ÁÁÁñññƒ Š‹‹Óz“@Å"5âŠßoÀz"õ7K‹Å2eÊ”µk×4($$¤fÍšÅçiÓ¦M¹/÷êÕ«aaawîÜùꫯžxâ !Ä¡C‡¢¢¢\]]·mÛæàp´­ÛÇìÙ=¢Ä‰¢Üéö\/õ¥ê+W®;v,//oÁ‚ ,(qžŠØm«W¯¾víÚ˜1c”Ô(„hÞ¼ùsÏ=÷ŸÿüçðáÃŒ ôIêàsðàAGGÇV­Z¹»»WÚrÿøãƒÁгgÏÂgΜ9sæL­7 T,ú8¢dj®G ºjtÔ'©ƒãÞ½{œœV®\Ù¸qãÊ\î‘#GÜÝÝ}||þüóÏøøø+W®4lØ0,,ÌÅÅEëM‹ÔÀyƒc~~~ZZZHHH%§Æ¼¼¼ëׯ?þøão¿ýöòåË­ÓëׯÓ´iS5b2™ŠLÑgOÀ½ÙÓÍ%Ub]îÿÛQñÓºnÉ ªU«võêÕJ^îõë×…ÇŽ»xñâŒ3BCCoݺµjÕªO?ýtÔ¨Q?ÿü³švGb"@­*ÑÊ«2V‰u¹ÅO뺒òÇãää‘’’RɃàT¯^]ùaúôé={ö|øá‡}||FŒÑ«W¯ÌÌÌuëÖi½a ñpW6ÈÛâ(„2dHJJʈ#úõëWÚp<¡¡¡å»Ðš5kV¯^Ý`0tíÚµðô°°°Õ«W'%%i½U ÑÇ%³XŽBòàØ£Gå‡eË–-[¶¬Äy*⢰——ו+WŠ|íV®Pçççk½U´!upŒŒŒÔd¹]»výöÛoSRR‚‚‚¬÷ïß/„hذ¡Ö[-( Š¥µ;ÒܨŒ×U‚ÄÄÄž={¶hÑâóÏ?ä‘G„‡þûßÿîèè¸aÆڵkÛþuÝŽ&À0Ž#îgUëø\/u‹£Õ¹sç322îܹШQ£:uêTÜâ5j4vìØ?üðÙgŸ ÉÉÉÙ·oŸÁ`˜6mÚ=S#Ti¤F܉ŽÉ³³³cccW¬Xa6›­Fc¿~ýFíææVAË}å•W<<<-Z´sçNww÷nݺEGGj½=4#õ% ³Ùïììêççg4ÓÓÓ·lÙrëÖ­ààà¥K—F­Ë,J·Í×è„nÏõR·8.\¸0>>¾eË–±±±^^^Öé/^ŒŽŽŽ_¸páСCµ.ì}Ø ïàBˆmÛ¶ †˜˜˜Â©Qáéé9wî\‡?þøCëÀ®Ø upLJJòóóóõõ-þ–··÷c=–˜˜¨uz!uptvvÎÍÍ-íÝÜÜ\5@¹:86jÔèüùóñññÅß:räHff&Ãq@ùâYÕl:8*OŽ9rd‘¾ŒÛ·o1b„"""BëÀ®ÐÇ€ RßU¾uëÖŸ~úéå—_öõõõ÷÷Bdddœ9sFñüóÏk]#€^H…Ó§OoÛ¶mLLÌÙ³gÏž=«Lôôô3fL¯^½´®@GªÌx].\HOO·X,þþþÞÞÞZ—c‹n`ÇPC·çzÙ[­¼¼¼ŠŒæ(w¤F6H}sŒâ÷ßçw.\¸ ¼üõ×_Gµ~ýz­ëЩƒcAAÁ„ ^yå•e˖ݺuK™xýúõ7Ž3füøñ|3¨4RÇÿüç?kÖ¬ñööþàƒ|||”‰ááá±±±uëÖ]»víš5k´®ì ã8°Aêà¸råJ‡¯¾úªwïÞNNNÊDggç§Ÿ~ú›o¾qtt\¹r¥Ö5€]áJ¤Ž'NœxôÑG‹¿åçç÷Øc8qBëôBêàX½zukׯânݺe4µ®@/¤ŽÍš5;}útbbbñ·RSSOž<Ù¸qc­k»BG6H{÷î-„>|øÎ; Oÿ믿^{í5‹Å¢<ÌP^èãÀ©ïÖ­Û Aƒ-Zôü£N:õëׯV­ÚÉ“'Ož<)„ˆˆˆˆˆˆÐºF½:8 !¦L™Ò¦M›Ù³g§§§Ÿ9sF™èáá1zôè>}úh]€ŽÈ…Ý»wïÞ½ûåË—ÓÒÒnß¾ýè£úøøÐ Š(þw± —yV5ª@pT<òÈ#<òˆÖU€ŒJû*m0Üwv$5°Aê›c÷dû —g”#‚#Ø9²#€òBp€*¬ÜC!=ÈØ@pÜEG6T™›c ’ÙSÓ[•X"+ ?¹ZCCCGŽi}ùÄl6+;;{ôèÑ£FÒºF°+ôq`ƒÔÁÑËË+66¶_¿~ééé…§oÚ´©G6lðóóÓºF°+ôq`ƒÔÁñçŸîׯßáÇ{öì¹|ùr!Ä•+WÆŽ;räÈ+W® :tÍš5Z× UàÑR»víš2eÊéÓ§Û´isâĉ¬¬¬ÀÀÀ>ø Y³f·Ð¼¼¼o¿ývÆ iiiîîîÍš51bD`` šßÕícˆh¥Èåeéÿ®UžnÏõU 8 !.\¸ð?ÿó?—/_B´jÕjÑ¢EÕªU«¸Å™Íæîß¿¿N:Íš5ËÎÎÞ·oŸƒƒÃ·ß~Ûºuë{þºn&š(±Sb™ÿ´ó¬j@ ݞ륾T­Ø¶m[ß¾}/_¾Ü¤I//¯ýû÷¿öÚkçÏŸ¯¸%®\¹rÿþýÏ=÷Ü/¿üòñÇ/^¼ø›o¾B¼ñÆZo ¸Ë`¥ÝÊRæ[\Hl:8^¿~ýõ×_饗²²²Fõý÷ßÿüóÏÏ=÷ÜÖ­[{ôè±zõê Zîþýû…ÿûß•)íÛ·oÔ¨QzzºÒê òãöhåNêਤÃÀÀÀï¿ÿ~øðáF£ÑÍÍ-&&föìÙƒáõ×_:thE,×××WQ8#Z,–+W®888X£$h‹\ òI³²²þùÏþøã7.<=""bíÚµíÛ·ß¾}{E,÷ù矯^½ú´iÓvíÚ•››{æÌ™7ß|333³oß¾®®®ZoP« á’qØ u'èøøøàààÒÞµX,‹/4hPE,úСCƒ¾yó¦uÊÀ_ýu£ÑxÏß5™LÅ'ê³ -PE‘*“Äg!à¿8³[IµríÚµW_}õ¯¿þjÒ¤I³fÍ.]º´}ûv£Ñ8}úôîÝ»ßó×u{§€Ê¤2Ýò7¨º=×ËÕcoéÒ¥Bˆ6mÚ(#&*/m‹ŠŠ*÷2&Nœø×_Mž<ùÿø‡2åÌ™3ýû÷3fÌš5k´ÞN  ©@ù’«ÅQi ~çwú÷ï/Ji.¢Üóþ… :uêôøã¯[·®ðô+VL:õŸÿüç¸qãî¹úü 2©iq,ÃxÆqÔÐí¹^®Çèèh!„õ‘0ãǯü.]º$„ð÷÷/2]ih¼xñ¢¦[þËb©¾˜¤F6ÈGŒQøåË/¿\ù5øûûÆÔÔT‹ÅRøîBå‹Åã?®õF€ÿ²‘‰*‚ÔÃñdffžU¡Ô¨¼+Y½€«ÁñòåË™™™¥ý-kÑ¢…Ö4Cv*“ÔÁ1;;{ܸq;vì°1>Š*ŸÔÁqΜ9;vì0M›6uwwgt1¨hRõqä¯> ©ƒ£’—,YÒªU+­k{SJ,³T¹¸&ÁÒDqàAI¯_¿Þ²eKR#TùÓŒÊD(ÿŠvCêq7nœ““£umÙHŸ~ú餤$Û7ÇÊQ•ëMN¸*“Ô—ª£¢¢Ž=úꫯ4($$¤fÍšÅçiÓ¦Öe€ýçΘÿ­§ taôCêàxåÊ•cÇŽååå-X°`Á‚%ÎÃp<`ßJËŽ’E\@¤Ž111tttlÕª•»»»Öå´¡dÄÂñ‘ÔhBêà¸wï^''§•+W6nÜXëZ@¤DZYëtDÞ›còóóÓÒÒZ´hAj€J#mj yƒcAAAµjÕ®^½ªu!Bæàèää‘’’§u-»ã!CRRRFŒѯ_¿Ò†ã ÕºL°2÷q 9©ÿ@˜L¦{Î#áp<&“Iª@yÑí¹^êÇÈÈH­KÀIgÍš¥u ø/yoŽT¾*÷¬j•‰à¸KæŽï4Gp€*G¨BpÜEG6wÑÇ€ G¨"õ8ŽBˆ 6,Z´(==½´/Á»wïÖºF]:8þú믣GV~6Z—ögU°Aêà¸`Á!ÄàÁƒ‡îææ¦u9`ÿHl:8;v¬^½z“&Mrp /&€Æä dwîܹ~ýzýúõI27“988¸¹¹¥¦¦h] èã8°AÞàh4_z饬¬¬>úHëZ@/èãÀ©û8†‡‡Ÿ:ujþüù»wï~î¹çêÕ«çääTdžÐÐÐ2þ‰'ž{î¹ï¾û®E‹Åßýþûï¿ûî»cÇŽÕ¨Q£K—.&Lpww×z“@— ·qRhGêàØ­[7å‡C‡:t¨Äy’““Ëüù‹/.í­>úèóÏ?¯Y³fëÖ­322V¯^ššºhÑ"­· t¦ÈuCå%ñ ©ƒcdddE|ìµk×RRRÖ®]»bÅŠgHNNž?¾··÷ªU«¼¼¼„Ó¦M[´hÑìÙ³ß|óM­· tÃFW3ƒìˆ Â8Žl:8Κ5«">6""âܹs6føî»ï F­¤F!ÄäÉ“ÿóŸÿlذaÊ”)ÜåÊpÏÈŽ¨¤F6H+È´iÓnß¾-„X²dÉÎ;‹Ï°oß>‡Â½'FcçÎ×®]»ÿþ­×@rÇ¥K— !Ú´ih}i[TTÔý.¥cÇŽÊ[¶l)þ®Åb9vìØ#<òÈ#ž$„8uêÁè“\Áñßÿþ·âwÞQ‚£òÒ¶2GÛrrrÌfóÃ?\dºòÌÃË—/«ù“ÉTdʃÜăr`—CÓU¹•âhU@G ¸â§uÝ’+8FGG !š5k¦¼?~|å×››+„¨Y³f‘é=ôâêÕ«j>„˜(*w"T «ÜzAz¤F ¸â§uÝFI¹‚ãˆ# ¿|ùå—+¿†‡~Ø`0äää™~ãÆ ñ¿íŽ€8Á*7åèèèææV¼eñÚµkBë}ÖzCp,··÷¥K—”¤h•––¦¼¥uuÐZ¡žU À‚c ºuëf6›·mÛfb±X¶nÝêîî¬uuÐ ÙÑb!Y¢‚ÐÇ€ ÇôíÛ×ÁÁá“O>Qú5 !æÏŸŸ••Õ§OŸjÕªi]ô¤ÄS8çu€Fäº9FuêÔ™0aÂŒ3"##;uꔑ‘±{÷î&Mšhr³ôŽ˜Á±dC† ñôôüé§ŸÖ¯_ïëë;pàÀÑ£G+#ò€cG6Hý"33³   AƒZrL&ã8`Çt{®—ºÅ1<<üöíÛ;vìðððк½“úæåÁƒ)))Z¹ƒã›o¾éââòÙgŸÝºuKëZ@Ç€ R_ªöòòš3gÎ[o½Ù AWW×"󄆆j]&Ø™;¾МÔÁ±k×®ÊYYY±±±%ΣϮ©•Oêà©u ø/©ƒã¬Y³´.ô…qØ up´ºråÊ‘#GΞ=[§N'Ÿ|2++‹z "Ø {p¼téÒgŸ}¶jÕªÜÜ\!Äßÿþ÷'Ÿ|²W¯^Mš4ùàƒÜÝݵ.@/¤ŽçÎ;Ç_¼x±««k¯^½¬Ó½¼¼¶lÙÒ¿%M H¿øâ‹téÒeãÆÓ§O·Nÿî»ïþçþ'==}Ñ¢EZ×v…qØ upÜ»w¯Ñh|ÿý÷kÔ¨QxºÑh|ë­·jÔ¨±iÓ&­k»BG6H}ôÑïƒy衇222´®@/¤Žnnn7oÞ,íÝìììZµji]#€^H7n|öìÙC‡+11ñôéÓ5ÒºF°+ôq`ƒÔÁ±_¿~ƒaܸq …§'$$Œ=ZѳgO­k»BG6H=Žã“O>ùÒK/}ùå—½{÷Büúë¯;wî<~üxAAA¯^½žyæ­kÐ ©ƒ£büøñO<ñÄŒ3Nœ8!„8}ú´ÂÓÓsìØ±…Gv@E“=8 !ºvíÚµk×ììì'Näååx{{k]Ø'žU À†*îîî 6¬V­š“““Öµ€Ý"5°¡ ÇC‡}úé§ /^tpp¨[·n«V­^{í5???­K*Rñ›[9£4%õ]ÕBˆ¹sçöíÛ÷÷ß¿xñ¢³³sõêÕO:õŸÿü'<<|ùòåZWT˜‡Daœ€¦¤ŽüñÇgŸ}f4 ô믿>þ÷ß:t¨â½÷Þ;pà€Ö5åÍ`°Éލ`ŒãÀ©ƒãòåË-˸qã¦L™R¿~}åÏ™¯¯ïĉ'Mš”ŸŸÿÍ7ßh]#Pé8¯£"ÑÇ€ RÇ„„ggç¿ÿýïÅß8p ‹‹K‰•@E:8 !|||K¸ƒG¹K&''GërEk"@bRßU¼yóæk×®¹ººyëæÍ›iiiíÚµÓºFTö—ƪÐqݳªaG6HÝâØ·o_‹Åò¯ý+??¿ðt³Ùüúë¯›Íænݺi]#ª‹¥Êü§Û5‚4Hl«Åq×®]…_ÆÞ½{¯^½º{÷î}ûö 0 iii«V­:uê”ÉdzöÙgµ.(WKUjMèŒ\—$L&ÓýþJrr²ÖU—°V…*ãžÁQ¦³ Oº=×ËÕâ©u €Öht„¦èãÀ¹‚ã¬Y³´.@iÙ‘Ó9*©€ RßèWñ“7§s€Öäjq,ÑåË—333KûÜ¢E ­ *I ©ƒcvvö¸qãvìØac}vM€ BG6HçÌ™³cÇ£ÑØ´iSwwww @#5°AêਤÆ%K–´jÕJëZôNê›c®_¿Þ²eKR#€ ¤Ž7ÎÉÉѺ Ð:°AêàøôÓO'%%Ù¾9PŽèãÀ©û8FEE=zôÕW_4hPHHHÍš5‹ÏÓ¦M­ËЩƒã•+WŽ;–——·`Á‚ ”8ÃñT©ƒcLLÌÁƒ[µjåîî®u9`ÿÇ€ Rǽ{÷:99­\¹²qãÆZ׺@j`ƒ¼7Çäçç§¥¥µhÑ‚Ô yƒcAAAµjÕ®^½ªu!Bæàèää‘’’§u- ŒãÀ©û82$%%eĈýúõ+m8žÐÐP­ËûAG6H}÷œÉdºç<Çc2™$¬ ”Ýžë¥nqŒŒŒÔºü—ÔÁqÖ¬YZ—úÂ8Žl÷æ@å#5°AêÇvíÚÝsžÝ»wk]&€.H¯]»VdŠÅb)((P~öñññððкF½:8=z´È³Ù|æÌ™_~ùå³Ï>»}ûöÛo¿­u`WèãÀ†*ÖÇÑh4Ö¯_È!±±±W¯^3f̃ü;qâ„Éd:xð`ñ·rss.\øüóÏ·lÙ²S§NC‡ݱc‡ÖkØ#ƒáî©€ U,8Zµk×îñÇ?uêÔ©S§Êü!‹/.qz~~þàÁƒ?øàƒ .´oßþñÇß³gÏ!C>ýôS­×°/EÂ"ñä&õ¥jÛ¼¼¼RRRj×®}¿¿xíÚµ”””µk×®X±¢Ä¾ûî»<ñÄ_}õ•‹‹‹"55uàÀŸ~úéSO=Õ¨Q#­W¨úlDƒAÐèRªª-Ž999Gõðð(ñ9„¶EDDDEE•–…7nBL™2EIBˆÀÀÀW_}Õl6sÁ¨ ´;j‡gU°AêÇ]»v•8=;;{ñâÅ—/_ +ÃÇN›6íöíÛBˆ%K–ìܹ³ø iii5kÖlÒ¤Iá‰Bˆ¹2࿈&£#¤Žƒ¶ñn­ZµFU†íر£òÖ-[Jœá‹/¾pt,ºe„õë××z«úÀkÔÁÑÆ³ª4hгgÏ Šq7.2e÷îÝóçÏwvvîÙ³§šO0™LE¦èóQèІݴçÉ¿"D[@ŠŸÖuKêà(óªÍfóÒ¥KgΜi6›çÌ™£rÈqb"´$šQ™å_{Ä8Ž@qÅO뺒RGÍíÙ³çwÞ9~ü¸¯¯ïûï¿ß¡C­+tƒì¢R#dŽ6lX´hQzzziË*èYÕyyy³fÍZ¼xqõêÕ£££‡j½Ã@Ÿ¤Ž¿þúëèÑ£•ŸFc¥-·  `ܸq›7o ›:uª———Ö[°/Kè¿(Fêà¸`Á!ÄàÁƒ‡îææViË]¼xñæÍ›_|ñÅ©S§j½ ;e;;rµT;ôq`ƒÔÁñرcõêÕ›4i’ƒCå Tn±X–,YR«V­I“&i½»Vbv$²hÔÀyƒã;w®_¿Þ´iÓÊLBˆ‹/ž>~Ïž=»wï>tèP~~¾ÂÃÃcÇŽZ—V”n&tB·çz©û8æììÜ®]»&Mš4oÞ|ëÖ­«W¯ÎËËËÊÊÒº.°+ôq`CŽ7oÞü믿” ÖG5›ÍB£ÑجY³víÚi]ØR#¤ŽsæÌÙ³gÏ‘#G”°h0Ûµk×¾}ûÖ­[תUKëtDêà8þ|!„‹‹ËóÏ?ÿä“O¶mÛö‘GѺ(’:8*]mrss7nܘ••uæÌ™6mÚ4nÜØh4j]Ø'ú8°Aêà¸wïÞ?ÿüsß¾}{÷îýã?¶lÙ"„¨Y³f«V­Ú´iÓºuëfÍš9:J½ ¹"cš‘ØPe¾YÞ¼ysÿþýJˆ€*§´‘p«È™ÐŒnÏõU¦¹®fÍš:ujÕªU«V­¶lÙòÃ?äåååææj]TI¶ž`0”  Gåù1»víÚ¹sç¡C‡”;¬«U«Ö¡C‡.]ºh]Ø'²#€â¤Ž_}õÕÎ;ÿúë/kË¢···ò¸ê:Ô¨QCëtDêà8sæL!„ÑhlÕªUhhh—.]6l¨uQPåÙ¾N ¥‘:8FFF†††vêÔÉÕÕUëZ@-»‰eò¯ÓJ&upœ5k–òùsç322îܹШQ£:uêh]”Lþ4£2Ê¿"*™ÔÁQ‘»bÅ åž…ÑhìׯßèÑ£ÝÜÜ´.ª‹¥ ´&ÔÁÑl66,>>ÞÙÙ9,,ÌÏÏÏh4¦§§oÙ²eÙ²e‰‰‰K—.å)2PhnPœÔÁqáÂ…ñññ-[¶Œõòò²N¿xñbttt||üÂ… ‡ªu™PõÐè  ´.À–mÛ¶ †˜˜˜Â©Qáéé9wî\‡?þøCë ª²Ñ¦Hs#€I“’’üüü|}}‹¿åííýØc%&&j]#TaÅ¢ÅBjP*©/U;;;Ûx¨`nn®‹‹‹Ö5@ÕFL žÔ-Ž5:þ||||ñ·Ž9’™™Éxà•Fêà)„9rd‘¾ŒÛ·o1b„"""BëÀ®¸e@餾T¾uëÖŸ~úéå—_öõõõ÷÷Bdddœ9sFñüóÏk]#Ø —®”Nêà(„˜>}zÛ¶mcbbΞ={öìYe¢§§ç˜1czõê¥uu:b¨*_./\¸žžn±Xüýý½½½µ.Ǔɔœœ¬u ¢èö\/{‹£•——W‘Ñ…©©©Z—öÃ`¨2 *ŸŒÁñرc{÷îMKK{衇ڶmÛ®];ë[ééé.\0 ׯ_ß»wï·ß~ËPŽPŽHl.8Λ7ï“O>1›ÍÖ—Ï<óÌœ9s233G¥ÏfaÈ÷ìÙ3wî\!„O“&M„‡Ú´iÓc=ö믿¦¤¤8;;×­[·FŽŽŽîîî-Z´Ðºd½+8~õÕWBˆÈÈÈ>øÀÑÑQ‘››;bĈyóæ !"""Þyçš5kj]&Ø-ú8°A®ÀOœ8!„˜8q¢’…...cÆŒQ~~ë­·HP¡Hl+8ž9sÆÕÕÕÓÓ³ðÄ€€!DíÚµ]]]µ.@¿ä Žf³¹FE&*SªU«¦uuº&Wph‹gU°à¸‹>Žl 8@‚#T‘kG!Äùó烃ƒÕO׺d°ŒãÀé‚£ÅbÉÉÉQ?PŽHl+8þüóÏZ—€’ɵ.%ÓõÍ1'Nœ0™L´=Û™3gžx≠&h]/T8Æq`ƒ\-Ž•lñâÅ÷œÇb±Lš4éÆZ •Á.û8Ãö¸–@eÐcp¼víZJJÊÚµkW¬XqÏ™.\¸wï^­K”Q‰M¨ÊDâ#p¿ô#""Î;§fÎÔÔÔ>ú¨aÆIIIZW ¸o¶/¼ dGàþè18N›6íöíÛBˆ%K–ìܹ³´Ùòóó'Nœèîî>yòäÁƒk]5T{Ç‘îš@¹ÓcpìØ±£òÖ-[lÌ›˜˜øõ×_»ººj]2T»I*‚ƒ£øòË/Ø¡C‡„„„ûýu“ÉTdJrr²ÖëåÀΚñªÖêêµRü´®[ÇäææNœ8±~ýúãÆ+Û'Ø«*”]T†Â*´FÐJñÓºn£$Á±3fÌÈÌÌ\¾|¹‹‹‹Öµ@¥²§>Žjèi]r ëÀK´wïÞåË—¿òÊ+-Z´Ðº¨lºJî-ŽE¥¦¦ !æÍ›7oÞ¼ÂÓ׬Y³fÍšÀÀ@¨ U‚ÅRź0ò#8åçç×£GÂS®^½º}ûö:uêûøøh] @-ÛÙ‘ÖUà~‹êر£u¼EBBÂöíÛCBBfÍš¥uuP±ì¯c‰ÙѾV¨<GÀ]v–ÿw¥´®°ÜUìí’„ L&ã8`Çt{®§Åp—û”Žà¸‹ËPl 8@‚#T!8î¢#Ž€»èãÀ‚#T!8@‚#à.ú8°à¸‹>Žl 8@‚#T!8î¢#Ž€»èãÀ‚#T!8@‚#à.ú8°à¸‹>Žl 8@‚#TqÔº€D ƒ_­.ÒÓ~W¨(´8îÒOj,q ÛhqØ9QyË~Ó2PÎhq€*GÀ]ö7ޣ𲻕* Áp—÷qðàèã( ;k¥«*«C°‡¶Ž€²¨* Fe"¬*«h‹KÕ€»ì¯#€rDpÜe}լݭ4PQŽP…>Ž;§4(–xž¶Fà¾Ðâ¸ËŽû8ψ¤Fà~Ñâ¸Ëþú8þßµÓº Š£Åª  Áp—÷qðàŽ€»ì»#€Dp„.˜L&­K@Qì9±_$ÄN<ŽP…à¸+%%EëÈ‹à¸+((HëÈ‹àUŽPÅÀÈ åŽÛßT])))\­ÔHNNÖº   —ª  Áª  Áª  Áª  Áª  Áª  Áª  Áª  Áñ\¹råí·ß~þùç[¶lÙ½{÷1cÆœ8q¢ølßÿ}ß¾}ƒƒƒŸ|òÉ×_=;;[ëÂí\nnîÂ… •ýÒ©S§¡C‡îر£ølìMœ8qÂd2úhæÌ™7nÜhݺunnî®]»öîÝQ­Z5­×À>åçç4hÕªUf³¹M›6®®®{÷îýñÇÚ´icý¢•?þøðáÃ}ûöõññ)ò;E+lyyðDœJJeAY½÷Þ{AAA~ø¡uÊêÕ«ƒ‚‚úõëg’””Ô°aÃN:?¾ðoýûßÿÖº|»µtéÒ   äää(SRRRÚ´iÓ¨Q££G*SØ/•ïêÕ«ûöí{ë­·‚‚‚‚‚‚8PdvŠVØò2àˆl8•”†KÕe·k×.—aÆY§ôîÝÛÇÇ'!!Ál6+S¾û‚‚Ñ£G[Û 'Ožìææ¶aÆ‚‚­×À>mܸQ1eÊeJ``૯¾j6›­WØ/•/"""**jÅŠ¥ÍÀNÑ [^ü‘ §’ÒËîá‡~ê©§ªW¯^x¢³³s^^^^^žòrß¾}¡¡¡ÖŒFcçÎ/]º´ÿ~­×À>¥¥¥Õ¬Y³I“&…' !N:¥¼d¿T¾iӦ͛7oÞ¼y:t(qvŠVØò2àˆl8•”ÆQ몰%K–™²oß¾“'O¶lÙRù‚b±XŽ;öÈ#<òÈ#…g Bœ:u*$$Dë•°C_|ñ…£cÑ;!!AQ¿~}Á~ÑHÇŽ•¶lÙRü]vŠVØò’àˆl8•”†àXâããW¯^––ß Aƒ3f(ÓsrrÌfóÃ?\d~777!ÄåË—µ.Ü>5nܸȔݻwÏŸ?ßÙÙ¹gÏž‚ý"%vŠVØòU»©òq*) Á±$''¯ZµÊb±!š4iâää¤LÏÍÍBÔ¬Y³Èü=ôâêÕ«ZnÿÌfóÒ¥KgΜi6›çÌ™ãáá!Ø/Rb§h…-_%°›´Å©¤0‚ã½åççùå—Ö—F£ñŸÿügáú÷ï߯_¿¬¬¬µk×Ξ={ÿþýëÖ­{衇~øaƒÁ““Säoܸ!þ÷K ÊìžûeÏž=ï¼óÎñãÇ}}}ßÿ}kÏ!öKŹçN) ;E+lù*ݤ!N%EïíÎ;111Ö—ÎÎÎÅÏ…ƒÁÓÓsÈ!§NZ¶lÙ¦M›úôéãèèèææVükǵkׄ…ÇzDØØ/yyy³fÍZ¼xqõêÕ£££‡j½-NÁ~©8jþ±”ˆ¢¶|•ÀnÒ§’ïÍÅÅ%99¹ÈÄÔÔÔ¯¿þºsçÎÏ=÷\áéÊXçÏŸW^z{{;vìÚµk®®®ÖyÒÒÒ”·´^³ª­Äý"„(((7nÜæÍ›Ã¦NZâ¿^öK)m§¨ÁNÑ [¾J`7U2N%¥a8ž2ruuýá‡V¯^]dúÉ“'…>ú¨ò²[·nÊe¬3X,–­[·º»»k½öiñâÅ›7o~ñÅ?ýôÓÒ¾ó±_$ÄNÑ [¾J`7U2N%¥!8–‘···ÉdÚ¾}{\\œubRRÒÒ¥Kzè¡Ö­[+SúöíëààðÉ'Ÿ(„óçÏÏÊÊêÓ§=?H;‹eÉ’%µjÕš4i’ÙØ/b§h…-_%°›*§¸T]vï½÷Þ‹/¾8lذàààzõê]¸páÏ?ÿBÌœ9S¹åJQ§N &̘1#22²S§N»wïnÒ¤ÉË/¿¬uùöéâÅ‹'Ožtqq‰ŠŠ*þn¯^½(Ø/Rb§h…-_%°›*§Že×¼yóuëÖÍ;÷È‘#‰‰‰>>>O?ýôk¯½¦Œ,o5dÈOOÏŸ~úiýúõ¾¾¾=z´r»>Ê]ff¦"77÷È‘#Åß-üHö‹„Ø)ZaËW ì¦Jéă2ú `}  Áª  Áª  Áª  Áª  Áª  ÁБK—.92$$$44TñÉ'Ÿ˜L¦¥K—Úþ­Ï>ûLÍlòP¹^’›0a‚Édúý÷ßmÌSd‡VNI»víª´PäØ+¾g‹oJÞ&€Þ¡»wï>|øSO=Õ²eË=z|òÉ'f³¹È<|ð©$]ºt¹¯e­[·®Q£FÉÉÉZ¯tQÓ¦MÛ´i“ƒƒCóæÍµ®E:Û·oߺu«ÖUÜŸŠÞ¡òo“â[€ƒ¨PŽZT†éÓ§óÍ7BŸ:uꤥ¥ÅÆÆ:thîܹ...ÖÙ222Ô|ÚÏ?ÿ¼páÂãÇûùùõîÝ{àÀw¿ƒÝ¾}{öìÙûÛßL&“Öë]ÔÞ½{…?þøcݺu…]»võððxâ‰'´®«œ•m½ÆíÚµ£Gj]þ}(²CËlÛ¤øž-¾*z›:Gp„ýÛ´iÓ7ß|ãááñÑGµiÓFqîܹ‰'nݺuöìÙo¾ù¦uÎôôt!ľ}û\]]Kû´ØØØO>ùÄÏϯk׮ǎ›6mZBBÂŒ3¬3,\¸ðêÕ«£FÒz½KpóæÍ5jXO¨Mš4iÒ¤‰ÖE•?{]¯âŠìP»W|ÏßzÛ&@%ãR5ìß¼yó„o¿ý¶’…>>>±±±îîîÿùÏrss•‰f³ùÔ©S6Rã… æÍ›×£G 6|øá‡kÖ¬:tèO?ýtèÐ!e†¬¬¬/¾øâ•W^ñððÐj}Ífó;w´ZºäõHU ì Gô€à;wûöíÔÔT£ÑX¤Ÿ¢››[Û¶m¯_¿níÂuæÌ™üüüG}ÔÆ§%''DFFFeJ¯^½„ Ê˹s纹¹ <ø¾Šüí·ß^{íµÎ;·iÓ¦ÿþ?þøcAAA‘yÖ¯_ÿꫯvéÒ¥]»vƒþꫯ ÷ÑTîZÈÌÌœ?~ûöí›6mÒ¿ÿ_ýU™aæÌ™&“)'''''Çd2 !¾üòËâ7‘¬^½zèСmÛ¶}öÙgÿõ¯)|ʼg=÷µî¶—U\‘õR¹q²³³Íf³uã¨_Í3gÎ8p OŸ>Í›7ÏÌÌ|ã7L&Ó¬Y³ŠTuøða“ÉÔ¡C‡üü|!DVVÖ‡~ÞªU«V­ZõèÑcúôéçÏŸWyÌ”¸CÕ*Ej.íóKÜ&Bˆøøø1cÆtëÖMÙ’›7o~À]¦òØ+¼g‹oÛ¤ û±Jê@åãR5ìÜ­[·Ìf³££cánˆŠêÕ« !¬g¥ƒ£¿¿ÿæÍ›ãââÎ;ççç×¼yóž={Zc¢ÉdrppX»vmçΕ\»v­¢aÆBˆ”””Õ«WÏš5ËÙÙY}…Ó¦M[´h‘¢nݺŒß¹s§5yX,–É“'ÿôÓOBooo77·Ý»wïÚµë—_~ùì³ÏÜÝÝ­õÅ_|÷ÝwíÛ·?uêT||ük¯½óÜsÏ…„„äçç+gܨ¨¨jÕª¯¤  `ܸqëׯB¸ººÞ¾}û‡~غukHHH‘9gÏž½`Á‹ÅâëëëååõçŸîÙ³gÛ¶móæÍ«]»¶šzT®»úeÝÓ=7Ί+òòò dÝ8*˜˜8nÜ8¥éº   ""âûï¿ß´iÓ„  ðóÏ? !zöìéè蘕••žžîâââïï_PPžžþÍ7ßlÞ¼yõêÕ…÷iiJÜ¡ê•"5—öùÅ·‰"..néÒ¥îîîAAAéééñññÑÑÑsçÎ}öÙg˼ËÔ{6¶ÀO|¸øß;~îÉb±Ì;Wñïÿ»k×®ÊZøùù}úé§ÖW…r'PLLŒu¸˜˜ooïU«V]¹rEe=jÖ]ý²îé~7ŽúE׬YóË/¿ìСƒÒ±ÕÁÁ¡GBˆM›6YçùóÏ?ÏŸ?üøã !òóó»ví:~üøš5k*3¸ººFDDÕ·ö—Hý¡R¤æû­!/¿ü²ÂzY¹ »Lý±WeÞ÷õ»Rê@…"8Âþ½òÊ+:t8yòdïÞ½»víúôÓOwéÒe×®]íÚµBXÏÜO>ùä”)SV®\9`À€ºu뺹¹uìØqÙ²e‡V.¢)"""V­Z¿fÍšAƒ988˜Íæ3fôèÑ£HW0Û._¾œžž^§N:žþüóÏÿòË/Æ B\¸páüùó¾¾¾;w.<——Whh¨ÙlNLL´N´^S¸¹¹F‹Å¢¦˜óçÏ_¼xÑÓÓÓzÁQQ¿~ýŽ;Z_fgg§¥¥¹¹µF:tÈÍÍ=r䈚zÔ¬û}-ëžîkãÜ×¢###•nVJܰaƒuŠrºOŸ>ÊË×^{íóÏ?ì±Ç¬3\¼xqݺuêW§¸û:TŠ×¬^xxxá—ÞÞÞBeK–m—©<öÊàAöcÕ=Ô EGØ?£Ñøõ×_¯X±bݺuÉÉÉnnnáááÊÝлwïvssSf+ñ9µjÕzá…æÍ›wèÐ!% ”hùòå§OŸþꫯ”—ñññsçÎMHHpwwïÖ­[ttt5ŠÿVZZš¢~ýúE¦;995hÐ@ùYi´ð÷÷/þë~~~âÿ6PÕ«W¯Ì[I)&  x‹©¿¿¿µ]äĉÊÿK¥òìÙ³jêQ³î÷µ¬{º¯s_‹¶lÕ¤Iÿôôôääd“É”ŸŸ¿qãF—‘ëôéÓüñÇŸþyêÔ©“'Ofgg«/¯D÷u¨¯¹\¶dÙv™Êc¯ d?VÝC¨PGè‚Á`0`À€ Oœ?¾¢p«O‰”û¬Ïœ9SÚ ×®]‹´ÍÇÇÇÃÃãäÉ“ýõWáé[·n>>88¸{÷î%~ø¬Y³}ôQkc’»»»Ï¯¿þj} ͦM›îܹӸqãâ¿k0”;+ÿõ¯¥¦¦*322”Û´Ÿyæeʘ1c„o¼ñ†µƒüùó磣£oݺկ_¿r¼†-„xë­·¬ÉãÔ©S#FŒP¬¶;vlAAÁرc­7[ܸqã_ÿúב#Gš4i¢ò.]•ë^.ËR¯   ''§¼­tŠ2eJNNÎßþö7ëtån’¤¤$k0›Í+V¬P¾ÛXœ2¨ˆC¥ð6Q£lÛMå±W²íøPÊŒKÕ°mÚ´4hТE‹ РAƒëׯ_¾|YÝ©S'ël¯¼òÊŽ;"""êÕ«çè蘑‘a6›f̘Q|üp!ÄÞ½{ùå—¯¿þºpO¬©S§>¼{÷îíÚµ»téÒ®]»š6mÚ·oßkëÓ§Ïž={Ö®]Ñ AƒêÕ«?~}úÔ«WÏÅÅåøñãÁÁÁÊ ©¼X4tèPwwwWWW座¯¯oá¾ù½zõÚ»wï?þسgϺu뺻»Ÿ8q"''Çßßÿƒ>P¿8•ë^.ËRãá‡ÎÎÎV’ØØØ_txxøŒ3’““FcÏž=­ÓºuëöÛo¿uïÞý‰'ž°X,ÉÉÉÙÙÙQQQ‹-úᇮ_¿^øéçe؃åu¨Ù&*k(ÃvSyì•m›”y?Úë¡<‚#taÊ”)Í›7_²dɱcÇjÕªUdÔ’‡zhÅŠ‹-Z¿~ý©S§„­Zµjß¾ýK/½Tâ“`,ËôéÓ»víúä“OžþÔSO-]ºôã?þý÷ßyä‘¡C‡Ž1¢´¾ó³gÏîҥ˚5kŽ=zíÚµ-Zôë×/22²È<¡¡¡k×®MJJºpáB›6m:wîŽ=@ZG¨ÂÍ1P…àUŽP…àUŽP…àUŽP…àUŽPåÿ¼ëf º¶ÎIEND®B`‚statistics-release-1.6.3/docs/assets/multcompare_401.png000066400000000000000000000577711456127120000232240ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A_ÀIDATxÚíÝy\TeÿÿñkA)Á¤`ÜwqÉ“R1ø©•ærs{KݹánZz[Ýw–¦Þ”•™y»›šÞ¹¥fŠ ZCn,.좂⠊ óûã<¾7àq4å缞ø`®93ó9×9oιÎutf³Y÷c§tx2`‚#¬Bp€Uް ÁV!8À*GX…à«`‚#¬Bp€Uް ÁV!8À*GX…à«`‚#¬Bp€Uް ÁV!8À*GX…à«`‚#¬Bp€Uް ÁV!8À*GX…à«`‚#¬Bp€Uް ÁV!8À*GX…à«`{¥ ¨"ëׯÿî»ïΜ9ãììܽ{÷©S§º¹¹É,ÿÊ+¯?~¼\£»»{\\œÒ«  MÇO?ýôË/¿¬Q£FûöíÓÓÓ7nÜxúôéåË—;99Ýë%NNN~~~ek×®­ôª(Fg6›•®áñJNNîׯŸ‡‡Ç† <==…³gÏ^¾|ù°aÃþñTú’ëׯ·oß¾OŸ>ÑÑÑJ— ¶?Æñ»ï¾+))™0a‚”…Ó§OwuuݱcGIII¥/ÉÈÈB”;Ü q¶9bggliÑëõݺu»|ùòï¿ÿ^éKÒÓÓ…¾¾¾J× "6Ífó™3gžzê©§žzªl{`` "33³ÒWIÁ1'''""¢}ûöÝ»w5jÔü¡ôÚ(ÉÆ/Ž)((0™L/jquuB\¹r¥ÒWIráÂ… 6ìÔ©Svvöž={öîÝûÞ{ï 8ð¾j0”^oðx%''+]‚l<8 !jÔ¨Q®½fÍšBˆk×®Uúªœœ''§I“&EDDH-9rä‡~Ø¥KŸû~®6¿Ljf0Ø(jÃFQ'Îö/š|âðŸE…4{ÈÆOU×®][§Ó”k¿yó¦ø¿ãŽ-[¶,!!Á’…;wþË_þRXX¸{÷n¥× #i$TÊÆƒ£½½½««kÅ#‹×¯_BX®³¶FPP"%%EéuP†G!„——×åË—¥¤h‘šš*=Uqy³Ùl2™*ÎÔ£×ë…µjÕRz…”aûÁ±gÏž&“iß¾}–³Ù¼wï^77·Ö­[W\>==½I“&ýë_˵F¡á1 4‚ó*dØ~p|õÕWíìì>ûì3i\£bñâÅyyy/¿ürµjÕ¤–[·n¥¦¦fee !üüüÚ¶m¿~ýz˛ƥK—úøøôêÕKé€Çˆ1Ždhâê¹¥K—Î;·nݺ]»vMOO?tèP“&M–.]j™¦gûöí'N غu«")))222//¯iÓ¦þþþÙÙÙ ÎÎΟþyÇŽïûq\þ€mÓì¾Þö8 !FŒ1þü† nß¾ýÊ•+Æ [¾|yÅÉ-5j´iÓ¦~ýúåååíܹóÚµkýúõÛºu«5©ÀViâˆcÓì_!ló8ÖÐì¾^GV"5Ap€Uް ÁPJ§Ó)]õ"8J1Æ€ ‚#¬Bp€UŽ€RŒq ƒà(ÅG2ް ÁV!8J1Æ€ ‚# cÈ 8À*GX…à(ÅG2Ž€RŒq ƒà«`‚# cÈ 8J1Æ€ ‚#¬Bp€UŽ€RŒq ƒà(ÅG2ް ÁV!8J1Æ€ ‚# cÈ 8À*GX…à(ÅG2Ž€RŒq ƒà«`‚# cÈ 8J1Æ€ ‚#¬Bp€UŽ€RŒq ƒà(ÅG2ް ÁV!8J1Æ€ ‚# cÈ 8À*GX…à(ÅG2Ž€RŒq ƒà«`‚# cÈ 8J1Æ€ {¥ øf³911ñÀÉÉÉyyy¹¹¹Õ«W÷ðð¨S§N»ví:vìøôÓO+]#€F©%8fee­\¹rÓ¦MW¯^­tÕ«WëtºfÍš 6,44ÔÁÁAé’´E§øY‰œœœ9sæìÚµKѪU«Ö­[·lÙÒßß¿víÚµk×.**ÊÏÏÏËË;uêTBB‘#GΟ?ïîî>jÔ¨!C†ØÙ©ñT»Á`HNNVº x:òû@ý4»¯WøÄòåË?ýôSoo‡{zzÊ/o6›=ºyóæmÛ¶|øá‡ Ö_)Í~™ÐÍîëŽ/¼ð¸qãúöíû Çóòò-Zäää4uêT믔f¿Lh„f÷õ G“ɤ×ë•zùc¢Ù/¡Ù}½Âcåcß… òóóúå€Å<Žd¨ââ’âââ~øaÔ¨Q{öì)Û¾k×®N:…‡‡ùå—ÅÅÅJ— ¶+cÈP~:žÜÜܨ¨(£Ñ(„èׯßÿgoo6›““““““wíÚõé§Ÿúúú*]/€F)|ÄÑd2EDDƧŸ~zìØ±íÚµ+ûì!CvíÚ5mÚ4—“'ONš4©¤¤DÙ‚4Káà¸iÓ¦sçÎùúúnܸ1**ªâa|}}GŒ±}ûöºuëž8qbãÆÊ ¶1Žd(·oß.„˜4i’···Ìb3gÎBÄÆÆ*[0Ø6Æ8¡ppÌÈÈBtïÞý¾KvêÔI§Ó¥¥¥)[0€f)/]ºäâââäätß%œœÜÜܲ³³•-@³ŽO?ýô7nܸqß%¯]»våÊWWWe ÛÆG2Žõë×7›ÍÇŽ»ï’ Bˆzõê)[0Ø6Æ8¡pp B|òÉ'wîÜ‘Y¬  `îܹBˆÞ½{+[0€f)ÃÂÂ|||Nœ8ñÖ[o]½zµÒeòòò&MštöìYww÷r3„ Êè?+‘0bĈ[·n9;;2¤}ûöõêÕóôôÌÍÍÍÈÈ8räÈêÕ« ¿úê«N:)Ýc÷§ÙŸ°:òû@ý4»¯WÅ/ˆÓ§OO:511ñ^ øùù}üñÇ-[¶¬úÚÎ;×§OŸï¾ûÎúO×ì— O€²×=¨àÿ><¡4»¯Wþ^ÕBˆ€€€M›6ýüóÏÛ·o?uêTNNÎíÛ·«U«æííØ»wïÐÐP½^¯Hm+V¬Pº{€G¤ÜÕ²ÒCâ#ÀjªŽBN"=¼~ýz­Zµœâúõë)))[¶lY»v­Ò}< ÷úߤӑVRKp,ÇÅÅEÙÂÂÂ.\¸ t7ˆüß`dG”ÁG2¾ªzÆ &“éá^{þüù_ýõ16{öìE‹-Z´¨sçΊõðH0Ÿ3©€ …ƒã矺eË–¢¢"ë_•••5{öì^½z;wî1Ö¥K—ž={öìÙ³nݺÊv€J(|ªzûöíÑÑÑÓ¦Mûç?ÿú /´lÙ²V­Z•.œžž~ðàÁ-[¶üöÛo>>>Ÿþy·nÝ”­ÿ^ C¹m^{U8œöHÐÖàP Uw뚥pptrrzûí·_yå•ÿüç?›7o^»v­N§{öÙg}}}ÝÜÜ\]]‹ŠŠòóó/_¾|òäÉk×® !üüüfΜùòË/;99)Ý{÷DL¬:ìËïËÊPHOBÁG 2wëš’ª¸8& àƒ>˜2eÊŽ;8pèСӧOW\¦_¿~ÁÁÁ:uRðjkÀ6ðHd¨"8Jj×®=xðàÁƒ—””\¸páòåËyyyNNNO?ý´———â×YhœŠ‚£…Ò…6Álf#à‘PøªjUAþä#§&QcÈ 8ÚPi:4›I(‡1Žd¨ñT5€Ç‚@øs8â«0_×£g0˜ÇÀŠykhv_ÏG@)R#jãh6›ccc³²²Z´hѺuk¥ËÐ.ÕÇØØØ… †„„DEE !fΜ¹aÃé©Áƒ¿ûî»L uª>räÈèÑ£“’’JJJ„§NÚ°aƒ««ë!CêÕ«·fÍšØØX¥k[Æçd¨ëˆã×_m6›g̘1xð`!Ä®]»„}ôQÏž=ÓÒÒz÷î½zõêž={*]&Ø,Æ8¡®à˜’’R§NˆˆéááǺví*„ðóó{æ™gÎ;§t¥®SÕW¯^uww—~...>uêT³fͤggç¼¼<¥kÐ(uGŸ¬¬,“É$„øý÷ßo߾ݡCé©’’’¬¬,¥k[ÆG2ÔÛ·oõêÕ˜˜˜ìì옘!D·nݤ§–.]zåÊ•gŸ}VéÀ–1Æ€ uÝ! ;;;,,ìÖ­[ÒÃæÍ›¯_¿^§Ó 8ð?þBüç?ÿ騱£ÒeÞ‡fg“@#4»¯W×Ǻuë®[·.88¸N:]ºt‰ŽŽ–Nšäå幸¸Ì™3Gý©ÀV©ëˆã½dgg{{{ÛÙ©+æÞ‹fÿ `¸W5` ÍîëÕ5Ͻԭ[Wé@Hd¨.8îØ±cùòåiii÷úåuèÐ!¥kÐ"uÇÝ»wO˜0AúY¯×+]J©+8.Y²D1|øðÑ£G»ºº*]hcÈPWp}º¤¤DéZPžŠ‚£^¯ýõ×óòò>ýôS¥kâ^Õd¨kŒchhhffæâÅ‹:Ô§OŸzõê988”[&88Xé2Àf1Æ€ uÇž={J?;vìØ±c•.£Í‰Ú§®à®t ¨œº‚ã¼yó”.4yÈPWp´¸páBbbbzzúÝ»wýýý7nìãã£tQ`ûHd¨.8æççÇÄĬ]»Öd2Yõzý Aƒ&L˜Àíd”¢®àh2™Fe4CBB|}}õz}ZZÚž={V¯^˜˜¸jÕ*îa  uÇeË–ÆV­ZÅÄÄxzzZÚsss£¢¢ŒFã²eË"##•.lcÈPÑàBˆ}ûöétºèè販Qááá±páB;;»_ýUéÀ–‘ÈPWpLJJòõõõöö®ø”——×3Ï<“˜˜¨t¥®àèèèXXXx¯g œœ”®@£Ô7n|ñâE£ÑXñ©'Ndee5jÔHéÀ–q¯j2Ô¥;ÇŒ7®ÜXÆýû÷;V¦t`Ëã@†º®ª Ý»wïæÍ›ßxã ooo???!Dzzúùóç…aaa/½ô’Ò5h”º‚£bΜ9:tˆŽŽÎÉÉÉÉÉ‘=<<&NœØ¿¥«Ð.õÎ×uéÒ¥´´4³Ùìçççåå¥t9À`0$''+]< æq¬¡Ù}½êŽ8ZxzzzzzšÍæØØØü±E‹­[·Vº(°q¤F2Tccc.\%„˜9sæ† ¤§üî»ïrÅ€"ÔuUõ‘#GF””TRR"„8uêÔ† \]]‡ R¯^½5kÖÄÆÆ*]#€F©ëˆã×_m6›g̘1xð`!Ä®]»„}ôQÏž=ÓÒÒz÷î½zõêž={*]&Ø,Æ8¡®à˜’’R§NˆˆéááǺví*„ðóó{æ™gÎ;§t`ËHd¨ëTõÕ«WÝÝÝ¥Ÿ‹‹‹O:Õ¬Y3©ÅÙÙ9//Oé4J]ÁÑÇÇ'++Ëd2 !~ÿý÷Û·owèÐAzª¤¤$++ËÃÃCé4J]Á±}ûöW¯^‰‰ÉÎÎŽ‰‰BtëÖMzjéÒ¥W®\yöÙg•®l3W¡®AÐÙÙÙaaa·nÝ’6oÞ|ýúõ:nàÀüñ‡â?ÿùOÇŽ•.ó>4;)(¡Ù}½ºŽ8Ö­[wݺuÁÁÁuêÔéÒ¥Ktt´ô·o^^ž‹‹Ëœ9sÔŸl•ºŽ8ÞKvv¶···ºbî½hö¯4B³ûzuMÇs/uëÖUºÐæq Cáà¸jÕ*!DPPP@@€å¡¼¡C‡*[3Ø0R# ÿei0„ï¿ÿþk¯½fy(OýG†5{øÐì¾^á#ŽQQQBˆæÍ›K§L™¢t‡ rŒeyô4ûWÀGÀšÝ׫ë:嬬¬ŒŒ ¥«í"5¡®«ªCCCïܹg¹c5TB]G¥k«SRR”.å©+8þãÿprrúâ‹/nß¾­t- EÜ«€ uªöôô\°`Á¬Y³ÂÃÃÃÃÃ4hàââRn™àà`¥Ë›ÅG2Ô{ôè!ý——Sé2Ú¼ˆ @qê ŽáááJ—€Ê©+8Λ7Oé@Әǀ u]#oÚ´iÏ?ÿ¼ÒU€-#5¡®#ŽBˆüüüŸþ9==½\{aaáO?ý¤×ë•.@£Ô/^¼8xðàììì{-0tèP¥kÐ(uÇo¿ý6;;»}ûöaaaÛ¶m;|øð¬Y³œœœ’’’V®\9tèÐ3f(]#Ø2Æ8¡®à¸oß>GGÇE‹¹¸¸<ÿüó]ºtiذaçÎ…þþþÿú׿(Ý]ð8ÈP×Å1999~~~Ò¤ßnnn'NœžzõÕWÝÜܾýö[¥kÐ(uG!„]iI 4HMM•~ÖëõƒáرcJ Qê ŽuêÔIKK»uë–ô°~ýúGµ<«Óé²²²”®l÷ª C]Á1$$¤°°pÊ”)gÏžB´k×.##cÿþýBˆ¼¼¼ß~û­nݺJ×¶Œ1Žd¨ë☈ˆˆ;wÆÆÆšÍæ/¿ü²[·nöööcÇŽmÓ¦MRRRAAAhh¨Ò5h”ºŽ8º»»¯ZµjÒ¤IÍ›7BÔ­[wæÌ™EEEqqq—/_îÙ³çˆ#”®@£ž€ùºnÞ¼yüøq///¥k±ŠÁ`HNNVº xÌãXC³ûzuª.§¨¨¨¸¸¸fÍš:uRºÐR#j ާOŸ^´hQBBÂ… JJJêÔ©Ó¬Y³¨¨¨FýÉw>wî\Ÿ>}¾ûî»–-[Ê/ùÊ+¯?~¼\£»»{\\œÒÝ  ÕÇ%K–,X° ¤¤Dáèè¨×ë/\¸páÂ…ØØØI“&½ñÆæÍW¬Xaå’NNN~~~ek×®­t÷(F]ÁñàÁƒ ,ÐétõêÕÓét.\X±bŲeË>ùä“fÍš=Äiëëׯ§¤¤lÙ²eíÚµV.íÚµ>}úDGG+Ý%P¥ã@†º‚ãêÕ«KJJ¦OŸþ·¿ýÍÒX§N©S§úøøüóŸÿ\±bÅCǰ°° .X¿|FF†¢ÜáFÐR#ê ŽÇ¯^½zDDDŧ<þüŠã­1{öì;wî!V®\yàÀû.Ÿžž.„ðõõUº?TDEÁ±¸¸8''Ç××W¯×W|ÖÎÎÎÛÛûúõëñÎ]ºt‘~سg5ËKÁ1'''"""11ÑÙÙ¹I“&#G޼ï%56LEÁQ§Ó9;;gff^½zµâe(ׯ_OKKëÞ½{T’™™)„X¸paÆ ;uꔽgÏž½{÷¾÷Þ{´æ C¹mÎöà‰ÃG ¢Š»uÍRQpÔëõ X¹rå´iÓþýï;::Zž***š>}ºN§‹ŒŒ¬‚Jrrrœœœ&Mšd9i~àÀ‘#G~øá‡]ºtñññ¹ï;<¡H@Ewëš’* ŽBˆ!C†œûÈk0›Í%%%:ÎÎήl»tÉN­Zµí!x¼ã@†º‚ã¼yó”.A¤§§÷êÕ+((¨ÜmfŒF£Ðð˜Aj ÃîÏ¿… ¸uëVjjjVV–ÂÏϯmÛ¶ñññëׯ·,`4—.]êããÓ«W/¥‹P†ºŽ8J®\¹’••u¯¿zÇdŠ{÷î8qb@@ÀÖ­[…³fÍŠŒŒœ9sæš5küýý³³³œ?úè#'''¥»@ê Žùùù“'OŽ‹‹“Y¦ fºiԨѦM›,XpðàÁÓ§Oׯ_¿_¿~ãÆóööVº‡àñbŒ#êú1sæÌõë×ëõúfÍš¹¹¹étºŠË|ùå—J—yƒy°ašÝ׫ëˆc\\œ^¯_¹re›6m”®ÿC]Çܸq£U«V¤FRWplÒ¤IAAÒU€vU:F$ê Ž/¾øbRR’üÅ1€ÇGUߨºÆ8:ôÔ©S#GŽŒˆˆh×®]5*.¤t™Z¤®àxõêÕ3gÎ-Y²dÉ’%•.£Í‹˜§®àýÇØÛÛ·iÓÆÍÍMér@s˜Ç€ uÇøøx‡uëÖ5iÒDéZ@‹Hd¨èâ˜âââÔÔÔ–-[’THEÁ±¤¤¤Zµj×®]SºTBEÁÑÁÁ!,,,%%%66VéZ@£˜Ç€ uq1bDJJÊØ±c t¯éx‚ƒƒ•.lcÈP×Õsƒá¾Ë¨:ÍÞøÐì¾^]GÃÃÕ.•SWpœ7ožÒ%€¦1#ê Ž.\HLLLOO¿{÷®¿¿ãÆ}||”. l©€ ÕÇüüü˜˜˜µkךL&K£^¯4hЄ \]]•.@£ÔM&Ó¨Q£ŒF£££cHHˆ¯¯¯^¯OKKÛ³gÏêÕ«W­Z¥×ë•.@‹Ô—-[f4[µjãééiiÏÍÍŠŠ2Ë–-‹ŒŒTºL°YŒq CE€ !öíÛ§Ó颣£Ë¦F!„‡‡ÇÂ… íìì~ýõW¥k[Fj C]Á1))É×××ÛÛ»âS^^^Ï<óLbb¢Ò5h”º‚£££caa὞-,,trrRºFRWplܸñÅ‹FcŧNœ8‘••Õ¨Q#¥k[ƽªÈPWp”î3nܸrc÷ïß?vìX!DXX˜Ò5€-cŒ#꺪:44tïÞ½›7o~ã7¼½½ýüü„éééçÏŸB„……½ôÒKJ× Qê ŽBˆ9sætèÐ!:::'''''Gjôðð˜8qbÿþý•®@»Ô;_×¥K—ÒÒÒÌf³ŸŸŸ———Òå<ƒÁœœ¬tð0˜Ç°†f÷õª;âháééYn6GÀãFj C]ÇH~ùå—÷ßÿÒ¥KÒÃÝ»w?~ûöíJ× iê Ž%%%S§N}óÍ7W¯^}ûöm©ñÆ?þøãĉ§L™ÂŸÂJQWpüïÿûÃ?xyy}ôÑGuêÔ‘CCCcbbêÖ­»eË–~øAéÀ–1#ê ŽëÖ­³³³ûæ›o ààà 5:::¾øâ‹ß~û­½½ýºuë”®l'vÈPWpåëëûÌ3Ïœ;wNé4J]Á±zõê–¡ݾ}[¯×+]#€F©+86oÞ<;;;11±âS§OŸÎÈÈhÒ¤‰Ò5€-cŒ#ê Ž BŒ=úÀeÛûí·1cƘÍféfրDŽ1Žd¨kðž={FDD,_¾üoû›Oýúõ«U«–‘‘‘‘‘!„ SºFRWpB̘1#((hþüùiiiçÏŸ—ÝÝÝ'L˜ðòË/+]€v©.8 !^xá…^xáÊ•+©©©wîÜiذa:uvU€{U¡Æà(yê©§žzê)¥«m!5¡®‹c ZGX…à(Å€r2Ž€RŒq ƒà«(ƒƒƒÇgyغuëyóæ)Ü%¨ŒÂÁñæÍ›‡ÊÎΖܽ{Wé>íbŒ# Oô:nܸ;w !œ…ööö2/1 l ƒÁœœ¬tàqÑì¾^á Àß}÷]{{ûøøø[·n)Ý£pp|úé§?ùäËCƒÁ0tèÐwÞyGá^@êºå`ddd»ví”®´‹{U¡®àøÖ[oI?\¸p!111==ýîÝ»þþþ7öññQº:°}¤F2Ô…ùùù111k×®5™L–F½^?hР &¸ºº*] €F©+8šL¦Q£FFGGÇ___½^Ÿ––¶gÏžÕ«W'&&®ZµJ¯×+]&€©+8.[¶Ìh4¶jÕ*&&ÆÓÓÓÒž››e4—-[©t™`³ã@†ºn9¸oß>N]65 !<<<.\hgg÷믿*]#Ø2R#ê ŽIII¾¾¾ÞÞÞŸòòòzæ™g•®@£Ô ïõlaa¡“““Ò5h”º‚cãÆ/^¼XéMOœ8‘••Õ¨Q#¥k[ƽªÈPWp BŒ7®ÜXÆýû÷;V¦t`Ëã@†º®ª Ý»wïæÍ›ßxã ooo???!Dzzúùóç…aaa/½ô’Ò5h”º‚£bΜ9:tˆŽŽÎÉÉÉÉÉ‘=<<&NœØ¿¥«Ð.õÎ×uéÒ¥´´4³Ùìçççåå¥t9À`0$''+]< æq¬¡Ù}½êŽ8Zxzz–›Íð¸‘ÈP×Å1P-‚#¬Bp”bG2Ž€RŒq ƒà«¨+8;vL~üQé4J]Áñµ×^ûì³ÏL&Sŧòóó'L˜0~üx¥k[ÆG2Ô===cbb ”––V¶}çÎ}ûöݱc‡¯¯¯Ò5€-cŒ#ê Ž[·n4hÐñãÇûõë·fÍ!ÄÕ«W'Mš4nܸ«W¯FFFþðÃJ× Qj¼µÔÁƒg̘‘tîܹ¼¼¼€€€>ú¨yóæUVCaaáºuë6lØ••U«V­ÀÀÀ#F<÷ÜsÖ¼V³·!Ô®ÜIXõýöð¤Ðì¾^ÁQqéÒ¥ÿ÷ÿþß•+W„mÚ´Y¾|yµjÕªìÓ‹‹‹‡šàêêÚ¶mÛÛ·o9räîÝ»ãÆ3fÌ}_®Ù/ j•ÝSå/@eq¯jÀšÝ׫ëTµdß¾}¯¾úê•+Wš6mêééùûï¿3æâÅ‹UVÀwß}—жmÛ½{÷~ñÅß~ûí¦M›j×®ýùçŸ'&&*Ý=ܽ.øÐéׂü/R#ê Ž7nÜxçw^ýõ¼¼¼ñãǯ_¿~ëÖ­}úôÙ»woß¾}7nÜX5eH“þ̘1ÃÉÉIj 9r¤ÉdŠ‹‹Sº“< ¢!<"ê ŽR: X¿~ýèÑ£õz½««kttôüùóu:Ý;ï¼Ye¤¦¦Ö¨Q£iÓ¦e„™™™Jw€Gd Ö±Wº€ÿ‘——÷÷¿ÿ}ܸqåF4†……µoß~úôéû÷﯂2¾úê+{ûò=sòäI!Dýúõ•î$‚Pø€ã@†º~AÆÖ­[ßëY³Ù¼bÅŠˆˆˆª/ìСCcÆŒ¹{÷nll¬»»»üƒ¡b£6‡ÐB¥ÈR§¦_ûÀ=»…º‚£ ™L¦U«V}üñÇ&“iÁ‚¡¡¡÷}‰f¯´ÔÈÊ”ÌoBB³ûz…OU¯ZµJ$ ”Ê:th••wøðá÷ßÿìÙ³ÞÞÞ~øaçΕë*…)|ÄQ:öûþûï¿öÚk⇂˩š€_TT4oÞ¼+VT¯^ýõ×_ŒŒ´\amÍJió¯@¥î{БÃe0ư†f÷õ qŒŠŠBXn 3eÊ¥;D!JJJ&Ož¼k×®wß}×ÓÓS銠ŠÈP88Ž;¶ìÃ7ÞxCÙz$+V¬Øµk×!CÞ}÷]¥kð§™ÍrÉI`5uÍ㘕••‘‘¡l f³yåÊ•µjÕš6mšÒýà1›+ ˆ•6îM]ó8†††Þ¹s'..î¾SÞ<>¹¹¹NNN•^…Ó¿ÿaÆ)ÙG1Ñ Œq C]Á1 àĉ))) Ǭ¬,!Daaá‰'*>Ë…Õl©€ uýe™0|øðæÍ›ýõ×Õ«WWºœ‡¤Ù+­ÐÍîëÕuÄÑÓÓsÁ‚³fÍ oР‹‹K¹e‚ƒƒ•.@‹Ô{ôè!ý——Sé2Ú øP5ã@†º‚cxx¸Ò%€¦‘ÈPWpœ7ožÒ% rêšÇ±uëÖ2Ù1**ªW¯^J× Qê ŽwïÞ½×SÙÙÙJ×¶Lwß[{Ð0åOUïÝ»wÔ¨Q–‡Ë—/_¹reÅÅJJJÌfsƒ ”®lcÈP>8êõzËœ;ùùùÎÎΕ.Y»víéÓ§+]/€F)»térèÐ!égƒÁðÚk¯½óÎ;J€ò”ŽeEFF¶k×Né*@»˜Ç€ uÇ·ÞzKæÙiÓ¦9r$66Vé2Àf‘ÈPWpBäççÿüóÏéééåÚ úé'½^¯t¥®àxñâÅÁƒË̹3tèP¥kÐ(uÇo¿ý6;;»}ûöaaaÛ¶m;|øð¬Y³œœœ’’’V®\9tèÐ3f(]#Ø2Æ8¡®à¸oß>GGÇE‹¹¸¸<ÿüó]ºtiذaçÎ…þþþÿú׿ t™`³Hd¨ëÎ1999~~~Ò´Žnnn'NœžzõÕWÝÜܾýö[¥kÐ(uG!„]iI 4HMM•~ÖëõƒáرcJ Qê ŽuêÔIKK»uë–ô°~ýúGµ<«Óé²²²”®l÷ª C]Á1$$¤°°pÊ”)gÏžB´k×.##cÿþýBˆ¼¼¼ß~û­nݺJ×¶Œ1Žd¨ë☈ˆˆ;wÆÆÆšÍæ/¿ü²[·nöööcÇŽmÓ¦MRRRAAAhh¨Ò5h”ºŽ8º»»¯ZµjÒ¤IÍ›7BÔ­[wæÌ™EEEqqq—/_îÙ³çˆ#”®@£ž€ùºnÞ¼yüøq///¥k±ŠÁ`HNNVº xÌãXC³ûzuª®TÍš5;uê¤t  ¤F2Ô¯\¹’••u¯_^-[¶Tº@-RWpÌÏÏŸtèPŸ>}êÕ«çààPn™àà`¥ËÐ"uÇž={J?;vìØ±c•.“œœ¬t™Z¤®à®t  iÌã@†º‚ã¼yó”.4Ô@†Š.Ž€š)|ÄqÕªUBˆ   €€ËCyC‡U¶fmRx,‹Á`B¼ÿþû¯½öšå¡<õ_c0Ô_$TŠ1Ž€54»¯WøˆcTT”¢yóæÒÃ)S¦(Ý! i¤F2øËòÑÓì_!h„f÷õ\«¥¸W5G@)Æ/Ap€Uް ÁPŠ1Žd¨+8feeedd(]hcÈPxðrBCCïܹçîî®t-øê:â(ݱ:%%EéBPžºŽ8þãÿ>|ø_|ѦM›êÕ«?ª·-,,\·n݆ ²²²jÕª8bĈçž{Næ%¯¼òÊñãÇË5º»»ÇÅÅ)ÝIðq¯j2Ô===,X0kÖ¬ððððð𠸸¸”[&88øÞ³¸¸xøðá ®®®:uº}ûöáÇ÷ïß?nܸ1cÆÜëUNNN~~~ek×®­tÀãEj C]Á±GÒyyy111•.ó ·†üî»ïÚ¶mûÍ7ß899 !NŸ>=lذÏ?ÿüùçŸoܸqÅ—\¿~ýÚµk}úô‰ŽŽVºKÔB]Á1<<ü‘¿ç?þ(„˜1c†”…#GŽœ3gN\\\¥ÁQº²»ÜáFSWpœ7oÞ#ÏÔÔÔ5j4mÚ´l£tNfff¥/IOOBøúú*ÝPÕã@†º‚£ÅÕ«WOœ8‘““ãããóÜsÏååå=ô=_}õ•½}ùÕÿüóû¦F!Dzzz“&Mþú׿–k7BÃcÔ›4i’““sìØ±ŠO%&&fggW:_· ³Ù¼råÊZµjM›6Mf±[·n¥¦¦fee !üüüÚ¶m¿~ýzËF£qéÒ¥>>>½zõRº“à1bŒ#ê:U=hР]»vMž<9::ºì”Ý'Ožœ4i’â^èÜKnn®t×é¡C‡V|¶ÿþÆ BìÝ»wâĉ[·nBÌš5+22ræÌ™kÖ¬ñ÷÷ÏÎÎNHHpvvþè£þÌ5Ý ~Œq C]Áñ¹çž{ýõ׿þúëøûû !vïÞ}àÀ³gÏ–””ôïßÿAøI Oœ8QñÙ{]"Ó¨Q£M›6-X°ààÁƒ§OŸ®_¿~¿~ýÆçíí­t(F·–Ú³gÏܹsSSS--“&Mêß¿ÿqÅ`00#6L³ûzuq”ôèÑ£GùùùçÎ+**ò÷÷÷òòRº(ÐîU @†ƒ£ÄÍÍ­Q£FÕªUsppPºÐ R#j ŽÇŽûüóÏOž<™››kggW·nÝ6mÚŒ3Æ××WéÒ´K]Óñ!.\øê«¯þòË/¹¹¹ŽŽŽÕ«WÏÌÌüïÿºfÍ¥«Ð.uÇ_ýõ‹/¾Ðëõ»wïþã?ŒFã/¿ü)„øàƒ”®lÙq "¥¨+8®Y³Æl6OžÆQ¯×ׯ_Ĉ111×®]›8q"¿Ñàñáw,jŽ;v|öÙg333333•®@‹ž˜à(„ðôôB<ýôÓJ EOLp,((8uê”»»{¥÷!<Ü«€ u]sðàÁJÛóóóW¬XqåÊ•¥k[ÆG2Ô‡.ól­ZµÆ¯t¥®à(s¯ê ôëׯ~ýúJ× Qê ŽÜ«”Å<Žd<1Ǫ©€ uqBìØ±cùòåiii÷ú厪¡®à¸{÷î &H?ëõz¥Ë@)uÇ%K–!†>zôhWWW¥ËÍaŒ#ê ŽgΜ©W¯Þ´iÓìì| 5¡¢|v÷îÝ7nÔ¯_ŸÔ B*Šhvvv®®®§OŸ.))Qº”§¢à¨×ë_ýõ¼¼¼O?ýTéZ@£¸W5êãš™™¹xñâC‡õéÓ§^½zå– VºL°YŒq C]Á±gÏžÒÇŽ;vìX¥Ë$''+]&€©+8ÊÜ«ÊRWpä^Õ ,æq CEÇGj ƒà«`‚# ó8Ap”bŒ#GXE]Á1==]éP9uÍãøâ‹/úúúöèÑ#88¸]»vÕªUSº"Ðæq C]¿ Z¶lyûöméç5jtéÒ¥{÷îÝ»wwwwWº´`0¸/"6L³ûzuÇ»wï&$$>|øðáà EEEBN׬Y³àààààà¦M›ªÿŠ?Í~™ÐÍîëÕ˺sçŽÑh<|øð¡C‡Ž;V\\,„pww‹‹Sº´ûÐì— Ðì¾^]cËrttìØ±cÓ¦M[´h±wïÞ7ååå)]Ø2Æ8¡ÆàxëÖ­ß~ûM:a}êÔ)“É$„ÐëõÍ›7ïØ±£ÒÕ€-#5¡®à¸`Á‚ÇŸ8qB ‹:.  cÇŽ:ujß¾}­Zµ”.@»Ô/^,„prrz饗ž{î¹:<õÔSJ!Ô¥±5………?þøc^^Þùó烂‚š4i¢×ë•. 41Žd¨+8ÆÇÇ=zôÈ‘#ñññ¿þúëž={„5jÔhÓ¦MPPPûöí›7ono_5_½z5::úèÑ£YYYÍš5‹ŠŠò÷÷Wº‡àñÒlj,7Õ›V»¸õþeyëÖ­ßÿ] ‘'Nœ¸{÷®ÂÉÉ)!!áqôõë×CCCsssrrrŒF£½½ýºuëš5kvß—kö}xÝkv`µî¡ šÝ׫ëˆcY5jÔèÚµk›6mÚ´i³gÏžï¿ÿ¾¨¨¨°°° >:&&&77wäÈ‘'N”Z¾ÿþû·ß~ûƒ>X»v­Òxddî)!=E|ÊRcp”îsðàÁ;vLºÂºZµj;wîÞ½{pðàA''§Q£FYZ °pá“'OšL&\°aŒq C]Áñ›o¾9pàÀo¿ýf9²èåå%Ý®ºsçÎÎÎÎUSFíÚµ«W¯^¶ÑÑѱ¨¨¨¨¨ÈÉÉIé~€ÇES©Ñš[ØêttJ©+8~üñÇB½^ߦM›àààîÝ»7jÔ¨êËX¹re¹–#GŽddd´jÕŠÔ4K]Á1<<<88¸k×®...J×"„F£qãÆ©©©F£±Aƒsçεò…ƒ¡\‹6‡Ðx$¬90†Ç‡þž¬ã¸w뚥®à8oÞ<é‡ .$&&¦§§ß½{×ßß¿qãÆ>>>U_Orrò† ¤7M›6upp°þ…U_-[U•»XMq´2j¦?pOwëš’ªû‘ŸŸ³víZ隉^¯4hЄ \]]«¸³Ùœ——·eË–ùóç{xxlÛ¶­fÍšò/Ñì%úðd±&8ªl' µÐì¾^]GM&Ó¨Q£ŒF£££cHHˆ¯¯¯^¯OKKÛ³gÏêÕ«W­ZUÅ5ët:#Fdff®^½zçÎ/¿ü²ÒýxÌfNCF]ÁqÙ²eF£±U«V111žžž–öÜÜܨ¨(£Ñ¸lÙ²ÈÈÈÇZÃéÓ§—.]Ú­[·>}ú”moÚ´©ââÅ‹Jw€2ì”.àìÛ·O§ÓEGG—MB… ÚÙÙýú믻—ï¿ÿ~ãÆåÚ322„ 6Tº“à1ÒiìœÙ|Ï“Ñ2Oš¥®à˜””äëëëíí]ñ)//¯gžy&11ñq×àååe0öïß[¶°U«VÕ¬Y³}ûöJwþøcwww¥; ðè‘k¨ëˆcãÆ/^¼h4+>uâĉ¬¬¬ª™¼E‹Û¶mëÛ·ï•+W~úé§‹/¾øâ‹ÿýï_zé%¥{@1ê:â¾gÏžqãÆÍž=»[·n–öýû÷Ïœ9SV5•øúú~òÉ'J÷T5MÍãàA©+8†††îÝ»wóæÍo¼ñ†···ŸŸŸ"==ýüùóBˆ°°0ŽùÀcEj C]ÁQ1gΜ:DGGçäääääH'Nìß¿¿ÒÕh—zOI\ºt)--Íl6ûùùyyy)]ÎÐìlòh„f÷õª;âháééYn6G!ÄéÓ§”. lcÈPEp8.Z´è³Ï>3™L–‡½zõZ°`AVVÖøñãµy@…އ^¸p¡¢N:ÒÍ ;¶sçÎgžyf÷îÝ)))ŽŽŽuëÖuvv¶··wsskÙ²¥Ò= Q Ço¾ùFþÑGÙÛÛ ! ÇŽ»hÑ"!DXXØûï¿_£F ¥{ ´‚1Žd(|ç˜sçÎ !Þzë-)5 !œœœ&Nœ(ýX»vm¥/¹~ýúµk×úôé­tùP¥RRR”.€zÙþǃ:995ÊÒ2`À€:uêœyò¤Ý{ï½7pàÀû~Á`Pz]à!¥¤¤p¶°†6/u·ý#ŽÉÉÉ6l‚rÓ¦MîµdNNŽ““Ó¤I“"""¤–Œ9òÃ?ìÒ¥‹Ï}?Héuxô4tÄQa6›óòò¶lÙ2þ|mÛ¶Õ¬YÓÊ×Λ7oÉ’%3f̰¤IM±ý«ªËÒét#FŒ4hÐ… vîÜiýkƒ‚‚U ³ñàxúôé·ß~{ÇŽåÚ›6m*„¸xñbÅ—˜Íf“ÉTRRR®]¯× !jÕª¥ô:(ÃÆƒ£‹‹Ë÷ß¿qãÆríÒL 6¬ø’ôôô&Mšüõ¯-×n4¾ ³ñàèååe0öïßkiLJJZµjUÍš5Û·o/µÜºu+555++Káçç×¶mÛøøøõë×[^b4—.]êããÓ«W/¥× @¶q̱cdž r÷îÝÖ­[׫WïÒ¥KGB|üñÇ/½ô’´ÌöíÛ'Nœ°uëV!DRRRddd^^^Ó¦Mýýý³³³œ?ÿüóŽ;*½Bʰñ#ŽBˆ-ZlÛ¶­oß¾W®\ùé§Ÿ.^¼øâ‹/þ÷¿ÿµ¤ÆŠ5j´iÓ¦~ýúåååíܹóÚµkýúõÛºu+©h™íqÀ#aûGðH`‚#¬Bp€Uް ÁV!8À*Ç?ëøñãcÇŽíÑ£Gûöí‡ vøðáŠË¬_¿þÕW_mݺõsÏ=÷Î;ïäçç+]µ†œ?¾mÛ¶S§N­øÛ¥*.[¶ì¥—^jÕªU×®]###ãââ*.ÆFQ =¯,þƒ¨» ý{ï½§t O°ØØØ×_ýܹsþþþ~~~ñññ7nlÚ´iÆ -Ë|úé§üñÍ›7Û·o_XXxðàÁøøø°°°jÕª)]¾í3›ÍcÆŒIMM5 /¾øbÙ§Ø.U©¸¸8""bÆ &“)((ÈÅÅ%>>~Ó¦MvvvAAA–ÅØ(J¡ç•Å•cWR¾;ðp®^½Ú®]»–-[=zTjùã?š5kÖ¹sg“É$µ$%%5jÔ¨k×®/^”Z>øàƒÀÀÀþóŸJ—¯ K—. œ2eJÙv¶K[µjU``ààÁƒ ¤–”””   ÆŸ:uJja£(…žWÿATŽ]IYœª~x7n¼~ýúÈ‘#Û¶m+µ´hÑ¢OŸ>yyyÇ—Z¾ûî»’’’ &xzzJ-Ó§OwuuݱcGII‰Òk`ãNŸ>ýé§Ÿ6jÔ¨âSl—*öã? !f̘áää$µŒ9Òd2YÎDZQ”BÏ+Žÿ jÆ®¤‚ãÃûõ×_u:]¿~ýÊ6~üñÇÉÉÉ-[¶”9rÄÎÎ.88ز€^¯ïÖ­ÛåË—ÿýw¥×À–¿õÖ[nnnÓ§O¯ø,Û¥Š¥¦¦Ö¨Q£iÓ¦e„™™™ÒC6ŠRèyÅñDµØ•Td¯tO°'N¸¹¹Õ©SçèÑ£F£ñêÕ«5 ±üÉh6›Ïœ9óÔSO=õÔSe_(„ÈÌÌl×®Ò+a³bbb—.]êââRî)¶KÕûꫯìíËÿ¶9yò¤¢~ýú‚¢z^ ø¢ZìJ*"8>¤¢¢¢7n<ûì³ï½÷Þš5k,íõë׎ŽnÖ¬™¢  Àd2Õ®]»Ük]]]…W®\Qz%lVBBÂ×_=lذÎ;K¿|Ëb»T½&Mš”k9tèÐâÅ‹¥cöl¥ÐójÀubWR)NU?¤7n!Μ9³}ûö¹sç>|xïÞ½QQQÙÙÙãÇ/,,BHÿÖ¨Q£ÜkkÖ¬)„¸víšÒ+a› ßzë­úõëOž<ù^ ¶‹rL&ÓòåË_ýõ‚‚‚9s渻» 6Šrèyµá?ˆJ°+¹Ž8Þ_qqñ×_my¨×ëÿþ÷¿W¯^]z8gΜçŸ^úyìØ±çϟ߸qã¶mÛ^yå•Úµkëtº‚‚‚roxóæMñ”à¡Uº]„sçÎÍÊÊZ³feÌ@9l—Çç^ÅâðáÃï¿ÿþÙ³g½½½?üðÃÎ;Kíl¥ÐóªÂõ`Wr/Çû»{÷ntt´å¡££ãßÿþ÷5jT¯^]§ÓõèÑ£ìÂ!!!7nLJJBØÛÛ»ººVü³ãúõëBËEXx8•n—øøø5kÖŒ=Úr}REl—ǧÒ"ý\TT4oÞ¼+VT¯^=***22²ì¯c6ŠRèy•à?ˆª°+‘Ap¼?''§äääŠížžžW¯^ÕétåBK½¼¼Îœ9sýúõ²ãjSSS¥§”^³'[¥ÛåôéÓBˆE‹-Z´¨lû?üðÃ?lݺU°]›{ýg)))™>>}ûöíÖ­›´Û¥Š­X±b×®]C† ùüóÏïõ‡8E)ô¼âø¢6ìJä(=ùìÔ©S¯¾úêåË—¥–cÇŽµnݺ}ûöyyyRKvvv£Fz÷î}ãÆ ©åË/¿ üøã•._+Nœ8Qqº¶KU*)) iÛ¶maa¡Ìbl¥ÐóÊâ?È]‰§ª^ãÆ'MšôÉ'ŸôîÝ»]»vGŽÑét³gÏ~úé§¥e|||¦N:wîÜððð®]»¦§§:t¨iÓ¦o¼ñ†ÒåkÛ¥*åææfdd899 :´â³ýû÷6l˜`£(‡žWÿAž\ÚÜ(Ç?åÍ7ßtww_¾|ùÜÜÜzöì%M÷o1bÄÍ›7oß¾ÝÛÛ{ذa&L.ׇ‚Ø.U&++KQXXxâĉŠÏZ®låÐó â?ÈMƒEg6›•®O.Ž€Uް ÁV!8À*GX…à«`‚#¬Bp€Uް ÁV!8rùòåqãÆµk×.88XñÙgŸ †U«VÉ¿ê‹/¾°f1õ°r½TnêÔ©ƒá—_~‘Y¦Ü­š’úÈP™îÝ»?ÐgmÛ¶­qãÆÉÉÉJ¯ty³gÏÞ¹s§]‹-”®Euöïß¿wï^¥«x0{ƒª¿O*ö_rà±²Wº *Ì™3çÛo¿BÔ©SÇÇÇ'555&&æØ±c .trr²,–žžnÍ»mݺuÙ²egÏžõõõ0`À°aÃììJÿ»sçÎüùó_yåƒÁ ôz—/„Ø´iSݺu…=zôpwwoÛ¶­Òu=b·^S¦L¹~ýú©S§”.ÿ”Û œÚú¤â–­Ø»O#8ÂöíܹóÛo¿uwwÿôÓOƒ‚‚„.\xë­·öîÝ;þüüã–%ÓÒÒ„GŽqqq¹×»ÅÄÄ|öÙg¾¾¾=zô8sæÌìÙ³Ož<9wî\ËË–-»víÚøñã•^ïJܺuËÙÙÙ²CmÚ´iÓ¦M•.êѳÕõª¨Üµy·lÅÐZŸUŒSÕ°}‹-B¼÷Þ{RjBÔ©S'&&ÆÍÍí¿ÿýoaa¡Ôh2™233ÝÝÝeRã¥K—-ZÔ·oß;v|òÉ'?üðCddäæÍ›;&-——÷ÕW_½ùæ›îîîJ­¯Édº{÷®RŸ®òzTU l ß.hÁ6îÎ;§OŸÖëõåÆ)ºººvèÐáÆ–!\çÏŸ/..nذ¡Ì»%''—””„‡‡ëõz©¥ÿþBˆ“'OJ.\èêê:|øð*òçŸ3fL·nÝ‚‚‚^{íµM›6•”””[fûöí#GŽìÞ½{ÇŽ‡þÍ7ß”£)]µ••µxñâN:5kÖ¬]»v¯½öÚîÝ»¥>þøcƒÁPPPPPP`0Z·n-„øúë¯+^D²qãÆÈÈÈ:ôîÝûí·ßÎÈȨ´æ¸¸¸qãÆ…„„´oß>""â³Ï>+»Ë¼o=´îòŸUQ¹õ²²sòóóM&“¥s¬_ÍóçÏ'$$¼üòË-Z´ÈÊÊš9s¦Á`˜7o^¹ªŽ?n0:wî\\\,„ÈËËûä“OBCCÛ´iÓ¦M›¾}ûΙ3çâÅ‹V~g*Ý ÖUÊÕ|¯÷¯´O„F£qâĉ={ö”zr×®]r“YùÝ+»e+ö€LŸ<Äv|"¾ê@ÕãT5lÜíÛ·M&“½½}Ùaˆ’êÕ« !,{i€£ŸŸß®]»bcc/\¸àëëÛ¢E‹~ýúYb¢Á`°³³Û²eK·nݤ7ܲe‹¢Q£FBˆ”””7Λ7ÏÑÑÑú gÏž½|ùr!DݺuÝÝÝÿøã£ÑxàÀKò0›ÍÓ§Oß¼y³ÂËËËÕÕõСCüé§Ÿ¾øâ 777Ë[}õÕWß}÷»»{§N233Fã˜1c¢££ûôéÓ®]»ââbi;tèÐjÕªU¬¤¤¤dòäÉÛ·oB¸¸¸Ü¹sçûï¿ß»wo»víÊ-9þü%K–˜ÍfoooOOÏ£G>|xß¾}‹-zúé§­©ÇÊu·þ³îë¾³víÚ¢¢¢ˆˆKçXùщ‰‰“'O–]—””„……­_¿~çÎS§N-[ÀÖ­[…ýúõ³··ÏËË:thZZš“““ŸŸ_IIIZZÚ·ß~»k×®7–ݦ÷Réµþ«R®æ{½Å>BÄÆÆ®ZµÊÍÍ-000--Íh4FEE-\¸°wï޽ɬÿîÉô@Û¶m+ý’?Üv|r¿êÀãel]÷îÝ8P¶±   [·n|ðÔ²bÅŠÀÀÀ-Zþ¯þýû§¥¥Y^øïÿ;00°W¯^S§Níß¿``àÔ©S¥§þö·¿ 8°¤¤ÄúÚvíÚ|êÔ)©%%%¥k×®{öì‘Z6nÜØ¥K—ßÿ]j9þüÀßÿ}©eÊ”)RµóçÏ7™Lf³Ùd2}øá‡¯½öšåãZµjÕªU+ËÃÅ‹®\¹RzøÝwß¶k×.66VZ‹´´´°°0é-‹ÅÆÆ†„„üñÇRKnnîo¼ø¯ýËúz¬Ywk>«¢rëeeçtèСqãÆ–‡Ö¯fç· —››+½y—.]Ož•’®³>þü½¸~ýzLLÌðáÃ}||„{öì5jÔÓO?ýÜsÏååå-]ºôСCëÖ­spp(÷Â;wî!*½NÅBæx¡t¯ìE—?ÂzöööRGÝëƒ$EEEBˆºu놄„Tú>R'Ü·kÖý>뾨sè£+¿),,,&&æÇ4 ûöí»víÚ€,‡·×¬YóÁ7hР]»v!!!Íš5KMMýç?ÿi}‘å<ÐWEfΩ?Ó“·É¬üî=„?³ŸÜ¯:ðXaûΟ?çÎooï²ç¡îÞ½+Ýr·eË–Bˆ›7oþúë¯Õ«Wþùç˽„*ûª<ò~³ò»Weõüù×–¥ò¯:ð ãÛ÷ÕW_õîÝ{åÊ•eüñÇ«W¯¶nÝZ:[äèè8cÆŒQ£F¥¤¤”]Ìl6KsÔ5oÞ¼Ò7OOO_¹råøñ㥘˜ŸŸáÂ…^xÁrl©oß¾ÕªU«ô¦muêÔqwwÏÈÈøí·ßʶïÝ»wúôéÒD?^^^çÏŸß¿Ùerss÷ìÙ£×ë-Ãíÿ$ooïK—.•›“/;;{ß¾}–‡R=gÏžµL])1™L/¿ür×®]¥œ}_Ö¯ûŸÿ¬‡ðç?Ú××·Y³fçÎ;~üøÏ?ÿìëëk™Yæøñã&“©M›6åð%%%ýùš«à«òÈûÍÊï^•Õóç_[–Ê¿êÀƒ"8ÂöI—¸~ñÅF£Qa6›÷ïß/Ýip̘1Ò2ÕªU6l˜büøñgΜ‘oÞ¼ùüÃh4¶nÝú…^¨ôÍçÍ›×°aCËÁ$77·:uêìÞ½ÛrCš;wÞ½{·I“&_«Óé¤++ß~ûíÓ§OKéééÒeÚ½zõ’Z&Nœ(„˜9s¦e€üÅ‹£¢¢nß¾=hРGx+**J1kÖ,KòÈÌÌ;v¬4aµÅ¤I“JJJ&Mšd¹ØâæÍ›o¿ýö‰'š6mjåUºV®û#ù,ë•””<ª–ÅΘ1£  à•W^±´KW“$%%YÒ€ÉdZ»v­ô·å›óÇW¥lŸXãáúÍÊïÞCø3Ûц¿êÀCãT5l_PPPDDÄòåËÜ Aƒ7n\¹rEÕµkWËbo¾ùf\\ÜÉ“'ÃÂÂêÕ«gooŸžžn2™üýýçÎ[qþp!D||üO?ý´téÒ²#±Þ}÷ÝÑ£G¿ð ;v¼|ùòÁƒ›5köꫯVZÛË/¿|øðá-[¶„……5hРzõêgÏž-.. ³\HÑ¿ÿƒnÙ²åå—_®W¯ž““ÓÙ³gKJJZ·n-íËEFFº¹¹¹¸¸Hç=½½½ËŽÍïß¿||ü¦M›úõëW·n]77·sçÎøùù}ôÑGÖœ•ëþH>˵k×ÎÏÏ—¾$111þ£CCCçΛœœ¬×ëûõëgi÷÷÷ïÙ³çÏ?ÿü /´mÛÖl6'''ççç:tùòåßÿý7ÊÞýü!¶à£úª”ë+kxˆ~³ò»÷p}òÐÛÑV¿êÀŸAp„&̘1£E‹+W®{öìíÛ·ÉG{zz:t¨k×®žžžeŸZ°`ÁÒ¥K·oß~ôèÑzõêuëÖíoû[@@€ÉdÚ²eË‘#GþÌ|„_•r}b‡ë7+¿{áÏlG[ýª†ÎÊ9ÞTTTT¤×ëmzSÜÜ\NÇ92T=¾{€j`.Ž€Uް ÁV!8À*GX…à«`‚#¬Bp€Uþ?í¢›e÷/IEND®B`‚statistics-release-1.6.3/docs/assets/mvncdf_101.png000066400000000000000000001360411456127120000221320ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A€IDATxÚíy¼WÓþÿß§M(u#I"Ã¥Ae¸Eäºæî½®ârM‰º¤$)JÊ5 ¹%C“o©(®’âFdÊp*ŽÔÏ%óAIÃùý±jµÛÓgí5íµ÷çõ|xx|Χ½÷gíÏéœÏ³×{½×*©¨¨ Q)í€lqB@€G ÄqB@€G ÄqB@°Ê|PÆ®»îºß~û{î¹ï½÷ž÷ø‡zˆpä‘GÚ§ÊëΞ={æÌ™3gÎüúë¯õ¾c½zõòýéÆùŸ>ôÐC6ß"uÌF~ÆgˆÜ>§J•*{íµ×ÑG=xðàà›ló{|-‘›’ t`iýtPÌ@p‚ß~ûmÍš5“'O>ꨣ2'@>Î;>={öìÙÓ'Áê<ù䓯¿þzÚ÷—>[¶lùöÛoßxã[o½µE‹K–,Ñuesß»¼ €b£JÚ x©_¿~µjÕØãï¿ÿþÇ$¢7^yå•]ºtiÖ¬í±Çûï¿?5hÐÀæØÒzÝx***úöíûÚk¯•””¤=–àa~ùå¼}ÿý÷guÖªU«vÝuWöŒÍï]ºOÜü[ @¾Aâ@j<ñÄeÛùá‡^|ñÅÝvÛˆ6mÚôðócÎ?ÿ|vÀ³Ï>ksli½nA–,YòÔSO¥=ŠtàaÖ­[÷ùçŸÿíocϯ]»öà‡ÙüÞ¥û÷ÄÙ¿¥äˆ#®p 'œvÚiìñªU«Øß,®Þ½{³/;wîì=÷©§žbÏW¯^ý—_~!¢­[·>ýôÓ;wnܸñn»íÖ¸qãã?~„ ›6mâgy§£mÞ¼ù¦›njÔ¨ÑM7ÝD³Ç ^ó†n())ùùçŸù•””°ñ0¾úê««¯¾úØcÝc=š6mzæ™g.[¶,éõÏþsýúõûå—_† râ‰'Ö¯_¿~ýú'œpÂÀËË˽ÇļüÎ:ë¬O>ùä‚ .Øÿý5jtÞyç½ÿþûD´dÉ’sÎ9gÿý÷ßsÏ=;wîüòË/{¯,òþ«°ï¾ûŽ?žÏ#1bŸC¿w›6mzðÁÛ·oß°aÃÝwß½M›6þóŸß}÷]~@Ì÷.éßÎ_|ñç?ÿ¹iÓ¦ 6<ûì³_y啨7ßûüyçÇžïß¿üÀ¢^=é·þûï¿¿öÚk<òÈ=öØã°Ã1b„®où¥jâ·ß~c¢JoguÖøñã‰èÕW_ýé§ŸöØcöüK/½ÄtëÖ­FDtÞyçM™2…ŸøùçŸþùç .œ={öÔ©SƒWîÓ§Ï„ ˆ¨¢¢"jxI¯écþüùçŸþW_}žüùçŸ?ýôÓÿû¿ÿ»æškî¼óN‘÷§eË–üñÚµkGÍÄ%Š¥K—žwÞyŸ|ò 楗^z饗&Mš4iÒ¤Ž;Š¿«V­:æ˜c¾ùæöåÓO?ýÒK/ 4èºë®ãzñòË//\¸pÁ‚:uÒò^ rõÕWÿßÿý}ýõ׋/>ùä“CÛ¸qcÇŽßxã þÌòåË—/_þÄOÜ{ï½ÿøÇ?Ä_Qäï ãÿý¿ÿ×±cGþ-˜:uêŒ3î¹çž¿ÿýïºn?”¤ßú~øá¸ãŽûè£Ø—ï¾ûî»ï¾ûÎ;ïx¿}GœàÇ?~ü¬Y³ˆ¨J•*½{÷=¬k×®uêÔ!¢M›6ÍŸ?Ÿ?ÏÅñOúM™2…}ì•””téÒå/ùKëÖ­ÙÓ¦MóžÈxóÍ7™ Ä rÍë®»nÕªUÕ«WgÏO˜0Y^^~î¹ç2kìÒ¥ËÍ7ß|ÞyçUªT©¢¢b̘1̆ rÓM7ÕªU‹ˆFŽùÿþßÿ‹:lÆ gŸ}6S‡ÝvÛíä“OîÞ½;Æš5kÎ9真~úIüxçw¾ûî»C=´nݺ왯¿þúꫯ޴iÓAô»ßýŽ=YQQ1tèPñ÷J ;vÜe—]Øc¯ú¸õÖ[ÙŸV«VíôÓO¿òÊ+>úh6櫯¾úã?ŽÿÞ‰¼KA–.]úÉ'ŸÔ«W¯cÇŽì3›6mºüòË?üðÃD÷(20ŽÄ·þå—_þè£7n|ôÑG³¹"D4uêÔ¥K—êú6' ޤ+º1j׮ݻwï-[¶T«Vmâĉ‡~xè)U«VíÙ³'{üüóϳŸ~úégŸ}FD»îºë)§œBDsçÎeÔ¯_¿—^zi„ ï¿ÿþGÁž|ë­·|—]»víÁD®¹çž{6mÚ´R¥m¿X~÷»ß5mÚ”5²Œ9’õsüéOz饗† òä“Oþë_ÿbGr劧^½zƒ&¢õë×_ýõQ‡ÝqÇì ©Y³æ+¯¼2wîÜ9sæ,Y²d¯½ö"¢/¿ürĈ‰ÞY³f½óÎ;_~ùe—.]ø“wÝuׇ~øùçŸsËg%l‰÷_š’’’}öÙ‡=þòË/£[°`{pã7Θ1ãî»ï^²dɉ'žHD›7oþÏþÿ½|—‚ôèуå¬}ôÑHD[¶l¹ñÆÝ£ÈÀ8ßz"ºçž{>ûì³%K–¼ýöÛÜ!Ž„qÀ-Z·nZHåœ}öÙì·7žtÒI5kÖ$¢sÎ9‡殾újöGååå|^àwß}ç»fõêÕ_|ñÅ .¸àè£>à€B_7é5}ðÑ^|ñÅüÉ¿ýío•+W&¢Ï?ÿ\p™•+¯¼’)ÈO<µ4Ïœ9s؃«®ºŠÏ~kÓ¦M¿~ý|ˆ¼íÚµëÞ½;U­Zõ¬³ÎbOÖ®]ûª«®"¢J•*{î¹ìÉ~øAË{•ˆ=÷Ü“¿DÔ16l`üññãdzÜ÷ñÇgk–R‹ ò÷„SµjÕû￟õzï»ï¾·Ýv{þ¹çžÛ²e‹ÆwÀ‹Ä·¾uëÖW\q{ܲeË:°Ç«W¯64H2 æ8Þåx6nÜøå—_VTT,]ºôˆ#ŽxõÕW›6mz«Vÿý÷«W¯þøã[¶lé«S›ëöý÷ßÏ›7ïÍ7ß|ûí·—.],ÒqÚ¶mÛ°aÃøÑ&½¦+Vx¯dåÊ•‡rHÁëì²Ë.£GîÙ³'[š‡gi^JKKC_뤓N8p {­­[·ò+þàÅh"â߯† òЋ?©ë½JÄ·ß~˰3„ròÉ'³&¤ÒÒRÖ_Õ¶mÛnݺvÚiGu”øk‰ü=á´jÕªQ£FüËnݺ±¿ýöÛgŸ}õ×[‰o½o$|BÂÖ­[MŒ€¬ƒÄ€Ôð.ÇóÅ_¬[·Ž}¸~õÕW]tQÔY¾juEE“§ªU«öèу=ÿÛo¿]{íµõêÕ;ï¼óî¼óÎùóçoÞ¼¹^½zQ×d…¼x’^ÓKyy9wŸäôÓOg%ãÐ¥yÊËËÙŠ˜è1â øë¯¿ò‚ï@hUÔkzß«¤ð uýúõ£Ž:tèå—_Îz¬¨¨X¶lÙðáÃ>úèŽ;Šoð#ò÷„ÃkèŒ5j°ù©Dôù矛x+ä¾õ¾ïoq. €8G\a¯½öâ°^y啘)k¼`:wîÜåË—¯[·Ž<}3D4|øð1cÆlÞ¼ù€¸ÿþûß}÷Ýòòr®•AD>,“^ÓKÍš5yø /¼°*ŒóÎ;Oü½;v,S7#ù^‹ Êÿþ÷?ïñ/wÙe—½÷Þ;é; ŽÊ{•ˆÅ‹óNü˜ì°jÕª÷Þ{ï×_=yòä .¸€ÿ=!¢E‹±UoDHô.ùþoذ[Ý~ûí§ý­ Ùo= G›cÅLY;á„ØgÿÂ… Y#6yêÔDtÿý÷³÷Ýwße—]vÈ!‡T©ReíÚµ*cS¼&›˜HD›7onê¡N:µk×®]»v°àÃ!‡Ò§OŠèiÑ¢{ð /xŸç_6kÖ¬JƒuL¼ÿ¡ðî¢5jwÜq¡Çlܸñ«¯¾úꫯ6nÜxöÙgOš4iݺu/¾ø"MßòŠºøàƒ¾øâ þå¼yó؃]vÙ…m÷Â5”Ï e°É‘ú·€ÜqÀ¾ÿþûAƒ±Ç»í¶[Ló¯Voܸ‘­€X¹råÓO?ýéO?ýÄ˾ü#ù­·ÞRYFîš< #¢N8=7n_púôé{î¹ç^{íµÿþû'8lذ¨Y}¬—…ˆî¾ûn¾ÀøòåËï¸ãö˜Ï·3‰÷?È—_~yÉ%—L›6}ùç?ÿ™gº>>úè£}öÙgŸ}öiР[§¦J•*'œpo¯]»vð,ï÷NŽM›6]yå•l©Ëÿýï¼ ¾G¬#jß}÷eϼþúë| ì3Ï<ã[J=ÑÀÒýÖP à^¤Æ_þò¾ÝÆÿ÷¿ÿmÞ¼™}Ù·oßø\䬳Îzì±Çh{‹îñÇÏçŸí¾ûî»ï¾;›SØ»wo¶©ÌܹsU6ÃHtÍÚµk³#‡ öÁ\}õÕU«V½á†yä‘ï¿ÿ~ÆŒ]ºtéÔ©Ó|À[\ûõëÇ›©W¯Þ Aƒ ü£<öØc«W¯þñÇÛ·oßµk×Ê•+ÿç?ÿaÛ4hЀ­écï?ƒÿ…ùå—_¼¥Ø½÷Þ{ذaQgrÈ!õë×ÿꫯ6oÞܾ}ûSO=µnݺŸ}öߦϻqKè÷NzÀÏ<óL“&MZ¶lùÆo°T®\yøðáìOùúD6lhÛ¶mÛ¶m¿ùæÞÝâCp`é~ë(8_|ñŸá·fÍnÇ{,£àÕj†·N]RRÂVs$¢õë×?ûì³3gÎüÝï~Çw)ôMÿ!Ñ5ùî)ÿýïû÷ïÏ"¢:uêL˜0…[/¿üòСC§M›Æ–‰¹ôÒKo¾ùf‰7ðꫯmέV­Ú”)SXd»aÆٳgÏœ9“©CãÆ§L™Ó€¬Ž‰÷ŸÁÿÂx¯P·nÝgŸ}6¦m¥R¥J3fÌ`3¾üòËGydÔ¨QS¦Lùõ×_‰èøã÷Êwè÷NŽÚµkWªTéÿý¿ÿ÷ÒK/1kÜe—]~øa^M>üðÃùJFëׯõÕWKKK8àN{XºßzŠˆ#NP¹råzõêxâ‰?üðË/¿ÌvÚˆÁÛ[]©R%ßn¿cÇŽmÓ¦ û£C=ôšk®yûí·y-û©§žâ•Aqį9vìØ .¸ ^½z5jÔhݺ5Ÿ¸Ù£Gwß}·OŸ>‡~xõêÕ8à€3Î8cáÂ…<ð€\oÊ.»ìÂK>Ž:ê¨÷Þ{oðàÁ]»v­_¿þ^{íÕ¥K—o¼ñý÷ßoß¾½o ä{%GåÊ•ëÖ­{ÔQG <¸´´ô˜cމ?þ˜cŽYµjÕàÁƒ<òȆ V­ZµN:íÛ·ä‘GæÏŸÏ»­)ú{'ÁñÇ¿páÂ=z4jÔ¨AƒgŸ}öüùó}ˆOœ8qøðámÚ´©Q£FÛ¶m¯ºê*¾Xwð-XºßzrOIÁýFYdÓ¦M³gϦ ‘^3¯à½äˆ#¥j ÄqB@€G ÄqB@€G ÄqB@€G ÄqB@€G ÄqBTI{”(++#¢·Þzëˆ#Ž ¢&Mš¤="@n8@ö`²È`¦¸víZö€ýô`ˆ#dƒ ,†}˜âî"(‹A @À9¸/*:ŸWÕ¯%i€|¸HD%%%üqÌouE Ž*²È`ʸåÍø3•¬$è#À G°–ÚqP½@&€8€ ÔÃE¯JG)£è#@/G0….YdÄGŒ1꣖Aò Ä4£Ýä•ÑKA}$€B@@zÃEŽed0qä ~ â’’EF¢¹Œ1p_ô]Ó@ Fe‘Á”ñ§/öc_îÑðsR˜Ú"ôˆ#ÆNûˆO½$ÒGe }âáX91Ê襠>&UÆà¹h¾Äq€Ø”E† 2z êcÔDF Ð| ˆâédiÊè…é#CcÛ5»ô ÄP¤Ø9ŠÊÈ`âøÓûIwÏp¢ ÜÐG€ˆ# ˆHQz•1ødR}ï¼&tÏ Ž€bÀ…®¾.£Š5†*cð€‚ú(7'Í׈# Ÿ¤.r˜2~µ¶!û²~£/(¹>TÆàÁ¡R¨Òví½š¯(N Ž€üàŽ,rJJJ¸2z×ÇDÊ<‘;¢º2rDŠ×„€<qd7#._ÐJ¼>J+cð"d óšÐ=@ñqdÃEŽˆ2z ê£e¤@ç5)ècL` } x€82ƒË²È‰ªM„é#C£2†>Ÿt7B‘S*7XYðú@Ö8œÆ+‹ä¶s$ ƒhqG‘´RD%æDŠDäêÔ€G€‹„ºEYY™›ª¡K½Wh¾NZàŽÒGÅ6A}$dˆ#À V¢GÊüÓ‚.¨2'Ò«Ú;¯¡ä ˆ# MM[tM¥§32â•1xd¨:ØyMÛ­‘7å@È UÒ Éú,74.ÿ¼¡¸üù¨ßè ñ³Ø‘>GÔ¨Œü"º–çdJJ ‡ìoôÇAâ°„zO´#‰cIIÉòÏwr¾Öû%ÐGi×ôžNf6¼öþ‘D[ Z“Rðú€³@Ñ»€Ž â´FNA}TTFïäö-dF•‰¶½N´b"}$$.qèÇÐG~ºâÈËÓñ‡Eéc¢Út(Á+$M%ªÛ·½–Û 1ÑGHÜâЃ…Õ¹Sǘ 1¯>j ãˆq8Å ‘ÁÎk•«QÂè‘>à hŽÈ“‰­\ }°ãy"¨8£±àé¡Ý3 -=4ìtéˆ1ê‚ì½ÔGtÏàG@bŠ'þI4za¡£× é£Ä)A}Ü£áçZ<ÏÄ5iûz="=×è#éqQ ᢹ ‘Óz¿/¼ç&ÕG• ‘1é£ÁëðÕÕKÕ”d½/ÐGÒ∤Ød‘£+hô!¢z'Dªï(z.%.zÖO_ì—Ôig}¤"û+ @Z@;Q´²ÈÐ4†¥&zhäôQðøD•k_ÄzµDS9üo)H,q!¶!"cAc(>}4±XG\%BÄ‚•kñkÊ•­9¨_`,Ç@ñ’¹pÑèr<,îb$ÕG‘ 1æ\þXÎE•Q ÷èš¶èÛQîšÁ…“~롉#ÅEædÑ%%%o|Ö˜Ùz¿Õ$¦IƒÆàéÞs“V«uu^“Ž6ïÕ/(7åÑ ÒG q (@%: 4z­‘YPÕƒFß鉚¯Ý鼿pkTGzÊ£è#Ú8[.Ä4úˆ×GEkŒ9· >ºÓyÍañI}¹GÅ)4_ Ìq Wä[õÎqŒ·FGí¿CUÊÓIÏõí|­®ŒUÖoô…ʪ=Q‚«kùñO?ýT×·$*@ÈE’¦hÇDÖÈñê£Ò!%o QWF*´„¤ êñªtü]3þ…ô~ZA¥j²J¾ÃEs„Njçϳâ5%4H•Ò6{­Öû}!=¯Q$ª¬\ÇDŒ1×”ë­&¢²5û°/ÕkÖ^0ý98%Š\ÕG¹ ‘¶g¾sH½×¾âuAäªÛ¡Ia"e ^0i–É•‘Ódß/M|fAâ@(’J´Èû ò¨Xc̉ñú¨½óÚûGF;¯Éc{*ʼZ(1¾èÅ;~Ê‣y¸ŠŠ8²Fïa´³äé £Ž!c×z¯ã½Zhï‹^̹#$1@pÈb<ÒâhÚ½ÇÓöùˆÖv/ôµÎèUFæsMöýR—;ÒöèQ0b Å´;ô€Ð@Êxe‘ðA¥éV˜ÐIñ.ý(‡„qòã5¦ƒõ}áõ¹²5ûè÷hø¹„/ÚÝ3„q B'Tù$(b-hôžH}AõÒ6;]}^#…¥€ì-g÷Ødß/¤Ý±lÍ>z›¬£€>à¥jìQ°­wëü‘èý)))™¼êˆs|‹‡*Öz¢Hóµâb=Š×Œ(eô!Q¶fW¾ ­÷“wG²R°ö}€ Ž˜&Ñ´Eˆc<âï³Fþ¥¸>j·FïÝ"bç5 +#§É¾_&ºrü~ßrGBó5(z ŽAîÓâàûã³FNA}4gÞ#É#Rév^3|Óʼn *£w„ÙrGHPœ@ІzO4Ä1‘÷'Ê9¡ú(× #}";‹tÌhLt¼Ïó’AB£Gqeô/‹îHÐGP|@PBï:Çx ¾?­‘ãÕG AcðDþXÂUö¼ö.Ù£«¯™EQÅÇ–Qw$è#(&ÐU € ˜çä âÖHDìÈ£öKúåT¬qAY3þeëýV’­ÎkÖsMú”‘S¿‘Rs[&ú¬CAó5( Žˆ‚Õ¹]&‘5zñ¤¸ê²F"b_Šè£bçµ÷ MöÕ£¬TÍ®©><9wdcpè#( ŽÄYÌrÖxÎoñ³é£Fkäxõ‘ R}½ïeÕWR$¢&û~é’â~9¯î}ë)†Ž;æÑGÂï ;ÒÿÀAÒú¥9Žñ„¾?êÖü#ŠÐGéŠµÆ ›ì ËÓ+r3 ½A£øk‰6~HìÕ£ÞÌÎMV:õ¹†ä ˆ#Ûp!\„8Æ|´[£÷ÚÙ[aÄ­‘ãÕG9D¤“#¨1Êè½  w Cß4?×  7@AQã‚,úÆãÂ0œÅûþ°M¨ Y£÷`"zã³Æ&ÊÓñ0k\PÖLZ œ`Î'ÞÄ£Ë}Ñ÷Ö¹ùÑ}9âŠ×dÑ76׆äüý‘n…Id޳؉õ¥­Ñwbç&+“®Ú˜TÝ¢¢ÇDÊ轚zVJRI-9ìŽ}Í1 XÀ\õÜ`ßùY‰š¯5Z#-(k&¸p´±;f䔑_Mn$LÙ;ÀÒÖœæki Ž Ï¸.9R´Fn¾–žÔHÖÈY¸Gך8ü±â¥ÄÇ£1ß+:¬c@ó5È(Nÿ\ A¦e¥êxÊÊÊ–n=+éY¬Ð¬}6dTóµtÐH±Ö<’v;õækï¥Ø´N]WéΉé’Vy?ÝÿŒc?õ AV€8‚œ¸Cc`Ý0ŒDÝ-FJŸ>ª·ÂHœ¥qEæpÞÛ1çŽâ£´;fHùcÊø/1{Pª&Óá"HDIIɨNæ_žsà<ÐGÓÖH­ µ—§ãa=×ÜÀaA£÷™7>kÜz? îèSÛøˆQ#î¬}`ú#pŸ,ýD@y—E$Ž¡ø¬‘3 Uœ>ª4P«t^K¤†ZJÛ‰Ú®}ø‚FsG¹·Hý]rù“.ê§ú܉#Èù¨D½0› Mµ´ÂÈØ¹IƒÔe”¤íÚK¼22ÔsGö*³?i}jÓå*Ùª…ÒÐ=ÜâÜ%ßá"$*näõ1Ek$Â2ƒŒéù …Òvè¹¼íZ¼‘Ypi!iwäÊ(q›ºÈ\ÁÚ ¦?×ÈêÏÈ+E.‹(Uû(h>â‹×1˜«k³c‚«yí¼.¸ÙŒHÐ$QÍ:J¥CGõ÷ÍÍÏ»D?õÐG:HAú¹,‚(’Z#cÔ'³ô‘„ ÒhBÉŽñ¦¦­‘ EâA£ÁÜ1>eœýIëÎMP°–Ý3 u Ž 50wÄ aZÍc§ðEš¯íÔµƒú(ARg Îz” ½Ä»£ …é˜w#»kÐG"9ù)Yáb<(U3T¬1ô(BS™ Z¼ŽGeB$y6îSQF/ÁšuReL¥`ífµZñ§ú,qÆñÉ"Ü(¼9¤Û½ÇÐÎú˜n¸>ªgµ‹#yÜQ:e„;2´üÔ£€¬Qì¥êO?ý´[·nS¦L9ôÐCÓKÞÀ/2 ܼF|Í×éZ# ¯µX#·º£ö_®ËYÍš\-LßöàÞ;ç¦`íÍ×ÀÅ.Ž?þxÚCȨDä¬Q$näxõ1)&:¯ãõQ¯5ÑìOZkqÇ£ö_MÛý[ú"ºd¼¾¨xËYÓiŠTËËËW¬X1kÖ¬§Ÿ~:í±dÈ"Ђkô’¨ùÚ~ç5©mÊÇ®ŒÝ‘+#ù©Mß’ ¹c¼/æ5tô}æ(RqìѣǗ_~™ö(² *Ñ@#ö­‘’4_g¨óšá }H»ãQû¯–«ÔÛ¡óÅx ÀE*ŽÃ‡߸q#Mš4éµ×^K{8™á"0A*Öè%fëB²ÞCÃÆÐ¹É[*##À¤îè }£M7tä_Šûb1„Žè#ÐK‘ŠcûöíÙƒ ¤=×,£¤nœP}L«‡†¹#I­Ú#èpÌ©P«uŒ2rRqG9e,Z°ó5ÐE‘Š#(~¿g1a‰é>ôîy-®"A£v|Lô(^›¶æŽÁzô-ñïQÐ| Ô8‚ \–)))IzŠQkäŒúàd¶îcR Ô¸^ƒëc¼TIX#'´l-4Ú$fþâ½w¾¢å‚¤¡cQU«ƒ ~ ¤8;E%%%W,;ˆ´zŠ<­*1H( ÞOµ[#'¦r¨<…×¥•ÑPèÈnÅh@Çb²R‡[# ꣜5ª'”‚Í׿¬‘Z¹V }ð)*)£FwLÔ"ÐQè#HıˆÀ´Eà^käxõ‘™–5z‰i¾6moåZ£5Ñ©M—?¶âØ¿5O• DŒ©€î Ä1ç \îÀÿ6­‘ÃÿÈ@º`œ >Z³F¯\ë‚Y#=¶âØs|-•ÐñÔ¦ËiûìR kDè¨tÏ€‚@sd¸CðochÜ$éôG¦{hâ—~,Hü>„"§3Ï;µékŠ¡#Ó5v5]$rG6’ú.s ~ ¢€8攀#ÄüÓEÐ9W,;ïÞßb Îâba§óš1ꃓ“ê£ÊÚàÌ8¹ç=¶âXwäA£õБÄÜ‘GŒ¾çG}pò-::ô8f„‹À þÓ%©5ѽ‡?Z¼ŽÁš5ò³¥ŠÖêy§6}6VÇZܱà«#bÌ ÐGàÿÌÊY—Ų²²,Û™{sÄÿ6*Z£÷IŠvŽÔgC²pT{ç5EX£—¿5CƒÆÐ *ºã9î:&ªJËÍt”Hù‰i}fë§ú Ž™!7•èlý–´L&Þ‰ºè²F^Iݽ¾Îk°FFAwL:£Q—;JDŒrâH²îqL:fö s#ê Tí4YAžþ¨ÐnÖ|íŽ5’ÖÎk¶F*4åQ0hÔΩM—K|k¤g:Ê™Ž‰@óu1qtÈ"p‡Tþ6´F/¾Õáxç5CÜQSå¬Qe²#ëãá›7ZC®EÈéEÄ11-Z´(--Õ~Y$ÿÀôÊ¢Dܘ.š‰Öîq¼óš‘Ô¾•zÜ‘pG®ŒüöåÞ:„ŽYúXT@SZZÚ¢E ö@ñR;˜ø§‹‰"u âúèxç5CÎ9RBƒ„,w0ú·ÑŽ5O)¨ö­‘#¨¾Å3A¼2"t, ¹â(÷Å‚$d¸ƒ¿iY#'jçkérsRDö¼uGÅ ‘Á¶œf/ô·æóŒ†ŽŽ¤Œ>:¦ ×ǵk×6jÔ|yÿ´ÒFP1m1”,®=a CoŽýº$G½Öz0{àNç5…­Ú£Ë}¯> •w¤ÀêkTwG6oòæ÷{ÜÜf–ôE,#:2Ydœ¿¤=yÌ#i=·@³Ä€¬âÚ$Ú’’’î ¯¼÷ð{ȳ³Kðƒ¡C[Ëä†|·*úæ¸/‹´=n >ÿ\§ðÒk =žlu^S˜5z¹¹MáèQ®F°É:^on#:J¿]¤Ð^íýR0_|ò˜Gì|>æûWb¢»C™ 8à(úWx”5ÒΤÊÄDkS!¯Xv^¢­ ÉŒ5Òöè1Æð¤¨ErGom:»'/—Aý:@p‹ ù"#Æ9>}´ÜFô”D;_²FFLÙÚܲ;‚µi—g:‹ÑÍ.¨V§ôÑq ޤŒ·M¹þEé›þ(ŽÑ "¢F­‘ì˜l…‰'*tÌtÐ3yñü%}ž<æ‰Ðú’ÐGgÁ?§ôƒ9Žñä{BO¢÷=ð¾™{sDâF/Ïuº‡5÷1ˆ ³!Cç>Z°F/|A£w²£\Œ 3›£åÄ‘Ít4ª/™û©·w™«Ãä$ŽØ#m.âH[# 7_»`–>ZÛóšcbE–;òëËJº`­ˆÍÅtÐü›.ü GéGÌ’3Yä$µÆPøB»g±FN¢¹¡HÇDts›YÞù h5M»¨¥Rž–›éÈ6ø¾¢å‚¤¾(]­æ@_Rõk€8 Ÿ¼Ê¢ Þ¸1ˆ–æk—;¯I“5Ñ€wþ¤Ë´š7à?:lšÊE섎ÌÉúÎ.¡-2ЗtÁûŸ.G´Q<•,•"u ⋇kÁZç5鳯mWSvGæaÛ"Ìwþts›in†Ž>_ä¨Ç‡ê@_ÒïZ@P¢ÃE-Eêº/¼’µÎ$;g;¯I·5ªÃ‚ÆžQsG¡#SF½j(§›ñëò@_Òï¿} Ž$¦e‘#a‚qcèñ‚ÅëtgCÜöÚ„5J‡ŽAkL_è1:ô%]нd,Ç£,ÇOvמ°ð[Éý7ÇP‘:þx@R„A:ÕCã[¸ÇtÖ8ê°îè-OG]M¥`-½4—EJè‹Ò+ì$=+ÑöƒIQ¸ÿS¯B*wƒ7 Gâ(æp1ˆikŒ"&€tÊiçô‘º•+Ôâ¹£kA£w`ìËc¢]dÐ|:€qÀd1ÓSI@4Õ·.´s ›ôûh^£ˆ; Z£Í™ŽÜÿøêeDôÌqH¿]Î}I¼ÿ†€8° ̉ÁòÔÆx¤·.´Æ½‡?Õ{é_‰èæ6(aî(Ñ ãŽËÓÁK™î°fCb¾Èùã«—=yÌv–f´Ü‘ }I¼ÿÚ8‚¢á¢!ÌY£—î ¯L´ô£µ„’Y#q}T1éêPw´_žŽC•1+$ªV¾¤ Þ 9F?hމ'õ™à.ËbêoN(¦6*ЦÈÎ×ö­ÑË£GŽÕWÞá½2IƒÆàu4vÉøªÒ1sÜùKuU«ƒ ýJ¼ÿâ@A†A%Ú^k$"öXDűOŠ7_klˆ‰§÷Ò¿²Ž-ø¬±÷Ò¿Ž:L5t/Xû”Q›ëò8ô%]°u¡G1.¦HŒ>¦8µQä%õÑš5Ñ£GN`¢3ê°GÔ›©ƒcÐâŽѨŒöqV7¡/é‚î™x Ž @-ã‹}õѵ"uÔññúh¡¢ÍáÖHDç/é#펣›FÛ[¶M:TÆ?¾zªÕ*@_Rp(Gà.øw*Ä[#G¥xn<ºv…†˜äܱà¤FC¡£é”1Ç»ÈÈ}I¼ÿ> ŽÀ-.f‹Cgz÷Ô[yÿ²ˆÞ9Òyµv8êEj/IÝQ°Fݽ¡cReDè¨èKºàýç@Aú@ÝA0nä¼{ê­Þã µ»/¼’u^S}Ôk qw´Ü@ÍÜ‘œŸË˜‰øPèKºàý'ˆ#HT¢]CÑÉ@óµåxR0}4a 掻FORkT Ù4J²krÕj9²¨›Ð—táïq¾ùG`ö›¿ï$©5Æ¥Žw^“Xóµ9kdÄ·ZËeÒî8ê°iüýyæ¸{$Ü1—Õê'y„ˆìW«} ù¤ÄÇW‰.Ú¥åŒ`ÜèçŽLm9>FM[#'´lm³BÍ‚FÓ⃃ :2_$¢ƒg !¢{MëÍñ‚æk`™œˆãÔ©S§L™²jÕªêÕ«wêÔ©ÿþuêÔ‰9þ·ß~›0aÂóÏ?_VVV§N6mÚ\qÅÍš5Kû>ò¦-f õ"u^}4Šöx2éÊá1$µF†Ï­1Qèè Õq?tŒÑM.‹´Ýõk`‡<ˆãرc|ðÁ5jyä‘«W¯ž>}úÊ•+'NœX­ZµÐã·lÙò׿þuÙ²e 6ìСÃ÷ß?oÞ¼_|q„ GydÚw“mP4É"æ¬ÑË¡³q},(%îÄ“¾µ{$ÔMÎÜ­e1Ac÷…WÊU«³ˆ/\ åàCR¯V>Ód^KKKÇW¿~ýiÓ¦Õ«Wˆ†>qâÄÑ£G<8ô”É“'/[¶¬[·n£G®R¥ ý÷¿ÿíÝ»÷ AƒæÍ›—ö e„‹ .š‚;_;ÛymçíòÁÜQ‹5Æ‡Ž©×¦ƒØ_Бéx¸Xè#0GæÅqÊ”)[·níÛ·/³F"ºþúëgΜùüóÏßxã•*U ž²lÙ2"úë_ÿʬ‘ˆ~ÿûßtÐAË—/ÿî»ïêÖ­›ö=eÈbn07†¯qëB‰ST^âÑ#ï¡$¹£JÜÈxò˜Gþøêeù€Qw¬MK‡Ž.W«óä‹> À™Ç¥K—VªTéøãçÏT®\¹cÇŽ³fÍZ¶lY»ví‚§4hЀˆ¾ûî;þLEEÅ?üP©R%®’ T¢s†"uZÖîIeÏkA}ÔeFïÎÁ Ñ‹¡Ð1T%š]ܬVû@ó5ÐK¶=©¢¢bÕªUuëÖõń͛7'¢5kÖ„Šã©§ž:qâÄáÇW¯^ý°Ãûþûïï¿ÿþµkמsÎ95kÖLûžœá"FD4}Ý3ŽLmŒ‡ëcŒ;êµFC¡£DL¦CÇø™‹ÏòaÏ¡9 9h¾ºÈ¶8®_¿~Ë–-µk×ö=_«V-Ú9SôÒ¢E‹Çü /¼ð ù“½zõ8p`Ú7ä Åb •"ulëB"bS `zE³ûÂ+£¢GY£vw$‡ƒF½ˆtº¨_E²-Ž6l ¢5jøžß}÷݉èÇ =«¼¼üöÛoÿå—_ZµjÕ¦M›o¿ývñâÅ3fÌ8æ˜cN<ñÄ´ï)MPË(œ²FŽ`÷ÌöcÒï¼­\›«PërÇGLÇåBGé]dìøb&ªÕA @šl‹cíÚµKJJÖ¯_ï{þ矦í¹c¼õÖ[×_ýßþö7öÌ_|qî¹ç^sÍ5Ï>ûìömYá"pŸhœþèTçµ·ríø¼F¦Œ]æ_CDÏu+÷º¼.W%êÎù®V> ²-ŽUªT©U«V0Y,//'"Þgíeݺu ,8ðÀ¹5QÆ ÿñ 2äÿþïÿ®½öÚ´oË8Å"ǵ¸1êx][Ê’^¹V¡ 5ª„Ž9)cæ(:¢­ô$"ÛâHDõë×_µjUyy¹·¯…ýÔ¯_?xü·ß~KDûï¿¿ïy4~ýõ×ißAP‰äž5D½ùÚ¦hv™͓nj• ³F9w Zc—ùרõ¶È8Òì’Ñjµ4_A2/Ž]»v---]´hÑ)§œÂž©¨¨X¸pa:uÚ¶m<~ÿý÷¯\¹òÊ•++**JJJøó¥¥¥Dtà¦}CšA¸¼$µF Ц´>Z³Æç:ÝÃÌLÎÍU¨½åé|`4_,¶jµ4_ƒ‚d^Ï:ë¬|ðÞ{ïíÔ©ë‰7nÜ7ß|Ó§OŸªU«²c~ùå—uëÖU­ZµQ£FÕªUëØ±ã‚ î¾ûî+¯¼’­¾råÊûï¿—]véܹsÚ7¤È"ˆ5/ êcZEêm](¢52˜;‘ >&µFñÐ1¾<¡Ð‘U«Ù㢵:› ~ ¢È¼86lذÿþ#GŽ<í´Ó:tè°zõê%K–´jÕêâ‹/æÇ,\¸ðšk®iÖ¬ÙìÙ³‰èÖ[oýÓŸþtÿý÷?÷Üs|ð·ß~ûÖ[omݺuРAM›6Mû†$,‚‚”””4yb{üî©©>:h ñæk S)` öŒHô(—5Џcv'5zyæ¸øcg›]òQ­}A2/ŽDtÑEí½÷Þ3fÌxî¹ç4hЫW¯¾}û²ô1”½öÚë¹çž{ðÁ/^üòË/שS§S§N—]vY›6mÒ¾•Ä`> ÄkDÄ‹è£;E3¾~íBMÁ²µJ…:Þ­1•ÐQî‹^í³fÅ\­}^ò ŽDÔ£G=zDýi÷îÝ»wïî}¦zõêýúõëׯ_Ú—á"ÐEŒ>º7ƪö§6F㎆æ5º?©1¦Zê‹ÀÐ=9ÇÜY*øâFA}Ì5r›¯ Y##tÊ£k †Ž-O›óET«õ‚îqtüÛ¨oœ,¯ƒøv¾6Š 52|S5f^w”³Æt[d˜2 ŠM Dµ:Ô¯‹ˆ£s \)Òä‰e d×$f.ġNj§rum9EcÑ£Þ 5sGr»<íƒùâ3Ç=9Ë4ÐÇ"☘-Z°E5Y†Œ9e ô_0€tͽê£Îk£0 S±F›¡#móiCWüiˆkDµÚ4ÐÇ¢☘ÒÒÒ-ZðÇ*—B%8…Ï©PýZû&1êXè¼&Ù¸‘sÜ‹ýŸ9î]¡ã3Ç=päó7Ñü.·¹œ8òYŒÍ§ å>ì™ØQ­vèc‘q”û"3ÈDúˆpX#iÜ…®é®u^Ë¡bó»Œ=îÅþ¤Ï¹5ªc.t䣖qÇñ5_ƒüqT‚)cA}„,û(©ƒøôÑå"u>}´6µ‘Á­‘¡îŽ>k<òùœ ƒcŠ ZmþI·hÑ"Â_¾€8j JQ‰Y¡ 5r¼úèâ¢i³óšã³Fu4f•ÐÑ76óET«sO£Fš4i‚úuž€8jëø!颫HC“'Fp},hl®Å“פ7FY£tèe)†Ž¬ZÍ»1§ÀôÇ<qÔ kÁH‹m¿šµ©£ŽÜùÚ5kô"®Š 1QH¸£‰¬‘#:>×ér[Q­Nèc>¨”öª”yhÒ¤É`ðµÂ,³É#š<1âÝSoå @r²Òy}èìAÏuº‡ÙOSƒ÷b>° ­ñÈço˜ße¬¹w/ôÍy®Ó=ͧ e+ì$=½ù´¡öL¬›ÌmÞ&ÐE“&MXñ 4‰#™$ªãJ{OŒ8Zš¯ì¼6j ÁÜÑhÖÈÝOÕÁ4GC`çëìq KÄÿž5m"Çûºgœ-RGÁõQ½G$QCL¼;²HRÐ-Ìt̨2¢ZíØù:‹@pG–sJd™lëBJâvŠÚ‰:¯yÛµÞ†˜¢ÜÑNÐè%*tä¥ü(edÕê¤B)×[ ò¦?fˆ#."!‹)©£PI b:ždkUÑü.c“º£ÆÅwä¬Q{èè`ĈEyòô1@p ¹_š.©£Ži¾v¡H| î ó» µ³Æ/t´Ÿ5qPU€ºôÑq ޤŒ¯µÐÁ_”º,3ª{Æ©"u(Ï2¿ËP+[+ÆÜ­Q1tdÕjJ®Œ¨V30ÍQ裳@H¨J´Üú©cPo¾¶OzãFû²`ô¨¥HÍÜ1ݬ‘­éãxЈjuîAóµƒ@°‡‰_.©cÖÇT¬‘âÇ(wÔ5µñÕï8xƥ݆*º£\èÈ”±éä[‰hÅŸ9îŽÀ3š¯â€Y鉶t³É³L£[š ªl­×Óº»ù]Æ2eTÕjªÕÚAýÚ ŽèÇš,–””$˜á¸QÁ­ %Ð7r‚ekÖh9tôÂÍj5vµ1 ô1] ŽèÁ~²XRR²ÿÝ£‰¨ì‚ëH`jGŠÔ1ÇÇׯÓ-RIÔ1#‚¡¬± ;Æ(cÓÉ·¢Z-÷EöƒIDŸ]u]Ú÷š[ iq@ fm'ÒGSïƒ>Ë ÕGËëï£Gõ¸1Ôµ„Žñh©M)žjµ7\ä¾è}Õj£ {Æ>Gã´E7r¼úHƒt³HƒbóµµÙöÚ|ÚÐWO¢âަç5††Ž‚µi÷CGûÕêxYöA÷ŒM Žá‚,r‚ÖÈáÏ{H÷‹ÔQøöžÄt‘šÃ¬‘ˆÔÝ1 ¡cF§3êEB7™/~Øs(dÑYP¿¶Ä€8²[ñæ°f™Ú[g8rÖèCÚ Æz»d Õ¦CßT«}áâgW]—ÔQ­¶ôÑ(Gü8.‰‰ƒ°:J¢k©©£ÔGËEjï3îhyñ9k,Âju°Í…)Ꭰ †€8@ä¼,Jãýéžq§Hu¼¯xísDûEj‰ÜQÜÕCÇ¥ÝnkòĈ² ’ý‘ ­áÓM£3¡/i}ÔÄ5™«D'Š}¤Þ|­½óš”ë×z­‘!èŽ6³Ffv^KËÕê¨pQ/ЗtAóµF Ž èÈn¸˜ÔCkj1Íי뼦BdZtG k” —v»tü;!gÕj•pQ¢Zͧ9B_ÒÍ×Z€8‚¢ »²(Müg[°~í~‘:^„MTª67rbÜQ:kLêŽÁ ±É#>9g Í~j§ZdBÃEûs}úìƒXˆ#È3yú—½J‘:;Í×,³ñ„ÛØãwO½Ä¶½6gŒPw´V¡ÎVyÚ.¯¹Èõ¥¬¬,¿£2ôQˆ#ȹ µ©ãÙÿîÑâÓ](RGÁ 2^-X#ÃçŽêÖ(:ê*OûÈVµÚÎÌEqâåiÒ¤ ô%- I8‚Ä·¾¤ š¯ã8‚ P<á¢eD>bUÈTŠÔQ4žp‹“¢h&ð…Žî÷Áh¬V;2yÑ‚¡B_Rp(Gà(E²^¤Ž]ö³«®3— Úi¸i<á¶{Þ@DÖÖ—fq#é ™;²Ç6­1•jµéÎh—sJ‚¾¤ ÞGà¨ÎpÒ*R<^°ùÚ…"µ—Õ½ÏþÿaÏDNK‘š©½`-ýg¢Z½âOÛú£“®¶í²J}I¼ÿˆ#H„‹öQ±L}tªHŠHô¨×õòaÏ¡'ÜVvÁ Ž©9âÕjæ‹äɹÓ{8*[ÈH¿(ô%]|ÓO‹ˆ#HÈb<î©£H·ù:)ò*ÑÒ¸Ö“–ô”]0œ)^ÇÇ^¼•kÓÖ(:j·ÆTªÕI}ÑåøÐ©±Aò ŽcÇŽ}ðÁkÔ¨qä‘G®^½zúôé+W®œ8qbµjÕ¢N™?þUW]µuëÖ6mÚ4kÖìÕW_ýË_þòÀtéÒ%í»É6˜sc™‹ÔIÓ-R‡ÒxÂm«ÿzƒÄ¢ƒ ñ¬1©;FYcVªÕîç‹NY 4ÐG`šÌ‹ciié¸qãêׯ?mÚ´zõêÑðáÃ'Nœ8zôèÁƒ‡žòã?þóŸÿ¬R¥Ê£>zÄGÑ{ï½wÁ <øøã¯T©RÚ÷”1.jä€H{;P´Ì‚ÅkGŠÔ>¸k®øÓ IÝÑP…š­bhèÞ-„޾–;r沚¨Vû€>sd^§L™²uëÖ¾}û2k$¢ë¯¿~æÌ™Ï?ÿü7ÞjÓ§O///¿æšk˜5Ñ!‡Ò­[·™3g¾ÿþû‡zhÚ÷” ‹&())i>l ­¸ª{&þcÏ©"u)6_KÄÞSO¸-‘;JX£Hè(Ržv3tÔ1:nÎŽ Í×À™Ç¥K—VªTéøãçÏT®\¹cÇŽ³fÍZ¶lY»ví‚§¼òÊ+%%%={öô>9jÔ¨Q£F¥}7NY´ÓGÚnZ>“Ò-jëשƒ§$uG âÝ1£­0)®ª£ˆË( š¯^²-Ž«V­ª[·nݺu½Ï7oÞœˆÖ¬Y*ŽË—/¯S§Î>ûìóæ›o¾ýöÛ?üðCË–-O8ᄘ9‘Å þµj7zñ¾3§>ÞÄã ±S¤EÐM©Y£J訫Z-1Z“³\Z  ¨_-d[ׯ_¿eË–Úµkûž¯U«}÷ÝwÁS~ûí·Ÿ~úéÀ¼ù曟zê)þü¾ûî{×]wµnÝ:í{r„‹– µFNP]뉑`ÿ»GK¬Ý#ˆ–¸‘ÃÜ‘¢[­­14tÌVÖh!btÙSÙBFè#P$Ûâ¸aÃ"ªQ£†ïùÝw߈~üñÇà)?ýô­Zµê믿9räñÇÿ믿N›6í¾ûî»úê«gÏž]´¹#dÑq|ÓÅqÍ2ùñ‚K?¦R¤öÓ.£%kô¹£}k” ?9g{Üô99\6T@4Ùî ®]»vIIÉúõë}ÏÿüóÏ´=wô±Ûn»±·ß~{Ïž=k×®½Ï>û\qÅgœqÆÚµkçÌ™“ö=Ù¦l;M<¤=¨â">nôÁtd_uËÜÿîÑûß=ºì‚lõG)©ƒ4žp¯Æ2R¯Pû†úšà“s}rΠ&cîl2æN‰Ó™œY§µÊ(ì>ûH{, 3d;q¬R¥J­Zµ‚Ébyy9ñ>k/5jÔØm·ÝJJJ:wîì}þ„N˜>}úÇœö=Ùá¢;$²F"Z1¸Ÿ¯u†bK„©C‘ÞxƇ‰¸Ñ‹¹v:’±ewtÁRF9_^R¬Vû@ó5HD¶Å‘ˆêׯ¿jÕªòòòš5kò'Ù@ýúõCO©W¯Þ?üPRRâ}’U¨7oÞœö ™²˜?´7_§^ԶΤ^¤ÂÝÑܾ‚Òm‘I]]."»<6AÐ| Év©šˆºvíºeË–E‹ñg***.\X§N¶mÛ†žÒ¹sçòòò+VxŸ\¶lµlÙ2íÒ *Ñ.£7zi>lLóac>»ê:_UΩO²D×üÈÕ½!í‡ÀjÖz­±ì‚Ç9º"X|aºÉ˜;%ÊÁ.‘]›P¿ñd^Ï:ë¬J•*Ý{ï½l^#7î›o¾9óÌ3«V­Êžùå—_ÊÊÊÖ®]˾<ãŒ3ˆhРA¼íúý÷ßôÑGkÕªuâ‰'¦}C(óYÌ QÖÈñécêñ¡:Ì Wÿõ}´7î8qÜ( ¹567JÑ•õÎtTœËè.[ «V§=Šp  ŠÌ—ª6lØ¿ÿ‘#GžvÚi:tX½zõ’%KZµjuñÅóc.\xÍ5×4kÖlöìÙDtÐAõë×o̘1øÃÚµk·~ýú¥K—–”” >|Ï=÷Lû†$A%:s$‘k¾vÍ2½Ço[è¯×QtåÚ¦5rUvÁõÜѬÑ[­N½0ŠËa—Ç& š¯AÌ‹#]tÑE{ï½÷Œ3ž{î¹ ôêÕ«oß¾lEž(þþ÷¿ïµ×^'N|íµ×êÔ©Óµk×+¯¼²Y³fißJb09£è*RÇÐ|ØÁ­ M£Å2EôÑ,ndÕÝ1hÇZý×)Þ£„26sgÙU׿əriÒ@—<ˆ#õèÑ£GQÚ½{÷îÝ»ûž<óÌ3Ï<óÌ´.ÂÅb#©5òã»g,RGªö‹ÔºnÇPÖ(Ý"ÃkÜv‚Fl!“-Ð| 9ÇÜY̆ŠÔ1Äl]˜ŠÚ^}¤ä¤^k”c¬Ñ~èÈ”‘ùbY¿k­½®.[ Ü2i:h¾Gw,æÓEê˜ãCõÑ©ÏàDƒá»/&Aõ©A$ÜÑô¼FñÐÑ«Œ* Z]l ~]´@… ˆeúºgRUà×ÿì¯×™Îçâ‹Ô‰ÜÑn˜² •±É˜;Ëú]‹jµix¯÷W]çÂ2àr@‹ˆcbZ´hAD¥¥¥¯‰p±H°Ð#È6}ÜOüÓÔ…"uÔñûß=Z¤oÆèÔFAw´Fõju|è¨+hL-PïÂ@­¯Ûñ£íÈ2Ò@‹ ˆcb˜2ªë#d±ØH±H¼#Í׊l»v¡!Æ…¬Ñœ2æ¯Z-APj£d1 {¦H€8J"­ø¡&P±L‘æk—ãF/é®Ú:&µFí-2âʈjµúظ/æ[ƒøºg@þ€8*!¨;Eꢚ¯³bœ >Z‹£Ü1•¬Ñ[­ÎôÂeñ³«®Kä‹­¯“õjuöaÇ6Æ_ž€8j T!‹@kEêP4®Ý“.êé£\‘:èŽÒÖ¨%t´9ÑZµÚiŽ¡•è壓mÝ”c5jĶ.$|戣6¼úÈ6‰N{DÀì/܃ eJëcêq£f’‹„Ëf„^wLq^#ßöZÂsY­Ö8¶¢­DËî™<qÔLiii‹-ðƒ8®õÄ$¢ù°1¬óšÄôÑ5kd§l[×ú¯×ÚŸõ¨nÒ¡ãê¿ÞÐtÔDôɧô¶‰¢¡O›‹! ùâ€C¤[¤Ž?>‹Í×܉Eh½–ÄÊÖêÔ,tL1kdÖ˜cìä”LÙÿÅe±õuc–î‡iŽ¡ ù:ëTJ{ä™’’"Z1؉ OŠ–Ù|ØößgW]ç^8Æ>šŒ¹³É˜;y7 ëמּd€úEUpÌÞÁû¬±é¨;åvdÕj‰³BÿzÄÃ,Pý½ÒûKÎz\˜ÿ!bÔK“픕•¡ÿ:[ qÀ%%%múnû°yp?ò,|ŠSEê´l]h³HíƒEQ¹£.k\}É9ñRzÑ"‰É)Q‰NÔ¯3Ä0ƒÑGAR/j;Þ|eŒDek ˜5n{¡K®U7Ñ‚3Y$YlÖ¨¥ZíN›KñT«ƒ@3Ä#xãFNŒ>¦†">ßÞ3‚¸°çuhÇŒ–¸‘[#!-î÷Š…‚Ʀ£îüDªEZ®·Úý-d,„‹Óô1@ÐO¨5r‚ú˜z|¨NóacÓÇ‹ÔA¼ekÖ¨‘ÐÐ1OA£…fi_„Úúè8GÒÁ«‰pÍ2ùñŽì|-n ^¶V'Ê …Ž˜ÑHº™­º‹¹ZíÍ×Îq@3ñq£6}ǼW¿6}Çhœþ¨‚ºeÆï|íB‘:ˆý.9¼¡cRk,¶jµ 3‘SªãÛùúèGt’ȉˆY# wÏ8X¤Ž"•q#£¬ßµÛÖÊVÈã‹ÔCÇ<•§}¸¼@7,0]P¿vˆ#¯Î©cP©_KÄ“*ÖH,–“Ò;sSC‘³FéÐÑ},,Ð \úèXmHÇ>ÚôӦû9²rx(‰,“)¾ÈsZ›7ugÒU»­±É˜ÄW¾Ð·¥à:6W„/ÐÍÖè&Ó …jÒSØÆ ¬ž.HЃ.kä»gRi1d •š)^«ÇœD¹£¬‘g*Öh™øjuº3‘S:ºgÒ…ÿÉ»cï™»ú‰» EjßñÌILí©}ºcRk”›éè ¼m̪ýŠªZmÂaùÝ3ö8¯,²ßSÚãÆ¨ã]h¾V±FNŒ>¦U¤ö!=ß1ž¤î˜Vy:dØv{«uºä̱(˜þh ˆ#Be‘cÍI¬ùÚÁ"u^}$Ùúµö¸Q Eê(kT ‡ù"Ÿ¹˜r&µŽ}´Ä€Hbd1]4n]h³H?@bú£QkŒ U¬Q0t4”5ºY­ö£í,Ð-¡t°ÀL}4 Ä?‰f[ÛŒ}¸S¼ŽBÄ}´2ÆP÷Œ¡îh:kt³ÆDµZãäÅœ)ªÕê@ q€H6\LÑ9¾æk§âF9xýZdÛk EjŸ;j±Æ˜ÐQ0hÌtµÚ…m]l’3©Íh¾ÖÄ/ÎV¢%ئwm[úQDï\(R{)ºÓñ£G›S¹;ZÈ-iU«Å}ÑeÓryl 4_kâŠ]ÿôt!nŒ:>õúµ¢52´¯û¨ÒÃÜQã[ “Z£ýÐQ®ZMÉwv±,°Ø@ýZˆ#( ´‡‹.[# Lt³HJ¨>ÊÅ®áuGG–ÝÑßlÆšœ¹lr8˜æhè£ G[òT‰–#J/R‡â[¸Çþú;Ÿ ¸vÛ¾ÛýúéuÖTZaŒV«™2* \Î,8ôQˆ#È&A;7úp¼ùZÄ9Ûôqh¿¤S]ÖhiktªZí­GX`‘}L Ää›áb¶¬‘ÜùZÓqcR¸h–êNþ¢ðYcóact…Žeý®m1dLéPkÑ:Šø"ªÕÒ·ƒjµÐ|-ÄdT¢%hÓw MÁÒ…"uÔñ-†Œ)í×ÊÖê›ÄøÐâŽÌ·ÝÈ ý²8ÁQKI:†üY`žn'— ùZˆ#Èéþ‹°¤¤$ÑñŽÄÁã¯_ £GŠÖG7‹ÔÜÕIeAGÓÊhl!| ~ÄdGÂÅ’’’vÞIDoÞµ­¶/mÎZ#'^]޽˜«\ÇX£Jè¨ÑIZ­æ¾(áL¨VKßô%- ¡@£8"‹¡0}¤í™ÈÞ$T]³Æ‚„V®UâÆ‚Y£œ;†Z£bµÚtè˜Ñ®‘“Ú8 ¢¢ú’ÐGGà.Ë"½xHŸ>º7úp¼x`Éží2§}j£:îdâ¦0_D|hlЗtÁûÏ8‚ôq¿‘-Ô9A}LÝ¥÷ê£xè˜V‘:=ª 8µ1QèoiµÈDU«MÌb„ª}I_óuqqéàr¸(‡oúcÖ S/RQ\ã&QCŒ ;šÎ5V«sÐøâ²jÙBkǤK‘ë#Ä؃ÿ˜•••eè7]|Üè£Ý…w¾ùïk)IÈçNÜ<Þ…úµ„h–íwÐcˆè£ä.e¢ZÐÓ]—'éDFT«SÖŽ©qÆñý³8ÇÖHDoþûZ_ë Åvϸlœ}tªHÍOaÖHDÝ8F“:Z›×¨:–õ»ÖŽýÀM€ú5°INÄqêÔ©S¦LYµjUõêÕ;uêÔ¿ÿ:uêžûÅ_ôèÑ£K—.wÜqGÚ÷‘òW‰– ÷Íשƒ0w$"£’Ž£ÜÑñn˜O\KÛ—…O{,šÉ®r–ÞñM9æœÑ·>;äAÇŽûàƒÖ¨QãÈ#\½zõôéÓW®\9qâÄjÕª<·¢¢âŸÿüçÏ?ÿœöMäüÉ¢JÜè%ªù:q£é­ %PŒ9‚ekíEj k´V­æÊhú…´ ¿î‹Çœ3ZââÐG`šÌ‹ciié¸qãêׯ?mÚ´zõêÑðáÃ'Nœ8zôèÁƒ<ýßÿþ÷o¼‘öMd›¼NÐÖeŸ>º`ÒÇóŒŠõ ˆè‘å"uø²µº5úBÇT²F‘ju¨2¶é;æ}‡×ô¶FZ[ÈøÂEõA÷ 0GæÅqÊ”)[·níÛ·/³F"ºþúëgΜùüóÏßxã•*UŠ9wåÊ•cÇŽmÙ²åÇœö}dŒü…‹ÖÈSó5—÷ éc*Eê Qî¨+käî¨bæBGGRFtÕ0’Ê¢HµÚºg€ 2/ŽK—.­T©ÒñÇÏŸ©\¹rÇŽgÍšµlÙ²víÚE¸yóæÔ©Sçú믿ð Ӿ PT²¨=n ÒîÂ;Åç>:7ßV¿N ¢=näXh—Iw^chèèˆ2ªà¸Š£=\õk ‘l‹cEEŪU«êÖ­[·n]ïóÍ›7'¢5kÖĈã=÷ÜóÑG?¾fÍši߇Óa±Ã´5òãw¾vÜ9Qú˜z‘Ú‡ÏM¬¿£ˆÞÐñ“׊|Q­–¦à›*‹K&_gyœÐG …l‹ãúõë·lÙR»vmßóµjÕ"¢ï¾û.êÄwÞyçá‡îÕ«×±ÇûÁ¤}ÎQTᢤ֨N>›¯õ¥&à­Ö¤u}ʃûüÏ1Žte‚³A£Ëº©kl&’E‰juè#P$Ûâ¸aÃ"ªQ£†ïùÝw߈~üñǨ³ °ï¾û^{íµißC³,ª 7 m¾ÎJÜèCZMÇœƒnóÑp†Ç¬‘ˆþç˜SÓɪÕä¤2Zƾ¡Š÷DsÎè%“¯³V­ö}Òd[k×®]RR²~ýzßóly–;9räÚµkŸzê)‘õzò dчµ"u ‚õëP±F/múŽ×GkÖ¨nº®V¯ºAæo?Ååjµ³9%“Eöÿ´DP4_ ²-ŽUªT©U«V0Y,//'"Þgíå7Þxê©§þñzè¡i?5ðk"ûEê¶é㿯•p5×p³xýÑðmª÷áà~ŠÕê 5¦:®ºaÛß÷ôvÖǬDÛ‰µT«} ù$"ÛâHDõë×_µjUyy¹·Ç…ýí¯_¿~ðø•+WÑý÷ßÿý÷{ŸöÙgŸ}öÙf͚͞=;í{2ÂE혈CœûèZܘ´óÚfÜÈ­‘˜ä)»£ …Ž,hôn2žƒrhA¯¡*®Îí#ÝjuÔ¯™Ç®]»–––.Z´è”SNaÏTTT,\¸°N:mÛ¶ ߸qc~$ãÇ\¼xqÆ Û¶m»Ï>û¤}C:,ŠãB‘:êx‘âµãÖÈÑÕyM𬑡âŽQEjk¡£OAµ:ˆ`›‹k( ôÄ“yq<묳|ðÁ{ï½·S§N¬'fܸqß|óMŸ>}ªV­ÊŽùå—_Ö­[WµjÕFµoß¾}ûöÞ+|ðÁ‹/n×®]nöªF%:)VmT'OÍׯåÜQûÔFCG^›Î".W«Iw¸¨Õê ÐGEæÅ±aÆýû÷9räi§Ö¡C‡Õ«W/Y²¤U«V_|1?fáÂ…×\sMŽËЄpÑmôÆ“ÁúuVâF*ú¨1n”¦ 5  ¨VsÄ Õ+‹Öæ,ºœSBAÌ‹#]tÑE{ï½÷Œ3ž{î¹ ôêÕ«oß¾,}Ì7E-¸\¤Ž!ÑôG/ŽX£—D×dÌ…ަ³ÆxŒÅV­Ö¸à¢ã( š¯—<ˆ#õèÑ£GQÚ½{÷îÝ»Gýi«V­JKKÓ¾ƒà§W#%%%‰Ž7mIiwá¬óšP¼Ö ;Š[£zèè«VëÑX´ˆÈ¢Ëh§ZíÍ×€‘qÌ=MPRRÒþôQD´øß×’gaЍˆ©ÈÒ®Å{^›.RtÇ´²F et¿Zmyš£›Ó]6ÔPP¿.r ŽîY´†W)Ú )RG_°{Æqkäp} º£©1î(aºBG›þçxµ:\—î‡9‹>-Gç@%Úf%nôâ«\§»» Š5J‡Ž¥CûzŶ³Þ•*:UµZc› ¿H‘ćР{¦¨€8&†)£º>BG°~Š;EmßâႸ`¯>J ½þŽ7tL+käÖh¹jµ}ÄeÑe tylâ {¦H€8J"§Eˆ}´?}Ôâ™(‰«¹YÔnwáY/^zŘw‡' WmÔ¸a¢Ð‘•§uY£ÍÐÑæ4G¦ŒÊV>,P_ rÄQ A}D€ï‰¬‘ˆÏà›ûHi÷_K‹©ÈÖ…äXÜÈOa•ȵ¬õÍÜÑfÜ4zŹjµû`né±¹0Í1 öy·hÑ"Âg_¾€8j T.:HRkôß=Ãp§Hu||óµËÖÈ`îHDvæ;~8R[oŠHè˜nyÚ‡#Õê"Y Û屩ШQ£&Mš x' ŽÚðêcYY~Br€7nôÕ=ãf‘:Šì6_3µŠµÄŽÜ¦qïŽ4:ê-OûÈbµºàš‹.›–ËcK4_ç ˆ£fJKK[´h Q)R‡b¿ùÚ„˜ Ö¯C±7z‰‰õZã¶×ÒáŽQ¡£`Иûjµ÷w¬Ëe t¼ZíÍ×ùâŠíÖÈ‘ÖG§ŠÚlëBJâvéZ#C$z”Ãk¦qª<íÃNµÚæ†.Ž[ ³cÓš¯³N¥´€q§6 ÒþôQoþûÚ7·7ÐÄãfQ»Ý…w¶»ðÎ÷ïê÷~Âå{ÒåÐ+Æ|4|Ç€ÕãÆPk<ôŠ1Zæ;üÏ1|MïÒ¡ý’Zã¡WŒ‘ûî°jµúøEƇ¡,ÝýwÌ9£ål‰™–›ÊÓØ¡I“&lú#ú¯³GüˆÇ¾ãU–~Ô‹Š˜Š¯]ˆ½ð²5¥²‘´.F‰Ê]ÎÛ[†ªÕA0ý1s@AÎ1W¤Ž¢`óµSEê¨ãcš¯]³FÆ¡WŒy÷^ ‰ZL‘ZïLǬX£–jµö=]TpÜ›Q âòŒkŒ9%tú£kÖXûÍ×ÖÈi{阷ÜÎÎÔFÅ’·t‹ŒýÞjþ¥9rÙ´\››@3Ää SED3•¯ÅMi}´f*ïÞÛ¯í¥cHÁE¬Q1tdÊxxŸ1D´ìÞÌ„ŽI‘nvqÙ´[¦«Õ>Ð|í8hŽ`ÒSEhú(Ö=“hHÆ“‰ºgì©ÉcŒ¶—&ndÏ¥»d>Ùïð>c˜5f‹6}-5»XÃåΗÇf“&ÛA÷Œk@A>±?µQð%Ä›¯S/RGa®ùZ‹52¹£… 5³Fï3‡÷‘Ÿ”éToµÏ¹2Z —MËå±eè£k T rˆ#Eê¨ãi¾VÓ‚ÅkkEê(ç;Æ´`´Æ|ÀbHÇÃE Z"˜þèG7$¬Ñh‘:Šøæk׊ÔQÇklÑ7rDÜÑtÜhÈ-ï"ãí­6º^·59sÜ[º@]¥jPìX°ÆøS‚õk׬± ÁâµÄ’=Ú­‘_³–¶FÁ™ŽñÖ¨R­–F¥ZZ’ŽÕjÇÇ–QP¼N$Ž W”””Ñâ™ÈéÅ`mjcÁÃ|õk§0Ýymš¨ÜQ1kŒ/X{¨3×2‘9›27ÍwµÚš¯ÓâòCIII—Î#ø—ó…õQÓñdûÓG1ëŒ'Û]xg"}47r‚îh´B-^ž>¼ÏéuyLW«™2z%)gEdg-P|l<ËìÚþV"ziñ ´nì|mˆ#È >k$"öeŒ>¦2µQü%D–~L½H…xúhÁ^wÔe¡¡£û­0ñ+óˆQ‹QÁµÍ[øf¾Ó-qy hœ(}L}jcÁã]h¾6Ýy-‡„52ÌõYsÜ·Æ‚#’Š¡ Êb×ö·Uµ:ôÑGPøôÑ©‰ ]+RKt^«ì.(sG/ê å¬1õjµxĘ¿øÐýœ’=F²˜è£Q Ž óÄÄ>¼ú˜Hì\ˆ'}[ºf ꣵ"µ—·ÔßÅÌÜ‘2Õ ãí­6­M°ÀDcóµ`'UF„ŽtÏⲸ5z)8ýÑ‹Sñ¤³Í×ר[£¹}¢U¬ÑrèhMóŠvCªDa³‹vÐ=£ˆ#È0Ö8Á@~Šˆ>ÚŸÚ(HûÓG‰tÏ0\‹'YbJDï¸(¸5’š¨y÷Þ~í.¼óÍG20»Ñ7‹QÂ~ò¦•SŠL[ìÚþÖ—BZ ¨_ëⲊ¢5r¥±O vϤ^¤Ž‰7…N1nô¡ÅÙòÝZÞ.½.$ÝÆ—Ü[ øØø—ætÕê ê@A&ÑeœP}tajcÁã-ßcEÑlwáoÞÛˆâIW‘Z#,hÜéFR ã«Õè•6A"CÅ:®}T⊂xkäxõ‘t/Do<éëžaOºV¤=eÛÄÇh}4d*!ŸÏDd"£\>—¿øÐÄ …ʢĜET«Í}”ⲇ\CŒ8]:˜¿` %Ùºœ‰'UV´\¤öÁõQo¹6>k”sGCÖ¨«ZífÄèrY#ñ èX³@T«ÅAóuR Ž ch/RGÁO™þèTç5Im](‰x2X¹V‰-T¨ýƒOµZÍç^ÎⱟSš®D#t´š¯Å8‚,aÇ}§hߺPâéÎkžûèN7zÔÛJ¢œÏt…Z:tdm:¶„jµÜ qY\2ù:7•¡£¨_â2C*ÖÈÑØ|m9ž)^§2µ1=J#7 Ꚉ5Ú™2{æDôšÛµàT«}•h‰ ña&€>Æq€ýô~úé§}z?-~–FkäõÑ‘©O·ùZ:ž<ª×o<(:&-RtG»a¼Ê¼è5Ô˜J´Í9‹ÐMû@C8GáS•‰¨I“&¦b(‰hê]ú1íb¬_»S¤ö½ÊQ½î$)wÔ>µ1‘5*†Žâñ§.eDµ:ˆÑi‹h‘ÉÐGGà>Yä­5Ä$¥Kç‰Öî±3µQ„DÓ½X(R“ljÜQÚ£ŒÍµ¬1&h<öÌ;P­V{ì`¶‡Ð1]Ð|Í8‚ô‰ÿQLwjcAÄ›¯]ë¼f$ÚºP]ñ$sG"2Ú+tG9k4:¢6-ޏ¡zÃEJ®Œð¹¢Â×|]œ@A:D…‹>JJJ(¡ÕÙ±Æà)ñõkg;¯)Iúh§¨í‹9ìÉøèQo‘ڬѴ2[µ:¦³9‹¨V¢I“&EëŽG`þcVVV&’ó—””œtøöø…ÉïE‘–5rtM´ßsSP-OmŒ"¦l­ÅyÚ§hºBǤʈju †*Ñh‘EĘ%˜,JX#±Çñú˜º5r|úèÎÔÆ‚/¡²ñŒõ©Q„º£Æ¬‘I› Y£Æ˜"Ä·4799sÑ^r"ŽS§N2eʪU«ªW¯Þ©S§þýûשS'æø 6LžŠcZ4};_›ÃPç5yH×:¯}B½ì‘~Çœ3z‰ò-¨„ŽË±=1OÕj•žhćēq;vìƒ>X£F#Zh£VMñæk§âI_iÁ¸‘c¨]†Y£…ûñw~z w,Úju°ýÒâAvîº Š‡Ì‹ciié¸qãêׯ?mÚ´zõêÑðáÃ'Nœ8zôèÁƒ‡ž2eÊ”wÞyçˆ#ŽxôÑG™\®\¹²W¯^÷Ýw_—.]:è ´ï)Kè’E ¼úHÉHË¢)Ø|íòrââÍ׿ŠÔ>x»Œ®¸Ñk©„ŽËégz–BΈ×,´È€,R)í¨2eÊ”­[·öíÛ—Y#]ýõµjÕzþùç·nÝzÊܹs‰èÆoä‘d³fÍ.½ôÒ-[¶¼úê«ißP6(ÛNZ®\0nôÁ>éð!ó œ¿]" bs½]:èÒyÄâ™JØn®×Ãiú¨ö§zóß×¾@Úé¡á¼1éÚcÎÍR:EÒÍ—=Ò/híOõÚôþW;öÌ;|ÓûDN 4w–ÞZ2ù:ö_×ö·òÿt½ó9 w”ËáÜ“ùÄqéÒ¥•*U:þøãù3•+WîØ±ã¬Y³–-[Ö®]»à)eee5jÔhÕª•÷Éf͚њ5kÒ¾!w±.&µF"zaÙPîŽ$6ýÑ…-ÍשēÒ+‡Ç 7Òvk$¦j;D‡Z£ÐÑ[›.$ªÕÌÙÿÅ5Edö>Zȶ8VTT¬ZµªnݺuëÖõ>ß¼ys"Z³fM¨8>ôÐCUªøoüƒ> ¢}÷Ý7í{r ›•hkäÔG¬‘“tú£—tãÉ(}´V¤&5ª“bÖèZmÚÁ]¼3­™Yþt³kû[8à€ŠŠ è#P$Ûâ¸~ýú-[¶Ô®]Û÷|­Zµˆè»ï¾ =ëàƒö=³dÉ’qãÆíºë®={öLûžœÀþ®JZ¬‘£±ùÚ‚hvé<‚Ù›ÜüÚD<éÓG›ÖD:tŒ·Fs¡£`ÐØþôQî·ÈX[ ÛñT/º‰—"ÙÇ 6Q5|Ïï¾ûîDôã?¼Â–-[žxâ‰Q£FmÙ²åÎ;ïÜk¯½Ò¾§ÔH±ÍE¯5r‚Ý3Žw^oûR@‹¶óš7J¸cZY£kAc*u3ë t;Ž·E;/i²-޵k×.))Y¿~½ïùŸþ™¶çŽ1¼þúëC‡ýä“O4h0bĈc=6í²MвÈ1dßÞ3‰HE4 Nt°óš‘tÛkEjõÉŽá×Ô×ñ#1£Q:t”¿_‹Õê¤k.f"Õsó…‚øv^†>²-ŽUªT©U«V0Y,//'"Þgä·ß~»ãŽ;üñÝvÛíÊ+¯ìÝ»wÔ¢¹ÄeJX£Ü5Åë×)v^S´>ºÙyÍOI´íµ¡©âî(7ª»#«V“Ý&—«Õ†ÂÅ(ògz_õk N¶Å‘ˆêׯ¿jÕªòòòš5kò'Ùßþúõ뇞²uëÖk¯½ö…^8ᄆ ã—yÂ…pчœ5&Šƒ§ê£#=4êÍ×év^G™–é†w´\¤fkyy:4\D™œYÐúDȼ8víÚµ´´tÑ¢E§œr {¦¢¢báÂ…uêÔiÛ¶mè)?þø /¼pþùçb#ëJe‘“Š5râõÑkäHëcê×zWíID¼;JX£Jèøæ¿¯Ý&ӲߑLW«µ‡‹MõR^¢u¡ žÌ‹ãYgõàƒÞ{ï½:ub=1ãÆûæ›oúôéSµjUvÌ/¿ü²nݺªU«6jÔ¨¢¢bÒ¤I{ì±Ç?ÿùÏ´Çn—e‘“®5rtm]h­¨Ý¥ós[ÊOhåÚÚú;Qîh3kL=hL±Zm¹]"ÔMî‹hy½÷y‘]d  ŠÌ‹cÆ û÷ï?räÈÓN;­C‡«W¯^²dI«V­.¾øb~ÌÂ… ¯¹æšf͚͞=û믿þüóÏ«U«vÁ¯vÆgôêÕ+í{’Ái‹"¸`¾ÁH´Î0,‹¦àÖ…˜M_ÛµÍUƒî¨bICG4zß 1pº$õEw4+Ýáéz!o¸èóE Ð| ‚d^‰è¢‹.Ú{ï½g̘ñÜsÏ5hРW¯^}ûöeécµk×ц –/_üÓl5Vg"\ôQRRBÉÅÑœ5r¶é㲡d¸™Z—hÆ×¯ì¼fÎ$÷¦éZëÛrÖ¨=¾µ¹ c¢juÒÎhu ›Þò>#"‹hy}¢­«Ñ| ¼äA‰¨G=zôˆúÓîÝ»wïÞ=>üðÃKKKÓ¯.˜HíôЄ.Ù#=j)R/™|]ûÓG-ÖÔ#:µF´T«}Ñ)ÍJqx_(•p± ÐÇ¢âèy’EN¨5z ­_k µœÔG­ÑwŠ`ú˜–5zÇ=j´FöræÜ1Q÷t¶ªÕvòEÇuÓü}H$‹hy½Dè¨ècqLL‹-ˆHïDÉT¢£(hñúuFëÚ*Í×öEÓPóµ ݉ŠõZ£QlÖªÕŽÔ£ãÉb|óÅ—²`*Õjh¾.* މaʨ®¹ }ˆ[#‡ýÓ™’[ Ù'>„%¾u¡E3¦ùÚòÔÆ’Îz$hÚCGïøa?t¬V}Ñåf9\ÓM_¸˜Vv¨š¯‹ˆ£$rúX ²È‘°FÚy–·xúh¿‡F|çk ×[¦[¤Å=ªÇQY£Fw¤”Vö6:º/•nÆT¢åÜQú,]¡£_ rÄQ },*Yä¨[# tÏ0Òê¼&}´¶©Œ*;_ÛM=²F,™|Ýñ'Ýþ²BjèBè(â‹Eås¦‡µ•K.aŸw‹-¢búì+ Žðê#§˜g{h±F/1«?¦hœ(}t³‡¦Kç¬óš„õÑæî…‹gèØ}ä+&wÉS™5ž,ä‹r>çZYI}1¡#§Q£FMš4Añ:O@µÁÇE‹•••íOˆvkäõ1õõz¼»g´Fß)Ú÷-T„Y#©¸£HÜ(íŽL¹¸5*†ŽÒ¨T«—L¾ÎÙ|NuSb7—|ƒî™<qÔOŸ>}2½9 欑#±÷ŒÓ ¥ôÖ…©Ä“"k÷ØŒ½È¹£Ñ"µö ÑZµúµéýÙƒàu"8ÊabxQÉ¢ÍøÐÁБƒî™|qÚ°`^þÐòú¤úh­®MIºg(í¢vLi¿Hí}&©;&²Æ¤¡c”5::2etÖÞ‚dN7Ý\Ûq°úc¦8=Ø´F~V¢¥S™ ™H’tëB¹0L£52ÄÝQ"kwGs“ …ŽÞˆQË3çsFI*‹–ãC—CG/ÐÇŒqHÅ9"Í×éöÐÄë£Sר_[ Ê"î˜n…:­Ð1”‚£MÇÊ“n"Y4ô1s@%%%$õkT—5z‰šþèBç5E裛׌.G$êž‘KÎâ­‘ïŽ*Ö:úZa !:z«ÕÚ#ÆqJ7C§-ºf%tä@3ÄÈSRRò‡ý®&"¶×‹øï)ÖÈñé£#ÖÈñ5_»iüñ¥ÍY#ƒ¹#ù$O=kŒrÇDåéCG‰YŒ6›]ly.ÂÅ´@óu&€8I¸5‘W©Ð¯Z£ÖÈñMǨ5rä¶.L+ž,¨vZƒ™bz£GsêL¬Ô¸xûtGÂ9Ø×ÍD²˜‰ø0s¡#Í׎q2x­‘߉ íX£ï,éµ{Q 5n]¨÷•gB½ð²µFkô…ŽrÖ¨:&ªVû|Qbyiœ*"k{÷^Z<É¢ƒ ~í&G˜PkôU¿NÅ)I󵺶ÄÖ…M-Û^“¬52˜;êÍ™;²ÇÎfLµx[1·ÈÃE^-'ñavCG/ÐG×€8‚lk…‰µFޝ~Mi÷Ðl¾¶¹Êc(1úh´ZÅôQʼnè•çþÉw´×©•Ñ\裌®i™.ôÞ¦-fè£;TJ{ 3° QÐ9I÷b(¡üCËëÿÐòú– }Á3Òš“rÒáCæ/8{MêEêºt±8áÂ=ŠÖ¨òÒñ£êÒyÄË/8§‹gX|Öȉ ¥3ª'”‚Í×Ö¬QbëÂt7¡áú3QO£5òUqÇ`Ö˜¢;ª(£ûK3šˆE‘,$^7}²˜ö`%ÁôGË@A$*A# èf°ù:Ek$åâu º&Pjo¾–³Æø³¢*×&¬ÑûŠr=:&ZŽäªÕ‹g8ñè[ˆèÅ×oÒ>¤ìÔM‘6—<&ØQö‰–ÅL„Ž^ Ö€8‚pt•§ "·÷ÌŽ—Ó]׎ ÓZ¯ÇK”>Úé¼–^²Ç5òWLäŽ,Û‹3Q‹¡# ³Fû¸Æ“³pѾÚîôLfÃÅ‚@-q!X³F/Øïj;[ ž\<<õõz¼øôÑÁÎk¯>µÆ¤ ½†Ž¡ÊxâÑ·¼(ådùk‘ᲈºåP¬Dg.tä@q;abR£ø‰‰ÒG;um•½g,̆ôêc"«³¹^Ïü_yîŸrî(n‚¡£ 5šÓM]&´ºZ‰žûå}E厄ækc@ÁJJJNÞóbž¤ÈIz¼ï\߉"Í×Ò“I¶Ôõ‡–×'ÒÇTzh§?Úì¡™¿`à¶ñ’»cÒ¬± ;ZÈ9Q¡£ˆ2Z]8+g•hû ÿ°Ïårî˜uÐ|­ˆ#Ø·F"òê#2B• 1æâ1Í×6·.ôžhtëB¹³|§ˆtÏØÜ„†[#1cHâŽrêwLjÚCG¤Œ>Äwsq-Òsä,;=Ñ™½ ~­ ˆ#ØVžæÖÈáÏÄžzyº ¾úuZÖ¸c<¶.”;+êwš¯}ÁsG˜ò¨2¯1Ômf:J(£tè(G* t#\”ƒý2œûñíIeQ:tÌ;ôQ9ù«à-Z´(--M{¢xƒÆxæ}û0í¬¬1x"%ÿ¼1Z×f‡í(§mÁÃÈ£ÖŠÔAkôòÒâAñî¨Þ3Á@ï,ÒW›¿` JèÈö0”K_|ý&9q”–9sg©/ÐMvK ® ¥ëÎr'Îýò>9[(++sÖÏõÑå[3 Çâ%*hŒÂ7ý1k”X»ÇæÖ…r ÔF›µ}[º`T¨l­·Z1kT)X¿üÂõ'}‹ôºŒ–CG`æ¢ ñ•hËsó:rÐ=#GÞþ¸@&Gñ 1‹)y7ŒÞšS0£?“ì×µ)¡>Z[âç…íS3v^“€5r˜UøôQ£5Î×T¬—½A㋯ß$=¯1‹¡£àÌE×"=wÎY{Û‘Y3Ë% 3tkzAâXt$ }Ìûöa‘¹A´÷ÐÄo]HÖïSòôÑÜ*1/d®óš’X#mßXÏ=êµF•´ÏK¢Ð1X›fÃÈ}O ÂEEÄ}‘ƒÐQ/˜þ(Hžÿ¤…ˉ£zÐ<]$€´P×öML=càQj˜îlHßÜÇ đæƀÄQ?&Ž*å騠1þøuä”:¯)¡;š$¼ÓS·ÆÐ#‰oh׉è¥Åƒ˜Zi‰ƒ~f4tì›¶:Jo?ub|1ÚÁHϳËÐöç,ZsËEécnM$ŽùÇPÐE¢ÅÃCÑÕC#Þ|máE±ùÚtâÒêÖH,–S[œ<*kT¿2E„ŽQµéð1Ø µl]­XŒ.f$ÂEûs±¬£h¾öqÌ3Û‚Æ=.Lš2$¬ÑËÉ{^<ïÛ‡“‡{h‹×–;¯“n]H;¯Ù¨’ê£kd¨ž‰ µ¯;ª,ИûëòHtºdhÃsgùJö™P@¬ÁÖ…ˆc>áÊȾdÄõQN4ƒç&MMÔµãÈTªW‰ÒG›ëõ°³xú("p­‘ÁÜ‘Ÿ­QKèÈVF÷CGä‹r„V¢ç~yŸÄ¥²¢€Å:zñEH‘~ã’îGŸ2™÷Ó¿Ùƒ(/T ãÏ î=ãÅÎlHoóµ 3¥â›¯Ýï¼Ök^Ä'&Šgê“ÙÚ*³œéÚì’îÆžîŸ%R‰ÎМŤ'2-ñ‡OÌñ­ÅƒÄ1W”””Ä(#ƒŒU‚F0NßÞ3Þ?²ÖC#±÷ÌN/§û³*¦ù:õšø‰F­‘„3B jþBì=áK©KàT{uL=Úf-8C$¶˜•9‹¢·ïÉPÙçHцŽEÄ1' ƒøê׊A# gpëB²ÞC³í¥ê£Ñ„ÃW¿NÝ9Š}3AD¬‘QГZ£tÁzþ‚ü]:éð!/8# V«\©ÛÙ9‹ ö‹bîÇ·çF½÷ÅàçËÉ{\w,BŠW§N:eÊ”U«VU¯^½S§Nýû÷¯S§NÚƒ’AB½œ¼Ç…ó~ú7_Ä[9ãŒIEÐÒC“(}´SóêcR¬íyÝ¥óé¸QÜQª']2Nꎆ"WÝöNT´ÆDç2Ëܦq¶6¼öžÈ'ÝÄÌœkú¦?Z¶Fv.s²yïߪÅ€tÔçµF6N§BÇЈ1HQ…Ž"•hR@C'*N[TÌ¥ËŠŠŠÇr9¾µxŠ.q$¢®]»–––.Z´è”SNaÏTTT,\¸°N:mÛ¶MeHz•‘})‘>ªLˆ”˜þèu©s·.$}º)Þ|m§óšî=ãE‹5ÑÉmÍKž 2m2²‹{­qÛ8ݵGŒA2:&¶˜§9‹&‹*ùŸýsYèøé§ŸJ¼(p™bL¿øâ‹®]»î¿ÿþS§Ne=1=ôИ1cúôéÓ¿õë‹'ŽÞuU¬Ñ§Œ1ǘ˜ÃO'Ïo7J¨€ZJÛÞôQí!åŽõƒ">˜íÇ6"{ÏxÑeœyïßJÂóE‚Fß+Š‹©/hô 2­Ð‘ç‹”\s:J,ͽãÜ,ÏYäÄDíì•Jv˜èDX0òªE›8£8ÑøñãGŽù»ßý®C‡«W¯^²dÉÁ<~üøÚµk«_\Dƒ£ˆüIzV¨>êZ¬'ø$‰é£ÞÒ¶¸>-m‡.ß“ú%"Å_½ÖÈ)['µFþº‚ý%1Ã#ew”GÁªtrâHi×CáùL¾¬+ ø‰‰*Ñκ#÷EßGÒ ŸÌ¥i@‹ŽY³f͘1ã½÷ÞkРÁQGÕ·o_–>ª/ŽñUi&v$à‚r¢é=wǺŒÆ:¯©Póµ¹Òv|óµµ®‰Vßé Z?ªãõÑœ52âÝQÎù«Ç_¹àØø­¹£¯*=÷“Ñ6ÝѦ8R¡¿.fQÅKÌ)wĽábÁõ†sæE+ŽÅ8ǑѣG=zØ|E‘‰ŒüOc¼PEù«¼°ñIEk<=¦ùÚhMLóµÍ‰½gvzEÝŸî1Íצ­‘b§<ªX#Å6Y‹[£#F]ØÜЇøÌŬÌYLpï;Ëb*s¥á/*(‹^Øaè³Îø.êÇ—8ò‰ŒªçsDueŒº¦µïzãXë¼&Oý:•ÎkÞôMIôÑÎx*× Akä§<*Z#FhorRk4:l|Éqè(±:÷¶s:ÆL[t';9‹=Pœ‘Ÿë(ÚÄâ¨.ŽZz¥)IýZä:1)&‰M¯9¬àHJÕKÛ$[¡Ö¥›‚[<åx)è;ÜIDAT&êD‰mèH¡…9©5rxÙZ‹5òÁpiS UÜ1T{¥-‹#Y\ [%ÌsJÅO¯D»ìŽ¡áâ Ÿ„;Äh¤E‹+V¬ ÊHuU&5Šœ@jŸ™´ùZWi;ióµ‰2¦ùÚ~Ç+{ ו¢RfÑ£ÞEpøÂãŠÓ:JT¥s:Æ„‹U@ñ³¼_&mCNes—˜_õŒ˜éøpGˆ#¥E‹D$Ýþ"N¨íɵQ+n]H&w/ÑG» n]H†{h´l](}âÜo÷6gPÂU{çšGõIêîHR³³:Ь¡“!LZOçÍãÏ•˜¶w„8‚dÄè#+UKë£HaZ°x­þƒÍݽbë׿v/ô”<›³! ®þXàtekÜñ¤˜>j±Æm:ß®±Tͯ©><¹QñÈSº÷%C¡£ÄÌEÇPüÄ(Yt*;9‘=0]ËŠ:=Óq2„ꣷ9&QgŒÄaÔ)Ûh*¿•$VŽå[’­Ÿ>¦¸{¡Ä$E]Ö¸ãOcõQK…ڷƤúâÛ´spk?tô¥ŒJþçv訲@7¹§€â' &‹Ž»c0\TTÜ‘2»LÄÈÃô‘¶¤¯«zÑ¢EDÔ±cG*´|£âÏÿ r©¨ñ$m¾Ö³ÖÉ 1æDJu÷Bñæk¥5 ÕGukŒZÏO¥%tª¨5w -LKûŸÊ¹æBÇÐp1» ˜è¬ø­\BqÍ V¢áŽ@¼É|‘ˆ:tèÀðÕ¯uµKk¼T¼wŠ4_kì¡‘ÓGõÒ6C¢Ü¬Q7 ê£ÒlÈ$R2÷“Ñ\ž Y#˜\ƒNÌ Öñss::µ@·ô‰g)N[L¥î<7Q%Ú²;òO“JþDDÿ©˜–98 0qœ;wîþð‡‚Ý3¤»í:ôKé눬wM²¨+$ÚºPðȨÓ}ë“S¢=4QúhÍ·õÉhöÀœ5òá%êΡBnm.tiÉhè˜hæ¢û (~b¨,º–<Ñû¥D[¤QwôNb¾èå?Ó(SÑ#ÄHÂSFÚy²£…æk]»Ë(º¦·)ÏÜî…W4ÔCS°xma6¤oú£ek$8’¬;ŠX#¤`uX°š¯=tLÔ1­Ð‘=pynécÎ*X‰vß}¾HjŸôºc¼,ÉPôq ˆ’Ũ#µë£ ê¬_kœitÃëƒw–<£»òÃ( –{h’î=³Ó¹ Öè=qî'£%öbIÚ{Q°@œh]î(·ÈŽËîè Én³‹ô‰Z^.Q%Ú‘ºsèìAhdŠîèýRD}d%z„8! Š ÜY‚Åk鉌QÍ.'DJo](qyôQ}/™Dçzõ1­Ý %ôQ—5ò'I8zLj|ÀqâäçZ–œ´ìÒçǨp1‹ ˜è,þØÚ&«*熞(¾à¢zÊÜ GB½¸=Bq|ÍסDÚ—×1ÔC#¾u!iZTœ¬Q±´bç5%l¾6a<£Çà²;É^=àŽ‰‚FߥT¶d¤åœ Í­ÑílÁÚ'‹Îf‡ñ'J¬ÎͰÐïS‰þOÅ4uw$‡£Gˆ#°G¢úµedhÇDUòø ‹º—h¾ÖRږغ0Ññ"' 5_S–˜èQ.h ÞÛЭrA wÜ&¾Þ¥=­wºHŸËÅ1éÝÎ*`¢³b¦-º“ŠœÅ¤µPNÔéâÓ™ùå5z„8ÛXÛº4•ª¥O .abB¤ >j/m ê£Ñºv¨>n[åÑ|ÐŒµX£÷.H!¹ô^J¼¼NQ› ¥Ò%­Ðï~|¨ëåÄ+Ñ.»ch¸˜â"‹ÞÓ} 舓×èâÒÁ¨> 6Ǽ¾–õÉëD$&ñõks=4ñÍ×vfCzõQ:h$)SñF­‘9½TAqŒRÆmWp>tôúbV²CÅùã¤;T¹ãŽ"•è´Ü1iOtÒÑ#;‘ã”±@‹‘O?ý´[·nS¦L9ôÐCÓ‰®îNRÕ‹_ÙGãúäÖ~YûHk»Èt:¯SòÒ$yÛ.¸]¥—˜ ^0Êã•qÇœ £òÅl) ø‰Š«s3Ò]dGbÚ¢ú?གྷ«ž®¢³àŠ<ÁxÿÈo8#C‡}òÉ']G†HËvÁRå—‹®µÄ ^SFՖõ¼{¡Ê4 =× wˆIzJø4žo0æÜQPw\Áw©Gg´îzì›ý’!wTŸ¶h®WZ¤­«èzî‹_Â},Zq¬’öR ¼¼|ÅŠ³fÍzúé§ÓËNð­®½_ú`?*A}Ô²å o"‹‰Îkö埨;+nE³íRREjéÒ6_'Héòèæ¶ƒ„]P%hÜqö¢ÊÅåÐ:ûš^'½òùN×iyýÜ÷oåî8ïý[åÞê´ð.Æ.§hF‘.‘‡ž(’,ªÌ‘>7щÁpÑ·lM"NÚõ|iwä¯Üö–ÄÒÄJþ¤=ò ùƒDðÉ>S×Ç"¤ÇN:}ùå—üKwGâõk2ÐC£1¹,xdÔ¼½"5_k,m'j¾V )¾ó:va Acpit •kÉYè˜4hôßõ.iöÀ©Pï‰ü¬‚[¹qms—‚•èû]´L[T‰åd1æjiiLÑ&ŽÅ(Ž‹/Þ¸q#Mš4éµ×^sVvš¯ã×eÔ2W²àYþåu4-Öü#*d„&v/ÑG×aåNÕ cZI®RN…òQ]âH²Ê¸ãÖ¬ˆãŽ]·¯•-Lt l¿|¬ËU¢-»£¯m´èu°w‰¿¸}™8#ƒ š:uªãâÈ0§"ª'R¼VŸ©Þ@CÂÒ5÷ÑtMLóµÕÎëíâbÎwŒMxï»»?+,*NÊÿì¸5cîèóENVÄQðÄPYtÁÿ’žËKü›Ù¨;Ƈ‹ú]§-ª[,¥¡Çb$CâÈÐØ|-7‘1ÔõöÐHï|-—SzHAcüñÜ`Èn {ERß Eà¥EÜ1éâAîš2¦åŽ1â¸ma£Ø…ŸTÀD'¬D»ïŽ>Y´¿¹Ÿ÷ôÐ_È Áf½Ñ£\%ZÅb}Kö-},Zq,Ææ˜ìR°{†ÿ´Ä*¿§|ÓM´]{»g,ÌpÚ¶4†­Åzv¼îž“š2’²÷Ú|;Á—þÃ~WÇ´ËÈ­Rž´QfîÇ·;Õó‡¦×ùÞù¨ˆQç‹*¬ì¨N¢J´ž‰s£*ÑzV’ž®¸C´–~—ÿTLº%ÑÇx=EߌQ8f)qô‘´~mb÷BõÚtÁò7Å~Òhœ)·uaÒS|§óþëDf£Rî¼ßFâ´Oúu{Û¨FžYfü•nÁš?Nú·Î‘ì°àY;n0y)À‘M¥Å+Ñöû]¼Óµ‡[Âð¦ÚwÌue™7-¼ªcÇŽdR‹6q„8fXÚGËZr=7¡¿ÐµOˆ×G½¥mq}TqŸ5n{òËûH|ÕEÍòl ¬¸ź£xŒ}wTÏ]vG_%ÚýºsðDéi‹Ü1¦­îm"W(hoõÑ·dÄ5ê#ıɇ82L7_ÇGŒI×ßQYåGñÓˆQP:ãõÑ\i» >j·ÆZH­‘t(ãN£ ݤ;Ñ‚ÞVÄ1è‹ÒÿöG2Ó(.fÅÕWç&3î˜hÚ¢‰èQbÚ¢¢>ê]²Ç>B‹‘<‰#Ä>&•B20·2xC‹õd|Ѡ隨ækÕUt!JµX#™G¹éŒ¦Ý1¦åž;ê Å+ÑîÔCáuÍêÑåŽ"[¹„¢«ß…cg¹G£Kö}„8#ùG†®âµôoO[RØúä’=ÔÒ-Û{^¬hr[îØBPǤF¡S<µÂă¼KáèvGÅÕU£Ü°Û)I+þ²ïŽüqÒCÝÙP°J¯´–Õ¹IA¶‚ʦ—{_²GË{ÂQ—ˆc1’WqdÄo]È õn9¨~*´>9 /ܨ^Ý&Ù µzNiÍ·¸]t!é©&wÔ¨¶ZÜ1éF÷CGõÕ¹)mw”›¶h§ß%J­õ»Ä×…5.²¨¸d%×ǨÒ’>B‹‘|‹#G¼~­½íZýš‚§Çz'D&m¾Ö5!R®ùZeù]î%dZÊÖs?Í÷©34NñÓÙ›»¢uÇÐÊENdR¯;‡þ{P03=Š7hÜßEðUÆ#þBŠúq9ÇÎÖ…¤o‘péSBö§60!RPµOˆÔGñIá§³™ŽÛO—v2‘ »Ê2Ú¾{LËU”‘áNÁZ$\t܃ábŠCûN—«DkŒUìMNƒzjhÕ•æk¹]g Ž (0ª‚ë2 Ƈê àd~÷˜úµÑEÅãõQ=h õ‰¤F%.aIÝ1¨Œ*ãT6{ Þ%­r®º8JT¢]sÇ‚•èÝQË´E]«˜[d1é+º–bRr}„8‚"B¯>&Ës¼Æ­h*å­¤sÿIŸ@ðB’Úy­Ûù‘ðʈ‚Gî4l±…$)6Iµ#ŽìõvI«œ+玷þ+ð¢,²“¨m¹WÚW‰¶°1´ïHþØD‡²–%{äÆúBºî‹’è#ÄêÍ×ç/𨽤š¯?ÕØƒ4;¯5•§c+\z–îã)´¨àŠBF'eR¡ï¯Šÿ™.XÃEײC‘sùc¹¶esS® †‹¦û]¬u(“¾%{Ç#rkdÄ Ä)rÍ×&ÚhÌ]D°ùZׄH‰­ IGi›Ô¬QüܘèÑЂˆƒÆÛÑêŽ1cCÇøpÑ…ì°àÁü±ÊÆÐ ½§'­DkïwQéPV¯}K¼®ø;£’bŠŸs<ÿ£PS‚8‚bG<€$ʨkÍH‘ƒCw¶ Ý"飊jxO—ÓGù­Dj¥gM;&UƨáÉ c{ˆKRÿ HÝÍ\tÓc*Ñ©»#,í^º–$´³ÜcÁ%{G¢ýÖH¬£\äU¢š¯!ŽYi¾Ö5ÇQÑ5½«»™ë¡)¨Z‚ÆðÎkñ}b«Ûû]­4ú/»ÝkÓ1ÃSY—‘¾/”ž;òÇî/Ðz®x%Ú¾;z§-êÚEnzŸ7n4×ï’Ôá´tðhœê•º’ú¦?BØ!}LÔUMÆæVz/¢¢Œ$ü‘¥º‚ƨ?¥‚}$ ZÆ/Bš ßé²jó5wÜ ìÚ:<ÁMÅ¥§º2ÌãÏõ~™´Å´;Æ„‹vú] êŽöÕmTÖµI4;·¦·óš<úqÀ®­ IVõ¢š]4.6)­Ò×´}ëBÒ4ƾ¼Žk䂥˹·I¯2ã¿MÙµuø˜ÖêŒâ{šÓÎ Ô;’ŠœÂÛßÜŸ³%‰-Ž­=z”p½}!r·fº©œ]ªyóæ1Ÿ9â £eeeìÁ@±[êšNdt}òDË k¨nÛï¼ö,Ú§æùnAe_Ä—ýü_¾kZpÇ‚Ui×Ü‘û¢S t ž%‹©¯³ÈÿI¶VƽˆÜäFóŠzSL/ænMü ÔRRgîT0^É%G o¾ž;w.Ò—Ò{ë×ÚÛ®ê*²”F ‹š&DJècº×4†¾„Ê3¡Õ|sî(8‘Ñ…‚uÒJ´Sî(˜,¦âŽZVçfÈE&:”µ,ÙC›ÎšÓ}ï„*S±é#Ć[#ÇÂÖ…¤¯Tô¬ÐRqÃkŠýL,:+ê ¬Ø SpäKS¡ÀO»;&í}I1tdäfS¤¸@£\ÚŽ;FÉ¢µ~ ʺ–ìI: )¦âíÞ]AY "²¶]>€8‚Hb~ L7_‹¬Ëhz¯®¦;¯©>*péU{ÄWŸY((ͺúxo¦Mwôú¢SÙ¡ÈYìµ ZÄO©DíwI”é²XñW¹šúÒ6ÒïpðU ™(CEr@BÁNxÃÅ‚ïµëc¢9‘ñëݽP±c4ÙìI}Í+IWí‘PŸ}”Èü—æIz ¡c°Óì¢1í¶°@c0\´¼¹_Ìér•hÑ£µ¨ÏwâF]‚L1¥-0Q™ØÜž×á¢9ÖGˆ#؆ôßr-Í×êÑ ï£BïV4r[&=e§•;¯IXVâ…LxÞ‹¨w(ké ‘x]ññعµx%Õ^R‡ähâ bNETO×1"#!+»l¾V—3½âèUFútG¹ö óGÙš]DÎ SwGþX:ÜÒÕ?a§ümaÉ·F::¯ån²h ˆcÞ˜:uê”)SV­ZU½zõN:õïß¿N:éI¯>Ê¥‰d~n%)ìœèÜ >jq2ßE õ‘h±[ò¸£ÊDLC]Ò"õhwÜQ¼mß½Óu5ÏʹˆÞe]M!ZÊĆ–¶Qì(¿AßV.ÀÇ\1vìØ|°FíÚµ[½zõgŸ}vÈ!‡Lœ8±ZµjiMCóµú¤uneÔúä‰PE7÷¼XWÐÕð+=]Òh2ª2<]# ]“2Òï"·à¢…uvâÃE ý.‚Êû]TÖµ¡$ÎWðÖ켦B%õ¬;Ì?üp×]w½ùæ›k×®Ý{ï½[·n}å•W²]|â˜JKK{öì¹÷Þ{O›6­^½zD4|øð‰'öêÕkðàÁinÍ׺ڥ5^Jd}r‘º³–ÎkÒ1©Q×NÍ‚2§gqJ6_0½åuˆDÓ‰<Ý®;*¶¹p´¯³“¨m"z”^ÿÅíø´/mãTç5åK9åååÝ»wÿú믛5kÖ¬Y³ÿýïo¿ýv•*U&OžÜºuë´G Ä1? 6lÒ¤I·ÝvÛÿøGöÌ–-[~ÿûßW©ReñâÅ•*UJ{€;¡eõGqt­õ˜tÓŠnvÑØF#çOâ‰È‘Ió? c ôÒrG6`+~+ºc”,¦>g‘gÿ$Û/âB0æÚv|Ûh Iü ÔRRÏ¥«°pçÒK/½æškØ3Ï<óÌ 7ÜжmÛ§Ÿ~:íÑEq̧vÚÊ•+_}õÕºuëò'¯»îºY³f=ñÄíÚµK{€!Xh¾.¸.£¡¹•¾wZ^'Õ=¯·/åmz«Ïâgñˆ1ò ±åŽ\^}–JÑ9æt‘Jt*î¨eun†œ;šèPÖ²dOÁë$½5Óebõ-mDn$ߊrê©§®]»vÉ’%»í¶²S§Nß}÷Ý;ï¼S¹rå´Ä1'TTT´jÕªN:¯¾úª÷ùqãÆÝyç·ß~ûgœ‘ö#1¡âUé‚F¨q+=«‚Ëîy½í…©Ás'4¶xeôÞ¸Qw õE/i¹£÷\‰J´wŒ’Eký.v:”µ,Ù“t<SL]·&};‚7X<²è¥W¯^õêÕ3fŒ÷É“N:iõêÕï¼óŽ Í ¡@sÂ/¿ürøá‡xàsæÌñ>?yòä›nºiÀ€½{÷N{ŒÐU¼VY”‘š]4Nˆ”ÖGõ=¯Iß‚8̱ô^-ôùDï• w,è‹^RtGñA†Û; V¢Íõ»$2'½[M1½Ð¸OF±N é€Ð{®¡9‹TL²ÏÒ¥Kÿüç?zè¡“'ON{,‘@sÂ7ß|sÜqÇzè¡S¦Lñ>?gΜ~ýúýýïïׯ_ÚcBdËì¨R£ç1 õÐ$ÒGõ=¯·}©©—™t/è¼`ReôÞ²wLä‹^¬¹£/\Ôµà€ôéÁV62¼^ÔíMÂb -Ù¼”J‚(®"¯¢±¤a¼ýöÛÓ§O/++{ûí·5j4nܸý÷ß?íAEqÌ ›7onݺõ8{ölïóJ½$m¾Ö¾{!Ãè'±ˆ>:Òy½Ó¿}Xe;Äø+oªâœ?åý8 tGÍÙM¥ßE×´EéèQïܾDkR¡©.tðp¢ôѶ×Åxž~úé›o¾™½3Ý»wïᨒ ÓT$ÇüpôÑGï²Ë.‹-ò>ùðÃ=zôèÑ=zôH{€2ØÙºô•ªåÖ'7Ñyí½ˆzGA –+“&k”RÐÕ ,•ºµŒ\bi}oÒfAÚ¼Gú kÛ"8¤wTð…t™\%n'Ñ BQQQñÍ7ßÌš5kôèÑ{ï½÷œ9svß}÷´Ä1?œvÚi«V­Z²dIÍš5ù“œ>}úã?~ÔQG¥=@yŒê£®æ•ÔÓDç5–­!Åž3M;‹«‡¬âCâKêÿ(]wô~)Q.7çŽÃEíC‡^¿àK˜XÝÆt…[óÝŽé’zóæÍã'P†úä“OŽ1âÌ3ÏL{,á@óÿþõ¯ûï¿̘1§œr {¦¢¢¢}ûö[¶lY´hQÕªUÓ *ÚõQ×r}úôïß?íÑiCKóµâ¢Œ¤{n¥–ÎkN+¬Ú“d‰r>*´®vw”˜Â¨¸EJ¢þ'rlnþØô>x1§« éHìlÇgíÖ,l{ YT䫯¾êرc‡yäïócÆŒy衇îºë.ŸPºÄ1WŒ?~äÈ‘¿ûÝï:tè°zõê%K–|ðÁãǯ]»vÚCÓŒÄÖ…d`÷Bs×±°íu”çI75S!wLte]îÈÛ_­&ÆEfß½¾È°¼F·¹åБØÜiÐwk&ÊÄêJš¨¤yPç´ÓN[±bÅý÷ßߥKöÌÇ|ÁѼyóöÚk¯´Ä1oÌš5kÆŒï½÷^ƒ Ž:꨾}û:;ÁV â$ؽP}^£–Îë‚Ç8wçXNÏôʰ%J·ê3’Že•t¹cÒ!YXg'>\´Ðïb¹CÙ+X¦w´“bêí¼¦h}gÀ4òÞ{ïþù›6mjÛ¶m£FÖ­[÷æ›oѨQ£N=õÔ´G Ää;Í×ñé ¡¹•d¸óšvN¿Ô¯Æ¯ÉÜQ%¿$)w Ê™bt§xõžLDâûD›èw‘îPv|;>¹[“ÙøÎk-7È.Õ¼yó+VÀ̱zõêýë_Ë—/ÿꫯöÙgŸƒ:èòË/oÖ¬YÚãŠâòƒ9}OnLìjã=Wcç5gÇZš.转.¯œ¸Ifº¤%®à¡>±A‹;ªÌ\Ô=ʽºï"º¶ã3±йæëDo zI»È¦  ¨€8‚¼¡Q%æDêJ%㯯W}Û~èR=n*ZF[°UÜô‡"WˆSéwѵ:7ɺH°CÙèv|”$uÓÕÁcni›D·#}ƒ"•hè#à@A>Ql¾Ö2·Œ4¥MÁ!© YŒl©¯A軬Ê}W™/HÆÜQüÖÜ1´mz‘Eß  q¾ë¨Ä™ºRLí·&w;‚7(7múâòDóµ‰Ý ]Øóš#’ÏI\9þ²Ý‘?Ne¾ ÷ rß_sî(.šëwI”éÚŸZü¥Çcai›¨W1WRWùè‡>9GPhYýQŸê).©KòKºÞ++Î,Lz5]¯Up$)vº(€Â²g†Ñ}ðB/¢¾ŒÊò&¶ã M1-,mC…\_åî må},Z Ž ˆ0Ý|AéÚ¨&æxÅY€‰.+qM•ˆ”twI'|è¾ÌºäOútRNìÔw®SƒàHì–ø %½`T™ØÂn1„t€n Ž è0¡â kkì˜sƒÕ5Kã5“n©b¨KZä"ñ~¦èŽIï".ZXdÑwd軡w‘E‘WÔuSñ/”¹ÎkÈ"°Ä)ºôQÎóBÏÒÛFÃÐRy×~Íxw,Iky»Ô×84êŽ+Ѧû]u(;Õ"¾ð¸Hة͚è¼ö^–tW¢ˆâŠšP},++ã8àö TòHyq>ÒÚy­ql¦¯tG¹)Œºš]¤—­aÛzû]’V¢õFÖ¢>߉¾è,û)f¼’jß-âÀ2Gv4_Ï;—ˆš4i<†ÎJ^ðRZÖÖ~MßÅOÞãBõÚwº“IÓ”GŽ.“àéºÞ ‘‹ØÙŽÏÚ­Éu^'d8Ä5¾õzìl]Hº…,þ\ÅtxT.%·­‹·Ùž;ú|‘L£Ž¾êàBM!â/áàÒ6¾ ‹‰nGâƒ[¹.GPtpY¤G4ªz%OcSNÒ#5š®Nhv!寅D;….…hmn_Ìa†Kî‚ã>ÅfŒˆ§˜Ö:¯µ¼KÁQå)\ܰaÃäÉ“§M›¶víÚ=öØ£yóæ]tÑqÇ—ö¸€<GP”ŨS4ê£^u“Îõ6tËõÚ’1~¥t®!ª[EÌ ÃD¿‹\¹VW_ˆúíP´>Ú¹5 Û^çI9›7o¾à‚ ÞyçZµjqÄ¿þúëÒ¥K7mÚtÕUW]~ùåiHq u}”.ÈÚö:xºbÉXp!‘ëë¥ç/j,[§;þØÎrìŠë£®[£B±«à«¨7åò³øÉ'Ÿ:tèGñè£V«VˆV®\Ù«W¯Ÿ~úiúôétPÚ2@(Œœ>êMÑôö5k_²'f]Ë;òñÇ©,ŽMZMâ &–€,svå{¡O?ýT°x-qw*ÆH4åû#ø/ùË믿þÌ3Ï´jÕŠ?ùØcÝ~ûíýû÷ïÓ§OÚ2@¥àÎ×|ßB†ƒ×¦¯©²‰³ol.4»T5So7†Èˆt(ÚŽOâ¥w@ñ">÷QåUߨЗ(žÝ:üòË/Ë–-ó>¹xñâÞ½{Ÿ{î¹C‡M{€@ˆ#‰±Ü|íg—×Ñ{5š]¨r 6šRØDÙ˜kÛñi_ÚÆ©Îk Ìò,ÎÚ?ü°J•*Í›7÷>ùÐC3‰cv8‚Œñé§ŸvëÖmÊ”)‡zhº#1§">¤}y¹¡úÌG£îh³Ù%ô I«™VÑÞ$Fz³&VíQ© ÉÎž×ØÊ%†%K–\~ùå›6mš?þ^{í•öp€ G1†úä“Oº Ž ½úè‹c×ÇDÝÜŽtð„É‘F‰(C{‡²–%{D®“èÖLLXô½Šº1‹Ü>UCÙ²eËO<1jÔ¨-[¶ÜyçÝ»wO{D@ˆ#Èååå+V¬˜5kÖÓO?MDîˆ#CQU”(ê²r -âXðH½ë„Ûo4¡íÁò¼É(q1´F·µ£^H1qŒz õ œ*@ÅB¼þúëC‡ýä“O4h0bĈc=6íy Ž têÔéË/¿ä_º&Ž Áî™àR8Z>Ø´ï4³¡‰Õ+£^‹×1µøDÒôÈ„´Å CÜÞ´oylmáq KÛ§£\ýÖ|£B%:¿ýöÛwÜñøãï¶Ûn}úôéÝ»7[—dˆ#È‹/Þ¸q#Mš4éµ×^sS9ñ¤·ùZËGƒžiìtÑ%£âÑcü®*ê´‰˜FÍRìPVŒQI_„IúRÌD£ŠÿÆii¾F¸(ÇÖ­[¯¾úê^xá„N2dH½zõÒÐÄdŒAƒM:Õqqdˆè£‰,ÄÍU{DºsDÞG¤Mãô>;åo‘%{Ô#òBZîζ×Eu&L˜0bĈóÏ?È!ihâ2F†Ä‘aNãçÀiYµ‡Û•‰“dç/:%mrý´s,gaí@£ à–—¶Q¹¬xIŽŠTTTœtÒIßÿýâÅ‹wÛm·´‡´q#sâÈЫâ+ÈuIG<Ú7­±¹¹KPn,ìªBböf"íS¹`ÒÓZçµ–w‰bKêøLÔźuë:tèP­Zµ¦M›ÿôŒ3ÎèÕ«WÚc2TI{ì`óæÍ?ü0ÿ²råÊ—\rIÚƒÒSÆ(}dŸUõ1QNÆŽIÚ%uåDW+ø*âwƒ‰vU ©¥í&ê"ß,ÇÒ˜ÉÅ'iŠ)wk¦û“Ø_„‹FY»v-mذaùòåÁ?EcuvAâbÆ ‡vÿr×]w}ï½÷|Çd4qôß|ªê+«¯¤]ðjQD½Š¹ÀÏÎÖ#¡IôºŠƒ‰¿M×RÌ‚CJô]Sï¼æŸ}×Òx8‚Œ‘qäÄ|bù¶½Öõñïë’V”›‚‹8Š ^ã:;¶‰:‹¿®F]Sïþ–¾©à Yè¼6·ŽH%ºàZZÄdŒ<‰#£ >šX²G—Ĭõ¨wʦÈMi¹¯¤k=Ý&›v.õJߣË)¦Æ«….'N +Ñ ˆâ2FþÄ‘aTM¯ÛwÒ®ç«ïï’(zŒß}ÄÂN!¶É¶³ŸÜ}I )¦óZï 2?Ú Dq#¯âÈЫÖR±˜W‘¸šz{Þmf,ÔR Þ£‰J±–Ê>‰}¿ ¾Š–’ºö­\ 8‚Œ‘oqd¨ëc¢Ò¤úÖ#*—’„â¸Vþ&‚•‰¥mHAµåJêøÀ&G%f¶~”>Ê}`ëÚÛ-Ñ¥_Hâv|×q¤ü¼ŽµMkL/m£x;â7YÀ ޏNTÉõQËD±‡Hz}¼N•¿¥oJâå¬Ý—Ê­ZSÝ7*s•h€G²AA}Ôò*¡¼Ò (‘ŠŠÄÒJûB_nÜ'£8à§î+Ñ­Yž.à,G²„}ÔØèªkÁgÓ¾Dk†¬KíLÇ´°í5d€Lq {Äè£z;ˆ¹šcè I_'é}‘îº)V°_BNc–¶Ñ>a1Ñ툿QÁׇ™â@V ÕǤѣ…%{D^(ÑuÔÓ>CM<Ò×ÔGñpï¼Îk¸øé§ŸvëÖ-ßk>q Û„6_ÔG;ÛÖ9žöiiâñÞ â}…ê£\%ÚÁÎë¼Ê¢—¡C‡>ùä“Go Žä„`ÔGŵ¬ e$íK4ž˜[Óu_\UnJdH‰”Tq‚åW‰¨¼¼|ÅŠ³fÍzú駉âò Ä€\¥ £KÀØI1}¯¥~SÇ#!XêKiFg¯*R°¤N¹öEN§N¾üòKþ%Ääˆ#9D$}”&tɹ‹;µ@·w<ê÷%xbü ¹ÙyzƒÅ&‹^/^¼qãF"š4iÒk¯½qùâ@n1§Ö–ì-½[oM1“jœÆÎk]oTð%ðQBű!*Grïž™;wn“&MHAƒ^•ƒºí,m£¾Áˆ>ÚY[¹DqÅÄDR^^~Ê)§¬[·îÌ3Ï1bDð€Ç{ìöÛo¯^½ú¬Y³5j”öxÁ¸,’'qô‚‹>Џˆ–½I_à'žbŠæÔÒ6ñ×v‹!„‹Ñ@A1qq¼üòËÿû߉h„ ÇsŒ÷Ö®]{ê©§nذaذagŸ}vðÜ[n¹eÖ¬YK—.Mû&Š…PYŒ:Œ=Z[ÚÆÜ~Ç1óðŒ¦˜–¶!­ÓEJêø¤âŠ*i8ÍñÇÿÇ?þñ™gžýµ×^«Y³¦¯„½qãÆÕ«W¿ùæ›=öXyyyÍš5Ó~þ‘ûh×GiâÅ(‘•ª,nB°BoMÎJ“êcÌû¦+£å/ñŸŠi1 T óÊ+¯\|ñÅ•+Wž:uj«V­¾ùæ›nݺ•——=ºGÞ#¯ºêªyóæñ/kÖ¬‰Rµû¯“bî‚bª·óZË¥«óZäöc^Z@©HAa:vìxæ™gNŸ>}РAÓ¦M»å–[ÊËËO>ùdŸ5QÏž=;ì0"Ú°aÃÝwßöÀÞô‘U'ÕõQcSˆ`Š)ò**ù\hG¹‰zºô;ÆN)Ø|] [¹ÌÄñÓO?õèÑãÿû_§N.\¸çž{Ι3§N:QÇÿðÃG}4Ç,ÂȤúhy¿ãÐJz)ñP´ì—cú¦¢ná¢8‚b‰#b=ö¸õÖ[{÷î½páB"ºå–[b¬$eÆ “'Ož6mÚÚµk÷ØcæÍ›_tÑEÇw\*ƒá¤`úh¡)Ä÷B_N„¨!%­Ë-ýÿ*z›¯›7o^Q Yè‰#eÆ ]»výöÛokÖ¬ùòË/רQ#æ`$ŽâlÞ¼ù‚ .xçwjÕªuÄGüúë¯K—.Ý´iÓUW]uùå—§;¶¨ôQežŸ–m)kKÛH¼ŠbIÝû»=¸‡Èq¢ 6lÒ¤IìñÙgŸ=lذ˜ƒ!Žâ<ùä“C‡=âˆ#}ôÑjÕªÑÊ•+{õêõÓO?MŸ>ý ƒJ{€~}$à t',-; è]?’"ÊÄæzƒ+ÑÐG€:G Ä’%K.¼ðªU«Ž;öšk®ùí·ß~øáŽ;Fqç/ùË믿þÌ3Ï´jÕŠ?Évåéß¿Ÿ>}Òà6¤ç>Fµ´ôú;Z6Âq°óš •Ôý‡>TÀGP˜Ÿþù†n¨¨¨¸âŠ+N8á„Ë.»ì_ÿú×7Þ8gάԨNYYY5¼ÖHDÍš5#¢5kÖ¤=ºxç>ÑV¨ [©QË6ƒ.t^G½ŠÕØãâm¢'$ !GP˜#F|ñÅ-[¶dé×%—\2wîÜÒÒÒ[n¹eôèÑi.ó<ôÐCUªø?øà"Úwß}ÓßÎ×rúhaiï(ÒKÛhÙóZ½nb+ï÷î¥jP€ \zé¥|õoöäûï¿Î9çlÙ²åî»ï>ù䓃g¡T­Â’%K.¿üòM›6ÍŸ?¯½öJ{8q0}\±bé[ÚÆ‘õ#cF%­¤r%uü–¸ÄÄñã?žrÊ)_ýuŸ>}ø~ƒŒÛo¿ý±Ç«[·îìÙ³÷ÜsO߉G9¶lÙòÄOŒ5jË–-wÞyg÷îÝÓ‘Qú(7Õ/©>f´ó:j´ üf¸ ÄÄѯ_¿9sæ4nÜøÙgŸÝm·Ý¼´aÆ=z¬Y³æÄO¼÷Þ{}'BƒlÞ¼ùá‡æ_V®\ù’K.ñðúë¯:ô“O>iРÁˆ#Ž=öØ´‡œ ¯>2Ô³CÅõ#/Uð%HS‹tÌõ ²ÈGɼyó®ºêª’’’‰'uÔQÁþûßÿ^xá…DtÇwœvÚiÞ?‚8Ù°aÛ‘±ë®»¾÷Þ{ìño¿ývÇw<þøã»í¶[Ÿ>}z÷îÍÖåÉ"âÅkBWÌñ>#})Å#5.fŽ_€ q e¶nÝzõÕW¿ð 'œpÂ!CêÕ«—öˆôТE -úhaiéW‘Þ-¿xâ@ÊL˜0aĈçŸþ!CÒ‹~¤õ14ö34gQñš‚ë™ã—- @H“ŠŠŠ“N:éûï¿_¼x±oižÔGÁØOW™˜/Ùcn·Ê‹/N:uÊ”)«V­ª^½z§Nú÷ïÝêÍQ^^~Ê)§¬[·îÌ3Ï1bDð¶A@õêÕgÍšÕ¨Q£´Ç Š ˆ#i²nݺ:T«V­iÓ¦Á?=ãŒ3zõê•öµªÒ•hé2qÔ áKê9û½:vìØ|°FíÚµ[½zõgŸ}vÈ!‡Lœ81»3qÝçå—_þûßÿND&L8æ˜c¼´víÚSO=uÆ Æ ;ûì³ùóo½õÖøñã—/_þÃ?ì»ï¾­ZµúÇ?þѸqã´oä ˆ#i²lÙ²óÎ;/êO/¹ä’k¯½6í1j†ë#Ãܶ×I•Tq·˜¼þ.---íÙ³çÞ{ï=mÚ46wøðá'NìÕ«×àÁƒÓ]ž¹á†žyæ™ýöÛoÖ¬YÞrÄßþö·×^{­C‡<òò¸ë®»ˆ¨Zµjûí·ß矾aƪU«Þ~ûí§žzjÚ·rĺZg¡eb•mZKê·rq–aÆMš4é¶ÛnûãÿÈžÙ²eËïÿû*Uª,^¼¸R¥Ji0·üôÓO§œrÊW_}å]Fwúôé¬Y³æœ9sx#ÝŠ+N?ýôŠŠŠAƒ{î¹UªTÙ´iÓ}÷Ý÷ÀT¯^ýÙgŸup*]°å ¸o•””Évé¤DíX áb(K—.­T©ÒñÇÏŸ©\¹rÇŽgÍšµlÙ²víÚ¥=ÀܲÇ{Üzë­_|ñc=Ö½{÷V­Z}óÍ7·ß~;ÝtÓMÞåf̘±uëÖÓN;Ïl©Zµjß¾}?ú裗_~ù…^èÝ»wÚwòÄ&LÂ$ô1ª­]½ã,6***V­ZU·nݺuëzŸoÞ¼9­Y³âh”Ž;žyæ™Ó§O4hдiÓn¹å–òòò“O>¹GÞÖ/_NDݺuóÞ¡C‡—_~ù£>Jû>@®€8ÒGPE¦-ª¬‹ªÏúõë·lÙR»vmßóµjÕ"¢ï¾û.íæŸn¸áµ×^ûðÃ/»ì²… î¹çžC‡õÓ¡C‡–-[¶jÕÊ÷ü?þHÛ¿Yèâp¯>’Çù$,Ðw®øn1T¬áb(6l ¢5jøžß}÷Ýi»—£°‚uïÞ½.\HD·ÜrKp!¤‹/¾8xâ÷ßÿôÓOQ§NÒ¾ + Ž·`ÞÖ¢E‹ÿ¬Ð°1tÔœE‚, P»ví’’’õë×ûžÿùçŸ Q–-Ž8âˆ=÷ÜóÛo¿­Y³æïÿ{‘SV®\Ù¯_¿uëÖuîܹcÇŽißÈG€‹°1k¾þOÅ4ís ²(@•*UjÕªLËËˉ(7Ûc:ÎèÑ£¿ýö["*//¿ýöÛ‡ sð÷ßÿý÷?ùä“›7oîÒ¥ËØ±cÓ>ÈXIà.¥¥¥ÿ©˜æÓ¾DxO¯ØNÚ7— êׯÿí·ß2S䔕•±?J{tùgÉ’%O<ñÄ.»ìrß}÷í²Ë.S¦Lyå•W¢ž>}úI'4qâĽöÚkôèÑ<ð@Ž÷£iqd }d³ÿ*<¤}+£k×®[¶lY´h¦¢¢báÂ…uêÔiÛ¶mÚ£Ë9?ÿüó 7ÜPQQqÅWœp —]vÝxã>'¢õë×÷îÝ{àÀDôÏþó…^ðu^  ˆ# 3ˆè#dQ/guV¥J•î½÷^6¯‘ˆÆ÷Í7ßœyæ™U«VM{t9gĈ_|ñEË–-ûôéCD—\rI‹-Ö­[wË-·xÛ´iÓ?þñÅ‹wíÚuîܹ]tÑ®»îšöØAnÁÎ1€Lâ]»m.F?~üÈ‘#÷»ßuèÐaõêÕK–,9øàƒÇ\¦hdÁ‚—^ziåÊ•§NÊ—Úyÿý÷Ï9çœ-[¶Ü}÷Ý'Ÿ|2{ò©§žºùæ›»térß}÷a/`ˆ# “´hÑ‚?.òÕ-0kÖ¬3f¼÷Þ{ 48ꨣúöíËV䆸ñÇO9唯¿þÚ»ß ãöÛoì±ÇêÖ­;{öì=÷Ü“ˆN=õÔ•+WΜ9³eË–iäˆ# Kp_ôÊbè“d—~ýúÍ™3§qãÆÏ>û¬¯ÁeÆ =zôX³f͉'žxï½÷þú믇vXEEEåÊ•C/uÁÜxãißÈXŽà:ÃEþ$;ú2ͼyóæÌ™SRRrë­·Û¢«U«6lذ /¼ðÅ_|öÙg>ø`mÙ²%ôj[·nMû†@®@âp9„>€! Ž€|}í@yú8!°à]ÕƒüðÃwÝu×›o¾¹víÚ½÷Þ»uëÖW^yåö¸È€R5ÀåååÝ»wÿú믛5kÖ¬Y³ÿýïo¿ýv•*U&OžÜºuë´G 1(ULqÏ=÷|ýõ×—^zéìٳǎûôÓOßvÛm›7o¾õÖ[Ó ŽSü÷¿ÿ­V­Úe—]ÆŸùãÿ¸Ï>û|ðÁQ‹»É§Ÿ~Ú¢E‹wß}7í@Ê`Ž#Àµk×nÞ¼¹oë‹]wÝõ·ß~ûí·ßªU«–öEyüñÇÓ8Ä`ŠI“&ùžYºtéçŸ~Øa‡eÂËËËW¬X1kÖ¬§Ÿ~:í±€@Æyûí·§OŸ^VVööÛoï·ß~#GŽL{DBôèÑãË/¿L{àG€qJKK§M›ÆÖphÕªÕ.»ì’öˆ„>|øÆ‰hÒ¤I¯½öZÚÀô8TÙ¼yóÃ?Ì¿¬\¹ò%—\â=àÜsÏ=çœs¾ùæ›Y³f=zÙ²esæÌÙ}÷ÝÓxÚ·oÏ,X° í±€@ªlÚ´é®»îâ_îºë®>q$¢’’’½÷Þû¢‹.Z³fÍ“O>9oÞ¼3Ï<3íHÄ JµjÕJKK}O®\¹rüøñ;vìÖ­›÷ùV­ZÑW_}•ö¨$â0BÍš5Ÿy景¿þÚ'ŽŸþ95iÒ$ín£`â0Býúõ[´h±xñâùóçwéÒ…=ùñÇ?ñÄ»ï¾û‘G™ö·!RgÀ€8Lqë­·žþù—]vYÛ¶m5j´nݺ7ß|“ˆFµ×^{¥=ºm„ÖÙ„‚-¦8äCæÌ™sÊ)§|÷Ýw/¾øâW_}uÒI'Íœ9óÔSOM{hd@â0HãÆÇŒ“ö(è‰#â„(a›€G ÄqB@€G ÄqB@€G ÄqB@€G ÄqB@€G ÄqB@€G ÄqB@€G ÄqB@€G ÄqB@€G ÄqB@€G ÄqB@€G ÄqB@€G Äÿ^Ým ÒŠIEND®B`‚statistics-release-1.6.3/docs/assets/mvncdf_201.png000066400000000000000000000464361456127120000221430ustar00rootroot00000000000000‰PNG  IHDRhŽ\­ALåIDATxÚíÝy|õýÇñï&@ (ÈQ!@Ђˆ}ˆ‚¨,G‘ó×Z "õ.ÐhE­ÅV°¶ x øÐ"‡hU¬Ë%©DŽ”£rV!"dŒãî&Ùcf¾×ëù×f²Ùýdvv潟ï|gCápXÕI“]ô@p@\Žˆ Áq!8 .GÄ…àåçç‡b©W¯^·nÝÆðàAÏŸôÁtžeРA?àÓO?íܳ{÷î•ýmô}„o¼ñÆë¯¿þúë¯;vÌó¢ Ê6ŒP(”–––››;räÈmÛ¶ùZƒ¾ëÜó-<&^£˜oÀGà§NÚ¼yó‚ :tèðÖ[oÉ.G¾#F 8pàÀÛ·o—]‹dápøÓO?}ñů¸âŠ¿þõ¯þ=ëÜùÕ¶mÛöîÝ+»@H{x³ÀfGàYYY¿ûÝïjÖ¬éü¸sçNçFÅ“·JKKõ«_µhÑâW¿ú•û‡_}õÕÔ©S¯¹æšœœœœœœ~ýúÝwß}EEE•=ÑgŸ}ö?ÿó?ßýîw›7o~óÍ7¿ÿþûw(//饗®¾úêV­ZÕ®]»U«V½{÷~î¹çÎ;—ÄÆsJVÄ}î½÷ÞP(têÔ)ç·ýúõ …B_}õÕ¸q㜻µlÙ²âŸÿûßÿvO5Û±cG+¹Úu5vìXçq®¾úêŠøâ‹/:ËëÔ©óÕW_9 9rûí·÷èÑ£^½zßýîw‡ ²yóæŠUík§:uêL˜0ÁýñСC[mŽ£GÞ~ûíW\qEƒ Z·n}ýõׯ\¹Òýmeë<þM¢â?ûÅ_Lž<¹{÷îõêÕëÒ¥ËC=½ñìÞ½{РAçŸ~ëÖ­ÇŒóÙgŸ95„B¡|0ú1+þíˆ#œåS¦L©b½%Z¶ô×(žuRÙ*žý@¢¯ œ0`ŸŠÉæí·ßŽømóæÍ_ÝsÏ=Î’xÀY2pàÀÿøÇÎíxÀùíßÿþ÷ï~÷»Ño®–-[®]»Ö}X÷Aºwïqÿš5kþá¨XÃÍ7ßó ûÃþ0‰üÃþà,¿ôÒK£ÿ£˜÷¹çž{¢ŸýÔ©So¿ý¶ûã¶mÛܧøÓŸþä,ìСCk>žuµjÕ*÷¿(**rÿvìØ±ÎòÁƒ;Kþú׿æääD?úÑ:wîìüjéÒ¥ÑèÕ>`îºë®Ý»w;ÿˆâ¹çžs~ìÝ»·{®Ø-[³fs£² ÿºêÛ·oÆ ÿ¢â?ëNwøá(„(**>|¸óbõéÓgÚ´i#FŒHKK ‡Ã=öسÏ>[ík—âââ§Ÿ~Ú¹}饗¶mÛÖ¹gEEE£F:zô¨";;{È!n?õ™gžY´hQë<‰Mâ½÷Þûä“OZµjõýï¿víÚÎÂW^yeÓ¦MÎí3gÎ :ôøñãBˆZµjõèÑ£yóæ{÷îužÅ+‰–-÷5Je$±¨ö5%;¹ÄlZœ;wî“O>¹ñÆÝ_ýãÿp~å6 „:uZ´hц œ~ÆôéÓåõë×ÿûßÿîÜûöínß"ºm)„0`À™3gÂáðþýû/¼ðBg¡Û§ùÉO~â,™gIÅÞÕ“O>é,¼à‚ ª}íªÞ0š7o~áµiÓÆÍs999ùùùîŸÄY†{·V­Z;v,ba¯^½ª^çIlO>ù¤³ð“O>qsɼyóœ…=ö˜³¤Aƒ›7o‡ÃeeeãÆsÿÜ“ŽceK|â_'Ño–äöU¿F€šè8ÂvΙd¡P¨fÍš;v\±b…³ü¦›nºä’K"î\§N·ÞzkÔ¨Qßÿþ÷~†{ÿÛn»Í=á颋.úÅ/~áÜvïàªY³æSO=•‘‘!„hÙ²åÃ?ì,_¹reYY™bذa‹-Z´hÑí·ßîüª¨¨èôéÓÎíÏ?ÿ<Ñô–›>üðÃ/¾øB±e˧OÓ±cǼ¼¼Êþ0þuå¶-W¯^íÜpÛ×^{mýúõ+þê§?ý©û?ùÉOÒÓÓ…û÷︜MôkWµÏ>ûl÷:ë¿C‡Û·oïÔ©“{·8ËxóÍ7_Ýu×]n˜˜4iR—.]ºtéröìÙª_©D7‰Î;»ù¾C‡={ötnï۷ϹávÑ~þóŸwíÚU‘––öÛßþ6æ`zÒ-[îk”Ê:Ib?Pík¨‰àÄйsç'žx"zy×®]Ý3 Îë®»®âòk¯½Ö¹±k×.ç?®¼¼¼-Z¸?^ýõÎ’’’ýë_ÎC5ê†nX·nÝ]wÝÕ·oß-Z|òÉ'•U[íz«GÎ̘²²2g„:žqê„Ö•;Z½oß>gŠRÄ8µâÓO?uÍ—“••å&°]»vUýÚ%açÎ}úô©8ìg»wïv~¼âŠ+Ü¿mÚ´é–-[¶lÙ²aÃ'ÄT&ÑM"âd»óÎ;ϹánŠËvï–™™ñÒ¤(Ѳå¾F©¬“$öÕ¾F€šް]NNNëÿºð oºé¦ßüæ7›6mr®Ó!âÄù¢¢¢“'O:·#®èöï|ǹqæÌ÷¤IGÓ¦M+þX·nÝ 8·÷ïß/„())™ëÝ»wÅsàî½÷Þgžyæ‹/¾xíµ×úôésÕUWåçç»sWñ‹_¸³ ¼âf;ç ‘*ãÁ|þùç‹ŠŠ »téÒ·oß#Gޏ3~&NœXÅ:On“¨Ú½÷Þûì³Ï–””;v¬[·nßÿþ÷÷íÛó;úÜ«çwíÚµk×®Çwç‚TÁ²}}â_'Ñ’Û:¢ã¤$33sÉ’%Î¥CŠ‹‹ßxã×_Ý9Z´jÕjÉ’%εc*ÊÎÎNKKû÷¿ÿý׿þÕ yµjÕZ°`3Ú …ÜkIž>}ú/ùË믿þï|ǽ^tÄITÕ>`*ÜÌúõë§L™R±ï˜——ç^ÌYÄÑnLb]¹£ÕŽŠãÔBˆ† >÷ÜsÎ\“÷Þ{oúôéK—.-..BL˜0aÚ´i^¾Ìÿ}FçFaa¡;²gMš4ùóŸÿìœ wäÈ‘^xÁM÷Ýw_ÅÓþ¢×y›Dµ.¸à‚yóæ9NŸ>ýî»ïîÝ»7+++âk…—\r‰Û]>}úôºuë Ú¶më¶ñ*ãGÙ¾¾Fñ¯“hIìMT]vÙeÛ·oðÁûö훓“Ó¨Q£>}úÜÿýüñ•W^}ÿÞ½{¯]»vÀ€-Z´hÖ¬ÙÍ7ßüÎ;︗JBÌ;÷¢‹.B¤¥¥}ï{ß»óÎ;·lÙâŽÒ¾øâ‹îˆaœ˜´¹sçŽ5ªI“&uëÖíܹsÄpª›'D•ó©“^WçV§¥¥E|W²bÀ€Û¶m7nÜ%—\R§N¶mÛ4híÚµ¿ÿýïý˜£ê^iåÀîå£ã/cРAüñÏ~ö³îÝ»geeµnݺÿþï¿ÿ~Dc8æ:Ot“ˆÇ¸qãÞ~ûíÁƒ7oÞü;ßùÎàÁƒ×­[wÙe—Eßóù矟9sæE]T·nÝ®]»ÞvÛm6lˆg´eûúÅ¿N¢%º4rOø ŽsçνñÆBˆè´¤Žõë×÷èÑCÑ©S§üü|Ùå.˜MâÇ?þñóÏ?/„øýï?aÂ]Êö•çëÐç8*ªY³¦úÚõë×;7â§FмÝ$Æï|'r=æÍ›ç,yìØ± &¼ñÆsçÎ}饗~øáÒÒÒ3fÈ. @:Ž1ôïßÿàÁƒ6l¨]»¶»ðª«®úüóÏ·nÝšžž.»@ 8Ç1†ìììöíÛWLBˆŒŒŒ’’’’’’ÌÌLÙH@pŒaÑ¢EK6mÚ´ÿþ.]º€µŽUÙ²e˲eË ·lÙrÁ<òÈ#ñüUnn®ìÂÄë‚]ïo·]vjU¯(õš*UŒ d— Á±*K—.uNÍËË«U«Vü(»v£äææ²J=Äút]“6ô­òWRœWé5iC…žTb c¶R¯¶±9 3V©"¬m«2|øðaÆ?~|ùòå³gÏÞ¼yóŠ+²²²d×ÀŠÑ)âÁåxª …7n|øÍ7ß”](×)þy«ü§£ ˜ài×®]÷Þ{ïªU«"–çåå !Ž9"»@©R$®)R,A„…'Ž‘êׯÿꫯ.[¶,bùþýû…mÚ´‘] €”(×) ±Á$ÇH999¹¹¹|ðÁ;ï¼ã.ܹsçâÅ‹³²²ºwï.»@ÉS$®)R$Šoމaûöí#GŽúH1kÖ¬þýûWûçÆLL¢ÈÌeEÊ@ðTø´ B ưöXϬê.¾øâ+V<ñÄ;vìøä“Oš6mzíµ×Nœ8±]»v²K EŽ—Š”I£ãè=k?…jR$®)R$RaP¡3X{¬çG&Sä0©H"‚#c)×)Ò1½àGfR!®1€aè80"©ñ­òW¤—¥Ho:J/º#80:©QöšE…ĦB P=?hàÀ*$6jŸBzb»&m¨ô ¹MGZžH³ª˜@zb“^€Ž#¤ŠÔˆDÑöƒ¦Ž´'7·‘؃à@o¤F Á’Dj`‚#IŒn¤F¤ˆÓ¡#fUЩQ5×ÕUñÇ7Ï,–]h‰Ô(]DLQI‘ ˜'‡e×`šÜÜÜ‚‚ÙUJ‘b$GÆ$k‹²yKö„µÇz:Ž4Cj Fµ ÅDÑ @p R£¯*†9¿“9ÐÁ€6$ê !ÌNNn“×bæHâ£3·Úì­ &!8Ч‚ùD͈æÔs]íQªXŽà@¤F?¨+zóÌbõ‹¬Bp :R£ç4Jc´¥(Ôè-"cENëQ»²ãÄiŽÐÁ€ºHÒ42º¶T@p (R£WŒÉ[ [{ˆ6'’Cp "RcêÜ+#³Ì¶Gp€¯“i1VƼìHÿº 8PŽ”#¨‡mS[Œ1™—-À¦(²#¼4ÙÀ·ÐnLÔuµGY›ŸÜ©Ö‚Ap Rc¢œÈhgjt XMßÔhs£1Ù Á€*‚ÏpZ§FË ÈŽÎÄjÙUÕ 8°”î©QvÊ1 ;ê#8PBÀ1NÓÔÈðtÕÈŽ€ßެ£ojdxºZdGÀWGò™ätL4BvüCp ©±j4“@v|Bp` íR#ÆT?ÈX˜Ó15ÒhL‘vÙ‘+ò@}|W5ó镬Cd  :ޤ &Ïi—i4zH»¦# 8‚#“i”9£Ñ'dGÀC U#€H§Wj$2PG+"5ú¦#à‚#€ ié@j ‚#€@1!ÆÅIA¢éx‚s‡Ôè"2ÐGÑ"σÔ(…MG®Åoˆq‘è‹àÀw¤F©Q.-šŽ€Ê8Ç€¿ÔsÁà‹€Ž#™UN¨|‘ :h:© 8ð ©ÑÁð4cøBå$$R£‚h:I#8ð^À©QÙJj`‚#‘¤F•Ñt’ìj^R6Ɖ ÔLEpà™àS£‚9•F#´ à{Z`¨€®<ò‘5Âh5‚#opj#©€ñŽ<@j$5ꈦ#(‚#Í@&ÇH•ÍßÃjV!8І‚©‘ÈÀ* UH‰ja.0¤F3pš#‚#=(•PIìDp R#¨€à yÁä9R#à-¥ÞSÐ Á€Ò”:‘¤ÚiŽo•¿rMÚPÙU±$)€HGj¥p9žØŠ‹‹_~ùå¥K—øà¶Ûn›8q¢ìê%øêH  ‚c K–,Ùºuk·nÝþøÇ?fff !víÚ5zôèyóæõéÓ§cÇŽ²  GjDÀœÓy¡jcX½zµâþûïwR£¢]»v&LøÍo~³nÝ:‚# T°ó•=aâºnÓ"–¼ùiI<³c(,,¬[·n^^^Å…íÚµB8p@vu€dö RÛݼ«økcxúé§kÔˆ\3ùùùBˆ–-[Ê®‰Ôh€ŠÍÅ*B¡û«8ï]¨ó.ƒŽŽ1têÔ)bɆ æÏŸŸ‘‘1pàÀx!777bIAAì H©Q_©„¿Š÷78Drš#ª}X·Á±eee‹/ž5kVYYÙœ9s5jÏ_aR£^"ÎYô*äÅ ‘†%H ZôaÝÚ(Ip¬ÊƧOŸ¾gÏžfÍš=ôÐC=zô]inFe“ ãc+))yôÑG.\X»víI“&;Öa XÈ’v£¾©Ñ‰n²r °Á1†òòòÉ“'¯Y³¦_¿~S§NmÒ¤‰ìŠ™Iu~Ó45ÊŒ*&HEJà-‚c .\³fÍÈ‘#§N*»@2K¾ZÇÔ¨TdŒðæ?¦‘Õ¤ÂÛ Z#8F ‡Ã‹-ªW¯ÞÝwß-»À|Æ’ rdt‘“Æ›*#8F:vìØþýû333GýÛAƒ=Zv@@,9€éÕnÔ(‘ó#®TŽ#`;R£´Â,N4Mø‹Sòc²95:ÈŽAâm¯0T Àd ¶;æ³Ñq¬æw‚AêÈ’,¸æNüh:Ú!8ð £cž ;‚#`/³ƒjíFR#ø‚AêoÕCj¬£Õ€^˜À{f÷2ÂT&¡ãXÊàl§N»‘©0ñ éh„àÀc R] ÃÓŒCpà%RãוAÓÑeðPÌ@plÄÁÉW¤F¦br ÏÐnd* ³Ñq¬ãS¼#52&ŒVZ 8€ž†²85"8v¡ÝèK¤F/ÐtÔGp,bdãÔ!8¶ð/5™GãDjôMG@qGÀ ¦¦F¹íFR#ÛèŠÔ#8æ3²ÝHj€àÃÙ|¢OH¬EpLækj´³ÝHjô›Íócø˜õh†Ô²cÙ½ 5€DGÀL~§F)©”ÔrèÔ$ÁÈ‘HDp d^»‘Ôh›çÇŠ#8¦1/5JDj€ŠŽ€QŒLr¯õ pÄ˶ÔH»A²ª—}s˜w¹oR#(…à¼v©ÑfÌÔDpL`Þ©¤FPÁ@5HÁОy§6ÊBj€ª½™—eµuO¦Íí0m®ì*®†ìà¤ÆD¹aqç´;£„å¬1@0Žb³ç£cj¬, º?:w >êž·tGp4fØÁFJ»Q¯ÔC±b’øÀ+G1Iu—ô´Öã×Î¥Žõ|¿%P5‚#€Hö̉Q¼ÝèUàcü€WŽ€®h ¦HÙÔè_ƒñk)"8øKÚ ¦ÆÀ”µ¿6¡‚#먙pŒ_HÁÀ7lh7ª–¥ç6ƯME#~ 8ZâS£"Yø |å €¯ÙÐnTŠ:©Ñ¥Z=TCp „-LuÚÎ÷J«™ÒvN»“ï¼P‚# cB^íF¥RãÎiwª™dÇ óv†%ŽÌ?t©–eWI"8#°v#©1 4ÄĬj@3žwÍž£Hjd¶2fü0d¡ã h¦FÅOjŒ‰¦#€hGÀj´%ü¦Ñð4‚¿8o@h‡àèĀÌ=íF•¯¹'šŽ"pŽ#  În´*5j &:Ž€è5j„Ôˆx𦆅ŽL#±ÝhÀðtF«uD$…ª4àÇa àC‹ ƒÔ†EFˆFpTg@óÀøAj.ÓÀ UJ3 5IJ»QÓË4ÆÑj?ðÖ†¦Ž€ºü;´yÐ2¾Ý3°¡ñ 8ðQc‰íÆ€Ÿ¨½LøŠà(Ê€½?©ˆÉ€w7¬Ep¬ÆÞ½{sss·mÛ&»ØÅ×ã -OX•9Í€ƒàX… Ê.Ö1#5šÝn´*5Ê"ýëDãr<±}úé§Ë—/饗d×»˜Ñ$5R˜±Êޱ 0àðáò«<ÆA%uÖ¦Fg´ÚÎÿÝ[¼ ¡5‚cl3gÎ<{ö¬bÑ¢E~ø¡ìr` ©~®`Û$'–#8Ævå•W:7Þ}÷]ÙµÀ¤Æ„Ÿ‹ÔpG NG_äææF,)((]”FjT\Õ©1 ¹·ÃápÕwˆ ×ýCÓL=1ïfÆ©5}X·ÁÑÄDÀoA¶ãé5VtAÊÞ?ζkêõ„B¡k/™šÐƒ€TêŸèúµQ’Ëñò™Ñn ’j©,ApàÀÆ©¹¼4eä§8؆à˜ŒUŠh7Êrí%SùxÞìÁÌ¿Ý}#Û¤FK³õì`&ÇІÁ©ñÆ÷o‹^¸¢×o+âApd¢Ý¨¦ S£cfÄè4I”Ô”ßïGÚ™ Á0‘G‘ÀÚ§Æ*²`ô¯hL‹àX3f̘1Cv€íŸIÄÕª«h4V¡ÚÆ$!€¯Ž€4>õn70NmÞ©U7Uñ¡¼}dY‚|ÅØ€§†IŽðµRcrF …B!S¿uЗãŒB»1iÁ¤Æ½~ëkj\Ñë·1σôÊÎiwv˜6׿Ç7í@†Ž# ‡‡óQƤFð‰yïz(ŽŽ#Ûýn4VäwÓ€Íè8˜Ñnô{œZñ™Ôñ ÑÀ0t¨H¯AêP(½0àFcE4ã¤ûµë§FðŽ€ Ìk7ÿAj3.‹Ž@Ð<yæu‚i7ú”o|ÿ6R#MG~àG óµÝ¨ï©œÑˆ¾~¨3ï#´@p`#ÏÛ*tÍðßOÓ|"#N·ÆP5 7ÃÎnÔwZÁÔÈhµÁh7B‚#(Ýw÷4iüè5ÊþŸ GªÐñìFF¨<Ý?BkG@cæ}3µß¼m7’õ¥ïÆLj„\GqÑ÷@ëò/5†ÃaÙÿ\@üþzF“ð`$‚#$UÐkœZ—^#óc Ã>Ò]y¡Ýˆ`¸Ÿb~‹£gÏ¢ÿö ÈBp¢o« €£¬ßíFNm„ô݇À$GH©€ÍŽ@ôý~jÚ‘! íF(‚àøNß=¾§‚‘™Á€­ˆàø‹ÔXͳh2™ºêÔèëLèÈÛ7¾¾»˜‡àÀX̤֋.Ÿ"›ùÔ' ý`@»‘AjDcœHÁð‹¾£K\I0†¾{‰àø‚}}µ´—4#5ê8?ÆžoqôBp4ãw$¥Ýè2#5ÂeÀ¶ HGp¼G»±Zê·MJ^ý/L6Š{Œàà´d7šòû³„Û6 ‚#à1_› ft2h7€¦Ž€6HÕò¤Ý˜Djd&K/iítË“•¡¾ ·m¾3f#8z0ãø¡þ 5*ðÉ£|‹# &‚#àÿ²_cä 5<áë¶¡{+P Á„ 5@Ž€7´n7@ñv#©ÑT·Íx·U 8Ð=5Z>–§Bj,?Ü^öj€êÕ]ó)ÞnL](JâŠ<ÃbZÓOË·Okú©ÜªFpRE»±šÇW{&uðíF7/j}Mçþm!º·Òø†‚Ž€¢8fÄ#Å@XjŒh.ƼMGÝñž… Ž@J8TTÍøAê*ÄáÝÛ€šŽ€ŠË£¾\-¤N1,Òttñ-Ž€šŽ@ò|Šwt1ã¡Ú µÉ|ÌÆåx{ÙÜnô=INÓQöÿô-šÎŒ Ÿ÷` ‚# ?ñP­ÝÕp‚#»¨‰à$‰ÝzŒi#UKýSIɵâíFËgr$Ï€¦Ž/«©5=Á1ÈÏE´a!‚#`§Å¨ÓnÔ‹µÿ8ÿÄxÞc i¡ «Ú¾2cœÚ§w.;(ŽàX„v#â$}œšoqÔDpd¢»  Ú Ž€=˜L4R£.Ûȧ†µŽ@¼Ý­yðõ€jÆ)k†I%4û:NÍÖhà@Q´¡&ú‚°Á0íÆ¤Å™™É'³·–‘G¡‚#)ÒnÔ”²ãÔ¾ æGâ,Gpäìð£ãœE0H-‘mßâH….Ž@¼Ø³ë“v£¬Ô(7­2-¦jì‚#`2¿Û>E}GKU`ç0}uÿR#y!8@$©=g@»€ 8RÓ`ÐôìF¦Å@A´Áˆ ;÷h¦ö’h7ª3“CÍùÔ~o*š~FtDpÌdç¡4õv£ÜAj†ÈÕÄçFÀEpªÇa#0L‹j|}û³ovjÈ.@]¯¼òÊ’%KvïÞ]§N«®ºjÊ”) 6”]$ð|ÏÀ¡"€v£‚ãÔº·å®Æ©ÄCãŽcIIÉéÓ§}zð¹sç>ðÀ{öìéÞ½{VVÖ²eËÆ_\\,ûŸàÝS£aùGÚ@ý:Ž»vízê©§¶nÝzøðáòòò¦M›vîÜyÒ¤I:tðê) æÏŸŸ““³téÒ&Mš!fΜùüóÏÏž=ûÁ”½(÷ìú6`Riz1™ZM v¦¤B³Žã3Ï«Y³f:u>üöÛo4hÁ‚^=Ë’%KÊËËï¸ã'5 !î¹çž ¬Zµª¼¼\ö:@ptLÁ0/ ¨ÐnL±5Ç©µF»ˆ¦Sp\¿~ýœ9sB¡Ð~ô£·ß~{Û¶m[¶lY»ví¸qãÒÒÒ{ì±õë×{òD›6mJKKëÝ»·»$==½W¯^ÿùÏ6oÞ,{5U±³Ý˜"R£‘ø€¡ïhJ§àøÂ /”——O™2åþûïoÙ²¥sá´¦M›N™2å¾ûî+//_¸paêχwïÞ}ÞyçwÞy—·oß^qàÀÙ«ñ©`@›AÁv#ãÔЋûXK§s?þøãÚµkÿèG?ŠþÕˆ#fÏžýñǧþ,§OŸ.++ËÎÎŽXÞ A!ÄçŸÏƒäææF,)((±Î$Mwët_’àI»1æLŽ*® óþéÍv ŠÿþÑOzX'÷…¦{õø€DчukiKKK:ÔªU«ôôôèߦ¥¥5kÖ¬¨¨(õ'r¦N×­[7byVV–âäÉ“ñ<1¦ò©Ýhä´˜„ÒOùáö‰¦¥Š÷g%Töø¦ÍM½þèûW»©¤ž5ý¤¤éçRËEÖ­’Ú U‡B¡:uê8pàĉÑ¿-**ú׿þuÑE¥þDÙÙÙ¡P(úB?§Nÿí;ÂlìÖ¡e£³Ö8YˆI›à˜žž>xðàòòò»ï¾ûìÙ³URRrÏ=÷„B¡±cǦþD5jÔhРAtgÑigºó¬$øz̰ó¢ßf8;ǧ9IL‹L¥ÍPµbäÈ‘ùùùï½÷^¿~ý† Ò¦M›P(TXXøê«¯>|ø†n8uêÔ{ï½çÞ¿mÛ¶\pAO”““³{÷¢úõë» _É^ ðý€àI§Va>µ 5x‹•a÷èo¸áçÆÑ£GÿûßGüvåÊ•+W®¬¸ä®»îúéOšÄõíÛ·  àoûÛ7Þè, ‡Ãk×®mذa×®]e¯@Ò€šì¼|£ŽíFR#Ì Sp¼é¦›ºÿ…^˜Ü :ôøÃï~÷»«®ºÊ™3þüãÇ7®fÍš²W|Äõ~0óÚfàÝ TF§àøè£óDÍ›7Ÿ2eÊ#NmszÓôÛbìÜÔÕ¿0àåkÐt´4EžVÎïÔ…; Á¶cÏŽÀØÜæLQ`íFv@ÕŽ€/‚9üè;xÇ|ê¤Ù9-€"ްÝ…*0-Æ[f·}ÝZôý€˜‡àx<ª¸à3œWÏH»€\GØ‹xWe§ÅX>N­&cÚÞîØÃÀHGÀc-¿KZZÓOË·ìéh70Á (}Û€©Že[ßËøv£ãÔôÔa)Ÿº f4-˜Oí³gR£ fì €hGÚ°vf íF¿‘ó€8ÏyìÑtϪqjÚÌCpð-ŒS{ÂÃÔ¨l»Ñ?´ea#Ž@êøŒQö00Áð‡ ¸h7j„w.‚#€o(û…1BŸ™1–œÚhÌ´ !8¸iÁ‘Õ´¨†àë02ÿ¨3Hí+cÎnôcoÀf#8ݯ€iºÂ馊#8©2¦Á`LIKÚÆ0æ ‰àhÆÎ–ŒúAJ©91¾¶ù€QÂ(ŒGp„]Ø­C}̉ » 95dè͘ÃÊâQ\ùáöBuÚ¾òu;±³›è…àÀFiM?MepÙ ‹îCyXíÆøôyϘ‘@Žÿ¢KñS9i7 8É ¾ÁÀÁÕCq6ݼ¨þ`4sbâA»HÁ"Ð\ŒÆ uˆw@ŠްˆîÇ ÿÚÖÎŒ©Øt”uáw»Q÷Vºîû ~G¶SaZ4íÆï€ÔXM…æ¢ÍsbDPíFÿR#yVáà@’>Zè>–‡Ê¤ž™S-²à‚#H£x¯Õ"’Â6G@¾¶­cÝÛ´Ò¤'Fh>N X‹à$ŒfCœh‰ES¿{Êg‰j±€ÍŽ€ºhɆAj—ßÛ6Ùð ÁVà(éÔï5 Úq`g˨nE¯ßÞøþm²«H‰‡©‘v£D¤F€à(*€ƒ+í%í0'&Ä;À?Gð—ƒÔ¨yGØÀÛÝ=$D—AjcÚ>á8Ž€Šô=¾¢"]Rc0ôݪI€‹àñÇ7ƒŽóc4¡6élWÞò€¯Žà=oS#íF‰H¢@EG˜Œ=> àwj  ÝHjŒAp”ÌQÖï¸`@“,iœÚ( 9ðÁÆòãÂa ÕÒèÔÆ`ÐnLBp -æÇhwj£ßg}S#€˜Ž0“¾­´úÒ.5ú-àYßw= ‚#x@Çj“®Â GˆÆæyj¤Ý(» &‚#LÃîóüÌË`R£¯íÆàS#o| 5dàn5£tæÇ¨3"ìDFuê¿a_»´4P‘O–v#• 1þ5 8µQ Ï?Ôñ)¨ ç8Љô«9:F­S#íFI£ãsèÞ$àˆ«83ÎhÔôôÖ*èþÆôBÇ€f¤4ýk4: 8µQ˜2™š$ TàÕð{*7§6ÐÁ† I`•ÀšŽ7¾›1©‘AjY ˜„àąÉjÈŽ~O ³R#ßL Ø€É1€‚<èš×yò\0ó`¡ :Ž0ß½zIØ9íÎÓæúúNÓÑó¾cÆ€Ñn”û°€Iè8Иcr±/È î˜4H ÀGÚ‹Žz1ÛU' ¿›AêTÐ$"8VcïÞ½×_ý’%K¾÷½ïÉ®±1Nh1#`eÉ€¯ìdj ¦Ýä8µïGÞé@<ŽÕX¸p¡ìx£²Æd§3š—X…à[QQѧŸ~º|ùò—^zIv-)˜&Sªe xŒ‘©‘v#`‚cl 8|ø°ì*P=v÷†àÛÌ™3Ïž=+„X´hч~(»ÈA*…‡Œl7‰÷# ‚clW^y¥sãÝwß•] 홚§ö55Iø}‘››±¤  @vQbw-pñ@wчuk}AL4@`©4à¯Ü’óå1–g¦€×íF¥ƈ>¬[%­Ž¥¥¥ ,pLOO?~¼ì¢˜ƒÔ˜:R# «ƒã¹sçüq÷ÇŒŒ ‚#¯œC°TcupÌÌÌdLY_ô! 2³ÇèÍ8¿‚·9„4ÙNðM)ç4GÙÿwЂO R+õà€ÁŽà%R£'H€š޵eHW¼eÕh5íFf#8VcÆŒßûÞ÷d‚o1&Ûq$6 bÔgÌ®…à’¹" ؃à| ‡??Zm|j4 ÝÈ[ð„Õ×q€9ØàjAjPÁ’$ñ¤ÆÀÚ§F 8‚#ôáÒÉm4yj£ØcâGà`ücÒiŽN£ÑìáiƒÔ" Ò¯¹cê µð!ä‘Ï1T Hc@;Ç*6̃1 ©ðGàkfü¦õhµ"ÃÓ·hàÍï<éÃÓ³S#om@ GÁѱéHj g7º 8”Fٱô¹¤F¨ˆÉ1ƒ"‘QXpÕFºƒ€Fè8Bpè –úMGuRcŒi7òvüCǾ¡Ú5wh7P G¨ÙtTäš;® S£1íF¾"8ÃÉŽêÄGÕ†§ï5 Ú´0_1T pH0ŒÔT¶<5šq  8¬b|Á&H)OZ-z4Epè|(Án4 ÕÌ‹ŽàS£IíFÞˀߎ€ÌE¨Œã×*çE½FŠ#8P‘‡ã×êçE‰Lj7Á€ºR¿Ö./ZÒn$5Z#8Ð@üã×ÚåE‡”ÔhØùDR Ghƒ³éS÷æ?¦iÝÖªbüZÓ¼èÐúEIˆUo7ÀHGš‰¿ŽX¨Y©Ñ°v#€`èJß°è²§×(|n7ÒË‚ÁW€ScðíFR#`‚#H@j #‚#XļSI¥@Ž4«&Ä0H ˜„à«YxÔq®È#» «‘è‹àÁ!5jôø¢ \|G£ÇÁ‚À4j@eŽÐÇ hÔÀ GÀ:Ì ˜U©1S@"‚#øÈ¶ÔÈ 5`6‚#øÅ¶Ôè7R# Áöâ _‘˜‡àÞ³êÊ;.¾$0Á°óc|%75Ùn$5Š 8€—¬Md;ÀGðŒµ©ÑWDR@Gð†Í©Ñ¿lGj”Bp,ÅiŽÞ²s6ŒßH€jŽÐ(Nzj4²ÝÈPÁRBj$5ö 8öb´:uÒS#‰àIR!5Òn$‚#`5šŽI#5ï Õ] Ç<$͉ÚÒS£©xo*£ãØŽ¦cBœF£ ©‘v#€à ^* O] ©€ Gˆ‹:©Ñ`DR@qGŒVWãºnÓ”J´ÈÂ䨊R‘QHEÇ€4+¡Zj4©PÁbS05Òn Áb 5Fð;5’J-|Ñj‡jSa@LŽêèC HÊFF³ÛtAÇÀ7,o:’c 5L]|‹µÙ‘Ô©@EG@Ž7Ï,¾®ö(ÙUTR›}Ù‘Ô‘@‚#€ìÉŽ*O…‘›ƒA6ôÂä(ƒŠDNvT3QyÂIÆÊþƒÒS#ƒÔ¢TÊÔì¨xd¤Fª"8°‹úQ˜Ô@Yœã *&ì¨òéŒßiAj /:ŽP—0 1`ÀZý±é¯ë´#5òôEpP=}³£.‘Q(ƒAj´Fpí²£F‘Q¨‘9µ@µޱ¿üòËK—.=xð`½zõÚ·o?f̘+®¸Bv]0Šs péq!‚5ÉŽzEFÐÁ1†ÒÒÒ[n¹eëÖ­ 4¸üòËÏœ9³qãÆ>øà¶Ûn›8q¢ìê™ÏŽšFF>?Ðn‚c K–,Ùºuk·nÝþøÇ?fff !víÚ5zôèyóæõéÓ§cÇŽ² ´Çe)›Õ¬ªú²Hà ˜Ëñİzõj!Äý÷ßï¤F!D»ví&L˜PVV¶nÝ:ÙÕò©v-®³»r5R£ß©ŽÔƒŽc ………uëÖÍËË«¸°]»vBˆÈ®PBDv”ÚÜtŒŒÂšÔÀ$Çž~úé5"×L~~¾¢eË–²«TQ1®“á"ÚœšæÅ¯ÿ5Rc¦€IŽ1têÔ)bɆ æÏŸŸ‘‘1pàÀx!777bIAAì ð‘›á¼M&%Åoý_ʤF©xDÖ­Ep¬FYYÙâÅ‹gÍšUVV6gΜFÅóWÄÄq°ÑWt‚‰>ÝÇ «ùïH€n¢ëÖFI«ƒciié‚ ÜÓÓÓÇ_ñ7nœ>}úž={š5köÐCõèÑCvÉ0v—rLà_‹5-*Ï‚ÒϘ †©/w4R#`$«ƒã¹sçüq÷ÇŒŒ 78–””<úè£ .¬]»ö¤I“ÆŽëΰ¨ÊBde÷1•R©Ñ×`GjLeupÌÌÌŒ9¦\^^>yòä5kÖôë×oêÔ©Mš4‘])`bL¤F°:8VfáÂ…kÖ¬9räÔ©Se×Àö¤Ffãà‘Âáð¢E‹êÕ«w÷ÝwË®VpNs”]|dUj$•f£ã騱cû÷ïÏÌÌ5*Ʊ|РA£G–]#mX•àéàÁƒBˆâââ;vDÿ–‰Õâg[j$˜Æ#8Fºä’K¸ £\{`ÛR#pŽ# §9šÇÂÔH6l@p)•ÀCGð’j©‘F À3Ö¦Fâ)` ‚# Ns4€µ©€=Žà›S# °Á6z«ü•k҆ʮæ°95° ×q€ä9'Øœ ©€Uè8B-6„8ÍQ;N£ÑæÔÀ6GH†jÃÓBFj$§¶!8 ¡é¨ ScðH€…Ž5S#§6ÁP MG•]W{©1ø§ fU@\ÔŒŒÁ#56£ã(‡¦£‚TN\ë@`ŽP RcðÏ@MG@E4ÕAj þ¹(‹s 6¿FR#G@Q4åRð[a"æH\Gˆ¤òð´ƒÔ@ ‚# .šŽR¨ŸCjàßÐ"5“çH¢a©·Ê_¹&m¨ì*ªGÓ10Ê~+LR#‰˜U z4CjP:Ž€êh:úM£ÔH¤ GöÒëJ RŽŽ# šŽ~PÿJ‘¨€àÀF O R#e=ÐtôŠ.³§]ä9ê 8Ú ;¦N¯áiÁ7ÄP “c`/çRŽ,-¡×<Û'ÕÐqtBÓ19Ú5E°©‘„ NG@3dÇ„hwF£ƒ$@MG@?dÇ8éØh§FB*€ø-‘«¦i£Q¨àèŠìXM‚@yG@cdÇú6…ŒÔHN(‚#¬æ\‘Gv)!;ºôm4 2Mí‘…n_!¨¢*€$Øœµžváè‚oŽ ádG­óS¢tü2˜hRR#Q@rŽ€9,ÉŽnoÕ€ÿ”Ô@/GÀ(fgG3ZŒ.ía;gbµIÇoó²£I-F—¬­Î°­@Àހܹ2º'-3þ‹h¤Fš"8fr–¾­GS#£ 5ÐÁj1oàX.[ÚœR#­ÃÓªF­G³#£ 5ÐÁ°‚â­G•kó ©€Ž€-Ôl=Ú©€)Ž€¦VWñå„›%‘Q„àX§bV‹ø†kÿb\ôWiÛ©€YŽ€Õ"Ò›W9ÒÚ˜XÑ5iC…¤F&!8øFÒ92°Î¥.$F7R#ÿ¯ÙsšcüªÎ‘UÜÓr¤F¦"8B98e‘ãAj`°4Ù€9ˆnÌFp¾á4;eW]ÉMdV 8€Hl@p€T‘X‚à)!·°ÁøNsDB¤§Fé° Á*"½A}פ •Ú¤À6G ±Õr©€mŽ› 5°Áˆ¦#*£BbS¡v"8@¼THl*ÔÀZG(JzÏOzP ‰M…ج†ì@uÎGé‰Ô@::Ž@¥h:B¨1Z¨à•R$®)R¡.~*ÔY‰kŠ”‚à1)×)ÇØNœ81mÚ´þýûwéÒåšk®¹óÎ;÷îÝ+»({åææJ|vóšŽr×§ú’ø.AŸV©Í©‘­Ô[¬Ox…àCQQQÿþý_|ñE!ÄÕW_}þùç¯\¹rÀ€;vì])2FØ(‹àÓO>yìØ± &¼ñÆsçÎ}饗~øáÒÒÒ3fÈ. r˜×tDLêd5u*€ŠŽ1¬_¿>33óÖ[ou— <¸iÓ¦ùùùeee²«³ ‰ Q'«©S D 8ÆÝ§OŸÚµkW\˜‘‘QRRRRR"»:ÈA„5›:YMJ ßâE‹"–lÚ´iÿþý]ºtÉÌÌ”]/)ò­0JU• …ÃaÙ5¨kË–-Ë–-+,,ܲeK‹-æÏŸßºuëjÿŠÉk¯  @v Ðq¬JAAÁÒ¥Kl——W«V­8ÿJváÞ³ºãXZZº`Á÷ÇôôôñãÇGÜ'?~|ùòå³gÏnܸñŠ+²²²d ÕÁ±¸¸¸K—.îÛ·o¯ìÎÓ§Oá…zè¡!C†È.@«‡ª333£‡•wíÚõì³ÏöêÕëú믯¸räÈsçÎuíÚµE‹Gý裄³fÍêß¿¿ìêä 8ƶoß¾'žxbÇŽGŽiÚ´iÇŽ'NœØ®];ÙuHCp@\8Çq!8 .GÄ…à€¸‚#âBp@\Ž;qâÄ´iÓú÷ïߥK—k®¹æÎ;ïÜ»w¯ì¢ôV\\üç?ÿÙY¥={ö;vìºuëdeˆ½{÷ææænÛ¶Mv!ºzå•W†Úµk×+®¸â¾ûîûâ‹/dWd¶LO°óô‡xApôVQQQÿþý_|ñE!ÄÕW_}þùç¯\¹rÀ€;vì]š®JKKo¹å–‡~øèÑ£—_~ù…^¸qãÆ1cÆÌ›7Ovi&X¸p¡ì46wîÜx`Ïž=Ý»wÏÊÊZ¶lÙøñã‹‹‹e×e¶ÌÔ±óô‡ø¯…á3f´oßþ±Çs—,[¶¬}ûöÆ “]š®/^ܾ}û#Fœ>}ÚYòé§Ÿ^vÙe;vüç?ÿ)»:]33óÖ[ou— <¸iÓ¦ùùùeee²«ÓÒêÕ«…÷ßff¦³¤]»v&L(++cÌ%i 5jÔK/½$»-Y²¤¼¼üŽ;îhÒ¤‰³äž{îiРÁªU«ÊËËeW§+¶L±óô‡xG Ù%;;»}ûöµk×®¸0##£¤¤¤¤¤Ä}÷"~………uëÖÍËË«¸°]»vBˆÈ®NW3gÎ<{ö¬bÑ¢E~ø¡ìr´´iÓ¦´´´Þ½{»KÒÓÓ{õêµ|ùòÍ›7_z饲 Ô[¦‡ØyzŽC¼ƒàè¥E‹E,Ù´iÓþýû»tébÏ&å­§Ÿ~ºFÈ­4??_ѲeKÙÕéêÊ+¯tn¼ûkÑR8Þ½{÷yçwÞyçU\Þ¾}{!ÄŽÉaËô;OÏqˆw}±eË–eË–nÙ²å‚ .xä‘GdW¤«N:E,Ù°aÃüùó322(»:XêôéÓeeeÙÙÙË4h „øüóÏe°óô‘å‡x‚£/ –.]‡…yyyµjÕ’]‘ ÊÊÊ/^lذãÇ/_¾|öìÙ›7o^±b…sPALÕ®Ò7NŸ>}Ïž=Íš5{衇zôè!»dÕU»J‘´ìììP(túôéˆå§Nÿí;Š`çé9ËñÇdœ;wîñÇwÌÈȈ>$‡B¡Æ3æÀ/¼ð›o¾9dÈÙ…««ŠUZRRòè£.\¸°víÚ“&M;v¬Ug“$-ž­É©Q£Fƒ ¢;‹EEEBwž5 ;OÿØ|ˆ'8!³   bá®]»ž}öÙ^½z]ýõ—;“ÚŽ9"»j¥Å\¥BˆòòòÉ“'¯Y³¦_¿~S§Nå¿ÊV)<‘““³{÷¢úõë» _É®`çé1ñ.®ãè™úõë¿úê«Ë–-‹X¾ÿ~!D›6md¨¥… ®Y³fäÈ‘óæÍcÇuôíÛ·¬¬ìoû›»$¯]»¶aÆ]»v•]ÀÎÓcâ]GÏääääææ~ðÁï¼óŽ»pç΋/ÎÊÊêÞ½»ìõ‡-ZT¯^½»ï¾[v-À· :4--íw¿ûs^£bþüùÇ2dHÍš5eWÛ±óô‡xCÕ^š1cÆÈ‘#o½õÖ®]»¶hÑâèÑ£}ô‘bÖ¬YÌbK±cÇöïߟ™™9jÔ¨èß4hôèѲk„¥š7o>eÊ”Gy䦛nêÙ³ç¾}û6lØ——÷ÓŸþTvi;O_pˆw½tñůX±â‰'žØ±cÇ'Ÿ|Ò´iÓk¯½vâĉÎÅú‘¨ƒ !Š‹‹c~…|xÀ€ápxÅŠ999üñ°aò³³W¬XѰaCÙÕ€_è8@bÂáð=÷ÜSTTtï½÷æää!.ºè¢[n¹å?ÿùÏôéÓeW>"8@b.\¸~ýú+¯¼rÈ!îÂÛn»­U«V«V­Z½zµìÀ/ U .t‚#âBp@\Žˆ Áq!8 .GÄ…à€¸‚#âBp@\Žˆ Áq!8 .GÄåÿ© Ùª€ìBIEND®B`‚statistics-release-1.6.3/docs/assets/mvnpdf_101.png000066400000000000000000001071031456127120000221440ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A€IDATxÚíÝ{¼UU½ÿÿ±¹¤ÊÅËC9@lR´EK,Ã,ó["_óAÈþfQ¢ T¶\ô›öµ­™DEð`˜n°4‚ Ń/Ù† ü¸œ“÷“;…ãöïÓɼ­1çsŽ1çz==zÀb­¹æšî½Ö{}>ãRÓÚÚ*€JÚ˜>ÁJŽPBp€‚#” „à%G(!8@ ÁJŽPBp€‚#” „à%G(!8@ ÁJŽPBp€‚#” „à%G(!8@ ÁJŽPBp€‚#” „à%G(!8@ ÁJŽPBp€‚#” „à%G(!8@ ÁJŽPBp€‚#” „à%G(igú©lÙ²Eñïÿþï't’¢W¯^¦Ï@i xdX”dRܱc‡üƒü'â#€, üa1ñ@vŽ`/ŰèG|‚#XÇÉ‹)3Ÿ;>¦?À ‰‹‹9G£ %‚#“]X Dÿ@JGÈ›ÙÞ1ñ@bGÈCÎÅÅŠˆ 8@Vl ‹~Ìž Á4+\cö EGÐÀþ⢠ú×¢ ¡r„E?â#€0Gˆ¡¬aÑøÀà•nØ¢.ÄGnGV=ÅÅŠ˜| @"8À§‹˜| €àÔÒâ¡ T-‚#€*Eq1%â#P…ŽªaQ;â#PUŽÊNtÖˆ@• 8('Š‹ùcò5PzGåAX´“¯#8(Òcò5`!‚#=(."#½zõÚ²e ñ°Á@r„Eä†á€ Žb£ Sˆ€YGJ(.ÂÄGÀ‚#€P„EØŒÉ×@þŽöCXD±0ùÈÁ€”mP|ô¯êEqåC|2Epª aÕ€ød„àT:ѨBÄG@;‚#PZÁäk@+‚#P*„E “¯-Ž@PMÑ¿Ò 8EEqHŒø$CpŠ„°hD|â"8@'ȳguGÀR<1{PAp,BXŒ£ D 8†¹Ã¢àƒ °ñDpÌPå ‘Ì">G ?t¢"">‚#-Â"PL¾ÁÈŸ.@)1ùUŽàhCq¨ô¯QŽ@*„E šQmŽ@t¢a çGñ7Þ ¾˜B|Dõ 8ª(.Âþ¯.;vì ¾˜ÅõG5 8Q‹°‡âO#ñÅ,&_£ÜŽ@Þôa‰Ä_]ˆ/f1ùeEpö¢¸KhüQ$¾G%CpDU#,™V‰/fqýQGTÂ"ì‘óO#ñÅ,®?J€àˆjÁ`/XÂøWâ‹Y\ÁefüpØöÕ…Ù3fqýQPG” aö°ÿ§‘Ù3fõêÕkË–-òÿ×E@pDIðÅ–°?,¢j×EApDô¥Tޝ.ij¸þ°ÁCX„=ÊúÓH|1‹ë›Q å(ç Êýˆ/f1{v"8Â^Õó ûUíç7ñÅ,f/Á6GØ…°{ðÓèùÄS(ÃG˜ÇÇ3ìÁOc4â‹Y\Gp„14¿` Âb\ij¸þ0ˆàˆ\ñ {ðÕ%%â‹Y\ApDæ÷í/¼ð‚¢_¿~¦_f|BÃ|&¡"â‹Y ?EE…Ž^xáí·ß~ë­·:TΉihhxûí·Çß¾}{yŸ>øàÍ7ßlß¾}=þå_þ夓Nzî¹ç~øá /¼PÞá…^¸ë®»Ž:ê¨#F˜~Aa~‘ñÅ8 ÀSøàxÔQGM™2eΜ9çwÞgœ±uëÖµk×öïßÿ²Ë.sî³jÕªÿøÇ}ûö}ì±Ç„×^{í÷¾÷½éÓ§?ðÀ½{÷þÏÿüÏ_|ñ ƒºá†"¶·¶ßÑa Â"tñ ‘3â#ü …ãÆ;üð×-[öøãwïÞ}ìØ±'N”ÕÇ@ŸÿüçÿíßþmÞ¼yùË_6nÜxôÑGŸþù?üá»wïnú¥ÄÆ'4ìÁWd¤W¯^[¶l!¾˜B|„[Mkk«és@¡a>*`â‹YÌ^ªfGëa~a3â‹q€«Á1¶~ýú555i?,_a Â" ‡øb׿ªckjj’ë„§|BÃ|uAÑ_ÌâúW ‚c22:ÛÌÄJ„E؃ŸF”ñÅ,®é“sòbÅ$ϰ?¨Ä³œë¿cÇŽ=zðŸ Lޏ îøHï– ,¢:1ùÚ,yÁåúí‚ë_GmÜñ±±±QðKÓø¼“¯-@¸LŽšÉ©3übÀŠ‹@â‹Y\ÿr 8…GXÔ_ÌâúÁ(*:Ñ@bij¸þÅEpŠ„â" ñÅ,f/Á°aÈñÅ,f/ Á°c@žˆ/ÆQ.‚#`ò"`ñÅ,®¿åŽ€aîN´à°ñÅ,®¿µŽ€•EOˆ`ñÅ,†ŸZˆàä‡i.@_Ìbø©UŽ@¶‹@9_Œ£l‚# a(1â‹Y\³Ž€6t²€êA|1‹ëo ÁH…â"P͈/fqýóGpb#,ÂÎOão¼Áǧ)ij˜½”'‚# Šw%X"ð«ËŽ;ˆ/f_ÌböR>Ž@Š‹°‡b"!¾˜E|1ŽoP™"8^„EØ#ñO#ñÅ8â‹Y\ÿŒ½¨ÐÀz¿ºðñi×ß,®¿vGT5Š‹°G¦_]øø4‹ëo×_#‚#ªaöÈù§‘O³¸þf1üW ‚#ªaö0þÓH|1Ë_3†ÿ¦DpD™ñÍ–0ý¨¾˜åŽ/[¶láúçoPÉQ6~B£jÙ˨¾Ø W¯^\SˆqQ„EØ£ ?||šÅõ7‹ë¯Žàˆ³¿œƒ*QаèÇǧY\³¿¡‚àˆ‚)Í'4J ¬0ijˆ/f1~#Á@X„=kjj„­­­¦ÏN'â‹YÄãøˆà{ñ‰KDu‘©ñé-}åD¹$ñÅ8â‹Y\‚#ìBqö¨øÕE&Å-ÛBô:zãÓ[úºoeL||šÂõ7‹ëï 8Â<Â"ì¡þÓXSS##£Ÿ?AF+P¾äãÓ,®¿Y\Ap„At¢a‰_]"R£›L_éµQþõGùïSÛã¿jjj ”Ÿ¦qýÍr®u^|‚#r%ßéx¿ƒ u L[¶éîV»97ÖöØ(|ññG1; â‹iÌ^‚GdÎSΩÚoi°AúqеÆ@2AÆÇâ"¾˜Åì%ä¬$Áñá‡^¼xqssóA4tèÐ)S¦tíÚUñ±ÿõ_ÿ5zôè¯~õ«7Ýt“é×Q [„=4þ4¦Iާ·ôýJ¯µ=þËj>©ˆEGñÅ8 ÀÈG‚ã‚ n¿ýöŽ;4hëÖ­K—.ݸqã½÷ÞÛ¡C‡ŠmmmýÉO~òþûï›~%AÕ–Èâ«KÅÔÑ­ŽöÆŽ£j{ü{ѳ£D|1‹ë¬>8655544ÔÖÖ.Y²äˆ#ŽBÌž=ûÞ{ï;wî5×\Sñáwß}÷sÏ=gúEÅEØ#»¯.ZjŽÀ¢£(~ÝÑA|1‹ëì>8.^¼xÏž='N”©Q1mÚ´G}ô‰'ž¸úê«Û´iñØ7.X°àóŸÿüßþö7Ó¯£`‹°G?zSc §èXšì(ˆ/¦qý‘…ÂÇuëÖµiÓæÌ3ÏtniÛ¶í!C–/_¾~ýú“O>9ìŸ|òÉÔ©S»ví:mÚ´K/½Ôôë(:ѰDž_]b¥ÆXÝꬿ¨¶ÇþY2eÊŽ‚øb³— W±ƒckkksss·nݺuëæ¾½®®N±}ûöˆàø‹_üâµ×^»ë®»9äÓ¯Ãja•œóGÖµFwvtŠŽ¢tÙQ_Lcöt)vpܹsçîÝ»»téâ¹½sçÎBˆwß}7ì/¾øâwÜ1vìØÓN;íÕW_5ý:¬CX„=Ü?"ßÈ:ÔÊ—ñÅ€‘R±ƒã®]»„;vôÜÞ©S'!Ä{ï½ö¨©S§}ôÑ“'O6ý ìB1–ûêâ ‘™Jœ»ÕOoéû•^ü`ýEa ër#¾˜ÅõGbÅŽ]ºt©©©Ù¹s§çv¹¼Ž¬;úÍ™3gÇŽ<ð€Êz=¥Gqö°ç«‹âÓº8ÙÑÝ­%-:º_Ìâú#bÇvíÚuîÜÙ_YliiB8ó¬Ýž{î¹xàÿüŸÿóÅ/~ÑôéCX„=,üitj½Ž~Ý`«Z*}vÄÓ¸þˆ¥ØÁQQ[[ÛÜÜÜÒÒâžã"jkký÷߸q£â—¿üå/ùK÷í¿ýíoûÛßöíÛ÷±Ç3ýš²bO9Uΰ|žÛìuôëòño%ð°¢£¨Žì(ˆ/¦1{ Š ‡ ÖÔÔ´zõêsÏ=WÞÒÚÚºjÕª®]»0Àÿž={:÷”Þ{ï½5kÖuÔQ 8òHÃÕíŠò jPˆÏ$ÏÐÆøàÍ7ßlß¾}=¡Qeúꢸp£zÛ:YÑ1ÚCÍ'}ûsÿnð*D|1‹á§JK°{ðÓ˜x¶µ"YtŒ¸Cij~ ‚£Õxs„%‹Ò·­ÃæÇˆ)2ˆ/ÆQ®ZGëð {TÏWõ e­±þÕBˆ©ýWDgÇÄÝꈢ£ìVWsÑÑøb׿ cëׯŸö1‘„E؃ŸÆ0îÈè³v|¯£ï´­°þ¢[>ðíÏQt¬Œøb׿ªckjjêׯŸóç4‡ªžr,Wåa±b¹102:Ƭ/„èuôyîO8jÕ•=ˆ/fqý«Á1 '/Ê+>Vù'4¬ÂW—Š¢#£›,=ú³cÅnuÄ0GŠŽ _ÌbéÍÒ#8¦"#cÅøHX„=øiô,7ʼ(Ô"£#‹¶µÌŽžj>éÛŸûEÇL¾6˹à«W¯\ÿr!8jyÏ‚%‹êÔKŒŒ´­†ÉׯõèÑC®ß.¸þeApÔÆù% øêR‘§ÜØëè×cEÆúWGLí§ ‹nž¶uÊ•À°þ¢oîºÕiп6‹ë_&GÍäÔ~1` ÅÅÄœö´aCõ¢[ ñÅ,®9´1}ÒÚâÒËÅôyÙÎ]nŒ[kT1fíø^G¿®’GŸÞÒ×?ÑóÓàCÍ'=>ô¹^¯²¿Îæ×È׿è¨8…DeQ#½µF7÷GíûVK“¡úe³—Š‹à ﳺxF7j/7º9³­c]žŒ_ÌböRѪl؉6}RåánR׿:bjÿ±^ÿêˆE_ª ýh4’EÇ,/RÉ9¿VôOMáúGÀFt¢3唳kRúJ/Ýjg5Ç<_B¹Ñ¿6‹ë_T»0Ç%7)—lŒ+ºè¨2?æ¸e3è ƒ†:eÊ”®]»FÜÿÿøÇÍ7ßüüóÏïØ±ãðÃ?þøã¯¼òÊÞ½{›~åA'¦Dô© 7QæÖ1–—Ž[6#"Söl¨ß:aªPØH&ú×fqý‘2T,X0}úôM›6 4¨S§NK—.0a®]»ÂîßÒÒòµ¯}íB|å+_9ôÐCüñÑ£G¿òÊ+¦_Jáùç¸ðþ«äгÖ2?F$íVGõË,®?²VøàØÔÔÔÐÐP[[ÛØØØÐаbÅŠK.¹ä¥—^š;wnØC~ñ‹_¼õÖ[—_~ùc=¶`Á‚|ð†nøä“OfÍšeúÕs¢a•i1‰³£‘nu‚¹ÕÇ-›áæ8jÕ•²Ö(„øæŸ¿/2ÞÈ›øb×Ù)|«zñâÅ{öì™8qâG!o™6mÚ£>úÄO\}õÕmÚ$ã¿üå/:tøþ÷¿ïÜòÍo~ó–[nyõÕWwïÞݶm[Ó¯©èDÃ|4Æ’~AGu4OÍbò5²Pøà¸nݺ6mÚœyæ™Î-mÛ¶2dÈòåËׯ_òÉ'ûÒ¥K—ººº<Ð}ãðÑG}ôÑG:t0ýš,EX„=Rþ4Ú0Ø1bÇj·^óçÝ:p²¿ŒúƒõÝ:°òÃ#ô¼ç†,F:¼â‹Qìý½Š[[[›››»uëÖ­[7÷íuuuBˆíÛ·Ç… znY·nݶmÛN<ñDR£o÷°„³–“ùiŒµ|c‚ìhϬj Ý{PN‘ÙúÝŸæy>Äã(C‹bÇ;wîÞ½»K—.žÛ;wî,„x÷Ýw£þ /,]ºtË–-/¼ðÂ1Ç3gÎÓ/Èa÷WgE'-ÜÙQ%ÊòÞÔþ3+ÆÍúWGLí瘵ã ^7¹݈/fqý‘R±ƒ£œ:ݱcGÏí:uB¼÷Þ{ÑojjZ²d‰|Óìß¿ÿg>óÓ/È$Â"ì‘çO£ŒŒ±z¾Sû¯È³Í֭ޏ(Ü?¦gC}ngõ¢ˆ/Fqý‘X±gUwéÒ¥¦¦fçΞÛßÿ}±¯îá;ßùÎk¯½¶fÍšŸüä'+V¬¸è¢‹ä« èÀÓóÕl3xëÀ=ñSᛞ÷ÜOÛú¸e3¶Lšœøáa[È!d|ÜúÝŸÊ¢c¯%“Íâú#bWÛµk×¹sge±¥¥Eá̳ŽPSSsøá‡7nûöí‹-Z±bÅ\`úeeŽâ"ìQÐA´=ï¹ajÿŸæVwLPt,ª_f1{ ±;8 !jkk›››[ZZ9äçFù P[[ë¿ÿÆïºë®!C†œsÎ9îÛû÷ï/„xã7L¿ ¬aí?iʉåœý*N¬îS?ïñ¡“£§ÈC#ýˆ/f1{ ŠŠÝªB 6l÷îÝ«W¯vnimm]µjU×®] à¿ÿ!‡òÈ#,]ºÔsû¶mÛDUèDÃ);Ñz¥ORDÏZeÿ˜1kÇßr:ç¹Õ±óµq\D+|p¼ð ۴isë­·:ÃÞ~ûí .¸ }ûöò–>ø`Ë–-;vìBÔÖÖöë×oÍš5O=õ”s¿ýío÷ß§N dúiÀV.°‡=aÑáIƒžøi¬ôvܲî°%³cC{ÍŸ—`÷þ1nfG:¿^â‹Q\„)|«ú¨£Žš2eÊœ9sÎ;ï¼3Î8cëÖ­k×®íß¿ÿe—]æÜgÕªU?þñûöíûØc !fÍš5f̘ïÿû èѣǛo¾ùüóÏ !êëë;ì0Ó/(!:ѰGÎ?±úÔºjn=ï¹Aa¶mF±[m-§½cÇÞÙòÇðSø>8 !Æwøá‡/[¶ìñÇïÞ½ûرc'Nœ(Wä ô…/|áw¿ûÝ-·ÜòÊ+¯¼öÚkGyäðáï¸âо}ûš~)±1–(ÄW—,R£#‡!±¦È·lÆ_ϟܧ~^Å{ʹՖŒt ~áÄ£¸þp+CpBŒ=zôèÑaÿ:jÔ¨Q£F¹oéÙ³çüùóMŸuB…ø„F•0þÕE½Ü˜ij”²ÈŽ2ÿõš_9ÿ%õóÜ :sìqÔ»ÂÊ‘ŽW€Ù3FqýQ’Šc)QY„=ŠþÓ]nôÄO×33î2àabÕǬ¿èKÚž:±?Ÿ}“©Y ôOÍâúW-‚£uhÀö‡EÅ>µö&õqËfüõüŸF$-ãKýeR%¨qS£Þù1zE¯ÈSqÇjuN·º¸EG;/'¯¹Ü˜ë_&G ã#aö(ßOc¬ÝbŒ[ô¥;m(:F+Ð‚Ž±Ð¿6«GríÁõ/ ‚£6îø(×·3}F¨jå ‹êrhRWœX­.·y¢çV{” èèF|4‹ë_&GÍšššúõëÇ/L©’Nt†6zô©Ÿ·èK“µµëÙP¿õ»S‹;·º"â‹Y\ÿr`ç ðªm+—°>õ­pïª× '~Zq–ÄúÔÏËz™@Ç-›±iêd÷iÈ]d÷ñ³#™ØøÄ,÷õç?AQq ©š;ÑnøÀéONùóÙ7™>‘ò0¾œP¦˜|m³—Š‹Š#PlY.‚ʲÐ(S£…Ó¢{Þsƒ¬ùeWtTÙ±ZõlêKýØyÙ8®áPqlGQ$‚ŒŒî[Ž[6cÝ93mæ˜RôŠ<±Äš"#„(Ó™ ¿3‹ë_ TUÛ°ÅœB£ü«åF°¢ã˜µã³^&b˜£St,ñD™@T¿ÌâúGÀò½’ïÜz÷îýƒõÉ!žB£±–׸"OrAÇLŸ¢JŠŽª_fqý-GÅ0Ì]Yû¾s›>){É*£'5zÊÇ-›±îKKeYŒtŒæ™X-\s«ê—YL¾¶Á0€Ntri˜, 9ÓžµŒ}tÈ=¬ÝSd޽z~)×åQA|1‹ÙK¢U ä„tÒ L…ݘƒ¿žcû9EFåž=ï¹áµïN2ýâ cíãè_ÛƒŠ#-Ð1ªnµ³"Ã’¢cÄü˜ã¯šOÑÑê—Y\Pqô£¸¨]MMM>åÆXócò¤qE¤DõË,®¿YG@ÂbJ3±Ú³õ˜µã})×À·[-‹ŽU5½:ñÅ,öþ1…V5 hƒ¢ËVu«ioX‡-éŸX­gCý+s'yºÕÄ쳘=“?*Ž@lsÖ§FÎ(:†aöŒq€sCÅPÂ>ÑȂƢ£þkš>õó„aóc„oŠ *¢úe×?TPTm¦2-&Ù¾ÕÖÎ1ÈæhúDŠê—Y\ÿLQq¼¨,Z¥}jÿŠ<Žü÷’ñ<{ð 7Ô¿27`ùFÖåQGõË,®FŽ€låR4ö,ú}ܲºš¹cÖŽn4·lÆ–I渜0q~¬nuEt«S"¾˜Åì%íލ^ [¬öÏ­¹ãN¬öëyÏ ¯Íž$(:&B|1‹É×1ÆU‡u¿ŠÎžr£FrYG-‡:aâü—ÏŸkûÁM&Ë-ªÕüW¾;)Ùr•pcòµq LàˆªÀ4—‚25À± óczÍŸ÷ò¤I'LÌ| ëò¤äY¼9#>¦A«¥E'º”JYn”Âæ©˜âŸãt«¡…óŽD‚4‚æu2G” a…æ¨W‚)2«9Š )2ŒtÔˆøbñ1.‚#Ê€9Ñ¥äïSÛYnTœX±"£Oý¼ô«QDij˜½¤Ž1Ž(*†-±·lÆ_ÏŸØïS?oÓÔÉ['L­8EÆ} #µót®yg˳—TPqDÁЉ®ZiÊ ºÕƒžø©ÞÕiy^í :J sÌkÇÇõ@Å@q± •cØ¢ëÙPÿÊ„IÇ_:M›¢c¦˜ük×?GXŠ9Ñp³stcFÒ {ÍŸ÷òÍ“’gàøùq§ÈHÌ’ÉÕ/³¸þTa*‹ÈÎqËf¬;gæ 'Ø=/­ž÷ÜðÚw'{uæ«EÂê—Y\G˜Gež>uU•¥ŒF(V” è($EÇ|Pý2‹ë/Ž0…t`?õù1zWäqzÍaÏ¥¾"'€FìXݧ~Þú;™õR ¬cV•`‘ç=Žâ"Ôi,7k%pSEGÿþ1Â7·š¢£L¾†GdÎSYU?@јO­WnSdúÔÏ#;A|DžJ29æá‡^¼xqssóA4tèÐ)S¦tíÚ5âþ»víz衇–,Y²cÇŽƒ>¸®®nܸq§Ÿ~ºé×QLs>û&Ó§P<½æÏ{yÒ¤&æ:y娫ç¿6u’`ö€9ÌÞ@>ÊPq\°`ÁôéÓ7mÚ4hРN:-]ºt„ »ví »ÿ'Ÿ|r饗Þpà o¾ùæ—¿üåÏ}îsÏ>ûì¸qãn»í6Ó/¥ØX@YèyÏ ;¶t«U¨o?öêù½{÷¦úeÕGd­ðÁ±©©©¡¡¡¶¶¶±±±¡¡aÅŠ—\rÉK/½4wîܰ‡,^¼øÅ_<餓V­ZõÿþßÿûÍo~óoÿöo]ºt¹í¶Û^{í5Ó/¨x‹ÐÈݧvÊz³c,÷ÑH1€†Í æ(„ðo!ãÜB|1‹Ù3ÈNáƒãâÅ‹÷ìÙ3qâÄ#Ž8BÞ2mÚ´Î;?ñÄ{öì |Hcc£âꫯîСƒ¼¥oß¾—_~ùîÝ»ÿüç?›~AÅÀœhä£ç=…©*N¬ŽK{Ñ1bbuJrŠŒÜKFÞB|1‹Ù3ÈBáƒãºuëÚ´isæ™g:·´mÛvÈ!ï¼óÎúõë²eË–Ž;öïßß}cß¾}…Û·o7ý‚ìE'yòŒn4XtÔ+ÿy¤,¦ÈÞ.‹ŽîY2Äã¸þШØÁ±µµµ¹¹¹[·nݺusß^WW'ÂSà¯~õ«|Ðs㫯¾*„8úè£M¿&ë‘Ï|jO¹QWv”Ã騅¿[-ö•ýˆ/fqý¡E±gUïܹs÷îÝ]ºtñÜÞ¹sg!Ä»ï¾ø¨ãŽ;ÎsËÚµk8à€óÏ?ßôk²s¢aVØdêž÷Üð×óšrYGÂê~>Ý9ÞÐÆ„nÇÏ_?aRφú°;Õ|ÏØÇc¯žÿÚìINѱµµÕÿ(&ÿšÅõGJÅŽrêtÇŽ=·wêÔIñÞ{ïU<ÂîÝ»ï¿ÿþúúúÝ»wÏ›7ï°Ã3ýšŒ!,¢ôddìS?O6‹ë~î-ŒFÉAOütÝ93ÍîyxÂÄù/Ÿ?IýWä‰{·ž õ¯L˜Öžö“ 2ê ‰/Fqý‘X±ƒc—.]jjjvîÜé¹ýý÷ßûꎞ}öÙ™3gnÚ´©{÷î×_ýi§fúå°{8}jYn ›“¸èø×ógö©Ÿ}•(Yn}êç­Ÿ:iàøk@¾6{’§7}ÊØyÏEijÜ×_ðŸjŠ=Ʊ]»v;wöW[ZZ„ÎúhöìÙßýîwÿë¿þëÊ+¯|â‰'ª*52l–pϸRTÜÁŽ=¦'5ö©Ÿ·á¥DX÷óù2MªøàŸüä'¦Ï=+ X%2­sGvÔ%¨;Ê)2 w~ŒSt¯ðÁQ1nܸÃ?|Ù²e?þx÷îÝÇŽ;qâDY}ôÛ±c‡b×®]¯¼òŠÿ_‹5E†°{¤ùitúÔqŸÔ_ttÜ©øØ>õó6LäŸF­¢èuÇ&Îޙƣ₎aRij˜| ·2G!ÄèÑ£Gö¯£F5j”üóÀ›ššLŸo*üö¿ºÈrc‚º³cFíé@aÙñ¸e3þzþO ±Åö¦©“5^®Ó.¸éߺõóœí§³S÷óù¯Ì -ÑéZâ1ga­Oý¼õwz_¬Ê‚ާ]p“³¦£³…Œ›,:j!ijØû§ªÐªŽMέ‘Ù1Í<:Ѱ‡©ŸÆ,2„º4«ýržj­²cây´stÔÛ°Þïõ2{Æ(†ŸV ‚cBÉâ#aö°ä§Q–“õ©e¹ÑÔ™û9Óe !Á0Çã篿sÒ+s£†9æ0½:ñÅ8O‚GÉЪN¥©©©©©©bóša‹°D™v¡´-5J2Qå3ìRK)1ë¿Ã=Ò1£†µýk³äõß±c׿dŽÆG†-Âv†Åššš4åF†9*Rß”¯¬œ‘ŽžaŽ2;:Îg ñѬ=zpýK†à¨…¶}B£ •û«‹åFÏæóD)'Vþz}`àœ#„Pߊ0LFÓ«£Íâú— ÁQ39Þ±LŸÐ(2u¢#hL}êçm¸Fuœ_ôÄê¸R®È#Ù0ñ%#EGñÅ,&_—Á(¼"†ÅÄ}jûkÒÀñóm(:öš?¯â ˜°¢cÄK ÐÇ_5ÿ™¥SäŸÃºÕ6 ¾˜å¼Gqý ŠàR¹;ÑågvL愉ó×<:5ýqb‘Kó86µ$ñÅ8®A¨’Nt„èr£Uócfä´ nÊh¤cʳr`0;Jij¸þ…CplW¾°˜¬O]”&µ›ýEÇÄÔ‡{ú»Õd6; â‹i\ÿ!86¢]ùdÇôEG¿°‰ÕÜÃEœ¢£° ; â‹i\ÿB 8¶Ø²e‹\,·LÅÅ–”K0±ÚÕ‹Õ­–‹ò¤¹þ¢£°#; â‹iÌ^²Á0ÉSY”‹å–8, WŸZzj´g˜£›Í ë¬çÇÄ*: k²£ ¾˜Æì%kÊ7lÑrÈŽaÝj•y¤¸SdÎ~£bÑ1lQžÀíÉŽ‚øb®¿mŽ@N¶è¦Þ§.✑ûÄj{x†9Šð¢£{1pÏ_­ÊŽñÅ,®¿=Ž@†X@Ç#nŸº ©1Á¢£:OÑ1b~ÌÀñóÿ¸ršzÑ1Œ§è8lð,ù ³£ ¾˜Æõ·Áа-în1±$æk~L6vÌÔiÜ$BÓÃÏr¯þ‡5Ó-ÏŽ‚øb×ß,‚# híì,7êX­…{buëòDKSt”Iѻ̎gŸzµÙQ_Lcö’)G 9:ѱÄêSÛ™Óóµ¬È“’gbuú]düÞ¢c ÑQþùÉg¯µ<; â‹iÌ^ÊÁˆ°˜F¦}êBȺaí/:ªO¬N&ýHGwvtnÉŽ‚øb®nÚ™> ÜoFÄÄ”TbSšr£æhsÁràøùë¿;ÉÚ=øëõk.àÀñóÿxç¤3‡ß¨~äçNöO¦þÃÂÉθF÷-ÃÏúÚé2;öîÝ»µµÕô…©L¾9È· Þ(òÇõÏÁEXÔÈݧ®˜Hò_Ä»Oý¼ S'Õý|¾ÆcÕüõs'ÉMVrvÚ7=3ir¯ù¢sŸúyë§V~g¿ñs'UÔÝN»à¦ˆMn† žõ_¬”ÙQìïXˆì(ˆ/¦qý3E«ð¢­¦ª¤Æ~3æ[¸Œ^–ϰN?ÒQ3®Ñß°–7>ùìµb_v´¿mí yjÃO3Bp„`N4âÐ5±ZcvôïXkzµ–Ý#çÇȳ \”ÇÃ?ÛÚÉŽBˆâÆGâKþ~ªÁÕ‹9ѹ‘}jõrcúg´sÓêbÉ®è‘ʎΟevŌă¸þºQ]‹EQ Ýj!„;˜ÑŠ<9¬é(÷qþšxzµ»Ä(³£§èè4¬…gŸzŒÃÎ(Pv”ˆ/fqýÓ#8¢* AW¹±Xò™=“õŠ<ê"v‘‰æÎŽBˆ³O½nåú™2; ×? ‚#J‹a‹–PïS{ä\tÌbãÁ㯚¶×s>Re·:bÇj?§è6ÌQ:ûÔë*6¬÷• ÌŽ…Ž;vì ¾A|L†àˆR¡]\ÚËÅæX S͈¿7=ØQ’ÙQáÄGÓ¯#¶=z_ böR\G”aÑr['¤±‹Šü«ã>"eŽ ,˜>}ú¦M› Ô©S§¥K—N˜0a×®]*½ï¾ûLŸ~y0lêªj2u¬yFŠŽçÇ$pæðÃæÇø‡9ÊìÖ­vfR'®;ŠRgGÁìd¯ðÁ±©©©¡¡¡¶¶¶±±±¡¡aÅŠ—\rÉK/½4wî܈Gµ´´<ÿüó3fÌX´h‘éWPl, ƒzçS'îVe˜£_‚ì˜rbu´Á_¯—kk'ÈÁzÏÊ“=EG9ÞQ”=; fÏ K…Ž‹/Þ³gÏĉ8âyË´iÓ:wîüÄOìÙ³'ìQ£G¾øâ‹|ðAÓ§_T„ED¨ø‘\šrcv«3uö©×e4ÒQ×éE4¬Ý3©+Ö…EGQÙQ">B»ÂÇuëÖµiÓæÌ3ÏtniÛ¶í!CÞyçõëׇ=jöìÙ¿üå/ùË_žvÚi¦_AaЉF,Å]¾ÑÔü˜À‰Õvn`XtŒX\N‘ ,:.Êsö©×‰Jó`ÄþÙÑ_t•²cõ >B£bÇÖÖÖææænݺuëÖÍ}{]]bûöía86¬©©iõêÕçž{®¼¥µµuÕªU]»v0`€é³3Œ°{äVnôçÅ@N‚”Ü9Ò’é7dÔœ?YPtüõú•N>p†üëð3VÞ9iàøÊÿqÏ~cãÊi#??Mø²£;Ëú<æGAÙ1L`¦Ü{¨ý³£pÅÇÀûW!â#¢>8^xá…·ß~û­·Þ:tèP9'¦¡¡áí·ß?~|ûöíå}>øàƒ7ß|³}ûö=zô0}¾™#,ÂÙé3˜ºddŒÎ‹aÜ9ò9 ÂY˜!£æø×zLÉ_t{m`v -:*w·²s-„¨ò¢£ƒøˆ0Åã(„8ꨣ¦L™²yóæóÎ;oÆŒ—^zé‚ ú÷ïÙeŸ~¡\µjÕÈ‘#/¿ürÓ'›!†-ÂfÚËî¹Õΰœ/—,5zœ2vžÌ‘z—O9±ÚͶetÜ#Õ‡9Æa=ò˜©O²‘{ƬxçÿírࣰuI)#˜| ¿ÂG!ĸqãæÎÛ«W¯ÇüÝwß;vì½÷Þë_ܱ|X@öX½zuØ?É„×4SÖqçE-‘Ñcð×ë7\3ÉÈ.2TF@ÆÝ±ÚÈzàbÿì6·Zž^ã¶[DöÙQì‹dG7&_í ÁQ1zôè_ÿú×ëÖ­ûío;}útÙ³vŒ5ª©©é±Çó?pÖ¬YMMM_üâM¿U, {Ô¸ 2Dõ©ejÌhîEܼxò¥ó"6Aö8eì¼5Nüõz#îYÄ«ý)-Ÿ¥yœEyódÇèõwDȺß‘!JK°KȘ¸zõêÕ«WŸUó-çwÞ4u²O˜8_Wѱi椦™“ŽŸÿüÝ9 F¬˜5 ܱÚÏl·Ú½ ¸#}ÑQõ!ÊuG´òÎÞƒ„’«ÁÑ^t¢aÕ«WËÈ(câuCÿïuCÿoôCdj|Ù5ëBKv”‘Qe¯^¶µ­³(šÚ„P%;:Ýê½qeÇŠ‹~ W| ü×0dÇÄǪEp´ hØÃiC¯^½úº¡ÿ7¢²øûÖ%bÿ>µ»Öè–2;ÊÔhꂨ´­K#zãÁ0²è=?&¢[1ÌÑO±îèN‡¥ÇhdÇhÄÇ*DpŒ­_¿~ýúõÓ{LÂ",á´¡â¢bÈ!2*rRãËZW–6›6dÇ!£æ<ùìµU^t®ìQtôðt®+ÙQ“¯« Á1¶¦¦¦¦¦¦ôñ‘N4ìá6´S\tF1þ¾uI`|ü}ë’c¯þ4Ï…ÕÉŠŽ©1Á0Çócü·'n[k\‘GJ“ób•÷/‚˜£H:ÒQ$ì¨zd_:tw®ÉŽº0ùºJJéDÃÓ\"î_›½w@wjŒ(7ÆÍŽ–ÔÝagŽK¬i.nñ±b­ÑM=;Z˜µ­'VKfs^ ¹a‚aŽ‹ŽþnµpeLjnuô¢ß*mnŠŽqÉOº;vK¦ð[Ú ©©IáɎί f¹?íÜ è4Ç”wgÇX©QÍ©Qüõú5¦‡<ú÷ ÔrÀ4G>pF`#»¢‘ŸŸ–`¡G¹!a…ûøv©vÈÝsh ³#ÆÒ£GY}|–Gmšö¹óÎ;¶ãdÚ©,:èè‹Éœ0q¾'µ¨L‹©XtTIy®æF¶­s~R9?&Ó§¨8±:l˜£#ù‘ˆ,:V$óâðƬxççþûPwL€Ù3eBpÔoüøñäEáÞÊE¶¡Ã*‹‰ã£|ˆü_ʲ¥ˆÌŽÙÕµÌ dp˜c²†uô.é;àÉåùùiO>{mÅíX);ª,ܸòÃEÃãüÏ"ÉŽ‰1{¦hUÅ؉Väî8G<Ö.Ýw“·û+‹éW᱿Cè«_¹þ©¹“Ž¿*êÌ¿jþú¹ÅxugŸz]š¢¦ìVÿqå´3‡'Ùcpä‘W4>{íÙ§^ïQÇü¨qÛ-r¾‹–‹0ü€1Οݡ“žu²¶Bÿº ¨8…äT…kÅœd‡rWÝÑ]YLùüEÇ‚¦ÆÁ_¯êéŸ}õ+×›ª;úk„‰'Vk4ò˜EÔCõùi¯ß6òÈ+“kDÑQqð¥a }+ÿÉ]‰ûgCT Šà†{+w˜Ó2`ÑÉ…þ¼xåFwvLmæè¦%;ÆšXíÈb†u‚ýc<²cD·úÓdždÇè§[ñÏ»G|iX|L“2>’Ó#>Á°š3ÇÅ=Íų€NXÉP‘gØ¢;Aæö2ev,h­Ñ/Ÿºcócd§8";FÏ>pFtiPE‚ì興¨…dG]ˆBpläŸãR±M·݉NVËL9º1·Ô˜ÝüãâSî£(AÃZv«÷þÙ—£»Õ²èèüÕ‰ŸÞAm·²cΘ|]GÀ555½{÷ö'"ó…ã*¬OØË7O:eì<½Ûñ™eÕ`Ç”Fö¹*»†µêÃcÖ=ÙQD| +;uaòµåŽ€Iþ­\tµ‰=ýë4Ó\[áé'Sœãü5,;jß±:‰³£»[íÏŽÑÃÝEGáËŽ§Èø¹;×z·dÈcˆv"88aÑiC§o{8׸[Œsb"ƒrcš#Ø6?ÆaªîèÓO¬>ûÔ뢫t±–ϳîè/:JþÎuÅ¢£DvÌñÑ6G 'žÕ¹·‰#„u¢SΞñ<…ÞËâN%ëVK‰³£ÊÄêˆù1v6¬5œFй2n2>†í³ß=ÉŽ >Úƒàd(0,&nÞA½xù•Ýb ×§Ž5?&%ƒãU¨ÏÉb°c¬nõÞ÷eÇŠÝê°¢£cÄÁ—ŠJÛ ²£5ˆ6`ç@3ÏV.÷eQ1ð1Á‘U6Œ‰»[L2é›Ôù8eì¼5 '§ÙZeSíÎ>õº'uÏ>õºÆg¯•{±ŒìsUã£Sc]Šág4®Ÿ)÷”F󣯤;Êì=B¢}e8øÒÿ¼;l‡±oë‡^¶â;Üw‹zÉŒak™ì¸7žì=“;‚# ÇêÕ«‡ "|QLq[¿4†QçPN^ŒuðdåÆÀÔxÊØyÏÝ™d5Çãç?礓/5C½þ©G§~õ+×ûÿÉHv´–zvùùi»qä‘Wxoß—Ÿ½ÖJžhÛ-²²Æ“=éÐ#åNÖŠ¯Q~‡$>fÄÉ‹l]˜3‚#œ…kç•@ž’¡z, «ü MaÔÓ¹V9Z±ZÒVÉ?;¦Üo:¿è8øëõ+:|àŒxÇÑTwTz¢JÙ1‚;)®üp‘bÏÚùU¢ô˜5v¾ÎÁˆGVþô§? !äœhõÇz {qÛÄGKŸ"z£é•k,7V';®Ÿ[¹°:püü?Ý9iȨ9÷2jΓÿ$¢i{ö©×=¹tÊiܤñUÄmXû»Õ{³/;6®œ6ò󡳭ÊŽBfÇ×okÜvKDÑQ…¿aüB#„Xùá"õ߸³j¾Eé1ÄÇÜ%«W¯vÿÕ³é_\ÛıâcôS$.‹Æw«ã:ùÒyÏÝ=9ÿü*³cÎOúLdv<í‚›ž\:%:}:Ã¥ƒ3âdG!DX|LаŽ0ü€1q³£ ô˜ âcŽ@(Ù‰vŠ‹òFc´‰#vVŠõKÿ}æ).&(7fWkÌt˜cúù1n_ýÊõî¥Â«™,:¦=È‘W4¾~Ûˆƒ/Že—¥Ç3Epöã®,ÊNt`q1ÿ6±ŠÀÉ׉éyÚWp,«ˆù1ës)¬J#û\Õ˜eúâ0ǰnµØWlüÛɺÕn²¦G:f¥Ç¼0ù:#G@ˆ}yqÈ!6´‰G=ÏSh‰zîCÙ\n,¢'L_‘KvtÍ™fÇTÇ9æGq÷ôa_ÑQìEŠdE ²£ ô˜/&_kGpDõª©©ùÓŸþ$›Ñ²¬˜,±ioÇj^G<…®®º®Z£zjÌm˜£A_ýÊõ+žþ™–ìXq~Œ#Mvôsüô˜š;j)::œâ¢S€Ô^tû²£H44™Òcžè_ëBpDuqw¢eú¬šo®¿—Æ6qÅÉ×±òh²øèyŠ–‹¿œÛ>+iÄæhj~L¬WTqbµçǤÑ­®†µ"">FpÝ<ýë,²£ˆ9ÕZ’¥ÇÍ›7§¾´PE|Làˆªà¬¡£}À¢Ã]&ÔU¢ e˜ón1BˆçNNÙ§.A“ZïüGn k)Ó†u‚Õ½WãÐËD¥ÒcÔ™„dGáë_W>“8ÙQÄi[{Þz÷î-ÿ@õ17ÄÇ4Ž(-OqQTZCGc›Xq½FÎSd±u¡âKn¹øËbaª(œ 5º[­>?FÊ!;z· Ì&;¦=ˆ,zÙˆC/ ,=ÆíVûÉøèßÀ:,k¦ÏŽþ¯‘a¿ht®sÆì™dŽ(gŽ‹(Q›ØÿOZ–R?Zúr#9ÃEAêŽaÃ?=榹ºÎ0qé1¢èøéÁýûSû¢¤¼[ÅìèßH&ñx&ÍÁ외Ž(<ÏV.Y´‰ý·'>”ÆÝbâžLØS$ £/ß¼w ëŠ 2ç&µ%›V'&;ªÏqdQw¬(z˜cÀ59ô2OvL_tÜ{äÈý©%'MFl3ø‹“ø ž3iFsGÿZÁEåt¢=mè,ÚÄž#'£}·Å×Xñ)¢s­¿Oí ‚ÏE&È4©1ŸnµUócr®;z¤Ÿ3²ÏUëg !ttºÕŸ^“¶uÔAŠŽ*œ4wÞtÊaÓÄGƒˆQ$r+>ÍÅÍæ6±®mýÂ^cÜe€"åéS;…F‡¹ü ²bü/6‹ù1nþì¨kbuð¶1‹ŽÑÝê½/áÐËV¬Ÿ™r–Œç€"fÛ:YÃ:L²yÓÎïTâa3×®ú!ñÑâc‚#l'W[”–«çˆ8[EgÔ&Ö²[Lâ£EœXÅWëP§Œç.7ÊÔ–ý ²šÅã–gÝ1£†uDv¬Ø­öcÊ쨫[--Ù˜`ÍÄ¿æòï÷­KˆFa)÷4—¸ºøio+>6e›XEv»Å4lªïÝ»·»|xÚ7=³tJŇË©eÝÇdÝê stÏ1Eov”SdäÌh½uGáj[+‰ZÃ:Ÿì(b–ýß©>šÂäk‚#,â). ­…Ö6qĉil‡Éz·ùðï\ûeÏíÏ,¢Øz~nádÅ”‰@ ŠŽ æÇ8ò¯;V8Ÿ¢£Ø×¶^ñίߦ¥è(rÙ*F(”£ß:dõ‘øh “¯GæÌq‘eŰ´ö6±“ ílk\Hý”<÷oqý“z¹Ñí´ nzf¡-óN"X5?Æ‘EúâE•ù1*Ã?}AÙ1îÜêàþsGãë· !"â£ú,™Ü¶Š®Òc‚éwÎpâ£)žd"8 ÿV.q·r®xÿèØ¤¥–™]›Xãn1ѯ1,Ê=eŸÚI±Êé/…dÛJà9Ìqt°£Ó­Þû*Õ#ŠŽŸö;†0FÆG’ 3ÊŽ"iÛ:ÖªˆfõêÕ«j³#Áùñ¯Î­>ÇÅ-¢œV‚6±û)²›|­~d™Ó<»6 sL3?ÆádÇv¬–Ù1‹#Ëì(R,ÓÁ‰zN‚‘eȨóÔ£‚%>¢ˆŽÈ–³€ŽØ÷ç 4Ô†„Ýmb-Ë%8ZÅ'Š»[LârcQºÕUœ#³c>'£k÷OÑQ8c÷•UºÕêEGùWwàs—!u-ëÈ3ä1V÷Y×WMf^#OÕ~øáÅ‹777tÐAC‡2eJ×®]MŸTy8Ó\œ9ni¶?q¢M\ñŠO‘ø&z °£9‹~Ç-7êmR;rèVÛ9ÌÑ1â„é+^žUñn*ócbPÔ~,–xtgGG`Ré€jEǰ3ÚY*Pào·Œ‚‰ÌTip\°`Áí·ßÞ±cÇAƒmݺuéÒ¥7n¼÷Þ{;tè`úÔ ÌS\T\ [ØÝ&Ö[M9“Fý5*.}4]MjŠŽºüéñŸdÝ­²XøìµBˆ4[ÈDÈb™žN Ü:ÌÊ9¥Ä@a#†Ó,÷-~»+¾{°v²VÁ±©©©¡¡¡¶¶vÉ’%Gq„böìÙ÷Þ{ïܹs¯¹æÓgW0η[9Í%‹wL³mb]£ ÝG³g·˜À£Éi1B'5*ö©3*7Â1ò˜5æ’…ŒwÏ^›vûÁý»Õû|ýL-Ýj^tôˆ5—å÷­KòY¯1ì"N‹ÀÉ×ÈN5ÇÅ‹ïÙ³gâĉ25 !¦M›öè£>ñÄW_}u›6mLŸ íœ6´³.÷ï[—è]£Û{âCiÙ-¦âÑb=…mËyŽvŠørâã„I_tLЭÎn~Œö‰Õ*Ë€8azã˳òÉŽNæK™£^ξé2ÚŽ¦5;¦é`¤Ù*Æÿìî[Šøª18®[·®M›6gžy¦sKÛ¶m‡ ²|ùòõëן|òɦOÐRNqÑiC;ïeÚÛÄîÃ&8Ê0qQ{›Xã2@"]Ì}b”õÒ2±Ú#}vT¡‘Ó•Ü»ã¶[ÒÕŪ;&® j¶¨qô6ñZT]plmmmnnîÖ­[·nÝÜ·×ÕÕ !¶oßNptsV[…m;ßþmkÇ ²ÑO¡+ŒÊrcܨ’íéhùü·ˆì˜fÿ˜@iêŽÝêOþÎÛn‘/*íy*Eüõå{Hv³^²þÕö< ñ)U]pܹsçîÝ»»téâ¹½sçÎBˆwß}×ô š—rµEÚÄ vbqŸ"åš”­§ŸøÏýï ¾ …Öß9IñüÝ“……Ø·º"§[-²ïèÎ|™ö¬Å¾ù+ñQ±è˜uvéFΤùª©ýk9“¯‘XÕÇ]»v !:vìè¹½S§NBˆ÷Þ{Ïô ãÝ‘1±êi;åÌ,†x¦Ÿlx°úç¿tHÐqVHÊ¢cÅaŽë÷_ìpØàYBˆ?¬™~ö©×=y÷d÷?•#GŸ+£Ò­V,:?`Œ;>ŠÔÈŠdG‘î7=ýWM‹|y–ï!>B]ÕÇ.]ºÔÔÔìܹÓsûûï¿/öÕ«‡gŸháš‹§«2g›XË2@é_£–YA'VñÈ­§Ÿè¹Åþrc`R äI<és¤‘ù1~‰³c‚ŠY×¥O×_Ü¿©½è(í«ôø¾‘~Ìb‹|¡®ê‚c»ví:wîì¯,¶´´!œyÖ%æt(„ov‹[ša±ÚÄa¯1‡^R»Å¨—0³.7JéG:ºÃbDRŒ‘#ŸÓ=3‹ù1nÙÕwY‘Ái¯bÿ:ÖÑÂ$ËŽ"¤ô¨òë¦ñ›¹ûIµ¼¯¡¢ê‚£¢¶¶¶¹¹¹¥¥åCqn”»•×ÖÖš>»¬8kè$x‹v·‰S «d·Š¯©Ýb"ž:Y¹1ç™Ôrº·H‘øcГÏ^+ŸÈÎj«{˜£Ã“µÏÙïäÎqJ»Õ<ýë,$ÈŽÂ5cF×ú©ŠrøZN|D´j ŽÃ† kjjZ½zõ¹çž+oimm]µjU×®] `úìtŠ»•K›ÛÄé'_gÔ&Ö¾[ŒP£ÑÇ÷§dyK²rc2 ŠŽ2ÉÉ¢ÝSOÿ,ÖÓ <ëÉ5Óc¥(Ù/^aq|ôËs¼£pµ­µl`(*• åí+?\´â;ľðšøhÇWÉŽþ7 ë5Úóµ\øˆ0Õ/¼ðÂÛo¿ýÖ[o:t¨œÓÐÐðöÛo?¾}ûö¦Ï.­°­\lnkÙ-&îkÌ¡M¬ñPa¯1å|#y„aƒg9Å<ɪrãs 'g×ç|L6ÌÑ7;¦œÚ¢}ÈcÅ´ç‰þ‡Ç:šÿàžì¨þ}2£øhÃ×r&_ïƒãQG5eÊ”9sæœwÞygœqÆÖ­[×®]Û¿ÿË.Ó³À¬Î:Î/¿§¾hs›XWÁφ6qØSèÚºP¶Æ4n„xVÍ·~¿fºˆ¿vcŠEGw¡ÑñÕ¯\ÿ‡§¦½[&">jŸ“ž‘º£Ò‰¥èVûþئI¿ˆí§…¾};¿¨¾–‹8oGL¾†_5G!ĸqã?üðeË–=þøãÝ»w;vìĉeõ±@üÓ\´¯Ñ­Ø&Ö¸[LÊ£ž˜–6±b#)ìžéK¿a»Å¤¼b­§Ÿ8Lœø‡5ŸV¹,)7j,4ÆêVŸ}êu+ž½ÖSöKY}Ô;?&p˜£CfG-O¤t2‡^¦˜ØÔ]& k+ö ü1Q±ÝrßaÏè?HJ‡JüêˆU…£G=z´é³ˆ-ÖV.a´·‰ãÀŠØ&Ìmê*ðhZv‹Iö2?=òš%"f¹QKjŒ(:mP”±råš'5õ‘UblÜ4WÞ3ÍqÔ)IL–äR®×¨øpõÝbb|ij¤<”ûáÄÇ*W½Á±@fѶÑÛL¾®*ÇØúõë'„hjjÒu@Ï÷:*TÊi¥i+¾ õ£¥l'¸\ŸBW•ÅÅèÞúÖLw—+ö©µÏ‰‘EGË{ÓìsUã£S…ñ1ëýcÂ$X¯;ñ9EG JœE¥Òcß3ýOgá×r Õ€à›ŒŒé㣻¸(¥CÂî6±–e€„}mb¤dW,¢¶$«˜Ïe6žï™¥S’=Іnµ›ÌF¹—E¬¹¨q˜cÀó&EÒì(‚J9|ÏtD,òeá×râc¹ÕðŸ6ÀøØ¯_¿°@¸O´CûÞÄ}µMüêáIå)´·‰5^.áëO¥ ÍÃèæÍ›Åþm芇6xVt¹ÑÏ~£â+§ ­Ë=>³tŠ3f¼Ïîª>j—¬î(b~‰!Š4.òeùèíÞ½{ ªåBpÔÀÉ‹N‚ûω–PÜ*š6qâCiœo÷|Â¥+>ÊãxŽ7/ºùËÂNj”÷I™e¡1ͱŸÊ¨G#²òèép‡ƒ/ûïò½B¤zÑ1AvA¥G•÷%]ŹÜù1ßÙRμô?„æu™õkll¬©©±mز®6qF³‰3­Ì%˜l¤òUžB˨&á*.Š)ù@h‹N~i²£ÆÔhÛ0G§ô(öÅG#ócäÜê€}œ]ÙQq˜£Þm8¨"³“ølÊ7Ã<¿–';ÃX_Ë£Ÿ‚É×eBpLË]etJ­­­ò7„6±âSXÞ&NÓHŠ{¹<Ó¢åŸÝÅÅÄ)ùQ½ÛWn‘©Ñ]ntß?Av K¹u«3âéV»eÚ¹VY”'ô±™µ­+…#¾tÅ?ï–?î‚¢g÷‡^¦«èÖ\NÿM8Ùo·¨î¯å à˜D`Xô¿‰ãcؘeÚÄêO¡±M¬½‘ä9TàqÅNtôEóäEi÷ ã<yféõZ£[ÜìhC‡:£aŽ9kEz—“ÛJ=ÁÏîÊŽÏ_éßr:B‚Ý™3ùL¾ŽxÊtÀL⣠âca㉻ OÜøñ˷ΤòUæJÐ&7’Dx'ZË…ï3XìKîrcÅÕpËõì˜Qj´¼[í¶·ô˜ÍÔ OÔ­v8¥GÅW¡¾‚wtÑQ„dG7çŸò™4­²^£âü7¦9”–6qʯå"è».ñ±:ãI¶p£;> ›ÚÄ­¿þhÆÛÄ"<»§|þºEºi.žÃ:ßÜEšÀÏæŠC£S£:•ÔXônµ¢‘}®j|úg²ý¸eÎkÜ4מ•º=²›4­ñ±žw¾–«_+A|,‚c~œ_ ÷jŽ"³ï£w‹Iv´ÀËa¾a²àë5Ft¢S†ÑÀú²òÃE2º9åÆg–N9ûÔëžT.5…©Xt´¡CƒˆaŽ~#¼¢QSJN3Ìq¿ãìËŽBÓF/ºŠŽ]“¦c=VTú•Œx÷àk¹úµûÇGA‚´ €£eöŒ¤e·÷¡„Ú÷QÅw ]mb½—Ë‘ò˜*Ù=î@%õ·`õ#Ë­bdptR£®rãWN ÌŽ±Rc²•Àã..òZ ZعִʹbÑ1–¸uG‘zä¢ÿ"ñïµ°µMlÛ2@bÿ¤åñ± Uupܼyó9眳xñâ/~ñ‹¦ÎÁ‰uuuÇlü‚ú£Ç,  ÒÚ6q¬³Ê¡—ä<…®J€Æ·àß·.~À˜Ý®[´—%Ov¬’ur~‰LÂmȎ+>*=¯rÃZ$ÊŽbßZš¡8åXäKäûµœÙ3¥TÕÁñ¾ûî3} {É_‰~ýúmذAqHMô—Q¡»Mlá2@BS›8ýϰ4¬%Œ&®ŒÊÈ8\ŒqO¦–©1ú‰çÄ8Ù±L©1ñÞƒ±ÈQ"QéQq˜côÜêЃÅGõ•ÀՋ޹eG‘´à§qÌ¢–aE*g•x·õ³ »¿ö!žÄG{TcpliiÙ°aÃòåË|ðAÓç²9e[VÝ ²|ßGuÑØ&V|꤆Mõr“ÖôaÔÿ“PñÛ…ŒŒžÛÔ]nLCfÇÄ©1Ÿnu¬ÕscIé10êy¶™¶aòuâì(|mëXï¥oÇúZ^ñ)´Ï¼$>Ú ƒãèÑ£_ýuÓgÊ=ùÚ“ ȨMœr Ïìikl$Mè3UcõükD±Ór£PÛ#$å<\9-ñc«‡§[½ß?¹Jù,®ÎI“±V£Ì¨è(’fG)ӱȱž+»¯åzß ­úZÎäk³ª18Ξ=ûÃ?B,\¸ð™gž1}:¡œþõï7X×&Ž.}oÛÓHŠxiŽj%ÏÄ·—]¹ñ+§iY⧸Òt« Jz»Õ£žü'g[Lg‘#êp)Û f¿– µ÷aÛf^jy'tîIÒˆj Žƒ–xúé§MŸKeîþu¬Ù3ní^*lý>ª±‘”æha'–ì*EœmØ¡ädjI¥I¦Ü(S£|¢'×LϹ[){ªsJÖrBžƒiï=ãL¯NŸÕ¿!ŸUó­dCJüÇÏÿkyÅgÑÞ&¶ðÙ3FTcp,"õÙ3ŽèßL½8lkÇ*V|Šô½$Ï™ÈϪÄ›T^WÛn]kºtþX¡¼l¡–ÔhJá†9Ft«?½Ï‘W4¾~ÛŠ—g !tÅÖdSd¢…m0-´#9õõÄAD)‘¿’é»ÞZTÛ×r]C<‰¹!8‰¬>Êý²…þdâÑr š#þGÙ¹[Œˆlލ?EÜ7͈§pVÅ:ÅgoÛ­kMǃ>îÞEìŸ3jRûScÊ¢#2;Ž8ô2½ñ±¢4û¾¸ÿê‘r]qÏÃUë}áæ JöŽ!%µüv»ï`ù×r‘¢Mw‘Ù×rÏSs@p,g¿l§™~´œú÷Ñè¾Ê¡ÔŸÂIö4G¿Py göLÅf™ú߶ݺ !j:$Ú·õºtmK­……ÝjuZ†9öÐË„ñQ×Þƒ±O,²³ì¾Ý?Ñ%Ýœ¼+Ó¤yÇÐøÛ¾M,÷²÷ÜnÛ;a؉œyIõ1U½åàôéÓ~øa³ €§—rø£›–6±ç±)ÛÄ'–ìL„¾eiýGNv•¢/ZÜï{ScûψŽâ–Lj&õ“Ï^›¸è˜Ïöƒf÷®í+ÜíõÛÜ=_YÆóŸŒâÞƒBmûA¡¼g`v¦Ρ¥àçHYÓ²®‚Þe€R¾®ˆË•þʧßé¹F9‡-QT †?†©†6±®eiµ§F÷¹Å½D22Š}©Qþ¹ýßÿ¡ø¼Y¤Æ” ]tÌZÅêcÞç£<%î:‰¿é®×¨(£©„¶ÞÖ2ù/‡ÍuÒï u#8–DÊÉ×%h‹8ß¡çŽxˆÆa:·‡=oÛn]e jä‘WˆÏ´B|ܽKû¿ÿ£qÓ\•rcv©±jG:fÔ­ö>Köñ1‹%dG‘4ªG•©„ö,ò¥Ø&ÎèkyÄSèúZžøµD¿Fâ£.ÇR‰U}4õ}4%Ï{S‚)&q_£bêMðÁ >“1ð!{½#†0¦M×®â3íDûö²IíNY0>ºTæV ×ÿ?yâ£â0Ç,æV«K°p÷Yñwšv(RÃÓ>›8»¯å‰©þµ<ÖåŠu>ù̼$>¦ÇÇÂq #㣧™¸ògç|ÃÍ›7§\ƒ-ìÄÒ—HµTF£_¾SàqR£È¥Ü+5æ<Ò±J†9?©,›Ó¤Æç@­Ñˆˆ¢£Cv–·Ý"”ã£^±ÖîNVwñÛÖzÇ,F¯„@›Xñ5&;x¬×¨² [&SÕǪ’Åäk]e9aë÷Qíó u•îÔ(yšÔÁщŒÃÎX¹~¦B±î˜,5&.:·â( …+Þ¹Cf2ù׈i¼è(Õ…BvÌaÌ¢ÿ‰RSûlâÄñ:‹6q‚W‘à5¦l©ÅCTQrº&_g±,­ªÌmÞ¼Y1¡O죩œX¬Ýb¼Ìè=»ÔXbt´éÚ5úáþÔ(#£Ì‹ÃÎB¬\9M(ÇÇÜ$˜[w ™²r~fdRäUƒÌb³i?ÿÇX.}q®³‰u}-Os¹²Þ-FWpgöL,T«‘üõHö}4ek&BúMcý'¦ëlµ4GbÝó÷­K¢?}ÛtíÚúÁ5];Ërc㦹r¦EX¹Ñ‰ŒB'5zDW7©æM±â(b=7úk±æÇ¨EŽuGçÏÙ-²¨þtZâ£Þ²\à‰¥yÓÖøN¨w íUd•hDÅUDþJTŒ±æü¦ü>*·IÐ;`Qèþ>ª±9ö&‹¨ÏÝ•.ñÁ¥Njûæç¦FwdŒæT»Û‰‡6Víº<ŠçV§Xƒ48·Úsn³cØPÅ”k5¨Þölå’àP*/-Mƒ"âÄô.Ы}·Ňä¹@/ÕÇT«üõp†?¦ü¾«Ø&–mh÷4—d‡Š~¬ó*¬Ý#!â°~ÎÍg>#„p§FÉ÷>pÿÈVnôÜG¸Jé'ÄäYt´¤â(ì+:z¸÷€Ö¸‘ÌÞ;Ç,: _Ý1Ö/šÆjŸÆÑÛ)¿–§|uyŽÞNL-;=&{Çw†Å$*ލRίD‚þµ_Ø×>Ïo¦üâ®wRÅ/£±ŽVñ)tQµ+?\ä|l+¦F@TIbÿBˆôÓ¨ó):>õôÏäþ°Æ›í¨wúÉ`·òÃEÃ#—òqKY‰Œ5ØÑ‰°‰›Æa‹Ù-÷Ï«S™M¬±M¬ë]1lˆ§ÞÅ;Õ/”ûŸ˜|íApÄ^Nÿ:ýäkÏ»äæÍ›cÍq‰8TÄ÷Ѹ͑¸‹_„=$e1@ñm;u!.•®éÚ9úÎO>{­J:¬È™sm!'#º9彯Ms=sA×D• Ÿ|öZÅp|ö©×­ˆStT¤½[-—æ‰5IÅsK`”ŒUtôp8=ü_2S®bà·ÛÓ‰ÖÛØÍböLØ ÉùPc-3»ìîëøÎ=é_ï½\ø¥©>f·,­ªùe½,mÊÅÕRVѶS'Ï-Ñ寰Z£P.7ºï/ÒŠ—giY»1ͺ<ž[¢[ÀþàÍöçˆx½eêVK²è¨r7ÅW(î°¿–¶©8lQTA›Xåk¹úShoÛ¶ põ¯iUŸRœ=ãP³¬x´ŠO‘òPþKÙH•>’½|dÜ+—Ôhw^ŒµõóÞ^œìè mûFˆ z#Ô‹ŽrnJÅ{:­í3?’-¸“àÎÃEÈo·;,VL"Nq.Ö"_ö|-¬ÆE¼Šô—ËÔ2@‰xb²;çl´QU¨8¢‚ˆø˜x7ÒßG³[Å7»õ/642 QsÄaž[œà‘EŠr£”sÑQFÆýZÏq‚£HTt +ø5¾~›ç³G¡\tÔEÒÝG%-ß6m[äKËn1iN âZet¹Ò/Tñ±±î–2»;K# ×>mU‚à%Îäkg÷B‘}›Xå)lû>šrBwDd•R£,³émR»iÉŽÑÁÑ)1úÃVÖÙ1"8zï¹/GªÄGõà(2èV‹l‚£È=;ŠDCñÜÅE›ÛÄ[ê´‰#N,ån1q[j‘©Úâ#Á•Éß GʽgºÚÄB틦úS¤Y‰-qþ}ë’ŠÓ<Á1ÏÔ(2.:zJŒ~öG±/·¹§D„HƒÃ÷ž@ñ³£Ð4lѶ6±ÿÈî§Ð~¡„¹¯åÙ­‰–Ã2@Š1Éù ,}‚$8"Tį–µ{„îwù}4‹ÝbÒt©œF¬g᎒aåÆèÔ(bǰÔ(i/:F”ýâfGÝê€;ïÝœX©-J·Zä’EºTäÿª©2Ç%ñ9Ð&Ö»o––ìžÑn1îwã4ѨôH‚#öã..Vü¹O‹ø}Th £a'øQ-úÞûç#kýÇ{Bˆš.{×âiÜ4WþA†-åÆèÔ(éÊŽî“WdaÑ1àúøÊÆ»Õ"³¢£H±[`š÷ ?,FÙĉ/WÎmb ¢…=…ÆDTâøÈ¬jì•à§\}òµâ|C‘â]ÀÿZV¦M¹XÄ©F|<»#£Oî¹#šI-Scܘ¹_ÊÅ÷+C¾¼·°š òV>Û#¯ˆ•)ΰöÜ?Ù¤iõ"–Bn7å„ÅôûÚWÏlb- Iê}'Œ~±ž"ÙåÊ(,º•22JT¡‡³¶~nmb¡öþ¢q„4¯ÈýØèOeOjBˆÏ´®Ô(ö"ù4©ÝȘ8HÙÜ­Žºb®2då(38‘eÃZ¤¨;ŠÈµ¬+–µïE›Xñ)2mëz»¼ƒœâIòIƒàÍäêVròuÖÖµ,ëqg¡P»PÇò8ï¼ó6nÜøç?ÿ¹[·nÎW]uÕòåËï¿ÿþ“O>Ùô Ð%íë_hy  žÈ(ö-û˜EHp\¹~fàÁÃæ\ë#WºÎg–t²GY…Ö¢£[¬Õp’mÜ’~ŸÀÄwþ¬ëWÛ¶ÙÄv.$*µ‰sX¨Üåk_ûÚŽ;Ö®]{à:7:ôÝwß}ñÅÛ¶mkúƒ1Ʊ$Z[[›››»uëæNBˆºº:!ÄöíÛí Žê{Ï k$¥ü ®Nº–†£6‰ JN ©˜Ýy1xQÀ @iOjÌM¦s«3é8âàKÕ³c¬\ CL³hN‚ÇF쀒ŘÅįKhj§ù‚ši›XË•×X=aÑ­K—.uuuîÔ(„8à€>úè£>úÈìä„ǒعsçîÝ»»téâ¹½sçÎBˆwß}×ô F‰#Þ^5n]˜¦÷­²è÷Êù£†zj”‘Q&¡Æm·„å6ÿâ^h+^žµ÷’NX±sŠŒ–íÉyNê ëŒ$ËŽ"é·2•ÇÆZÚÆž6qàY%‹€±Þ¾*>…sb‰'_‡5^Ò_.ÿѪ',º-\¸Ðs˺uë¶mÛvâ‰'Z›Á±4víÚ%„èØÑ[¾êÔ©“â½÷Þ3}‚•EÇǸ_yã~ÆD¿ «(.ú]Ó©ãˆN®M÷mI§’Ý‘1'i5¾9þøã?÷¹Ï=öØcîÛzè¡k¯½vêÔ©ßûÞ÷LŸc ÎäkGÓ3Ó´¾@•Ïx§=íäÅáŒñô¬ƒ£üƒ'«E”=÷̰)zÖ{ÛÓ‰ÎDåô2|HÑF:Š,;ФD-ÓAñ4Lí“òúä¹’=E²e(a1ȃ>ø¯ÿú¯òÊŒ5jÊ”)Gu”é“ Eű$Úµk×¹sge±¥¥E!Wç)çEË죚üõV®]ö1/ÛÓî¼(oŒN2ä&žÄY-MéÑ’B£U :Ú#·º£ˆ:3³˜Ñn1«Þ&Ž{aO¡}·ÿíiŽV1»£}ç;ßùö·¿ýöÛo/_¾|îܹëׯÿÝï~'†¢âXçw^ssóÚµk9äçÆŸýìgK—.½ï¾ûN9åÓ'˜\úø¨}÷ÂèOŽèwyw¬ôtôl#ÿ25F¬ÆMsceÇèÔX²¢cÜaŽ–E^uÇèÆZgQãÞÄå˜MñÆbÕ;¡ÿÄ(.¦4sæÌE‹]ýõ\pés Fű<† ÖÔÔ´zõêsÏ=WÞÒÚÚºjÕª®]»0ÀôÙ¥’xòuÅÝ 3jÒ¢òðWL{7ŒÉ,5 Y·S«;¶§Í*b vL ñÈE÷°Åd“NçŠ8›8ýn1"þ(Ãè§ÐÞU',*Ú¸qã]wÝ5dÈsÎ9Ç}{ÿþý…o¼ñ†é Ep, /¼ðöÛo¿õÖ[‡*KÜ o¿ýöøñãÛ·ooúì4PŒ­‘f¥Œ°¿Ýóc„+5թä*•ì¨ØžyÌh+Êtzu܆µHšß íMçè§™µ‰ÃùJIû2@ѯQ=j î„Å9äGyä­·ÞòÇmÛ¶ !zõêeúCѪ.•»îºkΜ9ŸýìgÏ8㌭[·®]»ö¸ãŽ»ë®»üËô{ëB¡£0P±ì-502†-Ä#ëg½ôwHVK6!¦âòc¬At«3êV‹ìÖB!ÿE”õ®b]âÝbÒ,Š}byîCxHï¼óÎÛ°aÃ/ù˯~õ«ò–¿ýío_|±bÅŠ‡v˜é Fp,›åË—/[¶ì¥—^êÞ½û)§œ2qâDkØj¡qï¡£PqnuXj”Øo9žS£óOvLÖžNœ«m‘ñHG‘4;Šðé_MO;ŽÆCiÜ-&ÁýEfmâŒÆwŠŸ2ƒF/½ôÒ˜1c>þøãôèÑãÍ7ß|þùç…õõõ_ûÚ×LŸ](‚#Ê@W|LU–ãñï#öß`й%ÿÔè<ÐÉŽifOç™­ ŽÂ²¢£H4QÆý׋?A&^.î¢ßR`jlÜvK¬gO³S‹¨´¾wÎEGw^L°_µÓ<*Ù=1.£ÝbDŠè–`·‘K›8ÙË©xV‘3‚#ªš3L'ñ Èd[ÅHîÔè‹q+åÉg7­8‡¢£“=«]&¨ ZUtEÈŽ"õR‹Úw‹I´°Ü™s›8‡e€øGÎŽÀÞø(„hllT_4$Áºßnî5À…ŽwÿXñ1ÉB†dÇÀ¼è¾DEé²càcó³øDElç¼ Ü0ˆàˆªæDF97Ð3O0¬ ݘ–ü‘Ñ“E6ïþ555JË=ÆOi²£;8î׌®´fMuEºµoRò“r›yvÏô“¯ÝO¡}öŒÆe€„ÚO>¬a ‚#ªŽEÈZþe&œé={Z{MQQDéQePc˜ôEGù‡X  ²c|êÌnohfe·ÿ‰•©¸¸k×®‡zhÉ’%;vì8øàƒëêêÆwúé§›>/$GpDU¨Ã}ç°@)™ýåòÇÇô &ËŽ22Ê$75 [ƒ£(lvÌgohÿs¥< =mb-3x¢Ÿ¢4ŸËŸ|òÉÅ_üâ‹/vîÜù¤“NúŸÿùŸuëÖ}üñÇ?ü᯸"ÆVL° ÁˆRôEnø¨eûi';úKŒÉ‚£°5;Æ ŽÂPvLœÞR®é<] ÚÄŠ÷4ת”ŸÅ‹-š9sæI'ôë_ÿºC‡Bˆ7Ž;öŸÿüçÒ¥K=öXÓ'ˆ$Ž@e%ˆZR£P ŽN‰ÑÿO¹…•³dD.ÙQcOĉD*»H«MœÑJ@¥,.ºä’Kž}öÙGy¤ÿþοùÍon¼ñÆ)S¦Œ?Þô "‰v¦O(÷ÔQÀÙÚÚª+;Ž<æGÙ1"2¦±·Í?;Æ{–ƒ/›‡0&AvŒ«âƒÑI1åBßNy/e›8ñʬÛÄòòj9ZÄk¬ž°è¶eË–Ž;ºS£¢oß¾BˆíÛ·›>;$Dň­ Èìꎱ&¾Ø\t¶6¬ÅþÑ-nMQcµÏi=+>uâóɳMœrýÿèƒKÕùQû׿þµ]»vuuuîõ«_ÍŸ?ŸŠcqQ0›7o>çœs/^üÅ/~Ñì™1>jÏŽÉJŒU>KF$ZÙÑý×ìâšâ $>Nà1Mµ‰sØ-†OXµk×^qÅüñSO=uØa‡™>$A«sß}÷™>…½—~´œÆžµ¢qÛ-Ú»Ò4¬e÷9ÁC²î>Ë·ÊÄg)¬ÖKÜfqÖKÛ8ç“g›Xå)tÕ ‹íÞ½ûþûﯯ¯ß½{÷¼yóHÅEpD1´´´lذaùòå>ø ésÙOáâcúìè^^'Ù/Íc§”#có¢Gª¨xÅ—fÝÇÀ$'dú‹BSVeîv¹çDkôì³ÏΜ9sÓ¦MÝ»w¿þúëO;í4Óg„ähU£†úúë¯;µ¡UíW Ù3ɲ£¿1j…-Í#ÔÖ+?\ä¿1ÿ¾³ÿ)‡-êÚ-&ýëÊ¢¥î91Š‹±|ôÑG7ÝtÓ}÷ÝwàŽ?þ{ßûž\—ÅEÅÅ0{öì?üP±páÂgžyÆôésò¢ýȸuGíÓ¥ó,:&hX§§ž“•Ùtmô¢e:ˆ=mâ°–º–«$ÿ@XT·gϞɓ'¯\¹ò¬³Îš1cÆGaúŒ GÌôéÓ~øa;+ŽöÇG•ìX12¦Éå˜%“¾Ž˜²E›fA÷íYÌ&¶d·˜¯‘Êbz÷ÜsÏõ×_?f̘3f˜>hCÅÈŠýã뎊UÆB XL?K&0Jž–¬|˜&ºE?\%ci©_ºk{Ú ™bÿ6qv5Z†-êÒÚÚºpáƒ>ø'?ù‰ésNG [–ÇÇÀì˜Ñ:Þ~ÉBg¦ë¯øçÝî¿:yQ1©$ÎL)g½xžlÌ¢Æ6±®Nºÿ¹²èªS\ÌÂ[o½µmÛ¶:\|ñÅþýÆ7¾1vìXÓçˆ$hUÃ"Ÿ|òÉw|:Q·mÛ¶&Lðܧ@­j?k㣓GÆÂ5¬=Ñ¡kÛ# {iŽ1jPñ‰” #žBW%,fmýúõ]tQØ¿N˜0aòäɦÏIa‘]»vxâ‰Î_8à€—^zÉsŸBGÉÎÉ×555"]•1çÖŠÁQ1 F0Ó,µ¨}ÌbÊ6±âYå¹[ŒóÙgí×9ÀNGL ‚£Ã¶O¬ššš”íiãÙÑ=\Òo÷—Ï#«^ðÓ5çZñébÓÔn1ayv~,ÄGÀÛ†?ÊñŽ–OsqÈåÇ=I±â<èè-[ÂÈz[âY/é§¼ä6fQdß&–/'ÏÝbTê#ZK 0‹Š# ¦LG7{>®RfÇ슎žjdFL¶eKþuG÷_u éSÙä0‡6±§Ü¨} ººº”¿Jöü>¶!8¢`Ê%>®ìiX&E¿BdG•Çæ6#Äß&Îa·¡[“½Àm}_Ú°aƒü³ÞO4~ÛQ0厒ñ+ƒEG÷_Õã`ÎÙQ¤Ø'Ð?…Å‘]©ÏÅgLv5?E²YA|Šy"8–2;Z?·ìè‹rb‚(òÍŽÂè¢9)ßY·‰Ó3z1󺺺 59Ö} þIDAT6ðɘBplgª™]vô„EÏ¿–,;úC•ÆÂ¡ÊÒ6ŠwK™ƒµ¯ø81ˆ,À8‚#P FâcšìèŽN^¬ïGÀĉSovTا7>水ʳh\(ý4z"É?>¦ÌŽî¿ÆJuÅÊŽ‰{µifÛ¸÷y£•~·‘h Ù†T‹âÉ9>&ÈŽÑÍh97¬EÌì¨qT_²úœ?É}·>Œ€B 8E•[|TŽÍh#P{vŒNŠºš³‰×ëÑ~&Ÿ(Í«+ë°ÅÍ›7ŸsÎ9å^ó 8Å–Ñäë-[¶8îÕ«Wtv¬8x± Ù1n6}ßÙû’ [´m·QÞ°è6sæÌE‹QnG $´ ¼Ø«W/Ï?y²cÜft!²ãʹÿšó*RæúÞ½{§9õ“QïD§ß-¦ÄŸ5---6lX¾|ùƒ>(„ 8¢ÜŽ@©$ˆžâbÄ=kjjœ?çSÕ›×Siúµ{È‹@5£â”…«â¨wù#uÇÀ*ÖÓ×Ó,µ}nêãcâNt²ÝbøÔCÅÕ€à”D`X »›–øh*;znÉm›–ôK-fÔ&ÎhÛkÂb\GTZÕ@±Å]ÇÑÝ¿NóìY§_(Gèë;‡Y¬xdmâÀ&x2ž³bŸh¨8ÕKK|Ì®îè‹zW¥ÖRz ;·X‰Û&¼¿ÞÝbøPHŒŠ#ªG zi©>j¬;ª—ÊŠ”ýa1eúŒ®>ÆêD'+d$@pªgòu‚™&; W^Œ›ÃÒ¤7•èÞR6¾=§x{šCUÜt›° ‚#!RO¾Ž•ý=蔵ÃÄÑÍÿðJ}z'_{vˆñSò"€4Ž€y»víz衇–,Y²cÇŽƒ>¸®®nܸq§Ÿ~º‘“IÜ¿ŽÎŽEêÚ¡–•ÃÎMå"f|Ìsòu]]]ka€LŽ ûä“O.¾øâ_|±sçÎ'tÒÿüÏÿ¬[·îã?þáxÅW˜=·ñѣâ_žK-ú£›–¸q¸ñ4Ùùv¢õ.á  šÃ-Z4sæÌ“N:é׿þu‡„7n;vì?ÿùÏ¥K—{챦O0^쨩©qþœ „e:]Z%º¥ ¯žW‘~µÅ¸‹GF¼¥¤Gp »ä’Kž}öÙGy¤ÿþοùÍon¼ñÆ)S¦Œ?Þô î7>æ¼M‹û±Â7ÔOŠÕGÖ5fQãrßac1c½¤ÁGÀ°-[¶tìØÑ…}ûöBlß¾ÝôÙ}*Öäk9ÞQ㜕¸­8¹8ú"Åê6z—œôŸ’”ø;úIôªÁ0ìW¿úU»vÞßÄW_}UqôÑG›>;/õÉ×9gǰ1‹‰©ÄG•r¦ÆÝb4nåâþïHv ŽV5`µk×^qÅüñSO=uØa‡™>(ã£ò¨«ïìÿ'Gt¶Ó8å%ͰÅd»Åð. ÀGÀ"»wï¾ÿþûëëëwïÞ=oÞ¼Q£F™>#%*ñQËÇÄ¡Mヺ¦Îˆ¦¶Ä;3;œ|òÉ'wÜq‡ó×¶mÛN˜0Á}‡gŸ}væÌ™›6mêÞ½ûõ×_Úi§™>åx¢ãcâì¨+´¥Ù‘Ï?+Eã”ïÆìGpr²k×®O<ÑùëðÒK/É?ôÑG7ÝtÓ}÷ÝwàŽ?þ{ßûž\—§ˆ"f]¨gÇÀЖõ:‹ž§VYGËÌkÞ„Á0lÏž=?úÑV®\yÖYg͘1ãˆ#Ž0}Fz #†<*V³ˆi:àê!,(‚#`Ø=÷Üsýõ×3fÆŒ¦ÏE¿°øhvÌbš§;TÅ™×¼Ù(‚#`RkkëðáÃÿû¿ÿ{Íš5x éÓÉŠ?>¦œm-•3ÚfÐ>å+.>üðË/nnn>è ƒ†:eÊ”®]»š>)“Þ|óÍ3Î8£C‡}úôñÿë7¾ñ±cÇš>Gm<ñ1}vqÆ, …¢ ®™×%{_]°`Áí·ßÞ±cÇ“O>yëÖ­ÿßÿ÷ÿ}á _¸÷Þ{‹;@b,˜´cÇ!Ä®]»^yåÿ¿nbu4÷ž%MMM2]¥ŒN…/l;>•#'žSâ°èhjjjhh¨­­]²d‰€;{öì{ï½wîܹ×\sé³7*Ž ðL¾N¹Ð£ÈqÌ¢Èf+kýüç?_¸pá 7ÜðÍo~SÞ²{÷î/ùËíÚµ[³fM›6mLŸ €\Qq`€gëB¹?¡Hº‹$w)Ln롸hݺumÚ´9óÌ3[Ú¶m;dÈåË—¯_¿þä“O6}‚rEp`’Ó¿–Õ;•øQ\Ô8åEÆÐ*ŸÝÚÚÚÜÜÜ­[·nݺ¹o¯««Blß¾àT‚#óüñ1b;¾Š‰0M|t?Q5t¢£íܹs÷îÝ]ºtñÜÞ¹sg!Ä»ï¾kúäàÀîøøû û5”cÅǪ¶¨n×®]BˆŽ;znïÔ©“â½÷Þ3}‚òFp`÷äë 6ˆtMçˆøXµÃÕuéÒ¥¦¦fçΞÛßÿ}±¯î ªØÈeõQW|t+j×®]çÎý•Å––!Di¶Ç ŽàÀ^îÉ×iâ#èÄjkk›››[ZZ9äçÆ-[¶È2}vòFpPNR=>Ò‰ÖbذaMMM«W¯>÷Üså-­­­«V­êÚµë€LŸ€¼±v+€ÂûÍÔÕÕ¹Êq“·Ëÿµº˜>ñ»ð ۴isë­·ÊqBˆ†††·ß~û‚ .hß¾½é³7vŽPHýúõ“SgÜèDgá®»îš3gÎg?ûÙ3Î8cëÖ­k×®=î¸ãîºë.ÿ2=Jà œM …k($2²|ùòeË–½ôÒKÝ»w?å”S&Nœ(WäPmŽŠÄ³ÉuÄíŽl§^\”÷$>@FŽì•, #GåD|íŽÊŒø „À „-dèÿøÇÍ7ßüüóÏïØ±ãðÃ?þøã¯¼òÊÞ½{›>/@´ªd¥¥¥eÔ¨Qo½õVß¾}ûöíû÷¿ÿý…^h×®ÝC=tüñÇ›>;@l´ªdå¿øÅ[o½uùå—?öØc ,xðÁo¸á†O>ùdÖ¬Y¦O Á@Vþò—¿tèÐáûßÿ¾sË7¿ùÍ#<òÕW_ݽ{·é³‹aóæÍýúõûÿøÓ'†1Æ@VºtéRWWwàºo<à€>úè£>ú¨C‡¦OPÕ}÷ÝgúÀ GYY¸p¡ç–uëÖmÛ¶íÄO,DjliiÙ°aÃòåË|ðAÓçV 8ÈÜ /¼°téÒ-[¶¼ð ÇsÌœ9sLŸ‘’Ñ£G¿þúë¦Ï,Bp¹¦¦¦%K–È5ú÷ïÿ™Ï|Æô)™={ö‡~(„X¸pá3Ïùä“;î¸ÃùkÛ¶m'L˜à¾Ãw¾óoûÛo¿ýöòåËçλ~ýúßýîw:u2}â þøã›o¾Ùùëà ŽBˆšššÃ?|ܸqÛ·o_´hÑŠ+.¸àÓ'ˆ‡à ­:455ynܸqã]wÝ5dÈsÎ9Ç}{ÿþý…o¼ñ†é³ÄFp‰C9ä‘Gyë­·<ÁqÛ¶mBˆ^½z™>Á½*öÙ‚#€LÔÖÖöë×oÍš5O=õÔW¿úUyãßþö·ûï¿¿S§Nƒ 2}‚{©ôÙÁ@VfÍš5f̘ïÿû èѣǛo¾ùüóÏ !êëë;ì0Óg·W`Ÿˆ-då _øÂï~÷»sÏ=÷Ýwß}òÉ'ßxãáÇ?úè£_ûÚ×LŸ *Ž2Ô³gÏùóç›> €T „à%5r0 G(!8@ ÁJŽPBp€‚#” „à%G(!8@ ÁJŽPBp€‚#” „à%G(!8@ ÁJŽPBp€‚#” „à%G(!8@ ÁJŽPBp€‚#” „à%G(!8@ ÁJŽPBp€‚#” „à%G(!8@ ÁJŽPBp€’ÿMÙtæà¹TIEND®B`‚statistics-release-1.6.3/docs/assets/mvtcdf_101.png000066400000000000000000001472501456127120000221440ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A€IDATxÚí½y¸ŵ¿¿ƒ‚¨ Q‡‚ 8+8‚¨¨¹8]§„(Üh„krã&ã@WA8ÆÄœHÔˆè×\ Q£ JD¨AŽQDш ÀùýQP4=T×°ª§ýyŸÍ>»««{ïÝýîµjUÕ555i4Ë» @€G ÄhqZ@€G ÄhqZ@€ÇJñꫯÖűõÖ[ó›ßüîw¿û·¿ý-øú[o½U¼ oß¾YöÓe¿?üðïÿûßÿþ÷ÿüç?¹úóé§ŸNœ8ñ¸ãŽëÞ½{«V­:wîÜ·oßk®¹fÅŠÙt€ˆ&L˜ ÎÉ Aƒ›Õéü AƒÄ®oºé&O»D4vìXqžO?ýtÓmcÏj^ßßÑn–_ðè¾\γiÇr| >ùä“ÿþïÿÞe—]Z´h±ÝvÛ}þùçw ø§x¢EÞYðÕW_½óÎ;÷ÝwßC=tÓM7ýà?È»Göœ}öÙŸ}ö=þøãtoðñÇy÷PœïQŽË÷$ä¸÷÷ß_<¸üòËO:餼Î@*…ý”k0ƱV8î¸ãN=õTñ¸¡¡A<>6l˜øç1ÇÜöÞ{ïÏo³Í6b$͆ ~÷»ßsÌ1]ºtiÕªU—.]Ž>úè»îºë믿–[G­[·î§?ýé®»îúÓŸþ”F½¤¶yÅWÔÕÕɤÌqÇWWWÙóþûï_zé¥GqÄvÛm×½{÷3ÏMMMüãÅ?[¶l¹zõj¹á°aÃÄógœq†x&4ìOrÖYgÉ­®¾újñäi§vî¹çŠÇW_}ut¿šmþä'?‰þõ³Ï>}â‰':uêúk]]݈#gì„N¯<á„6lØüÓçŸþçM¬[·NÝàÁùîw¿+ž5j”|rñâÅ;í´S°‘í¶ÛîÄOÿã?þC¾Rç ä®>úè½öÚ+ôâoûÛ©gï믿þæ7¿)?MMM_|ñÅ!‡}}]]ݯ~õ«¤“©~ƒ¢<öØc;vŒn2|øðØO‘úÄÊWpÀ;ì°C°ÁwÜñ¦›njÙ²eèXþüç?3n«ßÃà+]>öÖß_»/‹þG7ú×ùDi~¿R/&òÅ}ûöíÞ½{°µ–-[N›6ÍôÓ¥ÿžþùÐ~»í¶ÛSO=eúÍ"¯äAþþ÷¿Û}uöžúU-Ú)^8VŠ$qü÷¿ÿ}çw6oÞœˆZ´hñ /ˆçC_鯾úª}ûö♇zHn.F¨Ñ=÷ÜÓÔÔtß}÷É‹þ±Çû½ï}/˜â|â‰'ÄVò;¿ë®»Ê¿&]ëuÚüðöÙfñä]wÝÕÐÐ lï“O>ÙqÇÅóÇ{ìÏ~ö³³Ï>»Y³õ;ï¼3éŒ3Fîå ƒš2eÊ_þò—5kÖľXÑýëõ—_~Ù¥Kñd‹-;ì0yzòî«yPrׂ.]ºzè¡­Zµ’Ï<ÿüóêÎG‘m¶nÝú?ÿó?/¾øâC=Töùõ×_7=?Q‚G×®]»3Ï<3'›9sf¨'ú7B"jÖ¬Ùþûïß¡C‡Ðf¯½öÚe—]ä?9æÆm-ÄÑñco÷ýµþ²èt2§øDé|¿t.&¡oDÇŽ:ê¨6mÚˆ6oÞüÕW_5zïôß‚¦¦¦5kÖÈÓÒªU«o}ë['žx¢Üv§v’N¯ùÍÂ+Ž©{×ùªí¯ U]YD²@Ю]»aÆ­_¿¾uëÖ3fÌ8è ƒb7iÙ²¥¼$ÉèÅŠ+Þzë-"Úzë­ÅH1ŽˆFŒñÄOÜu×]¯¼òÊÁ,ž”É_É»ï¾Û»wïY³f-Z´èûßÿ~ì®uÚüÆ7¾Ñ½{wy‡Ûe—]ºwï^WWGD“&M@œuÖYO<ñĸqãî¹ç9¹Ìøñã“ÎÒ˜1cäí%K–Œ5êðÃßvÛm{÷î}ÞyçÍž=;X®¨è€>wÜqÇÊ•+‰h»í¶[¸pá_þò—ÆÆÆË.»,úJ‹ƒúå/ùÖ[o-Z´èÅ_”—W‘L4êü“O>)\uÕU=ôÐ/~ñ‹E‹üñD´nݺÇ„æ÷×úË¢ÿÑ¢ó‰Ò9R‹ISN9åí·ß~ê©§^ýõ=zÑúõ믺ê*£·Éèƒ}à 7ˆ¾ýöÛ?ýôÓ<òÈþð‡E‹‰Hö{ï½wÝu×E·R|s£ü¿ÿ÷ÿššš¶Ýv[ñO#èÕ«—ÑAéï]ç«Z´S¼q¬-öÙgŸ£Ž:Jñ™8“·´'žxB<8á„¶ß~{"]t‘x¼çž{öïß_<7{#Ö®]+Ìœ9súôébþÌ™3—.]ºtéÒ³Î:Ëý<ȳ:jÔ(™¾øâ‹8à€8àË/¿\¿~½]Ë}úôÉÓ–-[~ûÛßO¶k×î’K.!¢fÍšÉèË¿ÿýoÆm-püØGÑùþZYô?ºQ¸>Q:IË–-o¹å–­·ÞšˆvÛm·‰'ŠççÍ›gýéJåøƒxpÉ%—ÈQ}ûî»ïˆ#B/0~s-HÝ;ûWµt§„@Uue NÇóå—_¾÷Þ{MMM‹/>øàƒŸyæ™Øñ%D4pàÀöíÛüñÇ+W®üûßÿ¾çž{ʼ¸ë[ß"¢?þøÑGýë_ÿúâ‹/.^¼øÓO?MêɸóÎ;«{kÚfˆ7Þx#ØN”åË—ï·ß~±ÚqÇo¿ýö_ÿú׋-Z´hÑK/½´xñbÙàÿ÷ÿýgžyæk¯½öÍo~“å}‘-'úÞj«­N8á„Y³f¹Tè=•ÉV9ˆ^Ÿo}ë[¢TbÙ²e¢äâÀ4hЩ§ž;RÍY¡uä‘GÊ'wÚi§_|ѱå`BY~vÞygÿOònkãÇ>ŠÎ÷×úË¢ÿÑ=R–O”ÎÅD²÷Þ{SÛ²Û_}õÕ[o½•t tdÙ²e±§÷„NQºåË—oذAçˆõ›kAêÞÙ¿ª¥;E "Ž•åî»ïnÜĪU«>øàqÝ|ÿý÷Ï?ÿü¤­BÙ®¦¦&‘cjÙ²¥œ’櫯¾9rdÇŽÏ>ûì©S§ÎŸ?ݺuЍC¨Ú Ó6ƒ¬^½:uþÛ?üPý‚-Zôë×oÔ¨Q³fÍZ¶lÙ»ï¾+à~þùç3gÎdyS>ûì³>ø@<ì¶ÛnŽJ ™æÐƒŒ?þ /¡"jjjZ²dÉ„ =ôУŽ:Ê}I˜Õ«W‹‰E‰¨]»vŽ­…ˆ=ðàMÈÓ¶¸|ìcIýþZYô?º±p}¢t.&’P?Û´iÓ¶m[ñøí·ß¶>É ‚ìд…ò7É_|!gÒ0~s-Pïý«ZÆSB@k…vØAyúé§ß{、WÊ Ý#<²téRq·‘ ñü„ êëë×­[·ûî»ßrË-/¿üòêÕ«3ê|ÉMÛ ²ýöÛËDóc=ÖÇÙgŸÝpݺuwn"t#Ùe—]~ùË_Ê_Øò7·#­[·–óôÊÛ°@^LŠ…–-[Þ|óÍÿüç?ï»ï¾!C†È·žˆ,X ž_F‡í¶ÛNŽ…óhÖ&.û$Ôß_ëÏ•þG7®O”‘1„®rk×®•]åJ „Ø~ûí¥›þãÿþIþs«­¶’µ&Ňý«Z½STƒ@kˆ`à$4]VãŽ;N\ÖŸz꩹sçŠ'ƒƒn¹åñàW¿úÕÿüÏÿì·ß~-Z´x÷Ýw]úæØ¦öNDëÖ­ë }ûöíÚµk×®]l†±E‹×\sÍðáÇ~çwF_ ¯˜²˜4 y? } Ýb›7oÞ­[7ñ88t²©©)85 ËA¹óå—_¾ÿþûï¿ÿþ—_~ùï|gÖ¬Y|ðÁŸþô'™R M†gA]]Ì==÷Üsòù÷Þ{ïðÃ?üðÃ9æ‘„Ò<±9âÒC_¥Ôï¯ÝçÊè£"ƒOT,¯¾úêªU«ä?e··Új+QÕëãÓ%‹TäÊ.¡î±Ç-Zø$Æ~Dú_Õ²œ"àıVøøãåÔ­ZµRŒ+—Ù®/¿ürêÔ©DÔ¼yóÿüÏÿýôÓOe&K^›^xá…ùóç[÷ͮͯ¾úJ>>î¸ãăÛn»­©©I<~à¾ñoì°Ã]»vM7vôÑG‹“&Mºûî»å(ïuëÖÝzë­²±Ã°‚Ùºçž{N{ðÁ£÷Ô>}úˆ¿øÅ/ä”Ë×]wÝk¯½z¥õAéì|ˆ×_}§vÚi§:wîüæ›oQ‹-Ž;î8YP¬™±R삈ädãS§N•‘¡o¼QŒ4Ýzë­Åïý›Ö=tÿØÇ¢þþ’ÃçJÿ£Âî•z¤©|ýõ×_|±˜&úÿø‡œkð”SN•@vïºcrVËàYZºté 7Ü Gˆ²ããû¢ùU-Ë)î@ê+Ë÷¾÷=0ûòË/ÿñˆ¥ˆè²Ë.Sÿžûö·¿ý›ßü†6Õu}ôÑrhѶÛn»í¶ÛŠaRÆ ‹R<òÈ#.“øµÙ®];ñÊk®¹æÕW_½ôÒK[¶lyÅWÜqÇüñC=tì±Ç0àÕW_•¥y#FŒˆNË'øÙÏ~öðÃÿë_ÿúòË/‡zÙe—í¾ûîuuu 2/süñÇqÇv@N¡²víÚ<ðÀüðÃåð £GÓéýûßÿ>üðÃ=ôÐþóŸÿûߣ¯´>(±½f¿ýöëÔ©Óûï¿¿nݺ~ýú|òÉ:txë­·þïÿþO¼ ´(…Å.ˆhìØ±3fÌX½zuccã0pàÀ÷ß_Vr\xá…âþ‰Í ëºì“ZV|Éás¥ÿÑ aô‰2:ÒT|ðÁnݺí¹çžÏ?ÿ¼âæÍ›O˜0Áâ½ÓìØ˜1c~ó›ß¬\¹ò“O>éׯßÀ›7oþøã‹eT:wîúè/¾øBq>5wÑÔÔôàƒÊÑNA®¼òÊØQŸØØóðÛßþV<¹Ï>ûÈ'.\(žlÑ¢…û¶.=tüØÛ}]¾,šÝhÇô?Q±Gjt1‘/n×®](¶ÕV[MŸ>ÝâÓeô<÷Üs±).]º,X°@¾Ìè›%4#Ë÷%iïš_Õ¢"à ¤ªk‚æÍ›wìØñøã¿ýöÛÿüç?ËE’Öf6kÖ,aºñÆ÷Ýw_Ú´ÆÆüã_|QæÂî½÷^™"ÑG¿Ío¼qÈ!;vlÓ¦Í>ûì#o §œrŠ˜‘ñ ƒÚf›mvß}÷ÓO?ý©§žúõ¯­P?`À€+VüêW¿:ñÄ{÷îݦM›wܱoß¾çœsΓO>ùÔSOïÁŠ̘1c„ ûî»o›6m<ðÀK.¹DNiâÎ;ï”?Ó;vìxê©§>þøã±ókZ”â<Çv>Äa‡ÖÐÐ0vìØ¾}ûî¼óÎ-[¶lß¾}¿~ýî¸ãŽùóçËÚX—]Ñé§ŸþÊ+¯üà?èÛ·ï¶ÛnÛµkדO>ùé§Ÿ–!Ó›Ö=tÿØÇ¢þþ’ÃçJÿ£Bÿet¤jŽ>úè§žzê”SNÙu×];wîüï|gþüù¡iÃõß;ýŽrÈ!ûÛ߯Ž;pàÀN:í°ÃÇ{ìUW]õÊ+¯ôë×Ïúp4ññ}Ñüª–åGêš6q@Ÿ¯¿þúᇦ´¬eîm™¿þõ¯O>ùä~ð1-3¨MÊø±ÇG€Zâ´@ªhqZ@€G ÄhqZ@€G ÄhqZ@€G ÄhqZ@€G ÄhqZ@€-òî'‰è…^8øàƒ‰¨[·ny÷PY ŽP>„, „)¾ûî»âøôàˆ#”ƒ¨,Æ}øâÅES£@>€8@á¾èè|A}to ŽP¬ƒ‹©ÈÖ€8q€Üð'‹±  pâY“oîú°âYqp1è#Àˆ#ø¢h²Õ3# ŽÀLé< Õ3M ŽÀ@ñƒ‹:  PqKª!‹Q €$ Ž`@Ue1 ôâé”nØ"ÐG@ˆ#ÄS;ÁÅTP| @`3E(¾@±43¿ f8j>Pƒ@5d‘è#5ÄP}‰ö ô€â¨&.fН¨<G@u€,_Pa Ž€ÒƒW1Aþ€êq”Ëô€*q”Èby>P Ž€B”E‚s”TÏPv Ž€"ë!‰%Õ3”ˆ# ( ]k  @é€8ò² ”ˆ# 0Ê „€>P Ž€Œ@p¤} à@, P| @a8øÁ-¸ƒâk ÄÀ‚‹Àݺukll„>P Ž{ ‹ 30ü€"qƒL4È è#ùqhà"(ÐGòâH²РНȈ#` ‹ \ ø€,8ˆ¶åùk2â@í‚à"¨ÐG¼q ¶€,‚Zú€' ŽÔÈDƒú;G* ‚‹5B]]]ðŸMMMy÷¨X øF ŽT ÈbM!”ñÓUß = wŒ‚âkX€8PM©5b•Qðéªo  € GÊ ‚‹µ‰B% iëd Øq L@ke”ˆ—!ô¨ú€)GJ2ѵŒ¬}ÑTÆ =ê€êô8PP\F!Æ$zÔÕ3èq @@À%Ê Bú  €ˆ#9”Eªæz÷þ»;‹n·óÛĤŸ®úæv;¿Ð£&ÐGb8±ªB jŠ2 Ä?·ÛùmGw*Zƒ;ê} Ä€ì@&Ä«ŒAÞwg»Ð£Ø*ÔøûïµÐG$GüY R•Qbz †“ZCèÑ_@G<» P£¯ŒAtBje µw4Å× Æ8À‚‹@;e”(BúÊl ik;¿µ Ä' ‹@Ge "BÂc25EH[Û}µÄ‰FÈy‘ik.…;Z}µÄ]\el|g'ùL§]W¹«^§]WÉfY$¤­>‚Z†È"°&ªŒ‚ÆwvÚgg{Aedi0ÈûïîÜi×U=º€âkPm ŽÄ€‹>p¤®®.ªŒ»HaTT´wtÅ× ª@Ø‚‹€…¤@c)ÔQ=…2Ú5˜Ú~ã;;ÁY@þT ˆ#¨i ‹€}e”¤f™5•Q¿Aýö…;†pQÆ ÁH¡µ2FŒº£EãH[ó}¥âª ‚‹À+ê SßÙ©ÛnïuÚuW›¡´µ‹ÂÙAñ5()GP5 ‹ D qéÛ;wÛÇóºíöžhˆºíÆqÈ´µ{ƒpGtëÖ­±±QüŸpÉeâ*~¸ƒlÊ(þ)Ü‘´,¨Œ²M"bQRÙø>ß\å~ì(—ñò× ,@A‰ApdL]]]ÐðÖžUÆP³Öî(Z¦ˆà²ŒÅ$”ËxúŠÄ” È"È…P 1ŠQèQ­Œvm¦¶ì• míè#(2GP‰y‘ªŒÍÐc·ÝÞÓiͨMÒ“Q÷$x0– wô ªg@18‚â‚à"ÈØÜ´E`O3ÐhÔ¦E³viëØ±˜pGß`éBP4 Ž X@AAÐ4F‰ö¬•QѦK³Fî¨NóùkP Ž  ‹ 8ˆOãî»ïî"y&$7eŒ¶)f|tl6uÈc´Â&©”ZgôäÄäÆî€‚üé"”‘ÅóÄ 8Ï¿Õå®+y;ìn‚¤!¹oB©u†@AŽ@A¦ ¸ŠCè§‹Kn:Ê>ß\õü[]Äãçßê²Ï7Wº·,MtÓ?Ú¤-ÓÖ.JŠ´uÆ@A.@wB²(–IÈ»S FIúéRWW÷dãD´Ï7—“›>†ôN ÜѺeE›\¦ËÅ„;fНAÆÔº8®X±bРA³gÏÞÿýóîKÕÀ… uœ[…5Êû|s¹…BÅêD›wwJ‚‹ 8ØýtI 4FI =Zž$”vÑÐ`ƒ,ŽëâŽb_âÔÉñŽÐ—¼€>^jTûõë'<ùä“y÷¥è@A¡p uë£Cî†'‘©aÆCã­{káŽb_Á“,Ýú’/(¾\Ô¨8‚Tp}!øÓ…l?Æ(O6îqL·åîÆ ¢Y´ÌÕfPFÉ[3DTƒçMÆ¡/ù‚âkàÄlÁEPbÝ"$‘š¸ƒÓmùÃoîCD‡t]JÎB©ŒâŸO6îqH×åîÍgiMíŽÁ¬´¢‘ ;ô¥ ¬8Ö:EPØ?,F"á@aòÁ!]—ZkÙ!]WF{%ž9¤ërÛ ù¨ck‚Øiz!ÆXBî(€¾ä Î?°âX‹@Aqð÷iÖèŽ 4†xøÍ},B!±‹"B¶Û²uk!Béo²ÒñXw$èKÞàü# Ž5Æ‚ÁO—ºººûéö‚]Ð1hŒbzLUF‰iÚZÝ2W\¦¿]"¸IîHЗ¼ÁðS  ı⠸ŠC6÷$h”Ö(Óí24ž¤@cÐclnZfÚZSF“àb/òlÓm©'w$èKÞ`ø)HâXA ‹ 8düi ƒˆ'5C©Æ(ŠÐ£~ 1Š"ÑlѬEÚ:¤Œò`½º#A_ À ˆcuÀotPòúé’dУ~ 1Š=J3sQFIÔö<™hˆXe ©ow„ c  Ä±Ü ¸ŠCŽ?]¢éé$dè‘"îehŒ"ÓÖÄQÍ-ÛƒYšU»£Șz2sG"êÖ­[cc#ô%/  H­‹ãµ×^{íµ×æÝ 3 ‹ 8áÓ˜hŒÍ\»cÛÜãË"£±î¨1ÆÂåŽD¤©}Éœ ¨uq,ÈDƒ‚PY”XX£Df®É9Ð(8¹ûRÚd¥¢qö)$EMtG e”¸¸£84SɆ¾ä ª—ıÐê jœÞ*\¬Qò›7Žø~ÏgÝ;sr÷¥¡ÎØUs‰ÆA݃|™wÏÎuI.®(O×} kæ¬%З|AõR-q,EP ûiÔÔ¨`p~óÆDô›7Ž8¹û³d«PÁ@c£jî Š—,î(£}Dtr÷²qÇàN£'ÊÔ úR®A ŽÆôêÕkÙ²eìÍâ§3(…•E‰{ QäF…5 Äã“»?kªPÑ@c£´µNŽ5²ŠeFíí¾†ƒ½ºc4Ęt–,ÜQ}ÉœÿšÂò[ZãôêÕ‹ˆÜõ±øwh466ÖÎÁš’ãÉ)ÅO—ÆÆÆÝwß+ÐË÷{꺣"И´_J› ˆ £ž'w7Î'uxpWwŒöG½Ç¤nÄÞ•ô¿¥Ó—Š]Kwþ)G{„>’¡AÖ¦,†Î@m¸Ÿœr}åÚÓ.⨶Fò¨¶(@cR’ÂrÖ‰r—q¨o,î([Ÿ¢èÉô«Q"}©ä%±Dç˜qd 5Y®Û³o*y•ä"ƒ“SÒOc]]ÝäW¿%ÙûQ #‰¦§Õ$…M±=‰†å\ŒMᎦ1?Gw”Öèݛ쾥З _ß}÷Ý]wݵªX›@Ùˆêc)rÙS᫤;žNNIeQ´FÁ˜½%CÒWFI4ôhhŒöG>æš (v>s;öè’PFy’¿ßóY^wtùjüR\íK¢8ºR<ÐâÈŒÐÇGy„ð%I ÚWIGxONÁï—šD­Q¢z´³F‰=º£½"&kˆ>Ù¸‡µ2û¦ß±2Ï£;²|5Š©/Õ¾$®˜ç˜qäÇSÙue¨öUÒ÷“Söàb…5 Ô¡GÓôt"ôÈeÁ^é×âèÀh·©î(³ÒêJ#.wd¼nM_ª}IŒ]ÑÎ?0ÓñPz*&‹’Tk$"ñ‚Á=bôÑ1Ð(Êxóß!¢Á=žô1 Å@Q‚a¿Á=\u”sô$…£üæ#X:à æŽÉœÿ²ƒˆ#?ˆ8ª©öÏkGŒNN52ѱˆêTk Ì\sY£PFÉE{Ú»£¢K:uÜIÄjœ{¨Oö94Ä“Ì#¸ŽAG¯ÃóýUû’¨>º"œ` Ä‘ˆ£šj_%I=9U .Ñ 4&!2×Ä”žY£à¢=Ÿ$ó¹ uºd‘¶>¹ûR…Œ2º£2rufpV¬Xá¾Tû’¨stþ \Iª èÔ‚,J\¬Q0ùÕoI}´#˜žŽbš¶Ö}¥­SMŽ1M¬ÐÓ Ú½ûî»û s`åë|AõL¹€8PPjð6æhcö~Tl>ùÕo}¿ç£d!K 4†¸ùïǤº£EiŽŽ;f6ÄPô_œï÷|ÒÅ-z"g,’ ë 5¾ä†?–¤ªùAªZMµó2ŽÔTp1—5†ž4ÒMk”(ÒÖ.ƒ,Õsûb(-:¾Ó1î¨ÙÑØؽÍìž•™¾Tû’h}tÐÇÂqä⨦ÚWI ‚²Hµz¡ôaòO¤7¾’ÓÓjB3,s…Êe²b 1&©?wŒ†cÉÒ)}©ö%Ññè âÈÄQMµ¯’FçA<ž<9vÔAÖ|zºA;e”wäš62Ø1Q˜ÂRë£pÇTe )»;*BŒQ2GW}©ö·žqæv‚Aˆ#?G5Õ¾J¦»|{jíä¸ÉD8(aGkˆ´5o‰ˆ;rµëŽúÊæ"ް8š­‘ˆÄã1{ß«Ÿtv÷‰7÷|S 1Ô¾uÜ1)Êä#>k´Þoðt‰7¢tqG ¢_ù‚óŸGœ@&Ú”5J.Zrö˜½ÓCîa*"úÙ+§ÑE{Îuñ§XkØM$©méèŽÁP]´ç£Žî¨ÙŸÐ~«ô%_pþ³©j~ªVS¼Œ?Y¬ÀÉQ“dA’2×F¥0±ŒÙûQ¡Œ’Ÿí;—ÌÃoÑô´b:ª§?ÚÒ:A{>Ý㎊þh*cÙÖAìô¥Úßú,9Ÿl€8òqTSÞ«dW¥òžt¬QróA÷†:F­¢Ö(ùÙ¾¡GE 1i¿ê™€ÈgQ³ÚÞ|¸clV:õUÆÉüBQío}.G‡¤W Žü@Õ”ë*™q&º\'Ç#kÈУWkè„õѽǪžõL@:î¨ðãrG—¬tÅÜQ ©/þÖç{tÐGO@ù8ª)þU2Ça‹Å?9vXX£$z´ Õ%ŠÐ£i 1Ú ytŸ H1m¤©À¹»£µR‡ºQ=w$ }©ê·¾ G}dâÈÄQMî×EÇă»Wؓィ5^´äl‹ùz$úÖ(ˆuGGk vFD渊šcÓÄv1QëØ'm*6úÙ¾sáŽI(ô¥’ßú¢ô‘TUƒš5Ѿq·F2Ÿ¯G, Öçg¯œrÑž›ÓÖ,±´ ŒÖHÒfÇâåɯ~Ë´Î:¨ŒòÔÙÛÕíàš_É(þÍœFqäG5¹ÿ-²,æ~rxa±ÆÐ“¤]ÎlªŒ!ĨGF ’]2ªÅÑ1 ªYÙMÉFîw4 : e N&_ü›ZH_*ö­lÑŽ®É¥Rƒˆ#¨ Š,‹U…Ý)z$¥Ò¹[#/¡Ø§j2®[ÃêSÇžÈ<ˆkÚw”!ÆÐçä¢%gç;+¸ÁèÈ,éHÑ¿`eG5˜ÖKÝá²tUkŒ¾,V/¸bc^:‹ˆ&0‡¸'”{q/ŽÙ"Sì<ÄPv8ºà!™ø¢×ÁŽ¡c,¥ˆ;Jª­/Å¿¦UûüûâÈÄQïëH©ƒ‹Å¿Èê5ÊSdhwkÊdòsì*NHé[vÓÑE{>™$£¼îhªŒŒ= ¹cRˆ1–Ò‰c·nݪª/e¹¦UõüûâÈÄQëH©e1t ¥î?ehÁ­äòÓ>¬Q`êŽ,sEI59Fw$·óÉ2ØÑȃ”ȃßúêéK¹®iÕ;ÿ>€8òqTÃx)]&ZçˆJ},Ù[£Ü–|Z£@?mÍ2PýàŸ»±ј—Κ|À÷SjÝ”´š²¸cô[_%})ã5­zw^PJFe‚‹Õ£®®îŒgþçæƒ~MVñ!k¶ø\"úÙ¾wY‹Nª5Ò¦Qcöž£®Ë!Û9€›NjÍ®VF*£Ý9äêIP]>å%T=ƒ ]ÆT8Ì"Žü â¨ÆâhíÈb „5Ê>x¤>²X£àξw‘¡·Ka4IJ[;ްLš{ÜôˆdkF‹ÇÄž„,ƒŽIYiÇGñïq©ßúRëKy¯iÁC Òž@ù8ªÑ¿ŽÔàî’^dCÖ(yðÈ_§Þò­Qrg_ÝУN 1–;²Œ°¤-ÝÑZƒ­iÎk£8 ¸£:+ít,¾;j~ëKª/%½¦Å•ðüûâÈÄQú:R;ÁŤÃ/ÝQ'Y£@zôaw´¶FòÈ;m¤pG£Ü´º5õ¼6:gÀ“;ê¾TÛ¾õ¥Ó—2^ÓÔ‡C¥:ÿ>€8òqT“4\Pã_ÈÒ]dÕÖ(‰ê£(gñduÚÚÑ%îRí±N²$m¦ÙyFw´(|©pÂÚzôN)®¥»¦i•äüûâÈÄQ¼ŽÔ`&:•r]d5­Q"3×î¤Tk”DCƒcÇ‹–œ}óA÷ryÞÏö+O‘'w´®€aqGñÀîݯª;ZëK¡/度áÐt€8òqT€à¢š]‰L­Q`T4‹‘5 ‚¡GÆ@c(€Ê"U¼mFÛ'7c¶vG¹wr 3W2aíø­/ø/ð]Óphš`:à,Öì—­JØY£Àzʲ²F"’“õÓ\3!kÇò³}í=OÛ µÏuìv»–ïšx;Dp×ÚK±Œµ˜;dLEÄñþûïŸ={vCCÃ6Ûl3`À€Ñ£G·oß^ñú¯¾úê®»îúãÿØØØØ¾}û}÷Ý÷¢‹.Úc=ò>Žê€È"P ¤óæƒÒk®ƒØY#;QkØy^4ÐèÞfRû“¸×ÑǼtÖÏöÕ :†”Q0lñ¹7t—‹üÕæÌŽ:‡áª üQ…Ÿ_7Þxã´iÓÚ´iÓ§OŸ•+W¾õÖ[ûí·ßŒ3Z·nûúõë×:tÉ’%;ï¼ó¾ûîûñÇ/^¼¸Y³fwÝuWß¾}ÝûSË©j¤ "Ž Jqr¬ÃùëІú™kGk¼³ï]ç,ND÷vÙÆÞä Fu?I»´%6ÐÛ¦u‚8:'"ËàNub•1È}íÝ‘*7ØÑß*¬E¸˜”⚆C3¢ôâ¸lÙ²ÓN;mÇwœ3gNÇŽ‰h„ 3fÌ:tèØ±cc7¹çž{Æ?hР)S¦´hÑ‚ˆþò—¿ 6l·Ýv{ôÑGÝ»Tkâh\¬Ù/›Å?9ŒÖüSª±X£äžÃî0õ§¤@cR‡uÔŠ±Aýö½ºcª2J\ÜÑzMs":ã™ÿyðÈ_êÆçï[_},þ5 ‡fJéSÕ³gÏÞ°aÃe—]&¬‘ˆ~ò“Ÿüþ÷¿ÿãÿxÕUW5kÖ,ºÉ’%KˆèÜsÏÖHD‡~ø^{íµtéÒ>ú¨C‡yS @&º6ña”6ê‘݉èœEÃ'`àŽFÖHi)fÍ@£~ƒ¡ÆI©¤-9›=g-k_²K`”°¾H›HÔH^”^E–ù裖Ï4oÞü¨£Žš;wî’%KúôéݤsçÎDôÑGÉgšššþýï7kÖLª$ˆ¥àå{À+ž¬Q G=R@zÄ-ŸÝÂI#mmj‚XÕ3 4¦6h×8£;ŠÇvK¾;Êcèù3žùŸJVÉ$éÏ/åö¤¦¦¦†††:„„={ö$¢wÞy'VO>ùä3fL˜0a›m¶9à€>þøã[n¹åÝwßù$v«Õ«W_ýõŸþùÞ{ï½ï¾ûþë_ÿZ¸páC=tØa‡üñySž —¢dlbߺ˜ˆîìûK )I 4F‰¦­Y¬1ckÒ]ßv•Qp΢áŽîèx*¬}±ƒŽA Àšr‹c»víêêêÖ¬Yzþ³Ï>£MqÇ(cÆŒyá…~ò“Ÿ|ÿûßϬZµê»ßýîüãÿû¿ÿÛ}÷Ýó>¬LAp(Èщèħ.¾³ï/É$ja‚`ÚšÑo>è^ÑòÍÝA|’'Ü‘% ªtŒ*cðÔ¹¸£uÐQ*#ÙFkÜ ú¬(·8¶hÑ¢mÛ¶ÑÈâêÕ«‰HÖYùàƒž|òÉ=zHk$¢wÞùG?úѸqãþßÿû#GŽÌû°¼Y:ÔÕÕõýã9‘ oÌÖÖÅ(ôhmA|X#mR®›ºÃ½q!Lç,ÎÒZª;*”Q’±;†ª^Äl Àè#0¢ÜâHD:ujhhX½zu°®E|:uê}ý¿þõ/"êÚµkèyhüç?ÿ™÷y™h °F"ÿ××Gk †ƒè„Ý­ñžÃî°[Ò&Št»Ðóî¶’Q¯î¨£Œ\è¸cRVZL͈ £#(¾š”^¸lÙ² œtÒI♦¦¦§žzª}ûöx`ôõ]»vmÞ¼ùòåË›ššêêêäóbÊî=zä}@Ì ¸Xú¨¾=û°F:ôÈhä¶š6mévQ¬m/VF=¹£…2zì˜4±ŽîÈНA*¥ÇoûÛÓ¦M»ùæ›  jbn»í¶?üpøðá-[¶¯ùüóÏ?øàƒ–-[îºë®­[·>ꨣž|òÉ_üâ_|±˜!|ùòå·ÜrËV[muÌ1Çä}@ @#2ÜB¹ög’ØÐ#¯5 ¬CjkXØž¢Y^w”mZ´Àž°F¡tŽ  ’¨ÂϬéÓ§Oš4i—]véß¿ÿÊ•+-ZÔ»wïéÓ§ËizæÍ›÷ãÿx=öxøá‡‰èÃ?<묳þñtíÚµwïÞÿú׿^xá… 6\}õÕC† qïO.K–Hkv™&Špr’¬1ÈâAa}ÌÀƒÌ°1ôèÃC}3Z¡D¿3÷¦e{šÍj¶–º#£CHê‰ãœí²VÚôåø!ÌënX„o}jÉöÎRü£³¦Â‡¦¦ôG":ÿüówÜqLJzhÞ¼y;w:tèe—]&¢±ì°ÃóæÍ›6mÚÂ… ÿüç?·oß~À€ÿó?ÿ³ï¾ûæ}(Æ`< àEÇ)’¹ÎØ)zôj´)mêd:Æ©‘B#u‰;--ßB1çÍÝktFÂÚˆ>‚ øžðã;âX¢àbRÿËØílÈ÷ähZchèÑ;kÌðKñÀÚS­1ØOµá¹ô!i…n‹6-âŽQK{ðÈ_gtÊ(> óüÒåUº c¹.‰¦ÑŠr驨ꡩ8òãCË.‹¡c)û!ø#Ç“caáŽd•Xt±ÆcçÿX<žìvŽe:Çŕ˸X£ìIt`Ÿ]›Fâ¨HgéŽAe”Ô”;–ô’¨€,éÑižªšˆ#?ŒâXÉLtÍ~ÙtÈëä¸X£Üpñ ‰ú7l.kÌ?öF2_h=?¹43ËöG4Ë®¡±èŒ ÌÀc•QR;îXêKbª>–úèR½ª‡¦¦ c+F•‚‹ Ú­‘Òj®ƒðZ#‰gî9,=ôxÏawèô0 9äÑÝð‚ˆŠÄ¡¡êÁŽvE'¼_¤de%ÃkDI (ZDkJköWš¹œ»pcÈC¢d;a·Æ ê´µu 1z¼ÓbßsØ'>uñ¼¿äj6w´PFö £:Ä¥F‚Ž•¹$ÆêceŽ.öx«zhj Ž6ôêÕK<ˆD}q¬d&Zç¨kêxÈþä°[cð5Ñ;·Wk$¥­­‘]òä9ñäŽÖuÊ\îhªŒ’ìÝQÖ•gvs¬Ø%1¤;ºÐ‘VõÐÔ UmƒôBaFñÅš .‚‚ãÏ).s5RBښ׉èħ.¾ç0WÉyóà9aiV Óßä–š¿ç0{wxgß»J‘•Ê(>Û²ä ˜ZºTDéc4âY R³¿ÒtÈàä?ƒ—ÝnÑ‚¦8_/&ØËÀƒÈ´5‹5 «ˆÿºH•¢.ÄÝ…´LjF‹¸£Ø»x׿{£‹8ú:ÊcèS½xÐÄlîÕ¾$.X°`×]w­äVûS€ˆ#B£ÑÇÚÌDƒýéÂRF­‰ =ÚagDtìüßsØÄdN±ê#„d^Ô¢°Fâˆ;ÛðH{ñ²Û5mRFÁ±ó¬1È3ǧ»£c xh& GURÄMw;ÊžÝ{”AÐQQ%]Ì cµ/‰šGWÆdµß8ˆ8PtX¦sÖHDâÿ‹™é£):ÖHq¡GßÖHiCc§Ý1"&dÔwôQ“Š£5’ç kuÕKß?^açŽ:f†?–ˆ#EÄ÷ÜŸšúèXF­Éþ_- ®É­ÀBÇÂ)2äÑ%ÐDNÓÃ%v!µnÙ:a-œLžÞùÇÞ—;&õ|þ‚;fô±@(>.š2ÜBêcì7kìÿðÕ"mm¾5 ¢C¹¬‘ˆæ øå‘-Êq¸à’QSw )cîÈþÛUI»O|},8Gr&´6û…2É%Ýï»6zÌåþºÿÃWÏ?öZ2;šZ£D¦­Ù­Q4>oÀ ŒÍ²´CÚî¨PÆ#ÿ4:ß ãƒGþ:ãÏ'‚Ž},,øðƒâ55; 8täãàÙ`?9©ÖDÖÍx-ˆ‰å哯 nøòÉ×êK‰µ5Jž9žSï¢Ó¹7l–«·ŠBÍ(ã3ÇÛ»#YÊ{ñikq,Z•Lµ/‰,GWÌâëj¿q q ;Šyù“>ZÀe´)ô¨#%,ÖØ÷WÌ0‘Wï$îqÇP³¼ÌY&¦õãŽ2Ú*?'û?|õâA–îèX%³bÅŠb~+Œ<á@ˆ#~ñ]æ¢À(Ü(xsðÕêI0Z£@'mÍeD$Ü‘lG ³Iꌵ꩛u$š°~ðÈ_›ŽuIX럤Oˆµ;ZÓ÷Wì¾ûî+V¬ èK ]ªæ©j5µÞ·–EÆ“caG d®S·b·ÆÐkbÕ„ÑCÇb‘?Õé‰iŠYÝ,oÂÚ%Ðè#a 1Æ’ošK_ª}Iôwt¹ëcµß8G~ Žjªúec‰,rwk >IiSöø³FùJÚ2ôèÉåé;™¦5Êêgfu†²¤×uö•Ú.wT„c±vG—ò¯à`Gw}©ê%1›£ËQ«ýÆ)@ª' 8l‘ÑIcÊßÖH›4BŽzôj´)m­ix¦¹ÝÔœµ~›Žƒ…¢‰v-ðbªŒŽpM̓äi¾`éÂìAÄ‘DÕTàWš¿a‹,'Çeh£ú5™²'k mHá1Íü;—áE; X¤Û´M»¸ã¼¿ ½•yç{£x`­ŒÅ©°¶Ó— \‹stY|µß8ˆ8 EŽ5.Fx²FÊj­ÂTz?4î™ãÇ[[ަ5RZÜÑÚ)!Rèµ&º£ÐIèûÇ+ž9ÞÉ- e„2J_´þ9‘K• E§uDñoî œGT”+b—¤6"¨Ù‡{?4ŽÜQß±îÈbx!wd×ÐXb•1x°Žî¨OHsÄ4a-ÓúÝï»VÄàc¾ä οWªæ©j5Åïç\t99¼CS·LïýÖÖHq¼vÚx28Sk”Wfæbx±]ÜÛT'¬ÕÊr,m*⎡áŒê#õ—°.N”Ñ¡Œ.|D¿ò矈#¨iÊ•‰æÅ݉H<~ùä+u¦cd´F‰NÚÚÅýñÌñ7ˆòÌñ×zrGÍ@cö„µQí‹XK0û‘ŽÑ„uRˆ1D÷û®Õ\Àú’/(¾fâj޲£d0´QM·»¯S‡=Y£@¸#%„îX¬qñ ‰FÎT¤5ò"ÝÑBû ‚Žv!ƼÜQ é‹AôÝ‘ /yƒê% Ž &¨ž,JòJR‡P„½Z£ Éêx­‘œkºiÓ¸Æà Ùÿ᫹‚ŽýÜt,,AÇùÇÞX¢¬´ðÅŃ&fó,¤/ {vÅ1ü 8FM–ŠK÷ËÞôäÄ·8„![„3°Æ ¯¶ÙêØ­1v/F(/ŸÌàŽ²Ú†åÀíêÖ‰¨÷Cã^;m¼‹8fV%Âh÷Õ ½*™$ª­/ů ±>ÿÅ?4O âªF…ƒ‹!êêêºÜ6ùÍÁcÈ$³æÕÉdÔ£ k¤@DП5’mÜQžv;>sü ²·‹w<|Ó¸£TFyŠ^>ÙÞ}'¬-RÒ^éÖ­[µõ±È úh ÄTÚ‘Å(]n›LDšúèÛ%©£ÕØY£@yt$Ƀ{1òªÔSaíŽ!iÝÝÑzï².îèƒT_³3Z|GŒF:Æ}Éœ} Ž ¬Ô²,Ò¦p£ü§‘>aa¡s=Z[#½vÚøžsÆÑâAã\&öK탦;F5*°pÇ` ‘—Ô c’2²ÀttŸU' /ù‚ê% Ž dà+Mk”H}Œ½AZß² qÈ•B7C¦Hk$¢žsÆÛ¹£Ž5 RÝÑ¢zZßÕÞÆtLrGMeÌ=èhW%WÐQ}É_«8‚PãÁÅIÖ(‰ø˜Y’šÖ(0õèn Z£ÀÂõ­Q pGOsîÈÆu¼=ametqG— #eX%-atG‚¾€cAU5?¨ªV£Y‰V›²¨srRÅQ²ò‚ú˜£5†þDÊÐ#¯5JÞ8KËEtÊ®Ñ:kGkTY›ªÛk§¹º£¨°¶NLgYaýòÉ?çâCØ8äJë*éÌÊ«.‰¥»V¦ô8zþ+sh¦ ⊲3jô­‘¶øhŠËÐÆ$Ô¡GOÖH›âޤœ¤Æ4Ð"w4Ô˜DRÂÚ߈F5.ûÍ&a-”‘ëC[„„uD¿òç_‚ˆ#?ˆ8ª‰þJ«Íàb,꟰FÖ(YyÁ˜.·Ü°òG£¦ì±»+¡—Ñ–jåσ$…­1ØbÍŒ;ºT¢XEVœÞ7ÎçX´ä25£bþKñ@ç.xÐÑ"pU"}©dX®Æˆ8‚|€,šâbDÔå–Þ<š|–jZ#EBÙX#% yä²Fȸ£c Ñn°ãâAõÏ­ïóuGÞc”%¨žÉ—Ðù¯5 Ž SÄ7­’¿A ˆ´FxœªìC“×ÙX£ 䎌Ö(;óòÉãxÓ²,éi#w ƒ§îµÓ샎\ ëÔcˆnw_÷æ`Ë cÁAõ Ȉ#ðN(¸k´À"ܲF‰Z3³ÆÍý¹kâk§]‘eÌOº£kís¹ãË'_+šu16#b•1xê2ëIt$Ÿ!Æ(E:Áð;%Çûï¿öìÙ Ûl³Í€Fݾ}{õ&¯¼òÊ­·Þúꫯ~öÙg½zõºøâ‹=ôм£: Í£5J¤>†¦ìÉò®Ü8äÊ.wM¤MîH†¡G‹p£D–˰; »;JkäBtT+#W,‚Ž2ÄH¶Ö˜KÐ1cw$è#ÈŠ*ÇÜxãÓ¦MkÓ¦MŸ>}V®\ùÖ[oí·ß~3fÌhݺuÒ&óçÏ¿ä’K6lذï¾û¶mÛö™gžY·nݯýëc=Ö½?µ\£3æGÑ“ã8´1ý•?Úzô]»¡ÇÍ9W7ôèbDôÆYãät-Žñ3õ4@.å ¡fkS‚ŽŽò$e̬J&bt‰m¶JÆÇ%±8úXá ~…MMé#ŽË–-»í¶Û:uê4gΜŽ;Ñ„ f̘1eÊ”±cÇÆnòÉ'Ÿ\~ùå-Z´¸óÎ;>ø`"úÛßþ6dȱcÇ}ôÑÍš5Ëû˜J‚‹ECßiË̵ŒÖHÚik.k$¢nw_÷ÚiöîèØ“X„-E›åJ‡âŽÅ©€‰ž„èG«ÛÝ×¹¸£eIXAôø£ô’4{öì 6\vÙe‰è'?ùIÛ¶mÿøÇ?nذ!v“x`õêÕ?üá…5Ñ~ûí7hР?üð•W^Éû€ÊAc€nòîWÕð‘¤N¢Ë-7ˆYrôáµÆÝ¸kâk§óÚÄÂh‚nw_§Ø‚Ôžôœ3>˜fÕA•C Ù$oñ ‰vÖèØÞK:-/Ÿ|­ø¯ÛÝ×ù˜FôÍÁÙ-~øæà«³Ü]ü!wë&†• òí ¨ ¥8.^¼¸Y³fG}´|¦yóæGuÔܹs—,YÒ§OŸè&O?ýt]]Ýi§|ròäÉ“''k D3&3k\ù£ÑrÊžÆ!£Io$™kˆ¿Æ†Ù­Q`wÚ¤Ó£ÁŽìƒ8Ù+¬õ _ t”²(¿¼y%(¾¼”[›šš:tèСC‡àó={ö$¢wÞy'V—.]Ú¾}ûvÚé¯ýë‹/¾øïÿ{Ï=÷<î¸ãc"kL– vC-Ö(SõÑŸ5nîI¤bÆ“5 ôÝÑ´:žŽmÍ1aýÚiãÅyxã¬+‹¤Î²VÚ_•LÔ ò×€…r‹ãš5kÖ¯_ß®]»ÐómÛ¶%¢>ú(ºÉW_}õé§ŸöèÑãg?ûÙ½÷Þ+Ÿßm·Ý~þóŸï³Ï>yS!@p1_|Ĥ"õ‘÷v®o»=úMBÇíº¡vGÓ@£µ;Š@)×{Êt´ëKÐÑÚcƒŽ:¾Øå¶É¹·8ÐGàF¹ÅqíÚµDÔ¦M›ÐóÛn»-}òÉ'ÑM>ýôS"jhhøç?ÿ9iÒ¤£>ú‹/¾˜3gί~õ«K/½ôᇮٸ#d±Ô8&©cIÊ\gœ(¡GGkT‡%jwtœ(ÖíÒÓ¦Ò«ŒÝî¾Î1èhçŽr|d—»&®<×f!DÊ)a-)E|Q ôXSnql×®]]]Ýš5kBÏöÙg´)î¢U«VâÁõ×_/'߹袋V­ZõÀüá8묳ò>¬LA&ºhd?´QA4sA’:ÜÏs¯èrç¤7κœlgÔ´FA’;º‡üðÃáÇ·lÙR¼æóÏ?ÿàƒZ¶l¹ë®»Ñé§Ÿ~×]w]}õÕÓ¦Móø¼òÊ+wÞygÛ¶m?þø¼ˆˈ7ÊŠÇj}ô7´1v+aDÔõS‡Œ"Ï9ÐXkè yt´F¼qÖ8ò{ ºc¹éÔ>y”ÑÅ­‰k*¾˜ ô$Q‚_?©LŸ>}Ò¤I»ì²KÿþýW®\¹hÑ¢Þ½{OŸ>]NÓ3oÞ¼ÿøÇ{ì±ÇÃ?,ž¹õÖ[ëëëÛ¶mÛ§OŸ5kÖ,^¼¸®®î†n4h{rY«ºD²X³ë{*Ycˆ†+bô1/k òÖ%)¡GÇ‚˜ô— ‹=²X£ìüÊs¢ƒ"Ð:F® ŸXêÀk”zôm”¶æµF"rÏ,G­‘¥Ù ŽÖHÎ kÇxj. k±Ææ›ƒ¯FˆQ ¢ HÄ‘ˆN9å”SN9%é¯'žxâ‰'žzòÌ3Ï<óÌ3óî¸ % .F‚úH…ɦÉQ´¥>f`ÏÖîÈn÷â y±ÖèÞl´ýì³½²´©ì}å¹—­&Š\“Ý©Jºê#£ ø*"Ž•²XURÃ!zL¬™kSØÃABE3î“ï!‡<Çð¾¤ÎÛIžÂ]šmß}¤ iÐ1¨Œûpç$kwÌ è(”± ?ºJ Нı¸@+©5QÃ#6†4‚´o^­Q"3×¼eÔ:t¹sÒÊa—Ûí4ˆZyM%/Õ]ðTj£éŽQedÁS•L(ÄÞé-7Ø}Aj0èùëšâX8¨,¬1ˆ¾>fc‚®¿˜òÖ%£Vž{…]y„µˆ¬v¹¸7ãR'¡3wŒŽ;YEÐ1II3(ONUF— £ ±AGß!ÆwG‚>Ö$GczõêED¼uÓ.d¸Q’ªYZ#½uÉ(±á[çš…Y¬‘ˆºÜ6ÙÎõÓ멞ghÔwÇT%õ—°öedì¿tGuˆ1f§¶AG €>ÖGc„2ºë#d±–qIRG‘ú˜ïOZ#mõøÖ¹£tÊÅ£X¸£é L…çY§§uÜÑkî;HÈM•1¯ £ðÅÆ!WZæ‘°vÕ35ÄÑk}Ä— ðZ£¤ÇÄúPè1ËpcÐ%]1%5ôèhÁp£ÄÈíJyb=ÏQìÔî¨ß8KÂZ¸ãÆÍß Œ«d„2nü¹rÉ(—Ž„ªg@õ€8:¡©.‰ãÐF5ÁÌ5Y íb´F:ôèÃ7ûm“‡Œ¡´:k—ðçù ZÔÁp vô˜vïP]wšSÐqÅŠmP—»& «ã²FÙ D´œqÚ·qÈ•C®ìrÛd—Zõ.wNbÓC=lre×_L }h»þbŠÝÔŒÀ»îºk·nÝÄ­0ï¾qd#}¬Ù•ˆ€OIêXL>ºĨ‰¦­¹ bÔ$¥­¹&›qGF±“Ì\ÖbÙX†ì°@ãyˆí?cˆ1f§y}HÑ@õL•€82#Bøb€(™Ycp«èÀG^4­QL[gc‚¨;2NQ¾òÜ+ºÜ6yå¹cØÝѽA#wŒUÆ.·M^9lŒõ;ÅX%##Ǻ¿R~4ªøUÒ+/CD»Ó˜*•È(€>VƒJ•t„^½zñNÖS1j3k7´ÑB“6ëÍ$ÝJÙ‡6¦nH¶ãçL­qó†Œa_ØFX£lŸYF™\ynº;ŠÄ´âÔ¹Eu˜^<°û|Ú¹£õÔ<+¤t¾HQ% WŒ¨ê½8é‚_:ÑÚ¼—"Žd@îÖHÊÌuöÖØ­~*5iª#ÖÖHr.£-ãs\qÇ Œf@qrÓ±§‚¼e¥} NXG}±–ÁÒ…åâ@áµFIì”=YÞ˜¥5Q·ú©îX<¹]HF¹LT=XPç@2NX‡¢ŒÖ?Q¬Öìó eT|={L¬¯ØœŽú ]: Žø%Ë‚,–ºŽb}/!Ü‘ôÒÖ.áF"ZyÁ£iÉÛI¶FÕ‹mÖŸ;ªsÓñ‡æàŽú'"!F±ŽeÆqG–*£c-»#AKÄÔÕÕ™nâ^£ƒÔÇ\’ÔA4ÓÖ\ÖH›ê»õ.ˆêy’ÑXrÉM§=e¥óª’I 1‚X ¥â€/êêêz_^OD¯]1‚|ÞE¬]³ç5õo\2‚LnؼÖ(Q§­­Q ³¤ML;zjSÕËfP£:’ƒ2zJXë(c)‚ŽròÈëí¾’5t”@ ÄïH}L½—xÚ»UÏkê‰Hü_S=Y£ )mÍnÓ´µ‘Þiºc´ÂÆ¥µÔ} ýri„—ri#|ƒ¾èõ@j ¬|]Xðã†LÇ£¦F¦0áÆ ¯MR…³IRSÀC¼16%sm'Ž:Ö¤qÄæÐ£'k uOÇð,º¡žOÇ´MëÙy‚!½·.åÝtŸšG<ÈrŒy˜š'Õ­G*Wlj® ~5r/‹‚ˆ#üÄZ#B¹ßdf Ô™ëÌr…2míhš¤y´N%+"…mZž ¾k]1å­ œÜÑ%a-¬±DÓëÄâ‹9üuq@Ä‘DÕTþWZ’5†E³OR+xclX½&©ci1’Üj8tÂÁ~r^´¡–­Û4 :*Æ:Æ-‚ŽB7Bé8Ì%è(}ãt$?ü‚ècåïeI â'šÖH[FÉ<€áÏ)0ðÑq"=kktŸ<õÍ FZ;–QŸcãŽìe+šƒ“Ð:†¼ƒÊ(èV?µñKw̾JFX£õzñ^§ÖªY}Ì—fyw€ŠÐØØ(Çqë#-³a“AúCÓ%=¯©ë’Q¹Xc㈑Ý'O%¢î“§ÊÉðô1µFA×_L‘Äg]n›,š :¶)[K<ös¯HµÆ®¿˜bqVÃÝØ4Z1±'Ã._9ìònõS]~<0ÒõS‚±Ã”Îÿh´ø¯ÇÄzáYvU”WçpŽJE·nݺuëÖ¸‰¼»SC UÍRÕj*Þýé‡%¯M!7Q—Îa,ˆI%š¶ÖÅ%oŽ1ˆ;ÚYc°ç]îšÈk¼` cƒI9k£@£¿„u4Ê%—„uj¶Z1„Ñ%ï\Ë ëÌ.øÙ +v/Ó©jŒ þº•Gk$íY{²L~½1v„Ñ|=îD­‘6å¬I#Éëh$sÖÜÖØ­~j£mÚ]k™/ë›°ÖQÆQLÍã’’EùëÌ@Ä‘DÕ”ôWZ¬,J,¬‘"â|žîa^‡6†Ö|FGM\ b¢ÖDzt·FÙùÆl’'¬Q c³2èh=¢‘1èh¡ŒE:UI#èhA.ülô±¤÷2wq µ,:’d”‹;šî6A÷ÉSß1²˜AÇ/Jz^SÿFæ±CsD^á€tâj®Ÿž¼1:›w$íüþ¬Q"CÖXX£¤ûä©.á.ÚM%OsP£X¦5šAǨ2²à)è(”Ñn *5Ù»#`ùkw Ž &ðZ梅5†ÐÌ\gc‚ž×Ô['þ\¬‘ˆÞ3²ÇÄú†K´j½cщ5êKž¿RJ4I™$¬S•Ñ1èÈ7M 1F±:f‚Žì@]Àg‘LÇ£&ãù`ì{ô=´Qg«¤Y{²´F±a¯qõD´lü2©“`±FyÈÚa”¡NIÇÂõgçImÜejy6’ÊÕ5ߦ7ÇØ»£ûÔ<!Æ7ÆÚ‹c–SóˆukJz³.þœ5ÖúXüCó"Ž jd0ºÖHÚ†{EZ#mÔÇ#2î´FI@ø£é¸FuÜÑ.Ö¨ËÔiÜ=h :zÊMóö_øâ[—Œ² –8è(×9ßt=è£)ø òƒˆ£¿Ò²ÌDg?´Qç•´)ô˜e¸1hAtB.áÆ5JôãŽ.“MF=Ï1C­ˆ;&¥§“Úa©êrÛdkeÌ2è 1ZÇËÉ!îè)èòÅ ¯M*ß|àå ËÅÊuhŒ âÊJ.à h´åÀÇ,“ÔI¤†}X#mŠ;RZµK u4Fè>®1)îhÚ2×HAýÜ4/úýf¥Å@[¥0™¡ðE(¾ÖâJFîÓq‰ðžþÅݽ FŸ}FÕ/k¦îC“è5®~Ùˆ˜Ð£'kl »&§­ÝgÞ‘žg4ºew6&*­{îujýÂ#òšÇÈ{_Ž*™Œ@þZÄ”€‚ÔD×ÕÕøÃ÷õôÑÇÐF5ûŒª'¢¥ž£/©Ö(ˆ†½Z£Ä±Ô:ᎌz :z-ÍNâ­KFÉsÛcb}ØNs$Ùºc’øê¾”.è(”ñÅ"}Œâ JAdQ´F"Õú˜¥5¾6i„PFfè‘whc"ôØ­~ªcµ±îÈ5Ñw㈑=&Ö7°– w$ç¦iÐQ¹„á<úïo:Æ ™ƒñE»o:‚ŽÙ} Ï?(ŽQ£P\4Y”„¬1Ä‹ÓâõÑ÷ÐÆàVAk ²tJ¢>fcQ1“A¸1H°\†×eûŒîØ8‚AeSšƒ“ÎjÃöAGr®’‘M?¢.C/üMÍ“”¶þ¾—èÆ]± ’ >VìÐôAÄäOîÃÕ¨­‘¢E°FJÎ\ç’ÔÛëªú×­r vÖH¸£kÜØ>GÜQ¨’ãøB#Šh ²2Z'¬}LÍã©Þ¥÷åõˆ~åEhåëÚG~qT#~¥6¸"ÕCˆè#YÝ*ì\SaA‚¡G1I,?b¯«6nøú3w´¶F W\0d\‡šeì­b->ÍU+³ : e”“É»L¯“ïÔA7mÍb½ÆÕ/Ϭw¡]¸¤e}Ȩl<:ÊÓè|fãŽAe”äâŽ.â(ûþâË åí»ÈÈ ÛU…MM³¼;ªOã&ºuë&¾feù²ÙYã?¬ÿ‰‰{tÈlÊSÑ”0Z#íuUý^WÕ¿9f¤z[.k$¢^ãêƒ#çLQX#õ˜hÙxR³Ö *xë’Q¦Öè›Æ#ŽÆÕG?]½ÆÙ¯nMÏklF CŒ¦_dQ%cÑUQ%#‹K«¸Ìf|Æ@ R‘1Ž÷ßÿìÙ³¶Ùf›Œ=º}ûöšÛ®Zµê”SN9öØco¸á†¼£:”1¸ÂÂCøÃzY{| mLbé”rÔ#iÇy­Q¢òÈhYÜmÚŽÚƒušuDT(ËZ´àijžØ##ÙLÍJIÛù#(þÙPq¼ñƧM›Ö¦M›¾}û®\¹òX¾|ùŒ3Z·nºmSSÓå—_þÙgŸå}U ²(±³Fn >“:kO.ÖHYM÷˜ŠpGò° rÈwúî(KaXZÓì›Ë¶.î{ìšÊØk\ý²Ì?¢©U2IC]fØaœšú|Szq\¶lÙm·ÝÖ©S§9sætìØ‘ˆ&L˜0cÆŒ)S¦Œ;6uóßþö·Ï?ÿ|ÞQn ^m—5Jt&}ÔÇÝ%:Ó=z 7JÄkB¡GÇpc¬5 ŒÜÑ4(¨c{>L4iGw|ž‘0tôe Átôº$ µ;&*þ­ÌÅÒÇ\sÍ5³fÍš8qâgœ!žY¿~ýá‡Þ¢E‹… 6k¦Ĺ|ùò3Ï<³[·nÿûßO=õT®Tu-Ǹ > ˜Ý£¯¤@n+ƒ‚J°ÆÐ (N}[cYmíσÝK2»T²º®Å´Më*1p0x¼îy—98ÉAó­’1õE—b÷*™$r @ü‚C³ ôÇÅ‹7kÖì裖Ï4oÞü¨£Žš;wî’%Kúôé“´áºuëÆŒÓ¾}ûŸüä'çw^ÞÇQª”‰æE߉;úÈElæ:Kk¤@ÚÚ·5’FÜÑz¢"LhѦÝÐIŠXZ¯qõ˸')ÔA(ã^WÕ‹:úra·$`AÖ!¿Œ”»ªº©©©¡¡¡C‡:t>ß³gO"zçwÛþò—¿|ýõ×'Nœ¸ýöÛç}…&T-+£+‰uµÅ¾ŒÊ®žÂ’}FÕ¿1v„(eÍØ%½/·Ÿ[ÓŠ:kDz•hM´¨¶6Qý ë¤ ewzLL¯‚ò昑oŽ)Êç‰h¯«ì3æ.åÕ"am´‰ü P‘~Ú±€âkÀB¹#ŽkÖ¬Y¿~}»víBÏ·mÛ–ˆ>ú裤 _zé¥Ûo¿}èСGqÄ«¯¾š÷qŽÚ .º—Qk"]S³ìZàÛÁšk \¬ñõ Ã-½/¯-“ðXlÜ‘¥Ø9)toPsè$)ÓÁîAGÍ*et<‡áÎ{®’‘²ü¾,ÍGÊ-Žk×®%¢6mÚ„žßvÛm‰è“O>IÚj̘1»í¶ÛÈ‘Ì3¥•šÚ”E‰ï¡I›hf®³±ÆËÆ[-Ö(°pG£p£$䎌SäÛ£L–õ hT¬O#W+ã^WÕ¿žá'J’Z%#”Ñå›RF Àšr‹c»víêêêÖ¬Yz^L¯#âŽQ&Mšôî»ïÞ{ï½:óõT›—EIfÖ˜„Z3¶Æ¥SFì{ÙÆ _1¹Ó;&©C¹£5 ¤;f0±¢5IAÇŒK•“‚ŽšQFwd:ƆCì3ª¾’AG НåÇ-Z´mÛ6Y\½z5‰ÙyB<ÿüó÷Þ{ï~ô£ý÷ß?ïîç.A²´FõVE¨› Z#í{Yý+ãG†š°$©Cw¤´ ‹5 „;òZcÃ#x‹B¢î¨h )kÂÚGbš`ÐQÇk y#@èPúéxN=õÔ†††E‹k\®¼òÊx`æÌ™‡rHèõwß}÷ÿþïÿ&µ¶Ç{<üðÃŽ]*æt<Å .m ƒÌ bŒ¶zqÚ9eOfáÆ5yåç*9óaA^›”è:îÖ(ûÿú6wÖ(±Y9n’Ü&¸q,]ï>yªµ2¾>Áþ-sœš‡¬|qé”fØ1]ðZ>v¿§óêcÑ.øŒTøÐÔ”;âHD\¶lÙ‚ N:é$ñLSSÓSO=Õ¾}û<0úú.]ºÈW >ùä“… î¼óÎxàN;í”÷qRY,,b±WS¥Ë B)ëfŠ`¤ =ú¶FJN[3Z#‰D*ÇÀ 526Kq“Ù !*¦óíƒ&ÁªêŒ£Œ¾Ö҃׋„u jJ/Žßþö·§M›vóÍ70@ÔÄÜvÛm~øáðáÃ[¶l)^óùçŸðÁ-[¶Üu×]ûõëׯ_¿` ¯¾úêÂ… ûôéS™µª‘‰Ö¤®®î¡3nÏOA[^± yÐðú%SÌôѱ FÐÊÐ¨Ç ¬QuG^k¸K^ȹšåÅ:a-§6tY—9³‘ŽÑ£Ý·Ãz¤£'b}‘è#H¢ô©j"š>}ú¤I“vÙe—þýû¯\¹rÑ¢E½{÷ž>}ºœ¦gÞ¼y?þñ“ÒЯ¾úêgœQö•cJ\,Hx?h’çg$å娽ŒZ«ƒ†oÞjÉZúÈR“Ê+?ßô²G#k”ˆ[f‰õ>¬1Ø7k©Rœ Çœu°}—l¯ä‚ïƒ ššÒG‰èüóÏßqÇzè¡yóæuîÜyèС—]v™ˆ>V›ÉbшµF"O&E˨Մ¬‘ˆÄ?—ø‰&Y#Bd[ag$—jôid Œ 42ÂÞ¾~Ð1i•ޗ׿6ÁïQ›’:ŠqŸQõþBòžÈ&¾¨Å× H"ŽEÃwıìßÞÜ¥%YcˆPô1›¡r«8J¡GCˆ¸#Ù–GX'þDµÐÒ)Nî¨(Õê[u,3Ú¾{Б4⎠WŒPO/Z„ £Q¡tY‚ŽŽ¾Èt b€Ìý‚ï šš*Dk¹Ð´FÚ2úHV—ovk¤@è‘8o¹Xãæ¹ ÃN.Ö(ÙgTýRÛqršéu͸£Q,Ð4–©HûžO[g¥æÜƒŽ…Ò¹õ«d¢¾hw9ð‡6Ó:j‚á5"ŽüpE«*‹9þJÓ·Æ "ôH†îèÃCÈècŽÖ(Ÿ!½Ð££5†&'²ˆ;šÊTÇí2ÈšqÇÔÆ=u”Q’KÐQ.{í;´ ì#計/Zñt”¤êc…Ãr>45G~űì™hÌåЬ­qsåuZéŒ$k”,¹#‹‚IÔƒJFk”Gá{m›$ϳw¨#Žšóº£‘2J²tG¡Œ›£Ý?·ÿð!a­™.¸;’R+lW>45HUÓ«W/"âÅXÕàbqp·F $¯}\å­­ÑbÊr7*Ø÷²úW&$†}X#™ä¬­ ÀcóË.Õ*ê„ujuv¸)Ž„µ2 2HXË#ׇ6ß*™"Ô»ð‚ꙚâhŒPFw}„,–”C†NULú˜¥5J’>&Á˜¤±±à:¢ž¬Q ã޼ëh»×8'¹£ïêlyÍS¨vßPˆ1ľ—Õ¿’¹ÿ¹Lë(”Ñôqàë 8Ò1 –.¬ Ž–Øé#d1XÂAÔ³öd†7ÊjNÙãÏ%"ô\sÏŸ5 ÔîènAÏãr»¨;ÚµìtZ&N¯Ë×>‚Žjet'³ c0¾ht.‹; BHP10Æ‘>FÇ8"€$ãq!ìÖ}%mÒÇì“ÔI¢ä){|[cpZã<ùŽæ‹—N‰YŽ1Öøúû©+mŠùÌ[6ìTFyöƒŽ.ƒeÿ-²ÒÖ#Ég•LR>ÚeÀbÁG:Ʋ`Á‚]wݵ’÷>ŒqöÄF\,¾­‘œ£ìÖHÊ){2³F ¤­³±Fy°ÖÓô¨y}ÂÆù#Ù[Î>=½l|̉Íwa=7%«c. ë$RÇ/ºÄKt”kDòºJ4Ë»ÕaÙ²eË–-ú(~ˆHòîZ’59lð”§xqšXø°FÉAÃëÎ :vÖ(·Ýÿ"ËuM­Q²Ï¨zµâ 7 k‹¸cÑØëªÍG­`Ùø±Ö(Øg”Ó"Ô½/·<9¯O!6ô—˜NÂúÇ@è\½6i„øïÀÖ‹ÿ2>‚#n…È_WD™îYÌ,­ñùY#<…ˆÄÿéE½Z£DÖ\SæweaD´ÿEõ/O²/Úµ@ y$¦´²´ÆÍ3ç“-³4¨SeR°\ð ЖÓëØ}Js¬’L±Ö‚Ž_Wˆ#¨ ¹X£DG³±FÁAÃëŨG»qŠÖÙmañøeíL¨u¸‘5 ÜÝQSfǨˆ2ÆZ&U2y…ãÙP:ƒAÊŒƒ‹ewGBñuù8‚ª‘¯5J¤>Æ.á2ùŽ)AÝ\b"‚\Ö(¡ÇT)q·F9šÓt9ıÖ(pqÇh³\QÌhÐ1û@£Úe.;ö£µïeõ: e ~—d;¬Xº°¤`Œ#¨uuu[±[£ÄbàcváÆè”=¯ü|„¨wVÃn1äQ1ŽÑ‰hßËì‡$*¬Ñ…¤f¹FO;Š@£éQ8ŽtTøëFì{Y½ø/éeÂív±ïeöÕ.2Bü'†³œáŽohw…ô †?–DAu¨««ë÷Ÿ“‰hᬑ´©Þ9Ö(e®³LRÇnµ±æZé….1©(ÒÖ¼Ö(M*©‰Ž5Z„ ÕÍòÆÉ!ÐÈ›°.NV:å#Ki“êI 삎 ¢%â*‚´F"Ò×GëjS‚úh £5J^¿äçñ·s÷2jWFÓÖ>¬Q`êŽú±F}ÕËlP£ [a¨2æž°ÖñÅ Öî˜}• d¤c,ÐÇRqU h‹è£&úáÆ ‹îµQï“R`g:ÈÐ#q”µ’‰5 ‚ÕÖþ¬Q ïަjwôa¢I;ÚüVºù“û´ŽÁΔ™°Îr²5Fî(SÛâJXdw$_žBzJJtå„}¶ýXk ±ð÷c(¢¾“ÔA¤5ŸI½?Y[£é†KîØTMâgh£š—oökÁNr^´ŠrÓ6­©;: .KªÈž˜º£¹q@ÂÍN¿C\¶µ®’¶¶Æ%wä°$ŒbÃà8Èè¥/³[¿û¿°H¬@)ѱFŠ‹>ækDtØà)êÐcfÖHÊ̵ŽÖxàë_t鯈£Ž;ºTÃ$E íÚ4;daPÝqIXk›’öãO‚7a .ÆrÈЩ:Aþºh@A‰Ñ´F‰còšÑŠÌu–Ö(ésÞÔ¿ZÍõèî ÖîhºŽb’;º×PGmÏS]v´çIgÀ}ÀŸfÂ:I÷¿¨þeÏògwàŠ”´˜÷ÔrÂÔüªdt|1H¹Ü‘ EâÊŠ©5é÷Ÿ“Mõ‘Ý%“pÑÍ>çM¥MîHÚá+GkáFñØÂíVߎº#»á¹—Âh¤´wÊ·;òFc:ÏZ%cZõbJöU2´I³)òËèc€8‚Rbm ?Flh}ôg’ >’ÕÍÝâ±Nè‘ÑÂIO¹ì¬QtGFk¶§ÙÍÖ‰õ|sӚʘWÐ1ˆM•t±Ö¡øâó³FZì±tAG ô1_Jù¡)8(ŽQã> ØÝ£ÏS²>f`¡ É\¹¬1È_;’”-÷¡I}qZŠÌ¹Xc°ÿÄ=mÍRmñÕo0äŽ#y«d,¢Œ9VÉm|Ñå;å©J&)m=­XU2¾+Hr,¾Fq å€ÝI}ÌÞ³œ²Ga”zôg”–¶f±F,²ñ¸\j}ÔØ¹–ãóš˜VuÞЃkÏd?·{Â:uüâ!C§Ú¹cyƒŽ¬|=GP&|X£$¶ò:k$ÖI¨­Q;êÑ«5 ’Ü‘Ë_ù9³äIk$‡ZŸ(2a{éôk“ìßôÌÖÑ£õϪ\ÖAŒê]jÙÈ_gÄ”¯Ö( ê£ÿÙ‘4e¥éc÷¶Pè1k y4BZ#1I^ÐÙîèh]ÖAG‘|ß(Ù7ç㎩AGbŒ]c3{ÿs©°6­A qå k a;´ 7ª·’ú½ùyJRÇ"CÙX£ äÚ[”ã2‘dô¸¸‚ŽÁ¹©±pG¯BÌ‚Ë(ÆT2“N)‹¿ì÷²‹ÖxÐQ}ôJ¥>+Å1j,gl ?æ¨'‰ÇOÏ»œ´C>¬1ôJ Ü#³´FÁ_;RÜœ,Üуˆ;«k îÂb‰Úd·\m†Ú—¿8Gš5û“th/Ns-¥g©’Q„cqñ?U2!_”؉£ h…2¹Wø«žÉýÐòâÈÄQé—-Gk”èè£ok n"äbⱘþC_ ­‘˜ÄQar/úž§³vÇhûÙ¸£Ž »D]ÁÔƒä2©~¬;&ùbkw„8*zB¬úXœCˈ#?G5F_¶ºº:Ú4îÐFk”(ô13k”’í½ÓÝ%š¡Gk+×Ô¶ Õå¾4g‘Ô?(SwT¨›WwLUFه샎.Ê(È=è¨ã‹AªáŽE³+F},Ú¡eÆ8‚âRWWwì1×Ñüß!}ôaD$þúô}£hËKöÖxÄ™7ѳ†5×¼ÖHbL•Cµ„&ÒiÓšÚvÚÁ8VÏëÈ¿\†j*£àÀÖgY%#”Q~tÿZª*iQ%#gYlgGõ;FÁðGw*þÉDÕhþJ“Ö(™ÿ䕤¡ž¬1„Œ>æe’gMúhm”,ŽuÚÚ}hclIé¬~F}PíÄŽ1Ét´>"ß ë2JþúÛ‘¹$-¦å¬•±AÇ"‡åõ±È‡æˆ#?G5:_¶¨5JÔú˜5JŒJg$ŒÖ(yöÑŠ»š?k”Ħ­}X£<"ÒòhkLò<—p`ª’vÌËÅëYc<%¬eÇk9aõEë¯<•ß‹oWÖúXüCóRÕ p(¬‘ˆÉëì­Q&¯3HB)¬‘ˆŽ8ó†¤ÌuÖH›ÒÖ=ú³Fy˜©ikë uìd:ŽIdÅ=Ù§§…œ¹wÂ:)Ä¢ÏyS ˜°VÄ­S¹P ë Áä5!­Ä µ5J¢ú˜—5ÑQ'NŠ|LÂ:µ­°FAìÀÇl¬Q°q¹›GìQ½Wk”¨‡<:Žk zžQ8P³M‰…5øÃúm'ÓN|h=I5;šÊ˜/±ÒéžVsØà)‹lgg´:Š‘'5–.Ô§†~UdRÕj’Âû¢€ZÇChŽ}ŒÂb¡ç)mŠ OÖBf®Ù btx~ÖÈ ¬Q;ä‘«FTÂ2ÚU0aíè£ ëW~ã=Žo–cÂZ<°ø”æ›°¶ðE—1*¾§u”¾(/¤ ?†EJšÏÕÑÇ’š;G~ Žjb¿lšÆ(Â=æ:S}d·Æà (îv’™5 DÑL.Ö(Bd¥D¦Ö(¹#c 5»8Ò&wdIOë»cÒ +ŽâH¶î袌’ìÝÑ1¾˜½;ªÅ1ê‹AXܱÔv¥ÖÇRš HUƒüq±F¹¡ÑÄ=þ¬‘fíÉe„ÓgÞðìoG’á½ÙÝI¦­ 3¡vÖH[æ¬y­qã:ݬ)]‘°Î,G¬^”ÏeUe;„2nžLþ·# ž¡¦ˆ/ÊIø3ƒ7a­öE ÁÜ=± âÈ"ŽjB¿ÒX¬1ú'RV^û³Æè&â{µšgÜðÙFkÞ›Y¬1ô¤~¥°cÉ‚¸»³[£<3Œ¹ï>çMelPtŒæ¦cÉ&aRFÉó³ìÝÑwÐQ|¨¸Žº|7ƒÿ4ÊÌ8JBeÂrQ}¬Ì¡™qäâ¨&øeóaÁ×P\åufÖ(7$+qä²Fù$¥…Ù­Qþ‰Ò|Î݉UCÖ(Ï{VדŒÆŽò$“¥œ½&¬“”Qà"ŽäÇSSÒŽ3ìdæŽîÁEGw¬˜]‹¯+vhú U rë5RBåuöÖ˜´ÞŒ^k$Ysœôd¤‘¶æ²F»üxlbÏRŸó¦ºä¬“šeÇHþÖje2tjAÖúCs™aG?a[ìbçŽýþsrMÍΣ&T|]›àÓÀ"Žjį4ßÖÝŠ6>4ÅÝƒÏÆ=‰ÝC¯¡HèÑŸ5†^U^kTìHµÞYÇ“še:jæ¦caLXËÚýÏUŽ kù8ËÉü}S‹]ìÜÑ%èXá°\…M Ä‘ˆcÁŸhÇý΢;k”Zè#£5ÿDʘ?k ¾˜6éc6Ö(_Ol²k”;²«éNuSÕ“ƒ¹TïÈå|²$¬Å‹OT. ë¤!Œš$a­ŸÎÞ+lW>45HU¿eQÉa²FÇ åÆäõ¼ËIO}X#%”] ²±FÒÈ\ë`1½0W6YkbG5Ý:gÃ(a­Ó¦c\îH΂dcÂZX£õ,Ö2ʸñ‹`ëpù&¬³,ŽFÂH*ò9¸ÿþûgÏžÝÐаÍ6Û 0`ôèÑíÛ·W¼~íÚµ÷Ýwßœ9sÞ}÷Ýí¶Û®gÏžçŸþ‘GÉÒD)aù¦ºººãý_"úÓs?% ´4*¶M>z²Æè‹ƒSödc¡mÉöfo½.mŠ‘¸—Q«; wL FÑ êjt :uíùYö[‰EÜ1ÔëOyNX‡|1ȳŒÎ%vhW6'Xdz :V8,WáCSS…ˆã7Þ8mÚ´6mÚôíÛwåÊ•<ðÀòåËg̘ѺuëØ×¯[·î¼óÎ{饗ڶm{øá‡ñÅÏ=÷ÜÂ… /¹ä’ /¼0ï£)1¡àbè¯Ò‰h£>ê]ÒÓŠöÕÑÇl¬‘ËRÜÍLGkÜX6dµ4™‹¸“j¤w´«YI 5ktÆ-Ž×ÏBÌŠЖ?<ìVºcA±†µPFëoŠ'ô–Á™#7¦,6MõeJ¿ÿœlçŽ:Aé?Ë–-;í´ÓvÜqÇ9sætìØ‘ˆ&L˜0cÆŒ¡C‡Ž;6v“{î¹güøñ|ðwÞ)ärùòåC‡ýôÓOxà½öÚ˱K5qTË¢$h!ÔÑGÇAú/¦€>ffÁ Å‹¥Ý­Q°ð÷cH;ôèU N¤l74ͨêBQÐí8®.¶Ü‡l×ÐÓwGE^Ø=î¨tTw  AGEˆ1JƒŽÒ“Ö8Í8èHæqÇ ‡å*|hjJ/Ž×\sͬY³&NœxÆgˆgÖ¯_øá‡·hÑbáÂ…Íš5‹nò½ï}ï¹çž{ðÁ÷Þ{oùäo~ó›ë¯¿~ôèÑÇwìR-ˆcl&:1¨1É%±ú˜5·r,¾©é‚ŒÖ(Yøû1©·|.k”,ºo”éâÔñÑXÃsQ²=&%hŒ¬×„µÎXÆ|ÝQ>¶ø%VwTûbâ»c…íªÂ‡¦¦ô©êÅ‹7kÖì裖Ï4oÞü¨£Žš;wî’%Kúôéݤ±±±M›6Ak$¢=ö؃ˆÞy缨¸hƒ(!¢É댭‘ ^ۭ⛓Pz³ê°[#‰4Ö¬‘¤œ«™×I$ì´¬ÖH›rÖ´eA7KF0ËœÁL:Òæ/a­_þ’WÂZXcÑRÒjdÂZßݱNXPnqljjjhhèСC‡‚Ï÷ìÙ“ˆÞyçXq¼õÖ[[´ø«¯¾JD»í¶[ÞÇT,,dQ¢o£±±p ˆœoXà¤<êÄIO?0š’Q õèÚîhg‚`A·ÃciS=ØQh ¬£;†*¬+¦M1­°–QÆUÒ¶_#μ!û ká‹‹îeq9êÄIO;ÌìÁŽÀ‚r¿÷ŸþùAÔ£G?üáÁçï»ï¾Ÿþô§cÆŒ6l˜N;‹-ºð ¿þúëùóçï°Ã޽ª@ªZ?„…5 DÎúøCÿ×´òš¸ƒ”:“>>­=³Oì¶:y(Šè£Wk õèÏ%ê!.Öê ¯5 kal3š°¶ó6–ÁŽâAöu÷¤÷N%…¿&$¬CñEëߟTì„u…ó¹>45åŽ8®]»–ˆÚ´iz~Ûm·%¢O>ù$µ…õë×ß}÷Ý“'O^¿~ýÔ©SÝ­±¼¸ƒhjŒåOÏýÔ®òš<¤¶S'}t¼Ðël+3×äJ!Ck¤-CX#mšÕ26ôÈh‡ ž²ˆo¾À¿þvS¡_›¡¸£~ ‘a.»ö—°…£qæ ._$å£:q’Ë%Åë £øU j“r‹c»víêêêÖ¬Yzþ³Ï>#¢¶mÛª7î¹çÆÿæ›ovîÜùºë®;âˆ#ò> ¬á’E‰u ‘¶´F‰¦>ú™¤X£$ª˜Z£DŽz´FÓ%Ñ´5¯5n܇çIkdl3Ôڶ ë%wŒØ(ÄùÍ»›°Î`£„µÎøEkwÌ,a-}Q\‘°®MJÿ®zè¡[mµÕ‚ ‚OÞ~ûíS¦L™2eÊ)§œ»ÕW_}uà 7Ìœ9³U«VÇ6lXÒ¤?Uíž‰Ž…Ý£¯¡¸ÊkÊj@¤L^giÁ Å‹[¦µ5R ™¥SpÅÔ%²ÔšÝƒ»p¬€ŽõÆX&×›­Ó–k©×GÖé€{Â:5ÄKî kÓz—b&¬C¾dþ“Wª-¢ÂùÜ ššrG‰¨S§N «W¯Þ~ûíå“BŒ:uê»É† FŽùØcwÜqãÆ³?VöàbÇô´æ¶Œ•×vÛ£v¸XãÑ'\/ÿÙ0ôÈb¤QpÅÚiSÜÑhwžzEHLlƒ,qGÙ~ÆÑ>Ç…›“pOXÿõ·#í‹]ò(”¡MÊhú}wù]jwŒ :“ÑŠKå±Ç\‡¸c­Qzq8pà²eË,XpÒI'‰gšššžzê©öíÛx౛̜9ó±Ç;çœsÆ—w÷ýâU%¾!Ü+¯É-µ=°ßµDô„aYŒc´F"ÿ¬w;ä²FÑ23\®æ¯"VÉ‹ 4º7Û>‹;ê$¬Õʘ½Â Ä{'´&ã]ÛŒ/:ù_~ƒÁÅ$àŽµFéßìU«V 8°k×®÷ß¿¨‰¹õÖ[ëëë‡>zôhñšÏ?ÿüƒ>hٲ宻îÚÔÔt '|üñÇ .lÕª•.囪ÎF%"ÖHVáF k mkWymºIp[a’'^Mz“ôº¤Ÿ‚ÖäÏý„”¡G^k ý5uþgGk ®Üý죭«zuJ¹¦}Ñ\ Înåг7ÇL±<еø4*›„õó›ÆÔ†V6rI:{MX'壳_ƒŠlÖ¾D‘°®p>·Â‡¦¦ôâHDÓ§OŸ4iÒ.»ìÒ¿ÿ•+W.Z´¨wïÞÓ§Oo×®xÁ¼yó~üãï±Ç?üð|пÿÖ­[wïÞ=ÚÔé§Ÿ>tèPÇþä"Žž†-*Êø­}¯ÿ|ô•kÉDÝ­1øOò\yMqÖ(ybáÕŠ«¼'k”$é£?k”¯¡äç­QŽÅd4ú£èxž¦5µ©Ó8‹8RÄ-Ó¾ÝQ†£rGòæŽê|t.ƒ¡ÉÄC¾èx…ŒÕ‰ ÛU…MMéSÕDtþùçï¸ãŽ=ôмyó:wî°q¸|.þ瘰¶¼èrÍ„8Vž*¤ª«J‚‹AR!‚ÉkïùzB;Ékâ+…Ñd`¿k…;Ú]ô­qcæÚ*phmîˆXŽÎM]³v y†òËîÖH 9k—(¦ÂÒäâCÙìTÝûÙª³JX‡|ñi‡y¸¬±NX‹Þ.üýë¼³;"a] à æÇ%âX4Y£ˆÐ#åQy-›^­­‘ˆžXxµÜV³ìZÂbòŸd’t±Æ…¿¼¹šúN 1„¸©³¯”ý3Ns‰](èèÒ²E´ïùY#£•FÙƒYi÷Ï›¿„µ"¾˜c±‹þüáâA.3Ý·•jQá°\…M Äј^½z‘B -ı ™èXL!}åÚ¼*¯O8hó<-OÚúÈeÁ'u®ûÖÖ(1v[}䲯àU»H€ÔÞ)¾9ÌüœÔ \þ$3i Cd鎱Y麣PFõWµ€î …²ïvwÇ ÛU…M ÄÑ…>jŠc1ƒ‹!\¬QhbtsM}d´F‰Ž>²[£ü)§í óK%hLzMÒMšÝåi|8¦…;2Z£Hš‹¨»;2vRg^›ÔКowTdtSË%ަCó°ýy&ø.vqtÇ ÛU…M ÄщX}Tˆc)dQàžžv©¼&Û‘”l…>Z[£ðÂÔmcõ‘1=­~%±F}Ä {õ–¤Œ®¹[£À]€‚] M:ÍÛ2Wƒ cÓQF®ó–Ú ß¡nw”Me.ß £¾/ÉÅç?yåŠ+¨ð7;k ŽÀž>†Ä±D²(ñhT¼˜±òšˆÔÖ( é£]µ@hLz=FÜg`ÁMä­ÚÑõÃ3±vÂb2·h”O"dòHÝíŠ åÕ£ÃSO »;•KgïŽ.Ê(ÉÞí|1ˆ‹ÿ¹ìôé§ŸÞu×]Ërï3â\ú(X¶lY‘‡-*ðhLÚŠˆÄ‚þ±<¶d¼¨ô‘žNÝlÓÓderCñ kDC\Ö솣;ÆZ£<^—Z2*ñ$½@c.w4‘1x6²IX e Ü‹SìbQ_(‹„5•ín˜ ݱ`Á‚’þÀª««ûè‘7§¹>ÚY£ÜV<°ž²ÇÂ"ô˜M¬1ºí ¯¶ð?kk”›“Ã\Ö¼„ ø°ÆÐ.LQX£ºhî(}QqÝ–î(¨FâØ(—8Æ*c¡”ì….ƤÍõ+¯¡Íõõ‘˃O’†>:ZclC8šãʹ,⨰F¹M J 4FÏ€f©8»‰Æî…6I‹‹[wh¨@^îÇhJZMîîh1~±î¨ã‹ABîHå×Gˆ#`£Dâ(sÓ:DîFõæj}t´FŶj}Ô, ¶ÛV­ìÖ(Ð =²XãÆUm6­©mÑHª5Ê}QÚt‰¦Ö(Ïc³ÖpŠH[fîÝ{°9º£|l7ö#—åŃ\jV\VaØ-èUŽòêcÍŠ#–¬QRQ6Üd{>!‚‹†.Rþ¬‘6…!‹“<ö@cñ‚'âÑ“5’Ì\ÿ~ %è#£5Ò¦ûúŸÍŽÓ´F’ëÉó&ÚY£8? šµê§h-‰E÷Šž„£Nœô´óB|GœyóÊÎ(”1_¤5º üÍ é‹bˆ³µüY¯ hA0¸èR‹p¯òêc ‚ˆ#?Å8£¤&¯ÕØÅ)ƒ•×Ä1¨Qÿõ$}γ5†^O¡?k Í\óZc¨cF%±v“˜DMÈÚƒç$Ô¬K›úpJ›8ÓÓ`G}eÌ2èõEǯ‰× cЃϻ¸cfÅ.Ñßí.Ó_(¬£\úX³Gˆ#?EG‹@cˆGÞœ"7·(¾vS’­5Æj4Ú6¯){ÈmÖ»y4ÄýÛŸ5Êî‘FÚÚÎeB39Z#ETϱMqŒ 4F”=ameÌÀ…2òFåÉ;&ùb¢¹£f±‹'w¤ò_C…G–@c´M}di¡¦ÆØÍíôÑ1N)‚¬ÖS6ºÜTÈ-/©¿Ž¢"ô¨³|°NO<ÅqÖ˜Âö¸ÚT¸£‘º1º£KbÚ“;ꤤ âŽ:¾$ww´¼èÕ@BGÞ@cÒ (Êkt±Æhœò±%ãõEÐÝÅc‘ 7º#ºX#n$Öê`ÚÛØU¸FÔ9ªL,Ž“ÈD[‹Íª[,ˆçž°&çß ¼â˜bŒ%Ç„µ|lñ­ÏÅM+£CdàŽT`}„86 %Ž,ʨßB¬>z-£Që£Kzš’S'ôèR|M[Z£DSƒ“5ÚštÃÂ]ì*[C“ª0ZãÑ'\\nÑ…¿ã£M鎎?ë¢u"ÇååuwG몗ŒÝÑQ.âH†îÈXì’;R!õâØ(Ž8ÖÕÕýÇ7/%¢GÞ¾‰¬ô15И´mª¼&Ÿóõ„^”Ñ==­~%Ü'\”`uæš%ÐjÁÈWß&QÞËm²}–´2mYÁëŽâ»·™.ZM|ËñÉ>8N¯ã˜tö펱ùhÇ$CéŠ]77rG*˜>BEÇÆo^|ÒHв\ö:¨¼ééÔ3Þ9HoæsJ(ð´ÐòèbÁ£ða²qÇHXìig:ISÞè‹£bºììÝQz³x—ýbî©Çž:~±Pî¨9xÑQþ½ÓÔC ¢GÀF¾â«ŒARõ‘K­—½f‰Sf6_ÜŠ6MÌÆ›žVÒGÖ|z:kÔ±¬R“äCÖët+æfwŸâ‡˜ÒÄò è,âìoE>2GqøÑPwq‚ŽFõ.¹»£ÅàżÜÑB¹_C9Š£ÌM§’¤v¹éàæäPyM"ÿcÏŸÑ#¿žÌõÑ=»M‹ÊXO² •zd´F¹#—2…T²ˆ„ñ¶jŸ7M,σ¢\]³àÝkÐ1bŒ’»;šÖGKrqÇ|‹]L·•×."rQ‘¼GÀF.â˜hŒ%¨,FÇÊkr4RÀ7ïQ[ÝËh(%·¸Ç8æzÈA-J2CVçn±=vî¨Ù}ÏS­Û 6N £<¹c–K9Ë>DOKlˆ1–\ÜQ| )Ù[åæÅ.ò”WìPs˜ ´€­£d¯GÀFÆâh§ŒA„>’ƒ5¡òšˆBÖ¸yiúÈ^Fczt·F±¹>:Nä!B2îÖè8¶RbÔÏÓ·Fý65gwGSeäêIHõ•Q’Ù`Ǩ/f¹^Th[ýb—èå«hî(}Q=E†»d©GÀFfâ讌$ƒŽÅ׎•×Ä—žNÙc‚>ú+¾NÕGÍR˜$þ”°Š·QÒÙ½ÛŸ5w¤¹¤›Å¼-Ižg]Ø«é£:³¸£L¶æ536m9aÅG.ƒ £PFöIØÝ1Xì¢þ1œc¡thZÒN%±¸#e¥GÀF6â¨?œ1‰ 2Æ<¯á‚E¨¼¦ä@cüÿ~½¼Ú2¦§S_½ypcÿDi·g—Õ&d r o²•ý‚u9±žghÔiÓ®q.c˱Ú]öÁñWŠwÔII»'ÝÝQ\L"/wLJFkÂåŽä_!Ž€ ßâÈ•›V· S|cå5icvý÷÷¯³òÞ¯ÈÖyû&ý cõÑSQå5ÃûrsGë춨›ÉÀƒ/ŽVœ°[£ÀÈí&Šº#K57mR=÷y§C Ÿ±öQSc éZðìe掊>äåŽRÉvIÀÌÖ!_tœ•6›b—ØUa âŽö$İáC¥2Ÿ4ÕG@£jÃî£x§xT¼@=€Ú]e ¦³ö°d·Éa² ‹mƒ¡GÖ(ÐI[;®ˆ,—á²FÙ1ÆÖ(àŽ,ë è›âÜúvÇÔ¬4Ë'0—*iòøb¡ÜQ?]4w$V}„86xÅ1Vƒè裵2Æ4âs¾žà+)®òšœ±›kê£{<"q,¦™ §ì¡MƦ9û±b¢lGov†×ÅÄãìîÈÕÏTwL òa9ÀØžèì]ö!³ £ôÅ`¹FÑÜQ'í~ñqwGÓJAÝ‘˜ôâØàÇTe ’¤œÊèVym½•1ÃhT¼FQ"Íe}}d±Fõä;¦¹6öC±UK(ÊèŽÒZLåIÚï,{ÐÑhï²^Ý1ê‹A ⎦ãórG;_ RLw$g}„86ÜÅÑHƒ„ôÑh8c|ƒ…©¼öhLz1my)gIO«“ïê º»57·=šZ£ ”¶æµF¹ “q…å<ɨ£´±ô'¸ªŠõOî(”Qgd^Ž3{‹vK›fãŽÑd´û¤iÅtGr¨ž86\ÄÑZƒ}¤òW^[°ÓG@£bÃç#Ð%)ôh7¨1ÔBRÐE?@åx›ë/³[c°}»ÖÔ;að.»jßQÚXÐeï²\î¨1Æ’±;}ÑqÀ¢?wT+ìŽÓ$İa-ŽuuuŽÊH2èX‰ÊëÄfõDÐ(ИÔ¹ÅMÑ–ƒ±\”1µÍé]¬‘÷KwÉ äù™-&¸Ñ9v»" OË.u^‹þ„fɶ^RYvÀ}ЭÀâ›’MÂ:6¾èoÑmÅ.©×«¼ÜQ\³Ñ}}„86,Ä‘1И{å5±“þJJ}´4ƶ`¡©éiâIÎFÍ’Bú¥0 ‚éÇ8c;£î‰Ñ$äF³Ž›Öaø®MáŠö™ö'ia•¼ÜQZ£ã×Ä“;¦æ£swGëiº‡¿¥)pgÉÌXtôâØ0G¡Œäf±Êó‚’T^k¶¤,ÆØfõǰ»ü('«šë v3÷ïßîFŠ›äÜÎõ;£z´˜u\G­<ÉhhÄíÓïŒb->–ž¹cÔÝG3º£ÑøÅ\ÜQΖcÒ9uù8vºß,¥E­GÀ†¦8 eüÖ7þ[üóÑÝNæú˜ªŒÑSÄ+Pyœ—Ñ_ñµNèÑÑÅESŽF'«Y­k'å\>¬Qî…L¢e,ÕÜë ¯Ú®,šµË³GûR;“ªŒ\ÝÐqG¡ŒIª|ÝQ>65¹ÌÜ1ê‹ùXLšb‚4n»#%ë#İ¡Gb”ÊD_”1~ÛM’—{å51-`H™_'é£KzZ ¸žê×Bº'¸Y5¦Ö‰kŠ‚]57ûL@Š^ëL«cŽX¬wÔTFÆn$¹£fJ:wt\PàÕÕñÅÜÝQ\T½;R\ñ5İ‘$Ž¡£µ>º(cL;ÎÖè^yMLÙmë‰{,ÆD†ô‘1ШxAj¥‹»5Š’O—jS}ÇU/pâ^Ê-ÿÉRÓ²+÷ ÍÉ3ø;cªŒŒÝº£ÅÆÌÜ1ê‹9XŒÝ\?‹;êä⎀„86¢â¨¯ŒA¢úȬŒ;]Húh”àNÒGe4¼9ÅT­ã”rÍël.¾I3>²Ô_G§®´˜pÄql¥€+W.¦"¦:ÚÒ®Š#,KŒvÊÞ !ŽŠ”t*._„TqTÇó-v¿÷ä3™»mõEǨAŽîHV¾.G~‚âh§ŒA„> x•1æy# t®¼&oe4š¡G®âku µË”=äÁ%F¡GSk î=gr·FÙ%â³Æ`ÙM4HìpFƒu\þ[TÚºTÈ·Jš=訟®Íbõæ:Éh—ðAîîq<qtWF ‹;êD+Sõ± •פw­Që#{ñõ#¿ÞB§ì!¦ôtÒ tB:ƒS»!BM\ÊH‘u™(Äü'¯ôÑfhk»“`gl¡ðž»8Zô$Ú‡"¸£ÝøÅì‹]‚uÅqGÓd´£;RVS<†€86zõêõÆo¸+£ôÅ`SÅצ nŲ׎ÊlÄZMC•Q}äå1ú¼æR1ùNÙCÉÆ(ŠÐ£u 1ÚÞ@c((Ë2ý8o›¡Æ‰£,Ét^›Ø¹ 3놢y¹£œÝ0Ç•]tŠ]b/_¹»£|lwa/ÝGˆcÍqÿý÷Ïž=»¡¡a›m¶0`ÀèÑ£Û·oÏÒ²Gr7 ;Tl®©Œ•×Ä:_OøIí_¥ú/ŽßvÏŸxšå1ôJ«tq·F—){Èı¡GFk”ƒ´§íÂ%“ËÞf¨}÷—‡ï2¯<.¯î¨“•ÎØCK§<úʵÅ,vÑ~“±;ƒ‹îòW.w„8Ö7Þxã´iÓÚ´iÓ§OŸ•+W¾õÖ[ûí·ßŒ3Z·níÞ¸ãh‘­NUÆè‹c½°h•פ“W^2XÊhÄÇRý)¢.éiE ¦Söm@E†ÝÓÓIñWÓmáy:Žå¾hžLûvGýºOîhTø’;*–ÚËÑ£Å.¦Õ~¸cR2º¦ÜâXC,[¶ì´ÓNÛqÇç̙ӱcG"š0aÂŒ3†:vìX÷öCUÕšúh¤ŒÑ CÅ׫¼&Ö1‘v³öØ…*ƒúÈhLú«ÎÒåvH›‚ŒÆØ]XtëôÊÈó’.mvØŸ;Z”*3º£uá‹?wʘº„IŽÅ.Žci|¸£f2:{w”AA–ËBk…k®¹fÖ¬Y'N<ãŒ3Ä3ëׯ?üðÃ[´h±páÂfÍš9¶;£B­•1ÚˆÀÇš×d¨©¼V4¢¯\c"½Nô|™âféh´iÆJIUÀR”#1ʘëÏ=ÎÛf¨}Å{Ä뎎³Ûd0¼ºî3„F¦Šú3ÈäXìRw´˜v1wÜœDŠŒ€ÊFl Ž5Ä©§žº|ùògžy¦C‡òÉQ£FÍ;÷î»ïîÓ§cûŠ•cb—¬Xå51®FãGc^“|fi})g™²‡ÜÖ· ÈÒ8 ¯L =ÚyIêÜãv¥ãŽ:ÇèŽ'‡«3bï"åšc•4d‘¬~¼yuÇÔb—|Ýqcßl‡•{rÇ$_Üâ5™¸#ıVhjjÚ{ï½Û·oÿÌ3ÏŸ¿í¶Û¦Nzýõן~ú鎻H]«Z½ê ¬¼&¾1‘.úhtÙŠÕGÅסGë· 2{ÑÄ¢(ÇGAw¬ç¹çHÃGõgY=Ù]Ú,:;‹M^îh_LÂÅcÅѨØ%cw,T±Kh|ÑÆŽig½|ë ıVøüóÏ:è =züá>ß}÷ýô§?3f̰aÃw‘*ŽljQy؈m‚;¨^‹¯5õ‘«’ÆŸ5÷¢Yˆ`7ê+vZf–@TpîqÇJZpÙ",j½z2£´é÷$ºë »ch#Ëðbww´¿˜;*/æîŽ{eug÷’q¬>üðÃ#yòˆc­°nݺ}öÙ§G?üpðùì#ŽAr©¼&Ö2}Ô¿4(ô‘k¾Y—cw¥6½ÄG¯éîFÑH4ónzçScwJ ó9»G=‰µ ;Ø7m:®¹l*ÕS½ÍSÂÚtm’ÎØC¾è.\îXÌbEpÑ=åÉ!Ž5Ä¡‡ºÕV[-X° øäí·ß>eÊ”)S¦œrÊ)Ží[ˆ£@1ö±’•×d{Eé#û|=[4«}±¶É>e%µ'½Û¼~ 1¶Áåã4÷¨Ù%b•º_‹F‚SWZßVµIºÿ9Z£ì ñÅ]VÊ ¡P÷ò#£ÄíséOÐÕ§§aé9q¹£ÅøÅ Ü1ä‹[ü‰cHËõ–œãÅqGˆc ±jÕªvíÚõþûïßvÛm‰èÖ[o­¯¯>|øèÑ£ÝÛçG‹>êD+}_‡ôÑ}¤3Å©§…>Z¯Oš^‡%ÐÍ’[ .´X ‡ â’žŽv†kÍ_RÖY”*{ªáP¬‚ÃèŽÄ1§Ky² cwŒ 1ºËχ™Œ„ÖÜ\á‹[¼ÌylþÅ36í.Ö›Ë<‹ù@k‹éÓ§Oš4i—]véß¿ÿÊ•+-ZÔ»wïéÓ§·k×νq^q˜ê£i‚Û÷²×¢ò\|­©, —‡ÃhLÚ‹f9³ãMHäU¹±ÑA»ñp:Óˆ°¯Ðm§V^kS¤9qEp5—R$¥µgàŽ©}ÈØƒ¾˜{±‹¬¹‘Oúþ嬿yjp1cwÜ<®iÓì‘÷~å.?Çšcîܹ=ôÐßþö·Î;rÈ!—]v™ˆ>ºãC:úè2&2¤,ÊlDZòZs[uå51‰8ŽU×t\ÅÓ¥ÁžÇðJbò £Ø§º5Ë·ýÉhh/Áñ¸£Î:Î,Iê†þ(ÆlÜ1)¾X„b—‚LÐMæst»»£zGR)9&âè?GÀ†?q$¢ uÔQä­òšl‡?Æ«ž¹T^ÇàžDSäæ9b‹‰Í¢‘²ü*ð_Çuæ‘·o2ªJ±Z.S 1v•E‹á•úÑAR..bº÷Pã!r/ëVØ•×Éh|§‰Cýq©SfqGùØ®¼îh:~1ßbÊiqGeÜÜßô;cxÏw";‚86¸ÄQú¢”Å(\•×”`Ÿ¾—½Vè#ã†äü£<µ'©¡Ge ÷„5ÐûW}äR –A–Áå¹ÉÈÀ &£É,M,û£³;OqTÆ`XZì¦bͱ؅²rÇ$Yô8ÔÜjsœGá[¸Ä°á"ޱÁÅTʾìu´òš¸ÊhBã5­~XgÕc'þåÈ’S`4ërNmSCŽËÛC\ÕÜÑ–¹¶Ç¸þ"«žYšXžvwë²èŒØ{h‚‚\ÜÑQƒý¯j±‹Î4:Yºcl2Ú}ù\ w„8]zõêED 54G;YŒbWy­¿IY*¯I\ƒý4™HÂúwpð6À3¶ÒmaâXQÀ¢Ä´¸b´A£; ËámÐe`_ðxí2æÄ:µ~gÔ³f鎱ùh»Ä»˜­ë§VZ'¸è~2uGˆ#0C¡šâ¨“‰¶ –+¯)hTí+m. ž'_ 1é¯:÷*–å‰Uõä›1Ö’!wÕ :WvX¶,¢˜Žg€«\%Û«ž“ˆôBÝ^Ý1uü"Š]äcëé/ÝѨÒeã&n¡G£!G`C¬>*Ä‘+¸˜J’>Vµòšô”1f±++ðMQžÁÂ6©¡G®YʉUò‚ÕÜŽ-'é¬{2×SE3±&èõC}©RÅîŽv «°»£Q½K »ƒ‹y X n.ÛÝ_2K[C=Bi“A†Ä13YŒ"ô‘UÒU­¼¶îFP9‘",.åSöÄVI³Óˆ\ëÊÄõ±ô0W27Ô÷:bÅôêŽÒÛ¼V;ÅöD3Ä £;Z/ªTSÅ.±3Úd¼¸K0¸È’t¶nAšJµ#ˆ#` hž2Ñvð.{]¸Êk®¨'ÓòÙI"£u±mƒ”ÁHž»2Ò–•=.KiSÚÜ“¦º ™7÷1÷¸c1ûøÂh—¬#šù®Å'qwGÇn0º£ÝøEOŒÎ`qup‘%pht—Èœ¸µ) ââøÈ#üÇü‡¿9À­ñºìuƕה\cÓìN’›>jþFWë#ïÂ6\ÆØl¾ÝÝîÕÜÁÖL+!tò¹þŠš½Ž/ vÉ= n=ËjÂX>~öKv¥9üWÝGw”±lÏM+]6någqý‘‹¾ÝQú¢úÖ–¤IG`‰Œ2Ò–ƒS‹¯óÂë²×™U^s5û3—™™Í§­¨;ñ펚¹`¯î˜ä‹á—¹…Š]<çýŽÝØÖdŽi Ñà"WÒÙ(ä!â„Tu­°nݺ!C†¼ôÒKmÛ¶=øàƒ¿øâ‹Å‹ýõ×—\rÉ…2ÿºP.}d©¤ ~} ¯´.ÍѼ¨¥êcѦì!©z™Õ<ÙòWЭz4ŠÒÙ^…)RàXt-µKšu'>ÜÑbì »;júâ-8»#%üâÒìIfÅ.ê ´³™ ›”õ‘î·!™é¢²q¬î¹çžñãÇ|ðÁwÞygëÖ­‰hùòåC‡ýôÓOxà½öÚ+ï´ø:TyM¬Å×î ª-ÖH-~IÇê#Wñ59ëÝævã¶[J[³K:ªa‘4×™BÒb4›¦z-Lñ”&Nê’ÑÔ6\îèXÈÏYÎe»^×GëbëÎo>„È”{’I±Kl ¦#ÙÝ1\ŒâX+|ï{ß{î¹ç|ðÁ½÷Þ[>ù›ßüæúë¯=zôðáÃóîàf €ä­¼¦¸è ]AŒ{å59'_¤>ò+ã¦aà.¡AÒ‰ŒúYJ[z´®ÎIJ[ûhÚ²ÝêÛþÒÄ¡.™*#Wg8«¤Ý¾äü=e‰;:vƒeŽÆÝ°ºúñN[AcŸ¸ÇkzıVèß¿ÿ矾dÉ’à“ .6lØw¿ûÝñãÇçÝÁ0ÓGÍÊk}t¯¼&¾âkŠLúhßN@Ãý4šÅôS—µ ®i€X*H‚½b”Q£Õ·3H“·9•'óVI[šÈoOÂ׺ØEþ&̼Ø%䋹LÐMÊÄ"ôhወc­ðÚk¯µhÑ¢gÏžÁ'o½õÖúúú¢EƒT@-†!«SÏî?.Åå’X×¶ÙÜ¦ã¸ÆÔȨ~tÐüŽ’4ôŠk`cA7mrG÷…j67°=2*0]…¥\eatýÎx¯’.B¡‰~&ÇÎÆ#³tǤd´ï‹Á—‰. q¬]-Ztá…~ýõ×óçÏßa‡ò’ê£cåµ{:[Ñ8¯2ÆÏŽÝÝŒ¡Gs.BkŽçž{nüøño¾ùfçί»îº#Ž8"ïS´dPÙCƒM\›Jj£è 2à*¯›nW,ÊH´å(Ýî3±Í¹yóØÈ«;ºµþ‘êGûXúœRÞ®AÆ*é"š¸®Èœk± 9‡Yæèf™ ›|ÎÑ q¬!¾úê«n¸aæÌ™­Zµ>|ø°aÃļ<%¥ÈúèÈFÏÛî¼ÍÏ|ú[»ÆuDVS­‘GõÑQÕÛ7IÛ¹Hž:êc& ®d®cƒIí³ÄùdÇb§'Ã7‹m<¾¨¡ÍÞó[U%ä‹< ß"ôÁ<\*Èð§Ÿúê×Ó&Y\°`øgÿþý]º‘ıVذaÃ¥—^úØcwÜqãÆëرcÞ=â¡búUÆ-þj¢v—ž¤ìäìyâ–À¯Œ•[=­ckW=ª;¼L¿:ÄC‰Î”@Ö¡ÇØ(¦þ!ë÷*ûiCo1ËÍž(â‹™¹£÷B“ôÒ.Sêà"×h% º)9¸( ’]!޵Â]wÝuÝu×sÎ9ãÆË»/üT@ÕʸÅ+ÓôÑåšÒGöâk–Ö’ze—êÒ¹YM÷hZÄžTeŸ{ÜÔÕs…~úçaã9&“7ê‰f>Ú«;ꚤ¾&¥ ¿õ“Ñl¿uã.2âf 3»;ZŒ\d×GˆcMÐÔÔt '|üñÇ .lÕªUÞÝñEõqó”àʸņqúÈ5ÂRöÊGñµË5±(‡ÌKJÕr`]£®KuJ”ÇÙž]|NÓ5gÉ‹6[üRGß}®ãœÔÓÏ‹;m±8§Àt04WèÑz%cÚÚ®Ò…øÒÖkuaÔGˆcMðÁôïß¿uëÖÝ»wþõôÓO:thÞ}d£hÅ×)•׆¾nd“>²åÈ6Ë 5ÿdÚTâ‹=,¥+y,ÝAíà-ÝØüO· •Ô…pŒgÉ_ |lLëNÝÑ¥ä…k’r/vá(4É«,•.äûL@>¦äõQÞõuXÒÄǘbôíŽQ/„Ï뎹¬ªBL…&, +±ÎϸyÊCôõâjŽ"èccc£|¼ûî»Sšê+cÌVæ“úÈ$nqLŒbÚ‰¢Wö+t³ê¦*»22ÓÄ:Ǩs®ØÝÑnE>w”s_U…åÊc½w÷>•;$¸˜ŠŽ>BA’}ñuP£ßº¤è£2Æ´àmEDÆlr°c.›Ô:k*yú“–Í]l6g³…ÚdôÑB .Lí•ÑŽ¸ÜQ>v’6‡<îØÜ çbâð6£ (®æ/ƒÅ] \LE­GPëx @ªe1JPÝ•1ˆKéL¸©-¯˜ŽC×£ÊÚ—§¥´uîÄëÜh-Ïm7K¹:éi^?«¿N ï*8Ñöi˱˜v§(õ­O”uø¥Íð×ūȻ؅˜¼-u¼5y[(A} e .¦’T| q€ˆ[¥/Ú}»\JgB„*iõ1µ*бR;ão)m…ä9.½ÇsM­çnBŠ·ø«çÚ”ô(&ßúãÇ“o3Áƒ´‘ÆP¢”Iò RìÂó ­, ßÞn©ž]„G6㢦ÁÅTõQ°|ôÓßÚ Ðá•<‹%},¥ºs­¦-›eŸHN!é/,gÝaýRb­éu˜ö±(½È+)‡I°|´b–öç¶8Å.[Å6âÒŽ‹;V&¸¨ƒÔGˆ#aôõ‘]£ÔÕÕYÖÄèTÛø™"Uò/Ó_J;Ô&ï\äa I®°œl+ŠiíŽ!ûgœ5IŸ&ý1Lî踾KŠ]ÈÖÛ‚¾˜Í€ÅؽנH¡º4/ Ž Å×Ã1mŠ~èÑtX¤Zã¡AHŽÊíµš›¶4ZF} úËìBÁf¹:I‘$xf«ç©EÊÇ”Úvñi–¹K [œ“b»˜®ª»À•×n”·Ò……P9imê#Äh!¿-<òˆ|2—(½BÕS‚§ÕG®âëॖECmr%”¹ª¹)mø—cãü‘Á–yW+‰é¶ÿP4Žq.χ–á2ÊQ_äÍ8kîÝ_± Qúª*©UÌìÝ@pQ눵¦GNðk#ÈýÒGÆÊkiŸäGò|,¥í>eW57éÝÅMÅ%Õ‡¬}4©eÞµpXš’ &M“N&Ÿ÷ÙÚiÓ ¦™üR§—ò]ìBzã›Y¾ãÑUU,ÆÉ0Ö»Ôš*¤Ê¢b“Üï¾8‚D_ƒ‚üÀâ]óšÊ2kÏæ+~ {þ–Ò6ÕGÞjn2 ühš™QÔb¢^ÁU´Ï›©g©a²Ÿ­»JZ݈~Jš·'e/v!çq“5¨,òWû£? Ž` Œ~fäëÁ2kOlÌÒZò6Þ9’»äo)m!o579ä fæ4lŽ#Ÿ›ÚCEãäs|aê^LÏXqª¤‰b¦•ñ4ƒ©ºÊuUbýùj:n²Ö¬À"¸¨ßlî÷G@ÁF¬?åùzXëcjšÛèòªŒF-»d©kXlû©ã&kJ<Ébq<dx‡i嵿‹I[òìÍ•»:2vÊ®–>–çÞ<×#cA7ß´”ŒÁQë1ùIGÎútY÷'èm#k­{R„b—Ô‹†»;R¸ÉZ€‚ܧÊÄ0S„¤Z]*iT’çœ+g_G›˜FJ%µÉ>×#o›ìÍòGÍVôN- â õ9¶f䎊5”³7™g±‹ÉÃ=mà"å}cª Gà…bê#Wñµ¼ˆ³(c´Y®3 ”åæG©åº»³·I[jùq\÷fÕîh<ÓyBDÆhiÈ.i„ðy ¥íÆ/r…ÿ7îÚára½ØAGà‘â裀×ðÛ -cA7㜔I›û˜ ˆe I,òMŠbZìÂz`Ÿ¿s;"– ˃©W(‡‚‹,?\5¯5è‹ÅÌ€8V“+V 4höìÙûï¿Þ})>²Åù¢˜I›»tó­‚£³‰™€,ô1uNJӳij ñÔL[§Š×Ñ…¦¶±ž…ŠeÜ$oÆYý²ûM*vá¸%ýâÔÎóâXMÆÏ=÷De×Gµ šÞ 4KsL—Ò6z±fЂ78d*šÒ ß¬õ”æIõ ©#5¨¨©×qi“¸gÒ™B’qNÊPË©3&룘!wt9ùvµÕÁSǸt§ã¸Iâ.vq¼èz”—¦¦¦¦ÆÆFÊi ØÌ¨’,JÖ­[7dÈ—^z©mÛ¶|ð_|±xñ⯿þú’K.¹ðBÎ2A^ Ž•bÀ€ï½÷žügÅQ’{2Uí¢Š­|Us;Ùg_žÛÇL@ISH2ÎIéÒ²©`ùŽbÒ–E<Œó:éìÑÓÔ6”ü10:FÆb뤾^½w }¤jdb þ¸çž{ÆðÁßyç­[·&¢åË—:ôÓO?}àöÚk¯¼;ıR,\¸ðË/¿$¢Y³f=ûì³EGA1õÑ=‘jÁW5w!—ÒŽ6룟,Íòʨ~¦>uî¡Gy Œõ,SÛè¼L§‰Ë/Çbb°¨1d…´“Ñe@V2¸Ë÷¾÷½çž{îÁÜ{ï½å“¿ùÍo®¿þúÑ£G><ïÆq¬&W_}õý÷ß_|qD%ìÅ×\ nÑ&«q­o¶E›Þ—Ýnå|æþ†âeŤ‡óäŽ.K9;V÷Ûí׺'»$TÈ‘íàÅrécíÈbþýûþùçK–, >¹páÂaÆ}÷»ß?~|ÞŒâXMÊ%Ž‚‚è#ãô:2Ž”E£˜îyêH´•7÷M–ß`ôQO2ê8q`lS 4«¤¹Ö r?c¦‰Xuó4q•z§ñ°~Ç%,wç‚ëcµ3Ñ©¼öÚk-Z´èÙ³gðÉ[o½µ¾¾G5eGAÙõ1ezíîêyËÚôSmãcÌœ?%Ve¬ b9c¼Ç¥“²§´±ÈEXÙ…ÜBŽÁÅT ¥µ\ÔdÑ¢E^xá×_=þüvØ!ïîÄq¬&åGAî?CMõÑlz£Õ±õÖÝvϸÅïor‹W¦¾ØÎöüÉh¨ç\9bbM›nû^0¦¿óêSÇM2nÖ|=e5“NŽúYLeýúõwß}÷äɓׯ_?uêÔO<1ï%q¬&eGI¾H}´›^‡Ò‚(–mª~VñNu›Ä=ÄÍÎlr—Ѥ y³êŒc1õ—É ýšÚÆ>0_Ñb^²,¾Î=Pž{î¹ñãÇ¿ùæ›;w¾îºëŽ8∼{¤âXM*#Ž‚bê£ûš1±ÕÜŽmRìô:îAÖ){ØËÇz9ŒÓ»02­O‘~—ŒNgŒÖÏz*¦{äœ;2"SPÛ®§$‚‹F|õÕW7ÜpÃÌ™3[µj5|øðaƉyyРıšTLÑGÆZiywᚯ'Ø,W'cÚä-èæ+¾æ–RGõOˆ`ùN[v ![oE¢}D®Å.¼öVË¢E;6lØp饗>öØcÇwܸqã:vì˜w´€8V“JŠ£  úÈÕ û”=¡ÚÌâ‹#cƒ¡fYZV Âó*XžŠ§+ƒô7eí£-C•,vaÇB!‹îÜu×]×]wÝ9çœ3nܸ¼ûbıšTXù©««ãšzã„­Ïûòò00ŸkY³PÒg¾©…B-o쳟ȨcË:C<5wÁ2!"ãž©éoÊ#Ú—Y±K)â‹jtôùhjj:á„>þøã… ¶jÕ*ïîq¬&•GI^HëУ¸»H_ a§ZSöøhÓº‚Dmr3!^Á 7î³µ ¢˜¤8®ym(6ýÍúñKÝPn›A±Ké‚‹©D«g\ôÁ|пÿÖ­[wïÞ=ú×ÓO?}èСy÷1ˆ#¨Å×ÇhˆQ¦>ÅTŒ&÷1{%ëL@¦ú¢•úä˹·m<›(fðXR«}™ÓßÎyÓh{[R#ÕóÅEß,Y²äì³ÏNúë\0räȼûÄT‡bê£:Ĩ@¡>¦·Ní±Ï¤égú-[ø:2Z¨Á…[t˜cNDë.Ť¿ù È’þ¤ytµSìâH4û¢  h@AÕ(ˆ>…<öå=1ˬ±†O¸ÚŒÏ½ºLWä\>dýÉ u&ït¶+õ‘Ú5î>'¢i—RÒßLkxF¿YÙ§¿©¢¾¨\„> ÄT“|õ‘œ}1ˆ= jª ;äg>æ¤Üü'o‘Ñ`ûä'¥®¹®se´/ÞУ{SéïJÞ%í2ÑÐG@GPm2.”ƒÊwß}wbrGa'l}Ž{Ùµ$‹){Š-¸Œs¤§缦Ôc÷Â8-hR Ù´}ëÐcðÝÏ ýM5ã‹.—Dècq5¿+”EŠLc!¢vú(£Œ¡Íõ1vÀ¥™€ØgTáJz†Zv<ð-ŸI°È$ô˜Mš8øO×e8Š]ØÓßTi_ôTæ}¬Y Ž †àºÒ)d1Š©>ÊcêkôoŸ:.-ôQ t‰%ÍIiÝ`l;ì2_è(â:QÌÔ½¸Ÿ1ö(²æÔ6§¿©r¾ˆšhàˆ#¨9¬õ1:½™>©ú˜bT £z¦5Ý¡Zu³¼¯$=oàšáϱ5»Î›¶–cš8i™b»S‡b—(˜dÄÔ(šúh\L%VuBŒ bõÑ¥¦;u 2¿[§ÞãM%€e†?뽫Ûg drE1MEŸ”CÙ3à®ÑÙÚ.vApd ÄÔ4±úÈ+‹Qdåµ€«†&XáÞfHÙ¦ìI\Þ9)íúlªD©S §”8õ=M&¯ÞסÕ`± däÄ€ÍWáGy„üÈb”ºº:Sö0¶l–·òÚk…¬W5jŸ¥”ر)õ:ž+»±Ñˆ;Š]t€,‚‚q5MhHPÆu‚.e×’P¦Û1ñÛ¬§™€˜ SXe”+Žhõ$ÏQLâ dy6oa–z_TE_„,‚‚q5Gê÷Rè£:Äh­Šf#CÑ:c¨I>fŒ‡f¥猢˜Ö= 9œ§P_ì¾t°îOõ|±’ÁÅ+V 4höìÙûï¿Þ}N@AM`q!.¬>êK¡‘>ú˜ˆÒ‚}ZJÁQ9bÇ]¥‰oo¨O}ÉmúÒÚ,v©¤,?~ü=÷Üq¬GTG­G1ªÐÓ4@dR¦Ã>-%op”+2G¬u!šµA¤ñ¸ ×Êì:ý©ª/VR‰hõêÕo¼ñÆÜ¹s÷»ßı@H'_}d¶øØ—÷d0 98ï´”¼ÁQöAxœóõ$¼Fçßî£gŒwˆmR±‹˜÷ ›"6T>¸dÀ€ï½÷žü'ı@Ð%ãØ€œµ‡«PZ› ÞàYfŠ6e £:» oÜ=ìg4ý;¥…±¹ôQ½U¹LÈŸ=5%‹A.\øå—_ѬY³ž}öYˆc€8`L–H–ÊkAð6\䙀¤Tq%@“|ÈwdÎwJ]s/¦çŠ”eÝú;йM»Azùè" +Ÿ‰Öçꫯ¾ÿþû!ŽâJƒ¸è444l³Í6 =ztûöísìOYô1Vì¸Òß´å”=ìÁQv%ÓRë£QûÖ¡GibÚÒhÝW!2>KVã‹£5\Tq¬ GPn¼ñÆiÓ¦µiÓ¦OŸ>+W®|ë­·öÛo¿3f´nÝ:ߎVuÜËN5ÔSöX4¨hÙ%jeqBLŒ­’æ]æ1Döib–¦tVi'Žz—¼ô²˜ ı2@A X¶lÙi§¶ãŽ;Ι3§cÇŽD4a„3f :tìØ±y÷Ž(s}Ô™4Ç4Ì£3ÂO<Ð|¥E ˜wNʤ|Ȩæ™Im%ŠérŒ¡wÙÇ|ò¡ù¸e¦ÈDëq¬ GP®¹æšY³fMœ8ñŒ3ÎϬ_¿þðÃoÑ¢ÅÂ… ›5k–w7’Ù]$6ôè"bW7wÉ@FÉCd4Ô¾æ!è·™}š8u>yöQ¶Üz<é#‚‹v@+C‹¼;@:‹/nÖ¬ÙÑG-ŸiÞ¼ùQG5wîÜ%K–ôéÓ'ïnDÞE| ÅMW–] oí2Â3gÝò [Ÿ“ä.-ëÀtw §%µÏbW¢–z—èjw®HùVšž´,CBYН!‹H Ž è455544tèСC‡Áç{öìIDï¼óNqÄQ’ÍÊ×A}äʽJE`i3êgŽþ¡–!ÓÆuÔ*Ô¸¢}w»Š=WŽÄöÊ«¸Çž´S[ÒMEb8‚¢³fÍšõë×·k×.ô|Û¶m‰è£>Ê»ƒ‰”NCÖ• îÂXó’!‘ÑèiImÊèõ¡]„¶b1QŠÓPOâ=œB …  úˆa‹¨8‚¢³víZ"jÓ¦Mèùm·Ý–ˆ>ù䓼;˜Bñõ1ÉZÈ9@[%íÒ`°{Œ2{°Ö>ªÈÔ‰bj6¥¹®|zì™/¦/†ˆÕGÐâŠN»víêêêÖ¬Yzþ³Ï>£MqÇâS@}ô:0iwò*£š§E³5®!žv¡Çl¢˜Á± EöÅݺuƒ,`ªªA 8ôÐC·Új« Ÿ¼ýöÛ§L™2eÊ”SN9%ïš‘M.L¡.E!î…)Ö}HM(s…åÜ[‹í¶»’2¾\±d*•/RÜ·/ã•è(;GPN=õÔ†††E‹m¿ýöòÉ+¯¼ò˜9sæ!‡’w-ÉàŽÔG–XZ¬QY·œ»Œ*¶*àLÚ²A®·ÀÔË\$½L4†6  Ä”€›nºé–[n©¯¯?餓Ä3MMMýúõ[¿~ý‚ Z¶l™wÈXÝa ¡…Œ>iÑ8ï|æÖúè/¥NùE1Kt¿°ÎD# €ˆ#(«V­8p`×®]ï¿ÿ~Qsë­·Ö××>|ôèÑy÷އlô±°Ë÷Ñ–ÙO÷–§$“È\jûìsóšhì^Jt›à BHâÊÁôéÓ'Mš´Ë.»ôïßåÊ•‹-êÝ»÷ôéÓ£Óô”ß·+ÇУ4‰ãêÎošãÒ`lã¼2Ê•¦×™²G¿}»1”±{á d–±ØÅ_™ ô€(GPæÎûÐCýíoëܹó!‡rÙe—‰ècõ(š>F}1„‹>–KF“&Óöº$ ÎQ¸Wó”ËQ @^@((¾Gë§êcª/†0¾òÊ(±fŠS—×ß…ã Š¥¸ „€Ü8Pt¼ £úhê‹!ÔŠæUFeû>d4ÚÿÇ›æød:FIMkƒŠ @p€Bq d ;_ ’*¯2jÚ¾…>&µ_جºz9o*¼/B(,GÊDúÈ"Ž´Iª>d”Ü|T'^¨Ù>cVÝDCQÌ"_ð!‹”ˆ#壸ú´F÷Ö<5›div>Ê8Ä“KËå‹EJÄ€²R@}”b›Ò-²Œ§¡qiYÈôR§- w {y¯^pñþûïŸ={vCCÃ6Ûl3`À€Ñ£G·oß>ïNàˆ#åÆSÀ¦±±‘ˆvß}w}Å!½”n¡d”ü¤Ô‰¯ÞH³§øÁÅêÉ¢äÆoœ6mZ›6múôé³råÊ·Þzk¿ýö›1cFëÖ­óîü@¨,Há‹DÔ­[7ñ@zÔôÅØ­R7ñ*£Ií?Þ4§€C<¡ÇùbÅdQ²lÙ²ÓN;mÇwœ3gNÇŽ‰h„ 3fÌ:tèØ±cóîü@¨ú(e‘¾"¨v¾"IѬeÔh~J›²ÇñÐä.¸Â¢´¥>Ü+\ŒrÍ5×Ìš5kâĉgœq†xfýúõ‡~x‹-.\جY³¼;3G*Hª>êÈbeס9º­Wonê£Qì‚+)wQÀëvMÉbSO=uùòåÏ<óL‡ä“£Fš;wîÝwßݧOŸ¼;3-òî€qçŽêc4m„ð.}dŒ_†Z ɨEã±­Å¢³ ÇÐc)|±¦dQÒÔÔÔÐÐСC‡ 5QÏž=‰èwÞ8‚êq ²õ‘ˆyä;_ Á¢!ßz¼iKX.í¿KS©§HœðÆÆÆÆÆF–wБš .FY³fÍúõëÛµkz¾mÛ¶DôÑGåÝAø8PAboí¼Ó÷Øéc’oYxUjãì2*‡ÖÔ9̤ø¢PFǘ±5ÅXÖ®]KDmÚ´ =¿í¶ÛÑ'Ÿ|’wàâ@EH½µ'å¯]ÐÔGMß²ÓG¯2ÜW¥‹:«®ÎGK_é[k<J»víêêêÖ¬Yzþ³Ï>£MqG*Ä€rczkÏRíâsšÂg*£ŒSö˜Qêa’ùøÅ`’W\Ô§E‹mÛ¶FW¯^MDbv*Ä€rcwk÷­»JÒGkÕ>õ.x³êŽõ.\úY´¦S§N «W¯Þ~ûíå“âéÔ©SÞ½€LÇ@­Ã¾t!ï¬=äa2m®)$íŠ]ÈO}´©>BY¸é¦›n¹å–úúú“N:I<ÓÔÔÔ¯_¿õë×/X° eË–ywf Ž"£ÙXôÑëúÔ\%Øê|ôèÑy÷~ Ž€-à @Úé£ïõ©‰oÊž¤Žå>ùb0‰à¢W¦OŸ>iÒ¤]vÙ¥ÿþ+W®\´hQïÞ½§OŸ¦€ q @¬X±bРA³gÏÞÿýóíI.ú˜ÙúÔ)gæ•Q*ÀdÝÅ,™;wîC=ô·¿ý­sç·rÈe—]&¢Tˆ#büøñ÷ÜsOÄQ>Z¯O­¹‰Nû)vq'6Í>ŒP³@ÈŸÕ«W¿ñÆsçÎýÝï~GDÅG'}dI³»Ø­Oï…T3¸}¸q  ðÞ{ïÉMEû˜c±‹ÑúÔ9^?­3ÑÐG€ GògáÂ…_~ù%Íš5ëÙgŸ-¦8 xkrõÑw± ÌÏ?j«v`pò§_¿~âÁ“O>™w_Rà]ùÚnÁë Q_ä]Ÿ:ÚÛìñQæ|áŽ} Žמ±ÐGE|Ñh‘˜Ôö)'_̬&Ö0â°Ç‡>2®Oúʤö«-‹` Ä€ŒX·nÝí·ß.ÿÙ¼yó .¸ ïNñÀ«ÑУõúÔT†b 7”ˆ#ñõ×_ÿüç?—ÿÜzë­+#Ž‚ >’ƒ3×—¤³BsôE%â@F´nݺ«z&ª.¡Ø²¨G€Xò×îe×’¼â‹ÈDªÄà‘Üõ1_¬©àbqXdÄàŒõ1—ÉtjJƒÌœ93ï.²âÈßú˜op±¦d‘" ¬j,9Èß •Î ¸˜%¥X`À"Ž€`)¾Æ°Å™0aBpõ¼»Èˆ# O'÷AÍf¢S)ÑëF Ž€ü)”>"¸I@E!G}„,€G@±ÈL!‹©Txu€G@áZù: †-êSùÖ¦@Å…kåkí¨‘Öú@%À" Yv Ž€Ò £ÈD€? Ž€’ÕG  Ž€S© FÀZÕ€2›‰Fz²â(:ú™h À+G@q±Aè#xâ¨&ÐG`â¨2ÐG`â´h–w@9À<ެ]»ö¾ûî›3gλᄏÝvÛõìÙóüóÏ?òÈ#óîªøbݺuC† y饗ڶm{ðÁñÅ‹/þúë¯/¹ä’ /¼0ïÞ0G€/fÏžýÒK/|ðÁwÞygëÖ­‰hùòåC‡ýÕ¯~uì±Çîµ×^yw€ãðÅ#öØcçœsθqãòîK"•̳€'ªx¡©©é„Nøøã.\تU«¼»“HäÙ€ˆ#À |ðAÿþý[·nݽ{÷è_O?ýô¡C‡æÝG6l¸ôÒK+gFªxáÝwß%¢µk×.]º4ú×â'|K‘g€ŒAÄ”%Ïq€0eϳ€'ª€0eϳ€'qZ`­j ÄhqZ@€G ÄhqZ@€G ÄhqZ@€G ÄhqZ@€G ÄhqZ@€G ÄhqZ@€G ÄhqZ@€G ÄhqZ@€G ÄhqZ@€G ÄhqZ@€G ÄhqZ@€G Åÿ¦ >‡NŸ>}öÏù¾õVe¤R)ÀŽ*aŸˆG ÄHqR@€G Ä8ã“O>É0âä“O>óÌ3÷»ß}üñÇâþÏ>û,Û¡k×®Až§—Û}ã7^ýõ×_ýûï¿Wu>?ýôÓ£>:`À€V­ZU¯^½qãÆ]»v}ä‘G¾üòË`N€ˆ¦NÊ“K.¹DáaeNþ’K.a7ýÄOøt¡3qâDv¯ºêª€¨µë¯køŽæ‘ æ…'C0Ân¿ýöÓO?=33³víÚ¿üòK¸÷Úì>†õá âNfØ'¯¿þºgÏžW_}uÅŠO<ñÄwÞö¹çÆoüù矉èí·ßîß¿¿÷¾ýöÛ7ÜpÃ?üÀ·ìÛ·oß¾}~øáÃ?¼dɒ믿Þ׈õ£ÊM¤ x$ýxî¿ÿþ矞]fG<Ñ@!Gàžìì쬬,vùÇœýó /¯ûòË/³í5jÔ`C‚Ž?þÊ+¯\xá…Íš5«^½z³fÍúöíûâ‹/=z”_KÈuìØ±|°iÓ¦>ø ™ ß±=æý÷ߟ‘‘Á«K ÈÈȇ(}ûí·÷Þ{o÷îÝk׮ݪU«k®¹fëÖ­ÖË?þñvá÷¿ÿ½x2\pA^^»¼mÛ¶ãÇ[Ÿ€Ùˆ·o¼‘mÏÍÍ·ïÞ½û†nhذái§võÕWoÙ²Åì mï”xÓ?þøãèÑ£»víZ»vísÏ=wÚ´i2{aœrÊ)}úôá‡=zôèܹs{öìÙ¤I“ZµjuìØñ÷¿ÿý?ÿùO‹Óö 2;í}ûö :´aÆ-[¶ÌÎÎ~ì±ÇÌöÔ¼¿üòˤI“.ºè¢ììììììŒ?¾´´Ôì<¿þúëßÿþ÷­ZµjÒ¤Éõ×_ÿî»ïjvyyËPf°šf³GrĈl·3Î8C¼úW_}Å4ïØ±Ãâ9 þ…'ÿròûAøþûïKJJØ{™ˆþóŸÿ”””;vŒœ¼Ýk"úî»ïî½÷Þ=zÔ­[·yóæ—\rɪU«ø_-Þ2f/™W»Ó“‰"€ÄË·ß~[ó×+¯¼’ýéü#Û2wî\¶¥K—.©TêÍ7ßdÿ¬V­Zii)¿âðáÃÙö«¯¾šmÑ ûã\{íµüZ&L`¯¼òÊ[n¹…]ž0a‚þv%yß}÷éÿúóÏ?³¿¾óÎ;ÙÙÙš¿fddäääX›~ýõ×úõë³-+V¬àWgCmˆè¥—^J¥R¯¾ú*ÿÜïׯßÍ7ß,–8ßyçv-þáÕ´iSþW3q”9æþýû‹ŠŠjÔ¨Á6¾øâ‹EEEÌö8pê©§²íýúõ{衇n¼ñÆ*UÊ3ûùóç›=bcÇŽå·rÞyçÍš5ëý÷ß?xð áÎ' ÿÅsäÈ‘fÍš±™™™¿ýíoùÃËàßß’wŠß4£Y³fçŸ~õêÕù–>øÀúäõðcfee]qÅwß}÷ùçŸÏÏù³Ï>súøXÜ£Q£F½{÷®U«ßòæ›oÚ¾<ȽêÕ«4hðàÁüN;í4þûÇðæjÖ¬ÉþYµjÕO>ùDþ¥èè€.ÄÑì‘ùäˆûŒ=šªsçÎlãŒ3Øñë}ûö‹/Þ´iÓ®]»¬o×ú˜©TŠ»…hÆãÇgÅLèÉ'ŸdÏ<óL³Glÿþýú±çUªTi×®Ý-·ÜòꫯþôÓOš«ž€üÏÓO?ͶԮ]{Ó¦Mlã¨Q£ôßß’wJ|œŸ|òI¶ñ³Ï>ãßb¨cxòzzôèÁv›2e ßxÑEinÅÉ›Oû²Ë.;|øp*•úꫯڶmË6öèÑÃö…4yòd¶½N:ü»ðã?nذ!Û~ß}÷éÂû¦R©Ý»wÿ×ý—æ‰sñò¶>  q´x$ÿô§?±½zõb[Ž?ÎïïŽ;Ìð_x’/§„”ç÷¯ü½æc³f;ÿþ{ÍÆÞ½{[Ÿ’þÑp÷j·ýL cbÎ>ûìÞ½{[ìÀ‹t¬[‚ˆÞyçvaàÀuêÔ!¢n¸añâÅ‹/¾÷Þ{ÙŸJKK<È.‹óÚ0jÔ¨±fÍš¡C‡žþù-[¶4¼]§ÇÔÀÏööÛoçÿð‡?°u÷îÝš ,9§œrÊ?ÿùÏ#FÔ®]›o<~üøgŸ}öâ‹/Þpà guÖ[o½¥ð)xùå—Ù1w™>}º¾¤åôN}öÙü õ¬³ÎêÕ«»\RRâô$:Ä.,Z´hÁ‚¬Ÿ`Ñ¢E;vìØ±cǵ×^«ðÉÌÌ|æ™gXCL“&M}ôQ¶}ãÆ‡÷Ô¿þïÿþýéž{îáCÁ:v옓“Ã.ó8ÕªUã7wÆgð›[µjUYY9)ÚP-\e6nÜøã?ѶmÛöïßODíÚµëСƒÙC|á)9¹~b{¯ùçÆ˜1c¸ÛÝ}÷Ýçž{î¹çž{äȧ/¯v…Ÿ .@{²³³›Wиq㌌ "Ú²eKçÎyˆ¨§ÿþ¬Z]RRòù矓 Žüó}РAC‡3;f§Nš4ib}¶N©á‹/¾àÇáäkÕªÅ?šwîÜivÝSO=õ¹çžûá‡6lØ0sæÌ¡C‡¶iÓ†ÿõ«¯¾ºæškvïÞ­êyá§*η|ÒI'ñÑ–®ï”fðSƒ ØÞ Ï AƒØ…ÂÂÂáÇ7nܸsçÎO>ùä/¿üÒ¡CÍ89œ}öÙb—¿éT*¥™€]ÿB*,,Ô\‹ÁÌ;wjî~‡Ä’7~ýõ×ýë_äü¥h{@µtïÞ=\eeelf>¿ŒÙÐLFˆ/<å/'ׂBlï5ïAä+vÚiÛ¶mÛ¶mÛ¦M›˜ˆËãâÕ®ð3Ĉ#pÏ’%KŠ+øú믿ûî;ö…ñí·ßÞvÛmfתV­ Ä™­[·ŽmçSÒüú믣GnÔ¨Ñ7Þ8{öìµk×;vÌp 8ƒÿÚ¶Àé1EJKKm'òei„™™™={ö3fÌâÅ‹ ÷îÝË©ÿòË/‹-Rò¤üüóÏß}÷»¬ù¾Ô´ˆº¸Sì·Ù?1yòä»îº‹O‹“J¥¶nÝ:uêÔóÏ?¿wïÞj2Ñ<5jÔ¨[·.»¼oß>ñOšRii)›”tsÝ~úéìÂáÇùô+†7W³fM~sìçÓ—¢íÕ’‘‘qà 7°Ë¬?—;Óu×]gv­p_xÊ_NîµXßkñÅY¯^=ï7çîÕ®ð3Ĉ#PFÆ §M›Æ.¿û¯dþÉ›ŸŸ¿cÇö}ÓH"š:uj^^Þ±cÇZ¶lùÌ3ÏüóŸÿ,--µ˜éPæÓÊé1EêÔ©Ã Í«W¯.2‚œ9vìØü 4ßñ§Ÿ~ú“O>É£x$++‹O8Ì¿Èü[ÁãRBµjÕžzê©ï¿ÿþÕW_:t(ê‰hÆ š©…<¢ùª;tèŸ[DÓ½¡y!Õ©S‡+Ú7ß|#þ‰ÿó¤“Nâ Í+ÿСCü‘?óÌ3ÉùKÑö€Êá…Ú7ß|ó§Ÿ~zï½÷È®Dî Ï—“‹!Hj×®ÍÛVØL±q÷jiĨ„÷E‘Å,w `Ÿìëׯ_¹r%Û(ŽCzæ™gØ…§Ÿ~ú¿ÿû¿ó›ßdffîÝ»×˹y<&ïH8vìX+úõë׫W¯^½z|‘ÌÌÌGydĈ#FŒ˜?¾~þÑÏÛQÍàNóŸÿüGÜ®ù’®Zµj‹-Øeqèd*•úûßÿ®äNyçÈ‘#ß~ûí·ß~{äȑ믿~ñâÅß}÷Ýš5køŒ*ú‰½ðÉ'Ÿ|ýõ×üŸkÖ¬I¥RDtÒI'Ù>켓†Nš¶nÝ:33Óâæø³pÒI'1OuúR´= r:wîÌ^ßÿý¬Y³~ýõW²+цøÂóéåäâA°@òýë耼L¼yóf¾}ß¾}\pÁ\pá…:­»xµƒ4â”ñã?òV»êÕ«›5©P­>räÈìÙ³‰¨jÕªW\qûëO?ýÄ UüCöÿøÇÚµk]Ÿ›»c²¯ ƀ؅yóæ1í ¢åË—ŸrÊ) 6lÞ¼ùO?ýdx¾}û² Ó§O_²d ÅuìØ±gŸ}–Ÿ€á,tâ ðzßæÍ›ù±¿þõ¯úoå.]º° ÿïÿý?>£ò´iÓ>ýôSÍž®ï” âÉkøì³ÏN;í´ÓN;­qãÆl8lffæ€øtž’¥7‹›Ðìv÷Ýw³¿ùæ›qãÆ±íC† ±Æç Ì;vÌœ9“]Çó1Ž=z÷Ýw³9¿ùæ>‘»9/Eëº~‚¬Iž·Íš5‹]°u¦°^xþ½œ\<fÈ¿åáÓéÏž=›ÇÒsæÌÙ´iÓ¦M›N>ùdñ—¼Ù}qñji~:÷Ü|óÍ<0;räÈ7ß|ÃÖH ¢Q£FYÿ0½îºëØlº¬‡´oß¾|xY­ZµjÕªÅFA >œ-*“ŸŸïe5GǬW¯Ûó‘Gùä“Oî½÷ÞjÕªÝÿýÏ?ÿü?þ¸bÅŠ~ýúõéÓç“O>á=†999|T¸†‡zè7Þø÷¿ÿ}äÈ‘aÆ5ªeË–EEE¼ÀtÑE‰£Ñ O€O×rèСN:uêÔiÿþý|0»Hnn.›é?ÿùÏ\pþùçÿý÷¬Iƒë;eáÉköùÍo~“ýí·ß;v¬gÏž—]vYƒ þõ¯ýïÿþ/ÛA³º†‹›Ðð׿þµE‹íÚµÛ²e Ë«T©òðÃÛÞ±cÇþå/)))9pà@Ïž=û÷ï_µjÕ·ß~›­½Ñ¸qã‰'šÝÜYgõÁ0ªZµêÔ©SÉíËÛâ€^°x$÷»ßM™2…ˆX»wûöíÛ·oo}´°^xþ½œ\<fÈ¿å™8qâÂ… KKK‹‹‹Ï=÷Üþýûûí·¼×ð®»î’¹"î^í í{> 3lçq$¢îÝ»óÅ< 'NKUž œˆþçþGü+–ÎiÙ²%ŸÛö–[na»™Mfx»’ÇL¥RC‡wã÷åÿ÷ £‹‘#GšÍAÍøûßÿnÑôÝ»wï~øAÜßìxþ!ÞÞˆ+ÇÜzë­š=kÖ¬É[#ÅN_í2' JÕ@ U«VmÔ¨ÑE]ôÜsÏýýïçë[˜!öVW©RE Ì™3§cÇŽìOçœsΟÿüçmÛ¶ñZöË/¿Ìk=òÈsΜ9C‡mÔ¨QÍš5Ï>ûlþ=dÈ6#ãyçW£F–-[^uÕUëׯÿŸÿùëîœ>}ú|ùå—O?ýôàÁƒÛ·o_³fÍSO=µk×®7ÝtÓºuëÖ¯_/:´Å ,\¸pêÔ©;v¬Y³f§Nî¹çžM›6v”ÏŸ?Ÿç 5ºüòËß~ûmÃù5]ß)‹ÇÙðä5üö·¿-**š8qb×®]›4iR­Zµúõë÷ìÙóùçŸ_»v-oõrœ ¼÷Þ{·ß~{›6m²³³¯¹æš5kÖÜyç’÷¨[·nüñĉû÷ïŸÝ°aÃ~ýú=ðÀÛ·oïÙ³§~ÿ¾}û®_¿~È!M›6mܸñõ×_¿víZ>é79yÛÐ5Ö¤(:’­Äa½ðü{9¹xÌÿÊsÕUWmß¾ýÎ;ïìÚµk­Zµš7o~Ùe—½û4Zþ-ãôÕÒŒTÅø"ÅÑ£Gßxã ²+3…~Ì(óᇮ[·îÎ;ïdÓª§'NduÆ+¯¼òoû[اS‰X¼ßÿýîÝ»Qûöí?ùäù+&é…çúA ©`Œ#ˆ(ÕªUSþêÇ1£L—.]x¿ˆ±x)¾ÿþûì‚ÓŽ$½ð\?$ˆ#€¤R©gŸ}vÏž=yyylK:Ì€88ÁñãÇÿû¿ÿ›ÿóꫯn×®]Ø'…€¨qP‰5j;vìŒ3Î6lØý÷ßöéàA B 9Héx€G ÄHqR@€G ÄHqR@€G ÄHqR@€G ÄHqR@€G ÄH‘ö ðDqq1ýãÿèܹ3µhÑ"ì3$ˆ#Ä&‹ fŠ{÷îeØŸ ?€8@<ÐË¢!ÐG€@ ºHÊ¢è#À Ž9¸/zt>Q½ Ž \‡‹¶ð£!€xâ¡áŸ,‚ú5À#GšpkÇÐG€k އ‹¶@.€8€_DMõ {àˆ#(&v†î€$GP@ôÃEP¿Xq—$Cõ@f@ÀI•E=ÐG€ˆ#Ø»a‹ª€>D Ž`Lú„‹¶ ùÀ€8À ‹ ùqdiÎ@ý€´âHS.zú@q¤Eå@H+ Ž€äƒJ´ß@H Ž€d‚p1xÐ| @â8’d1  ù€qÄD\Ñõk’ÄK.Æè#Iâˆ Åø} @‘F”E‚sÄtÏw Ž€(bè‰1Ý3Ĉ# * n ~ @ì€8² Äˆ# 0Ê h€> Ž€€@¸l>q Ž, ù€Èq¨_ùÀ;h¾ ‚@j@¸|¢E‹ÅÅÅÐG¢ÄàÈ"  @ŽA%„ô€p8¤@¸¢ô€°€8L,‚(ƒæk‚â¨dÄ 4_$GbP¿ ޤ/Aò€>à+GÒ È"H øÄ€´•h†@PĀĂpBó5J8( ‹‚æk”q M@Ô¯ðÄ€¸‚p×@pÄ€8Y@!ÐGœq   € {y ŽD„‹ ºgâ@„€,:¨_`Ä€e‘ðE@4€>`Ä€p0P¥‘H@¸@Ðq 8P‰ Ž@à@ðÈ"ÉÍ×ÄŸÀ· ‰Í× Í8  „‹¤¨_ƒôâ€' ‹¤3ÐGn@p*Ñô¤GdA¸°úÒˆ#V@Ž@ó5H6G À‡>À h¾Iâ@9ÊAý$ ˆ#Hk ‹€€>‚Äqid ÐG Ž ]À°E@€>‚XqIá" š ùĈ#HE@\hÑ¢Eqq1û?á# Ĉ#Høáˆ/¨_ƒ¸q1á" I@Aô8‚˜Y$è#ˆ2GP‰¤èžÑ⢠ÂEäùöÛoY›EØ'T‚¥ AÔ€8‚hY@ñý’æÜƒú5ˆG>EaX¾Ü»w/A/’ž_:G»€<Ž~_A/’ ž_"G(Çãûz‘lðü‚P€8ßÑ|ùaü>Ö¨ ã¡ÉÍ× `"ޝ½öÚÒ¥K‹ŠŠjԨѧOŸÜÜÜúõë[ìèСW_}uÙ²e{÷î­]»v›6mn»í¶=z„}?>ÈÇï0z‘lÐ| # â8gΜ¹sçÖ¬Y³k×®%%%Ë—/ß¹sçÂ… ³²² ÷?vìØ­·ÞúÑGÕ­[÷‚ .8|øðæÍ› î¹çž»îº+ì{oP‰@žàß/Ћă€øMìű°°pÞ¼yÙÙÙË–-kÔ¨M:uáÂ…³fÍš8q¢áU–.]úÑGuîÜyþüùL.wîÜ9lذ§Ÿ~º_¿~íÚµ û>Å È"òDäý½H6x~Ä^—.]züøñQ£F1k$¢ûî»ïõ×_óÍ7xà*Uªè¯’ŸŸOD<ð$[·n=räÈÇ{ì½÷Þƒ8J‚šòDóý½H6x~Ä^·lÙR¥J•¾}ûò-U«VíÝ»÷Ê•+·nÝÚ¥KýUŠ‹‹kÖ¬Ù¡CqcëÖ­‰hÏž=aß¡H‘°€X—÷ ô"Ùàùj‰·8¦R©¢¢¢ 4hÐ@ÜÞ¦M"Ú³g¡8>ûì³™™Ú;þÉ'ŸÑgœö}Šqùò Ä÷ý½H6莪ˆ·8ùä+¯¼2ìûðù€<‰y¿@/’ º£€wâ-އ"¢š5kj¶×ªU‹ˆ8`{„²²²%K–̘1£¬¬löìÙ 6 û>…I|Â'ÁïèEâAÀ \oq¬W¯^FFÆÁƒ5ÛþùgªÈ-ؼyóäÉ“wíÚÕ¸qãiÓ¦uïÞ=ì; þò@9éö~^$<¿ÀñÇÌÌ̺uëê“ÅÒÒR"â}Öz~ýõ×™3g.Z´¨zõêwß}÷ðáÃÍ&}L$éöå€GÒ¼t ½H6x~#â-ŽD”]TTTZZZ§N¾‘½²³³ ¯rüøñÑ£G¯^½zÀ€“&M²ðË„‘æ_~8¿¯4@/’ †·Ib/Žýû÷/,,ܰaÃ¥—^ʶ¤R©õë×ׯ_¿S§N†WY´hÑêÕ«oºé¦I“&…}ú¾ƒ/?äÁûÅèc²ÁðV`KìÅñºë®›;wîSO=Õ§OÖ3oÞ¼ýû÷1¢ZµjlŸ_~ùå»ï¾«V­ZÓ¦MS©ÔâÅ‹k×®=nܸ°ÏÝ/ð倹âȃ÷‹wN%è#Ð{q$¢Ûn»íÔSO]±bŪU«7nq¿È³aÆ^½z…}~éE‚ßñºkÐG„Ä1M@e yð~ ¤SÉÃ[Ä1Ò¤OX€wð~‰Ћdƒá­é Ä1ràËyð~‰2Ћă€9 8:¦mÛ¶………Ê‹ŸæÈƒ÷K¼€^$<¿iÄÑ1………mÛ¶e< a ò°÷ ¾œâ ô"ÙàùM Žn`ÊÈô‘$dy4ï—xõŸC ÉÏoâ8º‡û¢m YÀ¨D'èE²áÏïÞ½{›6mЧ8I@ ¢>âËyðû* Aóu²aO(«žß¤qT†¨ùùù„7 v@¡ù: @Àœ$ ŽŠa­3xc`d˜½H6x~“Ä(GI ÉÏoÜ8üá"p ô"Ùàù/G€J ‹@!bs.^NÉÝQqâP>ú@/’ º£âÄà„‹ H ‰õëXq8²Bz‘lðüFˆ#ÀT AÔ€^$<¿‘â0á"ˆ>Ћdƒá­â8dÄèc²ÁðÖHqà=HH§~!Dˆ#i ÂEHN%èc¸@H# ‹ }€^$<¿aq á@A:½H6x~ƒâ@2ÁH/8Ћdƒá­Aq 9 \ÀèE²ÁðÖ`€8o ‹8z‘x0û Ä€X‚Ô@/’ ž_Ÿ€8. èE²Áó«ˆ#‘²@@/’ ž_…@ˆ"¨D<Ћdƒî(%@ˆ ÅÅÅ{÷îe—ñ‰@X@/’ º£<q Lô•h|Š ‰³; Ž„Â âô"Ùàùu Ä€€@› ñz‘lðüÊqÀG ‹$ èE²ÁðV Ž(²@²>& oµâ€ð#€´éTâÁ/C ޏá"iÒ©Ä}ÔqÀE€èE²ÁóË8  R[ ÉÏ/A°á"ÀЋdßßô|r!ŽT²Pºg@"8@„w€? {$ ˆ#H_.õk Ž ½€,BúâĤ¨D¢ƒfø#1â ÂE@”aŸK6l |Føq‰²ˆM›6mÑ¢ª" .@Aì,⚯A\€8‚¸‚è€äîq Ž N \¤ÐGY Ž ê@é ôDˆ#ˆ(¨D Oqqñ·ß~›¶‹ç&è#ˆG!. æý²wï^Þœ‹·OòÀÊ× "@AÈ@Çöý½H6h¾¡qá€/6äqú~^$Ô¯AX@Apð/?ŒÄÀ%a<ô"ÙàùÁqþ¢ÿòƒ5`†O#7 ÉÏ/’ˆãk¯½¶téÒ¢¢¢5jôéÓ'77·~ýú2WüòË//¹ä’¥K—žsÎ9š?]{íµÛ·o×llذá{ï½öÝM¶€#‚¹½H6x~A0D]çÌ™3wîÜš5kvíÚµ¤¤dùòå;wî\¸paVV–íu-Zdö§Ý»wgee5oÞ\ÜX¯^½°ïn¼Á°Eä ë÷ô"Ù ; øM¤Å±°°pÞ¼yÙÙÙË–-kÔ¨M:uáÂ…³fÍš8q¢ÙµJKK¿øâ‹•+W¾òÊ+f;8pà’K.yüñÇþ‹±á"òDçý½H6èŽþiq\ºtéñãÇGŬ‘ˆî»ï¾×_ýÍ7ß|àªT©bx­!C†ìÛ·Ïâ°»wï&"MÜä‰Î—± ²~½H<˜r"-Ž[¶l©R¥Jß¾}ù–ªU«öîÝ{åÊ•[·níÒ¥‹áµ¦NzäÈ"Z¼xñÆõ;”””Q³f;1#²_~Dxý¾‚^$<¿@!ÑÇT*UTTÔ Aƒ ˆÛÛ´iCD{öì1Çž={² ëÖ­3܉ã7ß|sóÍ7öÙg5jÔhß¾ýÈ‘#õ=4 ^_~LFF†Å_S©TØ'è èE²Áó ”]qòž={ˆè‰'žhÑ¢Å\ðÕW_­[·nýúõ=ôÐõ×_öýÈ"fhLñÛ½M²›~ýíÞ&D$^Ðì/ƒ„^$ o‰®8:tˆˆjÖ¬©Ù^«V-":pà€ë#óÍ7YYY9997ß|3Û²qãÆ‘#GN›6­gÏžMš4 û®‡>G0D”E¦†.‹$H¤¸“È8$ô"Ù`x+pMtű^½zÔlÿù矩"wtÇ /¼ ÙÒ½{÷ßÿþ÷Ï?ÿüÛo¿Ím2@¸€5YäˆÖÈH¾EÜ?v ½H<˜S¢+Ž™™™uëÖÕ'‹¥¥¥DÄû¬UÑ­[·çŸþ‹/¾û~ûdI̬‘分Ò»£ø'ñÈqqGô"ÙàùòDW‰(;;»¨¨¨´´´N:|#{eggg»;f*•:~üxFF†f6ŸªU«QíڵþÓ~’ò·lÙÒÌÍ2H†…;ŠûÄÎ z‘tðü"-Žýû÷/,,ܰaÃ¥—^ʶ¤R©õë×ׯ_¿S§NîŽYRR2hРnݺiÖ•Ù¶mµmÛ6ì;­„‹È#¾_\[#CÆ)†¹#z‘lðük"-Ž×]wÝܹsŸzê©>}ú°ž˜yóæíß¿ĈÕªUcûüòË/ß}÷]µjÕš6m*sÌæÍ›wîÜùƒ>xíµ×®»î:¶qÛ¶m ,hҤɠAƒÂ¾Ó^, £÷‹¤5JÂä2¦îHЋ¤ƒî(`F¤Å±I“&¹¹¹Ó§O¿üòË{õêURR²iÓ¦:Ü~ûí|Ÿõë×ÿùÏnݺõo¼!yØ|pøðá&Lxùå—[¶lùÕW_}ôÑG5jÔxôÑGe–ÀŽ Eaýu¨Úh1¨Ñ É‚u¬Ý‘ IÝQ@O¤Å‘ˆn»í¶SO=uÅŠ«V­jܸñ°aÃFÅÒGלuÖYûÛßfÏžýþûïïܹóŒ3θòÊ+ï¹çžÆ‡}wkä‘ü}ehî‚FÉ‚õÿjkw$èE€€pâýiMÚ¶m[XXèÓÁ.ÇôÌŽ5N§ï…Ö(gzÿ(Þ°aC¯^½<D ~èE‚ß±»kŽžßØÝ;GCRïš5QO%B ×ï5º(Ob›;& `­éT²Áó›æ@£ *ÑÈãñý¢·Få}0ÖL@ÁZô"ÙàùM[ ŽÑá"ò¨z¿fªG†µ;~»·IvÓ’ä¹#A/’º£Òˆ£cØ\ G1BGùûE´F&‹D´®¸uÅ–ÞÝ‘6 sGô"Ù ;*­€8:†)£w}Äg(ò°÷ËÞ½{ýëÿÈnúõ»Î¾¬ÕnD´®¸uvÓä*zÔkè…-vš™&öœnذðü& ˆ£¸/ŠK]£ €<Á¿_222¨¢<--Ãʵ­/šñÆ®³5Ñ#ƒy¢ô1Ù4mÚ´E‹øBLG•0ƒÜ°aCÚÎ €ä¡Ž+Ã>YœV«™;†}Ö1z‘lÐå+GbdQ†‡:® %ndø:2:zz‘lÐåGâ¾Þ$ñØÖÐFw¡#ºd¼½H<˜Õq º \TÅe­vÑ…-v²še ­Ñ×E¼`ÐQ ЋdƒçWG¢dÑ f=1D4ö£kù– [, àdœº£m訯Vó¡œï¾ûnw*ñ@/’ ž_ï@ˆìƒlïÞ½½zõ û\âŠaOŒÞõÿdÌ87›±z‘l0¼Õ GBá¢r4=1—µÚ1|Ë-ó»¾h{Åç.ûÓÖ‰èm^V;Æ‘×Ç%¹¬•³ÉÀ¹+÷îÝkµ@“ †·ºâ@ @}B7rk4Ìàm6þiëO÷²£˜qî2 wÔW«IpGàH§~!8â@à['ĸ‘Y£äyÜHDÚz£’БY£»ëßrËe­^t‘;¢KÆ?N%è£$UÂ>K±@‹ Â>©dÂâFþOnîâÆ?m½ñm6z9Ñÿ´õFG£'Ç~tíü®/ßrËe­v°šÞØu¶Y¾øÆ®³Y{ðöFfïë°Ï¨ϯ-HP *ÑaÁãFGY#UŽ9^rG/Y£»òÑãCÛ‡\Ö ë€@:•lðüZq@¨D‡ˆ8ºQ´F£]¸#Ë)•X#ÇEÙëÀ€^$ o5â€K.F½5Jb7ºÃ"hüÓÖgœë¬EFD-2 , ÉÃ[5@pd1jð¸Ñ©2Ê :ª*O3Æ~tíŒs_ïsG²[JQœ¡cÀ@/fÄ ‹ÇÐeêÔ2q£Œ;ÊX£ÇБtC:FèE²ÑÌiºª0Fß¡i¦ö ë&kµY£-¬ÛÚbþ€ ½:\М›lÒùëâÀ 0Nìð5n䘹£ÖÈ&å1ü“­;ràŽ¡}ÉâÒCY„/FŸÐ­È©5:ÐÑîŽf:^w¸>‚$1Ž MA d¬±è‰Q72ÄÁŽ~L»ã>ùþOmòPÇ'¯¿{UŸ'Ñ%Ð| ’ĤhsIÁ¯ÎÌÜ‘‚RF}oµžá[ny¨ã‹h‘‰h¾q¥jpP‰N¼'&°¸Q «ÕÖ<´}Ȫ>O²‚uè5}`¯_‡}"8‰#H&¨%›àãÆ(óPGÌËWıø°±‰#Hè‰NX~ÖcM®»«{‰Ÿ:ïåÁëï¼þî§Î{9˜;kÑ[-ÒcM®u— BLjƒî# Ž Þ ž¼wÑLwuêÐQ^­¾å–÷.š©wGV­ûî@A,@©ÄT¢Ó“–-[Q5¹ï]4ÓÅÕ½Ça?n@{u¼@ó5ˆ8HAl@%P…57j¬ÑcµÚQè(Y­&‰‚5ˆü#$ˆGiP‰õBl¦öV­&;jªÕéG  j@Aä€,3¢72‚l‘qúæŽc ôDˆ#ˆ E`AXq£OC}ªVëAè˜$  @A˜`Ø"'”¸Ñ‚H…޼ZMv¡#Ü1îˆúƒÁƒ®jhŽÈÈÈp=q#E/n €krê8S?+8ë°û쀰t! $Ž ÄßÇA2ð:ú]­æ¹£~BG„ŽIõk0Gà#¨Dïð¸Ñ]:}âF±ZmA¼îú#!âøÚk¯]wÝu:uêÑ£ÇøñãüñGÉ+~ùå—mÛ¶ýç?ÿö=Hè‰ @Þ ]€Ð1Ý€>‚H‚8Ι3g„ »víêÚµk­Zµ–/_~Çw:tH溋- ûôdøAXqcq×[mØ(Üz‘T ÀWbßSXX8oÞ¼ìììeË–5jÔˆˆ¦NºpáÂY³fMœ8ÑìZ¥¥¥_|ñÅÊ•+_yå•°ïAŒ?• ‰@9{b\»"5gø–[æw©yÐX£Œ~ç–-[¦R)´V$,]|"öâ¸téÒãÇ5ŠY#Ýwß}¯¿þú›o¾ùÀT©b©2dß¾}aŸ{,,‚àq7²°‹¸Ñ…5^÷Sç=é.ÚüÓÖgœûrÓ =´}ÈCŸäw·WC/’ š¯rb/Ž[¶l©R¥Jß¾}ù–ªU«öîÝ{åÊ•[·níÒ¥‹áµ¦NzäÈ"Z¼xñÆþQ²‚Çé <Í`Á®oÞ¿å’GÙèÃ$U«gœû¢Þ¡m1 322R©A/Òñž_à…x‹c*•***jРAƒ ÄímÚ´!¢={ö˜‰cÏž=Ù…uëÖ…}'¢ B.Ö£©²,v}ó~ýØÆ§Î{TÒ]©½„Žj1¬VSÅôé«ú„Ž"Ћdƒçx'ÞâxðàÁ²²²zõêi¶×­[—ˆ~øá‡°O0~ \Q@&n44EΖKå;t}ó~yw nÀ¾Ö¬™;j6òÐQz‘lðü/Ä[YëtÍš55ÛkÕªEDûãdD‹¶ÍÅÌɲlí±'ÆEèÈ*鬪Î4wƹŠ;è=ÒuµÚìœ-’^$<¿ÀñÇzõêedd}ú°ž˜yóæíß¿ĈÕªUcûüòË/ß}÷]µjÕš6möùú ÂEkÌâFn¶q£#xôèò)£YµÚŒ6Ë&Ïï:‰ˆ¼Gƒ×ß½ªÏxWD:•lðüCb/ŽMš4ÉÍÍ>}úå—_Þ«W¯’’’M›6uèÐáöÛoçû¬_¿þÏþsëÖ­ßxã°ÏW=E$ôq££¬Ñ‘{ù}:™®oÞ¿å’Iìa™ßu’ wl±dÚª>ãŨ•…ŽÖ#½H4x~†Ø‹#ÝvÛm§žzêŠ+V­ZÕ¸qãaÆ5Š¥ £ÔAÂ0ŒÕV¨ i¿bÒª>“•q Ì_Yô¨wGëÞê÷./º£ëБ½H6莜$ˆ# 2dÈ!f& oM ŽîqªEl  Hm1ºÑEè¨ÜYµÚûqܵ˰ÐQáÝ1éTâáOñÞ½{Ã> ˆ£W¬õ•h,hùÒ£ÅCdz:µë¸Qí¤ß ;¬¨V[c뎡„Ž'néTÒiÑ¢EÓ¦Mñü& 4ǨµËpwD› Žxï¢™ÍæO/>ÎïRÛLz‘Z\BÆö§÷.šd8¸-j»dÌ@wE²Áó›08ª„¥$ü’ûŒˆ(ÅÅÅbÜHD%ÃÇé(ฑ!:ÊX£»ÐQUµZÄ,Ða¡#¯VûÔ%czëH žßÄ€ÄÚ¥Þ/¿Ǹ1ô¬Q|ùAöO¶¡¸C0¡#éT²ÁÚB ‰#ÀGÌæàq#·Æfá‘Ç:tŒ”5šMÊ#RQ°¶a…ŽtÏ$ o5G€z$ç`Öhvµ³ð8ÍÜÑ©5F§ZÝlþtù‚µøO¿»dLÏDЋPNø ô1Ž@jŸC@ftc4‰TÖèCw{«ú 1,w,?ŸŠú&ô"‘@ãÄà/³Ù{ŒÕ©ÝnT85¯HV«Ù(RÉÜ‘ˆÄ™z¾‹DЋ¤ƒç7.@Žñ2›=‹‰È£‰ë¸1:Õjy¢:ž81èE¢Áó} Ž)”Ìf¯—Úb¼4SóÐ1îEj}訯VQ‹%Ó¢:ž87èE¢AwT”8LQ¾®:wë¸1R‹S3wŒ¸5:ªV““‚µHó3¾£•€^$4_Gˆ# Êe‘ÃãFnŸ^© q'ôåõȸ£&t `®M@/žßHqy¶(‰h!D*nd4{ñQ%ú过9ŠîhX­Ö‘‘ކ@/’ žßˆq }Q2lQ’øÆÍ^T£n~‡Ž2Õj=2¹£f¤c”Ý‘ IÏoè@H/ü«D[ÃâFÛNêHÅ¢5†:ªEæ( “E™02R@/’ žß8„"‹œ–/i“¶&ýV¸2uˆ0)eªÕ±Oœ-ô"Ñ ;* Ž$– +Ñö'#7ÚâßâÔz©9l‘aX¬c:ž8èE¢AwTÀ@HaU¢-à3~Û¢°NíGÜýjµÓIy*Ý;»ÁŽ-òf³ç1^¡ã‰ó‡^$<¿Áq DM9-çä± bÜè¢N½å’GYVLbçGÜèšÀ–aÏ‘¤å·š1;vîÈ€^$<¿~“ö \"~,FD N2g´äž†q#¦fÏÌ,ùcn³y3ˆhË%c‰È"›ô7ZXc³ýôÊû½¼ýŠI[.™ íœ?Ý0l±dZñÐÑ-òfÝbÉ´K¦í*ûÌFö–ao¢È¾}€kðüúÄ€8 Yäddd´X2­ÊW'ï{B2dâFÑ˯UaD$ê#YdÒõÍû·\2Éún³lò׎s7ä”»#U„Ž©T*ì;íèE²Ÿ_ÂS¬ˆ#1 ¾|2 rô¾h÷HAú7–ß®çÐѬZŒ"7›?½xè8ýâÔ~ÇKîË¢-—ä²-fé½ZÍF:ʸ# Åß z‘lðüzâ@ÈhZÿ’ñAÆzbd”ÂKÖhH³gf~ze® « ²“Z ÍLQ{¿æÍ(¹#·Ù33ùceki5cö®ÊÉ¢¦Z-’ŒÐQz‘lðüºâ@8&‹É˜?‚ÅÌ-fáaÊØ"o¶uçµdÜHB&çÚ†)£ä½Ó˜A¢“玽H:x~]q 8â>lQönJLÁóŵ“XpUœ3ZaÜÈqêŽNãFÕj6‘¸keÔßYvA4HïÕê]ÃG[‡ŽÌÙöä¬E ÉÝQŽ€8à/i"‹™¸‘[£-òq£yw ²H]®ŒÏÌ$¢’;œÝ;^­¶¸Ëì7HïèÝQ)‰ëJ÷z‘hÐ% VŽÀ"»”‹¯´œ“g7ŠÖ¨0näuj‘fÏÌôo‘@+~zådq¢°›°]~P’V3f›-'Ã×!d»Q —"t –.L©°ˆå³Fò7ÊXÜȬ1€bpw´ÐG³u«Ë0ºaõ¹Å’iâÏö„²=™;¦ Ћdƒç× ˆ#ž0”ÅôôE7Z¨ƒ#kt„aÜȈHèhhÍž™étþ fóf”üÑAºEÞìy³½G¡£ž³šãñæbô"ÙàùÕqÀ E çnÔ[£Om1z,Ü1€¸ñÓ+'œ5êñÛÅg¶ÕŒÙ…“sÒÊ z‘tðüŠ@•h ,âÆ’áãXîåè€.fá±ÀЕX£uèØ F[˜;êõÑQµš»£¦ZÍŽŸà®jI ÉF|~Óù)†8`*Ñ’pkÔn4Û?`òµfmˆLÐèkµºÙ335ƒ•D¶¤gèÈ^$| @0²è¾À !.Æ5ª9¢;*,RëCÇ(”§Íð莒¡cš»#¡ù$ˆ#å í±HÙ¸‘@îò´š²µÓÞjëF¬5@A€8‚´•hï˜MÜÈ\$:q#‡¹£O=1.‚Æ «Õek3wD—ŒÐG Ž í€,*„¯C•ãÆ’áãÚN2®_‡7–Ÿ›“él$aÕêÈ–§ÍtGÉ 9âÎpGè#HG.@ýÀИ5NÎñiÖÆò[q72ZäÍ.¹å~å§/käsG‹jµ!Ö¡£8xáäœÄ/'ãè#ˆ5Gd0lÑW˜ hâF‹¬Q¿W‹)ùc.3µîXrËý-òf»Î2C©Vs\L–Ä`O½áÁÛËKõdÁõ‘*¯h@Ä8‚¤Jt0´œ“×~œV¹5šÅªêÔ^âFå0k û,TÜçËza‹¼ÙŸNÏ·t•‡‚µ!ì£ $ˆG ‹Sœ3úÓé9†ÍÔ® ,nd( UY£‹ÐQ-ì^8-X[ †ŽÛÏÁ`GkP¿qâb *Ña!©9i7j¬ÑKµÚ «Õœ¶“òÜ vÔœ…ŽÜ‰¨ã¨< v´ú¢ÄÄ T¢C§Ã}sÄ"5‹=m¤ÀãF†—Ð11j fîhV­f˜‰)sG:v•G¿:€ÐGe Ž @#B‡ûæ|:=‡©¢5ú7*Gm—LÀ-2ÊŠÂÉ9ä¨QtG:ê ÖFæeTö£  "@A$€,FV¤&¡'fרÑkL‡¶[kLFµšá"w4CÓ(³mnN§‘yŸußÅg݃”úBâB•èxÁò$Íü|Jðµ-F²H-:F'ktÓj5é;š¬,t¤ wü¶o#"búƒ”úBâ…/“€p1^è‹Ôé7Jä¼<¾V«¢;ÚV«©²;Š-2¼`ͯÂÜ1ÿóÇØ?5Ì_   ŽÀw4É"U|Þ…}^@^¤æXLËâ”(Ä ÛÐ1˜¸1jÕj†ªÜ‘¹#ùöüÏÿc@Ê€æk01Ç×^{íºë®ëÔ©S=Æÿã?z¿Êµ×^ÛVG=¾¯‰Ã/RóubHדŒ¸ÑÂc]¤æ¸«V3¸;Ê„Ž$¸£f^±+Ÿvdÿä‰#ÿmÏÈÈhÙ²eØ^¤Aó5ŒÌ°OÀ†9sæÌ;·fÍš]»v-))Y¾|ùÎ;.\˜••åå*»wïÎÊÊjÞ¼¹xÅzõê…}wcøMLúé¾;ŽÊc‰‘w¢7Úʹ5¶È›]üÇ€¦®l6oFɹÜVÛIy…Ãs”,/ÉÛ«;ŽÊÛöxN§‘yÛææˆ5kÍfðI¥R~ßÓøÂ>xÙG1>„D:q,,,œ7o^vvv~~þ¼yóÞzë­›o¾ùã?ž5k–—«”––8p oß¾+*ó /„}c &ÐI0¼HÍâFn‰ŒúÐ1ø¬1šÕj†£šµuè¨ùùÁrNjΘ„ʵ¸F@ʃôøG¤ÅqéÒ¥Ç5jT£FØ–ûnݺo¾ùæñãÇ]_e÷îÝD¤‰S ‹‰‡Y#ûŽ×,K­ÖÒá“!©Š½XcÀKWKâ¥ZÍ`?dªÕd9Ø‘_fk"ê42oÍæ‰è¢ófÿiÆ>2•D ¶$ÐGà‘.UoÙ²¥J•*}ûöå[ªV­Ú»wï•+WnݺµK—.î®RRRBDÍš5 ûþÅT¢Ó nîâF3D—b‡*¼£Rò¤)^ßLÝ"ovñ-£›½øh7ê‘ÀªÕŒ¶“òÌ"I=íÇå}š“Ó"oö§9•–j?.oûtmÁºÓȼj?§Ö,>ášÿ0³IV¶ÖÇÌQ¿6Åk –èŠc*•***jРAƒ ÄímÚ´!¢={öèÅQò*L¿ùæ››o¾ù³Ï>«Q£FûöíGŽyÎ9ç„}§£d1=1Úèèš:5÷Åv”ç³©åæ¡5Ñ;¼ ô72wd<žŒ;š=3³ä€Ê<…99ÖËiæÖá´š1ûÓ±ZGü4Çæiåîx´VF·a³?¨pGfT¡Œâ¨G<úh¨„sàèŠãÁƒËÊÊô +uëÖ%¢~øÁõUöìÙCDO<ñD‹-.¸à‚¯¾újݺuëׯ衇®¿þú°ïwTÀçK:#©YÙ‘Y£Ó¸Q ¹/2>›j*%âvk•ü1¸,MÄ»5Ù"#O³gfÿq´Ç{ÇBG3w4{4,BGk²>ZK[€æ¹£F5 }´†ž#€®‰®8:tˆˆjÖ¬©Ù^«V-":pà€ë«|óÍ7YYY9997ß|3Û²qãÆ‘#GN›6­gÏžMš4 û®‡ÂE‘‘ÑåÖÙÕ33ôÖè6¬M#‹î(/gÿ1GR¿”Œn,ÎÝvR^a޳*|¸\­ft•·}lŽŒ;Z„Žb‡õöÇsÄ z8|ì#»¬ï¿ÿ }´õkàšè6ÇÔ«W/##ãàÁƒší?ÿü3U„ˆî®ò /|ôÑG܉¨{÷î¿ÿýï:ôöÛo‡}¿ƒ=Ñ€„™–»Ü:ûÃF>åÄŸ¸5:j¦&Kk´ˆ5Ç绵”'Óh¢p U¸n‘qÚ[­¼ÍÈ¢·šÑvRs>}£Œ¦E†!þÑläÖìõfèŽý.œ¶fóƒk6?È[gȲÿÝ3¶ {¸ º‰cfffݺuõÉbii)ñ¦iWátëÖíùçŸÿâ‹/¾ßA€dpØ×*mò_8a.–¥æý³J²F m'åþ1‡ˆüÕXÜX~‹a‡Žò:ÈjÇ\R­%%Õj޳ÜÑH(?žÃsG"ê6lösË'w,ÿçâÑk×'¦ëÆSEç5Û_Ì 9âüá„Ò¤ÀÑG"ÊÎÎ.***--­S§ßÈ^ÜÙÙÙî®’J¥Ž?ž‘‘Q¥J¥´µjÕªDT»ví°ï´`Ø"àðæâ³îãM—[gŸ×3ÏuÜXœ3úì1yD´c–•qºˆ9Öek…Eje´[¸ÿ9:æŽÌÚ?ûcù³LñZïŽúÓDýö.·ÎþðñœŽ£ò:ŽÊûàñÑ?X<š·Ëhô‘ƒ›¯I× }´ú$‰´8öïß¿°°pÆ —^z)Û’J¥Ö¯__¿~ýN:¹»JIIÉ Aƒºuë¶hÑ"ñŠÛ¶m#¢¶mÛ†}§ƒpˆèËvùŸ?vq«1D´¿Wãã™Ü?ZôÖ¨ÜýˆE‹IQèè¨E†)#À Z†Ýë Ò¶·ºí¤¼í“…Šr¹# “=1ÚËûpzŽ™;f}_¶QpGªÐGo»./^Wè£aÿ5ôÑ4_["-Ž×]wÝܹsŸzê©>}ú°—yóæíß¿ĈÕªUcûüòË/ß}÷]µjÕš6m*s•æÍ›wîÜùƒ>`ëY³ƒlÛ¶mÁ‚Mš44hPØwZE áD¾ØjŒæOù»fåïšÕåÖÙÇ33¶>¢“Úº!†Ç¢2Êà%nÑG ˆ5ʨ 3ƒT[­fhÜÑ:t´ÎÙ?¹;v¿fæÆÅ£‰¨÷àéï®GDý{Ny§`Ûmày“ˆhµ`ù›4ì›a@­Aó5° #âïœ LŸ>ýôÓOïÕ«WIIɦM›Ú·o¿`Á>çΪU«þüç?·nÝú7Þ¼ÊçŸ>|øðýû÷wèСeË–_}õÕG}T£F§Ÿ~ú·¿ý­÷snÛ¶maaaðU\~#².œ°Ï"¢(pʇ0ê|‘ˆòwÍ"¢çMúá7uŽgf‹5Ô†q#G^›æØÆªÄQÜ“iwq´°F§“œ›ß,ó³VF§¡#¯V›ÁgÐ$¹)‡l}ºpr¥_Û?ᎻƎÖÛ!}:=ç¼yü· ߨåÖÙDôá å³Íw6›ˆ>X<šåŽD´qy.wG2ÒG"Z½u2?¦FEXú—`ô?½ècôïk|׬‰tâHD·ÝvÛ©§žºbÅŠU«V5nÜxذa£FbQ¢ë«œuÖYûÛßfÏžýþûïïܹóŒ3θòÊ+ï¹çžÆ‡}wƒpb1Šÿüá7u>|aôy#ò ­Ñ½5Ú¢ÜI([G­™ZŸRFkÄ9Ø‹s‡Ž$W³n?.o+sGËÜ‘¬YîHDݯ™Ùýš™ï.Ïí=x:½»jÜ;ú÷œBDïL`¾8ð¼I¢AšMÜCÂÜ=¡»cÄÁðG ‚7ŒzüNã.‹iû+MŽ…/’N‰ˆ¥;¼HÍòö°ÌâFCe >n¯â_ܨð&ôKéø÷€HŽ4åé£Å½sš82xîh:‘˜;òБ*rǬýå_Rl€c÷kfÑÆå¹T¹lÍöaé#GŽ˜A2D 7zŒ×G¢S}Œ×½súP$õ®YõÄpâR‰¡`V’ÖÈâ Žˆè­íSH°Fªs¦±FCäW(Öà«5¶{ ï3-,Á mä-2NSFÖ+íß–w5嘷ŽZd8¶¹#ÅÜ‘wÉPEîHD¬`Íšc6.Ïe¹ãÆå¹ï®Ç¢Çw*ô‘äj>–‚Ü:™°æµ7Ð= Ž‘&îá"ðM—´>S¤ Yd0eäð¡†Öh8™´ÂÐLmGw´EÕœŽ%ÌÂt?z¸>*| ¹;¶ÈÈÀ^–l:2wG®LE}$Á Ù…ü­“Íz® }3r {&8FÈ"Á¢ë…* ÒL{^1ãpýªÌ5Ý XX£-~Çì²;w ¬“º8gt»òÄÆÿh;)ï3¹ju»òvL=1öàì1yÑ£ ˜;šýÕ6t$wdbek>ä±÷àéï•kÍØGªÇçMÊ¢GÖ¼v†?¦!Ñ]r0²ø4×#Öý2ðUÔ.n5Æl cþ®Yƒ:NàÖøÖö)Ìž7©ß…Ó˜5~X±BŒY‘ZŒ 'çN6XŽVܨÉ×î<¾z ެ±í$g×Ü—‡ˆU«½>^rœ=&ïì1yÅ9£Å;+¹ü áŸ$×:?oDžÙbE\"݆Ífcݯ™É›¬Ë£Ç‚ ¼ÕšxÞ¤Õ['³ÿØ?õkrÄE ƒyØc –.L+8:¦°°¹£÷„‹@™ˆ‘LRFö•yø´Ç«e0käM T‘è˜}»seÜ67'jqc\ðh¡ ¶rÝqTÞöéÆÙ6‰ˆçŽšÐ‘ÁCGbî(ôʰVk"âekÖpM•>Š£y ™ÿùcfSö íÚHÓ$Žn(,,dúÈptÝb„‹ÀGã ŽX¾Èþãó’¬Þ:¹÷àéÌOú鏯õÇäq£uÐȈNÜÈ]©]„Žkl÷€ËìÐièØv’lY¼Ýyf«Dê£Gë[4 2«Ÿ›åŽì…Ê‹ÔTÑ1ãÇò²õªq,}dúxÑù³ô‘ÍÚ#öV³wGù¨Góè‘*úf=J‚ô1ñ qtOmH$‹ÀÖ#Un…Ñt½ˆ=¤ÿð‘SN>^-£àõ±Ý¯™y¸~U¾›8Ù²þø¢5Æ+n”ìÀÐFæ[±Ë5ˆ=×^ž&6¡·áj1bèHBî¨ 5ƒ©r¯ ±v™~N[[áŽkVcëÑš‚ Tñ¦Ð7\Q¾ù”=ó^ñŸù»Ÿ £0 •‘ïÚY£>ndÕFÑ-âFkq ¦™Ú‚ϦžÇ¸Ñv2pÛA’Œ÷ÇÊÑLà¶¡2G‹s0œ œ³ýñòN,"Òèã§BèÈ0MÁ®ÎÝñƒÅ£ù¸F>=x¹;®Oó„óè‘*ô‘Œ¦ '>ݣݬ¨ª¾=“ý‘(Þ»„éc²Ÿ8 8*†}LÏpljˆ±²&Š8UÆ5›\³ùÁžWÌàÖ¸qy.Úhm2A##²q#Ç0wô»HÇVIΓ·cVN§‘yÛ¼%¦åc$ì¢G¶˜õ‡/ŒÖ»cÏ+fô¼»x4k‹y·"zd¹#‰hÍæ¹;òôQ_¹&qºÇÊî¨ù'¢G§ {& 9€Ð(ïz9ó^öŸá>ù»ŸÈßý„á|ÅùŸ?ÆF÷óIF.:ÿafDÔóŠD¤·F‹ó1´Æxn ‹IktÝ"ã-2z:4=뙎£òøTP]n-öÁ´—§}j2H~Å‚×Çö¼bÆ‹G³v™nÃfóž˜Þƒ§³Q,n$"nƈ#ÁQÞ(mî‹d^•¦ÊÊ(®:-Žú×[#Ú(cÑZ#ƒ»£BkÔ·È8µÆ¶È8¥|‚O‡÷¢ã¨¼¯¼0ŒD» Ë) ;ºxÙZãŽDôîªqw$¢5ëÆSÅ»†sÑù¿µùAqæ|$’-6c1Å‹ •k‡`åë8qÀwd"F2RFýÜršù½OL5²ùA6Ëñ‘SN*x},ULkw¸~U^þ3›²‘*/ãÆqÝA˜;útðˆO»ãzùAIôÑcÛIyÛ-[d4pwÔÌËÃaƒ»_3s£0ÞQ  Ý‘*ÚbDw¤ÊúH‚A2w$á]vbù¥­“©¢9Æ6z$è£C’Ú=“T Žøˆfð/@[ Ê"›‘‡*û"U(£&h$5ò9JH˜'™„¸qûã9¬½àƒÅ£å{bl‰TÜ(¢6Þc¡#yPFw¡£Ójµrxµšoq=ŠØæŽçÈÛ(áŽú+º#UT®ž7iuÅÀGþžz«¢lÍÿ™_yÎT·IT®½€úu,€8 žãiwYïi2É0ø’0âF®Œ|˜?SÆw &°j2±F}‘ÚÚ“7ÑgSs:ŽÊÛîƒoÅî¡°½;.BG†Ømm:jªÕ ¡#GãŽ"¼!ìÝUãxèHekÖ[­‰W¯bR‚ÍR…>êÝ‘ÃÖg¢Êo[} ¢G×@#Ä•”b”óE2WFÒ¥ŒTabg(·F":©ôÙY#‡[cX7[¼D;² ·O A££Ó"£Ùî±c†¹£Ù_yè(º£:2Ø/(;’=’ ¢;–O^ñþbvh¨lcþö)š QCþ®YÐG×@# Ä(‰ÉRÙ…5›dóï0e¤ kdu7fŠ Ckdq£hÊãF×S[û‹Õ³ÐÉ> Ð"£—­­w3 ©bm˜­Ï[…ŽT‘;²ýºãEç?¼FÐGMõ­íS,¢Ç|]ô(·£rítÏDÌã€'Êçb<í.öŸÅžùûžÎß÷4›ûÍ௅i}mšY#›²QÆùÒ½†ØZc7j¬±ã(Å(v•÷ÙÔhÍÈèG:šÁ^WNçxb˜-†I,t¬­Ë¢GÞmÍÆip˜G²ÉEzžÎfä¹èü‡×®ÏÈÕº…ªÙÛ*Þƒo mdoXûuA1Ý£7ZT€Ù£~©§mÛ¶âŠÕ@Cb–i’¬J“]ÊHDš±Œš¯(1áÊHDïLàëªZ£>nÔ”§ÃŠCG[ÛÝI7nÜkØ]LîòƒD´c–Í:CÛææ‘í „†bFh˜;²kþOö:ÿ°rèÈ)x}¬&w$"qB6öƒýú"ËEEô?ðÈò=Î`Š©ùÚMÌG¢!~Ü»ˆÔ¯“ýÄY€R5ÎpZ•&;edDYdÍÔš/0à‘kÇ5’[kt OÝxžgæ4¡[£GôEê°F:FŸN#ó¶ÍÍÙþ¸›gA²fMB»L‰;V+=úNÁM»Ìš w,Ÿ€GBÙšS>üqëd>[–¦·Z?êÑô\+ÃÃâ€,Ú¹u*¼PÃŧÝÅ#Fæ…2•¬‡Ý5KcLû÷œÂ|‘„¡ýòÖ(yÅb‰–Í´'š¨í(7¿±°F×]2ª†6FÉÞj³ ݆ÍþàqãèÑl¤#§û537êÜ‘wÉTÚÍÄ{^1ã×Çöï9åŠ5 ÙvÑ©²>®Þ:Ù0w,Ÿü¬ûH7E?÷H빘-\ ÐǰÀïõ TmMìâ}N¹Ývç·þýœøOÿË'úÖ}µ°¯à‘)#਱FqÈ» ™|‡]Œ­ÅQ³Eü:×X£Ûææ°Šäo}¬­­ÑcÁ:©Õj"Ú6÷ÄÄO†Ã,ÄñÃFó¹æõ¦ÈËv3+X‹Sp}kÖV¼6tGª([®íÄÐÏÛÏѼëówÍJ¥R±ûHtD0÷.}LögGLaÊ(ã‹T¡ŒRkØ4Çè•‘]x§`¯”é­QßOÍa£¾ ^ëѹ2Ú %o-¼'REê4É}…EúB¿uèH|Š!zÔ‡Ž|·‚å¹zwä¹c¹>V¤šÜ‘ÁþÉçåѼ1ùÖfîȶçþ˜þÓÀpºÇ/¿ü2¬g$1 ù:H8ª‰£5Ñÿ•æ(b$ÊHFA#»À•‘*W¨Ù½5ò¸ÑÌÉIO SF¶ ¡…5:ŠõÉD]‹£¼5J†Ž’Ö|èèë€Q…-2â‹-n©é.² ÙåËsmsG2yîÈà sG"Z³ùA>Ý7C3†Ä"w¤ŠèÑú“ˆžùû½-[¶¤„V®CùÀ&€Œþw™O qà."FòY©rÐHÖ¨ï§&¡½”L v$ÝÕ‘]EUÖ¨Ç,}T2ã·¢œ5†>¸ Fæ} ¸cù‹JˆeBG†áGCú]8míëcÍÆ;²Š×¹£~ ™·„·'òHæek‹èQä}Ÿ`; iFþè+G|‰ÉR©rmZ3Ù‡&ÕpjüËÒ]‘ZTF’°F/q#G²x-ƒ£"µm—Œ#kLX{µÚ †ekCºÜ:{£:2w$¢óFä¬Ù>kÙ(Ž×Ç’ù(âk/­GDl~GÍÌ©¢ošK¤hù–ÑãÅgÝ'=^|æ½hšQôÑ' Ž ­¥å{_¼+#»À}‘µèÓGMyZßO-bmÖðŒ!.E(êc`úåÓÖ.pºŠ ŸùÈ锿¼>°Y:2,º­­Ñy4܇¹#‰ú¨ ¼oÆÌ‰H=j ²\ ½ETñÙ‚èQ!ÐGå@A:b1j¢9l/Êh8ø“ÿùc†ÊÈ“E¶QŒ5huÉm¤ŠQ††¾Lܨµ]æ*ºSÛã¢H@èÈ5‘?¤Ž^¶?{Z· *…”Šek‹jµ&tdð²õF“‘ŽÜ¹>Z¸#Uèãš‚ T!‹"ú²5ã„AnŸ¢ï§ßæˆCú¨ˆ#H/,F1n|ëßωBɼÐ)^|æ½åB© $¬ƒF¦ŒÿðšÍj Öš"µE1ΦŒä6eôÃÅý·940×Öh:†2´Ñ,t3E…Ó¶Wj41’H…ÕjÃБÁ£G§ð²µõ2› ±rmæŽÄ>LXSÑR-¤™;2xM¥iY+«$¢ÇpAóµ Ž -p:Š‘xÄ(¿¢ ù7Aþî' kXú ‘*¬QTF k4알·ÍÍaú˜Y£¯=1fˆ–ÙidžSwtÆ#Ò£ a­£Lwë\ƒYµùå­¯¾]=¾0ÚQèH¼l]1›©þ¯¼`M|pp…>Z»cù„• ÒÖ©òú1ÚâC…GþÕ† zôî‹ Ý_3êÁt<Ö<…£Fi†Ze$'A#¿\¾ŽEee$ÝR1äÊYÐèÑýŽÅ-2îè½Hͧæñn^æå×ã‘è\W«mÙú|ùùØæŽŽ&7„ÍÔ#95ÍâIš?é‡y¬]7žÍWeèŽ$ÌŸÊ`oOþÆ4sGÆ[vk2òwÍ?gÌ£âÄñû:úsÖ¸ÖÇèß5Ÿ@⒉눑|VF2Ù^³¶FÍðGI¸2z~€}ÁÐ~drG%CYèHÎ{5­Ñi=ZIèh[L²Û°ÙÌÊ! }ô›1”Í'%3;†~N[kT³ÖäŽ'v~}¬ÅÑú÷œ²ZpGMùÖö)î8¨ã„|]ÙZ[•”àØ~ò ríþèˆ#H.|‘œDŒäYI7Û» Œof,VáÖ(7ê•1‚q£׬•Äi‹ SÆòÁsC^æÛòj²7}´éÈa¯ê#}4+X“8yô¨½ÞY7ž*:cl§Ðb#åËÖ†ðíe>.>í.T®}ú(~¾¨¥jk|Š÷ËKÒµo%¢·~zAü“…D¦Œ$šYIÎÙq:Ikd4ߣÖH!‰£íÎf5k…ÔÛ]Ícv(Gk´è ô.œÛé.?†•…ŽüŸüu¥1HïÕjvpq~;ZT«IÆk~)™ÍKÀß_z}Ô¬õhÞÎztW¶¶ÙyßÓqùîŽc=WRãx×”€ÄÄ›cí[ùFñ2éæÙtÊí.ªÒ$±BŒ…2² «+¯3‘ÿùcúY?̬QÓ#oN ÓÑ´FªÈ©òÄ1j­±<𓛘ÚÉÐQ F¾Z­çÄüð>ׯ{^1C=Z„Ž"åú(T® Ö|çµëÆxÞ )ÔÔ¯=ÎËÃY „޼r-¹&¡¦Z²rÝïÂi«×?Q‰.˜@ú(ãŽùîXi.ží•òËü]³lÝ‘¤£G¶F=úš¯ÍÀkN=(U[ã1Þ7Œe`õkë±fs€;âDöÀò“–j}yš*W¢ÙkãF¦Œ½OwÕ8§ÖHŽõWi÷@žª¸QoÛæ*;²Yy]¦¤ëwµš¶WÛ–˜ÙïÕjª\°f¼>–*¢GÉ‚5‡W®- Öl7ýd¾®ŒmÍÚÚ 0_ÅÞÑšÈ~•'¦ž«×ÇÄÜ5§ qñÀ£/’\» ¯bÛ~d—‡‘æßù»f™õÇXf“~“œ5ö<Ýõƒµž XÙÚ'kô•kÓ~sâu8׿>Ê´Èèq=j+×kÍÝQ“;–J®¨_¯Þ:Y2w4äD (1 m²üOûžv=R„õ1 {†ƒÄQ=H­qú+M¾$­A&b¬´¿:e$ó®j3kä£Å ŽÖȃF¶=Ùq#¿"©hd1G?BG™ ÑûƒbèÈø`ñh>€Ù™¸ Óè8 ¶ xjBG@z̉DÈqJÔ¾ÓË¥ùðG$Ž ¢ðˆ‘QnrúMe$£pY…zíºñâŸ$­‘¡QFJk,/Yzkd ,nLpÐhFùœ£&飻БQ=¾>Öb¥A³d‘÷\¯]7Þ¬Qfµ‰;êgEÐïÆrG²ü 0Œ v«økþî'ä?Í=€¦{&Ý€8‚ha]’Öγ£éžvR•.¿Š"e$óÚ4™ì‚í\ں㚊Q"ktcmÝ‘X¬xÖ}TùC@”HSðH¸#9)[#z>qáàÑõCõÇ1œ[ÇÙ"1®jÓšy5+I¼µ}Š^Éι/öï9å‚ Ž¬Ñ;щÍŠÔ®sG[\‡ŽÜC!‚¡#G£ÞCǵ¯íwá4 }´€»ã‰²€@Z»#ñX±òç@%‰üü1±oÚì#ÅiÙš=‚ðÀoõ «Úšâââ–-[zñEr¨›¼WÆzšFæ”’Êh{£†+غ°F¦Œ| Ö˜¤"µõèÆ_-cxNãFíÕ†Öøá £]ßëHõV“Ãöj‹X•Ùu{5§àõ±ú™óùMÛÎÝh6™wÒØwR›”ùŸ?ÆóBý_µ3¿Jè#9옡ŠÒÁã'²«:ñwÍ$Ž ¼tI»Ø¿Òµ*>^­?gÅUddÔÐlæ^Ce$kÔÌûÍaß|¯Õ/žëkkŒ¶=12¹£‹"µ£Ð‘­v­6kŒZµZ!åéãâÑ$¡òhÖ”/Xs4õk©ÍÝñâ³îc…C)Ô|ÚèåÒðZ.¢GBå¨âü…ûâÀ“oÒÿUìn±n£öc˜;K÷VÛŽw4 ÉÉ FvA¯ŒÊ‹Ô1Š•tRû=´Ñº<íe¤£ ¢P­6éhHïÁÓß5×GÛ‘Ž¼`-nt´Þà£ÜQlk³žÄQÆIˆ+ýI·%÷âÇ‘õ„ŽN×»Båxâ|ÁÚ9â_5Žè%b$”‘ìºdd²,5Ã0e ¸H½õùv!^Y—EèèÅeBG_5F-t”l‘‘¤û53ß]žË^ÞïºMÍÜ‘*>šMÜÈ÷4tG[Ééâ³î3œ‡oÉ·«Y³èQ¾‡š}4I~@9ª\#z®ÁKG=i>Æ‘)£µ/Z°úÈKš-±˜ôÛµ5r_äs «²F’G‹;ΆW–W—çZ?JQ‹ ;z-;JZ£ëa޽‘Ž’ÃIb¤#m¬GÆ»«Æ‘NŽtÔ`6k£f3w$"æŽì²Ø§YÞÚÚÉ$w4Þ³rôh³ó¾§#8ê1Á|׬8ª'=ÅQ2b´€)£As´\9;¬I¿-”‘ŒÊÓTy6GÍWŽ#k$çq£F-¾†¹5Z#:¥­ Y¤Ö¸£’"µ™8:ÊvÇX´È04îH:}´G’sG†Ù‚„âH•Ý‘Ã%’ÿü ÑÉÕŒ¶þ™@‚í*ÁwÍ”ª'Tù"™'‹âvDú¤Œ$=é·‹ ±üáÒÕ¹ü³FQË««ÆÙ~ËóÛʇöoš[^ÝŽBEU¬Y«ÚhX°wÚ©s»Æ-?ÒQƒ¦x-3§£5|Òoª<편ÃKw¼èü‡óu<ÿóÇdjÖädêo™.>5„ü§"šf€SðZQO:$Ž_ëËòi1Ú¢Y0†cñYéHÉCÐH•­Q³T ™ ®WkT9ÔÁVåãFn"›^C:} ¥'†-Ù¢P›ÄÐÑu5BG3ô¡#‡§ ÖT9VäïPÍ€c¹£Í|®d¾Š}²£ÇÇr ¾kÖ q0ËÅr‰43HÛˆÑëŽ}w!Ÿ»Q¡2’yÐHjþm¤™ Ø‘5Z`±B »`±¡ßÖH¤÷RI'µÚ°‡Ž£†ëБ#¦ÖvɈˆ±¢Ù¼ß.rG å}0Â牡JJ¶ËPEô(鎈@=ŽêÑ|Az÷EÛëêW²æ*)ÎÑÈáÁ2ÊHBÐÈìЋµdœZ£EÜ("†‹¬çÅ¢)a‡U-õ£PëÑÓp^IÄöjCÊõ±b!%…/fýƒÊÝQÿ ÃUR3᎙G:*[³ÝEìóõk ŽÀ /-Òzƒ$×Ó1ú3‰£Æ&e&ýfÊhð`²ü ™äÖYÜÈ}QSbóhÞãFCº_3ÓÑ Å¤"nüð…Ñ<ûŒÂ°K%DaÌ¢ˆü¼<ÞCGöÆyçõ±d¤ŽBGMi»Ü±Ò_Å@¥B"õ‹zÌOìÖj UŽ­vvX†f»½õïç}´ª}+¢G !}Ç×^{méÒ¥EEE5jÔèÓ§Onnnýúõ•9v‰#÷Å׊ÛßN-c$ ’)£ ÝTPËiGÿ¬Q”ÅòÑWFër¢Y¤¶‹èQyÜÈOÆ‹­ê­1:¡£¡)êq玚~Æ9oD^è¡£ˆ@z‰ˆ»#Câ,vg«ÊIÚËw*z$Wú˜àX.ÁwÍš4Ç9sæÌ;·fÍš]ºt)))ù׿þõ›ßüfáÂ…YYYÞq4óE=ÖiÛFm¦xm;Ý7'\e$Ëò4™¯ikmü²æËÌ‹5R4ŠÔ†G#£Y{ü°F~>®EÍÐDÃGª,‹’OŠqÔ£QI[ƒ ÀIx7Ù†ô.Ü‘Ã%’¯Ih}œò¹åÊÖ~O¾ã®OÑ©3$Ø®|׬IÇRuaaá¼yó²³³—-[Ö¨Q#"š:uêÂ… gÍš5qâİÏÎwä}‘Ã÷Ñ£/’É<ŽfÓ}‹ qÞoò4’‰5Zø¢ Þ­Ñ'l5¥|=C¥­~©Í*Ô¿½aÖ¦FÜ^íÂÅý7:qÇî×Ì,pGžíifÌQµ’µ;Êë×lW´-XÑEç?ü–‘;ò-¬Í»¤Í>"ØvɲµüGw“︈Q¹”ž‰ã#<²xñâG}ôꫯf[ÊÊÊ.¸à‚ÌÌÌ‚‚‚*Uªx<~4G¾hO^ Óîj%™H?&qôn¢)ÑÀó&­Þ:Ùz…\³¯=%Öp‘ÚðÈT1tÏãtß¶gè4t´×dèÈ”Q|TÀä[èÈàîȇ[ˆ)™8’çБ#¾ã,ÞJ®sG‘·¶OáÎ'¢ù܈HÙšõõ*™¿ïiÛÙvd”‘,ƒF¬‘;¢ö2wJ×Öh7†…ÓX‹ó¡7 “DÒ%{¨½»£Å ° ff÷kfn|uL½=¯˜ñnåБ£—ÈËsm_$¶ó»€¿5é¥`­ÁÐ 'µž;Vœ9Ü‘;’tô(~fšÙ!Y~t£r†¤8ÒÑ…2F|¤£ï®Ç^äk…eZô'&3Ò‘¤;Z¿%Ù%ƒ©b¼£ín~O¾ãb4¹ë_ûz£Hð@Àß5kÒ.q¬W¯^FFÆÁƒ5ÛþùgªÈã‚—ñ‹ú ’¡|©†Ì$;î"F/ÊÈ0üÈ–™ú›¼5Ê$¯BM*¬‘Xö…ÑD$£b®³F³‚u(³|³Ð‘|Kõ÷=ÜÐQC¥e3Å.à£MlŒQ˜;’ój¿»§Õ¾ÕÝZ¯è¹NÒN333ëÖ­{àÀÍöÒÒR"b³óDåý.ìPƒt„íÔßâŸôkàŒl…íÕ®eÈÏnF¼ŠÔ†H–­£S¡ö2ÒñÃF‹÷ÚÅc—‘Žzž¾¶"täðŠ)3ÒÑ]ÁZ›å€¿ÁóM$R¹;R”ÖŒgÕEåhH;q$¢ìì좢¢ÒÒÒ:uêðÅÅÅìOaŸ)¢/z‘<†¾W†]vÑ%-¹3ÇxÕAß Ó¤têo Û#[¤ö8´Ñ=ú×.£ ƒÏ™2Š y³EA¾»jœ’ ]Òó+ܱÒçÊ©ÖÉIŒë‰]X ‹Ê5×G¸c"IÇçõ‰'žxæ™gòòò.½ôR¶%•JõìÙ³¬¬lÆ ÕªUóx|µc-òEùNW‘Y-FáÔß’s4ú¤Œ¤¨½Úº†beä¿8Jz’ÙGUq#ì¨Ätüðí”4^Ä1#­ÇARå6mÍÑlG:’Ý`G†˜;êûäŽw¤¯7èb¨:#©š1ŽiÄu×]7wîܧžzªOŸ>µjÕ"¢yóæíß¿ĈÞ­Q \ÉÒðä{¥](¦«ÅXÌË£mîúy…|SFò?h$ÿ­Q-±F2É©YîdÖ¨ +ÝS„Ž&ô»pš8G÷šŠÙÅ5o ™‚µ$bR¹Ýàæ46éGîH”­É/cÁ‰±†îÆ>ZvtÙ(FÓ%düœôÛKë´»è‘íñ‰£z GGõh™u¥½Xf0«ÅóÔÐÑ'—ÓÙeŠ2É Ñlej34ãåßÚ>Å{ZéÅõ0qäÿüûêòÇÁÐ ƒù 6Ñ ™5ª J(„ŽîŽñ Ëß8¬Oì½cÈC( +×i›8BÕÃÅQ²9Ú C5T2~1˜ÕbH¢`íî£Ê2ÊwXËcö ÁKëI:¼[#ɉ£kkÑdXÖÈðâŽÖY£Bwô4&F)bîÈÑüê ËÉá°l§Ÿ{A®7è®i’G8YÚ¶mKD£Û¶mûÅ_Í.JŽi¸ZŒ wt4•£øázMòS‰uXŸy¯Í>»Ÿ ‰uelçu‹—5Špƒ ÑîÜѶBí]Y›vïÁÓß]5îHQGQ"mߘjÝ‘Ò&zÔW¥Ä=ã8ðâœa¡ ÅÑPòTMÖcxC’]Ò2{ÚœÏ(ëôÓY‡µ„5ÊtaÛäpd¤!¡X#Ç…>*Gr㽸ã¦WÇðS…8rbáŽÌÅ™½úzwìÜ‘‚ ·Ëw[ÆEK ŽÀ †ú¨)U«*RkþêÇj1$1w_4[0ƦœíüƒÒÁìßvÊHê¬Q¦…S‰5’´8º°F¾?3Hÿ¦˜!skdÈ»££nwî(Z#?=¸#…15ˆSwÔ QIÍbÖDÇÉŸèÑbŠGòüe}9I[qDWµ'˜ 2}$A²×½|[Œ¤á±¿ú±Z -ÃQ¸À ÇZ"}UF’«M“tyš<j¤0¬Ñ)¢5»ü÷å¹d®þY#±Šð«cl%É¿j~|2_È·WËÓïÂikäÜñ¢ó^-áŽfÝÓš-ù['“Î& =òâ³î“wG_Œ¡ŠµªÉIô(~?b–_ ®³Þv}wLOðĨD4È 6°Ë½zõb Hïã5‚µÕbÈó‚1’ŸŒnfÿ*h¤[££¸Qcú¿’N}µFŽuîèÎåCG}Ш9·X„Ž›^•ÍÆdÐ?à~„ޤº`Mn+Ñf“{;rGòÁ2Š­ƒCª˜yÇˬ‰œñ1mGˆ£J˜8æçç_|ñÅfÝ3šy¿£¶Z ™ÏþÀj1dT±X*¦|'ÊHJƒF‚5íF‚>zñGža&I^²Fw´¶F~z^ìY¹8:bßý}õ}NSêµëƾ&ß)°zSÈBÌdÑlO[}$u«Å8Ú‡¼Íþ­pµ§WçÃõ¿­-ÖòR4’Ý FJŠ5’sq$é¾C\ˆ#éÜQɸF3w” 5çdèÈÖfd¸xâpG=†6–;*_f°|g¿gÞñ¿c†ª[·nçÎ>¼eË–£GÞsÏ=wÝåàÝëNõ‘T¯Cº7¡ëq^Šî~‡4’Rk$‰!’†ƒº¬¿ãÃÚhq>TQ¶öÉɳ8² QsÀ ÝQTFþ¸&Ží. ¹£á{Ü¢zî*ÕäÖ©â£Õzzpýoø°fü¶ÍGf£°pˆcºðÒK/Mž<¹sçÎóçÏÏÊÊ"¢;w6ì§Ÿ~Z¾|y»víÂ>A©ækŽ»i õ˜U«]tÃxŸý[^"](#ù05I—¨j¬a¬Þ:YÜSc“®m#˜²&?1R±Ä³¡5òssçŽzkä ÀõÊ(>h‘ )Aî¨'׬‹Ï¼W~ܳ¯î Ãg*‚IDATHÂÇ££¥b\üª~±AôÑÖ @ÓVÓnÇüü|"zà˜5QëÖ­GŽùØc½÷Þ{QGî‹2¤£i õØöÇh¯å8HU ÆTúÉ+| Šé·2’êò4IÌN¬‘ôÅ5Ýx2iª°°Fb+é½>Ö©;šYcX(#£ß…ÓÖºŠ]Ðwàcký|~-¦uÔsÑù¯v⎒ ê8!_ÎËga”û!‡ƒž],Ã?Ξëìñ©}«Ç)]WÓŽývj™»X„ÏøHaÏÚ“<ÒN‹‹‹kÖ¬Ù¡CqcëÖ­‰hÏž=aŸ]%l'ao ùÒlAj3 Ò{Äh{u3‰$jÓ^yš¼Y£¶oß^S1tX>¤gíºñåãöV#“#ÚÞ#§îhm}>ö÷Uã<†Ž½O·òô:¼÷Å?Kcý=~¿ú]8퇃ý`ày“Þ’}rGOúÞ:ípîns¢)œñ[ƒíR1Tñm}ŒiWªþôÓO333Û´i#n|öÙgóòòrssGŒö ãtÅ3ƒT²`ŒÇ•ÝMåHº¦ô/h$¥åi’¶FV–÷KÃÕ8Ø%“E{)Rk®¸vÝxëS;*ÁÛº£Ø c{4Us:ÚFŒf`d Öé’! ÖTQ³–ÝÙw$WŸÃ~Ïø­Áãà^ôQ<‚BçIÛRuÚ‰£žM›6Ýu×]G]»vmÆ Ã>+œê#UžHœüY0F¾T­J÷<’/bÐHþX££¯LÛ9ÙÞ2¢5òíò6æÈù [¸££ò´ª‘Žä6bŒ²8ÜQ³³ÏîHæ_ôo­jCSdxœ²ÑûÄÆJÌ☎”••-Y²dÆŒeee³gÏ`|½y·F~/z^1C¾ÆúP’µu2μ;& t$¸£Åù;qGIA´Æ¿¿õ(ñEýêÄ1]xñŧM›vÓM7Mš¤x2°(àZ©Â ½GŒòS…“n k¿•‘\­L¨ÁL"fân$ØU`âHºéÁUY#¿#ªŽfëŽbmZÕƒ#^7‚¡ãZWÓˆŠH¾8}GJ„;’î3Ö}Ð֌߶¥g†ÅnAê#Ä1-H¥RüñÇ ªW¯öéø…w}$çóµzŸ ÁÍPçWñ>û£Ùº‰´Fqv!0k¯Û{ðtåÖØ¿ç”w &øíŽò}Ó±pÇ¿¯–ŠÞ©r¿—ÓW2{+Ù®Øîè4—Á‘8R îH&z2+Ç8*^‡»Ø KW£Ç´à»ï¾ëÕ«WVVV«V­ô½êª«† ö9*ÃE󵈭Az¬k›…ŽåÍ0e$‡³?¢ÿŠŠ©5òk± .‚C“Z»#C˜5‘¯âèbª¨¬õšÈ›¨-ßâèÅLî¢A£:kSsÍ Ž‚wGëÇz™Ô"˜èÑ»/jp§úhÓZ ŽiÁÖ­[o¼ñF³¿ÞqÇ£GûÕã%€$#ƒT²©Ì'C³Ò ‹zÓŸõªfÔ/8kkä×b)_²ôn ÓAn ŸÜѶ6­ü±ò:F‰f¯§âHá¹£!ùŸ?&?ÏÀÈ|¾9íŽÇè‘ìÆ»3ü+=ËtU[œ†uúq Ç£>’çÉ INõH&‘Wô3h$'Sù‹"ZÑ|~•FÜÅ2ë(±FvÙ»äi¬QÕaÅã³ ^ü/0weÑé«"jîèHIÚËwŽäøÅ§lt„¤&šáz­j~uÍ-ÊOÖ£¹Š^– Ž -ð®äa¤ëß»$,±ZþO‰Ud| ÉÉœáf;F±°Fþ'ò§S˜Aãy®%I’Y‡¯wd7á}¥i_ÝÑP]¿0|-XSš¹#ErÊFÍc½ZŒ’Ó• âÒ%úHNÆAºŸÜrâžòƒWþ´uQ›&ŸƒFùÅZˆnâ>¤tnB~CÏs!y†A£÷ÃÞÄ;¼ßqµâ(“,ºxyD-t¤˜»#Å0ztºZ ¢Ö«ÅxÉ/©²>BAÚ¡JÉ|¤ëÏ&G×ÕL3‘ ‘œ[£æ;OÚ¯ùºŽ5Š;«Z …ìæÿs$y2Öèô˜šãSå,3 îè´ LèHpGÛ«èŽäªÕZÄõ¢bÊõÑéj1JôñË/¿„8‚tÄcóµnäCÊhÅSn§Ê3SX|jû4’SÅ´ü¶Óô‡FÍùUØkè‘yM™#éy’Öèè˜2ÇËùì‰Á<ãwt$Žaw$·Ÿœ†×²]TЧ)%‘œÙÑöÞËßéiPGPŽÂ’Á%RæãL‰2üÕH"*#ù_žvö=wÖ}Ü#eêÈ9©˜îQ¡ç9²FÉcŠ'ËA“AŠ£Æ½<},XSüÝ‘œWBœº#¹Š=®âj12®õØ7CÊß(UCÁ Ôêcqq1µlÙ’ýÓâ§­re4Ø¿ò¹Ž¦i ¬ÂÔèô*úè·5r4Ñ£ZkxÞ¤Õ['+wGò6\’ÇE«UÌßétÚN‘ˆ¬)Jƒ5Q½l?µÞú÷sÁôMSPÑ£Fž|“÷9wT­ã‡,Z\%ñ q¦X¼ ûu"†”ûu¡ŒÄ¦÷PÎ& } ×Å}ØËÍ‘+E ÁUY#s;±›;š2*2Š[,Ü1qt÷8Ø"‡Á¬7Mêú¦í¯¨4z”\3&°ÕbÈs¬ÈP"‰ !Ž Ž~fùö°5H×ÊèôZ†Ó@Š•)½DFÄ5û³ AZ#ƒ}ñ«²1ýixW=?dTF •Q¼_‰,X;Aöþr3°8²è„=Ý·Ì5[U±X-†TÈ")ý:K°>BA9®_å¿=*õÓ͆(#É-Q¨Þ5kä×bH•DX¤Dï,ËõÁ}’Q²tGkeäç‹Ð‘t¯k5d/]§# )’îH®× ŒLÙÚb͘¨­ãÅ^|’Å4âÔÊð.‘Õ¦]¬Á‘q;wÁ¡ ѯ%Ó=ÃQbü²Z½ÓÜ»&h³y…ü(XóÞɇ4âîÈ× Ò ?ÄîèøZÞÊÖ.¢ÄW‹ñ®+é3 ÑW Ž@1¡äób )ÓàâGШ½Êî'ÌÊنߣJ¨½\ËV™¨²F¾E¡ÞéoÎцÖ÷N­;ÊDŒf§‘‚µ^Åוû§StášQuGr;I­üüÞ"¾ZŒ?A¸¨ˆ#ð…‡wXHdA£ÅU* ˆäuº ÊÓÖ×2ÓGïA#™x’£!¶z§?¸Ì‘ý0QUwÁð4‚wGýF™N,7¯jŸCGа;’ŠèÑÑòÓÞãCµ«Å¨È¢¯@„>:X3³÷&ûké‚FÛýËÏ-¼¬ÑpOªÜy­6h4ÜGfõgwÅ‘}2QëÛr1ñµæ‚G/úú’«t¸£“I$4859ïþç¢Q†£Ð@ ‹qL&_~ùå%—\²téÒsÎ9'ìs _ÉI-›á®6MDSÞ ý¶Fñ*ì‚ßÖÈ÷´6/+ މ¢´´ô‹/¾X¹rå+¯¼BD‘GF¤~êcÈàƒFÛ#“0’<7P;½®ØyÀJĤòè}D xdvXïJÒµu²k¸ ÅåeQC¿[’äŽd·µ™º›yѧŦ-öñI*’$‹œcÇŽ :ô£>ª[·nçÎ>¼eË–£GÞsÏ=wÝåø5ÇDѧOŸ}ûöñFP9Ñ 'bH‡#Mwã ÉCDdx]æ òugJÔ¿ç%†§9¬ü]9C³¿JúnÀâÈ}ñâ³î 2>ôt­X¹£µR¬›«ô¬!RYƒr^zé¥É“'wîÜyþüùYYYD´sçÎaÆýôÓOË—/o×®]Ø'h Ä1Q9r„ˆ/^¼qãÆ(‹##júHšÒ®3:€Švùµ*VË G³ây(O[¯ym¢‘ 9ó(Uf'¦äÜøõîè¢ÛÆWw´᎕®"ñÆÔÏí¯Aj‰ê¨.6­A%2p†D†‹†Ü|óÍ›7oþë_ÿÚ¡C¾ñ/ùËc=–››;bĈ°OЈc2™0aÂk¯½}qdDPf1¤{ÿó`'¶ìšU~Væ_Ã~;YåZ•í­Þ:yPÇ omŸ¢PòuœÀ.«=¬÷ªºî(†‹×¾;ºGr뎶ûè§÷"?g^Ô^Ñÿè1°º³žô‘E‘^½zýòË/[·n7 >üw¿ûÝäÉ~-Ëîˆc2‰—82"«¤ŸÖ'¨qd´òõ‰LÈ`l@=*±F– *”<ÍUVs| ª÷ÜìêÌ%}Q$}ÜÑ…JÝë¾éÀ›ÖècˆšÈIv%Ú–O?ý433³M›6âÆgŸ}6//‰#š8Š##ÊúH®†Bª M÷¬@ï¤bnB†˜ rÞÚ>…<´uëÈ«Js]ŸžæP^º¼Ù…€;î£V°¶VCÙy¸"ïŽä¡l-Ö·z†‹’lÚ´é®»î:zôèÚµk6löéqL&ñGFô†Ê …ô)h4½¢“Úëzh£!W=×z,$œ{žaÐèñ˜'¬$uÑ·Î.xiv¡¸¹£…NnÀBö¬;’Dôh¨‰ÅÅÅDÔ¢E ·èÈ¢-eeeK–,™1cFYYÙìÙ³ö™qL&qGNÄH†a éwШ½bEaΩ>z™¯G¼º£žk=ÖÖÈ—3™£9=¦æøäCùÛÑd餮ÙÅËuýsG>‡¨†`f^ ÒÉC‚È®è(MdúHdô#€ˆ°yóæÉ“'ïÚµ«qãÆÓ¦MëÞ½{ØgdÄ1™$F±ÐG’îÈ6û5Š[ÊOßÞ³«»›î‘ì¢AŽŒœÉ[£ü1eÎVUíÛ¶c,{Þc玎Ñýï± Ü‘œ·Ë“èÑp)jwßã>ñ믿Μ9sÑ¢EÕ«W1bÄðáÃÙ¼BÝqüøñ{ï½wõêÕ ˜4iR£FÂ>#) ŽÉ$‘âȈ‘>’œA* -ö¤ÊÚá“5Š;(9†~æúhÇNrJªÖÝu½ïŽÖ¿"DBžÙÊ•àŽ†KùíìB!‹ÞyñŧM›vÓM7Mš¤rÎZ¿8&“‹##vCg˜AÞ÷!h´¸Ãû FÉ=ͦ{$WÑ Glµö~4~L³¨Ï¿Ú·!^º¤×ù5¦(9«vZ¹cèŽhŒ>Æî³7²¤R©þøãÕ«WûtqL&‰GN|H/åiw %I}4½º«Iø4å1aú¨êhTÙù¼ø¨kwä%i¿#aU×uaŠI®;ê7Fÿ;Wß=ƒpѾûî»^½zeeeµjÕJÿ׫®ºjذaaŸ£1Gâ¥$¤ÿË©^×ÅÜ=^²(ÑÆÔZ#)Gªp>ïçénþ  ‡¸»®Öu]YièŽfKTÇúë²è7[·n½ñÆÍþzÇwŒ=:ìs4â’CôõQÿS¾¼„-=¹±ëцוÔGSö` ­‘ŸOþç© U§|Ï ÛÀäôº¢,Ú¾“펆ۓô5ª¯DGÿs Ä$¨}ÌqY$óÁC¶¤ª Ñt–½Ö¤Õ˜ü]³”ŒD$£) ÕY•ŒÚö€SàS&É_‘_v“‹ÇÜÓÁ92ábÔ>WAˆ@A2 ÷cNF 1 ][£|H©|ÙkíA*—È];™4êoÅc·2JFî(?·Î‰0wÔË¢—×^\Ü1¦#=â® }qÉ&à@UK2ˆ‰“‡ò´»¶kqZfÖX~£¹»ÙmÃ9w‡%óJ±ZwtªŒâ™øçŽÜ _0»£;”¼"ëHÓV_‚J>¡iĤþ}Ò¹e©Á{çµÚ ÑðVäÌÂíô7JNÖ¡±=¬Â"¸ä]°8…Í.ò•h¯Ã$BrG8"ǧ6ècÚqi„ªO:_eQ#}ôÒCÃpb¶ Ããdº(HBòlƒFÃPxXïEpvA‹{›€“ãè}wÔkbšµ¡'øÄ¤®õQU%Ú23øxù‚'.Âvþî'\H›S)1Ó2ù Ñð4Ö…;žðEa|g(îè¥ÍåÄA¢äŽÐD30;7ˆ#HS$õ1àpQ³R4l—Ž%ƒFÛÖk™‹ Q>šÃúd¢ú3'‹ñ‚žï”ÓNñL|mÏ·¹®+w4ÜŽ¯-„‹ ` Ž ­1ÔÇÊ¢Q•ûØé£Ó Ñð˜™yÑ;ýY)<¦­;Z(£xO}uGëNм;jdßP†@Aˆ@8ñ)œŸŸO–E=®»g8Ž¢ ³ÊµGkO†)£xn iæŽ2Ê(ÞMåîhë‹ÚÜ­#mN*•’Y19 ,‚ˆqifHPLûÝé£LÐhp­ÊÑ£ëò´ÙùRq<¡SJ)º£#eï¬wtä‹ÚÃõ;ƒÂR0lD ˆ#H;l¸§ƒ>ºžŸ¹üê)‘Ê ±òD*j§T›e2wt§Œâ½öÞ"í5lÄE_tñ“†d"ÃÅ/¿üò’K.Yºté9çœö¹O@AZàâƒ8©úè.hÔD8ZT0=M[èOo ?¾²ûîªEZ”캣&YTò-“x}L¤,ŠLž<ù¥—^‚8&ˆ#V$L=åÑM³ìiEDóóq7ÙÎXämn~Î¥ÍÑùœˆuWDÜÑc¬(Iòô1ñ•èÒÒÒ/¾øbåÊ•¯¼ò AÄ{  ƒF%îâ¨ÇVíd@îÜQõ¹¾ãŽÎÇž†’1‹A~•Ä].ŠôéÓgß¾}üŸÇq@–˜fåú¨4h4ü+I{›Óó±]Ì:.ÊXéÜ|pGëU~òî–,ê‰W÷LZÉ¢HAAÁ‘#GˆhñâÅ7n„8&ˆ#މcéEÍ‚FÃ=íg1t½ ±ÉL@äz9o;w”´7…î(1úq’c#ø•å2¦¿6ý`„ ¯½öÄ1@Al`:EEE5jÔèÓ§OnnnýúõC<ŸtÐGyeÔ^Åhx¥ÓCYÝL@¶5âÀ?%÷Ó~Ì¢B¢£i.ZqL GæÌ™3wîÜš5kvéÒ¥¤¤ä_ÿú×o~ó›… fee…{b ÖGëÚ´ýu5Sáx®•ó#³ >M9îT ï²Ó ±á&;¢Ä飋 Ñì Þc|n*¬ñÄ1…2±ÇLÔéì†ÆFÁº#÷ÅÄ|¦¨DËqL Gyä‘Å‹?úè£W_}5ÛRVVvÁdffT©R%ì,'Žß"z}ô..ü8ü²Â*œ çÄ‘Õe¢2£òè‘<ÎÚ£³FsGG—Ñ8‹„Ïô°æ§ÐI®*maí®Y”–¾¨G -ô1ŽNˆ#ˆ:‡"¢š5kj¶×ªU‹ˆ8ö Úúh­Œ¶ƒŒ 9RLGekÛ‰$•”ìù’¿ïiêÂeùèRø¢C}D¸€<GuêÕ«—‘‘qðàAÍöŸþ™*rÇèS}”ôÛNE¬£GwÒ&S¶v4ÄÜF}‡v]£×œ¼m|Q‚-Z@pºªA 8ÿüóO:é¤ 6ˆŸ{î¹Y³fÍš5kÈ!aŸ 3bT ³Ž%ƒF34iœª9€Î=.ï|'æ2z4¼çŽ'_t„þÝ—ŸsDˆ#ˆ—_~yQQѦM›êÔ©Ã7Ž?~ùòå‹-êÖ­[Ø'è’¸|cNÙC”ñÄqö=MêFòsS8÷¸í‰I>Êݾ(L¸£Ÿs„ ÄÄ€'žxâ™gžÉËË»ôÒKÙ–T*Õ³gϲ²² 6T«V-ìôDŒôñD ׳2r¸;*›——7bĈÜÜܰÏN ±øº*Yc¹2²Žuú¨°1E{Ì of]<®O ¾(‰ªà0ïGBââÁ‚ ¦OŸ~úé§÷êÕ«¤¤dÓ¦MíÛ·_°`~šžX‹¯+ïú(*£f»’^fU´=¾ûûîpè$>¨-ð¯Í%ïGâbÃÊ•+W¬XññÇ7nܸ[·n£FbécòˆÅ×UFF†»È,ÝË]ôh¡tJ²ÌJ)¦ŠÀÕÖhÙ-âóÙ ôDG"JôGë;Šm•Q³³£LοÞãÓ7wDÄhMôß$ˆ#Q'⤭>:RFñZJÚ™å(|åî_´á"‘â@<ˆ²>·lÙR¹c™U™]5”)[Kö¾¸³a³ãàsXd€Èq NDGÙ¢m ¶t›&zT¨VšÉ ½·§(™^‡6.dQƒªér;ßòÖ¿ŸóxLñÈ Um.d23%»`ûIkåÆäÉ"gΜ9sçέY³f—.]JJJþõ¯ýæ7¿Y¸paVVVا€z Ž$%¤r}ñ2Ý£¨Œ"^¢GCUY¯<ÄÓÅlÂÈÄW¢ ¯¼òÊSO=uÙ²e5"¢©S§.\¸pذa'N ûìPÄ€DáB½‡‹Ö¸˜îÑL9.¢G‹#« 2I]×K¬õ1ÁᢞGydñâÅ>úèÕW_Ͷ”••]pÁ™™™UªT ûP Ä€b«~Ë¢ÛèQRE$ÃByõ^XWû‰#}L+Y¹üòËwîÜùÞ{ï5hЀo3fÌÊ•+—,YÒ¥K—°OÅd†}õ°on½>†8.•J™E.”‘1è”Û­SÙöh7AþL¬Ãž¦(ëcâ+ÑÖ¤R©¢¢¢ ˆÖHDmÚ´!¢={ö@Aò€8XD}$¢üüüp僩•¨®•‘Ãlt«ò¿z?šÍÝ5}LÛpQÏÁƒËÊÊêÕ«§Ù^·n]"úá‡Â>AÔq ~µGdòpQ½(#‡„……JL”,gØ kînQ)pƒ„,rèÐ!"ªY³¦f{­ZµˆèÀaŸ ê8l¿ÚÍêסÀ*×oýû9%îÈðnòu–ä¾L™æ•h[êÕ«—‘‘qðàAÍöŸþ™*rGÄ€xãô«=:úÈ£GªÇz¢ùATÉ(/[kN8"øW¿F¸(OfffݺuõÉbii)±ÙyHG⻯öH飻²5óEýÙ3.hq†!>>Ö¨ÒGÈ¢k²³³‹ŠŠJKKëÔ©Ã7²g$;;;ì³@=GÒ—ˆè£ÓQ¶^Èþä:zäJeeq§E%ôïß¿°°pÆ —^z)Û’J¥Ö¯__¿~ýN:…}v¨ó8ˆ"3šÍºrí4Jt·¬?m»g"òD'†¯¿þºÿþÍ›7íµ×XO̳Ï>›——7bĈÜÜܰÏõ@•=€4Œ½TŸm£ÇØEŒ2ˆ$ÂE_Y°`ÁôéÓO?ýô^½z•””lÚ´©}ûö ,ÐOÓ@€8!¾üòËK.¹déÒ¥çœsN¸g}ä£Éó€E3ïL@Ähd1HV®\¹bÅŠ?þ¸qãÆÝºu5jKHã@„X´hQاPNèÃ]7Í¢õ˜Èˆ‘aX‰ýg@â2dÈ!CÂ> ‚‰#áSZZúÅ_¬\¹ò•W^!¢($Ž"áj‡÷ùzD1J†‹ÐG€w8>C† Ù·o_ØgaJ¸é£’è1y£‹Jtè)2  q | Ž9BD‹/Þ¸qcÔG‘{r½L÷˜˜:U?z«î@â@øôìÙ“]X·n]ØçbCˆ+_;]i&1ÊèG›‹ø<Âò@n«îi[¹NFU:°žhX#ÀG€{BÑG³è1î#&ÐDˆ#qìØ±çž{Žÿ³jÕªwÜqGØ'¥†°ô‘Eâ–° 7`¸! F@ˆ£G>þøãüŸ'Ÿ|rbÄ‘!ê#¢A15EB¸ˆ-G"+++!ÄY$ˆ#À0k •h@’€8|$=õ1­ÂÅè,°ˆ#ÀwÒAÓJE¢³À: Ž€€H¤>¦m%Z³À: MÀ’ƒ€ˆµo¥m¸(Ò§Oqu”ªH8B vÍ×E S§NXûtq„IÄë×±NF}%F ¬q„O¤ôá"˜qD…õ²2@Ñ"0}„,Ú’àÖî€8¢ˆ+_cØ¢<‰_`àˆ# º¨j¾F¸èŽ4Y` Ä\Ô¯!‹ ˆ# 6Èè#*ÑàG@ÌÐë#ÂEˆ# ÆDdêGH°V5 NV¢Qž€`€8¢Ž|%$ø Ä]܉ ô|âH&ÐGPÄd  ˆ#¢JØ'âæqøÈ¡C‡^}õÕeË–íÝ»·víÚmÚ´¹í¶ÛzôèöypJÕ¿8vìØÐ¡C?ú裺uëvîÜùðáÃ[¶l9zôè=÷Üs×]w…}vƒÄàK—.ýè£:wî<þü¬¬,"Ú¹sç°aÞ~úé~ýúµk×.ìà ŒqøE~~>=ðÀ̉¨uëÖ#GŽ,++{ï½÷Â>;{:ô /\vÙeçž{n¯^½†‹Óÿ@âð‹âââš5kvèÐAÜØºuk"Ú³gOØggñcÇn½õVVg¿à‚ >¼yóæ‚‚ÔÙé ÄàÏ>ûlf¦öCæ“O>!¢3Î8#ì³³uvЃR5À/Ú·oߦMq˦M›æÍ›wòÉ'_yå•aŸ q¯³€@APVV¶páÂ#FG+Ž?~ï½÷& Î A©à {÷î%¢C‡íرCÿ×è|cQg€€AâZâRg€€8€–¸×ÙÀ'Pª-q¯³€O qR`­j ÄHqR@€G ÄHqR@€G ÄHqR@€G ÄHqR@€G ÄHqR@€G ÄHqR@€G ÄHqR@€G ÄHqR@€G ÄHqR@€G ÄHqR@€G ÄHqR@€G Åÿ¯zx;f¬uIEND®B`‚statistics-release-1.6.3/docs/assets/nakacdf_101.png000066400000000000000000001007321456127120000222420ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A€IDATxÚíÝy\TUÿðsYD\@EÁmP$±4TÂ,IJ@r¥Ü2—´L+³\JÍÙfÒc©¨åö˜Û%.”¹+„ò(91"†âB²:3÷÷ÇÕif`–;sν÷ó~ñêwîÜùÞ3|üž»p<Ï€º¸Ñ.¤Á¬‚àVAp« 8€UÀ*Ž ²œœîžqãÆ™sæ !ääÉ“Ï=÷\ûöí›5kuèÐ!Ãs­9Æqÿþý©©©Â÷óæÍ[·n]·nÝÜÝÝ[µj5yòdC:ÏÍÍýý÷ßk´6mÚ¬[·Îp¨è‡~XVVæŠH ª³gÏ~Ã<ðÀÂ7 £•••†GW­ZexÖ³Ï>köwÔÈ‘# ë,X°@X8tèPaÉÇ,,ñõõÍÉɱik<Ï?~Üßßßx…àà`Ãs,X`_y?ü°Éf›7oþùçŸ{zz/ä8îСCÂsW­Z%,ìÙ³§¥>|¸°ŽŸŸßßÿ]s…˜˜˜‡~øá‡Þ±cGÍ÷bÿþý&ë'×}ûöYóP8tÀ‰Þ}÷]___BÈ’%KþüóOK«mÛ¶mÛ¶m„Žã 0~üø|PxhÇŽ0û¬~øA˜3õððرcGXX˜M[«¬¬Œ¿ví!¤^½z½{÷ ÌËËžëHyYYYׯ_ïÖ­›ŸŸŸ°¤¸¸øõ×_¿sçNç΃‚‚„…<Ï'$$X?˜Ç¾>|x£Fj®°{÷îÌÌÌÌÌÌ#FX³Á¾}ûÖ«WOøþçŸvà}¥@p'jÑ¢…0á[^^>oÞ88X”w‡ã¸–-[ ß_½zµæ ¬y-ž7ÞxC”W)ÂYÕà\¯¾úêªU«ÔjõæÍ›g̘ñðÃ×\ç¹çž‹ŽŽ&„ôíÛWXRZZj8,òúõë&ëß¾}{ذaÂò9s昤=+·fè,Θ1#<<œâææö¯ýëûï¿7+i_y={öŒ‰‰!„xzzÆÇÇ -É&Mš¼öÚk«Œ5êßÿþ7!äæÍ›Vcii©áûÀÀ@±ÞfÍš]ºtÉdû– 8€sÕ«WïÓO?ŽJœ9sæÁƒk®3hÐ BÈ7ÒÒÒNŸ>™™™‘‘ñ÷ß[Úæþýû ß7lØÐ¾­Î Öx{{4hãÆŽ”g˜Œ6(|h¸&‘ÙkÜÔN8iZPóªÝv+))¾ñññ©ù¨ÙËñæß@Àé† 2`À€Xº4OuuõÛo¿ý¯ýËpIBooï-Z˜tþÌúä“O¦L™b|ùCk¶VZZjèš4ðÚ´iã`yf/ZéææÐ¡AõêÕó÷÷ŽÈ¼xñ¢Ùunݺ%TX¿~ýšyÚ,à u@@@ÍG7oÞ,´Z8Æ\aÙ²eBr2{ À>ø 11Q«Õ¯X±â·ß~+--‹‹«eƒýúõkݺ5!¤¬¬Ìøº9Vn­qãÆõë×¾Ò˜áPBGÊs†Þ½{ ßìÚµËìUŠxàÃ9Úµ;vìXuuµðý#<ââÝ)BpWèÚµ«p$¢Ù“0V¬X!|óå—_N›6­k×®—/_¶´µààào¿ýÖ¿úê«ììl›¶&\÷QøÞxö\«ÕÖ›çÚµk:Nø¾}ûö;wî4{Á#BHaa¡Z­V«ÕÆûùù}ÿý÷&÷¹°Á\§^½zK—.­¹|Ù²e=ô!ÄÍÍ­[·no¼ñFffæ!C„G·lÙbéæËîî¯üïÿ[»v­M[{ñÅ÷ïß?|øðÀÀÀ   áÇ?~¼æi"v—ç =öØ… –-[Ö¯_¿-Zxyy…††>óÌ3Ë–-;þ¼pýÈÚ¹»»ûùù=òÈ# .ÌÍÍíÕ«—ËŠ©ãxž§]¹sçNjj*!dذat·ö /lذ²råÊ—_~ÙåH‚#(ÔÔ©S322!½{÷þòË/……·oßîÔ©“0™{ìØ1œk ` … ÌÊÊ"„deeµiÓ&>>þæÍ›sæÌRc—.]zöìI»F¶ ã UQQñä“O;v¬æCÍš5;xð p\# 8€rUUUmݺuýúõyyyW®\ñ÷÷oß¾ý“O>9sæL³—œP8G° .ÇVAp« 8€UÀ*Ž`G° ‚#XÁ¬‚àVAp« 8€UÀ*Ž`Ç:äåå…††þöÛo´   Á±7n¤]øàƒªª*BȦM›Nœ8A»úÍ{üñÇ…oIÿóÆÁäçŒTÇÔx:þ¬vÖm®æP[=øJ]Dpp…šîäk†²é[â tûyް>Úþîû)ql™‚àà&¥þçÎR@”G4´&*3Ô™ -ÆAGºzÀGÑÿå”îßF³Qê±öh¨ðPhH…œåq¸› kû({ ÁÀQ¿çæ x¥ø—³fL”tF´ ï½¹¹ä¾ža€x÷ÇZßy¥ `Mh…žƒ{UƒìÛ·v ²‚ñ wï+O£á%õw•3Â×@»:B¬û”r„«ùÅÞìírŽ«ã‹ç9bæ‹·0LJÂÕõÅ×õ¥P޶©ù‡…}ÜýX‹‰u×ouF¤]©3v¾¶\hüe&#Þ[%/O£È€ˆ\(>LU×áý÷ßÿý÷iWLÖ|´ñ´TâÝÊ GT÷-‘g"¼oŸ-OŒZ~ïLž$©7YDµÌ)+tDœ Á nR‰Œ ‹&&ò„×h4*•ÊÞí1Œ³þÔ㺟*wX,fGOq£@‚#@m$ yQ*a±fR¤]‘è{h@´´‰¼·bAFd‚#€yìGF åE9'E³ÑÞwD‘³ÏȈR‚à`ŠñÈ(•¼hå“0a¬°¶¢\o¢¤Žÿ`92J"/Ê-,:í¸BÅ„EÄD¹Ap¸‹còoûyQ>aÑɧŸ(#,Êì^›` Á€ÑF£ÙÌ‹r‹®:KÙð:L¾“Žî\%2ÜI0†àJÇZ£‘Ù£äâ O<‘os E¥Cpåb­ÑÈf‹Ñ¥]~вL›‹ÆÃ(«; 8€B1Õhd02J5/ÒèõÉ./¢­!8€±“Y‹ŒÒË‹ô®|(¯¼ˆ¶"XÁ‡‘ÔÈTd”X^¤z¡Œò"Â"Ø Á„‘ƒÙ‰Œ’É‹lÜPE¨‚÷Í¡0ú^Ú{T 8€R°Ðhd$2J#/2sf²ô[ŒœJeø^ªûŒ@pE ž™ŠŒìçE¡Ó$žïë,j4•Qx°›íœŽ…ÔÈó<ÅÔÈNøâ Ïbj举xžð¼&/z9<÷KR¸{_¼Ñ€h@æè¦FŽã„ÔHo÷ÿÉ‹lEÆa‘…˜f\Žtpæò"8çø&¤ ÁäŒbj4DF*©‘Ý#{a±fQæ¢k™äs¥Â1Ž [tS#­.#‹G12sš‹¥Ò+ª¶z¾—Lцñ®Áä‰Vj¤x s‘‘í³K$ ùEåJÂb­@†(¦FDFÆó"‘RdD^t„E«!8€ÜPI´¬DF†'£k–Épw˼÷ ë…J¢]@V¨¤Æàà`GFV®àÍ|sѤR¶ËD^t ³cÂq\ž /:ÈD‹Q:y‘H 2"È8š‹âÁåx@>\Üntñ5é_^§æ•tØÆüvpåE'ËœG ×§FWNO ‘Ñ…ûgº·„0ݵ“T½h1:š‹N†àr ãÔHsnZRSÒÆ%3Y/ò¢3at]Á$Ï•©Ñ•gOS‹ŒÌ‹D‘‘ÅÊ$yÑå¬å²F#È(ͼh¨½ªjœCK‚#H›ËÚ®I4##{ÉKšµ#Ô8 †–Ž arJ"£”[Œ„ÝÈÈPA2¼ÈG*™¥F ‘‘¥ÌeǰT>"£ /2 ÁÀ"œ ãÒF£Ä[ŒÆ;ÁÆ Ú8•mŽ I.h7:»ÑH!2²‘¶d±h1Š yQ"@zä‘]eÑb4ì ;È(*äE©Ap0åÔÔè¢F#KÝ9Yì ŽØÀ¥ Á$ÆÙíFg§FDF[÷†ö® àˆ \â@J¤›]Ñh”]d¤½7ˆŒâA^” G€»œšet £Ap° ‘Q&0–òâF»k9µÝè¤ÔÈΉ©‘ãîNå _rÁq$/OCëÅï}Ðä3žtpKyBppbj23*þ'2ʈa·¨¼8bŽ8Œc);˜ªip^»Ñ©Ñ‰G42p蟓PŒÇQ8ŠQ@$—%²gˆŒbÀ(* ‚#(—dR£|##¡ÖhDØqZŒŠ„à¬sR»QôÔè”éiYGFB'5"2: C¨`Ž DÎHˆŒÌïòŽÃ0„ЇàLsF»QÜÔÈލDm4Ê=2 FäÇ`VîÁåx@YDO<áó4yb'Ë‹ìÔÜKî.²ã\[#°Kôv£3R£X•"ó.£aG]µ—è2:ãæ 8£œ}[j‡Ë)5*)2ºpGÿø0 ³ÒP+GP ±Ú¢=­˜ÈHÐh”ŒXÁXÄì$µ8F%EFâºÔˆàc/ŒX Áä¹Ô¨˜ÈèªÝEð±Fl„àÌ·ÝÈPjTX£‘¸.5*hHEƒÈvAp9%5ŠpP£"#£ó÷ÙÇ.6p‚#°…µö‘£FåEFâŠF#²]0là0G-ÇÛ"¤F…EF—ì4kÿ¸U°Š ˆwކˆ˜(§FÃ=`ÆÉ;Í!5ÚŒ#„#š< † Dà2D35*ã¶–vÝi;;ÚcN€©j`…X­$Ê©QyyÑù»Ž.£p,#8 ‚#À?ì?Z‘'Áï½sv ÈF0p2G` íF;§"ÊŒÄ9©Q¥ &„ Ù‘\Ç8€|PI„ç5yy´wçô9&!ÈZ8–\ÁdÂÕ©Q©çM;ypÞ´-Áå0U ôÑM v¦FGF§ "£Õ01 ” 8€ØÝn´95*û$Ã8¡ÑHƒ¬‚¡ª€2Ç»L.JˆŒ÷†Á ©Qé£j- ІàÒæºÔ¨øÈè„a@÷Ìj*`‚#ÐD«bCjD£ñ'¤FŒª%Ž aöµmKˆŒ„‘GQÈ:'`‚#Pã`Çɹ©F#b§FŒj]UŽ  6¤FDÆ{] ƒ CpI²£ÝhUjD£ñ~â¥FôЬ€Aæ!8ŽtUœ˜ˆš1°µBd‰@p‰Ajt ‘ƨ.!G À• ¨ºS#¦§k/5bTk…©Ap)±µÝhUjDdt d¢Z¡ÑÒ„à®fw 95¢ÑhÃY™¨V2G§ºS#"£9b¤F ¬e8G›ÚHöAjt"4AÀ¥\,jK˜ž¶Ì±ÔˆXT+$j GëÛu¤FDF NX ¨A^ÀuìËHΆÔ舌 GŽ S#¦§kå@jD2² qd Á˜fe»±¶ÔˆÈh™c©kâ4È‚#¸ˆAÃŽ» š<©±HâÃÀ€Ü!8€ä™i7bzº.H"C£”Áeÿ$5΂pd²4(‚#¸‚“þ°"5ÚÇ®AB82YÁXdM»Ñ45bzÚ:Hâ@dERJpܾ}û¶mÛÔjuƒ úõë7{öì¦M›Ö²~uuõúõë÷îÝ«Ñhš6múÐC͘1#$$„ö~H’­¡ÃÎÔˆÈh¤Fq`H@©Ühà Ë–-[°`ÁüѨQ£;wN:µ¢¢ÂÒú:î…^øôÓOoܸѧOŸ   ´´´!C†dddÐÞ ©Ñ^¶‡ˆd CÊ&ÿà˜››»zõꀀ€}ûö­^½:--müøñÙÙÙŸ~ú©¥§lݺõ×_}úé§üñÇýë_7nüꫯ! , ½7òWg»©Ñ>v¥Fé>P<ùÇmÛ¶éõú™3g¶hÑBX2oÞ<__ß½{÷êõz³Oùõ×_ !/¼ð‚‡ÇÝ©üG}´sçÎ/^¼~ý:íçvg]µ0$JŽnnnýû÷7,qwwïÛ·oII‰kjÕª!Ä8#ò<óæM777C”g°¡ÝÈqHÖ³q¨‘î‡éi€{dyžW«Õ~~~~~~ÆË;uêD)((0û¬Áƒׯ_ÿƒ>HOO¯¨¨(,,\¸páåË—ããã}||hï€lÙ–y©ÑJHÁô4€™÷ÏÊËËu:]“&ML–ûúú’û{ŠÆBCC7nÜ8a„ &Ž7îwÞ±òuCCCM–ìÛ·ö`HØåË—i— +®Ï`•*O£ÑX½~-ë«‚ó4y¢Qkòòˆ [u:–?¢ÁÁª<ëÞ•*˜¢ÑäBlYRU°Š¢ÉÓ00Žba<%í©§ž¢]+d…S§6lh²¼Q£F„[·n™}ViiéÇ\VVÖ¥K—‡z¨¤¤äرc)))½zõzâ‰'¬yÝÜÜ\Ú».7*•Šv ²âÊñ´òµjo7Þí5ªîvÏü4°ù½×k´¦¶»FvöƒòÞk¼ª¬= `ó#*5ÿ¬×ì)„̃c“&M8Ž+//7Y~ûömr¯ïXÓœ9s~ùå—yóæMœ8QXRXX8jÔ¨7Þxãû₩½[Êr75âúÞ6²e†ÓÓFpeoËd~Œ£‡‡‡¯¯oÍÎbii)!Äpžµ±¢¢¢ƒvìØÑ !¯¼òÊ;w¾ýö[Úû Ö‡‘ZÚÿ¤FÔè,HFpD#@­d !%%%BR4Ž÷ ¨¹~II !¤}ûö&Ë…Fcqq1훺§mgõ˜!5ÞƒS§¬ ÿà­ÓéŽ=jXÂóüáÇ›6m^sýöíÛ»»»_¸pÁä/™p|CÇŽip„ã9LOÛ ©Ñfh4XGþÁ1>>ÞÍÍí‹/¾Žk$„¬^½úÚµk#FŒðôô–”••i4á¤3ooï¾}ûæççÿë_ÿ2\!üÂ… +V¬¨W¯^TTí+#I“ÔH¶³.5¢½f#`5™ŸC œ={ö’%Kžyæ™>}úäççŸV§F ,!çÁØLþÁ‘2iÒ¤æÍ›§¤¤ìÙ³§U«VãÆ›9s¦pE³üýý÷ìÙ³jÕªcÇŽ:t¨iÓ¦ýúõ›6mÚC=D{W¤ÁÁv#R£3!5Þƒ‘°]]ǤƒíBCCqGqi4\LD.O‡‚#Çq<á%õ'‘¨íFÉd%§©dFBŒ|DåD±ëÑqÉ&52BN©Ñ¹0= àG™ýñ©Ñ^HÖÂ08FþgUƒÌ´‘q‰‚a‚#0—øv@]ƒ‡¸„«ˆSÕ &kþ:›¶9ŽðüÝ[ ‚ë†1:ŽàRH"Bj¬Æ@Tè8=H΂3‡1Nࢩ³¹s_»Ç5:Æòø¡É†1pGp9Ž#äîaÐn´Rcm0Nƒà.r·ÝhyíƒÔh¦§œ Á\©Ñ‰•>.€³ª@µÿÕæ8Ž'5:ÎB»Qñ¡Iñàè8€«å´íƒÔh¦§\ÁœÎäÚHöAj4CÙ{àz˜ªÔöç[8‡úŸ5‘E¤ìܤì½ Áœ‰ã8BxÚè0síFeç&eï=-Žà45ÂÚöAj4Ýuï=]8Æeþ¸p;A££‘Å£àܤà]`:Žàè5ŠÇÌX*v$¼ëŒ@p±ÝK:&'Sƒ±ëLAp‡˜þ578Ú¢PptRð®0Ç8€xŒï(x¯ÝˆÔh·ûC¸R£®ï ÀG‰…ëSƒ}•¼ßÌÂT5ØïŸ?ë&1íFÇ 5*y¿X†à³x/<¤FÇ)4=©‚UŠÜoÖ!8€cjž÷‹“©c|¤¨S#GG4yÚu€Žà íFû 5^‰û Ž`'³¹Fh7"5:LÁ©†àvá8‹ 5ÚËpét%(Eî4€ä 8€í, ƒ£€ÔìCpqáyKèÑntŒ"”"w@¢pp°E]WùFj´O­i\¾pW©Ap«Õš9ŽC°rS£Âö@0U ֱ⎂h7:@aC‡Ô MŽ`…ºn‡Óbì¦Ä[|#5H‚#ÔE‰ÑÆE”8´HR†àµ²"Ú ÝÖBj8œ–™K&ú9ÂÙ²Eø‡²Ú8@À1A»ÑŠKÊÙYYÃT5X`Í$5ÚvRÒ¸!5È‚#˜cejD»ÑJ:(©@^ Ë©1ÀaH aŽp?ë¾C»Ñ.JJRJÚWå@p#Ê:eÃÅ8Bx¥ 0R#€L!8À=u…Cà‡» ÚHIIJIû  4Ž@±¡×(¤F%©ç¸»IJíF¤FYÃu@!‰†ŤF\â@Ï–Dƒv£ÓSÌŽ(¦ª”͆jBph£½dÞnDjP G° ÚVSÆ$5R#€’ 8(˜‰íF[(#O)c/ÀÁ@©l;´ñÞ…xÐn´Ê?yJÎíF¤FåApP$9Çꔑ§”±—`Á@qTÁÁ6¥FîîuVÀ÷å)Ùæs¤F¥BpPŽÓäåÙûTÌSשdÁ@IlÏ2áˆL󨔑§”±—` ‚#€bØ•ùNò@»Ñòl7"5(‚#€£Tª`ùOR#5‚#€R ÝèDœFcça£ÒÀ!5À]Ž à@ ¡.¦#$·v£°rÚ#p‚#€ÜÙd8Ü–Ú*rÏÕrß?°‚#€¬‰‘1Om™T%«v#R#Ô€à _§$Ë@‰dÊÞƒv# 5€%ŽðÚhY·‘À2G9/Å ÝXƒ¬ƒ•¬w‡à ;bMR ›‚û˜VÁÁ*9l¤F¨ ‚#€¼ÈgÆ”AæƒÇ‘¼< íÚœ´s÷Ap‡.ômæèFÌS‘u°’õ΀ˆêd1XɡËÔVCp QÛÈJwlà bORƒù¶‘ÀFŽÒ'ùüÂ2ùf+ùî8‚#€Ä9–Ͷ9\…ç®Ú²•´ã:R#ØÁ@Êœ^p65!H5!8(Ú–É7[ÉwÏÀ$Ë “Ô` ·‘À1ŽÒäœðÂq¦©e¯dº[àJŽäpj¬¥Ý¨øtQÇHµÝ¨ø÷Dà 5RM.’€ÔPGÅ V›m7*~žZ¦ñJ¦»T 8HŠT[^r ɱGjQ!8H‡É…#\ž&Ïܶ9žç3ä¸ërÜ'  Á@"DJ¸9u',鵑À ¤@z±EB䘰ä¸OÀG¥¨í<Ê=-ƪ„%±ÜŽÔNƒàÀÉÍÍíÖ­íYsa`QØ<5R#€d~r ÏójµÚÏÏÏÏÏÏxy§N!={ö¬ù¬³gÏ6mÚ´eË–§OŸÎÌ̼yóæ<0pà@oooÚ;²&j`A»Q¶€™ÇòòrNפI“å¾¾¾„ëׯ×|JuuõßÿݱcÇÿû¿ÿÛ²e‹ay›6m’’’|ðAk^744Ôdɾ}ûh†„]¾|™v N§ ÖäåF¼-…­]¾|9888//OX!X¥ÊÓˆøÂÌQ©‚5šS«Õ"nÐÃÃÃ××·fg±´´”b8ÏÚXÆ ëׯïííe¼|àÀ„óçÏÓ$—§•àà`%¢a+8®^½:66vĈ7n4{¢JJJ„¤h Á`ö)-Z´ðôôä8Îx¡0C­ÕjiȋةíF#h7ˆŒ­àøÒK/={öý÷ßïÓ§Ï´iÓÒÒÒª««Ùftt´N§;zô¨a Ïó‡nÚ´ixx¸Ù§DEE•––þþûïÆ …k÷<ðÀ´ @Lò $2Ú3í H[ÁqÖ¬Y?ýôÓþóŸÑ£G7jÔèÀ¯½öÚc=öÿ÷YYYöm3>>ÞÍÍí‹/¾Žk$„¬^½úÚµk#FŒðôô–”••i4ÃIgÆ #„,X°ÀÐõ8ÆSޱ„BjtÖGTŽo•äù==OÑ)öo=[Gc X¶lYzzúüùó½½½óóó?ÿüóèèèçŸ>%%E§ÓY¹©I“&}úé§*•jÏž=ׯ_7n܆ j^ÜÑØK/½ôᇶjÕêĉùùùÑÑÑß~û­5©À*ôR#³ÿVS NÀ,¦ÿŠÜ¸qã§Ÿ~Ú·o_zzºpVJóæÍ=== !;v\»vm«V­h—iJ±ÿ qþ[™jp4Œ§“ Ijñ?¢r|ol"Ãÿë©ÂxŠN±ëY¼øµk×~üñÇ´´´ŸþYh+úûû?ùä“111=zô „œ8qbÙ²egÏž}÷Ýw׬YC»^QJ —´%—ýùa+8nÚ´)--íôéÓz½žâçç7hР§Ÿ~ºgÏžîîî†Õüñ=z<òÈ#´K°½³0ä>OmOÚbñœ¤F`[ÁqñâÅ„&Mš<ùä“O?ýtdd¤q^4æíí]¿~}ç©\íFù@j¶±GŒóè£ZÊ‹ÆÐné¡7I]³Ý(¯ˆ"‹v£¼Þ%¶ÎªÞ»wozzº¥Ôøê«¯4ˆvöb.§È†,—,vd­àX^^~çÎK]ºtéÏ?ÿ¤]#€]œ“1Imwàb+Æ#5€DПª>|øð´iÓ ?nذaÓ¦M5WÓëõ<Ï·mÛ–v½Ò#÷Ób$©¤ƒ~ptww÷ññ¾¿qãF½zõ4h`vÍ&MšÌ›7v½¶c¯Ý(—¬"ýv£\Þ PúÁññÇ?yò¤ð}hhè¨Q£ÞyçÚEˆ‡¡"3ÒORC?8›ºÀâÁcÄ€xâï×I¼|€šp燱4IMdx>µýhæy¤F#Ü9@)¤–d¤}z»víh—àR >™Zš@î˜ë8~þùçñññ‡*..öòòª_¿~AAÁwß}³eËÚÕa¯Ý(‹yjɶ‘@Ø ŽGŽY¹r¥»»ûøñã÷ïßÿÛo¿eff:thòäÉ„÷ß?++‹v„WdqÛI5)³U°Jš…؆­à¸eËžçß|óÍùóç·iÓ†ã8BH«V­æÌ™3wî\­VûÕW_Ñ®€Å^#Pxs8¢É“ÚíxìÂVpÌÉÉñòòzá…j>4nÜ8ooïììlÚ5¸‚íFéÏSKµÝ lGBHË–-=<Ìœ²#œ%S^^N»@P<´BœÔH¥Ýˆ¸ ÊÁVp /(((--­ùPYY™F£éÒ¥ íAÙ\LDo72Ÿm˜/Pv…؇­àÏóüÛo¿­Õj—ëtºwÞyG§ÓEGGÓ®åêv#R#(åë8¦§§ÿèîî>|øð;w>ñÄñññÁÁÁÇi4š;v„††>õÔSt EcµÝ(qÒÌ_Ò¬ÀA”ƒã„ Ì./,,üüóÏMæææöîÝ;77—nÍ P Ú(åÓbDË_.}@©(Çgžy†ö0ÄíF†CåɮjQPŽK—.¥=V`¸ÝÄ•ïR#(['ÇÔnîܹ  ](«R‰}íFÉÎSK0‚I°dqQî8ÖtãÆŸ~ú)??ßdyEEÅ?þèîîN»@pœ˜ í`—a+8þõ×_£GþóÏ?-­0vìXÚ5‚°Ýn´b³è‘‰C ÀZpüꫯþüóψˆˆ¸¸¸Ý»wŸ:uêÝwßõöö>þü¦M›ÆŽ;þ|Ú5‚’0ßË’æ<µÛH„Ö‚ãÑ£G½¼¼V¬Xáãã3`À€Ç\¥RõîÝ›¼xñâgŸ}6$$„v™"SÒµ‘$Œ­“c®\¹Ò¾}{BHóæÍ›6mzöìYá¡øøø¦M›~õÕW´kÅ@»Ñ %K/‚I°dça+8BÜÜþ)©mÛ¶FøÞÝÝ=444;;›v  .LJj7ŠÉoR#ÀýØ Ž-[¶¼xñbYY™ðc›6mNŸ>mx”ã¸Ë—/Ó®@2‹=Œ•#»z\€­à8pàÀŠŠŠ·Þzë?þ „ôìÙóÒ¥KÇŽ#„\»ví—_~ ¢]#(€ÚR›§9…9ý-Bj0‡­“cÆŸ––vàÀžçW­ZÕ·o_3ftïÞýüùóååå111´k¹cþÐFZØê8úûûoÞ¼yÖ¬Y=ô!$((hÁ‚ÕÕÕÇ/))‰ŽŽž4iíD£˜£Ñn ¶:Ž„ÿ—^zÉðãèÑ£ãââΜ9L»:;‰´­™§f&ü0SˆLëp%æ‚£±²²2OOÏF=ú裴kpmjTF»QüæÜw © V,Çììì/¿ü2''§¸¸ØÍÍ-((¨{÷îÓ§Oo×®íÒè“Úi1ÒÔP¶Žq$„|þùçñññ‡*..öòòª_¿~AAÁwß}³eËÚÕ|¡Ý茽”P»©À lÇ#Gެ\¹ÒÝÝ}üøñû÷ïÿí·ß233:4yòdBÈû￟••E»F#‰ÚhÃÑOA ” Ób(b+8nÙ²…çù7ß|sþüùmÚ´á8ŽÒªU«9sæÌ;W«Õâ–ƒ Ž´•Ùµ€, OlGBHË–-=<Ìœ²#œ%S^^N»@—§FÝè”Ôˆv# Ø Žááᥥ¥5*++Óh4]ºt¡]#5VÎSSÍB’ b’*€lÇøøxžçß~ûm­Vk¼\§Ó½óÎ;:.::šv #h7J„SÞ(¤FÛQ¾ŽczzºñîîîÇß¹sçO<ÌqœF£Ù±cGAAAhhèSO=E·`°L:YL:•0…rpœ0a‚Ùå………Ÿþ¹ÉÂÜÜÜÞ½{çææÒ­dBjíFæÏ§vVÿBj°åàøÌ3ÏÐP$œI­XH —.]J{\ÁeíFJ¹H"íF¤Fǰx¯jBÈÕ«WÏ;—ŸŸçÎàààÎ;Ò. äíF‘!Ž(sÁñÆË—/ÿæ›ot:a¡»»ûsÏ=7sæL___Ú‚ÄÑH²>™Ú‰©íFÖ°u:Ý´iÓ233½¼¼Ø®];ww÷‹/™Ú…1 ‰ @¡Ø ŽÂd^{í5“c;6cÆ BH\\íA‚$ÛnTà<5Ú,cë¬ê˜˜˜Ã‡§¤¤L™2¥U«VíÛ·'„äççBâââL»FJ©Q¾×n”B"“BRÄVp$„|üñÇ‘‘‘IIIW®\¹r劰°yóæo¼ñưaÃhWà:L¶›ÈÄ ùHNÃ\pä8nøðáÇ/**ºxñ"ÏóíÛ· ]H“bÚ. KRHdR¨@ºØ Ž—/_ÖëõmÛ¶%„´hÑÂäj޶‘ì¡Ê$ÂÛ…Ôàdlǘ˜˜ªªªãÇûûûÓ®ÀN¢´Ù›§f>”1_ € °uVuHH!ä÷ß§]HÚbrz(ÃÛ lÇ… z{{¯\¹²²²’v- eôbˆ|O¦fÚ.ÁÖTu‹->ûì³wß}÷™gžyæ™gÚ¶mëããc²Nÿþýi— à\¶ÎS;951ßnDjp¶‚cTT”ð͵k×–/_nvÜÜ\ÚeÛÐnwŸß#æ ¶‚£pçP‡r>R#8 44”v À´¥¬ÄVp\ºt)í@â¤ßndé|j¶sÛÕ$ +€ÿа['ǘ¨®®.//§]H‡"OÍuZ|rE.³ÿCj ­Ž£àÂ… +V¬ÈÊʺzõª^¯oÙ²åƒ>øê«¯>ðÀ´K0OvíFä20ƒ¹à¸víÚÏ>ûL¯×B¼¼¼ÜÝݯ^½zõêÕÌš5kÊ”)´ V)²Ý(ih7H[SÕéééŸ}öÇqãÇß¿ÿo¿ý–™™yøðá_|ÑÍÍ-111==v¦dw25Û¹Œíêä­àøŸÿüG¯×Ïž={þüùmÚ´á8ŽÒ²eËÙ³g¿óÎ;z½~ãÆ´k&É¢ÝhÇ<µB”‹r™ïR#UlÇ3gÎÔ¯_üøñ5=ztƒ Μ9C»F`ÕÔ(»v#Ãhc(8jµÚ+W®¸»»›)ÔÍ­U«Vlœ7 W ·‘ÀPpä8®Aƒ7oÞ¬ùhiiéÅ‹zè!ÚecäÒndà|j†£Ã¥( CÁÑÝÝ}øðáz½~îܹUUUÆUWWÏ›7ã¸É“'Û·ñíÛ·ÇÇLJ‡‡?öØcï¼óÎ7¬naaa=fÏžM{„ YÚhÿÞK3M)ûM6¶.Ç3f̘œœœC‡ 8pĈ*•Šã8Fóßÿþ÷êÕ«111·oß>tèaýààà¶mÛÖ¹ÙeË–­ZµªaÆùùù;wî¼pᆠ¼½½ë|.Ïósçν}û6í±æÈëèF†S(Ã¥ÈÌ­[·æÎ»gÏžëׯwïÞý“O>éÕ«—Ù5ïܹãíí­ÓéŒúûûÓÞ óúöí½hÑ"Ú…H[Á1&&Fø¦¨¨håÊ•&îÙ³gÏž=ÆKÞzë­:¯ì˜››»zõꀀ€;v´hÑ‚òÁlذáÓO?]¸pa%}ýõ×?ÿü3ísdÔ¹¢=Oíºhfó›†Ôà*¥¥¥={ö¼téÒÈ‘#ýýýwìØñÔSO>>´÷îG;5²Ðn)V±šÎX­ €5/^<}ú´ãÛ)--ýý÷ߣ¢¢„[o  ×ëOžI©óà.á/²Ù0*hÖ¬YUUUEEEƒ Ù#p™GBH@@€Z­.--5îÀ ‡2˜Ì!¸pá!dÅŠ+V¬0^þý÷ßÿý÷!!!©©©´÷I©h§F'ìRΧ¶ R#€ ¼råŠÙÕlØõðð 3>_›räÈŽãºtéb²r~~~jjê€:wîlX(tdÚµkW{ýB -.. –ç¯V(** 4Ivì8‰üƒctttnnîÑ£Gccc…%<Ï>|¸iÓ¦f/jÚ®];Ú‚[·n;v,000<<¼eË–´w¨a¤Ýèø~h4y.;xÌÚ´Ô`«W¯¦¦¦<˜’———••ev5;&v§L™òúë¯6^TT´cÇŽ'žx¢æÁÞÞÞo½õVDDÄO?ý$œ­×ë—.]êááñÄOÔ^dd¤——WJJJïÞ½ !jµºªª*;;[x´²²2--Í쌦ª!ÿà¿jÕª/¾ø¢_¿~Â91«W¯¾víÚ‹/¾h¸@YYYQQ‘§§gëÖ­üñÇÜx 999ÇŽëÙ³§3.3 ÖB»Q¤—%„wÙ™Ô¶Vððð5jT\\œ^¯OMMõòò2»š»&LX·nÝØ±c§OŸÞ¤I“¯¿þº¼¼}òóóOž<Ù¥Kã{>|ø7ÞÀ44Ô‚v£)ËÕͪ´Ô`‹ÈÈÈØØØääd­V;eÊŸÅ‹‹²eŸÃ‡Ïž={ÇŽ7nÜxôÑG7oÞl˜š«¬¬¼yó¦áË9sætèÐá“O>Ù´iSýúõ»víºwï^Ã5kª««oÞ¼iéøË¤¤$áååå±±±III999 .œ;wn‡öìÙcÍ5}€¥bµk×®”””ìììV­Z=òÈ#3gÎ4¾¥æž={j Ž999Çæ™g¬ì8†††âr<"c Ý(zp´»ãèxpÔh4®¹Ð‰r‚£Ë†T9\0¤Rü]­R©Lîìµkמ={6))‰v!V±ãà ÅÏ(äßqÄÅÅÅÅÅYz4&&&&&ÆÒ£]ºtQ懃§ÉË£û7™ÔèÐN Ý.QYYyðàAÜîO–d~ËA „0И, —žžÞ¹sç1cÆÐ.ħ”Ž#H•ж¢zƒAvŽn$ÒÉZu·¥²',™6mšÉÍ]ØE» p GWsù<5{½Š$ÁpgZ0U “ã91öÀåõ×ñ¾!5H‚#°ŠÔÆ,rF»Ñ‘yjÛ[uh7€˜Ih7Š€½ŒÆ^E`GóXk7Ú\>ŒV[àGj>G`ÚòƒÔ ŽÀ6R#ƒ'SÛ½k7"5È‚#€‹¸jžš±˜ÆX9àG` Ú’ÅÆ[Î…à 'Œõ÷+„àÌ`£gå¤v£ƒóÔÖ0j1Íü[‡Ô ;ŽÀ6R#Ø©@9þÁf»ÑÚÚÙIj,ÕvèÛ·oBBí*äP¤ü 8ÐntK“ÔH—™™yüøqÚUÈ¡HYò ]+${25KI¥Z䧺ºšR¯^=gl\«Õ8pàĉ+V¬Ðëõ´÷UÂEÊ‚#Ð&÷v£ãóÔ̆1¹¿uÌ mݺõÑ£G KRSS322ßxIIÉ Aƒì{®N§‹‹‹óôôܱc‡§§§aù©S§&Nœøú믿ôÒK¢Œ€#E‚(0U @Ú²«@!.^¼xúôiQ6Àó<ÏóçÏŸ·õ¹«V­Ú»wo¯^½ŒS#!¤{÷î^^^³fÍ***¢^$ˆÁ¨BÏÊ!4“šé[‡Ô `Ë—/Ÿ3gŽðcvvvAA!ÄÓÓsýúõååå+W®¤]#ˆSÕ@3©ÑyíFWÝf6¤FÆhµÚÝ»w[ztÈ!"¾–Z­ÎÍÍ]¾|¹»»»°$22rܸqkÖ¬!„tíÚ5""â»ï¾[´hÅ"A,ŽL³ɘi7"5‚ìp„£øêµÿ;V§Óÿh鑲²²¡C‡Z| QÿA+Ì•GDDXZ!<<|ýúõ<ÏsÜ}ëÊ"A,Ž@ ÚVÍHXc¦±|ÄsUU•ñfWóõõuYðºuë!ÄÏÏÏÒ Íš5«ªªª¨¨hР­"A,Ž`›2?R#€Ëÿxåʳ«¹r8((ˆR\\",Î_1¬PTTh’]\$ˆÁhP@»Ñ¹U³P3U(ÍÕ«WSSSLÉËËËÊÊ2»š+g###½¼¼RRRz÷îMQ«ÕUUUÙÙÙ£•••iiiݺu£[$ˆÁ\Ž™Ôèä½ažÚ\6£œ×”ñî°ËÃÃcÔ¨Qqqqz½>55ÕËËËìj¢ÏoÙ²å•W^™8qbbb¢ÉCÍ›7Ÿ:ujbb"ÏóíÚµ[»vmlllFFÆ„ zõêµuëÖ”” .€àÊ%Áv#3]>f PšÈÈÈØØØääd­V;eÊŸÅ‹»àu«««oÞ¼iéʤ¤¤Æoß¾½¼¼<666)))''gáÂ…sçÎíСÞ={zôèA{ä@ʸVˆk…††æææÒ®‚Uv5¬4J¥¿gGçtÅÉkvçÝw©±'}D•ÌC*ÅßÕ*•ÊäÎ1®´víÚ³gÏ&%%ÑñÙñaâçG¸8(û©ÑLÉ,LR#5(ReeåÁƒ»wïN»  Á\ÇÇÙâþ„ÆF^c£ p½ôôôÎ;3†v!@Žq%’`»‘2Ž#>>T^:*****Šö}Žà*h7ÚF%(œáfд`ª\‚¥Ô(µ“©é§Æ»íFP<G1‰5OM?-š`« ÁœíFGê¥]-KïP†à ±O‹¡Ÿ Gùõ€)Žàd,5¬¤Ön¤]*G8Âλô!8‚3±”%„#„§Þëc Ý ¬Ap¥pv»Qìyjª©Mˆ®ˆýp?Gpä;¡×ŒBpEÐÑŒÄmÄ~¨ ÁœCa¹C¼yj&Ú {÷ÀZŽ Òi7Òž$¦ýúÀ8Gp…5¬Dj7ÒNm÷^_aï˜Ñ·oß„„ÚU˜—ýÜsϵlÙ²Q£F={ö\¶l™V«¥]”‚ 8‚ØËÒi7 ÕRª•vjvdff?~œvæåååõïßß¾}O=õÔ¬Y³êÕ«7kÖ¬øøxÚu)ˆí€PnF/ÎXì€ûTWWBêÕ«çŒkµÚœ8qbÅŠz½žö¾š7kÖ¬[·n]HŠùùù„///Qê„àâa,wH®ÝˆÞHÔòåËÃÃÃçÌ™#ü˜]PP@ñôô\¿~}yyùÊ•+>úhĈ†%ׯ_ÿè£ÜÝÝGŽI{ ”Ç8PÄÐ$5c±¢ÕjwïÞméÑ!C†ˆøZjµ:77wùòåîîîÂ’ÈÈÈqãÆ­Y³†Òµk׈ˆˆï¾ûnÑ¢EâyèС©S§ªÕê•+W†„„8yDá.G c¹C 'S#50‹î¥økû¿Q§Óÿhé,–²²²¡C‡Z|Qÿ‡æÊk9Ô2<<|ýúõ<ÏsÜ}kw‘—.]š1cÆ®]»BBBöïß?`Àwj‡à`'ñîãjª`ë¡€2vÿ©ªª2þ±¢¢Âìj¾¾¾.ûuëÖ-BˆŸŸŸ¥š5kVUUUQQÑ ANjܲeËK/½Ô¨Q£äääI“&yx ɸ†ÄÀXÃJŠíF×µ9¢ÉÓ¨ˆêŸl½{P›ÂÂBã¯\¹bv5WNUBŠ‹‹ óÅÂI6†ŠŠŠMR£}EîÚµëùçŸöÙgW­Zåãã#â^€•ÁaŠÌ޵éMR ¯¬¡óâหW¯¦¦¦<˜’———••ev5WNUGFFzyy¥¤¤ôîÝ›¢V««ªª²³³…G+++ÓÒÒºuëæx‘<ÏÏ™3§M›67n4O .†àrÃ|»‘vj4Y¦ÄØ a£FŠ‹‹Óëõ©©©–.C#úTõ–-[^y啉'&&&š<Ô¼yó©S§&&&ò<ß®]»µk×ÆÆÆfddL˜0¡W¯^[·n-,,LIIq¼ÈsçÎ?¾sçÎ/¾ø¢ÉCÇ‹‹sÂxƒ)Gp r‡Tàb?²›œœ¬Õj§L™âãã³xñb¼nuuõÍ›7-R™””Ô¸qãíÛ·———ÇÆÆ&%%åää,\¸pîܹ:tسgO=¯A­VBÎ;wîÜ9“‡:vìˆàèR=ºŸe¡¡¡¹¹¹´«p—GF£R©¬YÓ5íFæ©ÍÇ7§‡ºû_À0žˆýb±þ# VrÁJñwµJ¥jݺõÑ£G©¼úÚµkÏž=›””D{ÄgLJAŠŸQàààäÛ°ÕôûÖ«¬¬|øÚµki×¥ ´ P"Gc&zŠT]]M©W¯ž36®Õj8pâĉ+VèõzÚûjÞÛo¿Ý²eË_ýÕ××—òÎ;ï„……%$$¼øâ‹´KS t¡Vì5¬Ðn´þÕØ{÷À!¡¡¡ÑÑÑÆK"""DÙxIIÉ AƒŠ‹‹m}®N§‹‰‰2dÈ;wŒ—Ÿ:u*,,,99Y” «ªªrrr,¤FBHÆ ûôésùò劊 Q^ê„àà ¤F æâÅ‹§OŸeS<Ïó<þüy[Ÿ»jÕª½{÷öêÕËÓÓÓxy÷îݽ¼¼fÍšUTTäx…îîî¿ýöÛûï¿oX¢ÕjÏœ9ÓµkWoooQê„à–±=Ø»=©Ñþ¤‰j`ÒòåËÃÃÃçÌ™#ü˜]PP@ñôô\¿~}yyùÊ•+.]ºB6lØðî»ïFFF^¹rå³Ï>£= ‚cÁöR£Ë@Â7§Vü» tZ­v÷îÝ–2dˆˆ¯¥V«sss—/_îîî.,‰ŒŒ7nÜš5k!]»vˆˆøî»ï-Z$b‘‹/V«Õ„'žx¢]»vNP¸Á$CíF©¼€¢qô^º®ÿÍu:ñ–Îb)++:t¨Åõ_–Â\y-‡Z†‡‡¯_¿žçyŽ»od)òÂ… åååééé/¾øb¯^½Î;×¢E w ,ÁT5˜£ø†•íFvS£âß=‡ñô¾êRUUeü£¥“B|}}yËÄ­[·nBüüü,­Ð¬Y³ªªªš¥:Xdƒ ¢££?þøãëׯ§¤¤ˆ»S` :Ž Œµ]{˜"R#ÜSXXhüã•+WÌ®æÊ©ê   BHqqqHHˆ°Ä$ù6hÐÀÁ"wïÞ=tèÐM›6=÷Üs†…M›6%b÷P¡ŽPƒâ£[G7b†Œ\½z555uðàÁ„¼¼¼¬¬,³«¹rª:22ÒËË+%%¥wïÞ„µZ]UU•-û¬aÖ{ýúõ„G}TÜqKA‚UÁòh7:û¥ŸùäÏÃÃcÔ¨Qqqqz½>55ÕËËËìjÂ,°ˆ¯»eË–W^yeâĉ‰‰‰&5oÞ|êÔ©‰‰‰<Ï·k×níÚµ±±±&LèÕ«×Ö­[ ÍN%ÛZ¤¿¿ÿüùó…KW4ˆã¸üñ矞9sf×®]=ò @p„û±=8ÂåiòˆŠv†rH¶=½F¨!22266699Y«ÕN™2ÅÇÇgñâÅ.xÝêêê›7oZ:¤2))©qãÆÛ·o///MJJÊÉÉY¸páܹs;tè°gÏž=zˆRÆ¢E‹‚ƒƒ¿üòË•+Wº¹¹uîÜù›o¾1ž¹gciJN.BCCsssiWa/Vƒ£Jå¢äXë<µ ïhûKYÿÖi4—§B`HEç‚!•âïj•JÕºuë£GRyõµkמ={6))‰ö0ˆÏŽƒ??¢ÀYÕ`„ÉÔÈÒ$µëvÛy©À•••ìÞ½;íB€2G¸ÑÃÉíF«‹À 50'==½sçÎcÆŒ¡]P†c],µEHsVm®×AæPˆiÓ¦ùøøPy騨¨¨¨(Úô)%8nß¾}Û¶mjµºAƒýúõ›={¶på'K***¶nݺcÇŽË—/7nܸS§N“&Mzì±Çhï‡Ó zÔÖndº×ˆ·@9 7ƒ EÁqÙ²e«V­jذaDDD~~þÎ;/\¸°aÃooo³ëkµÚ &deeùúú>ú裕••§N:vìØk¯½6}útÚ{£Ì´™N®$ÿcsssW¯^°oß¾Õ«W§¥¥?>;;ûÓO?µô”mÛ¶eeeõèÑãðáÃ+W®üꫯ¾ýöÛ&Mš|ùå—çΣ½CN€ž•ó/ú]G,´75â­W’pܶm›^¯Ÿ9s¦áöçóæÍóõõÝ»w¯¥{ÃïÛ·2þ|CK2$$äå—_Öétǧ½CŠ ¬v#z òŽnnnýû÷7,qwwïÛ·oIIɯ¿þjö)¦aÆ]ºt1^(Ü‚³  €ö‰ =+‹XOxëÀÅd~Œ#ÏójµÚÏÏÏÏÏÏxy§N!={ö¬ù¬äädÓ‘ÉÉÉ!„´iÓ†ö>ÉŸëÛææ©ÅL·…Ô’"óàX^^®Óéš4ib²Ü××—rýúu³Ï 3YròäÉÕ«W{yyÕr;vc¡¡¡&K„éoÖ¨‚ƒ5yyD£¡]È?‚UÁyš< ¹¯¤Ë—/;ûu5÷‚JeºÄ!*UÍ­©‚U5vÔ¶Ú]¡ ÆSi0¤¢Ã‚‹Õþõ©§ž¢] +d…»j6lØÐdy£F!·nݪs :nóæÍŸ|ò‰N§ûì³Ïüýý­y] ݆ˆÁû¤™-ÉyuZj7Šû‚¦õs„ðDeï¸ïµí/‘Á÷]ê0¤¢Ã‚+Õþy«ùg½f‡H!d›4iÂq\yy¹ÉòÛ·o“{}ÇZœ:u*!!á?þhÕªÕ‡~Ø»woÚ;$*ö&;Ù8'FäCÍlαW`ï}¥ypôðððõõ­ÙY,--%„γ®©ººzéÒ¥7n¬_¿þ«¯¾:yòdK}”*¤»Ã`ÒnÄÎÉ<8BÔjuii©ñmš„CÌ>E¯×¿ùæ›?üðÃÀ-ZTK¾1Ðndý4j‚ÀTÉÿr<ÑÑÑ:îèÑ£†%<Ï>|¸iÓ¦áááfŸ²qãÆ~øa̘1_~ù¥}úŒ3ŒæççB¼¼¼ê|úªU«öîÝÛ«W/ãÔHéÞ½»——׬Y³ŠŠŠDÙ߀€žçyž?þ¼ˆÃÖCpTöísbœß Dj)ðððøè£FŒaXrýúõ>úÈÝÝ}äÈ‘u>}ùòåááásæÌ~ÌÎÎ.(( „xzz®_¿¾¼¼|åÊ•´wÄ¡”©jƒ{óÔÎM˜ Š´ZíîÝ»-=:dÈÚŸ~èС©S§ªÕê•+W†„„Ô¾²Z­ÎÍÍ]¾|¹»»»°$22rܸqkÖ¬!„tíÚ5""â»ï¾[´h‘¸EŽŠÁ^çŠj»ÑɹN¤Í³÷¦(Çq´^ºÎ‹Ëêt:ã- RVV6tèP;^åÒ¥K3fÌØµkWHHÈþýû PgÍÂ\¹ñÁ‘&ÂÃÃׯ_Ïó¼ÉÀÚ]$P„ਠìZ©‘ã8ž'HP –#KUU•ñfWóõõµc/¶lÙòÒK/5jÔ(99yÒ¤IV…á¾¾~~~–VhÖ¬YUUUEEEƒ /èBprzjÄ<58Iaa¡ñW®\1»š³À»vízþùçŸ}öÙU«Vߤ·NAAA„ââbä¶pþŠa…¢¢¢ÀÀ@“Ôh_‘@‚£°×¹¢Ýnt⎉µ[ì½iÀ„«W¯¦¦¦<˜’———••ev5[gyžŸ3gN›6m6nÜh8TÑJ‘‘‘^^^)))Â¥ŽÕjuUUUvv¶ðheeeZZZ·nÝ/X€àJã´ßDHà|£FŠ‹‹Óëõ©©©–®•cë,ð¹sçΟ?ß¹sç_|Ñä¡áÇÇÅÅmÙ²å•W^™8qbbb¢É Í›7Ÿ:ujbb"ÏóíÚµ[»vmlllFFÆ„ zõêµuëÖ””Ç‹ 8Ê{„j»Ñ9¯+íÍÿó[#2›œœ¬Õj§L™âãã³xñbÇ7«V« !çÎ;wîœÉC;vŒ‹‹«®®¾yó¦¥C*“’’7n¼}ûöòòòØØØ¤¤¤œœœ… Î;·C‡{öìéÑ£í‘q8íO©‚…††2tïÆ‚£}©Q£Ñ¨T*G‚sÎÄGœè`ptÁ;&ÆxÂ}0¤¢sÁ²õ»Ú:*•ÊäÎ1®´víÚ³gÏ&%%ÑñÙñaâçG¸¸¬1–éq]jt¸P¼cÀ¢ÊÊʃvïÞv!@‚#¸¥Ij§M›Û°#/†ÔÌJOOïܹó˜1ch”áGùB ¹Ç)G7âHFp¹iÓ¦Ùt¡EEEEEEÑ Á\„j»Qì›@XHh7€Sn @ ¦ªeбB15ŠßntB¯‘±· À<G9B !ÄYsɘ¡Cp§£Ñn¼›ïDn7Öš펔Èù ޲ƒ"©^#Þ.Gp.—·ÿÉwb¶‘冱$¢œÔˆC@ jå¼Ë‡³òê†à(#Œ%9´‘Œ 8‚<8ãâŠÖnÒÖ×Fj‰Âc䂱0âÚvã}ÉM„v£p£ôî‡à⣘]¿=œÊ©jYPnË4¶9Úntr TîRýÜsϵlÙ²Q£F={ö\¶l™V«¥]”$‹”1tAd.l7Rî5Ú¼y¤F`X^^^ÿþýu:ݰaÃÚ¶m»ÿþY³f9räÛo¿¥]šÄŠ”7Géc)ÐMµíJÖ?‰¥w ¤ªººšR¯^=gl|Ö¬Y·nÝ:yòdDD!ä½÷Þ›íøv´ZíôéÓ…fŸŸOñòòªóé«V­Ú»wo¯^½<==—wïÞÝËËkÖ¬YEEEÔ‹Q 8JKyDi©Ñ†W`è]0ÏÃÃã£>1b„aÉõë×?úè#ww÷‘#GÖùôåË—‡‡‡Ï™3Gø1;;»  €âéé¹~ýúòòò•+WR/DcA©œy±Æ^©hÐjµ»wï¶ôè!Cjú¡C‡¦NªV«W®\RûÊjµ:77wùòåîîîÂ’ÈÈÈqãÆ­Y³†Òµk׈ˆˆï¾ûnÑ¢E‹± 8JK‘DzíF‡Öl€¥·lÀqÔ^ºÎ_:ÎøG½^ovµ²²²¡C‡Z~‹/séÒ¥3fìÚµ+$$dÿþý ¨³fa®¼–C-ÃÃÃׯ_Ïó»jÕ*ëK "„æ‹yž7þÍ\TTh’]\$ˆÁâ’v#§Ñä©Tæ ‘­ze{p«W¯¦¦¦<˜’———••ev5[gyžŸ3gN›6m6nÜh8TÑJ‘‘‘^^^)))½{÷&„¨ÕꪪªììláÑÊÊÊ´´´nݺÑ-Ä‚à(A̤פFBxB4¢mÉù›aæýòðð5jT\\œ^¯OMMµt[gÏ;wþüùÎ;¿øâ‹& ><..nË–-¯¼òÊĉMVhÞ¼ùÔ©Syžo×®ÝÚµkccc322&L˜Ð«W¯­[·¦¤¤¸ H½ʆà,«-¤ÙÐntÉ Ô÷ªBj'ŠŒŒŒMNNÖjµS¦LñññY¼x±ã›U«Õ„sçÎ;wÎ䡎;ÆÅÅUWWß¼yÓÒ!•III7Þ¾}{yyylllRRRNNÎÂ… çÎÛ¡C‡={öôèÑÃE:a¼Á”·h BCCsssµuf‚‰óÛÿ¤FF£ª1Wmmptá]f˜ysê`v<ÁRѹ`Hû»Ú9T*UëÖ­=JåÕ×®]{öìÙ¤¤$Úà >;> Rüüˆ{¸25š©À…*++<ؽ{wÚ…eŽ’¢”lÂhj¬µ$e¼3 Tééé;w3f íB€2ã6sr»ÑUç°0±IL›6Ö5h¢¢¢¢¢¢hЇà(l4µ¨§ÆºÛ.<æ^I,¼3 †›AЂà(ldi¤FçhiÃl¼3®€c’¼£ R#( ‚£°OœÙn´*ñÕÑntfj4»m6Þ×ÁT5X…éÔèòƒ R#(‚#óH(ÔS£S7`Ç+0ðžP€©j ÈÚÐl¾ÝHã9H Xè8²â´v£µ¡ã¸¼¼<3Ï&®H&U2ð†PƒàµqNjt8ôQº7R#(¦ªF;§8-5òÖç>3çĸòF‚F/EûÝ Gp%ÛBŸij¤qöô½J™E;ª8¡Ýèpjtñwî½ í·€˜ª3¨§Fª`•F#AjŸs率‡w¿æÍ›Ó®Ë¢¾}û&$$ЮBqÐqdÕ´ÂBjü§ÝÈBˆ&O£"*×á‘@I4N§ëÝ»wpp°aa£Fh×e^ffæñãÇ£££i¢8ŽpæR£ðT ¡@jÆTWWBêի猫ÕjBÈ{ï½ÇrÓjµ8qâÄŠ+ôz=ír”SÕì‘U`±75rÔ®¹#Mäô&€\„††š¤º„„„ˆˆQ6.ÇŽ;Úñ\N3dÈ;wî/?uêTXXXrr²X#PRR2hР„„„ââb±¶ 6ApdŒ|&©ˆ~¶]±GôA@jɸxñâéÓ§EÙ”Z­öòòjܸñöíÛ“““;&48­±jÕª½{÷öêÕËÓÓÓxy÷îݽ¼¼fÍšUTT$J‘<Ïó<þüyQ¬…àw‰í‰~ÇñÄi·Å¶ªBR#(‘Z­vssëØ±ã³Ï>ûòË/÷éÓçá‡þå—_¬yîòåËÃÃÃçÌ™#ü˜]PP@ñôô\¿~}yyùÊ•+iïˆÇ8²„^»Ñ ©Ñ޽çxºW âÕÔ ­V»{÷nK2¤æBµZ­×ëFŽéééùý÷ß¿ñÆC‡={ö¬¯¯o-¯¥V«sss—/_îîî.,‰ŒŒ7nÜš5k!]»vˆˆøî»ï-Zäx‘@‚# 5 áÐJº¿ jÿU¨Ó錴t‚HYYÙСC-¾„¹ß·‡ª_¿¾ŸŸŸðã¤I“*++§OŸ¾cÇŽÉ“'×R’0W^Ë¡–áááëׯçyžãîZ;Šê™A©ÝH?5r„#¬¤Fü–Âö¯‚ªª*ã+**Ì®æëëkëïÕÀÀ@“%O>ù$!$''§ö'Þºu‹bHœ55kÖ¬ªªª¢¢¢Aƒ Ô!8‚(ì½àÝë%R-©¤£°°ÐøÇ+W®˜]ÍÖYàüüüÔÔÔtîÜÙ°°´´”Ò®]»ÚK "„‡„„K„óW +š¤F;Š 8²AÚíF;„ÂÓœ¤Æ©0 9W¯^MMMuêÔÄÄDžçÛµk·víÚØØØŒŒŒ &ôêÕkëÖ­………)))Ž ,@pdv£©Ñ®éi£Œ†Ô`«ÈÈÈØØØääd­V;eÊŸÅ‹‹²å9sætèÐá“O>Ù´iSýúõ»víºwïÞ§žzJx´ººúæÍ›–©LJJ.Y^^›”””““³pá¹sçvèÐaÏž==zô =r Ê'%ÈRhhhnn® Opyp)5Úßh$6¦FF£R‰s¯êšÓÓ Ž"Ž'0¤¢sÁÚü»š*•ªuëÖG¥òêk×®={ölRRíaŸ)~~D €Ó¦œÔÈÓï5 ƒ­ðÔ`‡ÊÊʃvïÞv!@¦ª•ÅáÔhûôtgÐM&¥!5X#==½sçÎcÆŒ¡]P†àH•kÛb¤F‡"#¡”Íž=Ô’3mÚ4*/E{€>G¥pij´Ð—¤•q/ȃáfд 8ÒãÂDãXj´qzÚBÂt}j¬å2h7ØÁQþNŽ6 ¥Ôhé‘ìƒàH‰«Ú¤F[µ®ëâÔXûý`ì†àHƒ4R£‘‘ÐHµ¼R#€#eËÞÔhu£ÑŠÈH\x³Ñ:o<Ôà G—sI»ÑÔ(Bd$®m4Ö­Þ1¨ ‚£Üp„#„Øž­k4Z¹–«R£5‘‘ 5ˆÁѵœÜn´«Ñ(fd$®JVFF‚Ô Gù°75ЉKj´>~#5@-BCCi— 1Ž.äÌv£í©Ñšë^ÅhçØj4¤F¨Unn.í\G£Ñ¨T*ÚU€ 8Ê©QüÈHœÜh ¾ûûÎúAjíÃ9íFŽp¶¤Fî^ âk{¼ÖUjìÇó¼óR#ÇŽ#yyžGj  ÁQ„Èh]j´.2ò¶EF§NO ‘Ѧ¼h¼ :LU»„ØíF[®¹SûÝï}cS8sæÜ4w¯$;6ÈàTŽÒcõÜ´‘ÑŽpæ´.£M'¾ˆ´7`Gç¯Ýhu£Ñr޲«Åxo?œÒht¤ÅhØ'DF@p” +–S¡Ãy‘ˆÏ‹F×Bpt21ÚV4-$(ò"qN‹Q”¼Hh@pdZ]‘ÑB0t,/±#£!,‡ó"Ad —ã±hûöíñññááá=öØ;ï¼sãÆ ›7á@»ÑpFs©‘3sùÎübëå Ùq05 Ó1¾¤Ž­Ö1öÔSOÙ~‰I°è©§ž¢]‚Ü`HE‡!ÆĂޣyË–-[µjUÆ #""òóówîÜyáÂ… 6x{{[» {S£å.cF¢Q'ÏÁæâÝm8ÛŠDŒÎâ}»˜›‹°@:Žfäææ®^½: `ß¾}«W¯NKK?~|vvö§Ÿ~ê¼5tèîï2Öh$r¼™Î¢ÃÍE;ZŒÆ=E“¶¢(óÑÆ»Ø)4Ôy#VBp4cÛ¶mz½~æÌ™-Z´–Ì›7Ï××wïÞ½z½ÞªMXÝn4É‹<áMÃ"gør(,r÷³),šdD§&EÇ&ÛÀ‰ÍÈÈÈpssëß¿¿a‰»»{ß¾}KJJ~ýõWÇ·oÀ„ÐõÏQŠ1JмiR´åf€–’¢¥¼h6šÍˆ&EÎÜ—í{ ®†àhŠçyµZíçççççg¼¼S§N„‚‚‚:·ûûï&ÁJ`÷r!á9Þðešy‹гŠp¬aÍ­ðµäÂZÒ¡•‘³å‹'µì%° 'ǘ*//×étMš41YîëëK¹~ýz[àÌD-ž»ç¼ØÏ97úû§lžkÓ1ˆö®ŠÃE…ñ†TtRqaÜ´iÓððpÚÕÐàhF||¼››Û_|!×HY½zõµk×FŒáééI»::8GnO,cëÖ­[²dIPPPŸ>}òóóOž<¶nݺš—éPG‹víÚ•’’’ݪU«GydæÌ™Ây” Á¬‚cÀ*Ž`G° ‚#XÁ¬‚àVAp«xÐ.@>¶oß¾mÛ6µZÝ Aƒ~ýúÍž=»iÓ¦´‹’[ÇmäÈ‘gΜ1YèïïüøqÚ»" yyyO?ýô¶mÛºuëF»)±~Üðµ[EEÅÖ­[wìØqùòåÆwêÔiÒ¤I=öíºXgǸáSjŸ›7o&%%>}úòåËÍ›7ðÁ_}õÕàà`Úu¹‚£8–-[¶jÕª† FDDäççïܹóÂ… 6lðöö¦]Óì·K—.y{{·oßÞx!ni½7Ò.A’¬7|Dí£Õj'L˜••åëëûè£VVVž:uêØ±c¯½öÚôéÓiWÇ.ûÆ ŸR;”––<¸¸¸8$$$**êÊ•+{öìùᇶnÝúàƒҮ΅xpØùóçxà>}úüõ×_Â’÷ß¿S§Nï½÷íÒ˜fǸݺu«S§N¯¿þ:íÚ¥çÖ­[ï¾ûn§N:uꔕ•E»"i°uÜðµÛæÍ›;uê4zôèòòraÉï¿ÿþÈ#tîÜùÿûíêØeǸáSjá/Tbb¢aÉÎ;;uêôÜsÏÑ.Í¥pŒ£¶mÛ¦×ëgΜ٢E aɼyó|}}÷îÝ«×ëiWÇ.;ÆíÒ¥K„“%ƒ5âââÆŽûÍ7ßÐ.Dbl7|Dí¶oß>BÈüùó !!!/¿ü²N§Ãüi-ì7|J퓞žîíí=mÚ4Ã’áÇ·lÙ2''G§ÓÑ®Îu0U-‚ŒŒ 77·þýû–¸»»÷íÛw×®]¿þúkÏž=iÈ(;Æ-??ŸÒ®];ÚµKÏ|PUUEÙ´iÓ‰'h—#¶Ž>¢vÓh4 6ìÒ¥‹ñÂBHAAíêØeǸáSjŸ&MštêÔ©~ýúÆ ½¼¼ª«««««•sd‚££xžW«Õ~~~~~~ÆË;uêD)((@p4˾q~ß]¹reüøñçÎkРAXXØË/¿Œó<êôøã ߥöÙ´i“É’ŒŒŒK—.=üðÃÊI—ãq\yy¹N§«yL±¯¯/!äúõë´ d”}ã&üúóÏ?/**zôÑGýýý<8zôèmÛ¶ÑÞ!Bðu@XX˜ðïFƒ“'O®^½ÚËËkèС´«c—ã†O©ƒ233,X0vìØ^x¡mÛ¶K–,¡]‘K¡ãè¨ŠŠ BHÆ M–7jÔˆrëÖ-Ú2ʾq»r劷·÷¬Y³Æ/,9qâÄË/¿üá‡>þøã´w ”QQètºÍ›7òÉ':î³Ï>ó÷÷§]‘4X9nø”:(77wÇŽ<ÏBºtéR¯^=Ú¹:ŽŽjÒ¤ Çqååå&Ëoß¾MîõÏ &ûÆí믿ÎÊÊ2ü²#„ôîÝûù矯¨¨Ø¿?í}ÀGT§NŠ‹‹ûàƒüýýÿýïÇÄÄЮH¬7|J4jÔ¨sçÎ;vlîܹiii£Gþr)‚££<<<|}}kvÈJKK !†ó…Á„ˆãöÈ#B~ÿýwÚû`>¢Vª®®þàƒ^xá…ÂÂÂW_}uïÞ½½{÷¦]”ˆ2nø”Ú„ã¸æÍ›Oš4é¹çž»zõjZZíŠ\SÕ"P«Õ¥¥¥>>>†…Fxˆvuì²uÜxž×ëõǹ¹Ý÷wwwBHãÆiï(>¢ŽÐëõo¾ùæ?ü0pàÀE‹á_ÝV²uÜð)µÏ… Ö­[×·oß§Ÿ~Úx¹p>û_ýE»@×AÇQÑÑÑ:îèÑ£†%<Ï>|¸iÓ¦ááá´«c—­ã–ŸŸö /˜,ÏÌÌ$„„††ÒÞ!P:|D±qãÆ~øa̘1_~ù%R£õl7|JíãããóßÿþwçÎ&Ë…‹bªT*Úº‚£âããÝÜܾøâ ÃQ«W¯¾víÚˆ#<==iWÇ.kÆ­¬¬L£Ñ\¾|™Ò¾}û=züüóÏÛ·o7l$33sݺuƒ ¢½C DøˆŠ‚çùM›65nÜxîܹ´k‘+Ç ŸRÇ„††;vìÀ†…çÏŸß¼ys£F"""hè:œpZ8hݺuK–, êÓ§O~~þÉ“'ÃÂÂÖ­[‡[Ö®ÎqÛ³gÏo¼’ššJ9þüäÉ“¯]»Ö¥K—ààà?ÿü3++«Aƒ_~ùe¯^½hï4,X°`ûöíÛ¶mÃ5ÛlbiÜðEQQQŸ>}¼½½;tèPóÑaÆ7Žv,²rÜð)Evvö˜1cîܹÞºu뢢¢Ó§OB>ùä“ÁƒÓ®ÎupŒ£8&MšÔ¼yó”””={ö´jÕjܸq3gή,µ°uÜxào¿ýö³Ï>KOO¿páB›6m†úÚk¯µjÕŠö®‚¨½„fXEEÅÙ³gk>ŠSd,±oÜð)µO×®]wïÞýù矟={öܹs-[¶|òÉ'§OŸ.ܧG9Ðq«àG° ‚#XÁ¬‚àVAp« 8€UÀ*Ž`G° ‚#XÁ¬‚àÊ2{öìÐÐÐC‡Ñ.„|ñÅ¡¡¡›7o¦]€µÀ*´ P¨¨¨(ÿ=zÐ.ÀZŽttéÒ¥K—.´«°¦ª˜£ÓéîܹC» SŽ , ]ºt©Éò3g΄††öîÝ[«ÕB®]»–˜˜Ó½{÷îÝ»ÇÆÆ~üñÇýõ—¥Í çʤ§§›, ëÕ«—ñ’ãÇ¿öÚkŒˆˆ?~ü_|a’íþüóÏE‹ÅÄÄ<üðÃýû÷Ÿ:ujFFF-{´fÍã“c„J._¾¼zõêG}ôÁìÙ³ç¨Q£öïßoi ™™™aaa}ûöýûï¿ o߾ݿÿ°°°ììlÚoÈ ‚#HC\\!$--Ídyjj*!dèС×®];vlrrraaaÛ¶m[·n]PPðÕW_=úÆ޼ú§Ÿ~:yòä´´4­VÛ¢E‹Ó§O/_¾|ܸq%%% .\ˆ‹‹ûæ›oJJJ:tèÀóüáÇŸþùØôBÉÉÉŸ}ö™§§ç£>êëë›™™9}úô½{÷š]9<<|òäÉýõ×G}dXøÉ'Ÿ\¹rå•W^éÚµ««ß$;G†ˆˆˆ-Züïÿ3,ÔëõB¨>|8!dçÎ/^0`ÀñãÇSRR¾ÿþûcÇŽEDDüùçŸ?ýô“Ý/}ðàÁ5kÖ´iÓfûöí‡Ú½{÷‘#Gúõë—••µråJaO?ý´¬¬lÚ´i'NœØ¹sçáÇçÏŸÏóüçŸnÓkmÛ¶mêÔ©Gýúë¯üñÇ &B6lØ`iý×^{-$$dçÎG%„¤§§oݺõ¡‡š6m½÷ d Á¤ÁÍÍ-66–Üßt<}úô_ýÞ±cGBˆV«ŠŠzë­·6l(¬àãã#´*óóóí~é%K–B’’’ =<ÿ¤¤¤€€€;vܼy“rþüyBH||¼»»»°ÎèÑ£_yå•ÚôZ]»v}óÍ7ÝÜÜ„]~å•W!/^´´¾§§ç'Ÿ|âáá±`Á‚¢¢¢ùóç{{{ú駆2D„à’!D@ãy[ažzĈÂÓ§O_µjU‡ +ïÞ½Û‘½qã†F£ 69ºAƒ½{÷®¨¨8{ö,!DH®óæÍûù矅£-===_ýõW_}Õ¦—{úé§ôõõuwwçy¾–§„……MŸ>ýêÕ«C† ùóÏ?çÎÛ¾}{g½ l¸HF—.]Ú·oñâÅÜÜÜÐÐP­V»oß>ooÃ:þùç‘#GNŸ>]PPpéÒ%m$„äåå ÿ 5»Â•+W! 3gÎüù矟þùúõ뇅…EFF>ùä“aaa6½\ëÖ­í(ò¥—^Ú¿NNÎ#<2zôhQGàŽ %qqqË—/ß·o_hhèÑ£Goݺ5|øpÃÄô–-[Þÿ}­VÛ¶mÛž={8ðÁÔh4ï½÷žM¯¢Óé M¾êêjBHPP¥IçÀÀ@BHëÖ­·oßž™™yäÈ‘S§N={ö×_]¹råÈ‘#ßÿ}Žã¬|ézõêÙ1,·oß...&„äååݼy³I“&Î+@‰@J Áñõ×_æ  óÔ·oß^¼xq½zõ’““üqÃS®^½jë«êõzáûàà`BHƒ ÞyçÚŸÅqœp BHuuõÑ£Gß~ûí;v 0 ::کòhÑ¢¢¢¢îÝ»ÿúë¯ï½÷^bb¢S_ Ç8€”´k×îÁÌËË;sæÌO?ýÔ®]»ž={ 9sF§ÓuïÞÝ85’{§­ÔÎdFûÇ4|мyó?þø#''ÇxN7bĈ>}ú\»víÏ?ÿ0`À³Ï>kx´^½zÑÑÑÂÙ<—/_vê˜ìÚµkïÞ½ýúõÛ°aCHHÈîÝ»k^´@Ž 1Â)2óçÏ///9r¤ay@@!äüùó×®]–ètºo¾ùfÓ¦M„ŠŠ ³[kÛ¶-!dãÆåååÂ’“'O.²#˜5k–^¯Ÿ5kÖ¹sç„%·oß~ûí·Ïž=Û¥KÿV­Zýý÷ß¿ýöÛÚµk ­Ê‹/9r„âÔë)^½zõ½÷ÞkܸñâÅ‹===?úè#ww÷„„Çî¨ SÕ 1111K–,ÉÍÍuww:t¨aypppttôO?ýôÄOôèуçùÜÜÜ7nŒ;vÆ ÿýïÿþûoáÂ:Ɔº~ýú_ý5:::,,¬¨¨H­Vûúú¶lÙ²ªªJXgذa?ÿ¹žRÄ•IDATüó·ß~;tèР  ¦M›æåå•——·oß^¸ò¶››Û;ï¼3oÞ¼¥K—þûßÿnݺuyyùüÁóüèÑ£ÃÃÃ4<ÏÏ›7¯´´ôÃ?róC=4a„ÿûß III´ß+t@bZ´hñÈ#BúôéÓ¢E ã‡>ûì³×^{-00P¸¾cß¾}SRRæÏŸ?vìXwww³7lÓ¦Íþ󟺹¹;vì÷ß Z³f¿¿¿aŽã>þøãýë_ Ðëõ/^T©T³fÍJIIiÚ´©°Î°aÃÖ¯_߯_?ooïóçÏ———?öØc+V¬X´h‘ó†bãÆééé?þ¸á@OBÈk¯½Ö®]»½{÷îÛ·ê2ÄÕ~y0å(+++))iÓ¦õ'A( ‚#XSÕ`G° ‚#XÁ¬‚àVAp« 8€UÀ*Ž`•ÿï“+>£¤äIEND®B`‚statistics-release-1.6.3/docs/assets/nakafit_101.png000066400000000000000000001442601456127120000222740ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A€IDATxÚìÝy\Gÿð ÷)†[¹Z@<¸DQ‘ X‹' j‹ŠGETo©b)õ†>m=ZÚ꯶^T±*VQTT¼P´ V´TK­Jå†ä÷Ç<Ï>y’,!„Ïûåëe2;ÙÙÝ|™p„B!GMÕ€7G`#°‚ÀXAଠpV8*î§Ÿ~â°óòåKBHbb"};jÔ(U—ýךÊ<|øðÁƒ|¸ª‹£ÍrÒv³ãí¾˜ .ìÚµ ç lʽL)ý¢§Ú«(®á¯ zÂTãï¿ÿ^°`Aß¾}õôôÜÜܾûî;Ñß~ÒØØøÑGuëÖí£>b2<}útîܹÞÞÞúúúo½õÖ˜1c %·Â2›(ÑM?yòd„ |>ßÞÞÞÌÌlÍš5’ù«ªªV®\dfffff6tèÐeË–UVV*¶NibÆOÓ.\(£ð`÷îÝ666ZZZ666þþþ;vìhhh –.]Êáp˜;}C‡åp8t¸˜´ñ1-ÝÁçÏŸ/X° _¿~úúúnnn)))ÌÖ¥ihhغu«¯¯¯¥¥¥žž^Ÿ>}&Mštýúõ–îhIÆwïÞ½ &ØÚÚvëÖmüøñ7oÞ$„\¸p!""ÂÖÖ¶k×®¹¹¹ 7½bÇËUQQñðáC@@ß¾xñâáÇ„řҢæS Ò¤)++‹ˆˆàóùæææ£G¾té’d±CNÚnÊØ}–ÕÞúë Ë#\ÆùÅÆâÅ‹«««eças4+""‚î‚ÝŸþÙÒµ•––Ž5ªk×®¶¶¶S¦L)//§;Ëáp[T¼Öoì‡ñ)pRrÏP®¢Tyyù¤I“Þzë-KKËðððÓ§OK;ÆDÓÅ.þíá®ÀE¬£‚’œ8q‚©Õ¢¢"É +V¬ Kýýý{ôè!Ö›6m’Ì9räÈ>ø€¾^±b]zòäI333±s8œùóç‹nŽe6i…2dÈ[o½%öñ)S¦ˆf.((ÌCéÞ½{^^žëÝqÑ EFFÒô„„9ÃÃÛ=ÈÇŽK3,Y²Dré«W¯„BáÖ­[é[OOO…wÐßßßÙÙY,ó¸qãdTxmmmÿþý%7Ááp¾üòKÑœr÷N´$nnn|>_4›‰‰ÉgŸ}¦®®.¶•ÜÜ\¥4›ãýΊ9r¤äGîܹ#÷Liió)Piͺté’¹¹¹èGôõõCCCéëàà`šMì“¶›2vŸeµ·þzÂò—q~I***bò0×ä¤$æPa–nݺU±³€9>™¿| oݺբµ …ÂsçΉöööÌg™š| 'i³—)e,ÏÐ]E™íׯŸØÉ¨®®.Ú²,/þ*¿†+vë`8* ûÀ‘¹ô¸»»s¹\úVSS³®®N,g·nݘüôòôòåKš2dÈU«V?žCùÍ7ßÐ5°Ì&·¦¦¦ƒ ÒÓÓcRŽ=JsVWW3C<µ´´† ª££CSÌÍÍ+++[ºÎÖŽ{öìaNà!C†¼ÿþû½{÷f6qòäI¡Pø×_•––2…ܱcGii©@ 6wÑQxmll¼¼¼´´´˜”‚‚¹®­­&úˆÇ+..f¿wb%QSSsuu566»À9;;[YY1oZßL,7–;+†Mà(y¦(Ö|-­4Iuuu666ÌN 0@t$4QjàØÒjWøzÂò—q~I üñGCCCBˆŽŽÎãÇ…RÇ–žôø>>4Orr2“$¶6–{'Z’#GŽ…Âúúú!C†0‰iiiB¡°©©iêÔ©4…Ïç·¾™Xo,w¶YͶšŒ3E±æki¥IúòË/i}}ý .ÐÄyóæ1k“ñµ-m7¥¥³¬öÖ_OZt„KÛ1¢ã‰'6lØ@_Oœ8Q(%pléY0räÈ{÷î1aÙ×_-Z–kÛ´iM144,,,¤GBLL S<&p| ')›À±5G û3”åUTtgGŒA¯*eeeo¿ý¶Ø5„ýÅŸýÖÛâÞš‹X‡1Ž*àìì› <oóæÍô©KKËO?ý”¦çççÓkú‘#GhÊœ9s˜1%}úô™?>}Íd`¿ÎÖˆˆˆØ¹sçÎ;çÎKS*++™!SÿýwKW¨ÀöîÝ{öìÙôu=üüüèë‡JÛJMM }ñý÷ßûí·ôˆï¿ÿ¾¨¨¨¨¨hìØ±Ší§§'½3¥®®>nÜ8šhddD<555ærüâÅ‹Ö7ËãåÎ*@òLQ ùZSiŒ]»vÑ¢]k×®555Uxï¤iéi®ðõ„¡ÀÎR\\ &~øá‡‹/6›§¥gÁ«W¯FEÓ-Z$í±_ÛÞ½{é‹Ù³g»»»BÔÔÔþõ¯I6èëYf“¡wïÞÝ»wgÞ6Œ¾ …÷ïß'„ܽ{WlõÎ;ï0›`Fô³\gk 6l„ ¡¡¡çÎKHH ìÖ­[qq±Â+T`ÅÓ0]bÙÄŠÍlnêÔ©}ûöýüóÏ«ªªzõêÅ TjéÞ‰ÞçÒÖÖ¦/,--™éN˜DI 4ËãåÎ*@òLQ ùZSi’UÁL³LÑÐÐ`¶«D-=;ž08ÂYÒÐРŽB¡pÞ¼yB‘‡-= Nœ8Á¾ÌíÑ–®M´Š˜Dmmm±ãJâ)åx“Ôš#°íÎÐ^½z‰Ž”`ÊV__ÿÛo¿)¼ZÙÚâÞvUôAà¨bÓ:ʘºLlètee¥Ü¹ÿúë/–Ùdg;tttè $BÈ“'O*++éÏá‰I³˜«amm-3‡›u¶²Vëëë,X`jj:~üø7æää466*Üͣ؊5%›Ié’’’bcc™ùn„Baaaá'Ÿ|âåå5hÐ æwZºwÍnšå|¢-m&öÇËU€ä™ÒúækQ¥Q¯^½bžØ«FÑX\)8Í»žÈ¨"åN»FïØÒ©y$3´æ_·nÝüÑÒµUVV2=…b1·dƒ¾Î“TšVmw†ŠFWW—¹ª”••µf—¥i£kxÛUÑc»&vÔèëëÓ×Ç/mÎøñãYf“½i±Ó©¦¦†™¿ÀÖÖÖÀÀ€9íÅ.ÇÌ[ fÜ=›u¶²®>ùä“M›6566ÚÛÛoÞ¼ùúõë•••#FŒPlmŠí ÔÕÕ¿øâ‹ŠŠŠ={öL˜0¡K—.Ì¢3gÎ0Ó)wïdki3±?ÞXî¬$Ï”×Ó|b´µµ™©¹™ïoŠùSNsÅ®'Ê-¶l©©©4rb_ŠRà,}ú´®®.<<|çÎþùgvv63Ý3Õ™Ò÷N¹Í$‰ÍñÆ~g•â54Ÿ$.—kggG_;vŒI …lfl©ÖŸæ­_ƒr¹¸¸Ð‘ˆÍöm·ô,°··?pà/~÷Ýw¢C6Ù¬ÎûH_Ÿ:uŠIollÌÉÉieñÚBkŽÀ6=CÅ®*LÙ444蟣­¹øK£ô‹Àk¾ˆµ[ß0ÌÓ|õÕWÌ0 Ÿ~ú©k×®|>ßÖÖöŸþaŸM†úúú¸¸¸úúzBÈü±xñbš>bÄ:pž™ì_ÿú3]pQQÑúõëékÑ6,×ÉÜL¹xñ"3Rgÿþýr/yÿüóÓÀ\w®\¹"yq+Œ¥ ì`K››››››[XXÜ»wÂãñ†Ê|øòåK__ßÀÀ@.—{âÄ :‰¿………Ø!6ëd¦®¨©©qwwwwwÿ믿˜Î2èéééééÑ[S§Nݵk‡Ãùå—_šý= ###šóã?¾uëÖܹsÅfÜmͶˆ‹‹‹™™ÙÓ§O}}}ß}÷]ccãß~ûí矦è(´hï”Bv3Ibs¼±ÙYey Í׬… þøãB¡ðÅ‹ôòòª¨¨ ‡Òµþ4WÊ…B ËóKSSÓ+V,Z´H,]á³@]]}åÊ•tæóììì£G†„„°_ÛÒ¥K¿ýöÛúúúŠŠŠ¾}ûzyy=|øPò)±×’J£ðÈòrD)ÐÊôªÒ£G‚‚ú —Ëýä“OèÒ]üUu oQudªž¨ã`?£Ø–•Ö¬èèh±-êêê2r*qG–ÕÞúëI‹ŽðfÏ/Ibó8Š.ª««}¸•9ö> ™§éÙ³gcc#ûµ …¯¿þZ,.ÑÓÓcr2ó8¾†“”å/Ç(|²?CY^E™522{îGCCãÛo¿möp­@É‹?û­ ÛàÞš‹X‡[Õož#F\¿~=&&ÆÃÃCGGÇÞÞ~Ô¨Qyyy[¶lüÎ2›4ÆÆÆçΛ6m𣣣™™Ù˜1c²³³g̘!š§ÿþ7nÜHLL 433ãóùC† Y¾|ùÍ›7}}}[çÿýßÿ}òÉ'}úôÑÕÕuwwŸ3gÎ… ÄžmVjjjŸ>}È~Œ!>>þêÕ«aaaté®]»˜Û©©©&L055ÕÕÕíÝ»·ŒÇ[ºƒ 0`@iiibbb¿~ý,--ÕÕÕ»téâë뛞žž““Ã<»Ç~ïZM3Ibs¼±ÜYey Í׬o¾ù&66–¾655}ï½÷Nœ81hР¶ØV+Os¥¬A ûóK æf¢Øš; ¸\.3ôíÛ·ÓÓÓ[´¶˜˜˜'NŒ=ÚÒÒÒÊÊjôèÑçΓüݹ×y’ʦðÈþ mi+ûûûçåå1¢[·nááá999Ì”éû‹¿ ¯á¯ù"ÖN©:r…öEvçDûYg³êëë÷ïß¿ÿþ6¯&Uhë½{mÍÔI\ºtiݺu/_¾TuA:åž­YÛûï¿OÏ—-[¶´QñZ G ´Œq„ŽC]]½1éØ{×ñxzz2)€²(÷,`³¶éÓ§_ºt‰âííÍüšß«W¯²³³ékÚËØÅk%ÐF84ÏÒÒòÚµk„k×®uïÞ}ܸq/^¼X´h °W¯^Π³ÁG€æ-^¼˜ ·téÒ·ß~ÛÓÓ“N²Óµk×]»vu–amÿG€æikkŸ8qbÏž=;vì¸ÿþüAg¸|çwæÍ›×씓GØÜoɈÁ­j`#°‚ÀXAଠpV8+€ŽÀ G`#°‚ÀXAଠpVxª.ÀëPSS³gÏžŒŒŒÇëëë;::N™2ÅÇÇGÆGÆŽ{óæM±D>ŸîÜ9Uï €jtüÀ±±±1::úÚµk†††¬­­½xñâÙ³gçÌ™+íSeeeÚÚÚ¶¶¶¢‰FFFªÞ•éøãÞ½{¯]»Ö·oßo¾ùF[[›RRR2qâÄ/¿ürÈ!ÎÎÎ’©¬¬|ùòeHHHZZšª‹Ð^tü1Ž¿üò !dùòå4j$„888Ìœ9³©©IÚ}ç²²2BˆXw#@'×ñÇèêêöêÕK4ÑÁÁòèÑ£f?òðáCBˆªËÐŽtü[ÕÛ¶mãñÄwóÖ­[„îÝ»7û8þñÇï¿ÿ~qq±ŽŽNÏž=gΜéêêªê½PŽP(Tu^· .ÄÆÆ644äääðù|É K—.Ý¿?!ÄÎÎÎÑÑñ÷ß¿uë–ššÚªU«ÂÃÃå®ßÉÉIÕ»mëîÝ»ª.‚ tüGQMMM?üðúuëššš6nÜØlÔHùã?´µµçÏŸÿþûïÓ”üüü™3g¦¤¤øúúZZZÊÝPç<˜ÚŽ““ªT‰PŸJ‡*U:T©r¡>•®Óvuü1ŽŒ‹/Ž1â“O>áóùß|óMhh¨´œÛ·o¿ví5B¼½½'MšTSSsâÄ Uï€jtŠÀ±¾¾þ“O>ùàƒÊËËãââŽ=êííÝÒ•ôïߟò믿ªzoT£ãߪ ,8~üøÐ¡CW®\ijj*;¿P(GMí¢j.—KÑ××Wõ¨FÇïqüþûï?õå—_Ê !>ìÙ³ç| –~õêUÒ‰Ç4tðÀQ(îܹS__ñâÅ2²UUU=xðàñãÇ„[[Û¾}ûìÛ·ÉpõêÕo¿ýÖÒÒrذaªÞ'ÕèàÓñüùçŸ~~~ÚÚÚo½õ–äÒQ£FMœ8‘’••ïààpøðaBÈ;w¦Nú×_õêÕËÞÞþ÷ß¿v횎ŽÎ—_~9`À¹ÅÃk[§ý®ïàci'bMMMQQ‘äRiÈôèÑãÀ7n<þ|III÷îÝGŽ9gÎ Uï€ÊtðG•è´…tö»¾ƒqeAଠpV8+€ŽÀJŸÇàµÁÏQ¼¹:çÜ: @à 4¸î¼‰ð—?{¸U ¬ pV8+€ŽÀ G`#°‚ÀXÁàm‹Ãá¨pëB¡PÕzÚœPuÿd„­IIIgĈ’‹Ö®]Ëáp®_¿®êš#vvv£F¢¯ýüüÜÝÝ•¾‰+W®p8œ={öH«¢sçÎI. âp8MMMôíÇ9ÎäÉ“™ ß|óŸŸŸ………››[\\\yy9“á³Ï>ãÈtìØ1v'99™Ïç÷éÓG饢 ÚÈ8¨ìììÆ§ê¶/2Nè<ÐãЩ>|xÿþý£GVuAäãr¹\.WÕ¥`E(†……eeeõíÛw„ šššwîÜÙºuëwß}wñâÅ^½zB<<<˜|þùçFFF“&MbRlmm[ºÝÛ·o'&&úúúΚ5KÕuІ ¸råÊÖ¯Jô º|ùò'Ÿ|’œœLè5{ùòåâÅ‹³²²þþûouëÖ 0 Ùœ ÚÚÚÌ-ŸÏ¯¨¨xýÅnkJlkPŽš¶¶öœ9s‚‚‚ôõõU]9rssU]¶vîÜ™••µpáÂuëÖ1‰×®]óõõ}š™™9o޼׿S•••žžžeeecÇŽåóùÁÁÁ§Nj¶7ôÁƒMMMÞÞÞöööL¢žžÞë/v[Sn[ƒ² pèÔ—-[¶bÅŠÏ>ûLé+¯¯¯çñxjjnH ½»'šèææ6nܸÿû¿ÿ{õêU}ÍÓ!­ZZZm´_-jPÚ%¦¬NâÆÆÆœœœüüüÍ›7 ‚6ÚÁÖÔ !DCCC±oÚ´©´´tûöí|ð!dîܹ}ûö]°`ANNŽdfúçÁêÕ«•Q ¡PØNzôÛy[C§» €¨qãÆ…††~ñÅ—/_–‘­   44ÔÜÜÜÒÒ244”ö™Qvvvñññ—/_vuuuuu¥)sçÎ]¸p¡–––——ב#G—.]êììl``pûömf ©©©...ºººÆÆÆ^^^?üðC³e 0UUU²=ÚÚÚÚÔÔ488øäÉ“¢ë9}útPP±±qÏž=.\H¿ò•‹ÆLEEEbék×®½qã†Âá…춘}koo?vìØ¼¼¼?þøC23 ß~ûm–+—ݲñññÛ¶mãóù<ÏÊÊjÖ¬Y¢ûÈþdijj khhM¿xñbÏž=·mÛÆ²´¤%m ª!esttTu@¤µ;QéÃ12ÎñU«VBJKKúˆ²aƼ¼<ÉÏFEEq8œ   åË—‡……q¹\///–­À¾Ammm­¬¬!¡¡¡K—.  „ 4ˆöi‰6¨ì–’æÎ;„U«VIËžžNÉÊÊ¢occc !篿þ¢)}ûö577§åaª›7o&%%BÖ­[GkÏÖÖÖÑÑÑÐÐ0..nÆ t\=Â%ÙÚÚúúúЦDGG³ü†}ùò%‡Ã‰ŠŠMüñÇ !û÷ï—̧©©ùìÙ³½{÷nݺõÌ™3uuuÒV.·e{÷î­¡¡ûù矇††BbbbèÒ,_|ñ!$%%E,½¾¾ÞÍÍMGGçéÓ§lj£Em­D |qwÚïzŽÊ×i¦NîÍ …BáÚµk !©©©t‘hàXWWggggkk[QQA—VTTØØØØÛÛÓ¯+ú GRRRSSÍ`kkË„qB¡Žósuu­¯¯§)¾¾¾„ÊÊJ¡PhooïèèØÐÐ@½xñ‚ÇãÍš5‹Y•dà(fõêÕ„ôôtZZww÷êêjº´¶¶vàÀöööµµµ666?¦KËËË---eŽ2H …Bá?üðÖ[oÑlZZZC† IIIùí·ß¤5›ÀQn[dffJ‹t_½zÅårEK8uêT>Ÿ_^^ΦØ7(=Dˆ… BhDÈ4¨ì–’Q rƒ‰ÇBèÛ>}úÐgÌiöâÅ 55µ)S¦HT‡&„äææ2{M9xð }ÛØØèììlccÓìF[8þú믄øøxÑÄ'NB¶mÛ&™?$$D[[»K—.Ìqèìì|ùòåfW.·e !ô­@ èÓ§O·nÝhs´èdqrrýãóúõëeeeÌkÅâ?ŽínU™?~Ÿ>}=z$¶¨°°ðÁƒóæÍãóù4…ÏçÏ›7ïþýûÌ|=+V¬úÖ¿ÿ=zÐ×´Ïiüøñêêê4…ÞÔ«®®&„òxÿoýìÙ3f\¹rå¬Y³¦NJ¹zõjIIÉÂ… µµµiMM͸¸¸û÷ï>|øpþüù´KŒ–|Μ9²7™ ÁÚÚZö§¢¢¢JKK¯_¿žšštùòåeË–ÙÛÛÓ0W1lÚB555:µÐÇiJzzzEE………›V`ß ´T ,`>»råJ==½½{÷Š–GvK)\E„+++::ðùóçEEEñññºººyyy„3gÎÚµ&—££ã{ï½G_s¹\77·ªªª––§±±ñ tL½ˆ~ÊÐÐi1¥¥¥ ))©¼¼¼¢¢â›o¾ùý÷ßGŽùòåKÉÌr[ÖÞÞ~̘1ô5‡Ãqww§wù[t²”––Þ½{wÊ”)Ì(I///æPwqqéׯÝY¹µíŽÂãñ¾úê+ooï9sæ8p@tQII !„^dÐc%%%t—“““ØLdC¡á…d Õ¥K—üüüììì;wî”””ܺu«±±‘e±oß¾=iÒ$__ß´´4šB»(¢¢¢¢¢¢Ä2—••Ñoľ}ûЦËröìÙ>>>b‰×®]+++“[B—yóæÕ××>~åÊ• xçwh&6m!¶¶vZZÚ‚ ìììzõêåíí<|øp:àRn+°oPBH¯^½DÇqêêê:99Ý»wO4ì–b?:°Y!!!ëׯþü9í| ôõõ¥cnn.Ç£# ä¢wf²Ÿ›‡yª£ªªŠŽ=m–P(¤5)6z²²²’bll,ù‘ÜÜ\---fÑ”)Sjkkccc322èŸO¢ä¶¬Ø>2'2íey²ÐÒ2ZÍÝÝ}ÇŽB¡Pnm°iP-Ž@! ˜9sæ–-[Äþî§—r±‰Äé7(3 ÞÈÈH±ÖÕÕ=:++«_¿~ï¼óÎ{ï½7pà@6Ÿ}þüyXX˜¡¡aFF¸Ðxeýúõ’3`÷ìÙóôéÓ’û¢ô‡¾_½z5yòäwÞygÚ´iL¢††Æ¸qãºtétäÈÅG6m!Cllì˜1c>|êÔ©¬¬¬¯¾úÊÉÉ)//ÏÈÈHáV`‰Çã‰õÕÉn©Vn.88xíÚµyyyùùùÖÖÖÖÖÖË–-{ñâEnn®¯¯/íÏ“«Eϧ×ÕÕ‰¾­©©¡/ eÇCfffjjjb‚üõ×_„¦·O½_,ŠN·nÝ’,’Ü–•¶´“’åÉB;;› s©®]»ÖÕÕÕÔÔÈ­ hÿ8À¿}ú駘={6„rpp „ܼysðàÁLâ7!NNN­ÜâÙ³g³²²ÒÒÒæÎË$²éqljjŠŒŒ|üøñ™3gLMMÅJ«¯¯?lØ0&ñöíÛ7oÞ422¢¢^¹rÅßߟYzíÚ5åV£®®î±cÇ=z$8R´oIGGG±5·¦-ž={VZZêèè#6oÞ·uëV___ÅZAšÛ·o7440Ñ|MMMqq±hy-ÕÊ&ðññ100ÈÉÉ)((4h!Äßß_ :tèêÕ«t¯Ò‰þ,!„y º±±ñÈ‘#Ò>ÆãñzöìyæÌÑôÓ§Os8É©È>|xøðá!C†ÐÇ\(Ú=icc#–Yáó‹üç©m–' p+**h³’ÿ îd2üù矖––:::rkCy m#ü›¡¡aZZZddä—_~É$zxxX[[§¦¦N˜0ŽÇÿûï¿7mÚdccÓú¤Ï1ˆ~fddTUUÉí“X¼xññãÇwìØáéé)šîæææää´qãÆˆˆTVV†„„444Œ;ÖÃÃÃÞÞ~Ó¦MQQQtl_EE…Ò'°¤OÈnÛ¶-99yéÒ¥Ìýͪªª•+WJû™G6ZÓwïÞõññY¾|yrr2!DMMêêê ·‚4©©©‹-¢o“““+++Å~iPvKµ² ÔÕÕ³²²ÊÊÊèÝ[OOO}}ý””¹ž8ðÉ“'‡¦súÜ¿Ÿ‰±ØÜœ6mÚܹs™ÿùçŸAAA’Ó*ikk'$$ôë×ïäÉ“44ëׯçñxAAAb™[Ó²-:Y¼¼¼455333½½½ !¥¥¥uuuôOBHmmí±cÇè ܪî8ÀEDDlß¾ý—_~aR455SSS#""<<<ÂÃÃ…Báž={ÊËË÷íÛ§©©ÙÊÍèêêN›6m„ VVVçÏŸÏÉÉ1119{öìÑ£GCBBšýÔ‘#G6nÜèêêÊårE'¥svvöððHKK suu ohhÈÌÌ|ôèÑîÝ»éËmذ!<<ÜÝÝ=""B]]}Ïž=m1W\jjjQQQbbâöíÛûöíKM=wîÜÓ§O—-[F¿\К¶ðôôìÝ»÷š5kî߿߻wï»wï=zÔØØxüøñ\.WVÁÂÂ"111??ßÕÕõüùóÙÙÙd&)¤x<žŒ–j}„„„ÐѺ´Ç‘ËåúùùeeeuïÞ]Ú/ ÒøuË–-OŸ>ŒŒléy<^ddäˆ#ÁáÇ™ass6::úÛo¿0aBll¬‘‘ÑöíÛ«««éô@„µk×®Y³æÓO?9s¦©©iRRÒâÅ‹BBBŒŒŒŽ;võêÕ””É[üŠ_”ºº:û“ÅÄÄdúôé›6m …666éééÇ¿téRttô€èQJùÇ­êŽ@Õuw@öýNGÔýû÷郮Ì<ŽB¡0???88ØÌÌÌÌÌ,88øâÅ‹Ì"ÑsšM¡]/tºŠvz=yòD(æååy{{ëéé½õÖ[111ééé&&&Æ J™Ž‡yF 3KaaáðáÃÍÍÍ»téâïïüøqÑâ>}zèС´ÇÎÐÐpß¾}DÙó8 …ªªª­[·8ÐÄÄD]]ÝÌÌìÝwß=s挴æ`9£ì¶1P(|ôèÑ”)Slll455­­­£¢¢˜vØ·‚Ü¥™óòòlhhØ£G„„„ÚÚÚf Ù-Õ,–S´ÐùLLL˜úsŽ3fÌÍ&:@ ?~¼‡‡-êØ±cE3Oœ8‘Ïç7»9[[[Ÿ””++«¹sç&&&¶èöŋӦMsppàóù#FŒ(,,dÑã0--IÉÈÈèß¿¿žžŸÏ2dÈÑ£G¥­¶E-+ £££ŒŒ˜·ìO–¦¦¦eË–988XYYMŸ>½ººúÒ¥KÁÁÁîîî¿üò ûªhi[+¦ãa#Dì¯lNNNwïÞUu)àu“ÖîG…çw¤+//ïÚµkëûMA”›››Ø³ùž]·nÝÄÆ)v$þdQà‹»Ó~×ãV5tR’O§@³p²€+èqhsœÖ¯BQ¸O ¯YHHý!»NåÃ?û逎 #@ÛBèÊæÍ›U]`æèðp«XAଠpV8+€ŽÀ G`#°‚ÀXÁ/Ç´-G…¿8ˆß­eBàÐöT¼q8ÄŽ ,¸U ÐI%%%q8œ#FH.Z»v-‡Ã¹~ýºªËHìììFE_ûùù¹»»+}W®\áp8{öì‘VEçΓ\ÄápšššèÛ‡r8œÉ“'3¿ùæ??? 77·¸¸¸òòr&ÃgŸ}Æ‘éØ±c ìNrr2ŸÏïÓ§Ò+J)D´=qPÙÙÙ7NÕls2Ž€f¡Ç S;|øðþýûG­ê‚ÈÇår¹\®ªKÁŠP( ËÊÊêÛ·ï„ 455ïܹ³uëÖï¾ûîâÅ‹½zõ"„xxx$$$0ùüóÏŒŒ&MšÄ¤ØÚÚ¶t»·oßNLLôõõ5k–ªë@ùnܸñÉ'Ÿäåå½zõªG&Lˆ‹‹ãñZõ-&zP]¾|ù“O>INN¦ ô:544hkk3‡P|>¿¢¢â5—ä54hP``àÊ•+U]PG€NM[[{Μ9AAAúúúª.‹¹¹¹ª.[;wîÌÊÊZ¸páºuë˜Äk×®ùúúNž<¹  €âçççççÇ,MOOïÞ½ûúõë[³ÝÒÒRBȪU«U]Jvÿþ}ÿ¦¦¦Q£FY[[Ÿ8qbþüù§OŸ>pà@kV+zP=}ú433sÞ¼y¯ïŸÏãñ¬¬¬fÍš%ZlöÇSSShhhXXXCCƒhúÅ‹{öì¹mÛ6–¥%„<{ölذaIIIòæ{gƒG€NÃá|ùå—½zõš>}ú¥K—šíŸ8xðàØ±cÍÍÍÇÏáp222|||222ÂÂÂh†G 6ÌÐÐ0((ˆ¦ìܹ“Ëå._¾œÇãmÚ´iìØ±3fÌ())Ù²eKTTÔµk×!«V­JJJ2dÈØ±cëêê80qâDƒfŸÚ¡455·oßμ}ôÑŸþiccCÉÎÎ~ï½÷,,,"""ÔÔÔ80lذ;wFFFBöïßÞµk×ñãÇ«©©íܹóçŸVz­Ž7.==}Ô¨QS§N=z´í455555mÍše´Å‚ ¬­­W¯^½aÆfC–˜˜˜]»v :t̘1EEEÛ·o/**ºpá›V`ß „}ûöýþûï¡¡¡®®®.\X»víùóçsssŦ¦’ÝR¢ccc===E>|H±Ì!!!?ýôÓ™3gBBB!gΜ!„={ö¬k×®„ÜÜ\sss777ÑO-X°ÀÎÎnåÊ•ëÖ­óòò¢‰7nÜ>|øûï¿?tèЃnݺU ° ˜~ûí7ÙŒ‰*--ÕÔÔÔ××ß·oßßÿÝ«W¯þýûKûCnc8qbóæÍÓ¦MëÑ£ÇÑ£G·lÙÒÐÐðõ×_“ÿ[·n=zôhJJŠºººhº‡‡‡¦¦æüùóGÅòx633£ÝáwïÞíÑ£ËjvJÊæèè¨ê"€ HkwBªîŸôs|ÕªU„ÒÒR¡P¸víZBHjj*]´fÍBȵkׄBa]]­­mEE]ZQQacccoo_WW' é3IIIMMM4ƒ­­­††Fqq1}KÇù¹ººÖ××Ó___BHee¥P(´··wttlhh ‹^¼xÁãñf͚ŬjäÈ‘ôµ¿¿¿›››äެ^½š’žžNKëàààîî^]]M—ÖÖÖ8ÐÞÞ¾±±±¶¶ÖÆÆÆÂÂâñãÇtiyy¹¥¥%!d÷îÝÒªH†ÆÆFšó·ß~#„DGG3Ÿýá‡Þzë-šMKKkÈ!)))¿ýö›´æ022òôô”}ŒÉm‹ÌÌLBÈÙ³g%?ûêÕ+.—+Z©S§òùüòòr6­À¾Aéñ’’ÂlháÂ…„]»v‰6¨ì–ÊóìÙ³þýûs¹Ü_ýUlÑãÇ ! ômŸ>}è3æû÷ï§»¦¦¦6eÊɃêðáÄÜÜ\f¯ !¤omllš-­­­¯¯¯hJtt4ûoØmmí.]º0‡–³³óåË—›Í,·±!ô­@ èÓ§O·nÝh ·èøwrrrwwgšãúõëeeeÌkBȪU«Xî ãÎ;Š}°­)ðÅÝi¿ëq«Èüùóûô铘˜øèÑ#±E………<˜7oŸÏ§)|>Þ¼y÷ïßgæë±°°X±b…èзþýû3ý „ñãÇ3ýô¦^uu5!¤   °°y6öÙ³gÌ"6<¸råÊY³fM:•rõêÕ’’’… jkkÓ šššqqq÷ïß/,,,,,|øðáüù󭬬˜’Ï™3Gö&"##$X[[ËþTTTTiiéõë×SSSƒ‚‚._¾¼lÙ2{{{æ*†M[H£¦¦F§¢u„ôôôŠŠ 6­À¾Ai©,XÀ|våÊ•zzz{÷î-ì–’½/¹¹¹ ¸téÒ—_~éàà ¶ÔÊÊÊÅÅ%''‡òüùó¢¢¢øøx]]ݼ¼ûöí+š.wnÈÙ³gûøøˆ%^»v­¬¬Ln ]\\\\\æÍ›W__ðàÁøøø•+W0àwÞQ ™Ø´…4ÚÚÚiiiô†l¯^½¼½½ƒƒƒ‡Nï‡Êmö JéÕ«—èmV]]]''§{÷î‰æ‘ÝRÒö¥¬¬löìÙ‡rpp8qâÄ!CšÍ²~ýúçÏŸÓÎ×ÀÀ@___8æææòx¼¡C‡²©pGGGÑ·²4›L‡y¤ªªŠŽ=m–P(¤¥ÒÒÒ266¦‰S¦L©­­ÍÈÈ ‰’ÛXbÅfÎÍ_ý•°>þé}v•»»ûŽ;„B!›„Ž#BÈ€fΜ¹e˱NzÝF¿A™!óFFFŠm´®®nôèÑYYYýúõ{çwÞ{ï½zxx°ùìóçÏà322˜À…Æ+ëׯ—œ»gÏž§OŸ–Ü¥?ôýêÕ«É“'¿óÎ;Ó¦Mc544Æ×¥K—   #GŽ(8²i bccÇŒsøðáS§Neee}õÕWNNNyyyFFF ·K<O¬¯NvK5»’]»v͘1COOoÛ¶mS¦L‘1ƒcppðÚµkóòòòóó­­­­­­–-[öâÅ‹ÜÜ\___CCC6ÅnÑóéuuu¢okjjè CCC¹Á½_,Š!·nÝ’ÜŠÜÆ’VlZc,ÚÙÉIJ’ºvíZWWWSSÃf¡#Aàÿöé§Ÿ8p`öìÙ|ð“HoÞ¼ysðàÁLâ7!NNN­ÜâÙ³g³²²ÒÒÒæÎË$²éqljjŠŒŒ|üøñ™3gD‡çÓÒêëë‹NÑrûöí›7oѧV¯\¹âïïÏ,eéP]]ÝcÇŽ=zôH4p¤h/ŽŽŽbknM[<{ö¬´´ÔÑÑ1&&&&&F lÞ¼9..nëÖ­¾¾¾Šµ‚4·oßnhh`¢ùšššââbÑ:'òZJr‡š4iRxxøÖ­[ dÀÇÇÇÀÀ ''§  `РA„@pèС«W¯Ò!¼J'ú³@„?þøƒ©É#GŽHûTXXØÃ‡>~üøŽ;Äž´usssrrÚ¸qcDD?*++CBBèƒÀööö›6mŠŠŠ¢cû***”>%‡Ã‰ŠŠÚ¶m[rròÒ¥K™û›UUU+W®”ö3l´¦-îÞ½ëãã³|ùòäädBˆššÔÕÕni***RSS-ZDß&''WVVŠýÒ ì–[¡P(\´hQ÷îÝ¿ÿþ{6ª««fee•••Ñ[½žžžúúú)))r8*<Ëà“'O>Lçô¹ÿ>ɽ“«­­Ð¯_¿“'OÒh[ ¬_¿žÇã1Ó0ZÓX-:þ½¼¼455333½½½ !¥¥¥uuuô¯BHmmí±cÇè¨ Üªîl8ÀEDDlß¾ý—_~aR455SSS#""<<<ÂÃÃ…Báž={ÊËË÷íÛ'9JKèêêN›6m„ VVVçÏŸÏÉÉ1119{öìÑ£Gét*’Ž9²qãFWWW.—+:ƒ³³³‡‡GZZZXX˜««kxxxCCCffæ£GvïÞM\nÆ áááîîîêêê{öìi‹‰åRSS‹ŠŠ·oßÞ·o_úë¹sçž>}ºlÙ2úM¬€Ö´…§§gï޽׬YsÿþýÞ½{ß½{÷èÑ£ÆÆÆãÇçr¹ ´‚ ‰‰‰ùùù®®®çÏŸÏÎÎ8pàûï¿/š‡ÇãÉh)±ß¹sÇÙÙ9&&FlÑèÑ£› ÄCBBèh]ÚãÈårýüü²²²ºwï.íiüºeË–§OŸJN $Ç‹ŒŒ1b„@ 8|ø0Ó"rïäššš&%%-^¼ØÁÁ!$$ÄÈÈèØ±cW¯^MII‘¼k¯Ø)C©««³?þMLL¦OŸ¾iÓ&¡Phcc“žž>|øðK—.EGG0€xô)~ܪîtTýXwÔiÑïäÞèéxDÝ¿Ÿ>èJ§ã¡òó󃃃ÍÌÌÌÌÌ‚ƒƒ/^¼È,1§ÙÚõB§Ë¡h§×“'O„Ba^^ž···žžÞ[o½SQQ‘žžnbb2lØ0¡”éx˜GaÄ03°>ÜÜܼK—.þþþÇ-ÞéÓ§‡J{ì ÷íÛGdNÇÓìì6ôé ÓñTUUmݺuàÀ&&&êêêfffï¾ûî™3g¤5›éxä¶…Œéx„Bá£G¦L™bcc£©©immÅ̰þä6(Íœ——7xð`CCÃ=z$$$ÔÖÖ6{lÈn)†Œ‡s“““¥í,!ÄÄÄ„I¡?ç8cÆ Ñl¢Óñ‚ñãÇxxxТŽ;V4óĉù|~³›³µµõññIII±±±±²²š;wnbbb‹¾a322ú÷ﯧ§Ççó‡ rôèQi9[ÔXB¡0::ÚÈȈyËþøojjZ¶l™ƒƒƒ••ÕôéÓ«««/]ºl``àîîþË/¿°ß;¦ãé8Bü¡ lNNNwïÞUu)àu“Öð$ãàV‘Tååå]»vm}¿)ˆ²³³ssskåOH¿qìììºuëF'Sàø¥Àw§ý®Ç­jè¤$eè|¸½½ýĉµµµ322Fýõ×_ÇÄÄ´fµ¢ÕÓ§O333çÍ›÷ú÷îþýûþþþMMM£F²¶¶>qâÄüùóOŸ>­”à¸=èð;Ø© Ç SKLLüý÷ßW¬XÑ+¯¯¯ªÞE w·ãââDÝÜÜÆwåÊ•W¯^µÑvéxV--­6Z‹´©©‰¹•ßzK—.577/,,Ü´iÓ'Ÿ|RXXhmm””ÔF{ª@ÍÔ××+üñùóç¿|ùòĉÛ·o_½zu~~þ”)S233®@ %Ö+µÅ‚ª pèÔÆúÅ_\¾|YF¶‚‚‚ÐÐPsssKKËÐÐPÚgFÙÙÙÅÇÇ_¾|ÙÕÕÕÕÕ•¦Ì;wáÂ…ZZZ^^^GŽill\ºt©³³³A@@ÀíÛ·™5¤¦¦º¸¸èêê{yyýðÃÍ–! €G«ªª’=(°¨¨hôèÑÖÖÖ¦¦¦ÁÁÁ'Ož]ÏéÓ§ƒ‚‚Œ{öì¹páÂÖ|ßKC¿°‹ŠŠÄÒ×®]{ãÆ Ö¬\Z[LžýÒ¥KÍ"“ÒØØxóæMmmm±Ì!!!?ýôÓ™3gBBB!gΜ!„={ö¬k×®„ÜÜ\sss777ÑO-X°ÀÎÎnåÊ•ëÖ­óòò¢‰7nÜ>|øûï¿?tèЃnݺU ° ˜~ûí7ÙŒ‰îKll¬§§§hâÇ !ššš’ùå6Ö‰'6oÞûÃ?¼õÖ[4›––Ö!CRRR~ûí7iÍaddäéé)û“Û™™™„³gÏJ~öÕ«W\.W´„S§NåóùååålZ}ƒÒã!%%…ÙÐÂ… !»vímPÙ-%£vìØ‘˜˜èááabb’-™áñãÇ„„„ú¶OŸ>ôóýû÷Ó]SSS›2eŠäAuøðaBHnn.³×„ƒÒ·ÎÎÎ666Í–ÊÖÖÖ××W4%::ZáoØgÏžõïߟËåþú믒Kå6!$##ƒ¾}úôéÖ­­áÿNNNîîîLs\¿~½¬¬ŒyMYµjU[ì J(ðÅÝi¿ëÑãdþüù;wîLLL3fL÷îÝE>xð --éïáóùóæÍ‹¿~ý:íÙ²°°X±b…šÚ‡¾ôïß¿Gôu@@!düøñL¿E``àÙ³g«««õõõ ´´´x¼_‹ž={F©®®fYòƒ®\¹rÖ¬YS§N%„\½zµ¤¤äÇd:¢455ãâ⢢¢ >|¸~ýz+++ºÔÂÂbΜ9K–,‘±‰ÈÈÈnݺ‰%îÝ»·¬¬LƧ¢¢¢¢¢¢nܸ‘““““““———““³bÅŠ•+W~ôÑGŠ5›¶FMMN-ôðáCÚ5›žžžžžN—Êmö JKµ`Áæ³+W®Ü²eËÞ½{E»e·”Œ}ùøãé3@AAAtGÄXYY¹¸¸äääBž?^TTôÍ7ßÄÅÅååå5êÌ™3 44”M…;::¾÷Þ{ô5—ËussËÎÎni«5669rDÚR¦Ûž‘››;}úôÒÒÒ-[¶888H~DncÙÛÛ3†¾æp8îîî´[±°°ýñ_ZZz÷îÝÏ?ÿœ¹ áåå5qâDÚséââÒ¯_?zö)}¡Cà„Çã}õÕWÞÞÞsæÌ{ᤤ„B/2舱’’úïää$5BDï*ÒðB2…êÒ¥K~~~vvö;wJJJnݺÅ~’ŽÛ·oOš4É××7--¦Ü¹s‡ü'hË\VVFǽõíÛW4]îܳgÏöññK¼víšìÀ‘©(—yóæÕ××>~åÊ• xçwh&6m!¶¶vZZ½!Û«W/ooïàààáÇÓ—r[}ƒBzõê%:ŽSWW×ÉÉéÞ½{¢yd·”Œ})))©®®>þ|LLÌ€Š‹‹%ï–†„„¬_¿þùóç´ó500Ð××7//’››Ëãñ†ʦÂEßÊž JìIæ)¢ªª*:ö´YB‘ÉVËÊÊfÏž}èÐ!‡'N 2¤ÙÈm,±b3çæ¯¿þJXÿô>»Œ†pwwß±c‡P(TúB;‡‡c€B 0sæÌÌÌ̃ЦÓë¾Øè4ú Ê ™722Rl£uuu#FŒðóó;zô¨ƒƒÃ‚ Š‹‹™ d{þüyXX˜¡¡aFF¸Ðxeýúõ¿Hèß¿?í¤Û±·õ^½z5nÜ8Ú1ÃÐÐÐ7nš)£{F66m!Cllìo¿ýöÕW_¹¸¸dee=ÚÅÅåéÓ§­i–x<žØC²[JöÚttt׬Yó÷ßÓ»ób‚ƒƒA^^Þ™3g¬­­­­­nܸñâÅ‹ÜÜ\___–{×¢çÓëêêDß2OíʸëÇäßµkWïÞ½/_¾¼mÛ¶Û·oK ªØ4–´b·èøùò%!ÄØØXÚþvíÚµ®®®¦¦F¹;ízàß>ýôÓÌž=ûƒ>`齤›7o<˜I¼qã!ÄÉÉ©•[<{ölVVVZZÚܹs™D6=ŽMMM‘‘‘?>sæŒh‡-­¾¾þ°aØÄÛ·oß¼yÓÈÈèí·ß&„\¹rÅßߟYÊ<Ò¡,ºººÇŽ{ôèÑ´iÓÄÑ^:ÅÖÜš¶xöìYii©££cLLLLLŒ@ ؼys\\ÜÖ­[}}}kinß¾ÝÐÐÀDó555ÅÅÅ¢uNäµ”Ø 92räÈ;wFDD0‰]ºt!R~QÓÇÇÇÀÀ ''§  `РA„@pèС«W¯Ò!¼J'ú³@„?þøƒ©I¹wr:4iÒ¤ððð­[·È؊§ !¤EÇ?½]QQÁÜM ÿüóOKKKåî ´àß ÓÒÒ"##¿üòK&ÑÃÃÃÚÚ:55u„ ô«úï¿ÿÞ´i“Më>Çàìì̤dddTUU …r~_{ñâÅÇß±c‡Ø£šnnnNNN7nŒˆˆ ñGeeeHHHCC}ØÞÞ~Ó¦MQQQ„ŠŠŠÏ>ûL¹ÕÈáp¢¢¢¶mÛ–œœ¼téRæþfUUÕÊ•+¥ýÌ#­i‹»wïúøø,_¾<99™¢¦¦F£uuu…[AšŠŠŠÔÔÔE‹Ñ·ÉÉÉ•••b¿4(»¥ÄVHsþî»ïÂÃÙ³;vB(YuuõÀÀÀ¬¬¬²²2:øÕÓÓS__?%%EîG…g}òäÉáÇéœ>÷ïßg2¹wr…Bá¢E‹ºwïþý÷ßËým¤Ö4V‹Ž///MMÍÌÌLoooBHiii]]ý+…R[[{ìØ1:jB¹;íGø¯ˆˆˆíÛ·ÿòË/LЦ¦fjjjDD„‡‡Gxx¸P(ܳgOyyù¾}ûZ?•F@@€®®î´iÓ&L˜`eeuþüùœœ“³gÏ=z”N§"éÈ‘#7ntuuår¹¢3Ø9;;{xx¤¥¥………¹ºº†‡‡744dff>zôh÷îÝôÇå6lØîîî¡®®¾gÏžŠŠ ¥WcjjjQQQbbâöíÛûöíKŸc=wîÜÓ§O—-[F¿‰К¶ðôôìÝ»÷š5kî߿߻wï»wï=zÔØØxüøñ\.WVÁÂÂ"111??ßÕÕõüùóÙÙÙ|ÿý÷Eóðx<-%¶B>Ÿ¿|ùr:3â°aÃ8NvvvAAÁ¼yóD'hBGëÒG.—ëçç—••Õ½{÷^½z5û¿nÙ²åéÓ§’SÉÅãñ"##GŒ!>Ì´½“+ãƒÅÅÅwîÜqvv–üœÑ£G‹ý™¡Ø)C©««³?þMLL¦OŸ¾iÓ&¡Phcc“žž>|øðK—.EGG0€xtœ€rwÞª~¬»ê´èwroôt<¢îß¿Ot¥ÓñPùùùÁÁÁffffffÁÁÁ/^d‰Î˜Ól íz¡ÓåP´ÓëÉ“'B¡0//ÏÛÛ[OOï­·ÞŠ‰‰©¨¨HOO7116l˜PÊt<Ì£0b˜X ‡nnnÞ¥KÿãÇ‹ïôéÓC‡¥=v†††ûöí#2§ãivvút…Œéxªªª¶nÝ:pà@uuu33³wß}÷Ì™3ÒšƒÍt5¼V!!!Í>éܱ}øá‡&LPu)^ô86ãÁƒºººbOÞѹ¬è€khÖæÍ›U]`æèð86cÛ¶mÌÏ€2nݺEû_€Îc3zöì)–ráÂ…¯¾úJSSSÆ4§¢$Å¡s>{дþ‡²: Žr455ýðÃëÖ­kjjÚ¸q#ýÅ0¹&t’_ë6”Dà(ËÅ‹“’’îÝ»gaa‘’’¢ðï=t›W__¿~ýúï¿ÿ^KK+..nêÔ©ÌÖÇf‚ ?~|èС+W®455Uu‰Tc3¾ÿþûãÇGEE­\¹RÕeh/0¸8¡P¸sçN}}ýÅ‹«º,ízÅUTT”••ikk7û3£Fš8q¢ªË Å=~ü˜RSSSTT$¹V@§…[Õâ<<<îJ·`ÁU@9’’’8ÿËÐа_¿~ééé Ù}êîîžššš`ffÖlž;wîŒ9òÃ?ôññéÝ»·´UÉPZZJYµjU`` ª+ ½¸zõê¹sç”U!¹¹¹Ìë§OŸfffΛ7ïuîŽØFEËÓv[i?*++===ËÊÊÆŽËçó322‚ƒƒO:Õl·ëƒššš¼½½ííí™D===ú"++køðáööö'NÔÖÖÎÈÈ=zô×_£ê½TA]9s&((ÈÈÈhüøñ\.wÏž=AAA‡2dˆÜ¥ ,Ú±6în”dff™ššZTTÄŽbzôè±sçÎ~ýú}üñÇŠÝÆ …„--­×¼wÒÔ××óx<55Vw`ššš!Êê?kllÌÉÉÉÏÏß¼y33B “hQµ¿þ²B444ûø¦M›JKK·oßþÁBæÎÛ·oß äääHf¦G­^½ºÙ?–.]jnn^XXhhhHY¶lYÏž=“’’Z8 ¡PØ}ÀmZWB¡pêÔ©†††×¯_§W§+VôíÛwáÂ…W®\‘½TÕ{Ù¡´Ç3þK(|Íá#êdäñôôôññÙ¿cccK×?yòä‘#GB|}}íììhbAAAhh¨¹¹¹¥¥ehhhAA“ßÎÎ.>>þòåË®®®®®®’+¬©©INNvvvÖÑѱ±±‰‰‰yòä ³455ÕÅÅEWW×ØØØËËë‡~]óܹs.\h`` ¥¥åååuäÈ‘ÆÆÆ¥K—:;;ܾ}[´_|ñ…‘‘‘††FŸ>}–,YBà IEEE£G¶¶¶655 >yò¤´ÚxöìÙ°aÃ’’’***d×ÛØ±cÕÕÕ_½zEßîÙ³‡ÃḸ¸08ÎÕ«W !´ÃfòäÉt´€¿¿?SÛ„sçÎ…„„ðù|++«?üðŸþ‘¶]û"­æ%7Ê”§¥Õ.£›Ý5Ù5úôé   ccãž={.\¸PZóBœœœÄ¸¤¤¤~ýúvvïÞmaañþûïÓ·öööcÇŽÍËËûã?$3ÓÀñí·ß–\TWWwëÖ­wß}—F„]]]??¿Ç×ÔÔ4»iÙ|||ü¶mÛø|>dz²²š5k–hÓ³¯Ÿ¦¦¦ÐÐа°0± ÅÅ‹{öì)9ŽE)uõàÁƒ’’’©S§2ÓÅÇÇÞ¸qCöRöåù„ lŽŽŽª.¨@›´;=CÛæ<]µj!äìÙ³¢‰þù§¥¥¥ššZyy¹´xð --ÏçÓ>ŸO»¯_¿NoZXX¬X±¢ÙÁpjjjçܹs>´±±!„¤§§ÓÎ9BHAA––÷ï ݳgÏ!ÕÕÕÌÇû÷ïߣGúšv"Ž?^]]¦ž={¶ººZ__ŸLtB®•+WnÙ²eïÞ½‘‘‘LâÕ«WKJJ~üñGmmm𢩩UXXÈþ^§$+++:ðëùóçEEEß|óM\\\^^Þ¨Q£Îœ9#h’\ŽŽŽï½÷}ÍårÝÜܲ³³%³ÉÞ—Þ½{˨yÙØW»ÜdYÚÆÆÆ‡®_¿žvÓƒjΜ9K–,iiC4669rDÚÒ°°0Z<Ñtz¯™–_Lii©@ HJJ¢£~þùçøøø‘#G1w¨ !ü1½©D+\’Üê²··3f }ÍápÜÝÝþùgBHaa!ûú)--½{÷îçŸÎŒ’ôòòš8qâ×_MqqqéׯßÁƒW®\©Üº2333fLFFÆÚµkéßH;vìØ²e !¤²²RöÒ–¶2È€À )6BQÚ§Zº6yæÙ³gY> -æÑ£G„Ñç@Ù?U-ª¤¤„"6x‘Ý+))¡‘–“““´G(´µµÓÒÒ,X`gg׫W/ooïàààáÇÓǺté’ŸŸŸ}çÎ’’’[·n‰ Êd¢UB \$S½zõ}ZBWW×ÉÉéÞ½{¢yhÇaTTTTT”XQËÊÊZ8BBBBÖ¯_ÿüùsÚYèëë›——GÉÍÍåñxC‡e³z ’!í! ¹û"£æec_ír[eiéØÐ¾}ûŠ¦ËžZ’>Å`]ªªª¢ƒt›% 龈 ¥±‹±±±äGrssµ´´˜ES¦L©­­ÍÈȘ:u*“­¤¤¤ººúüùó111 (..655[•Üêkzæ´¢=,ëçòåË„³»»ûŽ;„B¡ÒëjË–-/^¼ 7Ièþ&&&®ZµÊÈÈHîRPŽmL±>B±ÎÅ6èkl¥ëׯӉ­\P($ý—4”aÆÝ˾îÇÆÆŽ3æðáçNÊÊÊúꫯœœœòòòŒŒŒF••Õ¯_¿wÞyç½÷Þ8p ‡‡‡+ÇãUUU‰¦Ð°iýúõ’s›÷ìÙ³•› ^»vm^^^~~¾µµµµµu@@À²eË^¼x‘››ëëë+ÚA%ËçÙåî‹´š—ö<~KÕÕÕ±oAÙ¥=}ú4‘8Ìd?Ð]WW'ú–yÅÐÐP(ód433SSS{Ú鯿þ"„0ýy¢èaQï¼ó!Dr~JÀÀÀ5kÖDFFfffNŸ>½¥Õ%­éi'%Ëúyùò%‘ØQ]»v­«««©©Qz]ÑÛô.\ NûúúÒ–µ¶¶–»”#@;F¯ãB῟­n7±caaá™3gÂÃÙ›b spp „ܼysðàÁL"} ÒÉÉIîÇŸ={VZZêèè#6oÞ·uëV__߬¬¬´´´¹sç2ùx œqûö톆¦?¬¦¦¦¸¸Øßß_rwôõõ‡ &úÁ›7o¶¾ÛÃÇÇÇÀÀ ''§  `РA„@pèС«W¯ÒQ§J${_dÔ<}D£õΞ=˾e—–>³|åÊÑöºv회­———‹¾eò•{û•ÇãõìÙóÌ™3¢é§OŸæp8½zõËÿðáÃÇ2„>ÈBÑ.7›#GŽŒ9rçÎÌR:R2 kQu‰iQýЮ¢¢‚Ö9ùÏÐO&}ÆNGGG¹uE¹~ýºÁÀHSNž<Éápè¯Ë^ Ê‚éxÚ+)¾öéxä*))™8q"‡ÃILLlýÚ<<<¬­­SSSŸ?NSþþûïM›6ÙØØ°ù‘º»wï0`ãÆô­ššýæSWW§O“ˆ~gddTUU ¿+**RSS™·ÉÉÉ•••b¿4èæææää´qãÆ/^ДÊÊÊøøxVÖ•ººz```VVVaa! ===õõõSRRäpT`’HÙû"£æ[³QQ,[nEvi=<<ìíí7mÚÄÄŸ}ö™Œ­?yò„>|C¹ÿ>EÑÛ¯ÒÐ<Ó¦Mûí·ß˜ÿùçŸAAA¢3"QÚÚÚ 3fÌ`ú×Áúõëy<^PP——!ä»ï¾Ýå;vB˜Ø¨¥ÕÕ¬Õ———¦¦&}ÄRZZZWWÇLyS[[{ìØ1:øD¹uE™1c†‹‹ Óïܹsøðá´×VöRPô8´?LG#¥êØqË–-ô²^WWWTT”ŸŸ___¿yófÑŸQ˜¦¦fjjjDD„‡‡Gxx¸P(ܳgOyyù¾}û455å~ÜÓÓ³wïÞkÖ¬¹ÿ~ïÞ½ïÞ½{ôèQcccúÓºººÓ¦M›0a‚••ÕùóçsrrLLLΞ={ôèÑ–ÕÂÂ"111??ßÕÕõüùóÙÙÙd柣x<^ZZZXX˜««kxxxCCCffæ£GvïÞ­”ù–CBBè/ÎÑÀ‘ËåúùùeeeuïÞ½ÙòŸý[¶lyúô©ès|˜9åÞ~%„DGGûí·&Lˆ522Ú¾}{uu5ó{’k×®]³fͧŸ~:sæLSSÓ¤¤¤Å‹;88Ð=:vìØÕ«WSRRèx€åË—Ó)$‡ Æáp²³³ æÍ›':…'Ëê’Q`uuuöõcbb2}úôM›6 …B›ôôôáÇ_ºt)::zÀ€ôü¥a¥r늲zõê//¯Q£F544ìÝ»W[[û_ÿúÍ,{)(ªëî€:í#úÜ×îl&_›g‡Ãá8::FEEåçç·tU¢D§ã¡òó󃃃ÍÌÌÌÌÌ‚ƒƒ/^¼È,"±Y=š2eЦ¦¦µµuTT3ÕK^^ž···žžÞ[o½SQQ‘žžnbb2lØ0É5Ó.¥ôôt&%99™BgÑ£™óòòlhhØ£G„„„ÚÚÚf YXX8|øpssó.]ºøûû?~\nÈŽ‡ÙYBˆ‰‰ “²~ýzBÈŒ3D³‰N#Æo``àááA‹:vìXÑÌ'NäóùÒ¶(c_dÔ¼ØFŦãa_í²[Pl+rkþôéÓC‡¥·z ÷íÛG¤OÇããã“’’bcccee5wî\Ú¿.·/^¼˜6mšƒƒŸÏ1bDaa!³ˆž/iiiLJFFFÿþýõôôø|þ!CŽ=Ê,;vìèß¿—.]èoU7[`ªE¼P(ŒŽŽ622R ~ššš–-[æàà`ee5}úôêêêK—.¸»»ÿòË/ì+ª¥uuüøqºÖÖÖ111Ì<¦l–Ê€éxØãÛͨ©ÃÉÉéîÝ»ª.¼nh÷ŽÍÎÎÎÍÍööÁ›®¼¼¼k×®2º´íììºuë&6ö®ó[?ðN{ÍÇ­jè\0èM6ÔÈ€‡c€ô8ÈÂæ‡p cøðÃÅ~Î(ŽòmÞ¼YÕE€×gÑ¢Eª.@;…[ÕÀ G`#°‚ÀXAଠpV8+€ŽÀ G`#@'•””Äù_†††ýúõKOOÍæQSSëѣǤI“.\¸ {UŒñãÇ7»õääd>Ÿß§OUWƒrØÙÙ5JÕ¥ø/???wwwiE7n\û) ]¹r…ÃáìÙ³GÕi§P?Ð,Ží‡pØüSâ###,X0bĈ{÷îM›6mñâÅÍæ‰577ÿé§Ÿ¼mÛ6i«õî»ïJnôöíÛ‰‰‰ÎÎÎË–-Su•«Þ7"""ÌÍÍõôô<==SSS[¹N.—ËåréëË—/5êÖ­[¯s§Ä6*Zž¶ÛJûÑÐÐÀãñÄþˆ211‘–ÿÔ©S¦¦¦]»võõõ=pà€èÒâââÑ£GwïÞÝÊÊjܸqùùùªÞ¿¶2hР¤¤$Ùy^¾|9sæLkkk==½Aƒ‰ý+{)(OÕ€ÿ!$BÙ”8Ξ=ÛÇLJyûôéSww÷ÔÔÔ„„33³fóܹsgäÈ‘~ø¡OïÞ½¥­J†ÒÒRBȪU«Û¼BÛ·û÷ïûûû7555ÊÚÚúĉóçÏ?}ú´XèÐR¹¹¹Ìë§OŸfffΛ7ïuî—ØFEËÓv[i?þøcÅnc …BBˆ–––ªw÷ßêëëy<žš«;0MMM„eõŸÍŸ?ÿåË—.\èׯ!dõêÕS§NýöÛo;6lØ0UWLÛjQµ¿þ²B444û8ýÓhõêÕlþ4Zºt©¹¹yaa¡¡¡!!dÙ²e={öLJJЉ‰ …S§N544¼~ý:=W¬XÑ·oß… ^¹rEá½B¡°-ú€ÐØØ˜“““ŸŸ¿yóffŒ4›6m*--ݾ}û|@™;wnß¾},X““#w)(K{>þòåË®®®®®®’+¬©©INNvvvÖÑѱ±±‰‰‰yòä ³455ÕÅÅEWW×ØØØËËë‡~]óܹs.\h`` ¥¥åååuäÈ‘ÆÆÆ¥K—:;;ܾ}[´_|ñ…‘‘‘††FŸ>}–,YBà IEEE£G¶¶¶655 >yò¤´ÚÈÉÉ4h©Ù³gBΟ?/–sìØ±êêê¯^½¢o÷ìÙÃáp\\\˜ çêÕ«„€€ÚË2yòd:ZÀßߟ©mBȹsçBBBø|¾••Õ‡~øÏ?ÿH+¡Œ}‘Vó’eÊÓÒj—Ñ‚Íîšìš?}útPP±±qÏž=.\(­ù!NNNb1_RR’h3ÉFÇ·ß~[nκºº[·n½ûî»4j$„èêêúùù=~ü¸¦¦æÁƒ%%%S§NeþŠ322Š/,,¼qãF³+”}ÀÇÇÇoÛ¶Ïçóx<++«Y³f‰6=ûúijj »P\¼x±gÏž’ãXdxöìÙ°aÃ’’’***äfÞ½{·……Åûï¿OßÚÛÛ;6//ï?þ»”FÊæèè¨ê"€ (¥Ý‰Pþ)É&«V­"„œ={V4ñÏ?ÿ´´´TSS+//—–‡Š%„Ü¿_v6I7oÞüè£!6lÈËË …™™™<¯[·nóæÍ‹ïÞ½;ÇËÌ̤ùmmmÇŒclllgg7}útÉFEEq8œ   åË—‡……q¹\///ºhåÊ•„!C†$%%-[¶ÌÙÙ™òóÏ?3k666611Y½zuJJ ŸÏ×ÒÒòööîß¿jjê¬Y³8Ž««+“ÙÊÊŠºtéÒ€€BÈ Aƒhç­­íÈ‘#iÎãÇkiiÙÙÙ%$$,Z´ÈÁÁËåîÚµK²ä K–,ÉÈÈM¤7©SRRÄ2§§§B²²²DëŸÃáüõ×_4¥oß¾æææ´<þþþnnn´¶é ±uëÖÑÚ¶µµutt444Œ‹‹Û°aƒŸŸ!¤ÙŠ•»/Òj^r£LyZZí2ZPr+²KûÓO?q¹\SSÓY³fÍž=ÛÜÜÜÑÑ‘²{÷nÉ·µµõõõM‰ŽŽfÿ§©©ùìÙ³½{÷nݺõÌ™3uuuÍælhh(**zòä‰hŠ‹‹‹‹‹‹P(¤·øSSSE?òÓO?BvîÜ)¹6¹|ïÞ½544bcc?ÿüóÐÐPBí×liý|ñÅÍ¥õõõnnn:::OŸ>eYWŒ;wîBV­Z%-ÃË—/9NTT”hâ?þHÙ¿¿ì¥r·®À¼Ó~×#pT¾N{0urohà8a„%K–,Y²dñâÅÑÑÑ]»v%„Ì™3G4O³áš5k!'Ožd²Iûêedff2«­««³³³³µµ­¨¨ K+**lllìííéw­­­-!$))©©©IrU¯^½âr¹ÑÑÑLÊÔ©Sù|> |íííè¢/^ðx¼Y³fÑ·¶¶¶ÅÅÅôíºuë!®®®õõõ4Å××—RYYÉCô›ráÂ…„—0c]]ƒƒƒ»»{uu5ÍV[[;pà@{{ûÆÆF¹òìÙ³þýûs¹Ü_ýUlÑãÇ ! ômŸ>}è3éôKñÅ‹jjjS¦L¡KEµÃ‡Brss™½&„ -æÑ£G„чFÙ?U-ª¤¤„"6x‘Ý+))¡‘–“““´G(´µµÓÒÒ,X`gg׫W/ooïàààáÇÓǺté’ŸŸŸ}çÎ’’’[·n‰ Êd¢UB \$S½zõ}ZBWW×ÉÉéÞ½{¢yh¯ITTTTT”XQËÊʤŽeee³gÏ>t胃É'¤=0²~ýúçÏŸÓÎÚÀÀ@__ß¼¼Ï.w_¤Õ¼´çñ[ª®®Ž} Ê.íéÓ§‰Äa&û:Ñ·555ô…¡¡¡Üˆ‡ÞäõÎ;ïBäN9©££¸fÍšÈÈÈÌÌÌéÓ§ÓÛÖ.\ VûúúÒ}±¶¶V º¤5==êXÖÏË—/‰Ìh¬k×®uuu555lêŠ=333555±ghþúë/Bˆ•••ì¥Ê*Ž €ÂÂÂ3g΄‡‡ËˆrX¢÷doÞ¼9xð`&‘>1êää$÷ãÏž=+--uttŒ‰‰‰‰‰›7oŽ‹‹Ûºu«¯¯oVVVZZÚܹs™ü­™[ûöíÛ LXMMMqq±¿¿¿äîèëë‹N¦sûöí›7o6þ:thÒ¤Iááá[·n»Ë&ÉÇÇÇÀÀ ''§  `РA„@pèС«W¯ÒQ§J${_dÔ<}D£õΞ=˾e—–>à|åÊÑöºv회­———‹¾ežÌ•{ûõáLJ2d}6…¢]_ô´¨#GŽŒ9rçÎL"IC®ëׯ 8pàÀtéÉ“'9Ž··wkªKL‹ê‡ÆaÌ€ :ôÉ@Ÿ±ÓÑÑQî­j׳gÏ3gΈ&ž>}šÃáôêÕKöÒmdÃt<Ð2%%%'Näp8‰‰‰­_›‡‡‡µµujjêóçÏiÊßÿ½iÓ&6ÓöÞ½{wÀ€7n¤oÕÔÔè7Ÿºº:}šDôË;##£ªªJá.ŠŠŠÔÔTæmrrree¥Ø/ º¹¹999mܸñÅ‹4¥²²2$$$>>^GGGl…B¡pÑ¢EÝ»wÿþûïåFt§³²² iàèé驯¯Ÿ’’"w€£Üò$ÉÞ5ßšŠbÙ‚t+²Këááaoo¿iÓ&&þ«¨¨øì³ÏdlýÉ“'ôáBÈýû÷™(ŠÞ~•†¢­­0cÆ ¦Ë\ ¬_¿žÇã‰mÅËË‹òÝw߉îÔŽ;!4Rœ1c†‹‹ Åïܹsøðá’š­9à[T?^^^šššô7BHiii]]3=Pmmí±cÇèà¹uÕRÓ¦Mûí·ß˜vùóÏ?322‚‚‚è|L²—‚² Ç䨲e ½×ÕÕåçç×××oÞ¼Yôgc¦©©™ššááá. ÷ìÙS^^¾oß>MMM¹÷ôôìÝ»÷š5kî߿߻wï»wï=zÔØØ˜þ̆®®î´iÓ&L˜`eeuþüùœœ“³gÏ=z4$$¤¥Eµ°°HLLÌÏÏwuu=þ|vvöÀ™Iã(—––æêêÞÐЙ™ùèѣݻwK%,..¾s玳³3ýQ£G1b„dBBBè|=4pär¹~~~YYYÝ»w—Ö­B{:·lÙòôéSÑçxä’½/2j¾5 »Ŷ"£´\.wÆ áááîîîêêê{öì‘=q Ç‹ŒŒ1b„@ 8|ø0s4ʽýjjjš””´xñbZÈcÇŽ]½z5%%…Þâ_»víš5k>ýôÓ™3gòùüåË—ÓI"‡ Æáp²³³ æÍ›GGú®^½:$$ÄËËkÔ¨Q {÷îÕÖÖþ׿þ¥@uÉ(³ºº:ûú111™>}ú¦M›„B¡MzzúðáÃ/]º=`ÀzþÒ°²õ·ªEëŠýí·ßN˜0!66ÖÈÈhûöíÕÕÕ̯Ê^ J£êǺ; Nûˆ~'÷†NÇ#{òE±yv8Ž££cTTT~~~KW%Jt:*???88ØÌÌÌÌÌ,88øâÅ‹Ì"Ñ)›õèÑ£)S¦ØØØhjjZ[[GEE1S½äååy{{ëéé½õÖ[111ééé&&&Æ “\3íRJOOgR’““ !tŽ=š9//oðàÁ†††=zôHHH¨­­m¶………Ç777ïÒ¥‹¿¿ÿñãÇ›-ùÁƒ¥]™“““¥í,!ÄÄÄ„IY¿~=!dÆŒ¢ÙD§¿ãÇ700ððð E;v¬hæ‰'òù|iÕ+c_dÔ¼ØFŦãa_í²[Pl+rkþôéÓC‡¥7‚ ÷íÛG¤OÇããã“’’bcccee5wî\Ú¿.ÿàþŒŒŒþýûëééñùü!C†=z”YDÏ—´´4¦®vìØÑ¿ÿ.]ºÐߪ+ÒñãÇi%X[[ÇÄÄ03wJjÑ/ £££ŒŒ¨Ÿ¦¦¦eË–988XYYMŸ>½ººúÒ¥KÁÁÁîîî¿üò ûŠb4;X] …Â/^L›6ÍÁÁÏç1¢°°P4¿ì¥2`:ö8Bå \ÊÉÉéîÝ»ª.¼nJiw–K·‡‡c:;;;77·Vþ„4´ååå]»v•Ñ¥mgg×­[7±s‡Üúéx¸€wÚïzܪhG¼’AêdÀÃ1À zä aóC8Ð1|øá‡lžsè„8È·yófU^ŸE‹©ºínU+€ŽÀ G`#°‚ÀXAଠpV8+€ŽTRRçöë×/==] 4›GMM­G“&Mºpá‚ìU1ÆßìÖ“““ù|~Ÿ>}T] Êagg7jÔ(U—â¿üüüÜÝÝ¥uܸqí§<*tåʇ³gÏU¤Bý@³8tj‘‘‘ ,1bĽ{÷¦M›¶xñâfóÄÆÆš››ÿôÓOƒÞ¶m›´U‰z÷Ýw%7zûöíÄÄDggçeË–©ººùÉHkIDATTïÔ©S¦¦¦]»võõõ=pà@ë×Éår¹\.}}ùòåQ£Fݺuëuî”ØFEËÓv[iWnܸann®§§çé陚šÚØØ(-óË—/gΜimm­§§7hÐ ±?Ìd/í”XW-Z(HÊæèè¨ê"€ ´Q»·Ý)ºjÕ*BÈÙ³gEŸøàƒÄÄÄB¤!/_¾|ûí·544¢¢¢æÌ™ciiihhXXXÈfi›j»úi£ºjѪÄ(pï´ßõ•¯ÓL\[´;yí£P(Œg¢:iy.]ºD —½*i233[”¿­ÕÕÕ555±ÌÜØØØØØ(–¨pàèââbnnþâÅ úöÕ«WÖÖÖݺuSâÞµÛÀ±EÕ®ðVdÕÕÕÕÕÕ)\°°°055µ‚‚&eÊ”)„_~ùE2óÊ•+ !Û·o§oïÝ»gddÀf©bššš$áÕ)±®Z´*1Ùíj€vMHç5oQ($„444ÈÈãéééãã³ÿ~nMžyòd³Ùêêênݺõî»ïÒ]]]??¿Ç×ÔÔˆe;v¬ººú«W¯èÛ={öp8&CBB‡Ã¹zõ*!$ €Ž)œßÊÊêÃ?ü矤µ—Œ}‘Vó’eÊÓÒj—Ñ‚Íîšìš?}útPP±±qÏž=.\(­ù!NNN¢)IIIýúõcyçää 4H4ÿìÙ³ !çÏŸ—̼{÷n ‹÷ߟ¾µ··;vl^^Þü!w©$Ù|||ü¶mÛø|>dz²²š5k–hÓ³¯Ÿ¦¦¦ÐÐа°0± ÅÅ‹{öì)9ŽåõÔU‹VŠSuäÚuÚ¿B:9¥·;‘x¡\Ívþù矖––jjjåååB™]‰±±±„û÷ï [ØãxóæÍ>úˆ²aƼ¼<¡P˜™™Éãñºuë6oÞ¼øøøîÝ»óx¼ÌÌLšßÖÖv̘1ÆÆÆvvvÓ§O—\aTT‡Ã Z¾|yXX—Ëõòò¢‹hÿÄ!C’’’–-[æììLùù矙5›˜˜¬^½:%%…Ïçkiiy{{÷ïß?55uÖ¬YÇÕÕ•ÉleeE ]ºti@@!dРA@ø¿=ŽÇ×ÒÒ²³³KHHX´h‘ƒƒ—Ëݵk—dÉŠŠŠè¨&ÅÅÅÅÅÅE2szz:!$++K´þ9Î_ýESúöíknnNËãïïïææFk;))‰²nÝ:ZÛ¶¶¶ŽŽŽ†††qqq6lðóó#„4[±r÷EZÍKn”)OK«]F JnEviúé'.—kjj:kÖ¬Ù³g›››ÓÍö¨ÙÚÚúúúЦDGG³üÆlhhX²dIFF†h"ºš’’"–ùåË—'**J4ñÇ$„ìß¿_öRÉMË=à{÷î­¡¡ûù矇††Bbbb¨Ÿ/¾ø¢ÙÝ©¯¯wssÓÑÑyúôék®«­JzÙCà¨|ö`êäÚ.p¶Í‰J£½ &,Y²dÉ’%‹/ŽŽŽîÚµ+!dΜ9¢yš׬YC9yò$“M’ØW/CôVu]]­­mEE]ZQQacccooOïÚÚÚB’’’š½­ùêÕ+.—ͤL:•ÏçÓÀ×ÞÞÞÑѱ¡¡.zñâÇ›5k}kkk«¡¡Q\\Lß®[·ŽâêêZ__OS|}} !•••L1D¿.\H¡q 8ÖÕÕ988¸»»WWWÓlµµµ´··—}spÇŽ‰‰‰&&&ÙÙÙ’?~LIHH oûôéCŸI§Ä‹/ÔÔÔ¦L™B—Šj’·ª !¤omll$·({_d×¼ØFÅGöÕ.»E·"»´µµµ666?¦KËËË---Û"p”ôìÙ³þýûs¹Ü_ýUlѯ¿þJ‰Mxð --ÏçÓ>ŸO»¯_¿Nï:YXX¬X±BM­™¡5jjjçܹs>´±±!„¤§§ÓÎ9BHAA––÷ï ݳgÏ!ÕÕÕÌÇû÷ïߣGúšv"Ž?^]]¦ž={¶ººZ__ŸlÁ‚ÌgW®\¹eË–½{÷FFF2‰W¯^-))ùñǵµµiЦ¦f\\\TTTaa¡Œ{üqii)!$((ˆîˆ+++—œœBÈóçÏ‹ŠŠ¾ù書¸¸¼¼¼Q£F9sF Ð>$¹ß{ï=úšË庹¹eggKf“½/½{÷–Q󲱯v¹-Ȳ´>\¿~=í6¦Õœ9s–,Y¦À¢é#MÍ KÉÍÍ>}ziié–-[Ä–Ò}100M¤Cž={&{©äÖåV—½½ý˜1cèk‡ãîîþóÏ?B Ù×OiiéÝ»w?ÿüsæIy//¯‰'~ýõׄ—~ýú&&fÀ€ÅÅŦ¦¦byBBBÖ¯_ÿüùsÚYèëë›——GÉÍÍåñxC‡eSçô$CÚD9r÷EFÍËÆ¾Úå¶ ËÒÒ±¡}ûöM—=µdSS“è[frÓªª*:H·YBáϹ²²²Ù³g:tÈÁÁáĉC† ‘VbcL+++ !ÆÆÆ²—J®Mnu‰5=sZÑÎ<–õCš‘q0»»»ïرC(¾ÎºjѪ 58´-:›ín|m},]¿~Llåzè—‡Xÿ% e˜q÷FFF2Ö;f̘ÇŸ:u*++뫯¾rrrÊËË322=ztVVV¿~ýÞyç÷Þ{oàÀJ¬WUU%šBæõë×KÎmÞ³gOÙkÓÑÑ \³fMdddffæôéÓÅ2¯]»6///??ßÚÚÚÚÚ: `Ù²e/^¼ÈÍÍõõõe²‘MKK‹M6¹û"­æÍÌÌ”R½uuuì[PviOŸ>M$3i0[}Ë<®dhh(ñH³k×®3fèéémÛ¶mÊ”)L/ 33355µŠŠ ÑÄ¿þú‹bee%{©Õ%­éiñXÖÏË—/‰”È•êÚµk]]]MMÍ묫­ Zu ðf¶§Ø±°°ðÌ™3ááá­¿.Ó»H7oÞÍápzõê%{ikªKL‹ê‡FiÌ-`:ôÉ@Ÿ±ÓÑÑyuÕ¢UAk`:€ö¥ýD‡Ò”””Lœ8‘Ãá$&&¶~mÖÖÖ©©©ÏŸ?§)ÿý÷¦M›lllØüHÝÝ»w °qãFúVMM~ó©««Ó§I胥TFFFUU›.fUTT¤¦¦2o“““+++Å~iÐÍÍÍÉÉiãÆ/^¼ )•••!!!ñññ:::b+ôòò"„|÷Ýw¢EÚ±c!„Î],F]]=000++«°°Žžžžúúú)))r82wZÙ“½/2j¾5ŲéVd—ÖÃÃÃÞÞ~Ó¦MLüWQQñÙgŸÉØú“'OèÃ7„û÷ï3Q½ý* !D(.Z´¨{÷îßÿ=›ðeÚ´i¿ýö³­?ÿü3###((ˆÎ1${©ÕÕ¬Õ———¦¦&}ÄRZZZWWGÿØ#„ÔÖÖ;vŒ>yuÕÒUÂÐãðÆPU§ã–-[蕺®®®¨¨(??¿¾¾~óæÍ½{÷nýÊ555SSS#""<<<èŒâ{öì)//ß·oŸ¦¦¦Ü{zzöîÝ{Íš5÷ïßïÝ»÷Ý»w=jll<~üx.—«««;mÚ´ &XYY?>''ÇÄÄäìÙ³G iiQ-,,óóó]]]ÏŸ?Ÿ=pà@fJ9ŠÇ㥥¥………¹ºº†‡‡744dff>zôh÷îÝ’C ù|þòåËéÆ ãp8ÙÙÙóæÍ QTHHa„Ž\.×ÏÏ/++«{÷î’]PíéܲeËÓ§OEŸã‘Kö¾È¨ùÖlTT@@€ìÛŠŒÒr¹Ü 6„‡‡»»»GDD¨««ïÙ³G즧äîGFFŽ1B >|˜9åÞ~-..¾s玳³sLLŒØ¢Ñ£G1bíÚµkÖ¬ùôÓOgΜI‰ŽŽþöÛo'L˜kdd´}ûöêêj:ÓÜ¥-ª.eVWWg_?&&&Ó§Oß´i“P(´±±IOO>|ø¥K—¢££ @Ï_V¾Îº’»*ÅBh†ªëî€:í#úœRÚ]î ©Ä3–Íä‹bóìp8GGǨ¨¨üüü–®J”ä/Çäçç›™™™™™_¼x‘Y$÷GY=z4eÊMMMkk먨(fª—¼¼Ĉb¿(({©¨ðB¡0::ÚÈÈHúijjZ¶l™ƒƒƒ••ÕôéÓ«««/]ºl``àîîÎæ—Z”^WrW%¦ãa#Tô® Hãäät÷î]U—^7¥´;ËG§qÒ¾~vvvnnn´·Þtååå]»v•Ñ¥mgg×­[7±át‡Üúéx¸€wÚïzܪhG¼tjkõ2àá`=Žò…„„°ù!è>üðC<™ Ð,ŽòmÞ¼YÕE€×gÑ¢Eª.@;…[ÕÀ G`#°‚ÀXAଠpV8+€L 4NNNª.@Bà wïÞUø³ÂaëËÀápþ» [¼ÎÿYÃÿ®DY…€7nU¨Ø› ‰C8ª.¨G`·ªÚG¼3OÍm =Žªô?÷©…"ÿÚ%Ü­èä8+ëVõýû÷CBBöîÝëêê*;çØ±coÞ¼)–ÈçóÏ;§êPÎ8~ÿý÷,s–••ikkÛÚÚŠ&©z CySž§EïV¿qÅ¥ècee寿þzèСݻw³ÌÿòåË´´4U— ½èãˆ#žYY!D¬» “ëã'Ÿ|RWWGÙ¹sg~~¾Üü>$„ØØØ¨ºàíH§}}}é‹S§N±ÉOÇ?þøãý÷ß/..ÖÑÑéÙ³çÌ™3å>R Iöü5ÿ]úæ Ä0G€N«SŽ-õèÑ#BÈgŸ}fgg7pàÀßÿýÔ©Syyy«V­ g³'''±”Öü1¼éš±Äb/ÌÐnI~­wZ›ñÇhkkÏŸ?ÿý÷ß§)ùùù3gÎLIIñõõµ´´”»„‰†ä×z§ %1x3¶oß~íÚ5&j$„x{{Oš4©¦¦æÄ‰ª.toú­^ü„ @ç„À‘­þýûB~ýõWU@5p«ZœP(GMí¢j.—KÑ××WuTF¬—QZ§ãÝ™ 2 ÇQÜÇ{öìùÁˆ¥_½z•tâ1  Doô}j!2ÿÄÞ2‰ÐQ!p$„ªªª<~ü˜bkkÛ·oß‚‚‚}ûö1®^½úí·ßZZZ6LÕ…P ܪ&„¼¼¼øøx‡Ã‡B>ú裩S§®X±b×®]ööö¿ÿþûµk×ttt>ýôSmmmU@5ÐãØŒ=z8p`äÈ‘ýõ×±cÇ^¾|9räÈÇ0@ÕEPŽPˆ1IJæää„y!9¢±Ù1Žâšpˆç&‡ÃùïŠ[¿‰•°Ù—7z'Kö»=ޝâ*xsaŒ#@›c9‹ @;‡À m±¼“+~ø AB}¨nU+€ŽÀ Æ8¼>`8`³Oöàq€N#°%-êí1°[ÕÀ G`#°‚Àà5Á@@xÓ!p€Ö¢¿£êR@›CଠpV8+^‡ÿd †9t€ŽÀ G`#°‚À Íuø'c(<Ðá!pV8+€Ž 4æб!pV8´­NòH5t€ŽÀ GP&<Ð!pV8´!< G`…§ê@‡Ã!‘ŽB!ú\:ô8@ÛÜ¥è`8+Ú žŒ€#°‚ÀXAଠpV8´ <G`#°‚ÀXAଠpV8(©þ/T@ÂSu:‡ó?ï-@G„À@I˜`‘Óšµ´_¸U ¬ pV8(›àɘÿânÞt€ŽÀ G`#´-!b˜#@Ç€À@Ù#@…ÀXAଠpV8@›Ãó1G`#°‚ÀXAெ9t€ŽÀ G`#°‚À^<ð¦CଠpV8(ƒPÕh{€Žðúàù€7G`#°‚À µ8w_ S@ெ9¼¹8+€ŽÀ G€VᎿGxÝð| À #°‚ÀXAଠpÀ0G€7GÅá‘jèT8Êqÿþ}''§ëׯ«º *†ÀQŽï¿ÿ^ÕEhxª.@;UYYù믿:th÷îݪ. @»€À±y#FŒxò䉪KБÑçc0Hà ‚À±yŸ|òI]]!dçÎùùùª.´Gz ³AàØ<___úâÔ©Sª. @»€À±M899‰¥Ü½{WÕ…P=ɹ¥ÍæˆÞ\h?$¿Ö;-Žma"€4ba³wü178´+’_ë6”Ät<À GEàÉè„8+€Ž JtpU—XAଠph1<G(Ä÷Ÿ’999aÇŽM2päp8ÿMàN«ÿYƒRVÒ.‹!mÖF6“;´ö»€È"mø†å)æˆH ýCà ‡Ü2‘ÐI p€× ¸o.ŽðúH»[Õo<Ó¦8DNår8âw®…B4€ pUjv0#æø?Áºh¤ÈÁHÕÀ­jP1!ií³0$^ô8€ÊȽI­’UIÝî˜@§‡À@ p| „­ˆü8Êè³d]PÜ1€N ·ª@q­ dGŠ-ÍñõÅŽz@AœÖõ‰POU½†;ÔÀ@௕h°(”Xô¿¡¤ðßoÙ %le r!pE0!šÜpM¬[Qø¿[$šÎŒ.åp8ÿ; …œæÖ ­!pOÆ(JÈü/Y},û›™ÍñߟçÐÇ™ÅÖÃiÉÊ@;:±®šV­ézŽ0Ig&œ‰?˜"Ià°½Ñ,º*6ÌÆôerDÞþ7¿¼'€\;ÖÇŽÿYƒÈ=DB¤ Xäp82B°¶ŽÏ„ôüws̉ 1“i68@ˈ†eB‰t–k`³‰Öd ’çÈûó ÏÖÈ…À±}keg!ýx+§)Æ,Ç ¡5Öÿ·wï1R•wÇßwÁÚåâAQ¬mYìbÚR ñÚØÔØhB«Ôzƒ“c´hc5­µMSL0Z5ÑÄ’tcP“ºH5QAŒ©!ÞPŒP/„–,`©l!ʶ¶»oÿ8sÞ}ÏuÞ9çÌœÛ÷“.³3gÏœ=3ç™ß{ké­Î樅¹‡&ìèWy, ,Yb >*˜[ £éÓg912Æ'´ï Ö¹Š;2&ÍBŸ EGˆGp¬¢`.ŒîÚÕ!ÙÑA.tÌ*ÄwTuú-ÄGa€Á±ØœR_K×H]t¥“¢ý¦BË“J©ôMÞdÇ2£UÓj\Q’¥5åu\Qt€XÇ"‰jP6oÊ^ÁTgÆGýÏáÏ |\M+ƪبì%È…)'rRBIÕ®8*“Žï€z"8IhQÐ2ù/ÆÆ¦¤”¾RÕÅ[oAJ‘悚Étšû§7N•„ƒ¦Í“­Ø§~™  Á±`|Ù1t¤‹ oækF±¤ð.ú’ãžø?ctz̾ÄGÐŽE•~(‰ñð䵓°ÊeÓ_7úØÐû$~j ¯ÉˆoŽCshHü¢/åï{˜qÐ~ ñl1Kw(5‚cñèJ¡þ&ÙØê¬vÃÝ`ËeË`LÔ[H)R¶G‹j– Ød_ƒ¥ô ´Žc¦Fo©O*:T¢ü– ê.aÏ«…™ @'UáŽÒÛ‡±EµRhq!„ÍνFuCp,ݵÑí^ŠJ9`ÁÍënK“ !kDœ$,>·p`TÁ±Ì\U±ðä›™NåH©Ü1Ô1_Âh¶€²#8f'¸Òtó–Tt–éV ùWmÔ´ ¹oÆ=PjÇLùüRp,=‹fûµŽ%I]Ò[ǵk -ñà%æUPvǬqU(&s¸RpB'>Ú4ao2Èš¥Æò+ÒÉ­"8fM_¸<‡9ŒZßç¢ e«cƒP*t…PpŒªn·.E)¨¸âkþ!ØAy÷IÌöR‰Îœ`ßi†áè*Žíá”á¢^"!#c|¥JýO¥¤QêØ (3,êݪã )d5ž´”f‰QÚ¡Ñ+ˆŒ:‹à˜5ÞÇ OFÐ?ò?@—÷Ž¡1'[éèþ›­Õñ{ŽÂc´5€r¡©udF=),Êw¾®óè„ çnôýjg©”"9––ï¼cÎp…EÅh]NÕFé@ñQqZa® dhÇ%_ÆßĤF%¥,Øß:=[…Dpr¢+Ž2¸ÚN º1ÈÁµ×±«°ÙTmÎ×£”;£8©S ?ôq:È×»Q¸iR))FgÌrù²Cp:ÈE«Œø(…g˜Æê…©›ô–¦Z‡QhJ˜]£º9–}ŠÇÄC }Ž@§„æ6§Öè‰æò32ôQ¡3øÄÿÆjµoš¡0tð š ]‹’ì =Ž@GIc5¹øuAœÈ¨tI%=“úHºÊh'Ç Öd®×X›²Tª ªU2D†œ³˜Áù:€Š#Ð9iͱØB¥i²*‹V§>BÐB  ý¨89hõ/ÅhXbtBb#|ô)AÑ@;Pq:DÊBªÕ©¼KJ«y{P’º#€ö£âtT–u¥()9ê¶ö`<]k¤è sGÔ—T¢cÉ+*/&¿´Ó»ß .™¨KSõš5kvîÜ9nܸsÎ9禛nšäСC¼à‚ î¹çž¼w‘MÕÇ.ä9YRÉÆÔÐÑ÷#QÔBËc° Zõû8 ŒŒŒ,_¾ÜIBˆ[n¹¥§§gýúõ###¡Ù½{·ÂWnDÅt¬ƒ£4¾‰úÂ6¶ô{¥RJÊJÎõ(3y¾ÌÛóÞÁr@?ÁêtD´QõƒãæÍ›»ººÎ=÷\}˘1c,XpàÀ7Þx#ô!ƒƒƒBˆO<1ï}GE¨°/!¥2¾ÚTÿk,<œ¸Çi¤¶Y𺀤P½÷ !ÌïkAJqŽù¾. ½ŠG¥ÔÎ;§L™2eÊóöÞÞ^!Äž={BåÇ}ûö-^¼xîܹçœsÎ5×\ó§?ý)ïgƒò)H¡t&î1ËsžGÜŽjQtyZÅû8>|xxx88¨¥§§GñÑG…>Ê ”÷Þ{ïI'tÆg¼ÿþûÏ?ÿüÆùË_~ï{ß³ù½³fÍr¾éííu¾ÛþÞ{y tZARcÆtâyïJϦÆCd,ÑåH@_ÖQñà844$„?~¼ïö &!<ú¨}ûöuwwßxã‹/vnyùå——-[vûí·Ÿ}öÙÓ§Ooú{·oßî|#YÛ£®ŠxmÖËêo¢nD¥‘Vé˺VÛ(Yñ¦êI“&I)>ì»ýã?nÝ1èÁܺu«NBˆ3Ï<󪫮zî¹çò~NÈ@»GÆúª¬û5ê>Žš”–h³LÅƒãØ±c{zz‚•ÅC‡ !ô8kóæÍB¼G‹3*F¥”•(7²ü  éüÅ3•ø»茊G!Ä´iÓ8à$Em×®]΂÷WJ gê3fŒbâĉy?!ž*Iù.U‘ ¥Èœ1“|ð‡dI¡ªÏ;ï¼ááá^xAߢ”Ú¸qãäÉ“çÌ™¼ÿàà`__ß’%K|·oÙ²EÔ¸O¬~‚g÷Üéx|‘A ¡dç–ðnóõÈ{w ,pt8X¢T?8.Z´¨««ë¾ûîsú5 !V­Zµÿþ‹/¾øˆ#Žpnùä“OvíÚµwï^!ÄŒ3N;í´×^{mÍš5z#[¶léïïŸ>}úù矟÷B‘•¤ç˜Ó»Q¶»R5ú€ZÅÇB²ÑÖjÏÌ™ˆùý÷ßߺuë¸qãî¿ÿþÓO?½é¯›5kVÔ¨jÙz3fú-´c#åÞ !ÍHä¬ïlþÛf›a‹D»—Úä[ðóÞ¡ÛŒÛHú-wÙkcÊÿFÂÖH)[ݸ-$ÚˆÒ?FIzæJvî%x.q)ØnøU/ô/ oæµ¾Vª_qB,]ºôÎ;ï<餓֭[÷ÑG]yå•«W¯Nî¨rÊ)?þøÂ… ÷ïß¿aƃ.\¸ð©§ž²I¨)UÍM“u ðQÔ¢#©§U¾“¸šç4€tjQqì0*ŽE߬+ŽÒ O*ùDQ+ŽæF”9ï£ûàFpôn¹GáEÄF Vê+ÎnPt,Õ¶âXñ ÀQg1s²¤™–Ýßþ©”ªÇÈ ç™Š¨Ò#*DgG¦ àCpD•[+®oÞä×Â¥·ý®‘¥jß!œ2Uh ²ˆ<-2‘@(‚#PÝRcƒ¹D¡ûôÍ–Í¢¤F¤¦-×@plé˧2ד·k£УñešÀ‡à$TÇr£¦S£”B)*R5J&س—¡–@Ôb: =é¯,¤¬{ÑQDöh¬ýq)›èò9É™IÞ˜O@åQqDÈÆ’(©*…’ö»ÆzpŒ¯ø*GgÏ{'aÍj >µGpš ÖNIYÓñ1 CÚ1HÙXI§µ­¡óì¾lñþ*†àØ¢ÜÒ`ò¤B6:ƒÒ²_ ŒjŽàˆºpÚ©=0rF’ú[áDÆF|Ì{g &j‹à4×j­Ñ7à”ѦŒfÛ´wtvÞûˆVð'j‰àÄiÚ£Ë):úGûSk4‚  àˆ*ó  nüSµÜ`: 1'!³oœÂ•ŽÚí[´êXgÑ'¨$‚#*ËìÑhvp”Ò3KŒþë›§¡9¢™9d#°l§öý¥ö‡kš™E(‚#àkhæJÖnÁøˆÒqŠéÙOwJ¿ TX9Õ—x<5:DÇÝxÝ–ß"( ·•“eàUBÅ@̾ŒÎ7ú¿Á×B°öLÙD-l  2ލ8ÊÅevðˆÑO­Öžö= ©¦3ôQæˆCS5àEÆŽñêÐѪü›Ï²N÷¸bpbb°Ù@5S{&‚APh@HíRg…žðøÈ¦BRF¹‘P4U£ÊZl§æWhæÒ…)ðWn£`«4‡¨‚#ààWÅÁƒñ±MÓ†#5ÝlMY¨šª”Ld±,ÙqÔj 8¢ö©±´ôÔ¾øˆÎSJX¼ô‹?PRGÔH°Ú!É#ï=C2fÅщ– ÏH!|fʳâ`& J>ލ¦¨vj3S4†Y ìÌEhÄhOG%h‘..êü@IQqD]øæ“#5V„.:ºÙQšV·7có¥ iæî8åN± D¨8¢‚b†Å(!„R¤Æ*D=ÝyNÍ µg¤ù%”¤æ•»f/CþB@ÑPqD-ø:T‘« •b•l¬aÒøÀ £6È"4E«( *ލ—F[&á ®¤SoÞZy± ºBECpDÕÛ©%9áÕhÔ–BŠÀ(lg\¶åèldËè Ê«(&‚#êHQt„ïp›°¥+¥oœ :BóAGTåFDÒs¿»“Az:Â’Wr‘ŠŒàˆJ‰™¾Ñw«Std”LAäUÛSBIåæE¥¤l>o:C/[Å? 0ލ2É%§<Ì¿QR¤9Ïè÷ŠZWþ|yQðúŠ„àˆŠ‹IžŽkH‰ÑÊ´”ÎD"p2H%< Ò4Åèì¬é~&‚O€@1Q¾vjø¦A±\Þ\MÔh¾´ê{GvL'4šñ@¾ލ²Ð ¸¯W£ºSvƒ1œnÐ •ï[2Y£å(‚#*"Xnäê‚æ”îòƒÊâ”Ñy‘aUm¡šWkéµ ä‹àˆ ⺂vk É7㣓y‚EGZ®³£Œo‚—9‚#ª†ÔˆÎpÖ¾m¡Ö½ÝY!G¿‡5ËB.“³y!8¢ t;#$ã´V'z¤ŒÒœâÇùŸ´h}…«ÅÃEéè<–Du‘†9EO‹T£õEw̾r¿X·°­TØ*…&É8 SGT©¹ «8j-Ÿ–ÍÖ)ÁB…@‡QzÒél–÷n  ¤H¾æ ÛÙÑ·éüÈ7’&f#H*Xz”dJ kGT©™Qɲ£12&¬ê¨_R*¦òi'b"ÐnG”›Ôÿòâ„B»{Jw*ŸÈøÈ,â©éÒ£òÞ =FU£4"–ƒ³š·ðB†.<©Üe‘Û|N9‰«`ûµ±Âaøí°ÌŽ2ApD9È@Í@6¦AÉ{ÏPN¡Ÿ7Ìå(eû—( Ò¿sʳ'¤ŸÖIáYáZ –œ²ApD)9}Ò;JpÞ¦ÐC ˜³ùÐH53>HàˆÐu%„TJÆ /0“"×`¤p”LÂ_¦|+ͤ@£GêÔ@èÇÅ`eQÇGŠŽ@J ŽAù0("EÂåd2¥D럂jõу֛Åe3>H†Š#ŠÎ¬8Sâévjª¨7ðùN{E+¶µøwåí0ÍûÐ*‚#JC†Í©Áznh+Õh²n÷(kÙøoLSµù#)…;4;dS¤L ¾¡3,Qh¡µ%¥TîÍÊ{o kÊŽÞS6“îCÂ¥¾%Ði².”ïf·iaÑtAÛ QtQoÙª½ÏPªÝ§[¢x'ݲ•™}Û ýQ…I™`.…ø–kÉT>€àˆ¢ð5:+wé6uwÚãGcNS%b$bÑr X"8¢H”wRF¦aDa(¡Â›)_ÛtúBcçôi¬ëã|oÎF¦Ž(®èÔ(•PÎøj¥è؈ΑB¨‡‡`ÅÑ·¤¡}¬a-ß;¬nñàCpDq…¿q;ß‹zír£k„fé1tJ|›©›¿ëJ*¥è˜Ž(ªˆNîRŒ6JÁ»8Ú+0ßSáÃ/>zö]éû8“ŠËçBKô}|Ž(*¹håFtNÈ|OÎŽFPºKÎèWÑè'1¥}ˆõ})Óˆ˜á·×€ù76ãcQÿö@‡QkRèÌyžŠ#ï߀‘êÌÐã3:¡Oèˆlw…&án¡æ/8ߊ…5?¨-ÖªFþ¤»– Å=™¼EPÅQYf•Q¥Qæ61)ÙìïXâg$EpDΜ7h>»£lÚ¾”LÏÉOã~¥}ŠeÎŽM©Vâ#)•AS5:!êã;_@Y8=&ÝTú…Û,1+²h¡0þ TÁòi»Åz†lLàÈçvƒRµ ë|žštŸ¢ðôq ŒËº£dp e^Û©ÕýVÞúŽˆ¶‹bÅGpDÛɰa²ö³Ä¡ôœ%ÁŒ¡¼7•(;é´ç¾0UTòsÇe{î:PÇe'Zðºñüœ ßCpD‡(7,J÷bÓÒõÔ)7æý$çœôœž‘È¥;g½çl*d£C³=‡Fù¿IöA±œ/£Ú¯ <“`‹àˆöò½KJsê¸6BjÚ/eDÓ‡6R'KeÆô=¨$‚#ŠŽÔˆ‚sºÞr–6x»Gë¯ÉÖ”¼O‹ tQrLǃ6ò¿iRkDE1lËRã}ÀýªÕk[S%›‡3 E@Åm§›i¤ÓµÑºµšÔ”OÓñÔÊÛÔwO󟙬|˜_Á2ª²¨CmöOÒEÅ@pD»d²®kó!«@1Ð`=Êf\¶¾¯‘êÂïì‹alÅ.â^^G´ELgp»¢£2|žGß⹼Ѣ8h°nhq\¶çκZYÒ©|잸¯vØ4AšóStD¾ŽÈ^ê!„¡3?% „r_UmÏßôñÎÌŽçŸ rdÙæ!§‰â#8"KfwÆNÑ1âÝœÓ(9éÌZš÷nTƒ“üBÇVK·ÉÁ·€M;æ!oÖØ-öŸ&®¤ù#Þ%‘#‚#²aVS¼©ñ~ˆŠp*ŽÄÇT+Ùx8á,¸€ñÓ&¨>Z>Äü)Öžño5ÑHšÈ§’z ÁÍŧ¹¨µYC¨Øæ;%xCC)æHDçE»¶æÑlô<ä>i¦„Ìo:I³w£¾E‘‚#šh6†E(!d`ýÀ¦ãZ|[–ÎøiÞQ=R(Å€ëV#š“ÛZŠnÁ¨ì(ÙÉ ˜xHxð™9Û t j¾8¤]£Pp9جª§¨‚#š í³èÿ¼|ƒ¶æ\SŽŠÒ ?iUh¿4ÎpkÑ ÓoÙ}§òu”T",_¶”· «’FýŽ`OGéÝV³ X¨ò -Bg'ôƒéè{k6¿‚J ÊÉbÆ(á隦„²¾Ã­;K—cJ}ƺˆá%CïßÖ6ëøÄû«•ñDFŸZX•1åð‡jŽà+ÊÉ‹îŒRdói›ÔˆÚªG9ÝÃïÆD÷陑Q·SÇŽv” íaÙjv4Sl+­íñwmžÿœ7lý¯, Ø€àˆHÁ·ûÕ­(Ý·¨]Qœ<Ý×þíkõm~õÎC.tM®¥˜Û1cŸo—„h>+Pðöfûìl˜àè)oÝÑÜxíÏ,$ApDs÷ûÏÊʺïWd :dx†PBHŠî–bæ5Œx€ Ý‚ji#Zp:Iïö›4v Çzg¤h6kï§ñ“Y£ +ÇÁ~xMúÆn›_‡b"8"\pƇ–ÞjC¯…ºˆ"Ýe}Zˆþ€Ä ×%ÐJb ŸÈ…ãjº-ÿs<÷k^¶ _ý5jxMÓ§YÔµ¿ÑÇŠKð¡0fšY»e¦›m_Õx56 @¸&>Q‹ÓIúygpà”ùvêKŠw神ÌEÒçôVw¿w»¬y”¾Í½$¶ÿFïɨ_Ó»@ºÏ4å$é4µç…àX}Mßê¤wÔa[;>“ Æ€ëdñѲg¯»VbÙh§!DV³š‰ÊûUè Ý|¾Ösã}¾ñ+›b7àɰ’¤t÷PE?‘ðÑEYH©"}&@p¬²à ±¡÷ié#¬²y£‰|0©ˆdÆÇæ/ÝÀ}üÅ-.­ {'ôR›’™w\vKi¦1߸=#zp÷¼5ËÐç’¬%JgM]³l̶\˜;ú°d5+Ô£¸%Cp,´LNk=“Nè–UàÓaä‡\³€Ñú«•ñÓ€ å¶ãIϺö¾x2˜ˆÂg”è¦ê["nýCv{Hºò­þ_,Þøë6ÜëB¦ósc»mž…-gn¸t…ßô[¨¡®¼w ¸Ö¬Y³hÑ¢9sæœuÖY?ýéOÿùÏÆÜY6>ýIç­Óù$(…JHãËr Òü,éÛB ÂܥƔóÑÙRôš*ø%¤P¯–?%¦ÌŒ³fÍJópøp<3׎Cê¾Üœ_íÑìUŸÁTÓw5ú&6kÖ¬Ñ7Uë÷@s ž·åVÞHm7b³çÎ)w#¸?æ6ãHýÕ;k–ùOÿ—gÛBI©¿œ ‡<÷ H©T³8¬‘û¥¤›h͈ÝDØÕMùd½w#*äG±Žáî¾ûî[o½õ/ùËܹs'L˜°víÚþð‡CCC1}£B(Kó¶+ï*J%ÚHp—œŽÐn¬úÖ"”’îWÓÝð½ÝŽçj[5áï`™ç×Ôéèn8÷×Ûñn!¾ÝôxºŸLÌÍ x·÷ýÞà³h&ÑÓ|¸ð~ÒÉY5ò›Š¶Â¼:wuwWêµôG1¯ÞÛàbûöí«V­š6mÚ3Ï<³jÕª 6,^¼øÍ7ß¼óÎ;;¶){ìêÉt¤ÙyÙ¶µKªÐ—·ñ4âŠe„Ì@ çÖøÒM ‘"dÉÄt³Z4/èðèŽ.W: Ѹ²(éý‘ÎzˆOãûÀ—Ño^š•Nÿ¥ÍF–mÔ,uÙ²q»?=JÃèÓw:húŽƒ·©1Ž!FFF–/_~Ì1Ç8·ÜrË-===ëׯ±ÙÂèL³éûNXôÿ5?“éLüH—²qp¿Ìö7ë¶³- €ßhá„æ¶jrGŸ¤b®¸Øz—¾ÑÊŸR²Å6(iΗ=Íÿú Ÿ!…I·☠(é…Ìý**z*ß~"Á1ÄæÍ›»ººÎ=÷\}˘1c,XpàÀ7Þx£;UnÔŸ¨ü5|ã3™¹:B[öM…ýÙÖß TVh_:¯>;þ2 CžoûUmìF¤À6vÜ6(Ýí¤´æmPÆ&âºÔ 5ÖÇ—M¦~.£‰ÐxvFþÀ ê§Ô¿NˆøsoëyMý”R;wîœ2eÊ”)SÌÛ{{{…{ö쉸ÿdŠ­óɰb¡¿•Ù¨Ã+7ú_¾×OÔS‹Û÷†õ6¯d–]I4'ýi/¼;]²W\°#Z Ûr£±»Ù«¾Yô¬ùe´ ²*¤Ó¡§›GlI±ÎhnÝ.Ìÿ[ ³´i¹ ½È¿–5Æ¡û}òÉ'_ûÚ×¾øÅ/>ýôÓæí>úèm·Ýö“Ÿüäꫯ>J/&…èeÈ*U·}ûö¼w!Ìãèç ?~¼ïö &!<óØF5>p&¹qÇ­HkFO½ñ¦iúѲé°›•sY](Ë£åûO[·ÀnÔ}7B›¤Ým¯n¾ÑBº"»¢Þ¾ôÕõt’RºÝ.¹º5Apô›4i’”òðáþÛ?þøc!DOOO[{êå3øP¡e ÛfO÷ê³xw3Ò×ÅKoÁÔ­ 8ú;¶§§'XYe0{T&ïþ\B€ZÉ$}fRøLÿæc³é7ÂnÔv7Àt<áúûûW®\yüñÇÏŸ?pppÓ¦M}}}ýýý“&MÊ{×òApŒôä“O>ñÄo¾ùæqÇ7oÞ¼åË—;3òÔÁVèã+GX!8À ÁVްBp€‚#¬ŒÍ{ªcÍš5;wî7nÜ9çœsÓM7Mž<9ï*VÛ%—\òÖ[oùnœ:uêK/½”÷S)‡¿þõ¯\pÁÀÀÀW¾ò•¼÷¥Lì§hbCCC>úèc=¶wïÞ‰'ööö.]ºô¬³ÎÊ{¿Š.Áqã,Mæ_ÿú×=÷Üóúë¯ïÝ»÷è£>õÔS¯»îº“O>9ïýê(‚c6î¾ûîx`üøñsçÎ\»víŽ;V¯^ÝÝÝ÷®Z‚ã¶{÷îîîî3f˜7²¤½‡z(ï](%ûãÆ)šÌÿþ÷¿üà[·níéé9ãŒ3þýï¿úê«/¾øâõ×_íµ×æ½wÅ•ì¸q–&pèС /¼ðÿøÇÌ™3¿ñoìÛ·oݺuÏ>ûì£>zê©§æ½w¤Ú¶mÛN9å”ùóçðÁÎ-¿þõ¯{{{õ«_å½k…–à¸ܼyóm·ÝÖÛÛÛÛÛ»uëÖ¼÷¨Z=nœ¢‰=òÈ#½½½—]vÙáÇ[Þ{ï½yóæ}éK_úóŸÿœ÷ÞW‚ãÆYšŒs…úÍo~£oY»vmoo綾^š÷®u}3000022²|ùòcŽ9ƹå–[néééY¿~ýÈÈHÞ{W\ ŽÛîÝ»…¾OɰqÑE]qÅ¿ÿýïóÞ‘’iõ¸qŠ&öÌ3Ï!~ö³Ÿé‡™3g.[¶lxx˜öÓ Žgi2¯¼òJww÷5×\£oùîw¿{ì±Ç¾óÎ;ÃÃÃyï]çÐTÍ›7wuu{î¹ú–1cÆ,X°àÉ'Ÿ|ã7¾þõ¯ç½ƒ•ภ !N<ñļ÷½|V¬XñŸÿüGñðÿüòËyïNi´zÜ8EÛµk×øñãgÏžmÞ8sæL!Äž={òÞ»âJpÜ8K“™4iRooïg?ûYóÆ#<òÓO?ýôÓOëÓ3à˜–RjçÎS¦L™2eŠy{oo¯bÏž=ÇPÉŽ›ó~·o߾ŋ¿ûî»ãÆëëë[¶lã<š:ûì³ožþù¼÷¥LZ=nœ¢‰ýö·¿;ÖIzçw„'œpBÞ{W\ Žgi2?ü°ï–Í›7ïÞ½û«_ýj}R£`:žô><<<ìSÜÓÓ#„øè£òÞÁ‚JvÜœÐ÷Þ{ï‡~xÆgL:õù矿ì²Ëò~B€œ¢)ôõõ9ŸµM›6­ZµêÈ#\¸paÞ{W\ ŽgiJ[¶l¹õÖ[¯¸âŠ%K–|þóŸ_¹reÞ{ÔQTÓBŒ?Þwû„ „Ì{ *ÙqÛ·o_ww÷7Þ¸xñbç–—_~yÙ²e·ß~ûÙgŸ=}úô¼ŸêŽS4ÃÃÃ<òÈwÜ1<<|×]wM:5ï=*ËãÆYšÒöíÛ{ì1¥”böìÙŸùÌgòÞ£Ž¢â˜Ö¤I“¤”‡öÝþñÇ ·~† dÇíÁܺu«~³Bœyæ™W]uÕÐÐÐsÏ=—÷s8E3ðꫯ^tÑE+V¬˜:uêï~÷»oûÛyïQ9Ø7ÎÒ”¾ÿýï¿ûî»/¾øâÍ7ß¼aÆË.»Ì¹rÕÁ1­±cÇöôô+d‡BèñÂðÉð¸Í›7OñÞ{ïåýœ€pœ¢–>ýôÓ+V,Y²äoûÛu×]·~ýú3Ï<3ï*LŽgiK¤”G}ôÒ¥K/½ôÒ¿ÿýï6lÈ{:‡¦ê L›6mç·:ꨣô»vír~”÷ÞW«ÇM)522"¥ìêò|à3fŒbâĉy?!Ô§h###?þñŸ}öÙo~ó›¿øÅ/øÔm©ÕãÆYšÌŽ;úûû,XpÁ˜·;ãÙ?øàƒ¼w°s¨8fà¼óÎ~á…ô-J©7Nžûìå—_~ÿý÷“íµzÜ8K“9ꨣþð‡?¬]»Öw»3)æI'”÷vÁ1‹-êêêºï¾ût/‡U«Víß¿ÿâ‹/>âˆ#òÞ»â²9nŸ|òÉ®]»öîÝ+„˜1cÆi§öÚk¯­Y³FodË–-ýýýÓ§O?ÿüóó~B¨#NÑL(¥~øá‰'Þ|óÍyïK™X7ÎÒô¦M›6kÖ¬_|ñü£¾qÛ¶m<òÈ„ æÎ›÷vŽt†!¥þþþ•+WüñóçÏÜ´iS___?KÆkzÜÖ­[wà 7Ìœ9ó©§žBlÛ¶íꫯ޿ÿìÙ³O>ùä÷ßëÖ­ãÆ»ÿþûO?ýô¼ŸM9Üzë­kÖ¬`ζ–D7NÑL|øá‡óçÏïîîþ¾üéw¾ó+¯¼2ï},"ËãÆYš‰7ß|óòË/ÿïÿ;gΜÏ}îs~øá믿.„¸ãŽ;.¼ð¼÷®sè㘥K—}ôÑO<ñĺuëŽ;î¸+¯¼rùòåÎÌ2ˆÑêq;å”Süñ»îºë•W^Ù±cÇ 'œ°páÂ믿þ¸ãŽËû©BpŠ&åƆ†Þ~ûíàO"%Ùqã,MæË_þòÓO?}ï½÷¾ýöÛï¾ûî±Çû­o}ëÚk¯uÖé©*ްBGX!8À ÁVްBp€‚#¬`…à+GX!8À ÁVްBp€‚#¬`…à+GX!8À ÁVްBp€‚#¬`…à+GX!8À ÁVްBp€‚#¬`…à+GX!8À ÁVްBp€‚#¬`åÿß ì×SðÎIEND®B`‚statistics-release-1.6.3/docs/assets/nakainv_101.png000066400000000000000000001004271456127120000223030ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A€IDATxÚíÝy\Tuûÿñϰˆ;®˜¨é Hji¨„Z™hwšÈ­–[jæ’¦e·å]Ú]–‘•­J_ï\Ò,5VÚ%®™f¹¦¡¦1®hâ^² Ìï£ã0 0Ë™9ÛëùðqßpæÌ™ëœ3ü»>g1Y­VT$@é  G¸„à—à‚#\Bp€KŽäqðàAÓuÇwx4??ßöè‚ ÜZò‹/¾(=±ÿþJ¯¥Ì,X ­ZLLŒóäççÏŸ?ÿ¾ûîkÔ¨QåÊ•###ãããß}÷ÝÜÜ\‡9í÷ŽMPPP½zõbcc_|ñÅììlWžâàÙgŸUzð+‚#ùý¿ÿ÷ÿöìÙ£t:÷ÓO?ÝrË-&Løæ›o²²²òóó322Ö­[÷Ì3ÏDFF®]»¶Â%;wîÇ|õÕW£¢¢vïÞ­ô:P» ¥  CV«õ©§žÚ¹s§ÉdRºU«Q£F³fÍ„ 6tkžôôônݺýý÷ß¶)AAA………ÒÏ'Ož4hÐÎ;ÛµkWz 4¨R¥ŠâÊ•+¶Fã… ˜‘‘RÎSÔ®][éMÀ¯è8ð‰Ý»w¯X±Bé*ÔnèС‹Åb±|ýõ×nÍóÌ3ÏØRã¨Q£RSSóòò²²²-ZT£F !DNNÎàÁƒ.pùòåÒÏœ9sìØ±Q£FIÓOœ81oÞ¼òŸâàùçŸWzð+‚#_™:ujNNNùóúé§qqqM›6­\¹rÓ¦M»uë¶dÉ’«W¯–ÿÄÁƒK‡Ù™Íæ3gθ»´ŒŒŒþýû×­[·Y³f£GÎÊÊúÏþ#-ðÅ_t«<Û!˜üã?† Ö¬Y³Æ?ôÐCû÷ïBìÞ½{ðàÁÍš5«[·n\\Üwß}g{®gÇ8nÞ¼999Yúù¹çž[¼xq»ví6l8fÌ[^OOOÿí·ßÊߌMš4Y¼x±íàÑ×_ýÊ•+¾~cÐ0+ÈáÀ¶?,·Ür‹ôCbb¢ôh^^žíÑùóçÛž5hÐ §š `›gÚ´iÒÄ~ýúISÞxã iJhhèÁƒÝZšÕjݱcG½zõìgˆˆˆ°=wÚ´iž•wûí·;,¶~ýúï½÷^pp°ýD“ÉôÝwßIÏ?¾4±cÇŽemØÒó<ðÀÒ”:uêüõ×_¥ŸÒ»wïÛo¿ýöÛo_µjUé½³yóf‡ùí³ì† \y c¢ã@~/½ôRhh¨âÍ7ßݽ{wÛĤ¤¤_ýõرccÆŒ‘¦HCØž¹zõêŸþ)ý!Ëþ2™L7Ýt“ôóéÓ§KÏpï½÷–¾ÏÓO?-Ë«ÐΪàO>ùäüùó322–/_>qâÄÛo¿½ô<ƒîÑ£‡¢k׮Ҕ˗/Û‹<þ¼Ãüÿýwÿþý¥éS¦LqH{..ÍÖYœ8qbtt´" àÿþïÿ¾þúkÛ±’ž•×±cÇÞ½{ !‚ƒƒ(µ$kÕªõ¯ýKz•!C†|øá‡Bˆ‹/z¼a/_¾lû9<<\®ýU·nÝcÇŽ9,øD¥J•Þyçé¨Ä§žzjëÖ­¥çéÙ³§âÂ… 7nÜ·o_JJÊÞ½{ÿú믲–¹yófÛÏÕªUóli¶óE¤ù%UªTéÙ³ç²e˼)Ï6--Pú!<<ÜvM"§W´q—tÒ´¤ôU»=vîÜ9釚5k–~Ôéåxl#òŒƒàÀWúöíÛ½{÷-[¶”uiž‚‚‚ÿüç?ÿ÷ÿg»a•*UÂÂÂ:N½õÖ[cÇŽµ¿´¡+K»|ù²­SèЮkÒ¤‰—å9½he@€ÌGUªT©^½zÒ1šGŽq:Ï¥K—¤š+W®\:a;e¡nРAéG—/_.5_Ç8ð¡Ù³gKÉÉéÿ^{íµY³fFDDÌ;÷—_~¹|ùrBBB9 ¼çž{7n,„¸råŠýus\\Z5*W®,ý,e/ÛƒÞ”ç]ºt‘~X³fÓëÝrË-õêÕ«W¯žíŒìòmß¾½  @úùŽ;îPzý¨Á€µmÛV:Ñé)sçΕ~xÿý÷'L˜Ð¶mÛ   'N”µ´ˆˆˆ/¿üÒ–?ú裴´4·–&]÷QúÙ~ô¼°°°ôYÒî–ç7cÇŽ•~8vìXé'''Û¶ö=÷ÜãÊß{ï=é‡jÕªÝyçJ¯õ"8ð­3f8=lþ²õül'‹üôÓOe]…GѶmÛÚµk5J:›¸¸¸ø™gžqwi¶,5k֬Ç !¬Vë /¼`±X¼,Ïoúôéc;ü_ÿú×+¯¼rêÔ)!DAAÁ²eËyäé¡æÍ›Kgÿ”ãôéÓãÆ[µj•ôëÃ?l %8 8ð­°°0Û%²íU¯^Ýv Â1cÆôíÛ·_¿~wÞyg…÷Œ ž>}ºôó7ß|³~ýz·–öŸÿüGºfavvv‡ºwïÞ¢E‹·ÞzK®òücÖ¬YÒÙ*V«uúôéáááõëׯZµêˆ#¤ƒ8+W®¼jÕªÀÀÀÒÏ1bDddddddxxxÆ .\(M¯_¿þŒ3”^3ªFpàs“&MjÞ¼¹ÃD“É/ýœ““óõ×_õÕW5Š‹‹“&J]4§† f»9Í3Ï{öì{î¹',,,$$$**êŸÿüçìÙ³>,]Q²|uêÔ¹ãŽ;^|ñÅôôôN:)¸:4ÁdµZ•®€q]½z599YÑ¿e—öÈ#,]ºT1oÞ¼ñãÇû¢<Ð:‚#c7nÜÞ½{…]ºtyÿý÷¥‰ÿýwË–-¥¡ÛíÛ·sf18ÅÀKxxxjjª"55µI“&¼xñâ”)S¤ÔئM›Ž;*]#¨GÆ’››{ß}÷mß¾½ôCuëÖݺu«t\# 4‚#ÃÉÏÏÿì³Ï–,Y’™™yêÔ©zõê5kÖì¾ûî{ê©§œ^r !8À%\Ž.!8À%G¸„à—à‚#\Bp€KŽp Á.!8À%G¸„à—à’ ¥ P©‹/&%%íÛ·ïĉõë׿õÖ[Ÿ|òɈˆ¥ëPŒÉjµ*]ƒê\¾|¹wïÞÙÙÙ‘‘‘‘‘‘§NJII úì³Ïn½õV¥«PCÕNÌ™3';;{üøñÉÉɳgÏþôÓOgΜYXXøê«¯*]€bè8:ѧOŸ'NìÞ½»råʶ‰÷ÜsÏùóçSSS•.@ãèD­ZµZ¶liŸ…!!!UªTQº@øä“O¦ìÝ»÷رc·ß~;©C3™L¸ãµÇò¤¤¤|ñÅ‹%%%åæ›o~óÍ7]yVTT”Ò…¤§ÿÕ²Ä!„QQQéééJW§‚cyÒÓÓW­Z%ýgE›6m*Uªäú•®%ö®fìub¿¨;Å=&!älš7¾É¤ô*‰³ªË3dÈC‡mß¾}êÔ©7n|衇þþûo¥‹e95ÂÁ±&“©~ýú£GsæŒ,§AƒV«Õjµ>|X–€áçÔàuùóÏ?­Vkƒ ì'†…… !œ¶ë222Z´h1hРñãÇß}÷Ý·ß~ûO?ýäÊkÍ™3'::zÊ”)Ò¯iiiÇB/Y²$''gÞ¼yJoT„cá[………k×®-ëѾ}û:LÉÉÉBÔ¬YÓ~bhh¨âܹs¥—‘‘Q\\œ˜˜8`À€àà௿þúé§Ÿîׯߤg•%###==}Μ9Ò”ØØØáÇ/\¸PѶmÛ˜˜˜¯¾újúôé^®À[´Uƒà¨nvõ °–÷1-**²ÿµ¬s>®\¹Ò¯_¿²_Áñ%êÕ«'„øë¯¿ì'^¾|YQ§NÒKøî»ï*W®l{hôèÑyyyO<ñĪU«ÆŒSNýÒÀz9ÇeFGG/Y²ÄjµšJîw×àR£šÕMÅ)$??ßþ×ÜÜ\§³…††º•¥4hà0*}öìY!D£FJÏî0å¾ûîB}:99¹OŸ>BˆÌÌÌÔÔT§³y0°;vìØI“&Ù~æÌ™U«Výãÿ0›ÍsV©Rå™gž‰‰‰ùöÛo¥3£‹‹‹ß~ûí   üãåײzõê.]º!222òóóÓÒÒ¤Góòò6nÜØ®];YÖ} 8ÂCAAAC† IHH(..NNN q:›»#GŽ\¼xñ°aÞxâ‰Zµj}üñÇ999¶Ûô½ùæ›o¼ñÆÌ™3Ç–˜˜8uêÔÈÈÈûï¿¿V­Z7nLIIyýõ×[·n-„X±bÅã?>jÔ¨Y³f9¼JýúõÇ7kÖ,«ÕÚ´iÓE‹ÅÇÇïÝ»wäÈ‘:uúì³Ï²²²V¯^-Ë<¡²v#Á‹_°`AaaáØ±ckÖ¬9cÆ Y–\³fÍmÛ¶=û쳫V­ºpáBçΗ/_n»ß`^^ÞÅ‹mGXN™2¥yóæo½õÖ'Ÿ|R¹rå¶mÛ®_¿¾W¯^Ò£/^,ëøË¤¤$é999ñññIII|ñŧNÚ¼yóuëÖuèÐAéÍ ð‚jÅLôNd•žžîë§(Ël67nÜØáHDuZ´hÑ’’’”.ÄUš{3xÌb±”>üŠc¿¨AwŠ)®¢—4™L×H2Îßj\z–——·uëÖöíÛ+]z@p„žíÚµ«U«VC‡Uº€;4V+Žq„'&L˜àpsuŠ‹‹‹‹‹Sº t‚àOØîï €Ì”i7Òät CÕ@5ÈoêFp€KŽ@h7ªÁ‰ÕUG *ovWÿ62‚#\BpJSy»×€¢N„V7à‚#Pý>M!8Ã"·º‡àUëÚµkbb¢ÒUè¡HP#b›Ö¡^)));vìPº = jDjÔ  ¥ €&!*Uªä‹…nÙ²eçÎsçÎ-..Vz]5\$@.\ý[Bp„'¢¢¢7nüÃ?ئ$&&&''ïÝ»×û…Ÿ;w®gÏžž=·¨¨(!!!88xÕªUÁÁÁ¶é{öì5jÔ¤I“{ì1Y¶€7EÔÑnTEÚÂP5äqäÈ‘}ûöɲ¨ X­V«ÕzøðawŸ;þüõë×wêÔÉ>5 !Ú·o2yòä3gÎ(^$M³ŽÐ•9sæDGGO™2Eú5--íøñãBˆààà%K–äääÌ›7OéÐ*†ªá[………k×®-ëѾ}ûÊøZééésæÌ ”¦ÄÆÆ>|áÂ…Bˆ¶mÛÆÄÄ|õÕWÓ§OW°H0:µ´ݩä–¢GpT5“0)øêÖr?$EEEö¿–u‚È•+WúõëWæKÈz¤±4VSÖ ÑÑÑK–,±Z­&S‰ ëÏ"ÀÐ`GpT5«Š?^ùùùö¿æææ:-44ÔoÁëÒ¥KBˆ:uê”5Cݺuóóósss«V­ªT‘hÁÊÊʲÿõÔ©SNgóç(p£F„ÙÙÙ‘‘‘ÒéüÛ gΜ wH~.ŒKEíF¯J1 SKÑRéUPÁ:}útrrrŸ>}„™™™©©©Ngóç(plllHHÈêÕ«»té"„ÈÈÈÈÏÏOKK“ÍËËÛ¸qc»ví”- JE©ÑƒÚù*¸†à 2$!!¡¸¸8999$$Äél²¯X±âñÇ5jÔ¬Y³ª_¿þ¸qãfÍšeµZ›6mºhÑ¢øøø½{÷Ž9²S§NŸ}öYVVÖêÕ«ýP$ºDp„‡bccããã,XPXX8vìØš5kΘ1ï[PPpñâŲ©LJJªQ£ÆÊ•+srrâãã“’’<øâ‹/N:µyóæëÖ­ëСƒÒ[ŒGËíFØ3Ñh‘]TTTzzº¯Ÿ¢,³ÙìpçZ´hÑ’’’”Þ >¡¹7ƒÇ,‹ÙlVº 8b¿¨æwŠêR£Û™LÂ>.™„©eTKƒü­vÀÀ¡1yyy[·nmß¾½Ò…`8GhÌ®]»Zµj5tèP¥ ¸@ûíFØãGxb„ 5kÖTä¥ãâââââ”Þè#¤qÛ;GxÂv3hôkñØc¨ø€ûtj¬I[Ž@n$4"8Y‘õ‹àŒ€<+‚#¾â™É$¬Â¤t*Bp2ÑWjDiG {DZyâ:޹¹¹Ÿ}öÙªU«Nœ8Q£F–-[Ž=úÎ;ï,ç) Ø¿¿ÃÄzõêíØ±Céµ@•ôšÍ¸Š£ýÇ‘#G¦¦¦†††vîÜ9//oÏž=Û·oÿ׿þõÄO”õ¬cÇŽU©R¥Y³fökÕª¥ôÚ JªNª.N[ô?ÿüóÔÔÔ:|øá‡UªTBüþûïÇÿý÷»wïÞªU«ÒO¹|ùò¥K—î¿ÿþ¤¤$¥Ë@õtÌ®Ÿ£Çuó”þqܰaƒâ…^R£"22rüøñEEEe;;vLáÐnN¬ŒDÿÁÑb±T«V­M›6ö###…Çwú”£G !š6mªtí]»vMLLTº çÒÒÒ|ÓM7U¯^½cÇŽ³gÏ.,,Tº(€‚­œô?T½`Á‚  ÇÕø mÊùóçgΜ8`À¥·øž6mÔF•Ú¢ÿ¡êâââÿûß›6mº÷Þ{§OŸVþüV«µ¸¸Ød2”HÕBˆ5j(½BSXX¸víÚ²íÛ·¯Œ¯•‘‘‘žž>gÎig !bcc‡¾páB!DÛ¶mcbb¾úê«éÓ§Ë[äwß}7nܸŒŒŒyóæI'쀞‘Ç LÿÁqÙ²e›6m:thé¸àÔÑ£G{öìyÇw,[¶Ì~zJJŠpvÖ‹){EyŠŠŠì-ë,–+W®”u’Â*ë}œ¤±rûãDGG/Y²ÄjµšL%6¬ÇE;vlâĉkÖ¬‰ŒŒÜ¼ys÷îÝe\P#ͤF¯ 5™„ÕêüKØ$LVa~Îj¡ó¡j«ÕúÉ'ŸÔ¨QcêÔ©åÌvåÊ‹Å"¶Ö¬Y³:üøã+W®´Í’’²xñâððpïÏ{pw ýWžüü|û_sssÎj-›¼ëÒ¥KBˆ:uê”5CݺuóóóK—êY‘+V¬¸õÖ[÷íÛ·`Á‚_ý•Ô@ÿ4“á+:ï8fggKw6lXéGû÷ï?|øp!ĶmÛž~úéÈÈÈääd!ÄK/½4f̘iÓ¦­X±"""âäÉ“©©©U«V9s¦íö3ÈÊʲÿõÔ©SNgóçPu£F„ÙÙÙ¶ñb‡äwæÌ™ðððªU«z_äš5k~øáAƒÍŸ?¿fÍš2®¨”–R£–jÕG©‰˜››{àÀÒ–uŠÌ-·Üòå—_¾ûî»»víúý÷ß›4iÒ¯_¿ýë_ 6Tz…TäôéÓÉÉÉ}úôBdff¦¦¦:ÍŸCÕ±±±!!!«W¯–ölFFF~~~ZZšôh^^ÞÆ^ÅÝÝ"­Vë”)Sš4i²lÙ2Ûñ”èžÎƒcûöí]¹¤bïÞ½®Îöæ›o*]¾ª 2$!!¡¸¸899¹¬ËÐH£À2¾îŠ+üñQ£FÍš5Ëá¡úõë7nÖ¬YV«µiÓ¦‹-Šß»wïÈ‘#;uêôÙgŸeee­^½Úû":tøðáV­Z=úè£=ðÀ >ØÞ (#µð®à(ýJÐyp„ïÄÆÆÆÇÇ/X° °°pìØ±5kÖœ1c†^·  àâÅ‹eR™””T£F•+WæääÄÇÇ'%%·¨¨¨wïÞ}ûö½zõªýô={ö´nÝzÁ‚²T˜ŸŸðàÁ>}úH©QQ­Zµ»ï¾ûĉ¹¹¹²¼ÈO'©Q'«¡QGÈãÈ‘#ûöí“eQ 4°Z­V«õðáÃî>wþüùëׯïÔ©Spp°ýôöíÛ‡„„Lž<ùÌ™3ÞWøË/¿¼úê«¶)………û÷ïoÛ¶m•*UdÙ 3Ä-9WÃI»‘dEŽÐ•9sæDGGO™2Eú5--íøñãBˆààà%K–äääÌ›7ÏûW jÓ¦Mƒ „K—.}饗bccO:õî»ï*½À¤F(cá[………k×®-ëѾ}ûÊøZééésæÌ ”¦ÄÆÆ>|áÂ…Bˆ¶mÛÆÄÄ|õÕWÓ§O—±È3fddd!þñ4mÚÔçÜ¥ŸÔèãv#\@pT7“¢¯^î'ª¨¨ÈþײÎb¹råJ¿~ýÊ|Y?µÒXy9‡ZFGG/Y²ÄjµšL%¶¬7Eþþûï999»vízôÑG;uêtèС°°0W ¼¢ŸÔU`¨ZݬŠþ+W~~¾ý¯ej-›¼[ëÒ¥KBˆ:uê”5CݺuóóóK—êe‘U«VíÑ£Ço¼qþüùÕ«WË»Rà9]¥F߯ MHÐq„‡²²²ì=uê”ÓÙü9TݨQ#!Dvvvdd¤4Å!ù9s&<<¼jÕª^¹víÚ~ýú}òÉ'ƒ¶M¬]»¶»‡ ž#5–³8"¢I˜¬:Ú¦ž!8ÂC§OŸNNNîÓ§"33355ÕélþªŽ Y½zu—.]„ùùùiiiÒ£yyy7nl×®÷EÆÆÆ !>úè£AƒÙF½—,Y"„èܹ³¼Û<¡«Ô!8ÂCAAAC† IHH(..NNN q:›4 ,ãë®X±âñÇ5jÔ¬Y³ª_¿þ¸qãfÍšeµZ›6mºhÑ¢øøø½{÷Ž9²S§NŸ}öYVV–Ó¡dw‹¬W¯Þ /¼ ]º²gÏž&“é›o¾ùñÇŸzê©¶mÛúzË@ô–UÑn„„àÅÆÆÆÇÇ/X° °°pìØ±5kÖœ1c†^·  àâÅ‹eR™””T£F•+WæääÄÇÇ'%%}zDDÄûï¿?oÞ¼€€€V­Z}úé§ö#×  R#|ÉÄ!Y²‹ŠŠJOO÷õS”e6›7nüÃ?(òê‹-:pà@RR’Ò›Á'4÷fð˜Åb1›ÍJWGìrc§è0eù«ÝèBÒþGãü­vÀYÕИ¼¼¼­[·¶oß^éB@eHð=‚#4f×®]­Zµ:t¨Ò…€šè0bÉ¿JÝè=Žq„'&L˜P³fME^:.....Né j¢ÃÔ•"8¶›A¦ÏÔèßv#­H—1T €f‘]\"ÉP&G´IŸ©Q¥¸mŒ„à€é65ÒnT5Žq@S¤ê3 )‡É•î 8 ºm4ú ±P^ U :O RkÁ- 5BލžÎc•OVÏ¥v#=I7P5s„YשZBp@ÅLÂ’iQº¯¡RíF7Jä"Ž×P+Pûj ö‚#Ô(--mðàÁ7ÝtSõêÕ;vì8{öìÂÂB¥‹*S×®]•®€î}þúL·¡:™™™ÝºuÛ°aC¯^½&Ož\©R¥É“'8P麜KIIÙ±c‡ÒUГò™J»Hƒ>ÅÀቂ‚!D¥J•|±ðÉ“'_ºti÷îÝ111BˆW^ye̘1‹/Þ¸qcÏž=•^õk ·lÙ²sçιsç+]1JddZ“è8ÂQQQ=zô°Ÿ’˜˜(å<ïmÙ²¥k×®öK›8q¢b×®]>·¨¨¨wïÞ}ûö½zõªýô={ö´nÝzÁ‚rmsçÎõìÙ3111;;[®e©Ñ%1=Ap„<Ž9²oß>ï—SXXøÄOHIÑæèÑ£Bˆ Ÿ>þüõë×wêÔ)88Ø~zûöíCBB&Ož|æÌYÖ·AƒV«Õjµ>|XÆÍÀÐT¦4½žDA? 8B]‚‚‚fΜùàƒÚ¦œ?~æÌ™ ¨ðésæÌ‰ŽŽž2eŠôkZZÚñãÇ…ÁÁÁK–,ÉÉÉ™7ožÒ«Î½\®ÏR#×â±Ç1Žð­Âµk×–õhß¾}Ëúwß}7nܸŒŒŒyóæEFF–?sFFFzzúœ9s¥)±±±Ã‡_¸p¡¢mÛ¶111_}õÕôéÓå-¼e”Ôè+ôý†à¨j&“IÁW·–û),**²ÿµ¬D®\¹Ò¯_?^âØ±c'N\³fMddäæÍ›»wï^aÁÒXy9‡ZFGG/Y²Äjµ:lX‹oIŒògF5Ù»¤i2™Z¶l©ô:(ƒà¨jjŽ,ùùùö¿æææ:-44ÔƒµX±bÅc=V½zõ Œ=:(È¥7ê¥K—„uêÔ)k†ºuëæçççææV­ZÕû"À[ªÉQš^[ÚþDp„‡²²²ì=uê”ÓÙ<^³fÍÃ?}:99¹OŸ>BˆÌÌÌÔÔT§³¹; lµZ§L™Ò¤I“eË–ÙUtQlllHHÈêÕ«»té"„ÈÈÈÈÏÏOKK“ÍËËÛ¸qc»ví¼/¼Ej”e¹ž¥F¦ŽðPPPÐ!CŠ‹‹“““˺VŽ»£À‡:|øp«V­}ôQ‡‡xà„„„+V<þøã£Fš5k–à õë×7nܬY³¬VkÓ¦M-Z¿wïÞ‘#GvêÔé³Ï>ËÊÊZ½zµ÷E€WH²,×/ñSªá¡ØØØøøø Ž;¶fÍš3fÌð~±BˆC‡:tÈá¡-Z$$$\¼x±¬C*“’’jÔ¨±råÊœœœøøø¤¤¤ƒ¾øâ‹S§NmÞ¼ùºuë:tè ô–`lÆJÐÙEEE¥§§ûú)Ê2›Í7þá‡yõE‹8p ))IéÍàš{3xÌb±˜Íf¥«€#ö‹yzµ–wŠúÚn>ÓiÇQ:«Ú «pphL^^ÞÖ­[Û·o¯t!à)A«W£¾Ô¯¡1»víjÕªÕСC•.\fÄáiR£>qŒ#<1a·.”#£¸¸¸¸¸8¥7¸ŒÔ(ãr½LrŒSÁž°Ý P&cÝÆ~µU™!‚#>`ÄF£W›Ô¨ã€ÜH*Dö”ÁY©;>iqµ‰|êÁP521èA¾¥Tjä̧ŽÈÁ Fß®¼l©‘¦¥LªÀk¤F_,—°§>G¼CjôÅreL²&P“Éзkf¨Oý F-¤FWŒ#8:—››ûÙgŸ­Zµêĉ5jÔhÙ²åèÑ£ï¼óN¥ë¨†¡>\ÅS#ÊApt¢°°päÈ‘©©©¡¡¡;wÎËËÛ³gÏöíÛÿõ¯=ñÄJWPR£VR#9TVG'>ÿüóÔÔÔ:|øá‡UªTBüþûïÇÿý÷»wïÞªU+¥ (ÇèÃÓBK©rãä'6lØ „xá…¤Ô(„ˆŒŒ?~|QQÑŽ;”®ÎÒÒÒ|ÓM7U¯^½cÇŽ³gÏ.,,Tº(M @fRd2t¸ÑjäÇrÐqtÂb±T«V­M›6ö###…ÇWº:ýËÌÌìÖ­[QQQÿþýo¾ùæÍ›7Ož<ùûï¿ÿòË/•.McE™Ñ‡§}¸ |•Õ“Fõ‚àèÄ‚ ‚‚·ÌÁƒ…Mš4Qº:U(((BTªTÉ ŸšjØ)fs„Å’)û&ˆˆ0gfZ„¾ø³gŽˆ°dfz²h³ãßá^½zÙÿZú[Þ8Ž(**Z¾|ù[o½UTTôî»ïÖ«WÏ•g¥§§+]¸¿9rdß¾}Þ/§°°ð‰'žèر£ýÄ£G !BBB*|úüùóׯ_ÿúë¯Û§F!DûöíCBB&OžÜ¿ÿ°°0e‹¬Ùlö~!š`œ5ÕöK &!¬Â,Þ&Jï“VÙK¸>ŒìÃUó`»];À±äóì¿ÖM&Szzºa³#Á±<{öìILLüã?6løúë¯wéÒEéŠô/((hæÌ™öSΟ??sæÌÀÀÀTøô9sæDGGO™2Eú5--­víÚMš4 ^²dI»víæÍ›7}úte‹  O_ã«j†§µˆàè\AAÁÛo¿½lٲʕ+?ùä“cÆŒ±a ·®]»¶¬Gûöí[þÓ¿ûî»qãÆeddÌ›7O:?©ééésæÌ ”¦ÄÆÆ>|áÂ…Bˆ¶mÛÆÄÄ|õÕW¥ƒ£?‹  œsfS#ÉÔ7ŽNÿûßÿÞ´iÓ½÷Þ;}útïG6=&2¬”ò?qEEEö¿;íÊ•+åZÎí>;6qâÄ5kÖDFFnÞ¼¹{÷î,•Ûwè ::zÉ’%V«ÕTrËú³H@j¼F³©>CptbÙ²e›6m:t¨÷cš^RóG+??ßþ×ÜÜ\§³…††zp3ø+V<öØcÕ«W_°`ÁèÑ£KŸäîÔ¥K—„uêÔ)k†ºuëæçççææV­ZU©"¨ÃÓ7h95zú2^ÁÑd2yð}¡'|Õ9²Z­Ÿ|òI5¦Nªt-ª–••eÿë©S§œÎæÁ(ðš5k~øáAƒÍŸ?¿fÍš®—Ô¨Q#!Dvv¶m¼ØjµÚÂÏœ9îý\$õ¢ÑxOâ3—ÝÑ‚££ìììcÇŽU©Reذa¥íß¿ÿðáÕ®QNŸ>œœÜ§O!DfffjjªÓÙܶZ­S¦LiҤɲeËl‡*º(666$$dõêÕÒiLùùùiiiÒ£yyy7nl×®²EP#7h¹Ñ¨À‹ÁÑ‘t¹¬ÜÜÜ”~”«m‚‚‚† ’P\\œœœ\ÖehÜ>tèÐáÇ[µjõè£:<ôÀ$$$¬X±âñÇ5jÔ¬Y³f¨_¿þ¸qãfÍšeµZ›6mºhÑ¢øøø½{÷Ž9²S§NŸ}öYVVÖêÕ«ýP¤ŸöYÐh¼Aû©Ñ«•çNƒ#8:jß¾½¯ÂèØØØøøø Ž;¶fÍš3fÌð~±BˆC‡:tÈá¡-Z$$$\¼x±¬C*“’’jÔ¨±råÊœœœøøø¤¤¤ƒ¾øâ‹S§NmÞ¼ùºuë:tèà‡"}°½ø©ñ]¤F­¤TÍ2ú1ž¾ånôôà)Ê2›ÍwŽñ§E‹8p ))IéÍàš{3xÌb±(}Mc8a ý¢ái¿ìùS£25z]é8ÚNŽ1ÎßjJ¸'//oëÖ­íÛ·WºZ&Å$-¤F¿ðIj´ZµÔûcœÚEGhÌ®]»Zµj5tèP¥  Y O—à«Ô¨Äª0NísãOL˜0A©kÐÄÅÅÅÅÅ)½h“v†§ýEæÔÈ5wtàOØn šA£±ùC´Âý>Ý(¸ú·‚àÐ?Žt4< ÿ"8tF£#=Oû¾Ý Á S4?5Òh4‚#@h4:¡ÓÔ¨–: àÐÎÉ™U1<-ËŠ0Ní&‚#@Gh4:!s”VWƒO]ÕèÁ ¤F'h4ʵî\‹G‚#@žvNæÔ¨ºàä]MŒS{€àÐ8Îɶ]ŒÜh„‚#@³h4:'çvQc£QŽÊh7z†àÐ&ÎÑh„(]àèêÕ«AAA¦’êׯ¯t]eêÚµkbb¢ÒUFb"5–EÎÔhµª85ÒnTG¨ŽÅb)**êÒ¥KDD„mbõêÕ•®Ë¹”””;vôèÑCéBà 2–IžM£F£ß‡Ï9¥Ú†àO!*Uªä‹…gdd!^yå5§±ÂÂÂ-[¶ìܹsîܹÅÅÅJ—G4–IžM£È(ÚÞ`¨žˆŠŠrHu‰‰‰111²,\ Ž-Z´ðà¹EEE½{÷îÛ·ïÕ«Wí§ïÙ³§uëÖ ,k œ;w®gÏž‰‰‰ÙÙÙr-@y¤n_÷NȳiÔ>6íP(Bp„<Ž9²oß>Y•‘‘R£F•+W.X°`ûöíRƒÓóçÏ_¿~}§N‚ƒƒí§·oß>$$dòäÉgΜ‘¥È X­V«ÕzøðaY7$€R8¢±<2l“É@aŒv£—ŽPŒŒŒ€€€-Z 4hüøñwß}÷í·ßþÓO?¹òÜ9sæDGGO™2Eú5--íøñãBˆààà%K–äääÌ›7Oéõàe’'Pk¦Ñh_®¿_“oàGøVaaáÚµkËz´oß¾¥'fdd'&&0 88øë¯¿~úé§ûõëwàÀÐÐÐr^+###==}Μ9Ò”ØØØáÇ/\¸PѶmÛ˜˜˜¯¾újúôéÞ Àç8¢±<òDFa€#K¬2íF¯Uͤ諗ÿÙ***²ÿµ¬D®\¹Ò¯_¿2_ÂÙ_¬ï¾û®råÊuêÔ‘~=zt^^ÞO<±jÕª1cÆ”S’4V^Ρ–ÑÑÑK–,±Z­&S‰MëA‘|‹±éòx»u´3 ®bGUSóç#??ßþ×ÜÜ\§³…††º¼ÂÃæÜwß}Bˆƒ–ÿÄK—. !l‰³´ºuëæçççææV­ZÕË"ø Æ È5ùÏëºi7Ê‚àeeeÙÿzêÔ)§³¹; |ôèÑäääîÝ»·jÕÊ6ñòåËBˆ¦M›–_R£F„ÙÙÙ‘‘‘ÒéüÛ gΜ wH À'ˆŒðviµÑ¨(pt@p„‡NŸ>œœÜ§O!DfffjjªÓÙÜ®R¥Ê3Ï<óí·ßJgF¿ýöÛAAAÿøÇ?Ê/)666$$dõêÕ]ºtBdddäçç§¥¥Iæååmܸ±]»vÞ @~ŒMWÀ« ¤ùÈH»Q5ŽðPPPÐ!CŠ‹‹“““CBBœÎæî(pXXXbbâÔ©S###ï¿ÿþZµjmܸ1%%åõ×_oݺµbÅŠ?þø¨Q£fÍšåðÜúõë7nÖ¬YV«µiÓ¦‹-Šß»wïÈ‘#;uêôÙgŸeee­^½Úû"ȉFcLf³ðxi>2BeŽðPlll||ü‚ ÇŽ[³fÍ3fȲä)S¦4oÞü­·Þúä“O*W®Ü¶mÛõë×÷êÕKz´  àâÅ‹eR™””$]2'''>>>))éàÁƒ/¾øâÔ©S›7o¾nݺ:(½åØ¡ÑX“V‹Åb6{ôdÎ(÷jÐn”‘zGîÓÒÒÚ¶m[Î 6l°… U‰ŠŠJOO÷õS”e6›7nüÃ?(òê‹-:pà@RR’Ò›Á'4÷fð˜Åb1{öe_òß~¡ÑX±k±Úƒ¢ŸF£á×ãàXÎŽÆù[í@½2dÈÿû_‡k¾H.\¸ðÔSOMš4Ié¡€¼¼¼­[·¶oß^éBxËzWÀó‹{Ûn£‡Ô(ÚòRop ›3gÎàÁƒ9b?}ãÆñññëׯ¯ð[èÒ®]»Zµj5tèP¥ àîX1cµ#£NÆÚuE½Á199yðàÁû÷ïïׯߊ+„/^œõG€pŒKÜØLFŒŒ2ñÛ¡&¥×TAêª6š¨¨(¥K€*¤§§+]àƦ]åFdz½š·++oÐ5ׂ£*|Íb1ÌB€Ðet‰«áÚБQ¨eZ0Ní‚#À4]åR¸6zd*JpÁà"£«*ÞR¦ëGÉ:2ÊD®ÔH»ÑG€ ›v•É•ÈH>¹†CµFÕÁqýúõK—.=räHYÿ°{÷n¥k½£Ñèª ¶‘Ñ‘š©i7ºH½ÁqóæÍO=õ”ôs`` Òå€ñÝ`"2ú‡6úŸzƒã¢E‹„#GŽ|üñÇCCC•. †±iW•—¯‰ŒeòºÝ(cj¤Ýè:õÇŒŒŒÆO:5 €«”€Ñht‘ÑSÚ¨Y*ÍdW¯^ý믿š4iBjÿ1 s„™›ºÆùý¥û¾pë—ò¨éÐFá~»Ñà½x•Ʋ€€€ÐÐÐßÿ½¸¸XéZÀLBX…%Ó¢têçüþöy‘ÈX&§F¨48>úè£gÏž={¶Òµ€Þq¿i78i4Òbô'NˆQ–zqìÝ»÷ñãÇ?øàƒÝ»wßÿý7®T©’Ã<ݺuSºLÐ2gtƒ“ÅŒîQÓ 1‚v£GÔ{ôè!ý–––––ætnñ ž£Ëè*ÇÈÈ}_<¡²ÔϨ78þóŸÿTºÐ)n0•ŽŒäE·©ï4jÚžQop|ûí·•.t‡È膋Ȩ,©UB½Á '"£nl,F¥eÀ µŽ¨(8._¾\qÇwDFFÚ~-ß°aÔ®´€ÃÝ`²ŒäEo©/5zÓn䓤¢àøÊ+¯!¥à(ýZ>‚#T€F£®m,"£lô•!TŸ|òI!Äm·Ý&ýúÌ3Ï(]h‘Ñ &!„Étmc‘+䡾Ôï©(8Nœ8Ñþ×±cÇ*]h#jn0I‘‘¼('U¦FÚÞSQpÈ€F£Ë®ŸøB–PR£j@/ˆŒ.ã(Fßò®ÝHjT3‚#h‘Ñ5\[Çô›9D@óø6sÁõ#ËÇÔ—!/‚#hƊصÙX¾§ÊÔÈ µ¼Ž A¤ ŠØÅÈÆò R£1h)8Z­Ö-[¶œ8q¢mÛ¶ÑÑÑJ—J •«ÔQŒŒMû…R#ï$‰ªƒã–-[Þ{ï½{ï½Wº6ø´iÓV­Z%=ôÐCMŸ>Ýdû FÀwWÙJ(MÄö¤FØ(]@™öîÝûøã>|¸¸¸Xñ믿®Zµ*44tèС7^±bÅ–-[”®üÅDjtÎdºöÏjµï2J‹íå{¤FƒQoÇqáÂ…V«õ…^x衇„›6mBÌœ9³GGŽéÕ«×ÿûÿ¯GJ— >F㬠ήÅÈÆÒ ¥Fþ«ÍF½Áñ·ß~»é¦›FŒ!ýºgÏžJ•*Ý}÷ÝBˆfÍš5oÞ<33ÓÝefffÞÿýŸþy»víÊŸsÀ€û÷ïw˜X¯^½;v(½a)È™2®ÅÈÆR‚íF ¥FØSop¼xñbóæÍ¥Ÿ ýõ×[o½µR¥JÒ”ªU«;vÌÝe.[¶ÌÅ9;V¥J•fÍšÙO¬U«–Ò[€1‚J)÷ÚÝôƒ”@j4$õÇððð'NþüóÏyyy±±±ÒCÅÅÅ'Nœ¨_¿¾‹‹º|ùòo¿ý¶fÍšO?ýÔÅù/]ºtÿý÷'%%)½)¨¤roHÄVˆ‘R#ŸH{ê Ž111Ÿ~úéœ9s8gÎ!D×®]¥‡/^|þüù{î¹ÇÅE%$$œ>}Úõ—–z™íFð9RŠnÈÆRާ©Ñ$LBm¥F8Pop7nÜš5kæÍ›7oÞ¦€ç ™‚ÜÏ‹‚Ȩ:FM(‡zƒã¡C‡Ìfs½zõJ?T½zõˆˆé¢9²¸råŠÅb‘N[kÖ¬Y‡~üñÇ•+WÚfHIIY¼xqxxxÏž=•Þ0´Ãd¸Æ…GyQÕÈýÔ(í| Oû35ìSëõžzåÊ•²½pႌ£ÆÛ¶m{úé§###“““…/½ôÒ˜1c¦M›¶bÅŠˆˆˆ“'O¦¦¦V­ZuæÌ™UªTQzÃÐãÔáÎ)/%ž'„0Ö–ÒR£>¤Æò©·ãغuëS§N¥¥¥•~èСC'OžlÕª•^ú–[nùòË/ûõëwöìÙ7^ºt©_¿~ÉÉÉ®_r€q¬wææ)/%žj¬-¥!N¨z;ŽƒÞ´iÓ¿ÿý襤¤6mÚØ¦úè£ .|à"""„›7oÞ¹sçüQ\\Ü¿7 † BÞåEa -¥Qî§F=5I®PopB<óÌ3:txóÍ7333…'OžBÔ¯_òäÉöWv%àÛÆë¼(ˆŒjçþ1ª¤FcRupBÄÅÅÅÅÅ]¸p!33³   ""¢AƒJBýg!9òâµ%éy3週‡§oPw¨=8Jj׮ݡC¥«€ëŒåøúÖû–ÒcOÃ]ê Ž®œÂ¼{÷n¥Ë`0ºB&“Â,ˆŒÆáNjÔ_£ñúzñ6uƒzƒãåË—¦X­VÛoºé&§×_Ño²’¶X,f³ÙËåI SzµP7S£þ"£ 5ºO½Áñ×_u˜RTT”••õÍ7ßÌ›7/??ÿå—_VºFÆ Ó $ß!Œ7)-Oé5ƒ \N>m4*;6Mjô€z/^Z```“&MF=gΜK—.=ýôÓ ÀçtwjOï XÁRu¸¥tÌÔ(½Mä~}¿ÞBÐÙz‘=¤¥àhÓ©S§-Z?~üøñãJ×@¿ôõÝ⛼(ˆŒÚãZjôé§­V«âÃÓ¼_=£Éà(„ BÔ­[WéB葎²Ïò¢ÐÕf2—S£.BWÿ1¨ õãXŽœœœ_ýµ^½zÕªUSºú¢—ƒô|püb‰ÅKËVz-á×®±ä£#? æúÚñ®õ–zƒã®]»œN¿pá²eËΟ?ï½÷*]#ÑEòq^:ÙLäN£QîWVEd¤F™¨78Ž9²œGkÔ¨1iÒ$¥k  ÚÏB¾Ï‹B›É°\H¾k4ª$2 Þ»2Qopüç?ÿYÖC7ß|s¿~ýš4i¢t4Nãß'~É‹Bó›Éà\K4á"õÇ·ß~[éèšf¿Oü›…V7DÅ©ÑFUEFÁÛWnê Žà+Úü>ñW^ZÝ@°WÑ©0úŽŒBÃÿa¨v* Žß}÷»OéÖ­›ÒUÐ &"?æE!„ÉlÛ@(Í…F£¾#£àMì3* Ž=ö˜»OIOOWºj¡µ/ÿæEaÛ@‹ÅÛ[UCYå¦FÙªŠŒ‚F£ï©(8–s6 xNS‘ÑïyQhl¡|e§F#DFÁûØ÷T9€Ì´óM¢D^ZÚ@pE¹©‘ÈYhõ–ƒS§NíÞ½»ÒUP+Ü Ï—÷¬à•µ±à"ÛÛ¨ô#²ÞrÚvÏ@•¤FÞÇþ§¢Žci.\øöÛo=ê0=77÷›o¾ Tº@ª¤ú£œê/^{qé••ÞOÙ‘QÈ76­¶.£ÐÀ]ŸÔÿüóχzèäÉ“eÍ0lØ0¥k 2êEŠæE¡ö­Ï”õoe…¨78~ôÑG'OžŒ‰‰IHHX»víž={^zé¥*Uª>|ø“O>6lØ /¼ tTCÅß$JçE¡ê­•q¥Fj‹Œ\’^ Ôøá‡¹sçÖ¬Y³{÷îwÝu—ÙlîÒ¥‹"""bÆŒƒ ŠŒŒTºLJSk(RA^êÝ:ð’³F£\‘Ñtý½«¶È¨–jŒM½'Çœ:uªY³f5kÖBÔ¯_¿víÚ8p`íÚµ?úè#¥k (U¯Üù.ZØ:E©Ôh;ÆËÔhî‹JR#ïcµQoÇQp#×Þ|óÍ‹Eú9000***--Mé(D}ýuô£yúW25ÊÛeTIX¼¾jBð>Võvoºé¦#GŽ\¹rEúµI“&ûöí³=j2™Nœ8¡tüNMý[sQýE‡M£‚­Ù•¼æŽ/ºŒJ¯áõ’Tô)‡#õÇ{ï½777÷™gžùã?„;vyòäÛn»MѨQ£iÓ¦ìØ±ãܹs=zô=z´Ò5ð=¥ûjŒvØ.JoøÉ$L&Kf¦ðzlš#d¡ÞŽcaaa½zõ{ì1Û”‡z(!!aÿþý 4ˆˆˆPº@>¦hB•ýÅk¥Iu)]|ïúÞuÕÖbä.MSoDZk×®o½õVFF†ýÄêÕ«wîÜ™Ôèœr]µö•Þ.ð?“IX­Òû1Ó’éAjTm‹‘¸4M½Áñܹs~øa||ü!CV®\i;½€ž)´‰Œ†a2 “Édõü µ]Ž‘w°ž¨78®ZµjäÈ‘ 4HII™6mÚwÞùŸÿüÇþŠ<tE‰/uçEAƒÆˆ¤ÈhDFµµM¼ƒõH½Ç8ÞvÛm·ÝvÛÔ©S÷íÛ—œœ¼aÆÿýïÿûßÿš6m:`À€~ýú………)]#9øý˜=¿x£F©@¥Ë€™L&«t$£'-F¡š£9„QßÔÛq¼V_@ÀwÜñÊ+¯ìܹsþüù ÙÙÙï¾ûn·nÝìÏ› I~ì2ªìbÝêØ(P “0yÐeTU‹‘þ¢A¨·ãèXhPP\\\\\Üþýû_xá…ôôôï¾ûNé¢xÊ$ÌÂ쟼(Qú[Õ¥b¥J•.~åÁuM×ßÖŠ‡EAÑx4ÓÓÓ7lذaÆÌÌLq½©tQ>>!!¡M›6JWÀ#>ËHÌ‹‚ÈhX7Že¼~?˜2ç,u£Åbñ{µ×ðN…õÇ&$$ÄÄĨýÔoÎù&#i3/ "£1™®g°k‘Q”™?å…æ"\¡Þàøê«¯*]Où #iØÐ'‘Q8¾ƒÌ‹„Exƒà@&òÅ$“Ý7›ó¢¬Ûšâ䢌%jÈ‹¼/á ‚#¯É“´Ü\”{[@kœGFqíݬH^4•ü•7%dApà“·ßH:Ê‹‚og£)qîK‰LÂj5I÷¸ôc^d¾Fpà)ïšk×®K§å¼èõV€f•y«@[wÑdòO^$,Ÿ¸Ò ÷™®7Ýÿš’Z0&“ÈÌ´X­šN^lh™ô¶–ºë‹I"„õ:_ÖpãŸÕîàkGîð4,Ùò¢µœ½Ø Ð8§‘ÑtõzdôÍK¡ UpGC²º8~Ña¸¿ q¥d4ÙùoµV|3O_÷:³™÷T‚Ž#€Š¸ß_ÓWQ”êòÀ(ì[ŒVa½Ñ\´–/5–ÕVÌôû-²ÐqP67»Œúê/z´  öç¾”y1¯##WÌæ8ãN^Òc^ts@/l£ÒÒÿ_‹V'§N áÉ;ž¤­#8(ŵK3ê:/ ¾ÓÆt=*JÊ<ÇÅýÈÈår 'Gv*ê²iÿf€^¬/ €WŽ€V•è/zrl—F1*­®_d»œ ë¸ÿªDFÀ[G@{J|ý™Œ“i1jU—Ntþ™†¤¯-ŽÈȃàh†ã!ŒÊQZU09™d¥Nˆ.ã¹²æEÛ«™µsrÊ‹r”VU‹LΧ–ºzŽË‘Qμ(h4ò PºµËÌÌŒŠŠúå—_”.†c2]ûgµ^û'„ÝÀ´Î¿ MÆYU 1•úgµí!ÛûÕd²Úqa™×ž&½Íå«ÕîÃ@>t+°lÙ2¥K€±”yI£´ÞŒ²žêWá‰&»k縒K.ÜCÒ×Ë’ òÃ& ˆàèÜåË—ûí·5kÖ|úé§J×C¨àŒ†8ý…Ȩ˜Ñl–þßù;±ì›¸¸üZ>’¾^œT–¶Ap,KBBÂéÓ§•®úWñ%»õŸ¦¸¼Ž¿•ßJ´X,æëÙñÚü^‡EáÓãõ*‰Œ€{íµ×òóó…Ÿ|òÉÎ;•.zãÒ-^ôÍæ¯¡ 8=yÅ•-.KX~È‹‚F#àWGçîºë.釭[·*] tÅ¥ï8½GFi -–L‡Î¼áqF¼±™Â¢ðO^DF@GŸˆŠŠr˜²aÃ¥‹2´'N([@Dĵ„”™iBX,Îg3G˜…–L‹BX\[´v\o1 ‹%S¨`§hZD©Ìéì]Uá›(""âÆ2¯í—Æ[,¾ÿ"ÌBˆLKæõ|ò>6GD!,™™B”ýqÒ>,ŠëÕ«—Ò%¨ÁÑ'ÒÓÓ•.Žin9’.£ ».£Yè¯W¢‰jÛt]áj+ÑåYagуýâØbôÝŽµë2êÝÇEY¥¿ÖKwˆ ‚àÈÏ¥CKGuß›ÊDFc†Eaؼ(ˆŒÔ…àˆ È= ‹öÏT×W§¿k", ãäEA‹€ªQ&/¿¿<‹ö‹P×·§ÿ"£aâ0`sñÆš¨ÁÎyvŒ aÑ~AjùõÇvŒvÝ'[ÀàyQhÁŽÜízÈí—¨–/PßX#·olÃæEA‹€öqƒëßbò‡EûåªâkÔW¥…-,š…0f^DFZ tP ilºü/2ÓõV»òU û=®CþRL×Yí(½¦þf&éŸUX­ÂšiÉ4\j4]ß~Ø@•è8¢‚Þ‡¯š‹¥_Cù¯Q™ë ¹xm;y0úÆV Å@ŽFWÖI0þ»ã²*Žh”-2mÈ‹×7‘€~«ô×™?š‹%*ðÛ+ù¶¢A¯¼èçJÐ#‚£9DFÿ5K¡íÈHX´Gs±ZŒô‹àh8¶±ieò¢PC£Ñà ‹È‹%Ðb`G1]ÏKJ&7…n¯:a±4ò¢#ZŒ ƒàh&q-/)öå¦h£ÑlŽpëåmy‘°(áàE爌 †ë8êŸÃ•+B±—7 a²X2+|y“Ã^jÑq›”¼ò¢ôOé¢T€Ë10*:Žºe²ûIɯ6…ÇÅm¯mq>#ÑÎ0]&ZŒŒà¨C¶¸tí<eS£ò‘ÑÙÃŒD;C^,'¾€‚à¨'ögI›L¤ìwœbÆ2_˜æ¢S¼XZŒ`‡à¨YÉ¤ìØ´PªÑè<2Ò\tŠæbh1€3Gm+• ™7C鿢Åbqw¡ºD^¬-F(ÁQ«œ¶×N O—xIš‹e!/VŒ#¸€à¨=eEF¡øAJDF“Éd;¼“¼hƒ]¥ü‡4ƒà¨%euô Öh4‰í!aÑÍEWÑb÷µ¡œl¦|jôcd´û®ç˾ò¢h1€§ŽjW~;Ï ©‘ƒËB^t-FðÁQ½*V25ú~xšË.–ƒ¼èZŒ ‚£J™*ŠŒBÁïA_6íš‹×þ_¡•TNvq-FÁQuTÝh¾J%£•¼¿µÚÐ\ô-Fð ‚£ºT˜Êt6<]êàE“‚÷·Vò¢'h1€UDí©Q¾—.ãd"#yÑS´À/ŽªàJ/O©±ì“£>6M^ô-Fð/‚£ò\IeŠ¥F9]¹Ó1td$/zˆ¼ !8*Lí©Ñ‹×­èâ‹ÆŒäEÏ1$ Š"8*I—©Ñ…‹u42’=G‹Ôà¨ý¥F)2–{±nÃEF.¾è-ZŒ &Ge¨75ºí\¾ Nš¦¹è-ZŒ JG¨:5ºü¢îÜ?Ú(Fò¢·È‹ nF Ž+W®üüóÏ322ªV­zÏ=÷<ûì³µk×.gþìß¿ßab½zõvìØáe%êm»¹\™ CÒö ª]c¹eÀ4h!‚ãìÙ³çÏŸ_­Zµ˜˜˜£G~ñÅ¿ÿþûÒ¥K«T©RÖSŽ;V¥J•fÍšÙO¬U«–—•¸˜Íh7ºP™;-Fa„ÈH^”-FÐýÇôôô>ø Aƒ«V­ B¼öÚkK—.}çw^|ñE§O¹|ùò¥K—î¿ÿþ¤¤$ÿ¬ÂÔèN‹Ñµ%jyQ&“Â,È‹ 1JàsŸþyqqñSO=%¥F!ÄsÏ=º~ýúââb§O9v옡Ýè=5ÚXî­¡M×Y­V—S£no6m&éŸUX¥JW¤MÒV´Z…ÕjÉÌTº€{ô÷îÝЭ[7Û”ÀÀÀ®]»ž;wîçŸvú”£G !š6m*c*MVçeÙçE÷#£®yQ&“}dTº€‡t­VkFFF:uêÔ©c?½eË–BˆãÇ;}–O:5bĈ˜˜˜{î¹g„ ¿üò‹Òk#+gIÖ££ýâôÈ‹òpÈ‹DFÐ8㘓“STTTú¤–ÐÐP!Äùóç>K ”ï½÷žÙlîܹóÉ“'·nݺmÛ¶—_~yРA®¼nTT”ý¯¿¥§gZ,–rŸaάp&™˜#Ì–L‹°{­ˆˆ!Dæõ¡C×ë0›#„K¦~)ÝS'Nœpe¶s„ôC¦åú¦P÷z©–9"Bqc0ÚÙ;ÊÅ?c¿¨;Eq½zõRºµÐypÌÍÍBT«VÍazõêÕ…—.]rú¬S§NU©ReòäÉ#FŒ¦ìܹsüøñ¯¿þú]wÝ^á릧§ÛÿjÂl6—3ÿõAj³ð“Va¾þZîŸøb¿ !uÍ~)ÜKåì'ç»haÔ¨äYÒnE³&Þ:ÆÃ~Q!vв¾ÖE©‘qè|¨ºV­Z&“)''Çaúßÿ-®÷KûøãSSSm©QÑ¥K—‡~877wóæÍîÖPáÑþ;´±ä‰+žŽJÛ¯–¶G– CÒ` :ŽAAA¡¡¡¥;‹—/_BØÎ³vÅwÜ!„øí·ß”^'O]Oz^Èh[¶Ï›&/ʉ¼F¢óà(„hРÁ¹s礤h#Ã× AƒÒó[­Ö¢¢¢ÒWê BÔ¨QíWWK»Ñt#2ºy®´ÃR´Ýh$/ʆ³¤Àô{ôèQTTôÃ?ئX­ÖmÛ¶Õ®];::ºôüGmݺõ#<â0=%%EÈ}LƒßR£IxÓb¼¾ÍFF“0E˜#l‘Qér´Œ!i06ýÇü÷¿ÿ•ŽkB|ðÁgÏž}ðÁƒƒƒ¥)W®\±X,ÒikÍš5ëСÃ?þ¸råJÛBRRR/^Þ³gO×_Z º&“É$¼ŒjXê¾1$iÉ$2z…¼ÐýYÕBˆðððgŸ}öÍ7ßüç?ÿy÷Ýw=zt÷îÝmÚ´;v¬mžmÛ¶=ýôÓ‘‘‘ÉÉÉBˆ—^zi̘1Ó¦M[±bEDDÄÉ“'SSS«V­:sæÌrnoí._·½8]ºÄb4¹% œ¸—4ÀŽþ;ŽBˆÑ£G¿óÎ;f³yݺuçÏŸ>|øÒ¥KK_ÜÑæ–[nùòË/ûõëwöìÙ7^ºt©_¿~ÉÉÉ:u’«$Ÿ¦ÆkÇ2 oºŒBsFNy‘CÒgL^w¤à(***==½üÌå»à(Ëè]ä»qFõs±¿h±X¸ ZÅüÛ_d§¨ûE…Ø)*$}×+]…ô?T­B>J7Ʀ½MZŠŒtå!EFþ3P.‚£”8œÑóà§F#‡0ʉCî 8ú›¼íFÇ3`¼JªŽäE9‘!8jصÃoüîYöSu£‘¼('ò"À;GŸ(+ÂÉÕntr©ÏS£J3‡0ʆ¼ ÁQ{BW©‘£œ8å +‚£ÿxßnt~MoOâŸê†§É‹r¢Åð ‚£f8i4 S£ŠòCÒ²!/|Œà¨eÞ<Ðí¨¢F#-FÙþBpôÇ©7…g©QÁ‚£<È‹¿#8ªšžR#-FÙpÊ @!GŸpøJ÷ ÝXæð´p7*?çÖ8µL©Q™áiZŒ2 /TŒà¨"ò¥Fe"#yÑsäE€ÕB£©‘Èè-N‘hÁÑ·\§./5ºüRB¿¥FF¥½E‹ AGåU]ê!ú¯ÑH‹Ñ+äE€–¦¡ÔHdôy  G%i"52*í9ò"@_Ž>TþŽêO´=D^èÁQ^Ÿ ãÛSaˆŒž /ôŽà¨€ŠScD6‰Œžà’:c 8ªB©‘Èè6ZŒƒ!8ú›w‡6ú$5ÝC^ÁÑWœž£ªÔÈéÒî!/ à¨r¦FZŒn /pÁѼh7Ê–‰Œ®"/P ÁÑOODF—(ÁQådKDÆòpÁÑQþÍKÎê«ÔHd,y}Σ» z•‰ŒÎ‘ðÁQQÎó¡ç©‘Èè„É$„0 ò"Þ Pº“55š„I:†ÔxÉtíŸÕ*¬VKf¦Ò yt}ËÍqjÏS#yñiHšþ"r#8*ÄIDô$526}‡0àcGr§Ýèvj$2^ßäEü„ਯ¯ÏÈØ4yÿ#8ªAÒèFò"Ê!8úcJt/542’P‚£OX­eàèij4h£‘¼€šäFj4Vd$/ JG?rÿœc5É‹¨ÁQ)§H£4É‹hÁÑ'*º‚c©ÑFò"ZCpô—Ç©uÞh$/ YGÿ+/Bê65’Ð>‚£_ÜÈŠKäEt„ਠz;¨‘¼€}¯¢v£~äEtà¨0=¤Fò"Æ@pô g×âqÒnÔvj$/`0G»u”É‹ÁQÚKäE àèŽíF-¥Fò"¸ŽàèKÎ΢ÖFj$/€RŽ~¥öÔH^e#8úšýU՚ɋÀGŸ)9N­ÆÔH^î 8úTyw¦V®(ò"ðÁÑTÑn$/ï}NáÔH^2!8ú†I«¢ãÔäE 7‚£où»ÝH^>Cpô!ÿ¥Fò"ð=‚£ïX…0y¿”ò€}ŇíFò"PÁQ;È‹@QGß°Ê7HM^ê@pô “ÞŽS“€ÊÕÄd×§$/• PºõZ¹råÀ£££ï¼óÎçŸþÂ… ¾z%“éÚ?«õÆ?ȪW¯^J—Gìub¿¨;êAptnöìÙÓ¦Mûã?bbbªW¯þÅ_Œ7.77×ŧ»4N]:/¨Áщôôô>ø Aƒ6løàƒ6nÜ8bĈ´´´wÞyG†¥“€6øüóÏ‹‹‹Ÿzê©°°0iÊsÏ=º~ýúââbJ^GptbïÞ½ݺu³M ìÚµë¹sç~þùg÷–E^zAptdµZ322êÔ©S§Nûé-[¶B?~Ü¥¥€îp9G999EEEµjÕr˜*„8þ¼+ ‰jÙòúOQJ¯®‰b_¨;EØ/*ÄNJI§NW«VÍazõêÕ…—.]ªp éééJ¯€üªvT«V-“É”““ã0ýï¿ÿ×ûŽDptZº³xùòe!„íøàƒ³gÏ>øàƒÁÁÁJW  “•K :³xñâ7ß|³Q£Fwß}÷Ñ£GwïÞݺuëÅ‹—¾L€AË´fÍšÕ«W§¥¥5lØðŽ;îxê©§¤+òÁ.áG¸„à—à‚#\Bp€KŽp Á.!8ÊfåÊ•ŒŽŽ¾óÎ;Ÿþù .(]‘¸»ñsss?þøã>}úÜ~ûíwß}÷˜1cvìØ¡ôJè7Ÿˆ¬¬¬:<ûì³J¯„Þx°Söïß?qâĸ¸¸˜˜˜áÇïÙ³Gé•ÐwwJAAÁÂ… xàèèèîÝ»Oš4é÷ßWz% '333**ê—_~Qºå1{öìiÓ¦ýñÇ111Õ«Wÿâ‹/Æ—››«t]†àîÆ/,,9räÌ™3Ïœ9Ó¹sç-ZìÙ³gôèÑï¿ÿ¾Ò«¢Þ|"¬VëÔ©SmwЇ\<Ø)[¶ly衇¶lÙ’’2bĈ-[¶(½*úáîN)**zä‘GÞyç .Ü}÷Ý5Ú¸qcß¾}÷îÝ«ôª˲eË”.A9Vxíðá÷ÜrËÝwßýçŸJS^}õÕ–-[¾òÊ+J—¦lüåË—·lÙò¡‡ÊÉÉ‘¦üöÛowÜqG«V­~ýõW¥WH¼üD,^¼¸eË–-[¶|æ™g”^ýð`§\¼x±cÇŽíÚµÛ·oŸ4å—_~¹õÖ[»téRTT¤ô éǾ&MštõêUiÊÎ;[µjuß}÷)½6†péÒ¥½{÷¾ôÒKÒߨÔÔT¥+RG|þùçÅÅÅO=õTXX˜4å¹çž ]¿~}qq±ÒÕéœÆ Bˆ^x¡J•*Ò”ÈÈÈñãÇ1`- o>¿ÿþûìÙ³o¹å¥WBo<Ø)_|ñÅåË—Çß¡CiJÛ¶mï¿ÿþ³gÏîß¿_éÒvÊÏ?ÿ,„xä‘G‚‚‚¤);wnÕªÕ‘#GΟ?¯ô é_BB°aÃ>ýôS¥ QÁQ{÷î èÖ­›mJ```×®]Ï;'}Èá;l|‹ÅR­Zµ6mÚØOŒŒŒB?~\éÒ?………S¦L©]»ösÏ=§ôJè;åûï¿7™Lýúõ³ŸøÖ[o¥§§·k×NéÒvJÆ …öÑjµ^¼x1 À%á;¯½öÚܹsçÎÛ¥K¥kQ ï3oY­ÖŒŒŒ:uêÔ©SÇ~zË–-…ÇïØ±£Ò5ê–gÁ‚¥ÿÂùäÉ“''MšÄ%#¼çÙ'åòåËo¼ñÆ•+WÚ´i3dÈüãUªTY½z5§ºÃoè8z«V­Z&“)''Çaºt1é¿á#^nü={ö$&&þñÇ 6|ýõ×|ÌŠŒ<Û)o¾ùæ‰'V¬XÁ0¨/x°S*W®,ýðÆotïÞ]úyâĉYYY_|ñÅÚµk  ôji›gŸ”)S¦üôÓOÏ=÷ܨQ£¤)YYYC† yúé§¿þú눈¥W úGÇÑ[AAA¡¡¡¥ÿëðòåËBÛ¹rð7~AAÁk¯½öÈ#dee=ùä“ëׯ'5ÊŃòã?®X±â±Çã” ñ`§T«V­råÊUªT‰‹‹³Ÿ~ï½÷ !>¬ô:iž;åÌ™3[·nmÑ¢…-5 !ÂÃÃüñ«W¯~ùå—J¯ à(ƒ œ;wNú´ÛX,é!¥«Ó96~qqñ¿ÿýï¥K—öèÑcÓ¦M'N¤Ë%/wwŠtß‹¹sçF]÷À!¾þú먨¨>}ú(½BzàÁ'%,,,88Ød2ÙO”>,………J¯¸»SÎ;'„hÖ¬™Ãt©Ñ˜­ô ÁŽ2èÑ£GQQÑ?ü`›bµZ·mÛV»víèèh¥«Ó96þ²eË6mÚ4tèÐ÷ߟ–°/¸»Sš6m_’têbxxx|||×®]•^!=ðà“wùòåß~ûÍ~¢t™.´) wwJ³fÍÿýw«Õj?===]Ñ¢E ¥WÆ ôÈõàäÉ“·ÜrK¯^½þúë/iÊüùó[¶lùÖ[o)]šþ¹²ñÿþûïÌÌÌãÇ[­Öâââ{ï½·C‡¹¹¹J×®[îî”Ò8ÀcäåÁNùõ×_[¶l9pàÀsçÎISÒÒÒ¢££cbbΞ=«ô é;å±ÇkÙ²eRR’íæ=¿ýö[§Nn½õÖŒŒ ¥WÈ@^xáÃÞ9†“cdþì³Ï¾ùæ›ÿüç?ï¾ûî£GîÞ½»M›6cÇŽUº4ýseãoÛ¶íé§ŸŽŒŒLNNÎÎÎ>vìX•*U† Vziýû÷>|¸Òë¤yîî¥ë5vJ«V­&Ož)Ýf ²pw§Ô«WoݺuóçÏß¾}ûwß}W»ví{î¹g„ ·Ýv›Ò«£0YK*8ÅÉ1p Á.!8À%G¸„à—à‚#\Bp€KŽp Á.!8À%G¸áÙgŸŠŠÚµk—ßõßÿþ7**jùòåöÏúî»ïœ> Ê"8€–lß¾}Û¶mJWÀ ‚”. -..®^½z:tpñÑgžyæòåË¿þú«Ò…0"‚#(©M›6mÚ´ñìQð3†ªhRQQQaa¡ÒU€±h†tâÈü1cÆŒŽ;¶iÓ¦[·nO>ù¤Ã (ÒlYYY©©©>ø`Û¶mOœ8a{tݺuãÇ¿çž{:uê4räÈ?ü°¨¨¨ôkmß¾}Ò¤I]»víÚµë„ ¾ÿþ{‡Ξ=;kÖ¬Þ½{·oß¾}ûöññño¼ñÆŸþéî¢.\XÎé/ö¾õÖ[QQQ.\(**ŠŠŠŠŽŽ~þù磢¢>ùä‡gÍš5+**êÝwßUzЂ#yá…>ù䓼¼¼¦M›^¸paÓ¦M£G^´h‘Ãl‡9räòóó‹‹‹…V«uêÔ©O?ýôÖ­[­VkhhèîÝ»ßzë­aÆ]¸pÁþ¹kÖ¬yôÑG7mÚT¹rå‹/nÙ²eܸqï½÷žm†³gÏ6lÁ‚YYY7ß|sãÆ?þÑG=ôÐCî.Êu;v|ä‘GBBBL&Ó#<2tèÐÞ½{ !6nÜh?›ÕjMNNBôíÛWé}@oŽ4&%%¥[·n»víÚ´iÓÏ?ÿüÜsÏ™L¦wß}÷÷ß·Ÿí¥—^ºí¶Û>úè£;vÜ|óÍBˆ/¿ürõêÕaaaŸ~úé÷ß¿qãÆ­[·Þ~ûí)))sæÌ±î_|Ñ£G={öH/1eÊ”€€€¹s禥¥Ùf8räH÷îÝwìØ±zõ꯿þzûöí111'OžüöÛoÝZ”ëºwïþüóÏW­Z5 àùçŸöÙg;wî\«V­}ûö={Ö6ÛÏ?ÿ|òäÉ[o½µE‹Jï+zCp 1aaaÿ÷ÿW«V-!D``à¨Q£† V\\}ú©§žº|ù²¢¸¸xùòåüq@@À“O>YþŸ~úi!Ä´iÓ8 MùóÏ?Ÿ|òɼ¼¼Áƒ‡‡‡Ûæ<~üøäÉ“¯\¹"½ÄÒ¥K—,YôÄO!4h „8|ø°í"8EEEŸ~ú©t!îÜÜ\û-Qž)..ÎÉɱý*[]XX8kÖ,Á85_b¨€ÆôîÝ{Ó¦M:ujÖ¬™4ì0yòä[n¹¥ü'öïß×®]kÖ¬yðÁ7n\¥J•?þø£¸¸8::ú©§ž²Ÿ3**jÆ ß|óÙl>yòdnnnPPдiÓ¤Óh"""zôèñí·ßþãÿèСƒÕjMOO¿pá°aÖ.]ú¿ÿýﯿþzóÍ7]Y”jÕªuáÂ…‡zèæ›o¶]~²wïÞÿïÿý¿ÜÜܦM›Þ~ûíJï"ºEp 1}ûö6l؇~¸ÿþêÕ«wîÜùá‡îܹs…O xçwºuë¶f͚ÇŸ9sæŽ;îèÚµëÈ‘#¥ócl>úè£ 6|ûí·¬]»ö=÷Ü3jÔ(û@öî»ï.^¼xݺuûöíkܸq×®]GYTT´fÍš½{÷º¾(w=÷Üs¯½öÚü‘——g›Ø3)uÒIDAT¡C‡úõëgggÓnàS¦rÎ4UyöÙg¿þúë tëÖMéZÔ¥¸¸¸G§NúöÛo5j¤t9t‹c@óvîÜ™••CjàSGжÜÜÜÙ³g !|ðA¥k sã“——WPPТE éfÙà;GšÑ»wï–-[–¾‰Ÿ‘5lØðرc]»v}å•WNñÙqr \Â1Žp Á.!8À%G¸„à—ü×+£ƒÒ¬IEND®B`‚statistics-release-1.6.3/docs/assets/nakapdf_101.png000066400000000000000000000753221456127120000222650ustar00rootroot00000000000000‰PNG  IHDRhŽ\­Az™IDATxÚíÝy|SUþÿñÚRËVv´€Ðb©-¥Ђ#BeE@DPdqÁŽ‚2W¨ƒ †‘Å/²ø¥,U‘}éTŠ”,;JKKÛûûãÒ¦Iz“ÜäÞ›¼ž3íÍÍ͹·ióæs–k’$IU©¦u` G(Bp€"G(Bp€"G(Bp ¾}ûö™Ê :ÔæÑ¢¢"Ë£ééé.yÒ¤Iòûõë§õYª,==]>µ„„GûX_Xkµk׎5jÔ±cǪÜ?88¸aƉ‰‰“&M:}ú´Â—°öÒK/i}µhƒàÀ»þïÿþoÇŽZ·ÂÏýùçŸ?ÿüóœ9sn½õÖï¿ÿÞùÎ¥¥¥gϞݹsç›o¾³}ûv­›À0‚µn?'IÒøñã·nÝj2™´n‹®Õ®]»eË–Bˆ›nºIÉþMš4 B\½zõäÉ“eeeBˆË—/5jïÞ½5kÖt´ÿåË—-…ÆóçÏ8077744ÔÉKبW¯žÖW €6¨8ðºíÛ·/^¼XëVèÝàÁƒóòòòòò¾ýö[%ûñÅòþÇŽ»xñâˆ#äí‡Z¿~½“ýóóó9òÄOÈÛ;6kÖ,ç/aãÕW_ÕújÐÁ€/Lœ8±  Àù>eee_~ùeRRR‹-n¸á†-ZÜ{ï½óçÏ¿zõªó'>òÈ#òØ»ÈÈÈüü|W–››Û¯_¿ ´lÙrĈ'Nœxå•WäNš4É¥æY†`8ðÿûß!CZ¶lÙ¬Y³G}ô—_~Blß¾ý‘GiÙ²eƒ ’’’~üñGËs•Œqt¤V­ZüqHHˆüíœïß¼yóyóæYƉ¾ýöÛ—/_VûgÀI ¶½{÷ZþÈÜzë­ò©©©ò£W®\±<:{öl˳~øa»¦ `Ùçõ×_—7öíÛWÞòÎ;ïÈ[ÂÃÃ÷íÛçÒÑ$IÚ²eKÆ ­wˆŠŠ²<÷õ×_w¯ywÜq‡Ía5jôÑGY²Ìd2ýøãòsgÏž-oìСƒ’ »nÝ:›G#""ä‡^~ùe%û[ÇÖµk×*y €GÅ€w½ñÆáááBˆwß}÷øñãŽv[ºtéÒ¥K…&“©[·nÆ »í¶Û䇖/_n·ïUñÝwßÉݦÁÁÁË—/uéhW®\8pà™3g„Õ«WïÔ©SDD„Ùl–ŸëIó²²²Î;wûí·×¯__ÞrúôéçŸþêÕ«mÚ´iÚ´©¼Q’¤ÔÔTU®ó… ~ÿýwùëèèh%OéÚµkõêÕå¯wîÜ©J3ø7‚#ïjܸ±Üá[PPðòË/;ÚmíÚµò)))?üðÃüùóùå—øøxyãþóŸÊO1›Í>ú¨<)dÖ¬Y÷ÝwŸ«G›5kÖ‰'„áááÛ·oß²eËÑ£GŸ|òIUš·råʬ¬¬S§NuëÖͲ1--í×_=räÈÈ‘#å-r¶'JJJ80tèÐÒÒRyËwÜ¡ä‰&“éÆo”¿>uêTåî»ï¾Êkñ¼ð 6€q1«€×=ûì³³gÏÎÍÍýâ‹/žyæ»±æ‘GéÞ½»¢k×®ò–K—.Y†Ež;wÎfÿ?ÿü³_¿~òö &ؤ=…G³TŸy晸¸8!DµjÕþùÏ~ûí·–±’î5¯C‡½zõB„„„ 8P.IÖ­[÷¹çž“_eРAÿú׿„.\pïªZekûÛßÚ·o¯ð 48räˆ|:î5@@!8ðºêÕ«ðÁò¨ÄñãÇoذ¡ò>=zôBœ?>33s÷îÝ{öìÙµk×üáè˜ëÖ­³|]yé…G;xð õþ²°°°=z,\¸Ð“æY:£åÊ_DDDXÖ$²»Ìçn»í¶>úHùþgÏž•¿¨S§NåGí.Çcé|€Ž|¡OŸ>ݺu[¿~½£¥yŠ‹‹_yå•þóŸ%%%ò–°°°ÆÛTþìzï½÷žzê)ëå•íÒ¥K–J¡eZ‰¬yóæ6Ïժ©9:È:ÕÇÆÆvêÔéù矿ᆔÄÒCݤI“Ê~ñÅrdŒqà#3fÌ““ÝUßzë­éÓ§—””DEE}úé§ÿýï/]ºÔ»wo'¼çž{š5k&„¸|ù²õº9 V»vmKÆ’çÇXXf™xÒ3fL»v킃ƒmî¼l-**ê믿¶äÅÿûßÙÙÙ.M^÷QþÚº÷¼¤¤¤ò,iW›g–Níš5kÞ}÷ÝZ7€øÎÔ©S펥ûã?,5?Ëd‘ÿüç?ŽVáB´k×®^½zO<ñDTT”¢¬¬ìÅ_tõh÷ÜsüÅôéÓåE³%Izíµ×òòò}:>>>11ñðáÃf³Y­æéʰaÃjÔ¨!„¸|ùòÉ“'-Û5j4uêT­[À¨8ð©çŸ¾U«V6M&Srr²üuAAÁ·ß~ûÍ7ß4mÚ4))IÞhtl 2Ärsš_|±´´TùÑn¾ùæO>ùD¾›KAAÁ† Ìfs­Zµ,{zÞ<ý8qâDnnnnn®ukëׯÿí·ßÚÜä!8ð©êÕ«¿ÿþû•·Ï˜1ã/ù‹¢Zµj·ß~û /¼°gÏž>}úÈ.^¼Ø²tŽ   ËÍW~ýõ×¹sçºt´'Ÿ|rݺu=ôPDDDÓ¦Mzè¡-[¶Tž)âvót(((¨~ýúwÞyç¤I“rrr:vì¨u‹†I’$­ÛBqõêÕŒŒ !D¿~ý´=Úã?¾`Á!ĬY³Fíæ€®Q£FíÚµKÑ©S§O>ùDÞøçŸ¶nÝZîÏݼy3ÓÀ‚É1WDDDVV–"++«yóæ¼pá„ äÔØ¶mÛ:hÝFÐ*ŽWaaáý÷ß¿yóæÊ5hÐ`Æ ò¸F€Œà  -Y²dþüùf³ùäÉ“ 6lÙ²åý÷ß?~üx»KN@ #8@–ã€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"ÁZ7@§ —,Y²|ùòcÇŽÕ®]»uëÖ#FŒ¸ûn€fL’$iÝÝ)))2dHVVVxxx||ü•+WvíÚuõêÕçž{nܸqZ·@TíXºtiVVV||ü¿þõ¯°°0!Äo¿ý6tèÐO>ù¤[·nmڴѺ`Œ£k×®B¼öÚkrjBDGG=º´´tË–-Z·@G;òòòjÖ¬Ù¶m[ëÑÑÑBˆ£GjÝ:mÐUmGzzzp°í•Ù·oŸ¢yóæZ·@LŽQdûöíãÆ»zõêúõë6lè|瘘­Û ¼+''Gë&h€ŠcJKK¿øâ‹÷Þ{¯´´ôÃ?¬25ÊóÍä=111\Rq=UÇ%U—T]\OÕl‘ˆàèÌŽ;RSSÿ÷¿ÿÝtÓMo¿ýv§N´n€fŽö¿ÿþû .¼á†ž}öÙ‘#GZfX&‚£eeeÿûß¿ûî»ûî»oòäÉ7ÖºEÚ#8Ú±páÂï¾ûnðàÁ“'OÖº-zÁ:޶$IZ´hQíÚµ'Nœ¨u[t„Š£­Ó§O9r$,,lÈ!•íׯßСCµncÀ‘ïåµp=UÇ%U—T]\O¨…àhëØ±cBˆÂ½{÷V~”‰Õ `mµoߞŮ*cŒ#!8@‚#!8@‚#!8@–㨘˜­›½`%>…Ž€@CV€ŒB(GW5!8@‚#!8@‚#!8@‚#!8@‚#!8@‚#Bˆ‹/Ž=úæ›o®U«V×®]·oßîhÏ«W¯›*jÔ¨‘ÖgàP×®]SSSµn…?à^Õ@\ºt©C‡GŽ0`@Æ —/_þÀlذ!..®òÎyyy¥¥¥:uŠŠŠ²l¬U«–Ö'aßž={¶lÙÒ½{w­âŽCqq±¢zõêÞ8øôéÓsss?ÿüóÇ\ñüóÏÇÇÇÿýï_¿~}åsss…S¦LÑs+))Y¿~ýÖ­[?ýôÓ²²2­›ã'èªÀbbbl‚ZjjjBB‚*ÿòË/oºé¦aÆÉßFEE 0`ãÆ'Ož¬¼³o¹å7^¨´´´W¯^}úô¹zõªõö;vÄÆÆ¦§§«u¹Îž=Û£GÔÔÔÓ§O«uL0ªC‡íÞ½Ûóã\ºtéàÁƒIII&“ɲ±[·neeevG:æææ†††Ö®]{Ù²eééé›7o–«¡JÌž={Íš5;v ±ÞÞ¾}ûÐÐД””üü|U.N“&M$I’$éÀª‚à~ÿýwI’š4ib½±qãÆB»åºÜÜÜjÕªÝrË-?üðèÑ£»térÇwüç?ÿQòZ3gÎŒ‹‹›0a‚ümvvöÑ£G…!!!óçÏ/((˜5k–Ö×1ÆSRR²jÕ*GöéÓÇfKAA¢N:ÖÃÃÃ…gÏž­|„ÜÜܲ²²ÔÔÔ„„„|ûí·/¼ðBß¾}÷îÝ+?Ë‘ÜÜÜœœœ™3gÉ[‡:gÎ!D»ví¾ùæ›É“'{xFð‚#Yu×úš$9¼´´Ôú[Gs>._¾Ü·o_Ç/bû* 6BüñÇÖ/]º$„¨_¿~å#üøã7Üpƒå¡#F\¹reܸqË—/9r¤“öËëNÆeÆÅÅÍŸ?_’$SÅŸ‚«g/!8P‘ŽSHQQ‘õ·………vw w)K5iÒ¤Zµj6½ÒgΜB4mÚ´òþ6[î¿ÿ~!ľ}ûœ¿ÐÅ‹…ƒ0*kРAQQQaaa5<9#x ÁÃ8qâ„õ·v§< ×;vƒƒƒccc7mÚd½ñ§Ÿ~2™LmÛ¶µÙùðáÃݺukÓ¦e£\žlÑ¢…óöË1ôôéÓÑÑÑòyþŠe‡üüüˆˆ›ÔèÆÁKŽÆ©S§222|ðA!„ÙlÎÊʲ»›»O=õÔóÏ?o9x~~þòåËÿú׿FFFÚìöâ‹/&$$üðÃòÌè²²²÷ß?88ø¯ý«óö'&&†††®X±¢S§NBˆÜÜÜ¢¢¢ììlùÑ+W®dffÞ~ûíªœ¼à€a4¨wïÞeee¡¡¡vws£cwøðáóæÍ2dȸqãêÖ­ûùçŸXnÓ÷î»ï¾óÎ;Ó¦M=ztãÆSSS'NœݳgϺuëfffîÙ³çí·ßŽB,^¼xìØ±O<ñÄôéÓm^¥Q£F£Fš>}º$I-Z´˜;wnrrò®]»†Þ±cÇ%K–œ8qbÅŠªœ¼à€a$&&&''§§§—””<õÔSuêÔ™:uª*G®S§ÎÆ_zé¥åË—Ÿ?þ®»îúâ‹/,÷¼råÊ… ,#,'L˜ÐªU«÷Þ{oÑ¢E7ÜpC»víÖ¬YóÀÈ_¸pÁÑøË´´4yÈ‚‚‚äää´´´}ûöMš4iâĉ­ZµZ½zu||¼Ö—™È懲‰‰ÉÉÉѺ~%//¯r_ ÜÆõT—Tu>¸¤Fü[Ù¬Y3›‘ˆú4wîܽ{÷¦¥¥iÝEÜx3ñý£ jºråʆ Ú·o¯uC >‚#PÓ¶mÛÚ´i3xð`­õ1Æc3fŒÍÍ]ô))))))IëVÀ+Žƒåþ΀V誀"G(Bp€"G(Bp€"G(Bp€"¬ãøSÅo¹=@]GÀÈ‘Qª´‘ìPÁ0}T|­ÜÜÜœœœ™3gÉ[‡:gÎ!D»ví¾ùæ›É“'kØH¨…àISd$Ñp¤]i^ªê†¥¥¥Öß:š rùòå¾}û:|IÍ¿r_yBB‚£âââæÏŸ/I’ÉTáÂú²‘P Á0Ê€T™Þ4TTTdýmaa¡ÝÝÂÃÃ}¼.^¼(„¨_¿¾£4hPTTTXXX£F ­ µ€cÎË£èÔ‰'¬¿=yò¤ÝÝ|Ù Ü´iS!ÄéÓ§£££å-òüËùùù6©ÑÇ„ZŽ€aPnpêÔ©ŒŒŒ|Pa6›³²²ìîæË^àÄÄÄÐÐÐ+VtêÔI‘››[TT”-?zåÊ•ÌÌÌÛo¿]ÛFB-G ±¦#`PÁÁÁƒ êÝ»wYYYFFFhh¨ÝÝTï^¼xñرcŸxâ‰éÓ§Û<Ô¨Q£Q£FMŸ>]’¤-ZÌ;799y×®]ÇïØ±ã’%KNœ8±bÅ 4>@pÀ0“““ÓÓÓKJJžzê©:uêL:Õ¯[\\|áÂGC*ÓÒÒj×®½lÙ²‚‚‚äää´´´}ûöMš4iâĉ­ZµZ½zu||¼ÖWê0öU“““£u+üJ^^^dd¤Ö­Ð˜ŠBùzRqToQÕùà’ñoudd¤Íc|iîܹ{÷îMKKÓú2¨Ï7ƒß?ª`p @±8å®\¹²aÆöíÛkÝhŒàÕAÚÚ¶m[›6m¬uC 1Æ8‹)2€±Œ3¦N:š¼tRRRRR’ÖÚ#8` –›AZ¡«Ð;Š‚ 8)2åŽP„àèýÔý 8ŽÞj€BG(Bpô‹~j€®Ð[ P„àEŽ€NÑO Ђ#!è­(@ptíÚ555UëVØ—ýÈ#ÜxãµjÕêСÌ3JJJ´nT!8€ëöìÙ³eË­[aŸÙl¾÷Þ{×®]ûÀ¤¤¤T¯^=%%eàÀZ·+€kÝvh2ÀQb`% oÅÅÅBˆêÕ«{ãà%%%ëׯߺuë§Ÿ~ZVV¦õ¹Ú—’’rñâÅíÛ·'$$!¦L™2räÈyóæefföèÑCëÖ*ŽCLLL÷îÝ­·¤¦¦ÊÊsgÏžíÑ£GjjêéÓ§]}niii¯^½úôésõêUëí;vìˆMOOWë ¬_¿¾k×®Ö§üÌ3Ï!¶mÛ¦ÖKÀ9‚#FuèСݻw«r¨&MšH’$IÒ\}îìٳ׬YÓ±cÇëííÛ· MIIÉÏÏ÷¼…%%%ãÆ““¢ÅáÇ…¡¡¡ª\T‰àà:æVpÃÌ™3ãââ&L˜ ›}ôèQ!DHHÈüùó fÍšåù«O›6­ÿþ–-çΛ6mZPPЀ´¾‚1Ž€î0Ѐ‡JJJV­ZåèÑ>}ú¨øZ¹¹¹9993gÎ ’·$&&:tΜ9BˆvíÚ%$$|óÍ7“'OV·‘?þøã¨Q£rssgÍšíå+ŠkŽØÐ¶òîì_Ž¥¥¥Öß:šÅrùòå¾}û:|IÍœÊ}åN†ZÆÅÅÍŸ?_’$“©Â…u»‘GŽyæ™gV®\½nݺnݺ©x:pŽà€ ýý‹ŠŠ¬¿-,,´»[xx¸ºéЉ‹/ !êׯïh‡ Ö¨QÃóF.^¼øé§Ÿ®U«Vzzúˆ#‚ƒI2>ÅåôEó~jåôìĉÖßžÝæ¡F5júôé’$µhÑbîܹÉÉÉ»ví>|xÇŽ—,Yrâĉ+VxÞÈýû÷8p M›6O>ù¤ÍC=ôPïÞ½½p½a‹àÀ½Õ€n%&&&''§§§—””<õÔSuêÔ™:uª^·¸¸øÂ… ކT¦¥¥Õ®]{Ù²eÉÉÉiiiûöí›4iÒĉ[µjµzõêøøxÏÛ››+„Ø¿ÿþýûmºå–[޾aòÙàÙÀ“““£u+üJ^^^dd¤Ö­ðßÄ5%דàè’Ày‹úŒ.©ÿVGFF6kÖlÓ¦Mš¼úܹs÷îÝ›––¦õePŸo#¾TÁà  W®\Ù°aCûöíµn4FpUضm[›6m¬uC 1Æ8°ƒaŽ€3F«5h’’’’’’´¾ÐÁÐ ‚ç,7ƒ´BW5!8@‚#ûäaŽX ÁÐfÆôàEŽb˜#ÀÁŠí1À`G(Bpà ÃG(Bp4ÆGzÓµk×ÔÔT­[a߆ ’’’7nÜ AƒÎ;ýõ×Z·(°Àu{öìÙ²e‹Ö­°oõêÕݺu;räÈСCG}úôé‡zhîܹZ·+€kÝ Hqq±¢zõêÞ8xIIÉúõë·nÝúé§Ÿ–••i}®ö½òÊ+7ÞxãÏ?ÿ.„xõÕWcccSSSŸ|òI­›(¨8¨ócˆ‰‰éÞ½»õ–ÔÔÔ„„U~öìÙ=z¤¦¦ž>}ÚÕç–––öêÕ«OŸ>W¯^µÞ¾cÇŽØØØôôtUZXTT´oß¾|PNBˆš5kvéÒ娱c………ª¼ªDpÀ¨:´{÷nUÕ¤II’$I:pà€«Ï={öš5k:vìb½½}ûö¡¡¡)))ùùùž·0((è¿ÿýï›o¾iÙRRRòË/¿´k×.,,L•‹€*-13€˜9sf\\Ü„ äo³³³=*„ ™?~AAÁ¬Y³<•ààà¶mÛ6iÒD±`Á‚7Þx#11ñäÉ“~ø¡Ö €0ÆSRR²jÕ*GöéÓGÅ×ÊÍÍÍÉÉ™9sfPP¼%11qèСsæÌB´k×.!!á›o¾™ñÄÓ§O·y¨Q£F£Fš>}º$I-Z´˜;wnrrò®]»†Þ±cÇ%K–œ8qÂnW²«lذák¯½&/]Ù£G“Éôý÷ßïܹsüøñíÚµóö•‡,°‚ãÂ… îyäÈ‘°°°–-[Zo¬[·®Ögh‰‰‰ÉÉÉééé%%%O=õT:u¦Nêƒ×-..¾pá‚£!•iiiµk×^¶lYAAArrrZZÚ¾}û&Mš4qâÄV­Z­^½:>>^•fLž<9**ê“O>™5kVµjÕÚ´ióå—_Z÷\ÃÛ"8^ºtéàÁƒ+W®üòË/îñâÅž={¦¥¥iÝv®3™L¯¼òÊ+¯¼bÙ2eÊu_"&&¦r!ðñÇ¿zõêÞ½{í>¥Zµjo½õÖ[o½eÙÒ¡C‡5kÖxãô‡ 6lØ0Õ …"8öîÝûÔ©SÊ÷?r䈦Ü@Àºråʆ zôè¡uC ±€Žo½õ–¼~Á¢E‹¶nÝZåþ‡B° (¼Šñ‚ dÛ¶mmÚ´ŠŒŒ¼ë®»Ž?¾aÆ7þãÿxøá‡•!&&ÆfËÚµkµ>-;vì˜ÖMð‚Èȼ¼·´´´W¯^}úô¹zõªõö;vÄÆÆ¦§§«uΞ=Û£GÔÔÔÓ§O«uL¸„à€Q:th÷îÝž§¤¤dܸqrR´8|ø°"44´Ê§Ïž={Íš5;v ±ÞÞ¾}ûÐÐД””üü|UηI“&’$I’tàÀ/#”#8肃ƒ§M›Ö¿Ë–sçÎM›6-((hÀ€U>}æÌ™qqq&L¿ÍÎÎ>zô¨"$$dþüù³fÍÒú¡Æ8p‡ä/}¿TRR²jÕ*GöéÓÇùÓüñÇQ£FåææÎš5+::Úùι¹¹9993gÎ ’·$&&:tΜ9BˆvíÚ%$$|óÍ7“'OV·‘ÐÁð’`&“–ËH’³¿¥¥¥Öß:š rùòå¾}ûºñGŽyæ™gV®\½nݺnݺUÙ`¹¯ÜÉP˸¸¸ùóçK’dsaÝn$4Dp =G–¢¢"ëo íîîÆY,^¼øé§Ÿ®U«Vzzúˆ#‚ƒ…„‹/ !êׯïh‡ Ö¨QÃóFB[G ãĉÖßžÚ3Ï<#„ضm[•Ï---íÕ«WŸ>}®^½j½}ÇŽ±±±éééj]O U0ªC‡íÞ½Ûóã”””Œ7Na‡B„††VùôÙ³g¯Y³¦cÇŽ!!!ÖÛÛ·oš’’’ŸŸ¯y#¡ ‚#.88xÚ´iýû÷·l9wîÜ´iÓ‚‚‚ PåÓgΜ7aÂùÛììì£G !BBBæÏŸ_PP0kÖ,Í U0Æð"†ýÐDIIɪU«=Ú§OçOÿñÇG•››;kÖ¬èèhç;çæææääÌœ93((HÞ’˜˜8tèÐ9sæ!Úµk—ðÍ7ßLžÝf‡F5júôé’$µhÑbîܹÉÉÉ»ví>|xÇŽ—,Yrâĉ+Vø ‘>ú6‚#à-8S„ù1€·%&&&''§§§—””<õÔSuêÔ™:uªç‡ÍÍÍBìß¿ÿþý6ÝrË-½{÷...¾pá‚£!•iiiµk×^¶lYAAArrrZZÚ¾}û&Mš4qâÄV­Z­^½:>>ÞôÂõ†-“ãRá\LLLNNŽÖ­ð+yyy‘‘‘Z·ÂeºP^½žº=k¯2è[TÏ|pIø·:22²Y³f›6mÒäÕçλwïÞ´´4­/ƒúÜx3ñý£ U¸råʆ Ú·o¯uC 1‚#¨Â¶mÛÚ´i3xð`­1Æc3fŒVkÐ$%%%%%i} =‚#Æ`¹4 ºª¯Ì9"¢|b5À/ ÁŠ ÁЍŒù1௎€úvJ5À¿ ÁŠ Á€ú˜~‰àÄÕ«WƒƒƒM5jÔHëv9Ôµk×ÔÔT­[p‚µnào˜R ÀˆòòòJKK;uêeÙX«V-­Ûeßž={¶lÙÒ½{w­pŽCqq±¢zõêÞ8xnn®bÊ”)zNc%%%ëׯߺuë§Ÿ~ZVV¦us]ÕCLLŒMªKMMMHHPåàrp¼å–[Üxniii¯^½úôésõêUëí;vìˆMOOWë œ={¶G©©©§OŸVë˜p Á£:tèÐîÝ»U9TnnnhhhíÚµ—-[–žž¾yóf¹À©Äìٳ׬YÓ±cÇëííÛ· MIIÉÏÏW¥‘Mš4‘$I’¤¨z!¡Á€W0±0–ÜÜÜjÕªÝrË-?üðèÑ£»térÇwüç?ÿQòÜ™3gÆÅÅM˜0Aþ6;;ûèÑ£BˆùóçÌš5Këóƒ:〿)))Yµj•£GûôéSycnnnYYYjjê€BBB¾ýöÛ^x¡oß¾{÷î wòZ¹¹¹9993gÎ ’·$&&:tΜ9BˆvíÚ%$$|óÍ7“'Oö¼‘ÐÁPSª? a±¼Ê? ¥¥¥Öß:š rùòå¾}û:|ÉÎëüøã7ÜpCýúõåoGŒqåÊ•qãÆ-_¾|äÈ‘Nš$÷•;j7þ|I’L¦ —ÖFBsG*Ðs`)**²þ¶°°Ðînááᮯˆˆ›-÷ß¿bß¾}ΟxñâE!„%qVÖ Aƒ¢¢¢ÂÂÂ5jxØHhŽà€aœ8qÂúÛ“'OÚÝÍÕ^àÇgddtëÖ­M›6–—.]B´hÑÂy“š6m*„8}úttt´¼Ež¿bÙ!???""Â&5ºÑHèÁ€·HôÝj;uêTFFƃ>(„0›ÍYYYvwsµ8,,ìÅ_LHHøá‡ä™Ñeeeï¿ÿ~ppð_ÿúWçMJLL ]±bE§N„¹¹¹EEEÙÙÙò£W®\ÉÌ̼ýöÛ=o$ô€à€a4¨wïÞeee¡¡¡vwsµ¸qãÆ©©©'NŒŽŽîÙ³gݺu333÷ìÙóöÛoÇÆÆ !/^>^ë+u˜ûª‹‰‰ÉÉÉѺ~%///22RëV(bˆžY_^OC\Ïè-j>¸¤Fü[Ù¬Y³M›6iòêsçÎÝ»woZZšÖ—A}n¼ŒøþQ €ª  ]¹reÆ í۷׺!ÐÁ€qÿÀ?lÛ¶­M›6ƒÖº!Ðc0†1cÆÔ©SG“—NJJJJJÒú@{GŒÁr3h@+tU@‚#!8ê`J5Àï1ÆÐ “©ŠùÇ]u•€ß 8³äÅ*s¡ò=ð‚# 9*O–=]}"ª 8ð0ùÉO$>|ŒàøšÉ¤Î=â‰#8*P8ùÃ!Ïõœ™}Љ‰Ñº €Áñj¶“$‰Ò#à’œœ­›à;yyy‘‘‘Z·þ€u_ðAEP’$K|Àô?üðÃÜÜ\­[¨Ì—ýÈdG€÷è+8~öÙgÉÉÉýû÷_¸pá¹sç´n ß>$;¼D_Áñé§ŸnÚ´éÞ½{ß|óÍ.]ºŒ3&33³¸¸XëvnÒjΊ³£ú¨{÷î=öØŠ+JKKµn#`ŸR£ŒìP‘¾ºªmœ?þ‡~X»ví¶mÛJJJ„5 Ù¹sçÎ;çÌ™3wîÜ›nºIëfè'5Ê賨EÁñÌ™3ßÿ}ffæÎ;å²bÆ ï¿ÿþ^½zÅÇÇ !¶nÝ:cÆŒ½{÷¾ñÆsæÌѺ½ÀuúŒhdG€*ô-Z”™™¹{÷î²²2!Dýúõ{ôèѳgÏ:Yvëܹs||üwÞ¹k×.­› \§çp¦‡ìÈÀèô§N*„¨[·îý÷ßß³gÏÄÄDë¼h-,,ì†n ŸPNÙ`hú Žýû÷ïÕ«×]wÝå(/Z£Ü=°”Ð ‘Éäìh6›µnÀô5«zÍš5Û¶ms”Ÿ}öÙ=zhÝFÀC¤F<¤¯ŠcAAÁÕ«W=täÈq„+5Òa p›öÁqãÆcÆŒ±|»`Á‚E‹UÞ­¬¬L’¤›o¾Yëö†g6›5»"ócÀÈ´ŽAAAuêÔ‘¿>þ|õêÕkÔ¨awϺuë¾üòËZ·°eÄêuG€´Ž;wÞ¾}»üuLLÌ Aƒ^}õU­(b2™Ù 0´ŽÖFŽÙ¡C­[(fä’EG€«ô'L˜ u¥ü ÜHv¸DãàøÅ_!î¼óÎèèhË·Î 2DÛ6¢|&µIëfxŽìPNãà8eÊ!Djjªåo#8†ÆÄj0.ƒã³Ï>+„øË_þ"ûâ‹/j}A€ªùY‰Ž¢#@!ƒã3Ïú¨â»ï¾BL›6­{÷î‡zàþïÿþ¯{÷îZ7Š‚ Àé+8sæLÆ µnüå´*©^t”èýãÐ]p<{öì¬Y³–/_^XX(„xüñÇï¾ûî~ýúµmÛvÚ´iõêÕÓº@ £Ã–Ž–ãB\½zuìØ± .¬S§N¿~ý,Û7n¼aÆAƒÉiðÂÎé+8¦§§geeÝsÏ=k×®}çw,Û—.]Ú§OŸC‡-X°@ë6" Ñ©*c=pLú Ž;wî zûí·kÔ¨a½=((è7Þ¨Q£Fff¦Öm„¢Ü@•ô÷ïßiwL­Zµ¢¢¢>¬uAÑ’¾‚cxxøåË—=zþüùÚµkkÝF*ãÆƒ`ú ޱ±±'Ož´{Ϙýû÷?~¼M›6Z·~ˆ~j÷Pt€@£¯àøÈ#˜L¦¿ÿýïûöí³Þ¾oß¾ñãÇ !úöí«u”¾Öq¼û|òÉ9sæ<ôÐCQQQBˆuëÖmݺõÿû_YYY¿~ýzôè¡uáo”—™R]k:@@ÑWpB¼øâ‹ñññï¾û®ÙlB?~\ѨQ£””ë•àcº ŽBˆ¤¤¤¤¤¤óçÏ›Íæââ⨨¨&MšhÝ(ø'ªežS¥èÈÀôeõêՋ׺¸FãàøÅ_¸ú”!C†hÛf6éBãà8eÊWŸBp„ZÈ:¸Dãà(/²cmÿþý™™™AAA;wnÙ²ePPP^^Þ¦M›JJJnºé¦W_}UÛ#`1Ï9ŠŽ4ŽcÆŒ±þöÈ‘# .Œ‰‰ùä“Oš7onÙ~üøñgžyæ×_]¹råý÷߯m›áH9zÃüÐ?}->kÖ¬³gÏΜ9Ó:5 !š6múÏþSñÝwß9sFëf°ƒÉ€ßÓWpܳgODDD‹-*?Ô¼ysy;U"Mèk9žóçÏ—••9ª[\ºt©^½z5Òº™0<ú©½„‘ŽàßôUq¼í¶Û.]ºôã?V~hóæÍçÏŸoÛ¶­ÖmPú ޽zõBL˜0aÍš5ÖE‹ï¾ûîÅ_´ìx‚’˜Wy2ÒQžÐ-}uU÷ïßóæÍ«W¯?~|£F¢¢¢L&“ÙlÎÏÏBôîÝ»ÿþZ·ˆÙ¾½G!ć~Ø©S§>úèôéÓ§OŸ–7ÞtÓMÏ>ûl¿~ý´n r£0Òü•î‚cµjÕ8`À€ßÿ=///88¸eË–LˆМÌd2Ýxã7Þx£Ö àŠŽà—ô59ð*¢Œþ1?ôL§G@L×3Œdrœg$fÎØCÑüÁ¸¦r4”aù”jÉÕ'àgŽŽª_–ØçvÚ«üDë(È!’¢#ø‚#”çyÑ ëc"~ƒàˆ€`©{y5/ÚU9DT|t£è(±â:èÁB¡­|Ф¯Ã+ª 8Âÿé!2Z³´Do óÖù2ÒüÁþìZmÏ$ÜN-^í3µ.@ú}|ø‚#ü“u3é{Ié@ˆÀ?áol˜QòJ ÄG€ÑáWLÂdèÔåÇñÑnÑÑä¸l’ä1Z·`…à?áOaË/ã£É$„l’¢“\hB’ì'KÒ$h…àà¨Ðh”~j»ü >ZÇ>ùçàòšŽöö­|X€oal^ÍUzX†Ú ”-ÁÎK©Îú°Þ~-€5‚# ÌXqÊ’ô_zT’á”O¯VxÿË‘HàGU•©ÑÐýÔ•é¹çZmÚ^l$øÁÑkLÊÖäÃÍuú O¾¡·žk7"£·×t´Iü†€ŠŽÞ¤ä#KI¾ä£ÏŠÂÌägåFrϵ¶ÙQÿ±¬|:ŽÞÛ BpÔš'á2ð> 5OKú¡á¨GcE1â#¨ˆàhŽ>î*J¿þ`ôqjÔÔjç|ßm­VüRØ[­p~Œ²WT³ý°ŽFVùУ¤KñÈ¿û©mø¦ôè‘‹ø"8ú—*£¤1?-£"£è¡vÂÛ¥G“nýçí)2N_úÚI £þB€fªiÝx™$UøÏdºþŸA˜„ÉœgÖº`)=ªH~§øeº²þ…(Dp 0ŽB¤^?<ݨ¢T?µ 9;ªåÈè½k)}vq´Á᱕ÑUÀlþnÌj7¨Òm­Ÿn\çÇ8{IG§ zFpD9ÝØ½è£V¹QÿSªód¡G_öMk8Ò±RK|}î`DGØSùöm§!’Z£çÜÈŽTÝ(=€sG8¥E’Ô¨—VêѪئŸ¢cy{´¼ sG(æ“2¤'©QWùC'y$'Ù ôvá:¯•!©5z‰“nk=Ä#çEGß̱תkׇìGx¦rÒÝYR£WÙÍŽ¤¢*QzkG¨Ä³éyjT±ŸÚèSª±ÉŽºJzéX±mBèìr€VŽP›ë ’Z£Ï\›.)„NCš~É¥G.€Gp„×(K¤F“„d2 !é®®ªç¢cy é¶è¸å ¼Ïæ&‡VÔJ:ºb2 ³9Ï7¶öy~Œp‹BŽàªxlj¾gÝÙªÃ쨇»W+k'Ù@€¢«>w½4hR¥çr£v¯´'w& p y˜ŽÐƵ¼"îêià˜î†þ©rRŽ#ÙÑmdGˆ®jhÀ6©TìÂÖºuþ¦Êp£«>k£ôV—·–÷,€ÀBž氾e3 [Y%‡~jç–Äô_wÔêþ1U7ìÚ*‘¼ *Žð)E鄤J\êHÕOÝÑXEG™Ùœg´&€;¨8B¯¬ ‘B/# Äáw–ì¨çÒ£n1ä@  âßq³3T’òÌf»ÕGú©q;ÁÈKnj^z4bÑQ°L€@Å>âé:Ë ƒ­¿U¿‘þPjó¼î¥Ï!ºæX¡‘Ü]€_#8ÂTK!•ocˆŠÔê-Õ<;êÿ„Ž[.„z?кªaLRù½–IVÔ +zè³6.º­ø%‚#¼Î‹…+æ_{™¶ÙÑ #­ÚÏ»€¿!8»|ÑÝ)ÇÇ€_‹ÙK}£Ô=AvàgŽð"ï¥Fû£ß8>zuD†ÙѦè(Ï1²#Bp„ßq7>êƮÖ{uGOø ‚#¼Eãõ\¦úè³Ù»ZeG£t,? ¿'Gx…WS£ «´ø{|ôñš/Ô=AvàŽ~:ùZ“•5ÉŽþQtdGÆGp„úôRn´á_“¯5\_Zã5z 8?¦BûÉŽŒŒà•éðVu¶Œ5¿+‰ï³£ßÙ€‘¡&¤F‹ŠñÑ@Sª5O2Æ;z‚ìÀ Ž0õo^l‰pÙѼïÁª1R¹Ñ†FÐy­“r£…/³£¥·ÚèíÎHÿï8¨€àu85Zè~ì£ÞR£Œº£'ôýŽ[G†úýÔvé5>ê35Ê|–ýiŠŒÕIQz`G¨ÀèåF;3ctõœeÔ=Dv`GxÊè©Ñ}ÄGý§F™o²£_ËOì@ïŽ0õSÛ¥øh¾ë³ö—ù1¶çEv oGxÄŸË64‰f”r£…²£Ù€¾Wø¶ôh¸Ô(c¼£‡ÈŽt‹à÷ù¬Ü¥Y?ue¾ê¹6hj”y;;êèýà­$;Ð#‚#Üä7ÔnÞlÐËñÑЩQæõº£wW€^kÝÀÈ,·œ±|­ UªÈHEçæy;äìè¥`H’äßÁQþ‡‰ŽÞV@Åîñe¹Ñd2™Íf­ÏØ)µ«Êâ‚Éñ’óÿòòÌUîãôø.œ&ã=A‡5½¡â—ùM'µÊTª>:H•ヷÎoRþ¯Öµ\§É'¨;Ђ# *Ïâ£UD°Ifz vÛãë6KB˜ R‘è]ÕpËÞ®'¹93¦Jît^[º€ív7‚ÃÎnIïuXÂ$ú¬èGÀk,ÕGgÙפò«>ÿŠßØ Žô›ÓôêŽô€à0ºÑ–bÑõÏ|;ù)2$*¼…T ‘òdü{¤cù™Âû€®¡”ïS£ÿ¤É&*ÙžTफ‰2Ö'ìðÊ(8``ÍÙ&;Ðco«¸JŽIØŒV ´`o»k¹rL¿¾{u¥“e¼#ÍPq„"”Ý8ƒò/*ž…N× ÷)Ç ô¨S†ô{Ôh…àˆÀå)ÕÊâNy|4ùÿ]—\€ªw¬<$ÔÙ• œ‘ŽåçKv ‚#ªÆœeä|ãÂ…2 I’—© ÈÏÅ ƒ»– ـc?çž1TéÈÍ4Sañ@í¹vñ¦2ö¤d@`EGAvàsGTr£c.— ànÝäudG¾Ä¬j8CjtÀúæ.n=ßî'½;÷›ñöæY+~êõŸ‚IS@M¯¾~˜g ÀWŽÐßô6º;3ÆÓÈ(ªÈ`‰ÄƒìhuŒ€[ÕÑêäî-@G8D¹±""£ ¯ôèIv´ ŒRyÑÑåÅ ŽìÀã8§ò(:†£ÞÀG·Æ;:>˜6’ñ޼Š#ìӪܨ³Y±¦Š£è˜4i’ݧ\ºtéâÅ‹={öLKKÓºùD‹~jwW×K|ôÇ€àRÑQªôuñîÕÖH?¹˜dGêòÿ1ŽK—.-++?~¼œ…/¿ürxxøš5kÊÊÊì>åÈ‘#B›rc r£IéúpF/¿–Ï>³ýwࣗ;Ú{ÁëÃýáz2Ø€Šü?8îÚµ«Zµj÷Þ{¯eKPPP×®]Ïž=ûóÏ?Û}ÊáÇ…-Z´Ðºíðëåý¼üJ>®ôøïŠÝTÆÍ»WûÕük²#µøyp”$)77·~ýúõë×·ÞÞºuk!ÄÑ£Gí>KŽ'Ož6lXBBÂ=÷Ü3f̘ÿþ÷¿ZŸwi[nôU?µ_ôM;ç§ñÑçuG«Wö‹øHv  ?ãXPPPZZZyRKxx¸âܹsvŸ%Ê>ú(22ò®»î:~üø† 6nÜøüãá‡VøÒ111Öß®]»Vë‹Q•H‘——§áë;yõcÇŽyzr‘QBˆ¼<³y"2Ògi6kwEÍf!D¤É”g6W~Ðóë©Í9 ³)ÒdÎ3;ÝG˜"#ͯ»Ùl6™Lf³Y¸Ï,„ˆŒ4‰kï"[†¸¤f³0™"Íf-Í•3Ä%5®§‡xà­› ~ …5kÖ´Ù^«V-!ÄÅ‹í>ëäÉ“aaa)))Æ “·lݺuôèÑo¿ývçÎ#""”¼tNNŽÖgï‚kåÆH^]A¹12Ò“Æ]+4ZŽáÙÑ”œ‘ÜI­Ñµ¤Hs®½}¼uBB2EV]·{vjœ²ü.²?{Æ—T’„Éi”¹2†¸¤ÂõôDåÏt›òPàðó®êºuëšL¦‚‚›íþù§(¯;VöùçŸgeeYR£¢S§N=öXaaáºuë´>'¸ÄvŒúªõ5‰Õ÷=×&ïþ'™$‡:» ît´0Cw^Óg À~ƒƒƒÃÃÃ+W/]º$„°Ì³VâÎ;ïB«ZñÒK/½ûî»ûÛߺtérøðáíÛ··mÛö©§ž²ì³qãÆ^x!:::##CñÆoŒ9òõ×__¼xqTTÔñãdz²²jÔ¨1mÚ4'··6"Í˪öSW½*u]n¬òÌy×çWšŒ}‡=»÷$”ÿ¬]» ¡Ý½LUîf¤[rOB.ñÿŠ£bĈ|ðAddäêÕ«Ï;7tèÐ T^ÜÑâÖ[oýúë¯ûöí{æÌ™ÌÌÌ‹/öíÛ7##£cÇŽZŸ ìҾШÇ^'Ek. |Ô%_¯ n¯0Y©$i˜ê£Áþ|Ê7·ë,1119ê/GØÒ¼Ü(Wóòò¯@æBdô^ºÔKp´þøwÜû×ÓÁŠFaó~vþ³V}JV…KjÂ$aˆê£^ÞÃåœþÖÃe\OÕÅÄÄkÁfµøW5tKo]ŒhÔøWYX¬š|†vû¬µjJ¦Š›tÐ@û­¦Ï€Ç¥—XOÎ@=|kóY«VX¬ÌÈñÑ:;JNÿUáÚHG›U÷~vž·”ì *Ç@¤‡ÔèÙǶ;…Fo'}ú)ëËÀa‰F :ª;:n¢âÚÓ¤»J$Ù€sGŽ.º§}zº2ߟ´eÒ„¡r„ÂìèÓ¢£Ýf !$«Â¹‘‘µŒìÀ1‚cÀÑ{=ÆyÛ…ÐOjô†yÑš1{®-ÙQ÷ÿȰZ¸Çæòê¸G@ #8BnUzô•¼•u’m0>–¯Ñ㬵Z­+„í¿‹¬åówEGŽ‹AË‘‘Q:KRjÓg^´a´RyO°A8^6ÜòËdGvÄà02“¦¼<³çGQñPµÔÊ tëŸ(Œ³`´óµÁÝ„P–eÃ?Xùvˆ^j ƒ¨„à@tRnt¥sФÃ<¥Bj4b^´f¹ÙŒîcEù ceG¡è–3> ‘dG6誆nékP£:'$óÓ2ÎÀG¬Ñc·ÕB(æÍ‘ôY°Fp FûàÔijtçÔÏò¢ ƒ |tžu3KÆ^Ã…pm=/ ˆ$;° 8§|<«¿æŽZ!ÔåÏN}-äM:^ñQº>(ÀˆuGËI—ßOª–!ÉŽdÇ€`œÏK…K©Ñ¿KŒŽ¡çÚIvÔqÑѪùB¸ùÏ‘ÊeH×O”ì@áKU}0ë75*>C!„áOÂ#ºF®;–Ÿî¿Õ<ëÈ&; 8B't«ø° Ì£úøè(;¡èhuBxô/w;²ÉŽ@€c9ÿg„úŠaS£¡WÕñ6Ý,ÙSy]DÉÁ=º\šÇù™)X¸Gáa$¥kú°FȨ8ÂGÔr¼Þ¹ë­LJ¯´:î¹6~ŸµÕ©¡Î;RñPHêŽ@À"8ú9}4êºÐx­‰•?‰Œ®Òk|´› Õa]ñl„PíÝ©`($ÙLGhÅh©‘ŒÒ4>JÞp~Tw´œ¨Pó—ËéPH²#€ãèÏôó‰X©„c€ÔX¡± dT‹åv…ºQy¼£ÑF:Ú;'¯ÜÐÎPHý0xÁ¾ç»ÔèÉ+™LBV‘*Òͼ™kÍñÏìèø(l¤$ôó“àutUû-½–Qk¼– ÐRÃòyϵäôÍçw}Ö–“^–ké³6ñ+ *Žð%#¤FSù°-Ý·ÔXz®uP³²©;¿èhufÞ«>–¿‚$ “Pº ã¢âèŸtY;Ñ}j´ÔeøØó1ÝL»öÓºcùÉ áÕE*Ì•a2à§Žð.“É$]*¨WV¦ÌÕŒ>â£uv4ìÒ””õEëžkKvôÇëŠ'*„êñÑÙÚà$HÀÈŽð“§™8þp$5ê”ÚñQre¼m`ÔËÏUuÇ"W}_$`@G¿¢›9“il?é˜64íª×²£Ÿ­NWÕ_¥÷$´I~™##8Bu:›@­à£ˆr£1h/; œk÷³¶zñH©«?$d̪öú(7ê)5Vœ1íp/R£±x¼f¸C(*ß“Ðß©9íÚå—$„$òÌyLÄtˆŠ#Tt=5ê¢6£àõIF¥Á %!éãí;ªU-?.×.ƒ ý¡âè'tPnÔM­Ñ¤Ÿ¦À˼¹è£ƒôËe«8iµªîÿ¬X Ð ‚#TQ!ªiV•1¹_)7ú ×{®=œð`ÝÖ2u⣧9Ÿ h®jxN>×;ÓH~Ň=×rÑÑ$i^ãׄ ×®M—qÞA/6àkTý¦ýÔZ§Fe3`<ž7£øu$a ̺㵠àaõQÍñ’º3yTŠ#z¥îX¹Q‚$ *Žp•FÙMÙR;Îw¡ÜмP}´,ëhÎ3Sz,çrõÑGkqRƒÔ@p40-Ê΂™·ú©M"2*ÒóyÓ¤Fa=\ÐQT\œìhŵøè“Ùð›F‚ÜBp„rZÔMåw­õð0¤FXóÚØG²cE.ÄGŸßˆ¥|w0ÆÑ¨|^n¬"5ª_ntcMo/Á%–w¬gÿ°°Ì°¾öm /ÓS™ c½>ä±ÊVÝF  Qq„¾dj¯éM¹NHB˜<®>šÍfë{XSw´GiqÏ×uG›Ò… 8EÅUª:5ªYnT;£’¡ˆÚë>Z²#¥ÇŠU%I˜L‘šýæ2pŒŠ£!ù°#̇µFeó¦];$©.ñ`ì£õ,™k[„DéѪ«fsž6uÇÊͤ X!8 ߦFÏú¦à·Ùέv7>VÎŽ‚nkgªˆšõY;j)  «Úˆ|UnTšÄ<í§öàæU5Œr#<àVçµÍD™k™.㌳ÎkKvÔËï2½ØxGØå«ú×^‡Ô—8¼‹ŒJcòX‡ñÑòÐ×o´M‚ÔUÛo¢«Ú`|R·p!͹_nôˆF«Véì3FgÝy]Uï©ÝkÁGEv^ë¨ÛÚI“õÙB@UTaÃûµF/üŽðëu…³¤ÝëkÑm]5Iiû—B›%]h²‚.lø?*ŽFâýÏט;åFUhtÐ*½~´@ß\¸ý ‚Ù3ŽêŽ‚é2Êäå™+Wõ[w¼ÞDjðsGXx¹lç;éë/Bj„Ïx²väno­ÏAÿl;¯}zWkÏN‚„ß¡«Ú0¼\nô~jôÚá-Ç&5ÂC’oUIBDÚë¼vÒa-ÊgÉÐm­L…©3:.ã¼í‚^lø *ŽîÅ:¥ýÔ>)4ÚÊ3›í–œtX_ÛnkT¨> ÛÚnó©AÂà¨8Â'Å@œ†QÊÐ7wŠŽ×ŸlµvOù·Î뎂•z\v½ú(IBÅÛúú 5HÁѼ֟åæGdÕåF_­m&Ÿ©:Riòµ’ì(è¶v͵ %_Z¡ŸÂÝ9 $Œ„àȼ·Ž¢Oÿü‘¡S6È*wg¥wÈÜÓ;Xi}å_ ¡{Œq4ï|–¸îœý…ÖbD£?- K.¬Ë£èp’œmL $³­Ý%•y4ø¥c$tŠ#ÔÃ$À‘òìhéau¸#ÝÖî’‡< !$ÉøŒ¨AB¯¨8êaÊZü¡6þ‡tJ墣尒t}>0³­½ |mM?*ÙQƒ„ÎPq @jÇ-_̓±}Yb# ¨ÂD§·.d¶µÛ*ζÖè/”úgUþ5HhŠàh ?ùãA‚„ŽÃÓ U¡ÜHjCðEѱâV!ìÇGJn“Kå—Ó&jùËŬœ ýèä 7GýRõCB½?­ÿÞ²j#üƒÃUÁ÷_³Ð£{¬º­¯oBhÿçLýSµúš2$¼ƒà¨¾œƒumTH×>á´.4ZR£Ö A ð^ÑQ8¿¡ƒþkº­ÝS±Ûúúf!„ß&¬ŠeÈHégç­°N©WWPµÖ¨Ôø 9;:ßãúò=¦k‘‘ÅzÜã`$›oüŽ$„$òÌy,èUPqôoêd=“É$i]à°NZ'X¯…óº£ÕN×¾¸>U˜Ò£;”¯=(„ðÃþk›ó~[c…oõH¥r£Jv:ø+I­~LQv,ßUQ^z”ï‘B|t™½Q×Bøy¶b2 <@W53 a&¡ìóÌ{­0 ³9Oëk€æ¥ÉTx‰*û¬+î}ý)&¹öH¤k,C=îçý×6gÉi Gåq¹ÑTéÞú@?5ü• uG«ç\û“É$Qzt™ÓÒãµ]„~^€´9³8Wx‚Š£î¨ÑO­ZjtùcLõ«Á„胊ŽÂÕº£Í3¯õ[Wqlبªôxm¯€(@Ú=×8c¸„Š£ÿñ,5ê`Dãõ¶xÜ©;Z?Y“dºö?üþ(¦ ôxmG!D åXöõÅãr£Ç©ÑêÙÚ–í¦Fú©¡!oO¯¾þBždGËmf,ñQ q:áÚvßò/&O1ŸåŽþDÍÔ¨ñ™PkD`ó0; «ø( Éî}h`—âÒãµÝË¿ÐSgWQ† xGñ¬ÜèAî³÷OÃr££Ô¨§d‹å³¢£P#; Ëf, ±’ p|ÏpgOB\’¢ ŽþÁ³Ô¨§ßsj€…ZÙQˆkëõH6 ‰ ¤C®ô\_Rùš ïÔÁѸýw­hUn$5Bÿ|Yt*eGa¯•IʸØs}ýyå_L¶£S·Ùã#8ê…z7§VúzzûMvžõ×^.ƒfGaé¹¶^î±ÒÍ }uZ†áVÏõõg !´ g· `×À/έÏ/§OÒ¤ÜH­pBÝì(,=×Ö$A:ãVÏõõg— RЗíWŽºàn¹ÑõÔXU·‰>ScTd$a +>.: U³£¨2> QaElBd9w{®¯ ü‹NOôeÁѸÜJúûå¤ÖƒÒ*; ë9.žž‚ƒø(*&#ÊV<ë¹¾~˜ò/H/ƒÄ+a,Gí¹UnôJjô}¹‘Ô¸Dþ U÷WÕY|,Õk_ Ë© ÒÎI"õ{U‘‹©ÑdìZ£Is^žÖìðÍ ¬í¼®Û·´vv.’.7Rk<¡îÇ뇭²úXþò×¾ ©fõñÚñÊ¿ìdåS§©T5æb?uÀ¥F]–Jë´*:Šòì¨zéQ(¬>–7¶¨eHËePñÔ í_*‘š¢âè§t¼è,µFøI“Fÿ½1äÑê¼”UË›rýë.Cz<íÚþQË¿ iï˜?/ â¨%o•Måÿ&Sx\–]J”aæ¼< ÞòxýàÊ«V ä¡Þ‰×^ªü‹k62RhýÆÔŠ‘î"8jCY?µS£ïΔZ#ŒN²£ðÕ?Ýï¿®Øâë_›LBˆÈÊÛý…㣰¼óòò"#)C:à¤)¸Z¶˜UmdÜÆŸ(òŒB7^Dó]À?xo¡G;¯e5ùÚ…ù×Ú-$)Ïlöïå!µ˜wÎÄceœLÓæ‚5¡N¹ÑÅ5w*<Õ'©Qþ³èúÅ!5Âð4\ܶ%’äûøèòò=NOÀ¿×·99Ÿ½,!ÒŽrd "8ꓲԨWtOúÉŽÂ*>úðôÕ+@Z†‡Hí¾$DºHr¿jããèk ÊNS¡Ç·„ñv¹Ñ“Ô¨ï< ¸Fƒ+´Ç'“f*^ h„'ƒ +Ìõ¯mr–‘ÿÙêåÕ«~}«¯™u ûŽzSUjôì÷׫©Q£¿t€~é0; !|…W¤¨ôGÇ/&h[O Ñè<˜u ûŽºbìÔèá±uõù ¨EoÙQh…·dùé]ÿÚàÅÈÊ«it,ˆëŽ>å´ŸšÔø'fG¡i|¾IÂi1R)Gê&A^{q«¯)F‚£îy<¨Ñ»­£{P@ŸÙQh…ÏdùÙVøÖ€9Rg RPŒ @Gßq§Ü¨ÒG—ÊjÍžÖç* .ÝfG¡ƒø(*'ÈHo&ÈòÓ®ð­¡r¤þäµVX}M1Ò?õÀx©QÅB£n?JÕIúîBÐC|å 2//ÏéýdÅó¯ðmåEqôÍ5Jg RTu?¡×ßTàè#ŽËö‚“zŸ-^Jj’Ôˆ@#¿áõüÎ×I|öz±…ÏB¤°—¿ô]’Ôq‚¼ÖœJ[(I €kËAjTiqQÕS£ÛwT|ò@@ÐÕòàö[èÛ[ÎTÑ«µ¿­þöyìW ·Y„\OK‘g•tç·öÓi£AÅQCŽS£*G÷BjÔÙ¿_Óy·õµFZU…ÖÈkm°º`ÚT"­®Ží»MÃNÿ Eê EU´·ÒJ’zDÅÑìõS)5ª[hTû\£’ŒPzåÕGKR5Èk ÓI%ÒêJÙùO…I³9Ï8•H‹*K’z?¿DÅQT­<¨˜½´Ú©°0DéñZSËÿèa¤mÛôS‰´m™î “Ž–H×ÓÏÓ~Ãímdί½®êr£ª1J­Ôè½I€ ýϘ±m°þº°+4ÏAˆzÈ‘ÂÁVGÕ?/_[ÆÈë-­´Å¤l7¸‰àè{zO^]ÓÛ@€¨ôx­Á 6uÂ&)ê1G^kŠƒ–ø0PúËÍ&ì gŽÞU©ÜhœÔîžÿÉövdTïtÿd)= Cý²XÿåÑmòZ«Œ’#¯·I›@iäÅÑퟃíJ—}©bjÔS¡ÑÛw¤Ð(gÐøx­ñF(C^o˜Ó)ô%¯µÌµ@)<úoÌÅÑ™ƒí&ן(Ž>ã•Ôèy¡Ñ7›&5n°ŽÂ€¿DvËBÇ!RØ‹‰vçhë7M ‡Íóòò"«œD­øG£dÂŽΊNÑñC–Sm­u#µApô"«~jo¥F·ÿûæÖ-™úaùõ1ôo“£)ô#…ƒŒh¼4y­‰UµÐƒd©¿¹ãÞc9‡­[¢ ‚£©z#Aáî\”U=WB¿yýD*þõ1V޼ÖHÅiR"P^o«ÇÉÒê zš;5±¸CË–-8p`\\ÜÝwßýꫯž?Þ¥§Û–Uº‘ ¼ú®¼¯‹O¼¾Ž··«ŒêÝ4ñšxÀ‹-<\OÕùì’Ú] ÙФŠ,kŒGEEéj±ñªOÄþòß’ÉÎ à,T®Î[T’ªþÏääŒM’¨ø_UO‚Qq´oÆŒ³gÏ®Y³fBBÂáÇ¿úê«ß~ûmÁ‚aaa.É*5zÆ*£å¢ÊøŒÍb v·‘åO\LLLNNލT’´ÙMÿœT«ÌŽFªV^o´+m¶ÌÁwøxG3ÎÁPq´#''ç³Ï>kÒ¤ÉÚµk?ûì³ÌÌÌaÆeggðÁ.IÔèR•ÑúßjÖÿô“wªŒrrS6? ÙcrLëöºrjU•ïLÎËwz¸Ë¢§— Šk`g[Åš¥Â D SEG;–.]ZVV6~üøÆË[^~ùåððð5kÖ”••)9‚I˜$!„É£Ôhù;è<2Úüzø&,ŠJy‘ÈèA€ÜÜWrÌT­ÛîÊi*êV1æôˬ©ð™„tí?Åa\ÁŠàhÇ®]»ªU«vï½÷Z¶uíÚõìÙ³?ÿü³’#\K.æ)›¿n–¿ƒ÷q–½º£ÍäE@ÿ${ÿ™œþgtRUªL–FŒ›Uf§Ö1­Ý.gúAáSi·›5ü§õ9i†1޶$IÊÍÍ­_¿~ýúõ­··nÝZqôèÑ:8?‚IRåÛSÛìcÿÏmF´×<õOYÉïzàþŠ~Çù¯³Zþºý£áîz§"Õ‡uzc¥ž³£ÖפÊë «ñ+)(((--­[·®Íöððp!ĹsçCªj8¯ûп”­¼ý5ÿ‰ ØßQïàzªÎo.©Z‹›rrºžºý÷‚".]¢]þ›àXYaa¡¢fÍš6ÛkÕª%„¸xñb•G0Þï‡ß4úÑÉG[uëÖ5™L6ÛÿüóOQ^w@G[ÁÁÁááá•+‹—.]BXæY‚£Mš49{ö¬œ-òòò䇴n€6ŽvtïÞ½´´tÓ¦M–-’$mܸ±^½zqqqZ·@G;X­Zµ?þX×(„øì³ÏΜ9Ó¿ÿ­[  “îøéKóæÍ{÷Ýw›6mÚ¥K—Çoß¾=66vÞ¼y•—éG‡V®\¹bÅŠììì›nºéÎ;ï?~¼¼"@`"8@Æ8@‚#!8@‚#!8@‚#!8@‘`­à?–-[¶téÒÜÜÜ5jÜsÏ=/½ôR½zõ´n”¸zÝ ðË/¿Øllذá–-[´>c0›Í={ö\ºtéí·ß®u[ŒDùuã-ê¶ÂÂÂ%K–,_¾üرcµk×nݺõˆ#î¾ûn­Û¥wn\7Þ¥î¹páBZZÚîÝ»;Ö¨Q£Ûn»íÙgŸŠŠÒº]>EpTÇŒ3fÏž]³fÍ„„„ÇõÕW¿ýöÛ‚ ´nš®¹qÝŽ9Ö²eKëÜ R¹… jÝCR~Ýx‹º§¤¤døðáYYYáááwÝuו+WvìØ±yóæçž{nܸqZ·N¿Ü»n¼KÝpéÒ¥|ðôéÓÑÑÑIII'Ož\½zõwß}·dÉ’Ûn»MëÖù8pàÖ[oíÒ¥Ëï¿ÿ.oyóÍ7[·n=eÊ­›¦kn\·‹/¶nÝúùçŸ×ºíÆsñâÅ]»v½ñÆ­[·nݺuVV–Ö-2W¯oQ·}ñÅ­[·~ôÑG ä-¼óÎ;Û´ió믿jÝ:ýrãºñ.uü 5}útË–¯¾úªuëÖ<òˆÖMó)Æ8ª`éÒ¥eeeãÇoܸ±¼åå—__³fMYY™Ö­Ó/7®Û‘#G„6ÿJ†½{÷2dÈ—_~©uC ÆÕëÆ[Ômk×®B¼öÚk–‡èèèÑ£G—––Òê„×w©{¶mÛ6fÌË–‡zèÆoÜ·o_ii©Ö­óºªU°k×®jÕªÝ{ï½–-AAA]»v]¹råÏ?ÿÜ¡C­¨Sn\·Ã‡ !Z´h¡uÛç­·Þ***B,Z´hëÖ­Z7Ç0\½n¼EÝ–——W³fͶmÛZoŒŽŽB=zTëÖé—×w©{êÖ­Ûºuën¸ÁzchhhqqqqqqàŒL#8zJ’¤ÜÜÜúõëׯ_ßz{ëÖ­…G%8ÚåÞu“ÿÞºtéR­O‚·¨bccå7Zlß¾ý³Ï> íÛ·¯Ö­Ó/7®ïRíÙ³çõ×_2dÈã?~óÍ7¿ûî»Z·È§¨8zª°°PQ³fM›íµjÕB\¼xQëê”{×íäÉ“aaa)))Æ “·lݺuôèÑo¿ývçÎ#""´>-:Þ¢ª(--ýâ‹/Þ{ï½ÒÒÒ?ü°aÆZ·È^7Þ¥ÊÉÉY¾|¹$IBˆ¶mÛV¯^]ëùGOÕ­[×d2ØlÿóÏ?Eyý •¹wÝ>ÿüó¬¬,Ë;!D§N{ì±ÂÂÂuëÖi}NoQìØ±£wïÞo½õVÆ ÿõ¯õêÕKëƒòëÆ»ÔCƒ Ú¿ÿæÍ›'Nœ˜™™ùè£ÊŸ\‚àè©àààðððʲK—. !,ó…aCÅëvçw !<¨õ9öñU¨¸¸ø­·ÞzüñÇOœ8ñì³Ï®Y³¦S§NZ7ÊT¹n¼K]b2™5j4bĈGyäÔ©S™™™Z·ÈwèªVA“&Mrss/]ºT§NËÆ¼¼<ù!­[§_®^7I’ÊÊÊL&SµjþÁ$„¨]»¶Ö'„@Ç[Ôeeeÿûß¿ûî»ûî»oòäÉü«[!W¯ïR÷üöÛoóæÍëÚµkÏž=­·ËóÙÿýw­è;TUн{÷ÒÒÒM›6Y¶H’´qãÆzõêÅÅÅiÝ:ýrõº>|866öñÇ·Ù¾gÏ!DLLŒÖ'„@Ç[Ô .üî»ïüÉ'Ÿ•sõºñ.uO:uþßÿû_}õ•ÍvyQÌÈÈH­è;G 8°Zµjü±e”ÃgŸ}væÌ™þýû‡„„hÝ:ýRrÝ._¾œ——wìØ1!DË–-ãããwîܹlÙ2ËAöìÙ3oÞ¼ˆˆˆ=zh}BD¼EU!IÒ¢E‹j×®=qâD­Ûb$ ¯ïRÏ5iÒ$&&fóæÍëׯ·lþøc›lwüøñÉ“'÷êÕëŽ;î¸÷Þ{Gµk×.'g4gÎëÉ1rKŽ;öÙgŸÝu×]·Ýv[‡ ´nÝ:GGسgOlll×®]ÿøãËÆ?ÿüóÞ{ïÍÎÎÖú‡ÀßCïÞ½…™™™6Û322„}ûö >sæÌ!CÒÓÓOœ8qóÍ77kÖìèÑ£ÿþ÷¿}ôÑóçÏ{òê|ðÁÈ‘#333KJJ7n¼{÷î™3g:ôìÙ³ò¿ýö[ïÞ½¿üò˳g϶jÕJ’¤7>öØcëׯwé…ÒÓÓ?üðûîº+<<|Ïž=ãÆ[³fÝãââFŽùûï¿O›6Ͳñ½÷Þ;yò䨱cÛµkçëGp` 7>zô诿þjÙXVV&‡ª‡zHñÕW_:t¨[·n[¶lY±bÅ·ß~»yóæ„„„ãÇÿðÃn¿ô† æÌ™Ó¼yóeË–ýøã«V­úé§Ÿî¹çž¬¬¬Y³fÉû|ðÁ—/_3fÌÖ­[¿úê«7¾öÚk’$}ôÑG.½ÖÒ¥KGµiÓ¦Ï?ÿüûï¿>|¸bÁ‚Žöî¹ç¢££¿úê«M›6 !¶mÛ¶dÉ’¿üå/cÆŒÑîgÀoCµjÕ’““EÅ¢ãîÝ»ÿý÷¸¸¸[n¹EQRR’””ôâ‹/Ö¬YSÞ¡N:r©òðáÃn¿ô»ï¾+„HKK³Ôð6l˜––Ö¤I“åË—_¸pAqàÀ!ÄÀƒ‚‚ä}}ôѱcÇÞwß}.½V»víþþ÷¿W«VM>å±cÇ !:ähÿ÷Þ{/88øõ×_ÏÏÏíµ×ÂÂÂ>øàK3@EG†!G@ë~[¹Ÿºÿþò·ãÆ›={v«V­,;œ>}zÕªUž¼èùóçóòò¢¢¢lf@רQ£S§N………{÷îBÈÉõå—_Þ¹s§<Ú2$$äùçŸöÙg]z¹ž={Z$I’“§ÄÆÆŽ7îÔ©S}úô9~üøÄ‰[¶lé­Ÿ€ÀÆr< £mÛ¶-[¶úh\\œ—.…$I/¿üò¥K—Þ~ûm97ÿå/>|ø¿þõ¯ÔÔÔ´´4­Vü GÓ¸qã;ï¼SÑ¥K—Æ[?ôá‡>÷ÜsòúŽ]»v]±bÅk¯½6dÈ   »7lÞ¼ùÿýßÿÝwß}ÕªUÛ¼yóÁƒ›6m:gΜ† Zö1™Lï¼óÎ?ÿùÏnݺ•••:t(222%%eÅŠõêÕ“÷éׯßüùóï¹çž°°°Ü}÷ÝŸ~úéäÉ“½w).\¸mÛ¶Î;[z !ž{î¹-Z¬Y³fíÚµšþ ø!“óåÁ p\¾|ùìٳ͛7W>  ÁŠÐU EŽP„àEŽP„àEŽP„àEŽP„àEþ? ®×§%¤QIEND®B`‚statistics-release-1.6.3/docs/assets/nbincdf_101.png000066400000000000000000001073021456127120000222560ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A€IDATxÚíÝy\åãðg¸%CÍVÅ ÅLS¼Ò¼ÈLSK*ËÌïŒ2“,ò§™š~³¼óÄ;55EñFRQA‘e~ŒŽÃËìÁÎõy¿xùbŸÙ}ffÏ5MÓ 8.JW´ÁdApY@GÁdApЛӧOSOõíÛ—÷ì£GØgçÏŸ¯teÉúõëÿý÷ßÿ=++‹-œ?>SÃ&Mš8¡“&MbÞ®[·n–·trÅl`s åŸBÈ£GæÍ›÷ꫯV®\¹téÒ!!!:uúöÛoóòòx[r?,777??¿¦M›Nš4‰{Ý-ìÂ3zôh¥Ï4€A!8èÙ¯¿þú×_)] Kz÷îݵk×®]»ž8qB麀,ÿýw­Zµ>üðí[·^½zõÑ£G©©©7n5jTHHȆ Š}³Ùœ}èС)S¦˜L¦ƒ*}L —›Ò€DÓô°aÃöïßOQ”Òu±ÂsÏ=W½zuBH`` ÒuÑFÅœVÔ””¨¨¨û÷ï³%nnnÌ÷W®\yã7öïßß Aᾞžž„° ·oߎ‰‰IMM-Uª”…]x|}}{^à ´8èÜÁƒ—/_®t-¬óÖ[o¥§§§§§ÿñÇJ×EsZ GŦÆwÞyçøñã>¼zõê‚ ž{î9BHnnn¯^½D÷]¶lS·›7o^ºtéwÞaÊ/_¾|È>;oÞ{ÿþ}š¦çÍ›Ç<Œˆˆ izÓ¦MÌCww÷œœö-È”wïÞݪ£à™8q"³e“&MjÔ¨ÁÝ×ÝÝ{–xãîU»vmÞ[ÇÄÄpßèСC¼×gT©R%99YXŸ† òÎv… fÏžíîîÎ;À]»vIÕPεà¾i×®]¥NT÷îÝ™mÊ—/ïÞ=á;vlذaÆ “’’„ŸÆmÛ¶ñ¶çFÞÍ›7ËÙ”…à 7Ü¿»¿þú«··7!¤L™2—/_¦%‚ãÝ»w+T¨À¶jÕê³Ï>ëÝ»·‹Ë“‰ÿû¿ÿc6ËËË«T©SèááѼysö!/8®\¹’Í4­Zµêׯ_ݺuÙͶoßNÓô­[·RSSË”)Ã.^¼855µ°°¤Ÿüü|vLÛÚµkÙ#eó1‡)ÿ(„ØÌÄð÷÷ŒŒ,[¶,óÐÕÕõôéÓÌ–‚#£ZµjM›6-]º4[rèÐ!fËÜÜ\¶Â¥K—n×®]ÇŽÙïX±"›‰¹¯éââÒ AƒòåËó2_íÚµ+W®Ì>ŒŽŽ–ª¡œkAË Žl(µáÓ(L………̳Ÿþ¹œ]@YèªÐ3¦û877W´…‘ÀLVèÙ³çöíÛ'Ožü믿Ξ=›y6>>žùfîܹW¯^%„x{{aNþ›o¾ÉÞ¹sGªbŽºܘ¼–f{<ÿüóÂ×ÕÂr<:çááñÍ7ß0ýÆ Û¹s§pv*C»víD_äüùóõë×ÝÌÓÓ³]»vK–,ánÏlpûöí-[¶9r䨱c‡¾wïžÍGѺuk__ßÛ·ogddœ={¶V­ZlpìÙ³§UGaá]ÂÂÂ^xáöa‡˜oòóó/^¼(:<‘Å{–í\.,,d¾III­Þ«¯¾ÊÌ>þ|aa!ÛKávF³«ÒTªT‰m—]ª†ÇQׂ™4Í®Úm³ììlæ&ýóˆ.Ç#츧Apп×_½U«V;vì]š'''‡»,Ÿ¨[·nåää°­S¼§*Uªð¶ÏÏÏ7nÜwß}Ç®ðçéééïïóæMÛé­^´h!dÓ¦M&“‰IÀîîî;w––7`»MeË–õöö¾{÷.!äÒ¥K–ƒ#¯“÷0''‡y"Xa‘M‡>¼qã÷YÑŽ{n²”ÃQ×ÂÃÃÃÏÏ9‡LŸ»ÐÝ»w™w)]º4;HÔ2¶‡Z8«‰²lÙ²Ö­[[UO(Qèª0„™3g2C¸^¹r娯¤?ÿü3ULïÞ½Ÿ{î9vÜ/±CßX_~ùåŒ3 ‚ƒƒçÌ™óÏ?ÿäää0 Ïfl_íæÍ›O:Åä¦%RþQX~ Þ0»¼¼<6íU­Z՞ʗ+WŽ™¥D¹ví÷)ö¡‡‡;¹Çx-š7oÎ|³nÝ:Ñ¥|jÕªåçççççÇÎѱlïÞ½ùùùÌ÷/¾ø¢ÃÁÀêׯÏÌb‚À ‚$„Ôàðõõõññññññôô¤(*((ˆÙŒÛß]PP°cÇÞ Î™3‡ùæÇüðÃë×¯ïæævùòe{¡M›6LFLNN^·nSÈöSË< ËoqúôiföcË–-Ì7ì„h›™L&æ›?ÿü“[Î> qss|/¯;xôÒ¥K¯_¿žýt½òÊ+r^ºT¶lÙ—_~ÙáLJà`_|ñ…è02BH›6m˜oišf¾_³fÍóÏ?ïççW½zufH›f̘qöìYBMÓ&LHOOç¾Ú½{÷Ø&IvÒÆßÿ-Ì—\lË“vnõ£G¾ýö[Bˆ««ë믿níQXðøñã!C†0mi×®]cç¡wîÜ™™acfš !ä»ï¾c×$?uêÔôéÓ™ïÙ!•dÛµòÚk¯±'ù“O>ùüóÏ™æÒüüü%K–ôïߟyªFÌÜ) ®_¿þþûï'%%1ß~ûmîJP-Œq0 ÿ‰'ÆÅÅ Ÿ7nÜ‚ nß¾½víÚV­Z½òÊ+§OŸf'ùŽ1‚™Ž0nܸ… æççgee5nܸiÓ¦iii¼WóòòòòòbF27¡(jóæÍ¢›>>>Ì–_|ñÅéÓ§‡Ê[Ýš+&&†æÈŒ¶ŒŠŠâ®-ó(,ûßÿþT«V­C‡1AÓÕÕõË/¿´ÿüÇÅÅ-Z´(##ãîÝ»-Z´hݺµ««ë¶mÛ˜;¦rï»ã(V] 9f̘ѴiÓ¼¼<š¦'Ožûì3f³ªU«þøãL°ËÍÍݹsgZZš——ïN€E1 +2›ýñÇ¿ÿþ{åÊ•Ù͸¡mÅ}úøûû—-[¶nݺ–§ sWwqqaïtlíQH‰ŠŠJNNîܹó /¼øÆoìØ±ãwÞqÔùñÅOœ81iÒ¤Ö­[øùùµjÕj„ 'OžlÑ¢…£ÞÅæk!ÓË/¿|þüù™3g¾òÊ+þþþ¥J•2™L]ºt™9sæÙ³gÙy \]]Ë—/ÿâ‹/Nš4)%%套^*¡c‡£Ø‘@¶éß¿ÿ/¿üB™;wî Aƒ˜Âǯ_¿ž"Œwàd¸à(Ž ×ûï¿ÏÜ@¯yóæ?þø#SxÿþýÐÐP¦óqïÞ½˜  c˜rUªTéøñã„ãÇW©R%&&æÎ;qqqLj ‹ˆˆPºŽP‚Ðârååå½úê«{÷î>õüóÏïܹ“Kz…àVxôèÑÊ•+/^œ––víÚ5f}ÄW_}uذa%1)TÁdÁr< ‚#Ȃಠ8€,Ž ‚#Ȃಠ8€,Ž ‚#Ȃಠ8€,Ž„BQ”:w«à:–(Çb¤¥¥™L¦þùG銀ѩóÏ¡:keÛ.ª¥Î3¦ÎZAICp,Æ’%K”®¨Ñþª61hú¬ÚIµgXµ»€mÜ”®€Jåääœ;wnݺu+V¬Pº.àTEÑ4­t-l¯‰ {‰îbáuhšÖÍ.RO9aËWJ§KO»8çÒë‚£¸Î;_¿~]éZ€½Jò™…rþJíeí.ÅnvqÈéÂÖâ.ιôúƒà(îË/¿|ôè!déÒ¥û÷ïWº:P²lhHPmàîeí.2ÿ2»È Õîbçé*é3¬Ú]ä»jwqÎ¥×Gq-Z´`¾Ù¹s§Òu€'dþ޶áW¹m ª „óÔ†]äŸ=f«N¸:w±çt9á «vµ]GvqÎ¥×GÇ3™LJW@·äü|…††RÊÛåܹsl¡å½L&³q±oÇìEaö•_½bw9wî÷!·…ûRvîËÛEÎöØ¥$vÎä°v9—^‹»hë: w1BŽDp,)))JW`2™péŽ×>'ÿ 3;²»Èo­$„œ;wÎò¬ÑrÞŸ^ÿr±»X®žµ BÜ7•¹{ƬڅHÅÔâ.òÝigXµ»Øv†U´ E‘§ ùLÁ“ퟖ[Ø«È.–·×,Çʹ|wÐ’U»ËíDUl9óÊ\Å–ËÜÅò¹¢‹þ…“sz™]¤N ÔößEæö8êÛEÐwüd {Ñ4átj?ÛÞr äDÒ'»)5GP?áß ù#å‹Ý؆(ZÕ9{ O‘‘w‘s’q†Kv±AŠÅì"ÖÄHbùBR„ÐÖlÿìX˜špZj]Õà"8€óˆþ=¶h¤ ¹Oñr˜pãJ Œtžµ¶Ü†·ÐÓ.–[©5t ÞÅÚ¤FZìákX\ð“]8mÅŒSF@ÞCÞîL/pK$EGpkW²`7¶°£°ÜžñþO Œtš ÞTdý.æékîXdþ³™Œ÷¿4Kêé^´œ‹îE»½à˜´°\,r_-·ðŽ4M3µ2ÞGG‡Ù¼y³ÒUp*›×0cóœU¯`Oóa±;:?º©7=”|sšž¨÷§^f ÝL^ ´î½¬i ,¾œû ¶LÑrËg@~ ämc¼ìˆà6’ŠbR…¢/bíèCbkó!)Ɉ“––VB¯ @ˆ¼df[|±3ZÞ^)PôYƒeG̪.Æ”)SRRR4h tEÔHþ|g{&/[;¿Ò΀hð&4Ð*n˜ã*vίÌÈ<Ë~q_\Xξ2÷«ØráÛñF.Z&šåo/g/©Úé—‚#ØEæ|g.«Ö£±³ù)4ɶ^„¡ÇšÑ„O¾±¼™0ð! ‚#ˆ°je29Ë%r_Ùªðü@oäüp•tó!·×‚(Õ|(Zݤ@ëϘ¬Ÿ¥ãV³yÀ¢ “—-¿ €nÙ6úÈk>]GN££èöèôò!8!VNp¶y¹D£­;º\R“—IÑteÃdd sP¤ª!gž‡pƒM 2Ž@ˆ•S¤…XµV€áXÕ|(µ*µÌ… ­j>´6J=Ur?õjý}r.åœÒUPÆ8Àò§H[Ø@þ[‘/A«d®2Ã#ò²Cæ [‡kú¸­¥£ŸzšÒϱXÁž±jŠ´ó—K(Y2焉2«–?”ÿ3Âíª–¿±åªrŸµ‡ñ~Ò)BYU®Kèª0:a!7;²…¢“Z”®;€Bxý¹Ö.‚]£߉¬#¡h÷\¤)š¢ù[RDX¦gŽúg¹íÐÎ[BK½€6Hå-™3WŠÝÒi£íÿÄOq±h~v4Zj$èª6eZµ”#€ê”D¿³Ô2‡rÖ>,éч6oiTÜþeî€Åbú™ìH(bÈÔHÐâ K6Omæîˆ)Ò`òûm¾“²ó› Ln¿3¡…[Jí[$MÒO‚&ÓúÈ-VúÐ-Ž:$5µÙr#¢=S¤TÁ¶ùÎDv¿3ï5eÞC͇êD=ÉŽœŠ&´hƒ#MÑÜ/Ñr¥ÇIÐâ OÂöBÛVçF‹#h‰h3ž…~gQ–K”zM4*Mf+c4!¡é'íŽÏR#-±1÷½žÆDöU£Å@·¬Z[@Õä·|óÚÿ,ç9Ñ•‹].ц;)ó¶Gãµ²¤ Ÿ|ñv¢E?yJꊌkäŒw4´8èpoay±!)4Ìæ~gî¿–_ߪrp ¶Õ vRÍE 9 ]Ì8E‘Ù0´ø=:†G½¡‹²P jV X”3ßÙ ûåIOKSú4éœUíyÜvGK×TÑ/ÑrÑ×}IÚXw‘A‹#€ž±7’FW5hU8ß™7fJ˜-ŸŽMdv|ö ¢cÙ ô¼Ù0tqoM[Y®GhqÐ-áÚ:J×€R2y¯/s¾3A¿³Ù2`‘¦E¸ÃŸ<–³ÈŸ C‹Ì³¶ÀjRú<)Á@cdæ?¬­:aí€E;úÕCà, Xd¾¸]ÆìHÇgÏŠíÈo|š•>zUCW5€IuL£·cÕýdŽnÝýÎ*fU´Ü‹Ü×§Ÿ.”CÉèw–êŦŒÕõl-Gµ³ax""¨Žs,¢ßY_è'鯸üÇÝžSþìaqK3Ê*BºªÔ϶ÛÀð^AéƒpÊ€EP©!ƒ–Ê©gK-²…ܯ";ЄЄ¢)æ^9¿P ~Gʆà ÂìˆYÒ V…9 X4Ñé&:‘ÙÑŠìÌ7̰EK áÍt’€®jmàÞB©fÕA X4¼g7ô#„Ȱøô~€ì+?ôPl¦ šÁ@Õr“JoRQ·h¹è»XUÎeÛL¹Ó\EÓœ‹ì‚™.΂à j¼PÈäE$EPž0;Êi´êÎ~¼·­‘9ºQ˜ŸDúé}\hñ-¹¯b]9Ø Á@3pPîˆCù©‘·;>Éšbm+#ßboëL‰ìÈ–s_ÚòCÉÁämÀm`ÀI¬ìBlJìîø$kŠU÷támÀÎq±´1-6š<ÊA‹#€HÝíŽàl6ÏtÁ€E½àÍt!Å6C b|ò Ŷ]RœÉÑ­¨Ž€ÛÀ@ ²g¬!“Ñél0VÝÓE´wZVŸ5ïIdGu@p06«¦H 7°!;"bª’åh¡‡šû”ð˜u‹d>Š-•|3ëîõN„à 1hhdzaŠ´p´;j=3]ÈÓ¼(÷ØNg9­†ø©&Ç( s\@-¬š"-óÓ n6Ït!œÔhicªèW±åµUA‹#€~YŽ€Âÿ·p³#KþLЫgºp¶áfGñ]hþnâå )ŽÎ&5³¤ÁÙDÇ5+s!>´ÇM~òS#!„~¶J7]üŽgv æ¸hºªœMtF¤Fp {?°Í“Aa0ÜæÃb6¥Ä·‘•9[Ëè •BpP/;"5‚ÃH-©]lävjc]n퓳"7÷ËBaR™²ôN’w‘ BW5€2ØìˆÔ†)Ò ƒp\£ÜFGa_³å®gÜEZ_œGj5·!€ûää?L‘Ö«–×ÝKÖhER´½ ÁÀyx¡Í‹‹à¼ÿ™Èœ" z!ûŠ]Ö›÷¬¥ìHI”PEö·\EÐ:Ge0=ÔÜ•®¨^±m‡R÷´ >ŠZÆ‹}Ö¦FöE¤^·¿H!è&Ç(€—EçYØS¤Š­Xl§³ ýÚϰ©Ÿ/ƒA‹#€³‰¶/¢ÅÄIµ2»²7oŠ4>`º&5‡Úò]¤yhù#$)NdĺŒƒààlȈ`ÑØ'?5ZxÐkÛÙ¼hW›¢tmø¯Šìh$èªPB$·ª¢µ#-‚=»³‹åI?ÝZn!û”èG Ÿ/Ã@pP=6;¢áЊ|Ò;r[‹ÏŽÂAж-ʆ®jU’šÔbÕÚ:H™Ú$µ&Ž ³¤‹_š‘ÛÑlU3>\†„à J¢këdA£>›gI[± 7>\PtU(ÁªUrØjÜEÚH¸ͶÝF%ø-@‹#€ºñÆ5bŠ´ÞñF%r³#[XüÚ:–7.åFGÁÀa‚ƒƒ1K,±aQFѧuMtmYXçé<{m,¬ÅAW5€³ˆv4[Ž€RO!5j–U3¦Ùj›çYûâ‹2H@p°‹Ô­q Agí¢Œ``Üq²e,º³¬m°(#X ÁÀ.¢·™½© À6/ʈ•fÙÐ^(œ SLv´áÿªø@õ0ÆÀ^Lvd“"R#ˆpÈ¢Œ Y¢‹)Zž(-ú”Ü勾 "8‚#€°íŽH ‹2/;:xy§ïÁ‰XÐ ÁÀFrF7"DDPp°顿þ ÆÀö5[›­ØØæÛÀȃà`#^(dó"Â"X‚E FjT¢U‹2Êyñ‡Ür|ÊÀ€é¡æþ«t@•¤eý]”‘8|]Fá‚ÞIJfUØ‹—EçYƒ‰^eË—ÑØØj«×Ö±òmžuU8‚#€]DÛ‘ A¸š·UΑº,sK޸ƒʎÂÛÀ8‚#€]¤z¥Ñ[mÜìˆ¡Š Mt6Œã³#n%c&--Mé*€SEË‘#uJjN´…¹ÒÖ– _ºø qp G+‰.ʈ˜h6¬æíœj8ºªìÀöPcT«‘ðz™­J²¶´ÿÓ„ %ÁÀVÜq¹2 k6¯æ-óÕų#>b 4tU%sš‹p3¬æ­wNZÍûé Ùuÿ@€’à`Ñ€ˆÔ¨kNZÍ›ó~¸ ¨ ºª¤G(¢÷$”àjÞ狽 ·@ Ž#e÷;§c%&ƒ)ÙÕ¼é¢_ œÁ€"ÈŽ­h<2ß“Vó~úf¸ ¨ ‚#ÀSlvDjiö®æ-îêƒàÆFQE¾Š-}‘3QÚ‚´ô¥€û‚*aV5€8Š¢p¿iC½ Áüh£Pém`î*…G€§Øj¬æm$öÜÆød–!8ãA+#ÈfáþŽ|Zlo¤F0ýÇ”””ÄÄÄ€€€Í›7'&&nÙ²¥_¿~'Nœøæ›o¤vY¹råÑ£G;tè°uëÖï¾ûnÉ’%‹-"„Lœ8Qé£0© Ñ” Pâ÷ä¼b‘ìˆÔ†¡ÿà¸jÕªÂÂÂaÆùûû3%cÇŽõööÞ´iSaa¡è.G%„ôïßßÍíIW~³fÍj×®}ñâÅÿþûOé0avÄühƒ±¡É°Ä'P³Ù©ŒDÿÁñðáÃ...QQQl‰««kdddvv6… !ÜŒHÓô;w\\\Ø( NÅÍŽHÆ Æy-TÑ/Ñr]Óyp¤i:55µ|ùòåË—ç–‡††B233E÷zíµ×J—.ýå—_8p //ïêÕ«“&Mº|ùrLLL¹rå”>&à¨"_l!ï)Ð)©±‰JJºè—h9€®é¼ý,77×l6ûøøðʽ½½IÑ6E.“É´dÉ’ 0€-ìÛ·ïøñãe¾¯Édâ•lÞ¼Yé“%îòåËJWA_ÒÒxAÁÁ„t^yzºÒÅ¥/)i$ ¢ÒÒÓHIOO'„§¥§¥å/zPpPzZú“© ô4å«%§}ûöJWA-t™©ÓeË–å•{yyBîÞ½+ºWNNδiÓÍŽæh(LŸµŠn<-:†Æ,0qtssóöö¶,æääBØyÖ\7oÞܹsgÍš5ÙÔH©T©ÒG}ôøñãß~ûMéc0aL”Z£tâo¥DË«me9€Žè<8B²³³™¤ÈbÆÊ·ÏÎÎ&„T¯^WÎ44fee)}@#Õ¸ˆGý¢ Íýb yO)]MBÁÐF0ýÇÖ­[›Íæ={ö°%4M'''ûúú†‡‡ ·¯^½º««ëùóç颖˜ñ 5kÖTú€ ÑØ¸=Ô¸÷4€âôcbb\\\~øáf\#!$11ñÖ­[=zôpwwgJkåñ²#R£1¨+,òð²#R#€4GÐ3^vDjT 6;"5†ÔlhµJ6;"5XdˆÉ1`dlvDjT˜Ô^9®‘~1Ù‘;åEá»R2Êñy( ÁtHæèFäH§âmöZà* ·ÝQù{OóÞœ’(GÐ!^"dó"’¢Z0=ÔÜÁ0˜ì¨|j䡞öVÓè­°ÁtŽé¡æþ«t —‘ @ÎèF…û¬¹oŽì ÁôŒ—‘•'š‘õŽ7®‘ˆwTŒhFDv€YÕ [¢Qtp©tˆÔh ܰ¨–»NÓV–‚#è–TË"Z!lbTKväT,CpC@XT#\#‘ê˜VEo5Ȇà%@À0rdCˆÐ.GÁl…VFPÏͦÅj‡à¶bÖ_B Ô;„EÃBp;³#–ò6©et””´DvTº^ºàöáfG¤FÃfGµÜ F˜qÇÁ-Àzz¨¹O!Dê7;ª%5>­Ù³ìˆÔàPŽ`=a"dò"’¢Á0ÙQ]©ñiÍ…ÔàxŽ`765¢«ÚäŒnT GRòÊññ°‚#؇ ‹ÈކÁ …L^dÚntä½9õ´Ž…É1`aL”Z£t‡¥æY+U³ga‘Æ”jGBp[I5.¢ÅÑ„MŒjÉŽÂ&FdGÇAp[! •TÇ´òSd¤:¦•®€n 8€# D‰òQºfP¢Àv‘†‚ಠ8€,Ž Kê•*fF€Z!8€,Žð”h+#š ­Œ ‚#<%¼é îh ¢kw«+Mª©.F†àÜìˆÔh$¼ì¨ü½§ Â"€!8@QlvDj46;ª"5é["P(ÇMé €Ò¤F1òÊ‘#uÇBg4÷)%C$-¸‹ …•½”„àÚCQã@¼“ÉôP£ÑÑ„‰Í‹ªhq|Z•g!©@ièªm 0·×9¸ã…se@רjѹ2J¢ŸÔ©@qŽ  4M‹fGJGΆAv4 Þ¸F…³#%ø-§CW5h“¹Ôè³v$©9Ô8à :Fá¡Eë÷¤ŽJC‹#h ·Ý©ÑÁp2 LE#…¸a‘FC#€ÂAc˜°ˆÔ`Â&FdGE¡«ÔNj#¯9ÒÁp>JE­RÓª© €!8‚Úñ!“…ã@oðó  >èª-á†E©yÖ C‘ê€àš!lbDvp&GЩŽiôVX ®u¼@ûAä@R€…àÚƒi5tè†Ô_(À!ôIÑÀ„ÙQôÆ06@pÐ#©{L#P7;"5€aGb²#·[_ênÔ †Fa¹*B$n9  YŽúÅÍŽHÀ …L^TER½@pÐ^4û[Ž©wL5E(µtUKµ2¢õ@St‡ ™¼ˆ¤h$ܰÈÄGå³#-–‘´“ctÛU Æ Œ‰Rkô8“9EjÐGýâŽk”šg ú"Õ¸¨|‹ãÓz<ÉŽHÚ„®jΆγÝQK@ä¢ä•«¯â „à GR©Ñ`T‘#…ãEË@ ÐU  Gˆ Nl5MÔ0ꬅà`È‘ ¼qÈŽ„à%Ot6 ²#€Ö 8@É£­,UBpÐU¬ÅƆàÎ…VFÍBpP/´2€ª 8¨—èÝ‘&@)ŽªÆËŽR7pG­Á-§‡ÍŽH ,Ür@¤ú£¹å‘àdŽZ zïi©Rƒ.ðB!›@AèªÐšæ÷P#5 ÛC-:WÀi4‚›‘„7®QuÙQMu€’†à lvDj4 ÑÙ0ªËŽ`ã n¢s¨y…È‘ú%5¢Qᑎ”ÄÝ_(Ü@çÔ ™j4:‚âh±ŒˆÔ`èªÐî¸Fá\0uͧ¦‹ŽnDj0G-ΆAvűÙ©À0ÐU  zRs¨Ñ[ ÎGÉ+Çg@§TÔC8®Q´t ]ÕZƒ *ÁöPÓXÍÀ(Aaêho\#²#€1 8(@Û+x‹Î†Av0GPZ´¶²ôÁ@Ó´hvD }“jeÔvë# ‚#(C˜)Š¢1ítMôÓ¢w£Ö-׬…àŠáfG¤F0^vÔ|jƒÁ:ŽàTz¨¹O!D‚ޱÙ©4ÁœJ˜™¼ˆ¤ú>#B$¨‚#(‰Mèª}ã…B6/",€¶`Œ#(†¥æYëŸ1ÚØØjѹ2jf”ÇÕ«W¯Zµ*55µL™2¯¼òÊèÑ£}}}-ïròäÉùóçŸ>}úþýû&“iÈ!M›6Uú8ôCØÄˆvG0Þ¸F&;¢Ý´Â-Ž3gΜ8qâ… š4iâååµfÍš÷ß?//ÏÂ.;vìèÝ»÷Ž;üýýÃÃÃ;Ö¯_¿;v(}(:!’¥ZÑú¨w¢펠!úŽ)))‰‰‰›7oNLLܲeK¿~ýNœ8ñÍ7ßHír÷îÝ1cƸ¹¹-Y²dåÊ•‰‰‰Ë—/÷ðð˜4iRaa¡Ò¤F ˆÒÇ/’)Šü´€TË"Z@+ôW­ZUXX8lØ0¦dìØ±ÞÞÞ›6m’JkÖ¬ÉÉÉ4hPãÆ™’úõëwèÐáÖ­['OžTú€ôÆ !’—‘G½a­Ÿ MÿÁñðáÃ...QQQl‰««kdddvvöÑ£GEwÙ½{7EQ]»vå~ýõ×))) 4Pú€@/ØìˆÔ¡óÉ14M§¦¦–/_¾|ùòÜòÐÐPBHfffDD„p¯S§NùúúV¬XñÈ‘#ÇŽ»sçN­ZµÚ´iãéé©ôÆÉ݈ NFá¶ —΃cnn®Ùlöññá•{{{Bþûï?á.ùùù÷îÝ«Y³ægŸ}¶|ùr¶¼J•*³fͪ[·®œ÷5™L¼’Í›7+}2 Ä]¾|¹˜-ÒÒ¸‚‚ƒ™oÒ¹åééJX­øK¯fi$ˆ JO{òÁ "Aééé„ àg… EÛ—dkß¾½ÒUP GfêtÙ²eyå^^^„»wï w¹wï!$555+++!!!**êáÇIII?þøãСCׯ_/§Ý1%%EéCeÉݔ顦(BÓAè­Ö>+.½ Ñ$ˆ bÛƒ‚‚˜fÈ ¢åƒrm_zGøg]ØBd:ãèããCQTnn.¯üþýûäi»#OéÒ¥™o¦M›ÖµkWŸŠ+~üñÇݺu»|ùò† ”>&Ð^Rg àL4gZ :¯@‚º‚ã·ß~›ššêÀtssóöö¶,æääBØyÖ\eË–-]º´§§gtt4·¼M›6„³gÏ*}’@ûDÛ‘Áù¨¢_¤hvä–BÔ;uêÔ£G%K–ˆ@´A@@@vv6“YÌž€€Ñ]üýýÝÝÝywÀcz¨ ”>I }R½Òè­'£_¢åO©+8~ðÁ•+W>uêÔ”)SZ¶lùá‡nÙ²%??ßž×lݺµÙlÞ³g[BÓtrr²¯¯oxx¸è.ÑÑÑ999çÎã2k÷ÔªUKé“ú‚°¨ ÁAÁJWÁØj´2€uÇ#Flß¾ý×_íÝ»·——׎;>ùä“—_~ù³Ï>;~ü¸m¯ãââòÃ?0ã !‰‰‰·nÝêÑ£‡»»;SòàÁƒôôtvr\·nÝ!'Nd[=Ož<ùÿ÷ÞÞÞmÛ¶Uú$”ªh‹#²#ˆ¡T{ߎ‚‚‚Ý»w¯[·nÇŽ>$„T«V­k×®¯¿þzåÊ•­z©… &$$T®\¹eË–¬S§ÎÂ… Ùez6nÜ8|øðõë×3%óçÏŸ1c†··wDDDnnîáÇ)Šš>}z‡Š};“É„YÕÆ”žžŽù•ÆÁ½ñ´Ô÷šÁMÜvG­‡óá§Þ° û·^½Ëñ¸¹¹µjÕªU«V¹¹¹III3fÌÈÈȘ={öwß}פI“=ztîÜÙÕÕUÎK½ûî»*TX»víÆûöí;lØ0fE)|ðŸŸß/¿ü²ÿ~__ßÖ­[2$$$Dé³jAZ˜5™‰D@Ôàq@ISo‹#!äöíÛÛ·oß¼yó˜Y)*Tpww¿zõ*!¤fÍš , Tºš|†ý_ íÁ€˜¤ÈýWé9àtpNƒŸzÃ2ìßz5¶8ÞºukëÖ­[¶l9tèÙl&„øùù½úê«;vlܸ1!dÿþý3gÎ>>¯¾új‡š6m*5ŠÑÓÓ³téÒ*ì§ÝŽk-ÐuÇ=ztìØ±Y³frf½ ¹§Ã1ŽÒÔµŽã¦M›8 •‡ Ò®];¥ëð/)²ãôJ]Á177÷ñãÇRO]ºtéÊ•+J×€‰Ù0ÈŽ oÊwU'''øá‡ìÃ_~ùeéÒ¥ÂÍ iš®ZµªÒõ DzD#z«@Ç”Ž®®®åÊ•c¾¿}û¶‡‡G™2eD·ôññ;v¬ÒõŒ{OSZzÁZ~`ÊÇ-Z´¬OŸ>ÊÖ€—‘@§ŽŸþ9!$>>ž ŽÌCËA˜ìHAihb€’¤pp2d!¤^½zÌÃQ£F)}Bd£¨âË"ÁÉh‰ìˆ@ Ž ppüøã¹ß{ï=eë`á¸FÑr'fG¤FpuÝ9@«Øj¶Ï@ALvd 5€ã(Üâ¸k×.kw‰ŠŠR¶Î|¼q¢ó¬A;Dï%¨ ”ÄCn¹6 TBáàøÁX»KJJвu(B4#";‚"xŸ8J¬À Ç.]º(}ì#•‘5Eª•QÛ­L‡5ºªÀqŽÓ§OWú 8LzZîW¬Q4¡…Qó©ñé±!;€£`r !O³#ûP'©ñé±LÙGÀcž`³£®RãÓc°î†FI´Åq˵"µSSÐ"Ü9 M8®Q´\«tq ¸s ÀL5÷_¥k .ªžóàÁƒüü|¥k†ÀKм¹2@oquâĉüñôéÓYYY...•+WnÔ¨ÑàÁƒ«U«¦tÕ@ŸDÛÑîÀ£ºÇÙ³gÇÄÄìÚµ+++«T©R¥K—ÎÌÌüý÷ß;vì¸|ùr¥kú$•‘¸ÔwïÞ=wî\WW×~ýúmÛ¶íŸþ9vìØ®]»H™2eÊñãÇ•®#XBQèÚÍCX¢®à¸|ùrš¦GŽ9a„*Uª0)$000..n̘1‹-RºŽÀ‡°`ê Ž§OŸ.UªTÿþý…OõíÛ×ÓÓóĉJ×øhšÍŽ”:£®àH©X±¢››È”f–Lnn®ÒÂìHQM£¿@WÔÃÃÃ333srr„O=xð ===,,Lé:‚8nvDjÐ%uǘ˜š¦ÇWPPÀ-7›ÍãÇ7›Í­[·VºŽ ‰ ‹úIèj(Jáu8À}èêêÚ½{÷5kÖ´mÛ6&&&88˜¢¨ôôô¤¤¤ÌÌL“ÉÔ¾}{e+ \R£yå:É‘†§pp0`€hùÕ«WgÏžÍ+LIIiÞ¼yJJвu/2y‘é³ÖjX¤("Zs©rg¢pïiP˜ÂÁ±K—.JŸp &,j>;Ò´HFDj¥ )€Ê(§OŸ®ôÆDýdG¤FÓö=i‰ìˆ@ Q×äËÆŒÓªU+¥k|RQ“©ñiÕŸÌŒAjÅ1Ù‘ ©”£p‹£ÐíÛ··oßž‘‘Á+ÏËËÛºu««««Ò> D.©9ÔÜr}©h»•QˆÛîˆÔŠRWp¼qãFïÞ½¯\¹"µAŸ>}”®#è”p\£h9hMhÑì¨á@ɶ;j³ú ê Ž‹-ºråJ“&M:wî¼aÆ¿þúëÓO?õôô<{öìÒ¥Kûôé3aÂ¥ë–è§õ‘éˆÞjmfGí¥FJF¡¦t@]ÁqÏž=¥J•š3gN¹råZµjÕ¢E‹   æÍ›B‚ƒƒ¿øâ‹7Þx#$$Déj‚®ñ’"²£f1Ù‘ù^{©‘ …@Ô59æÚµkÕ«W/W®!¤B… ¾¾¾§NbžŠ‰‰ñõõ]´h‘Òu]͈ì\Ð&,j25rqÇ5Ò-‘N¡®GBˆ‹Ë³,[µjÕôôtæ{WWW“ÉtâÄ ¥+º&Õ²ˆG $R¯\K9R8†ÆPŒºZ+V¬xñâÅ0«T©räÈöYŠ¢._¾¬tÁ05ˆ&4÷‹-ä=¥t5e“ ˆÚ9ÐuÇ6mÚäåå5êÂ… „ˆˆˆK—.íÝ»—rëÖ­¿ÿþ»råÊJ×´ÛCÍï¨%ˆ 2êêªîׯߖ-[vìØAÓô¼yó"##ÝÜÜ>þøãF={677·cÇŽJ×4@8®Qj-ÑrÝ@ÔÕâèçç·lÙ²#FÔ«WR¹rå‰'æççïÛ·/;;»uëÖï¾û®Òuµ“ ˆÚN* ®GBˆŸŸß|À>ìÝ»wçÎOž<¬tí@Jˆê‚#׃ÜÝݽ¼¼š5k¦t]@“"HÁñĉ?þøãéÓ§³²²\\\*W®Ü¨Q£ÁƒW«VM骗ºÆ8BfÏž³k×®¬¬¬R¥J•.]:33ó÷ßïØ±ãòåË•®€q©+8îÞ½{îܹ®®®ýúõÛ¶mÛ?ÿüsìØ±]»v 82eÊ”ãÇ+]GƒRWp\¾|9MÓ#GŽœ0aB•*U(Š"„ÆÅÅ3¦  ·PŠº‚ãéÓ§K•*Õ¿áS}ûöõôôÄ-”¢®àH©X±¢››È”f–Lnn®Ò0(uÇðððÌÌÌœœáS]é3ª&Õʨ½ÖGZ";"P€v¨ñ^Õ„ëׯŸ9s&##ãñãÇÁÁÁµk×®T©’Ò•­‘jeD룦ЄfDí¥Æ§ÉH )ª Ž·oßþþûïW¬Xa6›ÙBWW×^½z 6ÌÛÛ[é ‚vдHFDjÔ ^vÔjj|z0ÏÂ"R#hº‚£ÙlþðÃ;VªT©6mÚT«VÍÕÕõâÅ‹;wîüõ×_Ïœ9³lÙ2WWW¥« ÚÁËŽHšÅdG¢ÝÔHI<ä–kð°ÀhÔþùçcÇŽ5lØðûï¿÷÷÷g˳²²† rìØ±ŸþyàÀJW4…ÉŽ©Q{(~Ú/×FŽäÕ‘+P=u-¾gÏŠ¢fÍšÅM„ *Ìž=ÛÅÅe÷îÝJ×´€¢Š|[ªDšûUl¹fp»ª4E]-ŽgÏž­V­Z`` ð©€€€5jœ9sFé:‚Ç5Š–ƒv0=ÔÜ•®‘íGò¬î4†9€Æ¨«Å±T©RyyyRÏæååyzz*]Gж‡ší³­á%Ev¼£öc"vGÐuÇÚµk߸qãØ±c§N:uùòåZµj)]GÐÞ¸FdG m_Ôjv¤e¨’º‚#s#™O>ù„7–qïÞ½ü1!¤sçÎJ×´Ct6 ²£ÖHõJk¸·@³Ô5ƱcÇŽÉÉÉk×®}ï½÷«W¯NÉÈȸzõ*!¤sçί½öšÒuíш‘Ž ø€©+8B¦M›Ö´iÓY³f]»víÚµkLa… †Þ­[7¥kš…°¨ heP–ê‚#EQÝ»wïÞ½ûÍ›7/^¼HÓtõêÕ”®€Ñ©+8^¾|¹°°°jÕª„ÞjŽ  uÇŽ;>zôhß¾}~~~J׊P׬êBȹsç”®ð©+8Nš4ÉÓÓsîܹ>Tº.P„ººªýýý¿ýöÛO?ý´K—.]ºt©Zµj¹råxÛDEE)]M#RWpŒŽŽf¾¹uëÖ÷ß/ºMJJŠÒÕ0"uGæÎ1 Bê ŽÓ§OWº N]“cxòóósss•®”Šà¦á£®GÆùóççÌ™süøñëׯV¬X±nݺC† ©U«–ÒU„»!€¨.8.X°àÛo¿-,,$„”*UÊÕÕõúõëׯ_ß±cLj#Þ{ï=¥+¶£%z¿i©rPuuU8pàÛo¿¥(ª_¿~Û¶mû矎;–œœëââ2cÆŒ(]G°Mha5R#€V¨+8þú믅……£Gž0aB•*U(Š"„T¬XqôèÑãÇ/,,\²d‰Òu»ð²£†S#%»@/ÔOž5>= dGÐ7uÇéÓ§;ü5>ìââÅ–¸ººFFF®[·îèÑ£R;ÄÅÅùúúŽ;vÀ€JŸgcz¨)ŠRKW5ƒÉŽ©T€–] *šShšNMM-_¾|ùòå¹å¡¡¡„ÌÌL û~ÿý÷gΜùꫯʕ+§ôq87,JͳvfmŠ|[¡ÉVFcSW‹£ÃåææšÍf^¹··7!ä¿ÿþ“Úñøñã?ýôSß¾}›7o~úôikß×d2ñJ6oÞ¬ôÉ+888---==y˜žžž––FQTZZš2*ú¾AÁÁO*Æ«ÏÓ +èòåËJW”qy÷åÒ_Pº üÔDûöí•®‚Zè<8æååBÊ–-Ë+÷òò"„ܽ{Wj¯¸¸¸*UªŒ9Ò¶÷MIIQúÐm$ì˜ "êéÈôPS¡é UöV3§ —Þ°pé@øg]ØBd:Ž>>>EåææòÊ™åu˜vG¡„„„Ë—//_¾\Îz=:£–€(Š—EçY@‰ÑùG777oooaËbNN!„gÍuèСåË—ðÁ 4PºúÊSQŽ͈ì\(y:Ž„€€€ììl&)²˜|ÂíÏŸ?O™3gŽé©îÝ»Bþøã“ÉôÚk¯)}@F%aÕmôNç]Õ„Ö­[§¤¤ìÙ³§S§NL MÓÉÉɾ¾¾áááÂí«U«Ænɸ{÷îÞ½{+Uª^±bE¥@úŽ111óæÍûá‡^yåfNLbbâ­[·bccÝÝÝ™m€3!8hMhaF¤Ec}p"GmàeG¤Fp>GÍ`³#R#Ètâĉ^½zU¬XÑËË+""bæÌ™JWªwïÞ4hPÕªU½¼¼"##<(g¯ÈÈÈøøxnÉãÇÝÜܨ¢*T¨ ôñiîU  jrF7j5DR¸ hEZŸÝ´´´¨¨(³ÙÜ­[·ªU«nÛ¶mĈ»wïþí·ß”®š¤œœœˆˆˆK—.õìÙÓÏÏ/))©}ûö;wî ·°×±cÇöíÛ׺uknazzºÙlnÞ¼ypp0[èåå¥ô!j‚#€ªñB!›µÀ‰FŒq÷î݃6iÒ„òùçŸ8páÂ…[¶li×®Ì1›Í„WWWçÔyÆŒ©©©?ÿüsÿþý !C‡mܸñÈ‘#wìØ!ܸ  `ÇŽû÷ïŸ3gNaa!ïÙÔÔTæ¨yì®jÍ`{¨EçÊhƒ6k @(ʺr› >üÈ‘# 4hРý/¸cÇŽÈÈH&52>þøcBÈdVæ‡~ðñññðð¨W¯Þرcóóó™góòò¦L™R»ví2eÊT«V-66öúõë9 +V¬ ìׯó088¸gÏžÉÉÉ×®]nœÝ®]»øøø¬¬,á³Lp¬Y³¦C* GmàkÔjv¤%²£Œ…¦E2b ôYgff¶k×îÞ½{/½ô’/UPP0xð`&)²222!¥J•’ó «W¯2dHddä˜1c*T¨Ð¶m[š¦ !±±±Ÿ~úi•*UFŒþóÏ?wíÚÕþÃÏÉÉ9wî\tt4Å9Û­Zµ*,,é@Ó4MÓgÏž>›ššZªT©çž{nõêÕóçÏß»w/|Áf誋´3”GßDgÃhµ·šŒnÄ`GÐ&;²¿Kæ×ãš5kâãã'NœèâboËŽ››ÛW_}Å-ùï¿ÿ¾úê+WWמ={Êy…+W®L:uܸqÌø¸¸éÓ§¯\¹²sçÎ+W®ìß¿ÿ¢E‹˜§bccÿý÷k×®ÚSç7nÐ4À-ô÷÷'„ˆ¶)Z–ššêââR³fÍÛ·o3%µk×^²dIãÆí<·F†àE!)ª’V3¢ôñ>¾gÏžîîîüñÇðáûvízêÔ)æ5ÁŽPï¿Ô,JÕÐjˆ´ÐCÍ}J›z>£ã~=šL&©¶ÆX覥ëpéÒ¥?þxݺu!!!Û¶mkÕª•ÌÊ„……yxx°Ë–-k2™.\¸àéé9kÖ¬‘#G………5oÞ¼}ûö:uânl[ýüü!÷îÝãæääBÊ—/oíÉܵkWéÒ¥Ùß}÷݇<8))iàÀÖ¾00Æ„CyÁ~´àK´@mhºÈ—h¹ãøøøH=åííMK“ÚkùòåuëÖ=räÈüùóÿý÷_ù©Q”››3LpðàÁ/^LLL¬_¿þÆ»wï^¿~ý7nØY瀀^¯ô­[·!•+W¶¶¶•*UâÅÍW_}•rúôi{N‚Á¡ÅÄpÛ‘¡$0ÿ7¡ÑU šÂü>äþëD6tU¯[·îí·ß~ã7æÍ›Çëÿ•ãßÿ}üø±»»;ó0//ïÌ™3QQQÙÙÙ©©©¡¡¡±±±±±±………sæÌ2dȼyó&OžlOÝÜÜêÔ©³gÏnáîÝ»)Š ³ªòëׯoÕªUíÚµÙB¦ñ’é^Û 8‚¶Ý©Žâ sDv­à%E§gGk»}išŽ‹‹«R¥Ê’%Kl[…1++kæÌ™qqqÌÃ)S¦ääätëÖ-%%åå—_ž0a”)S!...QQQ„6bÚ\gBÈ{ï½7tèÐõë׿öÚk„›7o&%%µmÛ6((ȪÊ{zzŽ5ªI“&Û·og*VXX8}út77·¶mÛ:䊂#pˆåá"G‚„1ÙÔO4#:7;2ݾò·?sæÌÙ³gk×®Ë{ª{÷î;w^¾|ùG}ôÎ;ï̘1Cô'Mš´ÿþ 8p`ëÖ­Íš5ëׯ_AAAݺu§M›–––V·nÝ”””M›6•/_¾wïÞvÖ™2`À€… öéÓgðàÁ>>>?ÿüsnn.{/Á„„„iÓ¦}õÕWƒ ²ü:þþþñññcÆŒ éСƒÏ–-[Ž;6uêÔ:uê”üåÒ-Gààþx³}1aG* â#*'õkPÅ¿™å¯Ïœ9sæÌÞS5kÖìܹs~~þ;wòòò¤^¡iӦÇÿôÓOgÏž8jÔ¨)S¦¸¸¸xxxlÚ´iòäÉÛ·oÿßÿþжmÛI“&YÛ((ª\¹rÉÉÉ£GNJJº}ûv³fÍ–-[ÆÞoðáÇwîÜyô葜—Š‹‹«Q£Æ×_½téÒÒ¥Kׯ_Ó¦MíÛ·WêŠèeí X&“)%%EéZ؇7ÀÃåIOOwÈïM£ÐQ+#.½:éá·q [°`Á©S§fÍš%|*((¨aÆj¾«µÙðQ1ì§ ³ªA@Eo™`'½¤FzøðáÎ;5j¤tE@K¡(©ÆE´8èËj×®ýÖ[o)]ÐŒq„¢Kô^‚N-õl‡ªW¯®tAuŒW¯^½jÕªÔÔÔ2eʼòÊ+£Göõõµ°}^^ÞÊ•+“’’._¾üÜsÏ…††¾ûî»/¿ü²ÒÇátÈ‘†4gÎ¥«jdˆà8sæÌyóæ•-[¶I“&kÖ¬9þü/¿üâéé)º}AAÁ€Ž?îííݬY³‡þõ×_{÷îýä“O¬ôр桕4JÿcSRR6oÞœ˜˜¸eË–~ýú8qâ›o¾‘ÚeÕªUÇoܸqrròܹs-ZôÛo¿ùøøüøãÂE ¬Ešܹ™"˜~j§ÿà¸jÕªÂÂÂaÆùûû3%cÇŽõööÞ´iSaa¡è.›7o&„L˜0m’ 4hÙlÞ·oŸÒzÀËŽhƒMÐp<|ø0{7$†««kdddvvöÑ£GEwIOO/[¶,ﶘ!!!„ÌÌL¥t‚ÍŽH :ãHÓtjjjùòåË—/Ï- %„dffFDD÷š?¾›ÿÌœ>}šR¥J¥ 4Lª?š[Ž ª¥óà˜››k6›}||xåÞÞÞ„ÿþûOt/á],<˜˜˜XªT) 7kç2™L¼¦ûôíòåË–7H#i܇ÁAÁOÊÓŸ•§“t¥ÃAÁAéiš¬¹C{é@åÒÓ-ýà Y:ŽÌ-8Ë–-Ë+÷òò"„ܽ{·ØW0›ÍË–-ûúë¯Ífó·ß~ëçç'ç}y" „È¿ïÓCýäß möV½g Áï¹gðÃÐ:Ë?ÂÂ?ëÂ"ƒÐypôññ¡(*77—W~ÿþ}ò´ÝÑ‚¿þú+>>þÂ… S§NmÞ¼¹Ò:Á×È&H¥ëe%Zâ~Ó:º 5pé<8º¹¹y{{ [srr!ì­÷³¹=Hº¦ÿåxZ·nm6›÷ìÙÖÐ4œœìëë.ºË’%KþüóÏ·ÞzëÇTmj¤(¬ ªÁ„E¤F½ÓpŒ‰‰qqqùᇘq„ÄÄÄ[·nõèÑÃÝÝ)yðàAzz:3/’¦é¥K—>÷ÜscÆŒQºî Zme¤_¢å ¨Ç»¹¹QEU¨PAézãîÝ»ƒ ªZµª——WddäÁƒ-l|âĉ^½zU¬XÑËË+""bæÌ™Jžé¿«ºR¥J£GNHHèÒ¥KË–-322<öÞ{ï±Û$''><$$dýúõYYY—.]òôôìÓ§ðÕºuëÖ·o_E„¢(šÖfÈýá}©§…htÐÐpäôôt³Ùܼyóàà`¶YWDµrrr""".]ºÔ³gO??¿¤¤¤öíÛïܹS´“0---**Êl6wëÖ­jÕªÛ¶m1bÄîÝ»ûí7¥C·ô !ï¾ûn… Ö®]»qãÆÀÀÀ¾}û6Lê'‡iwÌËË;uê”ðY'VÓ4-š(Aag˜#²#€š¤¦¦B>ÿüóÖ­[Ûü"f³™âêêêœ:Ϙ1#55õçŸîß¿?!dèС79räŽ;„1âîÝ»lÒ¤ s¤\¸pá–-[Úµkçœ  ŽZr/Î^2æ\AUIKKSº NGßð¾7#^z-pàocÂùXK}o¿êÕ«6ìðáÃõëׯ_¿¾ý/8{ölBÈÅ‹m®Ì÷ßïåååââR·nÝ1cÆ}åÊ•;w^¹reÿþý-ZÄ<ûûï¿_»v-00О ߸qƒ¦iÞbyÌò&YYY¼ÝÜܾúê+nÉÿý÷ÕW_¹ººöìÙÓþ³¢µ ™¼ˆ¤*‚#ÛîXróc¥RcAAÁ† ¤v|ýõ×……©©©………ñññ={ötwwÿã?†Þµk×S§N{ï4BˆŸŸßÈ‘#Ù‡“'Ož;wîªU«^ýuŠ¢öíÛ—‘‘Q­Z5BÈ‚ ,X`™;½q×]&Ooó–m¹¶»vízÿý÷SSSçÎâ¸kE 8jÓCͬª`]v¤(‚¬Y’‚ƒ‚µ2×d¢$V–â–;ðßd2Iµ5>xðÀBw°èŸƒ]»v•.]º|ùòÌÃwß}÷áǃNJJ8p`±• óðð`–-[Öd2]¸pÁÓÓsÖ¬Y#GŽ kÞ¼yûöí;uêÄÝØ¶:ûùùBîÝ»Ç-dnöÆ…Ð¥K—>þøãuëÖ…„„lÛ¶­U«VŽº „1Žà ‹ÜñŽPhBs¿DËøv>>>ROy{{[˜² ºK¥J•xyëÕW_%„œ>}Ú¶ê¹¹¹1£$|ñâÅÄÄÄúõëoܸ±{÷îõë׿qã†upqqáõJߺu‹R¹reÑ*-_¾¼nݺGŽ™?þ¿ÿþ‹ÔXÒÐâ¨%Â&FZbî>â­Œh}t©+ ­ô21?×ÜùîÖvûfdd¬_¿¾U«Vµk×f ™Ö;¦¹XÿþûïãÇÙ›eäåå9s&***;;;55544466666¶°°pΜ9C† ™7oÞäÉ“í©³››[:u¸7{#„ìÞ½›¢¨°°0á+¬[·îí·ß~ã7æÍ›Çëà†‚à¨%¢±˜ÞjšɈHŽ#ú÷©@x?×ÎÏŽÖvûzzzŽ5ªI“&Û·ogÂ_aaáôéÓÝÜÜÚ¶m+ç³²²fΜÇ<œ2eJNNN·nÝRRR^~ùå &L™2…âââEa#¦Íu&„¼÷Þ{C‡]¿~ýk¯½F¹yófRRRÛ¶mƒ‚‚„»ÇÅÅU©ReÉ’%N[f €—‘Í9s-@A¢?×NÎŽL·¯üíýýýãããnjҡCŸ-[¶;vlêÔ©uêÔ!„,_¾ü£>zçwf̘!ú “&MÚ¿ƒ 8°uëÖfÍšõëׯ   nݺӦMKKK«[·nJJʦM›Ê—/ß»wo;ëL0`ÀÂ… ûôé3xð`ŸŸþ9777>>žy6!!aÚ´i_}õÕ AƒÎœ9söìÙÚµkÇÆÆò^¤{÷î;wvÎu1G­²îG‘ÉŽ©±¤8a®%(HêçZå?ïqqq5jÔøú믗.]ZºtéúõëoÚ´©}ûö̳ùùùwîÜÉË˓ڽiӦÇÿôÓOgÏž8jÔ¨)S¦¸¸¸xxxlÚ´iòäÉÛ·oÿßÿþжmÛI“& mP®\¹äääÑ£G'%%ݾ}»Y³fË–-cï7øðáÃ;wî€Þ=|øpçÎ5Rº" %ŽÆÀöP³}ÖàPlµè}É´A›µ›8p víÚo½õ–Ò-ÁGàkg vP|®¥cÐ÷ž¦pW}ŠŽŽŽŽŽ–z¶C‡Õ«WWºŽ :Žz'š‘G s-F˜‘ŒjΜ9JWÔ]Õz‡ŒXÂ4:×ÒÂñ<ë³Fj€¢Ð₎”X9B$€á¡ÅÑHÐúXÂÒÒÓ”®‚­è¢_ ÀÀ (¶‡ó¬ (Gà Š¶8";‚#<%œ ƒìŽ@‘žCÑð‚#€8­ÞÆfˆPGƒ Ž ‚#À3RÝӆ붃àð si^¡&ï: PÔãÇ_zé¥fÍš)]‘'îÞ½;hРªU«zyyEFF}åÊ•o¾ù¦=UºqãMÓÜBBHVV–à Á ^RÔOvDj°ÛîXB©‘(• 6lØ µã믿.,~üØÝÝy˜——wæÌ™¨¨(;+æææV§N={öp wïÞMQTXX˜Ã ÁQ;hZ<;"P‚î¸FÃìÂKŠÎÏŽÖöO˜0a„ Ü’   Š+8p@æ;feeÍœ93..Žy8eÊ”œœœnݺÙY1BÈ{ï½7tèÐõë׿öÚk„›7o&%%µmÛ6((ÈáGŽ…åx4…ÉŽ\H Ei,Ç`#ÑŒ(ºFOÉaz„¥Øð‚Ë—/÷õõ1b„Ô“&MêÚµëäÉ“_}õÕ©S§6kÖŒ]|ÑžŠ 0 Aƒ}úô?~ü×_•››Ï<›àëë;oÞ<§[ÁQk¸Ù©¤H5.âó`©ääÞjÇÊÏÏ¿sçN^^žÔM›6ݺuë;wfÏž™™9jÔ¨;w:d råÊ%''÷êÕ+))iúôé5kÖLNNf—®|øðá;w=z¤ôèªÖaC£°\Ë¿¿Jš†—Ô±‘ŽÀÉJ.,¦§§—hÍy¯ß¿ÿÇŸ:uÊÂ.‘‘‘»ví*‰Êx{{'&&Š>5yòäÉ“'+u–À2´8j]ô& „ðé‡îܹ³Q£FJW´ÁQƒØj'Ž­Ñ"©[Kã–Ó„Ô®]û­·ÞRº" %èªÖî¸F©yÖ@‘¸é‹áú¬$DGGGGGK=Û¡C‡êÕ«+]GPGMÆDdG‹xÙQ'©«ê@É›3gŽÒU5BWµvHD¤F‹˜ìHt“”ƒGUµŠ,¢lrF7j,DJµ2¢õœÁQ³#¥ Ç5Š–k‰è}_À¹ÐU­ gÞlÀàØj¶ÏZ«x÷}Aj§CpT†Ôª(‹7®Q?Ù©”€®jÅ0Ù‘;´QÖHGMt6Œè=ªFÉ(×ÎÑ€¦!8*‰›‘N*j)5±q¢å%ÁQ¼þhö!·!Ò±4¥PœY2è­§CpT/2yIŠÁKŠÈŽàt˜£0nWµÒuÑ mOp±õ˜E2"M x&@AŽJâŽk”šg @ˆtË"ZÀ‰#œ ƒìhœ›ÁÂ"X/222>>žWx÷îÝAƒU­ZÕËË+22òàÁƒJW³xVÕyçÎÑÑÑþþþÏ?ÿ|‹-~ûí7¥«¯yŽŠÔˆ‘ŽRD—`ÔØÂ:¢Œ—{4Oƒ?¶ÇŽÛ·o¯0'''""bÑ¢E-[¶8pà… Ú·oìØ1¥+k‰UuÞ¸qc«V­.]ºÔ·oßAƒeeeuïÞ}Á‚J„¶!8‚fð²£R#@I*((øóÏ??ûì³víÚòž1cFjjjbbâ²eËfÏž½gÏŠ¢FŽiÕ[˜Íf³Ùì´#²ªÎãÆ«X±âÑ£Gg̘ñå—_=z´jÕªÂfW° ‚£* ¡Q&6;j;5ÊYÓTÅ)?¶AAAÇ?räHƒ 4h`ÿ fgg·k×.>>>++KøìŠ+ûõëÇ< îÙ³grròµk×dVõ‡~ðñññðð¨W¯Þرcóóó™góòò¦L™R»ví2eÊT«V-66öúõë9EòëüèÑ£Ó§O¿öÚkÞÞÞLIÙ²e[¶lyùòå¼¼<‡TƘÕC¥Q„â~[®¢³¡±¶€š9ëÇ633³]»v÷îÝ{饗ìµ€€š¦iš>{ö,臭œœsçÎEGGsÇÖ·jÕª°°PæHÇÕ«W2$22r̘1*THHHhÛ¶-Óûé§ŸV©ReĈááá?ÿüs×®]í?«êìêêúÏ?ÿL™2…-)((8yòdýúõ===í¯ŒaaGP;^Ë"›5ÜâH«0"5¨ŸS~l׬Y?qâD—’mÙ¹qãMÓÜBBˆhó¤Ð•+W¦N:nÜ8æa\\ÜôéÓW®\Ù¹sç•+WöïßÑ¢EÌS±±±¿ÿþûµk×Vg77·°°0æû_~ù%55uÆ ×®]ûõ×_KôÄê‚£B(Š {ÚzL5÷_¥kd¶©@+JþÇ600P*5lذAjÇ×_ݪ7ÊÍÍ%„”+WŽ[ÈôêfggËy???îàÂÉ“'Ï;wÕªU¯¿þ:EQûöíËÈȨV­!dÁ‚¢SR¬="›ëüÅ_¤¦¦BÚ¶mËT l†à¨šÏŽ”ÒxIQ“ÙQÎ0)M€þÉÝè Ÿ\“É$ÕÖøàÁ ¾ÖŽ•÷óó#„Ü»w[˜““C)_¾¼œW óðð`–-[Öd2]¸pÁÓÓsÖ¬Y#GŽ kÞ¼yûöí;uêÄÝØ¶#²¹ÎçÏŸÏÍÍ=pà@llìK/½tæÌ¦l€1ŽÊa²#R£4ÑŒ(ºFªÑE¿DË@UäüØ:î'×ÇÇGê)oooZšµoàââÂëá½uë!¤råʶUÞÍÍ™3xðà‹/&&&Ö¯_ãÆÝ»w¯_¿þ7ì<"{ê\¦L™Ö­[O›6í¿ÿþ[»v­­×Ðâ¨,n»#R£ER-‹kqä¢8C¦Ð[   ŠþØ:¶«ÚÍÍ­N:{öìáîÞ½›¢(vh eÿþûïãÇÝÝÝ™‡yyygΜ‰ŠŠÊÎÎNMM -,,œ3gÎ!CæÍ›7yòd{ŽÈª:oذ¡k×®K—.íÕ«[èëëK°’‰}• lh–æc­½îf6¿éÙ@å”þ±ulW5!ä½÷Þ:tèúõë_{í5BÈÍ›7“’’Ú¶m$g÷¬¬¬™3gÆÅÅ1§L™’““Ó­[·”””—_~y„ ÌŒf—¨¨(B1í9"ùunÚ´)!dÑ¢Eo¼ñ; {ñâÅ„fÍš9𺠂£x? ÌÚ0IÑ~ª šAÁA²ª&úÇF¥Ç„é['fG¦c×/8`À€… öéÓgðàÁ>>>?ÿüsnn.»>öòåË?úè£wÞygÆŒ¢»Nš4iÿþý 48pàÀÖ­[›5kÖ¯_¿‚‚‚ºuëN›6---­nݺ)))›6m*_¾|ïÞ½í?"ËuNHH˜6mÚW_}5hÐ ??¿ &ÄÇÇ7iÒ¤]»vEmݺõСCÆ «_¿¾s.™.aŒ£Ò¸]Õ†aôO##hme¹”+W.99¹W¯^IIIÓ§O¯Y³frr2»~d~~þ;w,¬•Ý´iÓ­[·Þ¹sgöìÙ™™™£FÚ¹s§‹‹‹‡‡Ç¦M›ú÷ï¿ÿþÏ?ÿ|×®]mÛ¶Ý·oŸÌ†L{êüðáÃ;wî*%õéR=´8*G…ó¬õK?7žÆm`ŒÆ?Ý>ܹsg£F”®¨ ‚£rD ÓâHtsãi"ÈŽH }¨]»ö[o½¥tE@]09œJæèFíåHÜô%:::::ZêÙ:T¯^]é:‚ÕÁ0 ººñ4nF5gÎ¥«Ê@pÅhþÆÓ¼úRåz1ŽàHò×Ó½ñ´ÒÕçWѺé'G¢¶ãpGP€Nn<Í9‘ûIè‚#ØË†´§ÞOÛø,ÜO@_Á^R-…2¥òa±hmÄe´¼‹Uåš…àèxçÎSº Î&ÌŽšœìòô`°(#€(Gp nvÔpj|z0¶-ʘž–®tÕJ–ãq Š¿ë·T¹>Xè¡æ>¥ŠYl”³(#Aë#‚£cÐ4-̈úND,2yQIÑúƒá‰x9hŠÉdRº º‚àè ÅËŽO¾§(MßƪNg65ª¥«Úæá‰ÔÓÞjc4,%%¥¤ß"===((HépŒqtšf³#Ñrj´y%EnXTËŠŒRkâX®e€G{1I‘}À/§(Bˆ†:¬¥Ú -7" ŸUK»£°ÉÐr ¢…E•>Å!8ÚK8®Q´\C„™ÏÚÔȾNIUѪÇm2,vG,Ê ÁÑnÜVFîÐ8Šâ܉Y¹C~ 7;»—òÍŠ2އPh5°‚£Ý„³ažÓš›U-\Ä[X®Xˆ”Š}¢åY[GK—À£Èl˜§ÿ*ž­eÈÛØIkëÈlh(µ¯èÚ:ª`̪v ‘9ÔO³c ½£œiËöÜEšÛU]B‡`5ÛnÈÝ S¤ì€àè œÔXdh#¥pN±í.Ò¶¯­#sC™]ÉbÇcÝÍ…›!;Ø ÁÑA8-‹-^nÌ&@«få]¤‹¤FŠ&ÅfGê%šÞ,Œbä~‰–KULNG6ȃà(iõêÕ111ááá/¿üòøñãoß¾-sGš²:˜ÈÙ…—ÞØ]¤"E(ö‹yÈìÂ+îeõÚ:¶­³-¿ß™.ú%Z.µ£sµoßÞÙo ê€KoX¸ô`4ŽâfΜ9qâÄ .4iÒÄËËkÍš5ï¿ÿ~^^žßÂBà“ÚŪ~gšÐ4EÓäÉ׳BÂ/äíå€Häu%[ÛïÌÝÒÚg´2Ø ÁQDJJJbbb@@ÀæÍ›·lÙÒ¯_¿'N|óÍ7’ûX?h¦DúÙvA©Wéw¶Ÿž¦+þL—M–·—Óï,³ë£œ ÁQĪU« ‡ æïïÏ”Œ;ÖÛÛ{Ó¦M………âûX5hïé.¼ìø$5Šíò¤s™fƒÅÝGªß™­·ÅÑ‘)P¸—Œ£.¾ßYþzÈŽN„à(âðáÃ...QQQl‰««kdddvvöÑ£G%w³a±Nv´ §‹™ÙåI!õ¤@ªß™yYa ”5φÝËòE[ å4+ûU3À°ùhšNMM-_¾|ùòå¹å¡¡¡„ÌÌL‹;Ë´ÇžBÑOú¦iŠfÛ-;vж˜¶(B(BSô³*=-RH‰lo] m&¤OIUÏæ~g„E%àÎ1|¹¹¹f³ÙÇLJWîííMùï¿ÿø;ÈÝHÑT¨)”}HŸ“˜ÎÂÝh 5qŸJ9—òl³¢kåHíBB‰ðøÛ˜,mo 5‰ìUô„Û›L&JR¨þ{ 6f^*…¤˜L&¦–÷Ò„'ÇƃKoX¸ô`(Ž|ÌÔé²eËòʽ¼¼!wïÞåï zw»¢å4¡I Å Ãí«NÛáÙlN?2;ñ%Eê=awI9—"Ýì’ò䪸½8Û§¤<©†å½žÕ–³K1GŠBW5ŸEQ¹¹¹¼òû÷펒¬\,¦È¸FZ|ž5jKщ/Å×JfŬ½Û ÖÙ0G>777oooaËbNN!„g-ÂÊA{"³aŠÍŽ6Ü@Ï )Ð΀ˆ|  Ž"²³³™¤ÈJOOgžßÇúÅbÄçPÓÒ-ˆ6D:ç§@Ð/G­[·6›Í{öìaKhšNNNöõõ ßdžÅb¬h6D:ç§@äNýBpãââòÃ?0ã !‰‰‰·nÝêÑ£‡»»{ñû;'á©vÐ)Ц D,\¸0!!¡råÊ-[¶ÌÈÈ8xð`:u.\(\¦À %­[·níÚµ'Nœ |ñŇ ƬÈ`LŽ Æ8€,Ž ‚#Ȃಠ8€,Ž ‚#È‚àè0«W¯Ž‰‰ ùå—Çûöm¥k%(--Íd2ýóÏ?¢Ïâà?yyy?ÿüók¯½Ö°aÖ-[8pß¾}ÂÍpéõçÎ;Ÿ}öséÛ¶m;|øð´´4áf¸ôúvõêÕÆ=Zø”Ñ.=‚£cÌœ9sâĉ.\hÒ¤‰——ך5kÞÿý¼¼<¥ë%eÉ’%ROáà? øê«¯nÞ¼Ù¬Y³š5kþõ×_ï¾ûî?þÈÝ —^rrr^{íµåË—B¢££Ÿþù7vîÜùÔ©SÜÍpéõ¦é1cÆÜ¿_ø”/= v;{öl­ZµZ¶lyãÆ ¦dÊ”)¡¡¡Ÿþ¹ÒU»{÷îáÇ?ýôÓÐÐÐÐÐÐãÇó6À‡A—–-[Ú»wïÜÜ\¦äܹs/¾øbíÚµÿý÷_¦—^—˜‹8cÆ ¶dÍš5¡¡¡½zõbKpéuoáÂ…ÌïüQ£FqËyéÑâè«V­*,,6l˜¿¿?S2vìXooïM›6*];p¤Î;÷éÓgÅŠRààK›7o&„L˜0ÁÓÓ“) 4hÙlf;¬qéuéÀžžž~ø![Ò½{÷Š+ž>}Úl63%¸ôúvþüù™3gÖªUKø”1/=‚£>|ØÅÅ%**Š-quuŒŒÌÎÎ>zô¨ÒµGúòË/çÌ™3gΜæÍ›‹n€ƒ.¥§§—-[6,,Œ[BÉÌÌdâÒë’O«V­J—.Í-,UªT~~~~~>ó—^Ç âââ|}}ÇŽ+|Ö˜—ÞMé hMÓ©©©åË—/_¾<·<44”’™™¡tÁaZ´hÁ|³sçNá³ø0èÕüùóÝÜø¿-OŸ>M©R¥ Á¥×¯¥K—òJ>|éÒ¥† 2Íϸôúöý÷ߟ9sfáÂ…åÊ•ã=eØKàh¯ÜÜ\³ÙìããÃ+÷öö&„ü÷ßJWœ½ªS§¯äàÁƒ‰‰‰¥J•êÚµ+Á¥7€cÇŽ­Y³&==ýرcU«VMHH`Êqéuìøñã?ýôSß¾}›7oÎüG‘˰—ÁÑ^Ì䩲eËòʽ¼¼!wïÞUº‚à<ø0Ùl^¶lÙ×_m6›¿ýö[???‚Ko)))III4MBÂÂÂ<<<˜r\z½ÊËË‹‹‹«R¥ÊÈ‘#¥6 †¼ôŽöòññ¡(*77—WÎÌÛgþçƒîýõ×_ñññ.\ œ:u*;Ô—^÷Þ|óÍ^½zݺukݺuß|óÍÑ£G7lØàåå…K¯W —/_^¾|9;%ŽÇ°—“cìåæææíí-ü¿ENN!„iF€ƒŽåççùå—ýû÷¿zõê!C6mÚÄ …KoEU¨PáÝwßíÕ«×õë×·lÙBpéuêСCË—/ÿàƒ4h µa/=‚£dgg3ŸVzz:ó”Òµ§Â‡A— GŽùË/¿´nÝúÏ?ÿüøã…¸ôúsþüùqãÆmÚ´‰WÎ̯¿qãó—^Ο?O™3gŽé©îÝ»Bþøã“ÉôÚk¯1›óÒ#8:@ëÖ­Ífóž={Ø𦓓“}}}ÃÃÕ®8> º´dÉ’?ÿüó­·ÞúñÇ¥péõ§\¹rÿûßÿÖ¬YÃ+¿té!$((ˆyˆK¯?ÕªUëT³¤F¥J•:uêÉlfÌKàè111...?üð{?¢ÄÄÄ[·nõèÑÃÝÝ]éÚSáà?4M/]ºô¹çž3fŒ…Ípéõ' Àd2íÝ»wÇŽláÙ³g—-[æååÕ¤I¦—^Z´h1£¨#FB"""f̘ÇlfÌKÉ1P©R¥Ñ£G'$$téÒ¥eË– {ï½÷”®8> ú“••uéÒ%OOÏ>}úŸíÖ­[ß¾} .½NM™2å­·ÞúðÃÃÃÃ_xá…›7o9r„òõ×_3ê .½óÒ»~öÙgJ×AÂÃëW¯~ãÆ½{÷º¹¹uèÐ!!!A¸^(èÆŽ;þý÷ߘ˜˜Š+òžÂ‡AgRRRÖ¬YSPPpSL­ZµØY2¸ôúЩS§ÿþû/##ãĉE½ôÒK3fÌhÖ¬w3\zÝËÊÊZ¹r¥ÉdzõÕW¹å¼ô³*€eã² 8€,Ž ‚#Ȃಠ8€,Ž ‚#Ȃಠ8€,Ž ‚#€NŒ=Úd2íÚµKéŠ~øÁd2-[¶L© äååEGG'%%)}&ž`.Í”®ˆˆìììO>ù$"""**ÊžmxxŸõ|8 !f³¹mÛ¶¿üò‹ÒÐ$GЛY³fyxxtëÖMéŠhÀ—_~¹eË—úõëÛ³†¸ºº~òÉ'3gμvíšÒuÐ7¥+zíçç׸qcEÞýüùóK–,IHHpuuUúLhÀ¡C‡!¿ýö[åÊ•íÙ†GÙÏ@±:uê4°&6}IDATwîÜiӦ͞=[éºh ‚#8XXXXXX˜Rï¾xñâ²e˶k×NéÓ  <(S¦ŒåD(ge?ÅrqqéÞ½û·ß~{ùòå^xAéêh ºªÀyÌfóãÇKîõïܹ³nݺŽ;zxx”hòóó Jî@ ¤uéÒ…²téR¥+ 1Ž ›8q¢Édš>}:¯üäÉ“&“©yóæL@¹uëÖŒ3:vìØ¨Q£FuêÔiÚ´i7nÜzY© uêÔy饗¸%ûöíûä“OÚ´iÓ¤I“~ýúýðühuåʕɓ'wìØ±aÆQQQï¿ÿþáÇ-ÑO?ý$œqùòåÄÄÄfÍšÕ­[7""âÍ7ßܶm›Ô+;v¬N:‘‘‘÷îÝc ïß¿U§N'NHí¸iÓ¦‡¶mÛVx*,W@Îéb¶IMM?~|ãÆëÖ­Û¡C‡É“'ß¾}›¦é¥K—öë×/"""::zâĉ·oßVoïÞ½C‡ŒŒŒŒŒüðÃwïÞ-ÜÆòå`êpõêÕãÇ÷èÑ£~ýú—/_¶p-6nÜ8hРW^y套^0`Àÿýßÿ™Íf橯¿þÚd2åæææææšL¦ððpáîRÛûiä}xäŸm©#µÿCëïïß°aÃß~û¦i²!8(¬sç΄-[¶ðÊׯ_OéÚµ«››Û­[·úôé3þü«W¯V­Zõ…^ÈÌÌ\´hQïÞ½EŠ|ß|óÍÀ·lÙRPPàïïäÈ‘ï¿ÿ¾oß¾ÙÙÙÌçÏŸïܹóŠ+²³³kÔ¨AÓtrròÛo¿½cÇ«Þhþüùß~û­»»{³fͼ½½;6xðàM›6‰n>pàÀ7n|õÕWlá×_}íÚµ>úÈÂýû÷SÕ A;+`Áرc׬YS½zõˆˆˆË—/¯X±âƒ>˜0a”)SrrrBCCoܸ±zõê‘#Gòv\·n]llìŸþYºté;wîìØ±ãý÷ßç±+ör0Μ93`À€S§N=zô¨°°P´ž4M3føðá;wî¤iÚÛÛûàÁƒ_ýuŸ>}˜ÏLDDDÿþýÝÜÜÜÜÜú÷ïÿÖ[o _Dt›’û4 ‰©£>´áááwîÜ9sæŒcë  s4(Êl6·hÑ"44ôôéÓÜ–-[†††ž?ž¦éyóæ…††4èþýûÌwïÞíÓ§OhhèêÕ«™’Q£F…††2)}¸ÿ~ÞÛÕ®]»iÓ¦Ì÷;vì mÓ¦Í?ÿüÔdee½÷Þ{¡¡¡_|ñSòþû†Îœ9³  €)Y¼xqhhh—.]¤Ž(11144téҥܚ„††~óÍ7f³™9º©S§†††¾ùæ›R/’ŸŸß©S§ÐÐÐÝ»wÓ4½ÿþÐÐÐ=z°Õ=“:uâ•Ë©€œÓÅlS»vííÛ·3%§OŸ®S§Nhhhݺu÷îÝËþý÷ßµk× ÍÎÎæUà£>º{÷.MÓ?^°`³{òå\楚7oÞ·oß}ûöeeeI5kÖ„††¶hÑâèÑ£LÉÕ«WßxãÐÐÐøøxv³† 6lØÐòG”·œO£ègÀª§Ô‘:ðC»yóæÐÐП~ú‰ÙÐâ 0—N:‘¢ŽG޹qãFxxxÍš5 !ÑÑÑ£F*[¶,³A¹r嘦ʌŒ ›ß:!!2kÖ,¶ ÏÏÏoÖ¬YIIIwîÜ!„œ={–ÃNRîÝ»÷G}Ô¦M«Þ«~ýú#GŽtqqaù£>"„\¼xQj{ww÷¯¿þÚÍÍmâĉ7oÞœ0a‚§§ç7ß|ca®ôõë×srrªU«æ HéÕ«W«V­˜ïëÔ©Ó¨Q#BH¿~ý^~ùe¦°Q£FuëÖ%„ð:‘+Uª4{öìråÊBÜÜÜاOBÈ?þ(ÿr0Ê–-ûÓO?5oÞÜÏÏOªž³fÍ"„|ùå—lÿr``à÷ß_ªT©+V\¿~ÝÚg•ЧQ”ðHø¡ &„¤¤¤8¶Îú†à <æ.·Û”é§îÑ£ópðàÁóæÍ«Q£»AVVÖ† ìyÓÛ·o§§§óf¿–)S¦yóæyyy§N"„0ÉuìØ±‡bF[º»»:tÈ!V½]‡¸½½½]]]i‹ÃËêÔ©3xðàëׯ¿þúëW®\3fLõêÕ-lÏôTúúú:ª¢"""¸™·-ä½xLLŒ›[‘…,úõëG9}ú´üËÁèÒ¥KéÒ¥-TòæÍ›7nÜ ŒŒŒä–ûûûGEE™Íf{úgKâÓ(…w¤ŽýÐúøøBnݺU5Ð+,Ç ¼°°°êÕ«_¼x1%%Åd2lÞ¼ÙÓÓ³cÇŽì6W®\Ù½{÷‘#G233/]ºdÿ`²´´4æ_“É$º³<¢g›w¤ŽýÐ2¯f¹íxT ŽC‡ezýØ~êû÷ïñÅóçÏoÑ¢»‹ ÃÔ®^½ÊNMeÀÊ”)3~üxË{QŬºBÉÏÏß³gϸqã’’’ZµjÕºuë=-“'O¾yóf£FŽ=úùçŸÏ˜1ÃÂÆÏ?ÿ**T°³æ†‚1ŽªP­Zµºu릥¥  B… .\`ÆØ±Ìfs=Z¶lyëÖ­+W®´jÕê7Þ`Ÿõððhݺ53›Çò ‚ö[·nݦM›^yå•_~ù%$$dÆ ÂE‹¸Èӑ޶±pºì—””Ä®¡ÈX²d !„ 7r.‡ü÷b^íêÕ«{÷îå–geeíܹÓÕÕµvíÚ¶…=ŸFζc?´Ì)­X±¢m§À˜Ô‚™"3a„ÜÜÜž={²åL:{ö,ÌfóŠ+˜›^äå剾38lÉ’%¹¹¹LÉÁƒçÎËÝfĈ………#FŒ`§JÜ¿ܸq§N óóó ¼wïÞ?ÿü³`Á¶5èâÅ‹ÌÊÕÖS´ßõë×?ÿüóçž{î‹/¾pwwÿꫯ\]]ããã-4(–+W.$$„)d’sºì”™™9bĈB ùå—Å‹»¹¹ }úÿýßÿ½ð ¹¹¹.\ iºwïÞ¢÷qš¦ÇŽ›““3uêT&©Ô«W¹ñI||<³ÐŒ¨æÍ›/^¼8##CjQ)rN—L&ÓæÍ›·nÝtåÊ•¼¼®®®¢7¬R¥Ê¯¿þÚ¦M—½{÷ž;w®råÊ?ýô·áŠ¢¨iÓ¦}÷Ýw­Zµ*,,¼xñbPPЈ#Ö®]Ë.jÓ­[·Å‹¿òÊ+žžžgÏžÍÍÍ}ùå—çÌ™3yòä’;K–,9pà@‹-Øž„O>ù¤Zµj›6mÚ¼y³ÔŽQQQ„á½ìŠ%çtÙiÑ¢EŸ~úéK/½tëÖ-__ßöíÛ/[¶Œ;U\ÎåÏÅÅå›o¾ùöÛo£¢¢ nÞ¼ùâ‹/ÆÅÅ-[¶Ljâ¹L6|x¶õ¡¥iúðáÃuëÖe†Æ€L”ç €:=xð ;;»J•*ò'AkMÓíÛ·÷óó“ºK²Æ9]j ÔÙ>|øpß¾}¸­ûP,´8è_Ù²e«V­j„DQÔÛo¿ý÷ßÛ3qÇ8§K ”:Ûk×®õóóã.• r 8€®ôèÑ£R¥J‹/Vº" ^·nÝÚ°aÇ~hÛò¢F†àºâééùÙgŸ­X±âêÕ«J×TjΜ9!!!o½õ–ÒÐGЛÈÈÈ‘#G¦¦¦*]P#³Ùìéé9uêTü°&Ç€,øÿȂಠ8€,Ž ‚#Èòÿé¯âgÞLUâIEND®B`‚statistics-release-1.6.3/docs/assets/nbinfit_101.png000066400000000000000000001227701456127120000223120ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A€IDATxÚíÝwX×Þð3ì¢ H ÕBK±!Š[cohŒ£QQQ,1ËkŒ-bnÛ5^ob® +Æ#ö¨Á†Ô †Ä Q‰‚ 켆ÙÝÙÙÂÖïçñIس³³gΙÙýíið,K4±3uÀ2 pI8€$@Ž GÄjÇ;v0Ò<}úÔÔ™5ksæÌ¡Õ»wom_»wïÞ]»víÚµ+//K\»v-ÝaóæÍM}pæNŸÂ×ÙÓ§OG]»vm¹\^³fÍçÏŸ›º,˜9_Ÿ|ò ÍF\\œHÆÔtž¨¬eÒ/73©ÁªÈ¡>Ÿ9Ï(‰$^;Uô!iÎW®ÉÉM°fƒ~öì!äðáÃ:u2uv@’?üpýúõôoZ} 3+¸ÔtžXA-Ø ÓÖÎV8Ö¨Q#00{XTTôðáCúw­ZµªU«Æ=eggµÍ®æ©fÍš´jüüüLPáàÁƒôvíÚõîÝ›±€A˜í% 2cêÎ[>O̶Í-‡φiËLJÕä¬6pŒ‹‹»{÷.÷ð§Ÿ~êܹ3ýûàÁƒ 40uU»{÷n­ZµªW¯næûÔG|||||¼©sav̧š¸ŸX3fÌxë­·L+d¶—€ÊŒ©;lù<1Û4·<¦=.3)U“Cc!„ÄÇÇÓ üs¢{÷î4±gÏž\b›6mhâìÙ³¹ÄçÏŸÏ;·K—.>>>>>>;wž5kVAAø›òGfüùçŸC† ñôô öññY¼x±òöRÞEú>Õ  M™¶'ƒ”B#„dgg÷îÝûµ×^ 9rdnn.=™†™3gNU\£F¢;tèÀÏÉæÍ›iz5¸„BÙ½{÷èéééëëÛ§OŸsçÎ)o#ȘºóAä<‘˜I§“V{©}‘Z—››ûî»ï¾þúëµjÕ0`À±cÇD J‡³±ª¯•³R>Ù¤Óጢ4~4éðõ!¥Ö$~ë™Ã——ŸÞFÅچÇs‡œ™™)xvÆ ô©   .ÑËË‹&úùùÑ”ââbGGGšxôèQšxöìÙ×_]¹`ëÖ­›žž.’%.ôìØ±£òFŽÉßXâ»Hß'·e¯^½øo4hÐ šžœœ,²å€TžNýúõ£Ìœ9SùÙgÏž±,»fÍú0**JçŒ lÜ¿‘ñâE‹-”ß‚a˜¯¾úŠ¿¥Æ£ãç¤I“&žžžüͼ¼¼>ÿüs{{{Á»p猞ÕôÓO?ùøø(Å”)St8X¾^½z)¿äÆ‚œ¼÷Þ{ôïÙ³gëV}:šÈ$ådRh,Ëžš´úú^k¿õLþå¥Û§·1!pdY–½ÿ>÷ìÇY–åwsBrssY–½pá}èääôòåK–e ¹‘”]»víÞ½{5hН¯/ÿk@€ßfIñööމ‰qvvæRöïßO·”þ.Ò÷©Oà¸uëVî<îØ±ã°aÃ6lȽÅO?ýIJì£G²³³¹Lþ÷¿ÿÍÎÎV(¬ªkOç hÙ²¥ƒƒ—röìYîèèØ³gÏÄÄÄ–-[Ò¹\~ýúuéG'ȉ]DD„‡‡‡à:¯]»6÷°C‡úWÓÓ§O¹Ÿ4;vœ7oÞàÁƒ¹qº_ýµV+ %p¬S§÷ý¦×­ú´-4WÈÉ ±ÐŠŠŠjÕªE«U«Ö¦Mî!ÿx ~ ¼zõÊÝݦìܹ“;@®Tÿ÷¿ÿI? e/_¾ àj¿U«VüñßÄ £¶ç§òé¤íÄk_¤$~&;99ч2™ìêÕ«* J«³Ñ8׋rµýd u>£$~4iõõ!½Ö$~ë™üËK·OocBàX&,,Œ>»gÏ–e·oßN/0š¸k×.–eÿýïӇݻw§¯š?>MqqqájýòåËܯÙ3gªËÿ4zûí·_¼xÁ²ìï¿ÿÎå¤mÛ¶Ú¾‹ô}ê8Ž1‚¦L:•{a³fÍhâÒ¥K¹D.:|ø0—¨|íév€_|ñM¼~ý:wù‰ü kÛ¶-ÝfáÂ…\b—.]{“xtüœìÛ·eÙW¯^uìØ‘K\¹r%˲¥¥¥\»‘§§§þÕ4kÖ,šÂo$øâ‹/h¢¿¿¿V«’ÊZãç¹~ýú›6m:sæÌíÛ·u®>m Mü ?$ÚŠ+hŠ««kFFÍIBB÷.\àhðK€Ûá˜1chÊíÛ·iJõêÕŸ>}*ý(”}õÕWt›š5kž9s†&Nž<™;.‘¯yu‡ .]b&EN'ö ñ£@Ý!ˆœQ=zô æ½{÷Þxã Áe(¾ˆçÇ8׋È9&ñ“M$pÔ猒þÑ$ñÚ‘^kÒ¿õ¤¿{U|yéóémãX†«•3gÎBèp† Ò&‡óçÏs‰„7ß|“þ±oß>úÇĉ¹A5š2eŠ`r¹|ÕªUtVD­Zµ>ýôSš~êÔ©/^èö.÷©nÚ´iÓ¦M“&M¢)………ôï¿ÿþ[Ûêp€ 6œ0aý»^½zíÚµ£çää¨{—¢¢"úÇ·ß~»aÃ:´ÿÛo¿ÍÌÌÌÌÌìׯŸnGE;hìííû÷ïOÝÜÜ&NœH±³³ã>•ž} M™Æ“Ab¡mÛ¶>5a„ÈÈHš“ýë_ÞÞÞ‚w4ø%Àõ!rYýé§Ÿèo¾ù¦‹‹‹ô£P¶yófú¿ébÉ’%ÊÇ¥?m3©|:i»> 4²··ç.̺uërfZZZii©øk5æÇT׋OZ}ΨªûhÒ§ÖtV_^UWD†‚À± 8þòË/¤´Ýƒ5hЀ߇Ε۫W¯~ûí7ñ×jÌ©®ž´úœQU÷ѤO­é¬*¾¼ª®ˆ c™ØØX¹\N9{ölii鯿þJxã¹sç^¼x‘™™I©U«Výúõ !Ü]g«:q×ù‹/¸E+Ôœ5jÔpuu¥ÿù矺½‹ø>õ,«W¯^M:ÕÛÛ{ðàÁŸ}öÙ‘#GJJJtn½Ðí¹OL•Uš?þøñã¹õnX–ÍÈÈøä“OZ¶lÃÝ@Û£SùÖÕ¶š 4®´üèÑ#é«Á }ƒTŸV…¦LüdXh\£‹ ”á÷”a/Bˆ½½=7pŽpýùçŸiz=¤…râ³gÏþúë/ú·à|S>.=éIåÓIÛ=èðQ ‘  œœœ¸ óÞ½{â¯Õx6šêz1ÔI«çUuMúÔšnªèË«êŠÈP8–qqq¡ó˜ vïÞM'Òsã£GvïÞM'ÌsÍ...ÜyùÇð÷Æ=¬V­7Ð[ÁYUTTÄMã Ôí]Ä÷©gY}òÉ'+V¬()) ^µjÕ¥K— è×›n%obÔÈÞÞþË/¿ÌËËÛºuë!C¸é„ãÇsËöèÄi[M...5kÖ¤æŒV}:“Xh5kÖä Båß~Uq’p]?þøcff&ýnæZ"¥W½€££#·47÷}Oün«:dRùtÒí0 Kð³­¨¨ˆ++=‹ÈT׋¡NZ=ϨªûhªºZS§Šj³êŠÈP8VàVÿòË/ !ÎÎÎõë×çÆ¯ZµŠþÁoçf3p7Q< ¡ ™"®^½š››Ë=øàƒÆËåòè\ò)Fq/_¾|øðáÇ_¾|9`À€M›6ýõ×_‡âV=àVü2øÑ‰ÐXMʸß%%%¯ó¸»»»¹¹¹¹¹9::J?Xƒ0BõéIJ¡1 D7£­}ÜKŽ9"ØaUœ$;w¦ßééé{ö졉üñLRŽBy·2™Œ;®pé,ËŠ/“YuE]Õ{ПàÂäÊ­Zµjúÿð6Õõb¨“VŸ3ªJ?š4Öš>ßzê¼6üé­Ž¸¦Dú=%“ɼ½½é•ôôtBÃ0üÛVrËVýë_ÿâÖ§ÍÌÌ\¶lý›?DW¯^%&&¾zõŠòÇ̘1ƒ¦÷èуŽ×á]4î“ëSøå—_¸+ßÿ½Æ+ÿŸþáÚc¸Ëï×_UþräGäYƒ£¸ëׯûúúúúúúùùÑùªr¹¼sçÎÜlD777Ng«I÷ófݺu4Ê$„ìØ±ãµ×^óôô üçŸ$¬¡¡úô$¥Ð!íÛ·§O­X±‚4dYö£>,ÎU—áõV¿|ùò³Ï>#„Èd2þÝ$…2ÚmB*WТE‹®]»fª¢®Ò=èS Tqqqbb"íbúã?¸…ýD.LéLr½ö“Mç3J·&CÕšnßzFþò2ò§·n¬ö–ƒ:hÕªUÍš5¹O%n²XTT7B¢qãÆü•i§OŸþŸÿü'''çéÓ§ÑÑÑ:u’Éd‡¦«Ìûùùño5!âûï¿ ?wîí¬´³³[°`>ï"¾O®%µ¨¨(22222òÑ£GÜ8_ÎÎÎÎÎÎtÒ¨Q£èÍ-~üñG•÷pss£[þßÿýßÕ«W'Mš$X±Ö°Å(‚VÜÇKJJ¢££ß~ûmß~ûm÷îÝtz/­ŽÎ Ä«IÙ‡~¸~ýúÇïܹ³cÇŽíÛ·¿zõ*7qoÊ”)nnnRÖPŒP}z’Rht³ 6¼zõ*//¯Y³f-[¶ÌÉÉQž¥T—Õ¿ÿÿüç?¤|Škll, Ä£P6mÚ4ºä“'OZ·nݲe˼¼<›ª¨«tzÖE/Ìzõê={–~)Èd²O>ùDÿ"2ÉõbØO6Ï(‰ŸÃ”ÁkM«o=S}yiUD&cêõ€ŒDã:ŽÔÛo¿Í?iâ¢E‹¸Dþ:OÔ/¿üBW‘8~ü¸H–¸Ubbb#0är9½{éï¢Õ>¹8ÁÁÁÜÏ}‘u¨üBîniï½÷÷C† áo&²ø¾¶(e!.Ó§O«ë䊥«I?:•9Ù¸q#Mlذ!—xâÄ ® ´­&•ï²{÷n•?:ÇŽË­l,ñ`U_ÇQåênúTŸÄB¹‚¤œ R eÙÿûß‚¯ggg®ö¹u«â`+¯NY½zµà%…²áÇ ^âääĺ1à:Ž3)~:鳕µ¯²DÎ(777ÁÔ“jÕªmذÛRd5A)ù1Âõ¢œC}>Ù xFIÿh’xíH¯5Vò·žôw׳6Už!ú|zºª+áz«IåG•P-Z´¸|ùòœ9s:uêäãããééÙ±cÇ>úèÊ•+ÑÑÑRÞÔÃÃãäÉ“£G õññéÛ·ï¡C‡ÆŒ£Ï»HÙç7ß|óÉ'Ÿ4jÔÈÉÉ)22râĉgΜLrT)%%¥Q£F¤üfIII.\àúÔ6oÞÌõ¤¤¤ 2ÄÛÛÛÉÉ©aÆ"Óõ/FZµj•=gΜæÍ›×ªUËÞÞÞÝÝ=::zýúõGŽᦰI?:ýI©&e=zô¸téRBBBÓ¦MkԨܻwïôôôÕ«Wsƒx$¬¡¡úô$¥Ð! ‡îÓ§O­Zµj׮ݧOŸ“'O*ßþ«*.RynµrÓ‚Ä£Pöõ×_?žþíííýÎ;ï>|8&&Æ„E]¥{P®/éµ@‰MOOïÑ£G:uüüü päÈnmý™äz1ì'›Îg”ô¦ª¨5éßz&üò2ò§·.L¹Ú.‰?ìL¾O•^½zõý÷ßs²V¦ªÎhÕ1lØ0Z_ü&@K¼Î;·téRz°A?iqFÙ&Œq]ØÛÛ›ÅH Îûï¿OùoÓ¦ wSµgÏž:tˆþMl(KÓ³òÀ‘eÙììl~zhh(!äþýûêÇèèhúÇÏ?ÿlêƒ0 V8–––º¹¹ Ò]]] !ÿýwU¼iXX˜©ªÖÍ›7M°òÀ‘Nvrr¤;;;Bž>}ZEïk›'“9 C¥˜TŠyB½˜!TвÙF"+ŸãææÆ0Laa¡ ýÙ³g¤¼Ý¤°òÀQ.—»ºº*·,B¸yÖ ‘•Ž„Ÿüü|)rîÞ½KŸ2uî,†õŽ:u*--=~ü8—²lzzº»»{dd¤©s`1¬?pìß¿¿Ý—_~IÇ5BÖ­[÷èÑ£¾}ûÚÛÛÓ”çÏŸß½{÷Áƒ¦Î,€ù²òYÕ„ZµjM›6mÉ’%ï¼óN»vírrrΜ9Ó AƒÑ£GsÛ¤§§'%%…„„ìÝ»×Ôù…* ‰f•bžP/f•æÃúGBÈÈ‘#½¼¼vîÜ™––æçç7tèÐÉ“'Óy@"†eYSçÁÚ`Á-ëf³ßõÖ?Æ #H‚À$Aà’ pI8€$6±Ž#€„……™:  #Û\[G Ÿ;–¿ü¥CW5H‚À$Aà’ pI8€$@Ž G €T-†aLøî,ËšºÀz Å ê±&û'¶ÎŸ?Ÿa˜=z(?µdɆa.]ºdê‚#AAA½{÷¦·k×.22Òàoñ믿2 ³uëVuEtòäI姺téÂ0Lii)}˜““Ã0̈#¸ JJJ¾þúëvíÚùùù¹¸¸4iÒ$11177—ÛàóÏ?gD8p@‡ÃY¸p¡§§g£F ^PÁ¯Ps rRõïßßÔ¬"ç<€FlÚÞ½{¿ÿþ{SçB™L&“ÉL IX–íÙ³gBBBQQÑ!C_ýõ5kÖ„††^½z•nÓ´iÓdžêÕ«ûøøðSµ}ßk׮͙3'<<|Ö¬Y¦.ƒ*3þ|ƒìŠR?¾wïÞ\ÁåË—èëëëìì•’’RRRb´w7¾§OŸŽ;ÖßßßÙÙ9&&æÌ™3R^¥\ÝÅÅÅr¹\ðCËËËËÔÇg+ÐU `Ó'NœØ¥K—š5kš:/=zÔÔYjÓ¦MiiiÓ¦M[ºt)—xñâÅèèè#Fœ={–Ò®]»víÚqÏ®_¿¾nݺ˖-Óç}³³³ !óæÍëÔ©“©Ë ª\¸páäÉ“†:@þIõðáÃ;wNž<Ù8rçÎØØØÒÒÒÞ½{ûûû>|xÊ”)ÇŽûᇌ“#+((ˆŠŠºwï^¿~ý<==SSS»uëöóÏ?‹w#¨¬î»wï–––¶iÓ&88˜Ktvv6õ!Ú Ž6mΜ9³fÍš={öçŸnð¿zõJ.—ÛÙÙ\ÏíÝNLLä'6iÒ¤ÿþß|óͳgϪèKŽiupp¨¢ãÒªBi?¾¡‰KJJŽ9rêÔ©U«V)Š*:@cš2eÊÓ§OÏœ9Ó¼ysBÈ‚ FµaÆtíÚU·}* –e R憭>BÈŠ+²³³7nÜøÞ{ïB&MšÔ¬Y³©S§9rDycñê¦?,X`Å?Ì™Í} _ÿþý»wïþå—_ž?^d³³gÏvïÞÝ××·V­ZÝ»w§mfTPPPRRÒùóç#"""""hʤI“¦M›æâââààвeË}ûö•””|øá‡ááá...:t¸ví·‡”””Æ;99yxx´lÙò»ï¾S™‡:ÐÆ‰çÏŸ‹ ÌÌÌìÓ§¿¿¿··w·nÝ~úé'þ~Ž;Ö¥KúõëO›6íÕ«W/Uú¥›™™)H_²dÉåË—«U«¦ÏÎÕÕň#zõêE‰ŽŽ R~aQQÑÂ… ÃÃÃkÔ¨ðçŸJ©­*”ž_~ù¥››[µjÕ5j4sæLu…,^S|ùùù]»v?~^^žxùôë×ÏÞÞþÙ³gôáÖ­[†iܸ1·Arr2Ã0.\ ¼“jĈo¿ý6!$66–_z'OžŒ‹‹óôô¬]»ö|ðÏ?ÿ¨|Så«@£#GŽÄÄÄШ‘š0a!äôéÓ*·¯ ¤¤¤µk×zzzÊåòÚµk7ŽŸUéç¼xõ‰ŸBâ¶lÙâçç7lØ0ú088¸_¿~éééüñ‡¶ÕMÇ7ÞxCâ[ƒ±`h¡¡¡¦Î˜€ºz'Ä”“cD®ñyóæB²³³ïÞ½[£FÈÈÈ’’úÔâÅ‹ !/^¤wîÜ)—ËëÔ©3yò䤤¤ºuëÊåò;wÒgûöíëááôþûïÓ//¯ ,Z´ÈÓÓÓÁÁ¡M›6-Z´HII7nÃ0ôåsçÎ%„tìØqþüù³fÍ '„ìÞ½›Ûy¯^½èß±±±Mš4aY¶¸¸x#φ êÔ©S­Zµëׯ³,{ðàA‡   äääéÓ§‡„„Èd²Í›7ÓìØ±C&“y{{7n„ ¾¾¾¡¡¡„-[¶¨+¢'N(?Õ¹sgBWb¿ýö!døðáô! a«W¯>nܸÇi<ÜÜÜ¢¢¢4n&RW®\ùøã !Ë—/OOOW~m||<Ã0]ºtùè£zöì)“ÉZ¶l)±¤Wh```íÚµ !Ý»wÿðÃ;tè@‰‰‰¡aü ¯)unܸA™7ožº Ö¯_OIKK£ÇOaæÑ£G4¥Y³f¾¾¾4?ÜIuåÊ:néÒ¥´ôCCC]]]—/_NÇÐ3\™òU ®¸¸xæÌ™©©©üDÚI½hÑ"åí5VPÆ «U«6~üø/¾ø¢{÷î„„„ú¬Vç¼xõ‰œBâž>}Ê0L||Å_¾|˜——GŸÍËË ¦ÖtÇüùóKKKé\Dz,çñêÕ+šM)((`Y688844´¸¸˜>õäɹ\>nÜ8nWÊ£À‚ !ëׯ§¹ ‰ŒŒ,,,¤Ï¾xñ¢uëÖÁÁÁ%%%/^¼ðóó{ðà}677·V­Zâ£u#˲ß}÷Ý믿N7sppèØ±ã¢E‹~ûí7uÕ!%pÔX;wîTé>{öL&“ñs8jÔ(OOÏÜÜ\)µ ½BéùÀ~¦M›F¡!W¡â5%RÇB’““éÃFÑ9æ4@yòä‰ÝÈ‘#•Oª½{÷BŽ=Ê5!d×®]ôaIIIxxx@@€Ê7U¾ ´•ŸŸß¢E ™LvëÖ-åg5V!„ C E£FêÔ©CKU«s^¤úÄO!q·nÝ"„$%%ñ>LY»v­¶ÕçèèèîîÎ]‰áááçϟ׭ä)ŽÒ¡«È”)S5j4gΜû÷ï žÊÈȸ{÷îäÉ“===iЧ§çäÉ“ïܹí×ãçç7{ölþз-ZÔ«WþM-looOSèȤÂÂBBÈÙ³g322äò²ñÖùùùÜSRìÚµkîܹãÆ5j!äÂ… YYYÓ¦Mstt¤T¯^=11ñÎ;999S¦L¡m*4ç'N‹Aƒ%+ñ÷÷U|||vvö¥K—RRRºtérþüùY³fÓ0W7RêB;;;º´PNNMY¿~}^^žŸŸŸ”Z^¡4WS§Nå^;wî\ggçmÛ¶ñó#^S:!¤víÚ7¦#ç?~œ™™™””ää䔞žN9~ü¸B¡ mr…††¾óÎ;ôo™LÖ¤I“çÏŸ«Û˜”””ìROùµGmÕªÕ¹sç¾úê«å 4VPpppß¾}éß ÃDFFÒÎzÎyuÕ'r i<^šUþ¹ººrÇ¢•ììl…B1þüÜÜܼ¼¼¯¿þú÷ßïÕ«×Ó§OµÝè“c€ÈåòuëÖµiÓfâĉ‚IYYY„Á°-:b,++‹ŽÐ L˜à"B /”S(ww÷S§N:tèÆYYYW¯^•¾"ɵk×Þ}÷Ýèèè•+WÒÚ>/ØøÞ½{ô«´Y³fütkCN˜0¡mÛ¶‚Ä‹/Þ»wOc7nܸqãÉ“'¿zõj×®]IIIsçÎmÕªÕ›o¾©C5I© uW®\9uêÔ    ´iÓ¦[·no½õp©±¤W(!¤AƒüqœNNNaaa·oßæo#^SâÇ¢Q\\ܲeË?~L_;uêMÇ£GÊår:Ò@#ڥ˟)¿ ž?NÇ›ªÄò–å¿wïÞ„ öìÙrøðáŽ;ª|‰Æ d•Ë mêÓêœWW}"§Æã¥g‹`„hAA!ÄÃÃCJ]ð=zÔÁÁ{áÈ‘#_¼x1~üøÔÔTúªG „V­Z;võêÕ‚ú%'XHœ~ƒÓ‡nnnº½éË—/ûôé“––Ö¼yó7ß|ówÞiݺuÓ¦M¥¼öñãÇ={ötuuMMMåú…·lÙ2å°ëׯìØ1åc1ø¤ïgÏž1âÍ7ß=z4—X­Zµþýû»»»wéÒeß¾}ºŽRêBÄøñãûöí»wïÞŸþ9--mݺuaaaééénnn:ׂDr¹\ÐV'^Sz¾]·nÝ–,Y’žž~êÔ)ÿ:Ìš5ëÉ“'GŽŽ¦m]i5?¸ºº²nÚ´yóæ1cÆ8;;¯]»väÈ‘\ƒ¢€”ËD]Vé>õ<ç¹êSw ùøøˆ¯`¦Ë£G!\S¨t´«^PÆ\ƒÓ–!p€2Ÿ~úé?ü0aº^E;ή\¹Ò¾}{.ñòåË„°°0=ßñĉiii+W®œ4i—(¥Å±´´tРA<8~ü¸··· ·5kÖä/hríÚµ+W®¸¹¹Ñi˜¿þúkll,÷ìÅ‹ [ŒNNN¸ÿ>?p¤h»K5tÛ³>u‘ŸŸŸš P(V­Z•˜˜¸fÍšèèhÝjAk×®sÑ|QQÑõë×ùeN4Õ”žUжm[—#GŽœ={6&&†«P(öìÙsáÂ:„·J•””ìÛ·Oݳ={ö$„ìÙ³çÝwß0`Àš5k}¸:_&¤|ê±V缺ê9…>úè#ñã•Ëåõë×?~ü8?ýرc Ã4hÐ@«²ÍÉÉÙ»woÇŽé !Š6^hYQ  Œq€2®®®+W®|ðàÁW_}Å%6mÚÔßß?%%åñãÇ4åï¿ÿ^±bE@@€þ7¤óø_©©©ÏŸ?רZ3cÆŒƒ®]»6**ŠŸÞ¤I“°°°Ï>ûìÉ“'4¥   ...))©FM›6 ^±b·H^^žÁ°¤³Gùå—… r÷$$„<þ|îܹênó(…>uqóæÍV­Z}öÙgô¡$ìííu®uòòòRRR¸‡ .,((ÜiP¼¦ô¬{{ûN:¥¥¥eddÐÀ1**ªfÍš‹-Ò8ÀÑ ‹DÒ®[u!,ËNŸ>½nݺß~û­xÔHô¸L!:œóêªOäÒx¼„Ñ£GÿöÛot!䯿þJMMíÒ¥‹Ê¥£D8::&''3†keW(Ë–-“Ëå]ºtÑ¿î@#´8@…nܸñÇäRªW¯ž’’2pàÀ¦M›0€eÙ­[·ææænß¾½zõêz¾]‡œœœF=dÈÚµkŸ>}úÈ‘#^^^'NœØ¿\\œÊWíÛ·ï³Ï>‹ˆˆÉdüÕìÂÃÛ6mºråÊž={FDD 0 ¸¸xçÎ÷ïßß²e ½¹ÜòåË 9pà@{{û­[·j\P)))™™™sæÌÙ¸qc³fÍèœÖ“'O>|øpÖ¬YmÚ´Ñm·úÔETTTÆ /^|çΆ Þ¼ysÿþýƒ–Éd:Ô‚??¿9sæœ:u*""âôéÓ‡jݺ5·€%—ËEjJÿ*ˆ‹‹££uià(“ÉÚµk—––V·n]uM\´¥sõêÕ>4h>ï®±«úúõë7nÜOHH<Õ§OÁO Ý.ÊÞÞ^Ûs^]õ•””¨;…¤tÍ>|Æ C† ?~¼››ÛÆ ¹{ .Y²dñâÅŸ~ú騱cÅ÷ãíí=þü3f„„„ÄÅŹ¹¹8pàÂ… ‹-ÒHbêiÝVÈf§èÛ8‹^އïÎ;t¢+·Ž#˲§NêÖ­›O·nÝ~ùåî)þŠ9*Sh¿].‡Z¸p!!äÏ?ÿdY6==½M›6ÎÎί¿þzBBB^^Þúõë½¼¼ºvíʪYއ› #À­À’‘‘ñÖ[oùúúº»»ÇÆÆ}:vìXgg瘘˜3gΈl\Õ ®j›æèè8qâÄ.]ºÔ¬YÓÔyÑàèÑ£¦Î‚T›6mJKK›6mÚÒ¥K¹Ä‹/FGG1âìÙ³„víÚµk׎{výúõuëÖ]¶l™>ï›M™7o^§NL]vçÎØØØÒÒÒÞ½{ûûû>|xÊ”)ÇŽûá‡ôÙ-ÿ¤zøðáÎ;'Ožlœ#º{÷niii›6m‚ƒƒ¹Dgggã¼»ñDEEÝ»w¯_¿~žžž©©©ÝºuûùçŸU¶øVQuƒA p°isæÌ™5kÖìÙ³?ÿüsƒïüÕ«Wr¹ÜÎÎæz6hïvbb"?±I“&ýû÷ÿæ›ož={VEñÏêààPEÇ¥U…Ò~|C5O™2åéÓ§gΜiÞ¼9!dÁ‚£FÚ°aúvíZEÇ[¥h”¿`ÁFù …‚eYƒ”¹a«²bÅŠììì7¾÷Þ{„I“&5kÖlêÔ©GŽQÞØúªÛšØÜ:ðõïß¿{÷î_~ùåùóçE6;{öl÷îÝ}}}kÕªÕ½{wÚfF%%%?>"""""‚¦Lš4iÚ´i...-[¶Ü·o_IIɇ~îââÒ¡C‡k×®q{HIIiܸ±“““‡‡GË–-¿ûî;•yèСmœxþü¹ø ÀÌÌÌ>}úøûû{{{wëÖí§Ÿ~âïçØ±c]ºtñðð¨_¿þ´iÓ^½zeðR¥_º™™™‚ô%K–\¾|¹Zµjúì\]]Œ1¢W¯^„èèè   å-\¸0<<¼F þù§”ZЪBéùðå—_º¹¹U«V­Q£F3gÎTWÈâ5ÅwäÈ‘˜˜FP&L „œ>}Z°e¿~ýìííŸ={Fnݺ•a˜Æs$''3 sáÂÂ;©FŒñöÛoBbccù¥wòäɸ¸8OOÏÚµkðÁÿüóÊì)_ÑÀñ7ÞXïâ”””´víZOOO¹\^»víqãÆñ³*ýœ¯>ñSHÜ–-[üüü† F÷ë×/==ý?þЧºÁøÐâ`Ó†ùꫯ4hðþûïŸ;wNeî]»úõëçëë;xð`†aRSSÛ¶m›ššÚ³gOºÁýû÷»víêêêÚ¥Kš²iÓ&™LöÑGÉåò+VôëׯiÓ¦%%%cÆŒÉÊÊZ½zu||üÅ‹ !óæÍ›?~ÇŽûõë÷òåË~øaèС...*gíPÕ«W߸q#÷P¡P|üñÇýõW@@!äСCï¼óŽŸŸßÀíìì~øá‡®]»nÚ´iРA„ï¿ÿ~À€¯½öÚàÁƒíìì6mÚ´{÷nƒ—jÿþýׯ_ß»wïQ£FõéÓ§mÛ¶´ÐÛÛÛÛÛ[Ÿ=‹ÔÅÔ©Sýýý,X°|ùrþ7.'!!aóæÍ;wîÛ·offæÆ333é83µ ½B !Û·oÿý÷ß»wïqæÌ™%K–œ>}úèÑ£‚¥©ÄkН¤¤düøñQQQüÄœœz26Ž‹‹Û±cÇñãÇãââ!Ç'„dffæçç¿öÚk„£Gúúú6iÒ„ÿª©S§Í;wéÒ¥-[¶¤‰—/_~ë­·† Ö¹sç]»v­Y³F¡P¬]»VeÕ(_â²³³«W¯^³fÍíÛ·ÿý÷ß 4hÑ¢…º+èðáëV­=zt½zõöïß¿zõêâââÿûßDûs^¤úDN!q·nÝ¢'-—رcÇõëן9sF0_J«ê`ÁÐBCCM0uõN/3“ýSÏ›7’Ͳì’%K!)))ô©Å‹B.^¼È²ìË—/ƒ‚‚óòòè³yyyÁÁÁ/_¾dY–Îá˜?~ii)Ý 00°Zµjׯ_§é8¿ˆˆˆW¯^Ñ”èèhBHAA˲ÁÁÁ¡¡¡ÅÅÅô©'OžÈåòqãÆq»êÕ«ý;66¶I“&ʲ`ÁBÈúõëinCBB"## é³/^¼hݺupppIIÉ‹/üüüœ{íwß}÷úë¯ÓÍ:vì¸hÑ¢ß~ûM]u¸¹¹EEE‰Ÿcëbç΄'N(¿öÙ³g2™ŒŸÃQ£FyzzæææJ©éJχE‹qo4mÚ4BÈæÍ›ù*^S¬&ùùù-Z´Éd·nÝ<õàÁBHrr2}بQ#:Çüûï¿§‡fgg7räHå“jïÞ½„£GrGMÙµk}XRR 2?ÊWFqqqŽŽŽîîîÜé~þüy•k¬ BHjj*}¨P(5jT§NZªZó"Õ'~ ‰»uë!$))‰ŸxøðaBÈÚµkõ©nCÑá‹Ûf¿ëÑU dÊ”)5š3gÎýû÷Oeddܽ{wòäÉžžž4ÅÓÓsòäÉwîÜáÖëñóó›={6è[‹-êÕ«GÿîС!dðàÁööö4…ê*,,$„œ={6##C./ëýÈÏÏçž’b×®]sçÎ7nܨQ£!.\ÈÊÊš6mš££#Ý zõꉉ‰wîÜÉÈÈÈÈÈÈÉÉ™2eJíÚµ¹œOœ8Qü- ”¬Äßß_üUñññÙÙÙ—.]JIIéÒ¥ËùóçgÍšLÃ\ÝH© uìììèÒB´å†²~ýú¼¼;;[¡PÌŸ??777//ï믿þý÷ß{õêõôéSåk¬ ààà¾}ûÒ¿†‰ŒŒ¤õ:œóêªOäÒx¼4«...ü7ruuåŽEçêãCW5¹\¾nݺ6mÚLœ8Q0o1++‹"¶EGŒeeeÑ.Ѱ°0Á„ .²!„ÐðB9…rww?uêÔ¡C‡nܸ‘••uõêUé‹n\»víÝwߎŽ^¹r%M¹qã!$>>>>>^°ñ½{÷èWi³fÍøé׆œ0aBÛ¶m‰/^¼wïžÆ6nܸqãÆ“'O~õêÕ®]»’’’æÎÛªU«7ß|S‡j’Rê8::®\¹’vÈ6hРM›6ݺu{ë­·hߨÆZ^¡„ ð»\œœÂÂÂnß¾ÍßF¼¦Ô˽{÷&L˜°gϞÇwìØQåfqqqË–-{üø1m|íÔ©Stt4 =*—Ë;wî,¥ÀCCCùÅgŠð¯‚çÏŸÓñ¦*±,KsâàààááAGŽùâÅ‹ñãǧ¦¦Ò_A|+HU.'´©O«s^]õ‰œB—ž-‚¢„®”I¬n02Ž@!­Zµ;vìêÕ«¹Š~É F§ÑoÐââbúÐÍÍM·7}ùòeŸ>}ÒÒÒš7oþæ›o¾óÎ;­[·nÚ´©”×>~ü¸gÏž®®®©©©\àB¿ð–-[¦¼výúõ;¦|,ŸôýìÙ³#F¼ù曣Gæ«U«Ö¿ww÷.]ºìÛ·O·ÀQJ]ˆ?~|ß¾}÷îÝûóÏ?§¥¥­[·.,,,==ÝÍÍMçZH.— ÚêÄkJåN6oÞzV(/$)å2Q—UZJzžó\õ©;…|||Ä×ÇÇÇÎÎ.//ŸøèÑ#B×* ½ºÁÈPPæÓO?ýá‡&L˜@×Ë hßЕ+WÚ·oÏ%^¾|™¦ç;ž8q"--måÊ•“&M⥴8–––4èÁƒÇçO7¡¹­Y³&ÍŽk×®]¹rÅÍÍÎ`ýõ×_ccc¹g¹)†âäätàÀû÷ïóGж»Ô¨QC·=ëSùùùÙÙÙ¡¡¡ …bÕªU‰‰‰kÖ¬‰ŽŽÖ­Ô¹víZqq1Í]¿~_æDSM)ïsÏž=ï¾ûî€Ö¬Y#èñTÖ¶m[—#GŽœ={6&&†«P(öìÙsáÂ:„·J•””ìÛ·Oݳ={öÌÉÉÙ»woÇŽÃÃùtÚGçxñé|™òYÛZóêªOäúè£ÄW.—ׯ_ŸNTâ;vŒa˜ (¿D«ê#ÃG(ãêêºråÊ|õÕW\bÓ¦MýýýSRR?~LSþþûï+Vè@:ÿÝ™ššúüùs­53fÌ8xðàÚµkS/›4iöÙgŸ=yò„¦ÄÅÅ%%%Õ¨Q£iÓ¦ÁÁÁ+V¬àVÉËË3ø– ÃÄÇÇÿòË/ .äîIHyþüùܹsÕÝæQ }êâæÍ›­Zµúì³ÏèC;;;IØÛÛë\ êäå奤¤p.\XPP ˜9+^S‚²,;}úôºuë~ûí·RÂ{{ûN:¥¥¥eddÐÀ1**ªfÍš‹-Ò8ÀQ¡PèvÔ|´ëVBˆ££crrò˜1c¸¦b…B±lÙ2¹\®<)[Ÿ ÒáœWW}"§Æã%„Œ=ú·ß~£3!ýõWjjj—.]”—ŽÒ¶ºÁÈÐâ¸qãÆü‘K©^½zJJÊÀ›6m:`À–e·nÝš››»}ûvý—ÆèСƒ““ÓèÑ£‡ R»víÓ§O9rÄËËëĉû÷ï§Ë©(Û·oßgŸ}!“Éø«Ù…‡‡7mÚtåÊ•={öŒˆˆ0`@qqñÎ;ïß¿¿eËzs¹åË—0 22ràÀööö[·ntŸDJJJffæœ9s6nÜØ¬Y3:§õäÉ“>œ5kV›6mtÛ­>uÕ°aÃŋ߹s§aÆ7oÞÜ¿¿‡‡ÇàÁƒe2™µ ÂÏÏoΜ9§NŠˆˆ8}úô¡C‡Z·nÍ-àGÉår‘šìðúõë7nÜOHH<Õ§O•x\\­KG™LÖ®]»´´´ºuëªlâ"å}Í«W¯~øð¡ò’@ZÑØUííí=þü3f„„„ÄÅŹ¹¹8pàÂ… ‹-Rî©×í2¡ìííµ=çÕU_II‰ºSHJ×üðáÃ7lØ0dÈñãÇ»¹¹mܸ±°°pþüùôÙ%K–,^¼øÓO?;v¬Õ FeêiÝVÈf§èÛ8‹^އïÎ;t¢+]އ:uêT·nÝ||||||ºuëöË/¿pOñWÌQ™BûÅèr9ÔÂ… !þù'˲ééémÚ´qvv~ýõ×òòòÖ¯_ïååÕµkWVÍr<ÜTn–ŒŒŒ·ÞzË×××ÝÝ=66öàÁƒüì;v¬sçÎtWW×íÛ·ÑåxT®nCgWˆ,Çóüùó5kÖ´nÝÚËËËÞÞÞÇÇçí·ß>~ü¸ºê²ƺYއeÙû÷ï92  zõêþþþñññÜ ;ÒkAc…ÒÓÓÓÛ·oïêêZ¯^½äää/^¨<7ÄkŠ#wË·páBuKñòòâRèíÇŒÃߌ¿B¡ù1¡_ý•a˜­[·š:#fe!p0k aªtÿƒ JNNNNNž:uj=nß¾=zôè3f¨Üfüøñ¾¾¾;vìhß¾ýÚµkÕíŠïí·ßV~Ók׮͙3'<<|Ö¬Y¦.`33þ|ƒìJ&“Éd2ú÷ùóç{÷î}õêUc‹àMùù©ºw1¹Ë—/8Ð×××ÙÙ9***%%¥¤¤DÝÆOŸ>;v¬¿¿¿³³sLLŒàǘV»²⥡Žò%S\\,—Ë?_½¼¼L}|VEnê €ZU5B&L˜Ð¶m[îáÇ###SRR’““}||TnsãÆ^½z}ðÁmÛ¶mذ¡º]‰ÈÎÎ&„Ì›7¯S§NÆ*KswáÂ…“'Oª@Ž=ÊýýðáÃ;wNž<Ù˜‡#xS~~ªî]LëÎ;±±±¥¥¥½{÷ö÷÷?|øð”)SŽ;öÃ?(o\PPuïÞ½~ýúyzz¦¦¦vëÖí矦í²ZíÊ ˆ—†:*/™»wï–––¶iÓ&88˜Ktvv6õ!ZŽPÁÇÇgРA)))™™™\à(P¯^½M›65oÞüÿþïÿtëÒbY–âàà`êÃ-óêÕ+¹\ng'©¦´´”b¨ö³’’’#GŽœ:ujÕªUÜ¡U±›¿)S¦<}úôÌ™3Í›7'„,X°`Ô¨Q6l8pà@×®]¯X±";;{ãÆï½÷!dÒ¤IÍš5›:uê‘#G´Ý•D …‚eYƒœ·†½4–†€ø%C”.X°?J«Ž•\±ÖŠ%¬Ú+½#ËBŠ‹‹E¶‰ŠŠjÛ¶í÷߯C÷Ùˆ#zõêE‰ŽŽ ¢‰gÏžíÞ½»¯¯o­Zµºwï~öìYnû   ¤¤¤óçÏGDDDDD(ï°¨¨háÂ…ááá5jÔHHHøóÏ?¹gSRR7nìäääááѲeËï¾ûŽ¿çI“&M›6ÍÅÅÅÁÁ¡eË–ûöí+))ùðÃÃÃÃ]\\:tèpíÚ5~6¾üòK77·jÕª5jÔhæÌ™¯^½RyŒ™™™}úôñ÷÷÷ööîÖ­ÛO?ý¤®4òóó»ví:þü¼¼<ñrëׯŸ½½ý³gÏèí[·2 Ó¸qcnƒääd†a.\¸@éСm­1b-Ë•6!ääÉ“qqqžžžµk×þàƒþùçuï+r,êJ^ùM¹üh[ì"5¨òÐÄKþرc]ºtñðð¨_¿þ´iÓÔUŸ”³NÙ‘#Gbbbh¨GM˜0rúôiå·lÙâçç7lØ0ú088¸_¿~éééüñ‡¶»"šNò¤¤¤µk×zzzÊåòÚµk7Ž_ÝÚ–‰ºK@ü2'^â— ßxã ‰o º`ÁÐBCCM0ƒÔ;a ÿŸH¢þæÍ›G9qâ?ñ¯¿þªU«–]nn®ºm¨ñãÇBîܹ#¾™²+W®|üñÇ„åË—§§§³,»sçN¹\^§NÉ“''%%Õ­[W.—ïܹ“nØ·o_   ÷ß_y‡ñññ ÃtéÒå£>êÙ³§L&kÙ²%}jîܹ„Ž;Ο?Ö¬Yááá„Ý»ws{öðððòòZ°`Á¢E‹<==Ú´iÓ¢E‹”””qãÆ1 Ám\»vmBH÷îÝ?üðÃ:BbbbhCN```¯^½è–tpp JNNž>}zHHˆL&Û¼y³x±Ü¸qƒ2oÞ\ºt)!$""âÕ«W4%::šRPPÀeƒÿÍ=mÚ4BK¸ÀñåË—!!!‘‘‘………t³/^´nÝ:88¸¤¤D¤:4Ž< „$''Ó‡5¢sÒé—ë“'OìììFŽIŸåj{÷î%„=z”;jBÈ®]»èÃ’’’ððð€€åw?ñ’¼© p”^ìâ5Èñܾxñ" ÀÏÏïÁƒôÙÜÜÜZµj‰I"gùùù-Z´Éd·nÝèòóó !………ÜË[´hQ¯^=ú7mAAª–ÆÐM%†0ü Љ'$N…¸ÿ>!„?uQú¬j¾¬¬,Bˆ`º—••E#­°°0uS(W®\9uêÔ    ´iÓ¦[·no½õVµjÕ!îîî§N:tèÐ7²²²®^½*”ÉE«„¸(§p4h@wK999………ݾ}›¿ m‰dõÞ½{úŽ„¸¸¸eË–=~ü˜6ÖvêÔ):::==rôèQ¹\Þ¹sg)û¡Ý‘u³4‹HÉ‹“^ìkPbnéØÐfÍšñÓÅ'íòϺçÏŸÓ¹*±lŵyïÞ½ &ìÙ³'$$äðáÃ;vTwø‚q¥„­v%¥ˆÕÍmêÓªLÔ]"—¡Æ¢“X=zÔÁÁ{áÈ‘#_¼x1~üøÔÔÔQ£Fi»7P #èâÒ¥Kt`¢žû¡_º‚öKÊptÜÜÜDö0~üø¾}ûîÝ»÷çŸNKK[·n]XXXzzº››[Ÿ>}ÒÒÒš7oþæ›o¾óÎ;­[·nÚ´© A.—?þœŸB¿V—-[¦¼¶yýúõõ|»nݺ-Y²$==ýÔ©Sþþþþþþ:t˜5kÖ“'OŽ=-±MEâ|vÇ¢®äÕÍÇ×ÖË—/¥× xn;F”N3ñ Ýü³ÎÕÕ•ª³yóæ1cÆ8;;¯]»väÈ‘\+ €`nÇ£G!\ãŸÄ]I)"uÕM÷©U™¨Ü ½DNñ¢“RÒÑ®v¾7ß|“b>‹}ZŽæ‹öJ³„¥s««¨ÑQÇ0`€ºï3éhïÛ•+WÚ·oÏ%^¾|™¦ñåùùùÙÙÙ¡¡¡ …bÕªU‰‰‰kÖ¬‰ŽŽNKK[¹rå¤I“¸íõYEùÚµkÅÅÅ\{XQQÑõë×ccc•§fÍšüeS®]»våÊñðWжmÛº¸¸9räìÙ³111„ØØX…B±gÏž .ÐQ§$~,"%O§kèïĉÒkP<·tší¯¿þʯ¯‹/J̉”®ê={ö¼ûî» X³f ãU@.—ׯ_ÿøñãüÄcÇŽ1 Ó A­v¥U èP&ê.‘“á£>/:¥!]NNÎÞ½{;vìHgQ´ñ’v ƒA`93E#E2yEqYYYC‡efΜ9úï­iÓ¦þþþ)))?¦)ÿý÷Š+¤Ü¤îæÍ›­Zµúì³ÏèC;;;ú-hooOg“ð¿BRSSŸ?.¥éH¥¼¼¼””îáÂ… wlÒ¤IXXØgŸ}öäÉšRPP—””T£F =ËÊÞÞ¾S§Niii4pŒŠŠªY³æ¢E‹4pÔa‘Hñc)y}Þ”Ob ÒwÏmÓ¦MƒƒƒW¬XÁ­ð’——÷ùçŸKÌ íoU‡²ìôéÓëÖ­ûí·ßЇzÔèÑ£ûí7:¹‡ò×_¥¦¦véÒ%((H«]és’ëP&ê.‘“Acщ—†Ä ¢“““ÇŒÃuV(ŠeË–Éåò.]ºhµ+G³Ã54Ò‡ôÆŽ«W¯¦Ÿé/_¾ÌÌÌ/ÙºukFFF\\Ü¡C‡þõ¯}ûí·ÿùÏ!³gÏ6õ˜ŒeŽÛ¶mS(“'Oööö¦)3gÎtuuÝ¿¿ºÙ|R^’‘‘Ayï½÷¸¥FZ·nþÛo¿ýý÷ߦ>h0¸¸¸Ö­[›:&ƒK(ËžU}îÜ9nÚ?%“ÉbbböìÙ“‘‘¥ÛKüüü!ü‘-¿¬þ«Ö€%Zµj•©³`J¸€²àG–e³³³=<<w%¢·W¢su{ÉÛo¿íààðÉ'Ÿœ>}º¨¨(77wΜ9<èß¿¿”º¬’·Ÿ–––*ߌÞtKeŸ²Ä—„……}ûí·Ã‡>|8·ÍСCgÍš%1oÊw¼°Í¹WV@ʬl„Žt´“““ ÝÙÙ™òôéS_RPP°xñâçÏŸ7hРQ£Fùùù'NœØ¹sg«V­$®>0Àj(­Ûl(iÁ£››Ã0………‚ôgÏž‘òFDÝ^2}úô_ýuæÌ™#FŒ )¹¹¹ƒ JJJÚ½{wpp°©À,xŒ£\.wuuUnY¤w4ç&Mkû’¿þúëçŸ~ã7¸¨‘R«V­qãÆ[ëÚ§YpàHñññÉÏϧaçîÝ»ô)Ý^’ŸŸO ¼64J¿·)€•±ìÀ±S§N¥¥¥ÇçRX–MOOwwwŒŒÔí%2™,++Kp3F:¾á7Þ0õA˜†eŽýû÷·³³ûòË/é EBȺuë=zÔ·o_{{{šòüùó»wï>xð@âKcbbrrrþõ¯qK‚gee­ZµªZµj:t0õA˜#hW³86lX²dIíÚµÛµk—““sæÌ™úõëoذ[s'---)))$$dïÞ½_òèÑ£~ýúýñÇõë×ÏÏÏÿõ×_ ÅìÙ³‡ ¢1K6{ãs‡z°P:|€Ûìg¾Ϫ¦FŽéååµsçδ´4??¿¡C‡Nž<™.¯£óK<==ÓÒÒÖ¬Ysâĉ£Gº»»·oßþƒ>hÔ¨‘©ÀtX0´ÐÐPSgLÀâê}Þ¼y‚O—¨¨¨ÿûߥ¥¥*·a&,,lèС§OŸßgРA*ßýÿþïÿ^{íµ† šº #00°W¯^¦ÎE…èèè&Mš¨Ëj¿~ýÌ'?&tþüyBÈ–-[L3b³e¢Ã¸Å}æŠeq°2Œ´4hРääääää©S§öèÑãöíÛ£Gž1c†ÊmÆïëë»cÇŽöíÛ¯]»VÝ®øÞ~ûmå7½víÚœ9sÂÃÃ¥ßÉŠ]¾|yàÀ¾¾¾ÎÎÎQQQ)))%%%zîS&“Éd2ú÷ùóç{÷î}õêUc”àMùù©ºw1­ââb¹\ÎTæåå¥nû§OŸŽ;ÖßßßÙÙ9&&æÌ™3üg¯_¿Þ§OŸºuëÖ®]»ÿþ§N2õñU-ñÒ¿d´ÚèÀ⻪¬ŒÆAdž 'L˜Ð¶m[îáÇ###SRR’““¹5­Ûܸq£W¯^|ðAÛ¶m6l¨nW"²³³ !óæÍëÔ©S•¦ù»sçNllliiiïÞ½ýýý>|¸sçÎÉ“'ó¸oÊÏOÕ½‹iݽ{·´´´M›6ü›D¨7UPPuïÞ½~ýúyzz¦¦¦vëÖí矦‹{?~¼K—.nnnƒ–Éd[·níҥ˞={:vìh꣬â¥! ~Éhµ+Б©›<­Í6_Û8ƒÔ»” ÒP-í_>qâ„ =))‰røða‘mÎ;G0`€ø®ÔÙ¹s§VÛWµ—/_r½ó•”””””uîªîÙ³§ÝÙ³g¹”‘#GB~üñGCxôèQ.«F誼©JZ»Îï"°ݲûöíã.æÎKÙ¸q#}xûöm77·:°,«P(BBB¼½½ÿüóOúìãǃƒƒ›6mªOöJKK•Ï[ÝÊDå% ‘ÒP&~Éhµ+>tUK‡®j¨„eYBHqq±È6QQQmÛ¶ýþûïuèT1bD¯^½!ÑÑÑAAA4ñìٳݻw÷õõ­U«V÷îÝÏž=Ëm”””tþüùˆˆˆˆˆå-\¸0<<¼F þù'÷lJJJãÆœœ<<þþþÞÞÞݺuûé§ŸÔ•Æ‘#Gbbbš7oÎ¥L˜0rúôiÁ–ýúõ³··çÖÛºu+Ã07æ6HNNfæÂ… „:Ð&–#FÐѱ±±\iBNž<çééY»ví>øàŸþQ—C‘cQWòÊoÊåGÛb©A•‡&^òÇŽëÒ¥‹‡‡Gýúõ§M›¦®ú¤œuÊh;ºÄµ~·lÙâçç7lØ0ú088¸_¿~éééüñÇÝ»w³²²FÅ5ù»¹¹%%%edd\¾|YåÞÄOò¤¤¤µk×zzzÊåòÚµk7Ž_ÝÚ–‰ºK@ü2Ô¹4”7¿d´ÚèÈÔ‘«²Ù_!6Î:Zÿúë¯ZµjÙÙÙåææ²¢M‰ãÇ'„ܹs‡Õ²ÅñÊ•+ü1!dùòåééé,ËîܹS.—שSgòäÉIIIuëÖ•Ëå;wî¤ÛöíÛ×ÃÃ#((èý÷ßWÞa||<Ã0]ºtùè£zöì)“ÉZ¶lIŸ¢Í;vœ?þ¬Y³ÂÃà !»wïæöìáááååµ`Á‚E‹yzz:88´iÓ¦E‹)))ãÆc&""‚Û¸víÚ„îÝ»øá‡tIט˜…BÁVnqe&>>žŸø¿ÿýòý÷ßÓný””þ³;vì „lÚ´IyoOò† V«Vmüøñ_|ñE÷îÝ ! º•‰È% rŠ/ ÁÆâ—ŒV»@‹£t ÏfO&g¡ã!CfΜ9sæÌ3f >üµ×^#„Lœ8‘¿ÊˆpñâÅ„Ÿ~ú‰U?«:::Zå[ó»ª_¾|˜——GŸÍËË ¦ß»ôþŸóçÏWÙ­ùìÙ3™L6|øp.eÔ¨Qžžž4ð  -..¦O=yòD.—7Ž> ¬V­Úõë×éÃ¥K—B"""^½zES¢££ !\6øñÜ´iÓ!4.áÇ—/_†„„DFFÒÍ^¼xѺuëàà`)½{ùùù-Z´Éd·nÝ,)) PÎŒø±ˆ—¼àM£ôb¯Aþ»ˆçöÅ‹~~~< ÏæææÖªUK$H9ëTŠ‹‹stttwwçÎÿðððóçÏ+oyëÖ-BHRR?ñðáĵk×Ò†ºþýûóŸ¥jË–-SޛƓœÂEZ …¢Q£FuêÔ¡å£C™¨¼ÄOq⥡ñåüKFŸ]!p”“cl¿WK.—‡……}øá‡Rf0Œp–ΠAƒêÔ©ÃOQ¾ç»²ŒŒŒ»wï®\¹ÒÓÓ“¦xzzÒ¦ÇK—.Ñ)??¿Ù³gÛÙ©ZcggÇ0ÌÉ“'srr!ëׯ§s„³gÏ:88ÈåetôNô………ÜË[´hQ¯^=ú7mA~ü¸B¡ íI…††¾óÎ;ôo™LÖ¤I“C‡)o&~, 6)yqÒ‹]c JÌmIIINNβeËh›=©&Nœ8sæLu™äŸu%%%t£J={ö$„dgg+ŠùóçÓA»wïNJJêÕ«Wff¦««+{š~"Ý&??ßÇǧoß¾©©©K–,¡¿þûßÿ®^½šRPP üî‹(88¸oß¾ôo†a"##wïÞMÉÈÈжLÔ]={öTw2h,:ñÒ?‘—Ì¥K—tÞH‡À ji; ZÊöÒ÷©qŽö‰'$N…¸ÿ>!„?Tú¬j¾¬¬,Bˆ`º—••E#­°°0•Q#!ÄÑÑqåÊ•S§N jРA›6mºuëöÖ[oU«Vâîî~êÔ©C‡ݸq#++ëêÕ«‚A™\´J¡‹r §Aƒt·”““SXXØíÛ·ùÛܸqƒ/Èê½{÷ÔŽ÷îÝ›0až={BBB>¬nòl\\ܲeË?~Lk;uêžžN9zô¨\.ïܹ³”2§Ý‘u åh<‘’'½Ø5Ö ÄÜÒ±¡Íš5ã§‹Ï´åŸuÏŸ?§sUbY–Vƒƒƒ‡‡M9rä‹/ÆŸšš:jÔ(åÃŒ+¥A!}ùêÕ«ŸÙ+W®´oßžK¤³GÃÂÂ4¾kk_»v­¸¸˜k+**º~ýzll¬òáÔ¬Y³k×®ü^¹rEeø»gÏžwß}wÀ€kÖ¬t±)kÛ¶­‹‹Ë‘#GΞ=C‰U({öì¹páuj@âÇ"Ròtº†þNœ8!½ÅsK';ÿúë¯üúºxñ¢ÄœhìoÍÉÉÙ»woÇŽéÜжuÑ®[>¹\^¿~ýãÇó;Æ0Lƒ !—.]rqqiݺuëÖ­é³?ýôÃ0mڴѧˆt(u—€ÈÉðÑG‰ÆÒ¹d´ÝèËñ€v²²²†Ê0Ìœ9sôß[Ó¦MýýýSRR?~LSþþûï+VHY³÷æÍ›­Zµúì³ÏèC;;;ú-hooOg“ð¿ÈSSSŸ?®±éH¼¼¼””îáÂ… z÷îÍߦI“&aaaŸ}öÙ“'OhJAAA\\\RRR5;dYvúôéuëÖýöÛo5Fô :uê”–––‘‘AǨ¨¨š5k.Z´HãG…B¡íñŠ‹HÉëó¦|k¾‹xn›6m¼bÅ nY–¼¼¼Ï?ÿ\bNh«:„GGÇäää1cÆpÍä …bÙ²er¹¼K—.Ê;=zôo¿ýF'÷Bþúë¯ÔÔÔ.]ºÐu…ƌӸqãÜÜ\úìõë×7mÚôÖ[o)7jês’ëP&ê.‘“AcÑi, >—Œô]ÎÐâ¬^½š~¿|ù233óÔ©S¯^½Zµjÿ¶1:«^½zJJÊÀ›6mJWߺuknnîöíÛ«W¯®ñåQQQ 6\¼xñ;w6lxóæÍýû÷{xxÐ[n899=zÈ!µk×>}úô‘#G¼¼¼Nœ8±ÿþ¸¸8m³êçç7gΜS§NEDDœ>}úСC­[·æVŒ£ärùÊ•+{öì1`À€âââ;wÞ¿Ë–-ÊC ¯_¿~ãÆððð„„ÁS}úôéÑ£‡râââèâ#4p”ÉdíÚµKKK«[·®º6ÚÒ¹zõê‡òçñh$~,"%¯Ï›òuèÐA¼ï"’[™L¶|ùòDFF8ÐÞÞ~ëÖ­‚>M»ª½½½çÏŸ?cÆŒš±\¸paÑ¢E´[É’%‹/þôÓOÇŽK>|ø† † 2~üx77·7ÒÕ…! ,ˆ‹‹kÙ²eïÞ½‹‹‹·mÛæèèø¯ýK‡"ɳ½½½¶e¢î())Qw2Héå/ ~Ñi¼dÄw†aêiÝVÈf§èÛ8 ]ŽG|ñEÁ:; ƆÆÇÇŸ:uJÛ]ñ)ß9æÔ©SݺuóñññññéÖ­Û/¿üÂ=¥ñ¦,÷ïß9rd@@@õêÕýýýããã¹¥^ÒÓÓÛ´iãììüúë¯'$$äåå­_¿ÞËË«k×®Ê{¦tëׯçR.\H¡7ð §§§·oßÞÕÕµ^½zÉÉÉ/^¼P™ÉŒŒŒ·ÞzË×××ÝÝ=66öàÁƒ*s¾k×.uŸÌ .Tw°„///.eÙ²e„1cÆð7ã/£P(ìââBo=¢|瘡C‡zzzª+^‘c)yÁ› –ã‘^ìâ5(x%ìØ±Î;Ós\]]·oßNÔ/=£Ã­€RSS[´háìììééÙ±cÇýû÷sOÑkdåÊ•\Ê“'OFâééÙ£GŒŒ þ®/yúôéŒ3ärù·ß~»uëÖuëÖmÞ¼¹ZµjsæÌQ(¦>è*¤²e‘%,—ަG[fÙã¶mÛ ÅäÉ“½½½iÊÌ™3]]]÷ï߯.“ò’;vŒ;¶Y³f4¥qãÆqqq=ºr助ÚÄZϰ„khDÔ`ã,;p}ªÛKþùçBHvvv^^Þ’%Kbcc_¼x‘ššúÕW_Mš4iïÞ½RÚÍ*Lôó{–•Ó•I™1ͬŒò׺͆’<ÆÑÍÍa˜ÂÂBAú³gÏHy#¢/qpp ‰‹/îÕ«—›››¯¯ï„ z÷îýàÁƒ}ûö™ú¸µÆŸÍý-˜ï"ÞL¨±‘¿7„ÖÊ‚G¹\îêêªÜ²XPP@á&Mkû'''GGÇ:ð·éܹ3!䯦>n]ÐQ0*‘ëY–Ò¹¬nn~ òµºØ“f,šŽ„Ÿüü|öqîÞ½KŸÒù%ÞÞÞööö S)Ä¡=Ô%%%¦>hÝqág±pq'÷‡ Ž«aÙc§NJKK?Î¥°,›žžîîî©óK:tèPPPpëÖ-þ éb=õêÕ3õAëNÐ"¨ÿí^”ãNA‰ØÀšXvàØ¿;;»/¿ü’R$„¬[·îÑ£G}ûöµ··§)ÏŸ?¿{÷¿¤wïÞ„Ù³gsS³¯\¹òõ×_»ººvéÒÅÔ­/CÝ!©Lå6ü¦G~ÿ¸©ËtÁ°¬e/ž²aÆ%K–Ô®]»]»v999gΜ©_¿þ† ¸5wÒÒÒ’’’BBBöîÝ+ñ%„µk×®X±ÂÕÕ5**ª°°ðܹs Ã,[¶,..Nc–ÂÂÂÌjV5G0!Fåý`”—ãQw†TÚRÍf*'nKœÍ `¶Ìö»¾ªYðr<ÔÈ‘#½¼¼vîÜ™––æçç7tèÐÉ“'Óåuôyɘ1c<==¿ùæ›S§N¹»»wêÔ)111$$ÄÔ‡«;• 1’*^¯[y­GR9rEÔ`A,¾ÅÑ ™á¯é!ša[ï.XµQ#X(3ü®7‹oqó'X÷Ge9˜?ËžR˜[ÛžYe¤C‹£•3«¨‘?-Ƭ2R p„*Ç_އŸ–]ÕÖÌZõÊ–xdè ËV|Ä]­,Z­–9Dxó¯Ë0·À ÅÑzðom)n$`AÐâ&Æ-ÖSé¾…,&_˜´8Z!KinäT´;²åÿ0Àü p´Ü Û5RÂFæ]ÕL]›?Ý’‚H†XPflG Æõðò×G´ÄÛúUôS«::~Š©s `Ó8Z6þ¢6ü¨Q9ƪ4õ„–5£ LÝÜjå€Lcm oꉹa [)t,Ï$]cQ#€9@‹£U±ž‹! kI½í¶-ŽßO]±&¢¥OKfq[B³ƒÀѦQ[C°ÅXQë)€µ@àhñhtűhÓ£©óe€ã²†ÀŠ p³Á*'°ÌG0jâCÄŽf³ª-ž-Œ¬´J%# "ÍjMJ+†G° •ÚY³^“ÀZ!p´l¶ÐÜf]ÕfJúù[Zw§-;˜Z͘ÄÞX[ê´e•o%c`8Z0Æ6ï«bƒ‡ `8€$ÁÂÙh»+€ `rŒ¥¢ó©m-fb£rP£ànݦÎ&€uB‹#X•A!½3¡ò=»À°8Z$›^¾QÐÆÊrÉ6\&FÀ¬¢F#@à“cŒ£åAëZ%¼®jSgÀÊ!p Ç`B €‘ p´0hnT e`ÁJØàª–F†À¬bG€*…ÀÑ’ ŸZ#ÄŽU#H‚À¬ ªGKÀ‚~jm v¨ Á& ŽÐGKÀ ¹Qkht08Ž`µ±#âH=ÉM*‹oX5éåÐ);¢@ÍŽŠ‡­¹0ÈÔÙ´Hêzü¦¢ÀYe  GsÄ–a•Ž%â‚o~£#©Üp[–R¹¨†Aì Æ8Z DZ¡eÅý—GÒÿ¢0´…ÀÑb`”ž¶h‰ ñ7€Î8Z3‚uÄň»ô‡ÀÑ2 îÑ ×¾Hÿ@è“cÌ«œ€V]`9CA‹£¹Bc Ü<îDºAàÖL¹™ ·:Cà6ÝÖºAà’ p[„FG p…Ø@[XެÃTŠ qj=!p«ÆÅŠŒÊ'Ñè tUƒMc±>€dÍ¢£´9¢äÔ@à’ pI09 2†0,cü‘‚9àÓÀÀü p4G aƒÁvÆÀFe9 f[)ŽäGŠ ¦{€ÙAà6MåŠ<\˜È4=š-´‰G°y‚Æ]–K6‹¨Qbã‘2Š6QÛ†À@ó‰¥d‚1·ø¬G³CCÜÑÄd°YøƒB‹<*0'*3³®jƒCÛ$è #@e aÙ*oñU±wÁD¶ ›=Ñ6 ºAà ‚F ¢7†a„SOÔÌYÌnf¥mF7­Ò#«‡À@5;šio5ŠOmÆ$h0(ŽæÅ|#›dV±cEÜÇy=ÚÊ«,š:Ë`m8˜5.äÂÀJÚ Ã–ÇŽú¾Y–kð¢ÄÎt°8Ę¬Ñ±<Ø2Ø3 à”}TùÒ§ï¨Î¡ÄÎt°(4Ð*vÔ-JbˆRX¦~rŒ!ŽHEžY›)Mßa«rê7˜!ŽfÄ|†Ón¤ßèEð7«–[9W8@ŽšUE‡µX?¯iޱRÆ”!pD;êGJy1«q¬¡ôYÕ’›3¹75·ÐL£Qa¶©Ó¡1OùQžU­ú½T IÔá­Ñ ;SgÀö°åÿ*ÃGó'¸ŒV·–aÊG@Z\Wœ°ø`óÐâ m0fhç°Ä‰0ê;| Õ³¬Ëèzü*s%±3Q'€@à C•íÄ•X¥ TL: ‰.=ËIÜ©æà’—=±…{°j€Aà Yå0?´@¹ÛÚú›Ù†Aç5€ÁG³€Žæ%•«ˆß8H–°•ãH‹Ψ}™€mA‹#€få͉¬ªDB+XÓÛ²"*ý'û[ó*B8HT~s—òÇLY#$×ZÌT$[ U·–Ö8}Gp³„V#€NXBT m´š°Iúôá#Æ>X)kã¸}ûöþýûGFF¶mÛvÖ¬Y?6ìKrss›5k6mÚ´*Ê?8Z$F09†ò{®hügÝXR©Ù¬‰ÅŽ)))³gϾ}ûvóæÍwìØñþûïê%,ËΘ1ãÙ³g¦>P0G,aéG¶"EÒ?KdÙãÍ›7×­[çããóã?®[·îÀÆ »|ùòòåË õ’7ž={ÖÔ fŠáº¬Aònk)m±¶Ð" `Ñ,;pܶm›B¡˜sæLS(˜É‹Ö0•™:ß&€pÀjXpàȲlvv¶‡‡‡‡‡?=44”rÿþ}=_òÅ_\¿~ýÓO?uqq©º£ÀÌËÄ æh¨D–-ûgÛÐ `é,x9žÂÂÂÒÒR777Aº««+!äï¿ÿÖç%/^ü÷¿ÿ=tèÐ6mÚ\½zUÛ¼……… RnÞ¼iêC¡“§+­›]¾0þ [ñQÕr¶XF`É”¿Öm–Žt´“““ ÝÙÙ™òôéS_RTT4}úôºuëN:U·¼I Y‚qˆåÝGF¸h6=pÛ¡aÅGUË=b©p°,Ê_ë6JZpàèææÆ0Laa¡ .Cu{É’%Kк­,ˆeŽýû÷_³fÍ—_~Ù¾}{:Áeݺu=JHH°··§Û<þü¯¿þ²··¯S§Ž”—DGGGGGóßåêÕ«'NœˆŠŠZ¶l™>¹UÙ‰ÉEŠ68©Â°‚pÂTZ¢Q·Æ°J³dÁ] A–;J,s(€ñYvàX«V­iÓ¦-Y²äwÞi×®]NNΙ3g4h0zôhn›ôôô¤¤¤½{÷J|Iª|WcDfŽÑc;b4‚Dlå™×âP¦&aÙ#!däÈ‘^^^;wîLKKóóó:tèäÉ“iS¢_R¥5š'Ý a"ï!CHÙL6[݈ö,Æf^XX˜ºu½¢4€PI†Ó©«&‰›é¸CC¼µ9ïQßUÍ-Ç8Ò`‘«ÜJ[ª+­}HÄÆMª\%Ñw¨Ž”UÑ÷¦%ò]oÝ,{Vµ¥C'¦yÒ3(¡·¬¹ñ¨pÉ0ÛÀ;j$±RG0/cA.îGì`4˜6Ê´wÓ Ð¦ËZÁ •Eüá‰U:åE'e±#SñtƒvG£AàÖ‰-»£]ùc¦âVÈU=´‘Ñꦅ•âÄ?:â*ÅP¥8‚m1Rh&˜¦-%7ÕÄâ*§ºÓ$”"@•Bà–€·F’ºMh|ɰ,·ÁWS°qÁ†˜OsTÙØFanx]è,Á’=º ‘"ý¯Vc@̪[a>Q#»'![þ÷-³ƒÀlƒùõY²‚™Þ‚Y2h,ÓŸÙÕ9€ÅCW5ØV0½ÂüÂHÚ"Ê_Ó‘£Þ†aY"¹(Íïœ0;ÁfH˜]ajˆµ#,,ÁïÞCAP¨ fؼóh™pWk=¡Å¬PùM©™òámL¥ql Ã"z°Ul¥ Žf‰ÁZŽU…%˜ #Ž`…¬£;’%,bG0+ÁÚXGÔH!v³‚ÀÑxÐ÷:@ìXå0Þ@2Ž`U¬©¹Q-ë?Bãb0à@*,ÇÖÃZ£FÚèÈ–Ý[AŽá±åÓï%n `³8‚Å(û^Þ¸Ò÷=S–fmø±#aè*Öw”UHì®Ö¼u=¥”)ŠlG°$lÙýˆyI áîGÌ–%X' vÔ™†»Z‹ÞÒZÐÍb@$Ø6Ž` ¬¸H,òÂG†>®h‰Äh=½±•­+Å—«?`rŒ±ð¿Ý¤ãN–°¼¨‘-ÿG„çUÅ3  wµP#X<+nn¤ø!#[(2˜*SΪ/k%³IDATu;¨„À,œm :£}Ð Ã0 ­ua –xBà`î*æñ;¨ A£X•àF€Ê8‚Ecmñ«½¢ÅÀ¨8‚å²åqhèB@àh ˜R U€UžQ P¥8‚…²åæF3«ˆwÛ„À,[¥»B•b–eqWk°eÁ’0„¿B KÿƒF ÄŽ†"vKkRÖâÈJ[:§%X%Ž`1x+Ðð¾”Yɪœ†[Z“Š»ZXv@%Ž`ñø7h¶Ù ’w7Š$¨:Û¬ &Ç€%¡·O¦²lÙ?ÛÆª˜dþÒ*„ùY`ƒ8V9 >ãA c\ˆÀÖ p‹žAí ¢1 ÄŽ`S8‚e@Ô¨C¥2¢Q CCX¬øXU;€í@à`ETÄ/lù?Üg¦ q:€uCàÍR'ÇT*2´6V9M`8XFð7Sþo#AìÖ ë8V-L©–¢ì‹–¿žŽÒý`ûèaŒ  ÐÀŠ!p³À–Ý¥£üqùý`˜J7ŒmT” ÏØX^c¯”,G+ÅÐF\ÄŽUBJJl&Gk:XŽ`¦ÊnÌ0Œ ßHÐ5žÄÓ‘APV“cÀ\Ñ`!£°XŠÇT¶€•A‹#€m`Ãbª– p±cÙ@^Á³øic”jÝáÛ´ °„Å9i•&xñÏmÍ‘`aÐU `Chìhê\Ø(–àX<Ž`†X´ÄT±#‚£Á‰ ]Õ6‡ßgHƒ ^ÄÈE°Vhqsƒy¨ÆP©Ý±âæ„ –-û`½8Ø(Œwm¡«ºª`úªNÐÜXåÁbyøX^ò,N]#bYœî`Y8‚Y`7á”åþS_®Å mTãX¶h ¢Fãa–eÉ¿–P1`rÁôx«ÜñFÝqcÅS Ž›Ã–)‹ÌËk…m8Êë}  Âv-v` Á,0„†AÈb !lÅÍMLë¡|:—Ý÷˜þ(R¾«5¦i€yÂä›ÇÁÍMÀøX•Í“˜¦ f#˜zGM…! S6Ê•`zhïó‡ÀÀÑh‘¶hBø³ªÁ„;€™CàX%° ‰thé2¥S”-[Œ¡‹I±•0/l‘È, nr,Á]­ÀL!pSBs£yBì*!p“AÔhÎTÄŽ¨-›‡ÀTSÕîˆfHSÀxG0 ||åcüyÿÊo°Æ»W ˜/.vÄœSâ­ÎHøPupç¨*´'šÜ†!Ü­2XÞf`¶0ÞѰªî.£®)¨:õ¥î;•ŸŽ¥yðÅfTÛ¼uY,;eHbwµæÝÒטºªõŖݯ»;˜Š‡–Hp2—ŸË,©ø §·a°Jÿ*-ÇÃ0\¡c…p0-´8íËSþånÎaê š4™˜FÚ2\?5KXÂÂ2å¡ KƒÀXX\D`: £Ò÷+!7Q‡ÅQÓSx*¢òG4x™®p5€‘¡«Úø‘"¦€u¨ø TÑU ¦Ç"ŠS@àh`E±¸‘š…*_Ž+)™ÄŽ`d ‰k›aƒ¬oÜEÅÌ´<š ÄŽ`L C0Àó©UÁœERu2³„`Mp3Âbéo0ކ¡2RDìÖ«l¥ÄŽfCÀ80«Œ£âK¿ æX[:ÕkQ¡VH°²S~g&)PQ -k·oß¾mÛ¶ììì5j´oß~Ú´iîîîz¾¤¨¨hëÖ­©©©<¨Y³fhhèÈ‘#Û¶mkêcµ \°ˆ‰2VA;¢ Òx×”ô•zPO ‹SRRÖ¬YãääÔ¼y󜜜;vdee}óÍ7ŽŽŽ:¿¤¤¤døðá/^tuumݺõ‹/~ùå—'NLœ8qüøñ¦>bKÂþÓøKºÐ_]fN«uÂ+Ú+– SQ¸9!‘eq¼yóæºuë|||~üñÇuëÖ8p`ذa—/_^¾|¹>/Ù¶mÛÅ‹›5k–žž¾zõêÿüç??üðƒ››ÛW_}uýúuS´ÅàÍ¿e*þ©¹‘˜/¶R]ªß ã««ênNÆdÙã¶mÛ ÅäÉ“½½½iÊÌ™3]]]÷ï߯P(t~É?þHù裸6ȱcÇ–––ž˜ žSXXXZZêææ&Hwuu%„üý÷ß:¿¤~ýú‚ Μ9³nݺêÕ«÷êÕKJÞÂÂÂ)7oÞ4uƒÖ›U69†à04’×bº –>¨LùkÝfYpàXTTDqrr¤;;;Bž>}j—”––~÷ÝwK—.---ýì³Ï<==¥äÍÃD€ ´ƒw313,¦ZèJùkÝfCI ÝÜ܆),,¤?{öŒ”7"êù’_~ùeþüù·oßöóó[´hQ›6mL}ÐßO6­b9çY‘¾Ê#€J8ÊårWWWåf‚‚B7iZ·—¼zõjÙ²eß~û­ƒƒCbbâ¨Q£D†%å! C–·<8º>MDå fˆ´…!eÇ‚'ÇB|||òóóiØÇ¹{÷.}Jç—(Š©S§~óÍ7:u:xðà„ 5jß4@áϪ®4GFÚÂ`x,[ö¯ò¨G C"ØŽeŽ:u*--=~ü8—²lzzº»»{dd¤Î/ùöÛo<ÿÕW_©l¹e˜† "T/®ÅM•¡ª @+–8öïßßÎÎîË/¿¤ƒ !ëÖ­{ôèQß¾}íííiÊóçÏïÞ½ûàÁ‰/aYvÓ¦M5kÖœ1c†©Ï¢p,‹¶$P†[ËSùŸº;¢A´bÁc !µjÕš6mÚ’%KÞyçvíÚåääœ9s¦Aƒ£Gæ¶IOOOJJ Ù»w¯”—äååÝ»wÏÑÑqÈ!ÊïØ»wï¡C‡šú¸M¬üÎ üï! |–° ÿþäÓPe”Ë•aþ";ô÷Í$THaÙ#!däÈ‘^^^;wîLKKóóó:tèäÉ“éò:º½„¶Meff*¿«)¶ì{¨ü1CßIhÃÕ„ ‚³€j‰ô+\XX˜ºuÁ–HáKܲjw¨fKFZàȪ١r³‡ÊJÚÌZwXyK«Ù¡°«ºl³J‰*oN¨²µLÃfÒ·´äêøÖ¼GA½ÑgÕ]ÎÀù®·n–=Æ,ˆš»Z³¼¿Ÿ˜Rù4xÔ¨eñ]Õ`IøWüu K¬nÍ¢j·ªÜTŒpÀ6 p¤^K†[ZØŽ`hlTŒ²Ã]­Í•67˜! `0ÆL„!•¦ó"è0C¼i7˜[€ÀôÇ¢£ ôÀ»«µºvGD%¦ƒ²>tUƒž0F ôÇ–7?² a0·Ú˜$öAs[¢nlZÀT¬ÈÆßôXÞ‰ß'†Çªú§ÜÍò6F5Ø8Ž |€áÑ[žãÆÖæ ×<€CW5è‚!\–Ò´ÜoôÃ…ŒJ±#C!,Aw¶i±•>À¶ Å´Vq£²UTu}[: A!mw$·“)ïJÅï3 ìÑ›ÀÌ×U]öïîÙ„Å L]Õ  †Ü ªT¥Ø‘a·Â4N<3$²N¸ºW˜:Ë Ž 5äÁXx‹8éÌÃ0,7/^ÂæjöÁˆ›_˜'Ž`Öx]Õ,!hn4S†‰ëqók³‡1Ž }L`De¨ËÖqÄ f,î;`ÝÐâæˆàXžÀ–%Wþ¨âuˆ«†0Tsƒ–·1jÀú p-à;ŒFÍÔ銛‚GE„Î0üže:$Q9|DõXtU€¥âß`F¤L…EÏ5€ÕA‹#H…Æ0+jn0Û¤{̘4=XŽ >÷ÁÜz«a7)!ˆÍ«4êQE3¤ªA“¨?sƒÀÊ”}Ž ÖNãÝàMùkÀäho5½?!Ã2•–ÅÏsŸ4ÃOá(šD7€ÂG¨P~ÿY†êÊ÷ 0;#é´Ìè5cø°thqsÄè¾4¦dX´X"Ž ½-uYnÆ$6 ®íª.¿Á °D¤«'r•ÑêvÕˆ,G€Æ‹¸ ˜«²Ø±lSžFVÅ:áX¶§êH¹ñX`Y0ÆD¡‰,Aåаb]Ù¤åH±ì†`zlÅªîø´°A‹VF0êï1S±C44š³ò™y’0<¦Î8€ÍAW5X9ÁRáåmåݤ,Qçk01Õ!¯mË„GP‡E_X®·ZÍRáX'Üüðq”r›l|T ºªÀúñ;²\I¦Ê˜©òdÀÜ p•ÐÜV­ÒRá`Ö°&'€YAàÊð… ÖŽåýß ×‚‰±øH0'ãx+b”—VZä‰ÀìHŸWË0 7†0„°å‹O«Y°æøËñ(}Ú`ÅG3ÀÊ”MàþCÊW„nêl(‘vƒ¥ˆ£¢‹?iá£qH™òB*WiÅg>ˆL#T wÄ÷&Ø ÞÏ%^øXG–ýpÂñô"hÖó÷'+1¹w‘ürÐG° Â?¦ì–2Œª—­øˆ&I]ðš«jÏ‚B ¶Ð&Ç@4ª°³føóf*ÝÃÐÔy„Êp÷ãBàÀÔ÷R3Ü-­™²V" âIÓ‘8Æ #‚æF¾JK °‚¡`¶X,úPõ8¢F5*Íëe+Vó©ŒáÆFB`”þ‰,ÜÃ"|¨b˜ F¥YÕ a˲XµÇ˜T–² ÷(íAz@‰ P £õ+_k„ÿ]øé‰FGõ*ݸ‹>Z uᣔ:Cƒ%€:誶 ,¡«`”ÿc–7Ž _}šTºJ¸k†0¼zÊûHÕôhƒI óÀ°8HÁ_/¥Á"¿õ±|›Št0ø… `(mº§ôÁ–67²\Y¾–ÈkÐòerh}ÐÆ8è­b ~™;屆½)"€uCàh£ÐÜ '†a[sT,úȆ0,¦Î˜€V툕ïSΫ)†Ñjo¨c°5mËòbãç5€î¸„Õ0óºl¹ÇŠõ}À” Tãª=„ßâ¨êc7¿P†ÀÑVñ>OMËĪ|\)|¤Ó®U½¸¬’7)Ì~HˆÂäÄ"X0Õ—[ùÊIÖ¬æù׈^L…Áç#€޶†Eï €1ÑvGúG¥É×XíÑ\qA;æ_(CWµMAÔ`lÜì™ò?„=Ú*^R6C!MLäÖ…ÜÃl G€*Æ¿³ ?•epëBó'ˆôY5ˆÃOv°m‹æFS«˜×[¶pOùT_u×fÅ‚øÒTò'İe-½*ç_ÑÀ p´ åŸt¬àÿ„”}J€10ª»ª¹q¤ÒR>¼¥XD#qá/×ÿ“ ƒ%BàhØòÅŠË0Dú§$TVeìXA²•ŸS52„‰'1?¸JqU(>RÓ^*^ÇàÓ,G“`Õµ;²„e¦bEq}&ɰ} Ô2‡†hì"'½äæ £•ÃÇ€eá5.–$Jë„W4%²ó¯Í„Æ94ʉÂ;Ö¨¹VøÍÌh¿„ª€ÀÑšáËÀ‚TÜüšå¦Ñ°„:‡¦Ò¶¦[Ñà³@{:´Òšv Eß7TŽV Q#€Eª¸ùu¥¾lþý¯Õ¼† CÚ€4Ì¡!eÄM/G•€•Aàh©Êg`òW‘~Bé5dŒŒU™TiúKùðG•¯ªXßGôh›¿ [âg²ÄXu &ÀÑ‚)Ï•æ¾3¥7`î5±#Ãh˜s5µ,„ôeC—‡{U[!´*ؘò[Ó°„! îmæØòúO…0>´8X2~ì!¸ «¼©†[ш/ *é§ MjGb}0 ŽV¥lìvùz ˜O`ý*ºª¥Ì¤)ë,Å}h Ez9jŽ/FÛ[yi\߇E솆ÀѺРú_Ü4ÀV¨;ÇXÞ%Ìmf*§˜Œq´"h_°i¢Ÿ´kšn£f(dÙ ‘ÔûŠÏ›ªÄòþ1J¡$€ ¡ÅÑj°¹ëX'‘¡ªiZQ¼l|æ¨ ¸K¸ž£†ô_ëû€!p´,~Ž€U«ö(…d*-5¨zMÙfÅqÁ"Ã/^5Û¨|¨¼KÞßܰV‰•€õ}ÀP8ZD …„¡ÄÀ£!1M›#ñV4ÚîŸþ`d-‹Ï Њ¦Š»²„_Rõú>•:j5V±JÍúõ‰Kÿ.A­Ú2ŽŒ!DÃ-%´¥j4$©Ü£ÍVC§¶ŸKø(ÓŸÒÂÚ¶+H©´UØ8ŽŽUÿI­ýGï®Ö•gx”ˆ,‹+÷h‹õ±â6ÙÚ3̧wù:Žü¤0ÛÆ–!p´`Ê÷ªÖs¸ !D¤;›F,aËÇçUꪮxµ *¦i+uj#¾$Drè¶T8£&Ýà™DË…µBàhvÊ.¶ÊM‰êîÿP5TϤ©ûXn3F]¶ÒÞˆŠ›ÖTúé«9[˜m£'áÍfL°8Í‘rS"¿í×9˜Vùr<*b½òÆÈJI¸iÙ´DöŽ5˜mc•8Zë/€IU s”øiÄÉÚª§iëÈŠ‚u+Šk\RÛ¯ å¥"U>%Š»i ³Œáø£%Áou0!UÁí¶––*wj+_ /ÔS§¢=Q»åõËùwÁ‘Ð÷Í{R0†²"‡*CÌò<AÀj!¦”›"VJã&+‡¶ŒÄÛ6‚̪֗ž3­Þ¤-¨šÃ‰ƒ&%/ÄÅ›Jó¾ÂЕæ}—½®bu¡Š—T¼}Ù×EåtÓ*ºNOVšU­î©Ìà™W.VÕ9ä…¶68Z%Ž ‰8ª°mÛ6…B1yòdoooš2sæLWW×ýû÷+ ‰;áNV± þ°E[ºT77Jl}ÞNaðæ é;4à[WQß7ÚzG•Î;gggË¥Èd²˜˜˜üüüŒŒ ){`0~´ 1vT“,±qSÛ- xpÒÃc#~w²‘åÿ4ö}Ûü·;G!–e³³³=<<<<<øétlòýû÷%íEÕ)g'€z6°hOJaycdù?ѾïJ_ⶺ@V“zþüyÓ¦Mßxã}ûöñÓ·nÝúñÇOŸ>}Ô¨QütåÎè°°0ST­›7oš: &€;ÇÑ©ÓNNN‚tgggBÈÓ§O5îAùL²ÚÀ– «ZÈÍÍa˜ÂÂBAú³gÏ!®®®¦Î €i p’Ëå®®®Ê-‹„nž5€­AਂO~~>9wïÞ¥O)oÏhú`8ªÐ©S§ÒÒÒãÇs),˦§§»»»GFF 6f¥ý°tUèß¿¿Ý—_~IÇ5BÖ­[÷èÑ£¾}ûÚÛÛ›:w¦åxTÛ°aÃ’%Kj׮ݮ]»œœœ3gÎÔ¯_Æ nnn¦Î€i pTkÏž=;wî¼|ù²ŸŸ_‹-&OžLWä°M@ŒqI8€$@Ž G#H‚À$‘›:ÖcûöíÛ¶mËÎήQ£Fûöí§M›æîînêLÙ¢;wîÄÅÅmÛ¶-""BùYT“1mݺ555õÁƒ5kÖ 9rdÛ¶m›¡RŒìÉ“'+W®<þüƒ¼¼¼6l˜˜˜,Ø õb*¹¹¹=zôèØ±ã²eËO¡RŒ©_¿~W®\$zzzž=wîÜÇzñâEÁ¨&#ûî»ïBCC\XXHSnݺբE‹ðððk×®ÑTŠñÑ^±b—²cÇŽÐÐÐr)¨Ú°aýKNNæ§£RŒìéÓ§¡¡¡“&MÙÆ6+c `Û¶m …bòäÉÞÞÞ4eæÌ™®®®û÷ïW(¦Î­èÑ£Ç!C¶lÙ¢nT“‘ýøã„>úˆûå2vìØÒÒR®£•b|§OŸvttüàƒ¸”>}úøúú^½zµ´´”¦ ^L%+++%%¥^½zÊO¡RŒìÞ½{„As£€mV G8wîœ]ll,—"“Ébbbòóó322L;[ñÉ'Ÿ¬ZµjÕªUmÚ´Q¹ªÉÈîÞ½ëääÔ A~bHH!äþýûô!*ÅøÜÜÜ:vìèààÀO¬^½ú«W¯^½zE¢^L¢¤¤dúôéîîî3gÎT~•bd999„€€‘ml³R0ÆQ_,Ëfgg{xxxxxðÓCCC !÷ïߊŠ2umBtt4ýãçŸV~Õd|k×®•Ë…Ÿ0W¯^%„Ô­[— RLdÓ¦M‚”sçÎÝ»w¯I“&´mõb*_|ñÅõë×7lØàââ"x •b|4püã?† výúõ5jÔ¯_ìØ±Ü´K›­Žú*,,,--Œ–%„¸ººBþþûoSgA5™Býúõ)gΜY·n]õêÕ{õêEP)¦váÂ…;vܽ{÷Â… þþþK–,¡é¨“¸xñâ¿ÿýï¡C‡¶iÓ†þ¾âC¥íùüóσ‚‚Z·nýûï¿ÿüóÏéééóæÍ0`±áJAਯ¢¢"Bˆ“““ ÝÙÙ™òôéSSgA5™Ziiéwß}·téÒÒÒÒÏ>ûÌÓÓ“ RLíæÍ›©©©,ËB4hP­Z5šŽz1¾¢¢¢éÓ§×­[wêÔ©ê6 ¨ãúã?§L™2lØ0šrêÔ©±cÇ.Z´(::ºV­Z6[)ã¨/777†a ét1úËLÕdB¿üòK=>ùäOOϯ¿þº{÷î4•bZƒ º~ýú‰'f̘qàÀÁƒÓ’G½ß’%Kyï½÷rss÷ïßÏŸº„J19†a¼¼¼FŽ9pàÀ?ÿüóÀõbtgϞݼyó˜1cTÞ³€B¥˜‰-ZBnݺEl¸R8€O~~>=W8wïÞ¥O™:wPÕdd …bêÔ©ß|óM§N<8aÂåÖTŠ‘eee}øá‡û÷ï¤ÓÉï>¤Q/Æ”••EYµjUX¹>}úBvïÞööÛoÓÍP)ÆÄ²lii©ò’:2™ŒR³fMúÐ6+£têÔ©´´ôøñã\ ˲éééîîî‘‘‘¦Î”A5Ù·ß~{ðàÁøøø¯¾úJÝoTŠ‘¹¸¸|ÿý÷;vì¤Ó%ë‚‚‚èCÔ‹1¼U]#¢V­Zo½õVLL Ý •bL999õë×ï½÷é.\ „„……ч6Z)¦^ÜüþûïõêÕëÖ­Û?ÿüCSÖ¬YºtéRSgÍ}ôÑG*ïƒj2&…BѹsçfÍš‰l†J1¾=z„……ýôÓO\Êõë×›6mÚ´iÓ¼¼<š‚z1­ÌÌLå;Ç RŒlðàÁ¡¡¡Û¶mãR222š4iËÝ Ë6+…aYÖÔ±«5ذaÃ’%Kj׮ݮ]»œœœ3gÎÔ¯_Æ Êõ¡ªÍž=›Þr^yÀªÉhþúë¯víÚ9::¾þúëÊÏöîÝ{èСôoTŠ‘]¾|9>>¾¸¸822²N:ýõ×ùóç !K—.åzE êŤ®^½Ú§OŸwÞygÙ²eütTŠ1ݸqcÔ¨Q=jРAppðï¿ÿ~ñâÅ5j|õÕW­Zµâ6³ÁJ‘Í›7ÏÔy°‘‘‘>g–ù®PŸËÊ_½zµjÕªöíÛW®\¹L™2nnn]ºtùæ›oRRR2Í™ñû©cfffgg÷öÛoϘ1#ã7!—E2™0a‚Òû0.G úñÇÏ;§t¹éÛ·o`````àÕ«W•®ùôÇÔ©Sç“O>9tèЃ^½z±oß¾ñãÇ»¹¹íÝ»÷kHOO?þüܹsÝÝÝCCC•Þ&o`¦t O«ÕŽ=úÌ™3’$)]K”/_¾FB'''¥k)…M…Ù®<<<ÜÇÇçŸþѵ˜™™¥¥¥É¯cccß{ï½3gÎ4jÔ(ë -,,„/^¼ÐhLHHèÝ»wDDDéÒ¥sY$[[Û¢ÚÇ„Bh”×®]ËôÛ½eËÝÔ—/_êÚW­Z¥t±ZKKK¹˜Ã‡+UÃôéÓå•ÞŠÉ÷Nx÷Ýwuߨ?üðÊ•+iiiüðCݤ%K–¼q âR5PbMš4)99ù³=~üxÔ¨Q-[¶,_¾|Íš5{öìyéÒ¥¬³EDDtïÞ½bÅŠ5jÔ}jÔ¨Q±bE__ßãÇçR¡>ÇBOYW~øðá={öȯ'Ož¼nݺF™šš:99 2dëÖ­ò¤ððð[·nå¾òªU«®[·Nw‡å¼yótÇ€)\FÆÓ3uêÔ‘_Ìž=[žšÓÇ#GŽ8::fúß‚$Icǎ͸òÓ§OÛÙÙeœÇÕÕõ½÷Þ“_OŸ>]7§®1“^½zÉ3Lž<9ëÔþùG«Õ®ZµJ~Û¬Y3­V»ÿ~ùm©R¥’’’t1dȹ½GyÚŠLt'Û¼¼¼jÖ¬™qÙR¥JeÜK™ ˸¬Oݺu3}tïÞ½3~Ðùóç3­_VµjÕ¬õ4nÜ8ÓÞ¶··_¶lY©R¥2màñãÇsªPŸc¡ÕïŒcÖ•÷èÑCn©P¡Âóçϳ.Ò¹sçÆ7nÜ8888ë÷3ëéÃŒ!øÀú,@œqJ ™3gZ[[ !.\›ÓlIIIï¿ÿþãÇ…~~~Ÿþyß¾}MLL´Zíâŋ׭['ÏöòåËÞ½{ÇÅÅ !ÌÍÍ[¶léìì¹}ûöL+ܾ}»Ü(I’ŸŸß€êׯ/O >zô¨büøñeË–•Ûøá‡Œo3ò÷÷—ï`{ýúµ¼¬ìÈ‘#ò‹^½z鿹¸páÂ;w¼½½Ë•+'âðáÃoܸñÆe?V½zõ·ß~»L™2rãŽ;.\¸ ¿NIIyï½÷îܹ#„(S¦L‡:wî,ooLLLŸ>}ž?žiW®\yúôi£F*T¨ ·xð@ammzúô阘˜   ¬+ÓÝ#Ø Aƒ±cÇfšA§Y³f;w– ëÝ»·ÜhccóÙgŸÉ;ÿý÷ß—s*ÌàÇB'ã­™ÎÎÎù^O&+V̺~jÃp<@Édnnþõ×_Ë7®=úرcYçÑu\èСC¶+¹}ûvÆ ³Í¢C‡›6mÊ8¿ß³gîûÖ¦M}V¨ëÌT®\¹V­Z|o0‚#PÂ}ñÅÙÞ4&„hÛ¶­übÍš5Z­V~½sçΊ+ÚÙÙÕ¨QC¾%N÷·ñâÅ7oÞBhµÚiÓ¦EEEe\ÛóçÏu§$u6þøãÜG~Ñgʉ®oõ«W¯¾ùæ!„©©i·nÝòº¹xýúõÈ‘#å3g>ÔõC{Ø„ÜÍEñïÿ[7&ùµk×-Z$¿ÖÝRi@ù;ú{÷Ýwu»ý³Ï>›3gŽ|555uÓ¦M”'Õ¬YSîM•‹G}ôÑGÁÁÁòÛýë_ï¡ 6Üã”pÓ§OŸ8qbÖIS¦LY»vmBB®]»üüüÚ´isýúu]'ß±cÇʦL™²nݺÔÔÔ'Ož4mÚôí·ßŽŽŽŽŒŒÌ´6KKKKKKùŽCùñ!’$8p ÛK™666òœ_|ñÅõë×G•itëŒz÷î-ßæ(ßméãã“q|l=·"w?ÿü³‹‹K:uΟ?/MSSÓ/¿ü²àûâĉë×¯ŽŽ~öìÙ;ï¼ãïïojjzøðaùù(NNNŸ»c(y:ù³xñâ·ß~;%%E«ÕΚ5kÖ¬Yvvv º~èeÊ” Î6y0@ÉòÅ‹¯àÛÛÛñÅß ˆ3Ž@É7jÔ¨l{xØÚÚþðÃ666BˆãÇÏž=;888%%E1lذÏ?ÿ\ž­Zµjß}÷ì’““;iii™éI€’$É+ʳýöÛo¿þúkåÊ•u³eŒº³˜gÏž0aBîçuW«e¯S뿹°±±111‰=r䈜ÍÍÍ¿ÿþ{ÝUæ‚°°°Ø¾}»<ÞaJJÊž={~ýõW95V¯^}ûöí9.ˆ<‹üiРÁ¡C‡2ö—Š‹‹Ó¥Æ5jìܹ³qãÆÙ.ûàÁùöÓŒeT¨Pá·ß~ËôÈjCpJ>sssÝ…ÑLþüóÏ   &Mš”-[ÖÕÕµ{÷î!!!+W®ÌØ·7((èðáÃ=zôpvv®\¹r=NŸ>µÃ’%K4h „011iԨј1c._¾¬»¬¼uëVÝÐ9K–,éׯŸƒƒC¹råêׯŸ{—áŒ#›˜˜èžkœ×­È‰OHHH@@@•*UœœœÞ{ï½£G~øá‡†Úÿo½õÖÕ«Wg̘áïïïèèhggççç7mÚ´¿þúëwÞ1Ô§äûXä[«V­nß¾½dÉ’6mÚ888”.]ÚÝݽk×®K–,¹yó¦î}.LMM+T¨ðÖ[o͘1#<<¼yóæ…´7Ф»%òdàÀ7nB¬\¹rذarãëׯ÷ìÙ#„ÈïPÄ8 Žàà >úè#ùz-[¶üî»ïäÆþù§víÚò¥ÆS§NÑŒc¼³³ó•+W„W®\©ZµjïÞ½'Nœ(§FfÍš)]# (pÆÀ¤¤¤´oßþÔ©SY'U¬Xñرcò½t€ààÍ^½zõÓO?ýðÑ‘‘>”ÇGlß¾ýèÑ£ £S0@ŽÐ Ãñ@/Gè…འ‚#ôBp€^ŽÐ Áz!8@/Gè…འ‚#ôbìÁñÁƒM›60aBÖI;vìèÝ»·§§g«V­¦Nš t±J2êà¨Õj'MšôÏ?ÿd´dÉ’éÓ§ß¹sÇËËËÒÒrçÎ}ôQJJŠÒ%(ƨƒã† Ο?Ÿµ=<<|Íš5ŽŽŽX³fÍÁƒ põêÕ¯¿þZé’c¼ÁñöíÛK–,©S§NÖIÛ·o×h4£Gvpp[&Ožlmm½ÿ~F£táÊ0Òà˜––6qâD[[ÛÉ“'gzáÂ]‹©©©··w||ü¥K—”®@F—/_6þ|++«L“´ZmDDD… *T¨±½víÚBˆ˜˜¥ky!Éÿ‘ò»x~,‰Ì”.@W®\ùþûïû÷ïß²eËëׯgššœœœžžncc“©ÝÚÚZñôéÓ7®ßÝÝ]éMÀ¨…ß ÏøVRm÷Úî"? ÃsøËž÷•{FSRR&NœXµjÕqãÆå4ƒ¢\¹r™Ú---…Ïž=ÓçSŒóˤfîîîµá ¨ÇE…8(ù! ¡’´B+„Ð ­È÷.”¤¬ûßhO]p\¸páýû÷·nÝjaa‘í 666’$%''gj—Gí‘Ï;!ãºÇñüùó[·nýøã5j”Ó8p@éE8.*ÄAz³7xð`{{û]»víÛ·ÏÉÉ©ÿþ£G–Ï>'cŽ9 Ž tja\½ªoGè…à½û=Ž Ø“²4h%!?¢º k–„¶À+)AŽ øûoº“„¤ZDFd‡KÕÐ gUÁÝÝ]éP<ä4zE€à¨èÃÝݯ @)\ª€^ŽÐ Á ;ŒÅ“Áz!8@/Gè…à½@q& ž/XdR¶mRž×ƒ|!8€båÏ/JBÒrʱ¨p©jqõêÕ>}úTªTÉÒÒ²Y³fK–,IKKSº¨7xöìÙ°aêU«fiiéííªÏRÞÞÞ³gÏÎØòúõk333éÙÛÛ+½}üÎ8B"##}||ÒÓÓ»wï^­ZµÃ‡;öĉ¿üò‹Ò¥å())©Y³f÷îÝëÕ«—]pppÇŽ;æéé™ËR—/_>}ú´¿¿ÆÆ¨¨¨ôôô–-[ºººê---•ÞDþÁª0vìØgÏž…††zyy !æÌ™3dÈuëÖ>¾C‡³gÏ~òäIÖ©rp¬U«–A  ‘O111:txþüyóæÍ ¸ª´´´áÇËIQ'::ZQºti}Ö°cÇŽ‘#Gz{{Oš4ÉÞÞ~áÂ…íÚµÓjµBˆ   ™3gV­ZuìØ±žžž6l ,øæ'%%ݺuË××W’þW>???F“íŽŽŽŽZ­V«ÕÞ¼y3ëÔˆˆˆÒ¥K—/_~ÇŽ«W¯>uê”.ørAϘ"Æ¥jäÓÎ;gÏž=}út“‚þóÃÌÌlþüù[ž>}:þ|SSÓ^½zé³†ØØØyóæM™2E~;qâÄE‹ýôÓO?ýôÓÀׯ_/O úõ×_>|èääTš?~¬Õj36:88!²=§˜»ˆˆ“Zµj%$$È-uëÖÝ´iSÓ¦M ¸o0 ‚#òÉÉÉ)§Ô˜––¶wïÞœìÖ­[îk>~üøG}±råJ777}б³³7nœîí¬Y³V®\¹}ûönݺI’túôéèèèêÕ« !Ö®]»víڂלœœ,„°²²ÊØhmm-„ˆÏëÎŒˆˆÐh4³gÏîÕ«W©R¥~ûí·1cÆ^»vM^'j@pT7IÑMµ¹üwwwÏé\ã‹/r¹¬Íyµ÷îÝ1bÄîÝ»ÝÜÜ>ìçç§g¥æææº·åÊ•sww¿s玅…ÅÒ¥KÇçâââááѲeËŽ;véÒ%ãÌù«ÙÎÎNñüùóŒIIIBˆ *äuO?~¼L™2ºüòåËáÇ2$¯k p£ºiµJþäÊÆÆ&§IÖÖÖÚœå´ÔÖ­[ëׯñâÅÕ«W߸qCÿÔ˜-333ù6ÁáÇ߽{wÍš5 6Ü·o_=6løøñãÖìèèhbb’éªt\\œ¢råÊy­ÖÙÙ9SÜlß¾½âúõëÙ gaxù¸T½{÷îýë_ï½÷ÞªU«2]ÿÕÇ7^¿~]ªT)ùmJJJXX˜O|||DDDíÚµƒ‚‚‚‚‚4ÍŠ+F޹jÕªY³f¤f33³zõêy)_^@%Ž0¼¼^öÕjµ'N¬Zµê¦M›ò7 ã“'O–,Y2qâDùíܹs“’’ºwïÞªU«iÓ¦Í;Wabbâãã#„ÐEÌ|×,„:tè¨Q£öìÙóî»ï !þþûïàààvíÚ¹¸¸ä©x ‹ñãÇ{yy9rD.L£Ñ,Z´ÈÌ̬]»v9"Á†'_öÕþ°°°›7oÖ­[7(((Ó¤=zlݺõÓO?ýðÃ/^œíœœœf̘qæÌ™F={öСC-Z´0`@ZZZýúõ,XY¿~ýðððýû÷W¨P¡oß¾¬Y1hРuëÖõë×oøðá6666lHNNÖ=KpáÂ… ,˜?þ°aÃr_ƒƒÃìÙ³'MšäææÖ©S'›ƒ^¾|yÞ¼yõêÕ+üÀ¾ŽPž<üuXXXXXX¦IµjÕ HMMMLLLIIÉi o¿ýö˜1cfΜ¹lÙ2''§ñãÇÏ;×ÄÄÄÜÜ|ÿþý³fÍ:räÈÏ?ÿìèèØ®]»3fäõ¤`¶¬¬¬BBB&L˜œÐ¢E‹-[¶èž7øòåËÄÄÄW¯^鳪‰'Ö¬Y󫯾ڼys™2e6l¸ÿþŽ;*uD@yRNÍEÒmTÇ Æ@ÊëY¼‘»»{xxxa/blÖ®]{íÚµ¥K—fäââÒ¸qc5?ÕÚ€JÒW%**Ê †ÅqQ!c<(9?Z°ˆFü–¤7-Rbþoœ'ôªF1ðòåËcÇŽ5iÒDéB0jGgÏž­[·î| t!5îqD1àëëëëë›ÓÔN:Õ¨QCé(ùŽ(öV¬X¡t .U@/Gè…འ‚#ôBp€^ŽÐ ã8%HúÌ¢ÇL†/ì ª6fG =â™VŸ™PT¸T ½ ‚#Táõë×fffÒÿ²··Wº®7xöìÙ°aêU«fiiéííšËÌW¯^íÓ§O¥J•,--›5k¶dÉ’´´4¥·€<àG¨BTTTzzzË–-]]]u–––Jו›¤¤¤f͚ݻw¯W¯^vvvÁÁÁ;vX¿»»{Nç_¼x‘Ëå`mv7?~¼L™2*Tß<øå˗Ç2dÈKõðð077×½-W®œ»»û;w,,,–.]:nÜ8–-[vìØ±K—.gÎ_ÍvvvBˆçÏŸglLJJBè¶"«{÷î1b÷îÝnnn‡öóóËûa@1Üã¨jZ¡Uð'÷Úlllršdmm­ÍY¶‹8;;gÊ[íÛ·B\¿~=»ÎÌÌL¾KrøðáwïÞ]³fMÆ ÷íÛ×£G† >~ü¸€5;::š˜˜dº*'„¨\¹r¶%mݺµ~ýú/^\½zõ7HŒš¤×ó¡6œq„áåõ²ottôž={üüüêÖ­«k”ÏÞÉ×—ßèÆ¯_¿.Uª”ü6%%%,,ÌÇÇ'>>>""¢víÚAAAAAAfÅŠ#GŽ\µjÕ¬Y³ R³™™Y½zõNž<™±ñĉ’$yxxd]ÃîÝ»ÿõ¯½÷Þ{«V­ÊtJ¬¼\6Sö"Û‹PA êFp„áåõ²¯……Åøñã½¼¼Ž9"‡?F³hÑ"33³víÚéó‰OžXYY…„„L˜0!888!!¡E‹[¶lÑ=oðåË—‰‰‰¯^½ÿÞ<,,,,,,ÓJjÕªEpR^ϲàÜÝÝÃÃà {c³víÚk×®-]º4ë$—ÆÉCŸKÒW%**Ê †ÅqQ¡âzPòx©Z’ò—ªõ~Þ`Iú¿qžÐ«ÅÀË—/;Ö¤I¥ À¨Q œ={¶nݺ|ðÒ…J.½O73îqD1àëëëëë›ÓÔN:Õ¨QCéù§ŠëÔÐÁÅÞŠ+”.£À¥jè…འ‚#ôBp€^èU òHÒcmN‹ê³pÑo‘*«R‚#È»Œº¨Ò!ý[\ª€^ŽÐ Á-XÜ€q“$npÔÁªóúõëæÍ›·hÑBéBþãÙ³gÆ «V­š¥¥¥··whhhqÜ ŽàÕ™>}ú¹sç”®â?’’’š5k¶~ýúÖ­[2äÎ;;v¼|ùrñÚ ‚àu9tèТE‹ÌÌò3PTzzzzzºaëY¼xqDDÄš5k¶lÙ²lÙ²“'OJ’4nܸÂÛ T‹àˆüpqq3fÌÅ‹5jÔ¨Q#C­öñãÇÿú׿‚‚‚ªT©’×b¾ýö[ssó Lž<955Õ %mÛ¶ÍÉÉiÀ€ò[WW×^½z…„„<|øÐ°[€ú‘O111:txþüyóæÍ ²B­V;`À[[Û¥K—æuÙ;vŒ9ÒÛÛ{Ò¤Iööö .l×®¶Àw:'%%ݺuË××WÊðD???F“ÓŽÙ TŽKiȧ;wΞ={úôé&&†ùçÇ¢E‹BBBBCCË–-›×ecccçÍ›7eÊùíĉ-ZôÓO?½ÿþû)éñãÇZ­ÖÑÑ1c£ƒƒƒâÉ“'ß TŽàˆ|rrrÊ)5¦¥¥íÝ»7§»uë–µñüùóÓ§O_´hQãÆóQŒ]ÆûgÍšµråÊíÛ·g Žy-,99Yaee•±ÑÚÚZoð­€âA*ÐóQ¬UMRô™ë¹_êuwwÏé\ã‹/õ_mRRRß¾}Ûµk÷ÙgŸå¯TsssÝÛråʹ»»ß¹s§€…ÙÙÙ !ž?ž©Z!D…  ¾ <ýÙ‘ µ¢¢ØäâSª U­àw雜&Y[[ç©òÕ«WGFF~õÕWr˳gÏÒÓÓ.\X­Zµ¾}ûæ£<33³/^°0GGG“LW¥ãââ„•+W.‚­è/OqzBŒŠÿÚª Á†—×+ÂrèÅ‹glLHH˜‘ëÆ¯_¿.Uª”ü6%%%,,ÌÇǧ€…™™™Õ«WïäÉ“Oœ8!I’‡‡‡Á·Æ5h¼ Á†—×+ÂÓ¦M›6mZÆ—J•*={VÏO|òäÉ’%K&Nœ(¿;wnRRR÷îÝ X˜bèС£FÚ³gÏ»ï¾+„øûᅢƒƒÛµkçââbð­@历'_ÎI>V¸uëV[[Û±cÇæ4ƒ““ÓŒ3gÍšÕ¾}ûyóæµhÑB7øbA 4hP£Fúõë7uêÔ¯¾úÊÇÇ'99yöìÙòÔ… ÚÚÚ®ZµJé]@Q 8¢HMMMLLLIIÉi†·ß~ûСC‰‰‰Ë–-‹‰‰?~ü±cÇ 2N••UHHHŸ>}‚ƒƒ-ZT«V­ÝЕ/_¾LLL|õê•Ò{/’Ä ŽyÂ¥jäGTTTQ®àÀ¯_¿¾víZ.‹x{{?~¼0б¶¶^³fM¶“fÍš5kÖ,¥öEŒ3Ž(^¾|yìØ±&Mš(]FàˆbàìÙ³uëÖýàƒ”.£Æ¥j¾¾¾¾¾¾9MíÔ©S5”®ð’ŠÓ ŽÈ ‚#н+V(]FKÕÐ ÁzáR5%—Tx+.´U ©˜×¯‚#%Z¡uS)ö=`ú;ï¸T ½ ‚#ôBp€^Ž ox6ŒÑ"8@/Gè…ཡ:ÞÞÞ³gÏÎÔøìÙ³aÆU«VÍÒÒÒÛÛ;44Té2ß,O5;vÌ×××ÁÁ¡bÅŠï¼óÎ/¿ü¢tùdFp„º\¾|ùôéÓ™“’’š5k¶~ýúÖ­[2äÎ;;v¼|ù²ÒÅæ&O5ïÛ·ÏÏÏïÞ½{ýû÷6lØ“'Ozôè±víZ¥7@1'âccŠ7Iâ±1ù£êGjµÚ°°°3g΄‡‡ÇÅÅ=yò¤L™2ööö•*UjÖ¬YóæÍ+V¬¨t0Œ´´´£Gž9sfÅŠ&ÓÔÅ‹GDDlذaàÀBˆQ£F5mÚtܸqGÕÿ#ÒÓÓ…¦¦¦E³EyªyÊ”)•*Uºté’µµµbêÔ©õêÕ›={vPPPÑT €>Tïß¿¿yóæ_~ù%111Û~üñGI’êׯ߿ÿÎ;›››+]²qqqq ìׯß!C„þùgWß¡C‡œ¦nÛ¶ÍÉÉiÀ€ò[WW×^½z­[·îáÇNNNú”Z³fÍ)S¦$''׫W¯K—.sæÌ‘¿3)))ß|óÍ–-[¢££íííÛµk7wîÜJ•*|é_ó«W¯®_¿þá‡Ê©QQ®\¹Ö­[oÙ²%%%Å¢àÅ`ª Ž>\°`Áï¿ÿ.„hܸ±§§g£F\]]mlllllRSSââânܸqåÊ• .Lš4iÑ¢EŸ|òÉ|`b•÷¢Ó¡CkkëvíÚ|mŽŽŽZ­V^§NŒ“’’’nݺշo_I’t~~~k×® íÞ½ûW¾cÇŽØØØÎ;7jÔ(44táÂ…gÏž=~ü¸$IAAA[·nmÛ¶mÏž=¯]»¶aÆk×®üÊ<ÕljjúçŸÚÙÙéZÒÒÒþú믆 ’ü©à«ÐósŠê“ŠžTr7­H¨+8nܸqÉ’%NNNãÆëÚµ«ƒƒC¦J•*U®\¹*Uª4nÜøƒ>Ðjµ/^ܵk××_ý믿Λ7ÏÍÍMé0;wîœ={öôéÓ ;¯?~üX«Õ:::fl”¿Ož<Ñg ±±±óæÍ›2eŠüvâĉ‹-úé§Ÿ~úé§®_¿^žô믿ês"Ó€5›™™yxxȯ7nܱwïÞ‡þøã…ºcKEuc^Iß›» @]ÁqÓ¦MsæÌéÒ¥‹žYD’$/////¯1cƬX±b×®]&LPz#Œ…““SN©1--mïÞ½9-Ø­[·<}Prr²ÂÊÊ*c£|U7>>^Ÿ5ØÙÙ7N÷vÖ¬Y+W®Ü¾}{·nÝ$I:}úttttõêÕ…k׮ͶKJ^·(ß5ñÅBˆvíÚÉ% ê ŽÈ_ß;;»™3gʽJeO¨çúO2ww÷œòý‹/s\kÿ©'_Ã}þüyÆÆ¤¤$!D… ôYƒ‡‡GÆ»`Ë•+çîî~çÎ ‹¥K—Ž7ÎÅÅÅÃãeË–;vìÒ¥KÖ[fóºEù®ùöíÛÉÉÉgÏž jÞ¼yXXXÖóî€|¢3u©ë¦À7¦F­V{äÈ‘~ø!ÛaMЬÃlÑÑ*ú“+›œ&Y[[ks–×}àèèhbb’é o\\œ¢råÊùÛ¯fff©©©BˆáÇ߽{wÍš5 6Ü·o_=6løøñãnQAj.[¶¬¿¿ÿ‚ ž>}ºk×®üm …A]g³:zôè²eËÚ¶m;räH!ÄôéÓƒƒƒåI}ûö5k–Ä]®êcØKÕfffõêÕ;yòdÆÆ'NH’¤»50w7nÜxýúu©R¥ä·)))aaa>>>ñññµk× Òh4+V¬9räªU«fÍšU-ÊSÍ{÷î ܼysŸ>}t¶¶¶"ïgg(TªŽ.\øôÓOµZ­ŸŸŸâÆÁÁÁÖÖÖ]ºt9qâÄÖ­[[·níïï¯t™Ḛ̀—ª…C‡5jÔž={Þ}÷]!ÄßÿÜ®];}òäÉ’%K&Nœ(¿;wnRRR÷îÝÃÃÃ[µj5mÚ´¹sç !LLL|||„ºˆY-Ò¿æ·ß~[±~ýú÷Þ{O÷¡~øAÑ¢E  HÕÁñûï¿×jµÓ¦MëÛ·¯B£gþüùþþþwïÞíØ±ã?þ˜à˜˜˜¸téÒ‹/Þ¿ßÞÞ¾~ýú#GŽtuuÍ4ÛŽ;¶oßQ¶lÙ6mÚL˜0A> „7’/ìp…ƒ Z·n]¿~ý†ncc³aÆäädÝc ·nÝúé§Ÿ~øá‡‹/Îvq''§3fœ9s¦Q£FgÏž=tèP‹- ––V¿~ý DFFÖ¯_?<<|ÿþý*T¿oÜ¢Ük^¸pá‚ æÏŸ?lØ0;;»iӦ͞=ÛËË«C‡’$:tèüùó£GnذaÑ2ô¡®{3¹uëV¥J•  Ÿ:w¹yëÖ­…5jÔ¨Y³fddd^×™””ôî»ïnݺUáëë[±bÅ}ûö\»v-ãlK–,™>}ú;w¼¼¼,--wîÜùÑG¥¤¤(½KŒ”••UHHHŸ>}‚ƒƒ-ZT«V­æÍ›ËSSSSs9:o¿ýö¡C‡—-[3~üøcÇŽ™˜˜˜››ïß¿àÀgΜ™3gÎñãÇÛµkwúôi=Od¤æ—/_&&&¾zõJ~;kÖ¬~øÁÔÔtåÊ•«V­277ß¶mÛ’%K”Þñü/­Š5jÔ¨Gòëׯ_7lØðý÷ß×MíÕ«WýúõóºÎ¹sçÖ®]{ñâź–;wÖ®]»OŸ>º–›7oÖ©S§uëÖòh|º¥æÌ™£ÏGÔ®];¯Uåcdôý÷ß5*ÛI5jÔ Tº@ƒ)I_•ÈÈH¥K@68.*ôÿJQýÑEöIEÌp±§$ýß8OT}ÆÑÙÙùþýûò ;—.]zùò¥|7˜B£ÑÈšóºÎ³gÏZXX|òÉ'º–=zTªTéúõëºÑ|¶oß®ÑhF­ eòäÉÖÖÖû÷ïÏúe(îåË—ÇŽkÒ¤‰Ò…P©:8zyy%&&._¾<66vùòåBoooyÒºuëž>}Z«V­¼®ÓÆÆÆÏϯL™2K—.šš*Ï"„¸pá‚®Ÿ„ÌÔÔÔÛÛ;>>þÒ¥KJïdvöìÙºuë~ðÁJ@ §êÎ1}ôÑîÝ»W®\¹råJ!Dƒ <==…ï½÷ÞŸþ)„(ºY@Ú7VPò¾ÿR-[–õÏzÖ3DFBíÁQ–˜˜xíÚµ‡:;;·jÕªtéÒLBˆ÷ß¿OŸ>qqq»wïþúë¯/]º´wï^KKKI’’““3ÍÿÏ?ÿˆÿžw0Bªî#„ˆŸ;w®Ï!C¦OŸ"„èÞ½û°aà ¸rI’ìííܧOŸGùäOOÏ*Uªüý÷ß/^B|õÕWºrvvž0aÂÂ… »víÚºuëèèèÐÐP¡C‡*½K£êàhmmýâÅ‹œ¦&$$”/_>¯ëlذáÞ½{—-[víÚµ°°°J•*µoß~øðánnng6Ý(h ßT}cŸ>}$I7nÜõë×3¶_¿~}ôèÑBˆÀÀ@¥k0ª>ãØªU«   ï¿ÿ¾G®®®BˆÃ‡Ÿ9sæÎ;¦{÷î:tPºFc¡êà(„?~|Ó¦M.\)„ˆBØÛÛ;6ãÈŽ(ljŽB_____ß„„„ÈÈÈÔÔTWWWFá(IRº€l*Ò·¦7?¨ºdÔwJUÇû÷ïk4šjÕª !lmm›6mªtE!„ Ó—±$B}H’в7 …ªƒcçÎ_½zuúôél‡r@’S#P4TÝ«Z[ñÖ­[JuÇ3fXXX¬\¹òåË—J×`ìT}©ÚÁÁá›o¾™9sf×®]»víZ­Z5++«Lóøøø(]&€QPupôõõ•_ÄÅÅ-_¾<Ûyxæ @ÑPupìÚµ«Ò%à?T-Z¤t øUwŽo$ ‰AQ4T}Ʊyóæoœ'44Té2Œ‚ªƒcRRR¦­V«Ñhäו*Ub`p€"£êàxãÆL-ééé<8tèÐÊ•+_½zõùçŸ+]#€±(f÷8šššV­ZuðàÁË—/öìÙ˜1c´<Œ H¨úŒc.š7o^«V­[·nÅÄÄT«VMérÅ„Tà5Õù IW«K}bñ&e8´œT*4ÅìŒcFBˆŠ+*] XÑì§H+Õj…62*R~‘ËÒûTtû…¦¸Çäää7nØÙÙ•+WNéZŒ‚ª/UŸ={6Ûö„„„M›6=}ú´mÛ¶J×`,T ”ËÔòåË5J錅ªƒc.Ϫ®V­Z```ÕªU•®ÀX¨:8ò¬jõ(®cPÄÔuÆñøñãy]ÄÇÇG验‚º‚ãÇœ×EÂÃÕ®À(¨+8æÒÊRWp¤7 BIH<*DçèE]g·lÙ"„xë­·ÜÜÜtosׯ_?¥«2Ép«Rî,ždÈÍ€ûSê ŽsæÌBÌž=[ŽòÛÜÀ(”ˆË¶\}60-û³¨©+8Ž9RÑ Aùíøñã•®ÿ¡®à8bĈŒo‡ªtEøbÜ9fÒ¤I~~~JW`,ÔuÆ1«„„„#GŽDGGgjOII9tè©©©Ò UÇÇ÷íÛ7666§èPdTׯ_ëåå°wïÞsçÎÍœ9ÓÂÂâæÍ››7oîׯߴiÓ”®€7c@o” ªŽ'Ož,]ºôŠ+¬¬¬üüüÞyç—–-[ !\]]¿øâ‹÷Þ{O¸…MÕc>|X£F +++!„½½½­­íµk×äI½{÷¶µµ]¿~½Ò5 UG!„‰Éÿ¯°ZµjQQQòkSSSww÷«W¯*] €±Pup¬T©ÒÝ»w_¼x!¿­ZµêÅ‹uS%Iºÿ¾Ò5€"'I<6FªŽmÛ¶MII?~ü;w„Íš5»wïÞ©S§„qqqüñGåÊ••®ÀX¨ºsÌ€}:>>ÞßßðàÁJ×ÈÖ ?*£Ú¼þ(]rñ—iB ª>ã(„°³³ûøãuoûöíð×_9::ººº*]Àè0"#Œ™ºÎ8úøø|öÙgº·žžž‹-Ê4¥¥e‹-HEL]ÁñŸþ Õ=c099ùõë×J!Ôv©ºeË–ôóó+[¶¬Ü²eË–;vä²ÈåË—•®À(¨+8Κ5ËÌÌìüùóº± ê Ž+V\¼x±î­»»{¿~ý¦Nªt]PYpÌdÈ!Íš5Sº @Ij@@Á©:8Nœ8QéðêêU O¦V ‚#ôBp€^ŽÐ‹ª;Ç ô?ï\„‹Òå¦KùXŠU:)?ÇEC]gõyV5ÀÀ´ÿÿ'*2*ãÛüÿZ¡ÍëÒ%‡¬;ê ®àȳªTK]—ªyV5 hHBâô!Wê Ž<«@µÔyV5€j©+8f³ªÔCÕÁQ÷¬êG………EGG¿~ýÚÕÕµnݺÎÎÎJW`\T… Ë—/ß¶m[zzº®ÑÔÔ´OŸ>£G¶¶¶Vº@c¡êà˜žžþÉ'Ÿ\¾|¹téÒmÛ¶­^½º©©éÝ»w;öã?†……mÙ²ÅÔÔTé2Œ‚ªƒã† ._¾Ü¸qãåË—;88èÚŸTðÚµk÷ï߯S§ŽÒ5@ÒÎOq¦Ú|ÿ(];DöGFõ$ÉxÿÅ¢êàØµkW!ÄgŸ}–é^ÆS§N1B tÆBÕ—ª;wî²k×®¡C‡:99Õ¨QCýàÁ!D@@À»ï¾«tÆBÕÁQ±`Á‚·ß~{éÒ¥>|øð¡Ühoo?f̘îÝ»+]@1’¸Ü 1µGI’zôèÑ£G¿ÿþûîÝ»Z­¶FŽŽŽJ×`tÔu2怢¤êÎ1P‚#ôBp€^ŽÐ ÁzQup¼ÿþ½{÷”®š$‹§ "UÇÓ¹sçW¯^>}ÚÎÎNéZ@?Æû Û¼‘ØSÆÃˆŸì\ò¨úŒ£›››âÖ­[Jú‘„ÐæOÉ¢Úþ(½Ð[¶ŪƒãŒ3,,,V®\ùòåK¥k0vª¾TíààðÍ7ßÌœ9³k×®]»v­V­š••U¦y|||”.À(¨:8úúúÊ/âââ–/_ží<áááJ— `T»víªt Ó„ÄŠ@q¤êà¸hÑ"¥KÀ¨:8ê$&&^»víáÇÎÎέZµŠ‹‹c€€"¦öà¿råÊààà””!ÄÀ[µjÕ½{wùóçÛÚÚ*] €±Põp<¯_¿þôÓO7mÚdeeÕ½{w]»ƒƒÃ±cÇÞÿ}9M ¨:8®^½úÊ•+mÚ´9pàÀ‚ tíÛ·oïÖ­ÛÝ»w7nܨt g¼zõjÖIaaa±±±uëÖUºFÅT˜?Fp+—$¤‚ÿ(½0´\Ž6JUÇ>}úH’4nܸëׯgl¿~ýúèÑ£…J× ÒÚqÐ mÁ”ÞZ.G%ˆªÇqlÕªUPPÐ÷ßߣGWWW!ÄáÇϜ9sçÎFÓ½{÷:(]#0"’$iµZwww¥ Q†ªƒ£büøñM›6]¸padd¤"66Vaoo?vìØŒ#; °©=8 !|}}}}}"##SSS]]]•. Àèƒà(³µµ­S§N©R¥ÌÍÍ•®ÀƒàxõêÕï¾ûîúõëOž<111©\¹r“&M†^½zu¥K0"ªîU-„X¶lYïÞ½?þäɓҥK—)S&&&æ×_íܹóÖ­[•®£ÇC‰ªƒã‰'V®\ijj:`À€Ã‡ÿù矗/_>~üø!C„sçνråŠÒ5 UÇ­[·jµÚqãÆM›6­jÕª’$ !œœœ&Nœ8iÒ¤´´´õë×+]#€±Pup¼~ýzéÒ¥˜uRÿþý-,,²}¨ ƒªƒ£¢R¥JffÙôà‘{É$''+] IH<ô0fªŽžžž111IIIY'½xñ"**ÊÃÃC錅ªƒcïÞ½µZí”)SÒÒÒ2¶§§§O:5==Ýßß_éšTÈ?Fy¾L’ž?®.®¹LUz; Ü¿50&êÇñìٳߚššöèÑcçÎíÚµëÝ»·«««$IQQQÁÁÁ111îîî;vTºd…À(³]aÓósTT”‹‹‹ÒÅB}pBµÇAƒeÛþàÁƒeË–ej oÙ²exx¸ÒUuÇ®]»*]²§®à¸hÑ"¥K@öTÝ9ê¡®3ŽÙzúôéýû÷µ9Ü–Û¨Q#¥ 0 ªŽ ãÆ;}út.óä£sLJJÊO?ý|ÿþýòåË×®]{ðàÁ­ZµÊ4ÛŽ;¶oßQ¶lÙ6mÚL˜0ÁÖÖVé] UÇo¾ùæôéÓ¦¦¦õë×·µµ• 1XTZZÚ Aƒ®\¹bmmÝ¢E‹—/_ž;wîÔ©SŸ}öÙðáÃu³-Y²dÕªUåÊ•óòòŠŽŽÞ¹sçíÛ·7nÜhaa¡ô^P†ªƒ£œ7oÞܤIC­sûöíW®\iÚ´éÿýßÿÉ)ðöíÛýû÷ÿî»ïüüüêÖ­+„_³f££cpp°ƒƒƒâË/¿Ü¸qã×_=cÆ ¥÷ P†$IZãÒRÕcž?Þ¸qc¦F!ĄӦMÓ;tss6lXzzºîšøöíÛ5ÍèÑ£åÔ(„˜}ªÏ§¸»»gj‘/‘C)÷ïßWº„ÅÅÕÏ2v9®$**JéMTž«‹«צÿ.å—E… ï ¸¸êõ5ãW²cÇŽº×YÿÄUÇÄÄĈˆˆÔÔÔµk×®]»6Ûy ò¬êôôô-[¶|õÕWéééß|ó"%%E‘5¤ZZZ !ž={¦Ïšy‚¶ ¹¸ ëàÿ+𕫨¨¨œJ.™Ò¨òúr^ö(¿,*TˆEËÐ|!tÖ%I’_m|Tup\ºtéŸþiffÖ¤Iƒ¡xîܹٳgß¹sÇÉÉiÞ¼y-[¶”Ûmll$IÊzoå?ÿü#þ{ÞºT •ÇóçÏ›››ÿôÓOY¯/Djjê¢E‹6mÚT¦L™‘#G2$ãèŒfffÖÖÖYÏ,&%% !tý¬ŒzƒcZZZTTT³fÍ ›5͸qã~ÿý÷¶mÛΚ5+Û èèè‘””dee¥k”ïðpttTzÇJ“ p¹£4uRo¯jFSªT)=ï)ÔߦM›~ÿý÷>øà»ï¾Ëéô¡¿¿zzúÉ“'u-Z­6$$ÄÖÖÖÓÓSé  õGssó€€€[·n=zÔPëÔjµ›7o._¾ü¤I“r™­wïÞ&&&ß~û­|_£bÍš5qqq={ö,Uª”Ò;@ê½T-„''§þýû=Z‘À8©:8víÚÕ°+lÒ¤‰þA3 @é} ªŽ‹-Rºü‡z;Ç@UT}Ʊyóæoœ'44Té2Œ‚ªƒ£ü°–Œ´Z­F£‘_WªTI~º4Š€ªƒã72µ¤§§?xðàСC+W®|õêÕ矮t€*IJ`d$Cïqƒ‚’ôûNý“—õǃªeÅìGSSÓªU«ã(„Ø¿ÿÆïÞ½›Ó@ß<« h¨:8>|xôèÑòkSSS¥Ë0jªŽk×®B 4èÓO?µ¶¶Vº£¦êàQ¥J•I“&™˜p/&JI錕ĮGq$ñ½UŒ$IB-ãB¨98¾~ýúùóçõë×'5¢ÄâÿBEŽŽ,(Æ.J$‰È˜‘z3™‰‰‰µµõíÛ·5Òµ@ÅÁÑÔÔ4(((..nÉ’%J×_ªBtîÜ9&&fÍš5¡¡¡:uªR¥Š¹¹y¦y|||”.À(¨:8úûûË/®^½zõêÕlç WºL£ êà˜Ë³ªPÄTyV5€z¨·s TE]Á1888===Ë>xðàĉJo@‰¥®àøÝwßuîÜy÷îÝ©©©ú/uÿþý/¿ü²C‡‘‘‘Jo@‰¥®{÷íÛ·téÒI“&Í™3§sçÎíÚµkÔ¨Qùòå³9::úìÙ³»wïþã?œ¿ûî;ooo¥· ÄRWp´°°˜2eJ¯^½~øá‡]»vmÛ¶M’¤ZµjU¯^ÝÖÖÖÚÚ:555!!!>>þúõëÏž=BÔ¨Qcúôé={ö´°°Pº| ÏÅÕ•ç B%ÔennnsçÎ?~üþýûÏœ9zûöí¬óúøø´hÑBâÑï(l|ÅŠœÄNG ÆŸ­â€t‘-5G™Mß¾}ûöí«Ñh=zgaaQ±bEGGG+++¥ „Ñ„àŸúJвßQ"IR^OFEE¹(]µqÒr¢7 õGgggggg¥ 0jêêU Õ"8@/Gè…ཨŽ$$ºTP$It©ÎÁzQup¼zõjî38p@錅ªƒãûï¿ÿí·ß¦§§g”0zôèQ£F)]#€±PuptppX¾|yŸ>}îÞ½›±ýàÁƒ]ºtÙ¿õêÕ•®ÀX¨:8îÙ³§OŸ>ýõW``àÖ­[…‰‰‰cÇŽýì³Ï‡ òÛo¿)]#€±Põ#---ç̙өS§iÓ¦}þùçûö틌ŒŒ‹‹sss›?~ƒ ”.Àˆ¨:8ÊZ´h±mÛ¶nݺ?^ѤI“7–*UJ麠VR6m.Â%ÿ+d@†\IÙîq}à˜ª åëËÏ /j%åï€U_ª–õððppp¸téÒðáÃ?~¬t]P1m柨Ȩ¬úþàM´B›ŸÈ¨È\¦*½M€~òñ݇Ši3Pº•Rup|þüùÔ©Sƒ‚‚âââFµcÇŽ={ötêÔ)$$¤K—.;wîTº@€±’$R Œªƒ£œÝÜÜvìØñé§ŸšššZ[[/]ºô믿–$iêÔ©C† QºFc¡êà÷ÑGýòË/õêÕËØ°{÷î-Zœ:uJ飯³À¨¨ºsÌ–-[<==³T©R¥õë×oÚ´I錅ªÏ8æ”e’$ 0@錅ªƒ#ԃའ‚#ôBp€^ŽÀØI’Äcõ¡êq…û÷ï߸qãÝ»ws:œ¡¡¡J×CàÉò…LbYIü^)‰CŸ_ªއ=z´üÚÔÔTérPÈø—^!ã/@68Éd¬8¿˜?ªŽk×®B 4èÓO?µ¶¶Vº£¦êàQ¥J•I“&™˜p/&À $‰Ó@^©7½~ýúùóçU«V%5¨z3™‰‰‰µµõíÛ·5Òµ@ÅÁÑÔÔ4(((..nÉ’%J×ußãØ¹s瘘˜5kÖ„††vêÔ©J•*æææ™æñññQºL£ êàèïï/¿¸zõêÕ«W³'<<\é2Œ‚ªƒc×®]•.ÿ¡êà¸hÑ"¥KJIHŒþ (8õvŽ€ª¨ëŒã–-[„o½õ–›››îmîúõë§tÕFA]ÁqΜ9BˆÙ³gËÁQ~›;‚£Zð¼x‘Ø•ÀIüšàÍ$¾'…@]ÁqäÈ‘Bˆ ÈoǯtEÈ n¢3îGÞŒ§BZ¾'†¦®à8bĈŒo‡ªtEø:Ç@/Gè…àC¸Á€’འ‚#(i$Ib,žÂ ®áxÞH«Õ=zôþýû 6ôôôTºÀÀx¨4@ÍÔ=ºlÙ²¶mÛÊcƒOŸ>=88XžÔ·oßY³f1.<Ibôo@)ª¾T}áÂ…O?ýôæÍ›FqãÆàà`kkë>ø J•*[·n=zô¨Ò5 UŸqüþûïµZí´iÓúöí+„øý÷ß…óçÏ÷÷÷¿{÷nÇŽüñG¥Ë0 ªŽ·nݪT©Ò€ä·çÎ377oݺµ¢F5kÖŒŒŒTºÆ‡+ÿy!±¿ýqg ‡Õ”¢êà˜˜˜X³fMùuZZÚ7êׯonn.·”-[öÞ½{J×X²0Žw^БÈnL„áÐcZAª¾ÇÑÙÙùþýûéééBˆK—.½|ùòí·ß–'i4šû÷ïÛÛÛ+]#€±PupôòòJLL\¾|yllìòåË…ÞÞÞò¤uëÖ=}ú´V­ZJ×`,T}©ú£>Ú½{÷Ê•+W®\)„hР’$7îúõëÛ¯_¿>zôh!D`` Ò5ªž6/?%Vh û£ô…ÆÀ¿+ü² 7ÚGEEñ«ýûŒªƒc×®]sšT­ZµÀÀÀªU«*]#€±Pup\´h‘Ò%à?Škç1uq<~üx^ñññQºj£ ®àøñÇçu‘ððp¥«0 ê Ž¹ô†) ‘‘‘:uÚ¾}{£F²NݱcÇöíÛ#""Ê–-Û¦M› &ØÚÚ*½‡£®àXĽa6mÚ”Ó¤%K–¬Zµª\¹r^^^ÑÑÑ;wî¼}ûöÆ-,,”ÞIÊ(Æc&Mšäçç—“’’.^¼8kÖ¬ü1ÛÂÃÃ׬YãèèxàÀ5kÖ+qwwÏÔràÀ<•áâšÛÓb£¢¢ »Õ…ÁÕÅÕ ë1ÈÆÞ¿_áÝ,JöAqq5Ì÷?…ôÿ’}\Š©‚×ÂùBFFF‹¿G×±cG¥KP ULJÖ¨QÃÊÊJaoookk{íÚ598öîÝûÛo¿]¿~ý¼yó û¡)))BˆråÊej·´´B<{öLŸ•ttIIˆ\Ÿï"\ô]•¢´¹o†ž ´­..Åc§•{P$Ih ñåÏUáí»{\г‚I’´…ÿ…,Ù²þYÏz†ÈH¨½ŸGÆž(ÕªUÓýËÆÔÔÔÝÝýêÕ«ÿDI’’““3µÿóÏ?â¿çŒªƒc¥J•îÞ½ûâÅ ùmÕªU/^¼¨›*IRa\R133³¶¶Îzf1))I¡ëg `lTÛ¶m›’’2~üø;wî!š5kvïÞ½S§N !âââþøãÊ•+Æç:::ÆÇÇËIQG>Ùéèè¨ô^P†ªƒã€jÔ¨qôèQù‰2ÞÞÞfff#FŒæææ?ÿüs¿~ýÚ·o¿fÍš¿ÿþ[錈ªƒãJ41yë­·æÌ™sæÌ™U«V¸T ½ ‚#ôBp€^ŽÐ Áz!8@/Gè…འ‚#ô³ªU@’„’A×`pÇB¡Z}g•$¡ÕJ’¤Õê½€¸T ½ ‚#ôBp€^ŽÐ Áz!8æhÇŽ½{÷öôôlÕªÕÔ©S”®ù×±cG¥K@fu⸨êApÌÞ’%K¦OŸ~çÎ///KKË;w~ôÑG)))J× ‚c6ÂÃÃ׬YãèèxàÀ5kÖ}ªÏJ$IÊÃGJ’ÂÝÝ]éM/áØÃ*ÄAQ'Ž‹ qP ÇÌä®ÓåÊ•ËÔnii)„xöìÙ×®ôF—ª3³±±‘$)999Sû?ÿü#þ{ÞÀ3333³¶¶Îzf1))I¡ëg `lŽÙpttŒ—“¢NTT”ýÎ;^^^–––;wîüè£RRR”®Ë(äuç§¥¥ 4hþüùÿýw‹-jÕªuîܹÁƒ÷ÝwJoJÉQß­V;iÒ$Ý“âa(ù8(GíÛ·ïÑ£G<==/_¾<`À€£G*½)%G^JzzúÀ¿þúë„„„Ö­[W®\ùàÁƒÝºu»pá‚Ò›b\6mÚ¤t ÊÑ¢ÀnÞ¼Y§NÖ­[?~üXn™;wníÚµçÌ™£ti%_>vþ–-[j׮ݷoßääd¹åÖ­[o½õVݺuoܸ¡ô•üX·n]íÚµk×®=~üx¥7¥äÈÇAILLlÖ¬Y£F.^¼(·üùçŸõë×oÙ²ezzºÒTäû_£FzýúµÜræÌ™ºuë¶oß^é­1 Ïž=»páÂÌ™3åÿG]¹rEéŠÀGؾ}»F£=z´ƒƒƒÜ2yòdkkëýû÷k4¥«+áò±ó8 „˜6mš………Üâææ6lذôôt.XDA~#nß¾½dÉ’:uê(½%M>ÊÎ;“’’† Ö´iS¹¥aÆ:uŠ‹‹û믿”Þ ’ åÒ¥KBˆš™™É--Z´¨[·îÝ»wŸ>}ªô•|ýúõÛ¶m›Ò…(‰àh.\011ñññѵ˜ššz{{ÇÇÇË¿ä(<ùØùQQQåÊ•óððÈØèææ&„ˆ‰‰QzƒJ‚|ÿF¤¥¥Mœ8ÑÖÖvòäÉJoDI“ƒrâÄ I’36~õÕWááá5RzƒJ‚|'''!DÆŒ¨ÕjMLLtQ…çË/¿\±bÅŠ+Z¶l©t-Šá{VPZ­6""¢B… *TÈØ^»vm!DLLL³fÍ”®±ÄÊßÎ_½zuÖÿÃ^¿~]QµjU¥·©Ø+ÈoÄòåËÃÂÂÖ­[gee¥ôv”(ù;(×®]³µµ­T©ÒÅ‹/_¾œ˜˜X§N¶mÛêNÕ£ òwPÞ}÷Ý7~ùå—eË–mܸqBBŠ+î߿ߧO~kŠÀ;ï¼#¿8vì˜Òµ(†àXPÉÉÉééé666™Ú­­­Åÿþ»—¿_¯^½L-¡¡¡kÖ¬)]ºt¦“+ȇ|ÿF\¹råûï¿ï߿˖-åCÉÇAIMM}þüy­Zµ>ÿüó­[·êÚ«V­ºtéÒúõë+½MÅ^þ~SÜÝÝ7mÚ4hРAƒéû÷ï?uêT¥7Æ‚KÕ%w+W®\¦vKKK!ijgÏ”.°$+øÎOOO߸qcPPPrrò‚ ììì”Þ¦b/%%%eâĉU«V7nœÒ[Påã <þ\±oß¾… ž;w.$$däÈ‘±±±£FbȈ‚ËßoJRRÒ‚ ^¼xáááñþûï·k×ÎÂÂb×®]tuG‘áŒcAÙØØH’”œœœ©]LDþ·# Iwþ¹sçfÏž}çÎ''§yóæó=+”¿ƒ²páÂû÷ïoݺ•Ë …!¥L™2ò‹ øùùɯGŒñàÁƒ;wîÝ»·W¯^JoVñ–¿ß”‰'þñÇ“'OþðÃå–¼ÿþûcÆŒùí·ß\]]•Þ,”|œq,(333kkë¬ÿ:LJJBèúÊ¡0ä{秦¦~ùå—|ðàÁÈ‘#÷ïßOj4”|”óçÏoݺõã?¦ËE!ÉÇA)W®\™2e,,,|}}3¶·mÛVqóæM¥·©ØËÇAùûï¿;V«V-]jB8;;ú駯_¿þå—_”Þ&‚£8::ÆÇÇË¿í:QQQò$¥«+áò±ó5͸qã6nÜèïïÿûï¿1‚³\†•׃"?÷bÅŠîÿÕ£G!Äo¿ýæîîþî»ï*½A%A>~SJ•*%IRÆFù—%--Mé * òzPâãã…5jÔÈÔ.Ÿh|òä‰Ò£@p4ÿôôô“'OêZ´ZmHHˆ­­­§§§ÒÕ•pùØù›6múý÷ß?øàƒï¾ûŽSÂ…!¯¥zõê]þ—ÜuÑÙÙ¹K—.ÞÞÞJoPIß__ߤ¤¤[·nel”‡‰a MƒÈëA©Q£†©©éíÛ·µZmÆöððp!D­Zµ”Þ ¥G / bccëÔ©Ó±cÇçÏŸË-«V­ª]»öW_}¥ti%Ÿ>;ÿŸþ‰ŒŒŒ‰‰Ñjµ¦mÛ¶M›6MIIQºö+¯%«k×®ñäÃÊÇA¹qãFíÚµ{÷î/·\½zÕÓÓÓËË+..Né * òqP>þøãÚµk/]ºT÷ðž[·n5oÞ¼~ýúJo™6mšÑ>9†Î1àììiРқc!iÿ÷V [tŽ€^ŽÐ Áz!8@/Gè…འ‚#ôBp€^ŽÐ Áz!8Àÿ7aÂww÷³gÏÙª¾ýö[ww÷-[¶d\êøñãÙNe 89uêTHHˆÒU0RfJFÍ×××ÎήiÓ¦zN?~|RRÒ7”.€1"8€’<<<<<<ò7Š—ªKéééiiiJWÆ…à Ø;ŽÜ¹sç‹/¾hÖ¬™‡‡‡ÏÈ‘#3u@‘g{ðàÁ•+WzöìÙ°aÃû÷ïë¦îÛ·oذamÚ´iÞ¼ù Aƒþïÿþ/===ëg:ujÔ¨QÞÞÞÞÞÞŸ|òɉ'2Í·xñâÎ;7iÒ¤I“&]ºtY°`ÁãÇóºªï¿ÿ>—î/§~õÕWîîî éééîîîžžžS§Nuwwß¼ys¦¥/^ìîîþÍ7ß(}Ä”4GÅÌ´iÓ6oÞüòåËêÕ«'$$üþûïƒ^»vm¦Ù tíÚµW¯^i4!„V«4iÒ˜1cŽ;¦Õj­­­CCC¿úê«~ýú%$$d\v÷îÝAAA¿ÿþ{™2e=úÑG-[¶L7C\\\¿~ýV¯^ýàÁƒjÕªU©R%&&fýúõ}ûöÍëªô׬Y³–.]Z’¤~ðÁ;wB}z×®]¿ýöÛ©S§¼¼¼bcc9’§UéÏÏÏoêÔ©eË–511™:uê„ Z´haccsñ⟸8Ýl—.]Š­_¿~­Zµ”>VJ‚#€bÆÁÁáßÿþ·ÂÔÔôÃ?ìׯŸF£Y±bEÆÙÊ•+÷ý÷ß·lÙÒÎÎNnYºt©âË/¿ôôô”[œœœ–/_^ºtémÛ¶=zôH·¬³³ó²eˬ¬¬„fffC† éׯŸâ»ï¾“gHKKóõõ?~|¹råä++«€€!DtttÆ2Þ¸ª‚055mß¾½F£9tè®q÷îÝBˆÀÀ@¥€ˆà ˜éÙ³géÒ¥3¶ 0@qåÊ•Œ]»v-S¦Œîíßÿýøñc'''oo988øøø¤§§‡……é{÷îmff–õ#®_¿.¿>|øªU«jÖ¬©›áÉ“'{÷îÍZíWU@:u®V§¥¥íß¿ßÌ̬K—.…x +†ãP̸¸¸dj©R¥JéÒ¥=z”ššjnn.7Ê—§uîÞ½+„¨Q£FÖV¯^]üï™BWW×l?âÉ“'/^¼Ï2ÆÆÆž8qââÅ‹111÷îÝËtkcžVUo¿ýv… Ο?Ÿ`kk{âĉÄÄD??¿ *ú‘`|8ã ˜‘$)k‹©©©F£É8@|uXG«Õæ´BSSS!Äëם߸&&&¥J•Blݺµ}ûöŸþùÕ«WkÖ¬9xðàõë×Ïœ9Sÿju«* SSÓ:¤§§Ë÷Vr@¡âŒ#€b&***SË£G’““+UªT¶lÙœ–’Ï5fºQ&ŸŒÌxj0ëG<|ø099¹jÕªæææÿüóÏ_|ann¾zõêwÞy'cúT›qUÙ!:uÚºuë:wî|ôèQ+++___Cïu‚3ŽŠŸþ9555c˦M›„õë×Ïe)GGG{{ûœ:u*cû“'OŽ;fjjZ·n]]cppp¦ÁåhÒ¤‰⯿þJOOoÒ¤IÆÔ(„¸yófÖÏÍ}UѬY3;;»³gÏ¿|ù²K—.†Š¤ Á@1óèѣѣG'%% !4Í–-[6lØ`bb2räÈÜ3fŒbúôé×®]“[?~ØØØ$$$ôíÛ·Zµjºá';wîüã?¦¤¤T¯^½qãÆJ"%Á@1Ó­[·~ýúýßÿýß_ýeiiÙ¢E‹ýë_-Z´xã‚&&&_ýµÏîÝ»oÞ¼ù÷ß¿õÖ[ÞÞÞƒ ’ûÇè¬_¿þÀG޹~ýº­­m›6m>üðÃŒì›o¾Y·nݾ}û.^¼X¥Jooï?üÐÍÍ-==}÷îÝ.\ÐUy5yòä/¿üòÎ;/_¾Ô56mÚÔÞÞþÉ“'œnP¨¤\z€ªL˜0á·ß~[½zµÒµ¨‹F£ñ÷÷øðá‘#G*W®¬t9J,îq€bïÌ™3<ðòò"5(TG(ÞRRR–,Y"„èÙ³§Òµ(á¸ÇŠ1//¯—/_¦¦¦ÖªUK~X6‚#€b£sçεk×Îú?cæäätïÞ=ooï9sædêâGçè…{ ‚#ôBp€^ŽÐ ÁzùƒK÷Â/ºÌÜIEND®B`‚statistics-release-1.6.3/docs/assets/nbinpdf_101.png000066400000000000000000001075771456127120000223110ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A€IDATxÚíÝy\åãðg¸A®OPØSI,OÑÔÌăÌ4-E¿–™÷­å…šX™™y~5Å_–yàIÚWͼPñLQT0d™ß£Ó0»³Ìž³3óy¿|ù‚gg–gf–ÝÏ5MÓ 2RWäÁDApQ@GÁDApP sçÎQÏõë×÷è?ÿüÃ>ºlÙ2©+K¶mÛöË/¿üòË/yyylá²e˘6oÞÜu˜6móãºwïnxKWÌ&×PÌIྴ¸ªU«Ö¬Y³!C†Ü¸q£Ò휜|}}_{íµiÓ¦q/ºáÁ5nÜ8©O3€J!8(Üÿûßßÿ]êZÒ§OŸ¸¸¸¸¸¸3gÎH]0Ñ£GNž<ùý÷ß¿ôÒK{öì1¼±V«-((8~üøŒ34MFF†ÔÕ±œ¤®XMÓ#GŽ}ÊlÀìõèÑ#æÛöíÛSõøñc¢3PoРAÌ·111Üš¬_¿ž)¯Zµ*³£ø£rëÖ­÷ß¿~ýúï¼óÎÁƒ¹êŽ ä ,,,3fLóæÍ«U«Ö´iÓY³f±ËzüøñôéÓ;tèàïïïïïß¾}ûÉ“'q·aŸ3>>þÊ•+}ûö­W¯^­Zµúôéó×_B222z÷î]¯^½_|1&&æÀj(æZ˜ÉÝÝ}Ñ¢EÎÎÎÌ·/^4¼}íÚµW¬XÁ¦œ5k{ùÀ®Ñ 8gÏžeÇ_zé%æ‹ÄÄDæÑ'Ož°.]º”ÝkïÞ½þþþ¼·Š¢FÍ}ò#GŽøúúr· ~çw˜¯§NÊnÉòôêÕ‹Ù`âĉº>zôˆ¦é¥K—2ßFFFÒ4––Æ|ëìì\TTÄþˆAƒ1å=zô0ê(x¦NÊlÙ¼yóúõës÷uvvæž%^ŸûFGG‡……ñ~t||<÷?~œ÷üŒÚµk§§§ëÖ§iÓ¦¼³]½zõ¯¿þšhì8p@¨†b®÷‡ÆÅʼnyiýöÛo¼G™‡&Nœ(f{nÞݹs§˜]@ZhqP¸Ï>ûÌÓÓ“’””tóæM¡ÍŠŠŠÞ}÷Ý;wîBÚµk÷ùçŸ÷éÓÇÁÁ¦é ¬X±‚ÙìÉ“'ñññùùù„—V­Zfggoܸ‘÷„7nd )Šj×®]ÿþý5jÄ<”ššÊteŽ;6++«jÕªLùªU«¸ßrÅÆÆ2ÃÚž>}ÊíÝ»w/óE¯^½Ä…'Nœ¸r功Ÿ_TT3JïéӧÆ ;þ|¥û8pàÂ… uëÖ}íµ×ªT©ÂnÚ´éĉÌ×%%%ï¼óΕ+W!UªT騱ã›o¾Éïõë×{÷îýðáCÞsž>}úÞ½{Mš4ñññaJòòòFŒñôéÓ°°°š5k2…4M'&& UL̵0ßýû÷™3O ³KTT”‹‹ óõñãÇ-R °*G…óóócº‹‹‹õ¶ð1’’’˜ù ½zõÚ»wïôéÓÿûßÿ~ýõ×Ì£l(Y²dÉ­[·!žžžG޹~ýzBB‚îîܹ“ùbôèÑ{÷î]µjÕ_ýÕ¬Y3¦ðÿû!äÅ_¬_¿¾ƒÃ³7¢š5kÖ¯__ï$gg縸8æk¶õ1;;ûêÕ«„^x¡K—.â°®]»^»v-==ýÂ… 4 „hµÚ)S¦ˆÙ÷Ûo¿½zõjFFÆ©S§ØìÈÇyóæ1öðð8xðàÎ;·oßž‘‘Á´)þý÷ß³fÍÒ}έ[·ž>}úï¿ÿn×®[¸páÂóçÏ_»vmseº°õs-ÌQVVvñâÅ~ýúiµZ¦¤iÓ¦bv¤(ªFÌ×ÿý·îÌèžQ£F™Ya0‚#€ò >œ @ëÖ­Zš‡Íƒf ?üðCGGGBȵkטµrØ–ÅO>ù$""‚âààðÍ7ßøùùñž°wïÞk×®]»víˆ#˜’¢¢"vœå½{÷Œ= ¶³•­*ÛÜøÆoxxxˆ? œ/^ÌÌð­]»öìÙ³™ò;v°©HH£F>ùäæë—^z©mÛ¶Ì×¹¹¹ÌÛ·og¾øôÓOÙˆ/¿üòèÑ£y°"##ß|óM¦bñññL¡——×§Ÿ~Êœüwß}—)¼ÿ¾PÅ,~-lªsvv c+ÿöÛo¿òÊ+"ŸäÅ_d«dZ5À–°€ò¹¸¸ÌŸ?Ÿ¸6räÈýû÷ënséÒ%拎;ê}’Ë—/7nÜXïf®®®;v\³f w{fƒÂÂÂ]»výñǧN:qâ„nW¬xLouaaannîÅ‹_zé%^?µø£0ðSÂÃÃkÕªÅ~Û¹sgæ‹ÒÒÒ«W¯êžÈâ=Êv.3ëÔB233õVï7Þ`¦ _¾|¹¼¼œm‚%„°ÑÌyf¾ dÛeõ®VÃcñka@£FØ&^1 ˜/˜èÏ£w9öÄ€í!8¨B·nÝÚµk·oß>½Kó±S›…äçç±­Sì4FíÚµyÛ—––Nš4é›o¾)++cJ\]]ýüüîÞ½kÚ!0½Õ?þø#!$--M£Ñ0 ØÙÙ¹k×®âÂðlÏ)ÃÍÍÍÓÓóÁƒ„k×®޼NvÞ·EEEÌóÙtøäÉ“;wîpÕÛqÏM–bXüZ0¸©ÎÉÉ©aÆ­Zµ1bÛG/ÛC­;¥‰²nÝºØØXs* –…à ÉÉÉåååºkàyxxT«Vi‚Ú½{wpp°îîÕ«W¯V­Z•*U˜IÙùùùÜÅΊ`Íœ9sÁ‚„ààà±cǶnݺaÆC‡ýá‡L>„øøx&8îܹ³}ûöLîaç͈< Ã?‚7Ò®¤¤„M{uêÔ1çü{xx°ôöíÛܳwûömæ —Jkhk\ b‰TwøðáÒÒRæëW_}Õâ‡1ŽjѸqcf‹ÞYÌ HBHYYY}ooo//////WWWŠ¢‚‚‚˜Í¸ýÝeeeº3s/^Ì|ñÝwß}ôÑG7vrrâÝÈØXíÛ·g2bzzúÖ­[™B¶ŸZäQþçÎcfÿ0víÚÅ|áââÂ܎ņùb÷îÝÜröÛ''Ëÿ=okal§¶››[ëÖ­¥®TÁ@E¾üòK½#É!íÛ·g¾HII¡išùzóæÍ/¾ø¢¯¯o½zõ˜–¼×_yhÁ‚Ì"Ï4MO™2%''‡ûl>d;…ÙIÿûßÿ ¯üÂ6> açVÿóÏ?_}õ!ÄÑѱ[·nÆ…OŸ>>|8³,öíÛ·Ùyè]»vefؘƒ™æBùæ›oØ5ÉÏž=;oÞ<ækvH¥™v-¬íï¿ÿ2dHjj*óíûï¿_­Z5 ë"¡«@Eüüü¦N:~üx݇&Mš´|ùòÂÂÂ-[¶´k×îõ×_?wî;OvôèÑÌŒ„I“&­X±¢´´4//¯Y³f¯½öZnnnvv6ïÙÜÝÝÝÝÝ™‡ƒ bîï²sçN½÷)ñòòb¶üòË/Ï;7bÄÞêÖ\lo53Ú2::š»>¶È£0ìÿþïÿ‚‚‚^zé¥ãÇ3AÓÑÑqæÌ™æŸÿñãÇÿøã¹¹¹>>¯¾úê´iÓ233[´haËŸæ Øa@&0`ÀêÕ« !K–,:t(SøôéÓmÛ¶BtãØ®X‚#aÈ!Ì ôZµjõÝwß1…= eú>Œé±J…É1`„ÀÀÀÓ§OBNŸ>]»víøøøû÷ï?žIááá‘‘‘R׬-Ž`„’’’7Þxãðáú½øâ‹û÷ïgÆÒ€"!8€qþù矟~úiÕªUÙÙÙ·oßfÖG|ã7FŽiIÁ`?@,Ç¢ 8€(Ž ‚#ˆ‚ࢠ8€(Ž ‚#ˆ‚ࢠ8€(Ž ‚#ˆ‚à¢(!8nÚ´)>>>""¢uëÖ“'O.,,¹cvv¶F£ùóÏ?u*))Y¹rå[o½Õ´iÓ¶mÛ4èÈ‘#R(€”œ¤®€¹’““—.]êææÖ¼yóÜÜÜÍ›7_¾|yõêÕ®®®•î»fͽåeee|ðÁéÓ§===[¶lùäÉ“ßÿýðáß~úé°aä>biÈ;8fff¦¤¤øûû§¦¦úùùBfΜ¹zõêùóçO›6Mh¯¢¢¢K—.mݺuÆ z7ظqãéÓ§›5köÃ?0ôòåËýúõûî»ïÚµk&õqH@Þ]Õ7n,//9r$“ !'NôôôLKK+//Ú«k×®}ûöJ„;wB¦L™Â6[†„„ :T«Õ¢ÃTKÞ-Ž'NœpppˆŽŽfK£¢¢¶nÝzòäÉÈÈH½{Íœ9óŸþ!„¬]»öèÑ£ºää丹¹…‡‡s CBB!ׯ_—ú ¤!ãàHÓtVV–·<44”rýúu¡àئMæ‹ýû÷ëÝ`Ù²eNNü3sîÜ9BHíÚµ¥>niÈ88kµZ///^¹§§'!äÞ½{&?sÆ y%)))/¼ðB\\\¥»k4©Ï XWff¦ÔU€ŒƒcII !ÄÍÍWîîîNyðàE~ŠV«]·nÝܹsµZíW_}åëë+f/u¾˜@£ÑàÒ«.½jáÒ«–j‰d½¼¼(Š*..æ•?zôˆn°SÌ=‡@…péU —ÔFÞÁ‘2pàÀêÕ«oÙ²eÇŽýúõ9r$³"i˜¶É’’’³gÏê>ЉՠZMÓR×Ai°¬—jåääI] .½jáÒ«–j?ëå=ÆlÁ ¡(Jê*€½@p„ @‚#T@Ó´Þìˆ@ ŽÀ§›) “¨ÁôáfG¤F`È~G°6;"5€Li4©«²¡ÎµuL€àÏbä•#G€Œ €øC<Gx†—™j4: cAî¸F¡yÖ 6ŽÀ§;Ù‚#ðÍ¡Fo5 8Bˆ ÁDApCÐ ,GÁDApQëÌ™3½{÷®Q£†»»{dddrrrYY™Ô•ªÄƒ†Z§Nww÷¨¨¨ŒŒ 1{EEE%&&rKž>}êääDUT½zu©OÞpËAcP‘ÉÄÁìììèèh­VÛ½{÷:uêüöÛo£G>xðàÏ?ÿ,uÕEFF^»v­W¯^¾¾¾©©©:uÚ¿DD„½N:uäÈ‘ØØXnaNNŽV«mÕªUpp0[èîî.õ!Ê‚#€2=úÁƒÍ›7'„|ñŃ Z±bÅ®]»:vì(òI´Z-!ÄÑÑÑ6u^°`AVVÖÊ•+ @1bD³fÍÆŒ³oß>ÝËÊÊöíÛwôèÑÅ‹———óÍÊÊbŽš(Á誨ŒÐmW-z;Ö   Q£FýñÇMš4iÒ¤‰ùO¸oß¾¨¨(&52>ùäBȱcÇDVfÑ¢E^^^.../¿üòĉKKK™GKJJf̘VµjÕºuë&$$üý÷ß9 6lèß¿?ómppp¯^½ÒÓÓoß¾­»qAAAÇŽóòòte‚cƒ ,R1` 8‚%á–Ö L4­'#Z¡Ïúúõë;v|øða‹-Ì|ª²²²aÆ1I‘•››Kyá…Ä<æM›†5a„êÕ«'%%uèÐYß7!!á³Ï>«]»öèÑ£#""V®\gþá]ºt)&&†ûiÒ®]»òòr½#ýýýiš¦iúâÅ‹ºfee½ð ժUÛ´iÓ²eË>Ì_0ºªÁ\B··P&;²owÖé¸yóæÄÄÄ©S§:8˜Û²ãää4{ölnɽ{÷fÏžíèèØ«W/1ÏpóæÍY³fMš4‰ùvüøñóæÍûé§ŸºvíúÓO? 0àÇdJHHøå—_nß¾`NïܹCÓ´¿¿?·ÐÏÏ¢·MѰ¬¬,‡ 2%aaakÖ¬iÖ¬™™çVÍÁ\4MëÍŽ” 4l»£ÕæÇ¥Æ²²²íÛ· íØ­[7ÃÏ|àÀ!C†dee-Y²$$$DLe|}}ÇŒÃ~;}úô%K–lܸ±[·nE9r$77·nݺ„åË—/_¾Üü:B<<<¸…žžž„‚‚cOfVVVyyybbb¯^½œýõ×Q£FÅÅÅ={–yN0‚#X€nvDj…3ºÑrowF¨­ññãǺƒ ¼å^»ví“O>ÙºukHHÈo¿ýÖ®];‘• wqqa¿ussÓh4W®\quu]¸pá˜1c‚‚‚ÂÃÃ[µjÕ©S§.]ºp76­Î¾¾¾„‡r ‹ŠŠ!>>>ÆžÌT©R…ÝqàÀOž<6lXjjê AƒŒ}6``Œ£ŠXu"“Ù„Ô AÓþé-·///¡‡<==iaB{­_¿¾Q£FüñDzeËΟ?/>5êåääÄ 6lØÕ«WSRR7n¼cÇŽ=z4nÜøÎ;fÖÙßßßÁÁ×+ŸŸO©Y³¦±µ äÅÍ7ÞxƒrîÜ9sN‚Ê¡ÅQÉlàtÃ(SÂ-Gˆ…`z¨¹ÿÛ ]Õ[·n}ÿý÷ßyç¥K—òúÅ8þüÓ§O™oKJJ.\¸]PP••šP^^¾xñâáÇ/]ºtúôéæÔÙÉÉ©aƇâä=“‘@xIÑæÙÑØn_š¦Ç_»ví5kÖ˜¶ c^^^rròøñã™og̘QTTÔ½{÷ÌÌÌÖ­[O™2eÆŒ„‡èèhB1M®3!dðàÁ#FŒØ¶mÛ[o½E¹{÷njjj‡‚‚‚Œª¼««ëرc›7o¾wï^¦båååóæÍsrrêСƒE®ˆ:!8*œ-G²©]Õ 4z3¢m³#Óí+~û .\¼x1,,,!!÷P=ºvíº~ýú?þøÃ?\°`Þg˜6mÚÑ£G›4irìØ±={ö´lÙ²ÿþeee5š3gNvvv£F233ÓÒÒ|||úôécf !|ðÁŠ+úöí;lØ0//¯•+W³÷LJJš3gÎìÙ³‡jøyüüü'L˜Ò¹sg//¯]»v:ujÖ¬Y 6´þåR,Gåã&9«¦Fv˜#²#(К¿Ñ1Ë__¸páÂ… ¼‡4hеk×ÒÒÒû÷ï—””=Ãk¯½6jÔ¨Ï>ûì믿;vìŒ3\\\ÒÒÒ¦OŸ¾wïÞÿû¿ÿó÷÷ïСôiÓŒmÔËÃÃ#==}ܸq©©©………-[¶\·n{¿Á'OžÜ¿ÿŸþóTãǯ_¿þܹs×®][¥J•Ƨ¥¥uêÔIª+¢ øt·ù„rìØ1‹Tt!8T‚&´nF´FŸõõë×;vìøðáÃ-Z˜ÿlYYY/¼ðBµjÕ6mÚ´lٲdzÉOŒM›6 ><**j„ Õ«WOJJêСMÓ„„„„Ï>û¬víÚ£GŽˆˆX¹re\\œù.**ºtéRLL Eý{¶ÛµkW^^®;Ò±¬¬lذaLRdåææB^xáó+z¡« rLvd“¢•F:nÞ¼911qêÔ©hÙÉÊÊrpphРAaa!S¶fÍšfÍš‰ÙýæÍ›³fÍš4ióíøñãçÍ›÷ÓO?uíÚõ§Ÿ~0`À?þÈ<”ðË/¿Ü¾}; Àœ ß¹s‡¦in¡ŸŸ!$//·±““ÓìÙ³¹%÷îÝ›={¶££c¯^½Ì?{ ‚#€(l»£õæÇ¥Æ²²²íÛ· íØ­[7ݬ¬¬òòòÄÄÄ^½z9;;ÿú믣FŠ‹‹;{ö¬§§g¥•ñõõ3f ûíôéÓ—,Y²qãÆnݺQuäÈ‘ÜÜܺuëB–/_¾|ùróë\\\Lñððà2U-((0\Û 2$++kÉ’%!!!–»&P‚#€ 1£-"5P[ããÇ t3=È<¨R¥ŠóíÀŸ;Ûíëêê:vìØæÍ›ïÝ»— åååóæÍsrrêСƒ˜Ÿ˜———œœ<~üxæÛ3fuïÞ=33³uëÖS¦L™1c!ÄÁÁ!::šÂFL“ëL ,ÈÊÊZ¹rå€!#FŒhÖ¬Ù˜1cöíÛg¥£¨”áÏN:Yã‡Ê‘ƒ#3uÚÍÍWîîîNyðà•~nff¦Ô‡.L5÷©kdAAARW¤K¯lBïQ–}ï Š‹‹ëÛ·ï Aƒ!–Z îÎ;ï¿ÿ~BBž={Œ­Lýúõ'MšT\\ܰaÃ.]º|ñÅ...æWiÆ ýû÷g¾ îի׊+nß¾`Á£0êx <ªû±®ÛB¤ ïªöòò¢(ª¸¸˜WþèÑ#ò¼Ý$Á{·åÍ•°+zߣ¬ñïõë×;vìøðáÃ-ZXªæýû÷÷öö^¸p¡±ûnÚ´iøðáQQQ&L¨^½zRRR‡Ì?dfÝ’˜˜î)m×®]yy¹ÐHGsŽ,Ká-ŽNNNžžžº-‹EEE„vž5ؘÞw[%µ;€òðÞ£¬ô~µyóæÄÄÄ©S§:8X¦egÞ¼yéééU«V5vß›7oΚ5kÒ¤IÌ·ãÇŸ7oÞO?ýôî»ïšS¥;wîÐ4íïïÏ-d>‘óòò,~`Y Ž„ÿ¬¬¬¢¢"¶ÊÀ{ՂͽÛ"5€=³ÁZB©±¬¬lûöíB;vëÖM·ðøñãS§N7o^Ó¦MM¨Œ¯¯ï˜1cØo§OŸ¾dÉ’7ò‚£±cº¹Êäy`AAÅ,KùÁ166633óСC]ºtaJhšNOO÷ööŽˆˆºv`×DÞéÊR9R£Ñµ5>~ü8..NhGÝ õéÓ§C‡Ÿ~ú©i• çŽhtssÓh4W®\1³b¾¾¾„‡òjKá-b‘£ËR~pŒ_ºté¢E‹^ýufNLJJJ~~~BB‚³³3³ÍãÇïÞ½ëìì\«V-©ë«:he{¦{+½å–¢» ËÓÓÓ¨ºlÙ²ìì츸¸¹sç2%<ÐjµIIIuêÔéÓ§ Õsrrzüø±™ó÷÷wppàõJçççBt—À³ÆQ€9”Ç—””ôöÛo·mÛ6777###<<|ðàÁì6ééé£F Ù¶m›Ôõ;%íZÆö—––B,XÀ-,,,œ8qbtt´˜Èuþüù§OŸ²,%%%.\àÞPôŠ9995lØðСC܃Rnñ£ËR~p$„ 8°zõê[¶lÙ±cG@@@¿~ýFŽÉ´>ˆ¡w-[fGc{„§L™2eÊnIPPP5Ž;&ò'æåå%''?žùvÆŒEEEÝ»w7³b„Áƒ1bÛ¶mo½õ!äîÝ»©©©:tÐ]Çü£ËÂ$VËÓh4XÇQrrr°˜Ÿ:áÒÛ' ¾ ͧ¶ø:ŽM›6ýù短tBx‘kýúõüñ‡~ÈkÏc7þçŸ :wîܤI“cÇŽíÙ³§eË–‡6ÆwQQQTTTNNΰaü¼¼V®\yãÆÝ»w3‹%%%Í™3göìÙC‡­ô(,„—Šj?뾎#€ù¹Diiéýû÷™;eèõÚk¯íÙ³çþýû_ýõõë×ÇŽ»ÿ~‹¬äáᑞžÞ»wïÔÔÔyóæ5hÐ ==]ºòÉ“'÷ïßÿ矤>C ‡*ºª쟵ï¶Ê{þ<}úôìÙ³v‰ŠŠ:pà€5*ãéé™’’¢÷¡éÓ§OŸ>]ª³†¡ÅÀ²neäzòäÉþýû_yå©+r‚à FÇŽ {ï½÷¤®È ºªÔ(&&&&&FèÑÎ;׫WOê:‚ÝAp¾Å‹K]°GèªQ@GÁDApQ@GÁDApQ@GÁDAp0%uL•˜˜È+|ðàÁСCëÔ©ãîî•‘‘!u5+gT÷ïßãçç÷â‹/¶iÓæçŸ–ºú²‡à(W%Ï·.°¹S§N9r„WXTTùã?¶mÛvРAW®\éÔ©Ó©S§¤®¬!FÕyÇŽíÚµ»víZ¿~ý†š——×£GåË—K}ò†àPyþ©^VV¶{÷îÏ?ÿ¼cÇŽååå¼G,X•••’’²nݺ¯¿þúСCE3ƨ¡ÕjµZ­ÍŽÈ¨:Oš4©F'Ož\°`ÁÌ™3Ož|xTTÔ„ ªW¯ž””Ô¡Cš¦ ! Ÿ}öYíÚµG±råʸ¸8óǨ:;::þùçŸ3fÌ`KÊÊÊþúë¯Æ»ººš_Õr’º`&;2¿– Þ·`EÜìh…ÔHÙ¼ysbbâÔ©S¬Û²sçΚ¦ýýý¹…~~~„½Í“ºnÞ¼9kÖ¬I“&1ߎ?~Þ¼y?ýôS×®]úé§üøãÌC ¿üòËíÛ·lVg''§ððpæëÕ«Wgeemß¾ýöíÛÿýï­zbÁQf¸Ù©ÀÖ˜ìhÔH JeeeÛ·oÚ±[·nFý ââbBˆ‡‡·éÕ-((ó ¾¾¾ÜÁ…Ó§O_²dÉÆ»uëFQÔ‘#GrssëÖ­KY¾|¹Þ))Æ‘ÉuþòË/³²²!:t`ª&Cp”^4û-·!Àò(qåzÖh4Bm?6ÐákìG€¯¯/!äáÇÜ¢¢"Bˆ˜gwqqa¿ussÓh4W®\quu]¸pá˜1c‚‚‚ÂÃÃ[µjÕ©S§.]ºp76íˆL®óåË—‹‹‹;–ТE‹ .0í”`Œq”º"…`ItÅl!ÑWn6///¡‡<==iaÆþ ^o~~>!¤fÍš¦UÞÉɉ™3lذ«W¯¦¤¤4nÜxÇŽ=zôhܸñ;wÌ<"sê\µjÕØØØ9sæÜ»woË–-¦^@‹£ 1=ÔE¡«À¦(Î0GÚŠÖzY¶«ÚÉÉ©aƇâÝœ#2ªÎÛ·o‹‹[»vmïÞ½ÙBooo‚:ó 8Ê 7,êΕkщ¶ÍŽ–íª&„ á|°bÅŠ¾}û6ÌËËkåÊ•ÅÅÅìúØëׯÿøã?üðà èÝ= `Ú´iGmҤɱcÇöìÙÓ²eËþýû—••5jÔhΜ9ÙÙÙ5ÊÌÌLKKóññéÓ§ùGd¸ÎIIIsæÌ™={öСC}}}§L™’˜˜Ø¼yóŽ;RµgÏžãÇ9²qãÆ¶¹dŠ„1Žr¢÷ ©Àê”øFëáᑞžÞ»wïÔÔÔyóæ5hÐ ==]?²´´ôþýûÖÊ~íµ×öìÙsÿþý¯¿þúúõëcÇŽÝ¿¿ƒƒƒ‹‹KZZÚ€Ž=úÅ_8p C‡GŽÙiNŸù$$$DêcŒì[“““§NzåÊ•æÍ›»»»oÞ¼yÈ!%%%æì¢Õj 0þü¶mÛÖ¬Ys×®]ݺu;qâ„Ô‡ yÇÌÌÌ””ÿ;w¦¤¤ìÚµ«ÿþgΜ™?¾9»üôÓO'Ožìܹóž={¾ùæ›5kÖüøã„©S§J}Ä’‘wpܸqcyyùÈ‘#ýüü˜’‰'zzz¦¥¥•——›¼ËÉ“' ! przÖ•ß²e˰°°«W¯Þ»wOꃆ¼ƒã‰'¢££ÙGGǨ¨¨‚‚&ü™¶K@@!„›iš¾ÿ¾ƒƒ%ÔFÆÁ‘¦é¬¬,nyhh(!äúõë&ïòÖ[oU©ReæÌ™ÇŽ+))¹uëÖ´iÓnܸïáá!õqHCÆígÅÅÅZ­ÖËË‹WîééI*¶»‹F£Y³fÍ|ðÁ°Ûôë×oòäÉ"ë¦Ñhx%;wî”ú„ÕݸqCê*€4péU —^%:uê$uì…Œƒ#3ÚÍÍWîîîNyðàɻ͙3çñãÇááá/¿ürAAÁáÇ·lÙÒ¢E‹:ˆ©[ff¦Ô§¤$u@¸ôª…K¯ºëº-D*!ãàèååEQTqq1¯üÑ£Gäy#¢i»Œ?þÿûßĉ?üðC¦äÖ­[ï¾ûî¨Q£~ýõ×àà`©@2ãèäääéé©Û²XTTDa'M»ËÝ»w÷ïßß A65B?þøã§OŸþüóÏR7€4d !þþþLìcåää0™¶KAA!¤^½z¼™†Æ¼¼<©@òޱ±±Z­öСCl MÓéééÞÞÞ¦íR¯^=GGÇË—/Ó4ÍÝ‘ßРA©@òŽñññ‹-b)BRRRòóó{öìéììÌ”<~ü8''‡øVé.®®®QQQ¹¹¹ß|ó »$øåË—/^ìââ#õAHCÆ“c!ãÆKJJzûí·Û¶m››››‘‘>xð`v›ôôôQ£F…„„lÛ¶Mä.3fÌèÕ«×âÅ‹wìØÑ°a‚‚ÿýïåååS§N­_¿¾Ô yGBÈÀ«W¯¾eË–;vôë×oäÈ‘Ìò:&ïâëë»cÇŽ¥K—>|øÀÞÞÞ¯¿þúG}ôòË/K}¸’¡x#ùÀ|ë8ªSNNVtS'\zÕÂ¥W-Õ~ÖË{Œ#Ø ‚#ˆ‚ࢠ8€(Ž ‚#ˆ‚ࢠ8€(Ž ‚#ˆ‚ࢠ8€(Ž ‚#ˆ‚ࢠ8€(Ž ‚#ˆ‚ࢠ8€(Ž ‚#ˆ‚ࢠ8€(Ž  EI]ÙCpQA±ÐÊ`YŽ X4MëÍŽ”¦Ap%ÓÍŽEÑ4-u½d ÁŽ›‘ÌàÊÇ„E¤F39I]ËÅÈ+GŽ0 ‚#(/2y‘é³FX0ºªAá¸aQhž5ˆàJ¦ÛĈì`2GP,¡ŽiôV˜Á À²A"̇ࢠ8€(Ž ‚#ˆ‚ࢠ8€(Ž Ší‚ãW_}•••%õñ€‰lSRRºtéÒ³gÏ5kÖÜ»wOêãØ.8þç?ÿ©Y³æÙ³gg̘ѶmÛ>úh×®]¥¥¥RŸÅÉf?iôèÑ£F:yòäÖ­[ÓÒÒöíÛ·oß>.]ºÄÅÅ5mÚTêS†P’Ü÷¬¬ìàÁƒ[·nÝ·oß“'O!uëÖ‹‹ëÖ­[Íš5¥>'æÒh4™™™R×$““$u-@¸ôª…K¯Zªý¬—fVµ““S»ví’““;6eÊWW×ÜÜܯ¿þ:66öý÷ßß²e‹V«•úÌ@¶ëªæ),,Ü»wïÎ;;VVVF©^½º³³óñãÇ?þý÷ß/_¾< @êóÏØ:8æççïÙ³g×®]Çgš}}}ßxã7ß|³Y³f„£G&''Ÿ={ö³Ï>ûþûï¥>?ðŒí‚ãÚµkwíÚõÇ”——B|||:vìØ¹sçÈÈHGGGv³6mÚ4kÖìÕW_=qâ„Ô'þe»àøå—_B¼¼¼ÞxãÎ;¿öÚkܼÈåêêZ¥JôSØÛÇž={¾ùæ›-[¶Ê‹\hn°7¶›U––vìØ1¡Ô8|øðŽ;J}6@í‚cqqñÓ§O…ºvíÚÍ›7¥> Ⱥ]Õééé}ôûíêÕ«×®]«»Yyy9MÓuêÔ‘úl€ ëGGGGæëÂÂB—ªU«êÝÒËËkâĉRŸ dÝàØ¦M›ŒŒ ækFóî»ïNž^0‘í‚ãøñã¥>X0ƒãºuë!¯¾újHHû­a}ûö•ú„€~V Ž_|ñ!$11‘ ŽÌ·†!8Ø-+ÇáÇB^~ùeæÛ±cÇJ}°`:+ÇO>ù„ûíàÁƒ¥>X0í&Çè¢izß¾}7nÜhܸqDD„Ô§BJEÑ4-u- ±ipÜ·oß×_ݾ}{¦{êÔ©©©©ÌC}úô™>}:EQRŸÐÏv÷ª>qâÄÇ|ñâÅòòrBÈùóçSSS===ß{ï½Zµj­_¿~ß¾}RŸ ›JÉHÏ`Ÿl×âøý÷ßÓ4=eÊ”>}úBvïÞM™={vllìÕ«W;uêôßÿþ766Vêb;4MëöP£Ïì–í‚ã¥K—jԨѿæÛßÿÝÅÅ¥mÛ¶„zõêÕ¯_?;;[ê³ak¼ìˆÔöÌv]Õ÷ïß÷õõe¾.++;þ|£F\\\˜’ªU«æççK}6$ÀdG‚ÔvÏv-Ž7nÜÐjµŽŽŽ'Ož|òäÉk¯½Æœ­°™ÄŒnDˆ{c»ÇæÍ›ß¿ÿÛo¿½yóæ·ß~K‰ŠŠbZ±bŽ{÷4h`ÂÓ&''O:õÊ•+Í›7wwwß¼yó!CJJJÌÜeß¾}}úôÙ·oŸŸŸ_DDÄ©S§ú÷ïo©é;tEzË­|5¬3{”ËvÝ£7oÞìÚµëãÇ™o_~ùåM›6QõÎ;ïüù矄U«VµhѨçÌÌÌŒ‹‹«^½zjjªŸŸ!dæÌ™«W¯îׯߴiÓLÞåÁƒíÛ·úôé?üЬY3BÈ™3gúöíëááqèÐ!‡JÒ¶F£ÉÌÌ{(Šé(×ÞjŠ"lµ¹_«ONNNPPÔµ àÒ«.½jõY¯$¶kq¬Y³æO?ý]£F6mÚ,\¸é™ÍÏÏ÷ðð˜3gޱ©‘²qãÆòòò‘#G22qâDOOÏ´´4fÑÓvÙ¼ysQQÑСC™ÔHiܸqçÎóóóÿúë/ ž^RdÇ;Ê Mëohy,r}úôáǵk×6mö´ÿ‚‚&ö±˜sþþþ&ïâçççììÌ[‡é¡.++³Í“˜Q3]ôn#”iºÂ¿JË…~Øœ‚£ƒƒƒ§§çåË—…–W4Mll¬V«=tè[BÓtzzº··wDD„É»ÄÄÄ]ºt‰»ãÉ“' !/½ô’mΘôØägBjdŸAäŽZ(ÀnØ(8:::&$$äçç'''[ðiããã-ZÄ R$„¤¤¤äçç÷ìÙÓÙÙ™)yüøqNN;ñMÌ.Ý»w'„L:•šý×_ýðÞžž:t°Í“¯³˜Ûâh¸ٴቼ¸YivD²ší&Ǽùæ›×¯_OIIÉÈÈèܹs­Zµ\\\xÛp×å#00pܸqIIIo¿ývÛ¶msss322ÂÃÃÌn“žž>jÔ¨mÛ¶‰Ü%,,lôèÑ ,èÔ©Sdddqqñ‰'(Šš9sæ‹/¾h³3fk¼üÇ;‘ŽBO"Do#¥áY5Bbb €­Ø.8ÆÆÆ2_œ9sæÌ™3z·1a›V¯^}Ë–-;vìèׯßÈ‘#™åuÌÙå?ÿù¯¯ïêÕ«=êíí;|øð›.‰éÎt±l83 ïeÃûÓÈõÖáVc»ÆqãÆUºÍ¼yó$>– ûŸsÓûµý4ì»èé?Çèߎœœ¬è¦N¸ôª…K¯Z²ÿ¬7•íZ• •Ïä™.V­’P!÷!;ɵÊ%Á½ªïß¿öìÙÛ·o¶nÝ:??ß××WêóÏÙaüÒ;®Ñ:UjeD·5±qp,((X²dIjj*së¿´nݺ{÷îááá³gÏööö–úl€X³«š¦iÝŒˆÔÀ°Ýcž>}úñǯY³ÆÃÃYï†áçç·ÿþwß}—I“`_ì-0‰¼?YGLs×~Gj`Ù.8.[¶ìôéÓ¯¿þúÎ;ç̙Öoܸ±[·nW¯^]½zµÔgì›øûÓ˜‡ÍŽH\¶ ŽÇwttœ5kVÕªU¹åŽŽŽŸ}öYÕªUwíÚ%õÙP:Y¯¡mæ¬ÊŽª¨Òr²ÝÇ .éãîî|õêU©ÏØ1+·üéŽkÔ[ f¶kqôôô|üø±Ð£………ÕªU“úl(ŽR[È,ÔÊ(¼ß³jÞxG•³]plذáíÛ·õÞ3æÂ… 7oÞ “úl(ŽÐ@•„!“Ÿ7®Ù€e»àØ»woŠ¢ÆŒsîÜ9nù¹sçFŽI‰‹‹“úl(‘nx²Ÿ{ÀØßáë ƒÞj†íÆ8¶nÝ:!!áûï¿ïÑ£Gpp0!ä·ß~;zôè•+WÊËË»wïÞ±cG©Ï†Bq—£²ÃGF0À¦ €;¶Y³fIIIÙÙÙ„›7oBªW¯>zôhîÊŽ`º-mºå*ÉILv424#DðØú–ƒ111111………ÙÙÙ¥¥¥ÁÁÁþþþRŸ…âå«Ý¦Ï Jä•«älXˆ÷ª&„x{{7kÖLêcW¦±ÍøV7¹ Í*9|ë°bp\·n±»ôíÛWÊ“¡Tº·éSUxbC³:Àr¬¿øâ cwAp´<¡Ûô©$<©üð,ÊŠÁ‘Yd‡ëÂ… »vírttlÓ¦M½zõsrr:TVV0yòd©Ï†™s›>¹3ó.…P‘ƒãG}ÄýöÚµkkÖ¬Ñh4ß}÷]íÚµÙò›7o~òÉ'çϟߺuëo¼!õ A@°(Û-¾dÉ’‚‚‚o¿ý–› !5kÖüæ›o!»wïÎÏÏ—ú„(ššƒ”šÀBlO:X·n]݇j׮͔cå<°#¸Ó @E¶[ާ°°°¼¼\èοEEEÞÞÞÕ«W—ú„€~¶kqlÔ¨QQQÑt:|øpaaaxx¸ÔgTOäÊáªd»àøæ›oBÆŸ––Æí’Þ½{÷رcÙ ¤Ä½±5 Ë÷BlÙUݳgÏÇïØ±cäȑիW¦(*;;ûîÝ»„®]»öìÙSê³ ³Ð#R#Às6½åàW_}ÕªU«¯¿þ://///) >|x÷îÝ¥>ϱíŽH6 Žñññ½zõºsçNNNŽ““S½zõ0!삘Ñ‘ n6 Ž Š¢jÔ¨Q£F ©€ƒ Ù¼ˆ°ðœí&ÇÈÛC­w® €Z!8TÄ׈ìð‚#‡ÞÙ0ÈŽ„G€ „F4b¤#‚#€ „E€Š@GÁQ¶0]ÃþK]+BpQe­ŒvTÁQVô.(ˆà"-\P G¹áŽ Vƒá¢€: 8ÊSPì. ¨€“Ôq„º>¹åÈ+6†‹*ƒà(¼üÁFä á¢ÀsAÁAÄØËN£wºªeˆí Õ;-$‹*€à(7¼!tˆ)öE(#ËMÛÀž 8ÊŠÞ‰ˆ)ÒÂEQ‘—ŽÖ·¥áhv1¡bVƒà(+Bƒç0¨NB¸(jÆ ‚b"  »Ø G3:‘Ù (>µ z·Àž 8Ê´ìONv¶ÔUSÕ‰LUü§·Üü]L¨€•a9BÈóˆÆ2áŒWN ”›¹‹ °2´8k 2-<éíD'';ÇŠ‡clÅt7@3$X‚#€Å‹Ý”—‘-ÎØðd Ùz5ôŠq7@jËÁG‰°Ù©ÑJŒ O&w"Ûà(Ä—Sßb> X‚#€Y(Š¢õÅ>ýåbF7"DZý|mm£NªÝ^1÷3ä¢ìûp@†ÌBÓ´nFJ“üPÈæEù‡EŠP´‘ Å„]Ä<©¨rÙŸo(Ss3º¶@Æ8˜‹ÉŽì·‚©‘‡í¡Ö;WF(;œ©KWüÇ}å FU<|û»P SŽÀfG£Sãóýå˜iBëÍŽ¥ÐC"3¨qQUµáI·É°ÒÃÇ > ºªLD D=n¹þ©w6 “í¦ÏZd?2“¹[ÞQw{ñ?‹B‹ïÜ Oör‚­Fè+ÄÛQ ç Œ‡à`"ÝqzËõîi\¹M˜<âÛî(æIxÙ±Ò]„60´£iáIL>FnvDj誰¶‡š7Þ±rvÓÄhB¿3w_bTÃáóŸ%*hRz*FЦ„w´—“jŒNމØ`ZÌÅרwžµ,ˆïw9T‘÷TÆî©MÑ)E7±© a: ÁÀ,z3¢2²£æ@ÝAŠD`ü¢á]ˆÞ¤¨¿Zϲ£Q©*¡»î#À G³¥C»JbÆêý–[.ô Ì“‹ÉŽº»Þ¾B­hÂôM3 ’»™îîVY!Rñt'¡ã€G‹ÉÎζűÂäk¡ÄÊë¢Ñ*ÍŽ¼G l/4Š‘_®·s[ßs"P 2g:"&€š`r €2™<Ó…ÛU-rKñ©‘Ý^ÿÏâ,ÙÍme¤hªÒÕ¼uŸ©Qš'¡€‘ä@ÌM®+2-9q·Ìsœaìqˆ©§Vl½hýó¬ Ÿ¤FCL81X@­ä@ï­e*ë³669 õ;[ë˜Ä=³a„³#E(î?¶÷P¥?ÑJ‡¬B·¢Á™P:Œq Þ­eÄtäN[1¼¥ ýÎ&lfÊqë­­¿\ï¸F«VODž*Ül@•äƒmw4˜ÅŒnÔ;ÐPêÃ:j#ËuŽZÌ\oSîOÜvG¤Fu@p°obF7Òüþå·ª¸VŽø«€´dÔ:AfÞD[E ôPsÂiP(%ŒqÜ´iS|||DDDëÖ­'Ož\XXhÙ]nݺլY³qãÆI}  J4]á!ÏÖ¢©X¨—Q3]$`BuDÇÆkò6@jÔÖù§·JöÁ199yêÔ©W®\iÞ¼¹»»ûæÍ›‡ RRRb©]hšž0a£G¤>PNµÞ¹2¼mm;ÓEô!Øæ‡˜8^Ó¨›h!œÛÌHýÊÛwpÌÌÌLIIñ÷÷ß¹sgJJÊ®]»ú÷ïæÌ™ùóç[j—•+W?~\êµ£˜9ÁÜÆEš&”àa3gºX‘Mfãu˜z'b(‡éÞl”NÞÁqãÆååå#GŽôóócJ&Nœèéé™––V^^nþ.—/_NNN~饗¤>PP;füE›¸,¢Ô£“0¬9¯BL+#÷_¥åz[ý¼Ù¡›Í€¢É;8ž8qÂÁÁ!::š-qttŒŠŠ*((8yò¤™»”••?ÞÛÛ{âĉR(¨M›3Ïîr¤½ÎÆeϪ]tëÛ33o6ƒS [2Ž4MgeeùøøøøøpËCCC !ׯ_7s—o¿ýöÂ… ³gÏöððúXQØ<¦úv™ŸWÙQ˜Ý\5°1/ÇS\\¬Õj½¼¼xåžžž„{÷ËéÓ§¿ÿþû~ýúµjÕêܹsÆÖM£ÑðJvîÜ)õ «»qã†ÅŸS¨”›i²s²¥>ôÊé b6ËÉΑ¤zÁAÁÙ9Ù9$‡B‚HNN!$›dSA”Ðéevy~xÏvá—«A6!".ZPp{qƒH{º¸årdßz°C:u’º öBÆÁ‘™íææÆ+www'„Q£F ‹Õž¹ù¯‡}Ö*#²™Êèõõ¾ºˆ¼Àñê5ðXz‡·…¼ÔFÞÁ1>>~éÒ¥‹-zýõ×™ .)))ùùù ÎÎÎÌ6?¾{÷®³³s­ZµÄìÒ¦M›6mÚpʹsç>9oÞ< ïÓ]òu±éD7;ÚÛ Ìžêb2“žª´k›âŒtDo5€ É;8Ž7.))éí·ßnÛ¶mnnnFFFxxøàÁƒÙmÒÓÓG²mÛ6‘»Ø{Óa{ûP«J –OÜ수èxªÆ8(/)";ȼƒ#!dàÀÕ«Wß²eËŽ;úõë7räH¦)Ñ‚»X˜˜ÑøŒW.½ñÂZƒý˯(Kxjì.D%­z3"²#€ÜP4>N,M£Ñ·Ž#›q-d.''GüŠnV\[GÌÌ‹¿ØÔýñ/þ ²[ê~¡"&¼ZìõfÔo=(‰ÑŸõJ!ïYÕJÀv ²-C V\Æ…¦ÿýG8‘W–#þV1æÜs\9ÔwÄŠ!û®jyã ;š J!´D ·ÜÂMÜÔhW—Þv {m²XúQ,¼ì‚£tô~Š#5*šM—qÑ}Y#;êŽQǽ>¶þ›Ahüe`w¥ƒŒ¨nÖ½ P@´Æ«Ž{ß|¢ ÀÒ&Â_&vcíB¤Ê˜uÿ@1lüŠ¢Ÿ>ÑÅ`¯¾å¯»"á/{‚G[3pÿ@kµ?Ych£˜r|Æë0géG‰¤„ ¹©ãdØG[3úþvHïMä°&_e$ø›A¦ôŽk$xuH]ÕRRB\à†Eš ëÕþf3«Fù¸™€¤@‘«Šê61âÓ]‘3è©®Jüe`O,&8(Xê*˜Á„õç…:¦UilCÕk†ã/;ƒà„á{”ªI/’SéšáøËÀþ`r €Y„>ÈE~ÀS”=Ý/^w…pÜÊH:X3\Ù SŽfÑ;%VÆÍBÜìhTj”çáÚ3¬Î;FÃ+@W5€¹”6í³F[£ÝÀšábáÜXZ,À¨!hz»§%î³3º9R"欮:¸½5€•!8˜Èä!h4Mób¢ô#uÇ5¢ÑÑ>˜¹f¸#&no `MŽ&2g7;JŸ+g\£î\°9c× WcRÔ…Û[X Æ8X€ CИìÈ|!uõÙÃàÆDš©¥)ë;‚uˆú›D਺‘‘ô³ÃFj°,´8˜Kü4J_Ó-”&JRÓö“kAÝW *š!)qåJ? Ö†à`£† éŽk´£FGÌ*Pî+P©‘è¼J¹··VÁÑØ ‚#€YŒ‚ÆàŽkÔ+#áÁ`V¬ñú£ÙoU´føóþw˜#²#€EaŒ#€Ådçd‹ÙL7&²MÒì9£ Íýg PÉp{kkBp°)¡ÆE‰[)Î?R1;rË ˜”õÜ®j©ëbÓÃÆí­¬ ]Õ6e]ÒzªUñ[J_!Èw\£º WÇQH-ŽR²ÇIq–2©dKʸr° ݘ¨Òšv{k0Á@?5~Ð’Š=}•Ž Ó»Ê#Ö —”Pã¢øG•¾ò@Gx΄Y¼ìˆÔ(5º¤ÕžE. „G.1·ŸV,“g°Ù©Ñþàf3•Óû×–€É1ÿÒ;@- Œ:D‘£‘#eB¥7›á…¤ˆÔ Á Þ'¨º>>+žƒV|˜Í‹Hв¥Æ›ÍT<þ×¢RÙ¡Á€í¹Sãǧ ˜jîÿ ª¾ÙŒ˜Ñ =t“!8"zt£b?AMÆKŠÈŽr£;0ƒ¨çu®wùR‚°`‚#!ŸD=Ÿ ¦Ñ›‘e‹ib§¥Æ¶vŠ3Ò½ÕÂ0«€ýÔTé²Éâ ¥C¤FÒ½ÙŒÔ5²éÁWHЏ·5€0G€ xm-ªûU2çf3²ÿÑÛ¾ˆì Áà_z{è”mP}´2Ê–ù7›‘7ÚÈruCpø—Ð'¥Z>Am ·´¶¸ÙÌ¿ŒÿE ’ºÒ6…à Dvû±Ž°h÷p³0Á@?y·2 Ð’ücwoë+&yÍÀ8ºÙQs±ÔÁ@¡t³£,2¢›±|Ê÷×–wÀ¸K!È‚£¹tÇ5ê-Ûú˜‘×Çî_&Ìg­*þ2Ñ{{k‚¤(K&ü>*$,Râ å  Ž–Ä´qÿ—ºFðŒ|?~ð— {äÿÎ’Aoµ:µGÊ,PrkJ¡Ñdc-†—õÎf0ѳÑ}Ï^cÿ¾ºTòã%EÜÛZæÄÇ>Ýq2K«ŽÛ[ƒ 8Z†ÞöEdG°šŠðþ2QËøz½í‹ÈŽªÁÍŽ IÏ ÙäÁÑ2„ú UןÖAQÿc†"„VÇŠ?0ÙÁGË •º  4Ïþa³ãóÏ!üeR9 ˆ”!¥ÝlÆüjª¤{äÁÀ¾Q"ÊÕ󉂨zo6#ëµ´x‡ _誶¼ÌK—¤®(]ñŸÞrà¹$È7,ªhÍpu%È‚#ÈZ>9ôù³P «7LïÔôYËn£øì(ï7 Zô¶…àh!hák£tZñâ2··–?¡Ži%ôV‹Û[ƒ]Bp´´pX™¼,qüz>0 Ãí­e΄€(rVlàöÖ`09Ærx7´Àg•E)äf¿q媅Û[+”È_s½oò{— ¾Uç”8°3Ž…kÒýHßçXno­z¼7 Y¾Kðê‹[‚=Ap4›˜|hYˆBî!aöYQp{kµbß(”ð.ÁÞÞ]Õ`͆+Ó;8‰ýT`Kdÿñ–¥÷öÖø­T.¥­þ¼öüÛ[˪ú HŽ…+Ð;®‘ÈîlÉÀí­ÅüVâ—W†ô®NdýF!t{kÙ(fU[ŽÞ°4î=$¤® Ø+ÜÞZÝØjy¿Q˜y{kÙ7Ø9G 1Ж£Ò{H€9U†7®Ñ¨7 ¼¥TJ ]Õ›6mÚ¸qcVVVÕªU_ýõqãÆy{{›¹KIIÉO?ý”ššzãÆjÕª…††8°uëւψ뺇„Œ»¢À~uO£ÛZVô¾!(áBLÝÑ‹ 6!ûà˜œœ¼téR77·æÍ›çæænÞ¼ùòåË«W¯vuu5y—²²²>øàôéÓžžž-[¶|òäÉï¿ÿ~øðáO?ýtذa•VIš)õiQµßC¬MïH¤F¹zC0ðF!ôÞ"¿¬)4,JÞ]Õ™™™)))þþþ;wîLIIÙµkWÿþýÏœ93þ|svÙ¸qãéÓ§›5k–žž¾dÉ’üñçŸöòòúî»ï.\¸ õA«”ÌÞÁÅCϘýÀ] •Ũ5Ãy…òKÏw)k“wpܸqcyyùÈ‘#ýüü˜’‰'zzz¦¥¥•——›¼ËÎ; !S¦LaÛ CBB†ªÕj9"õAƒrC$Hkø«/;Ê55>?Ü¥¬JÞÁñĉÑÑÑl‰££cTTTAAÁÉ“'MÞ%''ÇÍÍ-<<œ»cHH!äúõëR4È%ºl€¢*ü«´”Hök†Sœ¤bvä–˜MÆÁ‘¦é¬¬,nyhh(Hx"wY¶lÙ† xûž;wŽR»vm©äÝIv…¦+ü«´”¢â_T¥åv®øÏ@!€yd<9¦¸¸X«ÕzyyñÊ=== !÷îÝ3y—† ò6ÈÈÈHIIyá…âââÄÔM£ÑðJ˜îoP¶7nˆÝ4›QA9Ù9A$ˆP$';‡äX±bÁÁÁÙÙÙRŸ ÎÉÎ~ö?Eåˆ>iF\z°Ù¤Âõ  ~VžS¡Üð/§^ú à œìœ àçï-` :u’º öBÆÁ±¤¤„âææÆ+www'„Æ&EkµPšp³¡]ð>)OèªK²Ó™€V>f=ï}2÷C¡÷ÓÞPÔ¿ÿ§{šWŠÆæ?{yw5!êé}?Dj”-´8˜‡6²Ü^Ñ4­·{}Ö’Ñ»ô#®…šp[ +]úQ‚A⯩QÎÐâæsC-&;rKí·«ÚØAžtƒ á¥ítNý°f™2 8‚¹ô¾[Ù×@[ÉÉΑº æâfG¤F{Á×XéºHŠŠ ôjø}ÕîVð³f^°rƒ®j°^Š:S£|éŽnäfG¶!Rº³atçY‹y³jdÅä·Pî»±ôoź÷bÕ[²‚à–Áþ¥+ý[Iï¸F‚¤h'ô^×+ø(N¥oªö¾‚1cÍ2tmÛG0ÈÑÈ‘òÂôPS…®jà >*c×+ø¬Y¦(Ž`:½oUD1IQ•ïkܰ(4Ï$cÔµ`GCâ ª “ÿ˜› ¿Û¨ƒÈÀše´1»•¾-ÛLŽË`߀ Ïû{¦uçYƒ]ã.ñ¨wÝG1WW\ÎtWð1°±&b›°f–~´cŽ`¼?[eœ)#Ë•Eoã"Z儦ÿýGH…¹ØÜrP(cWð!v8›S3þDl;¨G0ŸÞw¹fGü™ Ê€|TÉ„|HÅ·k«§F£žK?Ú%G0—лŒ]üÍjÒñàÏ\‚†FYZÁGˆÐ£”ªÁfGéß·±ô£ÝÃäø3äKh5VðQcWðÑ[(ÁÜ‹,ýˆ·nkBpK’þ¯U“‰Ý(Ûãµ09ía•á¾]³±‰$aQø‡™¸ô#X‚#!w8…ª4ÿñú£¹s±E> R¦ÌéNÄ6 …6°| 4véG$K[ApÐ?s‡åŠwÕ°ô£ÊMÄ6*;Z=5>ÿÁ†Þ…Å{¸¥ar @EzÿÌPnWu¥[‚ü >é'b›°ô#Ñ÷vÔhŽþÌX\QŒZÁ±Á„{²ÿؽåžÁÚ‡ôïO@j´tUƒ!ö²¬Í˜ög®Z Ý“ÝÖò#´‚눉؊#¦¡‘û­È|Ìý©tWJ¸2æy@´8€étïIˆÔ(?¦­àC*¶;•Ñ0)lj¬´Ñê76¤uþé-¯ìx@$´8Bªkb4§AnvDj”%£.™jñ±AæxË÷TúÁa‹ù4œ§f~$ºª­Á*°ÝR gzG72…܇"e©Ò¥ÂyDNÄFG¶R˜0›˜1ŸÆ¸OŠ3ÌÑä|8 Bp>›þih3x#°(½ã ’¢ ±©±Ò\(´ ¥¬˜<›<ÿp±n[#ï‰MXÁ•Ap=¸ÙQ ©¬ŒMèªV&ó™“‘寍¡QŒ•ÞØÐ”Ï¡À'fº²'GxF÷7œ·àCN!Ý6Á„EdGÕ1a"61o> ^WvÆäYØ&Œ‰dŸApG“_4g ¶1O’y)ÓÌ(SŽðŒÞ_Q"¯¤¨sH膰6ݘˆì¨â'bc> Øx>És¨)#ŸG•A?ö—\Þ]Õ膰&¡€ˆÔX|> ZåÆîæÓè6(è-×÷ÔøAp=Œºç½½3µ*…€„ßRhæ|¤F¹1j>­5hŠâ41Tú1Ž,GÐeÚŸ†öEL7„|ŽFL‘èÑV#3çÓ`X¤ õÙaò )¡©J>¼x™Ï„쨲ÔHpçÐeòR vDè†âï"ÖÛ[«šÐ|ÃØmåÏ„»c3îOc\j|þD•ßEFÝYhq¥3ª¬ ··V/£nl(”&yåâW…Dè”!3çÓ=ÒÑp9æÓ<‡à†È¬¡Q— Ý`eºÙ©QŒºÄºãE> †E*…™óiŒ^EÑV›O£8èªå2¹¬ ··V;cïŽÍl/¦_[w3c‡E‚0v> ÷_¥åÜ „~z¥õ{VU~  ÅQEd6ÁÅ|FuC€m1Ù©*Á‹}bæÓ ‹”=sæÓ°±OÌú事•Pª¾# ÁdÈ„ßR5ýVÛ'¡i1¼räHø—ÞØgàž×BOÂÛ]ÌO!öÂØ›²qPL[‰ÑÃ" td©æÅ‚à¨dªkb;ÆK„¸E!TNè…!f’­†E#_Ú ÞGžQÙ‘ˆûÄ YùIÁG%Z òvHäŒ6nXäŽw° [‹û 7öø4mX¤)‹þ(‚£Âé¾Êåú×;YM½Š!t{k‘ûJ]}ˆÉë~›ŤF‘Ýâ`CBŸkB“l¸ÿ*-çíû¬…’6eú¶ 8*ŸÉ·û´;¼ìˆÔ(C¸½5X—a‘z7æþÓ[®—Þ'ßN‰|ie& ‹$â–gŸß´E”cK·¡Q·\~¯xu¯×¯¼3!G‚¶IÌ»"Ø ñÃ"ŬÝ#¿T“ 8*–Þ dù²Æzý %2öé@ƒÔÆÞD[äŠ?ÄøÞmÌݶ3†Eê-çí«·\ U]›@–íêX¯_õxÙ©D1sX¤É÷BjÝ4ç–6È—V`Ô°H.cýQGå㾬eÿ*ǧՊ@ƒÔfÔj‘èÝV(ñ‹¦-ú£$Ž gÚí>m\E±uQýzýjc‘5Ã4¡F ‹ä’¤w”’2ªw[©•̨Û}Ú;¬×¯>z× '˜‚ Öcç½ÛÈ‚R3¹w[I°\‰Y5À~_Ê&,FO«Ûp(fÑG,÷ÖeÔ¢?tÅÅõ– á>§ ˜Ä/Ž1B5¡RWAŽ*bG9’ÈŽx×}xÝÍ•fG¡ (Á2ÌìÝ&¢—%çniTW¸Þ ` Žr"Ë[ ÑÍŽâ;ñ¨&z)š1ج!';[ì¦âoi£wer¡åÊyŒ½}¢ÐÒè"ÔÁQN„î’)u½L?žëޡР@(íUš¹ÙѨԈ†I°<“{· §­QLï61r Žn ïeæo~¹ä“cd†7{K~3¹ ôPs’Õ1ÍTþ ôPsBÓ#Øši½ÛÜ gxî¶ÉSpxÏ\iÖª:ÄUÁQ~ìú.™•6Òúv!HŠ`º‰É‹b'nl6bòz:²£9 L“FRŠŸîmf¦D$µ3Žò Ø»d²©]Õ`lj¬4ÿ™ycÃàà`äK°$‘ÑÀ¾†˜9ÿÚp#¥áªò66ª‘YÓŽaŒ£FÝtÛYÓ‚ñ‰VB6Ê£&ÕÌ”q‘kX íedÖ¬¤\¹õÈÌÌLIIñ÷÷ß¹sgJJÊ®]»ú÷ïæÌ™ùóç îCñ³ã³®g/Zг= ¿È…VL$¢÷2Ü|HWüg ·1¦@ ônënLW¤·\÷ù¹™’›%Ïš&ì¢÷Ì(,ÑÚ`ùͧËFÅÈÓøì!}kXV²‹¾¬YùEÑÉšªú‹ÁQ7–——9ÒÏÏ)™8q¢§§gZZZyy¹þ}è ÙñßÔh8¥Q&DÓMÑ•½øxÙQähBv/ñaŽ}fý:ÁÚ½Ûz³¦PeŸÙfYÓ„]L¸7Œ­ v±ø±Ûí.6:ÃÆß¼âÙO©˜5Õ6Ÿ ÁQ'N888DGG³%ŽŽŽQQQ'OžämüïÐ^g5E(ÚИEŠPºm¢n#rÅD½kâˆ\(Ç䛪èwÀâ{·õîexcgMò<%‹ÿà4j|§î)²ÛDkƒ]¬tìv»‹-Î0MëßÅà¬Ü›Á‘¦é¬¬,nyhh(!äúõëüí¹égÓ\˜)φÇ,>+Ôi Ô?ÀQÌŠ‰:? Bÿ2-P®÷gÑ:O…vGaÌûC¥ÄÌÑ6¼—ø)8VÊš”½åv©´\è!6qZjÞy09ÑÚfñéÄf»u &ìb¥b_ S#Ár<ºŠ‹‹µZ­——¯ÜÓÓ“rïÞ=þ‚c1þýRªá>’y)Óðöº»ŠŸJì3TØLCôʼ”© Õ É$™šPM&•Ér}?û–dj4šgÜ þõìtúˆ¹ô¡¡¡ÜÍÄìréÒ%î^&44”¢(ÃQ•»—˜í¹{]ºtÉÀö¼òK—.1…̾zMï.ºåváþ îÂÖ„‡—/¹Ï`¥]„N‘Èa›]ìçtÙí.* ‘Ž|ÌÔi777^¹»»;!äÁƒüØE@y³aè'¾d’LÁŸG½EíB“L*SÌ]¡Ÿ=E233 ©d¯ ?úù. 9Š¢Äü>r[AØ]*má¶PÒâ†m±[Šü¼'ßZÃ6†Ù`bä´zkïBqúFím¢Ö‹bÚ.Š®j>///ТЋ‹yå="ÏÛuñgÃTœ+#È„¡„F­˜(4Rüë\u¿ò&ô‘,25r·7ÜÇmþ.ÆŽï´Í.& °Þ.6>v»ÝÅ®.Ši»( ‚#Ÿ“““§§§nËbQQ!„gÍ£gµÎ¤i>†»b"b€‚ˆœ‚`ìÓš5-µ‹ â© »ˆI6ØE’c·Û]ì䢘¶‹Â 8êáïï_PPÀ$EVNNóþ}Œt¦µš¹b"r$€ÊX)kZpÄSv1¶Öâ»Hxìv»‹áˆf·»(‚£±±±Z­öСCl MÓéééÞÞÞú÷16Ò!À]26ZoŒ—´‰VÚ]ì³V’ïbà©ìvåApÔ#>>ÞÁÁaÑ¢E̸FBHJJJ~~~Ïž=+ßß„×mv°²Ë+ØEFµ²ç]”AK‰±bÅŠ¤¤¤š5k¶mÛ6777##£aÆ+V¬Ð]¦@%mݺuË–-gΜ xõÕWGŽɬÈ NŽ Æ8€(Ž ‚#ˆ‚ࢠ8€(Ž ‚#ˆ‚àh1›6mŠˆˆhݺõäÉ“ ¥®XQvv¶F£ùóÏ?õ>Šƒò”””¬\¹ò­·ÞjÚ´iÛ¶m täÈÝÍpé•çþýûŸþ9sé;tè0jÔ¨ììlÝÍpé•íÖ­[Íš57nœîCj»ôŽ–‘œœ =}ú4o¼iݺu¡¡¡}úô)..fJ.]ºôꫯ†……?ž)Á¥W$æ".X°€-Ù¼yshhhïÞ½Ù\zÅ[±bóž?vìXn¹:/=Z-`ãÆååå#GŽôóócJ&Nœèéé™––V^^.uíÀ’ºvíÚ·oß 6m€ƒ"íܹ“2eÊWWW¦$$$dèСZ­–í°Æ¥W¤cÇŽ¹ºº~ôÑGlI=jÔ¨qîÜ9­VË”àÒ+ÛåË—“““_zé%݇Ôyé-àĉÑÑÑl‰££cTTTAAÁÉ“'¥®XÒÌ™3/^¼xñâV­ZéÝ/EÊÉÉqss 熄„B®_¿Î|‹K¯H^^^íÚµ«R¥ ·ð…^(-----e¾Å¥W°²²²ñãÇ{{{Oœ8Q÷Qu^z'©+ {4MgeeùøøøøøpËCCC !ׯ_ŒŒ”ºŽ`1mÚ´a¾Ø¿¿î£x1(Õ²eËœœøï–çÎ#„Ô®]›àÒ+×Úµky%'Nœ¸víZÓ¦M™æg\zeûöÛo/\¸°bÅ ÞCª½ôŽæ*..Öjµ^^^¼rOOOBȽ{÷¤® Ø^ JÕ°aC^IFFFJJÊ /¼GpéUàÔ©S›7oÎÉÉ9uêT:u’’’˜r\z;}úô÷ß߯_¿V­Z1(r©öÒ#8š‹™<åææÆ+www'„>>¾F¼‡ðbP˜ÌÌÌÍ›7—••ÝÕ祗^bgÉàÒ+¿¿—.]îÝ»—››{æÌŠ¢Z´h±`Á‚–-[r7Ã¥W¼¼¼¼Ÿ~úI£Ñ¼ñÆÜr^zŠY• À0ŒqQ@GÁDApQ@GÁDApQ@GÁ@!ƧÑhû#Ì:IDAT8 uEÈ¢E‹4ͺu뤪@IIILLLjjªÔgâæÒ;vLêŠèQPPðé§ŸFFFFGG›³ ï5`?/NBˆV«íСÃêÕ«¥®€,!8€Ò,\¸ÐÅÅ¥{÷îRWDfΜ¹k×.‡Æ›³Œ8::~úé§ÉÉÉ·oß–º.òã$u@ibbb|}}›5k&ÉO¿|ùòš5k’’’¥>2püøqBÈÏ?ÿ\³fMs¶á‘ö5P©.]º,Y²dΜ9_ýµÔuG°°ðððððp©~úªU«ÜÜÜ:vì(õi‡ÇW­ZÕp"³ ´¯J988ôèÑ㫯¾ºqãF­Zµ¤®€œ «lG«Õ>}úÔzÏÿþý­[·¾ùæ›...V­@iiiYY™õ¬íí·ß&„¬]»VêŠÈ ‚#€Ä¦NªÑhæÍ›Ç+ÿ믿4M«V­˜€’ŸŸ¿`Á‚7ß|ó•W^yå•Wºté2gΜ;wî=­Ð„Œ† ¶hÑ‚[räÈ‘O?ý´}ûöÍ›7ïß¿ÿ¢E‹xÑêæÍ›Ó§OóÍ7›6m=dÈ'N8¢ï¿ÿ^wbÄ7RRRZ¶lÙ¨Q£ÈÈÈwß}÷·ß~z†S§N5lØ0**êáÇlá£G¢££6lxæÌ¡ÓÒÒž½°°¦éµk×öïß?222&&fêÔ©………ºÕ;|øðˆ#¢¢¢¢¢¢>ú裃êncør0u¸uëÖéÓ§{öìÙ¸qã7n¸;vì:tè믿ޢE‹>øà‡~ÐjµÌCsçÎÕh4ÅÅÅÅÅÅ&""Bww¡m*}5ò^<â϶Бšÿ¢õóókÚ´éÏ?ÿLÓ4Ñ$ÖµkWBÈ®]»xåÛ¶m#„ÄÅÅ999åçç÷íÛwÙ²e·nݪS§N­Zµ®_¿þã?öéÓGo@oþüùƒ ÚµkWYY™ŸŸßüñí·ßöëׯ  €ÙàòåË]»vݰaCAAAýúõišNOOÿý÷÷íÛgÔZ¶lÙW_}åììܲeKOOÏS§N 6,--MïÆƒ ºsçÎìٳٹsçÞ¾}ûã?60EãèÑ£E5iÒÄÌ 0qâÄÍ›7׫W/22òÆ6løÏþ3eÊ”3f…††Þ¹sgÓ¦McÆŒáí¸uëÖ„„„Ý»wW©Råþýûûöí2doŒ]¥—ƒqáÂ…>øàìÙ³ÿüóOyy¹ÞzÒ4=a„Q£Fíß¿Ÿ¦iOOÏŒŒŒ¹sçöíÛ—yÍDFF0ÀÉÉÉÉÉiÀ€ï½÷žî“èÝÆz¯F]zÔR/Úˆˆˆû÷ï_¸pÁ²uP8$¥ÕjÛ´izîÜ9naÛ¶mCCC/_¾LÓôÒ¥KCCC‡úèÑ#fƒôíÛ744tÓ¦MLÉØ±cCCC™”À~{ôèQÞ {íµ×˜¯÷íÛÚ¾}û?ÿü“)ÉËËt¹Ý¦L?uÏž=™o‡ ¶téÒúõë³äååm߾ݜZXX˜““Ì›ýZµjÕV­Z•””œ={–Â$׉'?~œméììýîÝ»¯¼òÊÉ“'¿øâ‹ ØøÅ_$„X°õ‹{ºÌ—““Ã+¹}ûvqqqíÚµ]\\Ä_1˜¶F½ÍŠLc¤nó§H|5òˆ9Û–}Ñ2/•êÕ«›YsUÁG»P·nÝFeggÿõ×_{÷î­[·.;lþÒjµ¯¼ò ÷sš<Ÿ`/EíÙ³‡ýÚßß¿zõêW®\aÆØ±´ZmÏž=Û¶m›ŸŸóæÍvíÚ½óÎ;ì£...±±±ÌlÃ+šoëÖ­iii¯¿þúêÕ«CBB¶oß®»h—¿¿?y>ÒÑ4N—ùRSSÙ5kÖ¬!„0áFÌåÿ³˜g»uëÖáǹåyyyû÷ïwtt 3í(Ìy5ò˜p¶-û¢eNi5L;ê„à`/˜)2S¦L)..îÕ«[Îä¡‹/²ÑA«Õnذ¹éEII‰Þgc‡­Y³¦¸¸˜)ÉÈÈX²d w›Ñ£G———=š*ñèÑ£I“&={6<<Ü××7 àáÇþùçòåËÙÖ «W¯2+WXOÑ|ÿý÷_|Q­Zµ/¿üÒÙÙyöìÙŽŽŽ‰‰‰=<|øÒ¥K5kÖüþûï¹ WEÍ™3ç›o¾i×®]yyùÕ«Wƒ‚‚F½eËvQ›îÝ»¯Zµêõ×_wuu½xñbqqqëÖ­/^<}útëŠ5kÖ;v¬M›6ì@OBȧŸ~Z·nÝ´´´;w íMѽ—]¥Äœ.3ýøãŸ}öY‹-òóó½½½;uê´nÝ:îTq1—C<‡ùóçõÕWÑÑÑeeewïÞ}õÕWÇ¿nÝ:¡‰ç"™ðj´àÙ¶Ô‹–¦é'N4jÔˆ "Qœ3öéñãǵk×? Z¦hšîÔ©“¯¯¯Ð]’ÅPÏé²Rí'Nôë×/))‰Ûº•B‹#€ò¹¹¹Õ©SG 1ˆ¢¨÷ßÿÿûŸ9wÔsºìTg{Ë–-¾¾¾Ü¥R@ GP”ž={®ZµJꊀýÊÏÏß¾}ûG}dÚò¢j†àŠâêêúùçŸoذáÖ­[R×ìÔâÅ‹CBBÞ{ï=©+ ?Ž 4QQQcÆŒÉÊÊ’º"`´Z­««ë¬Y³ð `4LŽQð÷ˆ‚ࢠ8€(Ž ‚#ˆòÿpspIEND®B`‚statistics-release-1.6.3/docs/assets/ncfcdf_101.png000066400000000000000000000730101456127120000220740ustar00rootroot00000000000000‰PNG  IHDRhŽ\­AuÏIDATxÚíÝw|NwÿÇñï•ABÈhdP#!bW¬–5Z­jT-µWƒªÑºVûS#j·jkmZ©³„HĪ!%!’\¿?W#óJ®qÎuÎëùð¸WÎu]ç|¾çÜáÝÏ÷ ^¯@^ìä.¶à£`‚#ŒBp€QŽ0 ÁF!8À(G…à£äáÌ™3ºgzôè‘éÝÇÞ]°`ÜÅZĦM›~ýõ×_ýõöíÛf\í¸qã¤ýÖ¾}ûœ>“qççdĈ¹oèñãÇóçÏíµ×J•*åääðúë¯õÕWÉÉÉÆlÎÁÁÁÓÓóå—_7n\Ö=`– Ø ‚#€|øé§Ÿþúë/¹«°¶®]»¶k×®]»v'Ož”»–|;zôh¥J•>úè£ßÿýúõë?ŽŽŽÞ²eËðáÃ6oÞœçÒÒÒâãã:4yòäÀÀÀˆˆ¹Ç@6rÀ–èõúÁƒÿùçŸ:NîZ4ÇÛÛÛÙÙ9ërww÷œ¾Õ¤I“–888¤¦¦J¯¯]»Ö¹sç?ÿüó¥—^Êes>44BCC£££ .l– Ø‚#€ü‰ˆˆX±bE·nÝä.Ds–/_Þ¬Y³|}eøðá†ÔØ»wïAƒU«VíÖ­[[¶l2dÈ¿ÿþ›””Ô¥K—sçÎå¾¹+W®Œ?þÇB\½zuÞ¼yƒ6K…l SÕòmÔ¨QIIIy~ìáÇãÇoÑ¢…·····wóæÍÃÂÂ3~&ãy~ Æ «[·n±bÅjÖ¬ùå—_>yò$Ó:oݺ5hРW_}ÕÕÕµ\¹r­[·Þ²eKÖMß¼ysРA 4(V¬Xùòå;vìxìØ±l÷ÓO?Õét†ìÕ¼ysN÷ðáÃLkHMMýì³Ï^|ñÅÏ>ûLúdzzúÊ•+›6mZ¶lY''§²eË6iÒdÉ’%YGd9;vìØ´i“ôzôèÑ‹-z饗ìíí}}}ûöí»bÅ é­¨¨¨óçÏ羪ҥK/Z´Èp.æ—_~)횣€\>}Úð7F¥J•¤&LÞ}ôè‘áÝùóç¾uèСòåËgý;§téÒ{÷î5|lìØ±Òò&MšT®\9Ó‡CCC3VòÛo¿yyye]ç{ï½—ñc;wîôööÎôN7tèÐünwôèÑY7÷àÁƒŒkh׮ݻï¾+½;v¬ôÅÎ;gûWn§N²ÖЮ];cvþŽ;òuà:tè }ÑÃÃãßÿÍú6mÚÔ¬Y³fÍšk×®5fs{öì1¼»mÛ6Ó+`sè8ȇÏ>ûÌÕÕU1uêÔk×®åô±äääÎ;_¼xQáääÔ²eË6mÚ)RDqåÊ•.]ºüûï¿™¾²gÏž³gÏ–-[öå—_vrr’®Y³æðáÃÒëÄÄÄîݻߺuKáææÖ±cǦM›JoýðÃááᆽýöÛ7oÞB„„„|þùç]»vµ³³Óëõ3gÎ\´hQ¾¶;|øðèèh©r!Ä’%K2þ(9räÈ’%K2.Y½zõêÕ«…:.$$¤gÏžÕªU“ÞZ»ví®]»¬s°þøãéE‡\\\²~`óæÍ‘‘‘‘‘‘;v4f…ÁÁÁ… ’^:tÈ:£ (Gùàåå5nÜ8!DRRR¶Ý8ÉôéÓ/]º$„(^¼ø¾}û¶mÛ¶yóæˆˆOOO!Ä7¾üòˬßúæ›o.]ºiÈp†à8uêTé²eË^¸pAJ`aaaÒ»ßÿ}¦uêÔiçÎãÇÿé§ŸæÌ™#½;a„|m÷…^(_¾¼ÝÓ¿*K•*U¾|ùL]½zµJ•*ááá½{÷BlÛ¶MzkèС;wî\²dÉ©S§j×®-->>Òë7n˜X![Dp?Ÿ|òI… „Ë—/ÏéÖ<†›¼ 8°nݺÒëêÕ«:4Ó ªU«6`Àéu¥J•5j$½Ž‹‹“^lß¾]z1|øp)€JÅH“­?NKKBÛûï¿oXyïÞ½ííí…—/_ÎtK<·›§"EŠüþûïÝ»wùå—¥ˆÖ¥K—ððððððAƒIŸILL4œz÷î]+¦Œç’–,YÒ\«}á…²®€vpU5€ü)T¨ÐŒ3¤Óò¼{÷‰ŠŠ’^´lÙ2ãò×^{Mê^¸p!==ÝÐÉBd:!ÒÃÃCz‘žž.½ˆŽŽ–^¼ú꫆ùøøDFFfü¢á:L›6¸páB5Œßnž‚‚‚2%3iÓ Û·o?räHddäádzÎÎçW¶7»1œI±bÅ ¯ÍxßòøøxéEñâÅM¬€-"8È··Þz+$$d×®]Ò­y2½›˜˜xÿþ}鵯¯oÆ·J•*%½xôèÑÍ›73¾›iþ7Ó×éææ–Sa‰‰‰ïY˜­;wî䲡ÜŸÒÐþ4HIIùôÓO¿þúký¼¼¤4 ,_7»)T¨§§§4Xé´¬îß¿/UèääT´hQcVk˜¡ÎzùQ~+`‹˜ªP³fÍ’ú…†³ Š/.]@#„øçŸ2¾eø±P¡B%J”0~sÅŠ3\’bhzeU¼xqC§í·ß~‹ÎN×®]Í»+²fÍ/¾øbæÌ™©©©þþþsçÎ=qâDbbbÛ¶mÍ»Ý<5hÐ@z±qãÆloT©R%OOOOOÏùóç³Â¤¤¤H¯ëÕ«gåáP‚#€‚¨Q£Æ{ï½'r¸H"00PzñÛo¿e\nø1 ÀÁ!3:Î0§œñÄÊ7nÔ¯_¿~ýúM›6•&—¥ó/…©©©å3pwwwsssssËöÑ&æ5wî\éÅwß}÷ÑGÕ¨QÃÁÁáêÕ«–Þn&†³]zݺuëünÎn¾úê+Câ™5kVDDDDDDáÂ…¥hóæÍ¥·.\¨×ë¥×ëÖ­{á…<==Ë•+gʹ††~[.þý÷_Ãlø½{÷¤GµÚ]x Þxã ÃÞ8pàĉ¥ŽoJJʲeË ÷ž,_¾|PPPqãÆ|°víZéÇwÞy'ã9”´ƒs——ר±cGŽ™õ­‘#Gþøãqqq÷ïßoذa³fÍìííwìØ!=nÄ××Wº§O¾Œ7néÒ¥‰‰‰±±±5kÖlÖ¬ÙÍ›7wîÜ)½Û¿éŧŸ~úÃ?$$$¬_¿>$$¤qãÆgΜ1\Ä=tèÐ\«áææ&:9iÒ¤3gÎ 4ÈÑÑ1§»¸¸¸¸¸HŸ—ТÓé¶mÛfÍgÆÌœ9óå—_NNNÖëõãÇ?~¼§§gBB‚tºÂÉÉiíÚµÒ%ç™ôìÙS:=àáÇO9(Q¢Ä¤I“¬?J@Ç@Á 4(ÛÇÃ8;;¯^½Zº7Mrrò¦M›~ýõW)5–-[võêÕ9µ*sáååµxñbéìÉ›7oþôÓO†Ôf8ƒÐÝÝ}É’%Ò4{öì™0aÂÚµk“““…ýúõûüóÏ 0LC³óàÁƒ#FŒÈ½ï¨Óé^ýuéuRRÒ† ~ýõ×R¥JnWžé¼O‹ª^½úï¿ÿžñ¢ï;wîRc¹råÖ­[W³fÍl¿{ýúué¬ÐŒ{xxlذ!ëõ@4‚à à *d˜}Τ^½z'Ož7n\³fͼ½½===CBBÆŒsêÔ©† lsíÛ·?uêÔ‡~X·n]—råʽñÆûöíûâ‹/2~¬mÛ¶'Nœxï½÷jÕªU¤HÿöíÛïÝ»wÞ¼y¸hZ1kÖ¬îÝ»{yy-Z´Zµjï"”Óç«W¯.„°³³{饗† ùÖ[oIï®X±"ÏgC›Ñ«¯¾záÂ…Y³f5nÜØËË«páÂo¾ùæ¬Y³Î;g8© öööõêÕ7n\TTÔ+¯¼bµâ(ÎpÀ\ž-:Ûrå®J{ލM¦ÃÿªÏZ´Ü%AApÀ¦åm þ7†¬ÕË]r@pÀ¨! >IÖ1È]ŒFp@AÔÿR¦‘È]L`'wh”.;ú,bbbl)5ê²üÑ?ÿ¶ŒŽ#—mÑ–â`ncË4*¹ë%0³¬1Q%ñéð2Mîz`EG NÍ­Äÿ™ixr×ù0–Ê[‰Ï 5ã å.ŠAp {Љ‚¶"ŒBpà©LIQÍ1ñé€3ŽVîb` ŽÒVCñ¿ag°ÜÅÀÖZ¡¹†â#Ï8l¹‹-#8TK»IQaG€zh:) Â",Žà°aZOŠ‚°«"8l IñÙŽ0ì¹+–J—1,j7) š‹Á 8´3òó÷{¶#ä.šg'w!„.ýóä.M–ÝñߟؘX¡'5BŽÙäå®KÆ=òì>Ã@1˜ªX',fƒ+]`#Ž‹#,f¼[CpXa1{\ [Fp˜ a1G4¡ G€I‹yv;ª@p„!/³G‹jDp‹æbÞÈ‹P5‚# 4óF^„6Ù#/æ¼!8þãïïoxM^Ì —¼@“xä à¿GÿÅÄÄðÜ¿Üdz$  1GЮ¬Ï‰–»"¥Êúi@“˜ªÍáäÅ|`JÈ€àZA^Ì®z²Cp•#/æ-F gGP'òb¾¼@UÈ‹ùƬ4`4‚#¨y± h1ùDpÛ&EFòbþá>Ž`“2Ý‚Qîrl·ï†Yèt¦¯ÃFÀ–pËîâöÝ(.›?þ½cªlSÒĬ4Œ”m‘߸ç@Ѹê¥àˆŒÈ ± Ž P´ ŽÈ2¢Y@Yh1š„ȨqYc"¿GfEp¥ Åh"£ÖÐJ”ÁdF‹ÑTDF- •¨ G -FSÕŠ˜¨TG‘ÑTDF5!&Ú‚#X³Òf@d´uÄD[Fpk ÅhDF[DLT‚#X‘Ñ ˆŒ¶‚˜¨vG°"£.SRäÿíjGpó#2š‘Qh(jÁ̆k_̃Ȩ4ñ<‚#˜-F³ÑeERD®Ž`"£ÙÐh´>¦ž‘OG( "£Ù­††"LCp€|#2š ‘ÑÒHŠ0+‚#ä‘Ñœ8ÑHа$‚#…ÈhN4͈¤+"8@Þt:‘Ñ<ˆŒ¦#)B>GÈ FsbnºÀ2†Eþßù {DFs¢Ñ˜_’¢Ÿ ,B)ìä.G§ÓIsÓ¤F3Ð=k4²/ó¤Óý÷G¯7ü‰‰‘»2à):ŽðºŒfÆÜtî8[¶†àBÍŽ¹éœp¶"lÁ¸hÚÜh4fD[*Bp i4ÍŒF£„¶"TŠà@£ˆŒfFd$,B¸ª€æpÑ´ùióºéŒA?´Ü•Á‚¤ã-w²!8Ð"£™é4vFcNI‘ÿG©×óÿ} “Ž·ÜEɆ©jZÁÜ´ùi$22­1™ŠZމY¨‘ÑüTF#aQKHŠÆ#8P9nµc~jm45ƒ¤X`GªE£Ñ"T– ‹Ú@R4­Ç5kÖ¬^½:::ºH‘"71b„»»{.ŸOIIY²dÉÖ­[cccÝÝÝ«W¯>`À€€€¹ÇÀX4ÍOMÓÓ†¼ÈÿITФh!š¸ªzÖ¬YcÇŽ½xñbݺu]\\Ö­[÷Á$''çôù´´´wß}wÆŒ 5*UªÔöíÛßzë­Ã‡Ë=y3ÜmGîBÔE7ÜÉö‚h¨E¶×>þÈ]z¨?8FEE-\¸ÐÛÛ{Û¶m .ܾ}{Ïž=Ož<9cÆŒœ¾²jÕªcÇŽµnÝú÷ßÿú믗-[öã? !ÆŽ+÷hä†4Z„Mßp‡û,ªIQꎫW¯NOO|ØÎήI“&†%öööÁÁÁñññR@ÌÊ××W‘1#êõú{÷îÙÙÙ¢$å`nÚRl«ÑHXT#’¢Ò¨<8êõúèèhŒË+V¬(„¸råJ¶ßzã7œœœ¾øâ‹ƒ&''_¿~}ܸqW¯^ -^¼¸Ücða+ÓÓœ¶¨:¹´å. B¨þªê¤¤¤´´477·LË]]]Åó=ÅŒ—-[Ö«W¯^½zöèÑ#,,ÌÈífZ²mÛ6¹w†¦]½zUî™éÅßß_+÷hÔãêÕ«~þ~±1±B¡Ôýêçï/½ˆ‰ùo©zÿo ú¿Áüýü ¯cbc2¾«Œÿ¶jÕJî”BåÁQºtºhÑ¢™–»¸¸!îß¿Ÿí·ÿ÷¿ÿ=|ø°jÕªÕ«W?pàÀúõë_yå•-Z³Ý¨¨(¹‡ŽÌüüüä.™™rP˜›¶ð~B/ü„ò~_²»á¢òª´•ý –Û½r9Ьÿ¬gíi„ʃ£›››N§KJJÊ´üÁƒâYß1«‘#G=ztôèѽ{÷––\¿~ýí·ß2dȆ üýýùp[oKÑ ¡±±±ÊJÜpQ-2†Eæm—ÊÏqtpppuuÍÚYLLLB®³ÎèÖ­[»wï®P¡‚!5 !J–,ùñÇ?yòä—_~‘{L€¦qF£¥(êŒFÎ\TÎVT%•G!„··w||¼” ¤3¢¼½½³~>>>^Q®\¹LË¥FãíÛ·å Q\:mA I\mû¸ZõÔ›5k–––¶ÿ~ý^¿wï^ww÷   ¬Ÿ/W®œ½½ý… 2ýû$ßP¡B¹hFKQÂÕÓ4mmEMQp µ³³ûöÛo¥ó… .¼sçNÇŽ¥%>Œ•.[svvŽ‹‹ûúë¯ w¿páÂܹs *Ô´iS¹hFK‘ñæÞLFÛ8¢f©üâ!DÉ’%GŒ1uêÔ7ß|³Q£FqqqU«V}ÿý÷ ŸÙ»wï!C6mÚ$„˜}J”(±~ýú-[¶øúúöèÑcðàÁÒy²åéé¹eË–ùóç8p`Ïž=îîî7þ裪W¯.÷P ¡Ñh)R°æ®%/Ú&®ƒFVü½l~ÜÇQibccUv4Èý -%¯F£9YÈ‹fbÍ¿Á‹FÒì¿õšè8°!LO[¦§³»M7ްã(F ²hj¤¹hk‹(‚#¥ 5ZŠåNj$/ÚÂ"LGp ?¦§-ÈFò¢í ,¼ŽdF£Ñ‚̛ɋ¶Ã ‹0/‚#9‘-È\©‘¼h#h. Žä!=ÿÔh)¦§Fò¢- ,ÂÊÔÿÈA ¤ÓébbbHaúã§y ²ñ¸?ȈàÀÚ˜ž¶ S?­Ó ÎÏߟ¼¨L„E(SÕ¬ŠÔhAk4>?%ËC–”ãéL´ŸÌDCè8°NGj´ ü¦FÃl'SÒ “u&:&6†Ô… ãÀˆŒ–e|jä’¥â:° GGj´,#S£9JÂ5Ѱ9G–Ej´¬5rá € 8*¤‰Ô(ïm95ÁP•§FÙÂVS#³ÒLGpTEÍ©Q ‘Ñ6Ñb`.GЧ¨ÈhSíF"#ó"8ê¡Îv£ì§3>WŒÍ¤F"#K 8*¡ÂÔ¨¨F£°ÔȉŒ,Šà¨ÚR£Ò"£°ÔH‹€›§ÂÔ¨´á(;5X Á°mªJ l4*‘€•(€’#£"ÛDF² 86L%íFÎMÿW›âR#‘€ŒŽ€­RCjTr£Q(+5r¹4% 86ÉæS£Nç'…‚R#-FÊa'wòM©Qèõ±11rבK…ŠH:¡Ó ^èI‚Ž#+RøÜ´bÐe LGÀÆØj»Ñ†"£¬íF"#%#8¶Ä†S£­”-_j$2P>‚#`3l25ÚP£QÈ–‰ŒlÁ° ¶šm¨f9R#‘€m!8°Ûj4ÊÈÀ`cíFÛj4>­ÙzíF"#ÛEp”ΖR£6­•‰ŒlÁP4K¶Rêse[#5¨Á€Él´Ñ(¬‘‰ŒÔ„à(—m´m´ÑhyDFêCpÊR£í6ŸÖo©v#‘€Z%²Ô¨ð ó¨ß"©‘È@ÝŽòÉÖÂ"©‘È@ Ž€â(ºÝhëFaþÔHd G@Y”›UÐh47"#­!8 ¢èÔ¨ÌÂò=³µuBGd 5G¹RS£ÑL©‘F#ÍÒJp\³fÍêÕ«£££‹)Ò¸qã#F¸»»çþ•S§N-X°àÌ™3< üä“O^~ùe¹Ç5Sb»Q5FažÔHd qvr` ³fÍ;vìÅ‹ëÖ­ëââ²nݺ>ø 999—¯ìÚµ«k×®»víòòò ŠŒŒìÙ³ç®]»ä T‹Ô¨p:¡“æ¦I´LýÁ1**jáÂ…ÞÞÞÛ¶m[¸páöíÛ{öìyòäÉ3fäô•û÷ï5ÊÁÁaÙ²e«V­Z¸páŠ+ *4nܸôôt¹R\jÔéÔ–Mh7À@ýÁqõêÕéééƒöòò’–Œ=ÚÕÕuëÖ­9¥ÀuëÖ%&&öëׯvíÚÒ’5j´nÝúÎ;§N’{@€…I‘‘ÔHd€,Ô>lggפIÃ{{ûàààøøøcÇŽeû•}ûöétºvíÚe\8mÚ´¨¨¨—^zIîAmÔnT_£Q˜”‰Œ‰Ê/ŽÑëõÑÑÑ—W¬XQqåÊ•:uêdýÖéÓ§ÝÝÝ}||Ž9yïÞ½J•*5oÞÜÙÙYîAm”•R‰Ü¸r¢òà˜”””––æææ–i¹«««âîÝ»Y¿’’’òï¿ÿV¨PáóÏ?_±b…ayéÒ¥gÏž]­Z5c¶˜iɶmÛäÞšvõêU¹KÈQll¬Ü%?ÿؘaÝJ¬pPüüýbcb…ÑÃò÷óBÄÄÆ!òñ5uQò/‹fqPdתU+¹KP •GéÒé¢E‹fZîââ"„¸ÿ~Ö¯üûï¿BˆèèèÛ·oO:µI“&=Z»víwß}7hРM›6ÓwŒŠŠ’{èÈÌÏÏOî2SD»ñÙmeÙ;–=(:!ôÂOµ‰çºŒŠûе)ð—yeýg=k‡H#T~Ž£›››N§KJJÊ´üÁƒâYß1'''éÅÿþ÷¿víÚ¹¹¹ùøø 0 }ûöW¯^ݼy³Üc‚J(%5ªì:˜ÿ†fì©\ÆSVpüꫯ¢££Í¸BWW׬ÅÄÄD!„á:댊-êäääììÜ´iӌ˛7o.„8wîœÜ; j  Ô¨mDFÈeÇ… ¾þúë;v\¶lY¶' €··w||¼” ¤³Ê¼½½³ýŠ———£££NšÂ{Fš¡NMM•{'&SåÕÓÏ 0ïv£¡Ñ(w­`K”?üðÃR¥J>}zòäÉ5ú裶oßž’’bÊ:›5k–––¶ÿ~ý^¿wï^ww÷   l¿Ò´iÓÄÄÄóçÏg\(Ý»§R¥Jrï$Ø<™Û*žž~:ÀX;5j-2ê„NÏÜ4XüÁqïÞ½}ô‘áÇ¥K—†‡‡gýXzzº^¯/S¦ŒÜõФÕÔHdk’?8ÚÛÛ/^\zP¨P¡"EŠdûI77·Ñ£GË]/`,ëµµ—yr ÈBþàØ°aȈéu``àÛo¿&wQ€©¬”5y§FZ ùƒcF}ûö­S§ŽÜU6B“F!©䢬à8räH¹KÌÀíF¥FnÐJ sp\¾|¹¢^½z†s×½{wykrGj4ÿp3Þj'»gR¬Cæà8qâD!Ä„ ¤à(ý˜;‚#´NK©1s£‘Ô²’98~òÉ'BˆêÕ«K?>\î˜Ä²íF] “ùžÞ¤F›ÌÁqÀ€|ÿý÷å­0…ÅS£–"£àŒFPe] {KÙDFÚ 2Ç={öä÷+Mš4‘·f [l7j&5æØh$5€2È?üðÃü~%**JÞš«ÒRjdnNæàøæ›oʽ3°T»Q©13i7€bȧOŸ.÷Le‘Ô¨™ ¨óh4’@I¸8Pm4ýýü—N€MáÉ1€IÌßnÔFjÔ ]LlŒŸŸ_î"U€¢ðä àHâ³3cElîŸ#5€Òðä@1´‘™›ÛÅ“c€2s»Qí©1ƒ¡ÝŠd'w¹yøðaJJŠÜU–§Ô¨zR#Ø:%^U}òäÉï¾ûîÌ™3·oß¶³³+UªT­Zµú÷ï_¶lY¹Kž2g»QÕ©‘§N€š(®ã8gΜÐÐÐ={öܾ}»páÂNNNW®\ùõ×_Û´i³bÅ ¹«„0cjÔéTŸóÑh|öB&(–²‚ã¾}ûæÍ›gooß³gÏ;vœ8q"22rÏž=}ûöBLž<ùøñãrט‰UšuBWë`H lÊ Ž+V¬ÐëõÆ 3fLéÒ¥u:Â××wäÈ‘£FJMMýñÇå®Zgžv#F€ RVp|øÅ‹…uêÔ¹|ùò„wîÜ9zôh©R¥ä®ê—ïv£êR£ÜUJYSÕ={öܾ}û®]»ôzýüù󃃃 P«V­sçÎ%%%µiÓFîç©%5ZüÙÓ´Àö)«ãèéé¹|ùò¡C‡V¯^]QªT©±cǦ¤¤üñÇñññÍš5ëÓ§Ü5Båò×nTQj´Ôôô³ @”ÕqBxzz~øá‡†»víÚ¶mÛS§Ny{{ûûûË]ºR£ÜUl€â‚cF>ttttqq©_¿¾Üµ@òÑnTEj´øôô³ÍK@”Ož<ùÝwß9sæöíÛvvv¥J•ªU«VÿþýË–-+wiP3 ¦F€|QÖ9ŽBˆ9s愆†îÙ³çöíÛ… vrrºråʯ¿þÚ¦M›+VÈ]@jÌ÷–H§ Ê Žûöí›7ož½½}Ïž=wìØqâĉÈÈÈ={öôíÛW1yòäãÇË]#ÔÉØv£í§FБ£¬à¸bÅ ½^?lذ1cÆ”.]Z§Ó !|}}GŽ9jÔ¨ÔÔT99©"5Zöêi€ª)+8ž9s¦páÂï¾ûnÖ·zôèáììÌ#a FµÕ’­¹=*¨Œ²‚£ÂÇÇÇÁ!›Kv¤«d’’’ä.šDjÌÿöH >Ê ŽAAAW®\ILLÌúÖÇccc«V­*wP›¼Û6ž­zR#@Õ”CCCõzý§Ÿ~ššššqyZZZXXXZZZ³fÍä®cû©Q†“i7€JÉ|ǃfüÑÞÞ¾C‡ëÖ­kÑ¢Ehh¨¿¿¿N§‹]»ví•+W[µj%oÁP™<ÚªHrWP™ƒc¯^½²]~ýúõ9sædZÕ Aƒ¨¨(yk†j-´aÂ*¨•ÌÁñÍ7ß”{Ù±åÔh¥ æ°mR#¨˜ÌÁqúôérïhTníFOLO,D‰ÏªBܸqãìÙ³qqqOž<ñ÷÷¯\¹rÉ’%å. Ú@j4aóDVP7ÅÇ„„„o¾ùfåÊ•iii†…ööö]ºtŠŒŒ,\¸póæÍË–-kooéҥݻwÿôÓOgÏž]¾|¹½½½ÜeŠÃ 5À ”/^Y³fÍo¾ùÆËË˰üöíÛŸ|òIddäâÅ‹ûöí+w™°m*k7Êy)L†"H­ ʺøþýûu:ÝìÙ³3¦F!D‰%æÌ™cgg·oß>¹k„JÙlj”áþÞ­RVpù¤R¥Jr—›b#©Q'tBR#@ùøá‡¯¾ú*==]Q¸pa{{û7nܸqc×®]C‡}ÿý÷å.6@§Óé…°•Ô¨èÈ@Êšª>xðàW_}¥Óézöì¹cÇŽ'NDFFîÝ»÷½÷Þ³³³›9sæÁƒå®6‚Ôh¾*•_#À:”úé§ôôô#FŒ3¦téÒ:Náãã3bĈ°°°ôôôeË–É]#”î¹GÅ(˜m¤F2PVpzôè^½zɽoNèõŠm7ÚX£€\)èâKÐëõÑÑÑ—W¬XQqåÊ•\¾ûÍ7ßœ={vÊ”)Å‹—{ȲŸFm“©‘v# gÊê8š]RRRZZš››[¦å®®®Bˆ»wïæôÅãÇÿý÷=zôhРÁ™3gò»ÝÀÀÀLK¶mÛ&÷ÎP?ÿؘëïï›Ë‡¯^½jåòüýücbcbE¬é«²&?á—ûž4#ëƒã¢@ÙµjÕJî”BåÁ199YQ´hÑLË]\\„÷ïßÏé[#GŽ,]ºô°aà ¶Ý¨¨(¹‡® ~~~™^óa+xÚk´ÞÍV·Ð ?+Öm̓ãq\ˆƒ"¯¬ÿ¬gíi„ʃ£›››N§KJJÊ´\º½ŽÔwÌjêÔ©W¯^]±b…1÷ë<žMR+ðìF›œ¡LRò¦òs\]]³v…†ë¬3:tèЊ+>üð×^zIîò‘ŸÚh«©#¨<8 !¼½½ãã㥤h Ååííõó.\BÌ;7ð™:!6lØøÆoÈ= ÍË•Ön´áÔH»`•OU !š5kµÿþ×_]Z¢×ë÷îÝëîî”õóeË–5|Rrÿþý”,Y2((ÈÇÇGîi½Fä£þà:þüo¿ý¶qãÆÒ51 .¼sçÎ{ï½çèè(}æáÇ·nÝrtt|ñÅ6lذaÃŒk8sæÌêÔ©c‰ÛL¢ÀÕn´íÔH»`õÇ’%KŽ1bêÔ©o¾ùf£Fâââ"""ªV­šñY…{÷î2dH@@À¦M›ä®9Sj»Ñ¶S#FSpBôéÓ§D‰ëׯ߲e‹¯¯o=,ua3žOÊi7Ú|j¤Ý0š&‚£¢mÛ¶mÛ¶ÍéÝ6mÚ´iÓ&§w«V­Ê}eF¯Ñb°éòV¦þ«ª¡> i7Ú|j ŸŽPS£YÚM´2!86…ÔÁæ@» 8ÂdœÚhÅakpÐå 8Âöh45 7‚#L“ÿv£‰óÔÚM´r#8–Á&°n»Q»©e 8¢ ¬{MŒ¦S#íF€2a=n7j:5 Gˆ·àÑ(ÚÅ 8"ÿ ”i7`ëŽP4­§FÚ%!8"Ÿ¬8IMjÔòè Dp„5`žZë©å!8"?¬Õn$5Òn(ÁF+hjÌo»‘Ô€2å¡ÝP$¹ € Ýh5¤F˜O`` Ü%6 **JîlÁFàÔFÀòÏ!` ~YŒÇT5,(_íFR£´ØÅ"8"/Vi7’P>‚#,Åøv#©ñ)Úe#8"W–o7’°GäÌŠOíF€òaFÎSÓn|ŠÔ°Gä€Ijð<‚#ÌϘv#©ñ?´6‚àˆìX¸ÝHjÀ‘…i©1Ïv#©ñ9´¶ƒàȇÔäåèÑ£:nÕªUÒ“'Oöôô¬^½ºÜu©|éééeÊ”™2eŠÜµ@YŽxíFJõ÷ß7®råÊaaa™Þ ž0a‚y7wòäÉ.]ºøøø¸¸¸Ô©SgÖ¬Y©©©–……6$„xò䉃ƒƒîy%J”Èó‹÷îÝ«Y³¦OXXØòåËÍ»c3±Ä±ƒå8È]4„ÔøÚ@>EGG !>ÿüófÍše\ùÇdZh¢˜˜˜&M𤥥µoß¾L™2;vì:tè¾}û~ùåóŽÂrBÄÆÆ¦¥¥5hÐÀßßß°ÐÅÅ%Ï/zxx¬Y³F¯×·nÝzúôéÝ»w7ã¾ÍÈÇEpD–¼&†ÔÀDÒ„†“““ôcjjê®]»þüóϹs禧§›w[C‡½ÿ~DDDݺu…'NìÛ·ï¢E‹¶oßÞ²eK3ŽÂrÏBêĉ –Ìt:Ý!CZµjµgÏž&Mš˜q÷ZôØÁ¢˜ª†Ùä2OMjÌŒv#ƒ}ûöµhÑÂÃãJ•*#FŒHII‘–÷îÝ»]»vBˆ† úùù !âãã[¶l9a„۷o›½Œ]»vKaN2`À!ÄÁƒÍ; 7”;)8V¨P¡Àk&Í¿ÿþ{óî^‹;XG<í†ÔäàçŸîܹó /¼ÐµkW;;»ððð 6Ho 6¬L™2'Nœ1c†³¼½½¥ÿXŠŠªT©’ËHMMíß¿:u2.Œ‹‹B.\ØŒ£0qCyŠŽŽ.\¸p±bÅÖ¬Ys÷îݪU«Ö«W¯P¡BƯaÉ’%Bˆ_~ùåþýû®®®æÚÖ;v°4‚#„fH´˜èñãÇC‡õòò:|øp©R¥„aaa†PU­Zµ‹/ !^yå•W_}Õ¢•888dºšøîÝ»S¦L±··ïÔ©“yGQà #::ÚÎήB… Ò’Ê•+/[¶¬víÚÆ|ýÞ½{6lèÝ»÷’%KV¯^ýþûï[t·Ã&aY¤ÆÌh7B t:9·žÃd;v,..núôéRÞBøúú8pôèÑ&n055uóæÍ9½ûÖ[oåþõ={ö|ðÁÑÑÑóæÍ ÈýæŒ"÷ `ÑÑÑééé&LèÔ©“££ã† † Ò®]»Ó§OÓ>\¹råãdzxñ✂£‰»¶…à ¶I€B)ò¼”óçÏ !25‚‚L_óÇ¥3 sØ9îË—/0`ãÆ;vì ±Ð(ŒÙPF±gÏ'''éÇ>}ú}út‡-Zä¾-½^¿lÙ²jÕªU©REZÒ¹sç?þxçÎY¿ËTµ¦µÍ2·à¡Ý˜ Ú@^g̘ѹsç   .]º8::®ZµÊ,÷ù“æRÿüÙ³gÏ;W¹rå÷Þ{/Ó[:thÛ¶íŠ+>þøãÞ½{Ïœ9Ó”Qä¹!SFáåå5a„Q£F´nÝÚÍÍmûöí‘‘‘_~ù¥sÅîÝ»/_¾:þ+Á죢¢ä®ÂŽŠM±±±ÒCäA»1;2 °™¿‹rpýúõ^xÁ,÷Á¶„~øáôéÓ³gÏÖÂ(T¯¿,¶þûU`\U­UZJ2#5R²dIÅæ­GíÞ½»V­Z`@p xð`///iÉèÑ£]]]·nÝšžžžíW¶mÛ&„3fŒ¡%Я_¿´´´?þøCî™ÆL©Ñ0OMjÌ© :êއ¶³³Ëøè'{{ûàààøøøcÇŽeû•ØØØ¢E‹V­Z5 !Ä•+Wä€}Ù²eNNNŸ|òIß¾}sºé£m0ëٜڀ6©<8 !¼½½£££‹/nX(ÊàíííWÒÓÓ‡ öÛo¿5oÞ|üøñ¹äK "5æ†v#@ÕÔ;žfÍš¥¥¥í߿߰D¯×ïÝ»×ÝÝ=(((Û¯,[¶ì·ß~ëÖ­Ûwß}§†Ôh¾v£Ð RcŽHµSp µ³³ûöÛo¥ó… .¼sçNÇŽ¥%>Œ•®ñÔëõáááÅŠ5j”ܵ+©€•=zT§Ó­ZµJúqòäÉžžžÕ«W—».•"===  L™2S¦L‘»(‹úƒcÉ’%GŒóæ›oŽ?¾W¯^³fͪZµêûï¿oøÌÞ½{[µjÕ¯_?!ÄíÛ·/_¾œššÚ½{÷ŽY„‡‡Ë= |2÷‘=Ú€åýý÷ßãÆ«\¹rXXX¦·‚ƒƒ'L˜`ÞÍ>>...uêÔ™5kVjjª%Fa¡ !ž}:ë»6vaµùR£á¦ßÈ©°Šèèh!ÄçŸÞ¬Y³ŒË###ÿøãL MÓ¤I“´´´öíÛ—)SfÇŽC‡Ý·oß/¿übÞQXnCBˆØØØ´´´ øûûæôÏ_FkÖ¬Ñëõ­[·ž>}z÷îÝ͸o-=jX–æV±bE¹KxÆLÇWJErÆ$111\»mïÙXö @Q™àÈ‘#Bˆ•+Wêõúõë× !8 ½õäÉ“íÛ·?^j¡}þùçfÜî[o½eggwèÐ!Ã’>}ú!¶mÛfÞQ˜wC™lÞ¼Y±cÇŽ¯AzzÅîݻͳ[Ÿ±è¨  ¿,êøý*õOUk—¹®‰:¡zÚ9¡Ý˜Õ¾}ûZ´háááQ¥J•#F¤¤¤HË{÷î-=»«aÆҽšããã[¶l9a„۷o›½Œ]»v×­[×°dÀ€Bˆƒšw&n(wRw³B… ^ƒ4}üý÷ß+j÷BFš˜ªØ„Ÿþ¹sçÎ/¼ðB×®]íììÂÃÃ7lØ ½5lذ2eÊLœ8qÆŒRàðöö–þ›6**ªR¥Jf,#55µÿþuêÔɸ0..NQ¸pa3ŽÂÄ å)::ºpáÂÅŠ[³fÍÝ»w«V­Z¯^½B… ¿†%K–!~ùå—û÷ïçùÔ ëì^ÈLî–§ )¢}Í$õó,5+ª†}#¦ª-MåÇ£GÊ–-ëëë{õêUiÉõë×K–,)r˜ä58wîœ0÷Tu&ñññõêÕ³··?þ¼…F‘ß £uëÖÎÎÎîîî†ô+W®|äÈ#¿žP¸páÞ½{ÛÙÙ-\¸P »×B˜ª6GäHº×·Nèä.D©˜¤†Í’ñ÷:—»z;v,..núôé¥J•’–øúú8pôèÑ&n455U:Û/[o½õVî_ß³gÏ|=oÞ¼€€€Ü?lÊ(rßPFžž>a„N:9::nذaÈ!íÚµ;}ú´1íÕ+W>~üxðàÁ111‹/Îx7¹v/dGpT#sœÝø45r15 Fʼ'ëùóç…µk×θ0§'5äËÇ¥3 ³ß9ÿ-wùòålܸ1 `ÇŽ!!!…1*À(öìÙãäääáá!ýاOŸGõïßíÚµ}ûöÍs,K–, ¬Q£Fhhè€Ο?_±bEyw/dÇÅ1ÈÏÌíFÀÜ„ôª ììÌð«k.So9}kÅŠÕªU;räÈ‚ þþûo#cMFaä† 0Š’%KR£äµ×^Bœ9s&Ï\¸p!""¢K—.BˆŽ;ÚÙÙIç;Ê»{!;:ŽªÃ¿­€ÔX€tñïÑ£G›4ibXxüøqÓ×\€¹Ô7¾óÎ;;wž?~ñâÅ-7 ã7”ßQÄÅÅmÚ´)$$¤råʆ…‰‰‰Bˆ²eËæ9)&JÁÑÇÇ'88xéÒ¥“&MÊ‚­¹{!?¹O²T!™O˜5ù˜ŠgW|¨éÿf¾C=;FN\ci6wò~JJŠ¿¿É’%¯_¿.-¹uëÖ‹/¾(L¾8æÞ½{ùúw0==½R¥JåÊ•KMMµè(òµ¡üŽâæÍ›NNN5JII‘–¤¥¥½ýöÛgΜÉ}[éééeÊ”©V­šaÉܹs…¿ýö›¼»×B¸8ÆxtÕÅäv#“Ôy£ÝX†££ãŒ3:wîÔ¥KGGÇU«V™åÒ\ªñŸ?{öì¹sç*W®üÞ{ïez«C‡mÛ¶]±bÅÇÜ»wï™3gš2Š<7dÊ(¼¼¼&L˜0jÔ¨€€€Ö­[»¹¹mß¾=22òË/¿¬R¥Š"—QìÞ½ûòåË'NÌXÏ Aƒúõë×­[·I“&Yt÷¿*XÁÿɘ¹,&{¤FÀ’Ú·o¿k×®‰'.[¶,!!ÁÕÕ5<<<44ÔÊeH÷Í>{öìÙ³g3½U¡B…¶mÛ¦¤¤Ü»w/99ÙÄQä¹!2räÈòåËO›6-<<ÜÉÉ©F[·nmÕª•ôn.£Xºt©¢sçΆ%ÞÞÞS¦L™6mÚ‰'ôz}¦“8Í»{M5,Šp`~QQQ2lجíF•ÇØØXé! ¦"8šÙ r ÛßEfrýúõ^xA±w„þá‡NŸ>={öl-ŒBõ ðËbë¿_ÆUÕxJÅ©ÑlH€•,YR±yëÑ£G»wï®U«–FFÕ´v#§6æÔà™ƒV®\¹[·nrÂ(`mœãˆÌ©‘v#ä®iÓ¦M›6•» FÐqTîÝhi´ 8‚vcÞH!Žj`B»‘S€ñŽÚ•55ÒnÌíFž!8Ú8În´(R#5ŠIj_G[VÐvc¶©‘yêÌh7ð<‚£æÐk4 ©€,Ž6ˬg7Òny"8j íF£Ðn ;GÛT vcN©‘vãsHä€àd@jæèÑ£:nÕªUÒ“'Oöôô¬^½ºÜuiqéééeÊ”™2eŠÜµÀÚŽ6ˆv#Múûï¿ÇW¹rå°°°LoO˜0ÁŒÛzò䉃ƒƒîy%J”°Ä(Nž<Ù¥K—:uêÌš5+55Õì{/Û]tÿþý~ýú•)SÆÅÅ%888""˜UÝ»w¯fÍš>>>aaaË—/7{©y– 9È]¬SB»P¶èèh!ÄçŸÞ¬Y³ŒË###ÿøãL M›––Ö AÃB³"&&¦I“&iiiíÛ·/S¦ÌŽ;†ºoß¾_~ùÅŒÃÉv%&&Ö©SçòåË:uòôô\»vm«V­vïÞ”ûÚ<<<Ö¬Y£×ë[·n=}úôîÝ»›±Ô<ˆ¼޶&ÿíÆ\R#íÆÿÅ“þ¾rrr’~LMMݵkןþ9wîÜôôtónKŠw'N4{jÉ4Š¡C‡Þ¿?""¢nݺÒûöí»hÑ¢íÛ··lÙÒÄm律fΜ½xñâwß}W1hРڵk6l×®]Ƭ\§Ó 2¤U«V{öìiÒ¤‰w‘E,LÄT5@AöíÛ×¢E *UªŒ1"%%EZÞ»wïvíÚ !6lèçç'„ˆoÙ²å„ nß¾mö2¤àX¡BKb×®]ÁÁÁRj” 0@qðàAÓG‘û.Z¹r¥¯¯oÏž=¥ýýý;uê´wïÞþùÇÈõKSêßÿ½9v¹±eC^G›B»ÑBh7ÊðóÏ?‡„„œûì3!ÄŒ3–,Y"„ðööÖëõz½þܹsf¯$::ºpáÂÅŠ[³fÍ‚ 8`fEjjjÿþý¥¤h'„(\¸°é£Èe%&&ž?¾iÓ¦:ΰ0$$$==ÝÈ3…Òøå—_îß¿oÆoÑ# 1U­fœÚhR#  ?:t¨——×áÇK•*%„ «S§ŽônµjÕ.^¼(„xå•W^}õUKmggW¡B…„„iIåÊ•—-[V»vmóŽ"Ó…ÉwïÞ2eн½}§N,:À›7oêõzooïŒ ½¼¼„FöùîÝ»·aÆ޽{/Y²dõêÕï¿ÿ¾E †BmG>Û¹§FÚO‘¡I›LÖ—Ó_>ÇŽ‹‹‹›>}º”·„¾¾¾=z´‰[LMMݼysNï¾õÖ[YFGG§§§O˜0¡S§NŽŽŽ6l2dH»víNŸ>íêêšË¶LÅž={>øàƒèèèyóæ˜>Š\$%% !Š/žq¡4´øøxcÖ°råÊÇ<8&&fñâÅ9Gó– Ù@s”ùßçÏŸBdjéåy…¯1>|(YhüÞØ³g“““‡‡‡ôcŸ>}=zÔ¿ÿµk×öíÛ×죸|ùò€6nܰcÇŽ³Œ"žžžBˆÿý7ãÂÄÄD!„aÔ¹[²dI```5BCC pþüùŠ+ZºlÈŽsmíFK Ý(‰ƒƒƒÈÒ µ³3ÿS®®®úœeû•’%KfÊO¯½öšâÌ™3fÅŠ+ªU«väÈ‘ üý÷ß٦Ƃ"ÞÞÞvvv™f¥ïܹ#„0ôJsqáÂ…ˆˆˆ.]º!:vìhgg'ïhé²!;:Ž*Ä©F!5 #]Â|ôèÑŒ÷v9~ü¸ékÎïli\\ܦM›BBB*W®lX(uãÊ–-kÞQlܸñwÞéܹóüùó3M›8ŠÜ988T©ReÿþýîÛ·O§ÓU­Z5ϯK1Q Ž>>>ÁÁÁK—.4iRÖˆÌTµÊmA“óÊh7’%ªU«–¿¿ÿÌ™3»uëæëë+„¸}ûöœ9sL_s~gK‡^·nÝ;w::: !ÒÓÓ§OŸîààТE 3ŽB¯×9²téÒË–-³··7ï(òôþûï4hÓ¦Mo¼ñ†âÖ­[k×®mÑ¢…tŸ \èõúeË–U«V­J•*Ò’Î;üñÇ;wî̺˜ªV¦ªÕ†v#åèè8cÆŒ[·n 4høðáµjÕ2Ëüò;[êåå5a„ýû÷|ôÑGŸ~úi:uV®\9qâD)*­X±ÂÝÝ}èС&ŽâìÙ³çÎsvv~ï½÷z?oãÆ&Ž"O½zõz饗ºwï6mÚ´&Mš$%%žï—ËwïÞ}ùòåÎ;–tèÐÁÑѱ_¿~ãÆ³tÙGÅËO»1ÏÔH»QÚ€rµoß~×®]'N\¶lYBB‚««kxxxhh¨õ+9rdùòå§M›îääT£F­[·¶jÕJz7%%åÞ½{ÉÉÉ&ŽBºÍøÙ³gÏž=›é­ *´mÛÖ¢c,^¼øÞ½{GŒ±víÚ„„„úõë/_¾ÜpO.c\ºt©"cpôööž2eÊ´iÓNœ8¡×ëå½lEŒ0¿ÀÀÀ¨¨(³­ÎèàhL¯Q³Á166öéä ©Q1þ;(° 3ÿ]duׯ_á…ÌrlKøá‡NŸ>={öl›…Yƨøe±õ߯cªZÙ8»Ñ¼H€í(Y²¤bóÖ£GvïÞ]«V-›…¹ÆM!8ª§6æÔÀL5j·ÝHjÀŽ cÖ»ðh©Ë 8ÚÚy ›Ô€¥•$¯v#§6æÔ€%ÕI‹íFR# FGÕét«V­’~œ>>...uêÔ™5kVjjª¹†–ûÊ 6Æ{÷îÕ¬YÓÇÇ',,lùòåæ*5[Ö<4mC¾R£Û4 ::ZñùçŸwíÚ5ãòÈÈÈ?þøÃBÍv剉‰uêÔùñÇ5jÔ·oß‹/¶jÕ*22ÒìcŒ‰‰iҤɶmÛZµj5tèÐB… :444Ô,CË}壇‡Çš5kþú믖-[NŸ>ݬGã9V>4xJs«X±b¾¿“×zc”©#މ‰‘»JdÆA±´‚ü]¤}ú!¶mÛfús_¹écܶm›b÷îݦ—š‘%M~YÔñûUÚ –göàh|jÔk087\2ŠqP,ÍFÿaÛ»woóæÍÝÝÝ+W®<|øð?ÿüS U½zõ2´<Ê•+§×ëoܸ‘±bÞà˜ûÊ}}}ÓÓÓ KÞ{ï=;;»ëׯ›wŒÅŠkÒ¤IÆï;vL1~üxÓǘûÊM£^¯ß´i“¢[·nf<.zË‚£ñ˜ªV€\Ïnd’:×sj# *?ÿüsHHÈÉ“'»víÚ¬Y³ððpC–6lØgŸ}&„˜1cÆ’%K„ÞÞÞÒ¿dçÎ3{%¹¬<11ñüùóM›6Õét†…!!!éééÆœNgüSSSû÷ï?`À€Œ_‹‹B.\ØÄæ¾rÇ(‘Ó/¿ürÿþ}³KÃAî.ˆÉ ©P—Ç:ÔËËëðáÃ¥J•B„……Õ©SGz·Zµj/^B¼òÊ+¯¾úªŒuÞ¼yS¯×{{{g\èåå%„¸}û¶yǘéÂä»wïN™2ÅÞÞ¾S§N&ŽÂÁÁ!—•›2Fɽ{÷6lØÐ»wï%K–¬^½úý÷ß·ÌÑxŽée#OG¹™ïQ1Új7’SèL_… røå=vìX\\ÜôéÓ¥D%„ðõõ8pàèÑ£MÜ`jjêæÍ›sz÷­·ÞÊ×Ú’’’„Å‹ϸÐÕÕUŸûwMãž={>øàƒèèèyóæ˜wŒ™V~âĉQ²råÊÇ<8&&fñâÅ9Gå‰à¨\´sDjL¤Èß óçÏ !j×®qaPPék~øða»vírÜùüOnOOO!Ä¿ÿþ›qabb¢ÂÃÃÃc¼|ùò€6nܰcÇŽ3Ž1Û•›2FÉ’%KkÔ¨:`À€óçÏW¬XÑŒegËô²‘'ÎqT¨ü¦F µI€J988!2ž&„°³3ÿS®®®¹œìŸßµy{{ÛÙÙešú¼sçŽÂÐG4ãW¬XQ­Zµ#GŽ,X°àï¿ÿÎ65xŒ9­Ü”1 !.\¸Ñ¥K!DÇŽíìì¤ó•|h`$:޲2Ó<5©€ T¨PAqôèÑ&Mš?~Üô5›w>ÔÁÁ¡J•*û÷ïϸpß¾}:®jÕªæãÆßyçÎ;ÏŸ??Ó ¬écÌe妌Q<»,F Ž>>>ÁÁÁK—.4iRÖˆ¬œCcÉ}Y· åãýö¾î¿£×Î-xL%w~Q Š¥ÙÜíBRRRüýýK–,i¸sÊ­[·^|ñE‘Ã= ¤«ks¹Ͻ{÷ üï`¶+Ÿ3gŽbãÆÒ7oÞôöö~íµ×Ì;ÆôôôJ•*•+W.555Ï5çwŒy®¼ÀcLOO/S¦LµjÕ KæÎ+„øí·ß{h¸ñè8Ê'‡v#“Ô9Œ“^# rŽŽŽ3fÌèܹsPPP—.]W­Ze–‹a¥ùP3–Ú«W¯E‹uïÞ½ÿþnnn‹/NJJ2<ûnÅŠüqïÞ½gΜiÊÏž={îܹʕ+¿÷Þ{™ÞêСCÛ¶mMcž+/ðwïÞ}ùòå‰'f\á Aƒúõë×­[·I“&Éxh`:‚#O:ˆÔh@ûöíwíÚ5qâÄeË–%$$¸ºº†‡‡›ë {fT¼xñ½{÷Ž1bíÚµ õë×_¾|¹á—”””{÷î%''›8FéñƒgÏž={öl¦·*T¨)8æWž+/ð—.]*„èܹ³a‰··÷”)S¦M›vâÄ ½^ŸéOk˜NÍ*ë ŒŠŠÊãC´¡y"cll¬ŸŸŸÜƒÁs8(–fÔßE výúõ^xÁô;]Ëâ‡~8}úôìÙ³£M(À/‹­ÿ~WU+©1Ëi4ÚU²dIMT=Ú½{w­Zµ#Ô‡à(‡ìÚܵ13R#ÛtðàÁÊ•+wëÖMîB#Ìsm•ÊÛ¤F6«iÓ¦M›6•» Æ‹ ã¨LRgÚ¤FˆŽ£Õe™§f’ú?\@ €‚mjÛ4P6¦ª­Ëäv#©È…Ž£œ˜¤–ö‚¤FlÁÑŠr¸éw~V ºv#FlSÕ²a’šÔ€m¡ãh-Ï·µž™žÀe õSi4Ö(w T…àhÔÓn¤ÑXQTTT¾ëçç'wíxÊAp´Š óÔ¤&2`ûŽV¥ÝÔhûƒGË+è]xÔi4 "GëÉW»ÑæS#‘Õ!8Zسv£†R#‘•"8*Ž §F"#ªFp´ãÛ6™uÏ^ØZá _Ž–¤Ó ½^Í©‘#ZBpT [J´Ð$;¹ P®5kÖ„††½úê«aaa ùû~~Ú¶‘uÏþèŸý±­Zµ’»dÆAQ&Ž‹qP ÇìÍš5kìØ±/^¬[·®‹‹Ëºuë>øàƒäää|­Ä˜Ô¨Óéu¶€³µpáBooïmÛ¶-\¸pûöí={öê|ÆÔ¨Ë@ÿŒ™‹ÖýGŸÝ#p;žÌ’’’ÒÒÒÜÜÜ2-wuuBܽ{7Ï5èuÏe±çZº<¿]þ¨E ° ¼RqP”‰ã¢@(Á13éÒé¢E‹fZîââ"„¸ÿ~Þ«°z/JDY{“@{˜ªÎÌÍÍM§Ó%%%eZþàÁñ¬ï AÇÌ\]]³v…†ë¬´†à˜ ooïøøx))ÄÆÆJoÉ]€<ŽÙhÖ¬YZZÚþýû KôzýÞ½{ÝÝ݃‚‚ä®@Çl„††ÚÙÙ}ûí·ÒyBˆ… Þ¹s§cÇŽŽŽŽrW Å<¼Da-Z4uêÔR¥J5jÔ(...""¢J•*‹-Êz› 8æhãÆëׯ?yò¤¯¯o½zõ,Ý‘@›Ž0 ç8À(G…à£`‚#ŒBp€QŽ0ŠƒÜ¨Çš5kV¯^]¤H‘Æ1ÂÝÝ]î¢ „111­[·^½zõK/½$w-Z—œœ¼jÕªµk×^½zµX±b+VìÓ§Ï«¯¾*w]ZwïÞ½Ù³g9räêÕ«%J”¨V­Ú'Ÿ|âïï/w]xêúõëmÛ¶ ™>}ºÜµhZ§NN:•i¡§§çü!wiÖCp4Y³fÍŸ?¿hÑ¢uëÖ‹‹[·nÝ… –.]êìì,wiË–-“»!Djjj¯^½Ž?îêêZ¿~ýGýõ×_8p`ÿþýå®N»ßxãÛ·o4mÚôŸþÙ²eËo¿ý¶jÕªjÕªÉ]„^¯5jÔƒä.âòåËÎÎÎåʕ˸PkÏ"&8šATTÔÂ… ½½½×®]ëåå%„øâ‹/–.]:cÆŒqãÆÉ]v%&&ž?~ãÆ+W®”»!ÄêÕ«?^»víÿû¿ÿ“þ›êÂ… =zôøî»ïBBB*W®,wõÍ7ßܾ}»_¿~C† ‘–üüóÏŸ~úéäÉ“ùÝQ‚Å‹:tHî* ï߿ߺuëÙ³gË]‹œ8ÇÑ V¯^žž>xð`)5 !FíêêºuëÖôôt¹«Ó®¶mÛvïÞù”cÛ¶mBˆ1cÆ:ñýúõKKKÓÔDÒ2,éСƒÏ™3gÒÒÒä®Në.\¸0kÖ¬J•*É]ÄåË—…™ÚDp4ƒÃ‡ÛÙÙ5iÒİÄÞÞ>888>>þرcrW§]_|ñÅܹsçÎÛ A¹kBÄÆÆ-Z´jÕª!®\¹"wuÚåææâää”qaáÂ…SRRRRRä®NÓRSSGŽéîî>zôh¹kˆ‹‹B”-[VîBdÆTµ©ôz}tt´‡‡‡‡‡GÆå+VB\¹r¥N:rרQ 6”^ìÞ½[îZ „ ,ppÈüwΙ3g„¥K—–»:í Ï´äðá×/_®Y³&giËë›o¾9{öì¢E‹Š/.w-xÿù矞={ž={¶H‘"UªTéׯŸÖ.»$8š*)))---ë¹±®®®Bˆ»wïÊ]  UªTÉ´$""báÂ…… n×®ÜÕADFF®[·.66622²L™2S§N•»"M;~üø÷ßߣG Hÿ}yI#sæÌñóó«_¿þµk×vïÞ½wïÞÏ?ÿ¼sçÎrWg=GS%'' !Š-ši¹‹‹‹âþýûr(QZZÚòå˧M›–––öÕW_yzzÊ]DTTÔÚµkõz½¢jÕª… ’»"íJNN9rdéÒ¥‡ &w-xêŸþqvv:thÏž=¥%þùg¿~ý¾üòˆ –,YRî­„sMåææ¦Óé’’’2-—n õdô×_µmÛö‹/¾ðôôü¿ÿû¿6mÚÈ]„âí·ß>{öìFµ}ûö®]»r ¹L:õêÕ«Ó¦MãlåX¼xññãÇ ©QÑ AƒwÞy'99yÇŽrWg=GS988¸ººfí,&&& ! ×YB¤¤¤|ñÅï¾ûîõë×?ùä“­[·ré’¢ètº%JôéÓ§K—.7nÜØ¾}»ÜiÑ¡C‡V¬Xñá‡jíä9[T¯^=!Äùóçå.Äz˜ª6ooïèèèÄÄÄŒç/ÇÆÆJoÉ] éééÆ ûí·ßš7o>~üxþ³J .\¸°hÑ¢àààÖ­[g\.]ü~óæM¹ Ô¢ .!¤›Bd\¾aÆ 6lÚ´Iî5G¯×§§§ët:;»ç:nöööBˆbÅŠÉ] õÍ Y³fQQQû÷ïýõ×¥%z½~ïÞ½îîîAAArW(ŲeË~ûí·nݺ?^îZðTñâÅþùçÛ·og ŽÒ-ëüüüä.P‹Ê–-kø×Drÿþý”,Y2((ÈÇÇGîµ(..®eË–õêÕËô(²ÈÈH!D`` ÜZÁÑ BCCçÏŸÿí·ß6nÜXº&fáÂ…wîÜyï½÷å®P½^^¬X±Q£FÉ] þãííxàÀ]»v…„„H Ï;·|ùr—ºuëÊ] 5lØÐp71É™3g8P§NžU-—råÊÕ®]ûСCkÖ¬ •FFF.Z´¨dÉ’-[¶”»@ë!8šAÉ’%GŒ1uêÔ7ß|³Q£FqqqU«V}ÿý÷å. PŠÛ·oKyíÞ½{ÖwÛ·oߣG¹kԨɓ'wëÖí£> zñÅoݺuäÈ!Ä´iÓ¸Ú0øì³Ïúöí;vìØ+Vøûû_»víøñãEŠ™2eЦ®a"8šGŸ>}J”(±~ýú-[¶øúúöèÑcðàÁR÷€âêÕ«BˆäääÓ§Og}—KddT£FÍ›7Ï™3çôéÓgÏžõññyíµ×ú÷ï/=Ô€¤R¥J¿üòËW_}uðàÁ .”.]º]»vôõõ•»4«ÒI·ìrÇíx`‚#ŒBp€QŽ0 ÁF!8À(G…à£`‚#ŒBp€QŽ´eĈ{öì‘»ñí·ß._¾\îBÀXGÅAî@£š6mêééY»vm¹ c@U«V­ZµªÜU@>0U Š“––öäɹ«€ÌŽlÃØ±c§OŸžiù©S§4hšš*„¸sçÎÌ™3Û´iS«V­Zµj½þúëÿûßÿnÞ¼™Ój¥ke<˜iy•*U^y啌Kþøã6oÞ¼nݺ={öüöÛo3e»k×®?¾M›65kÖlÒ¤É|pøðá\Fôý÷ßg¼8FªäêÕ« .¬_¿~µjÕêÔ©óöÛoïØ±#§5DFFV©R%88øßÿ5,|ðàA“&MªT©ròäI¹µ!8° mÛ¶Blß¾=ÓòM›6 !ÚµkçààpçÎîÝ»/X°àúõëeÊ”yñů\¹òã?víÚ5!!Á”­Ï˜1£oß¾Û·oOMMõòò:räÈ7ß|Ó£Gøøxé.\hÛ¶íÊ•+ãããË—/¯×ë÷îÝûÎ;ïìÚµ+_Z°`ÁW_}åèèX¿~}WW×ÈÈÈþýûoݺ5ÛõíÛ÷æÍ›S¦L1,œ6mÚ?ÿüóñÇרQÃÚ €Ú؆ºuëzyy]¹råï¿ÿ6,LOO—BU‡„ëÖ­»téRHHÈü±~ýú 68p nݺ׮]Û¹sg7½{÷îï¿ÿ¾téÒkÖ¬Ù³gÏæÍ›÷íÛ׸qããÇÏ›7OúÌŒ3>|øÑGýùçŸëÖ­Û»wï˜1côzýœ9sòµ­Õ«WðÁû÷ï_¼xñï¿ÿÞ«W/!ÄÒ¥KsúüÀÖ­[·ÿ~!ÄÁƒW­ZU½zõ>úH¾c@µŽlƒÝ믿.žo:9räæÍ›AAA*TB¤¦¦6mÚtøðáE‹•>P¼xq©UWàMO:U1{ölCÏÓÓsöìÙÞÞÞk×®½wïžâܹsBˆÐÐP{{{é3]»výøã›7ož¯mÕ¨QcذavvvÒ?þøc!Ä¥K—rú¼££ã´iÓÆŽ{ëÖ­1cÆ8;;Ϙ1ÃP˜Á€Í"`Æy[ižºcÇŽÒýû÷Ÿ?~ùòå ¸}ûöæÍ›MÙhBBBll¬¿¿¦+ ‹)Ò AƒäääÓ§O !¤ä:zôèC‡Ig[:::4è“O>É׿Z·nñGWWW{{{½^ŸËWªT©Ò¿ÿ7n¼õÖ[×®]5jT¹rå,u h·ã`3ªV­Z®\¹K—.EEE¦¦¦nÛ¶ÍÙÙ¹M›6†Ï\»vmß¾}G޹råÊåË—M<µQ#ýo```¶øçŸ„&LÙ¸qãÖ­[7n¼téÒ€€€Í›7g½i˜Á€‘.‘3fLRRR§N ˽½½…çλs玴$--måÊ•áááBˆäääl×V¦L!IJeË’’’¤%†›ìH†šžž>tèгgÏJK}ºjÕªžžž¾¾¾ÿþûï‰'~øáC«òÒ¥KûöíBXô~Š7nܘ8qb±bÅ&Mšäèè8eÊ{{û &˜~r'dÅT5Ó¦M›©S§FEEÙÛÛ·k×ΰÜßß¿Y³f;wîlÑ¢EíÚµõz}TTTBBB÷îÝ—.]úóÏ?ÿûï¿Òu2j׮ݒ%KŽ;Ö¬Y³*UªÜºu+::ÚÕÕÕÇÇçñãÇÒgÚ·oèС_~ù¥]»v¥J•rww‰‰IJJ*W®œtçm;;»°°°Ñ£GOŸ>ýÿþïÿ^|ñŤ¤¤‹/êõú®]»YhWèõúÑ£G'&&~ùå—Rn®^½z¯^½þïÿþo„ ³gÏ–ûXP:ŽlŒ——W½zõ„5òòòÊøÖW_}5pàÀ’%KJ÷w ^¿~ý˜1cºwïnooŸíK—.ýÓO?5oÞÜÎÎîÀçÏŸ/UªÔ÷ßïééiøŒN§ûßÿþ÷õ×_‡„„¤§§_ºtÉÏÏoèСëׯwww—>Ó¾}û%K–4nÜØÙÙùܹsIII¯¾úêܹsÇo¹]±lÙ²ƒ6lØÐp¢§bàÀe˖ݺuë¶mÛd=PTH—ûíÁ@;>|_ºtiã/‚M!8À(LUÀ(G…à£`‚#ŒBp€QŽ0 ÁF!8À(ÿ1ÀÿÃóIEND®B`‚statistics-release-1.6.3/docs/assets/ncfcdf_201.png000066400000000000000000000615631456127120000221070ustar00rootroot00000000000000‰PNG  IHDRhŽ\­Ac:IDATxÚíÝy|L÷þÇñïd‘„åF»±kí"©¨--¥(mUm±«¥Ji«ö´¥µ4-q«¨¥%­X*–¸„‘T‚„Hf~œÞùÍ,&É$çÌÌëùG3ßsæÌgÎÁ¼û9ç{F¥Ñhð2VrÓ@p€AŽ0Á!8À G„àƒ`‚# Bp€Aހɻté’ê¿ ¤·ôùóçÚ¥ëׯ—»Øb±gÏžŸþùçŸNNN6âfgÍš%í·Þ½{絎îÎÏËäÉ“K~Ÿ¥°çÏŸ¯[·îÕW_­X±¢½½½Ïk¯½¶xñ⌌ CÞÎÆÆÆÍÍ­eË–³fÍÊyh»ëäƒà˜•ï¿ÿþäÉ“rWQÒ ЫW¯^½z]¸pAîZÌÇŸþY»ví‘#GþöÛo·oß~þüy\\ÜÞ½{'MšäããóË/¿¼t ÙÙÙ)))§Nš7ož¯¯oTT”ÜŸ @QÙÈ]cÒh4!!!üñ‡J¥’»‹ãáááààsÜÅÅÅä ‹íØ±ã“'O´#666YYYÒã¿þúë7Þøã?5j”ÏÛ=}úTÛhLMM Ž‹‹³³³3¡]@Á07QQQaaao½õ–Ü…Xœ­[·È]…q ›4i’65¾óÎ;ãÆ«_¿þ½{÷öîÝ;~üøÇ§§§¿ùæ›W®\ÉÿígÏž½qãF!DRRÒÚµkCBBLh×ÐéjÀ M:5==ý¥«=}útöìÙ]ºtñðððððèܹóôéÓÓÒÒt×ѽÎ/55uâĉ͛7/[¶lãÆ?ûì³/^èmóÞ½{ãÆkÓ¦““SµjÕºwï¾wïÞœo}÷îÝqãÆµnݺlÙ²5jÔèÛ·ïÙ³g ñ¾}ô‘J¥ÒFœÎ;«Tª§OŸêm!++ëã?®T©ÒÇ,­©V«øáÿªU«ÚÛÛW­ZµcÇŽß}÷]ÎOTL†.•çïï¯;&—.]Zú /^¼X·n]Û¶m+T¨àèèØ Aƒ·ß~ûüùóÅWÛÁƒ÷ìÙ#=ž6mÚ† 5jdmmíåå5|øð°°0iQllìÕ«WóßTåÊ•7lØ ½Hô³Ï>“>TA•üN; £ý]»vméÁœ9s¤¥Ïž=Ó.]·nöU§NªQ£FÎ*W®©]mæÌ™ÒxÇŽëÔ©£·rpp°n%¿þú«»»{Îm¾û«:tÈÃÃCo•J5a„‚¾ï´iÓr¾Ý“'Ot·Ð«W¯!C†HgΜ)½ð7ÞÈõŸÄ~ýú嬡W¯^†ìüƒ~ÔöíÛ'½ÊÖÖ6--M;>|øpi¼OŸ>ÒákÑ¢EÎ:U*ÕêÕ« üSQ Â4MŸ>}¤ººº>~ü8ç 7nܸqxx¸!owäÈíÒýû÷´ÂBïFGpLžîð÷ßïää$„(]ºtRR’&à˜žž^­Z5iÐÞÞ¾k×®¥K—–F<==µQFž$U«VmÙ²¥½½½väÔ©SÒš=*_¾¼4èììÜ·o_Ý^ÚæÍ›s®Ö©S§O>ùdÀ€VVÿœýøæ›o ô¾÷ïß‹‹ÓVþÝwßÅÅÅ©ÕjÝ-TªTIû*)8þøãÚäÑ©S§Áƒׯ__»Î¡C‡ôj(Žà˜™™©½€oçÎÚqíqùþûïukpppxýõ×njӲeKiÄÆÆæòåËF/L£Ñhc½^â7ðaηS«Õ¥J•’–Î;· z'0:‚#`òô¾€-Z$=4h&à8gÎi¤\¹rÚäwáÂ777i|Ú´iÒ n€[¹r¥4xùòem†Ó¶|¦OŸ® yÉÉÉzƒíÛ·×Ñíí­\¹R¬R¥JAßW£Ñ8::æÌº[¨[·î–-[¢¢¢®_¿®ÑhÞyçi|âĉÚõ›6m* ~ùå—z[008æ*$$$¯×jË1b„4rýúuiÄÎÎîÑ£G¦M›6Òȼyó´/ìÒ¥‹Þž1ba™™™Úu>ûì³Âý!̹B•*U¤¥~øaA+,ôN`t\㘛1cÆÔ¬YS±uëÖ¼nÍ£½—ÊØ±c›7o.=nРÁ„ ôVЪ_¿þèÑ£¥Çµk×n×®ô8!!AzpàÀéÁ¤I“´t̘1Ò9ÍçÏŸggg !öïß/-zï½÷´çw¬­­…·nÝÒ»¥ÎKß÷¥J—.ýÛo¿ 8°eË–ÞÞÞBˆ7ß|sË–-[¶l7nœ´NZZšöªÐ”̑Ҟ.×î“C‡I^}õÕråÊ !´wLܼyó† îÞ½+=މ‰‰‰‰éׯŸÑ«Ò½ÈµB… ÆÚì¿þõ¯œÛ7PÉïyaV5`nJ•*µhÑ"©IrøðáœëÄÆÆJºvíª;þꫯJÁk×®©Õjíd!„Þ‘®®®ÒµZ-=ˆ‹‹“hûCBOOÏèèhÝj§Sè½µÖµk×6lhøû¾”ŸŸŸ^’Þ:55õÀgΜ‰ŽŽ>}úôãÇ‹¸çs½§Œ¶àœ\\\RSS®\¹R»vmmpÔ†¡®]»JÓ†bcc¥ù4~~~Ý»wïÙ³g®—ý½°²eËjñ†ê)))Ò)¨B£ìFApÌÐ믿ީS§ˆˆéÖ|(=øóÏ?#""Œ²Û D:[-„xþüùâÅ‹…ÖÖÖ¯¿þº´ôòåËžžžžžž^^^Ò„k›Î;kïõ˜ÏUEÑ£Gía;vìܹs¥VtffææÍ›µ7ŬQ£†ŸŸ_þ›ºsçÎûï¿.=}ûí·u¯¡4„\;@®¸Æ0[îîî3gΜ2eJÎES¦LÙ¸qcBB£GÚ¶m`mm}ðàAéW=¼¼¼fÍšUз›5kÖ¦M›ÒÒÒâãã7np÷î]ílQ£FI>ú裯¿þ:55uçÎ:uêСåK—´“¸'L˜Ïl’¼8;;K—N~úé§—.]7nœ­­m^+;:::::JëK¿ƒ¢R©öïß_b¿£'88XºÌQšÍݱcGíE™ 6ôðð¸{÷nVVVÛ¶m{ôèáêêzóæÍ]»vI+h‘Åè–,YÒ²eËŒŒ F3{öìÙ³g»¹¹¥¦¦JSã…öööáááÒ\x=ƒ–®[xúô©îµåË—ÿôÓO Z‰Œ;@.ä¾€¢ÊçzÏŸ?ו¬ûË1'Ož”îM£§jժǎÓ®–×½ û÷ï/Oš4I;øïÿ[{õ¤®éÓ§ë¾v×®]¹v‰>øàéÞÝ}ßên'ç/Çèí±7ß|Sï­½½½µ·+2dHþ5¸ó ¤{'p!ÄÚµku—ž8q"¯s÷;v|öìYñvüøñ¼nÇS­Zµ_~ù%¯·Ë•««ë‰' Wa¡w£ãT5`ÎJ•*¥=û¬§E‹.\˜5kV@@€‡‡‡››[§Nf̘qñâŶmÛîíz÷î}ñâÅ#F4oÞÜÑѱZµj=zô8zôèüùóuW :þü»ï¾Û¤I“Ò¥K{{{÷îÝ;22ríÚµ…˜4-„XºtéÀÝÝÝË”)S¿~}Ý»åµ~ƒ „VVV5?~|tt´öqXXØK‚Ùˆ´g«¥zôúg¯¼òJ\\ܬY³š7o^¡B[[[—¶mÛ~ýõ×vvvÅWX›6m®]»¶téÒ:¸»»ÛÙÙùúúöìÙséÒ¥W®\Ñ^íkkkWW×-ZÌš5+66ö•W^)\%2îzTšÿ^c–ãÅ‹{öìœè€‚ 8À œª€AŽ0Á!8À G„àƒ`‚# Bp€AŽ0Á!8À G„àø7nÜðõõ=þ¼Ü…ÈŒàø›7o–»E°‘»…JKK»zõêîÝ»øá¹kP‚cî‚‚‚îܹ#w BpÌÝüùóŸ?.„زeËü!w9ò#8æ®m۶҃ÇË] €"Ï××Wî O»<–»ÀÔ ¿-w 2 8‹ØØX¹KÀÿðõõå (y”«ý*È]Bžòÿ¶3ïãb¢8( äëëk™‡„àÀÒGȳÌV³Gp`& ÿy` ‚#E3<’ÿ ¸ÈÆPHå 8(^y¥ÃÝ …”B51¢`/è±Vî’åAp„EØ¿¿Ü%˜¿¼b^é0>>^î’‘ þ²(ÅpÎÿ¥YÜ©@ëûúúŠÅ–8¯šà `  ( ” šÿPPÇ—˜7oÞ¼yóä®MΘH@PDdAÓEpðÿˆ‰ŠÈPH4]GÀ¢é%Eb"€| Ap,ŽnX$)Е4$‚à˜?ÚŠ´ˆ†( ‚#`žh+–,ŸtH4DQ³¢Í‹„EÀäI‡(&GÀäÑ\Ì ApLÍEÀ,åš ˆP‚#`bÈ‹€Ù00#òûœP‚#`È‹€©Ëé#ÂäE#/¦ˆÓÍ0WG@¡¤ÈH^”V",ÁPZŒ€òé%Eb",ÁP ZŒ€b‘ Á-F@i8õ ä…àȆ# 4Ùé†E’"` ‚#P¢ˆŒ€\h+EGpJ‘(y´ã"8ÅŽÈ”$Â"P|Ž@ñºÚ¯‘(n„E dâB£(V„E äã#2Å„°È‹àç¦ã",ÊApŒ†F#`DÚ¼HX”ƒàF èh. GpŠŠF#PD4SApŠ„F#P84SDp ‰F#P4“Fp ƒF#P äEÀ<#5"/f†à§§CsEp E£Èy0{GÀ ¤F /äEÀr—àô4)2’ËApòC£ȉ#`±Ž@žH€.ò"‚#;R# Å)i‚# R# h1Èàè#5´äŠàüR#,Ù[ŒñDF¹"8ÿÔ‹¥m1ÆÇÇW¯^]îr(Áø©–‰³Ò Gp„ 5Âò0ñ@!R#, -F…Fp„¥#5ÂrÁÔ Ad`GX.R#,‘€a¡H0{DFFGp„%"5¼‚#,©fŒÈ XaYH0WDF%€à¦È ÄaAh7ÂÌ”0‚#,©æ„È@GX„“ÛaˆŒdDp„ù»Ú¯‚íÂßå®(*"#Ù@鈌‚à3']Ú/w!@!©&F(ÁæŒ 10i4( Áf‹ÔÓEd LGP"#%#8Â<Ñn„)ârF Gp„"5ÂäÐh`Ž07¤F˜"#BpÙpn€i!8¬Ðn„© ÑÀa>H04˜(‚#”LÁf‚v#”F#SGp„9 5Báh40G(^4˜ ‚#LíF(Ff†àÓFj„bÑh`~Ž`d4˜+‚#LíF(FfŒàÆA£€Ù#8ÂTÑn„¢Ðh` ¬ä.( R#…ÔÀBÐq€Âãô4‹Bp„é¡Ý… ÑÀÒ Àh4°LG˜ÚF‹É10%¤FÈŽÔÀ’ÀP¤FŽSÕ0´!#.jAp€—¢ÑNUÃ4Ðn„\H EÇrÇéiÐCp„  Ýˆ’G£r²”à¸}ûömÛ¶ÅÅÅ•.]ºC‡“'OvqqÉgýÌÌÌï¾ûnß¾}ñññ... 4=z´ÜŸ@I 5@®,âÇ¥K—Μ9óúõëÍ›7wttܱcÇû￟‘‘‘×úÙÙÙC† Y´hQjjj»ví*V¬xàÀ×_ýôéÓrKD»%ŒÔy1ÿàêáá±ÿþÐÐÐ <øÂ… ‹-Êë%?þøãÙ³g»wïþÛo¿­X±bóæÍ7nBÌœ9SîO x‘ æ·mÛ¦V«CBBÜÝÝ¥‘iÓ¦999íÛ·O­Vçú’³gÏ !† bcóÏ©üV­ZÕ©SçæÍ›<ûYÚ(1ª‰¤FÈŸùÇÓ§O[YYuìØQ;bmmݾ}û””) æäåå%„Ð͈æáÇVVVÚ( ÀœH‘‘Ôù3óà¨Ñhâââ\]]]]]uÇkÕª%„HLLÌõU=zô°··Ÿ?þ‰'222nß¾=kÖ¬¤¤¤àààråÊÉý™,íF” ` 3§§ggg;;;ë;99‰ÿí)êòõõݼyóСC‡ª4hÐôéÓ |____½‘ýû÷˽3LR||¼Q¶“””$÷G>…ïUñ7FW7ÖŸ43 ã]ÙuëÖMî”Ẫ£4uºL™2z㎎ŽBˆGåúª´´´/¾øâéÓ§õêÕkРAJJÊñãÇwîÜùÊ+¯téÒÅ÷•û£›<£·«W¯.÷g‚>Ù ½Æ\É~\E^9¿Ösvˆ,„™Gggg•J•žž®7þäÉñß¾cNS¦LùóÏ?§M›öÎ;ïH#·oßîß¿ÿøñãwíÚåíí-÷Ç`¤F((3¿ÆÑÆÆÆÉÉ)gg1--M¡g­ëÞ½{‡®Y³¦65 !*T¨ðᇾxñâ§Ÿ~’û3Y®nDq#5@!˜yÇQááá—––¦;¯EºžÉÃÃ#çú)))BˆjÕªéKÆääd¹?€"ᨠÐ̼ã(„ÈÎÎ>vì˜vD£ÑDFFº¸¸øùùå\¿ZµjÖÖÖ×®]Óh4ºãÒõ 5kÖ”û™?Ú(>ÜvŠÂüƒcpp°••ÕªU«¤ë…¡¡¡÷ïßïÛ·¯­­­4òôéÓøøxiÚšƒƒCûöíV¬X¡½Cøµk×Ö¬YSªT)¹?€Bâô4‘ùŸª®P¡ÂäÉ“,XгgÏvíÚ%$$DEEÕ«Wï½÷ÞÓ®9~üxŸ={ö!æÍ›×¯_¿5kÖìÝ»·nݺ)))þù§Z­ž9sf5äþ@fŽv#Š ©ŠÎüƒ£bذaåË—ß¹sçÞ½{½¼¼ "Ý‘'Wnnn{÷î]·nÝñãÇ9âââÒ¡C‡‘#G6hÐ@î 0H`*½+ùPt¾¾¾ÜDZЊ©ãÏ]Д¦Ä ©±@øË¢@²Øïzó¿Æ&„óÔ0:R#Á€Ù"5€q¡´a\¤F0:‚#3Dj€â@p„"Ðn„‘ ˜˜R#‚#äG»ÆBj€bEp`&HPÜŽÌ©JÁ2ã<5ŠŽÔ%ƒàÀ´‘ Ä!'Ú("R#”$‚#SEj€Fp`’HPòŽ ç©Qh¤FÁ€‰!5€\ŽíF©dDp`2H /‚#Ó@jÙ!ÎS£ H GJGj… 8¢¤ÑnD@9Ž”‹ÔŠBp€AŽ(Qœ§†áh7€Ò(©ˆà@qH LG”ÎSäFP,‚#!5€’QBh7â¥H pGŠ@jå#8À G”ÎS#´À$ȌԦ‚à@N¤F0!G;ÎS#/¤F0-Gòð^OjÓBp ÕĈ£«Ë] `Ž(^œ§Àl”4.mEpP¢H`ºŽ(Fœ§†R#˜4‚#€BjSGp€AŽ(.œ§†.Ú`ŽŠ©ÌÁ@ñ"5€Ù 8¢XpžR#˜‚# BpP\h7€™!8Âø8O AjsDp`|¤F0KG„à#ã<5h7€¹"80&R#˜1‚#£!5€y#8À G8Z2Ú`öŽŒ€Ô–€à ¨H`!Ž0ÎS`ÞŽŠ„v#X‚#€Â#5€E!8Â88OmH`iŽ0Á@aÐn Dp„pžÚÒÀ2`‚#€‚¡Ý‹à H`ÉŽ(*.p´¤F°pG„àÀ ´G/Gj‚#Šˆ °G/A» !8È© EpDáqž‹Bp'Ú]G¹#5ô`‚# ‰ ÍíF@NGúH€\`‚# ƒóÔfŒv# /GÿÔÈÁ!8øíF@þŽ(0.p4K¤FÀK`‚#ÚƒØÈ]@ Ù¾}û¶mÛâââJ—.Ý¡C‡É“'»¸¸äÿ’‹/®_¿þÒ¥KOž<ñõõ3fLË–-åþ€ñ‘²ˆŽãÒ¥KgΜyýúõæÍ›;::îØ±ãý÷ßÏÈÈÈç% ˆˆˆpww÷óó‹ŽŽhÚ´©4Ò°aÃîݻ߿ÿâÅ‹r ÀhH€1ÿàxúôi++«Ž;jG¬­­Û·oŸ’’röìÙ\_rôèQ•JÕ«W/ÝÁ/¿ü266¶Q£Fr y˜ùäFçêêêêêª;^«V-!Dbbb³fÍr¾*&&ÆÅÅÅÓÓóÌ™3ÑÑÑ>¬]»vçÎäþ@2ãGsB»PPfÓÓÓ³³³õÆœœ„<Èù’ÌÌÌÇ׬Yó“O> ÓŽW®\yÙ²eõë×7ä}}}}õFöïß/÷Î0Žøøx¹K(Œ¤¤$¹KP"y&E™8. ÄA‘]·nÝä.A)Ì<8JS§Ë”)£7îèè(„xôèQΗ<~üX—œœ¼`Á‚Ž;>{ö,<<|õêÕãÆÛ³g!}ÇØØX¹?z±¸*DõêÕ客L·òâ v#E™8. ÄA‘Wίõœ" aæ×8:;;«Tªôôt½ñ'OžˆÿöõØÛÛK¾øâ‹^½z9;;{zzŽ=ºwïÞIII¿üò‹ÜŸ (*…¤F€ÉQVp\¼xq\\œ7hccãä䔳³˜––&„ÐγÖU¦L{{{ÝñÎ; !®\¹"÷N’ 8`á”CCC_{íµ¾}ûnÞ¼9×  ÁÃÃ#%%EJŠZÒ¥]¹¾ÄÝÝÝÖÖV¥RéJg¨³²²äÞI@‘Ðnš²‚ãˆ#*V¬3oÞ¼víÚ9òÀ™™™EÙf@@@vvö±cÇ´#&22ÒÅÅÅÏÏ/×—øûû§¥¥]½zUwPºwOíÚµåÞI@á‘E¡¬à8a„C‡}ÿý÷ pttŒˆˆ;vl›6m>ùä“sçÎn›ÁÁÁVVV«V­’®kB„††Þ¿¿oß¾¶¶¶ÒÈÓ§OãããµÓÖz÷î-„˜9s¦¶ëyñâÅo¾ùÆÉÉ©K—.rï$y¨4Ü5ä.++ëèÑ£»wˆxö왢jÕª½zõzýõ×+V¬X MmذaÁ‚+Vl×®]BBBTTTݺu7lØ ½MÏÞ½{Çïãã³gÏidýúõK–,qrrjÖ¬YzzúéÓ§U*ÕÂ… »wïþÒ·óõõ5¿YÕ¦~c||þøã¯¾úJîz¥S`j˜"eÇ-[¶8pàÌ™3jµZáêêÚµk×îÝ»7kÖL÷¬tÛ¶m›6mÚ¢E‹Ó§OË]²E0õv#0 eÇO?ýTáììüꫯvïÞ½eË–y]Åèàà`oo¯ÀóÔ€ÒÐn‹²‚cß¾}[µjeȬÚ%IY÷qÜ·o߉'òJcÆŒéÚµ«Ü5¦„v#Àˆ”ÓÓÓ_¼x‘×¢[·nýõ×_r×hq¸ÀÑt‘Æ%ÿ©êÈÈÈ‘#GjŸnÚ´iË–-9WS«Õ¦J•*r× `¡äŽÖÖÖåÊ•“§¦¦–*UªtéÒ¹®éìì}š™™)wBöŽc®.\¸°zõêK—.%''[YYU¬X±I“&£FªZµªÜ¥JA»Pò×q\¾|yppð‘#G’““íìììííþùçÀÀÀ°°0¹«³ÌŒ¹RVppà@DD„F£Y·n]ûöímllFݤI“+W®¤§§Ê]#€…RVÇÑÍÍmëÖ­&LhР¢bÅŠ3gÎÌÌÌüý÷ßSRR† &w@±£ÝP&eu…nnn#FŒÐ>0`@PPÐÅ‹=<<¼½½å®Àr).8êzúô©­­­££c«V­ä®Åœ13FQh7K‰ÁñÂ… «W¯¾téRrr²••UÅŠ›4i2jÔ¨ªU«Ê]€åRÖ5ŽBˆåË—9r$99ÙÎÎÎÞÞ>11ñçŸ “»: xÑn(™²‚ãÑ£G×®]kmm=xðàƒž?>::úÈ‘#ÇBÌ›7ïܹsr×R#@á”ÃÂÂ4Íĉg̘Q¹re•J%„ðòòš2eÊÔ©S³²²øÉA¹(+8^ºtÉÎÎnÈ!9 4ÈÁÁŸ4:fÆ(íF€ò)+8 !<==mlr™²#Í’IOO—»@ ¥¬àèçç—˜˜˜–––sÑÓ§OãããëÕ«'w€ñÑn˜eÇàà`FóÑGeeeéŽgggOŸ>=;;; @î,”Ì÷q}úìØ±£K—.ÁÁÁÞÞÞ*•*>>><<<11Ñ××·[·nò íF€©98:4×ñÛ·o/_¾\o066¶uëÖ±±±òÖlN˜ 'spìÙ³§Ü{íF€ ‘98.\¸Pî=ƒ(ñ·ª…wîܹ|ùrBB‹/¼½½ëÔ©S¡B¹‹ŒŒv#À´(.8¦¦¦®\¹ò‡~ÈÎÎÖZ[[¿ùæ›!!!NNNr`¡”³³³GŽmgg×¹sçªU«Z[[ß¼yóðáÃßÿýåË—·nÝjmm-w™f‚™1ò¢Ý09Ê Žß~ûmtttãÆW®\éîî®ONN3fLttô·ß~;|øp¹Ë°Dʺø±cÇT*Õ²eËtS£¢|ùòË—/·²²:zô¨Ü5F@»`Š”¯\¹RµjU//¯œ‹<<|˜siZZÚÍ›74h w™&Œ™1 (­­­ûôé£V«§NúüùsÝE™™™Ó¦MS©TÇ/ÜÆ·oßìççצM›éÓ§§¦¦þÚÛ·o7mÚtòäÉrï!˜Ús¥¬Ûñ¼õÖ[—.]:räHçÎûöí[½zu•JÿïÿûÎ;Ož<9räˆv}ooï*Uª¼t³K—.]·n]™2eš7ož°cÇŽk×®mÚ´ÉÁÁ᥯Õh4S§N}òä‰Üû@fÊ ŽÒƒ{÷î­]»VoéÞ½{÷îÝ«;2iÒ¤—ÞÙ166644ÔÃÃ#<<ÜÝÝ]1þüM›6-Z´hÖ¬Y/-éÛo¿=uê”Ü;&ƒv#ÀŒ)+8öìÙ³@ë׬Yó¥ëlÛ¶M­V‡„„H©Q1mÚ´Ÿþyß¾}3f̰²Êïdýµk×–.]Z»ví+W®È½od¦¬à¸páB£oóôéÓVVV;vÔŽX[[·oß~÷îÝgÏžmÖ¬Y^/ÌÊÊš2eŠ‹‹Ë´iÓ†*÷¾  Ý0o šS4M\\œ««««««îx­Zµ„‰‰‰ù¼våÊ•—/_þüóÏË•+'÷ç0¦T€"RVÇÑèÒÓÓ³³³õÆœœ„<Èë…çÎûꫯ ÔºuëK—.ô}}}}õFöïß/÷Îñññr— ›¤¤¤â~ ïUñ7FW·ä\P%pPPâ È®[·nr— f322„eÊ”ÑwttB>>|ðAvvöï¿ÿ.÷‡ùÇÓ§O[YYuìØQ;bmmݾ}û”””³gÏæú’øøø2eÊÔ«WOwÐÇÇG‘˜˜(ïÇaf íFäbæ×8j4š¸¸8WWWWWWÝñZµj !›5k–óUëׯ·±Ñß3—.]BT®\YîÏ 3ŽéééÙÙÙÎÎÎzãNNNBˆäúªºuëêDEE…††ÚÙÙõêÕË÷õõõÕ‘NE|||±î4%ó^ctõB줤$¹k‡>Š2q\ˆƒ"»nݺÉ]‚R˜ypÌÈÈB”)SFoÜÑÑQñèÑ£—n!;;{ëÖ­_~ùevvöâÅ‹ÝÜÜ yßØØØbúDW…¨^½z±î4e‹/ôÇ·ìý¦Peâ¸(E^9¿Ösvˆ,„™Gggg•J•žž®7þäÉñß¾c>Nž<9gΜëׯ{yy}öÙg­[·–ûY4®n@^fmllœœœrvÓÒÒ„ÚyÖ9eff.\¸póæÍöööcÆŒ>|x^7}°f…qqqiiiåÊ•ÓJÉyxxäúµZ=qâÄ_ýµsçγgÏÎ'_–0KžRM»Ù™ÿíx²³³;¦Ñh4‘‘‘...~~~¹¾dóæÍ¿þúë[o½µzõjå¤Fy™p ¶²²Zµj•t]£"44ôþýû}ûöµµµ•Fž>}/M[Óh4[¶l)[¶ìÔ©Så®ÿ Ý€˜ÿ©ê *Lž>>;;»uëÖÞÞÞÚus}í7:vì˜Ý»wï*Uª³fÍš>}úÌ™3—/_^ÄM©ÕjFcmmmÜ ‹i³E±víÚ5j4mÚTz'„˜;w®^tËÕ„ =zÕ¼yséUÇß°aúvíºdÉ’¸¸¸o¿ývÈ!BˆqãÆ5mÚtâĉ97•••ñǬY³F­Vë-ÍS®®®¯½öÚŠ+¶nÝ*÷î4œª˜‰àààÀÀÀU«V9s&ŸÕN:èééY¡B…ÀÀÀS§NiU¯^}üøñëׯwss³±±©X±â‡~øøñcí çÎ òðððôôìÙ³ç… ´‹bbbúôéS¥Jww÷nݺ:tÈ;óÎ;ÒYãŽ;V¯^]»ò™3g5jÔ¨Q#i K—.mذa™2e\]][¶liÄ„´qãÆàà`íS)8Ö¬YÓ×FDD´oß^J’Ñ£G !Nœ8!„øá‡¼¼¼,-òööîׯ_ddäßÿsS)))]»v3gNrrrÎ¥/ÝT¿~ý¶oß®{¤PLŽ(9´+•Jµzõj{{û÷ß?;;;×u~þùç6mÚ\¼xqÀ€ýû÷‰‰iÓ¦ÍÏ?ÿ¬]áàÁƒcÇŽ}ë­·V®\Ù¸qãµk×N˜0A»¨U«V—.]™0aBùòå§N:räÈÇ4h÷îÝEßc×®]KHHhݺµv$..ÎÎήlÙ²Û·o_¿~ýñãÇ333s}mVVÖ¨Q£¤¤¨• „°³³KKK»zõª¿¿¿J¥Ò.íÔ©“Z­ÎõJGF£Ñh®\¹¢·ÈMµnÝúÅ‹‘‘‘Eß'x Œ­V­ZEßHl_/¹?‡‘‰ ‡d|÷7nȽ ƒ¢L7nÜ0Ê?b%ì“O>BÄÅÅi4š !–.]*-úâ‹/„çÎÓh4ÏŸ?¯^½zµjÕ’““¥¥ÉÉÉU«Võöö~þü¹F£©V­š"<<\ZªV«4hP©R%F“••U·nÝ5jüðCíú½zõÊg·äÔ¶m[i…ÐÐP!„öi4šîÝ»;88¸¸¸hW®S§Î™3g 9 )))-Z´°¶¶¾zõêÕ«W…ãÇ×]áàÁƒBˆõë×ç³)8~òÉ'Ú7åææ6qâÄÂýù)ÄŸySükb\ã0”jbDÑ7R8†Ÿ¯˜0a–-[fÍšÕ·oßÊ•+ë.:{öl||ü²eËÜÜܤ77·ñãÇŸ?^:åêííÝ·oß>¯Jåçç·k×.!ĹsçþóŸÿ,_¾\ªÚ·oÿÍ7ß”+W.::úÚµkßÿ½ƒƒƒ´ÈÎÎn̘1o½õÖÙ³góßl®¼¼¼fΜieõÏYÁS§NÙÛÛÛØüó•’’"„HOO7p‡ôïß¿R¥Jº#R6B$$$ØÙÙéÆÄ¸¸8µZ=gΜ~ýúÙÚÚîÚµküøñ½zõЉ‰qrrÊç]Ž9òþûïÇÅÅ­]»ÖÇÇGºÿQ¹råtב¶ Õo8链tS^^^·nÝ*ЖQG”NRæÁ$þ"ÛØØ„††¶nÝzìØ±Òô^­k×® !´J6l(-’^­Zµt—jÓ›Ô÷jРîÒaÆ !¤SÌo½õÖ[o½¥WÌ­[·òßl®|}}uWpqqùã?~ûí·+W®\»víÒ¥Kº·¼y©|fUß½{×ÕÕUwäÈ‘#öööÚÁaÆ={ölÔ¨QáááÇÏu#·nÝ=zôîÝ»}||<Ø©S'!„Íõ.:LKKBè½ãK¸©ýë_wîÜ)ЖQG€¹yå•W>øàƒµk×ê^¼(„Ðh4BÝKå„Òç/^HOííísݦt©Ÿ¶í§«T©RBˆ… êÅJ!Dݺuóßl®œµŸ?Þ§OŸ½{÷6oÞüÕW_íÙ³g«V­š4ib”eoo¯w c… ôÖyõÕW…yÝf2,,lĈŽŽŽëׯ6l˜vÿxxxXYYéÍt¹ÿ¾¢bÅŠ*ÒÀMeff–.]Ú(»ù 8¢ØÑnPò>ÿüóŸ~úiôèÑÒ \$>>>Bˆ‹/vèÐA;(ÍŒöõõ̓RËð?ÿùO»ví´ƒ_|ñEZZZŸ>}„eË–íÚµ«vÑþóŸ‹/êFÀÂ9~üøÞ½{—-[6nÜ8í`:ŽùðôôLMMU«ÕRƒ3!!aÏž=:uªS§Žv©·WµjÕœ/ß½{÷Ûo¿ýÆo¬[·NïT²Mݺu;¦;xôèQ•JU¯^½ià¦RRRtï=‰b¬j%2§ßŒ!5…““Ó²eË’’’V¯^­lÒ¤I•*U–.]ššš*“ι‡……}øá‡ï¼óÎ’%K._¾|åÊ•:uê¼ûî»z›íÓ§OPPÐСC7lØ0pàÀQ£F9;;ûí·éééÚßÔÝÔKëÌSBˆ .¤§§wîܹhdðrG#ÚäµfÍšzõêeddhGúôésôèѹsçJ3Züüü¶oßÞ¢E C¶Ö»wïÈÈÈO>ùä믿¶¶¶nÙ²ågŸ}&Ý+»[·nQQQ³fÍÚ²eËóçÏ5jôÕW_åìÒåªuëÖ øå—_®_¿ž38V©ReïÞ½}ôÑÊ•+=<<üýý/\¸ðóÏ?ôÑGË—//bptqqiÕªÕáÇ  L™2¥F_~ùå–-[ìíí6l¸oß¾nݺIK333>|(íOéVá—/_¾|ù²ÞfkÖ¬T®\¹ÈÈÈÉ“'‡‡‡§¦¦¶jÕjëÖ­Úήî¦^*ÿM !Ž9âîî®ýý•QzÝÐåëë[”-˜Í©jåÇøøøBœA±â (S|||·nÝŠøLHXXبQ£þþûï—ö\%_ýuLL̲eËŠþÖFÜTÓ¦M{ôè¡Ûƒ,B|qý»ÞDq#Š‹rR# /ýúõsttܹs§!+?{öìðáÃF™ÓmÄM]¸páòåË#GŽ,æ]!Ž díFR#˜[[Û+V|úé§yÍÎÑuâĉ:uêä¼]e!qS³gÏž={¶§§g ì.p#­W¯^gΜ‰‰‰‘î…ž£¼©±6•œœìîî>qâÄØQGÚ`ZæÍ›'w …T¾|ùõë×Ë]…áT5ŒŒÔ€¹"8À Ge1õ™1´0cG ©óFp€AŽ0Ú˜=‚£‚˜îޤF,ÁEEjÀB`‚#Š„v#–ƒà¨¦x#©€BÌ™3G•‡hW{öìY­Zµ¢££K¬°äääJ•*ݾmbÿ¼yá·ªf¢ÿþ•*UÒlܸ±öñܹsýüüüüü„/^¼pppÈÎÎÖ]ÙÍÍ-999×_¸paþüù‘‘‘Ož<©]»öÀÇŒccóÏ×è£G¦NºwïÞ4iÒäË/¿|å•W„åË—6lؘ1cvìØ!÷àˆB¢Ý@iFݦM›¼–Þ»woÉ’%¿ÿþ»ô4>>>;;»uëÖÞÞÞÚus}í7:vì˜Ý»wï*Uª|øð\7rëÖ­Ñ£GïÞ½ÛÇÇçàÁƒ:uB¸¹¹ !ô®_LKKBè¾ã¿þõ¯;wîȽ‡€¢"8ÊÏ$.p$50iöööz—0V¨ ß=}õÕW…—.]Êu aaa#FŒptt\¿~ý°aôwpôðð°²²Ò»ûãýû÷…+VÔŽdff–.]ZîÝ“cæÏÓÓ355U­VKOV¯^}ùòeÝu¤6aÕªUs¾|÷îÝo¿ýv=®\¹òþûïkS£ÂÆÆ¦nݺҕ”ZGU©TõêÕÓŽ¤¤¤xzzʽ€¢"8âåh70uuêÔQ«ÕÒTh!„ƒƒÃ¤I“FŒñâÅ iD­V/\¸ÐÆÆ¦K—.z¯Õh4S¦L©\¹òæÍ›õ®e”¼÷Þ{7oÞܳgôôÞ½{ááá]ºt©^½º4’•••˜˜X§N¹wPTœªÆK˜++«¨¨()̹»»Ï™3gêÔ©>>>Ý»wwvv>pà@ttôgŸ}V·n]!DXX؇~øÎ;ï,Y²äòåËW®\©S§Î»ï¾«·Ù>}ú :tÆ 5j”³³ó·ß~›žž>gÎíj.\HOOïܹ³Ü»(*‚£Ì~#©€ypqqiÕªÕáÇ  L™2¥F_~ùå–-[ìíí6l¸oß¾nݺIK333>|˜‘‘!þ{«ðË—/ëÚBÔ¬Y3((¨\¹r‘‘‘“'OOMMmÕªÕÖ­[¥ß”9rÄÝÝ=ç~“CpDžHLÅìÙ³gÏžÿ:£F5jÔÊ•+íì중¾}ûöíÛ7ו‡ òâÅ‹˜˜!DÏž=5Mþwrr ÍkéÖ­[?øàkkk¹÷PT\ãˆÜ‘˜™~ýú9::îܹӕŸ={vøðá&Mšý}/\¸pùòå‘#Gʽ# 8"¤FæÇÖÖvÅŠŸ~ú©vnu>Nœ8Q§N·Þz«èï+uC™R óÀ©j9)óGR#sÕ«W¯3gÎÄÄÄ4lØ0ÿ5ýýýýýý‹þŽÉÉÉîîî'N”û£ÆApÄÿ 50oóæÍ+É·+_¾üúõëåþЀÑpªÿÔòApÄ?H GÙ(êGR#x)‚#HÀ Gy(§ÝHj"8Z4R#0ÁÑr‘@pG(á<5©@>|}}å.€-Žjb„‚Ô /±±±r—€ÿ_½zu¹«„ 8Z Ð¸Æ±¤ÉxžšÔЂޣEàô4(:‚c‰’¥ÝH£ÁÑœÑhFDp4[4€qKN‰§¦ÑŠÁѬ@ñ!8š "#(nÜÇ1OÛ·oöóókÓ¦ÍôéÓSSS‹²µâ;O­š!]ÎHjÌG·nÝä.ú8(ÊÄqQ  ”ƒŽcî–.]ºnݺ2eÊ4oÞŠ2q\ˆƒ… 8êËÈÈB”)SFoÜÑÑQñèÑ£—n!66Ö wZlØjÊÀ}õ9;;«Tªôôt½ñ'Ožˆÿö,ÁQŸ““SÎÎbZZšB;ÏÀÒsááá‘’’"%E­øøxi‘ÜÕÈƒà˜‹€€€ìììcÇŽiG4Mdd¤‹‹‹ŸŸŸÜÕÈƒà˜‹àà`++«U«VI×5 !BCCï߿߷o_[[[¹«‡J£ÑÈ]ƒmذaÁ‚+Vl×®]BBBTTTݺu7lØó6=‚à˜§Ý»wïܹóÂ… ^^^-Z´ ‘îÈ`™Ž0×8À G„àƒ`‚# Bp€AŽ0ÁÑh¶oßìççצM›éÓ§§¦¦Ê]‘¥ËÈÈøöÛo{ôèѸqãvíÚ >ü÷ß—»(ü¿Û·o7mÚtòäÉr!„¸xñâèÑ£ýýý›7o>hР“'OÊ]‘¥ËÌÌüꫯúôéãççשS§qãÆ]»vMî¢,Ô7|}}ÏŸ?ŸëRKûö'8ÇÒ¥KgΜyýúõæÍ›;::îØ±ãý÷ßÏÈÈ».Ë•••5tèÐÏ?ÿüÞ½{­ZµªY³æÉ“'‡ ¶zõj¹KƒBh4š©S§jòŠˆˆ0`@DD„»»»ŸŸ_ttôàÁƒ#""ä®Ëregg2dÑ¢E©©©íÚµ«X±â^ýõÓ§OË]š%Ú¼ys^‹,ñÛ_ƒ"»råJíÚµÛµkw÷î]idÞ¼yµjÕš;w®Ü¥Y®­[·ÖªUkÀ€éééÒÈÕ«W[´hQ§Nÿüç?rW͆ jÕªU«V­I“&É]‹¥{øða³fÍ5jtæÌiäüùóõë×oݺuvv¶ÜÕY(é_°qãÆ½xñBùã?êÔ©óꫯÊ]šyôèÑéÓ§?þøcé«sçÎé­`™ßþt`Û¶mjµ:$$ÄÝÝ]™6mš““Ó¾}ûÔjµÜÕY¨ýû÷ !f̘áàà øøø|ðÁÙÙÙœ°–ݵk×–.]Z»vm¹ BìØ±#--íƒ>hÚ´©4Ò°aÃîݻ߿ÿâÅ‹rWg¡Îž=+„2dˆ4ÒªU«:uêܼyóÁƒrWg)‚‚‚øÃ?䵂e~ûàôéÓVVV;vÔŽX[[·oß>%%EúË’_¦L™zõêéúøø!å®Î¢eeeM™2ÅÅÅeÚ´ir×!„8zô¨J¥êÕ«—îà—_~Û¨Q#¹«³P^^^BÝŒ¨Ñh>|hee¥’(nóçÏ_³fÍš5kZ·në –ùíÏŸ¿¢Òh4qqq®®®®®®ºãµjÕB$&&6kÖLî-ÑúõësþózéÒ%!DåÊ•å®Î¢­\¹òòåË6l(W®œÜµ@!bbb\\\<==Ïœ9ýðáÃÚµkwîÜYÛ­GÉëѣǦM›æÏŸ_ºt鯧¦¦®Y³&))éÍ7ßä/N‰iÛ¶­ôàðáÃ9—Zì·?Á±¨ÒÓÓ³³³õÆœœÄÿþÿ"JRݺuõF¢¢¢BCCíììô:+(IçÎûꫯ Ôºuk)ÇC^™™™?®Y³æ'Ÿ|¦¯\¹ò²eËêׯ/wÊ××wóæÍC‡:t¨vpРAÓ§O—»4üÃb¿ý9U]TÒä©2eÊè;:: !=z$wÙÙÙ›6mz÷ÝwÓÓÓ¿øâ 777¹+²PS¦L©\¹òĉå®ÿxüø±"..nïÞ½ ,8yòdddä˜1cþúë¯qãÆ™ùäPKKKûâ‹/ž>}Z¯^½þýûwéÒÅÁÁaçÎLuW‹ýö§ãXTÎÎÎ*•*==]o\ºÏˆôÑÉ“'çÌ™sýúu//¯Ï>û,¯KUP,X””Æ9På°··—|ñÅ:u’=úöíÛ;vìøå—_úõë'w–hÊ”)þùç´iÓÞyçiäöíÛýû÷?~ü®]»¼½½å.–ûíODZ¨lllœœœrþ¿EZZšB;Ó %/33sþüùC† ¹}ûö˜1cöíÛGj”Ñ©S§ÂÂÂFŒÁ| E)S¦Œ½½½ƒƒƒ¿¿¿îxçÎ…W®\‘»@Ktï޽Ç׬YS›…*TøðÃ_¼xñÓO?É] „°ào:ŽFàáá—––¦{Ír||¼´Hîê,”Z­ž8q⯿þÚ¹sçÙ³g›ñßaS!ýè…4EQw|×®]»víòññÙ³gÜ5Z(ww÷‡ªT*ÝA©+œ••%wu–(%%EQ­Z5½q©Ñ˜œœ,wø‡e~û 66öرc¯½öš4¢Ñh"##]\\üüüä®ÎBmÞ¼ù×_}ë­·fÏž-w-BˆªU«jÿ‚H=ztüøñ *øùùyzzÊ] åò÷÷ÿî»ï®^½*Í•H7á^›²¨V­šµµõµk×4n BÔ¬YSîñËüöçTµ[YY­ZµJûûi¡¡¡÷ïßïÛ·¯­­­ÜÕY"F³eË–²eËN:UîZð¶mÛ.ù_&LB4kÖlÉ’%S¦L‘»@ËÕ»wo!ÄÌ™3µó@/^¼øÍ7ß899uéÒEîê,‘ƒƒCûöíV¬X¡½ôµk×Ö¬YSªT)½‹ #Ëüö§ãh*T˜‚#Ó0sæL__ß… ê_¼xÑ××·uëÖYYYBˆû÷ï/Y²$00°I“&Mš4yíµ×¾øâ‹»wïæµYi®Ì‰'ôÆëÖ­ûÊ+¯èŽüþûïcÇŽíܹsóæÍ¼jÕ*½l÷×_Íž=;00°qãÆ;v|ÿý÷OŸ>Ï'úꫯt'ÇH•$%%…††¶jÕª~ýúÍš5ëß¿ÿÁƒóÚBtttݺuÛ·oÿøñcíà“'O:vìX·nÝ .È}И‚#Ó$„8pà€Þøž={„½zõ²±±¹ÿþÀׯ_ûöí*UªTªT)11qãÆ HMM-Ê»/Z´høðáÈÊÊrww?sæÌÊ•+ ”’’"­píÚµ   ~ø!%%¥F&22òí·ßŽˆˆ(Э_¿~ñâŶ¶¶­ZµrrrŠŽŽ5jÔ¾}ûr]ÙÏÏoøðáwïÞýüóϵƒ_~ùåßÿýá‡6lذ¤sGp`š7oîî˜øŸÿüG;¨V«¥PÕ§O!ÄŽ;nÞ¼Ù©S§ßÿ}çλví:~üxóæÍÿúë¯C‡ú­>üÕW_U®\yûöíGŽùå—_Ž=Ú¡C‡sçέ]»VZgÑ¢EOŸ>9räü±cÇŽÈÈÈ3fh4šåË—è½¶mÛöþûï;vìÛo¿ýí·ß†*„Ø´iS^ë;ÖÇÇgÇŽÇŽBœ8qâÇlРÁÈ‘#å;VÌÁ€i°²²zíµ×Äÿ6Ïœ9s÷î]??¿š5k !²²²üýý'MšT¦Li…råÊI­Ê„„„B¿õ‚ „Ë–-ÓöðÜÜÜ–-[æááþðáC!Ä•+W„ÁÁÁÖÖÖÒ: øðÃ;wî\ ÷jذáĉ­¬¬¤üᇠ!nÞ¼™×ú¶¶¶_~ù¥ÍÌ™3ïÝ»7cÆ ‡E‹iË#"80RÔ=o+§îÛ·¯ôtÔ¨QëÖ­«Q£†v…äää_~ù¥(ošššïíí­7ºtéÒ­[·ÎÈȈ‰‰BHÉuÚ´i§N’®¶´µµ7nܘ1c ôvÝ»w×}êäädmm­ÑhòyIݺuGuçÎ×_ý¯¿þš:ujµjÕŠë°lÜŽ€É¨W¯^µjÕnÞ¼ëë뛕•µÿ~‡ÀÀ@í:ýõ×Ñ£GÏœ9“˜˜xëÖ­"^Ú(„¸qã†ô___ß\Wøûï¿…sæÌ 9uêÔÛo¿moo_·nÝ–-[¾úê«uëÖ-ÐÛUªT©EŽ1âàÁƒ—.]jѢŀŒº×àÿ˜’   •+Wîß¿ß××÷رc=êÓ§öÄtXXؼyó²²²ªT©Ò¬Y³Î;ׯ_?>>~îܹz—ììlm“/33SQ±bżN:W¨PAQ©R¥íÛ·GGG=zôäÉ“111gÏž]»vm¿~ýæÍ›§R© |ëR¥Jb·}zþ¯R©TÒ=€„™™™ÇŽûè£ÂÃÃ;uêP¬»eöìÙ÷îÝkÒ¤ÉÙ³gçλdÉ’b};‹k˜’ªU«Ö¯_ÿÆ/^ú裘˜˜zõê¹¹¹yyy=~üøüùó_ýµ¶UyóæÍ£G !Šõ~ŠwîÜ™;wnÙ²e?ýôS[[ÛÏ?ÿÜÚÚzΜ9E¿¸râT5¸`Á‚ØØXkkë^½ziǽ½½:Ô¥K—¦M›j4𨨨ÔÔÔnÚ´éßÿþ÷ãÇ¥ëèêÕ«×wß}wöìÙ€€€ºuëÞ»w/..ÎÉÉÉÓÓóùóçÒ:½{÷>uêÔO?ýÔ«W¯Š+º¸¸Ü¸q#==½ZµjÒ·­¬¬¦OŸ>mÚ´… ~óÍ7•*UJOO¿~ýºF£0`€ŸŸ_1í F3mÚ´´´´Ï>ûLÊÍ 4:tè7ß|3gΜeË–É}¬˜:ŽLŒ»»{‹-„íÚµsww×]´xñâ±cÇV¨PAº¿cûöíwîÜ9cÆŒZ[[çú€•+Wþþûï;wîleeuüøñ«W¯V¬Xñ«¯¾rssÓ®£R©¾øâ‹+VtêÔI­Vß¼y³zõê&Lعs§‹‹‹´NïÞ½¿ûî»:888\¹r%==½M›6kÖ¬™={vñíŠÍ›7Ÿ8q¢mÛ¶Ú =…cÇŽ­Zµê¾}ûöïß/ë`†Tùß ,ÇÓ§OSRR*W®lø$h°(G„SÕ0Á!8À G„àƒ`‚# Bp€AŽ0ÈÿÈÁS ç;9IEND®B`‚statistics-release-1.6.3/docs/assets/ncfinv_101.png000066400000000000000000000672221456127120000221440ustar00rootroot00000000000000‰PNG  IHDRhŽ\­AnYIDATxÚíÝy\TõþÇñï*®¸ à.("Š&n¹E€æWÍ-µÌ­²´ÜÍ(s-sIíöË%»¦¢WSË®»¦¸ä‚¹¯ˆ"„[î ¦(óûãÄ4²³e^ÏG{‡33ç|¾ç0úöó=çŒN¯× ?Nru 8À$G˜„à“`‚#LBp€IŽ0 Á&!8À$G9;wîœ.Óo¼‘åÙ§OŸž]´h‘ÜÅÚĦM›þ÷¿ÿýïÿ»sçŽW;aÂi¿uíÚ5·×ïüÜŒ;6Ç÷.Z´HzA“&M²<õôéÓ… ¶mÛ¶R¥J®®®¾¾¾:uúꫯRRRL)ÀÅÅÅÝÝýÅ_œ0aBö}bIÍÔ‚à ÿýï>,wöÖ»wï.]ºtéÒåôéÓr×bÇŽ«]»ö{ï½÷믿޸qãéÓ§±±±[¶l3fŒ¯¯ïæÍ›ó]Czzú½{÷~ÿý÷iÓ¦ùùùEEEÉ=&öæ"wT@¯×1âàÁƒ:NîZާ§gÑ¢E³//S¦Lޝ/Y²dõêÕ…*T0,Œ‰‰ þ믿 K\\\ÒÒÒ¤Çׯ_ïÙ³çÁƒ_xá…< xô葡ј˜˜Ø£GØØØ"EŠX^3µ 80ITTÔªU«úôé#w!gåÊ•­[·6ýõ}úôÉ~˜ÆŒcH >|x@@ÀíÛ··lÙ2räȇ>~ü¸W¯^.\È»€«W¯Nœ8ñ‡~B\»vmÁ‚#FŒ°¼fjÁT5S}ôÑG?Î÷e=š8qâ+¯¼âéééééÙ¦M›ðððäädãן痘˜8zôè&Mš”,Y²Aƒ_|ñųgϲ¬óöíÛÇoÙ²¥››[õêÕ;tè°e˖웾uëÖðáÃ[´hQ²dÉ5jtëÖíøñãfl÷ã?Öét†¤Õ¦MN÷èÑ£,kHKKûì³Ï*W®üÙgŸI¯ÌÈÈX½zuHHHµjÕ\]]«U«¼lÙ²ì#²ìç8îܹsÓ¦MÒãñãÇ/Y²ä…^pvv®P¡Â AƒV­Z%=sñâżW^¥J•%K–ÎÎüâ‹/¤ÝÀAÐq¿Úµk_¸páÚµk³gÏ6„¤9r¤wïÞ—/_6,Ùµk×®]»V¬X±bÅŠ   ,¯OJJjÙ²ett´ôã©S§N:uòäÉ5kÖ^ó믿¾ñÆ·oß–~LNNNHHضmÛàÁƒ/^lxYdddŸ>}nݺ%ýø×_ÅÅÅ­_¿~äÈ‘_}õ•ÛÍ×àÁƒ—-[&„ÐëõÒ’Þ½{¯áÊ•+W®\Ù»wï¦M›Ö®]+ÏÁbÁ‚Òƒ²eË~òÉ'YžíÔ©SÇŽoܸ!„8sæL­Zµò]áðáÃׯ_/„¸sçÎþýûÛµk'×ÐØGùûì³ÏÜÜÜ„3f̸~ýzn/KIIéÙ³§”]]]Ûµk×±cÇbÅŠ !®^½Ú«W¯‡fyËž={¢££«U«öâ‹/ºººJ ×®]{äÈéqrrrß¾}¥ÔXºténݺ…„„HO}ÿý÷+V¬0¼ìõ×_—Rchhè¤I“z÷îíää¤×ëçÌ™³dÉ’mw̘1±±±RåBˆeË–ÿ(9zô¨” Ö¬Y#¥FNÚ¯_¿€€é©uëÖEFFÊuø8 =xíµ×J”(‘ý›7o>qâĉ'ºuëfÊ ƒ‚‚ .,=þý÷ßåû#8ÈŸ‡‡Ç„ „??~|n/›5kÖü!„(UªÔ¾}û¶mÛ¶y󿍍(www!ÄÍ›7¿øâ‹ìïúæ›oþøã¨¨¨'N2œ!8Θ1Cº £Zµj—.]’Xxx¸ô¬¡ãhxY÷îÝwíÚ5qâÄÿþ÷¿_ýµôìäÉ“ ´ÝråÊÕ¨QÃÉéï?!+UªT£F,]»v­N:+V¬ˆŠŠ0`€bÛ¶mÒS£FÚµkײeËΜ9Ó¨Q#iá±cÇÌÛùÒDy#GŽ4ñíÏž=3ta}||Ìþ0¦Óé¼¼¼¤Ç7oÞ´zÍ‹àÀ$|ðAÍš5…+W®ÌíÖ<†[º|øá‡†ìêÕ«7jÔ¨,/06l˜ô¸víÚ/½ô’ô8!!Az°}ûvéÁ˜1c¤*Ó Aƒ <}ú4==]…¶·ß~Û°ò8;; !®\¹’å–:ùn7_ÅŠûõ×_ûöíûâ‹/J¬W¯^ÒŒüðáÃ¥×$''Î ½ÿ¾ÇMŸ]Z±bEk­¶\¹rÙ×@ó8Ç€I .<{öì.]ºH·æÙ½{wö×ÄÄÄH²œôÖ¶m[©GxéÒ¥ŒŒ C'OQ£F ãW–-[Vz‘‘!=ˆ•´lÙÒð2//¯'N¿ÑpUGnçÛ]ºt©~ýú¦o7_Yr˜´éÄÄÄíÛ·=zôĉGŽÉ>;_P9ÞÚÆPp¾J–,ixlÅ;™ß»wOzPªT)«× @±ŽLÕ¹sçÐÐÐÈÈHéÖ±òæÍ›Í›7oÞ¼yHHˆ4¹,)„HKK«a¤L™2¥K—.]ºtŽ_db]óçÏ—|ûí·ï½÷^ýúõ]\\®]»fëíæËpÞç•+W²±ø¦M› Góå—_6e…†«ŽŠ/n| Í#8(˜©S§æxZ›¢cÇŽÒƒÿû߆;oŸ={vÖ¬YÒã:ts†(óÕW_òÍܹs£¢¢¢¢¢Š)"u@Û´i#=õÝwßîªøÓO?•+WÎÝݽzõê–œkhè®åáádžÙð¤¤$éÁ±cÇd¼ Á«¯¾jØ?~øá”)S¤pjjjDDÄ[o½%=U£FÀÀÀ¼WuóæÍwÞygݺuÒo¾ù¦ñ9”4sŒ‡‡Ç§Ÿ~:nܸìO7î‡~HHHxðàA«V­Z·níìì¼sçNéËE*T¨ ÝÓ§@&L˜°|ùòäääøøø ´nÝúÖ­[»ví’ž:t¨ôàã?þþûïùå—ÐÐЗ_~ùܹs†‹¸GeÆ•¥K—–Nœ:uê¹sç†^¨P¡Ü^\¢D‰%JH¯—¾ŽE§ÓmÛ¶Ížß“‡9sæ¼øâ‹)))z½~âĉ'NtwwOLL”®IB¸ºº®[·Nº=‹~ýúI' ===###Ërggg!DÉ’%å.@ǬêÔ©óÖ[oeY~âÄ áÀç4N¶yj8‚cVÕ«WoÔ¨Ñï¿ÿ¾víZÃÂ'N,Y²¤bÅŠíÚµ“»@ypã¢\¸paРAwïÞ­[·®Ïõë×Ož>ÞÛÛ[î*ðŠ2q\Èă"ç•1ªËßÄÑaÿ®§ã˜ƒÚµk¯_¿¾K—.wïÞݾ}ûƒºté²iÓ&SR#Då©Å}sæáá1cÆ ¹«À$œàû ã_6XPG˜„à€ºqY ì†àWÆX†à“P1®§†=q;Eà› 9æw%âG‡DpT þ:òÅ?±@^LU VÌS WÆXŒàwÿ6Á'8:*‚#ªÄ<5ìà“€àÊk 8 >rÎSs‚£#8À$G˜„à€Êp=uq‚£•aÇŽÓét?þø£ôã´iÓÜÝÝëÕ«'w]EFF†¯¯oÕªU§OŸ.w- &ÜýÛ<GXßùóç'L˜àïïžå©   É“'[ws§OŸîÕ«———W‰%7n}:jÔ(#GŽTªTInU—/_B4kÖ¬eË–6­ÄÅÅ%ËÕÄ÷ïߟ>}º³³s÷îÝ­; ³7dŠØØX''§š5k&&&JKüýý#""5jdÊÛ“’’6lØ0`À€eË–­Y³æí·ß¶én8,‚£²étrn=—V?~w¹½kÕªUG]´hÑùóçMIæÂÄ ™1ŠŠ+R£¤mÛ¶BˆsçÎå;K—.EEEõêÕKÑ­[7'''é|Gkí^ è8¢À¤‹;f|ç—“'OZ¾f3æR7nÜøæ›oöìÙsáÂ…¥J•²Ý(LßPAG‘°iÓ¦ÐÐPÃÂääd!DµjÕòˆ¥àèåå´|ùò©S§fÁLU,DpD5lØÐÇÇgΜ9}úô©P¡‚âÎ;_ýµåk.è\ª^¯7n\•*U"""œm7Šm¨ £(Z´è˜1cš4i²k×®B… !222fÍšåââòÊ+¯ä½-½^P§NiIÏž=ßÿý]»ve/SÕ€ªqßo(ÁV¨P¡Ù³g÷ìÙ300°W¯^… úñÇ­rŸ?i.Õô×GGG_¸pÁßßðàÁYžzíµ×ÂÂÂV­Zõþûï0`Μ9–Œ"ß Y2 É“'ôÑG¾¾¾:t(]ºôöíÛOœ8ñÅ_Hq0QìÞ½ûÊ•+S¦L1®gøðáC† éÓ§ÏÔ©S-) þ¡¡a ‚#Ìѵk×ÈÈÈ)S¦DDD$&&º¹¹­X±¢Gv.Cºovtttttt–§jÖ¬–ššš”””’’bá(òÝ…7n\5fΜ¹bÅ WW×úõëoݺµ}ûöÒ³yŒbùòåBˆž={–xzzNŸ>}æÌ™§NÒëõ:y/Ìh WYŸŸŸ_LLŒ­ß¢7nÜ(W®œUîƒm ßÿýÙ³gçÍ›ç£Ð>^ú¶$(G||¼·ÌóÔÚê8Z~UµÃþqÄUÕ°TÅŠ›·žë_Í2•ƃüª¶bìqØ?Žè8*šNèdÜzns%ÇOHH˜5kV¥J•¤%*TøðÃÇoáÓÒÒ6oޜ۳;wÎûí{öìyçwbcc,Xàëë›÷‹-EÞ2c±±±“'OîÞ½{¡B…6lØ0räÈ.]ºœ={Ö”öáêÕ«Ÿ>}:bĈ¸¸¸¥K—¾ýöÛ²ï^æažÚ|ÌSÛÁQÑ”ùÇÇÅ‹…52^hùš=z$Y˜óÞÈ}ÞäÊ•+Æ Û¸q£¯¯ïÎ;CCCm4 S6dÆ(öìÙãêêZ¶lYéÇ>yòdèСëÖ­4hP¾cY¶l™ŸŸ_ýúõ{ôè1lذ‹/ÖªUKÞÝ Jýx¬‚‹cP`...Bî¹n¨““~—ÜÜÜòhçö®U«V=ztÑ¢EçÏŸ71Ö˜1 7dÆ(*V¬hH’¶mÛ !Î;—ï@.]ºÕ«W/!D·nÝœœœ¤óåݽTŒ‘;:Ž(0éâßcÇŽßùåäÉ“–¯ÙŒ¹Ô7¾ùæ›={ö\¸pa©R¥l7 Ó7TÐQ$$$lÚ´)44Ôßßß°099YQ­Zµ|"ÅD)8zyy-_¾|êÔ©ÙC°=w/30Om>æ©íFî“,5HóǤ¦¦úøøT¬XñÆÒ’Û·oW®\YX|qLRRR~W322j×®]½zõ´´4›Ž¢@*è(nݺåêêúÒK/¥¦¦JKÒÓÓ_ýu—sçÎå½­ŒŒŒªU«–ÌŸ?_±cÇyw¯¨ë“¢R\##‘ËÅö>(jÌ&”lÝÌã°ÑqD*ThöìÙ={ö ìÕ«W¡B…~üñG«Ü£QšK5ýõÑÑÑ.\ð÷÷|È!}úô™:uªMw¯é«/¥´™§FžŽ0G×®]###§L™‘˜˜èææ¶bÅŠ=zع é¾ÙÑÑÑÑÑÑYžªY³fXXXjjjRRRJJŠ…£ÈwCdܸq5jÔ˜9sæŠ+\]]ëׯ¿uëÖöíÛKÏæ1ŠåË— !zöìiXâéé9}úô™3gž:uJ¯×g9‰Óº»×ÂQ€u0OmG\ad}~~~111¶~‹rܸq£\¹rн#ô÷ßöìÙyóæ9Â(4OÕŸµˆ—¾- v–GÇÑ®EG‚£Õ/©vØ?ޏª–ªX±¢bóÖ“'OvïÞݰaC•RÊ<5‚#´ìСCþþþ}úô‘»F@ 4Ún„qŽ#´,$$$$$Dî*€¼Ðn„ŠÐq€IŽ€yj˜„à€l˜§¶¾¥ÚŠŽ0 Á‡Ç<5LCp@ÌSCuŽ0 ÁÐn´óÔ2!8àØÔx‚cÇ%ÕÖDpÀÞh7Z„v£|Ž0 ÁÖqìØ1N÷ã?J?N›6ÍÝݽ^½zr×刣0ÈÈÈðõõ­ZµêôéÓ宀RizžVGp„õ?~„ þþþáááYž š}ºW¯^^^^%J”hܸñܹsÓÒÒ¬¾÷rÜE<2dHÕªUK”(eʪ’’’4hàåå¾råJ«—šoÙrÄ<µE˜§–•‹Ü@ƒbcc…“&Mjݺµñò'N8p ËB ÅÇǧ§§·hÑÂÇÇǰ°D‰VE\\\pppzzz×®]«V­ºsçÎQ£FíÛ·oýúõVNŽ»(99¹qãÆW®\éÞ½»»»ûºuëÚ·o¿{÷îÀÀÀ¼×V¶lÙµk×êõú:Ìš5«oß¾V,5ß²@v\cuGXŸô)uuu•~LKK‹ŒŒ>>Ý»wß»wïŸþiâú¥)õÅ‹[c—›Z6XóÔr#8Â?ÿüshhèéÓ§{÷îݺuë+Vôïß_zjôèÑŸ}ö™böìÙË–-Bxzzêõz½^á«W[¤H‘’%K®]»vÑ¢Eû÷ï7„?+Ž"--mèСRR4HHHB)RÄòQ䱋’““/^¼¢Óé CCC322L<ÓQ!ˆõë×?xðÀŠ;ߦG @LU£Àž>}:jÔ(#GŽTªTIÞ¸qcéÙ€€€Ë—/ !š5kÖ²eK[ëääT³fÍÄÄDi‰¿¿DDD£F¬;Š,&ß¿úôéÎÎÎÝ»w·éoݺ¥×ë===zxx!Lìó%%%mذaÀ€Ë–-[³fÍÛo¿mÓ‚äyjË ¦Ý(?‚£¢7™ì/·Š?ž0kÖ,)o !*T¨ðᇎ?ÞÂ-¦¥¥mÞ¼9·g;wîœ}alllFFÆäÉ“»wï^¨P¡ 6Œ9²K—.gÏžussËc[–ŒbÏž=ï¼óNllì‚ |}}-E?~,„(Uª”ñBih÷îÝ3e «W¯~úôéˆ#âââ–.]š[p´nÙ ;®Œ±‚£¢)ó7þâÅ‹Bˆ,-½|¯ð5Å£G¤3 Mß{öìquu-[¶¬ôãÀŸ>>sæÌéÓ§O… „wîÜùúë¯-_sAgK‹-:f̘&MšìÚµ«P¡BBˆŒŒŒY³f¹¸¸¼òÊ+V…^¯7n\•*U"""œ­;Š|½ýöÛÇß´iÓ«¯¾*„¸}ûöºuë^yåé>AyÐëõuêÔ‘–ôìÙóý÷ßßµkWöýÃT5`SÌS[„yjÅ`ªV¨P¡Ù³gß¾};00pøðácÆŒiذ¡UîäWÐÙRÉ“'ÿöÛo¾¾¾ï½÷ÞÇܸqãÕ«WO™2EŠJ«V­*S¦Ì¨Q£,Ettô… Š-:xðàÏÛ¸q£…£ÈWÿþý_xá…¾}û†‡‡Ïœ9388øñãdžï÷ËcŒ»wï¾råJÏž= K^{íµB… 2d„ ¶.€r1O sÑq„9ºví9eÊ”ˆˆˆÄÄD77·+VôèÑÃþ•Œ7®F3gÎ\±b…««kýúõ·nÝÚ¾}{éÙÔÔÔ¤¤¤”” G!Ýf<::::::ËS5kÖ ³éK•*µwïÞ±cÇ®[·.11±yóæ+W®4\ǓǗ/_.„0ŽžžžÓ§OŸ9sæ©S§ôz½¼—펃v£EÌj7rIµ°[ówãÆ°°°ÐÐÐY³f™òz??¿˜˜˜mÂŒ·(Ç7Ê•+g•û`ÛÂ÷ßöìÙyóæ©zV£¨ú“¢ñññùž‚²08Zÿ ¨«ã¨Èàè°1U½^ÿÑGýõ×_r¢\+VTlÞzòäÉîÝ»6l¨êQXkŒd¡¸v£¤FØÁ1K—.ýý÷ßå®f:tè¿¿Ÿ>}ä.„1´€sóréÒ¥¹sçÖ®]›¯âU©¹«`Œ€ãR\»Ñ1p‚£íÐqÌUZZÚ¸qãÊ”)cù7é ÌSÃ2tsõÍ7ßDGG/Y²$ï»=8‚cÎNž<¹xñâ7Þx£E‹ù~y]v~~~Y–lÛ¶Mî1Z/w wíÚ5¹KÐoŸ¸ø¸xaé/­Š·z>DÞ>Þ–ì<ëÓp—7s’’"}MÈèÑ£Í[ƒc^¢Øwбv²YkgZg=:ÐëUtt-µu³ÿµž½Cä Ž9˜1cƵk×V­ZU´hQ¹k¨—ÅXÄ‚³¹2Ʀ¸8&«ßÿ}ÕªUï¾ûî /¼ w- BÇ1«K—. !æÏŸ?þ|ãå6lذaƒ¯¯ï¦M›ä® hJl7ªèzj.¦V0‚cVÕªUëÔ©“ñ’ìß¿¿bÅŠ^^^r ‚cV­ZµjÕª•ñ’sçÎíß¿¿qãÆ&~W5À‘)±Ý¨"´•sÐ:ÍS[:P®Œ±-‚#PÚŠÇTuþêÖ­Ë}¦`žÚFÇÖqìØ1N÷ã?J?N›6ÍÝݽ^½zr×Ås•‘‘áëë[µjÕéÓ§Ë] [RË<5íF5 8ÂúΟ??aÂÿððð,OMž<ÙFÛÍqå<2dHÕªUK”(e£1ž>}ºW¯^^^^%J”hܸñܹsÓÒÒ¬5´¼WnÞ“’’4hàåå¾råJk•š#{@F´åÅ Žv@p„õÅÆÆ !&MšÔ»woãå'Nœ8pà€6šãÊ“““7nüÃ?¼ôÒKƒ º|ùrûöíOœ8aõ1ÆÅÅoÛ¶­}ûö£F*\¸ð¨Q£zôèa•¡å½r³ÇX¶lÙµk×>|¸]»v6½c€ €çÐn„uéamµjÕ²Ã[”æèÑ£BˆÕ«Wëõú_~ùE±ÿ~é©gÏžmß¾}âĉåË—BLš4ÉŠÛÍ{å'NB,]ºTúñòåË¥K— ±ú;wîìääôûï¿^Æ´´´¡C‡6Ìøí Bˆ"EŠX8À¼Wná%ÒaZ¿~ýƒ¬v`lyhRèÙj™§†zp;ØÓ§OGåááqäÈ‘J•* !ÂÃÃ7n,=pùòe!D³fÍZ¶l)c·nÝÒëõžžžÆ =<<„wîܱî³\˜|ÿþýéÓ§;;;wïÞÝÂQ¸¸¸ä±rKÆ(IJJÚ°aÀ–-[¶fÍš·ß~Û6Gã9–— @;¬tv#WÆØÁQÙt–¯Â¹|?ž0kÖ,)Q !*T¨ðᇎ?Þ ¦¥¥mÞ¼9·g;wî\ µ=~üXQªT)ã…nnnBˆ{÷îåý^KƸgÏžwÞy'66vÁ‚¾¾¾Öc–•Ÿ:uÊì1JV¯^ýôéÓ#FÄÅÅ-]º4·à¨œC(BÛ€ •M‘]¼xQѨQ#ã…–¯ùÑ£G]ºtÉugðŸ’îîîBˆ‡/LNNB”-[Öc¼råʰaÃ6nÜèëë»sçÎÐÐP+Ž1Ç•[2FɲeËüüüêׯߣGaÆ]¼x±V­ZV,;G–— ª˜§æbjµáG˜‹‹‹Âøì4!„““~—ÜÜÜò8!· kóôôtrrÊ2õy÷î]!„¡hÅ1®Zµ* àèÑ£‹-:þ|Ž©Ñì1æ¶rKÆ(„¸téRTTT¯^½„ݺusrr’ÎwTò¡”†v£ùH*DÇV³fM!ıcÇ‚ƒƒ Ož>>+V4Ü9åöíÛ•+W¹ÜãÐ@ºº6Ûñ$%%™ý»šãÊ¿þúk!ÄÆ¥oݺåééÙ¶m[ëŽ1##£víÚÕ«WOKKËwÍc¾+7{ŒU«V 0,™?¾bÇŽŠ=4êú¤¨·ã)Û݂ǘ9Eù¿[µ@ûç‡ý㈎# ¬P¡B³gÏîÙ³g```¯^½ *ôã?ZåbXi>ÔŠ¥öïßÉ’%}ûö:théÒ¥—.]úøñcÃwß­Zµêý÷ß0`Àœ9s,cttô… üýýœå©×^{-,,Ì’1æ»r³Ç¸{÷î+W®L™2Åx…Ç2dHŸ>}¦N*ã¡(ÁæèÚµkddä”)S"""ÝÜÜV¬Xa­oس¢R¥JíÝ»wìØ±ëÖ­KLLlÞ¼ùÊ•+ ׸¤¦¦&%%¥¤¤X8Fé룣££££³>ÞÛÛ[î*ÔÁn—Åø 8Xp”åG‡ý㈫ªa©Š+ª4Q=yòd÷îÝ 6dŒ`?´ÕŒàÇuèÐ!ÿ>}úÈ]cÔG¹wáQx»‘Ô¨rœãÇ"wŒ t(Úæ–gýv#wp´3‚#LBp ”ÛnT8ÎnÔ‚#š äyjÛ¤Fæ©íà€©h7ÂÁ€-1I­!GL¢èv£’ç©¡!ÜÇQ)üüüä.k³Y»‘eApTÇü¾K{âëwˆƒu¡ÝhVaLRk SÕ0 Á€|(ºÝ¨X´µˆà€š)sžÚÆ©‘åBp /´‚#ªåíFȈà@®h7˜íS#óÔ2"83¥§Fe¶¡iG`%LRkÁ€(½Ý¨@¤F@p@…”6Om¯ÔÈ Žò"8íF GGÔÆQÛÁ€çÐn,;¦Fæ©eGp€IŽüCíFEÍS3Ií`ŽÀ,öMÌS+Á€¿Ñn,H%ôÁ&!8 íÆ‚Ubïv#óÔ ApÁ$µ#8@»Ñô2Hàpt*HŽyjå 8ÓÐntxG€CSG»Q óÔ¤F@þäKÌS+ Áà¸TÑnôöñ‘¹ÝH¯™Ž0 Áà TÑn:]|\œ¬ÈÙndžZiŽ LRãyG€#RK»QγIȆàp8êHòR@jdžZŽ(’ŒíF¤F(ÁàXh7æƒÔˆÜ€â0O­LG€QM»Q®yjÚÈÁà(T“墘ÔH»Q±Ž(Œ,íFŤF(Áàh7æ…ÔÓPû·–™§V2‚#@ûh7æJa© Gp@1ìÜn$5¢€Ž£Ý˜3E¦F橎àÐ25¥F{¶™¡|GŒRS#íFå#84‹vcNRhj„*Ú¤¦Ô¨Á¹ÑndžZ%Ž ¢Ý˜§F¨ÁY٧ݨìÔH»Q-Ž­¡Ý˜•²S#T„àЕ¥F;´I°‚#Ú¥†ÔÈ<µŠÚA»1ËîPÑ΀*¸È]°6B©‘v£ºA»Ñ°#T´ .LU´@e©ÑvT•i7ªÁ»³Q»QU©jDp¨íFi/°`kG€º©/5ڢݨÂÔÈ<µP9¦F¨Á b´Uši7ªÁ V¤F•¦F¨ÁuRmj¤Ý¨^G€*9z»Qµ©ªÆ7Çä,))iÞ¼yG½víZùòå>øà¹ë¡ÆÔhÕÁ ¡âÔH»QÕè8æ 99ùÕW_]µj•"$$¤\¹r[¶l ;{ö¬Ü¥ÔÉZíF©ÑHî‚LŽ9øæ›oîܹ3dÈM›6Í;wõêÕÓ§OOKK›6mšÜ¥¸Ý¨þéiÚjGpÌÁ¡C‡Š-úÞ{ï–¼öÚk^^^çÎKOO—»:phªLVi7ª?5B8Ç1¥K—®U«–«««ñÂ"EФ¦¦¦¦¦-ZTîF©‘v£s°bÅŠ,KŽ9råÊ• @FŽÙnôöñVÝ ¡UǼœ8qâ§Ÿ~Š?qâDÕªUg̘aâýüü²,Ù¶m›Ü£qh×®]“»dÅAQ&%oŸ¸ø¸x/w!ã-D|¼™5{ûx !~Û÷[åøÊrÃR>>>qqqfï yµoß^î”‚à˜—˜˜˜uëÖI}õºuë.\Øô7Ê];²òöö–»dÅAQ&%%×–3Nèõf9=]9¾²úžõŽ"û_ëÙ;D‚‹còòúë¯GGGïß¿ÿ£>Ú¾}{ïÞ½ÿúë/¹‹Gäp“Ôš8©ÑhOpv£Fh*8ž>}:ï˜1_¬ÓéÊ—/?pàÀ^½zݼysûöírŽ*S£ev¨áBE4_ýõÿû¿ÿËñŽ9‰‰‰#FŒ>|x¾+¹téÒǼuëÖ,ËëÖ­+„¸uë–Ü£¨ÙíFÍ¥FÚZ¢©àèááñÍ7ßôêÕë?þ0^¾}ûöN:mݺµZµjù®¤T©R?ÿüóO?ý”eù•+W„šÏÏ•r v£Nƒ©£©à¸iÓ¦^½z9s¦K—.Ò&%%5êÃ?LJJ4hІ ò]‰§§§ŸŸßþýû### /\¸°råÊ%J4iÒDîQ€Qkj4£Ý¨Ñï¤Ý¨1šºªºD‰S¦LéСÃ'Ÿ|2iÒ¤-[¶ÄÅÅݽ{×××wúôéõêÕ3q=Ó¦MëÓ§Ï{ï½X¹råÛ·o=zT1sæLwww¹G ÐP Mu%Í›7_½zuÙ²eÿý÷»wï6lØpýúõ¦§F!Dýúõ7oÞÜ©S§û÷ïÿú믷nÝjÛ¶íÿþ÷¿W_}UîÁ€qˆv£¦§§i7j¦:Ž’ß~ûíÓO?½ÿ~ݺuïܹsüøñ¡C‡N:ÕÓÓÓô•T«VmΜ9r—£¤FŽLSLJ†‡‡<øîݻÇ_»ví¦M›:tè°wïÞN:e¿ÞÙh=5ÒnÔ$MG)úúú®]»öý÷ßwvvvss›7oÞìÙ³u:]xxø Aƒä®?í·µž¡Uš ŽwïÞ}çwÖ¯__§Nãåaaa7nlÞ¼ùþýû宵¦F“‡ç©‘v£ViêÇ•+Wæø”——×?ü!w€¼¨85šÒnt€ÈmÓTÇ1·Ô(Ñétýúõ“»F€‘ŸÛ´5KSG€ª©¸Ý˜ßÀ„ 5B ŽEPqjÌ»Ýè0F8‚#¶áHÆ¿GL»QëŽùi°ÝH£Z¤©‹cjDjÔÚŽ€Ž#@N*N¹ŒGGLpZ Ž[·n]¾|ùü‘Û?z¢¢¢ä®  ÙÛÙhÌÜ´‚¦‚ãÎ;GŒ!=vvv–»@>´ÓntìF#©Ñqh*8~ÿý÷Bˆþýû¿ÿþûnnnr—È‹ºS£q»Ñp4š Ž±±±•+Wþ補œ¸èM#©Ñ±™;ƒv£ÑNÀzöìÙÇ«T©Bj؃Ôh$2Á‘h'c999¹¹¹]ºt)##CîZyÑB»‘éi!íFÇ£àèìì}*W®¼jÕªÈÈH¹kmRbjÔe6IGjDŽ4Õq\¼x±^¯ÿä“Oz÷î-„رc‡búôé­[·þã?Ú·oÿßÿþ·uëÖr— Z£ÐÔ¨°ŠT„ÔˆÜh*8^¼xÑËË«_¿~Ò‡.\¸ðK/½$„¨^½z5âââä®´Fq©±@sÓÿ¼‹v#?MMU'%%¹»»KÓÒÒΟ?P¸paiI±bÅîÞ½+w )ÊJ›þç¤ÆÐnD4+V¬xíÚµôôt!ÄñãÇŸ‡Ôˆ¼i*86iÒ$))é›o¾¹~ýú7ß|#„ ’žZ²dÉýû÷kÖ¬)w Ji7šñ>> r×êc×Ôh»È(Hÿ 5Â<šº8ÆÍÍíÑ£G¹=›˜˜X²dI¹k•±_j´õEÓ¤FÀbšê8Ö©SçÏ?ÿ<}útö§¢££¯_¿îïï/w &vJ6í2þ½ Rã?h7Âlš Ž½zõÒét£G>wîœñòsçÎ1BÑ¥K¹k±CdÄóH°„¦¦ª[¶l9xðàÅ‹¿öÚk>>>Bˆ;w>>žžžrjb«Ôhÿï $5f"5Â*4%eÊ”iÔ¨‘ÜU€úØ$5ò5Ó²"5ÂZ4›5k–ïk¢¢¢ä.”ËÇÛÇÊ©QÆÈH»°6MÇäää,Kôz}FF†ôØËË+Ç{ƒ$:¡‹‹ÞV[òuI™h7Š4ÏŸ?ŸeIzzú7~ýõ× <}útÒ¤Ir× %ÍPÇ‹x«¬KY'¦I™H°.MÝÇ1;ggç*Uª 8ð›o¾yðàÁÈ‘#ùü@vV;¯Q ÷e$5f"5Âê4 š5kV³fÍ«W¯^½zUîZ@Y¬“•a„Ô[p”à(„ðððB”+WNîB@[i7þ½H° M㘇ÇŸ?ÞÝݽxñâr× bQ»Qös³ÖCj”v©¶¢©àxèС—'&&FDDÜ¿¿M›6r× b~jTZd¤FÃn 5†4û÷ïŸÇ³%K–>|¸Ü5€R˜™©Ñ°H°-MÇýë_¹=UµjÕ.]ºT©REî@ÌIÊŒŒÈDj„h*8Κ5Kî@ œi7’a/š Ž€|,5*<2 R£´H°uÇ={öô-ÁÁÁrW ²)@jT~d¤Fia?êŽï¾ûnAß#wÕ SR£·Oæ7U+?ŠI°;uÇ<®†Ë?5ê„">.ÞÛÛÛ´UÊ;R#©2Pwpäj0E>©ÑxV:^îZM©‘Ôy8ÐW~ôÑG¡¡¡rWö–WjTÔ·Âd¤FÈEÝÇìwíÚ•eyJJʯ¿þêìì,w`W¹¦FU\û’ó½ÝHj„Œ4oݺջwïëׯçö‚¾}ûÊ]#ØOΩQ½‘QI™¦‚ã?üpýúõ&Mš„……mÞ¼ùðáß}öYÑ¢E/\¸°bÅŠ¾}û~òÉ'r×v’55ê2¨7uI›¦‚ão¿ýV¤H‘ùóç—*U*44´U«VÞÞÞ-Z´BøøøL:µgÏž¾¾¾r— 6÷\jTu‹ñŸ!‘IŸ¦.ŽùóÏ?«W¯^ªT)!DùòåË”)söìYé©=z”)Sæ‡~»F°¹R£f®}!5’¡ šê8 !œœþ‰ÂU«VÿûÆÎÎÎ~~~§OŸ–»@°-Ðéu™ CIÃáS£© ¡©Ž£——×üñèÑ#éÇ*Uª=zÔð¬N§»víšÜ5€-é„^ê6j Ëø÷ˆ=5êtº¸¸8¹«þ¦©àئM›”””1cÆ\¾|YѸqã+W®ìß¿_q÷îÝcÇŽUªTIîÀ643+ #ÌPCi45Uݯ_¿íÛ·GFFêõú… ¹¸¸ 6¬aÆ.\xüøqǎ宬M'„æ§5—0»ÝHj„iªãèîî¾råÊQ£FÕ«WOQ©R¥O?ý455õÀ÷îÝkݺõÀ宬D÷O—‘Ô¨=¤F(“¦:Žiiiîîîï¾û®aIïÞ½ÃÂÂΜ9ãéééãã#w` Ïß^'Ÿï¡V)N:NAj„2iªã4sæÌØØXã…%J”hÞ¼9©€d;‘‘Ô¨1R£‘ÔÅÒTp¼wïÞþóŸN:½þúëk×®5\^ ê¦ËùÚR£Æ0= åÓTp\·n]ÿþý===Oœ8ñé§Ÿ¶lÙòã?6¾#¨Œq^Ôgy†Ô¨)¤F¨‚¦‚c½zõ>þøã={öDDDôêÕ«páÂ?ÿüsß¾}Û¶mûÝwßݾ}[îÀdyÞ^‡Ô¨1¤F¨…¦‚ãßCrrjÚ´é”)S<¸pá°°°;wî|õÕWÁÁÁÆ×Í€éò¿##©QcHP G—Ù³g/_¾ÜÏÏ/==}Ïž=r¹È}VúùW‘µC§Ó‘¡.šºO111Û¶mÛ¶m›ôeMR'ÒÄ÷¦¤¤üøãëÖ­»víZÉ’%kÕª5pàÀ–-[Ê=&š£Ë|`Bx 5j ‘j¤ÁàxþüùíÛ·oݺ5!!AZÖ±cGSÖ––Ö¿ÿ“'Oº¹¹5oÞüÉ“'‡Þ¿ÿ‡~8tèP¹Ç@+ž¿£ /'5j©*¥©à8kÖ¬íÛ·_½zUú±zõêaaaaaaÕªU+ÐzÖ¬YsòäÉFýç?ÿ)Z´¨âÒ¥Ko¼ñÆ·ß~êïï/÷@¨YAZŒFo"5j©ꥩàøý÷ß !<<<:uêV·n]óÖ³mÛ6!Ä'Ÿ|"¥F!„¯¯ï!C¾üò˘©€-F£÷‘µƒÔUÓTpìÑ£GXXX“&Mœœ,ºè'>>¾xñâYr§¯¯¯ÂÐ΀072 R£†ð]‚ÐMÇiÓ¦Ye=‹-rqɺgÎ;'„¨R¥ŠÜ£ fÍJ?¿R£FÐh„6h*8ZK:u²,‰ŠŠúî»ïŠ)Ò¥KSÖàçç—e‰4ý ¹\»vMî•¶Š··">.þïŸãÍY‰·O\|\¼yo6—­‹·O|\œˆ·ë dçããoýaQ…öíÛË]‚Ró‘žž¾råÊ™3g¦§§õÕWîî+&&Fî‘•···Ü% + ”ç[ŒÞÂüþÝk”cÙð¸ètB¯×ÜQÏwÐVè5jðâ*ÙÿZÏÞ!rǼ>|xòäÉ—/_®P¡Â_|Ñ¢E ¹+ TœÅ˜Óʘ¡ÖNj„ös–šš:kÖ¬ˆˆWW×>ø`РA†+¬àŸÅ˜Ó*IZÀIÐ$‚c222F½cÇŽ6mÚLœ8ÑÄÛ†p 6È‹BÐ !H@j„Vs±cÇŽ>}úLœ8QîZ(ŒU§¤Ÿ_±ÂáR#ÓÓÐ6‚cVz½~ÅŠ%K–üè£ä®€bئÅh´zR£Ðh„泺sçΕ+WŠ-Ú·oßìÏvíÚõ7Þ»Fvd³£ÑHZ@j„# 8f%Ý.+%%åìٳٟåÂjÀQظÅh´R£ê1= ÇAp̪aÆ܅ph¶o1mŠÔ¨z4áPŽ „°_‹Ñhƒ¤FÕ#5ÂÑ8<;¶¶IjT7¦§á˜Ž•Ý[ŒF[&5ªF8,‚##_^¾Å·p”ÔH£ŽàÀaÈ1%ýüö5Úh”‰ŒppGZ'k‹Ñ¨ R£ŠÑh$G¥Œ¼˜Y ©QÅh4Gš#÷”t¶rHjE£È‚à@+”Ôb4*ŠÔ¨V4ìŽTN‘yQhûj¡ñÔH£È Á€j)lJúùÒ4ÝhBÛ©‘Èä†à@m”Úb4*PÓ©Q»¡ŠF#/‚#•P|^Ì,“Ô¨J4S(ž‚§¤³UJjT€éŽ”J%-F£zIêC£(‚#…Q[^\@­N43(ƒ óbfáÚm4 -§F"#`‚#¹©çÆœj'5ª FÀGòðöñþû‘jÿ×rjÔâ͉Œ€åœä.€ƒÑýý_|\¼Ð“Ij4j+`IsÓ¤FÀBGö"EF½Pu^Bè„NéÑÛÇG{‘‘3k!8°1Ýó‘Qå¤È¨ÕÔ(tºø¸8¹‹°âht4ë"8° vZŒFcÒl£Q­] Cdl‹cX•jïªcÂÈHêÀE0€íX‰šïª“ßÈ´~o¡‘ ¨‰Œ€­XF»-ÆÌñÑhT®€ì€àÀ,ZÏ‹™£$5ªFÀnŽ Â1òbæXIJGdìŒàÀŽ”'5ª‘Á@ž´{ÉKî#¦Ñ¨hDF@FG9q°£Ñ¸IŠÆ0€¼ŽŒ8j^šŸžªO4% 8p輘¹´Þh*>©‘È(ÁplŽw cNû@ë©Qµ‘‹È( ÁpHßb4 5*‘P&‚#àHÈ‹F8©Q™ˆŒ€’@^ÌFûF¡¾“‰Œ€òí"/æBû©Q…Ù‹ûìª@p´ˆK^rÁô´ÑhT„àh-Æ>>‚È Nr¨“.ó?}æ° ©Ñ¨ÙÔ¨Ó)$5ê2ÅÅÅ‘ä†àyÑŽtB§ýéi½^öÔ(åE}&¹w Ecª0 §0Ú—ö#£ÿŒFNdPPG OœÂhwœÑhûís{f"89!/Ê„F£·O‹€EŽÀó˜’–öS#‘€Ê!-F™i|zZ¾F#³Ò¬‹à‡G‹Qn4m³YZŒ¬àGE‹Qh4Ú`›´ØÁ†¼¨>Þ>šŒB†F#-FvÀ Àá0¸q·bHwöŽ‹“» Ï®_cøÆnß ÀŽÐ::áíãM^Tí… ½¾ †o|`Gh—Q‹1>.^îj õ¯´W£‘#qŽ#4‡³•‡‹`¬´Îb 3‚#´‚¼¨TZî2 {\Ã…Ò”ƒàõãFŒJE£Ñâ-Ðb ,G¨-Fe£ÑhÁºi1P(‚#Tˆ£²Ñh´`Ý´(ÁêA‹Q ´Üh´Yd¤Å@-ŽPZŒj ýF£µSy€ê¡lDF• ÑXÀU2% @•ŽP$f¥ÕCËFkGFZŒÔŽà…¡Å¨ZŽŒÂšsÓäEšAp„2ÐbTæ¦MX y€Ö!7ZŒj£åF£U##y€ö!"£ i¼ÑhYÔ£Å@óް;f¥Õ‰Fcîï&/pGØ-Fu"2æòVò"‡Cp„]UK³sÓæFFò"GFp„UKãÆÆ>ò"‚#l…ÕLã‘Q¬ÑÈ%Ò`@p„µÑbT9æ¦3_N‹²"8ÂzˆŒ*§ÙFcA"#yòà$wJçççwêÔ)¹ Q6:!ô¤FµÒ ÔhÔZjÔéþ>1¿¨Ë¤Ï$wé Dtó!w ÊF—Qý´<7mB^”ÀÇœ%''_¼xqãÆ«W¯–»¥"2ªŸÃÎM“À<Çœ………ݼySî*”ŠÈ¨~ŽÉ‹`!‚cÎ>ÿüó§OŸ !V¬XqðàA¹ËQî°£Úœ›Î=2’ÀZŽ9kÕª•ô`÷îÝr×¢´µB›Æ\"#y¬Žàh~~~Y–lÛ¶Mî¢Ìáíã-„ˆ‹Bˆx¹«±Àµk×ä.Af>Þ>Bˆ¸ø8!D¼2Ž¥åÅÛÇG'„ñÊÇÇGz'-">^ãU >, ÄA‘]ûöíå.A)Ž6#w 3ê2z o¹«±oo-ŒÂ<ÿÌM+l˜PŒºŒÞ/ ¿h5ŽüaQ,м²ÿµž½Cä ŽÈ‰Ž‰iÐàÜ´Qd4„EA^» 8âyœÎ¨ŒŒâï[3ê¤ÛzÀîŽÈDdÔ ­FF]æò"È…à"£¦hïV;œ¼ÊAptlDF ÑX£‘¼ DptTDF ÑRdü'/ ‘ï7MìŒàèxˆŒ¢ÈøÜÅÑÿŸºGZå$wJ7mÚ´˜˜˜^xAîB¬DºÏ)k‚t:£zS£N§Óétz‰¡ËHj¥"8: wgÔЩ÷"]¦¸¸¸¿£t{"#(ÁÑèh4j‡!2ª.5ò¢^oè0 "#¨ ç8j]F­PãéŒy}³‹Nç-8—T†Ž£v17­ªë2fo.>—3»ŒñqqrW (:ŽZÄuÓ¢¢só¿ó¢Ñ×LÔˆà¨9tµBsÓyMF?ÿ:ér× °ÁQCh4j…ò#£©_ëbˆ•DFЂ£VÐhÔ%GFS›‹™¯–^'wÕk"8ªFMPld,ðwF@»Ž*G£Qý” œ‘´à¨f¤F•SZd,Ødôóï”Þ#÷¶EpT'¦§ÕO9÷Ù1§¹hôfér`G¢Ñ¨rJh4šß\4Z…ôfG°3‚£ÚÕLöÈhQs1s"sr ‚£z0=­f2FF+43W$­ÂþC(ÁQ%h4ª–\‘Ñ ÍE£uI+²óJCpTR£:Ù?2Z­¹h´Fi]v@ÉŽŠGjT!;GFk6V*­Ñ>C¨ÁQÙHjc·Èhýæbæz +µõªCpT*.…QûDF›43W-­×¦õTà¨H4ÕÆ¦wó¶UsÑhÒªmT?@3ŽÊCjTÛ5mØ\ÌÜ€ÈÜ€mö @kŽ CjT[DF›737#mÀfû MG%!5ª„u#£ÂbæÆ¤ÍØv+"8*©Q ¬m>ýüÆDæÆl¾-€v•Ô¨xV‰Œvm.fnRÚ˜=¶Ð:‚£•ÍòÈh׿¢ÑV¥MÚo‹­#8¹²$2ÊÐ\Ìܰa«öÛ(À1åF»Q‘Ì‹Œ²…ÅÌÍK¶÷vƒà(+R£ò˜噉6Ú¼Èܼ [8‚£|H S È(ss1³ióòlàxŽ2!5*‰é‘Qææ¢QRrÖp<G84S"£"š‹™¥ê³ €£"8Êv£ä3 ’J‘»€C#8Ú©QnyDF¥ÌD$2 ’»Žp$9FFÅ53Ë’ ’»þAp´/Ú2ññöF‘Q¡aQÐb(š“Ü8R£tB§º¸ø8½Ðë2éÈ] T¥îïÿôú¿ÿ@yè8B›¤Yié‘ÂGø¥5ÿ.)i€jÐq´Úö"õî„NHÿImŸ¸8e¥Æ,-FÔ€Ž#´C¹g.>_¥TŸÜuP`G» Ýh3ê‹‚«^Z@p„*ý“õÒÿ(5‘Bp´=ÚV’¥¹húLËU®T¨Üu`5G(]öos‘®+Qhd¤ÅÐ.‚#”(·3•Ûe$/ÁÑÆ˜§.ˆ<¾*Zé‘‘¼pGÈ,ßË¢i1ÁòÈ£¹ø÷ 2¿úEY‘‘¼p`G[bžúy&ÞsQ‰-Fò"GØA¾ÍÅ^©´ÈH^ÀÁ¶bz^ŠŒäEŒmÆ!ç©Íø@eEFZŒäŽà+(PsñŸw)'2’0Áæ3// åDFò"ApDÁ˜1ýÏ{r‡ò"f!8Â$f7ÿ~»ZŒäE,Cp´ ­\ca^JˆŒ:Â[°”“Ü@‰t™ô™ÌY‰Ðé„N/ôò¤Fîïÿôz¡×ÇÇÅÉPÚBÇÿ°¼¿ø÷zdì22 €Íaå¼(d‰ŒäElà踬•…Œ-Fò"vDpt8VÌ‹B®ÈH^@GGaݼ(d‰ŒäEdEp´ Å«çEaÿÈH^@ŽÚd»¼(ìÉ‹( ÁQk¤Èhż(ìÜb$/ TG°E‹QØ32’P<‚£ºÙ(/ »EFò"êApT+[LI ûœÈh‹‚¼€šÕǦ‘Ñy‘°€:UC­³ÒäE´‚à¨6j1 ›FFò"šCpT4•ÈÈÉ‹hÁQ¡Ôt"#ÍEÁQqTÉ‹8‚£‚ØîK_„µ"#“Ñ80‚£"(ý{i.‚£ìÉ‹ÀÁQ6 ŒLF€\å¡Ó鬭p"#ÍE‚£½Y·ÑhQ‹‘æ"(‚£]Y±Ñh~d¤¹ÌBp´«¤F3g¥i.‹íÁ*ÓÓæ´i.ë!8ÚœåÆ‚EFš‹À6޶eIj,ج4ÍE`cG2;5šÚb¤¹ìˆà¨,ùGFÂ" ÁÑV ÔnÌVš™h 7‚£M˜žój1Ò\Jâ$wʵvíÚ=z¶lÙ2<<<11Ѻë× NèôBÿ\jÔéþùO¯ÿç?X¦}ûör—€¬8(ÊÄqQ  ”ƒŽcÎæÎ»páÂâÅ‹7iÒ$!!á§Ÿ~ºtéÒòåË‹-jášsž•f&(ÇÄÄÄ|÷ÝwžžžÛ¶mûî»ï¶oßÞ¯_¿Ó§OÏž=ÛÄ5ä8OmÜbÔ }ÎÍE¥"8æ`Íš5#FŒððð–Œ?ÞÍÍmëÖ­f¬ðŸÈ¨ÌD•"8æàÈ‘#NNNÁÁÁ†%ÎÎÎAAA÷îÝ;~ü¸éë1tõ:ñwd$,Õ"8f¥×ëcccË–-[¶lYãåµjÕB\½zÕ”•çE½ ,-à☬?~œžž^ºté,ËÝÜÜ„÷ïß7e%zð«U˯–B??¹Ç!„ðã@(E™8. ÄAB³JIIB/^<Ëò%J!|ø¥K—ä„É‹‹óóó;uê”Ü…È€àhsçÎýôÓO/_¾Ü¤I“%JüôÓOï¼óNJJŠÜu9„‚îü´´´þýûOŸ>ýöíÛÍ›7¯Y³æáÇøí·ßÊ=í°ä¡×ë?úè#Ã7ÅÃZÌ8(‘‘‘½{÷ŽŒŒôðð )Z´¨´Ä××wÈ!éééLX[…%ŸˆK—.Í;·víÚrBkÌ8(?ýôSrrò!C5j$-©_¿~‡îÞ½{æÌ¹¤f”ãÇ !Þzë-iIóæÍýýýÿøãû÷ïË= í ëÛ·ïêÕ«å.DNG+8r䈓“Spp°a‰³³sPPн{÷¤9lÇŒ_¼xñºuë/ôõõB\½zUîiÙŸˆ´´´qãÆ•)SfüøñrBkÌ8(ûöíÓét]ºt1^8sæÌ˜˜˜^xAîi¥B… B㌨×ë“’’œœœ Q¶óùçŸÏŸ?þüù-Z´»Ùð{f)½^[¶lÙ²eË/¯U«–âêÕ«7–»FÍ2oç/Z´(ûŸ°çÎBT©REî1©ž%Ÿˆo¾ù&::zÉ’%¥J•’{šbÞA9{öl™2e¼¼¼Ž=zâĉ¤¤¤Úµk·iÓÆÐª‡%Ì;(¯¾úêòåË?ÿüóbÅŠ5hÐ 11qþüù×®]ëÕ«Ÿ;hÕª•ô`÷îÝr×"‚£¥?~œžž^ºté,ËÝÜÜÄóÿ.„Õ™·óëÔ©“eITTÔwß}W¤H‘,͘ÁìOÄÉ“'/^üÆo´hÑBÊñ°3JjjêÇkÖ¬9iÒ¤U«V–W©ReÞ¼yrIõÌû¤øùùEDDôïß¿ÿþ†…o¼ñFxx¸Ü‚£`ªÚRÒåoÅ‹ϲ¼D‰BˆÈ] –Y¾óÓÓÓ—/_>xðàÇùå—îîîrIõÌ;()))ãÆ«R¥ÊèÑ£å™qP>|(„ˆÝ²eËŒ3>¼wïÞ>øàúõëÇç––3ï“’œœüå—_>zô¨nݺ¯¿þú+¯¼R´hÑ_~ù…KÝa7t-UºtiN÷øñã,Ë¥›‰Hÿv„X¸ó>غu+©ÑZÌ8(¿ÿþûªU«Þ}÷].¹°3JñâÅ]]]‹-b¼¼M›6Bˆ .È=&Õ3ã Ü¾}{÷îÝ5kÖ4¤F!DÅŠßÿýgÏž­_¿^î1Á!­ÀÓÓóÞ½{Ò§Ý >>^zJîê4ÎŒŸ‘‘1zôèåË—·nÝzÇŽÆ £Ëe]=(Ò÷^ÌŸ?ß/Ók¯½&„ذaƒŸŸß«¯¾*÷€´ÀŒOЇ‡G¡B…t:ñBéÃ’––&÷€´  åÞ½{BˆêÕ«gY.5ïܹ#÷€àŽVкuëôôôß~ûͰD¯×ïÝ»·L™2rW§qfìüˆˆˆ;vôéÓçÛo¿¥%l =(ÕªUëô<éÒÅŠ+vêÔ)((HîiŸ”äää‹//”nÃ6­¢ ¥zõêÎÎΗ.]ÒëõÆËcbb„5kÖ”{@p rß\ ®_¿^»víöíÛ?|øPZ²páÂZµjÍœ9SîÒ´Ï”ÿ×_ÅÅÅ]½zU¯×gdd´iÓ¦Q£F)))r×®Y=(Ù={–oޱ.3ÊùóçkÕªÕ£G{÷îIKNŸ>ؤI“»wïÊ= -0ã ¼ûjÕš7ožáË{.^¼Ø¬Y³€€€ØØX¹ä@>ùä‡ýæ.ޱ‚Š+Ž;vÆŒÿú׿^z饄„„¨¨¨ºuë¾ýöÛr—¦}¦ìü½{÷Ž9Ò××wÓ¦MwîܹråJÑ¢Eûöí›}m]»v}ã7ä“êô È]¯C0ã øûû5jΜ9íÛ·oܸñãÇ9¢Óé>ÿüóråÊÉ= -0ã L›6­{÷îóçÏß²eK:uîÝ»wìØ±ŒŒŒO?ý´Fràh,_¾ü/¿ü²eË– *¼ñÆ#FŒîª[+Ðοvíš"%%åìٳٟåká¡@f”wß}×ÝÝ}ùòå,S¦LëÖ­?øàék–`=(îîî[¶lY¸páþýû÷ìÙS¦L™—_~ù½÷Þ«W¯žÜC£ÐéŸ?UÈÇÀ$G˜„à“`‚#LBp€IŽ0 Á&!8À$G˜„à“àcÇŽõóó;tèÝVõÿ÷~~~+W®4~מ={r|äEp5Ù¿ÿÞ½{宀ƒr‘»ph!!!îîî52ñÙ1cÆ$''Ÿ?^îÂ8"‚#È©nݺuëÖ5ïY°3¦ª¨RzzzZZšÜU€c!8P é‘˗/O:µqãÆuëÖ þàƒ²\€"½ìÆ'OžìÖ­[ýúõ¯]»fxvË–-C† yùå—›5kÖ¿ÿÿüç?éééÙ·µÿþáǽ÷Þ{ûöíËò‚»wïΙ3§cÇŽ 6lذa§N¾üòË[·ntU‹/ÎãòãggΜéçç—˜˜˜žžîççîçç·bÅŠ,ïš3gŽŸŸßW_}%÷ 5G*óÉ'Ÿ¬X±âÉ“'ÕªUKLLܱcÇÀ¿ÿþû,/‹ŽŽîß¿ÿÙ³gŸ>}š‘‘!„Ðëõ}ôÑÈ‘#wïÞ­×ëÝÜÜ¢¢¢fΜٷoßÄÄDã÷nܸqðàÁ;vìpuuMJJŠŒŒ|çw¾þúkà îÞ½Û·oßE‹ݸq£jÕª•+W¾zõê?üлwï‚®Êt7~ë­·Š)¢ÓéÞzë­>}útìØQ±}ûvã—éõúM›6 !:wî,÷± 5G*sâĉàààC‡íرãøñããÇ×ét_}õÕ¥K—Œ_öÙgŸÕ«Wï‡~8pà@ÕªU…ëׯÿå—_<<ÿüóÀÀ@iI… ¾ùæ›"EЬ^½úæÍ›†÷V¬Xñ믿.Uª”ÂÅÅeРA}ûöB|ûí·Ò ÒÒÒBBBÆŒS¼xqiI©R¥Â„ Æeä»*K8;;·mÛ6##ã×_5,ܸq£¢K—.r(Dp 2ݺu+R¤ˆñ’~ýú !Nž}ºFüá‡>ûì3Ó«5¬ÊBÎÎÎíÚµKOO—έdž€MÑq 2ñññY–ܼyóñãÇ^^^ÅŠËí]R¯1Ë ˆ©iÜ̾‰?ÿüóñãÇUªT)\¸ð_ý5uêÔÂ… /Z´¨U«VÆe˜R­ñª¬²C:tè°jÕªmÛ¶uìØ122²T©R!!!ÖÞë GªóóÏ?§¦¦/‰ˆˆBäñ.OOÏòåË߸qcÿþýÆËïܹ³{÷ngggÃÂuëÖe¹¹£´‰†  !Μ9“žžÞ°aCãÔ(„¸páBöíæ½*«hܸ±»»û¡C‡Ö­[÷äÉ“N:Y+’@G*sóæÍ#F$'' !222V®\¹téR''§>ø ï7Ž9Rñé§Ÿž={VZrëÖ­>øàÉ“'½zõªX±¢á•W¯^5jÔ£G¤M,_¾|Ù²e...C‡Bxzz !.\¸`¸ NzzúêÕ«¥q§¤¤o4ïU™'##ãñãdž¥k«ÓÒÒæÌ™#˜§`KLUP™Ž;îØ±£Y³fÕ«W—¦}œœFU»ví¼ßصk×C‡mܸ±[·n•+W.Z´èåË—322GŒaüJ??¿mÛ¶ýúë¯ÞÞÞׯ_OIIqqqùôÓO¥Ëh|||Z·n½k×®W^y¥Q£Fz½>&&&11±o߾˗/ÿùçŸ>|8cÆ SVe†Ò¥K'&&öîÝ»jÕª†ÛOvìØñ¿ÿýoJJJµjÕ4h ÷! YG*Ó¹sç¾}ûþç?ÿ9sæL‰%š7oþæ›o6oÞ<ß7:99Íž=;88xãÆ.\¸}ûvÓ¦Mƒ‚‚ú÷ï/]cðÃ?lÛ¶m×®]çÎ+S¦ÌË/¿<`Àã@öÕW_-Y²dË–-G­\¹rPPЀ|}}ÓÓÓ7nÜxäÈÓWUPãÇÿüóÏ/_¾üäÉÃÂF•/_þÎ;´Ø”.+ @QÆŽ»aÆE‹Ë]‹²ddd´nÝúÏ?ÿܵkW¥J•ä.€fqŽ#¨ÞÁƒoܸѤIR#›"8€º¥¤¤Ì;WÑ­[7¹k qœã*Ö¤I“'Ož¤¦¦Ö¬YSú²l°‚#ÕèØ±c­Zµ²‰Ÿ#«P¡Â•+W‚‚‚¦L™’å°:.Ž€I8Ç&!8À$G˜„à“`’ÿ´½êÏ·ìIEND®B`‚statistics-release-1.6.3/docs/assets/ncfinv_201.png000066400000000000000000000570531456127120000221460ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A]òIDATxÚíÝy` ÷ÿÇñO’94r¸’ˆ«â(q5êL]Q"¾îVë(⬣uTëhÑ*J•ÖQJ´ŠºJ¥â¨#â!B(’AâHvÌ÷·ßí&b’l2{<í~fvö=3»òòžc-Ôjµ^ÅRé`Ž…àYŽ…àYŽ…à3uþüy‹ÿ×§O©Ïž=ÓL]¶l™ÒʼníÛ·ÿöÛo¿ýö[rr²;uêTi»uíÚõeóhoü—7n\ñoƒ-LrÝïË–-“Ö®Q£FÒˆœý(ßÇß}÷Ý *X[[—)SæÉ“'Jo¹Û€k¥ ”÷ÓO?1¢qãÆJR¬ÂÂÂ?~,„Ø»wopp°Òå ˜(²ß?úè£+VH¥wWŸ `Ž€P«Õ£Fú믿,,,”®Å츹¹ÙÙÙåwvv¦°bS¦L™ªU« !<<<Šbù{öì‘´hÑ¢k×®%K–Tz•Ù€ 8B½~ýúÞ½{+]ˆÙY·naö{ ¶°¢Ð»wï"ýðß½{Wz0a„Ž;*½ºŠmÀpŽ#ð_&LÈÈÈxålOž<ùä“OÚ´iãæææææÖºuëI“&¥§§kÏ£}~XZZÚ˜1c5jT¦L™zõê}öÙg/^¼ÐYæ½{÷FŽÙ¬Y3GGǪU«¶oß~ÇŽ9ßúîÝ»#GŽlÚ´i™2eªU«Ö½{÷S§Nà}?úè# ÍÃÖ­[[XXH§i/!++ëã?®X±âÇ,Í©R©6lØT¥J[[Û*Uªþøã9רˆ 4H*/((H{|ýúõÒx©R¥¤yñâÅ·ß~Û¼yóòåËÛÛÛשSç?ÿùÏÙ³g‹ºÂøøøz{{W¬X±wïÞ111³fÍ’jkß¾}ÎݤýÚ°°°œ§QÊÙæ…ßïòÏí{å‡PGrrrbb¢J¥’ž>xð 111+++_ÛA¿_¨l½ë•ú|z ÌRll¬æ[P£F éÁôéÓ¥©OŸ>ÕLýöÛo5¯:~üxµjÕr~*UªtðàAÍlS¦L‘ÆýüütfîÑ£‡v%{öìquu͹ÌÁƒk϶oß>777y,,,"""òû¾'NÌùv?Ö^B—.]úõë'=ž2eŠôÂwÞy'×FBCCsÖÐ¥K9ïÞ½ò÷ÚÎ;¥W•(Q"==]3>hÐ i¼[·nÒî{ã7rÖiaa±xñb™ŸŠ|&ٿٲeµßÑÙÙ¹K—.ÒãvíÚ彉zõê%;V3˜¯m^àýþí·ßJO6l˜G‘r>„:4«¯íÒ¥KùÚúýBåk;¨‹à[_àÏ'`Ž0SÚá§Ÿ~rttB”*U*))Iý’à˜‘‘!ÿ$„°µµmÛ¶m‡J•*%¸»»k¢ŒæOˆ¤J•*7¶µµÕŒ?~\šóáÇåÊ•“œœºwï®ÝK[³fMÎÙZµj5mÚ´°°0KËÿ1øþûïóõ¾)))ñññšÊüñÇøøx•J¥½„Š+j^%ÇŸþYóç­U«V}ûö­]»¶fž}ûöéÔPÁñùóçšS ·lÙ¢×ì—Ÿ~úI»;;»Î;k_ùdmm}ñâE½¦V«?~¬ UÖÖÖMš4ÑIŽùÝæÞïr‚£Ì¡ýG½|¡òµŠâ[_àÏ'`8T WWשS§ !222ríFHæÍ›wýúu!„ƒƒÃ¡C‡víÚõûï¿GGG»¸¸!îܹóÙgŸå|Õ¢E‹®_¿}úôiÍ_‘'NHæÌ™#Ý ¤J•*W®\‰ŒŒŒŠŠš4i’4õ»ï¾Ó™-44tß¾}Ÿ|òÉO?ýôÕW_IS§OŸž¯÷}íµ×ªU«¦ù“_¡B…jÕªé\”””T³f͵k×FGG0@±k×.iRDDľ}û~üñÇsçÎ5hÐ@üûï¿ ¶ñ¥…:FëÌ%J”ÐM÷ñÚµkÒ~±±±‘Οۿ¿4iòäÉ[¶lùú믣££Û´i#„ÈÊÊÚ»w¯Þ B|õÕWÒ™|GŽ9zôh||¼fWL¶y!÷{ ð!Büúë¯jµÚÞÞ^z*Åq__ßo“¡òµŠâ[¯—Ï' ‚# „#FŒ¨^½ºbݺuÇŽËužßÿ]zðá‡jNªS§NDD„Î µk×>|¸ô¸F-Z´'&&JvïÞ-=;v¬ô§H*¦^½zõêÕ{öìYvv¶Ð ï¾û®fá °²²Bܸq#&&&_ïûJ¥J•úã?ÂÃÃ7nìåå%„èÙ³çÚµk×®];räHižôôtÍY¡÷ïß/ž=¥9t«Ù&ûö퓼õÖ[BˆÌÌLidÍš5+W®”òÜš5kbcccccCCC‹¢°-[¶HFŒ¡99cƌʕ+x™ùÝæ…ßïyÈ(èë %_Q|ëù|úÂUÕ€B”,Yò‹/¾™5JÓÐ'=hÛ¶­öø[o½%µ4®\¹¢R©4 !„ÎÁJÍ pškâãã¥Íš5ÓÌæîî~úôií^¾|9×·Ö¸råJݺuå¿ï+ùûû—/_^{Dzë´´´Ý»wŸ|(=Ö¹Ç[… ¤OŸ>½{÷®öTã_:Oµ—éääô²ÂÒÓÓ_yÏä”””<Þ¨÷§Ôtk4ž?þÑG}ýõ×Ò%±B;;;WW×{÷îf³ç÷®7ÒÑj)ŠíܹÓ××WJù%J” ‘æ™>}zzzúŠ+ž={&„P«Õ§N:uêÔ¬Y³Z´h±yófÍipú*L{Wº»»kOÒÉßù’ßm^øýžÇ æ÷CXôò…Ê×Zëý[/ôôù”¡jà,X uržšæàà ]@#„øçŸ´'iž–,Y2_ÿâ—)SFs–}jjêËfspp(S¦ŒôxÏž=ñ¹ Óï¦Èù×nÖ¬YóçÏÏÊÊòòòZ²dÉÙ³gÓÓÓ5Y­8õèÑCz°k×®ØØX)EIHi¼D‰ß|óMrròÏ?ÿ®}Ëî?ÿü³(~3ÐÁÁAsŸæž…’ÂkÃÙæŠ|óKæ*_k­÷o½Pâó èÁøŸºuëºøš£ZÚ'VÞ¹s' ((H:¼%)„ÈÊʪ¦ÅÙÙÙÉÉÉÉÉ)×ß8ѯ%K–H/^üÁÔ­[×ÚÚ:))©¨ß7§Ö­[Kk<¸mÛ6iPsœúÙ³gwïÞ½{÷î³gÏÞyçµk×Þ»wï?þÐç¤ñãǯZµ*11ñáÇ͛7¶²²Ú»w¯ô›Ò=}òeêÔ©«W¯NOOOHH¨W¯^ppðÝ»w5W{ 6LzðÑG­X±"--mË–-­ZµzóÍ7ÏŸ?¯¹œ3"""‹6^ÆÉÉI:kmæÌ™çÏŸ9rd‰%^6³½½½½½½4ÿ Aƒ¤_jÙµkW±ýfŒŽ=zH§9JWjNʬ[·®››ÛÝ»w³²²š7oÞ©S§²eË^¿~}ëÖ­Ò :¿S¢/cÆŒùæ›o>|øàÁƒ€€€Æß»wïÒ¥K9çÔÜO'33Óßßßßß?%%EsFQoó|íwmzÿÊÜù"ó %;èý[¯ÔçÐ:Ž€®‘#GæúCvvv7n”îM“™™¹}ûöß~ûMúûQ¥J•7¾¬U™WW×~øA:êîÝ»?ýô“æÜ¤I“4g³9;;ÿøãR+âÀÓ§OŒŒ”nêñþûïO›6­«©éÍ=ztܸqy÷],,,4µŒŒŒ­[·þöÛo*TÐÜ]Yç °¢¦9Z-Ѿƒ‰¥¥å–-[¤Ã¦wîÜY±bÅܹs7nÜ(ÝÔ=000×ÿž³³óÚµk¥3Ÿ={vèСK—.ÙÚÚæ¼»Jýúõ5÷¸ÎÈÈ8räH\\œ———¦¥W¤Û<_û]gõû!”¹òEæJþvÐû·^©Ï' /G@WÉ’%5Ç¡t¼ñÆ111S§N vsssqqiÕªÕäÉ“Ï;×¼yó‚½]×®]Ï;7dÈFÙÛÛW­ZµS§N‡š5k–öl!!!gÏž}ú´æñúõë5G‹öÀ---uš4Mš4‰Ÿ:uj£FÊ—/_¢D ggçæÍ›¯X±"**ÊÆÆ¦ˆªêÔ©Ó‘#GúôéãééY¡B…°°°C‡Õ«W/眫W¯ž5kV:uJ—.íïïÿá‡jî)]ÔÛ<¿û]›Þ?„2·C¾ÈüBÉßzÿÖ+õùôÂBsª äíŋ۷oMËY³fI?1×®];ͯÝÈÇ6`P8Ç€\%J” ¾3¶9ƒÂ¡jÈBp€,GÈÂÅ1…Ž#d!8@‚#d!8@‚#d!8@‚#d!8@‚#d!8@‚#d!8@‚#d1ëàxíÚ5__ß³gÏæ:uÓ¦M=zôð÷÷oÖ¬Ù¤I“ÒÒÒ”®@If׬Yó²I ,˜2eÊÕ«W5jdoo¿yóæ÷Þ{/33Sé’c­t HOO¿|ùò¶mÛ6lØë qqqË—/wss‹ŒŒtuuBÌš5kõêÕ_|ñÅÔ©S•.@æØq YjBlܸQ¥R5JJBˆ‰':::îܹS¥R)]>€2̱ã8kÖ¬gÏž !Ö®]û×_åœáĉ–––š++«–-[nÛ¶íÔ©S 6Tz `ŽÇæÍ›W¨P!çTµZ_¶lÙ²eËjûøø!nÞ¼©tù ˜XŒ‰RºÃbŽǼedddgg;99éŒ;:: !îß¿ÿÊ%øúú*½@:-}ÙŸõ¸¸8¥‹SÁQ—tétéÒ¥uÆííí…>”³óü02___vŠ¡a§&ö‹b§(ÈbLT®ßl›Dæx¨:oNNN:ã?ÿßw0CG]ÖÖÖŽŽŽ9;‹éééBÍuÖæ†à˜ 77·ÔÔT))j$$$H“”®@Ç\gggÿù矚µZ}ðàAggg¥«PÁ1=zô°´´üæ›o¤ó…Ë—/OIIéÞ½{‰%”®@\U‹òåË7nΜ9o¿ýv‹-£££kÕªõî»ï*] h×®]J—]ìÃÄ~1@ì‚cîX®\¹-[¶ìرÃÃãOŸ>£F’îÈ`žÌ:8~úé§Ÿ~úé˦†„„„„„(]#P†Å˜(õ—­”®Â°pŽ#d!8@‚#d!8@‚#d!8@³¾áðõõUº XÅÅÅ)] ßކ‚¿£0+¾¾¾üU@‚#d!8@‚#€.~¨:WGÈBp€,GÈBp€,GÈBpDALŸ>ÝÂÂ"$$$ç¤9sæXXXœ={V鋊§§g×®]óØ,¹ ÓÌöôéSŸÓ§O+½*‘œœ\±bÅÛ·o+]@GÜöíÛù奫ȷ“'OvíÚõüùóE´ü^½zÍ¡S§Nšf̘áïïïïï/„xñâ…µµµNÊ,W®ÜËÓ³gOwww{{û† .X° ++K3õáÇï¿ÿ~åÊ•ííí[¶l-§à–-[NŸ>]gðe‹*W®ÜÀGŒQD[`Èø­jœÝ‡~ئM›2eÊ(]K>ܽ{wË–-£F*¢å>¼Y³f/›zïÞ½ùóç9rDzšÝ´iS///Í<ööö¹¾öÚµkÙÙÙ]»v­\¹òÞ½{#"":ô믿 !ÒÓÓ6lxãÆÐÐP—ÈÈÈvíÚíß¿_J¨/súôé#GŽk潨Q£Fyxx;v¬qãÆE´ †‰àˆ‚›:uê¤I“¦L™òÕW_rQ*•J­V[YYé·Â"Zla,]º´Zµj 4žÆÇÇ !f̘¡ÝrñðáÃèèèFI¯4hÐÊ•+wïÞݶmÛùóçÇÇÇÿðÃýúõBŒ9²AƒcÆŒ‰ŠŠÊ¹¨¬¬¬¨¨¨¿þúkÉ’%*•JgjÞ‹*[¶lÇŽ¿þúëuëÖ)½9ÅŠCÕ(¸=ztèÐá›o¾9yòd³?~¼C‡îîîåË—ïСÃñãÇ5“<==G½lÙ2kkë * :ôÑ£GšΜ9âæææîîþöÛoÇÄÄh&ÅÆÆvëÖ­råÊ®®®íÚµÛ·oŸœÅ0@:jèéé©™ùäÉ“¯¿þú믿.-aÁ‚uëÖ-]ºtÙ²e7n¬Ç„´jÕª=zhžJÁ±zõêr^Õ²eK)5J†.„8zô¨bÆ }ûö•&yyy…††=999çÔW.*44tÓ¦MÚ{ `Ž(8 ‹Å‹ÛÚÚ¾÷Þ{ÙÙÙ¹ÎóÛo¿5kÖìܹsaaa½zõŠmÖ¬Ùo¿ý¦™aïÞ½~øaïÞ½-ZT¯^½¥K—FDDh&œ?¾oß¾}úô9zôh‹-®^½*„øã?5jtæÌ™ž={0àÚµkm۶ݰaÃ+;fÌé|¾¹sçþøãÒÌ7oÞlÛ¶í£Gš4i"„˜6mZDDD¹rå&L˜ðÁÛ¶m+ü»råJbbbÓ¦M5#ñññ666eʔٴiÓ²eË>üüùó\_›••5lØ0))j$&& !lllÒÓÓ/_¾daa¡™ÚªU+•J•뙎nnnjµZ­V_ºtIg’œE5mÚôÅ‹,ü6Äï ¾”úæããS /QÖ´iÓ„ñññjµzΜ9Bˆ H“fÏž-„8sæŒZ­~öì™§§gÕªU“““¥©ÉÉÉUªTñòòzöì™Z­®Zµª"22RšªR©êÔ©S±bEµZ••U³fÍjժݿ_š*Å”#F<{öÌÛÛÛßß?##CšôôéÓ€€//¯¬¬¬¼«V«·oß.„8pà€ôTšyúôéÙÙÙÒˆ———Ï‹/¤§<°¶¶:t¨fþ.]ºä±YrjÞ¼¹4ÃòåË…š5R«ÕíÛ··³³svvÖÌìççwòäI9{!55õ7Þ°²²º|ùòåË—…£GÖžaïÞ½BˆeË–å±)8N›6M3"sQ...cÆŒ)ðGÈÇÇçÚµk~9ŠûűSŠŸˆØ—÷ F÷‡[_8Ç…±víÚ©S§vïÞ½R¥JÚ“N:•°páBiÄÅÅeÔ¨Q£G>{ö¬tÈÕËË«{÷îÒT ÿ­[· !Μ9sáÂ…¯¾úJªZ¶lùý÷ß;88œ>}úÊ•+?ýô“4ÉÆÆfĈ½{÷>uêTÞ‹Í•‡‡Ç”)S,-ÿÛ€?~ü¸­­­µõ¿©©©BˆŒŒ ™¤W¯^+VÔ‘²©"11ÑÆÆF;&ÆÇÇ«TªéÓ§‡††–(QbëÖ­£GîÒ¥Kll¬££cïràÀ÷Þ{/>>~éÒ¥ÞÞÞÒý´ç‘– Õ/Ÿ´¦¯\”‡‡Ç7òµd€±#84‹1Q…_HÉìÒ[[[/_¾¼iÓ¦~ø¡ty¯Æ•+W„š%uëÖ•&I ÏÇÇG{ª&½I}¯:uêhO8p B:ÄÜ»wïÞ½{ësãÆ¼›+___íœÿúë¯?þøãÒ¥KW®\9þ¼ö-o^)«ªïÞ½[¶lYí‘ØÚÚjøôéÓaÆEFF4(ׅܸqcøðáÛ¶móööÞ»wo«V­„R4×9é0==]¡óޝ$sQ¯½öÚ;wòµd€±#84c9Á¢I“&ï¿ÿþÒ¥KµO^B¨Õj!„ö©rBéç/^HOmmms]¦tªŸ¦í§­dÉ’BˆyóæéÄJ!DÍš5ó^l®œœœ4Ÿ={Ö­[·;v4jÔè­·Þzûí·êׯ¯— ekk«s cùòåuæyë­·„/»Íäúõë‡ boo¿lÙ²j¶›››¥¥¥Î•.)))Bˆ *ä«H™‹zþüy©R¥ô²YÆ‚àýøüóÏýõ×áÇK7p‘x{{ !Î;÷æ›oj¥+£}}}ó^ Ô2¼páB‹-4ƒ³gÏNOOïÖ­›¢L™2mÛ¶ÕLºpá¹sç´#`Á>|xÇŽ .9r¤f0_Ç<¸»»§¥¥©T*©Á™˜˜¸}ûöV­Zùùùiæ‘z{UªTÉùòmÛ¶ýç?ÿyçw¾ýö[CÉÖÖÖ5kÖüóÏ?µ:daaQ«V­|)sQ©©©Ú÷ž˜®ª†~8::.\¸0))iñâÅšÁúõëW®\yÁ‚iiiÒÈýû÷çÏŸ_¥J•¼ïJ-„ð÷÷¯\¹òÂ… ¥ %„¸víÚôéÓ“’’êÕ«çëëûå—_>xð@š”žžÞ¾}ûÑ£GËïå¼y¡$))I¡ä"##Ÿ|xçÎíÛ·/Ì& ²´´ŒŽŽ–˜««ëôéÓ'L˜àííݾ}{''§Ý»wŸ>}ú³Ï>“޹¯_¿~èС ˜?þÅ‹/]ºäçç7xð`ÅvëÖ-$$¤ÿþ+W® 6l˜““Ó?ü‘‘¡ù-AíE½²Î¼%„ˆ‰‰ÉÈÈhݺuá>2#Cp„>-Y²¤V­Z™™™š‘nݺ:thÆŒÒ-þþþ›6mzã7ä,­k×®œ6mÚŠ+¬¬¬7nüÙgŸI÷Ên×®]ttôÔ©S×®]ûìÙ³×_ý»ï¾ËÙ¥ËUÓ¦MÃÂÂ~ÿý÷«W¯æ Ž•+WÞ±cÇG}´hÑ"77·   ˜˜˜ß~ûí£>úꫯ öïß&Œ?¾ZµjsçÎ]»v­­­mݺuwîÜÙ®];iêóçÏùä“O>qww/†Í0(œã·.]ºœ>>§OŸ.¶Â’““+V¬xûöm¥·&ÈZé`ÄzõêU±bEÁzõêiϘ1Ãßßßßß_ñâÅ ;;»ììlí™]\\’““s]xLL̬Y³<øøñã5j„‡‡1ÂÚú¿ŸØ‡N˜0aÇŽ÷ï߯_¿þܹs›4i"„(W®ÜÀGŒ±yóf¥7ÀÈpÇW"8¢à†Þ¬Y³—M½wïÞüùó9"=MHHÈÎÎnÚ´©———f{{û\_{íÚµÀÀÀììì®]»V®\yïÞ½‡úõ×_…ééé 6¼qãFhh¨‹‹Kddd»víöïß/%ÔQ£Fyxx;v¬qãÆJo!L ÁEeéÒ¥ÕªUkРô4>>^1cÆŒàààW¾6""âáÇÑÑÑ5’^5hР•+WîÞ½»mÛ¶óçÏÿá‡úõë'„9rdƒ ÆŒ%„([¶lÇŽ¿þúëuëÖ)½ 0)œãˆ¢²jÕª=zhžJÁ±zõêr^Õ²eK)5J†.„8zô¨bÆ }ûö•&yyy…††|øùóç¹¾6++kذaRRÔHLLBØØØ¤§§_¾|9((ÈÂÂB3µU«V*•*::ZzÚ´iÓ/^>~éÒ¥ÞÞÞgÏžB888hÏ#-!55U3âááqãÆ ·¦‡àhÐ^Ý”•ÇUÕwïÞ-[¶¬öÈlmm5ƒ|úôé°aÃ"## ”ëBnܸ1|øðmÛ¶y{{ïÝ»·U«VB!„Îù‹éééBíw|íµ×îܹ£ôÀ¤Q$lmmuNa,_^·{úÖ[o !Ο?ŸëÖ¯_?dÈ{{ûeË– 8PsG777KKK»?¦¤¤!*T¨ yþüy©R¥”Þ £ÁMåàâ ww÷´´4•J%=MLL\¼xñÅ‹µç‘Ú„UªTÉùòmÛ¶ýç?ÿéÔ©Ó¥K—Þ{ï=MjBX[[׬YS:“RãСCµjÕÒŒ¤¦¦º»»+½0)G ???•J%] -„°³³;vì!C^¼x!¨TªyóæY[[·iÓFçµjµzüøñ•*UZ³fιŒ’wß}÷úõëÛ·o—žÞ»w/22²M›6žžžÒHVVÖÍ›7ýüü”Þ ˜U£HYZZFGGKaÎÕÕuúôé&Lðöönß¾½““ÓîÝ»OŸ>ýÙgŸÕ¬YS±~ýú¡C‡0`þüù/^¼té’ŸŸßàÁƒuÛ­[·þýû¯\¹2<<|ذaNNN?üðCFFÆôéÓ5³ÅÄÄddd´nÝZéÍ€I!8¢H8;;ìß¿?,,L?~|µjÕæÎ»víZ[[Ûºuëîܹ³]»vÒÔçÏŸ?xð 33Süÿ­Â/^¼¨sh[Q½zõ‡ƒŽ7.222--- `ݺuÒï J8àêêšóF? 0Ž(ˆO>ùä“O>É{žaÆ 6lÑ¢E666ÒH÷îÝ»wïžëÌýúõ{ñâEll¬âí·ßV«Õy/ÜÑÑqùòå/›ºnݺ÷ßßÊÊJéí€IáG•ÐÐP{{û-[¶È™ùéÓ§û÷ï¯_¿~áß7&&æâÅ‹|ðÒSCpDQ)Q¢Ä×_=sæL͵Õy8zô¨ŸŸ_ïÞ½ ÿ¾R7”Kªòq/™8T"Ô¥K—“'OÆÆÆÖ­[7ï9ƒ‚‚‚‚‚ ÿŽÉÉÉ®®®cÆŒQzÕ0AG­O?ý´8ß®\¹rË–-Sz¥0Mª€,GÈBp€,G`Ö¸¤Z>‚#d!8@‚#dá>ކÂ××WéòBp4qqqJ—`â<==•®ÿ’ t €üáP50_\R/GÈBp€,GÈBp€,GÈBpfŠKªó‹àYŽ…àYŽ…àÌWÆÁ² Á²X+]€zþüù?þ¸sç΄„ggç:uê >ÜÛÛ[éºCÇ1ÙÙÙýúõûâ‹/ÒÒÒZ´hQ¡B…Ý»wwîÜùĉJ—ô€+c †Žc.~þùçS§Nµoßþ‹/¾°¶¶B=ztРAS¦LÙ½{·ÒÕ(ƒŽc.N:%„èׯŸ”…~~~ׯ_¿ÿ¾ÒÕ(ƒà˜ !„vFT«Õ<°´´ÔDIsCpÌE§NlmmgÍšuôèÑÌÌÌÛ·oO:5))©GJW  µZ­t †(&&¦ÿþOž<ÑŒôéÓgÒ¤IVVV¯|­¯¯oÎÁ]»v)½Nf-))©bÅŠJWa§&ö‹b§è×7 ׆{ÊŸ¿]»v9ãââ”^pà5ééé³gÏ~òäI­ZµêÔ©“ššzøðá-[¶4iÒ¤M›6r–`ž&çé™#P<Ø)†‰ýb€Ø)ú–¯MšóÏz®M"s@pÌÅøñãÿþûï‰'0@¹}ûv¯^½F½uëV///¥ Pç8êºwïÞþýû«W¯®IBˆòåË:ôÅ‹¿þú«Ò(ƒà¨+55UQµjUq©Ñ˜œœ¬tÊ 8êªZµª••Õ•+Wt.’Îo¨^½ºÒ€‚ã7c ƒà¨ËÎήeË–‰‰‰_ýµJ¥’¯\¹²dÉ’’%K)] €2¸8&Ÿ~úihhè’%KvìØQ³fÍÔÔÔ¿ÿþ[¥RM™2¥ZµjJW  :޹pqqÙ±cÇ!CJ—.}àÀ¤¤¤7ß|sãÆáááJ— :޹+UªTDDDDD„Ò…½áÇB¢ãYŽ…àYŽÀ,p‚cá Á² Á˜>NpÔ ‚#d!8@‚#d!8Ç ŽúBp€,GÈBp€,G`Ê8ÁQŽ…àYŽÀdqœZ¿Ž…àYŽ…àL'8êÁ² Á˜ ŽS‚#d!8@‚#05§."GÈBp€,G`R8N]tŽ…àYŽÀtpœºH Á²€‰à8uQ#8@‚#d!8SÀqêb@p€,GÈBpFãÔŃàYŽÀ¸Ñn,6GÈBp€,G`Ä8N]œŽ…àŒíÆbFp€,GÈBpF‰ãÔÅàYŽÀøÐnTÁ²€‘¡Ý¨‚#d!8@‚#0&§VÁ²€Ñ Ý¨,‚#d!8ã@»QqGÈBpF€v£! 8@‚#0t´ Á²€A£Ýh8Ž…à íFƒBpȇˡå•.A1G` h7‚#d!8CD»Ñ ÁÚ†‰àYŽÀ°Ðn4XGÈBp„v£!#8CAj4pGÈBpv£á#8@‚#PíF£@p #5 ‚#d!8%Ñn4"ÖJ`¸Î;·lÙ²óçÏ?~üØ××wĈ7Vº(ÅÐqÌ]TTTXXXTT”«««¿¿ÿéÓ§ûöí¥t]˜ÚÆ…Žc.>|8aÂkkëï¿ÿ¾AƒBˆ˜˜˜ððð©S§ZZ’¶ÐR£Ñ!åbóæÍéééï¿ÿ¾”…uëÖmß¾}JJʹsç”®@Ç\:tÈ¢K—.Úƒsç΋‹{ýõו®S@»Ñq¨:±±±ÎÎÎîîî'Ož<}úôƒjԨѺuk;;;¥KÀÁQ×óçÏ=zT½zõiÓ¦­_¿^3^©R¥… Ö®][ÎB|}}uFvíÚ¥ô𙵤¤$¥K€.vŠab¿ SÝ) J— W»ví´Ÿn«£tAÊ!8êzôè‘">>>99yΜ9OŸ>ŒŒ\¼xñÈ‘#·oß.§ï§ôz@—§§§Ò%@;Å0±_ ‰í£k7êüY¿Z^éŠÃ9Žºlmm¥³gÏîÒ¥‹“““»»ûðáûvíš””ôûï¿+] FÌèR#´MpŒ‰‰É{} .]º´­­­]PPöxëÖ­…—.]RzK(Ãh‚c¯^½¾ùæ›ìì윓ÒÒÒF5räH}½—««k‰%,,,´¥#ÔYYYJo ŒíFcg4ÁÑÕÕuÑ¢E={ö¼~ýºöøîÝ»;vì¸sçÎ*Uªè뽂‚‚ÒÓÓ/_¾¬=xêÔ)!D5”Þ%R£ 0šà¸}ûöž={ž;w®K—.ÒÅÎ<ˆˆˆøðäF“adÁñÏ?ÿ”Ž ×ªU+99ùÔ©SÆ ›9s¦›››Þß«{÷îÝ»wWz0n¤FSb4ç8>zôhÒ¤IƒNII9rä¦M›¶oßÞ¾}ûƒvìØqóæÍJ`âŒ&8JéÐÛÛ{Ó¦MC‡µ²²rtt\¸pá_|aaa1iÒ¤Aƒ)]#øÚ&Æh‚cJJÊ{ï½÷믿֬YS{<$$dÛ¶m‡VºFð?¤FÓc4ç8®[·Îßß?×Iîîî«V­Z³fÒ5€ÿ"5š$£é8¾,5J,,,úöí«t¦Ìh‚#0´MÁè©Ñ„€ÞMÁè©Ñä ÁèíFs`4÷qBìܹsõêÕׯ_W«Õ¹Î­t˜#óI—CËûDÞ¾¾J¢ £ Ž{÷î5j”ôØÊÊJérÀ™Oj„ÑÇ+V!ú÷ï?tèPGGG¥ËBÍŒÑÇøøøŠ+N˜0ÁÒ’ó20¤Fsc!ìÅ‹=ªT©©@)Æ‘Ã,--¯\¹¢R©”®A»Ñ,Gp´²²}º¥§y#8 w¤Fhnp1b„¢N:ÒÓ±cÇ*]f‡Ôm†‡®ýôÝwßUº"Ì ©:¸8ä‚ÔˆœŽ@©¹"8€!5âeŽàHÈÁü©y#8!HÁpoÇóJjµ:***))©nݺþþþJ—€#5Bc ŽQQQ_}õUëÖ­¥{ƒO™2%22RšöÉ'ŸXXX(]#ƇÔ™ŒæPõ‰'†zéÒ%•J%„¸páBdd¤££cïÞ½+V¬¸~ýú¨¨(¥kÀø!ŸÑt¿ûî;µZ=yòä°°0!Äž={„Ÿþyppðõë×Ûµk÷ÓO?+]&ƄԈ|1šàxùòeww÷¾}ûJO;V²dÉ-Z!ªV­Z­Zµk×®)]#ƄԈü2šCÕ‘·•®BIF5jôàÁƒE‹ݺukÑ¢EBˆ–-[J“V®\yÿþýêÕ«+]#F€Ôˆ3šsß{ï½mÛ¶-]ºtéÒ¥Bˆ:uêH÷n|çwΞ=+„8p Ò5`èH( £é8V¨PáçŸ twwoÞ¼ùÂ… ¥»6¦¤¤888Ìž=»I“&J×€á²EjD!MÇQáíí½lÙ2Á5kÖxxxXZM ø¡Æ%<ˆýçŸÊ—/߬Y3R#y 5B_Œ)8¦¦¦.]º422233Sѯ_¿fÍšuíÚµV­ZŸþ¹³³³Ò`pHÐ#£éÕ½xñbèСkÖ¬qppèÚµ«fÜÕÕuÿþý½zõ’Ò$Ð 5B¿Œ&8.[¶ìÌ™3o¾ùæ®]»fÏž­߸qcçί_¿¾zõj¥kÀPp) Š‚ÑÇãÇ[YY}öÙg¥J•Ò·²²úøãK•*µ{÷n¥kÀ H‘‘Ô½3šàxñâEOOOͯj³··÷òòJLLTºF”G£EÇh‚£££ã“'O^65--­L™2J×€ÂH(RFkÖ¬ùÏ?ÿÄÄÄäœtñâÅ[·nùùù)]#J"5¢¨MpìÙ³§……Ř1cΟ?¯=~þüùQ£F !ºté¢t(ƒKaP<Œæ>ŽÍš5=z´Z­Vº(Š©†Àh:ŽyhÒ¤IõêÕ/_¾|óæÍÊ•++]úäõM‚ ¤F#î8jsuuB¼öÚkJ€>YŒ‰º6Ü“Ôa ÇŒŒŒ .¸¸¸”.]ZéZÐÍu0 J×ü—ÑÇ£Gæ:ž––¶fÍšû÷ï·nÝZéÐÎh„a2šàØ¿ÿ<¦–)SfäÈ‘J×€a°Œ&8¾ýöÛ/›T¹rå.]ºTªTIé(nÓg4ÁqÞ¼yJ—@¢ÑÃg4ÁSE£ÆÂpƒãòû’ÀÀ@¥« h4ˆnp2dH~_§tÕÈE£FÇpƒcWÃ`ìh4—Ë¡å}"o+]…ò 78r5 À$Ñh„ñ2Üà˜/&L8qâDTT”Ò…ðRDF;c ŽiiiûöíKLLÔÏÌÌüã?¬¬¬”.€—âØ4L€ÑÇ»w…ݺuëe3„‡‡+]#¹ Ñ“a4ÁqÕªU·nÝjÔ¨QHHÈï¿ÿ~ìØ±?þØÎÎîÒ¥Kk×® Ÿ|xýúõ/]º”‘‘Ñ¡C¥k˜#ŽMÃ|MptqqY·nÝæÍ›³²²„*T˜2eÊÌ™39"„8p Ò5Ì Ç¦anŒ&8fee¹¸¸ 2D3rîÜ9777///¥ ˜"#Ì“ÑÇ–-[véÒ¥[·nÕ«W× ÚÛÛ(]À¼plfËh‚cjjê÷ßÿý÷ßûûûwïÞ½C‡ÒåÕ0sF###·oß¾sçÎÓ§OŸ>}zÖ¬YíÛ·ïÞ½{Æ •. `úˆŒ€0¢àX§N:uêL˜0áäɓ۷oßµk×/¿üòË/¿T©R%44´K—.®®®J×0ADF@ÃB­V+]CAdeeýù矿ÿþû¾}û222¬¬¬Z´h±lÙ2¥ëB__߸¸8¥«À¿$$$xzz*]þ…b˜Ø/Ú $2²S”•ëMÍöo½Ñtuë¶¶ :wîÜäÉ“ãââ8 tQÓÁ0@NÆãââvíÚµk×®k×® !,--ßxã"z¯Û·o‡„„´jÕjÞ¼yJ¯7 ÈH£0@F/\¸°{÷î;w&&&J#µk× éСCã¨V«'L˜ðøñc¥WP䈌@ÞŒ&8Λ7o÷îÝ7oÞ”žV­Z5$$$$$¤J•*Eú¾?üðÃñãÇ•^{@Ñ"2rMp\±b…ÂÕÕµcÇŽ!!!µjÕ*†7½råÊ‚ jÔ¨qéÒ%¥7 HùŒ&8öèÑ#$$¤Q£F–––ÅóŽYYYãÇwvvž8qbÿþý•Þ=#2ùe4ÁñÓO?-æw\´hÑÅ‹W®\éàà ôÚô‰È™r½93šàXÌΜ9óÝwßõéÓ§iÓ¦çÏŸÏïË}}}uFvíÚ¥ô:™µ¤¤$¥K€.vŠa2ùýâõM‚âÚpO!DBB‚ÒåÈbò;ÅÀ%$$´k×Né* Á1™™™ãǯT©Ò˜1c ¶ó¼)¨ãö¹ˆb˜Lu¿u—ÑTwŠá»,„§§gÎ?ë9;Df‚à˜‹9sæ$%%­_¿ÞÎÎNéZ…eÔ‘0(G]Ç_¿~ýСC_ýu¥k ‘Ð/‚£®+W®!–,Y²dÉíñ­[·nݺÕÛÛ{ûöíJ×x"#PŽºªT©Ò±cG푇>|¸|ùòþþþîîîJÈ ‘úÂ%Õ9u5oÞ¼yóæÚ#çÏŸ?|øpÆ ù­j0dDF ¨FÈ‚#ÀˆâDp|µZµjq_F04DF øF†È(…à0DF.©ÎÁ`ˆŒ€! 8 ‘0G€!’ò¢ 2†„à0,´ƒEp "# WƼ Á <"#`ŽÅp"#`\ŽÐbŒÁP¬ˆŒ0pœà˜‚# 8pT0G@ѢŘ ‚# ¨CpèG¥a¼8Á1oG€ÞÐbLÁ DFÀÇQi˜ŽS¿ÁP´3Dpä-FÀœ²Ðb@pä…#Ì'8ÊApäŽ#GÀ¿Ðbð2GÀÑb„Ùâ8µLG0wÚ-Æ„„¥Ë`¸Ž`¾h1È‚#˜Îb´qœZ>‚#˜ ò"€B"8€éã4ð2´ó…à&‹#ý"8€©!/("G0’ò…ãÔùEp£G‹@ñ 8€±"/…A»±Ž`dÈ‹”Bp£Á)Œ”EpCG‹Ð;ŽS Á y€¡!8€a!/EvcÀ >‚#(‰¼3Ú…Apep‰4£Cp€bE‹PíÆB"8@q /0G(BäEÀpÐn,<‚#èy04¤F½ 8€Þ˜6‚#y0p´õ…àD^`nŽ?äEÀ¸ÐnÔ#‚#ÈB^Œ©Q¿Žò"h äEÀÐnÔ;‚#üy0¤Æ¢@pò"ÈBp`¾È‹€©¢ÝXDŽÌy0m¤Æ¢Cp`.È‹€9 5)‚#S¦ ‹‚¼…Fp`‚h.æ‰vcQ#80äEÀœ‘‹Á€Ñ#/ 5‚#cE^ !5‚##C^ ÔXœŽŒGÈ©±˜.š‹`PŽ y€´‹Á€¡ /Ô¨‚#%qò"€ 5*…à@ÿŸ‹ò‹Ô¨ ‚#€â£}0:!!ÁÓÓS銓ˡ兤F9N^Px4 Á@‘àäEzDj4GúDs€Þ‘ Á€R£A!8(8ò"€"Ej44GùÃÉ‹ŠP&‚#Yh.(64 Á@^È‹Š©Ñèâ`4¥ ÁÀÑ\  Nj4 GÀÜ‘(ŽF£± 8æˆƒÑ FãBpÌÍE…F£Ñ!8¦¼ÀÐÐh4RGÀ4q0€Á¢Ñh¼Ž€I¡¹ÀÑh4vGÀ>&€à+F04MÁ1w™™™?ÿüsdddRRR™2e|||جY3¥ëh.0&DFCpÌEVVVÿþýÏœ9ãèèðôéÓcÇŽ>|øÃ?6l˜ÒÕÁL‘"£I"8æbãÆgΜiРÁ÷ßogg'„¸råJŸ>}/^ܪU+???¥ „¹à`4#Å錦Šà˜‹]»v !&Ož,¥F!„··÷ûï¿?{öì#GŽQÔh.0^4MÁ1 ¥K—®U«–ö ···âæÍ›JW“E^`ÔˆŒæ€à˜‹eË–Y[ën™óçÏ !*Uª¤tu0)Œ`ˆŒæƒà˜‹š5kêŒDGG/_¾ÜÆÆ¦K—.r–àëë«3"þ†R’’’”.á_¼¾I\î©LHHPº®beh;ö‹2äòb\3!D‰yG„Iÿ#Ö®];¥K0ÇWÈÎÎ^·nÝܹs³³³¿üòK9¯Š‹‹Sºpèòôô,üB ‰ƒÑ: a§ 'ö‹2ÀbV]ÆœÖsvˆÌÁ1/ÇŽ›>}úÕ«W=<<>û쳦M›*]Œ£˜³ŠŒÐApÌÝóçÏçÍ›·fÍ[[Û#F 4Hs…5 ÍE¦‡È‚c.T*Õ˜1cöìÙÓºuëO>ùÄÕÕUéŠ`4È‹L”‘Ç\­Y³fÏž=½{÷þä“O”®ƼÀ$Ñb„‚£.µZ½víÚ2eÊL˜0AéZ`Ð8y€ #2"WG]ÉÉÉ7nܰ³³ Ï9µk×®}úôQºF(‰æ"ÆQiäà¨Kº]VffflllΩ\Xm¶È‹L-FÈApÔU¿~}î ò"“Gd„|G@'/0•Fÿ¢¹ÀQG˜;ò"3Á!iÁfмÀLÐb„a^È‹ÌyEà³àõM‚ ‚¼ÀÔ‘Q¤Ž0ešþâµážžžžJ—E…¼ˆâAp„©Éõf: J×úG^D1#8ÂDpò"óA^„RŽ0näE惼Åa”È‹ÌÇ‹qÍ. !È‹0Gò"3¡i. !JÌ;Âå}0Gò"3‘ëÁh.ïƒá 8Âp‘˜íæ"£aàŽ08äEæ€+]`ŒŽ0 Rd$/0U4aìŽP-F&Œ°SBp„bÈ‹La¦ŠàˆâF^`’‹0Gò"ÓCX„¹!8¢h‘˜Â"ÌÁE…K¤˜ Â" !8BÏh10 „E '‚#ôƒ¼ÀØi'EAXrCpDaqH€ñ¢­ä ÁD‹€1¢­ÁùF‹€!)zDp„\´’"PtŽx5ZŒ I(6G¼-F†‰¤(…àˆ\Ðb`PHŠ€ 8âh10$EÀ0!-FŠÒ‰‰‚¤*‚£¹#2(fÄDÀxÍ‘@ñà¸3`2Žf‡)Š€ #8šZŒôŽ˜˜‚£Y 2Ð b"`æŽ&ŽÈ Àˆ‰tM‘€|Úñòÿ? &ÐAp4ADFyË£•˜àéé©t ÁѤèÈ™­DEp4DF‚³1‚£Ñ#2æ‰V"€âGp4nc¢ˆŒ€É##0GcE£0IdD†Œàh|ˆŒ€ È5 2"ÃFp4&DFÀÑD`2ŽFƒÓÃGF`ÚŽF€F#`h8Ð À< F@ADÐFp4\4bC@9ŽŠF#PˆPGCDj ‰€EàhX8< ä ŠÁÑ€Ðh^†€†€àh(HÀËÒ¡ €a 8R#ÌŠ& ^þ÷8é ÁQy¤F˜¤W¶<==•.G%q) Œ—À¬C£F„kS‚à¨R# íC@ÞŽ 5BA¤C@D:‚cq£Ý}!ŠÁ±X‘‘_¤C€á 8R#r•G4¤C€!!8R£™£q0G@oH‡ÓFp,´M é`¶ŽEŽÔhŒH‡äDp„ù"/Ç¢E»Qqštx9Ç$Ò!ùBp„)xeï0!!ÁÓÓSé20nÇ"D»Q¿8² €²Ž0,¤C ÁÊxY@$`°ŽE…ãÔ‚ö!¦…à= }€9 8"ˆ˜3‚c‘0öãÔDÁÑÜåš ˆ '‚£!#€Â 8š&2"Ð;‚£)ÈɈ@ïŽE¢H¯Œ!&E 1‚£ÁÑIŠÄD` ŽA;,’€a"8*†°Œ Á±X€ñ"8¾Ô¦M›6nÜ_ªT©7ß|sܸqÎÎÎ[”&/•Ò®]»¸¸8¥«À¿°S ûűS`8޹[°`Á·ß~[ºtéF%&&nÞ¼ùÊ•+«W¯¶³³Ë×r¤ÈH^&€à˜‹¸¸¸åË—»¹¹EFFººº !fÍšµzõê/¾øbêÔ©2Bd&ÆRé ÑÆU*Õ¨Q£¤Ô(„˜8q¢££ãÎ;U*•œ%\-ïy›ÔL Á1'Nœ°´´ ÔŒXYYµlÙ255õÔ©Sr–@d¦‡à¨K­VÇÇÇ—-[¶lÙ²Úã>>>Bˆ›7o*] €28ÇQWFFFvv¶“““θ£££âþýûrâëë«ôz@;űS ûűS` Žº233…¥K—Ö···B<|øð•KঠÀ$q¨Z—“““……EFF†ÎøãÇÅÿ÷ÌÁQ—µµµ££cÎÎbzzºBs5€¹!8æÂÍÍ-55UJŠ Ò$¥«PÁ1ÁÁÁÙÙÙþù§fD­VÝ·oߨ¨(¥WÅtäw§dgg÷ë×ï‹/¾HKKkÑ¢E… vïÞݹsç'N(½*æeÍš5J— 5 íÒ¥K5jÔhÑ¢ÅÝ»w¥‘O?ýÔÇÇgÆŒJ—fú °ñ×­[çãã–‘‘!\¾|ù7Þðóó»pá‚Ò+d ùX¹r¥Ïرc•^ÓQ€òàÁƒ† ¾þúë'Ož”FΞ=[»ví¦M›fgg+½B¦ Àÿ|9òÅ‹ÒÈ_ýåçç÷Ö[o)½6fááÇ'Nœøøã¥£Îœ9£tE  ã¨7nT©T£Fruu•F&Nœèèè¸sçN•J¥tu&®×®]BˆÉ“'ÛÙÙI#ÞÞÞï¿ÿ~vv6¬õ¢0߈+W®,X° FJ¯„©)ÀNÙ¼yszzúûï¿ß Ai¤nݺíÛ·OII9wîœÒ+d °SN:%„èׯŸµµµ4àççwýúõû÷ï+½B¦/$$$<<|Æ J¢$‚£œ8qÂÒÒ200P3beeÕ²eËÔÔTéKŽ¢S€ŸPºtéZµjiz{{ !nÞ¼©ô ™‚#²²²Æïììg…¥V«ãããË–-[¶lYíq!ÄÍ›76l¨t&«`Ù²e9ÿ…=þ¼¢R¥JJ¯“Ñ+Ì7bÑ¢E/^\¹r¥ƒƒƒÒëaR ¶SbccÝÝÝOž|¨t¦¬ð?;;{õêÕƒÎÈȘ={¶‹‹‹Òëdô ¶S233Ç_©R¥1cÆ(½&¨;åÑ£GBˆøøø;vÌ™3çØ±c1bÄ­[·FŽÉ-# ¯`ß”ôôôÙ³g?yò¤V­Z½zõjӦݖ-[¸ÔņŽca999YXXdddèŒK7‘þïˆ"RÈìØ±éÓ§_½zÕÃÃã³Ï>3çsVô¨`;eΜ9IIIëׯç0hQ(ÀN±µµ•Ìž=»U«VÒãáÇ߾}{óæÍ¿ÿþ{hh¨Ò«eÜ öM?~üßÿ=qâÄH#·oßîÕ«×èÑ£·nÝêåå¥ôjÁôÑq,,kkkGGÇœÿ;LOOBh®•CQ(ðÆþüù¬Y³úõëwûöí#Fìܹ“Ô¨/Ø)Ç_¿~ý!C¸ä¢ˆ`§”.]ÚÖÖÖÎÎ.((H{¼uëÖBˆK—.)½NF¯;åÞ½{û÷ï¯^½º&5 !Ê—/?tèÐ/^üúë¯J¯ÌÁQÜÜÜRSS¥o»FBB‚4IéêL\6¾J¥3fÌêÕ«ƒƒƒ÷ìÙ3|øpº\ú•ß"ýîÅ’%K|ÿ_·nÝ„[·nõõõíÔ©“Ò+d ðMquu-Q¢„………ö ôeÉÊÊRz…LA~wJjjª¢jÕª:ãR£199Yé‚Y 8êApppvvöŸþ©Q«Õtvvö÷÷Wº:W€¿fÍš={öôîÝ{ñâÅ´„‹B~wJ•*U:þ›tébùòå;vìØ²eK¥WÈà›”žž~ùòeíAé61ÜhS/ò»SªV­jeeuåʵZ­='„¨^½ºÒ+ó ôÈMÁ­[·jԨѮ]»GI#ß~û­Ïܹs•.ÍôÉÙø?¾víÚÍ›7ÕjµJ¥jݺuƒ 233•®Ýdåw§äË/ÇèWvÊ… |||zô葚š*ÄÄÄøûû7jÔ(%%Eé2Ø)C† ñññY¸p¡æÇ{._¾Ü¤I“ÚµkÇÇÇ+½BfdòäÉfûË1\£åË—7nÜœ9sÞ~ûí-Z$&&FGGתUëÝwßUº4Ó'gãJ¯“ÑËïNQº^³P€âçç1þüvíÚ5lØ0##ãĉ³fÍzíµ×”^!SP€òé§Ÿ†††.Y²dÇŽ5kÖLMMýûï¿U*Õ”)SªU«¦ô Á,õcàÀåʕ۲eËŽ;<<<úôé3jÔ(é® (jùÚøIIIBˆÌÌÌØØØœS¹DF_øF ì”!C†¸¸¸¬^½ú¯¿þrvv1b„ô3KЋüî—;v|ûí·‡>pà€³³ó›o¾ùÁÔ©SGéU¹°PÿûT W\YŽ…àYŽ…àYŽ…àYŽ…àYŽ…àYŽð?ãÆóõõ=zôh±-ê›o¾ñõõ]·nö«8ëTPÁŒÉáÇ<¨tÌ”µÒ€Y rqqiР̩cÇŽMOO¿pá‚Ò…0GGPR­ZµjÕªU°©PÌ8T À(egggee)]˜‚#£!]8rõêÕ™3g6lذV­Z#FŒÐ¹EšíöíÛgΜéÞ½{ݺu“’’4SwìØñþûï¿ùæ›Mš4éß¿ÿ÷ߟó½>8tèÎ )))óçÏïСCýúõëׯ߱cÇÙ³gß½{7¿‹úî»ïò¸üE{êܹs}}}ÓÒÒ²³³}}}ýýý'Mšäëë»víZWÍŸ?ß××÷Ë/¿Tz05GFfòäÉk×®}úôi•*UÒÒÒöìÙ3pàÀ+VèÌvñâÅþýûÇÆÆ>{öL¥R !Ôjõ„ F½ÿ~µZíèè=wîÜððð´´4í×nÛ¶mðàÁ{öì±µµ}ðàATTÔ{ï½÷ÕW_ifHII _¶lÙíÛ·+W®\±bÅ›7o®Zµ*,,,¿‹’¯aÆýúõ³±±±°°èׯ_ïÞ½;tè „Ø½{·öljµzûöíBˆÎ;+½¯˜‚##súôéÀÀÀ£GîÙ³çÔ©S'N´°°øòË/¯\¹¢=ÛÇ\§NU«V9r¤råÊBˆ_ýuË–-®®®6l8tèÐîÝ»÷ïß_¯^½Ó§O/Z´Hûµ›7o>vì˜ôãÇ·´´\²dILLŒf†ëׯ·jÕêÈ‘#[¶lÙºuëáÇ5jtëÖ­}ûöåkQòµjÕjÒ¤I¥J•²´´œ4iÒ¸q㜜œNž<™’’¢™íÔ©S·nݪ]»võêÕ•ÞWL Á€‘quuýú믜œ„VVV W©TK–,Ñž­téÒß}÷]Ó¦M]\\¤‘…  !fÍšåïï/xxx,Z´ÈÆÆfÆ wîÜѼ¶|ùò_}õ•ƒƒƒÂÚÚzРAáááBˆÅ‹K3dee;¶téÒÒˆƒƒCHHˆ"11Q»ŒW.ª0¬¬¬Þzë-•JõÇh·mÛ&„èÒ¥‹Ò; € "802Ý»w·±±ÑéÛ·¯âÌ™3Úƒo¿ý¶­­­æé½{÷îÞ½ëááѲeKíÙ\]]³³³/^¼¨ìÑ£‡µµuη8þ¼ôtذaß~ûmµjÕ43$''ÿþûï9«}å¢ ©}ûöBëhuVVÖÎ;­­­;vìX„û€¹âv<ŒŒ§§§ÎHÅŠmllîܹóüùó’%KJƒÒáiëׯ !ªV­šsUªTÿîzyyåúÉÉÉOž<‘ºŒ·nÝ:tèÐÉ“'oÞ¼yãÆ Sóµ¨ÂhܸqÙ²e?ž––æìì|èС´jÕªlÙ²E¾'˜:ŽŒŒ……EÎ+++•J¥}ƒéè°†Z­~Ù­¬¬„/^¼xå[XZZ–(QB±~ýú·ÞzkÚ´i111ÕªU8pàªU«>þøcùÕjUHVVVmÛ¶ÍÎΖέä85€"EÇ€‘IHHйsçNFF†»»{©R¥^ö*©×¨s¢DjFj·s¾Å?ÿü“‘‘Q©R¥’%K>~üxæÌ™%K–\¶lYóæÍµËS­ö¢ô²AÚ·o¿~ýú]»vuèÐ!**ÊÁÁ!((Hß[„ ãÀèüòË/ÏŸ?×Y³f¢víÚy¼ÊÍÍ­\¹r·oß>|ø°öxrròþýû­¬¬üüü4ƒ‘‘‘:7w”Þ¢~ýúBˆsçÎeggׯ__;5 !.]º”ó}ó^”^4lØÐÅÅåèÑ£‘‘‘OŸ>íØ±£¾")è 802wîÜ5jTzzºB¥R­[·î‡~°´´1bDÞ/=z´bÊ”)±±±ÒÈÝ»wGŒñôéÓž={–/_^3çÍ›7#""žø <<<>>^íîP‡Úà`$I1bÄ/¿ü¢ÓéÔî‹Ë ôòòÊÝîëë«ü³>¼zõª^¯Bܽ{wàÀ'Nœ(UªT^Ûß½{×PhLOOïÚµkRRRñâÅ­Û=à Ðâãã—/_Þ³gOµ;âr–-[kùgïܹ3|øð…  !Ο?¿cÇŽ:ä³ýÅ‹'NœøßÿþWqéÒ¥9sæŒ1ºÝà˜ªPo½õVVVV›Ý½{wâĉÏ>ûl``````ëÖ­ÇŸ™™i¼ñu~ééé£Gnذa™2eêÖ­ûÑG=|øÐdŸ×¯_>|xÓ¦M½½½«T©Ò®]»ü1÷¡¯]»6|øð&Mš”)Sæé§Ÿîܹó‘#GŠpÜ·ß~[§ÓݹsGþ±uëÖ:îîÝ»&{ÈÎÎ~ï½÷*T¨ðÞ{ïÉ[êõú+V´jÕªråÊ%J”¨\¹rË–-/^œ{DöWºté/¿üÒÓÓSþñôéÓùo_±bÅ… .Äüè£ä3ÀÕPqP85jÔ8}úô¥K—fΜiIf2|øðµk× !nܸ±oß¾6mÚ¨=öFÅ@á¼÷Þ{ÞÞÞBˆiÓ¦]¾|9¯ÍîÝ»×­[795–(Q¢M›6íÛ·/Y²¤ââŋݻwÿóÏ?M>²k×®„„„Ê•+ÿóŸÿ,Q¢„ܸzõêƒʯ333{õê%§FŸÎ;·jÕJ~ë믿^ºt©a³—_~YN111ï¿ÿ~=ÜÜÜ$IúôÓOåùYåÇ}óÍ7“’’äž !/^lü£ìСCrj4Xµj•œu:]LLÌ«¯¾Z«V-ù­5kÖìØ±Cí¯Qddd‚uXX˜’DGG+VL~}àÀµG@G…0aÂ!DVVÖ¸qãòÚlÆŒçÏŸB”-[vÏž=›7oþá‡âããýýý…üñÇG}”ûS_|ñÅùóçããã=jÈp†à8mÚ4ù.Ê•+Ÿ={VN`ãÇ—ß5T ›uéÒeûöí'NüöÛo?ÿüsùÝI“&ê¸O=õÔÓO?íæöè_ËòåË?ýôÓ&7]ºt)22réÒ¥ñññ}ûöBlÞ¼Y~kÔ¨QÛ·o_¼xñï¿ÿÞ A¹ñðáÃE;ùòD¹‰‘#Gj'ÙÙÙ§OŸîÝ»wNNŽÜR·n]%ÔétAAAòë?þøÃFÝ eG…öÆoT«VM±lÙ²¼–æùá‡äÆ kذ¡üºvíÚ£F2ÙÀ V­ZC‡•_רQ£yóæòëÔÔTùÅ–-[äo¾ù¦@åÎÔ­[·nݺýõ—œ„ ¡íµ×^3ì¼oß¾îîîBˆ .˜,©Sàq T²dÉŸ~ú©W¯^ÿüç?CCC…Ý»w—gä‡.o“™™i¸*TáÔ°uR§§gDD„áü¿ð õë×W¸“§žzÊ0û€ê¸Æ@¡+VlæÌ™;v”—æÙ¹sgîmå&WÂ=÷ÜsrðìÙ³z½ÞPÉB<ýôÓÆ[úùùÉ/ä…c„IIIò‹¦M›6 :zô¨ñÏœ9cöÐgÏž­S§Žòã¨^½z!!!Æ-ò¡ÓÓÓ·lÙrèС£GÜ05¯„a†:00кÝàŽŠhÖ¬YõêÕÓëõ†« Ê–-ëíí-缫W¯—ô®^½*¿(V¬X¹rå”®L™2%K–”g{ÓÒÒªV­jv³²eË–)SF®ímݺUž86Q¨ã*‘;k~øá‡Ÿ~ú©"44ôÍ7ßlÚ´iddä Aƒ¾ùæëZ9ËSݾ}û‰ððpùÅÖ­[Û ?†……yxâ¿]u:!€_XùÇ4nܸqãÆ­Zµ’'—åë/…ÙÙÙOñõõõñññññ1ûtëš={¶ü⫯¾zýõ×ëÔ©ãááaò`h‡c˜Ô.Uª”ñÕ\Á@ÑM™2ÅìµnBˆöíÛË/þóŸÿVÞ>qâÄŒ3ä×íÚµ+ìáZ´h!¿øä“O iuÖ¬YññññññÅ‹—¯˜lݺµüÖüùó «*~÷ÝwO=õ”¿¿•*U,¹ÖÐPrËÇŸþi˜ ÏÈÈ_>|X «ðÍü1pàÀ5kÖÈ?¾òÊ+eÊ”Q»STÀT5€¢ x÷ÝwÇŽ›û­±cÇþ÷¿ÿMMM½}ûv³fÍbccÝÝÝ·mÛ&?q$88X^Ó§P&L˜—™™™’’R·nÝØØØk×®mß¾]~wÈ!ò‹·ß~û믿NOO_·n]LLL‹-Nž|¸á±+¹•.]ºtéÒòöýû÷_¾|¹N§Û¼y³ž£Ü«¯¾*/Wy÷î]ÃBˆråÊM™2EíÞPG>|¸É]É2//¯U«VÉ—Þ»woãÆÿûßÿäÔX¹råU«VåUªÌG@@À¢E‹äåǯ]»öí·ßRãøñã O[öõõ]¼x±|Í®]»&Mš´fÍš{÷î ! ôþûïa˜†bçþýûÇŒ“ÝQ§Ó=ÿüóò묬¬õë×ÿïÿ+_¾¼a¹rã¦YW®\IJJJJJ2î­ŸŸßúõësß ÀEX¤X±b†Ùg5:~üø„ bccýýýcbbÞyçßÿ½Y³fE;\§N~ÿý÷ÿûß 6,]ºt•*Uþõ¯íÙ³çÃ?4Þ¬C‡¿ýöÛ€êׯ_²dÉÐÐÐN:íÞ½{Μ9E¸iZ1kÖ¬^½z”*UªV­ZÆ«åµ}íÚµ…nnnÿøÇ?FŽyôèÑ_|Q~wùòå†5ƒ´ÏÝÝÝÏϯQ£F&LHLL|æ™gÔîÕè ¬èáÇ7nBtêÔIí¾€u SÕP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽPÄCíØÉêÕ«W­Z•””T²dÉ-ZŒ3Æ××7ŸíüðÃýû÷ß»wïÊ•+&L¸téR×®]Ë–-«ö˜Ôáäõ³¬¬¬œœ“voooñdMÑXxxø’%KúôéÓ§OCcï޽ǯä ááájØVbb¢Ú]P“Ç{÷î !J•*eÒ^ºti!ÄíÛ·Í~*33óã?¾{÷nÍš5k×®––¶oß¾uëÖ=óÌ3Ï>û¬’ãºæÿ˜´,<<œ/EkøR´‰ïEƒøR4Èe‹DN}||t:]VV–Iû;wÄãºcncÇŽ=|øð¸qãúöí+·\¹råå—_9räúõëCCCÕ€ œüGooïÜ•ÅÌÌL!„á>kcׯ_ß¹sgµjÕ ©Q2xðà‡®]»Ví1¨ÃɃ£"000--MNŠ)))ò[¹·OKKBT©RŤ].4Þ¸qCí¨ÃùƒclllNNÎÞ½{ -’$íÞ½Û××·^½z¹·¯R¥Š»»ûÙ³gM–F—¯/©V­šÚP‡óÇ®]»º¹¹}ùå—òuBˆùóçß¼y³sçΞžžrËÝ»wSRR.]º$„ðòòŠŽŽNMMýÏþcX!üìÙ³³gÏ.V¬X«V­Ô€:œÿ‘ƒBˆ… N›6­|ùòÍ›7OMMŒŒ\¸p¡a™žüqäÈ‘aaa7nBܼy³K—.W¯^­R¥JdddZZÚáÇõzý»ï¾Û«W¯Çío”’’RµjUµ{'ð¥hß‹ñ¥hËþ®wò»ªeýúõ+W®Üºuë~üñÇàààÞ½{1B^‘Ç,ÿüqîܹûöíÛµk—¯¯o‹-^ýõÚµk«=Õ¸DÅÑÎ\ö¿B´Œÿ^× ¾mâ{Ñ ¾ rÙßõÎ#¬‚àEŽP„àEŽP„àE\bGpMááájwp ®¹¶NÀ9¹ì:s@añŸXÊ1U EŽP„àEŽP„àEŽP„àEŽP„àEŽP„àЮÇëtº•+WÊ?~ðÁþþþµk×V»_N> ½^V©R¥©S§ªÝh ÁàN:5a„ˆˆˆñãÇ›¼=iÒ$ëîøñãÝ»w *]ºtTTÔ¬Y³²³³m1 HñðáCݓʕ+Wà322êÖ­4~üøeË–Y÷Äš°ÅwÛñP»(’””$„xÿý÷cccÛ=úóÏ?›4Z(99¹eË–999:uªT©Ò¶mÛFµgÏžµk×Zw¶;"%%%''§I“&¡¡¡†ÆÒ¥KøA??¿Õ«WK’Ô®]»3fôêÕËŠçÖ˜-¾;ØÁà$IB”(QBþ1;;{ÇŽ¿üòËìÙ³õz½u5jÔ¨Û·oÇÇÇ7lØP1yòäþýû/\¸pË–-mÚ´±â(lw ñ8¤Nž<¹hÉL§Ó9²mÛ¶»víjÙ²¥O¯M¿;ØSÕ Ù³gϳÏ>ëçç9f̘Èí}ûöíØ±£¢Y³fU«VB¤¥¥µiÓfÒ¤I7nܰz7vìØ-‡9ÙСC…û÷ï·î(,\±bÅ_ý5bĈäääE‹å-<½p,Gp=y§79sFaR «W¯žå{¾{÷®|ea'#ϳqáÂ…¡C‡nذ!,,lÛ¶m1116…’a»ví*Q¢„ŸŸŸüc¿~ýîß¿?dÈ5kÖôïß¿À±,^¼8<<¼N:]»v:tè™3gªW¯nÅÓ GÄÍ1MðððB螬†º¹Yá÷”···”·¼>µ|ùòZµj:thÞ¼y§NR’‹6 …*Â(BBB ©QöÜsÏ !Nžxðà¾}û~úé§–Œ¢ÀY2Š€€€I“&½õÖ[aaaíÚµóññÙ²eËÑ£G?úè#9æ3Š;w^¸paòäÉÆý>|ø Aƒzöì9eÊK:‡FphE§NvìØ1yòä%K–¤§§{{{/]º´k×®vnvBBBBB‚É[ÕªUëСÃ222îÝ»gá( <…;vìÓO?=}úô¥K—–(Q¢N:›6mjÛ¶­ün>£ˆ‹‹BtëÖÍÐ8uêÔéÓ§ÿöÛo’$éT¼1ªÒñ_ Vž˜˜¨v/ð„””ù! о[sô‹®\¹òÔSOYel[øúë¯Oœ8ñÙgŸ¹Â(œ^þ²8ú߯"ã®j€…„„h6oÝ¿çÎõë×w‘QG gÿþý={öT»#ŒöÆ5ŽN«V­Zµj¥v/T@ÅŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠÚuøðaN·råJùÇ>øÀßß¿víÚj÷ËÉG¡×ëÃÂÂ*Uª4uêTµûm!8éS§&L˜1~üx“·¢££'MšdÝÃ?~¼{÷îAAA¥K—ŽŠŠš5kVvv¶-Fa£ !>|èáá¡{R¹rå ü`FFFݺuƒ‚‚Æ¿lÙ2ëžX[6å¡vP$))IñþûïÇÆÆ·=zôçŸ6i´PrrrË–-srr:uêT©R¥mÛ¶5jÏž=k×®µî(lw !DJJJNNN“&MBCC ¥K—.ðƒ~~~«W¯–$©]»v3fÌèÕ«—Ï­­G ›"8ƒ$IBˆ%JÈ?fggïØ±ã—_~™={¶^¯·î±Fuûöíøøø†  !&OžÜ¿ÿ… nÙ²¥M›6V…í$‡ÔÉ“'-Uëtº‘#G¶mÛv×®]-[¶tˆÓ [cª !{öìyöÙgýüü"##ÇŒóàÁ¹½oß¾;vB4kÖ¬jÕªBˆ´´´6mÚLš4éÆVïÆŽ;¢££åX#:t¨bÿþýÖ……ÊŸ«U«Vä=ÈÓÇ ,ÐÔé…Š¨8´âûï¿ïÖ­ÛSO=Õ£G77·¥K—®_¿^~kôèÑ•*Uš\±bÅ_ý5bĈäääE‹½öÚkªŸ^¨Žà.'¯è¦®3gÎ!4h`ÜX¯^=Ë÷|÷î]ùÊBógCÊól\¸paèС6l Û¶m[LLŒF¡ä@EÅ®]»J”(áçç'ÿد_¿û÷ï2dÍš5ýû÷/p,‹/¯S§N×®]‡zæÌ™êÕ««{z¡:nŽh‚‡‡‡B§{¢êæf…ßSÞÞÞùL½åõ©å˗תUëСCóæÍ;uê”ÂXS„Q(,,¬R¥JS§NU»/°7‚#À1œ:uj„ ãÇ7y+::zÒ¤IV<ÖÇ=<ŠüOÑŠ+‚ƒƒ_}õUùÇÐÐÐ.]ºìÞ½ûêÕ« ÷/O©/X°À§\i·¡.‚#@+¾ÿþû˜˜˜ãÇ÷èÑ#66véÒ¥}úô‘ß=zô{ï½'„˜9sæâÅ‹…’$I’túôi«÷$))©xñâeÊ”Y½zõ¼yóöíÛgVEvvö!Cä¤hšš*„(^¼¸å£Èçeffž9s¦U«V:ÎУ×ë^é(„¿ˆµk×Þ¾}ÛŠ'ߦß,,ÄT5@þúë¯Q£FŠ|dee !Ê–-kÜ(---MÉV¬Xñ×_1"99yÑ¢EyGëvª#8€ËÉ+º©ëÌ™3B“’^wø*q÷î]ùÊBågc×®]%J”ðóó“ìׯßýû÷‡ ²fÍšþýû[}.\:tè† ¶mÛc•QäÃßß_ñçŸ7fff ! £ÎßâÅ‹ÃÃÃëÔ©ÓµkסC‡ž9s¦zõê¶î6TÇ5ŽMðð𹪡nnVø=åíí-åÍìGBBBLòÓsÏ='„8yò¤ÕG±|ùòZµj:thÞ¼y§N2›‹6Š|º¹¹™ÌJß¼ySa¨•æãìÙ³ñññÝ»wBtîÜÙÍÍM¾ÞÑÖ݆ê¨84A¾…ùðáÃÆk»;vÌò=v¶455uãÆ111†F¹W¹reëŽbÆ ¯¼òJ·nÝæÎk2qlá(òçáá¹wï^ãÆ={öètºš5køq9&ÊÁ1(((:::..nÊ”)¹#2SÕN†àЄúõ뇆†~úé§={ö BܸqãóÏ?·|Ï…-õòòzóÍ76l¸}ûvOOO!„^¯Ÿ1c†‡‡Ç³Ï>kÅQH’4vìØŠ+.Y²ÄÝÝݺ£(Ðk¯½6|øð7þë_ÿB\¿~}Íš5Ï>û¬¼NP>$IZ²dI­Zµ"##å–nݺ |ø›o¾Y¿~}«¬äWØÙÒ€€€I“&íÝ»7,,ìõ×_ûí·£¢¢V¬X1yòd9*-_¾Ü××wÔ¨QŽ"!!áôéÓ^^^ èû¤ 6X8ŠõéÓçÿøG¯^½Æ?}úô–-[feežï—ÏwîÜyáÂ…nݺZ^zé%OOÏAƒM˜0ÁÖ݆º¨8´¢S§N;vì˜ûì3‡…UÆèŠð—ÅÑÿ~SÕ- ÑlÞºÿþÎ;ëׯïУ°ÖáRŽÎþýû#""zöì©vG#ìk(œV­ZµjÕJí^0F¨€Š#!8@‚#!8@‚#!8@‚#!8@‚#!8@‚#!8@‚#@»>¬ÓéV®\)ÿøÁøûû×®][í~1Æ<éõú°°°J•*M:Uí¾ÀúŽÇpêÔ© &DDDŒ?Þä­èèèI“&Ùè¸fw~ûöíAƒUªT©téÒÑÑÑñññ6ãñãÇ»wïTºt騨¨Y³fegg[khùï¼hcÌÈȨ[·nPPÐøñã—-[f­®šeϯ2‚#À1$%% !Þÿý=z·=zô矶ÑAÍî<333**ê¿ÿýoóæÍû÷ïîܹ¶mÛ=zÔêcLNNnÙ²åæÍ›Û¶m;jÔ¨bÅŠ5ªk×®VZþ;/òýüüV¯^ý믿¶iÓfÆŒVý6ž`ç¯H°¶êÕ««Ý˜JNNV» 0Å—bkÎñoÑ¡C‡„+V¬$iݺuBˆ}ûöÉo=|øpË–-'N,W®œâý÷ß·âqóßùĉ…‹-’Æ_|ÑÍÍíÀ†ûõë'„ؼy³åcÌç–qóæÍBˆ;wZÞUc¶øjŠð—Å9þ~ÁÑú\öLZFFÑ ¾[sЋvïÞݺuk__߈ˆˆ7ß|ó—_~‘CUŸ>} %*UªH’ôÇ×A¬óßyxxxpp°^¯7´ 0ÀÍÍíÊ•+Öc™2eZ¶liüÙ#GŽ!&Nœhùóß¹…c”$iãÆBˆž={Zñ{‘lóÕ•cª ßÿ}LLÌñãÇ{ôè»téRC–=zô{ï½'„˜9sæâÅ‹…òo²Ó§O[½'ùì<33óÌ™3­ZµÒét†Æ˜˜½^¯är:åcÌÎÎ2dÈСC?žšš*„(^¼¸…ÌçŽQ&Mk×®½}û¶Õ¾[~5PÂCí „ýõרQ£ܲeKCã±cÇ,ß³uçC=<<"##÷îÝkܸgÏNW³fMëŽqÆ ¯¼òJ·nÝæÎk2kùóÙ¹%co‹‘ƒcPPPttt\\Ü”)SrGdí|5PJíÛºídÕªU]ºt©[·n“&MÞ~ûí[·nø‘ãÇ2¤eË–QQQ½zõŠWx,—½E_ËXùEƒøRlÍáþ-zðàAhhhHHˆaå”ëׯW¨PA䱯¡|wm>Ëñdddù÷ ÙþùçBˆ 6È?^»v-00ð¹çž³îõz}5ªT©’]àž ;Æw^ä1êõúJ•*ÕªUËÐ2{öl!ÄÖ­[5ûÕ°r.Qqœ5kÖܹsK•*Õ°aÃÔÔÔï¾ûîìÙ³qqq^^^y}dÇŽÆ Óëõµk× ûùçŸ_}õÕ9sæä5G°§§çÌ™3»uëV¯^½îÝ»{zz®\¹Ò*7ÃÊó¡VìjŸ>}.\Ø«W¯!C†øøø,Z´(++Ëðì»åË—<¸oß¾Ÿ~ú©%cLHH8}útDDÄ€LÞz饗:tè`É Üy‘ǸsçÎ .Lž<Ùx‡Ã‡4hPÏž=§L™¢âWË9pLLLœ?~``àš5kä{ò?üðø¸¸™3gN˜0ÁìGnß¾ýÖ[oyxx|óÍ7ò%ÌÇïիׄ Z¶lYà7‰gΨ=hpH:uÚ±cÇäÉ“—,Y’žžîíí½téRk=aÏŠÊ–-»{÷î1cƬY³&==½qãÆË–-3ÜãòàÁƒŒŒŒ{÷îY8Fùñƒ &oU«VÍ$8V;/òãââ„ݺu3´N:uúôé¿ýö›$I&—xÚó«¨]ò´¹É“'W¯^ý»ï¾3´dgg7lذqãÆ999f?òÍ7ßT¯^}Μ9ÆcÆŒ©^½ú±cÇ ï¶mÛVíj…“GùºÝR¥J™´—.]Zaö±ëòŠóIII7nܘ6mZË–-ïß¿¿fÍš¯¾újøðá7nTRwLLLB$RtÔ’ªU«ªÝ˜âK ùÿs$ÿZ7f\r)N~£N§“^iìÎ;âqÝÑD‰%äüqÇŽ}||‚‚‚†Ú©S§K—.å³N)€ssòàèáááíí»²(?¹R^ÇD©R¥J”(áååeR„oݺµB^nT)ùJG§àäÁQ˜––&'EùR†ÀÀ@³ ðôô4YhJž¡ÎÎÎV{@êpþà›““cüäJI’vïÞíëë›×Š ­ZµÊÌÌ<óä:ÞòÚ=5jÔP{@êpþàØµkW77·/¿üR¾®Q1þü›7ovîÜÙÓÓSn¹{÷nJJŠáÏN: !Þ}÷]Ãm׿ÿþû7ß|ãííýì³ÏîðÌVgáäwU !BBBÆŒ3mÚ´^x¡yóæ©©©ñññ5kÖ|íµ× ÛìÞ½{äÈ‘aaa7nBDDDŒ5êÓO?mÛ¶mTTTVVÖÁƒu:݇~øÔSO©= u8pBôëׯ\¹rëÖ­ûñǃƒƒ{÷î=bÄyEž¼üûßÿö÷÷‹‹ûå—_|}}cccßxã°°°¢žÅÀ¨ÄeW `#:‰@cmááᦠ>Õ–’’Â’Z×¢M|/Ä—¢Af~×»ç¿ÆQ¸Ò8>‚#!8Ú EGààŽP„àhG€##8@‚£}Qt‹àEŽvGÑ8&—xä lG—Gæ‰D8‚£ÿéÕ†¼˜W@,pàpŽ(9 (ÜhÁQ%ŽYtÔét…€òöÄGœ7Ç@©"¤FI’$IÒqWŽŒà¨‡º½Ú’Ôh4bI§ÓpPGÌ*©QFéÇEpT•#­˜ÆMvÀñ‘[¤FÙ‡CpT›†‹Ž¶K‡NvÀ‘až­S£Œì€!8j€†‹Žv=ÙÇ@p„ö)7pGmÐRÑÑΩññ ; uGhÙ#8j†6ŠŽª”ÎÙí"8B[ÈŽhÁQKÔ.:ª[n4: dG´ˆà¨1jgG ; AG<¢‘r#Ð,‚£ö¨QtÔ`j¤è€Ö¡]dG4…à¨I\éøÙí 8B‹óÔ@ƒŽZEÑñ1ŠŽhÁÑÕ9D¹‘ì€5Œ¢£²#ª#8º4‡(7 8jEG#PÁŽ„ì€ŠŽšg³¢£ƒÎS“P ÁŠ ŠŽZn”Qt@G8$²#öGptÜ^ ÔFptÖËŽ=Om@Ñ;#8‘°'‚£Ca¨‡àèrœcžÚ€¢#vCpt4s!;`G(Bpt@lžÚ€¢#v@p„“ ;`kGÇÄ•ŽÀîŽ.ÄYç© (:`SG‡EÑØÁÑ‘‘s¡è€í]…ÓÏS°‚£ƒ£èì…à'DÑ[ 8:>ŠŽæ°:‚£Kp €íEGs(:`]G(Bpty]yžš¢#VDpt"LX›CvÀZŽPÄCíÀªä¢£«NLçE.:ºì|=ÖBÅÑɘ€µW:š“œœÌ•ŽXˆàèŒÈŽæp— "8@‚£“’$¡Óq£ ŠŽX‚àEŽÎ‹Z£9(2‚#\Ù€¢!8:­G8’€•ÙÑŠŽÁŠ]EGs(:PXGçÄ ŽJ(‚£k è,FptdGs(: ÁŠPž8Rt4‡¢# ²#Š] EGPTG×Cv4‡¢#"8@‚£³Q´ô7EGs(:?mÇO>ù$))Ií^À mÇùóç?ÿüó;w^²dÉ­[·ÔîŽS£èhEGò¡­àøïÿ»|ùò'Nœøàƒš7oþúë¯oÙ²åÁƒj÷ËI‘Í!;µ;ð„Q£F9òÈ‘#6lØ´iÓŽ;vìØQ¶lÙ矾cÇŽuëÖU»ƒ®K[G!„N§kРÁûï¿ÿóÏ?Ï™3§}ûöj—¢;cŒQt4‡¢#fi.8xxxÄÄÄÌš5kÿþýï¼óŽ——WjjêçŸûÊ+¯¬[·.''Gí>:²#PF[SÕ&ÒÓÓ·oß¾yóæýû÷ggg !Ê•+çééyàÀ,X°à믿V»›pBrѱpå[œƒãÍ›7úé§-[¶8p@.+úûû?÷ÜsíÛ·oРâ—_~™5kÖ‰'Þ{ï½ ¨Ý_Ç' IOr°ì(W¤³¥­à¸téÒ-[¶:tH¯× !üüüÚ´iÓ®]»¨¨(wwwÃfÍš5kРA£F<¨v—ÙÑQäuY¤à],£­à8eÊ!„ÏsÏ=×®]»þóŸÆyј——W‰%˜§6æHå1¡¡¢£!æß© ¸ò¦­àعsçöíÛ7nÜ8¯¼hŒr£•QtÔ …y±@Æ'DŠJ[wUoÚ´iÿþýy¥Æ7Þx£M›6j÷®Eµ¥ytBè„ÿ±æŒþèòžÝ mU³²²>|˜×[.\`GÛ¢è¨ö¼ÍÅøÊH¾v@AÔŽ»wï~ýõ× ?ÆÅÅ-]º4÷fz½^’¤J•*©Ý_gGvÌÅ~W:ªàLn¬áËäAýàèîî^¶lYùuzzz±bÅJ–,ivKŸqãÆ©Ý_ÒÊ=NÊæÙQ 5?ÃѵЀ&©›5k/¿ùå—ǯv§\EG;Ói,¥ šê@ÔŽÆú÷ï¥v/@v4Ã&EG-×ö$mw mDZcǪÝÀ^´_ÒãÖÀ“TŽË–-B4jÔ(,,Ìðcþzõê¥nŸ]EÇ\¬Vtt¬(F|<¦rpœ¿PHÚº9&7I’vìØqéÒ¥:uêÔ«WOíî¸$²£U8YÒ¢ô.IsÁqÇŽŸþyëÖ­åYìwß}wÍš5ò[=zô˜8q¢:Œºèèd©ñÑYpÞ¡òà¦vžpðàÁÁƒŸ>}Z¯× !N:µfÍooïž={V¨Paùòå;vìP»šcgÆÈEGsG+ÉèY…g§­Šã‚ $Izçwzôè!„غu«bêÔ©±±±çÏŸoÛ¶í·ß~«v7]ÖORZttîÔøè\0m ®B[ÁñÌ™3AAA¯¾úªü㯿þZ¬X±æÍ› !ªT©òôÓO'''«ÝGà‘‚³£+¤ÆGçÂÅÆ ®J[SÕþþþòëìììS§NÕªU«X±brKÉ’%oÞ¼©v]Ö…â‚)ŠikpvÚ Ž!!!—.]ÊÉÉB9räþýûÿüç?å·ôzý¥K—Ê•+W´=¯^½ºk×®õêÕkÚ´éøñãÓÓÓ•öÊ•+ 43fŒÚ§GÈŽO’‹ŽfÞpÁÔ(#;€SÓVplذaFFÆ_|qùòå/¾øB-¿µpáÂ[·nU«V­»5kÖ»ï¾{îܹ† –.]ú»ï¾8pà½{÷”|V’¤·ÞzëÎ;jŸ8—M29;Ài+88°T©RsæÌ‰‰‰9pà@íڵ嵻uë6cÆ !D¿~ý »ÏÄÄÄùóçnÞ¼yþüù[¶lyõÕW?>sæL%_´hÑÔ>1y²Ç-Õ&(:>É´èèâ©Q&Qz礭àX¾|ù•+W¶lÙ2((¨Y³fŸ}ö™ü+ùæÍ›eË–ýøãŸyæ™ÂîsÕªUz½~Ĉr˸qã¼½½7mÚ$/ú“³gÏΚ5«FjŸ!;>éïìHj4Fv§£­»ª…aaaóæÍ3i\²dIpp°›[QbîÁƒÝÜÜZ¶lihqwwŽŽÞ°aÑ#G¢¢¢òú`vvöرc}}}Ç×§OµO à€$Â48mUóR¾|ù¢¥FI’’’’üüüüüüŒÛ«W¯.„¸xñb>Ÿýâ‹/¦NZ¶lYµO€öPt|’$I$$ó¸äœˆæ*Ž›6mŠ‹‹;þ|^—îÅÇÇ+ß[VVVNNŽI»···âÖ­[y}ðرc ,èÝ»w“&MNž>>:.++ˤ]^^'¯CL›6íÒ¥KË—/÷òòRû”À‘(}¡Ëâ’GppÚ ŽIII*Txë­·ŠvE£™áyxx{{ç®,fff ! ÷Y;pàÀòåËüüCíóáx†5I¨PÈŽàÈ4tsÌÇÿüóÏŠ+Z+5ÊÓÒÒä¤h _˜{û³gÏ !fÏžþØK/½$„X¿~}xxø¿þõ/µÏ“ö¸ò2¹2PžÏ’Ëô€ÃÒPÅÑÍÍÍÛÛûìÙ³z½ÞŠÙ166611qïÞ½Ï?ÿ¼Ü"IÒîÝ»}}}åÕÅMT®\Ù°¥ìöíÛûöí ©W¯^PPÚç šAå¬ÈäìÈ­Dàh4ÝÝÝ ðÉ'ŸÌš5«Èw¥äÖµk×¹sç~ùå—-Z´ï‰™?þÍ›7 àéé)os÷îÝëׯ{zzV¨P¡Y³fÍš53ÞÃÉ“'÷íÛ%?½f0am„+1w¯ @ã4…íÛ·¿xñâüùóãããÛµkW¡B…bÅŠ™lc¼”·!!!cÆŒ™6mÚ /¼Ð¼yóÔÔÔøøøš5k¾öÚk†mvïÞ=räȰ°°7ª}”Ò\4qµì˜o¹‘ì¨DJr Ù‹¶‚cll¬üâøñãÇ7»MVºéׯ_¹råÖ­[÷ã?÷îÝ{ĈrõÖä:Ù‘Ijká^p(Ú Ž/¼ð‚öÜ¡C‡:äõnûöíÛ·oŸ×»5kִϺŒp&•2Ü+éÍÓVpä"B‡ç EG*dV'ŸON,hž¶‚£AFFƉ'®^½Ò´iÓ›7oúûû«Ý)(ãÜÙ±0ᆢcá0m š§¹à˜––6gΜ5kÖÈO ü¿ÿû¿¦M›vêÔ©fÍšS§NõõõU»ƒPÀ¹³cáÎÙ±0ÈŽ mZ\ñðáÃÁƒ/Y²¤lÙ²:u2´ìܹóå—_–Ó$È"ê ÓØ˃€†i+8Λ7ïØ±c-Z´Ø¼yóÇlh_µjÕ‹/¾xþüù¸¸8µûeœïq2EM˜Ò¥K‡††¦¦¦ªÝG†ÓdG&©íìÚ£­àèíí}÷îݼÞMOO/S¦ŒÚ}„ë±Fj¤èXdGÐmÇÈÈÈ«W¯š}fLBBÂåË—#""Ôî# ÉiŠŽPÙ´D[Á±{÷î:nôèÑ'Ož4n?yòäˆ#„;vT»(<‡ÎŽÖ›¤¦èXDdGÐ m­ãØ´iÓ,X°à¥—^ BlÛ¶í—_~9wîœ^¯ïÔ©S›6mÔî£úr-Vv|tXÖ±HXß´A[ÁQñæ›o6hÐ`Ú´iÉÉÉBˆË—/ !Ê•+7jÔ(ã•{ ¬hÙ4@sÁQѪU«V­Z¥§§'''?xð 44400PíN™Ä3º|§Ö$×üíGÑñÑi èXTdGP›ƒ£Ì××·Aƒj÷¢(ª‡WOLLÌg“XéB9Ò±²#EƒÈŽ *•ƒã²eË û‘^½z©ÛgË™$Eãéü!ÒQ²£-Ó EG‹@=*ÇÉ“'ö#NM‡E× ‘.Œìh²#¨Dåà(/²c,!!aË–-îîîÍš5«R¥Š»»{JJÊÞ½{³³³ƒƒƒÇ¯n‡mÍlˆ|¢Ñ Ò†ö‹Ž„í#;€Tޝ¿þºñ.\X²dIxxøW_}U±bECûåË—‡zêÔ© 6<÷ÜsêöÙn yÑl‚tlÚÏŽö8-Cv»ÓÖàsæÌIKKûâ‹/ŒS£¢|ùòÿùÏ„[·n½yó¦ÚÝ´7IHò3­ƒ¬ÙUÁí˜EXàX´=R¹råÜoU¬XQnwå \qÔ üGíîX>­fG8 *ö¥­åxÒÓÓõz}^e˜ÌÌL__ßråÊ©ÝM•™La;ÏüµØ}ê“ kK1a v¤­Šc­Zµ233wíÚ•û­}ûö¥§§×¬YSí>jˆaþÚ ™°¶uG°mÇöíÛ !ÆŽ»iÓ&ãÌÖ­[ß|óMÃ0f|¤CÆGídG WŽ‹ìv¡­©êÎ;ïÛ·ïÇ1bD¹råBCCu:]rròõë×…:tèܹ³Ú}TSþsš†+ …ÃÍ_»üMÖLX[sÖ`{Ú ŽBˆO>ù¤I“&Ÿþù7nܸ!7¿ñÆ:uR»wÀQã£êÙ‘ÌáÈŽ`cš Žnnn]»víҥ˵k×RRR<<<ªT©Â 1…å¨ñÑ…Qt´²#Ø’æ‚£L§Ó©ÝÇæ`ñQÅ¢£6¢ÙÑ:ÈŽ`3Úº9¶àH·ÎhçF84î•Û 8º ‡‰öÏŽZªN±4ÕÀŽÃ*“˜Ž]»îHv´²#XÁÑ9@|´[vÔR¹ÖGv«"8º.ˆ®Š¢£5‘ÀzŽ®N»ñÑEG —ÉŽÖDv+!8BÍÆG×¾ØÖDvk 8âo†ø¨vGŒûd³ì¨árãã¡St´*²#XŒàSš+=ºpÝ‘ìЂ£c°óE47smõì¨ùr#l‚¢#X†àˆºjÝ‘¢£•‘ÀG@‹>ZÈÑÊdG+#;@Q¡ˆ&J®Zt„õ‘ HŽPJ3×–gGG+7>7EGk#;@áQ8êÇGW­;’­ì…DpDQ¨|ác‘³£c–aCdG( ‚£°óZ<Ê©Yztɺ#EG› ;€bGXDÍ™ëÂfG§(7’m‚ìÊaªÍ\»dÝ6AvްuJ®—):Ú Ù Bp„5©3s­ ;V ­êóÔF#&;ÚÙòEp„õ©0sMÝÖBv€¼a+ê¯n )É)jw‡Gp„ Ùu暢#¬…¢#äà¨uš]ÄQ9ûÍ\›ÍŽN± OÞ#&;ÚÙÌ!8ÂNìTzt½º#l…ì¹a?vš¹6ÎŽN]n|<\ŠŽ6Cv€'aoö˜¹v±º#ÙцȎ`„àuؼôHv„µà1‚#TcûÒ#¿ða%üO „G¨Î¶¥GWª;Rt´-²#5Î ÖâQÂ&7Ín‹!;ÂZÈŽ\ž‡Ú‘„$„Ð dõ¡%©ªN'\ ‚Ãæ$—¸UòBÅÚbÒc®_í)ÉÉ.Rw¤èhsÔ¸0‚#4ÇVË=ºÌœ5ÙÑæÈŽ\Áe“{®Éް²#—Dp„¦¥ô˜ÿ%h.“asdG®‡à­³~éÑ5²#EG€Õá”–ÞñJv„UPtàbŽÚå"‹8*gå›fÈŽ° ²#WBp„ƒ±æÌµkdGØÙ€Ë 8Â!™/=aefÈŽíìÀ5ᨬ6sMv„U¸‚#Ûß3×–<Žì« ;pvG8Ãs®-Ø…ógGØÙ€S#8ÂyX:síìÙ‘¢£8/‚#œÂãyjKï¹–³£ó¦+²£8)‚£F±ˆ£%,*=J’s—ÉŽvBvàŒŽp|æn‹±ôžk²#,GvàtŽpfÍ\;uv„8µ;Øœ$$]Ux|óua>) N8ã5rÑ‘Ë!ìA*ÒÒô ITáà”ýJNNI.â̵óÖ™°¶ꎜÁ.¤ˆ3×dGXŽìÀ)áÈŠ4X”Ò#Ù–#;p|G-ââ3[+Ê=×Λa?dGŽà×Uè™k']œ¢£]‘82‚#–•îT-\éÑI—';ÚÙ€Ã"8…Ÿ¹&;ÂBdGމàÇdƒ…ñ ÉŽ°Ù€"8O(ąΘaWdGކà˜¡´ôètÙ‘¢£½‘8‚#]à¦tæÚénµ&;ÚÙ€ã 8j‹8jŠ¢™k§»ÕšìhodG‚àGc—r£‰B”ÙÑÞÈŽÁPDÑÌ5Ù– ;Ð<‚#PÇG²#,Av mjw( 5æ©s“„$„³£”»C†ìȵª(I+ÿ;€Ü¨8E”ß}3Nt» EGPw UG8M–aò›¹&;¢ÈÈŽ4‰àX*¿ ÉŽ(2²#í!8Ö‘g|t–ÂÉŽ* ;Ђ£¶°úwž49O›ùøè,—<’U@v %GÀúÌß7CvDÑhÁ°ó¥GÇŸ¶&;ª€ì@XÇŽÀAæ©s3³â£|)‚NÇ*(Öw T›3sᣃO[StTuGj#8Bóœ¥ÊbÉŽ(²#U»z">:ø%dGu¨‡à¨àïø(9vé‘쨲#•5„EÍp–yj³þ^µÇ‘KdGu¨à¨Ì JdGuØÁPß3׎™ÀÈŽê ;°/‚#4Ì©ç©s{%¡9mMvT‡œ9ñì‚àhËñÑÑÕ!Qz`'Gh•‹•M˜Y3ÜAUCv`{G@»4>’UCv`cG@ë$!I.{t˜P@vT Ù€-µ‚EŸàÚóÔfH’¤ŽÉŽª!;°‚#à $éQ|tœÉk²£jÈŽlƒà8I:ÅG²£jÈŽlÀCíØÉêÕ«W­Z•””T²dÉ-ZŒ3Æ××7ŸíïÝ»·råÊ5kÖ\ºt©L™2Õ«Wïׯ_Ó¦MÕ‡k`ž:ò% ¯m³£¤áS&gG®ÄPÄß&VæÁqÖ¬YsçÎ-UªTÆ SSS¿ûgÏÆÅÅyyy™Ý>;;»OŸ>ÇŽóöönܸñýû÷ýõ×}ûö 6lÈ!jBüý|B‡ˆdGÕX•óOU'&&Ο??00póæÍóçÏß²eË«¯¾züøñ™3gæõ‘U«V;v¬Aƒ»wïž3gÎÿûßµk×úøø|õÕW jÈÙñKN9Iú;>j~áæ¬UãeXóÇU«Véõú#FÈ-ãÆóööÞ´i“^¯7û‘Í›7 !ÞyçCI2,,lРA999?ÿü³Úž$gGGˆdGÕðhVâüÁñàÁƒnnn-[¶4´¸»»GGG§¥¥9rÄìGRRRJ•*U³fMãÆ°°0!ÄŋՋQéQh;>’ÕDv`1'¿ÆQ’¤¤¤$??????ãöêÕ« !.^¼•ûSóæÍóð0=3'OžBT¬XQí195æ©-aÈŽ’$_ï¨Ák¹ÞQM\òÀ2N³²²rrr|||LÚ½½½…·nÝ2û©ÈÈH“–øøøùóç/^¼cÇŽJŽnÒ"Oç%444999%%Eí¦²ª¢ªNÂ¥K—Ôœ]$' !ªêtBˆ”äd!D²HBèª>*4%§$«ÝE¹›É:nÏž=jwÄ%%‹ªºª)ÉyþEs•¿,…/EumÛ¶U» ZáäÁñÞ½{BˆR¥J™´—.]Zqûöí÷““³lÙ²éÓ§çää|òÉ'þþþJŽ›˜˜XØ®V­ZUí³¥ ¶;.t†%IÈññqUÏPq”¤ ÔÕ$‰ªºªùü¯À…þ²8¾uåþµž»Bä"œ<8úøøètº¬¬,“ö;wîˆÇuÇ|üú믓&M:wî\ppðG}Ô¤IµäÔ˜A³®'g®µiiþZ®;’Õa¸Þ‘Ó 0œ<8zxxx{{ç®,fff ! ÷YçöàÁƒ3f,Y²¤D‰o¼ñFÿþýóZôЮÇK…‹'Ùvâ#uG5Égÿ`PN…III™™™eË–54ÊÒšýˆ^¯=zôÖ­[[·n=qâÄ|ò%¬†ß^¶c®ô(4ÉŽ*ãv…áüËñÄÆÆæääìÝ»×Ð"IÒîÝ»}}}ëÕ«gö#K–,ÙºukÏž=¿úê+R#œa½ž\KáhaíÖèQËôPÌùƒc×®]ÝÜܾüòKùºF!ÄüùóoÞ¼Ù¹sgOOO¹åîÝ»)))òmk’$-]º´L™2o½õ–Ú}¬êÉåŸxÇ(>ª’ ÉŽ*#;PÆù§ªCBBÆŒ3mÚ´^x¡yóæ©©©ñññ5kÖ|íµ× ÛìÞ½{äÈ‘aaa7n¼qãÆ… ¼¼¼zõê•{o:uêÝ»·Úcr:Ì”ÙS3×Âøæk5æ¯ Ù‘iku²£&–l QÎ…ýúõ+W®Üºuë~üñÇàààÞ½{1B^‘'7¹îxïÞ½'Nä~—«á 7Í3ñQ¨wù£¹äQ5’¢€•z¸8þ¶¾ðððB­ãȯI;TSRRXͼ\÷\›¾o³ø˜Ï—Â_ ¥¤¤T %;j ÿ‚iPa×; ç¿ÆZÇ<µºò¸iæï÷Õ¸ü‘KUÆ%òàSÕòSÐ̵PãòG–éQËô0‡àUñ›I;ÄGaßËÉŽ*ãé2r!80Røø(l™ ÉŽ*ãé2žDpKÏ*4ÝÊ.ó×,Ó£>¦­ŠBNa3m­>¦­§Cp`_ãcUQÄø(Oa3m­ ”'Âà°ª0&I)ÉÉÖÿ.ò>->.å¿8‹„«O2ŠGê±xòúÑn º’ikM ô8>‚#ì‚r#òaÁÒ¦{Ê;A2m­ \õ88‚#m°léGÓå‘ )=j¥GÀaUCå0ÏJó×v–;ARzÔJ€c"8ÂöøÝ€"°Þüõ£˜,åCéQ X'p4GfÕùëG»4,åó(šRzTÓÖ€C!8ÂÆ('À*¬:-Œ ’ŽÒ£Ê ÓÖ‚.­#8pÖž¿r‚|\z4¤%ņ•qÕ#àŽ æ¯Å“W=*(6¬Œ™k@Ûް%а)«ß@“ë†k¤ (=Fpàà¬]€4.=øLØ ¥G@“ް °3+>&Wé‘©J€öÕÁ €­X¯iv­G¤½Qz´„àÀIY£™Ïcfr'HAˆ´Öë4ƒàÛ`v aR€EIù?fÆ8,R†´!f® 8p –MaJBä·T8eH›cæPÁ6@IZfÁv>3צ[R†´f®õ¸$ ¦°óŸ¹6³=÷ÓØ3×€Ž\[‘¤Â™kÓO1‘muÌ\öEp„µQ€ƒ*üEE‹"‰lAˆ,f®;"8À“ y¤ò Íœ«!­‚™kÀ.Ž*pæÕ¿ùWN£SØ…½ðÑüN˜Ë¶3×€ _Šd‘g®Í승ì"cæ°%‚#(£,AZ1>>Ú!sÙE@|lƒàëaž.BA‚´z||´[æ² …øXÁŠ*w‚O„HÅGÁ\v¡ë!8ÂJ(7•‡Â\eH o».øà„H%¸í°‚#XUÙV¹íºàƒ"óÇm×€eŽ`¹¤íf®ÍŸi3×€Žö朋82ûäãÉù(·Ø+>>êB!R¸lŽ$>EBp{1¾oF§výdPréb$ñ($‚#,F¹(ùÂG!„N§{r.ÛÞ1)FV5Óî䈀bnjw\›ô7"u:Ë÷Zľ)9%Y’$$ÐÿQû4Ùcðnq±EFÅ–¡ÜXÏßwÏètÆ«AªÓלѦúä‹àÚbzóuAÏȶS¯\êöâ#‚#h‘™µ{òx> }s‘b$ñÈ…à 0O ØXžK?j&D §/FÇGÁ?zpuGÐ:ãøøèGG‘™r¤¡ã áÚŽvåT«SnìËð¯‡iR«!R8eŽdþ®à&¿Gj8D gÊ‘ÄG¸*‚#Š„r# 63ó×¹¶øûµöB¤p‚Éåp=Gp`yÎ_çÚîïך ‘Âqs$—?•Qx”í)¸i´é߯µ"…#æHæ¯áŽà<” >ð÷kNãª,G íDIæ¯áÔxV5 ‰r#àŒ~­SøðkI’”’œ,¿xâQÕÚ#=êåß´õpm‰‡_Ã9Qq§Uèä“þûµIvÔX1òQ§´Y’dþÎ…àˆÂ Ü8¦B\™ÇçŸøÑs¤P7J2 gAp´§Zý€2)@Š"$ÈÇ{âG ßaóD¯ Š’6Ï‘&÷_ $Á\ŽÕäãÿýÚŠ‘÷N­ÙmVðÃ"8B1æ©§cÑEyìñ‰9G sQRX7M2… GCpX|dÞû}âÇÜ7h;Z”¶(L2… ÇÁr…9€éNãëþ˜DA+}1 ñæQq˜²òEùé‰jjûïnZ}ŽÛd ;Yí¡åFÀUåNÂv!R8üÔößÝT6Ç-òO“ß©ª«jÒ¨…©j@Á$#¶šÈ6wÔ¦¶dvûÑhÌŒÇÌ4wî|™’œòĶ# Î†Š£8ð"Ž”<É~ÙæŽmÚ☳Û÷WIm²êã-¹j£â("jæ:á4%É¿Çô䨒S’Mk“Ò£?Ô agT‘/ʰ÷¥ùvÅ´Ålvt´Â¤È«6)=.úê$ãuÌ @pXqXTa";>™itØÛnL{mˆ†ÿÿd‚Ìs{ HŽÈåFÐPÒ\çL[œ¥0™;AÿKž×“J(DpDH¬ÄlRh'D>î™F‡.L澓&ïsN „BG€ýhq.;ßîš¶8baÒ¸wyÜŽW@$PÂÁæPn`{šžËλÓf(Mš+Cæ»yᥠS:;‚£=8ð"Ž`{Ž1—ïÌ4æµF¥  ™ï§óÜ”LéÜŽÈ…r#õä"…åÈÇÝ5ß®Á@YÈ2dA;#S:3‚#@£L’¢C#ÍÊ|»¥Ù2¤°Z5¡h™R+µ„àˆ'Qn U?£]ÐðÌ·ëtU µ½Õúc܇<Ú­y´üöK¬Ô9#¤FB2¢{’Ú]³þPS’“MŸ¬hö኶{Ä¢dôG'ìÿœCÉÌøÿþ£Ëó\èt<ÑÚ¨8›sÎh+¶ùö|²£UΆ}+‘ÊzTôje‡ ‚#£ÜÀ)8Ïí5EžoY=Sj/Dšëc½!Y Áà´ò)F É‘O8Ï·òŸãVr¢!DæÑñ¢$ËꢺÚW×8Úœc,âH¹€ ž¤ËEíªyjòû£Ë÷2B3{ËãšHÇ<ÁfOŠÚR G¸¨ÜÿUïê%ɼä U­4Ù–ìhŽ<’ÿÔ¶ JšeI¬Ô}–SëŽ.r#ä¡À’¤ J¨Àóc8¥:“-u…Ø ì…àèÚHPDIëËs]!£vÝÿ¯pûU(:¢¤­ä>g&%IÓ¥‚[oø",Fpta”À”DIAš,‚¼§²½]àUxã<_MÞ޶¥ÝµxH`/f&-e¦$YÐ6 O¯’|Yu€½HæèÌQ»§ŽCÊõGW¤…$ó_ÕRþ㪨8º$Ê IÊk“‚ò¤E¨J"_T]©Jrr²òò$Ê(©Jr óFÅÑÅÀYäUqÌ';R¤4Ãì)Ñ)ÞÒÅ] ©\@>éL©TiÒEï!8à2Š–)±Rf|ÂÕîŒJŽ6¤­µx(7ò–ÿ/,b%dG×@jXÀ’XYàÇá@Ž.€Ô°¥s¡’{½ —àèìHµ) … "_ª‹àèÔH¡0j¡JR¦Õ©àt •I™VÇ“cœ‘ŽÔ€ù‚çEWjL5G[Qm-Ýãg(Å •2Õî¬jŽÎ…B#°®qtrÕœÔl†àè(4Ûcª:O«W¯îÚµk½zõš6m:~üøôôtµ{d÷Á(Ó¶m[µ»S|)ÚÄ÷¢A|)Ђ£y³fÍz÷ÝwÏ;×°aÃÒ¥K÷Ýw¼wïžÂÛãÎ÷Á»"8š‘˜˜8þüÀÀÀÍ›7ÏŸ?Ë–-¯¾úêñãÇgΜ©vׄDF ‚£«V­Òëõ#FŒ[Æçíí½iÓ&½^¯Z·tDF &‚£tsskÙ²¥¡ÅÝÝ=:::--íÈ‘#víŠ.W^$2•MI’”””äçççççgÜ^½zu!ÄÅ‹ ÜÙ3g }£.?yhËñ˜ÊÊÊÊÉÉñññ1i÷ööBܺu«À=HB…|Qxõð<ÞPût8‘ðpΦæð¥hß‹ñ¥@#ަä[§K•*eÒ^ºti!ÄíÛ· ÞE᫃‰"Qíq€©jS>>>:.++ˤýÎ;âqÝÀMyxxx{{ç®,fff ! ÷Y¸‚£iiirR4HII‘ßR»wê 8𛓓³wï^C‹$I»wïöõõ­W¯žÚ½PÁÑŒ®]»º¹¹}ùå—òuBˆùóçß¼y³sçΞžžj÷@¶¤²cZ¸pá´iÓÊ—/ß¼yóÔÔÔøøøÈÈÈ… æ^¦ÀEó´aÆuëÖ?~<88¸Q£F#FŒWäpMG(Â5ŽP„àEŽP„àEŽP„àEŽPÄCí8Õ«W¯Zµ*))©dÉ’-Z´3fŒ¯¯¯Ú‚B$''·k×nÕªUÿøÇ?Ôî‹«»wïÞÊ•+׬YséÒ¥2eÊT¯^½_¿~M›6U»_®.##ã³Ï>;tèÐ¥K—Ê•+W«V­7Þx#44Tí~á‘+W®tèÐ!&&fÆŒj÷Å¥uéÒå÷ß7iô÷÷ÿùçŸÕîšý­cÖ¬YsçÎ-UªTÆ SSS¿ûgÏÆÅÅyyy©Ý5ˆ%K–¨Ý!DvvvŸ>}Ž;æííݸqãû÷ïÿúë¯ûöí6lØ!CÔîëÊÌÌü׿þuãÆ°°°V­Z]½zõÇܺuëÊ•+kÕª¥vï $Izë­·îܹ£vG .\¸àååU¥JãFW{1ÁÑ çÏŸ¸fÍš€€!ć~7sæÌ &¨Ý;ו™™yæÌ™ 6¬X±Bí¾@!V­ZuìØ± |óÍ7òS={¶wïÞ_}õULLLDD„ÚtQ_|ñÅ7 4räH¹åûï¿ûí·?øàþîhÁ¢E‹8 v/ 233o߾ݮ]»Ï>ûLí¾¨‰k­`ÕªUz½~ĈrjBŒ7ÎÛÛ{Ó¦Mz½^íÞ¹®:ôêÕ‹ß|Ú±yóf!Ä;ï¼c¨Ä‡…… 4(''Ç¥&z´fÿþý^^^¯¿þº¡å¥—^ :yòdNNŽÚ½sugÏž5kV5ÔîÄ… „&åFDp´‚ƒº¹¹µlÙÒÐâîî––väȵ{çº>üðÃÙ³gÏž=»I“&j÷B‘’’RªT©š5k7†…… !.^¼¨vï\—OLLL‰%Œ‹/þàÁƒ¨Ý;—–=vìX__ßqãÆ©ÝˆÔÔT!DåÊ•ÕîˆÊ˜ª¶”$IIII~~~~~~ÆíÕ«WB\¼x1**Jí>º¨fÍšÉ/vîÜ©v_ „óæÍóð0ý7çäÉ“BˆŠ+ªÝ;×µtéR“–ƒ^¸p¡nݺ\¥­®/¾ø"!!aáÂ…eË–U»/x¯^½úꫯ&$$”,Y222rРA®vÛ%ÁÑRYYY999¹¯õööBܺuKíZiÒ?þüâÅ‹wìØQíÞA=zô»ï¾KII9zôh¥J•¦M›¦v\Ú±cÇ,Xлwï&MšÈÿ}uÉ#ŸþyÕªU7n|ùòå;wîÞ½ûý÷ßïÖ­›Ú½³‚£¥îÝ»'„(Uª”I{éÒ¥…·oßV»ƒ€åää,[¶lúôé999Ÿ|ò‰¿¿¿Ú=‚HLL\³f$IBˆš5k+VLí¹®{÷î;¶bÅŠ£GV»/xäêÕ«^^^£FzõÕWå–_~ùeРA}ôQ³fÍBBBÔî p£¥|||t:]VV–I»¼t‚\w`ì×_íСÇ~èïïÿÍ7ß´oß^íA!^~ùå„„„}ûö½õÖ[[¶léÑ£KÀ¨eÚ´i—.]š>}:W hÇ¢E‹Ž;fHBˆ&Mš¼òÊ+÷îÝÛ¶m›Ú½³‚£¥<<<¼½½sW333…†û¬!>¾fÍš¯½öšÚ]´âÆòc^{õê•ûÝN:õîÝ[í>º¨>ø gÏž¯¿þz½zõ*T¨pýúõC‡ !¦OŸÎÝî€Á{ï½×¿ÿwß}wùòå¡¡¡—/_>vìXÉ’%§NêR÷0­£_¿~åÊ•[·nÝ?þÜ»wï#FÈÕGBˆK—. !îÝ»wâĉÜïr‹ŒŠêÔ©óÃ?|þùç'NœHHH zî¹ç† "?Ô€¬Fk×®ýä“OöïßöìÙŠ+vìØqذaÁÁÁjwÍ®tò’]@þXŽŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁЏ–1cÆ„‡‡ïÚµK펈/¿ü2<<|Ù²ejw”"8@µ;.ªU«Vþþþ 4P»# ÁÔQ³fÍš5kªÝ (¦ª@srrr>|¨v/ÀÁ€cx÷ÝwÃÃÃg̘aÒþûᅦ‡‡7iÒ$;;[qóæÍO?ý´}ûöõëׯ_¿þóÏ?ÿñÇ_»v-¯ÝÊ÷Êì߿ߤ=22ò™gž1nùù矇 Öºuë† ¾úê«_~ù¥I¶»|ùòĉÛ·o_·nÝ–-[8ðàÁƒùŒhÁ‚Æ7ÇÈ=¹téÒüùó7n\«V­¨¨¨—_~yÛ¶myíáèÑ£‘‘‘ÑÑÑþù§¡ñÎ;-[¶ŒŒŒ<~ü¸Ú_gCpà:tè „Ø²e‹IûÆ…;vôðð¸yóf¯^½æÍ›wåÊ•J•*U¨PáâÅ‹ÿýï{ô葞žnÉÑgΜٿÿ-[¶dgg:tè‹/¾èÝ»wZZš¼ÁÙ³g;tè°bÅŠ´´´§Ÿ~Z’¤Ý»w¿òÊ+;vì(ÔæÍ›÷É'Ÿxzz6nÜØÛÛûèÑ£C† Ù´i“Ùëի׿ÿk×®M:ÕÐ8}úô«W¯<¸N:öþ’8;‚#ÇаaÀ€€‹/ž:uÊШ×ëåPõÒK/ !¾ûî»óçÏÇÄÄüüóÏëÖ­[¿~ý¾}û6lxùòåíÛ·ùÐ;wî\°`AÅŠW¯^½k×®~øaÏž=-Z´8vìØœ9sämfΜy÷îÝ×_ý—_~ùî»ïvïÞýÎ;ïH’ôùçŸêX«V­8pàÞ½{-ZôÓO?õéÓG—×öÆ ûî»ïöîÝ+„Ø¿ÿÊ•+k×®ýú믫÷]pZGŽÁÍÍíùçŸO:tíÚµzõêU«VM‘ݪU«7ß|³T©RòeË–•K•©©©E>ô´iÓ„Ÿ}ö™¡†çïïÿÙgŸ®Y³&##Cqúôi!D×®]ÝÝÝåmzôè1xðàÖ­[êXuêÔ=z´›››<äÁƒ !Ο?Ÿ×öžžžÓ§O÷ððx÷Ýw¯_¿þÎ;ïxyyÍœ9ÓÐ °"‚#‡!G@ãy[yžºsçÎòC† ™;wîÓO?mØàÆ?üðƒ%MOOOII 5¹ºdÉ’Mš4¹wïÞ‰'„rr7nÜä«-===‡þÆoêpíÚµ3þÑÛÛÛÝÝ]’¤|>9dÈ?þøãÅ_¼|ùò[o½U¥J[}\Ëñp5kÖ¬R¥ÊùóçÃÃó³³7oÞìååÕ¾}{Ã6—/_Þ³gÏ¡C‡.^¼xá /mB$''Ëÿ7<<ÜìW¯^BLš4iĈxå•WJ”(ùÏþó¹çž‹ŒŒ,Ôá*T¨P„NþûßÿÞ¶mÛÉ“'5jÔ£G«žuøÁ€#éСÃ_|±yóæððð½{÷Þ¾}û¥—^2LL/_¾üƒ>ÈÎήT©RTTTëÖ­kÕª•’’2yòäB%''ÇPä{ðà¢|ùòyM:‡„„!*T¨°zõê£GîÙ³ç×_=qâÄ‘#GæÌ™Ó¥K—>ø@§Ó)}úæÍ›rKNNΊ+–.]*„¸wïžÙ½UªTI±dÉ’¬¬,¹%>>Þ°ÈŽlÔ¨Qz½~Ô¨Q rË;wÞ~ûí'NÔ¬YÓßß?88øÏ?ÿüí·ß¾þúkC©òüùó{öìBØt=Å?þøcòäÉeÊ”™2eЧ§çÔ©SÝÝÝ'MšdùÅSÕLûöí§M›–˜˜èîîÞ±cGC{hhhllìöíÛŸ}öÙ H’”˜˜˜žžÞ«W¯¸¸¸ï¿ÿþÏ?ÿ”Ö1Ö±cÇÅ‹9r$66622òúõëIIIÞÞÞAAAýõ—¼M§N8°víÚŽ;–/_Þ××7999++«J•*òÊÛnnnãÇ7nÜŒ3¾ùæ› *dee;wN’¤=zÔ«WÏF§B’¤qãÆeff~ôÑGrn®]»vŸ>}¾ùæ›I“&}öÙgjWœ G&  Q£FBˆæÍ›¿õÉ'Ÿ 6,$$D^ß1::zݺuï¼óN¯^½ÜÝÝÍ>°bÅŠß~ûmëÖ­ÝÜÜöíÛwæÌ™òåË/X°Àßßß°N§ûøãÿóŸÿÄÄÄèõúóçÏW­ZuÔ¨QëÖ­óõõ•·éÔ©ÓâÅ‹[´háååuúô鬬¬¦M›Îž={âĉ¶;K–,Ù¿³fÍ z !† V¹råM›6mÞ¼YÕ/ €Òå¿<¸Ž»w殮¥U¬XQùMÐàRŽP„©j(Bp€"G(Bp€"G(Bp€"G(Bp€"G(òÿ2ˆ~Œ$¦šIEND®B`‚statistics-release-1.6.3/docs/assets/ncfpdf_201.png000066400000000000000000000577341456127120000221310ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A_£IDATxÚíÝw|÷ÿÿñ÷É !d4Cb‡$Ĩ˜µ%1c4ˆ–R”–ZÔ¨RÒ¢Vm¡jVK|«¨ bTŒ¢D !bµH„ F’s~\ýœßéÉpe^g<îôvÎûZïë:å<½Þ×û:*F#€W±Pº0GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBpLÁ… TÿÓ¯_?½¥/^¼Ð.]¹r¥Ò-»víúùçŸþùçû÷ïân§N*]·îݻ紎îÅÏÉøñã‹ÿš¤c9m[¦L™  2äÖ­[¯\ßÊÊÊÙÙ¹I“&S§NÍú¹ìu ‚#`j¾ÿþûãÇ+Ý‹âÖ§OŸààààààsçÎ)ÝSöäɓӧO¯ZµªF¿þúkî+gff&''Ÿ8qbÆŒ>>>111Jw@AY)Ý…L£Ñ„††þþûï*•J龘777[[Û¬íŽŽŽÆÛ1í¶éééÿý·Z­B<}útÈ!±±±¥K—Îiý§OŸj )))½zõŠ/Y²¤]7zŽ€ Љ‰Ù¼yó;ï¼£tGÌΦM›•îE!wLwÛ'OžŒ=zÍš5BˆëׯGEEuíÚ5—õoÞ¼9mÚ´ï¾ûNqëÖ­åË—‡††Ñu ‡¡jÀ4Mœ81--í•«=}útÚ´iíÚµsssssskÛ¶íäÉ“SSSu×ѽÏ/%%eܸq5*S¦L½zõ¾üòËôôt½}Þ»woôèÑÍ›7···¯R¥J§NvïÞõÐwïÞ=zt³fÍÊ”)S­Zµž={ž>}:Çýä“OT*Õ“'O¤·mÛ¶U©TOŸ>ÕÛCFFÆgŸ}V¡B…Ï>ûLZS­VÿðÃþþþ•+W¶±±©\¹r›6mÖ­[—õŒŠÈàÁƒ¥îùûûë¶oÞ¼Yj/Uª”t"ééé+V¬hÑ¢…‡‡‡]:uÞ}÷Ý?ÿü³xú©ËÎÎnÉ’%ÖÖÖÒÛK—.å¾~ÅŠ׬Y£½CôË/¿”Î(¯ ç æNÀøÅÆÆjÿPרQCz&-}þü¹véŠ+´[8q¢ZµjYÿZ¨X±btt´vµ)S¦HímÚ´©Y³¦ÞʽzõÒíɾ}û\]]³îóý÷ß×]í·ß~sssÓ[G¥R;6¯Ç4iRÖÃ=yòDwÁÁÁ ^O™2EÚð­·ÞÊöoŬ}–sñ÷ïß/ÿS‹ŒŒ”¶²¶¶NMMÕ¶},,,4Íüùó¥aPùÇýøããã㥞 !Ö­[§ûVrêÔ©uëÖé¶lÙ²eË–-B•JпÿÚµkK‹"""¢¢¢Šá“ ”îáKOO×=âo¿ý&½ B̘1ãĉB[[Û7ß|sÔ¨QMš4Bh4šÑ£G¿²æWè>|(}vB///9›´jÕªD‰Òké\òÄЮ`Ö”N® ^ñfîܹÒë~ýúir¨8†……I-eË–=qâ„ÔxîÜ9ggg©][LÒVÝ„‹/–/^¼¨ÍpÚªÏäÉ“¥–Ê•+ß¿_¯±U«Vz-ºµ½Å‹K•*UÊëq5öôµº{ðõõݸqcLLÌÕ«W5Í{ï½'µ7N»~ƒ ¤Æ9sæèíAfÅ1[¡¡¡9m«íÆÐ¡C¥)Ê !J–,ùèÑ#FÓ¼ys©eÆŒÚ Ûµk§we ·cÙ–ÓÓÓ/^¼Ø¹sgí¢?þø#—õuUªTIZ:|øð¼v/ßW@¡£â˜ Q£FU¯^]±iÓ¦œÍóË/¿H/>úè£FI¯ëÔ©3vìX½´j×®=räHéu5Z¶l)½NLL”^ìÝ»WzññÇkè¨Q£êÕ«W¯^½/^dff !öìÙ#-úàƒ´;ï½÷,--…7nÜÐ{¤Î+ûJ¥J•úõ×_ûöíÛ¤IOOO!ÄÛo¿½qãÆ7Ž=ZZ'55U{W胊ç“Ò—k¯‰¶Üؾ}û²eË !ž={&µlذaÍš5RµoÆ ±±±±±±RU²HI·ªT*kkëš5kjÿÇèÖ­[ýúõeîäµ×^“^èÝA+‡âW€³ªT¢D‰¹sçJE²ÐÐÐd]'..NzÑ¡CÝööíÛKÁ+W®¨Õj ‹ÿÿÏK½"œœ¤ÒóY„ñññÒ m‰HQ®\¹3gÎènxùòål­uåÊ•ºuëÊ?î+ùùùioËÓ=tJJÊÞ½{O:uæÌ™“'OfÏ«l+£ípVÒhuJJJbbâ¥K—jÔ¨¡7N-uUš6'ͧñóóëÔ©S·nݲ½ó¯P:öJµk×þæ›o䯟œœ,½ÒpžºW(W@¡ 8¦éÍ7ß ˆŠŠ’Í£·455õÑ£GÒkwwwÝEåË——^<þüîÝ»ºKõ ©÷VwŸ9u,55U;:'III¹(ϧԖ?µ^¾|ùÉ'Ÿ,Z´(##Cj±µµuuu•nÐÌ·¼>VÆÚÚ:88XzZMdd¤”ò­­­µ¹ KMM]½zõ‹/„æôéÓ§OŸž9sfË–-·mÛæââRèÓ¥›ê¬¬¬|}}›5k6zôhí=rüóÏ?Ú½åµ{…r †ª“µ`Á©^¨½§P«lÙ²Ò!Äßÿ­»Hû¶D‰yú>.S¦ŒvJж¼”UÙ²eË”)#½Þ·o_|vúôéS¸—"kÖœ9sæüùó322<==—-[ö矦¦¦f}$a1èÕ«—ôbÏž=±±±RrÕΛBX[[/Y²äþýû?þøcß¾}uŸ‰}øðábøQ¾M›6%üÏ•+W~þùç‰'æ)59räåË—Òë|Ô¿´Ž€Éª[·îûï¿/tŠ=º|||¤ûöíÓm×¾õòò²²Êà„J¥ÒŽ)ëÞXùÏ?ÿ4mÚ´iÓ¦þþþÒà²tÿ¥"##£šGGG‡lD¤p-[¶Lz±téÒaÆխ[×ÊÊJï÷—‹GÛ¶m¥$½sçN©Q;NýâÅ‹»wïÞ½{÷Å‹o½õÖÆïÝ»÷믿jãסC‡Š¿Ïy¥Ô.]º´îm r˜ÆLÁ0e_|ñE¶·” !‚‚‚¤‹-Ò>y;66ö믿–^wêÔ)¯‡kݺµôbÞ¼yÚ´º`Á‚˜˜˜˜˜˜’%KJжmÛJ‹ÂÃÃ5ôzÛ¶m¯½öš³³s•*U r¯¡¶²•‹ÇkGÃ>|(½øã?Šç)ë1—» Á?ÿü3dȈˆéí»ï¾«­7ËdìW01Üã˜2WW×)S¦L˜0!ë¢ &|÷Ýw‰‰‰=jÑ¢E`` ¥¥åþýû¥öpwwŸ:uj^7uêÔõë×§¦¦&$$Ô«W/00ðîÝ»ÚÙ#FŒ^|òÉ'«W¯NIIÙ¾}{@@@ëÖ­/\¸ «;vìØ|LÚpppnüâ‹/.\¸0zôhí¯›deggggg'­?xð`é—ZöìÙSl¿£§W¯^ÒmŽÒlî6mÚhoʬ[·®››ÛÝ»w322Z´hÑ¥K''§ë×¯ïØ±CZAû£,†£ÿþÒM OŸ>Õ½ÂÅÅå‹/¾ÈëÞŒñ &Œà˜¸Ñ£G¯\¹Rût@-[[Û-[¶ôéÓçÚµkÏž=Ûµk—vQåÊ•7nܘS©2®®®k×®}ï½÷=zt÷îÝï¿ÿ^»hòäÉÚ;×­[׿ÿ‡üðÃÏ?ÿ<§ÙºuëM›6 !Ž;vìØ±aÆåU*UçÎüñG!DZZšA<==+W®,ÍMѻﳨI£Õ)))Ò[ÝçËXXXHñúÙ³gÿüóÏêÕ«u7lÓ¦M¶ÿ*PÖ;w²6:99íØ±#ë,¥W2Æ+˜0†ªW¢D í賞ÆŸ;wnêÔ©nnnÎÎΟ~úéùóç[´h‘¿ÃuïÞýüùóC‡mÔ¨‘]•*UºtérèС™3gê®Öµk×?ÿüóý÷߯_¿~©R¥<==»wï½|ùò|LšB,X° oß¾®®®¥K—®]»¶îS„rZ¿N:B ‹×_}̘1gΜÑoÞ¼YûÌ b ­–ú£WB{ã7âãã§NÚ¨Q#kkkGGÇ-Z¬^½:**ªdÉ’ÅÖϼ²´´trrjܸñÔ©SãââÞxãüíÇx¯`zTÚŒÀ¬¤§§KuVÆ:@&‚#da¨² Á² Á² Á² Á² Á² Á²X)Ýb²uëÖ-[¶ÄÇÇ—*UªuëÖãÇwttÌeý—/_®[·.222!!ÁÑѱN:#GŽôòòRú<£Òh4J÷¡È-X°`ÅŠ¥K—nذabbâõë×ëÖ­»~ýz[[Ûl×ÏÌÌìׯßéÓ§=<<êÔ©“’’ròäI ‹uëÖ5jÔHé³P†éǸ¸¸àà`—ˆˆWWW!ÄÌ™3ׯ_߯_¿©S§f»É÷ßÖ©S§¹sçZYY !Ž;6xðàŠ+îÝ»WéP†éßã¸e˵Z*¥F!ĤI“ìíí###Õju¶›œ>}Z1`À)5 !š6mZ³fÍëׯ?xð@éP†éGi”¹M›6ÚKKËV­Z%''K1+www!„nFÔh4>´°°ÐFIscâÁQ£ÑÄÇÇ;99999é¶{{{ !nÞ¼™íV]ºt±±±™9sæ±cÇž={vçΩS§Þºu«W¯^eË–Uúœ”aâõ³´´´ÌÌL½v{{{ñßš¢.Ÿ 6 8pàÀÚÆ~ýúMžoP´âââ”î‚L<8>{öLQºti½v;;;!Ä£G²Ý*55uÖ¬YOŸ>­U«V:u’““9²}ûö7Þx£]»vrŽkžÿ32>CÇb˜ø\ Š2Û"‘‰G•J•––¦×þäÉñ¿ºcV&Løã?&MšôÞ{ïI-wîÜéÝ»÷˜1cvìØáéé©ôi(ÀÄïq´²²²··ÏZYLMMBhçYëºwïÞªW¯®MBáǧ§§ÿôÓOJŸ€2L<8 !ÜÜÜ’““¥¤¨• -ʺ~rr²¢J•*zíR¡ñþýûJŸ€2L?8fff>|XÛ¢Ñh¢££ýüü²®_¥JKKË+W®è=]º¿¤zõêJŸ€2L?8öêÕËÂÂbÉ’%Ò}Bˆðð𤤤ž={Z[[K-OŸ>MHH¸uë–ÂÖÖ¶U«V‰‰‰‹-Ò>!üÊ•+Ë–-+Q¢„¿¿¿Ò'  ÓÿÉA!Äš5kfÏž]¾|ù–-[&&&ÆÄÄøúú®Y³Fû˜žÝ»w3ÆËËk×®]Bˆ¤¤¤¿ÿþ»J•*¾¾¾ÉÉÉüñ‡Z­ž2eJß¾}_y8¦¿ „„„ªU«*Ý üŠaâs1@|(Èl¿ëM|VµdРA...Û·oß½{·»»{¿~ýBCC¥'òdËÙÙy÷îÝ+V¬8räÈÁƒ[·n=lذ:uê(}*Š1‹Šc13Û…2þ½n€øP Ÿ‹âC1@fû]oú÷8 P Á² Á² ‹Y<Ç ŸÒ]Š›y>['Ž}|‰Â¬ð%ùª€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,G€Ñ S©T]»vͺhöìÙ*•êÏ?ÿTºE¥jժݻwÏå²d«OŸ>ÚÕž?îíí}æÌ¥O%?îß¿_¡B…;wî(ÝsAp˜ˆ]»výßÿýŸÒ½È³S§NuïÞýÂ… E´ÿÞ½{œE—.]´+LŸ>ÝÏÏÏÏÏO‘žžnee¥—2]\\rÚù¹sçÞ~ûíråÊÙÙÙ5lØpÁ‚Ú¥=úðÃ+UªdggתU«˜˜9nÕªUXX˜^cN»rqq4hШQ£ŠèêA¿U 0¶¶¶}ôQ»víÊ”)£t_òàîݻ۷o -¢ý9²yóæ9-½wïÞüùó=*½MHHÈÌÌlÖ¬™§§§v;;»l·½víZ›6m233»wï^©R¥ýû÷;öСC?ýô“"55µaÆ7nÜ qvvŽˆˆèر㤄š“3gÎ=z400P·1÷]…††º»»?~¼I“&Et ¡Ep˜ˆ©S§Nž>¾dÉ’eʔٺuëÊ•+9òòåËl·ÍÈÈ1b„”µ…%K–LMM½|ù²¿¿¿J¥Ò. P«ÕÙÞéèææ¦Ñh4Í¥K—ôÉÙU³fÍÒÓÓ£££ ~Mð 6ooo¥»}×®]Sº ÐLJb˜®]»fŒ‰}þùçBˆøøxF3{öl!Ä‚ ¤E³fÍBœ={V£Ñ¼xñ¢jÕªUªT¹ÿ¾´ôþýû•+Wöôô|ñâ…F£©R¥Š"""BZªV«ëÔ©S¡BF“‘‘áëë[­ZµHK¥˜2jÔ¨/^xyyùùù¥¥¥I‹ž?Þ´iSOOÏŒŒŒÜw«ÑhvíÚ%„8xð ôVZ9,,,33SjñôôôööNOO—Þ>|øÐÊÊjøðáÚõƒƒƒs¹,YµhÑBZ!<<\¡=#FÓ©S'[[[GGGíÊ5kÖûn³åîî>eÊ ‹GOœ8accceõïWvrr²"--MæéÝ»w… t[¤l*„HLL,Y²¤nLŒW«Õaaa!!!ÖÖÖ;vì3fLpppll¬½½}.G9xðà!Câãã—/_îåå%=ÿ¨lÙ²ºëH{ú/Ÿt¦¯Ü•»»û7ò´gäÁ —j\TÁw’?šy2×´²² oÖ¬ÙG}$MïÕºråŠB{ã ¤nݺÒ")áy{{ë.Õ¦7©îU§NÝ¥ƒ BHCÌï¼óÎ;ï¼£×™7nä¾Ûlùøøè®àèèøûï¿ÿú믗.]ºråÊ… tyóJ¹Ìª¾{÷®“““nËÁƒmll´ƒ zþüùˆ#"""œíNnܸ1räÈ;wzyyíß¿? @!Es½›SSS…zG|%™»zíµ×þùçŸ<íù@pÈ%?½)ë7Þøð×/_®{ó¢B£Ñ!to•BHsœÓÓÓ¥·666ÙîSºÕO[öÓU¢D !Ä×_­+…¾¾¾¹ï6[Ú×/^¼èÑ£ÇîÝ»5jÔ¾}ûnݺ5mÚ´~ýú…r¡lllônaôððÐ[§}ûöBˆœ3¹yóæ¡C‡ÚÙÙ­\¹rРAÚëãææfaa¡7Ó%))IQ¾|ùûÌÊÊjáÂ…o¾ùæë¯¿þÖ[o¥§§oß¾ýæÍ›?üðƒœg}KUÉåË—ß½{·wïÞzKýýýK—.ýÁôíÛ·|ùòÇŽ‹ŠŠrqq9räHddd§N r‰üýý-,,bbb¤æêê6qâD//¯N:988ìÝ»÷Ì™3_~ù¥4æ¾yóæáÇ¿÷Þ{óçÏ¿xñâ¥K—jÖ¬ùþûïëí¶G]»v8pàš5kúöí;bćµkצ¥¥iKPwW¯ìgî»Bœ;w.--­mÛ¶û_¯Fp˜¬eË–ÕªUëÙ³gÚ–=z:thúôéÒŒ??¿­[·6nÜXÎÞºwïýù矯^½ÚÒÒ²I“&_~ù¥ô¬ìŽ;ÆÄÄL:uãÆ/^¼xýõ×W­Z•µJ—­fÍšõéÓç—_~¹zõjÖàX©R¥Ý»wòÉ'‹/vssó÷÷?wîÜÏ?ÿüÉ'Ÿ|óÍ7 ŽŽŽŽM›6=pà@Ÿ>}¤– &T«VmΜ97n´±±©[·ndddÇŽ¥¥/_¾|øð¡t=¥G…_¼xñâÅ‹z»­^½z×®]Ë–-=~üøˆˆˆ”””¦M›nÚ´I[ÙÕÝÕ+å¾+!ÄÁƒ]]]µ¿ƒ¢£*”Z7tùøøÄÅÅ)Ý üGBBB>GP¤øP SBBBÇŽùKÌ|lÞ¼yĈÿý÷+k®’Õ«WÇÆÆ.\¸°à‡.Ä]5hРK—.º5È<ÉÇ·Ù~×s#æ+$$ÄÎÎnûöírV~þüù eNw!îêܹs/^6lX_*ApÀœY[[/Z´è‹/¾ÈivŽ®cÇŽÕ¬Y3ëã*ó¡w5mÚ´iÓ¦•+W®.¸Ç³|êÔ©ØØXéYè¹ð÷÷÷÷÷/”ƒÖ®îß¿ïêê:nܸb¸PG0cÆ ¥»O...+W®Tºf„¡jÈBp€,GÈBp€,GÈBp€,GÈÂsÕåé…wÄ¥ûÌÁшI‘‘ ŠÁÑèió¢” ‰ ˆp£Qºâ‘5 @‘"8šïˆ;Ú‘k0aaaªôéÓG»ÚóçϽ½½Ïœ9Sl»ÿ~… îÜáö0 ULDïÞ½+T¨ ×X¯^=íëéÓ§ûùùùùù !ÒÓÓmmm333uWvvv¾ÿ~¶;?wîÜÌ™3£££Ÿ>^1}úôÀÀÀWn;vìØGÅÄÄ4jÔHÚjðàÁkÖ¬Ù»wo‡æÏŸ¿víÚ!FÝ AƒqãÆEEE !œœœ:wî¼hÑ¢M›6)} €‚âG€Yøî»ïzõê¥}+ÇêÕ«ËÙ6**ªU«VRj”Œ9RqìØ1!Ä?üàîîÞ¿i‘§§gHHHttôßÿ-µ„„„lݺõñãÇJ_  Ž&ˆ)2 çÊ•+‰‰‰Íš5Ó¶ÄÇÇ—,Y²L™2[·n]¹rå‘#G^¾|™í¶#FŒ’¢Vbb¢¢dÉ’©©©—/_ö÷÷W©TÚ¥jµ:&&FzÛ¬Y³ôôôèèh¥/PP U†¡ '-Z´ÈÚrøða!ÄÁƒ…º%Ãøøx ‹êÕ«§¤¤H-5kÖܰaƒv,[ËÊÊꫯ¾ÒmyðàÁW_}eiir÷î]Fãææ¦»‚«««B;ϦJ•*ÎÎÎìÒ¥‹Ò (‚#@.G3äü›9ë¬ê*UªH/K–,éèè¨]¯V«ÃÂÂBBB¬­­wìØ1f̘àààØØX{{û\ŽrðàÁ!C†ÄÇÇ/_¾ÜËËëÏ?ÿB”-[VwiÉÉÉÚww÷7n(uõ€ÂBp4ML‘P üo•\fUß½{×ÉÉI·åàÁƒ666ÚÆAƒ=þ|ĈƒÎv'7nÜ9räÎ;½¼¼öïß „pvvBèÝ¿˜šš*„Ð=âk¯½öÏ?ÿ(}…€‚"8² äÞ-ŒúÕÓöíÛ !.\¸í6oÞ¸~ýú®]»¤·÷îÝ‹ˆˆh×®]ÕªU¥–ŒŒŒ›7oÖ¬YSéËCÕFƒqjÈ7 ‹˜˜)̹ºº†……Mœ8ÑËË«S§N{÷î=sæÌ—_~éëë+„ؼyóðáÃß{ï½ùóç_¼xñÒ¥K5kÖ|ÿý÷õvÛ£G®]»8pÍš5}ûö1b„ƒƒÃÚµkÓÒÒ´«;w.--­mÛ¶J_  ŽÓçèèØ´iÓôéÓGj™0aBµjÕæÌ™³qãF›ºuëFFFvìØQZúòåˇ>{öLüïQá/^ÔÚBT¯^½k×®eË–ŽŽ?~|DDDJJJÓ¦M7mÚ$ýÞ äàÁƒ®®®Yô‚£)cn531mÚ´iÓ¦å¾Îˆ#FŒ±xñâ’%KJ-={öìÙ³g¶+0 ===66VÑ­[7F“ûÎíííÃÃÃsZºiÓ¦?üÐÒÒRéë÷8òPHHˆÝöíÛå¬üüùóÔ¯_¿àÇ=wîÜÅ‹‡ ¦ô Á`¬­­-ZôÅ_hçVçâØ±c5kÖ|çw ~\©Ê”j˜‚£‰cn5hK¿ óÊ5ýýý§L™¢ûØü¹ÿ¾««ë¸qã”>u pp#ÀŒÌ˜1£8çââ²råJ¥O(4T78C@p4}ŒV€BAp€,GÈBp€,GÈBp4 ÌÇsú|||”îCDpüG\\œÒ]À$$$T­ZUé^B0Tmøxú70GsÁmŽ €Ž…àYŽ…àhF¸ÍÁ² ÁÑ ñG`8Žæ…Û@¾ Á² Á²Íóc@þ Á² Oÿ…àhޏÍäÁ² Á² ÁÑL1?äÁ² q††àYŽ…àh¾˜ò„àYŽ…àYŽ…àhˆŠí!ŽÌò Á² Á²Íóc€LGÈBp€,GÈb¥tŠÉÖ­[·lÙ_ªT©Ö­[?ÞÑÑ1÷MΟ?¿råÊ .9F£ÑÄÇÇ;99999é¶{{{ !nÞ¼Ù°aì[ÅÆÆ:::–+WîÔ©SgΜyøða5Ú¶mkkk«ô (ÆÄƒcZZZff¦ƒƒƒ^»½½½âÁƒY7yùòåãÇ«W¯þùçŸoÞ¼YÛ^±bÅ… Ö®][Îq}||ôZöìÙ#¿Û Å|¡¬¿>z9ÄÃúë£Å|ÜbsëÖ-¥»}|(†‰ÏÅñ¡(®cÇŽJwÁP˜xp”¦N—.]Z¯ÝÎÎNñèÑ£¬›<~üXÿþýÙ³g·iÓæùóçK—.=zô®]»äÔãââòÝçËBT­Zµø¯•RÇ-6¦}vFŠÅ0ñ¹ >eeýZÏZ!2&~£ƒƒƒJ¥JKKÓkò䉸_ÝQôbÖ¬YÁÁÁåÊ•9rd÷îÝoݺõË/¿(}NÊ0ñàheeeooŸµ²˜šš*„ÐγÖUºti[[[Ýö¶mÛ !.]º¤ô9(Ãă£ÂÍÍ-99YJŠZÒM„nnnÙnâêêjmm­R©t¥ꌌ ¥O@¦333>¬mÑh4ÑÑÑŽŽŽ~~~ÙnâïšzùòeÝFéÙ=5jÔ(ÒÞ*ø{ƒü~ ÈéÇ^½zYXX,Y²Dº¯Qž””Ô³gOkkk©åéÓ§ ÚikÝ»wBL™2E;íúüùóß~û­½½}»ví”>!e˜ø¬j!„‡‡ÇøñãgϞݭ[·–-[&&&ÆÄÄÔªUëƒ>Ю=fÌ//¯]»v !jÖ¬9vìØùóçwìØ±aÆiii'OžT©T3gÎ|íµ×”>!e˜~pB 4ÈÅÅeûöí»wïvwwïׯ_hh¨ôDžœ :ÔÙÙyýúõ¿ÿþ»££c``à¨Q£¼¼¼”>ŘEpBtíÚµk×®9- ÒkìÙ³gÏž=•î8€¡0ý{!óc@.Ž…àYŽ…àYŽ…àˆÿ`b5È Á² Á² Èåïˆ;J÷ {Gèc~ ÈÁ² Á² ÁÙ`~ ÈŠàYŽ…àYŽ…àYŽÈ«€‚#d!8@‚£¡¸âáqGé^äˆàYŽÈóc€.‚#d!8@‚#d!8@‚#rÃü Ep€,GÈBp€,GÈBp€,G¼«€„àh.‡xxGÜQº¹!8@‚#d!8@‚#^ù1@ Á² Á²! ócÁ² Á² Á²•w9ÄÃ;âŽÒ½x5&V`掅àYŽ…àYŽÈæÇ`ÎŽ…àYŽ…àYŽÈæÇ`¶Ž…àYŽ…àYŽ »âáqGé^¼ÁyÆÄjÌÁ² Á² ÁùÁüÌÁ² Á² ÁùÄüÌ Á² Á²•t9ÄÃ;âŽÒ½…àˆüc~ f…àYŽ…àY +8Λ7/>>^é^ †ÃÃÃ;wîܳgÏ 6ÆEùàØ¢E‹˜˜éµOïÞ½'Ož¬t§ Ï°îqø@Ùþ  ¤ù1˜#ÃzŽãÉ“'‡~éÒ%µZ-„øë¯¿"""ìííßyç *lÞ¼9**Jé>˜)ê8®ZµJ£Ñ|úé§}úôBìÛ·OñÕW_^¿~½cÇŽßÿ}`` ÒÝ0G†Uq¼|ùr¹råú÷ïomm-„8~üx‰%Z¶l)„¨R¥JµjÕ®]»¦t‘~?fXÁñáÇÎÎÎÒ댌Œ¿þú«víÚ%J”ZJ•*•””¤tÌ”aG[·neff !NŸ>ýüùó&MšH‹Ôjõ­[·\\\ò·ç­[·öêÕËÏϯyóæ“'ONII‘¿í;w4h0~üx¥/€’ +86jÔèáÇ‹/¾}ûöâÅ‹…­Zµ’­Y³æÁƒÕ«WÏÇn,X0eÊ”«W¯6jÔÈÎÎnÛ¶mC† yö왜m5ÍĉŸ}ºaÆ9m˜‘‘1aÂGGÇI“& 8Pé  0ê8æ¤|ùòùK&>>ÞÉÉÉÉÉI·ÝÛÛ[qóæÍ\¶]¼xñÅ‹¿úꫲeË*}”gpÇÈÈÈõë×_¿~]£Ñd»BLLŒü½¥¥¥eff:88èµÛÛÛ !\* ƒƒƒJ¥JKKÓk—¯“Ó!fÏž}ëÖ­Í›7ÛÚÚÑ™`®ÈaÇøøø *Lœ81w4fszVVöööY+‹©©©Bí½wïžµµu… Z´hÑ¢E Ý=\¸páÈ‘# 6”~½rxäüP…AAA7oÞ ‰‰éÔ©S… J”(¡·Žî£¼åððð?~üìÙ³»uëÖ²eËÄÄĘ˜˜Zµj}ðÁÚu¢££ÇŒãååµk×.¥¯€2¬à(½8wîܹsç²]GΓnô 4ÈÅÅeûöí»wïvwwïׯ_hh¨T}€L†»uëVD{îÚµk×®]sZ”ÓÒZµjå#­˜à ŽÜD`° èq<º>|xäÈ‘­[·=zT‘””¤tgÒü¥{ aU…ÉÉÉË—/ˆˆ~-pÀ€Í›7ïÞ½{­Zµ¾úê+GGG¥;`¦ «â˜žž>|øð 6”-[¶{÷îÚvWW×ôîÝ[J“(~†W®\yöìÙÖ­[ïÙ³gÖ¬YÚö-[¶¼ùæ›×¯__¿~½Ò}0S†Oœ8aiiùå—_–*UJ·ÝÒÒò³Ï>+UªÔÞ½{•î#ò€Û0%†/^¼XµjUgg笋ììì<==•î#€™2¬àhooÿôéÓœ–¦¤¤”)SFé>˜)Ã Ž¾¾¾ÿýw¶¿sñâÅÛ·o׬YSé>˜)à Žo¿ý¶J¥7nÜ… tÛ/\¸*„VºÈnsÀdÖs›7oþþûï¯ZµªGžžžBˆýû÷ÿþûïW¯^U«ÕÝ»wïСƒÒ}0S†…üqƒ fÏž}íÚ5!ÄíÛ·…...cÇŽÕ}²#Š™ÁG!„¿¿¿¿¿JJʵk×^¾|ééééææ¦t§Ì!G‰££cƒ ”îþ¥ppÜ´iS^7éÛ·¯²}.¸Ë!Þw”îEñ‘æÇ˜Õ)`’ŽÓ§OÏë&&Œ‘ÂÁQzÈŽ®‹/îÝ»×ÒÒ²E‹UªT±´´LHH8|øpFF†»»ûäÉ“•í0€ÙR886L÷í76lØàãã³téÒŠ+jÛoß¾=räÈ¿þúkçÎíÛ·W¶ÏæÉ°¾|ùòäääÅ‹ë¦F!Dùòå-Z$„Ø·o_RR’ÒÝDžñpL€aÇ3gÎxxxT®\9뢊+JíFén˜#ÃzOJJŠZ­Öh4*•*ëÒÔÔTGGG¥» `Ž «âX»víÔÔÔƒf]täÈ‘”””Zµj)ÝG3eXÁ1((H1a„ÈÈHÝ!é}ûö}üñÇÚPü k¨ºgÏžGŽÙ½{whh¨‹‹‹§§§J¥ºvíÚ½{÷„]»víÙ³§Ò}D>ñpŒaG!ļyóš5köÍ7ßÜ¿ÿþýûR£»»û¨Q£ºwï®tïÌ—ÁG ‹^½z…„„ܽ{7!!ÁÊʪJ•*LˆPœÁG‰J¥*W®\¹rå”îþeX“c`Úx 8FàYŽ…àYŽ(VÜæ€ñ"8@‚#d!8@‚cqã÷š¹Í#Ep€,GÈBp€,G(€Û0FGÈBp€,GÈBp„2¸Í£Cp€,GÈBp€,G(†Û0.GÈBp€,GÈBp„’¸Í#Bp€,GÈBp€,G(ŒÛ0GÈBp,V—C<¼#î(Ý €ü 8@‚#”ÇmŽ‚#d!8@‚#d!8 p›#†àYŽ…àCÁh5ŽàYŽ…àYŽ0 Üæ€!#8@‚#d!8°0Z €Á"8@‚#d!8@‚# ·9`˜Ž…àX|.‡xxGÜQºùDp„!b´Dp€,VJw(VªqQùÛP3/@é¾ 0‚#LßÿÂb‚(@þÓMœ„H€y"8Â@I·9d:‘6êiæ$$$T­Zµ ýÑ ‹„H€y"8ÂIÁ®è"]¶!’ 0yG˜”¢ŽŒYiUü‡ ˜a¸äVBÙO:´!ô€"Bp„ÑS‹2œ”F`ÂŽ0b†Ît †ÙCòŠàƒ–ËhµAsB|˜‚#ŒÑå0â#À4adŒ¢Ð˜-â#ÀØaè´£Õ¦¹ˆãEp„q0ÞBc¶ˆcd¡tYL2]iæhæèþ€!†ŒàC§%V+Ý‘¢"eGâ#Àð1T ƒfb#Ô9aä`¨8Âp™IjÔbä`àŽ0Pæ–µ¹,‚c1ÉéçO­¬©Ñ´osÔCé`˜Ž08f[kÔCé`hŽ0,¤F]”…à’{j4«Ñj]”‚àCA­1”†€àƒ@j”ƒÒ#@YG(O~j4ÛÑj-J¡0jù@é ‚#””ÔHÑQBéPüŽ€£ô(NG(†AêBAéPlŽPFAR#£ÕY‘Å€àPk, [ŠÁÅÔXt¶)‚#Œ£Õ¹ ;ŠÁÅŠrcñ`ØPŽ(>¤Æâİ5 Ð™Kpܺuk¯^½üüüš7o>yòä”””Ü×öìÙÚµk»téR¯^½–-[<øèÑ£JŸþƒÑj9(= ‘•Ò( ,X±bEéÒ¥5j”˜˜¸mÛ¶+W®¬_¿ÞÖÖ6Ûõ322xöìY{{û¦M›>þüøñãGŽùè£FŒ¡ôÙ+ÊJ‘.;×Pp¦_qŒ‹‹ wssÛ³gOxxøÞ½{û÷ïîܹ¹sçæ´É–-[Ξ=Û AƒèèèåË—÷Ýw?ýô“ƒƒÃÒ¥K/^¼¨ô %R‹â¶œéÇ-[¶¨ÕêÐÐPWWW©eÒ¤Iööö‘‘‘jµ:ÛMöìÙ#„øôÓOµ%I//¯?ü033“ë|(ºÔÈhuž0l ( ÓŽ'Ož´°°hÓ¦¶ÅÒÒ²U«VÉÉɧOŸÎv“„„„Ò¥KתUK·ÑËËKqóæM¥OÈ?fÌ Âă£F£‰wrrrrrÒm÷öö9§À•+WþðÃz.\BT¬X1ݸâáqGé‹¡Œ¢¤¦è˜dG@þ˜øä˜´´´ÌÌL½v{{{!ă²ÝÊ××W¯%&&&<<¼dÉ’ÁÁÁrŽëãã£ûvg‘ ôÅP€ç’„k#«ù¿ò·nÝRúb–k#«ªÆE]YUÁ>ð¡&>㢏Ž;*ÝCaâÁñÙ³gBˆÒ¥KëµÛÙÙ !=zôÊ=dffnÚ´iΜ9™™™óæÍsvv–sܸ¸8Ý·—C<ªVUòZ9 Åpâ—…ssýr¤™WUª;*8o‰Å0ñ¹ >eé}­‹,"óaâCÕ*•*--M¯ýÉ“'âuÇ\?~¼k×®3gÎtvvþöÛoƒ‚‚”>!cRl3©­Î7ny䉉G+++{{û¬•ÅÔÔT!„vžuV/_¾œ9sæ€îܹ3jÔ¨ÈÈÈfÍš)}6Æ„çï²#@&ŽB77·ääd))jI·Ä¹¹¹e»‰Z­7nÜúõë÷íÛ7räÈœAѱ€xR@ÓŽ™™™‡Ö¶h4šèèhGGG??¿l7Ù°aþ}ûÞyç¥K—æR•DN(7#†­¯dúÁ±W¯^K–,‘îkB„‡‡'%%õìÙÓÚÚZjyúôiBB‚4mM£Ñlܸ±L™2'NTºï@q#;ra⳪…ãÇŸ={v·nÝZ¶l™˜˜S«V­>ø@»Nttô˜1c¼¼¼víÚuÿþý7nØÚÚöíÛ7ëÞºwïÞ¯_?¥ÏÉ )Un”F«Íöy™…H›)ô˜~pB 4ÈÅÅeûöí»wïvwwïׯ_hh¨ôDž¬¤ºã³gÏbcc³.eŠLî¤6 ҇ȧ ÐcÁQѵk×®]»æ´4((Hû¨úõëg}\ŒEÇÂ%•ÉŽ-Ó¿Çņaz˜m ÐEpDá 5š*f[´Ž0)<бˆ‚àˆBA¹Ñ0l 8ÂÔPt,: [€™#8¢ (7š²#˜-‚#€0[G Ï(:B˜%‚£¹ ÜX¸ÈŽ˜‚#OdGh˜ ‚£Y ÜXDÈŽÐE|`òŽ@¡‡øÀ„M寢FvDVºñQ ˜ ‚#m^¤ À4MåÆâAѹcü€i 8…ƒìˆW">0vGSF¹±˜‘!·?0^G“EjTÙ2qû#cDp ÙyB€!8š&ÊÊ";"¯(@0 G H‘? 2‚£ ¢Üh ÈŽÈ7 Á±¨ ÈŽ(0 ÁÑÔPn44Rv”^(Ý+ Á(rRd¤ôˆ‚£ @YG“B¹Ñ1l¢W€$HÅ…à²#  @1#8šÊF숢@‚P<Ž@qcº Š @‘"8šÊÆ…é2(j$HEàh HFŠak$€BDp”İ5Š @ÁåFcǰ5Š @¾ƒÀ°5Š @^åFS°5”’%A&B$€ì¢¶ÄG(A3/ !!¡jÕª‚2$€ìåFSÅ]0Y²!0{GcEj4yŒ\Ã@èþUCˆÌÁ0\”ah‘€™#8%Êf…Ò# !0CGÀ0iŽ ˜ ‚£ñ¡Üh¶ˆ0 „HÀ„ ©ÄGB$`bŽE‚Ù (jÄGœB¤ GƃàhL(7BñFJï¯2r$`,ŽFƒÔˆœaìÈ‘€± 8&B7> $Œ90XGã@¹2ió"H˜ŒÜs¤ JňàhHÈ 0UYÿ>¤$ ‚£¡#5¢ (@ÂP’Š Á0  a>^Y’Ìi5¯Dp4h”Q¸ô ‚ óí_¤&| 8.R#Š  0 äÁÑ@‘Q<²&HAˆ„¹’Y˜ÌeeÀäñß°Hˆ´r ˆJ˜'‚£!¢Üe"WÊk dJ˜‚£Á!5 "<Éå/p2%LÁѰaÈr ‘‚ È¿L)„¸6²ªÒ}þEp4 ¤F½¤HŽ "÷¿üU㢄H(È€ÂBp4¤FµÜs¤ JpmdÕªU_Qt̽f)á[Gp4¤F˜˜¬11k”´þú¨ÒÝL‡œ/9áRþÞ`žŽÊ#5Âd%/ËX @a‘ÿ]#?bæuÏ0vG…‘a¶¬¿>šuô-kaR‹L ›¼~1å5hæï(0*F£t ÔÖ­[·lÙ_ªT©Ö­[?ÞÑÑQΆ>>>;ë<~å—œôÇŒ?6ÅÃÇÇ'..Né^à?òú¡ä’)±²ðð‡Å™ê‡’¿¸©¥ì¨©~(¯DÅ1{ ,X±bEéÒ¥5j”˜˜¸mÛ¶+W®¬_¿ÞÖÖVÎærR#‘È“ÜÿXå+åì@1+à÷`sg¡÷ÇL³îææáêê*„˜9sæúõëçÎ;uêÔîœB#Pä„B9á2¯û ”Bÿ&Í[í²\é   ‚c6¶lÙ¢V«CCC¥Ô(„˜4iÒÏ?ÿùé§ŸZXXäo·DF@Yy ‚y š…rPJÉÓ´˜ÇP5„Bœ|XÛ¢Ñh¢££ýüü”î€2ŽÙèÕ«—……Å’%K¤û…áááIII={ö´¶¶VºwÊPi4¥û`ˆÖ¬Y3{öìòåË·lÙ2111&&Æ××wÍš5YÓ`&Ž9Ú¹sçöíÛÏ;çîîÞ¸qãÐÐPé‰<æ‰àY¸Ç² Á² Á² Á² ÍÖ­[{õêåçç×¼yóÉ“'§¤¤(Ý#s÷ìÙ³µk×véÒ¥^½z-[¶}ºÒ]3_›6mòööîÓ§OZZšÔrùòåÆ׬Yó¯¿þRºwЬY³ÆÛÛÛÛÛûã?Vº/æîáÇ 6|ýõ×O:%µüù矵k×nÖ¬Yff¦Ò½3SÒß`£GNOO—Z~ÿý÷š5k¶oß^é®™‘G“þ²:{ö¬Þ æùíOűlÙ²E­V‡††ºººJ-“&M²··ŒŒT«ÕJ÷ÎLíÙ³Gñé§ŸÚÚÚJ-^^^~øaff&ÖŠ»råÊ‚ jÔ¨¡tG „Û¶mKMMýðÃ4h µÔ­[·S§NIIIçÏŸWºwfêôéÓBˆXYYI-M›6­Y³æõë×>ÞÉÉÉÉÉI·ÝÛÛ[qóæÍ† *ÝGs´råʬ½^¸pAQ±bE¥{gÖ/^|ñâÅ5kÖ”-[Vé¾@!bccË•+wêÔ©3gÎ<|ø°FmÛ¶ÕVëQüºté²~ýú™3g–*Uª^½z)))Ë–-»uëÖÛo¿ÍœbÓ¢E éŲ.5Ûo‚cA¥¥¥eff:88èµÛÛÛ‹ÿþ{ÅÉ××W¯%&&&<<¼dÉ’z•§³gÏ®Zµª_¿~Íš5“r<”õòåËÇW¯^ýóÏ?ß¼y³¶½bÅŠ .¬]»¶Ò4S>>>6l8pàÀµýúõ›T©TºRU8##CéÞ™£ääd!D•*UôÚ¥Bãýû÷•î þežßþÇBwøðáÎ;K-&::ÚÑÑÑÏÏOéÞ™© 6ìÛ·ïwÞ™6mšÒ}BT®\YûDòèÑ£#GŽxxxøùù•+WNéš/ÿuëÖ]¾|Yš *‘&³6Q¥JKKË+W®h4Ý@'„¨^½ºÒÄ¿ÌóÛŸ¡êBЫW/ ‹%K–h?-<<<))©gÏžÖÖÖJ÷Îi4š7–)SfâĉJ÷ÿjÑ¢Åüÿ;v¬¢aÆóçÏŸ0a‚Ò4_Ý»wBL™2E;ôüùóß~û­½½}»ví”î9²µµmÕªUbbâ¢E‹´Ï‘¾råʲeËJ”(¡wSdžßþT ‡‡ÇøñãgϞݭ[·–-[&&&ÆÄÄÔªUëƒ>Pºkfêþýû7nܰµµíÛ·o֥ݻwïׯŸÒ} EÍš5ÇŽ;þüŽ;6lØ0--íäÉ“*•jæÌ™¯½öšÒ½3S3fÌ Y¶lÙîÝ»}}}“““ÿøãµZ=eÊ”jÕª)Ý;üË<¿ý Ž…cРA...Û·oß½{·»»{¿~ýBCC¥9ù(~·nÝB<{ö,666ëR¦Èz†êìì¼~ýúßÿÝÑÑ100pÔ¨QÒ/-AÎÎλwï^±bÅ‘#G<èèèØºuëaÆթSGé®á?ÌðÛ_¥Ñh”îŒ÷8@‚#d!8@‚#d!8@‚#d!8@‚#d!8@‚#d!8@‚#ó2~üxŸƒ*ݱdÉŸM›6)Ý‹àY¬”î˜)ggç (Ý‹àʨU«V­Zµ”îäCÕ`p233ÓÓÓ•îè#80S¦Lñññùúë¯õÚÏŸ?ïããÓ¬Y³ŒŒ !DRRÒüù󃂂êׯ_¿~ýÎ;Ïš5ëîÝ»9íVš+sìØ1½v__ß7ÞxC·åèÑ£}ôQÛ¶m5jÔ¿ÿ%K–èe»Û·oO›6-((¨^½zmÚ´2dÈÉ“'s9£U«VéNŽ‘zrëÖ­ððð¦M›Ö®]»aƽ{÷Þ¿N{8s振¯o«V­?~¬m|òäI›6m|}}Ï;§ô‡ÀÔ‡®]» !öîݫ׾k×.!Dpp°••URRRß¾}W®\yçÎJ•*U¨PáæÍ›ß}÷]Ÿ>}RRR rô¹sç6lØï¿ÿ¾mÛ¶èèèO?ýT£Ñ|óÍ7y:Ö–-[† røðáµk×þúë¯B¬_¿>§õ?úè#//¯mÛ¶>|XqìØ±ü±N:Æ Sî³`²ŽŒƒ……EçÎŋާNº{÷®ŸŸ_õêÕ…þþþüqéÒ¥¥Ê–-+•*ó}èÙ³g !.\¨­á9;;/\¸ÐÍÍ-""âáÇBˆK—. !zõêeii)­Ó§OŸáÇ·mÛ6OǪ[·î¸qã,,,¤S>|¸âúõë9­omm=gÎ++«)S¦Ü»wïÓO?µµµ;w®¶PˆŽŒ†uÇm¥qêž={JoGŒ±bÅŠjÕªiW¸ÿþ/¿üRƒ¦¤¤$$$xzzêÍ€.UªT³fÍž={+„’ë¤I“Nœ8!Ýmimm=zôèQ£Fåép:uÒ}koooii©ÑhrÙÄ××wĈÿüóÏ›o¾yûöí‰'V©R¥¨>æÇñ0µjÕªR¥Êõë×ãââ|||222öìÙckk¤]çöíÛ‡:uêÔÍ›7oܸQÀ[…×®]“þëãã“í ÿý·",,,44ôĉï¾û®¯¯o“&MÚ·oïëë›§ÃU¨P!:tèþýû/\¸Ð¸qã>}úêU€ÿàÀ˜tíÚuñâÅ{öìñññ9|øð£Gzô衘޼yóŒ3222*UªÔ°aömÛÖ®];!!aúôéy:Jff¦¶È÷òåK!DùòåstöððBT¨PaëÖ­gΜ9tèÐñãÇcccOŸ>½|ùò3f¨T*™‡.Q¢D>.Ë“'Oîß¿/„¸víÚÇŠþ£`ŽŽŒ‰68Ž=ZƒÖŽS?yòä‹/¾(Q¢ÄÊ•+[´h¡ÝäŸþÉëQîܹ£V«¥×žžžBˆR¥JMž<9÷­T*•ô !ÄË—/>üÉ'ŸDDDée™6mÚ½{÷êׯúôééÓ§ÏŸ?¿HÀlq#cR¹råÚµk_»víüùó¿ýö[åÊ•6l(-:þ|fffýúõuS£øß´•Üéhÿúë¯Ú×nnn...W¯^½pá‚î:™™™={ölÙ²eRRÒíÛ·Þzë-íÒ%JJ³ynݺU¤×dçΑ‘‘­[·^¿~½——×/¿ü’õ¡EP(ŽŒŒ4EæÓO?MKK Ѷ»¹¹ !.]º”””$µdffþðÃ7nB<{ö,Û½UªTI±aÆ´´4©%&&FûÉØ±cÕjõرc/^¼(µ‰­U«–³³³»»ûãÇÿüóÏÕ«WkK•ׯ_?tè¢HŸ§øÏ?ÿLŸ>½L™2_|ñ…µµõW_}eiiVð›; +†ª™   Ù³gÇÅÅYZZkÛ===ûí·víÚ5hÐ@£ÑÄÅÅ¥¤¤ôíÛwýúõÿ÷ÿ÷øñcéÁ:º‚ƒƒ×­[wúôéÀÀ@__ß{÷îÅÇÇÛÛÛ—+WîÅ‹Ò:Ý»w?qâÄO?ý\¾|yGGÇk×®¥¥¥U©REzò¶……ÅäÉ“'Mšôõ×_ûí·*THKK»zõªF£éÓ§ŸŸ_] F3iÒ¤ÔÔÔ/¿üRÊÍuêÔ8pà·ß~¶páB¥?+¦†Š##ãêêÚ¸qc!DË–-]]]uÍ›7ï£>òððžïتU«íÛ·úé§}ûöµ´´Ìö+V¬øý÷ß·mÛÖÂÂâÈ‘#—/_._¾üªU«œµë¨TªY³f-Z´( @­V_¿~½jÕªcǎݾ}»£££´N÷îÝ×­[׺uk[[ÛK—.¥¥¥5oÞ|Ù²eÓ¦M+ºK±aÆcÇŽµhÑB{£§â£>ª\¹rddäž={ý ˜ UîóñôéÓäääŠ+ÊŸ f…àYª€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,ÿ¹'OB.3"IEND®B`‚statistics-release-1.6.3/docs/assets/nctcdf_101.png000066400000000000000000000633201456127120000221150ustar00rootroot00000000000000‰PNG  IHDRhŽ\­Af—IDATxÚíÝy\TõþÇñïaP“%Ñ\ × Å¬ÜP´Ìr 5³ÔÊ25LEÔJ³ÅpÉ6•º–KY¦ý,÷,—$7Ì%ED W"QA˜ß§¦‰Ífæl¯çåq3çœ9ó9sÀy÷ùžE2™L¸'¥ €6`‚#¬Bp€Uް ÁV!8À*GX…à«`‚#€[8|ø°ôAƒ™{ãÆ óÜ (]¬]¬Y³æ»ï¾ûî»ï.^¼hÃÕN™2EþÜz÷î]âãÆ“¬3|øð²ßëÆóçÏ衇êÔ©ãîîüè£Îš5+77·È’–»ÛÌÅÅÅ××·uëÖS¦L)þ!”ø’"ÆçèÝÀŽÊáË/¿üõ×_•®ÂÑ¢¢¢zõêÕ«W¯(]KEìÝ»·Q£F#FŒØ´iSFFÆ7RRRÖ­[÷Ê+¯¯]»ö–k(((ÈÌÌܵk×ôéÓCBB•Þ&ÊpQºZb2™ÆŒóË/¿H’¤t-úçîîîååe~ZPPpåÊùñm·ÝæììlžåááQÚJ’““ÃÃï^½jžâââ’ŸŸ/?þã?úõë÷Ë/¿ÜsÏ=Å_ëïï/¯ùÚµkæFcVVVdddJJŠ››[/)ÂÛÛ[é€ ÐqP>‰‰‰Ë–-Sº Cxã7²,$%%™gíÞ½ÛrÖûï¿_ÚJ^yåsj|úé§÷ïßýúõŒŒŒO?ýô¶ÛnBäääôïß¿Ä×~ñÅiiiiii.\8uêÔÓO?-O?sæÌ¼yóÊ~I±±±Jœl€à Ü&L˜““sËÅ®]»öÚk¯uéÒÅßßßßß¿sçα±±ÙÙÙ–ËXç—••5vìØV­ZÝvÛm÷Þ{ï[o½uóæÍ"ë¼páÂèÑ£Û´iãééÙ AƒGydݺuÅßúüùó£G~ðÁo»í¶;ï¼³oß¾ûöí«ÀûNœ8Q’$sðêܹ³$I×®]+²†üüüW_}õŽ;îxõÕWå% ¿ú꫎;Ö¯_ßÝݽ~ýúááá‹-*¾Evõã?®Y³F~³páÂ{î¹ÇÙÙ9 `èСæÿHNN>vìXÙ«ª[·îÂ… ͇c¾õÖ[òçÀXLP¦C‡™ÿÅhÔ¨‘ü`êÔ©òÜëׯ›çΟ?ßüª]»vÝyçÅÿÍ©[·nBB‚y±É“'ËÓÃÃÃ7n\dáÈÈHËJ~øá??¿âë6l˜åb?ýô“¿¿‘e$IŠŽŽ.ïûÆÄÄ»«W¯Z®¡W¯^O=õ”üxòäÉò ûõëWâ?¹?þxñzõêeÍŽHII1¯çèÑ£Ö¼¤OŸ>òò>>>W®\)¾@·nÝî½÷Þ{ï½wÅŠÅw÷?þXdù-[¶˜çnذÁš—Ð:ŽÊáÕW_õôôB̘1ã?þ(m±ÜÜÜ~ýú8qBáîîþðÃwëÖ­jÕªBˆÓ§O÷ïßß|¬žÙ–-[Ž9R¿~ýÖ­[»»»Ë¿ùæ›Ý»w˳³³xáÂ!„——Wß¾};vì(ÏúôÓO—.]j^ì‰'ž8þ¼¢S§N¯¿þzTT”“““Édš={öÂ… Ëõ¾¯¼òJJJŠ\¹bÑ¢E–Oe{öìY´h‘å”åË—/_¾\!IR§NܬY3yÖŠ+6oÞì°ýµcÇùAŸ>}ªW¯^|µk×&%%%%%õíÛך¶oß¾J•*òã]»v9lC¨Á@9øùùM™2E‘““Sb7NwòäI!D5¶nݺaƵk×&&&úúú !Î;÷Ö[oÕ|pòäÉÄÄĤ¤$s†3Ç3fÈçgÔ¯_ÿøñãr39÷É'ŸYìñÇÿé§Ÿ^{íµ/¿ürîܹòÜ©S§–ë}o¿ýö;ï¼ÓÉéï*ëÔ©sçw91èÌ™3Mš4Yºtibb¢|à† äYÑÑÑ?ýôÓ¢E‹<زeKyâÞ½{³³nÞ¼)h!DPPMÖ)IR­ZµäÇçÎ+¾€<š_ÄË/¿ì˜M`oGåóÒK/5lØPñÅ_”vió^FÕªU+ùqóæÍ£££‹,`Ö¬Y³‘#GÊ5jÔ®];ùqzzºü`ãÆòƒW^yE r1òHë7 „Eh³¼´áÓO?-Ÿƒ|êÔ©"—Ô¹åûÞRÕªU7mÚ4pàÀÖ­[Ëù¬ÿþK—.]ºtéèÑ£åe²³³ÍG…þù矎ÙS–‡“Ö®]ÛV«½ýöÛ‹¯€Ap9åS¥J•™3gʇå3æçŸ.¾Lrr²üàᇶœþÐCÉ=ÂãÇš;yBˆ"DúøøÈ åæ#üÚ´ic^¬V­Z–ç !Ì'yyk³ãÇß}÷ÝÖ¿ï-…††‰eò[geemܸqÏž=III»wï.>:ooòIÓ2^º<33S~P£FâsK¼ùS uGåÖ³gÏN:mÞ¼¹ÄKódgg_¾|Y~`9«N:òƒëׯŸ?Þrn‘ñß"O-×iyiÃâomyÁÂ]ºt©Œ7ªÀõ)ÍíO³¼¼¼‰'¾ÿþûæË%zxxøùùÉh:L•*U|}}åí•(îòåËr‘îîîÕªU³fµæêâg !¾øâ‹ˆˆGn&Gb¨@EÌ™3Gî¿>_5äh„gÏžµœe~Z¥J•š5kZÿv·Ýv›ù”sÇ«¸5j˜Ûl?üðCJI¢¢¢lûQÏšo¾ùæìÙ³óó󃂂>þøãß~û-;;»{÷î¶}_k<øàƒòƒÕ«W—x% FùúúúúúΟ?ßšnß¾=//O~|ß}÷9~‹(‹à "î¾ûîaƉRÎ ‘üðÖÓÍOƒƒƒ]\Ê1â!I’yLÙòÀÊsçÎ=ðÀ<ð@ÇŽåÁeùøK!D~~þ¼½½½¼¼¼¼¼Ê¸ÉŠ­|üñÇòƒ>úhĈwß}·‹‹Ë™3gìý¾Å™ôtèP\\œüø‘G)ïÛ™“ͬY³ÌqgΜ9‰‰‰‰‰‰nnnr´sçÎò¬øøx“É$?^¹råí·ßîëëÛ AƒÊkhn¶•áÊ•+æÑð¿þúK~°wï^G^…Çì±Ç3 £Fš6mšÜôÍËË[²d‰ùò“wÞyghhhÙ«:wîܳÏ>»bÅ ùé“O>iy %ƒàGäçç7yòäñãÇŸ5~üøÏ>û,==ýòåËmÛ¶ˆˆpvvþñÇå{È×ô)—)S¦,^¼8;;;--íÞ{8þüO?ý$Ï}ñÅå'NüôÓO³²²V­ZÕ©S§:>|Ø|wtttNÔðòò’|ã7>}zrrò=÷Ü£t!Qú‡¥Y¨t½Ð:ލç CmލE‘¤HF„ÚPFñ†"I*GpÀAh(BëŽØ‘eX$)BëŽØazEpÀ‹0‚#DX„Ñ(s^$,ÂhŽÜÍE@(ÍEÀÁ€¢È‹@‰ŽüKŽŒäE DGh1V!8 #`=‚#Àˆh1@p -F ÂŽ£ 2•Dpè‘° ‚#@ψŒ€ úDdlŽàÐIH"ÈØž“Ò`3’$!™„)5-UéZ"8ôÀi4Â^$éߣ"84ÈÛ°Œ†ÅL¦ŒŠcÆ0(·2ú…N„V"84‰Èˆ²íƒàÐylZé* ¥DÒ¡}ZB£Ñ ˆê@phFý# ªÁ 4u¨ÄŒH@T7‚#@íh4ê$™BFÔ ®ãP5R£ö”rÄ´ÔT\ Ѹ×ÿ&8ÔÊ|3¥ A™Ê¾P¶bâ¿[úÏ.¶¦bª¨‘Q¥Š˜¨Px‹­–·Té2T€àPR£Z3&þ»ùæ­VºÕ 8T„³§V$)*&þçs7_é2Ô‡àP Žfð†bq´o…àPR£#ÐP, -FëÊ#5Ú‘eX$)Gd,‚#@a¤F£­h%"cùJ"5ÚI±¼ˆŒEp(†ÔXq @W ‘±rŽpÙŠ ,V‘ÑŽG£ÑX„ÅÊ#2ÚÁàP¤Æ[#,Ú ‘ÑÖŽÇ!5–аh[DFû 8„ÔXs^$,Ú ‘ÑžŽG 5þ‹æ¢íà°;R£4í‰Èè(G€}=5’íŠÈèXG€452í‘ÑÑŽØÍE‡¡Ñ¨‚#À^ŒÒn$/:‘QQG€]è?5’±i¥¶§óÔ(GFò¢#ÑhT‚#ÀÆt›i1*‚Ȩ&G€-é05’ÄØ´Ê6£·ÔÈ´‚h4ªÁ`úI´G£Q­Žüƒ£âh4ªÁ`Ún7ÒbT ªGpT–†S#-F• Ñ¨G@¥h55ÕƒF£v§ÉÔHdTR£¦ÆÀŒjÃ𴤙v#-F¢Ñ¨MG@Eh#5Õ‰Ô¨YG@¹©?5 AdT†§5ÎIé°)I’”–šJjT›À @a"5jÁP>êm7J’$a2ÕHi©iJÊ"8ÊA¥©‘Ȩf5êÇ84NŽŒP'"£¾ÖR]»‘“¦UŽÔ¨;G€UÔ•‰ŒêGjÔ#‚#@SˆŒš@jÔ)‚#àÖÔÒnäpFõãJºFpÜ‚*R#FM Ñ¨wG€ºµ‚ÔhG@Yn726­¤Fc 8J¥dj¤Ñ¨!¤Fà 8Ô‡F£†„à(™2íFÚBj4‚# Š¥F"£VpÙC"8T€F£¶Ðh4*‚# (G·i4j ©ÑÀœ”. .¤F”…Ôhlt axZsH†GpüËqíFšCjCÕ5‡Ô!„q:Žß|óÍòåËSRRªV­Ú¡C‡qãÆy{{—±|^^Þ¢E‹Ö¯_Ÿ––æííݼyó‘#G+½`GŽh72<­E¤FüÃÇ9sæLž<ùĉ­Zµª^½úÊ•+Ÿ}öÙÜÜÜÒ–/((xê©§fΜ™••Õ®]»:uêlܸ±gÏž»wïVzS@ËäF#©Q[H° ÿà˜œœïïï¿aÆøøø7<øÀ3gÎ,í%_ýõ¾}ûyä‘M›6½ÿþûK–,ùì³Ï„“'OVzkÀ^ìÞndxZ‹Hø/ýÇåË—Ž3ÆÏÏOžãéé¹~ýúÂÂÂ_²oß>!ÄSO=åâò÷Pþ<иqã“'OþùçŸJoØ©% 5¢ýÇÝ»w;99…‡‡›§8;;·oß>33SˆÅ!,3¢Édú믿œœœÌQ`I"5j©%Ñyp4™L)))>>>>>>–Óïºë.!ÄéÓ§K|Õc=æîîþæ›oîܹ3777##cÊ”)gΜ‰ŒŒ¬Q£†ÒÛ6fÇv#5j©¥Ðyÿ,''§  ÀËË«ÈtOOOñßž¢¥%K– 2dÈ!扃 еò}CBBŠLÙ°aƒÒFEœ9sFéP;E…4¿SEZZší×”–š*ì°fkh~§('0(0-5MØa¿iw§tíÚUéÔBçÁQ>uºZµjE¦W¯^]qùòå_•ýÎ;ï\»v­iӦ͛7ÏÌÌܾ}ûªU«î¿ÿþ.]ºXó¾ÉÉÉJoºÍ*]Šb§¨vwÊßíF›—/IÂdRöCÑîNQ’$„IÚþâoÝ)ſ֋wˆ BçÁÑËËK’¤œœœ"Ó¯^½*þé;7~üø½{÷ÆÄÄ<ýôÓò”ŒŒŒ'žxâå—_þþû‚”Þ,P7jÔ(F¨q+:?ÆÑÅÅÅÓÓ³xg1;;[a>ÏÚÒ… ~þùç† šS£¢víÚ/¼ðÂÍ›7ÿïÿþOém›±ËѤF"5 :ŽBÿÌÌL9)šÉGóøûû_>33SÑ Aƒ"ÓåFãÅ‹•Þ ° R#€òÒpŒˆˆ(((ضm›yŠÉdJHHðöö -¾|ƒ œ?núï¿}òñ 6Tzƒ@­HÚE»ÖÑpŒŒŒtrrúðÃåã…ñññ—.]êÛ·¯«««<åÚµkiiiòÙ^íÛ·OOOÿý÷ÍW?~üøÇ\¥J•Ž;*½A`¶o7’µ‹Ô«éüä!DíÚµÇ7cÆŒ=z´k×.===11±iӦÇ7/“ðòË/¯Y³F1}úôÇüã?^·n]“&M233÷îÝ[XX8yòä;ï¼Sé õ!5j©å¡ÿà(„xæ™gjÖ¬¹jÕªuëÖ 4h̘1òyJäëë»nݺùóçoß¾}Ë–-ÞÞÞ:t1bDóæÍ•Þ°·IÚEjD9I&þÚm-$$D7×qLKKÓè5·tŒ¢BšÛ)¶ ŽjMšÛ) pxjÔÓNÑÓw}¹èÿG€%#¤FܽFTÁP!¤Fí"5¢¢Ž` 6k7’µ‹ÔˆJ 8ʉÔÁŒÂ6íFR£¦ÑnDåV#5j©•FpC°A»‘Ô¨i¤FØÁ`R£¦‘a#GпʶIšFj„íe"5øÁt®RíFR£ÖÑn„M¥ 5j©¶Fp=³å©¡-¤FØÁPÚŠ!8€nU¼ÝHjÔ:Ú°‚#à¿HZGj„Ý@Ÿ*Øn$5j©öDpüƒÔ¨u¤FØÁtˆ“©ØÁ „ Ý¨}´aG©QûHp‚#èM¹Ç©IZGj„£`‚#è íFáÝ"8€‘µŽÔÇ"8€~”¯ÝHjPNG´‰v#Žà:A»ÑXHPÁŒ‡Ô¨u¤F(„à«@Ê1NM»Qëh7B9G0R£Ö‘¡(‚#hžµíFR#€Ê!8 ´¡4‚#híF£ 5BŽ`¤F¶@p@õh7BŽ aVSÓnÔ:R#Tƒà«@«h7íF¨ Áô‹Ô¨u¤F¨ Á4©÷!8€NÑnÔ:ÚP‚#è©QëHP%‚#hãÔApݡݨu´¡VGÐÚ”Bp}¡Ý¨u´UO’$¥KP Át„Ô¨u¤Fu“$I’$“ÿÊ\”.PŒSŠ»ŒFŽŒ2‚#èíF­£Ý¨JDFKGÐ Ú€#‹#8€.ÐnÔ:Úªa>÷…ÈXÁ¥‘Õã-@ʧ¦ÝT‘ÑJGÐ8R£ÖÑnT‘±\Ž œØ‘±Ž e´µŽv£ˆŒFp@!¤F‡#2VÁÔ®ÔqjÚ€ÕˆŒ6Ap@ ´…ÈhCGP5Ú@…mŽà€ÃÑn´3"£@ƒh7j©ÑžˆŒvEpõâò€õˆŒ@p­¡Ý¨i´íC’$"£€†Ñht$‚#¨TÉãÔ´5v£MàÚAj„DFå@8-F‡h7Ú‘QYGÐÚšFj´΀QÁ¨F• 8€ê”0NM»QÓh7V‘QUŽ@ˆŒ*DpÀžh7V‡3ªÁÔ…qjF5#8`7´˃Ȩ~GPÚ0,Ʀ5à€}Ðn´F !8€ŠÑn„®5‡àjÁmu…vã­06­EGP+ÚÐ)ÚEpÀÖh7–ŽF£¦@ŠŽSÓn„î ç¤tè íÆ’H’”ššJjÔ:‚#(v£~‹‘$‰áiÝ`¨Ø ‘QgŽ 2´µ‹v£NÖ%‚#(ŒË7Bh4êÁÔ„v£vÑnBÐhÔ;‚#° ºg”àøÍ7ß,_¾<%%¥jÕª:t7nœ··wÙ/9xðà‚ >|õêÕ—^z©uëÖJo½aœZ' ßn¤Ñh†¸Ïœ9s&Ož|âĉV­ZU¯^}åÊ•Ï>ûlnnn/Ù¼ysTTÔæÍ›ýüüBCC“’’¼yóf¥7€®1N m’¤F#ÐpLNNŽ÷÷÷ß°aC||üÆ|àÀ™3g–ö’Ë—/O˜0ÁÅÅeÉ’%_ýu||ü²e˪T©2eÊ”ÂÂB¥7 2n7rF£Ñp\¾|yaaá˜1cüüüä)111žžžëׯ/-®\¹2;;ûùçŸoÙ²¥<åî»ï~ä‘G.]ºtðàA¥7€~ügœšv#´†F£é?8îÞ½ÛÉÉ)<<Ü<ÅÙÙ¹}ûö™™™ûöí+ñ%[·n•$©W¯^–ß}÷Ýäää{î¹Gé ¨‰!Û4 Kç'ǘL¦””ËéwÝu—âôéÓaaaÅ_uèÐ!ooïZµjíÙ³'))鯿þjÔ¨QçÎ=<<”Þ :E»ÚAd42Çœœœ‚‚//¯"Ó===…þùgñ—äåå]¹r¥aƯ¿þú²eËÌÓëÖ­ûÞ{ï5kÖÌš÷ )2eÆ JqæÌ¥K@QìªØN JMKMiBˆ@!ÒÒÒ”Þ]qÌ_J`Pà?ûÐ(‚‚‚RSS+öëªÝ¾ºvíªt j¡óà(Ÿ:]­Zµ"Ó«W¯.„¸|ùrñ—\¹rE‘’’rñâÅ3f„‡‡_¿~}ÅŠ}ôÑèѣ׬YcMß199YéM·™ÀÀ@¥K@QìªØNùûU’$L&vªÍ9æ/Å86¹àŽF?®â_ëÅ;D¡óc½¼¼$IÊÉÉ)2ýêի⟾cîîîòƒwÞy§W¯^^^^µjÕ9rdï޽Ϝ9³víZ¥· €pùF=0ÒÑœ™º‚ã¬Y³RRRl¸BOOÏâÅììl!„ù>>?üð#<f9*ݶmÛ–-[Þwß}»wïVºd(Úš§Çv£ýj„þ¨+8¾ñÆB//¯‡zè‘GiݺuiG1zxx¸»»«pœ ¡ÑˆrQWpìÛ·o·nÝxàkÎz¡Ý@«h7j”îÚ¤F”—º®ã¸~ýú;w––_z饇~Xé ‚¸î7T…Ôˆ PWÇ1''çæÍ›¥Í:uêÔü¡tP9´5JGíFjD…)FŒa~ºxñâ¥K—_¬°°Ðd2Õ«WOézÐ0¨ 僣³³s5äÇYYYUªT©Zµj‰KzyyÅÄÄ(]/TãÔÚ¦—v#©•¤|plÛ¶mbb¢ü8$$ä‰'žˆUº(°Æ©¡R#*OùàhièСaaaJW€]´I° uÇñãÇ+]ØÞßãÔ´¡N… )¿øâ !Ä}÷Ýl~Z¶*[3À@4Þn¤ÑÛR88N›6M1uêT98ÊOËFpÀ¤FØœÂÁñ¥—^B4oÞ\~úÊ+¯(ý€1N­aZn7’a Ç‘#GZ>>|¸²õ ¤F؉ºn9úD»Dj„ý(ÜqܲeKy_®lÍ`½®û-)]ÊO›ãÔ¤FØ•ÂÁñ¹çž+ïK’““•­ʇv#‚ËîÀŽ=zôPú{¡Ý¨aZk7Òh„c(ãââ”þÐ6R#†“cÀž§Ö"MµIp$îvÁ85€ÔãÎ1`7´µH;íFR#;Ç =¤F(‚;Ç€í1N­Ui7’¡UŸsíÚµ¼¼<¥«€ aœöAj„‚î8–èÀ}ôÑáÇ/^¼èääT§N-Z¼øâ‹õë×Wº4”Dj„²T×qœ;wnddä–-[.^¼èæææîî~úôéï¾û®[·nË–-Sº:¸5IH&IÐnÔÕS“¡8uÇ­[·Î›7ÏÙÙyðàÁ?þøão¿ý–””´eË–¡C‡ !¦OŸ¾ÿ~¥k@¤F¨º‚ã²eËL&ÓØ±c'MšT·n]ù¶›ãÇŸ0aB~~þgŸ}¦t=Rw»‘Ô•PWp<|ø°››ÛSO=U|Ö Aƒ<<<8 tPÆ©as¤F¨‡º‚£¢V­Z..%œ²#Ÿ%“““£tÝQq»‘ÔUQWp =}útvvvñY×®]KKKkÚ´©Ò5À­ð5!5BmÔ###M&Óĉóóó-§ÄÆÆDDD(]#”êïqjh‹ZÛ¤F¨Â×qܹs§åSggç>}ú¬\¹²K—.‘‘‘AAA’$¥¥¥­X±âôéÓ!!!]»vU¶`€ÔuR882¤ÄésçÎ-2199ùÁLNNV¶f( _ö¨4R#TKáàØ£G¥?°ΧVº”‹úv©j¦ppŒ‹‹SúÛáû•Cj„Ê©ë䘲M˜0¡S§NJWÐ •µIP?…;ŽÅeeeýôÓOéééE¦çæænÚ´ÉÙÙYé ŒS£’HÐuÇóçÏGEEýñÇ¥-0pà@¥k€Rð­¯-j ú¤Fh…º‚ãgŸ}öÇ´jÕª{÷îk×®ýõ×__}õU£G.]ºtàÀ“&MRºFl‰Ô QWpܶm›››ÛÇ\£FN:µmÛ600ðÁB½ñÆýúõ VºLø À “zšWÐR#´E]'Çœ={¶Aƒ5jÔBÔ¬YÓÛÛûСCò¬ÈÈHooïÏ>ûLéÚ§ŽqjR#4G]ÁQáäôoIõêÕKKK“;;;‡„„8p@é°R#´H]Á±V­Z'Ož¼víšü´nݺ{öì1Ï•$éÌ™3J×ÿ! )5-Ué*P*h7’¡Qê Ž;wÎÍÍ}å•WNœ8!„ ;uêÔöíÛ…—.]Ú»wo:u”®€J!5B»ÔurÌàÁƒ7nܸyóf“É4þüöíÛ»¸¸Œ9²E‹GÍÉÉéÖ­›Ò5€IR¼w…òQºÝHj„¦©«ãèëëûÅ_DGG7oÞ\Q§NÉ“'çååíØ±#333""â™gžQºFø—dœO ë‘¡uêê8 !|}}Ÿ{î9óÓ¨¨¨îÝ»úèðáÃ/^trrªS§N‹-^|ñÅúõë+]ü‹qjXÔ}P×1ŽBˆ¹sçFFFnÙ²åâÅ‹nnnîîî§OŸþî»ïºuë¶lÙ2¥«€H’Ò œ”k7’¡ê Ž[·n7ož³³óàÁƒüñÇß~û-))iË–-C‡BLŸ>}ÿþýJ×@9¡'ê ŽË–-3™LcÇŽ4iRݺu%IBŒ?~„ ùùùÜr€J0N­1 µIÐuÇÇ»¹¹=õÔSÅg 4ÈÃÃ[PÆ©aR#ôG]ÁQQ«V-—NÙ‘Ï’ÉÉÉQº@nÔ]RWp =}útvvvñY×®]KKKkÚ´©Ò50NMj„^©+8FFFšL¦‰'æçç[N/((ˆ-((ˆˆˆPºFƒRø:Ž;wî´|êììܧOŸ•+WvéÒ%222((H’¤´´´+Vœ>}:$$¤k×®Ê ÐÚ€í(‡ RâôŒŒŒ¹s癘œœüàƒ&''+[3Ccœe"5Bߎ=zôPúÀ6HÐ=…ƒc\\œÒŸXM’„É$×âÑŽS“aj¼WµâܹsGŽIOO¿yófPPPãÆk×®­tQ $ùÊßÀ‘aª ŽYYY|ðÁW_}UPP`žèììÜ¿ÿ1cÆxzz*] @#”»95 Wê Ž#FŒHJJrssëܹsýúõOž<ùóÏ?ùå—GŽùâ‹/œ•.€!1NRÐn„q¨+8~þùçIII÷Þ{ï|àççgž~ñâÅ—^z)))éóÏ?:t¨Òe0(Æ©5$0(Ð1ûŠÔCQ×À·mÛ&IÒ{ï½g™…5kÖœ;w®““ÓÖ­[•®€!ýÝnþƒÔ£QWpëСCgΜiÔ¨‘Ò50Æ©Q íF“º‚£|#™Q£F9–qûöí#GŽBtïÞ]éíF-±ÿUxH0,uUÝ­[·„„„U«V ><  AƒBˆôôôŒŒ !D÷îÝ{ì1¥k`0\…ÿEj„‘©+8 !ÞyçÖ­[¿÷Þ{gÏž={ö¬<±fÍš/¿ürïÞ½•®`h¤Fœê‚£$I}úôéÓ§Ï… Nž(q™ääd¥Ë`ŒSƒv#`I]ÁQ¾s åcŸv#©(B]Á1..Né€qjAjJ¢®“cŠÈËËËÉÉQº Å85¡®Ž£ìøñãüñþýûÏ;WXXX«V­fÍš½ôÒK5Rº4@»Qsì0NM»(‘ê‚ã§Ÿ~:kÖ¬ÂÂB!„›››³³ó¹sçÎ;·yóæèèèáÇ+] @çH@iÔ5T½sçÎY³fI’4xðàüñ·ß~KJJJHH6l˜““ÓìÙ³wîÜ©t qjͰu»‘Ô”A]ÁñË/¿,,,7nܤI“êÖ­+I’¢V­ZãÆ‹-,,\²d‰Ò5Ð5Æ© tê Žtww………&L¸qã†å¬¼¼¼˜˜I’†Z±•óÍ7‘‘‘¡¡¡mÚ´‰ÍÊʲþµ-[¶7nœÒŸ{âèFÍáæÔ€Ã©ër< 8|øð–-[:wîÜ·oßÀÀ@I’ÒÒÒ¾ýöÛsçÎuëÖíêÕ«[¶l1/T¯^½[®vΜ9óçϯV­Z«V­ÒÓÓW®\yüøñÅ‹{xxÜòµ&“i„ W¯^Uú³à ŒSíFÀJê ŽÝºu“\¸paÞ¼yEæ®[·nݺu–S^yå•[^Ù1999>>ÞßßÅŠ~~~Bˆ7ß|sñâÅ3gΜ2eÊ-KúüóÏwíÚ¥ô°R#`=uÇ=z”kù† Þr™åË—Ž3FNBˆ˜˜˜ï¾ûnýúõ“&Mrr*k°þøñãsæÌiÔ¨ÑÑ£G•þlØãÔšÃ85 uǸ¸8›¯s÷îÝNNNáááæ)ÎÎÎíÛ·_½zõ¾}ûÂÂÂJ{a~~þøñã½½½cbb† ¢ôgÀ§6Ú@¹¨èä{0™L)))>>>>>>–Óïºë.!ÄéÓ§Ëxí|päÈ‘·ß~»FJo{¢Ý¨96j7’òRWÇÑærrr ¼¼¼ŠL÷ôôBüù知½pÿþýŸ|òÉ Aƒ|ðÁÇ—÷}CBBŠLÙ°aƒÒFEœ9sFéP;Åæ…HKKB¥¦¥¦‰´ò®â`"PÞee¸åN JMM½åz`CÚýKéÚµ«Ò%¨…΃cnn®¢ZµjE¦W¯^]qùòåÒ^5~üøºuëŽ;¶bœ¬ô¦ÛL`` Ò% (vŠ-I’0™Ìh…?[vŠƒYóßröšãiô3/þµ^¼Cd:Ž^^^’$åää™._^Gî;7cÆŒ3gÎ,[¶ÌšëõÊãÔ R£óc]\\<==‹w³³³…æó¬-íÚµkÙ²eÏ=÷Ü=÷Ü£tùìÌâèFN‹1R#Pa:ŽBÿÌÌL9)šÉµøûû_þøñãBˆ?þ8ä}úôB|ÿý÷!!!=ö˜ÒÆUxEé|¨Z‘œœ¼mÛ¶G}Tžb2™¼½½CCC‹/_¿~}ó’²Ë—/oß¾½víÚ¡¡¡µjÕRzƒG»¨ ýÇÈÈÈùóçøá‡:tω‰¿téÒ°aÃ\]]åe®]»váÂWW×;mÛ¶mÛ¶µ\ÃáÇ·oßfËLP ãÔÆCj*IÿÁ±víÚãÆ›1cF=Úµk—žžž˜˜Ø´iSË{&$$¼üòËÁÁÁkÖ¬Qº^@)§”¦ÿà(„xæ™gjÖ¬¹jÕªuëÖ 4h̘1r÷€AqÑoã¡ÝTž!‚£¢{÷îÝ»w/mn·nݺuëVÚܦM›ê麌Š`œZ*×n$56¡ÿ³ª (ÚP!G€ÎÑnl…àÀ`þÛndœZ*1NMjlˆà« íF-¢Ý¨Á O¤FÀæŽ ƒ“© rŽ Šqjm¨è8uPPíFÀ掌v£‘H’”ššªt€jÅÍ©•!80"Æ©uŒsbû!80Æ© ƒÔØÁ€áÐnÔÆ©õ!8Ð;Ú†A»°7‚#@}Êßn$5@p kÅÚŒS@…šG»p ‚#ýâèF*ç85©p‚#aœ*ƒà@§h7jíF@ÅŽŒ‚v#TÁ€Ñn4Ú€ƒªQžqjR#àxGºSR»‘qj¨<‚#}aZ»h7ªGph ©P Á€Ž”Òndœl‚àP«Ç©i7 "8Ð Ú`gG€Òh7Ap  œLm¤F@qGzÆ85ØÁ€öÑnÔ4ëÆ©i7j@p [´À¶Ž4Žv£¦Ñn4…à@ËH@jÔƒà@Ÿ§›#8Ð,ÚZgÅ85íF@UŽtˆv#ØÁ€6ÑnÔ:Ú€jDjTˆà@ƒÊl72N vBp 5 RëÀ­Æ©i7êDp +´À~Ž4…v£Ðn4‹à@;H@jÔŒà@?§ÖënN @Ž4‚v£ÐnTŽà@'h7€½híF}(sœšv# ~GªGju 8ÐÆ©5€v# }GêF»ÑH€V¨˜u©‘v#8Á`¥SÓn4„à@­h7€Ê¨‡6ê íF@/Ž4Œv#8Á€úÐn4Ú€æ¨ ©QgJ§&5ZDp &åIŒS€ƒ¹(]@¿´ßn QºØ]rr²Ò%hÁ€jÐn„*‘*t/$$„½l%†ª¨‡6êöÛŠ 8ÐÚ ‚# Ýh´M#8PZ9S#íFm(iœšÔhÁ€¢è5€v¶F»Ð)‚#唿ÝÈ85(ˆà@! RëíF@¿Ž”P¡ÔH»”Epàpô †v£²öîÝ+IÒ×_-?>}º¯¯oóæÍ•® šDpàXM´µ¡Ø85©QU~ÿý÷)S¦4nÜ866Ö¶knß¾ýÔ©S•Þ¾]¾|ùù矯W¯^õêÕÛ·oŸ˜˜¨tE:ApÀ(RRR„¯¿þzTT” W›””´cÇ¥7î_ÙÙÙaaaŸ}öY»ví†zâĉ®]»&%%)]—8íF}£Ý¨zòîpww·ÉÚòóóøá‡×_ýá‡.,,,×kóòòòòòì´™³gÏNII‰ÿâ‹/æÎ»mÛ6I’ÆŽk§·3‚#GáÐFÀ!¶nÝÚ¥KŸ&MšŒ7ΜϞ~úé^½z !Ú¶mXù7ÊÌÌ|øá‡§NzñâÅò¾6$$$""ÂrÊÔ©S[µje“O૯¾ vìXÇŽ%I2OìÔ©Saa!G:Vž‹Ò0z€Cܸq#::ÚÏÏo÷îÝuêÔBÄÆÆ†……És›5kvâÄ !Äý÷ßߦM¥‹µ—óçÏ›L&ˉ~~~Bˆ tFQÁ€U.5ÒnÔ(ÚŠØ·o_zzz\\œœ…£FЉ‰¹åkóóó×®][ÚÜž={*µQå-,''GQ£F ˉžžžBˆÌÌL¥¶B7Žì‰^£A”t·³U@)VÇŽB´lÙÒrbhh¨5«¼víš|d)ohû\PP`ù´´ÓkÊ[˜¯¯¯âÊ•+–³³³…>>>6ß £!8°›J§FÚeˆv£*7ÐÅÅE!ý7Ô:9Yu>ƒ§§§ƒ÷Ú7,ŸæææÚ¤0''§"£Ò—.]B˜±¨0‚# rþÛn4DjT«†  !öîÝnž¸ÿ~k^ëø¡êŒŒ ˧¥ò\ÞÂ\\\š4i²mÛ6ˉ[·n•$©iÓ¦6ß £!8°ڀõhÑ"((höìÙ B\¼xqîּܹÖñCÕçÎ[³fÍc=&„HMM--àV °áÇ=Ú¼ò .¬X±¢K—.6¹‘Áq9vÀ¡ÆA»QM\]]gΜyáÂ…ÐÐÐÑ£G¿òÊ+-Z´°òTbyD¸4(fÙ²eÞÞÞÑÑÑ¥-àââòÄODEEõïß¿yóæ®®®¶*lÈ!÷ÜsÏÀcccß}÷ÝðððœœUÝQ»ŽlÍ©‘v#P1½{÷Þ¼ysóæÍ—,Y2kÖ¬+W®,]ºT‘Jòòòþúë¯ÒŽ\B´nÝzÒ¤I;wîܱcÇðáÃGŽi«·®Q£FBBBÿþýW¬X×°aÄ„„ûï¿_‘ÏAgª`Sô …v£*µk×nÓ¦MBˆŒŒŒÛo¿ÝÍÍͼ_zöìi}R|µO=õÔÍ›7:TÚ«$Iš8qâĉÍS¦M›f«’<==ãããm¾¥ ãÀvl”i76Q»vm777¥Þýúõë?ÿüs‹-”þ`KG6B¯Ñhh7¢L;wîlܸñ€”.¶ÄP5[°]j¤ÝèCÇŽ;vìXÚÜ#F¹¹ 4Á(Áñ›o¾Y¾|yJJJÕªU;tè0nÜ8ooï2–ÏÍÍýúë¯W¬XqæÌ™Ûn»í®»îzæ™gt|gO Rè5íF”×øñã•.aˆà8gΜùóçW«V­U«Vééé+W®<~üøâÅ‹=<??È!û÷ï÷ôô|à®_¿þ믿nß¾}Ô¨Q/¾ø¢Ò[¨ŒMS#íFͰ§&5Æ¡ÿc“““ãããýýý7lØ¿qãÆÁƒ8p`æÌ™¥½dùòåû÷ïoÙ²eBB¼yó>ûì³ÿû¿ÿóòòú裎9¢ôª!IôÀPô—/_^XX8fÌ???yJLLŒ§§çúõëK»Ÿú† „“&M2·$ƒƒƒŸþù‚‚‚;v(½A€:ȑѦ©‘v£fÐnŒJÿÁq÷îÝNNN–wítvvnß¾}ffæ¾}ûJ|IZZZµjÕŠÜÑ288Xqúôi¥7P`H:?ÆÑd2¥¤¤øøøøøøXN¿ë®»„§OŸ +þª ¸¸ýd>,„¨[·®ÒÛ(Í>©‘v£fÐn LçÁ1''§  ÀËË«ÈtOOO!ÄŸþY⫚4iRdJbbb||¼››[÷Y·RdŠ<ü­9gΜQº¥ìN JKMii¶]mP`PjZjš°ñjÆP)"0Íâ ÍÖ¿ ¶b¨‚Ê+û7¹k×®J¨:Žò-2«U«VdzõêÕ…—/_¾å ¾øâ‹wß}·  `Ö¬Y¾¾¾Ö¼orr²Ò›n3J—€¢Û)’$L&;½·ÖÓ´^¿µ$!L"P -´²S` eÿ¶ÿZ/Þ!2G///I’rrrŠL¿zõªø§ïX†_ýuêÔ©'Nœxë­·|ðA¥7PŽÝŽkdZ‹ÔŸ؃΃£‹‹‹§§gñÎbvv¶Â|žuqyyyqqqK–,qww饗†ZÚEý“$!gàÈ=΃£Âßß?%%%;;ÛòÖFò¡ þþþ%¾¤°°pìØ±?üðCçÎ_{íµ2ò% v>šv£Ñn Kÿ—㉈ˆ(((ضm›yŠÉdJHHðöö -ñ%K–,ùᇠðÑG‘ah\vf´!8FFF:99}øá‡òqBˆøøøK—.õíÛ×ÕÕUžríÚµ´´4ù<“É´téÒÛn»m„ J×(Êþ©‘v£ÑnÔœ½{÷J’ôõ×_ËO§OŸîëëÛ¼ys¥ë‚&騺víÚãÆ›1cF=Úµk—žžž˜˜Ø´iÓáÇ›—IHHxùå—ƒƒƒ×¬YsñâÅS§Nyxx 8°øÚz÷î=hÐ ¥· °3‡ÔHjÔÚzñûï¿O™2¥mÛ¶/¼ð‚m×|óæÍvíÚI’´sçN¥·R!._¾ùä°aÃî¸ãë_R¤ë9uêÔV­ZÙ¤¤¯¾ú* `ðàÁòÓ   Ç²äí-öÏEvvvTTT—.]FU±j ,ŸÚ¤0___!Ä•+WŠT+„ðññ©X©0#8Æ£P£‘Ô¨1´5H>¯ÙòØ>!„““Uç3xzz–kG/X° 55µW¯^ï¾û®<åòåË3f̨W¯^TTÔ-×pãÆ Ë§¹¹¹6)ÌßßßÉɩȨô¥K—„æF,*Œà §NúÕ°aC!ÄÞ½{ÃÃÃÍ÷ïßoÍkË;",Ÿ¬={ölˉYYY111áááÖÇŒŒ ˧¥ò\ÞÂ\\\š4iby«a!ÄÖ­[%IjÚ´i%?aÃPôˆFÚC»Q›Z´h4{öì!.^¼8wî\k^[ÞáI“&Mš4ÉrJ```­Zµ¬¿s̹sçÖ¬YóØc !RSSK ¸å-L1|øðÑ£G›W~áÂ…+VtéÒņ!2,.Ç€ù$”©Qs\]]gΜyáÂ…ÐÐÐÑ£G¿òÊ+-Z´°òTbyD¸4(fÙ²eÞÞÞÑÑÑ¥-àââòÄODEEõïß¿yóæ®®®¶*lÈ!÷ÜsÏÀcccß}÷Ýðð𜜜©S§*°Kt‡àè "#íFáV1ZÖ»wïÍ›77oÞ|É’%³fͺråÊÒ¥K©$//ﯿþ*íÈE!DëÖ­'Mš´sçÎ;v >|äÈ‘¶zë5j$$$ôïßÅŠqqq 6LHHPÉíµŽ¡j@¿ÔqµR£FÑnÔ®víÚmÚ´I‘‘‘qûí·»¹¹™weÏž=í·[ÓÒÒ,Ÿ>õÔS7oÞQú[FjÔ8Ú:öí·ßöë×ïöÛoŠŠrrrZºté÷ß/Ï;vl½zõ¦M›6sæL›D4ù)99¹Q£F•\ÛÉ“'÷ìÙSùªòóó_|ñ۰0ˉéééB77·Ê¯ßàŽ€­é7/þ½}¤FM“„$HºuãÆèèh??¿Ý»wשSGkŽPÍš5;qâ„âþûïoÓ¦ÒÅÚ‹‹‹ËÛo¿m9åÏ?ÿ|ûí·üq¥«Ó<‚#`;ú:„±äM$5jn´IRòs,-úïÛ·/===..NNBˆ€€€Q£FÅÄÄÜrùùùk×®-mnÏž=•ÚØJ¶eË–gŸ}6%%eÞ¼yÁÁÁJm…nJÓ{‹z µ­¨ócÍÍ͵aaË–-{î¹çªW¯¾`Á‚gžyFþdPy|Ž@yXþsl°/`R# ~ 6BìÝ»7<<ÜwîÜš5k{ì1!Djjji·¼…™L¦ñãÇ×­[wÉ’%ÎÎÎ6/ÛàŽ@é ŸÿþHZGj4 WW×™3göë×/44´ÿþ®®®_ýµ•Y´ùPõ²eË^xá…§Ÿ~zöìÙ%.àââòÄOtïÞ½°°pÍš5¥]+§¼…9räèÑ£76lX‘Y}úôéÞ½» ·Ñ€ŽÀx0ºD¤F@[z÷î½yóæiÓ¦-Y²$++ËÓÓséÒ¥ŠÜm///ﯿþ*íÈE!DëÖ­}ôÑ äçç>¼Fo¼ñFåßW¾­â‘#GŽ9RdVÆ Ž•Dp„4KFjÔÚÆÓ®]»M›6 !222n¿ýv777ó/@Ïž=íñËR|µO=õÔÍ›7:TÚ«$Iš8qâĉÍS¦M›VùbzôèÁ/¼ýpËA˜ùN€æ›òoR£­víÚ Þ+åúõë?ÿüs‹-”þ`Kta0ŒD[‡Ô ’vîÜÙ¸qã(]l‰à ,–©Q'h7BQ;vìØ±cisGŒÁ…r´ˆà",V©Q'HP·ñãÇ+]*‚à!,V©Q'¸'5û 8Bã‹¶CjÔîI ÀŽÐšÿÞƒ•°h’„¤F`€Ý¡z$E;£Ñ¨+¤FöDp„úˆÔ¨+ÚÀÎŽP’¢BHúáìŠà%U€Ô¨7 R°?‚#ìO*6rÆw›¢8F‡H‚à[#&ªFâÐFŽBpDå5…Ô¨WÚÀ1œ”.š"IEL¦¢?P%y‡‘uˆAjÜÊÞ½{%Iúúë¯å§Ó§O÷õõmÞ¼¹ÒuA“Ž(…$ I "&ê€I:DjD9ýþûïS¦Liܸqll¬m×|óæÍûï¿ÿPzÿvàÀþýûתU«zõêaaasæÌÉÏÏWº(= 8¢¤>â?1-5•˜¨u4u‹ÔˆòKIIB¼þúëQQQ¶]óäÉ“ýõW¥·ïo©©©ááá6lèÚµkttt•*U¢££###•®K8ÆÑ`¤’ŽŸç‹G§8{ZÏH¨ùwÆÝÝݶ«Ý´iS\\œ‹K9BE^^ž¢J•*öØÌèèèË—/'&&¶jÕJ1mÚ´¡C‡.\¸pãÆ?ü°=ÞÑ8è8êT‰MÄÇšùâÑ)†§õŒÔˆ2mݺµK—.>>>Mš47nœÑ„O?ýt¯^½„mÛ¶ ´ÕÛ?þÉ'Ÿ6lØwÜaý«BBB""",§L:UÎy•·yóæöíÛ[®mäÈ‘Bˆ;wÚj« ‹Ž£ÆI¥\ƒo£Ñ¨s\|eúöÛoûõëwûí·GEE999-]ºôûï¿—g;¶^½zÓ¦M›9s¦­"šÉd¯Yúïw““U'Âzzz–ëlÁ‚©©©½zõz÷Ýwå)—/_.((˜1cF½zõ¬¹ÜÏ7,ŸæææÚ¤0Ù²eËž{î¹êÕ«/X°à™gž)×ß(Ÿ£í…ÜuWrr²ÒU@ÿh4©Vkذ¡bïÞ½áááæ‰û÷ï·æµå–OÖž={¶åĬ¬¬˜˜˜ððpk‚cFF†åÓ³gÏÚ¤0!ÄêÕ«Ÿ|òÉ~ýúÍŸ?¿F¶ùp!„ 8ZDd4R#Ê£E‹AAA³gÏ0`@@@€ââÅ‹sçεæµåž4iÒ¤I“,§ÖªUËúKÞœ;wnÍš5=ö˜"55µ´€[ÞÂL&ÓøñãëÖ­»dÉggg;|̆Fp´D’$2©åäêê:sæÌ~ýú…††öïßßÕÕõ믿¾xñ¢5¯­Øˆp–-[ö /<ýôÓEº’f...O<ñD÷îÝ ×¬YSÚµrÊ[Ø‘#GŽ=Ú¸qãaƙէOŸîÝ»Ûp ˆàhƒ¹Ë˜––&lvá^¨©Ò»wïÍ›7O›6mÉ’%YYYžžžK—.Uän{yyyýõWiG. !Z·nýè£.X° ??øðá5jÔxã7*ÿ¾òm9räÈ‘"³6lHp¬$‚# v L‘ô÷ÿH¨€víÚmÚ´I‘‘‘qûí·»¹¹™‘zöìi¿_ª´´4˧O=õÔÍ›7:TÚò’$Mœ8qâĉæ)Ó¦M«|=zôàÇ~¸å  ^ò"¹s áüsGA¾üPIµk×Vð^)ׯ_ÿùçŸ[´h¡ôÇ[¢ã¨ŽôÏ•…É‹FÄ}¨¡;wîlܸñ€”.¶DpT„QiC“äÿ#5B':vìØ±cÇÒæŽ1‚ åhÁP"£Ñq* füøñJ—€Š 8JbTBp* Í 8 /âo OЂ#àP Iã_Ò?¿¤FAp#þƒF#m"8öb‹‚¼K4hÁ°1š‹(FGplƒ¼ˆ²XDF~ChÁ¨8£qkÿDFÁØ´f…„„(] G |‹°‘Q’““•.A?ÒÒÒ•®•BpnÁ2) Â"¬ÁÀ4"8% ­ˆ "2Ð5‚#P´§(‹¨"# 8ˆ}†ÍHB(å_"~—蛓Òö% ©øI˜,”®#I’Äß?&!L"-5Mé¢Àè8B?Š8 :@°Iú÷&ã&~­ÁÚSb@dDØš…ÿv¦ù`lG¨TiéPaæ˜(ûÏa üÆ€‚॔‘ e¤CØO‘Œ(3™Lÿù­äŠáä˜R}óÍ7‘‘‘¡¡¡mÚ´‰ÍÊÊRº"tíÚµ¼/)ñd”[žžRüGéMW¯ ìc’Jg’ù•ûçL—¿ʃ¢Bìb§èÇ’Í™3gþüùÕªUkÕªUzzúÊ•+?¾xñb¥Ks¨cÉÇnÙ,‚Ì(±eXDÑ»üIÅó« åDDZÉÉÉñññþþþ6lˆß¸qãàÁƒ80sæL¥K++›eüÜr×-[ƒt QaRE™Ê`ÙA´ü1û”Á±Ë—//,,3fŒŸŸŸ<%&&ÆÓÓsýúõ………¶z—ʧºÊ“Q¢ ç9[æ¿2saÑPXv@$&€0T]‚Ý»w;99…‡‡›§8;;·oß~õêÕûöí +ûåVïËTΚÁP½ÖVt×.Û`ñÿå+Îî¥JCp,Êd2¥¤¤øøøøøøXN¿ë®»„§OŸ¾ep´ò»°¼Ç*EÍùÉ®ž*$$$$99¹äy¶ÚWØç*ýte!8•““SPPàååUdº§§§âÏ?ÿ¼åh%ê„Zs²H.­¶»B”®ÎjÚ©ÔÚ ÑÝ&i;E…Ø)ZGp,*77WQ­Zµ"Ó«W¯.„¸|ùò­WAn„B’EråW@i89¦(///I’rrrŠL¿zõªø§ï`@Ç¢\\\<==‹w³³³…æó¬Œ†àXÿÌÌL9)𥥥ɳ”®@ÇDDDlÛ¶Í<Åd2%$$x{{‡††*]€2Ž%ˆŒŒtrrúðÃåã…ñññ—.]êÛ·¯«««ÒÕ(CRíÅꔵpáÂ3fÔ©S§]»véé鉉‰Mš4Y¸pañËôÁ±T«W¯^µjÕî»ï¾1cÆÈWä0&‚#¬Â1ް ÁV!8À*GX…à«`‚#¬Bp„U222Z¶l9nÜ8¥ 1ºÜÜÜÏ?ÿü±Ç»÷Þ{Ûµk7tèÐ;v(]”q}óÍ7‘‘‘¡¡¡mÚ´‰ÍÊÊRº"£ãDåø*Ñ¥ €˜L¦ &˜ïÜ ¥äçç2dÿþýžžž<ðÀõë×ýõ×íÛ·5êÅ_Tº:Ù3gÎüùó«U«ÖªU«ôôô•+W?~|ñâÅJ—fPü¨_%ú@pÄ­}þùç»víRº ˆåË—ïß¿¿eË–ÿûßÿätrüøñAƒ}ôÑG:ujܸ±ÒHrrr||¼¿¿ÿŠ+üüü„o¾ùæâÅ‹gΜ9eÊ¥«3(þ@Tޝ}`¨·püøñ9sæ4jÔHéB 6lØ „˜4i’¹§üüóÏ0ç`Ë—//,,3fŒœ…111žžžëׯ/,,Tº:ƒâDÍø*Ñ ‚#Ê’ŸŸ?~üxoo¥kHKK«V­ZÓ¦M-' !NŸ>­tuƲ{÷n''§ððpóggçöíÛgffîÛ·Oéê Š?Õâ«DOªFY>øàƒ#GŽ,\¸°FJ×±`Á—¢³‡BÔ­[Wéê Äd2¥¤¤øøøøøøXN¿ë®»„§OŸ SºF#âDµø*Ñ:Ž(Õþýû?ùä“Aƒ=øàƒJ×!„hÒ¤‰MÌãããÝÜÜzõê¥tu’““SPPàååUdº§§§âÏ?ÿTº@ƒâDø*Ñ‚#J–››;~üøºuëŽ;VéZP‚‚‚‚Å‹6,''çwÞñõõUº"ÉÍÍBT«V­ÈôêÕ« !._¾¬tàD-ø*цª.??ÿ“O>1?uvv~öÙg…3fÌ8sæÌ²e˸¶ˆã•¶SÌ~ýõשS§ž8q" à­·Þâ¿ãÌËËK’¤œœœ"ÓåëŒÈ}G(ˆ?õà«DŽFwóæÍ÷Þ{ÏüÔÍÍíÙgŸÝµkײeË^xá…{î¹Gé¨Ä"?ÎËË‹‹‹[²d‰»»ûK/½4tèPþ9v<OOÏâÅììl!„ùܧOŸ=zÄÅÅ)]‹A™L¦‡z(++kûöíîîîJ—ct 4øæ›oäsb,X0{öìaÆq^Eð¢ |•èG@.^¼xêÔ)ŸÛ»wïAƒ)]£Ô®]{ܸq3fÌèÑ£G»víÒÓÓ›6m:|øp¥K3(þ@Ç 8ÚpæÌ!Dnnî¡C‡ŠÏå¼QÇ{æ™gjÖ¬¹jÕªuëÖ 4h̘1r÷ŽÇà UÀ*\V!8À*GX…à«`‚#¬Bp€Uް ÁV!8À*GX…àÀXƲeË¥ ~øaHHÈ_|¡t!`-‚#¬â¢t`P;vôõõmÙ²¥Ò…€µŽ Œ¦M›6mÚTé* ªÕ)((¸yó¦ÒU@QGÚ0yò丸¸"Ó<òàƒæçç !.]º4{öìnݺµhÑ¢E‹>úè;ï¼sþüùÒV+Ÿ+³sçÎ"Ó›4irÿý÷[NÙ±cǨQ£:wîܪU«Áƒøá‡E²ÝüñÚk¯uëÖíÞ{ï öÙgwïÞ]Æ}òÉ'–'ÇÈ•œ9s&>>þhÖ¬YXXØO<ñã?–¶†¤¤¤&Mš´oßþÊ•+æ‰W¯^ oҤɔÞiô†à@ºwï.„ظqc‘ékÖ¬BôêÕËÅÅåÒ¥K\°`AFFF½zõî¸ãŽÓ§OöÙgQQQYYY•y÷™3g:tãÆùùù~~~{öìùàƒ ”™™)/püøñîÝ»õÕW™™™wÞy§ÉdJHHxòÉ'7oÞ\®7Z°`Á¬Y³\]]xàOOϤ¤¤_|qýúõ%.:tèÐóçÏ¿ýöÛæ‰ï¾ûîÙ³g_xá…»ï¾ÛÑ; €ÞhC«V­üüüNŸ>ýûï¿›'Ê¡ªOŸ>Bˆ•+WžÚÒÕÕuôèÑ/½ôR¹Þî‘G±|êéééììl2™ÊxI“&M^|ñÅsçÎõìÙó?þ˜0aBƒ ìµ—ã M›6mРÁÉ“'“““CBBòóó7lØàááÑ­[7ó2üñÇÖ­[÷ìÙsúôéS§NUòÐF!Djjªüÿ!!!%.pöìY!ÄÔ©SÇŒ³k×®'Ÿ|ÒÝݽI“&­[·~衇š4iR®·»ãŽ;*PäsÏ=÷ã?>|ø¾ûî‹ŠŠ²é§ÿ"8Ð’îÝ»ðÁ6l Ù¶mÛåË—ûôéc˜^¶lÙôéÓóóóëÕ«Ö¹sçfÍš¥¥¥M›6­\ïRPP`nòååå !êÔ©SÚ síÚµ…wÜqÇ7ß|“””´uëÖ_ýõСCûöí›7oÞã?>}útI’¬|ë*UªTàc¹zõêÅ‹…©©©ýõ————ýw#"8Ðsp=z´<m§¾zõêo¼Q¥J• ´mÛÖü’sçΕ÷]222 åÇAAABˆªU«ÆÆÆ–ý*I’äk !òòò¶mÛ6qâÄ+VtêÔ)""®Ëk¯½váÂ…-ZìÛ·oÚ´i³g϶ëÛ0,Žq %õë×oÖ¬YjjêÁƒúé§úõ뇅…ɳ|Ør™‚‚‚¾}û¶k×îÒ¥KüñG§Núõëgž[¥J•ˆˆùlž3gÎØõ3Y½zõúõë;tè°xñâàààµk׿hØÁ€ÆÈ§ÈLš4)''çñÇ7O÷÷÷B=zôÒ¥Kò”‚‚‚¯¾újéÒ¥BˆÜÜÜ×V¯^=!Ä’%Krrrä)‰‰‰æ‹ìÈ¢££ £££9"O¹zõêĉ:Ô´iS__߀€€+W®üöÛoŸ~ú©¹UyòäÉ­[· !ìz=ÅsçÎM›6í¶Ûn{ã7\]]ß~ûmggç©S§VþàN(Ž¡jÓ­[·3f$'';;;÷êÕË<=(((""â§Ÿ~êÒ¥KË–-M&SrrrVVÖÀ/^üí·ß^¹rE¾°Ž¥^½z-Z´hß¾}Mš4¹páBJJЧ§g­Zµnܸ!/Ó»wï]»výßÿý_¯^½êÔ©ãííššš““Ó AùÊÛNNN±±±111qqqÿûßÿî¸ãŽœœœ'N˜L¦¨¨¨ÐÐP;}&“)&&&;;û­·Þ’ssóæÍ‡ ò¿ÿýoêÔ©ï½÷žÒû €ÞÐq 1~~~÷ÝwŸ¢]»v~~~–³fÍš5jÔ¨ÚµkË×wlß¾ýªU«&Mš4pà@ggçoX·nÝ/¿ü²sçÎNNNÛ·o?vìX:u>ùä___ó2’$½óÎ;ï¿ÿ~§N Ož<½jÕ*oooy™Þ½{/Z´¨C‡GÍÉÉiÓ¦ÍÇüÚk¯Ùï£X²dÉÎ;Û¶mk>ÐS1jÔ¨úõë¯_¿~Æ Šî(:$•}y00Žk×®effÖ­[×ú“ ÀPް CÕ° ÁV!8À*GX…à«`‚#¬Bp€UްÊÿâ·»ë¨MÆIEND®B`‚statistics-release-1.6.3/docs/assets/nctcdf_201.png000066400000000000000000000555631456127120000221300ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A[:IDATxÚíÝy\TõþÇñﰈɲ¸‹â¸¤…Šæ¾ ©¤æFeš™fe¦¡æ’K¦Ùb.¸¦’e¹d)Þ,M1W\—Ä®"$"¸"’¨ 3¿?ÎïÎ;lçÌ™×óû¾çÌ™Ï9Gâ}?ßsÎhôz½Šb#w° G˜…à³`‚#ÌBp€YŽ0 Áf!8À,G˜…àX¶ØØXÍ 2Ädé£G KW­Z%w±ebûöí¿þú믿þšššZŠ›1c†tÜúõë—ï [¶lјçîÝ»å|LJ±¶G­\¹ò…^¨V­š£££ŸŸß‹/¾¸`Á‚¬¬,“5ÿ)ØÙÙyxx´jÕjÆŒyOP¾o11qâÄr>z ApÔãÇ›÷½^^^NNNBˆéééÁÁÁ …¼Å„››[9=…Ѱd111&¿Ô6l0,}øð¡a|åÊ•r[&*Uª$íàž={Jq³Ó§O—6Û·o_sÖß³gáPÇÄÄÈ}TJ¡¶^½zÞõæ›ož>}:''çÚµk«W¯~ê©§¤q­VkXßøŸ¢ñ¹¸råÊ›o¾iXZä[(SÕ€ÚLž<933³ÈÕa„€€€§žzê¹çžûüóÏ?~l²Í[·n}ðÁmÛ¶uqq©]»vÏž=wìØ‘÷£oÞ¼ùÁ´iÓæ©§žª[·î€N:U‚Ïýè£4¡%ÖµkWFóàÁ“-äää|üñÇÕ«Wÿøã¥5u:ÝO?ýÔ¹sçZµj9::ÖªU«S§N?üðCÞ=*;#FŒ*ìܹ³ñøÆ¥ñŠ+Jûòøñã•+W¶k×®jÕª•*UjÒ¤É믿~æÌ™2-oÏž=Û·o—^O™2å»ï¾{öÙgmmm}||FŒ±qãFiQ\\ÜÅ‹ ßT5¾ûî;Ã¥¢Ÿþ¹´_Å%Ëq`Jîä à‰÷l4h ½˜5k–´´ ŽãñãÇëÖ­›÷?5jÔˆŒŒ4¬fèºuêÔ©aÆ&+WòÇxzzæÝæ[o½e¼ÚÞ½{½¼¼LÖÑh4ãÇ/îçN™2%ïÇÝ¿_ÿ¿ýÂ7ÞxCz=}úté/¿ür¾ÿ=8p`Þʨã¸sçNie{{ûŒŒ Ãøˆ#¤ñþýûKg°eË–yKÕh4Ë—/7óI :Žýû÷—Öwww¿wï^Þ‚‚‚ž{î¹çž{.<<<ï?żíÖFDD˜óc¥r<9‚#`ÙŒÿôþøã...BˆŠ+¦¤¤è Ž™™™† à»wïT±bEiÄÛÛÛc áIR«V­V­Z9::FŽ?.­y÷îÝ*UªHƒ®®® 0n¤­[·.ïj]ºtùä“O d¸ÌîÛo¿-ÖçÞ¾};!!ÁPù?ü Ó錷P½zuû¤àøóÏ?2G—.]†úÌ3ÏÖÙ»w¯I e³³³ WïmݺÕ0n85?þø£qNNN/½ôÒ˜1cZµj%ØÙÙ?¾,jÓëõ†po’ûÍü§˜7êt:õ•³gÏ6ç-ÆJå8xrLUêáéé9cÆ !Dfff¾Ý8ɼyó._¾,„¨\¹òÁƒ#""~ÿý÷¨¨(!Ä7>ÿüó¼ïZºtéåË—£¢¢¢££ îĉÒ‹¹sçJ÷@ÔªU+>>><<|ß¾}S§N•–~óÍ7&« 8pïÞ½3gÎüñÇ/^,-5kV±>÷é§Ÿ®[·®!wV«V­nݺ&7¥¤¤4jÔhýúõQQQÒ•vÒ¢ñãÇïÝ»÷‡~8wî\óæÍ¥Á¿þú«|N–½½}ß¾}¥×†îã¥K—¤Sãààðâ‹/ !öïß/-š6mÚÖ­[—,YÕ­[7!DNNŽq",E?6ÜLãëë[*ÛÔh4ÞÞÞÒë7nä]AºÒÀĸq㤥²yU3fL½zõ„6l(èÑ<†§¨Œ;6 @zݤI“ñãÇ›¬`ðÌ3ϼÿþûÒë ´oß^z””$½Øµk—ôâÃ?”¨TŒ4›ùèÑ£ÜÜ\aÚFŽiØø›o¾ikk+„¸råŠÉ#uŠüÜ"U¬Xq÷î݃nÕª•”^yå•õëׯ_¿þƒ>ÖÉÈÈ0\zçÎr;Y†sÃaÙ»w¯ôâ…^¨\¹²Âð¸ÄuëÖ}÷ÝwRž[·n]LLLLLÌÀË¢0ãK]«V­ZZ›}úé§ónßL²yñ8@U*T¨0þ|iv5$$ÄЧ1'½èÞ½»ñø /¼ õãããu:ñƒZL.ˆtww—^èt:éEBB‚ô¢mÛ¶†Õ¼½½£££ßh¸‘Âä£ âãã›6mjþçÉßßß$úHžž¾k×®“'OFGGŸ8qâÞ½{evN èææ–žžž””táÂ… ‚£! uïÞ]ºs(..NºŸÆßß¿gÏž}úôÉ÷š¿Ra¸iZQŠUOKK“^H™ØD¾ã1œqYŽ€¼Ž€Ú¼ôÒK]ºtÙ·o_TT”áîWƒŒŒ ×…øøø/ªV­šôâáÇ7oÞ4^j2ÿkò£ñ6]]] *,##Ãø¡€ùº}ûv!T‚çSÚŸÙÙÙ}ôÑ’%K $trròôô¼uëÖ“øb“f«×¬Y#„عs§V«•‚¾½½}ïÞ½¥ufÍš•‘‘±zõêG !ôzý©S§N:õÙgŸµoß~Ë–-†kFKQ… <<<¤s!Mçu÷î]é::::;;›³Yà uÞ»£„6l ,è½²y1U ¨Phh¨Ô/4\ehP¹reé!Äõë×~¬P¡B±þ ?õÔS†;T ]¥¼*W®lheýñÇ ù4hPéмYó³Ï>[¸paNNޝ¯ï×_}æÌ™ŒŒ CP+gÁÁÁÒ‹ˆˆˆ˜˜)¼JHiÜÞÞ~Ù²e©©©?ÿüóàÁƒŸ†}èС²û:¾6mÚH/¶mÛ–ïSŠ4hàááááá±råJs6xøðáììléu z„r&Ž€ 5mÚô­·ÞÜ… Õj¥üñ‡ñ¸áG???;»bLGh4ܲñ…•7nÜhݺuëÖ­;wî,M.K×_ !rrrêqsssuuuuuÍ÷»CJ××_-½X¾|ù¨Q£š6mjgg—’’RÖŸ›¯®]»J(22rÛ¶mÒ ažúÑ£G7oÞ¼yóæ£G^~ùåõë×ߺuk÷î݆àuðàÁ2*Ìpê•+Wò~ËùöíÛ ÿ´:vìhÎ ·@9;;_Ï`G@>ýôÓ|¯$BI/–,YbxòvLL̼yó¤×={ö,îÇÒ ‘"444*****ÊÁÁAê€víÚUZ¦×ë¥×[¶lyúé§=<}ú¤I“ò.š4iÒš5k’’’îÞ½Û®]»ÀÀ@[[Û={öHßçáãã#=Ó§Xf̘±víÚŒŒŒÄÄÄçž{.00ðæÍ›†[=F-½øè£V¯^žž¾uëÖ.]ºtìØ166Öp÷øñã 7C˜ÏÕÕUºtòÓO?ýàƒìíí Z¹R¥J•*U’Ö—¾E£ÑDDD”çwƘ–.s”nèîÔ©“áºÌ¦M›zyyݼy3''§]»v½zõrww¿|ùòo¿ý&­`ø:–²°páÂV­Zeeeéõú™3gΜ9ÓÃÃ#==]ºA^áèè.ÝobèСÒÕ <0¾"¢J•*Ÿ~úiq+‘÷8ør?HÀ)äÊ=2¾+Ùø›cŽ;–ïóùjÕªuèÐ!Ãj=ûÕW_•Æ?üðCÃà¿þõ/ÃՓƦNjüÞß~û-ßþлï¾+=»»¸Ÿ;xð`ãíäýæ“#öÊ+¯˜|´¯¯¯áqåo¼ñFá5¤ÄßUmü$p!ÄŠ+Œ—=z´ éûN:=|ø°Lk;|øpAã©]»öï¿ÿn¼rÞ¯M7áîî~ôèÑ‚ÞRøÀKå8xrLUªU¡BÃ쳉–-[ž={vÆŒ^^^]ºt™6mÚ¹sçÚµkW²ëׯ߹sçÞy瀀€J•*Õ®]»W¯^üì³ÏŒWëÝ»÷™3gÞzë­fÍšU¬XÑ××·_¿~‘‘‘+V¬(ÁMÓBˆÐÐÐÁƒ{zz:;;?óÌ3ÆO*hý&Mš!lllž}öÙqãÆEGGf‡7nÜXä—/—.ã'ÛØØ˜4Ïžþù„„„3fT­ZÕÞÞÞÍÍ­]»v«W¯Þ·oŸƒƒC™ÖÖ¶mÛøøøÐÐÐŽ;zzz:88hµÚ>}ú„††^¸pÁpÍC!lmmÝÝÝ[¶l9cÆŒ¸¸¸çŸ¾d•È{hôÿ¹Ì¬ÄãÇ·oß.˜â€b"8À,LUÀ,G˜…à³`‚#ÌBp€YŽ0 Áf!8À,G˜…à³`‚#ÌBp,Â¥K—´Zí™3gä.@fÇ"¬[·NîÁNî*##ãâŋ۶mûé§Ÿä®@ŽùëÝ»÷7ä®@AŽùûì³Ï=z$„X¿~ýŸþ)w9ò#8æ¯]»vÒ‹ýû÷Ë] €"KŸV«•»Ê϶&÷ä.¡¼Õ¿&w ò 8–‰¸¸8¹K(Z­V5û¢œâ¤('%_V-‹Íš™¢TpR4öýÿ.[þ¾” Á‹T‚hµ}2Cò+ý‚.Ò ív¹÷D&GÇœPH ”+ ’J†à€< I‡„Bƒ"s!Y°<(sùfDÒ¡A!é\¨(GJYÞ˜HF”I‡–‚àˆÂDDDÈ]LqRˆ“¢@å|RL’"1Qb{­ Z:‚#ÅFRÌ+o7Ñ$&&&&Ê]#žÁ±sæÌ™3gŽÜUägIŠ"OR¤›h Žˆ°hŒ¤‚#¦ y‘°hIŠ 8 ÍE#„E„à°j4 y‘°ˆ‚VJŠŒVži.¢XŽëB‹QÐ\DIÖ‚#yOˆàP9ZŒâ?‘‘¼ˆ'Dp¨-FZŒ(]G€ =žØö¢GFò"ÊÁ *R—Ñ~Þ‘:uêÈ]‹ ˜’F™"8TÂxb:11QîrÊ‘å€à°xV~-#‘å†à°lVµÎÈÈ…Œ(G€¥²ÚF#-FÈ…à°‚# @ªo7’b!8ò§úÔ ¸Ž+E»(.‚# ªo7’ 8À,G€)ÚòEpXR#PbGÀÿP}»@‰ÿ¥úÔH»xG€µ 5Oˆàøªo7xBG€U Ý<9‚#@ÚÌ@p¨íF T*o7’ÒBp€YŽ`íh70Áf!8€U£ÝÀ|vrPN6oÞ¼iÓ¦„„„Š+vìØqâĉnnn…¬ŸýÃ?ìܹ311ÑÍÍ­I“&ï¿ÿ¾ŸŸŸÜû0©(uVÑq >}úßÿP©R¥-[¶¼ýöÛYYY­Ÿ››ûÆoÌŸ??==½}ûöÕªUÛµk×K/½tâÄ ¹wJ“ºÛJúƒc\\\XX˜——WDDDXXØ®]»†zöìÙùóçô–ŸþùÔ©S={öܽ{÷’%KÖ­[·fÍ!ÄôéÓåÞ(5êN¾Ëi7¥NýÁqÓ¦M:.$$ÄÓÓS™2eŠ‹‹ËÎ;u:]¾o9uê”â7Þ°³ûÿ©üÖ­[7lØðòåËwîÜ‘{‡ä¡þàxâÄ ›N:Flmm;tè––&ļ|||„ÆQ¯×ÿóÏ?666†( MÝíFÍ„}—Þ¯#w€ ©<8êõú„„wwwwwwãñúõë !’““ó}W¯^½?ûì³£Gfee]»vmÆŒ)))ÁÁÁ•+W–{Ÿä¡òþYfffnn®«««É¸‹‹‹øßž¢1­V»nݺaÆ 6Ì08dÈ©S§šù¹Z­Öd$""BîƒQ)))r—Sœ²Ð“’˜˜(w eÂwYâ¥÷ëXèIQ7Ë=)=zô»¥Pyp”nvvv6¯T©’âîÝ»ù¾+##ãË/¿|ðàAãÆ›4i’––vøðá­[·>ÿüóݺu3çsãââäÞõRS§Ó=ŠÃIQ Ë:)êž§"Q:–uR¬„…ž”¼Öóvˆ¬„ʃ£«««F£ÉÌÌ4¿ÿ¾øOß1¯I“&ýõ×_S¦LyóÍ7¥‘k×®½úê«ãÆûí·ß|}}åÞ-@þxv#P¦T~£‹‹KÞÎbFF†ÂpŸµ±[·níß¿¿^½z†Ô(„¨Zµê{ï½÷øñã_~ùEî}€'¢âv#©(k*ŽB//¯´´4))HWöxyyå]?--MQ»vm“q©Ñ˜šš*÷ÈCýÁ100077÷СC†½^éæææïïŸwýÚµkÛÚÚÆÇÇëõzãqéú†zõêɽCPr´< õÇàà`›eË–I×5 !ÂÂÂnß¾=`À{{{iäÁƒ‰‰‰ÒÝ^NNN:tHJJZ²d‰á áñññ_ýu… :wî,÷ÈCå7Ç!ªV­:qâĹsçöéÓ§}ûöIIIQQQ79r¤aÈÈÈqãÆùùùmß¾]1gΜ~ýõ×;vìhÔ¨QZZÚ_ý¥Óé¦OŸ^·n]¹wJˆv#€'¤þà(„>|x•*U¶nݺcÇŸ!C†„„„HOäÉ—‡‡ÇŽ;V®\yøðḹ¹uìØqÔ¨QMš4‘{Wd£1¹’ON«Õªæ9މ‰‰úÌ-ã¤(Eœkk7ZÄI±6j:)jú[_,ê¿Æ¥‚àêgmíFe„à³@åh7(-G˜…àjF»@)"8À,G€å¡ÝȂથâyj² 8, íF@.GP'ÚJÁ`Ih72"8€ ÑnPŽ‹A»Áf!8€Ú¨užšv# ;‚#ÌBpUQk»€€yj@ Ž ´”)‚#@éh7 Ap€YŽ j§¦Ý(Áf!8€ÐnPŽ0 Á P´¥!8€ÅSë<5¥!8À,G°ljm72O (Áf!8€£Ý <`‚#@Yh7ŠEpK¥ÖyjŠEp€YŽ`‘ÔÚndžP2‚#ÌBp(íF@áŽ`yÔ:O @áŽE Ý(Áf!8€…až€\Žù1O X‚#XÚdDpÈŒv#`)Ž0 Á,†*ç©i7„à³À2¨²ÝÀ²²až°,G˜…à@•óÔ´‹Cp€YŽ0 Á”Žyj Ap€YŽ€òF»°PGP4UÎS°PG˜…àÊ¥Êv#óÔ€å"8À,G˜…à Å<5¥!8À,G@9¡ÝX:‚#(‘*ç©X:‚#ÌBp”æ© 8€â0O @™Ž€2G»P‚#( íFŠEp€YŽ€²Å<5 GPæ©(Áf!8ÊóÔ€š@)˜§ pG@Y¡Ý¨ Áf!8€"0O @ùŽ€2Á<5 >G˜…àòcž€E 8JóÔ€*`‚#ÈŒyj–‚à(eÌSjEp€YŽ 'õÍSÓnTŒà³ØÉ]@9Ù¼yó¦M›*V¬Ø±clj'º¹¹þ–sçέZµ*66öþýûZ­v̘1­Zµ’{?dcÇÐÐÐéÓ§ÿý÷ß•*UÚ²eËÛo¿••UÈ[öíÛ7hР}ûöyzzúûûGGG:tß¾}rï Uaž€eQpŒ‹‹ óòòŠˆˆ Ûµk×СCÏž=;þü‚Þr÷îÝÉ“'ÛÙÙ­[·îçŸ Û¸qc… f̘¡ÓéäÞ!y¨?8nÚ´I§Ó…„„xzzJ#S¦LqqqÙ¹sgA)pË–-ï¾ûnóæÍ¥‘¦M›öìÙóöíÛçΓ{‡ä¡þàxâÄ ›N:Flmm;tè––vêÔ©|ßrðàAFÓ·o_ãÁ¯¾ú*..îÙgŸ•{‡¨óÔ,ŽÊoŽÑëõ îîîîîîÆãõë×B$''·hÑ"ï»bbbÜÜܼ½½Ož<ýÏ?ÿ4hРk×®NNNrï€lT333sss]]]MÆ]\\„wîÜÉû–ììì{÷îÕ«Wï“O>Ù¸q£a¼F‹-zæ™gÌù\­Vk2!÷Á(‰””¹K€)NŠ•ø¤$&&Ê]{)SÎñ›¢@–{Rzôè!w J¡òà(Ý:íììl2^©R%!ÄÝ»wó¾åÞ½{Bˆ„„„ÔÔÔ¹sçvêÔéáÇáááË—/ÿàƒ¶oßnNß1..Nî]/5uêÔ‘»˜â¤(PqO óÔå€ß²Ð“’÷ÏzÞ‘•Pù5Ž®®®&33Ódüþýûâ?}GŽŽŽÒ‹/¿ü²oß¾®®®ÞÞÞï¿ÿ~¿~ýRRR~ÿýw¹÷ @Ê Ž ,HHH(Å ÚÙÙ¹¸¸äí,fdd! ÷Ysvvvtttrrêܹ³ñx×®]….\û °x´X(eǰ°°_|qÀ€ëÖ­Ë÷ÄðòòJKK“’¢tŽ——W¾oñôô´··×h4ÆƒÒ uNNŽÜ @Ê Žï¼óNµjÕbbbæÌ™Ó¾}ûQ£FíÚµ+;;ûI¶˜››{èÐ!È^¯ŒŒtssó÷÷Ï÷-;wÎÈȸxñ¢ñ ôìž È}䡬à8~üø½{÷þøãƒ ªT©Ò¾}ûÆŽÛ¶mÛO>ùäôéÓ%Ûfpp°Í²eˤë…aaa·oß0`€½½½4òàÁƒÄÄDÃÝ^ýúõBLŸ>ÝÐõ}úôƒnÛ¶mß¾}7nܸqc­ZµúöíûÒK/U«VÍü V­ZuâĉsçÎíÓ§Oûöí“’’¢¢¢7nþøão¾ùFîz¬‚²‚ãúõëwíÚuòäIN'„pwwïÞ½{Ïž=[´ha<+Ý®]»æÍ›·lÙòĉr— `-”?ýôS!„««ë /¼Ð³gÏV­Zt£“““£££ç©  ÌS°tÊ Ž  jݺµ9w½Ðn(OÊzŽãÎ;=ZPj3fL÷îÝå®ÀJ)+8fff>~ü¸ EW®\¹zõªÜ5@I0O @äŸªŽŒŒ5j”áǵk×®_¿>ïj:N¯×׬YSîz¬”üÁÑÖÖ¶råÊÒëôôô *T¬X1ß5]]]§L™"w½VJþàØ®]»¨¨(éµV«}õÕW§N*wQPš˜§ òGc#FŒhÑ¢…ÜU Ê Ž“&M’»äOæà¸aÃ!DË–-ýüü ?nðàÁòÖ ÅÂ<5Õ98Ξ=[1kÖ,)8J?Žà ™ƒã˜1c„Mš4‘~üðÃå> ÈŸÌÁñý÷ß7þqäÈ‘òÖ¥‹yjj¢¬oŽ€bÉÜq˜§—²nŽ)ÜäÉ“»tá¿bò¹ã˜WzzúÞ½{“’’LƳ²²vïÞmkk+wæ©XeÇ›7o4èêÕ«­0xð`¹kõcž@¾”׬YsõêÕ€€€Þ½{ÿþûïÇŽûøãœœ.\¸°~ýúÁƒO›6M²‚ã¡C‡¾þúëÊ•+wéÒ¥]»vuêÔiÓ¦Â××÷ÓO?}ùå—ýüüä.þÇã‰m™§` ”usÌõë×k×®]¹re!D•*UÜÜÜbbb¤EÁÁÁnnnkÖ¬‘»FP9æ©DYÁQacóß’jÖ¬™˜˜(½¶µµÕjµgÏž•»@+¥¬àèíí}ùòåH?Ö¨QãäÉ“†¥&%%Eîà\XÕ~Þ¹«€ò ¬àصk׬¬¬?üðï¿ÿB´hÑâÊ•+‡Bܾ}û¯¿þªV­šÜ5€š1O  ʺ9fèС»víÚ·oŸ^¯_¹re‡ìììÞÿýfÍš]¸p!333((H²:Ž6l?~|“&M„ÕªU›>}zvvö‘#GÒÒÒ‡.wð_<÷€UQVÇQáááñÎ;ï~4hPïÞ½Ï;çåååëë+wu fÌS(œâ‚£±ØÛÛWªT©uëÖr×`í”Ïž=»|ùòØØØÔÔT›jÕª5kÖlôèѵjÕ’»4ø/æ©Xe]ã(„X¼xqppðRSS“““ýõ×   7Ê]¨óÔŠ¤¬àxðàÁ+VØÚÚ:tÏž=gΜ‰ŽŽ>pàÀˆ#„sæÌ9}ú´Ü5X)eÇ7êõú &L›6­FFáãã3iҤɓ'çää𕃂yjVHYÁ166ÖÁÁá7ÞÈ»hÈ!NNN|å ”æ©˜CYÁQáíímg—Ï-;Ò]2™™™r`¥”ýýý“““322ò.zðàAbbbãÆå®˜§`¥”ƒƒƒõzýG}”““c<ž››;uêÔÜÜÜÀÀ@¹kµaž€™d~ŽãÑ£G´µµíß¿ÿ–-[ºuëìëë«ÑhÃÃÓ““µZm=ä-Àjɇ –ïøµk×/^l2צM›¸¸8yk`嘧`µdŽ}úô‘û€Ucž€ùdŽóæÍ“ûÀ,Jü®j!Ä7Ο?Ÿ””ôøñc__߆ V­ZUyjVMqÁ1==}éÒ¥?ýôSnn®aÐÖÖö•W^ qqq‘»@Pæ©‹²‚cnnî¨Q£¢££ºvíZ«V-[[ÛË—/ïß¿ÿÇ<þü† lmmå.À)+8~ÿý÷ÑÑÑÏ=÷ÜÒ¥K=== ã©©©cÆŒ‰ŽŽþþûïGŒ!w™¬óÔ¬œ²~èÐ!F³hÑ"ãÔ(„¨R¥ÊâÅ‹mll<(w ÌS(.eÇ .ÔªUËÇÇ'ï"//¯ºuëž?^²‚£ƒƒCVVVAK³²²œœœä®€•bž”6lxóæÍèè輋bbbRRR4h w ÌS(eGé‹dÆŽkr-ãáÇßÿ}!DïÞ½å®ÀJ)ë®ê   ÈÈÈ­[·Ž9ÒÇǧvíÚBˆ¤¤¤k×® !z÷îÝ«W/¹k°RÊ ŽBˆ/¿ü²U«V‹-º~ýúõë×¥Á*UªŒ7®_¿~rWÀJ©ìGæ©”Œâ‚£F£éß¿ÿþýoݺuùòe½^_»vm///¹ë°vÊ Ž))):®fÍšBOOO“§9@FÊ ŽAAA=:r䈇‡‡ÜµÀÿcž$ʺ«ÚÏÏOqñâE¹ €)eÇ3f899­X±âáÇr×€ÿ¡¬©jOOÏ |üñÇ}úôéÓ§OÍš5+W®l²N§Nä.€až ”;wî,½¸}ûöÒ¥Kó]'..Nî2¬‘²‚£ôÍ1P eÇyóæÉ]üóÔ`LY7ǘÈÎÎÎÌÌ”» ¡´Ž£$>>þ믿>}úô7t:··÷3Ï<3f̘ È]€õR\p\½zõ‚ t:ÂÁÁÁÖÖöÆ7nÜØ·oßøñãGŽ)w¬óÔ`BYSÕG]°`F£:tèž={Μ9ùÖ[oÙØØ,\¸ðèÑ£r×`¥”üñGN7qâÄiÓ¦Õ¨QC£Ñ!¼½½'Nœ8uêTN·nÝ:¹k°RÊ ŽçÎstt:thÞEƒ ªX±â¹sç䮀U`žòRPpÌÉɹ~ýº———­­m>…ÚØøøøèõz¹Ë°R ަbÅŠÉÉÉÿüóOÞ¥—/_nÒ¤‰ÜeX)G[[ÛþýûëtºÉ“'?zôÈxQvvö”)S4͈#J¶ñÍ›7ûûû·mÛvêÔ©éééæ¿÷ÚµkÍ›7Ÿ8q¢ÜG@9ažò¥¬Çñ¼öÚk±±±èÚµë€êÔ©£Ñhÿõ¯ݸq#((èþýû0¬ïëë[³fÍ"7ºråJgg瀀€¤¤¤-[¶ÄÇǯ]»ÖÉÉ©È÷êõúÉ“'ß¿_îc 3eÇ   éÅ­[·V¬Xa²tÇŽ;vì0ùðË|²c\\\XX˜——Wxx¸§§§â³Ï>[»víüùóg̘QdIßÿýñãÇå>0òSVpìÓ§O±Ö¯W¯^‘ëlÚ´I§Ó…„„H©Q1eÊ”_ýuçÎÓ¦M³±)l²>>>>44´Aƒ.\ûØ('ÌS@A”çÍ›WêÛ%‘’’"w 0ÅI)k‰‰‰Å}‹bOŠï²ÄKï×)Á©€bOŠ5³Ü“Ò£G¹KP •Ǭ¬,!„³³³Éx¥J•„wïÞ-è]“&MªQ£Æ„ Jö¹qqqrïz©©S§ŽÜ%À'¥ì\,éáUêIITjaåÁš÷]±,ô¤äý³ž·Cd%T]]]5Mff¦É¸ôx©ï˜×ܹsSRR6nÜhÎóz¨óÔP8•_ãhggçââ’·³˜‘‘!„0Ügmìøñã7n|çwž}öY¹Ë€’ã~j¥NåÁQáåå•––&%EéŠ//¯¼ëÇÇÇ !¾þúkíôïß_ñÛo¿iµÚ^½zɽCòPùTµ"000..îСC/¾ø¢4¢×ë###ÝÜÜüýýó®_«V-Ú’»wï>|¸jÕªþþþÞÞÞrï€2Á<5IýÁ188xåʕ˖-ëØ±£tOLXXØíÛ·ßzë-{{{iܺuËÞÞ¾zõêíÚµk×®ñbcc>Ü¢E‹²xÌ$”æ©”õǪU«Nœ8qîܹ}úôiß¾}RRRTTTãÆ¿«022rܸq~~~Û·o—»^…RpB >¼J•*[·nݱc‡Ï!CBBB¤î#æ©À‚#¨óÔÊÁf!8°^*›§¦Ý ¬`‚#ÌBp`¥˜§€â"8À,G˜…àÀ1O %@p€YŽ0 Á€ÕažJ†à³X•µ <À‚1O  <`‚#+Â<5< ‚#X*æ©”3‚#ÌBp`-˜§€'Dp‹Ä<5€òGp€Yެ‚Êæ©i7Áf!8P?•µ@.G°0ÌS Áf!8P9æ© ´À’0O @FG˜…à@͘§€RDp‹Á<5y`‚#ÕRÙ<5íF²#8À,Gꤲv#(Á,óÔ”€à³¨óÔPŽ tÌSP‚#µ¡Ýe„àŠF»€r`‚#UažÊÁ”‹yjŠBp€YŽÔƒyj(SGP(æ©( Á€JÐn€²Fp%¢Ý@Ž0 Á€0O å€àŠÃ<5e"8°x´ |`‚#( óÔ‹àÀ²1O å†à B»€’X0ÚPžŽ0 Á€¥R_»‘yj Gp€YŽ ´(Á€ERß<5(Áf!8°<êk72O À"`‚#ÈŒv#KAp`aÔ7O –‚à³Xõµ™§`AŽ0 Á€Å Ýò"8À,G–v#ÈŽà³`‚# À<5(Áf!8P:Ú G˜…à@Ñh7€r`‚#åR_»,ÁÊóÔ,šÜ”“Í›7oÚ´)!!¡bÅŠ;vœ8q¢››[!ëgeeýüóÏááá)))O=õTýúõ‡Þ¶m[¹÷°"´@i¬"8†††®\¹ÒÙÙ9 ))iË–-ñññk×®urrÊwýœœœaÆ>}ÚÅÅ¥uëÖ>ݼyóÈÈÈ+V¬Y³æ—_~quu]¾|ùùóçåÞ!À*ÐnRpÜ´i“N§ ñôô”F¦L™âââ²sçNN—ï["""„Ó¦M3´$ýüüÞ}÷ÝÜÜÜ#GŽÈ½C,íF* þàxâÄ ›N:Flmm;tè––vêÔ©|ß’˜˜èììܸqcãA???!Drr²Ü;¨íFP&•_ã¨×ëÜÝÝÝÝÝÇëׯ/„HNNnÑ¢EÞw­ZµÊÎÎôÈÄÆÆ !jÔ¨!÷>°<´¨ƒÊƒcfffnn®«««É¸‹‹‹âÎ;ù¾«Q£F&#QQQaaa}ûö5çsµZ­Éˆ4ýmqRRRä.¦¬ä¤$&&Ê]B1˜sR,kTÀJ~S,‹åž”=zÈ]‚R¨<8fee !œMÆ+Uª$„¸{÷n‘[ÈÍÍݰaÃW_}•››»`Ás>7..Nî]/5uêÔ‘»˜R÷I±ÐyêBN íF¹¨û7ÅBYèIÉûg=o‡ÈJ¨<8ºººj4šÌÌL“ñû÷ï‹ÿô qìØ±Y³fýý÷ß>>>Ÿþy›6mäÞ!Ù¨<8ÚÙÙ¹¸¸äí,fdd! ÷Yç•=oÞ¼uëÖ9::Ž3fĈ=ô@)²Ðvc!h7P•G!„——WBBBFFFåÊ• ƒÒÅF^^^ù¾E§ÓM˜0á?þèÚµëÌ™3 É—ÖCýã ÌÍÍ=tèaD¯×GFFº¹¹ùûûçû–uëÖýñǯ½öÚòåËI@¹Q_»TFýÁ188ØÆÆfÙ²eÒuBˆ°°°Û·o0ÀÞÞ^yðàAbb¢t·—^¯_¿~ýSO=5yòd¹k`Ù˜§ 2꟪®ZµêĉçÎÛ§OŸöíÛ'%%EEE5nÜxäÈ‘†u"##Çççç·}ûöÔÔÔ+W®899 <8ïÖúõë7dȹ÷ P!Ú |êŽBˆáÇW©ReëÖ­;vìðññ2dHHHˆôDž¼¤¾cVVVLLLÞ¥ÜX ”U¦FÚÔÇ*‚£¢wïÞ½{÷.hiPPPPPôºY³fjz #@iQÿ5ŽŽv#X ‚#ÌBp 'Ú`AŽ0 Á€lh7€e!8À,Gò Ý‡à³È€v#X"‚#ÌBpPÞh7€…"8(WªL`%Žð¤|—%Òn` ìä.€Qe»Q3aߥ÷ëÈ]…riµZ¹KŠ'w –à(+Z­–¿ÇP>þïù˜ªPNÔÚnd’€õ 8(ªL`mŽPB´X‚#€2G»Ôà%A»€"8([´@5ŽÊZS#íFÖ‰àÅCj`µŽÊŠZÛ`µŽÊ„ZS#íFÖŒàÀÍš5K£ÑôîÝ;sçj4š3gÎÈ]cY©S§N¿~ýòŽ/^¼XS¨]»vV~øðaýúõ£££Ë­ìÔÔÔêÕ«_»¦Âÿ§ª@G¥v#,ÝöíÛÿõ¯É]E±f̘r<ÒÖËNî¨ ©*àää4vìØnݺ=õÔSr×R 7oÞܺukHHHén¶}ûöíÛ·7ü¸zõê5jÌ›7/ïš·nÝZ¸pá‘#GLÆ£££9h<˜‘‘Ñ¢E‹+W® 8ÐÃÃ#<<¼Gû÷ïÏ:‹ÜTHHˆÏ±cÇZµjUÚŠÑqÀÔŒ3®^½:}úô'ß”N§ËÍÍ-õ Ëh³OhÅŠuëÖmÞ¼¹ôcNNÎüñÉ'ŸtïÞ]§Ó™¬¼pá„„„°°° 6,^¼øÐ¡Cf„ ùn¹ðM¹»»¿øâ‹K–,‘û¨Á@i¢Ýu Z¶lÙÉ“' YíøñãAAAÞÞÞU«V :~ü¸aQ:uÆ·jÕ*;;»jÕª½÷Þ{÷îÝ3¬púôéÞ½{{yyy{{÷éÓçìÙ³†E111ýû÷¯Y³¦§§g=öîÝkÎfß|óÍ^½z !:uêT§NÃÊ'Ož|öÙgŸ}öYi ¡¡¡M›6uvvvwwoÕªÕ† Jñ¸­Y³&88ØðcZZZ÷îÝgÍš•šššwåŸ~úÉÇÇgèСҾ¾¾ŒŒŒ¼~ýzÞ• ß”bàÀ›7o6>Â( G¥†ÔÕÐh4Ë—/wtt|ûí· jìýúë¯mÛ¶=wîÜ Aƒ^}õÕ˜˜˜¶mÛþú믆öìÙ3vìØ×^{méÒ¥Ï=÷ÜŠ+ÆoXÔºuëØØØ¡C‡2äèÑ£íÛ·ÿûï¿…»wï8}úô+¯¼òæ›o^ºt©{÷î?ýôS‘›0a‚tåßW_}õÃ?H+'''wïÞýÞ½{Ï?ÿ¼â“O>?~|•*U&Ož''§Q£FuëÖ½s玴TŠ;cÆŒyô葟ŸŸ¿¿ff¦´èáÇ­[·öõõÍÉÉ)|³z½~ûöíBˆH?J+Ïš5+77Wñõõ­_¿þãÇ¥ÿùç;;»÷Þ{ϰ~ß¾}‹>>Ó§O·±ùÿ ÆãÇ;::ÚÙýÿ_ÿ´´4!Dfff©ؤ¤$ÃNNúÐÊ•+º¸¸ª*Ÿ+W®”ʾ  G¥@­©eÇ"â¸]XXX›6mÆŽûË/¿/ŠB.”4mÚTZ$%¼úõë/5¤7©ÙÖ¤Iã¥Ã‡BHS̯½öÚk¯½fRÌ•+W ßl¾´Z­ñ nnnþùçîÝ»/\¸›““SZ‡ëæÍ›îîîf®,n“K322„æoÄÄÓO?}ãÆÒÚä‹à¢ÝˆçŸþÝwß]±b…ñÅ‹B½^/„0¾>Oakk+„xüø±ô£££c¾ÛÌÎÎBÚ~Æ*T¨ „˜7ožI¬B4jÔ¨ðÍæËÕÕÕðúÑ£Gýû÷ß±cG@@À /¼Ð§OŸÖ­[7kÖ¬´Ž•£££´kæðòò²±±1¹ÓåöíÛBˆjÕª•¬€ìììŠ+–Öî _GOJ­íFR#$_|ñÅ/¿üòþûï¿ñƆA???!Ĺsç:vìh”îŒÖjµ…oPjþûßÿ6~8â—_~™‘‘Ñ¿!ÄSO=Õ½{wâÿûßçÎ3Ž€%søðá;v,Z´èƒ>0 –bÇÑÛÛ;==]§ÓÞ•ØÙÙ5jÔèСCƃÔh47.Yiii¾¾¾¥µ;ÈwUx"jM€‹‹Ë¢E‹RRR–/_nlÖ¬YÍš5CCCÓÓÓ¥‘;wî,\¸°V­Z…?¿Záïï_³fÍE‹I3³BˆK—.Íš5+%%å¹çžÓjµ ,øçŸ¤E={ö7nœù½´¼9”¤¤¤!6lh ðàÔ=}r 6ÔétIIIf®?räÈË—/K7ô!nݺÞ­[7éYBÅ•“““œœl¼w( t”œŠS#íF{å•W¾ÿþûˆˆȃƒChhè+¯¼Ò¬Y³—_~Y¯×ÿüóÏ×®]Û¼y³ƒƒCá[stt\´hÑË/¿Ü¼yój4š5kÖØÙÙ}üñÇvvv‹-z饗ž}öÙ—_~ùñãÇ[·nMNNþé§Ÿ¤yðÂI]É+VܼyóÕW_5YÚ¹sgggç‘#G<¸ZµjGÝ·o_•*U>¼sçΞ={>áQêܹ³MTT”™Éoذaß}÷ÝàÁƒGíêêúý÷ßgff¾KpãÆï½÷Þ›o¾¹páBs¶vöìÙÌÌÌ®]»>á^ ptÀ©y}ýõ׆;%ýû÷?xð`ƒ ~øá‡µk×6jÔèÈ‘#}ûö5gkýúõ‹ŒŒ¬S§ÎêÕ«¿ûî»–-[FEEÕ«WOÑ£G¨¨¨&Mš¬_¿~íÚµuêÔÙµk×Ë/¿lÎfÛ´i3hР]»våû}€5kÖܱcGõêÕ—.]êäätöìÙ/¾ø"##cñâÅO~ˆÜÜÜZ·n½ÿ~3ׯ\¹rddä+¯¼>oÞ¼zõêEFFJÏ›BdggÿóÏ?YYYfníÀžžž†/­AÑ”VƒZ­6..Nî*JGbbbɦ Pv”sRÔÚn,AjTÎIQ5ý÷æØ¸qãèÑ£¯_¿^dÛÕ«W¯Ž‰‰Y´h‘9+7oÞ¼W¯^††e±”àªÕþÛ¦ã $Ôš<‰VªTiëÖ­O¾©‡îß¿ßÌ›¾Ïž={þüùQ£FÉ}Ôà ØTœ™¤ž„½½ý’%K>ýôÓ‚nÐ1ßÑ£G6l˜÷y–ùš9sæÌ™3½½½å>êÇÍ1ЇÔ }ûö=yòdLLŒô8ôëܹsçÎÍY355ÕÓÓs„ rïºU 8(§F¥eΜ9åùqUªTYµj•Ü;m-˜ª!h7€ŽÌ¥âv#©ÌAp`R#€à h¤F€ 8(’ŠS# XŽ £îÔH»Š…à @¤F€1‚#€ü‘&ŽòAjäEp`ŠÔÈÁÀÿ 5š-^¼XS¨]»vV~øðaýúõ£££ŸäSSS«W¯~íšjé 2|W5€ÿRwjŠÔ¬Y³?üÐðãÒ¥K]]]_ýuÃHíÚµ ¯gÏžíïïïïïo²‘:Μ9ÓxðîÝ»“'OÞ±cÇ;wš5köÕW_=ÿüóBˆ*Uª >|̘1[¶l‘{ï¢ü?Õ§FÚ(RûöíÛ·ooøqõêÕ5jÔ˜7o^Þ5oݺµpáÂ#GŽ˜ŒGGG9r$00Ðx0##£E‹W®\8p ‡‡Gxxx=öïß/…ΟcÇŽµjÕJî©jBbZ±bEݺu›7o.ý˜““óÇ|òÉ'Ý»w×ét&+/\¸0!!!,,lÆ ‹/>tèF£™0a‚´ÔÝÝýÅ_\²d‰Üûà€ÔÛš5k‚ƒƒ ?¦¥¥uïÞ}Ö¬Y©©©yWþé§Ÿ|||†*ýèëë;pàÀÈÈÈëׯK#ܼyó½{÷äÞ- GÀÚ‘âŠOJJjÓ¦aÄËËK¯×ëõú .˜¬œ‘‘qñâÅÎ;k4Ã`—.]t:]TT”ôc›6m?~)÷žE 8VÔ”À„æ¬|óæM½^ïååe<èéé)„0´'k×®íáá!mP2nެ©2º8°ªŒŸþ„ÿò“’’ÜÜÜÌY933SQ¹reãA!DZZšaÄÇÇçÊ•+2ÀGÀI³I‘Eÿó»y󦻻»™+{xx!L®_ÌÈÈBoäé§Ÿ¾qã†Ü{àXkh4 !H(;ŽŽŽÙÙÙf®ìååecccrÓÌíÛ·…ÕªU3ŒdggW¬XQî=Š@p¬‹5¤F"#Êš··wzzºN§³±)úV;;»F:tÈxðàÁƒ¦qãÆ†‘´´4___¹÷ (7ÇV„Ô”І êtº¤¤$3×9räåË—·oß.ýxëÖ­ðððnݺթSGÉÉÉINNnذ¡Ü{Ž#`¸¨(E;w¶±±‰ŠŠ2$¿Â 6ì»ï¾Áô4deoo¿dÉ’O?ýT§Ó=á¦fΜ9sæLooo¹÷ (SÕ€ÚXCd¤F(@ß¾}Ož<Ó´iÓo$55ÕÓÓs„ rï `‚# ÖpE£à¢F(Éœ9sžp UªTYµj•Üû˜‹à¨•DFA£dEp,›UEFA£dEp,˜õ\Î(ˆŒ GÀ"YU£‘È Ap,Ìã‰m/ZMd4@IŽ€eZŒBûyGÌüz\ËEde"8Jg2+˜˜(wEeˆÈJFp”Ëz.dDFõÒjµr— ÔÅ1ÌJaéâââäúèÄÄDÕ_Ôaq8)*@pĪZŒ‚È–†àÈÏ:[Œ‚È–†àÈÃ…ÕäEA‹,Á(WÖÖ\”Ðbu 8eÎ:›‹‚¼ªCpÊaQ@uŽ@©±Ú°(h.€u 8%gœ…•…Eã΢ /€u 8æ2‰‰ÂÊ’¢`¬žF¯×Ë]ƒBmÞ¼yÓ¦M +VìØ±ãĉÝÜÜÌy£V«•ñËJ—šö¥XòfD¡˜˜Xn'Ť§(‹³Úß%ã¤(šNŠšö¥Xè8æ/44tåÊ•ÎÎÎIII[¶l‰_»v­“““Ü¥¡4å…b2b¹É›1Á1qqqaaa^^^ááážžžBˆÏ>ûlíÚµóçÏŸ1c†ÜÕ¡ Ê…D `‚c>6mÚ¤ÓéBBB¤Ô(„˜2eʯ¿þºsçÎiÓ¦ÙØØÈ] µ+2XU.,(# žÁ1'Nœ°±±éÔ©“aÄÖÖ¶C‡Û¶m;uêT‹-ä.Ђ™Ÿù ¡ú8XD쵂™e€,ަôz}BB‚»»»»»»ñxýúõ…ÉÉɲÇRÉ^fÚÖ¤”?N™ÏœF]9+<ZíÙÙMeffæææºººšŒ»¸¸!îܹSä¶5¹W¦ÙN[k½œè )/¥Õß>JîLi·µ‚V+w0ÅIQ NŠqR,ÁÑTVV–ÂÙÙÙd¼R¥JBˆ»wï¹…²nªñü¤R¶€îfá>S®®®&33Ódüþýûâ?}G+Dp4eggçââ’·³˜‘‘!„0Üg `mŽùðòòJKK“’¢Abb¢´HîêäApÌG```nnî¡C‡ #z½>22ÒÍÍÍßß_îêäApÌGpp°Í²eˤë…aaa·oß0`€½½½ÜÕÈC£×s“n>¾ûsçV«V­}ûöIIIQQQ5úî»ïò>¦ÀJ ´mÛ¶­[·ž={ÖÇǧeË–!!!Òy¬ÁfáG˜…à³`‚#ÌBp€YŽ0 Áf!8Â,×®]kÞ¼ùĉå.ÄÚeee}ÿý÷½zõzî¹çÚ·o?bĈ#GŽÈ]”õÚ¼yspp°¿¿Û¶m§Nšžž.wEÖŽ_…ãO‰ ØÉ],€^¯Ÿ}ÚÅÅ¥uëÖ>ûlíÚµóçÏŸ1c†ÜÕY)~AŽ?%êÀT5ŠÚ A¹ ˆˆˆBL›6ÍÐÓòóó{÷Ýwsss™+g›6mÒét!!!RjBL™2ÅÅÅeçÎ:Nîꬿ JÆŸÕ 8¢0999“&Mrss›2eŠÜµ@$&&:;;7nÜØxÐÏÏO‘œœ,wuÖåĉ666:u2ŒØÚÚvèÐ!--íÔ©SrWg¥øQ,þ”¨ SÕ(ÌÒ¥KÏŸ?ÿÝwßU®\YîZ V­Zeggú;+„¨Q£†ÜÕY½^Ÿàîîîîîn<^¿~}!Drrr‹-ä®Ññ ¢Xü)Q:Ž(ÐéÓ§¿ùæ›!C†´iÓFîZ „5’¢‰ATTTXX˜ƒƒCß¾}å®ÎŠdffæææºººšŒ»¸¸!îܹ#wVŠ_eâO‰Ê‘¿¬¬¬I“&Õ¨Qc„ rׂ|äææ®]»ö­·ÞÊÌÌüòË/=<<ä®ÈŠdee !œMÆ+Uª$„¸{÷®Ü‚_¥àO‰ú0Umírrr¾ùæö¶¶o¿ý¶bîܹ)))7näÙ"寠“bpìØ±Y³fýý÷ß>>>Ÿþ9ÿ?¾œ¹ººj4šÌÌL“qé9#Rß2âD9øS¢>Gk÷øñãE‹~tppxûí·?¾qãÆ÷Þ{ïÙgŸ•»@k”ïI‘^gggÏ›7oݺuŽŽŽcÆŒ1bÿ9.vvv...y;‹BÃ}Ö(ü‚( JTI£×ëå®гaÆٳg´ÔÏÏoûöír×ht:Ý|ðÇtíÚuæÌ™õéÓ'!!!**Êøbÿ©S§nÙ²eݺu-[¶”»@kÄ/ˆÒð§D•è8"µjÕzñÅGîÞ½{øðáªU«úûû{{{Ë] •Z·nÝüñÚk¯Íœ9SîZ¬]```\\Ü¡C‡ ¿)z½>22ÒÍÍÍßß_îꬿ JßU¢ã³ÄÆÆöïß¿OŸ>óæÍ“»+¥×ë_xá…ôôôÇ;::Ê]޵»víZ```íÚµ7oÞ,ݳjÕª… ¾õÖ[|¯,ø±ü)Q:Ž€eHMM½r劓“ÓàÁƒó.íׯß!Cä®ÑŠT­ZuâĉsçÎíÓ§Oûöí“’’¢¢¢7nkÓ¦Mo¿ýö¡C‡¾ÿþûÝ»w6L±víÚ‚Ö;v¬ŸŸß–-[:$„8zôèÏ?ÿܤI“Q£FÉw®¨Á€e°±±yñÅÅÿ6Ož}ú­[·¦M›æää4þ|CPŠŽ,†çm¥yêH?Ž=zåÊ•uëÖ5¬ššúûï¿?ɇ¦§§'&&úúúšÜ]±bÅ6mÚdeeÅÄÄ!¤ä:eÊ”ãÇKW[ÚÛÛðÁcÆŒ)ÖÇõìÙÓøG[[[½^_È[5j4zôè7n¼ôÒKW¯^®zõê%(òwÞÙ³gOlllË–- TªGþ‹àÀ’ôîÝ{éÒ¥Z­öСCwïÞíß¿¿abzãÆsæÌÉÉÉ©Y³f‹-ºvíúÌ3Ï$&&Ξ=»XŸ’››khòegg !ªU«VФsÕªU…Õ«Wß¼ysttôÁƒ;sêÔ©+V 8pΜ9ÆÌ®P¡B Ëýû÷SSS…—.]úçŸ\]]ËþT°FG–Ä?øàiÚ0O}ÿþýO?ý´B… «V­j×®á-7nÜ(î§\»vM§ÓI¯}}}…+Vœ:ujáïÒh4Ò3€„ÙÙÙ‡úè£ÂÃûtéX¦‡eæÌ™·nÝjÖ¬Ù©S§fÏž½páÂ2ý8V‹kX’Zµj=óÌ3—.]:wîÜÞ½{kÕªÕ¢E iѹsçrss›5kfœÅn[)œÉŒöîÝ» ¯½¼¼ªT©ò÷ßÇÆÆ¯“››;`À€öíÛß¾}ûêÕ«]ºtyùå— K+T¨(ÝÍ“’’R¦ÇdÛ¶m;wîìØ±ãÚµkýüü~ÿý÷¼-€RAp`a¤[d¦M›–™™9pà@ø———âÂ… ·oß–Frssúé§õë× !²²²òÝZÍš5…ëÖ­ËÌÌ”F¢¢¢ Ù‘Œ?^§Ó?þüùóÒÈýû÷?ú裘˜˜Æ{xxøøøÜ»wïÌ™3«W¯6´*/_¾|ðàA!D™>OñƳgÏ~ê©§>ýôS{{û/¾øÂÖÖvÖ¬YO~q'äÅT5 4wîܸ¸8[[Û¾}ûÆ}}}÷îÝÛ­[·æÍ›ëõú¸¸¸ôôôÁƒ¯]»ö_ÿú×½{÷¤ëëÛ·ï?üpêÔ©ÀÀÀFݺu+!!ÁÅÅÅÛÛûÑ£GÒ:ýúõ;~üø/¿üÒ·oßjÕª¹¹¹]ºt)33³víÚÒ“·mll¦N:eÊ”yóæ}ûí·Õ«WÏÌÌüûï¿õzý AƒüýýËèPèõú)S¦ddd|þùçRnnҤɰaþýöÛY³f-Z´Hîs@mè8°0žžž-[¶B´oßÞÓÓÓxÑ‚ ÆŽ[µjUéùŽ:tغuë´iÓlkk›ïÖ¨QãÇìÚµ«ÍáÇ/^¼X­Zµo¾ùÆÃÃðŽF£ùòË/—,YÒ¥KNwùòå:uêŒ?~ëÖ­nnnÒ:ýúõûá‡:vìèäätáÂ…ÌÌ̶mÛ~ýõ×3gÎ,»C±nݺ£G¶k×Îp¡§bìØ±µjÕÚ¹sgDD„¬' € i <X¤¥¥Õ¨QÃü› Àª`¦ª`‚#ÌBp€YŽ0 Áf!8À,G˜…à³`–ÿ·¬<(ã,–IEND®B`‚statistics-release-1.6.3/docs/assets/nctinv_101.png000066400000000000000000000604131456127120000221550ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A`ÒIDATxÚíÝy|L÷þÇñïIB¬‰†Ø“ŠX[ j×,´Jm-Aít³´±¯EWb½~Õ¢ÕV¨Vµ½×Ö (¥bW{ˆÄ±!*!’Ìï£cd‘ÉdfÎ2¯çÃã>fΙ9ó9sšä}?ßó=G2 È“Ò@Ž0 Áf!8À,G˜…à³`‚#ÌBp€YŽ0 Á@îŽ?.ý«wïÞÙÖÞ¿߸vÑ¢EJkëÖ­ûßÿþ÷¿ÿý/))ÉŠ›û¬³³³··÷Àÿ— &&æôéÓOÞx•*U–.]j‘¿Ž€¡jù«U«Ö©S§fÍše I¹Ú·o_XXØÙ³gK¶lÙ²eË–åË—/_¾¼uëÖÙ^ëÖ­-Zœ}úÔ«WO^µzõê­[·*xwíÚ%?xõÕWK•*•óëׯ?tèСC‡^{í5s6غukãÙ–{÷îUpרÁ@þ¼¼¼&Ož,„HMM7n\^/‹ˆˆ8wîœÂÍÍmÇŽQQQë×¯ŽŽöôôB\¹rå“O>Éù® œ;w.::úСCÆ g Ž3fÌgcT«VíÌ™3r3ž'gì8_öúë¯oÙ²åƒ>øþûïçÏŸ/¯6mZ>·\¹rO?ý´qêI¥J•ž~úélƒêÔ©³|ùòèèhùœ¿¨¨(yUxxø–-[¾ûG6lØP^xàÀ¥߃ŒX___«lS’¤ *ȯ\¹’óòø~6ï¿ÿ¾R_« 80˰aÃjÔ¨!„X±bE^—æ1^ÏeøðáÆ³ëêׯžíFõêÕ:t¨ü¸V­Z­Zµ’Ÿ?^~°qãFùÁ¨Q£ä*Ó Aƒ Ü¿?33S˜„¶Áƒ7Þ¿ggg!Ä… ²]R'ßÏÍW‰%6oÞÜ«W¯&MšÈi¬{÷îòˆüˆ#äפ¤¤Ï ½yó¦ÇíaÆÇ+V´ÖfË•+—sûôs˜¥hÑ¢³fÍêܹ³|ižmÛ¶å|MLLŒü Ûo/¼ð‚Ü#¥±ýi”žž>~üøÿüç?Æ‹#/^ÜËËË8­G)E‹õôô”¿ù\‚œnß¾-—]¬X±’%Kš³Yãuùòås®]±bEhh¨²;ÀêªPsçΕû…9¯Æçææ&O B\¾|Ùt•ñiÑ¢EŸzê)ó?®téÒÆ))ÆþVNnnnƦڦM›bsfݯ"gÖüøãçÌ™“‘‘áëë»pá¿ÿþ;%%¥cÇŽÖý\Ë4oÞ\~°víÚ\¯ T«V-OOOOOÏ/¿üÒœ îܹ3==]~üÜsÏ)½ì„à žyæ™Aƒ‰<æCøûûË6mÚdºÜøÔÏÏÏÅ¥’$Ç”MO¬¼råJ³fÍš5k,.Ëç_ !222ž6áááQ¦L™2eÊäzëZ¸p¡üàóÏ?ûí·Ÿyæ—„„[®9Œ§~^¸p!ç½Å×­[g< Ï?ÿ¼94N<*Y²¤éYôà `>üðÃ\ÏiB´oß^~ðŸÿüÇxåícÇŽEDDÈ_z饂~œ1ÇÌž=ÛnæÎíêê*w@Û´i#¯Z¼x±ñªŠ?ÿüs¹rå<==«W¯^˜s ­µ'¸sçŽq4üÖ­[òƒ({£—_~Ùø >|úôér8===22²oß¾òª§Ÿ~: àÉ›ºråÊ!CV¯^-?}ã7òº ýáGãåå5iÒ¤1cÆä\5f̘o¾ùæüùó·oßnÙ²ehh¨³³óï¿ÿ.ßYÄÛÛ[¾¦OLžøàƒ>øÀÓÓ399Yž–.„(V¬ØêÕ«åyèÙôéÓG>gàîÝ»¦ç!<õÔS~ø¡Ò{À~è8(°#Fd›•,+^¼øªU«äkÓ¤¥¥­[·îÿûŸœ«U«¶jÕª¼Z•Oàååõí·ßÊgO^½zõûï¿7¦Æ &Ï ôððøî»ïä 4üñÇ´iÓV¯^––&„xë­·¦NjÁn›»wï=zô“ûŽ’$uèÐA~œššºfÍšÿýï•*U2^®<ÛyŸöW¿~ýÍ›7›Î¿~ýº15V¯^ýçŸnРA®ïMLL”O5Ý‹²eË®Y³&ç$!:FpP`E‹5Ž>góÜsÏ9rdòäÉ¡¡¡åË—÷ôô ™8qâÑ£G[¶liÙÇuéÒåèÑ£o¾ùfãÆK•*U½zõ—_~yÇŽü±éË:vìø÷ß4(00°D‰¾¾¾]ºtÙ¾}û_|aÁ¤i!Äܹs{õêåååU²dÉzõê™^E(¯×ׯ__áääôì³Ï¾ÿþû‡êÔ©“¼våÊ•ùÞÚÖZ´hqæÌ™¹sç>ÿüó^^^®®®þþþ¯¼òÊܹsO:e<Óà œË–-ûÜsÏMž<9&&¦iÓ¦Êî;“Œ' éÁƒëÖ­BtéÒEéZÀúŽ0 CÕ0 Áf!8À,G˜…à³`‚#ÌBp€YŽ0 Áf!8À,G˜…à³`‚#ÌBp€YŽ0 Áf!8õ‘ò}A¾¯°EQ |¨ªHƒAéôÆßß_éÀáœ>}ºfÍšJWëˆ9ã_Óÿ‰/8í¯Äá>sº¦ÿÃω‰QäËQÁÑúüýýó?&5ã ¨E´{\$I·Ñ´{P,' ñäƒ)IB‰Ã- É Â1Š‚¡j€è85:¢|S#”Cph©QWHêFp€YŽ £Ý¨+´UàÐ*R£®˜ŸšAp„ƒˆŠŠRºdÇAQ' ÇI:(Ð=‚#PƒÔAphã´©Q;Ž!5J!8´„Ô¨7´5…àbAjdJµ¢ŽÍ Ý(‹àÐR£Þ0H­AG€õ†Ô¨M.J!„ð÷÷WºØ\LLŒÒ%ZEjÔR£fÕ‚T¡{þþþe€¦1T P5ÚzS˜v#Sª•Fp¨©Qo¤Ö8‚#@¥HzCjÔ>‚#@HzCjÔ‚#ÌBp¨íF½ÑE»Q’A»Q8G€ºõÆZ©‘)Õ*@p¨©QotÑk„Á ¤F½!5êÁÖqàÀI’~üñGùéG}äééY¿~}¥ë ¤F½!5êÁÖwâĉɓ'×®]{„ ÖÝrëÖ­§M›¦ôþ=rûöí·Þz«jÕª¥J•jݺutt´Ò`CGX_ll¬bêÔ©aaaVÜì¡C‡víÚ¥ôÎ=’’’Ò¨Q£o¾ù¦U«V<{öl»ví:¤t]€&ÑnÔ«·™£GXŸüÛ¿X±bVÙZFFƦM›¦Núâ‹/feeè½éééééé6ÚÍ9sæÄÆÆ.^¼xÅŠóçÏÿóÏ?%I9r¤>Ð1R£Þ0H­_GXhÇŽmÛ¶-[¶l:uFmÌgýû÷ïܹ³¢eË–>>>…ÿ 7n¼øâ‹Ó¦MKJJ*è{ýýýCCCM—L›6­qãÆVù~øáooï>}úÈO}}}_ýõíÛ·_¾|Ù*Û©QoHºFp„%~ùå—#GŽ„………††._¾¼_¿~òª‘#GN™2E1kÖ¬ï¾û®ðŸU¾|yƒÁ`0N:Uø­;wnÿþý…ßNJJÊéÓ§ƒƒƒ%I2. ÉÊÊâLGÀ|¤F½!5ê‹Ò@{îß¿îååµoß¾J•* !&L˜Ð¨Q#ym½zõΞ=+„hÚ´i‹-”.ÖV®^½j0Ê—/oºÐËËKaAgpL¤F½!5:‚# ìàÁƒçÏŸˆˆS£ÂÛÛ{øðáãÆË÷½ëׯÏkm§N”Ú©‚–šš*„pss3]èîî.„¸qã†R{h©Qolš™£Gu3U@?¥§OŸB4lØÐta@@€9›¼{÷®|dhýß ™™™¦Oóš^SÐÂ<==…wîÜ1]˜’’"„([¶¬Õ÷ÐR£ÞÐktGuSå/V!„ôx¨ur2ë|Ywww;ÿµ¸ÿ¾éÓ´´4«V¾|y''§l£Òׯ_B±rEjÔR£#!8¢ÀjÔ¨!„8pà@PPqááÇÍy¯ý‡ªMŸæ5å¹ …¹¸¸Ô©SçÏ?ÿ4]¸cÇI’êÖ­kõ½•"5:‚# ,00Ð××wΜ9={öôööB$%%ÍŸ?ßœ÷Ú¨úÊ•+ëÖ­{ùå—…qqqy\ xðàØ±cy½K’¤ñãÇ?Þ¸dúôéÖ*ÉÝÝ}ñâÅVßS@Hºâx©FtQX+VtuuUêÓïÝ»·mÛ¶ÀÀ@¥¿y"5ê ©Ñ±¡m»wï®]»vÏž=•.@îHºbÿÔÈ Ž*ÃP5´-888888¯µo¿ýv¶›»°'R£®ÐkÁú6fÌ¥K©QWHB0T °R£®ñ/‚cþ6l8zôh¥ m 5ê‡DjÄcªÎ‡Á`;vì?ÿü£t!  ¤FýP<223F}è8æãÛo¿Ý»w¯ÒU€6õCñÔU"8>É™3gæÎ[«V-¥  5ê©y 8æ)##c̘1ãÆSºP;R£~‘7ÎqÌÓ‚ Nž<¹téR.OFjÔ I¡šÔÈ ŽªDpÌÝáÇ—,YÒ»wïæÍ›?~¼ o÷÷÷϶$**Jé}‚òâãã•.AE”.¹°à¸øúúÆÅÅñŸ·íØç‡ÅÇ×'>.^!Ôq$}Ôô;³]»v"&—?îˆà˜‹´´´1cÆT©ReäÈ‘–m!&&Fé€ùøø(]‚ºð…¨SŽ ½Fû°ù‹$„AøuýHªçWÄé˜Óa&Û6Ds1cÆŒ„„„•+W/^\éZ@½H:ÁI0“c²Û»wïÊ•+ß|óÍgŸ}VéZ@½HzÀõ½Q@ÇìΜ9#„X¸p¡ÿ¿^}õU!Äš5küýý_~ùe¥ T©H’ôã?ÊO?úè#OOÏúõë+]› 5êÕy™£V UgW­Zµ:˜.¹}ûöÎ;+V¬P¡B¥ Ô€'NLž<¹eË–ï¼óŽu·üàÁƒV­ZI’´{÷n¥÷R!nß¾=vìØ 6ܼy300pæÌ™M›6Uº(ÀæHz@£!8fײeË–-[š.9~üøÎ;5j¡tuÚ+„˜:ujhh¨u·}ZѰaCÓ…fN%¾{÷®|dîû›ã—EJJJXXXÛ¶m‡nYµ™™™¦O³²²¬R˜§§§âÎ;ÙªB”-[Ö²Rµ!5j³§aG˜<¯ÙôÜ>!„““Yç˺»»èïТE‹âââ:wî|Øœ÷tDXž¬=gÎÓ…ÉÉÉãÆ 2'8&&&š>ÍkÊsA sqq©S§ÎŸþiºpÇŽ’$Õ­[·ß0 8R£†Ñh„-Q`¾¾¾sæÌéÙ³§···"))iþüùæ¼· #Â'Nœ8q¢éŸ *˜ç˜+W®¬[·N¾Wd\\\^· … !í۷;–×ë%I?~üøñãK¦OŸn­bÜÝÝ/^l£=ì‰Ô¨UœÑû¢ãˆÂªX±¢«««RŸ~ïÞ½mÛ¶*ý5FjÔ$IwFNpÔ:ŽÐ¶Ý»w×®]»gÏžJh©Q“8Ñ^¸úw6Gh[pppppp^kß~ûíl7w`$_•Ô¨1ŒMCQGèÙ˜1c”.P)Ú£ïÈÈ8µFÀᵇ±i¨Á ©Qc$á#|HP fU€£$‰Ô¨%ÿÎ›Ž‹/üÆ« ãȨ156Í ŽÚApý#5j‰¾'Áh ×âɉà:GjÔ "#TàºÅ•5Ñ##ãÔšBp}¢Ñ¨ Ž¡AGÐ!R£68Ô èÁt…áim Ñ(cœZk¸Ž#¬ãÀ’$ýøãòÓ>úÈÓÓ³~ýúJ×8¹ÑHjTµ¯ÎHj„a}'Nœ˜È‘QÕ8—úBÇÚ±cGÛ¶mË–-[§NÑ£GËMÑ¿ÿÎ; !Z¶léããSøºqãÆ‹/¾8mÚ´¤¤¤‚¾×ßß?44ÔtÉ´iÓäœWx[·nmݺµéÖ†*„ؽ{·U¶˜ƒÔ¨^t¡Gta‰_~ù¥[·nåÊ• srrZ¾|ùš5käU#GެZµêôéÓgÍše•ˆV¾|yùïbLLL­Zµ ¹µsçÎíß¿¿ðUedd¼ûî»52]xþüy!„««ká·ä‹ÙÓêE—ÑŒSkÁvÿþýððp//¯}ûöUªTI1aÂc„ªW¯ÞÙ³g…M›6mÑ¢…ÒÅÚŠ‹‹Ë§Ÿ~jºäæÍ›Ÿ~ú©³³ó믿®tuÐ?*Ed„ÞUMî((%¯?K<þ|DD„œ…ÞÞÞÇ7n\¾ÛÌÈÈX¿~}^k;uê¤Ôβ°?þøcÈ!±±±_|ñ…ŸŸŸR{G@£Q¥ˆŒú”ê¼UMNŸ>-„hذ¡é€€sÞ{÷î]ù H»íoff¦éÓ¼¦×X\Ø… †ºvíZ??¿ßÿ=$$Äê»ÑhT#"£§Ö,‚# ÌÅÅEäè†:9™5ÑÊÝÝÝÎöîß¿oú4--ÍŠ…­\¹òÍ7ß,UªÔ¢E‹  3€-ÐhTã¯@Ž  çP`5jÔB8p ((ȸððáÃæ¼×þCÕ‰‰‰¦O/_¾l­ÂÖ®]ûÆotëÖíË/¿tss³zå€Fu¡ÅFpDúúúΙ3§gÏžÞÞÞBˆ¤¤¤ùóç›ó^ûU_¹reݺu/¿ü²"...¯€[РØ1cªT©éììlõ²#R£Š­‚qj-#8¢ÀŠ)2kÖ¬nݺtïÞ½H‘"?þø£™Y´úPõÊ•+ßyçþýûÏ™3'׸¸¸ôèÑ£cÇŽYYYëÖ­ËëZ9-ìäÉ“§Nª]»ö Aƒ²­zõÕW;vìhÅ}„ÃbxZEˆŒŽ„™1O@p„%ºté²uëÖéÓ§GFF&''»»»/_¾\‘»í¥§§ßºu+¯3…Mš4éСâE‹222ìææöá‡þsåÛ*ž}àÀK—.ݸqã‹/¾h‹O„Ú0 Æú8…P7:Ž°ÐŽ;Ú¶m[¶lÙ:uêŒ=ZŽhBˆþýûwîÜYѲeKk}ÜÕ«WßxãAƒU®\Ùüwùûû‡††š.™6mšœó oëÖ­­[·6ÝÚСC…»wï¶Ö^Cµ›¶>ú‹:£v# „Ž#,ñË/¿tëÖ­\¹raaaNNNË—/_³f¼jäÈ‘U«V>}ú¬Y³¬Ñ CŸ>}<<<æÍ›W·nÝÂlêܹsû÷ï/|Iï¾ûn£FLž?^áêêj•½†:Ñe´2ZŒPãÔBpDÝ¿?<<ÜËËkß¾}•*UBL˜0Á¡êÕ«wöìY!DÓ¦M[´ha•OŒˆˆØ¾}{ttt‰%”Þû‡\\\>ýôSÓ%7oÞüôÓO_ýu¥«ƒM­‰¼¨o´õ‹àˆ;xðàùóç#""äÔ(„ðöö>|ø¸qãò}oFFÆúõëóZÛ©S§œ ÷îÝ;iÒ¤ˆˆˆ Øn§,(ÌÔü1dÈØØØ/¾øÂÏÏÏvuB)\gÇ:È‹€ÆÕM*ü& !ßì§OŸB4lØÐta@@€9›¼{÷®|dî˜ãsJJJXXXÛ¶m‡nÙNdffš>ÍÊʲJaF.\:tèÚµkýüü~ÿý÷Ëê„jÑh´ò¢CÑT»‘qê‚"8ª›*ÿc–ç5ËMœœÌšhåîî^ ?À‹-Š‹‹ëܹóÌ™3å%·oßÎÌÌœ1cFÕªU͹ÜÏýû÷MŸ¦¥¥Y¥0ÙÊ•+ß|óÍR¥J-Z´hÀ€šñ õ#2yÐþΡÀjÔ¨!„8pà@PPqááÇÍyoAG„åÉÚsæÌ1]˜œœí۷;–×ë%I?~üøñãK¦OŸ^ø2^yår†>p‚!/"/´·DaU¬XQÁ{¥Ü»woÛ¶mJ Ðãm•.Dõ$“Üplt¡m»wï®]»vÏž=•.ZÂØ´Yh.Â|Zk72Nm1‚#´-888888¯µo¿ý6Ê)"c¾||}>âKÁz6fÌ¥K€Zóño1>.ÞÇǧP›‚£¡ÝèH8Ç€ÎÏe$5fÇÉ‹(<­¥FGºE—1wœ¼F»±ŽtˆÈ˜ ò"¬Žv£ã!8Ð"ãc$“Ç|%px´ à@'ˆŒÐ\„ÐntHGÚ&çEAdäEàIh7ZÁ€VÑb‚Áh(„v££"8ª…¿¿¿Ò%šAd¤¹%i05Òn´‚£*ÄÄÄ(]‚ÎÅÇsMcpèÈHs€ÒŽ´Áq##ÍE¨ íFÇFp vŽi.B4˜a]GêåX‘‘°ØíFë"8PǺÂ#ÑÐ ¶IVGp "ŽÒb¤¹ÍÑ`j„-¨‚þ##a°/Ú¶@p 0GFF¢¡´ñ/‚#eøúúÊti.BO´™i7Úˆ“Òp8’$I’g0ô“%““ìŽÔh;Gö#GF}æEÂ"tI›íFØCÕlNo—×a$B›©‘v£Ms—––öã?®^½:!!¡téÒ5kÖ0`@‹-”® ÐýL|!,ÂÑ‘‚c.222úõëwøðaww÷f͚ݻwoÏž=;wî>|ø»ï¾«tu€6è!2M!5ÚÁ1«V­:|øpÆ ¿þúëâÅ‹ !Μ9Ó»wïÏ?ÿ<$$¤víÚJ¨—æG¥ ‹€Ðj»vÀä˜\DEE !&Nœ(§F!„ŸŸß[o½•™™¹k×.¥«TÊtâ‹ÆR#¢SÚL´탎c.âããK–,Y·n]Ó…~~~Bˆ‹/*] :Z•æÒÜ@N¤F<Á1‹-rqÉþÍ?~\Q¥J¥«ÔB“£ÒŒDºCj´'‚c.êÔ©“mIttôâÅ‹]]];wîlÎüýý³-‘‡¿¡”„„¥KÐù¦/qqqòÓøøx 6b·ƒâãëc|gRª%Uë?,*dÇßø¸8aÑO´R|}|ãâãâmüóÜ®];¥wT-ŽùÈÌÌ\±bÅÌ™3333gÏžíééiλbbb”.Ùùøø~#Îê-F”<:‹>‚ÿ òÇ‹ Ùã H’0´uìöm_tÎ?ë9;D‚àø${öì™6mÚÙ³g½½½?ùä“æÍ›+]  mœÅÈ04`1mžÚû#8æ.==="""22²X±bÆ 8p q†5à84p#a(øà///¥+ìMÕ-FÂ"`E¤FÁ1‘‘‘›6mêÙ³ç| t-€]©·ÅHXð/R£‚ŽÙ †åË——.]zìØ±Jר[Œ„EÀÖ4Øn$5*‹à˜]RRÒ… Š/Þ«W¯œk»téÒ»wo¥k¬Fu-FÂ"`7¤FÁ1;ùrYiiiÇŽ˹–‰ÕÐuåEÂ"`¤FX„à˜]`` Wa„Ž©eHZ2¹¤¢Òµ‡ÔK9)]{þe0K’É?ƒˆ‹R#`w¤FG@çn12 ¨ ©…CpôIɳ ‹€:i-5JBBU…àèŠby‘°¨œS#‘Q…Ž€N(0$MX´‚Ô+!8Úfï#aÐR#¬‡àh’]ó"aÐ.R#¬Šàh‰ýò"aÐM¥F¦ÂhÁÐ{œÂHXôDk©‘Ȩ G@ÕlÞb$,ºDj„m5²m^$,ú¦ÔÈð´æ±a^$,BS©‘Ȩ9G@lr #ap(òÿó$5–Ž€’¬ßb$,ŽISFÁð´fX9/§©ÔHdÔ4‚#`?ÖÌ‹„E2¤Fú@plÎjy‘° í¤F"£>[±N^$,È•F¦ÂÐhÔ‚#`}…"MXðdZh4u‰àXM¡ZŒ„EfÒHj$2êÁ(,Ëó"a@haxšF£¾ Y˜ ‹,£úF#‘Ñ‚±$/’R#‘ѳ*/ò»€Å$ÉG¨zxšF£CqRº@Õ¤þ•ßLþþý–‘$a0ÄÇÅ)]GÕ In4’G w¸¤#ѬNÝó`è2:,‚#ðs‡¤ ‹lGÅg4Á‚¼ÈïL¶ âF#‘‚àgV^¤¹À>ÔÚh$2ˆàGT°¼È¯J¶¦ÖF#‘Ùá@òÏ‹4ØŸ*DFäŠàýË'/(E•F"#ž€ë8B·L/Á—=5æ¼Ú"¿$Ø$=l4ª)5r]F䋎#t(ÏK0Ò\ *›–þýåH^D¾ŽÐ<‡¤%á#|„ ,PšÊƦ•FA1T ÍËó®€&ƒÑñqñüb $•M3* ËÐq„VåÞ_d0€ ©flšQiÁ“O^ä7!UQÍØ4£Ò° ‚#4#—)/äEª¥ŽÈH‹ÖEp„ÚåÒb$/P35EFò"¬‹à•Êž%ò"ÕSAd¤Å›"8B]òÌ‹ü fª‰ŒäEØÁjñØ)ŒäEZ¡td¤Å{"8BaµÉ‹4DÑÈH^„"ŽPFö¼(þ½m4¨Ÿ "#yŠ 8ÂÞ I“hŽr‘‘#Ô@«·}úK/½4qâÄ©S§nذ!..îúõë~~~Ÿ~úiýúõ•.Ð=œõbü}Çï=šcß¹/Ìwæhµã(kÖ¬Ù?üP¶lÙ½{÷^¿~=00ð×_%5ÚYö#ýEZdÇQiú‹Ð.mÇ?ÿü³k×®7oÞ¬[·®——×Áƒß}÷Ý«W¯*]—£0Í‹"#hˆ½Nd”}y¦ÕàxçÎ & 4èúõë#FŒøé§ŸÖ­[÷ÒK/mß¾½C‡?ÿü³Òê-Fz`—s†Eò"4M«ÁQN‡~~~?ýôÓ;ï¼ãìììîî>oÞ¼Y³fI’4a„*]£Ñb yvi1Ò\„^i58^¿~}È!¿þúk:uL—wìØqíڵ͚5Û¹s§Ò5ê -Fšgã#ƒÑpZU½bÅŠ€€€\WU¨Pá›o¾‰ŒŒTºFxl®4¿hŽôpæ²ú‹ÌŒ†CÑjpÌ+5Ê$IêÓ§Ò5j›1/hy°­GØ-FÚf³k1â /ÂQñ‘€†Ù¬ÅHs0"8B"#í²M^¤¹äŠàè舌´ÊÚCÒ„E _GÇEd IÖn12 ˜à興Œ´Çªy‘æ"` Çß~ûmÙ²eçÎ3äñK$::ZéU‡È@c¬— ‹@ái58þþûïï½÷žüØÙÙYér4€È@K¬” ‹€ui58~õÕWBˆ~ýú½óÎ;îîîJ—£jDFša¼HXlG«Á166¶råÊcÇŽurÒêí¶íC¾Á´DF*Vè¼HXìC“©ëÁƒwîÜ©R¥ ©ñ $Iz˜ ¤Fê#Iþ ÿh&›0<Ú¿ïÒdÇÑÉÉÉÝÝýÌ™3YYYdÇœ› ^…k.ÒY”¥ÉÔåìì~—ª¤ÕàøÊ+¯(]‚ZÐh  o.š&EAX´@«Á1""BéTF#…0/ÒV4M«Á4(¦€ƒÑ„E@74W¬X!„xî¹çüüüŒOŸ¬W¯^JWm+’$ !Ñh`Gf7ƒôJ3ÁqúôéBˆiÓ¦ÉÁQ~údz އ§IìÀìæ"mEÀh&86LQ¿~}ùé¨Q£”®Hn6BXÍÇ¡C‡š>f:ŽŽŒ“XS~#Ñ´ä…à¨vœÔÀ Ì‹>üÆ'†ªUÔ P†~øO^óØ(õ£1è¸ø¸Â}$=£ã¨^¤F–È£¹È4€Â#8ª©@˜ù… ðô ÃÖ­[žy晀€¥Ë)R#€üå%! Â"›ÑppܺuëüùóÛ´i#_|Ò¤I«W¯–W………}ðÁ’$ê”Cj»añßžâÃåüî`SZ³oß¾wÞyçÔ©SYYYBˆ'N¬^½ÚÝݽgÏž•+W^¹råÖ­[•®ÑR\v€©—Z” B2.¬Àþ´Úq\²d‰Á`˜8qbXX˜bÓ¦MBˆO?ý444ôܹsíÚµûþûïCCC•.³ÀRppwMNUü÷R ­ÇÓ§OW¨P¡OŸ>òÓ={ö-Z´U«VBˆêÕ«?ýôÓqq…½¢ÄO?ý´jÕªØØØ%J<ÿüó£Göðð°éNqj#àÐL¢ôØïþÿ$µÐêPõ­[·<==åÇ'Nœ¨W¯^Ñ¢Eå%%J”¸~ýza¶?wîÜI“&={¶qãÆ¥J•úù矇 ’––f»="5ŽÈdúá´AΉ @P#­ÇŠ+&$$dff !&ÄúfLŠ&a‘¶"ÍÑjp2dHÉ’%¿øâ‹½{÷Ö¯__¾vc·nÝ"""„ °xãûöísrr 2.qvvnݺõ7<¨ô®ÐÉdš¤@´+Uªôã?U¨P¡eË–óæÍ“¯Úxýúu77·Ï>û¬iÓ¦–mÙ`0ÄÆÆ–-[¶lÙ²¦ËkÖ¬)„¸xñ¢õw†v# ‡E’"Ñê¬j!„ŸŸß¢E‹²-ŒŒŒôöövr²<§¦¦fff–)S&Ûrwww!ÄÍ›7ÍÙˆ¿¿¶%QQQ¹¾ÒÇ×'>.^ÄÛõ«s@ J—€ìtsP|}|=1ˆ¸øG—tÐâ϶nŽ‹žpP×®];¥KP GÙ­[·Ž;vùòåŠ+¶hÑÂÕÕµ0©Q!O.Y²d¶å¥J•Bܾ}ÛœÄÄĘÿ‰>>>vþÒß³ iô ˜ÞZ伪¢&÷éñ=ÐæqÑ7вrþYÏÙ!rŽ7nÜøâ‹/V¯^-G½¾}û¶hÑ¢K—.uëÖýôÓO-¾æb™2e$IJMMͶüŸþÿö­†Aj@ ²'Eéѽ¡À¡hõǼóÎ;‘‘‘nnn]ºt1.÷òòÚ¶m[=,¾æ¢‹‹‹»»{ÎÎbJJм}¥w€=˜ÜæO2H =:a‘ÔÀai58.Z´èðáÃÏ?ÿ|TTÔgŸ}f\¾jÕªN:;wnÙ²eo¼|ùò7nÜ“¢Q||¼¼Êjû@»Pé±{B?&FpxZ Ž{÷îuvvþä“OJ”(aºÜÙÙyÊ”)%J”ظq£Å ÍÌÌüóÏ?K ÃöíÛ=<<ä‹þX”}ð €åž ‹7­Ç“'Oúøøï:hªT©R¾¾¾çÏŸ·xã]»vurrú¿ÿû?ù¼F!ÄâÅ‹¯_¿þÚk¯)RDé]`¡<“¢$»r Zãîî~÷îݼÖ&''—.]ÚâW¬XqôèÑ3fÌxå•WZµjuþüùèèèºuë<Ø:ÕKB’¿O€í™¶ö  $“N??ƒP@Zí8Ö©SçòåËGŽɹêäÉ“—.]ª]»va¶?`À€Y³fùøølذáæÍ›½{÷^¶lY΋;P›ìmEa0¶…$=vAn@iµãؽ{÷M›69rÞ¼yuëÖ5.?~üxxx¸¢sçÎ…üˆŽ;vìØÑFõÓn¬%÷«*>ê,JdD°­Ç-Z 4hÉ’%¯¾úª¯¯¯â÷ßÿ믿Ξ=›••Õ¥K—_|Qéó S3¡(„ìЗJW †¡À&´…£FjذáŒ3âââ„—.]B<õÔSááá¦Wv yÞ¬E’„qalLÃÁQœœœ—žžîëëkÍë,ÚÓbóäs[?‰° Ðvp”yxx4lØPé*VîÐV3!¦ÕàØ´iÓ|_­t™ž$Ÿ¶¢ ,€ºh58f» Â`0deeÉ+T¨ëµÁÆ85`}Dî³Ä‹ VZ Ž'NœÈ¶$33311qóæÍ_|ñÅýû÷§Nªt„È»­/|L_Çi‹ vZ½xNÎÎÎUªT0`À‚ nß¾ýþûï««·' ®ÀÇ‘ýÜ&ÿÉ ¹.7¨ž~‚£QÓ¦MkÔ¨qñâÅ‹/*] à(r¹_K®IQ< ‹>¾¾ÜÇ´E‡ÁQáåå%„(W®œÒ…}úlܸqëÖ­ƒáË/¿lݺµ‹‹ËСCO:•ššÚ¾}{¥k„#²þ4—ì Áx4@Zí8zzz®X±"<<¼~ýúBˆJ•*Mš4)==}×®]7nÜ 0`€Ò5ÂØ°¹øðo1 ­v322<==ß|óMã’°°°Ž;=z´|ùò¾¾¾Jý³ysñáÇÐb¨…V;Ž­[·ž9sfll¬éÂR¥J5k֌ԛ²ysñáÇÐb¨ŽVƒã7¾þúë:ôèÑã§Ÿ~2N¯lÄVÓ¢sù$f½TJ«ÁqõêÕýúõ+_¾ü¡C‡&MšÔ¢E‹ñãÇ›^‘Gy\ÄQûlx\>Œ#@í´ëׯ?~üø?þø#22²{÷îE‹ýå—_zõêõ /,^¼øÚµkJ ³Ó`ô£Ï£ÅЭLJÕ;9=÷ÜsÓ§Oÿ믿¾üòËŽ;&%%Íž=;((ÈtÞ `û5}$-F€–h;8¹¸¸Ïš5kÙ²eþþþ™™™üñ‡ÒEAË‹DF€Öhõr<ÙÄÄÄDEEEEEÅÅʼn;‘J%·Q1[Ý3:ŸOåÚ: ÓvpèÁÖ¤È(h4`!‚#¬Cí‘QÐh °Ž(,MDFA£€ÂrRºh˜$$yŒÊS£0âã┮ͣ㠩zÒô£*žÀjŽ(0 ŒM æÁ`}G€6"£ Ñ€Ma.mŒM R#¶BpDþ4Óh¤Flˆàh:Š.Zj4 NjÀ†ŽÈF`ŠàˆÜi¦Ñ(HØ ÁÙi©Ñ(HØÁÑR£Q°+‚#ÑRjd* vGp„ O3¡©F£ 5 '¥ €ÂHÀLt—Ɔ§©…”ƂԀòªvD¤F`‚£­H’dPeÖ!5Ë ©XŒàè@H 0˜ã´7ZP‚£þi¯Ñ(H¨CÕ:GjÖBpÔ3R#°"‚£n‘€uqŽcîÒÒÒ~üñÇÕ«W'$$”.]ºfÍš hÑ¢…Òu™K“©¨Á1ýúõ;|ø°»»{³fÍîÝ»·gÏž;w>üÝwßUººüi55Òn@Ý޹XµjÕáÇ6løõ×_/^\qæÌ™Þ½{þùç!!!µk×Vº@="5 zœã˜‹¨¨(!ÄĉåÔ(„ðóó{ë­·233wíÚ¥tuùÐd»‘Ô€s_²dɺuëš.ôóóB\¼xQéêž„Ôl‡¡ê\,Z´ÈÅ%û7süøq!D•*U”®.O¤F`SÇ\Ô©S'Û’èèèÅ‹»ººvîÜÙœ-øûûÿW&ÛŽ¯o\|\¼ˆ·ówUH>BÄÇۣ愄¥÷ÙqPÔ‰ã¢Bŵk×NéÔ‚à˜ÌÌÌ+VÌœ9333söìÙžžžæ¼+&&F’¤˜˜ûù°×è£äeQÝ’0ìVµæ¾ ýã ¨ÇE…8(ÊÊùÝ´7äP:8fdd,Y²ÄøÔÙÙyÈ!¦/سgÏ´iÓΞ=ëííýÉ'Ÿ4oÞ\é’s¡ÉjÁ 5ÚãÐÁñÁƒóæÍ3>uuu5ÇôôôˆˆˆÈÈÈbÅŠ 6làÀÆÖ°R#äÐÁ±xñ⹎&gee9rÓ¦MmÚ´ùàƒ¼¼¼”®4Ošl7’Ð&‡Žy‰ŒŒÜ´iSÏž=?øà¥kyM¦F Y\Ç1;ƒÁ°|ùòÒ¥K;VéZžD«©‘v#šEÇ1»¤¤¤ ./^¼W¯^9×véÒ¥wïÞJרY¤F´Œà˜|¹¬´´´cÇŽå\«’‰Õšl7’Ð8‚cvv»þ¢e4™€öqŽ#ì‚v#ÚGpÔM¶IèÁQK4™€^ac´Ð ‚£fh²ÝHj@GŽÚ ÉÔô…à›¡Ý€¾5@“íFR#ºCp€YŽjG»¨Áf!8ªíF GX©ý"8ª—&Û@¿ްÚèÁQ¥h7µ!8ÂJh7 wG5¢ÝTˆàk Ý€ 8ªŽöÚ¤FÁf!8¢ph7à0Žê¢½qjà0Ž(Ú8‚£ŠÐnjFp„¥h7à`Ž0 ÁQ-46NM»ÇCp€YŽ(8Ú8$‚£*hlœ8$‚# ˆv#ŽŠà³•§¥qjÚ80‚#ÌBp€YŽ cœhÁf!8Â<´pxG%iiœ8<‚#Ì@»mD’$I è Áf!8*F3'82N „G˜‰àˆ'¢ÝþEp€YŽÊÐÌ Žÿ"8"oŒSG˜…àˆ<Ðn#8À,G03hÁ¹aœä@p€YŽ0 Á90N rCp´7fÆ"8À,G<Žqj‚#ÌBp€YŽ0Á85ÈÁÑ®˜R ´‹à³ñ/Æ©À`‚#ÌBp„‚qj?‚£ý0¥hÁf!8‚qj`‚#ÌBp€YŽ0 ÁÑáq‚#0ÁÑN¸Ð:‚#ÌBptlŒS³`‚#ÌBp€YŽŒ@A`‚#ÌBp´5^ý›qjP@G˜…à³`‚£CâGPpÇü%&&6lØpôèÑJ $‚c> ÃØ±cÿùç¥ PÁ1ß~ûíÞ½{•®@yÇ'9sæÌܹskÕª¥t!VÅ ŽÀ"Ç|xÉ’%½{÷nÞ¼ùñãÇ-Ø‚¿¿ÿÃG1Âßß?**Jé}zÈGˆøøx¥«°·„„¥K@vu⸨EqíÚµSºµ 8æ"--m̘1UªT9r¤Å‰‰‰‘HB2>Vž$ ƒÁGé*áãã˜û­ju⸨EY9ÿŽ?j9‡ŽK–,1>uvv2dˆbÆŒ +W®,^¼¸Ò5¨…CÇÌ›7ÏøÔÕÕuÈ!{÷î]¹rå;ï¼óì³Ï*] €Š8tp,^¼xÎæó™3g„ .\¸p¡éò5kÖ¬Y³ÆÏÏoݺuJ ‡޹ªV­Z‡L—ܾ}{çÎ+V ¨P¡‚Ò(ƒà˜]Ë–-[¶liºäøñã;wîlÔ¨QDD„ÒÕ—þ…ÀÀ`‚#ÌÂPuþêÖ­«¢ 1(„Ž£ÃàGP8G˜…àh[’ ‚>Ђ#ÌBp€YŽŽ™1 ÐŽ0 Áf!8À,G˜…à蘬à³`‚#ÌBp€YŽzÇÌ`%G˜…à³`‚£ IB2Î/:ApÔ5fÆë!8À,G˜…à³`‚#ÌBpÔ/¦T«"8À,G˜…à³`‚£N13XÁf!8À,G˜…à³`‚£1¥ØÁ¡]»vJ—€ì8(êÄqQ! Ôƒà³`‚#ÌBp€Y޶" É ˜Ú ôC2pÝkó÷÷BœŽ9]Ó¿¦ý?=æôiÿš |.%&&Fé@p€Yª€YŽ0 Áf!8À,G˜…à³`‚#ÌBp€YŽ0 Áf!8À,G˜…à³`‚£ÕüôÓO]»v hѢń ’““•®ÈôËOKKûöÛo_~ùå ´jÕjàÀ»víRz'ô¦0?‰‰‰ 6=z´Ò;¡7”£G:488¸qãÆ½{÷Þ³gÒ;¡7=(éééK–,yõÕWBBBFŒqæÌ¥wÂáÄÅÅùûûÿý÷ßJ¢‚£uÌ;wÒ¤IgÏžmܸq©R¥~þùç!C†¤¥¥)]—C(è—Ÿ‘‘ѯ_¿O?ýôÚµkÍš5«Q£Æž={ ðùçŸ+½+úQ˜ŸƒÁ0vìØþùGéÐ ÊÖ­[önÝêååpèС>}úlݺUé]Ñ‚”ÌÌ̾}ûΚ5+99¹U«V•*UÚ¸qc§NöíÛ§ô®8–ÈÈH¥KPŽ…vêÔ©ZµjµjÕêêÕ«ò’>ú¨fÍšÓ§OWº4ý³àË_±bEÍš5ÃÂÂRSSå%§OŸ~î¹çj×®}âÄ ¥wH ù±téÒš5kÖ¬YsÔ¨QJïŠ~XpPnݺըQ£gŸ}vÿþýò’¿ÿþ»^½zÍ›7ÏÌÌTz‡ôÀâ__#FŒxðà¼ä¯¿þª]»ö /¼ ôÞ8„Û·oïÛ·oÊ”)òï¨Ã‡+]‘è8ZÁªU«²²²Þ{ï=///yɸqãÜÝÝûí·¬¬,¥«Ó9 ¾ü¨¨(!Äĉ‹/./ñóó{ë­·233°¶ŠÂüDœ9sfîܹµjÕRz'ôÆ‚ƒòóÏ?§¤¤¼õÖ[ 6”—<óÌ3/½ôÒõë×=ªôéåàÁƒBˆ¾}ûº¸¸ÈKš5kV»vísçÎݼySéÒ¿Ž;öêÕë‡~Pº%­`ß¾}NNNAAAÆ%ÎÎέ[·¾qã†üCÛ±àË/Y²dݺuMúùù !.^¼¨ôéÅ?cÆŒñðð7nœÒ;¡7”;vH’Ô¹sgÓ…3gÎŒ‰‰yöÙg•Þ!=°à x{{ !L3¢Á`¸uë–“““1JÂv>þøã… .\¸°yóæJ×¢þ;+,ƒÁ[¶lÙ²eËš.¯Y³¦ââÅ‹5RºFݲìË_´hQÎß°ÇBT©REé}Ò¼ÂüD,X°àäÉ“K—.ussSz?tŲƒrìØ1 *ìß¿ÿСC·nݪU«V›6mŒ­z†eåå—_^¶lÙÇ\¢D‰ $''/\¸0!!¡{÷îüÔØAË–-åÛ¶mSºÅ +55533³L™2Ù–»»»‹Çÿ!¬Î²/¿N:Ù–DGG/^¼ØÕÕ5[s°ø'âðáÃK–,éÝ»wóæÍåk±à ¤§§ß¹s§FS§N]¹r¥qy•*UæÍ›W¯^=¥÷Ió,ûIñ÷÷ŒŒìׯ_¿~ýŒ {÷î=aÂ¥wŽ‚¡êÂ’§¿•,Y2ÛòR¥J !nß¾­tzVø/?33sÙ²eƒ JMMýì³Ï<==•Þ'ͳ젤¥¥3¦J•*#GŽTztÈ‚ƒrçÎ!Dllì† f̘±gÏžíÛ·6ìÒ¥K#FŒà’…gÙOJJJÊgŸ}v÷îݺuëöèÑ£mÛ¶Å‹ÿïÿËTwØ ÇÂ*S¦Œ$I©©©Ù–Ë‘ÿ¿#l¤_þž={¦M›vöìYooïO>ùÄ‘ÏY±"ËÊŒ3V®\É0¨-XpPŠ+&?øì³ÏBBBäÇC‡MLLüùçŸ×¯_ÿúë¯+½[ÚfÙOʘ1c80nܸþýûËK{ôèñþûï¯Y³Æ××WéÝ‚þÑq,,ww÷œÿï0%%Eaœ+[°øËOOOÿøãûö훘˜8lذß~ûÔh-”½{÷®\¹òÍ7ßdÊ…XpPJ–,Y¬X±âÅ‹›.oÓ¦âÔ©SJï“æYpP®]»¶mÛ¶5jS£¢bÅŠï¼ó΃~ýõW¥÷ àhåË—¿qã†üÓn/¯Rº:³àËÏÊÊ9rä²eËBCC7mÚ4tèPº\ÖUЃ"ß÷báÂ…þÿzõÕW…kÖ¬ñ÷÷ùå—•Þ!=°à'ÅËË«H‘"’$™.”X222”Þ!=(èA¹qㆢzõêÙ–ËÆ¤¤$¥wàh¡¡¡™™™þù§q‰Á`ؾ}»‡‡G@@€ÒÕéœ_~ddä¦M›zöìùùçŸÓ¶…‚”jÕªuxœ}Út¡|™.´i=(Õ«Wwvv>sæŒÁ`0]#„¨Q£†Ò;Ç ôÈõàÒ¥KµjÕj×®Ý;wä%_~ùeÍš5gΜ©tiúgΗÿÏ?ÿÄÅÅ]¼xÑ`0deeµiÓ¦aÆiiiJ×®[=(9;vŒ;ÇX—åĉ5kÖìÚµë7ä%GŽ hܸñõëוÞ!=°à ¼ùæ›5kÖœ7ožñæ=§OŸnÚ´i½zõbcc•Þ!2qâD‡½s “c¬ bÅŠ£Gž1cÆ+¯¼ÒªU«óçÏGGG×­[wðàÁJ—¦æ|ùÛ·oÿý÷ýüüÖ­[—””táÂ…âÅ‹÷êÕ+çÖºtéÒ»wo¥÷Ió zP”®×!XpPj×®>gΜvíÚ5jÔ(55uß¾}’$}üñÇåÊ•Sz‡ôÀ‚ƒòÑG½þúë .ܰaC:unܸqàÀ¬¬¬I“&=ýôÓJïÁÑ: ðÔSOý÷¿ÿݰaƒ··wïÞ½ß{ï=ùª °µ}ù Bˆ´´´cÇŽå\Ëká'B…,8(o¾ù¦§§ç²eËþúë/ÐÐÐaÆɷY‚Uô xzznذáË/¿Ü¹sçüáááñüóÏ¿ýöÛõë×WzWà($Ãã§J¹br ÌBp€YŽ0 Áf!8À,G˜…à³`‚#ÌBp€YŽ0 Á=z´¿¿ÿîÝ»í¶©ÿû¿ÿó÷÷_±b…é»þøã\×€²Ž %;wîܾ}»ÒUpP.J-88ØÓÓ³aÆf®5jTJJʉ'”.€#"8€’êÖ­[·n]ËÖ€1T @“233322”® Á€fÈGΞ=ûá‡6jÔ¨nݺAAAÆ Ë6E~YbbâáÇ_{íµgžy&!!Á¸vÆ o½õÖóÏ?ß´iÓ~ýú}ýõ×™™™9?kçÎ#FŒhݺuëÖ­ß~ûí;vd{Áõë×ç̙Ӿ}ûÀÀÀÀÀÀ:|öÙgW¯^-視,Yò„é/¦kgΜéïœœ™™éïï0aÂÿåË—g{ל9süýýgÏž­ô 7G3qâÄåË—ß»w¯ZµjÉÉÉ›6m0`ÀW_}•íe'Ožìׯ߱cÇîß¿Ÿ••%„0 cÇŽ}ÿý÷·mÛf0ÜÝÝ£££gΜ٫W¯äädÓ÷®]»vРA›6m*V¬Ø­[·¶nÝ:dÈùóç_pýúõ^½z-Z´(11±jÕª•+W¾xñâ7ß|VÐM™¯Q£F}ûöuuu•$©oß¾={ölß¾½bãÆ¦/3 ëÖ­BtêÔIéc@oŽ4æÐ¡CAAA»wïÞ´iÓÁƒÇ'IÒìٳϜ9cú²)S¦Ô¯_ÿ›o¾ÙµkWÕªU…¿þúëÿû_//¯~øaÇŽ7nܶm[ƒ :´`ÁÓ÷þüóÏ¡¡¡{öì‘?b̘1NNN .½víÚÕ«W½½½[·nmú2//¯   ÌÌÌ“'OvíÚÕÅÅ%çG?~\~úî»ï~ùå—O?ý´ñIIIëׯÏYm¾›*¤—^zI˜ŒVgddüöÛo...:t°á1ਸñññɶ¤råÊ®®®W®\IOO/Z´¨¼Pž6:wzõê97X­Z5ñx§Ð××7×HJJº{÷®Üe¼téÒŽ;öïßñâÅ .d;µ±@›*Œ&Mš”-[vïÞ½ÉÉÉ;vì¸uëVHHHÙ²em~$8:Ž4F’¤œKœ³²²L/Ð# †¼6èìì,„xðàA¾áääT¤H!ÄÊ•+_xá…©S§9räé§Ÿ0`À7ß|3eÊó«5nªœ_|ñÅÌÌLùÜJÆ©ØGŸmÉ•+WRSS+T¨P¢D‰¼Þ%÷³€(“›‘¦­ÁœqùòåÔÔÔ*Uª-ZôŸþùðË-ºhÑ¢–-[š–aNµ¦›²ÊòÒK/­\¹2**ª}ûö[·nuss ¶ö·BÐq 9¿üòKzzºé’ÈÈH!D½zõžð®òåË?õÔS‰‰‰;wî4]ž””´mÛ6ggçÚµk®^½:ÛÅå B=z433300Ð45 !N:•ósŸ¼)«hÔ¨‘§§çîÝ»W¯^}ïÞ½:X+’@6GsåÊ•÷Þ{/%%E‘••µbÅŠo¿ýÖÉÉiذaO~ãûï¿/„˜4iÒ±cÇä%W¯^6lؽ{÷ºwï^±bEã+/^¼~÷î]ù#–-[öÝwß¹¸¸¼ûî»BˆòåË !N:e¼Nffæ?ü _ˆ;--ÍôCŸ¼)Ëdee¥¦¦ŸÊs«322æÌ™#§`K UИöíÛoÚ´©iÓ¦Õ«W—‡}œœÂÃÃkÕªõä7véÒe÷îÝk×®}íµ×*W®\¼xñ³gÏfee¼÷Þ{¦¯ô÷÷ŠŠÚ¼y³Ï¥K—ÒÒÒ\\\&Mš$O£ñõõ ݲeKÛ¶m6lh0bbb’““{õêµlÙ²_~ùåÎ;3fÌ0gS(S¦LrrrXXXÕªU—Ÿlß¾ý÷ߟ––V­Zµ (}ˆèÁ€ÆtêÔ©W¯^_ýõÑ£GK•*Õ¬Y³7Þx£Y³fù¾ÑÉÉiÖ¬YAAAk×®=uêÔµkמ{î¹Ö­[÷ë×OžcôÍ7ßDEEmÙ²åøñãÏ?ÿ|ÿþýMÙìÙ³—.]ºaÆýû÷W®\¹uëÖýû÷÷óóËÌÌ\»ví¾}ûÌßTA7îã?>{öì½{÷Œ 6løÔSO%%%Ñn`SÒf€ªŒ=zÍš5‹- RºuÉÊÊ ½|ùò–-[*Uª¤t9t‹s@óþúë¯ÄÄÄÆ“ØÁ´---mîܹBˆ×^{MéZèç8€†5nÜøÞ½{ééé5jÔo– ¶Cp íÛ·¯Y³fΛø92ooï .´nÝzúôéÙ¦ø€Õ19fáG˜…à³`‚#ÌBp€Yþ˜îÁí‡\IEND®B`‚statistics-release-1.6.3/docs/assets/nctinv_201.png000066400000000000000000000533171456127120000221630ustar00rootroot00000000000000‰PNG  IHDRhŽ\­AV–IDATxÚíÝy|L÷þÇñï$!bID#‹=! ‚ŠHí!¢µ·Ö*qÕÒ–RûzѪ-j«Ú·ÖRªÑ*JDíT,E‰%‚XBE‚Ä’d~œ{ç7w’ÆÉd&gÎÌëùè3ßsræ{Îw¦óöùžsF£Õjð*vJwê@p€,GÈBp€,GÈBp€,GØ¢sçÎiþ«gÏžKŸ?®[ºdÉ¥;kÛ¶mûõ×_ýõ×äädnöÓO?•Ž[ÇŽs\aÓ¦My=zTÀÇÄ’ûfZ9Žþ’%K¤½ –Z^9šyòèÑ£?ü°lÙ²%J”xúô©Ò‡Aîq ÏAé ûá‡\¯^=¥;R ºwïþäÉ!Äï¿ÿ¦twP ýÿûßË—/—K¯®8>€ްuZ­vذaüñ‡F£Qº/Ö¯hÑ¢•*UÒ=MOOOJJ’—)S¦páºEvv=bÉ}+%J”vßËËËÛŽŽ–4iÒ¤cÇŽúÇÓ¢˜û8jGpDLLÌúõë{ôè¡tG¬_ëÖ­tOwïÞÝ¢E éqttt@@}SJ=ÌúÐ¥ð±cǶmÛVéÝUì8jg…ÿnŒ0vìØ´´´W®öôéÓI“&½ùæ›-Z´?~|jjªþ:úg†¥¤¤Œ9288¸D‰µk×þâ‹/^¾|i°Í»wï:´Q£F...•*UjݺõöíÛ³¿tRRÒСC6lX¢D‰Ê•+wîÜùäÉ“F¼î¿ÿýoF£›+lÑ¢…F£‘N8ÓßBFFÆgŸ}V®\¹Ï>ûLZ3++kÆ ¡¡¡+V,R¤HÅŠ›5köý÷ßgß#óéׯŸÔÃÐÐPýöõë×KíE‹•öååË—‹/nܸq™2eŠ/^³fÍýë_ýõWtòòåË}ûöõõõ-W®\=Μ93mÚ4©{­[·Î>XúÛ½{w©}ôèѺF9G>ÿ£/ÿܾW¾ $''_¿~=++KzúðáÃëׯgddäé8˜öceÄq0ùg_Á·(/ZÀöÄÆÆê>U«V•DDDHKŸ={¦[ºxñbÝ_;v¬råÊÙ?DåË—ß¿¿nµ‰'JíÍš5«V­šÁÊ]»vÕïItt´»»{öm~ðÁú«íÞ½ÛÃÃÃ`F3bĈ¼¾î¸q㲿ܓ'Oô·Ð¡C‡÷ß_zjÔ(]cžŽ¼Ñ£¿xñbéiݺus餜·¢Ýîë»xñbžŽƒi?Vy:Z3|öMòAp„-ÒŽ?üðƒ‹‹‹¢hÑ¢‰‰‰ÚŽiiiºàŠ)Ò²eË6mÚ-ZTjñôôÔåÝ—‡¤bÅŠõêÕ+R¤ˆ®åرcÒš=*]º´ÔX²dÉÎ;ëÒÖ¬Y“}µæÍ›Ož<¹{÷îºÓìV¬X‘§×½wïÞåË—u=ÿþûï/_¾œ••¥¿…råÊéþJ Ž?þø£î‹­yóæ½zõªQ£†nÝ»wôÁLÁñÅ‹®®®Òú›7oÖµë†æ‡~Ð“Ó;ï¼£ñ“ƒƒÃ… ÌÑ7­VûäÉ]¨rpp¨_¿¾AÚ0"8æõÈ=úr‚£Ì·¢ÓG“|¬òtÌñÙ7É[PSÕ°uîîîŸ~ú©"---Ç:„dæÌ™×®]B8;;8p **ê·ß~‹‰‰qssBܹsç‹/¾ÈþWóçÏ¿víZLLÌ©S§tßÇ—LŸ>]ºHÅŠããã###÷ìÙ3~üxié²eË VëÒ¥ËîÝ»'MšôÃ?Ì›7OZ‘§×}íµ×*W®¬û²/[¶låÊ• . JLL¬^½úÚµkcbbúôé#„ˆŠŠ’1b÷îÝßÿýÙ³gƒ‚‚¤Æ?ÿü³`«P¡Bº¢«>^½zUGGGéä¹½{÷J‹&L˜°yóæo¾ù&&&æÍ7ßBdddè'BÓš7ožt&Ÿ³³óáÇ9rùòeÝ€Lj#ŸÏÑÏ…oE!Ä/¿ü¢Õj‹/.=ýý÷ßµZ­¿¿¿ÑÇ$ÿ«<s|ö•z‹ùGpÄàÁƒ«T©"„X·nÝÑ£Gs\ç·ß~“ 2DwòSÍš5GŒa°‚N5>ùäéqÕªU›4i"=¾~ýºô`çÎÒƒQ£FI_BRgj×®]»víçÏŸgff ½èðá‡ê6Þ§O{{{!Ä7Μ9“§×}¥¢E‹îÚµ+<<¼^½z>>>Bˆnݺ­]»víÚµC‡•ÖIMMÕúàÁƒ,ݼ­î°ìÞ½[zðÖ[o9;; !ÒÓÓ¥–5kÖ¬\¹R skÖ¬‰íÒ¥‹™ú¶yóféÁàÁƒu‘S¦L©P¡‚ÑÛÌë‘Ïÿèç"¯oEs0ÕÇJ>s|ö•z‹ùGpDáÂ…¿þúkñß[óhµÚìëÄÅÅIZ¶l©ßþÖ[oIâããu§ÿK ¦)u§¾éV»|ù²ô Q£FºÕ<==O:uêÔ©˜˜éûøÒ¥Kº—Ö݃ºxñâºï¿øøø<½î+–)SF¿¥eË–ááámÚ´9|øð¨Q£ÂÂÂÊ•+wáÂ…‚¢ÿ&ÍV_¿~ýâÅ‹B/8ê¾nucׯ_?//¯   ùóç?}ú4 ÀÓÓÓL}Ó”î"!„½½}~î˜×#ŸÿÑ—³ƒ2ߊæ`ª•|æøì+õòà!Ä;ï¼Ó¼ysñß[ó,MMMÕýXˆÁÝÝÊ–-+=xöì™î†#ƒ™/ƒ§úÛ,Y²ä?u,55õ•wK¾wïžüוCW§ÑyñâÅÈ‘#ÝÝÝ»wï>kÖ¬={ödddäxý¹ÌVkµZiÖ¯P¡BíÛ·—Ú#"" äèè(=Õjµ'Ožœ6mZ½zõBBBLûc9:újðÅoÂó$¯G>ÿ£ŸËæõ­h&ùXåi¯MþÙ ½E“ 8ÿ1gÎ霧ì'¥9;;KÐ!þþûoýEº§… Ö’/G‰%tç×ß¿ÿŸVsvv.Q¢„ô8::úrNºwïnÚC‘ý{nÚ´i³gÏÎÈÈðññY¸pá_ý•ššª j¬k×®Òƒ¨¨¨ØØØ»wï ½J¤¢P¡Bß~ûmrrò?þ®kBøà!Ä;w²/Õ˯û ƒ§¾¾¾y¸£¾F£ÑÍgéŸXyçÎ 4hÐ 44TšØ’οBdddTÖãêêZ²dÉ’%K:99™ûà,\¸Pz°`Á‚?þ¸V­Z‰‰‰æ~ݵhÑBú¢Ý¿ÿÖ­[¥FÝ<õóçÏ“’’’’’ž?þî»ï®]»öîÝ»»víÒtxàÀ3uL7Rúo’¬¬,Ý•:ºhþðáCýöìӢ޼Éߊòƒü ÊüXÉgòϾ‚oQ ÿŽÀÿ›:uªtuEvmÚ´‘|óÍ7ºÛÇÆÆÎœ9Sz¬Z›LM›6•Ìš5K—VçÌ™ãèè(U@u¿_²téRÝù—›6mzíµ×ÜÜÜ*Uªôøñc£wùÅ‹¯\çñãǺ)HÝüŸþ¹gÏ“ö¼ÒÍV?þ|Ö¬YB{{ûwÞyGZzáÂOOOOOO//¯+W®!Z´h¡»×£If0s¤ûA”yóæ:uJzýÕÌ}ä匾>“¿e‡<‘ù±’LþÙWð- ä?9ü?ww÷‰'Ž3&û¢1cƬZµêúõë=jܸqXX˜½½ýï¿ÿ.ýÚ„———tOŸ<ùôÓOW¯^šššP»ví°°°¤¤$Ý¥ƒ ’üûßÿ^¾|yJJÊæÍ››7oÞ´iÓsçÎé.ä1b„Á§å(Y²¤t¾ÚÔ©SÏ;7tèÐB… ýÓÊÅ‹/^¼¸´~¿~ý¤Ÿi‰ŠŠ*Èߌ1еk×U«V‰ÿ^VܬY3Ýy™µjÕòððHJJÊÈÈhܸq»víJ•*uíÚµ-[¶H+üH‰ 9òÛo¿}ôèÑÇ4hP¯^½»wïJWðÐÝO'===00000ðÞ½{º‹0Ì}äó4úúLþV”yòDæÇJþq0ùg_Á·(Tÿ1tèÐ"ÂÉÉiãÆÒ½iÒÓÓ·mÛö믿Jß+Vܸqã?•*sáîîþÝwßIgP%%%ýðú¯·ñãÇëÎcsuuýþûï¥"ľ}û""""##¥Ûy 0`òäÉF즮*säȑѣGç^qÑh4ºZZZZÚ–-[~ýõײeËêî«lpîWÐÍVKôo_bgg·yófiÎôÎ;Ë—/Ÿ1cÆÆ¥ûº7kÖ,ǘ„««ëÚµk¥3Ÿ?~àÀ‹/)R$ûÝUêÔ©£»ÇuZZÚáÇãââ|||t%=³ù<¾Ášö­(ó8ä‰Ì•üã`òϾ‚oQ ÿŽÀÿ(\¸°nÊÀo¼qæÌ™O?ý4,,ÌÃÃÃÍÍ­yóæ&L8{ölãÆ{¹Ž;ž={¶ÿþÁÁÁÅ‹¯T©R»ví80mÚ4ýÕÚ·oÿ×_}ðÁuêÔ)Z´¨OÇŽ÷ïß¿hÑ"ã.›3gNxx¸»»{±bÅjÔ¨‘}ò.ûú5kÖBØÙÙ½þúëÇ?uê”nvxýúõºyÆ‚¡mµA…¦~ýú—/_þôÓOƒƒƒË”)S¨P!WWׯ/_¾|Ïž=ºKYÍ¡]»v‡îÙ³§··wÙ²e»wï~àÀÚµkg_sõêÕÓ¦M«Y³f±bŇ ¢»§´¹|^G_ŸÉߊ2CžÈüXÉ?&ÿì+øòI“ã-ëÀÀË—/·mÛ&˜GË»iÓ¦I?1תU+ÝÞÈÇ‘`98Ç€,… "¸(‚#Àr0U YŽ…àY¸8²Pq€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBpK3rÒ]P’ƒÒ°BþþþJw˜G»EÒ}\\œÒ]QÁÑ,lóÍdÉüýýKàX&ÆÅ1(E3rO\\œÍ‰˜ª€,GY4#÷hg5WºJ"8@‚#d!8@‚#lBTT”Ò]€!Å21.ˆAå 8@‚#d!8@‚#d!8@‚#d!8@‚#dqPºB¥»¼Z\\œÒ](‰àh)øJ†åó÷÷ç ÀfiFîÑÎj®t/ÆT5d!8@‚#d!8@‚#d!8@‚#d!8@‚#d!8¦}ûöÙMŸ>]£Ñüõ×_J÷Ñ\¼½½;v옽}Þ¼yš\íܹS·ò³gÏüüüN:U`ÝNNN.W®ÜíÛ·•>~ JülŒ„àãmÛ¶íçŸVºyvâĉŽ;ž;wδ›­S§Î(=ŽŽŽú-•*UÒ­zôhÀ€*T(^¼xHHHLLŒœþlªtéÒ}ûöýôÓ[·nMœ81ÿ›ÊÊÊÊÌÌ4yÍ´Ù|Z´hQåÊ•ƒ‚‚¤§ÑÑÑ“'OnÙ²eVV–ÁʳgϾ|ùòÒ¥K×­[7oÞ¼ƒj4š‘#Gæ¸åÜ7UªT©¶mÛ~óÍ7J€Za¼®]»¶iÓæÛo¿=qâD.«;v¬M›6žžžeÊ”iӦͱcÇt‹¼½½‡¾dÉ777‡²eË8ðñãǺNŸ>ݾ}{OOÏ·ß~ûÌ™3ºE±±±:uªP¡‚»»{«V­vïÞ-g³}úôi×®¢Y³fÞÞÞº•Oœ8ñú믿þúëÒæÌ™S«V­bÅŠ•*Uª^½zëÖ­3áq[µjU×®]uOï߿߲eˈˆˆäääì+oذÁËË«W¯^ÒSŸ.]ºìß¿ÿï¿ÿξrî›BtéÒå§Ÿ~Ò?ÂÈGp„ñ4Í‚ Š)òÑGýSaï×_mÔ¨ÑÙ³g»wïþÞ{ïÅÆÆ6jÔè×_Õ­ðûï¿2¤Góçϯ]»ö¢E‹FŒ¡[Ô AƒsçÎõêÕ«gÏžGŽiҤɕ+W„»ví >}út·nÝúôésõêÕ–-[nذᕛ9r¤tæßŒ3¾ÿþ{iå›7o¶lÙòñãÇõë×BLž>þúõë 6ÔµxxxhµZ­V{ñâEƒ•SSS/]ºªÑhtÍ›7ÏÊÊÊñLÇ\6%iذáË—/÷ïßoŽ÷Àúiaj~~~ð'Êš\µßÿ]±dÉ’\^=û¦tÜÜÜFŽiܸ›özõêUn ¦Â¸X ň»õŸªî‹ÛT¨8"¿FŒQ³fÍO?ýôæÍ›‹Nž<™0lØ0777©ÅÍÍmذaW¯^ÕݯÇÇǧsçÎÒcFøäÉ!ÄéÓ§ÏŸ??dÈWWWiiHHÈŠ+BBBN:?zôh'''i‘££ãàÁƒ¯^½zòäÉÜ7›#//¯‰'ÚÙýçãpìØ±“'O:8üçÒ±û÷ï !ÒÒÒLr¸®_¿îèè¨Û©ÜI/êìì¬ßèââ¢ë•¼¼¼nܸa’}Ø®ª¶hš‘{|u™7¬rppXºtiÆ ‡ òË/¿è/ŠBèN”ÔªUKZ,„ðóóÓ_ªKoR±­fÍšúKûöí+„¦˜{ôèÑ£GƒÎܸq#÷ÍæÈßß_WW×?þøc×®]/^Œ?wî\FF†©ŽjRRR©R¥d®,nƒSSSS…ò7bàµ×^»s玩vl7qÔ!8Z4µ¼Mëׯ?`À€E‹韼(„ÐjµBýóó„öööBˆ—/_JO‹)’ã6_¼x!„Еýô.\X1sæLƒX)„¨^½zî›ÍQÉ’%uŸ?Þ©S§íÛ·¿õÖ[o¿ývƒ êÔ©cªcU¤Hi×äððð°³³3¸ÒåÞ½{Bˆ²eË×/^-ZÔT»°)G˜Æ—_~ùË/¿|òÉ'ï¿ÿ¾®Ñ××WqöìÙ¦M›ê¥+£ýýýsß T2<þ¼þÍ¿úê«ÔÔÔN: !J”(ѲeKÝ¢óçÏŸ={V?çСCÛ·oŸ;wîСCu&¬8zzz¦¤¤deeå^•888T¯^ýàÁƒúÐh4Æuàþýû>>>¦Ú€MáG˜†‹‹Ëܹs,X k¬S§N… æÌ™“’’"µ|˜žž.skûöísww×ýh y¢1ÕtüýýãââÌý'P¯õë×4èï¿ÿ~eÙUŽåË—ÇÆÆÎ;WÎÊAAAíÚµÓ,óÊ´oÔ„„ã&ÜaVŒ‹bP”•ã%Õ6ûÅMÅ(h]ºt)^¼øæÍ›ó¿©gÏžíÝ»WæEßgΜ¹páÂǬô¨Á(h… úæ›o¦NúOèÈwäÈ‘jÕªe¿ŸeŽ&Mš4iÒ$OOO¥@­¸8P@‡Nœ8+ÝÝh¡¡¡¡¡¡rÖLNNvww9r¤Ò»P1‚# ŒÏ?ÿ¼ _®téÒK–,Qz§êÆT5@\êRFé.(†àøj·oß =z´ÒŠ_©6@p|­V;vìØ'Ož(Ý…_á»ï¾;vì˜Ò½PÁ17ñññsæÌ©ZµªÒPÁñeddŒ3ÆÕÕuܸqJ÷@yÜŽçÍŸ?ÿÂ… +W®tvvVº/  qeLvÇœ>}zÙ²e={ölذá¹sçòúçþþþ-QQQJï` ¦ÚTbb¢Ò{ƒ0.ˆAQô?½V­Zé7n­©t·”CpÌAzzú˜1cÊ—/oôÏlØæŸÃx{{[ìÖ`*Œ‹bP’ yƒ¯u[¾#Á1Ó§OOLL\¿~½“““Ò}°\cèØ±cëׯïß¿ÿ믿®t_€28Á1GGCñññBˆ… úÿW§N„[¶lñ÷÷o×®ÒTÞ¼yó4¹Ú¹s§någÏžùùù:u*?¯˜œœ\®\¹Û·o+½ëØ4¦ª U¬X±mÛ¶ú-=:tèP™2e===•î òêÔ©3jÔ(ÝÓùóç—,Yò_ÿú—®¥R¥JºÇS¦L 4ØHHHHXXؤI“ô=z4vìØíÛ·?xð N:3f̨_¿¾¢téÒ}ûö|ø°Aû©S§>¦ß˜ššZ·nÝ7ntéÒÅÍÍ-22²U«V{÷î•Bç°aü¼¼Ž=Z¯^=¥6Š©j˜Ñ¢E‹*W®$=ÍÈÈˆŽŽž‚#d!8ÛE¹1OŽ…àl导"8@îãh)ümõW/PåF#-B\\œÒ]°r ÞÞÞJ÷ucªØÊÆ!8@‚#°-”FpåR—2~‘·•î…’ŽÀ†PnÌ‚#°¤Æ|"8@‚#° ”óàYŽÀúQn4 ‚#°r¤FS!8kFj4!‚#d!8«eÂr#?#ŽÀZ1ImrG`…Hæ@p€,G`m(7š ÁXR£ù€õ 5šÁX R£¹€50kjä&Ž‚#P=jƒàÔÔX`Ž…àTŒrcArPºÆÐŒÜ#„ 5$‚#P Š`ª¨L§FîÅ£CpjB­QAG ¤Fe€:Gp*@j´G`éL\£ÛñËÅÍ- ÁX(¦§- SÕÀ‘-G`Y,gz𠀡Ðhɘª–‚Ôhá¨8åYÎô4rAp ³ÌB#'8fGpŠ¡Ð¨.G  Ë,4"GPÐ(4ªÁµDFNpÌÁæ¦ÕŽàÌN-…FäŽàÌH‘‘yêBpæÂÜ´•!8ÓSc¡¯Dp¦¤öÈÈ}ÚÅÅ¥AƒÏž=;zôè¡C‡† 2hÐ ¥{À+PbÌ©ÑhÇlܸñôéÓAAA+V¬prrBÄÇÇ÷ìÙsÁ‚Í›7¯V­šÒ ”anÇDEE !&L˜ ¥F!„¯¯ï€¾úê«Ã‡…¼˜'”óƒà˜ƒ„„„bÅŠè7úúú !nÞ¼©thRc>s°dÉÃ#sîÜ9!Dùòå•îÀÖq #”BpÌAõêÕ Zbbb–.]êèèØ¡C9[ð÷÷7h‘¦¿¡”ÄÄD¥»C Šeb\,nP|¾M\ýÄ[‘ t×TæåèF…f6⸵jÕJé¾[ ‚ã+dff®[·nÆŒ™™™³fÍrss“óWqqqJw†¼½½•î 1(–‰q±4>ß&‘ (1æO~&©³­g¯Ù‚cnŽ=qåÊ//¯/¾ø¢aÆJ÷`+t§0^ýÄ›4ŸOœÚh*Çœ½xñbæÌ™kÖ¬)R¤ÈàÁƒûõë§»ÂóÉ~É SÒùDj4!‚c²²²FŽÝ¢E‹I“&¹»»+Ý#€•ãi3!5šÁ1kÖ¬‰ŽŽîѣǤI“”î Àjé¢ /B%ކ´ZíÚµkK”(1vìX¥û°B åF“#8JNN¾q㆓“Sxxxö¥;vìÙ³§Ò}¨y±€‘ÍàhHº]Vzzzlllö¥\X Èò¢"HfBp4T§NîÂÈ'ò¢‚HæCpÀ4¸ØÅÍŠà@¾P\´¤Fs#8g-Í¥.e„¤Fs#8 ÅEËD¡±ÀÈ ÅE Gj,HGr@qQHŒàÀP\TRcÁ#8laQ¸F)G€Í!,ª…F¶‚Ó­©QYG€5£¸h5˜ž¶G€µ!,Z ‚à°„E+Fj´G€Z­ÓÓ–†àP¢í ÐhŽKGX´5-Á`‰‹¶‰ÈháŽKAX´qÌM[>‚#@1úIQm…Fµ 8 eEè#2ª Á`v„E䈹iÕ!8Ì‚°ˆ\PhT)‚#À48arUà0eEÈGd´G@Þ‘WDF«Ap¼sÐ0‘ÑÊ9 ¬ˆ|"2Z%‚#@ˆÿIŠ ‚°ˆ| 2Z1‚#Ø®ìeÅ„„ooo¥ûµ"2Z=‚#ØÎV„9HyQmÁ¬IfE‰ÑÖÀÚp] ‘Ñ6@õ(+¢ mÁÔ‡¤ˆ‚ljŒGP & ¡JŒÐ!8€…¢¬eQbDvG°$EXJŒø'GP I…#^‰àŠSaiÈ‹àæEY‹)iäÁLŒ¤ G‰F#8@~‘¡ äEäÁŒÁ©ŠP ò"Lˆà²PV„ºaGÈIjD^„Yà?HŠP/ò" †Zƒã™3gjÕª•Ë QQQ­ZµRº›,IjG^DSkp|ï½÷øñÇÛÛÛ,JII‰ˆˆØ±cG\\œÒÝ`YHаäE(E­ÁÑÝÝ}þüùûöíûúë¯+Uª¤kß¹sgDDÄýû÷+V¬¨tX.†Õ /Bqj ŽÛ¶m›1cÆ?þØ¡C‡±cÇvïÞýáÇS¦Lùí·ßìííûõë7dÈ¥û@”ae^ŽntIA^„Pkp,^¼ø”)SZ·n=a„ɓ'oß¾ýêÕ«÷îÝóõõýòË/kÖ¬©t’"¬®¸(„(4ó°···Ò=„Pop”4hÐ`Æ ï¼óαcÇ„uêÔY½zu¡B…”îó")ÂZå8 t¿€ÿPwp‚#€œ‘a³‹À?!8øL@Ãf9TwìØ±zõêk×®iµÚWˆ‰‰Qº€¥£¬[FXòJ­Áñ÷ß6l˜ôØÞÞ^éîjBY¶Œ°ä‡ZƒãòåË…½{÷8p ‹‹‹ÒÝ,eEØ8Â"`*j Ž—/_.W®Üرcíìì”î `‰(+ÂÆsPep|ùòåãÇkÔ¨Ajt(+„EÀÜTíìì\\\âãã³²²Èްe”aãô“¢ ,æ§ÊàhooÿÁÌš5kΜ9#GŽTº;@",ÂÆQV¤Êà(„hÓ¦ÍÍ›7—.]ÓºuëråÊ.\Ø`fÍš)ÝMÀ˜ƒ‹€…Pkp “œ9sæÌ™39®§t7#QV„c°Lj Žo¿ý¶Ò]LŒ°GY°|j Ž3gÎTº € aË(+ª£Öà¨',ÂÆQVTM5ÁqݺuBˆ7ÞxÃ××W÷4wáááJ÷‚²"leEÀš¨&8N™2E!GéiîŽPa¶Œ²"`­T,„¨Y³¦ôtÔ¨QJ÷0DX„Í¢¬ØÕÇO>ùDÿé‡~¨t!‹°U$EÀ6©&8E— ‹°L@ 8rQ\„­¡¬ÀÁÈ a6EJŠ—þû”¤ÀÁ0DX„íÈ^SLHHðööVº_,ÁøN[„àTEF#8¦Q\„-àTE¦b=ÁQ«ÕîÙ³'11±V­ZJw–‹°«GR`&*Ž{öì™7o^‹-¤{ƒOœ8122RZÔ½{÷I“&i4¥û ÂL4¬I@ÁPkp<~üøÀµZmóæÍ…çÏŸŒŒtqqiÛ¶íÖ¯_ߤI“°°0¥» …Q\„µ")P„Zƒã²eË´Zí„ ºwï.„ˆŽŽB|ùå—aaa×®]kÕªÕ?ü@p´YÙ‹‹ Jw È’"K ÖàxéÒ%OOÏ^½zIO=Z¸pá&Mš!*UªT¹rå«W¯æó%~úé§7^¾|¹hÑ¢M›6=z´«««ÒûÜ0 kBR`Ô>|X¹reéqFFÆùóçkÔ¨Q¸pa©¥hÑ¢7nÜÈÏöçÌ™³xñâbÅŠ_¿~}Ó¦Mñññ«W¯vrrRz×ñ?˜Œ†5áF9,œZƒc™2e333íííOž<ùìÙ³zõêI‹²²²K—.môÆãââ–.]êááéîî.„˜6mÚêÕ«¿þúëO?ýTé]‡a-(+PµÇààà 6ÌŸ?¿k×®óçÏB„„„H‹V®\ùàÁƒ¦M›½ñ7fee 6LJBˆqãÆýúë¯;vì˜0a‚Ò{o»È‹P;’"USkpü裶nݺhÑ¢E‹ !jÖ¬)Ý»ñÝwßý믿„}ûö5zãÇ·³³kÖ¬™®ÅÞÞ>$$dëÖ­'Ož¬[·®Ò{osÈ‹P/’"k¢ÖàX¶lÙüñ믿¾xñb•*U"""¤»6Þ»wÏÙÙyüøñõë×7nËZ­öòåË¥J•*Uª”~»ŸŸŸâæÍ›ÇC^„‘X1µG!„¯¯ï’%K ׬Yãå啟Ùä´´´ÌÌÌ’%K´»¸¸!}úÕ«W…·nÝB”.]zĈ;vTºwÖ# I,‡Šƒ£"444444%%åêÕ«/^¼ðññá>‹€#ÌŠ¤KÝÁQâêê¤t/l‘æ@RµPkp¬_¿þ+׉‰‰Qº›ÖƒÈÓ’Ââ%!IÔC­ÁQúåh}Z­6++Kzìéé™ã½Á‘WœÈSÉ^VLHHðööVº_€ª%FäÐ`}Ô³³··/_¾|ß¾}«W¯Þ§OŸáÇïÚµK£Ñ(Ý/õ!2Âhܬ›õGúõëW©RåÒ¥K7oÞ¬P¡‚ÒÝQ"#òв"Ø+ ŽBww÷K—.½öÚkJwD5ˆŒ‰¤¶Ì ƒcZZÚùóçÝÜÜŠ+¦t_T€ÈˆWb QkpZ("#$”y¥Öà8sæL¥» >DFPVä‡Zƒ#òŠÓmeE€ ©&8îÛ·/¯Ò¬Y3¥{m(4ÚÊŠ3QMpìß¿^ÿ$..Né^+ŒÈh;‹€ šà˜ËÕ0ÈsÓV°(`ª Ž\ #…FkÅ ‹e©&8æÉرc?¾gÏ¥;¢ V†²"Àr¨88¦¤¤ìÞ½ûúõëíééé»ví²··Wºƒ 5ZÂ"À2©58&%%uïÞýÖ­[ÿ´Bxx¸Ò},PLO«a`ùÔW­ZuëÖ­àààöíÛÿöÛoGýì³Ïœœœ.^¼¸víÚððð &(ÝÇ‚C¡Q¥‹uQkpùä“:uê\¼x1--­M›6J÷Ñ,H‚â"À©58º¹¹­[·nÓ¦MBˆ²eËNœ8qêÔ©‡B„……õíÛWé>š©QY„E€SkpÌÈÈpssëß¿¿®¥{÷îíÛ·?{ö¬‡‡‡Ò4=R£Rty‘°°qj Ž!!!:tèÔ©S•*UtÅ‹oРÒ]3 Rc£¸@vj Ž÷ïß_±bÅŠ+;wîܦMéòj«Dj,0È…Zƒcddä¶mÛvìØqêÔ©S§NM›6­uëÖ;w®[·®Ò]31R£¹Q\@&µÇš5kÖ¬YsìØ±'NœØ¶m[TTÔÏ?ÿüóÏ?W¬X±K—.:tpwwWº&@j4Š‹ä•F«Õ*ÝÈÈÈ8xðào¿ý¶{÷î´´4{{û&Mš,Y²D‘ÎøûûÇÅÅå;¤FJHHðöö¦¸hQ¤AQº0ĸX Å™ê»^uÔZq4Ü ‡ÐÐÐÐÐгgÏN˜0!..nß¾}Jw*_H&$åÅK„EòÇJ‚c\\\TTTTTÔÕ«W…vvvo¼ñ†Ò2©Ñ$ô'£ù÷:ù§îàxþüù;wîØ±ãúõëRK5Ú·oߦMõžãHjÌ'N^ÀLÔgΜ¹sçΛ7oJO+UªÔ¾}ûöíÛW¬XQé®AäEÌM­ÁqùòåBww÷¶mÛ¶oß> @é™导"/P`Ô»víÚ¾}ûàà`;;;¥ûb2¤FùÈ‹<µÇÏ?ÿ\é.˜©Qò" Rkp„M!/` ŽrcŽÈ‹X‚£òHÈ‹X&‚#,y GpTåFñßÈH^À¡JŒ¨ ÁQI6[n¤Ä€Qp(1 jGÅØT¹‘#V€à3¢Ä€5!8*ÃêË”°>G˜%F¬ÁQVYn¤Ä€Õ#8"¿ˆŒØ‚cA³¦r#‘›Bp„1ˆŒØ ‚#ò†È€Í"8(UÏS°qG¼‘‚cARc¹‘ÈtŽÈ‘ 8‘äˆàˆÿGd¹ 8 ?Á‘È^‰àq©K"#x%‚£M£Ðä#8 œ§&2€¼"8Ú"榀޶…B#0ÁцPhùAp4;K8Á‘B#È?‚£õ£ÐLÂNéÀ¼HÀT¨8Z-¦§€i­…F`rLU›—"WÆ€9Pq´*LOó!8Z À¬˜ª¶¤F`nGk@j€à¨z¤FP0ŽfT—T“@!8ª©$‚£Z‘@#8ª©<‚£ú€"Ž*CjJá—cr–žžþã?FFF&&&–(QÂÏϯoß¾5R¶W¤F  ‚c222z÷î}úôi— <{öìèÑ£‡2dÈ Aƒ”ê©(‹à˜ƒ7ž>}:((hÅŠNNNBˆøøøž={.X° yóæÕªU+ø.‘€â8Ç1QQQBˆ &H©Qáëë;`À€ÌÌÌÇË܈ ïþMj–€à˜ƒ„„„bÅŠè7úúú !nÞ¼YÀ!5 ÁTu–,Yâà`xdÎ;'„(_¾|Aö„Ô,Á1Õ«W7h‰‰‰Yºt©££c‡älÁßß_´[äïï¯k‘¦¿ ôñ°‰‰‰Jw†ËĸX Eq­ZµRº –‚àø ™™™ëÖ­›1cFffæ¬Y³ÜÜÜäüU\\œf䞸¸¸ü¼4åFÓòööVº 0Ä X&ÆÅ1(ÊÊþ…®_²)6322–-[¦{jooÿÑGé¯pôèшˆˆ+W®xyy}ñÅ 6,°¾‘€¥±éàøòå˹sçêž:::ê‚ã‹/fΜ¹fÍš"EŠ <¸_¿~º+¬ ©X ›ŽNNN9Î&gee92::ºE‹“&MrwwWº§Ê³éàøOÖ¬YÝ£GI“&ü«Sn–‰û8Òjµk×®-Q¢Äرc þÕIÀbQq4”œœ|ãÆ ''§ðððìK;vìØ³gO¥û ‚£!évYééé±±±Ù—šõÂjÊÀ’ Õ©S'Ÿ÷_FýP5©X8Îq€,G‹@¹X>‚#d!8*r#P‚#d!8*Œr#P ‚#d!8*‰r#P‚#d!8*†r#P‚#d!8@‚£2˜§ªCp€,GPnjDp€,GÈBp,hÌS•"8@‚#d!8(æ©€zÍB;«¹Ò]01‚#d!8@‚cÁáG jGÈBp€,ÇÂ<5P;‚#d!8@‚#d!8@‚cAàÊ`Ž…àYŽ…àYŽfÇ•1À: Á² Á² ÁѼ¸¤X ‚#d!8@‚#d!8@‚#d!8@‚#d!8š7qÖ„àYŽ…àYŽ…àYŽ…àYŽ…àYŽæÂÏÆ+Cp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,G³¸Ô¥Œ_äm¥{`JGÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,ÇW»}ûvPPÐèÑ£•ޝ ÕjÇŽûäÉ¥; 0‚ã+|÷ÝwÇŽSºÊ#8æ&>>~Μ9U«VUº#Ê#8þ£ŒŒŒ1cƸººŽ7Né¾(ÏAéX®ùóç_¸paåÊ•ÎÎÎJ÷@yÇœ>}zÙ²e={ölذá¹sçŒØ‚¿¿¿þÓ¨¨(¥÷ɦ%&&*ÝbP,ãbŵjÕJé.X ‚cÒÓÓÇŒS¾|ù‘#G½‘¸¸8¥÷ÿÃÛÛ[é.Àƒb™ Ä (+ûwºAyÈvØtpÌÈÈX¶l™î©½½ýG}$„˜>}zbbâúõ뜜”î#€¥°éàøòå˹sçêž:::~ôÑGÇŽ[¿~ýÀ_ýu¥;`Al:8:99e/>ÇÇÇ !.\¸páBýö-[¶lÙ²Å××wÛ¶mJw@6sT±bŶmÛê· îÙ³çÑ£G•Þ k“×AyñâŲeË:uêؼyó¡C‡ÆÇÇ+½6çêÕ«þþþýõ—ÒQÁÑ4æÌ™3qâÄ+W®/^|Ó¦M}ôQzzºÒý² y=ø½{÷þòË/ïÞ½Û Aƒ*Uª=z´oß¾ ,PzW¬G~>Z­vìØ±Ožÿüs??¿)S¦(Ý5ëgÄÁ_·nŸŸ_÷îÝÓÒÒ¤–K—.½ñÆÕªU;þ¼Ò;d òù‰X¹r¥ŸŸŸŸŸß¨Q£”ÞëaÄ <|ø°nݺ¯¿þú‰'¤–¿þú«F 6ÌÌÌTz‡¬Ñÿû:tèË—/¥–?þø£Zµjo½õ–Ò{c=ztüøñÏ>ûLúÔéÓ§•8šÀƳ²²† æîî.µŒ7ÎÅÅeÇŽYYYJ÷ÎÊq𣢢„&Lprr’Z|}} ™™É„µIäç?gΜªU«*½ÖƈAÙ´iSjjꀂ‚‚¤–ZµjµnÝúÞ½{gÏžUz‡¬ƒròäI!Äûï¿ïàà µ4hРZµj×®]{ðàÒ;dýÚ·o¾aÃ¥;¢$‚£ ?~ÜÎήY³fº{{ûû÷ïKr˜?!!¡X±bú¾¾¾Bˆ›7o*½CÖÀèODFFƘ1c\]]ǧôNX#åÀ¦C‡ú3f̈‹‹{ýõוÞ!k`Ä xyy !ô3¢V«}øð¡.JÂ|¦M›¶páÂ… 6lØPé¾(†÷Y~iµÚË—/—*UªT©Rúí~~~Bˆ›7oÖ­[Wé>Z-ãþ’%K²ÿöܹsBˆòåË+½Oª—ŸOÄüùó/\¸°råJggg¥÷ê7(±±±®®®žžž'Nœ8uêÔÇ«V­Ú¢E ]©ùaÜ ´k×nõêÕÓ¦M+Z´híÚµSRR.\˜˜˜Ø­[7>5 qãÆÒƒ½{÷*ÝÅó+---33³dÉ’í...âÿ]“3îàW¯^Ý %&&féÒ¥ŽŽŽÅÁèOÄéÓ§—-[Ö³gφ J9¦bÄ ¼xñâñãÇUªT™}zbbâúõë™5#¥H‘"Òƒ¯¾úªyóæÒãO>ùäöíÛ›6múí·ßºté¢ôn©›qŸ”1cÆüùçŸãÆëÓ§Ôrûöí÷Þ{oøðá[¶lñññQz·`ý¨8æ—ƒƒƒ‹‹Kö¦¦¦ !t×ÊÁŒ>ø/^¼˜6mÚûï¿ûöíÁƒïرƒÔh*F ʱcÇÖ¯_ß¿.¹0#¥X±bEŠqrr ÕooÑ¢…ââÅ‹Jï“ê1(wïÞÝ»wo•*Ut©QQ¦L™¾|ùò—_~QzŸ`Ž&àááqÿþ}éÓ®“ -RºwVΈƒŸ••5räÈÕ«W‡……EGGòÉ'T¹L+¯ƒ"ýîÅÂ… ýÿ«S§NBˆ-[¶øûû·k×Né²F|RÜÝÝ *¤Ñhô¥KFF†Ò;d ò:(÷ïßBTªTÉ ]*4&''+½C° G ËÌÌ>>^«Õê·ÇÅÅ !ªT©¢ôÁ6(}rkpëÖ­ªU«¶jÕêñãÇRËâÅ‹ýüüf̘¡t׬ŸœƒÿäÉ“«W¯Þ¼yS«ÕfeeµhÑ"(((==]é¾[­¼Jv±±±ürŒi1(çÏŸ÷óóëÚµëýû÷¥–3gÎß»wOé²F JÿþýýüüæÎ«ûñžK—.Õ¯_¿F—/_Vz‡lÈ„ lö—c¸8ÆÊ”)3zôèéÓ§¿ýöÛMš4¹~ýzLLL@@À‡~¨t׬Ÿœƒ¿ÿþáÇûúúnÛ¶-99ùÆNNNáááÙ·Ö±cÇž={*½Oª—×AQº¿6ÁˆA©V­Úˆ#fϞݪU«ºu릥¥?~\£ÑL›6íµ×^Sz‡¬ƒòùçŸwéÒeáÂ…Û·o¯^½úýû÷ÿüóϬ¬¬‰'V®\Yé‚M 8šFß¾}K—.½yóæíÛ·{yyõìÙsذaÒ]`ny:ø‰‰‰BˆôôôØØØìK¹DÆTøDX #¥ÿþnnn«W¯þã?\]]ÃÂÂ,ýÌL"¯ƒâææ¶}ûöÅ‹:thß¾}®®®M›6ýøãkÖ¬©ô®ÀVh´ÿ{ª#.Ž€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,Gø£Gö÷÷?räHmêÛo¿õ÷÷_·nþ_íÛ·/Ç¥ ,‚#¨É¡C‡öï߯t/Ø(¥;6-44ÔÍÍ-((HæÒQ£F¥¦¦ž?^鎰EGPR@@@@@€qK €1U @•233322”îØ‚#Õ.¹råÊÔ©SëÖ­ЬY³Áƒ\€"­vûöíÓ§OwîܹV­Z‰‰‰º¥Û·o0`@Ó¦Mëׯ߻wï+Vdfff­C‡ :4$$$$$äã?>pà€Á ÷îÝ›={v›6mêÔ©S§N¶mÛ~õÕWIIIyÝÔ²eËr¹üEéŒ3üýýSRR233ýýýÇïïï¿víZƒ¿š={¶¿¿ÿ¬Y³”1Ö†à@e&L˜°víÚgÏžU¬X1%%%::ºo߾˗/7XíÂ… ½{÷Ž}þüyVV–B«ÕŽ;vøðá{÷îÕjµ...1113fÌOIIÑÿÛ­[·~ðÁÑÑÑEŠyøðáž={>úè£yóæéV¸wï^xxø’%Knß¾]¡B…råÊݼysÕªUÝ»wÏë¦ä«[·îûï¿ïèè¨ÑhÞÿý=z´iÓF±sçNýÕ´Zí¶mÛ„ï¼óŽÒcÀڨ̩S§š5kväÈ‘èèè“'OŽ7N£ÑÌš5+>>^µÏ>û¬fÍš«V­:|øp… „¿üòËæÍ›ÝÝÝ7lØpàÀ;wîÝ»·víÚ§Nš?¾þßnÚ´),,ìèÑ£ÒKŒ3ÆÎÎnáÂ…gΜѭpíÚµæÍ›>|xóæÍ[¶l9tèPppð­[·vïÞ§MÉ×¼yóñãÇ-ZÔÎÎnüøñ£GnРAÉ’%Oœ8qïÞ=Ýj'Ož¼uëV5ªT©¢ôX°6G*ãîîþÍ7ß”,YRaooß§OŸðð𬬬… ê¯V¬X±eË–5lØÐÍÍMj™;w®bÚ´iR‹——×üùó7lØpçÎÝß–)SfÞ¼yÎÎÎB‡~ýú…‡‡ !,X ­‘‘:jÔ¨bÅŠI-ÎÎÎíÛ·B\¿~]¿¯ÜT~ØÛÛ¿õÖ[YYY»víÒ5nݺUÑ¡C¥ €"8P™Î;;::ê·ôêÕKqúôiýÆ·ß~»H‘"º§wïÞMJJòòò Ñ_ÍÝݽY³f™™™.\Ð5víÚÕÁÁ!ûKœ;wNz:hРŋW®\Y·Brròo¿ý–½·¯ÜT>µnÝZèÍVgddìØ±ÃÁÁ¡mÛ¶f¶ŠÛñPoooƒ–råÊ9::Þ¹sçÅ‹… –¥éik×® !*Uª”}ƒ+Vÿ[)ôññÉñ%’““Ÿ>}*UoݺuàÀ'NܼyóƧ6æiSùQ¯^½R¥J;v,%%ÅÕÕõÀ>lÞ¼y©R¥Ì>lG*£Ñh²·ØÛÛgeeéß GšÖÑjµÿ´A{{{!ÄË—/_ùvvv… B¬_¿þ­·ÞšÙÛÛ·lÙ233S:·’yjfEÅ€Ê$$$´Ü¹s'--ÍÓÓ³hÑ¢ÿôWR­ÑàD‰TŒÔ/ f‰¿ÿþ;--­|ùò… ~òäÉÔ©S .¼dÉ’ÆëwCNoõ7e’Òºuëõë×GEEµiÓfÏž=ÎÎΡ¡¡¦>ê GªóóÏ?¿xñB¿eÍš5Bˆ5jäòW¥K—¾}ûö¡C‡ôÛ“““÷îÝkoo_­Z5]cdd¤ÁÍ¥—¨S§ŽâìÙ³™™™uêÔÑOBˆ‹/fÝÜ7euëÖuss;räHddä³gÏÚ¶mkªH ŽTæÎ;Æ KMMBdee­[·î»ï¾³³³FgÕªUQQQ»wï>w«kÓ¦Mûôé£ÈfÍšµråÊíÛ·Ÿ8q¢\¹r!!!}úôñõõÍÌÌܺuëñãÇåo*¯Æ7mÚ´+W®<{öL×TºtéäädÊÌJ“Ë•†`QF½eË–%K–4kÖLé¾X–¬¬¬°°°¿ÿþ{÷îÝeË–Uº;¬ç8€êýñÇ·oß&50+‚#¨[zzúœ9s„;wVº/¬ç8€Š?{öìÅ‹UªT‘~,̇à@5Ú´iãçç—ýGül™——×7BBB¦L™bp‰˜Ç@Îq€,GÈBp€,GÈBp€,ÿÙ²ªŒÛ8yIEND®B`‚statistics-release-1.6.3/docs/assets/nctpdf_101.png000066400000000000000000000641521456127120000221360ustar00rootroot00000000000000‰PNG  IHDRhŽ\­Ah1IDATxÚíÝy\TõþÇñïaq%¶ÄRIÔ—²\Ñ2ËÔÌ53·²L ÓµÒ,3Mó¶˜xo÷ær-Ó®¿Üµ,Ôw3MQ÷QTHæ÷ÇÑi83ÌÌ9sÎëùðQÌ™3s¾ç3o>ße$“É$€’x©Ýx‚#!8@‚#!8@‚#!8@‚#!8@‚#!8(Á¤;úöíkuïÍ›7Í÷Î;WíÆºÄÊ•+ÿïÿþïÿþïÿ.^¼èħ8q¢|ݺuëVäË–-“”¹zõj‘Ï`ù½³tÏ=÷4mÚtÈ!§N*qŸJ•*=üðÃ'N,|lÂÒèÑ£Õüþp‚#;ü÷¿ÿݶm›Ú­p·¸¸¸®]»víÚuß¾}j·Å9®_¿¾{÷îyóæÝÿý6l(~çüüüŒŒŒíÛ·O™2%22299YíæPÚ àIL&ÓÈ‘#ûí7I’Ôn‹þU¨P¡víÚæ›999çÏŸ—¿®Zµj™2eÌwyy•\ -_¾¼âÖ­[gÏž-((BܸqcÈ!û÷ï¯X±¢­ýoܸa.4ffföèÑ#55µlÙ²ÅÂJPPÚ×€sPq`ŸäääÅ‹«Ý CxòÉ'Ó-,Z´È|×úõë-ïºçž{J|¶E‹É;Ÿ:uêêÕ« ·;vlãÆÅìáÂ…'N¼ôÒKòöS§NÍ™3§øCXIHHPûZp‚#»½õÖ[ÙÙÙ%îvãÆwÞy§C‡¡¡¡¡¡¡íÛ·OHHÈÊʲÜÇrœ_ffæ¨Q£š7o~Ï=÷4nÜøƒ>¸uë–Õs^¸paĈ-[¶ ¨]»ö“O>¹zõê‡>þüˆ#}ôÑ{î¹ç¾ûîëÞ½ûîÝ»8î¸qã$Iº~ýº|³}ûö’$ݸqÃêòòòÞ~ûíêÕ«¿ýöÛòžß|óMLLL­ZµÊ•+W«V­¶mÛ~ýõ×…ÏH~~~Ÿ}ö™¯¯¯|óСCÅï_£F¯¾úÊ<óƒ>/£¡«€î¿ÿþC‡:ujÆŒæT¤;vÄÅÅ=zԼ姟~úé§Ÿ.\¸páÂ6mÚXíåÊ•–-[}ÚÖn999Ï?ÿ¼œË•+÷ÄOtêÔ©B… Bˆ“'OöìÙóÚµkVùå—_}ú<üðÃBˆž={Ê=ò#FŒ÷ÉÊÊ2 UØ/ìtæTçëë[¿~}ó·à™gžiÒ¤‰Â'¹÷Þ{Íg¤ÊYPcاL™23fÌèÚµ«¼4ÏÏ?ÿ\xŸ””ù «ap?þ¸\# AAAE~´‰s}ñÅòŸþùСCxà«O…öDæNíŠ+Z`Gzï½÷Šè&„èÔ©“üÅ?þñóÊÛû÷ïŸ>}ºüõ“O>iïá{ì1ù‹?þØœVgÍš•œœœœœ\¶lYyÄdûöíå»Í«*.[¶ìÞ{ï­T©RíÚµK3ÖÐ\o+Ƶk×̽áW®\‘¿Øµk—FVáq̹sç† ²téRùæ /¼ ä³jè]Õ2a„1cƾk̘1ÿþ÷¿?~õêÕV­ZÅÆÆz{{ÿøãòÇ„……ÉkúØeâĉóçÏÏÊÊJOOoܸqllìùóçúé'ùÞ×^{Mþbܸqÿüç?333—/_Þ®]»Ç{ìÀæÄñññÌÕ ”‡N¾÷Þ{1b„ù3W óóóóóó“÷8pàâÅ‹%IZ»v­F>3F¹~ýúÉ+VÞ¸qÃ<Æ@Q¹rå÷Þ{OíÖPGŽ1b„Õ¬dYùòå—,Y"1ÌÉÉY¹råÿýßÿÉ©±V­ZK–,±Uª,FHHÈþóyùñóçÏÿ÷¿ÿ5§Æ„„„Î;Ë_}ýõ×òš_~ùeÒ¤IK—.ÍÉÉB¼òÊ+ï¾û®§i.vnݺuôèÑÅ×%Izꩧ䯳³³øá‡ÿû¿ÿ«V­šy¹r˦egΜIMMMMMµlpppð?üPx>ƒ 8p\™2e̽ÏVzè¡}ûöMœ8166644´R¥JíÚµ?~üüѪU+Ç×­[·?þøãå—_nÞ¼¹ŸŸ_íÚµŸ~úéM›6½ÿþû–»uîÜù÷ß4hP“&M*T¨Ñ­[·¤¤¤9sæ80iZ1kÖ¬>}ú„„„T¬X±aÆ–«ÙÚ¿Q£FB//¯|ð7ÞØ³gO—.]ä{/^l^3È#x{{?ôÐC'NLIIiÑ¢…Ú- É<à,·nÝZ¹r¥¢[·nj·œ†àE誀"G(Bp€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"F Žß}÷]=¢££[¶l™™™©ü±gΜiÚ´éèÑ£Õ> 5"8Κ5k„ GmÞ¼¹ŸŸß²eˆ ’““£ä±&“é­·Þº~ýºÚ' 2ýÇ”””ÄÄÄÐÐеk×&&&®[·®_¿~ûöí›1c†’‡ÿç?ÿÙ¾}»Ú' >ýÇ%K–Œ92$$DÞ2vìØ€€€5kÖÿØ#GŽÌš5ëþûïWû$Ô§ÿà¸cÇ//¯¶mÛš·x{{·iÓ&##c÷îÝÅ<0//o̘1AAAcÇŽUû$Ô§óàh2™RSSƒƒƒƒƒƒ-·×«WOqòäÉbûé§Ÿú裰렑‘‘jŸ7p­””µ› GyêtÅŠ­¶ûùù !®^½jëQcÆŒ©Q£Æ¨Q£;®~˜"##µÐ àjXâjXâjXá‚XâjXâjX2l‘HçÁ100P’¤ììl«íòò:rݱ°iÓ¦:ujñâÅåË—Wû ´Bçc}|| W³²²„æyÖ–¶oß¾xñâ—_~ùÁT»ù¢óà(„ ÍÈÈ“¢Yzzº|Wáý9"„øâ‹/"ïxöÙg…?üðCddäÓO?­ö ¨Cç]ÕBˆØØØ”””Í›7?õÔSò“É”””]xÿZµj™÷”]½zuË–-U«VŽŽ®R¥ŠÚ' ýÇ=z|ùå—Ÿ}öÙc=&ωILL¼téÒ Aƒ|}}å}nܸqáÂ__ßêÕ«·jÕªU«V–ÏpàÀ-[¶4kÖlúôéjŸ €jô«V­:zôèiÓ¦=óÌ3­[·>~üxrrrƒ lÞ'))é7Þ¨[·îÊ•+Õn¯Ó¬]»Ví&hWÃWÃWà ÄWÃWÂÁQ1`À€Ê•+/_¾|õêÕaaa}ûö9r¤\}€B†ŽBˆÎ;wîÜÙÖ½:uêÔ©“­{4hÀÊUúŸU § 8@‚#!8@‚#!8@£,Ç€"##ÕnÜu÷"8P"…îñçrtU@‚#!8@‚#!8@‚#!8@‚#!8@‚#z¶k×.I’¾ýö[ùæ”)S*UªÔ¨Q#µÛDpÀ(þüóω'Ö¯_?!!Á¹ÏܦM›I“&©}~»zõê+¯¼R³fM??¿6mÚ$''«Ý" 8`©©©Bˆwß}7..ΉO»gÏž_ýUí“û[VVV³fÍþýï·nÝzàÀGíØ±ãž={Ôn—0 “É$„(W®œSž-//oýúõï¾ûîO#I’yc»ví éXz>j7€[IBw &aR»9œéæÍ›ñññ!!!;vì¨V­š"!!¡Y³fò½ 6}ºœ…aaaÇ;vl‰ÍËË[µj•­{»té¢ÖIÙÛ°ììl!„¿¿¿åÆ€€!DFF†Zg¡GÀ( ÇD“0‘YtƒªÀTô¯íáÇ…M›6µÜ­ä)oܸ!€´q@ç¿Päçç[Þ´5½ÆÞ†UªTIqíÚ5ËYYYBˆàà`§Ÿ…ÑC°ÉŽ€ƒ\¤JÏÇÇG!Ýj½¼ÍgpE:,ÆÍ›7-oæää8¥a¡¡¡^^^V½Ò—.]B˜ ±pÁÐ?¢!`uêÔBìÚµ«mÛ¶æ{÷îUòX÷wUŸ9sÆò¦­)Ïö6ÌÇÇ'**jóæÍ–7mÚ$IRƒ œ~FCpt®ÄÔHÑÐ&MšDDDÌœ9³wïÞaaaBˆ‹/Ξ=[ÉcÝßU}îܹ•+W>ýôÓBˆ´´4[׆ þøãk×®-\¸P•–äææ^¹rÅÖÈE!ÄÃ?<~üø­[·þú믃6l˜³íï”Ô³gÏ¥K—NŸ>½N:III-Z´På:è ]Õ„ ÃБ֭[oذAqæÌ™{ï½·lÙ²æÊ\—.]\ÑéYøi_|ñÅ[·níß¿ßÖ£$I7nܸqãÌ[&Ožì¬&$&&:ýLAÅ}ªZµjÙ²eÕ:ú_ýõóÏ?7iÒDíËg"8ºE€Š¶nÝZ¿~ýÞ½{«Ý8]Õn£·€ÅÄÄÄÄÄØºwèСVî@pô‰@ËÆŒ£vສüuyÅ 8@‚# CôS\àà.ôVl!8@‚# 7ôS\„àÀ½Õ€" ÁÐú©®Cp€"GE`˜# 0‚#z¶k×.I’¾ýö[ùæ”)S*UªÔ¨Q#µÛDpôƒŽŠ÷çŸNœ8±~ýú Î}æ[·nµhÑâ‘GQûo»zõê+¯¼R³fM??¿6mÚ$''«Ý" 8(½Õ€þ¤¦¦ !Þ}÷ݸ¸8ç>ó„ ¶mÛ¦öùÝ–••Õ¬Y³ÿûß­[·8pàÑ£G;vì¸gϵۥGŒÂd2 !Ê•+çܧݰaÃôéÓ}||”?$77777×E§9sæÌÔÔÔÄÄÄE‹Íž={óæÍ’$5ÊE‡3‚# ôSmÚ´©C‡ÁÁÁQQQ£G6ç³—^z©k×®BˆV­Z…‡‡;ëpçÏŸá… T½zu劌ŒŒµÜ2iÒ¤æÍ›;¥Iß|óMXXX¿~ýä›Ï=÷\RRÒÙ³guÖ†Ep@?¾ÿþûvíÚíÛ·/...66váÂ…ýû÷—ï5jÔÛo¿-„˜1cÆ×_í”ÙL¦~ýú}òÉ'¥|ªcÇŽíܹ³ôMÊÊÊ:|øpLLŒ$ý=ئ]»vŒt,=;ªÊŒFæH!ð7oÞŒ Ù±cGµjÕ„ Íš5“ïmذáÑ£G…-Z´hÙ²¥SŽ8}úô¤¤¤äää *¨}ö·?Þd2…††Zn B\¼xQíÖy<‚#vSw꘭?çvïÞ}üøñéÓ§Ë©Q6|øð±cÇ–øœyyy«V­²uo—.] oܾ}û„ ¦OŸÞ¸qc׬½ ËÎÎBøûû[n Bddd¸®Apô€º àfÚü;|ø°¢iÓ¦–£££•<öÆòÈ¢Ï×d}¾YYYqqq:t>|¸c­ÍÏÏ·¼YPPà”†UªTIqíÚ5«Ö !‚ƒƒk*ÌŽè„<¯ÙrlŸÂËKÑ|†€€€Â!¬sçÎMKKëÚµëG}$o¹zõj~~þ´iÓjÖ¬©d¹Ÿ›7oZÞÌÉÉqJÃBCC½¼¼¬z¥/]º$„0bá0‚#€â0Ìð uêÔBìÚµ«mÛ¶æ{÷îUòX{{„åÉÚ3gδܘ™™9vìØ¶mÛ* ŽgΜ±¼ikʳ½ óññ‰ŠŠÚ¼y³åÆM›6I’Ô AƒR^aЉ&MšDDDÌœ9³wïÞaaaBˆ‹/Ξ=[Écíí?~üøñã-·„‡‡W©ReëÖ­ [{îܹ•+W>ýôÓBˆ´´4[×Þ† ! }ôQÛ¶m³³³'Mš¤Â·DwŽ€Ç£+€Y·nÝ6nÜØ¨Q£ |üñÇ×®][¸p¡*-ÉÍͽr劭‘‹Bˆ‡~xüøñ[·nýõ×_}z:u’’’Z´h¡ÊuкªЕ֭[oذAqæÌ™{ï½·lÙ²æÊ\—.]+*‘žžnyóÅ_¼uëÖþýûmí/IÒ¸qãÆgÞ2yòdg5& 11ÑEgjdT”@ž£v+Ø­jÕªeË–Uëèýõ×Ï?ÿܤIµ/œ‰àœoëÖ­õë×ïÝ»·Ú 3ÑU x68Ц˜˜˜˜˜[÷:ÔêÃ]àŽÀÝÆŒ£vສ”ŒaŽAp€BG(Bp<3cîDp€"GŠ0?@p€"G(Bp<3cnFp€"GJ1?ðD»ví’$éÛo¿•oN™2¥R¥J5R»]ðHGŒâÏ?ÿœ8qbýúõœûÌmÚ´™4i’Úç÷·}ûöõìÙ³J•*~~~Íš5›5kV^^žÚÒ‚#F‘šš*„x÷Ýwãââœø´{öìùõ×_Õ>¹¿¥¥¥µmÛvíÚµ;vŒ/S¦L|||=Ôn—ø¨ÝŽ`f ˜L&!D¹råœòlyyy7nüí·ß¾øâ‹‚‚»›››+„(S¦Œ+N3>>þêÕ«ÉÉÉÍ›7BLž622266ÖrˤI“äœWz7nlÓ¦å³ 6L±uëV§<¿‘Qq`y~ ÅN@³¾ÿþûçŸþÞ{ï‹‹óòòZ¸pá?ü ß5jÔ¨š5kNž>>½zõêܹsAAÁÊ•+m­•coÃr}ªZµªŠŸ•ò×_ýüóÏMš4Qû2À™Žì&ÏQ»4mëÖ­õë×ïÝ»·Ú 3ÑU œ/&&&&&ÆÖ½C‡e¡ODpî6f̵›GÐU x¦TTDp€"G(Bp '<"¢ôOÂÄj0 ‚#`0’”ž–&$IHú}RQÿ¥FpŒD’„ü &“0™ô™%!LEýÓã¹€›QÚ)ÕæÔh¦¿ì(§Æ"‘ ÔŽ€1NúSLj”‘ tŽ€±•¢è¨­ù1%¦Æ;ÖN“Àã0B¹Q9²#8ŠàžF:*,7†´k×.I’¾ýö[ùæ”)S*UªÔ¨Q#µÛDpôN÷åFR#EGÕŸþ9qâÄúõë'$$8÷™oݺբE‹GyDíS¼mß¾}={ö¬R¥ŠŸŸ_³fÍfÍš•——§v£ô€àx×~JµŠŽvŸ2ÙF”šš*„x÷ÝwãââœûÌ&Lضm›Úçw[ZZZÛ¶m×®]Û±cÇøøø2eÊÄÇÇ÷èÑCívéÚ àJ”X0™LBˆråÊ9÷i7lØ0}út;BEnn®¢L™2®8Íøøø«W¯&''7oÞ\1yòä~õÕWëÖ­{â‰'\qDã âÀqÚšXmë=·í@16mÚÔ¡C‡ààਨ¨Ñ£GËMñÒK/uíÚUѪU«ððpgîüùó/¼ð AƒªW¯®üQ‘‘‘±±±–[&Mš$ç¼ÒÛ¸qc›6m,ŸmذaBˆ­[·:ë¬ ‹Š#!ÄÞjÏ*ORn ùþûïŸþù{ï½7..ÎËËkáÂ…?üðƒ|רQ£jÖ¬9yòä3f8+¢™L¦~ýú}òÉ' 4(ÍS;vlçÎ¥oR^^Þk¯½Ö¬Y3ËÇB”-[Ö)gmdG@¿<.ºŸI„Ká¤OèÆÍ›7ãããCBBvìØQ­Z5!DBB‚9B5lØðèÑ£Bˆ-Z´lÙÒ)Gœ>}zRRRrrr… Ô>ûÛ|||¦Nj¹åòåËS§Nõöö~î¹çÔnÇ#8Àµ3c<åF Ý»w?~|úôérjB„…… >|ìØ±%>6//oÕªU¶îíÒ¥KáÛ·oŸ0aÂôéÓ7n캓r a–~ùå—!C†¤¦¦Î™3§nݺ®k§AÜችե–ž–NÑRqŒ¬ŸØÃ‡ !š6mj¹1::ZÉSÞ¸qCYô ½2deeÅÅÅuèÐaøðáŽD~~¾åÍ‚‚§4ÌìĉÆ [±bEݺuüñÇvíÚ9ÖNX"8:e¼¸›ö~ÃäyÍÒÝ«kyy)š`²çEcîܹiii]»výè£ä-W¯^ÍÏÏŸ6mZÍš5•,÷sóæMË›999Ni˜lñâÅ/¿ü²ŸŸßܹs `׌oƒë Tä‰ÕîîIwn?µ‰ŽoèD:u„»víjÛ¶­yãÞ½{•<ÖÞay²öÌ™3-7fffŽ;¶mÛ¶J‚ã™3g,ož={Ö) B¬X±â…^xþùç¿üòKç\\!ŽîbÈÞj@7š4i1sæÌÞ½{‡…… !.^¼8{öl%µ·GxüøñãÇ·Ü^¥JåKÞœ;wnåÊ•O?ý´"--ÍVÀµ·a&“i̘15jÔX°`··· .³¡%8~÷ÝwK–,IMM­P¡Âc=6zôè   bö¿råÊ'Ÿ|²sçÎS§NU®\¹aƯ¿þzDD„ÚçÀ5ÕAŠŽÐ__ß3f<ÿüóÑÑÑ={öôõõýöÛo/^¼¨ä±Žõcñâů¾úêK/½dU•4óññéÕ«WçÎ V®\ik­{vðàÁC‡Õ¯_РAVw=ûì³;wvâ9!‚ã¬Y³¾üòËŠ+6oÞüøñãË–-;räÈüùóË—/_äþYYYO?ýôÅ‹ëÖ­söìÙÕ«W¯_¿þÛo¿mذ¡Úg(@Õ0ªnݺmܸqòäÉ ,ÈÌÌ X¸p¡*Ÿ¶—››{åÊ[#…?üðSO=5wîܼ¼¼Áƒûûû¿÷Þ{¥?®ü±Š¢–yöÕ·9TÒî%ì_âÕ(ñJßH¯DDxzZºpêq¬®F¸wÉh™gÿ²8WÃuÆŒ£vîRü/~ÇŽÕn Vè<8Ê“¹*V¬hµÝÏÏOqõêÕâž’’²téRyŒmƒ Ê”)£ð¸)))jŸºB„‡‡«Ý ñè«aoãKÜ¿„L¦pûË–î¹Â®8Ê]Ïi|¡Gÿ²Ž)þǾðÛzá ‘Aè|Œc`` $IÙÙÙVÛ¯_¿.îÔ‹Ñ«W¯ƒnٲ孷ÞZ·n]\\œü@Àm˜R ÐGŸ€€€Â•Ŭ¬,!„yžu1$Iª\¹ò€zöìyîܹuëÖ©}N@±àpG!DhhhFF†œÍä¡ ¡¡¡…÷?räȸqãÖ¬Ycµ½AƒBˆóçÏ«}B€Q¹mÚŠ­v¸„)º#¸“æ‚£™O»vífÍšµuëÖñãÇ—/_þøñã³gÏŽ}á…–/_žŸŸ¯v¨ìn£­®j+™™™?ýôÓÚµk·nÝš——'„¨\¹²¯¯ïöíÛ·oß>oÞ¼þóŸaaaj7p ƒM©ö˜Ng‡Ñ[ Àói18^ºtiÆ ëÖ­Û¾}»\V¬T©Òã?Þ©S§¦M› !~ûí·Y³fíß¿ÿí·ßž7ožÚíì`ÇZ<ºäšääIƒÀ“i+8.\¸pݺu;wî,((B?ñÄO>ùd³fͼ½½Í»µjÕªiÓ¦=ôÐŽ;Ôn2'(}ì#;€h+8¾÷Þ{BˆÀÀÀÇüÉ'Ÿ|øá‡-ó¢¥òåË—+WŽ~j@[O¬vÍÁÉŽàZÚ ŽÝ»wïÔ©Ó#ùä¹ç’%K FŽ)§F!ÄØ±cÖ¬Y#/úSØÚµk…ãÇ—S£¢nݺ¯¼òJ~~þ¯¿þªöEà8ÍÀ£h«â(„¨[·îܹs­6.X° ,,ÌËË‘˜»cÇ//¯¶mÛš·x{{·iÓfÅŠ»wïnÖ¬Yᇤ§§W¬X±AƒV BœùpE×$LR¸»{ó-[¢úoŠê Ðx{ÔÅÕ°dØ«Qøm½p…È ´ÿùÏ !ú÷ïÿꫯÊEÁR ”$);;Ûjûõëןc1¶mÛ6iÒ¤£G†……}ðÁ>ú¨ÚW€hëé­à9´SSS«W¯þÖ[o96¦ˆÓóñ (\YÌÊÊB˜çY–››;}úô ”+Wîõ×_8p y†5€1i(8ÞºuëÚµk 6tVj”…††¦¦¦feeùûû›7Ê#ŠBCC‹|HAAÁ¨Q£Ö¯_ß¾}ûwÞy§˜| ”È SªeòÄjaÚ[ÁQ[EGðZÇÑËË+ àÈ‘#¶–WtLlll~~þæÍ›Í[L&SRRRPP¼ºxa ,X¿~}ïÞ½?ÿüsR#€LCÁÑÛÛ{РA—.]š5k–Ÿ¶G^^^Ÿ}ö™<®Q‘˜˜xéÒ¥îÝ»ûúúÊ[nܸ‘žž.Ï3™L .¼çž{Þzë-µ/  Ú­·jh1p>{€‡ÐPWµ¢S§N'OžLLLLNN~òÉ'«W¯^¦L«},—òV¢jÕª£Gž6mÚ3Ï<ÓºuëãÇ'''7hÐ`ðàÁæ}’’’Þxãºuë®\¹òâÅ‹'Nœ(_¾|Ÿ>} ?[·nÝúöí«öu‚{­lù«µ›1B­ÇØØXù‹}ûöíÛ·¯È}XéfÀ€•+W^¾|ùêÕ«ÃÂÂúöí;räHyEžÂäºcNNÎþýû ßËÄjÀšMÈHG°‹¶‚ã3Ï<ã¢gîܹsçÎmÝÛ©S§N:É_7iÒD#«0hж‚ãôéÓÕnàLt¿ !„FÆÚ ŒúEGVsà ´Í®\¹²ÿþ³gÏV­ZµeË–—.]Rø‘-pÍÇŒŒŒ9sæ,]ºTþ´À_|±e˖ݺukРÁÔ©Sƒ‚‚Ôn àz#1_tECËñ!nݺõꫯ.X°Àßß¿[·næí!!!?ÿüs¯^½ä4 ÀƒHB(é–'V«ÒB­¬ËCÈ yÚ ŽsçÎÝ»wïc=¶víÚ?üм}É’%]ºt9vìØüùóÕn#€Ai+8nß¾ÝÛÛûƒ>¨P¡‚åvooï·ß~»B… ëÖ­S»ì§…z^±´RtmÓVp]¿~}µÛ8›^§TtG[Á±gÏž’$5êÀ–Û80räH!D×®]Õn#eì_ÎZʼnշ …¢#h˜¶ÖqlÙ²å AƒæÍ›÷ì³ÏFDD!~üñÇß~ûíèÑ£ݺu{â‰'Ôn#¸!@ô…o¾ùfÓ¦M§M›–––&„8}ú´¢råÊñññ–+;ð$&“§ôÈËEGO— n¦¹à(„ˆ‰‰‰‰‰ÉÌÌLKKËÍ͈ˆ U»Q€}˜R-þøãG}töìÙ/^¼xñ¢¼1,,ìõ×_ïÖ­›Ú­J¦tJ53cP"å 1š Ž^^^=zôxî¹çΟ?ŸžžîããS»vm&ÄP SdÀLsÁQ&IR•*UªT©¢vC8•²Ïáƒ@›´594HÍ)2Ì­ %GÎGÇ.èÁp&fÆIèrFÖåAp€BGî¥ìóc4Hµ¢#ÃhÁ€ñÁƒ AGN¦ã™1Œt`pGÀít<3.Bo5m 8NÚÕzR ¸ÇÎôV06‚#xz«hÁ€Fivb5EG†EpÜKï3ct<¥@pœƒ™1†BÑ€1¨Á“çǨ†aŽÔFpà$[‹‡¢#"8Ð.ÍÎc"8n¤÷™1F£BÑ‘Þjª"8p¦T€¾'`Jµ#t1?†‘Ž …à…Þjê!8îÂG‡h~ EGÆApà [‹Œ‰à¥åî¢#½ÕTBpJ‹™12G¦Tëb~ Áœ€‘ŽŒ€à¸3cà\ôVPÁ€ÖibõívRt wG¥Vš)Õ sÏApJ…™1°äÖ¢#½Õ܎พ8ò)Õ`Gp&F:Ð1‚#à)ócÜÞjîEp 6ÝÍ¡è@¯Ž€ã˜sû*Põc 8.f€™1(Ì}EGz«¸Á@i1¥ ‚à@ sô¸ù1Œt ?GðpôVp‚#à E3càhlè ÁŠ”‚×âÑÝjŽwNË-EGz«¸Á@©¸sJµÇÍ!8.ÃG!é@GŽ€#øÌh½Õ\à@3t:ÌQPt Gž„aŽ "‚#àFàèÄ)ÕàŽ¢#½Õ\ŒàEŽ€Ý˜cæüµxô;ÌQ0Ò€ç#8€û¸<;Ò[ À•Ž€ a€£z˜j!8€[Ña Às8ÄuSªu=ÌÑè­à2GÀ>ÌŒAéQtࡎ€³f€£ó§TÃY(:p ‚#Ï£ƒù1x"‚#í1Æ0G²#CpìÀGx z«¸Áp*ƒ päSª„¢#ÏBpà‘t0Ì<Á€#\>¥ÚÃ…K‹ŽôVp6‚#¨Œkž‚à(Uò̃ p„¡èÀ©Ž´Ê0½Õ‚¢#Ap`'ÍL©f~ ¸Ápú©Q:®*:Ò[ ÀyŽ€",ým‰O©v:¬hÁ€†i˜£ Qtà$GLÃ):Ð2‚#à pÁ(ÿæþ)ÕÆë­vIÑ‘ÞjÎ@p͡À6R£ŸZUúæè*”Á€}X‹Ç=(:Ð ‚#Í3Þ0Ç;çMv -G %ÌŒ¡Ÿ„Þj¥Cp ˜f>¥Ú8(:Ђ#OPloµ¾çÇ89;RtP G(BpŠÃG+L©VÖ4‚àÀCunõ³w^v¤·€£Ž”ÑöÌ}s 8Ž2^?5ÔEрꎀM% p„û»·Z0Ø€ÚŽàIœ–):°Ápˆ!û©5>¥šaŽàjGÅð½Õ‚kê!8Ec€ã]´=¥Ú€œ“é­`'‚#`?CöS`”àøÝwßõèÑ#::ºeË– ™™™ ˜––ùûï¿«}î°Ý[m¨aޏŸ!‚ã¬Y³&L˜pôèÑæÍ›ûùù-[¶lÈ!999J»`Áµ›ÐO À`Gnæ£v\.%%%11144téÒ¥!!!Bˆ÷ßþüù3f̘8q¢­Geee>|xÅŠß|óÚg1j?µÆ§T–œKõÝ‘‹Ž|{( ÿŠã’%K FŽ)§F!ÄØ±cÖ¬YSPP`ëQ;wîÓ§©B“3cè­5è¿â¸cÇ//¯¶mÛš·x{{·iÓfÅŠ»wïnÖ¬Y‘zÿý÷oÞ¼)„X¸páo¿ý¦öI€M¸Îƒ£ÉdJMM ¶Ü^¯^=!ÄÉ“'mÇV­ZÉ_üüóÏjŸÜ­¸ŽFí§†Æ9!;€:ŽÙÙÙùùùVÛ„—/_vÑq###­¶¬]»ÖÍç~êÔ)7QËì»á"==ÝÆ=6ïò öþl„‹p¡ÁOK —¤ô´´"[¬¼µºùMIKK“$)­È ¢èñ"\ OOK×Íq ®†%#_Ž;ªÝ­Ðyp”§NW¬XÑj»ŸŸŸâêÕ«.:nJJŠÚ§.„áááj7ACìºEï,IÂdÒÇ5uàgC›?NE¶Ê$LR¸óâµyj(}ÝQ¾º¹ NÁÕ°dØ«Qøm½p…È t>9&00P’¤ììl«íׯ_wêŽJD(@è>8úøø®,fee !Ìó¬3Vp´¦Á)Õf|nu!¥ZÙ‘ÅÀ”DçÁQš‘‘!'E3yüShh¨Ú­ƒç`Z <«‚pýÇØØØüüüÍ›7›·˜L¦¤¤¤   èèhµ[ tl ¾š£ãÙÑ$Â# :ˆ €úŽ=zôðòòúì³ÏäqBˆÄÄÄK—.uïÞÝ××WÞrãÆôtæ‚~jèuG® óYÕBˆªU«Ž=zÚ´iÏ<óLëÖ­?žœœÜ AƒÁƒ›÷IJJzã7êÖ­»råJµÛ M¢Ÿ†‘ž–.…ó€"é?8 ! P¹rååË—¯^½:,,¬oß¾#GŽ”WäPIHBóËJ˽Յ)÷V¹„̪àœÎÁQѹsçÎ;Ûº·S§N:u*ò®)S¦L™2EíæCU”á±ÌŽ|!ô?ÆPÈàÕ)èƒ8Á€çcnu±Éެé (G XôSC¨;p ‚# ýÔEòˆ™1f|ŠLIìÎŽBpl£Ü}¡î ”Žô¢¨¢#ÃK…¢#€»À@è°PGÀÆGú©¡StXpÁ@Q3ÆŒÞj‡¤¥¥•Pw¤èÁ¸ƒr# „`® ÛŽ0(Öý6ÖåqT Ù‘¢#`TG@A¹ñ.:åFoµrrv¤ôÀÁ€®Qt,“Éd³ôHÑ0$‚#ŒÈºŸšr£™nfÆÀyÈŽÌŽôîî¢#½Õ`º Á†G¹Ñè°.µ¢³#EGÀ`Ž0œ»ú©I…èxf J‰ì€àà}p´(:Ò[í0¦ZGp„±PnJ©ˆ©Öà 80 F::Ù0&‚#ŒŠr£±Ñ[]zLµ ˆàác‹# a2ÀÌŠŽNuWv¤èÁ†D¹ä®é2dG@ïŽ0Š¿Ë¤Fƒ£èèlÅ}2!}!80²£ ÜÎŽ]óQ»€{Qn,’A8b&)œ‘¯Nc®;š¸¨€NQq„!D„Gð>†»Ptt ¹ÛZíVp‚#Œ„r#,™LB’ÒÒÓ˜"ã|tX:Ep„þIBJKO#5neB̘t†1Ž€áéû#ª‹g2…Ëó9àò¨G:¯Ý âCˆ ÜX<#¿»³ £«˜„î^耇#8Bç$!™$‘ž–¦vC QéiiÌ’q¡;Ù‘…} 80<“É$ ŠŽ®rg¢ ¥G@ŽÐ3¹ÜH'uqŒ<ÀnGéðtGè©Q#p¼¢£Kݽ:¥GÀs¡[·Ë€BήV(;Rz<ÁºF€=˜^íZ…V§ôxÖq„N±8Ÿ p„›™¬êä1·?áš¿ôÍ£â=’$É$øpj8ˆ˜Kõi„ô\ž‚à3c,™„I2‘ÕAÏ5 }GèåF…è§.†ÉDvt¡¢ŠŽ·ï¹Sz$>ÚDp„¾HbPJL‘qÛÙQ #8BG$I˜L’(7 (:ºZ±ÙQ0ðÐ$‚#ô‚Z£CàX¤ÛEG²£«•”!8BW(7*ÅG…ÈŽ®¦,; 8B(7ÂÙþéHvt5ÙQm 8ÂóÝI”á*dGWS–ñPÁŽZ£ýÂ#Âå€ÍÇâÝ5½šì¨%ÄG@-Gx2‹ÔH¹®@vtÅEÇ¿A|܎Ϫ†Ç"5:crdÚŸv ¸Gx&z¨&‰ô´tA?µbÝÊþºãíÇQ}Ü‚àtwj¤Ü·";ºš£ÙQ×#8ÂÓPk„ÛY!ÙÑÕJ‘ñp%‚#¬ûí,dGW+]vwÇG$à,LŽç Öè< p´—\t¼ë¯sväJºˆ9;–â›Ι=8Á¢¨ÔH¹îTtvüIãJòuuF¥œÉ×€Sá HNA?µ‹È¥G²ˆë8´LOÑÏd °ÁšÇ[²³EDDð~é˜"ŠŽ·ï ;º˜ó²£ ÿ(‚#´ÍÆ›1åFhÙÑÕœšo?%HÀNGh•íi¤FGÐOí$6‹Ž‚ìèz.ÈŽ¢PR ÛŽÐ$Þ}]F’¤´´4µ[áÙÈŽjrMv¼ýÜta%!8B{Š}ߥÜèÊîÄ2=®æŒezJ8]Ø€ ,!5ÂX–ŒõÝ&Vw-“V/ù &SZZ«ˆ–ŽÐ I¢ÏÕX÷Û‰JÈŽ‚O—q=×gÇÛǹƒ ÐU mP)7:ˆ~j—)n°ãí=è¶v1Wy,âhL£á¡6eo«¤Fx*>]ÆÕ\?䱈c’ aTG¨ŠwS7¢ŸÚJ.:ÞÞÒ£+9ï“ í>2 Cp„Jìy¥Üè8ú©]ÏŽì(øcÉ•ÜÛmm}p$Œà5ØóÞIj„ö)ÍŽ‚Ò£‹©ÑmmÝ„B R"¡#G¸—o™¤ÆR±¨¾ÐO­!”]J½nkë†X|)CB7Žp#;ß)Ið vo?€Ò£+i ôxWs(CB/Žp Þ Ýr£Û9’¥G—ÑLéñ®FU†„Hx‚#\ÌÑÈH¹žÈîì((=º˜ÆJw5 Dp„Ë”â½ÔXZ«²ŠƒÙQP˜wséQh÷÷‚ OAp„k”¢÷Ôè\ôS»Ÿ#ÙQ]L“=×E·” #8ÂÙJ÷¶GjtOxkÔ=³£ >º˜†{®‹n/!Cp„ó”ú­ŽÔèt”UäxvÄGWò„žë¢n#D r$܈àgpÆÛ©Ñ9(7jI©²£ >º’çô\Ýü»(FÂmŽ(óKU©_§H®@¹Q J›ñÑ•<­çÚæyPŒ„»á§¾‡‘ÆcË'úæ„ì(ˆ.ã±=×6OÈv1R#QjGØÉÙï[¤F¡Ü¨)ÎÉŽâîø(HΣ»øø÷™‘#áTG(ãš7*R£3QnÔ6§eGañkHÒ¹ôÿ>Åbs¤ J¢$^j7š'I·e”ÿ9ñ‰I.C¹Q›äìèÔg4ÝþàùœÂtg죮¨©énj7šCÅ6¸²/L~ï$5:åFá̺ãßOJÒLB.…[Þ4J’(GÜÍ\ºpA‰ñö„$?µÚ§ª#w§FÊçüºãßOMÒÉÒÓÒ U€,̲™––V¸$IaÒh¨8Bá¾±ötO»©Ñ#˜³£K~¬ ‚¤3`ø£BE¾ÂP˜4‚£±¹ñ}…îiW¡“Ú3É¿ ®ýSŠét–ñQð«÷·Â1±È2$iRކäöw ®B'µ‡sÉÇ"S(A Bd)˜¯HÛ&iÒÓ C½7 R£{=”k»­­v×ßEl„](@ÚIyšJ­"8êªï tO»ÔzáŽnë"ŽJÒI¬ ‚_LûØ ˆJm"8ê‘$ !n¯!¡Ò/‘Ñåè¤Ö·–ï:ð]?IáEn‡$H§²7P 2¥[°^˜ำ’NzZšŠ©‘w\‹Ô¨Sò/Žü›¬R î¼tX.ëÃb+ö2ݽŠ8×Ï©L¶I¶©Ýjý â豬~ ´‘(4º©QÔé¹.¢E ˆZyµñ Ô Ý«˜Ãâ³#¯¢Ê=І_»‰ŒîcQn$5ê˜j=×E·ÆFˆš{-Ò(¤ÚŠ©$V*GWµ¶YvY~š‹–~ˆåÆÑ7í&¤F#Q¿çºèf™îúgõ2…âîÅæši€©Xô}["8j‰Õë¯URÔ^D 2º©Ñ4ÿn9Ò!&B¤Ç(2MªÝ(ÕÐU­žÂ/©žóƒ¨¡4ã 5›yà£Ðø¯žÕO¦'¿Ð¹å%‘ll´àè.zyõô€÷-]"5Bqw|ñ›XøgU//†®Bˆ„¶/åðaý½2zÒ•þq7ó¯¡Gþ!§$J ÍtB$´‡1ŽÎY¯žõ O~´ÈèaïO: ýåáØ¤FX²þ¨ÑŠNÃTÄ¿Âc¾ >hÒÖ˜H_¨‚Š#ŠF‰Q}¡ŒURèã×ÖÖ¼­ìh¨_«s•JÚp‚#7fQh¬"eô™ ­OÒÎ@) ) ŸŸTÒ€£Ž–=\:|›ñ8òwÃDd„ã ‘ ­ÏÙö –ØÁ­¿ß²K’‚4 Ë@ï(žÂ22JDF8Aá) ø+_⯒íd®ð4®ÈæÓÁ ‡09ÆX,™3ßE[$!LB·gÀá\–O,_Ôn—69;Çd&SzZZq3uìôÐã4C9Ë_×¾[^^ðý*å+IdddJJJ‰»¥´©,FÛ‹ØíYŽÖ²³³óóó­¶!._¾\â3ð;à°Èz‘jUíÓVCd¤!OÛ®†.ˆ%%W£ž¨§v3=˜”⑱۰ßt‚£µœœ!DÅŠ­¶ûùù !®^½ZòS•"JþËõõýŠÉ1Ö%IÊÎζÚ~ýúuq§î`@Gk>>>…+‹YYYBóûL×(„HLL¼téR÷îÝ}}}Õn€:¤»VBÆ_}õÕ´iÓªU«ÖºuëãÇ'''GEE}õÕW…—é0‚£M+V¬X¾|ù¾}ûÂÂÂzè¡‘#GÊ+òÁŠ0ÆŠ ÁŠ ÁŠ ÁŠõïÌ™3M›6=z´Ú QSNNÎþ󟧟~ºqãÆ­[·8p௿þªv£Üí»ï¾ëÑ£GtttË–-233Õn‘jøy(¯Bˆ?þøcذa111Í›7ïÛ·ï¶mÛÔn‘jrssçÍ›÷ì³ÏFGG·k×nĈGŽQ»Qî–––ùûï¿y¯Ñ^Z Ž:g2™Þzë-ó‡nS^^^ÿþý§NzáÂ…Gy¤N:Û¶m0`À矮vÓÜgÖ¬Y&L8zôhóæÍýüü–-[6dÈœœµÛ¥~ŠÁ+†bãÆqqq7n ‰ŽŽÞ³gO¿~ý6nܨv»TŸŸÿâ‹/Θ1#33³uëÖÕªU[·n]—.]vìØ¡vÓÜjÁ‚¶î2âK« ºöÕW_Õ«W¯^½zo¾ù¦ÚmQÍ¢E‹êÕ«—-o9|øðC=T¿~ý?ÿüSíֹáC‡î¿ÿþÖ­[Ÿ?^Þ2eÊ”zõêMž}ú|óÍ7¶v0æK+ÁQ·òòòÆŒ4vìXµÛ¢²ôôôŠ+6hÐÀrcݺu…'OžT»uî°cÇ//¯¶mÛš·x{{·iÓ&##C~c0~ŠÄ+†lÓ¦M’$uíÚÕrãG}”’’òàƒªÝ:w BXfD“ÉtåÊ///s”Ô±÷ßÿ‹/¾øâ‹/}ôÑ"w0æK«þ¿ñ†õé§ŸíÝ»wÞ¼y}ûö}ôÑGåwD#‹ŠŠ²Ú’œœœ˜˜X¶lY«º‚.eggçççZmw× Âà?EâC–››{íÚµ:uê¼û/6o¯Q£Æ'Ÿ|Ò°aCµèn‘‘‘ ,èß¿ÿþýÍûöí› vÓÔgØ—Vºªu(''g̘15jÔ5j”ÚmÑœüüüùóç4(;;ûÃ?¬T©’Ú-r9y~_ÅŠ­¶ûùù !®^½ªvÕdÀŸ‡ÂxÅ0»víš"55uõêÕÓ¦MÛ¶m[RRÒ믿~úôé#Fè|ªlQ²²²>üðÃ7n4hРW¯^:t(_¾üòåË9ÇÜŠa_Z©8z°¼¼¼yóæ™oz{{2D1mÚ´S§N-^¼Øh}+¶.ˆÙ¶mÛ&MštôèѰ°°>øÀÖ° ”$);;Ûj»¼äŠüDZ1óç¡0þbV®\9ù‹?ü°]»vòׯ ;sæÌ²eËV­ZõÜsÏ©ÝF·3fÌ®]»ÆŽûÒK/É[Μ9Ó«W¯7Þxã‡~ˆˆˆP»j2ìK+Áуݺuë“O>1ß,[¶ì!C¶oß¾xñâW_}Հ㸋¼ ò×¹¹¹Ó§O_°`A¹rå^ýõç=ÒÇÇ'  ðŸ¿YYYBód@C1òσ#¿bV±bÅråÊI’c¹½}ûöË–-;tèÚ t« .üüóÏuêÔ1§F!DÕªU_}õÕwÞyçÿûŸÁKÔ†}i%8z°òå˧¤¤Xm”×ô—'‚Ynÿá‡~øá‡ºuë®\¹R톻õ‚! Fµ~ýúöíÛ¿óÎ;:þ}¶%444555++Ër<{zzº|—Ú­s7~,ù£H!!!W®\‘$Ér£üwE^^žÚ­s«ŒŒ !DíÚµ­¶Ë…Æ‹/ªÝ@õó¥•à¨7µjÕzê©§,·\½zuË–-U«VŽŽ®R¥ŠÚ TÁ‚ Ö¯_ß»wïwÞyGí¶¨#666%%eóæÍæŸ “É”””­vëÜŸK¼bX‰‰‰ùúë¯>,Ï•ÉK«m…ËÚµk{{{9rÄd2Y&iùïó:uê¨Ý@õô¥UíÈárû÷ï7òç@´oß¾iÓ¦999j·E5§OŸ¾ÿþû;vìxíÚ5yË—_~Y¯^½>úHí¦¹?%2ø+ÆŸþY¯^½=zdddÈ[öíÛݼyóK—.©Ý:w{ùå—ëÕ«÷É'Ÿ˜?5çðáÃ-Z´hذajjªÚ­sŸñãÇùÉ1Æ|i¥â»xñâ‰'Ê—/ß§OŸÂ÷vëÖ­oß¾j·ÑåªV­:zôèiÓ¦=óÌ3­[·>~üxrrrƒ ¬vÓÜŸ¯~ýúñññ3gÎìØ±c³fͲ³³wìØ!IÒûï¿ï½÷ªÝ:w›2eÊsÏ=÷Å_¬^½:***##c×®]&L¸ï¾ûÔnúŒùÒJp„Î:uJ‘““³ÿþÂ÷g"í€*W®¼|ùòÕ«W‡……õíÛwäÈ‘ò²†ÂÏJôòË/WªTiþüù¿ýö[PPPllì믿.¶ÑTªTiõêÕ_~ùå–-[~ùå—   Ç{lèС5R»iZaÀ—VÉd2©Ýx€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"GÆ2zôèÈÈÈ_~ùE톈Ï>û,22rÑ¢Ej7”"8@µS©R¥¦M›ªÝPŠàêhРAƒ ÔnØ®jМüüü[·n©Ý °Fpà&L˜9}út«íüñGddä£>š——'„¸téÒÌ™3;uêÔ¤I“&Mš<õÔS~øáùóçm=­|xûöí›7oÞ¯_¿Ï>ûÌ*Û>}úwÞéÔ©SãÆÛ¶m;dÈ;vsFóæÍ³œ#·äÔ©S‰‰‰<òHÆ ›5kÖ«W¯üÑÖ3ìÙ³'**ªM›6×®]3o¼~ýzÛ¶m£¢¢öíÛ§ö7 €Þx†Î; !Ö­[gµ}åÊ•Bˆ®]»úøø\ºt©OŸ>sçÎ=sæLÍš5«W¯~òäÉÿûßqqq™™™¥9úŒ3¸nݺ¼¼¼;w~úé§}ûöÍÈÈw8räHçοù曌ŒŒûî»Ïd2%%%½ð 7n´ë@sçÎýøã}}}yä‘€€€={ö¼öÚkkÖ¬)rçèèèž?~êÔ©æ}ôÑÙ³g_}õÕxÀÝß$zGpàš7oròäÉ?ÿüÓ¼±  @UÏ>û¬bÙ²eÇŽk׮ݯ¿þº|ùò~øaË–-Í›7?}úôO?ýäð¡þùçyóæÕ¨Qã»ï¾ûå—_V­ZµiÓ¦Ç{lïÞ½sæÌ‘÷™1cÆ7†úÛo¿-[¶,))iüøñ&“iöìÙvkÉ’%C† Ù¼yóþóŸ 6ôïß_1þ|[û>¼nݺ˖-Û¼y³bëÖ­ß~ûm£F†ªÞ÷ €nx//¯§žzJÜ]tܹsçùó磣£ëÔ©#„ÈËË‹‰‰yóÍ7+V¬(ïàïï/—*?îð¡§M›&„øä“OÌ5¼J•*}òÉ'¡¡¡K—.½råŠâСCBˆ=zx{{ËûÄÅŽúê«íÛ··ëX<ðÀ¨Q£¼¼¼äS~õÕW…ÇŽ³µ¿¯¯ïG}äãã3a„ .Œ?¾|ùò3fÌ07œˆàÀcÈвßVî§îÞ½»|óµ×^ûòË/ï»ï>ó/^\µjUiš™™™žža5ºB… >úhNNÎþýû…rr;vìöíÛåÑ–¾¾¾#FŒxýõ×í:Ü“O>iy3 ÀÛÛÛd2󨨨×^{íܹs]ºt9}úô[o½U»vmW}Ëñð 4¨]»ö±cÇRRR"##óòòÖ®][¾|ùN:™÷9}úô¦M›vîÜyòäÉ'N”rh£"--Mþoddd‘;œ={V1iÒ¤‘#Gnß¾ý…^(W®\TTÔÃ?üøãGEEÙu¸êÕ«;ÐÈ—_~ùÇûì³æŽéÅ‹O™2%//¯f͚͚5kß¾}Æ ÓÓÓ'Ožl×QòóóÍE¾ÜÜ\!DµjÕlu:W­ZUQ½zõï¾ûnÏž=›6mÚ¶mÛþýûwïÞ=gΜçž{nÊ”)’$)zôè,÷ÉÏÏïÞ½{ëÖ­/]ºtúôévíÚ=ÿüóæ{Ë”)+Ïæ9uê”K¯ÉŠ+Ö¬YóØcÍŸ?¿nݺ«V­*¼h8Á€‡‘§ÈŒ?>;;û¹çž3o B:tèÒ¥Kò–üüüo¾ùfáÂ…Bˆœœœ"Ÿ­fÍšBˆ dggË[’““Í‹ìÈâãã âãã<(o¹~ýú¸qãöïßß AƒJ•*………]»ví÷ßÿç?ÿi.U;vlÓ¦MB—®§xîܹɓ'ßsÏ=ï½÷ž¯¯ïÔ©S½½½'MšTúÁP]Õø@ÎÍ5êß¿ÿ¿þõ¯I“&}òÉ'j¯è G&$$䡇B´nÝ:$$Äò®?þxøðáU«V•×wlÓ¦ÍòåËÇß§Oooï"?°FÿýïÛ·oïååµe˖ÇW«VmÞ¼y•*U2ï#IÒ‡~øü£]»vÇŽ _¾|yPP¼O·nݾþúëÇ{¬|ùò‡ÊÎÎnÙ²å_|ñÎ;ï¸îR,X°`ëÖ­­Zµ2ôB >¼V­ZkÖ¬Y»v­ªß(:$¿<Ç7222jÔ¨¡|4 ÁŠÐU EŽP„àEŽP„àEŽP„àEŽP„àEþí™Ö¸"æ]‡IEND®B`‚statistics-release-1.6.3/docs/assets/nctpdf_201.png000066400000000000000000000563771456127120000221510ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A\ÆIDATxÚíÝy|L×ÿÇñ3Y…,²ÚB””Њ­ö-ª¥AP¥Úªj©%(U¢ªtI-ÑÚ*´µVKüª¥$¶Ji¥ø†ZJ$Ô’)Q²ÌïûýÎw¾“ňdî{_Ï?ú˜9÷Þ™sgš›·s>çF§×ëð 6rwÖà³`‚#ÌBp€YŽ0 Áf!8À,G˜…೫wêÔ)Ý :Ôdë½{÷ [—/_.wg+ĶmÛ~øá‡~øáúõëåø²3fÌ>·¾}û»ÃæÍ›uæ¹uë–…?“Gï›ñÿWƪV­Ú¢E‹‘#G^¼xñûÛÙÙyxx<õÔS3fÌ(úí”ôÆ&Ožlá@)Ž€ª|óÍ7¿ÿþ»Ü½°´Áƒ‡†††††?~\ßíÛ·W¬XñøãïÚµ«ô ²²²:4gΜ€€€„„¹»à‘ØÉÝåI¯×‡‡‡ÿöÛo:NŸ££cݺu OïÞ½{õêUéq5*UªdØdcc饗oß¼½½„yyyýõWaa¡âÎ;#GŽ88Xz|ûöíñãÇõÕWBˆóçÏïÝ»·wïޥ쟑‘1sæÌ¯¿þZqñâÅeË–…‡‡—þ‹©j@…ÞyçÜÜÜîvçΙ3g>ýôÓÞÞÞÞÞÞÝ»wŸ6mZNNŽñ>Æu~ÙÙÙ“&MjÕªUÕªU›5köÑGåå噼æµkׯß¾}{—ºuëöìÙsûöíEßúêÕ«ãÇo×®]ÕªUëׯ߿ÿÄÄÄ2¼ï»ï¾«Óénß¾-=íÞ½»N§»sçŽÉ+äçç¿÷Þ{µjÕzï½÷¤= ¿ýöÛ®]»úùùU©RÅÏϯK—.«W¯.zFçµ×^“zصkWãö 6H펎ŽÒ¹äåå}ñÅ:t¨Q£†³³sÓ¦M_zé¥?þøÃb]5æìì¼xñb{{{éé™3gJß¿víÚ_}õ•¡Nô£>’Nêa)êC´KÀÊ:nâĉû¾S§N-úv·oß6~…ÐÐЗ_~Yz!8pàÀb/‰aaaEûjα{÷nÃëœ''ÇÐþÚk¯Iíýúõ“¾ÁÖ­[íªN§[²d‰™ÿ“ú裢G-Z´èüùó G5d8CpŒŒŒ”–Aøùù%''K lÚ´iÒÖ+V˜ì¶gÏž™3g~óÍ7Ÿ}ö™´uÖ¬Yõ¾Õ«W¯_¿¾ayGÍš5ëׯo²0èâÅ‹7^·n]BB«¯¾*„ˆ•6Mœ8qÏž=«W¯>qâD‹-¤Æýë_–ù²ìííCCC¥Ç†ÑÇÔÔTé«©\¹r¯^½„?ÿü³´iúôé[¶lùüóÏž~úi!D~~¾ñP¢äççŸ9sfèСRK³fÍÌ9P§ÓùøøH¯\¹Rt©ÌÀÄ„ ¤­Šú-#8j3vìØÇ{L±~ýú’nÍóÓO?IÆתU+éqÓ¦M'Nœh²ƒA“&MÆŒ#=~üñÇ;vì(=NOO—ÄÅÅIÞ~ûm)€JiÖ¬Y³fÍîÝ»'E Ch{ýõ× /þꫯÚÚÚ !.\¸`rK¾ï9::îÚµkÈ!O=õ”¿¿¿bРAëÖ­[·nÝøñã¥}rrr U¡7nܰؗe˜17|,†áÆ=zT«VMq÷î]©eíÚµ_}õ•4Ô·víÚ“'Ož11111ñÃ?ìØ±ãæÍ›===+ºŸÆ©ÎÎήqãÆíÚµ?~¼¡rÀ†ê¢K£ÄƒnÇ£„€`ªP«¨¨(i¼ÐPehP­Z5i⯿þ2ÞdxZ©R¥‡úM\µjUÃ’ÃÀRQÕªU«ZµªôxçÎ)Å@Ž€jÍž=»Øb2!DHHˆôàóÏ?7ÜyûäÉ“sçΕ÷ìÙóaß®sçÎÒƒùóçÒjTTTBBBBBBåÊ•¥PÃß/‰ŽŽÖëõÒãÍ›7W¯^ÝÃãnݺRkhÓ*Åßÿm˜ ¿yó¦ôà_ÿú—ÅîÂc°¶úÞ½{óçÏBØÚÚ>ÿüóÒÖÓ§OûøøøøøøúúJ·O²³³ëÞ½»á^¥(Ä•+WFŽ#=}饗 £ÎfRÁ‡¨5Ž€jyyyEDDL™2¥è¦)S¦|ýõ×ééé·nÝêСCpp°­­íîÝ»¥?éáëë+ÝÓç¡Ì˜1cÍš5999iiiÍš5 ¾zõªa©Ç[o½%=x÷ÝwW®\™½eË–nݺuîÜùÔ©S†Uº'N4¬‡0Ÿ«««T:9{öìS§N?ÞðwMŠrvvvvv–öíµ×¤?ÓkÉ¿cbÀ€R™£´ »K—.†ºÌ'žxÂÛÛûêÕ«ùùù:txî¹çÜÝÝÏŸ?ÿã?J;þ"‹¢ 6L*]¸sçŽq9„§§çìÙ³öÕ¬ôCT‰à¨Ùøñã—/_. ÒsppظqãàÁƒSSSïÞ½»mÛ6Ã&??¿uëÖ•4TY //¯U«V½úê«·nݺzõê7ß|cØ4mÚ4C¡››ÛêÕ«‡ vóæÍ}ûöÿA‘7ß|óý÷ß/ÃivîÜyýúõBˆƒcÆŒàà`ooonݺMŸ>ýĉ:t(ÛÛõíÛ÷ĉo¼ñF«V­œëÖ­ûÜsÏýòË/~ø¡ñn½{÷þã?FŒѼysGGGÿ¾}ûÆÇÇ/[¶¬ ‹¦…QQQC† ñòòrrrjÒ¤‰ñ]„JÚ¿iÓ¦B›'Ÿ|r„ G5ÌoذÁpÏ Ë0¾¸ÉøY›6mRRRf̘ѪU«5jØÛÛ»¹¹uèÐaåÊ•{÷î­\¹²%»ú°lmmÝÝÝ[·n=cÆŒ¤¤¤6mÚ”íu¬úCÔDg¨1íÈËË“ÆY™åó`¦ª`‚#ÌBp€YŽ0 Áf!8À,G˜…à³`‚#ÌBp€YŽ0 ÁfÑJpÜ´iÓ€‚‚‚Ú·o?mÚ´ììló½|ùr‹-&Ož,÷IÈIÁ1***""âܹs­ZµrvvÞ¼yóÈ‘#ïÞ½kαz½þwÞ¹}û¶Ü' 3õǤ¤¤èèhooïØØØèè踸¸aÆ?~|Þ¼yæ¾jÕªC‡É}òSpܸqcaaaxx¸———Ô2uêT—;v–~lrrrTTÔã?.÷IÈOýÁñðáÃ666]ºt1´ØÚÚvêÔ)+++11±”óóó§L™âææ6uêT¹O@~*Žz½>%%ÅÝÝÝÝÝݸ½aÆBˆŒŒŒRŽ]´hÑéÓ§?þøãjÕªÉ}ò³“»+77·  ÀÕÕÕ¤ÝÅÅEqãÆ’)w÷DåÁQáíí••%%Eƒ´´4iSÑý“““…K—. ø~ýú !~üñÇ€€€çž{Nî‡Ê§ª…ÁÁÁIIIû÷ïïÕ«—Ô¢×ëãããÝÜÜ‚‚‚ŠîïççgØSrëÖ­Ô¨Q#((ÈÇÇGî‡úƒã€¾øâ‹Å‹wîÜYZ™™9bÄ{{{iŸ;wî\»vÍÞÞ¾V­Z:tèСƒñ+œ:uêÀ-[¶œ;w®Üg õÇ5jLž<922²OŸ>;vLOOOHH |ýõ× ûÄÇÇO˜0¡AƒÛ¶m“»¿Ê+w`Š/EøRˆ/EøRT@ýÁQ1|øpOOÏ-[¶lß¾Ý××wèСáááÒè#̤‰à(„èÝ»wïÞ½KÚRÒÖÀÀ@mÞ« À˜úWU \`‚#ÌBp€Y´²8*ÈÙ°BsYîŽ@…#8@I‘±aÌå´´´ÇG!’ ¨ÁQäîP<îEU,Cd4´ÝªApT ~=C™øŸÓØs¡´‰ø@•Ž`®³a5ÌÌ‚†øHv &¬ª€YŽ`–2 6Œ¹lX4*@p€+ó¤3Ù€šà±T‘ì@5ŽPšrYàBv G˜…à%*Çûé0è@¸#¯ÜïÂ(eG…ÜÙQ7io±íúùÝäîå"8€¶H‘±¤€¨›´—ì $LU–óÇtìØÑÑѱ~ýúŸ}ö™ÜÝAi*hhPö k)– õó»•4 GÀBòòòúõë×¶mÛôôôåË—¿÷Þ{›7o–»SÐݤ½fŽ&’”„àXÈéÓ§322fÍšåééÙ½{÷—_~yëÖ­rw Å«ÐJDY8ÐhBÊŽÄG&Ž€…8::~ñÅÒÓÌÌL___¹;M([Ù¢4ÉŽŒQ³fÍÒét½{÷.º)22R§ÓýñÇr÷±¢Ô«W¯oß¾e8ð±Ç>|¸ôøÇüñÇà[ÿù矆 =z´»zýúõZµj]¾¬ˆ5¼VÄ Ÿe¯t4Ù€1‚#ÊnÛ¶mÿ÷ÿ'w/Ú‘#Gúöí{êÔ)YÞýöíÛcÆŒyñÅ7nÜØ¢E Cû|d²^^^›6mÚ¶m[Êk?~|РA>>>ÎÎÎ-[¶ŒŠŠÊÏÏBxzz>|ìØ±²œ)âÑWI“QvãÆûûï¿åîÈùzõê–-[233-ÿÖgÏžmÑ¢ErrrbbbHHˆ¡ýÚµk ,˜2eJÑC"""~ÿý÷R^355µK—.±±±Ï>ûìĉ+Uª4qâÄH[ÃÃ÷mÛVú+À˜Åî³h™AGî­ |Qv3f̸téRDDÄ£¿TaaaAAA¹÷°‚^¶lî߿߫W¯—_~9..®aÆƛ–-[V¿~}ãHÉ®]»æÎkgWÚýV'NœxëÖ­Ý»w¯Zµêƒ>øí·ß†¾eË–¸¸8!„»»{¯^½>ÿüs¹ÏÖAG‚#ÊnÀ€!!!‹/>räH)»:t($$ÄÇǧF!!!‡2lªW¯Þ„ –/_îááaggW³fÍÑ£Ga;v¬wïÞÞÞÞ>>>}úô9~ü¸aÓÉ“'ûõëW§N//¯gŸ}vÏž=æ¼ì«¯¾úÜsÏ !ºtéR¯^=ÃÎGŽyòÉ'Ÿ|òI颢¢žxâ '''ww÷§žzjýúõü4zõêåææ6räÈû÷ï·wïÞÝÉÉ鯿þÚ¶m[NNNXXعÿ¸víš´Ï×_m#4¸zõêK/½4bĈZµj•ò¾{÷îíÔ©S«V­ -cÆŒBlkk[tŸ~ø!,,ÌÇÇgðàÁ:.&&¦}ûö111Ï?ÿ¼´ÃîÝ»—.]úúë¯?þøã;vìX¶lY^^ÞŠ+¤M½{÷öõõ6l˜^¯_½zuÇŽëׯ¿k×®>}úøúú4ÈÆÆæûï¿æ™gÖ­[÷ /”þ²“&MªW¯ÞÌ™3?ýôÓ§žzJÚ9##ã™gžqqqyúé§…ï¿ÿþ¬Y³ºuëvïÞ½ï¿ÿ~èСժU+v1AHHÈ… V¬XѨQ£ &H»víÚ³gÏôéÓ}}}Oœ8qíÚµ€€Ã!¯¼òÊ×_œœœžžÞ®]»ÿùðõúaƹ¹¹-\¸000°¤7ÍÏÏë­·Z¶liܘžž.„¨\¹²ô´]»vyyyñññRb†F”{j”I¢€ÖéQÞ6lhCäõþûï !RRRôz}dd¤"**JÚôÉ'Ÿ!Ž;¦×ëïÝ»W¯^½ºuë^¿~]Úzýúu???ÿ{÷îéõúºuë !bbb¤­………M›6­U«–^¯ÏÏÏoܸqýúõoܸ!mBŒ;öÞ½{ 4 ÊÍÍ•6ýóÏ?mÛ¶õ÷÷ÏÏÏ/ýeõzý¶mÛ„ûö퓞J;Ïš5«  @jñ÷÷oذa^^žôôæÍ›vvv£G6ìZìÇrñâE'''œœé}[´hQ½zõ[·n•òaFGG ! §)‰ŒŒ¬\¹òÑ£G¥wlÓ¦™_MVVVëÖ­mmmÏž=khôðð˜4iRÙ¾k«ûŸ³Ì’úû–ùØÔÔTYÞ·bâ+zÙŠð(_ *ˆš¾í\M0UG5qâĦM›Î˜1###ÃdSbbbZZZxx¸‡‡‡Ôâáážššj¸_¿¿ÿþý¥Ç:.((èöíÛBˆcÇŽýùçŸãÆsss“¶vêÔéË/¿ìÔ©ÓÑ£G“““'Ožl¸'båʕǎ›ššš˜˜XúËË××7""ÂÆæß?‡JLL4Tfee !rssøQÔ¬YsêÔ©™™™óçÏBlÚ´é_ÿúWDDDµjÕJ9*==½råʆӔ:Ù¬Y³‡ú.öíÛצM›Ã‡/Y²¤AƒÆ'xáÂ…òù¾a PAŽxTvvvÑÑÑwîÜ7nœÉ¦ääd!„¡pPòÄO6 !L–‰ÒÛÙ³g…M›65Þ:|øð°°°3gÎ!^|ñE‘_|QaˆG%½l±Œwpss;zôèÌ™3 Ô¼yóFIw·1ÇÛo¿íçç·`Á‚¿þú+""ÂÏÏoÔ¨Q¥rõêUwwwÃÓœœœÁƒ?ýôÓE?ÏR\¸p¡OŸ>]»vBìÞ½û7Þ0ÞZ½zõ+W®˜ÿjdáêFcå^éX¡©‘U2€ÆQãˆrЦM›7ß|sÙ²e?üðƒq»^¯Bèt:ãF©2//OzZ¥J•b_SZbRì‚âJ•* !æÎk+…7.ýe‹åêêjx|ïÞ½~ýúmß¾½U«V=zôèÓ§OÛ¶m›7onæKU©RåÓO?4hP—.]’““׬Yc¨5,åãõ4Ë—/OMM ýôÓO¥–[·nDFFÖ©SgðàÁE_aÆ o¼ñ†³³óòåˇ^ôC»ÿ¾£££ùP Š-#8¢||üñÇßÿý˜1c^~ùeC£4[zâĉÎ;¥•ÑÆkDŠ% þùçŸ;v44~òÉ'999ýúõBT­Zõ™gž1lúóÏ?Oœ8aËæÀÛ·o_¸páøñã æ8 !¸xñâýû÷7mÚtÈ!ÜßÇÇ';;»°°Põ”Bä‚ Œ÷ÉÎΞ:uj—.]ŠÇ­[·¾ôÒKüâ‹/JšÏÊÊò÷÷ÄOVH B1Uòáââ²pá‹/.Y²ÄÐØ¼yó:uêDEEeggK-7nÜX°`ŸŸ_Ñ?‘b"((¨N: .ÌÉÉ‘ZRSSgÍšuñâÅf͚̟?ÿæÍ›Ò¦œœœž={N˜0ÁüqµÂÂÂbÛ/^¼(„hÔ¨‘¡%&&æÎ;Òè©™¤näææ–ô.Æ5jTXX(-…BLŸ>ݤÙ°8æçŸ69V¯×O™2¥víÚk×®-)5æççgddŸLÈ8O-±¢¿@(aÂÐ,FQn ´jÕªØØXCKåÊ•£¢¢¤JÁêõúï¾ûîòåË›6m2gwáÂ…lÑ¢EXX˜N§ûúë¯íììÞ{ï=;;»… >ÿüóO>ùäÀóòò¶lÙ’‘‘ñí·ß{K Ò¨ä²eË®^½j¸}A×®]œœ^ýõ!C†Ô¬YóàÁƒ{÷îõôô}úÌ™35*ú.ýúõ“îtüøñÜÜÜîÝ»—Ï× c¸@EcÄåiéÒ¥†•Î’~ýúýòË/?þøêի׬YÓ¸qã_ý544ÔœWëÛ·o|||½zõV®\ùÕW_µnÝ:!!á±ÇB<ûì³ M›6]·nÝš5kêÕ«7pà@s^¶]»vƒŽ‹‹›;wnÑ­uêÔÙ¾}{­Zµ-Zåààpüøñ?þ8''ç³Ï>{à‹_¹re„ Õ«Wÿí·ßªU«6{öl“ûåææÖ¶mÛ¢£‰%¹ÿþÍ›7ïÞ½+„HIIBœ>}zU†›¥ïÛ·ÏË˫蟥DöáF+Å # QrßH…´pG”Dºзß~«×ë¥?ƸtéÒõÍ7߸¹¹ýóÏ?f¾ËŠ+ÆoæÎÍ›7ï½÷Ê|FªÿŸ³\n£X.w§{ÄžXþ‹ ¿§£šn¨júRTm, #Ž@¹‰‰‰Ù¼yó€ $„˜0aBµjÕ>üðÃ;wî”~`XX˜³³ó–-[Ìy—þùççŸ6s¡÷ñãÇOŸ>ýÀ[eÀ # AG |ܸqc̘1^^^K—.•ZÜÝݧOŸ~éÒ¥®]».^¼¸”cííí?ÿüóÙ³g›³˜æàÁƒ5’î[ù@3gΜ9s¦ÜB)jžÚê–ÈÐ ‚#P>Ö®]+•cþLŽbòäÉ#FŒ8uê”TŒXŠÐÐÐÐÐГ'O>ðºvíQì.M\¿~ÝËËkÒ¤Ir6¨pr-‹aÐÐVUåcüøñÆ·~”ètº+V¬X±ÂœW˜3gNùvÉÓÓsùòår0õ`Ä€F)jžZR¶ÙjîÂÀbŽ€²c¶Ð‚#X1†XÁ€)pžZbk«t´ƒàÖŠáFFp 9Šn´^ :Ape±ÆÙjAp«Ä<5Ë#8Ðæ©+³Õ€@q˜­ LGTˆ?þø£cÇŽŽŽŽõë×ÿì³Ïäî 6Êœ§fÐP=‚#Ê_^^^¿~ýÚ¶m›žž¾|ùò÷Þ{oóæÍrw <*‚#ÊßéÓ§322fÍšåééÙ½{÷—_~yëÖ­rw ª ™­ @G”?GGÇ/¾øÂÁÁAzš™™éëë+w§õPæ<µ„Ùj@ÝŽ(=öØðáÃ¥Ç?þøã?þfØúÏ?ÿ4lØðèÑ£¥¿Èõë×kÕªuù²u  GT”Û·o3æÅ_ܸqc‹- í|ðAPPPPPÉþyyymÚ´iÛ¶­ôÔÓÓsøðácÇŽ•û< V4O-a¶€ÒQ!Ξ=Û¢E‹äääÄÄÄCûµk×,X0eÊ”¢‡DDDüþûïÆ-áááÛ¶m3i4NÉóÔf«#8¢üÝ¿¿W¯^/¿ür\\\Æ 7-[¶¬~ýúÆ’]»vÍ;×ÎÎθÑÝݽW¯^Ÿþ¹Ü'„ 8¢ zõêåææ6räÈû÷ï·wïÞÝÉÉ鯿þÚ¶m[NNNXXعÿ¸víš´Ï×_=`À“¼zõêK/½4bĈZµj™l Û´iÓßÿ-÷IÃêYÝ<5(Ý£¿*޼åM%ý– ¹páŠ+5j4a©q×®]{öì™>}º¯¯ï‰'®]»`8ä•W^ùú믓““ÓÓÓÛµkgüjz½~ذannn . 4y¯víÚåååÅÇÇ?÷Üs2~€\¤2Gãòç©%ÒlµUtÀC!8*š2HÞzë­ÐÐЀ€€>úhĈU«VÕëõï¾ûnõêÕ¥âÅ™3gΜ9³èûöíB´jÕʸqîܹñññ ŽŽŽE©[·®‡‡Ç¾}ûŽÈŽ©j”EÍš5§Nš™™9þ|!ĦM›þõ¯EDDT«V­”£ÒÓÓ+W®ìææfh9tèPDDDddd³fÍJ:Ê××÷Â… rŸ1€‡Ã@•Ž(£·ß~ÛÏÏoÁ‚ýõWDD„ŸŸß¨Q£J?äêÕ«îî999ƒ~úé§ÇWÊQÕ«W¿råŠÜ§ ëfÕކ›ò0ù @vLU£ŒªT©òé§Ÿ4¨K—.ÉÉÉkÖ¬©\¹ò1^O³|ùòÔÔÔÐÐÐO?ýTj¹uëVAAAddd:u,5Þ¿¿ØYl`aG”ÝÀ/^¼ÿþ¦M›2äûûøødggÚØØ!¤¹`Áã}²³³§NÚ¥KCpÌÊÊò÷÷—û\<4–ÈêÃT5‰4˜››[XXøÀ5jTXX˜žž.=>}ºþÕ­[·M›6z½þ矖öÉÏÏÏÈÈhÔ¨‘Ü' +fÕóÔi¶š@vG”ÝêÕ«ãââ\]]Ï;·jÕªîßµkW›„„óßâøñã¹¹¹Ý»w—û\ÁeuåÊ• &T¯^ý·ß~«V­ÚìÙ³Mî^”››[Û¶m £‰æØ·oŸ——WÑ¿4À*°¶P‚#Êh̘1ÙÙÙK–,iԨѸqã.\¸ðå—_>ð¨·Þz+&&æÞ½{ÅnMKK;xð qËúõëß|óM[[[¹OÖJóÔB²… 8¢,bbb6oÞ<`À€Aƒ !&L˜P­Zµ?üðÎ;¥æìì¼eËsÞåøñã§OŸ~à]~-0Ü”dDpÄC»qãÆ˜1c¼¼¼–.]*µ¸»»OŸ>ýÒ¥K]»v]¼xq)ÇÚÛÛþùç³gÏ6g1ôh|||ä>ceÇl5 &G<´µk×Ö«WoåÊ•†ÆÉ“'1âÔ©S)))¥zòäÉÒw»~ýº——פI“ä>]ðo:½^/wÔ& ))©¢,êÿç´XcZZZ½zõ*èÅo…h¥%›²ÜͱB¿”𾫾6> F`‚# bQæ¨Á”‹?Ù@QŽÔÉJËKÇMyÈ‹à¨pÌVê@p€YŽ P8P;¹;€ » €z¨²ÀQ"•9ZãÙI³ÕDaÀªA±7UÓÍZUƒ/ ¦ª@‰œ @Gjc¥3¹ZÀÚjÀÚÀÊp7Gr!8À,GP (Á€ªPà¨p”9VàÖ‡2G² 8€²0O @±Ž‹b¶°^Gê¡©Gf«XÁf!8€‚Pà@ÉŽK£Ì°RG*¡©G eŽ,Œà³@)4UàÈl5`Ž0 Á€h°ÀQB™#K"8À,GPM8J(s¬Áf!8°zš-p #8€u³êõ1ÌVÖ…àòÓ`#kDp€YެŽ`1G°z”9° ‚#ÈŒGÖ‚à³`‚#+ÆÊÊXÁäD#+Bp€YŽù1[ X;¹;`!›6mÚ¸qcJJŠ££cçÎ'OžìææVÊþ7oÞ\¸pá‘#G.^¼èééÙ¤I“±cÇúûûË}þ‹GR™#Ÿ €Š£‰Ǩ¨¨ˆˆˆsçεjÕÊÙÙyóæÍ#G޼{÷nIûçää<÷Üs6lBtíÚµzõêÛ·oïÝ»÷É“'å>Ù¨?8&%%EGG{{{ÇÆÆFGGÇÅÅ 6ìøñãóæÍ+éE‹]¿~ýÍ7ßܶm[TTÔ·ß~ûñÇçççÏ™3Gî³ *¬Œ`]Ô7nÜXXXîåå%µL:ÕÅÅeÇŽ………ÅrðàA‡Q£FZúõëçããsêÔ©‚‚¹OÔ‰2G@ùÔ>lccÓ¥KC‹­­m§N²²²‹=ÄÕÕµ[·nUªT1n¬\¹òýû÷ïß¿/÷ ‚ÇXõÝ(ŸÊÇèõú””wwwwwwãö†  !222Z¶lYô¨uëÖ™´>|øÂ… Íš5sppûœä¡òà˜››[PPàêêjÒîââ"„¸qãFé‡=ztóæÍiiiG­S§Ndd¤™ï`Ò+÷‡Q/^”» 0Å—b––&wþ­l_Šÿâ´Ô1õ*â,”óÉÈØy~RÈz¿”gŸ}Vî.(…ʃ£´tÚÉÉɤÝÙÙYqëÖ­ÒOJJЉ‰ÑëõBˆÀÀÀJ•*™ù¾IIIrŸz¹©W¯žÜ]€)¾!ÄY…}eêLZEœ‚Ò>™‡¢Ÿ_¯ Yïç bVú¥ýµ^t„H#T^ãèêêªÓérssMÚoß¾-þ3îXŠ^xáôéÓxçwâââ,@^8€,Tíìì\\\ŠŽ,æää! ë¬K¡Óé<==‡>hР+W®ÄÅÅÉ}NPÖǨ8*ŽBooשּׁ,))H54ÞÞÞE÷ONN~÷ÝwwìØaÒ(„¸zõªÜ' õÇààà‚‚‚ýû÷Zôz}||¼››[PPPÑý«U«öÿ÷›7o6i¿pá‚°Úâ Jí¿KÂÝ%Sp0`€ÍâÅ‹ å‰ÑÑÑ™™™ýû÷···—Zîܹ“––&­öòöö8pàÀÞ½ÿ½r9sfýúõÎÎέZµ’û„ä¡òUÕBˆ5jLž<922²OŸ>;vLOOOHH |ýõ× ûÄÇÇO˜0¡AƒÛ¶mBÌ™3çÅ_5jTPPP­Zµ®]»väÈ!ħŸ~êáá!÷ ZÇʘ’Êù””;õG!ÄðáÃ===·lÙ²}ûv__ß¡C‡†‡‡Kwä)ÖO<ñÓO?}öÙg'Ož<}ú´O=Þzë­ È}*²ÑDpBôîÝ»wïÞ%m 1nñóó[°`ܽ N8–N*sä#Hý5Ž(GÖ„Ò=3q7Gà³À¢¨Þ3ws”‰à³X @^GP'ÖÇ(wG€Qæ(Á,‡•1¬Áf!8°¬Œ)k/sd¶P‚#ÌBp ¡À€µ#8À,GV€GÍ¢ÌP‚#¨™µ¯ (G˜…à–ÀÊ*@p(eŽ€r(+ceŽÊ Áf!8@…£À€:JG™# GŠF#(ÁÔõ1ÊÁf!8@ÅbeL¹ ÌP‚#ÌBp \¬Œ)G”9xtG˜…à³ ±2¦±>Á€BQàJCp­`} €GDp€YŽPQ(p,w”9ò"8À,GJÄʘ B™#€GAp€YŽkB™# #‚#TVÆP‚#Å¡À”‰àÚÂúeFpXʹ`‚#”?VÆP%‚#eaeŒPæ lŽëC™# ‚#ÌBp€rF#µ"8P @ÉŽ E*XC™#`yG˜…à³ <±2€Š(+cð°(s,Œà¥‚õ1,Œà³`‚#”VÆXeŽ€%(+cdA™#€‡Bp€YŽ0 Á`Ý(s,†à@~ê(pde Õ#8€¦±>€ùŽ0 Á`õ(s,ƒàå€GZ@p 3u¬Œ±j”90Áf!8Ô€2GÀŽ0 Á€œÔQàè¿8•1´€à`} ³*A™#PÑŽ0 Áf!8:VÆè&íMSOî^”Ê<Á ”9Šà³`‚#y¨£À4…àe§›´WM3Fëc(s*Áf!8À,G˜…à@êX£²G5ÑÏïæ¿8Mî^*Dpü—:ÖǨ Ê ŽóçÏOII‘»(†²‚cttt¯^½ú÷ï¿víÚ7nÈÝü—²‚ão¼Q³fÍ“'OΙ3§cÇŽ£FŠ‹‹»ÿ¾ÜýPžÔQà…KS»9åNYÁqâĉ{öìùæ›oììì¼wïÞqãÆµoßþý÷ß?vì˜Ü½€ÿRñÊÊ”DYÁQ¡ÓéZ´hñþûïÿúë¯Ë–- ¹ÿþ†  Ô£G¥K—^ºtIî>h‘â‚£]·nÝ¢¢¢<8}út‡ôôôÏ>û,88ø¥—^Ú²eKAAÜ}Ð;¹;Pšììì={öÄÆÆsæLaa¡âÏ?ÿŒ‰‰qqqyñÅkÕªµaƽ{ù÷"€<”W¬X¡×ë§OŸ>zôh!ÄÎ;…üñÌ™3¿üòKN÷Í7ßÈÝG"9«ÆmÀ(+8ž={ÖÇÇgذaöööBˆßÿ½R¥J;vBÔ­[·~ýú©©©r÷`•(s²‚ãÍ›7=<<¤Çùùùþùg“&M*Uª$µ8::fffÊÝGÅÊPÖâ˜5j\¼x±  ÀÖÖ611ñŸþyê©§¤M………/^ôôô,Û+oÚ´iãÆ)))ŽŽŽ;wž8€j(+8Ž9ÒÉÉiÙ²eݺu;tèPÓ¦Mƒ‚‚„œ;w®bøðáûšIIIÑÑÑÞÞÞ±±±ÑÑÑqqqÆ ;~üø¼yóJ:dãÆÇŽkÑ¢E||ü²e˾þúëï¿ÿÞÕÕuÉ’%§OŸ–ûCKSÍúÊG¤¬àX³fÍï¾û®K—.>>>:tX¸p¡tׯÌÌÌjÕª}òÉ'mÚ´yØ×ܸqcaaaxx¸———Ô2uêT—;vH7ý)*66V1}út©¥Aƒo¾ùfAAÁ¯¿þ*÷‡@8€PZ£¢AƒË—/7i\»v­¯¯¯MYbîáÇmllºtébh±µµíÔ©ÓÖ­[[¶lYô´´4''§ÀÀ@“Ž !222äþ„䡸àX¬š5k–í@½^Ÿ’’âîîîîînÜÞ°aC!DFFF±Áqùòåvv¦ŸÌ©S§„µk×–ûì Ž &Š Ž;vìX³fÍùóçõz}±;$$$˜ÿj¹¹¹®®®&í...Bˆ7n{TãÆ‹¾itttåÊ•CCCÍy߀€“iúÛê\¼xQî.À”Õ})iiirw¡ÂOÄê¾”2°ŸûëÙ°ös­¦\§¤/%uL=ݤ½©cêÉÝA-²ÞŸ”gŸ}Vî.(…²‚ãîÝ»ÃÃåǶ¶¶þ‚ÒÒi'''“vggg!Ä­[·ø ëׯÿôÓO æÏŸo¸Ídé’’’,úÁU¤zõ¸¼*Ž})g­ª·¥J+ýDÔrš¥±ºo³äÞ¦Y׉¨‰•~òE­!ÒeÇ•+W !^yå•Ñ£GKƒ‚ÈÕÕU§Óåææš´ß¾}[ügܱ¿ÿþû¬Y³Î;çëëûÑGµk×NîO€ XeÇ”””Zµj½óÎ;e[SÌéÙÙ¹¸¸YÌÉÉBÖYuÿþý¹sç®]»¶J•*cÇŽ}íµ× +¬VMº)ÿÊ@A·ãÉËËûûï¿k×®]^©Qâíí••%%E©VÉÛÛ»ØC 'Mš´fÍšààà;wŽ3†Ô”+cTF5wsPf Ž666...ÉÉÉ%Ý^±l‚ƒƒ öïßohÑëõñññnnnÒÝÅ‹Z»víÎ;_|ñÅ%K–”2*  ) ޶¶¶#FŒÈÌÌŒŠŠ*Ç—0`€ÍâÅ‹¥ºF!Dtttfffÿþýííí¥–;w¥I«½ôzýºuëªV­úÎ;ïÈý‘(ˆ²jCBB222¢££zöìY«V­J•*™ìc|+osÔ¨QcòäÉ‘‘‘}úô騱czzzBBB``à믿nØ'>>~„ 4ضmÛõë×/\¸ààà0dÈ¢¯Ö·oß¡C‡Êý9°ŠáT‰2G l”ƒƒƒ¥Ç?~üx±û”áN7Ç÷ôôܲeËöíÛ}}}‡.Ý‘§(iÜñîÝ»'Ož,º•…Õ€™(põQVpìÓ§O½rïÞ½{÷î]ÒÖéqóæÍÕtF(GÒúþIh–²‚ãܹsåîЧ Å1ÆnÞ¼yàÀM›6ýúë¯BˆÌÌL¹{@‹(ƒS1©ÌQî^VFY#ŽBˆ¬¬¬eË–ÅÄÄH-ðå—_nß¾}ß¾}?þøc777¹;àÁ˜ÍURÖˆc^^ÞèÑ£×®][­Zµ¾}ûÚ½¼¼~þùç^xAJ“¹pp@Ë”—/_~ìØ±Î;ÇÆÆ~òÉ'†ö7>ÿüóçÏŸ_³fÜ}Ð(eÇC‡ÙÚÚ~ôÑGŽŽŽÆí¶¶¶ï½÷ž££c\\œÜ}¨eŽÀÃRVp<}út½zõ<<<Šnrvvö÷÷OOO—»´‚•1`BYÁÑÅÅåÎ;%mÍÎήZµªÜ}ð¬ŒQ=ÊÍRVplܸñ_ýUìߌ9}úô¥K—5j$w4JYÁqРA:nÒ¤I§N2n?uêTxx¸"44Tî>Ôƒ2Gà¡(ë>ŽíÛ·1bÄŠ+úõëçïï/„ؽ{÷o¿ývîܹ¾}û>óÌ3r÷€&PàE)+8 !Þ~ûí-ZDFF¦¦¦ !.]º$„ðôôœ8q¢ñ(Ž bŠ ŽBˆ®]»víÚ5;;;55õþýûþþþÞÞÞrw ð_Òúuü#Aš­f€0‡ƒ£ÄÍÍ­E‹r÷ÿ&sp\¿~ýÃ2dÈyû  M2Ç>øàa!8Š¥š¹K&. X2Gé&;ÆNŸ>gkkÛ¡C‡ºuëÚÚÚ¦¥¥íß¿???ß××wÚ´iòv ¡ÌÐ ™ƒã¨Q£ŒŸ^¸paíÚµK–,©]»¶¡ýÒ¥KcÆŒùóÏ?·nÝÚ£Gyû  Mʺø²e˲²²-Zdœ…5kÖüüóÏ…;wîÌÌÌ”»›Z¤¬àxôèÑ5jøùùÝT»vm©]¯×ËÝMÅPͬ%S–ÚÄŸÌ¡¬à˜}ûöí’¢aNNŽ›››§§§ÜÝñŸ2G¹{Àr”›4i’““³oß¾¢›8(w4JYÁ1$$D1eÊ”;v;îܹóí·ß6ìËSÖ_Žéß¿ÿ¶oßîéééïï¯ÓéRSS¯]»&„èÝ»wÿþýåî#€b¨¦ÀZÆMy€RVpBÌŸ?¿]»vŸ}öÙõëׯ_¿.5úúúŽ;¶oß¾r÷€Ê‘–šîæàmll võêÕ´´4;;»ºuë² @vŠ ŽNçããããã#wGðoÊZÀ1S ÕànŽ@éŽðo8– ws´ƒà³ø/f«R`‚#€GÂÊÊÍ 8€¬Œ3ø”9%!8À,GeG# (s´€à8³Õ@±Ž0 Áf!8(# a‚2G@õŽ´ŽG‹2G (‚#ÌBpPÌS€åFeeŽÌV&Ž4G0Áf!8xh8B;˜­ŒåIeeŽŒ`‚#íbe <‚#€‡C#´†2GÀ€à(g”9jEp€YŽ4ŠG˜Ùj@Bpð(p„™˜­T‰à³`‚#-¢À‹2G@˜G<Êõ!8À,GÌÂl5@p 98@Ù˜…G”eŽ€Ê0³ÕÐ8‚#ÌBpð`jš§¦ÀÊŒà¨@ê+sd¶ZFp€YŽ0 ÁÀPàˆGÄl5 G˜…à³”FMóÔ@9b¶ÚDp 8ÊH}eŽ€6`‚#ÌBpP" QŽÔ7[M™#4ˆà@(p€GGp€YŽŠÇ<5ð@ÌVCkŽ Q_™# 5GêG#” ‚#eÇl54…à 8¢‚0[ X5‚#„AGhÁ€ÊQàå…àÀóÔ€b¥Ê2Gf«¡GjÆ<5”#‚#ÌBpð?(p„0[ X)‚#ÌBp Z8@ù"8ø/æ©a1ÌVÖˆà³`‚#€SÙ<5޳ÕP7‚#@ª,sÔà³Á<5P~˜­†Š²a¶°.G˜…à@9c¶jEp@#äÄl5`EŽ”?¡JG˜…àhóÔ³Õ€µ 8P!˜­†ú`‚# i*›§†õb¶° GêA#”†Ùj¨ Áf!8ÚÅ<5E­³Õ :BMŽT‚yj¨hG˜…àhóÔP f«…ÓJpÜ´iÓ€‚‚‚Ú·o?mÚ´ììl3LMM øã?ä>¥až,@Á1***""âܹs­ZµrvvÞ¼yóÈ‘#ïÞ½kαk×®•»û«Ç #ÔAýÁ1)))::ÚÛÛ;666:::..nذaÇŸ7o^)Gåää9rdæÌ™ß|óÜg”?æ©¡Xj­ÔAýÁqãÆ………ááá^^^RËÔ©S]\\vìØQXXXÒQ½{÷2dÈ·ß~+w÷<óÔ`êއ¶±±éÒ¥‹¡ÅÖÖ¶S§NYYY‰‰‰%õá‡.]ºtéÒ¥íÚµ“û jÀl5T@åÁQ¯×§¤¤¸»»»»»·7lØP‘‘‘QÒ:t®Y³¦Ü'”3æ©¡pÌVŠe'w*VnnnAA«««I»‹‹‹âÆô¾&-±±±reqñâE¹»Såò¥¤¥¥É}åLÞ3â'¥"<âwªÌ/%uL=ݤ½©cêÉÝy(óK1dzÏ>+w”BåÁQZ:íäädÒîìì,„¸uëV½oRR’ܧ^nêÕÓèNÉñK9«®¯U!ŽjúH• \þ/Uê—’¦ÔŽY‚•ž{Ñ_ëEGˆ4BåSÕ®®®:.77פýöíÛâ?㎀¦0O «Àl5 L*Žvvv...EGsrr„†uÖXKd`ÕT…ÞÞÞYYYRR4Jg¼½½åî`QênTÈ<5h„úƒcpppAAÁþýû -z½>>>ÞÍÍ-((HîÞЧâÙja½Ô `cc³xñb©®Q™™Ù¿{{{©åÎ;iiiÖ»Ú ÀT¾ªZQ£FÉ“'GFFöéÓ§cÇŽééé ¯¿þºaŸøøø &4hÐ`Û¶mr÷¨(ÌS‘úG…ÇŸ7o^½zõ¶oß~ãÆ¡C‡®Y³¦èÍŠÂl5 4êq”ôîÝ»wïÞ%m )vÓœ9sæÌ™#w÷䧉GÌSÃJ1è( Áf!8ê§¾áF@t„Õ!8°>ÌSkŠŠg««Cp@6 :º•cž*À # GV†yj Á91[ +BpÔŒyj¨³Õ€Xæ©¡J :ÂZÕb¸P¾Žë îÙjaެóÔ /‚# NÌSC•täEp`nÙb¸°R :BáŽk¢îÙj@áެóÔСdG@m˜§†ê1èÈ…à€²0èÅ"8ª¢ÊáFæ©QƒŽ€,Ž(ƒŽP&‚# ªnJ #`yGŠÆ<54‹AG(ÁP †à@¹nDéT?[Í #”†à³5`žšÅ #`IG Å<5( Á°z 7Bãt,†à@‰n"8ÖáF@0èX Á€â0ÜEv„+Æp#` úAG@ ŽX!;‚#`­Ô:ÜÈ<5ÊŒAG ¢° :B^GÀ*1Ü‹AG B°& :BFGÀú¨u¸(Zt$;B.GJÁ<5(Á°2y“Û3Ü”®aÌå¼ÉíåîEÅbв 8P†@ùŽ€59VÃ~î¯r÷°ös¥Ò(wGòc¸(²#,ŒàX SE Ë« #8ÃÀ£`ЖDp¬Ã@hdБì‹!8V@Å©‘áF°"G€š1è”#‚# t 7ˆì”‚#ÌBpáF \0è” ‚#êAvD…"8ÊÅp#PŽ42è(ÈŽ¨HG@¡TœVŠàÀÒn„\tÁP"† BvÁ€E1ÜÖ‹à(Ã@…bÐ(3‚# ,êN 7B!ÈŽ@ÙX©Ùåˆà(ˆº‡EÑΠ£ ;¢ü¥Pwjd¸ ¤©ì” ‚#êÇ #ÊÁP†YhjБìˆGGpä§îÔ(Ù0Á™êS#À¢ñ(Ž*©VASƒŽ‚ìˆG@pä¤úáFÀZh-;eCpd£úÔÈp#¬‹¦²#ƒŽ(‚# R#y‘QGþMSƒŽ‚숇GpdÀp# XdG GÀÒH€Â‘’‹R}jÔì‹àXŽR#ÃP ²#PÁ°R#…#;âŽÊ©ꣵAGAvăKÐÂp# JdGÀÁ¨pZH 7BÅÈŽ€Á¨X¤F@4›‰0Ap*©P mfG†a‚àTR# 2ÌŽ‚ikü/‚#P!´ ";BãŽ@ùÓHjd¸ÚDv„–rFjTOËÙ‘ø¨qG <‘ÐlvdèQãŽ@¹!5š¢Íì(˜¶Ö6‚#PÎ†Õ 5¤ñìH|Ô ;¹;X=DFAjŠcÈŽ¹HW. ZÈ#ðHHÆ\fèQîŽÀBŽ@Ù‘h9;Rõ¨G ŒHLh6; †5ƒGà¡iªž‰Ô<Í–< ªµà<í 4 ~e"]"4u­0f˜¶æê¡JGÀ\ZE 5BzÔÎØaèQU‡à˜ES¿¸ÜåBËÓÖ‚™k•"8 µë>Wy i|ÚZ0s­:G 4Z»Ü“ŠÀУøïTF=¹»ƒGBpЧµ«J€´ Gh”6¯ÑÌMŠE|”0©pGh‹tQÚ».s ¬‚q|Ú»RcR™ŽÐ Íþ;žÈXÕJ³.“HÁÕLnG¨œ–ÿáNd¬$H… 8B´|åª ¨ŒÉ¤Ðä•Í h‚\î,ˆàUÑøU•!F@ÝHÆŒ¯u„H‹!8B 4~ eˆÐ¤ B¤Åa­ —K¡Õ+&y@Ñ)´zI4 DV(‚#¬ WF!„ÿâ4!ÒAFŒ/‰ C”"—в"8Bé‹â¯w©cêÕ«WOîP®b‡!…†/¡“¤h’#QÒ<G(W:II3,iiirw €u0¹~ru5V4&%ÍAp„ÌL.dBÛ×2ÊqTœÒs¤ÐöåW˜%…æ/Î:½^/wjÓ¦M7nLIIqttìܹóäÉ“ÝÜÜÌ90 ))Iîî—ò=—¢)¡íëTÙþu«¦ÿÁTƒ/EøRÊ ¢£¤:¾éÒÝpÛ(œK0âX¼¨¨¨/¾øÂÉÉ©U«Vééé›7oNNN^³fƒƒƒÜ]³ÅD¡íŒ(˜ xE¯Ò%]Ï…†/éÒ¥;`›Üý Á±IIIÑÑÑÞÞÞ111^^^Bˆ?üpÍš5óæÍ›1c†Ü½S„R.%BÃWQ¼†„˜Àê”r=ç6‹±qãÆÂÂÂððp)5 !¦NúÃ?ìØ±cúôé666rw°B{ ØÚ”ùåÿQJ.”hDé¿ø¢VÇb>|ØÆÆ¦K—.†[[ÛN:mݺ511±eË–rwÐTéÿì3S±?·ê¨G)êù¯$äB0ÇCýN©¸ßb(wGSz½>%%ÅÝÝÝÝÝݸ½aÆBˆŒŒŒÇ­Mÿ.—Ÿó)ü§¥Ì)­âÿ@9Êå·˜…ó QÕ²o§GS¹¹¹®®®&í...Bˆ7n<ðüÖYºÓ—Ìž[ö豯á¶Qþ<ÈÚ‹šäîLñ¥(_ŠUä—¢Ñ$gaGSwïÞB899™´;;; !nݺõÀW`4ËÔ|Nv Aê\çñ(\]]u:]nn®IûíÛ·ÅÆ4ˆàhÊÎÎÎÅÅ¥èÈbNNްÎ@kŽÅðööÎÊÊ’’¢ô‚½½½åî€<ŽÅ.((Ø¿¿¡E¯×ÇÇÇ»¹¹ÉÝ;y‹1`À›Å‹KuBˆèèèÌÌÌþýûÛÛÛËÝ;yèôz½Ü}P¢¯¾ú*22²fÍš;vLOOOHHhܸñW_}Uô6=Ap,ÑÖ­[·lÙrüøq__ßÖ­[‡‡‡KwäÐ&‚#ÌB#ÌBp€YŽ0 Áf!8À,G˜…à³a–Ë—/·hÑbòäÉrwDëîÞ½»jÕªçž{®Y³f;v|íµ×~ýõW¹;¥]›6m0`@PPPûöí§M›–-w´Ž…ãW‰ ØÉÝX½^ÿÎ;ïþr7ä’ŸŸÿÊ+¯;vÌÅÅ¥mÛ¶ÿüóÏï¿ÿ~àÀqãÆ½õÖ[r÷Ns¢¢¢¾øâ ''§V­Z¥§§oÞ¼999yÍš5rwM£øQ8~•¨Á¶jÕªC‡ÉÝ ˆ7;v¬E‹_~ù¥”N’““‡ºdÉ’nݺ5jÔHîjHRRRtt´··wLLŒ———âÃ?\³fͼyóf̘!wï4Š…ãW‰:0UHNNŽŠŠzüñÇåîDll¬búôé†1­ ¼ùæ›ÌÇYØÆ ÃÃÃ¥Ô(„˜:uª‹‹ËŽ; åîFñ¢dü*Q ‚#J“ŸŸ?eÊ77·©S§Ê݈´´4''§ÀÀ@ãÆ !222äî¶>|ØÆÆ¦K—.†[[ÛN:eee%&&ÊÝ;âD±øU¢&LU£4‹-:}úôW_}U­Z5¹û±|ùr;;ÓŸÙS§N !j×®-wï4D¯×§¤¤¸»»»»»·7lØP‘‘‘ѲeK¹û¨Eü€(¿JÔ„G”èØ±c+V¬:th»víäî „¢qãÆR41HHHˆŽŽ®\¹rhh¨Ü½ÓÜÜÜ‚‚WWW“v!Ä7äî Fñ¢Lü*Q‚#Šw÷îÝ)S¦Ô®]{Ò¤Ir÷Å(((X³f͈#rss?ùä¹{¤!wïÞB899™´;;; !nݺ%wÁˆRð«D}˜ªÖºüüü+VžÚÚÚŽ9RyñâÅ 6poË+éK1øý÷ßgÍšuîÜ9__ß>úˆÇ[˜«««N§ËÍÍ5i—î3";BFü€(¿JÔ‡à¨uyyy .4<­\¹òÈ‘#:´aÆѣG?ùä“rwP‹ŠýR¤Ç÷ïߟ;wîÚµk«T©2vìØ×^{˱åÙÙÙ¹¸¸YÌÉÉBÖYÃòøQ~•¨’N¯×ËÝ(Îúõë?øàƒ’¶6hÐ`Û¶mr÷Q‹ Ç¿sçÎîݻϜ9“€"£>}ú¤¤¤$$$ûO›6móæÍk×®mݺµÜÔ"~@”†_%ªÄˆ#Šáçç׫W/ã–[·n8p FAAA>>>rwP£Ö®]»sçÎ_|qæÌ™r÷E낃ƒ“’’öïßoøIÑëõñññnnnAAAr÷N£øQ~•¨#Ž0Ë©S§úõë×§OŸ¹sçÊÝÒëõ=zôÈÎÎ>pà@•*UäîŽÖ]¾|988¸nݺ›6m’ÖÄ,_¾|Á‚#FŒàïðÊ‚«À¯`İׯ_¿pႃƒÃ!CŠníÛ·ïСCåԨQcòäÉ‘‘‘}úô騱czzzBBB``à믿.w×4ŠÀ2Ž€u¸xñ¢âîÝ»'Ož,º•u£–7|øpOOÏ-[¶lß¾Ý××wèСáááÒè#,À2˜ª€Y¸8ÌBp€YŽ0 Áf!8À,G˜…à³`‚#ÌBp€YŽ0 Á€¶Lž<9 `ß¾}rwD,^¼8 `ýúõrwÌEp€YìäîhT×®]=<ùä“«W¯–ô²ÒZ™ƒš´7nܸM›6Æ-¿þúë¸qãºwïÞªU«aÆ-^¼Ø$Û]ºtiæÌ™!!!Íš5ëÒ¥ËÈ‘#>\Ê­X±ÂxqŒÔ“‹/FGG·mÛ¶I“&-[¶|á…vïÞ]Ò+=z´qãÆ:uúûï¿ ·oßîÒ¥KãÆ?.÷—@mެCïÞ½…qqq&íÛ¶mB„††ÚÙÙeff2dùòå—/_®S§N­Zµ222¾þúëÁƒggg?ʻϛ7ïµ×^‹‹‹ËÏÏ÷òò:räÈ¢E‹†š••%휜ܻwïo¿ý6++«~ýúz½>>>þ¥—^Ú»wïC½ÑòåËçÏŸoooß¶m[—£G¾õÖ[;vì(vç   ×^{íêÕ«ü±¡ñÓO?ý믿FýÄOXúK vGÖ¡U«V^^^þù§¡±°°P UýúõBlÞ¼ùüùóݺuûõ×_·lÙòã?8p U«V—.]Ú³gO™ßúçŸ^±bEíÚµ7mÚ´oß¾Ÿ~úé—_~éܹó±cÇ–-[&í3oÞ¼;wîŒ5ê·ß~Û¼ys||üôéÓõzýgŸ}öPïµqãÆ‘#Gî߿ժU»vízå•W„kÖ¬)iÿqãÆ5hÐ`óæÍû÷ïB—.]úå—_Ž9’‘‘qáÂ…G,mB¤¦¦Jÿ (v‡¿þúK1kÖ¬ðððC‡½ôÒKUªTiܸñSO=Õ£GÆ?ÔÛÕªU« |ã7vïÞ}êÔ©Ö­[<¸\?uø/‚#kÒ»wïE‹ÅÆÆìß¿ÿÖ­[ýúõ3LLoذaΜ9ùùùuêÔiÙ²e÷îÝ›4i’––öÁ<Ô»ùîß¿/„¨Y³fI“Î5jÔBÔªUkÓ¦MGýå—_~ÿý÷“'O&&&.[¶,,,lΜ9:ÎÌ·®T©R>–Û·o_¿~]‘ššzóæMWW׊ÿ*hÁ€51ÇñãÇKsІyêÛ·oÏž=»R¥JË—/ïСƒá+W®<ì»\¾|¹°°Pzìïï/„pttœ6mZéGét:é@Bˆû÷ïïß¿ÿÝw߉‰éÖ­[ppp…~,3gμvíZóæÍ?øàƒ TèÛÐ,jX??¿&M𤦦ž8qbÏž=~~~-[¶”68q¢   y󿯩QügÙJéLf´wíÚexìíííééyîܹS§NïSPPпÿŽ;fff^ºt©[·n4l­T©Rpp°´šçâÅ‹ú™lݺuÇŽ;w^³fMƒ ~úé§¢7-€rAp`e¤%2Ó§OÏÍÍ 3´{{{ !Μ9“™™)µ|ûí·ëÖ­Bܽ{·ØW«S§ŽbíÚµ¹¹¹RKBB‚á&;’‰'Nœ8ñôéÓRËíÛ·ß}÷Ý“'Ozxxøúúþý÷ßüñÇÊ•+ C•çÏŸÿå—_„z?Å+W®|ðÁU«V={¶½½ýÇlkk;kÖ¬G/˜ª`eBBB"##“’’lmmCCC íþþþÁÁÁ{öìyúé§[´h¡×ë“’’²³³‡ ²fÍšÿû¿ÿûûï¿¥ë ]½zubbbpppãÆ¯]»–’’ââââããsïÞ=iŸ¾}û:tèûï¿ ­Y³¦››[jjjnnnݺu¥;oÛØØL›6mêÔ©sçÎýòË/kÕª•››{îÜ9½^?xðà    ú(ôzýÔ©Ssrr>úè#)77mÚô•W^ùòË/gÍšµpáB¹¿+jÈ#+ãååÕºuk!DÇŽ½¼¼Œ7ÍŸ?ܸq5jÔîïØ©S§-[¶LŸ>}È!¶¶¶ÅþÀÚµkóÍ7Ý»w·±±9pàÀÙ³gkÖ¬¹bÅ Ã>:î“O>ùüóÏ»uëVXXxþüùzõêMœ8qË–-nnnÒ>}ûö]½zuçÎΜ9“››Û¾}û¥K—Μ9³â>еk×üðÃ~ø¡¨¨HåÊÿ”ŒŒŒ,--;vì8gÎõ° WQ1cÆ ¾€@!8ðì?þ8qâßUè[ppð€ pá¾ka9sæLëÖ­¿üòËýû÷ß»w¯¸¸833s÷îÝÓ§OwrrÚµkWµ[(++{üøñÉ“',Xàì윚šÊ÷˜èaÄwR'—ËCBBŽ?Î0 ßµ@M¼õÖ[-Z´ „ØÚÚò]‹è¥§§ûúú>{öL±ÄÈȨ´´”ýúîÝ»AAAÇ÷ÝwÕ×µ¶¶655%„<þ\ÑhÌÍÍ ÌÌ̬[·n«¨077çûH:ŽüKMMMLLä» ¨¡aÆÉd2™L¶cǾk½éÓ§+Rã¨Q£Î;÷âÅ‹{÷î­]»ö­·Þ"„:´Âuׯ_Ï~>¼uëÖ¨Q£ØåwîÜY±bEÕ«¨çûH‚#€ |ýõ×………Õ¾íùóçsçÎ °¶¶¶¶¶îÑ£GxxxAAò{”OÎËÍÍ6mš——×[o½Õ¾}ûï¾ûîåË—*Û|øðá”)SºtébffÖ¢E‹Þ½{ïÞ½[}×<˜2eÊûï¿ÿÖ[o½óÎ;ƒNKK«Á~¿ùæ†aá G Ã<þ\e ¥¥¥ÿûßÿÞ~ûíÿýïì;ËËË7lØàçç×¼ys“æÍ›ûúúÆÆÆªHŽšõäÉ“iÓ¦uèСAƒíÛ·ÿý÷ߕ֪Õ9Ž/_¾\¹r¥··wÓ¦M4hжmÛO>ùäüùóêïÌÌÌ=z´““ÓÛo¿=lذ .¨Ÿ&XÙ‰˜ÁÁÁêçêir«þ4ù1`ݺukèС–––666ƒ :uê”&Êþúë/öë°°°ß~ûíÝwß544´µµ3fŒâ?®ÒÓÓ¯_¿^õ¦š5köÛo¿)Ëwß}ÇþŒ@mÉ@ï.]º¤ø7غukö‹y󿱝¾xñBñêÊ•+kräH777Å{<¨RCÁQÃQ« ÇÑÑÑÝÝÝÐÐý¶nݺÅÅÅì;5ŽŠmšššöïßÒ¤I;vd—]½z•}Û³gÏùÌÈȨS§N*ÿÁPƒà¨íTÿ4ü1(..nÞ¼¹rñŠŸÛjƒ£bÔ*ÿÝ¢á?%õX^^^§NöÕˆˆMV€ªaª€gVVVsæÌ!„VØcEEEݼy“Ò°aÃ#GŽìÝ»w×®]©©©–––„û÷ï÷ÝwêkýôÓO7oÞLMM={ö¬"Ã)æ ###Ùkš7ož‘‘±eË–¤¤$ÅÙ]kÖ¬QyÛ!C<8wîÜ?þøcÙ²eì«óæÍÓj¿7~çwÃÎÎîwÞQ¹0èÎ;®®® ©©©ì™j{÷îe_ =xð`llìÅ‹;tèÀ.ïß¿¯þöL S§NådïTBpàߤI“Z¶lIY¿~}e·æQÜ…dòäÉŠséÚ¶mªò77·‰'²_·nݺk×®ì×ìßuBȾ}ûØ/¦OŸÎP¶v6°¸¸¸¬¬Œ(eŽqãÆ)6>jÔ(¶ývëÖ-•[êT»ßjÕ«WoÿþýÇïØ±#›!†š0eÊö=гBŸ>þÒ¥K—.]2dûêöíÛU)¦¶#""ìííµÝ£‚¶Pý#ÐðÇ@q&¢r?522²Âs”)ŸªÛ´iÓTEãÆÕ·5†Ûñð¯N:ÑÑÑìlcHHˆ¢/¥,==ý¢gÏžÊË?øà¶•‘‘Q^^®èäBTæ7çÌ•——³_dff²_téÒEñ6›³gÏ*¯¨¸Ae× íÚµÓ|¿ÕrwwW‰ì®sss÷íÛwúôé³gÏž:uêéÓ§58ÚŽZÁÉÉIñuƒ ìììØ¬’/V­Z5~üxå%íÛ·g7Þ³gOöR’ôôô1cÆ0 ãîîÞ»wï~ýú)Ÿû¨8àÊ÷Ê644ô÷÷ÿý÷ßk0ä@õ@à ‹¯S§Î|PE…ìEÓ,o ÿøñcö‹† ª¿ZáíxTÎ.eŽ‚Ð¿ÿîÝ»'%%Uxkž‚‚‚üü|ök•›ÚÙÙ±_¼xñâÁƒʯªÌÿª|«¼ÍFUVXAAòMõ*ôèÑ£*vTƒûS* %%%ß|óÍ?þ¨¸¥Ÿ©©©••Õǵڲ†£V¦œÅk6…yóæ¬]»¶¸¸˜"—ËÓÒÒÒÒÒ.\صk×­[·6iÒD¹B•KLjÓ‡Óöª|þ<{öL±A•â›5kVõêuêÔ±´´d–س2Ôåçç³õ›˜˜Ô¯__“+f¨Õ/ë!„¬_¿Þßß¿ÆG@‚0U K–,a3ŠúÙl 6d/ !„üûï¿Ê/)¾­S§ŽâÚM¼õÖ[Š+T]u 6T´‚þþûïÌŠs{(ÔÃÙÂ… cbbJKK—/_~þüù‚‚‚¾}ûj»e G­#ÆÆÆ?ÿüsNNÎÆ‡®|—é£G²·Îiذaƒ Ø…ŠsþXÚ¦äÚ@•@ÃSSSÅÅ(*Õ*ÒpÞÿ}ö‹;wVx—¥Ö­[[ZZZZZ*.HªÚ±cÇJJJد+¼ž´…à íÚµ;v,©ä,~gggö‹¿ÿþ[y¹â['''Åéwš`F1§¬|båýû÷;wîܹsg???vr™=ÿ’RZZúŽssóF5jÔ¨Âgopkùòåì¿üòË—_~Ù®];##£;wîh»ÍG]c#G޼ÿ&öª—âââ¥LCŠ¿¾?üðƒâOò’%KRSSSSSëÖ­Ëv@{ôèÁ¾´zõjùë_oݺµqãÆ–––-Z´¨Ù¹†,EC¨ OŸ>Ŭ+Ò™3g’’’j°G G]c¦¦¦Öob¯Ï¸zõª­­í7!FFF=zô3f »¢bêüÃ?d¿X¶l™âÌËùóç+ÎÎTPÌÿž8qBqráŸþ©’Ò89€þxzz²/)ÿ ~÷ÝwW®\©v}ô‘b/“'OŽˆˆ`ê%%%ñññŠûJ¾óÎ;îîîUoêþýûŸþù–-[Øo?ùäås( ÆpŽ#€€XYYÍž={æÌ™ê/Íœ9ó÷ßÏÎÎÎÏÏ÷ööö÷÷744Z™3gN\\\AAL&kß¾½¿¿ÿƒ<ȾúÕW_±_|óÍ7k×®ÍÍÍݾ}{÷îÝ»uëvùòeÅEÜ¡¡¡5¸˜ Q£Fì9sóçÏ¿|ùò”)SŒ+{sƒ 4hÀ¾Ÿ}‚Ã0{÷î­Ù3c45çÚµkgmmýàÁƒÒÒRooï>úÈÂÂâæÍ›Š*s2mÚ´Ÿþ9???//¯sçÎ;v|øðáµk×Ô·©¸ŸNQQ‘»»»»»û£G×Qq{5ü1˜1cÆü!—ËÅçääTX|…bbb:vìXTT$—ËçÎ;wî\KKËÜÜ\Å¥H&&&[¶lQÜPSÙÈ‘#Ùóž?®|FG“&MæÏŸ¯£@rø¾‘$€Uq âââbå«’•Ÿsâĉ ïo×¼yó£G*Þ¦ÕÓDþüóOÅÙ“ÊÂÃÕ×ݱcG…—’Œ?ž½w·¶û>|¸òvÔŸ£rÄÔOìè訸q÷§Ÿ~Zu *4ue›RÜÎzÆ ìÍož’’RÙ´¾¯¯ï‹/ïܹs§âLG–‰‰‰â~=Ê÷ÐV^å#£èÛ)Ž9'P“¹\þÙgŸ©¼¡~ýú|ðzñ:vìXe—µhÑb×®]•ýSª……EJJJe«ààÚÂT5€°Ô©SG1û¬â½÷Þ»páœ9süýý­­­---»wï>kÖ¬‹/z{{×lw¼xñâ_|áååÕ Aƒ-Z|ôÑGGŽY¸p¡òÛúöí{þüù±cÇzxxÔ«WÏÑÑqàÀ‡^±bEÍ®2^²dÉðáí¬¬ê×¯ïææVíìð’%KÚ¶mK100x÷Ýw§NzöìÙþýû³¯&&&Vûð⌚s:uÊÌÌœ3gŽ——WÓ¦MÍÍͽ½½×®]›””T·n]Å;?úè£þùgĈvvvÁÁÁGŽiß¾½ú6ãââ.\ضmÛúõë»»»Ož€žžžŠ e€˜ª 8€F@#¸84‚Ž#hÁ4‚àAp 8€F@#Ž GЂ#hÁ4‚àAp 8€F«‘••åìì|þüy¾ à‚c5âããù.@Œø.@  ®_¿¾sçÎ 6ð] € 8V¬oß¾÷ïßç» Ap¬ØÂ… ‹‹‹ ! Çç»þ!8VÌÛÛ›ý"99™ïZÁ‘{ÎÎÎ|—º•žžÎw <@pÔ iþ0 ™³³3>¡Á‡"Lø\ŠI¶I„Ûñ€F@#Ž GЂ#hÁ$aïÞ½|—ªð¡>‡ÂàAp¬Æ‚ ÒÓÓß}÷]¾ à‚#hÁ4‚àAp 8€F@#Žj¦ªÿI‚#HRÕÑP.¯êReÄwºQukPÂù¯Æ@̪H‡ˆ†\CpÁC:GŒÊ"Ò¡0 8€Þ! Š‚#è "]€ fDDº 8€–¥ Á*‡ŒJ€‚ŒÕCp$õ˜ˆŒÕApÄDà‚#uA7D1ôÁ@T?Ž‚æàèøÆ÷ˆ‰À¾ €71ŒòÿdYYD.ÿïüApàÛ›Iñ˜ˆ¤( o~BLí7(RŽz‡¤(lŒê'ļù I÷3Â9Žº§rE Ò¡À¨4¥ «†à HЦ>׌¤¨!G. ) Š\Ap¨)å°ˆ¤(h(ê‚#€ÆÐV$4õÁ Jh+ ’"_Ô , ’¢@ 8BG9,") ‚#H¢ ­(|Ž 1‹‚¤(:xä H@eÏ÷½£á9~Ò}T5‚#Ð aQªxè3ߥi1†7þ'žÂ9‡©j ¦¡…†ëZ”ÛŠâ. 8€ø)ò"Â"¥ÁÄ ÍE@X”G„E@X”2G<ÌDóŠž›æ(Æ!ÚðÁ„ y‘Wм(â¤HÐ\ä‚# &£yEÃ44AXÔ!G4ùƒ°šCpþ /ò„’°HpÚ¢¾!8€Þ!/ò°Hõ Áô'/ò„’k\š‹‚€gU€.áiÑ|¨ðÙÐ|UѼñ„h9Ï©‘yïãÂGÐõ¼:VaX}^”óŸ%ò×ø>@¼ÁT5p'/ê=3ÑD@“ÑÊ=E)ÇDuŽPkÈ‹zGO^Ì•.‹š@p€Z`ÿÖ⯬^ÐsY4JsaQ[Ž =´õÈÑÁ‘ýBôa‘./",j Ç€ÆpÉ‹)®tÉ’e‰ø2—׃áýÊh\ã G¨ò¢¾Ðs×ãá7/V‘kSÕP ÌGë =Wº¼y=~ö™hAp5¸äE/¨Ê‹|_Ë\ôÁ^cö üÝÕ%ªò"yÑ\”œã yJ§0ʲ²u„ª“‰Úù‹úÜ3.sá:ކ)iÝ£³¿Hø¹ÒåÕžñËGéÁU/º‡¼ÈÍnqæ¢À 8H ZŒ:†¼ÈÍnÑ\*G @‹QǹÙ-ò¢à!8P -F]B^äf·È‹âà@#´u‰¶¼Hx¸¥N^)Gº Å¨3ÔæE¢¿Èˆæ¢Øá>Ž´P~œ4p‡¶û/!MÙm™ÚoB´DNéö݈ŒÜ¢-/äÅÚ GéøI¦ªD ³Òº)éÚî®ùhþny.DŽ"„ȨÈ‹µÝò¢ 8ˆ®•Ö ó"ÑëUÒÈ‹’‚à h1ê)Ì‹DOç/¾Ú?–È‹Bp6DF®¡ÅX«ý /J‚#€P!2r -Æšïy!ŽB„ÈÈ)´k¾äEx‚#€`àÚNÑœ‰n³ey‘ððHEj!8ZŒœ¢pJšè#ûК "#wx…ÈÈ:[Œ„88:°£Ò62"/BµðÈAžà9Ü¡ðÙ€ä¿'Üɲd:“Ê#ù0#Òë#¥Á@ï9òú)Ý Uy‘è<þPöiòæS¤E?aÃT5€abš#tžÅHt{"#Na„ÚCpÐ DFŽÐuœ€(;…‘à*iþ 8è"#h½ð-FíFôú JÆ#BŽ:ƒÈÈ:[ŒD‡‘ytÁ@¹@gdÔe”4è‚#§k ³ÒZo-FÐGŽ 2Ö-F¢óÈHM^$h1 žT‚ãæÍ›7mÚ”™™Y¯^½nݺ͘1ÃÜܼŠ÷—””ÄÆÆîÙ³G&“™››·mÛvâĉNNN| ‘±ÖµÛ*ZŒÀIÜ|É’%³gϾq㆗—Wƒ ¶nÝúùçŸUöþ²²²O?ý4:::77·k×®vvvûöíëß¿ÿ©S§ø nå];tÞÁ›èê†Ô”ݸ›àY/bCpLOO_½zµµµõÞ½{W¯^½oß¾‘#G^¸p!::º²U6nܘ––Ö»wïýû÷ÿøãñññ¿ÿþ;!döìÙ|„Dñе}!:‰Œ´>Ïzúƒã¦M›ÊËËCBB¬¬¬Ø%aaafff{öì)//¯p•´´4BȧŸ~jdôj*¿sçÎ...7oÞ|òä ßÀ3kÎçJ]E!†aÑb ?8ž:uÊÀÀÀ××W±ÄÐÐÐÇÇçñãÇl@TgkkKQΈr¹úè#“… ¦¤¤Ý»woΜ9wîÜ lذ!ßcž 2Ö‚$"#W›¤ô,FDF:PÞ?+,,,++kÔ¨‘Êr333òfOQ™³³s||ügŸ}öÙgŸ)Ž1"<<\Ãý:;;«,Ù»w/ßCÒîܹÃw  JDŠƒ£#!DÆv}d2¾ËÑ-Î?GGBH–,‹"#ô=GBˆ,KFádXŽŽŽìlQ¦ô“&¢,ªƒrp „d½‹x?þ^½zñ]‚PPÙK§ëׯ¯²¼Aƒ„üüü ×*((øþûïŸ?Þ¦M›¶mÛ>~üøØ±cÛ·oïÔ©S@@€&ûMOOç{è ÊÁÁï@•8>”×—¿ˆ¡Vnpò¹¨ÞÄ›¦Ã§t‡.¦É½ÅñEyP„EQlÅ«Sÿ³®Þ!’ʃc£F†),,TYþìÙ3òºï¨næÌ™gΜ 5j»äÞ½{üñÔ©SwìØ¡øB îÎX#ÔÞ‘‘p|SFúîÅHp;F  üG###333õÎbAA!Dqµ²‡&''·lÙR‘ !M›60aÂË—/·mÛÆ÷˜@÷p:cP{"#áø=úÎb$¸VZ2(Ž„kkëdzIQ=wÄÚÚZýý?&„´hÑBe9ÛhÌÉÉá{@ KˆŒ5‚ȨéÆèºã«AáÂ)¡?8úûû—••=zT±D.—>|ØÜÜÜÝÝ]ýý-Z´044ÌÈÈPùWÍžßвeK¾:ƒÈ¨=DF¶DÝí» ®•–*úƒc`` ÁÏ?ÿÌž×HY½zõ£GlllÌ.yþü¹L&c/[355õññÉÎÎþñÇwÏÈÈX¾|y:uüüüøèž£=DF¶„Yi  åÇBš6m:cÆŒÈÈÈ~ýúuíÚ5;;;55µM›6ãÆS¼çðáÃS§Nurrú믿! ,2dÈòåËwïÞíêêúøñã3gΔ——Ïž=ûwÞá{@À)\£=\þ¢Ñ–4¸VZt8½:D‰þàH=zt“&M¶oß¾{÷n[[Û#F„„„°wä©¥¥åîÝ»W®\yìØ±C‡™››wëÖíË/¿lÛ¶-ßCN¡Ë¨%DÆê7CãµÒ‘^c(ûÉgggÜÇQhd2™èî‚F=ž?4+QÙç‚ÈXýftÖbäñ n¯S ÆÙ¹•4ÿÖÓŽ#ÀpÝ´–p.cõ›¡î‚+¥80%‰©j€W07­ t«ß Nd” ô^_ApiÀÜ´6hŽŒ„›†"£d਼Áh‡È¨ GGBwd$µÊ¸öE2Ðb¬ÎqªátF±ç2fɲèLµ>‘Ê;2rq`èƒÓ;«‚à”Â=½5Fóå/„ãÈÈ÷`8>*ˆŒoÂ!©¦ª€FˆŒš¡ÿ\FÂÁÄ4My‘`Vº˜•Ö‚#Ðg4j‘±š 2J‰Ö€"h4j†˜æ» ‘QuP„ä£7àÔ‚#PFÍ ÑX骸\Z0+][Ž ~h4j‘±ÒUil1DFU8Ü@p1C£QˆŒ•®ŠÈ( 8\BpqBdÔ"c¥«"2JŽ÷@„07]Ê##©ù0ˆŒ€uÁÄ©±:ô_4Mj %Cç@<0=]ʈŒÜ*á`è ‚#ˆU¢<2’ÎM#2J†^!8€à¡ÑX%IDF¢u0@d”  8€°¡ÑX%œÎXÁJˆŒôÃÁà ‚#U¢¼ÑˆÈ¨ÄÑÁAûƒA%\.Í?¾ ¨Ûh¤.p‚! Ûh¤95ʵË Ã0 #—Ë)K ! !Y2U£ªù‘ký“\CpaLOWF‘QË‹`莌HI8Bƒ©jDÆÊátFÕ5(˜&5¿»9ep"£!8€` 5V‚òÓIMºŒ„ÞÈH•p Á×ÁTB‘‘h‘i‡Ã tŽÀ74+AùÜ4ѮшÈH;q@p^!5VFÕ·3 "#½pÄÁøáàèH¦§U!2ª¾ÒF#²!‡AŒp;àÃȲ²UP~«¢ÝmUpŸªá0ˆ‚#覧Õ(nÐÈw!:¡æg4Ò ²Ò«c€Ã b˜ª=ÂÕÓj蟛&ÚEFBãÄ4Á¤,Ž-@_ÐhTCy—‘h©†c@GÐ ¤Æ7¡Ñøß»i†c@GÐ1LO«A£ñ¿7â>;ÔÂ1 ‚#èo¢¿Ñˆ¹i5R‰D£“TÓ2h Á´Ô(F#©4BPÜh”vd”êÐAŽ 1¤FÉ7)ŽŒDºÝ6DFЂ#h—ÂH¦Ñè@ªHGF"Åè$ÕqC-ð]Ûh¤41hz #'rêS#‘Y–¬‚W†ÖÔȼn4R86ŒtG¨’ä§§%Òh$¤â¹iê Ëµ‚à•Cj”üGF"Åô$ɨ œBp€JH;5J¢ÑH* 7%%9nà‚#TDò©Q‘‘T$ ¥‘‘H´á†È\ÂÅ1ð&†Aj”Dj¬èº†a²²²¨LŒS#®€î!8€i_@͆þÔXI€¢øºi"Åô„Ⱥ‚©jx FêÿÊV ÕsÓDréIz­UÐ#G „H:5Jù:º»ŒDrJ’ƒýBp©§FIDF¢'¨o4Ò9°ªFL$7hà‚#€ä!5Ò FÊIoÄÀ+Gi“jj”ìô4t‘ÞˆoŽ&áÔ(‰ÈHÞÔGF"­ %½ƒ0 8HÃB©UQ£‘ÖÈH$×vCd>!8H„DzÓÓh4RDbÃABp §FIDF¢šiŒDŠF) „ Á@J$™Ñh¤Ä:oŒƒƒ”† †GH†TS£œÈ%˜år9•©QbÒ{5\™,‹ïJ^AÇ@$œù®Bçƒ$ä¿E}£‘Îa¸ Ž ½Ô(ÙéiŠ##‘PŒ’ØpATh'ÉÔHd$o¤F4iÈB‡à@5¤F*©MOS‰„b””2ˆ‚#½©„F#…$–AÌ(%±Ô(µ“©ŒD*1JJc* 8ÐHz©‘þÈHÞH´FF"¹F£dÆ ´@p R#}^·¥èn4 %)4A¬è"¥Ô(Áéiº##‘D’’Ì@RŽ‘Xj¤?2’W©FZHf @/GZ 5Òçuj¤;2I„)É h‡à@ɤF MOI¤FjÇöÆ(‰$ Ò€à ~RJôGF¢4=ÍP;=-™0%l R‚à rH”‘Æô4µc{c”D‰Ap3¤FÊ0¯þ­©QaJ£©Bp-i¤FIÔÈ4ÅN£ Cp'ɤFú##yÝh¤÷†;ÒhÁIc” yŽ"„ÔHF Hc”ŽâƒÔH¤FÑC£¤Á@Ti°'oÒ9R ä) @ ‚#€xH 5JêRŠG)F#íC¨‚#€HH#5Ò åÓÓ´Gbi  rŽb€ÔH Ú§§é˜¤†P%©ÇÍ›7oÚ´)33³^½zݺu›1c†¹¹yÕ«\¼xqÕªU—/_~ö왳³ó¤I“:vìÈ÷8@’©À0 ½‰‘ú#„bÀwú°dÉ’Ù³g߸qÃËË«Aƒ[·nýüóÏ‹ŠŠªX%)))888))ÉÊÊÊÝÝýìÙ³#GŽLJJâ{( =´§F†0HbÇH"5Ê)"€fèŽééé«W¯¶¶¶Þ»wïêÕ«÷íÛ7räÈ .DGGW¶J~~þ×_mdd¿qãÆÕ«W'&&Ö©SgΜ9ååå|¤D©QNäÔæ)vŒ CŠg§©THÅÚ ?8nÚ´©¼¼<$$ÄÊÊŠ]fff¶gÏžÊRàÖ­[ Æß¡CvI»víz÷îýèÑ£‹/ò= ÚS££ƒ#µaêµÿ4”öHÅПŠ´Gp—ÿÔ}pŠF£`GFß?qQÿ³®Þ!’ÊÏqlÔ¨Ã0………*ËŸ={F^÷U˜˜˜°_|ÿý÷ hÔ¨‘ÍĉxçÎ]»vñ=& Õ3ÔÔßs‡aê/…¡qXʃ£w|ÜVpüá‡2339Ü ‘‘‘™™™zg±  €¢¸ÎZYýúõMLLLMMýüü”—÷èуríÚ5¾P ©Q̆‘Ëå´žÔHõÕÓT@„W¯^ýá‡<8>>¾ÂkÀÚÚúñãÇlRT`Ïϱ¶¶®p+++cccöôvv†º´´”ïƒ4Bj­WF¹œÖøAu/ŽêÁ膰‚ã_|aggwéÒ¥ tíÚõË/¿Ü·o_IIIm¶éïï_VVvôèQŹ\~øðasssww÷ Wñóó+((¸~ýºòBöÞ=­[·æû uEëU£‘öÔH#4jHXÁ144ôàÁƒüñGpppƒ ’’’&OžÜ¥K—o¿ýöܹs5Ûf`` ÁÏ?ÿÌž×HY½zõ£GlllÌ.yþü¹Löß5ž$„Ìž=[Ñõ¼xñ⯿þjffÀ÷AºÐ›©–à«F#¡3P¬Ðh¨¹×¿ø„§´´ôÈ‘#;wîLJJzñâ!¤yóæ èß¿¿V›úí·ß"##íììºvíšššêêêúÛo¿)nÓ³{÷î©S§:99ýõ×_ì’U«VÅÄĘ™™yzzž:uŠa˜¨¨¨Þ½{W»;ggg\U-42™L ×$R5‰ŒÂýPª{›FJS£L&stp kL b½G£xÿ±PL²ë…{;##£îÝ»wïÞ½°°pË–-111ÙÙÙË–-ûñǽ¼¼Ü·o_CCCM65zôè&Mšlß¾}÷îݶ¶¶#FŒ aïÈS™/¾øÂÒÒ2..îøñãæææþþþ“&Mrrrâû¨]$œÅëF#c©Õ©‘Ò‘è‘p;Ž„ÜÜ܃îÝ»7%%…½*¥I“&ÆÆÆ÷îÝ#„´lÙríÚµ¶¶¶|—©J²ÿ"dBüïuɧF!~(ÕŽŽöéiBH–?ÍF&âLŒÿX¨'Ù¿õBì8>zôhÿþýûöí;yòdYY!ÄÒÒòƒ>èÓ§O‡!Ç_²dÉ¥K—þ÷¿ÿ­Y³†ïz´'ùÔ(:tOO+IXLárdÀaÇ„„„}ûö>}º¼¼œbaaѳgÏÞ½{{zz*ÏJ{{{wèÐá½÷Þ;uêß%h©Qlþk4:sc"4HXÁqþüù„F}ðÁ½{÷îØ±ceg1šššš˜˜pž HbCwj¤7[Q÷Qƒ°‚ãàÁƒûôéÓ¹sgM®zA»ćÆÔȆ:™òÆô4¡0ŠP7 Ű#aÝÇqÏž=)))•¥ÆI“&õìÙ“ïjŠÒÔ('rZSã«›{¿*e£¤n@Êâqd ¬ŽcaaáË—/+{éÖ­[wïÞå»F€¡75ò]…n†Æ¼yÇ ºB¥9J‡ 0üÇÇùå—ŠoãââÔßV^^.—Ëíííù®¡75V0=M¨J#te`Ú‡ <üGCCÆ ²_çææÖ©S§^½z¾³Q£Faaa|×  =êÚ§FŠ4ˆPí„ÿàèííššÊ~íììüñLJ‡‡ó]wE©Q„h€°ñ•3ÆÓÓ“ï*¸ƒÔ(t§FJ›rt}H"!¬à8sæL¾KàR£¨žÔHh $tF1&Bá°Ä€çà¸~ýzBÈ{ï½çä䤸¶jÇç·f 5Šj£‘Ж³è ½cžƒcDD!dÞ¼ylpd¿­‚#ˆ]©‘Ö[|ÓilÊÑ8&±á98Nš4‰Ò¶m[öÛéÓ§ó}@jºÔHed$*ÓÓ„¶ÔHËP¨€ñ'Nœ¨üí¸qãø­”ÑšåêÉž¢XBÑP"´ @´„uq €èQÔnDj#ІBé€DŽçàxèÐ!mWñõõå·f€J!5 [Å'5J’ EC¡t@Tà98~ñÅÚ®’žžÎoÍCj0œÔ(6Ô €<Ç~ýúñ}¸€Ô(`˜žê@žƒcTTßG Ö ©QT0= t¸8^AjêB- Õðä€Ú¡¥ÝHYj¬ø¤FBO8¡eŠÑª@/<9 ©âF#¡'mÑ2G@;<9 ¦ ©QTè €àÉ15‚Ô(<•NOJò ]ºt@2 ø. *ÏŸ?/))á» 5HÂÃ6éNrÆAãh¤DˆWU_¸pá—_~¹|ùrNNއ‡ÇW_}Õ¼ys¾K }©±²qR0J*¡ ¡g4Ò#¸Žã²eË:”““S·n]“Û·oÿßÿý_Ÿ>}ù®€’v#R£ˆP1å¡Ð2IVpû¬Âå÷îÝ[¶l™ÊÂôôô÷ß?==ßšAB…©Q$hTŽçàØ¯_?¾¤’Åßá¢%mÑ2¨ÏÁ1**Šï#P 1·%”Å}Zñ*Ã0wîÜá»F¡#5Êår¤Fa£bÀaÇ=zMŸ>ýÆ„OOÏ[·n;vŒòèÑ£3gÎØÙÙñ]#ÐHœíFjRcµãï(Å\»bâpGXSÕ#GŽÜ·o_RR’\._¹r¥‘‘Ñĉ=<<®]»VXXاO¾kê 5òÄÑÑ©QØÄ?àš°:Ž–––ëׯ mÛ¶-!ÄÎÎnöìÙ%%%ÿüóÏãÇýýýGÍw@¤F¾†À0YYYÕŽS¤£¤¢M'þ€«ãH±´´üâ‹/ß÷íÛ÷âÅ‹ÖÖÖŽŽŽ|WÀ?±§FÅ¥0ŠKß*§HG)ÚÂ_qp`ÓŠz +‚ ŽÊž?nllÜ AƒÎ;ó] ÐH„íF RcõÓÓDÄáK´…ÿ7™,ËÁÁï2@ „/\¸ðË/¿\¾|9''ÇÀÀÀÎÎÎÃÃ㫯¾jÞ¼9ߥEõ_?R£Ð±#Õ~C@+aãHY¶lY``à¡C‡rrrêÖ­kbbrûöíÿû¿ÿëÓ§Obb"ßÕ-õ_?R£ QqZ&èž°‚ã‘#GV¬Xahh8räÈœ?þìÙ³‡3f !dÁ‚çÎã»F 5 œh W._Ì#}VpLLL”ËåÓ¦M›5kV³fÍØ“èmmmgΜùõ×_—––⑃À±µ‘…Lü:‘—ú%¬àxùòåºuë~úé§ê/1ÂÔÔ„Ú[j;êS£˜;uâ½ wÂ Ž„#£ .Ùa¯’),,ä»@½o»‘aMS£8‰ðGXÁ100P.—óÍ7¥¥¥ÊËËÊÊÂÃÃËÊÊüýýù®D ©Qo•kÕha†aÉʵ‹¹|àÏ÷qLIIQþÖÐÐpРA[·n  tttdF&“mÙ²åöíÛÎÎνzõâ·`)GG¤F=UŽÔ(\b®„ç3œµ]%==Ç‚5”ð‹”Qµ‘K„%k]»L&Óc„ŠIöo=ÏÇ~ýúñ}@F–•%–_ºÒI²,™ËÇBBˆXS£˜ká98FEEñ}€vl¯Q&ާ¨I'5ŠëÉvRh4hBˆÏª&„Ü¿ÿêÕ«ÙÙÙ/_¾ttttqqiÚ´)ßEa†Ze3 !„âj±ÕKKí H‚ ޹¹¹?ýôÓ† ÊÊÊ ‡bffÆw:!ÞÔ¨ÝyÒbK2b«—–Ú@¨„ËÊʾüò˳gÏÖ­[·GÍ›7744¼yófrròüqõêÕõë×ò]&ˆ„xÚHÂ$¶z• 'b­„MXÁqݺugÏžmß¾ýO?ýdee¥Xž““3iÒ¤³gÏ®[·n̘1|— b€Ô¨ë²‘J´…€ëàGeféҥʩ‘Ò¤I“eË–9r„︄Ô(Lb«Wü…€H«ãxíÚµæÍ›ÛÚÚª¿dmmýÎ;ï\½z•ïA DÒnDj ÑÎòжpaǺuëUöjQQ‘©©)ß5‚à!5ê´lÚS£xŠ¥¢paMU»¸¸}Š‹‹ÿùçKKK¾kñ@jÔEÁH‚#Â’€:ºªÚÉɉrýúu¾ àR£ 0b*V¹j±• 4Vpœ3gŽ©©éŠ+^¼xÁw- ‚o7"5 [©HŠU©€šª¶²²úá‡þ÷¿ÿõëׯ_¿~ööö 6Ty¯¯/ße‚` 5r^p R£xˆ0á¤FaG???ö‹GýôÓO¾'==ï24"•Ô(’8&’2E^2ÐNXÁ‘}r €F„ÝnWjd†‚Ô($",$@XÁ1**Šï@$9¬¶ÆÓÓ"É6")Sä%€4ëâ%%%………|W@3¤Fç5ß Âê8²222–/_~îܹû÷ï———ÛØØ¸¹¹Mš4©uëÖ|—€v#W¥"5 ‹Øêé\p\»ví?üP^^N©[·®¡¡áýû÷ïß¿Ÿ””:nÜ8¾ ¾!5rU*R£°ˆ­^$aMU§¤¤üðà Ì9òÀçÏŸ?{öìáÇǎk``“’’Âw•BjN÷Š­^*aÇ?þø£¼¼|ÆŒ³fÍjÖ¬{¥§ÍŒ3ÂÃÃËËËãããù®x%àv#R£@ˆíß"L¹ a Ž/^4119r¤úKÁÁÁõêÕ»xñ"ß59)U©Q<Ä–r@òKKKÿý÷_kkkCCà 50°µµ¥ø™P ¤FNJEj±Õ ¨àÈ0L½zõnß¾——§þjAAÁÍ›7Û¶mËw™o@j1Ô(æz!‚ ކ††ƒ *//ÿú믋‹‹•_*)) cf̘15ÛøæÍ›ÝÝÝ»též››«ùº÷îÝëСÌ3ø>B&Ôv#R£@ˆ¡FåbEU/€aÝŽgذa—/_>tèP=ìààÀ0ŒL&ûóÏ?ï߿ߧOŸgÏž:tHñ~GGG{{ûj7»dÉ’•+WÖ¯_ßËË+;;{ëÖ­qqq¦¦¦Õ®+—Ë¿þúëgÏžñ}lj©Q0DU,€aÇ>}ú°_<|øpÅŠ*¯îÞ½{÷îÝÊK¦OŸ^íÓÓÓW¯^mmm½eË+++BÈÂ… ãâ⢣£çÌ™SmIëÖ­;yò$ßFÚÐn¬M‘5~µHˆ*ˆ‰ªX€Š+8öë×O«÷·lÙ²Ú÷lÚ´©¼¼<$$„M„°°°ÿû¿ÿÛ³gϬY³ ªš¬ÏÈÈX²dIëÖ­¯]»Æ÷±‘*¤ÆÚYãFãëA |ˆ‚/P´ÅTBXÁ1**Šómž:uÊÀÀÀ××W±ÄÐÐÐÇÇgçÎiiižžž•­XZZ:sæLssó°°°Ï>ûŒïc‚Ô(‚/P¹R"šbª$ ‹ctA.—gffZXXXXX(/oÕª!äöíÛU¬ûÓO?]½zuÑ¢E 6ä{R%Èv#R£¾@•JER,@u„Õqä\aaaYYY£FT–›™™Bžlnnîîî®þþæÍ›+ÞÉÊÏÏ?vìXÓ¦MÝÝÝmlløí„×nDjäyt‚®Nœ•ÔýÁ100påÊ•?ÿüs·nÝØkbV¯^ýèÑ£±cdzïyþüùÇß~ûmooooooå-\¾|ùرcžžžº¸Í$¼©±"5ò'5€TЛ6m:cÆŒÈÈÈ~ýúuíÚ5;;;55µM›6ÊÏ*<|øðÔ©Sœœþúë/¾ë¡?5 ›xR£ÊàýÁ‘2zôè&Mšlß¾}÷îݶ¶¶#FŒ a» k7J"5 8ó¸4– ÀIGBHß¾}ûöí[Ù«}úôéÓ§Oe¯¶iÓ÷eÔ9¤Fm+DjäŸHÊàýWUЩQDR&§¤ÒqAC»Q«òù¯‘ˆ L@pxR#Ÿ£ni¢ª@goBj7"5ò9:á–&ªk’}$±Ôàb !8¯5/ÞÔ(’©_¡>Ð=D êá?4‡à@R#Ch]*5”  {ŽÀÁ´…œ†!„ 5¢F!@pž&5 ݆qtpüØÞ€û8‚Ô ¶ÝÈYjdøaÉ’Éø®¢Ú…wàx…à|L»©‘ŸÑ ±(•_#0U Ò…ÔÈÏè„X”¨ à:Ž wÂh7"5ò3:!%ªx…àú…ÔXuaH(@À„©Îq=B»±Šªù¬Žº@Á@Ǥ©‘‡Ñ ±(•ê\ @­9s†a˜7²ß.X°ÀÒÒ²mÛ¶<–T^^îäädoo¿hÑ"¾hÁôEíFÊS£ ‰!5HÈ•+WæÌ™ãââÎÉ/\¸0tèP› xzz.Y²¤´´´ÚµòòòÚ·oocc¾~ýzÙÇÇgÞ¼y:Ý…¤ 8‚^ 5VV‡©Qx)Hx‰§:ÝÈÌÌ$„|ûí·ÁÁÁµßZVV–¯¯ïÞ½{{õêZ§NÐÐÐÀÀÀjW´°°Ø¼yó‰'zö쥻ñž={öŸþÑÝö%Á$ÁÑÁ©Qߣ\Eâ©@gØß9&&&œl-444??ÿÀëÖ­‹ˆˆ8~üøèÑ£·oß¾oß>MVgfêÔ©çÏŸ?tè·Ã,--ýûï¿¿ýöÛž={–——s|¥ ÁtOíFBjä¯4WÀ…#GŽXXX¸ººÎ˜1£¤¤„]>jÔ¨B¼½½j¿£¤¤$///Å’‰'BRRR4Ü;¯½fÍnÀãÇ{öì9oÞ¼œœn· ¸ªèÇ&K–E8ø%É]IH( @7þüóÏ   Æ$$$ìØ±ƒ}iÚ´iöööÑÑÑÊi¯fJKK¿úê+OOOå…ÙÙÙ„ºuëj¸‘ØØXBȶmÛòóóÍÌ̸:ÖÖÖìïØôôôÖ­[svpGÐ9¾Û<µ‘âÔ(ìnž€KàHqqqhh¨••UZZÚ/¿üòÓO?¥¥¥={öŒ}ÕÍÍÍÃÃÒ©S'ŸZîËÈÈhÑ¢EƒV,yòäÉ¢E‹ ‡ ¢ÉòòòvìØ1jÔ¨âââM›6ñ}ð@#è8‚.!5ª—DujR9¢ªDŠaxÛu%¿FÒÒÒ²³³£¢¢ìììØ%¶¶¶“'O «v“¥¥¥»víªìÕþýûW½ú¡C‡>ÿüóÌÌÌ+V899i2ˆ 6‡„„dee­[·nܸqº( ¸…àÔBjÔëЄUŽJiD¸Õ¨ ïìíëׯB:tè ¼ÐÝÝ]“uŸ?ΞYÉX+ì­[·&Nœ¸sçN''§tïÞ]ÃjcccÛµk8qâÄëׯ·jÕŠÃÂ@0U :Ãw»Qh(¾_£°S#îï bddDaÞl…hô·ÞÌÌL^¹ÊÖJLLtss;}úôªU«®\¹¢yjÌÈÈHMM:t(!dðàÁìùŽ\:‚Ž#ÐIhíFŽS£’šjOiºÑ²eKBÈ™3g|}} Ï;§Éº5˜Þ¹sç'Ÿ|´råʆ jU*Ùàhccããã7þ|õ˜‹©jAApÝàµÝˆÔ¨¿¡ ¨ñ” 3ŽŽŽ111Æ ³µµ%„äää,[¶L“uµ–Ëå3gÎlÖ¬Y||¼¡¡¡VuÊåòøøx777WWWvIPPЄ <PËÂ@§0U :€ÔøÆÁ@jDizbllýðáCww÷)S¦LŸ>ÝÃÃCÃ{j;#|õêÕk×®™ššŽ;vÔ›vîÜIILL477 U_799ùÖ­[AAAŠ%ƒ 266?~üœ9sjYè:Ž@¤Fý M@µ¨ÔEZ€^ 80)))""">>>77×ÌÌ,!!A“Çj‹}záÕ«W¯^½ªòRË–-ûöí[RR’——WTT¤¾n\\!D98Z[[/Z´hñâÅçÏŸ—Ëå W¬C•¨=[ŸGÎÎÎééé|WÁA¶e2'IÐòH 5VEŠŽ‘hñòEÈDý+ýÞ½{7ÖüvÜœ[»ví¥K—–.]Ê÷‘¨F >eQÿ`Ô¦ª‚j7"5¢.Þ5mÚ”ÇÔøâÅ‹äädö–ã@ GàíF¤F= M@µˆ¡. KIIqqq6lß…—pŽ#p©ñÕa ö ¡¦3¡Ö m~~~~~~|WCpÑ£<5 & ¦•¢ˆë ‚#pωAjDQ´Ã9Ž nÂi7"5¢(ê!8xj7"5êchB)DðEH‚#ˆR£>†&”B_€4àG¨5>ÚHúšP Q®ˆ®()Ap„Ú‘ö51H’®@z0U â#v#î×(éŠ$ ÁjA“Ô:IÂHG¨BØH¦ªALu;.BÿU»"iCp„šÒ{»©Q·ãâ¿ÁW y˜ªÐR£t+­3gÎ0 ³qãFöÛ XZZ¶mÛ–Ç’ÊËËœœìíí-ZÄ÷áí 8BH²ÝˆÔ(ÝŠhqåÊ•9s游¸„‡‡s²Á . :ÔÆÆ¦AƒžžžK–,)--­v­¼¼¼öíÛÛØØ„‡‡¯_¿^#­YaP-LUƒö¹ßÃB ‚¯€"™™™„o¿ýÖßß¿ö[ËÊÊòõõ-++8p ½½ýBCC9²mÛ¶ªW´°°Ø¼y³\.ïÝ»wTTÔðáùf ƒj¡ãBGmje4FpP‡ýUfbbÂÉÖBCCóóó8°nݺˆˆˆãÇ=zûöíûöíÓdu†a¦NzþüùC‡q;ÌZU@p-é·ÝHsjä;#ñ½ÿ ËRE¢uäÈ‘€€ WW×3f”””°ËG5`ÀBˆ···ƒƒCíw”””äãããåå¥X2qâDBHJJІ[`§×¬YÃí¨}aPLUT©QŠåˆÙŸþÔ¸qãàà`ƒ„„„;v°/M›6ÍÞÞ>"""::Z9TÕLiiéW_}åé驼0;;›R·n] 7KÙ¶m[~~¾™™'G€“ 2Ž  ‰µ‘¥X€˜‡††ZYY:uÊÎÎŽ®ˆPnnn7nÜ „têÔ©K—.µÜ—‘‘‘Ê5ÑOžÕ¨Á§,êŒÚÀUÕP%*RcuCDj”F!ÒÓ´iSSã‹/’““=<<ø> À%GàR#];d! w)))...Æ ã»àÎq„Êé¥ÝˆÔH×Ε« ‚(xâçççççÇwÀ1G(Üy‡þ*€k˜ª†JPÝnÔmjä/5 #¯ £ ÐGà R#-{^ ˜ª†Šè¾ÝˆÔÈín‰ òR#åA0¨÷‘Ñ™ði &»€.!8xi7"5R^èÎq„7Q:IíèèˆÔHs Ž W|õ³²²t7$¤FGPBãÙTÞ¯QyMU€áGÐý·užùÈNÈk¸@¢á5·y|´ î†$ÕÔÈw ÀLUƒ>à2jÑîSx%€–Μ9Ã0ÌÆÙo,X`iiÙ¶m[K*//wrr²··_´h߇´ƒà„ݶ‘E»OᕵsåÊ•9s游¸„‡‡s²Á . :ÔÆÆ¦AƒžžžK–,)--­v­¼¼¼öíÛÛØØ„‡‡¯_¿^#MNNöóó³²²jܸ±··÷¶mÛt± Bp !5ê`ÿ|—\ÈÌÌ$„|ûí·ÁÁÁµßZVV–¯¯ïÞ½{{õêZ§NÐÐÐÀÀÀjW´°°Ø¼yó‰'zöìÅù0wïÞݽ{÷[·n1büøñ999ƒ Z»v­ލä 8míF¤FÝì©€ì¯GN¶šŸŸàÀuëÖEDD?~|ôèÑÛ·oß·oŸ&«3 3uêÔóçÏ:tˆÛa~óÍ7666iii111 .LKK³··Ÿ7oÇGS’A‡ŹO!í´wäÈ‘€€ WW×3f”””°ËG5`ÀBˆ···ƒƒCíw”””äãããåå¥X2qâDBHJJІ[`çµ×¬YÃáð‹‹‹/_¾üÑG™™™±Kêׯߵk×;wîq¸#iÂUÕ’§³v#m©‘|§6¾÷ÚûóÏ?ƒ‚‚7nl``°cÇö¥iÓ¦ÙÛÛGDDDGG+§½š)--ýꫯ<==•fggBêÖ­«áFbcc !Û¶mËÏÏWä¼Z244<þ¼¥¥¥r©/^l×®©©)7GYÂôݲ‘×Ô†;5ˆRqqqhh¨••Õ©S§ììì!áááŠlçæævãÆ BH§NºtéRË}©\ýäÉ“E‹2D“-äååíØ±cÔ¨Q±±±›6m7n'ÁÈȨM›6ì×qqq™™™»víú÷ßÿøã.µT!8J-íF¤Fzv  Ãð¸÷Ê~㥥¥eggGEE±©‘bkk;yòä°°°j·YZZºk×®Ê^í߿ի:tèóÏ?ÏÌÌ\±b…“““&£Ø°aCqqqHHHVVÖºuë* ޵)lþüùìõ@Í›7¯ÑÁ†7 8÷ŶCÁì@<„ybÌõë× !:tP^èîî®ÉºÏŸ?gÏ€Ôv¼·nÝš8qâÎ;œœ8н{w «uvvn×®]``àĉ¯_¿ÞªU+ #„ddd¦¤¤Œ;¶S§NW¯^µ²²âà@K.Ž‘0Ý´‘ŶCÁìjÍÈȈ¨uC 4ú[off&¯\ek%&&º¹¹>}zÕªUW®\Ñ<5fdd¤¦¦:”2xð`ö|G® S¨W¯ž¿¿ÿ÷ßÿäÉ“íÛ·ë烠:ŽR¥ã êkH´ì¸Ð²eKBÈ™3g|}} Ï;§Éº5˜Þ¹sç'Ÿ|´råʆ jU*Ùàhccããã7þ|õ˜«ma»ví0`@BB»q–¹¹9jŸX\Kúl7R–y½—ÂPÂÃÃÃÑÑ1&&fذa¶¶¶„œœœeË–i²®¶3Âr¹|æÌ™Íš5‹744ÔªN¹\ïæææêêÊ. š0aÂÁƒjYXÇŽ !¿ÿþ{PP¢ùÊæÔÎ;ëä¸K ‚£$‰’š¾ÔˆF#Ôž±±qtttPP»»ûСC7nܘ““£ÉºìŒ°æûºzõêµk×\\\ÆŽ«òÒ Aƒúö훘˜8a„Q£FÅÄĨ¼!99ùÖ­[Ê«L™2eüøñÆ ›?~m ³´´œ5kÖ¼yó¼¼¼zöìÉ0ÌþýûOž<Ò®];½|4Cpñ¡ì~HÀ¡&%%EDDÄÇÇçææš™™%$$hò@m±W+_½zõêÕ«*/µlÙ²oß¾%%%yyyÞs;..ޤXbmm½hѢŋŸ?^.—×ò¢õ¹sç:::þòË/+V¬000pqqÙ°aƒòÌ5ÔU€ÂÙÙ9==ï**'òvcÍR£L&Óâ1 zLSRNÚ}( /ø\TýWz•îݻ׸qcÍoÇ͹µk×^ºtiéÒ¥|‰jÔàSõFmàªjà€ÀS£¶ƒ‘@jdxO M›6å15¾xñ"99ÙÃÃïÃ\ÂTµÄè ÝˆÔ(ø] fÏ %)))...Æ ã»à’T‚ãæÍ›7mÚ”™™Y¯^½nݺ͘1ƒ½2¿2EEE7nܲeË;wÞzë­V­Z=ºöh‚Cjýž@büüüüüüø®8&‰à¸dÉ’•+WÖ¯_ßËË+;;{ëÖ­qqq•=ì¼´´ô³Ï>;w™YçÎ_¼xqâĉcÇŽMž<ù«¯¾â{4µ Úv#R£è÷ T ÿÇôôôÕ«W[[[ïÝ»wõêÕûöí9rä… ¢££+[eÓ¦MçÎëСÃáÇW¬Xñûï¿oÛ¶­Q£F¿üò‹úµcR†Ô(ì]©ì©j‹þà¸iÓ¦òòòÅã)ÃÂÂÌÌÌöìÙS^^^á*{÷î%„Ìš5KÑ’trr?~|YYÙ?ÿüÃ÷€jŠëv#R£°w¥¾[¤F¨-úƒã©S§ ”¾dhhèããóøñã´´´ W‘Édõë×oÓ¦òB'''BÈíÛ·ù„à~"Þ-Јòsåryff¦………………òòV­ZBnß¾íé驾֪U«ØçÄ+»|ù2!¤Y³f|©FDØnÔSjÔW¬Bj P ËÊÊ5j¤²ÜÌÌŒòäÉ“ ×R<:S!55uõêÕuëÖ­âq™ÊœU–°Óß|q D&“qµ5GÇ,Y–Œp¶Á vá蘕•ÅaÍwîÜ©à°8:èx¯‡ãàÀå`4àààH‘ɲˆ†WS~(À;|. MUÿ’îÕ«ß åÁ‘}ÒQýúõU–7hЀ’ŸŸ_íÊÊÊÖ¯_¿xñâ²²²~øÁÒÒR“ý ënò Cär®ñª×¨ËçJè¨×¨ú0 †9qÐéHþÛ!z}û¬<¡D˜ð¹€Uýc¯þg]½C$”ÇF1 SXX¨²üÙ³gäuß± 'Nœ˜7oÞ7lmm¿ûî»÷ߟïÑ3Ô¢Ü'HåÁÑÈÈÈÌÌL½³XPP@Q\g­®¤¤$***>>ÞÄÄdÒ¤IcÆŒ©ì¦BÇéÙº>µ‘¦ÔÈBôàøØ'H åÁ‘bmm™™YPPаaCÅBöTkkë W)//Ÿ6mÚßÿÝ£G¹sçV‘/%©Q`;À>@bè¿¿¿YYÙÑ£GKärùáÇÍÍÍÝÝÝ+\%>>þï¿ÿ6lØ/¿ü"îÔÈ]»©Q`;À>@zèŽ?ÿü3{^#!dõêÕ=< ú§ª›6m:cÆŒÈÈÈ~ýúuíÚ5;;;55µM›6ãÆS¼çðáÃS§Nurrú믿rrrnݺejj:|øpõ­ 8pĈ|I3"i7Òt—o½'8œÔÚ¹råÊœ9s¼½½'L˜Àí–_¾|ÙµkW†aRRRª}s^^^ûöí³³³ÃÃÃííí+üƒËÿ¹sçên’Bp$„Œ=ºI“&Û·oß½{·­­íˆ#BBBØ;ò¨cûŽEEE—.]RU‚VÓ‘t¯øHˆŒ ÌÌLBÈ·ß~ëïïÏí–gÏž}âĉN:iòf ‹Í›7ËåòÞ½{GEEé.8ž={öŸþá|°R&‰àHéÛ·oß¾}+{µOŸ>}úôa¿öððÖ]k†ëGňCdY2Þ²©Dýoun7»ÿþ¨¨(õ‡®Ua˜©S§öêÕëСCÊO®½ÒÒÒ¤¤¤ãÇ/_¾¼¼¼œÛÁJýç8BmÐÐnÔ}ÄÒoˆc jGŽ °°°puu1cFII »|Ô¨Qìóϼ½½9¼Íûƒ>ù䓱cǾýöÛÚ®[ZZJY³f ·GàñãÇ={öœ7o^NN·[©t¥…£v#R£0öÀßÞ@„þüóÏ   Æ$$$ìØ±ƒ}iÚ´iöööÑÑÑ^^^œìN.—9ÒÜÜ|éÒ¥mÚ´ÑvõØØXBȶmÛòóó«}*‡æ¬­­Ù?1ééé­[·æj³@Ðq„Ê 5 cüí D¨¸¸844ÔÊÊ*--í—_~ùé§ŸÒÒÒ7qssóðð „têÔÉÇLJ“=FEE>|811±^½zÚ®›——·cÇŽQ£FoÚ´‰ïƒAÇ‘:‚?»©Q{€j1¼î½’ßiiiÙÙÙQQQvvvì[[ÛÉ“'‡……U»ÉÒÒÒ]»vUöjÿþýÕž>>qqqóçÏW¹˜ªGŠøìFý¥F]f-=æ8LO@Mxxx8::ÆÄÄ 6ÌÖÖ–’““³lÙ2MÖÕvFxÖ¬Y³fÍR^âàà`cc£É“cäry||¼›››««+»$((h„  ¨ea S˜ª†ÿè¨ÝˆÔX£]áW!hÍØØ8::úáÇîîîS¦L™>}º‡‡‡†÷2ä|F811ÑÜÜ<44Tý¥äää[·n)– 4ÈØØxüøñsæÌÑuaPŽ´¨u»©‘§mó·+ ÑÀ“’’Ú¶mÿÃ?<}ú4!!—JJJJòòòŠŠŠÔ_Š‹‹#„(GkkëE‹={öìüùóˆƒBFÃigBãììÌÃC …“e2Y“ ¯('¹ééÚ|( ;ø\Tðó+#÷îÝkܸqݺuù*`íÚµ—.]Zºt)ßG¢5ø”EýƒQè8R©Qô½FLO÷š6mÊcj|ñâErr2{Ëq ‚# 5ò²m>ö G)))...Æ ã»à®ª–:¤ÆÊ6Lô‘æ$7= ÒáçççççÇwÀ1GñØ]xèHâ€n`ªZÒ8o7"5 n?ÜAÇQäjÑnDjÔã†UvB@ŒHÚ €n`ªZÌÓnDjÐNtG)kjÔÝ:LO E«¦íF§Fä;½:4€ŽPs¤FLOhÁQœÐnDjÔ`©h‚à(!HºÜ¤Þ÷ wŽ"Ä÷£b«ÛùdìØ±o¿ý¶¶ë²ÓÇkÖ¬áö$%%ùøøxyy)–Lœ8‘’’’ÂíŽ$WU‹‡öíF¤F§FDFœ?ÿü3((¨qãÆÁÁÁ ;vì`_š6mš½½}DDDtt´r¨ª ¹\>räHssó¥K—¶iÓFÛÕccc !Û¶mËÏÏ733㤤ÒÒÒ¯¾úÊÓÓSyavv6!¤nݺœìBÊ¡*H Z¹reÆ ut´¥ Á‘6ÒL:;ñg4€˜xxx8::ÆÄÄ 6ÌÖÖ–’““³lÙ2MÖÕvFxÖ¬Y³fÍR^âàà`cc£É-oäry||¼›››««+»$((h„  ¨ear¹|æÌ™Íš5‹744Ôé— LU ž6íFɦFÝÜ€wö‘166ŽŽŽ~øð¡»»û”)S¦OŸîáá‘““£Éº5›®Bbb¢¹¹yhh¨úKÉÉÉ·nÝ R,4h±±ñøñãçÌ™SË®^½zíÚ5SSÓ±cÇŽzÓÎ;yüt耎#¼"êÔ¨ƒú"#ˆÑÀ“’’"""âããsssÍÌÌxyÚ^III^^^QQ‘úKqqq„åàhmm½hѢŋŸ?^.—«œ¦©ö±ŠW¯^½zõªÊK-[¶ìÛ·¯þMô˜$ÃÙÙ9==›mé«ÝH}j”Éd?&g4ê‰6 è>\þJ×»{÷î5nܘǻ^¯]»öÒ¥KK—.åûHT£Ÿ²¨0jSÕ”ZjÔÍEθt¨Ò´iSSã‹/’““=<<ø> À%LU ˜ö7ý®ÑND™uvF#p#%%ÅÅÅeذa|\Bp¤AÛH¯7I¸åçççççÇwÀ1G¡Ò¸ÝˆÔ(¸MP ÁQ¢D—uÐD£@;ŽâV³v£S#¼Cp$Íæ©‘kº=‚ÔPŽb…Ô(ˆíH ‚£ðèì.<âJÜ69Ý€áà¢Tƒv£èR#§O‰fd²,¤F€ZBp ÚIÜUƒéin`ªš~"JœNOã"Ž!8 ‰ÚâJœ68†à(&Hšm‰ 5èÎq ®/¦Ö_j¬Ýi„Ü„ÈpQ €ø9s†a˜7²ß.X°ÀÒÒ²mÛ¶<–T^^îäädoo¿hÑ"¾hÁQ4´j7ê55Ö"ªqôªwåÊ•9s游¸„‡‡s»å—/_vêÔ©sçΚ¼9//¯}ûö666áááëׯ×ÅH“““ýüü¬¬¬7nìíí½mÛ6]ìE‚ÅAЩ±¦«rÝh€jdffB¾ýöÛàà`n·<{öì'Nhøf ‹Í›7Ÿ8q¢gÏžQQQœs÷îÝÝ»w¿uëÖˆ#ÆŸ““3hРµk×r¾# Bp†*ç©©L\´17  ö„‰‰ ·›Ý¿TT”‘‘vN0 3uêÔóçÏ:tˆÛz¾ùæ›´´´˜˜˜… ¦¥¥ÙÛÛÏ›7Û½H‚#UD”9ª‘@Õ‘#G,,,\]]g̘QRRÂ.5jÔ€!ÞÞÞ\íîÁƒŸ|òÉØ±cß~ûmm×---%„¬Y³†Ãá_¾|ù£>233c—Ô¯_¿k×®wîÜ)**âpGÒ„«ª€£v£ðS#G<ãºi€JýùçŸAAA7600HHHرcûÒ´iÓìíí#""¢££½¼¼8Ù\.9r¤¹¹ùÒ¥KÛ´i£íê±±±„mÛ¶åçç+r^-ž?ÞÒÒR±¤´´ôâÅ‹íÚµ355ådR†à(h”¥FDF*.. µ²²:uê”!$<<ÜÓÓ“}ÕÍÍíÆ„N:uéÒ…“=FEE>|855µ^½zÚ®›——·cÇŽQ£FÅÆÆnÚ´iܸqœ”ddd¤ˆ°qqq™™™»víú÷ßÿøãN¶/qŽ|ãâ.‘lLdƒ£O\\ÜüùóÕc®¶…íÚµkÀ€ ìÆYæææ¤ºö$hÁQˆ4i7 65Ö:ñ!2Ô‡‡‡££cLL̰aÃlmm !999Ë–-Ód]mg„gÍš5kÖ,å%666)))ÕîK.—ÇÇÇ»¹¹¹ºº²K‚‚‚&L˜pðàÁ€€€ZÖ±cGBÈï¿ÿ¤h¾²9UÃÛ@0UÍŸJæ©…’k4Ó\ëbb æŒ£££>|èîî>eÊ”éÓ§{xxäääh²n-g„Õ%&&𛛇††ª¿”œœ|ëÖ­   Å’Aƒ?~Μ9µ,ÌÒÒrÖ¬Yûöíóòòš5kÖìÙ³;vìøÇ„„„´k׎ÇO‡ŽÂ" Ô¨e~«õˆŒ8p`RRRÛ¶mãããøá‡§OŸ&$$ðRIIII^^^…÷ÜŽ‹‹#„(GkkëE‹={öìüùóµÿ7wîÜØØXCCÃ+V¬\¹²N:6lX²d /Ç2úºùŸ”8;;§§§W󦚶õ—u»†ÊÚDבQ&“qø˜à>aÂç¢B£_éBuïÞ½Æ×­[—¯Ö®]{éÒ¥¥K—ò}$ªQƒOYÔ?µŽ£€ˆ15֮ш¹ijÚ´)©ñÅ‹ÉÉÉ|à.ŽáCEíFþS£–¿Úõ q åRRR\\\† Æw!À%GqÐGjԲшÈUðóóóóóã» à‚£ÞißnTj¬EîCd7Gþñ™µÉrˆŒ‡à(h:OÚ4$ÁQ¿Ôæ©«h7 $5Ö(ú)“ŠÈ@G>ñ“5N‚µˆŒÈ‹BpÔ£Jnú]Ñu™ FySY»QW©Q›F#"#¨CpÔ—7Û¦F†a!ºJÜ7q"#€´ 8ò ²ÔÈc£Q¯Oggg¾K GAÐIjä>2¢Å’“žžÎw D&“988ð]!Žz¢4O­ÞnÔUjä>2"/H‚£^é#5jñ´¼!fïÚ!8ê^åwáÑIj”Wõ"KW7äª!8êJ»‘ãÔXeÒC‹jÁQÇ^·u˜9ˆŒÈ‹P=Gp–+O…š%AäEЂ£>(·¹IÕEFäEà‚£.1 ‘Ë9N•Ãê £ô5ò"Ô‚£žÔöq‚•Có"Â"Ô–ß×æÍ›ÝÝÝ»též››«ÝúJíF¶ÑXÃÔȼ¾ÉŽü¿øÇT¼XåÅJ^—¤^½zñ]¨Â‡"Lø\ :Ž[²dÉÊ•+ëׯïå啽uëÖŒŒŒ¸¸8SSSÍ7¢œµ® ¢^aumÇŠ^à:ŽHOO_½zµµµõÞ½{W¯^½oß¾‘#G^¸p!::ZÛMiÕz…•ô+\Œæ"è‚c6mÚT^^beeÅ. 333Û³gOyy¹F›`FN£ñIo†@F^Áy¥a@+pêÔ)___ÅCCCŸÇ§¥¥i²…êS£RdÈë`(ggÿûN^qOax€à¨J.—gffZXXXXX(/oÕª!äöíÛÕnázúõ7R£R@üïùÿ“«&EÄD"\£ª°°°¬¬¬Q£F*ËÍÌÌ!Ož<©v òWÿ—QúþÕÿïìÜJƒœù>trvÆ|(„ÏE€ð¡€@ 8ª***"„Ô¯__eyƒ !ùùùl£Òaz:ßè)LU«jÔ¨Ã0………*ËŸ={F^÷$ÁQ•‘‘‘™™™zg±  €¢¸Î@j+`mmýøñc6)*Èd2ö%¾«à‚cüýýËÊÊŽ=ªX"—Ë>lnnîîîÎwuü@p¬@`` ÁÏ?ÿÌž×HY½zõ£GlllÌwuü¨Ñc”%à·ß~‹ŒŒ´³³ëÚµkvvvjjª««ëo¿ý¦~›‰@p¬ÔÎ;·oß~áÂ[[Û÷Þ{/$$„½#€4!8€FpŽ#hÁ4‚àAp 8€F@#Ž GÎlÞ¼900ÐÝݽK—.ááá¹¹¹|W$uEEEëÖ­ûè£Ú·oßµk×1cÆüóÏ?|ÿ¹wï^‡f̘Áw!@!/^œ8q¢ŸŸŸ——׈#Nœ8ÁwERWRR²fÍšAƒ¹»»wïÞ}Ê”)|%QYYYÎÎÎçÏŸ¯ðU©ýõGp䯒%KfÏž}ãÆ //¯ lݺõóÏ?/**â».é*--ýì³Ï-ZôðáÃÎ;·lÙòĉ£Gþå—_ø. !D.—ýõ׊ÇÁ¿’’’‚ƒƒ“’’¬¬¬ÜÝÝÏž=;räȤ¤$¾ë’®²²²O?ý4:::77·k×®vvvûöíëß¿ÿ©S§ø.MŠâãã+{IŠýåPk×®]kݺu×®]yò„ïꤢo߾Çß°aCeoæ_Gœ:uÊÀÀÀ××W±ÄÐÐÐÇÇçñãÇì?~Ð?™LV¿~ý6mÚ(/trr"„ܾ}›ïê$­´´tæÌ™æææaaa|ׄräȆa  ¼pñâÅéééï¾û.ßÕI”­­-!D9#Êåò¼¼<E”][¸páòåË—/_þþûïWøiþõÇÏ_mÉåòÌÌL åå­Zµ"„ܾ}ÛÓÓ“ï¥hÕªUê¿^/_¾LiÖ¬ßÕIÚO?ýtõêÕß~û­aÆ|ׄréÒ%sss›Ó§OŸ={6//¯uëÖ=zôPtëAÿ>ú裸¸¸… Ö«W¯}ûö¹¹¹Ë—/¿sçÎСCñGo¼½½Ù/’““Õ_•ì_ÇÚ*,,,++kÔ¨‘Êr333òæ/‚>¹ººª,IMM]½zuݺuU:+ OçÎ[³f͈#Þÿ}6Ç¿JJJž>}Ú²eËo¿ý611Q±¼Y³fK—.ussã»@‰rvvŽÿì³Ï>ûì3ÅÂ#F„‡‡ó]¼"Ù¿þ˜ª®-öâ©úõë«,oР!$??Ÿï”••ÅÅÅ;¶°°ðûï¿·´´ä»"‰***š9sf³fͦM›Æw-ðÊÓ§O !™™™»wŒi xaii¹{÷î•+W;vìСCæææÝºuûòË/Û¶mËwið þõgär9ß5€àGЂ#hÁ4‚àAp 8€F@#Ž GЂ#hÁ4‚àÒ2cÆ ggçC‡ñ]ùùçŸ×¯_Ïw!šBpñ]€DùùùYZZvèÐïB4…àÀ6mÚ´iÓ†ï*´€©jÁ)++{ùò%ßU¨Bpq˜={¶³³sTT”Êò‹/:;;¿ÿþû¥¥¥„GÅÄÄôéÓÇÃÃÃÃÃãÃ?üþûï}Ú·oïëëûù矟:uªŠ­Y³Fùâ¶’;wî¬^½ºsçÎnnnžžžüñ*ÛÂÙ³g]]]}||ž>}ªXøìÙ3___WW× .ðý¡m@úöíKÙ·oŸÊò¿þú‹2`À##£G >|ÕªU÷îݳ··ûí·oß¾ýûï¿çææÖfïÑÑÑcƌٷo_ii©••ÕéÓ§úé§#F<~ü˜}CFFFß¾}7lØðøñãwÞyG.—>|ø“O>IJJÒjG«V­úᇌ;wîlffvöìÙ¯¾újÏž=¾ÙÝÝ}̘1üðCòŪ_!àIDATfÓñôéÓpuuÕjwo¿ýv Šüâ‹/8pùòå÷Þ{/88˜Ó£ðG“¾}ûþôÓO{÷îuvv>zôh~~þ AƒÓ‰‰‰ ,(--µ··÷ôôìÑ£‡›››L&‹ˆˆÐj/eeeŠ&_II !ÄÎή²Iç¦M›BÞ~ûíÍ›7Ÿ={öÈ‘#'Nœ¸téRZZÚŠ+† ²`Á†a4Üu:ujpXž={–““CÉÊÊÊËËkÔ¨‘î? "GEpœ2e ;­˜§~öìÙüùóëÔ©³jÕ*oooÅ*÷ïß×v/÷îÝ+//g¿vtt$„Ô«W/<<¼êµ†aïD)))9zôè7ß|³eË–îÝ»ûûûëô°Ì;÷áÇiii111:ÝHÎq1iÞ¼¹››[VVÖÅ‹<ؼysOOOö¥‹/–••yxx(§Fòú²•ª©Ìhïß¿_ñµµµu“&Mnܸqùòeå÷”•• <¸k×®=º{÷n÷î݃‚‚¯Ö©SÇßߟ½šçÎ;:=&;wîܳgO·nÝââ✜œvíÚ¥~Ó"N 8€È°—ÈÌš5«°°pÈ!ŠåÖÖÖ„k×®=zôˆ]RVV¶aÆ„„BHQQQ…[³··'„ÄÇDzKRSS7Ùa…††–——‡††^½z•]òìÙ³o¾ùæÒ¥KmÚ´±´´´µµ}úôéùóç×®]«hUÞ¼yóÈ‘#„ÞOñþýûo½õÖüùó-Zdhh8oÞ¼ÚŸÜ  SÕ 2}úô‰ŒŒLOO7440`€b¹£££¿¿ÿÁƒ:tè —ËÓÓÓsss‡÷çŸ>}ú”½±Ž²ÄÆÆ¦¥¥ùûû»ºº>|ø033ÓÌÌÌÆÆ¦¸¸˜}ÏÀOž<¹mÛ¶ØÙÙ™››gee¶hÑ‚½ó¶AxxxXXXTTÔ¯¿þúöÛoÞ¸qC.—»»»ëèPÈåò°°°‚‚‚ï¾ûŽÍÍmÛ¶ýì³Ï~ýõ×yóæ-]º”ïÏ hƒŽ#ˆŒ••Õ{ï½GéÚµ«•••òK?üðÃäÉ“›6mÊÞßÑÇÇgûöí³fÍ>|¸¡¡a…lÖ¬ÙüÑ£GƒcÇŽ]¿~ÝÎÎnÍš5–––Š÷0 óý÷ßÿøãÝ»w///¿y󦃃ChhèöíÛÍÍÍÙ÷ 8066¶[·n¦¦¦×®]+,,ìÒ¥ËòåËçΫ»CŸ’’âíí­8Ñ“2yòäæÍ›ïÙ³gïÞ½¼~P@!¦êÛƒHÇóçÏ?~ܬY3Í/‚GЦª@#Ž GЂ#hÁ4‚àAp 8€F@#ÿ4P„š)IEND®B`‚statistics-release-1.6.3/docs/assets/ncx2cdf_201.png000066400000000000000000000650661456127120000222150ustar00rootroot00000000000000‰PNG  IHDRhŽ\­AiýIDATxÚíÝy|L×ÿÇñ3YDYYl!Dì„Ø· Zb©-T)J[UûžU[[;µ/­Úªµ´ŠZŠKÅR»  µ‡ ˆ$óûãö{ÓIÄ$™äÞ™y=}ô19w;÷Þ‘yçsî½£Ñjµx+¥;Ó@p€AŽ0Á!8À G„àˆ¼pñâEÍÿôèÑCoêË—/å©K—.Uº³¹bûöí¿ýöÛo¿ývïÞ=#®vüøñÒqëСCž­jéÒ¥ÒœµjÕÊíãfº¦N*¥V­Z)Ý—ÌpÞ+KçýåË—K–,yûí·‹+–?~ŸÖ­[Ïš5ëùóçzsêþ •ÙØØ¸ººÖ©Sgüøñé±d¸ˆžQ£F)}À`zŽÈk?þøã±cÇ”îE^ëÖ­[ûöíÛ·oîÜ9¥û@yýõWùòåû÷ï¿gÏž[·n½|ù2::zÇŽ#GŽôññùý÷ß߸†ÔÔÔ?~|Ê”)¾¾¾Jï,‚Ò€ÅÑjµC‡ýóÏ?5Ò}Av*T¨T©RBOOO¥û‚¼Ãy7¢ÈÈÈ€€€§OŸÊ-666)))Òë›7ovéÒåÏ?ÿ¬V­ZúeÝÝÝííí…Ïž=“ ÁÁÁÑÑÑvvv™,¢ÇÙÙYé#ÓCÅ ˆˆˆX¿~½Ò½@6½ÿþû111111[·nUº/È;œw#9r¤œ?üðÃ3gμxñâÖ­[+V¬(T¨"))©k×®.»nÝ:éDܽ{÷Æ~ø¡Ô¿xñâÌÑ3vìX¥LÁÊ3fLRRÒg{öìÙ„ Z´háîîîîî8vìØÄÄDÝyt/ÒJHH1bD­Zµ *T½zõ¯¾úêÕ«Wzë¼{÷î!C4hàèèXªT©V­ZíØ±#ý¦ïܹ3dÈúõë*T¨L™2:u:uêT6¶ûùçŸk4ùC"00P£Ñ<{öLo )))_|ñEñâÅ¿øâ iδ´´Ÿ~ú©iÓ¦^^^ùóç÷òò XµjUú=2„{-yøðáˆ#jÖ¬Y°`ÁêÕ«¯\¹R÷»I³t­Û«W¯–,YÒ°aâE‹,X°J•*|ðÁÙ³gÓÏݧOŸâÅ‹¿ÿþûçÎK¹Øë.ÈëÖ­[úk¶ 9€™ŸCÞ’7ntíÚÕÕÕÕÃãcÇŽ'Nœxã‘éÛ·¯´é¦M›ê¶¯_¿^j/P €ô>1ürÞÕÞ…{÷îݾ}»ô:$$äû￯V­šµµµ§§gß¾}å?ª###¯\¹’ùªJ”(ñý÷ߡ嫯¾’Þ3Y•“÷,ŽÈ}.\ßråË——^Lœ8QšúâÅ yê’%K䥎?^¦L™ôoÚ%J„‡‡Ë³…††Jí*TЛ988X·'üñ‡››[úu~ôÑGº³íÛ·ÏÝÝ]oF3|øð¬n7$$$ýæž>}ª»†öíÛ÷êÕKz*-Ø¥K— ÿÍvîÜ9}Ú·oŸÉñ7d¯uwG>G²Ù³gËs.Y²Djô÷÷Ïü¼¿xñ¢víÚé·«Ñh.\¨;çþýû]\\tçqvvnß¾½ôºeË–™ïï{ï½'µ9RnÌêL yhµÚ'NxxxèÎS¨P¡   ½ÎëÙ¹s§4ƒ­­mbb¢ÜÞ·o_©½cÇŽY:†œw“8ïZ­¶cÇŽÒ<...Ož½~þùgùww³fÍzöìY¹reyž}ûöéõ!“àhà^ë펷··ŸŸŸµµµô£ÝË—/¥9 ò:íííß}÷ÝAƒÕ©SGj±±±¹té’4ÛÓ§OåÏi›ºuëêýÁ‘Õ˜þø6xùò¥———nçå÷mæ"99Y¾ÂlË–-r»¼ø?þhø1ä¼›Êy×jµò^ëý½š‰ÌS`ZZZ¾|ù¤©“&M2d‘lœ/@BpD^Ðû6sæLéu=´¯ Ž'N”Z .,'¿sçιººJí!!!R£î'ßüùó¥ÆK—.ÉNþ£Y¾ ÇËËëÞ½{z7ÖkÑ-QÌŸ?_j,Y²dV·«Õj ,˜þ7¸î*V¬¸víÚˆˆˆ«W¯jµZùº¥#FÈó׬YSjœ>}ºÞ2 ŽîµngæÍ›'5®]»VnK¿H††š¥óH¸Æ 4hPÙ²e…ëÖ­{Ý£yä§Q BÞyçîÝ»9rdäȑ͛7/^¼ø¥K—²q´ Ük™üº`Á‚ÅŠ“^ëå ™|Ï„ÌÏÏOïÜEFFöíÛ×ÓÓ³fÍšóçÏöìY¥J•äëÃä®ûÌdkkëæÍ›gc³wÓŸßv>_¾|ò5Í›7—F«ccc/_¾,t‚£üimà1ä¼›Êy—nš–ñëWWWéwÈõë×3œçñãÇRÿóçÏïàà`ÈŽß¾}[z‘þ¶!ĺuë2‰ãÙ{ÁbQq„bæÌ™#}V¥–XáÂ…¥h„ÿüóî$ùÇ|ùòeé×Y¡B…ä;Tä¿ÎÓ+\¸°\øã?¢3Ò­[7ãŠôÒS§N={vJJŠ··÷¢E‹Îž=›˜˜(‡ £ïu.±µµ]°`Á½{÷~þùçîÝ»ë>møÐ¡CÒ#T .,_*‘ɲš’srõNo{{{ù¦½ÞÊ©(sÁÁÁÒ‹]»v]¸pAZ‰\‰4ð¦ÇyWóy¯_¿¾ôbÛ¶m>]«|ùò®®®®®®òu¥™;|ø°|éd†÷Gg.{ï1X,‚#SµjÕ>úHèü­¬Ë××WzñÇè¶Ë?úøøÈ—aB£ÑÈcʺVÞ¾}»^½zõêÕkÚ´©4¸,])„HII)£ÃÙÙÙÉÉÉÉÉ)Ãï`0®E‹I/.\Ø¿ÿªU«ÚØØÄÇÇgu=†ïu¶õìÙóöíÝ»WñòåË;wîܹsçåË—]ºtY»víÝ»w÷ìÙ#°!%Òçtxxø¶mÛ¤FyœÚðcÈy7¡ó._=yãÆ¥K—êMݾ}»ü+±I“&†ôyÞ¼yÒ Ý+ ‘í÷,ÁJš}Zz=yòdù*=™<xìØ1ù"³_~ùEïÓÚ(ÐÀ·¿¿¿4I÷úÕW_ýý÷߆lE­B¼|ùrÖ¬YBkkëwß}Wšjø1ä¼›ÐyoÓ¦¼•ÁƒOš4IHINN^³fü\É2eÊÈ—¾ÎíÛ·?ùä“M›6I?~ðÁº×P"'ï1X&®q„’ÜÜÜBCCG~ÒèÑ£W®\ûøñㆠ6oÞÜÚÚzïÞ½Ò÷"xzzŽ?>«›?~üêÕ«cbbªW¯Þ¼yó;wîÈ·# 0@zñù矯X±"!!aË–-Íš5kÒ¤ÉÅ‹囸‡®÷ÈbC899I×NMž<ùâÅ‹C† ±µµ}ÝÌ ,X° 4¿ôMf×®]ÙûÎ÷ÚèªV­êîî~çΔ””† ¶iÓÆÅÅåúõëòÖÉ_w1bĈ <~üøÑ£GõêÕ«S§ÎÝ»w¥›EôÈÏUyþü¹ŸŸŸŸŸßýû÷åû¨Œ{ |Œ5Jzà¢Üù{÷îeØù× –.s”îù /¼3ürÞMë¼Ïž=»N:ÏŸ?×jµ&L˜0a‚««kBB‚| Nþüù7mÚ¤w“¤gÏžÒuÏž=Ó½’§H‘"“'OνóüKéçÁ"dò²—/_êÞ•¬ûÍ1ÇŽ“¡ÇËËëСCòlYúV‰_~ùE¾zRר±cu—ݺuk†gúé§Ò³»³ºÝîÝ»ë®'ý7Çè±ô_Sëíí-?À¹W¯^™÷A!{ýºUÉ5þé§Ÿ¤ßçwôèÑ× ë¼xñBžsÛ¶mòo’üùóË#¶ºÄ“¯î‘‘ë7ò17Ê4äm Õj{÷î­7ƒƒƒƒ|wm&Ïq”è> \±xñâìCλi÷Ç¿î6 R¥Jýþûïº3¿ñ¡Œ...G}Ý"™?<'ï1X †ª¡°|ùòÉ£Ïzj×®}îܹñãÇ7oÞÜÝÝÝÕÕµY³fãÆ;þ|Æ ³·¹:œ?¾_¿~µjÕ*X°`©R¥Ú´isðàAùYÄ’¶mÛž={ö£>ªQ£F¼½½;tè¾xñâìÝm:gΜîÝ»»¹¹988T®\ù£„sæÌ©R¥ŠÂÊʪZµjÆ ;}ú´<‚¹~ýú7~‰m6öÚèêÖ­=~üøZµj-ZÔÖÖÖÙÙ¹aÆ+V¬ ³³³“çlӦ͑#GzôèQºtébÅŠuëÖíàÁƒÕ«WO¿ÎÕ«WO:µJ•*~~~ƒŽˆˆH[ºQ oƒï¾ûN.๹¹µk×nïÞ½76ð(É£ÕRoõ <†Cλi÷ DEEÍ™3§I“&nnnvvv¾¾¾íÚµ›3gÎåË—åku2ammíââR»víñãÇGFFÖ­[7·Ï „Ðh3z„Žzõjûöí‚‡Š¦N*U†Z¶l)³³áòøžNŠ:q^Tˆ“õ 8À Ç7˜2eJdddµjÕ”î€ÂŽ0Á!8À G„àƒ`¥;!„ðõõUº @Æ"##•î@-ŽjÁÇ3ÔÉ××—7'@ÂP5 Bp€AŽ0×8êJç¢B! )Ýeôý/ ê+·é–BXêãPŽÀÒ¥‰ÿDüÁX K‰ÄD€y"#Á˜†›óÁ˜b¢"Ž@Þ9{öìÀÿúë/OOÏÁƒ2Dé€i &ªÁÈ#¯^½êرc§N~ùå—³gÏvêÔ©xñâ:uRº_ FzI‘˜¨G \ºt)..nâĉööö½zõÚ¶mÁEÓApòH–,Yboo/ýxÿþ}///¥;Ê  h¢ø®jdÇĉ5MÛ¶mÓOš6mšF£9{ö¬Ò}Ì-¥K—îСC6,[¶lŸ>}¤×[·nݺukçÎå©/^¼(W®ÜéÓ§ØÕ{÷î/^üÖ-~PÞ•ÎEuÿ+·é–îJ÷†"8"û¶oßþË/¿(Ý‹,;yòd‡.^¼¨ÈÖŸ>}:pàÀ÷߯ 5kÖ”Û'Mšäççççç§7ÿ«W¯êÖ­[¯^½LÖyîܹ®]»zxx,XÐßßΜ9)))Bˆ"EŠôéÓgРAŠì) GR4K U#ûìííÜ¢E‹B…Lé»Þïܹ³eË–¡C‡æý¦¯\¹Ò¶mÛR¥J:uª\¹rrûÝ»wgÏž}äÈ‘ô‹„††;v¬nݺ¯[çµk×RSS;tèP²dɽ{÷>üàÁƒ¿þú«bèСžžžÇŽ«S§NÞï/‹Âè³% 8"ûÆ?vìØÐÐÐyóæåpUiiiZ­ÖÚÚÚ¸=Ì¥ÕfOrrrëÖ­?üðñcÇêMZ¼xq™2et ’={ö̘1ÃÆ&³§Ã‡üøqDDD­Zµ„“&MêÛ·ï÷ß¿{÷îwÞyÇÅÅ¥uëÖß~ûíºuë”>ÌnX$)Z†ª‘}ÁÁÁAAA ,8yòd&³?~<((ÈÃãhÑ¢AAAÇ—'•.]zذaK—.uuuµ±±)V¬ØgŸ}öäÉy†3gδmÛÖÝÝÝÃã]»vçΓ']¸p¡cÇŽ%K–tsskÙ²å¾}û Yí‡~ئM!D@@@éÒ¥å™Ožøàƒ>ú¨xñâ™l7,,¬qãÆRj” 8PqôèQéÇÎ;oܸQ÷¨@¶e2­tר8ªšfD˜‚[×Îjö†îi4 .¬T©Ò'Ÿ|râĉ {¿ýö[çÎ=<<ºuë¦Ñh6mÚÔ AƒM›6½ûî»Ò {÷î]´hÑÇ\¾|ù;w.^¼øÕ«WË—/—&µmÛÖÓÓ³gÏžZ­vÕªU5:uêT™2eöìÙÓ®];OOÏ®]»ZYYýúë¯ï¼óÎÚµkß{ï½ÌW;bĈҥKO˜0aúôéòèm\\Ü;ï¼ãèèØ¢E !Ä—_~9qâÄfÍšuîÜùåË—¿þúk= .œáÍ@²   7n,_¾¼B… Æ “÷ìÙ³oß¾qãÆyzzž?þîÝ»¾¾¾ò"½{÷^¹reTTTlllýúõÿsðµÚž={:;;Ï;·R¥J¯ÛhJJÊ€üýýuccc…vvvÒõë×õêUxx¸”˜ «(+âÿialåʕ˃E”õå—_ !¢££µZí´iÓ„sæÌ‘&}óÍ7Bˆ3gÎhµÚ—/_–.]ºT©R÷îÝ“¦Þ»wÏËËËÛÛûåË—Z­¶T©RBˆM›6ISÓÒÒªT©R¼xq­V›’’R±bÅ2eÊ<|øPš.„4hÐË—/}||üüü’’’¤I/^¼¨W¯ž··wJJJæ«ÕjµÛ·oB8p@úQšyâĉ©©©R‹··w¹rå^½z%ýøèÑ#›Ï>ûLž¿}ûö–øøxWW×ÄÄDi»5kÖ|ë­·?~œÉÁ\¶l™BÞMÉ´iÓìììNŸ>-m±nݺžšÔ®]ÛÚÚúÊ•+r£««ëˆ#²w®sïÍyíÚµ\Z3r‚ó¢ByR";yêþ§ôP#“ûà6†ª‘SǯR¥Êøñããââô&:u*&&fèС®®®R‹««ëСC¯]»&?¯ÇÛÛ[~¶F£ñóó{úô©âÌ™3ÿý÷àÁƒ¥©7þî»ï7n|úô騨¨Q£FÉÏD´³³4hеk×N:•ùj3äééjeõï?‡ãÇŸ:uJ¾²ðÁƒBˆ¤¤¤7ŠbÅŠ…„„ܿ֬YBˆ7þõ×_¡¡¡… Îd©ØØX;;;y7¥„††N›6­zõêY:¨[·î‰'.\èã㣻ƒ7nÜ0Îù`¦¸†`¨9ecc³lÙ²úõëø K—.K–,yݘøƒ¼½½sxd˜.Â"Œ…kaŽŽŽsçÎ_¸p¡ÜX£F’%KΙ3'!!AjyøðáìÙ³½¼¼ÒEŠ??¿’%KÎ;711Qj¹víÚĉããã«W¯îëë;kÖ¬GI“[µj5lØ0Ãëjiii¶ÇÇÇ !*T¨ ·lÚ´éÙ³gRõÔ@R7’’’^·]*THKK“n…BŒ7NïJdùæ˜ýû÷ë-«ÕjG]¢D‰5kÖ¼.5¦¤¤ÄÅÅéîKÀCs¨8ÂhºvíúÃ?ìÚµKn±³³›3gN×®]kԨѥK­VûóÏ?ߺukãÆ† àÎ;·K—.5kÖìܹ³F£Y¹r¥Í_|acc3wîÜwß}·Zµj]ºtyõêÕ–-[âââ~úé'Cžõ-U%/^|çÎùñ=²¦M›:88|üñÇÝ»w/V¬ØÑ£GÊ)røðá;w¶jÕêë_µjÕîÝ»œœ®^½úÃ?|ôÑG™Ïß´iS++«ˆˆé¹’o´~ýúÏ>ûìÃ?œ={ö¥K—._¾\¡B…ô[騱£ôü sçÎ%%%ç4P1*‹ÈmGÓ¢E‹*Uªôüùs¹¥cÇŽœ4i’tG‹ŸŸßÆk×®mÈÚ:tèþå—_®X±ÂÚÚºN:_}õUÙ²e…-[¶Œˆˆ?~üÚµk_¾|Y­ZµåË—KOa|£úõëwëÖí÷ß¿zõjúàX²dÉ;v|þùçóçÏwwwoÚ´é¹sç~ûí·Ï?ÿ|Þ¼yo Ž·oß6lØ[o½uèСºuëNž<¹gÏžÒE™¯ãìì\¯^½ýû÷gxýbzÉÉÉ=’rtt´âÒ¥K—.]Ò›­lÙ²RpwîÜ¥K—Þ˜\˜.[„⎀q<|øpàÀnnn‹-’Z\\\ÆwóæÍ¦M›.X° “emmm¿ýöÛÉ“'r3ÍÑ£G+T¨þ–š0a„ <<<”><²ïÕ¨„E¨×8ƱfÍšÒ¥K;Vþš!ĨQ£¢¢¢~üñGébÄL´oßþäÉ“.\ž‰¦M›6mÚÔ.Ý»wÏÍÍmĈJÙ!FÛÎ8ÂõP ®q4>®q„9áGKÃyQV†W.rRTÈb?¸©8 0n‹†© 8  ò"LÁ€¼Ãct`ÒŽä:Š‹0Gr yf†à€‘‘a®Žyfà@Ža9Ždyˆà@ÖH‘‘¼ d¥t`žÎž=Û¨Q£ ”)SfÞ¼yJwŒàJç¢Òå6Ý"5Â2Qq„ñ½zõªcÇŽ:uúå—_Ξ=Û©S§âÅ‹wêÔIé~@v0$ ÈŽ0¾K—.ÅÅÅMœ8ÑÞÞ>00°W¯^Û¶m#80-äE =‚#Œ¯@K–,±··—~¼ÿ¾———ÒCq #ð:G_Ù²eË–-+½ÞºuëÖ­[ÃÃÃå©/^¼¨ZµêÏ?ÿìçç—ÉJîÝ»çççwüøñ¢E‹ È}”7"8"·<}ú4$$ä‡~ذaCÍš5åöI“&ùùù¥O¯^½jÔ¨‘F£9zô¨¢H‘"}úô4hÐæÍ›•Þ挼Žàˆ\qåÊ•¶mÛ–*UêÔ©SåÊ•“ÛïÞ½;{öì#Gޤ_$44ôرcuëÖ•[†êééyìØ±:uê(½CÌCÒ@Va|ÉÉÉ­[·þðÃÇŽ«7iñâÅeÊ”Ñ-@JöìÙ3cÆ ›ÿ¼!]\\Z·nýí·ß®[·Né}`>(1ÙÆs‘e­[·vvvþä“O’““uÛþùçŸíÛ·'&&vîÜùêÿܽ{WšgåÊ•ÁÁÁz+¼sçÎ|ðÑG/^\oRçÎ7nÜøäÉ¥w€9Ð} #©È*Žª&ÿY¬ˆ×ýV ºqãÆòåË+T¨0lØ0©qÏž=ûöí7nœ§§çùóçïÞ½ëëë+/Ò»wï•+WFEEÅÆÆÖ¯__wmZ­¶gÏžÎÎÎsçέT©’Þ¶êׯÿêÕ«ððð6mÚ(x(˜4JŒ€±UM¿ã о}{__߯¾úê£>*T¨V«ýüóÏßzë­Ñ£G !&L˜0a„ô 8p@Q«V-ÝÆ3f„‡‡GDD(P ý"¥J•ruu=pàÁ@6p#`\ U#;Š+rÿþýY³f !6nÜø×_…††.\8“¥bccíììœå–ãLJ††N›6­zõê¯[ÊÓÓóÆJï1Ãw¹Š#²iäÈ‘+V¬˜={v¿~ýBCC½¼¼ú÷ïŸù"wîÜqqq‘LLLìÖ­[‹-œÉRo½õÖíÛ·•Þ]¦Qi W‘MùóçŸ>}z×®]¢¢¢V¯^mgg÷ÆEtï§Yºtéµk×Ú·o?}út©åñãÇ©©©Ó¦M+Y²d·nݤÆäää G±@£Ò@ 8"ûºté²`Á‚C‡U©R¥{÷îoœßÃÃ#!!!--ÍÊÊJ!…ÈÙ³gëΓ Çx{{+½¯Ô‹Èä®qDŽHµÀ¤¤¤´´´7Î\¡B…´´´ØØXéÇqãÆiÿ«T©RuëÖÕjµû÷ï—æIII‰‹‹«P¡‚Ò; @u¤«¹ÈKT‘}«V­Ú½{·““ÓÕ«Wøá‡>ú(óù›6mjeeQºti7qîܹ¤¤¤ÀÀ@¥÷€ŠPb”BÅÙtûöíaƽõÖ[þùgáÂ…'Ož¬÷<ðôœëÕ«'W qàÀ77·ôß4À2Qb”EpD6 80!!aáÂ…*T|8pà@77·E‹I-...ãÆ3fLÓ¦M{öì9pàÀ×-kkkûí·ß†††K÷VgBú¥÷€¸*!×-9/ʎȲ5kÖ”.]zìØ±®®®rã¨Q£¢¢¢~üñÇèèèÌoß¾ýÉ“'/\¸PµjÕLf»wïž››Ûˆ#”Þ]yÈ5 /fH£Õj•ñõõŒŒÌíE€¼‘{oΘ˜Ãï¯GžQö¼3Ä?–¼d`^´Øn*Žå¡,ê‹"8”Dd„‚È‹YEp(ƒÈ¥³àÈkDF(‚¼˜sG@Þ!2BRd$/æÁˆŒÈ{”ŽàÈ]DFä1òbî!8ª…¯¯¯Ò]##2"1$ÛŽª`™ÍK<>ÈcDFä%JŒy†à0&"#ò y1ïÆAdDžaHZ)G@N‘7(1*ŽàÈ>"#òyQ=Ž€lºÒ¹(‘¹Š!iµ!8²ŒB#r%FÕ"8²€Èˆ\E‰Qå,%8nܸqÆ ÑÑÑ hҤɨQ£œ3™?99yÕªU;w‰qvv®R¥ÊÀ}||”ÞP ‘¹‡£©°ˆà8gΜ%K–888ÔªU+66vóæÍQQQ«W¯¶··ÏpþÔÔÔ^½z:uªhÑ¢5JHHؽ{÷ž={V­ZU«V-¥÷ò‘¹‡£i1ÿà¹lÙ2ww÷M›6¹¹¹ !¦Nºzõê™3gŽ?>ÃE~þùçS§NµjÕjæÌ™666Bˆ£GöíÛ744t÷îÝJïä)î€An Äh¢Ì?8nذ!--mèСRjB„„„üöÛo;wî7nœ••UúEN:%„èÕ«—”…õêÕ«P¡Â… >|èââ¢ô>@^ ÐˆÜ@‰Ñ¤™pþ\áàà ×^°`A!ÄãÇ3\*11ñ›o¾yöìY¥J•ªT©òàÁƒÃ‡oÙ²¥nݺ-Z´0d»‘‘‘Jï:ô•.]Zé.@'E=ä±iÛ˜΋ ™ÜI1³Qéôëé+DẪ£“““F£IJJÒkúô©ø_Ý1½Ñ£Gÿõ×_!!!~ø¡ÔrëÖ­÷Þ{oذa[·nõööVz·Àh¸œFĨ´Ù³Êù*ÔÌÆÆÆÑÑ1}e111Q!ßg­ëîÝ»û÷ï/[¶¬œ…E‹ýì³Ï^½zõ믿*½O`4Ò£vHÈ9͈0͈0í¬fÒJw¹ÅÌ+ŽBww÷èèèÄÄDÝûZ¤Ë,ÜÝÝÓÏÿàÁ!D©R¥ôÚ¥Bã½{÷”Þ!0 03•FæÌ?86oÞ<22òСC­[·–Z´Zmxx¸³³³ŸŸ_úùK•*emm¥Õj5Ü.]ßP¶lY¥wrŠgz#ç•¶Lf>T-„¶²²Z°`t]£bÙ²e÷ïßïÔ©“­­­ÔòìÙ³˜˜é¶5{{ûÆÇÆÆ~ûí·iiiÒ QQQ‹-Ê—/_Ó¦M•Þ!Ⱦ+‹’‘CŒJ[2ó¯8-ZtÔ¨QÓ¦Mk×®]£Fbcc#""*UªôñÇË󄇇6ÌÇÇgûöíBˆ)S¦tîÜyÑ¢E;vì¨X±âƒþú믴´´ÐÐÐ2eÊ(½CŒM#畆ùG!DŸ>}Š)²eË–;vxzzöèÑcèСÒy2äêêºcÇŽ%K–>|øÀÎÎÎMš4éß¿•*U”ÞȪŒÈ!"#$­V«t̯¯/ÏqT›M§>œ”¼‘ÕB#çE…<)\Èø:ûYoG°L‘m”‘!‚#˜!®hD¶‘ ‚#˜"#²Èˆ7"8€ù`lÙCd„Ž`(4"{ˆŒÈ‚#˜< È*n—FöÀ„QhDVQbDNÀTQhD–‘sG0=‘%DF ÁL …FŽÈã"8€)!5Â@DFä‚#˜†§a "#rÁL…F‚ȈÜFpU£ÐC‘7Ž ^ñFDFä%‚#¨…F¼‘yàªC¡™#2B)GPR#2Ad„²Ž  O#DF¨ÁTB#^Ç{AŒ1DF¨Á”GjD†¤*ãµ¥K—.­t_!Ž ,†§‘!Ý阘¥»ü‹àŠ¡Ðˆ iF„10 u"8€(4"CÜ•#8@^£ÐˆôˆŒ0 GÈS¤Fè!2„ ï¡‹È“Cp€¼ÀEÐEd„‰"8@®£Ð‘&๋ÔÏÙ©#8@nax2 0GÈ!!2œÀøHDF˜#‚#©DF˜+‚# 5Bp ÌÁŒƒB#(4ÂìÀHŽÈ Ap€œ"5Z2"#, Á²‹-—3ÂÒ ›(4Z2 °LGÈR£Å"2Â’ ËH–‰È ¸¨Ñbq9# Ž`8 –‰B# #8€AHˆÈè!8À›‘-cÓ@zGxR£¥¡Ð¼Á2Cj´(DF sGÈ7P[Ʀ7"8@(4Z €Ž Ôh9ˆŒ@–à?H–ƒ±i «ŽðÿH‚B#=Gø©Ñœ 8€¤FËÀØ4CG–ŽÇîX €QX4 –€B#`,G–‹Ôhö(4ÆEp`¡HæÈä‚#KDj4oŒM¹„àÀâÍ…F WXR££Ðä6‚# Bj4W¼Ap`)HæŠB#gŽ,©Ñ,QhòÁ€™ã‹aÌ…F ï˜3 f‰B# ‚#³Ej4?DF@YGæ‰Ôh~›Gp`†Hf†B# Gæ†Ôhf(4êAp`VHæ„B# 6GæƒÔhN(4*Dp`&HfƒB# ZGæ€Ôh6(4jf¥t §HfƒÔ¨G¦ÔhžLÁ€ #5𠀩 80U¤F3@¡0-G&‰Ôh(4&‡àÀôM…FÀD˜R£©£Ð˜.‚#SBj4iSGp`2H&B#`ŽL©ÑtQhÌÁ€ 5š. €9á+¨©Ñt‘3CÅ€ª‘MÃÓ€Y"8P/R£‰¢Ð˜+‚#•"5š" €y#8P#R£)¢Ð˜=K Ž7nܰaCtttš4i2jÔ(ggçÌ9þüÒ¥K/^¼øôéS__ßAƒÕ©SGéý,©Ñ‘K`wUÏ™3'44ôêÕ«µjÕ*X°àæÍ›?ùä“çÏŸg²HXXX·nÝÂÂÂÜÜÜüüüNŸ>ݳgϰ°0¥w0¤F“£Fj,„ùW###—-[æîî¾iÓ&777!ÄÔ©SW¯^=sæÌñãÇg¸ÈãÇÇŒcccóÝwßÕ¬YSqîܹîÝ»?> ÀÊÊ"Ò6 R£É!2Åü3І ÒÒÒ†*¥F!DHHˆ££ãÎ;ÓÒÒ2\dóæÍ‰‰‰Ÿ~ú©”…U«VmÕªÕýû÷ÏŸ?¯ôf‹ÔhZ(4Èüƒã‰'¬¬¬äkkëÆ?xðàÔ©S.rðàAFÓ¾}{ÝÆéÓ§GFFV«VMé̩ѴH‘‘ÔX3ªÖjµÑÑÑ......ºíåÊ•BÄÅÅùûû§_êÂ… ÎÎÎ'Ož<}úô£GÊ—/hoo¯ôæ‰ÔhZ(4Ë̃cRRRjjª“““^»£££âáÇéINN~òäIÙ²e¿üòËõë×Ëí%J”˜;wnåÊ• Ù®¯¯¯^Ë®]»”>->>^é.@Ÿ|R^j`;ãHLLŒÒ=‚oúÇâ½ Fqm`iÎW^â7˜âZ¶l©tÔẪ£të´ƒƒƒ^{Á‚…?N¿È“'O„ÑÑÑ÷îÝ›6mZ@@À‹/6mÚ´páÂ!C†l߾ݺcdd¤Ò»}¥K—Vº ÐWºtij*ôº,Äo0e¥ÿXO_!²f~£“““F£IJJÒkúô©ø_ÝQOþüù¥ß|óMûö휜<<<Ø¡C‡øøøßÿ]é}̩фµÇY³fEGGq…666ŽŽŽé+‹‰‰‰Bù>k]ùóç···oÚ´©n{`` âòåËJ$ÀL¼Õ€Ôh¸{€L]ÁqÙ²e­[·îÔ©Óš5k2¼1ÜÝÝ|ø¾}û~üñÇnݺ,X0,,lðàÁ 4øòË/Ïœ9“½u[YY-X°@º®Q±lÙ²û÷ïwêÔÉÖÖVjyöìYLLŒ|ÛZ‡„¡¡¡rÕóüùóß}÷££c‹-”>H€ÉãÒFõcx@†4Z­Vé>d,%%åàÁƒÛ¶m {ñâ…ÂËË«}ûöï¾ûn±bŲ´ªï¿ÿ~Ú´iÅŠkÔ¨QlllDDDÅŠ¿ÿþ{ù1=;vì6l˜ÏöíÛ¥–¥K—Ξ=ÛÑÑÑßß?))éĉfÆŒ­Zµzãæ|}}¹«Zmbbb¸'Q%äÔÈIQ§˜˜ï1DFUá‹ Yìg½zÇcccÓ¬Y³fÍš%%%mÚ´iöìÙ±±±óæÍûöÛokÕªÕ©S§¶mÛZ[[²ª>}ú)RdË–-;vìðôôìÑ£ÇСC¥'ò¼N¿~ý\]]W¯^ýçŸ:;;7oÞ|РA>>>JÀ´QkT?R#€L¨·â(„HHHØ·oß®]»Ž=*Ý•R¤H[[Û[·n !Ê–-»bÅ OOO¥»©Ïbÿ Q3þ^W½ÔÈIQ͈0!ĵ¥9/jÃ?²ØÏz5Vïß¿¿gϞݻw?~<55UáêêúöÛoÕ¬YSñçŸΙ3çÂ… _|ñÅòåË•î/€7£Ö¨rò|% €L¨+8®]»v÷îÝ'OžLKKB¸¸¸¼óÎ;­Zµò÷÷וnذaÍš5k×®}âÄ ¥» àÍH*Ç}0 ¤®à8yòd!„““ÓÛo¿ÝªU«:uê¼î*F{{ûüùó«pœ€R£šIÃÓ¤FRWpìÔ©SPPP½zõ ¹ë…r# ~¤F5£Ð «ÔõÇ;w=zôu©qРAï¼óŽÒ}`(R£š‘dƒº*ŽIII¯^½zݤ7nܼySé>0©QµžmÊÇðððþýûË?®^½zíÚµégKKKÓjµ%K–Tº¿ÞŒÔ¨Zä„òÁÑÚÚºpáÂÒë„„„|ùò(P Ã9œœBBB”î/˜*R#€R>86lØ0""BzíëëûÞ{ï;VéNÈ>ÊêDjsÊG]}ûöõ÷÷Wº²Ô¨B\ÔÀXÔG­td©Q…(40"…ƒãºu넵k×öññ‘Ì\÷îÝ•í3€ ‘UˆÔÀ¸Ž“&MBLœ8Q ŽÒ™#8*DjT†§ä…ƒã Aƒ„UªT‘~9r¤Ò@–‘Õ†B#€\¢pp8p îü±²ýU¤Fµ!5È=êúÊA@Nä*…+ŽÈê"Êö€Œr£zpQ#€< ppìׯ_V‰ŒŒT¶Ï$¤Fõ Ð o(Ûµk§ô¤Fõ 5È3 Ç3f(}d©Q=Hò’º¾9€ú‘U‚‹ä=¾9@U‚B#EðÍ1 EjT R#¥ðÍ1`JHÄ7Ç0åFÅqQ#Å©úæ˜gÏžÙÚÚæË—O鎖ŽÔ¨8 Ô@Áñܹs .¼xñâ½{÷¬¬¬Š+V£Fxyy)Ý5À‘Gj ªû®êyóæ8pàÞ½{vvvùóç‹‹ûí·ß‚‚‚Ö¯_¯tï‹CjT©€z¨«âxðàÁÅ‹[[[wïÞ½gϞŋ×h4ÿüóÏš5kV­Z5eÊ” *T¯^]én–‚Ô¨,.j 6êª8®_¿^«ÕŽ1bܸq%J”Ðh4BOOÏÑ£G3&%%eåÊ•J÷ò‚Th$5PuÇ‹/ÚÙÙõêÕ+ý¤=zØÛÛŸ;wNé>–‚r£‚ž Nê ŽB› Ð¥»d’’’”î `H "5P-uG??¿¸¸¸ÄÄÄô“ž={S©R%¥û˜?R£‚HÔL]Á188X«Õ~þùç)))ºí©©©cÇŽMMMmÞ¼¹Ò}Ì©Q)ša¤F*§ð]ÕGÕýÑÚÚºcÇŽ›7onÑ¢Epp°···F£‰‰‰Ù´iS\\œ¯¯oË–-•í0`ÞHJ!20 ÇÞ½{gØ~ëÖ­yóæé5FFFÖ¯_?22RÙ>€q‘˜ …ƒc»ví”>þE¹Q¤F&Dáà8cÆ ¥!HJàùÞLŽº¾9&scÆŒ9qâDXX˜ÒÌ ©1ïQh`ŠTöíÛ«×þüùó={öX[[+ÝAÀÜ󩀉RWp¼sçN·nÝnÞ¼ùººwï®t³BjÌ{¤F¦K]ÁqåÊ•7oÞ¬U«VÛ¶mÿý÷cÇŽ}ñÅööö—/_^»vm÷îÝǧt ûHLšº‚ã¡C‡ììì-ZT¸páfÍš5lذtéÒõë×Bx{{Ož<¹K—.>>>Jw0”󩀩S×7ÇüóÏ?¥J•*\¸°¢H‘"ÎÎÎ.\&;;;¯\¹Ré>f‚Ô˜—øVæA]G!„•ÕÿgÙ’%KÆÄÄH¯­­­}}}Ï;§ts@jÌKDFfC]Gëׯ?{öLú±D‰'Ož”§j4šøøx¥û˜&ŒÔ˜7ø.AæJ]ÁQáêêÚ¯_?ùÇnݺµmÛöüùóîîîÞÞÞJ÷0a¤Æ¼A¡€S]pÔõìÙ3[[Û‚ Ö«WO龦Ԙ7HÌ›ƒã¹sç.\xñâÅ{÷îYYY+V¬F ðòòRºkðZ¤FfO]wU !æÍ›|àÀ{÷îÙÙÙåÏŸ?..î·ß~ Z¿~½Ò½LåÆ<@j` Ô<¸xñbkkëž={îÝ»÷ìÙ³§OŸ>pà@ß¾}…S¦L9sæŒÒ}L ©1XuÇõë×kµÚ#FŒ7®D‰Fáéé9zôè1cƤ¤¤ð•ƒ@–sß%À¢¨+8^¼xÑÎήW¯^é'õèÑÃÞÞž¯ GjÌmRd$5°ê ŽB› nÙ‘î’IJJRºƒ ÃÓ,’º‚£ŸŸ_\\\bbbúIÏž=‹‰‰©T©’Ò}LåÆ\Ej`™ÔƒƒƒµZíçŸ.}sŒ,55uìØ±©©©Í›7Wº€ 5æ*R#‹¥ðs=ªû£µµuÇŽ7oÞÜ¢E‹àà`oooF³iÓ¦¸¸8__ß–-[*Ûa@ýH¹ŠÔÀ’){÷îaû­[·æÍ›§×Y¿~ýÈÈHeû Àb‘X8…ƒc»ví”>€Y¡Ü˜K4#„¤FNáà8cÆ ¥`>H¹„B#HÔø]ÕBˆÛ·o_ºt)66öÕ«WÞÞÞ*T(Z´¨ÒTÔ˜KH S]pLHH˜?þO?ý”šš*7Z[[wíÚuèÐ¡ŽŽŽJwP#Rc.!5€.uÇÔÔÔþýûŸ>}ÚÎÎ.00ÐËËËÚÚúúõëû÷ïÿñÇ/]º´nÝ:kkk¥» À"@º‚ã?üpúôéêÕ«ÏŸ?ßÍÍMn¿wïÞ AƒNŸ>ýÃ?ôíÛWénêB¹17 =u=üСCfîܹº©QQ¤H‘yóæYYYêBjÌ ¤FȺ*Ž—/_öòòòôôL?ÉÝݽL™2—.]Rº€ŠŽÇî@&Ôíììž?þº©ÏŸ?···WºÌ…FÈœº†ª+T¨pçÎÓ§O§ŸtáÂ…øøøòåË+ÝG@-(7©ÞH]ÁQú"™Áƒë]Ëxøðá !Ú¶m«tU 5© ¡®¡ê   ððð-[¶|üñÇžžž¥J•BÄÆÆÞºuKѶmÛ6mÚ(ÝG@y¤Fã"5€Ô…ß|óM:uæÎûÏ?ÿüóÏ?Rc‘"E† Ö¡C¥{(Ôh\¤F0œê‚£F£éرcÇŽïÞ½{ýúu­V[ªT)www¥ûÀ ‘ KÔãããÓÒÒJ–,)„pssÓ{š#ÊFDj€¬RWp zùòå‘#G\]]•î  :¤F#"5@6¨ë®j!Ä•+W”î :¤FcÑŒ#5@ö¨+8Ž?ÞÞÞ~ñâÅ/^¼Pº/ÌI=êªvss›5kÖ_|Ñ®]»víÚ•,Y²páÂzó(ÝM ¯Qn4 Cê ŽM›6•^Ü¿þüùΩt7¹‹Ô˜¤FÈU* Ž)))ÿüó»»»µµuµ²òôôÔjµJw€J‘ ·©(8j4š ÄÅÅ=zô(ýÔÄÄÄëׯW©REén¹ˆrc¶‘ ¨(8Z[[wìØ1--m̘1/_¾Ô”œœ¢Ñhúö훽•oܸ188ØÏϯAƒcÇŽMHH0|Ù[·nÕ¬YsÔ¨QJ!˜9Rc¶‘ o¨ëæ˜÷ßÿâÅ‹ ìÔ©SéÒ¥5MLLÌ/¿ürûöí   §OŸ8p@žßÛÛ»dÉ’o\íœ9s–,YâààP«V­ØØØÍ›7GEE­^½ÚÞÞþËjµÚ1cÆ<}úTéc3GjÌ6R#äuÇ   éÅÝ»w/^¬7uÇŽ;vìÐm9räŸì¹lÙ2ww÷M›6¹¹¹ !¦Nºzõê™3gŽ?þ]úᇎ?®ô1R#ä%uÇvíÚeiþ²e˾qž 6¤¥¥ :TJBˆß~ûmçÎãÆ³²Êl°>**jΜ9åË—¿|ù²ÒÇæŒrcö ©+8Θ1Ãèë>~ýúõ†<¯ÈRcV‘@qf~£££cúÊbbb¢B¾ÏZ×ñãÇׯ_߯_¿jÕª)Ý}˜-RcV‘@ Ì<8 !ÜÝÝ|øpÑ¢Eýüü<<<”Þ!˜<ÊYBjõ0ÿà¼dÉ’ 4iÒDº'fÙ²e÷ïßÿè£lmm¥yž={v÷î][[ÛâÅ‹7lذaƺk¸xñâáÇýýýsã1“°4¤Æ,!5€ª˜p,Z´è¨Q£¦M›Ö®]»FÅÆÆFDDTªTI÷» ÃÃÇ æãã³}ûv¥û à_¤FPóŽBˆ>}ú)RdË–-;vìðôôìÑ£ÇСC¥ê#—(7ŽÔ*dÁQѶmÛ¶mÛ¾njPPPPPÐë¦VªT‰ç2"çH†#5€:™ÿ]Õ€ GjÕ"8PR#¨ÁÈu” Dj•#8¹‹Ôh R#¨Ÿ¥Ü@µ4#„¤FP?‚#‹(7¾…F0! U¹…ÔøF¤F0-G WßÈ{A ©L Á€4#® ,­t/YCpŒrcæ¡EpŒŒÔ˜9R#˜.‚#€¼Cj“FpŒ‰rc&H`ꎀÑ3Aj3@pŒƒÔ˜ R#˜‚#€ÜEj³ApŒ€rãëÀœœ"5¾©Ì Á@® 5€ù!89B¹1C¤F0KG ûH"5€¹²Qº€©"5¦§&„ 5€¹"80 `öª²ƒr£R#X‚#e¤F=¤F°G9BjËAp²†r£.R#X‚#¤F]¤F°4GÙAj Dp E¹QFjËDp Bj”‘Àb7#5ÊH`ÉŽ Ej GpÞ€r£„Ô 8™!5JHApðF¤F€„à¼åFAjè 8#5 R#࿎2Fjè!8 ÜHj¤Gpô‘I€ ü©ð:6JwPK.7jF„ !H€×!8ÿÏÂS#‘9†ª‘•î@펀¥#5 Dp„°àr#©`8‚#@jÀ GÀB‘YEp„¥³Ìr#© GX4R#†#8–…ÔÈ6‚#,—–I€œ 8ÂB‘È*‚#`H€œ#8ÂYZ¹‘Ô0 ‚#,©€ì!8²È6‚#`¶Hã"8‚XT¹‘Ô0:‚#,©€"8æ†ÔÈ%GX„W£XH¹‘ÔÈ=G˜¿+‹ÚÎ8¢t/ò©«Ž€™ 5r›Òr—tOLLLŒÒÉEšaBR# ·aÎ,áNj €<ÃP5`ÂH€¼Dp„Ù2ûr#©ÇŽ0O¤FŒŽà˜R#@G˜!ó.7’J!8ÂÜÈ%G˜R#¹‡à˜R#@qG˜3.7’j@p„™ 5ÛŽ€ª‘êAp„90×r#© *G˜ 4Pz?`&HSdÁqΜ9K–,qpp¨U«VllìæÍ›£¢¢V¯^mooŸáü)))½{÷>s挣£c½zõ^¼xqìØ±Ã‡Ìp©Š+êµDDD,[¶ÌÎή}ûö†l×××W¯EþFV½ÕÀvÆ‘˜˜˜®'>>^Á½ð^sm`éœï…™Qö¤àu8/*ÄIQ\Ë–-•î‚Z˜yp|þü¹ÂÁÁA¯½`Á‚BˆÇ¿q ©©©ëÖ­›>}zjjê¬Y³\]] Ùndd¤Ò»n&®Qºti£¬ÊXëÉ*j™Pê¤ sœâ¤(+ýÇzú ‘…0óàèää¤Ñh’’’ôÚŸ>}*þWwÌıcÇ&NœxõêUOOϯ¾úª~ýúJïe1ƒAjR#Àœ˜yp´±±qttL_YLLLBÈ÷Y§—œœ}ú)RdË–-;vìðôôìÑ£ÇСC¥'ò¤'ÕŸ?~áÂ…ôS¹±:·™n¹‘Ô0{…mÛ¶mÛ¶íë¦I¯kÔ¨ÁS•Bj@ÍÌÿG˜ R#*Gpr„Ô°G¨‚‰–I‹Bp„òH˜K¹90"¾N`™ŽP˜É•)4,CÕP©Bp„bH˜‚#`R#G(ôʤFÁŠ 5`ŠŽ@fHÈŽÈk&Tn$5 ‹ç8"O™JjäߤGpDÞ1¡ÔHd =†ªÿ 5ð:Gä“(7’ÈÁyÔ€ 8"ב0G€Ô€A¸«¹KååF»€áŽÈEêODF ÇP5r ©3Cp„%"5 Gä 5—IdÁÆGjÀ,qs ŒLµ©‘¨È!‚#,‚÷‚"#9ÄP5ŒIåF͈°kK+Ý LÁF£ÚÔH­£ 8Â8H˜=‚#Ì©ãâæÚÊÜ@ @n 8"§T˜‰Œä†ª‘#¤F,ÁæƒÔ@®b¨Ù§žr#5ŽÈ&U¥F"#y€¡jd© DpD–‘°L UÃ$qQ#yàˆ¬QC¹‘B#Š`¨Y@jÀ’a(R#Ž¡jDñÔÈE(Žà@¡5`¨o¦l¹‘Ô€Jñ¤F a¨™Q05rQ#jCpÄk)›‰Œ¨ CÕÈ©è¡âax5#8"Š”)4 r UC©dˆŠ#þ#ïS#ÃÓ˜ ‚#þŸ"©‘È€© 8â_yœ)4`rŽB‰ÔHdÀäps HÀ T‘wžÀ¤-]ž•)4`êŽ-oR#…FÌÁÑråYj$2`Ž*R#…FÌ ÁÑåMj$2`fŽ'·S#…FÌÁѲäAj$2`®Ž$WS#…FÌÁÑRävj$2`öŽ!÷R#…F,ÁÑüåRj$2`iŽf.÷R#‘KCp4g¹‘)4`±ŽfËè©‘È€…#8š§ÜHDF,ÁÑ 75Rh‚£¹1bj$2]Góq¥sQ!„QR#‘¤Gp4Æ-4@zGs`¬ÔH¡d‚àhòŒ’‰Œàަ-ç©‘È Dp4U9¿†È²„àh’rXh$2€l 8šžl§F)/ "#È‚£)Éöð4%FsG“‘½B#‘ ÁÑd£ÐȨ40:‚£ÚeµÐH‰ä‚£ze©ÐH‰ä6‚£É‹ Ï_kãÆ6lˆŽŽ.P @“&MFåììœÛ502’³ªeË–‘‘‘J÷ÿÁIQ'΋ qR nj͙3gÉ’%µjՊݼysTTÔêÕ«ííísi‹†DFò"PÁ1‘‘‘Ë–-swwß´i“›››bêÔ©«W¯ž9sæøñã¾¹Ì#£y(Šà˜ 6¤¥¥ :TJBˆß~ûmçÎãÆ³²²2ÊV¤¼(2ŠŒ„E BÇ œ8qÂÊÊ* @n±¶¶nܸñ¶mÛN:åï•§Ï‹º1QBX*DpÔ§Õj£££]\\\\\tÛË•+'„ˆ‹‹3<8ÊQ—¯×Ú_qÁ"0)G}III©©©NNNz펎ŽBˆ‡¾q Ûª<‘"ãÿgD!„å¶÷B”;ß_o~ßíJï³eðõõUº ÐÇIQ'΋ qR G}ÏŸ?B888èµ,XPñøñã7®AƒÖêM˜ÅÀ 3Î}æÄÉÉI£Ñ$%%éµ?}úTü¯î`ŽúlllÓW…ò}Ö–†à˜ww÷HIQ#MRºwÊ 8f yóæ©©©‡’[´Zmxx¸³³³ŸŸŸÒ½PÁ1ÁÁÁVVV ,®kB,[¶ìþýû:u²µµUºwÊÐhµÚœ¯Åü|ÿý÷Ó¦M+V¬X£Fbcc#""*V¬øý÷ß§L€… 8¾Ö¶mÛ¶lÙrîÜ9OOÏÚµk:Tz"€e"8À \ãƒ`‚# Bp€AŽ0Á!8À G£Ù¸qcpp°ŸŸ_ƒ ÆŽ› t,ÝóçÏøá‡6mÚT¯^½Q£F}ûö=räˆÒÂÿ»uëVÍš5G¥tG „çÏŸ8p`Ó¦MkÕªÕ£GcÇŽ)Ý#K—œœ¼|ùòŽ;úùù5kÖlÈ!QQQJwÊB]»vÍ××÷ìÙ³Nµ´O‚£qÌ™3'44ôêÕ«µjÕ*X°àæÍ›?ùä“çÏŸ+Ý/Ë•’’Ò»wﯿþúîÝ»õêÕ+[¶ì±cÇúôé³páB¥»!„ÐjµcÆŒ‘¿Ê ëÖ­[XX˜›››ŸŸßéÓ§{öì¦t¿,Wjjj¯^½fΜ™Ð¨Q£bÅŠíÞ½ûÝwß=qâ„Ò]³DkÖ¬yÝ$Küô×"Ç._¾\¾|ùFݹsGj™2eJ¹rå&Mš¤t×,׺uëÊ•+×­[·¤¤$©åÊ•+µk×®P¡Âßÿ­tï ýþûïË•+W®\¹‘#G*ÝK÷èÑ#ÿjÕªTºw–¢mÛ¶Ý»wÿé§Ÿ^7ƒe~úàĉVVVr‹µµuãÆzôÈÊÊJŽ’ÈmS§N]´hÑ¢E‹êׯŸá –ùéÏû/§´Zmtt´‹‹‹‹‹‹n{¹rå„qqqþþþJ÷Ñ-]º4ý¯×‹/ !J”(¡tï,Úüùó/]ºôý÷ß.\Xé¾@!.\¸àìììááqòäÉÓ§O?zô¨|ùòrµy¯M›6«W¯ž:ujªW¯ž°hÑ¢øøø®]»ò'Ï4lØPz±ÿþôS-öÓŸà˜SIII©©©NNNz펎Žâ¿/"/U¬XQ¯%""bÙ²evvvz•ä¥3gÎ,_¾¼Gõë×—r<”•œœüäÉ“²eË~ùå—ëׯ—ÛK”(1wîÜÊ•++ÝA åëë»fÍšÞ½{÷îÝ[nìÑ£ÇØ±c•îþe±Ÿþ Uç”t󔃃ƒ^{Á‚…?Vºƒ©©©«W¯þ裒’’¾ùæWWW¥{d¡ž?>zôè%JŒ1Bé¾à_Ož<BDGGïØ±cÚ´iÇŽ 4hÐÍ›7‡ bæ7‡ªXbbâ7ß|óìÙ³J•*½÷Þ{-Z´°··ß²e ·º«‡Å~úSqÌ)'''F“””¤×.=gDúË :vìØÄ‰¯^½êééùÕW_½îRäiÓ¦ÅÇǯ_¿ž1PõÈŸ?¿ôâ›o¾iÖ¬™ôzàÀ·nÝÚ¼yóï¿ÿÞ¹sg¥ûh‰Fý×_…„„|øá‡RË­[·Þ{ï½aÆmݺÕÛÛ[éÂr?ý©8攣£cú¿-…òVÈ{ÉÉÉS§NíÕ«×­[· ´sçNR£‚Ž?¾~ýú~ýúq¿…ª888äÏŸßÞÞ¾iÓ¦ºíBˆË—/+ÝAKt÷îÝýû÷—-[VNBˆ¢E‹~öÙg¯^½úõ×_•î „°àO*ŽFàî¨{ÍrLLŒ4IéÞY¨´´´#FüñÇ&L0ãæBúÒ éEÝö­[·nݺÕÇÇgûöíJ÷ÑB¹¹¹=zôH£Ñè6JUá””¥{g‰|¸ÂßßöìÙ£GVºƒ–«C‡BˆÐÐPù>ÐóçÏ÷ÝwŽŽŽ-Z´Pºw–ÈÞÞ¾qãÆ±±±ß~û­ü騨¨E‹åË—Oï¢(È2?ý©8AÑ¢EG5mÚ´víÚ5jÔ(666""¢R¥Jü±Ò]³P÷îÝ»qㆽ½}÷îÝÓOíСC=”î# *T>|øìÙ³[¶léï”tâÄ F3uêÔ·ÞzKéÞY¨)S¦tîÜyÑ¢E;vì¨X±âƒþú믴´´ÐÐÐ2eÊ(Ý;üË2?ý ŽÆÑ§OŸ"EŠlÙ²eÇŽžžž=zô:t¨tO>ò^||¼âùóç.\H?•[d=ýúõsuu]½zõŸþéììܼyóAƒIß´E¸ººîرcÉ’%‡>pà€³³s“&Mú÷ï_¥J¥»†ÿ°ÀOV«Uº0\ãƒ`‚# Bp€AŽ0Á!8À G„àƒ`‚# Bp`YFåëë{àÀ¥;",Xàëë»nÝ:¥;†"8À 6Jw,TÓ¦M]]]kÖ¬©tGÀPGPF¥J•*Uª¤t/ ªÕIMM}õê•Ò½}G¦!44Ô××wÆŒzíçÏŸ÷õõ­_¿~JJŠâþýû³gÏ ªQ£F5Z·nýÍ7ßܹsçu«•î•9zô¨^{ÅŠëÖ­«ÛräÈ‘ÁƒÖªU«gÏž ,ÐËv7oÞœ0aBPPPõêÕ>ùä“'Nd²GË—/×½9FêI||ü²eËêÕ«W¹reÿ÷Þ{oïÞ½¯[ÃéÓ§+V¬Ø¸qã'OžÈOŸ> ¨X±â¹sç”>iÌ Á€ihÛ¶­b÷îÝzíÛ·oB´oßÞÆÆæþýûÝ»w_ºté­[·J–,Y¼xñ¸¸¸•+WvëÖ-!!!'[Ÿ9sfß¾}wïÞ’’âæævòäÉùóç÷èÑãÁƒÒ QQQmÛ¶ýé§Ÿ=`À€;wf8³ŸŸ_ß¾}ïܹóõ×_ËÓ§OÿçŸ>û쳪U«æõI`îŽLC­ZµÜÜÜâââþþûo¹1--M U;vBlÞ¼ùúõëÍš5;räÈ–-[¶nÝzøðáZµjݼysß¾}ÙÞôþýû—/_^¢D‰78pà÷ß?xð`“&MΜ9³xñbiž™3g>{ö¬ÿþþùçæÍ›ÃÃÃǧÕjçÍ›—¥mmذá“O>9tèÐ?ü°gÏžÞ½{ !V¯^ýºùìãã³yóæC‡ !Ž=úóÏ?W©R¥ÿþÊ+f‹àÀ4XYYµnÝZü·èxòäÉ;wîøùù•-[V‘’’Ò´iÓ‘#G:88H3.\X*UÆÆÆf{ÓÓ¦MBÌ;W®á¹ººÎ;×ÝÝ}Ó¦M=B\¾|Ylmm-ÍÓ­[·Ï>û,000KÛªZµêˆ#¬¬¬¤]þì³Ï„ׯ_Ýü¶¶¶Ó§O·±± ½{÷î¸qãìíígΜ)wŒˆàÀdHPwÜV§îÔ©“ô〖,YR¦Ly†{÷îýþûï9ÙhBBBLLŒ···ÞÐ ¨_¿þóçÏ/\¸ „’kHHÈñãÇ¥«-mmm‡ 2hР,m®U«Vº?:::Z[[kµÚL©X±â€nß¾ýî»ïÞ¼ys̘1¥J•Ê­sÀ²ñ8&£R¥J¥J•º~ýzdd¤¯¯oJJÊ®]»ìí탂‚äynÞ¼yðàÁ“'OÆÅÅݸq#‡—6 !®]»&ýß××7Ãþùç!Äĉ‡züøñ>ø þü+V¬S§ÎÛo¿]±bÅ,m®xñâÙèd¿~ýöîÝ{ñâÅÚµkwëÖͨGþÁ€)iÛ¶íüùówíÚåëë{èСÇwìØQ˜^¿~ý”)SRRRJ–,éïïX¹r嘘˜I“&ei+©©©r‘/99YQ¬X±× :-ZTQ¼xñ7ž>}úàÁƒÇŽ»pá©S§/^ܹsç)S¦h47/_¾l–§OŸÞ»wOqíÚµG999åþ©`‰ŽL‰‡ "AËãÔOŸ>>>¿ÿþ{ú‡€Q˜é™qãÆ%%%uîÜYnwwwB\¾|ùþýûRKjjêO?ý´víZ!ÄóçÏ3\[É’%…kÖ¬IJJ’Z"""ä‡ìH†ž––6|øðK—.I-OŸ>ýüóÏ/\¸P©R%WWWOOÏ'Ožœ={vÅŠr©òúõëBäêóoß¾=iÒ¤B… Mž<ÙÖÖö믿¶¶¶ž8qbÎ/î€ôª`b‚‚‚¦M›immݾ}{¹ÝÛÛ»yóæûöíkÑ¢EÍš5µZmdddBBB÷îÝW¯^ýË/¿¼Ô«êW׬Y#u±ñûï¿ÿïÿûßÿþ—™™)âfg͚ŷmSkÖ¬áßéååeèãÆ®ùóçóG©W¯^½§’#YPP°zõêwß}·Aƒ5jÔpvvîÓ§Ïwß}—ŸŸ_êš?\jfff666íÛ·Ÿ5kVÙo¹rW)eêÔ©RBº 8Hã×_=yò¤ÔU[```ÿþýû÷ïñâE©kÚ={¶E‹ÿ÷ÿwðàÁ{÷¦îÝ»wÊ”)ÎÎÎ{öì©r ÅÅÅ=:uêÔ¼yó\\\¤ó̤.@¡T*ÕĉOœ8ÁqœÔµ€.^{íµ¦M›B¤®…måÉäädŸ§OŸª—˜™™ñ_ß½{7 àĉo¾ùfÙ ÚÙÙYXXBž={¦n4fee <855µzõꕬRŠ•••Ô‡€.è8H&!!!&&Fê*@GC‡MOOOOOßµk—Ôµ°­Ü#9eÊuj :þüóçÏïÝ»·nݺ×^{’——7dÈr7¸qãF~ƒ<¸}ûvPP¿<##cÕªU•¯RJhh¨Ô‡€.ŽRúâ‹/òòòª|Û³gϾþúk???;;;;;»îÝ»‡††æææj¾Gó⼬¬¬É“'{yy½öÚkmÚ´ùæ›o^¼xQj›<˜0aB§N,--›6mÚ«W¯½{÷–Ýõýû÷'L˜ðöÛo¿öÚko¼ñÆ AƒuØï—_~Éqœ: tïÞã¸gÏž•ÚBQQÑW_}Õ°aï¾úŠgIIɦM›|}}›4iR£F&MšøøøDDD”‘GÍ{üøñäɓ۶m[»ví6mÚ¬_¿^ó3ZµºÆñÅ‹«W¯îܹsýúõk×®íîîþá‡^¸p¡ì;SSSGåììܰaáC‡^¼x±ìe‚]ˆXöÊ>>®®®¥Þà—O™2E½PÛXöù6P©T§OŸ¶··×|Ïk¯½Ö»wïRÅ—UöH8_bmmýäÉ“²«ôîÝ»M›6mÚ´Ù¶m[Ù®C‡•zÿ‘#GÔ¯îÛ·OÈ*P.GãÑüCõ믿ZZZBjÖ¬™‘‘¡ª 8æååñ—BjԨѣGÞ½{׬Y“_booŸ››Ë¿Sý·Ÿ×¤I“öíÛרQC½äÔ©Sü;srr^ýu~aݺu äëë«~[TTTÙ·uíÚuöìÙ&&/§)~þùg­öûðáÃÔÔTuå©©©%%%š[hذ¡z->µlÞ¼YSºví:bÄ777õ{>\ª†J‚£ÀQ—Ž“““‡‡‡©©)ÿÏêÕ«ðïÕÛ´°°èׯ߸qãÚ·oÏ/133KJJâßöôéSu>333ëСC©ÿ`Ð!8j{ËžßMš4Ñ,^ý}«CpT‡Rÿ%#ð‡«l ,))©V­ÿjXX˜U \˜ª†­­í¬Y³!yyyåvãxááá7oÞ$„Ô©SçØ±cûöíÛ³gOBB‚ !äŸþùæ›oÊ®µbÅŠ›7o&$$œ;wNáÔó† .äïhÒ¤IJJʶmÛbccÕ×r­]»¶ÔÛÞÿýÇýõ׿þúëòåËùWçÌ™£Õ~ëÕ«÷Æo¨Gƒ ÞxãR7edd´lÙ2:::!!¿.mß¾}üK!!!‡Žˆˆ¸téRÛ¶mù…gÏž~ÀŽZÓòåËoܸ‘˜˜Á/)((HJJÒö\ÇÅÅñ_̘1cçÎßÿ}BB‚ŸŸ!¤¨¨èСCêÝÝ¿Ÿ?×ýõW|||jjªž×Øi{ËžßëÖ­»uë!äµ×^;~üx|||zzúĉu¨ùÅ‹üq „899é3|5ŽãÔÝÐþù§ìøk'J™4i’({GÉŒ7®Y³f„7Vôhõ3GƯ¾ÌÝÝ=$$¤ÔÔÜÜÜ‚ƒƒù¯[´hÑ¥Kþkþï:!dÿþýüS¦Lá(_ ?÷WPPP\\L42Ç'Ÿ|¢ÞxPPß~»}ûv©GêT¹ß*Õ¬YóàÁƒÃ† kß¾=Ÿ† =aÂþ=¹¹¹ê«B?~,üh µš««ëøñãù¯ûõëgföò)))ÚžhõC£¢¢~ùå>EEE]¾|ùòåËï¿ÿ>ÿêÎ;ÕU©§¶ÃÂÂ7n¬íÕ´=€eOÀoõu‡šýÔ… –{m@å4/Þ­_¿¾Îc/¥^½ze·ÚÂãx$S­ZµÅ‹ó³'NT÷¥4%''ó_ôèÑCsù»ï¾Ë÷¢RRRJJJÔýäÉ޶ÀQ«9;;«¿®]»vƒ ø\*_ª­Y³f̘1šKÚ´iÃo¼Gü­$ÉÉÉü1Çq½zõzï½÷4¯}TpÍge›ššvëÖmýúõ: Y‡Xöü6(·øjÕª½ûî»ÑÑÑZÕÌß4ÍñAñ=⿨S§NÙWË}O©ëM€ 8H«_¿~]»v-÷Ñ<¹¹¹999üץؠAþ‹çÏŸß¿_óÕRó¿¥þ©¹ÍºuëVTXnn®æ#ôÊõðáÃJv¤Ãó)Õ@µÂÂÂ/¿üòûï¿W?ÀÏÂÂÂÖÖöÁƒZmYà¨5ifq݆£6gΜÜÜÜuëÖBT*Ubbbbbâüùó»té²}ûö×_]³ÂR·˜èÓuÓö–:¿ ž>}ªÞ`©â5j¤mÍÕªU³±±á¿»øë4ÊÊÉÉáGT£FZµj Ù¬z†ºì>„7vëÖMçã  ˜ªØÒ¥KùŒRöj¶:uêð7ÐBþþûoÍ—Ôÿ¬V­šúÞ!^{í5õ*êLYuêÔQ7~8ZžÀÀ@qEÙp6þü%K–999­\¹òÂ… ¹¹¹þþþÚnYਠÄÜÜü‡~ÈÌÌܼyó°aÃ4Ÿ)ýçŸòΩS§NíÚµù…ê+üxÚ¦d}`©S ðÛÀÂÂB}ëI©jÕiX+o¿ý6ÿÅîÝ»Ë}îR‹-llllllÔ7ÖTîøñã………ü×åÞá!8H¬uëÖ£G&\³ïââÂqàÀÍåê:;;«/¿‚ã8õœ²æ…•ÿüóOÇŽ;vìèëëËO.ó×_BŠŠŠÞÐ`eeU·nݺuë–ûIâZ¹r%ÿÅ?þøÿ÷­[·633ËÈÈÐv;ÂG­³#Füó*þ®—‚‚‚û÷ïß¿¿   ::úÁƒTÇ—cÇŽñ_¨¸æ¹.))){ ƒ:Þeggk./1õ?€B¾ LMMù·©¯%%„¨^}Žpêë)oß¾]ösÛÿýwõË;ï¼#dƒê»yjÕª¥y­h Á@zsçÎ-÷º+Bˆú1xßÿ½ú‘Ë—/_ç¿Ö¼¤L õßÚï¾ûNýxéÒ¥ Õ«Wç; Ý»wç_úé§ŸTÿ>øzûöíõêÕ³±±iÚ´©n×òÔíŸJýôÓmÛ¶ñÿüðÃ5¯¡máGéÙÚÚΜ9sÚ´ie_š6mÚúõëoݺ•““Ó¹sçnݺ™šš:tˆÿô þ™>Z™5kVdddnnnzzz›6mºuëvÿþýÇó¯~þùçü_~ùåºuë²²²vîÜÙµk×wÞyçÊ•+꛸CBBt¸u nݺü5ssçνråÊ„ ÌÍÍ+zsíÚµk׮ͿŸÿ¼ŽãöíÛ§ÛgƵèZ·nmggwÿþý¢¢¢Î;÷íÛ×ÚÚúæÍ›ê×S¨ÉäÉ“øá‡œœœìììŽ;¶oßþÁƒ×®]+»Mõótòóó=<<<<<>|¨¾JÜ(ðÛ`êÔ©¿þú«J¥RŸ™™Ynñ-Y²¤}ûöùùù*•ê믿þúë¯mll²²²Ô7'Õ¨QcÛ¶mêGlj1be³gÏ4¯ñxýõ×çÎk   è8Pa„ å~<Œ……Å–-[ø£äççÿþûïÿûßÿøÔؤI“-[¶TÔª¬„­­í† ø«'ïß¿ÿ믿ªóShh¨ú8++«ˆˆ¾väÈ‘9sælÛ¶²Ì˜1cfÏž­Ã0Õm¿øøø©S§VÞwä8NÝ„ËËËÛµk×ÿþ÷¿ ¨Ü]êºOQF-:“;wòÓúÿüóϺuë-Z´eËþyï>>>êÿ`°²²ŠŽŽæ¯t,((8vìØµk×jÔ¨¡~^š§§§úYßyyyýõWrr²“““ºK'âømðæ›oª………þùçµk×jÕªõî»ïêvÜÜÝÝ<¨ycÐÇÕ©±iÓ¦Û·ooÓ¦M¹ëÞ»w¿þRs€ÖÖÖ»ví*{hÁ€ ÕªUSÏ>—òÖ[o]¼xqÖ¬Yݺu³³³³±±éÚµëŒ3.]ºÔ¹sgÝv7`À€K—.}öÙg^^^µk×nÚ´iß¾};6þ|Í·ùûû_¸paôèÑžžž5kÖtrr0`ÀÑ£GW­Z¥Û]ÆK—.6l˜­­m­ZµÜÜܪœ^ºt©»»;!ÄÄÄäÍ7ßœ4iÒ¹sçúõëÇ¿SåGë0jÑuèÐ!55uÖ¬Y^^^õë×777·²²êܹóºuëbcc«W¯®~gß¾}ÿúë¯áÇ;::6hÐ 00ðرc寣ÈÈÈùóç»»»×ªUËÃÃcüøñêÇ‹~~üüóÏêÆ­­­í{ï½wèÐ!ooo[§NRRR–.]úÎ;ïØÚÚV¯^ÝÅÅå½÷Þ[ºtéµk×ÔWqTÂÔÔÔÚÚú­·Þš5kVrrr‡ uŽƒS_³@¡/^üþûïDcJWiæÏŸÏ$`Ïž=ÿøãmW7òmbbâãã£^bjjêíí½{÷îÄÄÄvíÚI= (18vîÜ™ÿ"..®ì«*•*55ÕÚÚÚÚÚZsyóæÍ !wîÜApYâQ‰²ŽS©´Ù’–;æ§¥RŽ#ZÕ Ê Ž•ËËË+..®[·n©å–––„ÇW¹©lHN¾îâÒ\ê*^jNˆXÀ´úS˜L’…¿ÿzòõæ.Í]Ĩ4Y¿?ÙÉÉÉú×ÀÇÒø[§kÕªUjyíÚµ !999B6¢Ìo&𹏏à¤Ð'…N8/FÇUyÀsR¤m7&¡ä1áµê¼)Å6‰”xsLåêÖ­Ëq\^^^©åOŸ>%ÿöÄ VZ“KF3æ©uàXš™™™¥¥eÙÎbnn.!D}Ÿ5èK‰‰•mŽå°³³{ôèŸÕÒÓÓù—¤®ä–Ð$bZÏSk]ªH·Å€®ËÑ­[·âââ?ÿüS½D¥R=zÔÊÊÊÃÃCêê@d˜A Ë1xð`“~ø¿®‘òÓO?=|øpРAæææRW@#C?…h€»ªËQ¿~ý©S§.\¸ð½÷Þëҥ˭[·ZµjõÉ'ŸH]èhß¾}R—¥á¤Ð çÅ(´KL†;)Hn -Çò5êõ×_ß¹sçÞ½{†>qâDþ‰<zgZ3ôÕDÜ qKµ®çÍ›7oÞ¼Š^õ÷÷÷÷÷—ºFŠR£Ä¥Pt$@ ¸ÆAp0Ššlâ–b„Ûbð J 8E©@gŽÊ"q»X†à`hh7jÀÁ`‚#€AÑ”èªFhÍ¢^àˆgñèAÑ㡇‹‹‹Ô%€Á%''K](詟£4Ž´@ª=œeåAPYÁT5€Ð•m7âA44tãÆ²··÷œ9s º  -!ÍàãdºÝb@pñ¥¦¦BfÏž¨ÿÖÒÒÒ|||öíÛ׳gÏjÕª…„„ <¸Ê­­­·nÝzòäÉ=z„‡‡n¼çÎû믿 ·}mÑ’di©Dƒàâãÿ{´F¢l-$$$''çСC6l ;qâĨQ£vîܹÿ~!«s7iÒ¤ .9rDÜa8p`öìÙ=zô())ù 3”ŽŒÙnÄ<5µAGÇŽóóó³¶¶nÙ²åÔ©S ùåAAAýû÷'„tîÜÙÑÑQÿÅÆÆz{{{yy©—BâããnŸ×^»v­¸GàÑ£G=zô˜3gNff¦¸[vИi©‰–:ÔõàΘI]0é·ß~ ¨W¯^`` ‰‰Ittô®]»ø—&OžÜ¸qã°°°Å‹k¦=Ý}þùçíÚµÓ\xëÖ-BHõêÕn$""‚²cÇŽœœKKK±‚ÿßÉÉÉ-Z´íà3hKF¬ W7GÐZAAAHHˆ­­mbbâ?þ¸bÅŠÄÄħOŸò¯º¹¹yzzB:tèàíí­ç¾ÌÌÌ,X0hÐ õ’Ç/X°ÀÔÔôý÷ß²…ììì]»vlÙ²Eꃠ zXÌSÓ Gºqœ”{¯à?.oݺÞ A~‰ƒƒÃøñã§OŸ^å&‹ŠŠöìÙSÑ«ýúõ«|õ#GŽ|úé§©©©«V­rvv2ˆM›6Lœ81--mÆ Ÿ|ò‰! åQP»@ Á‘nTÎ \¿~Ò¶m[Í…BÖ}öìdíp¼·oßÞ½{·³³ó¡C‡ºví*°Úˆˆ—Ö­[<888øúõëÍ›7±0P$šájÂ<5¨aª´fffFá^톚˜ú^²´´TU¬¢µbbbÜÜÜΜ9³fÍš«W¯ O))) C† !„ 4ÈÄÄ„¿ÞQ¬Â@‘hLtÁ<µ|¡ãZkÖ¬!äìÙ³>>>ê…çÏŸ²®3»wïþðÃV¯^]§N­Jåc"ííí½½½###çÎ[6æbª˜†vc•às9Ž 5OOO''§%K– :ÔÁÁ’™™¹|ùr!ëj;#¬R©¦M›Ö¨Q£¨¨(SSS­êT©TQQQnnn-[¶ä—Œ;öðáÃ~~~zJ…vcUp„d SÕ 5ssóÅ‹?xðÀÃÃc„ S¦Lñôôø,Cmg„“’’®]»faa1zôè WíÞ½›ceeRvݸ¸¸Û·o¨— 8ÐÜÜ|̘1³fÍÒ³0P$J3‘lÚ˜§¦:Ž ‹ÄÆÆ†……EEEeeeYZZFGG ù@mñŸ^˜”””””Tê¥fÍšùûûfggççç—]722’¢íìì,X°hÑ¢ .¨T*NÚ›Ö€1ŠKìWâ“Å… ”qqqINN6ô*ô¸wï^½zõ„?Ž[tëÖ­»|ùò²eˤ>U`ú,Bzzº(Ÿ-âÂy©˜d™¨ò“BW»Q¿j ØqûGÅþJÇT5è«~ýú¦ÆçÏŸÇÅÅñ0J;it•¥˜Ô¨dŽÀ¶øøxWWסC‡J]È]ñÌ8eÉäfj®q¶ùúúúúúJ]È¥©‘:8NÊ€Ž#{dÖnÄýÔ¬@p¨¥m4êÊ¢® 0G€r)4 ÉíêFÜ#*G€²èMÔU¦wA˜§f‚#@)Ôe3ã\fíF‚#3¨‹´Ô†…à ‰Þ(dèÊ$i7bžš-Žjô¦FÑ´pgŒØxTç Y¶9ŽDá©Qªš0OÍG¥C»Bpqœ={–ã¸Í›7óÿœ7ož»»»„%•””8;;7nÜxÁ‚R =5'GGêŠC»Q©A|W¯^5k–««khh¨(¼xñâ!Cìíík׮ݮ]»¥K—U¹Vvvv›6mìííCCC7nÜhˆ‘êVP†êÔÈ’–žnØ]ȵ݈;c ÀLê@†RSS !³gÏîÖ­›þ[KKKóññ)..0`@ãÆ:rìØ±;vT¾¢µµõÖ­[U*U¯^½ÂÃÇ &î0u. hB{jTbØØ¨sY Hè8‚øøÿr­Q£†([ ÉÉÉ9tèІ ÂÂÂNœ81jÔ¨;wîß¿_ÈêÇMš4éÂ… GŽw˜z@’¬ÝˆyjF!8‚ŽŽ;æççgmmݲeË©S§ò˃‚‚ú÷ïOéܹ³£££þ;ŠõöööòòR/ &„ÄÇÇ Ü?}¼víZq€þ…T‚ÒTKiY`$˜ª]üöÛoõêÕ 411‰ŽŽÞµkÿÒäÉ“7n¶xñbÍP¥›¢¢¢Ï?ÿ¼]»vš oݺE©^½ºÀDDDBvìØ‘““cii)Ê¥0Õ È8ÅÉöêF‚  Á´VPPbkk{úôé BBCCÕÊÍÍíÆ„:têÔIÏ}™™™•º'úñãÇ ,055}ÿý÷…l!;;{×®]AAA[¶lùä“OD9ú’¢:5éèE:l˜§f‚#Õ8ÂI¸÷Š~ªoݺΧFBˆƒƒÃøñã§OŸ^å6‹ŠŠöìÙSÑ«ýúõ«|õ#GŽ|úé§©©©«V­rvv2ŠM›6Lœ81--mÆ GãÒ¡=5Ò^(‚#Õèü²ëׯBÚ¶m«¹ÐÃÃCȺϞ=㯀,¼ÿ·ïíÛ·ƒƒƒwïÞíìì|èС®]» ¬6""ÂÅÅ¥uëÖƒ¾~ýzóæÍi( $B{*£w’íFÀÍ1 333BÇ½Ò 51ô½dii©ªXEkÅÄĸ¹¹9sfÍš5W¯^ÎRRR† B4h‰‰ ½£ä…°GÐZ³fÍ!gÏžõññQ/<þ¼uu˜Þ½{÷‡~°zõê:uêhU*ùàhooïíí9wîܲ1×È…€DÐn$DÒv£‘à΃Ap­yzz:99-Y²dèС„ÌÌÌåË— YWÛa•J5mÚ´FEEE™ššjU§J¥ŠŠŠrsskÙ²%¿$ `ìØ±‡öóó“°0íÙ‡ÞúÄ« óÔ¬Cp­™››/^¼8 ÀÃÃcÈ!æææ›7oÎÌ̲.?#,|_III×®]suu=zt©—èïï3vìØ   %K–”zC\\ÜíÛ·ÃÂÂ4W™0a˜1c†:wî\ƒf¨£:¢7•¹>9?‚ Át1`À€ØØØ°°°¨¨¨¬¬,KKËèèèÁƒ‹¾#þÓ “’’’’’J½Ô¬Y3ÿÂÂÂìììüüü²ëFFFBÔKììì,X°hÑ¢ .¨TªR—iŠ[˜è‡ô@{j¤Ú ÿÙ!>—äädC¯B{÷îÕ«WO§^¯[·îòåËË–-“úHTé³lééé¢|¶ˆKŽç…ÔXy‰"ži¯n4Rp4ÊŽŠý•Ž»ªA_õë×—05>þ<..ÎÓÓSêà#ªƒ-ÕÅmñññ®®®C‡•º ‚Ϥ½ºóÔò€km¾¾¾¾¾¾RWtb 5R}O ÇŒ G%RÕ%ŠZœñÚx‚£!8€üPÉŒ_"ÁbAp™a 5Ò‡*€àrÂFäQT»·ÅÈ ‚#€QÑžmi¯¯’Êq£Á!8€l0yŒ\"Ú .GR£‘á< :G6òíUÒ^HÁXÇFÞQÚ$51ò<5.p4 G`R£rJé!8»vʧ¸v# ‚#ˆãìÙ³ÇmÞ¼™ÿç¼yólllÜÝÝ%,©¤¤ÄÙÙ¹qãÆ ,úð€!0“(” Ž ¾«W¯Îš5ËÕÕ544T” ^¼xqÈ!öööµk×n×®ÝÒ¥K‹ŠŠª\+;;»M›6ööö¡¡¡7n4ÄHãââ|}}mmmëÕ«×¹sç;vb/À4ãG2­Û(ÑØíF\àh,Ž ¾ÔÔTBÈìÙ³õßZZZšÏ¾}ûzöìR­ZµÁƒW¹¢µµõÖ­[Ož<Ù£Gððpч¹wïÞ®]»Þ¾}{øðácÆŒÉÌÌ8pàºuë pD ,6Zd ¤Fm 8‚øøßY5jÔek!!!999‡Ú°aCXX؉'FµsçÎýû÷ Yã¸I“&]¸páÈ‘#âóË/¿´··OLL\²dÉüùó7nÝ ABHhh¨:Û¹¹¹Ý¸qƒÒ¡C‡N:é¹/33³R÷D?~üxÁ‚¦¦¦ï¿ÿ¾-dggïÚµ+(((""bË–-Ÿ|ò‰(ÁÌ̬U«Vüב‘‘©©©{öìùûï¿ýõW15¼‚™˜#I¡4ÜC0O-wŽTã8N½Wô (11ñÖ­[ááá|j$„888Œ?~úôéUn³¨¨hÏž=½Ú¯_¿ÊW?räȧŸ~šššºjÕ*ggg!£Ø´iSAAÁĉÓÒÒ6lØPQpÔ§°¹sçò÷ùùù5iÒD§ƒ UBj¬t§˜¤£@p¤¿®_¿NiÛ¶­æB!ë>{öŒ¿RÛñÞ¾};88x÷îÝÎηêÚµ«Àj#""\\\Z·n=xðààààëׯ7oÞ\ÄÂ!)))yyyñññ£GîСCRR’­­­þÃLjdÚ ÜZ333#eº¡&&‚¾—,--U«h­˜˜77·3gάY³æêÕ«ÂScJJJBBÂ!C!ƒ 211á¯w«0µš5kvëÖíÛo¿}üøñÎ;s"ƒ¥ÔÈF»‘¥#Zõàq£1¡ãZkÖ¬!äìÙ³>>>ê…çÏŸ²®3»wïþðÃV¯^]§N­Jåc"ííí½½½###çÎ[6æj[Øž={ú÷ïÍoœgeeEhí0‹¥ŒÃR­>Úò‡àZóôôtrrZ²dÉСC!™™™Ë—/²®¶3Â*•jÚ´i5ŠŠŠ255ÕªN•JåææÖ²eK~I@@Àرc>ìçç§gaíÛ·'„¬_¿> @Ý|åsjÇŽ rÜ€nR¥FE·ÁèAkæææ‹/ððð2dˆ¹¹ùæÍ›333…¬ËÏ ßWRRÒµk×\]]G]ê¥úûûÇÄÄŒ;6((hÉ’%¥Þwûöí°°0ÍU&L˜0f̘¡C‡Î;WŸÂlllf̘1gÎ//¯=zpwðàÁS§NMœ8±uëÖF9JÀLÆAj”¦Ýˆyj£Cp] 0 666,,,***++ËÒÒ2::ZÈÇj‹¿[9)))))©ÔKÍš5ó÷÷/,,ÌÎÎ.÷™Û‘‘‘„€€õ;;» ,Z´èÂ… *•Jϛֿþúk''§üqÕªU&&&®®®›6mÒœ¹ý0“”wï—¯°°0""â?þHOO·²²rwwøü—ääd­v§Ã*ô¸wï^½zõ„?Ž[tëÖ­»|ùò²eˤ>U`ú,Bzzº(Ÿ-â¢æ¼°” ]kE'…žv#Q^ÇQ±¿ÒqWu9Š‹‹?úè£Å‹geeuéÒ¥Aƒû÷ïïׯßéÓ§¥.Fõë×—05>þ<..ÎÓÓSêÃ"Bj°_š܈Ûb”SÕ娼ysbbb¯^½/^Ì?z&>>þã?ž9sæþýû¥®^ïêê:tèP© ± 5¢V#ÂŽ@p,Gbb"!ä£>âS#!¤cÇŽ®®®—/_~üø±µµµÔÂ|}}}}}¥®ÄÂRº‘°VLRƒT0U]þ3?V/Q©TÙÙÙ&&&ê( bCj¶kš&©AiËÑ·oß5jÌŸ??>>>??ÿÞ½{³fÍÊÈȘ4iÒ®]»œœœ¤.@6›¡–¶\ªî‰‘æ©¥ƒkK{ðàA\\\³fÍÔ©‘R¿~ý±cǾxñbÇŽR Œå¤ÆW7›©•Á±´GBš6mZj9ßhø‰ÌP¤F” ìAp,­iÓ¦¦¦¦)))¥þÃŽ¿¾¡Y³fR È5Ú¡í /¡ãX¾š5k†„„„„„H]€œHÃ+—¿´Q‹']˾݈yj©¡ãâ8{ö,Çq›7oæÿ9oÞ<www K*))qvvnܸñ‚ ¤><@(ˆa².—ÉŠ=Ž ¾«W¯Îš5ËÕÕUø‡4 ôâÅ‹:tìØQÈ›³³³Û´icooºqãFƒÙÛÛ{Μ9Ýã 54”KÛÔDòv#PÁÄ—ššJ™={v`` ¸[ž9sæÉ“'¾ÙÚÚzëÖ­'OžìÑ£Gxx¸áÆ{îܹ¿þúËpÛ` 1Œ1´=î› ˜§¦‚#ˆÿeW£F q7{ðàÁððp33í.Ìå8nÒ¤I.\8r䈸õ8p`öìÙ=zôP?¹ Ê`/Ñ â v‚v# 8‚®Ž;æççgmmݲeË©S§ò˃‚‚ú÷ïOéܹ³ˆŸ@ÿþý?üpôèÑ 6ÔvÝ¢¢"BÈÚµkÅ==êѣǜ9sðyBCÓ©­Ú4T Š»ªA¿ýö[@@@½zõMLL¢££wíÚÅ¿4yò䯇……-^¼ØËËK”Ý©Tª#FXYY-[¶¬U«VÚ®AÙ±cGNNŽ¥¥¥XÁÎÎŽÿÍžœœÜ¢E ±6 #ì%*¦ðÒFBC»óÔt@Ç´VPPbkk›˜˜øã?®X±"11ñéÓ§ü«nnnžžž„:x{{‹²Çððð£GÆÄÄÔ¬YSÛu³³³wíÚTPP°eË©€rÐÁä^1«EÃÐq¤'éÞ+øe”˜˜xëÖ­ððð ðKÆ?}úô*7YTT´gÏžŠ^íׯ_Ù…§Nš9sfxxx›6mtĦM› &Nœ˜––¶aÆO>ùD¬Â bìÅJ*¦s’Zúv#PÁ‘nTþœ^¿~Ò¶m[Í…BÖ}öìdùÃ-óë277700ÐÏÏoüøñºUáââÒºuëÁƒ_¿~½yóæú£$ƒ±W1©‘ ˜§¦¦ªAkü}Í÷J;ÔÄDÐ÷’¥¥¥ªbeß¿fÍš´´´-Z,Z´háÂ… .ÌÉɹ{÷îÂ… cbbªÜ]JJJBBÂ!C!ƒ 211á¯wÔ¿0¨{q†’Šé¼´‘ Ý¯BÇ´Ö¬Y3BÈÙ³g}||Ô ÏŸ?/d]mg„ù›µ—,Y¢¹0++kúôé>>>U>'’‰|p´··÷ööŽŒŒœ;wnÙ˜‹©j1P’Ád]±qëFj„RAkžžžNNNK–,:t¨ƒƒ!$33sùòåBÖÕvFxÆŒ3fÌÐ\âèèhoo_å¾T*UTT”››[Ë–-ù%cÇŽ=|ø°ŸŸŸž…@¬f0`’ºÒñbžš"˜ª­™››/^¼øÁƒ&L˜2eЧ§§ÀgŠ>#ceeRö¥¸¸¸Û·o¨— 8ÐÜÜ|̘1³fÍ2ta Ãd–¡¤hLRCA ˆuwwŠŠúî»ïž<la5}QX7å—6h ÁÄwõêÕY³f¹ºº†††Š»å/^tèСcÇŽBޜݦM{{ûÐÐÐ7b¤/^2dˆ½½}íÚµÛµk·téÒ¢¢"CìÀX8GG'Fó …¹‹þÔˆv#h ÁÄ—ššJ™={v`` ¸[ž9sæÉ“'¾ÙÚÚzëÖ­'OžìÑ£Gxx¸èÃLKKóññÙ·o_Ïž=CBBªU«2xð`Ñw`,!ªôô4©Ëеt©k(]õ©@Ž >þwe5ÄÝìÁƒÃÃÃÍÌÌ´Z‹ã¸I“&]¸páÈ‘#âÖ’““sèС 6„……8qbÔ¨Q;wîÜ¿¿¸;0 †Ã Ã¥KŠºv#°ÁttìØ1???kkë–-[N:µ°°_Ô¿BHçÎÅÚÝýû÷?üðÃÑ£G7lØPÛuùéãµk׊{bcc½½½½¼¼ÔK‚ƒƒ !ñññâîÀðŽ^t–N»‘ÆÔˆyjh×¼àýöÛoõêÕ 411‰ŽŽÞµkÿÒäÉ“7n¶xñbÍP¥•J5bÄ++«eË–µjÕJÛÕ#""!;vìÈÉɱ´´¥¤¢¢¢Ï?ÿ¼]»vš oݺE©^½º(»0:£Ã¥ÓŸt†àZ+(( ±µµ=}útƒ !¡¡¡êåæævãÆ BH‡:uê$ÊÃÃÃ=šP³fMm×ÍÎÎÞµkWPPPDDÄ–-[>ùäQJ233+u³öãÇ,X`jjúþû £`8¹ÐY:©íFЂ#Õ8I÷^ÑOpbbâ­[·ÂÃÃùÔHqpp?~üôéÓ«ÜfQQÑž={*zµ_¿~ež:ujæÌ™ááámÚ´Ña›6m*((˜8qbZZÚ† * Ž:¦éÈ‘#Ÿ~úijjêªU«œu¨@ tF/¹—.“€B!8RÎß*ׯ_'„´mÛVs¡‡‡‡uŸ={Æ_YþxËüçfnnn`` ŸŸßøñãu«6""ÂÅÅ¥uëÖƒ¾~ýzóæÍõ/LíöíÛÁÁÁ»wïvvv>tèP×®]õ=¾FÂpr¡¶t¡íFI@c»Ø›c@kü}Í÷J?ÔÄDÐ÷’¥¥¥ªbeß¿fÍš´´´-Z,Z´háÂ… .ÌÉɹ{÷îÂ… cbbªÜ]JJJBBÂ!C!ƒ 211á¯wÔ¿0^LLŒ››Û™3gÖ¬YsõêU¤F`µÑ‹áÒ™ø@jJS#æ©ÙŽ#h­Y³f„³gÏúøø¨ž?^ȺÚÎó7k/Y²DsaVVÖôéÓ}||ª|N$ùàhooïíí9wîܲ1W‡©êÝ»wøá‡«W¯®S§ŽŽ6€P½.‰Kô‡àZóôôtrrZ²dÉСC!™™™Ë—/²®¶3Â3f̘1c†æGGG{{{!¼Q©TQQQnnn-[¶ä—Œ;öðáÃ~~~z¦R©¦M›Ö¨Q£¨¨(SSSƒpQ1[¨-•Ôˆv#èSÕ 5ssóÅ‹?xðÀÃÃc„ S¦LñôôÌÌ̲®n3•ˆ‰‰±²² )ûR\\ÜíÛ·ÔKhnn>f̘Y³féYXRRÒµk×,,,FôªÝ»wKxv*Emô’uétŒÒÔ¬AÇt1`À€ØØØ°°°¨¨¨¬¬,KKËèèhI>m¯°°0;;;??¿ìK‘‘‘„Íàhgg·`Á‚E‹]¸pA¥R•ºLS+üÇ*&%%%%%•z©Y³fþþþÆ?Ua8zÑ\:7ÄÐ íFÖ0p%/s\\\’““ ½ =îÝ»W¯^= Ÿz½nݺ˗//[¶Lê#Q¦Ï²!¤§§‹øÙBP¡±…ÂóBsâ2NjÔÿ¤ÐÛnd68*öW:¦ªA_õë×—05>þ<..ÎÓÓSêÃ@3š£Ã¥£× „©j`[||¼««ëСC¥.€Nüõ¬ÆšC©íF‚#°Í×××××Wê*èDAfQlõÔ 75›0U Klç.Ê«g¨ÝH/´Ù„à ?lÊ«g(5¢Ý¢Cp ‹|«Gj©8´Y…à 'ùVÏPj0GÙ`;°P^=[©‘êv#° Á@è,ʬž²aО1OÍ2G #°È·zAíFú‡ 7<Ç€u &PÎVjD» Á€]Lä®Êª§¿t¤FMŽŒ¢&­È·z¶R#Ðnd®q`Ûi…‰ê™Kh7‚ 8‚8Ξ=ËqÜæÍ›ùΛ7ÏÆÆÆÝÝ]Â’JJJœ7n¼`Á©€¸hJ+J«žV ¤F´eÁÄwõêÕY³f¹ºº†††Š»å/^tèСcÇŽBޜݦM{{ûÐÐÐ7b¤qqq¾¾¾¶¶¶õêÕëܹóŽ; ±€W±»X©ž¹v#€q 8‚øRSS !³gÏ wË3gÎf̘ÌÌÌ®[·Nôh`;ª°R=s©íF0Gÿ ·FânöàÁƒáááffÚÝÑÅqܤI“.\¸päÈqëùòË/ííí—,Y2þüÄÄÄÆÏ™3Gܽh )ªÈ·z¤F€J 8‚ŽŽ;æççgmmݲeË©S§ò˃‚‚ú÷ïOéܹ³£££X»»ÿþ‡~8zôè† j»nQQ!díÚµ"¿  àÊ•+}ûöµ´´ä—ÔªU«K—.ùùù"îà_4EùVÏ\jdÚ2‚Çñ€.~ûí·€€€zõꚘ˜DGGïÚµ‹iòäÉ7 [¼x±———(»S©T#FŒ°²²Z¶lY«V­´]=""‚²cÇŽœœuÎÓ“©©é… lllÔKŠŠŠ.]ºÔºuk Qvð/¶ÖHØ Z,¦F´ÁÈAk!!!¶¶¶§OŸnР!$44´]»vü«nnn7nÜ „tèСS§N¢ì1<<üèÑ£ 5kÖÔvÝììì]»vEDDlÙ²å“O>¥$333u„ŒŒLMMݳgÏßÿýë¯¿Š²}€Q–Sä;¤FƒU‰v£¬ 8RŽ“tïåÿ¨'&&Þºu+<<œO„‡ñãÇOŸ>½Ê-íÙ³§¢WûõëWvá©S§fΜÞ¦MưiÓ¦‚‚‚‰'¦¥¥mذ¡¢à¨CajsçÎåïòóókÒ¤‰ET€²œ¢ÀP<6R#È‚#åhü¥pýúuBHÛ¶m5zxxY÷Ù³güå¶Ì•æææúùù?^·j#""\\\Z·n=xðààààëׯ7oÞ\ÿÂ4¥¤¤äååÅÇÇ=ºC‡III¶¶¶zbB¨Ë)²@ÕíF†C´e7Ç€Öøûš9î•n¨‰‰ ï%KKKUÅʾÍš5iii-Z´X´hÑÂ… .\˜““s÷îÝ… ÆÄÄT¹»”””„„„!C†B dbbÂ_ï¨a¥Ô¬Y³[·nß~ûíãÇwîÜiü“²ÃvNᘋ©íF :Ž µfÍšBΞ=ëãã£^xþüy!ëj;#Ì߬½dÉÍ…YYYÓ§O÷ññ©ò9‘|L䃣½½½··wddäܹsËÆ\m Û³gOÿþý£££ù󬬬HUíIèË)ò­©Ñ…¢Ý(CŽ 5OOO''§%K– :ÔÁÁ’™™¹|ùr!ëj;#|ØÏÏOÏÂÚ·oOY¿~}@@€ºùÊçTlPúrŠ|«g15H SÕ 5ssóÅ‹?xðÀÃÃc„ S¦LñôôÌÌ̲®ž3ÂeÅÄÄXYY…„„”})..îöíÛê%4773f̬Y³ô,ÌÆÆfÆŒû÷ï÷òòš1cÆÌ™3Û·oÿ믿Nœ8±uëÖž`[¼å€¡êMh7‚´A ˆuwwŠŠúî»ïžs;22’¢íìì,XðôéÓ .è?¡üõ×_GDD˜šš®ZµjõêÕÕªUÛ´iÓÒ¥K%9À>>¤0ü‡–Ê”UqµH:ðØ*Ð’‹‹Krr²¡W¡Ç½{÷êÕ«W½zu© X·nÝåË——-[&õ‘¨ÓgÙÒÓÓEül!ÆQRt;/ @Hµ¬¥Fþ¤°”ÐnTì¯ttA_õë×—05>þ<..ÎÓÓSêà3ÊBŠÜÀ\j  ‚#°->>ÞÕÕuèСR æC ó`d¡°;€ Û, íF`¦ªÄBýͺBàèÈèŒGQÈä³ÓÒÓ¥.D§â‘%¨íF%BpÐ ñD¾@j0LUWèÒ¥KkÖ¬¹råÊÓ§O]\\Æ×¾}{©‹ ±Oä;¦S#ÃÐnT*tËkkkëááqîܹ#FÄÆÆJ]ІùxÂôXO¬¶‘ Çräää|ñÅfff?ÿüsÛ¶m !/^6lجY³|||LL¶€ÈàVÂL¾ª x¤F£C*ÇöíÛsssÇŒçFBHëÖ­{õêõðáÃK—.I]Ð@·Â0’¯*¨¿ÜÔÈΨNh7*‚c9Ž;Æq\ÿþý5.Z´(99ùÍ7ß”º:#Ù¤ª°;† S##£b85‚âaªº—/_¶²²²··?sæÌ¹sç²³³[´hѽ{w ©KÉÉ$5²«²Ô††v£âUü™žJUXXèîîÞ¬Y3//¯˜˜õòF-[¶ÌÍÍ­Ê-¸¸¸”]¸oß>©G¦h 6”º x‹'ÅÑÑ)==Mê*ôâäèXù“)?/NNNii¥O£“cz3ŸtrtJÓò»ˆ’“âè䔞Æö÷¿ÎzöìYvarr²ÔuIÇÒžøà‡~(...ûRVVÖĉ'L˜ Ö¾lmmÍÍÍ9ŽÓ\ÈÏPI}$À˜˜Ê&²R# Ðn„1mmmW¬X1dÈ›7oj.ß¿Ÿ>}þøã&Mšˆµ/__ßÜÜÜëׯk.LLL$„´hÑBê#Æ!ƒÙ]öPnj”Ùa R#h`&8þþûïC† ¹téRÿþýù›³³³CBBÆŸýñÇïÚµK¬} 0€2sæÌÇóK.]ºôóÏ?[ZZúùùI}$À˜ŸÝ•G¸*?5²vf˜o7h`æ®êÚµk‡……õêÕkÆŒ³gÏÞ»woZZÚÇ,Xàîî.â¾\]]CBB–,YÒ³gÏvíÚååå>}šã¸ùóç׫WOê#†Æ|âb~ü(*JLa>5¢Ý¯b&8ò:vì¸iÓ¦~ýú:uŠâééinn.úŽ>ûì3›ÈÈÈ'NXYYuëÖmܸqÎÎÎR04³‰ÌÀ©‘HPcÁñÏ?ÿäg[µj•™™™˜˜øùçŸÏ;×ÎÎNô} 4hРARŒ‰Ál"³ð£@j 3×8>yò$44tôèÑ>œ0aÂÖ­[ÿý÷^½z=z´OŸ>Û·o—º@`ó×2?õ@)v#”‡™àȧCggç­[·Ž;ÖÔÔÔÒÒrÙ²e‹/æ8.44ôã?–ºF`ƒ7\Èlê”JlÆa9¤F€ 0>|øé§Ÿîر£eË–šËýýýwïÞݱcÇãÇK]#°ˆÁ`"³¨R652‡e’Ñn„ 0sãÆ=<<Ê}ÉÞÞ~ýúõQQQR×Ìa>t1?õ@ÊM ¤F¨3Á±¢ÔÈã8nĈR× á?Šá¿ŽÌ@s,rI2i7TŒ™à fƒ‰l 9¤Fª Ý•Bp¥a6˜ÈfšcÑL,7Q‘A!@Q˜]Ì@s,¥R#³“IjÁ‚åv–<Pj8H´A»@p%`9˜Èc¥†ƒÔH¤FÁdå`"”Ž:52ÞDEjb)8þñÇ‘‘‘7oÞTUðý u@æCóÐ ÇBþK,L>©@ÌÇC‡Mœ8‘ÿÚÔÔTêr€~Œ·³d0€RÑËô4‘YjD»´ÁLp\·n!däÈ‘cÇŽµ´´”º ãÁD(5¥FYAj-1SSS6løÅ_˜˜0óùÚ æƒ ó(5y¥FYµ´ÄF{ñâÅ“'O5j„ÔUa;˜p¬ ìˆ4o…al²Jh7‚öØÈa&&&–––)))%%%R×Ôb>˜ðÕ3<€²#ÒLì ©€àhjj:zôè‡.]ºTêZ€N̶3o¹#*•'«Ô +f®qìÝ»÷;w~úé§„„„^½z5lذZµj¥Þããã#u™ ¶ƒ‰Ìîž~9(>5ÊelrKh7‚®˜ ŽÝºu㿸xñâÅ‹Ë}Orr²Ôe€‘1LØÎ¼ Je16¤F5f‚ã{ï½'u @æƒ ó(wPH4Cjý0ÃÃÃ¥.¨Â|0a~å ©@Ö˜ ŽØ&ÌϯW4.ŽS¤FŠ¡Ýz£78nܸ‘òÖ[o9;;«ÿY¹aÆI]5ó¡K.±êÕAñBMä´ÊEop #„Ì™3‡Žü?+‡à ẇ.æPî ä5=M*Fop7n!ÄÝÝÿç”)S¤®¤Åv0a¾SZѸä5=Md™ÄCop Öüç'Ÿ|"uE !¶ƒ ÛÕW2.>5ÊhlòLh7‚xè Ž„´êYÔP%G Û¡‹ùÌ[ÉЙ€ÔbCpj1Ÿ®¾ª±!5(‚#PˆùV¼S£ÌÆ&ÛÔˆv#‚#Іí`Â|æ­rxòR#€V€*l¶«¯rlDnÃCjÐÃÁQ¥RÅÆÆfdd´nÝÚÃÃCêr@lç.¶«WÞØtÀRpŒ]¾|y÷îÝùgƒÏœ9sÛ¶müK_ý5ÿ™WÀ ¶ÛYlW/dx²›lS#€™H]€P§OŸ;vìµk×JJJ!W¯^ݶm›¥¥åСC6l+u >˜°úWœíê«R#[Ðnc¦ã¸víZ•J5cÆŒÀÀ@BÈ! ,èÖ­ÛÍ›7{öìù믿vëÖMê2@[ Ù79©d—BôÁLp¼~ýº½½ýˆ#øž|(u —žžÆnô’qjtträ‡ÔȤF0f‚cýúõ322Š‹‹ !‰‰‰ÏŸ?oß¾=ÿRIIIFFÆë¯¿.u ùK¦Wýý7<>2"5@¹˜ Ž^^^ÙÙÙ+V¬¸{÷îŠ+!ÞÞÞüK¿üòËãÇ›5k&uP%¶s—ìïƒá'ËË~džÑn#b&8~úé§µjÕZµjU×®]O:åîîÎ?»1 <<œ2jÔ(©k€Ê±»¼ÂÆ&Ëéi‚Ô *f‚cƒ 6oÞìããcooß¹sçeË–ñOm|øða:u¾ýöÛ:H]#T‚áÜÅv›TÈðT„ã„ÔFÇÌ]Õ„ggç5kÖ”Zåàà`bÂLP$†sÃ¥ AjdR#H¥àÈËÎξ|ùòßÿ]¿~ýN:U¯^©€b ?ëáÒOE8Ž#AjdR#H„¥àøèÑ£U«VmÛ¶-??ŸòÑGuêÔiÀ€­ZµZ°`•••Ô@) wë.]ÈØˆÌ„¤FC`¦W÷âÅ‹±cÇFEEÕ©SgÀ€êå¶¶¶qqq|ðŸ&€ G/†K86Y§FQÉ95HŠ™à¸fÍšóçÏ¿óÎ;ûöíûöÛoÕË·lÙÒ¯_¿›7oFFFJ]#𾙄áÒOE‘yj”º CíF3ÁñÔ©S¦¦¦ß|óMÍš55—›šš~õÕW5kÖÜ¿¿Ô5aú™; —.dlH2€ÔRc&8&%%9::ª?uPSíÚµœœnݺ%uÀj·NF¤FÖ!5˜¹9ÆÒÒòÙ³g½š••õÚk¯I]#€’1| ²Ì##ù/2‚¨™…Ôt`¦ãزeË¿ÿþûâÅ‹e_JJJº{÷®«««Ô5(Ãs¼2O¯6‘åèä„Ô”`&82„ã¸É“'_¹rEsù•+W&NœHéß¿¿Ô5(«ÑKÎÓÓ¯ŽM®ÓÓD©‘p\º?@ÅÌTu§NF½víÚ:99B:tâĉ7n””” 0 GR× 4˜ž¦Ò«cCjd?Cž.u/1 !S¦LiÛ¶íÂ… ÓÒÒ!wïÞ%„¼þúë!!!šOv£`5z1œvµ›Œ/j$ŠJ4a)8B|}}}}}³²²ÒÒÒ œœììì¤. @NLÖ­ýØäÝh$òþ`Š1yVVVmÛ¶•º Åb5}±Z·öc“wjTJdD»¨ÄLpìСC•ïIHHºLycuš—ÕºuR£ 5­˜ ޹¹¹¥–¨Tª’’þk{{ûrŸ âaµaÇjÝ: ©QbÌÇ«W¯–ZR\\|ïÞ½ƒ®Zµª  `öìÙR× cL¦/¥5 n…‘¤F 3Ïq,ËÔÔ´Q£F£FZ±bENNΤI“äú@R¬>îᇒk?6?ß› 5Єáà¨Ö¡C‡f͚ݹsçÎ;R× 3L¦/V£®®c“ñô4Aj Œ‚#!ÄÖÖ–R¯^=© &Ó“QW±É85r„Cj  3×8V"//ïêÕ«666µjÕ’ºy`õâ@&£®À‘r"#ÁEò€Ôì`&8ÆÇÇ—»<+++**êñãÇÝ»w—ºFy`2}±uŽ­ÌÀdÜh$Hc&8Ž9²’W_{íµ &H]#€ °šÙ+ZàÀR£¬!5k˜ Žï½÷^E/5nܸÿþ5’ºF¦1Ù³c²hác+o`HòÔ b&8†‡‡K]€Œ1Ù³c²h#å7‰|/j$H,`&8€Á°ÀÐh”Žp„¤FúÑ9¢í*>>>RW À&{9WøÀˆBS£‚"#Aj¶Ñ?ûì3mWINN–ºj†°À˜Ì¹ÂÇVÁÀe©Gop¬änГ©‘±Š…ŒTØh$¸¨QN}ôGÜ `ìµíØ«XŒÉ»ÑHØ$“üâ‹/ºví*uôcïùØ«XŒÉ;5*ë³_Ž©d‚ÞŽcYYYY‡¾uëV©åùùù455•º@Ê16Ù«ØF#Áô´Ì 5‚Œ0ïß¿x÷îÝŠÞ0lØ0©k {Œ±+ÒÀäÝh$Hìc&8®_¿þîÝ»^^^þþþ{öì9yòäW_}eaaqíÚµèèèaÆ͘1CêèÄ^c¯b£"Hr`ycFj¹a&8þùçŸÕ«W_¹re:uºvíÚ¹sgGGÇ·ß~›âää4wîÜ€€ggg©Ë  cŒ½Ö¨ðU‰Ü§§‰¢žïýrØH CÌÜó÷ß7mÚ´N:„×_ÝÊÊêòåËüKƒ¶²²Z¿~½Ô5P…c15Êð>˜ªÎßh”wjTR#€<0Óq$„˜˜üs7nœžžÎmjjêâârñâE©  {‘‘°U±ðU:*LOËR#È3G{{û›7o>{öŒÿg£FΜ9£~•㸌Œ ©k {©QF‚Ô(WH kÌÇîÝ»çççO™2寄víÚݾ}ûøñㄇž={¶AƒR× 9Ʀ§+WÛQU:=-ïÔ¨Ä'5¾9R#È3SÕ#FŒØ¿ll¬J¥Z½zµ···™™Ypp°§§çµk×òòòz÷î-uÒb,ƒ99:²T®@N‚¼##Ql£‘ 5‚"0Óq´±±Ù¸qcHHˆ»»;!¤Aƒ3gÎ,,,ü믿=zÔ­[·Q£FI]#€„XJ|K.íßË”eBXû©Qž8©‚™ŽcQQ‘ÍgŸ}¦^èïïéÒ%;;;'''©  c7–¨Ã•¬b£°ÈHdýÌ¢äÔ(ëÓ  ‰™Ž£··÷¢E‹RSS5Ö®]»cÇŽH `,ÝX"ó++—ž¹ƒÔ ÌÇGýüóÏ}úôùàƒ¶nݪ¾½@ÁXŠa,%\áC6*…LO#5(3ÁqÛ¶m#GŽ´³³;wîÜÌ™3;uêôå—_j>‘@IXjÞ±T«V£’¥®B’‘#5‚1ÝÝÝ¿üòË#GŽDEE 2¤Zµj¿ýöÛ°aÃÞ}÷ÝŸ~úéÁƒR`4,5ïXªUø„aLOËR#(3Áñe¹&&o½õVXX؉'V¯^íï™ùÝwßùøøhÞ7 _Ì4ï”Üh$˜ž–7¤FP0Æ‚£š™™™¯¯ïâÅ‹###]\\Š‹‹9"uQÅRSx£Q!©Qê*¤}*õÐAÉXJlj˜!É>5r„#„(75ÊúäÄLp ß¿ÿ;wø6mÚÔßßßßß¿I“&Ýï† N:%õèA±˜éß1S¨a†„‡{ËR#À¿˜ ŽëÖ­#„ØÚÚöéÓÇßß¿U«VFØiJJÊÒ¥K[´hqíÚ5©(3ý;f >‚Fã«cDjBCÁqðàÁþþþ^^^&&Fº¡§¨¨hÚ´iVVVÓ§O9r¤Ô”†0&ÏF£6‘‘( ÑH;=MJc&8Λ7ÏÈ{\±bERRÒ/¿üR§N©GŠÂLc#Ûj5‚Fã«cTr£‘ 5”ƒ™àhdçÏŸ_»víðáÃß~ûí+W®h»º‹‹K©%ûöí“zLŠ–‘‘!u ‚8::¥§§BI—º–Ê89:BÒÒÓõ©’ž“âèäHIOK'DèwrrJKÓóPJ}^œÒÒÓÒéþV4G''BHzZ¡ãÓóâX={ö”ºZ 8–#??Ú´i5š2*!5*÷³§_¤F€ªaªº´&MšôéÓGsINNÎñãÇëׯïááaoo/u ' ä1JÔj0DëñÈ>2Ü=Ï Á±´Î;wîÜYsÉ•+WŽ?Þ®];|V5ˆ‡Ë(ÑÀƒQÂ}0JL#A£@;ŽÆÇ@ <4©@KŽFF{$C£‘ 5*R#€ö«ÖªU+<—Ä@{$£½>£ ÓÓŠ€‹t…à` 4©®Ï(ƒA£QÐhЂ#€PÊÐh$h4*R#€~ ŠöTFu¤Õv$ƊLjF#Aj‚#€áPÊh´Æ R£"à¢F‘ 8í©‘ÞâŒ5LO+âApÕ½<ª‹3âHÐhT ¤FQ!8ˆ‹ê^ÕÅi5 ‚Fc¥cD£‘`zÀ DDo0“U£Qa Ñ¨h4‚#€(¨fôæYm‡AÐh¬tŒh4¾<H†‚à ?zƒÕyÖˆÃ@£Q)0= ``Žz¢:5RZ™Vc úCö©Æ‡à 3zÛyôV¦í0ôŽŒDÓÓˆŒ„ 5 ‚#€nèmçÑ[™Vc h4 #R#Áô4€Q!8è€Òl&‡F£H‘‘( ÑH0=MÐh06G­PšÍ(-KŠ1 Ñ¨ HF‡à ½FË2úÐhTLOHÁ@ ãÿmFå@£@:ŽBPš©«IŽNŽ„ Ñ(lŒh4¾<h4HÌDê(ÇQ˜Ðh¬Iû¤§¥‹Õh”}jTRãËF£¬Ï5ý*ÁÇ3ºþPÑX“à8NöÓÓá0=ý¦§耩j€ŠP×ÔcþŠFñ ûÈHpE£¦§h‚àP º«mõD´ÈHpE£r Ñ@G€R¨Kh4ÆX‰ªG£QAÐh ‚#€&S#]iU:³zÙ§F4ÿƒF#­xÔõõ¨+HÛêEŒDÖÓÓˆŒÿA£€nŽ„Â¾uiU:A£Q›bnZ Fê!8ÐÒn4 24FF 8‚ÂQ”_Ù$ÊF#;A±èÊiXmë&âGF‚F£B ÑÀGP&Šr]VÛÒÅ®FA£€AŽ @t¥FZJѶn‚F£–D£Q Ff!8‚ÒÐÕXm4¦n4F–!8‚rPÕhI¯ÚM   F#ûA(‰j¥W Š–w£‘ñh4È‚#(—žžæè(uì6 ‰ÜˆŒ/¡Ñ #&R`P%i–:è(šo4¦¥¥I=Bƒà‡Ôø¾ÑˆÔ è8‚ŒÑÕh©C«Š : ‘Q F9Bp¹¢"­±wE#"£ÎÄšpE#€L!8‚,Ñ’¥/B«r‰¡*ÆM0 ‚F#€¬!8‚ÌPÑ㣢m+6Xd$ro4"2¾„È Ž 'Ò÷ø˜ŒŒ«FÁÜ4€2 8‚lP‘YúËiàÈHäÛhDd|J‚àò qfc¬ÑhàreßhDdü ƒà¬“>³±Ôh4|d$h4*Š„àLC£‘¢ZÑhT DFCpvIŸ™ùËiàZÑhTÌM(‚#0JÊØ†Fã+{o£‘ñh4‚#0HâØÆL£Ñ(‘‘ÈºÑˆÈø"#ü ÁØ‚F#-…¢Ñ¨˜› ŽÀ‰S#<‰LˆŒ¯@£Ê@pVH–ÜØh4"2ê94DFMˆŒPG`‚”©‘ö?žÆ ¶òž›Fd|‰ã "#TÈDê*ÇIÞ$Û±¶UªŒÑh”kjä‡ÔøŽ#*UzZšÔu½Ðqš¡ÑXi‰F=Æ…¹iM˜›aZ’5 å©Ñˆ‘‘È÷ŠFDÆ—@Ž@'ÉR#Õ?˜jÑhTþüäÉ“Ç?~üçŸ.uuÆdÔ(Éß[G'GÉ£ëFDFB@é˱eË–óçÏ·mÛö矶°° „¤¤¤ >üÇìÚµ««««Ô‡\R#G!éiéŽÄÑø;YãFDFB!ÄDêh´oß>BÈŒ3øÔHqvv3fLqqñ_ý%uuÆ!rÆã$Iê½Jz ßhd45r„ãŸæ­ÐÔÈq„ãˆJ…ÔÀCDZéééµjÕjÕª•æBgggBÈ;w¤®ÎÄODF"ùÇ]³=7.#!è2”†àXŽ5kÖ˜™•>2W®\!„4jÔHêê M̘'A~£&2fç¦qï @¥ËѲeËRK~úé§êÕ«÷ïß_È\\\J-á§¿)çè蔞žFHº([srtLKO'bmNHýNŽéi餼]fdd§'''BHZZ!$=ÝhC©xG'BHZz!$ÝðçÍh'EG''BHzZÚ˳vîDDÕyNŠäzöì)u ´@p¬BqqñÆ-ZT\\üÝwßÙØØY+99YêÂuÀ¢ré’—}K±6'd„©äGÃÃîÜô+]F#ÞDd„“"`ðÿÍJSP ¨8/ð*œi•ý³^¶C¤Ž•9yòäœ9snܸáààðÍ7ß¼ýöÛRWd8¢ÍP{®sÓúO8EOL³yÖ$àX¾ÂÂÂðð𨨨5jŒ7îã?Vßa-Gb¦FDF†(÷rFDF 8–£¤¤dòäÉèÞ½û×_mkk+uEÅ`j¤#2ÙÌM+î}Ђc9¢¢¢80tèЯ¿þZêZ Mœ°gÔ 'Ù§\¿Z³FEGFÏUKS©TÑÑѯ½öÚ_|!u-†&ZjTT£‘‘1ˆŒâAp,-33óöíÛÆ +ûꀆ.u¢`*5Ò ³sÓJŒŒ˜•0ÇÒøÇeåçç_¾|¹ì«r¹±Z„¼g¤,GSd$ 6•Y;SL@p,ÍÓӓͧ0 'Nj4R£‘‚¿þˆŒÌ@d00G¥a$5ÒÔhDd¤f¥ŒÁQQXH4EFÂZ£Q¡‘‘©sÀ4GåÐ7ò<Ñ!2êS3"#‚£Bˆ Þh¤#077­¬ÈˆYiI!8*Ý©F V`ddçìÈ‚£ìé•ú ꨉŒ„©F#÷òÀ!2€±!8Ê›¾©Q!‘‘0ÒhTb‹‘ 2PÁQÆ(Nt$DFJ¡Å@+G¹¢25RÖhDd¤ ZŒÔCp”%݃Ÿ¡¢e‘‘°ÐhT\d¤þŒ‚£üè• Õh¤# 2RÅÑÉéåWÔŸà™H]Р鎣+5ªT*ÊS#G8Žp*¢’yjä8ÂqéiiD¥Bj`:Ž2£cL?ÝanZÛ"•Ðe,uczºÔ€våD—øg€GS—‘¢R©Ò)Î( ŠŒtgw¨‚£lè˜åÝhD—QêâFiYAp” R#e‘‘Ð=7­”ÈHñ) 8Ê©‘Ž„€È(õðÐb3GÖI)k4"2J7<´äÁQqDK”EFBq£QΑ-F%Apdšv!P̤‡¹i!µ½<ärŒŒÈ‹Š„àÈ.­S£,4GFæE‚)iECpd”t©‘ŽÀ@m£Q¶‘-F@pd“©‘šF#"£Ñ†#¼„àÈ£§Fj"#¡unZž‘-F(ÁQÎÄItÄ:2ŒŒÈ‹P1G¶h‘ãô|Ô45$LI@bÜÔHG~ pnZn‘-F Á‘B£œ¾B4+ªGfeD^í!8ÊŠ<tFF™äE‚)iЂ#:½RMFDFà -FЂ#ýŒ’)ÈT5å‘@<Ž”3pj¤£ÑˆÈh€a /€ø™§Wj¤ TÐ37-‡Èˆ¼†„àH³ª“ŽÙÆW†,n—Æ-/`xŽÔ2dj”:]På "#‚#«t‰Ô4õò"HÁ‘NUÄBS£Ôƒ†F#Û‘y$…àH!Ù¦FDF]KG^* 82FëHÁô´äFŽpÄ‘ÁȈ¼”1‘º(¥²d¨KjTI™9Žã’¤FŽpüÿTD•–ž&ÙQÐ¥tŽpQ©^þ€è8RE¼ÔHG£Qª.#«³Òh1ÝÙ uj”:2‰æ¦™ŒŒÈ‹ÀGzT÷JˆŒÚTŒ¼ŒAp¤„qOêéiIæ¦ÙûÜäE`‚#í„&Jå5k1"/ûi ÷$µt©‘±ªZ‘@>éÅDjDd¬ PäE!GÉ•Ÿû¥Aé.j4~£‘Ȉ¼²†à(-ýR£lÜû‚¼Ê€àHšS£1 ´‘@a%¤kú“"5"2j‹—_ /€Â 8Ò¥ŠL(ÑEF››¦:2"/€â!8J¥œˆXuj”i£‘ê ‘þ…àH ÚR£1##ò"%Q:R˜•Õa‘ /”Á‘zÆMFh4RÑ\ÁÑø´i7=5.2Rw!#ò"€–%FIj4h£‘®#ò"€®ì•0HCjTHdttrzùò"€®L¤.ÊàŒšU*•!R#G8Žp*¢’85r|!\zZQ©ôàhLÚüRÃÇŽã qE#÷oR“22rÜÿãÃ"ò"€0U-ÊR£ön˜ÈH¤•ÆÅ‹†àh4U¥B£¤FC\Ñ(qdD^0G hÿiƒ"íWÔF£Ä×A^0:GE·Ñ(Y‹Ÿì )Gãø¯£häv£"#š‹t@p4*ã§F†##ò"e%e°Ô(V£ÑØ2b2€bŽFð2jóÕúíOŒF£Q[Œh.°ÁQ"†I¢4‘˜‚àhhåµ –õ‰ŒFš•Æd4³å@ÏF£1ZŒh.°ÁÑ ×n¤=2"/È‚£q‰iŒŒ˜Œ)GƒâQUúìo]·«k£Ñ€2¢¹ wŽìÑ­Ñh#š‹J‚àhXâ¶uk4ŠÑ\P$GÃшŠ"¥F­"£È³Òh.(‚#´m4ŠÙbDsþ…àh@|Ô –ѦÑ(NdDsʃàH/áFqf¥Ñ\€J!8˜®íFF}[Œh.€`ŽÂqº1F½"#š‹ =GCÒ¾ÝXe£Q÷Yi4@?Ž´¨²Ñ¨K‹aăàh(*mÚ•7µŽŒ˜‰@p”X%Fíf¥Ñ\Cp4wÆTÔhÚbDX#Bp4˜Jƒ\EFA‘3Ñ Gƒ¨üDzƪg¥Ñ\©!8UÙFce-F„E ‰‰ÔÐkëÖ­ƒöððèÔ©ShhhVV–+—Ÿ9•J¥Ná8©ˆê•ÔÈqÿýO¥úï Ÿž={J]”†“B'œ á¤=Ðq,ßÒ¥KW¯^]«V-//¯[·nmß¾=%%%22ÒÂÂB· ª§§ËŸ•Æe‹@=tË‘œœüÓO?ÙÙÙíÛ·ï§Ÿ~Ú¿ÿˆ#.^¼¸xñb¶ÆqŸ5[Œ*¢*¿¹@+ÇrlÙ²¥¤¤dâĉ¶¶¶ü’éÓ§[ZZþñÇ%%%Zmêe£QE^FFŽ`&…àXŽÓ§O›˜˜øøø¨—˜ššz{{?zô(11QàFøFãËÈÈ‘—‘a˜…àXšJ¥JMMµ¶¶¶¶¶Ö\Þ¼ysBÈ;w„l„Œ*BTüÿ#,ûpsLiyyyÅÅÅuëÖ-µÜÒÒ’òøñc!QââÒÜ¥9!„©Ç„â‚Aœ:á¼P'(àXZ~~>!¤V­Z¥–×®]›’““Så’““ !ÉR@\˜ª.­nݺÇååå•ZþôéSòoß@K333³´´,ÛYÌÍÍ%„¨ï³PÇrØÙÙ=zôˆOŠjéééüKRW ÇrtëÖ­¸¸øÏ?ÿT/Q©TGµ²²òððº:i 8–cðàÁ&&&?üð]#!ä§Ÿ~zøðá AƒÌÍÍ¥®@/?@Jùå—_.\Ø Aƒ.]ºÜºu+!!¡eË–¿üòKÙÇô(‚c…vïÞ½sç΋/:88¼õÖ['NäŸÈ LŽ ®qA@GÁApA@GÁQ4[·núÈÌÌŒ_Ò±cGWW×›7o>~üXêÉŸ¿¿ÿ°aÃ6mÚ$u!RBpÁéÓ§MLL|||ÔKLMM½½½=zÄÿƒáèpðÓÓÓkÕªÕªU+Í…ÎÎ΄;wîH= 9Ðù'¢¨¨hÚ´iVVVÓ§O—zr£ÃI9vìÇqýû÷×\¸hÑ¢äää7ß|SêÉ'ÅÁÁ¢™U*Uvv¶‰‰‰:J‚áÌŸ?åÊ•+W®|ûí·¥®E2ø>Ó—J¥JMMµ¶¶¶¶¶Ö\Þ¼ysBÈ;wÚµk'u²¥ÛÁ_³fMÙß°W®\!„4jÔHê11OŸŸˆ+V$%%ýòË/uêÔ‘z²¢ÛI¹|ù²•••½½ý™3gÎ;—Ý¢E‹îÝ»«[õ ÝNJß¾}###çÏŸ_³fÍ6mÚdee­\¹2##cÈ!ø©1‚Î;ó_ÄÅÅI]‹dõ•——W\\\·nÝRË---É«ÿ]¢Óíà·lÙ²Ô’„„„Ÿ~ú©zõ꥚+ "Ο?¿víÚáÇ¿ýöÛ|ޱèpR Ÿø………óçÏÿè£îÝ»7nܸ?þø©Q,:œ”S§NÅÄÄ|öÙg¸åÂ@t8)µjÕªQ£†………¯¯¯æòîÝ»B®]»&õ˜˜§ÃIyðàA\\\³fÍÔ©‘R¿~ý±cǾxñbÇŽR ÁQvvv=âÚÕÒÓÓù—¤®Næt8ø%%%“'OŽŒŒìÖ­Û‚ƒƒÑå—¶'…ÿÜ‹•+WºükàÀ„]»v¹¸¸ôíÛWêÉ?)¶¶¶æææÇi.äXŠŠŠ¤h{R=zDiÚ´i©å|£133Sê" 8Š [·nÅÅÅþù§z‰J¥:zô¨•••‡‡‡ÔÕÉœ?**êÀC‡ýñÇÑ6mOJ“&Mú¼Š¿u±~ýú}úôñöö–z@r ÃOН¯onnîõë×5ò‰Áƒ6E¡íIiÚ´©©©iJJŠJ¥Ò\žœœLiÖ¬™Ôeú ärp÷îÝ-ZôìÙóÉ“'ü’Õ«W7oÞ|Ñ¢ER—&BþÓ§OÓÒÒîܹ£R©JJJºwïÞ¶mÛüü|©k—-mOJY—/_Æ'LjK‡“rõêÕæÍ›<øÑ£Gü’‹/zxxxyy=|øPêÉ'å³Ï>kÞ¼ù²eËÔÞsýúõ:¸¹¹¥¦¦J= ™1c†b?97Lj ~ýúS§N]¸pá{ï½×¥K—[·n%$$´jÕê“O>‘º4ùrð=:iÒ$ggçßÿ=33óöíÛÆ +»µ >\ê11OÛ“"u½Š ÃIquu Y²dIÏž=Ûµk———wúôiŽãæÏŸ_¯^=©$:œ”yóæ½ÿþû+W®Ü»woË–-=ztöìÙ’’’™3g¾ñÆRÁQ£Fzýõ×wîܹwï^‡áÇOœ8‘ªšV?##ƒ’ŸŸùò岯â±à'‚B:œ”Ï>ûÌÆÆ&22òĉVVVݺu7nÿ1K mOŠÍÞ½{W¯^}üøñ#GŽXYY½óÎ;ÿ÷ÿçîî.õP@)8Õ«—J” 7Ç€ Ž ‚#‚à‚ 8€ Ž ‚#‚à‚ 8€ Ž ‚#‚àðŸ©S§º¸¸ÄÇÇmS?üðƒ‹‹ËÆ5×:räH¹¯H Á€%Ç?zô¨ÔU€B™I]€¢ùúúÚØØ´mÛVà«S¦LÉÍͽzõªÔ…€!8H©U«V­ZµÒíU#ÃT50©¸¸¸¨¨Hê*”Á˜Áß8rãÆ¹sç¶k×®U«V>>>ãÆ+u ÿ¶{÷î?~РA­[·ÎÈÈP¿ºwïÞ1cƼóÎ;:t9räÏ?ÿ\\\\v_ÇŸ0a‚·····÷ÿýßÿ;v¬Ô>|¸dÉ’Þ½{{zzzzzöéÓçÛo¿½ÿ¾¶›Z»vm%·¿h¾ºhÑ"—¬¬¬ââbÐÐP—èèèRk-Y²ÄÅÅå»ï¾“úŒ€Ü 8cf̘ýüùó&Mšdee8p`Ô¨QëÖ­+õ¶¤¤¤‘#G^¾|¹   ¤¤„¢R©¾øâ‹I“&ÅÅÅ©T*KKË„„„E‹ 6,++KsÝÝ»w=úÀ5jÔÈÎÎŽýôÓO—/_®~ÃLJ ¶fÍš{÷î5nܸaÆwîÜY¿~}`` ¶›®]»v}ôQõêÕ9Žû裆Ú»woBÈþýû5ߦR©~ÿýwBH¿~ý¤>W 7ŽÀ˜sçÎùøøÄÇÇ8p 11qúôéÇ}÷Ýw)))šoûꫯÜÝÝׯ_ÿ×_5nܘ²cÇŽ;wÚÚÚnÚ´éØ±cû÷ï‹‹kӦ͹sçV¬X¡¹îöíÛ»uëvòäI~Ó¦M311Y¹råÅ‹Õo¸yóf×®]ÿúë¯;wîÚµëøñã^^^wïÞ=|ø°V›®k×®¡¡¡5kÖ411 :ujÇŽëÖ­{æÌ™‡ªß–˜˜x÷î]77·fÍšI}®@n€1¶¶¶ßÿ}ݺu !¦¦¦AAAÆ +))Y¹r¥æÛjÕªµvíÚ·ß~󮮠_²lÙ2BÈüùó=<<ø%+V¬¨^½ú¦M›þùçõºõë×_¾|y:u!fffüñ°aÃ!?þø#ÿ†¢¢"__ß)S¦ÔªU‹_R§NBÈ­[·4˨rSú055}÷ÝwKJJ<¨^¸{÷nBHÿþý¥>Q CŽÀ˜AƒU¯^]sɈ#!çÏŸ×\øÞ{ïÕ¨QCýÏÜ¿ßÁÁÁÛÛ[óm¶¶¶>>>ÅÅÅIIIê…ƒ633+»‹+W®ðÿüüóÏW¯^ýÆo¨ß™™¹gÏž²ÕV¹)=õêÕ‹hÌVýñÇfff}úô1à9¥Âãx€1ŽŽŽ¥–4lذzõêÿüóOaaaµjÕø…üô´ÚÍ›7 !M›6-»Á&MšW;…NNNåî"33óÙ³g|—ñîݻǎ;sæÌ;wnß¾]êÒF­6¥öíÛ[[[Ÿ:u*++ËÊÊêØ±cÙÙÙ]»vµ¶¶6ø™åAÇÃq\Ù%¦¦¦%%%šèág‡ÕT*UE455%„¼xñ¢Ê]˜˜˜˜››BbbbÞ}÷ÝÙ³g_¼xñ7Þ5jÔúõë¿úê+áÕª7¥'SSÓ=zó×Vbž G`Lzzz©%ÿüóO^^ž½½}Íš5+Z‹ï5–º‘Ç7#5[ƒewñ÷ßçåå5jÔ¨ZµjOŸ>;wnµjÕÖ¬YÓ¹sgÍ2„T«¹)QH¯^½bbböíÛ×»wïØØØ:uêøúúŠ}ÔAǘóÛo¿j.‰ŠŠ"„¸¹¹U²–Ý믿~ïÞ½ãÇk.ÏÌÌŒ‹‹355uuuU/ܶm[©‡;ò»ðôô$„\ºt©¸¸ØÓÓS35B®]»Vv¿•oJíÚµ³±±‰ß¶mÛóçÏûôé#V$(ÁóÏ?ÿLœ8177—RRR²qãÆ 6˜˜˜Œ7®ò'MšD™9sæåË—ù%÷ïß7nÜóçχ R¿~}õ;ïܹòìÙ3~‘‘‘fffŸþ9!ÄuL„ ]IDATÎÎŽríÚ5õCpŠ‹‹7mÚÄ?ˆ;??_s§•oJ7%%%yyyêò÷V-Y²„`ž SÕÀ˜Þ½{8p C‡M›6å§}MLLBBBZ´hQùŠ ˆß½{÷ Aƒ6lhaaqãÆ’’‰'j¾ÓÅÅeß¾}ttt¼{÷n~~¾™™ÙÌ™3ùÛhœœœºuëvøða??¿¶mÛªTªää䬬¬aÆEFFþöÛoOž}þüù7nÜxþü¹zaÛ¶m_ýõÌÌL´À ¸Jî4 ÊÔ©SwíÚµfÍ©k¡KIII·nÝþþûïÇ7hÐ@êr@¶p#óNœ8qïÞ=///¤F0(G¶åçç/]º”2hÐ ©k™Ã5Ž óòòzþüyaaa³fÍøË0G`FïÞ½›7o^öCü”ÌÁÁáöíÛÞÞÞaaa¥nñnŽAp#‚à‚ 8€ Ž ‚#òÿDÅíŠÈ6IEND®B`‚statistics-release-1.6.3/docs/assets/ncx2inv_201.png000066400000000000000000000611511456127120000222440ustar00rootroot00000000000000‰PNG  IHDRhŽ\­Ab0IDATxÚíÝg@×ÞÇñC±#ˆ"‚,ˆ%K[@Hb‰Š=ˆQcLÌMìý*Ñcb‰%±kŒ‰%šD¯»ØK,Ø{Ã Š¢‚JÙçÅÜ;ÏfA\–]¦ì÷ój93;{f»ûãfƒÁ €WqTºÐ‚#ÌBp€YŽ0 Áf!8À,Gõ:uê”ÃÿtíÚÕdéóçÏå¥óæÍSº³6±nݺÿüç?ÿùÏââ⬸ÙÏ?ÿ\:nm۶͵MÍ›7OZ³nݺ¶>nÚ5~üxé(5oÞ\é¾d…q·.­Œ»92ýÔÊøk`ÅO!!Ä£G>úè£R¥J9;;.\øéÓ§Js´ÈYéÀ,¿üòKß¾}ëÕ«§tGrUxxø“'O„[·n Qº;ð Š|jýûßÿþᇤÇÒ«+ŽOo#8jƒÁ`0`À¾}û”î ,Q¸páòåË !¼½½•î rãaû_ƒÍ›7K7nܶmÛ¼yó*½ÇÊä‚£fDGG/_¾¼K—.Jw–èÒ¥ cg‡wÛÿܽ{Wz0|øð–-[*½»ŠäÎqÔ’áÇ'%%½rµ§OŸŽ3æ­·Þ*Q¢D‰%BCCGŽ™˜˜h¼Žñ6 ƒ®[·náÂ…kÖ¬ùõ×_§¤¤˜lóÞ½{ýû÷oذ¡››[ùòå›7o¾~ýúŒ/}÷îÝþýû7hРpáÂ*Thß¾ý‘#G,xÝÿûßòœKhh¨ƒƒƒtâŽñRSSG]ºtéÑ£GKk¦§§¯X±"88¸\¹rùóç/W®\PPÐÏ?ÿœqÌaæ^KµÌÿ50óÊâââ®]»–žž.ýøðáÃk×®¥¦¦fë8X÷ëÀ‚ã`õ﬜¼ýñj¨ÕÉ“'åaªR¥Šô`ìØ±ÒÒgÏžÉKçÎ+?ëàÁƒ*TÈ8Ðeʔٹs§¼Zdd¤Ôäïïo²rÇŽ{²yófOOÏŒÛìÕ«—ñjÛ¶m+Q¢„É:ƒ ÊîëŽ1"ãË=yòÄx aaaÝ»w—GFFJOìÔ©S¦¿ç:tÈØ‡°°°,Ž¿9{m¼;òɦN*¯9wî\©±N:Yû³gÏÞx㌯ëàà0kÖ,ã5·oß^´hQãuÜÝÝäÇÍš5Ëzß{ï=©}È!rcv`Æ!0ç×À`0:tÈËËËxÂ… ·hѤó&6lØ ­'OžÄÄD¹ýÃ?”ÚÛµk—­cȸkbÜU²ãjeü5È´“fCcòî;{öl¶Žƒu¿²u 6øÎÊÉÛæ 8ª—qpüå—_ÜÜÜ„ Œ5¼$8&%%Ig!òçÏÿÎ;ï´hÑ¢`Á‚R‹———ü]+¿ %åÊ•«W¯^þüùå–ƒJk>zô¨xñâRc‘"EÚ·oo\ìY²dIÆÕš6múÅ_„‡‡;:þ·¤½páÂl½n||üÅ‹åžÿüóÏ/^LOO7ÞBéÒ¥ågIß^¿þú«üÑ´iÓnݺU¯^]^gÛ¶m&}È"8š¹×&»ãëëàää$ý˜/_¾çÏŸKkš äm(P M›6ÆE9;;Ÿ9sFZíÉ“'òwŒ³³sýúõM>|-øÍîÌ8fþ<þ¼\¹rÆ—oM:oâÅ‹îîîÒ:«W¯–Ûå§ÿòË/æCÆ]+ã®’—Xð©eNp4óš°npÌzÍ|ƒdë8Øâ;Ëâ·?ÌDpT/ãà¸uëÖo¿ýVzܵkWÃK‚ãØ±c¥WWWù]ãáá!µ1Bj4~Θ1Cj”ÿ29r¤üF‹‹3ilÒ¤‰I‹ñ_ê3fÌË–-›Ý×5 ...òîËÆ[¨ZµêÒ¥K£££/]ºd0>øà©}ðàÁòúµk×–'Mšd²…,‚£™{mÜ™ï¾ûNj\ºt©ÜxìØ1©ÑüѰaCiͯ¾úJn|ë­·LÚøñãå±>pà€I…EߣÙ=€‡ÀÌ_ƒY³fI-… ŽŽŽ– ±óÉìÝ»·ÔréÒ%©%_¾|=2ÿ2îw•ì¸eŸZæG3a¦²þ¨ÌVp´Ê×ùÇÁßY¿ýa&ÎqÔŒ¾}ûV¬XQ±lÙ²dºÎ_ý%=èׯŸ|I5 d²‚¬zõê}úô‘W©R¥qãÆÒãk×®I6mÚ$=2dˆüfîÛ·oÍš5kÖ¬ùüùó´´4!ÄÆ¥E}ô‘¼ñ>ø@*Ã\¿~=&&&[¯ûJ ܲeKDDD½zõ|}}…;w^ºtéÒ¥Kû÷ï/­“˜˜(ŸúàÁó¶™{-ó÷÷ïׯŸô¸M›6ÎÎÿ½ììÂ… ÙèäädéÁ’%K~üñGé´÷%K–œ[|gYüö‡™Žš‘7o^©èh0 `0:_vîÜ9éÁ;ï¼cÜþöÛoK.\¸ ŸF-1™î‘O!’W»xñ¢ô@þ3NáååuôèÑ£GFGGKŸkçÏŸ—_Z¾3¹‹‹‹ü9bòUúÊ×}¥€€€’%K·¼óÎ;-Z´Ø»wï!CBBBJ—.}æÌ ޶™{-«T©’üØÅÅ¥T©RÒã—}ŒÊ'‰ËLÆîܹs~ø¡··wíÚµg̘ñôéÓjÕªÉç‡ÉÜøžÉNNN9¹eZv`Æ!0ó× ÓÎçÍ›WþEÍBHHˆ4[}íÚµ³gÏ £à(%˜y w »v<çŸZæì ™¡¶`­¯óÙâ;Ëâ·?ÌDpÔ’6mÚ4mÚTüïÖ<&K=z$=6¹K–ü}öìÙ3ùÆ “Cšüh¼Í"Eм¬c‰‰‰¯¼ël||¼ù¯kùï]Ù‹/ìéé>eÊ”¨¨¨ÔÔTsŠYÉ,öÚ˜|*’Å»#;vìgŸ}–/_>éGƒÁpäÈ‘ñãÇ׫W¯I“&Ò¿a0î¡Éç É7z¶d÷š ™¿Ož<¹wï^¦/S¦Ì+;™'Où¼® 6 †íÛ·Kí­Zµ2ÿfĸ«vÜU²ã9ÿÔÊb³ûj Vù:ÈÖ^[ý;KXúö‡ùŽ3mÚ4é»Êøä‰«««tâöíÛÆ‹äóæÍ+ŸÚlŽÂ… Ëç)ß¿ÿe«¹ºº.\Xz¼yóæ‹™ ·î¡Èøy1~üø©S§¦¦¦úúúΞ=ûøñ㉉‰r˜°ú^ÛHž…ÈäSUþn¶@v É˜ùkP @ùÅ&½•¿E²Ö±cGéÁÆOž<)mD®Dšy 3bÜU;î*ÙqÛQä#4»¬þ±Åw–°ôíó5æµ×^ëÕ«—âÎ;—úùùIä$`òc¥J•äÓ°Ìáàà Ï ŸXyçÎÀÀÀÀÀÀàà`i‚@:ÿR‘ššZÁˆ»»{‘"EŠ)R @[œÙ³gKfÍšõ¯ýëµ×^svvŽÍîvÌßk‹uëÖíÎ?mݺUñüùó»wïÞ½{÷ùóç:uZºté½{÷¶lÙ"ŸÔµk×.é|ÀÇ:==]*¿™ìŽôàáÇÆí¿qs~Íù5prròññ‘V“O™B †;v˜ó*¡¡¡Ò—ÁÎ;×®]+5ÊóÔæCÆ]Cã®Î·"«„šÌß Õß VÿβøíóµgܸqÒÉ·CûþûïåÛÆž…ò ‘üÿ!¾ûGJÇ'Ÿ„$“ç8 ŸGõǘ|[[åšùkP§Ni‘ñ/ê×_}úôis^Ež­~þüù”)S„NNNmÚ´‘–š w »:w< æ|jYp ÍgæqÈ Þ Y«gåäí3ñ/µÇÓÓ322rذa 6lÑ¢E×®]{ôèQ£FBBBœœœ¶nÝ*ݵßÛÛûóÏ?ÏîË}þùç‹/NLL¼råJÍš5CBBîÞ½+_ŽðÙgŸIþýïÿðà «W¯nÚ´é›o¾yêÔ)ù‚¸Aƒ™Ü¹×EŠ‘Îû7nÜ©S§ú÷ïŸ'Ož—­ìâââââ"­ÿá‡JÿJdãÆ–ýÏ3÷Úê^{íµ%Jܽ{755µQ£Fï¾ûnÑ¢E¯^½ºfÍiùŸ@ ...ÓοLÇŽ-Z$þwékPP|âùÇq×и«sÇ3ÊÖ§–ÇÐ|f‡l1ÿ bæq°úwVNÞþ0—Ò÷ÂK™ÜÇÑxÑóçϯ,3þÏ1na¢\¹r»wï–WËÖ?Wøã?ä3QŒ9Òø¹kÖ¬Éô¹O>ùDºûkv_7""Âx;ÿsŒÉëܹ³ÉKûúúÊ÷§íÞ½{Ö}0aÎ^¿lSò-mW¬X!µ˜?¿ýû÷¿lN*((èÙ³gòšk×®•Oü’äÏŸ_ž±5¾%ž|xŒ\á¹U 9¿ƒ¡G&+*TH¾”2ëÿ bøçÀ…sæÌ±ì2îwµí¸ùŸZfþç3aF™Þ4Ñüã`‹¯3ƒÁßY9yûÃLUkRÞ¼yåJ¾‰7Þx#&&æóÏ? )Q¢„‡‡GÓ¦MGuâĉFYörmÛ¶=qâDïÞ½ëÖ­ëââR¾|ùwß}w×®]ò-y%­Zµ:~üx¯^½jÕªU°`A__ß¶mÛîܹsΜ9–]~8mÚ´ˆˆOOÏB… U¯^ý•³„Ó¦M«Q£†ÂÑÑñõ×_8pàÑ£GåÌåË—Ëó5VÜk««_¿þÅ‹?ÿüóºuë–,Y2Ož<îîî5úᇢ¢¢äK…ï¾ûîÞ½{»víêããSªT©ððð]»vÕ¬Y3ã6/^<~üø5j*T(  _¿~ÑÑÑ/K·Ê4ó×`áÂ…r}ÂÓÓ³uëÖ[·nmÒ¤‰™GÉøÚjGGG“*‚ùÇq×и«sÇ3n3[ŸZCó™y²ÅÌ7ˆùÇÁêßY9yûÆÌnhTJJʺuë„ÏGŒ?^úÓ¼Y³fòv6_.ÀÇoß¾½wïÞ/;mf²Ûq×ÖŽ:À9ŽÐ•ÚŠOÛ¶m-xbÅŠ{öì)=^³fÍš5k:tè /}öìYåÊ•=jÅ®ÆÅÅ•.]úÖ-þøì‹Ý–‘ Ž°Üºuëþøã¥{‘m‡nÛ¶í©S§yõ'OžôéÓ§K—.¿ýö[íÚµåö/¿ü2 Àdý”””úõëf±Í˜˜˜Î;{yy¹¸¸Ô©SgÚ´i©©©BˆâÅ‹÷ìÙ³oß¾Šì)EaSGX®@ýúõ{üø±ÒÉž»wï®^½:>>>÷_úüùóµk×¾pá‘#GZ´h!·ß»woêԩÆ Ëø”ÈÈÈd±ÍË—/mܸ±Y³fƒ Ê›7ï Aƒ:vì(-0`Àºuë²Þè'8æ‚#,÷ùçŸß¼y3222ç›JOOOKK³zm´Y˼xñ¢eË–Ý»wß´iSåʕ͙3§B… ÆHÉ–-[&OžìììœÅf ôèÑ£­[·þôÓO_~ùå¾}ûzöì¹zõêM›6 !Š-Ú²eËï¿ÿ^é½(7ÂÖް\ÇŽ[´h1sæÌÇg±ÚÁƒ[´háååU²dÉ-Z}úôjÕª½ìESSS?ûì³:uê7^»vM‘/_>éÇ ¤¤¤ìܹSJÌ KÌS笭råʹðe}ñÅBˆ‹/ †‰' !¦M›&-š0a‚âØ±cƒáùóç>>>åË—‹‹“–ÆÅÅ•+WÎ××÷ùó烡|ùòBˆ•+WJKÓÓÓkÔ¨QºtiƒÁššZµjÕ *}zllì¬Y³äÆZµj•-[vÚ´i R˃¦NZ®\¹Œÿ"ÅD@@@Ù²e§OŸž˜˜(µ\¾|yìØ±±±±5kÖôóó›2eÊÇ¥E‰‰‰Í›78p ùuµôôôLÛccc…þþþrËÊ•+Ÿ>}*UOÍ$u#))ée¯bÌßß?==]ºZ1jÔ(“3‘å‹c¶oßnò\ƒÁ0lذ2eÊ,Y²äe©155õÆÆ{@7(7"—Qq„ÕtîÜù§Ÿ~Ú¸q£Ü’/_¾iÓ¦Ig vêÔÉ`0üú믷nÝúý÷ßÍ™À>}z§Nj׮ݡC‡E‹9;;=ÚÙÙyúôémÚ´yýõ×;uê”’’²zõê7n¬X±"Ó[™ª’sæÌ¹{÷®|ûYppp¡B…>ú裈ˆˆR¥Jíß¿?**ªxñâ{öìÙ°aCóæÍ_¹ýŸþyÓ¦MEйtéÒO?ýÔ«W¯¬×vttŒŽŽ–î+ùJË—/ÿôÓO?øàƒ©S§ž9sæìÙ³þþþ_¥]»vÒýƒbbb’’’BCC­3ÌTƒÔ(až:7Qq„5Íž=[¾ÒYÒ®]»]»vU©RåçŸ^¼xqÕªU÷îÝfÎÖÚ¶m»sçNŸ~øáÇ|ã7¢££+V¬(„hÖ¬Yttt5–.]ºxñbŸM›6uêÔÉœÍ6hÐ <<|Ó¦M“'Oθ´lÙ²ëׯ/]ºôŒ3¦M›V @˜˜˜o¾ù&11ñ»ï¾{åÆïܹ3pàÀbÅŠíÛ·ÏÕÕuܸq&÷ÏÈÝÝ=000c5ñe^¼xñðáÃääd!ÄÅ‹…gΜù)ùfé;vìðôôÌøoiÈ6¥ï¤CöpG¼Œt +V éŸ1Ξ=û•Ïúå—_ÜÝÝŸ={fæ«,X° ÿþf®\«V­Ñ£G[¼GÜÇÑÞ0.*”é pãFY.ßÁQb·_ÜT«Y¹råªU«:vìØ¹sg!ÄÀ]]]ÇÿôéÓ¬ŸØ¡C—Õ«W›ó*Ïž=Û¾}»™zÇÄÄœ9sæ•· -LR˘§ÎeGÀ:]ºtùí·ßj×®-·ùå—&매¤Ô¯_?00Pú±xñâ={öìÛ·¯ÒûP æ©ç¬t OçÏŸoÕªUùòå9R¹re¹ýÞ½{S§NÝ»woƧDFF8p ~ýúrË€¼½½8P¯^=¥wråF¨GXß‹/Z¶lÙ½{÷M›6§F!Äœ9s*T¨`\€”lÙ²eòäÉÎÎÿøK¦hÑ¢-[¶üþûï•Þ!È ¤F¨ÁÙÖ²eKww÷?þøÅ‹Æí¡¡¡… º}ûöºuë;tèpéîÝ»'­³hÑ¢Ž;šlðîÝ»ï¿ÿ~¯^½J—.m²¨C‡¿ÿþûãÇ•Þi°-Rã+1O­LU«Úù%|õ—½?[´hqýúõ øûû8Pjܲe˶mÛFåíí}âĉ{÷îùùùÉOéѣǢE‹.\¸píÚµ oÍ`0tëÖÍÝÝ}úôéÕªU3y­ ¤¤¤ìܹóÝwßUðPApT9uþiõÙgŸ………ùùù}ýõ×½zõ*\¸°Á`ø÷¿ÿ]¬X±aÆ !ÆŒ3f̘ŒOܱc‡¢nݺƓ'OÞ¹sgtttÁ‚3>¥|ùò;vì 8Ð1ÊÐ ¦ªa‰R¥J1">>~Ê”)Bˆßÿýï¿ÿŽŒŒtuuÍâY×®]Ë—/Ÿ»»»ÜrðàÁÈÈȉ'Ö¬YóeÏòöö¾~ýºÒ{ ¶Bj4óÔ*Ap„…† R®\¹©S§Þ¾};22²\¹rÿú׿²~ÊÝ»w‹-*ÿ˜˜˜þÖ[oõë×/‹g+VìÎ;Jï.`ª–ÊŸ?ÿ¤I“:wîtáÂ…Å‹çË—ï•O1¾žfÞ¼y—/_ ›4i’ÔòèÑ£´´´‰'–-[6<<\j|ñâE¦³Ø ”ÍA¹Q=ް\§NfΜ¹{÷î5jDDD¼r}//¯„„„ôôtGGG!„"§Nj¼NBBˆ#‚‚‚äàxÿþ}___¥÷¬ÔÍaª9"Õ“’’ÒÓÓ_¹²¿¿zzúµkפGeø§òåËׯ_ß`0lß¾]Z'55õÆþþþJï(X©ZDp„å~þùçM›6)RäÒ¥K?ýôÓ+×vttŒŽŽ6ÿ%bbb’’’BCC•ÞW€2˜§V‚#,tçÎ+Vlß¾}®®®ãÆ3¹xFîîîr5Ñ;vìðôôÌøŸf@Ó(7B£ްPŸ>}fÍšåïï߯_¿ëׯ/\¸ð•Ïúì³ÏV®\ùüùóL—^¹reÿþýÆ-Ë–-ûä“Oœœœ”Þ]°R#´‹àK¬\¹rÕªU;vìܹ³bàÀ®®®ãÇúôiÖOìСƒ‹‹ËêÕ«Íy•˜˜˜3gμò.? !¤ÆlažZmŽÈ¶ôéÓÇÓÓsöìÙRKÑ¢EGuóæÍààà™3gfñÜxð@éÞTÔ;DpÌ„···Â8# †‡:::ÊQ`ÏHÖÂ<µ¶3ñî»ïæÏŸüøñû÷ïONN¾uëÖçŸÛ±cGWWW¥{  ƒÁ tÔ(&&¦GOŸ>•[ºví:räH''§W>×ÏÏ/cãÆ•Þ'»[ºti¥{`PÔ‰q1‡ïÌ+—ûøäÚËéxPR†6Ì3y¯Ò½xµfÍšeløà©åÖ­[ï½÷ÞÀ׬Yãëë«tÊàÔF+âìF-âGS÷îÝÛ¾}{ÅŠåÔ(„(Y²ä§Ÿ~š’’òçŸ*ÝA€2HÁÑÔýû÷…åË—7i— qqqJw R£uQnÔ(‚£©òåË;99]¸pÁä²!éü†Š+*ÝAeM(P I“&×®]ûþûïÓÓ .Ìž=;oÞ¼ÁÁÁJwÛ(7ZåFíââ˜L|õÕW:t˜={öúõë«V­zÿþý¿ÿþ;===22²B… J÷«H€ŒŠc&<<<Ö¯_ß»wïB… íØ±#66öÍ7ßüí·ß"""”î W‘­Žr£¦QqÌ\Á‚ 4hÐ ¥;P ©0AÅ€Lmr£Ö0Ej2Ep¹r£øÊÀËø¤F¡Ü¨Gþ‹Ôdà€¤F[¢Ü¨GH€YŽ{Gj´)ÊzBpØ5R#`>‚#À~‘mr£Î`‚#ÀNQn´5ÊúCpØ#R#`‚#ÀîsåF]"8ì ©1õŠà°#¤F 'Ž{AjÌ”uŒà° ¤F çŽý#5æÊúFpè©°‚#@ÏH¹‰r£îºEj¬‹à¬€r£= 8ô‰rcn"5Ú ‚#@‡H€-zCjÌe”íÁ +¤FÀvŽý 5æ>Êv…àÐ Rcî#5Ú‚#@H@. 84Ô¨ÊvˆàÐ6R#kŽ #5*…r£}"8´ŠÔ¨R£Ý"84‰Ôä>‚#@{H ¢ÜhÏŽ!5*ˆÔhçŽ-!5 "84ƒÔ¨,Ê 8´Ô¨,R#Á  ¤F@ ޵#5*Žr#$G€ª‘Gj„ŒàP/R# *G€J‘Õ€r#ŒjDjTR#LªCjÔ‰àPR£JPnDFG€ŠU‚ÔˆLjAjTŽàPR£zPnÄËÊ#5ª©Y 8Fj´ÂYéì—Ãà(!©Q=(7"kG€2(4ª ©¯ÄT5@¤Fµ!5ÂG@n#5Epä*R£ Qn„™Ž€ÜCjT!R#ÌGpäR£ ‘‘-G@n 5:@pØ©Q(7"»ŽÛ"5ª© 8lˆÔ¨N¤FX†à°R# 3G€MU‹r#,ÆÿªX™Ãà(!©QHÈ ‚#Àš(4ª©9ÄT5ÀjH€¾ÖAjT9ÊÈ9‚#À H*Gj„U9EjT9R#¬…àÈR£Ê‘aEG€åH*Gj„u"5ö†û8²[|kåFXÁ=5Ô[`ª ¤FM 5ÂFŽs‘5ÔÛ!8ÌBjÔR#lŠàx5R#ÁÅ1€¬qµ†Pn„­/E¡QCHÈLU2GjÔR#rÁ R£†‘kŽS¤F !5"7ÿ@jÔR#rÇþ‹ ¨µ…ÔˆÜGpñ¿Bã•+W”îõbªÀô´öPn„"¨8¾Ô‰'æÍ›wêÔ©'OžøùùõíÛ·^½zJw ¬Ô¨9¤F(…Šc梢¢ÂÃ㢢<==Ž=Ú­[·¨¨(¥ûVFjÔR#DÅ1=>|¸³³óÂ… k×®-„ˆ‰‰‰ˆˆøüóσ‚‚IÛt‚Ô¨9¤F(‹ ”‰U«V%&&~òÉ'RjB¼öÚkÍ›7?qâ„Ò½+pEjÔR#GÅ1»vírpp 3nœ4iÒ¤I“”îX‘Q‹HP‚c&Nž<éîîîååuøðá£G>|ø°J•*¡¡¡ PºkS¤F-"5B%ަ^¼xñøñãŠ+~ñÅË—/—ÛË”)3}úôêÕ«›³???“–7*½gv-66Vé.Àƒ¢ß™W.÷ñÉâfŒ‹ ¥ m˜gò^n±© fÍš)ݵ 8šzüø±ââÅ‹qqq'N zöìÙÊ•+gÍšÕ¿ÿuëÖ™Sw>>Jw¦”\ff­‘qQ•óJ晼—AQVƯõŒ";ÁÅ1¦òçÏ/=˜0aBXXX‘"E¼¼¼úôéÓ¶mÛØØØ¿þúKé@¶q)ŒF1C µÑLpŒ‰‰ÉzkÍ*T(þü 6n Bœ={Vé#Ù#EFR£æ¡Bš Žï½÷ÞÌ™3ÓÒÒ2.JHH0`@ÿþý­õZžžžyòäqpp0n”f¨SSS•> 5ŠÔuÒLpôôôœ1cFçί^½jܾiÓ¦–-[nذ¡\¹rÖz­àààÄÄÄóçÏ79rDQ¥J¥˜‹Ô¨Q¤F¨–f‚ãºuë:wî|âĉ°°0ébç‡4¨_¿~>üðÃ׬Yc­×jÛ¶­"22òÁƒRˉ'.\èææöÖ[o)}$àÕ8©Q»HP3Í\Uíââòå—_6oÞ|Ô¨Q_|ñÅúõë/_¾_©R¥o¾ù¦FV|-ÿAƒM:µY³fuêÔIJJ:tèƒƒÃøñã‹+¦ô‘€W 2j©*§™à( \±bE›6m<(„¨U«ÖâÅ‹óäÉcõêÝ»·‡‡ÇâÅ‹÷íÛçîîÒ·oßJ•*)}àHÚEj„úi,8îÞ½[šA®V­Z\\Ü‘#G>ûì³qãÆ•(QÂê¯Õ¾}ûöíÛ+½Ç ¤Fí"5B4sŽããÇGŽÙ«W¯øøøþýûÿþûïëÖ­kÞ¼ùÎ;[¶l¹jÕ*¥;Jâ¤FM#5B+4SqlÙ²åÝ»w+Uª4iÒ¤ªU« !ÜÜܦOŸòå—_Ž9rýúõ .Tº› "£¦‘¡!š©8ÆÇÇüñÇþù§”e­ZµZ»vm``àž={”î#(€Ô¨i¤Fh‹f*ŽË–- Èt‘——×¢E‹–,Y¢t ·‘5ÔÍÑLp|Yj”888tëÖMé>@îq%„ 5j©Z¤™àQhÔ:R#4J3ç8$¤F­#5B»Ž %¤F­#5BÓ˜ªmà¤F 5B뎠u€Ô`ªÔŽÔ¨¤F胖*Ž6lX¼xñÕ«W C¦+DGG+ÝG°2R£¡š Ž[·n0`€ôØÉÉIéî€ÍqR£>¡'š Ž?üðƒ¢GŸ~ú©›››ÒÝۢШ¤FèŒf‚ãÅ‹K—.=|øpGGÎË s¤F} 5B´SRR?~\½zuR#}czZ7HÐ%mGGGG77· .¤§§“è…F}8ß¡¤‚Ô]ÒFsrrêÕ«W||ü´iÓ”î Ø©Q¤B#©z¥Š£¢E‹7nܘ?~tttóæÍK—.7o^“u‚‚‚”î&dÓÓºÁô4tO3Á1$$Dz“é:çÎSº›=uƒÔ{ ™àغuk¥»VFjÔ R#ì„f‚ãäÉ“•îX©Q7H°š Ž œÔ¨'¤FØõÇeË– !ÞxãJ•*É?f-""Bé^À+PhÔ n»;¤Þàøå—_ !ÆŽ+GéǬ¨©Q7(4Â>©78öíÛWQ£F éÇ!C†(Ý#°ÓÓzBj„ÝRopìÓ§ñ}ô‘Ò= QhÔR#ì™6þs h©QOH°sê­8€Ö1=­3¤F€à6A¡QO¸€ÀúHzB¡Àš˜žÖR#`ŒàVC¡QgH€ GƒÁûÚk¯(ÝöŽÔ¨'œÔdJKÁ1**ê»ï¾ •î ¹råJiQxxø˜1c”î#{Äô´ÎPh^F3÷q°GR¡‘Ô¨¤F š©8.X°À`0Œ5*<<\±yóf!Ä7ß|rõêÕfÍšýòË/!!!Jw€¡Ð¨?¤F kš ŽçÏŸ÷òòêÖ­›ôãòæÍÛ¸qc!Dùòå+T¨pùòe¥ûÀŽpF£þWÒLp|øða… ¤Ç©©©§OŸ®^½zÞ¼y¥–‚ ^¿~]é>°¤FáRÀLš Ž%K–ŒMKKsrr:räȳgÏêÕ«'-JOO-^¼¸Ò} LOë…FÀ|š¹8¦nݺ>œ1cÆÍ›7g̘!„hÒ¤‰´èÇ|ðàAÅŠ•î#ã:ý!5Ù¢™ŠãǼvíÚ9sæÌ™3GQ£F éÞ:u:~ü¸¢gÏžJ÷€ž1=­3LOÐLp,UªÔ¯¿þúí·ßž={¶bÅŠcÇŽ•îÚïêê:räÈúõë+ÝGúÄô´þPh,£™à(„¨T©Ò¼yóL—,Yâííí訙9wÚB¡QH€Å´%>}ú²¥ … Vº4‰¹i]"5¶ ™©êªU«Þ¾};&&&ã¢3gÎܼyÓßß_é>ÐR£þ0= ØŽf‚cçÎ|êÔ)ãöS§N 0@¦th ×ÁèWO6¥™©ê† öêÕkÁ‚íÚµóõõBlݺuß¾}—.]JOOoÛ¶í;ï¼£th‘Q¸M# 4…C† ©]»öĉ/_¾,„¸yó¦¢xñ⃠2¾³#dë`t‰¹i wh)8 !‚ƒƒƒƒƒ._¾üâÅ __ß%J(Ý)šA¡Q—H@®ÑXp”¸»»×®][é^ÐR£þ0= ä2ÍÇúõë¿rèèh¥» @˜žÖ% @îÓLpLLL4i1 éééÒc//¯Lï õ‡B# ÍÇÓ§O›´¤¥¥ÝºukË–-sæÌyþüù_|¡t¨ …F]¢Ð(H3÷qÌÈÉÉ©L™2={öœ1cÆ£Gh0”îµàOë©P–f*ŽY¨_¿~ÅŠÏŸ?ãÆ²eË*Ý £Ð¨KLOj ‡à(„ðôô<þ|±bÅ”î…qF£.QhTBÁ1))éôéÓ… Rº/”DjÔ €ªh&8îß¿?Óö„„„%K–P ÓÓºD¡PÍÇ=zd±´páÂýû÷Wº”A¡Q(4ê¤™àØºuë—-*[¶lXXX™2e”î#€ÜF¡Q—(4ª¥™à8yòd¥»@](4ê…F@å4@F¡Q—(4ê§Þà¸cÇŽì>%((Hé^°9 úC¡Ð õÇÞ½{g÷)çÎSº×lˆB£.Qh4D½Á1‹«aØ! úC¡ÐõG®† ¡Ð¨K-RopÌ–áÇ:t(**J鎰2 úC¡Ð.-Ç„„„mÛ¶]»vͤ=99yË–-NNNJw€5QhÔ% €¦i&8Þ½{7<<üæÍ›/[!""Bé>° úC¡ÐÍÇE‹ݼy³nݺ­Zµú믿80zôè œ={véÒ¥£FRº¬ƒÔ¨?}ÐLpܽ{w¾|ùfÏžíêêÚ´iÓFùøø4hÐ@áëë;nܸN:UªTIénȦ§õ‡B# 'ŽJwÀ\·oß._¾¼«««¢xñâîîî'Ož”uìØÑÝÝ}Ñ¢EJ÷@ŽH…FR£žH…FR# š©8 !ÿ?æ–-[öÊ•+Òc'''??¿˜˜¥;ÀBõ‡B# Kš Ž^^^W¯^}úôi¡B…„eÊ”9|ø°¼ÔÁÁ!66Vé>°g4ê ‘Ð1ÍLU‡††&''2äÒ¥KBˆ:uê\¿~}Ïž=Bˆøøø¿ÿþ»T©RJ÷@ö8 Ž"5ê sÓ€¾i¦âØ­[·M›6EEE †¹sç6iÒÄÙÙ¹OŸ>µjÕ:{ölRRR‹-”î#€lðy…Ȩ'{ ™àèáá±lÙ²U«V¥¦¦ !J•*9nܸ½{÷ !BBBzöì©t˜E:£ñr¥;«án;€ÐLpLMMõððèÝ»·ÜÞªU«'N”(QÂ××Wé0‹<7-_ßM£ÐØÍÇ&Mš„……µk×®bÅŠr£‹‹K`` Ò]`.Ö"#`‡4ïß¿¿páÂ… ´oß¾E‹ÒåÕ4‹`t†¹iÀ>i&8®\¹rݺu6l8zôèÑ£GÇß¼yóöíÛשSGé®È …F¡ÐØ3ÍÇ5jÔ¨Qcøðá‡^·nÝÆÿøã?þø£\¹r:t óôôTºLQhÔ"#ƒÁ t,‘ššº{÷î¿þúkÛ¶mIIINNN7ž7ožÒýB??¿sçÎ)Ý üÕ+W||¸†7W½²ÐÈ ¨ÓËÆ…¹iñfQ!»ý®×LÅÑ´ßÎÎÁÁÁÁÁÁ'Nœ5jÔ¹sçvìØ¡t§ü…F=¡Ð@¦Õàxîܹ7nܸñòåËBGGÇ7ÞxÃF¯uëÖ­V­Z5mÚtòäÉJï7 vœÑ¨'DF&4OŸ>½iÓ¦ 6\»vMj©^½z«V­Z´ha£s Ãðáß|¸Ò}Ñ{.42+ °+GSqqqׯ_/P @DDDÆ¥mÛ¶íÚµ«Ò}T»M”vˆàhJº]VrròÉ“'3.åÂj™ÝNOv‹àhªV­ZÜ…ñ•ì°ÐȬ4Gd›½¥FJŒHŽÈ»JDFŒa.û9©‘Yi2Ep„Yì¤ÐH‰€,ñjö‰Œ¼ÁYÑýô4³Ò˜àˆ—Òw¡‘#ÙEpDætœ‰ŒX†àˆLè252+ @ñº<©‘#VApÄÿÓ_¡QŽŒW®\Qº/hÁÿ¥³ÔH•«#8B¥FNdÀvŽöN7'5RbÀÖŽvM…F"#¹ƒàh¿t‰Œä&‚£ÒtjäDFAp´GÚM”PÁÑîh45PÁÑŽhôj"#*Ap´š+4r"#jCp´ ÚJ”P'‚£þi(5P3‚£Îi%5P?‚£ži"5Ð ‚£n©<5rí šCpÔ'5§FJŒhÁQoÔ|³F"#šFpÔÕ‰ŒèÁQ?Ô™‰ŒèÁQ'T˜‰Œè ÁQÔ–‰ŒèÁQóÔ“¹ÃúFpÔ6•¤FJŒØ‚£†©!5°G­R<5°7GMR65°OGíQ05°gGQ*5ÁQKIDF !8jFî§F"#0FpÔ†\NDFÁQr35ÀËñ_DF5‚£ÚåB¹‘ÈÌApTµÜIDF`‚£zÙ:5RhÙBpT)›¦F"#°ÁQl—‰ŒÀbGÕ±Qj$2€"8ê‘XÁQ]¬^nä¢i`-G±nj¤Ð¬‹à¨VLDF` GU°Vj$2Û!8ê§3›"8*/çåF –ÃÔHd¹†à¨¤œ§F"#È5GM¢ÐrÁQ1—)4E•aYj¤ÐDpÔ @YGd·ÜH¡¨ÁQí(4• 8æ6óË€ªsU¶R#‘¨Š£Ò@&H@…¨8æsÊLOÕ"8ª…F fLUç’W–I@厪@jêÇTunÈ¢ÜÈI@+ŽJ¢Ð4„©j›{Y¹‘Ô´…ਠR#Ђ£meZn$5-"8æ6R#Ð(‚c®"5í"8ÚÉ<5©hÁ1—€Ö`‚£­ÏSSn:@p´9R#Ђ£m‘€nmâeÿf@»Ž6D¹è Áf!8Ú åF 3G›àG ?G› Üô‡àøR¿ÿþ{ÇŽ6l8räÈ„„¥{Ë5kÖLé.Àƒ¢NŒ‹ 1(P‚cæ¦M›yéÒ¥ºu뺸¸¬Zµêã?NNNVº_Š!8fâܹsóçÏ/Q¢ÄÆçÏŸ¿iÓ¦nݺÅÄÄ|ûí·fnyj ?ÇLüöÛoééé ðôô”ZFŒáææ¶aÆôôt¥{  ‚c&:äèè$·8995iÒäþýûGŽQºwÊ 8š2 /^,Z´hÑ¢EÛ+W®,„¸qã†ÒP†³ÒP¤¤¤´´´"EŠ˜´»¹¹ !|Xj9~üxõêÕ4h––¦ôéÅ_ýû÷OII‘ZöíÛçïïÿöÛo+½7váÑ£G‡=z´ôuìØ1¥{¤*ŽVðÛo¿¥§§0ÀÓÓSj1b„››Û† ÒÓÓ•îÎYpð7nÜ(„5jT¤–J•*}òÉ'iiiLX[ENÞ.\˜6mZ•*U”Þ ½±`PV­Z•˜˜øÉ'ŸÔ®][jyíµ×š7oâÄ ¥wH,”#GŽ!ºwïîìì,µúûû_½zõÁƒJïþµjÕ*""bÅŠJwDIG+8t裣cPPÜâääÔ¤I“û÷ïKorØŽÿÊ•+… ªV­šqc¥J•„7nÜPz‡ôÀâwDjjê°aÃÜÝÝGŒ¡ôN胲k×.‡°°0ãÆI“&;wîõ×_Wz‡ôÀ‚AñööBgDƒÁððáCGGG9JÂvÆ?{öìÙ³g7hÐ@é¾(†ß³œ2 /^,Z´hÑ¢EÛ+W®,„¸qãF:u”î£nYvðçÍ›—ñöÔ©SBˆ2eÊ(½Oš—“wÄŒ3Μ9óã?ººº*½ºbÙ œ½zõêJï“æYöNñóó[²dI=zôè!7víÚuäÈ‘JïìSÕ9%]þV¨P!“v!Ä£G”î žåüà§¥¥-^¼¸W¯^III&LðððPzŸ4ϲAINN6lX™2e¬ôèƒòøñc!ÄÅ‹ׯ_?qâÄìܹ³oß¾7oÞìß¿?·ŒÈ9ËÞ)‰‰‰&LxúôiµjÕÞ{ï½·Þz«@«W¯æRwä*Ž9U¤H‡¤¤$“véf"Òߎ°‘üŒ;öÒ¥KÞÞÞ_ýµ=Ÿ³bE– Êĉccc—/_Î4¨-X0(ùóç—L˜0¡iÓ¦Òã>}úܺukÕªUýõW‡”Þ-m³ì2lذ¿ÿþ{Ĉ|ðÔrëÖ­÷Þ{oàÀkÖ¬ñõõUz· TsÊÙÙÙÍÍ-ã_‡‰‰‰BùZ9Ø‚ÅÿÅ‹ãÇïÞ½û­[·úöí»aÃR£µX0(\¾|yïÞ½¹äÂF,”B… åÏŸ¿@ÁÁÁÆí¡¡¡Bˆ³gÏ*½OšgÁ Ü»woûöí+V”S£¢dÉ’Ÿ~úiJJÊŸþ©ô>Á.­ D‰÷ïß—Þí²+W®H‹”îÎYpðÓÓÓ¼xñâÍ›7÷éÓ‡*—uewP¤ÿ{1{öl¿ÿi×®bÍš5~~~ï¾û®Ò;¤¼S<==óäÉãàà`Ü(½YRSS•Þ!=Èî Ü¿_Q¾|y“v©Ð§ôÁ.­ $$$--m÷îÝr‹Á`عs§»»{@@€Ò½Ó9 þ’%K6oÞÜ¥K—Y³fQ¶…ìJ¹råZþ“tébÉ’%[¶lÙ¤I¥wH,x§'&&ž?Þ¸QºM 7Ú´ŠìJùò圜.\¸`0ŒÛÏ;'„¨X±¢Ò;û ôÈõàæÍ›UªTiÖ¬ÙãÇ¥–¹sçV®\yÒ¤IJwMÿÌ9øOž<¹|ùò7 CzzzhhhíÚµ“““•î»newP2:yò$ÿ9ƺ,”Ó§OW®\¹cÇŽ÷ïß—ZbbbêÖ­¯ôéƒÒ»wïÊ•+OŸ>]þç=çÏŸ¯_¿~õêÕ/^¼¨ôÙ‘Q£FÙíŽáâ+(Y²äСC'NœØºuëÆ_»v-::ºZµj}ô‘Ò]Ó?sþÎ;X©R¥uëÖÅÅÅ]¿~½@·Ö¶mÛ®]»*½Oš—ÝAQº¿vÁ‚Añ÷÷4hÐÔ©S›5kV§N¤¤¤C‡988Œ?¾X±bJïX0(_}õU‡fÏž½~ýúªU«Þ¿ÿï¿ÿNOOŒŒ¬P¡‚Ò;»@p´Žž={/^|õêÕëׯ÷ööîڵ뀤»*ÀÖ²uðccc…ÉÉÉ'OžÌ¸”Kd¬…w„ Y0(½{÷öððX¼xñ¾}ûÜÝÝCBBúöí+ý›%XEvÅÃÃcýúõsçÎݳgÏŽ;ÜÝÝß|óÍýë_5jÔPzW`/ ÿyóÍ7ëׯߣG… ¦¥¥e|­={öôïß¿I“&Mš4ù׿þµk×.“âãã§NÚ¢E‹ZµjÕªU«eË–&L¸{÷nv7µ`Á‚,.1^:iÒ$??¿„„„´´4??¿€€€‘#Gúùù-]ºÔäYS§Nõóó›2eŠÒ#@oŽ4fÔ¨QK—.}öìY¹rå6oÞܳgÏ~øÁdµ3gÎôèÑãäɓϟ?OOOB †áÇ8pûöíƒÁÍÍ-::zÒ¤I ÆÏ]»vm¯^½6oÞœ?þ‡FEE}üñÇß}÷¼B|||DDļyónݺU¶lÙÒ¥K߸qcÑ¢EáááÙÝ”ùêÔ©Ó½{÷|ùò988tïÞ½K—.-Z´BlÚ´Éx5ƒÁ°nÝ:!D›6m”+zCp 1G Ú¿ÿæÍ›92bć)S¦\¸pÁxµÑ£GרQcÑ¢E{÷î-[¶¬âÏ?ÿ\½zµ§§çŠ+víÚµiÓ¦í۷׬YóèÑ£3fÌ0~îªU«BBB8 ½Ä°aÃgÏž#¯põêÕ¦M›îÝ»wõêÕkÖ¬Ù³gOݺuoÞ¼¹mÛ¶lmÊ|M›69rdÁ‚GŽ9tèÐÀÀÀ"EŠ>|8>>^^íÈ‘#7oÞ¬^½zÅŠ•+zCp 1žžžßÿ}‘"E„NNN|ðADDDzzúìÙ³W+T¨Ð‚ 4hàáá!µLŸ>]1~üø€€©ÅÛÛ{ÆŒùòå[±bÅ;wäç–,Yò»ï¾suuB8;;øá‡BˆY³fI+¤¦¦2¤P¡BR‹««k«V­„×®]3îÆ+7•NNNo¿ývzzú–-[䯵k× !”(:Dp 1íÛ·Ï—/ŸqK·n݄ǎ3nlݺuþüùåïÝ»w÷î]ooï&Mš¯æéé”––væÌ¹±cÇŽÎÎÎ_âÔ©SÒŸ}öÙܹs+T¨ ¯÷×_eìí+7•CÍ›7F³Õ©©©6lpvvnÙ²¥ Ç€½âv<4ÆÇÇǤ¥téÒùòå»sç΋/òæÍ+5JÓÓ²«W¯ !Ê—/ŸqƒåÊ•ÿ¬úúúfúqqqOŸ>•ªŒ7oÞܵk×áÇoܸqýúu“S³µ©œ¨W¯^Ñ¢E<˜àîî¾k×®‡6mÚ´hÑ¢6 ö‡Š#qppÈØâä䔞žn|ƒivXf0^¶A'''!DJJÊ+_ÂÑÑ1Ož|¸téÒMš4ùàƒ*Uª”––¶víÚC‡™¿©ì1bÄøñã/]ºôìÙ3¹±víÚÅ‹‹‹£ÜÀ¦²¸ÒTeèСkÖ¬™7o^PPÒ}Q—ôôôÛ·ooÛ¶­T©RJw€nqŽ#hÞ¾}ûnݺU·n]R#›"8€¶%''O›6MѾ}{¥û@ç8Ç4¬nݺϞ={ñâEÅŠ¥– ¶Cp -Z´¨\¹rÆâgϼ½½¯_¿Þ¤I“/¿üÒä°:.Ž€Y8Çf!8À,G˜…à³`–ÿÏ ÷CXäIEND®B`‚statistics-release-1.6.3/docs/assets/ncx2pdf_101.png000066400000000000000000001047701456127120000222250ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A€IDATxÚíÝy\õÿð÷r¨àÁ!ryB"‰h¢hˆ šG™'^¥©_3Ä,C-ÏL1²<+9 EMšg*¢%xá-"‚WŠB"0¿?×u˜e9öõ|ðø~avgæó™AöÕûó™Ã0P3¾â€àœ 8'ŽÀ ‚#p‚àœ 8ðàÊ•+²—†®ôêóçÏ寮]»–ïÆÄüñÿ÷ÿ÷ÿ—››«ÇÍΞ=›=n 0Ú¦Ö®]˾³]»v†>nâµpáBö(õîÝ[Ó{ÿ](ª]»vÛ¶mÇwûöíJßoaaáààðöÛoÏž=[õ·KÓ.MŸ>ï£ \Ž<ûí·ßNž<Éw+Œ-44´ÿþýû÷¿xñ"ßm¡{úôiJJÊúõëß|óÍ?ÿü³â7—––>zôèÔ©S ,ðôôLNNæ»ù’bÁwLÃ0aaa'NœÉd|·ª¢víÚMš4!"¾Û"NNNVVVDôâÅ‹{÷î•••ѳgÏÆwùòåš5kjzÿ³gÏä…Æ'OžgddT¯^½‚](±³³ã»÷Â…Š#ÿ’““ãââønTÑСC³²²²²²víÚÅw[¤cÓ¦MìQ½}ûv~~þèÑ£Ùå7oÞxð`Ê”);w¶±±iÒ¤IïÞ½÷îÝ«ºëû÷ïO™2¥S§Nµk×~ã7 ”’’R…ý~ùå—2™ìéÓ§ìÝ»w—ÉdÏž=SÚBIIÉW_}Õ Aƒ¯¾úŠ}gYYÙæÍ›7n\£FÆDEE©öˆ ޽f=~üxÚ´imÛ¶­U«VëÖ­ýõWҵj5ÇñÅ‹kÖ¬ñóósuu­U«VË–-GŒqáÂÕwfddŒ=ÚÃãAƒC‡½xñ¢ê4AM1CCCU§ëq9€Ÿ.¿¬œœœ!C†8888;;8ðôéÓU8GrµjÕZµj•¥¥%ûãµk×*~Æ ùåù1ùæ›oØ_0ÐŒîòåËòƒo¾ù&ûÍܹsÙWÿûï?ù«kÖ¬‘¯uêÔ©7ÞxCõ_qÆ åo›5k»<  yóæJoVlÉÁƒU·9fÌÅ·>|ØÉÉIé=2™,<<\ÛýΘ1CuwOŸ>UÜBÿþý?üðCöûY³f±+†„„¨ý#6xð`Õ6ôïß¿‚ãϥ׊ݑŸ#¹eË–Éß¹fÍv¡¯¯oÅçý¿ÿþkß¾½ê~e2Ù?þ¨øÎ„„{{{Å÷ØÙÙõïߟý¾W¯^÷÷ƒ>`—öÙgò…Ú@ÕSÀå×€a˜Ó§O;;;+¾§víÚ}úôQj|Åÿ.:¤ôª««+ûÒŒ3¸¼ÿèÑ£òW÷ïßÏe¨*Ž<ûꫯlllˆhñâÅwîÜÑô¶¢¢¢7nQ5zöìÙ§Okkk"ºuëÖ!Cþý÷_¥UŽ=šššÚ¸qã·ß~»Fì­[·ÊË?Æ {ðàÙÚÚ4(00}iÆ ±±±ò·}ðÁ÷ïß'¢nݺ͙3'44ÔÌÌŒa˜eË–ýòË/Zí÷³Ï>ËÈÈ`[NDQQQŠ?²Îœ9¥¸$>>>>>žˆd2Y·nÝFŽéíí;´mÛ6µc—špìµbw®]»æîîîããcnnÎ.üòË/‹‹‹µ=× ,8uêYYYõë×oÒ¤Io¿ý61 3eÊy!íÙ³g|ðÁãljÈ¢C‡o¼ñÆ“'OvîÜ©í«|UOÇ_ƒâââÁƒÿóÏ?òÆ7iÒäßÿ­  ËE^^»k"òððಊ¿¿µjÕØïÙúCpà™££ãìÙ³‰¨°°Pm5ŽyóæM"ªS§Î±cÇöïß¿gÏžääd"ú矾ùæÕµ~øá‡›7o&''Ÿ;wNžáäÁqñâÅìe7NOOg„|‚×úõë•Þ6xðàÇýõ׿ýöÛÊ•+ÙWçΫÕ~ëÖ­ûÆo˜™•ÿñ©_¿þo¼¡taÐíÛ·½¼¼bcc“““ÙÉjû÷ïg_ ?|øpTTÔ¥K—Ú¶mË.<{ö,÷α׊V®\yãÆ””y–zþüyjjª¶ç:!!ýfæÌ™;wîüþûï“““{ôèAD%%%‡’ïŽ IuêÔùûï¿“’’222tœx§íT= 6lØMDµk×þ믿’’’²²²ÂªÜò’’’k×® >¼´´”]Òºuk.+Êd2yá“ ²JØiJ¦NªËq<GþMš4©iÓ¦D´iÓ&M·æÙ³gûÍäÉ“åséZ¶l®ô9ooï‰'²ß¿ùæ›]ºta¿g?׉èÀì7Ÿ}ö@ÙÆ´nݺuëÖÏŸ?g?ªå™cìØ±ò5Š-¿åää(ÝR§ÒýVÊÚÚúÏ?ÿ6lØÛo¿íîîNDC† ‰2e ûž‚‚ù¬P¶8ÇÇ^Ë5oÞ|òäÉì÷ýúõ³°(¿Ezzº¶'º¨¨ˆý&&&æ—_~aÓaLLÌåË—/_¾|XÁŽªpJy!P®¸¸øË/¿üþûïKJJØ%VVVŽŽŽìTEî8öZ‘b¯ZwäæÎ[PP°aÆçÏŸÃ0)))))) .ìÒ¥ËöíÛëÕ«§ØB¥KL”’œV´=€J§€ã¯ÁÓ§OåTj|Æ µj°bª³°°ðòòêÔ©Ó”)Sä3¸P«^ÓCD›6m ªò!0MªŠåË—³Eu6[:uØ hˆèÞ½{Š/ɬV­Z½zõ¸ï®víÚòKRä…UuêÔ©]»6ûýÁƒ3Ô Õï¡P g .\¶lYII‰»»ûO?ýtáÂ…‚‚‚¾}ûj»e޽6KKËU«VåæænÙ²eذaŠ7š>~ü8{ëœ:uêÔªU‹](¿„¥mJÖå*Ž¿VVVòëQ”Z+OÃ)Þd1==ýÿþïÿ¾øâ ­Rã_ý%¿€IíÅìPŽBѪU«1cƆ‰üžžžì7T\.ÿÑÃÃC>ýŽ ™L&SVœXùÏ?ÿtìØ±cÇŽìà2;ÿ’ˆJJJÞP`gggkkkkk«öñúõÓO?±ßüøãŸ|òI«V­,,,”ž\¬ß^WÙÈ‘#ÿy{ÕËóçÏïß¿ÿþýçÏŸ‡„„ÄÆÆ>xðàÏ?ÿ”gšcÇŽ±ßȸâ¹.++Sà wyyyŠËU#¦î˯¹¹¹››û6ù\R"b^¿9ŽqȵkÖ¬©8-tà óçÏW;‹ˆä·Áûþûïå·\¾|ùrdd$û½â”2ŽºvíÊ~óÝwßÉÓêòåË““““““«W¯ÎV@»wïξ´nÝ:æå¯·oß^·n]öf+Uî2—›Úüûï¿òÑpyB:{ö¬VwáѶ×Ufeeåô:öÔÔTggggggö¶JÝ»wÿøãÙåCçï¾û.ûÍÊ•+å3/çÏŸ/Ÿ)'ÿ=yò¤|ráï¿ÿ®”Òôr9þøúú²/)þ¢~óÍ7W¯^Õå¨jåŸþ7nܶmÛØGŒ!/—€Ž0Ç@@gÍšõù矫¾ôùçŸÿúë¯ÙÙÙùùù~~~AAAæææ‡b‰áââÂÞÓG+³gÏŽŽŽ.((ÈÊÊjݺuPPÐýû÷>̾úé§Ÿ²ß|ùå—6l`ï#Ø­[·®]»^¹rE~•kxxx®'°µµeçÌÍŸ?ÿÊ•+S¦L‘?DU­Zµjժžÿã?Ž‹‹“Édû÷ï¯Ú3c8öZïZµjåäätÿþý’’??¿÷Þ{ÏÞÞþæÍ›òÊŸt2mÚ´U«VåçççååuìØñí·ß~ðàÚÇ¥Èï§STTäãããããóðáCùuTú=€ ¦OŸþÛo¿1 #o|nnn¥ÏzÑÝÈ‘#ÙIÏž=SœÎQ¯^½ùóçzï¦Ga™2eŠÚÇÃXYYÅÇdz7F)**úã?þïÿþM7Ž×Tª¬€££ãÆÙÙ“÷ïßÿí·ßäù)""B>ÎÎÎ.**Š­‡=ztîܹ۶mcï,3~üø9sæT¡›ò²_RRÒôéÓ+®;Êd2y®°°p×®]ÿ÷ÿW¿~}ù»•æ}ê¥×zgff¶sçNvXÿŸþÙ°aÃ’%KâããÙÈÿƒÁÎÎ.66–éøüùócÇŽ]»v­FòûõȵiÓFþ˜Â¿ÿþ;--ÍÝÝ]^ÔãäøkðÖ[oÉ9S\\|üøñk×®Õ¬YówÞ1Ðeݽ{—j©Ø{{û]»v©^kU†à ,ÕªU“>+iß¾ýÅ‹gÏžääääààЭ[·™3g^ºtÉÏϯj»0`À¥K—þ÷¿ÿµk×®V­ZMš4yï½÷Ž;¶páBÅ·õíÛ÷Â… cÆŒiÓ¦µµµ»»û€W¯^]µ«Œ—/_>lØ0GGÇš5kz{{W::¼|ùò–-[‘™™Ù[o½5uêÔsçÎõë×}5..N>P«Ç^ë]‡222fϞݮ];WWWKKK;;;??¿ 69r¤zõêòw¾÷Þ{ÿý÷ðáÃÝÜÜêׯzìØ1µ7¾ŽŽŽ^¸paË–-kÖ¬éãã3yòdùmáõ~9þüüóÏò­££ãûï¿èÐ!ƒ[9sss{{ûöíÛÏž=;--­C‡ÆÙ/€‰É§ªÙ‹/þøãRÒ55 .dŸ%Ý«W¯}ûöi»º‘à™3gþ÷¿ÿU¡‚…9Ž –––&õÂÈÐ××W~¡ H†ª€GàÁ8ÁÅ1À *ŽÀ ‚#p‚àœ 8'ŽÀ ‚#p‚àœ 8'ŽÀ ‚#p‚àœ 8'ŽÀ ‚#p‚àœ 8'ŽÀ ‚#p‚àœXðÝ òôôä» `Xiii|7Žaš¿LBæé鉓"48)„ó"@8)d²E" U'ŽÀ ‚#p‚àœ 8'Ž`öïßÏw@NŠ0á¼N ‚#p‚àœ 8'ŽÀ ‚#p‚àœ 8'ŽÀ‰ß .OOO¾›Æ––ÆwÄÁ "ˆ’‡ÿ<àCÕÀ ‚#p‚àœ 8'ŽÀ ‚#p‚àœ 8'ŽÀ‰©<9fëÖ­ñññÖÖÖ]»v>}º]ïÏËË[±bÅ™3gnß¾]¯^=ooïI“&¹»»óÝÞ˜DÅqùòå³fͺqãF»víjÕªµ}ûöqãÆizAAÁ{ï½GDuëÖÝ»woß¾}/_¾ÌewiׯóÝc€rgÏž•Éd[¶la\°`ƒƒCË–-ylRYY™‡‡G£F-ZÄ÷áíH?8¦¥¥­[·ÎÉÉiÿþýëÖ­;pàÀÈ‘#/^¼¸téRM«üðù¹¹ãÇÿã?–/_¾yóæE‹•””,X°€Ë=›5#™Œï~(»zõêìÙ³›7o¡— ^¼xqÈ!ÎÎεjÕòõõ]¾|yIII¥kåååµnÝÚÙÙ9""bÓ¦Mí²¿¿ÿܹs º “"ýà_VVæèèÈ.™1c†Í¾}ûÊÊÊÔ®’””deeõÉ'ŸÈ— 8ÐÙÙùÊ•+¥¥¥|w Š222ˆhΜ9¡¡¡ºo-333 `ÿþý½zõ ¯V­Zxxxppp¥+ÚÛÛoݺõäÉ“={öŒŒŒ4\Ï;÷÷ßnû&HúÁñôéÓfffò%æææþþþ=JIIQ»Š­­m·nÝjÔ¨¡¸°zõêÅÅÅÅÅÅœöÊ0(:€Ð0 CDJpUžŸŸèС7Λ7ïĉ£GÞ¹s縬.“ɦNzáÂ…£Gê·›%%%œ3gNÏž=5‰ j$†ÉÈȰ·····W\Þ¬Y3"ºuë–Úµbcc—-[¦¸äôéÓ999­[·¶²²â»O9vìX=ìíí½¼¼¦OŸ./yŒ5ªÿþDäçççææ¦ûŽŽ9âïïß®];ù’‰'QRRÇ-°ãÚëׯ×ïxôèQÏž=çΛ››«ß-ƒÄ¯ª.,,,--µµµUZnccCD?®xõsçÎmß¾=++ëܹs5Z¼x1ÇýzzzR³fi2™g³fì’ýû÷ó}0LÚíÛ·ùn(ÃI&œ±ûý÷ßCBBêÖ­jff»k×.ö¥iÓ¦5jÔhÞ¼yK—.UL{USRRòé§Ÿúúú*.ÌÎÎ&¢êÕ«sÜHTTíØ±#??ŸýhÖ '''¶¶š––öæ›orY%++«‚W{õꥯ¶‰Äƒ#{étÍš5•–תU‹ˆòóó+^=--mÛ¶mì/_‹-ªU«Æq¿iiiDD2Yù7 zùÏkÐ/œaÂy¯çÏŸ‡‡‡;::ž>}º~ýúD!ÏvÞÞÞ7nÜ ¢:tîÜYÇ}YXX(]ýøñãE‹™››<˜ËòòòvíÚ5jÔ¨¨¨¨øøø±cÇòxè*þµWý4÷ôôä±µ<’xp´µµ•Éd………JËŸ>}J/ëŽøàƒ† òðáÃÝ»w/]º4%%eÏž=lèä„éÈ0|Ð7~'²kødIIIÉÎÎŽŒŒdS#¹¸¸Lž3fŒ¥¥%ûžgÏž=xðÀÒÒ²AƒNNNžžžýõב#GäÿåtíÚµM›6ÕªUK÷ËÐ ¤M›6îîîË–-:t¨‹‹ åææ®\¹’˺ڎ3 óùçŸ7lØ0&&ÆÜÜ\«v2 ãíííååÅ. ™0aÂáÇ{ôè¡cÃÀ ¤]]]§OŸ¾xñâ÷ß¿K—.ÙÙÙÉÉÉ-Z´Pœ„›˜˜8uêT?þøƒˆ,X0tèÐO>ùÄÇǧAƒ<8sæ -Y²ÄÁÁ¡*@Ñ ÏÒÒréÒ¥!!!>>>C† ±´´Ü²e Ç{²#ÂÜ÷•ššzíÚµæÍ›3Fé¥öíÛ7..n„ £FRº52%$$äääÌ›7Oq•)S¦Œ?~èСóçÏ×¥a`PÒŽD4zôèzõêíܹsïÞ½...Ç «àâèV­ZíÙ³gåÊ•—/_NMMuvv~çw>ýôSŽ—‰ðeÀ€GŽ™7o^LLÌ“'Olllbcc¹<P[ìÓ SSSSSS•^jÚ´iß¾}‹‹‹óòòØûâ)‰ŽŽ&¢ù''§E‹-Y²äÂ… ÃÈðô5¡’!Åë§§§úÛ7¢èÈŸ¬¬,ÜšNhpR„ çE‰Æ?ébp÷îݺuër¿·ÞmذáòåË+V¬àûHT¢ gYÔ¿ºþUÕ¦ÉÕÕ•ÇÔøßÿ%$$´iÓ†ïÃú„àhDìLG””Ô¼yó¡C‡òÝÐ'“˜ãFÈw+@ÏPq4.@´€G£CÑÄ Á‘ÈŽ BŽÀ ‚#OPt±ApNùƒ¢#ˆ ‚#p‚àÈ+@<€G¾¡è†töìY™L¶eËöÇ 888´lÙ’Ç&•••yxx4jÔhÑ¢E|Ђ£ ;€Q\½zuöìÙÍ›7ˆˆÐË/^¼8dÈggçZµjùúú._¾¼¤¤¤ÒµòòòZ·níìì±iÓ&Cô´j ƒJYðÝ0’ŒŒ "š3gNPPî[ËÌÌ (--0`@£F:~ìØ±;vT¼¢½½ýÖ­[†éÝ»wddä°aÃôÛÍ*7 *…Š£0 è†Ç0 Õ¨QC/[ ÏÏÏ?tèÐÆçÍ›wâĉѣGïܹóÀ\V—ÉdS§N½páÂÑ£GõÛM@p”cÇŽõèÑÃÞÞÞËËkúôéÅÅÅìòQ£FõïߟˆüüüÜÜÜtßÑ‘#GüýýÛµk'_2qâD"JJJâ¸vøxýúõú=º7 4ÁPµ`°EG†á» b¿ÿþ{HHHݺuCCCÍÌÌbccwíÚž4mÚ´FÍ›7oéÒ¥Š¡ªjJJJ>ýôS___Å…ÙÙÙDT½zuŽ‰ŠŠ"¢;väççÛØØèåè¥a  ‚#€D<þ<<<ÜÑÑñôéÓõë×'¢ˆˆy„òöö¾qãuèСsçÎ:îËÂÂBéšèÇ/Z´ÈÜÜ|ðàÁ\¶——·k×®Q£FEEEÅÇÇ;V/A÷†A…EG‘ŸÓRÿI‘’’’ɦF"rqq™ëmllÍ4­çíí}æÌ™µk×^½z•{8KOOONN2d 4ÈÌÌŒïÈ{àb¨8 ¬ Jš6mJDgÏž /<þ<—u«0"¼{÷î#F„„„¬Y³¦N:Z5•‰lptvvö÷÷ŽŽž?¾jÌ5ràbŽѦMww÷eË– :ÔÅÅ…ˆrssW®\Ée]mG„†ùüóÏ6lcnn®U;†‰‰‰ñöööòòb—„„„L˜0áðáÃ=zôà±aP)GABÑ´gii¹téÒŸ!C†XZZnÙ²%77—˺ìˆ0÷}¥¦¦^»v­yóæcÆŒQziàÀ}ûö‹‹›0a¨Q£–-[¦ô†„„„œœœyóæ)®2eÊ”ñãÇ:tþüùm˜¡Ž¾i@pŽ9rdÞ¼y111Ož<±±±‰ ÖûŽØ§¦¦¦¦¦¦*½Ô´iÓ¾}ûçåå©®MD!!!ò%NNN‹-Z²dÉ… †‘é0ݿ҆éýP˜™V)¸ðôôLKKÓÆPtÔŸ¬¬,½<&ô'E˜p^”èíO:îÞ½[·n]ïz½aÆ˗/¯X±‚ï#Q‰*œeQÿbèWUH“««+©ñ¿ÿþKHHhÓ¦ ߇ô ÁQÀpk­¤¤¤æÍ›:”>aŽ#è_````` ß­=CÅQØPtÁ@p|üøñ¹¹¹ܰaƒލÉAp'@{ ÃQ5ô²µðððüüüC‡mܸqÞ¼y'Nœ=zôÎ;8Àeu™L6uêÔ .=zT¿ÝüòË/SRR–-[¶pá”””FÍ;WÏGÓ$!8в#¨sìØ±=zØÛÛ{yyMŸ>½¸¸˜]>jÔ¨þýû‘ŸŸŸ›››î;:r䈿¿»víäK&NœHDIII·ÀŽk¯_¿^Ýþüù•+WÞ{ï=vIÍš5»térûöí¢¢"=îÈ4YðÝЛßÿ=$$¤nݺ¡¡¡fff±±±»víb_š6mZ£FæÍ›·téRÅ´W5%%%Ÿ~ú©¯¯¯âÂììl"ª^½:ÇDEEÑŽ;òóóå9OGæææ.\pppPlê¥K—Zµjeee¥Ÿ£lÂÅŒ-:2 ßíAxþüyxx¸££ãéÓ§ëׯODòlçíí}ãÆ "êСCçÎuÜ—………Ò5Ñ?^´h‘¹¹ùàÁƒ¹l!//o×®]£FŠŠŠŠ;v¬^‚……E‹-Øï£££322öìÙsïÞ½ß~ûMŸÇÚT!8hMÆëd!FCÉ %%%;;;22’MDäââ2yòä3fTºÍ’’’={öhzµ_¿~¯~ôèÑqãÆedd¬^½ÚÃÃK/6oÞüüùó°°°ÌÌÌ7j Žº4lþüùìõ@=zôhܸq•6¼ÁQäPtà#È?¼×¯_'¢¶mÛ*.ôññá²î³gÏØÚö7''gâĉ»wïöðð8tèP·nÝ8¶6**ÊÓÓ³U«VÁÁÁ'N¼~ýz³fÍôØ0"JOO/,,LJJ3fL‡RSSõp M.Ž R©†š™qú¬·±±a4Ó´V\\œ··÷™3gÖ®]{õêUî©1===99yÈ!D4hÐ 333v¾£¾&gmmôí·ß>~üxçÎÆ9†Š£ø¡èDDÔ´iS":{öl@@€|áùó繬[…áÝ»w1"$$dÍš5uêÔѪ©lLdƒ£³³³¿¿ttôüùóUc®¶ Û³gOÿþýcccÙ³ìììH¨ubqAp”dG jÓ¦»»û²eˆêââBD¹¹¹+W®ä²®¶# Ã|þùç 6Œ‰‰177ת ÃÄÄÄx{{{yy±KBBB&L˜pøðá=zèØ°·ß~›ˆ~ýõ×yñ•Í©;v4Èq7%Žaii¹téÒŸ!C†XZZnÙ²%77—˺ìˆ0÷}¥¦¦^»v­yóæcÆŒQziàÀ}ûö‹‹›0a¨Q£–-[¦ô†„„„œœœyóæ)®2eÊ”ñãÇ:tþüùº4ÌÁÁaæÌ™sçÎm×®]Ïž=e2ÙŸþyêÔ©°°°V­Zå  OŽÒ‚ì””Ô¼yó¡C‡òÝÐ'Ìqý ä» g¨8JŠŽ`ŽÀ ‚£¡è€à(QÈŽ oŽÀ ‚£t¡èz%…Ûñlݺ5>>>##ÃÚÚºk×®Ó§O·³³«àýEEE[¶lÙ¶mÛíÛ·k׮ݬY³Ñ£GwîÜYñ=ƒ¾té’ÒŠÿý7ßÝà‡èƒãòåË׬YS³fÍvíÚeggoß¾====::ÚÊÊJíûKJJ>úè£óçÏÛØØtìØñ¿ÿþ;yòä_ý5yòäO?ýTþ¶œœ++«&Mš(®kkkËwwµ„X€þˆ;8¦¥¥­[·ÎÉÉiÛ¶mŽŽŽD´páÂèèè¥K—Ξ=[í*ñññçÏŸoÛ¶íÏ?ÿ̆ËôôôáÇÿøãݺukÞ¼9äçç÷îÝ[ø×0qÏqŒ/++ cS#͘1ÃÆÆfß¾}eeejWÙ¿?Íœ9S^’ôðð?~|ii©|:''‡ˆ”Êb…™Ž 'âާOŸ633 /177÷÷÷ôèQJJŠÚU²²²jÖ¬Ù¢E Å…DtëÖ-öÇììl"jܸ1ßýÓdGÐU3 “‘‘aooooo¯¸¼Y³fDtëÖ-___ÕµÖ®]ka¡Üë+W®QÆ ÙÙàxïÞ½‘#G¦¦¦Z[[{yy?þ­·Þâ»Ó¼qp,,,,--U½`ÅÆÆ†ˆ?~¬v-///¥%ÉÉÉëÖ­«^½zÿþýÙ%léqåÊ•nnn;v¼sçNBBBbbâœ9sBBB¸´ÍÓÓSi ;DΛÌL7™,+3“Ï6ðêöíÛ|7”á¤΋ôœ={Ö××wóæÍC† !¢ ¬X±ÂÅÅEõæ!FSVVæééùüùóO>ùäË/¿äûeeeUðj¯^½øn Pˆ88QÍš5•–תU‹ˆòóó+ÝBiié¦M›–,YRZZúÝwß988°ËïÝ»gee>räHvɉ'ÆÿÍ7ßøùù¹ººVºå´´4¾nnn|7݇×à¤΋„]½zuöìÙ~~~&LÐï–_¼xÑ¥K™L–””Té›óòòZ·nѨQ£aÆ®ËþþþAAA_ýuÅo«ø×^õc]µBd"D<ÇÑÖÖV&“*-úô)½¬;VàäÉ“}ûö]¸p¡ƒƒÃÏ?ÿܧOùK7n<þ¼<5Q§NFŒQTTtèÐ!¾û]U˜é`ò222ˆhΜ9¡¡¡úÝò¬Y³Nž<ÉñÍööö[·n=yòdÏž=### ×ßsçÎáÌú%âàhaaacc£ZY,(( "ùuÖªŠ‹‹.\øá‡Þ½{wÒ¤IûöíëÔ©S¥»kß¾=]¿~ï~ëÙÀ´1 CD5jÔÐïfÿüóÏÈÈHÕK*&“ɦNzáÂ…£Gê·=%%%œ3gNÏž=5ÝeªFÄÁ‘ˆœœœ=zÄ&E9vš‚“““ÚUÊÊʦM›tðàÁ‰'*Ý*œa˜ÒÒRÕß3sss"ª]»6ߨȱcÇzôèaooïåå5}úôââbvù¨Q£ØÙü~~~zœpÿþý#FŒ3¦AƒÚ®[RRBDëׯ×ïxôèQÏž=çΛ››«ß-ƒ¸ƒcPPPiiéñãÇåK†ILL´³³óññQ»JLLÌÁƒ‡úã?ª­Jfgg{yy}øá‡JËÏ;G˜Ó€¢#€¤ýþûïݺu»xñbhhhPPPllìG}ľ4mÚ´¯¾úŠˆ–.]¥—Ý1 3räH;;»ª=2ƒmÆŽ;¸\™À““Ã0 Ã\»vM›{p 633[µj;¯‘ˆÖ­[÷ðáÃAƒYZZ²Kž={–••Å^'È0LlllíÚµ¿øâ MÛlÒ¤IÛ¶mO:µuëVùÂsçÎýòË/®®®={öä»Óê=þ<<<ÜÑÑ1%%åÇüá‡RRRä‘ÞÞÞmÚ´!¢:øûûëe‘‘‘‰‰‰qqqÖÖÖÚ®›——·k×®Q£F=þ<>>žïƒœˆøªj"ruu>}úâÅ‹ßÿý.]ºdgg'''·hÑbìØ±ò÷$&&N:ÕÃÃã?þÈÍÍeB­ö® >œˆ¾úê«?þxÖ¬YqqqîîîwîÜ9þ¼µµõ¢E‹4=[Lðk½àqüFß𔔔ìììÈÈÈúõë³K\\\&Ož|xXX{GUlݱ¨¨èòå˪¯Ê/‘yóÍ7wìØñÝwß%%%¥§§7lذÿþ“'Ovqqá»»z‚ì ;áýe¯àlÛ¶­âBMs·”<{öL~?c5}UùÈ((( íÑ£ÇäÉ“«ÖÚ¨¨(OOÏV­ZOœ8ñúõëì#Ü£G%@ÎÒÒréÒ¥<ðññ™2eÊgŸ}Ö¦MŽ÷2dG„5©BcâââìììÂÃÃU_JHHÈÉÉ ‘/8p ¥¥åøñãgÏžmè†.Mnë - 8räHË–-cbb¾ûî»ÿý766–—–çå婾MDŠÁÑÉÉiÑ¢EOŸ>½páâ ÉpzôÎÓÓ“ã%8‚`£ÕYYYz|LèNŠ0á¼(ÙŸô×ݽ{·nݺիWç«6l¸|ùrÕî nLU8Ë¢þÅÐ*Ž&EG‰ruuå15þ÷ß ì-ÇA2Ùô/))©yóæC‡å»! O¸ªô/00000ïV€ž¡âD„¢#TÁ8Ap„—Pt€ !8‚dGÐ Á8Ap„סè 8‚ dGPÁ8ApuPtŽÀ ‚#h€¢#¼Á4Cv¿³gÏÊd²-[¶°?.X°ÀÁÁ¡eË–<6©¬¬ÌÃãQ£F‹-âûð€vLÅÕ«WgϞݼyóˆˆýnùÅ‹:tèØ±#—7çååµnÝÚÙÙ9""bÓ¦M†èéÅ‹‡ âìì\«V-__ßåË——””bG¦Á*„¢#€„dddÑœ9sBCCõ»åY³fýôS___Å…ÙÙÙDT½zu½ì”!8HÄóçÏÃÃÃOŸ>]¿~}"ŠˆˆG(ooï7nQ‡:w=FFF&&&&''[[[k»n^^Þ®]»F?vìX½4ÉÂÂBébíÇ/Z´ÈÜÜ|ðàÁzÙ…)CpnPtPÀïÔoM‹SRR²³³###ÙÔHD...“'Ož1cF¥Û,))Ù³g¦Wûõ맺ðÔ©S³fÍŠŒŒlݺuz±yóæçÏŸ‡……effnܸQSp¬BÃ=ztܸq«W¯öðð¨B;A‚#p†ìð’0ÿ^¿~ˆÚ¶m«¸ÐÇLJ˺Ϟ=cg@ªï¯Êÿ‚‚‚ÐÐÐ=zLž<¹j­ŠŠòôôlÕªUppðĉ¯_¿Þ¬Y3Ý&—““3qâÄÝ»w{xx:t¨[·nº_ÀÅ1’Á^×,{ýVffœ>ëmllÍTß¿víÚÌÌÌ7ß|sÉ’%‹/^¼xq~~þ;w/^WéîÒÓÓ“““‡ BDƒ 233cç;êÞ0V\\œ··÷™3gÖ®]{õêU¤F}AÅ´¢#€€5mÚ”ˆÎž= _xþüy.ëj;"Ì^¬½lÙ2Å…Ož<™1cF@@@¥÷‰dc"ýýý£££çÏŸ¯s«0T½{÷î#F„„„¬Y³¦N::Ú¦ Á´„ì TmÚ´qww_¶lÙСC]\\ˆ(77wåÊ•\ÖÕvDxæÌ™3gÎT\âæææììÌå–7 ÃÄÄÄx{{{yy±KBBB&L˜pøðá=zèØ0†a>ÿüó† ÆÄĘ››ô€› UH„¥¥åÒ¥Kû¬M›6¹¹¹\Ö­ÚˆpâââìììÂÃÃU_JHHÈÉÉ ‘/8p ¥¥åøñãgÏž­cÃRSS¯]»fee5f̘Q¯Û½{7gGPqí¡è T 8räȼyóbbbž•¨ÂYõ/†.0T M®®®<¦Æÿþû/!!¡M›6|Ð'G¨*vÀ@¤¤¤æÍ›:”>aŽ#è“@ƒÀÀÀÀÀ@¾[z†Š#p‚àºÁ€5€É@p!;˜GàÁôEG€àœ 8‚ž è uŽ ?ÈŽ’†àœ 8‚^¡è ]Ž oÈŽ…à egÏž•Éd[¶la\°`ƒƒCË–-ylRYY™‡‡G£F-ZÄ÷áí 8‚ è HW¯^={vóæÍ#""ô»å/^tèСcÇŽ\Þœ——׺ukgg爈ˆM›6¢§ ŽŽŽuëÖõóóÛ±c‡!öb‚Á0„'##ƒˆæÌ™ªß-Ïš5ëäÉ“ßloo¿uëÖ“'OöìÙ322RïÝÜ»wo·nÝrrr†>~üøÜÜÜnذAï;2Aަ‚a"ªQ£†~7ûçŸFFFZXXhµ–L&›:uê… Ž=ªßö|ùå—ÎÎÎ)))Ë–-[¸paJJJ£FæÎ«ß½˜&G0øpìØ±=zØÛÛ{yyMŸ>½¸¸˜]>jÔ¨þýû‘ŸŸŸ›››¾vwÿþý#FŒ3¦AƒÚ®[RRBDëׯ×c÷Ÿ?~åÊ•÷Þ{ÏÆÆ†]R³fÍ.]ºÜ¾}»¨¨H;2MÚýÇ€vØìÈ0|·ÀTüþûï!!!uëÖ 533‹ÝµkûÒ´iÓ5j4oÞ¼¥K—¶k×N/»cfäÈ‘vvv+V¬hÑ¢…¶«GEEÑŽ;òóóå9OGæææ.\ppp/)))¹téR«V­¬¬¬ô² S†à ÏŸ?wtt<}útýúõ‰(""Â××—}ÕÛÛûÆDÔ¡C‡Î;ëe‘‘‘‰‰‰ÉÉÉÖÖÖÚ®›——·k×®Q£FEEEÅÇÇ;V/M²°°GØèè茌Œ={öÜ»wï·ß~ÓËöM‚#ŠŽ MüNÅQÿG5%%%;;;22’MDäââ2yòä3fTºÅ’’’={öhzµ_¿~ª O:5kÖ¬ÈÈÈÖ­[W¡›7o~þüyXXXffæÆ5Ç*4Lnþüùìõ@=zôhܸq JÁð@‚„ø7íúõëDÔ¶m[Å…>>>\Ö}öì;R}oUþ†„††öèÑcòäÉUkmTT”§§g«V­‚ƒƒ'NœxýúõfÍšéÞ0Eééé………IIIcÆŒéСCjjª£££N‡Øäáâ0 \(`xìuͲ×ÿÞš™qú¬·±±a4S}ÿÚµk333ß|óÍ%K–,^¼xñâÅùùùwîÜY¼xq\\\¥»KOOONN2d 4ÈÌÌŒï¨{ÔX[[}ûí·?Þ¹s§ñOŠÄ â M›6%¢³gÏÈž?žËºÚ޳k/[¶Lqá“'Of̘Pé}"Ù˜ÈGgggÿèèèùóç«Æ\m¶gÏžþýûÇÆÆ²gÙÙÙQeåIàÁŒÖÖ¦Mww÷eË– :ÔÅÅ…ˆrssW®\Ée]mG„gΜ9sæLÅ%nnnÎÎÎIII•î‹a˜˜˜ooo///vIHHÈ„ >Ü£GööÛoѯ¿þ"/¾²9•ãƒm ª#€5€!YZZ.]ºôÁƒ>>>S¦Lùì³ÏÚ´i“››Ëe]G„UÅÅÅÙÙÙ…‡‡«¾”““"_2pà@KKËñãÇÏž=[dž988Ìœ9óÀíÚµ›9sæ¬Y³Þ~ûíß~û-,,¬U«V<ži@pŽ9r¤eË–111ß}÷Ý¿ÿþËKKŠ‹‹óòòÔÞs;::šˆƒ£““Ó¢E‹ž>}záÂÝ”¿þú먨(ssóÕ«W¯Y³¦Zµj›7o^¾|9/ÇAbdï×;OOÏ´´4¾[!`| Xgeeéñ1  8)„ó¢DÔÒïÞ½[·nÝêÕ«óÕ€ 6\¾|yÅŠ|‰JTá,‹úC¨8‚ÑaÀÀ(\]]yLÿý÷_BBB›6mø>  OŽ IIIÍ›7:t(ß }ÂUÕÀ\a u|·ô Gà ¬ÄÁ81•¡ê­[·ÆÇÇgddX[[wíÚuúôéìMä5)**Ú²e˶mÛnß¾]»vífÍš=ºsçÎ|÷CZ0` *&—/_¾fÍšš5k¶k×.;;{ûöíéééÑÑÑVVVjß_RRòÑG?ÞÆÆ¦cÇŽÿý÷ßÉ“'ÿúë¯É“'úé§|÷FZÄCúCÕiiiëÖ­srrÚ¿ÿºuë80räÈ‹/.]ºTÓ*ñññçÏŸoÛ¶mbbâêÕ«ýõ×;vØÚÚþøã©©©|w€ÒŽñññeeeaaaŽŽŽì’3fØØØìÛ·¯¬¬Lí*û÷ï'¢™3gÊK’ãÇ/--ýûï¿ùîäà*‘~p<}ú´™™Y@@€|‰¹¹¹¿¿ÿ£GRRRÔ®’••U³fÍ-Z(.ôðð ¢[·nñÝ!)Bv‰Ïqd&##ÃÞÞÞÞÞ^qy³f͈èÖ­[¾¾¾ªk­]»ÖÂBùÈ\¹r…ˆ6lÈwŸ$ “OâÁ±°°°´´ÔÖÖVi¹ =~üXíZ^^^JK’““×­[W½zõþýûsÙ¯§§§Òvø*àF”••e ß¾}›ïþ2œaÂyQ¥ú'¤§â ^½zñÝ@¡xp,**"¢š5k*-¯U«åççWº…ÒÒÒM›6-Y²¤´´ô»ï¾sppà²_Ó|ð¹®ÆÍEG777¾{ÊpR„ çE‘þžgeeá¤ðKõ×ÀdÿsBâÁÑÖÖV&“*-úô)½¬;VàäÉ“sçνqㆋ‹Ë7ß|Ó©S'¾;$u°0‰G ÕÊbAAɯ³VU\\S£FI“&}üñÇšnú`"$‰ÈÉÉ)##£   N:ò…ìT'''µ«”••M›6íàÁƒÝ»wÿúë¯+È— (:•ôoÇTZZzüøqù†aíìì|||Ô®sðàÁ¡C‡þøãH<ÀÝyIúÁ188ØÌÌlÕªUì¼F"Z·nÝÇ diiÉ.yöìYVV{-!Ã0±±±µk×þâ‹/øn» CvéU»ººNŸ>}ñâÅï¿ÿ~—.]²³³“““[´h1vìXù{§NêááñÇäæææääXYY 6Luk >|8ß}àôƒ#=º^½z;wîÜ»w¯‹‹ËðáÃÃÂÂØ;ò¨bëŽEEE—/_V}V&;ŒIG"êÛ·oß¾}5½Ú§OŸ>}ú°ß·iÓFwí"dGa‘þGÐ G6\% Ž xȎ€àb€ì ŽÀ ‚#ˆŠŽ|Cpñ@và‚#p‚ࢂ¢#Alx‚à"„ìÀGàÁÄ EG£CpÑBv0.G3dG#BpN,øn€]O».#å2C ßí’(¶èÈàð*Žú×̳CŒÒ—ŒdñÝj1À5€Q âh$•VQ¤Ô ꎆ‡à(ª1Q)J"G¿…K))"GVEGCp r$Bd9dGC2ÞÅ1ß}÷]FFßý•MWÞðÝ.¾áBƒ1^p\·nÝ»ï¾;hР˜˜˜ÇóÝqIQ"ùnHñ‚ãÿþ÷¿úõë_¾|yÁ‚]ºtùä“O8P\\Ì÷$H ÄxsÃÃçNš’’²{÷î}ûö9räÈ‘#uêÔy÷Ýwû÷ïߺuk¾…ÔÈ'>ʳ£ M…ÄdG0ê Àe2YÛ¶mçÌ™ó÷߯^½ºOŸ>ÅÅÅqqqC† yçw~úé§;wîð}@$ÈDk¨;è?Oޱ°°èÖ­ÛòåË“’’fΜiee•½råÊ   #Fìܹ³´´”ï##A&— ‘ôŠ·Ûñ}ú´mÛ–ˆNœ8±|ùòË—/õÕWëׯçûøHœô$&;èñ‚cllìΜ9SVVFDööö={öìÝ»·¯¯¯¹¹¹üm~~~mÛ¶mß¾ýéÓ§ù>8&D)AJ*>²Ù13“ïvˆžñ‚ãüùó‰ÈÖÖöwÞéÝ»÷Ûo¿­˜YYYÕ¨QãÔ¼`#£Ô ㆺ#€ÎŒ Ô§OŸŽ;jÊ‹ŠPnä—” PUÆ»ªzß¾}IIIšRã¤I“zöìÉ÷ÑeŠWaóÝdefâ k¯âXXXøâÅ M/åääà&Ž‚%‘ñk\( ÃÇÄÄÄO>ùDþctttll¬êÛÊÊʆiÔ¨ßG*"…ñkdG68š››×©S‡ýþÉ“'ÕªU³¶¶VûN[[Û3fð}4€Å¤øâ#²#@U68úùù%''³ß{zz~ðÁ|wôC"ã×À™ñæ8~üñǾ¾¾|÷ôL”ã×(:T‰ñ‚ãçŸÎwgÁ€D6~ì =ÇM›6Qûöí=<<ä?Vlذa|Љ˜â#²#€– çÍ›GDsçÎeƒ#ûcÅ¥A4ñÙ@ Ž“&M"¢–-[²?~öÙg|wŒJ4ñ¸1`pœ8q¢âcǎ廳À¡ÇG83ÞÅ1ª†9räÈíÛ·[µjåããÃ÷¡t|DvàÆ¨ÁñÈ‘#+W®ìÞ½;;Š=kÖ¬mÛ¶±/…††~ýõ×2=a„k×®•••ÑÕ«W·mÛfcc3tèÐ ÄÅÅ9r„ï£ÆÀÃ##™üæá‚ÀfGÐÌxÇõë×3 3sæÌÐÐP":xð -Z´(((èæÍ›½zõúí·ß‚‚‚ø> `$­>€Æ Ž×¯_wvv9r$ûãÉ“'«U«Ö¥K"jÒ¤Éo¼‘™™É÷ÑcV|Ä€5@…Œ7T——çààÀ~_RRrõêUooïjÕª±K¬­­>|È÷Ñ~hðÖš/8ºººÞ¾}»´´”ˆRRRþûï¿·ß~›}©¬¬ìöíÛõêÕãûhŸ„‘40^pl×®]^^Þ?üpçÎ~øˆüýýÙ—~ùå—Ç7mÚ”ï£üD|DvPÇxsÇ·{÷îÕ«W¯^½šˆZ¶lÉÞ»1$$äÂ… D4zôh¾ÿs1ß@…ñ*Žõë×ß²eK@@€³³³ŸŸßŠ+Ø»6>|ø°N:ß~ûm‡ø> ,‚¨>ÀKF½¸‡‡ÇÚµk•ÆÄĸ¸¸˜™/‚¸È«Æ.=¢èð:>9Ȫ_¿>ßM`Kdä‘kdGF Žûöí‹ŽŽ¾yó&£á“899™ïÂÅÏÄGdG€—Œ:Æ~onnÎwÇA¬xˆÈŽDdÌà¸aÃ"úè£&L˜`ccÃwÇAÜŒ‘Œ3224hðÅ_à:ÐþïÚ`JŒ”á^¼xñï¿ÿ6lØ©ôN~×ïwSg¤gfffcc“žž^VVÆw—AšŒqÇGdG0mF ŽæææcÆŒyøðáòåËùî2H–1nŽì&ÌxsûôésëÖ­uëÖ%''÷îÝ»AƒÕªUSzO@@ßDÏàq¡ ˜*ãÇ   ö›‹/^¼xQí{ÒÒÒø> †}Þ ²#˜$ãÇ÷ߟï΂ɑ_4“I™|·@ôŒ###ùî,˜¢òÒ£›¾G®QtÓÃóªóòò._¾|ïÞ=WW×Î;?|øÐÁÁA— nݺ5>>>##ÃÚÚºk×®Ó§O·³³ã²bfffïÞ½ãããßzë-¥—|éÒ%¥…ÿý·ñè.3+ÓÍÍMÏ‘ÀÄ58>zôhõêÕÛ¶m+**"¢?ü°sçÎ hѢŢE‹8¦=%Ë—/_³fMÍš5Ûµk—½}ûöôôôèèh++«J׉‰ÑôRNNŽ••U“&MÚÚÚópÞéâ#²#˜ãÇ/^L˜0áüùóNNN½zõÚ±c»ÜÑÑ1!!áƒ>عs'—´§(--mݺuNNNÛ¶mstt$¢… FGG/]ºtöìÙšÖ*((¸~ýúîÝ»7oÞ¬é ùùù½{÷^±b…ÑŽ|â£~â#²#˜ ã=ÇeíÚµçÏŸïÚµëþýû¿ýö[ùòøøø~ýúݼy3::ZÛmÆÇÇ—••………±©‘ˆf̘acc³oß¾ î4Þ·oßaÆiJD”““CDJåF=ßñ7wÓ`¼àxêÔ)ssóo¾ùÆÚÚZq¹¹¹ùW_}emm}àÀm·yúôi333Å»?š››ûûû?zô(%%EÓZ .üé§Ÿ~úé§N:©}Cvv65nÜØhx¡Ïøˆì&ÀxCÕ©©©nnnj¯ƒ©U«–»»ûÍ›7µÚ Ã0ööööööŠË›5kFD·nÝòõõU»¢ŸŸûMBB‚Ú7°ÁñÞ½{#GŽLMMµ¶¶öòò?~¼ê54 z›øˆ1k:ãG›gÏžizõÉ“'µk×Öjƒ………¥¥¥ª¬ØØØÑãÇ«ÜÔ[·nÑÊ•+ÝÜÜ:vìxç΄„„ÄÄÄ9sæ„„„pÙ‚§§§Ò’ýû÷ëñ`‚¶nß¾]ñ2)“½eOfVÕïøèF”••Åw_E£Ò“¼Ày œÞõêÕ‹ï&…ñ‚£——×.^¼ØªU+¥—RSSïܹӭ[7­6È^š]³fM¥åµjÕ"¢üüü*7õÞ½{VVVááá#GŽd—œ8qbüøñß|óŸŸŸ««k¥[À#pÈÍÍ­â7èᎠㆢ£6*=)À œÂIá—êǺj…ÈDoŽã!Cd2Ù´iÓ®\¹¢¸üÊ•+aaaDÔ¿­6hkk+“É •–?}ú”^Ö«fãÆçÏŸ—§F"êÔ©Óˆ#ŠŠŠ:d´#¼O|¬êú˜ì’e¼àعsç1cÆäää 8°wïÞDtèС÷Þ{oðàÁ7oÞ0`@Ïž=µÚ ………je±  €ˆä×YëKûöí‰èúõëF;bÀ#.šAv‰2ê À?ûì³¶mÛ.^¼833“ˆîܹCDõêÕ 0`@6èä䔑‘QPPP§NùBv’™““SÕÉ0LYY™L&33{-U›››‘¶1A¼äÍPF®q¡ H‘±9øäÉ“ÌÌÌââbww÷*'<" JKK;~üø»ï¾Ë.a&11ÑÎÎÎÇǧjÛÌÎÎîÙ³gûö핞+sîÜ92á9 &«ê×\#;€äo¨Z‘]Û¶m;vì¨Kj$¢àà`33³U«V±ó‰hݺu>4h¥¥%»äÙ³gYYYÜ/IkÒ¤IÛ¶mO:µuëVùÂsçÎýòË/®®®Úާƒ4h¹–UøEL%o(€8°â¸iÓ&mW6l˜Vïwuu>}úâÅ‹ßÿý.]ºdgg'''·hÑbìØ±ò÷$&&N:ÕÃÃã?þà¸Ù¯¾úêã?ž5kV\\œ»»û;wΟ?omm½hÑ"mŠ!Ó0ZÍ¥žXiݱ‚ìˆz%‰ƒã¼yó´]EÛàHD£G®W¯ÞÎ;÷îÝëââ2|øð°°0öŽùDñÇœœœ˜˜OOÏü±aÆòåwîÜ™8qâÕ«WwïÞ-à"#bÚ„0­¯¹Ö×µ2JÐ&ìèÈxǬ^½úÑ£G?üðƒbj$¢úõëÿý÷DtðàÁ‡ò}@ÀdȯMa^~iO×»…ëŽQøÂ7``Æ ŽçÎsuumܸ±êK 6d—nÜ œ>ò¢®w 7ôÁ"ÀÀŒwÇ'Ož”••1 #S÷ÙYPP`ggW¯^=¾H“›ûËéA†ùo®#×F»¹£âª4 ÊxGooï‚‚‚£Gª¾ô×_=yò¤E‹| "‘Œ²2³ôU_¬§‘kã?eHÐãÇ>}úÑ矾oß>Å!éƒ~öÙgò7èâ´U>rÍ×ìՎepf¼¡êAƒýõ×_{÷î «W¯ž»»»L&ËÌÌ|ðàõíÛwРA| 6ñ72[ùÈ5ï$”ïÙÀ™QŸUýÝwßuêÔiåÊ•¹¹¹¹¹¹ìB—I“& 0€ïC’ÀwdTTÉs®yÏŽ/[Y *cÔàhffžcÊ*äë¹2:tàÕ£h@ÒPqÁ3‚Ök#×"ª;*t€ãׇàÂ&•\¼6r-ÆìH¿8 Uƒ€™Rj”{5r-º1ë×»ñkéAÅÉäëU/³#1b¬;*tƒã×ÒàÂc’…FUå#׌ŒT6#.¿ G¤Æ×i|P¡) Åß„à!«Òä¼òñYfÅ1âÕ­¸_jT(R/㣹I 7&Át¢) V%ÀÉÊoEcˆöT½U‚ÁC2™Œ‘N|ÌÊÊr“¹ÉáÃUÕÀ•LF-7­·jMíÉÌÌdF¦߇V›îÉèµ»…‹ƒë¯ÄGÐH)Qª\gÄIšº š…[›d’ÉFB#×åý""L:GxÅHIñµ] "%¨öTÐQòev$É\4óªkD„ø \ަN1!; #5ª%ô(ùò¹2’ºhæUïˆñ@ˆMŸañU#D– *’Æ>’ Ù‘ä*×1­¤ƒD„ø ,Ž&Dtøu[jTKé0òÇžg-©Û=¾ÖG"B| GéP^,o4€âá5^1R!;’Än÷øZ7‰ñ€Ž’%¸¼XÞ,“øà7j1R%;’$G® ñ€ŽR#мXÞ8ý¼×TŒÔÛ9z=;’„G® ñ€OŽ!è¼XÞD|Ì.DªdG’ðÈ5!>ðÁQôØð!ܼXÞJ|º«¡ç©!;’TG® ñÀØÅJ%ÆWmŇzåô"ÕeG’öÈ5!>‚£øˆ£Äøª¹ø,ךÚÉõŒkÈŽ$í‘kB|0GÑS‰ôG~ºµ(C2ŒLókô2\U¾k¾û^ˆ†„à("+1¾Öt|xëÍ«É!ù1DšêŽr•Ž\‹8_">‚£ ‰82R£®4å6ŃZQRó˜õËíT2rÍñìU/y>ÿˆú†à(P⎌„Ô¨5ÕøÅåøU2’Cv$¯¹®`5™–ï7ÄGýApÑGFBjäJ1Wé~ÀTgC2 Siv$C^s­vs¯zíæ¦¯¾sm â#€nÌøn¼"“Éd2Ã0HR%{ý‹QøÒ#æ%ö7JFD²Êç+²#×2®3uhÞ˯̬,ö™Ê—a÷mØ}H*Ž‚ …*cyO•é·¬¨•×j®Êçënáª{’Uö=ìÕGí!8ò­2òÝ Ð3yô©-ÿ“Ɉa*½¯“î®´cƒäHÄGí!8òI:…ÆòþàXXyQÃLưßTvgPAÝ-¼‚©kã´àÈ©EF2õÔ(輨H¡ô¨þbÅ÷ õ9ׯÝHóKZoñ 2ŽÆ&ÁÈH¦›E“•¼~©uÅ R#×uåõu*F">TÁѨ¤9ÑôR£Xó¢"u·é© A j亢n)|_ʼnø ‚£‘H³Ðhb¤i¾Å£Ú)Ø‘kýSø^ë‰ø ‚£1H³ÐXÞ7“øX•l~¨ôÑ2j"ŠåÍVø^‹ÿÇGÑtÀ° Kâ…Fø@•ld”ãðhÒ ;ñ±’¾¼ü†k’1…ßN HÊ…F’xj”Ú¨tŸeÇ—ï}-AÊHFŒ˜J¯õEáûJB$F®ˆÁÑ@$^h”4ÍÚdÇ—k¼Jå#×bþ…ç4–ø&ÁQÿ®_¿.êOPN¤Xn4õ<ÀfG"­â#©Ô %ðË_ÉX6â#˜0GýkÖ¬ßM00É¥Fd€r ·¯ÒÚŒŒ­?¾ü‘ïþè|<¾W.C">€IBp“†Ï}5´¶~µ*1Ä”_s-¥IêÊ !>€ÉAp-I¥ÜˆÏúŠèIþ°¦ü–=’Oò§ë¼ö2€!8‚6$‘ñùΉnÙ‘ŸUXÙC±EJy ›!"bðë’fÆwŒGö2úâcùå2ºlƒ½ºìš%“½š ) ÌË/C2†ªç»M€Š#p&òr£È›Ï“ª^jýÚ6TžUXþøi _v¶œŒQ^ ¨87bŽ]2"w77Ñ6Ÿo £¯Ò£bõ‘ˆ233 Ò¬AÊÊëÜ’ê˜0G2ùØtfVßm9}dGRˆ¯o›‘l‚dÊã#$H†ªq–ÅÙjÓùr™W[bs”›ò³ ¥w/qy‡IáºÓz %H *ŽPæ/™([-zª;CLfV¦âÈõëû‘b²üòbdòoQƒ‘AÅ$÷B18]/—y“ÜÜägJ}vR؃ŽáJH¿ ÷ gTú/¤†¨Š#THT…;ÜjÇHÔ_.#ãö%¿q “••©ø#¥*þ’ÉØÝ2Z~ql›ËŠíR×Pa2•à¸uëÖàà`ŸÎ;GDD?WaW° nQ»â «ü»C‚A‘þPu|||YYYXX›‰hÆŒ666ûöí+++Ó´Vß¾}‡ †Ô(d˜Ñ¨ƒŠ¦j}\Ùì¨ïkŸÕÞñQs„p6÷ï ·¡á-Å!~ÅñôéÓfffò%æææþþþ»wïNIIñõõU»ÖÂ… Ÿ?ND±±±'Nœà» L ÉVh“†¾[êÓwé‘äw|¬¬ôø²®jÔ¨°6©näZíQƒã“xpd&##ÃÞÞÞÞÞ^qy³f͈èÖ­[š‚£ŸŸûMBBß0:a‡2 Os¦”N Ì 0lMÚŒ\+4Dà7ç&zu¯p¦’­àăcaaaii©­­­Òr"züø±öëéé©´dÿþý| ®ÜÈ-K¨èswsc¨mûnß¾ÍwÛÁÍÍ]þ}VVæë/åœffºÉdY™™\Þ«ÕIɤL"’¹Éˆ(3‹Óö‰(33“ ™ÜÆå¶¹¹ÉÃ`–æ^³/ÈÜÜÊÔí߯‰ücœÞõêÕ‹ï&…ăcQQÕ¬YSiy­Zµˆ(??ß@ûMKKã»ëU%#bÈÜøn‡¦¦¹U±mnU]QðÔAóÖ]†qã|‡pmOJyõÑM‹ê#‰ ©¹» ÜÜ*¹€éUòåQ­r?¥ûEÄpRø¥ú±®Z!2޶¶¶2™¬°°PiùÓ§OéeÝ^ê 5FâTr¢î 6åñe‡Ë¯¹gÇ—íbHX3 µì7)ýcP?“ Àp$-,,lllT+‹D$¿Î„L¨i–¢J†™òøjóÚ\7óz»x Ý&’ÇG¥f+çH$HÐ;éߎÇÉÉéÑ£GlR”cçð999ñÝ:!d@d£ŒOõ¦9"¡æÉ„zÝüË[öp¼kJëÅûøðv”ªÔsu7îÑx' †dê×Ð’ôƒcPPPiiéñãÇåK†ILL´³³óññá»uPÓN2çEE†¹Ëãk{Ð->’PnY•žWÕäH†d ɈdHP5ÒŽÁÁÁfff«V­bç5Ѻuë>|8hÐ KKKvɳgϲ²²Lú²5e4~ö´Ú;r‹ÃºôHú‹âKòXÈé}å_òI†>1 -ŸãHD®®®Ó§O_¼xñûï¿ß¥K—ìììäää-ZŒ;VþžÄÄÄ©S§zxxüñÇ|·L32šÀ$4Oy,߉ö7}T×R^…Íh{£ðRtòM‹€gÒŽD4zôèzõêíܹsïÞ½...Ç cïÈDÂJjBj‹ÑzL¦ÒiyÝÑXñ±ÊÙñe{Euveœ©lÍòµ™×îû#ì.€ÑÉ„þ§P„<==ÅtG!%5õ%++K`wA3cE½—Ãá¤èXzTiµx :ü÷HVV–û«;AýùC Žðþ‚Ø>ëõGúsA,„”` ÚKñ_ï¢;ÃOy,ßÎ_oµxf@êvµÂ5 û¥z¥6ß=~˜ÄP5h$Œ°fƒµ¦ÑKî´yÀŒ®»ÒÇÄG…†‹ç6U¼~mô*'*v#Ú¦Gà™Lâ•7¥#¼’•™i´Ò#é»úH"º ¤>náȨٌú{FòÝ[0,TM˜Êh‚A;GRåjëW{ÓkõñeÄp ÎÕGÕÍ(lIq‹˜ eŽÀ‰¦FÓ¾ê¥jŒuµõ«,>’À¯¡Ñk|$õ¿î<QÇ´àhªøNm|ïß@}" vË8ؘeÄÒ#&>’( zФ’ ™ŠÞB‘€à<\jDdÔã[—ïÓñ‘„œ õIã¶Úw§÷€ !8š$^ƒ›´R#"£¾}غ|·†‰$ü!lÄGâ” Uß«€áªj0* ¥F\+m0Fy¶µú=¿¼òÚ0Ýðm õqåµêö¸mWgˆ *ަ‡¿ì&•Ôˆ*£QðTz$"yvÔoéñe·<„͹ÉÜäßëi“܇¥1!@èPq#‘DjD•ѸPz4Põ‘|ȬÌ,ýVI]EQ›•P‰TM OñMü©UFþðqÅLùž 6ññõþ ò*l½Î}TÚªöF%@(ÁàDž€¿ak2n|$¡]Cc˜øHZa«®JUßèÁÑ”ð‘àÄœ…„=¾¶£ÄGfÒÀñ‘ªqi6€±!8‚‰65"2 ¯¥G2z|$A%HƒÅGÒg‚$„HƒBp4FqâLˆŒ‚Çw鑌I€C؆ŒTõIj·AËÐ;G0¦FDFQá»ôHÆ$´!lÇGÒi¤êfeH}Ap4 ÆÍqbKˆŒâ$€Ò#ñI ÒXñ‘ô™ !@Ž g¢JˆŒâ'€Ò#=>’ †° I?Cت#Œeh ÁÑ1ʉ-5Ч±Pa”‰øHÂÂ6J|$½ a“ÊP†àÁôFʈ˜¬¬L¾›FÇ–e2Ý·¤ŸæÃ~ÉH&#c·ŠyI&“ÉŒL"†HFFë7cØ}*mÞˆà*ŽÒe”@'ìÔˆ&O`¥ÇòFñ7~Müa·ú¨ºOìeH09ŽPuNˆŒ @H³_5Jñ‘xIüÅG2l¸Ã%5`0T-Q†ÏtÂNŒp[¼`G‰3lýª]ü ^—7àõ!lãb}ðZq·Œa˜#퀨8BU55¢Ðd鑸®>–·—ûøx ¹Ò=“Áÿj  RƒŠ#hMÀ©…F¨Œ¼ôˆê£™™™Æ.@øJ.;7|aeHT¥ÈÉN©…FÐ’ /š)ošªÄ×$H>¦?*TýDD ÁÄNQDA¨#×$˜øH¼$Hþâ#ñ– µC!8JŽ •Qh ¸ôH¼Þ9\McŒ< ’×øHÆ›©i‡J „s+á¥FÌh=ê¬ÇòÖñzçp5í1æUØüÍ}TÛãNùÄlH"T¥Å`áNH©…F0yé‘„8r]ÞFÁŒ_“‘‡°ù»øZ© FoEùNÜÜP†¡@Å*'°ÔˆB#ŒPo÷øZ…T}$cÞ ’׋¯5µÂ8 ÉÊÊDG R¾CAÄ|ÑÌ«6 ©úXÞ$£Õ ùžþ¨Ø ⡊ÙÀ'G¨„0Âß`jÄ0rM»zæU«Œs0â#‘ñ/£QÝ3á¢l0G¨ˆ`R£Z&HØ×\¿jæË ‚*@ÒËÈhؤ`â#ñ<eH0G©0@¸F^F+À”‰a亼¥Â¿&ã a àꥶð×”!Á°A=ä5aÔH4#×åäø5!Aò7fÌ¥9|´eHÐ?GI@ÊC—@úDIxH2Z‚F|$a%H^[’€àjðÚøÞ?@D2ññU{9~]Þ6ƒ&HÅGD‚$”!AGŽâ§ï”ÅkjÒßx€ ˆgâcy{É  RHÓ•E<ÿÉS[†ä¯9 Žð¾S#þ`xˆj亼ÉBþøª…JÂHjšÚ%€X‹±là Á©ÄI´ñ‘\€$ÃÝ Rxã×$”!ì šÃw‹@HEN¯q‹¿ì†Ô"'ÂøHb(@’n)˜BŸÚv ¦i(C‚xV5”ã)»ÉA:Äð¨k5­.o·€ž­¦‘†x"¶0~Í¥iînnk‘ð *Žb¦¿ÄÅ_jDdÉÛu3¯Î Ý„;~Mš)ÈñkŦeeeÉ^fG¾ˆ2¤©CÅø‚ÔÒ%/=Š­úHD™Y™òê£` dˆ¤RAM`!6eHS„Š#ð’àÁˆsâcyÛÅpMySõ[ƒêõך(Œ6âÎ>&ÁQ´ô½Œžà„úÇÀ@ÄI$Д·Í RHéLm…×FŒeK‚# `ª$I HÒo‚|’„› Õ6MH­ƒ*Ap'Q–‘Áä‰<>’¨ ¤.AR•C¤€/ Qj# :A ²u  GÓ…ÔÀ©ÄGI’^‹:•!?~­Ô.A¶eHqCp4QH<|$± Ë©û@¶ƯնT`Å%5¢„à(B"‹a"k.€QI(>’x åÍÖW‚d(SÛR7cÙ¢àhŠŒåÿã!‰øHâ,@’î R<HA‚$Œe ‚£ØèúŒ˜ñï@ÒŠ$¶$é+A 8‘©6VØíÅX¶!8‚! 5T•Tâ#‰¶I:&HQ I ’"…ÁÑ´%Ð!5èLrñ‘¤’ ‰{ˆU’Ä4BŒ ‘|BpÝ"R#€ÈH(>’˜‡°I—úˆ¤ §¶Ébhµxâ®T 8‚!5€´â#‰y»¼ÁUÈÛ¶ÚV ¸áË6GSaøL‡Ô`Hd² RðALm«EÒp„HBp‚R#€DH.>’ȇ°Ë»P…©â,@’È$!Dê‚#èHló$@Šñ‘Ä?„MU› )Î$‰rv¡¨fo ‚£H´ÜˆB#$Iä ’´È[OmÛEÕ|æ^aBpܺuk|||FF†µµu×®]§OŸngg§ã*ƒ¾té’ÒZÿý7ßÝÕR#€Ä)ÆGB‚"í²Åœ ÅÙ|ŒekGôÁqùòåkÖ¬©Y³f»ví²³³·oßžžžmee¥Ë*999VVVMš4Q\ÑÖÖ–ïî R#€ÈSˆä $ÅI\Ê ÌÜD×cqô"+'îà˜––¶nÝ:''§mÛ¶9::ÑÂ… £££—.]:{öì*¯RPPŸŸß»wï+VðÝE"ªzH3X¸Cj*‰Ž_—wNü—Ѽê ÷l†²²²ÜdnòÅEœÙ„©‰ß ÐI|||YYYXX‰hÆŒ666ûöí+++«ò*999D¤Tn¤FÓÅ0Ä0$“‘L¦ûƈ!†!FVÞCq÷‘yI¦@mŸË¿d/¿DH´`DÜv}wp<}ú´™™Y@@€|‰¹¹¹¿¿ÿ£GRRRª¼Jvv65nܘïþ R#€x(ÆG)&H¦¼‡RKŠ!Rm·%`T;!ž~ÈÛn¢D†ÉÈȰ·····W\Þ¬Y3"ºuëV•Waƒã½{÷FŽÙ®]»®]»~òÉ'.\à§ŸUŠj†ÉwH"Ä0&R€”L‚$•2¤»»»š©¾Ä ¥<ÑñÇÂÂÂÒÒRÕ VlllˆèñãÇU^…M+W®tssëØ±ã;wç̙¥mžžžJKöïß_µnº‘[VV–ö«Ui­Š¶çž••I¤ÏmÓíÛ·ùn(ÃI1¶ÌL"r“Ɉ(+3SÓ»D}^2©¼_2·òø‘™•YõÍ @ff&ݾ}»Aƒò옩tú2‰ˆä“ ³2Åú‡ZÞ+™›Û«…zý,«²^½zñÝ¡qp,**"¢š5k*-¯U«åççWy•{÷îYYY…‡‡9’]râĉñãÇóÍ7~~~®®®•¶---M?”1äFnÚ¯Dä¦ÝZ•nRŸÛホØ; E8)<`zå?*‘ÀyyuÍË)ê+iˆÈÍÍ­’Ûú¼üñ^FóªS ßËC$¿½QýXW­™UÛÚÚÊd²ÂÂB¥åOŸ>¥—EĪ­²qãÆóçÏËS#uêÔiĈEEE‡â»ß•0Àp2F¨$ÇƯË;*¹QlÒ0òUš”ÖЯ˜gCJ“ˆƒ£………je±  €ˆäM븊\ûöí‰èúõë|÷ÛÈ$Í4â#I4ARÅ—ÔH4AJ¥Cb%âàHDNNN=bcŸ;·ÏÉÉ©j«0 SZZªz7sss"ª]»¶ñº§}fÓwÊCj0 ñÑÍÝïÖ¸¯MTÁ}$¸P†ä‘¸ƒcPPPiiéñãÇåK†ILL´³³óññ©Ú*ÙÙÙ^^^~ø¡ÒŠçÎ#aÏi@j0 1LVf¦) É4¤rˆ”n‚”PŸ„NÜÁ188ØÌÌlÕªUì$E"Z·nÝÇ diiÉ.yöìYVV–ü:ÁJWiÒ¤IÛ¶mO:µuëVùŽÎ;÷Ë/¿¸ººöìÙ“ïNR#€ “ú •»«’ %"%™¶P†4_UMD®®®Ó§O_¼xñûï¿ß¥K—ìììäää-ZŒ;VþžÄÄÄ©S§zxxüñÇWùꫯ>þøãY³fÅÅŹ»»ß¹sçüùóÖÖÖ‹-ªàØz¦erÓkÐCj‰?ÿZ}þô‰ý¹Øê;XÁuÙ¢z`%ÝTøÏ Ô;qG"=zt½zõvîܹwï^—áLJ……±·×©ò*o¾ùæŽ;¾û¤¤ôôô† öïßòäÉ...|w×àuŠÏ¿&“H¤ò\l’h‚$Õ)¡IB¤$zÆcŒÉÓÓS÷qÔ&¿é/ëI65feeIàÖtƒ“"L•ŸK¯úÍ_‚4Ú?–×B¤¼›’;Ïz)Cêç³^„D_q”&¤F,ÓÂ.ï·J ’¤U†$ •HF¦ÐGItcÙº@pR#hÉ$‡°É¦B–÷¨â)•î"Dj ÁQÜô÷ ª” dB ’¤>òU7UB¤ô$!Drƒà(<ÆNqH ¦:„]Þ{È.ïÔë!R’ ’pUfâ¾£‰ÓGâCj}3±Û@*÷þÕƒÀ%xkqåÎ2Œ)Ü>Ѻ¨G±BjA“Ç'SM$õ[‹«öV5aɤuÞ»h²0T-0ÆËrH`¦= ²¼Ç¦q=b‡Ëÿ_V~cH¶×¸  8Š’Î¡©Œ ’í´É̆d;Vþÿ²WϧAˆ5G„Ô¼B‚d;mReHÅ{A¾ ‘¯zm’¿"…à($ÜrH¤üH˜r’^ ‘„)lަ±„ R~$Ô•!ÉM¢!Rµ IDŒÊã³AHpUµÈè–û@Øp-¶âÁxy82³2¥]¶ÂÙ¯niÄ02|7ˆPqƒ‡:¤FÔ _gB"_¿õö«>2Ê7÷A1’Žb¢CôCjqB‚TaB"5‡H"ŒhóÁQ4À¤!AªP?!Ò4Bdy7_ýR i$ŽÂ`Àh‡ÔÒ¢š !ÒTC¤ü?"^ï(r¤á 8ŠCUÓR#HóZRP³ÐT™PˆT)C–/~ý׃Úz„à(aH`20­¦IÒË‘B$1¯…E#u„à(•¼*@¤F0IÈÖL))J¹É-Dr¤ö@Š0]SÑÖ"‰#µ†à(t(7è eÈÊ D–ÿ?rdeðä¾é?ã!5hÀ0x8M¥Ž£øÄ©=´†Qø’)|)¾åuxŒ !8 œö©€ÕiÂi@浬͘\ˆÔœ#ùn1o0T-%HÚS;’0–­†I\£­Ô™æ—L*޼ª0éi‘t¦v,•HuL½iª ©€g‘Ú0‰™‘Š!ÒTa¨Z ÃÙÚ¨à†‘$¥Am“„àÈÍyI@¸"µ„)%Žb‡ À„Hí!GŠ‚£àh“‘!²J#ÅÁ‘'zˆ|HB…YUÈ‘‡à(,œÃ R#€Hh ‘„Y9äH¡Ap#¤FqRJŠ(Fj©âIˆ’†‡à( ȃ¦ÅHݨÆD”$ Á‘:%DÄK)Ò\Œt#äH®P’44<9F(¸åA¤FÓ ðÜš¬ÌL<º¦j”ž‹¨úTI=ØÆ(Pq¤FS…Am=©tt›P•¬‚£Ñ©‹"!R#Q…Wب}TQR+ª¤FЀQUŒ-a€»ŽüC*}BŽÔ7Õ(Éw‹xƒ¡jãªJHD°`hôÁ‘g•¥B¤FÐ+Õ˜ˆ«m€3G!CjÃCI8CpäS…Á©øPiI’%M‚£! €q‰’„4iyƒr#ˆ•ÚŒˆÂ¤ @p ¤F!&M‚£±¼ž5gC¤F Ž…IBš GAAj©Cš3G ¼iR$…y@÷4I”F‚àh ™PCkÖ¬7n´k×®V­ZÛ·o7n\QQ×õe$cˆAj ApT#--mݺuNNNû÷ï_·nÝFŽyñâÅ¥K—òÝ4Þ 8ª_VVæèèÈ.™1c†Í¾}ûÊÊʸlåFG5NŸ>mff _bnnîïïÿèÑ£”””JWO»ž†Ô҃਌a˜ŒŒ {{{{{{ÅåÍš5#¢[·nqØR#Hß œÂÂÂÒÒR[[[¥å666Dôøñc.ñôôä»  'E€pR„ çE€pR@ •±—N׬YSiy­Zµˆ(??ŸÃ6˜´4¾» oªVfkk+“É •–?}ú”^ÖL‚£2 ÕÊbAAɯ³05Žj899=zôˆMŠrYYYìK|·€Žj•––?~\¾„a˜ÄÄD;;;¾[ÀG5‚ƒƒÍÌÌV­ZÅÎk$¢uëÖ=|øpРA–––|·€2†ÁÕøå—_/^\¿~ý.]ºdgg'''{yyýòË/ª·é0ŽíÞ½{çÎ/^tqqiß¾}XX{GÓ„àœ`Ž#p‚àœ 8'ŽÀ ‚#p‚àœ 8'Žz³uëÖàà`ŸÎ;GDD}:ß "¢K—.Mœ8100°]»vÇ?yò$ß-2uÅÅÅëׯ8p O·nݦL™’žžÎw£LTff¦§§ç… Ô¾jjŸþŽú±|ùòY³fݸq£]»vµjÕÚ¾}û¸qãŠŠŠøn—é*))ùè£-ZôàÁƒŽ;6mÚôäÉ“£GþñÇùn1 óÅ_Èü:räHhhè‘#G}||Î;7räÈ#GŽðÝ.ÓUZZúá‡.]ºôÉ“']ºt©_¿þúõëwúôi¾›fŠbbb4½dŠŸþ èìÚµko¾ùf—.]îß¿Ï.Y°`A³fÍæÍ›ÇwÓLצM›š5kZXXÈ.¹~ýzûöí›7o~õêU¾[Ì/¿üÒ¬Y³fÍš}öÙg|·ÅÔåååùúú¾õÖ[gΜa—\¸pÁÛÛ»S§N¥¥¥|·ÎD±Á¦L™òâÅ vɉ'š7oþÎ;ïðÝ4’ŸŸúô鯾úŠýcuþüy¥7˜æ§?*Žz_VVæèèÈ.™1c†Í¾}ûÊÊÊøn‰Ú¿?Íœ9ÓÊÊŠ]âáá1~üøÒÒR Xó.==}ùòåo¾ù&ß "¢íÛ·Œ?¾mÛ¶ì’V­ZõîÝûáÇ—.]â»u&*%%…ˆ>üðC vIÇŽ›7o~óæÍÇóÝ:SÑ·oßaÆmÞ¼YÓLóÓÁQNŸ>mff _bnnîïïÿèÑ#ö?_VVVÍš5[´h¡¸ÐÃÈnݺÅwëLZIIÉçŸngg7cÆ ¾ÛDDÇŽ“Édýû÷W\¸dÉ’´´´·Þz‹ïÖ™("R̈ Ãäåå™™™É£$ÚÂ… úé§Ÿ~ú©S§Njß`šŸþøýÓÃ0ööööööŠË›5kFD·nÝòõõ廦híÚµª^¯\¹BD 6ä»u&í‡~HMMýå—_êÔ©Ãw[€ˆèòåËvvvÎÎÎgΜ9wî\^^Þ›o¾Ù½{wyµŒï½÷Þ‹ŽŽ^¸p¡µµuëÖ­Ÿøàƒ=zXYYíܹ—º ‡É~ú£â¨+[[[™LVXX¨´œ½Ïû_À£“'OÎ;÷Æ...ß|ó¦©*`‹/¾}ûv\\Æ@…£Fì7ß~ûm·nÝØï'Nœx÷îÝíÛ·ïÙ³gðàÁ|·Ñ}þùçgÏž1cƨQ£Ø%wïÞýàƒ¦Nºk×.www¾¦û銣®,,,lllTÿÛ¢  €ˆäWZñ/\¸ðÃ?¼{÷î¤I“öíÛ‡ÔÈ£S§NÅÅÅýïÿÃõ‚R³fÍ5jXYY*.ïÞ½;]»v$$$4mÚTž‰ÈÕÕu„ /^¼Ø±cß "þôGÅQœœœ222 ç,gee±/ñÝ:UVV6mÚ´ƒvïÞý믿–ð¿a±`zÁ^¢¨¸|×®]»víòððøã?øn£‰rttÌËË“ÉdŠ ÙªpII ß­3E="¢&Mš(-g ¹¹¹|7Ê™æ§?‚£¥¥¥?~üÝwße—0 “˜˜hggçããÃwëLTLLÌÁƒ‡úõ×_óÝ "jܸ±ü+??ÿ¯¿þruuõññqvv滦+000**êúõëìÕ ,öf"¸×&/š4ibnnžžžÎ0Œb OKK#¢¦M›òÝ@(gšŸþªÖƒàà`33³U«VÉŸŸ¶nݺ‡4ÈÒÒ’ïÖ™"†abcck×®ýÅ_ðÝ(ççç·ìuáááDäëë»lÙ²Ï?ÿœïš®ѬY³ä×^ºté矶±±éѣ߭3EVVVþþþÙÙÙßÿ½ü>Òééé?ýôSµjÕ”&LóÓG=puu>}úâÅ‹ßÿý.]ºdgg'''·hÑbìØ±|7ÍDåæææääXYY 6LõÕ >œï6EóæÍÃÃÃåö˜ ³IDAT—-[Ö«W/__ßÂÂÂÓ§OËd²… Ö­[—ïÖ™¨  <ø§Ÿ~Ú»w¯——×£GΞ=[VV6kÖ¬7ÞxƒïÖA9ÓüôGpÔÑ£G׫WoçÎ{÷îuqq>|xXX{M>ßíÛ·‰¨¨¨èòå˪¯â%ÿûßÿ¢££Oœ8agg4iÒ$öIKÀ ‡½{÷®Y³æ¯¿þ:zô¨]×®]?ùä“–-[òÝ4x ~úˆỠ˜ãœ 8'ŽÀ ‚#p‚àœ 8'ŽÀ ‚#p‚àœ 8'ŽÀ ‚#˜–éÓ§{zz=z”ï†ÐªU«<==7mÚÄwC¸BpN,øn€‰ tpphÛ¶-ß à Á€-Z´hѢ߭Іª§´´ôÅ‹|·@‚#ˆÃ¬Y³<==###•–_ºtÉÓÓ³S§N%%%DôðáÃeË–õéÓ§M›6mÚ´y÷Ýw¿ýöÛû÷ïkÚ,{­LRR’Òr//¯:(.ùûï¿'OžÜ½{÷víÚ9rÕªUJÙîÎ;_ýuŸ>}Z·n0nܸӧOWУõë×+^öäöíÛëÖ­ëØ±£···¯¯ï|pèÐ!M[8w——¿¿ÿ¿ÿþ+_øôéÓ€€//¯‹/ò}Ò@j@úöíKDPZþÇQÿþý-,,>|8lذµk×Þ½{·Q£F 4¸uëÖ¯¿þúäÉ]ö¾téÒ?þøÀ%%%ŽŽŽgΜùᇆþèÑ#ö ééé}ûöݼyó£GÞxã †aGŒqäÈ­v´víÚï¾ûÎÒÒ²cÇŽ666çÎûôÓO÷íÛ§öÍ>>>üñýû÷-Z$_¸dÉ’{÷îM˜0¡U«VÆ>I uŽ íÚµstt¼uëÖÕ«Wå ËÊÊØP5pà@"Ú¾}ûÍ›7»uëö÷ßïܹs×®]ýõW»víîܹsøðá*ï:!!aýúõ 6ܺuëÑ£G÷ìÙsìØ±®]»ž?~õêÕì{–.]úìÙ³O>ùäĉÛ·oOLLœ9s&Ã0+W®Ôj_ñññãÆ;~üøÆÿüóÏ>úˆˆ¢££5½òäÉÛ·o?~ü8%%%mÙ²¥eË–Ÿ|ò ç $ ÁÄÁÌÌìÝwߥ׋ŽgΜ¹ÿ¾OÓ¦M‰¨¤¤$00ð³Ï>«Y³&û†:uê°¥Êììì*ïzñâÅD´bÅ y ÏÁÁaÅŠNNNÛ¶mËËË#¢k×®Qpp°¹¹9ûžÐÐÐ &tïÞ]«}µjÕjÚ´ifffl—'L˜@D7oÞÔô~KKË%K–XXXÌš5ëÁƒ3gδ²²Zºt©¼z„à¢ÁF@Åq[vœzРAìŸ~úéš5kÞxã ùrss÷ìÙ£ËNŸ0·`Á‚’’’FùúúvïÞÝÛÛ;++kÞ¼yZí¥´´T^ä+..&¢úõëktvuu%¢ lݺõܹsÇŽ;yòäåË—SRRV¯^=xðà Èd2Ž»®V­ZËÓ§Osss‰(333//ÏÖÖÖð§L‚#ˆ‰<8N™2…ƒ–S?}útþüùÕªU[»v­ŸŸŸ|•þùG۽ܽ{·¬¬ŒýÞÝ݈¬­­#""*^K&“±÷"¢âââãÇùå—Û¶mëÖ­[PPAË×_ýàÁƒ6mÚ¤¤¤Ì›7oÙ²eݘ,Ìq1iܸ±··wffæ¥K—>ܸqc___ö¥K—.•––¶iÓF15ÒËËV*¦4¢ýçŸÊ¿wrrªW¯Þ7®\¹¢øžÒÒÒAƒuéÒåáÇwîÜéÖ­[HHˆüÕjÕª±Wóܾ}Û Çd÷îÝûöíëÚµktt´‡‡Çž={ToZ Ž 2ì%23gÎ,,,ýòË//_¾Ü¢E —ÿý÷Â… 6l—*oÞ¼yìØ1"2èýÿùçŸyóæÕ®]{þüù–––‹-277Ÿ;w®î“;Ta¨D¦OŸ>‹/NKK377ïß¿¿|¹»»{PPÐáÇ{ôèѶm[†aÒÒÒž½ào•¢^B×ĉÕ>Z0=G¨àÛo¿=vì˜Ú½0´†„„„„„œ9sFí¾0F÷îÝ;uêÔ_|ñÌ3Ïüúë¯Å/œ———‘‘qüøñO>ùÄÏÏ/&&FíîÃ"بÝX"­VþÇh4µû‚Ò¨Zµª···ÂÓÓSí¾Àp8ïÁÃÃÃÎÎNñøñãk×®åçç !îß¿ÿæ›oÆÅÅ988µüýû÷åBãíÛ·ÃÂÂ+W®\ÌKèqqqQ{ïaz¨8B111›6mR»(¥W_}5)))))éçŸV»/0Î{Eظq£tTÓÒÒ233‡ &µ_¾|yÿþýÅ,ãÆ”””ýë_R{ZZÚªU«Š =S¦LQ{ïazŽPͤI“²³³Ÿ¸Øýû÷g̘ñüóÏ{xxxxxtíÚuÊ”)YYYºËè^¤uûöí &U­ZµY³fsæÌyüø±Þ6oܸ1vìØ¶mÛ:99y{{÷èÑcçÎ_úúõëcÇŽmÓ¦MÕªUŸ~úéþýûŸ:uª¯ûÁh4š{÷îI?víÚU£ÑÜ¿_o ¹¹¹~øa­Zµ>üðCiÉüüüï¾û®sçÎuëÖ­R¥Jݺu;uêôÍ7ßÜ#%îµäÖ­[&LhÑ¢…££c³f;úê+ݯ'-ѵn?^½zu»ví¼¼¼7nüÚk¯ýù矗LLL6lXƒ jÕªõꫯž9s¦àåbE]7pàÀ‚—m)9€ÅŸ%oIJJÊ€ÜÜÜjԨѯ_¿'N<ñÈ >\zéÎ;ë¶oÚ´Ij···—Þ'Ê!çÝøÏ{1—/_nkk+ýxáÂ…â—¯]»öºuëäc2gÎé SReyƒÁâhƒˆ‹‹“ßuÏ<óŒô`æÌ™Ò³<Ÿ]½zµ¼ÖñãÇŸ~úé‚ïÛÚµkGGGË‹M›6MjïÔ©SÆ õ ÓíÉÞ½{ÝÝÝ nó7ÞÐ]ì·ß~óððÐ[F£ÑŒ?¾¤¯;yòä‚/wïÞ=Ý-„„„¼þúëÒãiÓ¦I+¾üòË…þ³ -؇bŽ¿’½ÖÝùÉ-Z$/¹zõj©±eË–ÅŸ÷´jÕªàëj4š+Vè.yàÀWWWÝe\\\BBB¤ÇÝ»w/~_yå©ý½÷Þ“Kz ž%o­V{âĉ5jè.SµjÕž={êu^Ï®]»¤lmm³²²äöáÇKíýúõ+Ñ1ä¼›Äy×þïïÃ}ûöé=ëåå%=5yòd%Ëÿþûïò³»wïV²JéN Õj Ž0Ýßbß~û­“““ÂÞÞ>--M[DpÌÎΖ.¨BT©R¥[·n={ö´··—ZjÔ¨!ÖÊŸ’ºuë>ûì³UªT‘[Ž?.-™™™Y½zu©ÑÙÙ¹ÿþºÅžõë×\¬K—.}ôÑÀ­¬þS¡ÿòË/Kôºéé鉉‰rÏ¿ùæ›ÄÄÄüü|Ý-ÔªUK^Kúôúþûïå_ß]ºt2dH£Fäe~ûí7½>îµÞîÔ«W/00ÐÚÚZú±råÊ>”–T ämÚÙÙ½ôÒK£G~öÙg¥›óçÏK‹Ý»wOþœ¶±±yî¹çôþ`(E€(é,x ¾ >|X·n]ÝÎËï[½Îëyôè‘|‘Ù¶mÛävyõo¿ýVù1ä¼›Êy×›ênß¾-|ùµŠOùùù•*U’ž5k–’UJq² Á¢÷[lÁ‚ÒãÁƒk‹Ž3gΔZªU«&'¿3gθ¹¹IíòŸãºŸ|Ë–-“ÏŸ?/g8ùïfùšžºuëÞ¼yS¯±C‡z-º%ŠeË–IuêÔ)éëjµZGGÇ‚¿Äu·àïï¿aƘ˜˜¿ÿþ[«ÕÊ—.M˜0A^¾E‹RãgŸ}¦·…b‚£Â½ÖíÌÒ¥K¥Æ 6ȧOŸ–•ˆ¶mÛJK~òÉ'rãóÏ?¯wÐfÏž-ŸëcÇŽéõ°t¢¤°à)Pø6X±b…ÔRµjÕ˜˜©1<<\I€;ùÖ[oI-ÿý·ÔR¹råÌÌLåÇónBç½ÐT÷øñãóçÏ÷êÕK~êßÿþw1ËëªS§Žôì;ï¼Sp•B…‡‡—èdfUC£G^½zubbâÆß}÷ÝfÍš\æ—_~‘Œ3F¾¦ªqãÆãÇ—~³ÿòË/sçÎÕ]¥Q£Fï¾û®ôø™gžiß¾½tK‹ääd©qÏž=Òƒ÷Þ{O £G–®úzøða^^žµµõîÝ»¥§FŒ!oü_ÿúWxxx^^^JJÊ™3gš4i¢üuŸÈÞÞþ×_•‡¨„ BtèÐAjÉÊÊ’¯ ½uë–ò£­p¯åå6l8fÌéñK/½dcc“››+„HHHhÚ´i‰NtNNŽô`ýúõžžž½zõòððX¿~}zzºâ©§ž’žÝ¶m›Ü+yÔlÖ¬Y6lHII)Ñ+–ú< ßò4/ÝRͼyó¾ýöÛ7nßÉ—_~ù«¯¾Ò}­ß~ûMzð /T«VMù1ä¼›Ðy×Õµk×BÛûôéÓ¼ys…yê©§¤#¦wý·¥~ƒÁ219ê¨T©’TtÔjµÒ¾—‰—tëÖM·ý…^$$$H·®ésÉ×NÉ‹%&&Jä?²…5jÔˆ‰‰‘>G/^¼(¿´|³\GGǼ¼<ù¥KôºO¨ûÑ%½ô AƒzöìyäÈ‘÷Þ{/88¸V­ZçÏŸ/ÅÑV¸×² ÈkÖ¬)=–w_L>àº÷L¶¶¶–@é”ô< ß…v¾R¥JòµÁÁÁÒhurr²4BŽ¡¡¡%:†œw:ïOÔ¨Q£¥K—*_>##Cz ý±¡ÇÃÃûù×T©ß`°LT¡š—^z©K—.û÷ï/ôÖøüóÏ¥ªÂÎÎÎÝݽDÅ å{­K¾œ«Ô»#›9sfVVÖÚµk>|(„Ðjµ§N:uêÔìÙ³Û·o¿uëÖêÕ«ëöPïSJï½DJzõN·Á½{÷ä êu¾víÚO줭­mHHˆTtܵk—ŸŸß¤öÞ½{+?†·Ìy7æó®K÷&‹666þþþmÚ´;v¬îÕÒOôÏ?ÿÈ[+øìÆ‹Éâ¥{ƒÁbQq„š/^,}V¼XµjÕ¤ 4Bˆk×®é>%ÿX©R¥ýF«Zµªtèt •jժɀ^¿~]wõ’¦ä²@½S ðm`gg'ÏKÐë­œŠŠ&=ؽ{w\\œ´¹©ðÄy7òó.Ó½ÉbBBÂO?ý4iÒ¤¥ÆÃ‡?zôHz\èüèâ•î ‹Ep„šš4iòÆo?—uùùùIöîÝ«Û.ÿØ A›TÍ5<¦¬û‡ÿüóOëÖ­[·nݹsgip¹~ýúÒS¹¹¹Oëpqqqvvvvv.ôkÊ×Ê•+¥+V¬xûí·›4ibcc£÷ ¶å»×¥6dÈþ×¾}û„>¼~ýúõë×>|øòË/oذáÆ¿þú«üÙvðàAé|ÀuÏu~~¾T~ÓÛéÁ;wtÛ F²@%okkki1ùšB!„öo’RŒ®]»JÕÑÑÑÛ·o—åqjåÇónZç½ɃÚº—%(Qê7,Á*ûøã ½(G!ßíóÏ?—o½7þ|é±î¥E uìØQz°páB9­.^¼8&&&&&¦råÊRT¾\=""B¾þrëÖ­O=õ”›››··÷Ý»wK½Ërm wïÞ•GÃåOÊÿûß…~“Dyíu©ÙÙÙyü/é‚úóçÏרQ£FžžžÒda›®]»Ê÷)”‡P噤K—.•üñÇòUz2yðرcòEf?üðƒÞ§u¹@…oƒ–-[JOé¾QçÌ™ó×_)yi´ZñðáÃ…  !¬­­_zé%éYåÇónZç½\üóÏ?o¾ùfTT”ôãk¯½&—K*Ë –‰k¡2ww÷iÓ¦½ÿþûŸzÿý÷¿úê«äääÌÌÌvíÚ[[[ïÛ·OújOOÏéÓ§—ôå¦OŸ™•••””Ô¬Y³àààëׯËÓF%=øàƒÖ®]{ûöímÛ¶uéÒ¥cÇŽçΓgy?^ï–ÅJ8;;K×N}üñÇçÎ;v¬üý9:::::JË>\ú*‘Ý»w—î;cîu¹kÒ¤‰‡‡Çõë×sssÛµk÷â‹/ººº^¾|YþÂ:ù/&L˜°|ùòÌÌÌ;wî´nÝúÙgŸ½qãF¡_›!ßW%'''000000==]žGU¾PáÛ`âÄ‰Ò åÎß¼yó‰ßù¡+,,LºÌQšóÛ©S'ùÂ;åÇónrç½t† "]„pÿþ}ÝËxªW¯þñÇWÜÉþCíûÁRs²‡êÎJÖýæ˜cÇŽÕ«W¯àû¶nݺ‡’+Ñ·JüðÃòÕ“º¦L™¢»îÏ?ÿ\èŸÚ#GŽ”îÝ]Ò×4hîv ~sŒÞ0`€ÞK׫WO¾ó믿^|ô(Ùë¢6%ßÖø»ï¾“Z”ßÏïèÑ£E ëwêÔéÁƒò’Û·o—¯x“T©RE±Õ½%ž|xuŒ\%’y¹@%o­V;tèP½äÙµÅÜÏO¢{'p!ĪU«Jw 9ï¦rÞ•ß»àò…ruu=zôhé^¢,o0X †ª¡¾J•*É£ÏzZµjuæÌ™éÓ§{xx¸¹¹uéÒeêÔ©gÏžm×®]é^®oß¾gÏž}ë­·‚‚‚½½½_|ñŃÊ÷"–ôîÝûÏ?ÿ|ã7š7onoo_¯^½¾}ûFGG¯Zµªt³M/^=((ÈËËËÖÖÖÅÅ¥]»vk׮ݿåÊ•å%_|ñÅ#GŽ <ØÇǧfÍš>^í.ÔDp4|$ÃøùùùñFKÆP5!8@‚#!8@‚#!8@‚#!8@‚#±”à¸eË–°°°ÀÀÀ¶mÛN™2åöíÛÅ/çÎ>úèÅ_lÖ¬ÙóÏ??nܸK—.©½FdæÌ™¦wïÞŸš7ožF£ùóÏ?ÕîcEñññéÛ·oÁö¥K—jеgÏyáøúúÆÆÆ¬Û7oÞ¬U«ÖÕ«WÕ>~fÁqñâÅÓ¦Mûûᅢ‚‚·nÝúæ›oæääµ|VVÖ‹/¾¸iÓ&!DçΟzê©;wöîÝ;..Ní]1.;vìøá‡ÔîE‰yòdÓ¦M›6m*mañâÅMš4qpppuu}öÙg7nÜXŽÇí«¯¾ “ÌÈÈèÖ­ÛÌ™3oÞ¼Ypáï¾ûÎÓÓsÈ!ÒõêÕ ŽŽ¾víZÁ…‹ß”"44tË–-ºGåÌ<8jµÚÄÄDWWWWWWÝv___!Djjj¡kmذaÑ¢Eº-'NœHIIiÖ¬™ÚûdD4ÍŠ+ªT©òæ›oUØûé§ŸÚ¶m{öìÙ¾òÊ+qqqmÛ¶ýé§ŸäöíÛ7f̘W_}uÙ²eÍš5[µjÕøñãå§Z·n}îܹ!C† <øèÑ£íÛ·ÿûï¿…¿þúkPPÐéÓ§ ð¯ýëÒ¥KݺuÓ½ ¨ÍN˜0Aºòï³Ï>ûæ›o¤…SSS»uëv÷îÝçž{NñÑG?¾zõê“&Mzûí·ïÞ½;xðàíÛ·—ËAKHHHNNnÓ¦Üâáá¡ÕjµZí… ôÎÊʺxñbçÎ5ÜØ¥K—üüüB¯t,fS’6mÚ<~ü8::º"Þ³gæ×8fggçåå9;;ëµ;99 !nݺUüê±±±[·nMJJŠ­S§Î¼y󾮟ŸŸ^ËîÝ»Õ>ÂÛÛ{ÆŒ“&MZ¶lYÁ«=z4nܸZµj8qÂÍÍM1eÊ”–-[Ž?¾G•*UBÄÅÅEEEõïß_1jÔ¨¦M›JÇ*//oìØ±5kÖ;v\ºté‚ FÕ°aÃ#GŽHQ~Ö¬Y;wž:ujXX˜µµu1›mÔ¨Qrr²¢U«V:tú¹uëÖ™3gN›6ÍÊÊJ±~ýz__ß={öØØØ!Þÿ}77·Ý»w:‹¼¤~ÿýw!DPP’…¯_¿®Õj=<ñ|¹¹¹ýþûïRÙµ’’’Ê~$iiiåµ)”#΋⤨®{÷îjwÁX˜yp”¦N;88èµ;:: !233‹_=>>>**J«Õ !¤ £D||¼Ú»n8ãÇß°aÃôéÓû÷ï_»vmݧN:•””´dÉ)5 !ÜÜÜÂÃÃÇ÷çŸJá©^½zR¼Bh4šÀÀÀŸþYqúôé¿þúkéÒ¥RjBtèÐáË/¿¬V­ZlllBB·ß~+€+W®• „/”4iÒDzJJxÒe29½]¼xQѸqcÝg‡ &„†˜_}õÕW_}U¯3)))Åo¶P~~~º ¸¸¸üñÇ¿þúë… Î;—››[^GõúõëzNC Üz—$fee !”oDÏSO=õÏ?ÿ”×î,Š™G''§‚•Eé£Wžg] F#Ý/55õÛo¿Ý³g\Ç2…ÑMuÏ=÷ÜÈ‘#W­Z¥{ñ¢B*Öê^Ÿ'„†’?~,ý¨7 I&ÍC’Ë~º¤Òïüùóõb¥Âßß¿øÍJ÷b†‡öë×oçÎAAA/¼ðBŸ>}Z·nݼyóò:VUªTQ>ÅÊÃÃÃÊÊJoT:==]Q³fÍÒuàÑ£Göööåµ;‹bæÁQááᑘ˜˜••¥;Þ']§¥wé˜$!!aݺu:tèÑ£‡n{@@€âúõëj;wî?þøî»ï¾þúërcƒ „gÏžíØ±£Ü(ÍŒ~b‘_*þõ×_º7GüôÓO³²²úõë'„¨Zµj·nÝä§þú믳gϼžµ¤>¼sçÎ%K–Œ;Vn,ÇŠc5nß¾ŸŸ_|TbccãïïèÐ!ÝÆƒj4é Y õêÕ+¯ÝX3ŸU-„ÎËËÓýèÕjµÑÑÑ...…ÞB¹Zµj?üðÃÖ­[õڥ˸ʤ(NNNK–,IKK[±b…ÜØ¼yó:uê,^¼XþŽÇ[·n-Z´¨nݺÅß¿ZX§N%K–Håa!Ä¥K—fΜ™––Ö¬Y3??¿… Þ¹sGz*++«GãÆS^K+ê.žÒEè 6”[¢¢¢îß¿/UOË®aÆùùùÒ%FŒqùòå;vH?Þ¸q#**êùçŸ/Ý[177755UwïPÎüƒcXX˜••ÕòåË¥ë…éééýû÷·µµ•Zîß¿Ÿ””$%??¿Ã‡ïßÿÿ×^¸paãÆŽŽŽ 'ÃZ¦tïÞ]sBˆÊ•+/^¼8%%¥yóæ“&Mzÿý÷ÓÒÒ–,YR¹råâ·V¥J•%K–$&&¶hÑâƒ>˜2eJÛ¶mmll>üðC›%K–$''7mÚtâĉáááMš4IMM]²d‰4^<©*¹jÕªB¿¨sçÎ#FŒ˜2eÊŠ+|x×®]e?J;w¶²²RøµBˆ¡C‡6mÚtРAS¦Lùì³Ï:uê”-—à¦M›\\\ä=Ñ™3g²³³»víZöX óŽ^^^'N¼téRŸ>}f̘1tèÐÅ‹Œ1B^&::º{÷î#GŽ”~üä“OlllÞ~ûíW^yå½÷Þ2dH¿~ýrrrfΜ)ÏF¡V®\©w«Ë~ýúaµw`ÂŽ€:>ùäC¾\õêÕ׬Y£öNLCÕP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽP„àˆ[ºt©¦X{öì‘~ð௯olllY^ñæÍ›µjÕºzõªÚ»€E³Q»0=Í›7ï½÷ä—-[æììüÚk¯É-ÞÞÞòãY³fêm¤C‡ÁÁÁ3fÌÐmÌÌÌœ4iÒÎ;oݺռyóÏ>ûì¹çžBT¯^}ذa£GÞºu«Ú{€å"8¢ÄÚ·oß¾}{ùǵk×Ö®]{þüù—¼qãÆ¢E‹Ž9¢×{äÈ‘àà`ÝÆ¬¬¬–-[¦¤¤„††º¹¹EEEuïÞýÀRè ÷ôô«öÀB1T ´jÕª§Ÿ~ºE‹Ò¹¹¹{÷îý裺uë–ŸŸ¯·ð¢E‹#""6nܸtéÒC‡i4š &HϺººöêÕëóÏ?W{Ÿ°\GT ¯¾ú*,,Lþ1##£[·n3gμyófÁ…¿ûî;OOÏ!C†H?Ö«W/444::úÚµkRKhhè–-[îÞ½«ön`¡ލ( ÉÉÉmÚ´‘[<<<´Z­V«½pá‚ÞÂYYY/^ìܹ³F£‘»té’ŸŸ#ýئM›ÇGGG«½gX(‚#*Êï¿ÿ.„ R²ðõë×µZ­‡‡‡n£»»»B.Oz{{»¹¹I›†Çä£v1ÔKÅW÷*Óío’““+W®ìââ¢dáììl!DµjÕtœœ„r‹§§gJJŠŠÇKFp4jeŒnêº~ýº«««Â…ÝÜÜ„z×/fee !t7òÔSOýóÏ?jjT”*Uª>>RKnnnjjjÆ ÕÞ3,×8¢¢tîÜÙÊÊ*&&FN~Å:tèºuë 4jÔ(gg篿þ:;;{æÌ™ògΜÉÎÎîÚµ«Ú{€…¢âˆŠâââÒºuë(\¾ZµjÑÑÑ ˆŠŠš?~ýúõ£££¥ïª–üþûïîîîò÷У∲º}ûvQO5jÔ¨QË–-Ó›Ñâçç§Õj .ïääQÔÖ6nÜ8räHkkkµ÷ EÅ(44ÔÑÑqÛ¶meßÔ™3gΟ?ÿöÛo«½OX.‚#*­­íçŸþñÇ+œ[]Œ3f̘1ƒ)Õ¨ˆàˆŠW–ܼyÓÝÝ}„ jï kQá>ùä“2n¡zõêkÖ¬Q{?°tT ÁŠ ÁŠ ÁŠ ÷q4~~~jw 8G£¯vÌ\RR’Ú½À´1T EŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽP„àElÔî@9زeËæÍ›ííí;vì8qâD—b–ÏÉÉùþû¢ÒÒÒªV­êëë;lذ¶mÛê.zöìY½ÝÜÜŽ9¢öî¨ÃäƒãâÅ‹W¯^íàà”œœ¼uëÖ„„„ÈÈH;;»B—ÏÍÍ:tèéÓ§œœZ·nýàÁƒcÇŽ>|x̘1£F’KII±³³óööÖ]×ÙÙYíÝPiÇøøøˆˆ¨¨(www!ÄìÙ³###,X0}úôBWÙ¼yóéÓ§[´hñå—_Já2!!aðàÁ+V¬èÒ¥KÆ …YYY™™™=zôX²d‰Ú»`,LûÇÍ›7çç燇‡K©Q1yòd''§]»våççºÊîÝ»…S§N•K’ 49rd^^ž< ’’"„Ð+7X8ÓŽ'Nœ°²²êÔ©“ÜbmmÝ¡C‡ŒŒŒS§NºJRR’ƒƒC@@€ncƒ „©©©ÒÉÉÉBˆºu몽FÄ„‡ªµZmbb¢««««««n»¯¯¯"55µeË–×Z³fþ^Ÿ;wNQ»vméG)8^»vmÈ!çÏŸ···÷÷÷9rdÓ¦MÕÞiÕ˜ppÌÎÎÎËË+8aÅÉÉIqëÖ­B×ò÷÷×k‰‰‰‰ˆˆ¨\¹rHHˆÔ"•—.]êããÓºuë+W®8p ::ú£>zùå—•ôÍÏÏO¯E"‡ZÒÒÒÔîôqRŒçÅqRT×½{wµ»`,L88æää!ôÚ…™™™OÜB^^ÞÆ?ûì³¼¼¼… º¹¹Ií×®]³³³?~ü!C¤–?þøcäÈ‘sæÌi×®——×·¯öá>µ»}œãÄy1BœuüX/X!²&|£³³³F£ÉÎÎÖk¿wïžøoݱÇŽëÝ»÷ìÙ³ÝÜܾüòËž={ÊO}ýõ×§OŸ–S£¢M›6¯½öZNNξ}ûÔÞou˜pp´±±qrr*XYÌÊÊBÈó¬ zôèÑìÙ³_ýõ«W¯Ž=z×®]mÚ´yâ˵jÕJqñâEµ÷@&}Ú·oŸœœ0bÄy™èèèqãÆ5hÐ`ÇŽ7oÞ”¾„zРA·Ö·oßÁƒ !>üðÃáÇO›6mÓ¦MõêÕ»råÊéÓ§íííçÎ[ÔW`˜=ÓŽBˆaÆU¯^}Û¶m;wîôôô˜???îãhl’’’¸ š±á¤'΋â¤!‹ý¬7ík`0G(Bp€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"G(b£v dË–-›7oNLL´··ïرãĉ]\\ŠY>''çûᅧŠJKK«Zµª¯¯ï°aÃÚ¶m«ö~¨Æ"‚ãâÅ‹W¯^íàà”œœ¼uëÖ„„„ÈÈH;;»B—ÏÍÍ:tèéÓ§œœZ·nýàÁƒcÇŽ>|x̘1£FR{oÔaþCÕñññ»wˆØ³gÏ!CΜ9³`Á‚¢VÙ¼yóéÓ§[´h½jÕª¯¾úêÇtvv^±bÅùóçÕÞ!u˜pܼys~~~xx¸»»»Ô2yòd''§]»våççºÊîÝ»…S§N•K’ 49rd^^Þ‘#GÔÞ!u˜pËËË[¸p¡›››’×W{סÏÇÇGí.@'Å8q^Œ'E]?Ö Vˆ,„™GgggF“­×~ïÞ=ñߺc1Ž;6sæÌ¿ÿþÛÓÓsΜ9mÚ´Q{‡TcæÁÑÆÆÆÉÉ©`e1++K!ϳ.èÑ£GóçÏ_¿~}•*UF=|øð¢nú`!Ì<8 !<<<³²²ªU«&7&%%IOºJ~~þ„ öîÝÛµk×3f“/,‡ùߎ'888//ïСCr‹V«ŽŽvqq ,t•õë×ïÝ»÷ÕW_]±b©@bþÁ1,,ÌÊÊjùòåÒuBˆˆˆˆôôôþýûÛÚÚJ-÷ïßOJJ’¦­iµÚ 6T­ZuÒ¤Ij÷Àˆ˜ÿPµ——×ĉçÍ›×§OŸöíÛ'''ÇÄÄŒ1B^&::zܸq 4رcÇÍ›7SRRììì Tpk}ûöðºªv¿0IG˜Ý€¨KΈIII>>>Å/,È”‹àS¥›ÿJøŠY¸ÔÛÀabälWÁNw›„Hôa*4/ªÐI‚X2‚#ŒÚÔMlò«“ –ÌpÁqáÂ…/½ôRýúõÕÞe˜ cˆŒzHKf¸àѨQ£^½z¹ººª½ï0^Fõè%Hcî*åÅpÁñ­·ÞÚ±cG\\\\\ܧŸ~Ú¡C‡Î;WªTIíƒãr1ÔË„r˜ÔU K`¸à8~üøqãÆ:ujûöí»víÚ¿ÿþýû«U«Ö«W¯fÍš©}( >Ó­ÞQ€XV«5ü«æææ&eåçç¯v/LO…uon˜}ÄÇ'1ðIBœ#ÄI1BûY¯Np”eggGEE-Z´(''G¡Ñh‚‚‚ú÷ïß»wokkkµN)Yì›©Ô ³TùµK|,Ÿ…Ɖób„8)FÈb?ëU»ÏíÛ·ûí·Ý»w=z477WQ½zu[[ÛãÇ?~ü‹/¾X»v­§§§ÚÇδ®h,ÝËÍuÅÐÁ1==ý×_ݳgÏñãÇóòò„nnn/¼ðBÏž=[´h!„øã?/^÷á‡~ñÅjT,3N2â#Àl.8nذaÏž='OžÌÏÏB¸ººvëÖ­G-[¶Ô•n×®]‹-ZµjuâÄ µ*¥)â#À .8~üñÇBggç^x¡GÏ>ûlQW1ÚÙÙU©R…qj3f …ÆBÉñÑ2w`ê û÷ïß³gÏÖ­[+™õB¹ÑŒ›|£®Rz˜"+ƒ½Ò®]»Ž=ZTj=zt·nÝÔ>¨p¤F‰oÔU)>ÊwÀø®â˜ýøñ㢞JII¹råŠÚG‹Ô¨‡ ¦¥bƒcttôÛo¿-ÿ¹aÆ‚‹åççkµÚ:uê¨}4PHEáÂG€©¨Øàhmm]­Z5éñíÛ·+Uªdoo_è’ÎÎΓ'OVûh ¢Šžˆ Ưbƒc»víbbb¤Ç~~~¯¼òÊ”)SÔÞe©Q!J#g¸k‡Þ²eKµ÷†F *)J£e¸àøþû﫽³04Rcé0i`œ*08nܸQѪU« È?oРAj”Rc1r 06gÍš%„˜9s¦¥‹Gp4ÄòÂÈ5ÀxT`p=z´¢qãÆÒï½÷žÚ; !5–/J#QÁñÝwßÕýqĈjï, |SA(=Tg¸É1iµÚýû÷§¥¥5iÒ$00PíC;Ju…û÷ï饗–-[&ý8mÚ´wÞygΜ9¯¼òÊG}¤ÕjÕ>(+2È¥G ÌpÁñĉï¼óÎ… òóó…ýõWTT”““Ó«¯¾Z«V­M›6íß¿_í£2!5Œ”‰3ÜPõ_|¡Õj§N:pà@!ÄÞ½{…sçÎ ¾|ùr÷îÝ¿ýöÛàà`µJ‰Ôh` [ ÏpÁñâÅ‹5jÔ2dˆôã±cÇ*UªÔ¾}{!„··÷ÓO?}éÒ%µJ‰ø¢fÌ ÉpCÕwîÜqss“çææþõ×_5ªT©’ÔbooŸžž®öÑLoÔU®z†á‚£——WZZZ^^žâÔ©S}ÔÞY”Á¼q§€B† ŽóçÏW{gŽìP _9(¹sçN\\ܵk×¼¼¼Ú¶m›žžîææV– nÙ²eóæÍ‰‰‰ööö;vœ8q¢‹‹‹’/]ºÔ£GÍ›77mÚTï©ÐÐгgÏê5º¹¹9rÄðGL]ä Á%€'2hpÌÈÈXµjUTTTNNŽâõ×_oÛ¶mß¾}æÎ«0íéY¼xñêÕ«‚‚‚’““·nÝšigg÷Äuׯ__ÔS)))vvvÞÞÞºÎÎΆ<\€qÉ# x† Ž?~çwNŸ>íááѽ{÷üQjwww?pàÀ+¯¼²mÛ6%iOW|||DD„‡‡GTT”»»»böìÙ‘‘‘ ,˜>}zQkeee]¼xqûöíß}÷]Q dfföèÑcÉ’%;>Ɖ a¶Åpßã²fÍšÓ§OwìØq÷îÝŸ~ú©Ü¾yóæ—^zéòåË‘‘‘%ÝææÍ›óóóÃÃÃ¥Ô(„˜>>—.]B\¹r%!!á©§žš;wîܹsK±AŒŒ ))ʤËò<<ÖÖÖBˆ’^ˆiŠ(7¢dG°d†þÊÁÎ;wîÜùöíÛ—.]zôèQ½zõJð„ÁÁÁñññ‡êÕ«—Ô¢Õj£££]\\K·ÍääänݺµjÕJï{ebcc…_ÓȸC8X,ƒVe...-Z´hݺuYR£",,ÌÊÊjùòåÒuBˆˆˆˆôôôþýûÛÚÚJ-÷ïßOJJR>%ÍÛÛ»E‹Çß²e‹Ü»nÝ://¯’ާ›” î–©+Ž7n,é*ƒ *Ñò^^^'Nœ7o^Ÿ>}Ú·oŸœœ0bÄy™èèèqãÆ5hÐ`ÇŽ 7ûá‡>|Ú´i›6mªW¯Þ•+WNŸ>moo?wîÜ’~)"`®äìÈ_`9*08Κ5«¤«”48 !† V½zõmÛ¶íܹÓÓÓsðàÁáááÒyJí™gžùñÇ.\xôèÑ„„„Úµk‡„„Œ3ÆÓÓ³â—1 Üˆáá`i4Z­¶‚6½jÕ*½–óçÏïÙ³ÇÚÚº]»vÞÞÞÖÖÖIII‡ÊÍÍõôôœ2eÊ /¼ ö)~~~&zG3NIIIÜ­â”îÃI1Nœ#ÄI1B¦ûY_FXq|ûí·uLIIY¿~½ŸŸßŠ+j×®-·_¹råÝwßý믿¶oßnÁÑD™qjDEcº XÃMŽYµjUFFƲeËtS£¢fÍšŸþ¹bïÞ½éééj¥Át°† ޱ±±^^^uëÖ-øTíÚµ¥öŠ7Gñ(¡ìøv0{†»ãíÛ·óóóµZ­F£)ølVV–‹‹KõêÕÕ> Jé2`Þ WqlÔ¨QVVÖï¿ÿ^ð©Ã‡ß¾}; @í£a¡ø˜GùbØÌ•á‚cÏž=…ï¿ÿþ®]»t‡¤÷îÝûÞ{ïÉ 0dG0K†ªîß¿ÿáÇwîÜ^½zõzõêi4šK—.ݸqCÑ»wïþýû«}4,åFT¦Z€ù1èwU/\¸°M›6K—.½yóæÍ›7¥FOOÏÑ£G÷íÛWíC œñí2`f ­¬¬ÂÂÂBCC¯_¿ž””dccãííÍ„ÀŒ1]̉Aƒ£D£ÑÔ¨Q£Fjï;ø8‡0l æÁp“cX2¦Ë€ 8Z.*@00²#˜:‚#ÃáÛeÀ¤-åF¨Å7ê*¥G0QG*ðºúxb[µ{(‚#uØÎ?BÝL ÁÑ1N #Á˜5˜‚#51]LÁÑâPn„±aº ˜ ‚#£@vãGp`,ÈŽ`䎖…qj9.ycFp`\¸äŒÁÑ‚Pn„ !;€"80RdG06GÆ‹ìF…àh)§†‰bº ‚#cÇt0G¦ìª#8ZÆ©aÈŽ .‚#SBvÍåF˜¦Ë€ZŽLÓe@G¦ŠìFp4sŒSü‘ÀŽLÙ †àÀä1] ÃFí 1Nm±4ö—}#Ú…]ÔÞÞê¼ç B£$–KæS˜>*_J¥G²#T‚#`¤ŠÊm j _¨˜|©J¦$;@Å!8š->;MKÁøeT•¼bÓÏB3¥öKž.Ã?(_G@5º¹ÊTbb‰ºSÿ›&“*hß¹ä*Á0½ œY†Å'’÷:))ÉÇÇGTdµ•ak(_Góć¥ñ0û²bÙ<,嘰ɎPŽŽ@…£a±ôZs$ÙÊ Á(OäÅŠPLŽTxœ™.å‚àh†(®yÑt²òb$Óe ìŽ@é‘UWÒb$ÃÖPG ÄÈ‹F«¨b¤n;ÙJàhnøD¬8äEÓRLˆä’G(‚#ðdRì /š®BBdÝ Ú…]øC J„à‡Èh~䳩™°_ÔÝêåWw§” 8šÊ'å…QiKðß“{5>ÔK3aCv€>‚#ð?(1Z ߨ«ñ:—<òg…àü‘Ñ’éÞåñƲÿ‹7‚£9aœºÔˆŒèÝ©§ÐyÙ¼OX2‚#,‘zŠºSOÁ2$oˆà EdDQŠÿrB²X2‚£™`œZ9"#”xâÌ0 ÀaAˆŒ(å_NÈ@6 Ap„¥ÐLØÏg9Jª¤_NH‚`ÞŽ0QÅ_òX$³Dp4\àX92&%%©Ý˜6åÃÖzHÌ Áf‹±i”¯RgG € 8 16 RÒK E‚`ºŽ&qj]DFT´Ò]òX($“Cp„ù`lSÆak=$H¦ÂR‚ã–-[6oÞœ˜˜hooß±clj'º¸¸(YñÒ¥K=zôؼysÓ¦MÕÞ ‰B# ¯\†­õ 9‹Ž‹/^½zµƒƒCPPPrròÖ­["##íì잸îúõëÕî>ž€B#ÔRŽÃÖzHŒ“ùÇøøøˆˆ¨¨(www!ÄìÙ³###,X0}úô¢ÖÊÊʺxñâöíÛ¿ûî;µ÷ 8~#…Fƒò¶ÖC‚`TÌ?8nÞ¼9???<<\JBˆÉ“'ÿôÓO»víš:uª••U¡kõîÝûŸþQ»ï(…FжÖC‚` Ì?8ž8qÂÊʪS§Nr‹µµu‡¶oß~êÔ©–-[ºÖìÙ³>|(„ذaÃü¡öN@©Ʀ↭õ ¨È̃£V«MLLtuuuuuÕm÷õõB¤¦¦Ûµk'=8pà€Ú;Q$˧fxƬB‡­õè%HþQ03ŽÙÙÙyyyÎÎÎzíNNNBˆ[·nUÐëúùùéµìÞ½»"^ÈÒ¾I¯Þò¤Kïú”bÇÓÒÒÔî;ô™ëI±D¶¶Ä0¯(ý£ Ò¥f®çŤqRT×½{wµ»`,Ì<8æää!ôÚ…™™™ôºñññØ»‹Bøø”é´”qxÚ¢Ž•©0Û“b¨ak]Ú…ÿ9˜eÂ6ÛóbÊ8)ê*ø±^°Bd!Ì<8:;;k4šììl½ö{÷î‰ÿÖM”ES3SdÈak]\  â˜yp´±±qrr*XYÌÊÊBÈó¬a̘Óe€ÙÖÅ A(wf…‰‰‰YYYÕªU“¥+ä<<<ÔÔSg°ÙÖÅ` €òbUöM¹àà༼¼C‡É-Z­6::ÚÅÅ%00PíÞ¡8¤F˜ ¹ô¨.íÂ.Ú…]4öKÿ©Ý¦Çü+Žaaa«W¯^¾|yÇŽ¥91éééo¼ñ†­­­´Ìýû÷oܸakk[«V-µû«ˆÙ_àH]æGÝak] a(5óŽ^^^'Nœ7o^Ÿ>}Ú·oŸœœ0bÄy™èèèqãÆ5hÐ`ÇŽj÷a¶ŒaØZ @I™pB 6¬zõêÛ¶mÛ¹s§§§çàÁƒÃÃÃ¥ê#Œ ©fÏxJ²Arç…ÓhµZµû`nüüü*ú>ŽÆS±(_—“’’¸ š±á¤ç?䤤¤zËÿsƒ}þŠ3üc1Bø¬7NQq43ÆùaSvÔaiÔºÑã1„  (G¨©0°XF8l­‹ @Á*£Ð gl3f Å HŽ&ÆÈ?]JŠÔHŒ¼ô(“þÁR€,Áª!5ºL¢ô(a°XG¨ƒÔÊhgÌŠ!lÀÒ¡R#P S¶ÖÅ6`!ަĄêÅ 5OdBÃÖºÂÌÁEj”3ÅÒ£„!lÀ\a8¤F ¤L´ô(c03G©(5Ó-=JÂÌÁÑd˜nÉA23õÒ£„!lÀÔQáH@y1­›õƒ!lÀDQ±H@ù2õak] a&‡àˆ Dj*‚y [ë"A¦‚àhLñ‚ÔT(s*=ʸ0rGTR#`æWz”q$`œŽ(¤FÀ̲ô(a06G”3R#`xf\z”0„  ‚£ 0¡R# "3.=ÊÂÔEpD¹!5ª3ûÒ£„!l@-G”R#`<,¡ô(a00‚#Ê©06Rz”1„ ÁÑØYÎï}åÎrJ†°ŠFpDYQnŒ™\zCØ@…!8¢LH€I°´‘kCØ@ù"8¢ôH€i±´‘kCØ@y!85c.Sd±¥G (#‚#JƒÔ˜4‹-=ʸ(‚#JŒÔ˜ /=ʸ(‚#J†Ô˜J†°…ŽÆ‹J°Ìûõ… àˆ Ü˜+9>ÚÎ?¢v_ŒA…"8B)R#`ö¤‘ë‹”up$ ‹àEH€…°ÄÇLJ‘k= a‚#žŒÔXæ\… Gp4Rü¾ :æ\ƒ ËDpÄPn,s®Ÿˆi4°(G‡Ô@0r­ Óh` Ž(©€.F®•`æàhŒŒáÏzR#€‚¹VŽ ³Dp” #×%B‚„9!8¢”<#×%E‚„ 8B©€BŒ\—±aºŽFGÝÑR#€’">–±arŽ€rÀ…¥Æ6LÁÿr#€2âÂDz AÂøñ¤Få‚‘ë²+,Aú¨Ý)@‚£±Qk”‡Ô |Ë…ô›9))‰$ŒÁPQˆå…Ql ‚#(7¨XÌ›)G$H¨‹àhéH ƒy3å‹ UÂÈuE AÂŽFÄðã8”ñ±‚ aGËEj "âcÅ!A¢â-©€1 >V($ÊÁ 2âcE#A¢¼-åFFˆøh$H”ÁÑXlf ©€1#> ¥Cpâ£Á Q"GËB¹€ !>RÁ)‘(€àhAHLñÑÀt?)(CBÁ`ˆª` zŽFÁ3c(70ÄGµ !!8ZR#sB|T ÒÂ&‰ø¨.&ÓX&‚£ù£ÜÀŒUÇd‹bÁqË–-›7oNLL´··ïرãĉ]\\ʸJhhèÙ³gõÖrss;räH¹÷¿B/p$5°ÄG#Á@¶Ù3ùà¸xñâÕ«W;88%''oݺ5!!!22ÒÎή,«¤¤¤ØÙÙy{{ë®èìì¬öîŠD|4 d›+ÓŽñññQQQîîîBˆÙ³gGFF.X°`úôé¥^%+++33³GK–,Q{Ë„r# D|4* d›+µ;P&›7oÎÏÏ—" bòäÉNNN»víÊÏÏ/õ*)))B½r£É!5°d¾QW}£®^ õ’þS»;BíÂ.Òš û¥ÿÔîJÌ´+Ž'Nœ°²²êÔ©“ÜbmmÝ¡C‡íÛ·Ÿ:uªeË–¥[%99YQ·n]µ÷P&rÅ‘¤Qa Ût™ppÔjµ‰‰‰®®®®®®ºí¾¾¾BˆÔÔÔ‚ÁQá*Rp¼víÚ!CΟ?oooïïï?räȦM›–û^TÐÌÊ ‹ñkãÄ@¶É1áà˜——WpŠ“““âÖ­[¥^%55U±téRŸÖ­[_¹råÀÑÑÑ}ôÑË/¿¬¤o~~~z-»wï.jᤤ¤Š8>´Y•––¦v “bœÌû¼ØÎ?"þ¥Ç&Á¼OŠìÒ»>ÒÝ2¤Ü¨®îÝ»«ÝcaÂÁ1''Gáàà ×îèè(„ÈÌÌ,õ*×®]³³³?~ü!C¤–?þøcäÈ‘sæÌi×®—ד¯•‰W¸…ðñ)ç” UîÇeÇI1Næ^L°úhþ'E‡váÿ﬑”! ~¬¬YŽÎÎÎ&;;[¯ýÞ½{â¿EÄÒ­òõ×_ë-ЦM›×^{míÚµûöí“Ó¤q"5€ºƒ×Ât¤¥ájHccÂÁÑÆÆÆÉÉ©`e1++K!Oš.ã*²V­Z­]»öâÅ‹jï7 Ü0{ÆTp5¤‘0áà(„ðððHLLÌÊʪV­šÜ(]ÛçááQºU´Zm~~¾F£±²úŸ{Y[[ !ªV­ZŽý/÷™1” t˜=cB(CªÈ´ƒcppp||ü¡C‡zõê%µhµÚèèh—ÀÀÀÒ­’œœÜ­[·V­Z­_¿^wÅØØXaÜ×4 Œ¿6-”! Ï´ofeeµ|ùré"E!DDDDzzzÿþýmmm¥–û÷ï'%%ÉSÒž¸Š··w‹-Ž?¾eËù…bcc×­[çååÕ­[7µwP±¤›‡Ë÷W»;P¤àÝŹÁxE0튣——×ĉçÍ›×§OŸöíÛ'''ÇÄÄŒ1B^&::zܸq 4رc‡ÂU>üðÃáÇO›6mÓ¦MõêÕ»råÊéÓ§íííçÎ[ÌW`«‹r#”; ¦¨Ð2¤ YNL;8 !† V½zõmÛ¶íܹÓÓÓsðàÁáááÒíuJ½Ê3Ï<óã?.\¸ðèÑ£ µk× 3fŒ§§§Ú» 04&И.ƲËF«ÕªÝsãçç§ä>Žå83†rã%%%YÔ]ÐL'Å8q^žÈðñ‘“R¾Ê¥ ©ð³Þü˜|ŤF0$ƯMcÙeAp Ä¿6„È’"8š6Ê . fƒ©Á€²Ò+@ ¤‰cVMQŽê(—™1”ÀØ0„m~ ý¢_µ{¥‚£©"5€1cÛüè~ìúíP»7*!8PQ†™!8š$Ê`Z†y 8`8 aäUPÆ™1”ÀÔ1„ Ep@5$H˜‚£‰¡Üf‰ “@pÀˆL¶ó¨Ý)à?ަ„r#XÝyñ[µ ­Ô3cH`™lçñññŒbÃ0 \ ÕMåF€Œ µ0U$HÁÑPn à 8`>H¨PGƒ*Å”jÊ€R(˜ !eFpÀœé†EÊ(#‚£Q£Ü(G d£ŒŽX²Q:GãE¹PÑÈF‰ §D3cH£ ‰'"8€ÿQhR"Ap4N”F‚±lè"8EËÁÑèPn9Ʋ-ÁÑ@Jñ1?B¤E!8ÊÓEˆ4{GPþ‘f‰àhD(7ÌRQ!R#M ÁŽ^R¤iZŽÆ‚r#À1¢mZކÀ”jžˆmãGp4 ”Ðܶ Gª‡àŒ9ÒHÕG¹€a†ZŽÀ´sq¤ J–+‚c…+~f åFÊQÁÏ\ƵËÁ˜3®,GG5QnÀÀŠÏ‘‚(Y,‚#°\ m—ÁQ5”0B”$‹Ap(R%ɪj÷KVjwÀÌ5¥šr#&Ê’+ŽG(BpTåF`ŠŽP„àhh”€‰"8@‚c*8¥šr#0]G(Bp4ÊÀ¤ ÁŠ „qj`ꎥ¨o©0QGC ÜÌÁŠ+åF`ŽP„àX±(7³Ap¬L©æ‡àX(7sBp€"Ç"mÙ²%,,,00°mÛ¶S¦L¹}û¶Ú=BéuïÞ]í.@'Å8q^Œ'ƃàX¸Å‹O›6íï¿ÿ rttܺuë›o¾™““£| ŒS3Cp,D|||DD„‡‡ÇîÝ»#""öìÙ3dÈ3gÎ,X°@í®¨†àXˆÍ›7çç燇‡»»»K-“'OvrrÚµkW~~þWßÞø®_Ý ”€™!8âĉVVV:u’[¬­­;tè‘‘qêÔ)µ{ ‚£>­V›˜˜èêêêêêªÛîëë+„HMMU´ÊÀìØ¨Ý£“——çìì¬×îää$„¸uë–’øùù©½ÐÇI1BœãÄy1Bœ ‚£>iê´ƒƒƒ^»£££"33ó‰[ðº¯ö^”;†ªõ9;;k4šììl½ö{÷î‰ÿÖ,ÁQŸ““SÁÊbVV–Bžg `iŽ…ðððÈÈÈ’¢,))IzJíÞ¨ƒàXˆàà༼¼C‡É-Z­6::ÚÅÅ%00PíÞ¨ƒàXˆ°°0++«åË—K×5 !"""ÒÓÓû÷ïokk«vïÔ¡Ñjµj÷Á­[·nÞ¼y5kÖlß¾}rrrLLŒ¿¿ÿºuë Þ¦ÀB‹´}ûömÛ¶9sÆÓÓ³U«VáááÒy,ÁŠp#!8@‚#!8@‚#!8@‚#!8–›-[¶„……¶mÛvÊ”)·oßV»G–.''ç믿~ñÅ›5kÖ¾}ûáÇ9rDíNáÿ]½zµE‹'NT»#Bˆ³gϾûî»;w kiŸþÇò±xñâiÓ¦ýý÷ßAAAŽŽŽ[·n}óÍ7srrÔî—åÊÍÍ:tèܹsoܸѺuëúõë;vlذa+V¬P»kB­V;iÒ$ùëà¡®ýû÷8pÿþýîîî±±±C† Ù¿¿Úý²\yyy¯¿þú‚ n߾ݾ}ûš5kîٳ祗^:qâ„Ú]³Dëׯ/ê)Küô×¢Ì.\¸ðÌ3Ï´oßþúõëRË'Ÿ|âëë;kÖ,µ»f¹6nÜèëë;pàÀììl©åâÅ‹­Zµjذá_ý¥vï ]·n¯¯¯¯¯ï{ï½§v_,Ý;wZ¶lÙ´iÓ“'OJ-þùg£FÚ´i“——§vï,”ôlìØ±?–Zþøã† ¾ð jwÍ‚dffž8qâÃ?”~Y>}ZoËüô§âX6oÞœŸŸîîî.µLž<ÙÉÉi×®]ùùùj÷ÎBíÞ½[1uêT;;;©¥Aƒ#GŽÌËËcÀZu ‹/~æ™gÔî„bëÖ­YYY#GŽlÑ¢…ÔÒ¤I“=z¤§§Ÿ={VíÞY¨S§N !^ýu©¥uëÖ 6¼|ùò­[·Ôî¥èÝ»÷ Aƒ¾û°ÌO‚c98qâ„••U§Näkkë:dddHÿøaxIIIº 4B¤¦¦ªÝ;‹–››ûþûﻸ¸Lž9Ôˆeee}úé§÷ïßxå•Wžþy;;»mÛ¶1ÕÝxXì§?DzrvvÖh4ÙÙÙzíÒ}F¤¿< ¢cÇŽÍœ9óï¿ÿöôôœ3gNQ—ªÀæÍ›—––¶iÓ&Æ@G•*U¤Ÿ~úi—.]¤Çï¾ûîÕ«W·nÝúË/¿„††ªÝGKôþûïÿûßÿžìååX£F µ;h¹:wîüÍ7ß\¼xQš *‘n&½6Uáíímmm Õju}||¼¢~ýújwÿa™Ÿþ U—ƒ°°0++«åË—Ëߟ‘žžÞ¿[[[µ{g‰´Zí† ªV­:iÒ$µû‚ÿh׮ݢÿ5~üx!DË–--Zôþûï«ÝAËÕ·o_!Ä´iÓäy gÏžýòË/œœžþyµ{g‰ììì:t蜜üùçŸË÷‘NHHX¹re¥J•ô.*€Š,óÓŸŠc9ðòòš8qâ¼yóúôéÓ¾}ûää䘘˜€€€#F¨Ý5 uóæÍ””;;»Aƒ|¶oß¾ƒV»€±hذáøñã-ZÔ½{÷–-[fggŸ8qB£ÑÌž=û©§žR»wê“O> ]¹råÎ;ýýý322þýïçççO›6íé§ŸV»wøËüô'8–aÆU¯^}Û¶m;wîôôô|øõë×çÎ+7~öÙg×®]{çwš4ibè“Àܘ†   ww÷ÔÔÔ¿þúKnÌÏÏ—BU¿~ý„[·n½|ùr—.]Ž9²mÛ¶ŸþùðáÃAAAW®\ùí·ßJýÒøâ‹/j×®½eË–ßÿý—_~9xð`ÇŽOŸ>½jÕ*i™ Ü¿ÿí·ßþã?¶nÝ=uêT­V»téÒ½ÖæÍ›ß|óÍC‡}ýõ׿þúëСC…‘‘‘E-?f̘ lݺõСCBˆ£G~ÿý÷7~ûí·Õ;WÌÁ€i°²²êÕ«—øß¢ãÉ“'¯_¿X¿~}!DnnnçÎß{ï=ijÕªI¥ÊäääR¿ô¼yó„K–,‘kxnnnK–,ñððˆŠŠºsçŽâÂ… Bˆ°°0kkki™¾óÎ;]»v-Ñk5iÒd„ VVVÒ.¿óÎ;BˆË—/µ¼­­ígŸ}fcc3mÚ´7nL:ÕÎÎnÁ‚r7 ˜ )êŽÛJãÔýû÷—~5jÔêÕ«Ÿ~úiy›7oþòË/eyÑÛ·o'%%Õ«WOo´½½}›6mrrrâââ„Rrù$77·N:-[¶ìÚµk£F’’’fÍšU¢WÉËË“‹|=BÔ¬Y³¨Ag///!D­Zµ¶lÙ{ðàÁcÇŽÅÅÅ:ujÕªU¡¡¡Ÿ|ò‰F£QøÒ•*U*Åa¹wïÞÍ›7…—.]ºs玳³sÅŸ –ˆàÀ”ÈÁqìØ±Ò´øàƒ¨¨¨.]ºWèa™1cÆ7š7o~êÔ©Y³f-Z´¨B_€ÅâG¦¤nݺ5ºtéÒÙ³gûí·ºuë¶lÙRzêìÙ³yyyÍ›7×Mâ¿ÓVЧ7¢ý믿Ê=<<ªW¯þ÷ߟ;wNw™¼¼¼þýû·oß>==ýÊ•+]ºtyùå—åg+Uª,ÍæIKK«Ðc²}ûö]»vuìØ122²Aƒ¿üòKÁ›@¹ 801Ò™©S§fgg‡††ÊíBˆ .¤§§K-yyyß}÷݆ „999…n­N:Bˆõë×gggK-111òMv$ãÇÏÏÏ?~üùó祖{÷î}ðÁqqqnnnžžžwïÞýóÏ?×®]+—*/_¾|ðàA!D…ÞOñŸþ™5kVÕªU?þøc[[Û¹sçZ[[Ïœ9³ìw@A U01={öœ7o^||¼µµuHHˆÜ^¯^½àààß~ûíùçŸoÑ¢…V«¿}ûö Aƒ"##øá‡»wïJ7ÖÑòÍ7ßœ:u*88ØßßÿƉ‰‰NNN5jÔxøð¡´Lß¾}?þã?†„„Ô¬YÓÅÅåÒ¥KÙÙÙÞÞÞÒ·­¬¬¦L™2yòäùóçùå—µjÕÊÎÎþû￵ZíÀ+èPhµÚÉ“'geeÍ™3GÊÍ7:tè—_~9sæÌ%K–¨}®˜*ŽLŒ»»{«V­„íÛ·www×}jáÂ…cÆŒñòò’îïØ¡C‡mÛ¶M:uРAÖÖÖ…~`íÚµ¿ýöÛ®]»ZYY>|øâÅ‹5kÖüâ‹/ÜÜÜäe4ͧŸ~úùçŸwéÒ%??ÿòåË>>>ãÇß¶m›‹‹‹´Lß¾}¿ù曎;ÚÙÙ]¸p!;;»mÛ¶+W®œ1cFÅŠõë×=z´]»vò…žBˆ1cÆÔ­[w×®]»wïVõD0Cšâo–ãþýûµk×V> , ÁŠ0T EŽP„àEŽP„àEŽP„àEŽP„àEþ~¹ùGW¸gpIEND®B`‚statistics-release-1.6.3/docs/assets/normcdf_101.png000066400000000000000000000624121456127120000223050ustar00rootroot00000000000000‰PNG  IHDRhŽ\­AdÑIDATxÚíÝy\TõþÇñï°ˆ(±]q‡ÄqÉż–’€–a˜•éUÓÌÌR3QÓÌŸZ×LÓl1¥n™Kzys¿™ŠXâ’šËOQ·pEùýqjšX˜™³½ž÷Î|çÌÌçœλÏ÷œ3“É$€ò8É]Ôà«`‚#¬Bp€Uް ÁV!8À*GX…à«È騱c†? 0 È£÷îÝ3?ºhÑ"¹‹­˜)S¦H•÷êÕ«Ü…ïÝ»·páÂ'žx¢nݺիW éÞ½û‡~˜““SÆ3sqqñóókß¾ý”)S®]»fÍSŠˆ‹‹“{ƒP‚#¥øöÛo÷ìÙ#w2øå—_š6m:bĈ~ø!==ýÞ½{©©©7n7n\HHȆ Ê}…‚‚‚ŒŒŒ½{÷¾ûî»F£199Yîu M.r¿3™LcÆŒùùçŸ ƒÜµ8NJJJçÎïܹcqqqÉÏÏ—nÿöÛoÏ>ûìÏ?ÿܪU«âÏ pwwBܽ{×ÜhÌÌÌŒMMMuss+ã)EøøøÈ½%¨G ’œœ¼bÅ ¹«p¨qãÆ™Sã‹/¾xèСÜÜÜôôô/¿üòBdgg?÷Üs%>wùòåiiiiiiW¯^=þü‹/¾(_¼xñóÏ?/û)ELš4Iî-@Ž”e„ ÙÙÙå.v÷îÝ©S§víÚ5  K—.“&MÊÊʲ\Æò(ÃüüüwÞy§^½zï¼óŽåC±±±§OŸîß¿£Fêիׯ_¿#GŽ!’““Ÿ{î¹Fýío‹ˆˆØ±c‡å+®\¹2""¢aÆիWoذaçοùæ›û÷ïWhe·nݺ~ýzéöĉ¿úê«V­Z9;;:Ôœ¡SRRNž11qýúõ«W¯¶~•Í}A__ßÉ“'y´{÷îÑÑÑéééBˆ#GŽ4iÒ¤Ü=zôwß}'„¸víÚ®]»ž|òIûí/:DÇ€R¼óÎ;^^^BˆY³fýöÛo¥-–““óì³ÏJ©±zõêO>ùdttt5„.\xî¹çnß¾]ä)û÷ï—Rcq‡ºqãF«V­|}}¥‘k×®=úþýûÍš5«[·®4h2™¦M›&Ý^µj•” CddäÀzè!é¡„„„mÛ¶Y¿Ê?ýô“t£wïÞÅذaÃÁƒ<اOk^0<<¼ZµjÒí½{÷ÚgGÐ/‚#¥ð÷÷Ÿ2eŠ";;{âĉ¥-6{öì³gÏ !<==wîܹyóæ 6$''ûùù !._¾üÏþ³ÈS.^¼Ø¼yóeË–%''›4[·nÝ¡C‡._¾iüè£þïÿþïüùóC‡•F¤)l!ÄæÍ›¥cÇŽýñÇ¿ùæ›#GŽ´mÛVüå—_¬\ßû÷ï_¹rEºl“mh0j×®-ݾ|ùrñºtéRüZzôhi$++Ë|\æ7¬\YË#2ëÔ©c«mø·¿ý­øë€MpŒ#©V­Úœ9szöì)]šgûöíÅ—III‘n9€ï‰'žN >uêTaa¡“ÓŸÿaZZ23OF !Ìש©S§Žù’@Å/^#½offæ–-[öïßðàÁ}ûöŸ/—tÒ´¤øU»+-##CºáééYüÑ/Çcž¦€²(Ë3Ï<¹mÛ¶/Í“••uëÖ-év`` åC昛›{åÊËG¥Yì•xÍHËÐY\^^Þ[o½õñÇ›¯¶èîîîïïõêÕ ­iµjÕüüü¤ór¤É÷ânݺ%½KõêÕkÖ¬iÍËšg¨Š?º|ùò¨¨¨ Õ fLUPœyóæIÑ­øÅ===¥h„—.]²|È|·ZµjµjÕ²|ȶWï½÷æÎ›ŸŸ¼`Á‚_ý5+++&&¦/õè£J7Ö­[Wâ¥|š6mêççççç·páBk^p×®]yyyÒíGyĆk ‚à@~øá—^zI”rz‡Ñh”nü÷¿ÿµ7ß qq±ãtÊ‚ ¤Ÿ}öÙˆ#~øa—‹/V⥆ &Ý8þ|ñ/ã^¿~½y ˜¯T¶ùóçK7jÖ¬ùØcÙo#Ð'‚#%š1cF‰‡è !¤sY„üñ¤ÛG={¶tû©§ž²_a·oß6_ôÑ|ºÌ/¿üR¡«ð˜=ýôÓ]ºt‘n5júôéRß4//oéÒ¥ƒ ’zðÁCCCË~©Ë—/¿üòË ÒÝüã–ÇP€MpŒ#%ò÷÷ûí·Ç_ü¡ñãÇýõ×çλuëVÇŽ£¢¢œ·nÝ*}QJ`` tM;ñððððð¾$PúrƒÁ°yóæŠ~gŒÙܹsÛ·oŸ““c2™¦N:uêT??¿ÌÌÌ‚‚iêÕ«'$$8;;îÀ¥ XÞ½{×râ¾V­Z3f̰ßF [t(ÔèÑ£|ðÁâãîîî«V­’®ª“““³~ýúÿüç?RjlذáªU«JkUÚ„Á`èÞ½»t;;;ûûï¿ÿÏþS·n݈ˆi°È‘—åjÙ²å?ü`yÒ÷õë×Í©±Q£FkÖ¬iݺu‰ÏMOOOMMMMMµ|S__ßï¿ÿ¾Œó ÒŽªZµjæÙç"yä‘ÇO™2%*** ÀÏÏ/22ròäÉGŽ騱£½ ›7o^Ë–-…NNN­Zµzã7<øÌ3ÏH®X±¢Üï•.â±Ç;uêÔ¼yóüq777£ÑØ£Gyóæ8qÂ<5_ggg__ßGydÊ”))))ÿûßí½è“¡È×¶Êuÿþýõë× !zõê%w-à8GX…©jX…à«`‚#¬Bp€Uް ÁV!8À*GX…à«`‚#¬Bp€UŽå8sæŒÑhüõ×_å.@fÇr,]ºTîÁEî*++ëäÉ“ëÖ­[¹r¥Üµ(Á±d111—/_–» !8–ì½÷Þ»wïžbÙ²e?ÿü³ÜåÈàX²Ž;J7¶oß.w-Š@p´=£Ñ(w ÔçdJŠÜ%°–IîäBp´‹­|Fͬ‹f°S¨ìb°îE´ô9d(eM\IEý¥¬ý-øIS¿RÔNa]*‡à6Sb:Ðf(²â]sGD…(;j5B‡ŽPI&…”é¶ÞÒ9/ê*)–˜‰†šUZÿ¼I¹+“€ 0Xü˜þøib4šô” †ßL¦ß´Íðç Â`ús½ÿü‘»FT–ÁPÎÉTò^Ñq€rX6ôûq!„ø£ù¢ùÍ"=Er¡êJ?@ó¿Í¶Fp€’™?jø`:ˆŒ–a‘¤¨J¤C‡ 8¢,›7o–»ÅN±·JäEmï•FFkv aÑÁlö—RbFTÝï¨:@ú‹%Qid,½þØÛ„Eu(µ÷K©œSŽwß}7%%¥U«VrÀ^Šœé‰ù¬Í(~v‹Ü¡$ÖœžùÐq _ú¼†Ž5¤kÍZŒ$E…â* ªBp GDÆÒhizš)i…")ªÁ€¾Ë ™F£ADyQ1þHŠAÒÿiã—L¯8Æ€^XˈⴑÍG1žI;#w-úVÒAŠigÎhá—Lßè8Ðy±LHÈ(?Ë9hµÿ>¡GÇÜt¹Ôž‰Œr",ê Á€–Ñh,—ªS#‘Q„E#8Ð&ÖPoj$2ÊÀœUúK[ 8Ð ÖPij$2:yŽ´†Ô¨aÒÓrW¡LF£GÚÁô´õT×n¤Ñè4Q‚# Ñh=5¦F"£‘a5‚#- 5ZÔˆ?ié+&áGªGjÔ*¦§í…#*‹à@ÝH¢¢v#FÛ#/¢ÊŽTŒÔX!¤FýbJ6Bp V¤FMbzÚ–h1ÂÖŽT‰ÔXQªh7Òh´ZŒ°‚#õ!5V©Q/h1ÂÎŽT†Ô¨I¤Æª¢Å‡ 8PRc%(¿ÝHj¬"#ˆà@5HšDj¬<"#Žà@H•£ðv#©±’ˆŒ Á Rce!+‚# ÝX9Jn7’+ŒÈ 8P:R£ö+†ÈÅ 8P4Rc¥)¶ÝHj¬"#†à@¹HÚCj´‘ŠDp Rf»‘Ôh"#Œà@¡h7j ©±|DF(Á€‘«BíFRc9ˆŒP ‚#À¾HåP`ÒJAp 8´µ„ÔXP‚#e!5V‘¢ºW¤ÆR¡NG€]K¥¨tTÁ€‚Ðn¬"‰ÒÑh„Ê(©QKh7Ed„&@#”Ón$5¥œ}T Á€"ÐnÔ Rã_Ðh„¶ÈÔ¨¤Æ¿ ÑÍ!8€Q”…F#4Šà@f´5ƒvãïHñÐ.‚#ÀHBÐh„öȉv£MÐáRvt€à@6¤FÍÐ{»‘F#tƒà¨R#‘úá$wtŠv£­È›[H¤Fè G*ŽéièÁ€ h7Ú íF™ÖœF#tŠ©j@e¢ãÀÑh7B­˜ž†î@­dì|é±ÝH£`ª€ƒÑnÔR# [t(ÓÓ€‚#ǡݨúj7ÒhþŠ©jP%Y" ©Ð9‚#¡Ý5!5%aª`½´9¨(Á€#Ðn´-Úaö–ÊÄT5 |ºh7’òØíFµ#5@eH8¶Ç6¬Ã1Žì‹v£Úi¼ÝÈ©0@EzE£¨ ¦ªØíFµÓr»‘ÔTÁÔ„´clG RŽì…v£Úi¶ÝHj*‹à(©@qGvA»ÑȹWPæ©UJ•íF  ýà˜’’°yóæøøø-[¶ 8ððáÃsæÌ)í)ÿþ÷¿8ðÔSOýðÃüñÒ¥K¿þúk!ÄÛo¿-÷ÚÐZlb[Ê ýà¸jÕªÂÂÂ1cÆøûûK#'NôòòÚ´iSaaa‰O9pà€bРA..¿OåwèСY³fgÏž½qã†Ü+(íF•R_»‘Ô(†öƒã¾}ûœœœ:wîlqvvÏÈÈbqBËŒh2™nÞ¼éäädŽ’G 5J¢ñàh2™RSS}}}}}}-Ç›4i"„¸páB‰Ïzúé§«W¯þÞ{ïíÞ½;'''==}Ê”)/^Œõôô”{ òTÖn$5 £ñþYvvvAA··w‘q///ñמ¢%£Ñ¸téÒÁƒ<Ø<8`À€I“&Yù¾F£±ÈÈæÍ›åÞ•qñâE¹K@Q Ù)ÁAAgÒÒÒä.C!ì±S‚ƒƒÎØc µì· àà´3gDe«UÈ_ ,©w§tëÖMî”BãÁQ:uºfÍšEÆ=<<„·nÝ*ñYYYYï¿ÿþÝ»w[´hѲeËŒŒŒ]»v­]»öïÿ{×®]­yß””¹WÝf‚‚‚ä.E)d§(¤ …°ÇÖ°ùkþÞnTÅ~3„ÉTÅJùU •î”âëÅ;D:¡ñàèíím0²³³‹Œß¹sGüÑw,nüøñ¿üòËĉ_|ñEi$==ýùçŸã7¾ÿþûàà`¹W 4j@©4~Œ£‹‹‹——WñÎbVV–Â|žµ¥«W¯nß¾½qãÆæÔ(„¨S§Î«¯¾zÿþýï¾ûNîuäÇùÔ°#R# `ŽBˆ€€€ŒŒ ))šI‡ø_>##CѨQ£"ãR£ñÚµkr¯T†:N‹!5ʦýàUPP””d1™L‰‰‰>>>¡¡¡Å—oÔ¨‘³³ó©S§LýÇK:¾¡qãÆr¯íÓi|Òéjj¢ýàëääôé§ŸJÇ5 !âãã¯_¿Þ§OWWWiäîÝ»iiiÒÙ^îîîáááçÎûøãÍW?uêÔ‚ ªU«!÷ 2cžZÔÑn x?9FQ§N¸¸¸Y³fõèÑ£S§NçÎKNNnѢŰaÃÌË$&&¾ñÆ!!!ëׯB¼ûî»}ûö]°`ÁÆ›7ož‘‘ñË/¿¾ýöÛ>ø Ü+ZD»PíG!Ä!CjÕªµvíÚ70`̘1ÒyJäçç·qãÆ… îÚµkÇŽ>>>?þøˆ#Z¶l)÷ª2£Ý¨F*h7’•0˜ø[µ5£Ñ¨™ë8¦¥¥©ôš[&ïN!8–ȶ;Åæ!JéÁÑ>©‘¾HK;EKŸõ¢ýcÊE¯P‚#kÑnT#E·I€Úr 5*DpÍRt»€ X…yjÇÐKN/ë h Á´I¹íFR# ZG€‘5#8(óÔ° R# rGÐ %ÎS“õ#8€R¬(Á@9˜§VÚì„à°3R# G€=‘ !8( óÔª£¬yjR# -GP F, ® wGÐeµhÁ@©˜§FåÑn´ˆà¡ v#©Ð(‚#À¦H€v@~ÚÉZÚY% 8(8ª‹‚æ©hÁ`#´­#8lÔèÁ@ ˜§Vùç©I€>@f„.jApu£ÝÀaŽŠbž@jô„à¨,R# 3GP19ç©I€þüóÔFú "GP+ڌਠR# WG@E#8ø8ªˆü—o ?Gúšwê«€-Ö!5ºGpð;æ©UD†yjR#‚#¬Dp•¡Ý@.GB0O-Õ„1Õ ÀґX 8€špùF2"8JA»À_p€#JBjP ÁTƒyjò"8€ ”ÞÎSz}äApôŽyjµp\»‘Ô G€R#€Ò`‚#¨€ƒæ©i7(ÁÐ5p”…Bã™BË  G©€UŽ t\¾€Býbž¿£ÝÀ:GÐ7R#«@ј§ Gp(e5ø”U ¥#8:ÅŽ 5¨(‚#(—ç©I*Žà«=bžZïh7¨‚#(”½æ©I*‹àŽCf jGP"Úˆàè8ê©@Õ`‚#(Ž]æ©i7¨2‚# /ÌSë©€-ÀAoÔŽàÊbûyj+!8€¦‘ØÁÐpÔR#›"8€‚Øëºß` Gpz´ØÁ´ˆÔÀŽ€^p€£ò1O @Ꭰ9´ØÁ´…ÔÀnŽ€.0O­|ÌSP>‚#Øãš€´ØÁ´‚ÔÀÎŽ ?橨ÁÐ>pÔÚìàêGjàGóÔÔ‚àöe÷n íFŽBp4Ž5ŽÔÀŽ '橨ÁT‹v#Ç"8€:‘8ÁÐ2pT8橨‹‹Ü8ÈêÕ«W­Z•ššZ£FÇ<..ÎÇǧì§9rdÑ¢EÇŽ»sçŽÑh|ýõ×Û·o/÷zP{µi7ƒ.:ŽóæÍ{ûí·OŸ>Ý®];5kÖ¼üòË999e''§Î;›GœÃÃÃ3228PâSvîÜi0zöìi9øÁ¤¤¤´jÕJî c¤F²ÒøÉ1&“)55Õ××××××r¼I“&Bˆ .„……ÖÑ£G}||j×®½ÿþƒÞ¼y³iÓ¦]ºtqww—{…hóÔÔHãÁ1;;»  ÀÛۻȸ———âÆÅŸ’——wûöíÆÿÏÿüÏŠ+Ìãõë×ÿè£zè!kÞ×h4Ù¼y³Ü£2.^¼(w (ÊÊt&--Mîju¢´t¦´Ý$*º‚‚ƒÓΜìUëðÏ—©w§tëÖMî”BãÁQ:uºfÍšEÆ=<<„·nÝ*þ”Û·o !RSS¯]»6kÖ¬Î;çææ&$$|öÙg£G^¿~½5}Ç””¹WÝf‚‚‚ä.EY¹SØwŽTÚÖ.c/Tl ÂdbV ¤ÒRüc½x‡H'4~Œ£···Á`ÈÎÎ.2~çÎñGß±ˆêÕ«K7Þÿýž={z{{×®]ûµ×^ëÕ«×Å‹7lØ ÷:P=橨”²‚ã‡~˜ššjÃtqqñòò*ÞYÌÊÊB˜Ï³¶T³fÍêÕ«»»»GDDXŽwéÒEqâÄ ¹7ýáœÊ ¬àß½{÷>}ú,]º´Ä+! ##CJŠfÒ¡E%>ÅßßßÕÕÕ`0XJ3Ôùùùro$ |\ÁQSHCYÁqøðáuëÖ=zôè»ï¾Û©S§#FlÙ²%//¯*¯UPP””d1™L‰‰‰>>>¡¡¡%>%"""++ëäÉ“–ƒÒµ{š6m*÷F nÌSP/eDZcÇþøãß~ûm¿~ý<<<¶mÛ6jÔ¨Ç{ìþç:T¹×ŒurrúôÓO¥ã…ñññׯ_ïÓ§«««4r÷îÝ´´4óÙ^½zõB¼ýöÛæ®ç‘#Gþõ¯yyyuíÚUî@lÓ(¤Ý@I &¥þ“”ŸŸ¿sçÎuëÖmÛ¶-77WѰaÞ={>óÌ3uëÖ­ÐK}õÕW³fͪ[·n§NÎ;—œœÜ¼yó¯¾úÊ|™ž7¾ñÆ!!!ëׯ—F-Z4wî\//¯°°°ììì}ûö †Ù³g?õÔSå¾ÑhÔÌYÕiii*=NìÙ)LU;X‰;¥´ÈW±Ž#Á±²øçK´´S´ôY_!ʽ‹‹KddddddvvvBBÂܹsÏ;7þü?þ¸]»v}úô‰‰‰qvv¶æ¥† R«V­µk×nܸ100pÀ€cÆŒ‘®ÈSšáÇûùù-Y²äçŸöññ‰ŠŠzýõ×CBBäÞ*@ùHJFj jÊí8 !233üñÇÍ›7ïÞ½[:+¥V­Z®®®éééBˆÆùå—r—Y”–þ+DKÿu¨åî‚£ãYßq¬@p$5V ÿ|)–vŠ–>ë+D‰ÇëׯÿðÃ[¶lÙ»woAAÂÏÏï‰'žˆŽŽnÛ¶­â矞7oÞÑ£Gßyç/¾øBîztAYÁqÙ²e[¶lÙ¿aa¡Â××÷É'Ÿ|ê©§ÂÂÂ,g¥;vìØ¶mÛGydß¾}r— Ö¢Ý@í”g̘!„ðöö~â‰'žzê©öíÛ—v£»»{õêÕ8O È‹yj- 5P*eÇ>}úDGGwèÐÁš³^h7P,²MRÖu7mÚ´{÷îÒRã믿þä“OÊ]#T†µóÔDN ¦¬à˜}ÿþýÒ:þüo¿ý&w€r1O­z¤FÊ&ÿTubbâˆ#Ìw—,Y²lٲ⋚L¦ È]/€NÉ===¥Û™™™ÕªU«Q£F‰Kz{{Oœ8Qîz Â¬š§¦Ý@ñäŽ;vLNN–nÆçŸ~Ò¤IrŽEj òGKC‡ “» @•8ÀQ9´JYÁqüøñr—GÒ 2ÇåË— !yä‘óݲõïß_Þš BÊ9À‘Ô@=dŽÓ§OBL›6M ŽÒݲd!sp|ýõ×…-[¶”îŽ7Nî ¨8ªíFª"sp|íµ×,ï6LÞzÀ¶¬ýÂPe}s ¨]zˆ´¨ÌÇ;vTô);w–·f°R#’98>¼¢OIII‘·f@i8ÀQ±˜§ 12Ç=zȽÀáh7P'™ƒãìÙ³åÞàX¤FªÅÉ1`ÌSо9P7pT”ò›‰´¨ßŽBj r|s ØóÔ4‰oއ Ý@ý}rÌÝ»wóòòä®P.p8’ÌÇ>|ø³Ï>;vìØµkלœœêÖ­Û¦M›‘#G6lØPîÒ |%ÌSÓn  Šë8Ο??66vǎ׮]sss«^½ú… þóŸÿDGG¯X±Bîê âH´BYÁqçΟþ¹³³óÀ·nÝú믿þü"ƒ)))>úhJJм5@9h7Ð(™ƒc=äÞ`%|a h‹ÌÁqöìÙro@}8ÀQÑh7Ð.eS¶ &DFFÊ]”ŽÔ@Ódî8—™™ùã?ž;w®ÈxNNÎ?üàìì,wP“4OÍé1´LYÁñÊ•+ýúõûí·ßJ[ ÿþr×E íFÚ§¬àøõ×_ÿöÛoíÚµ‹‰‰Ù°aÞ={Þyçww÷'N,[¶¬ÿþ“'O–»F@fÁAAd2©€æ)+8&%%¹¹¹-X°ÀÓÓ322²cÇŽAAA>ú¨"88xÆŒÏ>ûlHHˆÜeÀ_™ ÌQÐeséÒ¥Fyzz !jÕªåããsôèQ顨ØXŸ¯¿þZî (ÚtBYÁQáäôgI 4HKK“n;;;ÆÃ‡Ë] ü•Á` 4ÐeÇÚµkŸ={öîÝ»ÒÝúõëïß¿ßü¨Á`¸xñ¢Ü5r2qæÿš‚‚胲‚c—.]rrrÆwúôi!DXXØùóçwíÚ%„¸~ýú/¿üR·n]¹k ƒÁ$Μ!ÍÐe3pàÀ-[¶lÛ¶Íd2-\¸0<<ÜÅÅåµ×^kӦ͉'²³³£££å®@§”Õqôóó[¾|ùرc[¶l)„¨[·îÛo¿——÷ÓO?eddDEE 2DîÙðMƒŠ#ÝÈ<5ÝPVÇQáçç7|øpóÝ~ýúÅÄÄ9r$ 88Xîêà¿_î›ËðÐÅGKwïÞuuuõððèСƒÜµèƒãáÇ?ûì³cÇŽ]»vÍÉÉ©nݺmÚ´9rdÆ å. „¿· Â`&ZŽôCYÇ8 !æÏŸ»cÇŽk×®¹¹¹U¯^ýÂ… ÿùÏ¢££W¬X!wu€l8ÀQAøNjz¥¬à¸sçÎÏ?ÿÜÙÙyàÀ[·nýõ×_<¸cÇŽ¡C‡ !Þ}÷ÝC‡É]#ü‰ @W”W¬Xa2™Þ|óÍÉ“'ׯ_ß`0!Ç?a„üü|¾r€ÌþˆŠÒ<µÜÕ€C)+8;vÌÍÍmРAÅ0`€»»;_9@N4蛲‚£¢víÚ..%œ²#%“-w€ 8À Ê Ž¡¡¡.\ÈÊÊ*þÐÝ»wÓÒÒZ´h!wôŠv#ÝSVpŒ5™Lo½õV~~¾åxAAÁ¤I“ ¢¢¢ä®8À€NÉ|ÇÝ»w[ÞuvvîÝ»÷š5kºvíl0ÒÒÒ.\¸`4»uë&oÁtª¤v#-Hz#sp‡`žŠSPp4 5jÔ¸páÂÍ›7‹?š••uöìÙ–-[Ê]&Õªr»‘~%SPptvvîÝ»waaá„ îÝ»gùP^^Þĉ ÃСC+÷â«W¯Ž }ì±Ç&Mš”™™iýsÓÓÓÛ¶m'÷‚Æ1Om_„>¨2e]Žç…^8vìØŽ;ºtéÒ§OŸ   ƒÁ––ö¿ÿû¿—/_ŽŽŽ¾sçÎŽ;ÌË7hРܗ7oÞÂ… kÖ¬Ù®]»sçέY³æÔ©SK–,qww/÷¹&“i„ wîÜ‘{Ûpæ© DÊ ŽÑÑÑÒ«W¯~þùçEݸqãÆ-GÆWî•SRRâããüýý…ï½÷Þ’%KæÌ™3eÊ”rKZ¼xñÞ½{åÞ0ª†v#Ø‚²‚c=*´|ãÆË]fÕªU………cÆŒ‘R£bâĉÿùÏ6mÚ4yòd'§²&ëO:5oÞ¼¦M›ž8qBîm ²H`#Ê Ž³g϶ùkîÛ·ÏÉÉ©sçÎæggçðððuëÖ8p ,,¬´'æçç?ÞÇÇgâĉƒ–{Û@ã8ÀQ9˜§€Ò(èä{0™L©©©¾¾¾¾¾¾–ãMš4B\¸p¡Œç~òÉ'ÇŸ9s¦§§§Üë ²l×n¤q Êê8Ú\vvvAA··w‘q///!Ä7J{â¡C‡¾øâ‹<úè£ÇŽ«èûÆ"#›7o–{cTÆÅ‹å.A7‚‚ÒÒÒ¬Yb½ àà´3g„uÖâi¢”}Qê>b§(;EÔ»Sºuë&w J¡ñà˜““#„¨Y³f‘q!Ä­[·J{Öøñãëׯÿæ›oVî}SRRä^u› ’»½°~S³S¬WÑmõûÏÚÒÞ½{W¬X1|øðV­ZÉ]>€Ê"5€h<8 !222¤¤h&¨P|ùS§N !,X`üCïÞ½…ßÿ½Ñh|úé§å^!öÂùÔP6OU !¢¢¢RRR’’’ºwï.˜L¦ÄÄDŸÐÐÐâË7lØÐ¼¤äÖ­[»víªS§NhhhíÚµå^!å±C»‘&=ÇØØØ… ~úé§?þ¸tNL||üõë×_zé%WWWi™»wï^½zÕÕÕµ^½z;vìØ±£å+;vl×®]aaaö¸Ì$ÀŽ6FÄ»Ñ~p¬S§N\\ܬY³zôèÑ©S§sçÎ%''·hÑÂò» ßxãõë×Ë]/y0O åÒ~pB 2¤V­Zk׮ݸqc``à€ÆŒ#uh íF°']G!DLLLLLLiFGGGGG—öh‹-´t]F@³H`gÚ?«P2pTæ©ÀGš`Ïv#­L¨É‚àȆyj…`ž¬Dp r´ÀQŽÔŒÔDp kÌS€õŽ€<8ÀÑÒn¤§ fGêD ‡#8Ð/æ© BŽTˆv#ÈàÈ€«„Ô2!8Ð)æ© ¢ŽTűíFš›`‰à8óÔ•GŽYèóÔP G*A»äFp ¤FP‚#àPà¨ÌS@å(žLíFºœPÁ€²ß@1Žô…yj¨4‚#à8àXa´@IŽ”ŠÔ Cp HöIÌS@UažZ]hw@qGÊC»‰à@aèõ€R`‚#ààh-»µ™§€ª#8P &©@ÙŽP JDpìŽyj«Ø3¬1O 6Ap ´ø@ ŽäFj• 8Ð8æ©ÀVŽ€}q€c9”×nT^E Gò!£€ªhóÔ`CGÀŽ˜§. íFP‚#9@…ŽÎQ©‘yj°-‚#ü‰N(”àØ 8–Œv#¨Á€ÑÐ5#8pR#¨Á° æ©åÅ<5ØÁ€C¨¡Ý¨†@NGöG"M 8°3‡§Fæ©ÀNŽ€íq€#@“Žì‰v#hÁ€Ýph#h Á°1æ©§¶Ô¨¶z@GÚÁ<5ØÁ€о-"8¶Ä<µ¤FÐ,‚#›’/52O öFpš¤`‚#Û¡ÝšFplFï8Òµ­s‘»š@j„zF¹K€²¤¤¤È]‚j¨óÔ¨(‚,F~%¬ÄT5`ºž§Vy»Qåå€ãT ± tƒà  ™§‡!86 ëyj€nTíFЂ#€JQ@jd=ÀÁŽ@Uéqžš´ºDpPAŠIÌS€ƒ`‚#P%º›§¦Ý:Fp`5ŤFV°­[·n½òÊ+ 4ðððONN–»¢ÊÔvÿþ}Ã_ÕªUKî5о«€uY€Feee………?¾oß¾~~~ ݺuÛ¾}{hh¨Ü¥U¬¶´´´‚‚‚G}488Ø<èáá!÷Jh Á¨<ÍS+,52O ½ÉËËBT«VÍ/>wîÜÔÔÔÅ‹4H1zôè¶mÛ¾ùæ›Û¶m“{½+V[jjªbúôéQQQr®YLU(ÂR# CF£±Hš6mZ»vílòâ+W® 8p t788¸oß¾‰‰‰—.]²æéûöí{úé§k×®]dŽØÕÕÕÁµIÁ±qãÆ6Ù,(Á€ÊÐn„gϞݿÕ_'++ëäÉ“ƒÁ<YXXhÍ‘Ž[·nmß¾ý‘#G^|ñÅ3f´iÓFѦM›qãÆ;ÖÁµ¥¦¦º¹¹=ðÀ«W¯^´hÑ®]»¤N-lˆ©j ’ô2O­Ýv£v× ¨€+W®˜L¦€€ËA!ĵk×Ê~nnnî Aƒ÷ìÙS»vm!D\\\×®]SRRÞyçxÀÁµ¥¦¦:995nÜ833SiÖ¬ÙÒ¥KÛ¶m+ïFÖ‚#€Ò)/[ÑnÊ–ŸŸ¿aÆÒ}æ™gŠŒdgg !<==-½¼¼„e¿WRRRzzúôéÓ¥Ô(„pss?~|LLÌš5kìàÚRSS §M›Ö·o_WW×ï¿ÿþ7ÞèÙ³çÑ£G¥g¡êŽJ¡¼Ô؛Ō¨£•û×VPP`y·°°°ÄÅîÞ½Û³gÏÒߥèÛøùù !nß¾m9˜••%„ðõõ-»¤³gÏ !Zµje9øðà !Ž=êøÚvìØQ½zuóCC† ÉÍÍ9rdBBÂСClàT†öç©IÐ%%ÿÖß»wÏònNNN‰‹yyy™*²NNNEf~¯_¿.„¨[·nÙÏuwwBäçç[J‰ÖÉ©„“(ì][:uŠŒ<ñÄBˆcÇŽYÿ¦(Á@1JMÌSCÏÒÓÓ-ï–vÊsE§ƒ]\\š7ož””d9¸sçNƒÁТE‹²K B?~ÜrPê5F×vîܹõë×GFF6kÖÌ<(µ'6lXµm &ØZ“&Mä.ÁfΜ9#w %ã_Ž#vŠRÿe¶Ûð¶]EþR¨Œ¢Æ¥5j$„X·nt÷ôéÓÒu­‹/yóæÍŠ~èÏŸ?ßòů\¹ðÄO”[U^^^ãÆ333¥‘{÷î…‡‡{xx\¾|ÙÁµ]¹r¥zõê:uÊËË“F žþy—cÇŽ•½"•ø•Pão‘Mp9 Â4>OM»P$—矾_¿~Ï=÷\Ë–-K»J¢4\šŸ2xðàV­ZõïßÒ¤I|ðAçγ³³§M›&=ºbÅ Ÿ¯­ãêê:þüŒŒŒÖ­[Ïœ9óƒ>èØ±cRRÒÌ™3‹œ m§ÚfÍšåãã³páB!„¿¿ÿ´iÓ’’’BBBFŒñÖ[o………­\¹rúôéÍ›7—{ïiSÕ,(55hß¾}÷îÝ-Z”ŸŸ?lØ0OOÏ3fØä•===ãââ233;tè°|ùrówúåååݼy³´C*£££“““§Nº`Á‚ÜÜÜÖ­[oÚ´éÉ'Ÿ´ÕZ—][nnîÍ›7ÍGŽ?þÁüàƒ–-[V½zõ‡~xÓ¦Mݺu³ßNÑ!ƒ‰ [3)))rWaiiiAAArW¡8òví¸S”mÛq´íºò—¢@eì5þ+T¯^½"Gû9Ì—_~yôèÑ>úHîÍ`/•ø•Pão‘M0U TŒfç©õ”X/77wûöíÒWÂGJO¬. £Ý»w7kÖì…^»(Ç8º§øE»1bD‘/Pq˜ˆˆˆˆˆ¹7”B/ÁqõêÕ«V­JMM­Q£Æã?çããSÆò999ÿþ÷¿.^¼øÀ4iÒdÈ!=ö˜Üë™ivž€²?^î!tçÍ›·páš5k¶k×îܹskÖ¬9uêÔ’%K¤KÞ—ŸŸ?xðàC‡yyyuèÐ!77wÏž=»ví5jÔÈ‘#å^À¦h7¬¦ýcSRRâãã6oÞ¿eË–>|xΜ9¥=eÕªU‡jÛ¶mbbâçŸþõ×_÷ÝwÞÞÞŸ}öY‘ëãê¦øÔÈJ€¢h?8®Zµª°°p̘1þþþÒÈĉ½¼¼6mÚTÚ7ÄoÞ¼Y1yòdsK2$$ä•W^)((øé§Ÿä^!ÈFkóÔjP´@Q´÷íÛçääÔ¹sg󈳳sxxxFFÆJ|JZZZÍš5‹|¦ôœ.\{…[PCj(Æq4™L©©©¾¾¾¾¾¾–ãMš4B\¸p!,,¬ø³-ZäâRtË;vLQ¿~}¹× ¨2R# R4³³³ ¼½½‹Œ{yy !nܸQⳊ©errr||¼››[Ïž=­y_£ÑXdDšþV‹/Ê]‚RIKK“» QåœvæŒPĪ”#8(øLÚ™4aóRƒl¾'ùKQ v *¤ìøÞB3Gé»5kÖ¬YdÜÃÃCqëÖ­r_¡  `ùòå|ðAAAÁ‡~èççgÍûjékˆø"53ålŠÊWb0“I)«a×5-k!l¿ ”óë3v ¬WöoKñõâ"Ðxpôöö6 ÙÙÙEÆïܹ#þè;–aÏž=Ó¦M;}út``à?ÿùÏG}Tîª@U3Ôœ ¤ñàèâââååU¼³˜••%„0Ÿg]\^^ÞìÙ³—.]Z½zõ×_}èС¥]ôz µó©¨G!D@@@jjjVV–å—5I‡2”ø”ÂÂÂ7ß|ó¿ÿýo—.]¦NZF¾Tƒv# Ê´9ž¨¨¨‚‚‚¤¤$óˆÉdJLLôññ -ñ)K—.ýïÿû /|öÙg¤Fh¡Ý¨ªÔÈfÅÒ~pŒurrúôÓO¥ã…ñññׯ_ïÓ§«««4r÷îÝ´´4é<“É´lÙ²x`„ rר‚ÚâíFÀñnݺõÊ+¯4hÐÀÃÃ#<<<99YîŠJ>mÚ4¹«Ð;íOUשS'..nÖ¬Y=zôèÔ©Ó¹sç’““[´h1lØ0ó2‰‰‰o¼ñFHHÈúõë¯]»vþüyww÷þýûµ^½z 0@îu¬¦¶ÔÀñ²²²ÂÂÂΟ?ß·o_??¿„„„nݺmß¾½´y9Y]JB77·ñãÇÇÄĬY³fðàÁU¬ DpJ¦Êv£jS£½±a`%ƒ0TýE*§Üÿp*((°¼[Ú™"wïÞíÙ³g©ïRì/ÁÏÏOqûömËAéûÕ|}}Ë.éìÙ³BˆV­ZY>üðÃBˆO0­hmP ‚# jG´¡Jþ=¼wïžåÝœœœóòòªP prr*2+}ýúu!DݺuË~®ôe¼ùùù–ƒR¢ur*á$ŠŠÖ"8š æÔÀééé–w/]ºTâbvqqiÞ¼¹åùÚBˆ;w †-Z”]RHHˆâøñã–ƒR¯Ñh4V½6(Á(Êæ©Uži7Ö¸|ùòúõëŸ~úi!Ä™3g:Tâb•˜6lØèÑ£Í/~õêÕ„„„®]»•]R›6m7nüÙgŸ9ÒÛÛ[‘——7{öl饪^”†Ëñ*§òÔèl!hƒ‹‹ËóÏ?߯_¿çž{®eË–æoÍ-Bš.M‰Oø sçÎÙÙÙæ/÷[±b…O‰×Öquu?~FFFëÖ­gΜùÁtìØ1))iæÌ™ENÓ®tmP:Ž@Qjj7ª?Ñn¬Ô¾}ûîÝ»/Z´(??ذažžž3f̰É+{zz&&&ÆÅÅ%$$dffvèÐaùòåæïÌËË»yófi‡TFGG'''O:uÁ‚¹¹¹­[·Þ´i—ìÖ0‚# ZêO¬g0Þzë­·ÞzË<2}út[½¸——W|||‰ 4èþýû%ž%- ýþûïí½úF£‘®¤0U ¨“&R#íF@ùrss·oß.}% @pþBóÔšHŽÁ¦ªh÷îÝÍš5{á…ä.ŠÀT5 2AÁÁÚˆB´ë1¢È—»8LDDDDD„ÜJApþ¤‚v£ÁvæLPÕ_€ªŒ?^î!˜ªÔDCÓ®´@ŽÀï”ÞnÔPjt¶ØÁPm% Ú RG@ñ´•êÅÉ1€Ч6„K´@½Ž€RÑh¬¶ØSÕ€"ÛM=´@ÕŽ€òh45ÔŽà½S\»Q»©Ñ‘íFínEÁPíæ&©@ŽÐ5eµµ›Ú@pÀ`Ðvj¤Ý(Ü­[·^yå• xxx„‡‡'''Ë]ÑŸ>üÜsÏÕ®]ÛÃÃ#,,lÞ¼yùùùr¥_\Ž›¦#£,Ø¢@…dee………?¾oß¾~~~ ݺuÛ¾}{hh¨Ü¥‰3gÎtîܹ   W¯^ 4غuëØ±cwîÜùÝwßÉ]šNÑq„~)bžZ‡v#Puyyyyyyvzñ¹s禦¦ÆÇÇ/_¾|þüùIIIƒáÍ7ß”{¥…bìØ±·nÝÚºuëâÅ‹§OŸþóÏ?2díÚµ[¶l‘»4"8ò!5°ŽÑhŒŠŠ²™6mZ»vílòâ+W® 8p t788¸oß¾‰‰‰—.]²æéûöí{úé§k×®mø+WWת׶mÛ¶ððpË5}íµ×„»wï¶Ñ¦EÅ0U ’¿Ý¨ƒÔ( ¶+tâìÙ³û÷ï¯úëdee~ü¸å Ôk4U¯M±nݺüãÏ>ûìÂ… ‹Ì§CGè‹ íF=5_cÚ€\¾|yýúõO?ý´âÌ™3‡*q±JL6lôèÑæ¿zõjBBB×®]ƒ‚‚Ê.©M›67þì³ÏFŽéíí-„ÈËË›={¶‡‡‡ôRU¬Íd2?¾~ýúK—.uvv–a££‚#`O¤FG¾µî66ôÅÅÅåù矉‰),,\¿~}i×£©ÄtðàÁƒ¿úê«þýûKùoñâÅÙÙÙÓ¦M“]±bÅ«¯¾úâ‹/Î;·È]]]çÏŸß«W¯Ö­[>ÜÙÙ9!!aÿþýüq‘Ó´+WÛñãÇOœ8ѬY³—^z©ÈC½{÷މ‰qì€GèŠCÛLO°©öíÛwïÞ}Ñ¢EùùùÆ óôôœ1c†M^ÙÓÓ3111...!!!33³C‡Ë—/7ß`^^ÞÍ›7K;¤2:::99yêÔ© ,ÈÍÍmݺõ¦M›ž|òI›–šš*„8~üx‘Ùp!DãÆ Ž² 8B/u™¤ìÇ`0¼õÖ[o½õ–ydúôé¶zq//¯øøø4hÐýû÷KüÜsÏÕ®]ÛÃÃ#,,lÞ¼yùùùrõ»[·n½òÊ+ 4ðððONN.cá'NÄÆÆÖ«WÏÛÛû±Ç[»v­Üå«GhG•ÚÌM—IQ©€½9s¦sçνzõjРÁÖ­[ÇŽ»sçÎï¾ûNîÒDVVVXXØùóçûöíëçç—Э[·íÛ·‡††_øäÉ“íÚµsrr0`€§§ç÷ßß«W¯E‹½üòËr¯‡j™`kMš4‘»›9sæŒÜ%X«ò¿ÊB˜Tõ‡àø"ª°uíU’Â*RÑ_Š~”±SÔø¯ô½{÷îݻ簷{æ™gœœœöîÝk2dˆbóæÍro ÓÔ©S…‹/–îž>}ÚÛÛ;""¢Ä… d0~ýõWénnnn“&Mþö·¿Y¬¿jü-² ¦ª¡oÒ”'ÆÒ)°×È<5tÈh4FEEYŽL›6­]»vvz»mÛ¶…‡‡[¾þk¯½&„ؽ{·5Oß·oßÓO?]»vmÃ_¹ººV½¶•+W8PºÜ·oßÄÄÄK—._øøñãuêÔyøá‡¥»nnn;wÎÈȸ~ýº6æ¡•™¤æpFjvöìÙýû÷Ûã•óóóGŽ)%E³sçÎ !ÜÜÜÊ}úÖ­[Û·oäÈ‘_|qÆŒmÚ´B´iÓfܸqcÇŽ­bmYYY'OžŒˆˆ0HÇ !„ˆŒŒ,,,,ñHÇ6mÚ\¾|9--Mº[PP°oß¾zõêùùùÙcÓéÇ8Bõ*œ9œÑj´rqq™9s¦åÈ7fΜéììÜ·oß²Ÿ›››;hРÀÀÀ={öÔ®][×µk×”””wÞyç¨bmW®\1™L–ƒþþþBˆk×®_~ܸq6l>|¸§§gBB±cǾùæ¹·±Š¡nKDÆŠP`jP®üüü 6”öè3Ï+H™©‘v#ìÍPõ—¨‚²» ,ï–¸ØÝ»w{öìYê[û:}útãÆÍw/^¥œ%M£Ñ¶H[!8±ÌaQ”|¾ ©Ñ†˜žØÁaÝ%I¶¢ÞÈH»”Œà{²ú’ÝÔhCª››þ³rR#(Á¶VÞdt Ï 2Úˆz‚ÔÇ2r—¨Á¶Pñ°øûó¤gÈ]¾¨:2 R#+%%Eît*---((Hî*P%GTVeÃâŸ/@d´µGFAjõ 8¢"ªéä^µÓ@d¤FP‚#Êc£°øû‹I/#÷:©6"£ 5€ÚQŒER 6‹¿¿ª‚ÈX5R^AZˆŒ‚Ô*ä$wPƒá/?&“ù'í̼ü‡3*MÚ7Ò^9“fƒ";R#¨Gý±œz–Øíœ.cýÞbÔĬôŸ+Uô›ÉªApÔ:ÆÄ¿¼­ôVr¯½Ji2/þ¾j4@ÍŽR<# G7vÌ *ÊðçÆÓ`^4@Ž*Tb@r~&“+Góañ÷Õ$2€VprL©V¯^úØcMš4)33Ó¡o_ä„•RN^ùËtëÖ­Ô-~Lœûb5Ë}i¹ÿ¬…2vŠÒXþÂj›ŠvŠ~°Sˆ¢tK6oÞ¼… Ö¬Y³]»vçÎ[³fÍ©S§–,Yâîîn³÷(­q(Qä'­eÅJ¬O‘ ÙlZî,þ¹Ê¬±"‹•GDZ)))ñññ›7oŽß²eËÀ>®®®rW ƒ‰K±•䫯¾š5kVݺu;uêtîܹäääæÍ›õÕWÅ/Ó ÇR­[·níÚµ‡ |ä‘GÆŒ#]‘@Ÿް Ç8À*GX…à«`‚#¬Bp€Uް ÁVIOOoÛ¶m\\œÜ…è]NNÎâÅ‹Ÿ~úéÖ­[wêÔièС?ýô“ÜEé×êÕ«cccCCC{ì±I“&effÊ]‘Þñ¢p|”h€‹Ü@L&Ó„ ÌßÜ ¹äçç<øÐ¡C^^^:tÈÍÍݳgÏ®]»F5räH¹«Óyóæ-\¸°fÍšíÚµ;wîÜš5kN:µdÉwww¹KÓ)þ@Žm 8¢|‹/Þ»w¯ÜU@¬ZµêСCmÛ¶ý׿þ%¥“S§N 0à³Ï>‹ŒŒlÖ¬™ÜêHJJJ|||@@@BB‚¿¿¿â½÷Þ[²dÉœ9s¦L™"wu:ňÂñQ¢ LU£§Nš7o^Ó¦Må.bóæÍBˆÉ“'›{Z!!!¯¼òJAAóq¶jÕªÂÂÂ1cÆH©Q1qâD//¯M›6Ê]Nñ¢d|”hÁeÉÏÏ?~¼Ïĉå®"--­fÍš-Z´° B\¸pAîêôeß¾}NNN;w68;;‡‡‡gdd8p@îêtŠ?Åâ£DK˜ªFY>ùä“ãÇõÕWžžžr×±hÑ"—¢³ÇŽBÔ¯__îêtÄd2¥¦¦úúúúúúZŽ7iÒDqáÂ…°°0¹kÔ#þ@‹-¡ãˆR:tè‹/¾0`À£>*w-BˆæÍ›KÑÄ,999>>ÞÍÍ­gÏžrW§#ÙÙÙÞÞÞEƽ¼¼„7nÜ»@âD™ø(Ñ‚#J–““3~üøúõë¿ùæ›rׂ,Y²ä¥—^ÊÎÎ~ÿý÷ýüüä®HGrrr„5kÖ,2îáá!„¸uë–Ü‚?¥à£D{˜ªÖ»üüü/¾øÂ|×ÙÙùå—_BÌš5ëâÅ‹+V¬àÚ"ŽWÚN1Û³gÏ´iÓNŸ>øÏþ“ÿŽw0oooƒÁ]d\ºÎˆÔw„ŒøQ>J´‡à¨w÷ïßÿè£ÌwÝÜÜ^~ùå½{÷®X±âÕW_mÕª•ÜêQ‰;Eº——7{öì¥K—V¯^ýõ×_:t(ÿ;ž‹‹‹——WñÎbVV–Â|ž5?Eá£D“ &“Iî 8Ë—/Ÿ>}zi†„„¬_¿^îõ¨°°pôèÑÿýï»té2uêTŠŒzôè‘šššœœly°ÿ¤I“Ö¬Y³téÒGyDîõˆ?¥á£D“è8¢ 6ìÞ½»åÈ­[·víÚU§NÐÐÐÚµkË] N-]ºô¿ÿýï /¼0uêT¹kÑ»¨¨¨”””¤¤$ó_ŠÉdJLLôññ •»:âDiø(Ñ$:Ž°Ê±cÇz÷îÝ£GÙ³gË]‹N™L¦'žx"33s×®]Õ«W—»½KOOŠŠjÔ¨ÑêÕ«¥sb-Z4wîÜ—^z‰ïá• ªÀG‰ÐqÔáÚµkçÏŸwwwïß¿ñG{õê5`À¹kÔ‘:uêÄÅÅÍš5«G:u:wî\rrr‹-† &wi:ÅàG@.^¼(„ÈÉÉ9zôhñG9oÔñ† R«V­µk×nܸ100pÀ€cÆŒ‘ºp<þ@Ç`ªVáà° ÁV!8À*GX…à«`‚#¬Bp€Uް ÁV!8À*Gúg4wìØ!w!âÓO?5Ë—/—»°ÁVq‘»Ð©ˆˆ??¿¶mÛÊ]X‹àòhÑ¢E‹-ä®*€©jPœ‚‚‚û÷ïË]Ep o¿ý¶Ñhœ={v‘ñ#GŽÆG}4??_qýúõ¹sçFGG·iÓ¦M›6Ý»wÿý÷¯\¹RÚËJçÊìÞ½»ÈxóæÍÿþ÷¿[ŽüôÓO£FêÒ¥K»víøé§ŸÉv¿ýöÛÔ©S£££[·nݹsç—_~yß¾}e¬Ñ_|ayrŒTÉÅ‹ããã;tèðÐC………=ÿüó[·n-í<ؼyóðððÛ·o›ïܹӹsçæÍ›>|Xî@kŽÔ!&&F±eË–"ãëׯBôìÙÓÅÅåúõëýû÷_´hQzzzƒ êÕ«wáÂ…¯¿þº_¿~™™™Uy÷9sæ :tË–-ùùùþþþû÷ïÿä“O ‘‘!-pêÔ©˜˜˜•+Wfdd<øàƒ&“)11ñÿøÇ¶mÛ*ôF‹-úðÃ]]];tèàååuðàÁ‘#GnÚ´©Ä…CCC‡zåÊ•™3gš?øàƒK—.½úê«?ü°£w­#8P‡víÚùûû_¸páÿþïÿ̃………R¨êÝ»·bÍš5gÏžŒŒüé§ŸÖ®]ûý÷ßïÚµ«]»v¿ýöÛ?þXé·Þ¾}û_|Q¿~ýÕ«WïØ±cÆ ;wî|üñÇ:ôùçŸKËÌ™3çîÝ»#FŒøùçŸ×¬Y“˜˜8yòd“É4þü ½×ªU«^~ù夤¤Å‹ÿðÃB,Y²¤´åG²fÍš¤¤$!ÄîÝ»ÿýï·lÙrĈòí+šEp NNNÝ»wm:îß¿ÿÊ•+¡¡¡7BäççGDDŒ7®fÍšÒžžžR«òܹs•~ëY³f !>úè#sÏÏÏï£> HHH¸yó¦âĉBˆØØXgggi™~ýú½úê«]ºt©Ð{=üðÃo¾ù¦“““´Ê¯¾úªâìÙ³¥-ïêêúÁ¸¸¸¼ýöÛW¯^}úHwG޹páÂ|мÀµk×6lØP•7ÍÌÌLKK .rt5}ôÑœœœ£G !¤ä:qâĽ{÷JG[ºººŽ=úõ×_¯ÐÛ=õÔS–w½¼¼œM&SOiÞ¼ùÈ‘#/_¾üÌ3ÏüöÛo&LhÔ¨‘½ö}ãr<T£E‹5:{ölJJŠÑhÌÏÏß¼y³»»{tt´y™ß~ûmçÎû÷ï¿páÂùóç«xh£âÌ™3ÒÿƸté’bÚ´icƌٻwï?þñêÕ«7oÞ¼}ûöO<ñDóæÍ+ôvõêÕ«D‘Çߺuë±cÇyä‘~ýúÙt«ÀŸŽÔ$&&æ“O>Ù¼y³ÑhLJJºuëVïÞ½ÍÓ+V¬x÷Ýwóóó4hÖ¥K—‡z(--múôéz—‚‚s“///OQ·nÝÒ&ëÔ©#„¨W¯ÞêÕ«<¸sçÎ={ö=zôÀŸþyß¾}ß}÷]ƒÁ`å[W«V­›åÎ;×®]Bœ9sææÍ›ÞÞÞößôˆà@MÌÁqôèÑÒ´yžúÎ;3f̨V­Ú¢E‹:vìh~ÊåË—+ú.ééé………Òíàà`!D5&MšTö³ ƒt !D^^^RRÒ[o½•e×Í2uêÔ«W¯¶iÓæÀÓ§OŸ;w®]߀nqŒ#5iذáC=tæÌ™#GŽüøã 6 “:räHAAA›6m,S£øã´•²™Ñþá‡Ì·jÕªuúôécÇŽY.SPPЧOŸN:]¿~ý·ß~‹ŒŒ|öÙgÍV«V-**J:›çâÅ‹vÝ&ëÖ­Û´iÓã?¾dÉ’ 6¿hØÁ€ÊH§ÈLž<9;;»oß¾æñ€€!ĉ'®_¿.¬\¹rÙ²eBˆœœœ_­AƒBˆ¥K—fggK#ÉÉÉæ‹ìHÆŽ[XX8vìØãÇK#wîÜyë­·Ž=Ú¢E ??¿ÀÀÀÛ·oÿúë¯_~ù¥¹UyöìÙ;w !ìz=ÅË—/OŸ>ý˜1c†««ëÌ™3§M›Võƒ; 8¦ª¨Lttô¬Y³RRRœ{öìiŽŠŠúñÇ»víÚ¶m[“É”’’’™™Ù¿ÿ%K–üïÿþïíÛ·¥ ëXêÙ³ç7ß|sàÀ¨¨¨æÍ›_½z555ÕËË«víÚ÷îÝ“–éÕ«×Þ½{¿û={Ö­[×ÇÇçÌ™3ÙÙÙ5’®¼íää4iÒ¤‰'Ξ=û_ÿúW½zõ²³³OŸ>m2™úõëj§Ma2™&Nœ˜••õÏþSÊÍ-[¶ôᇎ5ªN:ÒõÃÃÃ×®];yòäþýû;;;—ø€õë×ÿöÛo»téâää´k×®“'OÖ­[÷‹/¾ðóó3/c0Þÿý?þ822²°°ðìÙ³AAAcÇŽ]»v­´L¯^½¾ùæ›ÇÜÝÝýĉÙÙÙ=öØ‚ ¦Nj¿M±téÒÝ»wwìØÑ| §bÔ¨Q 6Ü´iÓæÍ›eÝQ4ÈPöåÁ@?îÞ½›‘‘Q¿~}ëO‚]!8À*LUÀ*GX…à«`‚#¬Bp€Uް ÁV!8À*ÿ®ÕZ@ºŸ"\IEND®B`‚statistics-release-1.6.3/docs/assets/normfit_101.png000066400000000000000000001402761456127120000223400ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A€IDATxÚìÝi\Wÿ?ü6A6îl- ¢lŠ ‚²ˆn€ˆ‚KE±Z• îT±ÔŠXÁ¶®mõ*­¢¸+VQQTDpAÑBµ.¥µ¸RÙ!¹œÿ5w~ „! ¡ðy¿xœœ™9ËLòåÌÌŽP($-Qwàß#°‚ÀXAଠpV8+ߟƒrØyóæ !$&&†¾ wÙÿõÚÒ˜'Nœ8zôèÑ£GËËË™Ä;wÒ:;;Ë»r\öä7oÞÌž=ÛØØ˜ÇãuïÞ½²²RÞÍÐ:_|ñm4___šÒä.×\5ÿEÕoòøê Úr\°Ü=Xbù÷Žd|Áþëðä]€Ž.$$äíÛ·„³gÏzyyÉ»8ÀÊŠ+’““ékÚ}RsÕüUÇ—ÜÉ· °üë p|ºuëfffƼ­®®~öì}mdd¤¤¤Ä|¤ €‘àŽ®{÷î´7 å]h™3gè 77·€€Ñãë_ªÉ]®¹jv¾êƒtíþ$߯8|Ávdß__߇2oÏ;7bÄúúÌ™3¶¶¶ò.`»yøð¡‘‘‘²²r_g[„†††††Ê»NÇé&濲eË–=ZÞÅiMîrÍU³óU¤k÷o$ù~Åá ¶#ÃÈÖ¿ÃË—/—,YÒ¿uuu‡~øAôY‘¢—ž444|öÙg={öüì³Ï˜ Ïž=[´h‘‹‹K÷îÝ?øàƒ &Hn…e6Q¢›þ믿¦L™Âçó-,,ôõõ7lØ ™¿²²rÍš5ÞÞÞúúúúúú#FŒX¹reEE…lëlîš›š-¥ð`ß¾}¦¦¦***¦¦¦îîî{ö쩯¯§V¬XÁáp˜3}#FŒàp8ôr±æ.Áim_½zµdÉggçîÝ»;88¬_¿žÙzsêëëwìØáêêjdd¤®®Þ¯_¿iӦݼy³µµ-Éĉûí·)S¦˜™™õìÙ3$$äöíÛ„+W®Lš4ÉÌ̬GYYY2w½lûËÊŠ*//ôè‘@  o_¿~ýèÑ£††ÂâHiU÷ÉÐhÍyüøñ¤I“ø|¾A``àµk×$óˆírÍUSJõY6{Û¿OXîáRŽ/I­=jZ{$ŠÕ´½ÌæècO†Ýƒjñð‘á+Ž*++›6mÚ|`dd|áÂ…æV4]웹#|ÁÊð DrröìY¦ŠŠŠ$3¬^½š~êîîÞ»wo±ŽÛ¼y³dNÿ>úˆ¾^½z5ýôܹsúúúb‹s8œO?ýTts,³5WHOOÏ>ø@lñ™3gŠfÎËË“ÌCéÕ«Wvv¶ ë­¸è†&OžLÓ£¢¢¤ä nò  ¢–/_.ùéÛ·o…BáŽ;èÛÈ\Awww±Ì'N”Òà555”܇ÃÙºu«hÎk'Z>Ÿ/šMWWwË–-ŠŠŠb[ÉÊÊj—nb³¿±¯¬(ÉEîÝ»×â‘ÒÚî“¡ÑštíÚ5ÑEºwïîççG_ûøøÐlb»\sÕ”R}–ÍÞöï–{¸”ãKÊW ›£¦µ])YÓ6ör«Ž>±¯¯vÙ=X>­úŠc ììì,Ö¼ŠŠŠ;vìh±jbßÌrÿ‚•í8Ê ûÀ‘²°°pttär¹ô­²²rmm­XΞ={2ùé×ß›7otuuiЧ§çÚµkCBB˜k(¿ûî;º–ÙZ,¤žžÞ°aÃÔÕÕ™”S§NÑœUUUÌ%ž***£FòóóëÖ­M100¨¨¨hí:Û8¦¦¦2ßžžžÓ§OïÛ·/³‰sçÎ …ÂçÏŸ—––2…ܳgOii©@ 6õ½&sMMM ¤¢¢Â¤äååµØàªªªãLjˆ4hMáñxÅÅÅìk'V{{{±ïPcccæ­‡‡GÛ»‰åþƲ²bØŽ’GŠlÝ×ÚF“T[[kjjÊTjðàÁ¢WB“v [Ûì2Ÿ°ÜÃ¥_-~ÕH9jdèJÉš¶¥—[{ôI eÞ=X>­úŠkòWSS£o¹\î;wZõÍ,÷/XÙ¾a£Ü´*pܲe MLIIaoܸ!™³OŸ>)))W®\ùí·ß„BáÊ•+iºèºß|ó M411¡),³I/ä˜1cjjj„BáüammM‡JsÆÆÆÒ 渽uëóßüòåË[»Î¶Žaaa4eÉ’%Ì‚ýû÷§‰7nd™`èìÙ³L¢ä÷šlüæ›ohbqq1óÕ&åŸÝ¡C‡Ò›<oÛ¶mô®##£/¿ü’¦çææÖÔÔBNžþœe6éÄŽ±nݺijjÒ×ýõWEE}‘˜—‹ù^®©©aæa³Î6¶j]]Ý’%KôôôBBB¾úê«ÌÌ̆†™‡yd« XWJéYFllìüùó™ùn„BaAAÁ_|1hРaÆ1^hmíšÜ4ËùD[ÛMì÷7–••ä‘ÒöîkU£Qoß¾ýûï¿›lFÑX¼]Èp˜Ëö}"¥‰Øìá-’¾NÙºR¬¦-–Yz/·×wKwwwøˆFMM9ä?~,ój¥xG_°ï®‰:7ŽŠØ¡¡¡Ñ½{wúúÌ™3¥M a™Mú¦ÅŽØêêjfŠ333 æ›åÏ?ÿÍɼURRb®»g³Î6¶Õ_|±y󿆆 ‹m۶ݼy³¢¢bìØ±²­M¶ Ê@QQñÛo¿-//OMM2eж¶6óQNN3ýPûÖNºÖvûýeee y¤¼Ÿî£ªªÊLÍÍ„ó3Ù^d8Ìeû>ißbËPMº²]"ZF{}mÜ=ÞÝá#öauu5S“vlIÆ;:Bß]un;9æ²å†††DhkkkiiiiiÑó,,³Iqçβ²2æmFF†P($„())Ñ»™{&˜gZˆ½µ´´d.ßd¹Næë^ì2±/Ù&mÛ¶¾Øºuë'Ÿ|bggÇãñž>}*sSËPÁÖª­­}öìÙ³gÏjkkƒƒƒSRRþþû fF f6µv¯-v“$6ûûʶ‹÷Ð}’¸\®¹¹9}}úôi&](²™ý±µÚ~˜·} ï\ºRT{}mÙ=Þéá#vÈ3eSRR¢ÿ+¶å›¹9íÞ­ïù¦3AàØÉ1§Ùµk—ðs†ßÌÌìŸþaŸMŠºººˆˆˆºº:BÈŸþ¹lÙ2š>vìXzá<3ñØ×_ÍL\TT”@_‹^ÄÃrÌùš«W¯2:t¨ÅoÕþù‡9§Æ|µ]¿~=33Sz¥|*C[«¸¸ØÀÀÀÀÀÀÐÐð·ß~#„ðx¼#F0÷ujiiÉ\;™µØM’Øìo,+Û^ÞC÷5iÀ€’Û]¿~ýÝ»wÛ}[m?ÌÛ¾)¤_ìÉ«+©ö=údÞ=d;|XvA}}}DDIûÏ?ÿd¦clã7ó{þ‚}Ïß0 9ØÉ­X±"99ùÕ«WGŽñôô>|ø;w˜»Ï>ýôSz½0ËlÒ:tÈÜÜÜÆÆæÚµkôd¥‚‚ºuëè§K—.ýá‡=zôæÍWWW///.—{öìYúœCCؘ˜Ö®“™á¢ººÚÑÑÑÑÑñùóçÌ5ÔR¨«««««Ó ¶fÍšµwï^‡óË/¿4ù\---šóóÏ?¿sç΢E‹ÄæþmK[ÅÎÎN__ÿÙ³g ®®®cÆŒÑÑÑùý÷ß;F3Ðç4´ªvíBz7Ib³¿iii±©l{yÝפèèèŸþY(¾~ýzÈ!ƒ *//¿wïÞ»ØVÛóvù¢ÃòøbO^]IµïÑ'óîÁò»Bæ. ‡|ïÞ½óòòè \.÷‹/¾ Ÿ¶ê›Y^_°­j"ø?ä=P×Å~G±©°˜ëÆöíÛ'='uìØ±&ÿsš;w®è\»,³5WÈaƉ]ÝÂãñDŸ%  ¯^½*6Õejjš““#Û:™¹0̸ˆ”y'Mš$¹ ‡‡}ýÑG1›˜2eŠh6)6hmÙLr&æòåËÍ tww§3«±¯]“%Ù½{7MìÛ·/“xñâE¦ ZÛMMn…ÍþƲ²M’>c“GJ[ºe£5iÆŒb[TSScîmÇyY6{Û¿OZµ‡7y|IjÕ:Ûx$¶±—ÛrôµãîÁþðaùÇXKKKìö %%¥ï¿ÿ¾É~mÉofö[o{·Jî*mù†éÊpªºó;vìÍ›7ÃÃÜœºuëfaa½}ûvÑKÂYfkŽŽŽÎ¥K—fÏžmee¥¯¯?a„ŒŒŒ9sæˆæ8pà­[·bbb¼¼¼ôõõù|¾§§çªU«nß¾íêê*Û:ÿûßÿ~ñÅýúõSSSstt\¸pá•+W¤Ü#ÉHLLìׯùßc!"## ÇO?Ý»w/s†%11qÊ”)zzzjjj}ûö•rCek+(ƒÁƒ—––ÆÄÄ8;;)**jkk»ºº&''gff2·²¯]Û±é&Ilö7–•m/ï¡ûšôÝwßÍŸ?Ÿ¾ÖÓÓ7nÜÙ³g‡ ö.¶ÕÆÃ¼]Ö †ýñÅž¼º’©Q;}2ïìŸÖv»»{vvöرc{öìihhœ™™ÉL{N±ÿf–ãì{þ†é48Âÿ]§ ƒ˜˜˜¸¸8Bˆ¿¿ÿáÇ;ì:›T__âÄ ÒIOI¼ëÚ½·nê"òóóÏŸ??gÎ y—ÚªÝ>ìÐqàGèº;eÈØj×ù 0€¹þíÚýèÃîNU+€ŽÀ nŽV0⬠pV8+€ŽÀ G`#°‚ÀXAଠpV8+€ŽÀ OÞxO8°ÿþÒÒÒnݺ ><::Z[[[Jþ   Û·o‹%òùüK—.É»*òÑ%ÇÄÄÄ;v¨©©9;;?zôèàÁƒ%%%ÿýïUUU›[äñãǪªªfff¢‰ZZZò® €Üp„B¡¼ËðnÝ¿ßßß_WW7--MOOòÅ_ü÷¿ÿ:ujLLL“‹TTT8;;ûúú&%%É»øEç¿Æqÿþý`ñâÅ4j$„,_¾\SSóÔ©S ÉE?~Lnèâ:àxíÚ5www&…Ëå6ìÅ‹M.òèÑ#Bˆ©©©¼ËÐtòÀQ(–––êèèèè舦[YYBžùäæÍ›ò® €}J133ëß¿^^Þ˜•~ÿý÷FFF£F’w…ä£ó?ròý÷ßÇÇÇ»¹¹=zôèÊ•+}úôùþûï™izÒÓÓ###---Oœ8A¹wïÞ¬Y³ž?nkkkaañÇܸq£[·n[·n>žÃáܼySÞ-GÌÍÍèk777GGÇvßÄõë×9NjjjsMtéÒ%ɼ½½9Ncc#}ûèÑ#‡Ædhhhøî»ïÜÜÜ 544"""ÊÊʘ [¶láHuúôiªÇçóûõë×î Õ.D;´#²S™››Oœ8QÞhqÙ8qâСCò.H˸\.—Ë•w)X …ãÇOOOïß¿ÿ”)S”••ïÝ»·cÇŽ~øáêÕ«¶¶¶„''§¨¨(f‘o¾ùFKKkÚ´iLŠ™™Yk·{÷îݘ˜WW×yóæÉ» Þ¡aÆyyy­Y³¦í«Ý©òóó¿øâ‹¸¸8ÚAÙ­[·¾øâ‹ììì·oßöîÝ{Ê”)<Þûø-¨¯¯WUUeþe¢ø|~yy¹¼[ØBà²SUU]¸p¡··w÷îÝå]–deeÉ»l¥¤¤¤§§GGGoܸ‘I¼qㆫ«kXXX^^!ÄÍÍÍÍÍù499¹W¯^ mÙnii)!díÚµ^^^ònƒw¥°°ðÒ¥KíUAÑêÙ³gGŽY¼x±¼«Ø‚¸»»766˜˜˜œ={öÓO?½páÂáÇßÃÖ>|ØØØèââbaaÁ$ª««Ë»U 8‚ìbbbV®\¹zõê-[¶´ûÊëêêx<ž‚B—»š‚žÝŽˆˆMtpp˜8qâÿûß·oß¾£ZzI«ŠŠÊ;ªW«:”Jµ× qCCCfffnnî¶mÛÁ;ªà{n"Ù|úé§oÞ¼¹r劳³3!dݺu³fÍúþûïOŸ>=jÔ¨w]AúÏɺuë:ñ?'^—ûU†v4qâD??¿o¿ý6??_J¶¼¼}ĈGݱc‡@ عsg“ÛmUɬ¡¡aþüù M|ôè!DYY¹ÅÅÏž=;räÈ^½z………©©©>|¸  ÀÉÉÉÓÓ“å(iii©²²r÷îÝ8ðòåK[[Û¶ñ!xß„ÐÞ¬¬¬Úk"×»ª¥ìk×®%„”–– …ÂøøxBHbb"ýhÆ „7n…ÂÚÚZsss33³òòrúiyy¹©©©……Emm­P(¤÷pÄÆÆ666Ò fffJJJÅÅÅô-½ÎÏÞÞ¾®®Ž¦¸ººB***„B¡………••U}}=ýèõë×<oÞ¼y̪üýýékwwwÉŠ¬[·Ž’œœLKkiiéèèXUUE?­©©2dˆ……ECCCMM©©©¡¡áÓ§Oé§eeeFFF„}ûö5×DR444М¿ÿþ;!dÆŒ̲?ýôÓ|@³©¨¨xzz®_¿þ÷ßo®;´´´  }k±/Ž9B¹xñ¢ä²oß¾år¹¢%œ5kŸÏ/++cÓ ì;”îëׯg6MÙ»w¯h‡Jï))pïÞ=BÈÚµk›ËðôéSBHTT}Û¯_?zù¡C‡hÕfΜ)¹S8q‚’••ÅÔšrôèQú¶¡¡ÁÆÆÆÔԴɶ¶‰‚‚‚DŸ1c†–––P&/^¼8p —Ëýõ×_¥ç¬®®622222úóÏ?™6wssÓÓÓ£cÃ××WUUUt|ÔÆÆ&??_¶Âÿ‹Èð£_—íVœª†¶úôÓOûõëóäɱ >|¸xñb>ŸOSø|þâÅ‹yò¤l#›¾bþüù&L8qâÄùóçÓÓÓwíÚemm­¥¥%s/°ÄãñÄÆê¤÷T7çã㟛›kbbbbbâáá±råÊׯ_gee¹ººjjj²YÏ»»?]Lmm-}¡©©)dñ´§½{÷Ι3G]]}çÎ3gÎd9ƒ#Üû—€Þ¢N6[§—vˆ¢;ó;wÞO[@Û!p„öñå—_>|xÁ‚}ô“HÏݾ}{øðáLâ­[·!ÖÖÖmÜâÅ‹ÓÓÓ“’’-ZÄ$²qlllœîK—.={ölåÊ•...²­¶-}1`À€¾}ûnذáÁƒ}ûö½ÿþ©S§tttBBB¸\® ½ …¡¡aLLLnn®½½ýåË—322† 2}útÑ<<OJOµ½ |}}éÕºtÄ‘Ë庹¹¥§§÷êÕ«¹' ÒXjûöíÏž=krJ ö2räȤ¤¤1cÆøûû?xð`ëÖ­Ì k‹'‹‹‹‹ïÝ»gcc.öQ``àØ±c÷îÝ;oÞ¼°°°Í›7‹ePTTܲeK@@€ƒƒÃœ9s¸\nZZZ~~þ×_­¯¯Ïfëzzz±±±Ë–-³´´ôõõÕÒÒ:}útaaáúõëÛ~¼7¡=mÛ¶ÍÖÖ¶ººšI ¼páºuëöìÙCqttápÙ©ªª.\¸ÐÛÛ»{÷îò.K ²²²ä]¶RRRÒÓÓ£££7nÜÈ$Þ¸qÃÕÕ5,,,//âæææææÆ|šœœÜ«W¯„„„¶l·´´”²víZ///y·A;{ðà»»{ccc@@€‰‰ÉÙ³g?ýôÓ .>|¸-«Ý©ž={väȑŋË»®-xøðacc£‹‹‹……“¨®®þ~¶þŽ:Þ'Ž »˜˜˜•+W®^½zË–-í¾òºº:§ Ð宦 g·#""D&Nœøßÿþ÷íÛ·ïègž^Ϫ¢¢òŽêÕª¥Cbí5Hüé§Ÿ¾yóæÊ•+ÎÎ΄uëÖÍš5ëûï¿?}úô¨Q£ÞQ}ßuɆþ{°nÝ:¹ü{ðoé¢Ëý*C;š8q¢ŸŸß·ß~›ŸŸ/%[^^žŸŸŸ‘‘‘ŸŸ3£ÌÍÍ###óóóííííííiÊ¢E‹¢££544TTT tòäɆ††+VØØØhhhxxxܽ{—YCbb¢šššŽŽÎ Aƒ~úé§&ËàááA/G«¬¬”~Q`QQQ`` ‰‰‰žžžÏ¹sçD×sáÂooo>}úDGG×ÕÕµ{«Ò˜©¨¨H,=>>þÖ­[JJJmYys}æïïOquu577—\°ºº:..ÎÆÆ¦[·n¦¦¦áááýõ›^hU‡ÒýáÛo¿ÕÒÒRRRêׯßòåË›kdé=%*33sذa4X¡,X@¹|ù²XΠ  EEÅ·oßÒ·©©©ÇÎÎŽÉÅáp ‰ÈN6fÌBˆ»»»hë]ºtÉ××—ÏçòÉ'ÿüóO“Åkm‰]=¦­­Ír ã‡~(ÛþsíÚµ1cƈ>ŠŠŠlgßÐaaÄdÇáp¶nÝjkkûñÇ_»v­Éñ¡£G„„„p8œ´´´¡C‡¦¥¥?žfxòäɨQ£455½½½iJJJ —Ë]µjÇÛ¼ysPP““SCCÜ9sJJJ¶oßzãÆ BÈÚµkccc===ƒ‚‚jkk>}ú”~ZVVfddDÙ·o_sM$ECCÍùûï¿Bf̘Á,ûÓO?}ðÁ4›ŠŠŠ§§çúõëÿý÷æºCKKkÀ€Ò÷±ûâÈ‘#„‹/J.ûöí[.—+ZÂY³fñùü²²26½À¾Céþ°~ýzfCÑÑÑ„½{÷Šv¨ôž¶äÅ‹är¹¿þú«ØGOŸ>%„DEEÑ·ýúõ£÷˜:tˆVMAAaæÌ™’;Õ‰'!YYYL­ !G¥olllLMM›,Ok›(((Htñ3fhiiµXkÊ××WUUUt„ÒÆÆ&??¿Å«««ŒŒŒŒŒþüóO¦ÍÝÜÜôôôhÁd ¥#:~ ãë²ÝŠSÕÐVŸ~úi¿~ýbbbž}ú\¸pA².í~ìÛ·oÃÂÂFŽ9{öl&QIIiâĉÚÚÚÞÞÞ'Ož”-pdÓRÌŸ?„ 'Nœ8þ|zzú®]»¬­­³³³µ´´dî–x<žØXôžjr%{÷î3gŽººúÎ;gΜ)eâ@ŸøøøìììÜÜ\•+W¾~ý:++ËÕÕUSS“M±ßÝýébjkké MMMaKz¢Wˆ¢»Ó;w¤/HwÅþ%äG›­“ÖttL8h¡}|ùå—‡^°`ÁG}Ä$Ò3P·oß>|8“xëÖ-Bˆµµu·xñâÅôôô¤¤¤E‹1‰lF'OžüôéÓœœÑÛMhi»wï.:3ÈÝ»woß¾­¥¥EoD½~ýº»»;ói»Ü¯ JMMíôéÓOž< ):Õ­[7ÙÖÜ–¾xñâEii©••Uxxxxx¸@ ضm[DDÄŽ;\]]eë…æÜ½{·¾¾ž‰æ«««‹‹‹EÛœ´ÔS’ë<~üø´iÓ‚ƒƒwìØ¡¡¡!½C‡ÕÐÐÈÌÌÌËË6l!ÄÝÝ] ?~¼°°^Â+_4\cбdBHCCÃÉ“'›[jüøñ=:qâ„§§§ “^QQA¡7‡IAÛ¼¸¸X4‘Ž5Òý§Å­“VvtL¡}hjj&%%Mžüðí[·ÎŸ?Ÿn®®®.!!A]]NEÔâÖ[ÛÐ1!p„v3iҤݻwÿòË/Lв²rbbâ¤I“œœœ‚ƒƒ…BajjjYYÙÚ>‡‡‡‡ššÚìÙ³§L™bll|ùòåÌÌL]]Ý‹/ž:uŠN§"éäÉ“_}õ•½½=—ËnÐÆÆÆÉÉ)))iüøñöööÁÁÁõõõGŽyòäɾ}ûèÃå6mÚìèè8iÒ$EEÅÔÔÔwñ ¶ÄÄÄ¢¢¢˜˜˜Ý»w÷ïߟÞÇ}éÒ¥gÏž­\¹ÒÅÅE¶Õ¶¥/ зoß 6yòdæÌ™¦¦¦ÊÊÊ&&&¡¡¡Ìô1ì{¡Å¥™³³³‡®©©Ù»w﨨¨ššš&÷ é=Åhò–^*..®¹ÊBtuu™ú8Ç9sæˆfŽG „„„hhh899 ›š4gêÔ©|>¿É͵ª‰ªªª-ZdllL/W Še?P(LKK8p ºº:ŸÏ÷ôô¬äÂÃÃ>· 9 £Ø¶m›¼‹ÒàG`#°‚ÀXAଠpV8+€ŽÀ G`OŽéÐ89?©Ï<F;<¡PnÍ‹åp8cÇŽ•ü(>>žÃáܼySÞ GÌÍÍèk777GGÇvßÄõë×9NjjjsMtéÒ%ɼ½½9Ncc#}ûèÑ#‡Ædhhhøî»ïÜÜÜ 544"""ÊÊʘ [¶láHuúôiªÇçóûõë×î Õ.D;´#²S™››Oœ8QÞhqÙ8qâСCò.H˸\.—Ë•w)X …ãÇOOOïß¿ÿ”)S”••ïÝ»·cÇŽ~øáêÕ«¶¶¶„''§¨¨(f‘o¾ùFKKkÚ´iLŠ™™Yk·{÷îݘ˜WW×yóæÉ» Úßùóç×­[wçÎÆÆF›%K–´=Ý©òóó¿øâ‹¸¸8ÚAYqqñªU«®]»&\\\"##]\\Þ1êëëÝÜÜ8ÎåË—åÝ$Ð Avªªª .ôööîÞ½»¼ËÒ‚¬¬,y­”””ôôôèèè72‰7nÜpuu ËËË#„¸¹¹¹¹¹1Ÿ&''÷êÕ+!!¡-Û---%„¬]»ÖËËKÞmÐÎÒÓÓGmaa1uêTUUÕ´´´ÀÀÀÿüç?ááámY­èNõìÙ³#GŽ,^¼XÞumANNŽ···––VHH—ËMMMõöö>~ü¸§§ç{.ÉêÕ«¯^½:xð`y7 ´NUƒìbbbþøãÕ«W¿‹•×ÕÕ yWQèÙ툈ÑD‡‰'^¿~ýíÛ·ïh»ôzV•w´þVuhcc#s*¿íV¬Xa``PPP°yóæ/¾ø¢  ÀÄÄ$66öÕôý4‘ „Bá¬Y³455oÞ¼™˜˜¸iÓ¦Û·oDGG¿çšfdd$$$ðx¹ø÷Aಛ8q¢ŸŸß·ß~›ŸŸ/%[^^žŸŸŸ‘‘‘ŸŸ3£ÌÍÍ###óóóííííííiÊ¢E‹¢££544TTT tòäɆ††+VØØØhhhxxxܽ{—YCbb¢šššŽŽÎ Aƒ~úé§&ËàááA/G«¬¬”~Q`QQQ`` ‰‰‰žžžÏ¹sçD×sáÂooo>}úDGG×ÕÕµ{«Ò€©¨¨H,=>>þÖ­[JJJmYys}æïïOquu577—\°ºº:..ÎÆÆ¦[·n¦¦¦áááýõ›^hU‡ÒýáÛo¿ÕÒÒRRRêׯßòåË›kdé=Ũ­­½sçΘ1c455iŠššš››ÛÓ§O«««Å2)**2Ñyjj*‡Ã±³³c2DEEq8œÂÂB"²S………3†âîî.Úz—.]òõõåóùÆÆÆŸ|òÉ?ÿüÓd [ÛDbWO†……ikk³éý‡–””Ìš5K__Ÿ¦hiiEFFܺu‹Í®]»6f̱ÃGQQ‘ÕþG!äÙ³gÓ¦M ïÙ³'û¥ ƒÀ?| ;‡³uëV[[Û?þøÚµkM^DxôèÑ   ƒ‡“––6tèд´´ñãÇÓ Ož<5j”¦¦¦··7MIIIár¹«V­âñx›7o rrrjhh˜3gNIIÉöíÛCCCoܸAY»vmll¬§§gPPPmmíáǧNª¡¡Ñä];”²²òîÝ»™·à³Ï>ûûï¿MMM !ãÆ344œ4i’‚‚ÂáÇG•’’2yòdBÈ¡C‡‚ƒƒ{ô袠 ’’rìØ±voÕ‰'&''Ìš5+00pèСtPOOOOO¯-k–ÒK–,111Y·nݦM›œ%— ß»wïˆ#&L˜PTT´{÷¢+W®°éöJ9pàÀüáççgooåÊ•øøøË—/gee‰Í0 ½§Dq¹Ü›7oòù|&¥¡¡áöíÛvvvªªªb™}}}<˜““ãëëKÉÉÉ!„½xñ¢G„¬¬,Ñ¥–,Ybnn¾fÍš74ˆ&ÞºukôèÑÓ§O1bÄÑ£GwìØ!vîÜÙd×´ª‰döäɺ#‰&BhƒH_üìÙ³#GŽìÕ«WXX˜ššÚáÇ œœœ<==ØŽA…ÂéÓ§kkk'%%uüëA  BhoVVVíµí!9ÞUÝ\×®]K)-- …ñññ„ÄÄDúц !7nÜ …µµµæææfffåååôÓòòrSSS ‹ÚÚZ¡PHïáˆmll¤ÌÌÌ”””Š‹‹é[zŸ½½}]]Mquu%„TTT…B ++«úúzúÑëׯy<Þ¼yó˜UùûûÓ×îîî’Y·n!$99™–ÖÒÒÒÑѱªªŠ~ZSS3dÈ ‹†††ššSSSCCçOŸÒOËÊÊèî¾}ûšk")hÎßÿ2cÆ fÙŸ~úéƒ> ÙTTT<==ׯ_ÿûï¿7×ZZZ ¾µØGŽ!„\¼xQrÙ·oßr¹\ÑΚ5‹Ïç—••±éöJ÷‡õë×3¢gQ÷îÝ+Ú¡Ò{JJ#ìÙ³'&&ÆÉÉIWW7##C2ÃÓ§O !QQQôm¿~ýè=懢USPP˜9s¦äNuâÄ BHVVSkBÈÑ£GéÛ††SSÓ&KÕÚ& ]|ÆŒZZZBè ñĉE,X@IHH¾luuµ‘‘‘‘‘ÑŸþÉ´¹›››žž-KñññÊÊÊ………´.ƒf¿ì¿— ? ÐñuÙnň#´Õ§Ÿ~š’’3a„^½z‰~TPPððáä¤$f¼‡Ïç/^¼822òæÍ›tdËÐÐpõêÕ¢#ìÝ»7}íááA aÎ…yyy]¼x±ªªª{÷îyyy***Ì•R/^¼ „TUU±,ùÑ£G׬Y3oÞ¼Y³fB KJJ~þùgf JYY9"""44´   ¡¡áÑ£G ÆÆÆôSCCÃ… ._¾\Ê&&Ož,y>nÿþý?–²Thhhhhè­[·233333³³³333W¯^½fÍšÏ>ûL¶nbÓÍQPP S =zôˆÍ&'''''ÓO[ìöJKµdÉfÙ5kÖlß¾}ÿþý¢C‰Ò{JJ]>ÿüsz··7­ˆccc;;»ÌÌLBÈ«W¯ŠŠŠ¾ûˆˆìì쀀€œœ@àççǦÁ­¬¬ÆG_s¹\‡ŒŒŒæ2·ª‰šÓÐÐpòäÉæ>?~¼¾¾þ„ ÒÒÒâããiø»gÏžíÛ·B***¤W'''§¬¬lݺuL›/]ºtìØ±œ1cF‹[§»ÊêÕ«Ćlà_#´ÇÛµk—‹‹ËÂ… >,úQII !„^¼È gÄJJJè¼µµµØy.ѳŠô·S2…ÒÖÖÎÍÍÍÈȸwï^IIÉ;wXûîݻӦMsuuMJJ¢)÷îÝ#ÿ ÚÄ2?~ü˜^÷Ö¿Ñôç†\°`ÁСCÅoܸ!=pdÊÎÎnñâÅuuuGŒŒ\³fÍàÁƒGŽ)C7±é‹æ¨ªª&%%Ѳ¶¶¶...>>>£G¦\¶Ø ì;”bkk+z§šššµµõo¿ý&šGzOI©KIIIUUÕåË—ÃÃÃ\\\,yöß××7!!áÕ«WtðÕËËËÕÕ5;;›’••ÅãñFŒÁ¦Á­¬¬DßJŸ ªUMÔœÊÊJz¡j“„B!!dûöí¯_¿^¾|9ý‡G[[;&&fíÚµZZZÒWNÇÅ›Üèõ¸-n½¢¢"$$ÄÛÛ{áÂ…lªGhƒž;wîöíÛ=*šN«Ä®N£¿ õõõôm‹¿XÍ©­­ LOOwvv9rä¸qㆠâääÄfÙW¯^?^SS3--ùU¦ñJBB‚ä Ø}úô¹pá‚d]Ø_ÚÅÒÛ·oÃÂÂFŽ9{öl&QIIiâĉÚÚÚÞÞÞ'Ož”-pdÓRÌŸ?„ 'Nœ8þ|zzú®]»¬­­³³³µ´´dî–x<^ee¥hŠôž’¾¶nݺyyymذaòäÉGŽùøãÅ2øøøÄÇÇgggçææš˜˜˜˜˜xxx¬\¹òõë×YYY®®®ÌM6Ò½»ûÓÅÔÖÖÒšššÂ–õDÏÑ_¹råæÍ›úúú®®®tÇ611‘¾ Üû—€ÞN‚·¾sçÎøûû3óL½y󦱱1>>ÞÄÄ$$$äý4´Gh_~ùåáÇ,XðÑG1‰–––„Û·o>œI¤÷oZ[[·q‹/^LOOOJJZ´h“Èfı±±qòäÉOŸ>ÍÉÉp¢¥íÞ½û¨Q£˜Ä»wïÞ¾}[KKëÃ?$„\¿~ÝÝÝù´í÷+ˆQSS;}úô“'ODGŠAuëÖM¶5·¥/^¼xQZZjee.¶mÛ±cÇWWWÙz¡9wïÞ­¯¯g¢ùêêêââbÑ6'-õ”Ø Ož<éï’2iÒ$&‘Þ†Üd 3tèP ÌÌ̼¼¼aÆBÜÝÝÁñãÇ é%¼ò%6eK&,NUBnÞ¼©¡¡1dÈ!C†ÐôsçÎq8œç§m^\\,šHÇéþÓâÖéÝñ›7oMõêÕòåËÝÝÝ8ü[ p„ö¡©©™””4yòä­[·2‰NNN&&&‰‰‰S¦L¡?Õ/_¾Ü¼y³©©iÛHïc°±±aRÒÒÒ*++[tY¶lÙ™3göìÙ3`ÀÑtkk믾újÒ¤I4þ¨¨¨ðõõ­¯¯§w¹ZXXlÞ¼944ÔÐÐR^^¾eË–ömF‡ºsçθ¸¸+V0ç7+++׬YÓÜcÙhK_Ü¿èС«V­Š‹‹#„(((ÐHNQQQæ^hNyyybbâÒ¥KéÛ¸¸¸ŠŠ ±§¼Hï)±ÒÛœøá‡àà`fÀuÏž=„&x¥¨¨èå啞žþøñczñ뀺wï¾~ýú/p|3vëÖ>ÿ†î999ùùù´Øœªž3gÎ;wîß¿Oïë*..NII=z4}+…““Ó‡~¸uëÖùóçÓÍÕÕÕ%$$¨««Ó©ˆZÜúªU«V­Z%šhnnn``€'Çü» p„v3iҤݻwÿòË/Lв²rbbâ¤I“œœœ‚ƒƒ…BajjjYYÙ”••Û¸955µÙ³gO™2ÅØØøòåË™™™ººº/^¿É͵ª‰ªªª-ZdllLGOƒ‚‚bccYNÇC9s†ö—‰‰IxxøóçÏ™è§sçÎmnÙ‚‚‚±cÇöìÙ“Ïç1â—_~a¿Ý&+Žéxàß«Ëv+GØ5þG}zúôé·nÝÚ´i›ÅwïÞ-úle9àpäö]ÉåË—mll$gÇ`tþÀqÿþý`ñâÅÌçË—/×ÔÔ¿¼¼\Þ5k“ÖÖëÍ›7Ë–-KOOùò¥““ÓÆÜäjÝÜÜ8ÎåË—å]E€÷ c§Æá¡ðÝ­~Á‚C‡eÞ>{öÌÑÑ1111**Š™êH,Ͻ{÷üýý?ùä“¡C‡öíÛ·¹UIQZZJY»v­——×ûmÍŽ«°°ðÒ¥KíÕ YYYÌëgÏž9rdñâÅï³:b-Ï»ÛÊ¿›} ''ÇÛÛ[KK+$$„Ë妦¦z{{?~ÜÓÓ“òðáÃÆÆF f‘NpIO«êUQQ1`À€Çñùü´´4ŸóçÏKŽy¯^½úêÕ«MÆ”Ç΋ÃyÏÔ×ן  gÍš¥©©yóæMzx®^½ºÿþÑÑÑׯ_'ÿû—lݺuíø/™@  …ïbÀ˜½VÕkóæÍ¥¥¥»wïþè£!‹-êß¿ÿ’%K233E³edd$$$ðxø…®¨CíB[ …ï9|¤Q]}}½”< :tè¡C‡Z»þ°°0Bˆ«««¹¹9MÌËËóóó300022òóóËËËcò›››GFFæççÛÛÛ7ù( êê길8›nݺ™šš†‡‡ÿõ×_̧‰‰‰vvvjjj:::ƒ úé§ŸD×¼hÑ¢èèh •AƒßØØø“O>ù矚ۮ”º4×ò’eÊÓÚf—ÒƒMVMzË_¸pÁÛÛ[GG§OŸ>ÑÑÑÍuŸ û†Øe£aaaÚÚÚ„öûÀÇKJJfÍšÅüS§¥¥YPPpëÖ-ò¿ëÃ?d¹iéGGddäÎ;ù|>Ç366ž7ožè~¾1 !×®]3fŒØ5ÐÌ|jÒµª^ûöí344œ>}:}kaa”ýçŸ2yž={6mÚ´ððpÉ«kº!´7++«÷°HËhç¾›.^»v-!äâÅ‹¢‰ÿý·‘‘‘‚‚BYYYsy¨ùóçBŸ¯¢¢âââ2pàÀÄÄÄyóæq8{{{&³±±1!ÄÏÏoÅŠ„aÆÑñ333šóÌ™3***æææQQQK—.µ´´är¹{÷î•Þ,÷îÝ#„¬]»¶¹ ÉÉÉ„ôôtÑöçp8ÏŸ?§)ýû÷700 åqwwwpp ­KÙ¸q#mm333+++MM͈ˆˆM›6¹¹¹BšlØëÒ\ËKn”)Ok›]JJnEzi<ÈårõôôæÍ›·`Á+++BȾ}û$+ÞÚ}#((Htñ3fhii±9ZµÐ3þ‰‰‰¢‰$„¤¤¤…ˆˆeeå/^ì߿ǎ999µµµÍ­­Å££oß¾JJJóçÏÿæ›oüüü!ááá24fFF‡Ã111Y¾|ùçŸîääDqrr¢ÝĦeØ×ëÍ›7'44T4ñçŸ&„:tˆ¾#GŽìÝ»wee¥™™ÙàÁƒÙ”á|üuÙnEàØþä8òþšLo'4Ú›2eÊòåË—/_¾lÙ²3fôèу²páBÑŸ¾VVVõõõô£×¯_óx¼yóæÑ·fffJJJÅÅÅôíÆ !öööuuu4…N#_QQÁcýúõ̆¢££ !4.aÇÚÚZKKKGGǪª*𭦦fÈ! Rº£Å áéÓ§„¨¨(ú¶_¿~ôžtúsøúõk…™3gÒOE5:Õ@VVSkBÈÑ£GéÛ††SSSÉ-J¯‹ô–Û¨XàȾ٥÷ èV¤—¶¦¦ÆÔÔÔÐÐðéÓ§ôÓ²²2###)c«ö÷8Ò݉'Š&.X°€’  }}}UUUE;mllòóó›\[‹G!$--¾ýúõëÙ³'mXöY]]mdddddôçŸ2ýâææ¦§§G[ öõúõ×_ !‘‘‘¢‰gÏž%„ìܹ“¾WVV.,,¤ÕDàØ•uÙnÅ%½Fò†˜æÒÛLôädz¶¶^±b›» 8'Ð%益¿=Ò<|ø0))‰ÏçÓ>ŸO‡oÞ¼éììL144\½zu“×™)((p8œK—.=zôÈÔÔ”’œœLç!yyy***ÌeL/^¼ „TUU1‹8°wïÞô5D aNŸyyy]¼x±ªªª{÷î´`K–,a–]³fÍöíÛ÷ïß?yòd&±°°°¤¤äçŸVUU¥)ÊÊÊ¡¡¡´:²166¶³³£×i½zõª¨¨è»ï¾‹ˆˆÈÎÎÈÉÉtX¨EVVVãÆ£¯¹\®ƒƒCFF†d6éuéÛ·¯”–—Ž}³·Øƒ,KÛÐÐðèÑ£„„:lLwª… ._¾¼í…”RÓ†††“'O6÷éøñã[µèëëO˜0!--->>žþ“°gÏžíÛ·B***!¥¥¥ 66–^ØpìØ±ÈÈHÿ¢¢"MMM±µµØ¶&L ¯9Ž££ã±cÇ!ì3''§¬¬lݺu̳^•••—.]:vìØƒΘ1ƒM±¯-¿†††h"ÍC+˜——·zõê„„„&'|è"8vl²]¡ØÜR­][KæÅ‹YÞ -æÉ“'„Ñ›ÙßU-ª¤¤„"vñ"½t¯¤¤„FZÖÖÖÍÝ ªªš””´dÉsss[[[ŸÑ£G+))B´µµsss322îÝ»WRRrçα‹2™h•BcɆ­­-]-¥¦¦fmmýÛo¿‰æ¡ƒF¡¡¡¡¡¡bE}üøq[GBˆ¯¯oBB«W¯è`­———««kvv6!$++‹Çã1‚ÍzèYEFs÷=´X)-/ûfo±Y––^Ú¿ÑtéSK¶jßhNee%½¢·IÂÖÿ¸}ûöׯ_Ó³´}bbbÖ®]«¥¥EÉÊÊRQQÑÑÑ¡™gΜYSS3þü´´´Y³f‰­ªÅ¶ÛO˜cŽê±lÌßÿ4s€±l"öõ¢}$vÍ.ªutt***BBB¼½½.\ØÚ–èL8vl²Š .¾ãIydpóæMzab×CÄÆ/i(ÃÜ C›3þü &œ8qâüùóééé»ví²¶¶ÎÎÎÖÒÒ LOOwvv9rä¸qㆠB¯¯j/<¯²²R4…†M ’s›÷éÓ§›óññ‰ÏÎÎÎÍÍ511111ñððX¹råëׯ³²²\]]%G•šÄò~öëÒ\Ë7w?~kÕÖÖ²ïA饽pá‘ØÍÞݽҵµµô…¦¦¦ Ñ¡ºººW®\¡7V»ººÒª™˜˜BèùbQ#GŽ$„ܹsG†¶mn?¡ƒ”,“‹…¤ôæqº›&b_/}}}±ÛŒž?N166Þ¹sçƒüýý鵄7oÞ466ÆÇÇ›˜˜4÷´€ÎcçE¿š…Âÿwou‡‰ rrr‚ƒƒÛ>™…¥¥%!äöíÛÇgé-¢ÖÖÖ-.þâÅ‹ÒÒR++«ðððððp@°mÛ¶ˆˆˆ;v¸ºº¦§§'%%-Z´ˆÉ/ÃmàŒ»wïÖ××3CMÕÕÕÅÅÅîîî’ÕéÞ½û¨Q£D¼}û¶ôð—¡C‡jhhdffæåå 6Œâîî.Ž?^XXH¯:mGÒë"¥åÛesBÈÅ‹Ù÷ ôÒÒr¯_¿.Ú_7nÜh¯¶›F‡Ž£“ö>UM¹y󦆆Æ!C† BSÎ;Çáp\\\=ztâÄ OOOz› EÛèµ2·­˜V5&í—ââbÑD:ÖHð›¨Uõâñx}úôÉÉÉM¼pá‡Ã±µµ½yó&!dóæÍ¢Ÿ¾zõjùòåîîî¡ëÀt<ßût<-*))™:u*‡Ã‰‰‰iûÚœœœLLL_½zES^¾|¹yófSSS6©»ÿþàÁƒ¿úê+úVAAþ˜)**Ò»IDlÒÒÒ*++e*//OLLdÞÆÅÅUTTˆ=iÐÁÁÁÚÚú«¯¾zýú5M©¨¨ðõõŒŒìÖ­[ÛJQQÑËË+==½  €Ž èÞ½ûúõë[¼ÀQ†I"¥×EJË·e£¢Xö ÝŠôÒ:99YXXlÞ¼™™“¥¼¼|Ë–-mìª[·nwîÜažk’“““ŸŸO_Óó°Í‘a[sæÌ±³³+++£o‹‹‹SRRFmdd¤ªª5gÎf¨^ Щ ½½½ekÛ&µª1œœ>üðí[·2ýRWW— ®®NgSj±‰ZU/BÈìÙ³ÿýwæñ³ÿýwZZš···¹¹ùªU«Än`nŽ9þ|»ì ÿ qìt˜FJÞ±ãöíÛé·pmmmQQQnnn]]ݶmÛD#3eeåÄÄÄI“&999 …ÂÔÔÔ²²²(++·¸ø€úöí»aÆôíÛ÷þýû§NÒÑÑ¡ÏÕPSS›={ö”)SŒ/_¾œ™™©««{ñâÅS§Nùúú¶¶¨†††111¹¹¹ööö—/_ÎÈÈ2d3]Åãñ’’’Æooo\__äÈ‘'OžìÛ·¯]¦Pöõõ=|ø0!„Ž\.×ÍÍ-==½W¯^Í=vŽtnß¾ýÙ³g¢÷ñ´Hz]¤´|[6*ÊÃÃCzŠmEJi¹\î¦M›‚ƒƒ'M𤍍˜ššÚ^â9rdRRÒ˜1cüýý>>úúúúúú>>>W¯^e>"±IOž<™9s¦©©©²²²‰‰Ihh(3‹Jvv¶‹‹‹ººú|^^^žœœ¬««;jÔ(É5ÓsmÉÉÉLJ\\!䯿þb2ggg>\SS³wïÞQQQ555M²  `ôèÑÚÚÚîîîgΜi±MZœŠ…©,!DWW—I¡OŸ3gŽh6ÑéoAHHˆ†††“““°©¹c¦NÊçó›Û¢”ºHiy±ŠMÇþ٥÷ ØVZlù .Œ1‚Îꢩ©yàÀÒüt<ì YUUµhÑ"ccczÙ_PPPlll{MÇC®¤¤$&åÌ™3´MLLLÂÃÙ‰<©´´´ª««óù|OOÏS§N5·¹VB‰9†Ø7&í—±cÇöìÙ“Ïç1â—_~imãH©—d½~ýzöìÙ–––|>ìØ±Í­Óñtq]¶[9Âsé[§amm}ÿþýw½ü‹˜››;88ÐÑ>ø·+++ëÑ£›!íV©¬¬¬¬¬ÔÓÓ“wýÞ«wÔ˜ ¾á;¥.Û­8U Ð ’wé¶ 555555yWî}{G ïnŽV0âðÎùúú²y@‡ÀàÛ¶m›¼‹ÐpªXAଠpV8+€ŽÀ G`#°‚ÀXAଠpYÄÆÆrþ/MMMggçääd@Ðd…Þ½{O›6íÊ•+ÒWÅ irëqqq|>¿_¿~òn†öann ïRüÿÜÜÜ›+êĉ;Nyäèúõë'55UÞé Иÿ";á°ùkÇ-Nž<9*****jÉ’%cÇŽýí·ßfÏž½lÙ²&óÌŸ?ßÀÀààÁƒÃ‡ß¹sgs«5fÌÉÞ½{7&&ÆÆÆfåÊ•ònrù»uëÖ¤I“ ÔÕÕ ˜˜ØÐÐÐÆur¹\.—K_çççܹsç}VJl£¢åyw[ù—ª¯¯çñxbÿqéêê6—ÿÍ›7sçÎ511QWW6l˜ØqÒ?í† +=Oqqq```¯^½Œ'Nœ˜››Ûd¶úúúÁƒ2DÞuxßxò.´'!JÏоã‚ †ʼ}ö왣£cbbbTT”¾¾~“yîÝ»çïïÿÉ'Ÿ :´o߾ͭJŠÒÒRBÈÚµk½¼¼Þyƒvl?--ÍÇÇçüùót@Wú§@aaá¥K—¤oäääx{{kii…„„p¹ÜÔÔTooïãÇ{zzŠå\½zõÕ«W,ïj¼o¡ÝèëëOž<911±¨¨ˆ ÅôîÝ;%%ÅÙÙùóÏ?—íÌ”P($„¨¨¨È»ºÿO]]ÇSP`5xߨØHi¯ñ³O?ýôÍ›7W®\qvv&„¬[·nÖ¬YßÿýéÓ§G%ï†y·ZÕì¸ôÿ¨uëÖ±ù?jóæÍ¥¥¥»wïþè£!‹-êß¿ÿ’%K233[üT6@(¾‹cö233sss·mÛÆ\HÓ$¡P8kÖ,MMÍ›7oÒo°Õ«W÷ïß?::úúõë¢9322x<ü€BWÔ¡¿vá_‡FuõõõRò 0`èС‡’á¤jXX˜¿¿?!ÄÕÕÕÜÜœ&æååùùùùùùååå1ùÍÍÍ###óóóíííííí%WX]]gccÓ­[7SSÓððð¿þú‹ù411ÑÎÎNMMMGGgРA?ýô“èš-Z­¡¡¡¢¢2hР“'O644¬X±ÂÆÆFCCÃÃÃãîÝ»¢ÅøöÛoµ´´”””úõë·|ùòººº&ëXTThbb¢§§çããsîܹæZ#33sذa4j¤,X@¹|ù²XΠ  EEÅ·oßÒ·©©©ÇÎÎŽÉÅáp !t),,Œ^-àîîδ6!äÒ¥K¾¾¾|>ßØØø“O>ù矚+¡”º4×ò’eÊÓÚf—ÒƒMVMzË_¸pÁÛÛ[GG§OŸ>ÑÑÑÍuŸ û†Øe£aaaÚÚÚ„8~øá‡l2ïÛ·ÏÐÐpúôéô­……EPPPvvöŸþÙâ§’¤‘‘‘;wîäóù<ÏØØxÞ¼y¢û ûÆ$„\»vm̘1bgäÙÔúÅ‹£FŠ-//—žóáÇ%%%³fÍbþïÕÒÒŠŒŒ,((¸uë“íÙ³gÓ¦M ïÙ³'ËnèT„ÐÞ¬¬¬ÞÃ"’ˆ°åÞd“‡µk×B.^¼(šø÷ß)((”••5—‡š?>!äÁƒÒ³Iº}ûögŸ}FÙ´iSvv¶P(Ÿ¦ðù|:ôxóæMz×ÐÐpõêÕM^g¦  Àáp.]ºôèÑ#SSSBHrr2œ#„äå婨¨0—1½xñ‚RUUÅ,>pàÀÞ½{Ó×t1$$„9}æååuñâŪªªîݻӂ-Y²„YvÍš5Û·oß¿ÿäÉ“™ÄÂÂÂ’’’ŸþYUU•¦(++GDD„††ˆž’–”••õñÇ—––nß¾ÝÒÒRìSccc;;;z±Ú«W¯ŠŠŠ¾ûˆˆìì쀀€œœ@@‡…Zdee5nÜ8úšËå:88dddHf“^—¾}ûJiyéØ7{‹=Ȳ´ =JHH ÃÆt§Z¸páòåËÛ^H)5mhh8yòdsŸŽ?žRZZ*bccéÕÇŽ‹ŒŒô÷÷/**ÒÔÔÍO+®¡¡!šHó¼xñBú§’[o±m-,,&L˜@_s8GGÇcÇŽB Ø7fNNNYYÙºuë ˜~Yºt騱c<8cÆ 6MÄž¾¾þ„ ÒÒÒâããéÿQ{öìÙ¾};!¤¢¢‚ÖzõêÕ ­Z3@g‚À±CkíMÐlò³_g‹÷h_¼x‘å­Ðbž~üxÁ‚Ç·´´<{ö¬äퟔ¯¯oBB«W¯è`­———««kvv6!$++‹Çã1‚M›Ó³ŠŒæî{h±.RZ^:öÍÞb²,-½6´ÿþ¢éÒï5nվќÊÊJzEo“„B!!$++KEEEGG‡&Μ9³¦¦fþüùiii³fÍ’,’Ø©4ÒÑÑ‘þ©äÖ[l[±ý„9éÐ&ËÆüý÷ßI3xQQË&j•íÛ·¿~ýšžH¡ÕŒ‰‰Y»v­––VEEEHHˆ··÷Â… [»Z€Îc‡Öbè&ŠC8l¦ãiÕ:ß‘›7oÒ ÛÚ>B!‘¿¤¡ sƒŽ–––”5ÌŸ?„ 'Nœ8þ|zzú®]»¬­­³³³µ´´ÓÓÓGŽ9nܸ!C†Ðë«Ú Ç«¬¬M¡aSBB‚äÜæ}úôir%{÷î3gŽººúÎ;gΜ)å6OŸøøøìììÜÜ\•+W¾~ý:++ËÕÕUl€ª9,ïgo±.͵|s÷ã·Vmm-û”^Ú .‰ÝìÝÝ+][[K_hjj¶úГ¼¢FŽI‘œŸR___AAAì‘çÏŸBŒ¥*CÛ6·ŸÐ]”ecÒ`±”ÞMaÓD­¢««›‘‘qåÊzcµ««+í}“;w>xðÀßߟ^{@yóæMccc||¼‰‰IsO+è|8ÂûVPP““ÜöÉ,è9ÙÛ·o>œI¤÷?Z[[·¸ø‹/JKK­¬¬ÂÃÃÃÃÃÁ¶mÛ"""vìØáêêšžžž””´hÑ"&[æÖ¾{÷n}}=3ÔT]]]\\ìîî.YîÝ»‹N¦s÷îÝÛ·o7þ?~|Ú´iÁÁÁ;vì;É(ièС™™™yyyÆ #„¸»» ‚ãÇÒ«NÛ‘ôºHiyz×EÛ]¼x‘}J/-½gùúõë¢ýuãÆöj+±9bè8:aqªúÑ£G'Nœðôô¤÷¦Pt˜^ ŠÇãõéÓ'''G4ñÂ… ÇÖÖVú§mi[1­jLÚ/ÅÅÅ¢‰t¬‘àí{ªšróæM !C†03{Ÿ;wŽÃḸ¸Ü¿Ÿ²yófÑü¯^½Z¾|¹»»;Gè:0¼W%%%S§Nåp8111m_›“““‰‰Ibbâ«W¯hÊË—/7oÞljjÊfÖâû÷ï<ø«¯¾¢o虢¢"½›Dô÷8--­²²RæáòòòÄÄDæm\\\EE…Ø“¬­­¿úê«×¯_Ó”ŠŠ __ßÈÈÈnݺ‰­P(.]º´W¯^?þøc‹Q#­”——WzzzAA  н{÷õë×·x£ôÙïš$½.RZ¾-ŲéV¤—ÖÉÉÉÂÂbóæÍÌÄ4ååå[¶liKñݺu»sçà“’“““ŸŸO_Óó°Í!„¨ªªFEEÍ™3‡_t~AoooÉmÍž=û÷ß§wBþþûï´´4ooo:!‘ôOehÛ&µª1œœ>üðí[·2ýRWW— ®®NgSj±‰ZkΜ9vvveeeômqqqJJÊèÑ£ŒŒV­Z%v‹ssÌùóçÛegøWÀˆ#¼[Û·o§?EµµµEEE¹¹¹uuuÛ¶m}lŒÌ”••'Mšäää, SSSËÊÊ8 ¬¬Üââ èÛ·ï† 4BMMmöìÙS¦L166¾|ùrff¦®®îÅ‹O:åëëÛÚ¢ÆÄÄäææÚÛÛ_¾|9##cÈ!ÌœyÇKJJ?~¼½½}ppp}}ý‘#GžÉK ‹‹‹ïÝ»gcc.öQ``àØ±c%ËàëëKçë¡#—ËussKOOïÕ«—ä¨EG:·oßþìÙ3ÑûxZ$½.RZ¾-åáá!½Ŷ"¥´\.wÓ¦MÁÁÁŽŽŽ“&MRTTLMMmqR@–FŽ™””4fÌÿlݺ•]nñ<¬žž^llì²eË,--iNŸ>]XX¸~ýzz=@||ü† ¾üò˹sçBf̘ñý÷ßO™2eþüùZZZ»wﮪªbÁ'ýÓVµ­”2+**²oLEEÅ-[¶888Ì™3‡Ë妥¥åççýõ×ô’†¶Ÿªk¢uëÖùúú4(  ¾¾~ÿþýªªª_ýu»ô5@'!ïÛº;¡®3ôÉÅæÙáp8VVV¡¡¡¹¹¹­]•(Ñéx¨ÜÜ\}}}}}}Ÿ«W¯2‰N‘ؤ'OžÌœ9ÓÔÔTYYÙÄÄ$44”™E%;;ÛÅÅE]]ýƒ>///ONNÖÕÕ5j”äšé¹¶ääd&%..Žò×_1™³³³‡®©©Ù»w﨨¨ššš& YPP0zôhmmmww÷3gÎ4Yò£G6wPÇÅÅ5WYBˆ®®.“’@™3gŽh6ÑéoAHHˆ†††“““°©¹c¦NÊçó›k^)u‘Òòb›Ž‡}³KïA±­´Øò.\1bøFSSóÀ¤ùéxزªªjÑ¢EÆÆÆô²¿   ØØXöÓñ…´´´ª««óù|OOÏS§N1у+))‰IyýúõìÙ³---ù|þرc DW%ýSQ­::„s ±oLÚ/cÇŽíÙ³'ŸÏ1bÄ/¿ü¾qD59d9s†VÍÄÄ$<<œ™ë´ÉŽÆt<]Y—íVް]¯,Bˆµµ5½æ."‰åíÒáæ˜®ÆÜÜÜÁÁ¡†¢¬¬¬Gl†´[¥²²²²²ROOOÞõ{¯ÞQcv4íò M—íVœªî<¼’72· 555555yWî}{G ïnŽV0âðÎùúú²y@‡ÀàÛ¶m›¼‹ÐpªXAଠpV8+€ŽÀ G`#°‚ÀXAଠpYÄÆÆrþ/MMMggçääd@Ðd…Þ½{O›6íÊ•+ÒWÅ irëqqq|>¿_¿~òn†öann ïRüÿÜÜÜ›+êĉ;Nyäèúõë'55UÞé Иÿ"Av“'OŽŠŠŠŠŠZ²dÉØ±cûí·Ù³g/[¶¬É<óçÏ7008xðàðáÃwîÜÙܪD3Fr£wïÞ‰‰±±±Y¹r¥¼@þΟ?ïáá¡§§×£GWW×Ç·}\.—ËåÒ×ùùùwîÜyŸ•Û¨hyÞÝVþ½îÝ»7qâÄž={jii :ôÈ‘#R2öêÕËØØxâĉ¹¹¹Mf«¯¯úè#‡sóæMú¶¦¦ÆÊʪG’9¥¥¥žžÞ_ýES^½zeaaáää$–óÌ™3‡Çã <¸Åkll”ÜáekL™±?LØ7#**ÊÐÐðùóçÒËð.¾áAîºl·âTug&$„óž·(Bêëë¥ä0`ÀСC:ÔÐÐÐÚõ‡……ùûûB\]]™ÿòóòòüüü ŒŒŒüüüòòò˜üæææ‘‘‘ùùùöööööö’+¬®®Ž‹‹³±±éÖ­›©©ixxø_ýÅ|š˜˜hgg§¦¦¦££3hРŸ~úItÍ‹-ŠŽŽÖÐÐPQQ4hÐÉ“'V¬Xacc£¡¡áááq÷î]Ñb|ûí·ZZZJJJýúõ[¾|y]]]“u,** 411ÑÓÓóññ9wî\“Ùjkkïܹ3fÌMMMš¢¦¦æææöôéÓêêj±ÌAAAŠŠŠoß¾¥oSSS9Ž“!**ŠÃáB<<<è5…aaaôjwwwÑ1•K—.ùúúòù|ccãO>ùäŸþi®¿¤Ô¥¹–—Ü(SžÖ6»”l²jÒ[þÂ… ÞÞÞ:::}úô‰ŽŽn®ûdØ7Ä. ÓÖÖfu<R\\lddÄt¥²²²»»û‹/ž?.–óáÇ%%%³fÍbÎhiiEFFܺu‹Éöì0œY…@yIDATÙ³iÓ¦…‡‡÷ìÙSú¦¥‘‘‘;wîäóù<ÏØØxÞ¼y¢û ûÆ$„\»vm̘1b'ˆ[lŸV&,›ˆ‘›››˜˜øý÷ß÷èуetòŽ\;¡Ž0âH$^´¯&‡ ÿþûo###…²²2¡Ô¡ÄùóçB%„DEEÑ·ýúõ£÷¤:tˆVMAAaæÌ™ôSÑ@MòT5!äèÑ£ômCCƒ©©©ä¥×EzË‹mT,pdßìÒ{Pt+ÒK[SScjjjhhøôéSúiYY™‘‘‘”À±UûF[ÇÒÒÒ^½zõìÙóóÏ?ß²e‹›››’’R“ÿiÐ݉'Š&.X°€’@߯ÇÇ+++Ò‚I [<:!iiiô­@ èׯ g[Õ˜ÕÕÕFFFFFFþù'Ó/nnnzzz´õZ¥ÅÄM16lØ ªªúäÉ6›î²FçÖe»7ÇtBïúž†èÉ)gmm½bÅ 6wp8â§Ð'Ož,vjŒþöHWPPððáä¤$>ŸOSø|>z¼y󦳳3!ÄÐÐpõêÕ M\•¡  Àáp.]ºôèÑ#SSSBHrr2œ#„äå婨¨ðxÿïyñâ!¤ªªŠY|àÀ½{÷¦¯é bHHsúÌËËëâÅ‹UUUÝ»w§[²d ³ìš5k¶oß¾ÿþÉ“'3‰………%%%?ÿü³ªª*MQVVŽˆˆ -(( ÕiÒçŸNïòöö¦clllgg—™™IyõêUQQÑwß}‘““#è°P‹¬¬¬ÆG_s¹\‡ŒŒ ÉlÒëÒ·o_)-/ûfo±Y–¶¡¡áÑ£G tؘîT .\¾|yÛ )¥¦ 'OžlîÓñãÇBÌÌ̦OŸþÅ_ÄÄÄÐô#F4yߘ¾¾þ„ ÒÒÒâããé? {öìÙ¾};!¤¢¢‚’——·zõê„„‡{¡Å¶µ°°˜0a}Íáp;F)((`ߘ999eeeëÖ­300`úeéÒ¥cÇŽ=xðàŒ3Ø4£ÅäÅ&b<þüË/¿\¼xq‹'ô:ŽšÌW(r¤¾e©ÅèóâÅ‹,o…óäÉBˆ……“Âþ®jQ%%%„±‹éõ^%%%4Ò²¶¶n2j$„¨ªª&%%-Y²ÄÜÜÜÖÖÖÅÅÅÇÇgôèÑJJJ„mmíÜÜÜŒŒŒ{÷î•””ܹsGì¢L&Z%„И@2…akkKWK©©©Y[[ÿöÛo¢yîÝ»G +êãÇ¥Ž%%%UUU—/_bŠŠŠ~þùç 0ƒÙcÇŽUTTôõõýÏþ#6£*!„ž¢½råÊÍ›7õõõ]]]iÕLLLvîÜùàÁzbòæÍ›ÆÆÆøøx±©øÙ´msû ¤dÙ˜tX,$¥ ‹´ØDbZwî‡Ãqqq¹ÿ>!dóæÍ¢ù_½zµ|ùrwww±À±Um+¦UIû¥¸¸X4‘Ž5Ò¼Å&jía"¥‰˜<û÷ïùòå¬Y³ØÔ óÁt6FfÊÊʉ‰‰“&Mrrr¢3Ч¦¦–••8p@YY¹ÅÅ зoß 688¸¾¾þÈ‘#Ož<Ù·oŸä¥„|>ÕªU±±±ÎÎΣFâp8yyy‹/ Q”¯¯/}Ø ¹\®››[zzz¯^½lmm›\„Žtnß¾ýÙ³g¢÷ñ´Hz]¤´|[6*ÊÃÃCzŠmEJi¹\î¦M›‚ƒƒ'M𤍍˜ššZ^^.[ÁÄŒ92))i̘1þþþ<غu+3ºÜâyX55µmÛ¶………ÙÚÚª¨¨\¸p!;;;00Þ¿aÆ/¿ürîܹ„uëÖùúú4(  ¾¾~ÿþýªªª_ýu»·­”eÙ7¦¢¢â–-[æÌ™ÃårÓÒÒòóó¿þúkzIC‹MÔâaÒÚ&ª®®ÎÎÎöòòzw×*ttò¾­»’×t<-öe;v6›ÉÅæÙáp8VVV¡¡¡¹¹¹­]•(É'Çäææúøøèëëëëëûøø\½z•ù¨Å‡²„Wú³7è=IºººLJBB!dΜ9¢ÙD§¿!!!ôá’sÇL:•Ïç7·E)u‘Òòb›Ž‡}³KïA±­´Øò.\1b=Ë©©©yàÀÒüt<ì YUUµhÑ"ccczÙ_PPPll,ûéx„BáÅ‹}}}ŒŒ444¸cÇfò&zp%%%1™Ïœ9CÛÄÄÄ$<<\Ê#O¤OÇÓª£C(1ÇûƤý2vìØž={òùü#FüòË/ìGØÒaÒÚ&:uê!$>>¾Ueè²ó¶tn]¶[9BYO½As¬­­éCïtI,oF¿æææt´þíÊÊÊzôèÁfH»U*+++++%ïóíÜÞQcv4íò M—íVœªî<¼¢—»µ#555555yWî}{G ï®ÒV0âðÎùúú²y@‡ÀàÛ¶m›¼‹ÐpªXAଠpV8+€ŽÀ G`#°‚ À; kkkyÚßýû÷å]€vƒÀ±CÀ× t|8U ¬ pV8+€ŽÀJW¹«úÀû÷ï/--íÖ­Ûðá㣣µµµ¥äýúuRRR~~þÓ§Ouuuûöíaaa!ïzÈM—qLLL\½zõo¿ýæì쬮®~ðàÁ?þ¸ººº¹ücƌٻw/!ÄÃãGééécÇŽ-**’wUä¦óŽ÷ïßßµk—¾¾þ/¿ü²k×®Ó§OOŸ>ýÖ­[›6mjn‘o¾ù¦¼¼|îܹ'NœHLLÜ·oß—_~ÙÐÐ'ïÚÈMç÷ïß//^¬§§GS–/_®©©yêÔ)@Ðä"—/_VUUýä“O˜”ÀÀ@ƒ;wî466Ê»BòÑùÇk×®)((¸»»3)\.wذa/^¼(((hr---OOOÑDee庺ººº:yW@>:ùÍ1B¡°´´TGGGGGG4ÝÊÊŠòäÉ“H.•’’"–ríÚµÇ;88¨ªªÊ»NòÑÉǪªªÆÆF---±tMMMBÈË—/¥/^XXxðàÁ‡š˜˜ÄÇdzܮµµµX žF ð/%ù³ÞeuòÀ‘Þ:­¦¦&–®®®NyóæôÅïß¿Ÿ––& !¶¶¶JJJ,·‹0 ÓüYﲡd'¿ÆQKK‹ÃáTUU‰¥¿}û–üoÜQŠÉ“'_¼xqÙ²e§OŸ ¡ tAk)8Ž®®îÌ™3'Mšô×_>}ZÞuN8Bôõõ_¼xA#EÆÃ‡éG’ùKJJV¬XqêÔ)±t[[[BȳgÏä]!ùèü£——WcccNN“" ³³³µµµ%ókhh:tèàÁƒbé?&„˜››Ë»BòÑùlj'*((|ûí·Ì剻vízþüù„ iJeeåÇŸ>}JÑ××·¶¶¾xñbff&³’{÷îýôÓOêêêÎÎÎò®€|pè-ÃÛ÷ßollìææöèÑ£+W®ôéÓçûï¿g¦éIOOŒŒ´´´}zúôé·nÝÚ´iSs‹ìß¿ÿÆýû÷ÏÎÎÞ¾}û?üpøða--­­[·Ë»B3ЈØ ëèüãþýûÁâÅ‹õôôhÊòåË555O:%š\ä—_~!„¬ZµŠ’´´´œ;wnccã¥K—ä]!€±#@ÑùÇk×®)((¸»»3)\.wذa/^¼(((hr‘‡ª©©ÙÚÚŠ&ZZZBž%„…”””îÝ»/[¶LÞeè@:ÿ©j##£èèèøøøqãÆ¹¹¹=zôèÊ•+¶¶¶³gÏfòdggGFFZZZž8q¢¼¼üñãǪªªS¦L‘\[@@ÀÔ©Så]'€÷­µ—-âJG€N©óŽ„™3gêêê9r$==ÝÐÐpêÔ©‹/¦3òH¢ãŽÕÕÕEEE’ŸâÆjè‚d ;t>¡‡t;³¶¶Æ<ŽÐ™Èÿ!p„ΪËþÖwþk -Úüá.€N#¼Cˆ:ŽÐ,œkQ]âæAk£F§©‘Eáÿ[•ôežü+ p€ö#”þaÓã\6À¿G€.ŠM¸†SÕ #@×%%(dBÆv‹9„óÿµw!v\ÇÏÉjÜèn›ŠofW›#MAÛÄ@|´E yБÆA”‰†ªňÁB|ˆ¥®P$©PhSûRBUR¡-*nš6ÄôELZÒº{|˜™sÏœ93sæÞ™;ÿ¾–åîÜ;{çÎÜ;ó»ç¯"†íF瀂FNG@Lu©‘¡y€¶#8Ƈì´Á0@%5€ Gx!8Bã)n¤¶h/‚#¼à…àb¼Ýb¨­ZŠ™cc¡ìIÉŽ@ëc!…RÊø‹q€ö!8@ùïhGè)3Ž¿ü/hæH*Ú…Î1ðBp€‚#¼ ïêjkÈhŽ@ëà…à/Gè5ÆÄàਠÍv!8À Á^ŽÐ_MhàHm5Ð"Gx!8À Á^ŽÐSMhà ™#ÐGx!8À Á^ŽÐGÍià ™#Ð Gx!8À Áz§iõÔj«æ#8À Á^ŽðBp€~ifÇ͆#8À Á^ŽðBp€irÇÍÀ Á^ŽðBp€¾h~ÇÍÆ"8À Á^ŽÐ m©§P[ 4Á^ŽðBp€‚#t_»8hæ4Á^ŽðBp€‚#t\8hæ4 Á^VÕ½ÄX¥Œi…Ž--FZàh ÓêÙ©ÂjAU5tY{8hæ4 %ŽÐéʺ«Õ9@½ŽÐiUºærJªj謶×S¨­šƒà/Gx¡#t‡”ñ*][¢Të«­Ô‹àÝ¢Rþls+Á ™cÚkmGU5¼à…à/´q4ŽsàFFsjGp4KZ'úǵ£ª:B ™«%vFEp€.PB)¡²’¡ŒÓZÌ=ÔŽà/Gx!8À ÁÐ4sêEp€‚#¼à¥/Áñĉ»wïÞ²eË}÷Ý÷裾ýöÛž+¾ñƳ³³¯¼òJݯ<´x”Fÿ—XI3G)h; äëEp<|øðw¿ûÝ×_}ëÖ­k×®=yòä#耎ÇÅÅÅ¥¥¥©©)kùää¤â­·Þªèyggg­% uï èärSLÜHþ“ÜgA$/ë½Õñàtž˜˜°–¯]»VqãÆŠž—˜`Ì‚ªÛþLÇ—[[m‘R !„RÖR¡”R)ûÿX£ód< …Ž}¼¬÷6Jv<8NMMI)­å·nÝQ¹# 3Ì 'ßB¹¢ÊÊ{*þo3îú£ã½ªW­Z599™,Y¼yó¦B÷³t‰Œ¤®³²XY¬J”8š?ú)¤ëÁ@‡u<8 !6lØpýúõ )j—/_îª{ë¥ÑEŒÊ(,=ÕÉxˆ$2¢Wºwîܹ´´ôâ‹/ê%J©³gÏ®[·nË–-uo” Pk¿Î°Út꿲v„g(TV8ÐiÝŽ»wï^±bÅ‘#G‚vBˆùùùk×®íÚµkõêÕÁ’wÞyçòåËo¾ùfÝ py÷êÔè¤DfsF¥¤Qõ,ãÕÐÉçR®ÿ¯ë¯nëxç!Ä]wݵÿþC‡=øàƒÛ¶m»råʹsç6oÞüðÃëÇœ={ößøÆ¦M›~÷»ßÕ½½€˜ìѼåè¡ÍÕ«zÊ#Âfß 4_÷ƒ£⡇ºóÎ;O:õì³ÏnܸqïÞ½sssÁˆ<€–2Ç×É'ygägÌý¾Û´S9_³`šeGcc6p”RfvU}ÂÏzöa7À^Ç,\ŒnXŽ´Ýžæù,ÉLn?—Þ¶ëíµ¾%Ž€nH«êÍÍa²ŒÇBë§ÅG ÕŽ€†JŽæ-Úœñ‘ÉfÐ^Gh±ž ÄSB˜Z úÍèqÈ•’Ƙä4C[Mäl˜,«+:iu]¯%ìcD}»à¬6@Ž€†¢ Ð4ÝÐ:ÓÀ´n–?š3¢KŽÐVͯ¢…ÿ ³æP‚#´”ýi —[D×¢BGŠÑ1´q€±“æ¤'U úŒ´‹LÜèºT£=ŽÐYÍÌŽ¹³Nw†4~g§Ãî½vtÁɪ˜b‡±P*Ñ¥Ž#&§fÊ›o0cê)•RdG´ÁÆKŸIð¬xü§J˜Â¹šWï‹‘Ì$Œ†›Ö®`L"4 Áª—–óÌåÎŒ„K³ ÑH2þoÃÁkŒevv,c¾æ’wL´å®Ϧ!8Àh|zºá/»ø0#\+*)EædÇV£Fý§’0*N–z›‘1rÍšCšDC`,â‡ö]\keTC[˃àŒsè•<ÆX*YîÓ4³™ã°¯…¤ˆ†"8ÀÈœЦ´*iÿ”æ7‚OPiv¦Ö9²þ¢[/ÉFy¬ýÃîBC ³eaXå*¥Š–+gÿïN-É'‹¥R)‹¦©s¤ «¹cÛã|®ªw Èúh‚#£Rþ od‡3‘”¹…Žæ”RRfw—ÖÅÁcbM}òk2;–Ss¾ÒJKѺT[mîõ|"s£vG(&ÿâ­ªê‚ÿʧ<ÐŒŒÁm{.gç6ñtpW©íÉ=Ã!2¢9˜«J•Û½ÚÿÁÃ’jPÐhÞÎÚ¤  QψÜ(mó§P®;š7Ödý¤«`[²»ÐGˆ¡‘_Þ¨ÜÊwá(›¯|ƶ!ˆ‰ÁO¡©´}w—CëÉn#5¢ Ž`È 72+ƒ£2q óÁè±Ç¥_ÚËyLNà)7©Dµ|ëdÔJë1ºÐÆâÒ:¬DåpRÊ®µ6³úSëÊëø ê_«ÁoEâ)厨ÁòŒ”œZÂÌʺ™£™ ;!gŸxÈ‘™Ý†FÛ½V)££Ð1œ±éQ¿³ÖôW‚Ž"8è·´¡g†’¦Å—sóšI1{¡¾+šQ :t»hL ±™öÌm86þÛØâ7ÚŒà ß2ú‚ø ²X™Œ†zÉYaJØ þ ›+%„0*ñë«P5êÆc:W¿Ë=¨Á@ïé²4+DÖš£XK!…4Æ…CGçîÒ{IJ©ÂÒÅàw-e½EvÄø bµóëv£ÆQèù•Ò“.Š0-’ÇÊ™™¨Õa8½§±z4lÜÁÆN¦§„ƒn4ÍÚi}ÀNÇ8tZvøÓó£˜#6/26QTܨc·TJH©d~í¹b÷–ÍÌŽæÄÖ@騪Ð]ÅêcýIvô”¨Ð×dwn¬Ë¦£½#ƃG挀f)£ùHëOÚ8¦ ‹UltD«×NFÑ#…ŽU°²#…ލÁ@ŸèÊhKã3bc8ÊX—êÁJåŽ*ꈊQ)ªªtˆçhÞŒšJ!7‰D¨k®¦z:ÄÇÒ<õ×(Á@‡äŽæ-ZP¸˜ÔÀâÆ |Ѫq3eJDŒ†Wµ.J¤‘•!8è–ææÝ5JÕÍþÉ/¨³–ѺB©T8rx%%}iFe•,šEáïÌã¥øtÀÁ@G1šwe2S£töÊ'¹Ñ3ÍDѳÄöޱIu’zyüí#‘¶·)ý…7:Çèœ6Œæ]àÕ4©ž:¬jgšë”^U­„RBeµ£”¢Ãá1£!£.zJA‰#€±b¢®°naq£4®õæíìtTñ&E7†ÚŸºÛuPÐdG5˜«Ua\”ˆà =¤J9›j Zt%«§[Xܨ‹“Ų¦æ€ƒ»é[¨§8êâF%󞾕é<¤ñ; ;e 8hŸœ `2dpÉMYCºè¢JÃÒG9RÅyî2IøFŽZÂé®\Òº±´Ô˜\b)«Mjìqe49¨G]@ç@H&âݸ‡fzl[Ó ?(qÐTÎi`8zŒj›t¤Í£µ·ÌÀÁ@S9ÓCoRãøë©¥kÔèš^¼ŒÝHëäT(VÊ`êCÒQ*ö|PU  ÁÌŠK)Ã^ÕuoTÔœ!‚ã.5×Ör”…ycàà ñtLj +nÝ›3576ˆYä|m#ŽËÀ†YØ;ðApÐlQAcx›k[Åš˜ f*ÆŽ…7‚#€¦2#£(2OËÕÞºQ4°ð)9ä÷Ê!ú”±w‹à &Ù—£nzð§ 1V…ZÖ¨¿?èÚjóv:à {ð… %¡W5€ú8Û«Y=©ih¾i-=aµWkîX=Ø»‘hº@/™Rè²Æ¦w4Á@œõÎÎгXPËl1ÍÝÅÉ£ï7ÙLfq#ÑÈM7W2PU  ¬ºiŒEv€jG‹·”~3RQ[= â#²Qâ`,œm¨¬ëýˆ“·ß˜‹[ÒÚã))½“.…ŽYÚñ…5!8‹Œi`˜_®2q£E²JIƒÑUø;Vè(¥ä=æ‡d4Gã¢[¤¥ÝÀ¸t8‘QÉAv ÿ|3I—2!“î.hGãEùbŠ ê©ÍÕºduYcpÃU‡M™šAÊŒq®ØM0Œ‘5Œ3Ùq¼z•tY#F”±{õv‚F¯jeÈ?¸¯ÓÀxª¦¸QÆ.î=;Ýl쨤sçÒ ÄWÚžb÷õ%ŽŠqöiUÑ*w@o›†ì8.ª?E¼v%µ«ªUnç˜Þì¢!X厒ÜÝWG…¸´ZWâdˆ¤ÚºÂâÆèßGfL,×âȰQ§.׎÷ª–J))ƒŽÅw˜<*ÑF–†¢=DpPBÓÀt"µ4U"¦'u%3Ia§iÿ©„‰øhìŸ~‡É¥û[±z‹à 4A…µñ7—ZXC2¾V|¬{kÚIgG û†à lÛQÙl1$E/Ñ`=ñž[±GðNŽ‘”;öÁ@iÂÎ1¤Æ)³ÈÄA±™eR‰p%«¯ëÞÎÆRñÒlvTO”ŠÔ˜ óJþôJ*z¤ ÑŸî.#”Ùñ<º‘{ìúÆ ˆŽ!æÑuG¨\Z"4ë©GÌ(rxÒA¦wÐ]­…`|¨!%† E—18€„`°nT¬ÄÖ±ôƒQ(5(tôÙ¥}ÚíÑ¢Çþ Ä@2«*å Õɘc:HR©ž†Ã“.,<ÜËæž”Y%µ}J¹t¹£H¯Q*ÙGqi“Fã2Êôì(õˆÅuoJ@‰#!Db ’øhv(ÑЩ¹êŽAØK&㥵âàÃ’‚×C‰#ÐuEG¡ì¤JES£5½[Ð÷Hr€ªäUî¨#c²þ:÷ÿ÷¯àMF…åuoJ@pzOŽ8{•¢$Õ52´òøågÇØ££ÏŽG‚ìajèók着NKÄ‹=WÁ†HiCâ£6ö:‚T/#;#R™ãRÉà +¦}²úН=Cpº+9‘Zîð:É¢GZn$]tÃé ’ÓîËz*|ŠÍ÷¨ŒßÖ)Dj3ý”æ€íÈCîl‚#Ð9Ϋ-m´‘äеŠJ[T'Ãá8 º”1ûzI¡c /cÁág†Œ7ü°Ú§öäØû¤ÇgcFpZEÏ’B)×ðźäcˆ 0()[ÚU0{®6Ô%ÙϺXŽÑ½°O¥ƒ$sþaç þ•"¶ÁhŸŒ)å¢GÄû¸0\H#)£@E$çØHû† ”^N¡ãxäÑ“³~˜ÍãU Âºµ‡¸@ Ð…Æ*2Þ€“WCÎa‹K^ÿœWÄŒÃ&sK§P³c¸ ša¼Ûc™7-»¼SZŽáx€öÒ,mJRÑcì9`Z[bÑC\ûd§uŠÑãA*”;†ŸÜ¬çnekcÿñ| Ê(†7¶ïõw%Ž@}|Z¹ZH1è~1hVeÖSS[=2)¤PÖ5L !|ŠÍ hCë ºÆ«¬“Q0©â̓âưcF4bFìN|ÒͰXèÅð•¬RG ÙFI{æŠí,±h(o¨}œ¥H»d…YÂY+Íu®-ÂBG™ÙÎØÝõ)VO-œ½ª³¢óÞ mÎŽfëF½Dø}Rèˆ]5‚#ÐxñÌç{6tŽ­ƒ²åuO‰5ôçt€JUem­‘õαj ’ ûG7dˆÓÚò:§[•Èi1©h$¸º_h· WVõrÈâ[¦G̬Ñ4Amt¡ìè*òÏikÕ6èÕs›¸ 7ùSc"iÆÐ,Jt&È¡;bSBéà”Äç4ö˜Ü¶Mžÿ#+´—]…F*å?©ßÐxjˆì8êS¦äH‘Ò¥ÍÙÑkè­N,)Š_!G ÅçÐÜöˆÎXç÷Œ™3ZÐ!Å C4Š s¢UVëŒ/;:‹Ó¾UZóEéTÑʹ‚ ™û)H~RÒÚA&)Ó¿¢óôGpD?=ÁUW”Q6à×M²ÏUÕ…óœ×cÌG)}•¶Z±YýduRŒnÈ @Èì¯ éwQæÑFAv n8ÅÞEJ¤¾%ÓûÓÄÚ´D¦ Ç7~½ë”ª„R>µúŒ[9Êg!cx™¹©²à ‘BÌŒ°­FpD©†ø:†U†Ké'\gßY)„HŽÇfÍàbýÿB¯¨=UHž*ù~¯œAÐÎJúO»­Œ’ s¦G%T¬Ec,4„‡2yÄeV÷IÇ¶Š¾0D'¿êwTÖÇܦÇx£Åî5ÿL¤Õ`¤ó?GÕœ,[¥”\íªS6yÈRÌììè<áúœýÌó‰2V±çÓÊ|Þ!¾šöðsKpLuâĉãÇ_ºté½ï}ï§>õ©ýû÷¯[·®îª«— ûË›qeu'‘úøÚVQÂ9|lÞ*Ž‚Á*ŽÜÔÌì¬\¸híWÅ…Ä 1yǟȱ‡PB9ºtêKH9Ç1wÇÉ2\Eº^HÚ³Èijd®¥ÀøÎWö¡3S`xÞ–ÄŽ‡¹Ä|e¬nµnœ™Y¸xQ ‚C?ø†n„9f_l’¤Œ dט§|) OFáÀ@Žÿ<·µ0õDœ”2N’®U'ªÄÿr¯"çá”gQ®¦œüßÜS~Êp%³Oűÿ9“¼k”ãÞG·Ã‡?ùä“[·n½råÊÉ“'_{íµ£G®Y³¦îM«]ç^˜qŽˆF³K¼c•xÑN«Ä¾¾«p•Ø€½©×÷†1QW+ÇŸv°Uƹ۱JîAq=uYÇÑwkw¥r0¹ßAɉt‰UTPô7(ßñ8Kû·^JOÐ26kHο\Ð;ÑÁ—Ñ'DŽ·ç“4+¬&QãŠð+uÆæ%¾£Ú5ò‰•äç1vÑÃf¶ ¶VIVþ8¿…†IM¬"ŸG©§³Ñfý=^¹ž%q±³3ö•¥Ü‰…‹)æçç7lØðÜsÏÍÏÏÿáøâ¿øê«¯>þøãuoÚø„Ÿª¢ç¼æT·óìY³í9&_Bv팫‰¡.’ž­£lªô*>¯)^Ùä¿J¡3Ä*áž+ÞêÀÿYb¬·rÞ«‚«a”•ã3¤…ª frBˆœ±Ñ{Vß å÷Å¥¬gÖóŽêf‘é¤Ò5ÙÆT¥ÖêÉs¦yž´æ8µŸÀ>놳,F?cÚ/Ù;MÊ àëî5Ö™!ö‚b¤Øþ1#8:?~|yyynnnýúõÁ’LNNž9sfyy¹î­k(}sÍÏšÑIÄ^%#Ò™«!µ ™)P)L«W±În)áRFç‘Á7ãøù´„SEFɶÉ۵ʸ.£F:Œ%Åø¡—ÎîêRÈಠ¶´}Âh2:Ç”'Œ€á3ª‘Î-æÙÏ:šŸ ë,š4õ¢`¢Eé“5õóf}íW*³¤@I¯Ïc0i¸Q)¯ÐÊ>™DßÃÊ‚£ÃùóçW¬X±cǽdåʕ۷o¿~ýú… êÞº*%"г¨¥}bÍåú.¼"½Jî9N×;Hn”sK¬ó—µ1VÏç9Q$ΕٻÍHNQmæ™D)ó4¦¬s}ڳě~û::ž¥‚Uâëþîó,ŽÖ‡ƒ Ò·Ã?“{²ø0¼'yè—ÁAù¢s“”õ¼á¡Æ[¾„ñ ÞB ý1¸-³|øõDº~ª”Ý)D·/Ê®Š±^GbëͱËp°®Æ,k4O›Ž °®™ëó(]ŸPçkWVëJähƒÃµÌ—VdïuÁѦ”ºtéÒôôôôô´¹|ffFqõêÕº7°ÚoÿÂþèF¹ÍŒnAT šŸÃ€+ÒéR=ý0Œ§i«èBÍèK¡³bTŠX OˆQD7,ï¤ó©(žúræÐ¯7¥¸ÑúŽîþÊî¸ê¸W±oœ¾õ }ð§bPÛ>x'™×µä5[Ųä 2&ßJ(¿ø™—“°s ic7xoH¡¢!·•×aW®a¼Q…«4/Öí¬ä׎á[»m~ÄTüÏøãìK3Ï ý]+¸!Ñ0£PÓºWØŸGåø„Æbkr ¶ÙÑ Óx9ÖvOVguc@ØÞyçüãþð‡ÿûß›Ëó›ß<öØcßúÖ·öíÛ—ýfggë~ Z f›õ{Ó·½ªm·oßBLLLXË×®]+„¸qãFîXXX¨ûE C¿ãe²0Ïè+-ã£3(=LIÊ*Öi°J²¼Ðã†×*ñßÅ6,å¤Û]Ž)ÒvW—VIk74èWêÜï’]3§X$}tÿj€ x& çç±¹«X]¶â:çG8|ŒYyG"k×üU÷¥­¢_Uâ„o ©âOá¾Ø ¡'žé ‚£mjjJJ¹¸¸h-¿uë–brr²î ¬–;ŸåhâZÅïùŒóˆÿ*~s!ØÛæÙy¹H·•´}’±»º´Jê.,~M[%ã©SV¢%ÿ *é옒æž]Í“¶sÀ¢'|á{Y‘ÎÇd´bJžÌÞë}ª¼%8ÚV­Z599™,Y¼yó¦B÷³î>¿YbßÛD,œåGÄy¤À*Jå¯âú^èh‚™|–„^}›ô4D’jBøRÂ@qΔ=Š™HdM³ÓtÆŠ…¾ö ÿx/=µžb0¤nz¿o!¬ÈØŸs c6lØpýúõ )j—/_îª{ë*äÎgÑ·Éœðä¯!õ™\ç‘ÜUŠt²³ÿ¿ÿZCì.ç“»vW—Vɦô¯‘VÉ9TÎg‘y?Ii}ªî”€>È}wuÿ æ<ëæŽ˜ë<á—~Y®‹WÚÃãý{dÔ­'ü]ïN#‚£ÃÎ;—––^|ñE½D)uöìÙuëÖmÙ²¥î­«^òÓúYÒ_µÜ'…Ô(~ÉZ%m#ÒVÉx‰å¬ÒgC¤ïa{ñuºOÿ±ÖKö§vþÔ½ÃÑJžï.Þ`¶´³EÆYdˆxš¶Šó±Ñhþç–®"8:ìÞ½{ÅŠGŽ Ú5 !æçç¯]»¶k×®Õ«W×½uÕ‰†Kpþ Æn}¨†*ÝéÆ**w•ÄîêÒ*ã9(¹k8Öë{éZ.˜Ü2÷'9#hÑw~«$_NgV‰†Ž…ž¥“ŽÇí©§ž:tèÐ?øÁmÛ¶]¹råܹswß}÷SO=555U÷¦Ôƒà˜êôéÓ§NzõÕW7nÜxï½÷ÎÍÍ#òôÁ^hã/Gx!8À Á^ŽðBp€‚#¼Grûöí_ýêWŸùÌg>ö±mÛ¶mß¾}úÓŸ’;qâÄîÝ»·lÙrß}÷=úè£o¿ývÝŽÒ¼ñƳ³³¯¼òŠó^}·q|{…{ßp‰wZU÷´Ø»ï¾û¥/}éå—_žœœüÄ'>ñïÿû¥—^úãÿøõ¯ý«_ýª~ØáÇŸ|òɉ‰‰­[·^¹råäÉ“¯½öÚÑ£G׬YS÷+@ Ž;–v‡¾Û8¾}ǽW¸Ä§RÖ¯ýë™™™Ïþó‹‹‹Á’‹/Þ{ï½ýèGÿö·¿Kþþ÷¿ä#Ù¶mÛ?ÿùÏ`É~ô£™™™þð‡uo>FrãÆóçÏ?öØc333333/¿ü²õ}·q|ûƒ{?q‰OCUõðž{î9!Äw¾óýÅbÓ¦M_ùÊW–––tiöñãÇ———çææÖ¯_,9pàÀäää™3g–——ë~Þ<°gÏžgžy&íúnãøöö~⟆à8¼Ë—/OLLlÞ¼Ù\¸iÓ&!ÄÕ«Wƒ?ÏŸ?¿bÅŠ;vè¬\¹rûöíׯ_¿páBݯÃ;xðàO<ñÄO|ò“Ÿt>€CßmßþàÃÞO\âÓÐÆqx¿øÅ/V­²wà_ÿúW!ć>ô!!„RêÒ¥KÓÓÓÓÓÓæcfff„W¯^½çž{ê~Òý÷ßÜxá…’÷rè»ãÛ+|Øû‰K|‚ãðî¾ûnkɹsçæççï¸ãŽÏ~ö³BˆÅÅÅ¥¥¥©©)ëa“““Bˆ·Þz«îW€ªpè»ã 7CWq‰OCUu9–––Ž=úå/yqqñ'?ùÉ>ð!ÄíÛ·…փ׮]+„¸qãFÝ[ªpè»ã 7Cp‰7Qâ˜ïÝwßýå/©ÿ\¹rå#ॗ^úÁ~ðúë¯oܸñÇ?þ±n355%¥\\\´þá­[·Dô¥M–{èÓpè»ã 7Cçq‰·óýïÿûÙÏ~¦ÿ¼ãŽ;tzøïÿûÓŸþôرcïyÏ{¾öµ¯í۷ϺiÕªU“““ɯ7oÞBèNXh¬ŒCŸCßm_h¼:ŒK¼Á1ßš5k’Ë———¿ùÍo>ÿüóŸþô§¿ÿýï;ß%6l¸téÒÍ›7ßÿþ÷ë…—/_îªû•!GÚ¡÷Á¡ï6Ž/4Þ Ä%> m‡wìØ±çŸþ _øÂÏþó´ï;wî\ZZzñÅõ¥ÔÙ³g×­[·eË–º_*Ä¡ï6Ž/4Þ Ä%> ÁqHJ©§Ÿ~ú}ï{ß·¿ý팇íÞ½{ÅŠGŽ =!æçç¯]»¶k×®Õ«W×ý"P!}·q|¡ñfè.ñ¨ªÒ¿þõ¯üãkÖ¬Ù³gOòÞÏ}îs{÷îBÜu×]û÷ï?tèЃ>¸mÛ¶+W®œ;wnóæÍ?üpݯÕâÐwÇo†îáŸà8¤7ß|Sqûöí¿üå/É{Í zè¡;ï¼óÔ©SÏ>ûìÆ÷îÝ;77t×G·qè»ã 7CÇp‰Ï •RuoZ€6ŽðBp€‚#¼à…à/Gx!8À Á^ŽðBp€‚#¼à…à/Gx!8À Á^ŽðBp€‚#¼à…à/Gx!8À Á^ŽðBp€‚#¼à…à/Gx!8À Á^ŽðBp€‚#¼à…à/Gx!8ÀËÿ™âWõ$M7IEND®B`‚statistics-release-1.6.3/docs/assets/norminv_101.png000066400000000000000000000574431456127120000223550ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A^êIDATxÚíÝy\TeÿÿñkEAXÜ!qTrÁ%s‰­L%µ4¼-—R³\ÐÔôVï2µ\êŽ\ÊÌ寻ð[?—D3ͥĥôvIQDMÅD`~›Æa€aÎ93¯çÃÇ}Ï\3sæsÎàÝç:çŒF§Ó  ,.ru 8À,G˜…à³`‚#ÌBp€YŽ0 Áf!8À,G28uê”æ/ƒ6zôÞ½{úG—/_.w±åóî»ïJ•÷éÓ§¤ç,_¾\zNÛ¶m‹¯û²eËž{î¹ÚµkW©R%88¸G}ôQnnn)ÛPÏÍÍÍÇǧ]»vï¾ûî7Ìy‰‘É“'˽ (Á€ÌþóŸÿ}ºÑ£=zôèÞ½{zzºâĉ5*sãÇÿöÛo…7nÜØ¿ÿóÏ?o«ýÀ™Ñq ³™3gz{{ !æÏŸåÊ•’ž–››ûÊ+¯H©±J•*Ï?ÿ|÷îÝyä!ÄåË—û÷ïçΣ—9rDJÅ;vìæÍ›-Z´¨Y³¦4rãÆñãÇß¿¿I“&µk×–u:ÝìÙ³¥Û_ýµ”5MDDÄ!Cžxâ 顸øø]»vY³~þùgéÆK/½äééYü [·n=zôèÑ£G_~ùesV¹reéö¡C‡l±£€à@n¾¾¾ï¾û®"''gêÔ©%=máÂ….\BxyyíÝ»7!!aëÖ­‰‰‰>>>Bˆk×®½ÿþûF/IKKkÚ´éºuëõ‡ýémÞ¼ùرc×®]‹ˆˆÐ.Y²ä÷ß¿téÒ«¯¾*HSØBˆ„„鯄 ~üñǯ¾úêĉ­[·–ýõW‹·Àýû÷¯_¿.Ý ²ÉVÕh4þþþÒík×®B×®]‹_‹çí·ß¶É»pTGò7n\Æ …ëׯ/éÒ<ú‹Ñ¼ùæ›úC›5k6a£'è=òÈ#?üðCTTT»víŒY›6mºwï.„¨T©R¿~ý¤ÁêÕ«¿ùæ›B—Hƒ·nÝ’nôïß_š?~¼4’­?.óæÍ›¯¾á1šµjÕ²ÕV}ôÑG‹/¬Á1ŽäW¹rå?ü°wïÞÒ¥yvïÞ]ü9IIIÒ £Ãõž{î9éDàsçι¸üýßá¡¡%å0ýd´BUšZµjé/ TüR5Òûfeemß¾ýÈ‘#G=|øpñùq H'MKŠ_µÛb™™™Ò //¯âš¼~âL"8P„^½zEDDìÚµËä¥y²³³oß¾-Ý6¼ö¡0ˆ€yyyׯ_7|TšÅ6Éä5# Cgqùùùï¼óÎǬ¿¶¢‡‡‡¯¯ïüaåºW®\ÙÇÇG:SGšŽ/îöíÛÒûV©R¥jÕªæ,V?CíççWüÑõë×wéÒÅÊÊ8¦ª(ÅâÅ‹¥èVüR‚^^^Ò 4Bˆ«W¯>¤¿[¹råÇ{Ìð!Û^Qü½÷Þ[´hQAAAPPPllìÿþ÷¿ìììÈÈH›,¼C‡ÒÍ›7›¼¸OãÆ}|||||–-[fÎ÷ïߟŸŸ/Ý~òÉ'm¸83‚#¥hÞ¼ùk¯½&J8™C«ÕJ7vìØa8®¿ìæfÇY”ØØX鯧Ÿ~úúë¯7oÞÜÍÍ---Í& 1b„tãÒ¥KÅ¿ž{Ë–-úm¢¿6Pé–.]*ݨZµjÇŽí·Y8‚#™;w®Éò„Ò¹,Bˆ?þø·ß~“nŸ>^ºûüÃðJ°Ç8P__ß3fÄÄÄ(&&æË/¿¼xñâíÛ·;uêÔ¥KWW×;wJ_‹ ]ÓÇN<=====¥¯”¾ÊE£Ñ$$$”÷;cJ±hÑ¢víÚåææêtºY³fÍš5ËÇÇ'++«°°PzB•*Uâãã]]]‹¿vÈ!Ò%-ïÞ½k8•ÿØcÍ;×~›€³¡ã@YÆÿøã÷ððøú믥«êäæænÙ²åÿý¿ÿ'¥Æúõëýõ×%µ*mB£ÑôèÑCº““³iÓ¦ÿ÷ÿþ_íÚµÃÃÃ¥A£#/-ЬY³~øÁð4ðŒŒ }jlРÁÆ[¶liòµéééÉÉÉÉÉɆeÔ¬YsÓ¦M¥œ!åEp ,•+WÖÏ>yòÉ'?þî»ïvéÒÅÏÏÏÇÇ'""búôé'NœèÔ©“½ [¼xq³fÍ„...-Z´xûí·=Ú«W/éѸ¸¸2¿EºL;v}úÈ] È€à³0U ³`‚#ÌBp€YŽ0 Áf!8À,G˜…à³`‚#ÌBp€YŽ0 Áf!8À,G˜…à³`‚#€4¹+Ÿ›Ü8 ­V+w ÀÆ’þŸ””$wE2 8Ú…s~˜”L«Õ²S”†¢Lìb§(…F£ßNÛ$bª ,Ðéä.B~G˜…àPÚB‚#@Ù8¥ZAp€™Žp r—cìeb¿(;ÊAp€YŽ0 Á T\Äñ/G˜…à³`‚#ÌBp€YÜä.B¡Õjå.Ê’””$w #8*A†´Z- P®Åc€©j˜…à³`‚#ÌBp€YŽ%à”ê‡`‚#ÌBp€YŽ0 ÁJtûöíÑ£G׫WÏÓÓ3,,,11QîŠ,©íþýûnnnš‡=öØcr¯À<œS ßU ÅÉÎÎnӦͥK—úöíëããß­[·Ý»w‡††Ê]ZùjKMM-,,ìСCPP~ÐÓÓSî•ÀBGX"??_Q¹re{,|Ñ¢EÉÉÉ«W¯:t¨büøñ­[·ž8qâ®]»ä^ïòÕ–œœ,„˜3gN—.]ä.`ª–ÐjµFahöìÙmÛ¶µÉÂ7lØ0dÈénPPPß¾}÷ìÙsõêUs^~øðáž={úûûÍWªT©‚k“‚cÆ m²YÁ¶qáÂ…#GŽX¿œììì³gφ‡‡k4ý`DDDQQ‘9G:îܹ³]»v'Nœ6lØÜ¹s[µj%„hÕªÕ¤I“&L˜PÁµ%''»»»W«Ví›o¾Y¾|ùþýû¥N-@8ÀѦª¡,ׯ_×ét~~~†ƒ¾¾¾Bˆ7n”þÚ¼¼¼¡C‡ùäôéÓ«V­’ë‚…ŠBp4íØ±c+W®>¾[·n»wï •»´¿=zôçŸîÒ¥‹Ü…PqŽÆ:uêÔ©S'ÑS§Níß¿¿M›6 .”»:¥ÈÏÏBT®\Ù _´hQrròêÕ«‡*„?~|ëÖ­'Nœ¸k×.¹×[ìÚµë—_~‰-**’»€Õ˜§.¦ªa ­VkÔl›={vÛ¶mm²ð 6 2DºÔ·oß={ö\½zÕœ—>|¸gÏžþþþš‡UªTÉúÚ233ŸþùÙ³g߸qÃÆÛÅ#8Â6.\¸päÈë—“}öìÙððpF£Œˆˆ(**2çHÇ;w¶k×îĉÆ ›;wn«V­„­Zµš4iÒ„ ¬/ÏÏÏO§Óétº3gÎØqk HLU—-$$„ë2V˜ëׯët:???ÃA___!D™M¾¼¼¼¡C‡ûlRRÒÌ™3«U«&÷ʆyêr"8¾ ¶nÝZÒ£½zõ2ÉÉÉB}Í£···"33³ô÷Ú·o_zzúœ9sôç0¹»»ÇÄÄDFFnܸ1::ÚÊÚprGEÓõ ±˜N”öa………†wK:SäîÝ»½{÷.ñ-ŠýwžâÎ;†ƒÙÙÙBˆš5k–^ð… „FàlÞ¼¹âäÉ“Ö×p(´Ëà¨h¥G7yÝ»wÏðnnn®É§y{{—+ùùù¹¸¸ÍJgdd!j×®]úk¥oú)((0”­‹‹‰ÃyË[NŽà ¥§§Þ-é”çòN»¹¹5mÚtß¾}†ƒ{÷îÕh4!!!¥—,„8}ú´á Ôk4ù¥¢LUP.GXèÚµk[¶l‘¾J'%%娱c&ŸfÁtðˆ#Ư_øüÿì³Ï–ôíó´jÕªaÆŸ~úé˜1cªW¯.„ÈÏÏ_¸p¡§§§É¯üaªœóÔár<°››Û€Ø¿ÿfÍš•t•Di:¸$&_Ý¢E‹¨¨¨iÓ¦-X° sçÎ999ú/÷‹‹‹«Q£†ÉkëTªTiéÒ¥™™™-[¶œ7oÞ‚ :uê´oß¾yóæ¦mqm83:ްP»vízôè±|ùò‚‚‚#FxyyÍ;×&KöòòÚ³gÏäÉ“ããã³²²Ú·o¿~ýzý÷ æççߺu«¤C*»w˜8kÖ¬ØØØ¼¼¼–-[nÛ¶íù矗{k”„v£¥ްF£yçwÞyçýÈœ9slµpooï+V˜|hèС÷ïß7y–´$44tÓ¦Mö^}­VKWàl˜ª†ÊäååíÞ½[úJÊv£ŽP™4iÒdРAr€Óaª–xýõ׾ܥ„‡‡‡‡‡Ë½êD»Ñ:GX"&&Fî@Ecª8ÚV#8À,Gàh7ÚÁf!8GG»ÑFŽ0 Á84Ú¶Cp€YŽÀqÑn´)‚#pP¤F[#8À,G(ÑíÛ·G]¯^=OOϰ°°ÄÄD¹+úÛñãÇû÷ïïïïïééÙ¦M›Å‹È] Úvà&w€±ììì6mÚ\ºt©oß¾>>>ñññݺuÛ½{whh¨Ü¥‰”””Î;öéÓ§^½z;wîœ0aÂÞ½{¿ýö[¹KÀîè8ÂùùùùùùvZø¢E‹’““W¬X±~ýú¥K—îÛ·O£ÑLœ8Qî•Bˆ &ܾ}{çΫW¯ž3gÎ/¿ü2|øðï¾ûnûöír—0@»Ñ>ް„V«íÒ¥‹áÈìÙ³Û¶mk“…oذ! `È!ÒÝ   ¾}ûîÙ³çêÕ«æ¼üðáÃ={öô÷÷×<¬R¥JÖ×¶k×®°°0Ã5;v¬âÀ6Ú´«‘톩jØÆ… Ž9býr²³³Ïž=;pà@F£ŒˆˆøüóÏûôéSúËwîÜùÜsÏÕ­[wذaU«VýöÛoûí·V­ZEDD¸¸XûŸIcÆŒiÓ¦áàÅ‹…îîîvÚ°(ÁÊrýúuNçççg8èëë+„¸qãFé¯ÍËË:th@@ÀÁƒýýý…“'O~öÙg“’’fΜY­Z5+ksss›7ožáÈÍ›7çÍ›çêêÚ·o_¹·@A»Ñ¾ް¯‚‚‚­[·–ôh¯^½ŒFrrr„^^^†ƒÞÞÞBˆÌÌÌÒßkß¾}ééésæÌ‘R£ÂÝÝ=&&&22rãÆÑÑÑVÖfä§Ÿ~9rdrrògŸ},ÃÆ!5ÚÁQÙ ¦kePêÏ^aa¡áÝ¢¢"“O»{÷nïÞ½K~ã·ðññBܹsÇp0;;[Q³fÍÒë½pá‚¢E‹†ƒÍ›7Bœ|¸›?D  ´í¿y°PzzºáÝ’Ny.ït°››[Ó¦M÷íÛg8¸wï^FRzIÒ|ñéÓ§ ¥^£V«µ¾6!ÄæÍ›ÿñ¼òÊ+Ë–-3šOȉÔX!Ž°Ðµk×¶lÙÒ³gO!DJJʱcÇL>Í‚éà#FŒ?^¿ð?þø#>>þÙgŸ ,½¤V­Z5lØðÓO?3fLõêÕ…ùùù .ôôô”eem:.&&¦nݺk×®uuu•a£ +‚#,äææ6`À€ÈÈÈ¢¢¢-[¶”t= ¦ƒ£££W­Z%å¿Õ«WçääÌž=[z4..î7Þ6lØ¢E‹Œ^X©R¥¥K—öéÓ§eË–£Fruu?räÈÇltš¶eµ>}úÌ™3Mš4yíµ×Œz饗"##+vþB»±¢a¡víÚõèÑcùòå#FŒðòòš;w®M–ìååµgϞɓ'ÇÇÇgeeµoß~ýúõúïÌÏÏ¿uëVI‡TvïÞ=11qÖ¬Y±±±yyy-[¶Ü¶mÛóÏ?o“Â’““…§OŸ6š B4lØàò 5V ‚#,¤ÑhÞyçwÞyG?2gÎ[-ÜÛÛ{ÅŠ&:tèýû÷Mž%- Ý´i“=VùÅ_´àd€‘+_9•ÉËËÛ½{w«V­ä.§Cp„Ê8p I“&ƒ ’»€Üh7V8¦ªa‰×_]®‹Ñ„‡‡‡‡‡Ë½r“/5j„¦‘h$÷ú˃àKÄÄÄÈ]À‰Ñk” SÕ0 Á¨ íFù€zeEp*Aj”Á¨©QŽ@ñHÊ@p€YŽ@Ùh7*Á(©QIŽ@©H CpФÈÔ¨P\U†à”G‘©G¨ÃñãÇû÷ïïïïïééÙ¦M›Å‹È]Ô·oß=zt½zõ<==ÃÂÂKyò™3gúõëW§NêÕ«wìØñ»ï¾“»|PR£R¹É]P¶”””Î;öéÓ§^½z;wîœ0aÂÞ½{¿ýö[¹KÙÙÙmÚ´¹téRß¾}}||âãã»uë¶{÷îÐÐÐâO>{ölÛ¶m]\\ìååµiÓ¦>}ú,_¾|äÈ‘r¯(©QÉt°µFUÀKäuïÞ½{÷îUØÛõêÕËÅÅåСCú‘áÇ !äÞºY³f !V¯^-Ý=þ|õêÕÃÃÃM>yèСæÿûŸt7//¯Q£F>úhñgªî#a””¹K€ ìr®¢ød"tBç¿¥Mbª–Ðjµ]ºt1™={vÛ¶míôv»ví 3\þرc…0çå‡îÙ³§¿¿¿æa•*U²¾¶ 6 2DºÔ·oß={ö\½zµø“OŸ>]«V­æÍ›KwÝÝÝ;w™™‘‘a§MjB¯Qñް .9rÄK.((3fŒ”õ.^¼(„pww/óå;wîl׮݉'† 6wîÜV­Z !Zµj5iÒ¤ &XY[vvöÙ³gÃÃÃ5~0""¢¨¨È䑎­ZµºvíZjjªt·°°ððáÃuêÔñññ±Ç¦5!5ªÇ8BéÜÜÜæÍ›g8róæÍyóæ¹ººöíÛ·ô׿åå :4 ààÁƒþþþBˆÉ“'?ûì³III3gάV­š•µ]¿~]§Óùùùúúú !nܸQüù“&MÚºukXXبQ£¼¼¼âããO:õÕW_ɽ@n¤F• 8¾ ¶nÝZÒ£½zõ*ïúé§‘#G&''öÙgÁÁÁ¥?yß¾}ééésæÌ‘R£ÂÝÝ=&&&22rãÆÑÑÑVV›““#„ðòò2ôööBdff_Bƒ † òÞ{ï½ûî»ÒH×®]&ýÀéÕƒà¨hëa…Òˆ ï™|ÚÝ»w{÷î]â[ûMqþüù† êï®^½zèСÒíK—.;vóæÍÁÁÁ;wˆ(s.\¸ „hÑ¢…á tˆáÉ“'­¯Všb¾sçŽá`vv¶¢f͚ŗ0dÈÿþ÷¿~øaTTÔ#<²gÏž1cÆ´oßþСC&ŸŽÔ¨*GESòOÒ½{÷ ïæææš|š···®<¿üüüÖ­[§¿Û¾}{éF\\ܨQ£<==—/_>|øp77³>ºB£+>J×ÅÅľTëââb4+-éR»vm£'Ÿ]JBˆàààÑ£GþüóÏrW€íh4¤F=Úe¢ãhBjjjÕªUCBB ƒƒƒ…—/_–»:l„Ȉr"8š°|ùr77ã-sêÔ)!Dݺu宫qDc1´ÍAp4¡iÓ¦F#‰‰‰+V¬pwwïÝ»·9KÐjµF#Òô7ä’––&w 0ÆNQ&ö‹Ù|§¥¦¤!DjªÜ+§AA)©)©ÂôéÖ­›Ü*Á± ………ëׯ_°`AaaáG}äããcΫ’’’ä.Æå.ÆØ)ÊÄ~Q ›í”¿ìãâJÙÈÅÿ¬ï9 ‚ci<8{öìóçϼÿþû:t»",Å%`’Ú|GÓòóó.\¸víÚ*UªŒ7îÕW_ÕŸa €ÊpDcÉHåBp4¡¨¨hâĉ;vìèÚµë¬Y³|}}宋KEj,/‚£ k׮ݱcÇ AƒfÍš%w-XйéR‘-@p4¦ÓéÖ­[W­Zµ)S¦È] ¡Ñû 8»qãÆ¥K—<<<¢¢¢Š?Ú§OŸÁƒË]#%£ÑhÚ–!8“.—•››{òäÉârb5@¹h4š‡Ôh1‚£±V­ZqF€ÊÍFj´Á•cnÚl¤F+P-åAj´Á"2–©Ñ&ލ ‘±üH¶Bp@=8œ±üH6Dp@ h4–ŸFh„¤F"8 hAABËF£=¸È](F#4šÔ”Rcy‘í„à€"I‡3ËÔh?LU 0Îh)j´7‚#ŠAd´Æ @p@ˆŒÖ!5V ‚#²"2Z‡ééŠDp@&DF«Ñh¬`œU @…Óh8iÚJ¡‘+5Jß9Ñq bñµÖanZFG* sÓVcnZ^GìÈh5J@pÀžˆŒV#2*Áû 2ÚsÓŠBpÀÖˆŒ¶@£Q¸¶ÃuvlA©¦F'?'žŽ#¶@—Ñè2*ÁëmȨ G,Ed´"£Š(?"£-¨.2:ùŽ‚à@ùmAu‘‚#æ!2Ú‘QÕŽ”…Èh5)/ 5GFæ©Á€Ò­F‹Ñ‘0…Èh5"£ã!8ð0"£u`VÚÄJ1O-„ 8ð€æAÜ! XŒ£Ã#8œ-Fë8d‹ñ¡¤Ýø‚#À‰­ã -FR£!‚#À)­àð-F”„àp2DF+8C‹ñ¡õ¥Ýø0‚#Ài-åœ-FRcqG€ 2ZÄ9óâƒu'5šBp8.®°cg΋¶©±G€#¢ÅX~äÅÛÔX2‚#À±ˉ¼hˆÔX:‚#ÀQ˃¼X©±LG€Êq cyMâ?:ÌDp¨íÍF^,Fó*Dd4y±t|ŽÊËEî,tüøñÒŸ w;Ðh4ˆøk_2̓ͤÑ=ØRl+c|Ž,£Öà8`À€ÿûß………ÅÊÊÊzë­·Æ/wÛÑhøS_:ÍßÛˆ¼X>GSkpôõõýä“Oú÷ïáÂÃñíÛ·÷èÑcÛ¶mõë×—»F€-æEþÔS<,’K¡ÿ4Á2j Ž[¶léß¿ÿ‰'z÷î'„¸uëÖ„ Þ|óÍ[·n½úê«›6m’»F€uh1–Œæb¹Ð°¶µžãéé9gΜ^xaúôéÿüç?¿ÿþû”””ŒŒŒàààyóæ5kÖLîVàœSôgºNv1%ÛRkÇQÒ¾}û 6Ô¬YóСC­ZµúöÛoI Vô…L b2Ú|”ìAÝÁqß¾}ýúõ»yófHHˆ¯¯ïo¿ý6f̘ëׯË] œ8Ñh{œé’’šBX4ÿõaWj ŽwîÜ™6mÚk¯½–‘‘1~üøo¾ùfË–-/¼ðž={zôè±qãF¹ ˜‡?òú-aê´hò¢™Œò¢ÓšìE­ÁQJ‡ÁÁÁß|óÍo¼áêêêíí½dÉ’?üP£ÑL›6íÕW_•»F@Éè é·aÑ:äÅŠ¤Öà˜‘‘1räÈo¿ý¶iÓ¦†ã‘‘‘›7onß¾ýþýûå®` ç¹æ¢-ðŸ²PëYÕëׯ 5ù¿¿ÿ—_~¹víZ¹k<̹OpåœhëiþÞ„Nû9’™ZƒcI©Q¢Ñh† "w!„Á_{çûSOX´ 'þ)ŽZƒ#@œ²ÅHX´ š‹ÊDpØšó5ˆ‹6AXT>‚#Àvœ©ÅHX´ ¢º¶à‘‘°h„Eõ"8¬à³Ò„E› ,:‚#À"Ýb$,ZÏ0) ‡ý¤8ÇmÛ¶­Y³æÂ… º>Œ‰‰‰r×Çq[Œ„E+‘ZƒãÎ;ßzë-é¶«««Üå€p¸£aR„Åò#):!µÇÏ?ÿ\ýÆox{{Ë]84ŠŒ´­AR„Zƒcrrr:u¦L™ââ¢Ö¯Û¥s”Yi¢eŒb¢Pý6 ÊÔuÿþý;wîÔ­[—Ôv¡ÑFètþ©æÁ <ø§û{MÔ·.F£1þ§ÓÿTÙqtqqñöö>wî\QQÙlF£ ”n¨0#ÐV,º‰°Œ*S—««ëk¯½–‘‘±xñb¹k‡ðW‹)5%E- ‚¶¢ùè&ÂVTÙqBtïÞýòåË+V¬HLL|á…êÔ©S¹re£çtîÜYî2@ÙÔv#mEsÐM„ý¨58véÒEºqüøñãÇ›|NRR’Üe€R©äDi®˜SºâQ¨`¯ªžFˆFr× µÇ_|Qî@…ÔÐb¤­hJ Öà¸páB¹KUQp‹‘¶¢‘b1P(t×Áé¨ò䀹ŒÎ†P†RÎkqªÔXüœ“g®¤¤¤*f×ÁÙ©¦ã¸~ýz!Ä“O>¬¿[º¨¨(¹«ù(¬ÅèäÐL4Ã1¨&8Ι3G1{öl)8JwKGpàŒs£sN@› ˆBþ½؆j‚ã¸qã„Íš5“îNš4IîŠ@aän1:UR$ Â9©&8Ž;Öðîˆ#ä®”A¾£3$E"`H5Á`LŽ£CªXR:DàaGP›Šm1:R[‘ö!`%‚#¨G…´Õži®4Bè„ÐÊ]†\Ž xvn1>”Õ‘I‡€,Ž `öi1–ÒSLMMr¯õÃkoéÁ”ÇÖ-F%Ï>“qœà¨ÓévíÚ•––Ö¼yóÐÐP¹Ë‹Ø¨Å¨¨¤XJ4´Åº¨8*Ž»víZºti×®]¥kƒÏ˜1#>>^zhàÀ³fÍÒ”þ» ”Ãê£ìI‘Æ!à \ä.ÀB‡~ã7Μ9STT$„øý÷ßããã½½½ T§N¸¸¸]»vÉ]#˜A£Ðéü3ÿu^ùàŸîïEèì”5šÒþét%þà0ÔÚq\¹r¥N§›>}úÀ…;vìBÌ›7¯K—..\èÖ­ÛþóŸ.]ºÈ]&” ü-Æ è)j4B”|j ®ÅãÌÔÚq<{ö¬¿¿ÿ!C*Uª$„8xð`åÊ•Ÿ~úi!Dƒ üñ””+ßâ›o¾éׯ_hhhÇŽ§M›–••%÷Jpf·íÑS,³k˜’’Jã@IÔoݺåãã#Ý.((øý÷ߟxâ‰Ê•+K#<òHFF†5Ë_¼xñŒ3Ο?ß¶m[OOÏ7Ž9277Wîõ ZFsº&Ÿb£¤hÙ„2Ñ@™ÔkÕª•––VXX(„øí·ßòòòÚµk'=TTT”––öØcY¼ð¤¤¤+Vøùù%$$¬X±bûöíC† 9~üø‡~(÷zP¡’[Œ'E7 µǶmÛÞºuë“O>¹råÊ'Ÿ|"„ “ZµjÕÍ›76lhñ¿þú뢢¢·ÞzË××W™:uª··÷¶mÛ¤sq l¦ZŒæ'E‹£!é€ý¨58Ž9²jÕªŸ}öYDDÄ¡C‡š5k&]»ñ•W^Y¸p¡bøðá/üðáÃ...;wÖ¸ºº†……effþöÛor¯:Å3w0™…F'4:¢! "œ#Ôk×®ýßÿþ·sçÎþþþ:uZ²d‰tÕÆŒŒ //¯>øà©§ž²lÉ:.99¹fÍš5kÖ4oÔ¨‘âòåËr¯:¥ú+ôi¤X(4¡î'ÅÒs!Ñ€2©õrÐýõ×½zõºpáš5k,^¸ŸŸ_ff¦”õRSS¥‡ä^uƬ¿rMÙWɱô¥À‘¨58:tÈÕÕõý÷ßä‘G Ç]]]gΜùÈ#lß¾Ýâ…wéÒ¥°°pß¾}úN·gÏž5jHýPÁl~QCs¯§hÆ×½pxÌSë©58ž>}:00Pÿ­ƒ†<==ƒ‚‚.^¼hñÂûõëçââòïÿ[:®Q±bÅŠŒŒŒ—_~Yújl6gïë]—ï;ZŠ¿1@½'Çx{{ß½{·¤G³²²ªU«fñÂkÕª5yòäùóç¿øâ‹O?ýôÅ‹CBBFŒ!÷z*Vì4”‡Îµy63qF‹ùU’ü…v£!µv›6mzõêÕãÇèôéÓW®\iÒ¤‰5Ë>|ø‡~øý÷ßß¼ysðàÁkÖ¬)~qGFÌ捻¤Úöz×ïóCuÓ_€’©µãØ¿ÿ;vLœ8qÉ’%!!!úñS§NM˜0AÑ»wo+ß"22222RîÇœë×TP%–õM®aÌ ÖàØ±cÇ×^{måÊ•/½ôRPPbçοüòËùó狊ŠúôéóüóÏË]# b¥¤C#–m’¢Ñ”Œyj#j ŽBˆI“&µnÝzþüù)))Bˆ+W®!{ì± &^Ù€IÊi–V¤ “¢Ñš+d @UT…ááááááYYY)))ùùùAAA\g0¤ÌÆaiÛ#)m e®9å¡ÝXœºƒ£¤F­[·–» @6ªK‡o¿¤ø÷{ÐbÛPkp|ê©§Ê|Nbb¢Üe6£êtøÐŠè“b vJŠÞ‰#ËÑn4I­ÁÑèû…:®¨¨HºíïïoòÚà€ò•Õ~Jê)¦¦¦Z²Ä²ß’#«K¢Öàøû₩§§ÿðß}öÙ½{÷þùÏÊ]#P"‡iš^» ˜}6ýÆ´À¾Ôzðâ\]]ëÖ­;|øðO>ùäöíÛo¿ý¶Ž?›_ §FV]yÛ6ðõ€l†vc)'8ê=õÔS 6¼|ùòåË—å®΢¼ÑÈœÁ×½°1Rcé08 !|}}…>ú¨Ü…ÀÑ8a@ü{ÝKn+ÊQ -FZq,ENNÎï¿ÿîããSµjU¹kZ9Þ*–l¹U,­&Žb`G´ˤÖàxàÀ“ãYYYk×®½yóf×®]å®ê`2#:g,QbRü»8N”`_¤Fs¨58FGG—òhµjÕÆ/wPšˆ&†Ee%ÅõÑbPHfRkp|ñÅKz¨^½z½{÷®[·®Ü5B6¦2b ÁC¢è¶âC…ÒbPAHæSkp\¸p¡Ü%@)ŠÇÄâa#55õÁ•8%¥·ª•#€ Ej,µG8'ŽG4“jÚŠM‹@E#5–—j‚ãO?ýTÞ—tîÜYîªasZ‰ÐSS[Ѹt"#- šà8jÔ¨ò¾$))IîªQÄÄòRe[Ñ@`PÐ_¥«¬r€ÔhÕÇRΆ-£â¶âC«¡B¤¦¤:ï§dDj´˜j‚#gè1Ñbjo+>¼2Ÿø’š*wAœ©ÑŽù•ƒS¦L‰ˆˆ» §Væ7ò¡Šøh¯ß@HVRMDZ¸¬¬¬üñâÅ‹Fã¹¹¹?üðƒ«««Ü:£ž"Ù ¼dÚx­¸¶¥~ñËÈJj Ž×¯_8pà•+WJzBTT”Ü5:8’¢•jÚÄêq¢4¡Ñh+j Ž_~ùå•+WÚ¶m¹uëÖƒΜ9ÓÃÃãÌ™3ëÖ­‹ŠŠš>}ºÜ5:’¢õ³­h¼’DFÊBj´!µÇ}ûö¹»»ÇÆÆzyyEDDtêÔ)00°C‡Bˆ   ¹sç¾òÊ+ÁÁÁr—©n$E›pа(˜• DLOÛœZO޹zõjƒ ¼¼¼„=öX5Nž<)=Ô¯_¿5j|ùå—rרJ¥œÑó•tv‹ÜuÙim9ñ€IF~+Ù–Z;ŽB—¿So½zõRÿº´‡«««V«=~ü¸Üª†ag‘¿ûs–Îâß+L‹€BÑh´µvýýý/\¸p÷î]énݺu9¢T£Ñ¤¥¥É]£¢•ÔYD¹8WgñïÕ¦Å@¡44íL­Á±k×®¹¹¹“&M:þ¼¢M›6—.]Ú¿¿"##ã×_­]»¶Ü5*aÑ&œ4,>XyƒO( ‘±¨uªzÈ!Û·oßµk—N§[¶lYXX˜››Ûرc[µjuæÌ™œœœîÝ»Ë]£R0£h=§›†6^>C¹é £ÖŽ£Ïúõë'L˜Ð¬Y3!DíÚµg̘‘ŸŸÿóÏ?gffvéÒeøðár×(³âÍE”‹SwÿÞ |†(sÓL­Ç‚‚ŸQ£FéGyâÄ ??¿   ¹ ”§¹XOß\tºŒøÐV Å@éè2ÊB­ǰ°° $''zzz¶oßÞ S#G.ZÉdsQî¢äÚ´(]F©58fff~ñÅ=zô0`À7ß|£?½ÚÙðWÞbÌDÛ"œø@鈌²SkpŒŽŽöóó;zôèŒ3:vìøÎ;ï^‘DZµa>Âb±-‡ € B£SóŸŠ¢¢¢#GŽlÙ²%!!áöíÛBˆúõë÷íÛ·wïÞ¾¾¾rU¥Õj“’’ì´p¾ØÎ~NtIäþ0¥¦¦ʽ`Œý¢@N¾S”y,£]ÿÖ+™Z;ŽªwqyòÉ'çÌ™óË/¿,[¶,22òÆ}ôQçÎ Ï›qt…,`Ø\LIM¡¹ø7>LOC—Q‘ÔõÜÜÜÂÃÃ?üðÃ5kÖhµÚŸ~úIî¢lƒ£Ë…Ó\Ê@d x†y‘_UJ£ÖËñIJJJHHHHHHIIu"å.ÊZrO$ª ×Ð)—× xúƒŠø=¥dꎿÿþûöíÛ·mÛvñâEiä‰'žˆŒŒìÞ½»ŒÇ8ZÈhŽ\4 &Š§Ì£a’ZƒãÂ… ·oß~ùòeénƒ "#####ëׯ/wiVá¯|™h.š‹e£Å¨Fj ŽŸþ¹Â××·G‘‘‘!!!rWdÒ±g0‰¼h.f¥(-FõRkpìׯ_dddÛ¶m]\áüzC%!/–#ÊF‹Ñ¨58þë_ÿ’»›¡ÑXy±|ˆŒŒ¼èHÔîËÏ¥"/:$‚£lh4ê‘-Ad HäEÇFp”©Q-ù/‰¼è$Ž2pòÔH^´-FÊC^t6ÇŠæ´©‘¼h9"#…!/:-‚c…rÂÔH^´ ‘€bh nó[Éi+޳¥F)2’-Dd  4aˆà£ÅhÎ} 4Q‚cqøv#yÑZ´Èаs+‚c§F¦¤­Ed f¢Q.GXˆ£ Èæ",Fp´;Çk7Òb´"#€ŠEX„MíËÁR#‘шŒ* a6GpDÙ˜•¶ "#û#,®Ž( -FÛ 2°'Â"* ÁÑŽT=OMd´ "#;Ð<|—_1¨0G#2Ú‘€MÑV„ñ7"£mØÈƒ°(‹P¹ pXêš§ÖFhtBGj´ŠFó`Ç«hßPÍÃÿtBè„HIMåw ‚Ž£³£ËhtXŠ9h¨ÁÑymƒÈ œ8µêEptFDFÛ 20IƒàhŠ=À‘ÈhDF¥")ÂQ‘Ñ6ˆŒL!)ÂI‘Ñ6ˆŒ ᜎNºÈŽÜU¨‘IBF 2NŒ¤Gpt@DF 2·¤”‰àèh˜›¶‘pšb#üØe"8Ú…,©ƒF£µˆŒ€C£¡Xàè h4Z…È8Š€=UF£µ{¹våAC¨Gu£Ñh€jÑPdApT1R£åˆŒ€ÚÐP”€à¨JLO[ŽÈ¨ E@™ŽêC£ÑBDF@©ˆ‰€ZU†Ôh™À  "# ÄD@½\ä.å@j´„F#4šÔ”¹ëœ”¦Ø?]±Ô‚ਤÆrÓh\j‡^#PQˆ‰€ccªZ8¦Ü8œ¨L:Άà¨t4Ë zöAL@pT4RcùÐhl‡˜ 8‚£r‘ËÈXçï˜(ý??NŠãä…"5–gÀåTÊ),)©©œÂ $t•ˆÔh.€˜t`+GÅ!5š…È”€˜À~ŽP!Λ„¦2¢ &°'‚£i¹¹¹ÿýïãããÓÒÒªU«Ö¨Q£áÇwìØÑÞïK»± 4áÄh%ÁÑ„‚‚‚èèècÇŽy{{·oß>//ïàÁƒû÷ïóÍ7ÇŒc¿÷%5–†È'CL @G¾þúëcÇŽµnÝú‹/¾ðððBœ;wnðàÁŸ~úiDDD“&Mìñ¦¤ÆÒ07 ‡ÆŒ3µàr<&$$$!¦OŸ.¥F!DppðèÑ£ þùg{¼#©±Dúï›…9ßæÌ'€2Ñq4!55µjÕª!!!†ƒÁÁÁBˆË—/Ë]3!2Bý˜qàHŽ&,_¾ÜÍÍxËœ:uJQ·n]›¿íF8¢*ÄŒ3‡Gp4¡iÓ¦F#‰‰‰+V¬pwwïÝ»·9KÐjµF#ÒôwqAA)©)©"Uî•VÀ  Ô”!„HµÙfIKK“{µ`Lí;%误æÓK1õ‰UÝ϶Ú÷‹Cb§È®[·nr— Ç2®_¿~Á‚………}ô‘9¯JJJ2çizæ<×9üÕh´Ç& dC+ŽŠvŠY3ÎêYÒ©h¿8vмŠÿY/Þ!rN V®\©¿ëêê:räHÃ'4ab"(Á‚F#J@L!8V('§&5â/ÅÄÀ@ALUq‘»84†Ôè´4¦þé þ¥¤¦òÉu¡ãXqœ®ÝHdt&Ì8€3 8Â>H˜ΉàXAœ¨ÝÈÙÓŽÈ()²wÀ9aS4 E€IGØ©Qˆ‰3+‚SÌS“U‚˜°ÁVã F#&lˆàëÐhTÎbØÁÑîyžšÔ(7Š€ŠDp„¥Hr ¡ÁåÇA…†"@QŽ('öDC dGûr´I6EC .G˜Ôh5ŠU#8Â<¤F‹Ž„à3ÍFR80‚#JÅ Ôe!)œÁÑŽTf FSHЧEpD H!) !8ÂçN$EL"8¢§L†aÑéVóñ0§I´(/‚# 8zj¤­€5Žö¢¾Sª15þaë¸È]”ÁR£ÆàŸî¯)©©²zȇŽ#!52 @ 8:=Õ¦FÂ"ŒàèÜT•9y˜R#mE”ƒà謔õyQ¹%à|ŽNI‘©‘æ" Gpt>JJ„ET„àhʽú·2R#3ѨÁљȚi. vG§!Sj¤¹€Ã 8:‡ŠM4pHGØ ÍEÁÑ Ø¹ÝH^ÀIÝR#ygCpthvHäEœÁÑqÙ45’ÁÑAÙ(5’€Á&@qGGdE»QŠŒäEPÁÑáX”i1€2KùS#-F`&‚£]èdIbåI´@y-F`‚££0£ÝHdÖ 8:„RS#³ÒÀ&ŽŽŒ#°!‚£ú™j7€ÍU®Xj$2;!8ªÙé‘ÈìŠà舌 Uë¯v£†È*ÁQ4¡ÓÑh‰à¨JN@Å"8ªsÓ@.r€rÐH©Q£±~QåEÇQ54ÍøNj{ 8ªÀß'Á€|ŽJÇ@!8ÆQÑJ´€¬ŽÊE¯( SÕJdâÊÞ´€ÜŽŠc¢ÑHj ÀTµ²0= ‹à¨ ¦S#íF  G¥ ×Žà¨%¦FÚ@1Žò£×Tà(³ÒR#íF $G˜…à('Ú@E޲áÐF .Gy”‘i7å!8À,GÐnjDp¬hÚTŠà³+TÙíFæ©€R`‚cÅ¡ÝTà³+íF vG˜…àX¶ôôôÖ­[Ož<Ùâ%píFàŽeÐétS¦LùóÏ?íû6ÌSÅ#8–aõêÕ‡’» ùKsîܹŋ7nÜØš…0O Á±D1115jÔ˜:uª}߉yj nr \Ÿ|òÉéÓ§W­Zååå%w-ò#8švìØ±•+W<¸C‡§N*ï˵Z­tãlRR#­V+DBB‚Ég¥¦¤ˆÔT¹×ØÁ¥¥¥É]Œ±S”‰ý¢@ìÙuëÖMàhBnnnLLLݺu'NœhÙ’’’¤ƒÛ% ”{ÛYØ)ÊÄ~Q vмŠÿ)×wˆœSÇ‚‚‚•+WêﺺºŽ9R1þü´´´¸¸8¹kP §Ž÷ïß_²d‰þ®»»ûÈ‘#:÷Æo´hÑÂÊåó5ƒÀ‘8upôðð(Þ|>wîœ"66666Öp|Ó¦M›6m Þ²e‹Ü…ÈÀ©ƒ£Iõë×ïÑ£‡áÈíÛ·÷ïß_«V­ÐÐP¹ ÁÑX§N:uêd8rêÔ©ýû÷·iÓfáÂ…¶|'æ©€ªpp˜…àh/|Ó p0LU—-$$¤Ìk18<:Ž2áG 6G˜…à³åÀ<5P!‚#ÌBp´ ®ÅÁf!8V8pêDp€YŽ0 Áf!8V,pªEp€YŽ0 Áf!8À,G»0}þ gÆ5#8À,G˜…à³`‚cEáÌ rG˜…à³`‚#ÌBp€YŽ‚Sª€ú`‚#ÌBp€YŽ0 Áf!8Ú§T‡@p€YŽ0 Áf!8À,G8…nݺÉ]Œ±S”‰ý¢@ì(Áf!8À,G;ã"ŽÀQ`‚#Ì¢Ñ1‘jkZ­Vî€}%%%É]‚ Ž0 SÕ0 Áf!8À,G˜…à³`‚#ÌBp€YŽ0 Áf!8À,G˜…à³`‚#ÌBp´™o¾ù¦_¿~¡¡¡;vœ6mZVV–Ü9‘ònüÜÜÜÕ«W÷ìÙ³eË–O?ýô«¯¾úóÏ?˽ŽÆšŸˆôôôÖ­[Ožxð Ü+áhÊ»SòóóW®\ùÒK/…††FDDŒ?þܹsr¯„ÓIIIÑjµÿûßÿä.DGÛX¼xñŒ3Ο?ß¶m[OOÏ7Ž9277WBy7~AAAttô¼yóþøãöíÛ7lØðàÁƒÃ‡ÿôÓOå^ÇaÍO„N§›2eÊŸþ)÷J8 vÊ®]»¸k×.__ßÐÐУG2d×®]r¯Šã(ïN),,:tè‡~˜••õôÓO×®]{ûöí½zõ:|ø°Ü«â\Ö®]+w òÑÁjgΜiܸñÓO?}ýúuiä_ÿúW£FæÌ™#wiŽÏ‚¿~ýúF 80''G9{öì“O>Ù¤I“ßÿ]îrVþD¬ZµªQ£F5š4i’Ü«â8,Ø)·nÝjÓ¦M‹-Ž9"üïÿ{â‰':tèPXX(÷ 9‹}?þþýûÒÈ/¿üÒ¤I“çž{Nîµq ·oß>|øðÌ™3¥ßQÇŽ“»"Ðq´¯¿þº¨¨è­·Þòõõ•F¦Nêíí½mÛ¶¢¢"¹«splü„„!ÄôéÓ=<<¤‘àààÑ£G2amÖüDœ;wnñâÅ7–{%;eãÆÙÙÙ£Gnݺµ4Ò¼yó^x!##ãĉr¯#°`§üöÛoBˆ¡C‡º¹¹I#íÛ·oҤɅ nÞ¼)÷ 9¾ÈÈȨ¨¨ 6È]ˆœŽ6pøða—Î;ëG\]]ÃÂÂ233¥rØ?55µjÕª!!!†ƒÁÁÁBˆË—/˽BŽÀ⟈‚‚‚˜˜˜5jL:Uî•p4씽{÷j4šÞ½{.X° ))©E‹r¯#°`§! 3¢N§»uë–‹‹‹>JÂ~Þ{ï½ØØØØØØ:È]‹løœYK§Ó%''׬Y³fÍš†ã5B\¾|¹M›6r×è°,ÛøË—//þöÔ©SBˆºuëʽNªgÍOÄ'Ÿ|rúôéU«VyyyɽŲròäÉ5jøûû9räèÑ£·nÝjܸq×®]õ­zXòҳgÏ5kÖ¼÷Þ{<òHË–-³²²bccÓÒÒú÷ïÏOMèÔ©“tc÷îÝr×"‚£µrrr «W¯n4îíí-þïBØœe¿iÓ¦F#‰‰‰+V¬pww7j®ÀÿD;vlåÊ•ƒîСƒ”ãa+ì”üüü;wî4lØðŸÿüg\\œ~¼nݺK–,yâ‰'ä^'Õ³ì'E«Õ®]»6:::::Z?8xðàiӦɽBpLU[K:ý­jÕªFãžžžBˆÛ·oË] #³~ã®Y³æµ×^ËÉÉùàƒ|||ä^'Õ³l§äææÆÄÄÔ­[wâĉr¯²`§Ü¹sG‘œœüý÷ßÏŸ?ÿàÁƒ{öì7nÜ•+WÆÏ%#¬gÙOJvvö|p÷îÝ<ûì³ß}÷§º£ÂÐq´VõêÕ5MNNŽÑ¸t1é¿a'VnüƒΞ=ûüùóï¿ÿ¾3³bC–í”ùóç§¥¥ÅÅÅ1 jì”*UªH7>øàƒˆˆéöرcÓÓÓ7nܸuëÖ¾}ûʽZêfÙOJLL̯¿þ:uêÔaÆI#ééé xûí·7mÚ$÷jÁñÑq´–›››··wñÿ:ÌÎÎBèÏ•ƒ=X¼ñóóóß{。C‡¦§§7nÛ¶m¤F[±`§:t(..nÔ¨Qœra'씪U«V©RÅÃÃ#<<Üp¼k×®Bˆ3gÎȽNªgÁNùã?vïÞݰaC}jBÔªUë7Þ¸ÿþ·ß~+÷:Á)mÀÏÏ/33Súi×KMM•’»:gÁÆ/**š8qâš5kºté²cÇŽ±cÇÒå²­òîé{/bccµy饗„›6mÒjµ={ö”{…?)¾¾¾•*UÒh4†ƒÒKAAÜ+äÊ»S233… 40—7nÜ{…àŽ6Ð¥K—ÂÂÂ}ûöéGt:Ýž={jÔ¨*wu΂¿víÚ;v 4èÓO?¥%låÝ)õë×ïñ0éÔÅZµjõèÑ#,,Lîrü¤„‡‡gggŸ={ÖpPºL Ú´‰òî” ¸ººž;wN§ÓŽ'%% !6l(÷ Á9È}rGpåÊ•ÆwëÖíÎ;ÒȲeË5j´`Á¹Ks|ælü?ÿü3%%åòåË:®¨¨¨k×®­[·ÎÍÍ•»v‡UÞRÜÉ“'ùæÛ²`§üþûï5êׯ_ff¦4rüøñÐÐжmÛfddȽBŽÀ‚2jÔ¨F-Y²Dÿå=gÏž}ê©§žxâ‰ääd¹WȉLŸ>Ýi¿9†“cl V­Z“'Ož?þ‹/¾øôÓO_¼x1111$$dĈr—æøÌÙø{öìyûí·ƒƒƒ·lÙrãÆK—.yxxDEE_ZŸ>},÷:©^ywŠÜõ: vJ“&M&L˜°hÑ¢nݺµiÓ&''çðáÃæ½÷Þ{ôÑGå^!G`ÁNù׿þÕ·oßØØØï¿ÿ¾iÓ¦™™™¿þúkQQÑŒ3üq¹WNàhÇì±Ç¾ûî»ï¿ÿ> `ðàÁo½õ–tUØ[¹6~ZZš"77÷äÉ“Åå[á'B,Ø)£FòññY³fÍ/¿üR£F.]ºŒ7Núš%ØDywŠÏ÷ß¿lÙ²ýû÷ÿôÓO5jÔxæ™g^ýõf͚ɽ*pÝÇJ&qr ÌBp€YŽ0 Áf!8À,G˜…à³`‚#ÌBp€YŽ0 Áþ6yòd­V{àÀ [Ô¿ÿýo­V»~ýzÃWýôÓO&y@Möïß¿gϹ«à¤Üä.œZxx¸OëÖ­Í|tÒ¤IÙÙÙ¿ÿþ»Ü…pFGSHHHHHˆe@cª€*È]8‚#ÕN9þüܹsÛ´iÒ¹sçqãÆ€"=-==ýرc/¿üróæÍÓÒÒô~ÿý÷£G~æ™gžzê©èèè/¾ø¢°°°ø{íß¿üøñaaaaaa¯¿þúÞ½{ž‘‘±hÑ¢îÝ»·jÕªU«V=zôøàƒ®_¿^ÞE­\¹²”Ó_ ]°`V«ÍÊÊ*,,Ôjµ¡¡¡Ó¦MÓjµëÖ­3zÕ¢E‹´ZíG}$÷àhŽTfúôéëÖ­ËËË«_¿~VVÖŽ;†þùçŸ=íôéÓÑÑÑ'Ož¼wï^QQ‘B§ÓM™2åí·ßÞ½{·N§óööNLL\°`ATTTVV–ák7oÞüÚk¯íر£J•*·nÝÚµk×È‘#—.]ªBFFFTTÔòåËÓÓÓëÕ«W§NË—/ùå—,ï¢ÌצM›¡C‡º»»k4š¡C‡4¨{÷îBˆíÛ·>M§ÓmÙ²EÑ«W/¹÷GCp 2GíܹóvìØñÛo¿M:U£Ñ|ôÑGçÎ3|ÚÌ™3›5köå—_þüóÏõêÕB|ûí·ß}÷¯¯ï† öîÝ»}ûöÝ»w·lÙòèÑ£Ÿ|ò‰ák7nÜØ¥K—ƒJoãââ{üøqý.\¸ñóÏ?÷Ýw›6mÚ¿Û¶m¯\¹òã?–kQ拈ˆ˜6mÚ#<âââ2mÚ´É“'·oß¾zõêGŽÉÈÈÐ?í·ß~»råÊO<ѰaC¹÷GCp 2¾¾¾üqõêÕ…®®®Ã† ‹ŠŠ***Š5|ZÕªUW®\Ù¡CidÉ’%Bˆ÷Þ{/44T øä“OÜÝÝ7lØpíÚ5ýkkÕªµtéR///!„››Û«¯¾%„øôÓO¥'„‡‡Oš4©jÕªÒˆ——Wdd¤ââÅ‹†e”¹(k¸ºº>÷ÜsEEE?üðƒ~póæÍBˆÞ½{˽£8 ‚#•yùå—ÝÝÝ G† "„8vì˜áà‹/¾X¥JýÝ?þøãúõëaaa†OóõõíܹsaaáéÓ§õƒýúõsss+þ§N’îŽ3fÙ²e?þ¸þ 7nÜØºukñjË\”•^xáa0[]PP°mÛ677·=zØqpV\Ž€ÊÔ©SÇÝÝýÚµkùùù•+W–¥éi½ .!4hP|õë×w ƒ‚‚L¾Å7îÞ½+u¯\¹²wïÞ#GŽ\¾|ùÒ¥KF‡6–kQÖh×®]Íš5:”••U£F½{÷Þºu+""¢fÍšvßœG*£ÑhЏºº^ GšÖÓét%-ÐÕÕUqÿþý2ßÂÅÅ¥R¥JBˆ¸¸¸çž{îŸÿüçñãÇüñáÇùå—3gÎ4¿Zý¢¬äêêúüóÏJÇV2O À®è8P™ÔÔT£‘k×®åääøûû?òÈ#%½Jê5€(‘𑆭ÁâoqõêÕœœœºuëV®\ùÏ?ÿœ;wnåÊ•—/_Þ©S'Ã2Ì©ÖpQ6Ù /¼ðB\\\BBB÷îÝwíÚååånë­BÐq :ÿ÷ÿ—ŸŸo8²víZ!ÄOúhÕªUßÿý‘#GêÔ©6lذàààÂÂÂÍ›7>|ØüE•×Ô©Sß{ï½óçÏçååé[·nýØcݸqƒv#»Ò”r¦!(ÊäÉ“7mÚ´|ùòÎ;Ë]‹²uéÒåêÕ«?þøcíÚµå.€ÃâGP½_~ù%==½mÛ¶¤FvEpuËÍÍ]¼x±âå—_–»Žc@ÅÚ¶m›———ŸŸß°aCé˲À~ŽT£{÷î5*þ%~Î, àÒ¥KaaasæÌ1:ÅlŽ“c`Žq€YŽ0 Áf!8À,G˜åÿPT2 >æêIEND®B`‚statistics-release-1.6.3/docs/assets/normpdf_101.png000066400000000000000000000610221456127120000223160ustar00rootroot00000000000000‰PNG  IHDRhŽ\­AaÙIDATxÚíÝy|Lgÿÿñk² Dw$bŠTÔ¢ªIP)ZJ­¥E[J£j©/ÚªRª‹%º(uk‰_Ý–¢UÑŠåÆm)!Kì‰$Iæ÷ÇÑé˜,N’™9gμž6sÍ™™ëœ“™óÎç:ç^¯À£8(ÝØ‚#d!8@‚#d!8@‚#d!8@‚#d!8@‚#d!8PØñãÇu8p É½÷îÝ3Ü»téR¥;[:Ó¦M“z%gõU­ZµU«V#GŽLMM}äòNNN^^^mÚ´™6mÚõë×e¾„±èèh¥·@p "ÿþ÷¿÷îÝ«t/TáÎ;\¶lÙã?þ믿–¼p~~~zzú¾}ûÞÿý€€€„„¥»@›œ”îüC¯×7îÏ?ÿÔétJ÷E>>>...Bˆû÷ï_¾|¹  @q÷îÝ‘#G;v¬J•*Å-÷î]C¡1##£oß¾III+V,á%Lxzz*½ölGê’°zõj¥{¡ŒU«V¥¤¤¤¤¤¤¦¦ÞºukذaRûÙ³gwìØQÂò×®];þüСC¥öÔÔÔÅ‹—ü&&Ož¬ôÚ°GªóÎ;ïdee=r±»wïNŸ>½K—.>>>>>>;wžnO<ñÄÂ… å/Ÿžž.ýàææVøÞ"§ã1ŒÑ@ÉŽT§gÏžaaa;vì(rjžÌÌÌ[·nI?ûúúßeˆ€999W¯^5¾WÅ.R‘sF‡ÎÂrssß}÷ÝÏ>û,//Ojqqqñöö¾víZyVÜ8Õ999>ýôÓcÇŽ­T©’ü'1ŒPûøø¾wÕªUáááåé${Fp F , *(((<¿ ›››»»»”/_¾üØcîº|ù²ôC… ªW¯nü(óÎ(þÁÌŸ?_Ñ Aƒ·ß~»]»v¯½öÚ×_]ž§-ªÛ½{wnn®ôó“O>iÆUÁ9ŽÔ©Y³f¯¼òŠ(æ €€é‡_~ùŸÝpÓßßßÉÉ‚/Z´HúáË/¿5jT³fÍœœœL¾TZ†Aí*Uª´k×NéîЂ#•š5kV‘gé !¤kY„Ÿ}öÙÁƒ¥Ÿ;6wî\éçgŸ}Ör»}û¶aÒGÃå2ÿýïÍ5 OÙ\¹reäÈ‘±±±ÒÍ—_~¹jÕª ö€&1T @¥¼½½§N:qâÄÂwMœ8ñÛo¿=wîÜ­[·Ú·oîèè¸}ûvé»R|}}¥9},ÄÕÕÕÕÕõÎ;Bˆáǯ^½Z§ÓmݺÕ\ß#ß Aƒ¤Ù+ïÞ½k¦BT¯^}Ö¬YVî {@Å€z;ÖøF—5kÖH³êdggoÚ´é?ÿù”ëÕ«·fÍšâJ•f¡Óéºwï.ýœ••µaÆÿüç?µjÕ •3œE]ºt))))))Éø«U«¶aÆ.€2#8P¯ *FŸM<ùä“GŽ™6mZxx¸——WXXØ”)SŽ=Ú¾}{KwlÁ‚M›6B8884oÞü­·Þ:tèPÏž=¥{W¯^}êÔ)kn(GGÇjÕª=ùä“Ó¦MKLL|ê©§¬ùêì‡Îä;[rܿӦMBˆ¨¨(¥ûVBp€, U@‚#d!8@‚#d!8@‚#d!8@‚#d!8@‚#d!8@‚#d!8@‚#d!8@‚#d!8@‚#d!8@'¥; AJwXPbb¢Ò]PÁÑ"4óû ™uÑ vŠ ±STˆ¢BZÚ)ZZ—Ra¨² Á² Á²Q’­[·*ݘb§¨;E…Ø)*ÄNÑ‚#d!8@‚#d!8@‚#d!8@‚#d!8@'¥;€U(ݨNbb¢Ò]° G€Ý!%ÀKÈÇP5d!8@‚#d!8@‚#d!8@‚#d!8@‚#d!8@‚#öîÖ­[¯½öZݺu]]]CBB”îQYúvÿþ}'''ÝêW¯®ôh ßU €]ËÌÌ >þ|Ÿ>}¼¼¼bcc»uë¶sçΠ  ¥»Vº¾¥¤¤äçç?ýôÓ 404ººº*½šBp@írss…*T°Ä“ÏŸ??))iùòåƒBŒ;¶U«V&Lرc‡Òë]º¾%%% !fΜ®tÇ5‹¡jÔ. À$ ͘1£uëÖfyò~øÁ××wРAÒÍ ôéÓ'..îòåËr¾ÿþçž{®F&cÄÎÎÎVî›6lh–Í‚"°=gÏž=pà@ùŸ'33óÔ©S¡¡¡:ÎÐVPP çLÇíÛ··iÓæèÑ£C‡5kVË–-…-[¶|ûí·Çoå¾%%%U¬X±jÕªk×®]ºtéîÝ»¥J-̈¡jì×Õ«Wõz½q£···âúõë%?6''gðàÁ¾¾¾{÷î­Q£†"::ºK—.‰‰‰ï½÷^ÕªU­Ü·¤¤$‡† fddH-7^¹re«V­”ÝÈZBp@;òòò6oÞ\ܽ={ö4iÉÊÊB¸¹¹7º»» !ÒÓÓK~­øøøK—.Íœ9SJBˆŠ+Nœ8122rݺuC† ±rß’’’ f̘ѧOggç 6¼õÖ[½zõ:vì˜ô(”Á€ŒFD­M¯ÄùùùÆ7 Š\ìîÝ»½zõ*þUL_ÆËËKqûömãÆÌÌL!DµjÕJîÒÙ³g…Í›77nlÖ¬™âرcÖïÛï¿ÿ^©R%Ã]Æ ËÉÉ3fLllìðáÃÌàÀLo ºwïžñÍììì"sww×—f5|||LF~ÓÒÒ„µjÕ*ù±...Bˆ¼¼<ãF)Ñ:8q…¥ûV³fM“–®]» !Ž?.ÿEQ2‚#6àÒ¥KÆ7‹»ä¹´ÃÁNNNñññÆ»víÒétMš4)¹KþþþBˆ'N7JµÆ€€+÷íܹs›6m kܸ±¡Q*OÖ«W¯|ÛFô0·F)ݳINNVº 0ÅNQ!vŠ •°SlñSº~ýúBˆ7J7Ïœ9#Ík]xÉ›7o–ö ¿páBã'¿zõªO×®]Ù«ÜÜ܆ úúúfddH-÷îÝ quu½r劕ûvõêÕJ•*uèÐ!77WjÉÏÏïׯŸ““ÓñãÇK^‘2üJØâo‘Y06ÀÉÉ©_¿~ýû÷ñÅ›6mZÜ,‰ÒppqŠ|È!Cš7o>`À€É“'üñÇ:uÊÊÊš1c†tïêÕ«===‹œ[ÇÙÙyáÂ…ééé-Z´˜={öÇܾ}ûøøøÙ³g›\ m¡¾Í™3ÇÓÓsÉ’%Booï3fÄÇÇûûû5êÝwß þá‡fΜ¨ôÞÓ†ª°mÚ´éÞ½ûÒ¥KóòòFŒáææ6kÖ,³<³››[\\\tttlllFFFÛ¶mW­ZeøN¿ÜÜÜ›7owJeDDDBBÂôéÓ-Z”““Ó¢E‹-[¶<óÌ3æZë’û–““sóæMÃÙŸ'N|ì±Ç>þøãï¿ÿ¾R¥JÍš5Û²eK·nÝ,·SìN¯æ3mS@@@bb¢Ò½0””???¥{‡°STˆ¢B%ì[ü”öóó«]»¶ÉÙ~VóÕW_;vìÓO?Uz3XJ~%lñ·È,ªÅÊÉÉÙ¹s§ô•0ÁkÏž=7~饗”îTsP»Q£F™|ŠÕ„†††††*½ GÔnâĉJw‚¡jÈDp€,GÈBp€,GÈBp€,GÈb/ó8®]»vÍš5III•+WîØ±ctt´§§g Ëçææ~÷Ýw[¶lIIIñôôlÚ´é믿îïï¯ôz(Æ.*Ž ,˜:uê™3gZ·níêêºnݺ‘#Gfgg·|~~þàÁƒçÍ›—‘‘Ñ¡C‡ZµjmÛ¶­gÏžû÷ïWzU£ýà˜˜˜ããã³uëÖ˜˜˜mÛ¶ 4èÈ‘#óæÍ+î!?þøãÁƒŸ}öÙ_ýõ³Ï>[¹rå·ß~+„˜:uªÒk íÇ5kÖŒ7ÎÛÛ[j™4i’»»û–-[ Š|ÈÁƒ…ƒvrz0”ß¶mÛÆŸ={öÆJ¯€2´÷ïßïààЩS'C‹££cHHHzzº óõõBgD½^óæMC”@3nݺõÚk¯Õ­[×ÕÕ5$$$!!Aé!$$dÆŒJ÷ÂÞi<8êõú¤¤¤jÕªU«V͸½Q£FBˆ .ù¨çž{®R¥J|ðÁž={²³³/]º4mÚ´ÔÔÔ¾}ûº¹¹)½N˜Sfffppð·ß~Û¡C‡áÇŸ9s¦[·n‡Rº_9tèÐü¡t/ õ«ª³²²òóó=<>>ÆÞÞÞBˆëׯ—üØœœœÁƒûúúîÝ»·FBˆèèè.]º$&&¾÷Þ{U«V-gßœœœfÏžmÜrãÆÙ³g;::öéÓGé-g§ŽP,3^ÑÂõ1°Ž¼¼¼Í›7woÏž=MZ²²²„nnnÆîîîBˆôôô’_+>>þÒ¥K3gΔR£¢bÅŠ'NŒŒŒ\·nÝ!CÊÙ7¿ÿþûÈ‘#“’’/^ìïï¯ÀÆÁ€(û%?%þa‘ŸŸo|³   ÈÅîÞ½Û«W¯â_Áô%¼¼¼„·oß6nÌÌÌBT«V­äþž={VѼysãÆfÍš !Ž;Vþ¾œ?þõ×_߸q£¿¿ÿöíÛÃÂÂʶQ~Gþ¦âšð½{÷Œofgg¹˜»»»¾4káãããàà`2*––&„¨U«VÉuqqB˜Ìª(%Ú"Op,mß$«W¯~õÕW]]]—.]:lØ0''¢‹’ØúØ€K—.ß,î’çÒ;99ÆÇÇ7îÚµK§Ó5iÒ¤ä.IãÅ'Nœ0n”jåï›bãÆ/¿üò /¼°dÉ“ñt(‚àEã”D¨Ê•+W6mÚôÜsÏ !’““>\äbe1bÄØ±c O~í򵯯Ø.]ºøùù•Ü¥–-[6lØðË/¿3fŒ‡‡‡"77wîܹ®®®ÒS•³oz½~âĉuêÔY¹r¥£££…ÀJ¸>åáääÔ¯_¿ÈÈÈ‚‚‚M›67M†ƒ‡ òÍ7ß 0@ÊË—/ÏÊÊš1c†tïêÕ«G=tèÐùóç›<ÐÙÙyáÂ…QQQ-Z´xõÕWccc8ðÙgŸ™\¦]¶¾8qâäÉ“7~å•WLîzþùç###­» Á›Ð¦M›îÝ»/]º4//oĈnnn³fÍ2Ë3»¹¹ÅÅÅEGGÇÆÆfdd´mÛvÕªU†ïÌÍͽyófq§TFDD$$$LŸ>}Ñ¢E999-Z´Ø²eË3Ï}úÄÅÅ]¾|¹ðÂ'Nœ¨Y³f³fͤ›+VìÔ©SzzzZZš…6æ@\Xr:{öì,ñÌyyycÆŒ‘’¢Á¹sç„+V|ä÷oßÞ¦M›£G:tÖ¬Y-[¶B´lÙòí·ß?~|9û–™™yêÔ©ÐÐPÑû',,¬   È3[¶lyåÊ•””éf~~þþýûk×®íååe‰Mg8ÇüÃÉÉiöìÙÆ-7nܘ={¶££cŸ>}J~lNNÎàÁƒ}}}÷îÝ[£F !Dttt—.]ß{ェU«–³oW¯^Õëõ>>>ÆÞÞÞBˆëׯ^þí·ßÞ¼ysHHÈ«¯¾êææ{üøñï¾ûNémlÃŽhG^^ÞæÍ›‹»·gÏž¥}Âßÿ}äÈ‘III‹/ö÷÷/yáøøøK—.Íœ9SJBˆŠ+Nœ8122rݺuC† )go³²²„nnnÆîîîBˆôôôÂÏP¿~ýAƒ}ðÁÓ¦M“Z:wîl2èR!8ð€²§”|zm~~¾ñÍ‚‚‚"»{÷n¯^½Š}‰Bçðž9s¦aƆ›Ë—/ûì²eËÞyçÒî‚#6áÒ¥KÆ7‹¼ˆX”~ð×ÕÕuÀ€&7n|ùå—_xá…%K–˜Œ —LË>qâ„q£Tk (oœœãããwíÚ¥Óéš4ib²ð7„=ö˜q£t³ÈqmÈ¢ô|@¤¥¹˜2P…Ø)–SæOIJí>€-Jcó8Ö¯__±qãFéæ™3g\]]‹<ˆß¼y³œý‚‚‚Ǽ~ýúyyy¥ígnnnÆ }}}322¤–{÷î…„„¸ºº^¹rÅ,½]¸p¡ñ¦¸zõªO×®] /yçΗàààœœC£Th\¿~½ñ’Ìã(GP†4#ÓFB&''§~ýúEFFlÚ´©¸™qJ;ø[؉'Nž<Ù¸qãW^yÅä®çŸ>22rõêÕ£G:tèüùóMpvv^¸paTTT‹-^}õUGGÇØØØ|öÙg&—B—¹·C† ùæ›o 0fÌåË—gee͘1CºwΜ9}ôÑìÙ³_{íµ*Uª,Z´hèСMš4yþùç+Uª´k×®¸¸¸çŸ¾  ABpÀ´iÓ¦{÷îK—.ÍËË1b„››Û¬Y³,ñBIIIBˆ'N˜Œ8 !6l™››{óæÍâN²ŒˆˆHHH˜>}ú¢E‹rrrZ´h±eË–gžyÆ\Ýsss‹‹‹‹ŽŽŽÍÈÈhÛ¶íªU« ß7˜““sóæMÃù C† ñ÷÷ÿàƒV­ZuçÎÇ|É’%…1äÓ•ó¨t/Ì#%%ÅÏÏOé^à!ìË)sý¯Ì;…У唰SlñSÚÏϯvíÚ&çö)諯¾:vìØ§Ÿ~ªtGÌ£ ¿¶ø[d|s (…œœœ;wJ_ {Cp¥°gϞƿôÒKJw àGÔnÔ¨Q¥šÇ¢BCCCCC•î”Ap!:Ý «!Óĉ•î CÕ‰àYŽ…àYŽ…àYŽ äœ8ÒŒ<`˜Ç`w”î`“Žû’˜˜¨tìTJJŠŸŸŸÒ½@¹0T YŽ…àYŽ…àÀÞ)8Ø‚#(Œ©Ø ‚#d!8@‚#d!8@‚#d!8°kÌÅò@yÌÈÀ& Á² Á² Á²Ø/&q€R!8€*0•#õ#8@‚#d!8@‚#d!8@‚#;Å\<PZGP fä rNJwÀJÖ®]»fÍš¤¤¤Ê•+wìØ1::ÚÓÓ³ä‡=ztéҥǿsçN@@Ào¼Ñ¦M¥×@1vQq\°`ÁÔ©SÏœ9ÓºukWW×uëÖ92;;»„‡ìر£ÿþ;vìðöö :tèРAƒvìØ¡ôª(FûÁ1111&&ÆÇÇgëÖ­111Û¶m4hБ#GæÍ›WÜCnݺõÎ;ï899­\¹òÇŒ‰‰Y½zu… ¦M›VPP ô (CûÁqÍš5ãÆóöö–Z&Mšäîî¾eË–âRàºuë233_{íµV­ZI-Íš5{öÙgÓÒÒŽ=ªô (CûÁqÿþý:u2´8::†„„¤§§ú¨W¯^5jÔxýõ×£¢¢RSS7oÞ¬ô:(CãÁÑÉÉÉÝݽpe133Sa¸ÎÚX•*U*UªäââjÜÞ¹sg!ÄÉ“'•^'eh<8 !|||ÒÓÓ¥¤h BäããSäC¼½½uó—4B——§ô (CûÁ1<<>ÞТ×ëãââ<==ƒ‚‚Š|Hhhhffæ©S§Œ¥¹{üq¥W@ÚŽ}ûöuppøâ‹/¤ó…111iii½{÷vvv–ZîÞ½›’’b¸Ú+**J1uêTÃe×Gýúë¯ÝÝÝ»té¢ô (CãWU !jÖ¬=gΜ=ztèÐáܹs Mš41b„a™¸¸¸·ÞzËßßÓ¦MBˆÆ?~þüùݺu ÎÊÊÚ¿¿N§ûàƒþõ¯)½BÊÐ~pB 6¬zõêëׯÿùçŸ}}}8nÜ8iFžâ¼úê«^^^+V¬øóÏ?===ÃÃÃßxã ¥W€èt‚ùn  ì"8 !"#####‹»7"""""¤±wïÞ½{÷VºãìŽ^O´ RÚ?ÇfAp€,GÈBp€,GÈBp€,Gö…™n ÌŽ :ÒTŽ 6GÈBp€,GÈBp€,GÈBp€,Gv„I <Ž FLå@…Ž…àYŽ…àYŽ…àYŽ…àÀ^0û7”ÁTŠ9À¨ Á² Á² Á² Á€]`G(?‚#¨S9P‚#d!8@‚#d!8@‚#d!8@‚#d!8Ð>fÿ³ 8€ª18õ 8@‚#d!8@uÇO>ù$))Ié^ ê Ž111Ý»wïÝ»÷Ê•+oܸ¡twðuÇW_}µV­ZÇŽ{ÿý÷;tè0jÔ¨mÛ¶åææ*Ý/'¥;ðñãÇ¿õÖ[ܸqã–-[vìØ±cÇ77·îÝ»÷êÕ«E‹Jw€íaG0uU…:®U«Vÿ÷ÿ÷Ç,^¼8"""77wõêÕ/¾øb×®]-ZtñâE¥ûVÅTŽTBuÁÑÀÉÉ),,lÁ‚{öì™2eŠ‹‹Ë¹sç.\þòË/¯_¿>??_é>V¥B'D??"@êª6‘‘‘ñÛo¿mݺuÏž=yyyBˆêÕ«;;;ïÛ·oß¾}Ë–-ûꫯ|}}•î&`Y†˜( ·¦¤¤øeGÆ`V£Æà˜––ö믿nÛ¶mß¾}RYÑËË«k×®­ZµBüùçŸ ,8vìØ{ï½·lÙ2¥û X®˜h¨7Z@V¡®àøý÷ßoÛ¶íÀBˆjÕª=óÌ3Ï>ûlpp°£££a±öíÛ·jÕêÉ'ŸÜ¿¿Ò],Ef"Ôÿ½0Ù`iê Ž³fÍBxxxtíÚõÙgŸmÓ¦q^4æââR©R%Æ©¡U¥ ‚z²#ÀòÔ{÷îѶmÛâò¢1ÊЪ²E@²#ÀÒÔuUõ–-[öìÙS\j|ã7žyæ¥ûXVyŸÞèJH˜ÄÌH]Á1++ëþýûÅÝuþüy&q„¶•¿dHvXŽòCÕqqq£F2Ü\±bÅ÷ß_x±‚‚½^_·n]¥û Xйš³Ö$ipª§”¥|pttttss“~ÎÈȨP¡BåÊ•‹\ÒÃÃcÒ¤IJ÷°dG€%(Û·oŸ ýЯ_¿É“'+Ý)ÀÚÌžóÈŽ³S>8>|xpp°Ò½¬„° ê Ž'NTº €µY.5Rt˜—ÂÁqÕªUBˆ'Ÿ|Òßßßp³d P¶Ï€ !;ÌHáà8sæL!ÄŒ3¤à(Ý,ÁZBªØ…ƒão¼!„hÚ´©tóí·ßVzƒÖcÔhÏEGæ¯óR88¾þúëÆ7GŒ¡lM²çì¨%Lå@qêº8¦0½^¿cÇŽÔÔÔfÍš)ÝÀlHr›£ºà¸cÇŽ… vîÜYÅž:ujll¬tWÿþý§OŸ®Óñ…j@©Qt”Ÿº¾«zÿþý£G>yòdAA⯿þŠuww饗j×®½zõê;v(ÝGÀ Èp[¤®Šã²eËôzý”)Sú÷ï/„øå—_„³gÏ?{öl·nÝþý‡+ÝMÀ&Qt”“º‚ã©S§jÔ¨1hÐ éæÞ½{+T¨Ð¡C!Dýúõ{ì±ääd¥û”é `£Ô5T}óæM///éç¼¼¼¿þúë‰'ž¨P¡‚ÔR¹rå´´4¥ûØ0©è@Ù¨+8Ö¬Y3555??_qðàÁœœœ6mÚHw¤¦¦V¯^]é>åB¹Ñj˜¹ÌN]Á±uëÖ7oÞüüóÏ/^¼øùçŸ !BBB¤»¾ùæ›7n4lØPé>¶¢£M“¦r¥¨ëÇ‘#GnܸqñâÅ‹/B4mÚTš»ñ…^øßÿþ'„6l˜Ò}ÊŽr#À¦©«âX«V­ü±S§N5jÔhß¾ý§Ÿ~*ÍÚ˜––æææöÑG=õÔSJ÷°ye£®Š£ÂßßéÒ¥&+W®ôõõupPWÌJ…r#ÀÖ©.8©V­ZJwÐæt”ê‚ã–-[V¬XqöìY}1×C&$$(ÝG ÔHi PWpܾ}û¸q㤟•î e¥¥®àøÕW_ !† 2zôhwww¥»˜ù   ê ŽIIIµk×~çw¸@y0û7X‚ŠòÙýû÷oß¾]§NR#`ÌËc‹˜€‚TÑÜÝÝOŸ>]PP t_³aœ * ŽŽŽŽ¯¼òJZZÚ‚ ”î `/(:äS×9Ž.\ˆ‰‰IHHxöÙgk×®]¡B“e:uê¤t7¹(7´D]Á1<<\úáÈ‘#GŽ)r™ÄÄD¥» h óòdRWpìÑ£‡Ò]̆4Ðuǹsç*ÝM]ÁÑàæÍ›ÇŽ»|ùrÍš5Ûµk—––æåå¥t§ÍÒØh5“8€…¨.8¦§§/^¼8666;;[1xðàvíÚEEE5iÒdöìÙžžžJwEK9 j#MåH8`}*šŽGqÿþýÑ£G¯\¹ÒÍÍ-**ÊÐîíí½sçÎ~ýúIi€Ù1/à‘Ô—.]zøðáŽ;nݺõ£>2´¯Y³¦gÏžgÏž]±b…Ò}°Sê ŽûöísttüðÃ+W®lÜîèèøÞ{ïU®\yÛ¶mJ÷x4Æ©š¤®àxâÄ ??¿"¯ƒquumРÁ¹sç”î# YŒVJ¦®àèîî~÷îÝâîÍÈȨZµªÒ}r#@«Ô/_¾\äwÆœ8qââÅ‹7VºvJ]ÁñÅ_Ôét&L8~ü¸qûñãÇÇ'„èÕ«—Ò}´ŒÑj@ Ô5c»ví^yå•eË–=ÿüó 4Blß¾ýÏ?ÿ>>±±±ÞÞÞBˆ>ø`ÅŠóæÍ›6mÚ#¾|ùò}ûö)»•Ô@áà8jÔ(ã›çÏŸ_¹re@@À—_~Y§NCûÅ‹_ýõ¿þúkãÆ]»v-ÕK¬Y³¦  `ܸqRjBLš4é?ÿùÏ–-[¦L™âàPÒL–§OŸ^°`Áã?~òäIe7`eŒV S×à‹/NOOÿüóÏS£¢V­ZŸ}ö™â—_~IKK+Õsîß¿ßÁÁ¡S§N†GGÇôôôƒ–ðÀ¼¼¼‰'zzzNš4Ié µ#c©3Ô€E©+8:t¨fÍšõêÕ+|W:u¤v}i z½>))©ZµjÕªU3noÔ¨‘âÂ… %<öóÏ??qâÄìÙ³ÝÜÜ”Þ0`JšÊ¬I]Óñdddèõz]Q‡™™™žžžÕ«W—ÿ„YYYùùù&íîîîBˆ7n÷ÀÇ/[¶làÀO?ý´É÷Ê`Ò²uëVëmGóIMMUº 6ÂÏ/%%Å:/eµ’,„ÎÏ/ÙZëe&ÖÛ ü?!„HNI¶‡õµ||©íî”nݺ)ݵPWp|â‰'vïÞýûᅦ††šÜµ{÷ŒöíÛ—ê ³³³…UªT1iwuuBܺu«¸GMœ8±N:&L(ÛŠ$&&*±ý,ÂÏÏOé.¨Ýƒqj+n(kî›û°B‡u¡·^èSRRüüüt~¦íÚX_ÛÅÆQ!Ý)…ë…+DvB]CÕBˆ‰'nÙ²ÅxHú—_~yûí· Èçáá¡Óé²²²LÚ¥éu¤ºcasæÌIMMýøãåÌ×ÀNè„Nú§zã†LÚ¥…•î5˜“º*޽{÷Þ½{÷Ï?ÿW¯^MIIqrrª_¿~©.ˆ1ž˜˜ß½{w©E¯×ÇÅÅyzz^¾^½z†%%·nÝÚ½{wÍš5ƒ‚‚jÔ¨¡ô`%fL{ÄGÚ ºà(Ñét5jÔ0KJëÛ·ï’%K¾øâ‹Ž;J×ÄÄÄĤ¥¥½òÊ+ÎÎÎÒ2wïÞ½víš³³síÚµÛ·oor ÎñãÇwïÞÌwUÃÙÐhµy'q,ÃØô#â#Ù€Rip4£š5kFGGÏ™3§G:t8wî\BBB“&MFŒaX&..î­·Þb¥e+‰ ¥eÑl']7cžB¦ž9ÏX•öƒ£bذaÕ«W_¿~ýÏ?ÿìëë;pàÀqãÆIÕG0a…Š ³#X“]G!Dddddddq÷FDD”0ÑO“&M´4/#PZ64Z]~VËsdG¶H]ó86Ä~²”0ÌÑhµW”²£Òë ¥@pa˜ÖÛʯKv`[ŽM­†%Ø‚#PŒSk‰âç’Ø ‚#-(ó¬4ЧF Ù€M 8E“£Õ*I’²eGi*G°‚#PjŒSkƒªR£„º#•#8°G*L²#5#8K3£ÕªM²#Õ"8¥Ã85ÀnØ•—%¨Á@)ØúhµM¤F Ù€ Ø<™“8ÚPj”¨ Á(Np„ 1•#«!8(­¶¹r£„¢#U!8Ð>M²#õ 8r1N °sGgÓåF EG*ApPj6tš£R£„ì@ Ž€,ŒS@p`ÛJ˜ÄQ3åF EGŠ#8( õVk,5JŠËŽLåÀ:ŽÀ£1N € 8Ð$M–% XPÁ@©´`^Gà§¶9.7J(:P Á€¦h>5JÈŽApPvŒV€]!8°a&“8ÚI¹QBÑ€õ’p‚#lS9°‚#°«r£„¢#+#8(•œæh‡©¬à‹qj¨EGÖDp`óì¼ÜHv`5G奒Ñj€¥¢1Nm+ì¼Ü(¡èÀ:Žl•É$ŽK#80¥F«)7è…^èuLåÀ¢Ž…àmƒžrãC¤¢£Ò½ eGæÁµÕ yG6I'ß:.¯`AGÀãÔ‰àÀöHåFæâ)s:°‚#³±ÎiŽLÁS½^0#Ë!8aœ@Ñ€…ØÊ  ‚#sbR• èÀŽlåFPÁø'8BK(:0;‚#3³Ðh5åFPÁ€íÑé“8ÊAÑ€y§V3Êò1•#Ë!8€–Qt`FGægÞÓ)7€J!§†¦Qt`.GªF¹ÔƒàÀ"ø U¡èÀ,ŽãÔêUd¹‘¹x@)GК"gä¡è üŽ,¥œ£ÕœÝjCp{AÑ@9aï8Á™ŽÔˆqj ¡è <Ž,ˆIy@KްkŒS«S åFæâ)?ŠŽÊŒàTäŒ<PNG–UÚÑjÎn´ŠŽÊ†àûÅ85¥Bp "”­†¢#€2 8°8®­m 8P ÊVFÑ@ia§8ÁÑ1(‹àÀ9ZM¹ÑìäÌÈCÑ@© Áöˆqjµ¡Ü¨ ŠŽä#8@‚#+)î4GÊŠ£è@&‚#ìãÔ” Á€’ä—™‹Gp`=|…Œ•É™‘çÁ’ŒVàûÂ8µªpv#Ø‚#@ŠŽd 8°*F«Àv(ƒqj¢è dGØNp´]\R j@p`mú!ž$h ò/¬~°>>[·n‰‰Ù¶mÛ AƒŽ92oÞ¼â²f͚Ç·jÕ*..nñâÅß~ûíO?ýäááñå—_ž8qBéì—T€ªh?8®Y³¦  `ܸqÞÞÞRˤI“ÜÝÝ·lÙRPPPäC¶nÝ*„˜2eŠ¡$éïïÿÚk¯åççÿñÇJ¯`3䨸¶Ú ÊÿÕœé@ûÁqÿþý:u2´8::†„„¤§§ýôÓJ¯`G¬qIuq±”/œ’’Rêá™^¬IãÁÑÉÉÉÝݽpe133Sa¸Îº°ÜÜܹsç®\¹²R¥Jo¼ñÆðáË›ô€‰2Ÿgñ™À g5SZq/mÉNJV—ÿù8Ó°[ŽBŸ¤¤¤ÌÌL777C£t‚ŽO‘)((˜0aÂ/¿üÒ¹sçéÓ§—/¡B\O˜„0›(æî¤ñZØÄ*Ð.íOÇžŸŸohÑëõqqqžžžAAAE>dåÊ•¿üòËK/½ôå—_’RQ¾¥ÓýóO¯èŸ2^ãµ+笌åìs:vIûÁ±oß¾_|ñ…t^£"&&&--­wïÞÎÎÎRËÝ»wSRR¤«½ôzý÷ß_µjÕwÞyGé¾v§Œ3µÇ$ «#D°Úª®Y³fttôœ9szôèÑ¡C‡sçÎ%$$4iÒdĈ†eâââÞzë-ÿM›6]¿~ýüùó... (ülQQQTzP,Æ©•eír£!-i2#Êa¼âVßœéØ!íG!İaêW¯¾~ýúŸþÙ××wàÀãÆ“fä)Lª;fgg;v¬ð½\X XG±×ppÂ_q [£ÄMd®ëcØ'»ŽBˆÈÈÈÈÈÈâˆˆˆ~nÙ²¥–fa¬Æ\ŧ¢G«).ÊgÅ2$EGÀÞØKp„=`œZƒÈ‹åT¸ É–PGf`Þ²“^§Ó1¤j^F R/¤?³Ì³m):v…à@5Lªb¤FKÐërjJà`œZAå-8J0:v§˜Œb—#>RtìÁ€rŠ,ÿúA;fz€ôH2¡$ •¥ÔDFQ¡ò]FCѰGVTîQQXœù†°hÁ@ÙÉ-2•±ˆE-YQ¥¦èØ‚#lÙBÕ¨ZÙ: Œ”Ñ#ÊKeÍÌÞhe™%Ó¸YÌ#):šGp`Vf½ð…ÑjÕálÀ¾aÛHJ)¢°ÄP¦ý(~üš¢# mGåfÉÈHÑQÕdŒ_Ђ#€Rû§¤Db€0 #8†QˆR’e"#WÆXMY®yä3 Ã/†Ò«À2ŽJC§R*°b¾c´Ú–èõB½N'Dp„­"IX›N'„4Ɇǣèõ:¡Ósñ5 9GòШ´®\O»¡zžsa­!8(ÞÃÇ{¯x`´Ú¶qñ5 GØ$2„Å)qŒçÊ+3ÿõ1&Ïory5ñ°}G+渮ø+mQSó[Fp„í!=X ÇrX ñ°MG>~+^n„í*i>pâ#`kŽ€}SÍ1[ÎÉvŒVkñ°GØrƒÙÈ>NSnÔ0K_óàUä| !ñ°GÀþØò±™¢£Æu#8–Ê«ôÇcÊ0 YEÇ–þ;>’•!8ö¡L%R#”$£ J€Š; úÊM©:Èhµ*]ÑñÁc¹ÔÅAér‘ÊB§+sj¤Üh' u=k¼–ÐëÊðuçzýƒ^Z­£ŠAÅÐ(Mi(:Ú#ª€ aH ¥`Ž#+åFXHY¬z<ñPÁÐÛ<š–m,¢£]#> !8š`Ö#(åF{ciÀÿy¹rû-ˆ€Ua(,•ÄÜGMR#l ñ°"‚#`³ìþHÉhµí2[ÑñŸg$>ÖÀtåEp„JÙu°î±Ív©R#>åCpÔ„ãì’•ŠŽÿ¼ñ(#‚#  Ã4Snd´ÚÖY;; â#PG¨‘}%{=n1Ëž ij6Gùë,ì÷m”ÁPŽÒÇ*Í”%mEÇ^ûïøHvJDp„êØÅ±_éÈ(4—¡ JfGñwÅUPzŠEp¬Žª†Å¶EG”#×@‰øÊA¨‹ÆúÒ ©àhD¹Å1Ýë€%¿‡°[AÚ|c!ð0*Ž€U¨©€¡íÔHÑQ°þ§TSG¨ˆ6÷*;ê¨âx Øâ#`„àµÐ`jäHS K×St,'5LÊ£–¢£ñF¼©‚#` j=º¨ëH ”HuÙQ‚#ÔA;õ!QTw ¶$ŠŽÚ Æì(ˆ°kGÀL8ŠÈcµ1P²#,‹ø»Dp„òlþèn G5–m bj8ÍñAOÔYtü§ÄGØ‚#P6r´Põq×’(:jƒÚ³£ >ÂŽ¡0[=®ÛÎBíG\@3ˆ°G ”8*”ƒõG?):–™zF«…Mÿé+ñZFp„’lìˆnƒG›9ÖbKÙQ¡YG(ÆfR£áËjmíÓߖ޲–DÑQ3l,; â#4ˆàÏ–?îUx|UpÜ“ìX6ª­~Ð%›ËŽâáø(lõ#¡ µÅm92 U¦FÀÞ>OlüãvŽà<ŒÏt¢è¨6Yt|h¿† #8B*=~kås\ÇTµxB&ŽV dGA|„­"8ÂÚÔ˜5ôÙmóGSK¢è¨%ZÈŽ‚øÛCp„Óܹêª=Žª§dEvÔdGÁÕ3°%GX•ZŽÙZüû^#GP¨:G«ôM3ÙQpõ lÁÖ£ŠÔ¨ÑOdí;-¢£Æh*;>X%Ư¡^GØM©ü¨©ÂbÙ±´Ô\tÔ,â#T‰à+Qì8­õ]•§FÀ 4XtügÝ8ýêBp„5(“µQ5FËÙQpú#T„àͱ§?ÍÕ¤Tóø&Ù±TÔ?Z­ñìø`%)@BaGXœõŽÍvö·¸ö‘–GvԻȎ‚$”Dp„eYã¨l—|ÛÄÑQå*”–ú‹ŽÂ~²ãƒµ¥ ksPºÐ2‹§FîÁqLúg7ìè¸hyRÑZ"eG¥{aÍþû3PúH,‰Š#lÿy­:á'l"5ª¿4eÀ€µöè…^çg_Q€„åQq„¥˜ÿH,ý1m—%Æ@èôBŸœ’¬tG4ˆº£LRUË&$§$ÛWÝÑÀ¤i+; 6‚Š#,ÂÌ©‘ÀmmxÚ†ÊÔµÇ0fmCï³®?×ÐÀüŽ0?³}pù›m¥Fh›M\"óOo…^ðbæCp„™™!5òéö0›;æÙPª0AÑQ«ìëRëb·ÂÃHÁg,Ê‚às*×A—ϲ¢p´³2²£¶Ut|Ðg²£ å@p„Ù”ñpË'Wñlñ8gsy¢0²£V‘M‘ QzG˜G©´|N•È®ÏèW²ã#ÙbÑQp¹LqHà3(Å!–O%l·(b‹I¢8dÇG²Ýì(lù]fY$H< Áåõ胫ñ,b|= Ç3õ ;jÃÖ@‚D1Ž(—’«|Ü”’­ Ùbñé‘ÈŽ%³Ñ¢ãƒÎ3l-Gá)øT·kG”]ÑTòb™ØzñÃvÓÃ#‘5ŒaëR0~‡ó9oÇŽ(£‡¥ü%ZÔ<ÔÏð…„ì¤Âlºèø`(=–eH;FpDYè„ÐóyQnš9VÙznCZ?JEÒFv”Ë È2¤à  eG”†N§Óë…”ù\(Í¢ìêwaëâh ; JåDˆ´Jwª§Óþéôz½tÔ䃠¤­É‘ÉF†­¡Iz¡—⣎ý\zý?ÿŒ"Jw f@ÅEùûíí'þɈZÊO{Å ™Ê€S‹¤¢ãƒuù{äZhë « £ß ?*‘¶Š#þfüGáß)¦$' !t¤Ær3TµtÒLJ(=¥Ç¢HÙQ3¨>š]Jr2•H[Gp´cÆoZ£°h’t#Q6šŒŒÂ¾S£þï?«` ±ì(ˆ–SÜp¶Æ~4‡¡j{bòn|Ôa_'„ðó³ûlPvç"5<¸ÚÚÏOð÷Õß´4fýÏJ1xmQ&¿.¥X/ªÖar´¢©&T5Ä¢qÊyŽ%šÌ‹Ö‘ÔX<.š1¦ÉºãƒU3ª> M¿ßÕ¢äz¤ $iUGÛTäŸ\å{çpÀ+3û9~h5˜‘ažpÁ»IÓÙQ½ß¿¶¶Â¿RDI+"8Ú ¿%8È•ýäEñ÷ï Å2ÇGaßo.ص†y(@*ON”šþ-´"‚£šwê†e~×9ª•4\4²(Ã6³ó¿Í¤_Íÿ™ MamEþ¶Y÷ «UG%(ú»K^,»=h¾Vd …}”¬©Ñ¶Û•*î—@Y\U]¬µk×öíÛ7((¨]»v“'OÎÈÈ(Ń _Ñ\ÂÕÍ2.s.?ѵÒòçeìÖ­›E{¥fÆûÌx?)Ý/+íã_U<’œbxëéŒþÙã d­@ _ÆÆ)J÷K1jØ)E(î \ÂqÜŽ‹¶`Á‚©S§ž9s¦uëÖ®®®ëÖ­9rdvv¶œÇ&ž:Uìo¡uú²æEûdòÁ ª°hÕí@d´0½}‡H+ÇGõ(.DÚsŽT»Žãööëk„àX„ÄÄĘ˜Ÿ­[·ÆÄÄlÛ¶mРAGŽ™7ožœ‡4j¤TÏuÅ„E@a…ÿ„4ù`PºƒVß :"£ì6DštìɧMá#¥;ˆG±ãOI‚cÖ¬YSPP0nÜ8ooo©eÒ¤Iîîî[¶l)((PºwÿЕ˜í÷—úaÅ4þRéž*±qŠ:J).Dj8Mò­Å¶C¡£â>¸”î)@p,Êþýû:uêdhqtt IOO?xð 5{¢+ñŸÞ¾“b‰§‘–‰‰ú~r(O_Ô¿’?lZÉç•Ù¡â>¸d~î)Ý}hWU›ÒëõIIIÕªU«V­šq{£F„.\–óéÄDfùWþÏÆDs|é,;¥ýI4>Ž6j óarDY(½}Írnµ.1QÙµ(š¼ÓÏ„ÅöI­ŸºÚ)Š]Í 4‚£)éÒé*Uª˜´»ºº !nݺõÈgЛül ËRå‘´MeYç8šòððÐétYYY&íwîÜ×ìÁÑ”“““»»{áÊbff¦Âp5€½!8ÁÇÇ'==]JŠ)))Ò]J÷@Ç"„‡‡çççÇÇÇZôz}\\œ§§gPPÒ½PÁ±}ûöuppøâ‹/¤ó…111iii½{÷vvvVºwÊÐéíaæ«Òûæ›oæÌ™S«V­:œ;w.!!!00ð›o¾)9nÜ8iFûDp€,œãYŽ…àYŽ…àYŽ…àYŽåÒ¥K­ZµŠŽŽVº#ö.;;{ùòåÏ=÷\‹-:tè0|øð?þøCéNÙ¯µk×öíÛ7((¨]»v“'OÎÈÈPºGöŽ7ˆÊq(Ñ'¥; ×ëßyçÃ7wC)yyyC† 9|ø°»»{Û¶msrröîÝ»{÷î7ß|s̘1J÷Îî,X°`É’%UªTiݺõ¹sçÖ­[wúôé+V¸¸¸(Ý5;ÅDå8”hÁ¶|ùò}ûö)Ý ˆ5kÖ>|¸U«V_ýµ”NNŸ>=pàÀ/¿ü2,,¬qãÆJwÐŽ$&&ÆÄÄøøøÄÆÆz{{ !>øàƒ+VÌ›7oÚ´iJ÷ÎNñQ9%ÚÀP5áôéÓ ,xüñÇ•îÄÖ­[…S¦L1Ô´üýý_{íµüü|Æã¬lÍš5ãÆ“R£bÒ¤Iîîî[¶l)((PºwvŠ7ˆšq(Ñ ‚#J’——7qâDOOÏI“&)݈”””*Uª4iÒĸÑßß_qáÂ¥{g_öïßïààЩS'C‹££cHHHzzúÁƒ•îâ ¢ZJ´„¡j”äóÏ??qâÄ7ß|ãææ¦t_ –.]êädúž=~ü¸¢N:J÷ÎŽèõú¤¤¤jÕªU«V͸½Q£FBˆ .+ÝG{ÄDµ8”h GëðáÃË–-8pàÓO?­t_ „R41HHHˆ‰‰©X±b¯^½”îÉÊÊÊÏÏ÷ðð0iwwwBܸqCéÚ)Þ êÄ¡DcŽ(ZvvöĉëÔ©3aÂ¥û‚"äçç¯X±â•W^ÉÊÊú裼¼¼”î‘ÉÎÎBT©RŤÝÕÕUqëÖ-¥;Þ jÁ¡D{ª¶wyyyË–-3Üttt9r¤bΜ9©©©«W¯fnë+n§ìÝ»wÆŒgΜñõõýðÃù;ÞÊ<<œcësrrrww/\YÌÌÌB®³†õñQ%š¤ÓëõJ÷ª³jÕª™3gw¯¿¿ÿ¦M›”î£=*((;vì/¿üÒ¹sçéÓ§PÔ£G¤¤¤„„ã“ý'Ož¼nݺ•+W>ùä“JwÐñQ%šDÅE¨W¯^÷îÝ[nݺµ{÷îš5kÕ¨QCéÚ©•+WþòË//½ôÒôéӕ OLLŒ7¼Sôz}\\œ§§gPPÒ½³S¼AÔ†C‰&Qq„,Çþùç{ôè1wî\¥ûb§ôz}×®]322vïÞ]©R%¥»cï.]º^¿~ýµk×J×Ä,]ºtþüù¯¼ò ßëÞ 6C‰PqlÃõë×ÏŸ?ïââ2`À€Â÷FEE 8Pé>Ú‘š5kFGGÏ™3§G:t8wî\BBB“&MFŒ¡t×ìoÀ:Ž€mHMMBdgg;v¬ð½\7j}Æ «^½úúõëþùg__ߎ7Nª>ÂúxƒÖÁP5dapÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp`_¢££~ÿýw¥;"¾øâ‹€€€U«V)Ý‹àYœ”îØ©ÐÐP//¯V­Z)Ý‹àÊhÒ¤I“&M”î”CÕ :ùùù÷ïßWº`ŠàÀ6L:5 `îܹ&íG xúé§óòò„iiióçψˆhÙ²eË–-»wïþÑG]½zµ¸§•®•Ù³gI{``àSO=eÜòǼùæ›;wnݺõ Aƒ¾øâ “lwñâÅéÓ§GDD´hÑ¢S§N#GŽÜ¿ k´lÙ2ã‹c¤ž¤¦¦ÆÄÄ´mÛö‰'žîׯßöíÛ‹{†C‡†„„ܾ}ÛÐxçÎN:9rDé@kŽlCdd¤bÛ¶m&í›6mBôêÕËÉÉ)--mÀ€K—.½téRݺuk×®}áÂ…o¿ý¶ÿþåyõyóæ >|Û¶myyyÞÞÞøüóϘžž.-púôéÈÈÈ~ø!==ý±ÇÓëõqqq/¿üòŽ;JõBK—.ýä“OœÛ¶mëîî~èС1cÆlÙ²¥È…ƒ‚‚†~õêÕÙ³g?þøãË—/=ºY³fÖÞI´ŽàÀ6´nÝÚÛÛûÂ… ýõ—¡±  @ UÏ?ÿ¼bݺugÏž ûã?Ö¯_¿aÆݻw·nÝúâÅ‹¿ýö[™_zçÎË–-«S§ÎÚµkÿý÷Í›7ïÚµ«cÇŽ‡^¼x±´Ì¼yóîÞ½;jÔ¨?ÿüsݺuqqqS¦LÑëõ .,Õk­Y³fäÈ‘ñññË—/ÿõ×_‡ "„X±bEqË¿ùæ›þþþëÖ­‹BìÙ³çÇlÚ´é¨Q£”ÛW4‹àÀ6888tïÞ]<\týôSŸØØØ›7o !Nž<)„èÛ·¯£££´LÿþýGݹsçR½V³fÍ&L˜ààà ­òèÑ£…gÏž-nyggç?þØÉÉiêÔ©×®]›2eŠ‹‹Ë¼yó Ý3"8°R4·•Æ©{÷î-Ý3fÌ’%K{ì1Ãׯ_ß¼ysy^4###%%¥Aƒ&W@W®\ùé§ŸÎÎÎ>vì˜BJ®“&MÚ·oŸt¶¥³³óرcßxãR½Ü³Ï>k|ÓÝÝÝÑÑQ¯×—ðÀÀÀ1cÆ\¹r¥gÏž/^|çwêׯo©}À¾1›Ñ¤I“úõëŸ={6111 //oëÖ­...†e.^¼¸k×®\¸páüùóå<µQ‘œœ,ý7  È._¾,„˜1cƸqãöíÛ÷òË/WªT)00°M›6]»v ,ÕËÕ®]» |õÕW·oß~üøñ'Ÿ|²ÿþfÝêð‚#[ùùçŸoݺ5 >>þÖ­[Ï?ÿ¼a`zõêÕï¿ÿ~^^^ݺuƒƒƒ;wîüÄO¤¤¤Ìœ9³T¯’ŸŸo(òåææ !jÕªUÜ sÍš5…µk×^»ví¡C‡víÚµwïÞcÇŽýÚµk-[¶} í>>>Bˆ“'O¦¥¥I-ùùù?üðÃ÷ß/„ÈÎÎ.òÙêÖ­+„X¹reVV–Ô’`˜dG2~üø‚‚‚ñãÇŸ8qBj¹sçλï¾{ìØ±&MšxyyùúúÞ¾}ûÿûßW_}e(Už={v×®]B‹Î§xåÊ•™3gV­ZuÖ¬YÎÎγgÏvttœ1cFùOî€Âª`c"""æÌ™“˜˜èèèØ«W/C{ƒ ÂÃÃûí·.]º´jÕJ¯×'&&fdd 0`ÅŠÿïÿý¿Û·oKëëÕ«×wß}wðàÁðððÀÀÀk×®%%%¹»»×¨QãÞ½{Ò2QQQûöíûé§ŸzõêU«V-OOÏää䬬¬úõëK3o;88Lžù¤¢C‡ÞÞÞÆw}òÉ'o¾ùfÍš5¥ùCBBÖ¯_?eÊ”8::ù€uêÔù÷¿ÿݹsg‡Ý»wŸ:uªV­ZË–-óòò2,£Óé>úè£Ï>û,,,¬  àìÙ³~~~ãÇ_¿~½§§§´LTTÔwß}×±cG—“'Ofeeµk×nÑ¢EÓ§O·Ü¦X¹råž={Ú·oo8ÑSñæ›oÖ«WoË–-[·nUtGÐ ]ÉÓƒ€ý¸{÷nzzz:uä_ v…àYª€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,ÿ2ÜoƒWZöIEND®B`‚statistics-release-1.6.3/docs/assets/normplot_101.png000066400000000000000000000537101456127120000225300ustar00rootroot00000000000000‰PNG  IHDRhŽ\­AWIDATxÚíÝ{\TuþÇñÏ0¨q“K‰™@‹(ÔnjºJ^Hj]m5ʰ5û¡–vUËò¾µ»Úºá­´-Ö¨PÓ5+Ö[–¡yIKðV"ØÈ-JƒLæ÷Ç©Y„ÃmÎ\^ÏÇþ~™ïœïñû=Çß}Ïù~Îd2 Ð'­Û@p€*G¨Bp€*G¨Bp€*GÀ~œø %Û´"G8쀃#8öìù矯¨¨ht³K—.ýå/¹ûî»ýýýýýýïºë®9sæ”——×ܦæ­iUUU ,¸ñÆ,XP󣘘˜3gÎŒ7.00ðÆo;vìñãÇEäàÁƒ>ø```àõ×_çw~úé§5÷\]]½aÆ;ï¼³[·n×]w]·nÝ"##ßyç«W¯¶ÊApww_¹re»ví”·§Nj´GêKMß~ûíøñão¾ù怀€1cÆìÙ³§ÖMíiÃ;¬÷þÅZjm3{ölNwñâEåÓ»îºK§Ó]ºtiÒ¤IÊf]»v­Y½°°Ð|Ïâ‰'Zå°_K£GûZoîß ÍÁ¥jÀ>õèÑãÔ©S 5ÃP]‡;vì™3gÌ%üñǼvíÚµk×<¸n•I“&½óÎ;"Rëa÷999ýû÷/..VÞnذáã?ž7oÞ³Ï>kÎFŸ~úizzúîÝ»‡ ¢”Œ;6%%ż“¼¼¼¼¼¼ôôô´´´ÔÔÔV9...:uúöÛoE¤´´TMšzX lÞ>55uË–-¯¾úê£>jÞ¦I=U³ÃÖ2vìØ7ß|SD Ž;öÛßþV)7ߛأG[n¹¥Õ»Y3þÐ#Ž€}Z°`§§§ˆ,^¼¸°°ðZ›UVVŽ3Fùûºë®6l؈#\]]E$??ÿÁüñÇkUùâ‹/”ŒUWfffiiéï~÷;¥äüùóO?ýôÕ«W{öìÙ¥K¥Ðd2½øâ‹Êë””%Kétº¡C‡ÆÅÅ™ÊÆ[ëúæ?üðý÷ß+¯CBBíQ3ËáÇϜ9ãçç7xð`åf¾«W¯>þøã_}õUózÚè›áÙgŸÍÉÉQ:""ï¼óŽò622Òßß_)ܺu«yû;w*/ÆŒÓꇽ©GûZoöÑÐ GÀ>ùùùÍŸ?_D***fÍšu­Í^~ùå³gÏŠHÇŽ÷ìÙ³}ûöÿþ÷¿ôõõ‘ï¾ûnÑ¢Eµª„……­]»öàÁƒÿ÷ÿWëÓ?ü033ó»ï¾:t¨¹pùòå_}õU^^Þĉ•嶈lß¾]y1cÆŒ?þøwÞ9~üxŸ>}”Â/¿ü²…Ç¡ªªêÔ©S±±±F£Q)¹í¶ÛíQ3‹ˆŒ9RAüúë¯ó›ßˆˆÑhœ;wn³{Úð›áú믿ù曜~þåïÒ¥ËÍ7߬Óéôz}LLŒRhŽ&“É<âØÔà¨æ°›©<Ú×j|³€f 8vëÉ'ŸTÒÆºu뮵4Ïÿû_åÅSO=e¾UîÖ[o1cF­ Ì\]]?úè£qãÆýþ÷¿®ùÑí·ß>bÄi×®9ˆxyy=õÔS"âääôç?ÿY)üᇔ>ø r9òé§ŸVJÊËËÍ÷e6|}³Ê p:®]»v={ö4÷bÔ¨Q½{÷n´GÍ8,íÚµ{íµ×:tè "]»v}饗”ò­[·*á©©=mt‡­Ë|jöïßáÂÉÈÈPî:èÙ³gxxx«v³fmZ!8v«}ûö òËÒ<µîGTdee)/† V³üøƒò";;[YTŬW¯^õþ‰æ‹Ñ"¢,Ë""æa!s¡Ù°aÃÆ7bĈ}ûö=ûì³QQQ7Þxã×_Ýä–[nY±bEÝòº=jÆa ¿ñÆÍo‡®¼¸råŠ2œÖÔž6ºÃÖ¡ÌŒ1Êê^§nô°·ähÐ “c{vï½÷:ô“O>©wižòòò²²2åu­uþÌðòåËßÿ}ÍO• ˆõª÷º¡ùÚb½®\¹2{öìW^y¥ªªJ)qqqñóó;wî\K:n^PPDœÃÂÂ"""ž~úéë®»®îƵzÔ¼Ãrà 7ÔÜÒÍÍÍÓÓSÙO^^ÞÍ7ßÜÔž6ºÃ–Ÿºt:݃>¨ü—ÆÖ­[|ðAsp4·îaoÉÑ F;·lÙ2%ºÍ™3§ÖG;vT&ЈHQQQÍÌoÛ·oß©S§šµî]e .\ºtiUUUppðk¯½vôèÑòòò‘#G¶p·æ Cvvöûï¿ÿüóÏ_+¾ÔêQóËwß}Wómee¥9ÝtÓMÍèi£;luæ«ÕÛ¶mûñÇ÷íÛ'M¹NÝÔÃÞ’£ @+GÀÎýö·¿4i’Ô "ŠÐÐPå…yx©ÖÛgç6¼4ñÚk¯)/V­Z5uêÔßþö·ÎÎÎmñPé&iÆa9yò¤²îŒbÇŽÊ‹öíÛ+ÏnijOÝa«ëÓ§rSìùóç®\¹"-¾N­†æ ¨Gpìßßþö·Ž;Öû‘2—ED^yå•#GŽ(¯Oœ8ñòË/+¯Í·Öµ…üѼè£yºÌ—_~©ùSFšqX®^½úä“O*ËU™g²9R¯×7£§ ï°Uº©DÚ̃ŽÊ5k±HplÞ_º`GÀþùùùÍ›7¯Þž{î¹nݺ‰HYYÙÀGŽÝ¿ÿ’’éܹ³²¦OqwwwwwW^Oœ8ñÞ{¾ãŽ;Zë™1Íּòyóæ   »îº+44T™ð¡×ë.\Øìž6°Ã–ðòòR^üíoKHH¨ÙspT¦{‡……………YÕÑn ñ,€à8„§Ÿ~ºÞé...)))Ê4•••iiiï¿ÿ¾ò·nݺ¥¤¤\k¨²Uètº{î¹Gy]QQñÁ¼ÿþû]ºt¹óÎ;•ÂZ7½YL3‹———““SaaáǬ,Xݾ}ûÿûßÊuØfô´á¶„ù™=˜9sfÍ¡»ðððšOˆ±ÀpcSv`GÀ!´oßÞ|ᯖ~ýú;vlþüùQQQþþþ¾¾¾C‡;wîñãÇØÖ [¶lÙ­·Þ*"NNN¿ûÝï¦OŸž‘‘qï½÷*Ÿ®_¿þôéÓš±¦–ÈÈÈôôô‘#GÞxã;w3fÌ'Ÿ|Rsô¦ö´Ñ¶ä˜7ÎÏÏÏÍÍí–[n©5íÝ<è(M™Om±£Ýpã´5]½K»€Å\½z5--MDî»ï>­ÛBOåÀ"vòäI­›Àº0O €ÆÚµkgÍAÊÑzzàÀå…e®S°-G€˜L¦7Þx#??éÒ¥J Á@]\ªˆÑh¬¹Vâý÷ß¿iÓ&­Àê0âquu­ªªêÚµkllììÙ³µnkĈ#Ta!¨Bp€*G¨Bp€*G¨Bp€*G¨Bp€*G¨Bp€*G¨Bp€*G¨Bp€*G¨Bp€*G¨Bp€*G¨Bpl}¡¡¡Z7­À`0hÝhƒSï°8õŽŒ³¯Áª  Áª  Áª  Áª  Áª  Áª  Áª  Áª8kÝ€Vššš’’’““ãêê:dÈ™3gz{{7°}UUUbbâîÝ»³³³=<<8sæLŸšÛ\¹råwÞÙ¶m›Á`ðöö¾õÖ[Ÿx≭û  ›q\¶lÙ¼yóΜ9Ó·o_ww÷M›6=òÈ#•••×Ú¾²²2&&fÅŠ.\ˆŒŒôññÙ¼yóøñã‹‹‹ÍÛÆ &$$$\¸paРA]ºtÙ±cǽ÷Þ{øða­»  ÛŽYYY‰‰‰þþþÛ·oOLLܱcG\\ܱcÇ®UeÙ²e_}õÕØ±cwìØ±|ùò÷ßÁ‚999‹-2oóŸÿüçÈ‘#Çÿè£^yå•5kÖ¼õÖ["2oÞ<­{  ÛŽ)))ÕÕÕÓ¦MóóóSJfÍšåéé¹mÛ¶êêêºÛ›L¦ÔÔT__ßÙ³gëõz¥pܸq»víúñÇ•’#GŽˆÈ„ œ¾”?`À€ž={ž={¶´´TëNhöƒãáÇœœ"##Í%z½~ðàÁ%%%Jø«¥   ¢¢",,¬C‡5Ëûõë÷ÓO?íÛ·OyÛ¹sg©™M&Ó?üàäädŽ’ŽÆ†ƒ£ÉdÊÉÉñññ©5¯¥{÷î"’ŸŸ_OoœD¤îW®\‘sçÎ)oÿô§?]wÝu .}zHHHZZšˆ\¼xñþûïÏÍÍ ïÚµëÑ£G‹ŠŠú÷”d~–LqqñôÐC_}õU×®]### ÃæÍ›;öÎ;ïøúúš7ËËËsqq ¬Y×ËËKëîhƶƒcVVVbb¢¿¿ÿÆýüüDdáÂ…ÉÉÉ óçϯ·Ê²e˾ú꫱cÇΟ?_¯×‹Èºuëþú׿.Z´héÒ¥Ê6åååeeeÇ_¾|¹Ö]°¶}cJJJuuõ´iÓ”Ô("³fÍòôôܶm[uuuÝíM&Sjjª¯¯ïìÙ³•Ô("ãÆ‹ˆˆØµk×?þ¨”äåå‰H­áFgÛÁñðáÃNNN‘‘‘æ½^?xðà’’’#GŽÔݾ   ¢¢",,¬C‡5Ëûõë÷ÓO?™ï_ÌÍÍ‘nݺiÝ?+bÃÁÑd2åääøøøÔš×Ò½{wÉÏϯ§·NN"RYYY«üÊ•+"rîÜ9å­‹ŠŠâââúöí;dÈ©S§=zTëhɆïq¬¨¨0u'¬xzzŠHiiiÝ*'Nœ8wîœùêöÕ«WwîÜ)"çÏŸWJ”йbÅŠ   îÞ½;==ý…^3fŒš¶…††Ö*Ù¾}»Ö MSPP u  N½ÃâÔ;²¦žý   ­›¬ ŽÊÀ¡››[­rwww)++«[E§ÓMž|¸¸¸¸gÏžC‡ݼy³ˆ\ýõ üqýúõ[½zõéÓ§µî7€6l88Šˆ¿¿NNNyyyÇŽÍ…ƒAù¨Š½{÷îÝ»·ù­r©úÖ[o“ÉT]]­Óé”™4fÊò=æQIGcóªE$**Êh4îÝ»×\b2™ÒÓÓ½½½{õêUo•_|1>>¾¸¸Ø\rùòå;vøúú†……‰HnnnXXØ„ jUÌÈÈúf½8ÛŽ111NNN+W®Tîk‘ÄÄÄâââÑ£G·k×N)¹té’Á`0Ï–òòòÚ·oŸù!1F£qîܹ/^?~¼³³³ˆöéÓçСC©©©æ?(###))) `ذaZw@:“ɤuZ$))iñâÅ]ºt4hPnnîÁƒÃÂÂ’’’ÌËôlݺuúôé!!!iii"rñâÅûï¿?777<<¼k×®G-**êß¿RR’ùY2§Nš8qbqqqxxxpppaaaff¦««ëªU«ú÷ïßh“BCC™Um 3ì§Þaqêg_%Ûq‘øøø„„„   ­[·–––ÆÆÆ&''×]ÜÑÌÝÝ}Æ cÇŽýá‡öìÙããã3cƌիW›S£ˆôèÑã½÷Þ‹ŽŽ...Þ±cGYYYtttZZššÔ`¯l~ÄÑ 1âhø¯O‡Å©wXœzGÆÙWÉæG`G¨Bp€*G¨Bp€*G¨Bp€*G¨BpÖK§Óº¨àUŽP…àUŽP…àUœµnÀÏêC]«ÐdÒº•Œà¬EÝP¨Ó‘­—ª  Áª  Áª€õbfŒU!8@‚#T!8@‚#T!8@‚#T±‡gU§¦¦¦¤¤ää为º2dæÌ™ÞÞÞ l_UU•˜˜¸{÷îììlΜ9ÓÇǧ…»°o6?â¸lÙ²yóæ9s¦oß¾îîî›6mzä‘G*++¯µ}eeeLLÌŠ+.\¸éãã³yóæñãÇ·d·v϶ƒcVVVbb¢¿¿ÿöíÛwìØwìØ±„„„kUY¶lÙW_}5vìØ;v,_¾üý÷ß_°`ANN΢E‹Z²[»gÛÁ1%%¥ººzÚ´i~~~JɬY³<==·mÛV]]]w{“É”ššêëë;{öl½^¯Ž7.""b×®]?þøcóv àl;8>|ØÉÉ)22Ò\¢×ë\RRräÈ‘ºÛTTT„……uèСfy¿~ý~úé§}ûö5o·ŽÀ†ƒ£ÉdÊÉÉñññ©5¯¥{÷î"’ŸŸ_OoœD¤î­ŠW®\‘sçÎ5o·ŽÀ†gUWTTF//¯Zåžžž"RZZZ·J@@€‡‡Ç‰'Î;g¾ }õêÕ;wŠÈùóç›·ÛºBCCk•lß¾]놦)((к ЧÞaqêSPp°ˆìÙÓ´ZAAZ7\6•C77·Zåîîî"RVVV·ŠN§›}zHHHZZšˆLœ8ñ¿ÿýï¦M›N:Õµk×£Gõïß¿f5»VŠ{ÛŒmG‰ïÔ©Ó–-[¶nÝÚ¹sçØØØiÓ¦)KçÔËÝÝ}Æ ¯¼òÊž={ CPPÐØ±cãããÍO lÞn€öˆŒmLgâà¶¶ÐÐPÖq´ÖôrTœz‡Å©o*«»Ü‚qöU²í{~f]1Ö>€mR¦¿À‚lþGà b´8F€`ˆQkŒ8«Çtië@p«w¤¯naëG;"£5!8€ÆÕMnm¾‘Ñú€U"2Z&Ç«ÁÜëFpÖÁêžEƒÚŽÀ:­Áh„um “c@s4|Ðb´5G`)¬°cãŽÀ"˜ûbû¸ÇX©Ñö@Û`î‹ÝáR5h 1ÚF@ëaˆÑ®1âZ3¦Á´ ‘Ña@s Á4 ë2:&ÇÕjÎ}!5:‚#P‡!F‡GpÀÞ´Õ’8¤F‡Gp×À£_ðkLŽu0]õ!8€ˆŒ¸6‚#"#Gp"BdDãŽØ¶z§¯Ô*¬?2Ĉ&"8`Ûê?µë-ÑD,Ç€#ay´#Ž8.L£ÅŽØ;"#Z ÁûEdD«"8`o~ŠjçÈj19;EjDk#8`/t:&M£Mq©{Á#Ú#ŽØ,†aYŒ8`ƒ˜. -°)DFh‡à€ 2BkGl‘Zcr –Óä©,Ì}5!8`­xô ¬ ÁkEj„•!8`5X—ÖÉ1hÍb„u#8 VØM!8ÐVê½ìüëBÓÏÿØ‚#m¥îH"ó¤aÓ˜€¥0ñ6Žà€¥0Øg—ªSSSSRRrrr\]]‡ 2sæLooïz·¬¬¬¼í¶Û®µŸ´´4åõ8.[¶ìõ×_wssëÛ·onnî¦M›²³³“““]\\ên¬ÓézöìY·üÊ•+gΜñôô4—äå幸¸ÖÜÌËËKëîl3¦awl;8fee%&&úûûoܸÑÏÏOD.\˜œœœ0þüºÛ_wÝu[¶l©[¾téÒ³gÏΞ=[y[^^^VV6|øðåË—kÝE€ "2ÂNÙö=Ž)))ÕÕÕÓ¦MSR£ˆÌš5ËÓÓsÛ¶mÕÕÕ*wrêÔ©Õ«W?ú裷Ür‹R’——'"µ†hœòè“éZ©‘0 ›fÛÁñðáÃNNN‘‘‘æ½^?xðà’’’#GŽ¨ÙƒÑhœ3gÎÍ7ßüØc™ sssE¤[·nZ÷`SŒŒ€°áàh2™rrr||||||j–wïÞ]DòóóÕìdݺu'Ožœ={v»víÌ…Jp,**Š‹‹ëÛ·ï!C¦NzôèQ­{ °>5WØ!2ÂÞÙð=ŽF£±î„eŽKiii£{¸téÒk¯½Ö¯_¿ˆˆˆšåJè\±bEPPЀ wïÞžžþ /Œ3FMÛBCCk•lß¾]놦)((к ЧÞa5õÔ‹ˆá›oÄ`кíh©&Ÿý  ­›¬ Ž•••"âææV«ÜÝÝ]DÊÊÊÝÃ[o½uáÂ…3fÔ*/**rqq™1cF\\œR²ÿþ)S¦,Z´hàÀî9++KëÃVà°¿ àÔ;,µ§¾ÆÜþ®Ø ¾øjØð¥j///NWQQQ«üâÅ‹ò˸c~üñǤ¤¤¾}ûöêÕ«ÖGo¿ývff¦95ŠHDDÄøñã+++wíÚ¥u¿Úilî `ßl88:;;{zzÖY,//ó<ëkIKK»téÒ}÷ݧòëׯŸˆœ>}Zë~ÚDppƒNDFÀ¦ƒ£ˆøûû—””(IÑÌ`0(5\755ÕÅÅåüc­r“Éd4ë®æ£×ëEÄÃÃCëN,‹Èü¶ƒcTT”ÑhÜ»w¯¹Äd2¥§§{{{×½]SVVÖÉ“'‡Z÷ÉÜÜܰ°° &Ô*ÏÈÈúf½ì‘ø5ÛŽ111NNN+W®Tîk‘ÄÄÄâââÑ£G›—×¹té’Á`¨5[*==]~¹ú\K```Ÿ>}:”ššj.ÌÈÈHJJ 6l˜Ö´="#PžU-"3gÎ\¼xñ¨Q£ ”››{ðàÁðððÉ“'›·IOOŸ>}zHHHZZš¹pß¾}"Ò§OŸzw»`Á‚‰'Λ7oýúõÁÁÁ………™™™®®®/½ôR½ÀØ ó¢ŒäE >¶=â("ñññ AAA[·n---MNN®»¸cM—/_>räHÇŽó›ßÔ»A=Þ{ï½èèèâââ;v”••EGG§¥¥õïß_ëîÚ†y…FkÓ™øz´¶ÐÐPÖq´ƒ5½§ÞAÔ|àKøGÒAðÅWɶ/UÐ<&Ó¯Öñ–_4  G€ãùud ÁàHˆŒ@ ŽÈ´Á`@+!8ì‘hU6¿Ž#õhú£_¾ùÆ u£kLj#ÀŽðè -v«Ò@Û#8l‘°‚#ÀÔÿX"#`YG€ "2Z 8l ‘ÐÁ`#ˆŒ€ÖŽ«§Ó‰4aEFm„à°bæQF]K÷ åŽ«£û_L4‰ˆ’u¿ÎŽŒ?–GpXNDLuRaýËñ°,‚#À:0÷°zNû“–,Y’““£uÖG§ûyD‘ÔX7ËÇÄÄÄ{î¹gôèÑkÖ¬)--Õºã+@dlŠå‚ã£>Ú¥K—'Nüýï4hÐÔ©SwìØqåÊ­@ DFÀYîÇ3fLŸ>ýÈ‘#~øá¶mÛ>ùä“O>ù¤cÇŽ÷ÜsOttôm·Ý¦õ¡X÷26KgÒâ«[UUµgÏž?üð“O>¹|ù²ˆtëÖ-::úÞ{ïíÒ¥‹ÖǤ¥BCC³²²´nZÊ`0iÝ h€S߆¬;2rêg_%Ë]ª®ÉÙÙyèС˖-;pàÀܹs]\\rssW¬X5~üø-[¶F­  õpa° š-ÇsáÂ…?þxûöí¨ªª‘N:µk×îСC‡ú÷¿ÿ½zõêÎ;k}|-cÝ£ŒšÄÒÁ±¸¸ø£>Ú±cÇ¡C‡”aE__ß?üá#FŒèÓ§ˆì߿ٲe'NœX°`Á¿ÿýo­ õ/Ím~Ì ‘°#– Žk׮ݱcÇ_|Q]]-">>>Æ >|øí·ß®×ëÍ› 8°OŸ>ýúõ;|ø°ÖÐt 1öËrÁñoû›ˆxyyýá>|øïÿûšy±&—ë®»ŽëÔ`cˆŒ€½³\p=zôˆ# p­¼XÃ`KˆŒ€c°Ü¬êmÛ¶8pàZ©ñÉ'Ÿ6l˜ÖGÐDæÈHj€åF+**®^½z­òòò µ>ÕÌ‘Q×Ò=°mÓÓÓ§Nj~›œœ¼víÚº›UWW›L¦›nºIë£h„î1Ñ$"JjÔý:;2øØ«¶ Žz½¾cÇŽÊë .´oßÞÕÕµÞ-½¼¼fÍš¥õÑ4H§3Ií`Xÿr<ìQÛÇùä“"rë­·*oŸ}öY­; ¸†DFr&à8Ú08>ñÄ5ßNžýôÓóçÏwèÐáºë®ËÏÏÿý÷GŒ±~ýz­ØFhÇrÁqÏž=ÿú׿ôz}\\Ü®]»Ž=š‘‘ñé§ŸNœ8QDþþ÷¿gffj}4ÀZ)y±‰‘‘l  uY.8®_¿Þd2=óÌ3sçÎíÚµ«N§‘Î;?÷ÜsÏ?ÿ|UUÕ[o½¥õÑëS3/’hÊrÁñäÉ“:t˜0aBÝbcc]\\Ž;¦õÑkÂUiVÆ¢÷8Þpà ÎÎõLÇQfÉTTTh}4ÀBtºÆ>&2°>– ޽zõÊÏÏ///¯ûÑ¥K— Cxx¸ÖG´Fd`Å,cbbL&ÓìÙ³«ªªj–Æ9sæƨ¨(­h‡ÈÀêµá:ލùV¯×ßÿý›6mºûî»cbb‚ƒƒu:Á`ظqc~~~hhèÿøG­hE؈6 Ž?üp½åß~ûíŠ+jfeeEDDdeei}@À‚ˆŒlJÇQ£FiÝ;°bÊ…i°m_~ùe­{V¡Þ9Ô:1Ir2$ëgégU_ËóÏ?øðáO>ù¤uSSSSRRrrr\]]‡ 2sæLooï¶àŽ?^«Ð××wß¾}-Ù-\‹ÉT#<šLÂh#ÛdÑàxáÂ…?þ877·VyeeåG}¤×ë›±ÏeË–½þúënnn}ûöÍÍÍÝ´iSvvvrr²‹‹Ëµªäå幸¸Ö,ôòòján ~ÜÈÀ^X.8~ÿý÷cÇŽ-,,¼ÖãÆkê>³²²ýýý7nÜèçç'" .LNNNHH˜?~½UÊËËËÊʆ¾|ùòVÜ-ÔƒÈÀ¾XnÇ·Þz«°°°oß¾ýë_ÿûߋȂ ^zé¥ &èõú¸¸¸ 4uŸ)))ÕÕÕÓ¦MSâˆÌš5ËÓÓsÛ¶mÕÕÕõVÉËË‘ZÃ-ß-ü ‹2°G– Ž{÷îíСÃk¯½öàƒ.Y²DD‚‚‚î¿ÿþ9sæ,X°àÝwßÍÎÎnê>>ìääi.Ñëõƒ.))9räH½U” åݺukÝÝÀψŒì—å‚cQQQ```ÇŽE¤S§NÞÞÞ'NœP>Љ‰ñöö~ë­·š´C“É”““ããããããS³¼{÷î"’ŸŸ_o-%8ÅÅÅõíÛwÈ!S§N=zôh w MŠŒ¤J¶È¢“cœœþ—Soºé&ƒÁ ¼Öëõ¡¡¡ÇŽkÒÞ***ŒFc­I-"âéé)"¥¥¥õÖR’ߊ+‚‚‚ PXX¸{÷îôôô^xa̘1ÍÞm-¡¡¡µJ¶oßn¹ÖPPP u fœú à`1|óˆÈ/¿l°9|ëYSÏ~PPÖMÖ†å‚ã 7ÜpöìÙK—.¹¹¹‰H×®]¿øâ ó§:®©ç¬²²RD”½Õäîî."eeeõÖ***rqq™1cF\\œR²ÿþ)S¦,Z´hàÀÍÛm-<Ç>8ì jÂp`é/üu±|ëg_ Ë]ª¾ë®»*++Ÿ}öÙ3gΈÈí·ßž——÷ÙgŸ‰Hqqñ—_~Ù¥K—&íÐËËK§ÓUTTÔ*¿xñ¢ü2@X×Ûo¿™™iN"1~üøÊÊÊ]»v5{·÷2p<– ŽqqqŸ|ò‰òD™Áƒ;;;?ñÄñññ£Fª¨¨1bD“vèìììééYw°¼¼\DÌ¢ÕèׯŸˆœ>}ºuw À)y‘ÈÀ!Y.8úúú®[·nÆŒ·Þz«ˆtéÒeÞ¼yW®\Ù·o_IIITTT|||S÷éïï_RR¢D:3åÖIÿºÛ›L&£ÑXwIeíqæí€C¨™‰Œ’å‚£ˆøúú>úè£?þ¸òvìØ±‡zûí··mÛöÚk¯5ã¡,QQQF£qïÞ½æ“É”žžîííÝ«W¯ºÛçææ†……M˜0¡VyFF†Ô˜ÑÒÔݰs 1€ˆX88ÖtéÒ¥+W®¸»»0 88¸y;‰‰‰qrrZ¹r¥r¢ˆ$&&=º]»væ?È`0(3oûôésèСÔÔTóN222’’’† ¦~·‘jЙ,ûkxìØ±U«V}zHHHZZšˆœ:ujâĉÅÅÅáááÁÁÁ………™™™®®®«V­êß¿¿úÝ6 44”YÕvÀ`00ÃÎ1)A‘§: ¾õŽŒ³¯’EGW¬Xóé§Ÿž?¾C‡×]w]~~þûï¿?bĈõë×7oŸñññ AAA[·n---MNNn ÞõèÑã½÷Þ‹ŽŽ...Þ±cGYYYtttZZZÍÔØŒÝ°Qæ¹.æÿý\(&˜j,7â¸gÏžGyÄÉÉiܸqqqq7Þx£N§+**Z³fÍ;ï¼#"ëÖ­»í¶Û´> ­€GûÀ}:"NDtbá+1°|ëg_%Ë8®_¿Þd2=óÌ3sçÎíÚµ«N§‘Î;?÷ÜsÏ?ÿ|UUUS9­†{@ËÇ“'OvèСîŒf‰uqqiê# @5‹Þãxà 78;×óCe–L݇µ@[aoh:ËÇ^½zåçç×ZU[¡¬˜®õÑàXÇšËrÁ1&&Æd2Íž=»ªªªf¹Ñhœ3gŽÑhŒŠŠÒúh°kꆿùÆ uCÀJ9·|×ràÀšoõzýý÷ß¿iÓ¦»ï¾;&&&88X§Ó †7æç燆†þñÔúh°S,Ê­¡ ƒãÃ?\où·ß~»bÅŠZ…YYY¬b • õ´ap5j”Ö½`W~~¦‹ú­…È­© ƒãË/¿¬uï8$"#´6 Ž×òÝwß}ýõ×¹¹¹W¯^ îÙ³g@@€ÖÇ€] 2@[²hp¼p᫯¾ºaãÑh.Ôëõ>øà´iÓ<==µ>l‘Úžå‚£Ñhœ:ujFFF‡îºë®nݺéõú³gÏîÞ½ûÝwßýúë¯×­[§×ëµ> l ‘,ÅrÁñí·ßÎÈȸí¶Û^}õU???sùùóçŸ|òÉŒŒŒ·ß~{âĉZ6BÉ‹Bd˱Üà{÷îÕétË—/¯™E¤S§N+V¬prrÚ³gÖG€1?Ðü¿_ŠIùŸÖÍb¹ÇS§NuëÖ­sçÎu?ò÷÷¿ù替þúk­+Rw$Q§“4iI@k²\pìСCeeåµ>­¬¬tqqÑúh°V?_˜æéÒ %Ë]ªîÙ³ç÷ߟ‘‘Q÷£'NôèÑCë£Àú¨{À4À,•É<õÔSµîeüì³Ïžxâ 9r¤ÖG€5!2€•±Ü¥ê#F¤§§oÙ²eòäÉ;w ‘ÜÜÜo¿ýVDFŽù§?ýIë£À:°ÂX%‹.þüã÷¿ÿýòåË‹ŠŠŠŠŠ”ÂN:MŸ>ý¾ûîÓúP° FF’$hË¢ÁQ§ÓÝÿý÷ßÿ¹sçΞ=k2™ýýýµ>¬£Œ`õ, ª««oºé&ñó󫵚#Å:Þ`;,zãO?ý´oß>___­{  •éš±º"CŒ`k,7«:$$DDNŸ>­u—héÒ`›,çÏŸïââò¯ýëòåËZ÷€FˆŒ`Ë,w©ÚÏÏoÉ’% ,5jÔ¨Q£nºé¦Ž;ÖÚ&22Rë mpalŸå‚ãwÞ©¼(..~õÕWëÝ&++Kë µÀ^X.8*OŽà@ˆŒ`_,_~ùe­;  u˜—Ði¸ÐDdûbÑÀ؇ºðËñ0Êö«Íƒczzú¶mÛΜ9S]]ݽ{÷{ï½·ÿþZ÷@ 2€½kÛà8gΜM›6™ßž8qbóæÍÿ÷ÿ7kÖ,­; •ü|‰švÀþµapü裔Ô9hÐ £ÑøÑG>|ø­·ÞŠˆˆ8.[¶ìõ×_wssëÛ·onnî¦M›²³³“““]\\êݾªªêá‡ÎÌÌôôô0`ÀåË—?ÿüóÏ>ûì©§žzüñÇÍ›åå幸¸Ö¬ëåå¥uwaã˜þ°e¶³²²ýýý7nÜèçç'" .LNNNHH˜?~½URRR233ûôéóæ›o*á2;;;66vÕªUC‡íÙ³§ˆ”———•• >|ùòåZwö‚Ȱ}NZ7 ERRRª««§M›¦¤F™5k–§§ç¶mÛª««ë­²}ûv™;w®yH2$$dÊ”)F£Ñ|://ODj 7ͤÓýüPjR#ÀÆÙvp<|ø°““Sdd¤¹D¯×<¸¤¤äÈ‘#õV1 nnnááá5 CBBD$??_y›››+"ݺuÓº°qEF’$À¶Øð¥j“É”““ããããããS³¼{÷î"’ŸŸûí·×­õÆo8;×îõÉ“'E¤k×®Ê[%8ÅÅÅ}ýõ×®®®aaaS¦LùÝï~§u§a xô ÀNÙpp¬¨¨0u'¬xzzŠHiii½µÂÂÂj•pêYSÏ~PPÖMÖ† ÇÊÊJqss«Uîîî."eeeîÁh4®[·îŸÿü§Ñh\²d‰¯¯¯R^TTäââ2cÆŒ¸¸8¥dÿþýS¦LY´hÑÀÝsVV–Ö‡­  ¿ 5.I;èo‰}qØÀ©wdœ}5løG///NWQQQ«üâÅ‹ò˸c>ÿüó‘#G.\¸Ð××÷Í7ß1b„ù£·ß~;33ÓœE$""büøñ•••»víҺ߰2æ°w6===ëŽ,–——‹ˆyžu]W®\Y¸pá„ ¾ýöÛ'Ÿ|rÛ¶mþqýúõ‘Ó§OkÝoX ¦KŒ _ªÿœœœòòòŽ;š ƒòQ½Uª««Ÿyæ™;wÞu×]ùË_êæK“ÉT]]­Ó霜~•ªõz½ˆxxxhÝiXHppÐ5!‹2’ 8ŠHTT”ÑhÜ»w¯¹Äd2¥§§{{{÷êÕ«Þ*kÖ¬Ù¹sçC=´jÕªzG%sssÃÂÂ&L˜P«<##Cê›õ‡Ã(#ÀQÙvpŒ‰‰qrrZ¹r¥r_£ˆ$&&=º]»vJÉ¥K— ƒ2[Êd2­]»ÖÃÃãù矿Ö>ûôésèСÔÔTsaFFFRRR@@À°aôî4´Fd8*ÉÆÿLJJZ¼xq—.] ”››{ðàÁ°°°¤¤$ó2=[·n>}zHHHZZÚ¹sç äââróÍ7×ÝÕ}÷Ý+"§Nš8qbqqqxxxpppaaaff¦««ëªU«ú÷ïßh“BCC™Umþ7ã… ÓÆ`00¹Ò1qêg_%Û¾ÇQDâãã;uê´eË–­[·vîÜ966vÚ´iÊŠ¿Nõ>Ö*$g`GXótéúÔ-fDM¡©##°*Gh„È€­!8Â∌Ø&‚#,ŽÈ€mb9´=Žu°Œ8¢íµö#C–h‚G´ †°;Œ8¢µ1÷;EpDë!2`׎h DFÁ-Æp LŽA‹‘p G4ë2à¸T¦cˆ‡Äˆ#T`ˆ0âˆF0]ü‚àˆk 2€_#8¢"#¨÷8¢“©Ù©‘;!°cGˆ‰4ŽàýT!8‚Û€*G‡ÄºŒ é˜UíHÌa‘!FÐtGÇÐ6+ìÔ;jY«Œ €Ý 8:€6›ûRw¯L³ÀŽq£ Ê€Ö@p´GÌ}m€KÕöˆ!FÐq´ 1€6ƈ£ík›ÓÍc­m‚àhˬ)2»Gp´A¬ã ´@p´AäE {˜“ššÓ«W¯;î¸cΜ9.\PYñ›o¾ =zôhëî¶M0÷hÍæƒã²eËæÍ›wæÌ™¾}ûº»»oÚ´é‘G©¬¬TSwÍš5m±ÛÖÇóX€°íà˜•••˜˜èïï¿}ûöÄÄÄ;vÄÅÅ;v,!!¡Zååå_|ñÅ_þò—wß}·wÛ†HÀ ØvpLII©®®ž6mšŸŸŸR2kÖ,OOÏmÛ¶UWW_«ÖÈ‘#Ç·aÆÖÝmkâÑ/ÀúØvp<|ø°““Sdd¤¹D¯×<¸¤¤äÈ‘#תµpáÂ×^{íµ×^‹ˆˆhÅݶ%2šLŒ2kcÃÁÑd2åääøøøøøøÔ,ïÞ½»ˆäçç_«âÀ£¢¢¢¢¢ºtéÒŠ»m)"#°n6¼OEE…ÑhôòòªUîéé)"¥¥¥î644´VÉöíÛ¯µqPp°ˆ¾ùFDÄ`°ÔñC# ´n´Á©wXœzGÖÔ³¤u“µaÃÁQ™ãìææV«ÜÝÝ]DÊÊÊ4ÜmVVVþH“IDô/ usØßpê§Þ‘qöÕ°áKÕ^^^:®¢¢¢VùÅ‹å—BëÙ-€­³áàèìììééYw°¼¼\DÌ¢­d·¶Î†ƒ£ˆøûû—””(‘ÎÌ`0(YÛnlšmǨ¨(£Ñ¸wï^s‰ÉdJOO÷ööîÕ«—µíÀ¦ÙvpŒ‰‰qrrZ¹r¥r¢ˆ$&&=º]»vJÉ¥K— C“fK©Ù-€£±áYÕ"0sæÌÅ‹5jРA¹¹¹ Ÿ|ùòåZwÀZØö=Ž)))ÕÕÕÓ¦MS" ˆÌš5ËÓÓsÛ¶mÕÕÕÍ®’——'"µ†œmÇÇ;99EFFšKôzýàÁƒKJJŽ9Òì*¹¹¹"Ò­[7­û`El88šL¦œœŸšåÝ»w‘üüüfWQ‚cQQQ\\\ß¾}‡ 2uêÔ£GjÝc-Ùð=ŽF£±î„OOO)--mv%A®X±"((hÀ€………»wïNOOá…ÆŒ£¦m¡¡¡µJ¶oß®õCÓhÝhƒSï°8õެ©g?((Hë&kƃcee¥ˆ¸¹¹Õ*www‘²²²fW)**rqq™1cF\\œR²ÿþ)S¦,Z´hàÀ¶-++KëÃVà°¿ àÔ;,N½#ãì«aת½¼¼t:]EEE­ò‹/Ê/ƒˆÍ«òöÛogffšS£ˆDDDŒ?¾²²r×®]Z÷@6===ëŽ,–——‹ˆyÒt «˜õë×ODNŸ>­u¿´aÃÁQDüýýKJJ”Øgf0”šWÅd2ƺ«ùèõzñððкÓÚ°íàe4÷îÝk.1™LéééÞÞÞ½zõj^•ÜÜܰ°° &Ôª˜‘‘!õÍzp¶cbbœœœV®\©Ü¤("‰‰‰ÅÅÅ£Gn×®RréÒ%ƒÁ`ž-Õh•ÀÀÀ>}ú:t(55Õüedd$%% 6LëNhCg2™´nC‹$%%-^¼¸K—.ƒ ÊÍÍ=xð`XXXRR’yÍ­[·NŸ>=$$$--Me•S§NMœ8±¸¸8<<<88¸°°033ÓÕÕuÕªUýû÷o´I¡¡¡Ìª¶ƒvމSï°8õŽŒ³¯’m8ŠH|||BBBPPÐÖ­[KKKccc“““ë®Ôؤ*=zôxï½÷¢££‹‹‹wìØQVV––¦&5Ø+›q´BŒ8ÚþëÓaqê§Þ‘qöU²ùGXÁª  Áª  Áª  Áª  Áª  Áª  Áª  Áª  Áª  Áª  ÁQ{:Ö-PàUŽP…àUŽP…àUœµn€Ã©wuÝB“Ië†üÁÑÒê&BŽ˜l—ª  Áª Š=Üã˜ššš’’’““ãêê:dÈ™3gz{{·°JeeåþóŸ7xxxtïÞ=>>þŽ;îк¯š±ùà¸lÙ²×_ÝÍÍ­oß¾¹¹¹›6mÊÎÎNNNvqqiv•ªªª‡~833ÓÓÓsÀ€—/_þüóÏ?ûì³§žzêñÇ׺ÇÚ°íKÕYYY‰‰‰þþþÛ·oOLLܱcG\\ܱcÇZR%%%%33³OŸ>éééÿú׿Þzë­÷Þ{ÏËËkÕªU_ýu«÷‚)ÕÀ&ØvpLII©®®ž6mšŸŸŸR2kÖ,OOÏmÛ¶UWW7»ÊöíÛEdîܹæ1È)S¦Æ}ûöiÝimØvp<|ø°““Sdd¤¹D¯×<¸¤¤äÈ‘#Í®b0ÜÜÜÂÃÃkV ‘üü|­;   Ž&“)''ÇÇÇÇÇǧfy÷îÝå Oe•7ÞxcÆ µêž=$$$--MM•óçÏçå幸¸Œ7®îŸxß}÷ÅÆÆjÝo Øvp‘øøøN:mÙ²eëÖ­;wŽ6mš²¼Nóª(c“•••'Nœ¨[—‰ÕÀaéL&“Öm°7¡¡¡¬ãh kz9&N½ÃâÔ;2ξJ¶}#,†àUŽP…àUŽP…àUŽP…àÔïü£ÖM€68õ‹SïÈ8û*  Áª  Áª ŠÎd2iÝ{ªu@ÊÊÊÒº Ú 8@.U@‚#T!8@‚#T!8@‚#T!8@‚#T!8@‚#T!8@‚#T!8@‚#T!8@g­X‘xàøñãµ }}}÷íÛ§uÓÐ&¾ùæ›áǧ¤¤üîw¿«ûijjjJJJNNŽ««ë!CfΜéíí­u“Ñ:8õüØ«ÊÊÊÿüç?7n,((ðððèÞ½{||üwÜQk3¾ø #8ÿ“——çââX³ÐËËKëv¡­¬Y³æZ-[¶ìõ×_wssëÛ·onnî¦M›²³³“““]\\´n5ZA§žß»TUUõðÃgffzzz0àòåËŸþùgŸ}öÔSO=þøãæÍøâ7Šàü¬¼¼¼¬¬løðáË—/׺-h[ååå§OŸþðÃ7lØPïYYY‰‰‰þþþ7nôóó‘… &'''$$ÌŸ?_ëæ£ù=õüØ«”””ÌÌÌ>}ú¼ùæ›J ÌÎÎŽ]µjÕСC{öì)|ñÕáGàgyyy"Rk˜viäÈ‘ãÆ»Vt‘”””êêêiÓ¦)ÿxˆÈ¬Y³<==·mÛV]]­uóÑ|žz~ìÕöíÛEdîܹæ±Ã)S¦FóM|ñÕ`ÄøYnn®ˆtëÖM놠Í-\¸ð§Ÿ~‘µk×îß¿¿î‡vrrŠŒŒ4—èõúÁƒøá‡G޹ýö۵ÑSÏ2 nnnááá5 CBBD$??_yË_ ‚#ð3匢¢¢¸¸¸¯¿þÚÕÕ5,,lÊ”)õN›€M8p òb÷îÝu?5™L999>>>>>>5Ë»wï."ùùùüûa»>õÂï€ýzã7œkgž“'OŠH×®]…/¾j\ª~¦üGçŠ+Î;7`À__ßÝ»w;6%%Eë¦Á¢***ŒFcÝÉžžž"RZZªuцø°WaaaJ4;xð`bbb‡¢££…/¾jŒ8?+**rqq™1cF\\œR²ÿþ)S¦,Z´hàÀZ7RYY)"nnnµÊÝÝÝE¤¬¬Lë¢ ñ;àŒFãºuëþùÏÆ%K–øúú _|Õq~ööÛogffšÿµ‘ˆˆˆñãÇWVVîÚµKëÖÁr¼¼¼t:]EEE­ò‹/Ê/ðWüؽÏ?ÿ|äÈ‘ .ôõõ}óÍ7GŒ¡”óÅW‰à4¤_¿~"rúôi­Ëqvvöôô¬;ÀP^^."æé–pü؇+W®,\¸p„ ß~ûí“O>¹mÛ¶ˆˆó§|ñU"8""&“Éh4Ö]pA¯×‹ˆ‡‡‡Ö „Eùûû—””(ÿ`˜ å#­[‡¶Â®®~æ™g’““£¢¢vîÜùÄOÔ]Ó›/¾G@D$777,,l„ µÊ322D$44T뢢¢¢ŒFãÞ½{Í%&“)==ÝÛÛ»W¯^Z·m…ß;¶fÍš;w>ôÐC«V­ºÖð!_|5Ž€ˆH```Ÿ>}:”ššj.ÌÈÈHJJ 6l˜Ö „EÅÄÄ899­\¹R¹½ID‹‹‹GÝ®];­[‡¶Â2™Lk×®õððxþùçØŒ/¾̪~¶`Á‚‰'Λ7oýúõÁÁÁ………™™™®®®/½ôO)u43gÎ\¼xñ¨Q£ ”››{ðàÁðððÉ“'kÝ4´-~ìÒùóç•G7®î§÷Ýw_ll¬ðÅW‡àü¬Gï½÷Þ’%K8ݵk×èèè§žzªsçÎZ7 ˆïÔ©Ó–-[¶nÝÚ¹sçØØØiÓ¦) sÀŽñ;`— D¤²²òĉu?­9E†/~£t&“Ië6Àp#T!8@‚#T!8@‚#T!8@‚#T!8@‚#T!8@‚#TqÖº ±ììì?ýéOµ Û·oïçç7`À€qãÆõìÙSë6€UЙL&­ÛZR‚£N§ó÷÷WJL&Sqq±Ñh½^?cÆŒI“&5u·Ÿ}ö™Ñh2dˆÖý€VÈ#ˆˆ¸¸¸¤§§›ß^¹råôéÓ«W¯Þ¶mÛË/¿|à 7Ô•lسÏ>[^^þÕW_iÝ3h5Üãõhß¾ý-·Ü²|ùòÇ{LD^yåeÁòØcùùùåææ~ðÁZ·4Fp€†´k×‘O?ýÔ\X\\¼téÒ#FôîÝ»wïÞ÷ÜsÏ?þñï¿ÿ^ùôŸÿüghhè… ŒFchhh¯^½ÔÔëÇ=ŽÐeVuAAò¶¸¸xܸqgÏžuqq ¬®®>{öì[o½µsçÎM›6y{{ß~ûíUUU6l¸råJ\\\»víÔÔÒº—Ð8‚#4¢sçÎ"’ŸŸ¯¼Ý´iÓÙ³g‡šàææ&"ååå=öØáÇ?þøãx`èСC‡ýàƒªªªæÌ™£²–Ö½€Æq©qýõ׋HYYÙ•+WD¤ªªêÎ;ï|öÙg•ü'";v9r¤ˆäææ^k'Í«V…GhDii©ˆxzz¶oß^DüñZœ?þ¿ÿýoÃ;i^-°*GhDQQ‘ˆtíÚÕ\RXX¸gÏž/¾ø"???//ïÂ… jöÓ¼Z`=ŽÐˆS§NIà¸~ýú¿ÿýïUUU7ÝtÓí·ß~×]wÝrË-ƒá¯ýk;i^-°*GhÈÕ«W×­['"‘‘‘"rñâÅ¿ýíoíÛ·ã7hÞì»ï¾k`'ͫֆÉ1Ð×_ýûï¿ïÖ­›2‘åøñãF£±wïÞ5óŸü2*y-ͫֆG¨GUUUNNÎêÕ«?üðCyúé§õz½ˆøûû‹È©S§Š‹‹}}}EÄh4¦¦¦®]»VD*++kºº¢¢ÂÕÕµIµÀj@D¤²²rèСÊk“ÉT\\¬,¾£×ëg̘qÏ=÷(GEE}üñÇwß}wŸ>}L&SVVÖ… Æ—œœ¼yóæüqñâÅ"âååuáÂ…±cÇÞtÓM¯¾úªÊZ`Íô/¼ð‚Öm-•––¾ûî»"òc NNN;wþÃþ°páÂaÆÕÜ~èСíÛ·ÿî»ï²²²ôz}¿~ý/^}áÂ…ìììâââ &ˆÈ7ÞxìØ±¼¼¼«W¯Ž?^e-°f:“ɤu`˜UŽP…àUŽP…àUŽP…àUŽP…àUŽPåÿºÚ%Œð,ÜIEND®B`‚statistics-release-1.6.3/docs/assets/normplot_201.png000066400000000000000000000563211456127120000225320ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A\˜IDATxÚíÝ}\TeâÿÿkÔ›3j75]%oH*oJ³ ]±E-íV-Êû­6u-¼+u‹\+oÒ1kMÐnŒÌ4)QÓ’@Gn”RÀ æ÷Çù5_>3€æÌ9óz>ö±æšsŽ×u.tÞ]×¹®Ñ™L&\‹‹Ò€: Á² Á² ÁÐŽ'Nèþoñîÿþ÷?ó»o¿ý¶Ò•mž H5ðÁå4¿>OOÏÞ½{?öØcÅÅÅŠT¬.øöÛoKGöéÓ§±s­Bìܹó£>úè£.\¸Ðú 7÷¶·òŽÙ¶òš‹àhÓ|ðí·ß*] ‡péҥÇ¿óÎ;Ý»wÿôÓO•®ŽòÆ?zôèÑ£G;v¬íþ”6ºíö©<€Æ¸*]mÂd2͘1ã›o¾ÑétJ×EnnnBˆ«W¯–””ÔÕÕ !._¾üØc?~ÜÝÝ]é Ú€§§gpp°"00°5ÇØ3ÜvÀÉ1âhÖÁƒ·lÙ¢t-”±yófƒÁ`0Š‹‹+**¥ò3gÎ|ñÅJ×Î6yä©üqkޱ!g¸í€“#8Zöâ‹/VUU]ó°Ë—/ÿýï¿çž{î¾ûî¹sçVVVÖ?¦þ£iµµµ .¼ñÆ.\Xÿ­¸¸¸S§NM˜0!88øÆo?~ü?ü „8xðà¸qゃƒ¯¿þú»îºëË/¿¬庺º­[·Þu×]ݺu»îºëºuëóþûï_½zÕ&7ÁÃÃcõêÕíÚµ“^žw¼¼\N‹š{[Ξ=;hÐ óñiii;vìxóÍ7üqó1Íj©œ ÚÊøñãÿýï !Š‹‹;ö§?ýI*7?›Ø½{÷[o½Õæ·Ý¬¿„Áˆ# M .ôòòB,]ºôìÙ³V]]=vìXéûºë®:tèˆ#:vì(„(**7nÜï¿ÿnqÊwß}'e,kGŽ)//ÿóŸÿìëë+•\¸páÙgŸ½zõj=ºté"šL¦—_~Yú955UÊR:nÈ! 怲mÛ6[ÍoþöÛo¿þú«ôsXXØ5[Ô‚Û’}êÔ)ÿAƒIó]½zõÉ'ŸüñÇ[ÖÒk^°žþùüü|©!Bˆ÷ß_z îÚµË|üž={¤ÆŽkóÛÞÜ»ÝXå[|7´ÁÐ&ÿ !ªªªfÏžÝØa¯¿þú™3g„:uúꫯ233?ù䓃úùù !~ùå—Å‹[œR\\¹iÓ¦ƒþío³x÷¿ÿýï‘#G~ùå—!C†˜ W®\ùã?Nž+•TVVšŸËlz~³ Òp:®]»v=zô0·bÔ¨Q½zõºf‹Zp[Úµk·víÚ:!ºvíºdÉ©|×®]RxjnK¯yAÛ2wÍ7ß|sñâE!DNNŽôÔA=¢¢¢l~ÛÍZp·(…àhVûöí“““Å[óX<(ÉÍÍ•~:thýò{ï½Wú!//OÚTŬgÏžAAA þ‰æÉh!„´-‹"((È<,d.4:tè„ FŒ±ÿþçŸ>66öÆoüé§ŸÚâ†Üzë­«V­².·nQ nKTTÔ7Þh~9|øp釚ši8­¹-½æm+::ZZc4¥êVÎS_ó¶·ænP ‹c-{à† òÅ_4¸5OeeeEE…ô³Å>æxåÊ•_ýµþ»Òbƒœ74Ï-6¨¦¦fΜ9o¼ñFmm­TâæææïïþüùÖ4ܼ¡ ÂÕÕ5222::úÙgŸ½îºë¬¶hQËnË 7ÜPÿHwww///é:………7ß|ss[zÍ ¶æþXÓétãÆ“þKc×®]ãÆ3Góà±mo{kî6¥0âhÜŠ+¤è6wî\‹·:uê$- B”””ÔËü²}ûö;w®ÿ–mŸ*[´hÑòåËkkkCCC×®]{ôèÑÊÊÊ‘#G¶ò²æ  C^^ÞG}ôâ‹/6_,ZÔ²ÛòË/¿ÔY]]mÎC7ÝtS ZzÍ Úœy¶:##ã÷ßß¿¿hÎýOú“««k[|©t³´à¶œ8qBÚwF²{÷né‡öíÛKßÝÒÜ–^ó‚6×»wo顨 .$''×ÔÔˆVÏSË¡ø/!ùŽ€öýãÿèÔ©SƒoIkY„o¼ñÆáÇ¥Ÿ?þúë¯K?›­k ¿ÿþ»yÓGór™ï¿ÿ^ñoiÁm¹zõêÓO?-mWYRRb^É>räH½^ß‚–6}A›4SІõ™¥9ka—àØ²_Bëʰ‚# }þþþóçÏoð­^x¡[·nBˆŠŠŠŒ9rôèÑýúõ+++BJ{ú´éçÉ“'?ðÀ£G¾óÎ;mõ1-Ö²Û²}ûö»ï¾;""BZð¡×ë-ZÔâ–6qÁÖðöö–~øÇ?þ‘œœ\¿æà(-÷ŽŒŒŒŒŒt¨»ÝDåØÁp Ï>ûlƒË)ÜÜÜRSS¥=hª««wîÜùÑGI_ãÖ­[·ÔÔÔÆ†*mB§ÓÝwß}ÒÏUUUüñG}Ô¥K—»îºK*´xèÍnZp[¼½½]\\Ξ=ûùçŸKV·oßþwÞ‘æa[ÐÒ¦/Øæïì9pà@RRRý¡»¨¨¨úßc‡áÆæÞí&*ÀŽ€Shß¾½yâÏBß¾};¶`Á‚ØØØ€€??¿!C†Ì›7ï‡~0`@[WlÅŠ·Ýv›ÂÅÅåÏþóÌ™3srrxàéÝ-[¶üüóϊܱæÞ–˜˜˜¬¬¬‘#GÞxãcÇŽýâ‹/êoÞÜ–^ó‚­¹ç&Lð÷÷www¿õÖ[-–½›EsÖSÛín7]ymM×àÖn`7W¯^ݹs§âÁTº.´T8p ::ZyâÄ ¥«À±°N €ÂÚµkçÈAÊÙZzàÀéûÌSP‚#@˜L¦·ß~»¨¨hùòåR Á€5¦ªÂh4Öß+ñ¡‡JOOWºR#Ž!„èØ±cmmm×®]ãããçÌ™£tu8"F @‚#d!8@‚#d!8@‚#d!8@‚#d!8@‚#d!8@‚#d!8@‚#d!8@‚#d!8@‚#d!8@‚£íEDD ¥kÛ +5ƒ®ÔzS3èJÕ!8@‚#d!8@‚#d!8@‚#d!8@‚#d!8@‚#d!8@‚#d!8@‚#d!8@W¥+`iii©©©ùùù;v}<<<ÒÓÓ{ì±êêêÆŽ¯®®Ž‹‹[µjÕÅ‹cbb|}}·oß>qâÄÒÒRó1F£qÒ¤IÉÉÉ/^8p`—.]vïÞýÀdgg+Ý\Ũ;8æææ¦¤¤dff¦¤¤ìÞ½;!!áØ±cÉÉɲbÅŠüqüøñ»wï^¹råG}´páÂüüüÅ‹›ùÏþsøðááÇúé§o¼ñÆÆß}÷]!Äüùó•n1€bÔSSSëêêf̘áïï/•Ìž=ÛËË+##£®®Îúx“É”––æçç7gν^/N˜0!::ú³Ï>ûý÷ߥ’Ç !&MšäêúÿOå÷ïß¿GgΜ)//WºÑÊPwpÌÎÎvqq‰‰‰1—èõúAƒ•••IáÏBqqqUUUddd‡ê—÷íÛ÷ÿûßþýû¥—BˆúÑd2ýöÛo...æ( àlTM&S~~¾¯¯¯Åº–ððp!DQQQ­uqBX?YSS#„8þ¼ôòþûï¿îºë-ZtàÀêêêsçÎ-X° ¸¸8..®S§NJ·@*?«ªª2ÞÞÞå^^^âÿŽšyzz?~üüùóæÙí«W¯îÙ³Gqá©$""bãÆ>úè£>j>7>>~îܹ2ë6lØ0‹’ÌÌL¥oZ¢¸¸Xé*À6èJ-¡75C½]¢t”¡âà( º»»[”{xx!***¬OÑétS§N]¾|ùôéÓ.\~æÌ™eË–åçç !®\¹"VYYùÏþóòåËQQQ·Ýv[YYÙ×_½cÇŽ~ýúÝsÏ=rê–™™é´¿RÚCWj]©%ô¦fЕê¢âàèíí­Ó骪ª,Ê/]º$þw´6eÊ”3gÎlß¾}ìØ±RIPPД)SÖ­[çéé)•¼ð ßÿýìÙ³ÿö·¿I%çÎûë_ÿ:sæÌ?þ844Té¦(@ÅÏ8ºººzyyY,VVV !Ì3Ñôzý’%K¶lÙ2kÖ¬„„„%K–|øá‡×_½BúÿóçÏïÝ»÷–[n1§F!DPPÐO¾¸¸¸ªª*22²C‡õËûöíû¿ÿýÏüübAA¢[·nJ·À¨88šL¦üü|___‹u-áááBˆ¢¢¢Zëâ"„¨®®¶(¯©©Bœ?^z)Ç’’’„„„>}ú E§ÓM:uùòåÓ§O_¸paxxø™3g–-[–ŸŸ/„¸råŠtXII‰››Û¬Y³¤’o¾ùfÚ´i‹/0`@PPÐ5ë–™™é´¿RÚCWj]©%ô¦fЕê¢âàèíí­Ó骪ª,Ê/]º$þw´6eÊ”3gÎlß¾Ýù$==ýäÉ“]»v=zôhIII¿~ýꟲpáÂÉ“'ÏŸ?Ë–-¡¡¡gÏž=räHÇŽ—,YÒØW`hžºG…‰‰‰ÉÉÉ!!!»ví*//ß°aƒõæŽf[·n?~üo¿ýöÕW_ùúúΚ5kݺuæo BtïÞýÃ?=ztiiéîÝ»+**F½sçÎ~ýú)Ý\ÅèL&“ÒuКˆˆöqÔ ƒÁ@Wj]©%ô¦fЕª£úGØÁ² Á² Á² Á²¨•N§t Ø‘Ž¿ó€àYŽ…àYŽ…àY\•®ÈÒàzJ‹B“IéZ°‘×P[šøko_Gê`ýé Ó‘ͲN„:Ž˜¨8¦ª Á² Á²¨OÉN…•1Ž€àYŽ…àYŽ…àYŽE ßU–––šššŸŸß±cÇÁƒ'%%ùøø4q|mmmJJÊÞ½{óòò<== ””äëëÛÊËh›êGW¬X1þüS§NõéÓÇÃÃ#==ý±Ç«®®nìøêê길¸U«V]¼x1&&Æ××wûöí'N,--mÍe4OÝÁ1777%%% 333%%e÷îÝ ÇŽKNNnì”+VüøããÇß½{÷Ê•+?ú装 æçç/^¼¸5—ÐÞd2¥¥¥ùùùÍ™3G¯×K…&LˆŽŽþì³Ï~ÿý÷–]À¨;8fgg»¸¸ÄÄĘKôzý AƒÊÊÊ>l}|qqqUUUddd‡ê—÷íÛ÷ÿûßþýû[vYg âàh2™òóó}}}-Öµ„‡‡ !ŠŠŠh­‹‹ÂúQÅšš!Äùóç[vYg âUÕUUUF£ÑÛÛÛ¢ÜËËKQ^^n}JPP§§çñãÇÏŸ?ož†¾zõêž={„.\hÙe­ 6Ì¢$33S醖(..Vº °ÐÐÓ§ J×¶Á_LÍp„® Bœ>}ºYg…„„(]qe¨88J‡îîîåBˆŠŠ ëSt:ÝÔ©S—/_>}úô… †‡‡Ÿ9sfÙ²eùùùBˆ+W®´ì²Ö233öWJ{èJ ÐéÄéÓºRKèMÍP°+u:Âd2)}ÔDÅÁÑÛÛ[§ÓUUUY”_ºtIü1@hmÊ”)gΜپ}ûرc¥’   )S¦¬[·ÎÓӳŗàÈL&a`´ÀˆŒ-¦âàèêêêååe=XYY)„0ÏD[ÐëõK–,‰‹‹ËÎÎ.--íÑ£Ç!C¶oß.„¸þúë[|Y  :ŽÈØb*ŽBˆ€€€üüüÊÊÊN:™ ƒôV'öêÕ«W¯^æ—ÒTõm·ÝÖÊËGjl ¯ªBÄÆÆÆ}ûö™KL&SVV–OÏž=<åå—_NLL¬ÿ=1W®\Ù½{·ŸŸ_ddd‹/ ÀÑètJ×€ÃÐñ/‚¨;8ÆÅʏ¸¬^½ZzQ‘’’RZZ:f̘víÚI%—/_6 æu[ÞÞÞû÷ï_¾|¹ôÒh4Λ7ïÒ¥K'Ntuu•YŽL§Œ)07mCꞪ JJJZºté¨Q£XPPpðàÁ¨¨¨©S§šÉÊÊš9sfXXØÎ;…“'Oþä“OÒÓÓOž<Ùµk×£G–””ôëׯþ)r. À‘ñÀŒÔhCêŽBˆÄÄÄÎ;ïØ±c×®]ñññ3f̶Îi‡‡ÇÖ­[ßx㯾úÊ`0„„„Œ?>11Ñü „-»,p,šn; ÞÚ^DDû8j†ô_J׉´Ý3]©%ô¦fؼ+‰ŒmMõ#Ž á¹FÀ(õ@!‘Ñ>Ž´€Ô8-"£=¨©pfDF{R÷v<@jœû2*…à@ÅH€b_F1U @1 X6ñé@j×àÈŸE¡ÍC©QAGбþÇ_~$5ŽÀ:õÑp £Œ‚à@}H€ó`Ñ´C!8P>Ag@dt@GàXˆŒ‹à3:2¶ã lÜ8R£##8p l¾¨] bŸN§cCoµ`ª€:­bˆQEqöÆ£J1âì‡ÓªFpà¸x®ÐVL«Á€ƒ"5ZÂ@£68"R# DF-!8p8¤F@KˆŒZªjŽ…Ôh‹¦µŠàÀ `Œ†8 R#  ¤F #8p¤F@½øÎ@çÁâÔ¨+¦ Á@bp@6y‘È蜎 ˆŒÎŒà@1ŒGjDdtf,Ž  R#¨Á€2H€Z°hfLU€¦07 3‚#›ipHÂºÏ Àž,´(´Ž†|û Dp`3ÖŸ2Ö22ߨYsC!‹¦Ñ‚#ûaA àȈŒ¸&‚#;!5‹È™ŽìÔ8,g„|lÇ Í‘GFj„|Gm‹Ô8“ÉľŒh‚#€¶Ej sÓh1‚#€¶ÂX#à˜Hh1‚#€¶Âgà øÎ@Ø «ªÐ,öÙmÐ "#ÚÁ€-ñ\# 8"#ÚÁ€ÍG@dDÛaq ›áÓ P k_`GÍÃÇ`Í ‚ìË»!8 n¤FØ Á@«0 (‚¹i(‚Å1ZŽÕ0€ý±h "8h!R#`gDF(Žà %H€=á ŽšÒàcTRaý·ø8Z£ÁyŠˆà )Ö‰Pú,#)6d=”È;pL¬ªÐl|œmбF8,‚#€fàã °Æá°´0U–––šššŸŸß±cÇÁƒ'%%ùøø4xduuõí·ßÞØuÂÂÂvîÜ)ýüðÃÿðÃøùùíß¿_éæJ2™ÈŽ@›`nª úà¸bÅŠ·ÞzËÝݽOŸ>éééyyy6lpss³>X§ÓõèÑú¼¦¦æÔ©S^^^æ’ÂÂB77·àààú‡y{{+Ý\€Ö°b*¢îà˜›››’’°mÛ6!Ä¢E‹6lØœœ¼`Áë㯻îº;vX—/_¾üÌ™3sæÌ‘^VVVVTT >|åÊ•J7 YDF¨ŽºŸqLMM­««›1c†”…³gÏöòòÊÈȨ««“y‘“'O®[·îñÇ¿õÖ[¥’ÂÂB!„Åp#à´,æ¦ùŒlBš›n,5’&á˜Ô³³³]\\bbbÌ%z½~РAeee‡–s£Ñ8wîÜ›o¾ù‰'ž0!ºuë¦tûå±Ñ7`s:Ž'¡R*Ž&“)??ß×××××·~yxx¸¢¨¨HÎE6oÞ|âĉ9sæ´k×Î\(Ç’’’„„„>}ú ={ö´xë½÷Þ;räˆ95 !¢££'NœX]]ýÙgŸ)Ýn Íñ\#`ægIÐ GWWW///ë‘ÅÊÊJ!„yucvîÜyùòå|Pæ×·o_!ÄÏ?ÿ¬t»Û«¿nšÔÈרw¡U*ŽBˆ€€€²²2))š é­¦ÏMKKsss³~Ñd2FëÝ|ôz½ÂÓÓSéFmˆÔ´‘Ú¦îàk4÷íÛg.1™LYYY>>>ÖÐõåææž8qbÈ!ÖHDFFNš4É¢<''G¡t£¶BjZƒÈg îàçââ²zõjé¹F!DJJJiié˜1cÌÛë\¾|Ù`0X¬ÛÊÊÊÌ>[îÝ»÷¡C‡ÒÒÒÌ…999ëׯ :t¨ÒÚ©h1"#œ‡ŠWU !‚‚‚’’’–.]:jÔ¨>~Æ Ö›;ÖwåʕÇwêÔé–[nið€îÝ»øá‡£G.--ݽ{wEEÅèÑ£wîÜÙ¯_?¥› Ø^#÷¸öÙâ¿“l/""‚}5Ã`0h¬+eÆDíý཮tfŠô¦NÞ_>U›…¿˜ª£î©jÍUÿCÍü\#8×$%B‹QFæ©álŽ\Ó€ 8N‹QF@&"#`Fpœ©ƒÈX 8N‡Ô\‘hÁp.¤F iDF  GÀ‰4–ùˆD‹"#ùΆà8 ÆÆ0ÊÈDpœ©h {1òí#5 b h.‚# Aõ“"©N®ÁE"#Ð2G@ËH€"#ÐG@³H@}DF õŽ€6‘3"#`+G@›øˆ‘°5¥+ÀÆt:¥k8NÇ>;€Í1â¨^ƒIѺP8ÝÿýÕ—^Z’&#8ªg½ó8Â9581͸#`CG@#‹prDÀì÷Œã²eËòóó•n/ M¤F83gìÆ~Á1%%å¾ûî3fÌÆËËË•n8 ¤F8-sd$5öa¿àøøãwéÒåøñ㯾úêÀ§OŸ¾{÷îšš¥ï n¤F8'"# û=ã8kÖ¬™3g>|ø¿ÿýoFFÆ_|ñÅ_têÔé¾ûî=zôí·ß®ô­¨[3 ²ë>Ž:®wïÞ/½ôÒþýûÿõ¯1¢¦¦fË–-ãÆ»÷Þ{×®]{öìY¥o & 7ò‘ M22ž>}ZþYDLÀ†”ÙÜÕÕuÈ!+V¬8pàÀ¼yóÜÜÜ V­Z;qâÄ;vF¥ï à蘤†ó`bpŠmÇsñâÅÏ?ÿ<33óÀµµµBˆÎ;·k×îСC‡zçwÖ­[¨ôý©N‚‰iÀ¡Ø;8–––~úé§»wï>tè4¬èççwï½÷Ž1¢wïÞBˆo¾ùfÅŠÇ_¸pá;ï¼£ôýEý¤Hj„Æ4¸™‘p@ö Ž›6mÚ½{÷wß}WWW'„ðõõ:tèðáÃï¸ã½^o>lÀ€½{÷îÛ·ovv¶Ò7pD¤Fh‘pXö ŽÿøÇ?„ÞÞÞ÷Þ{ïðáÃÿò—¿ÔÏ‹õ¹¹¹]wÝuÌSÖHÐ6"#ààìÇŒ3bĈþýû7–ëc¸°Fj„¶ñí/€ã³ßªêŒŒŒ4–Ÿ~úé¡C‡*}7‡ÆG*4ŒÔ¨‚ýF«ªª®^½ÚØ[………lâ4F§Sº@ÛÐýñËMjT¡mƒcVVÖôéÓÍ/7lذiÓ&ëÃêêêL&ÓM7ݤôÝEƒIÑ¢ÏY¨”®¡ßoëB¢$à€Ú68êõúN:I?_¼x±}ûö;vlðHooïÙ³g+}7Ga½ó8BcêçB橵hÛà8`À€ƒJ?GDDüõ¯;w®ÒMTƒ°aÑ4 vö{ÆqòäÉwÜq‡ÒíTƒÔ-!2Ú`¿àøÂ /(ÝX@5HÐ "# %m7oÞ,„èÛ·oXX˜ùeÓ&L˜ ô ”Gj„6íiÃàøÊ+¯!^~ùe)8J/›FpHÐ"# UmŸ~úi!Äm·Ý&½|þùç•n,àèšH|C-Z°Dšˆ ¨EǧžzªþË©S§*ÝXÀ¡1Öµc Ð<û-ŽÐR#TÈ8‰6 Ž_~ùesO‰‰‰QîVöÆæÞP—ç ‰Œ€SiÃàøøã7÷”ÜÜ\%o@6"#à„Ú08Ž5JéÖ*Àp#T‡È8­6 ޝ¿þºÒ­©êBdœ‹c%ñù µ 2|s  Néò˜#£ŽßZÀéñÍ1€4ø™kQÈh‡EL”^Z2 8¾9°ó',»ðÀñ581Ý‚¯„ 1|s `W„E8>"€Æ¸(õ_¾|¹¦¦FéævEj„ƒÓét¤FM°÷ªêcÇŽ­Y³æÄ‰.\pqqéÒ¥K¯^½ž|òÉnݺ)}+€¶Ej„#cÑ49ì:â¸jÕª¸¸¸/¿üòÂ… :t¸îºëŠŠŠ>úè£#FlÙ²Eé[´!R#–y”‘Ôàšì¿úê«ýë_z½>!!á³Ï>;zôhNNΗ_~9yòd!Ä«¯¾zäÈ¥ïÐ&K|LCYÍŒ$Kö Ž[¶l1™LÏ=÷ܼyóºví*M‹¾ð /¾øbmmí»ï¾«ôÝl±F8 F´Œý‚ã‰':tè0iÒ$ë·âããÝÜÜŽ;¦ôÝlŒÔGCdÐv}Æñ†npum`9Ž´J¦ªªJé»´ŠÅnÞ¤FØ__îBdÐzö Ž={ö,**ª¬¬´~ëòå˃!**J黨 ©ŽƒÈÀVìãââL&Óœ9sjkkë—ƹsçÆØØX¥ï`¤F8"#ÛjÃ}8Pÿ¥^¯衇ÒÓÓï¹çž¸¸¸ÐÐPNg0¶mÛVTT1lØ0¥ï`¤F8¶ò`sm}ôÑËÏ;·jÕ*‹ÂÜÜÜèèèÜÜ\¥oÐ*¤F8vóÐFÚ08Ž5JéÖöÆ'5Ç@#€¶Ó†Áñõ×_Wºu@jpõªu!Ÿàh;­¡®_Nˆ`Cöþ®êƼøâ‹ÙÙÙ_|ñE ÎMKKKMMÍÏÏïØ±ãàÁƒ“’’|||š8þá‡þá‡, ýüüöïßßšËÂÙX|KŸÔ|FÞ¤PXbšáFmÊ®ÁñâÅ‹ŸþyAAEyuuõ§Ÿ~ª×ë[pÍ+V¼õÖ[îîî}úô)((HOOÏËËÛ°aƒ››[c§º¹¹×/ôöönåeá̤GßAh<ËÀÎìýõ×ñãÇŸ={¶±&L˜ÐÜkæææ¦¤¤lÛ¶Íßß_±hÑ¢ 6$''/X° ÁS*+++**†¾råJ^ÎŒ1°?"#EØoÇwß}÷ìÙ³}úôyå•Wþò—¿!.\¸dÉ’I“&éõú„„„… 6÷š©©©uuu3fÌâböìÙ^^^uuu žRXX(„°nlýeá´H°3¶f  ûÇ}ûöuèÐaíÚµãÆ[¶l™"$$䡇š;wîÂ… ?øàƒ¼¼¼æ^3;;ÛÅÅ%&&Æ\¢×ë TVVvøðáO‘&Ê»uëfÛËÂ9‘aODFг_p,)) îÔ©“¢sçÎ>>>Ç—ÞŠ‹‹óññy÷Ýw›uA“É”ŸŸïëëëëë[¿<<<\QTTÔàYRp,))IHHèÓ§ÏàÁƒ§OŸ~ôèÑV^NÈ:5òiŽ6"?2’)´)».Žqqù9õ¦›n2 ÒÏz½>""âØ±cͺZUU•Ñh´XÔ"„ðòòB”——7x–”üV­ZÒ¿ÿ³gÏîÝ»7++륗^;vl‹/kÁú[p233íw£a;ÅÅÅ –‡††œ>mþ† 4Ö•.44Tqúôi!¿pf*íMXSoW†„„(]eØ/8Þpà gΜ¹|ù²»»»¢k×®ß}÷ù]N×Üßžêêj!„tµú<<<„ žURRâææ6kÖ¬„„©ä›o¾™6mÚâÅ‹ Ô²ËZÈÌÌtÚ_) ±Áùc¬‘.VÕý­do&¨®7ѺR]ì7U}÷ÝwWWW?ÿüó§NBÜqÇ………_ýµ¢´´ôûï¿ïÒ¥K³.èíí­Ó骪ª,Ê/]º$þ ´öÞ{ï9rÄœ…ÑÑÑ'N¬®®þì³ÏZ|Y8žkD+édìÛdž›Vº²ðØ/8&$$ñÅÒ7Ê 4ÈÕÕõ©§žJLL5jTUUÕˆ#šuAWWW///ë!ÀÊÊJ!„yA´}ûöBüüó϶½,´‡Ôˆ¶Æ ŽÌ~ÁÑÏÏoóæÍ³fͺí¶Û„]ºt™?~MMÍþýûËÊÊbcc›{Í€€€²²2)Ò™IXo2™ŒF£õ–:ÒÞãžžž-»,œ©mŠÈÀñÙ/8 !üüüüñ'Ÿ|Rz9~üøC‡½÷Þ{k×®mÁ—²ÄÆÆÆ}ûö™KL&SVV–OÏž=­/((ˆŒŒœ4i’EyNNŽ"""¢e—…3 5¢í¨…]ƒc}—/_®©©ñððèß¿¿´l°âââ\\\V¯^-=€(„HII)--3fL»víÌÁ`VÞ÷îÝûСCiiiæ‹äää¬_¿>((hèСò/ §BjD!2P{?|}ìØ±5kÖœ8qâÂ… ...]ºtéիדO>ÙôŽÜMX¿~ýÒ¥K»té2pàÀ‚‚‚ƒFFF®_¿Þ¼ŸÎ®]»fΜ¶sçN!ÄÉ“''Ož\ZZzöìÙ#GŽtìØqÍš5ýúõ“Ù&DDD°ªZ3¤e |¦k€Á`p¿•RRä;[Ãqz­DWªŽ]÷q\µjÕÚµk¥Ÿ;tè ×ë‹ŠŠŠŠŠ>ùä“ùóç?¾×LLLìܹóŽ;víÚ?cÆ iëœuïÞýÃ?\¶lÙòòòºví:zôègžy&00°5—…64¶ÚÕ¢œÏzÈ×àjs¡ù$U°ßˆãW_}õØc¹¸¸L˜0!!!áÆoÔét%%%7n|ÿý÷…›7o¾ýöÛ•¾!6Àˆ£f0ܨ%Ž0°AL´GèMØ]©:ö{ÆqË–-&“é¹çž›7o^×®]¥@_xá…_|±¶¶¶¹_9´)žk„ ñ,#m°_pÚ`ù¹sçV­ZeQ˜››››«ô ób’-Fdà$Ú08Ž5JéÖ h0 ’aAæ¢"#§Ò†Áñõ×_Wºu€,¤F´‘€²ëWJ~ùå—Ÿ~ú©  àêÕ«¡¡¡=zô Rú>Ày‘Ñ\DFNË®ÁñâÅ‹o¾ùæÖ­[F£¹P¯×7nÆŒ^^^Jß 8R#š…ÈÀÉÙ/8ÆéÓ§çäätèÐáî»ïîÖ­›^¯?sæÌÞ½{?øàƒŸ~úióæÍz½^é'Bj„|DFö Žï½÷^NNÎí·ßþæ›oúûû›Ë/\¸ðôÓOçää¼÷Þ{“'OVú†ÀY!ßþûm¾oß>N·råÊú©QѹsçU«V¹¸¸|õÕWJß hNgù?©°þ[€ÎJýBñLj#89û8žø Ò·še‘I4‰’`Í®ÁQ§Ó=ôÐC=ôÐùóçÏœ9c2™‚ƒƒ”¾ Ð2ÆaQFhûÇââ⺺º›nºIáïïo±›#ÐH°@d€Ö°ë3Žÿûßÿöïßïçç§t«¡)¥CR£æ5÷ ]øh%û­ª BüüóÏJ7NÔˆút:]hh(©ZÉ~ÁqÁ‚nnnÿú׿®\¹¢t«¡q¤F˜™÷Ù9}ú´ÒuÕ³ßTµ¿¿ÿ²eË.\8jÔ¨Q£FÝtÓM:u²8&&&FéÕ#5BÂãŒ`sö ŽwÝu—ôCiié›o¾Ùà1¹¹¹JߪGd€6b¿à(}s ЦntrDFhSö ޝ¿þºÒ…èt×(”~&9h®¡¾·($2@›²ëà@ëYi”‘±Fͳ…ÒªFÀnÚ<8feeeddœ:uª®®.<<üèׯŸÒ­†Ö[3€=µmpœ;wnzzºùåñãÇ·oßþ·¿ýmöìÙJ7šBrp6æjR#ØSÇO?ýTJ1114Ÿ~úivvö»ï¾=hÐ ¥Û-hð‘GhXý‰iÝöÕ†€oÙ²Eñ裾ýöÛñññ“&MÚ¸qã}÷Ý'„ؾ}»Ò ‡0Cíl¤‰iF@)m ƒbúôéæN7mÚ4!D^^žÒ ‡ê‘Šù `ê’ ÀÎÚpªº¤¤ÄÇÇÇÛÛ»~app°âÒ¥KJ7êV?5´EÓà8Ú08šL¦:X¶oß^é&CõktDFp4ìã•!5:"#8&‚#QcéÔ¨:ÍÝg‘ÈŽŒàÕ 5j‘_ÛÇ_ýµgÏžòËsrr”¾!pP¤F #2€Z´mp4™LUUUòË‘µŠÈêÒ†ÁqçÎJ·Z@jÔ$"#¨Qǰ°0¥[Õ#5jRsWÌ‹c ¼¿pØ\(ý@ÌP…¿<ÚºÔ*Ep„ò¬SaQ¥¬¡yp‘¹iЂ#C3ˆŒ Gm…Èã¢tK >òuÑét¬€íaÄŽEZFMvT/F@ÃŽp æÍwHjDdÍ#8ÂQ°e£z5É‘ %G8R£J1ÊN…àå‘ÕˆÈNˆà…‘ÕˆÓàœØŽvÒØ÷ ?Nö:vöÙgƈ#CjTæ¦G(ƒÔ¨"DF€„àՂȨà{#5ª‘`à»"5:>"# 1G´‰ÆÖP׋d¢”×PË_X pZG´ ëPÈX£ã°Md” ÁöÀ`–Ã24’פ…à˜–––šššŸŸß±cÇÁƒ'%%ùøø4q|uuõþóŸmÛ¶{zz†‡‡'&&Þyçõyøá‡øá‹ýüüöï߯tsÕGk$;: óVÞÌSäP}p\±bÅ[o½åîîÞ§OŸ‚‚‚ôôô¼¼¼ 6¸¹¹5x|mmí£>zäÈ//¯þýû_¹råÛo¿ýú믟yæ™'Ÿ|Ò|Xaa¡››[pppýs½½½•n®ú0C혘›´€ºƒcnnnJJJ@@À¶mÛüýý…‹-Ú°aCrrò‚ <%55õÈ‘#½{÷þ÷¿ÿ-…˼¼¼øøø5kÖ 2¤GBˆÊÊÊŠŠŠáǯ\¹Ré&ª©Ñ-¦îïªNMM­««›1c†”…³gÏöòòÊÈȨ««kð”ÌÌL!ļyóÌC’aaaÓ¦M3æièÂÂB!„Åp#š‹ÔèhÌ_3Mj´Œºƒcvv¶‹‹KLLŒ¹D¯×4¨¬¬ìðáà žb0ÜÝÝ£¢¢ê†…… !ŠŠŠ¤—Bˆnݺ)Ý>M!«(èš‘‘( CÅSÕ&“)??ß×××××·~yxx¸¢¨¨èŽ;î°>ëí·ßvuµlõ‰'„]»v•^JÁ±¤¤$!!á§Ÿ~êØ±cddä´iÓþüç?+ÝhÕ`¸ÑA01 °!Ǫª*£Ñh½`ÅËËKQ^^ÞàY‘‘‘%LIIéСÃèÑ£¥ièqÕªU!!!ýû÷?{öìÞ½{³²²^z饱cÇʩ۰aÃ,J¤)r'rú´Á`Pº¶P\\¬tZ(44Tqúôi!„F:£uÔÛ•°Foj†z»2$$Dé*(CÅÁ±ººZáîînQîáá!„¨¨¨¸æŒFãæÍ›_{í5£Ñ¸lÙ2???©¼¤¤ÄÍÍmÖ¬Y RÉ7ß|3mÚ´Å‹0 ((èšWÎÌÌtÚ_©?ƵÓ|•v%£ŒÖTÚ•h½©t¥º¨øGoooNWUUeQ~éÒ%ñǸc¾ýöÛ‘#G.Z´ÈÏÏïßÿþ÷ˆ#Ìo½÷Þ{GŽ1§F!Dttôĉ«««?ûì3¥ÛíИ¡VÛ1Ú”Šƒ£«««———õÈbee¥¼ÎÚZMMÍ¢E‹&Mštîܹ§Ÿ~:###::úš\ß¾}…?ÿü³Òív\¤F™—¿(]€–©xªZŸŸ_YYÙ©S's¡ô8W@@@ƒ§ÔÕÕ=÷Üs{öì¹ûî»ÿþ÷¿[çK“ÉTWW§Óé\\þOªÖëõBOOO¥í(,b"©±­5– Yþ°8 !bccFã¾}ûÌ%&“)++ËÇǧgÏž ž²qãÆ={ö<òÈ#kÖ¬ipT²   22rÒ¤Iå999Bˆˆˆ¥íˆHJa_F€=©;8ÆÅʏ¸¬^½Zz®Q‘’’RZZ:f̘víÚI%—/_6 Òº-“É´iÓ&OOÏ_|±±k÷îÝûСCiiiæÂœœœõë× :TéF;R£"˜›ØŸº§ªƒ‚‚’’’–.]:jÔ¨}<<<ÒÓÓ{ì±êêj9çnܸ±-.ÛJÚHB“ÉÄ(#Z¢îà˜›››’’™™™’’²{÷î„„„cÇŽ%''7qVeeåwß}÷÷¿ÿýƒ>°áemB3©hºƒcjjj]]ÝŒ3üýý¥’Ù³g{yyeddÔÕÕ5vÖÈ‘#'L˜°uëVÛ^¶õÔž™›@ÛÔ³³³]\\bbbÌ%z½~РAeee‡nì¬E‹­]»víÚµÑÑÑ6¼l+©:5J‘‘¹i´MÅÁÑd2åççûúúúúúÖ/B5vâ€bccccc»tébÃ˶†zS#‘ç¡â}«ªªŒF£···E¹———¢¼¼\ÁË6Ì¢$33³±ƒCCCNŸ6 v¼w¶*„8}ú´B}µ—­¸¸Xé*À6èJ-¡75C½]¢t”¡âà(­qvww·(÷ððBTTT(xÙÌÌLù¿R&“B}¿Î3Äè´ÿ:h]©%ô¦fЕê¢â©joooNWUUeQ~éÒ%ñÇ¡ã\@íT]]]½¼¼¬‡+++…æÑrYµSqpB”••I‘ÎLzÞ. ÀÑ.  jêޱ±±F£qß¾}æ“É”••åããÓ³gOG»,€ª©;8ÆÅʏ¸¬^½ZzQ‘’’RZZ:f̘víÚI%—/_6 ÍZ·%ç²ÎFÅ«ª…AAAIIIK—.5jÔÀ <5uêTó1YYY3gÎ Û¹s§ / àlÔ…‰‰‰;wÞ±cÇ®]»ãããg̘!m〗P/óìÆg7ÍÚÇŽÌ`0ЕÚ@Wj ½©t¥ê¨ûGØ Á²UF§Sºvj¦s´U!8@‚#d!8@‚#d!8@ÕsŒ¶5¸¶ØºP훸7¸†ÚºÍêPÁÑ¡Y'%Nõ1±¡fZ6I§ã;p8LU@‚#d!8@‚#d!8@‚£Ê8ÉRc–Tà€Ž…àYŽ…àYŽ…àYŽ…àYŽ…àYŽÅUé Ø@ZZZjjj~~~ÇŽœ””äããÓÊS~øá~øÁâ,??¿ýû÷+Ý\e¨>8®X±â­·ÞrwwïÓ§OAAAzzz^^Þ† ÜÜÜZsJaa¡››[pppý½½½•n.€bÔsssSRR¶mÛæïï/„X´hц ’““,XÐâS*+++**†¾råJ¥›à(ÔýŒcjjj]]ÝŒ3¤(„˜={¶——WFFF]]]‹O),,BX 789uÇììl—˜˜s‰^¯4hPYYÙáÇ[|JAA¢[·nJ·À¨88šL¦üü|_____ßúåáááBˆ¢¢¢Ÿ"Ç’’’„„„>}ú SºÝÊPqptuuõòò²Y¬¬¬B˜M·ò³¾}û !~þùg¥Û   G!D@@@YY™ûÌ ƒôVËN1™LF£Ñz7½^/„ðôôTºÑÊPwpŒ5ûöí3—˜L¦¬¬,Ÿž={¶ì”‚‚‚ÈÈÈI“&Yœ˜““#„ˆˆˆPºÑÊPwpŒ‹‹sqqY½zµô¢"%%¥´´t̘1íÚµ“J._¾l0Ìë¶®yJpppïÞ½:”––fþƒrrrÖ¯_4tèP¥   ¯ªB%%%-]ºtÔ¨Q,((8xð`TTÔÔ©SÍÇdeeÍœ93,,lçÎ2OY¸páäÉ“çÏŸ¿eË–ÐÐгgÏ9r¤cÇŽK–,iâ+°´MÝ#ŽBˆÄÄÄäää]»v•——ÇÇÇoذÁz§ÆfÒ½{÷?üpôèÑ¥¥¥»wﮨ¨=zôÎ;ûõë§ts£3™LJ×Ak"""ØÇQ3 ]© t¥–ЛšAWªŽêG`GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GåétJ× …ÕVg½@K Á² Á² ‹«Òp: ®E¶.4™”®¨e ur MŽVo`;G{³NV:ÃÅĆªmYENGLÀ©0U YŽ…àY´ðŒcZZZjjj~~~ÇŽœ””äããÓÊSª««ÿóŸÿlÛ¶­¸¸ØÓÓ3<<<11ñÎ;ïTº­ŠQ}p\±bÅ[o½åîîÞ§OŸ‚‚‚ôôô¼¼¼ 6¸¹¹µø”ÚÚÚG}ôÈ‘#^^^ýû÷¿råÊ·ß~ûõ×_?óÌ3O>ù¤Ò-P†º§ªsssSRR233SRRvïÞpìØ±äääÖœ’ššzäȑ޽{geeýë_ÿz÷Ýw?üðCooï5kÖüôÓO6o…J—&³¤g£îà˜ššZWW7cÆ ©döìÙ^^^uuu->%33S1oÞ<ódXXØ´iÓŒFãþýû•n4€2Ô³³³]\\bbbÌ%z½~РAeee‡nñ)ƒÁÝÝ=**ªþ‰aaaBˆ¢¢"¥   G“É”ŸŸïëëëëë[¿<<<\4’ðdžòöÛooݺÕâÜ'N!ºvíªt»”¡âÅ1UUUF£ÑÛÛÛ¢ÜËËKQ^^ÞâS"##-8xð`JJJ‡F-§nÆ ³(‘¦¿¡:ÅÅÅJW¶AWj ½©êíÊ¥«  Çêêj!„»»»E¹‡‡‡¢¢¢Â&§ÆÍ›7¿öÚkF£qÙ²e~~~rê–™™é´¿RÚCWj]©%ô¦fЕê¢âàèíí­Ó骪ª,Ê/]º$þDlå)ß~ûíË/¿|êÔ©ÀÀÀÅ‹GGG+ÝhŨ88ºººzyyYVVV !Ì‹¦[vJMMÍ믿¾qãÆë®»îé§Ÿž¯t» îà(„HLLìܹóŽ;víÚ?cÆ i{–"MVWW?~Üú\V§¥3™LJ×Ak"""ØÇQ3 ]© t¥–ЛšAWªŽºŸq€Ý Á² Á² Á²ÛİaÔ®lƒ®Ô ºRKèMÍ +U‡àYŽ…àYŽ…àYt&“Ié:hMDD„ÒUm(77Wé*(ƒàY˜ª€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,G[JKK‹‹‹ëÙ³çwÞ9wîÜ‹/*]#4ÃéÓ§#""Ž=Úà»t®ã«®®~ï½÷î¿ÿþÛo¿}àÀ“'OÞ¿¿õat¥*üöÛo/½ô’Ô›÷ÜsÏÌ™3OŸ>m}½©.çÎëÝ»wRR’õ[t¥ZmfÅŠóçÏ?uêTŸ>}<<<ÒÓÓ{ì±êêj¥ë¹6nÜØØ[t®ã«­­}ôÑG—,YrþüùþýûßrË-ß~ûmbbâš5kêFWªBeeåý÷ß¿eË!Ä]wÝuýõ×ïÚµkäȑǯ½©.&“éÅ_¼té’õ[t¥š˜` 'OžìÞ½ûÀýõW©äÕW_ å•W”®®¡¢¢";;{áÂ…ááááááGޱ8€ÎU…Í›7‡‡‡?¾ªªJ*ùùçŸûöíÛ£GüQ*¡+ÕBê—åË—›KÒÓÓÃÃÃÇg.¡7UgýúõÒ?³Ï?ÿ|ýrºR]q´ÔÔÔººº3føûûK%³gÏöòòÊÈȨ««SºvhÊÈ‘#'L˜°uëÖÆ sU!33S1oÞ<777©$,,lÚ´iF£ÑùÄÃÃÞT‹¥K—oٲżjÍ]©:,ޱWWW///ëÿ0ª¬¬B˜—‰Aè\©©©Y´hѤI“Î;÷ôÓOgddÔ_ðDWª”N§ëܹsbbâ¸qã~ùå—Ý»w zS%:´eË–ÇüÏþscÇЕªCp´€€€²²2éÝÌ`0Ho)];´ « uuuÏ=÷܆ bcc÷ìÙóÔSOYpЕª——7gΜŒŒ ‹riÉü¯¿þ*½¤7_^^žbíÚµx衇„üqDDÄý÷ß/FWª ÁÑ6bccFã¾}ûÌ%&“)++ËÇǧgÏžJ×­BçªÂÆ÷ìÙóÈ#¬Y³¦±Q ºR:uê´}ûöôôt‹òÂÂB!DHHˆô’Þt|ݺu»ïÿ’v± ºï¾û $FWª ÁÑ6âââ\\\V¯^mþ2¥”””ÒÒÒ1cÆ´k×NéÚ¡Uè\Çg2™6mÚäééùâ‹/6q]© _ýõ_|a.>^Еêñꫯ>òÈ#Ó§OïÙ³ç7Þxþüùï¾ûNñÚk¯Ik佩!t¥ºè_zé%¥ë ={ö þõ×_¿þúkWW×áÇ/]ºÔz³S8¬/¾øâÇŒ‹‹»á†,Þ¢s\nnnzzzmmíù†tïÞݼJ†®T…€€€û¼¼¼  àرc:®_¿~Ë—/ïß¿ýÃèMÕ¹páÂþ󟈈ˆ{ï½·~9]©":i, i<ãYŽ…àYŽ…àYŽ…àYŽ…àYŽ…àY\•®(,//ïþûï·(lß¾½¿¿ÿþý'L˜Ð£G¥ëAg2™”®(I Ž:. @*1™L¥¥¥F£Q¡×ëgÍš5eÊ”æ^ö믿6ƒVº}`3Œ8€B¸¹¹eee™_ÖÔÔüüóÏëÖ­ËÈÈxýõ×o¸áëQɦ=ÿüó•••?þø£Ò-›áGh@ûöío½õÖ•+W>ñÄBˆ7ÞxC€gFp€¦<ñÄþþþü±Òu… )íÚµ{ä‘G„_~ù¥¹°´´tùòå#FŒèÕ«W¯^½î»ï¾þóŸ¿þú«ôîk¯½qñâE£ÑѳgO9g€ããG¸iUuqq±ô²´´t„ gΜqss ®««;sæÌ»ï¾»gÏžôôtŸ;¶¶vëÖ­555 íÚµ“s–Ò­€k#8À5 !ŠŠŠ¤—ééégΜ2dHrr²»»»¢²²ò‰'žÈÎÎþüóÏ~øá!C† 2äã?®­­;w®Ì³”n%\SÕp ×_½¢¢¢¢¦¦FQ[[{×]w=ÿüóRþBtêÔiäÈ‘Bˆ‚‚‚Æ.Ò²³À¡0â×P^^.„ðòòjß¾½âÉ'Ÿ´8àÂ… Ÿ|òIÓiÙYàPŽp %%%Bˆ®]»šKΞ=ûÕW_}÷ÝwEEE………/^”s–Žƒà×pòäIQ/8nÙ²åÕW_­­­½é¦›î¸ãŽ»ï¾ûÖ[o5 ¯¼òJiÙYàPŽÐ”«W¯nÞ¼Y#„¸téÒ?þñöíÛ¿ýöÛ 0öË/¿4q‘–ކÅ1Д·Þzë×_íÖ­›´å‡~0½zõªŸÿÄ£’iÙYàhq€ÔÖÖæçç¯[·î¿ÿý¯âÙgŸÕëõBˆ€€!ÄÉ“'KKKýüü„F£1--mÓ¦MBˆêêêú©«««ªªêرc³Î‡Ep!„¨®®2dˆô³Éd*--•6ßÑëõ³fͺï¾û¤·BCCccc?ÿüó{î¹§wïÞ&“)77÷âÅ‹&LذaÃöíÛÿý÷¥K— !¼½½/^¼8~üø›nºéÍ7ß”y82ýK/½¤t@Iååå|ðâ÷z\\\ï½÷ÞE‹ :´þñC† iß¾ý/¿ü’››«×ëûöí»téÒÑ£G_¼x1//¯´´tÒ¤IBˆo¼ñرc………W¯^8q¢Ì³À‘éL&“Òu€ °8² Á² Á² Á² Á² Ëÿ‚«¥?}SIEND®B`‚statistics-release-1.6.3/docs/assets/normplot_301.png000066400000000000000000000566101456127120000225340ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A]OIDATxÚíÝy\UeâÇñçrqa“%„ÄL k&5%’ÊÑF³ ±q)mU‹reªI'ÜÊœ"§3[†Ü² Í4)q-ôÊ¥€A ¦\îïS÷ÇÜËr¸î9‡ûy¿|Í ž{Îñ<Ï<ù|ïsÎsŽÎd2  9.JŸ´àYŽ…àYŽ…àYŽ@ûqâÄ Ýoâãã->ýå—_ÌŸ¾þúëJŸlË,Z´H:ó{î¹GNõëóòòêß¿ÿC=T\\¬È‰µÑ_ýuiË4¶¯õ6BˆÌÌÌ?üðÃ?<þ¼ý'ÜÒf·³ÅZ÷ä´ÁhŸÞ{ッ¾úJé³P…‹/:tè7ÞèÕ«×'Ÿ|¢ôé(oâĉãÆ7nÜÑ£GÛîoi£fwÌÉhŒ«Ò' M˜L¦Y³f}ùå—:NésQ@`` ›››âêÕ«¥¥¥uuuBˆK—.=ôÐCÇ÷ððPú[——Wpp°¢[·nölÓŠœ¡Ù'ÇŒ#Ðn8p`ãÆJŸ…26lØ`0 Cqqqeeå”)S¤ò³gÏ~öÙgJŸ]ëxà¤:~ôÑGölÓŠœ¡Ù'GpÚ³gŸ}¶ºººÙÍ.]ºô·¿ýíŽ;î ¼ýöÛçÏŸ_UUU›ú·¦ÕÖÖ&%%]wÝuIIIõ?Š=}út\\\ppðu×]7qâÄcÇŽ !8pÿý÷_sÍ5·ÝvÛçŸ^ÿÈuuu›6mºí¶ÛzöìÙ¹sçž={FGG¿óÎ;W¯^m•Fðôô\³fM‡¤_Ož<Ùlä7K}ßÿý¤I“n¸á†    &ìÙ³Çbƒ–Ö´é6xÿ¢‹mæÍ›§Óé.^¼(}zûí·ëtºK—.M›6MÚ¬Gõw/))1ß³xüøñViöÆ4ÛÚ¼­ý€-¸T ´O½zõ:yòdqqqrrrý0d-;;{âĉ§OŸ6—|úé§Ÿ~úé»ï¾ûî»ï6Ìz—iÓ¦½óÎ;B‹—Ýççç4¨¬¬LúuÓ¦MŸ~úéÂ… Ÿ~úis6úüóϳ²²vïÞ=|øp©dâĉiiiæƒfeeeff¦§§·Jk¸¹¹uíÚõûï¿BTTTÈ©QK›¥¤¤dذaæíÓÓÓ?øàƒW^yåá‡6oÓ¢šÊ9`k™8qâ¿ÿýo!DqqñÑ£GÿûßKåæ{{õêuã7¶z³›ÙÐ (‚G }JJJòööB,[¶¬¤¤¤±Íjjj&L˜ Ø;w9räèÑ£ÝÝÝ…EEE÷ßÿÏ?ÿl±Ë×_-e,k‡®¨¨øÃþàçç'•œ?þÉ'Ÿ¼zõjïÞ½»wï.šL¦çŸ^ú9--MÊR:nĈ 怲yóæÖº¾ùÓO?ýøãÒÏaaaÍÖȆfÉÎÎ>}út@@À°aä›ù®^½úè£~ûí·¶Õ´ÙÚàé§ŸÎÏÏ—*"„xçw¤_£££¥Â­[·š·ß¹s§ôÄ Z½Ù[ÚڼͭÀG } X´h‘¢ººzîܹmöÒK/={VÑ¥K—={ölß¾ýã?>pà€¿¿¿â‡~X²d‰Å.ÅÅÅ‘‘‘ï¾ûîþú׿Z|úßÿþ÷ðáÃ?üðÈ#Ì…«V­úöÛo §N*•H—°…Û·o—~˜3gΧŸ~úÎ;ï;v¬ÿþRá7ß|cg;ÔÖÖž>Þh4J%7ß|s³5²¡Y„cÆŒ‘f¿ûî»ßýîwB£Ñ¸`Á›kÚômpÍ5×Üpà ..¿þËß½{÷n¸A§ÓéõúØØX©ÐM&“yƱ¥ÁQN³›ÉlíÆNÞæÖ`‚#Ðn=þøãRÚØ°aCcæùøã¥žxâ ó­r7ÝtÓœ9s,60swwÿä“OâââþøÇ?†††Öÿè–[n=z´¢C‡æ âããóÄO!\\\þò—¿H…?ýô“ôÃý÷ß/]Ž|òÉ'¥’ªª*ó}™M_ßl‚tœN§ëСCï޽͵;vl¿~ýš­‘ ÍÒ¡C‡µk×vêÔIÑ£G¥K—Jå[·n•ÂSKkÚì[—ùÿš/¿üòÂ… Bˆœœ鮃޽{÷éÓ§Õ›Ý̆Ö ‚#ÐnuìØ199Yüöh‹û%¹¹¹Ò#Gެ_~çwJ?äååIU1ëÛ·oPPPƒ£ùb´Bz,‹"((È<-d.49rd\\ÜèÑ£÷íÛ÷ôÓOÇÄÄ\wÝuß}÷][4È7Þ¸zõjërëÙÐ,}úô¹îºëÌ¿Ž5JúáÊ•+ÒtZKkÚì[WTT”´2Æh4JW¨í¼NÝl³ÛÓÚ”Ââ =»ûî»GŒñÙgŸ5øhžªªªÊÊJég‹çü™#àåË—üñÇúŸJÔàuCóµÅ]¹reÞ¼y/¿ürmm­TâææpîÜ9{*n~  ÂÕÕ5222**êÉ'Ÿìܹ³õÆ5²­Y®½öÚú[zxxx{{KÇ),,¼á†ZZÓfhOûXÓét÷ß¿ôMcëÖ­÷ß¿98š'[·ÙíimJaÆhçV®\)E·ùóç[|Ô¥Ki¢´´´þGæ_;vìØµk×úµî]e‹/^±bEmmmhhèÚµk9RUU5fÌ;k~  Á`ÈËËûðß}öÙÆâ‹Elk–~ø¡þ¯555æmÄÓÓÓÓÓSúyêÔ©wß}÷¸qãn½õÖÖzgŒÍlk–-[¶„„„Ü~ûíÒ‚½^¿xñb›kÚÄíáãã#ýð÷¿ÿ=99¹þ9˜ƒ£´Ü;22222RU­ÝÄÉp‚#àž|òÉ—S¸¹¹¥¥¥IÏ ©©©ÉÌÌüðå׸õìÙ3--­±©ÊV¡Óéîºë.éçêêê>úèÃ?ìÞ½ûm·Ý&ZÜôæ064‹‹‹KIIɧŸ~*=°ºcÇŽo¼ñ†tÖ†š6}@{˜ßÙ³ÿþÄÄÄúSw}úô©ÿ†L7¶´µ›8y@pœBÇŽÍþ, 8ðèÑ£‹-Љ‰ ô÷÷1bÄ‚ Ž;6dȶ>±•+WÞtÓMB—?üá³gÏÎÉɹûO7nÜxêÔ)EZ¬¥Í••5f̘뮻®[·n&Løì³Ïê? ½¥5mö€ö´y\\\@@€‡‡Ç7Þh±ìÝ<é(Z²žÚa­ÝôÉhkºísõêÕÌÌL!Ä=÷Ü£ô¹PS±ÿþ¨¨(!Dddä‰'”>êÂ:5 ëСƒšƒ”³ÕtÿþýÒ޹N @[Ža2™^ýõ¢¢¢+VH%GÖ¸T F£±þ³ï½÷ÞŒŒ ¥O €ê0ãBww÷ÚÚÚ=zÄÇÇÏ›7OéÓ FÌ8@dYŽ…àYŽ…àYŽ…àYŽ…àYŽ…àYŽ…àYŽ…àYŽ…àYŽ…àYŽ­/""ÂžÝ ƒÒ5Ð0ZÏf4=h={Ðz6£éìAëÙ†àYŽ…àYŽ…àYŽ…àYŽ…àYŽ…àYŽ…àYŽ…àYŽ…àY\•>Vžžž–––ŸŸïîî>|øðÄÄD__ß&¶¯­­MIIÙ½{w^^ž——×!CýüüêosåÊ•wÞygÛ¶mƒÁ××÷¦›nzì±Ç”®+€b4?ã¸råÊ… ž>}zÀ€žžž=ôPMMMcÛ×ÔÔÄÆÆ®^½úÂ… ÑÑÑ~~~[¶l™4iRYY™y£Ñ8yòääää . :´{÷î;vì¸û³³•®.€b´sssSRR·oßž’’²cÇŽ„„„£G&''7¶ËÊ•+¿ýöÛ‰'îØ±cÕªU~øaRRR~~þ’%KÌÛüç?ÿ9tèШQ£>ùä“—_~yýúõo½õ–báÂ…J×@1ÚŽiiiuuu³fÍ JæÎëíí½mÛ¶ºº:ëíM&Szzº¿¿ÿ¼yóôz½Tµk×®ŸþY*9tèbòäÉ®®¿^Êé×nݺ !êgD“ÉôÓO?¹¸¸˜£$€³Ñpp4™Lùùù~~~ëZÂÃÃ…EEE ÔÖÅEa}ä•+W„çΓ~ýóŸÿܹsçÅ‹ïß¿¿¦¦æûï¿_´hQqqqlll—.]”®7€24<V]]m4}||,ʽ½½ÅÿΚyyy?~üܹsæ«ÛW¯^ݹs§âüùóRIDDÄúõë|ðÁ|мo||üüùóež[DD„EÉöíÛeî[\\¬`«j­g3šÎ´ž=h=›Ñtö°³õBBB”®24¥‰C‹rOOO!Dee¥õ.:núôé+V¬˜9sfRRRxxøÙ³g—/_žŸŸ/„¸|ù²´YUUÕ?þñK—.õéÓ禛n*//ÿâ‹/>øàƒAƒÝqÇrÎ-77מª9mwl´žÍh:{Ðzö õlFÓÙƒÖ³†ƒ£N§«®®¶(¿xñ¢ømÞÑÚ´iÓΞ=»eË– &H%AAAÓ¦M[·n———TòÌ3Ï|óÍ7sçÎýë_ÿ*•|ÿý÷ùË_fÏžýÑG…††*]uhøGWWWoooë™Åªª*!„ùJ´½^¿téÒ7Ι3'!!aéÒ¥ï¿ÿþ5×\#„þ÷ܹs»wïþÝï~gNBˆ   GyäêÕ«ï¿ÿ¾Òõ€v%4”Y@34<ã(„ ÌÏϯªªª¿fÅ`0H5±c¿~ýúõëgþUºT}ÓM7 !ÊËË…ÁÁÁ»Hæû œ†g…111F£qïÞ½æ“É”••åëëÛ·oßwyþùç§L™Rÿ=1—/_Þ±c‡¿¿dd¤"88X¯×çåå™L¦ú;J·-þîw¿SºÒÀ^LuÛFÛÁ166ÖÅÅeÍš5Ò}Bˆ”””²²²ñãÇwèÐA*¹té’Á`0/žòññÙ·oߊ+¤_Fã‚ .^¼8iÒ$énnnÆ +((xùå—ÍOÏËË[»vmÇŽo»í6¥+   m_ª JLL\¶lÙØ±c‡ZPPpàÀ>}úLŸ>ݼMVVÖìÙ³ÃÂÂ233…S§Nýøã322Nž<Ù£G#GŽ”––4¨þ./¾øâ}÷Ý·víÚ­[·FFF–——óÍ7uuu .¼á†”®4€2´=ã(„˜2eJrrrHHÈÖ­[+**âããSSS­îhæéé¹iÓ¦‰'þôÓO{öìñóó›3gκuëÌo Bøûûoݺõá‡öððøüóÏ‹‹‹‡ž––§tu£³¸“ö‹ˆˆ°ç9Žƒ'KֳٌMgZO>®ùm—d¢ãÙC§£§ÙBÛ—ªÚb=T3~Bpí\ƒSÝ…|‘ƒàÚ9¦º[‹æÇÀ1Ž…àPÒ™3¥O€\GÈBpN‡©nÛ Á² Á² Á² Á² Á² Á² Á² Á² Á² Á² Á² Á²¸*}­ ===---??ßÝÝ}øð቉‰¾¾¾Ml_[[›’’²{÷î¼¼}ºy›¬¬¬Ù³g‡……eff !¦NúñÇgddœ|ØÝÝ}éÒ¥½ ÝÓöŒ£bÊ”)ÉÉÉ!!![·n­¨¨ˆOMMµ~¸£™§§ç¦M›&NœøÓO?íÙ³ÇÏÏoΜ9ëÖ­3¿PÑ«W¯÷ßܸqeee;v쨬¬7n\ffæ Aƒ”®.€bt&“Iésho"""ìyŽ£Á`àÉR6£õlFÓÙƒÖ³­g3šÎ´žm4?ãÇ 8@‚#d!8@‚#d!8@‚#Àv:ÒgÀŽ…à´‡ÙnE Á²¸*}-±¾>h]b2)}–ÚÁСP§#&N„KÕ…G v ®¡¶(dòÛŽ@í¬C!·I(‚KÕ…àYŽÛq­p*GÈBp€,G =Ü&¡‚#d!8@‚#d!8@‚#diïªNOOOKKËÏÏwww>|xbb¢¯¯oÛ×ÖÖ¦¤¤ìÞ½;//ÏËËkÈ!‰‰‰~~~v }ÓüŒãÊ•+.\xúôéxzzfdd<ôÐC555m_SS»zõê .DGGûùùmÙ²eÒ¤Ieeeö ÝÓvpÌÍÍMII ܾ}{JJÊŽ;Ž=šœœÜØ.+W®üöÛo'Nœ¸cÇŽU«V}øá‡IIIùùùK–,±ç°íž¶ƒcZZZ]]ݬY³¤’¹sçz{{oÛ¶­®®Îz{“É”žžîïï?oÞ<½^/ÆÅÅEEEíÚµë矶í°Î@ÛÁ1;;ÛÅÅ%::Ú\¢×ë‡ V^^~èÐ!ëí‹‹‹«««###;uêT¿|àÀ¿üò˾}ûl;,€3Ðpp4™Lùùù~~~ëZÂÃÃ…EEE ÔÖÅEa}«â•+W„çγí°Î@몫««F£E¹···¢¢¢Âz—   //¯ãÇŸ;wÎ|úêÕ«;wîBœ?Þ¶ÃZ‹ˆˆ°(Ù¾}»Ìz+רšGëÙŒ¦³­g›ÐP!Dñž=JŸˆVÑñljgÇ QºÊÐpp”&=<<,Ê===…•••Ö»ètºéÓ§¯X±bæÌ™IIIááágÏž]¾|y~~¾âòå˶ÖZnn®=UsÚîØ*h=›Ñtö õZL§&“â:ƒÖ³Mg#“‰Žg GNW]]mQ~ñâEñÛ¡µiÓ¦={vË–-&LJ‚‚‚¦M›¶nÝ:///› hßR#mÑpptuuõöö¶ž¬ªªB˜¯D[ÐëõK—.ÍÎÎ.++ëÝ»÷ˆ#¶lÙ"„¸æškl>,@NAj„øºÒ4…ùùùUUU]ºt1 é£&vìׯ_¿~ýÌ¿J—ªoºé&; h #7”Bßk%^U-„ˆ‰‰1{÷î5—˜L¦¬¬,__ß¾}û6¸ËóÏ??eÊ”ú|ùòŽ;üýý###m>, yŒÜP }¯•h;8ÆÆÆº¸¸¬Y³FºQ‘’’RVV6~üø:H%—.]2 æ¥g>>>ûöí[±b…ô«Ñh\°`ÁÅ‹'Mšäêê*ÿ°Ð>H—Ž@m_ª JLL\¶lÙØ±c‡ZPPpàÀ>}úLŸ>ݼMVVÖìÙ³ÃÂÂ233…S§Nýøã322Nž<Ù£G#GŽ”––4¨þ.r …K„P }¯ h;8 !¦L™Òµk×>ø`ë֭ݺu‹Ÿ5k–ôèœyzznÚ´éå—_Þ³gÁ` ™8qâ”)SÌo ´í°€0rC¬Áj3:ÍÚÚ"""ìyŽ£'KÙÖ³MgM·žâÑNÓ­§,š®aòú4­gmßãPîš„ˆ¶!+ J¤FÕ`ÆÐfz ,.O«ÁÐÆl(ˆ/-jEpX!5BYt?µ"8êa¦@ãXø   –aiÁð"#”ÂÝApJ#5jÁœ×ÈFpm³+øq} âK‹À‰‘¡¾´hÁœ Ó<11Ñ××·Á-kjjn¾ùæÆŽ–™™)ý|ß}÷;vÌbÿ}ûö)]]ZÆh @Ë4W®\ùÚk¯yxx 0    ###///55ÕÍÍÍzcN×»woëò+W®œ>}ÚÛÛÛ\RXXèææ\3¥« €­˜ð†Ý´sssSRR7oÞ „X¼xqjjjrrò¢E‹¬·ïܹó|`]¾bÅŠ³gÏΛ7Oúµªªª²²rÔ¨Q«V­RºŠ´Ñj@?DkÐö=Žiiiuuu³fÍ’R£bîܹÞÞÞÛ¶m«««“y“'O®[·îᇾñÆ¥’ÂÂB!„Åt#´˜NÇh Uh¨Ò1amÇììl—èèhs‰^¯6lXyyù¡C‡äÁh4Ο?ÿ†nxä‘GÌ…Bˆž={*]?ÚÒ@©4T38CY|{A«Òpp4™Lùùù~~~~~~õËÃÃÃ…EEEr²aÆ'NÌ›7¯C‡æB)8–––&$$ 0`øðá3gÎ|ø°95 !¢¢¢&MšTSS³k×.¥ë @•¸“ *Áåi´% GWWWoooë™Åªª*!„yuc233/]ºtÏ=÷Èüë(„8uê”Òõ J Õp¸VeñímLÃÁQX^^.%E3éN£ÀÀÀ¦÷MOOwssûÓŸþdQn2™ŒF£õÓ|ôz½ÂËËKéJP˜4·Xÿu!àhÌyÃ!´cbbŒFãÞ½{Í%&“)++Ë×××út}¹¹¹'Nœ1b„õ-’‘‘‘“'O¶(ÏÉÉ ­zàl¤¹E“I˜„Î$tÒHýÿ…Ì<Âñ¸< GÑvpŒuqqY³ft_£"%%¥¬¬lüøñæÇë\ºtÉ`0X,žÊÊÊ¿]}¶Ü¿ÿƒ¦§§› srrÞ|óÍ   ‘#G*]iêÀP •`¢¤áUÕBˆ   ÄÄÄeË–;vèСèÓ§ÏôéÓÍÛdeeÍž=;,,,33Ó\¸oß>!Dÿþý>>55ÕúáŽõ]¾|ùСC]ºtùÝï~×à½zõzÿý÷ÇWVV¶cÇŽÊÊÊqãÆeff4HéêPw’A%~{æŽÒçç¢3ÑçZ[DD„=Ïq4 ûì³Ïºtér×]w7îæ›oVº)´ ¬ž†ªðí‹ãf…:®ÿþÏ=÷ܾ}ûþõ¯=úÊ•+7n¼ÿþûï¼óεk×–””(Ý ´Œ©¨‡ŒËÓtUhŽCƒ£™««ëˆ#V®\¹ÿþ ¸¹¹¬^½:&&fÒ¤I|ðÑhTºeh S;P¾Ã Rìq<.\øôÓO·oß¾ÿþÚÚZ!D×®];tèpðàÁƒ¾ñÆëÖ­ëÖ­›Òí@ xT…ï0h¿ËÊÊ>ùä“;v77·Î;s@ƒ~šyT….çà¸à8~üøÑ£G<¸±¼XÓÅÕ@¨ ÎÄq«ª·mÛ¶ÿþÆRãã?>räH¥[€ê±XjC‡„3q\p¬®®¾zõjcòGÍàj TEÇš,8¶½T••5sæL󯩩©ï¾û®õfuuu&“éúë¯Wº5¨W¡6,ç‡SjÛà¨×ë»té"ý|áÂ…Ž;º»»7¸¥Ïܹs•n ªÄD#Ôág^Î/ø‚ƒv­mƒã!C8 ýñ—¿üeþüùJW€vÈžhd¨†˜L,燳sܪê©S§ÞrË-J×€v0&Cmè“pzŽ ŽÏ<óŒÒ• ^ ¼ƒêÁ]¶€¢Mƒã† „ 3ÿÚ´¸¸8¥€Ò¡¡6|~Ó†Áñ…^B<ÿüóRp”~mÁpvŒÐPú$POÇÇ\qÓM7I¿>ýôÓJW€º1BCUdL~ÓaálÚ08>öØcõ>}ºÒ• V:¼~jÂ× !Ž{s 4ŒjCŸц3ŽŸþyKw‰ŽŽV®)8Žœ)3pÃXÎ/è|@£Ú08>üðÃ-Ý%77WÉÆà( ÈÆ›c8“:P!é9PdãÍ1ÚžŒ‰F"%Àbå¾”YÎÈÇ›c´1.OC5~í‰õú$ÝhÞ 4<úry*DTì Ø›c.]ºtåÊ¥« ÍHÃ3#4ÔC§#5vrôªê£G¾úê«'Nœ8þ¼‹‹K÷îÝûõë÷è£öìÙSé¦ÐJ˜h„ ÖàÐÇÕ«WÇÆÆ~þùççÏŸïÔ©SçÎ‹ŠŠ>üðÃÑ£GoܸQé¦Ð˜h„ ‘Vâ¸à¸gÏžýë_z½>!!a×®]GŽÉÉÉùüóϧN*„xñÅ>¬tk°Ã3Ô¦¹ËÓtX E7nÜh2™žzê© ôèÑC§Ó !ºuëöÌ3Ï<ûì³µµµo½õ–Ò­À¤F¨ óß@ks\p}”n -Áu@¨ÝhKŽ Ž±±±&“iÞ¼yµµµõËFãüùóFcLLŒÒ­@6ft BtK µás÷ïß_ÿW½^ï½÷fddÜqDZ±±¡¡¡:Î`0lÞ¼¹¨¨(""âOú“Ò­@Ó¢[цÁñÁl°üûï¿_½zµEannnTTTnn®Ò  IÌè@…è–€£´ap;v¬ÒµÐz˜ÑjÑ-GiÃàøÒK/)];­¤¹n8Fƒy²(¤7mÇÑïªn̳Ï>›ýÙgŸÙ°ozzzZZZ~~¾»»ûðáÃ}}}›Øþ¾ûî;vì˜E¡¿¿ÿ¾}ûì9, i¡¡!·\„jüOü­[Ò=Grhp¼pá§Ÿ~ZPP`Q^SSóÉ'Ÿèõz޹råÊ×^{ÍÃÃcÀ€yyy©©©nnníRXXèææ\¿ÐÇÇÇÎÃí—§¡N¤E@!Ž Ž?þøãĉKJJÛ ..®¥ÇÌÍÍMII ܼys@@€bñâÅ©©©ÉÉÉ‹-jp—ªªªÊÊÊQ£F­Zµª ´CŒÍP'z& Ç=Çñ­·Þ*))0`À /¼ðÇ?þQ‘””´téÒÉ“'ëõú„„„¤¤¤–3--­®®nÖ¬YR¼BÌ;×ÛÛ{Û¶muuu îRXX(„°˜n´ÿ°@{ÃØ â•0€Ò÷îÝÛ©S§µk×ÞÿýË—/B„„„Ü{ï½óçÏOJJzï½÷òòòZzÌììl—èèhs‰^¯6lXyyù¡C‡ÜEºPÞ³gÏÖ=,Ð~06Cx%  Ž Ž¥¥¥ÁÁÁ]ºtBtíÚÕ××÷øñãÒG±±±¾¾¾o½õV‹h2™òóóýüüüüüê—‡‡‡ !ŠŠŠÜK Ž¥¥¥  >|øÌ™39bçav‚±êÔø—z+àH]ãâòÿ9õúë¯7 ÒÏz½>""âèÑ£-:ZuuµÑh´XÔ"„ðööBTTT4¸—”üV¯^2xðà’’’Ý»wgee=÷Üs&L°ù°""",J¶oß.³^ÅÅÅ­ÒÚΉ֓)44ĺP§B˜D½'›œ9cPúLµŽg¦[/$4Ta8sFè–èxö°³õBBBìÙ]»¯½öÚ³gÏ^ºtÉÃÃCÑ£G¯¿þÚü©N§kéÿ…555Béhõyzz !*++Ü«´´ÔÍÍmΜ9 RÉ—_~9cÆŒ%K– 2$((ȶÃZ°ó8NÛ[­'‡å$N§¦†fnhL¹èxöh´õ~›h¤qCdz­gÇ]ª¾ýöÛkjjž~úéÓ§O !n¹å–ÂÂÂ/¾øBQVVöÍ7ßtïÞ½EôññÑétÕÕÕå/^¿MZ{ûí·>lNBˆ¨¨¨I“&ÕÔÔìÚµËæÃÆPTƒóßBÐ35r\pLHHþì³Ï¤7Ê 6ÌÕÕõ±Ç›2eÊØ±c«««GÝ¢ºººz{{[OVUU !Ì ¢å8p âÔ©S­{X@íXu¢gjå¸àèïï¿aÆ9sæÜtÓMBˆîÝ»/\¸ðÊ•+ûöí+//‰‰™2eJKX^^.E:3éÖÉÀÀ@ëíM&“Ñh´~¤Žôìq///Û hë` NôL@Å…þþþ?üð£>*ý:qâă¾ýöÛÛ¶m[»v­ /e‰‰‰1{÷î5—˜L¦¬¬,__ß¾}ûZo_PP9yòd‹òœœQoEKK h Ó9P-z& n Žõ]ºtéÊ•+žžžƒ µí ±±±...kÖ¬‘n@B¤¤¤”••?¾C‡æ¿È`0H+o‚ƒƒû÷ïðàÁôôtóArrrÞ|óÍ   ‘#GÊ?, ULç@ø>hCÇ#„8zô諯¾zâĉóçÏ»¸¸tïÞ½_¿~>úhÓOänLPPPbbâ²eËÆŽ;tèЂ‚‚ôéÓgúôéæm²²²fÏž–™™)„HJJš:uêÂ… 7nÜZRRrøðaww÷¥K—š§<åФÆæ3g ,]…bˆŒ€F8tÆqõêÕ±±±Ÿþùùóç;uêÔ¹s碢¢?üpôèÑ7n´í˜S¦LINN ÙºukEEE|||jjªõSÍzõêõþûï7®¬¬lÇŽ•••ãÆËÌÌ4h=‡§Ó5÷1c3T@ê‰õÿ!tÂdQ@t&G ${öìy衇\\\âââ®»î:NWZZº~ýúwÞyG±aÆ›o¾Yéiö<ÇÑ`0ðd)›9së5 eDFgn:ûÑz6Òé„sæŒAé3 W>ÇqÿþýõÕëõ÷Þ{oFFÆwܪÓé ÃæÍ›‹ŠŠ"""þô§?)Ý€fX¿:0 &¡JÒ—:' }m|ðÁË¿ÿþûÕ«W[æææFEEÙóÀ©étBpªÄ@;Ò†ÁqìØ±J×pÒÀÌ…i(¡™XHjÚ—6 Ž/½ô’ÒµÚ;®Bµèœ@{äèwU !~øá‡ï¾û®  àêÕ«¡¡¡½{÷ Rº b.ªEçÚ)‡Ç .¼òÊ+›6m2æB½^ÿý÷Ïš5ËÛÛ[éÖ´ƒªEçÚ/ÇG£Ñ8sæÌœœœN:Ý~ûí={öÔëõgϞݽ{÷{ï½÷ÝwßmذA¯×+Ý €ê5r‘Êãò4ÐÞ9.8¾ýöÛ9997ß|ó+¯¼`.?þüã?ž““óöÛoO:Ué#kš†¹(Íúù õJLBž ´cŽ{øÞ½{u:ݪU«ê§F!D×®]W¯^íââ²gÏ¥[P1ÞuÞübþók‰ÐYh—7ãxòäÉž={vëÖÍú£ÀÀÀn¸á»ï¾Sº5µ"2BÍ蟀ÓpÜŒc§Njjjû´¦¦ÆÍÍMéÖT‰QªÅM€“q\pìÝ»÷?þ˜““cýÑñãÇ‹‹‹{õê¥tk*Ãåi¨p>Ž ŽÒ‹džxâ ‹{¿øâ‹Ç{L1fÌ¥[PiTf`† ñ•pVŽ»ÇqôèÑYYY|ðÁôéÓ»uë,„(((øþûï…cÆŒùóŸÿ¬tkêÀå?¨‘pb}ø?þñ?þñ«V­*-----• »ví:{öì{î¹Gé¦J§k¢ð×gšÒ#ÔÆ*5ÒE§âÐà¨Óéî½÷Þ{ï½÷ܹsgÏž5™LÁÁÁJ7 ëáV§&ž€5c®pzŽ ŽÅÅÅuuu×_½" ÀâiŽ€³Óé„àŽF¨·OB8øÇ_~ùeß¾}þþþJ×Pi"Ggÿ€k~‘‰F¿qܪ갰0!Ä©S§”®2 &¬N…ÊÑ?Ôã¸à¸hÑ"77·ýë_—/_VºÖ€:ðÀ¨ßjXqܥꀀ€åË—'%%;vìØ±×_}—.],¶‰ŽŽVºAGau*ԌȠ!Ž Ž·Ýv›ôCYYÙ+¯¼Òà6¹¹¹J7ÐöXg•#5h„ã‚£ôæ “5Ú2$CÍøV IŽ Ž/½ô’Ò•”Fj„Òš|ò¼0?|ž~  A}8༘È:4üäyßjÈÒæÁ1++kÛ¶m§OŸ®«« ¿ûî» ¤t­ÇbH†ÊÑEÈÓ¶Áqþüùæ_?¾eË–¿þõ¯sçÎUºâ€C0Ñ•ã•EZ¢ ƒã'Ÿ|"¥Æèèè¡C‡ÆO>ù$;;û­·ÞŠŠŠ6l˜ÒuÚ³8P9^Y …Úðà7nB<øàƒ¯¿þz||üäɓׯ_×]w !¶lÙ¢tÅ{IOG®ÿDzP˜t ÉP'î À&m ƒbæÌ™æN7cÆ !D^^žÒì%½ó¥þŸ_ …Î$tõ uùßWÑKÈ׆—ªKKK}}}}||ê !.^¼¨tŶÁ,TŽ. ÀmM&S§N, ;vì¨t•¶Á"¨KµØç8­EP9&´†6¼Çp ÉPTók°è¢Z 3Ž€¸ö•£‹hUmüñǾ}ûÊ/ÏÉÉQºAÙ¬fq¡.L4hmmM&Suuµür@˜Åú‘´6 Ž™™™J×hŒÇP9¾Øh3mÔ®Ð2ÍgBR#TŽ.  -±8‡Y¨Cƒk¨ëþúX(º*€¶@pd`ªaÝu:Ò"!8Mb¢š@àG qL4Bý¤w]€CF¡ræépÞu ÀQŽp^r¡R|± ‚#œW£‹ ¡rÿ›é°†àü/a¨«µ(Šà!Ì—¨¡b\ž 4‚#PoG8c¨ßm¨ÁíJhh÷ŠAÛøn@ÅŽp ÆÐ:*u#8 0CMš|IºÉü0Qú,"8¢]ãò4Ô§á—¤ÓIhÁí£14A§ã]—´¢=Çôôô´´´üü|ww÷áÇ'&&úúú6±}MMÍþóŸÍ›7{yy…‡‡O™2åÖ[o­¿Í}÷ÝwìØ1‹ýýý÷íÛ§tu!ÐsGå]—4BóÁqåÊ•¯½öš‡‡Ç€ 222òòòRSSÝÜÜܾ¶¶öÁ<|ø°··÷àÁƒ/_¾üÕW_}ñÅO<ñÄ£>jÞ¬°°ÐÍÍ-88¸þ¾>>>JWÿ£ñ{ÅþÿÅÓ¤G¨3â4HÛÁ1777%%%00póæÍBˆÅ‹§¦¦&''/Z´¨Á]ÒÒÒ>Ü¿ÿÿûßR¸ÌËË‹õÕWGŒÑ»wo!DUUUeeå¨Q£V­Z¥tÑîƒVÑSh“‹Ò'`—´´´ºººY³fI©Q1wî\ooïmÛ¶ÕÕÕ5¸ËöíÛ… ,0OI†……͘1Ãh4š/C !,¦¡v:]Ã3€ªH•—¤Ð&mÇììl—èèhs‰^¯6lXyyù¡C‡ÜÅ`0xxxôéÓ§~aXX˜¢¨¨Húµ  @ѳgO¥ëÙ¤‘˜á*GG q¾Tm2™òóóýüüüüüê—‡‡‡ !ŠŠŠn¹åë½^ýuWWËZŸ8qBÑ£GéW)8–––&$$|÷Ýwîîî‘‘‘3fÌøÃþ t¥a…u0Ð .OÐ> Çêêj£Ñh½`ÅÛÛ[QQQÑà^‘‘‘%HIIéÔ©Ó¸qã¤iêqõêÕ!!!ƒ.))Ù½{wVVÖsÏ=7aÂ9çaQ"]"—£¸¸X±6ÕšÐPÙ3Ba0˜Ë ÿÿ3Z€Žgf[ï×¾Jçl}Ïf4=ìl½¥k  Çšš!„‡‡‡E¹§§§¢²²²Ù#Æ 6üóŸÿ4Ë—/÷÷÷—ÊKKKÝÜÜæÌ™“ •|ùå—3fÌX²dÉ!C‚‚‚š=rnn®=UsÚîØ2:0™¬[ŠÖ³MgfZ¯¡¾ 3úžÍh:{Ðz6Ðð=Ž>>>:®ººÚ¢üâÅ‹â·yÇ&|õÕWcÆŒY¼x±¿¿ÿ¿ÿýïÑ£G›?zûí·>lNBˆ¨¨¨I“&ÕÔÔìÚµKéz£áå’3g˜Ñš°` @û¢áàèêêêíím=³XUU%„0¯³¶våʕŋOž<ùûï¿üñÇ·mÛÕì_7pà@!Ä©S§”®·ÓcyÔ'4´¡y njÐîhøRµ"000??¿ªªªK—.æBé·ÀÀÀw©««{ê©§vîÜyûí·ÿío³Î—&“©®®N§Ó¹¸üOªÖëõB///¥+íô‰¡ôU펆g…111F£qïÞ½æ“É”••åëëÛ·oßwY¿~ýÎ;xàW_}µÁYÉ‚‚‚ÈÈÈÉ“'[”çä䈆V½8 mÇØØX—5kÖH÷5 !RRRÊÊÊÆß¡C©äÒ¥KƒAZË׃àÀ   5p#ZN§ã¦Fh ©Z 3Žh¡zc°œÅ—²¡ žE­ŠàÙ¬Æ`nƒªÑ µ!c04‡ ­{!©íä 8¢9¤Fh˶ -ÑR#´‚/9ÐÆŽhÓ6Ð"R#´1‚#¬Ø1mÃÀ @;Fp„Ò4„Ùqp Ç@›x¸783ŽB0m­‘n¨ 5€c1ãèô˜¶æ°zBptn Àо瀢ŽNŒÔm¡Ç€ÒŽN‰ih=”Fpt>LÛ›°ªÚù¡!²×ûó`p‚#µbvT†à蘑@eŽN %Ó6$LЂ£`ÚÂwP1‚#Õà¦FP7ÇÓñ˜FhN ;mƒó’…ü­ŽàØî0gÍiy§µÞœŽ@plG˜h„‘ø@;Ží…M£¯œë}‚,Š6ÂWЂc»`ëœ ×û $ºh «ªµ¬‚à¨}¤FhH›=¦‘ÿÀŽÚÄC’¡EÌŽ€Æ5ˆÑE¿kÁ1===66¶oß¾·Þzëüùó/\¸ sÇ3gÎDDD9r¤uÛæ}€4W®\¹páÂÓ§O0ÀÓÓ3##㡇ª©©‘³ïúõëÛâ°šF(E+ã¶ hG´sssSRR·oßž’’²cÇŽ„„„£G&''7±WUUÕ×_ý·¿ýí½÷ÞkÅö-F_h·U@û¢íà˜––VWW7kÖ¬€€©dîܹÞÞÞÛ¶m«««kl¯1cÆÄÅÅmÚ´©uÛVt:F_hýÚ#mÇììl—èèhs‰^¯6lXyyù¡C‡ÛkñâÅk×®]»vmTTT+¶MHC/£/´…~ 픆ƒ£ÉdÊÏÏ÷óóóóó«_.„(**jlÇ!C†ÄÄÄÄÄÄtïÞ½Ûú˜°Ño ýÒð+«««F£E¹···¢¢¢BÁÃFDDX”lß¾]æ ‡„† ! g΃¡ [°=*..Vú´Êþ¦sæ~Kdz­g3šÎv¶^HHˆÒ5P††ƒ£´ÆÙÃÃâÜÓÓSQYY©àasssm®WHh¨4aã¤]ÒnNû³ýìm:çî·t<{Ðz6£éìAëÙ@ת}||t:]uuµEùÅ‹Åo„ê9¬|†3gÚú¯°†ƒ£«««···õ`UU•¼ Z%‡Ð: G!D```yy¹éÌ ƒô‘Ú  iÚŽ111F£qïÞ½æ“É”••åëëÛ·o_µ@Ó´ccc]\\Ö¬Y#Ý€(„HII)++?~|‡¤’K—. †-ž’sXg£áUÕBˆ   ÄÄÄeË–;vèСèÓ§ÏôéÓÍÛdeeÍž=;,,,33³ àl´…S¦LéÚµë|°uëÖnݺÅÇÇÏš5KztŽ   ]:ïxhmö<ÇÑ`0ðd)›Ñz6£éìAëÙƒÖ³MgZÏ6Ú¾ÇCp€,GÈBp  :ÒghÁ² Á±½ázh#GÈBp€,šå Íiì† ‹r^kjCpàh &BޤjÇ¥jÈÂŒ£¶5xÉë} -µÍ:r½´.U@‚#d!8Pn±õ#8@‚c{ô h#GÈBp€,GÈBp€,GÈBp€,GÈBp€,®JŸ@+HOOOKKËÏÏwww>|xbb¢¯¯¯»Üwß}ÇŽ³ØËßßß¾}JW@šŽ+W®|íµ×<<< PPP‘‘‘———ššêææfÏ.………nnnÁÁÁõwôññQººŠÑvpÌÍÍMII ܼys@@€bñâÅ©©©ÉÉÉ‹-²y—ªªªÊÊÊQ£F­ZµJé*¨…¶ïqLKK«««›5k–…sçÎõööÞ¶m[]]Í» !,¦œœ¶ƒcvv¶‹‹Ktt´¹D¯×6¬¼¼üСC6ïRPP „èÙ³§ÒõP G“É”ŸŸïçççççW¿<<<\QTTdó.Rp,--MHH0`ÀðáÃgΜyäÈ¥k  $ ßãX]]m4­¬x{{ !***lÞEJ«W¯ >>:®ººÚ¢üâÅ‹â·IDÛvyûí·>lNBˆ¨¨¨I“&ÕÔÔìÚµKéz(CÃÁÑÕÕÕÛÛÛzf±ªªJa^4mç.fBœ:uJéz(CÃÁQX^^.Å>3ƒÁ }dÛ.&“Éh4Z?ÍG¯× !¼¼¼”®4€2´cbbŒFãÞ½{Í%&“)++Ë××·oß¾¶íRPP9yòd‹srrDC«^œ„¶ƒcll¬‹‹Ëš5k¤›…)))eeeãÇïСƒTréÒ%ƒÁ`^<Õì.ÁÁÁýû÷?xð`zzºù/ÊÉÉyóÍ7ƒ‚‚FŽ©t¥”¡áUÕBˆ   ÄÄÄeË–;vèСèÓ§ÏôéÓÍÛdeeÍž=;,,,33Sæ.IIIS§N]¸páÆCCCKJJ>ìîî¾téÒ&^ оi{ÆQ1eÊ”äää­[·VTTÄÇǧ¦¦Z?©±E»ôêÕëý÷ß7n\YYÙŽ;*++Ç—™™9hÐ ¥«  ÉdRúÚ›ˆˆ{žãh0x²”Íh=›Ñtö õìAëÙŒ¦³­gÍÏ8À1Ž…àYŽ…àYŽ…àYŽ…àYŽ…àYŽ…àYŽ…àYŽ…àYŽ…àYŽ…àYŽ…à ètJŸ í ÁQuBCC”>€ Á²¸*}4Éz5Œu‰É¤ôYZÁ€-,B¡NGL€öKÕ…G…5øô;‹B&r€f ¹äÔ©=Çôôô´´´üü|ww÷áÇ'&&úúúÚ¹KMMÍþóŸÍ›7{yy…‡‡O™2åÖ[oUº®ŠÑ|p\¹råk¯½æáá1`À€‚‚‚ŒŒŒ¼¼¼ÔÔT777›w©­­}ðÁ>ìíí=xðàË—/õÕW_|ñÅO<ñè£*]ceh{qLnnnJJJ``àöíÛSRRvìØ‘pôèÑääd{vIKK;|øpÿþý³²²þõ¯½õÖ[ï¿ÿ¾Ï«¯¾úÝwß)]i@¸¿œ¶ƒcZZZ]]ݬY³¤’¹sçz{{oÛ¶­®®Îæ]¶oß.„X°`y2,,lÆŒF£qß¾}JW@ÚŽÙÙÙ...ÑÑÑæ½^?lذòòòC‡Ù¼‹Á`ðððèÓ§OýÄEEEm]©3g ŽoI€fi88šL¦üü|?????¿úåááᢑ„'s—×_}Ó¦Mûž8qBÑ£G¥ë   /Ž©®®6>>>åÞÞÞBˆŠŠ ›w‰ŒŒ´ØàÀ))):u7nœœs‹ˆˆ°(‘.ËQ\\ìØ†lWh=›Ñtö õìAëÙŒ¦³‡­¢t ”¡áàXSS#„ððð°(÷ôôBTVV¶Ê.F£qÆ ÿüç?FãòåËýýýåœ[nn®=UsÚîØ*h=›Ñtö õìAëÙŒ¦³­g GNW]]mQ~ñâEñÛ$¢»|õÕWÏ?ÿüéÓ§»uë¶dÉ’¨¨(¥+   GWWWoooëiªª*!„yÑ´m»\¹r套^Z¿~}çÎüñ©S§6ñ`Hg áÅ1BˆÀÀÀòòr)ö™ é#›w©««{ê©§RSScbbvîÜùØc‘´cbbŒFãÞ½{Í%&“)++Ë××·oß¾6ï²~ýú;w>ðÀ¯¾újƒ3—NHÛÁ166ÖÅÅeÍš5ÒMŠBˆ”””²²²ñãÇwèÐA*¹té’Á`0/žjv“Éôî»ïzyy=ûì³J×@E4|£"(((11qÙ²ecÇŽ:thAAÁúôé3}útó6YYY³gÏ ËÌÌ”³Ëùóç ÝÜÜâââ¬ÿÆ{î¹'>>^éz(@ÛÁQ1eÊ”®]»~ðÁ[·níÖ­[||ü¬Y³¤ÇëØ¶‹47YSSsüøqë}YX œ–Îd2)}íMDD„=Ïq4 |øðÄÄD___¥OYuî»ï¾cÇŽYúûûïÛ·OéSS/º–Íèo6à:›5ÑttÅÆÔÔÔüç?ÿÙ¼ysqq±——Wxxø”)Sn½õV‹Íèx-BpT‹õë×7öÑÊ•+_{í5dddäå奦¦º¹¹)}ÖêRXXèææ\¿ÐÇÇGéóR/º–=èo6à:›5ÑttÅÕÖÖ>øàƒ‡ööö|Øbƒ“'OöêÕkèС?þø£Tòâ‹/†‡‡¿ð JŸ»ºTVV†‡‡?ùä“JŸˆfеìAkþ¡³Y³MGWl̆ ÂÃÃ'NœX]]-•œ:ujàÀ½{÷þöÛo¥:ž ¸ÇQacÆŒ‰‹‹Û´iSc¤¥¥ÕÕÕÍš5+ @*™;w®··÷¶mÛêêê”>}),,BX|çFèZö ¿µÿÐ٬٦£+6fûöíBˆ ˜çÃÂÂf̘a4Íñéx6 8*lñâÅk×®]»vmTTTƒdgg»¸¸DGG›Kôzý°aÃÊËË:¤ôé«HAA¢gÏžJŸˆfеìAkþ¡³Y³MGWlŒÁ`ðððèÓ§Oý°°0!DQQ‘ô+ÏÜ㨰!C†H?ìÞ½ÛúS“É”ŸŸïçççççW¿<<<\QTTtË-·(]µþõ,--MHHøî»ïÜÝÝ###g̘Ñà=ø kÙ‰þÖ"üCg³¦›NÐ÷ú믻ºZ†œ'N!zôè!èx¶bÆQÕª««F£õ=ÎÞÞÞBˆŠŠ ¥OPE¤o«W¯>wîÜàÁƒýýýwïÞ=qâÄ´´4¥OMèZv¢¿µ"z£=芉ŒŒ”" ÙRRR:uê4nÜ8Adz3ŽªVSS#„ððð°(÷ôôBTVV*}‚*RZZêææ6gΜ„„©äË/¿œ1cÆ’%K† ¤ô ª ]ËNô·VDo´]Q£Ñ¸aÆþóŸF£qùòåþþþ‚Žg+‚£#ÔÖÖ¾ñÆæ_õzýC=$gGNW]]mQ~ñâEñÛ·"gÓXc¾ýöÛ[FEEMš4iݺu»ví2ÿ“ ]ËNô·VDo´]±Y_}õÕóÏ?úôénݺ-Y²Ä|·(Ï6GG¸zõêªU«Ì¿vêÔIfptuuõöö¶þÞSUU%„0¯s*-jÌ®[·îÔ©SJŸµêеÚýÍ6ôÆVGW”\¹r套^Z¿~}çÎüñ©S§Ö:#Ï6GGpssËÍ͵mßÀÀÀüüüªªª.]º˜ ƒô‘Ò5S@ƒi2™êêêt:‹Ëÿܶ«×ë…^^^JŸµѵlFkuôFÛЛPWW÷ÔSOíܹóöÛoÿÛßþÖ`¤ãÙ€Å1jc4÷îÝk.1™LYYY¾¾¾}ûöUúìÔ¢   22ròäÉå999Bˆˆˆ¥OPèZ6£¿µ:z£mèŠMX¿~ýÎ;xàW_}µ±éC:ž Žjëââ²fÍé® !DJJJYYÙøñã;tè ôÙ©Epppÿþý<˜žžn.ÌÉÉyóÍ7ƒ‚‚FŽ©ô ª]Ëfô·VGo´ ]±1&“éÝwßõòòzöÙg›ØŒŽg.U«]PPPbbâ²eËÆŽ;tèЂ‚‚ôéÓgúôéJŸšº$%%M:uáÂ…7n -))9|ø°»»ûÒ¥KyåhƒèZö ¿µ.z£ÍèŠ :þ¼ô ︸8ëOï¹çžøøxAdz‰þ¹çžSú „Ÿ}öÙ·ß~{íµ×Z|Ô·oßàààüñ‹/¾puu5jÔ²eËêß!„¿¿ÿ˜1c.\¸pêÔ©ãÇwêÔ)::zõêÕ½{÷VúÔÔ‹®e3ú›mø‡Îf5]±A¹¹¹µµµçÒ«W/óÚj:^KéL&“Òç àGÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈâªô €Âòòòþüç?[vìØ1 `ðàÁqqq½{÷Vú@t&“Iés%IÁQ§ÓJ%&“©¬¬Ìh4 !ôzýœ9s¦M›ÖÒÃ~ñÅF£qøðáJ×Z 3Ž „nnnYYYæ_¯\¹rêÔ©uëÖmÛ¶í¥—^ºöÚk­g%›öôÓOWUU}ûí·J× Z ÷8@:vìxã7®Zµê‘GB¼üòËÒ$83‚#4å‘G (((øè£”>PÁšÒ¡C‡x@ñù矛 ËÊÊV¬X1zôè~ýúõë×ï®»îúÇ?þñã?JŸþóŸÿŒˆˆ¸pá‚ÑhŒˆˆèÛ·¯œ½@ý¸Çš!­ª...–~-++‹‹‹;{ö¬››[ppp]]ÝÙ³gßzë­;wfddøúúÞrË-µµµ›6mºråJBBB‡äì¥t- yGhF·nÝ„EEEÒ¯gÏž1bDrr²‡‡‡¢ªªê‘GÉÎÎþôÓOï»ï¾#FŒ1â£>ª­­?¾Ì½”®%4KÕÐŒk®¹FQYYyåÊ!Dmmím·ÝöôÓOKùOÑ¥K—1cÆ! ;ˆm{€ª0ãͨ¨¨Bx{{wìØQñè£Zlpþüù?þ¸éƒØ¶¨ ÁšQZZ*„èÑ£‡¹¤¤¤dÏž=_ýuQQQaaá… äǶ½@=ŽÐŒ“'OŠzÁqãÆ/¾øbmmíõ×_Ë-·Ü~ûí7Þx£Á`xá…š8ˆm{€ª )W¯^ݰaƒ"::ZqñâÅ¿ÿýï;v|ýõׇ bÞì‡~hâ ¶íjÃâhÊk¯½öã?öìÙSZÈrìØ1£Ñد_¿úùOü6+ÙÛöµaÆP[[›ŸŸ¿nݺÿþ÷¿Bˆ'Ÿ|R¯× !…'Ož,++ó÷÷BÆôôôwß}WQSSSÿ uuuÕÕÕîîî-Ú T‹àBQSS3bÄég“ÉTVV&=|G¯×Ï™3ç®»î’> ‰‰ùôÓOï¸ãŽþýû›L¦ÜÜÜ .ÄÅÅ¥¦¦nÙ²åçŸ^¶l™ÂÇÇçÂ… 'N¼þúë_yå™{€šéŸ{î9¥Ï”TQQñÞ{ï !~®ÇÅÅ¥[·nwÞyçâÅ‹GŽYû#FtìØñ‡~ÈÍÍÕëõ\¶lÙ¸qã.\¸——WVV6yòd!Äu×]wôèÑ«W¯Nš4Iæ^ f:“ɤô9@XYŽ…àYŽ…àYŽ…àYŽ…àYŽåÿK}è@$IEND®B`‚statistics-release-1.6.3/docs/assets/octave-logo.svg000066400000000000000000000075711456127120000225330ustar00rootroot00000000000000 image/svg+xml statistics-release-1.6.3/docs/assets/plsregress_101.png000066400000000000000000000622251456127120000230500ustar00rootroot00000000000000‰PNG  IHDRhŽ\­Ad\IDATxÚíÝ{\TuâÿñÏ^¸È-îÞ53IÐTD·6 ×KV^ÖZ+ss-Ì43»mYa–úó’âf›—ÕP[7Í[eKê†âzKDE5/‚)Ãüþ8ßÎN3€8gμž>f>s†ù|>sfÎ{>çœÏ1˜ÍfÜŽ‹Ú€c 8@‚#!8@‚#!8@‚#œBff¦¡...F£qÔ¨Q‡n¸ ,]ºTz¹˜˜˜š—œ5k–´äƒ>Ø@•yíµ×¤—:th£µK-›7oþ׿þõ¯ý«¨¨Híºˆ|Pê®ùóç×ÿ¯•””<óÌ3-[¶tsskÑ¢Åõë×E5ïHuÐÓ+0¹©]@ef³ùĉ'NœøòË/ÿõ¯%$$¨]#ØÓÈ‘#¯]»&„øæ›otöæ¾òÊ+ûÛߤÛRkÛ :î „à§ìîî.Ý®¨¨(**úå—_„ׯ_Ÿ2eÊ¡C‡âE[´hÑ®];!Dhh¨Ú@»tbÇŽÒ¾}û:´iÓ¦‚w@#8Âé¬^½Úrp¥¬¬ì©§žZ»v­âðáçNêСƒÝ_tÔ¨Q£FR»éö§×v5N:mÛ¶MÑ¥K—úÿµ .H7^~ùå‡zHºÍ;r[yyyaaaÍš5S»"€CâG8; &ÈwÏŸ?oùè… ^xá…Þ½{·hÑ¢cǎÇ?pà€Õ_¸uëÖ’%Kbccü¼¼î¾ûî?þñVGLVw,à™3g{ì±€€€aÆeddØÖ°ºCGŽ)•O:U.¬¬¬\»vmÿþýÛ¶mÛ¼yó¶mÛÆÇÇöÙg·nݪ¹”´Â–m»,k{åÊ•)S¦ÄÄÄ´hÑ¢[·nï¾ûîm«!„¸~ýúo¼ñ»ßý.88888xàÀ3fÌ(--µ]òâÅ‹/¼ðBŸ>}|||Úµk÷àƒnÙ²E~ô•W^1 ò>Ü é@@…UÛ¶Üvmû,77·²²²uÛ¶(\[lÕ­ç•Çê:¡†ÎQØå+p ­nÕª•¼¼íû¹³zƒ‚‚âââ¼¼¼ä’­[·ÖvÝ«ÛZQÝZZŸ•PÁNÁ28†……Ýù«öíÛËÛ†àààÌÌLù)3fÌÊ-‡ ,X ¶iÓF*éÓ§TòÎ;ïÈ‹ýîw¿“ ,X •جE‹I%-Z´HOO— “’’l·»ÊƒãŸþô'©dÊ”)òbÝ»w— gÏž]ÝTØ [5Gù‰YYYò–µ†´·ÞzKZÆÛÛ[Þú9r$ @*Ÿ>}ºÕ»Ó¶mÛ¢¢"«Â¸¸8ùoÊ)ÁòCm;ê¶mQ¸¶ØªsÏW×´*Ƕ«\²ºr…mQ¾Û²ìØÎ;¯Zµ*==]ì·ïçÎò…~øá7n˜Íæ³gÏF©°OŸ>µ]÷ê°VÔ¼–ÖyåTAp„S° ŽUêÔ©Ó… ,Ÿrï½÷Jmß¾].¼víš«««T~øðaËÅŒFã'Ÿ|òÓO?™ÍæŸ~úéèÑ£G=þ¼ôDÛÍyll¬T2cÆ ùïÿòË/òŽ­:ÇmÛ¶­ZµjÕªUgΜ‘JJJJä½i¶[>ù*l…­‚c—.],—”7êÓ¦M«î¯É;å½–’wß}W*¿û9äYF«óçÏwëÖ­[·n={ö¬¨¨ «ÌFµí¨Û¶EáÚb«Î=on°à¨°-ÊW`[rÇzxxœ={¶Ê±ËçN~!777ù½6›Í_|ñ…Tn0ÊËËkµî)_+®¥u^yUpr „Ç0`ÀÏ?ÿ,—œ8qBºñÀȳ…{yy™L&©<''GzTº›ýÔSO…††vïÞ}Á‚ׯ_ŒŒ´:Ì’ü÷-çInÚ´éý÷ß_çV<ðÀ£G4hО={^z饄„„V­Zeee)ybÝZQ«ÃÅüýý¥ò)¶²³³­ê#‘û$''Gzznn®T"< !BBB¶Å^+°¼#¸¶=YÛ~³ª¤‡‡‡tû§Ÿ~R¾îY>tÛµBÉZZŸ•PÁNÍÃÃãñÇ—ÇŽ;&ÝðöönÑ¢…t{ÇŽ¹U9r¤¢I“& .,**úüóÏGíçç'ÿñ]»vYN”cÉÝÝ]š®Y!o€%òƦfÍšõÑGUTTtèÐañâŇ.--MLL¼íëÖ ûòöö–·åV“"Éw›6mØ¢E ùÈÔK—.5fGUWs…k‹6{¾m±× l¶îsg•ùÊËËåIvÚµk§|ÝSÞ4…ki}V@G@ÜqÇÒ+W®È…wÞy§t£¢¢¢£???______ww÷_~ùåÂ… .\øå—_}ôÑU«V]¼xñ믿–—úþûï«|EWW×öíÛK··oß.—›ÍæÿûßV Ë׫W¯Z–[m°…‹/–n,Z´èÏþs×®]ÝÜÜ kn~[awò) ò5Q¬î†‡‡»¹¹ y/áÞ½{åÅ~úé§^½zõêÕ«ÿþ5ì¯sGÕ@Éڢ垯m[jµÛýÕëÐo™™™çΓï~ýõ×f³YÑ´iSéÜp…ëžò†(_Kë¶òj!8âÆÒ Ë (ÝHII‘¶1Bˆ 6ÜqÇíÚµûù石²²BBBBBBBCCOž<)„pss8pàSO=%-_Ã.ªèèhéÆÿûÿOžé÷Ýwß•G=eò¾¿½{÷ʇC}ñÅV[èŸþYÞ¥%GÌÿþ÷¿–³TV©>­°/y @Ë>9zôè| Ý–§“'ÐþðÃúé'éöܹsÓÓÓÓÓÓ›5k&Ïf"»yóf=;ªJÖ-ô¼Ü 5”+l‹òØî=Y‡~»yóæ¤I“¤fž?þå—_–Ê¥ •¯{Ê)\Kë¶òjá’ƒ€C†tÑjÉ+¯¼ò·¿ýíÊ•+7n0`@¿~ý233¿úê+éÑ_|Ñßßß××788øÂ… ±±±?ü°¿¿ÿéÓ§¿üòKi1«k½Xš:uê?þñ³Ù|õêÕ^½zõìÙ³¨¨èøñã¶KÊçf–——GEEEEEËÇò˼¼¼¼¼¼¤ã¥žzê©5kÖ †mÛ¶Ýöb-]»v­s+ìkÚ´iŸ~úi~~~IIIlllBB‚««ë7ß|#úÐÐÐ×^{MZòµ×^[±bEiii^^^·nÝ.\¸ðí·ßJNœ8Qþ›¾¾¾RŸ¼ýöÛ™™™/¼ðB;ªJÖ{Þ¶š4iR]¹Â¶(_íÞ“uûÜ}ñÅíÛ·¿ë®»222¤ýÔ...ýë_¥G•¯{Ê)\Kë¶òªQû´n 1Ô|å˜Ñ£GKµnÝÚd2Éå_~ùe•C>&L¦J6›Í?üðCu;’âãã¥yãÌÕL’òä“OZ=ÅÓÓS>‹Ór6yæY‡ä y:y&sËÅä9‡Ÿxâ i1Ûéx¶ÂV Óñ(¹Î­½{÷Vy­ð¶mÛîÚµËrÉ/¾øB>.Í’åì0–o®Dº8J;ª†¶(Y[lÕ¹ç͵™Ž§ÊN¨¡\a[”¯ÀVªëX»î䊋‹kÓ¦åbnnnK–,©ÃºW«µBáZZ·•P»ªÿMÀQPP Ï»+„HLL<|øðÓO?}ï½÷zxxtèÐaèСiiiü±|Üá}÷Ý—››ûÚk¯ÅÄÄ„……5iÒÄÏÏ/66öoûÛÎ;å³>«ôÉ'ŸÈ£AAAƒþæ›oâââl—\±bŬY³î¾ûnOOϨ¨¨çŸ>==ÝêŒT!Äܹsï¾ûn!„‹‹Ë=÷Ü3yòäƒþá]³f¼§ÛJ}Za_=zô8räÈk¯½–0`À€W_}õÇ”'” :ôÇ|öÙgcbb¼¼¼Úµk÷ðÃÿý÷³fͲê“Ñ£GyzzvéÒE]®sGÕ@ÉÚ¢VÏWÙ 5”+l‹òØî=YÛ~ó÷÷ß³gÏ3Ï<<|øð¯¿þúÙgŸµ\Fùº§œÂµ´n+  ƒù×#*¨bÿþýß}÷ݳÏ>ëíí]ÿ¿vëÖ­Í›7‹FÜ¿ì è({±ï l_¯½öÚ;ï¼#„2dÈ?ÿùOµ«èÇ8*‹ŽŽ–Ï3¨¿&Mš„” £ìž+0cW5!8@‚#áä(ˆ#!8@‚#!8@‚#!8@‚#!8@‚#!8@‚#!8@‚#q–à¸nݺ#FDEEõéÓgÆŒW®\QþÜsçÎuïÞ}êÔ©j7@MNçÎ;sæÌ“'OÆÄÄxyymذaüøñåååJžk6›_~ùåk×®©Ý•é?8fgg§¤¤oÛ¶-%%eûöícÇŽ=räÈœ9s”<ýïÿû¾}ûÔn€úôSSS+++“’’‚‚‚¤’éÓ§ûøølݺµ²²²æçæääÌ;·S§Nj7@}úŽ...ñññr‰««k\\Ü¥K—8PÃ+**¦M›æçç7}útµ >G³Ùœ››ëïïïïïoY!„(((¨á¹ ,ÈÊÊzï½÷¼½½Õn€úÜÔ®@Ã*++3™L¾¾¾Vå>>>BˆË—/W÷ÄC‡-[¶l̘1½{÷ÎÌ̬ՋFµÛ Vvv¶ÚUP΃£tê´§§§U¹———¢¤¤¤ºgM›6­uëÖS¦L©Ûë:çÊÔpŒF#]jGô§ÝÑ¥vG—ÚýiwN;H¤óàèëëk0ÊÊʬʥéu¤qG[ÉÉÉ………kÖ¬qwwW»Z¡ócÝÜÜ|||lGKKK…òyÖ–öíÛ·fÍšgŸ}öž{îQ»ú¢óà(„¾té’”eyyyÒC¶Ëçää!/^lüÕ°aÄ_~ù¥Ñh|øá‡Õn€:t¾«Z‘½k×®‡zH*1›Íiii~~~QQQ¶Ë·mÛV^RRRR²{÷î°°°¨¨¨µ ýÇ#F,Y²dáÂ…ýúõ“ΉIII)..~úé§›4i"-sýúõ‹/6iÒ¤U«V±±±±±±–!33s÷îÝÑÑÑ|ðÚ­PþƒcXXØÔ©S“““Ü·oßüüüôôôÈÈÈgžyF^&--mòäÉááá›7oV»¾¨'Úýiwt©ÝÑ¥öEÂ^ô…ãÆ Ü¸qã–-[BCCÇŒ“””$>@!ƒÙlV»zÃtYè›ÓnëõV5ì‚àEŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEÜÔ®@#Y·n]jjjnn®‡‡G¿~ý¦NêççWÃòW¯^7oÞþýû »té2iÒ¤:¨ÝÕ8ňãܹsgΜyòäɘ˜//¯ 6Œ?¾¼¼¼ºåKKK~øá5kÖ!ú÷ïÇwlÙ²%11ñèÑ£j7@5úŽÙÙÙ)))ÁÁÁÛ¶mKIIÙ¾}ûرc92gΜꞲ`Á‚¢¢¢ &lÞ¼yîܹk×®}ï½÷***Þyçµ[ ýÇÔÔÔÊÊʤ¤¤   ©dúôé>>>[·n­¬¬¬ò)?üðƒ»»ûŸÿüg¹dذa!!!™™™&“Ií¨CÿÁ1##ÃÅÅ%>>^.quu‹‹»téÒª|Н¯ï€š7onYجY³›7oÞ¼ySí¨Cç'Ç˜ÍæÜÜ\Ëòˆˆ!DAAAtt´í³V­ZeU’‘‘qæÌ™nݺ¹»»«Ý&uè<8–••™L&___«r!ÄåË—k~úÁƒ7lØ——wðàÁ6mÚ$''+|]£ÑhU’­vg€º°Ý¬;-GéÔiOOO«r///!DIIIÍOÏÎÎ^¿~½ÙlBDFF6mÚTáëÐ ÛͺÓFIãèëëk0ÊÊʬʯ]»&~w¬Áã?ž••µ{÷î—_~yûöí#GŽ”žà„tÝÜÜ|||lGKKK…òyÖ50 ãÆ{ì±Ç~úé§íÛ·«Ý&uè<8 !‚ƒƒ/]º$%EY^^žôíò999¯¼òÊÖ­[­Ê###….\P»AêÐpLHH0™L»ví’KÌfsZZšŸŸ_TT”íòÞÞÞ_|ñņ ¬ÊÏœ9#„hß¾½Ú P‡þƒãˆ#\\\.\(ž˜’’R\\<|øð&MšH%ׯ_ÏËË+,,BÆÝ»wïܹSþ#Ç_½zµ——WLLŒÚ P‡A:eXß–/_žœœÜ²e˾}ûæçç§§§wîÜyùòåò4=[¶l™j·C!„Áð¿Û\—4§ŽsçÎ]²d‰§§gLLL~~þ† rrrV¬Xáîî^åòO>ùä¡C‡|||zõêuãÆ½{÷îÞ½ûù矟8q¢Ê1~­î4ýïªÎÎÎNII Þ¶m[JJÊöíÛÇŽ{äÈ‘9sæT÷”ÔÔÔC‡uïÞ=--íã?þôÓOÿùÏúúú.Z´(++KÍÆØÆD³ù7 FÿÁ155µ²²2)))((H*™>}ºÏÖ­[+++«|ʶmÛ„¯¾úª<$>a“ɴgϵdƒì…þƒcFF†‹‹K||¼\âêêwéÒ¥Tù”¼¼ÏÚÖÍ›7?øàƒ•+W6oÞ|Ò¤IO=õTu“>ª@ ‹¤FØWukƒŽ€_é<8 !‚ƒƒsssKKK½½½å¼¼<é¡*ŸRYY9eÊ”;v 8ð7Þ¨!_úaåÛ¤FÀ¯ô?OBB‚ÉdÚµk—\b6›ÓÒÒüüü¢¢¢ª|ÊÊ•+wìØ1jÔ¨E‹‘$úŽ#FŒpqqY¸p¡t\£"%%¥¸¸xøðáMš4‘J®_¿ž——WXX(„0›Í«V­jÑ¢ÅË/¿¬vÝÆe;™<à úßU6uêÔäääÁƒ÷íÛ7???===22ò™gž‘—IKK›zôhÛ¿6tèÐ1cƨÝ& Ápö zúŽBˆqãÆnܸqË–-¡¡¡cÆŒIJJ’fä±%;–——=zÔöQMœX 4(mTÃ`fÛ`oF£±§û–±]×¥Æy[•¼ +˜#â]K#mëµGÿÇ8À.œbW5tN>&±Á®Ê©@`W5–Á`mg“öCp„#³_$;Ð`ŽP„à]`”€†Gp„¾p~ †à‡ÅáŒ4.¦ã#³º°²`*GÁŽ +ÐXØU Eq8Ë#¤Ù_(Fp8«ƒ[8ÖPŒàp&¶1Q:ÍŽì £Ñ5"8à°¬f%#èÔ“íh´ WƒàpÕ,:è £m±ÚQÝh4,pV5ÀiØNþ*ßv¸¼Ue :vG—þÁа«`'q¼í^iGnDCc­¨Á`t¼¼óQ7§>h¶«u€¾ý-vUêÍᎷ“jk6;p&¨²{I9õaÛ¥ô§ ‚#ËêÔ“”åiR£ vUà˜¤XCʱ/¹WéϪ0â°+ƽ™¼ÛhxG@½iùpFöCp؃Uv”c ÐŽq؉å47DF@qØÇÛºFp€"G(Bp€"G(Bp€"LÇ€VYM«ÎéêPÁM²“ 2¡6vU =dDhÁÁ5Á¡6vU£zÒ×?yÕq ›“côšApDU,##ñPºAÆ[µaÃê‹IŽ|[-áGp4èæ ¤wÙòæW4€àˆßªî‹‰  :>ƒÎÆlþßw/©Ú@pÄoYDù6ßY€vÔíó( _Y bAû¤÷šo`hÇ8€ÞÙžâÆOAuˆ#ªb5 Áø {èfõ>P'Œ8†å,<‚‘ @m–É:|ùÃÈ›VZ­"8¢ÌÂhŠ4FÈçzeu@k»V{°ÜëÇ—4‹1´ÉvÍä—’Vz³úvãZ;Ð6À쇓c€ú©ò‡2 5¶g¼±¢Bã8…K“œ%8®[·nĈQQQ}úô™1cÆ•+W>ñÔ©SF£ñðáÃj·…ï;hŠÕ<Ò¤Fh_žÚæÁqîܹ3gÎ>>[·n­¬¬¬îY‰‰‰£G&5¢Žøåä£)8 Bóô?☑‘áââ/—¸ººÆÅÅmÚ´éÀÑÑÑU>kÖ¬Y¿üò‹bÕªUÿùÏÔn4L>tÌrú1@m1°#Ðyp4›Í¹¹¹þþþþþþ–åBˆ‚‚‚ê‚cll¬tã»ï¾S»мz^ØŽÕOY¾ P?:Žeee&“É××תÜÇÇGqùòåz]£ÑhU’­vg 1[­±ýRâkªNl7ëNKçÁQ:uÚÓÓÓªÜËËKQRRÒ@¯KLh?qëÄv³î´QRç'Çøúú †²²2«òk×®‰_ÇÐ!"€Îƒ£›››íÈbii©B>Ï=ã¤=؉΃£"88øÒ¥KRR”åååI©];†þ.a%MÓ#ÏÚ5è?8&$$˜L¦]»vÉ%f³9--ÍÏÏ/**JíÚ¤=ïò?â£JôGŒáââ²páBé¸F!DJJJqqñðáÛ4i"•\¿~=//¯°°PíÊ`?VƒŽŽ;±¶mµ±º ó³ª…aaaS§NMNNÚ6A8vUC¿ôt8# Œ8:+癡ÆjªX=µ—«A—Fƒ£ÙlÞ¹sgaaa×®]£¢¢Ô®ŽîX¥ ‡]Nß ›†V‚ãÎ;çÏŸ?pàÀI“& !fΜ¹~ýzé¡‘#G¾ñÆÝìsTmìÐýÀ•^¨ËF4LÇ8fdd<÷Üsǯ¬¬B;vlýúõ>>>£FjÕªÕš5kvîÜ©võ‚¨êJ#ŽË–-3›Í¯¾úêÈ‘#…;vìB¼÷Þ{ §OŸþýïÿü#!!Aíjê©òr[ü4.MÇ'N„„„Œ;Vº»wïÞ¦M›öíÛWÑ®]»Ž;ž:uJí:êÉñèòxM€CÑÄ®ê«W¯H·+**Ž;Ö¥K—¦M›J%ÅÅÅj×Q/ô4Csâr[õh"8†……šL&!ÄnܸѳgOé¡ÊÊÊÂÂÂÀÀ@µë¨/VÙ‘á+ €&‚cLLÌÕ«W,XpöìÙ !ââ⤇–/_~ùòå;ï¼Sí:êˆÙü¿qGƒÔ@- Â`È>qâÿ¶¡NÆ`Ö@h8{ölbbâõë×¥»wß}÷ºuë ã>zøða!ÄgŸ}vß}÷©]M¥ŒFcvvvƒ¿LýŸ’¿à(±ò¶õlœ†8Ê›¢§·Þ©Ô=w”Bãp”z*©ªFÞz4¶A«ñkùÿ¶õÔ·ö ‰Ç–-[~þùçñññ!!!±±±óæÍ“fm,..ööö~ÿý÷(5}ª2#:ÙÉšq¬ÎÙ³gCCC]\4‘n•cÄQÿ…jß¿à(¯»s”a'GYy¥žJªª‘·^#m¸jXþf[ï@Ý[oš˜Ž§:-[¶T» ø?êÇÿûßµ}J||¼*UìÆr_†Óü6]Ê>qBí*¨Càøì³ÏÖö)±óh V}ε_tB:œÑêÛÛɾÏÕ ŽƒV»á@ã²úZ©òÛ qVßÞÎ÷M®é“c'ǨÀA¦®ûÂöm‹žÞz§â(gH8ÊÊã(õTRU¼õil#TC>ôÈQzÕ~à„å—_~yÀ€j×@áÔWÕÊYÕW®\ùöÛoóóó­ÊËËË¿þúkWWWµ+؃ýèÀ†&‚ã… FŽyöìÙê=z´ÚuêŠÃz¡‰àøé§Ÿž={6&&&11ñ«¯¾Ú»wï믿îîî~üøñU«V=úÕW_U»Ž@=ØL-œtÀ¡i"8îÚµ«Y³f‹/ööö0`@lllûöí{÷î-„èСÃÛo¿ý裆‡‡«]M äkR1úpXš89æüùóíÚµóööBúùù=zTzhĈ~~~Ÿ~ú©Úuê͉¦ iÃÿþ5ÒĈ£Âò‚ÔmÚ´ÉËË“n»ººÆ#Gލ]AµáÄsUޤÊË>¹¨–&FCBBNŸ>}ýúuénëÖ­÷ïß/?j0 Õ®#e¤A ³ùÿþ1†hœíå €êi"88°¼¼ü¥—^:yò¤"::úÌ™3»wïBÿ÷¿ÿmÙ²¥Úu ˜å†GŽÇ§‰]Õcǎݾ}ûÎ;Ífó’%KâââÜÜÜþò—¿Ü{ï½Ç/++4hÚu §þÄê+ße1TO#Ž«W¯~ñÅï¾ûn!DË–-gΜyóæÍ={ö\ºt)!!aܸqj×}©no©ÕÓ¯]»öã?wèÐAíºÔתVC\ÛÔ^õÔò[o5]e•·QgŽrÁbGy»¥žJªZçªüœªÛ3޲;ÐúcWšØU]%//¯^½z©] µÁ.À±ÈƒŽúø™g5€ê¸ Ñ0MÇûî»ï¶Ë¤§§«]MuâÐÛ!@÷äQFáàŸVÛÊ;ts´JÁ±´´ÔªÄl6WVVJ·CBBÔ®#e,šbB8ÀQèrw.¥6MÇcÇŽY•˜L¦sçÎ}ýõ×üñ/¿üòæ›oª]GŠiá0)N…/œÆ¢Ý“c$éééúÓŸZ¶lùõ×_d*8NŽQFŽbæäûþXáä笧’ªjä»EÅÆ*9û§ªá41O î»ï¾;ï¼³     @íºÍsa&¥õà(„ BÜqÇjWhW¨j,ZŽeeeÇŽ ðôôT».@«¬²£Áà´{“”&NŽùᇪ,¿råÊÊ•+/_¾gÝF°¢Î®êÕ«W×ö)£GnäJ®[·.55577×Ãã_¿~S§Nõóókä:¨‰¼ç”L£ &œ:»ªFcmŸÒ;-Ì;wÉ’%žžžÑÑÑùùù§OŸîÚµëŠ+ÜÝÝ•´Ž]ÕM#ûew’v^¥>\XäE'¹(¶Š»ðjµWZ7ßÚá(ß-ÔØF¨†N©3☔”dU’••µ}ûvWW×ØØØvíÚ¹ººæååíÚµ«¢¢"44tÆŒY½ììì”””àààõë×KÓÏš5kÅŠsæÌyíµ×Té1ÿcû}ÍÜ¿ÉY·—„FNŽ9sæÌã?°hÑ"˨Ϟ=û—¿ü娱c÷ßÿ‚ ­>o¿ýöªU«Þ{ï½aÆI%&“©W¯^nnn»wïvq¹Í¡Œ8ª@#? eT@;¯bß¿ì(««ÝnÇ”|xãõˆ››íÈbii©Bš€úHŠúc9r|Ûs·¨AÁQñá‡öîÝ{þüùEEEEEERahhè¤I“†ÚÈ• ÎÍÍ---õöö– óòò¤‡Ôî*Ð/2" mZ Ž...#FŒxä‘G.\¸——çææÖ®]»F;!ÆJBBBvvö®]»zè!©Äl6§¥¥ùùùEEE©ÝUàL¸°! %š8ÆQf0BBBzõê£VjBŒ1ÂÅÅeáÂ…ÒqBˆ”””âââáÇ7iÒDíN'@RÔ]Õ uFW¯^-„èÑ£Gxx¸|·f£Gn´ê………M:599yðàÁ}ûöÍÏÏOOOŒŒ|æ™gTé.’?ù õ$oPÉß0:`{Ä*k»ÃRç’ƒF£QñÖ[o=þøãòÝš5ÆEü~kÓ¦M7nŠ[¤n5­-Zx\ùPõ©aä‘FÎQñãVey/lÈt>>£FjÕªÕš5kvîÜ©vq;|«BS,¯C(Ý`CÔS¿ä­®ÊeB™&F—-[f6›_}õÕ‘#G !vìØ!„xï½÷NŸ>ýûßÿþÿøGBB‚ÚÕį8€Wå ©ÍA#ÛZi°’Z]]§šŽ'Nœ ;v¬twïÞ½M›6íÛ·¯¢]»v;vþøã?þXq÷ÝwKs7>ú裇BŒ7Ní:Ö[ GëG>â¢A·"õyÛ<Ô + PMŒ8¶lÙòóÏ? ‰7ož4kcqq±··÷ûï¿ß}÷©]GBñ›Ñ—†ûåc—W±#!€=hú’ƒgÏž uqÑDºU®êËÕêšK¿ä }«¡‘kýi¤Ö–úÿå*¯•g—zÚ÷UìÒ]ÎpY¹Æ¬jã|ÅiäÚ›©gãp”¶pÉÁzÐÄ®jÙÕ«W=zþüù°°°>}ú4kÖÌáRcµ˜ zź NC+ÁñÒ¥KüñúõëËËË…O<ñDŸ>}†ùÞ{ïùùù©]Á†ÁæPˆx  ‰ñ¼[·n=÷Üs+W®ôöö:t¨\ôÝwß=þøãRštxœ¦=iœµ—Ïh‰&‚ãÒ¥K:Ô¯_¿mÛ¶½ÿþûryjjêþð‡Ó§O¯X±Bí:Ú GëC4r$ ái"8îÛ·ÏÕÕõÝwßõðð°,wuu}ýõ×=<<¶oß®v4âRLSš¤‰c³²²Ú·o/_uÐ’——W‡NŸ>­v!e~D«+¡7ЫjOÁÑÇÇçúõëÕ=zåÊ•-Z¨]G¿âèF@Ò83áZ¢‰]Õ;w>þü‘#GlÊÊÊ:{öì]wÝ¥vø•íõ_ç ‰àøØc †)S¦dffZ–gff&%% !† ¢vBü:Äh9ÊȈ#œ†&vU÷éÓçé§Ÿ^¶lÙ°aÃ:tè „øæ›oþóŸÿœðÀ~øaaaá /¼­vÏ Y}íÊs>“hŸÕLø|qÁi¨÷îÝ;þ|!DHHHdd¤âÈ‘#Û·oïØ±ã7ß|sâĉfÍšµlÙÒÃÃÃÍÍÍÏÏïž{îQ»£°@X„SR'8~òÉ'BˆÁƒ¿÷Þ{nnnBˆòòò¿üå/‹/B$&&¾õÖ[žžžjwŒåÈ"_¾8u&—æÜ™6mš”…îîî“'O–n¿þúë¤F€Ã“ÏÿôBàxîÜ9ooïÀÀ@ËBiêï;î¸ÃÛÛ[ínA³:<ô‡kBÔ Ž&“ÉÃÃêP*iÒ¤‰Ú}‚Æbõ5Ê™1tÃöü?~0C47#œ…|µU 8:~C¿ŽÚãTsb;C83¾å /êìªFµ8&hÁQK8&t€¯nè—j»ª/\¸¥¼üàÁƒjU€Z³½,!»­áøT Žf³¹¬¬Ly¹þU÷b{QT€ÆqþtJà¸yófµ®müHàÛº£Np W»áÚÃÈ"Ð6NŽÑÛ9±h™<ûÓ pÌã¨%8y/í Ð#‚£ö°ÕB•‘cN軪 Áê!FÎàBüöD¨ Áê¤ÊËÊ9îŽRÍ¥ÊsÅ<Õ 8@]Y,GO54 „œU õb°45€bG¨GÏ‹VÃòmÍN-$'umVÐ5vUpbœ "ªß+­ÍXf{,¦“¿}@ãr–à¸nݺ#FDEEõéÓgÆŒW®\QøÄS§NÆÃ‡«Ýö&#ò‡£¨òXLÈ)‚ãܹsgΜyòäɘ˜//¯ 6Œ?¾¼¼\ÉsW®\©võ4Ûý³Î|:ˆmÛµ9ܨ°òŒþqÌÎÎNII ^¿~}PPbÖ¬Y+V¬˜3gÎk¯½VݳJKKOœ8±iÓ¦µkתÝhxVñKû©Qû5ôHÿ#Ž©©©•••IIIRjBLŸ>ÝÇÇgëÖ­•••Õ=+11qôèѤF@Ÿh8­1Iîò„`Cÿ#Ž...ñññr‰««k\\ܦM›8]å³fÍšõË/¿!V­ZõŸÿüGíFh0„$GÇÏ é<8šÍæÜÜ\Ëòˆˆ!DAAAuÁ166VºñÝwß©Ýö¦Ù‰fP3yºüÞñ>KçÁ±¬¬Ìd2ùúúZ•ûøø!._¾Ü@¯k4­J²³³Õî ¿e•98ÁÂ!Ho“®£qÙn֖΃£tê´§§§U¹———¢¤¤¤^—˜hUþD‡Â›…Æe»YwÚ(©ŸàXQQ±lÙ2ù®««ëøñã}}} CYY™ÕÂ×®]¿Ž;p^ä¨ ýÇ[·nÍ›7O¾Û¬Y³ñãÇ»¹¹ùøøØŽ,––– !äó¬p[ú ŽîîîUî ÎÍÍ---õöö– óòò¤‡Ô®5€ÃÐÿ<Ž &“i×®]r‰ÙlNKKóóó‹ŠŠR»vœWÄ úŽ#FŒpqqY¸p¡t\£"%%¥¸¸xøðáMš4‘J®_¿ž——WXX¨veèWÄ #úÙU]°°°©S§&''<¸oß¾ùùùééé‘‘‘Ï<óŒ¼LZZÚäÉ“ÃÃÃ7oÞ¬v}èˆí±Sp`úŽBˆqãÆnܸqË–-¡¡¡cÆŒIJJ’f䀆B@ ;3ßköf451£6Zöš¤·Ú¢ä%´Ð¥öj‹8J=ë\Õêžå@ o ÓŽÒÏŽRO=µÅõÔʶ¾ÑéÿG¨C:–K7‡vÉõwèVP?G4«C»ä‹Ì:)ë&£Ñ8î:Õ 8¢8ÊÞŠºµE7MCã°ÊŽzútp>Nqr Ô¤Ëm¤4’¤Ë¦Á¾¸"6}!8бÉGݰæÐ vU£èþÐ.†N‰àˆc™-O²މ]ÕhV‡v9nd´=œ‘ pVG4$},«=ïúh oòÄ«|`»"8 °í…å}ò]öÀ1Ž}ÑÍÕí!8ô‚}Ó@#8ôˆ 4‚#!8ô‚ÃFpè‹UväÀGÀ~˜Ž #VWìØÁ ;„E a°«Š Á8 ù:最_'G@_äïD€%),JÇ¿r-ʺ"8:bùÈ"X±:kНÊÚ#8za5Y_ˆ{#8ºPåÇdGX~Iò»Ž€î0ƒX©. ra¡Z"8@‚#p¶ƒŽ 7Ö—Ô)yN>NBúB´z»YÀ’Uvä²öŽz$ÅËÿá lLóÖ€¾ë‡à¨;UÎÉÂçÄIðFÇ8ê s²€CpÔ/Ÿ€] ÁŠõ¥ÊÃ99ØgUës²€†ApÔ#’"h쪀"G(Bp€"G(Bp€"G(Bp€"G(Bp€"\9fyíDé6Å@=Gh•Áð¿˜(ß¶,‹]ÕPÄYF×­[—ššš››ëááѯ_¿©S§úùùÕ°|yyù矾~ýúÂÂÂ-ZDDDŒ7®OŸ>j·Ãé™Í : §ŽsçÎ]²d‰§§gLLL~~þ† rrrV¬Xáîî^åòO>ùä¡C‡|||zõêuãÆ½{÷îÞ½ûù矟8q¢Ú­qJ$E4@ÿ»ª³³³SRR‚ƒƒ·mÛ–’’²}ûö±cÇ9rdΜ9Õ=%55õСCÝ»wOKKûøã?ýôÓþ󟾾¾‹-ÊÊÊR»AÎáFÔ£ÿà˜ššZYY™””$•LŸ>ÝÇÇgëÖ­•••U>eÛ¶mBˆW_}U’ Ÿ0a‚ÉdÚ³gÚ P‡þƒcFF†‹‹K||¼\âêêwéÒ¥Tù”¼¼óÌ3ò2iii“'Oß¼ysQQÑ™3gÜÝÝGmû׆:f̵ۀÆÈ»ÝùM¨kúŽBˆqãÆnܸqË–-¡¡¡cÆŒIJJ’fä±%;–——=zÔöQN¬ê…ÃQýлã~@,ÏxãM]3˜ykíÍh42£#±Ú7Ä'¢¡ÙnT´¿¥Ô~  ýY]'8hÏT9C‚ƒ¶E1§ÝÖ;ň#P-Ûï;~+74Ë~¶,Ñ&¹ž¬@•ôa…àüǧ7‡ØÒTù»Â!jí³Ý+­ƒµËÑëŽpb:øšFÃaõ@C³ú™ÊúG@p„|eCÇ=wÚ¤ƒu‰…“Ñÿ<Ž@µØ+ …Ø(µB”Ô/F@16‡€-Ûá|Lô‹àçf5ågÎ@ðµé4ŽpzDFTÉvc†8=‚# „ 2¢*VSN²’pzG¨y~ÅYÕP„àEŽP„àEŽP„àEŽ€F$Í‹i0p¥xÀB ‹Ò¼˜fs8 yG@c±šMì8‚# áq¥o@Ž€ÆE‚ÁÐðØ+ èÁŠÂjÐÑò$kÂMí œ†ev$2ˆàhDäEÀ‘±«Š ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁЏ©]F²nݺÔÔÔÜÜ\~ýúM:ÕÏϯ†å¯^½:oÞ¼ýû÷véÒeÒ¤I:tP»ªqŠǹsçΜ9óäÉ“111^^^6l?~|yyyuË—––>üðÃkÖ¬BôïßÿŽ;îØ²eKbbâÑ£GÕn €jô³³³SRR‚ƒƒ·mÛ–’’²}ûö±cÇ9rdΜ9Õ=eÁ‚EEE&Lؼyóܹs×®]ûÞ{ïUTT¼óÎ;j·@5úŽ©©©•••IIIAAARÉôéÓ}||¶nÝZYYYåS~øáww÷?ÿùÏrɰaÃBBB233M&“Ú P‡þƒcFF†‹‹K||¼\âêêwéÒ¥Tù__ß4oÞܲ°Y³f7oÞ¼yó¦Ú P‡ÎOŽ1›Í¹¹¹þþþþþþ–åBˆ‚‚‚èèhÛg­ZµÊª$##ãÌ™3ݺuswwW»MêÐyp,++3™L¾¾¾Vå>>>BˆË—/×üôƒnذ!//ïàÁƒmÚ´INNVøºF£Ñª$;;[íÎua»YwZ:ŽÒ©ÓžžžVå^^^Bˆ’’’šŸž½~ýz³Ù,„ˆŒŒlÚ´©Â×%& ¶›u§’ú ŽË–-“ﺺºŽ?Þ×××`0”••Y-|íÚ5ñë¸c üñÇ{¬¸¸xÓ¦MsæÌ9pàÀW_}%…Ng£ŸàxëÖ­yóæÉw›5k6~üx777Û‘ÅÒÒR!„|žu C``à¸qã þñlß¾}øðáj·@ú ŽîîîUî ÎÍÍ---õöö– óòò¤‡l—ÏÉÉY¾|y\\܃>hY)„¸pá‚Ú P‡þ§ãIHH0™L»ví’KÌfsZZšŸŸ_TT”íòÞÞÞ_|ñņ ¬ÊÏœ9#„hß¾½Ú P‡þƒãˆ#\\\.\(×(„HII)..>|x“&M¤’ëׯçåå !‚ƒƒFãîÝ»wîÜ)ÿ‘ãǯ^½ÚËË+&&Fí¨Ã 2¬oË—/ONNnÙ²eß¾}óóóÓÓÓ;wî¼|ùryšž-[¶Lž<9<<|óæÍBˆ#GŽŒ5êÖ­[QQQ­Zµºxñâþýû…³gÏ~øá‡oûrF£‘³ªÐ1§ÝÖëçÇŒ7.00pãÆ[¶l 3fLRRR 'GwíÚõ«¯¾š?þÑ£G³²²BBBî¿ÿþ‰'†‡‡«ÝÕ8ňc#sÚ_!8 §ÝÖëÿGØÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ˆ³ÇuëÖ1"**ªOŸ>3f̸råŠòçž;w®{÷îS§NU»ÎËh4ª]]¡?íŽ.µ;ºÔ¾èOØ‹SǹsçΜ9óäÉ“111^^^6l?~|yy¹’çšÍæ—_~ùÚµkj7@eúŽÙÙÙ)))ÁÁÁÛ¶mKIIÙ¾}ûرc92gÎ%Oÿûßÿ¾oß>µ >ýÇÔÔÔÊÊʤ¤¤   ©dúôé>>>[·n­¬¬¬ù¹999sçÎíÔ©“ÚPŸþƒcFF†‹‹K||¼\âêêwéÒ¥ÔðÄŠŠŠiÓ¦ùùùMŸ>]íF¨OçÁÑl6çææúûûûûû[–GDD! jxî‚ ²²²Þ{ï=oooµÛ >7µ+аÊÊÊL&“¯¯¯U¹âòåËÕ=ñСCË–-3fLïÞ½333kûºœ¿fwt©}ÑŸvG—Ú]j_ô'ìBçÁQ:uÚÓÓÓªÜËËKQRRRݳ¦M›Öºuë)S¦ÔáE³³³Õn7€ýé'8VTT,[¶L¾ëêê:~üx___ƒÁPVVfµ°4½Ž4îh+99¹°°pÍš5îîîj7 @+ôoݺ5oÞ<ùn³fÍÆïæææããc;²XZZ*„ϳ¶´oß¾5kÖ<÷Üs÷ÜsÚmÐýGww÷*÷çææ–––Zžã’——'=d»|NNŽbñâÅ‹/¶,ÿòË/¿üòËðððÍ›7«ÝVè'8V'!!!;;{×®]=ôTb6›ÓÒÒüüü¢¢¢l—oÛ¶­¼¤¤¤¤d÷îÝaaaQQQ!!!j7@³Ù¬vÖ¹sçÚµk·nÝ:霘¥K—~ôÑGO?ý´|ùéëׯ_¼x±I“&­Zµ²ý ™™™Ã† ˜ššzÏ=÷Ø>J'+T^^þù矯_¿¾°°°E‹ãÆëÓ§Õbô§rW¯^7oÞþýû »té2iÒ¤:X-F—Ö͹sç `{eWºT¡GyäÇ´* سge ýY+?þøãÒ¥K333¯]»f4'MšÔ³gO«eœ­K™Ü>æÎ»dÉOOÏèèèüüüÓ§OwíÚuÅŠîîîjWÍÁ¼õÖ[ÿøÇ?ª Žt²B£G>tèO÷îÝoܸ‘‘‘qëÖ­çŸ~âĉòbô§r¥¥¥ƒ *** ?þüÁƒÝÜÜ>ÿüó.]ºÈ‹Ñ¥uc6›ÇŽ»oß¾Áƒ[GºT¹=zܼy³]»v–…¾¾¾ÿûßå»ôg­ìܹóù矯¬¬¼ûî»}||öìÙSQQññÇ0@^ƻԌz;~üx§Núöí{á©äwÞ‰ˆˆøë_ÿªvÕFIIIFFÆë¯¿qèÐ!«èdåV¯^1räȲ²2©äĉ=zô¸ë®»Ž;&•Пµ"uÎG}$—lذ!""â±Ç“KèÒ:[¾|¹ôÁ饗,ËéRåJJJ"""^xá…–¡?kåêÕ«ÑÑÑ÷ÜsÏþýû¥’ÇwéÒ¥wïÞ&“I*qÎ.åG;HMM­¬¬LJJ ’J¦OŸîãã³uëÖÊÊJµkçG½víÚê “•Û¶m›âÕW_•ò†‡‡O˜0Ád2É;­èÏZùá‡ÜÝÝÿüç?Ë%Æ ÉÌÌ4™LR ]Z7999sçÎíÔ©“íCt©rgΜBX 7Z¡?keÆ ¥¥¥&LèÞ½»TÒµk×|°¸¸X>$À9»”àh...ñññr‰««k\\Ü¥K—8 víìY³/^¼xñâÞ½{W¹¬\^^ž§§gdd¤eaxx¸¢  @ºKÖŠ¯¯ï€š7onYجY³›7oÞ¼ySºK—ÖAEEÅ´iÓüüü¦OŸnû(]ª\~~¾¢mÛ¶5,CÖÊ÷ßo0† bY8{öìììlùH*çìRNŽ©/³Ùœ››ëïïïïïoY!„(((ˆŽŽV»Ž 66VºñÝwßÙ>J'×ÊÒ¥KÝܬ?Ú™™™BˆÖ­[ ú³öV­ZeU’‘‘qæÌ™nݺIútiÝ,X° ++kùòåÞÞÞVÑ¥µ"ÇóçÏ;6++ËÃãsçÎ&L#ýY[Gõóó Ù¿ÿÁƒ¯^½Ú©S§Ê{rœ¶K ŽõUVVf2™|}}­Ê}||„—/_V»‚z@'×JçέJÒÓÓSRRš5k&ýz¦?ëìàÁƒ6lÈËË;xð`›6m’““¥rº´:´lÙ²1cÆôîÝ[úac‰.­igÂüùóÛ·oß«W¯³gÏ~÷Ýwiiio¾ùæ£>*èÏZºyóæÏ?ÿ|çw¾ùæ›kÖ¬‘Ë[·n=oÞ<é”8§íR‚c}•—— !<==­Ê½¼¼„%%%jWPèä:3™L«W¯ž={¶ÉdúðÃýYÙÙÙëׯ7›ÍBˆÈÈȦM›Jåtim•——O›6­uëÖS¦L©nA—*vþüyww÷_|qìØ±RÉþóŸ &¼ûî»±±±aaaôg­üüóÏBˆÜÜÜ¢¢¢äääøøø7n¬_¿~Ñ¢E/¼ðÂæÍ›ÝÝݶK9Ʊ¾|}} CYY™Uùµk×į¿Ó õA'×ÖÍ›7gÍšõÄOœ;wnÒ¤I[·nµ<ëˆþ¬ƒÁ8nܸÇ{ì§Ÿ~Ú¾}» Kkiß¾}kÖ¬yöÙg«œç_B—Ö_=„'Nœôg-yzz6oÞÜÝݽÿþ–åB?~\8q—í 88øÒ¥KÒº"ËËË“R»v:A'+WYY9eÊ”+V$$$ìØ±ã/ù‹í ý©\NNÎ+¯¼²uëV«ré¼õ .HwéRårrr„‹/6þjذaBˆ/¿üÒh4>üðÃÒbt©Bf³Ùd2ÙÎÿâêê*„hÑ¢…t—þ¬•   &Mš ËBé»´¢¢Bºëœ]Jp´ƒ„„“É´k×.¹Äl6§¥¥ùùùEEE©]; “•[¹råŽ;FµhÑ¢ê~õÒŸÊy{{ñÅ6l°*—fÎkß¾½t—.U®mÛ¶ý–4¯BXXØC='-F—*”ŸŸß¹sç'žxªüàÁƒB£Ñ(Ý¥?k¥ÿþ¥¥¥Òx­LšdGžvÔI»TíÈõàìÙ³:uúýïÿóÏ?K%K–,‰ˆˆ˜={¶ÚUs<¯¾új•WŽ¡“ª¬¬8p`÷îÝËËËkXŒþ¬•ÄÄD£Ñøí·ßÊ%YYY÷Þ{ï½÷Þ[TT$•Ð¥õqôèQÛ+ÇÐ¥Ê92"""55U.9pà@·nÝâããå+HÑŸµrìØ±ˆˆˆ#F\ºtI*9räHTTTLLLqq±Tâœ]ʵªícùòåÉÉÉ-[¶ìÛ·o~~~zzzçΗ/_n{¢>j6sæLé‚ñ¶?ÑÉJ\¼x±oß¾îîî;v´}tèСcÆŒ‘nÓŸÊ9rdÔ¨Q·nÝŠŠŠjÕªÕÅ‹÷ïß/„˜={¶¼_UÐ¥õ™™9lØ0ÛkUÓ¥ ?~ü©§ž*..ŽŒŒìСÃÙ³g:äáá±hÑ¢ûî»O^Œþ¬•¥K—~ôÑG>>>ÑÑÑeeeƒáƒ>xðÁåeœ°K]ß|óMµë QQQíÚµ»páÂîÝ»ÝÜÜ|ðÁäädÛ)mq[;wîK†þT.88ø¡‡º|ùr~~þ‘#G Ã}÷Ý÷ÑGõêÕËr1º´ÎŠŠŠ>ÿüs£Ñxÿý÷[–Ó¥ $&&^¹råĉGmÖ¬Y||üüùóïºë.ËÅèÏZ‰ŽŽ ;uêÔÑ£GùåéSß³gOËeœ°Kq€"œEŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽ4dÏž=3f̸ÿþû»uëvï½÷>ðÀ¯½öÚ¾}ûl—œ:uªÑhüá‡Ô®²ý-\¸Ðh4®^½Z튀57µ+Bqùòå—^ziÏž=ÒÝæÍ›ß¼yóôéÓ§OŸNMM0`@rr²···ÚÕl»wï6™LýúõS»"pGê»|ùò£>ZPPàîîþüóÏÇÆÆvìØ±²²2'''--mñâÅ;wî5jÔÚµk½¼¼Ô®¬ý½ôÒK¥¥¥ÇŽ“îöïß?  {÷îj× ¬¨oÚ´i;v\´hQûöí¥BWW×Î;wîܹÿþ'NÌÉÉyóÍ7çÌ™£ve\ddddd¤Úµ€*pŒ#•íÛ·o×®]ƒáý÷ß—S£¥N:½õÖ[BˆÍ›7çää¨]_­3™L·nÝR»ô‰à@e6lB <¸k×®Õ-Û·o_³Ù,-li÷îÝ/¼ðB\\\\\ÜŸÿüçï¿ÿÞj³gϾñƃ êÖ­[||üøñã322¬–Ù³gÏóÏ??pàÀ˜˜˜±cÇ.\¸Ð2{I'âœ;wîСCÇïÚµkaaáÌ™3Fã|`õ§~üñG£ÑØ»w !DqqñG}4hР{ï½÷Þ{ï}衇Þÿý .H Ïž=Ûh4^¹rÅd2ƨ¨(!IJeËlOŽÙ²eË„ úõëwß}÷=ù䓟|ò‰Éd²ªaaaaJJJ¯^½ºtéýøãóÍ7µí ¨Á€ÊÒÓÓ…ñññ5/6`À!ÄÞ½{- 7mÚôôÓOïØ±£yóæW¯^ݹsçøñãçÏŸ//“““˜˜¸víÚK—.uìØÑl6§¥¥ýñܹs§¼Ìœ9sžzê©íÛ·WTTíß¿Á‚cÆŒ¹té’åkeee=ùä“Gýå—_*++…Û·o·ªçæÍ›…C† qss+..=zôÒ¥KÏ;צM›V­Z|úé§#G޼råŠ"::ú‰'žhÖ¬™Á`xâ‰'FeÛp³ÙüòË/Ož<ù»ï¾3›Í>>>ééé³gÏ=z´ôGdK—.ýðÛ4iÒ«W/ŸƒNœ8qëÖ­Ê»nà ꩨ¨0YYY5/ùŸÿü'"""::ZºûÒK/EDDDDD<÷Üs%%%f³ùÖ­[ûÛßîºë®ˆˆˆÃ‡K‹?>""bîܹRÉgŸ}1xð`éîÎ;#""(?¥¨¨è™gž‰ˆˆxûí·-_«wïÞcƌٳgOQQ‘Ùl6™L±±±™™™r%M&Sß¾}#""rrrÌfó’%K"""&L˜píÚ5i’’’Ñ£GGDD¬[·N~VÏž=ïºë.ùnJJJDDĪU«¤»6lˆˆˆˆ=pà€TrîܹG}4""â­·Þ²ê9sæ˜L&©&ï¾ûnDDÄã?®°+à¶q &)Q !ÂÂÂj^²U«VBˆÒÒÒÊÊJ¹0,,lþüùÒ4=nnnO=õÔèÑ£…‹-’8~ü¸bĈ®®®RÉÈ‘#Ÿ{î¹Jw“““…óæÍ“w”Ì›7/88xýúõW¯^•_ËÓÓsÙ²e½{÷B¸¸¸<ôÐCâ·ƒŽû÷ï¿páBTTÔwÞ)„¨¨¨èß¿ÿK/½äéé)-àíí- Uæçç+ì¢yóæ !fÍš%íÈB„††.X° Y³fk×®ýé§Ÿä%»ví:eÊ©zÏ=÷œâôéÓ »n‹à@M^^^ƒAqîÜ¹š—”Ž tww—‚‘dĈnn¿™bìØ±BˆÌÌLé®à¦OŸ¾oß>é Ã&Mš¼ð “&MB\¹r%//¯C‡Vg1{xxôîÝ»¼¼üèÑ£ráàÁƒ›7on¹˜å}Áâ×ýÔÇ—îNœ8qÉ’%;v”(**úꫯ”÷ÏÅ‹/\¸gYo2™²²²äÂ|ÐrWWW)—ß¶+@ ¦ã &WW×àààŸ~úéÔ©S:uªaÉÜÜ\!DË–-- ;tè`µX«V­š5kVTTtýúuOOÏ·Þz+))iß¾}üã›7oÞ¹sçž={Þÿý;wBœ:uJúßh4Vù¢çÏŸ—o·iÓÆêÑÈÈÈvíÚ>}:;;Ûh4VTTlÛ¶ÍÝÝ}РAò2gÏžýþûï÷ïß_PPpæÌ«£oK/l×®íCmÛ¶¿¹”e«SsW€G*ëÙ³ç¿þõ¯ï¿ÿÞ2oÙÚµk—´°e¡4ZiUâêêêââÒ¤I!D«V­Ö­[wðàÁï¿ÿ~ïÞ½G=pàÀÇüÈ#¼óÎ;7oÞB´lÙ²ºÝµ–;Ы¼nMbbâ‚ ¶mÛf4wíÚURR2lØ0yÇôš5kÞy犊Š6mÚDGG8°K—.yyyýë_vŽ<^hKÚãlyöwÓ¦MkøS5w…mO€-‚#•=òÈ#ÿú׿6nÜ8f̘.]ºT¹ÌÞ½{¥™eyäËò¼¼<«%ÏŸ?_VVÖºuk9E i*!ÄÍ›7wíÚõÊ+¯¬_¿~À€ÒËyxx̘1£n•—ƒã /¼ 탖÷S_»víí·ßnÚ´éÒ¥Kcccå§X•x[ÒXc•DJƒ‘¶c®5¨¡+êÖœ Ç8PY=bccÍfóôéÓ«LH9993gÎB<ôÐCVûUׯ_o9¡båÊ•B)={vÀ€>ú¨ühÓ¦M¤“Z ƒƒƒOž<))1™LÇïÛ·oqqqÍ•oÛ¶m—.]N:õã?~ûí·mÛ¶ŽŽ–úñÇM&Ó½÷Þk™ů'©($Õðܹs»wï¶,/**úî»ï\]]ïºë.%ç¶]a‡7€ 8Pß|ЪU«œœœ!C†¬X±âÔ©S•••&“)''gÙ²eÇ?sæLxx¸íÞ‚‚‚_|ñúõëBˆÊÊÊ+V|öÙgnnn'NB„††þüóχþÛßþ&Ÿ‹}úôii’pé4ê_|±²²òÅ_”Ï2¹víÚ+¯¼rôèÑÈÈHéêšI§È¼úê«eee–¢ÁÁÁBˆãÇËéÓd2­]»vÕªUBˆòòrË?RYYYVVVåߟÿÔÔÔ)S¦üðófÍB¸»»›Íæ7nH $$$$''{yyY=Ñh4nÛ¶í믿nß¾ýÙ³gËËËÝÜÜfΜ)8âââ2cÆŒéÓ§ðÁŸ|òI«V­ÊÊÊNžïWÌœ{fî¹g†æë¹÷œ«Òh4xÙ @Å@p€^ŽÐ Áz!8@/Gè…àˆ #""Bõ8¥´÷iÓ¦)»(Ö —-[¦¼°uëÖeÜc³fÍRvÝ£GB+¬\¹R©P­Zµ›7o¬àèè¨T˜0aB‰4IboTú+¨]»v«V­Þzë­Ë—/?ªþÞ½{ûþ·oßž={v—.]ž}öÙš5kÖ©S§uëÖŸ~úi\\œìC¯ê~ÿý÷ÿýïÿûßÿ®_¿.»-¨ÒŽ@ÕÕ«W/CCC!ăvíÚ•okdddBB‚òøµ×^“ÝXåÎ;§Núþûï7n¼{÷î'{“={ö8::NžûlŸ>}N:U°1‰‰‰}ûöµ²²²³³ëÝ»÷ñãÇõé+íÙêk×®8qB[ž™™ùçŸ*uƒ£>‡¬{€<˜>}z½zõ¦OŸ.qcqßSŸN»víÚ˜1c<==ÍÌÌ{ôè±mÛ¶‚‡¯gßê*îwæ±»(¢»ôgbb²hÑ¢jÕª)OÏŸ?_¬— !Nž<©›ï¯cذaÚ7ÔÖìÕ«—¶ðQCq¯¾úª¶ÎÒ¥K•B|oåååÕ¤I“|¯ Ô=½{÷ÚÚÚæ«£R©ÆŽ«[íøñãùNÓ×®]Û××WyüÒK/ÑW]»vUªÍ˜1C[¸uëV¥ÐÙÙY·²>‡¬ÛWƒVO:µÐÞ(î{êÓi»ví²±±)ø†#FŒx‚¾ÍGÿ»(¢»ŠûW  !&MšTÜ¿šnݺ)Õºuë–——§»éîÝ»þõàÁƒ"ÞDÏž?vìXÁ®B888}úx{{k«­^½ºX}[þß=wQDwë¯ ==]­Vç{sýÿj>üðCmÍ–-[Ο?ÿ¯¿þÊÌÌÔÿ/TÏžÏÌÌÔ~?kÖ¬Ù½{w___ccc¥ÄÎÎ.##£`W<ÿüóÚ¿b­&MšÔ­[WûÔÛÛ»¸Ó“µ§Dþrõ|ÃÔÔÔ˜˜m“~üñǘ˜%ÜkßÁÈÈè•W^=zô /¼ ”FFFêÿñz"8¢ÂÐý |íxƒF£ùþûïµ?#GŽÔþ6ß¾}[[G÷Ü={ö¼wïžF£IJJruuU ===óÕÔÇ¡C‡*%ãÆÓ¾a«V­”Â/¾øB)):8.\¸P)ŒŒŒÔþ`h‡ &Ož¬”莽-\¸P)¬_¿¾RòÝwß)%µk× S ƒ‚‚´{):8^¿~] *•*%%E)tvvV^{êÔ)mM=Y÷ÝÜÜÖ¬Yo<Á{êÙi 4¸~ýz¾ÂŽ;«o Òÿ;£ç.Šè®¢ÿ ´A0'''22òå—_Ön:yòdõ •ššZpÆ’A“&Mü믿êþáJÏžŸ9s¦RbjjªMZgÏžÕŽ)jÿ­¢Û3üñ‡F£ÉÎÎîܹ³¶ð믿Öh4¹¹¹Ã‡WJ¬¬¬Šû1=Y{Jä/Wÿ7Ôh4ÚÔ«û9zzz*…Ÿ}ö™¶P{Aûž@ "8¢Â(npÌËËkß¾}¾ ›7oÖ}Oíÿ¸ µå›6mRÊU*UVV–¦°à¸cÇŽ5kÖ¬Y³FûÂ[·niÏ7ilŠŽÍš5ÓmŒö÷~ø¡RÒ²eK¥dçÎÚjwîÜÑ,ýý÷ßF{˜“'OÖV»ÿ¾ö¤aÑÁQ£Ñøøø(5üñGF¥\¥R¹»»÷èÑÃßß¿Ðk§GpD…´víZí YÜÜܺuëöÇ(OuÏÞæ“of‰±±±™™Ù­[·„W¯^-48fggôÑGß~û탔###›k×®éyÚŸ½BŸfddhçQ>Jjjê;w´{ÌwúßG' àÝwßÍÍÍݵk׃´Á1ß´•âr¾ …*î{>¶Ó”OMannþ¨êÙ·EW(ú;S¯^½âîBŸîÒ¥ûÏ'CCC77·víÚ3F÷ŸOOÀÐа}ûöÚa줤¤9sæ,Z´Hq÷îÝÕ«WO™2¥Ð.Õ³çµÕòצÃ{÷¤ènÍ÷)+t“\û1=}{žì/·ˆw(ôx 5sæÌŒŒŒåË—+Ë i4šS§N:ujÖ¬Y:tظq£öRK ¤Q™=zT›„3gÎôòò*´fJJŠîÓ¬¬,íJù&šhÍš5KY¦ÄÙÙyüøñžžžnnnï¼óΊ+J¤ñ¦¦¦µk×VÆÞvíÚ¥½èP—µµµ‘‘QõêÕ³³³…×®]kذ¡v«öñ±”©û÷ï¿yóæÞ½{<(„pqqÉ7äVÜCÖç÷¯d»±víÚÆÆÆ™™™Bˆ´´4''§§éÛ¢÷Uôwæ v¡\PèùÏ'}xðàYææææææFFFjµZû#­ÜF¡Ñht—µ{,íJà“&Mºwïž(pžº”¹dßS¥Riû=ª-¿zõjÛ¶mÛ¶mëíí­|%ôéÛ¢÷õØïÌÓï¢Ì~úé§#FŒ1bD¡‘];¥÷Qú÷¼vzJ¾»\jŸ6jÔHY[´D<öc*ö”ÍGÿþý””””””û÷ï¿öÚkkÖ¬¹víÚîÝ»µ'©µK±%ˆàˆJëË/¿Tnêjjjª]Nyüøñׯ_/X9;;{ôèÑʸ]rròĉ•r???íõìºnß¾­=ÙtóæMåÁÉ“'ŸàŽEèÒ¥‹ò 88Xóïm]6nÜøÌ3ÏXYY9::*£ʦo¿ýV»ÂðçŸþÏ?ÿ迯޽{+çþΜ9£”ä;O]‡\ïÙ©S'åÁ—_~yõêUåñ‚ ”ëöjÔ¨¡¦ž}[„Ç~gž~eI;?wîܵk×*+ä !½Ç~L¥ÑžRýè•cBDFFÚÙÙÙÙÙÕ©S'66VahhØ¥Kíó"®ž§ªQ! 4H;’Ï’%Kºté§]ecüøñ~øáªU«.]ºtãÆ>ø Ð)#›6mrrrjÒ¤ÉñãÇ•“YŸ|òI¡{111111Q®d>|øÏ?ÿ¬R©vìØQðîOã£>Z¾|yzzúæÍ›;wîÜ©S§ˆˆí%›cÇŽU.¢Ÿ0aÂO?ý¤ÑhnÞ¼Ù¶mÛ^xáúõëŽwˆ­­m‡”“ÔBˆÆë®§XJ‡\ï9mÚ´ŒŒŒ‹/¶hÑÂÇÇ'%%E™ú#„x÷Ýw‹Õ·E+ú;S"»(Aú«Y»vm›6mf̘ñûï¿§¥¥Ý¿àÀAAAÎÎÎ*•*&&F¹¡¢k×®ší¡Ï+Œ ·nÝjß¾½Z­Þ³gr+”:uêL›6­d¼è©4ÚS½¹¹¹ò—òé§ŸFDDŒ3æ¹çž³µµMIIyðàAûöí{öìiii¯½Ÿg@@@Éö$ wŽAÅ¡ÏB$âßw´·Á°²²RÖïÕ.s-tÖÈÐ.‡Ñ±cÇ|sE —.]ªÝ{Áåx žÉuvvÖ®x}úìÞ½ûí·ß.b/ ,hÞ¼¹ø÷ž|ðÁéÓ§µËýüüóÏÚ%9ž†ŸŸßßÿ=bĈ–-[;;;}úhgªzÀÒ8äÒxÏ€€€sçνýöÛ­[·611qttìÙ³çŸþ©½íd±úöQôùÎ<å.ÊX§Nâââ¾ûî;___77·ZµjY[[·nÝúõ×_ß¿ÿÁƒµwczÊžoÓ¦ÍÙ³g§M›æããckkkeeÕ¹sç)S¦œ;w®àÚ«OIŸ©4ÚSâý‚  `ccS«V­fÍš)ª/¾øbLLÌ´iÓZ·nmoo_­Z5 ‹öíÛ/_¾|ß¾}5jÔ(Ù΄*Í¿—_UдiÓ>ûì3!D¯^½~ûí·â¾<''ç÷ßåæ”Ð‰'öïßÿöÛo›šš–Ò.JãË[7í)¿3(|L@)áGàÉU«V­\eíD™ tÈå­©jè…འ&Ç@/Œ8@/Gè…འ‚#ôBp€^ŽÐ Áz!8@/Gè…འ‚#ôRiƒc\\œ««ëßÿ]èÖõë׺»»{zzNž<9==ýÉêT•68®^½úQ›,X0uêÔØØØÖ­[›˜˜lܸñ­·ÞÊÊÊ*n€*¥²ÇŒŒŒ'N|üñÇ?ýôS¡¢¢¢‚ƒƒmmmwìØ¼sçÎAƒ={vþüùŪPÕT¶àèçç7`À€_~ùåQÖ­[———dcc£”Lš4ÉÌÌlûöíyyyúרj*[pœ5kÖâÅ‹/^Ü®]»B+?~ÜÀÀÀËËK[¢V«;v옖–vêÔ)ýëT5•-8¶oßÞÇÇÇÇǧnݺ·j4š˜˜KKKKKKÝr!Ä¥K—ô¬ª(•ê?ÿU1†²P¦233sssÍÍÍó•›™™ !nܸ¡g¢¹ººÊ>P@9uá‚ö±«‹‹ìæ”âÑUÊcŒºpA{DQQQB¡R Fv»ÊNÕ ŽÊ´èZµjå+711BܺuKÏ:õÿ_¦JÊÕÕµr`¥Ç'XÑUæO°àøM%ûIþ7d(b”r¼•æ ‹P•êU*¡Ñ({‰4š*•«Vp477W©T™™™ùÊïܹ#þSÔ§È¡R !¢„NÀªL?W…þúVšŸäBó“ò´r㣎¢Òc‡P•²ce»Æ±h†††fffG 322„Êj}ê€Ê/“Fãêâ¢<øÿŸ«Ê¡ˆØQi®$+:vTh•>6UúÔ[Õ ŽB[[Û´´4%j]¼xQÙ¤åQ¾‹Ö+úq¾ãªÄ¹ªè_åJðƒMì¨Ḋ࿪\pôññÉÍÍ=tè¶D£Ñ}ªU«¦åˆ62Äïqå ýs,éØuáÂã£IúOŸÆ—åü7äSþ§| ó•TIUkrŒÂÞÞ~„ sçÎõ÷÷ïСCBBBXXXÓ¦Mß|óÍbÕ©Ê*ítÎ*£Ê}‚ýºõ/ä,ú+DtÖ§‘ä)¿?ú|+×·´² þUå‚£bذaÖÖÖ›7oÞ¶m[:u¤¬¶S¬:P”L9z¾Õ£ª•ÿ_ëÇFŠJŸ98Àrî±ÿþ¬è¨7•¦jgYªÌK¬¡¢«”‹äé9ÔQöJ°o+}®â+ú>ö*Ýæÿ­¯¨Ÿª8âTEZƒ·ÂýÏ®ÐøØ\XÑÏV£¢«"ßÀGcå8öG}ˆ•i…s=ùòG¥ùA9_·¶XÃOö³$ýQ4íÜbGÅUèBß•æè´Çøïÿ¯®Ã_iŽN?UnV5ðH'âU‘5Ji¾j)ͬšŠþŒ*M®*x˜ÚoHå ý¿JÁ陋ï+Ùщ‡s«®Ã_Å0â<ú_•æNY%åé‡ñÄ “«|ù²ce:´ÊzDUó«0‚# „¨Ôÿ§{ìëù¡ÜöR'Ü+S´ÒþK&_I%S) ¨,ŽÀ㔇«O|B¹ˆVšQÕG ÈUôã*ôH@‚#ª¼’Êep5䓵³R†§BU‘9‡àü×£òŸ> ¾”OågÄ´ÌŽP:Ž€B'VâÕ@Š8öJ|t€’CpDÕ¦äÅJŸœ;w=Qõ¼®èðT9beÕ™;(5GTUùd´î3wð¤ލìŠÎ‹º› fÇÊ´`¾ƒ øލ¤ôÉ‹ù¼Ý GT"O–¤À£Qñ=Áà"(>‚#*,ò"e‹àˆŠ†¼€$GTäEd#8¢cÅAÊ‚#Ê(—Ž(7È‹”oGÈF^ ‚ 8B.^ "8¢8žòŽ| .P‘¡7•*à+Xò¨*È‹TdGè§ÐŒ¨Ñü(,4’¨\ŽÐC#‹Ú쨭©» T"G<ÎcÏGëfGÂ"•ÁOñEª‚#Нàøb¾ÙÖ 2"8â‰0¾@Õc »¨Žxœ|ó¦ Òs5GPÁQLÄDª*®q„µÐw«€J‡àý(éPIЬÚ@•DpDq(CäEª$®q€^ŽÐ ÁÅÁyjª0‚#ô"rÌÍ›7ÃÃÓ““ííí===SSS­¬¬d7 ùÉ ŽiiiK–,Ù°aCVV–bðàÁžžžM›6={¶………ìÎÀCÒNUçääŒ5jõêÕ¦¦¦Úr›ýû÷÷ë×OI“('¤ÇeË–9s¦S§N;vì˜3g޶|ݺu¯¼òJ|||HHˆìÎÀCÒ‚ã±cÇÔjõçŸnll¬[®V«§OŸnll¼sçNÙ€‡¤ÇÈÈH''§BçÁ˜˜˜8;;'$$ÈìÄZ<TmÒ‚£™™ÙÝ»wµ5==½víÚ²Ú€‚¤G77·äää³gÏÜ™””Ô¤I™€ÿ’ûöí«R©Æ¡[$„èÕ«—ä¾€ië8zzzŽ1âûï¿ïÝ»·³³³bÏž=GމÍËË èÞ½»ìÎÀC2?~|«V­æÎ'„HJJBX[[;VweG”’o9èííííížž—íììlkk+»OP¦TPåÉ¿Wµ¢U«V²[€¢È ŽÛ·o ‰×üÒK/ !Ž?n`` ;Þ©V«;vì¸uëÖS§NyxxÈê4‰¤Çyóæ•ýN•Á‚—*fgg !®]»&„Ðh4111–––ù¦Ë¸¸¸!.]ºDpUS¹¸WuA'N<~üø¾}ûJömííík×®~íÚ5åâE!DNNή]»„ׯ_Bdffæææš››ç{­²Jù7ôÙQÁñx@›óÔ€ªMŸë몙Á1==}ïÞ½ ùʳ²²vïÞ]÷!T©To¾ùæW_}5räÈéÓ§»¸¸ÄÇÇùå—111Bˆ{÷î‰Ç#kÕª•ïµ&&&Bˆ[·né³£ ÀüY¯²QRZpLIIéß¿RRÒ£* 0 4ö;bĈøøøM›6½öÚkJ‰½½ýˆ#–/_®ÌŒ177W©T™™™ù^xçÎñï¸#@$-8®Zµ*))©uëÖ~~~üñÇÑ£G§OŸnddtþüù5kÖ 0`Ê”)¥±_µZ={öìÀÀÀãǧ¦¦6iÒ¤sçΛ6mB<óÌ3BCCC33³‚#‹Bí n€ªFZpÕªU“Øc0¥üKÚ©j;;»øøø»wï*ó—Nœ8¡ÝªR©._¾\û>|øü±qãÆóçÏ;88üý÷ßÉÉÉ/¾øâ›o¾©­coo?a„¹sçúûûwèÐ!!!!,,¬iÓ¦ºuªi#Ž]ºtÉÊÊ?~|ll¬ÂÃÃ#11144T‘ššzòäɺuë–Æ~MLL~ùå—þýûß¼yóÏ?ÿ´´´;vìòåËó­þ3lذùóç;99m󦒮 )¸¸#@Õ!í^Õ©©© ˆ÷öö^ºtiRRR·nݪU«Ö²eËóçϧ¥¥½ÿþûï¾û®ìþy•êþ•œª €Jõ[_ÒF­¬¬Ö®];vìXe.sݺu§Nš}øðá´´4ŸaÆÉî<$mıPwîÜ9w­­³³³ì¶<¹Jõ¯F( RýÖ‡´Gww÷yóæå+411iÛ¶­³³óèÑ£»wï.¹o CZpÌÌÌÌÉÉyÔ¦ÄÄÄ"îFˆ2Âp#ÐQ¦ËñÜÃÃCöá@_Ò‚ã‡~(ûØP ÒfU+80sæÌk×®)O÷ìÙ3f̘mÛ¶Éî0¥ä'-8æååM˜0áí·ßþé§ŸîÝ»§Þ¾}{ÇŽ|ðÁøñãËÕÊäÿ÷¿ÿmÙ²ÅÖÖvöìÙvvvJ¡¯¯ïÂ… ëÖ­»uëÖ-[¶Èî<$-8þúë¯+V¬èÝ»wõêÕ•Â5jtëÖmÕªU†††¿þú«ìÎÀCÒ‚c\\œ““S£F njРÁ³Ï>'³cð_Ò‚cÍš5µ—6tïÞ=µZ-«m(HZplÞ¼yRRRdddÁMÑÑщ‰‰nnn2;¦ŠcJ5(@ZpìÝ»·bÔ¨QGŽÑ-?yòä»ï¾«Ñhüýýew’¶¸Ï AƒBBB†jooïààP­ZµÄÄÄÄÄD!„ŸŸŸŸŸŸìÎÀCÒ‚£bÊ”)mÚ´™?~||ü•+W”B++«   >}úÈîü‡Ìà(„èÚµk×®]oܸqñâÅû÷ï;99ÙÙÙ©T*ÙÝ€ü$G!ÄÕ«W###rrr²²²4½½½ìF ?™Á1==}áÂ…¿üòKnn®¶P­V÷íÛ7((ÈÌÌLvçà!iÁ177wäÈ‘§OŸ®Q£F—.]4h V«ããã÷ïßÿÓO?EFF®]»–¥å`-PiÁñ‡~8}út‹-.\hcc£-¿~ýúèÑ£OŸ>ýÃ? >\vÿàÿI[ÇñСC*•ê믿ÖMBkkëo¾ùÆÀÀàÏ?ÿ”Ý9xHZp<þ|ƒ êÔ©Sp“­­í³Ï>[èMe ‹´àX£F¬¬¬GmÍÊÊ222’Õ6$-86iÒ$%%åôéÓ7…‡‡_¾|¹qãÆ2;ÿ%-8*·¢~ÿý÷ó]ËúÞ{ï !¸å L© mVµ¯¯ïÁƒ7oÞüæ›oÖ©SÇÑÑQ‘ Ü{ÐÏϯgÏž²;É\|Μ9/¼ðÂ×_œœœœœ¬Z[[ðÁ²{ÿ¡Ò”ƒó’×®]‹×h4ŽŽŽ¶¶¶²›ó´\]]£¢¢d·âIqª€Ç©Ø¿õOAþ½ª…666ùVs@y#mr *‚#tpž<Áz!8@/Gè…à½È\Žgûöí!!!Ê Ž…V “Ø<è’÷ìÙ¤vCÙ8Vï_! 7Pï·¾„09z!8@/Gè…འi·”(;;ûÇܾ}ûÅ‹-,,š7oþÞ{ï)Ë’ëZ¿~ýºuëbbbŒ;uê4a Ùm/L©ú‘oÞ¼žœœlooïé陚šjeeUz»ËÍÍ>¾4öëêêºzõê!C† 2D[8pàÀÉ“'+333sssÍÍÍó½ÐÌÌLüw¨²è½ä+)§w´dJ5Sðg½Ê’ÍÌÌîÞ½û¨­éééµk×.ýfddÌ™3çîÝ»M›6mÞ¼yZZZhhèæÍ›_|ñÅ®]» !”k+kÕª•ï…&&&Bˆ[·né³—r@ñüY¯²QRÚ©j77·äää³gÏÜ™””Ô¤I“ÒØï‡~xòäÉI“&mÚ´iæÌ™‹-Ú¶m[­Zµ>øàƒ¸¸8!„¹¹¹J¥ÊÌÌÌ÷Â;wîˆÇª iÁ±oß¾*•jܸqºåAAABˆ^½z•øN¯]»¶ÿþ† :T[hoo?jÔ¨œœœß~ûMahhhffVpd1##C¡g PÕH;Uíéé9bĈï¿ÿ¾wïÞÎÎÎBˆ={ö9r$666///  {÷î%¾Ó´´4!„££c¾r¥ׯ_WžÚÚÚÆÄÄddd(Óe/^T6Éê1¹dÞ«züøñK—.urrRÎ'%%EGG?óÌ3³gÏž={viìÑÑÑQ­VGGGkþ;#D¹v¡aÆÊSŸÜÜÜC‡i+h4šƒZXX¸»»Kì1‰$ßrÐÛÛÛÛÛ;===...;;ÛÙÙ¹T‡ôŒŒŒ:vì¸ÿþo¿ývôèÑBˆèèèÅ‹W¯^ÝÛÛ[©¸téÒE‹uêÔI™œšš:bĈjÕªÉí1YTš*¶Kjjꫯ¾šœœìèèèææ–––vòäɼ¼¼©S§0@[måÊ•sçέ[·n‡ÂÂÂÜÜÜV®\Yp™ž‚\]]+ƬjÖâà‰T˜ßú’&988pààÁƒ#GŽT&ìÙ³gëÖ­Ý»w÷õõ-½fff.]º444ôâÅ‹79rdóæÍóUÛºuëæÍ›Ïž=[§N6mÚ)£Ua¾LGžH…ù­/iÒ‚c^^Þĉ·lÙ"„ؽ{wýúõ…¿ýöÛ¤I“„~~~óæÍS©T²ûçIT˜/Á€'Ra~ëKš´É1ÿûßÿ¶lÙbkk;{öl;;;¥Ð××wáÂ…uëÖݺu«’)PNH Ž¿þú«ÁŠ+z÷î]½zu¥°Fݺu[µj•¡¡á¯¿þ*»sð´àçääÔ¨Q£‚›4hðì³Ï*kô œkÖ¬yïÞ½Gm½wïžZ­–Õ¶* @1I ŽÍ›7OJJŠŒŒ,¸):::11ÑÍÍMfÇ࿤ÇÞ½{ !FuäÈÝò“'O¾ûî»Æßß_vçà!iwŽñññ4hPHHÈСCíííªU«–˜˜˜˜˜(„ðóóóóó“Ý9xHæ-§L™Ò¦M›ùóçÇÇÇ_¹rE)´²² êÓ§ìžÀH¾Wu×®]»vízãÆ‹/Þ¿ßÉÉÉÎή‚®û P¹IŽ KKKKKKÙ­¨J˜R ŠOfpܾ}{HHH||ü£n{&±yÐ%-8îÙ³'((Hy̒埴à¸|ùr!Ä!CFeff&»ðÒ‚cLLL½zõ&Nœh` m-IèONhËÉɹ}û¶ƒƒ© ¢“Û ÌÌÌ¢££óòòd÷ô"'8ªÕê#F¤¦¦.X°@vT=¬Åžˆ´k}}}/]ºÖ£GzõêU¯^=_///¹½-™÷ªVœ={öìÙ³…Ö‰ŠŠ’Õ<ä#-8úûûË>vƒ´à8oÞ<ÙÇ€b(§«áLœ8±sçβ[€‡dÞ«:==}ïÞ½ ùʳ²²vïÞÍ}KSªÀ“’SRRú÷”ô¨  Õ6$-8®Zµ*))©uëÖ~~~üñÇÑ£G§OŸnddtþüù5kÖ 0`Ê”)²;I އªQ£ÆâÅ‹MMM;wîܾ}{''§víÚ !œ?ýôÓ×^{­Q£F²ûÿOÚä˜äädGGGSSS!„µµµ……Exx¸²)00ÐÂÂbÕªU²;ÉœUm`ðpïõë׿xñ¢òX­V»ºº>jUpH!-8ÚÙÙÅÇÇß½{WyêààpâÄ íV•JuùòeÙSé0¥<iÁ±K—.YYYãÇBxxx$&&††† !RSSOžiËñ\¾|911Qöá@_ÒfUûúúÞ¿ÿðáÃVVV²;'mÄQ™[}áÂÙ=½H ŽÓ¦M322Z²dɽ{÷dwBÀŽà©I;Umccóå—_NŸ>Ýßßßßß¿~ýú¦¦¦ùêxyyÉíhI ŽÞÞÞʃÔÔÔ… Z§jÎW(Ÿ¤GÙÇ€bçÍ›'ûØP Ò&Çmâĉ;w–Ý <$mÄQ‘žž¾wïÞ„„„|åYYY»wïV«Õ2;ÿ%-8¦¤¤ôïß?))éQ  «m• kñ€’ -8®Zµ*))©uëÖ~~~üñÇÑ£G§OŸnddtþüù5kÖ 0`Ê”)²;I އªQ£ÆâÅ‹MMM;wîܾ}{''§víÚ !œ?ýôÓ×^{M¹» Êi“c’““•E¿­­­-,,ÂÃÕM«V­’Ý9xHæ¬jƒ‡{¯_¿þÅ‹•ÇjµÚÕÕõìÙ³r»º¤G;;»øøø»wï*ONœ8¡ÝªR©._¾,»sð´àØ¥K—¬¬¬ñãÇÇÆÆ !<<<CCC…©©©'Ož¬[·®ìΩ˜R Jˆ´É1ƒ Ú¹sç¾}û4ÍÒ¥K;vìhhhøÞ{ïµlÙòüùó™™™¾¾¾²;Iq´²²Z»víØ±c›7o.„¨[·îÔ©S³³³>œ––æãã3lØ0Ù€‡TšòtóÎ;çγµµuvv–Ý–'çêê%»ÿâT5%­|ýÖ—¡²qúH›5MLLŒ¥¥¥njB¸¸¸!.]º$»·ävËÁ|"""þøãíÛ·_¹rE)iذaiïôîÝ»‹/nÓ¦M»ví´…™™™¹¹¹æææù*+Sgnܸ¡Ï;œëS5ÿ]@%P6Sx+ÉÁñÂ… üñǶmÛ´g¨íììzöìÙ³gÏB§?—¬U«V¥§§;V·0++K¡Œzê211BܺuKŸw.1‘óÔ”„‚?ëU6JÊ ŽqqqÛ¶mÛ¶m[ll¬RbjjúÒK/ùùùµnݺlÖ¿}ûöÊ•+[·níîî®[nnn®R©233óÕ¿sçŽøwÜ  *Óà˜˜˜¸}ûömÛ¶?^)©Q£†···¿¿Ç޵W–ßÿýîÝ»ù{ÄÐÐÌ̬àÈbFF†BY  *»àøê«¯ž;wNy¬V«_|ñE??¿nݺ<)\6Ö¯_oddôÒK/Üdkk“‘‘ajjª-¼xñ¢²IJk¤+»à¨¤Æçž{ÎÏÏÏ×××ÊÊJâaGEEEDD¼üòË…ÆVŸ¨¨¨C‡½üòËJ‰F£9xð ……E¾óÚUGÙ-Ç3zôè]»v­_¿~РArS£âàÁƒBˆ6mÚº500ÐÀÀ`Ñ¢EÊuBˆàààÔÔÔ>}ú”ñùt€ò£ìFß{ï=ÙûÐáÇ…­Zµ*t«½½ý„ æÎëïïß¡C‡„„„°°°¦M›¾ù曲®7¦T€’V^Öq,K÷îÝ;uꔩ©iKE6ÌÚÚzóæÍÛ¶m«S§ÎÀƒ‚‚”yª¦rqËÁJ¦\܆ˆGJM¹ø­—¡\ÜråÁz!8@/Çʈ @)(»YÕk×®-îK P¦€G+»àøÉ'Ÿ÷%G€ò£ì‚cPPP¾’ÈÈÈ;wªÕêöíÛ;::ªÕê‹/:tèÁƒuêÔ™}BCC·mÛdmmíìì¬R©âââ®]»&„ðóóëÓ§ìÎÀCÒ‚£âË/¿l×®Ý7ß|sýúõëׯ+…uêÔ=zt@@€ìžÀ¨¤Ï\Öh4)))/^444ttt¬b\]]£¢¢¤ížÉ1”2É¿õòH»ÆQëÖ­[111—/_ÎÎζ¶¶fíÆ§Bj¥Fæ©ê´´´%K–lذ!++K1xð`OOÏ€€€¦M›Îž=ÛÂÂBvçà!i#Ž999£FZ½zµ©©©î666û÷ïïׯŸ’&PNH ŽË–-;sæL§NvìØ1gÎmùºuë^y啸øøÙ€‡¤ÇcÇŽ©ÕêÏ?ÿÜØØX·\­VOŸ>ÝØØxçβ;I Ž‘‘‘NNNVVV7™˜˜8;;'$$Èìü—´àhffv÷îÝGmMOO¯]»¶¬¶UTL©¥IZptssKNN>{ölÁM‘‘‘IIIMš4‘Ù1ø/iÁ±oß¾*•jܸqºåAAABˆ^½zIîè¶Ž£§§çˆ#¾ÿþûÞ½{;;; !öìÙsäÈ‘ØØØ¼¼¼€€€îÝ»Ëî<$sðñãÇ·jÕjîܹqqqBˆ¤¤$!„µµõرc¹W5@y#38 !¼½½½½½ÓÓÓãââ²³³mmme÷ !98*,,,Zµj%»(ŠÌà¸}ûöøøxÍ#‘ “ؼ †µx@)“÷ì٣̞B¨ÕjÙý€Ç—/_.„2dȨQ£ÌÌÌd÷CZpŒ‰‰©W¯Þĉ ¤­% ýÉ m999·oßvpp 5Trr›™™Yttt^^žì€^äGµZ=bĈÔÔÔ ÈîJ)Õ ôI»ÆÑ××÷Ò¥KÁÁÁaaa=zô¨W¯^õêÕóÕñòò’Û;Ð’}||”gÏž={öl¡u¢¢¢d5ùH Žþþþ²Å -8Λ7Oö± X z)»ǵk× !Ú´iÓ¨Q#íÓ¢ 0@^Ïà?Tš²ZÆÅÕÕU1sæÌ~ýúiŸ­‚NŽquu-Ó–³e«¬ë˲q=z´¢yóæÊÓñãÇË>vCÙ8VŒ8P¹UÙÇr:9fâĉ;w–Ý <$m9!DzzúÞ½{ò•geeíÞ½[­VËìü—´à˜’’Ò¿ÿ¤¤¤GU`J5@¹"-8®Zµ*))©uëÖ~~~üñÇÑ£G§OŸnddtþüù5kÖ 0`Ê”)²;§"àGPV¤ÇC‡Õ¨QcñâŦ¦¦;wnß¾½““S»ví„ÎÎΟ~úék¯½¦¬ø€ò@Úä˜äädGGGSSS!„µµµ……Exx¸²)00ÐÂÂbÕªU²;ÉœUm`ðpïõë׿xñ¢òX­V»ººž={Vn×@—´àhgg÷î]婃ƒÃ‰'´[U*ÕåË—ew’»té’••5~üøØØX!„‡‡Gbbbhh¨"55õäÉ“uëÖ•Ý9xHÚä˜Aƒíܹsß¾}féÒ¥;v444|ï½÷Z¶lyþüùÌÌL___ÙSî1¥”!i#ŽVVVk×®;v¬r÷êºuëN:5;;ûðáÃiii>>>Æ “Ý9x¨|Ý«úÎ;çγµµuvv–Ý–'Wv÷¯dĪ콪eÞr° “¶mÛÊn QvÁñÀÅ}‰——WvŠRvÁñí·ß.îKªæ 0@ùTvÁÑßß_öÁ>tîܹeË–EDDܹsÇÕÕuôèÑ/¼ðB¾:ëׯ_·n]LLŒ±±q§N&L˜`aa!»áÒ”¯É1ecß¾}ï¿ÿ~^^^óæÍÍÌÌ>üàÁƒ%K–tîÜY[gÁ‚K—.­U«–‡‡GBBB||üsÏ=bddôØ÷/£ f™€$UvrLy ŽÙÙÙ<066.íݺu«K—.999+V¬hÕª•âìÙ³ 055=tèrĨ¨¨^½zY[[oذÁÆÆF1kÖ¬N›6í±» 8P¹UÙà(ó^ÕBˆèèè>øÀÛÛûùçŸwwwïÔ©Ó»ï¾{þüùÒÛãÆ322Þyç%5 !ž{î¹=z¤¦¦ž;wN)Y·n]^^^PP’…“&M233Û¾}{^^žÜEfp\¾|¹¿¿ÿ¶mÛ®\¹R­Z5ccã«W¯îÙ³' àûï¿/¥þùçŸ*•ªW¯^º…_|ñETTÔóÏ?¯<=~ü¸îœnµZݱcÇ´´´S§NIì1‰¤­ãø×_}ùå—*•jРAƒ ªW¯žJ¥ºzõêêÕ«øá‡¯¾úªY³f¥±¦cxx¸………݉'NŸ>}óæÍÆwéÒE{ñ¢F£‰‰‰±´´´´´Ô}¡‹‹‹âÒ¥K²: @"iÁñ§Ÿ~ÊËË›4iÒСCµ…vvv&L°··ÿä“OV¯^]âÁ1;;ûöíÛ 6œ1cÆÏ?ÿ¬-wppøú믛5k&„ÈÌÌÌÍÍ577Ï÷Z333!Ä7ôÙ‘««k¾’ªy%•@ÁŸõ*KZp}œœœT*ÕÅ‹7mÚtõêU__ß;wî8p@[ßÙÙ¹~ýúO¿_ooïüñÂ… Ê,i…²ÈNãÆ•§>>>QQQ‡zùå—•FsðàA wwwY= —´;Ç÷ªÒñãÇ¿ùæ›O¿ßÈÈÈ^½z=ÿüóK—.UÜ9wîÜàÁƒ ·oßþÌ3Ï!®\¹âãããèè¸~ýzeN̲e˾úê«#FL˜0AŸCcr •X•½sŒ´GÿbÕoذa‰ì·I“&cÇŽýꫯ^zé%ÌÌÌãÇ«TªY³f)©Qaoo?a„¹sçúûûwèÐ!!!!,,¬iÓ¦%’\K©ÈP^îU]Æ6nÜ’`aaѼyóÑ£G7jÔ(_­[·nÞ¼ùìÙ³uêÔiÓ¦MPP2úøX¥þ¯‚#RUÙGiÁñìÙ³Ï=÷\vìØñÒK/Éé•§Cp r«²ÁQÚ½ªûõë·hÑ¢ÜÜÜ‚›ÒÓÓƒ‚‚ÆŒ#³cð_Ò‚£ÍÂ… ûöí¯[¾sçΗ_~yûöí 4Ý9xHZpüý÷ßûöí{îܹ^½z)·¾y󿨱cßÿý›7o>|Ë–-²;Ižó×_M™2%))©M›6qqq©©©5š={viÜ6¦Ìp#•×8ÊѶmÛ_~ùÅÒÒòرc©©©-[¶üí·ß*tj,u¤F ‰äàxèСÀÀÀ7n4mÚÔÆÆæÔ©Sï¾ûnJJŠìn@~Ò‚ãíÛ·'Ožù$##£}ûö+V¬Ý?O¢t¯{àT5²qcYKMM}ë­·~ûí7ÝÔ(„ðóóÛºukÛ¶mCCCew’v¯êµk׺»»ºÉÎÎnÕªU«W¯–Ö+(@Úˆã£R£B¥R 4HVÛÊ/ÎSyÊ.8nذá÷ßÏW˜•••••U°òÈ‘#ûôé#·k «ìNUO™2ÅÎήgÏžº…/¿ürRRRÁËK£¢¢’’’dw’¼Ž#* ‚#ôBp€^ŽSª€TGè…འ‚#ôR¦÷ªNIIÉw§Aå¶1o?Xèíd Q™GF“™™Y°¼ÐB”+e Þ¨ÅÀZ<@¶² Ž5’}°xrLŽ€^ŽÐ Áz!8@/ÇŠ€)Õ  8@/e½¼¼Þÿ}íSww÷yóæÉ>|è«ì‚ã;wÂÂÂ’’’”§™™™999²úRiÊêâ¹÷ßçÎBccc!Dff¦¡¡aõêÕ‹xÉéÓ§e÷Ï“puuŠŠ*ÉwäGÊ“’ÿ­¯ ÊîÎ1ü±¡¡á±cÇîÞ½+û¨PleŸy景¾úJûÔÕÕuÀ€“'O–ÝÐKÙÇ|†îáá!ûð+ÎS€òAZpüðÕW¯^ŒŒLHHÈÉÉqvvnÒ¤‰½½½ìn@~Ò‚£"==}áÂ…¿üòKnn®¶P­V÷íÛ7((ÈÌÌLvçà!iÁ177wäÈ‘§OŸ®Q£F—.]4h V«ããã÷ïßÿÓO?EFF®]»V­VËîü?iÁñ‡~8}út‹-.\hcc£-¿~ýúèÑ£OŸ>ýÃ? >\vÿàÿI»åà¡C‡T*Õ×_­›…ÖÖÖß|óÁŸþ)»sð´àxþüù Ô©S§à&[[ÛgŸ}622RfÇ”L©冴àX£F¬¬¬GmÍÊÊ222’Õ6$-86iÒ$%%¥Ð› †‡‡_¾|¹qãÆ2;ÿ%-8úûû !Þÿý|×2†††¾÷Þ{B???Ù€‡¤Íªöõõ=xðàæÍ›ß|óÍ:uê8:: !®\¹"„ðóóëÙ³§ìÎÀC2Ÿ3gÎ /¼ðõ×_''''''+…ÖÖÖ|ðA@@€ìžÀ¨4å`Òîµk×âãã5£££­­­ìæ<-WWר¨¨x#¦TP.•Øo}E#sÄQËÆÆ&ßjŽ(o¤MŽ@ÅBp€^ŽÐ Áz!8@/ògUß¼y3<<<99ÙÞÞÞÓÓ355ÕÊÊJv£ÊÖâåŒÌà˜––¶dÉ’ 6dee !ìééдiÓÙ³g[XXÈî<$íTuNNΨQ£V¯^mjjª{Ÿ›ýû÷÷ë×OI“('¤ÇeË–9s¦S§N;vì˜3g޶|ݺu¯¼òJ|||HHˆìÎÀCÒ‚ã±cÇÔjõçŸnll¬[®V«§OŸnll¼sçNÙ€‡¤]ãéääTè<ggçøøøRÚõ«¯¾zîܹ|…VVV‡Ö-Y¿~ýºuëbbbŒ;uê4aÂ.»U™´àhffv÷îÝGmMOO¯]»v)í:11ÑÈÈÈÑÑQ·ÐÜÜ\÷é‚ –.]Z«V­Ö­['$$lܸ1:::$$ÄÈȨ,z‡)Õ ü‘ÝÜÜvîÜyöìÙçž{.ߦÈÈȤ¤¤Î;—Æ~322nݺգG¯¿þúQu¢¢¢‚ƒƒmmm7lØ`cc#„˜5kVHHÈüùó§M›&«Çä’vcß¾}U*Õ¸qã"""tË#""‚‚‚„½zõ*ý&&& !ò 7æ³nݺ¼¼¼   %5 !&Mšdff¶}ûö¼¼ÿüóöíÛÛÛÛ+w¬©U«V¾š˜˜!nݺ¥Ï^ž*&2¥€ò¤àÏz•’Ò‚ãßÿý¨Mµk×633355U«Õ%»ß~ø!_I»víÞxãåË—ïÙ³gРAæææ*•*333_µ;wîˆÇª iÁQ9/\4##£.]ºxzz–jcÚ´i³|ùò .! ÍÌÌ Ž,fdd!´ó¬ªi³ª;vìØ´iS屩©iÓ¦M›7o®\Y¨R©<<<7n\­Zµ­[·6,88¸DvªÑhrss .©£Œkj—·µµMKKS’¢ÖÅ‹•M²z @.iÁñÓO?MJJ²µµýî»ïŽ;¶iÓ¦ 6=ztÙ²euêÔ122Ú¸qcXXØ’%Kj×®ýõ×_+s®ŸRBB‚››ÛàÁƒó•Ÿ>}Zè\¯àãã“››{èÐ!mFsðàA wwwY= —´àøÝwßݼysñâÅ]ºtQ©TÚr//¯%K–„††~÷ÝwjµºsçÎüqnnîÞ½{Ÿ~§ŽŽŽ­Zµ:vìØúõëµ…§OŸ^¹r¥½½½våÈÀÀ@ƒE‹)×5 !‚ƒƒSSSûôéS­Z5Y= —J#iïË/¿|ïÞ½GÅÁnݺegg8p@qíÚµ: 2ä£>zúýž?~øðá©©©M›6uvvNJJ:s挱±ñwß}÷â‹/j«­\¹rîܹuëÖíСCBBBXX˜››ÛÊ•+ .ÓS««+³ª¨Äžö·¾Â’6âxýúõ¢3«vzŠ2‘¹¤nãÆûí·^½z¥¦¦îܹóÖ­[½zõúý÷ßuS£bذaóçÏwrrÚ¶mÛ7¢Oj|Z¤FP^I›UýüóÏÿùçŸÚ)2Z.\HLLÔÞ åøñãBˆzõê•Ô®mllæÎûØj~~~~~~²ú ¼‘6â¨d²÷Þ{ïÈ‘#ºåÇŽ9r¤F£éÙ³§F£9|øðôéÓ :tè »¯ª4i#Žþþþ§Núù矇jooß A•J•˜˜xùòe!„¯¯o¿~ýRRR† &„xã7œœœd÷@•&ó–ƒ3fÌxñÅ,XåÊ¥ÐÆÆ&((¨wïÞBƒ–-[úûû÷ïß_vGTuÒfUëJKK‹ÏÎÎ~öÙg+Á­Yžj¦“c(÷ªì¬j™#ŽZÏ<óÌ3Ï<£[2qâÄãÇïÛ·OvÓÊ©”c2ƒczzúÞ½{ò•geeíÞ½[¹ Ê iÁ1%%¥ÿþEÜHpÀ€²Ú€‚¤ÇU«V%%%µnÝÚÏÏï?þ8zôèôéÓŒŒÎŸ?¿fÍšL™2Evçà!iÁñСC5jÔX¼x±©©içÎÛ·oïääÔ®];!„³³ó§Ÿ~úÚk¯5jÔHvÿàÿI[<99ÙÑÑÑÔÔTammmaa®l ´°°Xµj•ìÎÀCÒ‚£ÂÀàáÞëׯñâEå±Z­vuu={ö¬Ü®)kL©å›´àhgg÷î]婃ƒÃ‰'´[U*•r ”Ò‚c—.]²²²Æ+„ðððHLL B¤¦¦ž>>Æ “Ý9x¨\Ü«ZëÎ;çγµµuvv–Ý–'÷„÷¯dr D•½Wµ´Gww÷yóæå+411iÛ¶­³³óèÑ£»wï.¹o CZpÌÌÌÌÉÉyÔ¦ÄÄÄ"îFX 1Üʽ2sðàÁ‘#GjŸ†„„¬Y³¦`µ¼¼vƒ´à8oÞ<ÙÇ€byËAÅÍ›7ÃÃÓ““ííí===SSS­¬¬d7 ùÉ ŽiiiK–,Ù°aCVV–bðàÁžžžM›6={¶………ìÎÀCÒÖßÎÉÉ5jÔêÕ«MMM´å666û÷ïïׯŸ’&+9¦T€ŠCZp\¶lÙ™3g:uê´cÇŽ9sæhË×­[÷Ê+¯ÄÇLJ„„Èî<$-8;vL­VþùçÆÆÆºåjµzúô鯯Æ;wî”Ý9xHZpŒŒŒtrr*tŒ‰‰‰³³sBB‚ÌŽÀI ŽfffwïÞ}ÔÖôôôÚµkËj ’ÝÜÜ’““ ½gLdddRRR“&Mdv þKZpìÛ·¯J¥7n\DD„nyDDDPP¢W¯^’û¦´1¥T(ÒÖqôôô1bÄ÷ßß»woggg!Äž={Ž9›——н{wÙ€‡d.>~üøV­ZÍ;7..N‘””$„°¶¶;v¬îÊŽ($ßrÐÛÛÛÛÛ;===...;;ÛÙÙÙÖÖVvŸ òïU-„°°°hÕª•ìV (Ò&Ç(80sæÌk×®)O÷ìÙ3f̘mÛ¶Éîä'-8æååM˜0áí·ßþé§ŸîÝ»§Þ¾}{ÇŽ|ðÁøñã5Ì8(O¤Çÿýï[¶l±µµ={¶Rèëë»páºuënݺuË–-²;§4±¨h¤Ç_ýÕÀÀ`ÅŠ½{÷®^½ºRX£Fnݺ­ZµÊÐÐð×_•Ý9xHZpŒ‹‹srrjÔ¨QÁM 4xöÙg•5zPNH Ž5kÖÔ^ÚXн{÷Ôjµ¬¶  iÁ±yóæIII‘‘‘7EGG'&&º¹¹Éìü—´àØ»wo!ĨQ£Ž9¢[~òäÉwß}W£ÑøûûËî<$mpŸAƒ…„„ :ÔÞÞÞÁÁ¡Zµj‰‰‰‰‰‰B??????ÙSj˜R * ™wŽ™2eJ›6mæÏŸåÊ¥ÐÊÊ*((¨OŸ>²{ÿ!ù–ƒ]»víÚµë7.^¼xÿþ}''';;;•J%»[Ÿ´àxùòå¼¼¼úõë !,-----ewŠ"-8úúúÞ¿ÿðáÃVVV²;'mVµ²ô÷… d÷ô"-8N›6ÍÈÈhÉ’%E,^®\¹ÒªU« &Ü´~ýúÀÀ@wwwOOÏÉ“'§§§—Ì.™R *&i§ªmll¾üòËéÓ§ûûûûûûׯ_ßÔÔ4_//¯RmƒF£™8qâ;w nZ°`ÁÒ¥KkÕªÕºuë„„„7FGG‡„„Éê1¹¤GoooåAjjêÂ… ­Uªmøá‡Ž;Vè~ƒƒƒmmm7lØ`cc#„˜5kVHHÈüùó§M›&«Çä’¥ß&::zÁ‚7>þ|¾MëÖ­ËËË RR£bÒ¤Iÿûßÿ¶oß>eÊiç÷$’çÍ›'ñ° ß´iÓСC'Mš$»J8€ ®ì‚ãîÝ»•ÔèååÕ¡C‡ÜÜÜÝ»w?~|ÕªUíÚµëØ±£ì®@QÊnÇŸþY1dÈeË– 8pðàÁ«W¯VnͲiÓ&Ùý€Ç(»à¨¬¹3räHm‰J¥zçwÄ¿·@yVvÁ199ÙÂÂÂÜÜ\·ÐÑÑQqçÎÙý€Ç(»à¨ÑhjÔ¨‘¯°zõê²{z‘v¯jT,Ç2ÁZ< â#8@/eºxJJŠ»»»þå§OŸ–Õ/ȧLƒ£F£ÉÌÌÔ¿åGÙÇßÿ]öÁàÉ•]plÔ¨‘ìƒÀ“crLécJ5¨ŽÐ Áz!8@/Gè…འ‚c)c-PY ‚#ôBp€^ŽÐ Áz!8–&¦T€J„འ‚#ôBp€^ŽÐ Á±Ô0¥T.Gè…འ‚#ôBp€^ŽÐ Á±t°¨tŽÐ Áz1”Ý€ÊE¥BDis¶T"Œ8–%)j4®..B¡Ñ(9 r 8–BÇÉŽ !8–„ÿ¦Æ¨ >%;€Ê‚àøÔ¸–T ÇÒÇ #¨ŽÐ Á±äýÿ¬j€Ê…ཟÚc/adö ¨ŽÐ Á±$ûì3m¨¨¨àà`[[Û;vïܹsРAgÏž?¾ìæHSå‚ã_ýedd4räHmIïÞ½íìì"""rss•’uëÖåååÙØØ(%“&M233Û¾}{^^žì#£ÊGssóÎ;׬YS·°FÙÙÙÙÙÙÊÓãÇxyyi+¨ÕêŽ;¦¥¥:uJöÈQåÖq\³fM¾’ãÇ'&&¶hÑÂÈÈH¡Ñhbbb,-----u«¹¸¸!.]ºäáá!û $¨rÁQëôéÓ7n¼xñâéÓ§ëׯ?wî\¥<33377×ÜÜ<_}333!Ä7ôyóJ?]®Ò`¥Ç'XÑñ V|ˆ¨ˆªnpŒŠŠÚ°aƒF£B4mÚ´zõêJ¹2uºV­Zùꛘ˜!nݺ¥Ï;Ë>8€’Wå®qÔêׯ_dddhhèĉwîÜÙ¿ÿ;wî!ÌÍÍU*Ufff¾úÊVeÜ  ªºÁQ¡R©¬­­‡ Ö·oß«W¯îܹSahhhffVpd1##C¡g PÕT­àýÑGmß¾=_yÓ¦M…)))ÊS[[Û´´4%)j]¼xQÙ$û ä¨ZÁÑÔÔtÓ¦M7nÌWž˜˜(„prrRžúøøäææ:tH[A£Ñ=hР}ûöÉnô•››;xðàùóç§§§wèСnݺ;wî|å•WŽ?.»ixŒÕ«W?jÓ‚ ¦NÛºuk“7¾õÖ[YYY²›\š4Àã¬]»ÖÅÅ¥ÿþ™™™JÉ… Ú´iÓ¤I“þùGvëP<+W®tqqqqq?~¼ì¶@_7oÞôððxþùçOœ8¡”üý÷ßÍš5k×®]nn®ìÖA/ÊÿHÇŒ“““£”9r¤I“&ݺu“Ý4îÖ­[ÇŸ>}ºòÿÌ3gÎä«pþüùÆwèÐ!%%E)ùì³Ï\\\>ùäÙm/EŒ8âñvìØ!„˜2eŠ‘‘‘RÒ¨Q£wÞy'77—ÖKttô‚ 7n,»!(ž7fdd¼óÎ;­ZµRJž{î¹=z¤¦¦ž;wNvë —S§N !lhh¨”´mÛ¶I“&ñññ7nÜÝ:ÂÏÏoÀ€¿üòË£*¬[·.///((ÈÆÆF)™4i’™™ÙöíÛóòòd7¿´ñx/^¬U«VÓ¦Mu 5j$„¸té’ìÖA_<øðÃ-,,&Mš$»-(ž?ÿüS¥RõêÕK·ð‹/¾ˆŠŠzþùçe·z©S§ŽB7#j4š›7oh£$Ê•Y³f-^¼xñâÅíÚµ+´ÂñãÇ ¼¼¼´%jµºcÇŽiiiÊ¿*%¾¬x¼eË–üÿZDD„ÂÁÁAvë ¯… FFF®\¹ÒÔÔTv[P<ááávvv'Nœ8}úôÍ›77nÜ¥KíI”={ö ™5k–±±q‹-ÒÓÓ/^|ùòå¾}ûò'Y>µoß^y°ÿþ‚[5MLLŒ¥¥¥¥¥¥n¹‹‹‹âÒ¥K² TñxnnnùJ‚ƒƒkÔ¨‘oåÖ™3g¾ÿþû¶k×N ý¨(²³³o߾ݰaÃ3füüóÏÚr‡¯¿þºY³f²½¸ºº®^½zÈ!C† Ñ8pòäɲ›†'‘™™™››knnž¯ÜÌÌLüwh¹’áT5Š'777$$dĈ™™™sæÌ±²²’Ý"<^VVÖ‡~èàà0nÜ8ÙmA±Ý¾}[³mÛ¶¹sç=zôàÁƒ£GNJJ3fL%Ÿ¿Y‰dddÌ™3çîÝ»M›6íׯ_×®]ŒŒ6oÞÌÔø JùÓ«U«V¾r!Ä­[·d7°´0âˆb8zôèÌ™3cccëÔ©óùçŸ?ê²”7sçν|ùòÏ?ÿ̙͊¨f͚ʃ9sætîÜYyüÞ{ï]¹reãÆüñÇ«¯¾*»x¼?üðäÉ““&M:t¨RråÊ•~ýú}ðÁ[¶lqvv–Ý@¹¹¹J¥ÊÌÌÌW®,v¦Œ;VJŒ8B/ÙÙÙ³fÍŒ8âñòòòÆ·k×®.]º|üñÇ•øï¡RRnM¡Ì Ô-ß²eË–-[5jôûï¿Ën#ÃÆÆææÍ›*•J·P?~ðàìÖáñÒÒÒ„ŽŽŽùÊ•ÆëׯËn ž„­­mLLLFF†îô¦‹/*›d·®´ñx«W¯Þµk×믿þñÇËn Š­Aƒ/¿ü²nÉ­[·BCCíííÝÝÝíììd7çííýã?^¸pA™°©PÖû`UÎ ÁÑÑQ­VGGGk4ÝDEE !6l(»x>>>QQQ‡Òþ?V£Ñ|x·nÝžþù.]º :ô‡~¸ÿ¾ì^€c(»ôõí·ß¾ôÒKööö²R~Íš5kçÎfffÏ=÷\ÕT*•­­­öéýû÷¯\¹råʕÇ÷éÓçóÏ?/î~oܸñÆoÄÄÄ!,,,®]»väÈ‘#GެZµjùòå5’Ý7•Phhhnnn§Nd7¨BŽ@…‘••5sæÌeË–ÉnHùuìØ1!Äo¿ýV·nÝ"ªÝÍÍM)Œ‹‹›7oÞ¾}ûÆŒ³qãF###ÙÝSÙŒ?>##ãŸþ‘Ý  áT5P1X[[[ZZ8p`ÇŽ²ÛR~ݽ{×ØØ¸èÔX(ssó>úH9Á½}ûöb½611ñ¯¿þªU«Vpp°65 !œ¿ýöÛ¦M›ÆÆÆþù矲ûJÁ¨j×®=iÒ$!ÄgŸ}vûöí’}óìììÈ>Dù:tè „ˆ-Ö«"""„...¦¦¦ù6U«V­K—.Ú:eæ‰?ÐÜÜÜ’ú&äæææä䔟÷P"Ž@…ñÊ+¯´mÛöúõë_~ùeÑ55ÅÍÍíÅ_Ô­3yòäV­Z5kÖ¬GüqzzºF£Y³fÍ Aƒ<<<¼½½§Nšžž^p/¡¡¡cÆŒéØ±cÇŽGŽYè ÚáÇßÿý.]º´nÝzРA‹-Ò J®\¹ræÌ™>}ú<÷Üs—/_.⸶mÛöÎ;ïtêÔéÅ_2dÈŠ+rss•M_|ñ…««kfffff¦þ3ZòQÞ-//¯X¯ªQ£†"666--­àÖ7ß|óĉ#GŽ,úMöîÝûî»ïvìØ±M›6ýúõûí·ß 6£ˆÃšTyallì§Ÿ~êááÑ´iS//¯Ñ£G:ÿIŸ6\¾|988¸mÛ¶Íš5óððèׯߞ={žà‹QÄû(wzzznn®îÇ””ôñÇûúú¶hÑÂËËë­·Þ:~üø|< ×8ÉÌ™3ýüü~ùå—^½zµhÑâéßpÒ¤IçÎsqq133ûûï¿ãââ"##6l¸iӦƻ¸¸œ9sfýúõW®\É7§{ëÖ­›6mR©TW¯^Ý·oßþýûGŽ9fÌmùóç/_¾\£ÑÔ©SÇÆÆæÄ‰G=tèÐâÅ‹ŸyæmµÈÈÈqãÆeee‰G‡6F3iҤ͛7 !lmmÍÌÌÂÂÂþúë¯Ý»w/Y²ÄÂÂÂÃÃãÁƒk×®B 0 ZµjÅí F£Ìªvqq)Ö =<<ÌÌÌnݺջwï#FtíÚÕÎÎN»µZµjm̬Y³BBB„uëÖµ²²úûï¿OŸ>}äÈ‘yóæéyøOÿN™2åôéÓ 4HIIÙµkמ={Æ7bĈâ¶aÙ²eëÖ­³²²jÛ¶í¥K—NŸ>ýî»ï~ýõ×=zô(Ö£ˆ÷Q>î_~ù%;;{РAJGGG÷íÛ÷îÝ»æææÏ>ûljjêÁƒÿüóÏÅ‹—Ùš@å§P¾]¸pÁÅÅ套^Rž.^¼ØÅÅ¥gÏžùD¥R-Z´èÒ¥KOùnºO•Ž…j4ÝÂÀÀ@CÃÿ\ë2hÐ ñï,ôôô‹/:;;7mÚT·Ž±±q»ví²²²ÂÃõ…þþþ5kÖ,¢‘×®]KII©S§NÇŽuËmll¼¼¼rss‹Nf©T*»ÿjذa=¾ÿþ{eÒ055íß¿ppðñãÇýõ×>øÀÝÝ=//oïÞ½ýúõ;räH¡¯ºqãF||¼½½}»vítË{öì¹{÷nåÊÈbþ }úôQ.ÖÌ÷ž9s¦¸mО’V˜™™©ÕjewÅúbñ>…jذ¡bÒ¤IÇŽS¦øT«Vm̘1£G~²Ï@A\ãT<­Zµ \·nÝŒ3V¬Xñ4oU«V­ÇªTª‚uœó•Ô«W¯Fׯ_¿{÷n\\œ"..ÎÕÕµÐý&''kׯ_¿èF*ƒLŽŽŽ75hÐ@‘P¬£.¸Žc R«ÕÊówÞy'66öÃ? Ÿ>}úîÝ» öäÅ‹…ùÊ«W¯®í–bþ NNNùJ”ôêÕ«ÙÙÙÅjC½zõÕ9Åúbñ>…š9sfPPбcÇÞxãš5kº¹¹½ð ݺuÓ]# ÀS"8Ò„ öíÛúûï¿}—-åZ±’j@Áð¡R©ÔjµAµjÕ²³³…uëÖ}ÔYBÝûß\Å&Ÿ"š­œ””»\ËÇœšš:cÆ kkë|›ž}öÙE‹yyy]ºtéÊ•+˜TnHXô왲9üG} ÷ïßW.Ô¿ Õ«WTåb}1ŠxŸBÕ«Woýúõ§OŸþóÏ?=~êÔ©%K–¼ú꫟}öY¡q@q ÉÔÔô£>7nÜìÙ³—.]ªÏK®\¹RÜ…fŠ  •éJNNÎÌÌtpp¨^½º2ill>>¥±G ªáG ¢êÙ³gûöíSSS•Ùå[|QYk¦¤lذAw?!ÄêÕ«…Êo¶­­­µµulll¾…¯sssûôéÓ¡C‡ÔÔTý÷¥¼Û•+WBCCu˯_¿¾ÿ~µZ­V"…2ïdÑ¢Eù:D±oß¾ììlKKËBïgcgggee•˜˜xòäIÝòƒNš4iëÖ­evø›6mR†µ”T™ISRm(Ù/†®¤¤¤Î;¿öÚkÚ’êÕ«ûøø¼üòË¢ÀL OŒàT`3f̨Y³fXXX¾råò¸Õ«Wgff*%aaaK–,)Á]_ºtiìØ±wïÞBäåå…„„üøã†††ï¾û®RaìØ±yyycÇŽÕN›¸sçÎG}Þ´iÓ"&Pêƒ>BL:U;y"%%eôèÑ÷îÝëÛ·¯îùͲ׿KKˈˆˆ€€€ÐÐÐ[·n)å·oßþᇔÙ6&L(ôT©J¥R&PôÑGÑÑÑJaBBœ9s„Ý»w/³Ã¿zõjPPPFF†"//oíÚµ?üðƒvfIIµ¡d¿yyyÊ—¼N:·oßþûï¿—/_®YWÖ¥×órÅ©j sppx÷Ýw ÞH¦W¯^?þøã©S§|||ÜÜÜ®]»cfffgg§\T÷ô\]]wìØ±{÷n''§¤¤¤¬¬,CCéS§*S%„ÇŽûí·ßzõêU·n] ‹¸¸¸ÌÌLGGÇÙ³gwwýõ×Ö­[ûôéS¯^=##£ØØØ¼¼xðÀÏÏÏ××·Ìß××w×®]/¾ø¢£££rÕÁرc7n\²m(Á/†¹¹yzzzÿþýëׯ¿páÂÉ“'Oš4iÞ¼y+V¬¨W¯^fffll¬F£éß¿ÿ“ÝI@AG b6lØ–-[´ƒU ‡Ÿ~úé›o¾9sæŒrnÑÁÁaÁ‚3fÌHJJ*‘ý®ZµjÇŽ{÷°°°èÔ©ÓСCuof£R©æÌ™ãíí½yóæÈÈÈøøx''§îÝ»4ÈÈȨ¸»300˜?¾——×Ö­[ÏŸ?íÚµ6mÚtìØqÈ!ÚEûJ‰F£yT§ig„<÷Üs{÷îݾ}ûæÍ›®_¿^£F '''eþ{ÑÃ]Ê¡uêÔiË–-ÿüóOFFÆóÏ?ß·o_ÿ²<üW^yeÀ€+V¬8w‰IÛ¶mßxã¶mÛ–xJð‹1iÒ¤Y³fÅÆÆÞ»wOP§N•+WÆÄÄœ?ÞÊÊÊÓÓóõ×_ç¶1@ R•à,KåÐÝ»wÓÒÒ˜UŠBM˜0aË–-Ë–-óòò’Ýå#Ž@%W«V­B×ö ¸˜½ NU@•æëëëââ"wu“c NU@/Gè…འ‚#ôòrAè`ý¦IEND®B`‚statistics-release-1.6.3/docs/assets/plsregress_201.png000066400000000000000000000726711456127120000230570ustar00rootroot00000000000000‰PNG  IHDRhŽ\­Au€IDATxÚíÝwœEÂÿñraY¢ ³ ¨ `@ALÈ¢€Š€gâ΄œè1Ç**fQQAOPøà\ðÕW_mß¾ýÀ+W®|òÉ'Ûµk·iÓ&¿·Jîâ[Ÿ9GßuÔQݺuÓþž4i’éUý$Õ¤IÅšƒºuë6iÒ¤I“&õë×/Uê÷ì¾}û®¹æšèÕ¨¥IOê:uzúé§Ë•+çw‰à¢jÕªÚá]¯^=¿Ëh¹°¡²³Ž%%%[·nýæ›o®¹æš~ýú9ÍöÃ?ÜÿýÚß'žxâ…^X©R%!ĺuëì÷¦¼GpôÓÅ_¬ý1yòdÓ#|¾øâ íõêÆwß}wÍš5kÖ¬Ù°aÃîÝ»¯¾újmúÚµk§OŸî÷ºËÖ­[µ?î¼óÎ[n¹¥lÙ²~—(èÖ¬YsèÐ! 0`Àíðþì³ÏüÞ– *;ëøÌ3ÏäååuîÜyôèÑÅÅÅN³3F;{Λ7ï“O>ùðõ—&NœhÛ ),|ÿÖ#˜Ž~Ò[«·mÛ6oÞ<}úþýûgΜ©ýB;µ¢J•*Ï?ÿ¼ž‡–-[&™ùÈ‘#/½ôÒé§ŸžŸŸ_¥J•ãŽ;î¯ýë¢E‹¬snÛ¶í¦›n:í´ÓªW¯Þ¤I“óÎ;ÏZW*„Ø·oß}÷ÝwÖYgÕ­[·nݺݻw¿ë®»öìÙcœÇØ÷¨¨¨èÞ{ïmРÁ½÷ޫϰuëÖ›nº©cÇŽU«VmÖ¬Yß¾}çÏŸŸrÉuÛ·o_·n]II‰öÏ]»v­[·®¨¨ÈÛÂ[©¬NIIÉØ±c»víÚ¸qã *4nܸK—.o½õÖ‘#GRÛšß~ûmèСíÚµ«R¥J›6mÞxã ùƒFk·eË–ÖªU«iÓ¦uëÖ}ôÑG=߉Bˆõë×÷ëׯV­Zyyy}úô™;w®u§®{òM1|øðX,¦÷FèÞ½{,Ó*à] ïí‘0hÐ mή]»§¿ÿþûÚôJ•*iS9 $Ÿk»¡Ô-ͦM›þú׿6kÖ,??ÿ’K.ÑOGrŠ»[7`À­¨ Ð'j] c±Ø\ OìØ±£6ñŸÿü§u%{Ù(Ù/‚ŠD"ñÑGi2$‹ !Î?ÿüx<.„8räÈ„ äKÈÄIõâ‹/^µjÕÀ›4iÒ AƒþýûÿôÓOBˆY³fõëׯI“&ùË_ºvíúïÿÛöˆ’ëS(OïÞ½wîÜ9tèÐ:T­ZµM›6?ü°õØs=~(?R¸jÀ,_uÖYÚŽ¸ÿþûõ‰ú¹¦iÓ¦úÄÅ‹ë{í«¯¾’LÔåççk/ 6Ì©<餓¬F,{á…ŒsN™2¥N:Ö9ÿö·¿g›3gN³fͬ³5lØpÆŒúlÚ@qá…^qÅÚßÿüç?µW§M›V·n]k‘n½õÖJntá…Zß²lÙ2 o¥²:‰DÂéGÂE]”ìŽÐKØ¥K—-Z˜æ|úé§%ǤþÞ3Ï<Óº5®¾újwb"‘˜;wn^^žqžªU«öèÑCûûÜsÏÕf{饗´)íÛ·W߯ ³¾ºwï^×Â{~$èOÊ–-»gÏ}ú Aƒ´é}úôQ? $Ÿk»¡’Zf‡Lë^¶lÙ—^zÉöÓ“=È^ýum¶£>ZŸX»vmmb½zõ´)GŽ©X±¢6ñßÿþ·uUör _„;wþò‡+¯¼R{Ë¥—^jœGÅ~ÿýw}ú5×\£M¿öÚk%‘¡“j›6mjÕªeœ³víÚÏ=÷œ©i%‹iÛ3©o} åéÒ¥KË–-M3_|ñÅÆeª?Š ”©]5`BpôÙ+¯¼¢¸:tÐ'Þpà ÚDcàK68îܹ³téÒÚK¯½öšSô¯bÅŠ/¸à‚!C†œ|òÉÚ”2eÊ,]ºT›m÷îÝú ½F}ûö5Vœ¼óÎ;Úlû÷ïoÒ¤‰6±B… çœsN=´?Bˆ¼¼<ý’©nƒ ôåhW>ãgyæ™÷ßÿþýõ^›úº(–ÜD=)¼•âê|ðÁú)ìÌ3ϼüòË[·n­/|Ú´iIí½„š¦M›¶mÛV?Ê—/èÐ!×CBS§NÎ;W©REŸ¢õ¬ðd':t¨qãÆú^;å”Sô] ‘G•M±cÇŽ_~ùE߉o½õÖ/¿üRRR"/|&Ž„Ã‡׬YS›á_ÿú—>]ÿ ÷Þ{Oý0|®uC%»Lã~¯\¹²öÏÒ¥K/Y²Ä4§w·É¯¿þªÜÖ­[‰Äš5kŒeØ´iS"‘X°`öÏÊ•+kÇ­iUör _£›o¾Y{‹)8êUbGu”qº^KgúÕçtfðö¤*„(UªÔ 'œpÔQG‰?kÙ²eýúõõvíÚ5Ùo}jåB4nÜøä“O®P¡‚>eΜ9I?Š T9’ºjÀ„àè³íÛ·kg±X,¦:‰DÓ¦MµCyþüùúœêÁñÈ‘#K—.=ÿüóõ—~øá§œvÚiÚ<=ô>Q¯9r¤6å®»îÒ¿«Û·o7Mìܹ³6åЦT«VM?)üøãúÏ_= OÇ{ì˜1cfÍšµjÕ*ãbçÜ‘#Gj5j”TÉmé'DcÚö¤ðVŠ«sÕUWiS†ªÏÖ®];mâã?žÔŽ0–ð¹çžÓ&Ž3FŸ¸páB§c|oÏž=<˜H$6nÜXPP M<í´Ó¼Ú‰/¼ð‚6¥jÕª³fÍÒ&êi! ŽŠ›ÂiwK Ÿ¡#AßÅz-ÔªU«´)åË—ß½{·úa ù\ë†Ja™………Ú~_¿~ý1Ç£MÔc¢58*în+ý š0aBâf_­ÁWñé§Ÿ&‰Ñ£GkÿìÑ£‡ÓÁ ²—“ý"9G}̊Ƨë%Ô“™UFOª'NL$‡>óÌ3õ‰Ï>ûl"‘(..Öë¹kÕªe}¯ü[ŸZyôòÒ¥Kõ¨§Wò)?ê t:Ò¹j@GpôŸ~oõ[o½•H$–/_®ýó˜cŽ1ÎæôêÕKòé'žx¢6[AAÁk¯½¶eË–D"±eË–Å‹/^¼xóæÍÚlúeÆøÕÚ¼ys›6mÚ´isòÉ'% ½ÀTéòðÃkÓ;î8mŠ~ ¨T©ÒÆm‹ôå—_ê÷îÝ«×,Z´H½ä¶lÏ)ž^²…å«óÅ_Œ3f̘1ë×¯×æÙ½{·Þ£Ÿ‹w„^–-[ê³ýþûïZŸZ!ÄG}äT`ý½eÊ”Ñ “H$>þøcmz,;pà€';ñôÓO×þy×]wé³:tHo¿“GÅM‘p‹ÖÂgèHÐ[«õ¡78jSÉçZ7T²Ë,[¶ì¯¿þª/PïÃW®\9ÓÑ¥GÅÝmuã7j3Ü}÷݉DâŽ;îÐ6¯ÖÍæž{îIš}µÜ“H)8¦ðE0r ŽãÆÓ¦»% ­ðmÛ¶uZfæNªÆÍ2jÔ(mb5´Z·„!ï–)SÆô^×o} åiݺµqN=¨ÝqÇI?ê t:Ò¹j@ÇÍ1þÓï­ž8q¢0 Ä#B]ëÖ­Ÿ{î9É çœsŽöÇòåË T¯^½víÚ9rß¾}­ZµÒ;ŸýòË/Úú/6!D^^Þ‚ ,X0kÖ,í®§^}±š³Ï>[ûcåÊ•ú)š¶mÛê}15+V¬Ð¢i^¥JýÆÆ•+Wª—\'…·R_öèÑã»ï¾»í¶ÛºuëÖ Aƒ¥K—𖦏#tÍ›7×ÿ®R¥ŠÞJ%¹KT׺uë† êÿÔ7K"‘X½zµ';QŸMè[Q®\9}›K$»)œX Ÿ¡#¡[·nZkõºuë´ûÕô‘ü/ºè"ýUƒ¤>7Ùe¶jÕÊØ®ïšÃ‡¯]»Öö-Š»ÛJ¿äÏž=[¡ÝuòÉ'·oß^¡Ý2¨ß,¥Ïœ‚t¾ÕªUÓþ0Þ`§m+ý³œÞ›¹“ª±1ZŸ¯Wåê­\¿õ)”ÇÔ!Ro@×gKöøq] ϯ¹‰àè¿Þ½{k'ˆ)S¦éÁ1Ùû©õq›4irÌ1ÇôêÕëÑG;w®©Ó˜É<0xðàòåËkÿL$óçÏ1bÄÉ'ŸÜ¹sgmÌý={öìÞ½[›¡FN‹2Îf_M?‘ø`àÀzÿ}!Ä7ß|£=í°jÕªzGcÉs´ªU«¦Ÿb6oÞl|Iÿg¹råôNÐÓw¾ZµjU«VÕþž2eÊ/v´§~©”\'…·]¬âêŒ1âé§Ÿ.**jÚ´é‹/¾¸hÑ¢={öèyB£¸#¼b:û8p@nÃôk$µX±bE}èu=Ajô‹“7…µð™84zóÂ_|±xñbm­õšH¡v$û¹É.Óô«àÀúîhÔ¨‘u~õƒÜö½ZÓçž={>ûì3íÓƒãŽ;>ûì3m˜•tª3GÏ…;wî4¤ß÷ã3zRM‡ü[Ÿ‰ò¤sü$ËÛ«FÎ"8‚~96lØÁƒ…GíÔ®:´uëÖ­[·:tè’K.3f̶mÛ¦Nª÷bÑÆo‹ÅbzÓ€Ö¢¤Ù²eË©§žzê©§víÚUk#Ð{R›¢¨ÿ³yóæzï"'zgü¢¢¢f5kÖ¬Q£F5*V¬¨Xò¤xRøÔVGñâ‹/j³½ð ×_ýñÇ_¦LÓ£ÆÕw„'–,Yb|fÚÔ©S‰„¢\¹rú­Ðé¬uéÒ¥>úhm¶/¿üRo"‘0Ž0g+£›"CG‚¢{÷îÚµjÆŒú¨[z;µP; ’•ì2Mû]ß5åÊ•sj¾P<ȶ‰öÇóÏ?/„¨R¥Ê±Ç«÷ÿÓ ¯Ò{!û7n¬ŒÇ¡þw§Nlߘ哪:×o}&Ê“Îñ£.WÜDp „>}úhí .Ô¦¤6îw²–.]š—————W¯^=íÏ2eÊtïÞ]¿çNoC9ãŒ3´?žzê)½Bâ™gž™5kÖ¬Y³Ê—/¯•_~ïÿý¿ÿ§T±xñâ'žxBûÛØ•͉~!yå•WŒÐ;~üø¿üå/µjÕjÒ¤Éï¿ÿ®^ruž>µÕùý÷ßõ¶ýQ?üðƒõ‘?Š;‡2dˆÖ[kóæÍwÞy§6½°°Ðµû ÊZ !´Š%Ó6øá‡þùg×⥰)ôžgr:„¡µúСCO=õ”¢téÒúH×ꇺ–yäÈ‘!C†hõ|›7oÖGÅ“ìwÅÝmK¯JÔŠÔ¾}ûÒ¥KשSG«ÝÔZ`b±˜~¡+Ž앾}ûj<ðÀÚGO˜0AË‚eË–íÙ³§Ó³yRUçú­ÏDyÒ9~TÖHû#Wå÷Ý9ø_úIDÑ¢E ë ) ¸Xs5//ïoûÛwÜqÉ%—è Ü>ø 6çÖ­[õnàuëÖ0`€ñ<þÙgŸi³íß¿_ÿý]±bÅž={^pÁúPpõêÕÓÆI8Œ!¬ùí·ßô„.]ºÜwß}]t‘þ‹óÞ{ïMªä¶lo¸ó¤ðV*«SRR¢©R¥J½zõºà‚ ôŽ8Âpë«âŽp*¡^c4vìX§›KËÏÏïÖ­›þ¡¥J•’Œç—ÔZ'‰… ê­åÊ•ëÔ©“i”fÉ]ÕŠ›"‘Hè·zœzê©O<ñÄáÇå…ÏБ 1=¤[·núKê‡äsM*…ejêׯ߭[7½ ±téÒú8ùÖOWÜݶŽ9¢ŠâÎ;ïÔ¦÷éÓGŸx 'HÖ1…½¬òE0rº«:‘HÌŸ?_ÿ‰’——wâ‰'êõmú î¶²sR}óÍ7µ‰Æ;‘¿ýö[m¢õ®j×o}úߎK/½T›~Ûm·%uü¨/ÐöxHóªÁ1(´fÍ}÷Ýg!Á1‘H|ÿý÷N­]ºtÑFóÒ|üñÇzï#ã@*‰DböìÙú8”F7þæ›oôÙäWÜÏ>ûÌöÇßu×]§(¡^r+ÛàèUáS[k焦M›ê_qÅIíO‚cçÎM}ÚÊ”)ãú‘¤Ö:‘HèÏäÐU®\Yo—”?9Fñ˜8p ñUë“c¬…ÏБøóHàBˆQ£F_U< Ôƒc ˬQ£†©²¶\¹r¯¿þº|­w·-cµÜǬMÔ‡wNCR{ÙÃàh*ª®Y³f®Ã»dᤚlptýÖ§Yž„CÎS9~’Z íñÎU:šªƒ¢oß¾úÉ:;íÔšSN9å—_~¹çž{:t蟟_¶lÙš5kž~ú鯾úêôéÓ5½{÷þé§Ÿ®½öÚ:T©R¥I“&={öœ9sæˆ#Œ <餓~üñÇ{î¹§[·nuëÖ­U«Ö™gžy÷ÝwÿôÓOú }® -Zô·¿ýíÄO¬T©RÓ¦M{÷î=cÆŒQ£FéTê%WçIáS[gžyæ¸ãŽ<òá–[nY°`Þˆùþûïë#V(îˆôuÔQß}÷Ýßÿþ÷x<^·nݾ}ûN:õÚk¯õp­…¯½öÚàÁƒµ¿ëÔ©Ó«W¯¯¾úJ»]Ì•â¦xæ™gX§NÊ•+·nÝZ¥5?CG‚øó½Õ¥J•êÝ»·©¨Š‡ºd—Ù¥K—3f6hР^½z—\rÉôéÓõQÄÓÜݶŒ7¾èOòл1µ;cRØË^>|øÄ‰Ï:ë¬ÚµkW¨P¡yóæwÜqÇœ9s\‡wÉæIU‘Ê·>åIçø±e{´x‹¦j(!8@ ÁJ¸9J¨q€‚#” „à%G(!8@ ÁJŽPBp€‚#” „à%G(!8ðÀŠ‹òÓœ|GˆÛ$‰†+.ÊÛäwé"8ð†Sv$5@dxC ˆ¦ìhJ4X@¨xCKÆìhMT=@¨Å‰„ßeÆìHj€ˆ¡ÆÑ{~ðmOGR#DÁ@Fè ’Ô‘QÆïˆ=&êmÖ¤Fˆ jxÆ­÷ÊÂŽàÀ¶÷P“ JŽ<à4òÙ¢„à ]òñéé‘Ap.×ñ©q€h 8ðŒ¤f‘ì@pà ×öh²#„Á€7ôáåó ¼޼$†Ü%¡Fpà1§ìHj€°#8ºÛ´iS»vín¿ýv¿ „†5;’ Ž.‰ÄwÞ¹wï^¿ „Œ1;’ Êø]€ {óÍ7çÌ™ãw)€PÒ³#©¢G™•+W>óÌ3-Z´ð» þ#8:***ºãŽ;jÖ¬9lØ0¿Ë„’ÖBÍ<GG#GŽ\ºté#Žö.\8zôèË.»¬cÇŽK–,Iöí¦)Ë—/÷{€Œ°½ñÅ:QËŽtv€P#8Ú8pàÀwÜѰaáC‡¦¶b"r‡5:ý“ìaGSµÇ{lÆ ?þxÅŠý. ’‘wLÿ¤ÍBàh6gΜ÷ßÿÚk¯=á„ü. ¶#ïØÖ/RãáK$~—!XÞ}÷Ý|ÐéÕæÍ›þùçò%ÐTÜdLŠ´J@ôÐÇѬqãÆçŸ¾qÊîÝ»¿ýöÛüüü¶mÛæååù]@ ¸ô^Œ¤Fˆ$jÝ-Y²¤OŸ>½zõzâ‰'Tæ§Æ9ŽÔQEG^Òký.À{Gž1¼ãwq£©Ú{4U#7Y[¨i³€ˆ¡Æ€œFÞ¡Þ¢„à ]’šE²#D Á@Z\Û£i­€È 8H‹m.t­e¤ˆàÀ{òjnš€"8ȧìHj€ð"8Èkv$5@¨d1;’ ìÊø]§gGR#„5ŽPBpYZ 5#@d±_#ÙÂŽà S¬wà Ԏ2Âéj²#„Á€÷ä#ï ¤Ž<¦2^#Có@xŒPQEp€‚#” „à%G(!8@ ÁJŽPBpk@0ÑTmo×®]Ï>ûì¼yó6lØP»víÖ­[2¤iÓ¦~— 7c¿F-;Ò` !B£={öôìÙóý÷ßBtíÚõ/ùˤI“ /^ìwÑ€³ÆDê \Ž6F޹}ûöë®»îóÏ?æ™gÆŽûÈ#=ôÐC~ +§ÊE²#„ÁÑÆ÷ß_±bÅ믿^ŸÒ§OŸ¼¼¼%K–û]: |äMÒdG ú8Ú¨Q£F<¯P¡‚qbùòå>|øðáŠ+ú]@ d\;2ÒÓBàhc̘1¦)sçÎ]¿~}›6mH ge,X0~üø5kÖ,X° Q£F=ö˜â LS–/_î÷Ú¤…à(³|ùòqãÆ% !D«V­Ê•+§þF¿Ëౘ–Šà$‘HìØ±c„ O>ùdíÚµ'NœX¥Jù[ Ž z¸«ÚE,«]»öÕW_ݯ_¿-[¶|ùå—~—ÀG³•+W>|òäɦé­ZµBlݺÕïøƒàhV­Zµ?þxüøñ¦éëׯB}ôÑ~ÀG³ºuë|ûí·Ó§O×'.[¶ìÝwß­R¥J‡ü. €?¸9ÆÆ?þ8`À€#GŽ´mÛ¶AƒÛ¶m›7ožâñÇïÙ³§ëÛ¹9DÁÑÞºuëž{î¹Å‹oݺ5//¯eË–ƒnÞ¼¹Ê{ Ž ’ŽÞ#8€H¢#” „à%G(!8@ ÁJŽPBp€‚#” „à%Gà§åû]¨"8?ÅÇm’gG’ep€Ï$ÙqÅEùñq›ü. þÁ‚5;S#õŽA@pþÓ¢1šR#õŽA@p`ÌŽ¤Æ`"8€ Ð³#©1˜Ž p¬õŽ‚# -)ZëGÖ¤ÈÔACpþ³ök´Þg ßd‰ëٟ˳œî†!; Á@–ÈŸ*Fg& gÉï¡&; Á@ö8eGR#Ë\GÞáüGYeÍŽ¤FÂíT o²@Öd›ñ@j ÔNœ+‚ –H$ü.CÔ,_¾ÜïRA§eG®"Ô8@ Á€ôAÚè´!Bpm¦AÚÈŽGYe;HÙBà {$ƒ´‘ ø޲„AÚ ì޲AÚX©ü\ä'e d¡€•kSÏ‚#ð$;¦“©§Ì‚#ð“mvL³®Q¥Û4á2Gà3SÎó¤…ZžiO ÁøOÏyF:§ìHjLÁ@*hà9-çyé¬Ù‘Ô˜‚#€TÐÀsÚ©ÃóŸÆervJS,‘Hø]†¨)((X¾|¹ß¥²ÁöÌy@ Œ§ŽLœF´ìÈÙ)MÔ8Hm@´ ðý=Á>ŽÓ§Oî¹çºwï>dÈ!ÄÝwß=nÜ8í¥þýûßwß}±X,£ #¾sú‰KÇtD­Æqîܹ7ÜpòeËJJJ„?ÿüó¸qãªW¯>`À€ ¼ÿþûÓ§O÷»Œ ³$ýMÓ©ƒLJÔ‚ãèÑ£‰ÄÝwß}à 7!¦L™"„xä‘Gî»ï¾×^{-‹½÷Þ{~—dk¿F½Æ‘ÚÇdE-8®X±"//ïòË//[¶¬böìÙåÊ•ëÔ©“¢I“&Íš5[½zµße¤Ø¯‘Ô˜‚¨Ç]»vÕªUKû»¨¨èçŸnݺu¹rå´)•*UÚ±c‡ßeÙc›I©‰ZpÌÏÏß°aCqq±bþüù<ù䓵—JJJ6lØP»vm¿Ë²ÊÚ¯‘Ô˜š¨Ç:ìÚµkäÈ‘7n9r¤¢sçÎÚK¯¿þúo¿ývÌ1Çø]FmNÏDR¢6ÏÆ ÷íÛ§ýó¸ãŽûè£b±Ø%—\²hÑ"!Ä[o½uÊ)§d´ Ç@0‘ÓµÇúõëðÁ]ºtÉËË;ýôÓŸ}öYmÔÆ;vT«VíÑGÍtjÁijÓµG'7n¬W¯^©RÙÊÔ84ƺFêSVÆïdÊ®]»/^¼yóæüüüÓN;­|ùòÙI hlŸ=HvLAƒãÿûßQ£F7îÀBˆ+®¸â´ÓNëÝ»w«V­y䑚5kú]@=¶‘옚¨UÂ9rä†nxçwªU«Ö»wo}z:u¾þúëK/½TK“ z’¯‘þŽ)ˆZp|ùå—.\xÆg|ñÅ>ú¨>ýÃ?¼à‚ Ö®]ûöÛoû]F*ã5g ;&+jÁqΜ9¥K—~øá‡+Uªdœ^ºté{ï½·R¥J_~ù¥ßer'h™fÌ‚¶©Ñ4‘Öê¤D-8.]ºôè£ÖŸ:hT¥J•¦M›®[·Îï2¹ËõÇ=É@úœN5tjL_Ô‚cõêÕõÑ¿­vîÜYµjU¿Ëä4IväœÀ+ÖS gOD-8{ì±›7oþñÇ­/-]ºtãÆ-[¶ô»Œ@®³ÍŽœÓ¨´9¨·KO5œa¼µàد_¿X,6tèÐ%K–§/Y²äæ›oB\xá…~—€Rv¹F¥7KRç mœa<Á'Ç<ùä“£GB4mÚtõêÕõëׯT©ÒªU«JJJz÷îm¼Õ:Cxr  Hüçt:§sBjç -‰r’ñJƒ£â믿~ì±ÇÖ¬Y£O©]»ö­·ÞÚ»woíÑÕEpÔ‘XYÏ )§Fí]œj¼Íà¨Ù¹sçêÕ«>Ü´iÓºuëfís Ž€"j8IÿÑÒ¦wqªñDԂㆠJJJ5jäcŽ€Šô¯ ¢-ß–¶gN5é‹ÚÍ1=zô8묳vìØáwAȘNß<¼€•'©QÎ0’ñý^×ЈZplÞ¼¹bÅŠ~€#Û+Ù€‰^ã˜Â»L%Ù‘jȤD-8ÞsÏ=+V5jÔÁƒý. ’s4Ù€N?W$ufP9ÃÐñ1Qëã¸iÓ¦¥K—Þ{u+WîÕ«W£FªU«fš§K—.-}'*çhÎ㼺«Z¾dÎ6)ˆZp,((p'Ó©Žà@ʼÇÑi9¤ÆÔ”ñ»ëÕ«—ßE)rmkN?í‘  Æ€d§7 5ŽéˆlpܲeËÒ¥K×­[wäÈ‘¦M›¶lÙ2??Kî Ž}Óµ¦j!ÄÎ;GŽ9vìØââb}béÒ¥ûõëwóÍ7W¯^ÝïØŽïHvLJÔj‹‹‹¸`Á‚òåËwéÒ¥qãÆ¥K—^»ví×_}ðàÁ¶mÛ¾ûK—Îh¨q h2}ÏMŽˆZã›o¾¹`Á‚6mÚŒ9²N:úôíÛ·2dÁ‚o¾ùæ Aƒü.&Èž,Üs“#¢6ø7ß|‹Åž}öYcjBÔ®]û¹çž+UªÔÌ™3ý.#È×\ÈÓÔE-8.[¶¬qãÆõêÕ³¾T·nÝfÍš-]ºÔï2€ìQ©M¤ÆQQÔ‚cùòå8àôê*V¬èwB)jÁ±eË–[·n]°`õ¥Å‹oذ¡E‹~— ”¢µ'Çüãÿ0õeüöÛoo¼ñF!Daa¡ße¥¨ Ç#„¸óÎ;ÿõ¯ !êիפI!ĺuë6mÚ$„(,,|òÉ'3]†ã‘Áà˜H$>ùä“gŸ}vëÖ­úÄÚµkßrË-½{÷.U*㕬GI ŽºmÛ¶­]»6‘H4iÒ¤nݺYû\‚#ˆ¤¨ nT§NÓhŽHYÔnŽÑüûßÿ~à¶mÛ¦ý󫯾ºé¦›&Mšäw¹B,jÁ±¤¤äöÛo¿öÚkß{cjÿý÷/¾øâ–[n¹í¶Û"Ü4QQ ŽŸ~úégŸ}V·nÝGy$//O›Ø£G‘#GÖ¯_„ Ÿ}ö™ße¥¨Ç>ø T©R¯½öZŸ>}Ê•+§M,_¾üÙgŸýÆo”)Sæƒ>𻌡µà¸zõê£>ºyóæÖ—7nܬY³Õ«Wû]Fà½å§9\E-8V¨PAïÚhuðàÁÒ¥Kû]F ×qî ñq›$§—åÇÇmò»Œ¡µàxÜqÇmܸqéÒ¥Ö—V®\¹~ýúc=Öï2¹N~r$K©r:½½µàاO!Ä 7ÜðŸÿüÇ8ý‡~}Æ Ç|Û¶m³ð‰G Yœ¯çy˲í3×2ž;"§OŸþÜsÏuïÞ}È!Bˆ»ï¾{ܸqÚKýû÷¿ï¾û2]õHp’B#ái˲¤ 3s-ã9"jwUÏ;÷†nX¶lYII‰âçŸ7n\õêÕ РAƒ÷ßúôé~—ÀÿÑÏ×®cô€ k 4ž^¸ç:MQ Ž£GN$wß}÷ 7Ü „˜2eŠâ‘G¹ï¾û^{íµX,öÞ{ïù]FÿËt¾&;9K;¤pJNÙ‘Ô˜¬¨Ç+Väåå]~ùåeË–BÌž=»\¹r:uB4iÒ„GÁa{¾&;fÛÁd<¤s§@kv$5¦ jÁq×®]µjÕÒþ.**úùçŸ[·n]®\9mJ¥J•vìØáwÈÎïdÇÌQÙ¶l|d™¼e9åXÓµà˜ŸŸ¿aÆââb!Äüùóª˜8ðæ›oöìÙ³M›6:u4hÐwß}ç÷Ê@êLÕ*ÜX '5 ꓵG'7n¬W¯žâƒª‹ŠŠ¸páÂêÕ«·k×îàÁƒsçÎ=räÈ?þñÁƒ»¾GÁd½j‡\&>"Ú’zä Ê×!7¿2¹“òÞ{ï=ðÀíÚµ{íµ×*V¬(„X¹råe—]öûï¿?¾eË–ò·–µ…ZüQÝ’ƒ—@@Bþ¥ÈÙ¯LÔšª=ñÅ_!î¾ûn-5 !š7o~Ýu×Ó` Ô¬-Ô¤FÀ–¤ý:—¿2GkÖ¬©\¹r«V­Œ›7o.„øõ×_ý.¤Å4ô±þ¬p¿ËŽíW#—S£ 8Úzùå—ÇŽkš¸dÉ!DÆ ý.¤Åx!tzV89ÐX¿¹œ}Íš5kðàÁGŽ™>}ºþd'Ö‰ôz’~zícŽ_¾:‚£‹âââwß}÷ñÇ/..~ê©§zôèáúnŽXÖjÛìèw1Àá«¡¡©ZföìÙ………#FŒ¨U«Ök¯½¦’ Ȭ©‘f8À]u©qœ1cÆäÉ“W­ZURRÇ/¸à‚4søðá'žxâwÞ©P¡Âßþö·AƒéwX»¢Æ@ HcJ¤FÀ*Ùñ£- Áñ®»î?~¼iâUW]5lذÔXRRrÓM7M™2¥{÷î÷Ýw_:u’z;Á@ИZ¨M/iäøåÁ¨pFw“Ð7UO:UK]ºt¹çž{îºë®:!Þxã™3g¦¶ÌwÞygÊ”) xá…’M@¦!xœf𻘀 GcÖŽUÛ¯LŽYBßÿ}!Ä•W^ùòË/_vÙeW\qÅ;ï¼sþùç !>þøã˜H$ÆŒSµjÕ;ï¼Óï•€ÌâÉ1¦ ¾Í-[¡oªîÚµë¦M›fÏž]£F }âŠ+ 9昉'&»ÀmÛ¶uêÔ©bÅŠÍš5³¾Ú»wïË.»L¾šª‡¼ƒ£öϪF0ùØLÌ×ÁI¿ ®Í›7׬YÓ˜…Mš4BìÝ»7…nذAqàÀÅ‹[_íØ±£ßk I0Õ&Zo¦¶¾äw‘ÿe:&³y|òEpúà˜H$Ê—/ošX®\¹”xâ‰'R_ ÔLwIÛfGýoãs"Üõ4¡ïã0±­VÔÿ¶hz/i©1PŽANÙÑôO§>þ\¤ ¾(Gˆ&I445aóð–©Ç…ßÅAøïª.((ˆÅbÖǺìß¿ßvºbÁ‚™.½$„mv´ÞgM72ƒoP‚c²oÉtª#8cj´½ñ…Ôˆr: 9Pýú»ª?ÿüs¿‹A¡xM•ŒÑÃ%Aà:ø6ª_B_ã@Ô8®8ïgŽüiÔú£b„ìÙ5ðÊAÈê‚£÷Ž€ ×ó>†”Y£Dm¢í«¶o£Ð7U¿ýöÛɾåòË/÷»Ô\Ú›È.é0Ý.-å[þv¿×@à„¾Æ‘›c€P³ (¤O˜R£©aÚ6SšÞÎ^`úÇN:ù]©³Vn‘W‚# Ž|“ ôý“úà¨;räÈþóŸ)S¦L›6mçÎÚÄfÍši ²iÓ¦Y+ ÁPD¾ÉF1žC ¢uÅÅÅóæÍ›2eÊÔ©S·nݪMlÑ¢E=Î;ï¼FeºG@ù&ØhÈM)<ÞšN2©‰`pÔ%‰E‹M:uÊ”)ëׯ×&¶nÝzüøñý\‚#€PàJ‰(‘Ï*1‘o„Š(G]"‘;vìO<±oß>Á#àÔû"JœWõÊExW¡ä Ü’%K&Nœ8yòäM›þ÷88æ˜cü.…õ‘F\D.¶ÇsRMÒòoDTkW¬X1qâÄI“&é-Ôyyy={öìÙ³gË–-3ýéÔ8ší%¦GnÒ‘Ñ[‘ Ž«W¯ž4iÒ¤I“V­Z¥M©V­Ú¹çž[XXØ¡C‡X,–bø"‹"×WD‰v§pÓyÃU‚ãúõë'Ož8^tÑE?ýô“öwéÒ¥O9唳Ï>»råÊ~‰àÀGŠ÷8½W02Â/åGãÛU&æ Ðߣ¥Æã?¾°°°GµjÕò»Dà'•û€Óö”³£õ|ƒt¡¯q|þùç 7nìwAþ5Ž|'¹?Àõ-\#^þjâa+ôÁ1€Ž‚ ©Ö:êWéôÓpZ  óÆŸ•ò»€ŒH95êïõ{ €$HŽvŽg šôG•Ù¬Ó¹Ö"D\#¥Pk¨-“/‚ Á"Èt€ël¶¸d",ÚÄO‚àQÂýףѯcU±G.#8ðÊy™s·ºLÜdˆ$™ùU«gú\S õ{e²_°@¡£÷èã¨KçÙÊÂ.øýqÓ|zaôPãÀO¬u5¶µz~ʦ„A+•Ž|f›9S9B?ó[¯8jî 8ð_ðk"Œ+"|ØZ="8„€×:D˜âÓeü.&¢,˜µzò{erÁ@P¶Ö!òÒyº ¦`Öê1ª‚#€ f­CŽpÚò¤FdT0kõU‚à ‚YëS¬[žÔˆŒò¤VÏóÓ…Êx¨¹|Ž"8ð_0krqË“‘Q^Õê¥ðùü*‡}.5Ü{ $ÅéúApñ‹vYeã#s<ÿv'{áÑ)£Æ€L¦kþèKä ÏcY²ÃÁòè”Èdt¬úþ@^¶<Â%Ùá`yô@jhªöMÕˆÉÉ”ól”˜ö&;¡“죥srÀ« Æ€;ÆjÉÖ½I½#B'Ùá`yô@²Ž”0VK´9íM²#Â%…á`%Y“‡*Y¨b¬–ÀR¹z¥ül²#²/µC.µá`%Y“‡*YÑÇÑ{ôqD´1VK0¥<¼Hn^ü|®G¦k—\•c[¥£íôœýâPãQòð"¹yñCð%UÛ—ÚCh=@G#‚#€$0VK1¼"Fñ¶<ÇkTÉŽ9þ¢©Ú{4U#ª«%^#?ó$Û­ò.ù½29þ¢Æ€Æj †AÄÈkûRx´4H5ŽÞ£ÆÑ#©Ä"ûã{mŸþÊñ/5Ž\ÈûÛv÷»È¹.…¡ìHOƒ9þ墯Ñ{Ô8"$5n²‰>ŽˆkûŽÇˆG©àÞ`R^Äö~—°çomU2!8H‘é¼Ijô]jCÙ)Ζ›×HøN~[^¦ ÈC•¬ŽRÇ ¼Á‘ÚPvг±á ×Ú¾Œ>Påí9ø½ £÷èãˆèIùqvÈwAjÏm<§þÈAú fÁÑ{GD’ünßGÊ€‡¸½¡Ã0aYCS5%™»&; =:<0k¨qô5Žˆ0Ûº¨ôGÊ )<€Øìš>²€GI°ÖEy2R·e Cˆ°Ep-O8U1z›I¾Ð7;Ù!¢·´™FSµ÷hªF´eônnËðwU#Œ¸9&k¨qœŒžŽ¹-Ã_é !øÅæ¸"8HZF›„ŒMáȦô‡²GfÁ@r2ýÜXnËð…kXg§ €x$`öÑÇÑ{ôqD„eú ôq ˆS„/¨q *ÓMB¦åS[@‚Ôè ‚#%™nâ¶ >‚#w*MBéüúç¶ ú8z>Ž@Rè¨aA#Ÿ‘ ,ŽPBpàH¥s!D':Á€#×Sèž1®WG.ŸˆŒ¤Žv•“¡ß+”%G2’Ó%©1zäWGö8¢$Ù£“¡†àÀ…íé2§N”9ÅéêÈG xR×ìÑÎÉP¨0.síDd™h ³^Ùã¯ÚŽ“=Ú9(ÑO—:QÒ».5*¤§°éŒ‹ÍÁK#B~èzÕvœìÑžé“aÀ1¸÷–Ñ¥dá¹y‚V—¡M§]Ùòð‘ël!µc>Ù£=gOJÔ8P¥(3WóGﺔ±éU*·°d¿í8Ó'à #8P¢ŸŽ³œ‰>Š<ßtÚÛsöêˆàpý]”~ÛqRG{vN†EpàÎt:ÎZv$5&ÅÃMg|{n^(®¿‹´ÒIN$™Yeþè¡£÷è㈈q:gº¿£ w]JÒßt¶{–ßé¡S¿ÆŽÒ¤Žv_N†AC#É 1j炤F°Kj±~¯BO;%wÃ${”z5^cN ޹þŒÎÐlz×¥,ÍM—ÔvIá‰mȔێõ—ÖW“½ç&wÎW4U{¦j ¦tNµ¥)ÍM—…MMKÒa¼—Ù©ÍÚ8g²KNíÕ\CpôÁH½ëR–MçÕ¨{È5ÆãD¯Û“¤F¯²#ǧ MÕ‚"C½ërA7©<± )°¶G»Î™ìqÅs¨Bæz×E^À7µÖQ÷عÔ5ZÇèIçƒøU£‚àÀŠÏ‡õ»˜AŠMgLŠÆ)Önj$H˜Hî}1eGOÆðÊñçP« £÷èãVÆžgÖ»—jX¨ô;´=–2ô¹Ô8L\«ýR«4¥Fë2¹TÃDeÜÄtR£äI†T~;!8 ÎÔ!¿j¦“ðŒÙÑ8ä$©ɲöHg!:Ûç_û½®ÁBpŒNû"…!N¬o7Ýà÷º"¬Œu)×JžðžÎó¯#Œà @$gÎàY&©ŒIm!Nw9ð” ÈIΠƦ™%Ï¿ö{ 7Çx›c€41Ftp¯šN»ÀuïØ>êÃ:†3{NlÏ Âîù1©EÖ^’é/3ª¨q8Œ¦®[^¥VÆz¶ÞÙ òYÈY¶=Œ©ÑöˆRd}Â{ÊÏ¿ÎG èT:hG¯7£©Ós5Ç’4¥FýRÍUŠŒ':S]c:¿@ôù%·jqÒ 3݈jÁ:0^4Ð3=ôÊýŸ¦—÷‘é6]ª#vè"L¿:„óhŽÈ(‚#ÖÚuPe¿ 뮾3Q¦ì˜BjÔÿiz ÙŠ\û ¦yYÛ¬aEpÂÁ6;F>5 zùÇzDYkw’J¦GÃY—ÌÈyszL¥ägI –ÑTÞë÷¶ÉîªöwU#sl»G85J¦ £$<µždÖR§|6rœíÏÓ_¦äiFòOɵ#–àè=‚#2Ê);ú].WP}:<'yø¯µMY%ÿ9¥â´|¿7‚Ëz‹•‡Ë”ç% MÕ@Ș’bÄN[’Õ¡Í:;Œ„ÃÝ0Bá‚-¿/žk0R ùâá2Œ¼Ó¨~o•l#8f{ª M'~<Å••Ÿ…ÉŽY`í.fºFHïÖ2-ʵžÆiä<ÀÄúƒÙõT¡òHÿƒñeÁ8ɩʩïvxOg*Å骅—uŒec”_¹î•6½]„ù Ev85³x’Õ1¾¬ 8Ág:UÙÞBHµ 2Íš5’+·í}ñ¶Ïäà …„¼sŽ/Ù1—X‚#¦»§žü›ã§3d‚é rê°(ïE ©§aG¸r­™öêÅÙrüˆ%8ºX½zuAAÁ¢E‹ü.ršSjT*H‡upÉœÉöwd´N¨S¼‹%e®K0þ8Ïå#–àèâwÞñ»Èu¶©16tºöªµÞѓ՗ ËÎn2õ‘÷ht]ˆÓü¹|%† õ»XÒùÉá-,·ŽåæKp´·gÏžyóæÝwß}ï½÷žßeA®3ÝF IgšL$kÑ-a(ÂŒ'Ó©QŸG2ƒS:”dJ P8Dm]¤“íÀüÌŸÂüÿWãŒòdh~k Wù³<¿¸uš‡Ë·}ÊË×jµ}˜ŸùÕç·ýíäºÀ\ÀÍ1Þ“Ô8ÚÎ/Ù=ÌÏüê¹øã­’zGoË#nf®zÌüöÑoþˆ žxêÌàï/çO·CËU¦1z|áù=ÑÚzi©r¦Ã sÔGÒ±F à(JŽà”ÓåßxF3ׯe,4h¡2ø‹çá ka(ì²ph’I‡èa (WG  Sšé’œ‰Ð`üÉò3—3´^Q’…Ã@#¯ÑéâjýÙ› ïDp‚Ë5¥Ùf5oCƒõ#l—ŸÑÔ˜‰õŠ’,ׇ[Z_uŠþYºHJ ‡wn"8&Ii’¬æUhpúÓò³½]¯(ÉÂa S¹pJ ­<ú Y®½äÈ…ŠŽ@ÐÙ¦4×+kú¡Aþ½é!›a(ÔTƒ,)©#kµ×¼BpBÀfT…+k:W_õ«~6Scúë1ÁÜN†í-VY¨½à¡X.E”!Ë—/÷»ˆ  ]Së>‘kl •r,ÁG#A•&£÷;g5‘ëa{‹•韤F Ž@mTšLßגּÀ lÈéwø& ý.à„à]ÐF¥ÉÎýÎòR;%Aû]@‚àZÐF¥ÉæýÎN $5†…ʇ‚ö»€Á® J“…1€\Hj •íwWÜUí='HH:}S°M‚Àu/h±Ïi8Åå°¯`¢Æ(•«fŽT̨ßc,pmzG¯ü>ë¤>ᥲ[ÙõAFpBŒþÂ’¦g!ýÍ£¿1Ó#Ø#°TÎZìú #8á– üU¹ÇYfÛýT(¤½h“HG.œµ"Œà„^Tøk}ä±SX/¬MÏa?ä5Q=kånŽñ7ÇÀÆsndο’GGi5CM¯hdw Y‘‚ŒG ÐlÇXÎ*é„á{­°ÎõÓëÙ§@à’Œ±œÔBÒ/ƒ™5§²rjòðîôƒ>#.ÁGpÊuŒe•%¸Î¯•2øuEwý\rF4ð Ž@)ޱ,'|°pë¼èI}§'$Ÿë{5[ø^+ìÕ*èÿ õºÑFpG% )¦%IvL65š˜e¶ŸKjÁ¨öpt!] òŽ@àx†l³cj©Ñ´ÀìoFl1 N­°‡«ÞurÃñxáx@Æ1}´)Á;ZqE^ÈlnŠd_ ”°”€Žàè=‚#‚ÉxËj¨¯Ö¤ •ÀV 4UÑgjªu #¶h¼ê›Ûþ²òyDÁˆ>}œ?Óã<¡¸Ì3bK@˜¶¿íád}ö´ß¥à‚#CŒƒ¶Ø>q$ÈWwFl Iv´M´›Ñ@p¢Ï©©ÚúÄ‘À޶í:b !2ûl³#©ˆ6‚#,ž ãÝ0*Ý8Ú¶¤_c@ž¶—³T~i°k€(!8ÁâIŸd¼Fk“¢âØËþ¦F•-_èûÅúR#= Çã=†ãAúœ®¸êWb×!¾…Û·ÆÏ N0•$8ËqÖý"ÔîìfáB#Dé×ùIæT¬·3Õ$ù½Il¶L  –ËÒ#IåÔ4ÁA£÷¨q„WÒ¯ósE¿‡Úu™Á gÆ<2¬G©ñ&}õ ò°?ÈÔ8Á•~Ÿõùηïl ¾NlÇHR?ÀLot]>ß@Kÿ¹ÌÆô),µt*÷P-;Zo€/œFÞ‘ îDeq¾#8¦Rç§~ŸµíeX¥?epRZjZðœd¼FO²#©&ú8z>ŽðŠzGy1ã?Uî³Nÿžî,là”*©Œòòýït`‚ŒG  ’ªó“t¼¶ßÛCus§×”'##z^S©\Ç—”<7wkÄHzÜ* àò;¹F©Æ‘Ž;HW= ]»*ZëÃXïðBF˜k¯ÓtêÙ­ag=ªÏ4RÃp<Þ³Ç#y?¦áÄ«ÁðLƒ3ÛŽe£ýá4²cÀÔ€/ÂÑÔv»5ŒçÛG°—C‡¦êlðªñ9%Cƒá9-P2xÛ•¬cM;̱̀Žâ$™-)´fFÓ£ØËáãw•g9ÝC=’âIkk‹sðo¦–¬š¼ý¡c{“u„…äüî /j³GÿiE]#\yòH=×Ñ¡­‡¢õ^™°àû¶7ÙD{ÔèÐ}ÑÔWÇôL#ã~Ô5†šßÉ5‚äÃñð3 ®<ùu®8þ·d<ðrªÉr™áÊéÀ“Üd=®2¬}ˆVÖú•´}²€ü]2‚£÷´à(¹ló „''V×Ñ¡%Cî?;:…Å —®$ñBÒ-!á¶Çƒy<Ø®‚Ó×0!\ät3µÓZ„hÕ 8f‚^ã(9»q…ƒ-O.Im{*r%‡Ó¸A+'’"¯¦2þ‘ÔÀ.A>*$Ù1Ô©Ñ©ÌNÙ‘FƒÐ!8zÏØT-ù™Å×:õž?2$ŒW\k!s§&#hÏŒÉèšZ+MgTùäß? ‡¥¸jÁ'oÇ «I¨½g\òÛËøOä2_AÛø¬…̵‹PОRÑ5µös¬ÞúRÐ6‹ÊƒmWÙº€“ô‘ô„ Ū!Ap̧6𨠗å@àI§ïœz¿¿äi®µâÄ𲃠ËÕ)Dz¾YÒù¾Èƒ”S2]jT<,IaGpô^<wíöfdH.Ùv‘ßHѾîZw¨SX4Í#Ùûél"×Î$®gr×ìèT“êIù³F±m6·P㑃‹ ÿüúåË—Kì&þüü%¿‹Œ`1$NL.†¯•ȯ˜iœ<¿‹ãýzéÿÔÿ6îba ÐúHm'y¾¢é©ž®ëeûä=Û!<’mK§*n: ÁÑ{Ngsë Žo lE5xHþÄm¡|-»è­¦Ó'§€(™èù‘m³£ë.°Í¯ÖðdZ ëôìlOX·‰q¥œâ2‚'Çx/þùõÖo¾õ|UàD;B8HœØ¦Fë¶rúÙ†À’¤Fët×cÀöIBé Ö¨g›­ùÕZEj]”鼜úªe~Ÿ(q-­¶¿œ¾§ÁY¨ 8f„éì`üqÞGºátíÑ/½9ÒÜo<¥ø]o¨¤Fã ò%ç$ªÎ6ê'vù'Ú6©ÛÖ)Êö˜Š!i4÷‹µ–ÄôPãuÐ:[”Žá\@pÌÓ7Áµ…ÐE/dš¼ÿYp®¯ž¯²öwôkjtª84mIÛHçʶÜ©“¥äAÛÖ¿mÿim—7­HS£Óö·íÈè:‚à˜A¶½aŒ_¾*°Šv ȧ>dÂÓfÊ@±æ†(*N©ÑÚBmªi6N—l±dS—Ó¶U¹ÿF’2mg†ìèÔÀÔh,¿µ´Ö—lÞ(ÃÑFpÌ ÛjýU¾*°Šv ÈIǨ6X;­H4yjv¶Â®ÞÑi‹¥_ïhÛIQrtIêf³-¹Ó9UÇ:e\ÉÑ+¢r GŸßãEöäù¨c&Œb•Ë\3c°O'NCÛŽíwa½_åÔfÉ€’¿FCLm`pÛ‘«­Ÿ˜PSÓvl×Ôv݆WY‘¬í,Ó× …"8zFÿJè´å›o¬$ÑPñȉÆc`R&\SdV<2+’Ôú:¥FãDã[œòV ƒ;=Ðé16òå;Y§L™°Ëމ$ão6÷”m™ƒVT¤àè%í‹a¬q4½š³õŽ^5O8Ǥ¶[úÉ2¤œrƒÓ×-›"z²%Ioòêg•G˜ àtŒI_dœ()FÂù¡ý=°UêùêEÁÑcâÖiÆGš^’Ÿü.{¦6ˆë Ò«oÉ?SXB:‹ §ºÆD"Ð54HJ êògúçq=KÚÄmå %uNëh[oªžS³»—h›ÎGo(~ÿ]_ ÅîAòF%ëÄÐmÏ¥¿)‚pýð‹mw±È¤Æúäå,ÛHçš%»¶)K&š’P¸^Ø–PUÖÂuCy¸å#ó¥ƒ-‚£gô/ŒµÆ1Èí I­ ä§¤b#ŽõG³õd– ’!é׿ææYÛµ™R±¦'È[L¥Eòü§^áç²£u9Öz]£í¢œÊTnóð<#)sú„ !8zIØõq”7"„ëe{Ú•ü ¶^¼§ÝnLð¤á>×Ú‰œRc¹‹›ÓªÏÌ­&‹Ì‘×½IšzåK“T[ÚÎcZHšuÖ¥¹¦F×#Ù“Ô¨òéž|%–H$ü(RbC§Ç?¿~ùòåBúwõ‡»gyÔ.סï¬c˜IFÇn#¥É‘ƒ<Ü9»1­ƒö¹>ùÃ4L±íÅÁÕñ)½%^ã4p·í ñÖIÛ>WPòé®Ï'””ß4Q²’µvZ)‘ê!dºØnÔHbðtY¯I+zŽ2M±¾ËøírŠV¶ÏÊôŠǧ5=’Õ4³55Çà•¬šÊp͹9lúÏŒ1=]Mòನrf_>ˆR£° Fä¢úEý91¦9]¿8’óž)Ϲ .¤_sÉÃoLiÌXlëÙÕš=I®ú@~w=§EûÔ%Ô8zÀôÅ+((г£üù¹’gd™®dÙ¹6X¡š.«¶3×T¸=Ç4›í:ææµÐ«ç,˯ ÑÞ¶N©p­wΩ1°[,ø×/’çÄØÆ7ê%«t L’ƒÇ¶ª2•ršÍ©-ÈiÅ“-Ó:Zã©Óò>1°_4XQãè×'™:=ÿÊéÄäKjaÎö `¦2[¯Á¶™Øé™Zé?,¤\ëÒWîÔNI.Q*>Ó+È%~„‚<5Z-ìšw¬Ï4.Ü6ŸYOÆ›t©gÛ,‰_N¦µHá„`Ûâ/i›rýÁf]A5Žž‘ÿ¸”ô]³\YK’ ªµZÑZNÉß®o±6÷(n±(‘×¹^lçv©HäX픤ªÉõ(µíz¨Jñùv¤Ã)5êSlߥrê3}„k•›°|õ’Úk’Žƒ®‡±Ó/Ÿtê>MÅp­ÇÒ«L²[A@pô’m0’t¶¾Q»Èn µH¦¢ÅµZNÒ–¡Ôð«¬Wm7’Vé\ ŽN¿@„ônk½»ï[2§º¤O’ûNANç7áðsÂé ‘´P+î5yjTÿ dš.²]R¿Q…C„MêW.GoÑTí½øç×›ÚÈ\ߢҹͫƲØ]¶mëS$gz£Ó[Œ-ÔúNu¶ëž~³µñÄmjO±ö0NÏfÓ¤'m7ÖùõÅêÍs9ÒÞªž…Ý-\¦N#N©1›ÓZ$㫹³gS ¯-6u2ž(LËqšÇÚrm{´(¶ØZ¹¦F×6k§Ã[rœ«0®£úµÃºHaDpôŒþÅ^Ñs”5Q¿á®ß+IŒH­ŒñŸ®­*âϧI/ÉuÔôk[_¬¼ÑÐtÚM³-öbÉÚ¼bì„dí·”ÖíZß#ÛÅZ|„%•M?il7SjÌæÆ4ýÌS4´­¬µžM³™6oj»Àµ=WB’%‹²~œi~ãAe šŠ¿¥­©QñhÌþi^!8zIûh5ަéÖÙŒST:º‰T/WÆ«ŽqоLÓQRãTfÉ š~š;Íæmy£¤m×y«“çlÛÈäá µOɵSsR©ÑôKÉ5RxUžÚzIŒÜÑ)¤F×kv”· C‹Ê»äŒ™Ï¶À®' Û³Ÿu#×Ýi•ß0®kšl£…àè Ó—ÙéÇ¥âEË8Ýö«îZ¡ðCÐzê1-Çô›Ûõ­«f-€þ¹’ÊžôS£µw‘må¨ScM Û‡rjN–mjnU2¶ïÍf™Ez¿.r“bjtú:K’SlÊ\vTIòÓšäô¥Ò>£O1I8–œ|"ƒà˜.ë—Á]ß(¯ÿÎ_ra÷=wªNs­usb=+ebë9Õ•JŠ!ùI­’]ëÛ¯mçvqD8ÄJ§—RØÚœš“%O*‡™d!¦H§xÖé‚à˜6IjTÉŽ®­Ní-ž—Ü©•Ùôã?mÛօݯq!­e°ýŽÌh#8zO18 …2œ~D ·¶TÓœŠ©Ñ¶ÍBdì,à”ê]. ivtmÂvÚr®ÙöŒ,¤UŒ´Ef‡kj¿RT~u8Uɧß~'Ï©Pd=ýÚÖD …[Ú…[5[ö‘JûääcYñüéôÆc2ÂŽÞSŽÂ®¦Í55:ý”4"¨§Æ,gGá˜\‹-ùgR5¬òͨXù$þ|uŠÂùjätõB¸¦F}6ã»T*þEë窇«3s™<5šæÎ!Iåô}äTCaZ•* a9Âý^9dÁÑ{©Õ8 »&KIÙúÏAÅj3y‰ÈLv”§Fõötõ#©+Ri—Q©¡tJð®UË"0טœ%I’º¡…Cô”üÞ³–Êé;Â19×Ô¨òÃX8ÿ^âÌ)¥ü.@îÒ¿lÚOû§$XØ~c]—ïú«Ñ´4Ûë\Âá©Vé“§FÅ÷ZßbZkÅí¦ÏfšÇ¶ò¶EÛ‰¶UŒÆÝdü?²Oÿ¢ iš—¶mÆmú8ã?MÇ¿ñ?áõ7rÌ@Î55Ú¾Ëzé±~G’ý… 8úCMbOÞÓg¶Ö :µ…Y'Ú.Ç6•fítàt"3ž¤œ /YŽi~ÛßÇÆ•NÒ¶‹5ž@Ë7> \8„Z§ aÚ›œ…ýâúkÁö‹~½ñU§~rNŸhû‹ÑZÓ Ó<3¾(((ð»I§FëeœÇ¸Û¾7¹v†k×{ަjï¹6U»v(–7b:õzÒîüFAnórÚÖ¦g•–ms¡¤ZW±o@ Í:¹•Ç8ƒu;ÀG’/ pTË©Z~T¸Éz1LSà—¤º³ät'Îx¶™r°§MØw}š¨qÌ6y­˜S]£Jj ·Z›*ÞLíû¯F×’´ôôÓOëSÆÇûõë§Oa×GÞ믿®óo»í6ãtv½MÕ€ÂÂÂŽ;Öi†?ü°¤¤äæ›o®S§Ž6eذaÕ«WŸª{ì± 6¼ÿþûNƒæ°ëMèã$­L™2Õ«W·þˆÜ³gB»¥NeÐáÇGŒqÅWlÚ´iÈ!“'O6Þ Å®Ï±X¬víÚW_}u¿~ý¶lÙòå—_ v}DÍ™3çý÷ß¿öÚk­#õêØõ&G uëÖýïÿ«tkÖ¬Ñ^RŸRRR2tèзß~»[·nS¦L¹ñÆ­•ìúèY¹råðáÃ'Ožlš®Ý_¿uëVíŸìúèY¹r¥âÅ_,øCŸ>}„Ÿ}öYAAAÏž=µÙØõFG ݺu+..þæ›oô)‰DbÆŒ5kÖlÛ¶­ú<”wÞygÊ”) xá…œ* ØõÑS­Zµ?þxüøñ¦éëׯB}ôÑÚ?ÙõÑÓ¸qãóÿìôÓOBäççŸþù;wÖfc×T\|ñÅ¥J•zþùçµ.,BˆW^yeÇŽ}ûö-[¶¬ú<ŽD"1f̘ªU«Þyç’ÙØõÑS·nÝ‚‚‚o¿ývúôéúÄeË–½ûî»UªTéСƒ6…]=§Ÿ~úÓvë­· !Ú·oÿôÓOßqÇÚlìz#žU ÈüóŸÿüè£lŸUýúë¯?öØcõë×ïÔ©ÓºuëfÍšuì±Ç¾þúëÆTæA@lÛ¶­S§N+VlÖ¬™õÕÞ½{_vÙeÚßìúèùñÇ päÈ‘¶mÛ6hÐ`Û¶móæÍB<þøãz{¥`×ç€%K–ôéÓÇú¬jv½®ôý÷ßïw€àš>}úÏ?ÿ|ñÅçåå™^jÛ¶m“&M¶nÝúí·ß–)Sæ¼óÎ{ì±ÇLƒÇªÌƒ€X¾|ùøñã‹ŠŠ¶ÙiÑ¢…~— »>zêÖ­{þùçÿöÛoëÖ­ûñÇc±Ø)§œòôÓOŸzê©ÆÙØõ‘·}ûö>ø   àì³Ï6Ng×ë¨q€ú8@ ÁJŽPBp€‚#” „à%G(!8@ ÁJŽPBp jåÊ•-Z´èÚµëÕW_=uêÔL`Ô¨Qï¾û®öÏçŸÞøOßiå¹è¢‹œf8pàÀ 'œPPP0gÎO>+©u¿ýöÛ ¾ÿþ{•ÙþýïgoÂ#€äÄb±<ƒ5jlÚ´é»ï¾»ñÆïºë.¿KçîÛo¿1cF&–\XX(„øé§ŸÖ¯_o;ÃÌ™3ùÜsÏ>|¸µãàèÑ£­7ˆL›6mðàÁ;w>餓.½ôÒO>ùD/Òã?^PP°sçÎâââ‚‚‚¶mÛêïš4iÒu×]wÆgœrÊ)W^yåk¯½¦­ŽÊºÕªUë”SNv•ŽS¦LBœwÞy±XLŸ¸cÇŽ§Ÿ~ºG'žxâ‰'žxþùç?úè£[·nuýh뺻.J÷í·ßÞtÓM;wîܹóõ×_?sæL×뺿6nÜxß}÷õèÑ£M›6]ºt¹æškæÎëñ èãÀ‰DBëÀÇÓ—.]:tèÐC¦|òÉ'_}õÕD"Q¯^½:uêÌ›7oöìÙß|óÍ‹/¾ø—¿üE›sèСZöªV­Ú¡C‡>þøã3f¸ÞS2bĈ·ß~[Q¿~ýZµj-Z´hÁ‚ÿùÏžxâ !Dûöí‹ŠŠÆŽ{øðáË/¿¼lÙ²Zɇ ö¯ýKQ·nÝêÕ«Ïš5ëû￟:uê¨Q£jÖ¬)_«ÂÂÂï¾ûnÒ¤I7Þx£>±¸¸xÚ´iBˆóÏ?_Ÿ¸cÇŽ®]»¶bÅŠMš4)))Y»vío¼1eÊ”ñãÇ'õÑꋚ0aÂÇ‹Å6l¸eË–éÓ§ýõ××_ýM7Ýä´F®ûkåÊ•ýúõÛ·o_5š5k¶cÇŽ3fÌœ9óÅ_<óÌ3³yȸ¨Y±bE<oÓ¦qâ¡C‡–/_~Ë-·Äãñx<þý÷ßkÓo»í¶x<Þ±cÇË.»ì»ï¾Û¾}»6}úôéñx¼{÷î‹-Ò¦lß¾ýïÿ{<ÿŸÿùmʇ~ÇÛ·o?}úô’’’D"±víÚÂÂBí#ÆŒ£ÍöÊ+¯ÿ9eÊ”x<Þ¥K—ŸþY/p§Nâñø×_­øä“OnÙ²¥þÏñãÇÇãñÓO?}þüùÚ”M›6]rÉ%ñxü¯‹­½{÷wÜqñx|ùòåúÄY³fikmœó¥—^ŠÇã×]wÝÞ½{µ)»wï8p`<ÿè£ämZwõEÅãñn¸a÷î݉DâÈ‘#¯¾újË–-ãñ¸¾;´Ùô-¦²¿®¹æšx<þÌ3ÏiSÞzë­x<Þ«W¯lŸ²€¦jÉÙ¿¿qÇãŽ;®°°pâĉBˆ«®ºJk¨ÕU®\yôèÑ;v¬U«–6å±ÇB<ûì³Ç¼6¥V­ZÏ>ûlݺuÇ·k×®D"ñÜsÏ !|ðÁ®]»j »7~á…J—.-)Ø“O>)„1bDË–-µ)Í›7¿ùæ›…’ñwž}öYí]zËu½zõFŽY¾|ù±cÇnÙ²E².¶*W®ÜµkW!„¶M4Z;µé¶˜¢¢¢®]»ÞvÛm•+WÖ¦T«VM»½fݺuòÍh¢¾¨üüüçž{®ZµjBˆ2eÊ 4hàÀBˆ^xÁvÉ®ûK±lÙ2!ÄÅ_¬ï þýûßpà ݻwOâÀGÉ1㘗—wÌ1ÇœwÞy£G6l˜iæ^½zU¨PAÿçÎ;׬YÓ´iÓV­Zg«T©RÇŽ8°xñâ­[·nß¾½víÚçž{®qž† ž~úéN¥úí·ßÖ®]›ŸŸß±cGãôž={N:õú믷}×¶mÛ¶nÝZ¯^½Î;§×©S§K—.ÅÅÅK—.uZ‰^½z C7ÇÄíø¦à8xðà—^z©Y³fú”íÛ·ã¦úG«/êâ‹/.SæO”.¿ür!Ä’%K¬3«ì/!Ä1Ç#„6lØœ9sŠŠŠ„eË–½é¦›† ¢²¹„}$Ç:Ž£D£FŒÿÔî5^½zuAAíü›7oÖj­š6mj¼‰DÓ¤I§^³f¢aƦéåÊ•3•ÁhíÚµÚb­/5nÜXü¹ºN²“Î;W«VmýúõK–,iÕªÕ¢E‹¶nÝÚ¬Y3ëZoܸqæÌ™óæÍûõ×_ׯ_¿sçN•ÍhKqQM›65MiРAùòå·oß¾oß>½ÂR£²¿„<ðÀÍ7ßùä³Ï>ûØcUÜb‚à ƒ´&QÝáÇ…õë×wjÄÌÏÏ×êì©Q!iª>tèB»ßE]"‘pzIû,ã½Ã¦u‘([¶ì¹çžûá‡Nœ8±U«V¶ÕBˆ÷ßÿ¡‡***jÔ¨Qûöí»wïÞºuë5kÖ<øàƒòÍh¥¾(ë†Åb¥K—.Uª”uë©ì/!Dƒ >úè£ Ìœ9söìÙ‹/ž?þ¨Q£.ºè¢‡zÈvW)‚#€ìѪ»*Uª$y8áöíÛÅu]&Zµ¢­£>Za²çСC“&MªZµªmôÑêM½5Ze¤µ~NQaaá‡~8yòäÛo¿Ý¶ƒãÞ½{ÿçþ§\¹r/¿ü²± ÞØ«RQR‹²nÃÍ›7ïß¿¿aÆåÊ•3½¤²¿4±XLHqøðáo¾ùføðáãÆ;óÌ3»uë–Ú6@ôq=uëÖ­]»öªU«L=ꊋ‹ûöíÛ©S§;vÔ®]»^½zÛ¶mÓò–nãÆß|óÓ’óòòjÕªµ~ýú~øÁ8}ÆŒÆ ›0a‚¤<›6múöÛoÓ·oßþõ×_—.]Z¿Ï&Y:tÈËËÛ´iÓØ±cׯ_ߢE Sýé§ŸŠ‹‹O<ñDSÇMíF“¤$µ¨qãÆ‡¨B¼óÎ;B-ó¥°¿6nÜxæ™g^rÉ%ú«åÊ•ëÖ­›6ðÓ€—BŠà «n½õÖ’’’[o½U¿ïdï޽Ç_¼xq«V­´»†µ›*î½÷^=Ïýúë¯7Þx£vã…­X,¦Ý@=|øð•+Wj×­[÷è£ !Î9çãÌ%%%û÷ï×þ¾å–[„ÿüç?µû<„[·n2dÈÁƒûõë§5Ŧ ‹õìÙS¡ !im§®[·®bÙ²e;vìЦ;v̘1BmÈFEI-ê×_½õÖ[÷íÛ§m‡·ß~û­·Þ*S¦ÌàÁƒSÛ_õêÕûý÷ß-ZôꫯêcL®]»VW\¿@4ÐT «z÷î=gΜO>ùä /¬_¿~Íš5W¯^½ÿþ&Mš<òÈ#ú<ßÿý„  T³fÍjÕªi­ÉõêÕÓîÆ°Õ·oßÙ³gO˜0¡°°°Q£F*TXµjUQQQaa¡1·Õ¨QcçÎýû÷oÔ¨ÑÈ‘#õÏêÛ·oƒ *V¬¸jÕª’’’¶mÛjI4e={ö|õÕWµˆvÞyç™^mÚ´i·nݦM›vÖYgµk×.‘H,_¾|çÎ|ûí·?þøãßÿ] ÇUR‹*((øâ‹/¦NzôÑGoܸñÀeÊ”ùç?ÿ©Ý ”Âþ*UªÔ]wÝ5lذ'žxâµ×^kРÁþýûW­Z•H$ú÷ïo|<€ 8ȪX,öè£víÚõ_ÿú×Ò¥K×®]{ôÑGŸsÎ9—_~yÅŠµyJ•*õä“Ožzê©“&MZ²d‰–Ï>ûìÂÂBÉ/Ú»Î8ãŒÏ>ûìçŸÞ³gÏ 'œÐ¯_?mpݰaÃFŒ±jÕªƒêïêҥ˄ –-[¶mÛ¶“N:©sçÎW^y¥|ØHW-[¶<æ˜c~ùå—Ö­[ÛÞýÔSO½þúë“&Mš7o^ƒ :wî|ÕUW5oÞ¼¸¸x„ I=²O}Qo¼ñÆ_|1mÚ´%K–Ô¬YóŒ3θꪫ$ÏVÙ_½{÷®W¯Þ믿þË/¿,[¶¬V­Z§vÚ€xl =1ÉM…Û·oÅbòa·Y@p€nŽ€‚#” „à%G(!8@ ÁJŽPBp€’ÿ–Išà"EIEND®B`‚statistics-release-1.6.3/docs/assets/poisscdf_101.png000066400000000000000000000567651456127120000225050ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A]¼IDATxÚíÝy\TÕãÿñ3,*n_Ð\‹E-´4EÜÒ(M%,ÓÈôcY©ifšKeiæ–YVŠ}JE?šËO?™Š¹¢–¨%®EPDÜ‘He¸¿?nMã,x‘™¹³¼ž>†3wî9÷^æÎ›sϹ£‘$I÷â¥vàŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽêøñãKªT©Ò²eËW^yåüùó÷·æ È«jÕª•Ú[i·nÝš?þOàtŽœÂÍ›7<¸pᆠnÙ²Eíæ¨ì·ß~kذák¯½¶eË–‹/Þºu+==}ãÆo¿ývXX؆ î¹½^Ÿ““³ÿþ)S¦ètºäädµ· €;ðQ»úè£*T W­ZuàÀkmþùçŸå}úô©\¹²ù6lHIIIII‰‰‰Q²W###Ë•+'?–7îÁ€úŠŠŠNž<9`À½^/—4kÖL~0sæÌ³gÏ !ªV­ºk×®ÄÄÄ 6$'' !._¾üñÇ[[íŽ;ä&LX·nÝ矞œœÜµkW¹Æ­[·–j±ûkÉ_|qöìÙäää””Cv´ïܹcˆÎ 4°É¾Õh4!!!òãË—/›/Ð¥Kó{ñŒ5ÊfG€!8P!²øúú6jÔÈp—™ž={¶hÑB~l(1b„aðbÓ¦Mßzë-“Ìny˜ðí·ßÊ™,!!áØ±cÇŽ{öÙgKµØ}´¤I“&Æ “7lذ}ûöòãÌÌL‹ 6+i¸j_vÿ÷ÿg¾~¸GÎ¥I“&sçÎ5ü˜šš*?èÖ­›ñbO<ñ„ü --M¾9ÃKRSSÚ²eË/¾ø"??¿qãÆ†~8…‹ÝGKLDʬ5Ø0iZa~×îû–““#?¨Zµªù³ÁÁÁõÌ𠯏#ÕßAÐÇÇ'<<¼mÛ¶o¾ù¦á’n^^^nn®üØäjÕ’üùçŸW®\±xïÆÉ“'çåå}óÍ7·nÝBH’tðàÁƒN:µ}ûökÖ¬©^½ºÂÅî¯%ÆxI“Í•+W.((èÚµkBù²¸¹ÜÜ\ùžŽ*TPx«KÃêàà`óg—-[Ö¹sgÛUîŒGªY¶lYÆßÒÒÒþûßÿŽ;Ö…U«Võ÷÷—_ºtÉøµ†Ë•+'ç?s¾¾¾óæÍËÎÎþþûïû÷ïo|GëÝ»w¾ROÉbel‰rmÛ¶•¬_¿Þâ{6ld˜E^²={öܾ}[~lqò8(GpàÔt:üà§Ÿ~2.7üæãcáâÉ­[·®\¹råÊ•[·nõíÛwéÒ¥W¯^ݲe‹!<íÚµKùbeiI© 2D~pîܹ ˜<ûã?º;tè d…†ëþ•*UzüñÇmv`x$‚#§-?øüóÏ<(?>vìØÌ™3åÇO>ù¤Åž8q"$$$$$$44T¾‡ŽO—.],/P­Z5å‹•¥%¥òôÓOwéÒE~}ú/¿ürìØ1½^ÿð÷iÓfìØ±%_{}ì±ÇÒÓÓçÏŸŸ˜˜xáÂ…ìììÊ•+7nÜxàÀƒ 2ÌqV¸XYZRZ?þxZZZ||üºuëNœ8‘››[¯^=N×±cÇ×^{­|ùò÷\ƒ···¿¿ÿC=Ô­[·#FØ„F’$µÛÀä(Bp€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"GîL£qŸZP*ሣâ˜ZP*z»"8ÞÙ3gt:ÝáÇÕn\€;eÔBØ*-·ù8ôØOÜûÆ¡wB’ûlJéï!!!Aí&ÀÈ(÷ä6yÔaµÜÅ>Ÿ!Ú]îJV‹Ûlˆ»ÖⱑÎ1|Ôn€“ÊËË;uêÔúõëW¬X¡v[àÔ4!I¥(·a-¶­B’¨¥tpè%Ih„F¦«Óh„,”ßg-B²\‹°YnV‹µµÙ°wÚ]îT‹µ··kqnGËzôèqùòeµ[2±mJ°ÆbF±yÕæµØc먥”uh4ÉüÐ I#ìùqhÛÔhµ;|ºM-3ŠjqÑÝå Z4I²-VÎø’>lœÁѲ©S§ÞºuK±téÒ_~ùEíæà~8¦Ûɼ";VãZì—‰Y‹]w×?µH!$»dS!iîÎŽöˆtâî];UaZ‹ÝºOäZþÚ]®\‹Ir@-öÞ]ªE#„dŸZ$É(;жÅEÏøNŒàhY»víä;vìP»-¸ŽéÜFIÈ®çC-v=M9²{Ÿr%IhìšMÿÎŽB²c¤ÆIÈnU×b׋nr-ö¾´ç€Z »Ë1µ8`wÙ«–¿ß’„]ÊßÙñŸZ\úŒï¬޶§ÓéÔnþ¡Õ &U¡ÓéNJÕjmv|NJµXn<¡A«-kek1™3A-¦UüÓéð×Eã¿jù»Ü6µ*4†•oMYkI=e±Üx€V§-KÖj1™ÍPÆZ”lµÜ³ÛVáÐZ$yX‡áø+¤þý6µåî’„dt9C#÷¢Úb[ROY>ô¦§0È‘G»HMM-ûJ`C8u*U’„ö:4†³ÇÝç [V'ÿqk©;Ð%k–‡ؤI#i Ÿ ’qw dƒZ¬Î5Ê’l¸Çþ¾ænX³M÷–ÑvYîy²u-Ââ0A—­E˜wÔÙ®‡¹ÎøMbËZîÊŽ†kÖ’-ÞŽ–ï>`økΨȶ»Ìòßp;¸!ù¨ñ?‹å¶­Q>{Þ³ùFNPÔrO}8NéÆ}¶X¹áß]«Õ•Ûtw®PÞ³-ã€E-¥ªÅm6ľµHÿÄ8›¾…ÑÛQÒHÂøäò×ò?[nŒýÏøNŒà7$Iwý3šY¸üam¿ûþ;¾/3¾=ÑãxS¦LIMM}ä‘GÔnˆ{²÷WÛÁ ™tþÙé‹qKUx:ãoµ9Îïî…G8”µ“’çÝ{ߣ9æ»Ú u©½¹À}±ö'µÍÿÔ6}H_ ¬#8¡LNöœcç¢pt#9ø‹Å3£]Sc õ#8B5&_mǙʽ9ôF9€{093Úã,ÉLd”c¡Ç|}œ“¾« p†3#[Ã9Ðãp¿-OfñF9ô;ÿP2ܧKNÁP€àpvòXÜ(¸7‹ƒÁ§N8.UCeœ = 7ÊJÇp†Ñ†ìp<‚#àì¬Í¡æj5ÀÁŽ€³# œÁp1äH€ZŽÇÒ0<pUG€ý·@pØŸ$YÎŽJÀ¥až5!1fp%G€£gGR#à‚Ž’Ã"©pM|W5Àž¬b4)'G®€à°'“D(çEùš5ap5\ª8ŠqX´6Ï€#8¼‹‘츂#Àþ¬]˜æj5àRŽû# nàp,B$ಎP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽPÄGí8ȪU«V®\™žž^±bÅ:Œ3&  „åoß¾½xñâM›6edd4mÚtذaaaajo€j<¢ÇqΜ9'N<}út«V­*W®¼fÍšW^y¥°°ÐÚòz½þ¥—^š5kÖõë×Û·o_«V­Í›7?óÌ3P{STãþÁ1555>>>888111>>~óæÍqqqGŽ™5k–µ—|ÿý÷|òÉ'·lÙòùçŸ'$$|÷ÝwBˆ‰'ª½5ªqÿà¸råÊâââ‘#GÖ¨QC.7nœ¿¿ÿ¦M›Š‹‹-¾äàÁƒBˆ—^zÉÇç¯KùmÚ´iÔ¨ÑÙ³gÿýwµ7@î8àååe(ñööŽŒŒÌÉÉ‘¢¹ÐÐP!„qF”$éÆ^^^†( àiÜ<8J’”žžh\®Õj…YYY_õôÓOW¨PaêÔ©{÷î-,,¼xñâ¤I“Ο?[µjUµ· ìI£Q»œ—›÷ŸèõújÕª™”ûûû‹»ûétº„„„8ÐP8`À€ñãÇ+¬W§Ó™”$&&ª½3`wçÏŸW» P‡Kúú dœ9óÏBddd¨Ý(—áÒ‡ÊuïÞ]í&8 7ŽòÔéJ•*™”W®\Y‘››kñUyyyŸ|òI~~~ãÆ›6mš““³gÏžuëÖ=öØc]»vURojjªÚ›uÔ¯__í&@.|è%©¾F#$Ét[î.„5.|衘ùǺy‘‡póàX­Z5FSPP`R~óæMñw¿£¹wÞyç·ß~7nÜË/¿,—\¼xñùçŸ5jÔ?üРAµ7 NªAý’àƒ.H’Lc"©€%n>ÆÑÇÇÇßßß¼g1//Oa˜gmìêÕ«;vìx衇 ©QQ³fÍ×_ýÎ;k×®U{›Àäì(#5°Â̓£"888''GNŠòžàà`óåsrr„õêÕ3)—;³³³ÕÞ 8Дªp^†ìHj`…ûÇÎ;ëõúÝ»wJ$IJJJ hÞ¼¹ùòõêÕóööNKK“î>uÊãzè!µ7ÎE’yFÔ ׬á4š»þ•Pžccc½¼¼æÍ›'kBÄÇÇ_»v-&&Æ××W.ÉÏÏÏÈÈ'ÇùùùEFFfff~þùç†;„§¥¥}õÕWåÊ•ëØ±£Ú§c’Ip%’ôÏ?aÔ×hRB·Ÿ#„¨Y³æ˜1c¦OŸÞ³gÏöíÛgff&''7nÜxÈ!†e’’’Föã? !¦L™òì³Ï~õÕW7n ÏÉÉùí·ßŠ‹‹'Nœøàƒª½ApF†ìHj„«2×h>W„ž…ƒ ª^½úºuë6nÜ:`À€‘#GÊwä±(((hãÆóçÏß³gÏÎ;:tèðÚk¯5mÚTíMQ2º‘ ×`ÉŽ,ÑHœlM§ÓqGdÈ‹„E”‘‘áÂ7óãFj7`‰yG£y9!€cÀ)™„B9/’¨ŠKÕàô W¨™@UGpnÆã­Í³‡ 8€3Ÿ Cv ‚#81‹ƒé@%G(BpAG#µ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠá4B£vpyG(Bp„Û¢—Û"8ÂmIB²˜ ”Ü‚#Ü™yvÔ$$µÛ€K"8ÂÍgGR#eá£vÛ+á µñS„HJ…à7džå¼HR ,¸T ÷gHL‹ ,ŽpsÆãÉŽ”ÁîÌ|6 Ù€ûFp„Û²6‡š‘ŽÜ‚#ÜÛ"8Â#"(;‚#!8@O¹øªU«V®\™žž^±bÅ:Œ3&  ä—=ztÁ‚Ç¿yó¦N§>|ø£>ªöv¨Æ#zçÌ™3qâÄÓ§O·jÕªråÊkÖ¬yå•W KxÉöíÛûõë·}ûö5j4oÞ<%%%..nûöíjo €jÜ?8¦¦¦ÆÇÇ'&&ÆÇÇoÞ¼9..îÈ‘#³fͲö’ÜÜܱcÇúøø$$$|ÿý÷ñññË—//W®Ü¤I“Š‹‹ÕÞ u¸p\¹reqqñÈ‘#kÔ¨!—Œ7ÎßßÓ¦MÖRàš5kòòò†Ú²eK¹äá‡~òÉ'¯]»vôèQµ7@î8àååe(ñööŽŒŒÌÉÉ9xð Å—ìÚµK£ÑôêÕ˸pÆŒ©©©<òˆÚ 7Ÿ#IRzzz````` q¹V«BdeeEDD˜¿êرc!!!¿þúkJJÊ76lØ¥K???µ7@5n ôz}µjÕLÊýýý…¿ÿþ»ùKnß¾ýÇ<ôÐC|ðÁòåË åµk×þì³Ïš4i¢¤^NgR’˜˜¨ö΀Ý?^í&@zÅ¡÷Ý»wW» ÎÂ̓£=**êÏ?ÿ\½zõ—_~ùæ›oþøãJúSSSÕÞt¨£~ýúj7êàÐ{,½'0ÿX7ï!òn>ƱZµj¦  À¤üæÍ›âï~G*T|òÉ'½zõªV­ZHHȰaÃz÷î}þüù 6¨½Mêp®à8{öìôôt®ÐÇÇÇßßß¼g1//Oa˜gm¬R¥J*TðóóëØ±£qy—.]„'OžT{'p:õ4P» àÎãããŸz꩘˜˜„„‹ïCpppNNŽœ 222ä§,¾¤F¾¾¾ƸP¾B]TT¤öNP‡sÇW_}µV­ZÇŽ›2eJûöí_{íµÍ›7ß¾}»,ëìܹ³^¯ß½{·¡D’¤¤¤¤€€€æÍ›[|IÇŽóòòN:e\(ß»§aÆjï$Îáî¿-ï]®Ï¹‚ã[o½µmÛ¶ÿüç?ýúõ«\¹òöíÛGŒñøãðÁ‡º¿uÆÆÆzyyÍ›7O×(„ˆ¿víZLLŒ¯¯¯\’ŸŸŸ‘‘a˜×»wo!Äĉ ½žGý÷¿ÿíïïßµkWµwç I2¢F#$Ií–€½h$g=ÇíÚµkýúõÛ·oÿóÏ?…uëÖíÕ«×3Ï}z­ZµÚ·oŸ™™™œœþí·ßnÓ³qãÆQ£F………ýøãrÉ‚ >ýôSÿˆˆˆ‚‚‚h4š™3g>ùä“÷¬N§Ó1«Ú3edd0¿ÒãÈIÑøxÞõËc?ë÷v<>>>:uêÔ©SAAÁêÕ«?ýôÓÌÌ̹sç~þùç­ZµŠ‰‰éÑ£‡···’U 4¨zõêëÖ­Û¸qchhè€FŽ)ߑǚW_}5((hÉ’%¿üòK@@@ç·¦ö^àd ýޤFÀy{…ׯ_ß¶m[bbâÞ½{åY)Õ«W÷õõ½xñ¢⡇úæ›oBCCÕn¦)ý+ô=x %£øÔ â]ï±<ö³Þ{¯]»¶eË–Í›7ïß¿_¯× !‚‚‚žxâ‰èèè–-[ !~ùå—9sæ;vì½÷Þ[¸p¡ÚíàaLB¡!G¸;ç ŽK—.ݼyó¯¿þZ\\,„ ìÖ­Û“O>a|Uº]»v-[¶lݺõÔn2ÏÆGžÄ¹‚ãG}$„¨V­ÚO<ñä“O>úè£ÖF1úùùU¨PÁ ¯Sð &I‘ìÀÝ9WpŒ‰‰‰ŽŽnÓ¦’Y/t7P“ÅŒHvàÖœë>Ž›6mÚ»w¯µÔ8|øðnݺ©ÝFBXÑHjྜ+8ܹsÇÚSçλpá‚ÚmSgΨÝpõ/U'%%½öÚk†—,Y²téRóÅŠ‹‹%IªS§ŽÚíðPêGooïªU«Ê¯_¿^®\¹Š+Z\²ZµjãÆS»½JýàØ®]»äädù±N§{þùçǯv£`JýàhlðàÁj·8Wp|çwÔn,S98.[¶LѺuë°°0Ã%ëß¿¿ºmðL*Ç?üP1yòd98Ê?–Œà  •ƒãðáÃ…M›6•|ûí·ÕÞ!°Låà8lØ0㇠¢n{`s}s œ–Ê=Ž;wî,íK¢¢¢Ôm3€gR98¾úê«¥}IjjªºmðL*Çž={ª½ ˆÊÁqæÌ™jï(Âä(Â7Ç@¾9ŠðÍ1P„oŽ€"N=9&??ÿöíÛj·B¨ÞãhÑ‘#G¾üòËãÇggg{yyÕªU«E‹o¼ñFݺuÕn€çrºǹsçÆÆÆîܹ3;;»|ùò*TÈÊÊúïÿ½|ùrµ[๜+8îÚµë믿öööŽ‹‹ÛºuëáÇSRRvîÜ9xð`!Ä”)S:¤v<”sÇåË—K’4zôè &Ô®][£Ñ!BCCßyç±cÇ}÷Ýwj·ÀC9Wp<~üxùòå_zé%ó§ àççwäȵÛ࡜+8 !BBB||,LÙ‘gɨÝ@å\Á±yóæYYYyyyæOåççgdd4nÜXí6x(ç Ž±±±’$½ûî»EEEÆåz½~üøñz½¾sçÎj·ÀC©|ǽ{÷ÿèííݧOŸ5kÖtíÚ566¶Aƒ&##cõêÕYYY:®{÷îê6Àc©h±üâÅ‹sçÎ5)LMMmÛ¶mjjªºmðL*Çž={ª½ ˆÊÁqæÌ™jï(â\“cJ6vìØN:©Ý ¥r£¹ëׯoÛ¶-33Ó¤¼°°pË–-ÞÞÞj7ÀC9Wp¼råJ¿~ý.\¸`mþýû«ÝFå\Áñ»ï¾»páB«V­zôè±aÆ}ûö½÷Þ{~~~'Ož\ºtiÿþý'L˜ v<”sÇÝ»w—/_þ«¯¾ªZµj§NÚµkW¿~ý¶mÛ !4hðÑGõíÛ7,,Lífx"çšséÒ¥zõêU­ZUQ½zõ€€€cÇŽÉOÅÆÆ|÷Ýwj·ÀC9WpBxyýÓ¤:uêdddȽ½½u:Ý‘#GÔn €‡r®àröìÙüü|ùÇÚµkÿú믆g5ÍùóçÕn#€‡r®àØ¥K—·ß~ûôéÓBˆˆˆˆsçÎíÙ³GqíÚµß~û­V­Zj·ÀC9×䘸¸¸Í›7oß¾]’¤ùóçGFFúøø 6¬E‹'Ož,((ˆŽŽV»ʹzƒ‚‚–-[öÖ[o5mÚTQ«V­‰'Þ¾}ûçŸÎÉÉéܹó AƒÔn#€‡r®G!DPPЫ¯¾jø±_¿~=zô8zôhpppƒ Ôn€çrºàh,??ß××·råÊmÚ´Q»-žÎƒã‘#G¾üòËãÇggg{yyÕªU«E‹o¼ñFݺuÕn€çr®1ŽBˆ¹sçÆÆÆîܹ3;;»|ùò*TÈÊÊúïÿ½|ùrµ[๜+8îÚµë믿öööŽ‹‹ÛºuëáÇSRRvîÜ9xð`!Ä”)S:¤v<”sÇåË—K’4zôè &Ô®][£Ñ!BCCßyç±cÇñ•ƒjq®àxüøñòåË¿ôÒKæO 0ÀÏϯP‹sG!DHHˆ…);ò,™‚‚µ࡜+86oÞ<+++//Ïü©üüüŒŒŒÆ«ÝFå\Á166V’¤wß}·¨¨È¸\¯×?^¯×wîÜYí6x(•ïã¸wï^ã½½½ûôé³fÍš®]»ÆÆÆ6hÐ@£Ñddd¬^½:++K§ÓuïÞ]Ýx,•ƒãÀ-–_¼xqîܹ&…©©©mÛ¶MMMU·Í\‰F#$IíF€›P98öìÙSí=ÀíÀ>TŽ3gÎT{p;’d9;( lœñ»ª…—/_>qâDffæ;w4hШQ£š5kªÝ(®Ã<;’ Ìœ.8^¿~ý‹/¾X±b…^¯7z{{?÷Üs#GŽô÷÷W»\„œe¤F°ç Žz½þµ×^KII)_¾|—.]êÖ­ëíí}öìÙ;vüç?ÿ9qâIJe˼½½Õn&!gGR#؈sÇE‹¥¤¤4kÖì‹/¾¨Q£†¡<;;{øðá)))‹-ûì3ãÔ(„¨^½úܹs½¼¼víÚ¥v81IºëŸ¡Ðä)À}q®àxòäɺu놆†š?üàƒž8qBí6pÆW¨Ç;î—sÇòåËZ{¶°°ÐÏÏOí6pæãÉŽPfÎ5jtåÊ•””ó§Ž;vþüù† ªÝFNÏÚl.R@Ù8Wp”¿HfĈ&c÷ìÙ3lØ0!D=Ôn#§G@ûp®YÕÑÑÑIIIëÖ­2dHhhh½zõ„™™™/^BôèÑãé§ŸV»\ !lǹ‚£â“O>yôÑG?ûì³K—.]ºtI.¬^½ú¨Q£z÷î­vë`{¡‘í¸§ ަOŸ>}úô¹zõêÙ³g%IªW¯^pp°Úí‚-pEÎÏŸ?_\\\§N!D5Lîæ·! Ébv$PàÌœ+8FGGߺuëçŸ R»-°/óìHjÀÉ9׬갰0!Ä©S§ÔnAÎŽòcR#ÎϹ‚ã¤I“üüü¾þúë?ÿüSí¶Àä°HjÀ%8×¥ê5jÌž=û½÷ÞëÙ³gÏž=ëÔ©SµjU“e¢¢¢Ôn&‹±ärr$Nȹ‚cÇŽå×®]ûâ‹/,.“ššªv3qÿL¡œ­Í•NŹ‚£üÍ1ðrX$;à*œ+8Μ9Sí&ÀAÌc"Ù'ç\“cLܾ}»  @íVÀö¬DR#Î̹zeiii_}õÕ¡C‡._¾\\\Ò¤I“áÇ7lØPí¦Á6ˆ¸"§ Žß|óÍìÙ³‹‹‹…åË—÷öö¾|ùòåË—·oßþÖ[o 2DíÂÆ‘¸ çºT½wïÞÙ³gk4š¸¸¸­[·>|8%%%))é_ÿú———×§Ÿ~ºwï^µÛ࡜+8þç?ÿ)..3fÌ„ j×®­Ñh„!!!cÆŒ?~|qqqBB‚ÚmðPÎ=Z¡B…¸¸8ó§úõëW±bÅ£GªÝFåDÁ±¨¨èÒ¥KÁÁÁÞÞÞêå*IŒ‡P‡GFS±bŬ¬¬7n˜?›——wöìÙ¦M›ªÝLåDÁÑÛÛ»OŸ>ÅÅÅcÇŽ½uë–ñS·oß7nœF£ç Ž={ö,Õò=ôÐ=—Y¹reqqñÈ‘#åÔ(„7nÜÿûßM›6M˜0ÁË«¤‹õiiisæÌiذáÉ“'ÕÞ7*s®à8sæL›¯óÀ^^^QQQ†ooïÈÈÈõë×>>þþþæ=‹yyyBø‚#!8p zÀ•8µ/q'P€+ 8p,óìhñ»Þ·àÀጳ#©\‡Ú àJ¸Bmü!œÁ€C˜'B9/’Àup©€ ©‘i1à:ŽÎx\#Ù\Á€c™Ï†!;€‹ 8p ks¨é®€àÀˆàÊŽTBˆWCp€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"G”D#4j78 ‚#!8”Å^FºÁ¦$!™ÄDÐHBR»]@eGX`œI@Fp„e†ìHj2µgam£I99EpÄ_L¡|…šNG`À¥jX`<®Ñ|® ðLG˜2Ÿ Cv‚àÖæPsµÚãhøS`Šàˆ»=Ip/GB!$Érv$PþFpDIè€ô,æÙQ£¿€¿1ÎŽ¤FÀݸ#a¡£Ñ¼œ àÀ,Êy‘¤¸—ªÜÍp…ši1€»1×hmž5ÀSüÍ|6 Ù`ÄSÆ8®ZµjåÊ•ééé+VìСØ1cJX¾°°ðûï¿_½zõùóç«T©¢Õj ôøã«½€ÝX›CÍHGÀß<"8Ι3gþüù•*UjÕªUffæš5kÒÒÒ–,Yâççgqù¢¢¢:tÈßß¿M›6þùç¾}ûöìÙ3bĈ7ÞxCí­샀¸÷¿Tššœ˜˜¿y󿏏¸#GŽÌš5ËÚKV®\yèС–-[&%%}ýõ×ß}÷ÝÚµk«U«öå—_ž8qBí ‚ 0ãþÁqåÊ•ÅÅÅ#GެQ£†\2nÜ8ÿM›6[|Ibb¢b„ †.ɰ°°¡C‡êõúŸþYí P‡ûÇxyyEEEJ¼½½###srr>þÚµk111¾¾¾rI~~~FF†<9N’¤¥K—V©ReìØ±j·À‰¸cÍš5ÇŒ3}úôž={¶oß>33399¹qãÆC† 1,“””4jÔ¨°°°ü1;;ûܹs~~~ýû÷7_[ïÞ½  ö6¨Àýƒ£bРAÕ«W_·nÝÆCCC 0räHùŽ<æä~ÇÂÂÂcÇŽ™?ËÄjà±<"8 !zôèÑ£GkÏFGGGGGË[´hÁ sî?Æ6Ap€"G(Bp€"G(BpÀsi4j·.…àl¬¸¸8,,¬N:Ó¦MS»-°%‚#Ä1]Œ7nÜhÖ¬YHHÈøñã—-[f׺"##'Ožìˆ­Á"I–³£me``àªU«öíÛ×­[·™3gÚosRRR~þùgû­&Žxóì¨ÑI²}EfÔ¨Q‡Þ¹s§m×\TTôÓO?}ðÁݺu+..¶ß¾‚ OùÊA` gG9,Ú)5ÊŠŠŠ„ .ŒŠŠ²ájsrrºuëfç èqÀSh4ÿüF—§MÊmhñâÅBˆµk׿ææÚpµÁÁÁ’$I’tòäIGì8üà€§¤»þ•Ph7nÜøá‡^~ùå[·n­\¹Rí­‡ p©O$_¡–{ít©zÅŠ·nÝ9rä™3g-Z4dÈ‹‹mذÁÚJžyæµwþApÀã‡Eãñ޶µxñbN÷ðÃÇÆÆ6ìÔ©SZ­Ö|±üüü^½zY[‰d¿˜(=.UàYÌc¢µ{ô”EZZZrròsÏ='„ˆ‰‰ñòò’Ç;šó÷÷—¬S{oá.ô8àY,†1›'49&ÊÁ1$$$22rÉ’%}ô‘——i§—ª]Áؘ$I Mš4 —Kúöíûúë¯oÛ¶­k×®& s©Ú…p©Ïe§T¶cÇŽsçÎõíÛ×PÒ§O__ß¡C‡Nš4Éda.U»‚#°±%K–!Œƒcppð´iÓnÞ¼yøðaâ ëâR5°±E‹-Z´È¤pôèÑ£G¶mE:ŽêHô8®ÆæSP†àEŽ€Ó£‹àŽ€Ó³vg^%À±Ž€+0ÏŽöûrY¬ 8.Â8;’jàv<€s3ïh4/'D‚à87“P(çE’"@ \ª\‡á 5Óbj 8.Âx\£µyÖØÁpæ³aÈŽlA#8“ Ž€Ó³6‡š‘ŽœUqqqXXX:u¦M›¦v[`KGÀ騔zoܸѬY³ñãÇ/[¶Ì®uݹsç±ÇkÓ¦½7 ‚à¸r$€²‘„džm›&W­Zµoß¾nݺ͜9Ó®›3qâÄ}ûöÙµ ð8&ÙQ#4’°ý¥fÔ¨Q‡Þ¹s§6dË–-3gÎôñáö‚BpÀ²£R£¬¨¨H±páB{¬üÊ•+/¾øâ¿þõ¯xÀnû w!8à)4BcüÏb¹mk\¼x±bíÚµ¹¹¹¶]³$IqqqŸ}ö™ÝwþFpÀSHB2þg±Ü†Õݸqã‡~xùå—oݺµråJÛnËÌ™3“’’–/_^±bEÇì=¾rÏ$_¡6þßæU¬X±âÖ­[#GŽ}úôé¹¹¹.\˜>}úòåËÕÞ»nŽGWe×Ip7fíãö+rL”ƒcHHHddä’%K>úè#//ÓN«Ò^ª¾}û¶âÓO?5.¼~ýú¸q㢢¢úõëç°=éŽÀÆ$IJHHhÒ¤Ixx¸\Ò·oß×_}Û¶m]»v5Y¸´—ª'L˜0aÂã’úõ뇄„ìÝ»Wíív\ªv%Ö."ðõ€ûc§‹W;vì8wî\ß¾} %}úôñõõ:tè¤I“L.í¥j¨ˆàèJ¬}I׬NeÉ’%Bãà|˜8躎.Æ1_@Y,Z´H’$Ng\8zôè+W®üðÃ/”eddpÚ1Ž®Ç1_`‚É1. „!ŒÆO"€]]€y"4äEÂ"p.U»Ãj›ß¬ GcñK¢ÔnðGWâ˜/‰°ˆàèJó%Q ÁÑUÑËè„ê7h v°#‚#!8ec틳lý…Z`œ¬PG l$ÉÂiW£c x®âââ°°°:uêL›6Mí¶À–Ž@™™dGR#'gÿK%7nÜhÖ¬YHHÈøñã—-[f×­‰ŒŒœøàƒnݺ›<ûé§Ÿ¦§§ÇÇÇ/[¶lîܹ»wïÖh4£G¶ùz µ¸,““¬áL#—àK%EEEBˆ… FEEÙpµ999ݺu³öìŠ+BCCãââä4hðì³Ï~ûí·—.] µÓ–zz[0œv-^'áðK%‹/B¬]»677׆« –$I’¤“'Oš<•——wêÔ©Ž;jŒ¶¥S§NÅÅÅŒt,;‚#Pf&¬“8-IºëŸÅrÛ¹qãÆ?üðòË/ߺukåÊ•ŽÙÄ+W®H’l\X£F !Dvv¶cÚàÆ¸T ”ÅKúè#//ÓN+Û^ªöññ ß½{·qá®]»4MãÆm¸ž‰à€³Ï¸I’š4i.—ôíÛ÷õ×_ß¶m[×®]M¶í¥j!Ä!CÞ|óÍüñé§ŸB\½zuõêÕ]»v­_¿¾Ýö£§àR5°±;vœ;w®oß¾†’>}úøúú:tÒ¤I& ÛöRµbàÀ<òHÿþýÇ?cÆŒ¨¨¨‚‚ó¯%Ä} 8[²d‰Â88O›6íæÍ›‡¾¿8¨\ÕªU“’’ž{î¹Õ«WÏœ9ó¡‡JJJzì±ÇÔÞ+î@cïƒçt:]jjªÚ­€ 222¸â™8ôË‘‡žû¹}뱇ƒG(Bp€"Gx¾€2#8@‚#Ü—µ^Fz¸/G¸/‹_Ÿe‡/cÀCáÖL²#©€2à+áî Ù‘ÔÀÅét:µ›OGp´½S©§Ôn‚ÇS8º‘ Àuxæí¦álŽpG&‰ÐIŠ”cmC#4¥*‡ã®P[œ+#8Ú†$$óŒ¨IÐÅ¥*“qdGÊ€àh3&Ù‘Ô¨”ý’œÅÙ0dGîÁÑ– Ù‘Ôè¬hd¤#÷…É1e¥dt#!ÒwÆÀËÊ$ò"a±$òõbóìh¿@IN Ì¸TmK†+ÔçÊà.æc é†À¹mÆd\£›dG»Î#1ÎŽ¤FœÁѪU«VÅÆÆ6oÞüñÇ?~üõë×KXØ85J†»MÛ5;Ú)ÒÙ{ƱFs×?ãJÍË]M÷îÝÕnÔÁ¡÷Xzx‚£esæÌ™8qâéÓ§[µjU¹rå5kÖ¼òÊ+………Ö–·6¢Ñ–#§¬Ý­ÆVµK’é?‹åÀù-HMMNLLŒß¼ys\\Ü‘#GfÍšeõ5 ¿¹,ìéJ¨È~ב劸·"®€àhÁÊ•+‹‹‹GŽY£F ¹dܸqþþþ›6m*..¶ü‹ÑÇæyËa‘Î1£×LvÀé-8pà€——WTT”¡ÄÛÛ;222''çàÁƒV_f}\1Ò™Œ24®Èæ£ÍOvÀ¹MI’”žžh\®Õj…YYY%¿øŸÈe¿z†Zl^…ÃFZÛ?ŒnÀ‰qpSz½¾Zµj&åþþþBˆßÿÝô F7ê´Ú2¶*õÔ©’«°I-&5ê´ÚÔS§„FcÛ5 !„V+tº¿*B÷÷c7àNÛ‚RáÐ{,=< ÁÑ”>þÚµk111¾¾¾j·öR¯^½–-[î߿ժU†Â”””o¿ý¶f͚ݺuS»p(Ξ‰ó€[’$iéÒ¥UªT;vl ‹y滞YÕ6P³fÍ1cÆLŸ>½gÏžíÛ·ÏÌÌLNNnܸñ!CÔnìë½÷Þûì³råÊõîÝ[톸€©S§nÞ¼ÙËËëá‡V»-ÄÛÛ{ĈsæÌ¹té’Úmàà.;vœùD톎æ£v8—Æ7nÜX­Ú/^\©R¥nݺ©½\C~~~ÅŠkÕª¥vC<Ž——WŸ>}fÏž}þüùx@íæŽC#¥ôzý;wì·þ7n¬_¿>::º\¹rvmÀíÛ·‹ŠŠì·!°7{ÿ**ѳgO!ÄÒ¥KÕÞ€C2™8q¢N§›9s¦IùÑ£Gu:]Û¶må€ríÚµO?ý4::ºE‹-Z´xê©§>ùä“+W®X[­µ ááá=ö˜qÉÏ?ÿ>>×®]ëß¿ÿ‚ .^¼X§Nx ++ë»ï¾ëׯŸÅ€¢Ü¬Y³¼y󿢢¢5jüúë¯_|ñÅ€rrräÒÒÒzôè±bÅŠœœœ|P’¤¤¤¤_|qûöí¥ªhÁ‚³gÏöõõmÓ¦¿¿JJÊo¼±iÓ&‹ 7oÞ|ðàÁW®\™6mš¡pÆŒ—.]zýõ×K˜ÆñË/¿h4šGy¤Œ (Á¸qãÖ¬YS¯^½ˆˆˆóçϯX±âÕW_0a”)Sòòò´Zí•+WV­Z5zôh“®_¿þ_ÿú×O?ýT¡B…7nlß¾ý•W^™;wn©‡ìĉ|xܸqcÇŽ5^•’e²¸î½{þ&(i§­Þ8Í›7¿qãÆ‰'îc'®JPz½¾]»vZ­öøñãÆ…íÛ·×jµiii’$ÍŸ?_«Õ:ôæÍ›ò¹¹¹ýû÷×jµ«V­’KÞ~ûm­V+º~üå—_LªkԨѣ>*?Þ¾}»V«íÒ¥ËáÇå’ììì!C†hµÚ>úH.yå•W´Zíœ9sŠŠŠä’Å‹kµÚž={ZÛ¢øøx­V»téRã–hµÚY³féõzyë>þøc­VûüóÏ[[ÉíÛ·Ÿzê)­V»k×.I’~ùå­Vch†Å=ñÔSO™”+i€’Ý%/Ó¨Q£mÛ¶É%Ç×jµMš4Ù³g\øÛo¿5jÔH«Õæää˜4àõ×_ÏÍÍ•$éÎ;ß|ó¼˜aç+9òªÚ¶m;`À€Ÿþ9;;ÛÚÞX³fV«m×®ÝÁƒå’‹/öíÛW«ÕNž<Ù°X³fÍš5kVÂï§’õüôÓOZ­6**êÿûŸ\rêÔ)ùØð ©dåGÁ|(ß{%ÿ&(i§ ß8‰‰‰Z­váÂ…à1èqÊÄËËë©§žww:þúë¯W®\iÞ¼ùC=$„(**êØ±ãÛo¿]©R%yªU«Ê]•™™™÷]õôéÓ…Ÿ}ö™¡/((è³Ï> ^½zõ7„'OžBÄÆÆ&)÷ë×ïõ×_ïÒ¥K©êzøá‡Gíåå%oò믿.„8{ö¬µå}}}g̘áãã3qâÄ«W¯N˜0ÁÏÏoÖ¬Y%Ì•¾|ùr^^^ݺumÒkž{î¹N:ÉÃÃÃ[´h!„ˆ‹‹{üñÇåÂ-Z4iÒDar¹fÍšsçέZµªÂÇÇgðàÁýû÷B|ùå—ʇ¬R¥J .lÛ¶mPPµv~öÙgBˆ©S§®A‡††~ñÅåË—_±bÅåË—n¯’õÌš5K^¦Q£Fò2aaa#GŽB$%%É%J–QÎ|(ß{%ÿ&(i§ ß8 4B¤¦¦–v®‹à”•/–Éשcbbäßxãùóç?øàƒ†²³³7lØP–J¯_¿ž‘‘Ñ A“Ð+VlÛ¶maaá±cÇ„rr7nÜþýûåÑ–¾¾¾o¾ùæðáÃKUÝ“O>iü£¿¿¿···TâЮððð7ÞxãòåËÏ<óÌ… ÆŽ[¯^½–—¯تEDDÿ(Wg±Ðdå±±±>>w݆"..Nqüøqå‡CÖ³gÏ *”ÐÈ«W¯^¹r%44422Ò¸¼FQQQz½^áµQ%ëùý÷ßÏž=[³fͶmÛ/óôÓOoÙ²åµ×^B(Y¦TLö@©ö^ ¿ JÚiÛ7NµjÕ„×®]+í\·ãʪqãÆõêÕ;{öljjªN§+**JLLôóó‹ŽŽ6,sáÂ…]»výúë¯YYYçÎ+ãÐF!Ä™3gäÿu:Åä[OžñÄááᥪîþn8òꫯnݺõøñã­[·îׯ_É ËŸ¾þþþ6l€9C§o …Æ|¹oɤIåË—ÏÎÎÎÏÏWx8duêÔ)¹‘rÿ™Åœ-÷È*ì¨V²¹µvíÚ& ”+WÎÐÎŒŒŒ{.S*&¯*ÕÞ+á7AI;mûÆ‘ƒcvvö}ìÀEèÑ£Ç_|‘˜˜¨ÓévïÞ››Û§OCY¾|ù”)SŠŠŠêÔ©Ñ¥K—&Mšddd|øá‡¥ªE×%?¾}û¶¢V­ZÖ.:׬YSñÀ¬Zµ*%%e×®]ûöí;vìØÁƒ¿þúëgŸ}vÊ”)’EÖîS²›7oÊŸ©gΜ¹qã†ü)kŸŸŸa»lÒãÝUvæûJ£Ñx{{{yyùúú*<29«• „fËWNÞ‰FÉznݺ%„ðõõ-a=J–±ÆâQ0Ù¥Ú{%ü&(i§mß8òÚJî?Ü Á°Cp|óÍ7åkІëÔ7oÞüè£Ê•+·`Á‚víÚ^¢|˜šÁÅ‹ SPå°Š+Ž?¾äWi4ù@BˆÛ·oïÞ½ûÝwß]½zu§N:wîl×Ýòþûï_½zµE‹üðÃ?ýôÓþ¿ÿû?!DÙûb-“{³Œ]ºt©   víÚåÊ•S~8”û-v+ʈæÝŸ÷½žúõë !Î;g²À­[·6nÜX¥J•.]º(YÆZ”[í=%í´íGþu­^½zY𠏯86P·nÝ&Mšœ9sæèÑ£Û¶m«[·®aØÜÑ£Gõz}‹-ŒS£ø{ô}ÉLRÔ–-[ ƒƒƒ«W¯~úôiyŒ^¯‰‰iß¾ýµk×.\¸Ð©S§¾}ûž-W®\çÎåÙ<%ßA°ìÖ¯_¿iÓ¦:,Y²$,,lÆ æ7-2,þéxJØ]e·zõj“{&$$!ä`¡äp(¯K^ÛÅ‹÷ìÙc\ž½cÇoooÃ̲¯'$$$((èܹs¿ýö›ñ2IIIãÆ[¿~½BÉ2e9 ¶Ú{JÚiÛ7ŽÜ°åpuGÀ6ä)2&L(((xöÙg år:yò¤áÃO¯×¯X±Bþ‰ÂÂB‹k“‡d%$$È%ÉÉÉ_ýµñ2o½õVqqñ[o½e˜*qóæÍwß}÷رc7 ýã?>üÍ7ßz}Ξ=+ß¹º„û)–ÝåË—?üðÃ*Uª|ôÑG¾¾¾Ó¦Móööž|øŸþùÜsÏ_º-ãz4<éøÝwßMKK“—ÉÌÌ”¿…YþîG%Ë”ñ(Ødï)l§ ß8ÿûßÿ„Ùä*À½q©°èèèéÓ§§¦¦z{{÷êÕËPÞ AƒÎ;oÛ¶­k×®-[¶”$)55õúõëýû÷_²dÉÿûÿï?þïb¬W¯^‹/>xð`çÎÃÃï^½šžžîïï"äBôîÝ{ÿþýk×®íÕ«W­ZµΜ9SPPP¯^=ùÎÛ^^^ãÇ7nÜÌ™3ÿýï?ðÀ§OŸ–$©_¿~%×HYH’4nܸ¼¼¼?þXÎÍM›6•¿°dòäÉò b,jÛ¶íâÅ‹333­Ý”Ç%»«Œt:]bbâ–-[êׯáÂ…ÂÂBùfC†¦Þóp”JïÞ½÷îÝ»~ýú˜˜˜xÀÏÏïôéÓÅÅÅÍ›7—³‘ ׳oß¾õë×÷èÑ£N:*T8}útQQQ= ¼”,S–£`«½§¤6|ã:tH£Ñ˜|™àÞèql£F­[·B´oß¾FÆOÍž={Ĉ5kÖ”ïï¹nݺ &ôïßßÛÛÛâÖ®]û?ÿùO—.]¼¼¼öìÙsêÔ©Zµj-\¸Ð¸ëE£Ñ|òÉ'Ÿþy§NŠ‹‹Ïž=[¿~ý·Þzkݺu†›ÚôîÝ{ñâÅ:tðóó;yòdAAÁã?þÕW_½ÿþûöÛ {÷îm×®a §bĈuëÖÝ´iSbb¢µFEE !Ì¿³îž”ì®2úî»ïÞ{ï½Ç{ìÚµkÝ»w_¶l™ñTq%‡C9//¯Y³fÍž=;**ª¨¨èêÕ«­[·~çw–-[fmâù}¯G^fÖ¬YíÛ·ÏÏÏ¿zõê#<2cÆ ã/ÒT²LYŽ‚­öž’vÚê#IÒš4i"Ï<„Ɔ³ØC~~~NNNíÚµ•O‚vQ’$uïÞ=((ÈðMÙ÷Ásv—3ó„£pàÀLŸ>Ýø àöèqœ]¥J•êÔ©ãÆÀæÅ_üí·ßÊ2qÇsv—3ó„£°nݺ   ãÛµž€àÀ‰ÄÄÄÔ¬YsñâÅj7(ɵk×6lØðÚk¯Ýß-N×EpàDüüü>øàƒ+V\¼xQí¶V}õÕWaaa/¼ð‚Ú àÀ¹DFFŽ=:==]톖éõz??¿?þØË‹ÏPx&Ç@þZ€"G(Bp€"G(Bp€"ÿ½š•²vïAIEND®B`‚statistics-release-1.6.3/docs/assets/poissfit_101.png000066400000000000000000001320651456127120000225170ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A€IDATxÚìÝ}\ÍçÿðëÓ9©D%Ý£»­’›îä.e%M1wQ»AÆ557ÓˆÜ$”ß6Ìì;¬Í]ÈFF¥Ä‘VcèÛX£4!Õùüþ¸¶ÏÎ÷Üõétêtóz><<ιÎu>ŸÏu]Ÿsλës]ׇaY–4DCÝmGà#ð‚ÀxA༠p^86‹Ã‡3ü}š—————÷Í7ß=zÔÏÏOÝjÏÔûeˆ¯âÖ c³èܹ³µµ5÷ôùóç>¤-,,:uêĽ¤¡NßÖ®k×®´5ÍÍÍÕ}, ÃéÓ§é//¯‰'оÚ(™§œ¼b¶¿â‹355ÕÑÑ!„ÔÖÖþþûï"‘ˆR]]ýî»ïèêê6jkí³¬òòª·;ZóµZ›E@@À;w¸§?þøãÈ‘#éãÓ§O÷íÛWݨ2wîܱ°°ÐÒÒjåÛlŠÐÐÐÐÐPuE«Ózš‰û«lÉ’%cÆŒQ÷ᨀÌSN^1Û_ñÅ}ýõ×\‡ÓÓ§O-ZôŸÿü‡òÛo¿9sfìØ±ÚZGû,«¼¼ê­ÀŽÖ|­º»ZÇ/^¼xÀ€]ºtqqqùòË/Åo )> ¤®®î£>êÙ³çG}Äexøðá¢E‹<<<ºvíúÊ+¯Lš4)//Oz/<³‰ßõƒ¦M›fdddkkkjjºaÃéüÕÕÕ+W®ôóó3555559räòåË«ªª”Û¦¼‘4!!!4=::ZÁÁ‹D¢ýû÷ûøøXYYikk[YYy{{ïÙ³§¶¶–fX¶lÃ0Ü•¾‘#G2 C‡‹ÉXÓØVTT,^¼xàÀ]»vuqqY·n·wyjkkwìØáééiaaÑ¥K—þýû¿ùæ›ùùù-ø‘ýúë¯Ó¦M³¶¶îÙ³gHHÈõë× !/^œ2eеµu÷îÝ}||222”nzåÎ7ž…W^^~÷î]Ú E©¬¬¼{÷n]]áñIiTó)QiòÜ»woÊ”)FFFfff?ÿü³t‰SN^1Ÿgµ7ýû„ç®àóÅ_—.]>ùäMMMúôÖ­[â¯òiP™Ÿež'ÿó³¾”;‘xD‰/Cª¬¬ìÍ7ß|å•W,,,‚ƒƒÏ;'¯Èâéßá­á«X‰ï¢Ž……æ÷Ã?p^PP aÅŠôUooïÞ½{K´Ñ–-[¤sN˜0áí·ß¦W¬XA_ýñÇMMM%ÞÎ0Ìûï¿/¾;žÙääˆ#^y剷Ϝ9Sö÷÷§Ù$N9yÅTP|žÕÞôïžg¸‚Ï—´‚‚.Ï?ü ñª……}iéÒ¥ý}’““/^¼øë¯¿²,»|ùrš.ÞÏôñÇÓDKKKšÂ3›âƒ|ã7^¼xÁ²ìÿû_š8lØ0š366–¦èééqŸÆk×®q}6\Wÿm6%pœ1cMY¼x1÷ÆÐÄ7r‰\0$þs%ým¥\?þøcšXXXÈ}a)øvذa4O\\—ÈÍ$å¶Æ³tâGrâÄ –e_¾|9bÄ.1))‰eÙúúúY³fÑ##£¦7Ïógae’Ùj >)Ê5_c+MÚ§Ÿ~JótíÚõâÅ‹41""‚Ûš‚ß{yÅ”—γڛþ}Ò¨3\^$È kkk Åq^¾|¹±ŸGéŠåyâñÌÖ2ß M9‘øÐx~ŠdìØ±ôËáÞ½{¯¾úªÄWÿïpþ{oŽ oÊwQ1Ž­‹££ãÂ… éãñãÇ …Ï^*..–ÈÙ¹sçôôôiÓ¦ <ØÖÖ–òý÷ßÓ—fÏžÍe›1cýýÞ½{×®]ãŸM¡P¸mÛ6:+ÂÂÂbýúõ4=''çÅ‹„'NД… rƒQú÷ïÿþûïÓÇ\þÛlŠ)S¦$'''''/Z´ˆ¦TUU={öŒ>~üøqc7¨Dûõë·`Áú¸wïÞ^^^ôñÝ»wåíåùóçôÁW_}õŸÿü‡Îøê«¯ &Ož¬\éÜÝÝé%-MMÍ   šh``@O< î{¼²²²éÍÄó|ãYX%HR”h¾¦Tgß¾}ôxF||¼‰‰‰Ò¥“§±s¥¿O8Jœá|Ð!n Ãhjj:::rM3nÜ8777‰öâß ž'Ïl-óÍД©ù>hšššÜ—C¯^½¸/‡´´´úúz¥7«XsTxóUQ»À±u±³³ãwéÒ…»&ýÁsuuåÆúP¿üò }0jÔ(nÉÜ.]ºpï¥Ñ'Ïl ôëׯW¯^ÜÓQ£FÑ,ËÞ¾}›RTT$ñõúë¯s»àFôóÜfSŒ5jÚ´i£G>þ|TT”¯¯oÏž= •Þ ”…Ã]ñ”È&qØÜîfÍšenn>`À€?þ¸ºººo߾ܧƖNüº*]è„baaÁ0ŒD¢4%š‰çùƳ°Jþ¤(Ñ|M©4éªàÖg&„têÔ‰Û¯ 5öc®ô÷ G‰3\iýúõÛºu+÷T‰åðÿ”ñÉÖ2ß M9‘šïƒÖ·o_ñܱ½|ùò·ß~Sz³Š5G…7_µ[‰e¹Ÿ%iCõ«ªª\û÷Ï?ÿä™Mq‰ONçÎõõõéãTUUÑÛá©Õ¶¸_ß/^pkˆðÙfkõåË—‹/611 Ù¼yó™3gêêê”îæQ®€M© e9±±±óçÏçÖ»aY6//oíÚµƒ>|8wC…Æ–Næ®y®'ÚØfâ¾ñ,¬¤?)Mo¾FUõôéÓ?þøCf5ŠÇâ*¡ÄÇ\¹ïUÄç çÃÔÔÔú¯¾úê¸qã6lØðóÏ?s#Û”kPÏO¶–ùfhâ‰Ô|4‰ƒÑÕÕå¾îÝ»§ôfh¦ o¾*j78¶U§»žž^×®]éãÓ§O—ÈÂ3›â]K|Ÿ?Î-|`mm­§§Ç}_üþûïâ9¹§:uâÆÝóÙfëjíÚµ[¶l©««³µµÝ¶m[~~~UUUcW€¯j% ¨MMÍO>ù¤¼¼üÀÓ¦MëÖ­÷RVV·üjK§Xc›‰ÿùƳ°Jþ¤´LóIÐÑÑá–ææ~ø)îÇOU”ø˜+÷}¢ÚÖé믿¾óâââcÇŽ-Y²D|NC”ç‰Ç'[ËœZM<‘šïƒ&ñ§ãóçϹ㱴´lJ‘åi¦ o¾*j78¶Ü`人ºWÄtëÖÍÀÀÀÀÀ€^Mã™M7n”••qOÓÓÓY–%„têÔ‰ÎõãæLp÷´xjggÇ ßä¹Mî‡Mb ™ÄW§LÛ¶m£>ýôÓ÷Þ{ÏÉÉI(*}»[å ØX555>|øðaMMMppprròü‘žžÎ­Á­‘¦òÒ)Ð`3Iãs¾ñ/¬J´@óI666ôñ©S§¸t–eù¬þØXMÿ˜7} -Féåyâñ??[àÔjʉԬ4‰/îØ:uêDÿªlÊw¸<*¯ðþ.j£8¶ÜÍivîÜÉþ³føáÇ»wïndddmmý×_ñϦÀË—/ÃÃÃ_¾|Iùý÷ß—,YBÓÇŽKÎsˉýßÿý·\pAAABB},>4‡ç6¹«0?ýô7ÄçÈ‘# ~Wþõ×_Ü55î ëòåËgΜQ\F¯*QÀÆ*,,433333377ÿõ×_ !B¡päÈ‘Üì]¥K§´›IŸógaU¥šO&wwwéý®[·îæÍ›*ßWÓ?æMß‚Š?_¥tƒò<ñøŸŸ-sj)}")÷AãÙXµµµááát%íßÿ[ޱ‰ßá-üUÜÂßEmn9Ø~,[¶l×®]©©©#FŒxíµ×nܸÁÍ){ÿý÷é(`žÙ;r䈣£ãÏ?ÿL/Vjhh¬^½š¾úÁ|ùå—wïÞ}ò䉧§§¯¯¯@ øá‡èêÿæææ111Ý&·¾ÌóçÏ]]]]]]ÿüóOnd´]ºtéÒ¥ °5kÖ¬}ûö1 óý÷ß˼7ƒ͹fÍš7n,Z´Hb…禰QœœœLMM>|XWWçééùÆoþöÛoß~û-Í@ï¾Ð¨Ò©„âf’Æç|300àSXUiæ“)::ú›o¾aY¶²²rèСƒ.//—¸ý‰ª4ýc®’/ >>ôñÛo¿ÍíbÚ´iâÙÜ® ±ä³t™„ .È»èííM×Kã_:™G²{÷nšØ¯_?.1;;›k‚Æ6“̽ð9ßxV&Åë8Êü¤4¥ùxVšLï¼óŽÄuuu¹ *\Ç‘gµ7ýû¤Qg¸ÌÏ—4ÅwŽ‘‰gƒJW,ÏÿùÙß M9‘ø„ç—!W‰éb:uúÏþ#³t™ßáü÷ÞޔªÛ•±cÇæç燅…¹¹¹uîÜÙÖÖvâĉ™™™Û·oüÎ3›<†††çÏŸŸ={¶½½½©©é¤I“ÒÓÓçÌ™#žgРA×®]‹‰‰ñõõ5555221bć~xýúuOOOå¶¹wïÞµk×öïß_WW×ÕÕuáÂ…/^”˜ *SbbbÿþýÉ?7ÿˆŒŒ¼råÊøñãé«ûöíã®›$&&N›6ÍÄÄDWW·_¿~ ¦Í6¶€J2dHIIILLÌÀ-,,455»uëæéé¹k×®3gÎp“þø—®éø4“4>çϪJ 4ŸL_|ñÅüùóéc“qãÆýðÃÇoŽ}5ñc®’-Hàÿùj,¥”ç‰Çÿül™SKé‰AÛXÞÞÞ™™™cÇŽíÙ³§¹¹yppð™3g¸ÛPü¿ÃÕøUÜÂßEmÃþ3x@±˜˜˜¸¸8BÈ„ Ž=Új·)SmmíñãÇI;½ÐÐÜ¥k±fê .]ºtöìÙ9sæèéé©ûX  Éj1ŽÐ!hjj¶Ë±#”®ýqwwçæ7( '¨.U/€ŽÀ &Ç/èq^8/€ŽÀ Gà#ð‚ÀxA༠p^8/€ŽÀ Gॣއ ruu6lØòåË+**ø¿·¬¬lÀ€ÑÑÑê.€:uˆÀ111qÅŠ¿þúëÀ»térøðáwß}÷ùóç|Þ˲ì’%Kž>}ªîB¨Yû‹ŠŠvîÜijjúý÷ßïܹóÔ©So½õÖµk×6mÚÄçí»wïÎÍÍUw!Ô¯ýމD&&&4eéÒ¥úúú'Ož‰DŠß[\\œ˜˜Ø»wou@ýÚàøóÏ?khhx{{s)`øðá=ÊËËSðÆººº>ø [·nK—.Uw!Ô¯Ž,Ë–””ЧÛÛÛBîß¿¯à½üqaaáúõëõôôÔ]õªûš×³gÏêëë $Òõõõ !?–÷Æ«W¯~þùçÓ§O÷ðð¸qãF£vêàà îr@ó***R÷!¨A;éÔi]]]‰ô.]ºBž|€V¤Ž„SSÓGÑH‘sçÎú’tþââbBȶmÛþHùöÛoÞxã u@=Úù¥jBˆ¯¯oQQQVVÖ˜1ch ˲™™™Ýºusuu•ÎoeeÅ夞H'äßPþáàà îCøsm% pTy1"¢F9ð ­þšåcóÙ ЖaŒcó`Ù/a´ U‹\ȈØÚ Ž*Âŋ⳪‰Øôj€6cUGæ¬j‚éÕÐN ÇQE 1äÚ8Ž-±#´e[†<@›…1Ž-Cä`Ôú7‹$@CÐã¨&¸l «¾ ÂÖØØX†aÆŽ+ýR||<Ã0ùùùê®9bcc3qâDúØËËËÕÕU廸|ù2Ã0WEçÏŸ—~ÉÏÏa˜úúzúôîÝ» Ã̘1ƒËPWW÷Å_xyy™››ëé鹸¸„‡‡—••q¶nÝÊ(têÔ)%ŠgddÔ¿•W”Jˆ7hk à¤²±± ⳑHdgggii¹~ýzu”„Gõ‘w“kh•Ž?~äÈ‘ÀÀ@uHÃ@ P÷Qð²ìøñãÓÒÒ 0mÚ4--­[·níØ±ãË/¿üé§ŸúöíKqss‹ŠŠâÞòñǼùæ›\еµuc÷{óæÍ˜˜OOÏyóæ©»šÑðáÃ}}}W®\ÙôM‰ŸT—.]Z»vm\\m þ*++]\\îÞ½»|ùrKKËiÓ¦µ’ÒÕ —­Ú… úùùuíÚUÝÇÒ€ŒŒ u_ÉÉÉiiiÑÑÑ7nä¯^½êéé9cÆŒÜÜ\Bˆ—————÷ê®]»zõê•Дý–””BV­Zåëë«î:h.W®\9þ¼ª (~R=|ø0555""¢±1443ÊÆÆ&22òÒ¥KÎÎÎÎÎÎ4eÑ¢EÑÑÑzzzÚÚÚƒ>qâD]]ݲeËõôô|||nÞ¼Ém!11ÑÉÉIWW×ÐÐpðàÁ_ýµÌcðññ¡ÃѪ«« ,(( ´´´411ñ÷÷ÿñÇÅ·sîÜ9???CCÃ>}úDGG¿|ùRåµJ¦‚‚‰ôøøøk×®uêÔ©)—×3f̘0a!ÄÓÓÓÆÆFúÏŸ?‹‹sttìܹ³••UXX؃ø´B£”žŸ|ò‰A§Nú÷ï¿téRy•¬¸¥Ä=zôhÔ¨Q±±±åååŠëgòäÉššš\t~àÀ†aœœœ¸ QQQ Ã\¹r…ˆT3fÌxã7!ÞÞÞâµwþüù€€##£=z¼÷Þ{ýõ—‚]×ÕÕB>ÿüóƶ)ÿÒA3Á¥êVCZ7†a>ýôÓ¾}û¾ûî»?ÿü³ÌA„ÇŽ›ûLÞ®÷ìÙC9zôè“'Oôõõù7+ÿÒAsaAÕìíí›ôþ®¡HÏúD{Aû ï3BÔ:«ZÁçkÕªU„’’–eããã !‰‰‰ô¥ 6B®^½Ê²lMMµµuyy9}µ¼¼ÜÊÊÊÖÖ¶¦¦†eY:‡#66¶¾¾žf°¶¶îÔ©Saa!}JÇù9;;¿|ù’¦xzzBªªªX–µµµµ··¯­­¥/UVV …Âyóæq›š0a}ìíííââ"]Õ«WBvíÚEÖÎÎÎÕÕõÙ³gôÕ/^ :ÔÖÖ¶®®îÅ‹VVVæææ¥¥¥ôÕ²²2 BÈþýûåU‘uuu4ço¿ýFyçw¸÷~ýõׯ¼ò ͦ­­=bĈuëÖýöÛoòšÃÀÀÀÝÝ]ñ9Ö`[¤¦¦B²³³¥ßûôéS@ ~„³fÍ222*++ãÓ ü”žëÖ­ãvMÙ·oŸxƒ*n)•pëÖ-BȪU«äe(--%„DEEѧýû÷§sÌ9B‹¦¡¡1sæLé“êøñㄌŒ ®Ô„cǎѧuuuŽŽŽVVVòö[QQ¡¥¥5cÆ ;w²Ji°t¢ÄwSëÛ,\ªn}pÙ {ÿý÷û÷ïsÿþ}‰—òòòîܹaddDSŒŒŒ"""n߾ͭ×cnn¾bÅ ¿{ ÄuœøøøBBBB455i ûÿìÙ3BHnnn^^žPø÷•¢Gq/ñqìØ±•+WΛ7oÖ¬Y„+W®GGGëèèÐ ZZZááá·oßÎËËËËË»{÷îûï¿ß£GîÈ.\¨xS§N’bii©ø]¡¡¡%%%ùùù‰‰‰~~~—.]Z¾|¹­­- s•ç-äÑÐРK ݽ{—¦ìÚµ«¼¼ÜÜÜœO+ðoPzT‹/æÞ»råÊ.]º›²··7n},\\\ª««åeÞ¿MMMDD„———xx]]Ý1ùšRRP!\ªn•X–EìÐ* …Â;wzxx,\¸ðèÑ£â/BèàE1V\\L/‰:88ˆG„.²!„ÐðB:…êÖ­[NNNzzú­[·Š‹‹oܸAŠñqóæÍ7ß|ÓÓÓ3))‰¦Ð›ÐÐÐÐÐP‰Ì÷îÝ£ãÞ  žÞàÚ ,6l˜DâÕ«WïÝ»×à:99999EDD¼|ùòرc‘‘‘+W®2dÈ믿®D3ñi yttt’’’èÙ¾}ûzxxøûû3†¸l°ø7(!¤oß¾âã8uuu~ýõWñ<Š[JqYDg7WTTÐÎW___OOO8fdd…‘#GòÙŽ½½½øSÅ«AíÙ³ÇÁÁÁÉÉ)((hÁ‚¿üò }{uu5{*‹q\­z[)„­Ö!CæÎ›šš*Ñ BØ$F§Ñ_ÐÚÚZúÔÀÀ@¹ÖÔÔŒ;ÖËËëäÉ“vvv‹/.,,ä98¬¢¢büøñúúú)))\àBã•„„„ï¥ 4ˆö¨I”E"ämº§OŸIÌèÔ©SPPíˆ:qâ„r[æÓ ÌŸ?ÿ·ß~Û¹s§““SZZZ`` ““ÓÇ›Ò < …B‰ù1Š[ª‰»ó÷÷‰D™™™YYY––––––>>>×®]«¬¬ÌÈÈðôôäY:þóÓ‹‹‹/^¼8eÊBȤI“444èxGBˆ¾¾¾‚+¤*¬dh ô8¶YXý@}Ö¯_ôèÑ ¼ýöÛ\¢!äúõ믽ö—xíÚ5BˆƒƒC÷˜–––””´hÑ".‘Oc}}ýÔ©SKKK³²²Ä§›Ð£íÚµë¨Q£¸Ä›7o^¿~ÝÀÀàÕW_%„\¾|ÙÛÛ›{•›Ò¡*ººº§NºÿþìÙ³%^¢½t;wVnËMi‹G•””ØÛÛ‡……………‰D¢mÛ¶…‡‡ïرÃÓÓS¹VçæÍ›µµµ\4ÿüùóÂÂBñ:' µT›`ذazzzgΜÉÍÍ>|8!ÄÛÛ[$}÷ÝwW®\¡CxU‹†‰4p433>|øÞ½{׬Y£¡¡QWW§àOn†¨zÛ&\ÈP+}}ý¤¤¤ÒÒÒO?ý”Ktss³´´LLL¬¨¨ )?Þ²e‹••UÓoHç18::r))))ÕÕÕ öÄ,Y²äôéÓŸ}ö™»»»xº‹‹‹ƒƒÃæÍ›+++iJUUU@@@dddçÎÝÜÜlmm·lÙòûï¿ÓWËËË·nݪÚjd&44ô§Ÿ~Š‹‹_ȰººzåÊ•ònóÈGSÚ¢¨¨hÈ!›7o¦O544h$§©©©t+ÈS^^ž˜˜È=‹‹«ªª’¸Ó â–jbhjjúúú¦¥¥åååÑÀÑÝݽk×®ëÖ­kp€£Ë(²,ûÕW_õëׯOŸ>4%88¸´´”®.D/UËÓÄ’‚ª Ç@S¦LÙ½{÷÷ßÏ¥hii%&&N™2ÅÍÍ-88˜eÙ”••:tHKK«‰»óññÑÕÕ={ö´iÓzôèqáÂ…3gÎgggŸ|¸|ùrå6Û”¶pwwïׯ߆ n߾ݯ_¿¢¢¢“'O†„„%ZAss󘘘œœggç .¤§§:ô­·ÞÏ# ´TÓ› €ŽÖ¥£@ ðòòJKKëÕ«—¼; ÒžÎíÛ·?|øPæ’@òœ={öÞ½{âÓž-Z4wîÜÐÐÐ5kÖà’të‡Ƕä>O˜|  nÛ¶mã&ºRçÎëÝ»÷ž={öîÝÛ§OŸóçÏ«¤³ÄÒÒ2--­gÏžüqbb¢ŽŽÎµk×Ö¯__UU¥ #ÞX/??úÿÚ·o!ÄßßÿâÅ‹ýû÷ONNÞ»w¯Í©S§‚ƒƒé{'NœxæÌ™þýûõÕW›7oþ믿’““U^‡:::§OŸÞ±c‡‰‰ÉÙ³g·mÛ–íîî~îܹ¸¸¸¦lYé¶èÔ©ÓÉ“'ß~û휜œÕ«Wgddøùù?ÞÆÆF¹VP`ðàÁééé•••[·n½ÿ~TTÔÙ³g¥Ç’*n©&¢ñ®±±1wŸNWÐÝèáárêÔ©ÆÞøqïÞ½„ñ#755]¿~ýÓ§Oóóó5¶ ÚIåŠŠŠš¸†a5 w“k™é­›¼ÏH§}3c0mS¾²²²îÝ»7½ßÄÙØØ¸¸¸HÌ͵Pâ‡[%¿õm.U·%ÿ°1Ìß3c¸9Ürš]úc[òw`Èu7J<hNÛ†V"LDÔí‹Çíâ:5´°€€z³>€6#´Ý CÙ¶m›º Ñ0«ºm¢ƒiw#æV@‹@àØ–üÝÃ]žFÔ-c[#>™š`&5´Žm‰ìÞEÄŽÐ"8¶Y¸N - #ð‚ÀxA༠p^pçh-µÎ÷Â}k„ÀZõo à vP —ªÛ2¬ÈÐ"bcc†;v¬ôKñññ Ãäçç«û‰Íĉéc///WWW•ïâòåË Ã8p@^?^ú%???†aêëëéÓ»wï2 3cÆ .C]]Ý_|áååenn®§§çââ^VVÆeغu+£Ð©S§”(N\\œ‘‘QÿþýU^Q*!Þ ­‚“ÊÆÆ&((ˆÏFD"‘¥¥åúõëÕ] Pzx9~üø‘#GÕ} @ÝGÁ ˲ãÇOKK0`À´iÓ´´´nݺµcÇŽ/¿üò§Ÿ~êÛ·/!ÄÍÍ-**Š{ËÇl``ðæ›or)ÖÖÖÝïÍ›7cbb<==çÍ›§î:P½k×®­]»633óéÓ§½{÷ž6mZxx¸Pؤ_|ñ“êÒ¥Kk×®‹‹£ Ä_ee¥‹‹ËÝ»w—/_nii9mÚ´¦Rmm­——Ã0.\hæ…!pàEGGgáÂ…~~~]»vU÷±4 ##C݇ÀWrrrZZZttôƹīW¯zzzΘ1#77—âåååå厺k×®^½z%$$4e¿%%%„U«Vùúúª»TìöíÛÞÞÞõõõ'N´´´üá‡ÞÿýsçÎ=z´)›?©>|˜ššÑØ:tˆeÙ€€€„„„&Ž+V¬øé§Ÿ† ÒL5 2áR5/111ÿýïW¬XÑùò¥H$RwÕ€^ÝOtqq º|ùòÓ§O›i¿t<«¶¶v3m¿Q Z__Ï]Êoº÷ßÿÉ“'?üðÃîÝ»W¯^““3sæÌÔÔTå.è7†a"##óóó›òNzzzBBB»QA x =zô'Ÿ|réÒ%ÙrssGmfffaa1zôhÚgFÙØØDFF^ºtÉÙÙÙÙÙ™¦,Z´(::ZOOO[[{ðàÁ'Nœ¨««[¶l™£££žžžÏÍ›7¹-$&&:99éêê<øë¯¿–y >>>t8ZuuµâA–––&&&þþþ?þø£øvÎ;çççghhاOŸèèè—/_ª¼ViÀTPP ‘íÚµN:5eãòÚbÆŒ&L „xzzÚØØH¿ñùóçqqqŽŽŽ;w¶²² {ðàŸVhTƒÒóá“O>100èÔ©Sÿþý—.]*¯’·”¸3gÎ >|àÀ\Ê‚ !Ò×s'Ož¬©©ÉEç`ÆÉɉËÅ0Ì•+WˆØI5cÆŒ7Þxƒâíí-^{çÏŸ022êÑ£Ç{ï½÷×_)hšºº:BÈ矮\Ë>|øðÍ7ß ëÙ³§Ò§(¡:/ Ã|úé§}ûö}÷Ýwþùg™ƒ;6yòd33³†aRRR† –’’2~üxšáþýû£FÒ××÷óó£)ÉÉÉàÃ? …[¶l™]OOOæ¬JKKk÷îÝÜS‘HôÑGýñÇVVV„ôôôqãÆ™››O™2ECCãèÑ££FJNNž:u*!äÈ‘#ÁÁÁÝ»w ÑÐÐHNNþöÛoU^«AAA»víš8qâ¬Y³‡ F{MLLLLLš²em±xñbKKËÕ«WoÚ´I<Àâ„……íÛ·oäÈ‘“&M*((ؽ{wAAÁÅ‹ù´ÿ%„:tè¿ÿýïèÑ£/^¼áÂ…ŒŒ ‰¥©·”¸ºººùóç»»»‹'Þ½{—ž ™>œ••@ÉÊÊ"„“×:{öì!„=zôÉ“'úúújY–eßzë­nݺ%%%5v%¨ ªfooßôBX©2Ú -m¼Ï‘yÞ·Ø?ùŸ¦U«VBJJJX–'„$&&Ò—6lØ@¹zõ*˲555666ÖÖÖåååôÕòòr+++[[Ûšš–eéŽØØØúúzšÁÚÚºS§N………ô)ççììüòåKšâééI©ªªbYÖÖÖÖÞÞ¾¶¶–¾TYY) çÍ›Çmj„ ô±···‹‹‹tAV¯^MÙµk=Z;;;WW×gÏžÑW_¼x1tèP[[Ûººº/^XYY™››—––ÒWËÊÊ,,,!û÷ï—WE ÔÕÕÑœ¿ýö!äwÞáÞûõ×_¿òÊ+4›¶¶öˆ#Ö­[÷Ûo¿ÉkwwwÅçXƒm‘ššJÉÎΖ~ïÓ§OøΚ5ËÈȨ¬¬ŒO+ðoPz>¬[·ŽÛQtt4!dß¾}â ª¸¥Ø†š'77wÅŠñññý Ðbp©º£K9bÕb€–" wîÜéáá±páB‰iªÅÅÅ„:x‘CGŒÓK¢âQ#!„‹l!4¼N¡ºuë–“““žž~ëÖ­âââ7nÐb|ܼyóÍ7ßôôôLJJ¢)·nÝ"„„†††††Jd¾wï÷6`Àñô׆\°`Á°aÃ$¯^½zïÞ½ÐÉÉÉÉÉ)""âåË—ÇŽ‹ŒŒ\¹rå!C^ýu%š‰O[È£££“””D/ÈöíÛ×ÃÃÃßß̘1tÀeƒ­À¿A !}ûöÇ©««ëààð믿ŠçQÜRòÊrïÞ½ |÷Ýwvvv?üðÈ#df£³›+**h端¯¯§§' 322„BáÈ‘#ùT¸½½½øSÅ«AíÙ³ÇÁÁÁÉÉ)((hÁ‚¿üò }{uu5{*˲UUU!!!~~~ þ Í#@ã 2dîܹ۷oçzA(–e‰Ôé/hmm-}j`` ÜNkjjÓÒÒøúë¯7nèСnnn|Þ[QQ1~üx}}ý””.p¡ñJBB‚ô Ø}úô9wîœtY$BÞ¦{úôéŒ3^ýõÙ³gs‰:u êÖ­›ŸŸß‰'” ù´…óçÏŸ4iÒñãÇÏž=›––¶sçN‡ÌÌL¥['¡P(ÑW§¸¥dndß¾}sæÌéÒ¥ËgŸ}6sæLSýýýããã333srr,-----}||–/_^YY™‘‘áééÉs"ÿùéÅÅÅ/^üè£!“&MZ¸páž={Ö®]KÑ××göƒ|öÙg·oßž0a·xÓ“'Oêëëããã---CBBTØ G€F[¿~ýÑ£G,XðöÛos‰ôRàõë×_{í5.ñÚµk„‡&î1;;;---))iÑ¢E\"ŸÇúúú©S§–––fee‰O7¡GÛµk×Q£Fq‰7oÞ¼~ýºÁ«¯¾J¹|ù²··7÷*7¥CUtuuO:uÿþ}ñÀ‘¢½t;wVnËMi‹G•””ØÛÛ‡……………‰D¢mÛ¶…‡‡ïرÃÓÓS¹VçæÍ›µµµ\4ÿüùóÂÂBñ:' µ”ô6¿ûî»7ß|388xÇŽzzzŠ`ذazzzgΜÉÍÍ>|8!ÄÛÛ[$}÷ÝwW®\¡CxU‹N‹™2e !ÄÌÌløðá{÷î]³f††F]]݉'ä½qüøñtÊù–-[ÄÓ+**–.]êííÀ±e`Œ#@£éëë'%%•––~úé§\¢›››¥¥ebbbEEMyüøñ–-[¬¬¬š~@:ÁÑÑ‘KIII©®®f©²dÉ’Ó§OöÙg3m]\\6oÞ\YYISªªª"##;wîìææfkk»eË–ßÿ¾Z^^¾uëVÕV#Ã0¡¡¡?ýôS\\œøB†ÕÕÕ+W®”w›G>šÒEEEC† Ù¼y3}ª¡¡A#9MMM¥[AžòòòÄÄDîi\\\UU•Ä·”ÄY–ýàƒzõêõÕW_55ÒBùúú¦¥¥åååÑÀÑÝݽk×®ëÖ­kp€£+²,ûÕW_õë×ë+ .--¥« ÑKÕòB>üðC‰‰Ü䘳gÏ*×ÐXèqPÆ”)SvïÞýý÷ßs)ZZZ‰‰‰S¦Lqss fYöÀeee‡’^ ¥±|||tuugÏž=mÚ´=z\¸páÌ™3ÆÆÆÙÙÙ'Ož¤Ë©H;qâÄæÍ›ørƒŽŽŽnnnIIIãÇwvv®­­MMM½ÿþþýûéÍå6mÚìêê:eÊMMÍ”——«¼ bbbvïÞ=`À:ûüùó>\¾|¹‡‡‡r›mJ[¸»»÷ë×oÆ ·oßîׯ_QQÑÉ“' CBB­ €¹¹yLLLNN޳³ó… ÒÓÓ‡úÖ[o‰ç … ZJbƒ………·nÝrtt “x)00Pf @GëÒÀQ xyy¥¥¥õêÕKÞb7´§sûöí>”^H³gÏÞ»wO|ÚS``à¢E‹æÎºfÍ¥Cph9êžÖݵèr<,Vä¶§M/Ç#îöíÛt¢+]އÊÉÉñ÷÷755555õ÷÷ÿé§Ÿ¸—ÄWÌ‘™B¯Óår¨¸¸8BȃX–ÍÌÌôððèÒ¥Ë+¯¼V^^¾k×.ccãQ£F±r–ãá¦ÂHàV`ÉËË3fŒ™™Y·nݼ½½OŸ>-~xçÎ9rd·nÝ!úúú‡" —㑹º ]¡`9žêêê;v :ÔØØXSSÓÔÔô7ÞÈÊÊ’×|–ãi°-,Çòìýû÷gΜiee¥¥¥eiiÊ­°Ã¿lPš933óµ×^Ó××ïÝ»wTTÔ‹/džŠ[Š#1îV\\\œ¼ÂBŒ¹z;Ç9sæˆg_ŽG$…„„èéé¹¹¹ÑC€FÃ:ŽÀ Gà#ð‚ÀxAàØ.Ð¥šGà#ð‚ÀxAà¼àÎ1ÐZ0êžã…{(†GhMXVmÿä‹efìØ±Ò/ÅÇÇ3 “ŸŸ¯îŠ#666'N¤½¼¼\]]U¾‹Ë—/3 sàÀyUtþüyé—üüü†©¯¯§OïÞ½Ë0ÌŒ3¸ uuu_|ñ…———¹¹¹žžž‹‹KxxxYY—aëÖ­ŒB§NR¢8qqqFFFýû÷WyE©„xƒ¶ N*›   >‰Dvvv–––ëׯWw@Ix9~üø‘#GÔ}¼@ î£à…eÙñãLJ……=þ|Ú´iáá᯼òÊŽ;ìííoܸA󸹹E‰ÑÒÒ255O±¶¶nì~oÞ¼ãèè¸|ùru×ê={ÖÇÇÇÄĤ{÷îžžžGmú6ÅOªK—.Mœ8‘k þ*++]\\ÌÌÌ–/_þõ×_7ñ†+‘øäÉ“¹sçZZZvéÒeøðá/^TMÂ?p©º½ K9âB@³ÑÑÑY¸p¡ŸŸ_×®]Õ}, ÈÈÈP÷!𕜜œ––½qãF.ñêÕ«žžž3fÌÈÍÍ%„xyyyyyq¯îÚµ«W¯^ MÙoII !dÕªU¾¾¾ê®KKK3fŒ­­íôéÓuttRRR?ÿüó°°°¦lVü¤zøðajjjDDDc7bhhxèÐ!–e¦M›¦ôñ\¹råüùóÍWUUåîî~ï޽ɓ'¥¤¤øûûŸ={¶9:à;,ô8ðóßÿþwÅŠͱñ—/_ŠD"uQ èÕíððpñD—   Ë—/?}ú´™öKdzjkk7ÓöÕ õõõÜ¥ü¦[¶l™™™Y^^Þ–-[Ö®]›——gii)Ý3§F ÃDFFæçç+ñN]]ÝéÓ§W­Z5jÔ(éÞ²eKIIÉÎ;¿þúë­[·fee1 ³xñbu—¸]AàÀKPPÐèÑ£?ùä“K—.)È–››;zôh333 ‹Ñ£GÓ>3ÊÆÆ&22òÒ¥KÎÎÎÎÎÎ4eÑ¢EÑÑÑzzzÚÚÚƒ>qâD]]ݲeËõôô|||nÞ¼Ém!11ÑÉÉIWW×ÐÐpðàÁò.öùøøÐ.–êêjŃ ---MLLüýýüñGñíœ;wÎÏÏÏÐаOŸ>ÑÑÑ/_¾Ty­Ò€©  @"=>>þÚµk:ujÊÆåµÅŒ3&L˜@ñôô´±±‘~ãóçÏãââ;wîleeöàÁ>­Ð¨¥çÃ'Ÿ|b``ЩS§þýû/]ºT^%+n)NMMÍ7Þxã }}}𢫫ëååUZZúüùs‰Ì“'OÖÔÔä¢ó0 ãääÄeˆŠŠbæÊ•+D줚1cÆo¼Añöö¯½óçÏõèÑã½÷Þû믿4M]]!äóÏ?ol›>zôhÔ¨Q±±±åååÒ¯îß¿ßÜÜü­·Þ¢Ommm'Ožœ™™ùûï¿7þô9XP5{{û¦o„ÂJýk ½ÐšÐFÈûŒÐS\“cäðªU«!%%%wîÜéܹ³««k]]}iÆ „«W¯Ò§©©©B¡°gÏž‘‘‘½zõ …©©©ôUkkëI“&ÚØØ¼ûî»4ÅÐÐÐØØxõêÕëÖ­322ÒÖÖöðð4hPbbâ¼yó†qvv¦o_¹r%!dĈ±±±Ë—/wtt$„|ûí·ÜÆ'L˜@{{{»¸¸°,[[[»[ÌþóŸž={vêÔ©°°eÙÓ§OkkkÛØØDEE}ðÁvvv`ß¾}t#‡&&&óæÍ[°`™™™½½=!dÿþýòª(;;[ú¥‘#GB¸ûí·ß!ï¼ó}JCX--­yóæýðÃÏŸ?oðü100pwwo0›‚¶¸~ýúG}DÙ´iSff¦ô{CCC†ñóóûðÃÇ/̳ø7¨µµu=!£G^¶l™!døðá"‘H¢A·”¸ÚÚÚ‚‚‚ˆ§899999IgÞµk!$-->?>!„a˜?ÿü“¦ 0ÀÌÌŒwR]¿~ö_nܸ‘Öžµµµ½½½¾¾~xxø¦M›è¸z†ËC'ÓèèèTVV6Ø”2ݺu‹²jÕ*.åÉ“' ƆŠgûæ›o!GŽQ¼5%~¸Uò[ß!ÔP=ŽŠµÝÀ‘eÙøøxBHbb"}I{öŒ¾úâÅ‹¡C‡ÚÚÚÖÕÕ½xñÂÊÊÊÜܼ´´”¾ZVVfaa¡8pT@^àȲì×_ýÊ+¯ÐlÚÚÚ#FŒX·nÝo¿ý&¯9øŽ ¶Ejjª¼H÷éÓ§@ügÍšeddTVVƧø7(=Ö­[Çí(::šB#B®A·”‚JسgOLLŒ›››±±qzzºt†ÒÒRBHTT}Ú¿:Çœ†Y•••3gΔ>©Ž?NÉÈÈàJM9vì}ZWWçèèhee%ïÀ***´´´f̘¡¡¡±sçNV)Òã/¿üB‰ŒŒÏöÃ?B>ûì3Å[CàÈ.U4Âûï¿ß¿ÿ˜˜˜û÷ïK¼”——wçΈˆ###šbddqûömn½ssó+VhhüûÝ;hР޽{ÓÇ´Ï)$$DSS“¦Ð±ÿÏž=#„äæææåå …Oj|ôè÷ÇŽ[¹rå¼yófÍšE¹råJqqqtt´ŽŽÍ ¥¥~ûöí¼¼¼¼¼¼»wï¾ÿþû´KŒùÂ… ïbêÔ©QR,--¿+44´¤¤$???11ÑÏÏïÒ¥KË—/·µµ¥a®rø´…<ti¡»wïÒ”]»v•——›››óiþ JJ|ÞÊ•+»térðàAñãQÜR ²fÍš5kÖäå幸¸XYYIgèÑ£‡““Ó™3g!‘‘‘ººº™™™„¬¬,‘H4zôh>noo?nÜ8úX ¸¸¸TWWË˼ÿþšššˆˆ//¯Ý»wséuuuÇäkðh­êéé‰'ÒKö´™@%0« „BáÎ;=<<.\(±ÊIqq1!„^äÐcÅÅÅ$„888ˆG„.²!„ÐðB:…êÖ­[NNNzzú­[·Š‹‹oܸAŠñqóæÍ7ß|ÓÓÓ3))‰¦Ð›ÐÐÐÐÐP‰Ì÷îÝ£ãÞ  žÞàÔÔ  6L"ñêÕ«÷îÝkðéåÔˆˆˆ—/_;v,22råÊ•C† yýõוh&>m!ŽŽNRRÒâÅ‹mllúöíëáááïï?fÌ:à²ÁVàß „¾}ûŠãÔÕÕuppøõ×_Åó(n)e)..~öìÙ… † RXXhbb"‘‡În®¨¨ ¯¾¾¾žžž4pÌÈÈ …t¤Aƒè0ŽâÕ öìÙãàààää´`Á‚_~ù…¾½ººšŽ=•‰mhÙZÏc+«ªª!†††|J| Ç±¡+ò@32dÈܹsSSS%zAè›Äýoè/hmm-}j`` ÜNkjjÆŽëååuòäI;;»Å‹r «¨¨?~¼¾¾~JJ ¸Ðx%!!á{)ƒ ¢=je‘y›îéÓ§AAA3$:uêD;¢Nœ8¡Ü–ù´…óçÏÿí·ßvîÜéää”––èääôðáæ´OB¡Pb~Œâ–R¼µÎ;ûúúnذáñãÇô꼑H”™™™••eiiiiiéããsíÚµÊÊÊŒŒ OOOž¥ã??½¸¸øâÅ‹S¦L!„Lš4ICCcÏž=ô%}}}WHܲ©©©†††Ä¤™?ÿü“ÂuœCÓ¡Ç ÑÖ¯_ôèÑ ¼ýöÛ\¢!äúõ믽ö—xíÚ5BˆƒƒC÷˜–––””´hÑ".‘Oc}}ýÔ©SKKK³²²Ä;œèÑvíÚuÔ¨Q\âÍ›7¯_¿n``ðꫯB._¾ìííͽzõêUÕV£®®î©S§îß¿?{öl‰—hïQçΕÛrSÚâÑ£G%%%öööaaaaaa"‘hÛ¶mááá;vìðôôT®ä¹yófmm-Í?þ¼°°P¼ÎIC-%±Á'NL˜0!99™FfT·n݈œ»aÆééé9s&77wøðá„ooo‘HôÝwß]¹r…áU-&ÒÃ333>|øÞ½{׬Y£¡¡QWW§àO…ñãÇ+Þ²P(ìÓ§OVV–xâ¹sç†éÛ·¯Ê Òa¡Ç Ñôõõ“’’JKK?ýôS.ÑÍÍÍÒÒ211±¢¢‚¦<~üxË–-VVVM_˜Îc sx©”””êêê{b–,YrúôéÏ>ûÌÝÝ]<ÝÅÅÅÁÁaóæÍ•••4¥ªª* 22²sçÎnnn¶¶¶[¶láÖ1)//ߺu«j«‘Îýé§ŸâââÄ2¬®®^¹r¥¼Û<òÑ”¶(**2dÈæÍ›éS Éijj*Ý ò”——'&&rOãâ⪪ª$î4¨¸¥$68xð`BÈ—_~)~H4V:t¨ôhjjúúú¦¥¥åååÑÀÑÝݽk×®ëÖ­kp€£+²,ûÕW_õëׯOŸ>4%88¸´´”®.D/UËÃgû³gÏþí·ßèÜBÈü‘’’âçç'sÑ%Pz”1eʔݻwÿý÷\Š––Vbbâ”)SÜÜÜ‚ƒƒY–=pà@YYÙ¡C‡´´´š¸;]]ÝÙ³gO›6­G.\8s挱±qvvöÉ“'d¾ëĉ›7ovvvâË :::º¹¹%%%?ÞÙÙ988¸¶¶655õþýûû÷ï§7—Û´iSpp°««ë”)S4558 så¼&JLL,((ˆ‰‰Ù½{÷€è<îóçÏ?|øpùòåÊm¶)máîîÞ¯_¿ 6ܾ}»_¿~EEE'Ož444 J´‚æææ111999ÎÎÎ.\HOO:t(· !% ´”ÄŒŒ>üðÃØØØŽ5Ša˜ôôôÜÜ܈ˆñÅÐѺ4p^^^iii½zõ’×QG{:·oßþðáéS§ò/ïÙ³gïÝ»'>í)00pÑ¢EsçÎ ]³fÒ!8õÎ;ïüç?ÿ™6mÚüùó vïÞýìÙ³Vµøy;€G%mÛ¶›èJž;w®wïÞ{öìÙ»woŸ>}Ο?ϳ³D1KKË´´´ž={~üñlj‰‰:::×®][¿~}UU•‚Ž@zc½üüüéÿkß¾}„ÿ‹/öïß?99yïÞ½666§N ¦ï8qâ™3gú÷ïÿÕW_mÞ¼ù¯¿þJNNVyêèèœ>}zÇŽ&&&gϞݶm[vv¶»»û¹sçâââš²e¥Û¢S§N'Ož|ûí·srrV¯^‘‘áççwþüyåZAÁƒ§§§WVVnݺõþýûQQQgÏž•Kª¸¥$¬\¹rÏž=`ûöí;vìèÔ©ÓþýûÅû5%Ðx×ØØ˜»ˆO'ƒ+ènôðð 9uêTcoü¸wï^Bˆø‘›šš®_¿þéÓ§ùùùMŒ !zzz™™™S¦LIIIIHHxõÕW333‡ ÒÄÍ‚8¦éíŠŠŠš¸†a¤†ipZnW m¼Ï£Þ˜Á÷¡\eeeÝ»woz¿)ˆ³±±qqq‘˜›j¡Ä·J~ëÛ"\ª€Ð¥¿8@k‚%¥Z1Ží ]Ê—Û m•bèPèÍúÚŽj°mÛ6u@£aV5ð‚ÀxA༠p^8/Ûº"€ª!p^8/€ŽÀ G€ÄÆÆ2ÿK__àÀ»ví‰D2óhhhôîÝûÍ7ß¼xñ¢âMqBBBdî=..ÎÈȨÿþê®Õ°±±™8q¢ºâ_^^^®®®ò5((¨õ]¾|™a˜H¤‹D";;;KKËõë׫û¡…à^ÕÐ^0 aÙæÛüÔ©S{öìIaYöÁƒiii³gÏ.**JHHÎóâÅ‹ëׯ>|øàÁƒÿ÷ÿ7gΙ›çââ"½Ó›7oÆÄÄxzzΛ7OmÛú >Ü××wåÊ•Mß”@ ôñ¥K—Ö®]×·oß+‹ÄNŧùö¢*•••...wïÞ]¾|¹¥¥å´iÓ”ØÈ“'O–,Y’––öøñc77·72D^æÂÂÂ?üð矉D‘‘‘ô¥ÚÚZúúzñüFFFååå*¯ÏŽ #/ ,6l÷ôáÇ®®®‰‰‰QQQ¦¦¦2óܺuk„ ï½÷Þ°aÃúõë'oS ”””BV­Zåëë«î h-®\¹rþüyUUHFF÷øáÇ©©©-Y‰ŠOóíEU :IJl@@@BB‚cUU•»»û½{÷&Ožldd”’’âïïöìY™Ý®YYY~~~!!!àÀ~~~ß}÷݈#!wîÜ©¯¯÷ðð°µµåÞÒ¥K—æ¨ÏŽ c{D—rlή€V§Å—/555:ujbbbAA8JèÝ»wrròÀ׬Y#}™–e !ÚÚÚ-\:y^¾|) 54x s¢}?ªê?«««;sæLNNζmÛ¸D£ª½å1 éï‘áííݨ÷nÙ²¥¤¤d÷îÝo¿ý6!dÑ¢E X¼xñ™3g$r²,;kÖ,}}ýüü|ú‰[±bÅ€¢££/_¾Lþù+kõêÕø+«YµÒ³ ÑZ|õ{ÕÕÖÖ*Èãîî>lذ#GŽÔÕÕ5vû3f̘0a!ÄÓÓÓÆÆ†&æææŽ=ÚÌÌÌÂÂbôèѹ¹¹\~›ÈÈÈK—.9;;;;;KoðùóçqqqŽŽŽ;w¶²² {ðà÷jbb¢“““®®®¡¡áàÁƒ¿þúkñ-/Z´(::ZOOO[[{ðàÁ'Nœ¨««[¶l™£££žžžÏÍ›7Åã“O>100èÔ©Sÿþý—.]úòåK™e,(( ´´´411ñ÷÷ÿñÇåÕÆ£GFÛà•ÇÉ“'kjj>}ú”>=pàÃ0NNN\†¨¨(†a®\¹Bñññ¡[3fÌxã7!ÞÞÞ\mBΟ?`ddÔ£G÷Þ{ﯿþ’·_e‘WóÒ;厧±Õ® eMqÍŸ;wÎÏÏÏÐаOŸ>ÑÑÑòšCOïÏ?ÿœ4ÒþýûÍÍÍßzë-úÔÖÖvòäÉ™™™¿ÿþ»DÎ;wîÏš5‹û;ÍÀÀ 222//ïÚµkäŸÀñÕW_mì1@ã° jöööMß!„•ú׈öBËB+¦’ψ$zÎ7Ï™¿jÕ*BHvv¶xâüaaa¡¡¡QVV&/5þ|BÈíÛ·g“výúõ>úˆ²iÓ¦ÌÌL–eSSS…BaÏž=#"""##{õê% SSSi~kkëI“&ÚØØ¼ûî»Ò eÆÏÏïÃ??~¼@ |¸H$¢¯N˜0æ<}ú´¶¶¶MTTÔ|`gg'öíÛ§¸ZnݺEYµj•¼ »ví"„¤¥¥‰×?Ã0þù'M0`€™™=oooZÛ±±±„7ÒÚ¶¶¶¶··×××ß´i“——!DfÅ6Xy5/½Sîx[í ZPz/ŠöðáÃÀÄÄdÞ¼y ,033³··'„ìß¿_^ÓYD:::•••|ÎmêÉ“' ƆŠ'~óÍ7„#GŽHd¦ñÅ>LINNfY6<<\KKëÑ£GܱcGVVVMM Ï#QâK©Y¾ÇÚ„ª‡À@1Õ|áJ|@d¦«ö¦M›¶téÒ¥K—.Y²äwÞéÞ½;!dáÂ…âydF„6l „üøã\6ižžž2wššÊm¶¦¦ÆÆÆÆÚÚº¼¼œ¾Z^^neeekkK ­­­ !±±±õõõÒ›zúô©@ xçw¸”Y³fÑÀ×ÖÖÖÞÞ¾¶¶–¾TYY) çÍ›GŸZ[[wêÔ©°°>ݸq#!ÄÙÙùåË—4ÅÓÓ“RUUÅƺuë¸EGGBh\ÂŽ555vvv®®®Ïž=£Ù^¼x1tèP[[Ûºº:ÍÑ`àXZZJ‰ŠŠ¢Oû÷ïOç¤ÓX¤²²RCCcæÌ™ôUñ@íøñㄌŒ ®Ô„cǎѧuuuŽŽŽVVVÒ{T\Å5/±S‰À‘µ+nAñ½(>Ú/^XYY™››—––ÒWËÊÊ,,,ŽZZZ3fÌÐÐÐØ¹s'ËÛ/¿üB‰ŒŒOüá‡!Ÿ}ö™DfÚG$ž¸`ÁBHBB˲:::ݺuã>VŽŽŽ—.]âs$ùÃGh›è(^éá¼òÒ›LüÒ­P(tppX¶lŸÙŒÔtéYÕ4FQ,//ïÎ;IIIFFF4ÅÈȈv=æçç8bnn¾bÅ ™ƒá444†9þüÝ»w­¬¬!»ví¢s„ÜÜ\mmm¡ðï…GBž={ƽ}РA½{÷¦i'bHHˆ¦¦&MñõõÍÎÎ~öìY×®]é-^¼˜{ïÊ•+·oß~ðàÁ©S§r‰W®\)..þæ›ottthŠ––Vxxxhhh^^-ŽrzôèáääDÉUTT|ñÅááá™™™'NÌÊʉD£Gæ³){{ûqãÆÑÇÀÅÅ%==]:›â²ôë×OAÍ+Æ¿ÚlAžG[WWw÷îÝ„„ÚmLOª… .]ºTÞAîß¿¿¦¦&""âöíÛ»wïž={6M¯««;qℼw?žžžžžxº¾¾>wüâLMM'Mš”’’Oãþ={ölß¾RUUE)))‰D±±±t¬Â·ß~9a„‚‚ºMP ŽÐj(7BQÞ»»µ†ÍììlžS¡%Ü¿Ÿ">Ó“ÿ¬jqÅÅÅ„‰Á‹tè^qq1´äM¡ÐÑÑIJJZ¼x±Mß¾}=<<üýýnjөS'BH·nÝrrrÒÓÓoݺU\\|ãÆ ‰A™\´J¡‹t §oß¾t³”®®®ƒƒÃ¯¿þ*ž‡v††††††Jê½{÷š8Bè$ßŠŠ ÚYëëëëéé™™™IÉÈÈ …#GŽä³z‰–#o¢OƒeQPóŠñ¯ö[çÑÒ±¡ OW¼´äž={œœœ‚‚‚,XðË/¿Ðz«®®¦ƒtebY––EbØ( ¥ß²}ûöÊÊJÚñO‹³jÕ*Ú²ÚÚÚÜgΜùâÅ‹ùó秤¤Ìš5«áÆ~8@«¡\¡Dçbë[R ??ŸLlâvX–%Rý—4”á&èÐ_PyæÏŸ?iÒ¤ãÇŸ={6--mçΙ™™iii|ýõ×Ç7tèP777V‚P(¬®®O¡aSBB‚ôÚæ}úôiâîüýýããã333srr,-----}||–/_^YY™‘‘áééɳ Šç|öË"¯æåÍÇo¬ššþ-¨øhÏ;G¤N3º‹‹‹/^¼HãNš4iáÂ…{öìY»v-!D__ŸUøa455ÕÐИíôçŸB¸þNqÆÆÆééé/^¤«===éÑZZZBèõtq¯¿þ:!äÆ*©d 8@»@çX¶µ-G•———••Ì]CTš!äúõ믽ö—Hç“:884øöG•””ØÛÛ‡……………‰D¢mÛ¶…‡‡ïرÃÓÓ3---))iÑ¢E\~%¦snÞ¼Y[[Ëõ‡=þ¼°°Pb¡Zœ®]»Ž5Jüׯ_Wþò1lØ0==½3gÎäææ>œâíí-‰¾ûî»+W®ÐQ§*¤¸, j^%k˜B²³³ù· â£¥³’/_¾,Þ^W¯^•·ë={öB¦L™B133>|øÞ½{׬Y£¡¡Ñà¥j¡PاOŸ¬¬,ñôsçÎ1 #s¡òüü|==½¡C‡:”¦üøã Ãxxxܽ{÷øñã#FŒ ³‚(ÚyI‡€ª`9žvªÅ×%P')¶¾Ó¾¸¸xúôé ÃÄÄÄ4}knnn–––‰‰‰4åñãÇ[¶l±²²âs“º¢¢¢!C†lÞ¼™>ÕÐР‘¦¦&M"þ‹›’’R]]Í*———'&&rOãâ⪪ª$î4èâââàà°yóæÊÊJšRUUÙ¹sç&Ö•¦¦¦¯¯oZZZ^^ ÝÝÝ»víºnݺ8*±H¤â²(¨ù¦ìTϤ{Q|´nnn¶¶¶[¶láÄ)//ߺu«Ìý²,ûÕW_õë×ë$.--¥‹ûÐKÕòÐü³gÏþí·ßèÜBÈü‘’’âçç'¾"gΜ9NNNeeeôiaaarrò˜1c,,,ttt¢¢¢æÌ™Ãõ¾‹D¢„„¡Pèçç×”º ¥ÇñСC,))éܹók¯½->ñJZeeeRRÒ¥K—JKKûõë.>D Z®£‘Rwì¸}ûvúXSSSPP““óòåËmÛ¶‰ß6FiZZZ‰‰‰S¦Lqss fYöÀeee‡ÒÒÒjðíîîîýúõÛ°aÃíÛ·ûõëWTTtòäICCCz]]ÝÙ³gO›6­G.\8s挱±qvvöÉ“'{¨æææ111999ÎÎÎ.\HOO:t(·V% “’’Æïìì\[[›ššzÿþýýû÷«dÍð€€€£GBhà(¼¼¼ÒÒÒzõê%ï¶{´§sûöí>ŸÇÓ ÅeQPóMÙ©8Å-(±G+6mÚìêê:eÊMMÍÈ[;óìÙ³÷îÝ[½z5—¸hÑ¢¹s熆†®Y³¦Á¿=Þyçÿüç?Ó¦M›?¾ÁîÝ»Ÿ={F"„ÄÇÇoذaýúõsçÎ%„¬^½: `ðàÁ'N¬­­=xð ŽŽÎÿýßÿBLLLbcc—,YbggGË{êÔ©+W®¬[·®é#à¨{ZwKزe‹½½½««ëìÙ³_ýu{{ûÉ“'sËH{òäɰaÃìííÇŒ1eÊ{{û>}ú\¿~ÏîZÅr<,VäÖ«Í-cÁgñE‰uv†±·· ÍÉÉiì¦Ä‰/ÇCåääøûû›šššššúûûÿôÓOÜKâK$Êtÿþý™3gZYYiiiYZZ†††rK½dffzxxtéÒå•W^ +//ßµk—±±ñ¨Q£¤·L/\îÚµ‹K‰‹‹#„}útƒuÒàr<\a !ÆÆÆ\ ½«øœ9sij‰/#‰BBBôôôÜÜÜè¡Nž]Úmš_Jö{¬ýq|ø£Gòòòd¾ÅÀÀ`Ĉ«0hii½|ù²Áûu´Wí|r ˲%%%†††K‰ÒµIïß¿ïîî.ý®ääd‰”ŸþùÞ½{...Ü:û S@@Ÿá@[ÔÎÇgÏžÕ××K/ F—~}üø±â·_¹råðáÃwîܹr劥¥e||<ÏýJ¯©¦†‘­l5;è ¶mÛ¦îCP1>K¥vísæ ·‘[·n}ýõ×]ºt8p º  í|V5!ÄÂÂ":::>>~ܸq^^^wïÞ½xñbß¾}gÏžÍåÉÌÌŒŒŒ´³³;~ü8!$...44ô½÷ÞsuuíÙ³çüqéÒ%BÈÆŒŒÔ] õhÿ#!dæÌ™ÆÆÆ©©©iiiæææÓ§Oˆˆ +òÈääätâĉ­[·š™™½þúëóçÏ·³³SwQ K9€ê0,¢ USÉφ‘n†F·Gh}TòP%¾”:ì÷Xûã*À ±±±ÌÿÒ××8pà®]»D"‘Ì<½{÷~óÍ7/^¼¨xSœ™{‹‹322êß¿¿º«A5lll&Nœ¨î£ø————Ì6衵žãQ£Ë—/3 sàÀ‰t‘Hdgggii¹~ýzu#´1ÆÚ†0|²±DeC5¦NÚ³gOB˲LMMˆˆhÉrIìTüxšo/ªbhhxèÐ!–e”ÓÒÒÆŒckk;}út”””ÀÀÀÏ?ÿ<,,L:sVV–ŸŸŸAHHˆ@ 8pà€ŸŸßwß}7bÄBÈ;wêëë=<>è|8mmmu÷o/_¾ …¼†9ѾUõŸ½ÿþûOž<¹xñ"]OwõêÕ³fÍúÏþsêÔ©Q£F©»bšW£ª½å1 éï‘áííݨ÷.[¶ÌÌÌ,//O__Ÿ²|ùò>}úÄÆÆJŽ,ËΚ5K__???Ÿ~âV¬X1`À€èèèË—/“þÊZ½z5þÊjV­ô,hýhTW[[« »»û°aÃŽ9RWWרíϘ1c„ „OOOî¶U¹¹¹£G633³°°=ztnn.—߯Æ&22òÒ¥KÎÎÎÎÎÎÒ|þüy\\œ££cçέ¬¬ÂÂÂÑÑÑòšCOïÏ?ÿœ×™ýššš7n¼ñÆ4j$„èêêzyy•––>þ\"ó;wŠ‹‹gÍšÅýf``™——wíÚ5òOàøê«¯6ê ±ÐãØÞa)G€æQ^^~ðàA ™!š8—óçÏß¿¿±÷,]¼x±¥¥åêÕ«7mÚD¦cÇŽMž<ÙÌÌ,$$„a˜”””aÆ¥¤¤Œ?ž¾åþýû£FÒ××÷óó“Þ`XXؾ}ûFŽ9iÒ¤‚‚‚Ý»wÐé;«V­Š1bÄäÉ“kjjŽ=:}út==½±cÇÒ÷&'' ‚?üP(nÙ²eòäÉnnnuuusæÌ)..Þ¾}{hhèÕ«WiæC‡ý÷¿ÿ=z´³³óÅ‹ããã/\¸‘‘Á0ÿ3x ==}ܸqæææS¦LÑÐÐ8zôè¨Q£’““§N*qäuuuóçÏwwwO¼{÷.!DKKK"s@@Àádz²²!ô–³=êÞ½;!$##ÃÌÌLbPéâÅ‹mllV®\¹qãÆÁƒÓÄk×®3æ­·Þ9rä±cÇvìØ!‰>ûì3éºU\y5/s§âøW»‚”Þ‹â£=räHppp÷îÝCBB444’““¿ýö[Åçêž={!G}òä 6H äçç‹ßY£®®îúõëNNN:::™ïß¿O111O´°° „з”””hiiuíÚõСC?îÛ·ï Aƒ:uêÄó`€/TÍÞÞ¾é!„°Rÿ”l/´2´2ªùŒ° ŸØ|òð±jÕ*BÈ´iÓ–.]ºtéÒ%K–¼óÎ;4Y¸p¡xžììlé·oذòã?rÙ¤yzzÊÜujj*·Ùšškkëòòrújyy¹•••­­mMM ˲ÖÖÖ„ØØØúúzéM=}úT ¼óÎ;\ʬY³ŒŒŒÊÊÊX–µµµµ··¯­­¥/UVV …ÂyóæÑ§ÖÖÖ:u*,,¤O7nÜHqvv~ùò%Mñôô$„TUUq‡±nÝ:nGÑÑÑ„}ûöÑW'L˜@‹cggçêêúìÙ3šíÅ‹C‡µµµ­««k°Q=z4hÐ @ðË/¿H¼DïEŸöïߟÎI?rä-š††ÆÌ™3é«ÞÞÞ...ô1½yXFFWjBȱcÇèÓºº:GGG+++éƒQ\Å5/±SñãiTµ+nAñ½(>Ú/^XYY™››—––ÒWËÊÊh|¶ÿ~™mQQQ¡¥¥5cÆ ;w6Øv2íÙ³'&&ÆÍÍÍØØ8==]:í£ O¤½Î ,ËèèètëÖûX9::^ºt‰ÏÞ•øRRÉ÷X[„G^Ä/Ý …B‡eË–ñ™m ÑÍFdͪ¦1ŠbyyywîÜIJJâzhŒŒŒ""""##óóói—¤¹¹ùŠ+d†ÓÐÐ`æüùówïÞµ²²"„ìÚµk×®]ôÕÜÜ\mmmn†ò£G!Ïž=ãÞ>hР޽{ÓÇ>>>„MMMšâëë›ýìÙ³®]»Ò[¼x1÷Þ•+Wnß¾ýàÁƒâ]‰W®\)..þæ›o¸¾%--­ðððÐÐм¼<ñKÒÒ222Þ}÷Ý’’’íÛ·KßÓ«GNNNgΜ!„TTT|ñÅááá™™™'NÌÊʉD£GæÓèöööãÆ£‹‹Kzzºt6ÅeéׯŸ‚šWŒµ7Ø‚<¶®®îîÝ» =zô ¯š››/\¸péÒ¥òrÿþý555·oßÞ½{7wGߺºº'NÈ{×MN­Y³†^köóó£µ$ÁÔÔtÒ¤I)))ñññ4îß³gÏöíÛ !UUU„’’‘HKÇ*|ûí·‘‘‘&L(((àß Bà­Ec'AóÉÏ› ÎÑÎÎÎæ9Z½Ä&>Ó“ÿ¬jqÅÅÅ„‰+ãtè^qq1´äM¡ÐÑÑIJJ¢W-ûöíëáááïï?fÌz-¯[·n999ééé·nÝ*..¾qã†Ä Lñë‰4p‘NáôíÛWü¡®®®ƒƒÃ¯¿þ*žçÖ­[„ÐÐÐÐÐP‰C½wïž¼ÀñÞ½{ ,øî»ïììì~øá:Vä[QQA;k}}}===333 !B¡päÈ‘|êÜÞÞ^ü©¼‰> –EAÍ+Æ¿ÚlAžGKdž0@<]ñÒ’{öìqppprr Z°`Á/¿üBë­ººšÒ•‰ýß1TÅÅÅÏž=»páBXXØ!C %®JB¶oß^YYI;þi‘cbbV­Ze``@[V[[ÛÐÐfž9sæ‹/æÏŸŸ’’2kÖ,>Í | p€Ö¢Qk.2„á³ ×qTZ~~¾P(”^¸±ÑõòDªÿ’†2Üú *Ïüùó'Mštüøñ³gϦ¥¥íܹÓÁÁ!33ÓÀÀ 000--màÀ¯¿þú¸qã†êææ¦ÂJ …ÕÕÕâ)4lJHH^Û¼OŸ>27²oß¾9sætéÒå³Ï>›9s¦‚ýýýããã333srr,-----}||–/_^YY™‘‘áééɳ Šç|öË"¯æåÍÇo¬ššþ-¨øhÏ;G¤N3º‹‹‹/^¼øÑGB&Mš´páÂ={ö¬]»–¢¯¯Ï6f„}çÎ}}}7lØ0uêÔÔÔÔwß}W"½Š}ñâE:±ÚÓÓ“­¥¥%ùg¼£¸×_rãÆ •T2PšQ^^^VVVpppש&„Ðk²×¯_íµ×¸D:ŸÔÁÁ¡Á·?zô¨¤¤ÄÞÞ>,,,,,L$mÛ¶-<<|ÇŽžžžiiiIII‹-âò+1 œsóæÍÚÚZ®?ìùóç……… µÐâtíÚU|1›7o^¿~]føûÝwß½ùæ›ÁÁÁ;vìÐÓÓS|Æ ÓÓÓ;sæLnnîðáà !ÞÞÞ"‘è»ï¾»rå uªBŠË¢ æW®\©’ÈÎÎæß‚Š–ÎJ¾|ù²x{qÓž¤Ñi1S¦L!„˜™™ >|ïÞ½kÖ¬ÑÐÐhðRõ‰'&L˜œœLßNÑAŠ2#Îüü|==½¡C‡:”¦üøã Ãxxxܽ{÷øñã#FŒpttäòÓKØ2/|ƒÒ°@s)..ž>}:Ã0111Mßš›››¥¥ebbbEEMyüøñ–-[¬¬¬øÜ¤®¨¨hÈ!›7o¦O544hd ©©Ig“ˆÿ⦤¤TWW7ª»H\yyybb"÷4..®ªªJâv ...›7o®¬¬¤)UUU‘‘‘;w–Ø Ë²|ðA¯^½¾úê«£FZ(__ß´´´¼¼<8º»»wíÚuݺu pän#ÉŸâ²(¨ù¦ìTϤ{Q|´nnn¶¶¶[¶lùý÷ß¹Öܺu«Ìý²,ûÕW_õë×ë$.--¥‹ûÐKÕòBèï/¿üRü8i$Ê…†âæÌ™ãääTVVFŸ&''3ÆÂÂBGG'**jΜ9\ï»H$JHH …2W¥¡Ç±ÀŠ<-eûöítújMMMAAANNÎË—/·mÛ&~Û¥iii%&&N™2ÅÍÍ-88˜eÙ”••:tHzIiîîîýúõÛ°aÃíÛ·ûõëWTTtòäICCCz]]ÝÙ³gO›6­G.\8s挱±qvvöÉ“'é¢6bnn“““ãìì|áÂ…ôôô¡C‡¾õÖ[ây„BaRRÒøñッƒkkkSSSïß¿¿ÿ~é¡„………·nÝrtt”^:00[3H\@@½© ——WZZZ¯^½äÝvötnß¾ýáÇÒK) ¸, j¾);çã㣸%ö¢àhÁ¦M›‚ƒƒ]]]§L™¢©©yàÀywí;{öì½{÷V¯^-Þ‹-š;wnhhèš5kÿíaddôá‡ÆÆÆ8pÔ¨Q ä§§çææFDDÐÁ»ñññ6lX¿~ýܹs !«W¯#ü¦K·†É1‹‹Ko! ­DYYY÷îÝùti·iJ|)©ä{¬-Â¥jh“´é©ÊÐÁar ð‚GP¥€€>7€¶#¨Ò¶mÛÔ}Ð\p©xAàØ1Ð¥š#ð‚ÀxA༠p^8/€ŽV䀦A༠ph@ll,ó¿ôõõ¸k×.‘H$3††FïÞ½ß|óÍ‹/*Þ'$$DæÞãâ⌌Œú÷ï¯îjP ›‰'ªû(þååååêê*ïPƒ‚‚ZÏñ¨ÑåË—†9pà€DºH$²³³³´´\¿~½ºZG^¦Nµxñâ±cÇþú믳gÏ^²d‰Ì<óçÏ733;|øðk¯½öÙgŸÉÛ”¸7ÞxCz§7oÞŒ‰‰qtt\¾|¹º+@ýΞ=ëããcbbÒ½{wOOÏ£G6}›@ ÐÇ—.]š8qâ7Z²P;?žæÛ‹ªTVVº¸¸˜™™-_¾ü믿Vn#………½zõêÑ£GPPPNNŽ‚Ì·nÝ êÙ³§Á°aÃRSSù¿ ªÁ‚ªÙÛÛ7}#„Vê_SÛ Í ­ƒJ>#Òšïü^µj!$;;[<ñÁƒæææàÁƒòò:880 sýúu›RàØ±c„~ø¡Ù ×Ò¬­­'L˜ ÄOœ8A±µµŒŒ\¾|¹½½=!äóÏ?Wá±?~œ’‘‘ÁêäÉ“›»B$vÚ:÷réÒ%BÈþýûe¾*‰Fåìì¬Ä–Ï;§¥¥ejj±xñâž={vîÜùÇ”™¹¨¨¨K—.zzzóæÍ[ºtiŸ>}!Ÿ}öŸWSâK©™¾ÇZ?ô8@{Ðò3¿LMM§NZ___PP /OïÞ½“““Y–]³fr{aY–¢­­Ýâå“íåË—ÜÕùÕ××××׫j×Ë–-333ËËËÛ²eËÚµkóòò,--cccÕ]%-¡QÕÞò†‰ŒŒÌÏÏÏÈÈhÔY–5k–¾¾~~~~bbâ¦M›®_¿nff-3ÿºu몫«³²²>ýôÓõë×çååÙÛÛsñŠ_UAàíÛâá#êjkkäqww6lØ‘#Gêêê»ý3fL˜0âééiccCsssGmfffaa1zôèÜÜ\.¿Mddä¥K—œ¥7øüùó¸¸8GGÇÎ;[YY………=xð€{511ÑÉÉIWW×ÐÐpðàÁâWmll-Z­§§§­­=xðà'NÔÕÕ-[¶ÌÑÑQOOÏÇÇçæÍ›â‡ñÉ'ŸtêÔ©ÿþK—.}ùò¥Ì2ZZZš˜˜øûûÿøã2³ÕÔÔܸqã7ÞÐ××§)ººº^^^¥¥¥ÏŸ?—È>>tLáŒ3èhooo®¶ !çÏŸ022êÑ£Ç{ï½÷×_Ék/e‘WóÒ;厧±Õ® eMqÍŸ;wÎÏÏÏÐаOŸ>ÑÑÑòšCOïÏ?ÿ¼1'8¹sçNqqñ¬Y³LMMiŠAddd^^ÞµkפóZXXpM©¥¥åííýèÑ£?ÿü³ÁWAeÔÝåÙáR5€b*¿ÄC¤¨–ÌëËüñ‡………††FYY«ðôüùó !·oßfy©úúõë}ô!dÓ¦M™™™,˦¦¦ …ž={FDDDFFöêÕK(¦¦¦ÒüÖÖÖ“&M244´±±y÷Ýw¥7Ê0ŒŸŸß‡~8~üx@0xð`úÒÊ•+ !#FŒˆ]¾|¹££#!äÛo¿å¶lhhhll¼zõêuëÖikk{xx 4(11qÞ¼y ÃpW*­­­{ôèA=zô²eË|||!ljDìÿ^ª>}ú´¶¶¶MTTÔ|`gg'öíÛ'}äµµµtT—âäääää$y×®]„´´4ñúgæÏ?ÿ¤) 033£ÇãíííââBk›ö_nܸ‘Ö¶µµµ½½½¾¾~xxø¦M›¼¼¼!2+¶Á²È«yérÇÓØjWЂÒ{Q|´‡&&&óæÍ[°`™™ ïR5˲t‘ŽŽNee%ÿOí¡LLLO<|ø0!„vÕK˜;w®@  %–eëêê\]]{öìÉçUÅp©š?Dª×zG±#´ Í8²Íó¥F£½iÓ¦-]ºtéÒ¥K–,yçwºwïNY¸p¡x™ᆠ!tØÍ&ÍÓÓSæ®éè~ºÙšškkëòòrújyy¹•••­­mMM ˲ÖÖÖ„ØØØúúzéM=}úT ¼óÎ;\ʬY³ŒŒŒhàkkkkoo_[[K_ª¬¬ …óæÍ£O­­­;uêTXXHŸnܸ‘âììüòåKšâééI©ªªâcݺuÜŽè•G—pcMM««ë³gÏh¶/^ :ÔÖÖ¶®®NAsìÙ³'&&ÆÍÍÍØØ8==]:Cii)!$**Š>íß¿?“~äÈZ4 ™3gÒWÅ5é1Ž„cǎѧuuuŽŽŽVVVÒ{T\Å5/±S‰À‘µ+nAñ½(>Ú/^XYY™››—––ÒWËÊÊ,,,ŽZZZ3fÌÐÐÐØ¹s'Ëív O\°`!$!!A:III¯^½zöì¹fÍš­[·zyyuêÔ‰‹w¿ªGþ„êîñhæŸ?«š›ø¥[¡Pèàà°lÙ²ˆˆˆ†Pjíý©S§öìÙS<…Æ(Šåååݹs'))ÉÈȈ¦Ñ®ÇüüüBÌÍÍW¬X¡¡!c’††Ã0çÏŸ¿{÷®••!d×®]´sŽ’››«­­-þý£ðèÑ#Bȳgϸ·4¨wïÞô1íD ÑÔÔ¤)¾¾¾ÙÙÙÏž=ëÚµ+=°Å‹sï]¹råöíÛ<8uêT.ñÊ•+ÅÅÅß|óŽŽMÑÒÒ  ÍËˣőiÍš5%%%„???Z =zôprr:sæ !¤¢¢¢  à‹/¾ÏÌÌœ8qbVV–H$=z4ŸF···7n},\\\ÒÓÓ¥³).K¿~ýÔ¼bü«½Áäy´uuuwïÞMHH ÝÆô¤Z¸páÒ¥Kåäþýûkjj"""nß¾½{÷îÙ³gÓôºº::¥I¦ñãÇ›ššNš4)%%%>>ž†ò{öìÙ¾};!¤ªªJú-ÖÖÖo½õÖÚµkcbbhÊÈ‘#}}}ù¼ ª‚ÀZ ¥G(2 ŸòÔ`ô™=lØ0%¶|ÿþ}Bˆ­­-—²`Á%6U\\L‘¼HGtÓHËÁÁAfÔHÑÑÑIJJZ¼x±Mß¾}=<<üýýnjөS'BH·nÝrrrÒÓÓoݺU\\|ãÆ ‰A™\´J¡‹t §oß¾t³”®®®ƒƒÃ¯¿þ*žçÖ­[„ÐÐÐÐÐP‰C½wïž‚À±¸¸øÙ³g.\ 2dHaa¡‰‰‰Dž€€€„„„ŠŠ ÚYëëëëéé™™™IÉÈÈ …#GŽäSçô-GÞB9 –EAÍ+Æ¿ÚlAžGKdž0@<]ñÒ’{öìqppprr Z°`Á/¿üBë­ººšÒ•‰eYBÈöíÛ+++i_>-ELL̪U« ¤ßòÖ[o8p`Ó¦MÓ¦Mëܹsffæüù󇚛›khh¨øU>Í | p€ÖB‰ŽC™Ý-ÖÉS~~>˜ØÄíÐZ‰þKÊptdþÜræÏŸ?iÒ¤ãÇŸ={6--mçΙ™™iii|ýõ×Ç7tèP777V‚P(¬®®O¡aSBB‚ôÚæt!:wîìëë»aÆ©S§¦¦¦¾ûî»üýýããã333srr,-----}||–/_^YY™‘‘áééÉM²QŒç|öË"¯æ¹I!MTSSÿí¹sçˆÔi&ï¯BHqqñÅ‹é`ÜI“&-\¸pÏž=k×®%„èëëÓ“V:ÞàâÅ‹ùùù¦¦¦žž±«ã3ðIDATžô,--%r|óÍ7 ,à:³ÇŽ«©©ðùçŸ3FÁ«ë­BS p€ö†mM±c^^^VVVpp0w Qivvv„ëׯ¿öÚk\"|êààÐàÛ=zTRRboo&‰¶mÛ¾cÇOOÏ´´´¤¤¤E‹qù•˜ιyófmm-×öüùóÂÂBoooéâtíÚuÔ¨Qâo¼~ýºtø{âĉ &$''O™2…KìÖ­ù'ž–0lØ0==½3gÎäææ>œâíí-‰¾ûî»+W®ÐQ§*¤¸, jžÎhiºììlþ-¨øh_}õUBÈåË—ÅÛëêÕ«òv½gÏBm33³áÇïÝ»wÍš5 ^ª&„äççëéé :tèС4ýÇdÆÃÃC"ÿãÇ !¯¼òŠx"}úèÑ#ůª¤’Âr<ÐVµžèPžâââéÓ§3 à ºj 777KKËÄÄÄŠŠ šòøñã-[¶XYYñ¹I]QQÑ!C6oÞLŸjhhÐÈ@SS“Î&¡óp©”””êê껋ä)//OLLäžÆÅÅUUUIÜiÐÅÅÅÁÁaóæÍ•••4¥ªª* 22²sçÎÝÈÈHÞ”EAÍKìTb9þÕ®¸%öÒ`ÍŸ;wnäÈ‘t0€¾¾þ¡C‡ˆ¬åxÞ~ûmBÈ­[·Ä7mÚdbb2vìXºRfƒNŸ>MÜÒÒ2,,Œ[n“ýç󒔔ĥdggXXXèéé 4hÇŽâ‹7)~U,ÇÃÃ*{%äqpp(**jâF†‘=ä¿éíÅ0j¥šÏ¿l8×[ž‹‹ í탶®¬¬¬{÷î|º´Û4%¾”Tò=ÖáR5´IˆZ€ôXCèà09xA#¨R@@Ÿá@[„ÀTiÛ¶mê>h.¸T ¼ p^8v<,Kž+™ü #ð‚ÀxA༠p^8/XÔÀÁÁA݇†ÀZZQQ‘º”KÕ–r€ÆC༠p^8/€ŽÀ GàcG…y ‘8/€ŽÀ Gà#ð‚ÀxA༠pìÀ°”#4Gà#ð‚ÀxA༠p^8/€Ž–rÞ8/€ŽÀ Gà#ð‚ÀxAàØáaEà#ð‚ÀxA༠p^8/€ŽÀ GÀRŽÀ Gà#ð‚ÀxA༠p^8/€Ž@ÁRŽÐ0ŽÀ Gà#ð‚ÀxA༠p^8Â?°"($T÷4#FN(̲¬º  íAàítˆˆ~U¥àR5ð‚Àxé(—ª:tðàÁ’’’Î;¿öÚkÑÑÑݺuSÿùóçHII)--íÚµ«½½ýÌ™3‡ ¦îr¨M‡wìØ¡««;pàÀ»wï>|¸¸¸xïÞ½:::2ó×ÕÕ½óÎ;W¯^Õ××:tè‹/~úé§ììì… Ο?_Ý¥Pö©º¨¨hçΦ¦¦ßÿýÎ;O:õÖ[o]»vmÓ¦MòÞrðàÁ«W¯0 33sûöí_~ùåÑ£G >ýôÓÂÂBu@=ÚàxðàA‘HabbBS–.]ª¯¯òäI‘H$ó-ßÿ=!äÃ?äº$íììæÎ[__þüyu¨95ÿRŽ axþSw]€¤ö8þüóÏÞÞÞ\Š@ >|ø£Gòòòd¾åÎ;ººº}ûöO´³³#„Ü¿_ÝjóXÂ6øOÝÇ2´ó1Ž,Ë–””ЧÛÛÛBîß¿ïîî.ý®Ï>ûL(”¬™7nBzõê¥î2¨G;Ÿ={V__o`` ‘®¯¯Oyüø±ÌwõéÓG"åâÅ‹;wîÔÒÒš0aŸý:88H¤©»2:¯tËì»dÿ΀®MàCúg½ÃjçãóçÏ !ºººé]ºt!„kÖ,y‹>B¡ç ­hç#!ÄÔÔ´¤¤¤ªªJOOK¼sç}Iæ[D"ÑâÅ‹OŸ>=räÈ•+W*ˆ/Û!º"Û¢ƒÿ¤Ç*X‘Ô¥ý/Çãëë[__Ÿ••Å¥°,›™™Ù­[7WWW™oùꫯNŸ>úé§Ÿv¬¨±Å1„‘Ê[©«?¨Kûƒ‚‚444>ùä:®‘²sçÎ?ÿüsÒ¤Iššš4¥ººúÎ;¥¥¥„–e“““»víºdÉu;È xH.|üûz'T§ý_ª¶°°ˆŽŽŽ7nœ——×Ý»w/^¼Ø·oßÙ³gsy233###íììŽ?^^^~ïÞ=iÓ¦IomâĉӧOWw™Úƒ¿ç;3’cÙ¦]%ÿ{2õ?™²gU€RÚàH™9s¦±±qjjjZZš¹¹ùôéÓ#""èŠ<Òh¿ãóçÏ ¤_ÅÄj“ˆêp© cšØÁÒš¾Ž#Ã0²Ölj‡Ï}7ßäþÛ2 ¦ÇÖqÄ<PŽJ~ëÛ¢Ñã­«ÉŽ ™‰Œ@)ír ´B Vohƒ8‚º”c³Qÿ5bôi(—ª¡}ú»K“Uø*4z¡EµLw#·¬£ìøðïƒÀxAà-Gý£ÿAï1£î£hc8B…Ø ±8B i=Ý ŽÐq¡Ó Q8‚,ª^ÊÝíGèÐÐéÀGhv­¼»±#O€ŽÐ¼Zyw#…NG>8‚Ø€ŽÐŒÚDw#ð„ÀähòŠtÐÌ8¶sm±§ Äqtl=­ŒewZ€ì¹D,Ë v€f†À õûü ÐzfÏ £QÍ5@3ë(“c:äêê:lذåË—WTTð|ãíÛ·òóóÕ]€ÖQ£ú1¸u#4¯8&&&®X±â×_8p`—.]>üî»ï>þœÏ{¿úê+u¾òpº=iåëò jl%ÄoN ríÿRuQQÑÎ;MMMSRRLLL!k׮ݻwï¦M›bbb佫ªªê—_~ùî»ïöï߯î´M˜Ó‘ jlU¸•zÐ( rí¿ÇñàÁƒ"‘(""‚F„¥K—êëëŸ!äñãÇÍ´_‰”¢¢"uW€Ê i[X4@ÓHÿ¬wXí}JþéwhsÔ8KÁGÛ…•z éÚyà( õõõ¥{«ªª!ܶ c;ëÔíŸì•“$²(9KFÁDðŽ®PwdŒØÿ2à‚À ]iT§#¢ÆNq룳¤arL{ЮScðÖQ#4G€ö†ÏôjD $ôAtlÛ¼6ÐÝ-®‰KóÈÅàÚ@‡†À ÃAw#4]á#@Ç„À }’×鈨šîß›Y@ƒÀ±mkKש1?¦@Ô*„Ø BàÐnIt:"j•CìÐÑ`Ç6€ûµ—¾ø(žÒfz¡Å!j„fÂâìèH8¶ ,Cýv[ Câ:5fÑ‚´:±† 4#ÄŽ.U´{¸œÍ'@ÀZæÇ´8ôA‹Á2=Ƕª-ͧ5á¢F¬-Ëô´{Ú'ô5‚º vhÇ8´CÒQ#:¡%!vh¯8¶Imø:5†96?ô5Bk€Ø ]BàЮ(ˆÑé-L^숳 íBàØö´áîFhf ö5"v„†Ø AàÍHb™ ¥hÓ8´<Ñé-Oz™Œ€h£pËÁ¶»]5ýÉoÛ?ü˜Ó Ћ­îLÐ plØ¢,†Â pìð$;kûcL;q"Zˆ­K8 íÁ¥ê6Q#Høé…¶‚Á­eÚ>Žmο±¢ÒQ#F:‚q±#‚H€6—ªÛ †¥ce|Ͳ,ºœ:ˆÿýmZÃã‚5´$‰?r2´QèqlkX©mBݦbÁ#hÛ¸/0œÇmǶaÿ"•xjo\°†–¡ð†FЖ phsþYPý¶Ð.à²5@‚À -`›k::¡¹ñœÂ…³ MÀä˜6שáÿ52 ƒÑ¢Ðêñü[Güo#hµ8‚z0äï9½Ð †Â0bŽ*†éÕÐÜxž[Ü\œ‹­.U·vènBˆ¼¨QU±$.XCë!­G€Víï_P¬¼ bG€V —ª[5t7ièGT%7ü¥Ý²;Y‚±gÐò0ä uBàjðæØ†û_æV5½2ÜG™#†[÷cÏ Eá´h…8¶^ènìàÄ/†‘ñãɨø<˜%­JúÔ@U0ÆÔ Á±Lø¥à`È#@ëGP?\°– Æ¨ŽÐÂ9¿$zÓ1ä •@àØZá:uG¥ö¾FÄŽÐÒ¤G\0²Ÿ"­àÐÁáR5@+‚EÅpÙ@½ÐãØ1¤ý,Æ,}Šåþÿç•ÿ™DóãFzüð¼Ì×Xèt„Ö ÓeÔ#4;™ßïÌ?/Бùç*TGþ1Pæ·Pf€¨ìjáa(ƒ»É@k…Ø@]8¶:Ì?ëªû@š—ÌëM,é¸}­åW•zÚÎÏDh«0]@-0ÆÔƒëk¤Ú°¬¸6Ô} m‹?mZÇÖË: Ö5¶êƒøÿöî6ÄŠêãø9«òGWY]6EC’È»¶¾K|†a¾0MC)„Ê–Â’_DF"I-$¡I¹& Qš"ö  ºØ£%«–Tn±b»Ý=ÿsïܹ3sçÎÝ;g¾.º{w÷ž¹wfÎüæÌ™s*fG%‚#⡊ýÍæÆlJzj4‘C0’Í™%‘@8èãˆØXo‹)ÄǸ)bÉI…n®K£Ì…’˻ˣëøÁÎØ dÁ1A²vÚ:[L'æNNj4·ºJ3bïXÊØBÚX7SsدҎ戉RJ²#P+.U#Î ’©Y““kÁ¥?¤@ ÷, MŽI‘µæÆ,Kgj4‘t¶Þl²@°ŽH)?xuZ¤958#ŒÍ”-Á1hn,QJãì˜þÔ$šuSÖ>ŽôeBp"¢Qjä4©A 9,‚cühn´Ó±ÑQ£ÔXx?žè %=F”Ò®JâBpB§[jB‘…Õ6ǘÑÜèN£FG-S£ìˆäÐxG…À‘TFvLY—ö²þTÒXþò9+4pØÈŽœü ¼NbôÚ8ŽLƱÊzÄÒ¥µüm“?ïíOºž…’&Úq©:Nn«HßkËå²,“¸fT’’±Z@ØýH]ä­ÿý“‘>Šñz€cCs£/imtL×2™Æ43€G$^ ²£mjÜŒ¢ÑéEÓ#àÁ147jÊl¹ÈèÊ%;"Õhzª"8" ’Üè¨Ìv ,ŒO숣éðFpŒÍÚqkR7e°ÙéFÓ#P Á)‘ÈFGYú?qË/²#ÒŽ¦GÀÁé‘ÈìXq‘¸¨Ñ";BU›ÙÄ‘5ǨqZÙ½Æ7²#4@Ó#`Å”ƒH•dL`-­_TZB% ëMp&sÔVvwdÁ1R47jÀvRº¯R™­Y+a&khÃØˆ‰‰È8‚#Ò&ÖFGŽƒ@v„NœÃý›ŽÒ­g³âz!8F‡cg`âȎΫTðì˜Mn?³oäRJ²#tBpª£¡1^7Ê(Á´HYÞë‘»gLjÐܰIAñhw”¥µÉñ©Á&‹ b8À ©1X Ð تe~Ë%idÁ©òxà’Ô²#´D]Œ 8FëÔa -;Jk+yOf~¾(dÁ°£¡1l4:@JCGsc¸‚nt$5Fƒìˆ4Lý :tÂ]Õ@#5FÌÌŽœY!E¼R ëÍ1RªbvdC‡Žá¢¹1 A ÍCCc,TaüFZdÞµ„¬\YAªq©Z¨ï‚5©1^Ê €ÖÌ¡ÂÙÖ‘^ÇÑܘ$î+‚1w’¸dÍñ@|Dª¡‹Ús'y˜‰YQS|d—@rë%…´=Ì'­?{13N9ihŒžsg)í …KÕf0šc ~â£õG²²¸ß ²‚à%”õ!Š]þ­Ï ¾IÑ+í®«¨p©ÚlVÜlì¨˺q(åò¢Bp„^\²£Yå/M+jÙ”‚{d‡k|ä,IÃp<¡à¶˜“B NÐÓÂ:^û² ÒÀ=Ü;†„ ÅÚ±6:*ke«8{O)ãjMÈERDRÑâ šF†{uuÀL3È û¹/WK7‚#t¤”²XÃ*{—!¥œw Òï1¸rì–;ÅÌg€Ø¡§Bj”Ò=]8b¢”’ì˜f|$;"S”笆@4èã­Hë`€–fEU>ZÜ‹‰W®éø-щE‹#4a» Q !”Û5ihÄÙôX%G–fÄæ  ½(Å–h‘zÎêÒv²®Œd!…¤NÕ‘í¦ë×ÅË|œM ÑÓÜXìlc½“&Šr‘=G¤˜Çv¡ö4jR£»£ù{TÚ±Þ4h â¦\­ƒ£óNŸ;|¢c*ÍUÍDÕá‘¥y`\(!””Ö‡ÒöŒâ"¶vˆÐƒªüðßE[Yƒô9õ{i–-¦ÃFeÇz9' -û±LW,×ÈèZÁªËâïIU|¾e¥èɼi†Ã ü%H—‹ÔL‡ ¸TÔðîú­Üž)fIJŽ ¢«=%”t‰‰èˆ ós›.À¨ŠàˆØUŸÖeÐw š÷ÜÙÑújMƒî .U#á¼û2úùóÒתÐè¨Ê‡xD†px,”åÄ]ZOѹ&ƒÊhqD¼”¥²* sŒI¦Š}æÆÂíÕ¢0Ä£àšuÖHs,x„pì aŸR³ãi€àˆÄ v[kd´ÎcDF³é‘ÈÌPŃë°+4@ºNlÐi6Ù1펈‘õà-ÑT¯S¬ƒ~=ËJ-V…Ê:‰È 1ï–*™åsæ§j«o¥´]¢©uûæŒMG$9dNaòƒ 8k(Y¡Þ’B(¥ c¤3E s«óŸ ™ŸdÛè¥çO=^„FÇT#8"&…Cuù-Õ±'6cdb–ÑróšqX¡¥úÓ›GŽt +²‰`*‚#¢ã¸%©M2ªÔZömÕ¿c:ì(d¾Js ùÛê¬a±Ö Ù@Z zbC÷?ªüÊÊñmØÙŽì‚#€r”µ,K)Fg Ÿ=Tå‡ãpTö­YP€Ÿ˜…¹ÇTá ªKI>‚£‹³gÏvttŒ7îСCŸ~úéÊ•+Ïœ9óÚk¯Å½h†È:þZwLe;êj~E)GáTÐyÞ˜"…økŸ–Æœ;¤ù l ?¢¼¬ï¹R”Žã´PÛ{*¾ŒJÙ>£(Çó`¥è¸ê¥q()~-{X1êàRf”ÒüW”ZM•¬Òl9È÷÷§‚£‹ÎÎÎööö±cÇÏlذ¡©©éàÁƒhiŒ¦çÃàK‘Å)›¥ãaa±|ŸRŽ_ÆHWÅtbÆGó:¯™’KQ{E#¥(Ôƒe1ÈlÔ ¼]Ó|;¡ÆSzj á%Í@)œW÷Tø·ua+ìŒM)¨IX+¥ü8á,Åüy݇•J=) åºìO5] Öèi+"kÛ1ÁÑÅÉ“',X`>3dÈùóç÷ôôœ:u*²•V=©²^hÎdS<ýËÞ¾à‹ÛU’2æk)„3”aݳs‘£ë¤*öP¥¤e|-lÔ´ÄÓ²÷lûìš5k\ÿЬ¿[[[ã~ \gÏžB˜SWx¿ª ZíŒ[§mÏ9RÑÛÛëúWÖ³þ–äx¾~•^-¨Rª¾N6ǬªÂuXÇ0hm¯R0¥$£ˆ²#PåRê<îEC¸.]º4|øðI“&YŸdjJíÞ½»Ò¨ôæ±ê©ôóßÿ=òÈ#]]]MMM³fÍúçŸNœ8ñù矯[·îñÇ7-‹{½BÝ~üñÇ)S¦Ì›7ï·ß~3žy饗r¹Ü‹/¾÷¢!\½½½¹\î©§žŠ{AºÞÞÞ“'OnÚ´)—Ëår¹®®.Û/Pèªêª§ÐÒž={r¹Ü²eËúúúŒgÎ;7sæÌÛo¿ýûï¿7žÉæ^OÇtvv ´··;ÖxfÆ MMMˆ{é¢K—. !lÍ ÐÒ¢E‹–/_þþûïWúê]U]õÔZ:tèâ…^0Û'Ož¼víÚ|>oö@Èæ^Op ÀÉ“',X`>3dÈùóç÷ôôœ:u*î¥Cˆº»»…·ÜrKÜ ‚ÐmÞ¼yÇŽ;vì˜={¶ë/Pèªêª§ÐÒÅ‹§Nj}ròäÉBˆË—/ßfs¯§c½”R.\hnnnnn¶>ŸËå„—/_ž>}zÜˈ°Œ«W¯®\¹ò‡~1bD[[ÛÚµk]o›@ªÍ;×øâÈ‘#ΟRhÌ{Õ êM½õÖ[C‡Ú3Òwß}'„˜8q¢Èð^O‹c½úúúòù¼³tSS“âÏ?ÿŒ{"ã¼óõ×_ÿý÷ßgÍšÕÒÒräÈ‘eË–uvvƽhˆõ@–Qh©­­Íˆ€¦ãÇwttüïÿ[¼x±Èð^O‹c½úûû…¶çGŽ)„èíí{¢«W¯>üé§Ÿ^¹r¥ñÌ—_~¹víÚ—_~yîܹ&Lˆ{ê,£Ð^>Ÿß³gÏ«¯¾šÏç·nÝÚÒÒ"2¼×ÓâX¯Ñ£GK)ûúúlÏ߸qCÏ< «wÞy§««Ë|øðC=ôÆoTj>Ìæ^Op ÀÒ¥K¶oßnôlBttt\»vmÉ’%Æ ‹{é–I“&Ýu×]_ýõ¾}ûÌ'OŸ>½sçÎ &ÜsÏ=q/ "E=MÔZRJ½ûFzî¹ç<~-›{=wU`„ ëׯ߲eËý÷ß?oÞ¼îîîãÇO:õÑG{Ñ®M›6­Y³fãÆï½÷Þ­·ÞúË/¿tuu1â•W^Ñy¢R¸¡È,êýüñÇÆüãË—/wþôX±b…Èê^Op ÆêÕ«oºé¦|òÉ'ãÇ_±bE{{»qO>46eÊ”?üpëÖ­_}õÕùóç'Nœ¸xñâuëÖ?>îEC ¨²‰z@?W®\Bô÷÷ûí·ÎŸZo‘Éà^/•Rq/R€>Žð…à_Žð…à_Žð…à_Žð…à_Žð…à_Žð…à_Žð…à_Žð…à_Žð…à_Žð…à_Žð…à_Žð…à_Žð…à_Žð…à_Žð…à_Žð…à_Žð…à_Žð…à_Žð…à_ŽðåÿëK‡@„"IEND®B`‚statistics-release-1.6.3/docs/assets/poissinv_101.png000066400000000000000000000562031456127120000225300ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A\JIDATxÚíÝy\eÿÿñëpp„Í PÄ]qË•P4CQC3Í]3sÁ-Mͬ\ÃRo*×ÔÀ-Å;SS\r_PKÔT•qYTåœóûãô=?n@= 0çõ|øÇœkæÌ|® w³\£Ðh4x#© @é@p€^ŽÐ Áz!8@/Gè…འ‚#ôBp€^ŽÐ Á@I¸~ýº"?UªTiÙ²åØ±cããã ·æ5kÖhWÕºuk©{Yx¯èEVVÖêÕ«ß}÷ÝêÕ«W¬XÑÙÙ¹W¯^ß}÷]fff®%óÝÉÆÆÆVVVo¿ýö_|ñðáC}¾’ËŒ3¤Þ=ä‚à@JOž<¹téÒºuëêׯøða©Ë‘¿ÿþ»~ýúŸ|òÉáÇïÞ½›••uûöíýû÷OŸ>ÝÙÙù?þxíT*Urrò… ,Xàââ"uŸ”bÆRÀàØØØ˜˜˜!^¼x‘˜˜¨V«…OŸ>;vìµk×*UªT µU©RÅÁÁAagg'uÏ /ß^„‡‡»»»?yòD×bllœ­NHH0`ÀÙ³g›5k–w…ºüôéS݉Ɣ”ŸÛ·oW¨Pá_ÉÅÂÂBêÝ@64Pü®]»¦û³säÈ]ûãÇGŽ©›µgÏ©+•‘÷Þ{O·gFŒqùòåììì»wï®_¿¾J•*ÚvÝò/Ûɱ±±#FŒÐÍZ¾|ùk¿ùâR5)U®\ù‡~(W®œöãÍ›7sÎ}úôé—_~Ù­[7›®]»Îž=;===ç2ùÞøâŋիWwìØÑÞÞ¾råÊMš4ù裮\¹’këz.¦g%_|ñ…¶’¾}û¦¤¤L›6­uëÖUªTiÞ¼ù¢E‹^¼xñŠý·GŽÙ·oŸvzÖ¬Y6lhÖ¬™R©´³³5jÔ¶mÛ´³ÂÃÃ#""^½“kÖ¬¹aƾ}ûj?.Z´èéÓ§p¥œÔÉ€Axõ™-{{{í¬Y³fé/\¸P§N¼µjÖ¬yâÄ Ýb«W¯Ö¶·jÕJÛòìÙ³6mÚäý¢B¡øñÇu_Ôs1ý+™;w®¶ÝÝݽAƒ¹öññyÅþÉÛ‹~ýúi[,--?~œ÷+žžžÍ›7oÞ¼yPP>;ùøñ㺹ÁÁÁú|ráŒ#‰¥¦¦Þ¿_;íìì¬ÈÌÌ0`À;w„+VìÞ½»§§§©©©"..nàÀ?~Ù ,XpáÂ!„‰‰IŸ>}&NœøöÛo !4ÍäÉ“u'5õ\¬•?~<,,¬víÚo¿ývÅŠµ;wî¼xñ¢þ»åÌ™3Ú‰~ýúU®\9ïüñGhhhhhhÿþýõY¡››[ùòåµÓÚŽ@AH&;;ûæÍ›C† Q©TÚ–æÍ›k'üüü¢££…fff'Ož þã?BBB¬¬¬„÷îÝ[´hÑËV{ìØ1íÄœ9svïÞýŸÿü'$$¤[·nÚ-9r¤@‹®ÿèèèÐÐP]vÔ?8¾xñB¦œœŠdo+ [[[íô½{÷ò.еk×¼cñL™2¥H¶ l 8(iº€R®\¹ èÆ”éÝ»w‹-´ÓºÆI“&énûkÒ¤ÉÔ©Ss-—n€ÃÀÀÀ 6hX``àµk×®]»öþûïh±BTÒ¸qã &h§ëׯߩS'ítLLŒž»(çÝ“ºëøoî­·ÞÊ»~ÐÁ€,4nÜxåÊ•ºáááÚ‰îÝ»ç\ìÝwßÕNܺuK;ŽO^º¯„‡‡5ÊÎήeË–þþþOŸ>mÔ¨‘ž‹¢’\7DZZZj'^Vp^º‡¦…yGí.´äädí„™™YÞ¹666yèŠÁ8ŽJ^Îñ6lؾ}ûÉ“'ë.馧§§¥¥i§sÎX½zuíijgÏîß¿ŸïØ_}õUzzúúõë³²²„æÒ¥K—.]Z¸pa§NvíÚU­Z5=+\% …"ç’¹>ê£|ùòVVVIIIBí…ò¼ÒÒÒ´c:V¬XQÏÁ/uW¨mllòÎݲe‹‡‡Ga*ƒÀG%mË–-QÿçÖ­[¿ÿþûÌ™3u©Qafffnn®NLLÌù]ÝÇòåËkó_^åÊ•ûá‡>|øë¯¿<8çøÕ§NÒ½@OŸÅÞ°’7Ѿ}{íÄÞ½{óʧ~ýúVVVVVVº'²_íôéÓÏŸ?×Nçû89¼Á€¹¸¸h':”³]÷ÑÙÙÙØ8Ÿk&YYY÷ïß¿ÿ~VVÖ€6oÞüàÁƒÃ‡ë¢ÒÉ“'õ_ìM*yCcÆŒÑNÄÆÆ®Y³&×Ü}ûöéN¾óÎ;ú¬Pw'@¥J•:tèPä0Gräé驸ÏþséÒ%íôµk×üüü´Ó={öÌ÷‹aaa¶¶¶¶¶¶vvvÚ1tŒ»ví:jÔ(íU«VÕ±7©ä ½÷Þ{]»vÕNOš4é믿֞ã|þüy``à°aô³êÔ©ãêêúêUÝ»woìØ±AAAÚ}ôQÎ{(@Üã@Ž>ûì³7ÆÄĤ¥¥uìØÑÃÃC©T9rDûÊ;;»/¾ø"ß/6mÚÔÆÆæþýûÙÙÙ;v|ï½÷,--£££÷ìÙ£]@û={“JÞÜ÷ßÿöÛogffj4š/¿üòË/¿´²²JIIÑ^T±bÅ   ¥R™÷»C‡Õ6ùôéӜ٫U«öÍ7ß”ðÑPfÈ‘‰‰ÉŽ; ™™™©{ùž¢víÚ›7oÎ÷¹`!„‘‘ÑîÝ»»té’™™yïÞ½õë×çœëîîþÙgŸé¿Ø›Tòæš4irøðáܽ{WÛ¢}\FËÁÁáÇÔ|™‹î+9YZZîÙ³G;%Á€LµiÓæêÕ«K—.={öìµk×T*UÓ¦MÛµk7sæÌW_imÛ¶ííÛ·W¯^œððáÃÊ•+7jÔhøðá#GŽÔ=ã¬çboRÉ›ëСí[·Ö®]»{÷î°°°´´4—Î;òÉ'*Txí”J¥¹¹yݺu»wï>iÒ$R#€7¡Ðh4R×€R€‡c ‚#ôBp€^ŽÐ Áz!8@/Gè…འ‚#ôBp€^ŽÐ Áz1–º dffþúë¯AAAñññUªT©W¯ÞÈ‘#;tèk±;wîØ±ãöíÛ¦¦¦ï¼óÎŒ3,,,¤®@2 F#u %*;;{ðàÁ—/_677oÙ²å³gÏ.^¼øâÅ‹I“&}ú駺Ŗ/_¾zõêJ•*µjÕ*&&&::ºiÓ¦&&&R÷@·nÝúÕW_µlÙòçŸÖ¦À[·n 2äñãÇ»víjР"<<ÜÛÛ»ZµjAAAÖÖÖBˆ…  2ä‹/¾ºÒ0¸{ƒƒƒ…sæÌÑ;tvv7nœJ¥:s挶eÇŽjµÚ××W›…³fÍ277?pà€Z­–ºÒ0¸àU©R¥FåltvvBÄÅÅi?^¼xÑÈÈÈÝÝ]·€R©tssKNN¾té’Ô=†Á=³fÍcãܽ¾~ýº¢fÍšBFsûömKKKKKËœËÔ«WOתU+©;ІB! |×^a¾SF\plذa®–µk×V¨PÁÛÛ[‘‘‘¡R©ªV­šk1sss!Ä£G^» ©{ þþê ôîðˆ—zõ„‹Kxx¸þß*3 .8æ¤R©¶lÙòí·ßªTªï¾ûÎÊÊJ‘™™)„¨T©R®…+W®,„HKKÓg͆ùÃ$g.†ú.gyâ¸Èå éq~° »W¡7Ø“D†ÏŸ?ÿÕW_ݹsÇÎÎnÑ¢EíÛ·×¶W­ZU¡PdddäZþÉ“'âÿÎ; C ŽÏŸ?÷óó ¬X±âĉG•stFcccssó¼gÓÓÓ…ºç¬€üðíˆÅÂà‚£Z­ž6mÚ¡C‡ºvíúå—_æmllnß¾žžnff¦kŒŠŠÒÎ’ºÒ0¸áx:ôá‡þøã/;}èáá¡R©N:¥kÑh4'Nœ°°°puu•ºÒ0¬à¨Ñh6oÞ\¥J•™3g¾b1##£~øA{_£bíÚµIIIýû÷/W®œÔ†a]ª~øðall¬‰‰ÉàÁƒóÎíÛ·ï!C„ööö3fÌXºtiïÞ½;uêÒ¨Q£1cÆHÝ’öAŠhÐ ©»€á"8¢À4M```ãÆ6l¨m0`ÀøñãÿüóÏnݺåZ¸ —ªçÌ™3gΜœ-ŽŽŽ¶¶¶çΓºß:.U£ÀŽ;;`À]K¿~ýÊ•+7nܸ/¾ø"×½T d‹àˆ Bä Ž666‹/~òäÉ•+Wˆƒ”UGئM›4‹‹KÎÆiӦݿÏž= ÅëG/¨¨(®S Gè…འ‚#ôBp€^ŽÐ Áz!8@/Gè…འ‚# L­V;;;תUkñâÅR×ЗBQ¢ÿ4©;ü†û¥Ôt DQ`©©©Í›7·µµ={ö–-[Šu[nnn_}õU®Æ´´´qãÆÕªU«råÊnnn!!!Rï(4š’ûWš”ú”‚# ÌÒÒrçÎçÏŸïÞ½»ŸŸ_ñm(44ôÌ™3¹ÓÓÓ[µjµqãÆN:5êÎ;=zô •z¯PöQH …bÊ”)W®\9~üxÑ®9;;ûСCóçÏïÞ½»Z­Î5÷ûï¿¿}ûöÚµk·lÙ²råÊS§N)ŠiÓ¦I½?(ûŒ¥.¥Xvv¶bݺuîîîE¸ÚäääîÝ»¿lîöíÛíì솪ýèääôþûïoذ!11ÑÎÎNê]@YÆGy+á;™sý{_~ùEñÛo¿¥¥¥a§mll4F£¹yóf®Yééé;wVä(¯K—.jµš;(nGy+ÉÛ˜ x_pjjêž={FŒ‘••µcÇŽ’Ù÷ïß×h46669­­­…>”è `(¸TBÚ¾}{VV–¯¯oddä¦M›ÆŒ“ïbÙÙÙüñÇËVÒ§OŸm4##Caff–³ÑÜÜ\‘œœ,õ. Œ#8¢~ùå—¦M›úøøL˜0!""¢^½zy{úô©··÷ËV¢)àxVVVBˆÇçlLOOBXZZJ½K(ã¸T¸uëVHHÈÀ…ýû÷722ÒÞ¹¹¹æå º]##£\W¥“’’„Õ«W—z¯Jú. Î8¢0´1QmmmÝÜܾùæ#£Üÿ+R´—ª6lxêÔ©œ'OžT(5’z¯PÆQ`&00°qãÆ 6Ô¶ 0`üøñþùg·nÝr-\´—ª…cÆŒ™üðüƒ ¨È+8,_¾ÜÎÎnÚ´i½{÷¶¶¶Îµ@¹rå*UªT£FæÍ›øá‡毿þÚ½{÷²eË~ÿý÷E‹9;;KÝ €²I^§è¿þúë}ûö=:ojÌK¡P´nÝzáÂ…GŽiÒ¤ÉîÝ»¥î@™%¯3ŽÁÁÁJ¥²_´²²š7ožJ¥’ºe–¼‚ãkS£F£9zôh|||Ó¦M]]] úu9sqq‘º€W‘WpÌëèÑ£+W®ìÚµëĉ…sçÎ ÒÎ4hЗ_~©P(¤®±„‡‡K]ÀkÈëÇ\.^¼8~üø›7oªÕj!Ä7‚‚‚ÌÍÍ?üðÃ5jlÛ¶íèÑ£R×@) Pˆb~#, ‚¬Ï8®[·N£ÑÌ™3gРABí=‹/öððˆŽŽîÑ£ÇÖ­[=<<¤.À È:8FDDØÚÚ:TûñüùóåË—ïÔ©“ÂÁÁ¡N:‘‘‘R×@þŠî^*G©»R •‰;ÙdHÖ—ªSSS­¬¬´ÓÙÙÙ7nÜhܸ±î%1¦¦¦IIIR×@>´—†‹ä_ddT‘¬Ç€hï£ díííãã㵃ì\ºtéÙ³go¿ý¶v–Z­Ž¯V­šÔ5 YÇÖ­[§¦¦úûû'$$øûû !ÜÜÜ´³6lØðèÑ£ºuëJ]#€¡õ=ŽcÇŽÝ»wïªU«V­Z%„hÒ¤‰vìÆ\¹rE1räH©k0²>ãX½zõ_ýÕÝÝÝÖÖ¶cÇŽ+V¬ÐŽÚ˜””dff¶dÉ’¶mÛJ]#€¡õG!„³³óš5kr5ÚÙÙÉ:õ”1rŽZ©©©×®]KLL´··ïСC… H%LîÁ199yÕªUAAA™™™BˆaÆuèСoß¾5Z¼x±………Ô YŸ·{ñâÅøñãÍÌÌúöí«k·¶¶>vìØ| M“(²ŽkÖ¬¹|ùò;ï¼¼dÉ]ûŽ;úôé u†BÖÁñÂ… J¥rÑ¢E¦¦¦9Û•Jå¼yóLMM<(u†BÖÁ1,,ÌÑÑQ÷ÖÁœ*W®ìää#u†BÖÁÑÜÜüéÓ§/››’’R¥J©k0²Ž 6LLL¼zõjÞYaaa 4ºFC!ëà8pà@…B1mÚ´ëׯçl¿~ýº¯¯¯ÂÛÛ[ê …¬ÇqìСÃèÑ£×­[ׯ_?'''!Ä‘#GΞ={çεZÝ·oßîÝ»K]#€¡upBLŸ>½eË–K—.ŒŒB$$$!ªU«6uêÔœ#; ¸É=8 !:wîܹsç”””ÈÈÈçÏŸ;99ÙØØH]€Á)ÁQË¢eË–RW`¸dýpŒÖñãÇ¿úê«h?9rdòäÉû÷ï—º.Ã"ë3ŽjµzæÌ™{öìBŒ1BÛøøñãàààààà£Gúùù)ŠB¯?22²gÏž;vìhÖ¬Y®Yï¿ÿþ?ÿü“«ÑÊÊêÌ™3RïiÈ:8þþûï{öì±±±ñõõµµµÕ6zzzVªTiÉ’%{÷îíÔ©SŸ>} ½þÀÀÀ—ÍŠ511qppÈÙXµjU©w €ddýõW##£ŸþÙÙÙY×X¡B…wß}×ÅÅÅÓÓó×_-DpLOOˆˆØ»wïöíÛ_¶@ZZZÏž=W¬X!õ> YÇÈÈHGGÇœ©Q§víÚuêÔÑŽÑSP^^^÷îÝ{ű±±Bˆ\§ œ¬ƒcÅŠŸ={ö²¹Ïž=S*•…XíÂ… ³²²„›7o>{ölÞbbb„µk×–zȈ¬ƒc“&MŽ9–÷Ô·nÝŠíÔ©S!VÛ±cGíıcÇò]@‡fjjÚ°aÃqãÆå}†ÀpÈ:8öë×ïÈ‘#ãÇ_¸paûöíuíÿý÷矮Ñhz÷î]Û‹‹B¬\¹ÒÑѱ]»v ÇŽ;qâÄüùó  Ï\\\rµK¶!D||¼Ô% 7Š<Éö¸899J]BEEEÉzd{PŠƒ£“S‘¬§¨v¾V=¤Ùò#ëàèáá1tèЀ€€#FØÛÛ׬Y³\¹r±±±Ú{½¼¼¼¼¼Šc»‰‰‰&&&S§N:t¨¶åìÙ³ãÆ[´hQÇŽííí_»†ððp©wrst,}ÿÕ)ó8(ò$Ûã¢ÑH]AÙž”íA)Eq¤‹våýÏzÞ3DBÖÁQ1gΜ6mÚ,[¶,::úîÝ»ÚF+++__ßþýûÓF7mÚ”«¥}ûö}ôÑúõë9¢K“EîÁQÑ­[·nݺ=zô(***++ËÑÑÑÖÖöMÆý.œ6mÚ¬_¿>""Bêý Rµ,-----K`CF­V+ #£ÿy£ö î*UªH½'¤!÷àxàÀ€€€èèhÍKîx )Ú-ÆÄÄtïÞ½M›6¹Þ+* øžYÇ#GŽøúúj§ 7dc!888´lÙòÂ… ;wîôññÑ6†††nذÁÞÞ¾{÷îRïiÈ:8®_¿^1|øðñãÇ›››—ØvçÍ›7jÔ¨¹sçnÛ¶ÍÉÉ)!!áòå˦¦¦‹/611‘z¯HÃèÍWQ|nß¾]£F™3g–djBÔ¯_ÿ·ß~óööNJJ:xð`ZZš··÷¾}ûÚ¶m+õ.Œ|Ï8¾xñâñãÇ7ÎõJZ°`Á‚ òemm½téR©÷€ŒÈ÷Œ£‘‘‘¹¹ù­[·ÔjµÔµ@ÆÁQ©TŽ=:))iùòåR×_ªBxzzÆÅÅ­]»6$$¤gÏž5jÔ(_¾|®eÜÝÝ¥.À È:8zxxh'®^½zõêÕ|—á­Ð%CÖÁ±wïÞR—€É:8úùùI]() …xɋ⠲Ž:©©©×®]KLL´··ïСCRR’•••ÔE¹ÇäääU«Veff !† Ö¡C‡¾}û6jÔhñâÅR(vœ‡dB¾Ãñ!^¼x1~üøÀÀ@33³¾}ûêÚ­­­;öÁhÓ$J€¬ƒãš5k._¾üÎ;ï/Y²D×¾cÇŽ>}úDGGH]#€¡up¼pá‚R©\´h‘©©iÎv¥R9oÞþøã­[·>{öLÛøøñãààà)S¦LŸ>ׯ”YÇßÿ}Ïž=666‹/¶µµÕ6zzzúûûW¯^}ïÞ½{ö쑺FC!ëàøë¯¿ýüóÏýúõ+_¾¼¶±B… ï¾ûîÆýõW©k0²~ª:22ÒÑÑÑÙÙ9ï¬ÚµkשS'22Rê”b …ÔùúßMG©Ëtd+V¬¨»µ1¯gÏž)•J©kPºq§4d'Ï œQQQŽŽ¤GÈ‚¬/U7iÒ$!!!,,,ï¬[·nÅÆÆ6lØPê …¬ƒc¿~ý„ãÇ?{ölÎö¿ÿþûÓO?Õh4¯xµ Š–¬/U{xx :4 `Ĉööö5kÖ,W®\lllll¬ÂËËËËËKê …¬ƒ£bΜ9mÚ´Y¶lYttôÝ»wµVVV¾¾¾ýû÷—º:¥os€‚’{pBtëÖ­[·n=ŠŠŠÊÊÊrtt´µµUð0$@É*ÁQËÒÒÒÒÒRê* —¬ŽÑâ]Õr ëàÈ»ªäCÖÁ‘wUȇ¬ƒ#ïªYGÞU ²޼«@>dyW5€|È:8ò®jùõ༫@>dïª ¹GÁ»ªä¡G!Ľ{÷ÂÂÂbbb^¼x‘™™©Ñhìíí¥. À°È=8¦¤¤øûûoß¾]¥Ré•JåÀ}}}ÍÍÍ¥.ÀPÈ:8ªTªO>ù$44´B… ]»v­]»¶R©ŒŽŽ>vìØÖ­[ölÙÂPŽ%CÖÁqÓ¦M¡¡¡Í›7÷÷÷·¶¶Öµ?|øpâĉ¡¡¡›6m5j”ÔeYãxêÔ)…B±bÅŠœ©QQ­Zµ•+WûL;qïÞ½°°°˜˜˜/^8995hÐÀÞÞ^êê ‹¬ƒ£"%%Åßßûöí*•JרT*èëëknn.u†BÖÁQ¥R}òÉ'¡¡¡*TèÚµkíÚµ•Jettô±cǶnݶeË¥R)u™AÖÁqÓ¦M¡¡¡Í›7÷÷÷·¶¶Öµ?|øpâĉ¡¡¡›6m5j”Ôey žË©S§ ÅŠ+r¦F!DµjÕV®\iddtòäI©k0²Ž7oÞ¬]»¶]ÞY666uêÔ “ºFC!ëàX¡B…ÌÌÌ—ÍÍÌÌ411‘ºFC!ëàØ Aƒû÷ïçûRÁk×®ÅÇÇׯ__ê …¬ƒcïÞ½…“&MÊu/ãéÓ§'L˜ „ðòò’ºFC!맪===Oœ8±{÷î1cÆØÙÙ988!bbbîÞ½+„ðòòzï½÷¤® ' …Ðh¤.(³d…K–,yûí·W¬X‘˜˜˜˜˜¨m¬V­Ú”)Súöí+uuDîÁQ¡Pôëׯ_¿~<ˆŽŽÖh4666R×äO¡º‚"ʼn›2èu?£ŽRÈŸB(ê‰zRW! ¹Gkkë\£9òD؂ܽòg4**ÊÑ‘ô ²~8òAp€^ŽÐ Á@_ ¡Ðý™à½È:8ÆÇÇÇÆÆJ]„ùp<žžžYYYgΜ±²²’ºC'ë3ŽÎÎÎBˆˆˆ© €2×ñx3²Ž_|ñ…‰‰ÉªU«ž={&u-†NÖ—ª­­­¿ûî»yóæõîÝ»wïÞµjÕ233˵Œ»»»ÔeYÇÎ;k'’’’üýýó]&<<\ê2 ‚¬ƒcïÞ½¥.ÿ’upôóó“ºüKÖÁQ'55õÚµk‰‰‰ööö:tHJJb€€&÷à˜œœ¼jÕª   ÌÌL!İaÃ:tèзoßF-^¼ØÂÂBê …¬‡ãyñâÅøñãÍÌÌúöí«k·¶¶>vìØ| M“(²ŽkÖ¬¹|ùò;ï¼¼dÉ]ûŽ;úôé u†BÖÁñÂ… J¥rÑ¢E¦¦¦9Û•Jå¼yóLMM<(u†BÖÁ1,,ÌÑÑ1ßç`*W®ìääó&댌tqq¹råJ¾swîÜéãããêêÚ¡C‡Ù³g§¤¤H½?¤$ëàhnnþôéÓ—ÍMII©R¥Ê›¬?00ðe³–/_>wîÜ;wî´nݺråÊ»ví;v,·TC&ëàØ°aÃÄÄÄ«W¯æ–РAƒB¬6==ý¯¿þúòË/·nÝšïááák×®µ±± ^»víÁƒ‡zõêÕeË–I½K$#ëà8pà@…B1mÚ´ëׯçl¿~ýº¯¯¯ÂÛÛ»«õòòãèããsðàÁÏ?ÿ|åÊ•9Ï;ªTªÙ³g«T*7Yÿ‚ ,Xð²¹^^^^^^Rï¹Wp>^£Éÿ‘Íš5“º@ƒ ëà˜’’2mÚ´3gμbŽ(²Žß}÷Ý™3g”JeãÆ-,,´ïª€$dµ©qóæÍ-Z´ºC'ë‡c?~ܼysR#€È:86lØ0##Cê* „̃ã»ï¾{óæÍW?€’!ë{|ãÆqãÆ :´U«V•*UÊ»L›6m¤.À È:8¦¦¦Þ¾}ûùóçëׯ_¿~}¾Ë0@Éup\±bÅ•+WŒ[´haaa!u9MÖÁñÂ… åË—ÿõ×_6l(u-†N¾ÇdggGEE5kÖŒÔhÈ ñ’—M€’&ß3Žjµº\¹riiiRbÐxYOÙ$ãê(u‹BÈâÏ£œÉ÷Œcùòå½¼¼"""Ž=*u-J{¶Oò(’W&*2’)ró²¿R×%ò=ã(„9rdDDÄ„ ø²áxÜÝÝ¥.À È:8öêÕK;±uëÖ­[·æ» Ãñ” YÇÞ½{K]þ%ëàèçç'u ø—|Ž€¬ÈúŒcÛ¶m_»LHHˆÔeYÇôôô\-F­Vk§mmm­¬¬¤®ÀPÈ:8Þ¸q#W‹J¥º{÷îáÇW­Z•••5þ|©k0¥ìG¥RY³fÍ‘#Gúûû§¥¥M™2EÃp¾%¢”G¶mÛÖ­[7.....NêZ@©§ ÞóZ¥58 !¬­­…o½õ–Ô…„Ò322nܸaee•ï{Pädýp̹sçòmOII |ôèQ×®]¥®ÀPÈ:8>üs«T©2yòd©k0²ޝxWu­Zµ¼½½kÖ¬)u†BÖÁ‘wUÈGi}8%LÖg…ˆŽŽ~Ù@ß¼« dÈ:89rÄ××W;­T*¥.À É:8®_¿^1|øðñãÇ›››K]P&(‚u EÖÁñöíÛ5jÔ˜9s¦‘÷bHL¾ìÅ‹?®Y³&©@ä›ÉŒŒŒÌÍÍoݺ¥V«¥®2ŽJ¥rôèÑIIIË—/—ºÈûGOOϸ¸¸µk׆„„ôìÙ³Få˗ϵŒ»»»ÔeYGíÄÕ«W¯^½šï2áááR—)1…¢¸Öl Þß3…àoxñ’up|Å»ª‘“&¼âÀRK#ø^ŒdyW5€|È÷áÈŠ¼‚cPPJ¥*ÜwïÞ½{òäI©{PfÉ+8þøãžžž{÷î}þü¹þߊ_¸pa÷îÝ###¥î@™%¯{÷ïß¿bÅŠ™3g~ýõמžžÝºukÖ¬Y•*Uò]8&&æÜ¹s{÷îýûï¿íííüñG777©{PfÉ+8š˜˜|þùçï¿ÿþ/¿ü²{÷îíÛ·+ŠºuëÖ®]ÛÂÂÂÜÜüùóç)))ÉÉÉׯ_OKKB888Ì;·ÿþ&&&R—P–É+8j9;;/X°`úôé8{ölHHÈ­[·ò.ãíííîîÞ®];ï?9G­ªU«4hРAjµúÞ½{ÉÉÉIII&&&o½õ–™™™ÔùG###{{{{{{© 0hòzª²Ep€^ŽÐ Áz!8@/GèEÖÁñêÕ«¯^ 88Xê …¬ƒã|ðÃ?¨Tª¼³RRR|}}'Ož,u†BÖÁÑÚÚÚßßàÀÑÑÑ9Û<Ø«W¯Ô®][ê …¬ƒã¾}ûøÏ?ÿx{{oÛ¶M‘šš:uêÔI“&¥¦¦Ž5jÏž=R×`(dýÊÁÊ•+ýõ×={öœ3gÎüùó÷ïß™””äìì¼xñâ&MšH] €‘õG­víÚmß¾ÝÒÒòÂ… III-Z´øí·ßH%¬ÇS§Nùøø|üøñæææR—`Ðdoß¾]£F™3gq/&€ÄäÈ^¼xñøñãš5k’ä@¾™ÌÈÈÈÜÜüÖ­[jµZêZ ãà¨T*G””´|ùr©k€¼ïqôôôŒ‹‹[»vmHHHÏž=kÔ¨Q¾|ù\˸»»K]&€AupôððÐN\½zõêÕ«ù..u™AÖÁ±wïÞR—€É:8úùùI]þ%߇c +ò:ã¸eË!D›6mœu_mðàÁRW `ä¿þúk!ÄW_}¥ ŽÚ¯Fp(ò Ž'NB4iÒDûqúôéRW€É+8N˜0!çÇ1cÆH]þÅÃ1Ð Áz‘×¥ê2L¡0œ­ F!^ùçÚQêú€ÿCp,9álP0ñÒ?×QQQŽŽ„GÈ—ª ‚#ôRÊ.Uk4š£GÆÇÇ7mÚÔÕÕUêr ˆÜƒãÑ£GW®\ÙµkWíØàsçÎ ÒÎ4hЗ_~©àù€!ëKÕ/^?~üÍ›7ÕjµâÆAAAæææ~øa5¶mÛvôèQ©k0²>ã¸nÝ:F3gΜAƒ !:$„X¼x±‡‡Gttt=¶nÝêáá!u™AÖÁ1""ÂÖÖvèСÚçÏŸ/_¾|§N„uêÔ‰ŒŒ”ºFC!ëKÕ©©©VVVÚéììì7n4nܸ|ùòÚSSÓ¤¤$©k0²Žöööñññ*•JqéÒ¥gÏž½ýöÛÚYjµ:>>¾ZµjR×`(d[·nššêïïŸàïï/„pssÓÎÚ°aãGêÖ­+u†BÖ÷8Ž;vïÞ½«V­Zµj•¢I“&Ú± påÊ!ÄÈ‘#¥®ÀPÈúŒcõêÕýõWwww[[ÛŽ;®X±B;jcRR’™™Ù’%KÚ¶m+u†BÖg…ÎÎÎkÖ¬ÉÕhgggd$ëÔ PÆÈ=8j¥¦¦^»v-11ÑÞÞ¾C‡*T 5¾žB!4©‹e‡ÜƒcrròªU«‚‚‚233…Æ ëСCß¾}5j´xñb © 0²>o÷âÅ‹ñãÇš™™õíÛW×nmm}ìØ±>ø@›&Pd׬YsùòåwÞy'88xÉ’%ºö;vôéÓ'::: @ê …¬ƒã… ”Jå¢E‹LMMs¶+•Êyóæ™ššÿüóœ#ò ÄÈ:86iÒäóÏ??~üx``àÀË—/ÿßÿþwðàÁï¾ûîÚµküî»ïÜÝÝs>7€bU ‚£Ž±±qçΗ-[àââ¢R©Ž?.uQ†BÖÃñä)þïL¤ÔEŠRoܸqðàÁÄÄÄh[7nìåååééimm-uu†BÖÁÑÏÏïàÁƒqqqÚ^^^^^^µk×–º4ƒ#ëà¸~ýz!„µµu¯^½¼¼¼5j$uE†KÖÁÑÇÇÇËË«uëÖFF¥é!€2IÖÁqÁ‚R—€q&z!8@/Gè…འ‚#ôBp€^ŽÐ Áz!8@/Gè…à½K]@٤ѡPäiB¡Š7_ „c¬C#øÍ€’Cp,N„Ų‹¼ò梢¢‹"<J —ª ‚#ôBp€^ŽÐ Áz!8@/Gè…འ‚#ôBp€^ŽÐ Áz!8@/Gè…àX< ¡ÑH]@Q"8@/Gè…འ‚#ôBp€^ŽÐ Áz1–ºÈ‹B(¤.¡x8J]¥Á±x”Îׯ(„B#Jeå¯åèHxàp©z!8@/Gè…འ‚#ôBp€^ŽÐ Áz!8@/Gè…འ‚#ôBp€^ŽÐ Áz!8@/Gè…འ‚#ôBp€^Žø—B(4B#u@¾ŽÐ‹±Ô.…PH]@¥Ä¥aPŠp©z!8@/Gè…འ‚#ôBp€^ŽÐ ÁQ¼”:Gè…འ‚#ôBp€^ŽÐ Áz!8@/Gè…à½_jçÎ>>>®®®:t˜={vJJŠÔ¡ðzôè!u ȃ"Oâ @>Žù[¾|ùܹsïܹӺuëÊ•+ïÚµkìØ±™™™R× ‚c>ÂÃÃ×®]kcc¼víÚƒ:ôêÕ«Ë–-“º4Éó±cǵZíëëkmm­m™5k–¹¹ùÔjµÔÕHƒà˜‹/¹»»ëZ”J¥››[rrò¥K—¤®@ÇÜ4ÍíÛ·------s¶×«WO'uÒ0–ºÙÉÈÈP©TU«VÍÕnnn.„xôè‘>+QÅk—qqq‘º¯†….Cyâ¸È2ApÌMûèt¥J•rµW®\Y‘––öÚ5„‡‡ëµ%ý– .UçVµjU…B‘‘‘‘«ýÉ“'âÿÎ; ‚cnÆÆÆæææyÏ,¦§§ !tÏY‚c>lll’““µIQ'**J;Kêê¤Aṗ‡‡‡J¥:uê”®E£Ñœ8qÂÂÂÂÕÕUêê¤Aṗ‘‘Ñ?ü ½¯Q±víÚ¤¤¤þýû—+WNêꤡÐh4R× G6lXºtiõêÕ;uêÒ°aà 6ä¦À@_jïÞ½»wï¾zõª]›6m|}}µ#ò&‚#ôÂ=ŽÐ Áz!8@/Gè…འ‚#ôBp,2;wîôññquuíСÃìÙ³SRR¤®È€tçgffnÚ´é½÷ÞkÞ¼y§NFuæÌ©;QÖ¼ÉoÄÝ»w[¶l9cÆ ©;QÖâ üóÏ?&LèܹsëÖ­‡ rþüy©;QÖô <þ|ݺuýúõsuuíÒ¥ËäÉ“oݺ%u' Ndd¤‹‹Ë•+W¤.DÇ¢±|ùò¹sçÞ¹s§uëÖ•+WÞµkר±c333¥®Ë tçggg>|ñâÅ…ØùQQQ•*UjÔ¨QÎFggg!D\\œÔ* ý‘ýÙgŸYXXÌš5KêN”5…8('OžT(ÞÞÞ9¿ýöÛðððfÍšIÝ¡² ÅÎÎN‘3#j4šÔÔT###]”DñY¸páO?ýôÓO?µoß^êZ$ÃÏÙ›Òh4·oß¶´´´´´ÌÙ^¯^=!D\\\«V­¤®±Ì*ÜÎ_³fMÞ¿°×¯_BÔ¬YSê>•zoòáïï¶aÃ333©ûQ¦î \»vÍÂÂÂÖÖö¯¿þ MMM­_¿~×®]u§êñ& wPÞ{ï½€€€… ššš6oÞ<%%å§Ÿ~Š8p ¿5% cÇŽÚ‰cÇŽI]‹dŽo*##C¥RU­Z5W»¹¹¹øßÿ/D‘+ÜÎoذa®–µk×V¨P!×ÉB¡#._¾¼nݺ!C†´oß^›ãQT qPž?þøñãºuëΟ?Û¶mºöš5k®X±¢qãÆR÷©Ô+ÜoŠ‹‹K``àðáÇ®k2dÈìÙ³¥î —ªß”öñ·J•*åj¯\¹²"--Mê˲7ßù*•* `ôèÑK–,±²²’ºO¥^áJffægŸ}V³fÍiÓ¦I݃2¨åñãÇBˆÛ·oïß¿éÒ¥çÏŸ?qâÄĉ&OžÌo®p¿)éééK–,yúôi£F>øàƒnݺ™˜˜ìÞ½›GÝQb8ãø¦ªV­ªP(222rµkÑþ¿#ŠÉîüóçÏõÕWwîܱ³³[´h‘!ß³R„ wP–.]¿mÛ6.ƒ‡B”Š+j'–,YÒ¥Kíô„ îÞ½»k×®?þøãý÷ß—º[¥[á~S>û쳿ÿþ{Ö¬Y#FŒÐ¶Ü½{÷ƒ>˜2eÊž={œœœ¤îÊ>Î8¾)cccssó¼ÿw˜žž.„Ð=+‡âPèÿüùó… 6ìîÝ»'N|øPêÁ ‹€‡‡‡J¥:uê”®E£Ñœ8qÂÂÂÂÕÕUêêʸBìüÀÀÀC‡}øá‡?þø#§„‹CAJíÚµ{ý/í£‹ööö½zõrss“ºCeA!~S:wž‘³Q;L m‰‚¥RyëÖ-F“³=<<\Q·n]©;à õäeABBBýúõ{ôèñøñcmËêÕ«ëÕ«÷í·ßJ]ZÙ§ÏÎòäIddd\\œF£Q«Õ]»vmÙ²eff¦Ôµ—Y=(y]»v7Ç­B”7nÔ«WÏÇÇ'99YÛrõêUWW×Ö­['%%IÝ¡² åã?®W¯ÞŠ+t/ˆhÛ¶mãÆoß¾-u‡ Èœ9s öÍ1<Sìííg̘±téÒÞ½{wêÔ)&&&$$¤Q£FcÆŒ‘º´²OŸâĉ)S¦8;;ïÛ·ïáDZ±±&&&ƒλ¶¾}û2Dê>•z=(R×k qP4h0uêÔï¿ÿ¾G­ZµÊÈȸxñ¢B¡X¸pá[o½%u‡Ê‚B” ¼ÿþû?ýôÓþýû6l˜œœü÷ß«Õê¹sçÖ©SGêÁ ‹ÆÈ‘#«U«¶{÷îýû÷ÛÙÙ 2Ä××W;ªŠ[v~||¼"33óÚµkyçòˆLQá7B† qP>þøc++«€€€³gÏZXXxxxLœ8Qûš%‰‚++«ýû÷¯^½úôéÓÇ·°°xçw>ùä“&MšHÝ …æo•òÅÃ1Ð Áz!8@/Gè…འ‚#ôBp€^ŽÐ Áz!8@/Gøÿf̘áâârîܹ[Õ?üàââ²eË–œß:~üx¾s@ZG(MNŸ>}âÄ ©«` Œ¥. Zçέ¬¬Z¶l©çÜéÓ§§§§ß¸qCêÂ"‚#H©Q£F5*Ü\(a\ªP*©Tªììl©«ÃBpPjh¹sçÎ7ß|ÓªU«F¹»»Oœ81×(ÚÅîÞ½{ùòåþýû7mÚ4>>^7wÿþýãÆ{çwÚ¶m;|øðŸþY¥RåÝÖéÓ§'OžìæææææöÉ'ŸœüÚµkYYYjµZ¡ÑhfΜ9eÊ”cÇŽi4ssóo¿ývðàÁ)))9¿»wïÞÑ£G:t¨bÅŠ©©©G;vìÊ•+u $%% üðCOOO!ÄÁƒs.¦ÑhöíÛ'„èÓ§ÔÇ @YCpPÊ„††º»»Ÿ;wîСC—.]š5k–B¡øî»ïnݺ•s±yóæ5iÒdãÆgΜ©U«–â·ß~Û½{·µµõöíÛOžûì3##£Ÿ~úéêÕ«º¢££»téræÌ™Ý»wïÙ³çôéÓ­[·NHHøóÏ? ´*ýuéÒeöìÙ¦¦¦FFF³gÏž1cF»víªV­ú×_%%%é»téRBBBãÆëÖ­+õ±PÖ”2ÖÖÖÿùϪV­*„P*•#FŒpà€±±q¯^½Šñ0T Ç ”qttÌÕR£F *Ü»wïùóçåË—×6j/OëDGG !ò®°víÚâÏ:99廉‡>}úT{–1!!áäÉ“ýõW\\\lll®[ ´ª7ñöÛo[ZZ^¸p!%%ÅÂÂâäÉ“©©©]ºt±´´,ö#ÀðpÆ@)£P(ò¶(•JµZs€íÕaFó²*•J!Ä‹/^» ##£råÊ !¶mÛöî»ïΟ?ÿêÕ«uêÔ9räÆçÍ›§µºU½!¥RÙ½{w•J¥½·’ëÔŠg”2QQQ¹ZîÝ»—‘‘akkkjjú²oiÏ5æºQK{22ç©Á¼›HLLÌÈȨY³fùòåŸÕæ\U‘ìž={nÛ¶-88ØÓÓóèÑ£fff;w.ê½BpÆ@©óßÿþ÷ùóç9[…7~Å·lllªU«v÷îÝÓ§Oçløðá±cÇ”Jeƒ tAAA¹wÔn¢E‹BˆþùG¥RµhÑ"gjBܼy3ïv_½ª"ѪU+++«sçÎ={ö¬W¯^EI ‚#€RæÞ½{¾¾¾éééBµZ½eË–M›6Mœ8ñÕ_œ2eŠbîܹ׮]Ó¶Ü¿âĉϞ=8p ½½½nɸ¸¸©S§>}úT»‰€€€_~ùÅØØøÓO?BØØØ!nÞ¼©G¥Rmß¾];wfffξzU…£V«322tµÏVgggÿý÷‚ëÔŠ—ª”2žžž‡jÛ¶­ƒƒƒö²¯‘‘ÑÔ©Sëׯÿê/öíÛ÷ܹs{÷îíß¿5LLLîܹ£V«]]]}}}s.éââ|øðaGGÇ„„„ÌÌLccã¹sçj£qrròððøóÏ?»uëÖ²eKFž’’2xðà€€€ÿþ÷¿?^ºt©>«*„ªU«¦¤¤ 4¨V­Zºá'===·nÝš™™Y»víæÍ›K}ˆ”YG¥LŸ>}üóÏ?ÿóÏ?•+Wn×®ÝG}Ô®]»×~ÑÈÈhÙ²eîîî{÷î½yóæƒÚ´iãææ6|øpíó1:7n þóÏ?¯_¿naañÎ;ïŒ1"g ûî»ï6lذÿþ¿þú«Fnnn#FŒpvvV©T{÷î½xñ¢þ«*¨Y³f-\¸ðÎ;Ïž=Ó5¶lÙ²Zµj>ät#€b¥xÅ“† +3fÌØ³gÏš5kÜÝÝ¥®E^Ôjµ‡‡GbbâŸþY½zu©ËPfq#”zgÏž½{÷nëÖ­IŠÁJ·ÌÌÌåË— !ú÷ï/u-Ê8îq€R¬uëÖÏž={þüyݺuµ/Ë€âCpPjxzzÖ«W/ïKü ™]ll¬››Û×_ë(r<½p#ôBp€^ŽÐ Áz!8@/ÿ}k¤l¸IEND®B`‚statistics-release-1.6.3/docs/assets/poisspdf_101.png000066400000000000000000000534511456127120000225070ustar00rootroot00000000000000‰PNG  IHDRhŽ\­AVðIDATxÚíÝ{| ÷âÿñÏæ¢âÉ ¹¸;Ín%ªThë©P­–ÒUª=”£ZUå íѺÔí¨Ò‹èé©„S'øÖ¯ŠP¥)­ Ç¥'JˆÄ ©$E’ùý1µ]{‰!³;»;¯çãÝ|vv>Ÿ™Éξó™Ï|Ö I’nÅGëÀ3 ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ¸Ô öÔ®]»mÛ¶#FŒ8uêÔ­yñâÅòªÚµk§õVºnÿØ]ÞÏÏ/$$äxóÍ7/\¸ ° KãÇ×zOpGGnáÊ•+{öìY²dÉ=÷ÜóÍ7ßhÝ·s[û§¼¼¼  `×®]Ó¦M3™LZ7€—ðÓºô+444 @qýúõ³gÏVTT!Š‹‹GŒ‘™™Y³fÍÛZ[íÚµ›6m*„×zË´Ù?æå‹‹‹Í—.]êׯ_vvö]wÝUIV‚‚‚´ÞznIÊÌÌ4Ÿ6oÞl.ÿõ×_‡j~ꫯ¾Òº¥ž±-âĉ¿üå/æ§æÏŸË*à–¸T À-ÔªUkÑ¢Eþþþò‡²|¶¸¸øí·ßîÞ½{hhhhhh·nÝ&MšTTTd¹ŒÝ1Ž×¯_ÿä“O:uêQ«V­{ï½÷¹çžÛ¿¿Uí SØ’7ß|SnIß¾}/]º4nܸvíÚÕ®]»uëÖ3f̸~ýºêûÇV£F>ûì³¾}ûÊ?Θ1£¸¸ØEÇ€Ó:¹Зʻ»"""ä§&Nœh.ܵkןÿügÛÓW£FÒÓÓÍ‹}òÉ'ryLLŒ\òÛo¿µoßÞö…ƒáÃ?4¿PábÊ[2eʹ<..®E‹V ÷ë×OÅýSùòß}÷ùÙ´´4%/€JÐãÀ]\¾|9//O~)?(--íß¿ÿÑ£G…Õ«WïÑ£GÏž=kÔ¨!„8yòä€~ýõWG+œ6mÚ®]»„O>ùäèÑ£xà!„$I¯¾úª¹ÓNábwÐ’ï¾ûîàÁƒMš4yàªW¯.®\¹r÷îÝjíŸÊÅÆÆV«VM~,o#TÁ€öÊÊÊ:4xðàòòr¹¤uëÖòƒ9sæ;vLQ§Nï¿ÿ>--mݺu!!!BˆsçÎ͘1ÃÑj·nÝ*?˜øàƒŒŒŒîÝ»Ë5nÞ¼ù¶»³–,\¸ðرc{÷î5gÇÛ Ž•ìŸÊ †°°0ùñ¹sçlèÖ­›í\ÚÔ†¹`…yhÆrA??¿¨¨¨:¼úê«æKºEEE………òc«Ù4h ?øí·ßòòòìÎÝ8uêÔ¢¢¢O?ýôêÕ«BI’öìÙ³gÏžéÓ§wîÜyõêÕõêÕS¸ØµÄ`0X.iõcÕ÷æ+Ô¡¡¡¶Ï._¾<>>^¥ã ÀûÑã@3Ë—/ϽáÈ‘#ÿïÿý¿ &X¦¢:uêÊÏž=kùZóÕªU“óŸ-ÿE‹]¸pá?ÿùÏ Aƒ,'µÞ¶m›ù[õ”,VÅ–8iÿÜÒöíÛ¯]»&?¶{ç8Ü‚#·f2™ä›6m²,7ÿéçgçâÉÕ«Wóòòòòò®^½Ú¿ÿeË–?þ›o¾1ç§ï¿ÿ^ùbUi‰†ÌµkÖ¬Ù±cG­›À㸵ž={Ê>øàƒ={öÈ333çÌ™#?~ì±Çì¾ðàÁƒaaaaaaáááò:~~~ݺu6l˜¼@ݺu•/V•–hâܹs#FŒXµj•üãsÏ=W»vm­Àã¹×Ç`å7Þø×¿þuüøñÂÂÂN:ÅÇÇûúúnÞ¼Yþ”ððð7ß|Óî [µjš——WVVÖ©S§'žx"88øØ±c_}õ•¼€ü­* «JK\fÈ!ò¼’ÅÅÅ–×ÓëÕ«÷î»ïjÛ6ÞàÀ­¤¦¦80''§´´ô믿6?Õ¤I“eË–Ù½YXáãã³fÍš®]»–––ž;wîÓO?µ|6..î7ÞP¾XUZâ2gΜ±- þꫯäÉ& ŠŽÜ]ûöíþùçY³fýøã™™™ååå­Zµz衇&L˜Pùå×|0;;û“O>IKK;}úô… jÕªý / :Ô|³ÂŪÒóõõ ¼ûî»{ôè1fÌR#µ$IÒº ðÜEŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEôW®\Ù¯_¿6mÚtìØqÒ¤I—.]RþÚ3gδmÛvüøñZo€–tçÏŸ?eÊ”£G¶k×®V­Z«W¯1bDii©’×J’4a„+W®h½óþà˜•••””š–––””´qãÆ!C†üüóÏsçÎUòòÏ?ÿ|×®]Zo€ö¼?8¦¦¦VTT$&&Ö¯__.™8qb``à† ****í‘#GæÏŸÏ=÷h½Úóþà¸{÷nŸ¸¸8s‰¯¯olllAAÁž={*yaYYÙo¼4qâD­7@{^%IÊÎζ,7Bˆ“'OVòÚ… ­›àF¼<8 !BCC ä¤h–››+?e»ü‘#G„}ô‘醧žzJñÕW_™L¦'žxBë І—_ªBÄÇÇgeemÛ¶íñÇ—K$IJOO jÓ¦íòMš41/)+,,ܾ}{DDD›6mÂÂÂ´Þ mxpìׯß'Ÿ|²hÑ¢.]ºÈ÷Ä$%%åçç¿øâ‹þþþò2ÅÅÅçÏŸ÷÷÷oذa§N:uêd¹†lß¾=&&fΜ9Zo €f¼?8FDDŒ?~Ö¬Y½{÷îܹóñãÇ322¢££‡n^&==}ìØ±‘‘‘_ýµÖí…KKKÓº Ї^·8ôÐïŽBˆ¡C‡Ö«WoÍš5ëׯçÖ¹G<áÆIåÊq©Š ÁŠ ÁŠ ÁŠ ÁŠÐ/ƒAëÀ£€Ê***"##7nÿüóáÇÛ]¬¬¬lݺuŽVòä“Oj½«ð‚£úÎrA-N’ðn–"–ãÕµtéR“ÉÔªU«~ýú½òÊ+‡6¶‹÷éÓÇÑJ$>íÜ —ªÐÛ˜èhŽžª8räHFFÆ€„ >>>òxG[’cZï-Ü„Gu¸ ÿ.F€*ì~š¨þ#ÇD98†……ÅÆÆ&''¿ûî»>>ÖV\ªö GuØíçW7ê9º”@ ¸I’RRRZ¶l%—ôïßÔ¨Qß~ûm÷îÝ­æRµáRµj¬úù‘ç\6e+@'œô!²uëÖ'Nôïßß\òÔSOùûû9òÍ7ß´Z˜KÕ„à¨&s°s^ž³ÌޤF€{JNNBXÇÐÐЙ3g^¹reÿþýÄAÏeààU‘ÂÑÄUÜÍJjáHj.77·Y³fZ·àÐë–+½ÉdÊÊrŬ:tûV·‡ƒ1ŽUe;®Ñn¹3j!)WâRµšÌ׎1¯m-ΫÀÁQ5V#”m§lp ‚£:ìÞ§¢z°sÍ”­vÕáh¸¡ŠÃÝCÍHGàGA@Ú"8ªÏh4¹ r$p1‚#!8@‚#!8 _Á¤n¸ G ²ŠŠŠÈÈÈÆÏœ9Së¶@MGôŽŒ—/_nݺuXXؤI“–/_îÔº®_¿þàƒ>ôÐCÎÞ(‚#z# É6;ª›&ƒƒƒW®\¹sçÎ=zÌ™3Ç©›3eÊ”;w:µ ˜Ð«ìhI¨??°Á`;vìþýû¿ûî;'mÈ7ß|3gÎ???'­VŽè‘9;:)5ÊÊÊÊ„K–,qÆÊóòòž{î¹_|±aÆNÛO¸ Á½0ƒå?»åêÖ¸téR!Ä—_~YXX¨îš%I2dHPPÐûï¿ïô‡Žè…$$ËvËU¬îòåË_}õÕ_þò—«W¯¦¦¦ª»-sæÌIOOÿâ‹/jԨᚽ!cÐ#ù µåU¯bÅŠW¯^MLLÌÉÉùüóχnw±²²²uëÖ9ZÉ“O>i[¸k×®)S¦Ì™3§uëÖšíA]"8 ;VIÑIÙqéÒ¥&“©U«Výúõ{å•W>l4m+..îÓ§£•H’u«ŠŠŠؽ{÷1cÆh¸õ‰KÕè‹ÝŒhwŽžª8räHFFÆ€„ >>>òxG[’c¶Ë/^¼8''çž{î™={ö¬Y³fÍšUXXxúôéY³f}ñÅZï]/G#úâ¨gQÝG9&ÊÁ1,,,66699ùÝwßõñ±î´ºÝKÕ×®]Büãÿ°,¼téÒĉãââè²=©CG 2I’RRRZ¶l%—ôïßÔ¨Qß~ûm÷îÝ­¾ÝKÕ“'Ož^¾|¹uëÖaaa“&MZ¾|¹S·&66vêÔ©V…………#GŽlܸq­Zµbcc322œÚý 8 3’d'# B’Ôª!88xåÊ•;wîìѣǜ9sœ·){÷îýᇬ ‹ŠŠbbbþõ¯uîÜyذaG}ôÑG÷îÝë¼fèÁý±ÊŽª¦F‹µÆŽ»ÿþï¾ûNÝ5—••mÚ´éïÿ{=***¬žýÇ?þ‘””´|ùò lÛ¶Í`0Œ7Nõ Ô!?­´`ÎŽÎI²²²2!Ä’%KâââT\mAAA==»bÅŠððð!C†È?6oÞüé§Ÿþì³ÏΞ=î¤-Õ zÐ ƒá¦vËUµtéR!Ä—_~YXX¨âjCCC%I’$éСCVO>|øá‡6XlK×®]+**éXuGtC’núg·\=—/_þꫯþò—¿\½z555Õ5›˜——'IRhh¨eaýúõ….\pM¼—ªÐ%ù µåÕ¶bÅŠ«W¯&&&æää|þùçÇ·»XYYÙºuë­äÉ'Ÿ¼­JKJJ„uêÔ±, B8a?ê Áý±JŠÎÉŽK—.5™L­Zµêׯß+¯¼røða£Ñh»XqqqŸ>}­DºÍV…„„!~ýõWË¢¢"!Dpp°ÚûQw¸T €ÎØÍˆvçè©‚#GŽddd 0@‘àãã#w´(9v»õ†††úøøX]•ÎÏÏB4hÐÀ¹;Vèq@g¥1U{å˜(ǰ°°ØØØäääwß}×ÇǺÓJÝKÕ~~~QQQÛ¶m³,üþûï Ctt´Š¨OGtÌ9ñH’”’’Ò²e˨¨(¹¤ÿþ£FúöÛo»wïnµ°º—ª…ÇõÕW¿þúë'žxBqþüùU«VuïÞ½Y³fNÛzÁ¥j ²­[·ž8q¢ÿþæ’§žzÊßßäÈ‘o¾ù¦ÕÂê^ªB¼ð ÷Ýwß Aƒ&Mš4{ö츸¸’’Û¯%Ä 8•%'' !,ƒchhèÌ™3¯\¹²ÿþ;‹ƒÊÕ©S'==}À€«V­š3gÎÝwßžžþàƒj½W¼ÁÙO‡L&SVV–Ö­€rss¹¢OzÝrå¡çÃÅyî`ßêöpÐãEŽP„àEŽP„àEŽP„àEøÊA<ƒÉdÒº Ð;‚#@ŸÓMÃÝp©Š ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠøiÝY¹rejjjvvv5ºté2~üø   J–¿|ùòûï¿ÿÓO?:uª^½z-[¶=ztóæÍµÞÍè¢ÇqþüùS¦L9zôh»víjÕªµzõê#F”––:Z¾¨¨è‰'žøâ‹/„?üðŸþô§õë×÷êÕ+33SëMÐŒ÷Ǭ¬¬¤¤¤ÐÐд´´¤¤¤72ä矞;w®£—,\¸ðÂ… #GŽüúë¯çÏŸ¿bÅŠ™3g–••M›6Më­ÐŒ÷ÇÔÔÔŠŠŠÄÄÄúõëË%'N ܰaCEE…Ý—ìØ±# ॗ^2—<õÔSaaa(//×zƒ´áýÁq÷îÝ>>>qqqæ__ßØØØ‚‚‚={öØ}Iݺu»víZ½zuË»îºëÚµk×®]Ózƒ´áå7ÇH’”lYn4…'OžŒ‰‰±}Õ²eˬJvïÞ}âĉ֭[h½MÚðòàXRRR^^^·n]«òÀÀ@!ÄÅ‹+ùÞ½{W¯^››»wïÞÆÏš5Ka½&“ɪ$--Më§;uê”ÖM€68ôºÅ¡×‰G}Të&¸ /Žò­Ó5kÖ´*¯U«–¢°°°ò—gee­ZµJ’$!DtttµjÕÖ›••¥õ¦CÍš5Óº Ї^·8ôz`û±nÛC¤^>Ʊnݺƒ¡¤¤ÄªüÊ•+âF¿c%žy晃nß¾}„ 7n8p üBòòàèççhÛ³XTT$„0ßg] ƒÁP¯^½¡C‡0àܹs7nÔz›´áåÁQZPP 'E³ÜÜ\ù)Ûå9ò·¿ýmÆ VåÑÑÑBˆ¼¼<­7@ÞãããËËË·mÛf.‘$)===((¨M›6¶ËשSçÿþïÿV¯^mU~âÄ ÁX cÞûõëçãã³hÑ"óðĤ¤¤üüü„„¹¤¸¸877W¾9.44Ôd2mß¾}Ë–-æ•:thùòåµjÕj×®Ö  /¿«Z1~üøY³fõîÝ»sçÎÇÏÈÈˆŽŽ>|¸y™ôôô±cÇFFF~ýõ×BˆiÓ¦=ûì³/½ôR›6m6lxþüùŸ~úI1{öì­7@Þ…C‡­W¯Þš5kÖ¯_>xðàÄÄDyF»Zµjµnݺ dff}ú´nÝZëè—A’$­Û`_YYÙ÷ß¿víÚ-[¶üöÛoBˆ&MšôéÓçÉ'ŸlР֭«ŒÉdÊÊÊÒºÐ@nnn³fÍ´n4À¡×-½néö³Þ½.U[òóóëÚµëüùówìØ1yò䀀€ãÇ/X° >>þ¹çž[³fMyy¹ÖmÐ÷ºTmåÒ¥Kß~ûmZZÚŽ;ÊÊÊ„õêÕó÷÷ßµk×®]»–,Yòé§Ÿ†‡‡kÝL]pÇà˜ŸŸÿÍ7ßlܸq×®]r·bHHÈ#<Ò³g϶mÛ !~üñÇùóçgff¾õÖ[K–,Ѻ½ºà^ÁqÙ²e7nüé§Ÿ***„ÁÁÁ=zôxì±Çbbb|}}Í‹uêÔ©mÛ¶íÛ·ß½{·ÖMÐ ÷ Žï¾û®¢nݺ<òÈc=öÀXæEKÕ«Wç:5€Ë¸WpLHHèÙ³çC=ä(/Z¢»À•Üë®ê 6ìØ±ÃQj=zt=´n#€N¹Wp,))¹~ýº£§Nœ8qúôi­Û SÚ_ªNOO饗Ì?&''/[¶Ìv±ŠŠ I’7n¬u{tJûàèëë[§Nùñ¥K—ªU«V£F »KÖ­[wâĉZ·@§´Ž:uÊÈÈ›L¦gžyfÒ¤IZ7 Ö´Ž–† £u+`‡{Ç7ÞxCë&À>ƒãòåË…íÛ·ŒŒ4ÿX¹AƒiÛf}Ò88¾óÎ;Bˆ©S§ÊÁQþ±rGMhG-„¸÷Þ{å_ýu­wìÓ88¾òÊ+–?>\ÛöÀ÷º9Æ–$I[¶l9uêT«V­Ú´i£usôËí‚ã–-[,XЭ[7ù*ö”)SV­Z%?5pàÀ·ß~Û`0hÝF=r¯ïªÞ½{÷¨Q£:TQQ!„øå—_V­Zøì³Ï6lØð‹/¾Ø²e‹ÖmÐ)÷êq\²d‰$I“'O8p bÓ¦MBˆ™3gÆÇÇ;vìÑGý÷¿ÿ¯u3ôȽ‚ãáÇÆ "ÿ¸sçÎjÕªuîÜYÑ´iÓ?ÿùÏ999Z·@§ÜëRõåË—CBBäÇeee¿üòKË–-«U«&—Ô¨Q#??_ë6è”{õ8FDDœ:uª¼¼Ü××wÏž=¿ýöÛ< ?UQQqêÔ©zõêÝÙšW®\™ššš]£F.]ºŒ?>((¨’åKKKÿóŸÿ¬ZµêÔ©Sµk×6C‡íر£Ö{@3îÕãØ®]»Ë—//\¸ðôéÓ .BÄÆÆÊO}öÙg/^¼ûî»ï`µóçÏŸ2eÊÑ£GÛµkW«V­Õ«W1¢´´ÔÑòeee/¼ðÂÌ™3ÏŸ?ÿÐCÝ}÷Ý;wî:tè‡~¨õÐŒ{õ8Ž1bíÚµüñÇ,„¸÷Þ{å¹û÷ï¿ÿ~!ÄСCowYYYIII¡¡¡«V­ª_¿¾búôéÉÉÉsçÎ}óÍ7í¾$55uß¾}mÛ¶ýç?ÿ „8räÈàÁƒ?üðî]»¶hÑBëý ÷êqlРÁþ󟸸¸°°°N:½ÿþûò¬ùùùuêÔyï½÷|ðÁÛ]gjjjEEEbb¢œ…'N ܰaƒ<é­´´4!ÄäÉ“åÔ(„ˆŒŒ9rdyyù?ü õNІ{õ8 !"##/^lU˜’’îãs'1w÷îÝ>>>qqqæ__ßØØØµk×îÙ³'&&Æö%¹¹¹5kÖŒŽŽ¶j˜âäÉ“Zï!m¸]p´«AƒwöBI’²³³ƒƒƒƒƒƒ-ËF£âäÉ“vƒãâÅ‹ýü¬÷Ì„5ÒzghÃí‚ㆠ’““;&I’Ý222”¯­¤¤¤¼¼¼nݺVåBˆ‹/Ú}UTT”m¥IIIwÝuWŸ>}”Ôk2™¬JäËß°Õ¼Yóœ\§OÏéšZN:åì*àž8ôºÅ¡×‰G}Të&¸ ÷ Ž›7oNLL”ûúúV}…ò­Ó5kÖ´*¯U«–¢°°ð–k(//_¾|ùìÙ³ËËËçÍ›gžf²rYYY.Ýq®Y³fÔOÇ¡×-½Ø~¬Ûöé„{ÇO?ýTñ /Œ5Jºuë †’’«ò+W®ˆýŽ•Ø¹sçÔ©S=>cÆŒ:h½‡¼„A$!U}=wV‹kjÀû¸WpÌÎÎnذᄠîì>;›ççhÛ³XTT$„0ßgmëÚµksæÌIII©^½úèÑ£‡ f¾ÃU' ÉnzS7ÒÙ­…ÔÀs£àxýúõ_ýµeË–j¥FYhhhvvvQQQ:uÌ…¹¹¹òSv_RQQ1nܸM›6uëÖíí·ß®$_âŽÙ¦:gD:«ZHT…ÍãèããxäÈGÓ+Þ™øøøòòòmÛ¶™K$IJOO ’g·•’’²iÓ¦gŸ}öÃ?$5:œêäÇ΋tæZHT‘G__ß_|1??þüù*®¶_¿~>>>‹-’Ç5 !’’’òóóüýýå’âââÜÜ\ùæ8I’–-[V»ví &h½K¼A,ÿ™ ­žrF-•”%ÜèRµ¢gÏž'OžLJJÊÈÈxì±Ç6lX­Z5«e,§òV"""büøñ³fÍêÝ»wçÎ?ž‘‘=|øpó2ééécÇŽŒŒüúë¯/\¸pâĉ€€€AƒÙ®­oß¾ƒÖz?y0»ãí–«X‹9#Òã@U¸WpŒ—üüóÏ?ÿü³Ýeî`¦›¡C‡Ö«WoÍš5ëׯþøãU«VÉßøüóÏwìØ±oß¾ÑÑÑ3gÎ ÒºPÑ OäFÓñ!®_¿>jÔ¨”””:uêôíÛ×\^¿~ý­[·>óÌ3rš„7qMˆ$ªPuî/^¼oß¾.]º¤¥¥½÷Þ{æòÔÔÔ'Ÿ|òرcÉÉÉZ·@§Ü+8îÚµË××wÆŒ5jÔ°,÷õõ}ë­·jÔ¨±qãF­Û Sî<جY3»÷ÁÔªU«yóæÇ׺úbàÛUÀ î‹‹‹={éÒ¥ÚµkkÝF/GRޏWpŒŠŠ:{ö¬ÝïŒ9xðàéÓ§[´h¡u½œ$ÙÏŽJà^ÁqÀ€ƒaܸq°,?pà@bb¢¢OŸ>Z·ÑûÙfGƒAHÜ” €î¹×<Ž;v|ñÅ—,YòÔSO5oÞ\±yóæüñèÑ£}ûöíÑ£‡ÖmÔ9;Êa‘Ôdî…¯¿þzÛ¶mgÍš•““#„8}ú´¢^½z¯½öšåÌŽp6s¿#©ÈÜ.8 !~øá‡~øÒ¥K999×®]kÞ¼yhh¨ÖÒ%£É‘è–;GYPPPÛ¶mµn…¾X†Bù 5ŽÀLãà¸|ùòÛ}É Aƒ´m³XŽk´ïôLãàøÎ;ïÜîKŽÎfÉŽ@håIv,BlÚ´)??_ëfê9˜¹WpÜ»woDDD“&MlŸjÔ¨‘\.‘e´à^Óñ\ºt©¢¢B’$ƒ½‹ŠŠ‚‚‚êÕ«§u3ôȽz[¶lYTTôÝwßÙ>µ}ûöK—.EGGkÝFr¯àسgO!Äo¼±aÃËKÒ›6mzýõ×Í ÀõÜëRuBBÂöíÛׯ_Ÿ˜˜X¯^½æÍ› †œœœóçÏ !zõê• utʽ‚£bÞ¼y:tX°`Á… .\¸ †‡‡=ºoß¾Z·@¿Ü.8úøøôë×ïé§ŸÎËËËÍÍõóókÚ´)7ÄhÎí‚£Ì`0„……………iÝüνnŽ€Û"8@‚#!8@‚#!8@‚#!8@‚#!8@‚#!8@‚#!8@‚#!8ªiÞ¬¹ÖMÀ‰ŽP„àEŽ@•„Aa!žŽàT‰$$«˜hIHZ· õª²ÌޤF€óÓº€§²íh´[NŽx ‚#p‡¬¡œ‰‰/Æ¥j@æ+ÔÜðbG ª,Ç5ÚÞ+€× 8Ub{7 Ùà­Ž@•ØÔÈHG€W"8@‚# šœÜ­›€QÆê3‚#nBRŽqGw(ÁÖl³#ß¿ ÁvYfGR#ñ]ÕøƒmG£m9!Ý"8âV¡P΋$E ãR5ì3_¡æ¶ #8ÂËq|ó2aÍön²#GXqt5#Á7! Gލ 9˜ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ Á€W3\PI³æÍµÞNp‚#!8ð:ŽzÕí}tM-àN޼Ž$ÙIoƒ$Ï«Ü Á€7²JuNÊs®©ÜÁ€—2§:§æ9×ÔîÁOë€z”Œ;¬z¼sM-à~޼ˆU\3'9ÕG7º p?\ªà¥Ì׎íÞÅâYµ€{ 8ðFV#”ê\S ¸ ‚#¯c÷>ÕSkjwBpàu5têHG'Õî„àÀ«¹$Æåæäh½à G(Bp€"GðÜv@kG(Bp úÏ”`/p'G.D º]v'†d7ÐÁ€ 9š›$T «fwâqp ‚#ײ͎$¡[2ï4öMùiÝúc™IBŽ8ê…µ,g×p-‚#-ÈÙ‘ÔX «=c΋ì1Ú!8p %ýg‚T䀜°-ÿ Z 8p »ýgÄ %¬v; €v¸9€ËYæG÷YCf7#²Óh„àÀµl“1¨Žzéq ‚#rt•ž€àxƒðäÎ9bU°÷hà@#Ä ð4GÀ8êeôìÞG€§!8@’mF4ƒ$è´¸Áð VÙ‘Ôp=½Ç•+WöëׯM›6;vœ4iÒ¥K—¾0''Çd2íß¿_ë-þÈŽ¤F€&tçÏŸ?eÊ”£G¶k×®V­Z«W¯1bDii©’צ¤¤hÝ|èšá÷otþýŸÝr­ÛÐ ïÿÊÁ¬¬¬¤¤¤ÐÐÐU«VÕ¯__1}úôäää¹sç¾ù曎^UTTtøðáµk×®X±Bë-€®Yõ,šc"=Ž×óþÇÔÔÔŠŠŠÄÄD95 !&Nœ¸aÃ†ŠŠ G¯êÕ«× AƒHp+æ+Ôvï•ÀÙ¼¿Çq÷îÝ>>>qqqæ__ßØØØµk×îÙ³'&&Æî«¦OŸ~õêU!IJeË~üñG­7°×(gGú®äåÁQ’¤ìììààààà`Ër£Ñ(„8yò¤£àØ©S'ùÁÖ­[µÞÀþÝ0¤F€‹yyp,)))//¯[·®Uy`` ââÅ‹Nª×d2Y•¤¥¥i½3àt§NrÒšsDN®Èýý‡f"77·J«ƒÚœwèáæ8ô:ñè£jÝwáåÁQ¾uºfÍšVåµjÕB:©Þ¬¬,­7ÚhÖ¬™³«„$œ^ n› =܇^l?Öm{ˆtÂËoŽ©[·®Á`())±*¿r劸Ñïøƒû®8äåÁÑÏÏ/00жg±¨¨Ha¾Ïô‹¤@1/ŽBˆÐÐЂ‚9)šÉCÄBCCµnhM’ìgG%ÞãããËËË·mÛf.‘$)===((¨M›6Z·Ü€mv4„Ämû¬ypìׯŸÏ¢E‹äqBˆ¤¤¤üüü„„¹¤¸¸877—›ãè—ev$5pÀËïªBDDDŒ?~Ö¬Y½{÷îܹóñãÇ322¢££‡n^&==}ìØ±‘‘‘_ýµÖí²íh´-'D¸Áûƒ£bèСõêÕ[³fÍúõëÃÃܘ˜(ÏÈÀ>úœtÂê(Ëy‘CÀƒÄ Bm&“‰yõ)77׃gt³JŠÇÛáÙ‡ÞL>èdÇÛá%‡·O·ŸõÞ?Æ€"ÜZ«s–*8úe {G7pk­nÙh²#{Ž,pk­9:Ð}6ŽnÆ(7½á@PLwU¸%£‰:ÁàÁ€°s?5Ž\ª`[kŽÜÀ­µ€J!¸µpkGB"àÖŽì!Gl ÁŠ ÁŠ ÁŠ ÁŠ ÁÑS„Aë&}!8\ËÀß½€§"8zzx*Â"àŽžD’mv$Mð’d?;(Bpô0VÙÑ ’´n(`› !q< ÁÑó˜³#©€‡±ÌޤFÀùiÝ(âèz´e9!€³#©ðLGÏ` Íy‘°ÀÝ9ÅhUNŽ<ÁÑóÈW¨-ÿ«u‹À1«D(çE¹ß‘°xÆ8z«¤h÷>kpS–aÑÑ}ÖÜÁÑ“Øí_$;ð ¶]ŒdGÀÓ=‰£«Ò\­àî]˜æj5àQŽç# ^àè©èeà©‘€Ç"8ž†1a Á£ûL»»‰}p-‚#à lg-aòd€Ë¡…ß@†›XfGR#@ GhÀd¡[3ï8çï)f•Øâ»ª¡ «/ª%5:¤dt£ûŽï=ÜÁš1wŸ‘+c¹kä=åœNGù»+m³#`Fp„K)ÝHŽ´Ã2_[uتÄ6;’–Žp)«¨c΋$Å[°‰ÎÏŽ¤F€‚#4c¾îêœäEíõv™Õ­0æ-Ë ‘‚#´a•…ÈŽ•qþ~± …r^$)¬04`7#Ú£v89GZ^ªÖzSî…à 8J>ô8jÎr\£<ÞQëÜÁÀïlï†!;ƒq p‚#4F/£›pt5#fGBáèeœŒàÀr$<’£›ì”€JŽ/b›™ë PÁà],³#©P€<_%W¨-Ÿ"DUCpx>ÛD(çE’" *.U¼Ž95r[  *‚#À»XŽk$;ª"8¼ˆíÝ0dG@=G€·pt5#•Þ‚€8Áà‘€ ÁŠ ÁŠ ÁPM³æÍµnNDp€"G jø*3€nª±û5¸¤I€7"8Uf•}[.¯ÃÈfè ÁPƒ9;’ÞËOëËÑõh«rr$À[;e•Íy‘¤x7»¸Ú}àR5 óg†Ý{exÛ·9©ºApªÌê3ƒìx=Ë·9©zBpªÆîgÙðzæ·9©zÂG j}fðYr+a{ Åî„¶…¼ý὎(c™å« t:Bg¸T ¨&7'Gë&¸;ƒ0ÜV9à¦,Ǩ04zBpà:’l3"׬áalG6“¡G.e•Ið£É¨uð;&AÓÃñ¿J¸U9!,NޤFÜ —ªáµM‚Æ_Ô^Œé±¥”Œnä\ ô8BkNëttÆãL¨LTF’þø',ÎŒVåêâ¢ç#8B œ;àdL(ey†=¸‚#´àò9 èeԦǔ²»£zv$‰z‚#4b{nbì!Tâú鱚7k®õF·ÏÑYWÝS1³Ez‚#´Ã !—ué)ð"GhJ>qpÓ8¯—‘/6„·qêyØ•=ôe:ÓñÀµ½Ÿ½bˆæÍ›yfÃq'¬¾œFÆdãÀ*¹BmùçMBpD¥Tÿ»Ðjmæ)gét„rñ’JáalÏêΛfÜчˆÓ>\²vÆjÝ—ªq3Wöð{Å »Pá­øbC@)ËžÕÙ]-]N@pôXN &.»ýÍs@¸„ëOV¸“¼’/6T±.×o‹k„.¸ §ÀjµÎ8ÓU „A"Œ;°råÊÔÔÔììì5jtéÒeüøñAAAŠ^éš?qœM,o[Q½.ËzÅ_„–ûÉþ=ý÷ËÛ6ÄÉ_lhîË´}àÔêœÇ5½³ÔâFµX}¦Xª^—ÌIï|ÛmñŠO±ÛØG»æÏŸÿÉ'ŸÔ¬Y3&&æøñãÇŽkÕªUrrr@@À­_ì¼ß!Wæ-sN¹ì-o9§ž¬\s²µ\­ jñŽà(ÖZþ×ãj1„ìŒÔT·"W¥÷ªÅÙo{…½}*ÖëÊ®÷Ã¥j;²²²’’’BCCÓÒÒ’’’6nÜ8dÈŸþyîܹ_ãšîkG—EÁ5©ÑëwÃÍ,í–«ÅGÞ5ƒ\S‹kÞŽƒý/6tƶ؎¤T÷·K¬¿Vç÷S£oîQ÷ʸkæHòúZT® 9ùÐK’$ƒtã[¶oY^õÝe>‘ÝHºàAp´#55µ¢¢"11±~ýúrÉĉ7lØPQQaÿ5.éæ¼1V9ÈrÂ-gD!Ï'Ÿ‹Ìÿì–«[³Gï¸fŽ^Ô⢷£d/ZÉ}‚jø}¬¤d$¥\®â³ÌŽrjTÿÐ ;ñTÝ..»ñ”Zn«gô;þñ—¹çÑIb~ŸK’0Ô¬Å`ƒdv» ì”{/‚£»wïöññ‰‹‹3—øúúÆÆÆìÙ³ÇáË\ðÁnU‘ºUØæ ËÌΈB^äæ“•³jqÒ‘·[…§×⊜-$»µ¨õAeù†¼)¡,ÊUÝcdG§ b²Œ)Nº0j•„¨å¶jqÞ5qWzƒÕE­?âäµÿñŽ´ªEo‘Gk’$egg[–F!ÄÉ“'+±³>Ø]yYÔªýžy³³+Ymuw˜‹¼pÕ Œ)wAÎþ£ƒäÜ‘NæDU? ­o7¯Yº¹\ÝMqþý=®™#É+kqêHJçzƒAH’õîrÎç—sÞŽƒ À­•”””——×­[ת<00PqñâEë(Ne2«Ú¬›×`žwô¦5›Lªì¬Ã‡MF£¼¶,!L&“0³ ¶Â>œe4šnìû,ùÑý§«½~øpÖò?*¨z]æÕZ²úÕ¶¬Q­*¼¸–*VqS-6)†%U¬Å(Œ7m‹ùö!,k4U}wÙûtµŠ¤FS•Î0‡³ìÏÆìúZªX…¶µxðA‘C©m-7ÊÕÚ{ýš¹D'3¹­•–– !jÖ¬iU^«V-!Daa¡õ ì~ÊÍåö?dî˜Å\YΙ('ËâǬ¬,§l…Wù}ß ¼»œáæ;ù²œzï¾½NG57Íñw©_‹°Ó{ê‚ZÔ©âFljU-’á÷û UÛó¸ÆßG¢I–ÝBU¯å]cîÙ²îyRõ­ãpŽ$Ô¢ö9Àµ˜oØwv-Â%‡Þ~ŒS¥–ßû5o>(’pò÷Â¥jkuëÖ5 %%%VåW®\7úrÁH7§^|³;på´ENúsÍ ×âÔÑήÅ|µU-*ÏÈsóÝ0vï³V«"sËÝg­b-Ϋ›jqñAqM-ΪBºéjûµè飓àhÍÏÏ/00жg±¨¨Ha¾ÏÚ|°Ûý›†1ˆ:àš#ïšoóѤälÏ­Åî=ÔrvTyCl·9ãÓÝîIêVáMµhrP\S‹ç7Gp´#44´  @NŠf¹¹¹òSö_ãèƒ]]ŽVèÔ‘ÿp.8òŽ®´8ï;ƒ\\‹ r¶Ók¹‘äT~_:¸‡Zåƒâà–Õ»NmW¨úG»¶µ8» oªÅ©Åü‡•Þ²#ÁÑŽøøøòòòmÛ¶™K$IJOO jÓ¦ý×°àá\ó+¬m-ªÏ©a-žU…pÕ}ŽjQ}Ê@ kñ¬*4¯Å½›#8Úѯ_?ŸE‹Éã…IIIùùù þþþ·~½7}ÃýxÍï—×lˆ·ÕB^¡O®ÂËjqC|Wµ}Ÿ}öÙ¬Y³4hйsçãÇgddDEE}öÙg¶ÓôèÁÑ¡µk×®Y³æçŸoß¾}bb¢<#€> c ÁŠ ÁŠ ÁŠ ˆŸÖ ð+W®LMMÍÎήQ£F—.]Ƥu£àtO?ýôÿþ÷?«Â~øAë¦Á)rrr{ì±ÔÔÔûî»ÏöYÎ^¬’CÏyÀ+•––þç?ÿYµjÕ©S§j×®m4‡Ú±cG«Åôö®'8ªcþüùŸ|òIÍš5ÛµkwüøñÕ«W9r$999 @ë¦Á¹Nœ8дiSËB¾šÒ‹¥¤¤8zŠó€w«äÐsð>eee/¼ð¾}ûzè¡ß~ûmçÎÛ·o3fÌË/¿l^Lïz UvèС{î¹§sçÎyyyrÉ´iÓŒFã;ï¼£uÓà\………F£ñÕW_Õº!pºÂÂÂÝ»w¿õÖ[F£Ñh4îÛ·ÏjÎÞê–‡žó€WZ¾|¹Ñh8p`II‰\røðáöíÛ·hÑâ—_~‘Kôù®gŒ£ RSS+**ëׯ/—Lœ8100pÆ Z·NtâÄ !„U7¼R¯^½ ´bÅ G pðV·<ôœ¼RZZšbòäÉæ¾ÃÈÈÈ‘#G–——›G èó]OpTÁîÝ»}||âââÌ%¾¾¾±±±{öìѺup¢ãÇ !š4i¢uCàtÓ§Oÿè£>úè£:Ø]€ó€·ºå¡ç<à•rsskÖ¬mY)„8yò¤ü£>ßõŒq¬*I’²³³ƒƒƒƒƒƒ-ËF£âäÉ“111Z·Î"`œ={vÈ!¬Q£FTTÔÈ‘#íÞ6Ö©S'ùÁÖ­[mŸå<àÅ*?ô‚ó€—Z¼x±ŸŸuF:pà€¢Q£FBÇïzz«ª¤¤¤¼¼Üvt`` ââÅ‹Z7N$ÿݹ`Á‚óçÏ?ôÐC!!![·n8p`jjªÖMƒKqÐ3Î^)**JŽ€fIIIwÝuWŸ>}„Žßõô8VUii©¢fÍšVåµjÕBjÝ@8ÑÙ³g^{íµ!C†È%?þøãÈ‘#g̘ѩS§ˆˆ­á< gœ¼^yyùòåËgÏž]^^>oÞ¼¡ãw==ŽUU·n]ƒÁPRRbU~åÊqã/x«Ï?ÿ|ß¾}æO !D‡ž{î¹ÒÒÒÍ›7kÝ:¸ç=ã<àÝvîÜÙ«W¯éÓ§‡„„üóŸÿìÙ³§\®Ûw=Á±ªüüümÿ¶(**B˜ï´‚~´oß^qøða­×á<+œ¼ÀµkצOŸþüóÏŸ9sfôèÑ6l°¼AJ·ïz‚£ BCC äß³ÜÜ\ù)­[g‘$©¼¼ÜvÎ___!DíÚµµn \Šó€>qðVãÆKNNŽß´iÓ+¯¼b;§·>ßõGÄÇÇ———oÛ¶Í\"IRzzzPPP›6m´nœåøñãQQQÏ?ÿ¼UùÞ½{…&“IëÂ¥8èço•’’²iÓ¦gŸ}öÃ?tÔ}¨Ïw=ÁQýúõóññY´h‘<²A‘”””ŸŸŸàïï¯uëà,M›6mÛ¶í®]»V®\i.Ü»wïgŸ}Ñ£G­—â< Oœ¼’$IË–-«]»ö„ *YLŸïzîªVADDÄøñãgÍšÕ»wïÎ;?~<###::zøðáZ7 ÎõÖ[o 6lÊ”)_|ñEóæÍOŸ>½oß¾5jÌœ9Ó›¿¨öpÐ-ÎÞçÂ… ò÷4ÈöÙ¾}ûcÆŒ ׺iÐç}â<à}N:%„(--ÍÌÌ´}Öò¾ë ’$iÝxÆ8@‚#!8@‚#!8@‚#!8@‚#!8@‚#!8@‚#àÆo2™¾ûî;­"-Zd2™–/_®UJKK~øáU«Vi½'~'š;vhÝ; ÆŒ§u[t¤¼¼¼{÷îÉÉÉZ7ÐÁ€{yÿý÷«U«Ö·o_­â¦OŸ¾qãFŸV­ZiÝñõõ3fÌüùóÏž=«u[W#8¸ÉÃ?>>O=õÔ¼yóN:Õ°aC­›¸=Ž”*//¿~ýºóÖùòåµk×öìÙ³ZµjNmÀµk×ÊÊÊœ·!p6gÿ**Ñ»wo!IJeË´Þ€K*™2eŠÉdš3gŽUùÿþ÷?“ÉÔ¡C9 äççÿãÿèÙ³çý÷ßÿý÷?þøãï½÷^^^ž£Õ:º!#**êÁ´,ùá‡ÆŒÓ­[·víÚ 2dÑ¢EV¨§OŸ~ûí·{öìÙºu븸¸#FìÞ½»’-Z²d‰åÍ1rKN:•””ôÐCµlÙ2&&æ™gžÙ¼y³£5ìÝ»7***66ö×_5^¹r%...**êçŸvô 6üöÛoÝ»w·Ý•7@Éî’—ÉÎΞ4iRÛ¶m[¶lùØc½ýöÛ—.]’$iÙ²eC† ‰‰‰yøá‡§L™réÒ%Ûæmß¾ýÕW_}饗¾ÿþ{Ûe*?rΜ9³oß¾„„„V­Z:uª’c±~ýú‘#GvéÒåÁ|á…þùÏ–——ËOÍž=Ûd2•”””””˜L¦6mÚÜÙz̾ýöÛ—_~966¶}ûöÏ<óÌ—_~YQQq[Ë(? Žö€’½§äWQɶTýS¿~ýÖ­[ùå—’$ @7Ž@•ôêÕK±qãF«ò¯¿þZѧO??¿üüüAƒ-^¼øÌ™37nذáÉ“'ÿõ¯ 8Ðn@QnîܹÆ Û¸qcYYYýúõúé§… <¸  @^àÈ‘#½zõZ±bEAAÁŸÿügI’ÒÓÓŸ{î¹-[¶ÜVE‹/ž7ož¿¿ÿC=¸wïÞ—_~yÆ vnӦͰaÃòòòfΜi.œ={öÙ³gGUÉm?þø£Á`¸ï¾ûªØ€JLœ8qõêÕM›6‰‰9uêÔŠ+þú׿Nž{gë‘MŸ>}Ô¨Q›7oöóó Ù¿ÿĉ'L˜`¹*%Ë(dw(Ü{·üMPÒNµÞ8mÚ´¹|ùòÁƒï`'žJPååå:u2°,ìܹ³Ñh|¸Ñh|÷Ýwå’#FÆùóç—••É%K—.5½{÷v´EIIIF£qÙ²e–-1sçÎ-//—·nÆŒF£ñ™gžq´’k×®=þøãF£ñûï¿—$éÇ4 æfØÝ“111?þ¸U¹’(Ù]ò2-Z´øöÛoå’DEEÆ–-[nß¾].üïÿÛ¢E £ÑXPP`Õ€Q£FJ’týúõO?ýT^̼ó•yU:t>>ò&5JqìØ1GËûûûÏž=ÛÏÏoÊ”)çÏŸŸùóŸÿl^àÂ… ëÖ­«J¥—.]ÊÍÍmÞ¼¹ÕÐ5jÔèСCiiiff¦BN®'Nܵk—<ÚÒßßÿÕW_=zômU÷ØcYþèëë+U:´+**êå—_>wîÜ“O>yúôé &4mÚ´’åå«„AAAj5À®˜˜ËåêìZ­¼_¿~~~7MC1dÈ!Ä”YïÞ½«W¯^I#ÏŸ?Ÿ——kY^¿~ý¸¸¸òòr…×F•¬çâŋǎ‹ˆˆèСƒå2O<ñÄ7ß|óÒK/ !”,s[¬öÀmí½J~”´SÝ7Nݺu…ùùù·»ÏÅt<@UEGG7mÚôرcYYY&“©¬¬,---  gÏžæeNŸ>ýý÷ßÿôÓO'Ožqâĵk× !”,S•£ ÖÞSÒNuß8rÔ\ÀÓuÈ·ÈLž<¹¤¤äé§Ÿ6—ËyèСCæ¿òòò+VÈ_8QZZjwmò¬”””’’¹$##ãã?¶\æµ×^«¨¨xíµ×Ì·J\¹råoû[ffftttHHHxxø¯¿þºÿþO?ýÔÜësìØ1yæêJæS¬ºsçνóÎ;µk×~÷ÝwýýýgΜéëë;uêÔJ:ëÔ©iõq®’ÝUE'Ož|íµ×Š‹‹…ÉÉÉK—.õóó{ùå—ŽÛªnìØ±Bˆ)S¦˜ï ÉËË=zôo¿ý6`ÀËK·U\Á`o:þÛßþväÈy™ãÇËßÂ,÷£’eªxTÙ{ Û©âç—_~67WÞKÕ€:zöì9kÖ¬¬¬,__ß>}ú˜Ë›7oÿí·ßvïÞ½mÛ¶’$eee]ºtiРAÉÉÉÿ÷ÿ÷믿ÊóƒXêÓ§ÏÒ¥K÷ìÙuþüùìììÀÀÀ°°0y —¢oß¾»víúòË/ûôéÓ Aƒ   œœœ’’’¦M›Ê3oûøøLš4iâĉsæÌùç?ÿÙ°aÃ’’’£GJ’4pàÀÊ¿k¤*$Iš8qbQQÑŒ3äÜ|ï½÷Ê_X2uêTy‚»:tè°téÒãÇ;š”Ç%»«ŠL&SZZÚ7ß|Ó¬Y³Ó§O—––Ê“ ™›zËÃq[úöí»cÇŽµk×&$$4lØ0 àèÑ£mÚ´‘³‘ŠëIHHعsçÚµk{õêÕ¸qãêÕ«=z´¬¬¬W¯^æ¼”,S•£ ÖÞSÒNß8ûöí3 V_æx7zuÔ¯_¿}ûöBˆÎ;ׯ_ßò©yóæ3&""Bžß166vÍš5“'O4h¯¯¯Ý/lԨѿÿýïnݺùøølß¾ýðáà 4X²d‰e׋Á`xï½÷>øàƒ®]»VTT;v¬Y³f¯½öÚš5kÌ“ÚôíÛwéÒ¥]ºt 8tèPIIIÇŽ?ú裷ß~Ûy»"%%eÇŽ:u2ôBŒ3¦I“&6lHKKsô¸¸8!„íwÖÝ’’ÝUEÿú׿Þzë­|0???((èÑG]¾|¹å­âJ‡r>>>sçÎ7o^\\\YYÙùóçÛ·oÿÆo,_¾ÜÑçw¼y™¹sçvîܹ¸¸øüùó÷ÝwßìÙ³-¿HSÉ2U9 jí=%íTë#IÒîÝ»[¶l)Ït â]‡œ¡¸¸¸   Q£FÊo‚öP’$=úè£!!!æoʾúÙ]îLGa÷î݃ž5k–åÀëÑ㸻š5k6nÜØ‹?€Í ÃsÏ=÷ßÿþ·*7îègw¹3=…5kÖ„„„XN× èÁ€IHHˆˆˆXºt©Ö *“ŸŸ¿nݺ—^zéΦ8<Á€ øûßÿ¾bÅŠ3gÎhÝÀ¡>ú(22òÙgŸÕº!€«¸—ØØØqãÆeggkÝÀ¾òòò€€€3føøð Ýáæ(Â_KP„àEŽP„àEŽPäÿšE+ÒIpšIEND®B`‚statistics-release-1.6.3/docs/assets/procrustes_101.png000066400000000000000000000207531456127120000230700ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A!²IDATxÚíÝlUåýÀñs¡ h‘ˆˆQ·”F1æüèSg²ïÀèŒÑ!Y Lƒ!:1êÜÂLÔÔé¢$ãb,,ˆ`\˜ ,ÑÑA0‚£$þÀŸÄXEÊýþqõ®ÜÞ¶Ÿi{Ÿs{_¯¿ÚS¨ímÎÛçÜçœB±XÌ ?ÃR@}Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„4¥ §>ýôÓûî»ïå—_Þµk׸qãN<ñÄk®¹æG?úQê¹’)‹ÅÔ3äΞ={þïÿþo÷îÝ­­­­­­ï¾ûîÆ›šš{ì±O<1õti¸T]Åý÷ß¿{÷î9sæüë_ÿº÷Þ{—.]úç?ÿyß¾}·ß~{êÑ’±âXÅ´iÓvíÚµnݺ‘#G–žuÖYüñ¦M›†žz@€¼Ç±Š1cÆLœ8±{5fY6bĈ½{÷îÝ»·¹¹9õ€ Ç*/^\qdÆ ;vì˜ñÄ+V¬¨8¾cÇŽ,ËŽ;î¸Ô¤!+?¾­­míÚµÏ>ûlùà›o¾¹dÉ’Ñ£GŸrÊ)©HÓcªxíµ×f̘ñõ×_O™2åè£þàƒ^~ùå,Ë,X0mÚ´~ÿºío0´5ì¹ÞŠc'tÒSO=õË_þòã?þ÷¿ÿýþûïŸþùÿüç?#Õ0T¹cu?üáÿò—¿¤ž G¬8"Ž„GB„#!† B!+RÁ#`¨)'£vd` GB„# 5åÇ {®0Ë“c`’Œ +Ž„GB„#!€á@ˆp D8@ýñDA’ŽPgð˜iê—G¨©rABÝŽPSV©_.U@-èE†+Ž„GB„#!€á@ˆp D8"Ž„G¨o…‚ç_S#ÂêX9µ#5 ŽPÇŠÅÊ`ð4¥ø^$#5cÅ€á@ˆp D8bs u£|«BÛA +ŽÔ7¸†ä„#õÁ*#$'¨3 RñGê†d„´¬8"Ž„GB„#!vU)y P±â䂇åŸprÁŠcþ G %½XG¼ÇHL;Ö +Ž„GB„#!ÞãƒÎ­ ¬8@í¸U!uM8@íXq¤® GB¼Ç…F†+Ž„GB„#!Þãä‘›_æG wÜð2Ÿ„#;VóI8ù¥ sÅ{€<’Œ9dÅ€á@ˆKÕ@M¹ÏNý²â¤áž;uG8iXq¬;.UW×ÙÙùØc-_¾|×®]‡rÈĉgÍšuúé§§ž êž^¬_±Š}ûö]qÅ›6mjii9õÔS¿üòËõëׯ]»öÚk¯;wnêéÒŽU,[¶lÓ¦M'Ÿ|òÃ?ÜÜÜœeÙ–-[fΜ¹páÂsÎ9çøãO= @ÞãXŪU«²,»õÖ[KÕ˜eYkkëœ9sººº^|ñÅÔÓ¤!«Ø¾}û¨Q£&MšÔý`kkk–e;wîL=@.UWñàƒ65Uþ—yýõ׳,;æ˜cRO†p¬â„N¨8²nݺE‹1â /Œ|‡¶¶¶Š#©ÿµ€ï¢çi½a Ç~tuu-Y²dÁ‚]]]÷ÜsÏá‡ù[2†Œž§õ†MIáØ—õë×ßvÛm[·n0aÂwÞyÚi§¥ž áXÝÞ½{ïºë®ööö‘#G^sÍ5³gÏ.ï°hL±Šýû÷ßpà kÖ¬9ï¼óæÍ›wÄG¤ž =áXE{{ûš5kf̘1oÞ¼Ô³ä…û8V*‹‹/>äCnºé¦Ô³äˆÇJ»wïÞ±cGssóå—_Þó«]tÑÌ™3SÏ€p¬´k×®,Ë:;;7oÞÜó«6V K8VúÉO~â.Œ=y#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„G†¸B!+RC‚p`(+'£v„ïO8"ÊŠÅÊ€ï¬)õ0¸$# +Ž„GB„#!€á@ˆp D8"Ž„GB„#PŸ …Ô4áÔ§b±ŸvT–M8u«v,²b1õ|CpêYÕvTƒC8u®¢U#À Ž@ý+·£jLÂJí¨“p†„R5ÚI 0˜„#PÿÊkÚ`0 G ÎU\¡ÖŽƒF8õ¬êûµ#ÀàŽ@Ýêc7Œv¨Oýî¡¶Ã`  G >éB€šŽ„GB„#!ÂÈ…~÷@Û$ œpr¡ïûçx 5@G /zkGÕÂÈ‘ží¨òC8ùÒ½U#@®G wJíX›jŒì¹±/ D8§[ Vce·CV=Ê„#;¥Vë{Ÿõ÷rà·®üuKEÕÐpò¥{«%hGÕÐ;áäHÏV«u;ªF€Þ G /zkµµc¡PþL5T%\è»Õ½¿ýÇ—>SU G ½H«Õ&æJ“¸ÿ@UÂH/å _·-Üå~ÕŽU G ußC‹Y÷whlÂhT=ï¼Ó÷ýžpRo÷kÔŽ½ŽÔ§“}ßå[;ôB8RCýžÝ…Úèö2«þŠ;ð¨W%@‰p¤¶¾Ý»Z…j€|Žýضm[[[Û«¯¾šz!¤XŠÇX® @ Ç~´··§a(ªhÇÕhår¨)õ9µgÏž·ÞzkåÊ•K—.M=ËU, …ÒÃU#ÔáXÝôéÓß{ï½ÔS u¥v슪òL8VwÇw|õÕWY–-^¼ø¥—^J=ÎU(üwݱ¨ ï„cugœqFéƒçž{.õ,CT·§—ÛÈ3á8(ÚÚÚ*Žttt¤*O*vÃ|s“í@õ<­7,á8(db_ªï¡¶î@Nõ<­7lJºµÕÇwªÞßj¥ßמ'€p¤†ú½_c±è¹À¤Ò÷kÏæ-€L8RS±û5jGRéíµ§J„# ô{ÖŽ¤Òóµ§Ê„# DNÃNÕ¤Ò½U#@wvUT*·£jèΊ#!î›7ðÚÚÚÜÇêZù µKÕ@U {®·âp€î±hŸ@wÂà¿z.1jG€2áðÞ.LkG€áeý½Q;d ¤ßM0vÉGB„#@Öÿuhª„#@–õ÷F·sȲL8’gÖ€¨©ÞÚQ5|K8’_Ö€¨µž¯9¯3€n„#¹f ˆZëþšó:8p$ï¬Qk¥×œ×@‘:` ò )õRnGÕÈ +ÿ߉ÿM8G€nºÇ¢ç H8RJgsçqWÏ%F¯9€n„#uÀµÐÛ…i¯9€o GòçÀ“t•5 ¬à<ÎëûíŒÚ Ë2áHu;IW9› Y±è<ÎëwŒ]2‘œ*³B¡·jìöGRÏ D8’S…¬XÌú¹ñ·5 ¨%áHN‹nü ùâàä›@nXq D8’onü ¹!É17þ€<Žä•‡¿@ÎGrÉÃß „#ùãáoK‘œ‰Ü¯Ñ­y áHÎ ¡(ìwaÔÊ)õE8Â`éû¢ºGáPw„# ¢ÞÚQ5P„# ®ží¨¨SÂ]÷vTÔ¯¦Ô@C(·£j ~Yq D8B-”®P»y9uM8 ëþ¾Fí@ýŽ0¸zî†ÑŽÔ)შ·=ÔÚ€z$a°ô}çí@ÝŽ0("÷ktkê‹p„A! z„# &W£B„# ¦~ßɨ,¨ÂYíèÁÕÔჯj;ªFêp„š¨hGÕ@ŽP+åvTÔ'á5TjGÕ@}ŽPC¥j´“€ú$¡VÊkÚ€ú$¡&*®PkGêp$—"QUGáUõ}Ú€z#É¥>£ªP¨«É}Œª¨+‘¼ê=ªJ;“ûø«9б~·^ò„#¹ÖûWêæ1~9¾/áH¾õþÀñ€Žä^ï\ñ?¨%áH=èý+ã5#©}>pÅcü 6„#¹×ßW<ÆjC8’oý=pÅcü f„#9ÖßW<ÆjI8’Wý=pÅcü Æ„#¹Ôßn—ÒÛ«~I;À ŽäR±Ÿ' ‹}ýíƒA8R"wÞqwp€á@ˆp D8"Ž„GB„#!ÂRðdêp„"OE—äŒp„DúnÇoÈ 9"!ÞÚQ5KÂ’êÙŽª€¼ŽZ÷vTäXSê€ní¨È1+Ž„GÈÒêÈ=z á©u_£v Ç„#$Õs7Œv ¯„#¤ÓÛjí@. GH¤ï;ïhGòG8B"ýÞyÇ­yÈ÷qìÕã?¾lÙ²·ß~û?øÁYguã7vØa©‡HÆŠcu÷Þ{ïþð‡­[·žrÊ)£G^±bÅUW]ÕÙÙ™z.€d„c‹-?~üªU«-Z´zõêßüæ7¯½öÚÝwßz4€d„cË–-Û¿ÿu×]wÄG”ŽÜ|óÍ---Ï<óÌþýûSO†p¬bÆ Æ ;ûì³ËG†~æ™g~ôÑG¯¼òJêéh\‘mÖ¶b0x„c¥b±øöÛo;vìØ±ÝOœ81˲;w¦ÆÕï-zú¾Ã|OvUWúâ‹/ºººÆŒSq¼¥¥%˲?þ8òMÚÚÚ*Žttt¤þ7c((µcÕ:Tƒ¤çi½a ÇJ¥­Ó£Fª8>zôè,Ë>ûì³È7‘‰ žªí¨OÏÓzæ¤KÕ•ÆŒS(¾øâ‹ŠãŸþyöíº#¤UqÍZ5P±RSSSKKKÏ•Å={ödYVÞg i•ÛQ5P3±ŠñãÇôÑG¥R,Û¾}{éK©§ƒoôñ~G ±ŠsÏ=·««ë…^()‹Ï?ÿüa‡6eÊ”ÔÓÁ7JÕèþ;ÔŒp¬â’K.6lØ=õp€>êP;0ؼÇêF¿]èýŽ *áu#²šhÅ€Á#Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!‘!¡PH= }‘!¡Xì§•%|o‘¡¢v,²b1õ|P÷„#CHÕvT0@„#CKE;ªF8‘!§ÜŽª”p$/rûJ©U# (áH^ô»1:‹Çe©í¤€%É‘¾c/º†XþsÚ”p$_z‹½ÿ¹ûþvÀÿN8’;=cï;VcoßøN„#yÔ=ö¾W5öüvÀwÕ”z¨®{ß·Ëßø~¬82$èB|‘œ*­!ºÈ ù!É£îWžµ#ä„p$wz¾_Q;@Gò¥·].Ú’ŽäHß{£µ#¤%É‘~÷FÛ< GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„Ç~lÛ¶­­­íÕW_M=@b±ííí©GÈ…¦ÔäÔž={Þzë­•+W.]º4õ,¹ «›>}ú{ï½—z €ŽÕÝqÇ_}õU–e‹/~饗Ržp¬îŒ3Î(}ðÜsÏ¥ž „ã hkk«8ÒÑÑ‘z(à»èyZoXÂqPÈD2zžÖ6%:÷íÛ÷ÐC•?>|øUW]•z(€œjèpüúë¯ï»ï¾ò§#FŒ޽ièplnnvM È“cŽ„GB„#!…b±˜z†¡¦­­ÍžÂö\oÅ€á@ˆp D8"Ž„GB„#!€á@ˆpQ¡00 ¡G ‹ýta¡‹©§Èá4¨>ÚQ5T%ÆUµU#@o„#ÐÐ*ÚQ5ôA8®ÜŽª oÂà›vT}Ž@c+²o׫ï•qW€o G ±‹åµÆ*íh á4´oÊðÛ`< U#À„#иþ[†Ý‚ñ›U#@ÂhP•eؽ³B!S•šR@õõÄr;¿¹|mÍ ;+Ž@#Š¡j¨ ¾UZcìã!ÖM8dYvà•iíPp¨ö~FíЃp^o»`´#À„#ÐØúÞ;­ºŽ@‹ÜqÇæj€o G ‰B€ÿ…p D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„Çê:;;yä‘iÓ¦Mž{øá‡÷ý‡m€!¯££#õ XqìGWW×’%K,XÐÕÕuÏ=÷ô[Y£¾’€!¯¡Ãqß¾}=ôPùÓáÇ_uÕUÝÿÀúõëo»í¶­[·N˜0áÎ;ï<í´ÓR LC_ªîììœù$õDü—_üp6É¡O?ýôOúSé‡òóŸÿüúë¯ß¶m[ê¡jÍ“cÒ¾}û®¸âŠM›6µ´´œzê©_~ùåúõë×®]{íµ×Î;7õtdY–µ··§¡¡Ý{ï½ûÛßFuÊ)§¼óÎ;+V¬Ø²eË£>ÚÜÜœz4²Ì/Hn8›äО={¦M›¶{÷îÖÖÖŸýìgï¾ûîÓO?½fÍšÇ{ìÄOL=]íÇ´lÙ²M›6|òÉ?üpéD¸eË–™3g.\¸ðœsÎ9þøãSظöìÙóÖ[o­\¹réÒ¥©gi\‹-?~üòåË8âˆ,Ëî¸ãŽG}ôî»ïþãÿ˜zº†æ$oœMrèþûïß½{÷œ9s®¿þúÒ‘'žxâ–[n¹ýöÛêÇ¥ê´jÕª,Ën½õÖòòIkkëœ9sººº\bHkúôé—_~yCýnçвeËöïßÝuוª1˲›o¾¹¥¥å™gžÙ¿êéš_¼q6É¡ÿüç?ÍÍÍW_}uùȯ~õ«#<òõ×_ïêêJ=]íXqHÛ·o5jÔ¤I“ºlmmͲlçΩ§khwÜqÇW_}•eÙâÅ‹_zé¥Ôã4¨ 6 6ìì³Ï.>|ø™gž¹råÊW^yå§?ýiê—_¼q6É¡1cÆLœ8qäȑݎ1bïÞ½{÷îmœ÷ÛÇôàƒ65Uþ'}ýõ׳,;æ˜cRO×ÐÎ8ãŒÒÏ=÷\êYT±X|ûí·ÇŽ;vìØîÇ'Nœ˜eÙÎ;…cB~AòÆÙ$‡/^\qdÆ ;vì˜þøãÔBŽ8›äÙÆW¬X±}ûö7{ì±óçÏO=QM ÇÁÒÕÕµdÉ’ tuuÝsÏ=‡~xê‰ ¥ÎÎÎ,ËFUq|ôèÑY–}öÙg©„œr6É›ŽŽŽåË—‹Å,Ë&MštðÁ§ž¨¦„ãw±oß¾‡z¨üéðáïºêªî`ýúõ·ÝvÛÖ­['L˜pçwžvÚi©Gnýþ\Hh̘1…Bá‹/¾¨8þùçŸgß®;œMrè²Ë.»ôÒK?üðÕ+WÞ}÷ݯ¼òÊSO=UúàF ¿‹¯¿þú¾ûî+:bĈr ìÝ»÷®»îjoo9rä5×\3{öì†zëCZ}ü\H®©©©¥¥¥çÊâž={²,+ï³JœMò¬P(Œ7nÖ¬Y;wîüÇ?þ±zõê‹/¾8õP5"¿‹æææŽŽŽžÇ÷ïßà 7¬Y³æ¼óΛ7ožsaõös!'ÆÿöÛoïÙ³çÐC-ܾ}{éK©§ƒq6É›-[¶üýï?óÌ3ñ‹_t?^Úùþþûï§°vÜÇq µ··¯Y³fÆŒ .ô{Î=÷Ü®®®^x¡|¤X,>ÿüó‡vØ”)SRO9âl’7‡zèO<±bÅŠŠã;vìȲì¸ãŽK=`íÇS,/^|È!‡ÜtÓM©g<ºä’K† öÀ”ÞטeÙ¢E‹>üðË/¾ø ƒJ=ä…³I?¾­­míÚµÏ>ûlùà›o¾¹dÉ’Ñ£GŸrÊ)©¬—ªÌîÝ»wìØÑÜÜ|ùå—÷üêE]4sæÌÔ3BJGuÔ7Þ8þü .¸`êÔ©ï¼óκuë&Mštå•W¦ rÄÙ$Ÿn¿ýö3f\}õÕS¦L9úè£?øàƒ—_~9˲ 4ÔVwá8`víÚ•eYggçæÍ›{~ÕV8ȲlÖ¬YãÆ{òÉ'Ÿ~úé &Ìœ9óºë®kœÝˆál’O'tÒSO=õ׿þuóæÍo¼ñÆ‘GyþùçÏ;·ôDŸÆQ(݈úæ=Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8"Ž„GB„#!€á@ˆp D8òÿ¬`¾5ñ‘{­IEND®B`‚statistics-release-1.6.3/docs/assets/procrustes_201.png000066400000000000000000000504561456127120000230740ustar00rootroot00000000000000‰PNG  IHDRhŽ\­APõIDATxÚíÝy\ÔÕâÿñ3,B²ÄNÊbΈâš&й$if -ê53ÌÒH¼Š™é%K½î˜™™Ý«õ%Q’–¦Ýì’škh¸…¢\Ä/eˆ )¸ÀÌïϽó;xTà3¯ç£?øœÏ™™óùbÞžÏçœÆ`0àNìÔn‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤Xmp<{ö¬N§ûùçŸ+Ý»~ýú¸¸¸ÈÈÈG}túôé—/_¾·:¶ÃjƒãÚµk«Ú•’’2cÆŒ3gÎtîÜÙÍÍmãÆ/¿ürYYÙÝÖ°)ÖKJJ:”œœü?ÿó?•VÈÉÉIMMõóóûæ›oRSS·oß>jÔ¨ìììE‹ÝU[cmÁñÉ'Ÿ1bÄ_|QU…ôôt½^Ÿ˜˜èëë«”L›6ÍÝÝ}Û¶mz½^¾€­±¶à8gΜ+V¬X±¢{÷î•V8xð ]tt´±ÄÞÞ¾gÏžÅÅÅYYYòulµÇ=zôéÓ§OŸ>AAA–{ Cnn®——————i¹V«BHÖ°Aj7 N•––VTTxxx˜•»»» !.]º$Y§z:Níµ+''Gí&¨À¶‚£2-ÚÕÕÕ¬ÜÍÍMqõêUÉ:wd›¿Lõ™N§£Sê:¥~¢_ê!:¥²ÙA"k»T]=FSZZjV~íÚ5ñŸ1E™:6ȶ‚£ƒƒƒ»»»å¨aII‰B™C-SÀÙVpBøùù+)Ð(//OÙ%_ÀÖØ\pìÓ§OEEÅ®]»Œ%ƒ!33ÓÓÓ322R¾€­±¹àggg·|ùråžE!DjjêÅ‹‡ æèè(_ÀÖØÖ¬j!D```RRÒüùó•ŸŸ¿oß¾Ö­[;ö®ê aaBb=D§ÔOôK=D§ þ°¹à(„3fŒOFFÆÖ­[FŽ™˜˜¨¬¶sWulŠÆ`0¨ÝkÂ[X7›ý®·¹{poŽBp€‚#¤ …à)¶¸Ž#ÀŒN§S» €šlsm{@pÁ'lÿp’Ç¥jH!8@ ÁRŽBp€‚#¤ …à)GH!8˜÷Þ{OS­íÛ·«ÝFY¡¡¡qqqj·âßnܸ¡Õj>|öìY777oo"³:/¿ü²F£™7o^QQÑC=TXX¨v«Q§xä  éСÔ)SŒ›ï¿ÿ¾‡‡ÇŸþô'cIHHH7éСCsæÌ™={vëÖ­Õ>=÷îwÞ‰ŒŒŒŒŒBüõ¯}ýõ×'MšôÙgŸ+üðëV­êÚµkRR’½½ý˜1c6nܨvÃQ‡ ¨iZ­Ví&ÀÝ©‘?\âÏßÕH»åááÑ©S§Ú8-ò¾úê+!Ä?ÿùÏ»}aHHHll¬ºW\¸pÁÉÉéСCʦ^¯ïÙ³§bÛ¶mJ‰2éââòË/¿(%ÅÅÅ5Ú·oŸÚm¿_÷ðûo³ßõ\ªÔ ÃâÇ4“wVSA3y§añcj7Ó UTTTTTÜç›|øá‡Í›7ïØ±£²©Ñh>ù䓯¿òÊ+ׯ_B¼ûî»§Nš;w®N§Sêxyy 8pÙ²ejŸÔ‚# ÆT“UI)))íÚµsuuõòòêÚµëçŸnÜ:iÒ¤C‡EDDDDD(…û÷ï0`€——W»víþò—¿¬\¹R£ÑüüóÏÊÞcÇŽ :´Y³f¾¾¾ øî»ï”ò_|qРABˆèèèÐÐPËf”••Íž=;<<¼qãÆÁÁÁñññ¿ýö›i…={öÄÄÄx{{½úê«üñ‡ü!,_¾ÜÃãQ£FmÛ¶6mÚ­[·Œªjp¥>ýôS³»-~øá¹sçæççϘ1ãèÑ£ ,èÙ³çĉMëÄÆÆ®_¿Þ´Á°rjyZ!›¾ÐpÕì.Ëëѵq…Ú¨ªKÕÉÉÉBˆÇ{lÖ¬YÓ§OBlÞ¼YÙ2lØ0//¯ÐÐЗ_~Ù`0lß¾ÝÉÉ)$$dÊ”)ãÇ÷ðððõõB9rÄ`0ìØ±ÃÙÙ944tÊ”)S§NmÑ¢…½½}ZZšÁ`8zôè¬Y³„ ,ÈÌÌ´lÉðáÃ5M¿~ýÞzë­§žzÊÞÞ¾k×®ÆfhµZww÷„„„E‹EEE !”öÈBPPâ‰'žxóÍ7{÷î-„èÙ³§^¯¯¾Á–N:%„ؾ}»YyEEE=ììì´Z­››ÛÙ³gÍ*äåå !¶lÙR{ý[¸T-àXólö— @ÃUã¸L“b­¦FCÕÁ1,,L«ÕÞ¾}[Ù¼r劃ƒÃøñã•MeͬY³*** CEEE«V­ÂŠ‹‹• 'NœhÔ¨‘oÞ¼Ù¢E‹ÈÈÈÒÒReï7ºuëV^^n¨öÇk×®ÙÛÛ=ÚXòÒK/y{{›ñå—_*»ÊËËÃÃÃåaîܹÆwNJJB¤¥¥Ý±ÁfRSS…—.]²ÜuêÔ)!IJeË*=ÿÞÞÞ“'O®Õ.®mGy\ªÔ<ã5kïk|âĉÄÄD///eoxxxll¬òóáÇOŸ>””äâ⢔899%$$œ={6++«úfØÙÙi4š={öäçç+%«V­*** P6µZíàÁƒ•ŸíííÛ·o¯ÜS(sJh3n&''»¹¹¥§§ßmƒóóóœœ<==-weee•——+©ôÎ;W÷ý UµBÉŽ*Άñôô<|øprrò³Ï>Û¡C‡ððp%ét:%5 !”kµíÚµ3­Ð¦Må‡_~ùE¡\q6>|¸⎙ÉÅÅeéÒ¥çÎ mÛ¶í¸qã6mÚdz'¢V«5­ooo/­[·V†E®®®:îÌ™3wÛà .³Yù„ š5köôÓOöÙg–u|ðA³[6aÅXÇP+”Ô¨Vv¼yóæÐ¡C·nÝÚ¹sçþýû<¸[·n:t0­ãááaüÙ4É3œÎ.\ضm[³:­Zµºcc&L˜0lذ¯¾úêûï¿ßºukjjªN§ËÌÌôóóB8;;ßó!Xrpp¸~ýúÝ6ØÙÙ¹Ò30nܸâââµk×vêÔé‡~7n\=¼½½Mëܺu«qãÆ5Ôo¨ïŽ€šgÌ‹jeÇÝ»woݺuéÒ¥¦³€Í†ëLµlÙRqüøñ^½z ?®üТE !Ä<ðøã÷ž8qâèÑ£¦é³RÅÅŹ¹¹Z­6>>>>>^¯×¯X±"!!aåÊ•ÊÜ—û9„'Nܾ}ÛÑÑQÙ,++;yòdttôÝ6ØßßÿòåËz½Þ8+„øì³Ï¾üòË‘#GÆÄÄ!–,Yò /Œ?>==ÝìÃÂÂj±/QŸp©PÃÌ’â×w¬ çÏŸB(Ó6l¸~ýºÁ`¨´~ûö탃ƒß{ï½’’¥$77טڷo¯Óé/^|åÊ¥¤¤¤$&&fÒ¤I¦ƒmz½Þòsrryä‘Å‹+›vvvÑÑÑBcÚ»ŸC(**JII1nΞ=»¤¤äé§Ÿ–l°Qxx¸^¯7Þ…)„(,,|ýõ×½½½ï?jÔ¨~ýú­_¿~ݺuÆjåå妄ucÄP“*_¬ûqÇÞ½{»ººŽ;vĈAAA{÷îݹs§ÏîÝ»·mÛ¦ ¡™rrrJII‰‹‹ëرc\\\YYÙÚµk;vì¸gχ¥K—>õÔSÏ<óÌíÛ·322 ¾øâ år¶2Œ÷á‡^¸pá¹çž3}çN:µiÓfÞ¼ygÏžmÓ¦MNNζmÛ¼¼¼žþùû?„€€€™3gþøã{÷îýöÛo»uë6jÔ(;;»êlùYvvvûöí3®C9vìØË—/þù禦?úè£6mÚL˜0!::Z¹Îž]ZZÚ·oß:ëY¨LíiÝVÈf§èh¸jêWõ+ïÔÒºuðöíÛÙÙÙÆÂñãÇÿýï¿zõªqAœz%44´}ûö›6mª‘wKKK›0a¯¿þêää$ÿªŽ;4HYÿ¼áº‡ß›ý®çG@ÍI„õ35 !ìííûöí;bÄcÉÕ«W7mÚ4pàÀú™k\ll¬››[¥ îT%;;ûäÉ“¯¾úªÚmGÝ!8 ìììþùÏÆÆÆ¦¥¥¥¤¤DEE]»víÏþ³ÚM«#ŽŽŽË–-{÷Ýw+âS©ääääädµÛŽºcÿŠàŽÞ~ûmŸ?þ8>>ÞÑÑ122rõêÕ:uR»]UЉ‰Qž:XS† rèСcÇŽ™-„^©¢¢"___ÓçÖÀpcͳÙû4\üá‚-ãGy\ª€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à .h&ïT» °6åååŸ|òITTT@@@“&MÚ·oŸPXX¨v»îKhhh\\œÚ­ø·7nhµÚÇøá‡¦ÿþ–u®_¿äìì|úô颢¢‡z¨¡wªGpP ‹»cvlÐáҺ 4ý¯Æßß`0<õÔSñññeee#FŒHHHhÞ¼ùÊ•+µZíñãÇÕ>z+ñÎ;ïDFFFFFŽ7®k×®ß~ûí—_~iVgÞ¼y………III-Z´ðññ3fLBB‚Ú Gm2 ¦iµZµ›ÔSâÏßÝA]ÍþáÊpÇ’û´fÍ!DRR’iááÇ]]];wî\;'©.„„„ÄÆÆªÝ ƒÁ`¸pá‚““Ó¡C‡”ÍÇÛÛÛ‡††–••ëüë_ÿrvv )--UJŠ‹‹5j´oß>µ›wîá÷ßf¿ëÔ®¬ß¥Í¡ÊŽĥ͕×)î%„ÈS»¥÷EU5,~̬¼ÒB+v*6P»Áüb¥vC¡2îh¹ëÞìÙ³Ga6¸Õ¾}û¸¸¸5kÖ\»vÍÍÍMí3¡šŠŠ !„½½ýý¼É‡~ؼyóŽ;*›íÛ·ýõ×SRR/^üÖ[o)…o¼ñÆ7Þ{ï=¥ÄËËkàÀË–-ûüóÏÕ> ¨\ªP¼çÿ{0óËMµX3,¯È“j*2*”ltìØ1³òùóçggg7jÔÈXràÀ'žxÂßß?00ð‰'ž8pà€q—å …/¾ø¢§§§qï¤I“:¡9räÉ'Ÿôóóó÷÷>þ·ß~3­°gÏž˜˜ooï   W_}õ?þ0îJIIi×®«««——W×®]Mó™ÒàåË—{xx4jÔ¨mÛ¶Ó¦M»uëÖ=´Pñé§ŸšœwÞy硇š;wnAAb÷îÝëÖ­8pààÁƒM«ÅÆÆ®_¿Þ´Í°*jyZ!›¾ªRüeˆY‰ñÒ­ñË: —åÑÕ5õ‡ëŽ—¤kêšõöíÛ…NNNãÇÿÇ?þazýÔTFF†ƒƒÃC=”˜˜8iÒ¤¦M›:88ddd({-¯ =ÚÃÃøwذa^^^¡¡¡/¿ü²Á`øöÛoCCC§L™2yòdooï&Mšäææ †;vwM:µE‹öööiii•¶jøðá¦_¿~o½õÖSO=eooßµkWã‡jµZww÷„„„E‹EEE !”O7 ÉÉÉBˆÇ{lÖ¬YÓ§OBlÞ¼ÙøÚ   !ÄO<ñæ›oöîÝ[ѳgO½^·--„0Þžh¬oÜuG:NIBåêmÛ¶mM+Œ3&66ö—_~B( †.„°ÌO...K—.=wî\hhhÛ¶mÇ·iÓ&Ó;µZ­i}Ó9.žžž‡NNN~öÙg;tè^^^nZ¹uëÖ¦÷wºººêtº3gÎÜU ….\ðòòªôœ¿öÚkBˆ·ß~ÛÙÙ¹Ò:>ø Ù]›°̪P×Lç‹T5¹á²<ºâ^j·©®(S§kvL¥®]»öâ‹/öïß_¹`ªhÔ¨Q\\œ§§g¿~ý¾þúëþýû !„F£1}­’Ãnß¾]é;ß¼yÓtÓÃÃÃø³’팣}¦”¬¶páB³X)„hÕª•eý & 6쫯¾úþûï·nÝšššªÓé233ýüü„U¥±›7o:tëÖ­;wîß¿ÿàÁƒ»uëÖ¡C‡êÏ•ƒƒÃõë×ï¶…ÎÎΦYÖŒ¯¯¯ÂÇǧª ·nÝjܸñº Á@²Œ‰Ö”®*=ºªV Â=suuݾ}{AAipT(W¥•ÔÒ¢E !ÄÑ£G{õú¿_/e´N§S6õz½éË«‰TOœ8¡LXQÌ›7¯¤¤dèСBˆxàñÇ7î:qâÄÑ£GM£§¢¸¸877W«ÕÆÇÇÇÇÇëõú+V$$$¬\¹R™ûR•Ý»woݺuéÒ¥'N4š8ž8qâöíÛŽŽŽÊfYYÙÉ“'£££•S!ÙB!„¿¿ÿåË—õz½qÀõ®‡……Ýà Qÿq©@Ý©jpÑ:F«:mèWäïJ5ω©©ñHå2ëþýûgÏž­¬Ë£¸~ýzrr²F£yòÉ'…:thÖ¬YJJÊåË—• —.]Z²dIpppdd¤¢qãÆÇ7¾Ã®]»:TÕ‡FFF6kÖléÒ¥%%%JÉÙ³ggÍšuþüùöíÛëtºÅ‹_¹rEÙURR3iÒ$Ë·œœœGydñâÅʦ]tt´˜öªrþüy!„2“Z±aÆëׯ+«Š¢¢¢””ãæìÙ³KJJž~úé»j¡ò)z½Þxæ])///((0m'¬ #ŽêÈ/I7èkÖÕ7Þú®ÈWEÉ…–±fWÿB¤¤¤;vlæÌ™ûÛß:vìpþüù={ö\¸paúôéÝ»wB899¥¤¤(·>óÌ3ƒaݺu………ëׯwrrBôïßéÒ¥ƒ 2dÈÙ³g?øàƒJ‡ßÎÎÎK—.}æ™g:vì«Ñh>ýôS‡¿üå/K—.}ê©§"""žyæ™Û·ogdd|ñÅ–«pwêÔ©M›6óæÍ;{öl›6mrrr¶mÛæååõüóÏWȽ{÷vuu;vìˆ#‚‚‚öîÝ»sçNŸÝ»woÛ¶-&&F0sæÌü1""bïÞ½ß~ûm·nÝFegg'ßBå³ìììöíÛz×S»²³³KKKûöí[S}úEíiÝVÈf§èU)þ2äŽkÓ4Äåx$ÛÜ ­Æÿpå 0ý¯6Ú|ýúõ•+WvëÖÍÇÇÇÑÑÑÏÏoРA»ví2«öã?0ÀÏÏÏÏÏoÀ€û÷ï7î*--8qbPPrdllì¬Y³L—ã2dˆÙ»íÙ³§_¿~ÞÞÞ~~~ƒ>vì˜qWVVÖÀýýý===£££wìØQUË ÆŒìääÔ¬Y³áÇŸ:vìØJw-Z´HñÍ7ßTºwñâž¾¾•®òSo±<Ádˆ5B§Óåää¨Ý  ¹´9ôŽ“‹eêÔ7’mn‡f㸮_¿~ýúueÎGÃÚ¾}ûM›6ÕÈ»¥¥¥M˜0á×_UFgåuìØqРA³fÍRû|Ü…{øý·Ùÿe¸T  .°–!ê3WWWWWWµ[Q¿ÄÆÆ¾ñÆÏ>û¬ü«²³³Ož<ùõ×_«Ý|Ô‚#€ZWÿÇÛ˜qtt\¶lÙŒ3âââäçV''''''ûûû«Ý|Ô‚#Ö &&Fyê`M2dÈ¡C‡Ž;¦¬š~GEEE¾¾¾¦®õ!8` V¬XQãï9{ölùÊ>>>}ô‘Ú§µ‹à÷Ž{7Ø‚#Ü#îÝ`kxr ¤ …à)GH!8@ ÁRŽBp€‚# yï½÷4ÕÚ¾}{7iöìÙÞÞÞmÛ¶Uûܘûé§Ÿ4ͺuëîêU¡¡¡qqqj·ýßnܸ¡Õj>,„ðññ©ªÓ}||„EEE=ôPaa¡Ú­¶Z<9P3$ÀxÿOÜéСÔ)SŒ›ï¿ÿ¾‡‡ÇŸþô'cIHHH]ø‰'fΜ٣GñãÇ×åçÚˆwÞy'22222R1~üøÒÒR³ GŽùÇ?þáéé)„ðññ3fLBBÂÆÕn¸u"8jÌCa<Ý;*****ʸ¹jÕª¦M›.\¸P­£ÎÍÍB¼ýöÛ}úôQ« Öê÷ß_²dÉž={”ÍY³f™U¸téRdd¤½½ýªU«”’ÄÄÄ€€€ýû÷wíÚUíæ[!.Uð_ôz}EE…|}ƒÁ „pvv¾ÏϽuë–^¯WûèkLEEÅ]ÆJ}øá‡Í›7ïØ±c¥{ ÃèÑ£Ï;÷î»ïöìÙS)ôòò8pà²eËÔ>Ö‰à°N¡¡¡“&M:tèPDDDDD„R˜’’Ò®];WWW//¯®]»~þùçfõ?úè#ooo‡   ñãÇÿñÇÊÞ²²²Ù³g‡‡‡7nÜ8888>>þ·ß~B¼øâ‹C† BôèÑ#4ôßã©xâ‰'üýýŸxâ‰TÓªÐÐЉ'&%%5iÒÄÙÙ¹k×®_ýuyyù›o¾Þ¤I“Þ½{Ÿ8qÂøÇŽ:th³fÍ|}} ðÝwß™õ?üЯ_?//¯V­Z%%%ݺu«ªóSÕíÙ³'&&ÆÛÛ;((èÕW_5ž ™Ó¸|ùrFµmÛvÚ´i¦Í¨¾ýf>ýôÓjî¶\²dÉ–-[üñiÓ¦™–ÇÆÆ®_¿Þ´Á¨1Ô4­V«vàîÔÈ®â/Cj¤ÎÝòððèÔ©“eyHHȰaü¼¼BCC_~ùeƒÁœœ,„xì±ÇfÍš5}úôððp!ÄæÍ›õÛ´iÓ¨Q£ &¼ÿþûO<ñ„">>^Ù;|øpFÓ¯_¿·Þzë©§ž²··ïÚµ«Á`8zôè_þò!Ä¢E‹233 CFF†ƒƒÃC=”˜˜8iÒ¤¦M›:88dddTÕª///ŸwÞygîܹÞÞÞÎÎÎÝ»wïÒ¥KJJÊøñã5MDD„òò;v8;;‡††N™2eêÔ©-Z´°··OKKSönܸÑÞÞÞ××wüøñ¯½öš¿¿¿V«B|ñÅ–秪#Rš¤ÕjÝÝÝ-Z¤Ü ´Væ4 !žxâ‰7ß|³wïÞBˆž={êõú;¶ßÌ©S§„Û·o¯tï?þèèèøûï¿›íÊËËBlÙ²EòWè~ÿmö»žàXólö— @Ãe­ÁQ1kÖ¬ŠŠ ¥$,,L«ÕÞ¾}[Ù¼r劃ƒÃøñãMëoذAÙÔëõmÛ¶}衇 õk×ìííGm|ó—^zÉÛÛ»°°Ð`0ddd!vïÞm0nÞ¼RTT¤Ô,**  »yóf¥­ iÔ¨ÑÉ“'•Í !"""nݺ¥”ôèÑCQRRróæÍ-ZDFF–––*»nܸѭ[·°°°òòò7nœ?^Ù[XXXip¬þˆ”F~ùå—Ê®òòòðððàà`ùÓ8wî\ã;'%% !ÒÒÒªo¿e¦¦¦ !.]ºTÉ/Rqq³fÍìíí•°nÉÛÛ{òäÉ’¿BGy\ªX­€€€3fØÙýûËîÀYYYÿžZ\\,„0¥6lØ0ågFyíÚ5!„F£Ù³gO~~¾²wÕªUEEEfŸ˜•••———˜˜èíí­”x{{'&&ž={ö矮´UBˆ.]º´lÙRùY¢{þùç•eÎMiiéáÇOŸ>””äââ¢ìrrrJHH8{ölVVVVVV~~þŸÿügeÀOù ×_½Ò3sÇ#ÒjµƒV~¶··oß¾ýõë×%O£ÚŒ›ÉÉÉnnnéééÕ·ß²‘ùùùNNNÊtiSƒá…^0»µÑ²ëÏ;Wã¿Q 8¬–N§3Ígžžž‡NNN~öÙg;tè^^^nZ_¹°kd|­‹‹ËÒ¥KÏ;Ú¶mÛqãÆmÚ´©ÒÛOŸ>-„0ÞR©h×®q—e«„Æ”)„Pò¢e‰â—_~B(—˜†.„8wîœra×l‰²Š¥;‘Ù©°··—?­[·nÔ¨‘qÓÕÕU§Ó9s¦úö[6òÂ… ^^^–å‹-úꫯ,om4õàƒšÝ²‰Ár<«åááaüùæÍ›C‡ݺukçÎû÷ï?xðànݺuèÐÁ´~53£'L˜0lذ¯¾úêûï¿ßºukjjªN§ËÌÌôóó3­f0„Æ´PI]·oß¶lÕ]QÒØÂ… -WoÕªÕ?ü`ùÑf Uþˆª:2§Ñ’ƒƒÃõë׫o¿å«œ-Óù?þ8}úôÀÀÀµkך¬©[·n5nÜøÞÎ3ªAp؄ݻwoݺuéÒ¥'N4š •U¥¸¸877W«ÕÆÇÇÇÇÇëõú+V$$$¬\¹R™)bÔ¢E !ÄÑ£G{õêe,ÌÎÎBètºû<åÍxàÇÜXxâĉ£Gzxx<üðÃBˆŸ~ú)::Ú¸÷È‘#÷yD÷pOœ8qûömã@iYYÙÉ“'£££«o¿ågùûû_¾|Y¯×ãï¥K—ž{î9ƒÁðÅ_(Š©¦ËÂÂÂîó„ת6áüùóBe °bÆ ׯ_WÆ«—““óÈ#,^¼XÙ´³³S™1uèСY³f)))—/_VJ.]º´dÉ’ààમËkß¾½N§[¼xñ•+W”’’’’˜˜˜I“&5nܸC‡aaaK–,ùõ×_•½EEEï½÷Þ}Ñ=œÆ¢¢¢””ãæìÙ³KJJž~úéêÛoùYáááz½Þx¦Á`5jTAAÁ»ï¾kº¼¥òòò‚‚ÓF¢¦0â° ½{÷vuu;vìˆ#‚‚‚öîÝ»sçNŸÝ»woÛ¶-&&¦š×vêÔ©M›6óæÍ;{öl›6mrrr¶mÛæååõüóÏ›ÕtrrJIIQnþ{æ™g úuë ׯ_ïäätŸ‡ààà°téÒ§žz*""â™gž¹}ûvFFFAAÁ_|aooooo¿hÑ¢gžy&22òÙgŸutt\·n]QQÑ}Ñ=œÆ€€€™3gþøã{÷îýöÛo»uë6jÔ(;;»jÚ_égÙÙÙíÛ·OY 3--í믿nܸñ•+WÞ|óMË“óî»ï*?ggg—––öíÛ·Fƒ „`ÇZ`³Sô4\ÖºÏ!CLK233»wïîææÖ¼yóøøø¢¢¢U«Vùøø<þøã•Ö=z´‡‡‡òsAAÁ˜1c‚ƒƒœœš5k6|øpã:¦Ëñ(~üñÇøùùùùù 0`ÿþýմʬD¹¸¼jÕ*cÉìÙ³…¿ýö›²™••5pà@OOÏèèè;v˜¾Û?üзo_e&²»»ûúõëEë8VsD!!!±±±¦•GŽéíí-333{õêåîîÞ²eË)S¦Ü¸qÃøVÕ·ßÌ£>:vìXåç¥K—V“gœ¯Z¼x±¯¯o¥KüTŠåxäi CôVæÖ­[ÿûß·mÛ–——çééÙ¶mÛ×^{M¹ñÂÔúõëÓÓÓsss7nÜ«W¯¤¤$Ë*¥ÓérrrÔ>J¸ 5ò‡Kò9Ôw|ž5jDaaáƒ>xÿÜw+44´}ûö›6mª‘wKKK›0a¯¿þzWÒ±cÇAƒY>غ*÷ðûo³ßõ6w©º¢¢â…^ÈÊÊ ŒŠŠº|ùòöíÛ¿ýöÛ¿ÿýï;w6VKIIY¹r¥««kçÎóóó7nÜxúôé5kÖ—ž˜!Ö+ÊÒß ]llìo¼‘‘‘ñì³ÏJ¾$;;ûäÉ“_ýµÚm·N679fݺuYYY111ß~ûí²eËÖ®]ûé§Ÿ !f̘a¬““““ššêçç÷Í7ߤ¦¦nß¾}Ô¨QÙÙÙ‹-R»ùØGGÇeË–½ûî»z½^ò%ÉÉÉÉÉÉþþþj·Ý:Ù\pT֦ᅌKÞwëÖ-<<ü_ÿú×¥K—”’ôôt½^Ÿ˜˜èëë«”L›6ÍÝÝ}Û¶mò¿¸Ø ˜˜˜nݺÕà2dÈ!ÇŽ“©\TTäëëkúÜÔ,›»T­úè#µÏ5³¹ÇAƒ9;;Ï™3gïÞ½eee………3gÎ<þ|\\\“&M„ƒ!77×ËËËì1GÊ× Ô>uØÜˆ£N§[»víèÑ£Gm,9räôéÓ•ŸKKK+**,—°wwwÿ=TYý§˜•ØæÜ+¬Àý?õÇjØ\p,))™7oÞõë×[·nݶmÛâââÝ»wgdd<òÈ#ýúõB”•• !\]]Í^èææ&„¸zõªÌ§°–_ë6%m.8N:õ§Ÿ~š6mÚ‹/¾¨”>÷Üs“&MÚ¼ysXX˜‡‡‡F£)--5{áµk×ÄÆlmÝãøûï¿ÿý÷?ü°15 !ÇûömeµRwwwˑŒ’!„qž5€­±­àX\\,„ 1+ BèéççW\\¬$E£¼¼½bÅŠFõîÝ[©·råÊåË—÷êÕK™“ššzñâÅøøxGGGµ¨y†Åi&ï4,~¬Ò½Õì‚5±Ù›ýÈÓ˜½Y½‹/ÆÆÆþúë¯!!!­Zµ*..þé§ŸôzýŒ3FŒa¬¶zõêùóçEEEåççïÛ·¯U«V«W¯¶\¦Ç’Í>ø ]¥‘Ô–lö»Þæ‚£¢´´tåÊ•»wïÎËËóôôlٲ嫯¾Ú¶m[³j[¶lÉÈÈÈÎÎèÒ¥Kbb¢2úxG6ûË+`IP)›ý®·ÅàXÛlö— ÖÁIP›ý®·­É1îH¹ß‘Ô¨:&$¨‡lkr €†îÒæPÉš^ƒóÔnì}©~Æ’`H€ŽþKý¿T-“åóe}VMv¬·½Àºq©Àÿ1#JjQ»E¶®Ò^ 5P ÁÀ¿YƲc}`Ö ¤F*âR5!ªŽ#w¼ÓΚH^à®û»'½`;} ~"8¸Ã V-å•ú™ÒîøqjÝ=IjP['Gj)¯ÔÛ”V1â >àGÀÖDê?c^ä®Sê"8@½f6ÊHv "‚#Ô_•^›&;P Á@%dr Ù¥¶UsG#Ù€*Ž*qÇ\Â,ÚvÇ3ÌùP÷Ž*WMv$5ÖÎ0€zˆåxT©Òõ_ÔM^ƒódÖè©û5ºÀTÇ,;Ö‡±Æú ëçJæPŽîÀìywä$Ƀ5 Ù¬dÀ:ܙٸ#O|‘!ó —ú0‚ òŽîÌvžwW³‘·ú“f 瀕!8¸³çÝ÷ª±w®o“µqy½ª“FjÐTÇòyw—6×Ì;ÛÎM–'Ô bGUª*ßðÌ’{`Sãs·ëx2xݬš 5…KÕj‹eت§íY¾ç}†¼C°Gµ¢ª°UÛÙ±FB“Á R\ªð_êà‰‚µwÍZÔÜ’Ú5þ†`ŽþOÌà …¤1hˆ¸T  †© •´Zƒ×Ákü À 4x–s·ëÛ€u 8hØj|îvÝL€†ˆà «ñ¹Ûu9‚#€†JfoV†à ¡ªñ¹ÛL€ê±¨†' hXŽ ŽY5ê—ª …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GHqP»ê8zôèG}tüøñk×®étº„„„®]»šÕY¿~}zzznnnãÆ{õê•””äéé©vÃTc‹#Ž;wî|þùçwîÜéëëyøðáQ£FíܹӴNJJÊŒ3Μ9Ó¹sg77·7¾üòËeeej·@5ƒÁ vêÔÕ«Wûöí{ûöíO>ù¤cÇŽBˆììì#F4iÒd×®]vvvBˆœœœ!C†øøølذÁ××W1gΜ5kÖŒ9ræÌ™wüN—““£ö€Úb³ßõ67â¸qãÆ’’’W^yEIBˆvíÚÅÄÄ\¼xñèÑ£JIzzº^¯OLLTR£bÚ´iîîîÛ¶mÓëõj€:l.8þðÃfÈ!¦… ,ÈÉɉˆˆP6€jlîYÕŠ7®Y³&??ßÓÓ³mÛ¶ -Z´0«³eË–ŒŒŒìì쀀€.]º$&&*+òÜ‘Í>¿a³ßõ6k•Íþ2`#lö»ÞæîqÀ½!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRÔn€úîTl Y‰vC¡Ú¨€à JJd´Œ‰§bÉŽ`ƒ¸T  rJ:¬4 j7ZC¬ÁÀ½ ;€ "8@ ÷8¨„ßÅÈ| ¨ÁþK¥¡ÙÆ“4(¸T  6{ cUÑfO˜"8À¿U?¬Hv‚#€{Á¥[°AG•SØ*c³ÊÔh•5‹É1ª¤)¦›8ù€-#8¸ÉI2¡ÔÀÆq©RŽBp€«~Á®S€­ÇÂÂÂŽ;&%%YîZ¿~}\\\ddä£>:}úôË—/«ÝXµ®Ò¹äJ ©lzrŒÁ`xã7®]»f¹+%%eåÊ•®®®;wÎÏÏ߸qãéӧ׬Yãââ¢v«Ô.˹äDFPØtpüÛßþvàÀËòœœœÔÔT??¿ 6øúú !æÌ™³fÍšE‹Íœ9SíV¨ „E°d»—ªOŸ>’’Ò²eKË]éééz½>11QIBˆiÓ¦¹»»oÛ¶M¯×«ÝpuØhp,//Ÿ:uª§§ç´iÓ,÷½f͵@6w©:==ýÈ‘#;vÌÌÌüðÃ?ýôÓM›6yxx|ðÁ'OžTêää䤦¦úùù}óÍ7©©©Û·o5jTvvö¢E‹Ôn>€jl.8~óÍ7Bˆ·ÞzË8vØ¢E‹W^y¥¢¢bÏž=JIzzº^¯OLLôõõUJ¦M›æîî¾mÛ6½^¯ö¨Ãæ‚c^^ž««këÖ­M [´h!„(((P6Ø\plÕª•Yɾ}ûRSSœœ† "„(--­¨¨ððð0«æîî.„¸té’̧èt:³’œœµÜ ˯u›esÁÑTEEÅ矾`Á‚ŠŠŠÅ‹{{{ !ÊÊÊ„®®®f•ÝÜÜ„W¯^•ygb"VÃòkÝf£¤íÇýû÷Ïš5ëÌ™3sçÎíÞ½»Rîáá¡ÑhJKKÍê_»vMügÜÀÙbp¼uëÖÂ… ×®]ëììœðÒK/™®Îèàààîîn9²XRR"„0γ°56õzýäÉ“wìØÑ·oßäääJƒ ŸŸ_nnnIII“&MŒ…yyyÊ.µ@6·ÏÚµkwìØ1|øð>ø ªáÃ>}úTTTìÚµËXb0233===###Õ>uØVp4 Ÿ}öÙ<ðÆoTS-..ÎÎÎnùòåÊ}BˆÔÔÔ‹/6ÌÑÑQíƒP‡m]ª.**:w‹Ëˆ#,÷>ýôÓ#GŽB&%%ÍŸ?ðàÁQQQùùùûöíkݺõرcÕ>ÕØVp<þ¼¢¬¬ìرc–{«…cÆŒñññÉÈÈØºuk@@ÀÈ‘#•yl“Æ`0¨Ýk£ÓéXÇ+f³ßõ¶u#îÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp¬Òúõëãââ"##}ôÑéÓ§_¾|YíáÞét:µ›stJýD¿ÔCt ê‚cåRRRf̘qæÌ™Î;»¹¹mܸñå—_.++S»]ª!8V"'''55ÕÏÏï›o¾IMMݾ}û¨Q£²³³-Z¤vÓTCp¬Dzzº^¯OLLôõõUJ¦M›æîî¾mÛ6½^¯vëÔAp¬ÄÁƒíì좣£%ööö={ö,..ÎÊÊR»uê 8š3 ¹¹¹^^^^^^¦åZ­VQPP vÔá vêÒÒÒŠŠ ³rwww!Ä¥K—dÞ„põRÑ)õýRÑ)¨'Žæ”©Ó®®®fånnnBˆ«W¯ÞñrrrÔ>€šÇ¥js¦´´Ô¬üÚµkâ?ãŽ6ˆàhÎÁÁÁÝÝÝrd±¤¤Daœg `kŽ•ðóó+..V’¢Q^^ž²KíÖ¨ƒàX‰>}úTTTìÚµËXb0233===###Õn€:Ž•ˆ‹‹³³³[¾|¹r_£"55õâŋÆ sttT»uêÐ µÛP­^½zþüùAAAQQQùùùûöíkÕªÕêÕ«-—é°Ç*mÙ²%###;;;  K—.‰‰‰ÊŠ<¶‰à)Üã)GH!8@ ÁRŽBp€‚#¤kÌúõëãââ"##}ôÑéÓ§_¾|YíÙ–²²²¿ýíoƒ jß¾}TTÔK/½´gÏËjt“Z ;v옔”d¹‹N©{G}íµ×z÷îݹsç‘#Gî߿߲ýR—nݺõñÇ:422ò±Ç›8qâéÓ§-«Ñ)uàìÙ³:î矮t¯LXw7Ù¿ýöÛj·Á¤¤¤,X°àÚµk;w.++Û»wïž|òIžm]7ÊËËGµaÃ†ŠŠŠ.]º4iÒäÀ›6m²³³ëÒ¥‹±ݤƒÁ0a„¼¼ÿüs­VûüóÏ—––*%§NêÒ¥Kxxø‰'”ºIE«W¯ÖjµZ­vÊ”)¦åtJÝ»råJ§N""":¤”üüóÏmÚ´éÞ½{EE…RB¿Ô1å/ØÄ‰oß¾­”üøãáááýû÷7Ö¡SjÛÕ«W<ø—¿üEùcuäȳ 2]` ÝĥꞞ®×ë}}}•’iÓ¦¹»»oÛ¶M¯×«Ý:›ðÍ7ß!Þzë-¥¤E‹¯¼òJEE…ñ‚5ݤ–Ó§O§¤¤´lÙÒrR÷6nÜXRRòÊ+¯tìØQ)i×®]LLÌÅ‹=ª”Ð/u,++Kñ /888(%ݺu ÿ׿þuéÒ%¥„N©mO>ùäˆ#¾øâ‹ª*Èt-tÁ±}úôéÓÇô¾R#™.°‘nrP» ^iiiEE…‡‡‡Y¹»»»øïA¢ö´jÕʬdß¾}©©©NNNÊÈ Ý¤Š#GŽ|üñÇ#GŽìÞ½»’ãMÑ)uïÖ­[üñÇÃ?üöÛo§¥¥Ë›6mºtéÒ6mÚúE :níÚµ£G=z´±päȑӧOW~¦ST'Ó6ÒMŒ8Þ/å_ê®®®fånnnBˆ«W¯ªÝ@›SQQ±fÍšøøøÒÒÒyóæy{{ ºI eeeS§NmÚ´éäÉ“«ª 蔺õÇ!rss·nÝ:þüýû÷gff&$$üïÿþïĉ•¡_ê^IIɼyó®_¿Þºuëçž{®_¿~...;wîT*Ð)ª“éé&Fï—‡‡‡F£)--5+¿víšøÏ¿3Pgöïß?kÖ¬3gÎÌ;×x« ÝT÷æÏŸþüù´´4ãŒ%3tJÝsvvV~˜7oÞc=¦üüÚk¯nܸñë¯¿Ž¥_êÞÔ©Súé§iÓ¦½øâ‹JIaaásÏ=7iҤ͛7‡……Ñ)ª“éé&Fï—ƒƒƒ»»»å¿$JJJ„ÆyU¨m·nÝš3gÎ /¼PXX˜°mÛ6Óœé¦:vàÀ´´´qãÆç[X¢Sêž«««³³³‹‹KïÞ½MËûöí+„øå—_ýRç~ÿý÷ï¿ÿþá‡6¦F!D``àøñãoß¾½iÓ&A§Ô2]`#ÝDp¬~~~ÅÅÅÊo†Q^^ž²KíÖÙ½^?yòä5kÖôéÓgÇŽ¯½öšå(ÝT—”‡^¬X±B÷C‡BlÞ¼Y§Ó 4H©F§Ô=___GGGFcZ¨üÿR^^®lÒ/u©¸¸XbV&„(**R6éÕÉt-tÁ±ôéÓ§¢¢b×®]ƃÁ™™ééé©vëlÂÚµkwìØ1|øð>ø ªÕÑMu)88xàëÑ£‡"00pàÀ={öTªÑ)u¯wïÞ%%%§N2-T 1®µI¿Ô¥{{ûÓ§O Óòœœ!ÄÃ?¬lÒ)ª“é›è&µW ·ÿû¿ÿÛ²eËüñÇJÉÊ•+µZí‚ ÔnšMÐëõ}ûöíØ±cYYY5Õè&u;vÌòÉ1tJÝ;qâ„V«‹‹+..VJ²³³###;wî|ñâE¥„~©cãÆÓjµK—.5>¼çÔ©S<òH›6mrss•:¥Î¼õÖ[•>9F¦ l¡›4†ÿþ'îÍêÕ«çÏŸ•ŸŸ¿oß¾V­Z­^½ÚrZ>jÜï¿ÿåââÒ¼ys˽O?ýôÈ‘#•Ÿé&?~|èСƒ^¸p¡i9R÷>úè£%K–¸»»wêÔ©´´ôàÁƒfáÂ…111Æ:ôK]ºxñbll쯿þÒªU«âââŸ~úI¯×Ϙ1cĈÆjtJݘ1cÆúõëÓÓÓ-oÑ–é«ï&û·ß~[í6XƒÈÈÈ .ìÞ½ÛÁÁ!&&fþüù–+£6ääälܸ±¼¼ü÷Ê´lÙÒ8K†nRQQQѺuët:]ÿþýMË锺שS§ÀÀÀ³gÏ;vìæÍ›<òÈ’%KºvíjZ‡~©K7~æ™g„¿ýöÛ‘#Gn߾ݩS§ (“–Œè”º±sçÎ'NÄÅÅùûû›í’é«ï&F …É1Bp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@Êÿ®ÇtÏx ÁIEND®B`‚statistics-release-1.6.3/docs/assets/procrustes_301.png000066400000000000000000000632721456127120000230750ustar00rootroot00000000000000‰PNG  IHDRhŽ\­AfIDATxÚíÝ{\TuþÇñï ˆ)Ѐà ƒµLW KM¼ßKsÍ ³4R×Ke¢È̘­™Ù^RM]© WÝRÌ{¦æ5¼®â2ò)ˆ\æ÷ÇÙ=;;3 ˜áÌåõ|øðÁ|Ï™™ï9g†óæsÎùÁ`@U<ÔîœÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠx©ÝÇuüøñ?üðäÉ“·nÝÒëõÉÉÉ;wV»SªÑ µûàˆ¾þúë^x¡¢¢"&&¦qãÆ{öì)++ûàƒ~øaµ» ‚£¿þúk¯^½JKK?þøãŽ; !Ž;öÄO4jÔè›o¾ñðàø>pGd 6nÜXXXøì³ÏJ©QѾ}ûÄÄÄ_~ùåøñãj÷@T-?~üþýûwîÜ¢v_ÇXpâĉ€€€C‡9räæÍ›­[·îÕ«—¯¯¯Ú]P GSwïÞ‰‰¹ï¾ûî¿ÿþÌÌL¹½E‹íÚµ«òôz½Ú ì+77Wí.¨€Š£©ß~ûMqîܹ‚‚‚wß}7!!áÎ;6løãÿ8uêÔÍ›7+©;:ã‡I¯×;c·+¼Ž±Âë+¼Ž±Âë˜Û‰¸8Æ”ôüyó† âïïòüóÏ:ôÊ•+_~ù¥ÚPÁÑ”ŸŸŸ¯¯oÏž=Û{õê%„øá‡Ôî €:Ž׫WO£Ñ7JG¨ËÊÊÔî€:ŽôìÙ³°°ðÌ™3ƇB´nÝZíÞ¨ƒàhÁСC…¯¾úêõë×¥–ãÇüñÇ7îÝ»·Ú½PÃñXöá‡.^¼¸qãÆ:u***úöÛo5Í‚ «|.—¶àÚÜv_Ïp<–Mš4I«Õ~òÉ'{÷î xä‘G’““###Õî€j¨8ÚžÛþ€›pÛ}=ç8@‚#!8@‚#!8@‚#aG‡ ×ëÕî€êqÏ‘8¸9‚££`'8þØàž8T EŽP„àEŽP„àEŽP„àEŽP„àEލ¶%K–h¬Úºu«Ú}TJ§Ó9Rí^üÛ;w¢¢¢Ž9ráÂ…† jµÚ‚‚“yžyæF3oÞ¼‚‚‚æÍ›ççç«Ýk€á–ƒ¨¶:Ìœ9S~¸téRÿßÿþ÷rKxxxwéСCo¿ývZZZÛ¶mÕ^=5÷æ›oÆÇÇÇÇÇ !Þyç^xaúôé«W¯–gصk×Ê•+;wîôÐCÕz¢N§ëÔ©ÓúõëUì¼äçŸnÙ²åž={:vì(„0 »víÚ²eKß¾}…%%%íÛ·ÏËË;räˆt£äëׯ‡††îÚµ«sçÎjwßíØä; Ày¹í/U»ƒAh4Öf°>5V^^^^^^ËùàƒZµj%¥F!„F£ùøã4hðì³ÏÞ¾}[ñÖ[o9sfîܹRjBöïßÿ½÷ÞS{ÜÁÑ¥XÉŽªÔ#ÓÓÓÛ·oïççعsç5kÖÈ“t:ÝôéÓ:+58p oß¾íÛ·ýõ×—/_®Ñh¾ÿþ{iê‰'† Ö²eËààà¾}û~õÕWRûSO=5`À!DBB‚N§3ïFqqqZZZtttƒ ÂÂÂ’’’~úé'ãöìÙ“˜˜¨Õj›5köÜsÏýöÛoÊáý÷ß÷÷÷¯_¿~LLÌK/½t÷î]y†Ê:lÑŸÿüg“³-ï»ï¾¹sç^ºtéÕW_=~üøüùó{ôè1uêTãyFŒ±~ýzã`GØZTTT<Å ó­j×íìïïß©S'óö””!ÄÃ?œšš:gΜèèh!ÄçŸ.M >|x`` N§{æ™g ÃÖ­[½½½ÃÃÃgΜ9yòdÿàà`!ÄÑ£G ömÛ|||t:ÝÌ™3gÏžééé™™™i0Ž?žšš*„˜?~NNŽyOÆŒ£Ñhz÷îýÊ+¯ <ØÓÓ³sçÎr7¢¢¢7nœœœ¼páÂîÝ» !¤þ(Y„fÍš !úõë÷òË/÷ìÙSÑ£GŠŠ ë6wæÌ!ÄÖ­[MÚËËË»uëæááÕ°aà .˜ÌpñâE!Ä_|aÇ KlûàtÜö—ÁÑöTކÿMŠöþë ²àUZZ*=¼yó¦——×äÉ“¥‡Ò4©©©åå僡¼¼¼M›6×®]“f8uêTýúõ¥àXRR_TT$M½sçN—.]"""ÊÊÊ ÃæÍ›…;wî4ïÆ­[·<==Ç/·<ýôÓZ­6??_îÆgŸ}&M*++‹ŽŽ S¾sçΕ_yÖ¬YBˆÌÌÌ*;lbÅŠBˆëׯ›O:s挗——â½÷Þ³¸þµZíŒ3ì»aÆm÷$nûK€CÕ®I>f­Ö3Bˆƒ>|X =Bˆk×® !ŠŠŠäBCC_}õU!Ä‘#GN:5mÚ´ÀÀ@ijttôˆ#¤Ÿ9röìÙY³fùúúJ-ÞÞÞÉÉÉ.\8|ø°õnxxxh4š={ö\ºtIjY¹reAAAhh¨ô0**jРAÒÏžžžqqqÒ9…JA mòÔ””† ~úé§Õíð¥K—¼½½Ì'>|¸¬¬LêŒÅ ½|ùrÝo_€"8:4¦æÿ„øïÿ5~…Ú8räHJJÊc=Ö¡C‡èèh)Éôz½”…Ò±ÚöíÛÏЮ];é‡~øA!q–3FQefòõõÍÈȸ|ù²N§‹‰‰™4iÒ¦M›ŒÏDŒŠŠ2žßÓÓSù"´mÛV*‹Jüüüôzýùóç«Ûá«W¯Ê‰Ù¤}Ê”)-[¶:tèêÕ«³²²Ìç¹÷Þ{MNÙÀNÇѡզX(ÕÕª8–”” 6,;;ûþûïïÓ§Ï AƒºtéÒ¡Cãyüýý埓œLÎpR8[°`ALLŒÉ|øæÍ›wìØ‘½bÅ ½^Ÿ““Ó¤I!„OÁœ——×íÛ·«Ûa‹k`Ò¤I×®][µjU§NvíÚ5iÒ¤nݺiµZãyîÞ½Û Am7¬!8º&9/ª•wïÞ‘‘a|°I¹ÎXëÖ­…'Ož4ˆñäɓґ‘‘Bˆ{î¹çÑG•§ž:uêøñãÆéÓ¢k×®;w.***)))))©¢¢bÙ²eÉÉÉË—/—®}©Í"œ:uª´´´^½zÒÃâââÓ§O'$$T·Ã!!!7nܨ¨¨K°BˆÕ«WöÙgcÇŽMLLB,^¼øÉ'Ÿœ¸hÑ"顇‡GBB‚BN{µY„‚‚‚ôôtùaZZZaaáСCvX]QQ!Ÿ…)„ÈÏÏá…´Z­üúãÆëÝ»÷úõë×­['ÏVVV–——gÜI쇊£«±X_¬ûºcÏž=ýüü&NœøÄO4kÖlß¾}_ýuPPÐîÝ»·lÙ"•ÐŒy{{§§§9²cÇŽ#GŽ,..^µjUÇŽ÷ìÙãëëëåå•‘‘1xðàØØØQ£F•––feeååå­]»V:œ-•ñ>øàƒ«W¯>þøãƯܩS§víÚÍ›7ïÂ… íÚµËÍÍݲeK``àèÑ£k¿¡¡¡¯½öÚÞ½{ccc÷íÛ·}ûö.]ºŒ7ÎÃÃÃz‡ÍßËÃÃcÿþýò8”'N¼qãÆš5kŒLøá‡íÚµ›2eJBB‚tœýرcEEE½zõª»M pgj_Öí‚TŽÇúö´ÓÖ®l8žœœœ®]»6lذU«VIII+W® zôÑG Cxxø!CLžòÕW_uïÞ½Q£F]ºtùä“OÞ}÷]!ÄÏ?ÿ,M=|øpÿþýCBB¶mÛ&?±¢¢bôèÑ5êСƒyOòòò&L˜æííݲeË1cÆœ>}Zš>bÄã™ÇŽ«Õj•/BNNÎC=Ô¸qãÖ­[Ïœ9óÎ;òKYé°¹ßýîw'N”~þÓŸþ$„HLL4ŸM*4H~lqˆؕێÄ@â¶¿¸Wµí¹Û½ªm¢´´ôرc¡¡¡M›6•'Ožü׿þõ×_•Äq(:...nÓ¦M6yµÌÌÌ)S¦üøãÞÞÞÊŸÕ±cÇH㟣.¹ímjHÜö—ç8ºçMBOOÏ^½z=ñÄr˯¿þºiÓ¦þýû;fj´¹#F4lØÐâ€;•9vìØéÓ§Ÿ{î9µûpG8äää;wŽ1"333==½{÷î·nÝúÃþ v×êH½zõÞ{ï½·ÞzËâ%>¥¤¤¤¤¤„„„¨Ýw€»p‹ZœÂo¼ôÑG%%%Õ«W/>>þOúS§NÔîW¥¥»ÚÊ!C:tâÄ “Ð-*((6¾o öÆ9޶§Ö9Žê ßYÀ͹í/U@‚#!8@‚#!8@‚#!8@‚#!8@‚#!8@‚#j¨¬¬ìã?îÞ½{hhh£Fâââ’““óóóÕîW­ètº‘#GªÝ‹»sçNTTÔ‘#G>øàFÓ§Oóyn߾ݬY3Ÿ³gÏ4oÞÜÙ7À‘]”Fó?ÿlÍ`0 <8))©¸¸ø‰'žHNNnÕªÕòåË£¢¢Nž<©ö»ˆ7ß|3>>>>>~Ò¤I;wÞ¾}ûgŸ}f2ϼyóòóógÍš4a„äädµ;pY^jwv`ž5a0ØðV¯^=kÖ¬ùóçËGíÖ­ÛSO=uðàAµWÓûùçŸ/^¼gÏ!„‡‡ÇòåË;uê4}úôG}ÔÇÇGšçÒ¥K . Ÿ3gŽÔ2mÚ´ÐÐÐtîÜYí%¸ *Ž®ÅJ}ѦuG)И·âââFŽùÝwßݺuKí¡¦òòòòòòZ¾È|ЪU«Ž;Jãââ^xá…‹/.Z´HžçÅ_¼sçÎ’%K|}}¥–ÀÀÀþýû¿÷Þ{j¯€k"8ºÛeG)8q¤ýÝwß=vìXýúõå–ƒöë×/$$¤iÓ¦ýúõ3.FšŸPøÔSOÈS§OŸ~èÐ¡ØØØØØX©ñèÑ£lÒ¤IHHÈ AƒŽ;&?÷ĉÆ kÙ²epppß¾}¿úê«Ê:_\\œ––Ý Aƒ°°°¤¤¤Ÿ~úÉx†={ö$&&jµÚfÍš=÷Üs¿ýö›<)==½}ûö~~~;w^³fñâLŸ>ýý÷ß÷÷÷¯_¿~LLÌK/½t÷îÝôPñç?ÿÙdå¼ùæ›Í›7Ÿ;wn^^žb÷îÝëÖ­ëß¿ÿ AƒŒg1bÄúõëû €Í`kQQQu𠄨úŸlݺUáíí=yòäþóŸÅÅÅgËÊÊòòòjÞ¼ù´iÓ¦OŸÞ¢E //¯¬¬,ijxxøˆ#Œç?~¼¿¿¿pàÀF !<<<ä4³oß>!DFF†ñüéééBˆƒÇÐÐP)5 †C‡ !–,Yb<ÿǼ~ýúýû÷ !þö·¿OúÛßþ&¿‘±¢¢"//¯ÈÈHãŒ+“*ŽÆ-£GÖjµÒÏ¿üòË­[·äIçÏŸ÷òò’3hxx¸V«•2±äÖ­[ 6:thµzh0^yåooo‹+ü_ÿúWƒ „­Zµª¬Ð3räH%›5æ¶û ·ý%À9ŽŽÍ`¨Æ?›¿¦íÛ·Ÿ6mÚçŸ^PPðé§Ÿ†††¦¤¤lÛ¶MqöìY!„|z¢<¿<©Jz½ÞÃãßQéèmLLŒñ &L1bÄ?ü „@ËÆŒ#„¸|ù²Ékúúúfdd\¾|Y§ÓÅÄÄLš4iÓ¦MÆg"FEEÏïéé)ÿpäÈ‘”””Ç{¬C‡ÑÑÑeeeÆ3·mÛÖøüN???½^þüùjõPqõêÕÀÀ@‹ë$,,ìùçŸB¼ñÆòåÕ&î½÷^“³6° †ãq3¶”çÖ­[O=õTŸ>}¤¦’úõë92  wïÞ_~ùeŸ>} ƒBó¿WäH9¬´´Ôâ+—””?ô÷÷—–²——…O¬”Õ,X`+…mÚ´1ŸÊ”)Çß¼yóŽ;²³³W¬X¡×ësrrš4i"„¨,•”” 6,;;ûþûïïÓ§Ï AƒºtéÒ¡CëëÊËËëöíÛÕí¡q–5,„ ªl†»wïJUIl‹àˆjóóóÛºuk^^žqp”hµZ!„”Z"##…Ç衇ä¤ë õz½ô°¢¢ÂøéV*‘R!ðÔ©SÒ+’yóæ6LqÏ=÷<úè£ò¤S§N?~Ü8zJ®]»vîܹ¨¨¨¤¤¤¤¤¤ŠŠŠeË–%''/_¾\ºö¥2»wïÎÎÎÎÈȘ:uªÜhRq>¾eË–………RË… RSS¯\¹§×ë-ZtóæMiRaaabbâôéÓÍ o¹¹¹>ø <¢‡‡GBB‚BN{•¹råŠBº’Z²aÆ۷oŒV{AAt§$--­°°pèСÕê¡ô.—.]ªÁÖ)++ËËË3î'¶BÅѵ •ÖhÓX™žž~âĉ×^{í/ùKÇŽCCC¯\¹²gÏž«W¯Î™3§k×®BooïôôtétÀQ£F †uëÖåçç¯_¿ÞÛÛ[ѧOŸŒŒŒ 2äÂ… üã-–ß$>>>£FêØ±ãˆ#4ÍŸÿüg//¯×_ÝËË+##cðàÁ±±±£F*--ÍÊÊÊËË[»v­ñŠ’N:µk×nÞ¼y.\h×®]nnî–-[Gm}‘{öìéçç7qâÄ'žx¢Y³fûöíûú믃‚‚vïÞ½eË–ÄÄD!Dhhèk¯½¶wïÞØØØ}ûömß¾½K—.ãÆóððPÞCé½<<<öï߯Ó骻iŽ;VTTÔ«W/nnnE£lÐ_C]U+àXÔ¾:ÇA ><ÊL×®]•™¿¿ÿ_þò—*Ÿ«×ësss«õv5xŠ+¹}ûöíÛ·¥k>œ—N§‹‹‹Û´i“M^-33sÊ”)?þø£TU®cÇŽ HMMU{}¸8»~g­Ü[ÞÖ·‡³þa¨ÍG…Š£n»ãæPµ………¿þúkbbbFF†Ú}q ~~~~~~j÷±Œ1âÅ_ÌÊÊzì±Ç”?ëØ±c§OŸþòË/Õî>jE:åÄ|§Lj„±Ê>'‚ 쉋c,†Ö3)7u©^½zï½÷Þ[o½erá¹u))))))!!!jwµe~º2Qæ,žÖÎGvEÅÑéjÖ°°0µ;g’˜˜hÛ?6† rèС'NH£¦W©   88xÆŒj¯ ؆q=‰(€Êi,fGsn~d¶Bp´@ Ž?þøã¸qãNŸ>Ý Aƒ6mÚ<ûì³&7AŒ-[¶Ì毙––¦|æ   ?üPíÕ[’ëIìña…Á`þ´°zv¬¢Ó*-ÈËËB,Y²D§ÓuéÒåÿþïÿvìØ‘““óÆoŒ5JÉ+È\ËÜóZ6ÁNVHÊÒve¾[w[G ~üñG__ß?üáãÆ“ZöîÝûì³ÏÎ;·[·nM›6­òˆ‰jO.# ŠŽ¨„q­±ÆÙ‘zd•Ìwën%¹8Æ‚¿üå/G•S£¢k×®¿ÿýï‹‹‹ÿùϪÝ;nÁ8XÚÎE£L5_óß?(ùœX|;“úÔ^IphG¥xà!Ä™3gÔî×g^:";ºŒ*X®Ñkþ÷ãωqµ˜IЍ.U›2 ÆÃãRµtk¸{î¹Gípq•p¬Í±H¸$³1›4&ír(”"£Úý…+ âhêÒ¥KmÚ´yòÉ'MÚ9"ÜøœuÃz4¤îÉꈣGšÿ-"RJ„]M…‡‡wìØñàÁƒëׯ—9ò§?ý©iÓ¦>ú¨Úಔ uɧ$Ú¤òoatìÛø)|N`'ª¶àõ×_úé§_}õÕÌÌ̈ˆˆÿû¿ÿ;zôhƒ Þyç___µ{Àe±³w@UÖílåó«Õ›/2‡¶Q*Ž´nÝzÓ¦MC† ùå—_¶nÝú믿2dóæÍ>ø Ú]¸‹8 ³ h*ºÚ ÷CÅѲàààwß}Wí^\„Ñ•+ÿ{ŽYÕ£Ü+¨8¢&RSS5——WAAùÔ½{÷J:¯Y³FížV¡{÷îñññj÷B‘>ø@£ÑôéÓÇ|ÒíÛ·›5kæããsöìYµ» ¨ÉÎG¬¬'æ§$Ö2œÝÊÜ–KMj„uG¥Ñü÷ŸÝ”——ÿýï7o߸q£Ú˯”§§§4ÐR•:4tèГ'OªÕÕI“&uîÜyûöíŸ}ö™É¤yóæåççÏš5+22R­îª«lBöÈŽU©m¿(¦d‘¬6DptEÒß¡ò?»ÅÇàà`ãkÏeÿû߃ƒƒÕ^ ŠìܹóСCJæ¼zõjVVÖ/¿ü¢VW=<<–/_îéé9}úô;wîÈí—.]Z¸paxxøœ9sÔêà>,óê>¥ÙiDOʨÁѵHÑüŽöümذa;wî49ZýÝwßýë_ÿ6lXÝ/}yyyyyyí_§¢¢Â&¯có7‹‹{á….^¼¸hÑ"¹ñÅ_¼sçÎ’%K¸ä°-ã®Ô})Q•åu¥Å]Ne_{;dÇ#F”——oڴɸqÆ 5êÕ«—ÉÌìׯ_HHHÓ¦MûõëwðàAy’N§›>}ú¡C‡bccccc¥Æ'N 6¬eË–ÁÁÁ}ûöýꫯ*ë†ôô÷ßßßß¿~ýú111/½ôÒÝ»w•¼uÏž=ås¥×ùðõZ­——W³fÍ&OžüÛo¿ !žzê©!t:¢¸¸8---::ºAƒaaaIII?ýôSe=¬rÙ-¾©Eo¾ùfóæÍçΛ——'„ؽ{÷ºuëú÷ï?hÐ Ûn\ÀÝÔòçÚ¼QuÏGäBP“òÓ# PTTT<Å‚*·¦í6÷o¼!„8wîÜ<ðÈ#OŠŒŒ;vìæÍ›…«W¯–³²²¼¼¼š7o>mÚ´éÓ§·hÑÂËË+++Kš>|øðÀÀ@N÷Ì3Ï †mÛ¶ùøøètº™3gΞ=;22ÒÓÓ333ÓbgÂÃÛ5k&„èׯßË/¿Ü³gO!D=***ª|ë„„„¸¸8ùuÚµkW¿~ý)S¦,]º´_¿~Bˆ¤¤$ƒÁpüøñÔÔT!Äüùósrr Ø1c4MïÞ½_yå•Áƒ{zzvîÜÙb÷ª\öÊÞ´2Òy¥?þxEEE§N|||Ο?o«- …lóUÆUOÛ|'¥pfQɵÌ5~ͺߓÚã ÉÕU—¿ ÛsÜà¨päà8þ|OOÏŸþYj?vì˜"++Ë88–””ètºððð‚‚i¶‚‚‚°°°ˆˆˆ’’ƒÁ.„HMM-//—挌Œ/**’æ¿sçN—.]"""ÊÊÊÌ;#=}îܹrˬY³„™™™U¾µIpBlذAzXQQÓ¼ysé¡´D;wî4 ·nÝòôô?~¼üŽO?ý´V«ÍÏÏ7é›Âe¯ìM+#•?'Nœ(­7›lST ÁÑËeãLf%üÕ8:`p´Ó»«Ëmƒ#‡ªQ+#GŽ4>Z½qãF???“3>|øâŋӦMÓjµR‹V«6mÚ… ¾ÿþ{©%44ôÕW_õððB9räìÙ³³fÍ’OÚóööNNN¾páÂáÇ-vC«ÕΘ1C~˜’’Ò°aÃO?ýTÉ[‹ˆˆ>|¸ô³F£‰¿uë–ùlfÏž=—.]’ZV®\YPPj2§’(|Scï¿ÿ~ƒ >úè£V­ZÍž=».·8à઼ÀY8êè‰*âìF(GpD­„‡‡wêÔI¾¶zÆ  ðññ1žG\P>yQÒ¾}{y’B¯×K©QñÃ?!¤cÁ²1cÆ!._¾l±mÛ¶­_¿¾üÐÏÏO¯×Ÿ?^É[‹ŠŠ2~(wÉ„¯¯oFFÆåË—u:]LL̤I“6mÚd|Veµ–]á› {þùç…o¼ñ†ÉÚ܇ù©®}ñаÏÙ¤FT wŽq'ö9¡zäÈ‘sæÌ)((¸~ýúÉ“'¥£ØÆ¤_I&g|K£'–––JýýýåIR\°`ALLŒÉKµiÓFa¯¼¼¼nß¾­ä­)aS¦L>|øæÍ›wìØ‘½bÅ ½^Ÿ““Ó¤I“ê.{Í’Ÿ4àQPPP ž Ô€ÂáíAÌ;`ò^v @u6f8à¨8¢¶ä£Õ7nôõõMLL4™A•úøñãÆÒÙz½Þü¥ùï¹çžG´hÑâæÍ›ÆùÒØ©S§Œƒ`qqñéÓ§£¢¢ªûÖ ]»víÀÞÞÞIIIkÖ¬¹téÒÒ¥Ksss—/_^ËeY•'?ÙêLŠˆ*Žƒ£ð¬¯:艠ÜÇ@pt!ö¬±J:®cÇŽëׯ߸qc¿~ýüüüLfèСCË–-ÓÓÓoܸ!µ\¿~}ñâÅaaao÷§×ë-ZtóæM©¥°°011qúôé 4°Ø‡‚‚‚ôôtùaZZZaaáСC«ûÖUª¨¨Bäææ>øàƒò`Š BˆzõêÕrÙ7då¬DaÝÔî¦ "5¢8TíZ¤ìhþ‹@ ”vû1räÈW^y¥¼¼\ºœÙ„··wzzúc=Ö¡C‡Q£F †uëÖåçç¯_¿ÞÛÛÛ|~//¯ŒŒŒÁƒÇÆÆŽ5ª´´4+++//oíÚµ•Ý044ôµ×^Û»wollì¾}û¶oßÞ¥K—qãÆyxxTë­­Š|ðÁÕ«W‡ Ö®]»yóæ]¸p¡]»v¹¹¹[¶l =zt-—pm&‡}åÛ®¨Ý/'ÀØpT]Ž|AãÒÍcìF:ZíííÝ¿‹3 6l×®]­[·þë_ÿúÉ'Ÿ´iÓfÏž=C† ©ìûöí»ÿþ˜˜˜Õ«WòÉ':nëÖ­£Fªl~é&Î7oÞ\²dI^^ÞÌ™3wìØ!]eRÝ·®L×®]G½uëÖ Ô¯_Ë–-O>ùäÞ½{ß|óÍ;wöîÝ{Ïž=ÒØàµ\v öªbZùXÓ¶í†ùÕͶMª/²¡Üˆšásc{z½>77×ÞOL§ÓÅÅÅ™ÜÀ°«ºüÎÖ Ô¤0T+:XŸÙb ³þâJÞpóŸõÀÙÇmwܪTOe8“Eœ[ 5FpX#ÇDù2G]²y¹‘ÔˆÚ 8Âé%&&J7îœT•'Þýçò6»ïì­q¶GÚàŒCÀéáô–-[¦v€Ú²zúà¿ NuÝê²EÑK Êp4Gp}•ÕöÈn…ÔˆÚ#8€ RRJäH±ƒcìF8 ‚#8±º,%4åFØÁj¢ÊU7Ñ­ÎJ‰dŽ:V³ñ;•ÌÀ¦DmÀ‡ùGvù°®²Oˆ\n¤lŒZ"8€ú¬”¯ªV»›¨#¶=»‘ƒÔ°!‚#Ô©ÜÁìHÉY‰6/% %¯IZuL”áÈŽ`ê^ˆ@V€ 5ÂŽ`ì°¸µ;ç³dÉU[·n­ã.¥¥¥iµÚ˜˜µ×©ï¾ûN£Ñ¬[·NíŽØ—N§9r¤Ú½ø·;wîDEE9rDTÙ§4((HQPPмyóüü|µ{ ü› SSn„=Pqt O“ªýï‘:Ìœ9S~¸téRÿßÿþ÷rKxxx].ø©S§^{íµnݺMž<¹.ߎéÍ7ߌBLž<¹¨¨Èd†£GþóŸÿ BM˜0!99yãÆêvÛú÷WšH :‚#ª­{÷îÝ»w—®\¹²E‹ ,P«?çÎB¼ñÆ<òˆÚë*ûùçŸ/^¼gÏéajjªÉ ׯ_÷ôô\¹r¥Ô2mÚ´ÐÐÐtîÜY­n[O„ÜwÎ}Pn„ããP5NEEEyy¹òù¥_Ž>>>µ|ß»wïVTT¨½ô¼¼ZÛÝ¢>ø U«V;v´8Õ`0Œ?þòåËo½õV=¤ÆÀÀÀþýû¿÷Þ{j¯ÀfH°‚#ìE§ÓMŸ>ýСC±±±±±±Rczzzûöíýüü;wî¼fÍ“ù?üðC­VëååÕ¬Y³É“'ÿöÛoÒÔâââ´´´èèè „……%%%ýôÓOBˆ§žzjÈ!Bˆnݺét:iæƒöë×/$$¤iÓ¦ýúõ;xð •^étº©S§Îš5«Q£F>>>;wþòË/ËÊÊ^~ùåèèèFõìÙóÔ©Sò+œ8qbذa-[¶ îÛ·ïW_}e¼Ô»víêÝ»w```›6mfÍšu÷îÝÊÖOeK¤dLN(|ê©§¤¯•­ö£G8°I“&!!!ƒ :vì˜ÂÅQÞa!Äž={µZm³fÍž{î9yÛ)Ùîï¿ÿ¾¿¿ýúõcbb^zé%ãõ¦¼‡Bˆ?ÿùÏVζ\¼xñ_|ñ裾ôÒKÆí#FŒX¿~½q‡ºGiÎÁ[‹ŠŠªƒ§˜Sk‹ûûûwêÔɼ=<<|øðá:î™gž1 )))Bˆ‡~855uΜ9ÑÑÑBˆÏ?ÿ\ž¿]»võëן2eÊÒ¥Kûõë'„HJJ’¦Ž3F£ÑôîÝû•W^-=œ?¾"66öîÝ»RK·nÝ„………%%%‘‘‘ñññEEEÒ¤;wîtéÒ%""¢¬¬ìÎ;aaa¡¡¡W®\‘¦æçç7mÚÔbp´²DJÁzp4^À²²²6mÚ´jÕêúõëÒ 999Bˆäädë‹£¼Ãò›~öÙgÒ¤²²²èèè°°0åÛ}îܹò+Ïš5K‘™™Y­ †+V!ä%5víÚµ–-[zzzJ]˜Ójµ3fÌPþ±7ÿÎÚoÌŽÞØj+“ ë Á6Cp”„‡‡‡††ÊùÌ`0üòË/·nÝ’ž?ÞËËKÎ"áááƯ0nÜ8)yyyEFFþë_ÿ2#ãà¸oß>!DFF†ñ éééBˆƒZìUxxx·nÝä‡ß~û­bÞ¼yr‹T0ûé§Ÿöïß/„øÛßþfüâûÛߤß»w¯bÁ‚ÆSçÍ›g18ZY"%‹`=8/à¡C‡„K–,1žÿã?^¿~½õÅQÞaÃ*ŽÆ-£GÖjµ ·»V«•2±äÖ­[ 6:thµzh0^yåoooóöŠŠŠ˜ÄS111#GŽ4(Fp„mŽÛGÎqthšê°ùkÖ¾ÿz½ÞÃ㿟±€€€#Gޤ¤¤<öØc:tˆŽŽ.++3žßäðŸü\__ߌŒŒË—/ëtº˜˜˜I“&mÚ´ÉâéƒgÏžBÈçöIÚ·o/O2ï•B«ÕÊ?׫WÏb‹â‡~BHGlecÆŒB\¾|Y:NjrY†4(Œ9+K¤d”¯v©W&#\N˜0aĈÖGy‡-n;OOOåÛ½mÛ¶õë×—úùùéõúóçÏW«‡Bˆ«W¯š·/\¸póæÍæ§6»÷Þ{MNÙꌭÎnäšÔ†ãqhÕúPgã8*çïï/ÿ\RR2lذìììûï¿¿OŸ>ƒ êÒ¥K‡Œç·reô”)S†¾yóæ;vdgg¯X±B¯×çää4iÒÄ|éLV…bJKKÍ{U-R¸Y°`ùHãmÚ´Ùµk—ù[›$T%K¤dL”””T¶Ú¥lçåeá›n}qª» *ÛvJ¶»9//¯Û·oW·‡>>>æNìÝ»wΜ9M›6]µj••ïÈÝ»w4h §EjDÝ 8¢ŽìÞ½;;;;##cêÔ©r£Iå©2×®];wî\TTTRRRRRREEŲeË’““—/_.G–EFF !Ž?þÐCÉÒEÄz½¾–‹ ½ø=÷Üóè£Ê§N:~ü¸¿¿ÿ}÷Ý'„øî»ïä©G­îõéÓ§ÊE06ÈJ%R*ž:uÊxèÍyóæ6ÌÊâÔx˜P²ÝO:UZZ*Wv‹‹‹OŸ>`}…›¿WHHÈ7***ä¼~ýúõÇÜ`0¬]»VºULe®]»Q½` \L ç¡jÔ‘+W®!¤+j%6l¸}û¶’?‘sss|ðÁE‹I=<<¤p&G Y‡Z¶l™žž~ãÆ ©åúõë‹/ «ì¨±rqqqz½~Ñ¢E7oÞ”Z §OŸÞ Aƒ:DDD,^¼øÇ”¦,Y²¤ºKTå"4hÐàäÉ“ò‡ß|ót"£Eñññ-[¶ÌÈÈ(,,”Z.\¸ššzåÊë‹SãMPƒí^PP Ä)IKK+,,:thµz(½KEEÅ¥K—¤‡ƒaܸqyyyo½õ–qn6WVV–——gÜIÀ¹PnD¡âˆ:Ò³gO??¿‰'>ñÄÍš5Û·oß×_´{÷î-[¶$&&Zyn§NÚµk7oÞ¼ .´k×.77wË–-£G6™ÓÛÛ;==]:—nÔ¨Qƒaݺuùùùëׯ÷öö®å"xyyedd <866vÔ¨Q¥¥¥YYYyyyk×®õôôôôô\¸pá¨Q£âãã{ì±zõê­[·®   ºKTå"ôéÓ'##cÀ€C† ¹páÂÿøG+ß}||222FÕ±cÇ#Fh4š?ÿùÏ^^^¯¿þºõÅ©ñ&¨Áv }íµ×öîÝ»oß¾íÛ·wéÒeܸqÊ{(½—‡‡Çþýû¥=333¿üòË ܼyóå—_6ßšo½õ–ôó±cÇŠŠŠzõêUËOP]”á|Ô¾:ÇqUµ$<<|È!Æ-999]»vmذa«V­’’’ V®\ôè£Zœßøbá¼¼¼ &„……y{{·lÙr̘1ò:ÆWUKöîÝÛ·oß&Mš4iÒ¤oß¾°Ò+“éàòÊ•+å–´´4!ÄO?ý$=<|øpÿþýCBB¶mÛfüj»víêÕ«—4wãÆ×¯_/*ÇÑÊY_„¢¢¢©S§6kÖL:coĈ©©©ÆWU›, Á`سgOïÞ½µZm“&M tâÄ y’õÅQØaó ½ÇŽ+_U­d»çää<ôÐC7nݺõÌ™3ïܹSƒ †ßýîw'N”~ÎÈȰòEðññ‘ŸµhÑ¢àà`‹CüT†«ªa6Ù¸ìÊUá¶WUSܶ=½^Ÿ››k律sÀ‹cÜY~~þ½÷Þ[û2§·oß¾}ûvpp°ÚËZ+:...nÓ¦M6yµÌÌÌ)S¦üøãÕZó;v0`€ù­­0ÿÎÚïX!E)We“-ËAjµØdÇíŒ8ÇÑu(ü[Aínº‹¦M›Ú55 !üüüœ=5Ú܈#6l(¡:vìØéÓ§Ÿ{î¹Z¾µÁ`°É VàÈŽ\G½zõÞ{ï½·ÞzËäÂs+RRRRRRBBBÔî;Ü åF8).Ž ¦ÄÄD鮃¶2dÈC‡8qB5ݺ‚‚‚ààà3f¨½€j#5B|ìlO­sÔ‹ßY;íÈ9ÇÑõPntn»ãæP5N†Ôµ¨;”áÔŽ8ÊPÁ€:Rûr#©ê"8@‚#ur#\Álƒ›ÇÀ®Hp 5gžÍ[ØÙCp15\Ájȼd±&D¡µÇ§‚CÕØåF¸ ‚#ªmÉ’%«¶nÝZÇ]JKKÓjµ111j¯Sß}÷F£Y·n½_Êxj÷îÝããã-Îfe’ étº¡C‡Úüeë¦ó€¢ÜÇÁ¡jסð¬üÚÿöéСÃÌ™3å‡K—.õ÷÷ÿýï/·„‡‡×傟:uêµ×^ëÖ­ÛäÉ“ëò}–§§§§§§ôó¡C‡Þ~ûí´´´¶mÛšLr:Ê;o²Ô€S#5¡«–ŸŸ?pàÀ‡~xÁ‚j÷¥ Uþr±É%ŸÝ»wïÞ½»üpåÊ•-Z´Pqåœ;wNñÆo<òÈ#jõÁ¡ìܹSþùêÕ«YYYÓ¦M3Ÿät”wÞd©uUyœºÊßÌÒ ÄG8UWÁ`0¼øâ‹·nÝR»#n¤¢¢¢¼¼\ùüÒ/SŸZ¾ïÝ»w+**Ô^z‡SÝÍ¡Pyy¹M^ÖNÝ꘡ò$µ;üÁ± ùË_<¨v/œ’N§›>}ú¡C‡bccccc¥ÆôôôöíÛûùùvîÜyÍš5&óøá‡Z­ÖËË«Y³f“'Oþí·ß¤©ÅÅÅiiiÑÑÑ 4 KJJúé§Ÿ„O=õÔ!C„ݺuÓétÒÌìׯ_HHHÓ¦Mûõëg¼Í{¥Óé¦N:kÖ¬FùøøtîÜùË/¿,++{ùå—£££5jÔ³gÏS§NɯpâĉaƵlÙ288¸oß¾_}õ•ñRïÚµ«wïÞmÚ´™5kÖÝ»w­¬"+k£Ê—²2µgÏžÒ¹€O=õÔ€„ ÒÊ‘')\Q•mŽ*;oýSñþûïûûûׯ_?&&楗^2.wÞJ÷Ì—º²PjsY ©áˆ ¨Ü™3gbbb 5sæL…ÏŠŠŠªîÕà)æ”lM{lqÿN:™·‡‡‡><00P§Ó=óÌ3ƒ!%%Eñð禦Ι3'::ZñùçŸËó·k×®~ýúS¦LYºti¿~ý„IIIÒÔ1cÆh4šÞ½{¿òÊ+ƒöôôìܹ³Á`8~üøë¯¿.„X¸paNNŽÁ`ÈÊÊòòòjÞ¼ù´iÓ¦OŸÞ¢E //¯¬¬¬Êzôæ›oÎ;W«ÕúøøtíÚõHOOŸ$$$**J±víZóõc}mX)ëSââ⤕“šš*„˜?¾´räIJV”•ÍQå¦2dˆÅOKxxx³fÍ„ýúõ{ùå—{öì)„èÑ£GEEE•]2î™/uežÚ¾³æ_(‹_±Z~ïø=íÔ”l¾Ê>!Æíì¯MvÜΈb¥JKK‡ Ò£G½{÷­°…©©©åååRKDDDTTTii©ôðæÍ›^^^“'O6žÆ ÒÃŠŠŠ˜˜˜æÍ› †[·nyzzŽ?^~ñ§Ÿ~Z«Õæçç †¬¬,!ÄîÝ» CII‰N§ /((æ,(( ‹ˆˆ())±Ø«ðððúõëŸ>}Zz8þ|!DllìÝ»w¥–nݺ ! KJJ"##ããã‹ŠŠ¤IwîÜéÒ¥KDDDYYÙ;wÂÂÂBCC¯\¹"MÍÏÏoÚ´ieÁÑÊÚ°þRU¾‘qÀÚ¼y³bçÎÒCy’Âeqs(Ù”V‚£bîܹrˬY³„™™™UvÉ$8ZéžñR[ÿðÔXeÁÑ 8M*G`p^ ·’ÁÑѸmpäPu¥–.]zúôéwÞy§Q£Fj÷ÅY…††¾úê«ÿþ˜}útBB‚¶òOÍXÏ&¦Â©qA¸*Îq4uðàÁÌÌÌI“&™2C-]¹rE!]~+Ù°aƒ\g².77÷Á\´h‘ôÐÃÃCÊLrøuèСeË–ééé7nÜZ®_¿¾xñâ°°°Úß­...N¯×/Z´èæÍ›RKaaabbâôéÓ4hСC‡ˆˆˆÅ‹ÿøãÒÔ‚‚‚%K–Ô`mX©j½‘Ä||ÊÚ¬¨ÚlJ©·éééòô´´Â¡C‡Ú|ÛIK­üÃSÏ•\è(A¹ŽŠ£)éD«eË–-[¶Ì¸ýóÏ?ÿüóÏ###¥ 6Q]={öôóó›8qâO<ѬY³}ûö}ýõ×AAA»wïÞ²eKbb¢•çvêÔ©]»vóæÍ»páB»vírss·lÙ8zôh“9½½½ÓÓÓ{ì±:Œ5Ê`0¬[·.??ýúõÞÞÞµ\//¯ŒŒŒÁƒÇÆÆŽ5ª´´4+++//oíÚµÒÝð.\8jÔ¨øøøÇ{¬^½zëÖ­+((¨ÙÚ°òRõêÕSþFÒqù>øàêÕ«?þ¸MVTm6¥"44ôµ×^Û»wollì¾}û¶oßÞ¥K—qãÆyxxØjÛ/õ°aÃ~x[©q¹‘ÔÇGÅÑTXXXÿÿ%ÆÒ´iÓþýû÷èÑCí:«–-[fgg7oÞ|éÒ¥ééé¾¾¾ÇŽ{çw ­WË„õë×ß²eË“O>¹wïÞ7ß|sçν{÷Þ³g<â·±aÆíÚµ«uëÖýë_?ùä“6mÚìÙ³G$¼öúöí»ÿþ˜˜˜Õ«WòÉ':nëÖ­£F’¦:ôë¯¿Ž‰‰YµjÕ¢E‹~ûí·Õ«W×lmX)åoÔµk×Ñ£GoݺÕüž5^QµÙ”BˆÎ;oß¾ýæÍ›K–,ÉËË›9sæŽ;¤s4mµíŒ—ºZ€uüqSµ“'O6lРA oǬ×ë«{qL žbNáiUlñº‘ŸŸï½÷Ö¾ÌYåKÙðê€N§‹‹‹Û´i“Ú©-+ßY›8[ιÔ`{ñÛÛÙdÇíŒ8Tí:øâP¤¹ëà¥løFT!)À¯q8>U€- ®ªv[œÝ—GűjmÛ¶uÏr4`s‰‰‰ÒÝÈHp"GuÇd°À•p6*܇ªP åF8‚#µU³r#©N‡àEŽÔ åF¸‚#!8Ps”áVŽ`cŒëHp^Œãè(ôz½Ú]Tc7ÂÝw¦7A¹NCÕÔD ʤF8;‚#!8Pm”áž8ÇlÀü2j‹V“Ü©®à¶a ,¦Æèàì8T @õT÷85åF¸ ‚#!8€íqóF¹îŒà€½ábŽ(Å=áæŽØåF¸‚#ŠT«ÜHj„KbGj¢Ê럤ˆp%Gªf±ÜXY(”Ë\\áj(Bp  œÝH8T ¶a~P’ÔnˆÔ×Fp°˜È®±‡ª° þT€Ë#8P)ååFR#ÜÁаŒr#`‚àEŽX@¹0Çp<Ô>>ÆÞÞÞwïÞ½{÷®¯¯¯ÚÔ„t1µÅ¢#©P‚àhÁêÕ«MZ¾ýöÛË—/ÇÅÅ‘€Û"8ZsäÈ‘7^¼xñÈ‘#-[¶|÷Ýw>Q¯×›´äææª½4àÖ¬ŒÝH¹Ö™ïÖÝÁÑšÜÜÜ 6H¿MÚ¶m[¿~}åOT»ïˆtó¢ à¤Ìwën%¹8ÆšÇüôéÓ»wï~ñÅ·nÝ:zôè[·n©Ý)@µQnl‚àXF4a„Ç{ì§Ÿ~Úºu«Ú=Ø ©¨‚£©³gϾüòË[¶l1ioÛ¶­âêÕ«jwP=ÖïL @9‚£©Fýýï߸q£IûåË—…:Nílƒr#P]GSMš4Ñëõ»wïþúë¯åÆ~øaÍš5 6¼ÿþûÕî  ,–5ÍîXm™Ú½WU[––6f̘çž{.>>¾yóæ?ÿüó¡C‡„óçÏ×jµj÷P+R•‘r#PT-hß¾ý—_~Ù¿ÿëׯoß¾ýêÕ«}úôùì³Ï  v×ÕPÙÙ¤F f¨8Z¶xñbµ{à@¨8Ü åF ÆŽP¤›Ç¨Ý ÷RÙe1¤F ÆŽP„àpA”{ 8Ü©¨=®ª»°xF£ÅFÒŒÍqAÀNŽ`/&‰ÐbÅ‹+fêåFÀ&8T p)”û!8\åFÀVŽ×a^n$56Dp€"G¨#Ü<ÆÞ(7öFp¸&R#`sG€+àbj .ˆr#`G€Ó£ÜÔ ‚#ÀÕPnì„àpn&åFR#`?Ü«좲ÁwL‰8œÁìÅ<R ³9Ê@]âP5ÀE{#8@Ýáæ1¶ÅÅÔ@ãP5À9TrΨ…y¨;vBp8 ãDXÙÙÔtûáP5Àéqv#P7Žçc\n$5u†àEŽ'C¹P Áà¬H@#8œ c7*"8œåF î Nqó˜Ú Ü¨‹àp>”UN†Ô¨…[œÈ¿ós¸PÁà, åF@Mª8é²R# .‚#!8åFÀApŽ#Øù•¯í YAjÁê‚q豘¸L¸2ÿ)7ªÝª€ºÇÍcª‹r#à ŽÇÅ=‡Bp84Ê€ã 8”F#„ 5„àEŽGD¹p@G€c"5‡àp8ŒV8&‚#ÀQnÁTÀàV°b‡Å- .XŒ‰dÇJPnÁìÎb b\k‹X-€#ãP5!8åFÀÁA£ÑAjÁà(¨6ŽàPåFÀ)r#àøŽ•Qnœã8ZV\\¼nݺ 6\¹råž{î‰ŠŠš0aÂï~÷;µûÀuH7q‡‹ˆ•s®Ñh„;¬ À©-(++?~üÑ£G7nÜ¥K—;wî8p`÷îÝ/¼ð”)SÔî8+‰P*7 ÜGpG >ýôÓ£GvìØñã?öõõBœ={vìØ±üã~øáèèhµ;.BNœç8ZðüCñÊ+¯H©Qùì³Ï–——ïÙ³GíÞ€‹p“#õ€+!8ZpñâE??¿¶mÛ7FFF !òòòÔî€:8TmÁ‡~èåeºfNž<)„hÑ¢…Ú½W •5FᜠÁÑ‚6mÚ˜´ì߿ŊÞÞÞC† Qò z½Þ¤%77WíÅ5a¾[w[Ç*”——¯Y³fþüùååå‹-ÒjµJžEL+(7¹˜ïÖÝ6J­9pà@jjêùóçCCCçÎÛµkWµ{NkbçEp´ìîÝ» ,Xµj•OrròÓO?-_a ¨=Ê€3"8ZPQQ1cÆŒmÛ¶õêÕ+%%%88XípMîsó™»-/àbެZµjÛ¶mcÆŒIIIQ»/à:äÔH¹pRŒãhÊ`0¬^½úž{îyñÅÕî €¡âhª  àòå˾¾¾O<ñ„ùÔ¡C‡Ž;Ví>pVoÇl±Ñ•ŽçJGäMÖ|¡]i‘WEp4uåÊ!Dqqñ‰'̧ra5€Z2‰GÏù³%šñÙœ§œÁÑT‡…l‹Ô¸ÎqØWR.ƒà¨#”gGpØåFÀ•öbœ)7.€àj2ªÁ`”×Cpا6.‰à°/Ê€Ë 8lŒr#સs Ô)å·«v ”WBp€ºc±çbõ9[Æ8T °“ÔH¹p1G(BpØåFÀå@e®qóNmÜÁ`{”—DpÔåFÀM6F¹pUG@­PnÜÁPs¤FÀ­¶ÄqjÀ…5D¹p7Ü«`™’Ñ%¥yäøH¹pmG@¥¬år£ Œ^@!U€úœîæ1RSn\ÁŠÕC¹p[G@5p%5àÎŽ€Ú¢Ü¸ ‚#@)Ê€›#8±’ “€›`GP‡ùø;•ŒÈC(à(Ž ã^%—*;ÊàŽ••¦ƒê‡ª Á‚#ß<ÆJ¹‘³·Â¡j€eÆY¶²P«Ñ®³ÜÁP));Rn áP5 R ÜÀÁ`™•ÔH¹pOG(BpX@¹€9‚#!8LQn`Ãñ€jß®º®{Å•Ô,"8€:*Ñ4´9@’üŸÎ)wÆ¡jÀQn`ÁðoÖS#åFG(BpA¹€G(BppM EŽàîªL§ !8@‚#¸5Ê”#8€1 uy×ANmP-G@¥(70Fp7E¹@uÀ)I”˜ 8@‚#¸Êj†àX… .èõúï¿ÿ^íŽÀæ¿ÿÑX%Ï v78/µ;àèV­Z¥vP “}žô PUAQžj%8Rn`ÁѲÂÂÂ3gÎ|ñÅk×®U»/°¤²»;À*®¤PGËøÓO?©Ý TÂúñ5²#P;|‡T†àhÙÛo¿]RR"„X½zõÞ½{ÕîŒpV\Žù!c“–ÿœˆQÛ4G¹@--ëÖ­›ôÃŽ;Ôî ª‚ œIž3Nxòǹ–±OáÓùö°‚àhz½Þ¤%77WíN€š0ß­»-‚£]8Ê@m˜ïÖÝ6J2Ž#¡â'Q­kb¨™F(7°‚#žùÈÞ\X (Æ•ÔlˆàÇF ¨|Õ(Á9ŽpNwq»>ÀåF¶EÅÌb D>NýŸ¡íþû3!„ƒAB\£àÔÊ"8 YßÅ ìáì¤äW›baí_ÌñkÅöôz=ã8Ú†yþ«ìBóÙø`ÃyXLxrcÍî£|f¾.@ ¸í¾žsá<Ø¿ *UÃ!Ége[¬ïh<•| 'dñLD£ó…0»ŸµõW£ÜÀŽp0&‡ž5ÓùF¹Ýä!àl,†<óCÕ qj#û!8‘(ßCš—g¬&XÂ×@uqŽ#†Å˜qéÑœÅkb¸¯ ÜåFvEÅŽÍøGãDh<ˆ£`4G@ˆj_vÍ7@µQq„c¨ìÚãSMþF·Š1¾g EGìƒàGE=¨R¨GpDÆ· ´9þ.P3G8$vk@uPnP7¸8ª2.¨˜ŒËX­§_Cè„›©njä+ ÆŽPÉîKLÇâ>Mn7¾öÅ$)²?Àž8T 5Hc똄<9šŸ×e}ˆG“9wB¹@]¢â•T¶ï’â£Iþ3/LŠJs ²#ܧ6¨cG8 “ƒÑUîo*þP€ï €ZâP5ê\•c}×€Ã=PnP÷ŽpVÎw`#”ÔÁj³wpZVƧÜ@GÔ!ùª[U-¾ ¡®®©‘¯›àâÔ ã«ž…øŸë¦«»7“/1¾Ñä-€­aÕ=…QImÄâk*|.àÌ(7P‡ªagUî²LŽ2+ÜÅYŒžÆ¥GÀqj#uQq„ŒÓau[[¼÷ Ç©á*,] £ùß?¯4Båñ‘r#"8ÂÔx·fñð´ÂñÃÇ£¡^À±q¨ö¤d¨.vÃßPl‹àˆºÅ~ §Ep„=™Të¨C|·Øç8ÂL=› »hw1¾8†½%öAp„­™ä6ë·Š©ÁÙæc}@ÁPìƒCÕ°)‹ãr'<ó™Ù¹à$¨8Âv*+qËmœk-ÖMUîr#;!8ÂÎLÆë¶áÞÌüPµÜÎn;àP5ì‰!:ÇßMì‡à»a÷€k!8€ëàï5vÅ9ލ5‹C|×ÍXßò[3Ž#\‚Á`àvÕÁµcœÒŒ¯ž¶_t“¯}1©DF8?ƒÙgXùçšo{#8¢¦Ì¢õk_l»O³øj\O €=qŽ#jÁbD³8È¢ÍóœÅj\ò¶FÅ5b=JéMp6?¯Ñx`H¹Ñæo8ªíêGØŽñŽKÎvvݕɯoüF°‚#l„r ¾êÁ¶À^ 7@pD­9Zjt´þvÆG@áâT‡Å±¾+›ÓÞ»2“Î.ŽÀ¾ŽPÆ<™É×M×q\3cÜxpÀÍPnP—8T ¤]“ÉÞÉ8·™ÌÌ® WDÅ5e\ç3ÎŽup„ÚâãBPw„»áo4uŒàˆªXÜ5™ Ù¨ÊîËüPµºýÀÕq¨œ¨{GTû+ÜÁÕDj_DªàGTÂ⎶³’;irqŒCuWAp„%&ÙËúuÔäk_Ìã,‘îO:µp¨fÌwJ• Ù(ÔÛƒY|_®§ÀžŽø_Õ ^*¦4ùþ1Æ‘+‘€ëâ#*âP5Pk¬oë1ΈìK°?*Ž0¢d¬oéó;ªBî†ùà€+âO$ê"8Â*vSà?Žàø;€êŽ0br×IwSNÚmÇTjýúõŸ~úé¹sç4hðÐCÍš5+ @íNÙ‡ùåÉr‚´x² õ3-žbXËÆ*;`e˜IÀ©Tö‡ÕpGËÒÓÓ—/_îççwÿý÷_ºtiãÆgÏžýä“O|}}ÕîšMUÑÌwMòœ&ƒ ayÎ*åÑsLf«ì­ÍßWùâÎÃúh¤¤FêâPµ¹¹¹+V¬hÒ¤É?þñ+VlݺuܸqÇŽ[¸p¡Ú]³)ë1Ë䘵Ť‹šÍn› ”c±Qn±Øhý]—fq”R†·àŽ|úé§Ó¦M –Z^z饯oÙ²¥¢¢BíÞÕ!)ÕÉ?ãWåÀ=Ƭìë*›ßÊ!l$Ü@eÙÔEp´àÛo¿õððHHH[<=={ôèqíڵǫݻºe>J¢Åyjvª¢±j%Q%¯89“ï©€# 8š2 çÎ 4nŠŠBäåå©ÝA©›he’üäcÓŒ× ( 9Hǘ****//÷÷÷7ioܸ±âúõëJ^D¯×›´äææª½d5bñè°òFQ법¿ uÈ|·î¶ަЋ‹…~~~&í 6Büúë¯J^Ä b¢Â:Ÿù ùÏÒWØhq@‘¼ à‚pæ»u·’ª6åïï¯ÑhŠŠŠLÚoݺ%þSwt/Uf5›œžh“%Ÿ89“»ÄóG@p4åååÕ¸qcóÊbaa¡B¾ÎÚMÉ»2Ûæ¼ÊÞ¥²·\ù—€ìÀ-hҤɵkפ¤(»xñ¢4IíÞÙN• ̤ܡäJa6ˆ·<›òF“>X|ëÚ,àØ¬ lEv .‚£<òHyyù7ß|#· †œœœ€€€øøxµ{gSÕÍXŽ¿×"5ÂÉY?˃ì@]G FŽéááñþûïKç5 !V¬XñË/¿ >¼^½zj÷ÎÖ¤a½Í[Œ‹‚òí[,6*œ­–Æ-r£õœò#P÷¸ªÚ‚¦M›Îš5ëÝwß4hP÷îÝ/]º´ÿþ¶mÛNœ8Qí®Ùò;¾˜7Öæ¹öx`GË&L˜”•••:vìØiÓ¦I#ò¸'‚c¥8pà@µ{à(8ÇŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ Á± .\Ðëõßÿ½Ú±;½^¯vÜ +¼Ž±Âë+¼Ž±ÂQ7ŽUXµj•Ú]p^jwÀAž9sæ‹/¾X»v­Ú}pGËøÓO?©Ý Bp´ìí·ß.))B¬^½zïÞ½jw@}G˺uë&ý°cǵûàŽvá¤W·9i·+¼Ž±Âë+¼Ž±ÂQ޶—››«vlÏ­ƒcYYÙG}$?ôôô|æ™gÔrëàXZZš‘‘!?ôöö&8TÆ­ƒ£¯¯/‡•âÎ1P„àEŽP„àE4ƒAí>À Pq€"G(Bp€"G(Bp€"G(Bp€"Gw·~ýú‘#GÆÇÇÿîw¿›3gÎ7Ôî‘++..þË_þ2`À€¸¸¸îÝ»?ýôÓ{öìQ»Sî"??¿cÇŽ³fÍR»#.îøñãÏ?ÿ|Ïž=ï¿ÿþ±cÇ8p@í¹²»wï~ôÑGÆ ‹øá‡§NzöìYµ;å‚.\¸ ×ë¿ÿþ{‹SÝm7Jptkéé鯾úêùóçï¿ÿþ† nܸñ™gž)..V»_®©¬¬lüøñï¼óÎÏ?ÿÜ¥K—ûî»ïÀ&Løãÿ¨v×\ŸÁ`xñÅoݺ¥vG\Ü×_=zô诿þ:888>>þÈ‘#ãÆûúë¯Õî—k*//òÉ'.\xãÆîÝ»7kÖlëÖ­ƒþöÛoÕîš«YµjUe“Üq7j€»úá‡Z·nݽ{÷«W¯J-iiiQQQo¾ù¦Ú]sMkÖ¬‰ŠŠ=ztQQ‘ÔræÌ™x ::úÔ©Sj÷ÎÅýéOŠŠŠŠŠŠš9s¦Ú}qY7oÞìÔ©Sllì¡C‡¤–ï¿ÿ¾]»v]»v-//W»w.Hú•2uêÔÒÒR©eïÞ½ÑÑÑ}úôQ»k.â×_ýöÛo_ýué·ÇÑ£GMfpÏÝ(G÷õé§ŸVTTL›6-88Xjy饗7n¼eË–ŠŠ µ{ç‚þñ!^yå___©%22òÙgŸ-//瀵]={6==½uëÖjwÄÅmܸ±°°ðÙgŸíر£ÔÒ¾}ûÄÄÄ_~ùåøñãj÷Î>|Xñä“OzyyI-]ºt‰ŽŽþ׿þuýúuµ{ç øÄO¬]»¶²Üs7Jpt_ß~û­‡‡GBB‚ÜâééÙ£Gk×®I¿`[/^ôóókÛ¶­qcdd¤"//OíÞ¹¬²²²Ù³g¼ôÒKj÷ÅÅíÚµK£Ñ 2ĸqþüù¹¹¹±±±j÷Î…†† !Œ3¢Á`¸y󦇇‡%Qo¿ýö²eË–-[ÖµkW‹3¸çn”Ï–›2 çÎ 4nŠŠBäååuêÔIí>ºš?üÐü·ùÉ“'…-Z´P»w.kéÒ¥§OŸþÓŸþÔ¨Q#µûââNœ8rèС#GŽÜ¼y³uëÖ½zõ’Kì°­|òÉ'o¿ývƒ ââânܸ±lÙ²+W®<öØc|Úm¢[·nÒ;vì0Ÿê¶»Q‚£›****//÷÷÷7ioܸ±øß?aa+mÚ´1iÙ¿ÿŠ+¼½½MŠ4°•£G~ôÑGcÇŽíÚµ«”Ña'wïÞýí·ßî»ï¾7Þx#33SnoÑ¢EFFF»víÔî  Òëõ«V­?~üøñã寱cÇΙ3Gí®¹·Ýr¨ÚMI×|ùùù™´7lØPñ믿ªÝAW^^þÉ'Ÿ$%%Í›7O«ÕªÝ#T\\<{öì-Z̘1Cí¾¸¾ß~ûMqîܹìììwß}÷À999ÉÉÉÿ÷ÿ7uêT¿ÈT%………óæÍ»}ûvÛ¶müñÞ½{ûúúfeeq{ÝpÛÝ(G7åïï¯ÑhŠŠŠLÚ¥ñJ¤?˜`'HMM=þ|hhèܹs+;{µôî»ï^¹r%33“C¥uÀÇÇGúaÞ¼y?ü°ôóóÏ?ŸŸŸ¿qãÆ/¿ürĈj÷ÑÕÌž=û»ï¾{饗žzê)©%??ÿñÇŸ>}ú矡v]œÛîF©8º)//¯Æ›ÿITXX(„/ƒmݽ{÷í·ß~òÉ'óóó“““·lÙBj´“ƒfffNš4‰Ë2ꆟŸŸ¯¯oÏž=Û{õê%„øá‡Ôî «ùùçŸwìØqß}÷É©QÑ´iÓÉ“'—––nÚ´Iíº>·ÝRqt_Mš49wî\aa¡ñiÔ/^”&©Ý;TQQ1cÆŒmÛ¶õêÕ+%%Å…­8éþÒ‘ÆíŸþù矹yófµûèj‚ƒƒoÞ¼©ÑhŒ¥roYY™Ú½s5×®]B„‡‡›´K…Æ‚‚µ;èÜs7Jpt_<òHnnî7ß|Ó¿©Å`0äääÄÇÇ«Ý;´jÕªmÛ¶3&%%Eí¾¸¾°°0ùƒ-ùõ×_wïÞÝ´iÓøøøµ;è‚zöìù׿þõÌ™3ÒU¥iPÑ´¹ððpOOϳgÏ ã°ž››+„¸ï¾ûÔî [pÏÝ(‡ªÝ×È‘#=<<Þÿ}ù>l+V¬øå—_†^¯^=µ{çj ÃêÕ«ï¹çž_|Qí¾¸…nݺ-þ_øÃ„:uZ¼xñìÙ³Õî  :t¨âÕW_•¯'=~üøÇܸqãÞ½{«Ý;WãëëÛ£GK—.½÷Þ{òXÓgÏž]¶lYýúõMN€¸çn”Š£ûjÚ´é¬Y³Þ}÷ÝAƒuïÞýÒ¥Kû÷ïoÛ¶íĉÕîš *((¸|ù²¯¯ïOuèСcÇŽU»@­DGGÿáX¼xqß¾};uêTTTôí·ßj4š·ß~ûÞ{ïU»w.(--mĈË–-ËÎÎnӦ͵k×¾ûî»ŠŠŠW_}µU«Vj÷Î-¸çn”àèÖ&L˜”•••:vìØiÓ¦IC À¶®\¹"„(..>qâ„ùT.‘k˜4i’V«ýä“OöîÝðÈ#$''K·G‚ÍiµÚìììåË—ïÞ½{çÎ=ôÐsÏ=£v×܈îF5ƒAí>À pŽ#!8@‚#!8@‚#!8@‚#!8@‚#!8@‚#!8@‚#!8@‚#!8@‚#!8@‚#!8@‚#!8@‚#!8@‚#!8@‚#!8@‚#!8@‚#!8@‚#!8@‚#!8@‚#!8@‚#ùuŸÞ{üÌIEND®B`‚statistics-release-1.6.3/docs/assets/procrustes_302.png000066400000000000000000000445041456127120000230730ustar00rootroot00000000000000‰PNG  IHDRhŽ\­AI IDATxÚíÝy\”åþÿñkDe ÜFT3M KMÜ÷r9f¦i©¹¦é1SKÁ3[NÇåP.iešvJ-5·ÄÜqMñPŠ+)¸óûã>ßû7gf€ ˜áf^χpÝ÷Ì|faî÷|îû¾Fg0P­ @Å@p€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€7­ °_GŽùðÃ;vûöm½^Ÿ˜˜Ø²eK­‹ÐŒÎ`0h]ƒ=úñÇ_z饂‚‚ÈÈHooï]»vååå}ðÁ?þ¸Ö¥hƒàhÁ­[·:tèðàÁƒO>ù$66VqøðáÁƒW¯^ýçŸvqaÿ>pFd Ö­[—=zôh%5 !š5k–põêÕ#GŽh]€6è8Z0lذ={ölß¾=00PëZì'ÇXpôèQ__ßÀÀÀ¤¥¥Ý¼y³Q£F:tðôôÔº4ÍÐq4uÿþýÈÈȆ ¶hÑ"55U¯[·nJJJÓ¦M‹½½^¯õ¶•žž®u  ãh꯿þBœ9s&++kþüùñññwïÞ]»víûï¿?nܸ7Êô+â‹I¯×WIJ+.ðrÆ^ÎxÀËx9sÚ&'ǘòððP~˜7o^¯^½|||_|ñÅÞ½{_ºtéÛo¿Õº@mMyyyyxxxzz¶oßÞx¼C‡Bˆ“'Oj] €6ŽTªTI§Ó*{¨óòò´®@G Ú·oŸ}êÔ)ãÁƒ !5j¤uuÚ 8Zлwo!ÄÌ™3¯_¿®Œ9rä“O>ñööîØ±£ÖÕhƒéx,ûðÃ-Zäíí—““³ÿ~N÷Ö[o%$${YNmÀ±9í¶žéx,5j”¿¿ÿòåËwïÞíëëûÄO$&&†……i]€fè8ZŸÓ~ ÀI8í¶žc …à)GH!8@ ÁRŽÂ<ŽvA¯×k]œŽsN$( ‚£½`+Žræ´“J]ÕBp€‚#¤ …à)GH!8@ ÁRŽBpD‰-^¼XW¤-[¶h]£¬ÐÐÐþýûk]Åݽ{7<<<--íܹsU«Võ÷÷ÏÊÊ2YçùçŸ×étóæÍËÊʪS§Nff¦ÖUœ_9ˆkÞ¼ù¤I“Ô_ß}÷]Ÿ¿ýíoêHHHH9—tàÀ7ÞxcΜ9Mš4Ñúá)½Ù³gÇÄÄÄÄÄ!Þ|óÍ—^zi„ +W®TWøé§Ÿ>þøã–-[Nž<ÙÕÕuøð቉‰ëÖ­Óºp€³Ð ­kp4¥ø `«|k°N'4y2}}}6l¸ÿ~ nûÿ|ûí·ÝºuÛ¾}ûc=V¢ †††ÆÅÅ­Y³FÃâW®\©W¯Þ®]»bcc…ƒ!>>þ§Ÿ~Ú¼ysçÎ…÷îÝkÖ¬YFFFZZš^¯B\¿~=((è§Ÿ~jÙ²e)n‘婢RsÚ·PvU;ƒAètE­PôR”Z~~~~~~¯äƒ>hР’…:î“O>©R¥ÊèÑ£ïܹ#„øûßÿ~êÔ©¹sç*©Qáçç×µk×wÞyGëà,Ž¥ˆì¨I?299¹Y³f^^^~~~-[¶\µj•º(44t„ ˆŠŠŠŠŠR÷îÝÛ¹sg??¿fÍš½öÚkK—.Õét¿ýö›²ôèÑ£}úô©W¯^@@@çÎøáeüÙgŸíÖ­›">>>44Ô¼ŒÜÜÜ9sæDDDT©R%88xĈþù§ñ »víJHHð÷÷¯]»ö /¼ð×_Éß…÷Þ{ÏÇǧråÊ‘‘‘Ó¦M»ÿ¾ºBa[ôüÃähˆ Î;÷Â… 3gÎ̓£á“¢­?ëׯþàÁå×›7oº¹¹3FùU9fÖ¬Yùùùƒ!??¿qãÆõë׿víš²ÂñãÇ+W®¬Ç{÷î………ÅÄÄäää(KïÞ½ÛªU«úõëçåå †7 !¶oßn^ÆíÛ·]]]‡ ¦Ž<÷Üsþþþ™™™j_}õ•²(///"""88Xþ.Ì;W½æÉ“' !RSS‹-ØÄ²eË„ׯ_7_têÔ)777!Ä;ï¼cññ÷÷÷Ÿ8qb)ž8§}×€²sÚ·PvU;&uŸµVgÌ!öíÛwðàA%ô!®]»&„ÈÉÉQW š9s¦‹‹‹"--íøñããÇ÷óóS–FDDôë×Où9--íôéÓ“'OöôôTFÜÝÝÏ;wðàÁ¢ËpqqÑét»víºpá‚2òñÇgee)¿†‡‡÷èÑCùÙÕÕ5::Z9¦Pæ.(¡Mý5))©jÕª«W¯.iÁ.\pww÷õõ5_tðàÁ¼¼<¥‹w0((èâÅ‹åÿüœÁÑ®ét¥ÿ'Äÿÿ¿Ô×P¾¾¾iiiIIIO=õTóæÍ#""”¤ÒëõJjB(ûj›5kf¼BÓ¦M•Nž<)„Pö8« $„(63yzz¦¤¤\¼x144422rÔ¨Qëׯ7>1<<Üx}WWWù»Ð¤I¥-ªðòòÒëõgÏž-iÁ—/_V³ÉøØ±cëÕ«×»wï•+WnذÁ|‡zÈäMl„yíZYš…J¯Q«Žã½{÷úôé³iÓ¦-ZtêÔ©G­ZµjÞ¼¹ñ:>>>êÏÆIN¥f8%œ½õÖ[‘‘‘&ë4nܸØbÆŽÛ·oß7nÛ¶mÓ¦MË–-Óëõ;vì¨Y³¦ÂÃãÔwÁœ››Û;wJZ°‡‡‡ÅG`Ô¨Q×®][±bE\\ÜO?ý4jÔ¨6mÚøûû¯sÿþý*UªXéy (GǤæE­²ãÎ;7mÚ”’’b|°I»ÎX£F„ÇŽ3žˆñرcÊaaaBˆjÕª=ùä“êÒãÇ9rÄ8}ZtíÚµ3g΄‡‡1bĈK–,ILL\ºt©rîKYîÂñãÇ|8''§C‡å÷Ôœ™Ö§u; §ã)úù´Ñ³]Øt<;vìhݺuÕªU4h0bĈ¬¬¬?þ¸FO>ù¤Á` éÕ«—ÉE~øá‡¶mÛV¯^½U«VË—/Ÿ?¾âÊ•+ÊÒƒvíÚ500Ð××7>>~ëÖ­ê X½zõæÍ››W’‘‘1|øðàà`ww÷zõê 4èĉÊ¢~ýú¯gû®j«xðàÁáǃ‚‚jÕª¥Ž3æŸÿüç­[·Ô qìJhhhttôúõë­rm©©©cÇŽýã?ÜÝÝå/Û­[7eþó’rÚ/Z€²sÚ·PŽqt75 !\]];tè0xð`uäÖ­[ëׯïÚµ«}¦F«ëׯ_ÕªU-N¸S˜Ã‡Ÿ8qâ…^кv€³ 8Â.¸¸¸$&&nß¾½_¿~©©©ÉÉÉmÛ¶½}ûöË/¿¬uiå¤R¥Jï¼óÎßÿþw‹§øX””””””¨uígá½T¯¿þz5>úè£#FTªT)&&æÓO?‹‹Óº®B%$$(ß:h-½zõ:pàÀÑ£GM&B·(+++ Àø{k°5Žq´>­ŽqJ„W”šÓ¾…²«RŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#J)//ï“O>iÛ¶mPPPõêÕ£££333µ®«LBCCû÷ï¯uÿu÷îÝððð´´´>ø@§ÓuêÔÉ|;wîÔ®]ÛÃÃãôéÓYYYuêÔ©èOÀž”N÷?ÿ¬Í`0ôìÙsĈ¹¹¹ƒNLLlРÁÒ¥KÃÃÃ;¦õw³gÏŽ‰‰‰‰‰5jTË–-¿ÿþû¯¾úÊdyóæeffNž<9,,¬FÇOLLÔºp€ÃrӺ؀yRÔé„Á`Å[X¹rå¦M›&Ož¼`ÁuðСCmÚ´yöÙg÷íÛ§õCPá]¹reÑ¢E»víB¸¸¸,]º4..n„ O>ù¤‡‡‡²Î… Þ~ûíéÓ§+#ãÇ Ú»woË–-µ¾DÇѱÑ_´jßQ 4&Í­èèèþýûÿú믷oßÖúÐR~~~~~~¯äƒ>hРAll¬òkttôK/½tþüù… ªëL:õîÝ»‹/öôôTFüüüºvíúÎ;ïhýÁÑ™X/;*ÁèèÑ£&ãóçÏ?|øpåʕՑ}ûöuéÒ%00°V­Z]ºt1nFšPøì³ÏúúúªK'L˜pàÀ¨¨¨¨¨(eðСCÝ»w¯Y³f```=>¬^öèÑ£}úô©W¯^@@@çÎøá‡ÂŠÏÍÍ3gNDDD•*U‚ƒƒGŒñ矯°k×®„„ÿÚµk¿ð ýõ—º(99¹Y³f^^^~~~-[¶\µj•ñÝ™0aÂ{ï½çããS¹råÈÈÈiӦݿ¿ !þñ˜<8³gÏ®S§Îܹs322„;wîüâ‹/ºvíÚ£GãÕúõë·fÍãš°¬-<<¼.bÅÿ³’-[¶!ÜÝÝÇŒóïÿ;77×âj6lpss«S§Îøñã'L˜P·n]77· 6(KCBBúõëg¼þ°aÃ|||Ô¥}ûöõóó }þùç Ã÷ßïáá:iÒ¤‰'úûûW¯^ýÌ™3ƒaëÖ­ê¢)S¦„……¹ºº¦¦¦Z¬jРA:®cÇŽ3fÌèÙ³§««kË–-Õ ÷ööNLL|ûí·Û¶m+„PnÝ`0$%% !üñY³fMŸ>=""Bñõ×_«—­]»¶¢K—.¯¼òJûöí…íÚµ+(((i…§NBlÙ²ÅdüË/¿B<ýôÓqqqgÏž5YçüùóBˆo¾ù¦Ø'Ñ:¯:pJNûJp´>»ŽÖËŽ«V­jРòñÃÃÃãñÇŸ;wîï¿ÿ®®pïÞ½ÐÐЬ¬,e$+++88¸~ýú÷îÝ3HG!ĬY³òóó C^^^ãÆ4hpýúue…;v!ïÝ»“““£,º{÷n«V­êׯŸ——gRöíÛ·]]]‡ ¦Ž<÷Üsþþþ™™™ê~õÕWÊ¢¼¼¼ˆˆˆàà`å×úõ뇇‡?xð@ùõæÍ›nnncÆŒ1.xîܹê5Ož}6mÚÔ¢E‹N:õèÑ£U«VÍ›7/ú±rss»sçNI+ôðð0β&„5jÔ(l…û÷ï+]I¬‹àˆóòòÚ²eKFF†qpTøûû !”Ô&„8räÈc=¦® œ­×ë•_ Œ/^D'Ri?~\9aE1oÞ¼ììì>}ú!ªU«öä“Oª‹Ž?~äÈã詸víÚ™3gÂÃÃGŒ1bĈ‚‚‚%K–$&&.]ºT9÷¥0;wîÜ´iSJJʸqãÔA“ŽãñãÇ|âĉo¿ýVëòQ&Ê!'æ[}¢Œö:¼T`Kœc2µžI»(O•*Uzçwþþ÷¿›œx^´¤¤¤¤¤¤ÀÀ@­ËGY™®L€9‹‡µóRMÑq´@9›588XëBP‘$$$X÷ÃF¯^½8pôèQeÖôbeeeLœ8QëGÖaÜO"  0&}G^*°5‚£Jpüã?†zâĉ*Uª4nÜxôèÑ&_‚[²d‰Õ¯sΜ9ò+רQãÃ?Ôúa€5©ý$¢Š fGR#ÊÁÑ‚ŒŒ !ÄâÅ‹CCC[µjõŸÿügÛ¶m;vìxýõ×  s ê×*ç<„€U6Ë "5Ú”ùfÝi-øã?<==_~ùå¡C‡*#»wï=zôܹsÛ´iS«V­b¯˜ ìÔ6’ éˆ"Ñq´5óͺÓFINޱà³Ï>;tèš…­[·þÛßþ–››ûïÿ[ëê8ãPÄÔþ€úÚàu‚r@p”õðà !N:¥u!ŸyëˆL‹LÒ¼N`kGSƒ!??ß|å«áªU«¦u\a;É0añ¥Âë6Ep4uáÂ…Æ?óÌ3&ãiii‰iP>Š>LLU/^'°‚£©ØØØ}ûö­Y³FLKKûôÓOkÕªõä“Oj] ‡%srg?@ˆâçøäuá¬j ^{íµçž{næÌ™©©©õë×ÿÏþsèС*Uª¼ù曞žžZWÀa±±‡$^*Ð G 5j´~ýú^½z]½zuË–-·nÝêիׯyä­K࿘厣eóçÏ׺ ;BÇ¥1kÖ,Nçææ–••e¾t÷îÝ:N§Ó­ZµJëJ‹Ñ¶mÛ˜˜­«òÁètºN:™/ºsçNíÚµ=<­u™Ê íFh‚àè tºÿÿÏfòóó¿üòKóñuëÖi}ÿe¹ºº*-ëÀ½{÷>vì˜V¥Ž5ªeË–ßÿýW_}e²hÞ¼y™™™“'O Óª<€3 8:"ås¨úÏfñ1 ÀøÜsÕ—_~ õ£ eûöíYóòåË6l¸zõªV¥º¸¸,]ºÔÕÕu„ wïÞUÇ/\¸ðöÛo‡„„LŸ>]«Ú”3ÚÐ Áѱ(Ñü'l3©WŸ>}¶oßn²·ú×_ýý÷ßûôéSþ÷>?????¿ì×SPP`•ë±úFGG¿ôÒKçÏŸ_¸p¡:8uêÔ»wï.^¼˜Sþ¶Fpt8å8!l¿~ýòóóׯ_o<¸víÚêÕ«wèÐÁdå}ûöuéÒ%00°V­Z]ºtÙ·oŸº(44t„ ˆŠŠŠŠŠR=Ú§OŸzõêtîÜù‡~(¬ åâï½÷žOåÊ•###§M›vÿþ}™›nß¾½zŒ£r=~ø¡¿¿¿››[íڵnjó×_ !ž}öÙnݺ !âããCCC…¹¹¹sæÌ‰ˆˆ¨R¥Jppðˆ#þüóÏÂ*,ö¾[¼Q‹fÏž]§N¹sçfdd!vîÜùÅ_tíÚµGÖ}rØ-ÚÐ’Ö^± ØgÓzO÷믿.„8sæÌÃ?üÄO/ 2dÈÆ…+W®T7lØàææV§NñãÇO˜0¡nݺnnn6lP–†„„ôíÛ×ÏÏ/44ôùçŸ7 [·nõðð 4iÒ”)SÂÂÂ\]]SSS-R»vm!D—.]^yå•öíÛ !ÚµkWPPPìMÇÇÇGGG«×Ó´iÓÊ•+;öÝwßíÒ¥‹bĈƒáÈ‘#³fÍB,X°`ÇŽƒaРA:®cÇŽ3fÌèÙ³§««kË–--–Wì}/ìF £WúôÓOÄÅÅyxxœ={¶O¢u^u°=Þ§a‚—„=pÚ·P^}Ög¿ÁQr jp\°`««ë•+W”ñÇ !6lØ`ïÝ»’••¥¬–••\¿~ý{÷î †!ĬY³òóó•õÃÂÂbbbrrr”õïÞ½ÛªU«úõëçå噣\|îܹêÈäÉ“…©©©ÅÞ´IpB¬]»Vùµ   22²N:ʯÊ=Ú¾}»Á`¸}û¶««ë°aÃÔ[|î¹çüýý333Mj“¼ï…Ýha”öçÈ‘#•Ç­tO¢Ó¾ëU8¤ãõ`'œö-”]Õ(“þýûï­^·n———É3=++ëúõëÇŽSöb3 BÝÿžš£ÌžøàÁåWu‘ßzë­ÈÈH“«jܸ±dUnnnwîÜ‘¹icò!lìØ±}ûöݸqã¶mÛ6mÚ´lÙ2½^¿cÇŽš5k–ô¾—.ù)Õ¨Q£— tè8¢¬Ô½ÕëÖ­óôôLHH0YA™•úÈ‘#ƃÊÑz½Þü •õ«U«ö¤‘ºuëÞ¼yÓ8_;~ü¸qÌÍÍ=qâDxxxIoZÒµk×öîÝëîî>bĈU«V]¸páÝwßMOO_ºtiï;†v#ìÁÑØf²Æb…††ÆÆÆ®Y³fݺu]ºtñòò2Y¡yóæõêÕKNN¾qã†2rýúõE‹[üº¿èèh½^¿pá›7o*#ÙÙÙ &L¨R¥ŠÅ²²²’““Õ_çÌ™“Ý»wï’Þt± „ééé<òˆ:™¢‹‹K||¼¢R¥Je¼ïØ3vU;%;š&U¥Í>«öï߯ŒùùùÊéÌ&ÜÝÝ“““Ÿzê©æÍ›0À`0|ñÅ™™™kÖ¬qww7_ßÍÍ-%%¥gÏžQQQ xðàÁ† 222>ÿüó¾0((èÕW_ݽ{wTTÔ/¿üòý÷ß·jÕjèС...%ºé"(ÍÎ>øàòåË}úôiÚ´é¼yóÎ;×´iÓôôôÍ›7ûùù 8°Œ÷,¢Ý;AÇÑá¨ß1hüOùò›QöV»»»wíÚÕâ }úôùé§Ÿ5jôÏþsùòå7ÞµkW¯^½ »ÂÎ;ïÙ³'22råʕ˗/ ݲeË€ [_ùç›7o.^¼8##cÒ¤IÛ¶mSÎ2)éM¦uëÖܲeË[o½U¹råÍ›7?óÌ3»wïž={ööíÛ;vì¸k×.enð2Þwì–ÎÀGkÓëõééé¶¾T¡¡¡ÑÑÑ&_`ƒbñª«(h5×€rÚ·P:ŽBpÀ~Ñn„]áäTx Ê÷›"8¢Â[²d‰Ö%€MÐn„½aW5¤°G´a‡ŽBpÀîÐn„}"8@ ÁûB»v‹à)Ìãh/ôz½Ö%´G»öŒàhœó‹Ò@Å®jH!8`/ØO ;Gp€‚#vv#ìÁRŽhv#*‚#¤ÐíFTGH!8 %Ú¨@ŽBp@3´Q± …à€6h7¢Â!8@ Á ÐnDEDp€‚#åv#*(‚#¤(W´Qq …à@ù¡Ýˆ à)GÊ íFTtGH!8Ph7 …à€ÍÑn„c 8@ Áۢ݇Ap€‚#¤‹—™™;yòd­ T<짆#!8Ã`0L:õöíÛZ 1‚c1>ûì³}ûöi] B¢ÝCp,ÊéÓ§“““5j¤u!Ú#8*//oÊ”)¾¾¾Ó¦MÓº@ÅC»ŽÇMëì×»ï¾{âĉO?ý´zõêZ× =‚£e‡ú裆 ÒºuëcÇŽ•ôâz½Þd$==]ëû(?´‰ùfÝi-ÈÍÍ2eJݺu'NœXºk &à0Ì7ëN% ŽÌŸ?ÿÒ¥K©©©žžžZרxh7ÂQqrŒ©}ûö¥¦¦Ž5***JëZìˆÎÀg¢ÿµjÕªÙ³g¶4,,lãÆE_ƒ^¯gW5k¡wUáð”9§ÝÖ³«ÚTppp×®]GnݺµsçÎZµjÅÄÄj] €6Ž¦Ú´iÓ¦Mã‘cÇŽíܹ3..î­·ÞÒº:€]£ÝÇÆ1ŽBpÀ:h7ÂᱫºxMš4qÎ`ŒÑqÀ h7 …à@YÑn„“ 8@ Á€2¡ÝçAp€‚#¥G»N…à)GJ‰v#œ ÁRŽ”íF8!‚#¤(1ÚpNGH!8@ Á€’a?5œÁRŽ”íF83‚#¤E»NŽà)G¤ÐnŽBp x´Ap€$‚#Å Ý(ŽBp (´ÁRŽŠv#`Œà)G,£Ý˜ 8@ Á h7æŽBpÀíFÀ"‚#¤ø´Â …àÀÿG»(ÁRŽüíF hGH!8 íF@ÁRŽBp€ýÔ€‚#¤ÎŽv# ‰à)G€S£ÝÈ#8@ Áà¼h7%Bp€‚#ÀIÑnJŠà)G€3¢Ý”ÁRާC»(‚#¤¸i]€ºyófJJÊ.]ºT£F¦M›&&&Ö¯__ëºeE»(5:ŽdggwëÖ-55UѾ}û‡zhÓ¦MÝ»w?zô¨Ö¥h†àhÁ»ï¾›••5zôè7&''þùço¾ùf^^Þœ9s´. P&´² 8ZðË/¿xzz¾ð êHŸ>};–ŸŸ¯uuÚàG |||ÂÃÃ=<<ŒÝÝÝïß¿ÿþ}OOO­ ”íF ŒŽ¬\¹Òddÿþý/^ŒŽŽ&5§Ep,JZZÚºuëΟ?Ÿ––V¯^½ùóçK^P¯×›Œ¤§§k}oÀ©ÑnD©™oÖÁ±(ééék×®5 Bˆ&MšT®\Yþ‚Z׬Ã|³î´Q’“cŠòôÓOŸ8qbçÎS§NݲeËÀoß¾­uQ€£ÝXÁ±:®FÇê©§þüóÏ-[¶h]€6ަNŸ>ýÊ+¯lÞ¼Ùd¼I“&BˆË—/k]  dh7ÖBp4U½zõ/¿ürݺu&ã/^B„††j] €6ަjÖ¬©×ëwîÜùã?ªƒ'Ož\µjUÕªU[´h¡u€ ÝXgU[0gΜAƒ½ð 111uêÔ¹råÊ„ ,ð÷÷׺:mÐq´ Y³fß~ûm×®]¯_¿þý÷ß_¾|¹S§N_}õU·nÝ´. P´ë¢ãhYppð¢E‹´®ÀŽÐq€‚#À1±Ÿ°:‚#¤ˆv#` GH!8 íFÀFŽBp8Ú€í …àp´›"8@ Áà h7¶Fp€‚#ÀÐnÊÁRŽ€ v#P>ŽBpTl´rCp€‚# £Ý”'‚#¤íF œ …à¨h7åà)G@ÅC»ÐÁRŽ€ †v# ‚#¤ íF@CGH!8* Ú€¶ŽBp€‚# b`?5 9‚#¤íFÀ …à°w´;Ap€‚#À®ÑnìÁRŽûE»°+GH!8ìíFÀÞ …à°G´;Dp€‚#ÀîÐnìÁRŽûB»°[GH!8ìíFÀž …à°´;Gp€‚#À.ÐnìÁRŽíÑn*‚#¤¸i]€ÊÍÍýâ‹/Ö®]{éÒ¥jÕª…‡‡>üÑGÕº.p@´Š‚àhA^^Þ°aÃ:äííݪU«»wïîÝ»wçÎ/½ôÒØ±cµ®@G V¯^}èÐ¡ØØØO>ùÄÓÓSqúôé!C†¼ÿþû?þxDD„Ö€ã ÝT ãhÁwß}'„˜1c†’…aaa£GÎÏÏßµk—ÖÕhƒàhÁùóç½¼¼š4ib<&„ÈÈÈк:m°«Ú‚?üÐÍÍô‘9v옢nݺZWŽƒýÔ@ÅBp´ qãÆ&#{öìY¶l™»»{¯^½d®A¯×›Œ¤§§k}·@i˜oÖÁ±ùùù«V­Z°`A~~þÂ… ýýýe.EL€bÑnDEa¾YwÚ(Ip,ÊÞ½{gÍšuöìÙ   ¹sç¶nÝZëŠ4Cp´ìþýûo½õÖŠ+<<<Ÿ{î9õ k@ÙÑn*"‚£'Nܺuk‡’’’´®@{G V¬X±uëÖAƒ%%%i] 8 Ú@Å<ަ ÃÊ•+«U«6uêT­k°#tMeee]¼xÑÓÓsðàÁæK{÷î=dÈ­k€ Œv#PqM]ºtI‘››{ôèQó¥œX œÁÑTóæÍ™…l„v#P¡qŒ#¤å„v#PÑ …à(´@p€‚#Àæh7Žà)G€mÑnÁRŽ¢Ý8‚#¤¶B»p0GH!8l‚v#àxŽBpXíFÀ! …à°2Ú€£"8@ ÁRŽkb?5àÀŽBpX íFÀ± …à°Ú€Ã#8@ Á`´g@p€‚# ¬h7N‚à)G@™ÐnœÁRŽ€Ò£Ý8‚#¤¥D»p6GH!8Jƒv#à„ŽBp”íFÀ9 …à(Ú€Ó"8@ ÁP´gFp€‚#@íFÀÉ …àB»ÁRŽ€âÑn ŽDp€‚# ì§  8@ ÁPÚTGH!8 E»€1‚#¤–Ñn`‚à)G€´˜#8ãܹsz½þ·ß~ÓºX¢ÓýÿÀÆŽÅX±b…Ö% &a‘øXíF¹i]€ÊÎÎ>uêÔ7ß|óùçŸk] ,),#²¹ÀfŽ–uïÞýÏ?ÿÔº ¢èÎ"Ù(þ††àhÙo¼qïÞ=!ÄÊ•+wïÞ­u90Âþh4Bp´¬M›6ÊÛ¶mÓº”  ´øëP‚£Mèõz“‘ôôt­‹¥a¾YwZG› &¨ˆh7™oÖ6J2¤ÐqDQ¢sbè™%G»@±ް{Jd4Þ qb5Z 8¾ÑÊjdpŒ#*&‹›8ƒM¶CÇvÌbDÝO­,2ß‘  „h7DÇPÑ›8ƒƒ °™Ö¦×ë™ÇÑ:ÌÛ …(c¾/l8 [¿œùsJÁi·õtQq°}@SGØ%î¿­Du§sÑÇ;ï›&_ÒøsP"œ;c²ëYMêˆr£z £ù¯À6ް'òÝóÓ_Ô“¬ÉŽ€þ\”»ªa7,nÄŒ[æ,žÃ)ÕØGØ75Mªû¬Æ“8 fsJŒv#€R ãûPع/Ƈ6šü/Œ¾*Æø;ch:`GØ+ú!Ø‚#8>—(‚#ì›5ì'Ç@S&w £yKtqã“c@‘øPjGhÇdó¥N¦cq›¦ŽŸûb’Ù`K쪆”¹uLBžšÍω.zŠG“5ŽWÊ‚Ž#4RضK‰&ùϼ1) ÙÍ-ÈŽØ ÁvÃdgt±]ã/•¡…Hào@±«宨¹¾Ëˆ À° ‚#ì@Ç;°ÚÊŽà­Ùº ¬„àˆr¤žõb­n¢Å+$tfø³`œƒra|Ö³ÿsÞtI·fê©3&Ó7šÜ°6‚#l¯¤‡0ÊôF,^§äe'ßkaW5l¬ØM–É^fÉMœÅèiÜzÖFÇZ0N‡%Ýmmñ»ÙO ‚v#+"8”z³fq÷´äüá „ØU [’™j‡Ë€Íð €uQ¾ØŽPaaK&ÝDæúÊ[¬Žca&»žM¦]´Å­ŸÃÖÛ 8ÂÚLr[Ñ_SŠ£Íçú6ž €‚Plƒ]Õ°*‹ór'<ó•Ù¸PAÐq„õÖâ0ž—Û8;–.2Zì/šìªœíF6Bp„™Ì×mÅ­™ù®juœÍ&6À®jØS6åŽÏMl‡à›aó€c!8€ãàó›âG”™Å)¾Ëg®oõ¦™ÇÛ#8¢lŒSšñÙÓ¶‹nê¹/æ!•ÈçÆ_[#8¢´ÌbÑç¾Xw›fñÚ8Ÿ[âG”ňfq’E«ç9‹!Õ¸å ¬Ž#J¥è ¨¤75ÀYý¸Fã‰!ÕA«ßP¡ÐmPè8ÂzŒ7\j¶³é¦L½~ã¢é€ma%´;íð÷ |a lµpG”™½¥F{«°1^òÊ 'Ç $,Îõ]Øš¶Þ”™#89Û"8BŽy2SÏ›.ç¸f>Ǹñà€“¡Ý <±«”M“ÉÖÉ8·™¬Ì¦ GDÇ¥eÜç3ÎŽå°‡ÚâãBÐw„³á3€rFpDq,nšL¦lÔdóe¾«ZÛzpt쪀 ‰ÏGÊÁ%Çö §DpD ‘;À"MpŒ# aqÊF{ÛX©EšœcWEà(ްÄ${=ec95õÜó8Kd„sà•@+쪆óRaS6 í¶`o—ó©°%‚#þW‰‚—†)MýþãbÔN$à¸øp@C쪆­æú.ºãŒÈ¶Û£ã#2s}+ÿ›¡&Ô2Ì'‘h‹àˆ"±™ÿ‡àŸãhŽà#&;y+èfª‚– €Ýãä˜B­Y³fõêÕgΜ©R¥Êc=6yòd___­‹² óÓ“Õiñ`Á¢ ´xˆa‹- ˆi& ¥°>LW À-KNN^ºt©——W‹-.\¸°nݺӧO/_¾ÜÓÓSëÒ¬ª°ˆf¾iR×4™\Ëk;¨Îžc²Za7m~»òw¨8Šž”Ô@[쪶 ==}Ù²e5kÖüî»ï–-[¶eË–¡C‡>|øí·ßÖº4«*:f™ì³¶¸‚rR³ùÞm“‰r,ª#‹¾À¡Yœ¥”éíØ‚£«W¯.((?~|@@€22mÚ4ooïÍ›7h]]9RRÚð3pÅNÜc¬ˆm]aë± › 'PXvm-Ø¿¿‹‹K||¼:âêêÚ®]»k×®óò-¥/9hqB‘R\!à˜‚°æ›u§’ìª6åãã£ÓérrrLÆoß¾-þ¯ïè\ŠÍjV9<Ñ*J_¨àL¾%žOLìÁÑ”›››···yg1;;[¡žgí¤ÔM™us^a·RØMŽÎü€ìÀ-¨Y³æµk×”¤¨:þ¼²Hë꬧ØfÒî9ÓE˜Mâ­®&?hRƒÅ›.Ëýì[[‘h‹àhÁO<‘ŸŸÿóÏ?«#ƒaÇŽ¾¾¾111ZWgU%ÍXö¿Õ"5¢‚+ú(²#m-èß¿¿‹‹Ë{ï½§×(„X¶lÙÕ«Wûöí[©R%­«³6eZoó㦠úõ-%W+ã ñˆ:Xô* ù=Pþ8«Ú‚ZµjMžRuuu}þùçµ. ÀN9up|ðàAJJŠú«»»;Á 0N===Ù­ ‰oŽ€‚#¤ …à):ƒÁ u ¨è8@ ÁRŽBp€‚#¤ …à)Gg·fÍšþýûÇÄÄ<úè£Ó§O¿qã†Ö9²ÜÜÜÏ>û¬[·nÑÑÑmÛ¶}î¹çvíÚ¥uQÎ"33366vòäÉZâàŽ9òâ‹/¶oß¾E‹C† Ù»w¯Ö9²û÷ïôÑG}úô‰‰‰yüñÇÇwúôi­‹r@çÎÓëõ¿ýö›Å¥Î¶%8:µäää™3gž={¶E‹U«V]·nÝóÏ?Ÿ››«u]Ž)//oذao¾ùæ•+WZµjÕ°aý{÷>üý÷ß׺4Çg0¦Nzûöm­ qp?þøãÀüñÇ€€€˜˜˜´´´¡C‡þøãZ×å˜òóóŸyæ™·ß~ûÆmÛ¶­]»ö–-[zöì¹ÿ~­Ks4+V¬(l‘3nF pV'OžlÔ¨QÛ¶m/_¾¬ŒÌ™3'<<|öìÙZ—æ˜V­Z>pàÀœœeäÔ©S?üpDDÄñãǵ®ÎÁ}úé§áááááá“&MÒº‡uóæÍ¸¸¸¨¨¨(#¿ýö[Ó¦M[·nŸŸ¯uuHyK7n܃”‘Ý»wGDDtêÔIëÒÄ­[·öïßÿÚk¯)ï‡2YÁ97£t×êÕ« Æ ŒL›6ÍÛÛ{óæÍZW瀾ûî;!ÄŒ3<==•‘°°°Ñ£Gççç³ÃÚ¦NŸ>œœÜ¨Q#­ qpëÖ­ËÎÎ=ztll¬2Ò¬Y³„„„«W¯9rDëêÐÁƒ…Ï<󌛛›2ÒªU«ˆˆˆßÿýúõëZWçºwï>xðàÏ?ÿ¼°œs3Jpt^û÷ïwqq‰WG\]]ÛµkwíÚ5åýÖuþüy//¯&Mš†…… !222´®ÎaåååM™2Å××wÚ´iZ×âà~úé'N׫W/ãÁ ¤§§GEEi] BgDƒÁpóæM5J¢,Þxã%K–,Y²¤uëÖWpÎÍ(¯-'e0Μ9ãçççççg<.„ÈÈȈ‹‹ÓºFGóᇚ¿›;vLQ·n]­«sXï¾ûî‰'>ýôÓêÕ«k]‹ƒ;zô¨¯¯o``àÒÒÒnÞ¼Ù¨Q£:¨-vXW·nÝ–/_þÆoT©R%::úÆK–,¹téÒSO=Å«Ý*Ú´i£ü°mÛ6ó¥N»%8:©œœœüü|“qoooñ¿aa-76Ù³gϲeËÜÝÝMš4°–C‡}ôÑGC† iݺµ’Ña#÷ïßÿ믿6løú믧¦¦ªãuëÖMIIiÚ´©Ö: ½^¿bÅŠaÆ 6L2dÈôéÓµ.Í)8íf”]ÕNJ9çËËËËd¼jÕªBˆ[·ni] ƒËÏÏ_¾|ùˆ#rrræÍ›çïï¯uE(77wÊ”)uëÖ8q¢Öµ8¾¿þúKqæÌ™M›6ÍŸ?ïÞ½;vìHLLüÏþ3nÜ8?ÉT#ÙÙÙóæÍ»sçN“&Mž~úéŽ;zzznØ°ÓØË‡ÓnFé8:)N—““c2®ÌW¢|`‚ìÝ»wÖ¬YgÏž š;wnaGÏ ŒæÏŸéÒ¥ÔÔTv•–å‡yóæ=þøãÊÏ/¾øbffæºuë¾ýöÛ~ýúi]££™2eʯ¿þ:mÚ´gŸ}VÉÌÌ|úé§'L˜ðõ×_ׯ__ëœÓnFé8:)777oooóDÙÙÙBõ1X×ýû÷ßxãgžy&33311qóæÍ¤FÙ·o_jjê¨Q£8-£|xyyyxxxzz¶oßÞx¼C‡Bˆ“'Oj] £¹råʶmÛ6l¨¦F!D­ZµÆŒóàÁƒõë×k] ãsÚÍ(GçU³fÍ3gÎdggF}þüye‘ÖÕ9 ‚‚‚‰'nݺµC‡IIIü¶b”ïÏPΈ4ÿú믿þúë°°°7j]££ ¸yó¦N§3TÚ½yyyZWçh®]»&„ 1WYYYZèœs3Jpt^O<ñDzzúÏ?ÿܵkWeÄ`0ìØ±Ã××7&&FëêЊ+¶nÝ:hР¤¤$­kq|ÁÁÁê [qëÖ­;wÖªU+&&&00PëPûöíÿùÏž:uJ9«T¡LJÂ$šVâêêzúôiƒÁ`ÖÓÓÓ… 6Ôº@§àœ›QvU;¯þýû»¸¸¼÷Þ{ê÷°-[¶ìêÕ«}ûö­T©’ÖÕ9ƒÁ°råÊjÕªM:UëZœB›6mý¯—_~Y·hÑ¢)S¦h] êÝ»·bæÌ™êù¤GŽùä“O¼½½;vì¨uuŽÆÓÓ³]»v.\xçwÔ¹¦OŸ>½dÉ’Ê•+›0qÎÍ(GçU«V­É“'ÏŸ?¿GmÛ¶½páž={š4i2räH­Ks@YYY/^ôôô¼F6lØ´iSPPÐ!CƯL%ëºté’"77÷èÑ£æK9EŽaÔ¨QþþþË—/ß½{·¯¯ïO<‘˜˜¨|=¬ÎßßÓ¦MK—.ݹsçöíÛ}}}{ì±^x!22RëÒœˆnFuƒAëPpŒ#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽòÿ þ/-–9IEND®B`‚statistics-release-1.6.3/docs/assets/procrustes_401.png000066400000000000000000000463401456127120000230730ustar00rootroot00000000000000‰PNG  IHDRhŽ\­AL§IDATxÚíÝy\TåâøñgXDe‰Ý«€æŒ‚n¹„â–ši.P×%+ÓnV&.”v5µ«ýÒT´kf\³®Ý®¥Rö­0[ì’Yš††+BbZ".¨àÂ0¿?Îí|ç;x€3sÎçýòæÌæ9_òñ9Ë,‹nÇMíÀ5ŽP„p€"„#! áEG(B8@ŠŽP„p€"„#! áEG(B8@ŠŽP„p€"„#! áEG(B8@ŠŽP„p€"„#! áEG(B8@ŠŽP„p€"„#! áEG(B8@ŠŽPD³áxâÄ “ÉôÓO?UøìæÍ›“’’âââzõêõüóÏ_¼x±fëè‡fÃñwÞ©ì©ÔÔÔ¹sçþüóÏ]»võõõMOOüñÇKKK«»€®h-‹‹‹÷íÛ7þüÿûß®“““––úÙgŸ¥¥¥mß¾}„ ÙÙÙË–-«Ö:z£µp6lظqãÞ{ï½ÊVØ´iSyyyrrrHHˆ´döìÙ~~~Û¶m+//W¾€Þh-/^¼fÍš5kÖôìÙ³ÂöîÝëææ– /qwwïÝ»wQQQVV–òuôFkáx÷Ýw÷ïß¿ÿþM›6µÖb±äååZ/7Bˆ‚‚…ëè‡Ú¨W%%%f³Ùßßßf¹ŸŸŸâÂ… שšÉdR{C@ÝÊÉÉQ{*ÐW8J—EûøøØ,÷õõB\¾|Yá:·¥Ï¿L0™Lìz}b×ë»^·t;I¤µCÕUó÷÷7 %%%6˯^½*þ˜ST²€é+=<<üüüìg ‹‹‹…Ò5ÔJÖÐ!}…£"44´¨¨Hª@ÙÉ“'¥§”¯ 7º Çþýû›Íæ;wÊK,Kfff@@@\\œòuôFwᘔ”äææ¶zõjéœE!DZZÚùóçGíéé©|½Ñ×UÕBˆˆˆˆ”””%K– ><>>>??÷îݱ±±“'O®Ö:€=.®Ô-v½n±ë¡7º G!Äĉƒƒƒ·nÝš‘‘>~üøäädén;ÕZ@W ‹Eí1h ·õ@Ûtû»^wç8 fG(B8@ŠŽP„p€"z¼#ÀÉ™L&µ‡}Ñç½uj€p8#~‘£Þðå8T EG(B8@ŠŽP„p€"„#! áEGjeÕªU†*mß¾]í1*””¤ö(þëúõëF£qÿþý>ûã? †÷ß¿°°ðOúÓ™3gÔ¯.ð‘ƒÔJ§NfÍš%?üûßÿîïïÿÐCÉK¢¢¢êyHûöí[¼xñ¢E‹bccÕþñÔÜ‹/¾WõjÁÁÁ'Nœ:ujzzºÚCÖ> M†™;,ËûÕ~ÛŠ—®[·®Y³f¯¼òŠŠÛþûï¿oݺ599YÅ1ÔÒ¹sçV¬X±k×.%+'''‡‡‡ïٳ箻îR{àÇ¡j€6Y–÷3ÌÜQÅ ©FØ3›Íf³¹–ßäõ×_oÙ²eçΕ¬8tèÐW_}UíM×> YU´£*Õ˜ššÚ¾}{ŸÀÀÀ»îºëÝwß•ŸŠŽŽž>}ú¾}û:tèСCiáž={ؾ}û^xaíÚµƒá§Ÿ~’ž=tèШQ£š7o2xð௾úJZþè£Þwß}Bˆ„„„èèhûa”––.Z´¨M›65ŠŒŒœ4iÒo¿ýf½Â®]»† Ô´iÓ)S¦\¹rEù&¬^½Úßß¿AƒíÚµ›={öÍ›7å*p…Þzë-›³-¿ùæ›ÆÄĤ¤¤Xg!DbbâæÍ›­‡Š:a£Fµ‡®Í±ÿŠ_Ýv‰ùûûwéÒÅ~ùüùó…ýúõ[¸páóÏ?ߦM!ÄÿüÏÿHÏFEE=:000::úñÇ·X,Û·o÷òòŠŠŠš5kÖ“O>éïï"„8pà€ÅbùüóÏ6l=kÖ¬gŸ}¶U«Vîîî7n´X,\¸p¡béÒ¥™™™ö#;v¬Á`8pà_ÿú×ûï¿ßÝÝý®»î’‡a4ýüü¦NºlÙ2é¼4%›Ð´iS!Ľ÷Þ;gΜ¾}û !z÷î]^^^õ€í?~\±}ûvyIzzº»»{HHÈ“O>ùôÓO‡……F!Ä{ï½'­pòäI!ÄÇ\ƒ]Vƒ¿oºý]O8:žnÿ2€£8üRëR¬Ój´TŽ-Z´0·nÝ’^ºtÉÃÃãÉ'Ÿ”JÐ,\¸Ðl6[,³ÙÓ¢E‹¢¢"i…#GŽ4hÐ@ Ç7n´jÕ*..®¤¤Dzöúõë=zôhÑ¢EYY™Åbùä“O„ÿùÏì‡qõêUww÷GyD^òØc9sFÆG}$=UVVÖ¦M›ÈÈHå›ðÒK/Éß9%%E±qãÆÛØFZZšâÂ… òÊ‘‘‘ááá§OŸ––œ9s&""Â:-KPPÐÌ™3k°ËGå8T Ð>ù˜µŠç5þðÃYYYÿ½,µ¨¨HQRR"¯>wî\777!Äþýû9’œœ(=Û¦M›ÄÄDéëýû÷çææ¦¤¤x{{KK¼¼¼¦Nzâĉ¬¬¬ª‡áææf0víÚ•ŸŸ/-Y·n]aaaxx¸ôÐh4>\úÚÝݽcǎ׮]S¸ RºÉçÏŸïëë»iÓ¦ê8??ßËË+ @z˜•••ŸŸ?cÆ iFSúY=óÌ36¯ ?uê”*;W?¸ªà2ª¾ØEáËküMjYœß}÷Ý_|qìØ±ÜÜÜÇ—••Y¯`2™¤jBHÇjÛ·oo½BÛ¶m¥/Ž;&„;vìØ±cmÞåÔ©S]»v­bÞÞÞ+W®œ9sftttlllÏž=|x=:uêd½Ž¿¿¿üµÍ•¹á¤8{å•WÚµkg³NLLÌmóÔSO=ú“O>ùúë¯322ÒÒÒL&Sfffhh¨¢aÆ5Þ{×®]«î€6lhýæ8 ƒõ:rd[ÿÐ5jTû…*Ží“{Q­vüöÛo322V®\9mÚ4y¡ÍtµÖ­[ !>ܧOyááÇ¥/Zµj%„hܸñ Aƒäg9rðàAëú¬PQQQ^^žÑhœ4iÒ¤I“ÊËË׬Y3uêÔµk×J×¾ÔfŽ9rëÖ-OOOéaiiéÑ£Gª;à°°°‹/–——Kuxçw !~üñÇ„„yØoZ‹-êdÿáœãÐ8›R¼íýëÂéÓ§…ÒeÈ’-[¶\»vÍb±T¸~ÇŽ###W­ZU\\,-ÉËËÛ´i“ü¬ÉdZ¾|ù¥K—¤%ÅÅÅC† ™>}ºõ”[yy¹ýwÎÉÉéÞ½ûòåË¥‡nnnRɵW›M(,,LMM•.Z´¨¸¸xäÈ‘ ,kÓ¦Myy¹|f§NZ´h±bÅŠ³gÏÊo´jÕ*ë—”••XuG€–U8¿XÿóŽ}ûöõññ™qâDÛ¶msrr¶mÛ8f̘ÚoBxxø¼yó¾ûî»:|ÿý÷_|ñE=&L˜àææVõ€íßËÍÍm÷îÝÒ}(===—-[öÀÄÅÅ=øàƒžžžÒGT[¿$;;»¤¤dÀ€õ¶OuJí˺5H·—耣8êÒªï¼SG÷å©ìv<™™™={öôõõmÙ²å¤I“ ×­[ÿüsù…åååcÆŒiÒ¤I§NìGRPP0qâÄÈÈH//¯æÍ›;öèÑ£ÒSQQQ‰‰‰Ö+?>((Hù&dfföéÓÇÏϯuëÖ³fͺ~ýºü­ª°½^½zMž<ÙzÉ7ß|3`ÀéRk??¿Í›7 «Ûñ,_¾<$$¤Â›ûÜ·ãQÎ`©d’5f2™rrrÔ¸0‡üCZoŸU]nݺ•.Ý­Pòä“OþóŸÿ¼|ù²|C§ݱcÇ?üÐ!ßmãÆO=õÔÙ³g½¼¼lž:sæÌwÜa³¼sçÎ÷ÝwŸtçóêªÁß7Ýþ®çG€6))Bç¬F!„»»û€Æ'/¹|ùò‡~8tèPç¬F‡KLLôõõݺu«ýS6Õ˜}ôèÑ)S¦¨=jí#p:nnnS§NýÏþ“˜˜¸qãÆÔÔÔøøø«W¯Î˜1Cí¡ÕOOÏW_}õoû[…—øØ˜?þüùóÃÂÂÔµöéâ-¸œ ÿãÿ˜4i’§§g\\Üúõë»té¢ö¸*5dÈéSeĈûöí;tèÍÐm†„„Xb êç8:žnÏ{GáRÔ'ÎqTŽCÕP„p€"„#! áEG(B8@ŠŽP„p€"„#!p€²²²7ß|3>>><<¼I“&;vœ:uê™3gÔW­DGG'%%©=Šÿº~ýºÑhÜ¿Õ+,,üÓŸþäê?y§å¡ö¨sÇ#¬·8¸*,Ëý÷ߟ‘‘ѹsçqãÆyyy;vlíÚµo½õÖž={bccÕþhÁ‹/¾WõjÁÁÁ'Nœ:ujzzºÚCÖ Â qÇ#lJÑ~I-ýë_ÿÊÈÈHIIYºt©¼ðÀwß}÷£>úÃ?¨ý3pyçÎ[±bÅ®]»”¬œœœ¾gÏž»îºKík ‡ªZVa#·œ9ža3 YRÐL:ÕzaÇŽ“’’~üñÇ«W¯ªýcP“Ùl6›Íµü&¯¿þzË–-;wî¬dåÀÀÀ¡C‡¾úê«joºŽÍªbfѱ3ŽR:tÈfù’%K²³³4h /ùá‡î½÷Þ°°°ˆˆˆ{ï½×z2Òþ¼½G}4 @~vúôéûöíëСC‡¤…6lXhhhXXØðáó³³å×:thÔ¨QÍ›7 |x„ ãÇÿþûïãããþùg!Ä_|ѵk×<øàƒ>úè‰' ôÞ{ïUøm'Mšô /4kÖlÆŒqqqo¿ýöˆ#äg³³³‡ÚªU«9sæ´lÙríÚµ³fÍ’žZ°`ÁŒ3‚ƒƒŸ{î9)(ÇÿñÇ˯ݼyóÔ©S{÷îýÜsÏ/Y²dàÀ‹¥º#ÌÍÍÍÏÏïÙ³§õÂììì6hÐà‰'ž IMM/++“žíÙ³ç­[·233ô—°ÀÑŒF£ÚC׿HsF‡;d…Þ}÷Ý–-[J¿[6lد_¿—^zé—_~‘W¸qãFtttTTTaa¡´¤°°022²E‹7nܰX,QQQ‰‰‰Ößó‘Gñ÷÷—¾ŽŠŠB,\¸Ðl6[,–²²²˜˜˜–-[^¸pAZAФ©S§Þ¸q£U«Vqqq%%%ÒSׯ_ïÑ£G‹-ÊÊÊl†}õêUww÷GyD^òØc9sF~Ó>úHzª¬¬¬M›6‘‘‘ÒÃ-ZÆ[·nI/]ºäááñä“OZø¥—^’¿sJJŠbãÆÕ¡ÅbIKKBÈ[*óW^yE^"åìo¼!/ š9s¦’}Wƒ¿oºý]ÏÅ1—QÝ B%ë+ÿžUÝ;vìØ±c³³³wìØ±cÇŽÌÌÌ;vÌ;wþüù/¼ð‚"++ëäÉ“+W® ’^”œœ<}úôŸ~ú©k×®·@xxøÜ¹sÝÜÜ„8räȪU«äcÙ½{÷~óÍ7›4i²ÿþÜÜÜÿûßÞÞÞÒS^^^S§N;vlVV–͹¹¹ †]»våççGFF !Ö­[·nݺÿÝj£qøðáÒ×îîî;vüâ‹/¤‡?üðCÆ =<þÛEEEBˆ’’ùµRºÉçÏŸÿúë¯oÚ´)::Zù…ùùù^^^ò–JBCC“““å‡ ,X»víÇüøãË?®S§N)ܹPˆp¸Œj˜¨äÒi‡_^ݾ}ûöíÛ'''ß¼yó£>š>}úüùó»wï~Ï=÷äææ !äÓåõ…¹¹¹JÂÑd2IÕ(„8~ü¸¢]»vÖ+Lœ8QñÏþSü²6ßáÔ©S6oäíí½råÊ™3gFGGÇÆÆöìÙsðàÁC‡•¯FëõÝÝÝ対ûî»/¾øâرc¹¹¹‡–K¬Ó !|||L&ÓÏ?ÿ|ìØ1å#Büþûï6 Û¶m+7«üÍ¥²äŽ;î°9YµG8P+W¯^}ôÑGï¹çžÉ“'Ë 4h””0pàÀO?ýôž{î±X,BƒÁ`ýZ©ÃnݺUáw¾qã†õCùké*ër²~k!Ä+¯¼b“•Bˆ˜˜ûõŸzê©Ñ£GòÉ'_ýuFFFZZšÉdÊÌÌ B4lذ²±5*##£k×®÷ÜsÏðáÃ{ôèÑ©S§ªV×®]«î6lh}UMßÜz´7oÞlÔ¨‘Â…G€6I×¾T1¡è¨éFŸíÛ·X‡£D:*-åK«V­„ìÓ§¼‚t´Éd’–——[¿ÜzþÌvëŒF!Ä‘#Gâããå…/¿ürqqñ¨Q£„74hüÔ‘#G›’’Ò¼ys?üPzVºÔcðàÁk×®}öÙg}||üýý­¯ª1b„õ›~ðÁwÞyçìÙ³çÌ™æëë›››k±X¶mÛÖ AƒæÍ›Ïš5kÚ´i‘‘‘ƒáý÷ß·ù7Ú¶mëîî>f̘ŋO˜0!88800ðĉ–Š.ô?~|PPÅbÉÏÏ÷ññiÞ¼ùœ9sV¯^=nܸðððààà–-[fddH¯ oРÁý÷ßÿ / 8PÑ£Géªpå#´X,.\pssû÷¿ÿ-/‰ŠŠ’sÔ¨QóæÍëß¿¿bРAò ?þø£bÏž=JvWU+G8:žnÿ2ÁyT‘†T#\‚Ãÿ!•JQþSc¾víÚÚµk{ôèìéézß}÷íܹÓfµï¾ûnðàÁ¡¡¡¡¡¡ƒ¶.›’’’iÓ¦5mÚT:211qáÂ…U„£ÅbÙµk×Àƒ‚‚BCC‡~èÐ!ù©¬¬¬¡C‡†……$$$|þù畼  `âĉ‘‘‘^^^Í›7;vìÑ£Gå7­,-KfffÏž=}}}[¶l9iÒ¤ÂÂÂuëÖK' 833³OŸ>~~~­[·ž5kÖõë×k0B‹ÅÒ«W¯É“'Ë¥ø~ýõ×{ôèѸqãvíÚÍ›7O¾1ÅbY¾|yHHH…7÷±G8*g°XM)Ã!L&SNNŽÚ£€Þfî°,ï§d!à„tþéµk×®]»¢ö@j%::ºcÇŽ~ø¡C¾ÛÆŸzꩳgÏzyy)Y¿sçÎ÷ÝwßÂ… •¬\ƒ¿oºý+Ê9Ž€6Y–÷³9ß‘j\…«W£Ã%&&úúúnݺUÉÊÙÙÙG2eŠÚ£Ö ÂÐ,ëv¤¸4OOÏW_}õoû›Í…çš?þüùóÃÂÂÔµq;@Ëäv¤Ô³!C†H è(#FŒØ·oß¡C‡¤»¦W¦°°0$$Äúkà@„#p¼5kÖ8ü{.Z´è¶ë¿ñÆjo½fq¨Ð2ù5÷wÔáh–õyö×ÊP]„# MöWÃÐŽ€Z" ªìjÚP„# 5Ußy‡vÔáhÍmï¼Ã­y5C8@îãpF&“Ií!°E8œNNNŽÚCPU@ŠŽP„p€"„#! áEG(B8@ŠŽP„p€"„#! áE<Ô€ ÊÊÊÒÒÒ¾þúëÜÜÜÆß}÷Ý)))6«mÞ¼yÓ¦Myyy5êÓ§OJJJ@@€ÚcPîfKKK“’’V­ZuñâÅ„„„ÀÀÀ>øà¡‡:þ¼õj©©©sçÎýù矻víêë뛞žþøã—––ª=|Õè.SSS92f̘íÛ·¯\¹ò£>zá…òòò^zé%yœœœ´´´ÐÐÐÏ>û,--mûöí&LÈÎÎ^¶l™ÚÃP¾ÂÑb±lÞ¼9((hΜ9îîîÒÂqãÆõìÙóË/¿¼r労dÓ¦MåååÉÉÉ!!!Ò’Ù³gûùùmÛ¶­¼¼\íP‡¾ÂñôéÓ%%%111^^^ÖË»uëvãÆ]»vI÷îÝëææ– ¯àîîÞ»w¢¬¬,µ7@ú G777!„ý©Š7oÞBœ;wNa±Xòòòm.—1Bˆ‚‚µ7@úºª:""¢qãÆ‡:wîœ|úÖ­[Ÿþ¹¢°°PQRRb6›ýýým^ëçç'„¸pá‚’72™L6KrrrÔÞzPö¿ÖuK_áh0&Ož¼bÅŠ)S¦¼ð F£ñ—_~Y¾|y^^žâúõëâùH›×úúú !._¾¬äÈD4Ãþ׺nSR_á(„˜4iÒ/¿üòÁ<ðÀÒ’ˆˆˆI“&­[·®qãÆBƒÁPRRbó«W¯Š?ætHwáèîîþÿþßÿKJJÚ»wïùóçÛ´iÓ¯_¿>ø@qÇw!<<<üüüìg‹‹‹…òn½Ñ]8J:uêÔ©S'ù¡t¨º]»vÒÃÐÐм¼¼âââ&MšÈëœA8´ ²@”–Ø%€àG€F†@]#ÚgÜrÆæÜG5@8\G¢úA84ˆùE .ŽP„p¸N‚‚phA“ŽLFŽB84¢Âv”æ™n‚OŽh‡u;òaƒ€ÃŽMá3ºÃ¡j(B8@ŠŽP„p€"„#! áEG(B8@ŠŽP„p€"„#! áEG(B8@=†ãÍ›7ÿñŒ5*..®_¿~Ó¦MËÍ͵_móæÍIIIqqq½zõzþùç/^¼¨öÀE 3wÔr*¤»p4›Í?üð²eË.^¼ß´iÓíÛ·ßÿý{÷îµ^-55uîܹ?ÿüs×®]}}}ÓÓÓüñÒÒRµ‡Üžey¿*ÒÐ0s‡ey?µÇpIº Ç÷ß?++kÈ!_|ñÅ«¯¾úÎ;ï¼õÖ[Bˆ¹sçÊëää䤥¥…††~öÙgiiiÛ·oŸ0aBvvö²eËÔ> HeíH5jCwᘕ•%„xøá‡=<<¤%=zôhÓ¦Í/¿üráÂiɦM›ÊËË“““CBB¤%³gÏöóóÛ¶m[yy¹Ú[(bߎT# –tŽáááB¹…‹åÒ¥KnnnrJîÝ»×ÍÍ-!!A^ÇÝݽwïÞEEERw.Áº©F@íé.ï»ï¾† .^¼øûï¿/--=sæÌ¼yóNŸ>””Ô¤I!„ÅbÉËË ´~¡ÑhB¨½@5ÈíH5jÏCíÔ7“ÉôÎ;ï<òÈ#<òˆ¼püøñÏ?ÿ¼ôuII‰Ùlö÷÷·y¡ŸŸŸø¿S•U¿‹Í’œœµ7Ô„ý¯uÝÒ]8¿üòË×®]‹m×®]QQÑ·ß~»uëÖîÝ»8P!]:íããcóB___!ÄåË—•¼ ™'!O7r¨jÌþ׺nSRw‡ªŸ}öÙüqöìÙ|ðÁÂ… W¯^‘‘áãã3}úô'N!üýý CII‰Í ¯^½*þ˜w\‚u,V}”ÐW8ž;wî믿¾óÎ;}ôQyaDDÄ“O>yëÖ­?üPááááççg?³X\\,„¯³œœT´#ÀôŽEEEBˆ¨¨(›å-Z´BJCCC‹ŠŠ¤R”6í$MVƒ¹LŽP\3ŽpaÜ€úD8Â%ñI}Ô?®‡‰FTÁ9Žp%ÖŸã´8Í UÌ8Â5plÕŽpÎ?Ë€ŽpjL4à<ôŽ¥¥¥;v¬ìÙV­Z}òÉ'òÃÍ›7oÚ´)//¯Q£F}úôIII P{ ôÅu'•|z €ºp<1Âþkã–3j Ð}…£Á`hÓ¦ýò›7oþüóÏ~~~ò’ÔÔÔµk×úøøtíÚ5???===77wÆ ÞÞÞjo„.èp¢‘Öjïxb„܈•}  6ôŽ 6ܺu«ýò+VüòË/sæÌ‘æä䤥¥…††nÙ²%$$D±xñâ 6,[¶lÞ¼yjo„öÑOj Š:4n9C;ÁíxıcÇÖ­[÷—¿ü¥mÛ¶Ò’M›6•——'''KÕ(„˜={¶ŸŸß¶mÛÊËËÕ¯–¹ÄÝv¸"©Õàòô5ãhÏl6?ÿüó-[¶|òÉ'å…{÷îussKHH—¸»»÷îÝûã?ÎÊÊêÒ¥‹Ú£Ö ›à@L(õCï3Žï¾ûîáÇçÌ™ãéé)-±X,yyyÖkF!DAAÚCÖ i–QcÕÈmÀÚ£ëÇk×®­Y³¦[·n={ö”–””˜Íf›•¥Kg.\¸ ä;›L&›%999jo®3b¢àüì­ë–®Ãñ­·ÞºxñâŒ3¬––– !|||lVöõõB\¾|YÉw&•àtF€K°ÿµ®Û”Ôo8^¹reýúõ]»v‹‹³^îïïo0JJJlÖ¿zõªøcÞµÄD#Çâºi ~è7?ùä“k×®9Òf¹‡‡‡ŸŸŸýÌbqq±B¾Î5£«däÖŒ€ó +‡ÐïÅ1›7oööö|xèСöç2 !ú÷“³sçΡC‡JK,Kfff@@€ÍqmS2£&­ «‰Fj±iG>rp8Î8fff !ºuëVá³IIInnn«W¯–ÎkB¤¥¥?~ôèÑò]{ ©z†L®F&Ôã–3Ò›¯8„NgwíÚ%„èܹs…ÏFDD¤¤¤,Y²døðáñññùùù»wïŽ6­ójä6à-ÑãŒcÆ †[ónÐ Â5Äg  7„#j‚j@‡GTÕ€>ލª±f8Í „#ªj@ÏG(E5 s„#¡áˆÛ£‚s®ŽpÄmP*¢5N…pDU¨F #Q)ªX# ሊ1ÝX¸ 8À¥ލÕìްE5€ Žø?¨FPÂÿ‹j¬œ³p]„#þ‹jtZ´&ÀIx¨=8ªªåxb„õCã–3®û.€r„#¨F¨žã‰6 g¿ÄUÞ¨ÂQï¨FPNš´¯7ã–3•=åðw¡¡"ÎqÔ5ªQÜpi•u›c{®Šw±9~ Ô'ÂQ¿¨F¨–ÛÎö9¤ê˜S„3#uŠjŤ#TÄ9ŽzD5€CTp™t´_È4$œá¨;T£3ÎY¬ÖލÁKÔ‡_ø\Ùw°©I^‹(G8ê å.JnDë²´Ÿ›$%Q§G¡ 6n{7œú¿®ÅþíHIÔ)ÂQ/¨Fp¬:ÊĪóô¶'P*IIAM¢¦G] ÂsÙw@uÉTgVv£oǾWeíX³TUrƤÃPê¾êŽÁb±¨=­1™L999jâQNKá®±^Íþ%ì_@f]orcÕÑE$õð)Òši;F°óp¶ßõõ†G£*4 Š¹Iö/ «,Dl:ÒQêáÓÿœðtÉꎪŠjçã]Ḁ Û‘jP§rŒ»ŠgiGWD8ja¡%6WÍά)ü0@¥ö¸Ž[çGÍ",œ_uïé-­/å#;P*«:%å¯ùqiá¨MT£Vñù1œ_…ç•VXÌ»7µÇ#,4Lšn´>f .Á¸åŒö®­Ö!ÂQk¨F “w®ÍùŽäÛ+V±õ¬Â]À~qu„£¦P.GyÚì\Ú¨f¶œíèÒGí 5¬ÂK;ÖªÈ2E-•íi95ïŠG×pÛ> 5¬ŠK;Öl2źN(rò^°^XGçƒzÀUÕ®¡êki©F »íÎe×Ö*<ÙQíAéõg?Ú,aï¸ÂÑeTÖŽT£¶±sêªð0P}#r/WÄ¡jWb\’jÔ7Ð-.”q9„£‹±Ž ªªF—8?ö‘káPµë‘Û‘jõ‰GªÓòŽIGB8ºù5'Æi§9Ð9ÚÑUŽ.ÆúCçí·C‘¸ ö”K ]‰ýÕ0ÌT4ƒvt~„£Ë¨ìjÚÔÂÑ5T}çÚ  L::9ÂÑ5Üv®‘[ó¸:ê¨;´ˆka93Â¥¸Oý áœíèœGׯñMPoGÀYðß î0}åŠØkNˆpNŠvt6„£Ëcš  a´£S!ºPûþà’jµÐŽÎƒpœóÇgF8jµÐ6&á\íè G€^P®Ž=¨:ÂQ#8Z êá8þ8'.©vL:ª‹p®„vTá¨ÌTÀmÑÚÀ~T á\í¨ Âp:Lœá\“ŽõpÔfªà¶¨ -aoÖ3µ€³ã^<άŠvd¯9á´À>)~‡ãPµÖp´ZØ@âø¦–TQ‡ìh‡#€Ë«¬iGÇ"€«²žn¤ëá¨AåèíX×GÀIñ N)/ .°d„#!µ‰É*€ØÌ3=\×G Y¤¤cé4<øôÓO÷íÛ·k×®ãÇß³gý:›7oNJJŠ‹‹ëÕ«×óÏ?ñâEµG Ýaæ¨S\H¡ ò~´oDªÑáôøÉ1;vìxæ™gÊËËÛµkתU«]»vM˜0áõ×_ïׯŸ¼NjjêÚµk}||ºv횟ŸŸžžž››»aÃoooµ‡¯”Ô–åýjÿ­pfÖíh³\í¡iîÂñòåËÏ=÷œ‡‡Ç›o¾Ù¹sg!Dvvö¸qãæÍ›—àææ&„ÈÉÉIKK ݲeKHHˆbñâÅ6lX¶lÙ¼yóÔÞ@ýaÊÊUHíÈΪkº;Tžž^\\üÄOHÕ(„hß¾ý!CΟ?ðàAiɦM›ÊËË“““¥jBÌž=ÛÏÏoÛ¶måååjo°E5ÖÝ…ã7ß|c0FŒa½péÒ¥999:tîÝ»×ÍÍ-!!A^ÁÝݽwïÞEEEYYYjoA5p†TÓjÑÝ¡êC‡„……íÛ·oÿþý—.]jݺõ€ä“-K^^^````` õ F£¢   K—.jot„sU඘n¬7ú Ç›7o^¹råÎ;ï\°`ÁÆååÍš5[¹reÛ¶m…%%%f³Ùßßßæµ~~~Bˆ .(y#“Éd³$''Gí­5aÿk]·ôŽW®\Bäåå.Y²$!!áúõë[¶lyíµ×¦M›öÉ'Ÿx{{—–– !|||l^ëëë+„¸|ù²’7ržLd¾ €Z²ÿµ®Û”Ô×9Ž 6”¾xùå—GŒáïïöôÓO9òôéÓŸ~ú©Âßßß`0”””ؼöêÕ«âyG€fpš£«ã8u}ÒW8úøø4lØÐÛÛ»oß¾ÖË  „8vì˜ÂÃÃÃÏÏÏ~f±¸¸X!_g Ô.rÔB‘6ôŽBˆOOOƒÁ`½Pº2¦¬¬LzZTT$•¢ìäÉ“ÒSjoø/⾞é.ûöí[\\|üøqë…ÒMvZ·n-=ìß¿¿ÙlÞ¹s§¼‚ÅbÉÌÌ ˆ‹‹S{ ”’ç¨*›¯b dÇ#ä?jp^º Ç‘#G !æÎ+_}ðàÁ7ß|ÓÏÏoàÀÒ’¤¤$77·Õ«WKç5 !ÒÒÒΟ??zôhOOOµ·@©ªorÅ ˆ?zQš²2n9#ý!Êèëªj!D›6mf̘±bÅŠÁƒwéÒ¥¤¤dïÞ½ƒañâÅwÜq‡´NDDDJJÊ’%K†ŸŸŸ¿{÷îØØØÉ“'«=üê©ì’jªDåG9¥…´£óã8uýÓÝŒ£â/ùËK/½þÝwßåçç÷ïßÿÃ?2dˆõ:'N\¶lYtttFFÆ… Æ¿aÃû›;:?¹åÙGªÑq} ÀènÆQ2zôèÑ£GW½Î°aÆ ¦öH€j{6“UÒj¦¯\ûKzœqÔ!)©FP„£¾p¸ÔᨠÒ\£<ïH>º"NsÇ©ÕB8jŸõjé )A(HzÆ' 5 Ó‹côÃþ¼F›{ôHíȹ`9-çÄt£Š˜qԲʮ†±>è)Âfö€U1éÈd$P!ÂQ³ª¾†Úæ„9ë|¤ Êmwû ¨ ÛQZœ`Ï`±XÔƒÖ˜L¦œœuÇPË;ïpüÚ©Tqj·X¦¹§£3s’]ã ¿ëUÁ9ŽÚT˘¯¿®ý·BíñÑ‘@]“?cЊpf„#*e‚‚T•};Rtˆ¸WáˆÛàúk'ÁGGTG8B)& U'·#?|€*GT4ã¡Î‰ýâ GÔÐÔ?ù5‡ªª Q+¿®76I;Цáàøu]»íGGPG8Òm_+iWé¡zgÕé?+¨.>õÑ9ñ‘ƒp¼*>ÀÐæ£í¹P )Ù–Ú¿Kµ>:´A:0-ÿQ{8ø_„#ꊔrAZ/¯¬u\¨ëm[nûM\ë'8?Î¥S]…»@úH¦!UG8¢ÎÙO@VØ[.WòÖif[@uU„;Aï 8ÇõÄþëºréÒÒÒ¶€³±NIiÞ‘‚T3ލoò¤ø#"5PZÖ[äêÛj! 3ŽP‡|ýµuAº:ªH:£‘”t*„#T¦™{ÊH[¡mµX_þB2:!ª‘K½¥¥môŒC¥õϦÙNŽp„:lêÊ¥{KKÛuÍæ–:d¢k!¡‚ »ÊE{KKÛu¡º¥XŤ#ó‘ª3X,µÇ 5&“)''GíQ8¯ª‹ÊµzKKÛ虞çÀìo©]ûͯýϳÂ@tªjÔíïzÂÑñtû—I ½}Vµ«l  [Ö×íÊ_ëçb^ö™Ã/j©‹¢u Ýþ®'O·™ÀµØ’M/:ÕüV=l¾Â§¬×±~¨íŸ•=Ýþ®çGþK?õSuVxu³ÎK G·TãÖ0”"ìŽà¿ˆETp@_¬gR«(EûËSÂ!t3»&å …Ü1ÕB8ôH?§0V8§¨“m‡ÃŽTÀuÓŠóQwG€NU1éèr§÷U÷þÛUO¸ºn4£®Žýªì†…Ϧ K´6ïRûiÅ ?#G?Ÿšƒš!º&÷“õǾEóšÊß«.iýY‹u´íРwuZKUÔám×Ï ‰E(G8PWª{Ô›É?89Â5‹p!„#õÇþ4—0Ã…ŽÔ.ÍMíÀ5ލ†ãÔp-„#uÅþ&‘€K#¨CU´#Óp9\@ݪ¬©F¸Â€:G#B8T EG(B8@ŠŽP„p€"„#! áEG(B8@ŠŽP„p€"„#! áEG(B8@ŠŽP„p€"„#! áEG(B8@ŠŽP„p€"„#! áEG(B8@ŠŽP„p€"„#! ˆ‡ÚPAbbâÁƒmíÚµËzÉæÍ›7mÚ”——רQ£>}ú¤¤¤¨=v85“É”““£ö( v½n±ë¡7z ÇS§Ny{{GEEY/ô÷÷·~˜ššºvíZŸ®]»æçç§§§çæænذÁÛÛ[íá¨CwáX\\|ùòå!C†¬\¹²²urrrÒÒÒBCC·lÙ"„X¼xñ† –-[6oÞ<µ·@º;ÇñÔ©SB›éF›6m*//ONN–ªQ1{öl??¿mÛ¶•——«½êÐ]8æçç !"##«XgïÞ½nnn òww÷Þ½{eee©½êÐi8ž={v„ ]»víÓ§Ï”)S~úé'y‹Å’——hýB£Ñ(„(((P{ Ô¡»s¥ò[µjUttt=~ýõׯ¿þ:33sÁ‚<ð€¢¤¤Äl6Û\+#„ðóóB\¸pAÉ»˜L&µ7ê`×ë»^·ØõÐÝ…ãÙ³g½½½g̘1aÂiÉwß}÷ÄO¼ôÒKwß}wDDDii©ÂÇÇÇæ…¾¾¾BˆË—/ßö-¸5Ð$ݪ~ûí·8 W£¢gÏž=ôPiié—_~)„ð÷÷7 %%%6/¼zõªøcÞ@‡tŽêÖ­›âøñãB???û™Åââb!„|5€Þè+-‹Ùl¶¿¥Ž»»»¢qãÆÒÃÐÐТ¢"©e'Ož”žR{#Ô¡¯pÌÏω‰yøá‡m–ïß¿_XàÜ¿³Ù¼sçNy‹Å’™™§öF¨C_áÕ¹sç~øaóæÍòÂýû÷¯_¿>""bРAÒ’¤¤$77·Õ«WKç5 !ÒÒÒΟ??zôhOOOµ7@‹Å¢öêÕ±cÇ{ì±óçÏÇÆÆ¶hÑâ×_=pà@£F^{íµîݻ˫­_¿~É’%M›6ÏÏÏß½{wLLÌúõëíoÓ º G!Ĺsç–/_þý÷ß_¼x±Y³f:txæ™gÂÃÃmVûøã·nÝšÞ­[·äädéŽ<ú¤Çp@ èëGÔáEG(B8@ŠŽP„p€"jÀ%•––¾ÿþû[¶l9}útãÆFãĉ{õêe³ÚæÍ›7mÚ”——רQ£>}ú¤¤¤¨=vÔÊ¥K—V®\¹oß¾Ó§O·mÛvêÔ©-Z´°Y]¯mgΜ6lX¿~ý^yå›§ØõÚ“˜˜xðàA›…AAA»ví²^®פƒ¾ñƇ¾zõªÉdš:uê]wÝe³ŽÞv=7¯¶²²²qãÆ8pÀÏϯsçÎׯ_ß»wï­[·žyæ™§žzJ^-55uíÚµ>>>]ºtÉÏÏÿå—_Ú·o¿aÃoooµ·5T\\|ï½÷¶jÕªU«VgϞݿ¿‡‡Çûï¿ß¶m[y5v½¶Y,– &üðÃÇ· Gv½&uëÖíæÍ›QQQÖ ýýýß~ûmù!»^“vìØñÌ3Ï”——·k×ÎÏÏo×®]eee¯¿þz¿~ýäuô¸ë-¨¦wß}×h4Ž3¦¤¤DZrüøñnݺµiÓæÈ‘#Ò’cÇŽµnÝ:>>þ÷ß—–,Z´Èh4¾øâ‹j5'íÄ+VÈKÒÓÓFãƒ>(/a×kÞúõëF£Ñhœ5k–õrv½&]¾|Ùh4N›6­ŠuØõštéÒ¥.]ºtèÐaß¾}Ò’Ÿ~ú©mÛ¶={ö4›ÍÒ}îzÎq¬¶Ï>ûLñ׿þUþÿD«V­žxâ ³Ù,¹Ø´iSyyyrrrHHˆ´döìÙ~~~Û¶m+//W{ PCßÿ½··÷”)Sä%£F ;|ø°Ùl––°ëµ-77755µuëÖöO±ë5éÔ©SB›éFìzMJOO/..~â‰':wî,-iß¾ý!CΟ?/Ÿº Ï]O8VÛÉ“'}||bcc­¶jÕJQPP =Ü»w¯››[BB‚¼‚»»{ïÞ½‹ŠŠ²²²ÔÞÔ¿¿¿~ý6lh½ÐËËëæÍ›7oÞ”²ë5¬¬¬ìÙgŸ ˜={¶ý³ìzMÊÏÏBDFFV±»^“¾ùæƒÁ0bÄë…K—.ÍÉÉéСƒôPŸ»ž‹cªí7Þðð°ý¹>|XѬY3!„ÅbÉËË ´^Çh4 ! ºté¢öF &þõ¯Ù,Ù»wï©S§:vì(M?³ëµíïÿûÑ£Gׯ_ߤI›§ØõZ%…ãÙ³g'L˜pôèÑFÅÄÄ<ñÄr:°ëµêСCaaaûöíÛ¿ÿ¥K—Z·n=`Àù`£nw=áXm1116KvïÞ––æåå%ýפ¤¤Äl6ûûûÛ¬æçç'„¸pá‚Ú[€ÚÚ¿zzúÉ“'÷ïßß¼yó%K–HËÙõvàÀüããÇïÙ³§ôEkìz­’Ž#­Zµ*::ºG¿þúë×_™™¹`Á‚x@°ë5êæÍ›W®\¹óÎ;,X°qãFyy³fÍV®\)] ©Û]O8ÖŠÙl~÷Ýw—.]j6›—/_$„(--BøøøØ¬ìëë+„¸|ù²Ú£FmåäälÙ²Åb±!bcc4h -g×kUiié³Ï>Û¬Y³™3gV¶‚`×kÑÙ³g½½½g̘1aÂiÉwß}÷ÄO¼ôÒKwß}wDD»^“®\¹"„ÈËË+,,\²dIBBÂõë×·lÙòÚk¯M›6í“O>ñööÖí®çÇšÛ³gϰaÃ/^ôæ›oÞ{ï½ÒrƒÁPRRb³þÕ«WÅÿKûóŸÿ|ôèÑo¿ýö¹çžÛ¾}û˜1c¤Ë®×ª%K–œ>}zéÒ¥•Ýbƒ]¯Uo¿ýöäjBôìÙó¡‡*--ýòË/»^£äsÙ_~ùå#Føûû‡……=ýôÓ#GŽ<}úô§Ÿ~*t¼ë Çš¸yóæâÅ‹~øá3gÎL:uÛ¶m={ö”Ÿõðððóó³ÿßFqq±B¾ö .Í`0Oœ8ñÁüí·ß¶oß.ØõõÃ?lܸñ/ù‹|Z›=v½®tëÖMqüøqÁ®×(Ÿ† z{{÷íÛ×zù€„ÇŽ:Þõ„cµ•——Ïœ9sÆ ýû÷ÿüóÏŸ~úiûIˆÐÐТ¢"éoìäÉ“ÒSjoj"77wΜ9Û¶m³Y.]_ÿûï¿KÙõÚ“››+„X³fé£FBüÏÿüÉdºï¾û¤ÕØõÚc±XÌf³ý}UÜÝÝ…7–²ë5)$$ÄÓÓÓ`0X/”~Ý—••Iõ¹ë Çj{çw>ÿüó±cǾöÚk•ý—¢ÿþf³yçÎò‹Å’™™§ö &š4iòÁ¤§§Û,—nó-=d×kOddäÐÿëî»ïBDDD :´wïÞÒjìzíÉÏω‰yøá‡m–ïß¿_a2™¤‡ìzMêÛ·oqq±4¯,“n²#ßÉU§»^í;»˜òòòtîܹ´´´ŠÕ~ýõ×Ö­[<øÊ•+Ò’µkׯ¥K—ª½¨¹aÆ™L¦¯¾úJ^rôèÑN:uêÔ©°°PZ®׃C‡Ùr »^“ÆŒc47mÚ$/ÉÊÊêØ±cBB‚üáaìzM:räˆÑhLJJ***’–dggÇÅÅuíÚõüùóÒ}îz>«ºzÎ;ïííݲeKûgGŽ9~üxéëõë×/Y²¤iÓ¦ñññùùù»w‰Y¿~½ý¥ûpÙÙÙcÇŽ½uëV\\ÜŸþô§sçÎíÛ·O±téRùx¥`×ëÀáÇGeÿYÕìzí9vìØc=vþüùØØØ-Züúë¯hÔ¨Ñk¯½Ö½{wy5v½&½ñÆ+V¬ðóóëÒ¥KIIÉÞ½{ Ã+¯¼2dÈyîz÷ ¨=W’“““žž^VVv®"­[·–¯’‰‹‹‹ŠŠúý÷ß¿ýö[!C†,Y²Äþ¾Áp!¡¡¡C‡½páB~~~vv¶Á`èÞ½ûŠ+zôèa½»^ó ßÿ}“ÉtÏ=÷X/g×kOPPаaÃ.^¼xüøñC‡yyy%$$¬ZµªM›6Ö«±ë5©K—.'Nœ8tèÐ7¤ðïºë.ëut¸ë™q€"\EG(B8@ŠŽP„p€"„#! áEG(B8@ŠŽP„p€"„#! áEG(B8@ŠŽP„p€"„#! áEG(B8@ŠŽP„p€"„#! áEG(B8@ŠŽP„p€"„#ùÿêc⌣üIEND®B`‚statistics-release-1.6.3/docs/assets/rangesearch_101.png000066400000000000000000000551031456127120000231360ustar00rootroot00000000000000‰PNG  IHDRhŽ\­AZ IDATxÚíÝ}ˆUžøÿÓÝ鎚‡¯lŒþ‘–øGP'>0þ!apë,«qQFò× .‚³«Ž°D#8 Ñ_(«$:ÎÑdBp͈.&»28³J'd#’‰¤‘ˆhr\§æôyøÔ§êÖ½§Þ/dè®[·nUMß“Oó9Ÿ3Öëõ g<õ   BàG¨8@…À*ŽP!p€ #T BàG¨8@…À*ŽP!p€ #T BàG¨8@…À*ŽP!p€ #T BàG¨8@…À*ŽP!p€ #T BàG¨8@…À*ŽP!p€ #T ²(õ ¤ôù矯[·nûöíkÖ¬q^ºõÖ[?ùägãÙgŸýþûï§>k€4:8¾ôÒK±—<899¹råJ{ãÒ¥KSŸ2@2] ççç÷ïß¿sçÎW_}5¶ÃñãÇ×­[·yóæÔ' P] o¾ùæ/¿üRØáàÁƒÆ§» ãº8nÚ´é»ï¾3ƼüòË{öìñw˜››3Æ\pÁ©Ï Fº8®]»¶ÿî]»‚;ôÇ#GŽlذáÓO?ššZ½zõÆý94ÝÑÅÀ1סC‡Œ1Ï<óÌ…^xõÕW>|x×®]»wï~ôÑGo¿ýöÜ·ÏÌÌøgggS_À@Ž9299yÿý÷oذ¡¿eÏž=7n|ì±ÇÖ®];=={ÂDÐ>xñÅ÷íÛ—EƘk®¹æÎ;ïüöÛoß}÷ÝÔg£Ö•W^iŒÙ¿êHƒÀÑÕëõNž¼oß¾©©©Ç|rr2õÙ¤AcÀÅ_üÆo¬_¿þèÑ£ï¼óÎñãÇׯ_ÿæ›o^uÕU©O ™±^¯—úÚfff†:Ž }èq€ #T BàG¨8@…À*ŽP!p€ kUÐ$cÿôgK著¥>)t#1öOðÃÄàF`ª bb著ýÓüžH rŽ4€Ü­H#FƒÀ*ä8btìa”AŽáž³ÀüuÀš&CEàˆqš³~ðW´ ¾«Ü¡ AˆQc½^/õ9´ÍÌÌÌììl골!°+ÔÊ;Óªh·ÜVŽf#@Ž#F!Ö–õVRŸP!pÄpUõœ{bP†G$F67hdǃgþÂB5°8Ð ýˆ­’¹†±#ó´ßeŽ4I03§ò`N8 #E]FàˆÄ”­í8üÚd#k$i“;‹É1h š0‘u7:ëSW8G1ô8b¸*|*E  b‹ d[èİÑ㈡‹=÷Ÿ• 5p£Éì€еuý†qÀ¾Æþ?ZGŒHUüØ‘¨@ÇÙ cð»Ð’3ÄŽ°ä`õXrÐ|JfiÐë7¤Â‹ý’¿›PX§Ðvg‡ yw8VÀÑÆÓ0 e”æL” îàô,憆YåHý¡Ð& Ucˆ 5%<¿€ÏékÔd‡W8Ñx}™Î‰9;{:«=1¤Eàˆô‚OÉ<¿@°%”×ȵ)œ=ƒÛýWýØQ8y’”Z€À)ùÍ_öké–ÚAˆƒQZéƒû”®ù¬ØÉúŽÀÉØs7btÅl«š¬ ufwÚ±£ÓâåΞ6¡(Ð wæh;ÔÆ`I94¤Ød£19¦z]›£à’¬M$3F?‹PÞÍ’ÛTæNXñè´¨~3Œc;;ÛcŸ"œLìziÃëŒG DøòËíKìùÕ&÷8ʵpiw4—P%G3Ú–;:ì÷5úÓ¥ƒƒãöG Òê;2iÃk‹À% 1Ÿ‡?œá9û;ø¹¹Û™Ê ¡„(-¶HŒ?žã´·¦H ½¿æTý3ÏmråAmrÜëŒ%QžŸéK ñSsœƒèǯûófÌÂæ/Ûž½š½=›gÃZêÏi-c»Ùmß§˜µ´Î>fak©9 GžêõQ©b2Ö=Ž(C¨"ëçÊØÛí–Å阔Ÿ/ƒ¯ “²V‰©|Ú$8›ÐXÍ©?™ÆDZBç!Ü„‚WMp¿`ø€í-yGõDàˆ(eª²5CCçøòúª~ùYiõœka„‰Øš¢täÌ Ê‹Õü85XCh™+¼4¤Eàˆ0åÊT¼f;R’uìw9Ñÿª<1¡M¤ýP7Áú8þ&T'Ûn¼ÆÖÈ.”JäDöGoѧZ¢nÈq„+8kO™&¨O‹öÇ‘íÇÖàÃkn¹2Má´iÅÔ‡8îïé$Ùï5^að˜Áìpl'–.Ë_çA½é¨ãX½æÖqÔŒáKÅÆ¶®Š3¬%æŸsѪ0Tšz±R&ŸÅz+…íÁƒGˆ}º_…Mxµh¹G$ÇP5~$TðòwÖô,júnL$XÖG˜èç·tô&(jØùÐÁ$±gàÜ»Ñóç»ØÇ÷§c›H#é¿äLÜ^…³…ȯeaL^€(¼KydeñEÍé9a¢óðíϪÖßå8»r΀Fv>´_^1øªóÑ~ß^¬v£ÜðR-cõ.*¹Wt7ÖCÕÕkÜPulÜYnSä¡jhX˜#ï`"àå:‘k´ÆrZ‚ímŸ¦}+:b£yÕ?¦ó8û7"vÎÙ »1g±A«×ŽÀ1·±0bË¥oÔ‚ï ¶¡BàX¨‹±DyÚ p4ÚïrKÞø‚YݱÝäO—ÛçÜÖÛŸ²»@!÷1÷ÚiTk‹¡j#šø#ÂBº´‰|ÿånÅØÉøç&?Ú*'}kDÿàBíqªÔЋeJ ª¤’Žs4¡óÛÿØý¡*M IûÙ Ž]ëÌsúùœx+8º!ôJš¼çWea,Ý[±~ÿeéƒW•Ç >†ýöÛ}#iŠ´N%bP!¡HØü,áP´™MGàØiò4:ŠóM•ïܧäÜF3wPÆ)TaVÙœ™xLiOâŽ*S¶N)=Èà—Ô1âjÁ7š¼vµtX&”Ñ)ñÐ.Ô "vl4r«× Ç` ÿª›‚Ù„ƒÒɵÐbÙßrÅ"šB †”ãèŒçèç¬TòR‡g¿šk4cõš8Ê“©}šñ”lÏÒÍÓ ³jùDûÒä+Íþ£5Ú¡ÂÀQY’¢ô<¥ÊŸÀƒ5#csý‹¥Ó±Ñªî:MÞŒ¦ñ²Ÿ/i¡FÙšøý¬~Õ\¡€™ó®‘õ¨¿`ú¸ñrr#TSEøXyÓä£o žö°­X«ºÓÆþºÎ½SâßnËìX°·pMÒàäkáã‚EbƒgUá5Ê ìÿì«°[@çÒ†: ¹Ü™%šez‘œí#([Œ±… e §]î©;ö®Ažá>È`Æ<Š¡êê5b¨:–Ì—K³Æ@î„»Úòç’ñq?wv9€†’3žsßЧA-¤ž±~ŠgêsDIô8b¿ÇÑŒ/ƒsñ†ñD[í%;'oO£¾gåÍúj+ûŽgÿUòMÏ™‚°óêÈîÀP÷qÆ‚ZX7=ŽÕ«c,aÙ”M¦iV·bðüí«ö‹eÈלd  ›‚€Óê6ºÁDîÈŒ|÷Pô8vŽ“Æg+ýŒ;෺¡ܡrë2ú,=´³ÿÐs¦üòprå…›[£+öÒàÓ.Q!Çn±“²ígÿ]±Ê+ êϪ ðÎhwÇ —Ìc1G,jß8¬r¡p„Ü5Q UW¯¶CÕú±’Ò½h£¯Â82~¼Hº7‡üÝʶѧù÷¥Äx4mlMÐãØöW.ûÞÚc%•äA·ì:x¥~­"C‹tž3&ûÁÎÊ›nG3¢‰ý‘®Ük'/¨&èq¬^={ò³&TþÚÄ¿™ÁuÚM^„0¸3€n*º LûZÑ S>{óˆ^ŽÕ«aà(¬û”ý,¼½ÅÐ¥±î*ÐVN%Zå[üuG††Vô¯üйÊuthië€%»+¶,½¿g¡Æ®5OÒ±™ÔFœý×缑Æh ç«­y2â;›%ÛbÙ4¿Í”K•{Xý2÷ŸZÑú pìºàªz±Ý4lt (\ˆ°–LîÔrý(ŒóF#Œ_*·ñlzeÇXèdÕ½KÁu@àØ þ79£ù6Ę…7J~8öë ÷ßÙ3ö+€¡’¿q…’ð„_•ïj´XA·à½¿dkö®`¿/ c0«º»b³d‚{êwn«à Tö³] ÓÙG3®íï@Á[ AìÑj§`EÆšèÂW;»ÌÜüÎ`'¥}{®zn]ÍÑãØ-Î_‰|íÎ~iýØÎy–×<ÐVùFµ"ä8*3‚œw¥¾ *ïLðçØ-r.¿³½µEcWÄꇵ©yªP¥2ûσ¶Kµåæ‰: þê@¹Z½#,jyR_îPø]°ÁÑî·›VZÅäèqìÿáOžRÝMES¹Ç`n8ÏÍ@+Å2ö„ý»ÙÞ*ª I±*rH…Çn ö;ÚkŸð4‘FßO]füùOÒA4‚@SëM;«IKð]ºÆi9cÓ±»ÚÁå'jŽÀ?"‚É”˜)g‹ íãûlÛ¶m“““©Ïz ÁÒüB/š¼½S ­‘%L”)ú¡t##,4êð¿ãþϱ-ˆµŸštÆÁ×òÁ€Æz½^êsµùùùýû÷ïܹóÕW_5Æø=޳³³ëׯ?çœs^{íµsÏ=׳iÓ¦mÛ¶ÝqÇ?üpîñgfffggS_¥1ñáTãu›uv–_!vƒåw*¯ËÁycŒ°¨-#POΜßKêÁQè6Ò6&ÔÅÀñúë¯ÿòË/³_ýÀñ_ÿõ__~ùåÇüïþîïú[Nž>~à 7d[&&&®»îº;w~üñÇ—_~yê+È¡_ŒD5æîܱñèÜO ¥ê,Ø8°ªB šü¨àž¬:X] ×®]Ûÿa×®]þ«½^ïÀË—/_¾|¹½}ÕªUƘC‡Õ?p ò‹ÅÖЋýÚAúÖÍxË92Ð 4‚Hgï£/ÄXÕ|¸¶FHÂc¶½ö`°èw+oHãt1p”8qâäÉ“K—.u¶/Y²ÄsìØ1ÍAfffœ-#¼VÆ+ôù犥-:?;ûp3z sW+¤ÓQY°&õí–`"¸óÈíŒwQ¤¢>]ß~û­1fñâÅÎö3Î8ÃsüøqÍA’ç8ú²oS/Æ„&Êøïêà5w޹³°Sبƒw h–ܬžÜ§Áà7]ßtª}ðïRðW¿º™³ó©k‚஥K—Ž8qÂÙþÍ7ߘ¿ö;¶Œ½Œž½1û¹Sm\ð&§¼ÄÖ9 QZ@ÿø—=:v¶©”åÎ)ÌvóÕà¯H‹G×¢E‹–,Yâ÷,ÎÏÏcúÕyZÉO11í{’ñë¥çNÁ¦±êIùõÌí’ îÙñ–SàÏw .© c§QMŽÇ€+Vüå/éGŠ™/¾ø¢ÿRê³Ë!—Œ‰E„ö¢«4yzYg­³^-€Ž°µ•ÏÛ]n%rǬýÕ«¤®zn¼ñÆÙÙÙ÷Þ{ïç?ÿyK¯×Û½{÷²eË.½ôÒÔg7¡‚P¯±S¥y3ë€ÍNÎ ¶“±$ÈÔ'^wN¾#ó8k…Ç€Ûn»m||üÙgŸíç5c¶lÙrôèÑ[n¹å´ÓNK}vù4¡ŸÔèïc¼oo¾·±ÌE{£“s¼™<-  òìøF_µ§k‚ÉôÁœŠ<¹oĈ8LOO?ðÀŸþù/~ñ‹ßüæ7ÿøÿøôÓO_rÉ%¿üå/SŸš–0×/ûZf{ 9ÈíîcËm‰b“ûœ)ž5€š°ôÞ“m1ôÅ ó‡œ ¸ÊºH…À1ìî»ï~òÉ'/¼ð·ÞzëØ±cwÜqǶmÛüâŽufOôsê©öåV ó_mYk8H«ä$5:7“îF ébUuìæÔ~Ïv(7 ¸õ-†NÆféâZÕÃV‡µª5œÒYõ\–ú/×ßãoü»ÿ¿$'ã¬@è¿jèoESÜùUþîëë_“V´†bƒÝÌ©'ÇêÕ9p”·ë6-&5ö%…’œ€r4KšPãi¿äZ§W"¶,!w²†»Åíˆ06H«n-LÙN}‰UÞ+ÿ ÿBTèù‡I›ó/H¬ÃÂXÿBù«òÐ[ UW¯nCÕB*·œkRh”V¹])wœº/I¦£3²Ÿ[÷@ ëàÙûô¶¤¹N–”0'‰¶&èql3§p·_Ä1ÛhB£´ò·46ð½}3×D„£³»ç²ŒøL$¡Œ•k¶^0ÛÇÅ NÐt:‰k…À±µœå§ƒ+89ù‹Á}NÌ䤄·»¡TÎ[¹ÊŽ-ã Fû¥px:~»êŒÀ±CìZµ~®‰“òhB]ÝêõŒŒ.Û OÃ@+Ù)wÙÆlmçlÿ¥Ž4Êy“ÎFaõ2Ó_‡ÇêÕ$ÇQ¨­ÛA6ú¬TusË[ÆîÌhn €aó³Pb[lÎ*u¨k–„°V‚œÑhŠ'Maô«W‡ÀQ³^îúJEìBjµrŒÕ¬´¼«°ÒL° n01º•”SaLüN’Ô‹RŸF$Øúm\lްóèlשׁP•Tó¦KN–ŒåwÇ+O¨ ¡‹+¤Îíó'v´8^´¯ÚÙ ¦ƒåx OàÍAàØNþàip8UˆM<lY «(&(·?C0@ÓcÏäöÏþ–ØÁS_b•ì\pùi„¡êêÕa¨Úx¼F7µÅ)ñ¼Ö´€ ¥vÞØX«Wî%£§ùJjJ9VR ·5‚ÏÌŒÀ4³ª»" nœ™kr®Ipb3Nœ×PÊæÛ®(‘ÝÌÑ­ÿèšØÓ¸ó³PȰMµ{²QiI˜`YG4CÕ­%ŒVgí”ÓaLsôGœ–n¨9Ži•ÎÔ–ckIŒ¦—Ëζ–±ÄǵŸöÔi×2m ‚‘a¨ºz5ªîÓÏq ¶Ù>B£Ðtú2Cš¥Æœý|/ +0lÁ$oS<ùX³ƒ³En^ZÓ®Z‚•v¯¹ªn¹`Åogh@nœ ÒÙ§_{aP¾ÐìÛâ̾ŒÍ"0Á©Ðf8_LÕ§u•_-*I#ì¾÷¼åXnÖ`°Ä:jŽ¡ê‰ŒäVduÞž½¥•ƒOÌÂÅ‚éàýDU_Cy®› %/:ÃÓ«¹—P“¡mar¤>MÜïëEM8vKn™~ÿ¥`B¤0ϺžQc¹úÁ61vs[=¹"€$beYƒSs¿ã–ÛÆ6­B'‚0ù2vY‚«)»+øÅ–ÇMœéØÙš*?£oõìäÅ¢YGö…˜¼ yÄ×@¯D,[C«Â/{°𩢩Mcëô˜Æf^Ï'·ÐjÍ8˜x+¦—ýö¢ã)Cjéä)/±)ä&>Bëq̽4¦ÅSùw3Biò ðhÑ07·|[¡Â–¨9&Çt]lÒL°È–&‘ÙÏ OH?ÅÏ„šÂª¦ïQ#Ðú¯³TÙñ–_ÄQßJ(ãÎ!õ› ×ôÄw8aL¨Å VöÎÝ;Zî§;‡õ÷¼± ¶Î±Z»Îœ!ûJ´€vÓéTÁ0T#ºØ­ŠS„ÁÞGøˆBç3àü÷æ¾]ØÇ)41àDZ U#ZÈPY®¬ªìï`òÒGΤ¦±ûe{ƒ1òmî!Á"P7Ã{Š2UôkäÖ w>Î?¾s¨Bm©Ð,ǺNLa䡺þèq„˶vºÇ²v¡·p©=eÄ¢Usco×|ŠÜ¼Æ¢Fç ÁŽ{O}5 ž¡Tr#‡Jþ?‚tZý“yµ×"7¤Á[ZŸ$% #Œ‰O¦öë„ûïrÆaƒÏŽ~Ë—¬¬Ët$jl z«×èÇÜ4‹~N¤19ãË~™û–ÜCùç»ä`—€*Ÿ°ÀqZ¡X†)ê§Ë8[œœ£ Oò±k V¢p.AÎפEm z¡}Î+±›æ4Ø®MLÞˆ°³QQx\^ É:ʱ,y*t,¬´wŽïG±äÎÅàCxîÈ’p@C˜ØdŽÐ²›¹Å„xˉýlÂB¹>ús æëØ™ì±nK†T "79'DÆæÞ9ÁF=òã7t±ðT’{yØnG”‰cSd 'öœ-$vª¹óu4gëƒ4Þ7- €É9ÓÆ+Ž(t7GŸ³—äôÇX2¥?ëE3 ÎÅ. p„–=¶bŠÇˆvc}S¬+ ùP!ÉF_0"VYƒÀhøCÌÁ\s¿ëÑï•Ôdø ÙoTv1}ìGã8˜¼¯´ÝÙpƒÄUÊr EÛ!ÉÆ(âNyP‰^U(-V’Â,ŒÿœTŸl£²ýô÷qfÌÄ·ư›ñ£Ü ~Dåe5½ü7–NšŒÑ'w¾Ž¾8Œ˜3C%÷™?÷€±|!¡}<Á Eàˆ¿Ñ¤§ä,”gRçïé9XC±ªÒ_rÁ?Pν4¨ŠÓÖÉS¤…¢c¹•(r'èÏÇùhtu«×Ä:Ž#;n,)‰ømb¹ HûU£XS›ÀPiJ)[?ýlM-Fá¹­+-g;ÐãˆZð+M8?T2YÎB ¬ ‘»¿QÌŒ±ÉµÏL©ª¤ý´ #FDHµ‘W>þœŠ>ß‘›4ìO¬ê´–-CàˆòŠ6þÔlSj„z%ŠùWM;`bË´ xÌ¡6b4­Gàˆ’Ê Iøõ…¨ÑˆÓ´c¼Ù’/ñnM$Ï•ÎmâqF#ʤ\b°2™ðÆ¢±šPûý÷ßO}ji8†/€dæçç?¾nݺ͛7§>€º Ç1ààÁƒÆ§» ãæææŒ1\pAꨆªúã‘#G6lØðé§ŸNMM­^½zãÆkÖ¬I}jÉŒõz½ÔçP;¿þõ¯÷»ßc.¼ðÂU«V>|øOúÓøøø£>zûí·ç¾}ffÆß8;;›ú²BcÀ‘#G&''ï¿ÿþ 6ô·ìÙ³gãÆ=öØÚµk§§§s@˜Ú‡Ç€_|qß¾}YÔhŒ¹æškî¼óÎo¿ýöÝwßM}vi8j]y啯˜ýû÷§>€4]½^ïäÉ“§Nr¶OLLcÎ<óÌÔ'£knnnõêÕwÝu—³}ïÞ½&2ñ  ]+W®¼ì²Ë>üðÃ;vd÷îÝ»uëÖééé›nº)õ ¤A9ž€?ÿùÏ÷ÜsÏÑ£G/¹ä’‹.ºèðáÃûö훚šúío{ÕUWå¾}ff†YÕ }þúê«§žzêüã×_ý“ŸüdÍš5¿úÕ¯Î;ï<Í{ @+8VÀ´9ŽP!p€ #T BàG¨8@…À*ŽP!p€ #T BàG¨8@…À*ŽP!p€ #T ²(õ @óì¿uÚþuÕkÿ—úŒ` 'd´7>h=GЊˆûo^õÚÿõÿ7õ9À‘ãCÃ~Ô˜úÔ`è@EîPì¿Dø Ýª€€´! “oÔ#¸‚‹# %ýOgò €š`¨¢F9v¬$° ~úª×þ4Ju0ÖëõRŸCÛÌÌÌÌÎΦ> e‰ŒYÜ–íŒä sçe3q@Z U@aÁ±cM`å±&Œ#üHÙŸgïæÏb‘û,ƒ±&cК‚Àrø3lu@ !`0jtÐÜ*â”#,ÛÿgˆöÎöÆÜTE“WK<ø*Q#€´´\¡šˆÁah§+17O1ÖCiowN£ÿýOdµð08G­%LaÖ›öE“&Þ˜ù97Œ‹¥ú#€Ê8h§XH ø²_ƒI„ÙÆ`¤2ô×$ Æ …æÖÈ/É¡-”@pXÀ í¾F!8³íGv¶û‘h6ŠÔ`¾¦“›D  Žj*X‚; ùËëù“Zü jÀTH'μðóA¤ŠYcÀ°8¨£XxäGE¹ Àø%åœÈàAJ¿ªá¯[è¤o:±¯\3ܯÝCv#€ª8¨¡„¡ó«Ð9§ù”ì˜åŽPáõ¯B3çÚ_ÇäuL@iŽš'¶”spõ”Œ&ßqôäÌH¿ ¹ šÁäHªð¨u«GG`±ºŒþºÒ}±É"6<·t¾ã°Å.ÓyÕ>í`p: u4€›èç©l‹s¨`ÅäŽþÉÄV¬qús38 Bô8VG`r£ó«ßõ؈°©h§0mßáU¨9ŽšÍ®ìm©yøXôôü0±#ä®y]ú$ CGuS´Œvwâ›`^f0R´Ãèá#‹Ðˆa¨ºz U Îóð‡§I!Á(ªõì ·¯Ú¿{F> "±#zÔEnÙB'F̶ÇÞÛ…ð1wњܚŽú[äÏ=Ð5ŽÒsrøìþÏÙ!Ê]ý¯¡1epuìànÊ²Æ €B(Ç ±~쬡Óßîüëôê~?4õu父³ˆŽ}gLÞÔr§œxðNÊ5}p¨ =ŽR ÖÙ ­æ.Á hèä^N¬Ð£~¥Á¢Kì=ŽêEè3Ö´ÝÁä$A6šþ‚ý‘¾Ü°’Ø@#€d …/ÎpvncluÁ&’/¡?²,ôPV:39è8GõR¨wMîwlAȨ¹ Îöµgÿ[èVØ«;²†!9ŽêEÙ§å/£ÒÙÑÕàŠ2~íFM)ÇX‚i7o,#€ÑQƹ»ùõÀ?uâær·%¶fÏà hVŽ©+ÇA±Ê‹±‰ÒÁþ³ìWÓín0}÷ªÓ}(L»–»©þ ÀÐã`ä¡d?ñãÂàL—à¸j,Öl!° V)Ê­ ©y ±#G£ë´ËëøqO°B¡CŽ~Z/ —;éï`ÞOM¿#8ª®CÕ€#Ø=&¼êïcòº-;¢ôå;ãþöKÎ娑°è8Çê8}B¼è 1çÿ"—ÐM+¯ÓÜ® Ž£Ž#€¡f.: ˆ±™1vF¹jã…> eb…þòßö¥ãr¢Fä8¨^,ÂÈ­ê[~Z]íTelú‹Y˜0jæ5ÚõÀcÿ/0÷@.zTL(øb öfÝò1ùˆfñ£ÆÜ‚ÞÁ#dwÕËh–.ÐPŽQ;vì¸í¶Û.½ôÒŸþô§ÿüÏÿüõ×_§># ‘„h#ÙcÓözw~ì[o°Åþ¥Åêò”‹ÿ‚¥ŸT ³ª{úé§Ÿ{î¹Å‹_qÅsss¯¿þúgŸ}¶mÛ¶ÉÉÉÔ§4^pa7g(Ö°Þ_{ …{kïïÜ[§RO¬(€Ž#p ˜Ý²eËŠ+^{íµsÏ=׳iÓ¦mÛ¶=ùä“?üpê³)˜W zbSj„ܾΒï@ìV;¹Á‚EA Ulß¾ýÔ©S÷Ýw_?j4Æ<øàƒK–,yûí·O:•úì€æq’cS^²qÒì?CùÆRœÙÓÎv&€=]; cÀG}4>>~à 7d[&&&®»îº¿üå/üqê³CXlº/6Nê—ãñ÷d,5Èõé‰ÄŽr8ºz½Þ–/_¾|ùr{ûªU«Œ1‡J}‚@ÝÅâ`eÁ˜Xc¡‰À$¬›KzŽ®'NœX½zõÖ­[ý2=¾™™fU2n¯=ÆXI±õñœv|(V“â9Hî#ô‘ãv÷ÝwŸsÎ9¿ÿýïßzë­óÎ;ïŽ;î¸ï¾ûúyTB(Êcâ! ¿¤r,-²SA¤<‹(x7ˆ”@àuóÍ7ß|óÍ©Ïh¡`EFg=k þœJ„vÞ^,ˆì î*G)Éë—8³­XS˜ˆÝMþ}ëãΨ “c$àä,fýpÇu%²ùcý~®§=Í(õùh‡¶™™™™M}@Ýåö)æ¾êŒk§¾ 4„~Vgy© ŽGu¤™ááÌizT¤éd ^¦3âoß»OÓï€: Ç±zô8¹4qLpŸÜÞµÔW¶à”JŸOö^'8νÎ Év&jP z4CÖmfýf:Ö$HRFÁþBù*4G¶÷¡@€ªPÇ@ËÊ65ëwìB7¹žN캂$@0lô8¨gbµLS!<¶Û(—o.=wÇNOŒíÇoA®'€:#DZzä8öl_Jà‹eé‹ïtvõ;ÒÞîD–¤9¨=ŽR v’9±`0è±ãH9F,0Ù ”¥/jxý—Á5rÊM3€¤!§ýÙ«ÈÄÞ‹8åŸeúŒCÍA ÝB‡µûk)ô `d˜ ¥Ø$ŸXÁ{{î%eže…ñYlâ‹ó)þϹK{ÓÝ BŽ+ÖÝHÝoÖ» Vmt>%–âi/3|/Q#€ 1T å‚Ô†}±*‰¹ûk¶;醥3#Ë]£“å™…‰~K¨ #€4 …ÎzöÛ•ëé9ÂcÕ¶~D™µíœ€óÞ¢ªóéþ9/:4 ûÍÀz@ƒÀ@}Ùa00rÖ’±·³ƒ«ö-¦íŸ‰<Ü»ós‰4D?vdYj#@ÇêQÇPÊ q4ËU @úU ‹žÛ€K³8ç YZZØ'x4ͼ"¨cõ=!v¦ ÷ˆ " ²LèMÌ>:81Å)ZžíY4¦,±›0žn˜= `$ªR,Š l¤8XÂPHõSÖJÔÔµqbV§GÐI:Œ½+÷L‚çæ|' B”ãX¹!W¡CÎ{–ÿ—Õ×Oy‰­é'°»!íóÔ$\jv(ÔÁ b¨ºz Uu“»&a,n³C´`0[b;6šœ{ª±¡g;u6÷€a`¨@‡h:2…â8™Ü(M.‘\,ÑY‡(@ 8h?§fSÇQ¨¿,ñ㼫¿¨¤ñr(ýqmg„šàÀè‘ã ìÀk%­ÜÇàMgdì s/!vJ‘F€À@W¥ýüE§ŸMè„kÁ +Ã^&›Àˆ8è`lŒ ŸƒñephÛYÐþ åÚ‡Šž3N fUWYÕ@Íi¤1¡Íék´Ëúh¦NÇbAç ÍÔ€Q"p¬#Pò²4E; ƒusä„SÒ¬mI0T  ‹äÚþFg‹f-ìÜžEa¢FõDà £JaB²£œ©ùèܱlbG QÇ Ë¼&ÂÐJô8ÀÂ(ö°?ZS’@Bް@l!§¬cð½vÚÀþ&·°Ž&…±ÜKPŽ&͉-9#pH ÉÀÈ8@IB½Æ`)oú4#ü¨Dl'Ü)ºÖ‹fi¢O 8À°”ò„Ø‘¨@rÔq€ Ó¥“ŸQ#€: ÇjG^íR!p­Qvû)¨!†ªào„Ñê:Œb@Zô8ÀYìH1p8€«\1h=G#X9ŽP!p€ #T BàG¨8@…À*ŽP!p€ #T BàG¨8@…À*ŽP!p€ #T¥>šºõÖ[?ùägãÙgŸýþûï§>5€4Ã<899¹råJ{ãÒ¥KSŸ@2ŽóóóÇ_·nÝæÍ›SŸ @]ãpðàAcŒÓÝÐqŽsssƘ .¸ õ‰ÔCÕýÀñÈ‘#6løôÓO§¦¦V¯^½qãÆ5kÖ¤>5€dÆz½^ês¨_ÿú׿ûÝïŒ1^xáªU«>ü§?ýi||üÑG½ýöÛsß>33ãoœM}Y¡Ç1àÈ‘#“““÷ßÿ† ú[öìÙ³qãÆÇ{líÚµÓÓÓ¹G LíÓéÀñ‡~xþùç³_'&&î½÷^cÌ‹/¾èìyÍ5×Üyç/¼ð»ロE“ÒéÀñûï¿· îœ~úéýÀ1èÊ+¯|á…öïߟú¬Òètà899é)÷z½S§N/˜r>11aŒ9óÌ3SŸ5@”ãqÍÍÍ­^½ú®»îr¶ïÝ»×D&¾t£kåÊ•—]vÙ‡~¸cÇŽlãÞ½{·nÝ:==}ÓM7¥>A€4(Çðç?ÿùž{î9zôè%—\rÑE>|xß¾}SSS¿ýío¯ºêªÜ·ÏÌÌ0«´cØW_}õÔSOýñüúë¯ò“Ÿ¬Y³æW¿úÕyç§y/#h%Çê8€V"Ç*ŽP!p€ #T BàG¨8@…À*ŽP!p€ #T Bà•E©OŒÚØ?ýÁþµ÷ÔÏRŸšÀ€fp¢=S6àû§?8oô·AŽ4@0¶+ðõCOÿ-½§~Fì r¨»XT×ø $::‹À€Z“û ø0JŽÀbP(8P_¤¢Vh6z 12ŽÔ—&(¬ªW’ÞMä"p€ # w^2Ø Gj-7àÓ/Ç%—x2c½^/õ9´ÍÌÌÌììlê³´Š¿ºtl˜¢‡*wtcõº8ÚÍT%‹ýð1õ©¡[X«•q†K:;quc7§N‹ÔЖÍEcõ:Øã.)7Œ’ªÛ²Ú«€J䆆Ď%z1(¡Íêo׬ø!šß‹©<Ô0®‚¦@1`‚ pÄpcAéØó7özb9àÙ[È­Ðe±‘TŽÀ’{øì˜Ï9ˆ>!2‹c/é?šE?Öኞ¡ænÛÿ>ç)šF…Sš.CÀÚ¿FºkŽÀ±Óü§ØX4ㄉ-‹xì1g<%{2Î …—4i¦šÂi 5vO›s(áׯÉt(Ü™¦_{w0«º‹ìL{š[¶Ñ„¾ç-þbËCír©^g‡ªÛÔS°p£òÙR.²ÝJþÚÙÆ`íÆÖß xõjU\ˆrb…$ºóV¦.™»-®Fȸ Ðú·f°JÚmm~ƒµÞ¨þÝ,ô8v‹¿¶ß¿8‚Ê´5¡UÑÏa”WÙ¢5ZI˜ ã´$Á_ƒmiãZWá_„ÜõZêo©/ùÈql¿¢mP,gc6T°°­38eÏ’Ö4Ê~Ò.ú4˜MË~u~h´ÒS c Qgô8¶\¬a,…Ñ©þ-¹Mžò2åyÁ´'måLé°ÛÏXÛØ…Ó¿K±á,!ç5GàØ ö··ªLäÖ7‚΄e30Í85ÐnN kÓ¶Q/FÇæÇ8oôFCZŽ]ë³G^LÇ&S+§ 9óŠ4Ë0–›: VJgë¿ë0ø©œNm`'vŒµ·F—IQñ pÄß8YÌz–‚„n¡—‘Ù‚@Èó]úü¶#„æÔ÷+øØM¨¼tE0)‹¶·ZLŽé¡³…ï[_°ƒ¶h6wl.!Ý@ƒgË9Á¢2jL})#",Zµ¢Îú„å–K`…Q¢Ç?jGUˆÊÉ ävÊ ÉàÝùÇh gÍe{cÿgM›Ùåv57þ3e»-hQG†àÕ«Uð aš°ÐÙåÆÎ¨‡–‚ÕÔ">4p@£'vÈSª;Nysü5)4Å+”kdÓðV…À±zõûb3ݜ݄ò¶]æß®Øz3ò…šH®æ­,ˆÝAB pMPÎ&p1Çê5%pŒ‘—ÔK}véÛ}áyZ¿Ì €ñ+8ZË<±|zayêŒ!p9&ÇÀ˜…‹ ¯šç‘Äþ=pZ4gg³ðîhVÌ+Äi û攇C=8Â] +wçÔç›FîLIg´Å,œ|íTÐnÎì™Ô§S ÙdjgZ¡ßŠv|@¿æ:=Týù矯[·nûöíkÖ¬ñ_ݱcÇöíÛ8055uýõ×?ðÀË–-Ó¶YCÕN&²é| NiÁ4ùþ¯þÏŒ›F#©ñgßèìlJ%ÿÐÞV«Ó=Ž/½ôR쥧Ÿ~ú¡‡úßÿýß+®¸âŒ3Îxýõ×ï½÷Þo¿ý6õ)W,öuâ;&jÏ:»‹-`gòdÿÅ*¼ÚO36-Œ½øcÖfaˆ)G‡…¶£´.Žóóóÿõ_ÿõ›ßüæßþíß‚;ÌÎÎnÙ²eÅŠÿñÿ±eË–wÞygÆ ÿó?ÿóä“O¦>÷ábl%(¸¿¿T €¦Ë2yìšÕö—=â8œö!õ5%æ·¨Î"„&4Š-ß·Øèv¡D,(u1p¼ùæ›ÿáþáÕW_í°}ûöS§NÝwß}çž{n˃>¸dÉ’·ß~ûÔ©S©O¿2Îøip bEv„-}Bo.ã&@ý k;3›ýWûœšálZhÛí91Ϋ…:q³[ëF%º¸r̦M›¾ûî;cÌË/¿¼gχ>úh||ü†nȶLLL\wÝu;wîüøã/¿üòÔWP=a”Ž÷Ÿù+ŒÅvj:ÊGPOÁÚ1Á.1ᑻТ2­dwLÓr 9/ ¾¾+ªÕÅǵk×Þxã7ÞxãùçŸï¿Úëõ8°|ùòåË—ÛÛW­ZeŒ9tèPêÓ®N}ë*¼XJµ • fКx…ñ\Îà~lÙU¿¨™_õÑÅGÙ‰'Nž<¹téRgû’%KŒ1ÇŽÓdffÆÙRÃyÖ±Ç;g·?%Dz ]r° ú³Ð&úܞήF(t%š…ÒvÁ²Xy ÔD{eý©Ó‹/v¶ŸqÆƘãÇk2ëI}Y’`ú°ðk7¿Æ¹“©ýìûg´ˆõ„ÅfÏØº5: `,Ÿ'ø.ÚÉúkmã?üðüóÏg¿NLLÜ{z7.]ºtllìĉÎöo¾ùÆüµß±•œb!·¯­ÍŸ_£[¸!Á÷Ú·È©n§: سØÖ6S¸ þÏBÚw°$Memµ6püþûï7oÞœýzúé§+ÇE‹-Y²ÄïYœŸŸ7Ædó¬ÛÁž÷Ô/»¨ËÎô'dÚ„©o1~’bL0/Ü>Ž}@ÏZimà899Yz€xÅŠ˜ŸŸ?묳²_|ñEÿ¥ÔWV™Ž? ä†Onï "ÐjNáÆàQ&Bu¡OÑ)äN¢T¬cêË­ qã7ÎÎξ÷Þ{?ÿùÏû[z½ÞîÝ»—-[v饗¦>» 8­˜ðhØ…–.Æå»A·"ÐúŽ®Ü4ž¬UvÅu)úÙA´¢5Ç䘀Ûn»m||üÙgŸíç5c¶lÙrôèÑ[n¹å´ÓNK}vƒržðü/ª3;¸h׎ï|ð 8«(ëdC’”´0æµ™±Io±‚…¦{Ïá±yBþ?.„ÔM1ÖëõRŸC2=ôÐŽ;¶oß¾fÍ祭[·>ñÄçŸþµ×^;77÷Á¬^½zëÖ­~™ßÌÌL§Qk0à ì߇X)`û~8-#¤ßoœA¹¦þá?~û ´ú“cœÓ_åÕÿ V†Œ…ÚØ Ž]d¯¶›û|È.ô)ÁGð ®ÓíüŠÐ5òàŒ¿O,šÞÔu»KS‘GŸã(«s³+ñû 4Ç©s| `B;À1^ ÙÅ…M„Ê—©Ï*Žm&âûò¼ÖtÂùÓ$ýV5:NÎ÷ãÂÒK-4Np•„ÊÉ« a4[.¸’²ù“íw9»µ£í“×SÎ ¢ýZLÈW Vü6bÿbû*æê¯(8jŸ;¶ûg‹¶wô(^½ú·Š„„”ðÆ5pÕ6ÊÁN\Z. ­äUéƒUÌœe—;Xë»D‘ó`GFnciGŒÇ®(1µÅŸ<螨¿ÏÖ_þ!–  •œ*ƒÊ¼Ü1?+&v¨úÐ'|•³§r#ŸíðÈÐãX½zö8–àÖ¨m«çœžŸ¬Á7šÐÿ¥àGvuò… ‘bp6zö¿Ù#»T‚À%9ã5ŽZU«š`Í `m*u`xœ`ÈÑöD¹ýñŸZå`‹¶´ƒ×ĉl1îØ?¹g"ÿ[Cäˆ8¢€ìaÚùºúVû òó®òŒ®C4ÖÅH«@ O"vúÞÌÂT¿`;VèaµÜê ±œMgŸvðü³PÏÏŒ,ñnWv:wé³=fUW¯q³ª5]0_G(‚˜d„Wÿ¡Á‰öµ0±@!ÁiűéÀB—á -gåë{å–¥tfLkJ ù  þq‚÷VØ£D#òŲ¼cëJùé,Ù%¾ðúw Mv,äÕ·A UØËkeíQ{£YØcç'÷ƒb/•è§´VöÊØÆë¼ N’ocÙÿ0 Ž(¹ŠTö^c;¿kˆÁXZ0¤‹ˆ±ñSdY(Þ›{ œ`g?£ú­™=›m”?¥Pòó³2Û;7µ1ؙꄛþ¥™H„PÀȾut7ÖCÕÕkÜPµÉ«Ë,lkï`"]z¹ =\–{•‡Zü«¶‰¦`÷$€е“¹ù0ÁÌ™>{ÿa´«±Ïv³/ÊÿÙ„Ú?t¢Oá Õý…ò¨ãˆåÆŽ&Ò ³I„fÈÏŒôó#cUŠ^—pšwÑZЋe:ÚU{‚ÃÓ~·ŸÓé^ÎÆì]¹õÆý~ÁàçšÈ³tì’ýñh![1x—Çê5±Ç±/7+¹Ð…=sŸ,3ÃËw‰])3c” o*å§tYÏÐä=<ûóTª¥r{bFÒ¨6=Žø›d%+“U>[h4å !0$Î<Â`Sã÷JÚA›™ù· ~bn@ë°Œå&ú=ˆò¼éà £A±À°;Û‚lÑ–Bq¤œUm¼æ,¶›½]¨:Ã#×¾q¶øïͱ_’³Õƒ…ÖO8±Ø\òÔ÷ƒ"pÄ ŠŽSg?›HfŒ\ =ˆrÔèlw>+xnšŠŠMöªò8x"¸óþÁå˜/·+Ñž.=ŒŽ: pD>9óOyX>¸0ÛNÈÝöOÏ,ì¹ Žª˜øˆ‰Pôr*¼ —BÔ׸Ð@%Ô—P^šñúìã ¹¡"Ô˜È}o°Ñx|v¹¯`{TFXìŸcÃß„‰FÀŸ3`¨|–Ë53Ž ={ W«¹CEÆF#p„V¹K˜F‹ÿœ„káŒ×a™;–­ÝDàˆ¡Ð<¶ÆæÖùKdûÇv¦éS¨9ýh‰2è¼›ì¢9> &ŽŠ`Õ‰Xyu,çPÆ{JÖäGõQ¢\¢Ðqè4ªÙK>?kF™åè“êßMGàˆ‰5^…ª‚ÙG‹}Jê •Ë%ÊâåŽiŽšÛ”Š‰ÑŽ`ò¾a„@k*—ÛÁ Vè»è§ëò 1ñI´ÕÍEàˆa‘' 5Óôh‰´‰¦¦OéGqÙ€™?Âø8muÓ8bˆ†úL í¦ç-4´]É &…ÑDr1 CÕÍGàˆáª°´ƒÀÙS¤Å yêÖ'‹ç’Dz=‡}31bc½^/õ9´ÍÌÌÌììlê³h!aCó Qr—Ô*´æ–QÄ”¹k!–¸g ípÐãˆÆÐ, ð°œSHÛÛMŽhÍ"°ÐM%†e¨G¢ª®CÕåèyY9 2wnŠrå@†G¤GXä÷ö ¾Ê haØ‘XUµ qJÄy¹ £ß‹™ú*Ñ*ŽHiÀµ éˆóÐ,ã©Oü(Ø™!¬DrŽÔH,vìÀ„‘#QCR b¨É c,h渠¶‘ A!ÄTØ6 -0Š"pD­Ñ¨ÀàbÖ4°(ŠÀ€ö#FD%˜ƒ”˜?@ƒ8"±jç€áa¨é1€F pD-&P U@…À*ŽP!p€ #T BàG¨8@…À*ŽPétàøùçŸÏÌÌü÷ÿ·ÿÒ­·Þ:ãùéOšú”;jff&õ)´ ÷³rÜÒÊqK«Åý¬\goé¢Ô'ÒK/½{éàÁƒ“““+W®´7.]º4õ)$ÓÅÀq~~~ÿþý;wî|õÕWc;?~|ݺu›7oN}²uÑÅÀñæ›oþòË/…ýôÓ©©©Õ«WoܸqÍš5©Ï ™.޹:dŒyæ™g.¼ð«¯¾úðáûvíÚ½{÷£>zûí·kŽÐÙÉVÃÃ-­÷³rÜÒÊqK«Åý¬ÖììlêSHƒÀ1àÈ‘#“““÷ßÿ† ú[öìÙ³qãÆÇ{líÚµÓÓÓòÛ;ûÇÚ­µã?üðüóÏg¿NLLÜ{ï½Ê÷¾øâ‹Î–k®¹æÎ;ï|á…Þ}÷Ý,šè”ÖŽßÿ½]LçôÓO׎AW^yå /¼°ÿþÔWFkÇÉÉÉrCƽ^ïÔ©Scccãã –Õ™˜˜0Æœy晩¯ N/9477·zõê»îºËÙ¾wï^Cr1è0G×Ê•+/»ì²?üpÇŽÙÆ½{÷nݺuzzú¦›nJ}‚i´v¨z<òÈ=÷ÜóÐC½òÊ+]tÑáÇ÷íÛ755õøãONN¦>;€4èq ¸øâ‹ßxãõë×=zôwÞ9~üøúõëß|óÍ«®º*õ©$3ÖëõRŸ€G¨8@…À*ŽP!p€ #T ÂÊ1ÕøüóÏ×­[·}ûö5kÖ8/Ýzë­Ÿ|ò‰³ñì³Ï~ÿý÷SŸu­ ·Ô³cÇŽíÛ·8p`jjêúë¯à–-[–ú”ƒ¿ÉªðwX-þ2+AãY9þ‰·8V㥗^нtðàÁÉÉÉ•+WÚ—.]šú”ëN¸¥O?ýôsÏ=·xñâ+®¸bnnîõ×_ÿì³Ï¶mÛÆ‚JüMV‚¿ÃÊñ—Y ÏÊñO¼Àq óóóû÷ïß¹s端¾ÛáøñãëÖ­Û¼ysê“m†Ü[:;;»eË–+V¼öÚkçž{®1fÓ¦MÛ¶m{òÉ'~øáÔ§ßüMV‚¿ÃÊñ—9 ÏÊñO|ã@n¾ùæ/¿üRØáàÁƒÆçY‚Ü[º}ûöS§NÝwß}ý†Ïóàƒþû¿ÿûÛo¿ý/ÿò/ãã¤íæào²üVŽ¿ÌÑxVŽâƒ²iÓ¦ï¾ûÎóòË/ïÙ³ÇßannÎsÁ¤>ÓÆÈ½¥}ôÑøøø 7Üm™˜˜¸îºëvîÜùñÇ_~ù婯 îø›¬‡•ã/s@4ž•ãŸø Ǭ]»¶ÿî]»‚;ôÿªŽ9²aÆO?ýtjjjõêÕ7n æ,ÃäÝÒ^¯wàÀåË—/_¾ÜÞ¾jÕ*cÌ¡C‡hûrñ798þ‡¿ÌÑxVŽâƒèš®C‡cžy景¾úêꫯ>ûì³wíÚõ÷ÿ÷Û·oO}jtâĉ“'OúyÇK–,1Æ;v,õ 6“ƒãïpøË*þh‡¡›´ô8ב#G&''ï¿ÿþ 6ô·ìÙ³gãÆ=öØÚµk§§§SŸ`Ã|ûí·Æ˜Å‹;ÛÏ8ã cÌñãÇSŸ`ð798þ‡¿Ì¡âvºùGKà˜ï‡~xþùç³_'&&î½÷^å{_|ñEgË5×\sçw¾ð ï¾ûnö§Ö5¥oéÒ¥KÇÆÆNœ8álÿæ›oÌ_Ñ»ÉüMŽ¿Ãaà/s¨ø£†nþÑ8æûþûïí™ö§Ÿ~º>p ºòÊ+_xá…ýû÷§¾²dJßÒE‹-Y²Ä8žŸŸ7ÆdSa Þdþ& áïpdøË¬ ´#Óú?ZÇ|“““³³³%ÞØëõN:566æ”9˜˜˜0Æœy晩¯,™Ò·Ô³bÅŠÌÏÏŸuÖYÙÆ/¾ø¢ÿRê+«‘àMæo²*üV‹¿Ìà¶Zý£erÌÍÍÍ­^½ú®»îr¶ïÝ»×333“úéÆo¸ä’K~ùË_¦>µfào²üVŽ¿Ìaã¶rÝü£¥Çq¸.¾øâ7ÞxcýúõG}çwŽ?¾~ýú7ß|󪫮J}j v÷Ýw?ùä“^xá[o½uìØ±;î¸cÛ¶mí^T¾BüMV…¿Ãjñ—9üÑV«›´c½^/õ9 èq€ #T BàG¨8@…À*ŽP!p€ #T BàG¨8@…À*ŽP!p€ #T BàG¨8@…À*ŽP!p€ #T BàG¨8@…À*ŽP!p€ #T BàG¨8@…À*ÿ?ÍÚ*üâðmIEND®B`‚statistics-release-1.6.3/docs/assets/rangesearch_102.png000066400000000000000000000551011456127120000231350ustar00rootroot00000000000000‰PNG  IHDRhŽ\­AZIDATxÚíÝ}ˆUšøñÓÝéŽN^Pƒ= FÿHKü#ˆ/¨_ÿ0(a}«qQ”ü5ˆƒàìª#,QÅH” QVItœ%⬠‚kFt1Ù•Áé˜U:!‘I#Ñäþþ¸NÍéóòÔSuëÞS/ß2t×­[·ª¦ïÉSç<ç9c½^ÏyÆSŸšÀ*ŽP!p€ #T BàG¨8@…À*ŽP!p€ #T BàG¨8@…À*ŽP!p€ #T BàG¨8@…À*ŽP!p€ #T BàG¨8@…À*ŽP!p€ #T BàG¨8@…À*‹RŸ@JŸ}öÙºuë¶oß¾fÍç¥[n¹åã?v6žuÖYï½÷^ê³H£ÓãK/½{éàÁƒ“““+W®´7.]º4õ)$ÓÅÀq~~~ÿþý;wî|õÕWc;?~|ݺu›7oN}²uÑÅÀñÆoüâ‹/„ùä“©©©Õ«WoܸџCÐ] s:tÈóÌ3ÏœþùW^yåáÇwíÚµ{÷îG}ô¶ÛnË}ûÌÌŒ¿qvv6õe „À1àÈ‘#“““÷ßÿ† ú[öìÙ³qãÆÇ{líÚµÓÓÓ¹G LíCð€_|qß¾}YÔhŒ¹êª«î¸ãŽo¿ýöwÞI}vi8j]~ùåÆ˜ýû÷§>€4]½^ïäÉ“§Nr¶OLLcÎ<óÌÔ'£knnnõêÕwÞy§³}ïÞ½&2ñ  ]+W®¼ä’K>øàƒ;vd÷îÝ»uëÖééén¸!õ ¤Á¬ê€Gyäî»ï~衇^yå• .¸àðáÃûö훚šzüñÇ'''SŸ@ô8\xá…o¼ñÆúõë=úöÛo?~|ýúõo¾ùæW\‘úÔ’ëõz©Ï¡mfff¨ãÚ‡G¨8@…À*ŽP!p€ #T BàG¨°V5M2öë?9[zOý"õI¡+hŒ±_ÿɃa`¨€fˆˆ½§~1öë?ù=‘@åh¹[‘GŒ#TÈqÄèØÃ(ƒ<;Ã1; Bàˆáªê 8÷8Ä  9ŽHŒlnÐÈÏü)„…j`#p ú[%s 5bGæi¿Ëh’`fNåÁœp@FŠºŒÀ‰)[Ú)pøµÉFÖHÒ&w“cÐ4a:"ëntÖ§®pŽ -*bèqÄpUøT*Š6@ÄAȶЈa£ÇC{î?+jàF“Ù5këú ã€}ý# ~´=Ž‘ª :ø±#Q#€Ž³Æàv¡%gˆ!`ÉÁê±ä #ø”ÌÓ ×oH…û%7¡°N¡íÎóî p¬£¦`@Ê(Í™(ÜÁéYÌ ³Ê‘þúC¡MªÆjJx~ŸÓרɯp>¢ñú2svötV{bH‹À韒y~€`K(¯=(kS8{·û¯ú±£pò$)µ#Rò›¿ì×Ò-#´ƒ5£´Ò÷(\óY±“7ô 4#’±çoÄèŠÙV5YêÌî,´cG§ÅË=mBQ 3îÌÑv6:©Á*’rhH±ÉFcrLõº69F?À!$Y›HfŒ~¡¼š%·©Ì°âÐiQýf6/Ævv¶Ç>E8™ØõÒ†×=Žˆðå—Û—Øó«Mîq”káÒîh.¡JŽf*´-wtØïkô§KÇí¤Õ vdÒ†×#Jb>;" 8Ã%röwðss·3•@C QZl‘<ÇioM‘ {Í©úgžÛäʃÚä¸×K¢‹õV ÛƒŽût¿ ›ðjÑrHŽ¡jüH¨àåï¬éYÔô;ݘH°¬0ÑÏoéèMPÔ°ó¡ƒ3HbÏÀ¹#v£çÏw±ïOÇ6‘FÒÉ™¸¼ g ‘_Ë8˜¼Qx—òÈÊ⋚ÓsÂDçáÛŸU­¿ Êqvåœ!6ì|h¿¼bðUç£ý¾½XíF¹á-4$¤ZÆê]Tr¯èn¬'†ª«×¸¡êظ³Ü¦ÈCÕþа0?FÞÁDÁËu"2,"Öhä´ÛÛ>MûVtÄFóªLçq:öoDì³vcÎbƒ8V¯cncaÄ–KߨßlC…À±Pc‰òþ´Aáþh´$Þå–¼ñ³ºc»ÉŸ.·Ï¹­·?e;vBîcîµÓ¨ÖCÕ0F4ñG„…tiùþËÝŠ±“ñÏM~´UNúÖ4ˆþÁ…ÚãT© Ë&,”TI%çhB#æ·ÿ±7úCUš@“ö³A».Ö™çôó9ñVptCè•4yϯÊþÂXº·þbýþËÒ¯*@} ûí·3úFÒiJÄ BB‘°%øY¡h3›ŽÀ±Óäitþç-š*ß¹Oɹfî ŒS¨Â>¬²93ñ˜ÒžÄ;U¦lRzÁ/©cÄÕ ‚o4yíjé°L(£Sâ¡]¨DìØhä8V¯A9ŽÁ<&þU7³ 7¤’k¡Å²¿åŠE4…@; )ÇÑÏÑÏY©ä¥ÜW5bÏ~% ÿ5ÖhÇê5%p”'Sû4ã)Ùž¥›§AfÕ ò‰ö¥ÉW›ýGk´C…£²$Eéy*J•?kFÆæ,úK§c£1TÝuš¼Mãe?_ÒB²5ñûYýª¹B3ç]#ë…PÁôqãååF¨¦Šð±ò¦ÉF7Þ@<ía[±Vu§ým{§Ä¿Ý–Ù±`oᚤÁÉ×ÂÇ‹ÄϪÂk” @ØÿÙWa·€Î¥ u$@r¹3K4Ëô"+8ÛGP¶c ÊN»ÜSwì]ƒ<Ã;}ÁŒy4CÕÕkÄPu,™/—fÜ wµåÏ%7âã~îìr %g<ç¾78 þ»b”WÔŸU…8à ÐîŽ.™ÇbŽX<Ô¾qXå Bá¹k¢ª®^m‡ªõc%¥{ÑF_…qdüx‘toùº•m£OóïK‰ñhÚØš Ç±+ì¯\ö½µÇJ*ɃnÙtðJýZE† è²i~›)—* ö°ú-dî?=´¢õAàØuÁUõb»iØèP¸a-™Ü©åúQçF&#¾"TnãÙôÊŽ±(Ðɪ/z—‚<ê€À±üorFóm$ˆ1 o”üpì×gìWC%ã %á ¿*ßÕh±‚nÁ!{ÉÖì]Á~_Æ:`VuwÅfÉ÷ÔïÜVÁA¨ìg»@¦³f\Ûß‚·@ƒØ£ÕNÁŠŒ=4Ñ…¯vv™¹ùÁNJû8ö\õ.ܺš£Ç±[œ¾ùÚýÒú±ó,¯y ?¬òjEÈqTf9ïJ}AUÞ™àϱ[ä\~g{+j‹Ç®ˆÕkSóT!¡JeöŸ=m—jËÍ/tüÔrµzG0XÔ ò¤¾Ü¡ð»`ƒ1¢?Üo7­´ŠÉÑãØ9þß<¥º›Š¦r;=ŽÁÜpž›VŠeì ûw³½U>T;’bUä =ŽÝìw´×>á;i"¾Ÿº$ÌøóŸ¤ƒh¦Ö›vV“ –à &ºtÓrƦc;wµƒËOÔ#~D“)1RÎ%@ÚÇyض‹¼ol§kI{Bf”Ÿaïß±àdÁÔׄ8v‘åjøÝþò$ëÆ7Âp°£Ñ_ƒÇù¹k7hœX.²rYQgêFlÑ”.(W½2¸º 5Àk¨ÓãK/½{éé§Ÿ~î¹ç/^|Ùe—ÍÍͽþúëŸ~úé¶mÛ&''SŸõ@‚¥ù…^4y{§Z#K˜(SôCéFFXhÔáÇýŸc[k?5錃¯åƒõz½Ôç0jóóóû÷ïß¹s端¾jŒñ{gggׯ_öÙg¿öÚkçœsŽ1fÓ¦MÛ¶m»ýöÛ~øáÜãÏÌÌÌÎΦ¾JcâéÆë6ëì,¿BìËïT0^—ƒóÆaQZF žœ9¿%–Ôƒ£Ðm¤mL¨‹ãµ×^ûÅ_d¿úã¿þ뿾üòË?þø?üÃ?ô·œjÌݹbãѹ žJ;ÔY°q`U…4ùQÁ=Yu°&º8®]»¶ÿî]»üW{½Þ–/_¾|ùr{ûªU«Œ1‡ªàä‹­¡ûµƒô­›ñ–sd h!‘ÎÞG_ˆ±ªùpm„Çl{íÁ`ÑïVÞÆébà(;qâÄÉ“'—.]êl_²d‰1æØ±cšƒÌÌÌ8[F6x­ŒWèóÏK[t~vöáf "ôæ®V2H§£²`MêÛ3,ÁDpç‘Ûï¢HE}8º¾ýö[cÌâÅ‹ígœq†1æøñ㚃$Ïqôeß:§^Œ M”ñßÕÁ/jîsga§°QïÐ,¹Y=¹OƒÁoº&¾éTûàߥà¯~u3gæS×À]K—.;qℳý›o¾1ëwl{={cös§Ú¸àMNy‰­s@£´€þñ/{tìlS)ËS˜íæ7ªÁ%^‘=Ž®E‹-Y²ÄïYœŸŸ7Æô«ó´’Ÿbb:2Ú÷$ã×KÏ‚McÔ“òë™Û%ܳã-§ÀŸï\RA(ÆN£š=Ž+V¬øê«¯ú‘bæóÏ?ï¿”úìrÈ%cb¡½è*Mž^ÖYë¬W  #ìAmåóv—[‰Ü1kõj©ë†ǀ믿~vvöÝwßýå/ÙßÒëõvïÞ½lÙ²‹/¾8õÙ D¨ƒ ÔkìT@)DÞÌ:`³“ó‚íd, 2õ‰×“ïÈ<ÎZ¡Ç1àÖ[oöÙgûyƘ-[¶=zôæ›o>í´ÓRŸ]>Mèã'5úûïÛÛ…ïm,sÑÞèäÜo&Ç@ h‚<;¾ÑWíéš`2}p§"Oî1bŽÓÓÓ<ðÀgŸ}vÓM7ýö·¿ý§ú§§Ÿ~ú¢‹.ºçž{RŸš–0×/ûZf{ 9ÈíîcËm‰b“ûœ)ž5€š°ôÞ“m1ôÅ ó‡œ ¸ÊºH…À1ì®»îzòÉ'Ï?ÿü·ÞzëØ±c·ß~û¶mÛüâŽufOôsê©öåV ó_mYk8H«ä$5:7“îF ébUuìæÔ~Ïv(7 ¸õ-†NÆféâZÕÃV‡µª5œÒY][–ºgBÿUCÐ(šàίòwßX_ZјXÁ`g7sê‰À±zuåÄíŽO‹ÑÈ ©ià€fÑ,9hB§ý’óTIË)¼,ÊUOŽÕ«gàèô„[:¿½ëò£³¾égñF  „¯¹3€“úL›Dh? ë‰ÇNðó¸ûœ‰2öÎÙÏÁt润? 3"ƒ3©©.ÀÄG«ãôJÄ–%äNÖc·Ø Æ©cÕ­…)Û©/±Ê{å_ á_ “ =ò0isþ‰uXë_(Uúq냡êêÕm¨ZHå–sM Ò*··€3²Ÿ[÷@ ëàÙûô¶¤¹N–”0'‰¶&èql3§p·_Ä1ÛhB£´ò·46ð½=õÕW/»{þ KêS0 ÊXP¹ö`ë³}œQ¬àM§Ó‘¨±V[ËY~:¸‚““¿ÜÇáÄLNJx»JåL@°•«ìØ2Î`´_ ×Y€§ã·«Î;Ä®Uëçš8)&ÔØu¶^.Û OÃ@+Ù)wÙÆlmçlÿ¥Ž4Êy“ÎFaõ2Ó_‡ÇêÕ$ÇQ¨­ÛAÖ¬Üò–±;“úÄTÃÏB‰m±9«t¶®™°V‚œÑhŠ'Maô«W‡ÀQ³^îúJEìvðË^Òºí /Ç*¬4,ˆLŒn%åT¿“¤5CÕ]!$,Æ&µ8ãÚöFáÈ-hƒ+Ï:wÌÏÑÉå,žú*]\±Gkÿ-ö>Y4Ùú/~,ìó3£ä¸<øOêcQêÀPøƒ§ÁáTçÉX¶¬í‹U”ÛŸ! é‚ ŽÁÄ>¡4Owª˜Ù¹àò5Ò6CÕÕ«ÃPµñ*`ÝÔ§Äcð [Ó6”rØ=xcc­^¹—Œžæ+©)åXI5ÜÖ>3çߨ-†ª»" nœ™kr®Ipb? ã|Pêk-OÙ|Û%ìÁëàžÂ iý?@×ĞƟ…B†mªÝ“ OûKÂË:¢ªn-a´:k§œ3ÀÚOæóÛ—ã(\‹>Ñþ™f¨ƒÑôr9ÃÙÁÖ2V¡¢Aí§“°×2m ‚‘a¨ºz5ªîÓÏq ¶Ù>B£Ðtú2Cš¥Æœý|/ +0l±),E“5;8[俥5íj¡%Xi÷š‹¡ê– Vüv†„àÆ "}Úñµå Á¾-Y—ƒ?Àˆ9K•d†ñÅôW=qZWùÕ¢’4ÂÁBþ—fÖ …&šˆ¡ê‰ŒäVduÞnW—P~JƒŸ˜…+ŠÓÁû ‰ª¾†ò\7J^t†§…Ws/¡&CÛÂäH}š¸)Þ׋š pì–Ü2ýþKÁ„Hažu=£Ærõ/‚mbìæ¶zrE$I3¹M|å@ùP–ÛÆ6­B'‚0ù2vY‚«)»+øÅ–ÇMœéØÙš*?£oõìäÅ¢YGö…˜¼ yÄ×@¯D,+ô]á—=XÍTÑTަ±uzLc3/ƒç“[h‚FµæaL¼Ó¿Ë~{Ññ”!µtò”—Ør¡Žõ8æ^Ób€Æ©ü» ¡4ù?…Nx4èN˜›[¾­PaKÔ“cº.6i&XdK“Èìç†'¤ŸâgBMaUÓ€‚wŒ¨h ý×ÙªìxË/â¨o%”qçúM…kzâ;Ž0&Ôâ+{çn‰-÷ÓÃúû ÞØ[çX­]gÎ}%Z@»étªàªÝ ìVÅ)Â`ï#|D¡óðþ{sß.ìãšðN"-†ª-d¨,WVUöw°yé#çRÓØý²½Áù6 ÷`¨›á=Å ™*ú5rk†;çß9T¡¶Th–c]§¦0òP]ô8Âe[;ÝcY»Ð[¸Ôž²bѪ¹±·k>En^cQ£s`Ç€½§¾ÏÐ@*¹‘C%„A:-ŒþɼÚk‘Òà-­O’†ŠÀÆÄ'SûuÂýw9ã°ÁƒgG9¶Å¡¬ø#´tr¶Mðbc«M·8ÇwB“ ¤"T±­ê‹«ºàÒÆâBûÕXÍ çàEϰ’ýýÄÍÁƒn –¬^­–Trúm~ñÜ@Ê,’p~Èp JxI˜«èŸŒ BÍsçòå›{iæ‹la‚•+„¹Æ¹¸% ÓÆöqh÷#Èw̾4Í“nÉ[Æ©G,PâKë׃ †qr†ØÀ‡‰GrÎÿÚr'S+s´í£Éo þàVFóÅŒå½ôe7:Íÿ0/?!ë«ù(+ì¿åKVÖ¿Œe:56=ŽÕktcE?'Ò˜œñe¿‰Ì}Kî¡üsˆ]r°K@•OØà €8­P,ÃljõÓeœ-ÎÎÑ„'ùص+Q8— çkÒ¢6=ŽÐ>ç•ØMólׂƒ&&oDØÙ(‡wNË(<./d娖<:VÚ;Ç÷£ÀØrçbð!)ÖÐ|¨d£/«¬AÈ`4ü!æ`®¹ßõè÷Jj2|‚€ì7*»Š>ö£qaLÞWÚnìN¸Aâ*e9†¢mdcq§<¨D¯*”+IaÆNªO¶QÙ~úû83fbçCcØMŽøQn‰?¢òÇ2„š^þK'MÆè“;_G_œ FÌ™¡’ûÌŸ{ÀX¾Ð>žà„†"pÄßiÒSr Ê3©ƒs ÷ô¬¡XUé/¹`„(ç^TÅiëä)ÒBѱÜJ¹t‚çã|4:ˆ:ŽÕkbÇÈ7 –”ÇDü6±\¤ýªQ¬©M‹ `¨4¥Ç”­Ÿ~¶Š¦£p„ÜÖ•–³èqD-ø•&œ*™¬Gg!€FPVÈÝß(fÆØäÚg¦TÕ Ò~Z†À#"¤ÚÈ+NEŸoƒÈÍ ö'VuZË–!pDyEj¶)5B=ˆEÈü«¦0±eZ<æP1šÇÖ#pDIå†$üúˆBÔhÄiÚ±ƒÞlÉ—Æx7€&’çJç6qŒ8£Àe R.1X™LxcÑXM(¡<£-Úǯƒæ¼šýìLjŒ´ CàˆÂoA‚ýˆ•4LB ý0´fê7ŒLîpJ‰¦)wfôˆ3,Ñލžü,koñ ’ Ô·\±¤rý’YÁ¸ÖÐzHgðá”BhîDàˆŠÙtœ±aèa4O%Í¢»†nµËç)ñP­¯øø(^½Ö/TÄ[óFÍÒþÆA"¹ØXöÈî!”£©Å{„JVáB7Ñãˆf¨¶™}4¨D%¹àÌÿCiލŒÜÝhJ L˵ÁŒß/H„¥§>4Oåµ ýâŽþ£9 pDIB‘Øϲ½§~áG¤P+ U£ŒJæ÷;xÞ7fUW¯õ³ªm…â¼ Žšý™ ÀhÐãˆTÛãXQ# ¥'DàˆŠ•.Öè^yp@ kUC@àˆ* )÷0Áæ:¸+º‰Çêu*Ç1¦Â9.š…jƒÓ¬ãE«Ûqô8b(*lY‚Ö<û0zŽhÊôP UW¡j@ãP ¬TˆAàIA€À*ŽàGB§#ãÔ0Ž ¯÷Ô/bÖDè£ø»`ìHÔˆ>G°a"bª€ #T BàG¨8@…À*Ôq »å–[>þøcgãYgõÞ{ï¥>5€4Ã<899¹råJ{ãÒ¥KSŸ@2ŽóóóÇ_·nÝæÍ›SŸ @]ãpðàAcŒÓÝÐqŽsssƘóÎ;/õ‰ÔCÕýÀñÈ‘#6løä“O¦¦¦V¯^½qãÆ5kÖ¤>5€dÆz½^ês¨ßüæ7¿ÿýï1çŸþªU«>ü—¿üe||üÑG½í¶Ûrß>33ãoœM}Y¡Ç1àÈ‘#“““÷ßÿ† ú[öìÙ³qãÆÇ{líÚµÓÓÓ¹G LíCŽcÀ‹/¾¸oß¾,j4Æ\uÕUwÜqÇ·ß~ûÎ;ï¤>;€4µ.¿ürcÌþýûSŸ@Ž®^¯wòäÉS§N9Û'&&Œ1gžyfêHƒÀÑ577·zõê;ï¼ÓÙ¾wï^™øÐŽ®•+W^rÉ%|ðÁŽ;²{÷îݺuëôôô 7ÜúÒ OÀ_ÿú×»ï¾ûèÑ£]tÑ\pøðá}ûöMMMýîw¿»âŠ+rß>33ìjÐ>Ža_~ùåSO=õç?ÿù믿þÙÏ~¶fÍš_ýêWçž{®æ½Ž •«GàZ‰G¨8@…À*ŽP!p€ #T BàG¨8@…À*ŽP!p€ #T BàG¨8@…À*ŽPY”ú yöß2mÿºêµÿK}F0 ŽP€2Ú ´#hÅÄý·L¯zíÿúÿ›ú`ˆÈq€‚¡a?jL}j0tŽ "w(ö_"|Ðn U@@ÚÉ7ê‰À\ÁÎÅ‘…’þ§3ù@M0T Q£;VØ?}ÕkÿG%€:ëõz©Ï¡mffffggSŸ€2„DÆ,nËvFrƒ„¹ó²™¸ -†ª °àر¦G°òXF‰À~¤ìϳwóg±È}–ÁX“1hMAà9üÀζÎ: …05:hnqÊŒH‹ÀÈíÿ³D{g{cnª¢É«%|•¨@ZŽZ®PMÄà0´Ó•˜›§ë¡´·;§Ñÿˆþ§2Zø#€Ö¦°ëMû¿Æ¢IïÌüœÆÅRý@å´S,¤ |Ù¯Á$Âlc°RúkcÐBskä—äÐJ 8,à„‰v_£œÙ¿Æö‰#;ÛýH4Åž°f>Mê›  %èqÐB¹Ýl¹áTlúK,ß1KR”?È"îFû°r<š{æEß¹t‘Ý›ì_Ì8=Ž±Ê‹±04vpÿPN&¥¼>p]Á!x¨CÕ:Ç §²Ñá`ï #·#ÓßÍ ³¾Æ`8›¯­)Î"](GÍ0Èb}úŠ<ò¬—Ã/»ëÑÏkô°ÃPa®<{ÚŸ”¥õz½ÔçÐ6333³³³©Ïh¡êM°C.6ÁÅ ¡œ™Ôå;`p{,âæÜ²;ÔåPÇê8Õ’õ‚¯*;Mo\…³’ípVùÑöåȵ' Œ9Žš*ËêsÂ/`ÚÉhtŽû)š“Q†evÒa°£4;Û`ùñØÑrÏŸ¢<*AŽ#€ZË-RÛ?˜×hÏ Îƒ©d­¿Ü}„0.˜û¨?€›ŽF"pб),±Ø«’b‡Á9.ú^ÀØöXj0_ÓIŽŒM"‚P G5,Á‹„üåõüI-~P5`*¤ç ^øÆù aÒ Å‚¬1`ØÔQ,<ò£¢Ü`ü’rNdð ¥_Õð×-tÒ7ØW®î×î!»@UÔŽPÂÐùUèœÓ|JvÌrG¨ðzƒW¡™sí/cò:& 4GÍ[Ê9¸zJF“ï8zrf¤_Ü„Í`r$UxTŽ:ŽÕ£Ž#0ˆX]F]龨d›?ž[:ßqØb—é¼jŸv° 8†:ŽÀÎMôÇsƒT¶Å9T°€bòNGÿdb+Ö8}йœP!z«G#0¹ÇÑùÕïzlDØT´ƒSȶï‰ð*T‚GÍfWöζÔ<|,zzþ ˜Ør×¼.}’„¡ #€º)ZF»;ñM0/3)Úat‰ð‘EhÄ0T]=†ªçyøÃÓΤ`Õzö…ÛWíß=£ …‘Ø=Žê"·l¡#fÛcïíBø˜»hMnMGý-òçèGé99|öFÿçl‹å®þ×И2¸:vp7åYc@!”ãX?v ÖÐéow~uz u¿ƒšúºsÄNÛYDǾ3&oj¹SN ¸T…G)ëì‡Vs—`Ž4 tr/'VèQ¿Ò`Ñ%v€Gõ"tƒk Úî` r’ M ÁþH_nXIì ˆÀ@2…Âg8;7‹1¶º`É—ÐYz(+ ™t#€z)Ô»&÷;¶ dÔÜçûÚ³ÿ-t+ìÕYÀGõ¢ìÓò—QéìèjpE¿v£¦”c,Á´›7€ÀÀè(ãÜÝüzàŒŸ:qs¹Û[³gð ´+ÇT•c€ XåÅØDé`ÿYö«év7˜¾{Õé>¦]Ë]ŒTÿ`èq0òP²Žøqap¦Kp\5k¶ŒØ«åV…Ô¼…Ø#€QˆuÚåuü¸'X¡Ð!G?­—…ËÎôw0 罹ß UW¡jÀì^õ÷1yÝ–Qúòqû%ç€rÔHX tcõ>!^t†˜ƒó‘K覕×én×…Ž@ÇQÇÀP3ÄØÌ»@£¿\µñBŸÎ†2±ÎBùo{‡Òq9Q#rT/aäVu‰-?-®vª‡26ýÅ,L5 óízà±ÿ˜û =Ž*&|1{³îFù˜ƒ|D³øQcnAï಻ê¿e4Kh(Ǩ;vÜzë­_|ñÏþóþçþúë¯SŸÐHB´ ƒì±i{½;?vŒ­7ØâHÿÒbuyÊÅÁ€ÒO*ÐY U‡=ýôÓÏ=÷ÜâÅ‹/»ì²¹¹¹×_ýÓO?ݶmÛäädêS/¸Æ‰°›3kX ïo‚½†Â½µ÷wî­S©'V @Ç8ÌÎÎnÙ²eÅŠ¯½öÚ9çœcŒÙ´iÓ¶mÛž|òɇ~8õÙÌ« =±)5Bn_gÉw v«ÜÇ`Á"€ †ª¶oß~êÔ©û5c|ðÁ%K–üñú(õÙ!,6Ý'õËñø{2–䇌úôDbG¹]½^ïÀË—/_¾|¹½}ÕªUƘC‡¥>A îbñG°²`L,‹±ÐDàVÍ%=G׉'Nž<¹téRgû’%KŒ1ÇŽÓdÆ“ú²€Q³‡˜cdœÊÞÙØtѹ/†ÊÕ'ŠK"  `rŒëÛo¿5Æ,^¼ØÙ~ÆgcŽ?®9K¢ãì:µ?dq¦KcMaYÂŽÇ:Ψ½\ˆÇþßÔ' y]K—.;qℳý›o¾1ëw Q¨ª‹=uÆ_Æ:V­0õ%Fµátû×£Û¾ö' åcKË@QŽ®E‹-Y²ÄïYœŸŸ7Ædó¬hh;âqÖ°væÖ¥|jG:Qc¶eá£É+x$ÿ?BL @FŽcÀŠ+¾úê«~¤˜ùüóÏû/¥>; …üè`W¥S©ÇVç¨QóÒ üdÿžš™1Ž×_ýÉ“'ß}÷ÝlK¯×Û½{÷²eË.¾øâÔg´J,Ìø]už <¤Ð°§þ¥“Pz5B0ŽA·Þzëøøø³Ï>ÛÏk4ÆlÙ²åèÑ£7ß|ói§–ú쀖F0vùF³päºkR#²ô{ýEzœh[³føÈq ˜žž~àžx≛nºéꫯž››{ÿý÷/ºè¢{î¹'õ©-áÏíu¦Âä¦â9[bñPGgÅf²Ë5’@@àv×]w}öÙøÃÞzë­sÏ=÷öÛo¿ï¾ûúyTB(Êcâ! ¿¤r,-²SA¤<‹(x7ˆ”@àuã7Þxã©Ïh¡`EFg=k þœJ„vÞ^,ˆì î*G)Éë—8#°N¬é Î6"XjEÿ¾5èÎh&ÇHÀ.ñmoôÃgÔµæ1Ðh*5fü±~?×Óžf”úöhÝÔ× ©$c'&fÿiÖ>‰åAjæÜ4ˆŸ¶¨Ù¿q—  A$cçáeÿ]¯˜]×:8Y¤¨öÃ'Éñ´Ýó*Ty€rÆz½^êsh›™™™ÙÙÙÔgÔ]nŸbî«Î¸vê JCègu–çaÀàèqPGšÎL‘¦GEšNÖàe:#þöͱËñ4ýþ¨z«G#KÇ÷Éí]K}e N©ôùdïu‚ãÜûàÜlg¢F• Ç@3dÝfvÑï`¦cM‚$eÔì/”¯Bsd{ ô¨ u4@°¬LðgS³~Ç>!t“ëéÄ®+¶–` ¯@›Ðã œ‰Õ2M…ðØnúƒ+=wÇNOŒíÇoA®'€:#DZzä8öl_Jà‹eé‹ïtvõ;ÒÞîD–¤9¨=ŽR v’9±`0è±ãH9F,0Ù ”¥/jxý—Á5rÊM3€¤!§ýÙ«ÈÄÞ‹8åŸeúŒCÍA ÝB‡µûk)ô `d˜ ¥Ø$ŸXÁ{{î%eže…ñYlâ‹ó)þϹK{ÓÝ BŽ+ÖÝHÝoÖ» Vmt>%–âi/3|/Q#€ 1T å‚Ô†}±*‰¹ûk¶;醥3#Ë]£“å™…‰~K¨ #€4 …ÎzöÛ•ëé9ÂcÕ¶~D™µíœ€óÞ¢ªóéþ9/:4 ûÍÀz@ƒÀ@}Ùa00rÖ’±·³ƒ«ö-¦íŸ‰<Ü»ós‰4D?vdYj#@ÇêQÇPÊ q4ËU @úU ‹žÛ€K³8ç YZZØ'x4ͼ"¨cõ=!v¦ ÷ˆ " ²LèMÌ>:81Å)ZžíY4¦,±›0žn˜= `$ªR,Š l¤8XÂPHõSÖJÔÔµqbV§GÐI:Œ½+÷L‚çæ|' B”ãX¹!W¡CÎ{–ÿ—Õ×Oy‰­é'°»!íóÔ$\jv(ÔÁ b¨ºz Uu“»&a,n³C´`0[b;6šœ{ª±¡g;u6÷€a`¨@‡h:2…â8™Ü(M.‘\,ÑY‡(@ 8h?§fSÇQ¨¿,ñ㼫¿¨¤ñr(ýqmg„šàÀè‘ã ìÀk%­ÜÇàMgdì s/!vJ‘F€À@W¥ýüE§ŸMè„kÁ +Ã^&›Àˆ8è`lŒ ŸƒñephÛYÐþ åÚ‡Šž3N fUWYÕ@Íi¤1¡Íék´Ëúh¦NÇbAç ÍÔ€Q"p¬#Pò²4E; ƒusä„SÒ¬mI0T  ‹äÚþFg‹f-ìÜžEa¢FõDà £JaB²£œ©ùèܱlbG QÇ Ë¼&ÂÐJô8ÀÂ(ö°?ZS’@Bް@l!§¬cð½vÚÀþ.·°Ž&…±ÜKPŽ&͉-9#pH ÉÀÈ8@IB½Æ`)oú4#ü¨Dl'Ü)ºÖ‹fi¢O 8À°”ò„Ø‘¨@rÔq€ Ó¥“ŸQ#€: ÇjG^íR!p­Qvû)¨!†ªàï„Ñê:Œb@Zô8ÀYìH1p8€«\1h=G#X9ŽP!p€ #T BàG¨8@…À*ŽP!p€ #T BàG¨8@…À*ŽP!p€ #T¥>šºå–[>þøcgãYgõÞ{ï¥>5€4Ã<899¹råJ{ãÒ¥KSŸ@2ŽóóóÇ_·nÝæÍ›SŸ @]ãpðàAcŒÓÝÐqŽsssƘóÎ;/õ‰ÔCÕýÀñÈ‘#6løä“O¦¦¦V¯^½qãÆ5kÖ¤>5€dÆz½^ês¨ßüæ7¿ÿýï1çŸþªU«>ü—¿üe||üÑG½í¶Ûrß>33ãoœM}Y¡Ç1àÈ‘#“““÷ßÿ† ú[öìÙ³qãÆÇ{líÚµÓÓÓ¹G LíÓéÀñ‡~xþùç³_'&&î½÷^cÌ‹/¾èìyÕUWÝqÇ/¼ðÂ;3E“ÒéÀñûï¿· îœ~úéýÀ1èòË/á…öïߟú¬Òètà899é)÷z½S§N/˜r>11aŒ9óÌ3SŸ5@”ãqÍÍÍ­^½úÎ;ït¶ïÝ»×D&¾t£kåÊ•—\rÉ|°cÇŽlãÞ½{·nÝ:==}à 7¤>A€4(Çð׿þõî»ï>zôèE]tÁ>|xß¾}SSS¿ûÝ﮸âŠÜ·ÏÌÌ0«´cØ—_~ùÔSOýùÏþúë¯ö³Ÿ­Y³æW¿úչ瞫y/#h%Çê8€V"Ç*ŽP!p€ #T BàG¨8@…À*ŽP!p€ #T Bà•E©OŒÚدÿdÿÚ{ê©ÏÍ@à@38Ñž)ðýúOÎý-@# ŒíŠ|ýÐÓKï©_;BƒGê.Õõ¾B‰E‡……Î"p Öä¾@>Œ#0† ŽÔ©‡¨GšžBŒ #õ¥ «ê•¤w¹ Bà@'È— vCƒÀ€ZË øôã˱CÉ%ÌX¯×K}m3333;;›ú,­â¯.[¦è¡ÊÝDàX½.ŽvcD3UÉbD?|L}jèÖªFeœá’†ÎÎãA@ÝØÍ©Ó"5´¥EsÑãX½ö8ƆKÊ £¤ê¶¬ö* ¹¡!±#F‰G Jh³úÛõ+~ˆæ÷b*5Œ« iPg ˜`1\ÁXÐD:öüý„žXxör+tY,ddÀ•#p„dÀ>;æs¢OˆÌbÇØKú€fÑu8OÑvÈÈ€ *Dàˆ(¿­Ñlñ_ F~B8GÄÂ,'xêïŒÞŠ~\¹:dþ8ue:Çä±@m“¹íD»Õ´¯ÎCýGçn&Ûû؜Ӻù?g[œŠrÁý0Qù¨;BðiFT.6 #„t&4õPn´cƒ6ÂH ?"p„K9nÜètþ™È˜Kp¶µæÄäspz@cgHó &„çêìU¿ëÑïGŒ5nB÷¤N£-ÿŠÎ"pD1ÁŒÃ`‡_l9ûÙXdn¢É LƒÓ·åÒŒö §¾¯:'6BmfÝØ¯úì†17¶ &DÆ’Å®J~ÐGàˆA9Eü Ï)¦#ì œ[ì¶ >XÇƃG¦8€Täô»‘ôßh¼–0˜©/Oá,Tû•:hÝDàˆ*›6}MÚ`ð—Äi¹4 ž^pbxlXýÁÀ¡l©„ÄØlû˜Bóe¼a“צiŠ`ä.Ö€#pDaÂc«³ƒóà+”ÐÌþN#–'äòäæÑö¨DѺ`±÷j©ƒ]’±º±†±Pðë¥ m½ñÔ'€6ˆµqÁ˜,Kšéÿý§ùiõì³wèç•+çúÈõ ”µB~% ûÇ1V(&Œ–¯ÿO˜žèœ’‰Ç¦ÁS†ŒhE»€À®Á¿ù±®Äàˆ‰ÿØêü¯M8±`ôéoö¡½0 ;b‹R¹m¬ŸÌ-G–&Ò]«;%FŸDàˆ!W&79&x4ç6Í%ã¶èµ8M­Ó+©ï[֞؅ÑMV¢}ä`öa¡¦2¸,‚ÿ’ý‰ö£5 #Œ1c½^/õ9´ÍÌÌÌììl골€<¨!š8û y„B¬YâI]Þ-6:8žnHÖ ÌíÎ^2ñ’Ýò˜r°Õwd:“ ƒ™èÂE m©æV;: j…À±z­ e±7±•<ª:ŽÜŒÚóýúº†Ø@±øÌ„D?. s–ÓOô˜ýGúØ$n}ý9jTMC8V¯#£É˜vË}ÒÕä ØÔ šÙi³Ò Xgž° ‹¦¥ †kÊPÒï¡ ö>–h‡…@B›)‰bÇæ p¬^wÇL¡áãÒÏÐÊbfþv“×8«Y×DÃŒ³° ϱþ«þ@‡ñB.§EÒG{±"ÞEßž[oHÙT;6 cõš8–އ”…jk%7ßÈiX…š‘†öè6?u'6 lª‹ÿl¶À¥ÓÊå‡êÜ›ˆàøQ¡x(·pƒò‰6a ›Ð|5V,-x½º#Ø_˜Û²ù;çNÌíê ݨj"Ø—–ûgK¬nÎ mÎ0b¯Øàxl‘…`¸œ'4l.VŽi¹ØWÔY¸Å^=Å÷Ô<,Ú;Ô9Ò*tncÖbu¾(£çd+ÆvsRÀcc‘ÕYJ„YÕμ6Žyëo÷q¢É±ø]´´5GàØ~%Òòb½†NÛg"UlôeÆRßÕf "OÉ4üPR:rîÆ åNÄq¢ÀØIúÿ Ø½4°MAàˆ€òørp¢tÔXógÊÊóÙÇ"ëÕh¢Xƒ©Ÿ-¼Ñÿ,á€5iOü(Ù‡¿I—DrŽm&?À ¯:£ Æë{³‡³«Í¿®¢g¨¹Ûö„äyЦQᔦËаö¯‘®Çš#pì4ÿ)6Í8abË"{ ÅOÉžŒsãBá%Mš)€¦pZBÍC ÝÓæJøµqr' w¦é×Þ̪î";Åžæ–m4¡ïy‹¿ØòP»\ª×Ù¡ªÄvõ,ܨ|¶”‹l·’¿6D¶1X»±õ7¤(^½Z¢œX!‰î|…•©ƒK&ÄnË€«2.4…¾Æ­¬’v[›ß`­7ª7 =ŽÝâ¯mà÷/Ž 2mMhFUôsåU¶h V¦Â8-Ið×`[Ú¸ÖUø!w½V§ú[êKA>rÛ¯hËÅä˜ ,lë NÙ³¤5M'€†²Ÿ´‹> fÓã²_­ôTÂXHÔ=Ž-+@KatªËGnG“§¼LyÞ_0í @[9S:ìö3Ö6v¡ÁôïRl8KÈùAÍ8v‚ýí­*¹õ 3!FÙCà L3N ´›SÂÚt mÔ †Ñ±ù1Îý£ÑÖcWÄúÃì‘Ó±ÉÔJÁiCμ"Í2Œå¦Î¨•ÒßÙú¯Å: ~*§S؉cí­ÑåART|ñwNsÇŸžå‡`'¡[èed¶ Ðò|—>¿í¡9õÂý >v*/]LÊ¢í­“cºE(@ãláûÖì -šÍ›KHw#Ð ÁÙrN°¨ŒS_ʈ‹Vg­¨³>a¹åXga”èqÄÚQ¢rò‚¹²B2xwþñZÃYsÙÞØÿYÓfv¹]ÍÿLÙn ZÔ‘¡xõjUýáêÔ·®Â‹õ§T›PQ jv ‰WHÏå îÇ–]õ‹šùu1Q]ìq”8qâäÉ“K—.u¶/Y²ÄsìØ1ÍAfffœ-5œg{¼svkñSr,[±Ð%¸à ?Ë‘m¢Ïíéìj„BW¢Yø m,‹•§@Mt±ÇQÖŸ:½xñbgûgœaŒ9~ü¸æ ³žÔ—% ¦ ¿vókœ;™ÚÏα&AhXOXlöŒ­;Q£ÓÆòy‚¿Öö8þðÃÏ?ÿ|öëÄÄĽ÷Þ«yãÒ¥KÇÆÆNœ8álÿæ›oÌßú[Éy rûÚÚüù5º…|¯}‹œJà†qj ‚=‹mm3…›àÿ,¤}KRÐTÖVkÇï¿ÿ~óæÍÙ¯§Ÿ~º2p\´hÑ’%KüžÅùùycL6Ϻì91|Ký²‹Ê±ìÜABF M˜úã')ÆóÂíãØ¤ñ¬•ÖŽ“““¥ˆW¬XqàÀùùùŸüä'ÙÆÏ?ÿ¼ÿRê+«LÇŸ‰rÃ'·w†h5§pcp( ¡ºPާèr'Q*Vˆ1õeaÖŽƒ¸þúëgggß}÷Ý_þò—ý-½^o÷îÝË–-»øâ‹SŸ]œVLx4ìBKã‡òÝ [h }GWnOÖÆ*»âºÀŽýì ZÑšcrLÀ­·Þ:>>þì³Ïöó1[¶l9zôèÍ7ß|Úi§¥>»A9OxþÕ™\´kÇw>øœU”u²!IÊÚGsÈÚÌØ¤·XÁBÓ½çðØµ¶«WÃÀ1w´EߺÑ/1”i1@wŒ f­ä>“ÓœÚ÷e›‚¡êös:ÃäÂÊâ[]LugN Ð)±5cŒ—ñl†‰š…ÚD ±²3ØÕ̪n99@ô€† ºÙÿ*(ï$€öñ+ÚA¡¼˜‚½¡pülçÔ×ZØ0tvY$¦¹ª®^}†ªƒMXð™8ø%çáÏ'”#Íh1¿vŒ;ÉbS­ýQì6³ÂЬ4¤õGcÅzÈ‚Eü튩O|(ô×ÕÍ&€ÝÚ½eY +ëèTÿ6^ó+Œf´‰¿¦Ž ÒÀ6cG9É7öר~έ˜`0õ5•¤iªb9ïÎ>´z@Ë8+¾8ë G«7ðÑܶT¸aq2'ˆlÙå·ck ÙÙòâ¦H“צ˜)˜üû@»ùÐv΢óªñFirK‚Û±©iW[¼¡ó5õÉB…À±µä°`a ¥D´ÔÜK˜ùh˜út†ÿøí/ÐêOŽqBL•WÿƒZ2Bjcƒ8v‘½Úrlî[ð!»Ð§Ák(¸N·óCp( @×ȃ3þ>±hRx;PsÔqì.ME}Ž£¬ÎÍbp¬Äï3ЧÎñ1€Aí@lÇxfwþ5*_¦>k¨8¶™\ˆ_tì7ÊóBZÓ çO“ô{XÕè89wÜ K/µÐ8ÁU*'¯‚†Ñ pl¹àJÊräO´ßåìÖŽ¶O^L97ˆö h1!_%XñÛˆý‹í«˜«¿¢à¨}îØNìŸ-ÚÞÑ£xõêSÜV(RÂ×ÀUÛ(;qi¹€¶’W¥V1s–]î`­ïE΃}¹¥1z»¢ÄÔò _x¢þ<[ù‡Xn(€Vrª *óvrÇdü¬˜Ø¡êCŸðüUΞÊ=Ž|V´Ã#CcõêÙãXBp€[£¶­žsz~²vðäý*h¡€NqfrÄF«åñÖ`7¤ > ©|&%®+öRp]G³0ôŒ½‘fyd«×šÀÑ4p`Z#6x¤OÐ5òZÕþµñâÈ`—¤°Ôu£›_y‘­à[ä[—íSb,Õ"p¬^ÓGavÀÚ×uk …&;x[h˜Äâ'‚tvŽc´#27Îî†>j´_ÊÍ)§}% €ãï²’àÙÁºþ¢…Ù¯ÁŸk+8Þ”[¢@—Ù (˜PúЦJCp!¾š7›B /Ìwbè`Þ§5ÚÞúar ~l¶‚ƒÂ>¹‘ú*£„Rç5oÍŒ^pyg µƒ”¼NB«³åv·RŽ‘©0ÉÑãcòŠkVÙ2õŽ cì‰Ò&ÔçÊÃ.™Ó€8«¹fûßhBS@ü—‚oÙÕÉ.DŠÁÙèÙÿfÿìZP G”äŒ×8jU­Fh‚5+€µ©Ô9€áq‚!gDÛåöÇj•€-ÚÒ^'vþ±Å¸cÿX䞉üo #Fàˆ²‡iSäëZè[í?€ÊÏ»Ê0ºÑX#­<‰Øé{3 Sý‚íX¡‡Õr«3Ärr4aœ}ÚÁóÏB=?3²ÄC¸]EØéÜ¥Ïrô˜U]½ÆÍªÖvÁ|¡b’^ý‡'BÚ×ÂÄj…§Ǧ ]†ƒ´œ•¯ï•[–Ò™1­)-ä'€úÇ Þ[aŒ=ŽÈËòŽ­+å§³d;”øÂëß%4Ù±Wß1T @`/¯•m´GiìfasœÜнT¢ŸÒþYÙ;(?`¯ó28mH¾eÿOÀ(8¢ä*RÙ{5ìüj¬!c5jÁ. ÆÆ;L‘d¡xoî5€Rp‚ýŒê·fö8l¶Qþ”BÉ?ÎÏÊlïÜÔÆ`gªnú—f"}B#ûÖÑÝX UW¯qCÕ&¯.k°°­½ƒ‰téå*ôpYîITjñ¯"Ø&š‚Ý“:(ÖNææÃ3gúìý‡Ñ®Æ>WØÍ¾(ÿgjÿýÐYˆ>…ƒT÷ÿÊ£Ž#~”;šH{$Ì&š!?3ÒÏŒUy(z] hÞEk@/–éhWí OûÝ~N¤x9³wåÖ÷ûƒŸk"ÏÒ±KöÇ£…lÅà]"Xlz«×ÄǾܬäBoöÌ}²Ì /ß%v¥ÌŒP‚¾©”ŸÒMd=C“÷ðìÏS©j”FÈí‰u@E H£ÚPô8âïF•¬LVù\l¡Ñ”?‚† À8óƒMß+im~dæÜþ5ø‰¹e¬Ã2–›è÷ Êó¦ƒ'Œ!pÄÃîl °uF[ Å‘rVµñš³Ønöv¡ê \ûÆÙâ¿76 Ç~IÎVnZ?áÄbsÉSßc ŠÀƒ*:Nýl"™1~p)ô ÊQ£³Ýù¬à¹ih(*6YØW¨Êãà‰àÎGø—c¾Ü®Dxºô0:ê€ÀùäÌ?åAbùàÂl;!wÛ?=³°ç28ªbâ#&BÑGÈU¨ð‚\ Q_ãB?]”P_ByiÆë °ƒæ"p„ŠPc"÷½ÁDãuòÙ徂a\ìQUa±Ž &fÌ€¡^ði ‹Á|jiˆåõ ‰Jš `³)„¡Î¥Åefþãã´ÕMGàˆ!ê31´›fœ·ÐÐv%ƒ<šFÉÅ4 U7#†«ÂÐrgO‘v'ä©[Ÿ,žKËvööÍĈõz½ÔçÐ6333³³³©Ï¢…„h Í€FÉ]R«Ðš[FSæ®…Xâœ-´Ã]@#C³,À|ÀpN!mo78¢I4‹À@7•–¡Šb¨ºz U—C8 Säeä$Èܹ)Êý•;z‘ubtßÛ7ø*/, …a#pDbUÕz€Æ)çå6Œ~/fê«D«8"¥×N€¦#ÎC³Œ§>ð£`d†°É8P#±Ø±?StFŽD IA(ˆ¡j$3Œ5² ˜ã‚Ú"pD2…SaÛ(4¶4Â(ŠÀµF£ƒ‹ XÓÀ¢(GÚ•`r Rbþ BàˆÄª?†‡¡j¤ÇüAÀµ@˜@ý1T G¨8@…À*ŽP!p€ #T BàG¨8@¥ÓãgŸ}633óßÿýßþK·ÜrËŒçç?ÿyêS™™Ô§Ð*ÜÏÊqK+Ç-­÷³r½¥‹RŸ@J/½ôR쥃NNN®\¹ÒÞ¸téÒÔ§ LÇùùùýû÷ïܹóÕW_ípüøñuëÖmÞ¼9õÉÔEÇo¼ñ‹/¾v8xð 1Æénè¸.Ž›6múî»ïŒ1/¿üòž={üæææŒ1çw^ê3¨‘.Žk×®íÿ°k×®àýÀñÈ‘#6løä“O¦¦¦V¯^½qãÆ5kÖ¤>w€dº8æ:tè1æ™gž9ÿüó¯¼òÊÇïÚµk÷îÝ>úèm·Ý¦9Bg'[ ·´ZÜÏÊqK+Ç-­÷³Z³³³©O! Ç€#GŽLNNÞÿý6lèoÙ³gÏÆ{ì±µk×NOOËoïìh·ÖŽ?üðÃóÏ?Ÿý:11qï½÷*ßûâ‹/:[®ºêª;î¸ã…^xçw²h SZ8~ÿý÷v1ÓO?]8]~ùå/¼ðÂþýûS_@­ '''Ë ÷z½S§N/XVgbbÂsæ™g¦¾2€4:½ä`ÐÜÜÜêÕ«ï¼óNgûÞ½{ ÉÅ Ã]+W®¼ä’K>øàƒ;vd÷îÝ»uëÖééén¸!õ ¤ÑÚ¡êA<òÈ#wß}÷C=ôÊ+¯\pÁ‡Þ·oßÔÔÔã?>99™úìÒ Ç1à /|ã7Ö¯_ôèÑ·ß~ûøñãëׯóÍ7¯¸âŠÔ§ÌX¯×K}hz BàG¨8@…À*ŽP!p€ +ÇTã³Ï>[·nÝöíÛ׬Yã¼tË-·|üñÇÎÆ³Î:ë½÷ÞK}Öµ&ÜRcÌŽ;¶oß~àÀ©©©k¯½öX¶lYêSn þ&«ÂßaµøË¬gåø'ÞFàX—^z)öÒÁƒ'''W®\io\ºtiêS®;á–>ýôÓÏ=÷ÜâÅ‹/»ì²¹¹¹×_ýÓO?ݶm B*ñ7Y þ+Ç_f%h<+Ç?ñ6ÇÌÏÏïß¿çί¾újl‡ãǯ[·nóæÍ©O¶roéììì–-[V¬XñÚk¯sÎ9ƘM›6mÛ¶íÉ'Ÿ|øá‡SŸ~ð7Y þ+Ç_æ€h<+Ç?ñA޹ñÆ¿øâ a‡ƒcœgroéöíÛO:uß}÷õ>c̃>øïÿþïüãÿå_þe|œ´ÝüMV‚¿ÃÊñ—9 ÏÊñO|ã@6mÚôÝwßc^~ùå={öø;ÌÍÍcÎ;ï¼ÔgÚ¹·ôÃ?¿îºë²-×\sÍÎ;?úè£K/½4õÔ“•àï°rüeˆÆ³rüDà8µk×öصkWp‡þ_Õ‘#G6lØðÉ'ŸLMM­^½zãÆÁœe˜¼[Úëõ8°|ùòåË—ÛÛW­ZeŒ9tèm_.þ&Çßá0ð—9 ÏÊñO|]ÓÃuèÐ!cÌ3Ï<óå—_^yå•guÖ®]»þßÿûÛ·oO}jtâĉ“'OúyÇK–,1Æ;v,õ 6“ƒãïpøË*þh‡¡›´ô8ב#G&''ï¿ÿþ 6ô·ìÙ³gãÆ=öØÚµk§§§SŸ`Ã|ûí·Æ˜Å‹;ÛÏ8ã cÌñãÇSŸ`ð798þ‡¿Ì¡âvºùGKà˜ï‡~xþùç³_'&&î½÷^å{_|ñEgËUW]uÇw¼ð ï¼óNö§Ö5¥oéÒ¥KÇÆÆNœ8álÿæ›oÌßÑ»ÉüMŽ¿Ãaà/s¨ø£†nþÑ8æûþûïí™ö§Ÿ~º>p ºüòË_xá…ýû÷§¾²dJßÒE‹-Y²Ä8žŸŸ7ÆdSa Þdþ& áïpdøË¬ ´#Óú?ZÇ|“““³³³%ÞØëõN:566æ”9˜˜˜0Æœy晩¯,™Ò·Ô³bÅŠÌÏÏÿä'?É6~þùçý—R_Yo2“Uáï°ZüeŽ´Õêì-“c†hnnnõêÕwÞy§³}ï޽Ƙ™™™Ô'ØH×_ýÉ“'ß}÷ÝlK¯×Û½{÷²eË.¾øâÔgWwüMV…¿Ãjñ—9üÑV«³´ŽC´råÊK.¹äƒ>رcG¶qïÞ½[·nžž¾á†RŸ`#Ýzë­ãããÏ>ûl?5dzeË–£GÞ|óͧvZ곫;þ&«ÂßaµøËþh«ÕÙ?Z†ª‡ë‘G¹ûî»zè¡W^yå‚ .8|øð¾}û¦¦¦üqÖ-gzzúxâ‰'nºé¦«¯¾znnîý÷߿袋î¹çžÔ§Ö üMV‚¿ÃÊñ—9lüÑV®›´ô8×…^øÆo¬_¿þèÑ£o¿ýöñãÇׯ_ÿæ›o^qÅ©O­Áîºë®'Ÿ|òüóÏë­·Ž;vûí·oÛ¶­Ý‹ÊWˆ¿ÉªðwX-þ2G€?Újuóv¬×ë¥>4=ŽP!p€ #T BàG¨8@…À*ŽP!p€ #T BàG¨8@…À*ŽP!p€ #T BàG¨8@…À*ŽP!p€ #T BàG¨8@…À*ŽP!p€ #T BàG¨8@åÿjÄ çrÌi$IEND®B`‚statistics-release-1.6.3/docs/assets/raylcdf_101.png000066400000000000000000000635501456127120000223050ustar00rootroot00000000000000‰PNG  IHDRhŽ\­Ag/IDATxÚíÝy\Te߀ñ{XT Y4THD%+Í·"qÊ25µ¬ÌÜÒÜÊ4{Ê4M˵²RË2x5s-SQK\r7E TÜEE`Þ?NM#›ÌÌÙ®ï§Ïóàa˜¹g™Ëß9g0FÜ‹ƒÜ €:ްá‹ްá‹ްáÀŽ?n(†ƒƒCppð³Ï>{øðaÛ-à­·Þ’n®W¯^¥úÂÅ‹K_Ø¢E »Ý¨¹Û·o/Z´¨K—.5kÖ¬T©RPPÐO<ñÑGegg[ò ;99yyy=üðÃo½õÖåË—-ù’ÆŽk«g€ÚŽdf4O:µråÊG}ô×_•{9ÊòÇÔ¯_ÿ•W^ùå—_RSSoß¾°aÆ7Þx#((hýúõ÷¼†¼¼¼´´´½{÷NŸ>=888..Nîû@Åœä^Ýñññqqq‘>ÎÍͽ|ùòíÛ·…™™™cÆŒ9tèÜ ¼K•*UêÔ©#„ðóó³óMÇÇÇ·oßþæÍ›¦-NNN¹¹¹ÒÇçÏŸê©§~ÿý÷&MšþZÓƒœ™™i4¦§§GEE%$$T¬X±„/)ÀÓÓÓÎw€b1q`oß|óMÒ¿’““¯^½úÌ3ÏHŸ:|øpbb¢Ü ¼Ë³Ï>+-uíÚµv¾é7ÞxÃT/¼ð¡C‡nݺ•ššúùçŸW©RE‘••õôÓOùµ¦ùÒ¥KçÎ{á…¤í))) .,ùK ˜8q¢ï8Å"ȬråÊ/¿ü²éÿý·éãüüüï¾û®C‡µk×®T©RíÚµÛ·oÿõ×_ß¹sGºÀ!C¤ãðüýýͯóüùó¦CôŽ;V­_¼xqĈ­ZµªR¥Ê<ЧOŸ˜_ ¸czõêuß}÷Õ©SgРA©©©&L.ùÖ[o¾¡«W¯Ž3¦yóænnnM›6ýòË/Kþ¯[¶lY·nôñøñã—.]Ú¤IGGG??¿Áƒ¯\¹RúT||ü©S§J~„ýýý—.]j:Îòÿû_ff¦½ž^šÂ®jòËÏÏ7}l¾G¸oß¾«V­2ýñܹsç΋]·nÝ?ü ]à‹/¾B¤¤¤9r¤qãÆÒ%ùåéƒúõë?øàƒÅÝîÖ­[Ÿ}öÙ‹/J¼yófbbâêÕ«GõÑG•°àßÿ½GW®\B\½zõË/¿Œ +îò×®]{ôÑGOž<)ýñðáà ºvíÚ¨Q£ŠûÓ\°Zµj“&M*ðÙ'žx""""55UqôèÑzõêÝóA1bÄêÕ«…—/_ÞµkW×®]­úÐ&Žd–½xñbéã°°°ÀÀ@éãU«VIÕh0ÂÃÃû÷ïoJÀèèè­[· !Ú·oïãã#mܰaƒé:þùg郧žzª¸ÛÍÈÈxæ™g¤j çwúöíëàà`4gÏž½téÒâ¾ðÖ­[QQQR5V¨P¡U«V5jÔHLL4oܶoß~òäÉÀÀÀÐÐPGGGiã„ rrrŠû’ß~ûMú wïÞnnn…/°~ýúƒ–<ÎmÛ¶­P¡‚ôñÞ½{­úР€½õïß?è_^^^ßÿ½ÂÇÇç믿6]lÓ¦MÒ£Gþõ×_¿þúë£G6oÞ\ÚøÇ!£¢¢¤-¦p4¦‰c á8cÆ é¬‘'Ÿ|ò×_2eÊ·ß~;wî\é³S§N-î .\(úÜÝÝãââ~ûí·äää!C†”|¯çÎû×_8pÀtoß¾}âĉ"/|çÎÓÔTÒåd0|}}¥/\¸Pø:u*ü^<%ÌDèáÀÞRSSþ•”””••%„¨_¿þ‘#G6lhºØÓO?½bÅŠ+VŒ1BÚ’‘‘!]XqõêUéÓ‰5¿ÿþ{zzºâàÁƒÒ8°Aƒ!!!Å-æ/¾ø¢iã /¼ MÏ;wäÈ‘"¿Ð4Y|íµ×BCC…óæÍóöö.î¶4hðúë¯K÷èÑÃÉéŸÃ„NŸ>]äå322LרQÃZü}÷ÝWøúÀrã@Nž<¾{÷né|a!„t^zzúæÍ›÷ïßðàÁ}ûöݸq£À¶jÕÊßß?999//ïçŸ~úé§-ÙO-„0SRÜÑ~§OŸ64yÏ/tqqéÚµëòåË‹¼ª   ÓÇnnn5kÖ<{ö¬"//¯ÈË›!Dáwí.³´´4郪U«þl‘oÇS­Z5kÝ: `âÀÞ¶lÙbüWffæÊ•+„Ç7ì(„ÈÉÉ3fŒ··wß¾}?ú裭[·æææžê Ó[ÒH{«MáhÚ‹]XFF†ùû#I[þBÓ°³À,°À™Ýæ¤;h¾æ’oºB… ^^^ÒÇgΜ)ò2ׯ_OKKKKK³üiÓjÓ¡æŠ|;ž"Ï [„#9U®\ù™gžyôÑG¥?þù矦O½÷Þ{³gÏÎÍÍ \°`ÁáÇ322"## _‰ioõÆoܸ!VRò~êªU«š¦z?ÿüsBQúöí[ø «T©R©R%éãei:*Ñ*Zµj%}ðÓO?™Þ~È\ýúõ½¼¼¼¼¼-ZdÉîÚµËt.ÎC=dťЀüLÇÞI)J,X }0þüW^y¥qãÆNNN)))…¿¼yóæuëÖB\¾|yÖ¬YR•¼ŸZ!}‰"77÷3žžžEþƒÁ }¼mÛ6ÓöÜÜ\éDok1yyîÜ9óA¬dݺu¦ña»ví,¹BÓy?®®®¦R€R!ÈïÖ­[Ò¦½®7nÜ0Íó®]»&}ðÇg¦¡ã¬Y³¤îŽ:u’>X²d‰é½¸cbbî»ï>//¯:uê>žRb µÙ³gKoÍh4'Mš”””dÅǤ[·n¦¾þúëÓ¦M“Þ=''gùòå >õÀH'è”àÂ… /½ôRtt´ôÇçŸÞüJ°'ÇŸé@é—V !ÜÜÜÜÜܤÃ¥_”b06mÚTäN[!Ä3Ï<3}út!„tÚuÆ ÍOÐ.Ò„ >ÿüóôôô5kÖ„‡‡·k×îøñãëׯ—>;zôèâÎ ™0aÂÒ¥Ksrr._¾Ü¼yó‡~øìÙ³¶øM‰³gÏ~øá‡³³³Fã”)S¦L™âå啞žn:¥¦R¥JÑÑѦ7†4׿ÿÊ•+ !233ÍOõêÕß}÷]«/€N0q ?OOO郤¤$é·È †'žxBÚ˜••µvíÚü±fÍš:t6šÇ"$$Äü7ÄÜsÜ(Ýè×_íáá!„ؾ}ûÔ©S£££³³³…/¿üò;ï¼SÜÖªUkþüùÎÎÎÒÚ¶mÛ–˜˜èææfZ›µ4jÔè—_~1?çÊ•+¦j¬S§NLLLÓ¦M‹üZÓ{™?PÕªU[»v­é´(-€üLïk“œœüÉ'ŸHÏ™3§Q£FB‡&MšŒ5êàÁƒ=zô>»råÊ¿£Ù´·Z”x>µ¹ÈÈÈÇ2¤Y³f•+W ìÕ«WllìÂ… K>ñyÈ![¶léÝ»w5jÖ¬Ù»wïß~ûÍgœ<ú裧OŸž3gN»ví¼½½+V¬ܽ{÷9sæœ|Xî…ÈŒp¼‡å˗˽Ep’{ •‘‘qêÔ©Ÿ~úé»ï¾“{-Š@8-22òÂ… r¯@AÇ¢½÷Þ{·oßB¬X±â÷ß—{9ò#‹Öºukéƒm۶ɽE ­/88Xî%èÅ©Sñr/AŒ¹WXßÑ(¿àzõâãõøD8Ú„>¿™lÊPÔz£ÑÒ/æI)À ,}ñ4 ‹èÒàIQ&Å=/Tžå?;”AqO „zŽP¨/jû9¯ Å¢r(I*¿ü°‘rþ“¤žÜë— áe1½¬ðbQE6"{°°ù‹ «+sÿ•ó›Q§GŠ!½îð²R*J‘F„ •œ†üÕ…•ªùÖ³/Âò#KÅ<)EX]ü©Så=¦(%QÈ÷š‚ñ+!'ƒA Âhä%éÞ ÿ=>>¾I“&r/D;¨ÆÞ-÷Š v:³¯–+í>eèGØÕXiÄH)¢x³S”A‘sD¾w`1ÂöC5‰dD)˜Ç"pO…3‘ï”á;¡ #ab"a{„#ìj,€dÄ=‹¸'2r asT£9’%áwn¢J‘ïÈp„mQæ¤Ó¥å^”‡^D‘þý¾BPŠPÞŽ6D5š˜ÞdGî…@I ¿ut®˜7ÄIJL⇂‰#l…j4!qæ‹0g¾šï(áØG4â?ô"$ª5#aŒƒFHèEÆŠÐÂÖG52h½!Ìz‘ïháXƒF½“’‘^Ô-†‹Ð4ÂV¦óq#Õ¨k$£n‹Ð ÞŽÖD5RzTà]u …Þ7‡z`0 Cù¯G¥GÀ:¨F=â]u¨¨÷Y„æÌF£Žÿ¾³«V£çq#Õ¨;ì•ÖNsÑ™3E=—b„#P^T£¾ŒºB/ê‰y,RŠÅ!aº7R:B2꽨ÄbiŽ@ÙQzA2꽨Äbyް}Ž©F] õ€^ÔbÑZG ,¨Fí#5^ÔS/‹ÖB8¢¼t8n¤5ŽdÔ<©%x†5Šá¢MŽ@éPZF2j#FMc¸h„#ÊEoãFªQËôöݬô¢v1\´?°ըY µŠ]ÒÅpQF„#`ªQ›HFMbĨQô¢Ž(;öìAÝøÖFŒšÃÎh¥!{cܨ5 µ‡dÔ†‹ŠE8¢Œô3¬¡µF?ß»zÀ^im¡•pJB5j ƒF-aĨ!ô¢ŠŽ@±¨FMaШ$£VЋjD8¢,x †š0hÔ ’QèEU#¢1nÔþ•£ $£úÑ‹Ú@8E 5‚jÔ’Qý¤d¤µpD©ñZ `÷´Œ*LjQ“G  ƪÇ?nÔŽdT3zQÛGà.T£êQªF2ª»¤õ€pDéð¢ åb÷´ª‘ŒªÅˆQWGà?ŒUŒÓ¨ɨNô¢>ŽÀ?¨F£UŠdT'vIëáˆRàÕŠÃîi•"Uˆ#áH7ªÿ”Q#’Q…1„p NT£êŒ*D2¢Â–ÒðË4ãFõÑð·£VHF5a¯4ŠC8Bï¨Fõ¡Õ…A£ª0bDÉGªB5ªɨ*$#,A8B×7ª 'P«ɨì•F©ްSÈŒoAápF•`Ĉ2 ¡_ŒUƒjT *A2¢ÌGÊF5ªɨ$#ʉpĽiò…›q£:hò›O{Ø7­$#¬‚p„Qê@5*ƒF5 aE„#E¢•A£²qº4lp„î0nTªQá4*#FØáˆ{àöÆ÷œÂ1hT0’¶F8B_7*Õ¨d Œd„}ŽƒjT2JE2žGèãFE£‹A£R‘Œ°?Â%á¥v·šb1hT$’r!¡Œ•‹jT&ŠD2B^„#YQÊÄ Q‘ ÉyŽÐ…À€@ÆJD5*O@`€T£â0h„BŽ(¯é°©€À@¾ÃÇ ’“ä^þC2BQä^]2’å^îÆîi…1 Ò¾éDþ²@1GhŸA“ø±«$L³•Æ@5*‹)4BiØU À¾¨F¥!•„ÓP8&ŽÐ8Þ…GY¨F¥¡•„)#”‰#ŠÆë; q¼M£’0h„ZŽÐ2ÆÊÂ?G”ƒA£bŒP€]PÊA5*É5"¡YŒ„jTvO+¿*E8¢¼ÊÚø~RÊÀ ªF8°%ªQ!¨F ¡„#´‰ýÔŠ@5*»§€d„fŽ ] €Ã¡%„#4ˆq£"0n”Õ(7ÐÂñr+àÛHvT£¬HFhá­aÜ(?ªQ^Ô(7öMCÃGVE5Ê‹A£¬4BóGÖC5Ê‹j”ƒFèáMa?5ô‹j”ƒFèሻ00BÙñÝ##ªQ&$#ô†p„v0n”Õ(#ªQ&웆ŽÊj” 'PË„A#t‹pP>T£\4Ê„A#ôŒp„F°ŸúB5ÊA#@8â?LŽPj|ÓÈ‚j”ƒF@ŽÊŽj”Õhw ÂZÀ~jP² íŽA#`Žp• í‹A#P˜^Âñ‡~XµjUBBBåʕ۵k7vìXOOÏ.Ÿ““óõ×_oܸ1))ÉÓÓ³Q£F¯½öZPPÜ÷E`Ü(ÆvÆÛîØƒF Hr/ÀæÌ™3yòä¿þú«E‹nnn111/½ôRvvvq—ÏËË0`À¬Y³ÒÓÓÛ´iS³fÍÍ›7÷èÑcß¾}rߢ`)¾WìL4òÛ‹Á` âh?ããã—,Yâãã³iÓ¦%K–lÞ¼¹ÿþGŽ™5kVq_òý÷ß8pàñÇÿå—_æÍ›·|ùò/¿üR1yòd¹ï a÷´}IÉH5ÅÑ~8®Zµ*??äÈ‘ÞÞÞÒ–ñãÇ»»»oܸ1??¿È/9pà€bÀ€NNÿìÊoÙ²eƒ Μ9sõêU¹ïîÂ~j{cÜhOT£1h,¡ýpÜ·oŸƒƒCûöíM[Û¶m›––&ba~~~BóF4×®]spp0¥$ GT£=QvÄ °ÆÃÑh4&$$T«V­ZµjæÛëÕ«'„HNN.ò«ºuëV©R¥÷Þ{o÷îÝÙÙÙ©©©o½õVJJJTTTÕªUå¾O€L¨F{¢íˆA#`9Ïϲ²²òòò<<< lwwwwÏÍ/_¾|àÀ4mìׯßĉ-¼Ýààà[6mÚ$÷ƒqOIIIr¯¡t““Ľ—’’"÷bU/@ë~‡ð¤' 0À²ïk›ÐÕó(„HLLTøO?]=)ÊôØcɽ¥Ðx8J§N»ººØîææ&„¸~ýz‘_•‘‘ñÁdff†„„4jÔ(--m×®]kÖ¬yä‘G:wîlÉíÆÇÇË}×KçßYR€Ü )µ€K×lù%QƒAVyRŠ`Â(dý˨“çE]ƒF<)ŠUøe½ð„H'4Žƒ!++«Àö›7oŠ玅7î?þ?~ü /¼ mIMM}æ™gFµvíZé_¨€Ž°“ÚnØCm¼³7Pf?ÆÑÉÉÉÝݽðd1##Ca:ÏÚÜ¥K—¶mÛV·n]S5 !jÔ¨ñꫯ޹sgõêÕrß'üƒó©¡5T£]p PG!„OZZšTŠ&Òá,>>>…/Ÿ––&„¨S§NíÒ ñòåËrß!À¾7ÚÕhêÚ= (öñcÇŽyyy;wî4m1±±±žžž¡¡¡…/_§NGGÇÓ§Oøá"ßP·n]¹ï`GT£}P¶ÇÛ4V¡ýpŒŠŠrppøôÓO¥ã…K–,¹råJŸ>}œ¥-™™™IIIÒik...mÛ¶={öì¼yóLï~úôé T¨P¡C‡rß!Á~jû íƒj´=vOÖ¢ñ“c„5jÔ;vìŒ3ºwïÞ¦M›³gÏÆÅÅ…„„¼øâ‹¦ËÄÆÆŽ5*((hݺuBˆéÓ§?ùä“ ,ذaCÆ ÓÒÒþøãüüüÉ“'?ðÀrß!ë#ÙP¶Ç °"퇣bРAÕ«W_³f͆ üüüúõë7räHéyŠäååµaÆE‹íÚµkûöížžžíÚµ{å•W5j$÷]ì…OØÕhcœ= Xÿ³¾àà`u½£ê ¡ û©“’’x´R°Ë÷„ÞŸ¥V£fž- 5ó¤h‰ê^ë­EûÇ8€â(µ5CKÕ(Š.vU(Õ U‡j´%vO6E8Be8ŸÚ¶¨F[£m‰A#`kìªÖ;:°ªÑ–¨FÀ˜8øÿŒ°)ªÑfØ= Ø á5a?5ÔŠj´€=±«€‚q£-Q6C5vÆÄÕhKT£m°{áÕ`?5Ô‡j´ €\ØU­kŒ™ ß6C5ÚÕȈpôj´ªÑ6¨F@^쪆:°ŸjB5Ú5J@8:ƸѨF`Ð(»ª½¢mj´ªPÂ*À~j¨ÕhT# (ìªÖ/æMºÆÓouT£µqP# @„#”Õhm ebW5”ŽýÔÖǸÊF5ŠE8:C5ZãF«¢%# ¨F«¢…ãG@O7ZÕh=œ ¨áEãG(Õh= µ`WµN1xÒ#žu+¢­‡jT„pôj´"ªÑz¨F@]G(û©¡DT£õP€êpŒ# Œ­…j´N…TŠpËPV P/vUC¡ØOm5Œ¡$T# j„# iT£µ0n´ªP;ÂQh  t¨Fk  íâŸVA5ZÕh'Ç@‰8ÀJA5–'PZB8Ÿ±ü¨ÆrcÐh »ª (Tc¹Q€öŽPöS[ãFÈj4‰p4‡j,?ÆåC5ZE8êQÜÕX>T# a„# -üË œ¨Æò¡m#¡,à9QåC5šÇÛñ¸±<¨ÆràÍ å ÐvUZÁ¸±<7–Õè ááGȃj,+ªÐÂQ_˜IiOm™QeE5:D8êG5–ÕXVT# O„#”‚ýÔ°7ª±¬¨F@·G@å7¾¨F@ÏGºÄ¸±L¨F@çG@Í7– ÕX&T#ŠÀްª±L¨F‚pÔ†SZÃ3ZTc™P$üÊA@±ø%ÔÌŽ€:1n,ƥĠ@쪆ü8Àö@5–Õ 0ÂP!Æ¥E5–Õ H„#­£K‰jPÂ2c?u©1n„-RŠC8Ð4Æ¥a0å^å"õ‚)•FðD– ÕXì¡pO„#¢Kƒj` ÂrâÇÒaÜÛ XˆpT‚j,Æ£XŽp 9T£Å¨F¥B8jÀ¸ÑrT£Å¨F¥E8B6àë£-F5(ÂP<ư6ª@ÙŽº@x@7Z†jPf„# lT¿…¨FËPʃp„<8ÀÖD5Z†jPN„# `Œa=T#€ò#¨ãF P¬‚p”Šq£%¨F P¬…p„ 8ÀÖA5Z€j`E„# HŒa T#ë"µ61n¼ª€ÕŽ€òû÷D5Þ ÕÀGØ8¢¼¨Æ{¡Øá( ãF”ÕÀvGªÂ¸±DT#›"%aÜX2ª±DT#[#aWàØÕÀG*Á¸±xT#û 5Ž=Ÿj³Uª±xT#»!(ÕX<ª€=ްp, ãF”ÕÀÎGÊÆ¸±T#û#`ÜXª±T#YŽ”Šj,Õ@.„# 7Æ( ª€ŒGØ gÆ t7…j /ÂQ˘d©OR‘¨Æ¢Pdç$÷ìä‡~XµjUBBBåʕ۵k7vìXOOÏ’¿äèÑ£‹/>~üøÍ›7ƒƒƒ‡þðÃË}?d£‹‰ãœ9s&Ožü×_µhÑÂÍÍ-&&楗^ÊÎÎ.áK¶nÝÚ·oß­[·z{{‡††>^î»þ€€¹— ”e(a ÿ0„Ѩ˜ÕÈÉüIQФòÎy.ˆ'E^…_Ö OˆtBãÇ8zxx †¬¬¬ÛoÞ¼)þ;P©R%éƒ>ø gÏž¾¾¾¯½öZ¯^½RRRÖ¯_/÷}²ûB¡줾{¨(–²Âñ£>JHH°â:99¹»»ž,fdd!LçY›suu­T©’‹‹K‡Ì·wêÔIqòäI¹$¨E_Õx7ª€’)+—,YòÄOôéÓgùòåE€X>>>iiiR)šH‡ ùøøù%ÞÞÞÎÎ΃Á|£´‡:77WîIexGÀrT#…SV8:´f͚ǎ›>}z›6m^yå•Í›7çää”ç:;v옗—·sçNÓ£ÑëééZä—tèÐ!##ãÔ©Sæ¥÷î©_¿¾Ü !ŒÍP”OYá8zôè_ýõÛo¿íÛ·¯››ÛÖ­[_ýõG}ôwÞ9tèPÙ®3**ÊÁÁáÓO?•ŽkB,Y²äÊ•+}úôqvv–¶dff&%%™N[ëÕ«—bòäɦ©çÑ£G¿øâ ww÷Î;Ëý AÍØOm& 0€j4¡¨‚rTåææîØ±ã§Ÿ~Úºuë­[·„µk×îÙ³g=jÖ¬Yª«ZºtéŒ3jÖ¬Ù¦M›³gÏÆÅÅ5lØpéÒ¥¦·éÙ°aèQ£‚‚‚Ö­['mY¼xñìÙ³ÝÝÝò²²öíÛg0fΜùøãßóæ‚ƒƒ•pVµBE!»ª“’’qN¢Bž%0ˆ¤De<)  ¨jTÊ_˜áIQ …¼ÖÛŸrߎÇÉÉ)<<<<<<+++::zöìÙgÏž;wî¼yóZ´hѧOŸÈÈHGGGK®jРAÕ«W_³f͆ üüüúõë7räHéyŠ3tèP//¯eË–ýþûïžžž;v>|xPPÜ ÔŒjDQUP2EÿÀJOOÿõ×_7mÚ´{÷n鬔êÕ«;;;§¦¦ !êÖ­ûùçŸûùùɽ̂ò¯%TŠBÆB!ÿ^WÂS¢!ŒÊxR@iáÈó¢@<) ¤×zûSâÄñÊ•+¿üòËæÍ›÷îÝ›——'„ðòòêÒ¥KDDDóæÍ…¿ÿþûœ9sŽ;ööÛoöÙgr¯W‰HÅá)1á„3J«F(™²ÂqÅŠ›7oÞ¿~~¾¢Zµj]»v}üñÇÃÂÂÌ÷J·nݺyóæ=ôо}ûä^2”Õ@u”Žï¾û®ÂÃãK—.?þøÃ?\ÜQŒ...•*URà~j ŒM7þ‹j FÊ Ç>}úDDD´lÙÒ’³^7*œrp„RPÿ¢¨”²ÞÇqãÆ»wï.®‡ÞµkW¹×”ãFÜj ^Ê Ç¬¬¬;wî÷©sçÎ?^î5(ÆBª€ÊÉ¿«:66ö•W^1ýqÙ²e+V¬(|±üü|£ÑX«V-¹×  ô¨F!Õ@ýäGGGǪU«J§§§W¨P¡råÊE^ÒÃÃcüøñr¯áǰŸÿ¢h€üáØºu븸8éãàààgžyfâĉr/ €õ0n¤h…üáhnðàÁaaar¯Bõr)Ï„ … hˆ²Âqܸqr/¬‰j %2‡ã7ß|#„x衇‚‚‚L,ÙsÏ='ïš‹0nŒ@kdÇiÓ¦ !¦N*…£ôÇ’ŽÊÇ™1‚j‚q#Í‘9‡.„hÔ¨‘ôÇ7ÞxCî°Æ h‘ÌáøÚk¯™ÿñÅ_”w=¬C÷ãFª€&)ë7ÇZÀ¸‘j¤h”ÌÇíÛ·—öKÚ·o/ïšQ2p„ÎQ4Læp:thi¿$>>^Þ5(‰¾ÇT#m“9»wï.÷# 5ì&•™ÎŸªQÏÏ>9gΜ)÷#V@5ÐNެ‡q£Žï=è¿9ÖÄ™1ú¥ïjdÜ@'øÍ1€•è|ܨcT#ýà7Ç(7©FºÂoެAÏãFªtCÑ'ÇdffæääȽ XŠ¡+T#’yâX¤#GŽÌŸ?ÿøñã—/_vpp¨Y³f³f͆ V»vm¹—ànz7RôIqǹsçFEEmß¾ýòåË+V¬T©Rrrò?þ±råJ¹W§tzÞ_*'Ý>îT#茲ÂqÇŽ .tttìß¿ÿ–-[>|ðàÁíÛ·Üú«F@2‡ãÌ™3å~ hŒ eS²7ß|3<<\îUŒuj€Âdž8–žžþ믿ž={¶Àöììì_~ùÅÑÑQî¢ ž£+T#@¡´p¼xñbß¾}ÏŸ?_Üž{î9¹×ÝÓá¸Qg¨F(޲ÂñË/¿<þ|‹-"##ׯ_¿gÏž·ß~ÛÅÅåäÉ“+V¬xî¹ç&Mš$÷ÑÙ¸‘j€(+wîÜY±bÅ T­Z5<<¼uëÖ­ZµB¾ûî»O=õTPPÜËtƒj˜QÖÉ1ÿýw:uªV­*„¨^½º§§ç±cǤOEEEyzz~ùå—r¯úÆ~jí¢àž”ŽB‡ÿ–T«V­¤¤$écGGÇààà#GŽÈ½@Ü…3c´LgãFÀ=)+}}}Ïœ9“™™)ýÑßßÿþý¦Ï †””¹×cܨ]ŒÀÊ ÇN:egg¿ñÆýõ—",,ìܹs»víB\¹rå?þ¨Y³¦ÜkT(’V¦§q#ÕRÖÉ1ýû÷ß¼yóÖ­[Fã¢E‹Ú¶mëääôÚk¯5kÖìäÉ“YYYr¯z¥«6§EQÖÄÑËËë›o¾=zt£F„5kÖœ‚Z¬F€B(kâ(9}úô‚ :táÂ…üü|__ß|pøðáõë×—{idÀ¸BqáøùçŸôÑGùùùBˆŠ+:::^¸páÂ… [·n=zô‹/¾(÷¡ŒU‚jåPÖ®êÝ»wôÑGƒ¡ÿþ[¶l9|øðÁƒccc‡ âàà0{öìÝ»w˽F=âÌÈ…jEQV8~ûí·ùùùcÇŽ4i’¿¿¿Á`BøúúŽ;vâĉùùùË—/—{€RinÜH5€Ò(+=Z©R¥þýûþTß¾}+W®|ôèQ¹×MÐÞ~jª`{ ÇÜÜÜ¿ÿþÛÇÇÇÑѱˆ…:8øùùñB …£Á`¨\¹rrròµk× 6##ãÌ™35’{™P?ƊǸ”IAáèèèØ»wïüüü7ß|óöíÛæŸÊÉÉ?~¼Á`û¬_¿~­Zµ:~üxio788¸À–M›6YûÎ$%%ÙâA»ûF„=nÅöRRR“…&îŽ"À>ß¶”’’"}˜˜˜¨ö»£¦çÊÁ“"»Ç{Lî%(…ÆÃ1;;[áêêZ`»›››âúõëÅ}Õ¸qãüýýÇŒS¶Û·Ã½ Ð̭؇vî‹A£ª¿;Ò;'°“Zi´ó7ECxRäUøe½ð„H'4Žƒ!++«Àvéíu¤¹ca3fÌHIIY¹r¥%ïר›†vRS .?ÆÑÉÉÉÝݽðd1##Ca:ÏÚÜÞ½{W®\9tèÐ&MšÈ½|XM@` §Å(M`` Õê¢ñpBøøø¤¥¥I¥h"MåããSøò§OŸB,X° ø_½{÷B¬]»688¸[·nrß!ûáÌ%ÒʸÑ`0$&&ʽ @éh|Wµ¢cÇŽñññ;wî|â‰'¤-F£166ÖÓÓ344´ðåk×®mº¤äúõë»víªQ£Fhh¨¯¯¯ÜwHÞU¦´ †¤ÄD-¤•j¨”öÃ1**jÑ¢EŸ~úi»ví¤sb–,YråÊ•!C†8;;K—ÉÌ̼té’³³óý÷ßߺuëÖ­[›_ÃñãÇwíÚf‹·™tH:´‘Ó¨@u´Ž5jÔ;vìŒ3ºwïÞ¦M›³gÏÆÅÅ…„„˜ÿ®ÂØØØQ£F­[·NîõÂÚ¤ñ¬E+ãFNˆõÒ~8 ! T½zõ5kÖlذÁÏϯ_¿~#GŽ”¦(8¨FP5]„£"22222²¸ÏFDDDDD÷Ùû¼/#P,MŒ©FP;íŸU ]ÓÆiDT#@GX„p„v1nT Æ  „#ŠÀ™1JA5”„p`CT#h á¨>ÚØksx˜Ô?n¤@cG6A5€öŽÐ"ÆØáˆ‚83F~ê¯FÆ I„#4GãF•£@«G@aT>n¤@ÃG@I¨F€‚ŽÐöSˇjÍ#qÎŒ‘“ÊÇÍ#¡!Œåøô€pTÒH³Ôù¤——Wttôc=¶mÛ¶ÐÐÐÂNJJÊËËkÕªU`` i£›››ÜwBÝG( ãÆò¬Žj u³gÏNHHøê«¯  „1bDóæÍÇŒ³uëÖÂNHHBL›6­cÇŽr/\;ØU­/àXvT#X`ß¾}ݺuóõõ-°ØÙÙ¹üWþÝwßùùùõïß_úc``à“O>û÷ß¾°ŽuëÖ•û!Ñ&ŽP …Œj [¶léÒ¥‹¿¿ÿ /¼àêêºzõê4kÖ,<<ÜÁ¡¼³ªŒŒŒS§NõíÛ×`0˜6†‡‡þùçqqq½zõ*pù„„„Š+V©Rå‡~¸zõjHHÈC=T¡B¹$u# (xÜH5:dN2(îGέ[· àçç·gÏ___!ÄØ±c;wîÿöÛoW©R¥œ·{ñâE£Ñèããc¾ÑÛÛ[qùòå—OHHppp¨[·nzzº´¥AƒË—/oÞ¼¹œŸÊŽÀ½PF™ïwîÜ™šš:mÚ4©…+V7n\dddLLÌÀ \>77wýúõÅ][= lÉÊÊBT­ZÕ|£»»»"--­ð5$$$äççO:õÉ'Ÿtvv^»ví¨Q£zöìyìØ1é«P„#”ýÔ¥G5P”3gÎ!š4ib¾±qãÆBˆcÇŽ¾|fffÏž=‹»¶Â?ß¼¼¼„7nÜ0ߘ‘‘!„¨V­Zákؾ}{¥J•LŸ4hЭ[·† =xð`¹-µ"u„3cÊB©ãFª€Ò¸¸¸!rssÍ7æçç !Š<ÀÑÝݽT?Ç||| 앾r劢fÍš…/_£F[ºté"„8~ü¸Ü•ŠŽŠ¦—1œbï§R«(((HqâÄ óÒ¬188¸ðåK»«ÚÉÉ©aÆ;wî4߸cǃÁRàÂgÏž]·n]xxxƒ L¥ñdíÚµå~¨TŒpÔ‡q#jÖ¬YݺuçÏŸ?lØ0!DNNÎÌ™3ÝÜܺuëVøò¥ÝU-„xñÅGŒ±nÝ:é /]ºݹs瀀€—tqqyã7Z´hñ믿JŸ?sæL''§Î;ËýP©ïã¹1n,íº¨FŠäìì}º_¿~óçÏoРÜ÷I…”3n¤¨Ÿ2‡;wîLMM6mšTBˆŠ+Ž7.222&&fàÀ.Ÿ››»~ýúâ®­Grß!Aûá¸jÕªüüü‘#GJÕ(„?~ü?þ¸qãÆI“&99ß´i“bÒ¤I¦‘dPPÐË/¿üÁüöÛo„#…9sFѤIó7B;v¬ðå333{öìYܵñOkeÒþÛñìÛ·ÏÁÁ¡}ûö¦-ŽŽŽmÛ¶MKK;pà@‘_’””äêêb¾1((H‘œœ,÷R!Æ…¸€æHÓ–ÜÜ\óÒ¹ÏEŽiÜÝÝÅ“ûÞ hŸ8Æ„„„jÕªU«VÍ|{½zõ„ÉÉÉaaa…¿jñâÅNN™ãÇ !üýýå¾O–âÇ‚¨F°%iÂrâÄ óÒ¬188¸ðåÙU­FǬ¬¬¼¼<ÛÝÝÝ…W¯^-ò«6lX`K\\Ü’%K*V¬XÂPÝ\á¿!ÒîïÒHJJ*×å½k LJLr¯$%%% ü©5&&&*a%²KII‘{ (Ï Ê¬Y³fuëÖ?þ°aäWÞœœœ™3gº¹¹uëÖ­ð嵫ºäË=ö˜=£dÇììl!„««kínnnBˆëׯßóòòò¾ùæ›?ü0//ï£>òòò²ävããã˳ìwí”óî”÷¬B Ë FPœ˜5 „ï Æó‚²qvvž;wn¯^½š6m:tèPGGÇèèèýû÷Ï›7ÏÇǧðå¥]Õr¯ú%Û~Y/r†ªGƒÁ••U`ûÍ›7Å¿sÇìÙ³gêÔ©ýõ—ŸŸßÿþ÷¿V­ZÉ}‡ÔF!G7DRbÕ¶7eÊ” ܺu«iÓ¦7nä-»µDãáèäääîî^x²˜‘‘!„0g]˜4]_¾|y¥J•†>xðàâÞôQ™8Àñ?Ò¡rï¦èDhhèÚµkm}+ÁÁÁüP•…ÆÃQáãã“‘‘QµjUÓFéP†"'çBˆüüü1cÆüüóÏ:uš2eJ }‰’(dܨT#@´ÿv<;vÌËËÛ¹s§i‹ÑhŒõôô -òK–/_þóÏ??ûì³óçϧÕMgRSÍÐ~8FEE988|úé§ÒqBˆ%K–\¹r¥OŸ>ÎÎÎÒ–ÌÌ̤¤$é\B£Ñ¸bÅŠ*Uª¼ùæ›r¯]Í”0n¤°*í类Q£ÆØ±cg̘ѽ{÷6mÚœ={6...$$äÅ_4]&66vÔ¨QAAAëÖ­»|ùò¹sç\\\ž{î¹Â×Ö«W¯~ýúÉ}Ÿî¥GAöÇ€jhŒöÃQ1hРêÕ«¯Y³fÆ ~~~ýúõ9r¤ôŽ<…IsÇììì"?'V[D ãF¹QíÑE8 !"#####‹ûlDDDDD„ôq³fÍÊù.ŒåDtYÜãFª IÚ?Æö&{ùRØá¨5à(/ª a„#´EÖq#ÕÐ6ÂV%ï~jª["¡T#6F8jŠÌ8Ê~ZŒl÷›jèáMoÜH5€=9räé§Ÿöõõuss ›3gNnn®Ü‹Ò½¼£Z¨xf'ãÒ©FЇÄÄÄöíÛçååõêÕ«V­Z[¶l=zôŽ;V¯^-÷Òô‚p„ÊQ £G¾~ýz\\\‹-„Ó¦Mùä“r> zB8¢|¨F°?Eþ Ú¹sgjjê´iÓ¤jBT¬Xqܸq‘‘‘111,pùÜÜÜõë×wm=zô(ùæ¶oßþÒK/%$$,\¸0((Hî{¯„£FèëWTS À‘j@aGXÌžãFªå!¡ãF{U£Ñh¤@½6lØ~îܹ~ýú½üòË—/_îÝ»÷çŸ.÷ºt„ß¹Ù¥IFP» &øúú8pÀÝÝ]1qâĆ N:uÈ!r/M/˜8ª’öSk圃Á˜˜(÷*@öíÛ×­[7___ÃÝœËyÍ·oß>~üx·nݤjB¸ºº¶iÓ&%%%;;[îû­LQ ­ì¤–öP'%%Ùü¾€îmÙ²¥K—.þþþ/¼ð‚««ëêÕ«8ЬY³ððp‡òΪ>ìååeÚ’››{ôèÑÆ»¸¸È}×õ‚p”ŸVæze¸çvªF¹ï'X›AÖ[/æÇê­[· àçç·gÏ___!ÄØ±c;wîÿöÛoW©R¥œ7ëää"}¼lÙ²„„„õë×ÿý÷ßß~û­¬‡¾Ž(Šb–j€2Sä϶;w¦¦¦N›6MªF!DÅŠÇ3pàÀ—ÏÍÍ]¿~}q×Ö£GnëÝwßMHHBtîܹvíÚrßu!ÕG oÄcãj4 BªìéÌ™3Bˆ&Mš˜olܸ±âرc…/Ÿ™™Ù³gÏâ®­äŸá§OŸÎÊÊÚ½{÷!Cyä‘'Nx{{Ëýè'Ç [m_¼íØŸt ann®ùÆüü|!D‘8º»»‹wÏ›«\¹rÇŽ?øàƒ«W¯®Y³Fî{¯Lq7MT£ oPŒ   !ĉ'Ì7J³Æààà—/í®êõë×÷ìÙsÅŠO?ý´i£§§§`“Ž*£îýÔT#hW³fÍêÖ­;þüaÆyxx!rrrfÎœéææÖ­[·Â—/í®ê‡~Xñå—_>õÔSÒ!IBˆ¯¿þZѲeK¹ï½^Ž2SÖ)Õ6] Õšæììpà@BB‚OË_¿~]ºX‘,yíðõõݽ{w9W^†‡ZuÏŽµ0qÔ(«T#ƒF€ÅœçÎÛ«W¯¦M›:ÔÑÑ1::zÿþýóæÍ+\¢ô»ª¡„£É]$#èSDDD\\Ü”)S,XpëÖ­¦M›nܸ±k×®r¯ VC8*Ny÷S+ IFЭÐÐеk×Úç¶’’’ä¾»ºC8Ú›¢gLùjdЀ¶ŽÊ"縱ƒF’= 5DŽj$ÐÂQAÊ5n,s5–c÷4‡3 +„£]ÙêÇòT#ƒF`ÂQ)Ê>n,[5–uÐH2 [„£Ê•¹IFPJ„£š•¡Ë4h$€ í©„Ì+Ë~ê²U#Éê,÷€»Žò³G5–~ÐH2€¼âã㥒’’ä^ á¨Je¨F‹/.õ¢ @!„£ÌJ=n,U5–fÐȈ”Œp´뼃£å×B2k#åTŠq£´Ù’¶³8Ù+ J…pT ¥LFz” áhE†Ÿ¥ãFKªÑ²ddÄʃp”‡EÕhÉîi ’‘^VA8*Õ=÷JFzXáhs… ðãÆ{KLFz؈ƒÜ P®~ø!***44ôÑG8qbzzºU®¶¤j4þÉÌ"›ÏðïÆ"ªÑð/ã¿ä~ü”å±Ç“{ (ˆ'E™x^ˆ'ÊÁıhsæÌY´h‘««k‹-Ξ=súôéeË–¹¸¸”êz ŒïQÅõ¢¤¨X4}L)[câX„øøø%K–øøølÚ´iÉ’%›7oîß¿ÿ‘#GfÍšUž«-º¥)cQû³ïš/¥ËÞÅhFîÇ háX„U«Våçç9ÒÛÛ[Ú2~üxww÷7æçç[~=æ5XD5šï˜–.g(Ø‹Ql)‹ÀÎÇ"ìÛ·ÏÁÁ¡}ûö¦-ŽŽŽmÛ¶MKK;pà@i¯Mš(þWæ#F£Ñ< ÿ}ŽRŠC8d4ªU«V­Z5óíõêÕB$''[r%Rý £Á Fƒ0šÒÐ`ø/%f±h,Dîà?œSPVVV^^ž‡‡GíîîîBˆ«W¯ÞóN:õÏ)-ÿýÏ?ÿ/Õgq‚ƒƒå¾÷ZÆÃ«@<)ÊÄó¢@<)P± ììl!„««kínnnBˆëׯßó˜MbWuAƒ!++«Àö›7oŠçŽ:D8ääääîî^x²˜‘‘!„0g  7„c|||ÒÒÒ¤R4IJJ’>%÷êäA8¡cÇŽyyy;wî4m1±±±žžž¡¡¡r¯@„c¢¢¢>ýôSé¸F!Ä’%K®\¹Ò§Oggg¹W §iéÒ¥3f̨Y³f›6mΞ=×°aÃ¥K—~› ‹õÓO?­Y³æÈ‘#~~~=ôÐÈ‘#¥wäÐ'ÂáGX„p€EGX„p€EGX„p€EGX„p´š~ø!***44ôÑG8qbzzºÜ+Ò»ìì쯾úª[·nM›6mÓ¦ÍàÁƒûí7¹…ÿ¤¦¦6oÞ|ìØ±r/BqôèÑ×^{­C‡-Z´èׯߞ={ä^‘Þåää|öÙg½{÷ 1bÄéÓ§å^”N%&&>|¸ÈÏêíÕŸp´Ž9sæLž<ù¯¿þjÑ¢…››[LLÌK/½”-÷ºô+77wàÀï¿ÿþ¥K—Z¶lY·nÝ={ö 4hþüùr/ Ba4ß|óMÓ¯ƒ‡¼¶nÝÚ·oß­[·z{{‡††‡öíÛ›¶8::¶mÛ6--MúËûKJJruu 1ß$„HNN–{uº–››;nÜ8OOÏñãÇ˽!ÄŽ; CÏž=Í7~øá‡ñññMš4‘{u:åçç'„0oD£ÑxíÚ5SJÂÖÞ{ï½ ,X° U«VE^@Ÿ¯þ|ÿ•—ÑhLHH¨V­ZµjÕ̷׫WO‘œœ&÷õhñâÅ…¼?~\áïï/÷êtí“O>9qâÄÒ¥K«V­*÷Z „ÇŽóôôôõõÝ¿ÿÁƒ¯]»V¿~ýN:™¦õ°¿nݺ-[¶ì½÷Þ«\¹rÓ¦MÓÓÓ,X’’òôÓOóÇnZ·n-}°m۶ŸÕí«?áX^YYYyyy¶»»»‹»ÿ½{jذa-qqqK–,©X±bÉ ìéСCŸ}öY¿~ýZµj%u<ä•““sãÆºuë¾óÎ;+W®4m÷÷÷ÿøã|ðA¹¨SÁÁÁË—/8pàÀMûõë7qâD¹—†èöÕŸ]Õå%<åêêZ`»›››âúõër/"//oÙ²eC† ÉÊÊúàƒ¼¼¼ä^‘Negg7Îßß̘1r¯ÿ¸qã†"!!aÆ 3fÌØ³gOllìðáÃÏŸ??bÄŸª`|ðAfffHHÈ3Ï<Ó¹sg—5kÖpª»rèöÕŸ‰cyyxx †¬¬¬Û¥÷‘þåíÙ³gêÔ©ýõ—ŸŸßÿþ÷¿âU̘1#%%eåÊ•ìUŽJ•*I|ðÁáááÒǯ½öZjjjLLÌúõëŸ|òI¹×¨GãÆûã?Æÿ /H[RSSŸyæ™Q£F­]»600PîB¿¯þLËËÉÉÉÝݽð¿-222„¦3­`999ï½÷Þ€RSS‡¾qãFªQF{÷î]¹råСC9ßBQ\]]+UªäââÒ¡Cóí:uBœûì”)Sä^ „¢víÚ¦¿ ’ëׯïÚµ«F¡¡¡¾¾¾r/P¿:tèðõ×_Ÿ:uJ:T"½™ïµ)‹:uê8::ž>}Úh4š}||¼¢nݺr/ÿÐç«?»ª­ **ÊÁÁáÓO?5ýþ´%K–\¹r¥OŸ>ÎÎÎr¯NŒFãŠ+ªT©òæ›oʽü£uëÖ³ï6zôh!DXXØìÙ³Ç'÷õ«W¯^BˆÉ“'›Î=zôè_|áîîÞ¹sg¹W§G...mÛ¶={öì¼yóLï#}úôé T¨P¡ÀA‘>_ý™8ZA5ÆŽ;cÆŒîÝ»·iÓæìÙ³qqq!!!/¾ø¢ÜKÓ©Ë—/Ÿ;wÎÅÅå¹çž+üÙ^½zõë×Oî5JÑ AƒÑ£GÏž=û±Ç ËÊÊÚ·oŸÁ`xï½÷î»ï>¹W§SÓ§OòÉ',X°aƆ ¦¥¥ýñÇùùù“'O~àä^þ¡ÏWÂÑ: T½zõ5kÖlذÁÏϯ_¿~#GŽ”Îɇý¥¤¤!²³³;Vø³œ"0tèP//¯eË–ýþûïžžž;v>|¸ô›– //¯ 6,Z´h×®]Û·o÷ôôl×®Ý+¯¼Ò¨Q#¹—†»èðÕß`4å^T€c`Â!`Â!`Â!`Â!`Â!`€¾Œ;688xûöír/D|úé§ÁÁÁß|óÜ Kްˆ“Ü êСƒ——WóæÍå^XŠpy„„„„„„Ƚ (vU€âäååݹsGîU@A„#u˜ûì3ÿ~øaûöíëׯ߱cG»ví:´páBé2³fÍÊÌÌ|å•W~ÿý÷˜˜˜ØØØI“&ƹsç–ê¶V­ZõÒK/íܹ󫯾úå—_(„X¶lYq—ýõ׃‚‚bbbvîÜ)„ؽ{÷÷ßߨQ£W^yE¾ç €fŽÔÁÁÁá‰'žw÷ïßñâÅÐÐкuë !rss;tèðÆo¸ººJ¨Zµª4ª<{öl™ozÆŒBˆ?þØ4Ãóòòúøã}||¢££¯]»&„8yò¤"**ÊÑÑQºLß¾}_}õÕN:•ê¶7n}ºÁ`°ð¦+T¨P†‡åæÍ›—/_B$&&^»vÍÃÃÃöO="¨‰)GŒ!íƒ6í§¾yóæ»ï¾[¡B…Å‹·nÝÚô%.\(í­¤¦¦æççK !*W®[¡B…Ž;Jg󤤤Øô1ùé§Ÿ6nÜØ®]»eË–­_¿¾ð›€UŽTF:EfÒ¤IYYYO>ù¤i»âäÉ“W®\‘¶äåå}÷Ýw+V¬BdggymµjÕB,_¾<++KÚgz“ÉèÑ£óóóG}âÄ iËÍ›7'L˜pìØ±///??¿7n>|øóÏ?7*Ïœ9³cÇ!„MßOñÂ… Ó¦M«R¥Ê»ï¾ëììüþûï;::N:µüw@a쪠23f̈wttìÙ³§i{```ÇŽýõ×Î;7oÞÜh4ÆÇǧ§§?÷ÜsË–-û¿ÿû¿7nHo¬c®gÏž_ýõ:vìØ°aÃK—.%$$¸»»ûúúÞ¾}[ºL¯^½öîÝ»zõêž={Ö¬YÓÓÓ3111++«N:Ò;o;88Lœ8qüøñ3gÎüâ‹/î¿ÿþ¬¬¬¿þúËh4öíÛ744ÔF…Ñh?~|FFÆÿþ÷?©›5j4pàÀ/¾øbêÔ©ü±ÜÏ­aâ@e¼½½zè!!D›6m¼½½Í?õÑG½þúë5jÔÞß±mÛ¶kÖ¬™4iÒsÏ=çèèXä/ô÷÷ÿöÛo;uêäàà°k×®S§NÕ¬Yó³Ï>óòò2]Æ`0|ðÁóæÍ ÏÏÏ?sæL@@Àèѣ׬Yãéé)]¦W¯^_ýu»ví\\\Nž<™••õè£.X°`Ê”)¶{(–/_¾{÷îÖ­[›ôB¼þúëµk×Þ¸qã¦M›d}¢h¡ä·ýÈÌÌLKKó÷÷·ü$hÐÂaW5,B8À"„#,B8À"„#,B8À"„#,B8À"„#,òÿ¥ *\oeÖIEND®B`‚statistics-release-1.6.3/docs/assets/raylfit_101.png000066400000000000000000001510461456127120000223310ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A€IDATxÚìÝw\GÿðYî¤IWi‰QšØDìXP°<ŒÆ Qb%– QÁ$ÖIL|lØÅ(FAŠ¢Q jˆŠDPàà~L²¹\cÃ;ŽÏûÅws{»Söî¾ÌÎÌ2B¡ÔECÙ€æ#p‚À8Aàœ pN8'éСC 7¯^½"„DGGÓ§ÁÁÁÊÎ{³×˜Ê<~üø±cÇŽ;VRRÂ&îܹ“î°{÷îÊ.œªSÊ™üêÕ«3f´oßžÏç·mÛ¶¼¼\ÙÕP?k×®¥•DS¤žr²ŠÙŒŠ/õó%éÎ;²¾0544ÂÂÂnÞ¼Ùtùlðiܘøìp<µ8âøõØD_ørVA|eg@ùBCC_¿~M9s挿¿¿²³œ,]º411‘>¦Í§–d³¿ñŸ/¡PøóÏ?ÿüóÏßÿý±cÇð!}—”ûõˆ/g„ÀQ‘Ú´icccÃ>}óæÍ³gÏècKKËV­Z±/ih ¯WÕµmÛ–¶¦………²óRœ>}š>ðññ ý|5SRO9YÅT¿â‹233ÓÖÖ¦AIIIee%!¤¼¼|áÂ…7nÜPvÿEõ¿+žCåYõ+\½!pT¤   °Oúé§ÐǧOŸvvvVvæÁƒ–––ZZZ*¾ÏÆ Sv.TŽê4û_ÙâÅ‹‡ ¢ìì(€ÔSNV1Õ¯ø¢öìÙ#Ú½TQQ1}úô}ûöBnÞ¼yÿþ};;;eçñªÿ]¡ð*·Èª_áê ý^ªâÅ‹ .ìÖ­›®®®››Û7ß|#z7HÑá#à“O>éСÃ'Ÿ|ÂnðìÙ³ xyyµmÛö½÷Þ=ztNNŽäQ8n&JôÐOŸ>0a‚±±±™™Ùúõë%·///_¹re@@€™™™™™Ù€–-[VVVÖ°}Ê7JÓ£¢¢äd¾¶¶vß¾}~~~ÖÖÖ­[·¶¶¶öõõýöÛo«««éK—.e†½Ò7`À†aèp1YÃhê[À—/_.\¸°{÷îmÛ¶uss[·n{tYª««wìØáíímii©««Ûµk×I“&IŽîª³t¢9;vì/¿ü2a›:„††Þ¾}›réÒ¥qãÆÙØØ´k×ÎÏÏ/--­ÁMß°ócaE•””<|ø°¶¶–>---}øð¡@ >)õj¾Tš,=7nœ±±±¹¹ù¨Q£®\¹"¹Ø)'«˜rŠÏ±Úÿ}Âñ —óùª—6mÚÌš5‹}úäÉöqŸ‚ððpšÕŽ;Šîó·ß~cÇPæææÊ9zµ!뻢°°088¸]»v666Ó¦M+..¦Â0Ltt´ääÿ (ðÔ¢êüè5àë‘*..ž4iÒ{ï½giirþüyY'hºØ·º*|97àÛ©EB“9sæ [Ϲ¹¹’¬X±‚¾êëëëèè(Ö4›7o–ÜräÈ‘ÿùÏèã+VÐWúé'333±·3 óÑG‰Žãf²2Ù¿ÿ÷Þ{OìíÓ¦MÝ8;;[rBHÇŽÓÓÓ°OÑ‚‹hüøñ4}Ñ¢Er¶ ‘zÚ3†n°dÉÉW_¿~- wìØAŸzzz6¸€¾¾¾NNNb;VN…¿}û¶G’‡`fëÖ­¢[ÖY:Ñœ¸¹¹‹nfbb²eËMMM±£¤¥¥)¤™¸œoÜ +jäÈ‘’o¹wï^Ÿ”ú6_*Mª+W®˜››‹¾¥mÛ¶ƒ¦éfb§œ¬bÊ)>Çjoü÷ Ç3\ÎçK’hôvæÌ±WÏž=˾úË/¿pÿˆ~ß¼y“}ã7ß|CyKý®¸pá‚ØÉcggÇæ–­mî¿ <µ8~ôêõõȤ{÷îbŸ2MMÍ;vÈÿºJ|«+ý˹aßN-Ç&Ä=pd¿VÜÝÝy<}ª¥¥UYY)¶e‡ØíéWÏ«W¯LLLhJÿþýW­ZÊŽ¡üꫯè8nVg&MMMûöí«««Ë¦œcßJ?ùä“FžÆ’ßoÞ¼±´´¤‰­ZµòòòbŸŠÖv½~xjqüèÕëëQê×…ŽŽ}ÊãñîܹS¯ou¥97ìÛ©%@àØ„ê8nÙ²…&&%%±‰7nÜܲsçÎIII—.]¢ÿv/[¶Œ¦‹ö3}ñÅ4ÑÊÊŠ¦pÜL~&‡úöí[¡PøÛo¿988ÐÄ>}úÐ-W¯^MSôôôØÏÞ­[·Ø»—,YRß}6&pœ:u*MY¸p!ûÆnݺÑÄ 6°‰l0$ús%ùÝÔ°~ñÅ41//ýz’ókŸ>}è6111lb@@€ØÞ8–N4''Nœ …UUUýû÷g„BaMMÍôéÓiб±q㛉ãùƱ°RIm59Ÿ”†5_}+MÒÖ­[é6mÛ¶½téMŒˆˆ`÷&ç×]V1e¥s¬öÆŸÔë —U1¢£¥¥åû³µµe#3336þàþ)˜;w.Mñññ¡)µµµl»³_Î >%nóæÍ4E__?''‡ž-ááál¥Žò{jqÿèqüz-ȰaÃè×Å£GÞÿ}±Zåþ­ÎýèMñåܘo'õ†1Ž*ÁÉÉiþüùôñˆ#øü¿&-ˆmÙ¦M›ÔÔÔ &ôìÙ“ÿñÇéK3fÌ`7›:u*ýŸõÑ£G·nÝâ¾™|>Û¶mtV„¥¥ågŸ}FÓ³²²Þ¾}K9qâM™?>;ô¤k×®}ô}ÌnÀ}Ÿ1nܸ¤¤¤¤¤¤ Д²²²ŠŠ úøÅ‹õÝa Ø¥KöGËÑÑÑÇLJ>~øð¡¬£¼yó†>øïÿûõ×_Ó9ÿýïssssssnjӰÒyzzÒ XšššcÇŽ¥‰ôÄÓÐÐ`¿µKKKßLÏ7Ž…mÉOJš¯1•ÆÚ»w/} ÚckjjÚàÒÉRßyƒ¿OX 8ù(...üÛƒè‰íèèxëÖ­Î;³›qü°Í”••õòåKBÈõë×ÿøãBˆ“““œi‹ þÚ …÷ïß'„äç狽D 8=;¢Ÿã>cРA&LJÑÈS«é>zbÿL¾yó†Í•••¢Š/ª‰>ÝMWEÍÇfz,Þahhh`````@¯¦qÜLŽ;wî³OSSS…B!!¤U«Vtf;g‚ýo^ìi§NØ;÷Éþ°‰!û¢”jÛ¶môÁÖ­[?üðC>ŸÿøñãWu X_•••Ïž={öìYeeeHHHRRÒï¿ÿžššÊ® Á®ˆ¦ðÒÉQg3Iâr¾q/¬B¼ƒæ“ÄãñlmméãS§N±éB¡ËêõÕøyã÷ÐDÚµkGÐAŠ÷OA·nÝhÑJJJ6nÜXUUEêºNÝàÚ`†môsçαé@tQ¡Fj̩դ=±¯ 6o­Zµ¢ÿg6æ[]…ºßñ·Só‚À±ÙcoN³k×.áß«Å:t¨]»vÆÆÆ666tHÇÍ䨪ªš7oýÂ}òäÉâÅ‹iú°aÃèPqvñ°Ï?ÿœ] 7777..Ž>ˆÃqŸì5—Ë—/³z>\ç7ãŸþÉþ¯Ï~=]»vMþ7͉, (`}ååå™›››››[XXüòË/„>Ÿ?`Àvö®AƒK×`u6“$.çÇÂ*Ê;h>©<==%»nÝ:Ñž3EiüǼñ{CþçK>v»~x}?l§ãÆéƒ:Ç×F¿~ýèƒÍ›7ß»w" —/_.zk±Ækð©Õ°Çæ«®®ž7o]IûÉ“'ìrŒüVÇ_ÎïøÛ©yÁ-›½¥K—&&&¾|ùòèÑ£ýû÷ïׯß;wØd}ôóËq3ù>lkkëäätåÊz±RCCcÍš5ôÕ?þø›o¾yøðá«W¯¼½½ýýýy<Þ™3gè½………Ô›%Èß'»²Æ›7oÜÝÝÝÝÝÿøãv´ººººººtˆÒôéÓ÷îÝË0Ì?þ(õ®-tËO?ýôÎ; ,[á¹1¬33³gÏž ooï¡C‡ýúë¯ßÿ=Ý€Þk¡^¥SùÍ$‰Ëùf``À¥°ŠòšOª¨¨¨ÿýïB¡°´´´wïÞ={ö,))¡Á„Â5þc®/ 1?_ò±CéM«Iý?ãlj‰!„Ði×;w ­ØÚXºté×_]UUURRÒ­[·ž={>|ø°ñþÄ4øÔâø=Óàæ£_ŽŽŽÙÙÙ4¶æñxk×®¥¯Öë[]Y_Îõª¢GÙë©3îë8Š-gÅŽÛ·oŸü-©ï¿ÿ^ê?³fÍ]k—ãf²2Ù·o_±*|>_ô~B¡ðòåËRï!kmm‘‘Ѱ}²ý,;;;¶'@Î:ŽìpxÑ7úùùÑÇÿùÏØCL˜0At397'¨o¹,T&æâÅ‹²®úúúÒÕѸ—NjNvïÞM»téÂ&fff²MPßf’z.çÇÂJ%G©Ÿ”Æ4ÇJ“jÊ”)bGÔÑÑaç{*pGŽÕÞøï“záR?_’äß9†ÝIÇŽkjjêõ)`‰.¾jÕ*±W|Km¸ÿû¿ÿ qtuuÙ¼I®ãX節bO-î=Ž_lA Ä&ú´jÕê믿–zžˆ6œä·:÷£ ›à˹1ßNê —ªÕÁ°aÃnÞ¼îááѦM;;»àààôôôíÛ·‹~縙,FFF.\˜1c†½½½™™ÙèÑ£SSSgΜ)ºM=nݺíïïofffllÜ¿ÿåË—ß¾}ÛÛÛ»aûüî»ïÖ®]ÛµkWww÷ùóç_ºtIl6¨Tñññ]»v%ßü#22òúõë#FŒ ¯îÝ»—½J?aÂSSS.]ºÈ™6[ß6@¯^½ £££»wïnii©©©ihhèí혘xöìYvŠ÷Ò5—f’Äå|ãXXEyÍ'ÕW_}5gÎúØÔÔtøðágΜéÛ·oS«‘s…ìA ÷Ï—ìÚ(EEEìÜõýˆÆ+ræS+¤6ÂÃÃÏœ93jÔ(KKËöíÛ5êÂ… Roa× >µ¸ôêÛ|¾¾¾éééÆ ëСƒ……EHHÈÙ³gÙ¥Ú)îßêJür~ÇßN͉²#WPuò;'TgŸRUUU>|øðáÃM^MÊÐÔ¥{gÍÔB\¹reÆ ¯^½RvFÔJ½>YYYô”îܹ³Rr;yòdšíÛ·+p·8µà]ÂGPgšššj<E½K§~<==ÙÙ  (õú\¼x‘>¨sZL#}ðÁW®\!„xyy±7|ýúujj*}L;J§¼K@ …Â;w±·nêÀÑÒÒòÆ„7ntìØqìØ±¥¥¥ü1]VÐÙÙq4_@ÕÖÖ~øá‡ìÓQ£F9995é/^üÓO?ѹSK—.]ºt)ûR»víöîÝÛ¢GÈA3‡ÀÔ\›6mAÇŽ'Nœ(Æ5mmí3gÎìß¿ÿÛo¿½ÿþ“'O躌ˆˆÐÓÓSv}4#ü{QS9°p‚À8Aàœ pN8'€ŽÀ Gà#p‚À8Aàœ pN8'€ŽÀ Gà#p‚À8Aàœð•5äàà ì,@ÓÊÏÏWv”c“h™'“*spp@£¨4ŠjB»¨ 4Š j±D¸T œ pN8'€ŽÀ Gh0!Q¡QTÚE¡Q@u pN8'€ŽÀ Gà#p‚À8Aàœð•hq”€Á*ë!p%Àw4¨ü7Ë.U'€ŽÀ Gà#p‚À8Aàœ pN°8¨ †a”xt¡P¨ì Puèq"TÞŸœ°uõêÕ Ã 6Lò¥ØØX†anÞ¼©ìš#¶¶¶ÁÁÁô±»»»ÂqíÚ5†aöïß/«Š.\¸ ùR@@Ã0555ôédž™:u*»@ øê«¯|||,,,ôôôÜÜÜæÍ›W\\Ìn°eËF®S§N5 8111ÆÆÆ]»vUxE)„hƒª9'•­­íرc•AxGÐãÀÉñãÇ>hРիW—””ȯŸ1cÆhjj²Ñùþýû†qqqa7X´hÃ0ׯ_'"'ÕÔ©S‡Jñõõ­½ .·oßþÃ?üóÏ?e÷Ê•+C‡577;-555¹4+÷BSÀ¥jN†Ùºu«³³ó|påÊ©ƒ;6fÌssóÐÐP†a’““ûô铜œjÔ¨>}úÐ^@SSSSSÓÆìYN[,\¸ÐÊÊjÍš57nìÞ½»ä{ÃÃÃ÷îÝ;`À€Ñ£GçææîÞ½;77÷Ò¥K\Z{ƒB<øÛo¿ <ØÕÕõÒ¥K±±±/^LKK›ª%¿¥Ä˜™™ÑþÔüü|GGG9UtèСŒŒŒ   BHFF!$77÷ùóçíÚµ#„¤¥¥™››»¹¹‰¾káÂ…¶¶¶+W®Ü°aCÏž=iâ­[·† 2yòä;vlÇŽµµµ;wî”<è™3gرcÇ©S§êèè9r$''ÇÃãÿþœ:³¸š„ÍÞÞ^ÙYPi²>#D©³ªå|®ZµŠRXX( ccc !ñññô¥õë×Bnܸ! +++mmmmllJJJè«%%%ÖÖÖvvv•••B¡ÎáX½zuMM ÝÀÆÆ¦U«Vyyyô)ççêêZUUES¼½½ !eeeB¡ÐÎÎÎÞÞ¾ººš¾TZZÊçógÏžÍîjäÈ‘ô±¯¯¯›››dAÖ¬YCILL¤¹íÔ©“»»{EE}õíÛ·½{÷¶³³oß¾µ¶¶¶°°xüø1}µ¸¸ØÒÒ’²oß>YU$‡@  [þú믄)S¦°ïݳgÏ{ï½G7kݺuÿþý×­[÷믿ÊjOOOùçXmqôèQBHff¦ä{_¿~ÍãñDs8}útccãââb.­À½Aéù°nÝ:ö@QQQ„½{÷Š6¨ü–’S ÷îÝ#„¬ZµJÖ?&„,Z´ˆ>íÚµ+c~øðaZ4 iÓ¦IžTÇ'„¤¥¥±¥&„;vŒ>NNNÖÖÖ’G|󿥥¥¥¥å“'Oزøøø˜ššÒ:©—: È]~¸[ìo=.UÔÃG}Ôµk×èè袢"±—rrrrýúõ‚‚‚¨¨(mmmº––Ö¼yóîß¿Ÿ“““““óðáÃ>ú¨}ûölÎçÏŸ/ÿãÇ_$ÁÊÊJþ»Â oÞ¼põêÕeË–ÙÙÙÑ0·a¸´…,ti¡‡Ò”ÄÄÄ’’ .­À½Ai®.\ȾwåÊ•ºººÍü–jpBÚ·oïââröìYBÈË—/sss###uttÒÓÓ !µµµƒæ²+{{ûáÇÓÇ<ÏÍÍ­¼¼\r³ŒŒŒâââY³f™››³eùøãÿý÷C‡BÁ1ÙSXP\ª¨>Ÿ¿k×.//¯ùóç9rDô¥‚‚B¼È¢#Æ è%Q±ëqldC¡á…d ehh˜•••ššzïÞ½‚‚‚;wîŽÙ¾{÷î¤I“¼½½h í­ ÛøÑ£GtÜ[·nÝDÓë\rîܹ}úôK¼qãÆ£GêÌ¡‹‹‹‹‹KDDDUUÕ±cÇ"##W®\Ù«W¯6 ™¸´…,ÚÚÚ ô‚¬³³³——W``à!Cè€Ë:[{ƒBœEÇqêèè888üòË/¢ÛÈo)ùe©SPPP\\ÜË—/iç«¿¿¿··7 ÓÒÒø|þ€¸ìÇÞÞ^ô©¬Õ h³Ôv¡ã\ËËËéðS©„X¥_ p¨Ÿ^½zÍš5kûöíb] ôWMltý­®®¦O vÐÊÊÊQ£F¥¤¤tïÞ}àÀÇïÝ»·‡‡—÷¾|ùrĈúúúÉÉÉlàB㕸¸8ɰ;wî|þüyɲp‚ÆÝëׯ§N:pàÀ3f°‰­Zµ;v¬¡¡a@@À‰'8ri 9æÌ™3zôèãÇŸ;w.%%e×®]ééé nŽø|¾X_ü–jäácccÓÓÓ³²²¬¬¬¬¬¬üüü–-[VZZš––æíí­¯¯Ïe?ç§ÓNS±P›ÎŒ¦g—¾¾>¢C‡À Þ>ûì³#GŽÌ;÷?ÿù›Ø©S'BÈíÛ·ûõëÇ&Þºu‹âààÐÈ#fff¦¤¤$$$,X°€MäÒãXSS3~üøÇgddˆN7¡¹mÛ¶í AƒØÄ»wïÞ¾}ÛÀÀàý÷ß'„\»vÍ××—}•Ò¡(:::§N*** )ÚKצM›†í¹1mñüùóÂÂB{{ûððððððÚÚÚmÛ¶Í›7oÇŽÞÞÞ kYîÞ½[]]ÍFóoÞ¼ÉËË­sRWK5² úô飧§wöìÙììì¾}ûB|}}kkkøá‡ëׯÓ!¼ DË’——'šHûi»‚'NÈz;;É ”cêM__?!!áñãÇ[·ne=<<¬¬¬âãã_¾|IS^¼x±yófkkëÆßÎcprrbS’““ËËËëìžY¼xñéÓ§wîÜééé)šîæææàà°iÓ¦ÒÒRšRVVÙ¦M;;»Í›7?yò„¾ZRR²eËÅV#Ã0aaa—/_މ‰]Ȱ¼¼|åÊ•²nóÈEcÚ"??¿W¯^›6m¢O544h$§©©ÙàV¥¤¤$>>ž}SVV&v§Aù-ÕÈ&ÐÔÔô÷÷OIIÉÉÉ¡£§§gÛ¶m×­[WçǬ¡èááñþûïoݺ•-KUUU\\œ®®.]â‡^ª–¥‘……@#@CŒ7n÷îÝ?þø#›¢¥¥?nÜ8¡P¸ÿþâââƒjii5òp~~~:::3f̘0aBûöí/^¼xöìY“ÌÌÌ“'OÒåT$8qbÓ¦M®®®<Ot¹A'''„„„#F¸ºº†„„TWW=z´¨¨hß¾}ôær7n qww7nœ¦¦æþýû›bÙ¼øøøÜÜÜèèèÝ»wwëÖÎã¾pá³gÏ–-[æååÕ°Ý6¦-<==»té²~ýúû÷ïwéÒ%??ÿäÉ“FFF¡¡¡<¯­ ‡……EtttVV–««ëÅ‹SSS{÷î=yòdÑmø|¾œ–j|ÑѺ4päñx>>>)));v”uGAÚÓ¹}ûögÏžI]HMMÍ-[¶»¹¹Íœ9“Çã%''_½zõóÏ?733#¸TÝ Ç ¶mÛÆNt¥FuþüyGGÇo¿ýö»ï¾ëܹó… ÒSbee•’’Ò¡C‡/¾ø">>^[[ûÖ­[Ÿ}öYYY™œŽ@zc½›7oNü·½{÷B/]ºÔµkפ¤¤ï¾ûÎÖÖöÔ©S!!!ô½ÁÁÁgÏžíÚµëÿûßM›6ýùçŸIII ¯CmmíÓ§OïØ±ÃÔÔôܹsÛ¶mËÌÌôôô<þ|LLLcöÜà¶hÕªÕÉ“'ÿóŸÿdee­Y³&--- àÂ… ¶¶¶ k9zö왚šZZZºeË–¢¢¢E‹;wNr,©ü–j$˜°ñédp9Ý^^^¡¡¡§NjÀ|éÒ%—mÛ¶ÅÅÅéëëŸb0gS¶âââvíÚ5¾ßDÙÚÚº¹¹‰ÍÍ¥hÀw‹ý­Ç¥j¨]ú—ª€ô8€ a¿‹†ÂujxÇ‚‚‚èÍúšŽ *ºA‹²mÛ6eg Þp©8Aàœ pN8'€ŽÀ Gà#p‚À8Ác@6†!„ÜÌÞ†Qâq߀º!pU¢¼àaÄŽòáR5üM©=ªlõêÕ Ã 6Lò¥ØØX†anÞ¼©ì<[[Ûàà`úØÇÇÇÝÝ]ᇸvíÃ0û÷ï—UE.\|) €a˜ššúôáÇ ÃL:•Ý@ |õÕW>>>zzznnnóæÍ+..f7زe #שS§Pœ˜˜ccã®]»*¼¢B´AUœ“ÊÖÖvìØ±ÊÎ ¼#èqBˆ´¨‘aþºHÍ>hÙŽ?~øðáQ£F);#uãñx<OÙ¹àD(Ž1"%%¥[·n&LÐÒÒºwïÞŽ;¾ùæ›Ë—/;;;B<<<-Zľå‹/¾000˜4i›bccSßãÞ½{7::ÚÛÛ{öìÙʮŻuëÖÚµkÓÓÓ_¿~íèè8a„yóæñùúÅ=©®^½ºvíÚ˜˜Ú@êQ@ൠ"DÃG6X ¥§´0ÚÚÚóçÏhÛ¶­²óR‡´´4eg«¤¤¤”””¨¨¨ 6°‰7nÜðööž:ujvv6!ÄÇÇÇÇLJ}511±cÇŽqqq9naa!!dÕªUþþþÊ®»ÿ¾¯¯oMMMpp°••Õ™3g>úè£óçÏ9r¤1»=©ž={vôèшˆu* p„KÕð7шP,: "Zªèèèß~ûmÅŠM±óªªªÚÚZeQ èÕíyóæ‰&º¹¹;öÚµk¯_¿n¢ãÒñ¬­[·n¢ý׫AkjjØKù÷ÑG½zõêÌ™3»wï^³fMVVÖ´iÓŽ=Ú° ú*Hí ¨â8¶T ó¯?±ˆPô%ò÷ÕjöÊ5@‹4vìØÁƒùå—W¯^•³YvvöàÁƒÍÍÍ---LûÌ([[ÛÈÈÈ«W¯ººººººÒ” DEEéééµnݺgÏž'NœK—.urrÒÓÓóóó»{÷.»‡øøx##£ž={îÙ³Gjüüüèp´òòrùƒsssGeeeejjøÓO?‰îçüùóFFF;wŽŠŠªªªRx­Ò€)77W,=66öÖ­[­ZµjÌÎeµÅÔ©SGŽIñöö¶µµ•|ã›7obbbœœœÚ´icmmþôéS.­P¯¥ç×_~i``ЪU«®]».Y²DV%Ëo)QgÏžíÛ·o÷îÝÙ”¹sçB.^¼(¶å˜1c455Ùè|ÿþý ø¸¸°,Z´ˆa˜ëׯ‘“jêÔ©C‡%„øúúŠÖÞ… ‚‚‚ŒÛ·oÿá‡þù矲rxåÊ•¡C‡š››‹–ššš\š•{¡)àRuKE/@Kö,J^•–3ü %afëÖ­ÎÎÎ|ðÁ•+W¤"óæÍcÆŒñðð3gÎ,((ؾ}{XXØ7!«V­Z½zuÿþýÇŒSYYyäÈ‘‰'êééIµCiiiíÞ½›}Z[[ûÉ'ŸüþûïÖÖÖ„ÔÔÔáÇ[XXŒ7NCCãÈ‘#ƒ JJJ?~}ú¨Q£úôéC{MMMMMM³g9m±páB++«5kÖlܸQ4þ`…‡‡ïÝ»wÀ€£GÎÍÍݽ{wnnî¥K—¸´÷%„ú裮]»FGG‰½”““óàÁƒˆˆcccšbllqÿþ}v½ ‹+Vˆö¬ôèÑÃÑÑ‘>öóó#„„††²×ìèÔŠŠ BHvvvNN;uôùóçìK\;vlåÊ•³gÏž>}:!äúõëQQQÚÚÚt--­yóæÝ¿?'''''çáÇ}ôQûöíٜϟ?_þ!Æ¿H‚•••üw………Þ¼y3>>> àêÕ«Ë–-³³³£anÃpi Y444èÒB´‹’˜˜XRRbaaÁ¥¸7(ÍÕÂ… Ù÷®\¹RWW÷À¢ù‘ßRòË’––Ö«W¯+W®lݺµS§Nb¯¶oßÞÅÅåìÙ³„—/_æææFFFêè褧§B222jkkÌ¥Âííí‡Nóx<77·òòrÉÍ222Š‹‹gÍšennΖåã?þý÷ß:DÇd«o¡)àR5H# ²Q#%vE›`Ò ´ |>×®]^^^óçÏ›ÅYPP@¡ƒYtÄXAA½$êàà v=Žl!4¼L¡ ³²²RSSïÝ»WPPpçÎ@À1ÛwïÞ4i’··wBBM¹wï!$,,,,,LlãGÑqoݺuM¯smȹsçöéÓG,ñÆ=ª3‡......UUUÇŽ‹ŒŒ\¹re¯^½Ø€fâÒ²hkk'$$Ð ²ÎÎÎ^^^C† ¡.ëlî JqvvÇ©££ãààðË/¿ˆn#¿¥d•åÑ£GsçÎýá‡:uêtæÌ™þýûKÝ,(((..îåË—´óÕßßßÛÛ›Žiii|>À€\*ÜÞÞ^ô©¬Õ h³Ôv¡ã\ËËËéðS©„"¿5  ‡Àˆ”NGY³ªEcG±€£W¯^³fÍÚ¾}»XýUFA«««éSƒ†´²²rÔ¨Q)))Ý»w8pàðáÃ{÷îíááÁå½/_¾1b„¾¾~rr2¸Ðx%..NrìÎ;Ÿ?^²,\† ÕËëׯ§N:pàÀ3f°‰­Zµ;v¬¡¡a@@À‰'8ri 9æÌ™3zôèãÇŸ;w.%%e×®]ééé nŽø|¾X_ü–’º“½{÷Μ9SWWwçÎÓ¦M“³Àa```lllzzzVV–••••••ŸŸß²eËJKKÓÒÒ¼½½õõõ¹d›ãütÚi*jÓéçôìÒ××rè‰à^@P8ÔuËÆ^†–3cZôúµXX‰+×ÐR}öÙgGŽ™;wîþó6‘^)»}ûv¿~ýØÄ[·nByÄÌÌÌ”””„„„ °‰\zkjjÆÿøñ㌌ Ñé&4·mÛ¶4h›x÷îÝÛ·o¼ÿþû„k×®ùúú²¯²S:EGGçÔ©SEEE¢#E{éÚ´iÓ°=7¦-ž?^XXhoo^[[»mÛ¶yóæíرÃÛÛ»a­ ËÝ»w«««ÙhþÍ›7yyy¢uNêj)É}þðÓ&M Ù±c‡žžžü ôéÓGOOïìÙ³ÙÙÙ}ûö%„øúúÖÖÖþðÃׯ_§Cxˆ–%//O4‘ö5Òv'Nœõv:ɬ^…ÃÇO4øc×Ü#9ü‘ j„M__?!!áñãÇ[·ne=<<¬¬¬âãã_¾|IS^¼x±yófkkëÆßÎcprrbS’““ËËËëìžY¼xñéÓ§wîÜ)6ÕÍÍÍÁÁaÓ¦M¥¥¥4¥¬¬,(((22²M›6vvv›7o~òä }µ¤¤dË–-Š­F†aÂÂÂ._¾#ºayyùÊ•+eÝæ‘‹Æ´E~~~¯^½6mÚDŸjhhÐHNSS³Á­ KIII||<û4&&¦¬¬LìNƒò[Jl‡B¡ðã?îØ±ãÿû_.A•¦¦¦¿¿JJJNN ===Û¶m»nݺ:86`åQ÷ßëÖ­lYªªªâââtuué?ôRµ, ( (z[6ÉÑŠ87nÜîÝ»üñG6EKK+>>~ܸq!!!B¡pÿþýÅÅÅlüB!~~~:::3f̘0aBûöí/^¼xöìY“ÌÌÌ“'OÒåT$8qbÓ¦M®®®<Ot¹A'''„„„#F¸ºº†„„TWW=z´¨¨hß¾}ôær7n qww7nœ¦¦æþýûKJJ^ñññ¹¹¹ÑÑÑ»wïîÖ­Ç}áÂ…gÏž-[¶ÌËË«a»mL[xzzvéÒeýúõ÷ïßïÒ¥K~~þÉ“'ŒŒBCCy<^ZA ‹èè謬,WW׋/¦¦¦öîÝ{òäÉ¢Ûðù|9-%¶Ã¼¼¼{÷î999…‡‡‹½4jÔ(©xPP­KGçãã“’’Ò±cGYw¤=Û·oöì™ä’@rhjjnÙ²%88ØÍÍmæÌ™</99ùêÕ«Ÿþ¹™™áp©ºSö´îwäÀcÆŒqssóòòZºté‹/ê|Ë­[·æÌ™ãëëëéé9a„K—.q}Z4{çÏŸ0`€¡¡!!D__ÿàÁƒDîr|øë¯¿º¸¸|÷ÝwìÒ’Ξ=;þüÚÚÚ®]»êëë_¸pA l߾˼-‡üü|eZ.ÑAO±i1bƒ#êCÖg„a¢ÄŠ!-áû°aŠ‹‹Ûµk‡–ËÖÖÖÍÍ wXV øán¿õMCýÇ8æççïÚµËÌÌìÇܵkשS§&Ož|ëÖ­7ÊzË«W¯/^Ìçóÿûßÿî߿׮]{÷îmÕªUtt´:ÜL–ùêö‰€Ä|j€ÃÒÒQ#–88p ¶¶6""‚N¸dÉ}}ý“'OÊŠ:TVV6kÖ,v 3—   ?þøãöíÛÊ.’H] Ý3 pŒòþ .ê8^¹r…Gñx¼¾}û>þ\ÖšûçÏŸgFl Ò 6äçç‹-[Ú¼!ì£ì¡;øDÀ;Ô»woeç ~Ô|VµP(,,,422222M§k܉­OAåææš››_½zõúõ륥¥ŽŽŽ 3&R¥ÉºËK#ïþ‚1ްmÛ6eg ÞÔ|øa˜©S§²‚¯¾úÊÇÇÇÂÂBOOÏÍÍmÞ¼yÅÅÅì[¶laä:uêTŠcllܵkW…W”Bˆ6¨*sRÙÚÚŽ;VÙ„w¤E\ª†&$úsËN¬F· ¨£ãÇ>|xÔ¨QÊÎHÝx<ÇSv.8 …#FŒHIIéÖ­Û„ ´´´îÝ»·cÇŽo¾ùæòåËÎÎ΄E‹±oùâ‹/ &MšÄ¦ØØØÔ÷¸wïÞŽŽöööž={¶²ë@ñÎ;·fÍš;wîÔÔÔ899-\¸°ñ1¨èIuõêÕµkׯÄÄÐR¢êêj†a.^¼¨Üœ´¡$£F„Œ ¾´µµçÏŸжm[eç¥iiiÊÎWIII)))QQQ6l`oܸáíí=uêÔììlBˆûjbbbÇŽãââsÜÂÂBBȪU«üýý•] –’’2dÈ;;»‰'jkk'''5êÿþïÿÂÃó[Ñ“êÙ³gGˆˆPvYÉŠ+._¾Ü«W/eg¤Á¥jN¢££ûí·+V4ÅΫªªjkk•]D% W·çÍ›'šèææ6vìØk×®±Ë¨)ÏÊÞcVáêÕ 555ì¥üÆ[ºt©¹¹yNNÎæÍ›×®]›““ceeµzõê&*©¥¦¦ÆÅÅñùè{§8¶èhœ±cÇ<øË/¿¼zõªœÍ²³³lnnnii9xð`ÚgFÙÚÚFFF^½zÕÕÕÕÕÕ•¦,X° **JOO¯uëÖ={ö|¸……Ÿqã444Ž92hР¤¤¤ñãÇB>Ò®]»ÐÐP ¤¤¤ï¿ÿ^áµ:vìØÄÄÄàààéÓ§5ªOŸ>´ÐÔÔÔÔÔ´1{–Ó .´²²Z³fÍÆ»wï.ùÞððð½{÷0`ôèѹ¹¹»wïÎÍͽté—VàÞ „ƒþöÛoƒvuu½téRllìÅ‹ÓÒÒÄVßR¢x<ÞÍ›7Ù@pûömzã\QAAA‡ÊÈÈ "„Ð[¬åææ>þœ.Zœ––fnnîææ&ú®… ÚÚÚ®\¹rÆ ={ö¤‰·nÝ2dÈäÉ“ pìØ±;vÔÖÖîܹS²nÏœ93pàÀŽ;N:UGGçÈ‘#999ýû÷×ÐàÚ™% 'Ožlhh˜ ôq–-ŽÍÞÞ^ÙYæÝ´5Î(à@Ög„~%)qVµ¬ ¯ZµŠRXX( ccc !ñññô¥õë×Bnܸ! +++mmmmllJJJè«%%%ÖÖÖvvv•••B¡ÎáX½zuMM ÝÀÆÆ¦U«Vyyyô)ççêêZUUES¼½½ !eeeB¡ÐÎÎÎÞÞ¾ººš¾TZZÊçógÏžÍîjäÈ‘ô±¯¯¯›››dAÖ¬YCILL¤¹íÔ©“»»{EE}õíÛ·½{÷¶³³oß¾µ¶¶¶°°xüø1}µ¸¸ØÒÒ’²oß>YU$‡@  [þú믄)S¦°ïݳgÏ{ï½G7kݺuÿþý×­[÷믿ÊjOOOùçXmqôèQBHff¦ä{_¿~ÍãñDs8}útccãââb.­À½Aéù°nÝ:ö@QQQ„½{÷Š6¨ü–’S ß~ûmtt´‡‡‡‰‰Ijjªäô~i‹-¢O»víJç˜>|˜MCCcÚ´i’'½YFZZ[jBȱcÇèS@àäädmm-yÄ7oÞXZZZZZ>yò„-‹©©)­Žbccµ´´®_¿NÞ«W/î?Ü*ú[ßôp©ºeÑ(km eg@u}ôÑG]»vŽŽ.**{)''çÁƒl±±qDDÄýû÷Ùõz,,,V¬X!Ú³Ò£GGGGúØÏÏÊ^³£S7***!ÙÙÙ999숮çÏŸ³/qqìØ±•+WΞ={úôé„ëׯDEE±QZZZóæÍ»ÿ~NNNNNÎÇ?úè£öíÛ³9Ÿ?¾üCŒ?~‘+++ùï +,,¼yóf|||@@ÀÕ«W—-[fggGÃ܆áÒ²hhhÐ¥…>|HSKJJ,,,¸´÷¥¹Z¸p!ûÞ•+Wêêê8p@4?ò[JNA>ýôÓO?ý4''ÇÍÍö1‹iß¾½‹‹ËÙ³g !/_¾ÌÍÍŒŒÔÑÑIOO'„dddÔÖÖ<˜K…ÛÛÛ>œ>æñxnnnååå’›eddÏš5ËÜÜœ-ËÇüûï¿:tˆ"ŽÉFß’½bÅŠØØX±®Px7p©º¥“ '6âj5¨;>Ÿ¿k×.//¯ùóç9rDô¥‚‚B¼È¢#Æ è%Q±ëq¢Wix!™Bfee¥¦¦Þ»w¯  àÎ;€c¶ïÞ½;iÒ$ooï„„šrïÞ=BHXXXXX˜ØÆ=¢ãÞºuë&š^çÚsçÎíÓ§Xâ7=zTg]\\\\\"""ªªªŽ;¹råÊ^½z 8°ÍÄ¥-dÑÖÖNHH d½¼¼‡ B\ÖÙ Ü”âìì,:ŽSGGÇÁÁá—_~ÝF~KÉ)KAAAEEÅÅ‹ÃÃÃ{õê•——'yõ?(((..îåË—´óÕßßßÛÛ›Žiii|>À€\*ÜÞÞ^ô©¬Õ h³Ôv¡ã\ËËËéðS©„BaYYYhhh@@@ÿÆ@Aà¨îÆ(Z¯^½fÍšµ}ûv¶ „ …Dâþ7ô´ººš>500hØA+++G•’’Ò½{÷>¼wïÞ\ÞûòåË#Fèëë'''³ Wâââ$WÀîܹóùóç%ËÂ}G¯_¿ž:uêÀg̘Á&¶jÕjìØ±†††'NœhXàÈ¥-ä˜3gÎèÑ£?~îܹ”””]»v988¤§§4¸8âóùb}uò[JþÞÚ´iãïï¿~ýúñãÇ=zôƒ>Û 000666===++ËÊÊÊÊÊÊÏÏoÙ²e¥¥¥iiiÞÞÞì$ù8ÎO§¦b¡6~NÏ.}}}¡Ü߬;wÞ¿äÈ‘ìúM¯^½ª©©‰µ²² U`[€T[\zP´Ï>ûìÈ‘#sçÎýÏþÃ&ÒÛÙß¾}»_¿~lâ­[·!!äÚµk¾¾¾ì«ì”EÑÑÑ9uêTQQ‘hàHÑ^º6mÚ4lÏi‹çÏŸÚÛÛ‡‡‡‡‡‡×ÖÖnÛ¶mÞ¼y;vìðöönX+Èr÷îÝêêj6šóæM^^žh“ºZJl‡'Nœ9rdRRÒ¸qãØDCCC"㎚}úôÑÓÓ;{ölvvvß¾} !¾¾¾µµµ?üðÃõë×é^¢eÉËËM¤}´]Á‰'d½}ĈtÖùæÍ›EÓ_¾|¹dÉ___ŽïÆ8¶ ètP(}}ý„„„Çoݺ•Môðð°²²Šùò%MyñâÅæÍ›­­­@:ÁÉɉMINN.//Öõé^¼xñéÓ§wîÜééé)šîæææàà°iÓ¦ÒÒRšRVVÙ¦M;;»Í›7?yò„¾ZRR²eËÅV#Ã0aaa—/_މ‰]Ȱ¼¼|åÊ•²nóÈEcÚ"??¿W¯^›6m¢O544h$§©©ÙàV¥¤¤$>>ž}SVV&v—ù-%¶C:Íù›o¾ÍÒ·ß~KéÝ»·d455ýýýSRRrrrhàèééÙ¶mÛuëÖÕ9À±+zxx¼ÿþû[·neËRUU§««K—ø¡—ªe!„,_¾\l®;9æÜ¹s k¨ô8ª5zú÷8b˜#´ ãÆÛ½{÷?þȦhiiÅÇÇ7ÎÃÃ#$$D(îß¿¿¸¸øàÁƒZZZ<œŸŸŸŽŽÎŒ3&L˜Ð¾}û‹/ž={ÖÄÄ$33óäÉ“t9I'NœØ´i“««+Ç]nÐÉÉÉÃÃ#!!aĈ®®®!!!ÕÕÕG-**Ú·o½¹ÜÆCBBÜÝÝǧ©©¹ÿþ’’…Wc|||nnnttôîÝ»»uëFçq_¸páÙ³gË–-óòòjØnÓžžž]ºtY¿~ýýû÷»té’ŸŸòäI##£ÐÐP×€VÃÂÂ":::++ËÕÕõâÅ‹©©©½{÷ž_NK‰íÐØØxùòå«W¯îÞ½û Aƒ†IMMÍÎÎŽˆˆ] QTPP­KGçãã“’’Ò±cGY+ÝОÎíÛ·?{öLrI 9455·lÙìææ6sæL—œœ|õêÕÏ?ÿÜÌÌŒp¸T ʧìiÝjH™Sô ÿ“•ø×æDòUœìq¤iÖËñˆºÿ>³E—㡲²²ÍÌÌÌÌÌ/_¾Ì¾$ºbŽÔz-˜.—CÅÄÄBž>}* ÓÓÓ½¼¼tuuß{ï½ððð’’’ÄÄD“Aƒ e,ÇÃN…îÀ’““3dÈsssCCC__ßÓ§O‹fïüùó  :õõõ}ú4%%eÆŒùùùqqq’Û¼}ûööíÛ‡:pàÀçŸ>sæL©»åææ&yлwïFGG{{{Ïž=[i«zúöíëïï¿råÊÆïŠÇãñx<úøêÕ«k×®‰‰qvv~ge;¨h~šî(ªæÕ«W‹/NIIyñâ…‡‡Ç† zõê%kã¼¼¼åË—_¹r¥¶¶ÖËË+22ÒËË‹}õÞ½{ÑÑÑ/^|ýúµ³³sTTÔÈ‘#•]>µ‚À€“¹sçöéÓ‡}úìÙ3ww÷øøøE‹™™™IÝæÞ½{#GŽüðÃûôéÓ¥KY»’£°°²jÕ*eW€ª¸~ýú… U!iiiìãgÏž=z4""â]Gì ¢ùiº£¨”²²2OOÏG3ÆØØ899900ðܹsR{^322 BCCy<Þþýû~øá‡þýûB~þùçîÝ»khhLœ8QOOïûï¿Þ¹sç| ìRª\ªµðΗš733?~|MMMnn®¬m“’’„Bá§Ÿ~Ú°£Ð9d­[·~Ç¥“¥ªªŠ½:_§šššššEZ œ>}zÕªUƒ âžõP¯jov6oÞ\XX¸k×®={ölÙ²%##ƒa˜… Jn) §OŸ®¯¯óæÍøøø7Þ¾}ÛÜÜ<**Šn°nݺòòòŒŒŒ­[·~öÙg999öööË–-SvÕ GPïü.—4ª«®®–³§§gŸ>}>,ê»ÿ©S§Ò«lÞÞÞ¶¶¶41;;{ðàÁæææ–––ƒÎÎÎf··µµŒŒ¼zõª««««««äß¼yãääÔ¦Mkkëððð§OŸ²¯ÆÇÇ»¸¸èèèõìÙsÏž=¢{^°`ATT”žž^ëÖ­{öìyâÄ @°téR'''===??¿»wïŠfãË/¿400hÕªU×®]—,YRUU%µŒ¹¹¹£F²²²255 üé§ŸdÕÆóçÏ ´zõê’’ùõ6fÌMMÍׯ_Ó§û÷ïgÆÅÅ…Ý`Ñ¢E Ã\¿~âççG{¶¦N:tèPBˆ¯¯/[Û„ .·oßþÃ?üóÏ?eWNYdÕ¼äAÙüÔ·Ú崠ԢɯùóçÏuîÜ9**JVóQW®\:t¨¹¹¹Ø°]MMͺÏrBöíÛgaa1yòdúÔÎÎn̘1éééOž<ÛòÁƒÓ§Ogûø "##srrnݺEÉË˳´´dÛZKKË××÷ùóçüñ—œ'BP4{{{egA(äÖ²„¡ÄŸbÏ ©‡PøQ yi’Ï=£šæ¼Zµj!$33S4ñ÷ß·´´ÔÐÐ(..–µ 5gÎBÈýû÷åo&éöíÛŸ|ò !dãÆéééB¡ðèÑ£|>¿C‡‘‘‘;väóùG¥ÛÛØØŒ=ÚÈÈÈÖÖöƒ>ÜaXXÃ0Ë—/1bÇëÙ³'}‰Žìß¿ÿêÕ«—-[æääDùþûïÙ=™˜˜¬Y³fݺuÆÆÆ­[·öòòêÑ£G||üìÙ³†quue7nß¾=!dðàÁK—.õóó#„ôíÛ·¶¶–¾:räHºåéÓ§[·nmkk»hÑ¢?þ¸S§N<oïÞ½ò«åÞ½{„U«VÉÚ 11‘’’’"Zÿ ÃüñÇ4¥[·næææ4?¾¾¾nnn´¶W¯^MÙ°a­m{{{}}ýyóæmܸÑÇLJ"µbë,‹¬š—<(›ŸúV»œ”<ŠüÜ:tˆÇ㙚šÎž={îÜ¹æææööö„}ûöI<55•a++«%K–|úé§„ºç:OòW¯^1 &šø¿ÿýrøða±éuüøøxÑÄC‡Bh×þ¬Y³x<ý¬ …B@àîîÞ¡C‡:³Ñ€/%•ø­Wüx+žòO&οA)ó;©¤¦+ö&L˜°dÉ’%K–,^¼xÊ”)íÚµ#„ÌŸ?_t©áúõë !?ýô»™$ooo©‡>zô(»ÛÊÊJ[[[›’’újII‰µµµ]ee¥P(´±±!„¬^½º¦¦FrW¯_¿æñxS¦LaS¦OŸnllL_;;;{{ûêêjúRii)ŸÏŸ={6}jccÓªU«¼¼<útÆ „WWתª*šâííM)++c³±nÝ:ö@ôJ"KØÀ±²²²S§Nîîît³·oßöîÝÛÎÎN ÈiŽ:ÇÇB-ZDŸvíÚ•ÎI§Hii©††Æ´iÓè«¢ÚñãÇ !iiil© !ÇŽ£O“““µµµäå—E~Í‹T,pä^íò[Pô(òsûöí[kkk ‹ÇÓW‹‹‹---¥ŽoÞ¼±´´´´´|òä »+SSSš«:ýüóÏ„ÈÈHÑÄ3gÎBvîÜ)¶1í¦;v¬hâܹs !qqqB¡°°°°cÇŽ:tøôÓO·lÙâããÓªU«:ÿ"p¬LŽ€æ‰N –œI-+½ÑD/Ýòù|‡¥K—r™m yû$ÉYÕ4F‘/''çÁƒ ÆÆÆ4ÅØØ˜v=Þ¼y³{÷î„ ‹+VhhH†¤¡¡Á0Ì… >|hmmMILL¤s„ìììÖ­[óùý(<þœRQQÁ¾½GŽŽŽô1íD e¯EúûûgffVTT´mÛ–fLtŒÚÊ•+·oß~àÀñãdz‰×¯_/((øßÿþ§­­MS´´´æÍ›–““C‹Ó0íÛ·wqq9{ö,!äåË—¹¹¹_}õÕ¼yóÒÓÓƒƒƒ322jkkÌeWöööǧy<ž››[jjªäfòËÒ¥K95/÷j¯³9æV <|ø0..ŽvÓ“jþüùK–,‘ÜUFFFqqñš5kÌÍÍÙ]}üñÇÆ ;tèД)SÁ‰'d•nĈ4‡zzz¢éúúúlD™™™=:99966–†þß~ûíöíÛ !eee„›É“'¯]»6::š¾eÀ€˜X¦X@e4l„¢¬wÕwouš™™™§B‹)**"„ØÙÙ±)ÜgU‹*(( „ˆ ^¤Ã¹ h¤åàà 5j$„hkk'$$,\¸ÐÖÖÖÙÙÙËË+00pÈ!­Zµ"„fee¥¦¦Þ»w¯  àÎ;bƒ2Ùh•BÉ–³³3Ý-¥££ãààðË/¿ˆnC;ÃÂÂÂÂÂIJúèѣƎ„   ¸¸¸—/_ÒÎZooïôôtBHZZŸÏ0`—ýÐK´,Y åÔY95/÷j¯³9æ–Ž íÖ­›hº¬¥%ýõW"㜤“ÆÊËË嬆# iqÄFŽÒ(ÐÈÈHò-Û·o/--¥}ÿ´ÔÑÑÑ«V­200 „LžpàÀáÇ÷îÝ›VS>Ÿ_^^.šB游8ɵÍ;wîÜÈÃÆÆÆ¦§§geeYYYYYYùùù-[¶¬´´4--ÍÛÛ›öiÕ‰ã|ö:Ë"«æÙITYYɽåçöüùóDâ4“óß!D,B¥Àé[ôõõ…r?fffbžè\¶ËS”‰‰Ijjê¥K—nÞ¼iffæííM3lee•››û¿ÿýoîܹlo÷°aÃ455ƒ‚‚þïÿþoñâÅ ©j@àjþÎ …Í­V™Ø1'''###$$„½†Ø`:u"„ܾ}»_¿~l"LêààPçÛŸ?^XXhoo^[[»mÛ¶yóæíرÃÛÛ;%%%!!aÁ‚ìö ˜κ{÷nuu5ÛöæÍ›¼¼<___Éâ´mÛvРA¢o¼}û¶üð—‹>}úèéé={6;;»oß¾„__ßÚÚÚ~øáúõëtÔ©É/‹œšWÈæ„ÌÌLî-(?·ï¿ÿ>!äÚµk¢íuãÆ 9»ÊËËM¤}ôœ¬óR5ŸÏïܹsFF†húùó熑ºVùÍ›7õôôz÷îÝ»wošòÓO?1 ãååE=}ï½÷D·§O%¯zCƒa9hþh¤øÎ—ã©SAAÁĉ†aG\5†‡‡‡••U||üË—/iÊ‹/6oÞlmmÍå&uùùù½zõÚ´i}ª¡¡A#MMM:›„ÎÃ¥’““ËËË… ¿KJJâããÙ§111eeebwtsssppØ´iSii)M)++ ŠŒŒlÓ¦M#ëJSSÓßß?%%%''‡ŽžžžmÛ¶]·n]°b¢ü²È©ùÆTǤG‘Ÿ[;;»Í›7³«á”””lÙ²Eêq=<<Þÿý­[·²»ªªªŠ‹‹ÓÕÕ¥ ÑKղз̘1ã×_¥Ów!¿ÿþ{rrr@@€è¢H¬™3gº¸¸Ó§yyyIIIC† ±´´ìÖ­›¶¶öž={*++Ùí¿úê+BHÙ€TèqT;ªÔ×ÐäØŽFJÙ±ãöíÛéï_eeennnVVVUUÕ¶mÛDoÓ`ZZZñññãÆóðð  …û÷ï/..>xð ––Vo÷ôôìÒ¥Ëúõëï߿ߥK—üüü“'OÑ;pèèè̘1c„ íÛ·¿xñâÙ³gMLL233Ož<T߬ZXXDGGgee¹ºº^¼x155µwïÞìB}ŸÏOHH1b„««kHHHuuõÑ£G‹ŠŠöíÛ§{î9r„BGçãã“’’Ò±cGY·Ý£=Û·oöì™è<ž:É/‹œšoÌAEùùùÉoA±£ÈÉ-ÇÛ¸qcHHˆ»»û¸qã455÷ïß/kíLMMÍ-[¶»¹¹Íœ9“Çã%''_½zõóÏ?§Wáë¼TM™2eÊ×_=a„9sæìÞ½»¢¢‚®D‰]¿~ýgŸ}6kÖ,BÈš5k‚‚‚zöì\]]}àÀmmíÏ?ÿœ¢££³mÛ¶©S§:;;5ªuëÖçÏŸOOO5jÔˆ#FÁ_”=­[ )yŠ~}Ú”`9P†f·Œ—ÅÅÖÙaÆÞÞ>,,,++«¾»%º•••hfffffxùòeö%Ñ%¥***š6mšµµµ–––••UXX»ÔKzzº———®®î{ï½^RR’˜˜hbb2hÐ É=Ó —‰‰‰lJLL !äéÓ§ìÆéééýúõÓ××wtt\´hÑÛ·o¥f2''gÈ!æææ†††¾¾¾§OŸ®³Nê\އ-,!ÄÄÄ„M¡wŸ9s¦èf¢ËßÔÖÖ†††êééyxxЬŽ3Ftã‰'Ë:¢œ²È©y±ƒŠ-ÇýÚå· ØQê¬ùóçÏ0ÀÐТ¯¯ðàA"cGº«aÆuèÐÁØØxÀ€?þøc(¦´´tÆŒ:u2666lXNNûýÈ$$$°)§OŸ¦%µ²² g—ç¤233ƒ‚‚,--õôôzôè±cÇù«;QXއ;FˆÞ)EsppÈÏÏWÚáëÓãÈ0Œä¦Ìßcð”Fê¾{h^”ü&fkkëææF{û ¹+..n×®—.íf­_J-ö{ —ª@:ºô7 £Q±i4K²:…Dbt¨6ŽjG¥â0Ù3;ªTn@‚‚‚¸Üš#ŽÐ´˜¿§ÂˆAÔ ®¶mÛ¦ì,@SÁ:Žê‚£‚¬¥æWÙ€úBcsÆå½èÕAàØœI½µûTµWWÝœ€ ›9vö‰h‰ÙÊÐ0Ʊù“ ª|Ôˆ1ŽÍGàcóG¯PÓËÓ ó¯§ŠƒÀQ-°£…BDÐD8ªY«có×<'Ç@³ƒÀQ]¨öªÍÚêÕ«™Ó××ïÞ½{bbbmm­Ôm444'MštéÒ%ù»b…††J=zLLŒ±±q×®]•] Šakk¬ì\üÃÇÇÇÝÝ]VVÇŽ«:ùQ¢k×®1 ³ÿ~eg”ë8@³Äp[ÓI¨¸ÅæÇß¡CBˆP(|úôiJJÊŒ3òóóãââ$·yûöííÛ·:tàÀÏ?ÿ|æÌ™Rw%ÊÍÍMò wïÞŽŽöööž={ö;«[•uëÖ­µkצ§§¿~ýÚÑÑq„ óæÍãóõCÆãñx<}|õêÕµkׯÄÄ8;;¿³B‰T4?Mw•Õ·o_ÿ•+WÊÙ&//oùòåW®\©­­õòòŠŒŒôòòb_­­­Ý¶mÛÿýßÿýòË/:t˜6mZdd¤¦¦¦²K¦>ZJàxðàÁ¶iÓ¦_¿~QQQ†††r¶3fÌíÛ·Å/\¸ ì¢À_ê 9—Í;·OŸ>ìÓgÏž¹»»ÇÇÇ/Z´ÈÌÌLê6÷îÝ9rä‡~اOŸ.]ºÈÚ•………„U«Vùûû7y…ª¶û÷ïûúúÖÔÔ[YY9sæ£>:þü‘#G³Û´´4öñ³gÏŽ=ñ.Ë%vPÑü4ÝQTÓõë×/\¸ ÿTÏÈÈ000 åñxû÷ïøá‡ú÷ïO©­­>|xJJÊÈ‘#ƒ‚‚.\¸°xñâüüü¯¾úJÙ…S-"pŒß±c‡ŽŽN÷îÝ>|xèС‚‚‚ï¾ûN[[[Ö[=z¤­­mcc#šh`` ì¢¨\V‡æÎÌÌlüøññññ¹¹¹là(ÆÑÑ1))©{÷îŸ~úiÃ.ó …BBHëÖ­•]Ü¿TUUñù| NÜjjj!Šê?ûè£^½zuéÒ¥îÝ»BÖ¬Y3}úô¯¿þúÔ©Sƒ RvÅ4­zU{³#Ξ=›••µmÛ6vì‡TB¡púôéúúú7oÞ¤º+VtëÖ-**êÚµk„ï¾ûîĉ»víš1c}˸qã¾þúë%K–têÔIÙUBuwïÞ=GGGŸgϞє˜˜{{û5kÖÈzË«W¯ìíí,Xа#ÚÛÛ+¡œ jJBˆPâO±g…ÔCüõ-•B>#DX÷)Äe.V­ZEÉÌÌK§ý7'Ož”³P(ìÓ§ŸÏ¯®®–¿™¤)S¦°ßÕ6664ñòåËAAAfffAAA—/_f··±±‰ˆˆ¸r劋‹‹‹‹‹ä+**>ýôSGGGmmm++«éÓ§?yò„}uóæÍ]»vmÓ¦¡¡a=’’’D÷<þüE‹iiiijjöèÑãøñãÕÕÕK–,qttlÛ¶­¯¯ï;wD³ñÅ_èêêjhhtéÒeñâÅ•••ì«#GŽd÷|ûöíàààŽ;š˜˜ 4èÌ™3²jƒE4%''‡²råJ±-GÍçóÿüóOútß¾}„®]»²,\¸’““# }}}ÝÜܤֶ͘1c233Ûµkgii9kÖ¬²²2Y9”SY5/yP6?õ­v9-(õD’_óééé 044trrZ´hQVV!dß¾}R ž=dÈÉŸø|>—óüéÓ§¢ïZµj•¬-ùåBÈÒ¥KE¿øâ BÈÍ›7…B¡———MMM —ãŠjÀ—’r~ëU€ú÷88p ¶¶6""ÂÔÔ”¦,Y²äرc'Ož\¾|¹Ôà=zDënURRràÀ WWWù[º¹¹]¸p¡¨¨ÈÖÖ¶^‡X¸p¡••Õš5k6nÜH»ÙŽ;6fÌssóÐÐP†a’““ûô铜œþ\4qáÂ…öööW®\‘ú–ãÇÛÛÛ>|¸aGDc‡@c ×L{'L˜°dÉ’%K–,^¼xÊ”)4™?¾è6R»ׯ_Oùé§ŸØÍ$y{{K=ôÑ£GÙÝVVVÚÚÚÚØØ”””ÐWKJJ¬­­íììhýwwõêÕR{\^¿~Íãñ¦L™Â¦LŸ>ÝØØ¸¸¸X(ÚÙÙÙÛÛÓnQ¡PXZZÊçógÏžMŸÚØØ´jÕ*//>ݰa!ÄÕÕµªªŠ¦x{{BhoÍÆºuëØEEEBöîÝ+éq¬¬¬ìÔ©“»»{EEÝìíÛ·½{÷¶³³u6ÊóçÏ{ôèÁãñ~þùg±—?~LY´h}ÚµkW:'~«—––jhhL›6¾*ÚÃwüøqBHZZ[jBȱcÇèS@àäädmm-™ùe‘_óbëqä^íò[Pô(òsûöí[kkk ‹ÇÓW‹‹‹ip&ÙãøæÍKKKKKK¶ëúíÛ·>>>¦¦¦rºfe¹wï‘ÛãHû&ÇŽ+š8wî\BH\\܃!“'O¦ÿeQVVV\:øÑãÈš÷8 …ÂÂÂB######Ñt{{{BHQQ‘Øÿ¯ý/öÉ“'“'OÎËËkÓ¦MçÎgÍšUg¿‚Ò`-€¦·gÏö1ŸÏwppXºt)—ÙŒÄÍœ$gUs¹Ä‘““óàÁƒ„„cccšbllyóæMúciaa±bÅ ©== Ã\¸pááÇÖÖÖ„ÄÄÄÄÄDújvvvëÖ­ÙÊÏŸ?'„TTT°oïÑ£ÛäççG e'«úûûgffVTT´mÛ–fŒ^¦V®\¹}ûöˆv%^¿~½  àÿû;Ü\KKkÞ¼yaaa999¢¿ý’ÒÒÒ>øàƒÂÂÂíÛ·KŽ]kß¾½‹‹ËÙ³g !/_¾ÌÍÍýꫯæÍ›—žžœ‘‘Q[[;xð`.noo?|øpú˜Çã¹¹¹¥¦¦Jn&¿,]ºt‘Sóòq¯ö:[cnÁÇãââÚ·oO_µ°°˜?þ’%K$w•‘‘Q\\¼fÍsssvWüñ°aÃ:4eÊ@pâÄ Y¥c{Ê9233=ztrrrll, ý¿ýöÛíÛ·BÊÊÊ^½zEùî»ï‚ƒƒ¿ýöÛŽ;¦§§‡‡‡=://OþŒXàNÍÇŠŠŠššÉI-úúú„/^H}í ß²e‹­­mïÞ½ûí·sçÎ¥§§¯Zµ*$$„ËqÄRòóó•]ª…!Dˆxþ­¾“ ¹lÏ}ŸuÎÑÎÌÌä8Z ýJ±³³cS¸ÏªUPP@ûÖÅÅ…¾D#-Y×µµµèUKggg//¯ÀÀÀ!C†´jÕŠbhh˜•••ššzïÞ½‚‚‚;wîÑ·³Ñ*!„.’),gggº[JGGÇÁÁPcÑ°°°°0±¬>zôHVàøèÑ£¹sçþðÃ:u:sæ K+)(((..îåË—´·ÉßßßÛÛ;==’––Æçó À¥Îi/KÖDŸ:Ë"§æåã^íu¶ Çܾ~ýšÒ­[7ÑtYKKþúë¯DÆ9™››K)//9r¤¬Ò ëÿ°}ûöÒÒRÚ÷OK½jÕ*úOË{ï½·oß>Z·C† ‰‹‹›4iRrr2;]¦a$Ö[,5ß¼yC‘ß ««K¡ÿHzò䉶¶öG}4yòdš’••5kÖ¬uëÖy{{Ó{ù&4@½Ö\dÃe9®ãØ`7oÞäóù’ 7Ö»~„B"ÑIC™êêjúTþâsæÌ=zôñãÇÏ;—’’²k×.‡ôôtƒQ£F¥¤¤tïÞ}àÀÇïÝ»·‡‡‡+Ïç———‹¦ÐŸö¸¸8ɵÍ;wî,u'{÷î9s¦®®îÎ;§M›&gÇÀÀÀØØØôôô¬¬,++++++??¿eË–•––¦¥¥y{{Óîƒ:qœÏ^gYdÕ¼¬ùøõUYYɽåçöüùóDâ4“óß!D,B¥3£é[ôõõÊabb’ššzéÒ%:±ÚÛÛ›fØÊÊŠVfŸ>}D#rúZ^^^#+ù³ÞbCI5 †‘ì«§ÿQÉúâØ½{·XŠ——פI“Ïœ9ÃF“uÊÉÉÉÈÈ iä:Õ„zMööíÛýúõcoݺE¸ý†=þ¼°°ÐÞÞ><<<<<œ®“>þåË—4åÅ‹›7o¶¶¶ær“ºüüü^½zmÚ´‰>ÕÐР‘¦¦&MâääÄnœœœ\^^Þྡྷ’’’øøxöiLLLYY™ØÝÜÜ6mÚTZZJSÊÊÊ‚‚‚"##Û´i#¶C¡PøñÇwìØñ¿ÿýoQ#-”¿¿JJJNN ===Û¶m»nݺ:8Ê_JP*ùe‘Só9¨(Ž-H"?·vvv›7o~òä Ûš[¶l‘z\÷ßë֭쮪ªªâââtuu‡Jþ¾T-KJ:sæL6:ÌËËKJJ2d½øŸÿüçìÙ³´’–wýúõX?_ԼǑbffVXXXVV&ú]Cç^I½F  kkké­fEÓéõ :„C(Ä´P3Û·o§ÓW+++sss³²²ªªª¶mÛ&zÛ˜ÓÒÒŠ7nœ‡‡GHHˆP(Ü¿qqñÁƒ%—¤‘äééÙ¥K—õë×ß¿¿K—.ùùù'Ož422¢wàÐÑÑ™1cÆ„ Ú·oñâųgÏš˜˜dffžŸŸ0bÄWW×êêê£GíÛ·Or(a^^Þ½{÷œœœÂÃÃÅ^5j»f¨   zS8òx<Ÿ”””Ž;ʺííéܾ}û³gÏ$—’C~YäÔ|c*ÊÏÏO~ ŠENny<ÞÆCBBÜÝÝǧ©©¹ÿ~Úo'ISSsË–-ÁÁÁnnn3gÎäñxÉÉÉW¯^ýüóÏé/lã/UÇÆÆ®_¿þ³Ï>›5k!dÍš5AAA={ö ®®®>pà€¶¶öçŸN7ž={öÁƒ&L˜Ð¡C‡“'O^½zõã?Vݹ­Í‘²§u7¹„„{{ûãdz)ôî–={ödW4õàÁ{{û‰'Š¥þùçöööGŽ©óˆJ˜¢ßÐv$Ê[Žç¯£´€3$5Óåxä/ê!¶ÎÃ0öööaaaYYYõÝ•(Ñåx¨¬¬¬ÀÀ@33333³ÀÀ@±ÀE×Ö–TTT4mÚ4kkk---++«°°0v©—ôôt///]]Ý÷Þ{/<<¼¤¤$11‘. -¹gzá211‘M‰‰‰!„<}ú”Ý8==½_¿~úúúŽŽŽ‹-zûö­ÔLæää 2ÄÜÜÜÐÐÐ××÷ôéÓRs~ìØ1Y¿b111² K111aSè]ÅgΜ)º™èò7µµµ¡¡¡zzz¿ÝxâÄ‰ÆÆÆ²ªWNYäÔ¼ØAÅ–ãá^íò[Pì(uÖüùóçéà„}}ýƒÙ €çää 6¬C‡ÆÆÆ øñÇ… "u9ú‘IHH`SNŸ>MKjeeþLjnÿüùó™3g:;;ëééyyyíÙ³‡Ë¡±wŒPÝû{Š‹‹ýýýmll}ÅŠ{÷îµ³³ûí·ßnܸѦM›Ï>û¬Î¨¬¡þ¼\EÍ'ÇPÓ¦MÛ¸q£­­mJJÊ‹/&NœøÝwßÉY´ÂÑÑñÈ‘##GŽüã?N:õêÕ«‘#G?~¼W¯^Ê. €Ò¨#5lØ0©£§©Áƒ‹M²355Uv®šŸ   .7Â€æ¨¥Ž jèBÆ?±{²áÊ5@³µmÛ6egš G%ys[Jm&3ý3Gl~ S¿›ÎÀ;ƒÀQuIï,‘Ô\§•HÏt³-@KÐ"&Ç€ bˆDç"¢FÕ†À”Mr€#¨$Ž Bò÷¸FDÍGP†ùçò4}€ @…ar (èˆFD*#(#9±3cT.U7gj3 ÝÍGà#@V¯^Íü›¾¾~÷îÝkkk¥n£¡¡áèè8iÒ¤K—.Éß+44TêÑcbbŒ»víªìjP [[Ûàà`eçâ>>>îîî²²:vìXÕÉ]»va˜ýû÷+;# |ãÀÉøñã;tè@ …OŸ>MII™1cF~~~\\œä6oß¾½}ûö¡C‡8ðùçŸÏœ9Sê®D¹¹¹IôîÝ»ÑÑÑÞÞÞ³gÏVv(ß¹sçÖ¬YsçΚš''§… 6>åñx<>¾zõêÚµkcbbœßY¡Ä*šŸ¦;ŠÊª®®öññaæâÅ‹²¶yõêÕâÅ‹SRR^¼xááá±aÆ^½zInÖ·o_ÿ•+W*»Lê#¨ FÖ­,dîܹ}úôaŸ>{öÌÝÝ=>>~Ñ¢EfffR·¹wïÞÈ‘#?üðÃ>}útéÒEÖ®ä(,,$„¬ZµÊßßÿ]V¦ JII2dˆÝĉµµµ“““Gõÿ÷áááÙmZZûøÙ³gGˆˆx—å;¨h~šî(*kÅŠ—/_–Reeežžž=3fŒ±±qrrr``à¹sçĺi¯_¿~áÂ|jš.UƒjÀühœwö˜™™?¾¦¦&77WÖ6ŽŽŽIIIB¡ðÓO?mØQ„B!!¤uëÖï¼|ÒUUU±WçëTSSSSS£¨C/]ºÔÜÜ<''góæÍk×®ÍÉɱ²²Z½zµ²«ä]¨Wµ7_©©©qqq|¾¼.­Í›7îÚµkÏž=[¶lÉÈÈ`fáÂ…ôU@púôéU«V 4¨%Ô˜R pl¶fü›ð‡4ª«®®–³§§gŸ>}>,ê»ÿ©S§Ž9’âíímkkK³³³lnnnii9xðàììlv{[[ÛÈÈÈ«W¯ººººººJîðÍ›7111NNNmÚ´±¶¶úô)ûj||¼‹‹‹ŽŽŽ‘‘QÏž=÷ìÙ#ºç DEEéééµnݺgÏž'NœK—.urrÒÓÓóóó»{÷®h6¾üòKƒV­ZuíÚuÉ’%UUUR˘››;jÔ(+++SSÓÀÀÀŸ~úIêf•••wîÜ:t¨¾¾>MÑÑÑñññyüøñ›7oÄ63fŒ¦¦æëׯéÓýû÷3 ãââÂn°hÑ"†a®_¿Nñóó£US§N:t(!Ä××—­mBÈ… ‚‚‚ŒÛ·oÿá‡þù矲ÚKNYdÕ¼äAÙüÔ·Ú崠ԢɯùóçÏuîÜ9**JVóQW®\:t¨¹¹¹Ø°]MMMîgû³gÏ&Mš.9ŠCÔ¾}û,,,&OžLŸÚÙÙ3&==ýÉ“'„çÏŸ4hõêÕ%%%Ü õ#E³··oüN!B‰¿Ú‹¦4õQAê!¤gc‹¡Ïˆ("ñ@±V­ZEÉÌÌMüý÷ß---544Š‹‹emCÍ™3‡rÿþ}ù›Iº}ûö'Ÿ|BÙ¸qczzºP(}*šââââââ"¹qbb"!$%%E´þ†ùã?hJ·nÝÌÍÍi~|}}ÝÜÜhmÓþË 6ÐÚ¶±±±··××ן7oÞÆ}||!R+¶Î²ÈªyɃ²ù©oµËiAÉ£ÈÏí¡C‡x<ž©©éìÙ³çÎknnnooOÙ·oŸdÁSSS†±²²Z²dɧŸ~êááAñðð {æø«­­8p ££cyy¹M¯^½¤nöêÕ+†aÂÂÂDÿ÷¿ÿB>,šxïÞ=BȪU«8f _J ÿk.ðS­xë<Ç®éGaÓ|©Ñho„ K–,Y²dÉâÅ‹§L™Ò®];BÈüùóE·‘®_¿žòÓO?±›Iòöö–zè£G²»­¬¬´µµµ±±)))¡¯–””X[[ÛÙÙUVV …BBÈêÕ«kjj$wõúõk7eÊ6eúô鯯Æ4ðµ³³³··¯®®¦/•––òùüÙ³gÓ§666­ZµÊËË£O7lØ@quu­ªª¢)ÞÞÞ„²²26ëÖ­cE¡q 8VVVvêÔÉÝݽ¢¢‚nööíÛÞ½{ÛÙÙ 9Íñí·ßFGG{xx˜˜˜¤¦¦JnðøñcBÈ¢E‹èÓ®]»Ò9é4¶(--ÕÐИ6m}U4P;~ü8!$---5!䨱cô©@ prr²¶¶–<¢ü²È¯y±ƒŠŽÜ«]~ ŠE~nß¾}kmmmaañøñcújqq±¥¥¥ÔÀñÍ›7––––––Ož|8}ÌãñÜÜÜRSS%71ïѱQáIDAT“_–.]ºÈ©yù¸W{-È1·àáÇqqq´Û˜žTóçÏ_²d‰ä®222Š‹‹×¬YcnnÎîêã?6lØ¡C‡¦L™"Nœ8!«t#FŒ çÞŠ+âââ¤., ŠGOOO4‘Ž^ å…wcs"$md§’ˆþ 5÷ ’ª¹—¡Á#¹O9ªóÌËÌÌä8ZLQQ!ÄÎÎŽMá>«ZTAA!Dlð"ºWPP@#-©Q#!D[[;!!aáÂ…¶¶¶ÎÎÎ^^^C† iÕª!ÄÐÐ0+++55õÞ½{wîÜ”ÉF«„¸H¦°œén)‡_~ùEtÚ'&–ÕGÉ  ***.^¼Þ«W¯¼¼À€\êœ^¢eÉZ(§Î²È©yù¸W{-È1·tlh·nÝDÓe--ù믿ç$4V^^NÇéJ% ËÊÊBCCæÏŸÏ±6Ć™–••BŒŒŒê|;(Çæ„ù{0þ_ØÇ˜(j¡ÿ4Hín|g}ݼy“Llä~èÇ_¬ÿ’†2ì9{˜3gÎèÑ£?~îܹ”””]»v988¤§§Œ5*%%¥{÷î>|xïÞ½é`5Eáóùååå¢)4lŠ‹‹“\Û¼sçÎò÷Ö¦Mÿõë×?þèÑ£|ðØ±±±éééYYYVVVVVV~~~Ë–-+--MKKóööf'ÙÈÇq>{e‘UóìBNTYYɽåçöüùóDâ4“óß!D,B¥Ó™é[ôõõ…r»vîÜyÿþý‘#GÒ ñ„W¯^ÕÔÔÄÆÆZYY‰­Šoff¦¡¡!6ñå?þ „°ý£ÐÔ86'Ò?|è¥ø7¡*ÅŽ999!!!òá¢S§N„Û·o÷ë×M¼uë!ÄÁÁ¡Î·?þ¼°°ÐÞÞ><<<<<¼¶¶vÛ¶móæÍÛ±c‡··wJJJBB‚ Øí0 œu÷îÝêêj¶?ìÍ›7yyy¾¾¾’ÅiÛ¶í AƒDßxûömÉð÷ĉ#GŽLJJ7n›hhhHÄþþ[Ÿ>}ôôôΞ=›Ý·o_Bˆ¯¯ommí?üpýúu:êTä—ENÍ+jyêÌÌLî-(?·ï¿ÿ>!äÚµk¢íuãÆ 9»ÊËËM¤}ôœ¬óR5¯½yófÑô—/_.Y²Ä××W,päóù;wÎÈÈM<þ<Ã0*¾°¹:Ár<Í C$:5B ¦:Ñ¡,'Nd&::ºñ{óðð°²²Šùò%MyñâÅæÍ›­­­¹Ü¤.??¿W¯^›6m¢O544hd ©©Ig“Ðy¸Trrryy¹°¡_/%%%ñññìÓ˜˜˜²²2±»¼¸¹¹988lÚ´©´´”¦”••EFF¶iÓFl‡={ö$„|óÍ7¢YúöÛo !½{÷–Ì€¦¦¦¿¿JJJNN ===Û¶m»nݺ:86`ý?ùe‘Só9¨(Ž-H"?·vvv›7o¦ ÜÐÖܲe‹Ôãzxx¼ÿþû[·newUUU§««K¢—ªe!„,_¾\lî;9æÜ¹s’Gœ1cƯ¿þJçúB~ÿý÷ää䀀Ñ” I¡Ç±yB¼ —²:·oßNÒ*++sss³²²ªªª¶mÛ&zÛ˜ÓÒÒŠ7nœ‡‡GHHˆP(Ü¿qqñÁƒµ´´ê|»§§g—.]Ö¯_ÿþý.]ºäççŸ>>)));v”Õ;E{:·oßþìÙ3Ñy,,,++«¾»%º•••hfffffxùòeö%Ñ%¥***š6mšµµµ–––••UXX»ÔKzzº———®®î{ï½^RR’˜˜hbb2hÐ É=Ó —‰‰‰lJLL !„®³H7NOOïׯŸ¾¾¾££ã¢E‹Þ¾}+5“999C† 177744ôõõ=}ú´¬Ì×ÖÖ~ûí·=zô044l×®···ÔeE K111aSè]ÅgΜ)º™èò7µµµ¡¡¡zzz4«cÆŒÝxâÄ‰ÆÆÆ²Ž(§,rj^ì bËñp¯vù-(v”:kþüùó  ƒôõõøàƒ7oÞpy¯P(\¼xñëׯ•]%SÿÀ1??×®]fff?þøã®]»N:5yòä[·nmܸ‘ËÛwïÞ­ìB(Ÿúލ­­ˆˆ055¥)K–,Ñ××?yòdmm­ü÷ÄÇÇ;::*»ʧþã•+W444|}}Ù×·oßçÏŸçääÈy£@ øøã —,Y¢ìB(ŸšŽB¡°°°ÐÈÈÈÈÈH4ÝÞÞžRTT$ç½_|ñE^^ÞgŸ}¦§§§ìr(_ÙhZ555béúúú„/^Èzã7þïÿþoâĉ^^^wîÜ©ïqÄRòóó•]Í;±Z(TvV Å‘üYo±ÔÆ‘ÏçëëëKö,–••BØyÖ¢²³³÷îÝ;sæLWWWeg@…¨yàH133{þü9Y< /In_PP@Ù¶m›ÃßFEùþûï†ªìµ ó¯¿:Ó ‰©ù¥jBˆ¿¿~~~FFÆ!ChŠP(LOO744tww—ÜÞÚښݒzõêUff¦¥¥¥»»»¹¹¹² ÔbH^˜}й2ïœúŽcǎݱcÇ—_~Ù¯_?:'f×®]üñGxx¸¦¦&ݦ¼¼ü÷ß×ÔÔìСƒ······èîܹ“™™ééé§ìÒ´0²&Sc¤#€2¨àhii;|øpŸ‡^ºtÉÙÙyÆŒì6ééé‘‘‘:u:~ü¸²ó ÿÆÆŽ,DJ¢þ#!dÚ´i&&&GMII±°°˜8qbDDí}„æs«”„âXÑ¿Ž#Ã0’ âØözG‘zˆú…†‰l¿#GP6…üÖ7G-¢Ç±™aBˆÔ°Hø÷«„´°y!l¤ˆ™ÔʃÀQõ°’†ÆŽ-3ddIŽz€wBý×ql¦¤FF-.j”UÞ–V ªcs‚~6P"ŽÍ úÙ@‰8B³‚ŽÊƒÀQE¡sT GÅpNx78'€ŽÐÜ`~ €’ pN8'€ŽÀ Gà#4C˜X   €ŽÀ Gà#p‚Àš'Ìxç8'€ŽÀ Gà#4[t~ ¦È¼+€ŽÐÌa]€w…¯ì Ô‡¬Q4](Tv.ÔGh†ØÐÆ‹¢‘"zš .UC³"þëÚ´èc:QÝM#4C’ãiȈ¨ )!pN8Bs&õš54 Ž* ×\塦ÙÞ ŽÐ<±Q#bG€wËñ@3$9 Óbšz€ŽÀ Gà#p‚Àš?,âðN pN8'Uƒ+¯ r8'A-`~ @ÓCàœ pN8'€¾²3ÐX a!DH©ßü!*;ïÍ GhÞÂüÿ1  Å%7û;EÙyhf8B³!+Ôû']n§£äÛ¥îݲ pT=´Û «J#ÕIö8ÊéJ}»d$A7$€\AEIáØq?º!GPeõ§H{jëãÕy‚nH€¿a9à=Ž &Dåy*u.ûáˆë×ÐÒ´”ÀñàÁƒ(,,lÓ¦M¿~ý¢¢¢ ål_ZZšpõêÕÇ›˜˜téÒeÞ¼yvvvÊ.‡zª{º4‡·ÿÆ1 #$DÚ5h"19Fj:ÁõkZÄ¥êøøø+VüòË/Ý»w×ÕÕ=tèÐ|ðæÍYÛ—•• :tïÞ½„??¿víÚ¥¤¤ 6,77·ÉóÚR'S ‰PìO,ñ_•Dú'úÞÆWl‡ •úŽùùù»ví233ûñÇwíÚuêÔ©É“'ߺukãÆ²ÞòÅ_”””Ìš5ëøñãñññûöíûì³ÏALLŒ²KÓÒÑðNj4Ù ß!€ZRÿÀñÀµµµ¦¦¦4eÉ’%úúú'Ož¬­­•ú–‹/jkkøá‡lʨQ£ÌÍÍïܹSSSÓ„yýûÆ' K=»FôÝJö>²]’¢}“RÔ˜úŽW®\ÑÐÐðõõeSx<^ß¾}Ÿ?ž““#õ-ýû÷oݺµh¢––VUUUUUUÓf·¥^ª–£î˜L4xã’^Ñë×b‰²®¤£·Z5Ÿ# ŒŒŒŒŒDÓííí !EEEžžž’ïJJJK¹råÊ£GÜÜÜ´µµ™?Fê2„Bò×øgbŠœØQjeIO¬O§`ÇýkŸÌ?7ÆÑÀÀ€a˜ŠŠ ±ôׯ_“¿ûå?~|^^^ffæâÅ‹O:Jߨx4v.#ëÞE=ÞÎeÖ »±äÀG€EÍG>Ÿ¯¯¯/Ù³XVVFaçYËÁ0Œ‰‰É´iÓÆ÷ôéÓS§N5IF1ŸšVÃßKí°Oë1‹ùïá¡ÿt:ÖErñH©³^D{Ùy3l~dvA ÿS8éÞu @˦æ#!ÄÌÌìùóç4Rd=xð€¾$¹}AAÁÒ¥KOž<)–îììLyöìYæ•ÆõŸ¬Ä.s‰çÄ/‹ÆßœÃÇ`+$B™‘!£è{ %þÞ-õýýýkjj222Ø¡P˜žžnhhèîî.¹½žžÞáÇ:$–þèÑ#Bˆ­­mSe” zhDÔÂ(fø Ä£wí¦>€êPÿÀqìØ±_~ù%;6‘€u/Ç£h Q­±•èw€f #4¦YÞ#FqD3o¹•ê#4 \“UÍñvÕX£TGP×"0\#´`Íg¤#´ßQÎÂIè•€FÂ¥jh‘„B¢ŽwšÁ5khR¡SÓð ‰àR5@³%¬÷Í!#üƒ‘3ÞOØìÑÝ¢Z´£Q¬Ó±zdþY\SlD#–m€¦€À±…bïGÂ5dšýàÌß“Gþ)‹Øä5š+#6Q@!8*•’"6¤`)ŒŒú4v”ö £Õ·äŠ€É1ð/Œºß$†¡¬b—ª…Bõ‹1Ã=ŽÐâÉ¿;éÜjµ )±ØQj(‰+ÚÀGøÓ¢:©h§£ú†Œ”è`G©£[Nƒ@ãáR5´H¢—§Õ})Çõï4)ŽÊ£bñŠÌ‰#êå¯2Š]ªp©Z–¿–ãKU‹ØQj·"VBà„´˜îF)ÔefŒÔ .’«‚+;›Ð¼µ”ÀñàÁƒ(,,lÓ¦M¿~ý¢¢¢ ålÿæÍ›ýû÷'''?~ü¸mÛ¶öööÓ¦MëÓ§Â2Dƒ†Q¨š¬ Ô"Çøøø;vèèètïÞýáLJ*((øî»ï´µµ¥n/¦L™rãÆ }}ýÞ½{¿}ûöòåË™™™óçÏŸ3gNÃó!kP£hºRÖo±ÝPê?9&??×®]fff?þøã®]»N:5yòä[·nmܸQÖ[8pãÆnݺ¥§§oß¾ý›o¾9räˆÁÖ­[óòòžÒɼìRö¨ÉH;Pe˜a ¡þãjkk#""LMMiÊ’%KôõõOžÆQ(‰¦ÛÛÛBŠŠŠ<==%ßµsçN>_¼fîܹC騱£²Ë¤ šao%"ѵÄÄŽ …šŽ555béúúú„/^H}WçÎÅR.]º´k×.--­‘#Gr9®ƒƒƒXJ~~þ_ØùÔäïi1M¼"ŒüËŽÌ߇mé¬[̰àNòg½ÅRóÀñÍ›7„±t]]]BÈ«W¯êÜCMMÍž={6lØPSS³iÓ&ccc.Çý'L”ŠßÕ-ïd-òÇ.…Í´ðøA]Vs”„UÁOòg½Å†’j80 SQQ!–þúõkòw¿£—/_^½zõ/¿übaa±nÝ:///ÅdK,@iy“3àÝÀªà Xj8òù|}}}ɞŲ²2B;ÏZRUUU\\ÜÿûßÖ­[Ï›7oúôé²}¬7˜CþŽ4wj8BÌÌÌ ËÊÊôôôØÄЗ¤¾¥¶¶váÂ…§OŸ0`ÀÊ•+åÄ—Í;wê¿¿¿MMMFF›" ÓÓÓ ÝÝÝ¥¾å¿ÿýïéӧönÝŠ¨±¥hÁÐ÷ ©à8vìX /¿ü’Žk$„ìÚµë?þ=z´¦¦&M)//ðàÁãÇ !B¡0))©mÛ¶‹/VvÞ› z˜@”ä2à«‚€4ê©ÚÒÒ2***66vøðá>>>>¼té’³³óŒ3ØmÒÓÓ###;uêtüøñ’’’GikkO˜0AroÁÁÁ'NTv™ )©éôjùþY×óßþU1Z<õ !Ó¦M3119zôhJJŠ……Åĉ#""èŠ<’h¿ã›7orss%_UØÄj%ÞcÝÿßÞ™ÇÜQ•üœJ-þÞ¶Bk!D¢å}YTxµ˜YF\EA·H¨ µA5T©!Ô(6X"Ñ¢AÁFÂR?Àа‚²¸¼´Z+H¢RK«´iÏï¹3sæ,3gî6sg>Ÿ¼iï=wæÌ¹3sg¾óœgÉ¡­³Õ!HÕ>ãÊ ™˜˜(Èã(Š…£”ŽÔŠRˆ.Ž—~%y›lE¯Xí®#»Ù´ï‹Ôw+IJö2›žm÷ñÇåÞJW›°Ÿ2§Dnï´8òÈt¯o"­°8B÷þbš› <ÁžtÖ[˜’Gh7¾¹i½½Y"2Ä”ˆv'ÇVàµ')‚B“†öT5^1Çæc¸¯éù\[DR.¶R5Fl°8¶ HPŠ$ ¸ÝhÀyÐŽ"ßD”|ÊÞKbwlAlu!Æ„5YÁáØ4œ¢Ð¸ýW=ÆúiDûpv€,ø8!¬”ìí¶5êàì X« õs µÃy8ZsŒ|ÒÐÈâ„ݎ͇[>R˜£#¦ªØÙyZÖ Žs#ô ´#  ´#@ËÁDZÉ`nìò8ºÌ ÎYÐTŽÐAêž*}«4]˜“$@ƒaª4Tü'´æ"LX´,Ž…yjèÊLèh¼€ö€plÎ{˜©ÈWw‹U¸QÍ2Ý)mÖWºzN?•f£{Ò½!oc ëv½‰p/L€–€Å±QÓ"Q¨Tç/iÔ_>B£%¤ŸØì—îšømõ¢Œý¢üžˆ…‘.*66Ú«'Û-k× ™v& Ý`qp‘ÌMGz1ʾYל¶a,Ðû0ýºé¶ rÓ…P2Ó®¤ca%­Õ}vј#/Xêà%Ëë+JOW8M@K@86Ì}¦¾~¡šP¹Ôò«kíx?¸¶§i©Nà‹H·•FXÇ[4[tzo´cy¤Õ"<&LaY+ËþŠP“ÐŽEÔK>šRÄ–†¥ôJ滩D[êŸ(•³Š{ˆQVðŽšŠÜ³ž‘*Ž¡QÉ·êEf%sÍön1+ ”›-¾Cw,@SÀÇÀƒ1=¼æ¼Í¡K÷ ”šrÒ§wUFuɬ¾R9ÝÒœ ¥æ)âìß'H•¾õ~™œé^â¦EöûêÐÎxŒl§Iái!vF„ãp˜“óÔ!9^‰væÆÊÃl° cÒÒCú’º`²Mt¼:ÖNè:žÆjíPTRF’RFL^„8yï[LyvŽ­&·Ø½Ñ Þ <èaÔIËÀ(©ÊD׈RSб[+l1o)=žFyVˆæ¬#é]L­³Ço!Ò]ÇM;—t~IÛ<)²RÒ9€|£cáæò[ê>ŽMsãð”ÁØt›s©Ûþ˜ [±C=º€SUªlka ŠúÀŒ˜kÏbΫTÎܱs0½çtôMsûÂ_¤§‡ò{`@8Ž0ú< ¥NÿÒñô–VZyßx¶å )’PIêÆŸ?—%Ϭ{YXS:÷­”Ê¿Ãs2õ8SÿäDX+í0$ü¥0'$vÛùØ@˜6Ô„ã¨rc†‘ (Q޲ìáÕe‡‘s¶—0"°ÃtÔ NÑ^œ¥¿½pî;__:sjæ|„+$ŒÇ‘ÕXs¤G+N˜&h“ÈÆB¹9¿Q­0wæ)2Bñ¦Kí„iÇà­§;L™0ç¾s>R®=/¬/=kõ¨S  ˜ò³Õ…òÊ9)œñÎÊ07v^ˤ„œJ§_ ùµ’O£‹Ãv¨H[¼ÙÁO,¿Ãç¾}b.ÐÉRï§‹¼’BtF®éx¥T)C&@)Ž}$£dœúQj ¡ÁÆúåîúž Úù±¢½“±;z|+“=έªI»«ïR½ã AïYùŽBdwò:VhGÇÑ@¦Ù™w«¤‘9ëJ±v¾>ÃkÙ)¾Š¾ðjéø°øh×ðl¨vκ«;ÈÉžSʂ蛭¶ûì=L) }á8$•€¥‘`Øoªi (˜­.š~Œ¬QO݇;XÞ‡ÖVÂ#W  ºV“¥‚©‰Ü;k_‚²`@ G˜Ñ²Ü4 ëìN²h¢ :[cú¢"¼ñΣyðGÎèü½§=/"'LÛ5•3 ÌÐ;Ç!2°zƒ0d¤ÊÑœkt´Îßì¤Èµ[j›ªãIC׸ەy4Ç2GÃSÚªC²E”áP€i•qh5§»Z™>]ëdîñŽwî;¶AѶ26^;öîÙ…E°T¶Hòû@YŽ£J#'ûj‹éˆ&¥PJi‹1Zø¬ÓÀ¬µ„›LS笋¾µƒBh¦áôO_”Í P „#@ÅÉöÒš."Ü^CÔ‚öÝ£DE¡vTçÓ6ˆKY²=c>:ç¼ ÉÔæó Ž#I í4CÃ=‰y4Æÿ ‘N’çéöDA(G´óˆv"SMmODû»Ù²“Ú^ßVë­m†ìb¼ç' Rì:+±6Ô$¡'ŸŽt7=Ê5ž¡ÝäÅG‡EÚöò¼ü>Ùl3$Ù1­êÔ ŸîK’çEõ<+cd†”ÊXÖsKõ—¶k3ªsÑ} wV%N°œ¬OªÐ#·Îd€‚p=˜§î^ûbö­Ô,4Qa`!„ðVŽ—®»ª” ;)Ð!…$RÏ}v‰Ì n4,‘RÓ…Q NDò2§+!@ãaªZJNl©QEÚ˜°ëL5KiÇlpL¶È’—Ü1©ÄŽë…蜌)•-RøÒŒE±¥ÌËTMá „çþç•0q:žÎ}´3ƒ-­Ñ@)N3yb>לöÐŽ=ÇÆtQÞÚX«»™hC4„ã%»‹)=žíË’¹æ›L”»XIœ¨nuçáôÕ/´Ý¨òNx6òéo~ŸOé#ô>@K@8ŽÑüS”Ñξð§†WØ%Ó9a¤q,L6ø€=?@T’ŽÇY‡¦êáyqzùGÚuÑš4ã*×*ObH€fƒp},Tm'†²íxÿóæëŽ4÷Àþ3âæ[ëÇî­m>ÌA¹Kk¸ì7É©Ç]Ð ¿€Ñ„¨ê‘‚ mÒ{{Îܪ¤çÖUî~V¹h2ÌEœDöÙBÔUÖëÈÈvzLÊ`ƒ(Ô,ŽÐ@Òú.BX¶+Gè€a\¤Šô@ÉÌä*‘—Þ¥ã< ƒ"ÿKæNU+cá’áÕN·HÌõá8d‰›_’„f$…sJ§Ú|éxÒe‹îd2½A(çkK±³W«  ͸*ÖòÊ5…m×§16J}€‘áXGT¼›m”.“•Vî»UjåÒî‚T‘®’Lö¢x—·¦Vu­HƒÓâ˜uÖì&1¤öiŽí_`ï¨%Ç!ÒÇøBX’0;C ²ËzŽU¤ëŠ*/s¸µpÕãm:–Å1ÇLètstÖÎö6f´êF[‚cn¹å–E‹MNNwÜq—^zé¶mÛWüóŸÿ<11ñè£v¿í~èE©¾^e‘iBi_~Æ ]Çñ&G‡c4P”PÉŸñ6i„W54 ^‡×Ò4jdwþM J)£·ÄÐÔ’VXW®\yÝu×͘1ã˜cŽÙ²eËÚµk7nܸfÍšéÓ§®{ã7v³I§Scœ/:} = ³¶ÄÄÜéÅŽ§£”Ù›ŸxnÉ2¾ªÐ_”PTi¯!…iÆsr:ê¿ßœëaáŒ6 “æ Ç©©©Õ«WÏ;÷Ç?þñœ9s„Ë—/_³fÍÕW_ý…/|Á·ÖŽ;ž|òÉÛo¿ý‡?üa7[M4¢q5ÔÊW½cFâ8•X2ŠL”ŒåÄè,–fÏ™¾§ó‘ì˜ ”hǺџÄî®U©Î)l04š?U}óÍ7ïÙ³gÉ’%‘jB,[¶lllì®»îÚ³go­w¾óçœsN—ª1"š=3lTRv¡™§þ€"zKFU‘Q±8|þŽPòCJËͱSŸÆÓUŽ— ‰!ª¢ùÇ 6L›6íÄOLZöÚk¯N8áöÛoä‘G,Xà\kùòåÿýï…ßÿþ÷xà~[c·øÜä;Ÿj·ŸÈôû8*GG}•qƒÒâ´Ó©sèhÇ:”|?-X­P &›ÎYÀçgBD@Y.•R›6mš={öìÙ³õöññq!ÄSO=åŽÇ|ôâ¾ûîëÃ8´ä/ÌSw³ÐmÆ‘ä߉ãq.:iu×·C —Ôç©;åÅ9Ö]’d3M%bqT)(KXôу¯õˆìÀÄé§.•ª÷ ÀèÑpá¸sçÎÝ»wÏœ9ÓhBüë_ÿÐv'&&:¯ÆÇÅÄ„ŸššêN2¶sžÚg9Ð#1ƒw¥/µpˆ,ŽÆTuÇ&†jì’x¿ÅާN×FrôŒ ýªO#¬·ù«ô‘ô¶Þz.wíÚ%„˜1c†Ñ¾ß~û !¶oß> íNMM !Òøãäb˜ ³ w·9Z¡L[£ R… º( ×—P9]Ô§1JƒŠ¬-ÓYð ) ý¢s[×h­”l¸pœ9s¦”rçÎFûþóÛ‹3ª:˜vš}8]T|ïI’ò `‰jL¢ªñÂÄY.ÝÕ§É骰”"²JÑpá¸÷Þ{Ù–Å;v!’8ëAÁLey:‹Ñë8{Q'ÏŽgÖ9šíRñ*™(1¼¿ÐŽÍÄ_ŸÆ—Ò˜Å6ŒŽÐ/šŸŽgîܹ[·n”bÂæÍ›£ª)¤P©+ùkèÍÑúbI)ø­±D ï‘x‰þPC oéG}=¡w;Ù8½S ÀIó…ã)§œ²{÷îûï¿?iQJ­_¿~Ö¬Y“““UÎA§xZ\ÂNÿkâ•,{ÅöU‘ŽþÿµsÅ ¥¤RÙ,<Ãû•DZ™"¿® Û†³ ¶ÝžjMæúDó…ã¢E‹¦M›víµ×F~BˆÕ«W?ûì³gžyæ>ûìµ<ÿüó›7o~úé§«lk ò_·­ék)•ö7䡪±c*æ šN¤ ?!„ñÖh±‹³nrpFŒœtâÒ?tŒ5?J[}:ÍÐpG!ÄxÉ%—¬X±â]ïz×Â… ·lÙòàƒyä‘^xa²Ìúõë?õ©Ozè¡wÜqGÕãmƕ٣1€+¥Ž/†ÚhÔ[â8 À(á¬óYº ¡'éOÙ˜kb´š/…çŸþpë­·®[·nÞ¼y‹/^²dI”‘§¾4ÑUN¯%m(„ʹ¸ ï:ˆ•i²d»ý1ÂÎ(nç³ûç*mCRp©ïLLL˜ Ÿº¨O-¤-Ý1²ûªYI0òà¶¢o" yNþÍ^±ý;JoÛùEr¾Kaú^wW'\¦›­ø6úE†³•n7ÑÇ­äXeœ^Sx-Ž*p+Ý~Á~î±ÐM g+uÝ]ùfHpmqNø‚¸3£[‰ã^ßZaq¬-ùîüFñºQÇ“;û0߸ÇE¹ê*°%#´<3dÀoÐ,dj5– g4„ãàÉ57:olRÄ~ü®pÝQÁ[60ÎËè¹P;÷Òè]ˆ¥wR†¡Ö­"ßë1°°¡Ý[N_}Î9h6Gf4¢mn4ç+ý²P¶ÉU›š‡>X®:méDU‹Ìª„>µ £s¤ :'£•uÆ„œ%¶¥> 4„# ·#y“õq”éÿƒ÷©ø—ÎÆ‘V¿uÄg­ïÌSçyR:|±M6’R… C»ÒþÕ?ÅßZBóó8Ž pÌ2µc“›ÇͱQDªQª(¿c“ç'豈: ”37¤ÈÍ騲3Ô¾¼ $†„¦‚Åú€×1O‰dLµcC3êE>©NûUç‹”õ ÉhÇR–BéñkìÂ܈…F„c½hž¹QX³´Yo?£JuÕ£ï×Nˆã2Ì Drtƒ{\8gŸOE®ÈKœ#œ>$†„æp„^ñyö¤W[m†Zé…§•0¯œ²¹6LÐ RwAM#f’Ê„Æâ£þø³SÃåSw^]Ø @Ý@8B?‘Ù‡ìœJ_-!ʑѱêñ€æ™–¦‚c«BKÈ1Czm“R ㇮”¾¼r™!É5áX#Fñ.e<| ÏTµßêæ›®m¢yê$ ’£ãÐè}^·A¥Ëa§2ëQ9ßIbH-ŽPŽÂgeë’Ù™ô'2læUQ‰LT5Âq8d« Z§¾L B—”®O#Ó¥õ@bHQŽJ'š>£”~´QZ}gC<ùJ<7iYQÑŽµ¤Ön(ÝÕ§ÉïÊ9WCbH¨-äq0Áב˜§Ž¾Hò¯•Æ¢Þ£¯(È¡’à€®‘9Gåðp&†4’JšÝêÇŠÑïX™»—K€ï)Ù&×Ó±d¾~»c†ê…QpL`CA´5dé½>Í@Cb³„þ‚p¬ýöcXe-þåOD›D+ÍIÔÇhWš†Faš~:‰:4¡/Ôºê¯#…u rbH€þ‚p¬#3OóyæëdÁëýņJjÝq…ácÇD/;Ï?‰Ñ±î?F-ŠêÓT’3$t Â|˜ ]‹på Â1AokGvf P›díä`é"1¤rv’¤ý*9€î@8Bª”O‘€N:%ãÈôtb}¬QÁÈDDÚ Pcº ‹Ä"ärêŠSÌO )0CB «§&æläŠÀçQHž’4à. B”L‰‹w^ëÙ?X¼¡ kdgZüWŒ@Ç© „ÈËÎ-:O´ ( „˜Tš'FGTcѵ#À€(e† ïMj“ÚáFGgšñÁ]¡|EX¹«Ô„ãÈ¿éŸVe}LÓå(;t¯à—_yiˆ©GTµobºsÐ*¼WŸ¨’™$F´µÞmY©:Ø+¼Óõá8<œ÷3 OWzEÒ; ®ŒÕ£ýµ¨jgòÄôˆ|„áW;lšB÷q4,ˆºU ßèè»`,h9Ç6’Ÿ£;^$mövDŽÆ2tÔyrÝ7ÞB1¢­í<#{?•„¡¿¤ÁÔ¾ËE\ŸFun†ñòä÷J¶ÝÜ(uAÞùsɤT\,ʹî7̵nj˜ÑËÃÉì? è+*±ú.ÚÕØðk4ú‘Ùj‡É2¥„ ¯Vp$EƤJ|§¼³qä/°áˆ@B;ŽæVi·heÍ  ¥œ2 ùÁÔÉÉ묔­ç,”¤zÏ\Ñ SÕíF©dzZ›§†!’DÉ.SÂËUK!шP#RWÝ‚3߯QŸÈ¼1IÝ6Ž•Q¡¹QèOñTu¤cíhÛÆªÜWC $|Mo”Ò£SÇŒã#60J%†,ÊÄ–.Y*¿ýB¿‘áØpŠŸ>c+Wêé(„–‘Gïˆ{ÿp©CØ dò 2c·I ƒ¦»Ä…š¯l~'äéhÇæã¼ ýtù˜$I/b0ÊCæðA8ÃnÑw7ùÂßdNµE"˜jIT#IyÖz=ÒIgç#k¦vf­Â`j½ÿô‡áy*vnçôŒv2Ç!a¤ôÌ”3ü jŠ>C­×!Ôÿ…QÅ|  LÉä5Ô«Æl©Dº{}©ÕÃ{6Úa@ ›€Ô,U2–iè¢G@ѱrt]è¨úu¤ÈÇѸKf6D¡ý$IÖ¨#šÅ1'°&¢ë`j£èvaÚ†¤®mmÙ%Ça3s£Q¿µì,³®XU£_¼t½˜}Hɵ®¨NÑàGÃâ¥2á×ÍA†5æ•:ôL§N—•0+7G‘^`±MvÂq` |†±È‰*€•–y+Ñ!u˜˜ÖòòDá1Ò(¡’Œ<…&F§Ñ‘ùk¨ 5v„u±P³²E†‡i+ËT™¿-.¨ÝpQ¸4#)¦#£T.Щ ÁB7h毡ΔªXÓE…‰œ0mÑѤ?]€p*}§Žzeìš¡^&P!‰#N’Ü1:pÉd ²æd|Íàñ»h!´ 4œ¼Š5Ù"C´EVGÚþ‘¾”*–(¸uÆ G‘°G5üGÝ)Gwèæ ÖŸŒc&¸¡ò± ÑP;¼Þyë_älƒ¥­2õ ™¯S©Àk0­ê4)¤TB iüu>ÒÞöºÜ{†òüÁÈ@ùÁÖ`_TÇæÜùÓ[â4ýœ0z¤w"gú)•K½)_cº^6»à~W>¦ÚÞœh«šÄâ8”p¤ß3æ©Ã…c6WŽ•‹<Í¢±%W"9ôÉ µTÌV7ÉkÅQê½ØÞ“£„UŸÆ ‹)æÂr’þàÜeƒÅ±îDªÑUQ:Éç9«%ÉGåy-²ÞJ %„’’œõFvþ”pN;8­ŒñšîÀjË⨙W$’FÍâèø0þW†û5z®ºUR˹žªÍµ,Ž#EP>om|™u£ÖH;Êô s{É$éL|#¦Á×.GJÑÀ¨S*L[øv_e¦~¢aq4ŒùÜk ŽC¢»xêd’Z3:g¸¿Ïlþ}iÒ']mžº“à1>I$ Þ¿öL$dBp|Úí£NŽ…¯ÐFXŒÑ¹/…d{@8Ž–cSÂi,()©Ô¤åã(róY@ £v}š°ªTƦ’{ €ðh¾öÁ² Žžº¨R¦Ð\'tÇL ŸÒ¾àhI:ž´%*T®™¥Ó”ŸQrÇl­BhRDQÕ"Ö…FDc¿î4‹ncž„fP:ÚÆßOKæŽUâ‹ä(‹ Lèˆ rtèh8ïSgqpŒÈ‚ë¦gKh8j@x‰ívÞ¯ŽAf/ë®+¬ãá$SUPËÏgwß2‡ (À6NÇo0:Ž*iýçTufžAõSÆ éíLäe2ïN¤Œöof¢öE„ã@PñeÝ7O-S{€VB©$õA²ƒÊV¤L“7é—34OÞÚFGÌ­¡3¤ aÚ-áXŽ8˜lmu±ãcD[pÀƒž‚'s¶$¶F]):­˜$Gsª:〘Ô*ô¯ÊG}É.ž¾Š7‡y¾NÍ–Â^Ò¹z§€¸t4ŽOŒg7ÑëVòsoEŠ®;,*†.Ó?師öòËSÙ÷­hs‹8-h§žptõ´ó5Zàéƒ$1ÚiÚÑ>ß|JNףʩéÅ•-2€LáD}ä½a˜6û }b‰Êm%Àj[Nd»ö’_6Y¦`^# >(è Ïž§•ÆéçíV¦Q_Ù·P濨²üÆÌV³¯ñ ©Òô¥SMêÓî¥ÄKŒ°<ýî09â}sÎWîe+}ïp8û¡‰ lذaÚ´i'žxbÒ²×^{p [·n}ä‘G+è¶Óý?µÁ(íÑWyþ†CÁ¥Ô´ÖÉ”x!•‘A©C¯åÆgd)ït¥w›4zloé¢VçÆãa¨¬ñ¬@žŠì ÃÕ¡mOUÙ´•ÜKl%ÞDb 6·âï0g+BûWÿsž/¶—÷ ä6†>3d×µFèmŒ?ɹKá¬]SwzÓÜ|Ã÷aÞwÉߥT6¦­·C߇ƒÐa}‰ÆüƒÒÅV쯜ÔY°Wo.G¥Ô¦M›fÏž={öl½}||\ñÔSOùVÌVlÈ›Tû"TLΙ’YQë9÷lµÈZu?øtc™«ªŠ·¢ÿ7Ê €’l¡“§tŸ¤V^kåthÿëÚŠ¦9\[ ë°x+ñ&’?ÇVŠ:Ô5ïÜJgéHÉÔè<tW‡tÏg·’ùF™­¸p~/£±—”ìÌ¿+# Djs÷q£ý]ò[zl‰"]×:ôù=lÇEjÝu²•Þ;,üÊ™ÝÕÅV|ƒlY·Òõ©ÏóÏ?ÿ†7¼aþüùwÞy§Þþ£ýèòË/_ºté\ ·ëåa¢]911Qõ—€Á255%Dê<ÓŸÄûµ‡¨j“]»v !f̘a´ï·ß~BˆíÛ·;×êx7*%„˜šš 4(6ÿü‚`û`èö?;£¸1‰“¬+µ¤Î b»&½]çºáõïÐh¬‡û!0¢%N9Ÿž6iàªÖa—õïP)!;Σ2*ÞÓÆ¾w8*;vG*=ÛÛSÕ&3gΔRîܹÓhÿÏþ#„+î"rªHœ„ˆ¦Mðh„‘Äžˆ±§\ ]¢û>&>@†jôyùEV•æ,¦ÄhÌéзä;4úÂkúÞaŸvl×¢ÿëX5qšì$ÕB^Tú¯($äF^*Di8æ©Þ·Ò÷´êßaÈ‘j4XMöÞ{ï±±1Û²¸cÇ!Dg­#u˜}ÔÆš‰ïêlߨô+¯I£kMý…!JìK³nñrêQ{C¶Ï»m‡Ó{¶×²;,4ì•í°Ô…R‡ÎÁî‡ÜUᶲƃ4±³õ’f2“ì×ÖàíF}ɾwhì[•½oë¦{&w+öê9Ãî{‡!û¡þzû'а8:˜;wîÖ­[#¥˜°yóæè#÷:Æí°} Ðv|â9~èÆŠzú ãÓ|%ª;ÆçTߊ¾®a=u®Û¯û>Â!wh7ö©ÃŽR ÊIM˜E‘:ÂiÂTZ£z¢™6½'˜°žj웳®¯ÑèÐè¼—C†Ý÷C†]ÿËúÖ€ptpÊ)§ìÞ½ûþûïOZ”RëׯŸ5kÖä䤵x|N7Îømt9¬ú;TAˆ”ô5†+QåŸLÏ_ݹX`£}Çê±Ãœ:èqØ}ï°ê›”Ū¢ÓZL¸ÐõeFw¢Ó¹XWm8R ì°eFG„£ƒE‹M›6íÚk¯ü…«W¯~öÙgÏ<óÌ}öÙÇ^^Fy1™½Lø:P‰ö]Ú¢ÃöHuhÊÊaýÙÃÏóõLl¢Ý5Òa_;4²Ð‡–5}HÇãæ†nX±bÅA´páÂ-[¶<øàƒGqÄ 7Ü0sæÌª‡P G/·ß~û­·ÞúØcÍ›7ïMozÓ’%K¢Œ<íáAàãA  „#p€ ŽÂ‚@8@ǾqË-·,Z´hrrò¸ãŽ»ôÒK·mÛVõˆÚή]»¾ûÝïž~úéG}ôÂ… /¸à‚_þò—U Ržyæ™7¾ñ—\rIÕ!„xüñÇ?ùÉOžtÒIÇsÌâÅ‹z衪GÔv^xá…믿þ½ï}ïäääÉ'Ÿ|ñÅoܸ±êAµ”?ÿùÏ>ú¨óÓ¶ÝýŽýaåÊ•—]vÙŸþô§cŽ9f¿ýö[»víG>ò‘]»vU=®öòâ‹/žwÞy_ýêWÿñ¼ùÍož?þC=tþùçë[ߪzh „J©Ï}îsI9x¨–{ï½÷ì³Ï¾÷Þ{çÌ™399ù›ßüæƒüà½÷Þ[õ¸ÚËîÝ»Ï=÷Ü«¯¾zÛ¶m .<è ƒ~úÓŸ¾ûÝïÞ°aCÕCk#7Þx£ï£6ÞýôÌÿøÇÃ;láÂ…ÿûߣ–+¯¼r||üË_þrÕCk/?øÁÆÇÇÏ>ûì;wF-O>ùä›Þô¦Ã?ü÷¿ÿ}Õ£uà 7Œö³Ÿ­z,mç¹çž[°`ÁQGõë_ÿ:jyôÑG_ûÚ×{ì±»wï®zt-%º‚]|ñÅÿûßÿ¢–xàðÃë[ßZõÐZÄöíÛ7lØpùå—G«ßþö·Æí¼ûcqì7ß|óž={–,Y2gΜ¨eÙ²ecccwÝuמ={ª]K¹ûî»…Ÿÿüç§OŸµzè¡ûØÇvïÞÍ„uålܸqåÊ•‡vXÕ!„X»víŽ;>ö±½ñoŒZ^ÿú׿ýíoöÙgüñªG×Ryä!Ĺ瞻÷Þ{G-o~ó›?üð¿üå/ÿú׿ª][xç;ßyÎ9çüð‡?ô-Ðλ?±lذaÚ´i'žxbÒ²×^{p [·n~ü0|6oÞøàªG×j¾ùÍoþá¸á†þïÿþ¯ê±€B<ñijfÍzå+_ùë_ÿú7¿ùÍsÏ=wØa‡zꩉµ†Ïé§Ÿ¾fÍšåË—¿ìe/;ú裷mÛ¶jÕª§Ÿ~ú}ï{?œ¡qüñÇG/î»ï>ûÓÖÞý޽²sçÎÝ»wÏœ9ÓhÙçE&Gq„Ñòàƒ®^½ú¥/}©aYaòÛßþöúë¯_¼xñ±Çéx¨–^xáßÿþ÷üùó¿øÅ/ÞtÓMIûÁüõ¯ýµ¯}mÕl)7ÞxãyçwÞyç%‹/¾ôÒK«thíÝŸ©ê^‰‚§f̘a´ï·ß~BˆíÛ·W=@»wï^³f͇?üá;w^uÕUûï¿Õ#j)»víZºtéÁü™Ï|¦ê±@‡ÿûßBˆM›6­[·nÅŠ=ôÐúõë/ºè¢¿ýío_|qÃCkÌŽ;®ºêªçŸþÈ#|ÿûßÚi§MŸ>ýÖ[o%Ô½>´öîűWfΜ)¥Ü¹s§Ñ剞< Bzè¡/}éKúÓŸæÍ›÷•¯|ÅçªC`ÅŠO?ýôM7ÝÄh}Øwß}£W]uÕÉ'Ÿ½þä'?ùÌ3Ϭ]»öÎ;ï<묳ªcYºtéÃ?¼lÙ²}èCQË3Ï<óþ÷¿ÿSŸúÔm·ÝöêW¿ºêB{ïþX{eï½÷³Ÿ-vìØ!„H"­`ø¼ð ˗/?÷ÜsŸy晋.ºè®»îB5Vȯ~õ«›nºé£ý(ñµbÆŒûî»ïôéÓO:é$½ýÔSOBüñ¬z€mäÿøÇ}÷Ý7þüD5 !<ðÀO|âÿûßÿ~ò“ŸT=@¢Åw,Ž}`îܹ›6mÚ±c‡î³¼yóæè£ªG×RöìÙó™Ï|æž{î9õÔS¯¸âŠÿ†G…¨èE¢¨·ßvÛm·ÝvÛ¡‡zÇwT=Æ–2gΜçž{NJ©7FVá_|±êѵ‘­[· !9ä£=24þóŸÿ¬z€Ð¡w„c8å”S¦¦¦î¿ÿþw¼ãQ‹Rjýúõ³fÍšœœ¬zt-åÆo¼çž{>ð\qÅU„âU¯zUò‰Ø¾}û/~ñ‹úÑî¿ÿþkÖ¬yàfÍšuÊ)§\tÑEQ¥%¨„ý÷ßݺu×]wÝ/~ñ‹Ÿýìg³fÍzË[Þòñüu¯{]ÕCƒ -¼ûK¥TÕc€GáA  „#p€ ŽÂ‚@8@GáA  „#p€ ŽÂ‚@8@GáA  „#p€ ŽÂ‚@8@GáA  „#p€ ŽÂ‚@8@GáA  „#p€ ŽÂ‚ø5õêq<ðIEND®B`‚statistics-release-1.6.3/docs/assets/raylinv_101.png000066400000000000000000000606231456127120000223430ustar00rootroot00000000000000‰PNG  IHDRhŽ\­AaZIDATxÚíÝy\TeÿÿñkEŒ5RHDÅ —r)S\SIÍLMo·,-5—ÒLMÓ²2M³nq©´´n[ðk?wÍ\Ò—Ü7Á)SD1˜ß§¦‘ufæ:Ëëùàáš3g®sŽ3¼ý\ç:Çd6›P7Ù€6`‚#lBp€Mް Á6!8p¢S§N™ àææúì³Ï;vÌyxã7”·ëÙ³g±^¸dÉå…Íš5sÙ›þ¾ýõ×âÅ‹;vìX­Zµ²eˆ„„tíÚõƒ>HOO·e·{xxøúú>òÈ#o¼ñƵk×lyI.&LpÆ1 !Gr˜Íæ_ýuÕªU­ZµúñÇewGí~ùå—Úµk¿øâ‹?üðCRRÒ_ý·qãÆW_}5$$dÆ E®!;;;99ùÀo¿ývhhhLLŒìm =²;À(üýý===•ÇYYY×®]û믿„wîÜyå•WŽ=*»ƒ÷¨P¡B5„UªT‘þ¾±±±mÚ´ùóÏ?--YYYÊã+W®<óÌ3{÷îmذaÞZvû;w,…Æ”””Þ½{ÇÅÅ•)S¦—äâãããÊ]@…¨8p‘¯¾ú*á—/_¾qãFß¾}•§Ž;/»ƒ÷xöÙg•®®]»Vúû¾úê«–Ô8dÈ£Gfdd$%%}úé§*TB¤¥¥õéÓ'ßZvûüqéÒ¥!C†(퉉‰‹-*ü%¹Lž<Ù•»€ ÈQ®\¹#FX~ýí·ß,srr¾þúë¶mÛV¯^½lÙ²Õ«WoÓ¦Í_|q÷î]eaÆ)gÝZ¯óÊ•+–òNž \¶l™åÌËwÞyçÎ;®8Øô‚¡jÒäääX[Ìöë×ïÛo¿µüzéÒ¥K—.íÚµkýúõß}÷²ÀgŸ}&„HLL<~üxƒ ”%øáåAíÚµëÕ«WÐûnß¾ýÙgŸ½zõªòëŸþ¿fÍšqãÆ}ðÁ…txï޽ݻw¿~ýºâÆË—/ßµkWÓ¦M ZþæÍ›­Zµ:{ö¬òë±cdžzóæÍqãÆÙ¾—,uÁÊ•+O™2%׳]»víÒ¥KRR’âĉµjÕ*r…cÆŒY³fâÚµk{öìéÔ©S Ž!c¡â@Žôôô%K–(›6m¬<þöÛo•Ôh2™"""h‰€ÑÑÑÛ·oB´iÓÆßß_iܸq£e[·nU<óÌ3½ojjjß¾}•Ôñæ›oöë×ÏÍÍÍl6Ï›7oÙ²e½0##£wïÞJj,]ºtË–-«V­oqsÙ¹sçÙ³gƒƒƒÃÃÃÝÝÝ•Æ×_=33ÓöõóÏ?+žzê)//¯¼ lذáÈ‘#GŽéÕ«—-+lݺuéÒ¥•Ç(Á1`8G.2pàÀûúú~óÍ7Bÿ/¾øÂ²ØæÍ›•ãÇÿñÇ¿øâ‹'N4iÒDiüå—_„îîî½{÷VZ,ÁÑl6[*Ž…ÇÙ³g+sDž~úéüqúôéÿûßÿ,X <;cÆŒ‚^¸hÑ"¥°çííóóÏ?_¾|yذa…oõ‚ Ο?øðaË6þõ×_gΜ±q§Ý½{×Rµdë2™LÊãßÿ=ïíÛ·Ï{-žbUIèÁ€‹$%%Åý#!!!--MQ»víãÇ×­[ײXŸ>}¾üòË/¿ür̘1JKjjª²°âÆÊËÄš½{÷¦¤¤!Ž9¢”ëÔ©VP7,Áôù矷42D©^ºtéøñãù¾ÐRY5jTxx¸ÂÍÍí£>òóó+è½êÔ©óòË/+»wïîáñ÷ÙAçγq§¥¦¦ZW­ZÕQÇâ¾ûîË»~(ç8éìÙ³ûöíSf !”SîRRR¶lÙrèС#G޶ŒS !,3H :·ïܹs–“&‹|¡§§g§NV®\™ïªBBB,½¼¼ªU«vñâE!Dvv¶ûDz[„y¯Úm·äädåAÅŠó>›ïåx*W®ì¨w ]T¸È¶mÛÌÿ¸sçΪU«ÜÜÜ„§N²œì(„ÈÌÌ|å•Wüüüúõë÷Álß¾=+++oUÏd2Y.@£ŒV[‚£e;¯ÔÔTë«!æK)[æ}¡¥Ø™«ò—kf·5e­û\ÜVºti___åñ… ò]æÖ­[ÉÉÉÉÉɶO‘¶ŒP[Nµ–ïåxò3ÀhŽ$(W®\ß¾}[µj¥üzúôiËS³fÍš7o^VVVpppTTÔ±cÇRSS###ó®Ä2Z½iÓ¦Û·o+“H §®X±¢¥†·uëÖ¸üôë×/ï +T¨P¶lYåq®di9ÑIZ¶l©þøã¶¬Ð2¨|ùò–ì¶ 8&##Cy`c½}û¶¥žwóæMåÁ/¿üRP8³çΫ<(28¶oß^y°téR˵¸W¯^}ß}÷ùúúÖ¨Q#ïù” K,›7ožriF³Ù}út__ß””Ë$›²eËFGG[.imàÀåÊ•BܹsÇúö<÷ßÿ[o½å‚ÎÐ*ޤñññQ$$$(w‘1™L]»vUÓÒÒÖ®]ûÿþßÿ«V­ZÛ¶m•Fëè#„ ³¾CL‘åFåM¿øâ‹J•* !vîÜ9cÆŒèèèôôt!Ĉ#Þ|óÍ‚^øàƒ.\¸°T©RJßvìØïååeé›óÔ¯_ÿ‡~°ž”sýúuKj¬Q£ÆêÕ«5j”ïk-WA²Þu•+W^»v­eÚ Øˆà@Ëum._¾üñÇ+çÏŸ_¿~}!„››[Æ ÇwäÈ‘îÝ»+Ï®Zµ*×™-£Õ¢ÐùÔÖ"##;6lذÆ—+W.88¸gÏž»víZ´hQះ ¶mÛ¶§žzªjÕªÕªU{ê©§~þùg×Ì/iÕªÕ¹sçæÏŸÿøãûùù•)S&44ôÉ'Ÿœ?þÙ³g»téRäÜÝÝ+W®üðÿñƱ±±Í›7wA·èŒÉrЍÄÝ»wׯ_/„èÙ³g‘ ïÛ·O™w\·nÝS§N¹¾·ƒ Z±b…bÑ¢E#FŒp}Àe8Ç€ê”*UʖȨطoŸòÀ–qê’xá…<(„hÙ²åÂ… •Æ?ÿüÓrŸC¥P :Fp If³yÉ’%—/_ž7ožÒâìàXµjÕ£G !Ž=Ø»wï›7oNœ8Q9w0,,¬iÓ¦²÷ 8CÕ4);;Ûrëg!ÄSO=µzõj§¾czzzÇŽ÷ìÙ“÷©ûî»oÇŽTèÁ€&eggW¬X1+++00pÀ€¯¿þz™2eœý¦ýõ×7ß|óÅ_ÄÇÇÿöÛoÊu;vì8vìØ|oú :Cp€M¸lBp€Mް Á6!8À&GØ„à›`‚#lBp€Mް Á6!8À&†Žñññ¡¡¡ÇŽË÷Ùï¾û®wïÞááá­Zµš€F¬8Κ5믿þB|ùå—{÷îÍ»ÀÁƒÝÜÜÚ´iciqwwoݺõºuë>Ü´iSÙ[ ƒã£>ª<رcGÞgÍfs\\\åÊ•+W®lÝ^«V-!ÄåË— Žh‚Éd2›Í]£]Ÿæ18.---;;»R¥J¹Ú½½½…7nÜ(r ¡¡¡²7áè?ʱ"Ö²ÂØØXÙ'Á17eêtùòåsµ{yy !nݺeËJŒùIÍBCC9(jÃAQ'Ž‹ qPìf2™¾ëbE¬0p‘Ȉ“c W©R%“É”–––«ýÏ?ÿÿÔ€Ê9~œZa’½U²sóðððööÎ[YLMMBXæY Á1þþþÉÉÉJR´HHHPž’Ý;9Žùh×®]vvöîÝ»--f³y×®]>>>ááá²{Šà”qjóÕ»wo77·ÿþ÷¿ÊyBˆ¥K—^¿~½W¯^¥J•’Ý;9˜UªU«N˜0aöìÙO>ùäc=vñâŘ˜˜°°°çŸ^v×`§Í›7Ëîrã ¨ÇE…8(P‚cþ†zÿý÷ÿý÷7n¬R¥Ê€ÆŽ«\‘¨ãÔÎcèàøöÛo¿ýöÛ=)»jÁ9Ž@?(7:Á6!8À&G ŒS;ÁÀ&! J Ž@(7º€¡/Ç£¡¡¡²»`,±±±²»€öÕ‚(ãJ¡¡¡ìpŠ‹¡j yŒS»Á6!8m£Üè2GØ„à›€†1NíJG؄ഊr£‹ŠÂª…G Q”]à•ºuëÖˆ#|ðA//¯Ö­[ÇÄÄ´äÝ»w=<|¸qãÆnn%ýßHjj꯿þÚ¯_?“ÉdiŒˆˆøôÓOcbbzöì™kù¸¸¸2eÊT¨Pá»ï¾»qãFXXØÃ?\ºtiÙ; ½!8¢Ø222 T¥J•ýû÷!&L˜Ð¡C‡ØØØiÓ¦U¨P¡„ë¿zõªÙlö÷÷·nôóóB\»v-ïòqqqnnn5kÖLIIQZêÔ©³råÊ&MšÈÞUè ÁŶ{÷¤™3g*©QQ¦L™‰'FFF®^½zðàÁ¹–ÏÊÊÚ°aCAkëÞ½{®–´´4!DÅŠ­½½½…ÉÉÉy×—““3cÆŒ§Ÿ~ºT©Rk×®7n\=Nž<©¼  'ŒSKDpT5«¡Z úT^¸pAѰaCëÆ !Nž<™wù;wîôèÑ£àwÉý6¾¾¾BˆÛ·o[7¦¦¦ !*W®œw ;wî,[¶¬å©¡C‡fddŒ92::ú¹çž“¹Ð‚£ª©ó?TžžžBˆ¬¬,ëÆœœ!D¾'8z{{뿆þþþnnn¹F¥¯_¿.„¨V­ZÞå«V­š«¥cÇŽBˆS§NÉÞU£Ü(ÁÅ"„8sæŒu£Rk Í»|q‡ª=<<êÖ­»{÷nëÆŸ~úÉd2………åZøâÅ‹ëׯˆˆ¨S§Ž¥Q)OV¯^]ö®è÷üÁÅÖ¸qãš5k.\¸päÈ‘•*UBdffΙ3ÇËË«[·ny—/îPµâùçŸ3fÌúõë•þñÇÑÑÑ:t ʵ¤§§ç«¯¾Ú¬Y³üQ¹PNNΜ9s<<<:tè {W‰r£tG[©R¥,XгgÏF >ÜÝÝ=::úСC}ôQ®©ÐŠâU !¼lÙ²þýû+ÙôóÏ?OKK›1c†òìªU«^zé¥!C†Ì›7ÏÏÏoÆŒ¯½öZHHÈO=***##£Q£F›6mêÔ©“£Ö_±bÅ]»vM˜0!:::%%¥E‹_}õ•å~ƒ™™™7oÞLOOW~8qâC=ôþûïùå—eË–mРÁ¦M›:wî,{'‰r£a§ðððµk×:oýÞÞÞK—.Í÷©Aƒݽ{×zw¯^½zõê%{— sÜrÚ“‘‘±cÇŽÆËîÀE(7ªÁÚ³oß¾:uê<ûì³²;€±0T íiÛ¶mÛ¶me÷à"”ÕƒŠ#@Á¸ˆ£‚#P/ʪBp*EjT‚#lBpjD¹Q…ް Á¨åFu"8À&G .**7rÇ{`‚#P•‘Á¨©Qåް Áj׺uë3fÈîÀé(7ªÁªväÈ‘ŸþYv/€BxÈ¬íÛ·ïÝ»7***''GvwN§Ær#×âɃà;++kÆ ­­{÷î²7Ø„àˆb»pá‚¢aÃ†Ö 4BœtèÐG}äïïŸwy†ª¹5Šà{téÒ%&&fúôéQQQ5Ú´i—ì@ßްSxxøÚµký.¡¡¡ü—tFåFfÆÀ7ù°‘R# Fp€MŽÀE(7jÁ¸©Qް Á8–ÊL©.Á8—–R# Ep€MŽÀ‰(7ê Á8‹öR#'8Šà›¡RÇïÓ§O@@€——WÓ¦MçÏŸŸ••%»S€bÐ^¹EñÝ ñññmÚ´ÉÎÎîÙ³çƒ>¸mÛ¶ñãÇÿôÓOkÖ¬‘Ý5€MHºDp„?þÖ­[111Íš5BÌœ9ó¹çž[¶lÙ–-[:uê$»w€"õŠ¡jØéàÁƒÝºu 0Ý«T©R%_ùöíÛ[·n­¤FŨQ£„ûö퓽ÝýbfLQ¨8ÂÛ¶mëØ±c``à!CÊ—/¿f͚Ç7nÜ8""ÂÍ­¤ÿÉÊÊ9rdÓ¦M­/^¼(„(S¦ŒìMr£ŽÕÍd’ùî|ì322 T¥J•ýû÷!&L˜Ð¡C‡ØØØiÓ¦U¨P¡„oëááñî»ïZ·Ü¸qãÝwßuwwúé§eî@QHúFpT7U~övïÞ””4sæL%5 !Ê”)3qâÄÈÈÈÕ«W<8×òYYY6l(hmÝ»w/üívîÜù /ÄÅÅ-Z´($$DöÖ DjÔ=‚#ŠíÂ… Bˆ† Z76hÐ@qòäɼËß¹s§G­­¯˜K—.5jݺu!!!Û¶m‹ˆˆ½éýâG09Åæéé)„ÈuUÅœœ!D¾'8z{{› Vл¬Zµª^½z‡Z²dÉéÓ§I r”€Š#ŠM/>sæŒu£Rk Í»¼CÕëÖ­ûÏþóÌ3Ï,^¼¸bÅŠ²·PR£AQl7®Y³æÂ… GŽY©R%!Dffæœ9s¼¼¼ºuë–wùâU›Íæ‰'®\¹ÒÝÝ]öæŠ@j4‚#Š­T©R ,èÙ³g£F†îîî}èС>úÈßß?ïòÊPµíë?sæÌÙ³gëÔ©3lذ\O=õÔS‘‘‘²w@w8ÁÑ6GØ£K—.111Ó§OŠŠÊÈÈhԨѦM›uO—¸¸8!Ä™3gr† !jÖ¬IpU¡Üh(GØ)<<|íÚµÎXó“O>Éwh©Ñh˜U 졟ÔÈ8µÍŽ Øô“QGØ„só—™™ùÅ_lÚ´)!!ÁÇǧ~ýú£Fâ~wÊFÅ1ÙÙÙƒ š;wnJJÊc=V­Zµ-[¶tïÞýàÁƒ²»€dzKœàXTóñÍ7ß>|ø‰'ž˜;w®‡‡‡bß¾}Ï=÷ÜÔ©S·lÙ"»wH£·Ôˆb¢â˜Ã‡ ! ¤¤F!D‹-êÔ©sáÂ…7nÈîrApÌG•*U„ÖÑl6ß¼yÓÍÍÍ%0}¦FÆ©‹‰à˜nݺ•-[vÖ¬YûöíKOOOJJzã7{÷î]±bEÙ½ƒúY>BCCW®\9xðàÁƒ[ 0yòdÛ׫eóæÍ²7 ÷HHHÝ£KLL”Ýäƒã¢Bj8(ÁÁÁñññúûæ A¶lTçÎe÷T-ŽùHMM}ï½÷îܹV¿~ýäää={ö|ÿý÷Í›7ïСƒ-kˆ•½(BPPì.€£ R’{Pô9H-þ§EïÛ¼ÖóVˆ ‚à˜‰'þòË/“&M2dˆÒ’””Ô·oßqãÆ­]»688XvpݦFØ…ssûã?vìØQ³fMKjBT­Zõ¥—^º{÷îš5kdwÐ(vìØÑ¶m[??¿ûî»ïÑGeπ둑 Á1·ääd!D5rµ+…Æk×®Éî !lܸ1""âÒ¥K 1bĵkמzê©O?ýTv¿À@tž™Om†ªs«Q£†»»û¹sçÌf³Éd²´+ç7Ô¬YSv áõ×_8|ø°···bòäÉuëÖ1cưaÃdw Aç©ö¢â˜›§§gëÖ­/^¼øÑGåää(çÎ‹ŠŠ*]ºtÛ¶mewP-<Ø­[·€€Ó½J•*UÂ5ÿõ×_§NêÖ­›’…åË—ì±ÇÓÓÓeo7詡☷ß~ûé§ŸŽŠŠÚ¸qcݺu“““ùå—œœœ©S§>ôÐC²{§ Û¶mëØ±c``à!CÊ—/¿f͚Ç7nÜ8""ÂÍ­¤ÿqww?v옯¯¯¥%++ëĉ 4ðôô”½éícœÚ^Ç|øúúnܸqñâÅ{öìÙ¹s§Ïã?þâ‹/Ö¯_ßÕ]1•|%PÀ‡*##cРAUªTÙ¿@@€b„ :tˆ6mZ… Jø¶aaaÊã+VÄÅÅmذá·ß~ûßÿþ'uw€!PnD!Žù+W®ÜøñãÇ/¹ªüäîÞ½;))iæÌ™JjB”)Sfâĉ‘‘‘«W¯¶¾jº"++kÆ ­­{÷î…¼×[o½'„èСCõêÕeo:è©…#8¢Ø.\¸ „hذ¡ucƒ „'OžÌ»ü;wzôèQÐÚ ÿ†:wî\ZZÚ¾}û† Ö¼yó3gÎøùùÉÞ OFIŒS—“cPlʉ†YYYÖÊD¢|Opôöö6¬È·+W®\»víÞ{ï½7n|ÿý÷²·ôÉ(©%CÅÅ"„8sæŒu£RkÌ÷LŪްaC=¾üòË>}úX}||DQåI€}H°ÁÅÖ¸qãš5k.\¸päÈ‘•*UBdffΙ3ÇËË«[·ny—/îPõ#<"„X¾|ù3Ï|¸»»{ttô¡C‡>úè#ÿ¼Ë+CÕ¶¯ß××wÊ”)3fÌhÖ¬Y§NL&Ó?üpàÀ±cÇ*gRÅX©%Fp„=ºté3}úô¨¨¨ŒŒŒFmÚ´©S§NŽZÿôéÓƒƒƒ.\¸hÑ"77·:uê|ýõ×Ö#×€’3\j¤ÜXbGØ)<<|íÚµNZ¹Éd8pàÀeo%è–áR#YÕ©ö!8`,MŒS;Á1hj„ƒ0 ã¦FÊBpÀŒ›á8GôÏЩ‘r£ãÐ9C§F8Á=#5ÂŽè©‘qjÇ"8 O¤F8Á"5 A¹ÑñŽè ©NBp„Úݽ{·yóæ-Z´ÝÐRãß(7:Áj7uêÔýû÷Ëîh©NEp„ªýðÃsæÌñððÝÐR㿜Zn4™dož4GØéàÁƒÝºu 0Ý«T©RŽz‹«W¯þç?ÿ6lØ< {s@íHp 9°Ç¶mÛ:vì8dÈòå˯Y³æðáÃ7ŽˆˆpssÌÿFÌfóÀ}||>üðð°0Ù[ ªFj¼g7: ÁQÕLR‹á}edd 4¨J•*û÷ïBL˜0¡C‡±±±Ó¦M«P¡‚CÞ}Μ9»v튉‰)W®œÄêGj„ËUM_»wïNJJš9s¦’…eÊ”™8qbddäêÕ«œkù¬¬¬ 6´¶îÝ»çm&Ç@jt>R£.PqÃÓ®@jÔ ‚#À¸(4º©QGŽ#¢Ðè"¤F}!8 ‡B£‹è)5rG!Á`(]GO©ÿ 8Œ‚B£ëuŠËñ Ôè:¤Fý¢âÐ9†§]ŠÔ¨kG€žQht)R£ÞúD¡ÑÕH@pè…FWÓwjäZ<ÿ 8t…B£úN°Bpè…F HFBpè…F9HCph…F9HÆCp,Љ'–,YrêÔ©?ÿü344tôèÑ<òˆìNîA¡QR£!qç˜ümß¾½_¿~Û·o÷óó ?räÈÀ·oß.»_€)…FR£†JL©¶BÅ1·nÝzíµ×<<<>ûì³&Mš!Ž?Þ¿ÿ7Þx£M›6nn¤mŒB£L†J¸(«W¯NMM1b„’… 4xâ‰'®_¿~âÄ Ù½££Ð(©ÑØŽùøé§ŸL&S=¬ßÿýØØØ† Êî—ÉdbŒL¤FÃc¨:'Ožôññ 8tèБ#GnÞ¼Y»víöíÛ{zzÊî‘Q&“‚Ô‚c™™™·oß®Y³æ›o¾¹jÕ*K{``à‡~X¯^=[Vš«eóæÍ²·ÌÐew¹qPÔIÇ%88XŸ »/H?(AÁA ñ Ba¼Ýœß9ÏŸuÃ"8ævûöm!D\\ܵk×fϞݦM›ŒŒŒèèè… Ž3fýúõ¶Ôccceor ’ÝäÆAQ'U&Á(d“f$Tô¯ÂÅ‚‚‚òþY5j”äÇÜÊ–-«.\°nß²eK×®]7mÚT½zuG½WÛ¶mSSSýõWëÆÃ‡ !j×®-{O€nQhT©ñÜ3&ÍÇõë×÷éÓçĉ=zôP&;ß¼ysüøñ/¿üòÍ›7Ÿ{î¹µk×:ê½zöì)„˜:uê7”–'N|öÙgÞÞÞ:t½'@Ÿ(4ª‚9(€ffU{yyÍœ9ó‰'ž˜2eÊ›o¾¹qãÆøøøëׯ‡„„¼ûî»õë×wà{Õ©SgüøñóæÍëܹsÓ¦MÓÒÒ|¸¯¯ïŠ+öîÝëããÓ®]»Ñ£G‡„„ÈÞ +DF!5Â Ž»wïVFî]»vøðá‘#G¾õÖ[þþþ¯^½zõêÕKö€nq:£ZpW˜|q‚c~4sŽãíÛ·'Ožù䓲»†@¡QÕ(4:ãÔ6ÓLpœ3gŽì.€ÎUB#T@3ÁàTÊØtBB‚ìŽ ?‡rcq¨78~õÕWBˆ‡~8$$Äòkáú÷ï/»× =UÍ$‚D©*¡Þà8sæL!ÄŒ3”à¨üZ8‚# ‘QíLB˜EBBB’Ý¢ÜXLê Ž£GBÔ¯__ùõÕW_•Ý#Ð"£ÚqF#TI½ÁqÔ¨QÖ¿>ÿüó²{:Á¥vÔŽ3]ƒrcñ©78ŽB£ÚQh„ºÀˆŒjGdt1Êv!8€Î5€±ihÁôŒÓÕŽB£”íEp}¢Ð¨¡5GÐ"£Ph”ˆrc h88šÍæíÛ·'&&6hÐ <<\vw@>"£¡eZ ŽÛ·o_°`Aûöí•kƒO:5::Zyª_¿~Ó§OW¾1À˜8Q›–ŽrcɸÉ<øÒK/={6''GqúôéèèhooïgŸ}öXµjÕöíÛe÷ä0™L¤Fµ3‘¡š©8~òÉ'f³yÊ”)ýúõBlݺUñî»ï¶k×îÂ… ;wþßÿþ×®];ÙÝ—blZ›VÊ%¦™àøë¯¿ 8Pùuÿþý¥K—~ì±Ç„5jÔx衇âããe÷\‡È¨ TÕƒÔ蚪¾y󦯯¯ò8++ëôéÓõêÕ+]º´ÒR®\¹ëׯËî#¸‚e`šÔ¨jŒMC4«V­š˜˜˜-„8|øpFFÆ#<¢<•“““˜˜xÿý÷Ëî#8‘Q,‘‘£¤”D3Á±Y³f7oÞüøã¯\¹òñÇ !Z·n­<µlÙ²7nÔ¬YSvÀ‰˜£ DF"5:ŽfÎq|á…Ö­[·hÑ¢E‹ !êׯ¯\»ñ™gž9vì˜bèС²ûNÁéŒÚÀ$€f*ŽÕªUûæ›oÚ´iðè£~øá‡Ê7éõë×+V¬øÞ{ï5oÞ\vÀÁ8Q›V3Ê¥™Š£"$$dÉ’%¹W®\Y¥J77Í$`°UFm Ê¨r¤FGÓRpTܼyóäÉ“¿ýö[ÕªU[µjU¦LR#á\Fm`Ò4ŒGKÁ199yÑ¢EÑÑÑéééBˆAƒµjÕªgÏžaaaï¾û®ì@IQhÔ š@¹Ñ 4S«»{÷îK/½´råÊŠ+öìÙÓÒîçç·cÇŽ¾}û*i4ŠÓµÓµ‚Ôèš ŽK–,9zôèã?¾yóæ÷Þ{ÏÒþí·ßvïÞýÂ… +V¬ÝG°‘QˆŒ€†‚ãÜÝÝßyçråÊY·»»»O›6­\¹r[¶l‘ÝG("£65‡r£ÓhæÇ3gÎYî:hÍËË+88øÂ… ²û¶â\FÍ`ŒæI3ÁÑÛÛûÎ;=›’’R¡BÙ}›0iZ˜£E¤F'ÓÌPuݺuûí·ãÇç}êÌ™3W®\©S§Žì>@¸m 606­Q¤FçÓLpìÓ§Édzå•WN:eÝ~êÔ©±cÇ !zôè!»P NgÔ"#P(Í U·jÕjذaŸ|òÉSO=,„ضmÛÞ½{ÏŸ?Ÿ““Ó³gÏN:Éî#äƒÓµi­£Üèš ŽBˆW_}µI“&³gÏŽB\¹rEqÿý÷?ÞúÊŽ DFm 2ê©ÑU´…mÛ¶mÛ¶mJJJ|||fffpp°¿¿¿ìN@nDFm 2ê©Ñ…4>>>Mš4‘Ý È‘QˆŒºAjt-ÍÇæÍ›¹LLLŒìn04fLk—fÔ R£Ëi&8¦¦¦æj1›Í999Ê €|¯ ®A¡Q(4ê ©QÍÇÓ§OçjÉÎÎNJJúá‡-Zô×_½ù曲ûÀˆˆŒÚ@dÔR£$š¹Žc^îîîC‡ýøãoݺ5nÜ8¾¸¸—fÔ.ͨ?¤Fy4-š7o^³fÍË—/_¾|Yv_‘QˆŒºDj”JÁQáçç'„¸ï¾ûdw€ÎµÈ8‡fÎq,DZZÚéÓ§}}}Ë—//»/t‹sµsõr£lš ŽûöíË·=%%eåÊ•7nÜhß¾½ì>Ð'"£6õÍdB¥ÓLpùä“=õàƒöèÑ#00Pvè …F 2©QM4çÌ™#» Œ‚ȨDFƒ 5ªŒf‚#¸‘QˆŒÆAjTõÇ;w÷%mÚ´‘ÝkZEdÔ"£¡UI½ÁqøðáÅ}Ill¬ì^Ð"£†Ô¨Vê Ž…̆‡ 2j‘Ñ€H*¦ÞàÈlÎCdT;Ó?8DFCjT7Ürðµ×^‹ˆˆÝ À=ÕÎún"C1™Hê§ÞŠc^)))?þøãÅ‹sµ§§§ÿðÃîîî²;@í¸š·ª1*mdDFÐLp¼zõj¿~ý®\¹RÐýû÷—ÝGêÅØ´ª ŽÔ¨š ŽË—/¿råJ³fÍ"##7lذÿþiÓ¦yzzž={öË/¿ìß¿ÿ”)Sd÷€UÈR£¦h&8îÞ½»L™2QQQ+VŒˆˆxôÑGƒ‚‚Z¶l)„~ë­·žyæ™ÙÝ "DFU#2ÂdBµE3“c~ûí·5jT¬XQqÿý÷ûøøœ>>Ë—/—ÝGjÁ U³žþÃR |BµF3G!„›Û¿1÷ÁLHHP»»»‡††?~\vÈG•QÕ¨2BÁð´fi¦âpáÂ…;wî(¿:tÈò¬ÉdJLL”ÝG2QeT/UFüƒkîhœf‚cûöíÓÓÓ_}õÕóçÏ !š6mzéÒ¥={ö!®_¿þË/¿T«VMvÈAdT/.Êk OkŸf†ª¸eË–íÛ·›ÍæÅ‹·nÝÚÃÃcÔ¨Q7>{ölZZZ—.]d÷€«10­^ŒJ# º ™Š£¯¯ïW_}5~üøúõë !ªU«6uêÔÌÌÌŸþ999¹]»vC‡•ÝG®C•Q½•F. Oëˆf*ŽYYY¾¾¾Ã‡·´ôë×/22òĉþþþÁÁÁ²;ÀE¨2ªUFäEdÔÍT[·nýþûïÇÅÅY7zyyµhÑ‚ÔUF5bî òE¡Q4“““?ûì³®]»öíÛ÷»ï¾³L¯`–±iÙæ¾  ̃Ñ)ÍÇèèèÁƒûûû9rdêÔ©­Zµzýõ×­¯È@¯8Q(1¢ uM3Á±~ýú¯¿þúÎ;W®\Ù§OŸÒ¥Kÿßÿý_ÿþý;vì¸téÒ?þøCv8‘QˆŒ(…F½ÓLpü»»nn?üðÌ™3÷îÝ»xñâÈÈÈk×®}ðÁmÚ´±ž7@눌jDdD!(4ƒÆ‚£…‡‡GÛ¶mçλbÅŠÐÐÐììì;wÊî 2ªs_P$ †¡™Ëñä»yóæÍ›7ÇÇÇ‹*‘Nz¯¤¤¤ÈÈȈˆˆ9sæÈÞn@ϸΎêpyÉdBCcÁñôéÓ[¶lÙ´iÓÅ‹•–zõêEFFvéÒÅÏÏÏïh6›_{íµ?ÿüSö¦zFdT"#lÁØ´ñh&8Ι3gË–-—/_V~­Q£FddddddõêÕú¾Ÿþùdo= [DFu1‰ $‘E¡ÐhTš ŽŸ~ú©ÂÏϯk×®‘‘‘aaa.xÓsçÎÍŸ?¿víÚgÏž•½½Q.ÝOdT‹JŒ AAA²{#2›f‚cïÞ½###›5kæææ¢ =YYY'Nôññ™4iÒàÁƒeï@?”*c||<E•†í›6<ÍÇ·ß~ÛÅïøñÇŸ9sfÙ²e+V”½õ€NXL'$$ÈîŽáa; Bh(8ºØÑ£G?ùä“´lÙòÔ©SÅ}yhhh®–Í›7ËÞ&CKLL”Ý£S¦•Ë (‘‘ƒ"KPðß…Þ„ø!„¸7Às\THîA B$ÄÇ !„Qÿ¿×¹sgÙ]P ‚c>ÒÓÓ'NœøÊ+¯Ø·†ØØXÙÜ•¨ {LsP\íÞãßó`òศœƒbUe4ø¿‰¼ÖóVˆ ‚à˜Ù³g'&&®ZµÊÓÓSv_mcÒ´Z0*ââtFä‡à˜ÛV­ZõÒK/5lØPv_ #2ª‚éŸØŽÓQ0‚cnçÎBDEEEEEY·¯]»víÚµ!!!ëׯ—ÝG@ÕˆŒª@‰v 2¢(ÇܪW¯ÞµkWë–[·níÙ³§jÕªááá²;¨‘Q>JŒ°‘¶!8æöè£>úè£Ö-§NÚ³gOÓ¦M¹W5P"£|”a"#Šƒà DˆŒòa"#ŠàÀNDFÉ•FI0iv!8-,,Œë2ÖˆŒ’QbDIPhD ‘Q2"#J‚Ȉ#8° ‘Q&F¥QBDF8Á@ˆŒ2QbD áPG…)è6Óp.JŒ(9"#œ€à å Äˆ2ýóß>¼p7Ù :&“I)4’]ÇôÏ™Ô{™L_dGùÓ˜þ0*ŽþE•QJŒ(9F¥á*GB¥ 2¢äˆŒp-‚#`tDFWcâ ‚ÈŽ€q]#‚ÈyŽ€]Š#‚éÒP‚#`,DF—¢ÄG ‚¼Uàr<€Qp‘×áÚ:p“I˜L ññ¤F¨ÁÐ?"£ëXçEv6JÂú¢Œ€j0T è÷ tÎb„£p"#Ôàè§3ºg1ÂQ˜+ -`¨Ð!Æ¦Ž³á(Ê4£ÒÚa&³?öT]¡Êèt”á(”¡AG@'ˆŒÎÅYŒp "#4‹àh‘ѹ(1ÂQ˜øí#8Fdt"JŒp JŒÐ ‚# IDF'¢ÄG¡ÄÝ!8ÚÃ¥‚#ˆ#tŠàh …F§ ÄG¡Ä½#8Ú@dt}ºŸŸŸì©ˆz \‘Q Š‹€6a‚c>V®\¹uëÖgŸ}vúôé²û¢"ê-4Rbt1Â" M„E”Á17³Ùüå—_V¨Páµ×^“ÝQi¡‘Èè2„E@›‹p,‚cn×®]»té’§§gÿþýó>Û³gÏÈ©15]€°haÎCpÌ-11Q‘žž~òäɼÏpbµêR#‘Ñ©‹€6]ÉdµjÉî„$ÇÜ7nl«0Iu'5‡ Ñ€ázGäOE…F¦K; ÅE@k¬“¢ ,B‚#ò¡–ÔH‰Ñá‹€Ö˜„Ér¿’"¤s“ݨ‹ÉdREj4 aÂLjt“éß³ùߪdºçCk2 s|B¼ò¹•Ý5€Š#¬¨%2 òb‰QY´ƒhhGüM~j¤ÊXrT-È[S´þ‘Ý;AùŠ5,*ŽBzj¤ÊXÕ£¦Ý 8äkîíCXÔ¤½"8šÌB#‘±¸‹€Š‘aGã’–‰ŒÅÂ¥¹U")“ÁOpGÃ’“‰Œ6¢¸¨L®˜(HŠ0*‚£IHDÆ"5¡ ä‹àh,¦Â AXÔ‚"lÁ8µ 8Š« DÆ‚pÚ" EÀ>G£pij$2æEq‡‚"JŽr£‚àh®KDFk„E@b"à<GýsQj$2Z0 ¸1.@¹Ñ‚à¨s®HDFAqpb"\Ôhà¨g.JFþ8Q\œ‰˜éH¹õÉ—Ý1l¡‘â"ày3¢ &B6Rc^Grz¡Ñ˜‘‘â"à8”¡~¤Æ|õƹ©Ñh‘‘â"àÄDh©± G]qbj4Td¤¸Ø‹g話GýpnjÔýGˆâ"PLdD話pGpVjÔ}¡‘â"`†›¡{ÊþŽà¨NI:ŽŒBQJ„ÑmGpÔ<ǧF½FFŠ‹@ùdÄ 2"Œ…±éb!8j›SR£ž>?ÿ„Å A^„ÑÙXGLHHA²û ¸…F;5ÌÁ©QO…Æ<ÅÅ„„þÂ8k ÁøSIµÊ‘©Q7‘‘/°%Æ’#8j’ƒS£¦?BÌtaûPUp ‚£ö8,5jºÐÈ×ô+߀(Ȉ@ñQbt8‚£Æ8&5j72’¡/gào…óµÄa©Qs$¾ }dDÀÙø[áGÍp@jÔ\¡‘ïhÍ€+q¢»‹ C+…F¾ )øC!ÁQJTnÔD¡‘â"TŒ"" aQ%ŽPÒÔ¨æy*CP¢ ÕÎþÔ¨æB#y²QDTÈtïç’?*DpTµ¥F~ÞÈ‹"" f”µ…à¨^v¦FÉ‹p Šˆ€ú™ò|LùË -G•²?5ªçH^„s aôYgŽ:¢’ÔH^„ã0Ê h EÝ#8ªQ±Ë*žæž °ED@sLù}jù  {GÕ±'5Êý Rb„Íî ˆAÿ>$ *G) 7ÙÀ=´”M¦¿Ìæ¿€˜þý÷qÏùß.æø„xËcÙýð¯|?½fsîGÍ’5Á1W¹Ñ¡©‘°XüaPÞ&â ÅÂÀ]È©± ëoËÞ6±û¢Óy¯5Mj ¸¨8:“u¹±d©ÑR\ÔkF´qÔ˜´€DG—°+5êf$Ú–PH"@ýŽNa2™Ìö†=m …ÁÑùl+7ª6/ …ÁÑÉŠJÒób‘%C¢!PÆ\DjT"£kòb!é\lDp”ÀI‘‘tœŠàèfaηÜèÈXP@$§"8ºˆ}‘1ߌH@Räßr£í‘1oL$#õà–ƒúî»ïz÷îÞªU«É“'§¤¤Ø±Ëó¶¨åÁQ:wî,» ȃ¢Nâ @=¨8æoþüù‹/._¾|³fÍ.^¼¸zõêsçέX±ÂÓÓÓö•(©ñž–{kŠDC !Tó»téRÿÍ›7/]ºtË–-<~üøÜ¹sm]…Ùl ª)hÁ1ß~ûmNNÎØ±cýüü”–I“&y{{oÚ´)''Ç–5(©1o^Ð.‚c><èææÖ¦MK‹»»{ëÖ­“““>lÓ*Lfò"Ђcnf³9..®råÊ•+W¶n¯U«–âòå˶­„¼ô†É1¹¥¥¥eggWªT)W»···âƶ¬$44Töv 7Š qPÔ‰ã¢B¨Á1·ôôt!Dùòåsµ{yy !nݺUäbcceo€ã1T[¥J•L&SZZZ®ö?ÿüSüSw0 ‚cnÞÞÞy+‹©©©BËú¨ò`ÇŽ²û" Á±¤ÒÒÒ²³³+Uª”«ÝÛÛ[ÜûÿB8œ};¿nݺ¹Zbbb–.]Z¦L™\ÅØÁîOÄÑ£G?ùä“´lÙRÉñp;JffæíÛ·kÖ¬ùæ›o®ZµÊÒøá‡Ö«WOö6iž}Ÿ”ÐÐЕ+Wùäc=vñâŘ˜˜°°°çŸ^v×ôÏ–¿k×®qãÆ…„„¬_¿þÚµk—.]òôôì߿޵õìÙsÀ€²·IóŠ{Pd÷×ì8(uêÔ?~ü¼yó:wîÜ´iÓ´´´ƒšL¦Y³fÝwß}²7Hì8(o¿ýöÓO?µqãÆºuë&''ÿòË/999S§N}衇do àèC‡½ÿþû¿ÿþû7V©ReÀ€cÇŽU®ªg+ÖÎOLLB¤§§Ÿ*dÇA>|¸¯¯ïŠ+öîÝëããÓ®]»Ñ£G+·Y‚C÷ øúúnܸqñâÅ{öìÙ¹s§Ïã?þâ‹/Ö¯__ö¦À(Læ{O•òÅ䨄à›`‚#lBp€Mް Á6!8À&GØ„à›`‚#ük„ ¡¡¡ûöísÙªþûßÿ†††~õÕWÖ¯Ú¹sg¾Ï€\GÐ’={öìÚµKv/”‡ì€¡µmÛÖ××·I“&6>ûꫯ¦¦¦ž>}ZvÇÁd ³ïYp1†ªhRvvvVV–ì^€±h†2qäüùóo½õVÓ¦MÃÂÂÚ´i3zôè\P”Å’’’Ž=Ú«W¯ $&&ZžÝ¸qãˆ#üñæÍ›<ø³Ï>ËÎÎÎû^{öì3fLëÖ­[·nýâ‹/þôÓO¹¸~ýú¼yóºtéÒ¸qãÆwíÚõ½÷Þ»zõjqWõÉ'Ÿ2ýÅúÙ÷ß?444%%%;;;444<<|òäÉ¡¡¡_~ùe®WÍ›7/44ôƒ>}Äè Á€ÆL™2åË/¿ÌÈȨ^½zJJÊÖ­[‡úé§ŸæZìÌ™3ƒ>yòä_ý•““#„0›Í¯½öÚ¸qãvìØa6›½½½cbbÞÿýþýû§¤¤X¿vݺuÆ ÛºukÙ²eoÞ¼¹}ûö^xaÁ‚–®_¿Þ¿ÿ%K–$%%=øàƒ<ðÀåË——/_Þ¯_¿â®ÊvM›64hP™2eL&Ó Aƒž}öÙ.]º!¶lÙb½˜Ùl^¿~½¢{÷î²½!8И#GŽ´iÓfß¾}[·n=|øð¤I“L&Ó|pîÜ9ëŦM›V¿~ýåË—ÿüóÏ>ø bÍš5ßÿ½ŸŸß×_ýÓO?mÙ²eÇŽ5:räÈÇlýÚÕ«W·k×nÿþýÊ[Lœ8ÑÍÍ-**êøñã–.\¸ñóÏ?ÿý÷k׮ݳgO³fÍ®\¹òã?kU¶‹ˆˆ˜ú¨R¥JBww÷!C†ôïß?'''**Êz±òåËòÉ'-[¶ôõõUZ>üðC!ĬY³ÂÃÕ–*Uª|üñÇeÊ”ùúë¯ÿýwËk«V­º`Á‚Š+ !<<<ž{î¹þýû !.\¨,••Õ¶mÛW_}µ|ùòJKÅŠ###…/^´îF‘«* ww÷Ž;æääüðÖÆuëÖ !zôè!û@Ð!‚#éÕ«W™2e¬[(„8zô¨uã“O>Y¶lY˯üñÇÕ«W«T©ÒºukëÅüüüÚ´i“}æÌKcïÞ½=<<ò¾Å©S§”_G޹xñâ‡zȲÀµk×6lØ··E®ª„žxâ a5Z••µiÓ&®]»:ñ0*.Ç@c‚‚‚rµ<ðÀeÊ”ùý÷ß333K—.­4*ÃÓ.\BÔ¨Q#ï «W¯.î­çû×®]»sçŽRe¼råÊO?ýtèС˗/_ºt)שÅZUI<òÈ#•+W>pà@JJŠÏO?ýtóæÍˆˆˆÊ•+;ýH0*Ž4Æd2åmqwwÏÉɱ¾@2:la6› Z¡»»»âîÝ»E¾…››[©R¥„«V­êرã›o¾yüøñ‡zhèС˗/Ÿ6mší½µ¬ª„ÜÝÝ;uê”­œ[É85§¢â@crµüþûïiiiåÊ•+èUJ­1× ˆ ¥i]Ìû¿ýö[ZZZ```éÒ¥ÿüóÏ·Þz«téÒK–,yôÑG­»aKo­WåòÄO¬ZµjóæÍ]ºtÙ¾}{ÅŠÛ¶mëè½BPq 9ÿ÷ÿ—™™iݲråJ!D½zõ y•¿¿ÿý÷ߟ””´gÏëök×®íØ±ÃÝݽN:–Æèèè\wTÞ¢qãÆBˆ'Ndgg7nÜØ:5 !Ξ=›÷} _•C4mÚÔ××wß¾}ÑÑÑ]»vuT$€\Ž4æ÷ß;vljjª"''端¾úüóÏÝÜÜF]ø Ç'„˜:uêÉ“'•–«W¯Ž=:##£OŸ>U«Vµ,yùòåñãÇß¹sGy‹+V|ñÅ#GŽBøûû !Ξ=k¹Nvvö×_­\ˆ;==ÝúM _•}rrrÒÒÒ,¿*s«³²²æÍ›'§àL UИ.]ºlݺµyóæ5jÔP†}ÝÜÜÆ_»víÂ_سgÏ}ûö­[·®W¯^<ð€§§çùóçsrrÂÃÃÇŽk½dhhèæÍ›øá‡   +W®¤§§{xxL:U™FÜ®]»ü±C‡Mš41›Í±±±)))ýû÷_±bÅÿýßÿݾ}{öìÙ¶¬Ê•*UJIIéׯ߃>h¹üd—.]þ÷¿ÿ¥§§W¯^½Q£F²Ý"8ИîÝ»÷ïßÿ³Ï>;qâ„——W‹-þóŸÿ´hѢȺ¹¹Í;·M›6ëÖ­;{öìüñð÷nÝzðàÁÊü‹åË—oÞ¼ùÇdÈë@öÁ,[¶lãÆ‡zàZ·n=dÈìììuëÖØ AƒûÒöX¹r傃ƒœ””ôÄåíììÜÜÜ^|ñÅ>úèæÍ›òŠÁ˜1cÌwPX‚#…éõúsçέY³¦qãÆ¿þú«ÒÝQ»û÷ïÇÆÆ.[¶¬fÍš¿üòKÁ ggg'''>|xÚ´iþþþÑÑÑJw€e³Sº4ÇÃÃÃÁÁAz••uóæÍ¿ÿþ[‘––6zôècÇŽ)ÝÁÇ”+W®ZµjB///¥ú`Øc>üóÏ?srr„iiiƒ>uꔣ£c~˧¥¥ )))Ý»w/]ºt_aÂÕÕU©­ BT”´~ø!ñ‘+W®Ü¾}»GÒ[ÇOHHPºƒyã7¤®nܸQ©>öXRRÒÝ»w  µ_¼xq×®],ãÆË—/÷ïß_jOJJZ²dIÁ_ab„ Jm5"8PXÙ²eß~ûmÃþù§áuNNÎ?þزe˪U«–)S¦jÕª-Z´X±bÅÇ¥ $]Šçíím¼Î«W¯®Ò;uêTß~ýúõáÇ7jÔ¨\¹rÏ=÷\×®]cccÈïÇøøø°°°gžy¦Zµj ¸víÚ‡~(-ùÑGåþ¢Û·o=:88ØÉÉ©^½zß}÷ÝÓ=ñÕÉÉiáÂ…öööÒgÏž-xyooïåË—.²üì³ÏÒÒÒÌqhÁ€ò¤±W‰ñˆpÏž={öì¹gϞ˗/ÿý÷ß—/_ŽŠŠêׯßo¼aX@z‘””tâÄ Ã ÿÕ¬Y³víÚù}ï®]»êÖ­»`Á‚ƒÞ¿?!!áÿþïÿBBBF]p‡8аaà 6ܾ}ûÒ¥Kß}÷]Ó¦M ¨•Þ¹s§qãÆsçÎMKK;~üø€¾üò˧Û]+V”^ß¾}[ÎG†.½¸yóæ¾}ûžþPÐ6‚#…edd,]ºTzâëë+½^»víÚµk…:.44´OŸ>†! ѶhÑÂÃÃCjܺu«a;vì^üç?ÿÉï{SSS{ôèqýúu!Dhhè'Ÿ|Ò³gO½^?wîÜåË—ç÷ÁtïÞýÖ­[BˆR¥J5jÔ¨R¥J Roó´gÏž³gÏúúúÙÚÚJ~øaffæSì±;wîHÝBøùùÉùH³fÍJ•*%½>|øpÑm"8(i}úôñ{Ä×××ÍÍí§Ÿ~Bxxx¬X±Â°Ø¶mÛ¤£Fúõ×_W¬XqòäÉàà`©ñ÷ßBØÚÚvïÞ]j1G½^o¨8gΜ)MéÖ­Û¯¿þ:yòäÿþ÷¿óçÏ—Þ2eJ~\²dɵkׄÎÎÎÑÑÑû÷ï¿råÊ Aƒ Þêùóç_¸p!66Ö°ÿý÷™3g µë²²²Îž=Û»wïììl©¥^½zr>¨Óé<==¥×ýõWîZ·nû^<#GŽ,T÷X=fU(iRê2Q³fͨ¨(wwwCË믿ުU+!D³fͤ–ÔÔÔôôtéµaˆ¶G .B8p %%ÅÕÕõèÑ£R9°V­ZùuÃLßzë-CcÿþýGŒ‘}ùòå'NÔ©S'÷ •Å÷Þ{/((Hacc³`Á‚7Þ¸q#ÏïªU«Öûï¿/½îܹ³]VV–âüùóuëÖ}âkݺuží¯¾újýúõeîögžyæòåËÒn|ºGªpöìÙÐÐЃ–+WNji×®"%%eûöíGŽ9zôhLL̽{÷L>بQ#ooï+W®dggïØ±ãõ×_—3N-„8wîœñåvþüù<ƒcžtpph׮ݪU«ò\•ñ€²““SåÊ•/]º$„0ŸBíÚµ õQ9’““¥åË—Ïýnž·ã©P¡ÂSw€U"8(i;wî”J‰Bˆôôô7öêÕ+''çôéÓK—.ýàƒ¤·233?üðà HÅ9!„ƒƒƒ»»»IUO§Ó½þúësæÌBlݺÕ88F±sKMM½ÿ~Áý”Ê–¹?h(vVªTÉø-“™ÝÆll».H§Ój§:;;»€€€F >¼L™2òWb¡6\jì‡~0ÈÁ€’Ê–-Û£GÅ‹ïÝ»WñÇÞš>}úܹs…¾¾¾|ðAãÆÞ~ûío¿ýÖd%=zô‚cddä½{÷öïß/ž4N]¾|ùråÊIõË;vfä3Ì\6V®\¹2eÊøì³Ï.Z´Hzè_zzúîÝ»œœœ }Sܵk×âããããã÷R… 6nÜèææ¦tïX0‚#åîksåÊ•¯¾úJz=oÞ¼çŸ^accS·nÝ‘#G=z´sçÎÒ»kÖ¬1ÜGb­Χ6Ö©S§ãÇ4¨~ýúeË–õõõ ‹ŠŠZ²dIÁŸ ´sçÎ×^{­R¥J•+W~íµ×öï߯ÂI'¶¶¶*Txá…>ú裸¸¸—^zIé°l:Õ= 6>ܼy³",,ì‰ ¶mÛvĈy> ¬Á²p;ÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈb§t¬¿¿¿Ò]æ§t@p4 mþ2©™¿¿?Em8(êÄqQ!Š i¶HÄP5d!8@‚#d!8@‚#d!8B¶mÛ¦t`Šƒ¢Nâ @=Ž…àYŽ…àYŽ…àYŽE[Á1!!ÁßßÿøñãO\2##ãûï¿ïرc½zõš6m:pàÀýû÷+ÝýÇètJ÷hŒÒ(Q«V­’³XVVV¿~ýŽ;æììܰaÃ:thß¾}ï¿ÿþСC•Þ!„Ðé„^ÿÏÖÇßß_é.hK\\œÒ]° šŽ©©©çÎÛ´iÓ?þ(gùµk×;v,88øÛo¿uppBœ?¾wïÞ‹- ­U«–²›cÈ‹dG°Jþþþ䘒DL—OCÕ:uêÕ«—ÌÔ(=ÜiâĉRjBøùù½ýöÛÙÙÙŠX“€R4Qqœ>}úßÿ-„X½zõž¸|bb¢££c`` q£ŸŸŸâÊ•+JoÍc(:€£‰àؤIéÅîÝ»å,¿téR;;Ó=súôi!„···Ò[  MÇ 0i‰ŽŽ/]ºt—.]ä¬!÷ÕÒðwùúú$$$&&š4ûän‚‰¤¤$¥»Suâ¸@› >“¶oß^éªÁñ ²³³øá‡Y³feggñÅnnnr>e¾‹š}||LZôz¡Óù0ZýD¹wÇAQ'Ž 4¨à_ûܧuÍΧ!8äСCS¦L¹pá‚——×gŸ}Ö¨Q#¥{ ‚cÞ233gÏž½jÕª2eÊ 6làÀ†ÖJa PÁ1999£GÞ±cGëÖ­'Ožìîî®t”GpÌêU«vìØñÆoLž|øÐÁÁ!;;Û¸ÑÍÍíæÍ›Jo„Å#8š’îa–‘‘qêÔ©Üï*5±š‘h€–¥¦¦†„„\¾|¹[·nnnníÛ·ß½{wPPPî…³³³5jäëëkhtrrRz#¬¶‚ã´iÓ¦M›–»½C‡:t^ׯ_ß-ÏeŽ+6wîÜøøøï¿ÿ¾oß¾BˆáÇ=z×®]¹ŽBL:µU«VJwÜÚØ(Ý` bbb:vìèéé©{œ½½}ÑWþã?zyyõéÓGúÑ××·[·nQQQþùgî…¥àX½zu¥w‰ÒVŘÃÎ;Û¶mëííÝ¿GGÇõë×ÇÆÆÖ¯_?44ÔÆ¦¨UªÔÔÔsçÎõìÙS§ÓCCC¿ùæ›èèè°°0“åãããK—.]®\¹ŸþùöíÛ/¼ðB©R¥”ÞIÖ€àŠäÁƒ}ûöõòò:tè§§§b̘1mÚ´‰‹‹ûøãË•+WÄõ_¿~]¯×{xx7JwYÎs¾K||¼MõêÕSRR¤–Zµj­Zµ*88Xé]eñŽ€‹j¶wïÞk×®M:UJBˆÒ¥K;¶S§NëÖ­ëׯŸÉòYYY[¶lÉom;w6iIOOB”/_Þ¸ÑÙÙY‘œœœ{ ñññ999S¦LéÖ­›½½ýÆGŽÙ¥K—S§NIŸÂS#8ZæÇ€Õ3ª-iœ_.^¼(„¨[·®qc:u„yÞ¢$--­K—.ù‘é7¹¹¹ !îÝ»gܘšš*„¨P¡Bî5ìÙ³§L™2†· ðàÁƒ¡C‡FDD 8P±=hŽX uV„YYYÆ999Bˆ|óæÍÒ oܸѦM“%>øàƒ üúë¯Ò€rrrfÏžmggצM¥w•Å#8€"±··Ÿ?~XXX½zõ† bkkqäÈ‘ ˜L…–v¨Zѯ_¿åË—÷êÕKʦßÿ}zzú”)S¤w׬Yóî»ïöïßîܹîîîS¦L7nœŸŸßË/¿ìââ²}ûö£G~öÙgJï*‹GpEÕ¡C‡èèèÉ“'/^¼øÁƒõêÕ‹ŒŒl×®]q­¿|ùòQQQcÆŒ‰ˆˆHIIiذá?ü`xÞ`ffæ;w222¤ÇŽûÜsÏÍš5kõêÕeÊ”©S§Ndddûöí•ÞIÖ€à¨v…š(ÍÄj€R‚‚‚6nÜh¾õ;;;‡‡‡çùVß¾}>|h<ƒ»k×®]»vUz—X!9,ÛƒvïÞ]¿~}¥;býŽÀ²++kË–-ù­­sçÎJoòEpErñâE!DݺuëÔ©#„8uêTîåÓÒÒºté’ßÚô\h¥bGP$Bˆ¬¬,ãFiîsž8:;;“-ÁQ¥˜Ú°~~~Bˆ3gÎ7JµFÿÜË3Tm¹Ž Hêׯ_½zõE‹ :ÔÅÅE‘™™9{öl''§Ž;æ^ž¡jËEpEboo?þü°°°zõê 2ÄÖÖ6""âÈ‘# ,ðððȽíÆ;EÄAQ'Ž 4¨à_ûܧõÜ"àv<…à,ÀîÝ»[¶léîîþÌ3Ï4iÒdýúõJ÷H‹Ž@í¶nÝzùòåÞ½{¿ýöÛ7oÞ|íµ×¾ùæ¥û¥9\ãÔîÃ?ôôôŒuvvBL˜0! `Ê”)ƒ RºkÚBŃ˜˜˜Ž;zzzêgoo_Ä5ÿý÷ß§OŸîر£”…ŽŽŽM›6MJJÊÈÈPz»µ…Š#(ª;w¶mÛÖÛÛ»ÿþŽŽŽëׯ­_¿~hh¨MQ«T¶¶¶Çwss3´dee--­K—.ù­M_`åüùóééé4hÐK/½tæÌwww¥w€†09F+ôz¡Sv€`¥¤ ³²²Œsrr„y^àèìì¬Ïß¿®lÙ²­Zµš1cÆíÛ·7lØ ôÖk GP$~~~Bˆ3gÎ7JµÆ<ÍWØ¡ê-[¶téÒeõêÕ¯¿þº¡ÑÕÕU<©<‰bGpER¿~ýêÕ«/Z´hèС...BˆÌÌÌÙ³g;99uìØ1÷ò…ª~ñÅ…ß}÷ÝþóÝ£á³+V!6l¨ôÖk Á‰½½ýüùóÃÂÂêÕ«7dÈ[[Ûˆˆˆ#GŽ,X°ÀÃÃ#÷òÒPµüõ»¹¹Mœ8qÊ”) 4h×®N§ûå—_>|xÒ¤I³gÏ®W¯žÒ›«iGP$/^BÔ­[׸±N:BˆS§Nå^>--­K—.ù­-w8NMMíÙ³g›6mÞÿ}¥·U뎠H„YYYÆ999Bˆûì³={öTzhÁ‰ŸŸŸâÌ™3ÆR­Ñßß?÷ò…ªÎÌÌBÌ;׸1%%eüøñ-Z´ 8–$:¯–°hþþþqqq…ý”N'JæP”Ø©Jbb¢Ò½Àc8(êÄqQƒ§;(èáÇiiiüñ‡‹‹‹"33³M›6±±±ñññ&Ëß½{WZ,Or’‰§§çÁƒ‹¥ÿO±Ã-î*Žª Í0°öööóçÏ «W¯Þ!Clmm#""Ž9²`Á‚Ü©Q~¨êApEÕ¡C‡èèèÉ“'/^¼øÁƒõêÕ‹ŒŒl×®ÒýB1#8jŽôðþOP¼‚‚‚6nÜX2ß•˜˜¨ôæj€,GÈBp€,GÈBp€,GÈBp€,GÈ ÀP¥»äà€ºÄÅÅÿ˜˜˜èãã£t§!ªÖ&驃…Bp€,GÈBpTžN'ôz¥;ð$GÈBp€,GÈBp€,GÈBp€,GÈBpÔ(ž: ‹àYŽ…àYŽ…àYŽ…àYŽ…à¨0NèõJw@‚#d!8@‚£vñ¸jP(GÈBp€,GÈb§tJÈÏ?ÿ¼víÚøøø²eË6oÞ|̘1®®®,Ÿ™™¹bÅŠÈÈÈÄÄDWW×çŸþ½÷ÞóóóSz;£‰Šã¼yó&MštáÂ… 899­[·nðàÁù-ŸÝ·oß9s椤¤4mÚ´råÊÛ·oïܹsLLŒÒ› ëŽqqqáááÛ¶m ß¾}{Ÿ>}Nœ81gΜü>òÓO?ÅÆÆ¾üòË¿üòË‚ V­ZõÝwß !&Mš¤ôÖ(ÆúƒãÚµksrrFŒáîî.µŒ?ÞÙÙ9222'''ÏÄÆÆ !úöíkg÷ÏP~Æ kÕªuñâÅÛ·o+½AʰþàcccÓ¢E C‹­­m³fÍ’““¥€˜›———Â8#êõú;wîØØØ¢$€ÖXypÔëõñññ*T¨P¡‚q{5„W®\ÉóS;v,S¦ÌôéÓ<˜‘‘qíÚµ>ú())©{÷îåË—Wz›”aåõ³ôôôììl“vgggñxMј¿¿ÿªU«úõëׯ_?CcïÞ½'L˜ ó{ýýýMZ¶mۖϲ>‰‰‰Êí!e¿½ä$%%)ݘ⠨ÇE…8(Škß¾½Ò]P +ŽÒÔiGGG“v'''!ÄÝ»wóüTjjêŒ3ÒÒÒŸþùäää}ûömذᥗ^jÓ¦œï‹‹“ßI¥ö^/t:½^©ï/Q îg䇃¢Nâ (+÷i=w…H#¬<8º¸¸ètºôôt“öû÷ï‹GuÇÜÆŽûûï¿?¾ÿþR˵k×zôè1räÈ7úúú*½Y °òkíììœsWSSS…†yÖÆnܸ±{÷îêÕ«R£¢R¥Jï¾ûîÇׯ_¯ô6(Ãʃ£ÂÃÃ#99YJŠÒ…}¹—ONNBT«Vͤ]*4Þ¼ySé P†õÇV­ZeggïÝ»×Т×룢¢\]]ƒ‚‚r/_­Z5[[ÛóçÏë¿ôOº¾¡zõêJo€2¬?8vïÞÝÆÆfáÂ…ÒuBˆððð[·nuíÚÕÞÞ^jIKKKLL”¦­9884kÖìÒ¥K ,0Ü!üüùó‹/.UªTË–-‹±o:ÐÈÄ`¬|rŒ¢R¥JcÆŒ™9s櫯¾Ú´iÓK—.EGG¾õÖ[†e¢¢¢FŽéçç·yóf!Ä´iÓºuë¶xñâ­[·$''ÿþûï999“&Mzî¹ç”Þ eXpB 0 bÅŠ6lغu«——WïÞ½GŒ!Ý‘'Onnn[·nýúë¯÷íÛ·gÏWW×æÍ›¿óÎ;Ï?ÿ¼Ò› ž±Òâæïï/ó>ŽjªVCJ@bb"wASŠ:q\Tˆƒ¢BòÏõVÆú¯q@± 8@‚£ÖéõB§SºÀ Á² Á² Á² Á² Á²ÁS€,GÈBpTŒN'ôz¥; Á² Á² Á² Á² Á²!«2 Á² Á²¨+8~ñÅñññJ÷yPWp å•WºvíºjÕªÛ·o+ÝüK]ÁqÈ!•+W>uêÔ´iÓš6múÎ;ïlß¾=33Sé~@Ø)ÝÇŒ5jäÈ‘±±±›6mŠŒŒÜµk×®]»Ê—/ÿÊ+¯téÒ¥^½zJw@»ÔUqBètºàààO>ùdÿþýK–,éСCffæš5k^ýõ¶mÛ.^¼øêÕ«J÷@‹T ìììBCCçÍ›wðàÁ‰':88\ºtiþüù­ZµzóÍ77lØ­tŸžN'ôz¥;Pêª6‘’’ò믿nÛ¶íàÁƒYYYBˆŠ+ÚÛÛ>|øðáÃË–-ûæ›o¼¼¼”ž:HœùQcp¼uëÖ/¿ü²}ûöÇKeE77·¶mÛvèÐ!88XqàÀyóæ:uêã?^¶l™ÒýÐuÇÕ«Woß¾ýÈ‘#999Bˆ *´k×îå—_ ±µµ5,Ö¤I“ààà^x!&&Fé.h…º‚ã§Ÿ~*„pqqiÛ¶íË/¿üâ‹/çEceÊ”aœ Ä¨+8víÚµC‡ 6Ì//£ÜP’Ô5«:22òàÁƒù¥ÆaƵk×Né>h”º‚czzúÇó{ëòåËÜÄ@)ÊUGEE½óÎ;†W®\¹zõêÜ‹åääèõúgŸ}Véþh”òÁÑÖÖ¶|ùòÒë”””R¥J•-[6Ï%]\\Ưt4JùàØ¤I“èèh鵿¿=&L˜ t§`JùàhlàÀ!!!J÷yPWp;v¬Ò]Ð4ž:  ppüᇄ/¼ð‚ŸŸŸáÇ‚õêÕKÙ>h“ÂÁqêÔ©Bˆ)S¦HÁQú±`GE(‡ &„xþùç¥?øà¥wò¦pp|ï½÷Œ|ë­·”íò£®É1¹éõú]»v%%%Õ©S'((Héîh—ê‚ã®]»æÏŸßºuki{Ò¤IÒ[={öœÿüóV­Z]¼x±}ûöÿýï[µj¥t7‹Š{%K¤®àxîÜ9OOÏ>}úH?:t¨T©RM›6BT«Ví¹çžKHHPº¥®¡ê;w¹I¯³²²þøãÚµk—*UJj)[¶ì­[·”î#€F©+8VªT))));;[ûàÁƒ_|Qz+'''))©bÅŠJ÷ÑÊIOÈM]Á±AƒwîÜùꫯ®^½úÕW_ !š5k&½µ|ùòÛ·oW¯^]é>h”º®q''§Ø³ãÏ?ÿ¼víÚøøø²eË6oÞ|̘1®®®ääÉ“K—.=}úôýû÷ýýý‡ fxþ¡u“ž:˜ÏÜ$ ]*ªíÙÚÚ4èÖ­[óæÍ+Þ5Ï›7oÒ¤I.\hР““Óºu뜑‘QÀGvíÚÕ³gÏ]»v¹»»=z´OŸ>»víRz'(FEG!D‡®\¹ýòË/W©R¥T©R&Ë´hÑ¢P댋‹ ÷ððˆˆˆpwwBLŸ>}åÊ•sæÌùè£òüÈÝ»wÇggg÷í·ß !Nœ8Ñ«W¯>ú¨E‹Œ¤mRWplÕª•ôâĉ'NœÈs™¸¸¸B­síÚµ999#FŒR£büøñÿûßÿ"##'Nœ˜g \·n]jjêÈ‘#¥Ô(„¨S§ÎË/¿ü¿ÿýïäÉ“uëÖUz?™Ÿ^§3i ] uê Ž¯¾új±¯3&&ÆÆÆÆ¸NikkÛ¬Y³M›6ÅÆÆ†„„äþÈo¿ý¦ÓéºtébÜ8kÖ¬Y³f)½‡ÌN'tB¡3½ÿºÔN|@ËÔgÏž]¼+Ôëõñññ*T¨P¡‚q{5„W®\É38ž:uÊÕÕÕÓÓóÈ‘#G½sçNÍš5[·níàà ô2/ÐIÑP—ë­GíÄG´K]ÁÑàÎ;§NúóÏ?+UªÔ¸qã[·n¹¹¹=ÅzÒÓÓ³³³]\\LÚ¥»‹ß¾};÷G233ïÝ»W½zõO>ùdÍš5†vooï/¿ü²víÚr¾×ßßߤeÛ¶mF?ù$&&*°[óçëã+„HHLH‰ô0A$!t>º„Ä¥»\8IIIJw¦8(êÄqQ!ŠâÚ·o¯tÔBuÁ199yÉ’%Ò¬ç¾}û6nÜ8,,,00ðóÏ?â=tLH+qtt4iwrrBܽ{7÷GîÝ»'„ˆ¿yóæÌ™3[´hñàÁƒˆˆˆE‹ >|óæÍrêŽO¼ÓÇÇGÁlÂPhF* ‡z¡×ùè,®î¨ª} E8.*ÄAQVîÓzî ‘F¨k‚ðÇß}÷ÝU«V•/_>,,ÌÐîîî¾{÷î=z|Ü\\\t:]zzºIûýû÷Å£º£‰2eÊH/f̘ѥKOOÏ÷Þ{/,,,))iË–-EÜFµÝ"ñßÔXz¡×å1  ¬™º‚ãÒ¥K;Ö¼yóm۶͘1ÃоvíÚÎ;_¼xqåÊ•…Z¡³³sîÊbjjªÂ0ÏÚ˜££c™2eZ¶liÜÞºuk!ÄÙ³g•ÞIÅééR£„ì€Ö¨+8>|ØÖÖö³Ï>+[¶¬q»­­íÇ\¶lÙíÛ·vÉÉÉRR4.àóððÈó#îîîöööºÇïH#Pgee)½“J‚ôð˜'/Fv@KÔÏœ9ããã“ç<'''__ßK—.v­ZµÊÎÎÞ»w¯¡E¯×GEE¹ººåù‘–-[¦¦¦ž;wθ166VQ³fM¥wR±)J¹Ñ€ì€v¨+8:;;§¥¥å÷nJJJ¹rå »ÎîÝ»ÛØØ,\¸Pº®Q~ëÖ­®]»ÚÛÛK-iii‰‰‰†ikÒå•“&M2L»>yòä·ß~ëììܦM¥wRñ(–Ô(!; êšU°}ûö'NÔ©SÇä­3gÎ\½z544´°ë¬T©Ò˜1cfΜùꫯ6mÚôÒ¥KÑÑÑo½õ–a™¨¨¨‘#GúùùmÞ¼YQ«V­Q£FÍ;·}ûö!!!ééé111:núôéÏ<óŒÒ; @êª8¾þúë:nôèѧOŸ6n?}úôˆ#„&Os‘iÀ€sæÌñññÙºuëíÛ·{÷î½råÊÜ7w46dÈÏ>ûÌËËëÀ—.]jÕªÕúõë_~ùe¥÷Pñ(Ær£„¢#ZëÑrJ›3gβeË„¾¾¾ •+W.[¶ì… rrrÂÂÂŒ§Z«–¿¿÷qTüv<2SãSô³Øóh1JLLä.hjÃAQ'Ž‹ qPT¨às½S×Pµâƒ>ž9sfBB‚âêÕ«BˆŠ+Ž5ÊøÎŽ(aª ŽBˆ–-[¶lÙ2%%%!!!33Ó××7¿ûæ °ÌZ”¬U[tE¤Æà(quu Vº(²#VLáàøÃ?ö#½zõR¶Ï–‹HŠBáà8uêÔÂ~„à¨r°V Gé&;ÆÎœ9³}ûv[[Û&MšT«VÍÖÖ611qïÞ½YYY^^^&LP¶Ã–«°aNzê ÊæÜ%)ßyçã/_¾¼jÕ*ÿE‹y{{Ú¯^½úÞ{ïýñÇ›6mjÛ¶­²}ÆQtÀ*©ëàK–,INNþꫯŒS£¢råÊ ,BìØ±ãÖ­[JwÓòã@Ñ©+8=z´R¥JU«VÍý–···Ô®¶;–#O|xÍš5C† ©[·®ÒÝP+ŽBääd))H—Êyxxä^þüùóBˆÅ‹û?òÚk¯ !6nÜèïïß±cG¥7@V>T-„hÕªU\\ÜÞ½{_yå©E¯×GEE¹ººå^¾jÕª†%%wïÞÝ·o_¥J•‚‚‚<==•Þ Mc´YpìÞ½û×_½páÂæÍ›KsbÂÃÃoݺ5hÐ {{{i™´´´7nØÛÛW©R¥I“&Mš41^ÃéÓ§÷íÛ2{öl¥¶B=iIº•£^}%Êúƒc¥J•ÆŒ3sæÌW_}µiÓ¦—.]ŠŽŽ |ë­· ËDEE9ÒÏÏoóæÍJ÷@¥¬?8 ! P±bÅ 6lݺÕËË«wïÞ#FŒª%ƒ]1b´¥h"8 !:uêÔ©S§üÞíСC‡ò{7000÷ œ´ÆúgU X-#³&xn5Š 8@‚#,EGJÁ²QhÒ=À€ÖÕŽ™1ùa´€Fp€,GÈBp„c´€’Dp€,GUcf P‚#,£Õ”‚#ž·r@ƒŽ…à‹Çh5%ƒà¨^ÌŒªBp„5 è@ 8@‚#d!8ÂJ0Z €¹UJý3c¸•#ZCp4;NèUd!8Âz0Z €Y Á²ÕHý3cT‹Ñj̇àYŽxzê¼#EGÌ„àYŽÅNéÅO­Ö‹‡Ò}{›‰G< *ŽªÃ”êBÓérÿÑë=´G¯z}bB‚áužËÿóäŠ#,“qÈË«‚XPþ. âh’©M`„àËñ¤°hìßÑêB1Yma¾«Gp„êÒ[ÉG7ãoT°¨ÁE"]1h®(%eµ§]ûS ØTã^™4 GuafŒª¯íå.Cª³Ÿ7‚#ÔÄâr˜ÔU•']Š Áê`žÈXÌ£Õù~Íã£ØÄG€•"8BiÖ¶(@¬Áʱ¦ÈhŒ$ÀJñä(AzL‹ô3“F«•ÙLãÕ`ù¨8ªˆ…N©.ôyÌxÿU2¿ÖÔ†¬Á%H¡ð¤zÒ¡œø°|G”­óD|X2‚£y–þÙ ‚œd„ø°LLŽ™•Ô$˜‚%$&(6E&?LX*Žja¡3c Ü$*j2ªì(€êQqD1 gQG¡ñ±N*x_ž'wŽÒ#ÀPq„P?{ \øP=‚#й§ˆ¹¨CÕ(>êž6¡êÑêÇ:ÊÈ5@¨8¢xèE²bÅÈ5@}¨8ª‚ÅO©ÖétÒ‹):þÓ]}^3PÁEÆyæÆÈ5@Ž(šG©‘º˜yq·p€ ñ´¤cµF ­~¬ëŒ\”Ää<ËŒŒVÂ9€’EÅ…gù©Ñ‚‹Žÿl¥G€ŽÊ³°)Õ–Ÿ­W=JÁ…AjTJ€Dp„lOJ–`,~´ú±¡ô( GÈC­Qå(=Ìà¬45ZUÑñŸM¢ô0#‚£Â,`fŒ•¦F«Eé`6GÈÚS£ÿÙ0J€âGpDþ¬=5Z9J€âFpD>ž*5TT‡Ò# øh呃?ÿüóÚµkãããË–-Û¼yó1cƸºº°|FFÆO?ý‘””T®\¹5j 0 qãÆJoGIÑR­Q­Vû•¦EÚB½Ú:¦3ÑDpœ7oÞ×_íèèØ AƒK—.­[·îüùó+W®tppÈsù¬¬¬~ýú;vÌÙÙ¹aÆ<8tèо}ûÞÿý¡C‡*½5æG°JRé‘# (몎‹‹ ÷ððضm[xxøöíÛûôésâĉ9sæä÷‘µk×;v,888**jÉ’%ß}÷Ýúõë]\\-ZtæÌù_ýÄÓ´ ]šÌV;EÆt;¶‰õǵk׿ääŒ1ÂÝÝ]j?~¼³³sdddNNNžÙ¶m›bâĉ†’¤ŸŸßÛo¿½ÿ~¥7(fÌŠÀúƒcLLŒM‹- -¶¶¶Íš5KNNŽÍó#‰‰‰ŽŽŽÆ~~~Bˆ+W®(½Aæ¤Ér£D+EǶ–Ò#àiXù5Žz½>>>¾B… *T0n¯Q£†âÊ•+!!!¹?µtéR;;Ó=súôi!„···ÒÛd6Å”¹”Î20cPxVÓÓÓ³³³]\\LÚ…·oßÎóS&-ÑÑÑááá¥K—îÒ¥‹œïõ÷÷B÷èÅ?Ãߦ|Dbb¢Ò;I!||}D±uÆG%Ûe””ôÄeD‚ÎG—˜`îÎøøú(»7„N‘˜`ö­ÎMÎAAÉ㸨EqíÛ·Wº jaåÁ1##CáèèhÒîää$„¸{÷î×ýÃ?Ìš5+;;û‹/¾pss“ó½qqqBîŸðñQ8CñOÙ©xû¡Šízª.[Ï VºÆç£3ÞF½ÂÇW™î©ð÷‚ã¢Jeå>› CZcåÁÑÅÅE§Ó¥§§›´ß¿_<ª;àСCS¦L¹pá‚——×gŸ}Ö¨Q£bì›Z¦T3XY,rÇD5ïÔ<ûføMÐÉþ@c¬<8ÚÙÙ9;;ç®,¦¦¦ ! ó¬sËÌÌœ={öªU«Ê”)3lذæwÓGËFj|œÜ›[VL”»ñf[çù+AšX}pBxxxÄÇǧ¦¦–/_ÞÐ(]çáá‘çGrrrF½cÇŽÖ­[Ož<¹€|‰ªËÿ-€%°þà(„0`@ÅŠ7lذuëV//¯Þ½{1Bº#OnRÝ1##ãÔ©S¹ß-®‰ÕJæR£ ÁÈVðŒ™B¯ÍèµNøŸ¼ß¨•NO†(nþþþ†û8æ·w Ž%˜UP}||þÍ‹2:FÑñ1f8œÿ”Öoô{]Q¨E… çz­ÑDÅZg(n‘HžZñ–óX¿ÑkB$¨•õOŽÁ¿TU,‰íýwNtbBba#ȿӫ!yº3OóEùL¯(Š£fh'5f<…fîÒ£é×½¦ J#8jƒR£ò¢ÜÉhM÷ 7ï÷½&D€Ž (é,¢Pj,¡çÇP_TJ —M¿Ýè5¿PRްXR\0sV èX¥J¦Ýxô‚2$˜ÁÑÚ)~R/þ-zôº6Ë‚©çÙä”!ÀÌŽVM%§óbÛ!„9€¢ã“);lw—½  Ňàh½¬&5R:²*¶Î£cF¯ù]€¢!8ÂŒŠ:†©P‰1 ¡è(“ KuïÑ ÊðTŽ%­„ò‡ ?…èü£»š¦ÚÒãc4zÍïÈFp4%Ï›*?gÔs!„JÏßó¤+àA2æÆŒ¾X~Ïs—!9È‚£Õ±ÐÔ¨âÈh`ÝÙQ÷T9ïÉÑ-ÿ_ÈÄÄDŸ’ïs¾=g ž„àózòeŽ–-œ€U<Õ»¼Ök¾«‹Òg™¡S¯{ôüŠÁÑÚXV¹Ñ#£š‹Ž$!s…B™TyÕ£Ì}òï^Õi=`ŽVDe'æ»*„°°È¨ùDµ'•O¸Î·×¹zûø@¶zó:˜Á±D™±Xe)©Ñò#c‰-5 @•¥ÇÂo…Ñkøç7!¯ "S°>G˜Ý?—9þóƒÒ½Q«Ü!Ãj³…¡ô˜ tWо-^ä5#»€#h…ÿW@ŽVAå%)5ª¸ƒ…Uô¢£†bbžôz!„Ž\ç¿E^È»§O~‡›@ @ål”îŠLÍ©Q'„N½0û ýJœ”åî†\ô¹(½A HLHø·úh5ôþèý)Ô§ó¡Ë‹Ò› @‹¨8Â<,ÿZÆ"mýã'umæB¹,sÒŒŒízô¢8î ™ç¯PžÙ‘_6fEp´p*,7æ‹úÐjU2°&)‰uLšÉwëŒ^ëÃiH“JÁ±äÿT\µhµTe4œž¥kNÌÅÀZKmã£f{¼¡Ì4Éo,€§Cp´XªJˆŒùÕU{?p‹d(= «Ž¢¤;&R˜ðtŽ(«ŽŒÆ'×üΩj~–Œ¥²î‘kÓ}ô¢Dä¿_KaÀSaVµeRÉ9U÷h© –2}6¿¹ÏJ÷K{¤ß‹ø¥)žíÍ5»Ä7]úUOHH(`6·Ò» €Â¨8Z 5¤F+*4}^ EGsÑÎÈõc[môºdËyôEÆ7ÿ[h Á…d‘QÎt¡ÍHS#צÛþè…Ò òß%m#8ZOŸ– g8Nl–G s® ÚüG/T“ ÿíQЂc )žr”R©±˜"£"ws,öâb¾[GÑÑÜ´9rmº½(ŽûŠ›«DIÀz19OR˜0*‘{‚‹t½¿¹¿·PÏ!ÄSÒë-f¦•y÷CQoX¢•ñE¥û@*Ž–CbÂb"c‰U¡ ¹6¡âì|»ü¤ª$‹u"8ZˆNf‹ŒÅ>Z­¶Ë°.9Œ\çf ÙùöýñƒÈè6 NGä¢Sû™FåÅE²c‰">æIM÷ôyÊ-àBI@•Ž– ÄÊê›V[q±dÇ’F|,€d罌n*@p, EÊ%“K02v´Ú‚ò"F|,˜%dç½AŒn%Žàhv¯bõM«|0ZŠŽŠÑò Ãe²üì¼7‹ÑmÀüŽêfî“ŸÊÆ¦­¬¸HvTÓ®eÊU†ô>Vó;Ëè6Pì¸£Š•@jTè&·á3¹ç¢5ýSΕd¸ã#÷”ãÑ]!ÕcȧßJn'  GMRG¡ÑÊê‹P).|| Vw5d¾Êè6PHGµ2S¹Q‘Qky‘kU >><¯†Ö"ÿÙ2¢$P ‚£Ù=Mh0_jTÜyQ;³ÈŽja ²¬tJÍ“·›( !8jƒr…F­ÕóCvTï"ȧ¦™±ì¼·ž97Ð0‚£ú{!N‰B#y17²£ê0~]tÚËÎ{7pGIhÁQeŠùAÎBˆý¼Py±ØŸ[­~dG5">B¤a‹݆õ"8Z¯,4R_”ì¨RÄÇâEˆ|QVƒà¨&ÅU+©BcÑ󢋎‚ì¨fÌž1Bd^äDIAš„úÍ«ù S£™ÿ¡¾XtdGUcöŒù"ó—翨&¡6<9ÆŠèÌ›Íô|“§Èh•±<{ƬôFtŠWSÒ?¶ <í*AÅQŠ^n4[d¤¾h>Ô-ã×%€J¤lŒqCYG(bj4Ï%™µy¥ã?ÛNv´Œ_—Bd!1Æ’Dp´pf(4JÿÜðOL‰!;Z %)¿)È‘O@afBpTÚS—ÚŠ»Ð¨ì´–‹Ž‚ìh‰L ‚i~&;˜YH2 “‚4‰U”ÔXL¯¹„Q%ÈŽ–Š©”r$G@6Ò$ ‹àhFfÉÅWhTÛ´Æ‹ŽÂhž5ñÑ"‘ •Å vñ!M¢GåÁY‚£¹ä[(’“‰žªÐh¡%F<¥Gkfü–©NO,Iæ·Ц€Ó™RAÇâwî\œ^Ÿ÷?,rSca~í­ Ä˜EÇÜ(=Z¿ÈFpT‚® ÈH^Ì¡îÈ*˜ñìA‚„$ÿ}ÕÉZ –åé2å? 2—„Åyâa”3ÒÍï‚æqc¾~þùçîÝ»5nÜx„ )))E]c®+5>ëå©.ß’¯}ûöJ÷Z1ƾ_õ¦t¿4}PÔK¯÷¯Qã —Kréd‰+¡¿,ztòþÀzQqÌÛ¼yó¾þúkGGÇ \ºtiݺuçÏŸ_¹r¥ƒƒC!Öb\3ž¦ÄXt†Ò£ RÆG*‘« [‰éžòƒ°P2ia³#¿)–ƒŠcâââÂÃÃ=<<¶mÛ¾}ûö>}úœ8qbΜ9…X‹!5Ýp‡cñ2©† Pò«Dª¤ Ë`R›”_ªäï­u“S¼|ŠB&ÕM 8æaíÚµ999#FŒpww—ZÆïì왓“óäÏëîÅ£B/t‚ë˜Qî“ +÷9?Ï“¼ÒÝ„¥)8VÊ—M«WØ Y\¡“ ZxÇ<ÄÄÄØØØ´hÑÂÐbkkÛ¬Y³ää䨨XY«Ð= Œ‚cÉ)àL„ÂÊó$/çÄ®tÇaiä„Ë¢M¨Õ+Jè,JÕ*®q4¥×ëããã+T¨P¡Bãö5j!®\¹ò„5üsòäÞ:ŠÉëÆ#qO**ÊÕÕ5((HéÞ(ƒà˜‡îÝ»ÛØØ,\¸Pº®Q~ëÖ­®]»ÚÛÛ+Ý;e蘜§åË—Ïœ9³råÊM›6½téRttt@@ÀòåËsߦ@#ŽùÚ´iÓ† Nœ8áååõ /Œ1Bº#€6 ×8@‚#d!8@‚#d!8@‚#d!8@‚c±ùù矻wïÔ¸qã &¤¤¤(Ý#­ËÈÈøþûï;vìX¯^½¦M›8pÿþýJw ÿºvíZppð˜1c”î„âäÉ“ï½÷^Ë–-4hлwïC‡)Ý#­ËÌÌ\¶lÙk¯½:|øðóçÏ+Ý)JHHð÷÷?~üxžïjíìOp,óæÍ›4iÒ… 4hàää´nݺÁƒgdd(Ý/íÊÊÊêׯßçŸ~ãÆ† V¯^ýСC X´h‘Ò]ƒBèõúqãÆeíÚµ«gÏž»vírww :zôhŸ>}víÚ¥t¿´+;;»oß¾sæÌIIIiÚ´iåÊ•·oßÞ¹s瘘¥»¦E«V­Êï--žýõ(²³gÏÖ¬Y³iӦׯ_—Z¦M›V£F©S§*Ý5íúá‡jԨѳgÏôôt©åܹs/¼ðB­Zµþøã¥{ýòåËkÔ¨Q£F>ø@é¾hÝ;wBBBêÖ­{äÈ©åøñãµk×nÔ¨Qvv¶Ò½Ó(é_°áÇ?|øPj9pà@­ZµÚ¶m«t×4äîÝ»111ü±ôÕ±cÇLÐæÙŸŠc1X»vmNNΈ#ÜÝÝ¥–ñãÇ;;;GFFæää(Ý;Ú¶m›bâĉR‹ŸŸßÛo¿Í€µâΟ??oÞ¼š5k*Ý!ĺuëRSSß~ûíàà`©¥N:/¿üò­[·Nž<©tï4*66VÑ·o_;;;©¥aƵjÕºxñâíÛ·•îVtêÔ©W¯^?þøc~ hóìOp,111666-Z´0´ØÚÚ6kÖ,99YúË’—˜˜èèèhÜèçç'„¸råŠÒ½Ó´¬¬¬±cǺººŽ?^é¾@!~ûí7N×¥KãÆY³fÅÅÅÕ­[WéÞi”———Â8#êõú;wîØØØ¢$Ìmúôé‹/^¼xq£Fò\@›g~ÿŠJ¯×ÇÇÇW¨P¡B… Æí5jÔB\¹r%$$Dé>jÑÒ¥Ksÿózúôi!„···Ò½Ó´¯¾úêÌ™3Ë—//_¾¼Ò}Bœ:uÊÕÕÕÓÓóÈ‘#G½sçNÍš5[·nm¨Ö£äuìØqåʕӧO/[¶l½zõRRR/^œ””ôúë¯ó§Ä4iÒDz±{÷îÜïjöìOp,ªôôôììl“vgggñøÿ/¢$˜´DGG‡‡‡—.]Ú¤²‚’tìØ±eË–õîÝ»Q£FRއ²233ïÝ»W½zõO>ùdÍš5†vooï/¿ü²víÚJwP£üýýW­ZÕ¯_¿~ýú{÷î=aÂ¥»†höìÏPuQI“§MÚœœ„wïÞUºƒÙÙÙ+W®4hPzzúŒ3ÜÜÜ”î‘FeddŒ;ÖÛÛ{ôèÑJ÷ÿ¸wïž">>~ëÖ­3gÎ#Òÿy@A‡š2eÊ… ¼¼¼>ûì³ü.UA ˜9sfRRÒš5kU2eÊH/f̘*½~ï½÷®]»¶nݺ-[¶tëÖMé>jÑØ±cÿý÷ñãÇ÷ïß_j¹víZ=F޹qãF___¥;ížý©8•³³sîÿ·HMMBfZ¡äeffNŸ>½oß¾×®]6lXdd$©QA‡^³fÍ!C˜o¡*ŽŽŽeÊ”qpphÙ²¥q{ëÖ­…gÏžUºƒZtãÆÝ»wW¯^Ý…•*Uz÷Ýw>|¸~ýz¥;!4|ö§âX <<<âããSSS¯YNLL”ÞRºw•““3zôè;v´nÝzòäÉVüwØRH½¦(·oܸqãÆ~~~›7oVºåîî~çÎNgÜ(U…³²²”î%'' !ªU«fÒ.oÞ¼©tñmžý ŽÅ U«Vqqq{÷î}å•W¤½^åêê¤tï4jÕªU;vìxã7&Ož¬t_ „U«V5ü‘ܽ{wß¾}•*U òôôTºƒÚÕ²eË+Vœ;wNš *‘n&½6Q­Z5[[ÛóçÏëõzã@'„¨^½ºÒÄ?´yög¨ºtïÞÝÆÆfáÂ…†ç§…‡‡ßºu«k×®öööJ÷N‹ôzýêÕ«Ë•+7nÜ8¥û‚4iÒdîãF%„ ™;wîØ±c•î v……… !&Mšd˜zòäÉo¿ýÖÙÙ¹M›6J÷N‹š5kvéÒ¥ î#}þüùÅ‹—*UÊä¢(H›g*ŽÅ R¥JcÆŒ™9s櫯¾Ú´iÓK—.EGG¾õÖ[JwM£nÞ¼yùòe‡^½zå~7,,¬wïÞJ÷P‹Zµj5jîܹíÛ· IOO‰‰ÑétÓ§Oæ™g”îFM›6­[·n‹/Þºuk@@@rròï¿ÿž““3iÒ¤çž{NéÞáÚ<û‹Ç€*V¬¸aÆ­[·zyyõîÝ{ĈÒœ|”¼¤¤$!DFFÆ©S§r¿ËÀÄ!CÜÜÜV®\yàÀWW×V­Z 6LzÒáææ¶uëÖ¯¿þzß¾}{öìquumÞ¼ù;ï¼óüóÏ+Ý5lذB}ÝË/¿lü£³³³­­­^¯/à#C‡ý믿:wî|õêÕqãÆU«VÍ\Ç€¶q;#00°Zµj/^Œ‹‹ó÷÷ÏÊÊÚ¶m›ƒƒC‡ Ë\½zõ·ß~;räÈ•+W._¾\ÄK… Òýýýó\àÏ?ÿBL™2eĈ‡~óÍ7Ë”)ðâ‹/¶mÛ6  P_W¥J•§èä!CvîÜyúôé^x¡gϞź×à_G–¤S§N_}õÕ¶mÛüýý÷îÝ{÷îÝ×^{Í00½fÍšiÓ¦eee=ûì³!!!­[·®]»vbbâÔ©S õ-ÙÙÙ†"_ff¦¢råÊù :WªTIQ¥J•ŸþùèÑ£¿ýöÛ¡C‡N:»dÉ’nݺM›6M§ÓÉüêR¥J=Ån¹ÿþÍ›7… wîÜqqq1ÿ¡ EG–ć.AÆ©ïß¿ÿé§Ÿ–*UjéÒ¥Mš41|䯿þ*ì·\»v-''Gzíëë+„([¶ì„  þ”N§“î$„ÈÌÌÜ»wï‡~ÚªU+³î–É“'߸q£~ýú±±±S§N;w®Y¿€fq#KRµjÕÚµk'$$œ>ÞÙÙÙÓÓóï¿ÿ–– ;|øðúõë»téR¹reWWׄ„„ôôôjÕªIwÞ¶±±™0aÂøñãgÏžýí·ßV©R%==ýÂ… z½¾gÏžAAAfÚz½~üøñ©©©Ÿ}ö™”›Ÿþù~ýú}ûí·S¦LùòË/•>V¬ GÆÝÝý…^B4mÚÔÝÝÝø­/¾øâý÷߯T©’tÇfÍšmذaâĉ½zõ²µµÍó€ÞÞÞÿýï[·nmcc³oß¾sçÎU®\yÙ²ennn†et:ÝŒ3,Xš““sñâEŸQ£FmذÁÕÕUZ&,,lÅŠÍ›7wpp8{ölzzzãÆ/^ÜŒRH+ jjf–Še‚‚"Â5ãª\MA“ Y„…ùý1:m³³»gwgæÌ™ó~¿zõÚ={fæ{ÎŒ;¾çÌÙT: %¢ñ E8Šp á@(€P„#¶xñâsÎ9§¦¦¦G{î¹çg?ûÙSO=õé§ŸŽz\­vÛm·¥R©T*uðÁG=’.^¯Æ¼£}ðÁñ‹_üâ¿Ø¸qcváW\‘YsòäÉ­}”Æ·×^*ÈN0rJ¯SÔ rÔÖÖž~úé÷Ýw_Ã…Ë–-[¶lÙ¼yóŽ>úèyóæõéÓ'êa8ùä“·lÙÁc=6qâĨ‡´‘p¤0þú׿Ž7î…^È.éСC*•Ú¹sgæÛ‡zèøãüñÇ»víõ`CéÑ£ÇàÁƒƒ 0`@Ôc!éâõjŒj´ñÚKSUSÿöoÿ–­ÆqãÆýö·¿}ï½÷êêêV¬Xñ¥/})³üé§ŸþÖ·¾õHÃ:å”SÖ¯_¿~ýúx Ú‘¬_¿þƒ>ˆz¥òy5–óhãµ— ¦„#°råÊ d¾þÊW¾òøãqÄ=zôèܹóx×]wzê©™ŸÞu×] o¸k×®;ï¼óÈ#Ük¯½ºvíº×^{?þ'?ùÉŽ;²ë4uÍÉ'ŸœY~á…fîØ±ãÖ[o;vìÀ»wï>bĈù—i8~µ¼çKµvÀùË_fΜyðÁ÷èÑã ƒºúê«®ÙXÃÛþùÏž2eJŸ>}† Ò¯_¿k®¹¦©5ëëëÿýßÿýŸøÄ¿ÿû¿gWxÿý÷gÍšuÔQGõëׯ_¿~“&MºôÒKkkk?èÛo¿}þùçvØaÕÕÕƒ>úè£ýë_7^í­·Þ:ÿüónjӣGOúÓ'žxâòåËÛ°cïÖÌÎÉ»ÉaFÁºuë&Ož¼çž{<øŒ3Îxã7¾ùÍofîùŠ+®(àcûÕòYnó ò”SNÉÜð”SNÉ.<æ˜c2 ?þøìÂ1cÆd^~ùåG›Ù½™ãÔALš4)•J½ÿþû9÷î»ïΜ9sÔ¨QÝ»w?è ƒ~ô£µö/â6ÞK­Ýö0Okk ä}ý´èË_þræ>õ©O½ýöÛáGØÌCcoDih·sÏ=7órêÚµëÿýßÿ5^áÍ7ß<í#o¿ývvyv22Ç¿øÅì:™·¢ N8ᄆ÷ù•¯|%³üßøFfɶmÛþáþ¡ñ½¥R©Ù³ggorµ[o½5³|ôèÑmðøñã÷Ýwßœ5O:é¤födö¶&Løô§?sÛ3Î8#ïnÉvùå—_žùé³Ï>ÛøæA 4èÉ'Ÿløˆ‹-êÛ·oã5Ï:묆«=þøãýúõk¼Ç¾þõ¯·vdž\­™“w“ÃŒ0N/Y²$çDÛ!C†dŸÖì½µÿ±Jðj ù,·ùyÇwdÖùÔ§>•]ø±},³pÀ€™%;v쨪ªÊ,üíoÛx´—\rIãAnÙ²%glÆ ËYçÆo ùzhj/µjÛC¾„Zû[«ñë§Å Éþ+±ººzõêÕ­a3]ð½ÑÔ/g*›p¤²¿ñ¿ò•¯„¿Uvö1•JM˜0á«_ýêþûïŸý õøãgV ŽÙ5«ªªŽ?þø3frÈ!™%:uz饗ZµZã7¡Ö8c¯½ö:äCžÙùì³Ï6µOrnÛ·oßqãÆuïÞ=»ä¡‡ÊYóŸøDö§™·‡­[·fÎô ‚ k×®ŸûÜçŽ9æ˜Ýwß=³¤ÿþµµµ™;Ù¼ys¶zõêuâ‰'yä‘Ù{›?~ãÕ&L˜ð­o}ëä“OîÐáÃã·ß~{1ö3;§ñ&‡a]]ÝÀ3 wÛm·1cÆd¿ÍykoÿcûÕþYnó òõ×_Ï®óÖ[o¥Óéõë×7¼«7Þx#N?ÿüó™o»uëöÁ4í¦M›Ö­[—ÛO~ò“uëÖíÚµ«ñ؆ 2räÈŽ;f¾íÒ¥Kæ›=„ Ç·=äÓÚÚ__?-nÈ#<’yÜN:=úè£ÙÕZûÂküÐßÂ1™„#íµk×®ì/úY³f…¿áé§Ÿž¹ÕÌ™3³ G•YxÝu×e–„ÇÃ;,³ä?ÿó?³«uÔQ™…·ÜrK«Vkü&ÔÚ7¼·—^z)û º™yµ†·=öØc·mÛ–N§ÿïÿþ¯¦¦&³ð°Ãk¼æ~ûí·`Á‚¥K—¾òÊ+étúÊ+¯Ì,ïÙ³gö`åʕٙ¶K.¹$³ðÒK/;…lܸ1gá¸qãr–4œS¹å–[2 ?ùÉOcÿ7¿sr69äo¼ñÆÌ’êêêåË—§Óé;wžuÖYßÚÛÿXÅ~5†–Ûó‚̾ð~ùË_¦ÓéŸýìgA¤R©ÌÂ_üâétzîܹ™o9昦F›N§³ÿþyì±Çò>§ÿýßÿY˜=ï%‚+V´øzŽÍo{ȧµ ¿r^?ÍoÈ+¯¼²Ç{d¾;wnÃÕBް™‡.øÞŽÉäGÚë½÷ÞË~tú“ŸüdÃÝpà ©F–,Y’ùé—¿üå ,X°àüóÏÏ,©­­Ýºukæëwß}·µ#©««Ë|1þü;î¸ã­·ÞÊ|½jÕªU«V}ñ‹_lÕjµvÀûï¿ÿ×¾öµÌׯ ;üðÃ3_¿úê«-nK§N¾ÿýïwéÒ%‚þ×ýWfùÓO?½mÛ¶†kî¾ûî>úè”)S9ä!C†Að«_ý*ó£óÎ;/{²×ˆ#¾þõ¯g¾Î®ðÈ#d¾øÆ7¾‘ Ž3ftÐAtÐ|yf~øáÌÎ>ûììãž~úé™0¼öÚk+W®,Áþof“CŽðî»ïÎüèk_ûÚÈ‘#ƒ èСÃw¿ûݼëÛùXÅÞáŸåö¼ ³ »téÒ ž{î¹ÌýdfjÿûßgAðÿø->wMÙwß}Ï;ï¼Ì×Ç|§N^ñcíÚµm¾ÏVm{ȧµµ¿¿~š±eË–É“'gî䢋.jøOšð# óÐ…Ú$“p¤½²G ‚ hxiß}îsŸ›2eÊ1dzdÉ’o|ã'NüÄ'>ñÒK/µy$ŸûÜç2_¬Y³æÌ3Ï0`À¨Q£n¹å–÷ßøðáýû÷oÕjípÎùgÙ‰„]»vµ¸-ûï¿ÿ AƒoZ:þÓŸþÔpÍ‘#Gæo]³fMέ2²ïëk׮͌aݺu™%Ùy¯ ú÷ïÿüóÏ?ÿüóK—.ͼO¼üòËÙ;Ìþ {÷îÙ0dÞÝ‹½ÿ›Ùä#l¸Zö¶UUU9;ª Uì½þYÎjà 2ŽË–- >jÄC9dôèÑA£pÌ®ÜC‡Í~ݽ{÷ü㙯³{µZÜöðOk«~ 4~ý4ã±ÇËY·nÝr~r„aºP{ƒdŽ´W—.]²gÃäüíÙ³çà4ìËŒíÛ·Ïœ9³oß¾'Ÿ|ò 7ÜðÄOÔ××73÷Ó¢+¯¼òÜsÏÍÌÒAN§—/_~ÕUWrÈ!ãÆËFmÈÕk퀳Gôò~Û¼œbØ}÷Ý«««3_ÿùÏnø£œzÔÖÖnÞ¼9óuÎÕì²oÆÛ¶m{ë­·®Ù«W¯¦FR[[›ýûìÎ;ÿð‡? Âñ¹çžÛ¶mÛªU«2»t¿ýökñ›’=.üØZ¥ùmÿ´¶ö—@›ÿäÁu×]÷æ›o¶a„aºP{ƒdŽÀ„ 2_Üÿý ¯qöÙgg.«¶víÚÆirÕUWÝxãõõõC† ùþ÷¿ÿ /ÔÖÖwÜqmFçο÷½ïmܸñ®»îš2eJïÞ½³?zê©§²Wí ¹Zcp3rÞòëêê²×XÉ~$"#ç—~Ïž=³‰Ùð§á·»í¶ÛÇ>ö±=zdkþwÞij$={öìÑ£GæëE‹­Ëçä“O.Áþof“ÃŒ°GÙs¹rÞörövû«Ø{#ü³ÜâÎl^Ïž=3ú®­­}à2/Âl8nÚ´éÈ\Æ¥=Ó‘ ÿ´¶ö—@k øˆ#ŽÈ|¨åý÷ßÏ^ªU#lóC·ç±HáH\pÁ™ ƒÍ›7Ÿþùõõõ9+ÜvÛmo¼ñFÎÂïÿû™/fÏžý¯ÿú¯p@§N6lسZö×ß{ï½×pyÃB ‚àƒ>xë­·Þzë­>øàK_úÒ‚ Þ~ûíG}4{­“ßýîwáWË+ä€ bõêÕ ÷XæÃ•Aì¶Ûn{íµWó·Í~ aÑ¢E —g¿:th§NR©TöˆUæ@dÆŸÿüçC=ôÐC=òÈ#3‡®öÞ{ïÌêëë?Ý@ïÞ½{õêÕ«W¯ªªªìÿf„aæ’x™Õ~ó›ßdo[__ÿÄOö±J°7B>ËmØ™9&Mš”ùâ{ßû^Ý»wßo¿ý²ÉþGÑžËA˜§5(ò/!C†üüç?Ïöâ~ô£†§†a)÷É$)€Ï~ö³çœsNæë;ï¼sܸq¿ûÝï2;^xá…sÎ9'{"vÖ_ÿú×ì¬O¶ÿð‡?4~ ÏF\¶lYöÌ›ûî»ï·¿ýmÃÕ^zé¥þýû÷ïßÀ€¯¼òJ:uš4iÒ™gž™Y!3årµÆÂ¸ ¶oß>cÆŒíÛ·Aðæ›o^|ñÅ™åÇw\ö3ìM9æ˜c2_|÷»ßÍ^°wÕªU×_}æë£>:óÅG‘ùâ†nȿ馛–.]ºtéÒ.]ºdþ=M‡9sæ¤?º&ó½÷Þ»çž{öéÓgðàÁýë_‹½ÿ›f„ ·÷ÆoüãÿA:¾ì²Ër®2ÓþÇ*ÁÞÿ,·Sv*1óR=ztÇŽûöí›ù$Ü“O>A*• ÿç§3¯êræi-ö/8 wïÞ§Ÿ~zæ³,»víúÆ7¾Ñª–roú 6ü­j ã¿þë¿~øáÌð3Ïʼyójkkׯ_ÐAMœ8ñ­·ÞzüñÇ3?Í^×ý›ßüæøÃ¿üå/÷ßÿ„ Ž8âˆÕ«Wg?´ûõ¯}=öèÕ«WQ÷óÂŒ0³Úwܱ}ûö7Ž5êCyõÕWs>lTÇ*ÁÞÿ,·Óg?ûÙ=zdC!{™ÉÑ£G¿öÚk™¯3ÒüýôêÕ+óŸÏüǬ^½úüóÏïܹsAFXažÖt:]‚_;wž5kVæÚÝ>úèC=”ù7@ÈyÉöF)žÊSÔ×¢rüùÏ?~|Þ—Ùç?ÿùìid‹/άÿå/9gµ!C†d/@}ê©§fï9{ÉÆ†kfÿMœ½Žã3Ï<ÓÔ”ñãÇg®‰~µÆ×„ 9àðžl,{ÛqãÆå\Û¨S§N·Þzkã5ó^AmÙ²ey¯ý±×^{=õÔS ×¼ï¾û²gË5t饗6\íÈ;û5}úôÌ•œ ¾ÿ›Ù9y79ÌÓéôܹssz¥{÷îÙ'1ï_ŽiÛcûÕþYnÏ 2ãØcÍÞù}÷Ý—YxõÕWgæÜCÞÑN™2¥á sþrLÎØ²'òÞyçá_Í\Ç1̶‡yZÛùK ä†Ô××gÿªÂ~ûíW__~„Íúè£ÙóZôÿð+W®¼âŠ+&NœØ¯_¿>}úL˜0á²Ë.{ñÅÇŽÛpÍÉ“'¿øâ‹çœsÎÁܽ{÷Áƒ{챿ûÝ﮺ꪆ«wÜq/¼ðÂYgõ™Ï|f÷Ýw2dÈäÉ“Ÿ|òÉüàÙ“P‹½ÿ›f„AœuÖY=öؾð…~üãÿ¾°dÉ’¼ô¯U‚½þYn§†|i8ã˜w…¦ÜtÓMS¦LéÛ·o·nÝößÿœQ—ƒ0Oki~ tìØ1{÷ÿùŸÿùá~„¥Ü$S*ÝÊ¿"´cÇŽ|0hëÊÊðW\ñŸÿùŸAœp ?ÿùÏ£Þܤ8õÔSçÍ›Á~ðƒéÓ§G=ÊZì~kAa9Ç‘(uîÜ9^¿|c7`š6mZæjÕcÆŒ™={vfá–-[}ôÑÌ×™É$h†_$œp’bàÀ+V¬‚`ÅŠƒ :餓Þ{k.º(síÃáÇ7<ü @cew– @‘\|ñÅÙ“ÿ¾ùÍoî½÷Þ£GÎ\KeÏ=÷\¸pa›Ï°H3Ž@RTUU=öØcwÝu×O~ò“?ýéOo¾ùfæ¢tÿøÿxÁôìÙ3ê”;Ž ‡ªE8Šp á@(€P„#¡GBŽ„"E8Šp á@(€P:E=€òõâ‹/ÞvÛm«W¯Þ²eKMMÍŒ39䨙T:Žz åè‰'ž8ï¼óvíÚ5bĈêêê%K–Ô××ÿà?˜0aBÔCˆ†pÌcóæÍ“&MÚ±cÇí·ß>jÔ¨ V®\9eÊ”ž={>õÔS:8¾$‘ÊãÞ{ï­­­>}z¦ƒ 8à€Ž>úèM›6½øâ‹Q fó8í´Ó–.]úÛßþ¶ÿþQ \øpL«V­êÝ»wÿþýÿûß?ÿüóï½÷Þ°aÃ&MšTUUõÐ"cÆ1×öíÛGŒ±÷Þ{|ðÁ .Ì.4hÐÍ7ß¼ÿþû·x555QoP\kÖ¬‰z0ã˜ë¯ýkëÖ­Û¸qãµ×^;~üømÛ¶ÝsÏ=³gÏ>ÿüó|ðÁ0óŽÉ|1QSSã©O&O}byê+±“D>“«k×®™/®¹æšN8¡W¯^ýû÷ÿÚ×¾6yòä 6üêW¿Šz€Ñ޹ºuëÖµkתªª#<²áòI“&AðÇ?þ1êDC8æÑ·oßÎ;§R©† 3G¨ëëë£@4„cGydmmíË/¿Üpáòå˃ 6lXÔ£ˆ†pÌcòäÉA\~ùåï¾ûnfÉ‹/¾xûí·WWWuÔQQ .Ç“ßm·Ývã7VWW=zëÖ­Ï=÷\*•ºþúë>úèoëCvPÙû^ïr<ùsÎ9}úô™7oÞÓO?Ý»wï‰'Θ1cèСQ 2f /±ÿ €„Hì{½sE8Šp á@(€P„#¡GBŽ„"E8Šp á@(€P„#¡GBŽ„"E8Šp á@(€P„#¡GBŽ­JE=‚èG€°R© ŽzÑéõb 3јäj „#@‹>јåP5@sTc–ph’jlÈ¡j€<œÔؘpÈe¢1/‡ªþŽjlŠG€9<Ý<á&Cp¨@5†"€¤S!9T $—“[E8 e¢±µª’H5¶G Yžn3á$ˆ‰Æöp¨H ÕØNÂHÕØ~UÎI…"€Jf¢±€ª*–j,,áT&ÕXpU•ÆIE"€Šb¢±xª*‡j,*3Ž@%pxº„#{&Káj ÞTcÉG ÆTc)9T Ä’“KO8ñc¢1U1££bƈ ‡§£%€x0Ñ9‡ª€På@8¶ì7Þ5jÔ…^õ@ ¡Tc™p¨ºétúâ‹/Þ²eKÔ€$rRcYŽ-øñüì³ÏF= H"åÆ¡êæ¬]»ö¦›n6lXÔ€ÄQeH86©¾¾þ¢‹.êÝ»÷%—\õX AR)ÕX¦ªnÒ-·ÜòÒK/ÝqÇ={öŒz,’±œ ÇüV¬X1wîÜ©S§Ž3fõêÕ­½yMMMÎ’5kÖD½MPîʳ¿­'–pÌ£®®î¢‹.4hÐÌ™3Ûv2Z«<«1È÷¶žØ”Žy\{íµ6lX¸paUUUÔc€Êçš;qáÃ1¹ž}öÙ… žsÎ9x`Ôc€Ê—™hT±J{¢þÞOúÓoûÛMýtèС>ø`ó÷PSSãP5„Q¶‡§›—Ø÷z‡ªsíµ×^ÿüÏÿÜpÉæÍ›/^Âh» ¬FÉØ4á´EöUnR G Õ*m¢Q2†#€V¨´Äª´í).á„UQ’±õ„#Ð²Šª¬ŠÚ˜’Ž@ *g¢Q2¶pšT9¡U9[%áäW ™^ $caG ØW£)Æ"ŽÀ߉}qÅ~Ê—pþ&Þ’±È„#q®x>6„#ç‰FÉXBÂ-ÆÝã¡Ç•p€äŠëD£dŒˆp€„Še5JÆH GHœXÖW,]i„#$Kü&%cÙŽñ °ø¸Â GH„˜M4JƲ$ ÂŬÁb6ÜdŽPÉâ4Ñ(Ëžp€Š›j”Œ1! ŦÄb3P‚@8@å‰ÇD£dŒ!á•#1Q’‡p€ ƒ‰FÉsÂb¯Ü{,3¾²"¡Gˆ·²žh,÷¤¥u„#ÄXùV£d¬DÂb©|ì|GF{ GˆŸ2h”Œ•N8@œ”i›•é°(0á±QŽ’1I„#Ä@9æY9މâŽPîÊn¢Q2&•p€²V^Õ(“M8@™*¯H+¯Ñ á娌&%#ŽP^ʨÓÊh(”áe¤\&%#ùG( å’jå2Ê‘p€è•ÅD£d¤%¢TµVƒ „#D&ú‰FÉHkGˆFÄÕ(i=á¥q³IFÚJ8@IE9Ñ(iá%Y¶e8šÇ¦¢Çüêêêîºë®{î¹gÆ =zôØgŸ}Î8ãŒÃ;,êqK'£^¤@„cõõõ§vÚŠ+ª««=ôÐmÛ¶-[¶lñâÅçwÞ¹çžõ舙hŽMKFŠ@8æq÷Ýw¯X±bÔ¨Q·ß~{UUUk×®:uêìÙ³'L˜°ï¾ûF=@â!šx“ŒM‡¨PŽ~øá .»ì²L5A0tèÐéÓ§ïܹsÉ’%Q€H¥>œh,i¿Eó¨‰ÙµÙÿ%–pÌcýúõݺu>|xÃ…C‡ ‚àõ×_zt”;ÉXrJ1³k³ÿK,‡ªó¸í¶Û:uÊÝ3«W¯‚`РAQ€òÁQb¦ $gÑÍK8æ±ß~ûå,Yºtéœ9sºtér '„¹‡šššœ%kÖ¬‰z³(®RF2¶CãÃÍÍìÈÆoë‰%[°sçΟþô§×]wÝÎ;o¸á†>}ú„¹•LH”R'œdl½öL(6~[OlJ Çæ,[¶ìÊ+¯|å•W põÕW3&êP^$cÙr蹄c~Û·o¿þúëçÏŸßµk×3fœyæ™ÙOX@FIMKÆ–(ÅŽyìÚµkæÌ™‹-š4iÒ¬Y³úöíõˆ(/%­8ÉØ¥XzÂ1ùóç/Z´è”SN™5kVÔc ¼HÆ)ÅÈ Ç\étzÁ‚=zô¸øâ‹£ å¥tǦ%cƒÝ•øý=á˜kãÆ¯½öZUUÕ”)SÿtòäÉS§NzŒ”ZéB.ÁÉØªKä á˜kÆ AÔÕÕ­ZµªñO}° i$c±·8+I›WÂ1×g>óWa £DǦ“ŒJ1î„#äQ¢–«ôdTŠF8@®RL4Vn26ŒÅJܾDŽð7¥È¹JLF±˜Â‚@2¶uk2*e›hp€"›ÎVEäUem ­#H´âNVÊ£ÉE2„# •ºT*é¦WK¥ÛÐJ‘Œ&É!H¢†Ç¦ÓétSuØ–jŒy2š\¤Â€dÉÛuyÛ±ÕÕÛd‹„$Hf>“ÓŽ­«Æx&£#Ñ´–p ¤]¶[QqKF“‹´‡p Âµ*íZQ±JF“‹„p ’µö¡fc’Œ&)8á@ejCÝe{±Év,ûd‹•p Ò´­îrJ1·Ë;‰¦4„#¥m<0ïüâ‡íøÑ7QoYž-m0Ô¨GC2G*DÿÓü§[rVhrýT*© hË_Ž)òfb‘(G*AÈ¿„¬Æ¦Ómþ«ƒݺ,½H„„#ñþ/Áù0w|wI5ŠEÊp ®šÿ¼JãvŒÅEv‰¦œ Gb)̇`¶csÕu2š\$.„#1Ó†¿4u¸9Òd4¹HìGb£™]2êEâK8í¼@ãßUG”Œz‘ (wm.½†ç5¦ÛsGí|ÉŠB8PÖÚ6Ñ41Åø·¿SüagèE*‰p Lµg~ðÃjltÍ_<òaC™Ž”v¶×‡ÓŠMÌU©M1’€2R€éºL56{¬F½H¢GÊE›OgüÛ태^$™„#Ñkoò•*õ" 'ˆR¼’Q/’p€hÄ"M1BC€R+ÿdÔ‹—p tÊ<õ"4O8P ±HF½ÍŽW9'£)Fhá@±”m2êEhá@Q´ëjÞÅIF½í$(°vU_1“Q/B; G ¦Ü’Ñ#–p Ê*õ"‰p ]Ê'õ"›p Ê-õ"›p ÕÊ$M1B‰ GZ¡íÕW¸ÊÓ‹á@(íMF½ñ'hY¯æ]ÐdÔ‹9á@sÚm…h=SŒPn„#ùE•ŒzÊ–p W´É¨¡l GþF2ÍŽADÉè¨4Ä‹pHº“Q/B¼G€ä’Œ@«G€$’Œ@G€ÄiËÕ¼%# ¥-׎èóÙ¨0 "IF½F8T¸ —J¥ÒÙ•$#plÒÏ~ö³»ï¾{ݺu»ï¾ûGqá…öîÝ;êA´B«.N§R©ôGß4q‡ â²}ÄQ‡¨P¦nºé¦Ë/¿ü•W^9øàƒ»wï~ï½÷N›6­®®.êq„’J}ø ˜Vd\*•‚TÐêjÌ“G¿~ýÞyçL)f­_¿>ó£¨G$K«¯•ئϰdo©¼·kêúŽ@¢Ç<&Nœ¸sçΧžz*»$N?ù䓽{÷9rdÔ£’¢ÕؾdL§[ø‹‚ÚŽyœtÒI:tøÞ÷¾—9¯1‚9sælÚ´éÄOìܹsÔ£*_é“1héïPg8Z çÇ<xá…^{íµŸÿüç?üðW_}uéҥÇ?ûì³£PÉZ}"cЖs›9‘1ê”;á˜ßgœñ±}ìþûïÿõ¯=`À€©S§^pÁ™+ò\[>ÊÒÖdÔ‡@› Ç&wÜqÇw\Ô£*œdbD8DC2±#Jª-'2­À6> @³„#@‰´qò¯MɨbŽE'Ê ŠH2•D8^ÛO1lM:‘(1áPHmŸük}2êE Ä„#@aHF â G€ö’Œ@BG€6j×)†­ÿø‹d"'Z­½SŒ­¹±‰F |G€V(ÍQéö>@qG€P$#€phN)OdlÓ-JG8ä×®†“Œ@%޹$#@^Âào$#@3„#@HF€„#híúìKÐÆt5o ¦„#Píókk2¶ëA"%Ä‘Œm#‘Œí!Ê×ÞɨlH7ÉðáT&ÉPp¨(8*HF€ü„#P! Óm’ iˆ·ÂL1m¯?Wó’C8±T°^ Ú•Œ…@LG N Ù‹A¨ôK¥RéF+HF ™„#EéÅ ÒéT*•nnÅÜj”Œ@’ G ¬8ÔÝ]:ÓŽù g¹dŽ@9*ðcÐ\÷åmdžK$#@†pÊHá{1Õ}9í˜ýZ24$襃Öu_¶?úÿ"Œ æ„#¥bõY›î·a5JF€Æ„#bM1íJÑT*ª IÂ("öbÐÞÙËT*‚ÏrlêsÖ '¢+n/IÆ¿»u3×èH2áQÑ?bRˆd ‚<¨Ž@á}Š1(Ø,c3u¨rG `JÑ‹A!L·Ø…Ú !á´W‰z1(ʹŒ-ÞJ5d G íJw•ìB'#m V+ÝcP€ès]F€BŽ@X%íÅ 0ÉXºÑ$€pZPê^ $#@™Ž@“"È/ÉPÆ„#+‚)Æ 0ÅçtF€¢ŽÀ‡¢éÅ `ÉÁÈF8BÒEÖ‹dˆá }/â±›(%áÉe/…œ4ÑPzÂ!â^ $#@%ŽP±²±D›Y =Ǧ"$¡ÒD?¹˜3”Â%cYl@‚ G¨å2¹˜3 ÉPY„#ÄUÙÅbÃan@ŽM”á1SFG¢óެ ÉXŽ› `Âb L'sÆWБ™h(CÂ1¿ººº»îºëž{îÙ°aC=öÙgŸ3Î8ã°Ã‹z\$KùN.æ ±ÐÉXÖ› `Â1úúúÓN;mÅŠÕÕÕ‡zè¶mÛ–-[¶xñâóÎ;ïÜsÏztT¸rŸ\̨dHá˜ÇÝwß½bÅŠQ£FÝ~ûíUUUA¬]»vêÔ©³gÏž0a¾ûîõ©4±‰Å†Ã-ô@›(¢@9zøá‡ƒ ¸ì²Ë2ÕÁСC§OŸ¾sçÎ%K–D=:*G*õáÿÒé¿ý¯¬5nî€2gÆ1õë×wëÖmøðá :4‚×_=êÑo1›\Ìwfc¶’M8æqÛm·uê”»gV¯^Á Aƒ¢±ƒ¹4?ô"ŒÛ,#@ìÇ<öÛo¿œ%K—.3gN—.]N8á„0÷PSS“³dÍš5Qo¥×ÉÅœ (N2玊¢ñÛzb Çìܹó§?ýéu×]·sçÎn¸¡OŸ>an%“,Æ“‹9ÛPœ 0ÑÄNã·õĦd¢Ã±¾¾~îܹÙo;vì8mÚ´†+,[¶ìÊ+¯|å•W põÕW3&ê!S¦b?¹˜³%EKÆ¢Ý7¥èpܱcÇÍ7ßœý¶K—.Ùpܾ}ûõ×_?þü®]»Î˜1ãÌ3ÏÌ~Â2*'nd i‰Ǫªª¼Ç”wíÚ5sæÌE‹Mš4iÖ¬Y}ûöz¤”‘J8w“ж=ŽMTŒD‡cSæÏŸ¿hÑ¢SN9eÖ¬YQ…²Pi“‹9[UÌd,æÝPjÂ1W:^°`A=.¾øâ¨ÇBÄ*pr±á†s«$#@E޹6nÜøÚk¯UUUM™2¥ñO'Ožõ(â¬â"Ë$–CÕÍY»víM7Ý4lذ¨O•u`:»M´5Ð:±Iõõõ]tQïÞ½/¹ä’¨Ç7šŒª€„s¨ºI·ÜrËK/½tÇwôìÙ3ê±ÄGŘÎnVÅm´špÌoÅŠsçÎ:uê˜1cV¯^ÝÚ›×ÔÔä,Y³fMÔÛTd•›Œ•¸Y´Bã·õÄŽyÔÕÕ]tÑEƒ š9sfÛî¡ò3±¡Êm+ùÞÖ›’‰Çúúú¹sçf¿íرã´iÓ‚ ¸öÚk7lذp᪪ª¨ÇXÞ*:+tË íŽ;vì¸ù曳ßvéÒeÚ´iÏ>ûìÂ… ÿíßþíÀŒz€e¬¢ÃÊD#ä•J{‡ü{?ýéO¿ýío7õÓ¡C‡>øàƒÍßCMMM%ª®èd T#!Tø{}Ó=ã˜×^{íõÏÿüÏ —lÞ¼yñâÅ9rdÿþý£`tŒ½}Ð^Â1ר±cÇŽÛpÉêÕ«/^êÑE$Ie¢Z$iV’1PŽp¤ ÉHÆ@5@h±eÇOÖ °IJÆdl(†p¤$•”‰Fh-áHÉJÆ@5@›ÇdËôb¬dLÒæ@! ǤJd@™h€öŽÉ“Èd T#´›pL’¤&c  „c2$;“ºéP`±Ò%»›L4@ ÇÊ•ìd T#šp¬D‰OÆ@5@ÇÊ"í(áX)äÒG»!ñûŠE8ÆŸdüˆj€¢Žq&?bO@ ÇxJ ˜h€ÒŽq#ÿžj€’Žñ!QPJÂ1$c#v ”žp,oú( áX®$cT#DE8–ÉØ;¢%ˉ2jš‰Fˆœp,™^ $c“T#”á)SŒ!¨F(Â1"’1; ÊŠp,95މF(7±„$chªÊp, ÉØªÊ“p,2ÉØö”3áX4"¨•L4@™Ž…·æå—EPkÙaPþ:D=€ T³Ï>"(¼TJ5@<˜q$J’bÄŒ#‘Q/‘h¨Fˆ‡ª)57€˜Ž””‰Fˆ/‡ª)Õ±fÆ‘Rpx*€p¤èL4@ep¨šâRP1„#E¤ ’8TMQ8©*p¤ðL4@Er¨šSP©„#…¤ ‚9TMa8©*žp¤L4@8TM{©FH3Ž´ÃÓ(‘62ÑIãP5m¡ „#­¦ ™ª¦œÔI& ËD#$œCÕ„¢áHËT#GZ¤€ áHsT#%i’jò©jòpÙ 1áØ¤_|ñ¶Ûn[½zõ–-[jjjf̘qÈ!‡D=¨R0ÑäåPu~O<ñÄÉ'ŸüÄOôíÛwäÈ‘Ï?ÿüW¿úÕ'žx"êqjš’JË„F6oÞø`‹óŽq9aV5@ÛÄå½¾à}¨º¾¾~îܹÙo;vì8mÚ´®]»f¾½æšk&L˜ùúk_ûÚo¼qï½÷þêW¿úâ¿õÀ @5­•èpܱcÇÍ7ßœý¶K—.Ó¦MëÖ­[×®]S©Ô‘GÙpåI“&Ý{ï½üã£u¨F  ŽUUUyç™ûöíûÞ{ï¥2i°rõõõQº½T#Ð6.ǓǑGY[[ûòË/7\¸|ùò † õèÚE5m&ó˜÷Üs©Tꪫ®ÚsÏ=£][HF ý„c~çœsNŸ>}æÍ›÷ôÓO÷îÝ{âĉ3fÌ:thÔãj Õ„ë8^Y]ÛI5@Á•Õ{})9DZ’©F €„cÅR@a9DZe.@©€ÂŽ•ÆD#P$UWÕp¬ª(*áX!T#Pl±¨F „cì©F 4|ª:Æ\v(%áW&€s¨:–T#PzÂ1~T# á3ªˆŠpŒÕDȇcâÁ¨€È Ç0Ñ”‡ªËjÊ„p,kª(±|©F ¬Ç2¥€r#Ë‘jÊOU——ÝÊ–p,#&€ræPu¹P@™ŽeA5åO8FO5± #¦€¸ðá˜Èø5/Â1&€Øq¨:ªˆ#áXjªˆ)áXRªˆ/áX:ªˆ5áX"ªˆ;Ÿª.:—Ý*ƒp,.@Åp¨ºˆT#PI„c±¨F ÂÇ¢P@厅÷òËkT#Py„cáí³OMÔC(<á@(€P„#¡GBŽ„"E8Šp á@(€P„#¡GBŽ„"E8Šp á@(€P„c~Û·oŸ;wî¾ð…‘#GN˜0áüóÏ_»vmÔƒ¢ÜÕÔÔD=¢á©O,O=I#óعsç©§žúï|ç/ùËá‡þñü‘G9þøãŸ{‡™NQ Ýu×]Ë—/?ú裿óïtêÔ)‚gžyæÌ3ϼüòËy䑨G 3Žy,_¾<‚SO=5SAzè¡ûî»ïÿþïÿ¾ûî»Q Â1AаÓéô{ï½×¡C‡lJ$pÌãØcíÚµëUW]õÌ3ÏÔÕÕ½ñÆW\qņ N:餞={F=:€h¤ÒétÔc(G+W®<í´ÓÞÿýì’©S§^zé¥;vlñ¶>doÍš5Q!Â1ÚÚÚéÓ§ÿá>|øˆ#ÞyçÅ‹wìØñšk®9ꨣ¢@4ŽõõõsçÎÍ~Û±cÇiÓ¦A0}úôßüæ7—\rÉé§ŸžùÑo¼ñ•¯|åÝwß}à† õÀ"èp¬««;è ƒ²ßvéÒeåÊ•o¿ýöᇾ÷Þ{ÿêW¿j¸òwÞ9kÖ¬iӦ͜93êD ÑŸ®ªªj|‚Â;ï¼ÁàÁƒs–g&7nÜõ¨¢áSÕ¹ܱcǵk׿ÌÅfsï½÷Žz€Ñ޹ªªªÆ÷ꫯ~÷»ßݵkWfáÚµk¿ÿýïï¶ÛnGydÔˆF¢ÏqlʦM›¾øÅ/¾ù曃Þo¿ýÞyç?üá»víºüò˧L™õè¢!óÛºuë­·Þºxñâõë×÷îÝ{ذaÿú¯ÿ:bĈ¨Çá@(Îq á@(€P„#¡GBŽ„"E8X]]Ýüãc=ö ƒ:üðÃÏ<óÌ%K–D=(JêOúSMMÍ /¼õ@(ºŸýìg'tÒÈ‘#;ì°K/½ô/ùKÔ#¢¤üÇž4Þ⃠èõ*J}}ýi§¶bÅŠêêêC=tÛ¶mË–-[¼xñyçwî¹çF=:JdþüùQR¸é¦›n½õÖnݺ|ðÁ¯¾úê½÷Þ»víÚyóæUUUE=4JÄì‰â->C8ÒÝwß½bÅŠQ£FÝ~ûí™7µk×N:uöìÙ&LØwß}£ ET[[ûòË/ÿò—¿¼óÎ;£ E·fÍš9sæôë×ïž{îéÛ·oW]uÕ¼yó¾óï\qÅQŽâò{2y‹Ïp¨º~øá .»ì²ì”ÃСC§OŸ¾sçÎÎf'ÍqÇ7eÊo$ q÷ÝwïÚµë‚ .ÈTc—\rIuuõC=´k×®¨GGqù=™¼Åg˜q,¤õë×wëÖmøðá :4‚×_=êÑQ\W]uÕ|Á‚ ž~ú騇Cq=÷Üs:t?~|vIÇŽÇ÷Ë_þrùòå£GŽz€‘ÿØ“É[|†p,¤Ûn»­S§Ü]ºzõê  õè(®±cÇf¾øÍo~õX(®t:½nݺ=öØc=öh¸|Ÿ}ö ‚àõ×_Ž•ÍìÉä->C8Ò~ûí—³déÒ¥sæÌéÒ¥Ë 'œõè€ÂغuëÎ;{õꕳ¼ºº:‚wß}7ê…ç->Ã9ŽÅ²sçÎyóæuÖY[·n½æškúôéõˆ€Â¨«« ‚ [·n9Ë»wïÁæÍ›£ P\I~‹7ãØõõõsçÎÍ~Û±cÇiÓ¦5\aÙ²eW^yå+¯¼2`À€«¯¾z̘1Q™Âhñ©' zõê•J¥¶nÝš³|Ë–-ÁGóŽ@¥Jø[¼pl‹;vÜ|óÍÙo»té’­‡íÛ·_ýõóçÏïÚµëŒ3Î<óLu«$Í<õ$G§Nª««Ï,ÖÖÖAýœ5Pa¼Å±mªªªÖ¬YÓxù®]»fΜ¹hÑ¢I“&Íš5ËûGåiê©'iúõë·nݺÚÚÚž={f®_¿>ó£¨Gž·ø ç8Òüùó-ZtÊ)§Ìž=;±/)H‚‰'îܹ󩧞Ê.I§ÓO>ùdïÞ½GŽõè€ÂóŸ! &N/X° G_|qÔcŠë¤“NêСÃ÷¾÷½ÌyAÌ™3gÓ¦M'žxbçΣP`Þ⳪.˜7¾öÚkUUUS¦LiüÓÉ“'O:5ê1…1pàÀ /¼ðÚk¯ýüç?øá‡¿úê«K—.>|øÙgŸõЀÂóŸ% fÆ AÔÕÕ­ZµªñO“ö©+¨xgœqÆÇ>ö±ûï¿ÿ׿þõ€¦NzÁd®ÈToñY©t:õˆç8Šp á@(€P„#¡GBŽ„"E8Šp á@(€P„#¡GBŽ„"E8Šp á@(€P„#¡GBŽ„"E8Šp á@(€P„#¡GBŽ„"E8Šp á@(€P„#¡GBŽ„òÿJvS%u>IEND®B`‚statistics-release-1.6.3/docs/assets/regress_gp_201.png000066400000000000000000000572341456127120000230240ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A^cIDATxÚíÝy|Õýÿñs“ !ˆ¢”H…`pãË¢ –/.ª´*ˆ 颢¸P•¢­P© ZÅ"`ª@¿jp‡‚ J)‹,- ÈO/DiXD1 D Iæ÷Çèx¹³Ü3˽3÷Îëùàá#ÌåÌÜKîÛÏ™s&¢(ŠÉò»HGH!8@ ÁRŽBp€‚#<¶|ùòo¼±¤¤$//ïøã?çœs®¹æš•+WúÝ.Ûž~úéH$‰Dºwïîw[véõi4lí‚ ^ýõ×_ýË/¿ÔN˜0A]sèСv¢ß6½®’'–#õrün2Guuõu×]÷Ê+¯Ä.\½zõêÕ«gÏž=xðàÙ³g·lÙÒïfðÁ•W^yàÀ!ÄâÅ‹ àws8Dp„7¾ùæ›>}ú|ðÁÚ’¬¬¬H$RWW§þuÑ¢E—^zé»ï¾Û¨Q#¿+%//¯¸¸XѦM¿Û‚°K¯O£_­M¯«¤)ºªá_ÿú×ZjìÓ§Ï?ÿùϯ¿þº¦¦fÆ ?ÿùÏÕå+W®¼ï¾ûün©¬«®ºjÛ¶mÛ¶m{ã7ümɶmÛ>ì÷õ€Ÿ‚ói rkÓë*iŠàlܸqîܹêÏW\qÅ»ï¾Û·oß¼¼¼ œyæ™/¾øâ5×\£¾úâ‹/ÆnX__ÿ /œþùíÚµkÔ¨Q»víúõë÷ÜsÏ=zT[Çì6š+¯¼R]~Çwh =:}úôÞ½{5mÚôôÓO¿úê«cë ò«Þ/e·Á_}õÕ¸qãºwïž——wÖYgMž<9vM½Øm?ÿüóáÇ·lÙ²}ûö………>ø Ùšµµµ¿ÿýïO:é¤ßÿþ÷Ú œ8qâ\PXXXXX8pàÀ»ï¾»ººZÐ={öÜrË-çž{n~~~qqñàÁƒ.\¨_í‹/¾¸å–[zõê•——÷ãÿø²Ë.[·nƒ +¿šÅÅ1úè#[«é¿„ì6XÕ®]»³Ï>;öÎÎ5kÖ˜]“¸m[µjÕ§OŸ¦M›jK-Z·æI'¤½ª~=:tH½ÓKѨQ£Aƒ]xá…7V—´nݺººZÝÉþýûµмyóË.»ìüóÏ×ö6gÎýjýû÷¿ï¾û®¼òʬ¬ïú+žyæ™d\‹‹£?eÉÖÔÔ© ;î¸^½ziûjw¬dåßeÇÈ;vhë|ñÅŠ¢lÛ¶-vWŸ}ö™¢(ëׯWÿÚ¤I“Çë[[UUUQQ¡µí¹çž«¨¨¨¯¯×·­}ûö]ºtÉÎÎVÿÚ°aCu‡ÖŸ™à˜ðÜ%ßV»¿ôŸŸ„'òÖ[o©ÇÍÉÉyçw´Õì~ðô‡öüjÉà·êëëµ_ô'N”ßðºë®S·7nœ¶°k×®êÂ?ÿùÏêùàxî¹çªKxàmµ .¸@]øÄOØZMÿ%d·Á±{û裴_ÐuµØm/¾øâo¿ýVQ”]»v•””¨ Ï=÷\ý𥥥sçÎ]µjÕ'Ÿ|¢(Êý÷߯.oÖ¬™öM°qãF­Ò6~üxuáÝwß­}…|ùå—q ûôé·$¶¦òÄO¨ ô£%ãú[_œ¸S–lá£>ª.ÉÏÏ_·n¢(uuu7Üpƒþ«Ýý±’ýi”—Ý| µÞüùóE™7ož"‰¨ _ýuEQfΜ©þõ /4k­¢(Úÿÿ,^¼Øð=}üñÇÕ…Ú}/Bˆ 6$üZ„]µj•bíÚµê~ÔJí¿ÿýom¡â'?ùIÂ÷ÎÌ©§žzóÍ7«?_zé¥99ßÍø±uëVÇû´uî’o«Ý_úÏ… :TÝÉwÞû¿4ò-”9´WWáDp„[Z”"vjß„ 4|øð /¼pÅŠ·ß~û€N:é¤>úÈqK ¤þFGÕ¦M›®]»>ñÄìܹsëÖ­m­æ¾Áq÷Ÿi…„úúú„çrÚi§µmÛVjŠ¢|úé§±kvéÒ%®¿5Æm¥Ò¾×·nݪ¶¡¢¢B]¢Õ½„­[·^¿~ýúõëW­Z¥~OlÙ²EÛ¡ö?M›6Õþ‡AývOöõ·8eÉÆ®¦m›››w¡<9V²¯†ü»¬qðÔ‚ãêÕ«Å÷ñì³ÏîÖ­›ÐGme:tè ýÜ´iÓOýúõS‹kÖ¬©««ûÏþ#b‚ãÚµk¿ýöÛ?üP½¤¥¥¥ whF»N¾m¶XŸ»üÛj÷—€ãGüùÏÞ½{·ƒÊÚ««p"8Âýû÷Wxíµ×bgŽøå/©N«¶uëV}4™4iÒ£>Z[[Û¾}û§žzêƒ>¨®®¾ä’K7£AƒO>ùä—_~ùâ‹/>¼  @{iÙ²eÚ¬=’«éyÞ` q_ù555Ú+ÚUÜ/ýfÍši3ö‹'ö¯ÇwÜ 'œ——§¥ù½{÷šµ¤Y³fyyyêÏo¿ýv…‘+¯¼2×ßâ”eZ˜——§ÝË÷µwµÝ+ÙWCþ]Nx1­5kÖLô]]]ýÆo¨B-8VUU½ñÆê4.nʾ“[íþ°›€ûöí«j9xð 69”­:>´›c!TŽðÀرcÕ‚Áþýûo¹å–ÚÚÚ¸ž~úéÏ>û,náSO=¥þ0mÚ´_ýêWgœqFNNÎÎ;ãVÓ~ý}ýõ×±ËcªâðáÃ_|ñÅ_|qøðáŸÿüçsçÎݳgÏ;ï¼£Íuò¯ýK~5C’ öÄæÍ›c¯˜:¸RqÜqǵk×Îz[m@ÃÛo¿»\ûk‡rrr"‘ˆÖc¥vDª>ÿüóž={öìÙóüóÏW»®N9åõ¥ÚÚÚÇ(((hÞ¼yóæÍsssSpý-È´PO]mÉ’%Ú¶µµµï½÷ž·ÇJÁÕ|—\Ì8TxòÉ'…M›6---Õ†ƒhÿ(ÜÜà2o«Hò/öíÛ¿úê«Z^üÛßþ{+¡d Sy5NGxàœsιñÆÕŸ_xá…>}úüë_ÿR;;>øàƒo¼Q»[óÍ7ßhU-þç?ÿÑ…k݈«W¯Öî¼yå•WþùÏÆ®öÑGµnݺuëÖmÚ´ùä“O„9995j”º‚Zò”\MO¾Áž8räÈM7ÝtäÈ!ÄîÝ»ïºë.uù%—\¢a7sá…ª?üå/Ñ&ìýðÃzè!õçÁƒ«?ôíÛWýá‘GÑzÀ§NºjÕªU«V5lØPýÿ-:̘1Cù~Næ—_~ùøãoÙ²eqqñ7ß|“ìëoM¦…±çûè£~üñÇBEQî¹çž¸YfÜ+WCþ]vI+%ªõnݺegg·jÕJ ·téR!D$‘ü´ú©™·5Ù¿Î8㌂‚‚ë®»NËR__ûí·Ûja*¯†×ïÒϪ†7þô§?½ùæ›êðûï¿ß·o߬¬¬ãŽ;NܳgÏ÷ß_[¿iÓ¦M›6UÃå¨Q£žþùH$òæ›oêŸ^ Õ6jjjºtéÒ¥K—ªª*md€æŒ3Î(,,üâ‹/jkk{÷î}ñÅ·hÑâ¿ÿý¯öð1õÁ3’«éÉ7Ø+¯¼òÊÉ'Ÿ|ê©§®]»Ví"ÌÊÊúÃþpÃ;ï¼óoû[eeåþýû{÷î=`À€ìììÅ‹«ÏêhÓ¦MìóQfÏž]]]½mÛ¶³Î:kÀ€_|ñŻᆱ¾ªÍëþ»ßýnÖ¬Y_}õÕk¯½Ö¿ÿ¾}ûnÞ¼Y´{Ûm·µhÑ¢yóæI½þÖdZ¨®VVVväÈ‘/¿ü²k×®gŸ}veeeÜ`#OŽ•‚«!ÿ.»tÎ9çäååiAA›f²[·nÛ·oWVOÄz?Í›7Wÿùüñܼyó-·ÜÒ AOZè ™·UQ”ühРÁĉÕ¹»ßyçE‹©ÿ ù!OÙÕHÅ»‚`ò{> dŽÏ?ÿ¼_¿~†³Ÿþô§ÚmdË—/W×ÿÅ/~·Zûöíµ ¨¯¹æmÏÚ”±kjÿO¬Íãøþûï›u ôë×OQ~5ýœp’ –ŸxROÛ¶OŸ>qsåääLŸ>]¿¦á j«W¯6œû£]»vË–-‹]ó•W^Ñî–‹u÷ÝwÇ®öÆoV¿ÆŒ£Îäìùõ·¸8†§,ÓBEQfΜ—Wš6mª½‰†OŽqv¬dåße7HÕÅ_¬íü•W^QNž<¶‘qOމk›v#ï /¼ ÿy°˜ÇQæÜeÞV—¿$O¤¶¶V{ªBiiimm­| -íùÕ`Çp¢«ž),,\²dÉüùóñ‹_üèG?jذáñÇß§OŸgŸ}öµ×^kÕªU\MbêÔ©§Ÿ~º"++ëÌ3ϼõÖ[ׯ_¯=÷ùçŸ×:¦gÏž=iÒ¤ÓO?½I“&]ºt¹ùæ›W­Z¥3xÎ9çTTTL˜0¡{÷îEEE 4(((èÝ»÷¬Y³Þ{ï=màªäjzò v¯E‹+V¬øå/Ù±cÇÂÂÂË.»ìwÞÑîH¨G7nœ0a€ [¶lÙ¿ÿ{î¹gÓ¦M½{÷Ž]sèС›6mºñÆ»wïÞ´iÓâââ‹/¾ø_ÿúפI“bW»ä’K>øàƒn¸áþç7nܾ}û¡C‡.]ºô¯ý«vj²¯¿5™ !n¸á†Å‹ÿìg?+**:ñÄö³Ÿ­X±Âð¡.•‚«!ÿ.»;ð%¶âh¸‚™©S§>¼U«VMš49í´Óâ†QÌÛšš_ÙÙÙÚïÿïÿý¿Y³fÉ·0•WáQl>EðÐÑ£G,X œvPf^ƒ'L˜ðÀ!† òꫯú}ºaqÍ5×Ìž=[ñ׿þu̘1~7–v¿µoq#üÔ Aƒôúå›v F¬Ñ£G«³U÷êÕkÚ´iê¼óÎ;êÏj1 °À/„Á@XmذA±aƶmÛ6ì믿¾óÎ;Õ¹;wîÛý Ð Ü]&$wÝu—vóßï~÷»SN9¥[·nê\*ÇüóÏ?ïøK *ŽÂ"77wñâÅ/¾øâsÏ=÷é§ŸîÞ½[”î'?ùÉØ±c›5kæw è)tU@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8Æûì³ÏºvízÇwøÝ€`!8CQ”»îºëÀ~7 pŽÇxöÙg׬Yãw+‚ˆàøƒ­[·N:µS§N~7 ˆŽß©­­½óÎ; ÆïrW%%%~Ÿ €÷rün@P<ñÄ}ôQYYY³fÍün @QqBˆ 6Ìœ9sĈ½zõò»-Ep555wÞygÛ¶mÇçw[‚‹®j1eÊ”;w>ÿüó¹¹¹~· ¸Â^q\³fÍóÏ?ã7žyæ™~· Ð"Š¢øÝ?ýýïÿÃþ`öj‡,X`wŸ%%%ÑhÔï3ðXØ»ªÛµkwÑEÅ.Ù¿ÿòåË‹ŠŠºtéÒºuk¿a޽{÷îÝ»wì’Í›7/_¾¼[·n=ôß­°ßãIGH ûà˜d`p ÈHT …à)GH!8@ ÁRŽBpt¨¤¤Äï&¤ÁÑ¡h4Jv¡BptŽìB…àè Ù„ÁÑ-²# ‚£ÈŽ ŽÞ ;€ŒGpô Ùd6‚£—ÈŽ ƒ=Fýn@R …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ %ÇïBMMÍ‹/¾øÒK/íܹ3//¯cÇŽ×_ý¹çžëw»„à(jkk¯½öÚ 6äçç÷ìÙóÛo¿]½zõòåËo¾ùæßüæ7~· (Ž¢¼¼|Æ ]»v}æ™grss…[·n1bÄ´iÓú÷ïê©§úÝ@€@àGñæ›o !î¹ç55 !:tè0f̘ººº+VøÝ:€  8ŠmÛ¶5iÒ¤sçα ;tè „Ø±c‡ß­ ºªÅÓO?“6oÞ,„hÛ¶­ß­ ‚£(--[²jÕª3f4lØpÈ!~· (èª>F]]ÝìÙ³o¸á†C‡=øàƒ-[¶ô»EAAÅñ«W¯¾ÿþû?ùä“6mÚLž<¹W¯^~· @ŽBqäÈ‘‡zhΜ95ºé¦›F¥°€Šà(êëëÇ÷öÛo8pâĉ­Zµò»EADpsæÌyûí·¯ºêª‰'úÝ€à ûàEQæÎ›——w×]wùÝ€@ {ÅñË/¿Ü¾}{nnîðáÃõ¯:tĈ~· ÂwîÜ)„¨©©ùðÃõ¯2°@QÅï6dš’’’h4êw+<ö{ ‰à)GH!8@ ÁRŽBpt¨¤¤Äï&¤ÁÑ¡h4Jv¡BptŽìB…àè Ù„ÁÑ-²# ‚£ÈŽ ŽÞ ;€ŒGpô Ùd6‚£—ÈŽ ƒ=Fýn@R …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤DEñ» ™&"„‚Ë 2 ÇïÌ›7oذa]ºt9÷Üsï¾ûúÊñ®:–”!"ßÿÈ G!„˜:uê½÷ÞûÉ'ŸtïÞ½iÓ¦/¿üòèÑ£kjjïPù¾â¨ @¦ 8Šh4:cÆŒÂÂÂ7ß|sÆŒo½õÖÈ‘#7nÜøðûܳš•ïÿ @Z#8Šòòòúúú±cǶjÕJ]2~üøüüüE‹Õ×׻ܹ“I ­ÅÚµk³²²úõë§-ÉÎÎîÓ§ÏÞ½{×­[ç~ÿŠ.&’ @: {pT¥¢¢¢E‹-Z´ˆ]Þ±cG!ÄŽ;¼9ʱ¥Ç¸å$Hrün€Ï:TWW×¼yó¸åùùùBˆ}ûöyx,í–G×TÝ€€{pT‡N7iÒ$nyÓ¦M…û÷ï÷öpÙQ[AÅd h›7o‰D:·üÀâûº£·¹P¨¾JG؃cNNN~~¾¾²X]]-„ÐÆY{K … ã ]Ø 8Â>8FQXX¸wï^5)j¶mÛ¦¾”¼ã*vFÃ0ŒøŽà( PWW·lÙ2m‰¢(K—.-((èÒ¥KRm+;j› €/ŽbذaYYYO>ù¤z_£bÆŒUUU—]vYƒ ’}tÇ R,¢(Ü5'ÊÊʦL™râ‰'žwÞy•••«V­*---++ÓOÓ#£¤¤$ÚÝ*n†p¸$Áñ;óçÏíµ×6nÜØ¦M›=zŒ;V‘ÇgÁQÄŒ¶vI ŽÞsUïS3$ðPØ§ã  ØIÂ]&H&ƒ"8‘~’p7 ’É €'Že6I8 ø…àhÏ'$A€#8]Âç’ @jÓƒ"1DÚe‚Œx1È`Ç´‘°ô·¦°™ã²) ÄᑃΕ””¤þ ¶ž1h÷±„ʱñ1n[žj@È‹F£~eG­(˜Œ©èžÈs±€ 8ºäWvÇNñè8AZ¬f¸ €0#8ºåovŒëY¶› -ÖWt¥Gý«$HB…àè³£Htc¢Ì¶ë+ýÚ$HB‚àè ³£Ðu.{˜ fGgGi‡àè™ dGÅ(ö¹O ï‰L¸"ŠÂ<}^R³c4õ·Ó=Ú 1v}™Y$-ö P@T=æ{dT)‰F½8«A GD&ô 3ð䘌ûÅ|!]ƒôäÁÖ<€ôEpÌp2Ït– #$HB†à úŽf÷ R9vèŒØÄl?ò>"8†E\ϵ' RÛg쫎ó €€#8†‹þÆG÷ R9v‡îóŸ~v®ü†f7VR†À[G$×í8AÊ<ºÆìè2*I”Žà‰)Ž gf®N;²NE.¹É€ˆ¢ð¥é9ùûúÒ•~µá ›½äÉS ­ëÕ®€&Ëïd ’’ŽßªˆnÂÁ ¡|ÿ'vþðˆÑôІ/)º¿šíA² †ûwv:ûžà]ÕÉcXSÓ¿”Þâî€&5H³Žæ„3G ‰‹eV¼tPøånH,S#.dZŽÔÏ¿#ì$H}ÂsàœÍ%)¹+É6©ŽBQSSóâ‹/¾ôÒK;wîÌËËëØ±ãõ×_î¹ç&çhúP”99Òºø»Ž|Âs9§OÄuí2$*‚£¨­­½öÚk7lØŸŸß³gÏo¿ývõêÕË—/¿ùæ›ó›ß$ùà†™$C*\ÖÝÓÂ(AZw.ûž eH@¸Eyyù† ºvíúÌ3Ïäææ !¶nÝ:bĈiÓ¦õïßÿÔSOMUC†H‘¦ÅA‚´>[÷Ϙqû(CBˆQÕâÍ7ßBÜsÏ=jjBtèÐa̘1uuu+V¬ð©QJÌŸX‘´ø7xYV±« ‰SUtû´¾(Úšv7´u^iùÞ Š£Ø¶m[“&M:wî»°C‡Bˆ;vøÝ:a9:;]ûK K†Â$;ŠD³EšíÓú3¼Ò)(C`„à(ž~ú霜øë°yóf!DÛ¶mýn]}Òðg‘.qE&AŠcsž'Ù†·6Kè Ê@Ep¥¥¥qKV­Z5cÆŒ† 2ÄïÖY“,FŠà'™áØqCg²„õ?‹¹=¬ŽÎq¼7|Dph!1ïwÜí>áÚYáÐîí•¶š@’„(8š™3gÎÛo¿}ÕUWMœ8Ñﶤ’Ý)‚]$GdËç0÷‰ÍV_¶­Û+7 …=8*Š2wîܼ¼¼»îºËï¶øyb~¶èÎhŽ”LÂ~Rߤƒ™0­JÖ8 ‘ß…=8~ùå—Û·oÏÍÍ>|¸þÕ¡C‡Ž1Âï6¦˜ÅT‘Âü¥@¤—„ RXvdëO#®(èìi×2³‰D¥G™}Új„=8îܹSQSSóá‡ê_MçÕ^IËb¤EV³îÈ–œîÑñŒŒeHÅfv´>Y[­@RˆFU§L€GU{ÈÖÓ˜ñ3K²ʪeÖ%Y§ª¿”ž\/B$Àsa¯8Â)ÉJ¤~ß2ŒYµ/bsϘÍÔ×}‚‰B¤ƒ2¤á\’ƒÁŸ¸›ùÏ)Ë櫓’’¿›”cÿÈ‹ÄüIi+­Û¡å9‹V*FuD³M¹])]%&ëw›Šë‚£sÑh”ìè5÷!2éyÆ¢}Z bWPbê…MT,CdÜj OÒé[^õ<žÒÁѲc29 ‘"e92aRÿ³a-öl¶¾bçÜÜG=żJ1B…àèÙ1%‡H‘šH#Ù>ë:eD®­ S©d;m]”„•NŠ‘GSËMˆ© ‘q …yŸoÂóT¤ œÎ®£äE‘¯tRŒ€ŒDpôÙÑ'†Hï#M\x2;°Ùi8¾!2©!Rò&K³SŒ€´Fpô ÙÑo.C¤HjŽ”Rc"ÝŒªIRˆ´u“¥äþÉ‘|Ì㈌älªÈ8I™ÁкeúÔq/É̱ܧ'­*îÕÄã.› Hˆ¢ðûÙKjÑ1úݘñ¤°åý¿ëq' W6[Ç¢[ÙÍ9È4ÀÛ Âï)ºª=Fd <÷=Ú"]¬ÖCjâŽ$Ó{3¢áÎÝœƒE¼¢Ð© ÁCW5ÂÌ^v$f•c+õ^v±Zô>ÛúØ’ºV\œCjQH§6Á1“y^˜Éèoh‹drLdÔ–˜Üåáek\=/vyDؾ!ÒâQמ„Hý]Éën¶ˆüý)Ÿ3ÌMl çç“Ù¿ä~ᘋ›µižcy“jô#¦c_’‘ÝÞ ÷·s[­WL œž] óÆë㲇G‚cÚ1›%!ÉhhwÛˆÄùFS\¹ÑÝp2ºX-B¤á1œ Í6Ü•dëãúÇÍ6ñ¼»Ùp w Æñ@xƒÎ¢|’°h·“Q² òÛFävä/òˆ®—Ú»éAi,aQÙVˆÔ7B2D ójVãIënVŽ=hÂ1éAþø@ЃÈV]Gr?Îö ³š­X™0Ü8k¡¯dNQ†Û{ŠåjfJN÷èm§¶õASÓ‰àɾ÷Kò¸v7—YM2F)AÍ”Š¢è‹ŽÒ×ÃÍð$ç¹vúb²š‡!R±,=Ú=ùÈ” òŽ~’¬ %ËÌçὕV:ÜLˆb¤ÝîlÙÃ-Z`+DÚŠf',ÿÄÁãm¾gAú€@ªSÍn(ôq ³ç]á’N—«¥²HióÁKþçHùiÝ8™¦[„HT(s-VÃM(I3‚cŠÄÎÉl‹'á2õÉÒpà…ä¶òOs6ÜÊâ ÎƤ›õV»~\gÒ;µµf6ÕÖá•ØÆí-f^"³+¢[^Å/ÉŽfOž¬m눑ŽÉå8/Úâ¾4è¾…v¿>%;šõqÐÖÝ2ÙH&MªÁ+6>zýw‹‘qAWm¹E›mug[ ,·Îm«¥ G*îJŽèò\ €ŽI‘š¼(/}➌{•o†a‚L¸­d<•ÜÐë°(ylçH}MP‰DdNÁô]Ž›ñÓØXl"|x$ûMŽDŽù÷’n§ µ¸Î±?›½ž\í¸Ã¥ìMÔ_“ÀþÛ=ºªý‘Ô:™'ìö¶Ûízöªå†E)Åü¸fwÝY48á(o™M’VUòo¤vlvŒé¸Ð.ˆÅã^2몖†â¦vèàp2²CU@`ƒKò«ÂÃ|™Œù#޼v|âf[E,÷ìa ´^.³ZÒ€3’ÚÍ~l~bîž4Kð{ŒXþ,3ÂF‘XnuÕ¾ßP1ß6yaNIt¦"uŸH€à˜ö<Ì—)þJR‘R¾†¤_ßA³%gÒµL¯ÞÏŸ©­(Âì:ʱÇ„G¾)Ì‹ß2CµlU ­Ç\'uԋŇÖbç&¤÷8Æûì³ÏºvízÇwøÝ%¼íÒúÎË€4U¾yÖ7Ééï03ÜÜp· [+"׳M\³ánßß—èêæHÃ}[Ïòcv<ýÀjý‘ÖWÆâ]ˆ]ÇâócÖ`ÉkžðÃiûòZÅ6@ À?^Šã1E¹ë®»8àwC|:}ó—|O-s¬„ͳ[Û³Õ1mV ‹ ‹ó=È”0íUΤf,—­ß‰uë¬Bdì.‹‘Šåš2ÅH‹—Öÿž áþ%÷¦Ø?´õþ)LðÁñÏ>ûìš5künE*++kÖ¬™ßm ÷}ßR}¢»²è)vÖÍm½ZÄäg³­,2¨õæv{·VJ;µeŽ—ð¬ —ËÜwãc’z{ÍÎ×,ì&•Lwê[À_T…bÆ 3gÎ1bD¯^½ün dë”±ë{~8³j–ûN=[eB7UɄNjbRJ;µ…£ƒYl’°iö‘ˆ˜¯àm}Næ.‹TÒš!Ù óPq555wÞygÛ¶mÇçw[€LeÈbÍäÈMý)®”w,™³³h­u‰ÈnùSîT,.Ij ‰d1Òâ¼"v–FüØuR0Åú£âá6#® 2õõ”5@R…(8ÖÖÖΜ9SûkvvöèÑ£…S¦LÙ¹sçóÏ?Ÿ››ëwáD0Ó¤ÝÄe‚„wIº$³w¹'¸Ú’yQ˜ü_>GZÔ§%mKŠH~š4Œ°òG$Pé+DÁñèÑ£=ö˜ö׆ Ž=zÍš5Ï?ÿü¯ýë3Ï<ÓïÂKiš&-¾-n»t|R £¡õ-ƒ~äHÙ&¸Ï‘f/éÊÍÊ–ÖͶ T1ÕúLíÑnn(ÙB—à­ˆÍy:2Íßÿþ÷?üáf¯vèÐaÁ‚v÷YRRFý>3ÈJYOŸ|št<4Gr\‘­mm%>G×ÍÃ{ᤎo÷žT³ m½M’×A”LXö³{5ìÊe4ÒqS¸¢Š£¡víÚ]tÑE±Köïß¿|ùò¢¢¢.]º´nÝÚï"éX›t|tù!Øf÷#º¿ZoèEI2¸ÚÂi=R?8I²ÖèàFIÉ^cÉ«!}ü\¶ÁA#-šš¤6P…=8öîÝ»wïÞ±K6oÞ¼|ùònݺ=ôÐC~·¾ññ¾1!‘&ívhêwb–‡âÚ`="D:Gzß©-,cœþxÑb܉E'¸'ÑÍñ‡ßqϵ·MI©‹øN؃# Ï«4™0&<ãîE³’°»\fd±H”reß@çH‹ýÊß sû£bò³á“Qù“üðk³óxÞÇ­˜,±{²TGÀù4i½‰ƒYDIÇ%Ia%-ÆëÄ®c6pDßN§ NÆŒ?V·{<‹ivH™Ùÿ« ó&) %áÿ’ÕÈØ°ãû}ƒp:€ïÂ>8&CIzÖˆõ!<9–ã–Ûê×vÝZ¯ÙØ8¸ÝCJÎú)sÁ¶qrž.ª×Ø«R(ÉaFÅH‘”Mmx73:è¡6ÛPòÕ´¸9ÒÁ!åg)—\!á4à÷>¦fd‰õ)ε^Ý…IÍaFp|“¤ ¢-ö`ñ@7º‘Ü›dŽ4»iÏf;SÝ©-äþß@r’UIëÆ™U²î±MÒ”2w;$l†û–X4ÆCn’%™GpÄà ¢eö/\”$­KY2{K˜##F?§K1ÒÙåGmËìÜÙíIšRÀî¸ï¤v¾'{þ Çgço«G ¸|ìݶUD´~r±û©Ÿ13r¤Ì±-›Ë(iöF‹d¦I÷‰ÍÃ"eêç’?Aâ#‹à¤“ÔGI™ˆf÷«N&©%왕ٳý™¢Nm‹õŒÝ.¢¤äjÎæ2[3IÙÈY‘2ó™KÐB- Ž@ºKö’ò%Ia²\~VK‘¨8”p+‹È^ŒtÓÅu”´5§õYÙM“)m’EÊÌ{à å µ¹,¿ÆJJJün`@9öOD÷Ç“ý{µ¦uk%÷»~ÜõëØ¹f;³Ëù; H4Â0ñ˜M«©oŠ~ç‘D«Ùýh)æ›ëßÁT2»¼f'èí?%ùúrqCGç¢Ñ(ÙÁçæû>VÜ&ŠåŸ¸M·ÖºqAJ«`™µÓâtì·Î WÙÃÃ()tÙâXfÇ-Ãñ7¥‰cODIô'a²ôªÙÄGÁѲ#ÒQÂï?•uR´uÇ_¥Ö©"nH¢M,N!‹‘¶šb ­ã¸Ìÿ*¶Þ:Z%<ÃóJe¦” j “¥·áÒì-R‰àèÙÀ¢Q¸NF"ÑW©³“hkV 3[ß‹iØ:g¼Ï‘QÒ¢/;n¹0;ÖiIæ$Ír§YµÎÜð¤Îçy¸¤ô=@vD†ñª^(³áE12v?âØ}&\? !RHÄ6IÞ\x‹Û ô3\ž°qú‰d~‰>iÎz½=Ì”)è&¶.­ß/ ©ŽÞ ;"ƒ%5G&©S[c¶+ëðj¸7/B¤ÏÅH‹fÉ·LrMÉÚ¤YyRß0gÉÏqÏp?>f5ë³R†éxØ£Of¯ú²sÃDÌWP¤WŽè~°ÊÖ§(ÏÛ oº‹ˆÄ»m;¢äqõZïÖÙùÊ4 "±yÊÄ]Š€´ ŒŠ£g(:"œRV®oŽÔ$,,ÙêÑvwÊÉèÔö²%ÙÍm½¹d£eÊ“±šµÓ“û¹6x~c¥Ë·‰$’-¢(üÿ‰—ÔìFýnÞ—ÅLö,¿óØr‘­˜­lñ=íî|½ )ú%o+Ê;8C…ɸm]V(­Oܰ2íàŒ<¨š(2 GX oð÷jÏBºê£µD$*#Y1veíU=wçЛ#%›kÑhÉ›­O#î†TëfXŸ¹‡£gÌ9¸ÉÒÍFõÉÃ=ŽRÇ¢*ãáÍ‘ ojÇfGÃu"–{°^Y”„íqwñlI^8A£­[Ÿ°h1¸Ûð¯ŠÑNdöp¹á>ãÚ)sYmÕÈì-¶ÎJõ^!8ðGòÙ$Lu±c2â¾Ve‘h«¸®ROC¤ãÖyÔ×­·>‡H¢=8ÞÐzó„÷!X_tG«x’/‰ð Á@ ø˜#…¯yg·EJæ§§ܑڎÏÁúL¼:Ä p<òÚñ“Ùƒ¯áÁ@y˜#-¶5LÖ;·Õ'n},}™Ó£ê_Zvj'<ëÆIîÊq1±2á ž_qýGŽ »ŽÒ€|Ž´Ut9G£³i} d†H‘vÚò'–ð$åSšƒÍåc¥­7ÀÁA%‘ áÁ@ú±HCŽ¿ÿ’"cWˆ»·Ò"qšõt Gú_Œ”?Iɳ•Ÿ¬Çî¤èfÃtÜÜ ‘ð ’{v0¦!GpöÌ*ŽÁ ‘úÍ-†æX‡Háe•(9R¦Yκ°%kŠ ceÂ7ÔqŸ¸Ýw”$"8È(©‘Âuo¸á|„v+‘^|Ó'ãæÈôH žgJ!]øŒ˜¿$䢽ãKìUâL÷!8ÈXžOi¶CÉ d"ãŠ=J¢œµÁÑ¹ŠŒ/FÊ_‹s“U>¡ËÜvpem ÄNïpv\Á@(x~[¤Ù݄ȸ¿*&k¦°/;áéÚ•ö9R¾õîëyfãu Gˆ'©F(sS¦Ýw1ϳIïORZ!8£@Ý™°©˜¯™Ú¾ì„M¶+ý:µå¹Ÿ¸[rK»…Cá4eY7scÙÝÜÖž“'Ó>©6„]ðC¤á¶2!2™}Ùf;£iƒØgëU»ÇÒïÓÖÑ“7“¿W§æFì?´°|@uŽðƒ†H‹Z‘û™„/?r¤÷܇Kùuäh¸C¯2®­f$ŸB=‚# ÈmýÄ=V"“ßUL§vŠxòHk»«Y·Á}Çtêï†$)&Dp€Ä| ­>ÅQw¶­§f'íË’b¤ÿ\,ù÷ÉýS…ÑÇÞ[É{OHÀž¤ж‘Šîþ*ëi½š™T÷È‘éÁåu< ¹ûfÛ¼2ŽàŠ·=Ú2!R$¿Ã1…}Ù OÝ.:µƒÅÍ{àòsÀÛŸ ÇïlÚ´éé§ŸÞ¼yóJJJnºé¦³Ï>ÛïFH3†H¯Æ1È?k$awv ŸGG1Bð†R–ß „÷Þ{ïÊ+¯|ï½÷ZµjÕ¥K—õë×9ò½÷Þó»]Ò˜ó'óÇPD÷G1ÿ{‘hφ¶G¿š™„§“Ìké²€•ò¶™%¢(aôû÷ï8pàÑ£GŸyæ™®]» !6nÜ8|øðfÍš-[¶,+Ëv¶.))‰F£~Ÿ€€òðqÆϼ–Ù¡EÊL¸¦b¾?¾N<¼#@bTÅË/¿\]]=fÌ55 !Î8ãŒÁƒWUUmÚ´ÉïÖÈ4f%@—»Š»Ðº°fV¿4+CÆŠèŽ÷RjKy#”¢â(®½öÚU«VýóŸÿlݺµ';¤âÀ¯ÆtXÌÚè² © è|2á9Ùö/J@ÃàñᇴnÝúßÿþ÷úõë¿þúëN: 8077×ï¦Ã¤ƒÀb1@Ç:›š5Àp'f‰§ö)5Ž/†] ²¾öàxäÈ‘o¾ùæ”SN¹ï¾ûžþymyÛ¶m{ì±ÓN;Íï#ýÄÝ»©Ïv!Ò,zFLVóõ)5òCx—# ‘—°ßãøÍ7ß!***.\8eʔիW/]ºô¦›nÚµk×-·ÜRSSãw„š­¡Ù’»Š˜ß™°± …ÉpM$&_Þ(é뽄Ü 8¢ŠcmmíÌ™3µ¿fgg=ºQ£Fê_|ðÁþýû«?ÿö·¿ýì³Ï^~ùåüã—_~¹ß !¼›$2eHÃá2óõÍà:µ)! ŽG}ì±Ç´¿6lØpôèÑMš4iÔ¨Q$9ÿüócW8pàË/¿üñÇûÝj0àù ‘]Ìú=[„,‹׆­µxL¢èÔL…(8ææævnÕªÕ×_‰DâVBÔÖÖúÝjHÀ“"­Ë™©.áÝÂf2xQ‹ÇØ?û=ŽBˆóÏ?¿ººzË–-± ×­['„èÔ©“ß­Y^Ý©ßح̤’Âä¦B³`È;=¹3Rps$ÒÁQ :Tqï½÷îÛ·O]²iÓ¦gžy&??ÿ‚ .ð»uà„aˆt³‹!5fÓ: ÝV† RæÞÍ Æ+¯FØB$ÒEˆºªÍœzê©·ÝvÛ£>ú¿ÿû¿Ýºu;tèÐÚµk#‘ȤI“Ž?þx¿[n%¯/[1_ÛÇ­ïïNØ‘m¶~n…´¾H£Ní@ž(BŒ'Ç|çå—_ž={veeeAAÁé§Ÿ~ÓM7uèÐÁÙ®xr €àó$›H©1›ôQèúµÍvn-¾Æ<©#¦Ã‰"Ó½Gp^<)ã% ‘£ý–3:AÚ='Ý–ÇnÊ—8RŒ®j;oû² oÓ‹èöo¸‚H´šµ`wdÇr˜#ý’ˆ¢¤Ã#Sß±5ÇxÄÎN䳩uG¶dÂJ·›]݉EI·3FÚ"8 $|”ŠL<±Î‹†B³ÜI´Ž™ô)C&>¿Ø~éØêc$û!IDp$`˜ÿœíAÈ Ê¶^Áú ‡fÒ0AþÐXõ)±ÁQîæFB$ÅE‰è†ÆÄ. D"5xrŒs%%%~7üçþ5†{°Þ­ÙCc×WŒbeZ=ÞPú*qϰ±•yh l 8:FÉŽ qÿ¤lÃ=XïÖ,/ÆeJqì"C¤Ñ…±•# ‘H€àè ÙôÜ?)[±L„Š\‚1KT± ű õ‚ E1œî[np—!28—>#8ºEv ©ïÈVLŠŽ±=×£e©bc¢Y””¾¢#aƒc©àþù4†£^$g…”™ÈlÚHa¾‰/¼~Ì ƒéÇ[^T=@ÑäyØ‘íòVH•á´­ etåÍn1’Jd¸½Avü½2n! RÇn§6!2ó=CvÇ’1"[È%Ha^³$AËVŽ$Df¦ˆ×·J„š£Ñ¨ß €´çòžBëyÅõ»Õ¿äà>H³g:ùt² “q¨8zŒÈ^ñüVHaÙ‘­•Ñôñ©A&"_Œ¤™ÞU :—74Ðm6L;vÚp‹§cë· òXìÔ’©ÍèìôCp¤ —sú˜=9Æp·qO!Aº 9áºÙ&‚# ýÈ<›0aÂÎ;‡ Ö¬Y3¿[ÈÉ®AŠï_Ò¯©[tFõÈ8‰ŒÇà!„ظqãµ×^{ðàAmɈ#î¾ûîììl{cp @RÂò^2r›ÅìÃhˆ T…ÕÕÕ>øàÁƒ;wî|ÅW\pÁ¹¹¹¯½öÚ{ï½çwÓN_GŒû£¸ø£?JÜÂèi4f5H ¡ª8ÖÖÖΜ9SûkvvöèÑ£…cÆŒY²dÉøñ㯻î:õ¥Ï>ûìŠ+®Ø·oßo¼Ñ¾}{»¢â™Û-&ëahBkjjÎ:ë,í¯ 6ܸqãž={Î;ï¼SN9åÿøGìÊ/¼ðÂĉG=nÜ8»"8‚Iæá1’³?ŠcWCH„hÔpnn®>ÏíÝ»WQ\\·\-4~ùå—~·ÏÞÑh¸ŽÙjLr! ކЋ‹³³³·nݪ(J$òÃ?5bžrÊ)~7INd8—¸E’a“››Û§OŸÊÊÊ¿üå/õõõê­[·>õÔSÇwÜùçŸïwHÉéÌ&÷Ñ^Ã0š ¢{ÍTUU]~ùå»wï....--Ý»wïþóŸúúú{ï½wøðávÈ=Ž€4åì&Hž…G!„8tèÐôéÓ—/_¾mÛ¶‚‚‚N:ýêW¿:ýôÓíàHk’ÎqIÑú)5 ÷†´@pôÁ$HýHÅr¤—°Žfl £‰Äü×p$MìCñ1=@†#¬-ÖÑÇG¡+@2 ;€,ù™ õ•E €àì‘éÂ6«,š¡¡™ŽÀ¡„]ØJÌKÖ ’dZ 8·,º°ã¦{Ò]Øú]ÁwarŒ%%%~7€±x¢{ðLD×C»\1êì†ïŽÎE£Q²#z† RÑuX+º…n¡á:ð ÁѲ#£ h‘#v6Dêq#H:ý‹£[!…ÉB7Ȇ{}AÅÑ-ŠŽHRŽí°6¬ ZÜ%ÛÓMõÑG°E9vø‹Å †ñQÿ”¤ÁÑdG0«/&\øè ‚£gÈŽ8£$=-S€$>¦@DQ¸»ÔKjvŒF£~7€t•pöo‹:“TT=FdÀ%»H‹i á-¦ã•ðñƒ21¤úè!‚#4³t¨_'.bê“ —Ž =8+@2g¸‡Ž 8.@Ý#8€´ä¬IϵGÆ )=:Fp™Àn’øèÁd»Hz®m!8€ äxHX 8€Œe·I|´Fp™O²Iϵ5‚#‹„H…ìh‰àBǢɓf,@H™ é¶6CpagX€¤ô¨Gp¨Ié1ÁÑ•’’ýÂh4êw»€sú$¥GÁÑž¸¤h–KJJˆ¤5}’ÒcDQB~’…ì@&‰ÄüÚð”åw2V45ìÈéH‰¹ë1´Â?ýôÓ’’’>ø y‡ ;yœÃçÌ™“‚£@ÆÝà˜êêê-[¶ÌŸ?ÿ…^HÍÕìÈýŽ Ý….8^rÉ%ŸþyŠJv tÁqÒ¤I‡BÌ;wåÊ•~7 m„.8öîÝ[ýaÉ’%©<.EGîÂ;8&õ(ÒÁ1¥ÈŽ }efWummíÌ™3µ¿fgg=ÚïF}‡>k¦238=zô±ÇÓþÚ°aÃàGAvé)3ƒcnnnÀcÙ¤îqô ÷;€ôBpôÙ¤‚£ÏÈŽ ]ýGvi!¢(Šßm€B0VÇ  îŽà dGdÇ`!;€À"8@ Á1p(:€`"8ÙÁ1 ÈŽ hŽÁEvBp 4²#‚cБ@@ÓÙÁ1=€ïŽiƒìüEpL'dGà#‚cš!;¿ÓÙø‚à˜–ÈŽ õŽéŠìR,ÇïÀÂ"ð Á1 Ìb4[-n @’DEñ» p…ìRƒ{Ó7;€Ô â(kÞ¼yååå7îÛ·ïwÜQPP`±þå—_¾iÓ¦¸…-[¶\±bE2šGÝ$÷8J™:uêôéÓ›4iÒ½{÷ÊÊÊ—_~yëÖ­³gÏÎÍÍ5Ûdûöí¹¹¹ÅÅű ›7ož¤ªuG²#H*މE£Ñ!C†œp /½ôR«V­„“&Mš={öˆ#&L˜`¸Iuuu÷îÝüØc¥²©dG<Üã˜Xyyy}}ýرcÕÔ(„?~|~~þ¢E‹êëë 7Ù¾}»"®Ü˜Üï’‡à˜ØÚµk³²²úõë§-ÉÎÎîÓ§ÏÞ½{×­[g¸Iee¥¢]»v©o-Ù$ Á1EQ***Z´hÑ¢E‹Øå;vBìØ±Ãp+58îÞ½{äȑݻwïÛ·ï¯~õ«>ø 5m&;€d 8&pèСºº:ý –üü|!ľ}û ·Råã?¾gÏžž={¶lÙrÉ’%W^yeyyyjšMvžcTu555Bˆ&MšÄ-oÚ´©bÿþý†[íÞ½;77÷¶Ûn9r¤ºdåÊ•cÆŒ™‰des ivv¶"///ÅçEvž`pLb ¨««[¶l™¶DQ”¥K—téÒE¿~eeeiié5×\·|ýúõB_Ƭ0V¸GpLlذaYYYO>ù¤z_£bÆŒUUU—]vYƒ Ô%ܶmÛÎ;…ÅÅÅ]»v]³fͼyó´¬_¿¾¬¬¬¨¨hРA~Ÿ€}öîÝ»nÝ:¿[2Á1½)ŠRQQÑ¢E‹-ZÄ.ïØ±£bÇŽI=:EGB…à˜Þ:TWW×¼yó¸åùùùBˆ}ûö%»dGƒà˜Þjjj„Mš4‰[Þ´iS!ÄþýûSв#!ApLoÍ›7D"‡Š[~àÀñ}Ý1ÈŽ„Á1½åäääççë+‹ÕÕÕBmœu ÈxÇ´WXX¸wï^5)j¶mÛ¦¾”Ê–ÈlÇ´7`À€ºººeË–iKEYºtiAAA—.]Rܲ#Œà˜ö† –••õä“Oª÷5 !f̘QUUuÙe—5hÐ õí!;©xVu&(++›2eʉ'žxÞyçUVV®Zµª´´´¬¬L?MOÊð0k2Á1CÌŸ?ÿµ×^Û¸qc›6mzôè1vìXuF‘È0G$Ù€LÂ=ŽH"îw “‘\dG2ÁIGv 3‘ dG2ÁRŽHŠŽ¤;‚#R‡ì@Z#8"¥Èޤ/‚#Rì@š"8ÂdGÒÁþ ;vŽð Ù€ôBp„ŸÈޤ‚#|Fv ]á?²#iàˆ@ ;|EQünð’’’h4êw+øŽEQ#œ_XG Ù’Ý\_IáüÂ"8"pÂùOà ÷‰ÐÖ±Âö…•ãw.ÜÈp&•‰P’zƒ~¨²#GQØþ@˜0Úm`Ûæ9‚#*Tÿ #¥{"´u¦p2Ža7oÞ¼òòòŠŠŠÆ÷íÛ÷Ž;î(((°XÿòË/ß´iSÜ–-[®X±Âó¶…çß!¤—ð$By!ùÎ"8†ÚÔ©S§OŸÞ¤I“nݺUVVþ÷¿ÿ=ãŒ3fÏž››k¶I=Ž9R\\»°yóæÏ>ûl2Z’‡$B7ÂðEp ¯h4:dÈN8ᥗ^jÕª•bÒ¤I³gÏ1bÄ„  7©®®îÞ½ûàÁƒ{ì±”µ3 ÿ ÙH„©‘ñßYŒª¯òòòúúú±cǪ©Q1~üø×_}Ñ¢E÷ÜsOV–ÁS…¶oß.„ˆ+7&[Ǭ€<a düwÁ1¼Ö®]›••Õ¯_?mIvvvŸ>}æÏŸ¿nݺnݺé7©¬¬B´k×.ÅMÍø‡ G"LS™ýŽCJQ”ŠŠŠ-Z´hÑ"vyÇŽ…;vì°Ž»wï9räG}Ô¸qãÒÒÒ1cÆœyæ™Én0Ù@Æpœù5ßCêСCuuuÍ›7[žŸŸ/„Ø·oŸáV;vìB<þøã'Ÿ|rÏž=wíÚµdÉ’¥K—Þwß}?ÿùÏ“Ýf²#€€£FˆŒGp ©šš!D“&Mâ–7mÚT±ÿ~ívïÞ››{Ûm·9R]²råÊ1cÆLž<¹wïÞEEEÉn6Ù€/’ùßCªyóæ‘HäСCqË8 ¾¯;êéçÜéÕ«×ÕW_=k֬ŋki2©ø½ À+òA Îï~Â_ÇÊÉÉÉÏÏ×W«««…Ú8k=zô˜5kÖ–-[RÖx~o°a’ð;>"8†WaaaEEEuuu³fÍ´…Û¶mS_Ò¯¯(J}}}$‰›©';;[‘———ÊÆó{§ÌN„òø¿ÃkÀ€ÑhtÙ²e]t‘ºDQ”¥K—téÒE¿~eeå Aƒzôè1gΜØåëׯvz|¼ÂïM “íâw |Ap ¯aÆMŸ>ýÉ'ŸìÛ·¯:&fÆŒUUU7ÜpCƒ Ôu<¸gÏž œtÒIÅÅÅ]»v]³fͼyó† ¦®°~ýú²²²¢¢¢Aƒù}B‚ˆD˜#8"\‚GB˜åíÍÒKóæÍ#‘È¡C‡â–8p@|_wÔ{öÙgã–ôêÕëꫯž5kÖâÅ‹µ4‰Ð"8"tRGH„ž ;Žåäääççë+‹ÕÕÕBmœµŒ=zÌš5kË–-~ŸüGpD¹‰#$Â#;¦»Ï)AòVTTTWW7kÖL[¸mÛ6õ%ýúŠ¢Ô××G"‘¸™z²³³…yyy~ŸüGpDHéã‰0°¸æiÄÁsJ< ˆF£Ë–-»è¢‹Ô%Š¢,]º´   K—.úõ+++ Ô£G9sæÄ._¿~½þ%‰ÌFpDæ³øeûépÉÁsJTÆ ›>}ú“O>Ù·o_uLÌŒ3ªªªn¸á† ¨ëyáÂ…ûöí1bÄìÙ³õ“;j:uêôꫯ2¤ªªê­·ÞÚ¿ÿ!C,X@j„ŠŠ# uGÀ5EQ:wî\PP°bÅŠØå3fÌxä‘G|ðÁ¡C‡úÝFnQqDøôÓOKJJ>øàƒä‚º#à’³ç”H/G¤¸ñ}IBvÜpöœé…QÕ®êêê-[¶ÌŸ?ÿ…^HÍ™2pÌÙsJ¤‚#‚ë’K.ùüóÏS|P²#àŒ‡Ï)XGפI“>,„˜;wîÊ•+ýn€ì>§@Ú!8"¸z÷î­þ°dÉ’T—¢cf°ûà»Ë/¿|Ó¦Mq [¶l7Fì>§@Ú!8HéÎÁƒï¶oßž››[\\»Ðbº;èÉ<§@Z#8È4|W]]½ÿþÁƒ?öØc~7?ÝqÇS¦LùéOª=§¤sçοüå/ýno0€LS^^^__?vìXm@Æøñãóóó-ZT__o¸ÉöíÛ…qåF8`÷9%Ò G™ÆìÁwóçÏ_·n]·nÝô›TVV !ÚµkçwÛ3Á%—\rÉ%—øÝ IAÅ@FQ¥¢¢¢E‹-Z´ˆ]Þ±cG!ÄŽ; ·RƒãîÝ»GŽÙ½{÷¾}ûþêW¿JêÊ dg¾Såã?¾gÏžž={¶lÙrÉ’%W^yeyy¹ß'BW5€ŒâìÁw»wïÎÍͽí¶ÛFŽ©.Y¹rå˜1c&OžÜ»w"¿O à ]ÕÖÖΜ9SûkvvöèÑ£=øîÙgŸ[Ò«W¯«¯¾zÖ¬Y‹/ÖÒ$„Á@º:zôhìì9 6=z´‡¾ëѣǬY³¶lÙâ÷‰@Pp#ÒÀ<FÏ<óL¿"åÓO?-))a\E äææFclܸQ]^XX¸wï^5)j,|§(J]]~¦žììl!D^^žß' AAp<6gο›v ¨««[¶l™¶ÄúÁw•••¥¥¥×\sMÜòõë× !JJJü>! ‚#àêêêÿûß'Nü¿ÿû?¿ÛvÆ ËÊÊzòÉ'ÕûÅ÷¾»ì²Ë´ß|X1wîÜ•+WúÝœ°»þúëO8á„×^{máÂ…mÚ´1bÄØ±cÕy uêÔéÕW_}ä‘GÞÿý­[·¶mÛvÈ!7ß|s›6mü>*Ž€Çî½÷ÞyóæQqdîq€‚#¤p#`ƒá£Jün)Bpl0|T‰ß EŽ€ ê£JünþàGH!8@ ÁRŽÂ“c …Š#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@Êÿ6Z Æ@ñs IEND®B`‚statistics-release-1.6.3/docs/assets/regress_gp_301.png000066400000000000000000000553201456127120000230170ustar00rootroot00000000000000‰PNG  IHDRhŽ\­AZ—IDATxÚíÝwxåþ÷ñ{S€$†JЇ„‚ Ò”j‚Ò!Á†å±‚T;GðE,øQPA¤(‚ˆˆÔ „(H9 F‚”yþ—ÝÍfv3»ÓÞ¯Ëër3;;{ÏìÌ·ï=s¯C’$”%DïÀŽP…àUŽP…àUŽP…àh){öìqüeíÚµ^æ|íµ×äÙÚ´i£w«}0a¹ÙýúõÓ»-vi¹ÖBÛÝõôéÓ÷Þ{oݺu⣣Ϟ=Ìuñè“O>Y¶lÙ²eËòóó´Öæ±µ×K÷cÁ\6øØ>ð.Lï@P=ñÄsçΕÿùçŸz7G!233å–¬Y³¦[·nz7‡õP*‚£MEGG'$$!êÔ©£w[€2h»»~þùçòƒN:õëׯB… z¯_0ÖšÖš±©º`ûÀ;‚£MeeeeeeéÝ @mw×'NÈ{ì±›nºIï• ÒZ[¸µŒ‹‹«X±¢ñ›j lxÇ5Ž6å~‹ó…G'Ož;vl›6m¢££[¶l9uêÔ¢¢"—%œ8qâ‘Giß¾}ttôÕW_=`À€mÛ¶¹ÌSRR²páÂ.]ºÄÇÇWªT)>>¾sçÎï¼óŽóҜ߷¸¸øŸÿüg½zõþùϪ_—!C†ÈKHLLüõ×_Õ·ÐË[bk¨töìÙgžy¦GµjÕªU«V÷îÝŸ|òÉ‚‚e†»ï¾[n[—.]œ_¸`Áyzdd¤rÝ^y6‚wÇŽ»í¶Û®¾ú길¸ÁƒõÕW~|úBˆ¢¢¢W_}µcÇŽqqq•+WnÞ¼ùm·Ý¶sçNﻫʺÈÏÏ?tèPII‰üç©S§:T\\,J¿ð.33Sž>~üx÷-¦fßøõ×_yä‘:T­Z5!!!##cÅŠʳO<ñ„ÃáPzÌ»wïîp8䯴KÍÊÜCüh¤"++K~¡stèÕ«—<ñ–[nQ&¶oß^žøôÓO»·ÖËz9ûã?ÆŽ{Í5×T®\¹eË–o½õ–÷_Áu^¯_~ùeذa±±±IIIµjÕú÷¿ÿ­rÇÖjê<^¼ïêß]ý_Î/^ÛÇ×e–ÿÐPhøí mH°œœå“]³f—9_}õUy¶Ö­[ËSäo!DçÎ7n첟 4Èùåk×®­U«–Ë<‡c̘1γ <Øã^7pà@eå}ûöí{ÇwÈŸ~úiÍvžYž¢œ-ªV­ºgÏŸZèå­5ßî-÷hË–-W_}µû«_¿þúõëåyV®\)O /((P^{÷ÝwËÓû÷ï¯ÉFð²ýÛ´iãÒÎðððW_}Õ×OÿÂ… ×^{­û<‡ã•W^ñ²»ª|¡‹¾}ûº¿dß¾}^> ¡C‡ÊÓÇçÇ‘òùçŸ×¬YÓýMï¹çy†ÇÜýÙ?ÿüÓãZ«ÜC|m¤³7ß|Sž'11Q™X£F yb:uä)EEEòÄ/¿üÒ½µ^Ö˹m5r™gÆŒ^åµ]»vußwÝu—š[“ «æxQ³âÀ/ç¯ÇíãÓ2594d*Ï5&‚£¥heñññmÛ¶­T©’2eË–-òœ§OŸVN$]»v8qbfffHÈåêõÿû_y¶E‹)y×®]o¿ýöfÍš)K[»v­ËûÖ«WOyVep\µj•ü¾aaa«W¯VfSÙB/o­ùÖPÏ;'_Z$„¨T©Rzzz¯^½"##å)µk×–Ï/^¬V­š<ñ£>R^®¼öÿþïÿ4Ù^¶¿¬fÍš×_}TT”üghh¨’Ý}ýô#""n¹å–#F´mÛVž¶wïÞ2wWï/t¡mpôi߈‰‰0`€s­hÞ¼y’$ýöÛo?þø£ò)¿óÎ;?þøcII‰ÇµV¹‡øÔHGŽQæ9qâ„$It^Ô±cÇ$IÚ¾}»ügTTTaa¡{k½¬—KÛ’’’ÒÒÒBCCå?+V¬(/PýX¹reeÊÊ•+Ëܱ5Ù°jŽ5;€æ~ù¿xÝ·¯ËÔäÐPÿ%† #8ZŠVÁqÖ¬YòĽ{÷*‡½RÈyòÉ'å)ÎÿÖœ5k–<±Aƒò”áÇËSÆŽ«ÌvÍ5×È_xá÷÷mÒ¤Éüùó7oÞüÓO?yl¶óÙý§Ÿ~ª^½ºüço¼á<›ÊzykÍ·†šà8iÒ$yž*Uª(ß°»v튕§?þøã.Ûö¾ûî“§üôÓOò”Š+ž>}Z“àeû !úôésáÂI’>üüÃeíT~ú:t§Lž|ø°PýéOš4顇RR‘$iÛ¶mS¦LiÛ¶íõ×_ïüs#Z½PCeîÊSþ·óiQÙH:wî,ÿ¶lÙréÒ¥ï¿ÿ^ѶmÛÖ­[ !¾ûî» .ÈWÅÄÅÅ9G4_9ç0•mS¸ì‘‘‘ÊøË/¿8?UæŽí߆õi±^vm|˜/^_—©É¡¡á·+´Ep„oªT©-?þüóÏô$33S1eÊ”3f'%%Íž={çÎÊ·›;ŸNBˆn¸A.z={v„ ~´Ðï·.Ï{yY”ræsÎÁÎV¨PA¹T|РAòƒÏ>û,''G‡H.Ha#¸œ›ÏŸ?¯œ 4h Túááá/¿ür~~þ¢E‹† ¦\û/„ذaƒ2Ž;¿_4ÑÑÑÊý ¿ÿþ{ùèëRž7’«¶Ë—/—G„Q‚ão¿ý¶|ùryh•ò”ËÉ%Æ?^¹F¹YDVæŽí߆-s±*wm|˜/^_—©Õ–ÑêÛÚ"8ÂgÊÅÅÅW;©V­ZLLLLLŒ|¸|5wIIɸqã|ja0·†ÊEõêÕK~ðŸÿüGá6''gÚ´iòcåRBáÔiUXX8}út!Dhh¨óøÌÝEEE#FŒËNÇWíëÓ§Ohh¨ÊOïÞ½µk×®]»v:uä›CúwﮌKWZ7–ß/ôB¹`îÛo¿U®¬Zºté—_~é÷Vºá†äÓ§OWj´ÙÙÙ›7oÞ¼ysÅŠ]új…/^ô²@ŸöòPJ‰òGÖºuëÐÐК5kÊåäõë× !‡úŸŸö¾^~¸xñâˆ#äÅ?~ü±Ç“§Ë{ ¯K ІU¹hxàâ‹7ËT¹e‚ùMõ¸9Ʋn¿ýv¥;ÀÙ{ï½Wλžx≹sçžêÚµë 7ܰgÏ徿1cÆT¯^]’¤Ê•+ËW¨Ü}÷Ýòo|öÙg^~²ÂáááÏ<óŒ}vîÜyÏ=÷´jÕ*222))©_¿~ëׯŸ3gŽr­XvvvóæÍ…!!!©©©£GÞ¾}»Ò¥²`Á¥C°~uÂìøô¡¹ &Lž}:##cæÌ™z·`t¥eÇ@¤F!ÄÃ?ìܶoß¾¾}û>ðÀ:thÖ¬Y™/?qâÄG}4jÔ(·̉®j>,„p)7P÷>ë¥Fw5š?¾$Iÿú׿ôÞ °>‚£‡BÄÇÇëÝ€i8gÇ ¥FYëÖ­;tè°téÒââbyJvvv‹-¢¢¢ªW¯Þ¶mÛ÷Þ{Ož>|øðÞ½{ !:w˜è}fÀÁÑ98?~üöÛooÓ¦Í 7ÜðÀìܹSïv MÎŽAN²–-[9rD1qâÄ1cÆÔ¨Qã±Ç{àΜ9së­·~üñÇBˆ±cÇNš4Iñ /¼óÎ;Þg¶9.pôˆk=¼—^z)11±]»vÿûßÿ¾øâ‹õë×Oœ8qðàÁj–’’â2%77WïÕXVýúõ…LLLœ7o^rròªU«Â„>úhllìgŸ}Ö§OŸfÍšÉÅ‘k¯½öúë¯Bx™Yïu2÷Óºm=8~üxDDĘ1cn¿ývyʦM›î¿ÿþ©S§vìØ1..®Ì%6&JB8ÿ £QjÁ/::_a¹eË–J•*ÉAPñûï¿ !Î;çñ…>Íl[î§uÛFI‚£o¿ý¶Ë”öíÛßvÛmsçÎ]³f’&P8‡Eïcô‚ÜW–””$„¨V­Ú¦M›V¯^½oß¾¼¼¼={ö(×>ºóifû Ÿº4\ã¨Öµ×^+„Ø¿¿Þ Ž{LT36¸†vîÜV¯^½ÂÂÂ>}útêÔiåÊ• 6;vìÞ½{«V­êñU>Í *Žî$I*))‘Gäwž*„ˆŽŽÖ»c)­¸´ºã¶mÛ6lØ0xðà°°°õëׯX±bæÌ™<òˆ2CiEÄ7ªŸTÝ:t¨I“&wÜq‡ËôíÛ· _ÓðÈ{4 BÝ1//ïÖ[ou8&LB=zTѸqce†%K–œ={Ö¥‘%%%êg¶ú©½ âè*!!ášk®Ù²eËâÅ‹ $Oܾ}û›o¾—žž®wRfÆÒ<„Í™3ç“O>BæäälÚ´éâÅ‹³gÏ–6¦K—.QQQ÷Þ{ï°aÃêÖ­ûÍ7߬[·®F7n\¹reFF†üó¹sæÌ9qâD™3ë½ua<ÜìÝ»·}ûöÉÉÉýúõ;vìСC5jÔªU«o¾ùFÍË“““ÞD>7(Ÿ`|WkmâĉÎgp‡Ã‘œœœ••µiÓ&çÙÖ¯_ß¾}ûÊ•+_}õÕ÷ÜsO~~þܹskÔ¨‘žž.IRIIIfff•*UZµjUæÌ6á²3gY3î?šÐaRSøõ×_§OŸþÍ7ßœúhÔ¨QòŸ_~ùe šœwÑýÔ*ÑU .»xñbII‰¾m())¹té’Þ[ž°ŽóçÏOž<¹qãÆ‘‘‘ñññ÷ÜsÏ/¿ü"„>|xïÞ½…;wNLLBtéÒE¹ú011ñ‘G?~|•*U*UªÔ¶mÛO?ý´¸¸ø‰'žhܸq•*UºtéòÃ?(ï’Ý¢E‹¨¨¨êÕ«·mÛö½÷Þ“§{!Ä–-[zõêU»ví¸¸¸^½zmÙ²Ey*11qôèѯ½öZlllXXXݺu|ðÁ3gÎè½Eqºª¸’C¿u•ÊÛazÏ=÷,X° {÷î ÈÉÉyûí·srr6oÞúè£#GŽ,\¸[ªáÁ+›:uª$IK–,Yµj•$IlÞ¼yvv¶ülÏž=7oÞräHzzú™3g®»î:o½k×®=zT¨Páþûï¯Y³fvvv§NŠ‹‹…Ë–-ëСÃîÝ»333‡š““Ó¡C‡eË–©\©5kÖŒ92++kÖ¬Y-[¶œ3gΘ1cä§–.]Úµk×]»veffvëÖmþüùwÞy§Þ‚IÐZrr²ïÊ' ¾Ð绺|&Nœ(„ظq£ûS;wv>§'$$!¦NªL?~¼bÁ‚ÞŸ-,,lذaZZÚ¹sçä§.\¸Ð®]»¤¤¤ââb嵓&Mºté’ÇFÊ3L›6M™2nÜ8!Äk¯½VXX˜˜˜˜ŸŸ/?•ŸŸŸ””TXX(¿vàÀÎK»óÎ;cbbœ—¼dÉùÏ’’’æÍ›×«WOnd|||:uŽ=*?{ìØ±¸¸8!ÄÂ… Ëܰ~ì fÜ4AÅ Š;v¬òç3Ï!DVV–ÃIVV–âðáÃòÌ)))^R£¢Y³faaa. ÏËËËËËB¸\Ù¢E !„üT™’““ÿTš±ÿ~!Ä5×\ãülZZšf[ +ÿ"°Iï”"<<\áñž‹/ÊÏzvöìYïÏÊirÚ´iÍ›7w™¡I“&òƒ˜˜_[V©R%I’„.•‡†† !ŠŠŠ<¾°°°ÐùÏJ•*•¶|÷%{O·ðÛÔ*øÕA°:9ºíÞ½ÛezQQÑ?ü —î?üðƒs;þüÞ½{•Š]iÏ6lØPî¤~ýú§NRŸ÷ìÙ#ß ã¼ð† Ê wiÿ®]»„)))òŸ%%%ÎϪ¬DþãÿB|ÿý÷ÎwìØøÏÄvŽ˜C‡bbbž{î9¥ÇYQTT4jÔ¨S§NÝ|óÍÎ3çççggg+Nž<¹   _¿~ÞŸmÙ²eJJÊôéÓO:%?UPP‘‘1zôèÈÈH•íüå—_fÍš¥üùì³Ïdff¶jÕªAƒÙÙÙ'Ož”Ÿúã?f̘/w+GFFîÙ³G£qÆ [·nUóŽ­ZµJJJš1cÆñãÇ•|饗tþÀ¬ˆ®jÌ¡Fÿýï‡ Ò¸qãž={&&&ž|øÒÓÓ.\¨¼Ñ‘#GÒÓÓÏœ9sÝu×ylÉ®]»zôèQ¡B…ûï¿¿fÍšÙÙÙ:u*..öÞH5Ö¬Y3räȬ¬¬Y³fµlÙrΜ9cÆŒ‘ŸZºti×®]wíÚ•™™Ù­[·ùóçßyçz&–#AkÉÉÉz¾=)¨àå»ZÝþónâĉBˆ7z|¶°°0111!!!??_ž’ŸŸŸ””TXXxôèQ!ĸqãä§š7oÞ¼ys!ÄÒ¥K%I:uêTHHÈ]wÝ%/§aÆiiiçΓg¾páB»ví’’’Š‹‹%IJHHBLš4éÒ¥K["Ï0mÚ4eʸqㄯ½öš÷Fʯ8p óÒî¼óΘ˜ç%/Y²Dþ³¤¤¤yóæõêÕ“_§N£GÊÏ;v,..N±páB¿w _b T¸‚$éö_ylÛ¶íàÁƒ£FŠ•§ÄÆÆŽ5êÀ;wî¬[·n‹-Ö­['„8yòdNNÎèÑ££¢¢Ö¯_/„ذaCIII¯^½„Û·oÏËË?~|DD„¼œŠ+Ž1âÀÛ¶m“§Ô©Sçé§Ÿ )5EÔªUkÔ¨QÊŸ'N¬\¹òÇ콑jV3))iÀ€òc‡Ã‘––&÷¿oÛ¶íСCcÆŒ©[·®ÒÈ‘#GqDZ‚cÙŽ;vÍ5׌?^ï†Pª¼¼!DVV–ÃIVV–âðáÃòbSRR¼¤F!D³fÍ”?£¢¢RRRòòòÊld™’““ÿTš±ÿ~!Ä5×\ãülZZšÞ‹Õ„•Ö&IÒc=¦\M €1I’$„p8®•-44TQTT$„èÙ³çóÏ?¿~ýúM›65hРAƒ]ºtyòÉ'O:õå—_vìØ±jÕªBˆ *!¦M›&÷e;kÒ¤‰ü &&Æ×æ………UªT©ÌFº+,,tþ³R¥J¥-ß}ÉÞÓ-üÀ-ÃÛo¿í|·ÆÔ°aC!ÄîÝ»'îÚµK‘’’"„èСC•*UÖ­[÷ÕW_]ýõBˆÎ;—””|üñÇÛ·o—û©•åDGG§;©_¿þ©S§ÔçÅ={öÈ·ÂÈΟ?¿wïÞ† –ÙH!DII‰ó³*+‘ÿøÇ?„ßÿ½óÄ;vè÷XÁÑ›¼¼¼ìììFéÝ_08ØR«V­4h}òäIyÊü1cÆŒøøx¹Ç6<<¼[·n+V¬Ø¶m›[·n=uêTåG!DË–-SRR¦OŸ~êÔ)yJAAAFFÆèÑ£###U6æ—_~™5k–òç³Ï>[PP™™Yf####÷ìÙ£ŒÑ¸aÆ­[·ª\ý¤¤¤3f?~\ž’ŸŸÿÒK/éý±X ]Õ¥*..~ôÑG«U«öøãs??À æÌ™óÉ'Ÿ8O ™2eJÅŠ³³³‡ ÒªU«ÁƒK’´hÑ¢cÇŽ-^¼¸bÅŠòœ~ø¡BŽ¡¡¡:uZ±bEýúõ›6m*Ï6sæÌ[n¹%55uðàÁEEE}ôÑ‘#G.\(÷)«9f̘76mÚtÓ¦Mk×®MOOïß¿¿Â{#o¼ñÆ™3göîÝ»oß¾xå•WT–9ÃÃÃ_|ñÅÁƒ§¥¥ 2$<<|Ñ¢Eùùùz\VCp,Õ¬Y³öîÝûæ›oV©REï¶pÙ{ï½ç2%,,lÊ”)BˆþýûõÕWÏ>ûì;ï¼#„HKK[¼xñµ×^«Ì™‘‘!„¨Q£†Ò/Ü¥K—+V(åFYÏž=7oÞÉÎÎ^¸pásÏ=W\\|X‘˜˜¨wpâ{­Q’$ïÙÑ!"Ù@ptU«V­”””7®[·N™¸oß¾÷Þ{¯råÊmÚ´Ñ»üÅßê2³£äSùr£mpWµ“'OÎÊÊzàÒÒÒêÕ«÷믿nݺUñ /ÄÆÆêÝ:M1"˜Wù¾Àåìè}¾º‘Ôh'T=hѢŧŸ~zÓM7ýñÇ«W¯>qâÄ7Þ¸lÙ²Þ½{ëÝ4„Úü³ß½îèóå¤F›¡âèY||üŒ3ônžh×Yä\wt8B>”IöCpÀT´¾ÄH©;J’äÃM1¤F[¢«óä…é>\ÝHj´+*Ž˜\ @Zû»«Ze¹‘ÔhcTmO ÖF'œ%!dlpXÁc X÷´ûp‚#¥Ó. iXn4Tj¤èh+G€'”©pEp„_¸Ì°6R£  ù€¢£}ðË1ž?~Ñ¢EK–,9zôhtttrrò]wÝÕ¡C½ÛGj§Fʰ ‚£ÅÅÅwÞyçŽ;ªV­Ú®]» .|ûí·7n9räC=¤wë H‚Ô”ŠàèÁûï¿¿cÇŽk®¹æ¿ÿýoDD„"//ïÖ[o}å•WºvíÚ¸qc½Aj”;\I¾“{«ÜBh‚k=øì³Ï„O=õ”œ… 6¼ÿþû/]ºôõ×_ëÝ:Ãà2GÀbHZüœ`@›èŽàèÁÁƒ£¢¢š6mê<±aÆBˆ#GŽèÝ:Rc¢™5~“Z=n‘±ºª=xíµ×ÂÂ\·Ìž={„õë××»u 5R£±S#åFÁу&Mš¸LÙ¼yó믿^±bž}ûªYBJJŠË”ÜÜ\½W 5¿`@GJJJÆŽûùçŸwïÞý™gž©Y³¦Þ-MÙ<5j=Xc€Úh즎̛7ïóÏ?ÏÊÊzæ™gôn‹áq™#`:6?f™ÈlÞI­ ·ÚÂÇÑ•$IóçÏŽŽ~ì±Çôn hÔh†ÔHê‚aQqt•ŸŸøðለˆaƹ?Û¯_¿[o½Uï6€_H¤F |Ž®Ž=*„8þ|NNŽû³ÜXí½Õ€)Øü85I3I3ËFoµU]µjÕÊ.£0€M8Âpi#ìƒà6`Ûrcào ¦“¶ÂÍ1`uvN’DjÔ‹Ü[ ‹!8B òeŽ Èæ©€¦Ž`]¤Æ€¾ åFØÁ,ŠÔÐ7!5ª@oµõps 4 <€¡Øóx Öo r5l‹à–cÛÔhÂÂ9[ û¢«¬…Ôè·¢“ÚôV[ Á,„Ôè·¢“öFp„v”Щ1Ðo¥ij´C¹ÖÃ5Ž`~ò¿Ùì–B‚u+Ìåw#5ú‹ß­¶‚#˜…FÁBW54Eo5d¤Æà¼!åF@Ap „Üýûõn{ 5ç IÀ_ŽÚKINfìGj Îrµ”Ç2ŽaçC„Þj l˜ ¤FÊ0;nŽ %;ò%@[öLAÿ.%5î¨8’$Ùºô H0'·Ö@p <+ôVBj ÚÛRncLGQ#£>Œ”èž¶#:P6‚£¥É"G$àÁ:¦õdŒmzk`ÐS#ß €3‚£ ÿ_sgnèA¹&}Ofð/ R#`G{0L·ué-$;"ˆè˜vað﹤FÀ޶aünk²#‚€ÈèÂ$‘QñV^mÆø¥G è•öÈÈÿ’TÚ¨Ó­0fØ6Öaü+ª  8Ú‘K¡-òbiLòHR#`4G»2lé‘ìˆrr›É#“Ä"R#`@G3réðÅE5ŒùÏE-e°FÀ޶gÀKK(:B —Øc‡ñÎT‘Qèw+ŒÑ¾£!8ÂÝÖdG¸#)úÍÎÏÇ8Æ9„Õ4–û`ó 8ÂC•ÉŽÁäkøsÆgdÆ9rU¶×©ÑT1ÐÁ¥PJÂ'!²cù©L„ldó2ÈѪ¾½zwO_n©ðÁ^§çšìX&ïÑMgmF8H}j¯ Â|›Íâ¸?ÆŽPÁ =×dG7Ca„cÓ§ö£Ð(H€_ŽPÇ ¥G{fG÷˜h·-Ì…a üFp„/ŒPz´Cvd¤kx§ûaèG“ Sh¼Ü½ÿ ˜Á>2ÂM3Ò_ÑÊ2ßû$E¨gÂÈc´B£ 7!`GøE÷žkùmÍ[z$)Â5i©(‚#ÊA÷žk•IŠ(FFa¼B£ 57VÁå£{ϵRzÆKcÎaÑhmƒY˜62 ƒ©ÐÁZ > §¸´ ð‘QÛ†‘-¡ã\øèüg@‘挌Â}Ó—Fj4Bp„ÖŒpá£LóžbÆSD ™92 Ch‹àˆÐ½çúr3œ;¼ÎÆï8ÃÌY3~d4çvµ/î18‚#Æ ññrczhäp”zæ#5"àŒzh”Ýpé‚#‚ÂÀññrvtk©eÈÃAUÃÍ© ‚#‚ȨñÑ=;’@Æ;Ô6Ü$‘Q€!8"è ³#©b°ÝÞ‡†›'2 R#HGèÄxñQÎŽò½ÛË1Ò®î[ÃM©Ñ¸±ÚȎЕñâ# 1ÓîÞ¦‹Œ‚ÔÁ`ŒøHW5´äøktPîKfŒŒ‚ÔÁ†¡k|t‹¥Ýg ¨¢÷?ÊÕvsFFAj‚…àƒÑ#>ºÇD²#üAdÔ¥å&Þê€ùaHAŒ¥D²#|`Úðâøë7Í…F èŽ0°ÇG5÷P“á 2ê» ¤F èŽ0<çø(ôì¿þF‰Qo¤FkcDÃ"8Â$”ïOØÊùÒi™®Ó•S)©žQb4" ‚#LÆñW´óõ…^ΗÄ£,Vò4Ë÷.01óçEa¡“Ôèˆà#òÚ\O~Zô*÷ÁH¢¼7ĨŒ›–9…[]ÒFbÚO°‚#tæ1iùpªÓè H­~oPe˽çK+éÍÊ´%FKæÅË«F¡0‚#‚Ê=0isz+÷Aæ}­}(¸B[AÌ‹Ú^Gká¼xyI€1@Љ^ø[€4Ôï z»³”LiÕ¸$zÔË(TÍ®hù¼(LóAÀ.ŽÐ†‡ûKÜNf‡#Hg7—¤(ã´c¢ß,-(ý¡w´—ÍËNèå³ vƈ<Æ¢wŒîÀ)));wîÔ»!†æù6d‡pHBRþ»b]Ò˜Ò‡ãòî/å÷ƒÝÔr®¨ÓfwþÏñ÷š_ñŸÞíÕ•²”í¤;›û>éüÙ•vˆY¡0 *Že˜7ožÞM0¨Ò†?ôx.Ó¿†WJ Òò¿7H…ò¯vZ_ƒ}¬.;›šâ½åÑ= Áѳ‚‚‚ýû÷üñÇ .Ô»-Æâýš*yËX ìÊ)y›Ñ"ÙÑóÚÙ$PêÝ­Ò庣ÜFÉR#uûB#`dGÏúôéóË/¿èÝ £ð©òQZùÄpT\iЖ’¯R3ߘ$/^±U%!vÜåœQhŒàèÙ”)S …óçÏß´i“ÞÍчß7l*ÙѸ©ñÊæþµÂæHºðãFoäLiàÎèË ô:È€™™À Ð˜ÁѳŽ;ʾøâ ½Ûlš ðaÊS {‚ †â_¦šÄJ£~R¾k¯,¦q= Ú/ùÃö[IÍá`¥C†ÈXÁÑ‚0ž°šò‰Þ›!X¼çHa¿“§Çßo´ÛF°1"#`%G+ h¯´ åB_¹o™Ò~ÛÛŒˆ¿0.*`IGk²ùO–]i'R‡Ãç—èÂ,í„N(1BCÆ‘2‚£ÕMÌËW£Ã¯qg¼×ú·Ì2 »¢ÄØuïWÐOJJŠ.ã8Ú!2òïNßx†lJh„#ʘßüzëuGÅÑ ,K»XŽ‹è|ÀvA QblˆàhnŽŒ¥ŠLô[Gì‰à¨Ë÷Mÿ½¦z§F™OÙ1ÈÍ.³ýdGk#/eâè0‚£>Hy¯2¯eô¡)Á/=–u8ÙÑjÈ‹€zF¸Ž‚à|öéž>ÍCU0Kê®Âd·±C݉êƒÊ>…ÆËëk‰ §ôH(´ "#àFä1ˆ½`á 5š—$ý½HIIÑ»¥Ð‡šÞá¸|PX渀ਇýPq »EF«Òý†k˜» Ë 8œ=S£•ÊÎŒ3Ö#Ì‚½€•ˆû`¬ŠÒ#T"5°‚c Ø³ÐxyÝmp²TVÐ+ ÿ°o°nŽ ;§F»QsÓ lˆÔÀ’OX{áHNIÖ»ªýûs…ÉÉÜ_ !„Ø¿?—Мю¬ÜÜ\½› ‚#T¡«ª  Áª  Áª  Áª  Áª  Áª  Áª  Áª„éÝË:pà@FFÆû￟ššªw[ ±Å‹¿ÿþû?þøcddä 7Ü0~üøjÕªy™àÀ»wïv™ûõ×_ë½*(_÷˜ G:JcçS<Á1PæÍ›§wÙÙÙ¯¾újTTT›6m:ôÁäåå½û½äðáà Îcbbô^”‹{L„#^ØùOpÔXAAÁþýû?þøã… êÝh/77÷õ×_¯U«Ö’%KjÖ¬)„˜2eÊ»ï¾ûâ‹/N˜0ÁãK NŸ>‘‘1sæL½›Íø±'ÀD8Òá§xÁ5ŽšëӧϰaÃì¼KYÛûï¿_RR2jÔ(ù\"„xüñÇ«V­ºråÊ’’/9|ø°Â¥³ócO€‰p¤Ã#Nñ‚ਹ)S¦Ìž={öìÙíÛ·×»-ÐÞwß}Ò¹sgeJhhèõ×_ÿûï¿oÛ¶ÍãK:$„ˆ×»íÐ’{L„#qŠtUk®cÇŽòƒ/¾øBï¶@c’$ýøãÕ«W¯^½ºóôääd!Ä‘#GZ·níþ*ùtrüøñÛo¿}ïÞ½‘‘‘Mš4¹ÿþûmxIµeø·'À,8ÒQNñ‚Š# Þ¹sç.]ºä~©{ÕªU…üñ‡ÇW9rDñÒK/ýúë¯íÚµ‹ýâ‹/233ßÿ}½W~òoO€Yp¤^PqÔ:þ¼"**ÊezåÊ•…§OŸöøªãÇGDDŒ3æöÛo—§lÚ´éþûïŸ:ujÇŽãââô^-øÌ¿=fÁ‘xApôGqqño¼¡üúÿþßÿÓ»QÐ’Ç8&&Æápœ;wÎeæ?ÿüSüUp÷öÛo»Liß¾ým·Ý6wîÜ5kÖ(瘈{Ì‚#ð‚à袢"ç*V¬Hp´qXXXÕªUÝë BåîK5®½öÚ¹sçîß¿_ï…?4Ü`@é€GDDDäææêÝ Piq­Zµ~üñÇ‚‚‚*Uª(<(?å>¿$I%%%‡#$äŠë‰CCC…ÑÑÑz¯(üäëžsáHJÃÍ1€ºuëvéÒ¥ 6(S$IZ¿~}µjÕÒÒÒÜç?tèP“&Mî¸ã—éÛ·oB¤¤¤è½Bð“¯{Ì…#( ÁðÁ AƒBBB^~ùeùj'!Ä믿þÛo¿ 0 <<\žröìÙƒ=zT‘pÍ5×lÙ²eñâÅÊB¶oßþæ›oÆÅÅ¥§§ë½Bð“š=æÅ‘”†®jÀqqqãÇþùço¾ùæN::thóæÍM›6½÷Þ{•yÖ¯_?zôè† ~òÉ'BˆþóŸwß}÷ÓO?½`Á‚¤¤¤ÿýï;v숌Œ|î¹çøQcóR³'À¼8ÒÒPq|s×]w½øâ‹‰‰‰+V¬øã?n½õÖwß}×}È7E£F>üðþ}ûþöÛo«V­:}útß¾}?ùä“ë®»NïUA¹øº'À\8Ò’$éݘG¨Bp€*G¨Bp€*G¨Bp€*G¨Bp€*G¨Bp€*G¨Bp€*G¨Bp€*G¨Bp€*G¨Bp€*G¨Bp€*G¨Bp€*G¨Bp€*G¨Bp€*G¨Bp€*G¨Bp€*G¨Bp€*G¨Bp€*G¨Bp€*G¨Bp€*G¨òÿ߆À´ nIEND®B`‚statistics-release-1.6.3/docs/assets/regress_gp_401.png000066400000000000000000000553131456127120000230220ustar00rootroot00000000000000‰PNG  IHDRhŽ\­AZ’IDATxÚíÝg|åþ÷ñkS€$†JЇ„BiJ5Ai 6,·X@ª#x" Ž ü ‚(¨ RADDjB¤£AJHÈÜÇew³™ÝÌî´Ïû•Éììì5ý›ß53ë$Ie Ñ»0‚#T!8@‚#T!8@‚#T!8Ôž={Y»v­—1_}õUy´¶mÛêÝjLœ8Qnvÿþýõn‹]Zn„¹Ðvs=}úô½÷Þ[·nݰ°°èèè³gÏs^<úä“O–-[¶lÙ²üüüÍu yl­ÇùÒ}_ðت`.(X>ö¦wÀO?þø¼yóäßÿüóO½›#„™™™rKÖ¬YÓ½{w½›cñù2f«k#8š^tttBB‚¢N:z·(ƒ¶›ëçŸ.ÿÒ¹sçþýûW¨PAïù Æ\ÓZ]°X¼cùØÁÑô²²²²²²ôn Š¶›ë‰'ä_}ôÑo¼Qï™ Ò\ÓZM¸ÆÑôܯ,q¾ðèäÉ“ãÆkÛ¶mtttË–-§M›VTTä2…'N<üðÃ:tˆŽŽ¾úê«o¹å–mÛ¶¹ŒSRR²pá®]»ÆÇÇWªT)>>¾K—.o¿ý¶óÔœ?·¸¸øŸÿüg½zõþùϪŸ—!C†ÈSHLLüõ×_Õ·ÐËGbi¨töìÙ§Ÿ~ºgÏžµjÕªU«V=žx≂‚e„»ï¾[n[×®]ßøÞ{ïÉÃ###•ëöʳ¼;vìØm·ÝvõÕWÇÅÅ <ø«¯¾òcí !ŠŠŠ^yå•N:ÅÅÅU®\¹yóæ·ÝvÛÎ;½o®*ßè"??ÿСC%%%òŸ§N:tèPqq±(ý»ÌÌLyø„ Ü—˜šmã×_}øá‡;vìXµjÕ„„„ŒŒŒ+V(¯>þøã‡Cé1ïÑ£‡ÃáW_i—•¹…øÑHEVV–üFçÓyïÞ½å7ß|³2°C‡òÀ§žzʽµ^æËÙü1nܸ֭[W®\¹eË–o¾ù¦û÷Ùú:¿^VŸÊV¹Oó—_~6lXlllRRR­Zµþýï—6¦ËN¤ÕJT¹ozߨÔºúƒL9ò—¯Ó,ÿn¨ÐðHW )''GYGkÖ¬ñ2æ+¯¼"Ö¦Myˆ|ôBtéÒ¥qãÆ.k|РAÎo_»vm­Zµ\Æq8cÇŽumðàÁ·Ÿ*ã(ŸÛ¯_¿;î¸Cþý©§žòØlç‘å!ʼjÕª{öìñ©…^>Zó¥áÞr¶lÙrõÕW»/±úõë¯_¿^gåÊ•òÀððð‚‚å½wß}·<|À€š,/Ë¿mÛ¶.í å•W|]û.\¸æškÜÇq8/¿ü²—ÍUå]ôë×Ïý-ûöí󲂆*?~¼{ÊçŸ^³fM÷½çž{ä{ì1÷WÿüóOs­r ñµ‘ÎÞxã yœÄÄDe`5äuêÔ‘‡EDDÈ¿üòK÷Öz™/ç¶5jÔÈeœ™3gúºG¨_}^ZåekïÖ­›{îºë.5;‘&+Q;©fcSÿéê2å<È{\>>MS“ÝP¦ò¼ÿ J“à(‹o×®]¥J•”![¶l‘Ç<}ú´r"éÖ­Û¤I“233CB.סÿûßÿÊ£-Z´HÙñºuëvûí·7kÖL™ÚÚµk]>·^½zÊ«*ƒãªU«äÏ [½zµ2šÊzùhÍ—†šàxîÜ9ùr!D¥J•ÒÓÓ{÷î)©]»¶|¿xñbµjÕä}ô‘òvå½ÿ÷ÿ§ÉBð²üe5kÖ¼îºë¢¢¢ä?CCC•ìîëÚˆˆ¸ùæ›GŽÙ®];yHXXØÞ½{ËÜ\½¿Ñ…¶Áѧm#&&æ–[nq®ßÌŸ?_’¤ß~ûíÇTÖòÛo¿ýã?–””xœk•[ˆOtqäÈeœ'NH’tðàAçI;vL’¤íÛ·ËFEEº·ÖË|¹´-)))---44Tþ³bÅŠòý›_ï«ÏK«Tní•+WV†¬\¹²ÌH“•¨fßT³±i~)ÿAÞ}ùø:MMvCõLøàhPZÇÙ³gË÷îÝ«ìŠJ!ç‰'ž‡8ÿÿ7{öly`ƒ ä!Ç—‡Œ7N­uëÖòÀçŸÞýs›4i²`Á‚Í›7ÿôÓO›í|zøé§ŸªW¯.ÿùúë¯;¦²…^>Zó¥¡&8NžþøcI’/^,„p8òÀeË–I’ôúë¯ËöîÝ»´Ö–¹¨…/¾ø¢¼k×.!Ä!C,X°`Á‚‡~X§  àܹsòïüñ‡ËçFFF®^½zذaíÚµKJJòÞÈ?ÿü³ÿþòDyä‘{î¹ÇùU•-TóÑZ- 5>ýôSù—Q£F)Wü4oÞ|ìØ±.#(]9ʧ+í¼á†ªT©¢íBp>gÎùúõë?ûì³òð+V\ºtIýÚ?þ¼üËüùóßxã ù¶•ùóççäääää 8°´øýF •¹m¬ZµJþeüøñʉyäÈ‘-[¶lÙ²eaa¡¼¬ÔS¿…¨o¤;%oÞ¼YñÝwßÉÓ‰‹‹BlݺU(„¸á†ü^€75j”üûÍ7ßvù¶Ë¼¼<¿ç7”­=..NÙÚ7mÚtáÂç1ÕìD~Ì”šÉªÜØ´=Èâ ïë4µÚ 5<’Ã#2—Ë_”ªžrKÁþýûå_ÒÓÓ=N!//¯E‹ò«'Ož\µjÕÖ­[·oßþÝwß9s¦´ÏMKK“ÏLj¬Y³Fù]é*U¨l¡šÖji¨™©ÜÜ\“ºá†äÿ†óòòJJJBBBºwï^­Zµ“'O:thß¾}5RŽéJfÒp!¸kÚ´©s¯SFF†üËÅ‹þù端¾ZåÚOOO—¯=ÏÍÍ•¯ÇOKKËÈȸ馛<^ÂXþ7j¨ÌmãÇ”Qê£BˆÚµk+ý¼¾R¿…¨o¤»ž={¾ôÒKBˆo¿ýVü•Ûµk÷믿._¾Ü%8*)Ó 6T~¯\¹rݺu哽’§ý˜ß@hÖ¬Yýúõ•?•ÆH’tàÀ&Mš(/©Ù‰ü˜)5“U¹±i{ ÄAÞ×ijµjx$‡GT­Lé“òøgAAA™ÏLþí·ß„/^7n\Íš5333g̘±nݺââbW(Ë”ÿ}õüóÏ?~ܪùh­–F™ NŸ>-ÿîòH³ºuëÊ¿\¸pA.­…‡‡+—ëÉZ}ñÅòð¾}ûj¾ÜÕ®]ÛùϨ¨¨ªU«Ê¿>|X¨^û“'O~ðÁ•‡›H’´mÛ¶©S§¶k×îºë®óòÅ~¿QCenÊ ‰‰)ÿÇù´…¨l¤G]ºt‘‹[¶l¹téÒ÷ß/„h×®]›6m„ß}÷Ý… ä«bâââœc“¯\Ÿ—¨~~ÁekŒŒT¶ö_~ùÅù¥2w"ÿfʧÉzÙØ´=ȈÀä}¦&»¡†Gr”†àh_UªT‰ŽŽ–ÿüóÏô$33S1uêÔ™3g'%%Í™3gçÎÊÇšSš³ë¯¿^.z={vâĉ~´Ðï.Ïgy™”r6rÎÁÎV¨PA¹|{РAò/Ÿ}öYNNŽü"¹H„…àr¾<þ¼rtnРP½öÃÃÃ_zé¥üüüE‹ 6L¹_±aÃå 8îü~cÐDGG+÷üþûï埠¯[Hy>H®Ú,_¾\~J‹ûí·åË—Ë;)O¹Ñ8ó[&—wþüyåÉ5ÊÍ"²2w"ÿfªÌÉªÜØ´=ȈÀä}¦VKF«#9JCp´5åNˆâââ«T«V-&&&&&F~NÇœ9säÑ^~ùåûï¿¿E‹aaaGÕ¤ III~ø¡’ß|óMç PT¶0˜KC å¢{å«M\þlذ¡rX=äÃ÷úõë?þøcy óµ}]{öì9vì˜ò§rQ… äS©šµ_XXxâĉ'N_Ù/¿üÒ¾}ûöíÛwíÚÕK±G>m!åÑ£Gù¹ÏºråÊMš4QnPPVny.pÔv~5_}Î\¶vùBˆ *ÄÇÇn¦ÔS¿±i{ ÄA^Ûiª_2Áøàª«®ŠMHH8sæÌ™3g”¾r(ÿþûï×­[§IZ´hQ­ZµáÇËWX—””Œ?Þ§si¨œTïÞ½å_þóŸÿ(OÍÉÉ™>}ºü»r)¡pêH*,,œ1c†"44ÔùùÌ]EEE#GŽ”ËNÇW×·oßÐÐP•kïÞ½µk×®]»v:uä6ÃÂÂzôè¡<+®´®%¿ßè…rÛ·ß~«\í´téÒ/¿üÒï¥týõ×˿̘1C©ÑfggoÞ¼yóæÍ+Vt¿8ïâÅ‹^&èÓRJ)Q^emÚ´ ­Y³¦\N^¿~½Âáp¨ÿ¢gïóUþùõoõ©lÕÅ‹GŽ)|üøñG}T.oí›)Ÿ¨ÜØ4<Èâ ˆiª\2ÁA_·¿]{íµÑÑÑÊ™RyFf›6mäkX•µà}:*ç«4êç×§ÕçG«ä­½qãÆß}÷ÜOòÌ3Ïø±l´UnldTîæ> Ä4U.™`ž5lJïçÁ3çç8–Æã×>mùòå‹:#FŒPž¦;dÈ—W“’’”'¯ÞqÇÞ?×#÷‘‹‹‹•/ŸhÒ¤Iqq±úzùhÍ—†ÊÙüöÛo=>¥">>~Æ .#;?¤W1wî\—4l˜ËÈ111.Õ² *¼ñÆʘ*×þ7ß|SZP—.]ä'çyÜ\U¾Ñ£Ò㧬\ç6+u÷ç8ªÙ6–.]ª\Uæì‰'žp~ï°aÜ_õòÍ1*·ŸéQŸ>}”‰/]ºT8mÚ4e Ë<¶Öã|•Ö6åzÁ… ú±G¨\}¥µÊËÖ~Ýu×É¥VEXX˜ó÷$yÙ‰±K£rcÓð Sþƒ¼ûò)ç4˳ª9`ÂotUÛ]ß¾}wîÜyÏ=÷´jÕ*222))©ÿþëׯŸ;w®r±QvvvóæÍ…!!!©©©cƌپ}»ÒÍñÞ{ï)=Jåª<Òö‡~˜7ožúsi¨tÍ5×ìÚµkâĉݻw¯U«Vlll·nÝž|òÉÝ»wwêÔÉedçÛCBBÜËl[]ºtY¿~}ß¾}ëÕ«W§NÁƒ¯[·Nyr¯P½ö¯½öÚüqâĉmÛ¶‹‹ ¯V­Z§NæÍ›·nÝ:å¦iw~¿Ñ‹wÞygêÔ©Í›7ŠŠJKK5jÔæÍ›ý¾Ù_Ö¿ÿÝ»wßwß}mÛ¶­\¹rBBBŸ>}¾úê+¹4뼸† V³fͨ¨¨fÍšyy¾ŒO[Hy8ßøâ\qô8BiÔÏWùçWýêóµUÕ«Wÿúë¯ï½÷ÞäääZµjÝrË-«W¯¾ï¾ûü^¶Z‰*76 28Èbš*—L0Ï6äܾ‡pWTTôÉ'Ÿ¿ºav¬}˜Úĉ§L™"„èׯ߇~¨ws *»9‡KâG¨Ξo[¬}Àò±›sè°$ºª  Áª  7Ç@*ŽP…àUŽP…àUŽP…àUŽP…àUŽP…àUŽP…àUŽP…àUŽP…àUŽP…àUŽ Xz7å¦w,(%%%@SÎÝŸ›’¨‰h¹"7pgÉ`ÏKn®ÞMÐC’$½Û`5)))Ú˜B°º ,€«ÆÆª·-V½Ï¬r"s‡d9ñ]Õ>pGrJ²Þ­ÐÁª  Á@-Û^Ý(#8@‚# n®´-V½m±êa7G¨Bp4‰gîLËüq´ùŽ‚à•ŽP…àP6ú©Á*  Áª„éÝô‘’’¢wl&Y£.ò2ŸåÎŽ2‚#ÀŽRRRøÞÈøB=ºª  ÁÀú©G¨Bp€*G¨Bp4I‡ÞmÀ6¸ÀÑÁª  ÁÀ3ú©]ð“ÃÁUç°‚£gLqÓ±cG½Û0I’ÊÌŽ†ËÉ“';œ„„„4jÔè¶ÛnÛ¼y³ÞKvÁwU{vøðለˆ„„ç111z· `,rv”$Ͻ™^^òÛСCëÕ«'„¸páÂîÝ»?øàƒ÷ßÿ?ÿùÏ}÷ݧæí[·n:uê”)Sš6mª÷Â3:ú©Ý=(((8}útFFƬY³ôn ÀèJËŽHBˆ‡zȹlß¾}ýúõ»ÿþû;vìØ¬Y³2ß~âĉ>úhôèÑ:/5˜]Õ>|XáRn 4î}ÖJî5j´`ÁI’þõ¯é½`}G:$„ˆ×»!ÓpÎŽAK²6mÚtìØqéÒ¥ÅÅÅòììì-ZDEEU¯^½]»vï¾û®<|øðá}úôBtéÒ%11ÑûÈ€;‚£rp<~üøí·ßÞ¶mÛ믿þþûïß¹s§Þíšœƒœe-[¶,..>räˆbÒ¤IcÇŽ­Q£Æ£>zÿý÷Ÿ9sæÖ[oýøã…ãÆ›û¬o߾͚5“‹#×\sÍu×]'„ð2²Þód î§uÛ"8zpüøñˆˆˆ±cÇÞ~ûíòM›61bÚ´i:uŠ‹‹+s ÄD°!¥Öü¢£ó–[¶l©T©’…¿ÿþ»âܹsßèÓȶå~Z·m”$8zðÖ[o¹ éСÃm·Ý6oÞ¼5kÖ(iR7’Aù Å9,zFO È}eIIIBˆjÕªmÚ´iõêÕûöíËËËÛ³grí£;ŸF¶ú©KÃ5Žj]sÍ5Bˆýû÷ëÝ€á¸ÇD5Ï×ÐÎ;ÃÂÂêÕ«WXXØ·oßÎ;¯\¹²aÆãÆÛ»woÕªU=¾Ë§‘AÅÑ$I%%%òù‡‡†† !¢££õn ÀXJ+.­î¸mÛ¶ 6 <8,,lýúõ+V¬˜5kÖÃ?¬ŒPZqãÆêGGw‡jÒ¤ÉwÜá2|ûöíÂÆ×4<ò ƒPwÌËË»õÖ[Çĉ…GB4nÜXaÉ’%gÏžuidII‰ú‘í†~j/¨8ºJHHhݺõ–-[/^¡oݺuêÔ©S¦LiÚ´©"44444TóæçS ‚#fòÐCuìØÑ7ž8qâ£>=z´üç—_~ˆæçS4G?µJtU€Ë.^¼XRR¢oJJJ.]º¤÷’€gG¬ãüùóS¦Liܸqddd||ü=÷ÜóË/¿!†Þ§O!D—.]…]»vU®>LLL|øá‡'L˜P¥J•J•*µk×îÓO?-..~üñÇ7n\¥J•®]»þðÃʧdgg·hÑ"**ªzõêíÚµ{÷ÝwåáÞ?E±eË–Þ½{×®];..®wïÞ[¶lQ^JLL3fÌ«¯¾V·nÝxàÌ™3z/Q\®j®äÐﻹ¤òv˜ÞsÏ=ï½÷^=n¹å–œœœ·Þz+''góæÍãÆKLL|úé§ŸþùvíÚ¹¿qÁ‚¡¡¡O>ùdXXØÌ™3تU«âââûî»///oîܹYYY;vìBLš4iòäÉݺu8p`aaá‡~xë­·V©R¥oß¾Þ?eÙ²e¬]»vff¦ÃáX²dIÇŽ—,YróÍ7Ë#¬Y³fΜ9÷Þ{o£FV®\9wîÜ¢¢¢×_]·Õw´–œœŒaÕ@9éX­©I“&•v6ïׯŸ$IþùghhèwÞ©¼åî»ïŽ=vì˜$IŸ|ò‰âË/¿”_êÒ¥KË–-åß*T¨°wï^ùÏçŸ^‘ššzñâEyH§N„’$%%%%''É/:u*,,ìÿ,íS òóóå—òóóããã“’’ å6!–,Y"¿ZRRÒ¼yózõêaÁú±1˜qûÑGÓ’¿®škyÀf<ÞU-ßÂâp8¾þúëC‡ÅÇÇ !æÍ›7oÞ<5“½æšk5j$ÿÞµkW!Dfffxx¸<¤{÷î7n½k×®QQQ÷Þ{ï°aÃêÖ­ûÍ7߬[·®F7n\¹reFFFiŸR±bÅììì!C†´jÕjðàÁ’$-Z´èرc‹/®X±¢Þ j0åiÛ.:uê$?þðé§Ÿ^»víÒ¥KkÕªÕ³gω'ÊÏâîСCffæ§Ÿ~úÓO?ù4h°bÅŠÇ|öìÙµjÕêÚµë®]»–-[öøã¿øâ‹^>eÀ€_}õÕ3Ï<óöÛo !ÒÒÒ/^|Í5×è½Dá‡TîgÂEJJJnnn0>‰Çñ€¿‚w¬†áù±1ØvûáG¨Bp€*G¨Bp43ù[‚‚àUŽP…àUŽP…àUŽP…àUŽ˜À‹/¾èðjÕªUz·Ö¦w@ÙZµj5~üxåÏÙ³gÇÄÄÜvÛmÊ„„½Ûë#8`;wîܹ³òç¼yóêׯ?}út½Û{¡«ÚäøÖA,G¬#11q̘1[·nMMMMMM•‡ 4ÈyœáÇW«VMù3''gÀ€ 4¨Y³f¯^½Ö®]«÷LÀ¸ŽXÊ‘#GÒÓÓÏœ9síµ×–9òêÕ«Û¶m»cÇŽ!C† >üÀééé .Ô{&`P\ãÀº^$ ©œSøàƒ&OžüÔSO…„”Qºxñâƒ>ظq㯿þ:""BñÌ3ÏtíÚõÉ'Ÿ4hPhh¨ŽËÆDÅ€+HBÒñ§üí¯S§ŽšÔ(„ؾ}{^^Þ„ äÔ(„¨X±âÈ‘#8°mÛ6½×Œˆà€¥¤¤¤¨IBˆ}ûö !²²²œŸ™••%„8|ø°Þó#¢«K‰‰‰ñ>Baa¡üK… „Ó§OoÞ¼¹Ë8Mš4Ñ{>`DG,®¤¤Äùϼ¼<ù—†  !¢££ÓÓÓ•Wøá‡Ý»w—™>aOtU`e‘‘‘{öì¹té’üç† ¶nÝ*ÿÞ²eË”””3fœ:uJRPP‘‘1f̘ÈÈH½#¢â€•Ýpà ³fÍêÓ§O¿~ý8ðòË/+Õݰ°Y³fÝ|óÍ©©©ƒ.**ú裎9²páBn©†GG¬lÚ´i’$-Y²dÕªU’$ 8°yóæÙÙÙò«½zõÚ¼yóĉ,XPXX˜ššúúë¯÷ìÙSïVà’¤Áÿp–’’’››Ôt-à6¢Ã±ZogÏž={ölÍš5õnˆáø±1Øpû‘QqÀ¢¢¢¢¢¢ônÌ›c  Áª  Áª  Áª  Áª  Áª-A¡w6yòd‡Ãñõ×_»¿ÔµkW‡Ãg‚ÄÄÄAƒéÝ !„øþûïÇ¢E‹ônˆ¥  Áª°¬K—.]ºtÉ¿W «¤¤ÄŒÍ¶‚#V“˜˜8f̘—^z)&&¦B… Í›7ì±Ç.^¼¨æU!DNN΀4hP³fÍ^½z­]»ÖeÊ[·nMMMMMM-­›7oNOO¯^½z“&MÆŽ{þüyå¥-[¶ôîÝ»víÚqqq½{÷Þ²e‹óÄ]®>|xµjÕœ?úÕW_ «[·îúh5ž{={J’Tæ««W¯nÛ¶íŽ;† 2|øð¤§§/\¸P™ò‘#GÒÓÓÏœ9síµ×züè]»võìÙ³B… #FŒ¨Y³fvvvç΋‹‹…Ë–-ëØ±ãîÝ»333‡š““Ó±cÇeË–©œ©5kÖŒ5*++köìÙ-[¶œ;wîØ±cå—–.]Ú­[·]»veffvïÞ}Á‚wÞy§Þ+ÁŠ$h-99Y‡OeM€/ô9V—ϤI“„7nt©K—.Îçô„„!Ä´iÓ”!&LB¼÷Þ{Þ_-,,lذaZZÚ¹sçä—.\¸Ð¾}û¤¤¤ââb当'O¾té’ÇFÊ#LŸ>]2~üx!Ä«¯¾ZXX˜˜˜˜ŸŸ/¿”ŸŸŸ””TXX(¿wàÀÎS»óÎ;cbbœ§¼dÉùÏ’’’æÍ›×«WOnd|||:uŽ=*¿zìØ±¸¸8!ÄÂ… Ë\°~l fÜ~4AÅ Š7nœòçÓO?]¹rå÷ßßû«Û·oÏËË›0aBDD„üRÅŠGŽyàÀmÛ¶ÉCêÔ©óÔSO…„”!jÕª5zôhåÏI“&U®\ùã?Þ¶mÛÁƒG«4côèÑعs§š™JJJºå–[äßGZZÚŸþ)„ضmÛ¡C‡ÆŽ[·n]¥‘£FÒ{%XÁ€+9týÑHÓ¦M+T¨ ü•’’òÓO?yuß¾}Bˆ¬¬,‡“¬¬,!ÄáÇå‘SRR¼¤F!D³fÍÂÂÂ\&ž—————'„p¹2²E‹Bù¥2%'';ÿ©4cÿþýBˆÖ­[;¿š––¦ÙÒÄ_ÂÊ? ,EÒ»¥Bx¼çãâÅ‹ò«^„……={Öû«ršœ>}zóæÍ]FhÒ¤‰üKLLŒ¯- «T©’$IB—•‡†† !ŠŠŠ<¾±°°ÐùÏJ•*•6}÷){O·ðËs£ÛîÝ»]†ýðÃréNñÃ?8§±óçÏïÝ»W©Ø•öjÆ …ÑÑÑéNêׯêÔ)õyqÏž=ò­0Îoذ¡û¬Òã,„(**=zô©S§nºé&ç‘óóó³³³•?§L™RPPпﯶlÙ2%%eÆŒ§N’_*((ÈÈÈ3fLdd¤ÊvþòË/³gÏVþ|æ™g 233[µjÕ Aƒììì“'OÊ/ýñÇ3gÎŒ—»•###÷ìÙ£<£qÆ [·nUó‰­ZµJJJš9sæñãÇ•|ñÅu^aVDW5æP£Fÿþ÷¿C† iܸq¯^½Ož<¹aÆŸþ¹[·nO<ñ„óÈuêÔ™8qâ¦M›RSS¿ùæ›Õ«W·oßþöÛo÷þjHHȬY³n¾ùæÔÔÔÁƒ}ôÑGGŽY¸p¡Ü§¬Fdd䨱c7nÜØ´iÓM›6­]»6==}À€Bˆììì!C†´jÕjðàÁ’$-Z´èرc‹/®X±¢â†n˜5kVŸ>}úõëwàÀ—_~Ye™3<<ü…^|xµjÕœ?úÕW_ «[·î}º2düøñBˆW_}Õ{#å÷8ÐyjwÞygLLŒó”—,Y"ÿYRRÒ¼yózõêÉŒ¯S§ÎÑ£GåW;'„X¸p¡ßƒ†o±*ŽÓ L­Q’tû)mÛ¶,O6%%ÅKjB4kÖ,,ìïGþEEE¥¤¤äåå•ÙÈ2%'';ÿ©4cÿþýBˆÖ­[;¿š––¦÷j±žãXI’}ôQåjb€Qpiã•$IB8W<•-44TQTT$„èÕ«×sÏ=·~ýúM›65hРAƒ]»v}â‰'N:õå—_vêÔ©jÕªBˆ *!¦OŸ.÷e;kÒ¤‰üKLLŒ¯Í «T©R™tWXXèüg¥J•J›¾û”½§[øZ†·ÞzËùn/€!Ý4lØP±{÷nç»víB¤¤¤!:vìX¥J•uëÖ}õÕW×]w¢K—.%%%üñöíÛå~je:ÑÑÑéNêׯêÔ)õyqÏž=ò­0²óçÏïÝ»·aÆe6RQRRâüªÊJä?þñ!Ä÷ßï:{öìÙ³gkÖ¬éßÛ;vÕUW)¥VïÊÜô?³GΟ?ÿÈ#Ô¯_ܸqþMÁžÿÛFTTTTT”ßo—ý­÷ÓºÇ(iGž{î¹£G¾÷Þ{ʳOú#5zã®jW[¶lyï½÷î»ï>/_Ü`CT]ÉÏ‹š3gΜ9sœ‡/_¾|ùòå 6t¹—  ” 8ºŠ¿ñƇœ>}zãÆqqqiiiµk×Ö»ú 8ºêÔ©S§Nœ‡ìÙ³gãÆmÚ´QyW5@c”càG+’Ÿ )‚#ÀØ(7†AWuÙš6mÊsŽ X¹177×¶ÏpüFpØ”ö½I6ìUä,;„C²Ý5:®q• s˜¹°‚ì‡à€Fx¨¬Žà0$“V³ÈŽ¡ŸÚ˜ŽP…à0“–ea]G‹â°0-ú© ‹à0S—evøïÝ« ¾#8¡ÜhdG€‘X¦Že‡¢#ì‡àUŽEGßÑOmpG€aX¦Ÿ°(‚#cÕ¢#ß®Žc ‹ØýÔÆGp ¬Zt„-­‹CÀ<(7šÁ`Öî§æ?yXÁªz³v¹Qf¥¢cÖýÔfAp€*G€®ìPn”Y©è»"8=ÑOm"G‚…¢#LŽàÐ}ú©Q ÊæBp´4þµ£1û‘™¬ooG¨Bpè͵+³µC?µé  Á€ £èH¹ÑœŽ=ضŸ03‚#P‡¸o{G@Б?„Ý{«é§6)‚#T!8 {aFG«ã¨Àhè§6)íVýÔæEp@?ü{S!8€à¡ÜhjG@ÑO펢#̃àÊB⇂à€þlSt¤ŸÚ쎀`¡j˜Á°AÑ‘r£mÀ#@Q*Æ_Ž€  |”‰ÿóaxGpôS[Áàèc#8~jóÒbÝQn´ ‚#FBÑFp€*G@€ÑOí+ké§¶‚£=XëB?®DpÀx¬ò?åF‹!8‰’`!G É*EGX ÁxRîj1ýÔÖCpÀ¨(:Â`Ž€€áG£ÜhIG Œ¢#Œ„àhzêQ-†'G@`<´bÂÿüé§¶*‚#T!8`xA.:–¯ZL¹ÑÂŽ€ Ÿ°"‚#f´¢#åF”Žà€I˜ð.X Á 5ú©‹"8Ú ÿª€ÙúHN?5¼"8@‚#¦¸¢#åF”…àÐ8—A'GP^”m‚à€ i^t¤T Ží>‚‰kÁÛ㶨Cp´þ=+ᨎà"8`fåÏŽ”¡Á .pÔKy²#kÍ'Çå»"8` ö 3A!çEIºücWaz7”›œd|-–»Üh‹~j¹¾hã°èŒàÐ=žF ù²"Xee"2º!8`!*³£©Ñ²åFåF"£‚#ÖRfv¤ÖXJŒe!8Ê b4Þï³ÖbeY­ÜHdT‡àh?>]0)Žó*}Ap¾±H¹‘Èè;‚#°"£¿Ž€òáꘑ±|ŽÀfí§&2jà~‘oYå‘Q;GðÏ(,Û1Y¹‘Ȩ5‚#”Ù0&"c`m‰S !v(؆9ÊDÆ@"8@¹‘# 2Á´`ÏìhÃY¶1C—‰ŒÁBpØ3;ºs8ˆŒACpæD¡1莠 †ë§&2ê„àÚ±Uoµ}æ†BdÔÁѳS§NÍš5këÖ­G­Q£F³fÍFŽ™””¤w»´c«Ó ŒRn$2@ˆÞ 0¢‚‚‚>}ú¼÷Þ{Bˆ®]»^uÕU+V¬èÛ·oNNŽÞMÀ–ä;`Hz#8z0{öìüüü#F|òÉ'ÙÙÙ .|öÙg‹‹‹§L™¢wÓÀè²° ýË÷MÁуo¾ù&""âþûïW† 0 víÚ{öì¹té’Þ­À”ÈHj4 ®qô &&&99¹R¥JÎ+V¬xñâÅ‹/FDDèÝ@z£Þ{ЭÜÈåŒFEpô`Á‚.C¾ûî»Ã‡·lÙ’Ô@`Ñ1m`Go¶oßþÁ"8`Ká;‚#Àú©-çïr#…Fø‹àˆ¿pc5Ø…F”7Ç`}—ˤF”Á@.á†BjD¹ÑU pÃ…+Ör¹ÜÈ:E¹°®Ë÷ÁèÝ X]Õ u8˜‹Ã!$‰b#4Dp„®ÊËàŠF]Õ€+QX5;§Ç4zþfjÀ_G,„B#‰à€%¸} åFhŽà€ùQhDPps À 8š‘§ÔèRnt8¸ù 8âJÜX &âp¨¬5J’Tfv$\¢LGÌIŽŒžR£Ç«½gG‡Ã!ÑÙ²¡ŸÚDüº¨±´ìHj„JGL¥¬îiï7S»gGR#Ô#8@`pÅ0¡ôîé˯«xsv$5Â'<Žn$º«À´{排Ið Á „à?Fcs{¸·ç±xâ7Œàê« —<Ü[顦«>áG LujT_nt‹jžï(Ž’ê‡{û8U×#ÙêtÄOYwO»Ž®®ÜXZÇ4Ù*á  Ð(ʺœ‘ì5¸9ÃPw÷´ë›Ô•˼ †»dP&‚#ƘB# !ºªÀö¸ÀÑüM<»ÁDp@o¤F˜]Õèǯ‹½Q ¾±° öt•ï¢FÊ>ºªÐ·ÂÀ„¨8@ÀP¹‡GZtOSn„.Ž…F˜]Õ ‚U ‡V/ÃÒ(5Rn„^Ž(_<"5Âüèª Àx欂àvE?uphzQ#åFè‹®j†[a`-GCëÔH¹º£«­à¢FR#Œ€à¯x|1`UìÚC÷4¬‹®j´˜ÔH¹Ap@#ÔautUPn|R#åFÁeá2GÀzØ©µE¡¶AW5_ÝiyN”a(G( õ9”†Ô›¡«l†¬ ¾~¶DpÀGA¹¨‘r# ˆ®j¨ÀEZ  5ÂÆŽ¨Æ Ô°7ºªÀN¸ÀÑoA¼¨‘r# ‹à^‘´ (4—ÑU €WÁM”adG¨Ãý1€P=õƒ R£ƒÃ;T£«O¬þ¤F%/J]ñP‹à€=’TpÊÎyQAv„JG0É}ÄFhƒYX:5–6gdG¨Á5ŽPËØÓ“œ/ŽP:ªtv£SjԽܨ ;Â;‚#B8Ö®5ªŸ9²#¼ 8€ P:õNNU:¥Æ ”}ÄdG”†à°7] †}Ü7Ùá îüþcX–îž¶Í,"xŽ`uôS—FïHeÀNjÀ;‚#À~ p+Œa;©ôVÀRP¨³*½##3 ó¢â–FüuaŒ0eür£Œ¢#\á#®ñ`^vJƘWX Á‚‚ºtG’Êà°:Ü ów[ÌVn¤·θ9¬‹ …± f¹´( GøŽ7ؑˌ”™iXÁ`Q Pæ-7Ò[ Á,ÊæES»¦FƒÍ7¬†àÁÂeACzÒEGȸ9ƳóçÏ/Z´hÉ’%GŽŽNNN¾ë®»:vì¨w» C²}1€1ÉéÆ`©Ñ¼Ô€ ‚£ÅÅÅwÞyçŽ;ªV­Ú¾}û .|ûí·7n5jÔƒ>¨wë@{þkgÈBc0S£!,…àèÁûï¿¿cÇŽÖ­[ÿ÷¿ÿˆˆBäååÝzë­/¿ür·nÝ7n¬wn š¬Tk”{«·ŒT\ãèÁgŸ}&„xòÉ'åÔ(„hذáˆ#.]ºôõ×_ëÝ:görÙÛïÏ,“hX‚£ŒŠŠjÚ´©óÀ†  !Ž9¢wë ƒËü„Q“•Ê€Œ®j^}õÕ°0×%³gÏ!Dýúõõn3ãÆ2mòV˜ËM nj Nx¦·Gš4iâ2dóæÍ¯½öZÅŠûõë§f ))).Crssõž-ö`Ÿ`J„A°¸ŸÖm‹àX†K—.½ûî»Ï?ÿü¥K—f̘«æ]v‰‰ÔNèÅØ©‘Nj‹q?­Û6J½ùöÛo'OžüÓO?Õ©SgÚ´i:tлER£Û'zyÀRŽž]¼xqúôéóçϯT©ÒÈ‘#ï¾ûnåk0.;t;%Qk„µ=())7nÜçŸÞ£G§Ÿ~ºfÍšz·@Ù!{™—±S£pŒÍ=˜?þ矞••õôÓOëÝÃã2GÀWì5þ1ð Ô·Qr#1ÁDpt%IÒ‚ ¢££}ôQ½Û¾°p5C8¢“v@pt•ŸŸøðለˆaƹ¿Ú¿ÿ[o½Uï6€à 8º:zô¨âüùó999î¯rc5•R£ŽX<2‚£«V­ZÙå)ŒZá‚-À,¹š$Ù­ÜÈý1vÆwU€KÆ/“2I6Ñ15šd ÁRŽtr^CÖË»&ÉDv«5tUŒÄ Ýl‹Š#´ yù€zV*7Ê…F“¤F}ËúÖdåËaCGø‹•˜™¤{úrc餆-@jÌ€àÐ[ øD«]ÆURS¥F#`A/G€®Ì‚(7ÂÎŽ „УtWþ¢£ʤFÓâþ{âq<Ð_!@=>vÇ ©Ñla–Bpý”çß-SÿŸfÂìcÔè‹®j0y3¦F2‚#4ŽÕ@p˜7éš35§ÜhÎåë 8j/wÿ~½›ÀØ©±4¤FåFp´.Cv[—ÒTÍKCj4K¬%XÁÑÒÌp·5 Rci,‘G,ŸS 8Ú€)²#EG”©±4æOÜ 7ÇØƒ’|þ8÷Ã_l9¥±Dj´Id4ÿº‚-Pq´ St[Sw„H¥1±Oj´ãŸjPTmÆ¥G@%ùäĶì©@íÇxz¼²y ‘Ñ;Ãîàêç€ÔÁÑ®Œ\z$;”Ç.$-m"c™LžÂ!䯲·“¯4ØÁÑÆŒ\z$;úAåEER9Þëe A›A¶ G«o>…FÀØ޶'—Í|¦±#Í«†>½×{ÊÔvSrþ,6Ò2™|_&5ÆGp„Q»­)::sÉjú.ïŸ^fñRòålê™95Ú³{úïÙ7ñªƒí!„pê¶FŠ6ÏŽ&-¶•ÙT‡¿o„fŽ­‡®, #8‰¯z´[v4iXô‰UçK/FûÏ׿“S!8ÂÑz®-Ÿí †ú7Ï×¶Û»{0)‚#<1ZéÑ’ÙQÉ‹›/qöP?ÚN¡ñ/f^°#‚#Jg¨Ò£5²#ÅEhÅ´qƒB#`jGxe¨›f$Ó>Éâ"´eæÔHdLàŒÓs-¾YJäE‚öD?ZM¡°‚#T3Nϵ‘KtF# L›‰Œ™s}ÂÖŽð…qz®Vz¤¸xB¡°‚#|g¨žkKdFØé|j/…FãàVEp„¿ Òs­”ÿ Â"ôbª“0…F5LµJËŽ(£õ\‹À ‹Ðy"‘°6‚#ÊÍ8ñQ¸ ªWηÚ2Uj$2ÖFp„F Žò½БIR#…FÀ&ŽÐ”¡âãß­ò<ØápHÆi$àÎ ©‘Èè3¬[Àƒ½+’¤¿o10I’e5²Ì€@1C²û¦I€}0rv4vðòž)IB7†OáàŠFÀ†èªF ³çÚµ’Ç€Hj„nŒé›ìŒàˆÀ3||tÏŽ¤FèÆÀ©‘Ȩ¯d  G‹s|†KÎÙ‘ÔÝ5Pá¾<Æ’Ž.åb¼¤r½#©ú0ä9–ÈÀÁ:1|ÿ5TÆKDÆ1Þª|@p„®Œ骆n %ˆŒJCp„ >:‡ÅÒî³ÂH©‘ÈÀ;‚# C¿»gÜc"ÙvCd Áô»gJ ˆdGƒÞåFÇ__åNd ½W8P^GUà jî¡&;"€t ”øàcÓïñ=DF–N©‘#€ò 8Â$Ê]€TΗNÓt®œJI,=R#%FåGp„©HÒ_9Ïáó[K?_þý e²’§ Y¾O. nj¤Äh6¼À‘/±‚#ŒÈKhs=ùiÑ…­Ü#‰òÞ£2nr G ‘Á:ó˜´|8ÕitVß7¨²åÞó%gz+ pù…¼  Ž*÷À¤ÍéÍå¡ÿ÷ДÑ^¯síCÁæâ”µ½Ž–¼h|ôØÂŽ @ÅD/üM†ú¾Ao—c–’)‰ &pep(óA¡j6Eò"€ #8Bî/q;™9ŽàÝܤ(5DšèûKËJ£óTnò²±yÙ½ìbh!z7Àè8’’²sçN½bháoCv‡$$åçŠqôJc’S‹ŽË?^¦\ïh"Òóù÷ãïy¾âGïöâ2›û6é¼îJÛÅ ¨8–aþüùz7Á J{ü¡Çs™QjxžÊÖþ¾A*”†àõê6—MMñ¦Ãް ‚£gû÷ïÿøã.\¨w[ŒÅû5Uó–˜ó匥ôe[&;z^Ê Q.×å±$žÔ À¸ŽžõíÛ÷—_~Ñ»FáS壴ò‰]n˜só® ‘†my—‰RoÊእ* á(ïÓ âàCpôlêÔ©………Bˆ lÚ´IïæèÃï6•ìhäÔXZÓæ¿ì»jìý™R\ùü¯0ë.ÀfŽžuêÔIþå‹/¾Ð»-Á¦É>¬p ,-D räüË”ÂÒ±Òù»+…ŠJÙY¬°ãÀ õ6X Á1 RRR\†äææêݨ2hû@8«•O\æ‚©ŽßÏ9W?½¨ÊÄêò‚Ënb©° ÷ÓºmÂø1Ñ™æWâ[¿|â=G ¢¤*š|=£qïWj¼K*ð¬‡àhM|e™MqŽ (鯇ì_%`{|yŒ•­†È–s|t6`ïû#%%E—ç8À8¨±9³ÞÒÐë\¯;*ŽV`íȨò²=‹’0 ‚£¹Y52úÑ ¨¼… @€Íʪ‘QøÛ£¡¼… @€ÍÇÚ‘Q”;ð¹$Hâ#€à³Þ%}€Œàh2á 2–>—¯Éþ{ÊåŸxà—wªŒ.Dï@-‡pX85J’ÁNþbC·—Žà=[«Æ»-(ÏÀŽ& DF §F­x_9>–÷ìHI0 ú©aaGC³|d ÄáÕcüRR—ÁK¥eGR#S3øÿíPàh\ŽŒB»îi\â—ûµFŽîÙ‘Ô0‚£YørÆË3ø~%~•–ºŒ³#©`ÜUm8ÖŽŒ"ˆWÿÈñË{êRî¼6Z6S²#©îÌò¬{2àñÐÁÑ@,ü€Æ¿ç1ˆ‡T95ª©Ø)ßp¸‡ñ9ïD.õr6`Fp4 ˃ÌénµÙQé™áJ›éª†3—½\6 j]kõgù+ÿžÓ`ÕÜî†)û‰iˆ[ÿœÛ¯¾ñ°¼2÷ #l½6Gv‡åõdí§í¸Î¬N©QæSüÒ÷¦÷ö“!TïAdGEpÔ}"£Ð;5Ê|ÍŽºœ€K¿œìhk>íAdGCpÔ‡Mú¦ƒLÅ=Ô¾-ó —½·Ÿìh[~üßEvÔýÔ°‚c°ÙçŠÆ¿g9ˆÏß À4ƒtVw6ÈüÞ}ÈŽ0¶Ikà®ê ²[dVù<Ïë!BslS0¶I  â$6,4ZŒšÒcJJŠÞÍ„>´ê5ù¿‹O@±×û„­ÑŽÁ`«û`®˜qK”ö[ ÒÐ?Ö;Üζ…F«F ò¬GXžU÷ ¦Fp º§-Œìas ‚c Ø¶{úòìÛ Xâü-…€Á‘ÊG<@Fp  öÁU‚c*ûÑqð•C8’S’õn‚mÿþÜäd6´9±• V%‹-¨ÜÜ\½› ‚#T¡«ª  Áª  Áª  Áª  Áª  Áª  Áª  Áª„éÝË:pà@FFÆû￟ššªw[ ±Å‹¿ÿþû?þøcddäõ×_?a„jÕªyàÀ»wïvûõ×_ë=+(_·˜ {:JcçS<Á1PæÏŸ¯wÙÙÙ¯¼òJTTTÛ¶m:ôÁäåå½óÎ;¥½åðáà Îcbbôž”‹[L„=^ØùOpÔXAAÁþýû?þøã… êÝh/77÷µ×^«U«Ö’%KjÖ¬)„˜:uê;ï¼ó /Lœ8Ñã[ NŸ>‘‘1kÖ,½›Íø±%ÀDØÓá§xÁ5ŽšëÛ·ï°aÃì¼IYÛûï¿_RR2zôhù\"„xì±ÇªV­ºråÊ’’o9|ø°Â¥³ócK€‰°§Ã#Nñ‚ਹ©S§Î™3gΜ9:tл-ÐÞwß}Ò¥KeHhhèu×]÷ûï¿oÛ¶Íã[:$„ˆ×»íÐ’[L„=qŠtUk®S§Nò/_|ñ…ÞmÆ$IúñÇ«W¯^½zuçáÉÉÉBˆ#GŽ´iÓÆý]òéäøñã·ß~ûÞ½{###›4i2bÄ^Rmþm 0 öt”†S¼ â¨wîܹK—.¹_ê^µjU!Äüáñ]GŽB¼øâ‹¿þúkûöíccc¿øâ‹ÌÌÌ÷ß_üÛ`ìé€TµÎŸ?/„ˆŠŠr^¹re!ÄéÓ§=¾ëøñãcÇŽ½ýöÛå!›6m1bÄ´iÓ:uê§÷lÁgþm 0 ötÀ ‚£?Š‹‹_ýuåÏÐÐÐÿ÷ÿþŸÞ‚–<®â˜˜‡ÃqîÜ9—‘ÿüóOñW5ÂÝ[o½å2¤C‡·ÝvÛ¼yóÖ¬Y£œc`"þm 0 ötÀ ‚£?ŠŠŠœ¸P±bE‚£Åx\ÅaaaU«Vu¯7!”»/Õ¸æškæÍ›·ÿ~½gþÐpK€±§^ý‘››«w+@¥­âZµjýøãUªTQtèÐæÍ››6mzï½÷*ã¬_¿~̘1 6üä“O„ÿüç?ï¾ûî§žzê½÷ÞKJJúßÿþ·cÇŽÈÈÈgŸ}–/56/5[Ì‹=( GÀ7wÝu× /¼˜˜¸bÅŠ?þøãÖ[o}çwÜù¦hԨч~د_¿ß~ûmÕªU§OŸîׯß'Ÿ|ríµ×ê=+(_·˜ {:à‘C’$½Û âUŽP…àUŽP…àUŽP…àUŽP…àUŽP…àUŽP…àUŽP…àUŽP…àUŽP…àUŽP…àUŽP…àUŽP…àUŽP…àUŽP…àUŽP…àUŽP…àUŽP…àUŽP…àUŽP…àUþ?8·(ÍÉcJ IEND®B`‚statistics-release-1.6.3/docs/assets/regress_gp_501.png000066400000000000000000000656341456127120000230320ustar00rootroot00000000000000‰PNG  IHDRhŽ\­AkcIDATxÚíÝg`åú÷ñ{S€$B ’âÐ!T©R ( D±<`A)¢âT?v°ã¡Š`‘¢Hé!)Òk¨!ežs˜³lËìfw§}?ú"ÌN¹wÊÎo¯{fÖ&I’ ¢u` G¨Bp€*G¨Bp€*G¨Bp4€;wÚÜ IMMíÛ·ïÖ­[ÕLR¼xñÊ•+÷éÓgÛ¶m*¡9r¤Ëæ=Z¡{÷îZ¯*ï·åzx~ø¡¼ÜF}n.\xôÑG+V¬}ùòå`¾—¾ÿþûE‹-Z´èÔ©Sz׿²µ.ßWpö"—‹šqãÆÉï±S§NfZ–áh» è´nŠD’¤={öìÙ³çÛo¿]´hQ»ví<ýúõÇÏ™3gáÂ…S§N4hÖïBˆQ£F͘1CþûÒ¥KZ7G!222ä–,_¾¼Ð#Ë@4|_f]¥ð »Ñ &>>>""Bþ;//ïÔ©S999BˆË—/1bË–-ž'9wîÜ… „999C† iÛ¶m•*U<Œo¯L™2Z¿{èHtttRR’¢B… EŸÛO?ý$ÿѲeËîÝ»+VLë÷ŒwMkÁÑ`¾úê+û¯hW®\yøá‡gÏž-„غuëþýûSRRàRß¾}ûöí믹8qBþã¹çž»ë®»´~sAz×´8P¼xq­¸Å5ŽÆ9xð`åŸÇŽ+t’öíÛß}÷Ýòß{÷î PÃz÷î-_ⓜœ|òäIeø‰'ž~úéfÍšEGGßvÛm÷Þ{ï¦M›ì'´¿Ö*//綾^ªT©ÒK/½äðÒ¹sçFŒѨQ£èèèzõê?>77ס ….K½Ë—/¿üòË:tˆoß¾ý /¼­ŒððÃËmkÓ¦ý„³fÍ’‡GFF*×íe%xvôèÑûï¿ÿ¶ÛnKHHèիׯ¿þê0BAAÁìÙ³Û´i“˜˜X¢D‰ÄÄÄÖ­[þùçk/77÷ƒ>hÑ¢EBBBÉ’%k×®}ÿý÷;\Gëòú95:8uêÔÁƒ äž?þàÁƒyyyÂý…w×Ýz»oœÕ/Ëݑ۶m[çý硇òöÈõÜN¯æP¯^½¸¸8ûÑÊ–-;uêÔððp‡M,ïi²B?Ü<ïEülôíó> 8€‡Twåʕ޽{Ë/ÙŸÉÜMrþüù?þ844Tö矺ˆB9œÝ—.]"ÏÙ²eÊh.\PNumÛ¶}å•W222ä1…ü±ÃÜ*Uª¤4É!8Ê›4iR¢D eȆ |[–‡àxåÊù*1!D‰%ÒÓÓ;wî))_¾¼¯_¿®\ºpáBereÚÿüç?~Y Ö¿¬\¹r­ZµŠŠŠ’ÿªd÷9sæ(Ÿ¤mÛ¶0`@­Zµ” W¬Xá0Ȉˆ{î¹gÈ!Mš4‘‡„……íÚµKÍ9B©œÐƒ£WûFLL̽÷Þk_$þòË/%I:}úôÞ½{•­üùçŸïÝ»·  Àå»V¹‡xÕH‡VÆ9qâ„$I°ŸÕÑ£G%IÚ¼y³üϨ¨¨œœçÖzx_mKIIIKK“?(„Å‹—gèyô°Ý=,ÚÛݲе—“““˜˜¨4àöÛoW6L sÞ.ÚùxT¿,•GnÉ’%•!K–,ñW;}XÉ!!!uëÖ7«^½zÅŠ•¶iÓFý§®‡ÝÀ'¯>à‚£اº„„„Ýœœ¬ñññöµ=ûI\Šˆˆ£ŒÊñ‡ê®yög÷}ûö)4Ó§O·í…^‡ÛÁ6mš<°råÊsBÔ¨QcæÌ™ëׯ—+©ö/M›6M×®]ÊÉCùZéí²<Ç1cÆÈã”*UJ93mÛ¶Mù:þüóÏË(4hrÿùçe[7oÞÜ_íôa?üðƒ$Iׯ_oÛ¶­2pÊ”)’$åçç+})qqq‘ç7w»AÑ?‹òù¯p£Á=ztï ¸r劢ZµjÛ¶m«Q£†úùÔªU«U«VþmÛ¥K—ºwï~öìY!ijÏ>ûÈ#Ø¿úã?Ê<úè£ÊÀÊUC‡9¯ÀêÕ«?õÔSòß÷ÜsOXØo ÌÊÊr7I·»ÊÝRýÚ›5k–ü‡}ÍéÍ7ßt¾>ÁÛE;ê—åAXX˜rä&$$(Gîºuë®]»æ—vz;‡† ʽíááá÷ÝwŸ<0&&FÞ7BBB”/oçÏŸ—ÿ(â§nÑ?õðùcÜUm»wïnÛ¶ío¿ýíüªýãurrrŽ?.IÒüÑ Aƒµk×:_[ãòq<ÎΖ/_®ü­t•*öìÙ#ÿ‘žžîrò¬¬¬:uê(ÿLKK“OŠÎÚ¬´M¹ÁÂÛey™™érVwÞy§ü9++«   $$¤]»veÊ”9wîÜÁƒwïÞ]­Z5%8*ŸY~\ ÎjÖ¬iß}£¡ºo(7„)õ !Dùòå•~^o©ßCÔ7ÒY‡Þyç!Äï¿ÿ.ndÄ&MšœbĈråÊeddLš4iåÊ•yyyÎ¥‘1cÆ<ñÄÊA$IÚ´iÓ¸qãš4iÒªU+?öàó„~T辡lИ˜˜¢/Ϋ=De#]jݺµ\üÛ°aC~~þŸþ)„hÒ¤IÆ …üñǵk×ä N¼ê|p`pU¶­ˆÛ]ån©rí]ºtIyŒƒÃaÎ|[´ÃñèÕ²,‚àh`‘‘‘}úôQ 'ýõ—š©âââÆ/ÿý믿ÊLþrÇwÈE¯Ë—/ÛgÍR¥J)ÕП~úi¯+ö³RsÆrɇey˜•ò îð¨#åŸÅŠS®éVút~üñÇ;vÈ'¹„•à°)¯^½ªdšÊ•+ !Æ÷öÛoçå奤¤¼÷Þ{[·nÍÎΖC­½ðððwÞyçÔ©SsæÌéׯŸýƒßW¯^íî—'‹2aÐDGG+—Ÿ9s¦è3ôv)Ê‚äªIvvö·ß~+?èG ާOŸþöÛoå窥Üè›"nw•»¥JÊÓãí&„PŸíp’ns@WBnnî!Cä²Ó±cÇ”G¦uíÚ544ôâÅ‹J_’ÃþüóOûç€ !víÚU¾|ùòåËW¨PA¾+<,,¬}ûöÊM”îzx}žÐ¥¿ï÷ßW.Z°`WgewÜq‡üǤI“”íäɓׯ_¿~ýúâÅ‹;÷Ç]¿~Ýà ½ÚCŠB)%Ê›¬aÆ¡¡¡åÊ•“ËÉ«V­BØl6õ?ûäù}©äÛvW­r·ôŠ\…7o‘ñãÇ;ôÉøeÑ*—åÙõëׇ "¯“cÇŽ=÷Üsòp¯Ž\±’ùðáf¿ñ³1Ÿ?p‡›c O9ÏÉ?ZílÀ€J÷\NNαcÇäŸåB :Ô/µ{ááá/¿ü²ühÖeË–-Y²D>qŽ5jÆŒçÎ[¸paÛ¶mï¸ãŽ;w*7œ>\Íý7*ùqYÏ>ûì§Ÿ~zðàÁ .´hÑ¢]»v¡¡¡Ë—/—cz… ®þ¼ï¾û>ýôSqãFÅÖ­[Û_‹è•°`Á‚äääjÕªmذAþœ 7nœ¢dÉ’%K–”/$zøá‡åŸ´ùñÇ~r£N:ñññ'NœÈËËkÑ¢E—.]bccÿþûïo¿ýVÁáG\Š>¡J9íêÕ«iiiiii§OŸVnFñÍèÑ£¿øâ‹ìììÔ«W¯]»v'NœPnczâ‰'”1cbbäÕõÚk¯íܹóé§Ÿvxú±ÌÛ=Äg·ß~{tt´rúTîámذ¡| «²<ÏGåûRÉ«íî¼h•»¥WFŽ)?kìüùóM›6mҤɩS§vïÞí0š_­rY…’ÜêÕ«ÿñÇr/PHHÈ«¯¾ê—vb%;Sÿáær,âgc >à–ÖÏBáùäeLåYñŠ””åñ×<ð€<Úo¿ýæ®W¨uëÖòÓæ$WÏT9¡K.íf¿qíÛ¬'œŸã¨fßX°`ra¢½^xÁ~ZåÈ’yøå•{ˆWt©K—.ÊÌ,X T.YvžƒËÖº|_îÚ¦<ÎzöìÙîZ¥~»»\´ÊÝÒ«µ÷àƒ:Ì3**JéÄWž­XÄE{µ,gÊl[µj%—aaaö¿ùTôveŸ}ö™<°V­ZÊÀ5kÖ(MUªùps·¨œÜÃ{,Êç¼BWµá)/8|ø°ò¸Twä¾­:LŸ>ý—_~q~hŽ_„††*OEþ믿f̘!ÿݵk×­[·>òÈ#õë׌ŒLIIéÞ½ûªU«Þÿ}Ÿo…qÇËjܸñ¶mÛFÝ®]»øøø¸¸¸¶mÛþûßÿÞ¾}{‹-F¶¿·:$$ÄùknàVBëÖ­W­ZÕµk×J•*U¨P¡W¯^+W®Tü+„˜ù$!!!==]ëtJ®5ªyFO ­ü½aÆM›6ÉAPqæÌ!Ä•+W\NèÕÈG^z饇~øÅ_œ5kVJJÊ?ÿü³eË–ÈÈÈ×_=""BëÖôȾ‡Úó3zAî¤NIIB”)SfݺuË–-Û½{wVVÖÎ;•ky5²ÐOíGªU«öÍ7ßtëÖíôéÓK—.½páB·nݾÿþûÛo¿]ë¦ôÈ9&¹î¸uëÖ°°°J•*åäätíÚµeË–K–,©R¥Êˆ#víÚUºti—Sy52 ¨8ºS®\¹7ß|SëV À]q1huÇM›6­^½ºW¯^aaa«V­Z¼xñ”)Sž~úiewEÄ5kÖ¨T( ÏÑ0uǬ¬¬þýûÛl¶Ñ£G !Ž9"„¨^½º2Âüùó/_¾ìÐHùá!*G¶ú© EÅßš±üÂÞÿýï¿ÿ^‘““³cÇŽuëÖ]¿~ý½÷Þ“6¦M›6QQQ>úh¿~ý*V¬øÛo¿­\¹²lÙ²kÖ¬Y²dI§Nbbb䙜8q¢Ð‘µ^»Ð‚#F¢< Ûf³U©Råž{îyòÉ'›6m*¬\¹òâÅ‹G5mÚ´øøø6mÚlÛ¶mÑ¢E£Fš:uj§Nš5k–‘‘ñÃ?ìÛ·ïÏ?ÿô<²ÖﺣÁCJM/55•ߪã³ ygðªŸÚ²û×8@‚#T!8«ã~j•ŽP…଎r£JG¨Bp€*G¨Bp€*G¨Bp€*GŒa̘167"""¼[Ë–-ÓÒÒÝæà,A¦u€úôéS©R%‡aa…ŸÐ7nÜ8nܸ±cÇÖ¬YSê÷æg)Ð Á#yòÉ'›7oîÄ'NœX¸páСCåþòË/h^p–­ÐU þëúõëÚ¶¡   ??_ë5׎˜ÇÕ«WÇŽ[½zõÈÈÈÄÄÄGyäøñãBˆvéÒEѺuëääd!D›6m”«“““Ÿ~úé‘#G–*UªD‰Mš4ùá‡òòòFU½zõR¥JµiÓæ¯¿þR–2yòä:uêDEEÅÆÆ6iÒ䫯¾’‡{^ŠbÆ ;w._¾|BBBçÎ7lØ ¼”œœ¾-½M›6QQQ>úh¿~ý*V¬øÛo¿­\¹²lÙ²kÖ¬Y²dI§NÜ-¥xñâ“'OîÝ»wýúõ{õê%IÒœ9sŽ=:oÞ¼âÅ‹k½R¡Á#Qž¶í E‹òã_~ùå+V,X° >>¾C‡£G–ŸÅݬY³ŒŒŒ~øaß¾}>ÇÊ•+/^¼xÔ¨QÓ¦M‹oӦͶmÛ-Z4jÔ¨©S§vêÔÉÃRzôèñ믿¾ú꫟þ¹"--mÞ¼y7Öz 6©ÈÏ…ƒÔÔÔÌÌL­[ð„Ïj(|Ø,»ÿp#T!8@‚#T!8@‚#T!8@‚#T!8@‚#T!8@‚#T!8`S§Nµy´téR­Ûó Óº põë׿™g”N›6-&&æþûïW†$%%iÝF˜ÁhÙ²eË–-•Θ1ãÖ[o8q¢Ö킵ÐU UŽ˜Grrò°aÃ6nÜX·nݺuëÊCî»ï>ûqX¦LåŸ;vìèÑ£Gåʕ˕+×±cÇ+Vhý& _GLåðáÃééé/^¼ýöÛ yÙ²e5Ú²eKïÞ½¸ÿþôôôÙ³gký& S\ãÀMl¦áÒ%!q_ýõ˜1c^|ñÅBÊCׯ_â‰'ªW¯¾víÚˆˆ!Ä«¯¾Ú¦M›ÿûß÷Ýw_hh¨†ëúDÅ€›HBÒðÿ¢·¿B… jR£bóæÍYYY#GŽ”S£¢xñâC† Ù¿ÿ¦M›´ÞÐ#‚#¦’ššª&5 !vïÞ-„èÛ·¯ýó ûöí+„8tèÖïzDW5¦ãy„œœùbÅŠ !&NœX»vm‡qjÔ¨¡õû€0¹‚‚ûfeeÉT©REžž®¼ú×_mß¾½Ðô k¢«3‹ŒŒÜ¹sg~~¾üÏÕ«WoܸQþ»^½z©©©“&M:þ¼<$;;»S§NÆ ‹ŒŒÔºáÐ#*Ž˜ÙwÞ9eÊ”.]ºtëÖmÿþýï¾û®RM ›2eÊ=÷ÜS·nÝ^½zåææ.\¸ððáógÏæ–j¸DpÀÌÆ/IÒüùó—.]*IRÏž=k×®=yòdùÕŽ;®_¿~ôèÑ3gÎÌÉÉ©[·îôéÓ;tè u«¡S6IòÃÿ°—ššš™™©u+žXð³úòåË—/_.W®œÖ Ñv î?2*ŽXBTTTTT”Ö­€±qs T!8@‚#T!8@‚#T!8@‚#T!8@‚#T!8@‚#Æ0f̛ͶvíZç—Ú´ic³Ù´n B$''ßwß}Z·B!þüóO›Í6gέb*G °Z¶l¡u+|Ѹqc›“ *hÝ.€fŽ€?ýóÏ?ááრÒù<ÕØ·o_TTT½›Õ¬Y3ÈÍèG˜Ö Ì&//¯  @ÿóôìܹsgÏžíÕ«½<€¡åçç !BCC}xU· $I2\³ÍŠ#öíÛ'„¨R¥ŠÖ à‹äääaƽóÎ;111ÅŠ«]»öóÏ?ýúu5¯ !vìØÑ£GÊ•+—+W®cÇŽ+V¬p˜óÆëÖ­[·n]w X¿~}zzzlll5†~õêUå¥ 6tîܹ|ùò ;wÞ°aƒýÌ®8p`™2eìýá‡ÆÅÅ………U¬XññÇ¿xñ¢2ò¯¿þÚ¡Cy¡#GŽ´Gð‚#à7=öX¥J•„3f̰Ùl~ø¡òÒµk×^|ñÅÆ—,Y²Zµj'N´¯ ^¿~ýå—_nÚ´i©R¥j×®ýÐCýóÏ?žç¹fÍšîÝ»—/_¾xñâ•+WîÑ£Çï¿ÿîÇ÷²wï^ApŒlÞ¼yC† iÕªÕsÏ=W¶lÙ7ß|³C‡’$úê²eË5j´eË–Þ½{8pÿþýééé³gÏVæ|øðáôôô‹/Þ~ûí.½mÛ¶:+VlðàÁåÊ•›|¸üÒ‚ Ú¶m»mÛ¶ŒŒŒvíÚÍœ9óÁÔz#˜‘«ZµªÖM€6~þùç×^{MÑ´iÓwÞygÇŽ’$µhÑ¢X±b:t¨P¡Âƒ>øÀDGG !Æ/OuæÌ™´´4!D5z÷îݨQ#!D||ü–-[ÜÍsÅŠÅ‹/V¬Xzzúý÷ßß²eˈˆˆmÛ¶ùë½È }õÕWÛ´iS©R¥®]»®_¿^ëu ø?«_yå!Äš5kœ_jݺµý9=))ÉþsF’¤‘#G !fÍšåùÕœœœ*Uª¤¥¥]¹rE~éÚµkM›6MIIÉËËS¦3fL~~¾ËFÊ#Lœ8QòÌ3Ï!>üðÜœœää䤤¤S§NÉ/:u*111%%%''Gž¶gÏžös{ðÁcbbìç<þ|ùŸµk×®T©’ÜÈÄÄÄ *9rD~õèÑ£ BˆÙ³gºb}ØŒ¸ÿøÁÑÿ,»3A’¤#GŽ!yäeH‹-„õêÕ;}ú´®_¿.¿êAXXØåË—=¿*§É‰'Ö®]Ûa„5jÈÄÄÄxÛò°°°%JH’$„pxP¹|stnn®Ë srrìÿY¢D wówž³çt ߀+^¼xéÒ¥]¾tàÀ!IJeË–-[æüêáÇ]Nµoß¾‘#G.[¶ìÒ¥KÅŠ«^½zµjÕ¶mÛæ®ö÷3ÅwÜ1a„íÛ·7¢ÛöíÛÛ´ic?<77÷¯¿þ’KwŠ¿þú+77WI“W¯^ݵk—Ü£íáUù–¸èèèôôtûYmß¾]}^ܹsg^^žRt”g~çwÊ3ß¾}ûwÜ¡Œ,v¥¦¦Êÿtxô˜\¤,Ô¿þõ/!ÄŸþ©¼A!Ä–-[‚¸q¬‚0œ‡ß“¯Ý~ùå—]^J2xð`çI.]ºÔ¸qãüqذa;wî¼råÊ–-[^}õU?6X’¤üü|ç'Gʧw!@ 5oÞ<&&æõ×_Wzœ…¹¹¹C‡=þüÝwßm?ò©S§äËecÇŽÍÎÎîÞ½»çWëÕ«—šš:iÒ¤óçÏË/eggwêÔiذa‘‘‘*ÛyüøñiÓ¦)ÿ|õÕW³³³322êׯ_¹råÉ“'Ÿ;wN~éìÙ³o¿ývbb¢Ü­¹sçNåÒšÕ«WoܸQÍëׯŸ’’òöÛo;vLyƒS§NÕxƒ™G@KÕ«WBüòË/Ãß}÷ÝÝ»w3&66Öá¥5kÖœ={ö…^°‹gΜñ°”ˆˆ]ÕGŽ©X±¢ý¬¬¬ÔÔÔ;î¸Ã¡aòåçU AS¶lÙ?þ¸wïÞÕ«WïØ±crrò¹sçV¯^ý÷ß·mÛö…^°¹B… £G^·n]ݺuûí·eË–5mÚtÀ€ž_ ™2eÊ=÷ÜS·nÝ^½zåææ.\¸ððáógÏVÿÀíÈÈÈáǯY³¦fÍšëÖ­[±bEzzz=„“'OîÝ»wýúõ{õê%IÒœ9sŽ=:oÞ¼âÅ‹ !î¼óÎ)S¦téÒ¥[·nû÷ï÷ÝwU–9ÃÃÃßzë­^½z¥¥¥õîÝ;<<|Μ9î.ûFQÿóÒÄÇÇgddÌš5ëwÞ‘o¯B,Z´èÉ'Ÿ¬]»¶}jTæ)×/å{kd.\5j”¸ñ#Î^{í57Ç”*UÊaHÕªU[´h±jÕª3f<òÈ#òÀß~ûmÒ¤I•+W¾÷Þ{µ^Á€uõèÑ㯿þ;vì¦M›V¬X[¥J•×^{­oß¾—ô5iÒdذa/½ôÒÔ©S+T¨ðÌ3ÏŒ;VÇë;v\¿~ýèÑ£gΜ™““S·nÝéÓ§wèÐA}#Ÿ|òÉäää/¾øbÙ²eIII£G~饗”öÿú믯¾úêçŸ.„HKK›7ožr«Ÿü„ ùóç/]ºT’¤ž={Ö®]Û¾2êA÷îÝW®\ùꫯ~ùå—çÎ+]ºôÌ™3'?Ðú¶n²ì-ú$Iî‰}úé§åGf´hÑB¾$Ü^­ZµÊ—//ÿ}äÈù˜:uêôïß¿C‡!!!%K–Ü´i“Ëy^ºtI¾šGþÜïß¿llì]wÝU¼xñøøxûÇúÅ–-[Ê—//„hРAß¾}›7oRªT©+Vh½Žÿ0÷guRRR·nÝ|{U.]ºtâÄ Ÿ'ÿ矮]»¦~|Ç£×8îèÑ£ 4Ž x3nܸ˜˜˜?þøï¿ÿV3IÅŠ·lÙ2bĈ°°° ìÝ»÷þûïß²e‹ò ‡yFEE-_¾<##ãСCŸ~úé‘#G¦Núý÷ß¿øâ‹ùùù³fÍòË©[·îŸþ9`À€ãÇýõ×gÏž0`ÀŽ;Ú¶m«õ:`~QQQåÊ•óyò„„¹ï[=›¶Ï`2›$éõ©ú IÒ€6lØp÷ÝwOœ8QÍ$©©©™™™Z7à‰¹?«“““ëÕ«÷Í7ßøðª¥¦¦îÙ“éU 2÷þã×8â³Ï>³ÿýuô¯S§Nòôùðª5I’°ÙÅ´B=ÉÊÊšûl™2ežþy­Û =*ŽnM›6m×®]Ÿ|ò‰óÃJ€ÉÐ[­Áѵ-[¶LŸ>½ÿþÍš5Û¹s§·“+?¤°æ%´˜€óiݲŽ.\½zõÙgŸ½õÖ[GŒáÛˆ‰Ž»¢£óiݲQ’àè›o¾yäÈ‘Y³fEDDhݽàæG6l˜5kÖ AƒêÖ­«u[t„àè(++KñÞ{ï¥Þ ÿ.û·ß~›ššÚ¥K­¸0cÆŒ&MšDGGW¨Pᡇ:}ú´'Ù½{·Ífûý÷ßµ~—pro5Ü¡«ÚQbbâ]wÝe?äÂ… kÖ¬IHHHKK“½ЕÿûßãÇŽŽnÕªÕÞ½{?ýôÓ;w®\¹2**Ê/“L›6Më·Ð­,ÛvìØQµjÕgžyFåø–ýáshbëÖ­!!!+VüçŸä!O?ý´âÉ'Ÿ,â$çÎûõ×_ $V¬_¿^ë÷ øŸÕP8ï …æ#Ëî?tUÆ6}úô‚‚‚±cÇ&$$ÈCÞzë­ØØØ¹sçe’Úµk·jÕêÃ?Ôú-ô‚àÖÅ‹Ÿzê©ÚµkÇÆÆvêÔé‡~9r¤ÍfûóÏ?ý2ÿ_ý5$$Äþúа°°N:þøã:uê<÷Üsò7ß|sÖ¬YgΜq9É”)SòóóÝÍpРA%K–´råÊ!Dtt´Ã˜ò¬Ÿ={Öy&>L˜Í&ªVÕº€@Ù½{w^^^‡lv_Z###›4i²xñb—“Œ5êÚµkîfاO‡àk³Ù.]ºä0fvv¶¸QDtàÃ$€ÉÈ¿)gÕ_Œ3‰‚‚I’BCCºw¿@hetUràÀ!D… †;Q\½zÕÃC*V¬è0~xxxllì¹sç†ËC\.ȇIÓ°ÙÌŸ6lØÐ¹sçòåË'$$tîÜyÆ òðž={†‡‡+_çÌ™c³ÙêÔ©£LøÌ3ÏØl¶Í›7ËÿܱcG=*W®\®\¹Ž;®X±B399yذa7n¬[·®‡_Y[¿~}zzzlll5†~õêÕB)\]9pàÀ2eÊØ/úÃ?Œ‹‹ «X±âã?~ñâEeä_ýµC‡òBGŽyýúu­7ˆÙ@‘vsüøq‡á'NœðãR*V¬xâÄ ‡ ˜™™)¿ä¯I#£¹Sã¢E‹š7o¾}ûöŒŒŒ>}úìØ±£yóæ‹-BtêÔ)//oõêÕò˜ò;vìP®œùå—_Ê—/_¯^=!IJeË5j´eË–Þ½{8pÿþýééé³gÏVtøðáôôô‹/Þ~ûí.[²mÛ¶:+VlðàÁåÊ•›UªTIKK»råŠ<òµkך6mš’’’——'I’ü¤…1cÆäçç»l‰<Âĉ•!Ï<óŒâÃ?ôÜHyÚž={ÚÏíÁŒ‰‰±ŸóüùóåÔ®]»R¥Jr#+T¨ |T=zTþ?{ölÏ+Öó‰Ûåv±ì¹žŠ#(åÊ•ëÓ§ÏæÍ›ß~ûmyˆ$I/¼ðÂÉ“'ÝMòÚk¯½áž|ÿŠƒ‡~8$$d̘1òEŠBˆ7Þxãøñã,V¬˜<äâÅ‹™™™r×¹ÊI3ñ¶{Z.LjòQlÚ´éÀC‡‹‹“‡ÄÅÅ :tÿþý[·n­X±b:uV®\)„8wîÜŽ;† µjÕ*!ÄêÕ« :wî,„ؼysVVÖÈ‘##""äù/^|È!û÷ïß´i“<¤B… /¾øbHˆÛ?tèP埯¼òJÉ’%¿ûî;ÏTó6SRRî½÷Þ[Ö–––&÷¿oÚ´éàÁƒÃ‡WzN*T¨ðÔSO}ÿ=nŽèÍ7ß\»víˆ#¾úê«jÕªmÙ²åäÉ“;vüñÇ]¦@ùK¹W'L˜ðÌ3ÏÔ­[7==}ïÞ½+W®lРr+·bñâÅ}úô©U«ÖöíÛUN˜†é/jTdee !.:”¯bÌÊÊjÔ¨Q§N&NœxîÜ9¹fÙ®]»-ZÈÁñ—_~ “Ÿö¿{÷n!Dß¾}ûöíë°ˆC‡5jÔH‘ššê!5 !jÕªö¿Œ•ššš••Uh# }›Uo¾^iÆž={„ 4°5--­è+–[dìQq¨råÊ›7o~øá‡ÏŸ?ÿóÏ?׫WoݺuòË~¼Y¦©©©sçÎ=uêÔ“O>¹råÊ[n¹Å¿“Fd©ó½$IBÛÍÏ”ï;ÎÍÍBtìØ±  `ÕªU«W¯®\¹råʕ۴i³mÛ¶óçÏÿòË/-Z´(]º´Bîy˜8qâN7n,Ï6&&ÆÛæ………•(Q¢ÐF:ËÉɱÿ§»Kzäœê0gÏéÖ›uË3ÿ‹Š#@k×®-Y²äŒ3ìîÚµ+66V¹IÐ/\Ö½{÷îÝ»·W“Ø›>}úôéÓƒ·Ö?±TjBT©RE±}ûö;î¸C¸mÛ6!Djjª¢yóæ¥J•Z¹rå† Zµj%„hݺuAAÁwß}·yóæ7ÞxÃ~>ÑÑÑéééÊ|þúë¯íÛ·«Ï‹;wîÌËËSŠŽW¯^ݵk×wÞYh#…ö³’‹”…ú׿þ%„øóÏ?[·n­ ܲe‹¶Å|¨8ôøã7iÒäàÁƒÊŸ~úióæÍ½zõò×÷`άðØgõëׯ\¹òäÉ“•g&œ={öí·ßNLL”{lÃÃÃÛµk·xñâM›6ÉÁ±aÆÑÑÑãÇW.pBÔ«W/55uÒ¤IçÏŸ—‡dggwêÔiذa‘‘‘*süøñiÓ¦)ÿ|õÕW³³³322 mdddäÎ;•ŸBX½zõÆU¾ý”””·ß~ûرcòS§NM:Õ_«—¢£ŒŠ#@¯¾új=4hпÿ[n¹e×®]óçϯ\¹²òð~gúÈøþûïÿý÷öCBBBÆW¼xñÉ“'÷îÝ»~ýú½zõ’$iΜ9G7o^ñâÅå1;uêôÍ7ß!äàÚ²eËÅ‹ßzë­5kÖ”Ç ›2eÊ=÷ÜS·nÝ^½zåææ.\¸ððáógÏVÿÀíÈÈÈáǯY³¦fÍšëÖ­[±bEzzz=„žyçwN™2¥K—.ݺuÛ¿ÿ»ï¾«²ÌþÖ[oõêÕ+--­wïÞááásæÌágTýOëÛºMȲ·èÃ¥_~ù¥sçÎ ÅŠKHHèÛ·ï±cÇ´n`ZêOkFü¬–Çã,,,Lgݺu;vŒïرãï¿ÿn?‡Ã‡ !Ê–-« ™8q¢bРAËÚ´iÓ]wÝU¾|ù2eÊ´nÝú§Ÿ~R^JJJêÖ­›‡v&%%=ûì³ï¿ÿ~Ó¦M£££k×®=zôèÜÜ\5¼råÊÓO?]±bEùjÅž={Ž3Æþq<‹¶X$I¿þúkûöíåkJ—.=oÞÀ ,~:‚ƒà0‚#ÀxH€&ŽP…»ªã—rcfffjªEïo|Fp‰;© ÷“qvÐbÑ6a“ ]Õðø¥ô4ô€à0‹§F@ކiŠŽôSÁ`”= 8ôŽÔh/øEG¿¯ÊÆEpè©Ð‚#cè+)7Á _”]!8tŠÔèA‹Ž”ŽàÜ"¾ÃÁ Gä•B®èH¹ÑŽÝ!5úDpè ©Q=)7šÁª:B¹Ñ[-:úksPn4 ‚#@/H€Î06]é£#8tr£YÑOm&G€öHEDÑÁAp.ø%ÍSn4‚#@c”ý‚¢#‚€àЩÑÄ(7šÁªš¡Üè_ºê­¦ÜhJGàˆL—ŽmMA'EGÊfEph€ÔÁS)zѱˆ±žr£‰ÁF¹0(‚#ðÊæFpåÆ ÐÉ-20‚# xHúW”mD¹ÑôŽ˜EGÁ$”Ír£0'ŠŽ„{xFpô¿={2µnè‰ÄÜ(7ZÁÑÿªVMå²€p¥#ü‹à¨`r£¹Qn´‚c @FjÔ–úó[ …"8Ù`z”-…àXdGGK8Á_ŽÇá Ð?ß">åF«!8Ù€5QnÔÎDð ‚cpÄL†r£ƒ‡ìÀR(7æCp *²#@+ÎA>¤|ÊÖDpøåFÀ”´n€åÈ_øø<`b|Êé–¿:¾(7ZÁQdG€V8û (èªÖ;0+¾›åF+#8j†ìŒ…àðʦG¹ÑâŽZ¢è „à¨1²#Ó Ühz”Ap…#5Bõ€¢# ÜXÁQÈŽ=£ÜwíüùóS¦LÙ¸qã‘#GÊ–-[«V­!C†¤¤¤hÝ.Ð#Ê€EPqt!;;»K—.³fÍB´iÓæ–[nY¼xq×®]wìØ¸…RtèåF(Ž.L›6íÔ©Sƒþþûï'Ož<{öì×_=//oìØ±].Ù€Qn¬ƒàèÂo¿ýñØc)CzôèQ¾|ù;wæççkÝ:‚‡r#ìq£ 111U«V-Q¢„ýÀâÅ‹_¿~ýúõë[´\tä»;£à# °‚£ 3gÎtòÇ:t¨^½zMè åF8 8z²yóæ¯¿þúÀ›7o®\¹ò›o¾©rÂÔÔT‡!™™™*§¥èÀ(ø°‚E8ŸÖ-‹àèIffæüùó%IBÔ¬Y³X±bê',ÊrÉŽÍQnT8ŸÖ-%¹9Æ“>}úìÚµkÍš5Ï=÷ÜÒ¥K322.]º¤u£@ø~ XÁ±6›­lÙ²=ôPïÞ½?¾téÒà,—GóĦâC¹.eee5jÉ’%ÃkÖ¬)„8qâ„Ö íQn44I’ªÄlTl9wU ù„è—s¢<žã2ä 1üö nFp„ž›- 'DöU”.R£þŸàÝ£«Úµ«W¯Î™3gþüùGŽ‰ŽŽ®ZµêC=Ô¼ys­ÛC@φ\\áëDϸ!¦Apt!//ïÁܲeKéÒ¥›6mzíÚµßÿ}Íš5O=õÔO<¡uë½ B‚!;Â@¸!fBptaîܹ[¶liРÁÇ!„ÈÊÊêß¿ÿ»ï¾Û¶mÛêÕ«kÝÀ€àL ¿Ú^ÄkUa<Úf<Ív¸ÆÑ…üQñïÿ[NBˆ*Uª <8??íÚµZ·Я Âs½#ôO—6þCptáÀQQQ5kÖ´X¥J!Äáǵn]q†Ït+L¡Øi¡gúJÜ «Ú…?ü0,ÌqÍìܹSqë­·jÝ:@w¨žh‹õ¯OúJ€Ÿ]¨Q£†Ãõë×ôÑGÅ‹ïÖ­›š9¤¦¦: ÉÌÌÔúm¡ùy‹  C¤F¿ÑÇî|Z·,‚c!òóó¿úê« &äççOš4)..NÍTƉú8Ba:Ù[Øo¡+&LÞ£ΧuËFI‚£'¿ÿþû˜1cöíÛW¡B…ñãÇ7kÖLëpͲÙÑšï€VŽ®]¿~}âĉ_~ùe‰%† òðÃ+wX›žeOÀðû àL§åFC× 9-é ÁÑ…‚‚‚#FüôÓOíÛ·ùå—Ë•+§u‹ÝÑáǸO.V{¿ú§ÓÔøÁÑ…/¿üò§Ÿ~êÛ·ïË/¿¬u[=ÒíyЂÙúá"5Ê‹2ÇiùË!ã9ŽŽ$Iš9sfttôsÏ=§u[4\ <n‘Ìg®S£$q´Àd¨8::uêÔ¡C‡"""úõëçüj÷îÝû÷ï¯uÍè?5Z§èh‘·inS#üÅ:¶î9rDqõêÕ;v8¿j«9HáÌ(»{/‚É©‘.føÁÑQýúõûF pôv*ôÀ©ð+®q„[\éã2ýÞK8ÑÇÔ¨ÕO¶| ¬à pæ>~À­0fú¯ƒApPƒ¦FŸe ºELæåFÓ;GxbâS/Tâ„8»)5ê¼ÐÈ1ð+‚#·Œžùæƒ@øoj´f¡‘Ë-àˆBpê…¡™o¶`VÑ›°I6#MÉ|dzQ8Uk" þ›‰Œ°0žãÀ3¥F3=ÜoÄ·o™zWBØl6IÈÿVFp„*f:õ¢Plk¨å}ÛuÜÅMÍwÄ ³43rg üàà&¦Læøæ£—·`òüÕ wóÑ*P*Ë•$áòça sÌFFp„Z­€¥Ýœ¥‚$8ÒcÝ”ÔèH¢iiGÿcâï|óñ‘&y±PÞJßæFjœáN½æÆÆÕ3 ¶ŽÂŒµOøµµ¤FÀã „5R#–RKy´µé÷ ëÀ©Ñ¬ÊÉš"8Â;°@ð5Ö[>2 s¤F 0Ž,Qn”ñÍÇkþ†žój 5Š´0®q„׸ÒÑdØš0äåŒAj<£â_P¶1 ¦FÃí½ßFôM+k‚Ôh†;ŒM„àqØf`Á¯n˜-5šõÎhà"•e3ƒ¾öpqE£³¥F `¸Æ¾ó×ÅŽ.Oáö§vNm@f°46¿R# ÁERÄìèùŠ|e8îû±Á÷xª…úçADjô‘æ? G¡Ñ<,tëÁ~´;Z ­qjèðÔãÿöèíj‡ÔÁ„óÝÖ^aEYþR£Ÿi~c5´ÀÀaxz˜³†èjòó–bÃß@jü‚à3ÐÕ‰_‡FgómÿfÃß`­ÔHDpDÀ©9çùx^´Cvt‡ð †NöwK’$ÏLj‹WÙð7X+5ZN]+!8"àÔœó$œáø¡yNzŽ#G©Q^ ÂFjü‹›c ò9Ïe:ôWj¼± nµ¾ ùA=n¯v÷E%@ëÜåqäß#ÈLˆŒÁÀý1ÖCpDíœÇ­Ö V‚·¼ÊŽÆôíG8ÕLâp¹>‚Øð¤F `èªFð8ôµ´RB·5á! ü»z½š›r‘Ý!5Z ÷ÁEpDPrÎóó²¬ûaBxð™šÝ¦ÐÕëÕ¾çÃÆr{í‡å7<5ÒqŒ@#8"Ø<\ï€eY1;Z><•çÝFuŸ²ª}Ï·%AŽ÷ÊX~ÃË‘ÑÒ©<‚#‚Íõ9/`¬™QD~Ùm IQR£Pñ¼K±z¡‚#‚J“sž¥²£å«N~#ï6E,ê¹Û÷ä9%5Þ˜ÿãÈÚžÔ¨%ùÆjÛ`¥Oy­qW5‚Çå9/˜}Ö¦?±Zá=“Ãú¾­^—g4ß6“ËãE²ÈÎí†MØ„¤F hŽwç<²£¿˜ûÝiÈ/-ú¦ñ|¤XóiŽqg ®jƒ‡³Zðû¬MÙ¡Aj (IÒqj´Ù„$YðzGR#  ‚#®ÐZH³£ù.†!5šžšj¢u*Ža€B# 7G@»Ò£Ðw|´L`(4zDpþGÏ=×úµ}î þ}‹½"8ŽtØsm¨ü…FC’ôq‘%—9ÁpÁ¾çZhš õa¡1SŸ)4úN¡ Ö@pÜRNÐZ¥7S‡à&C 8… ~’B#\0é7 €µ "0ÁŽÈë 2Âÿ¸Ì1ÀŽ€×œ¤(ZÔó×|`f¦;Ò7 ÁðýyÜù—¯ÝåÕ ˜…F?ÓÉ1:¹±FpüÃ9ü9Dwc…0K¹‘ÈÁSœè¿¡oAÂeŽDp}3þ)B#`G@ “!8€Ž¶ÜHdL‰àð'"cPq#³K\æ0GhÇÝ]Çö8ìaeF;ó­Ž'òXÁAçÕï®òGZl6›d¨³2 [DFÀ"Ž"~M/?ó'IR¡Ù‘p ͤÜHd,…àˆ`)âYÐ>A+;’ƒÄóE l½"2B׸Ì10Ž< ÈŸþ›¡»ìHj ,õ¿Ïí+Ù(:@dÔ .(DÐ`øÂ'ÏÐñÑ9;’B}X´ç0f /{Õ½VJˆŒ€ÅH=ùù5>ÚgGR£Ÿù7ê9\öÊ– 9/ "# ÅÕfGpDÀ§d¢ÄG?eGù ¬ó tiÐß…gÑS¹‘# ŒË€àˆÀò±êï Q$ÁÜ&ŽZ#2pFpDhò ¯È¥Gºªý@«ç¿Â³ö´~ôJ=ÂÐÁþ¦íiÏ×Ò£}XTó|GÜD'7¬Ð-U4”Šà¿ÒÃi[uñÉC‰‘ëÕÒ[1-x#ÌŒï“þFp„ÿèêàTñaA:,Ýæ3Cw[±ÙäE 7V›ÁæU„â×;z¢ÛÈh2ƒäEEAp„Ÿèæ$­œ…P¾òºÿE;Éi’Ãÿ;P⯛éfCÎpÙ1­%/š %=h„àðéÙ&lêGv}^,¬……–½jCáí1"C.;úyàsÀ¿Ž(2žc™Îy…u[z½£ÏmP™8u}^7bdTèõœ¸« ìw9]ïW ˆàˆ`s¤‚qzÓèž •o­Ð|©M0tdTè2;:>õÉU ½ —ÁEsãl§¾‡W㳚› ¡ùÝ0…®–€eֈƌ CdÇ›©Ù).²­ wû÷ïOMMݺu«Ö Ñ;ùhŽÿKB’ÿ6ñß?4'gÛÿθÎOÿÖº‰®Z}cMºüßyÍÛÿïÝ’ä‰ä#ÀÜío¾‰¹<¾tqd IøzYx€Ú# ]~°ÇB|ùå—Z7AÇl6!IÿË%’6××êî¡6vÝÖîžþ­¯ú†<æÙÑqBý•åüF—EG!_V{sÃv?ÊŠpÄ-ÕÐÁѵììì={ö|÷Ýw³gÏÖº-ºsSR¶›Îd’‹Œ¨ß&IÂf“\¿b¼ìèéº?É8fJI_*§×ì(n¾XâOƒ’[m¾ À°Ž®uíÚõøñãZ·BG\œÆÜœ€"—žã×ÿÚæê½˜,;º# ·÷›ûªÊ ½aÝeG›°Ýô¾H*n2sÿþ·j< ý»t€Ëýàh-rdôýì[Ø!çòTgàì(Œ¹ŒÞþ€Òü,¢î&37ÓÊ#ú½ Cp´„àüˆ­‡“œQ³£0rÏ5‘Qßlnž!jÏSjôjÃMÃDW  Žfæç¼è1<š ™íZo¤f ¦jN»¢£üß@Sâ#»,Kó~ã#8šSQ»¤½gì\¨î ¡ûL¦óæÁžÏg¯"&?sÝë ÈަÀ.i¾¢Éô••~šd ƪ@ø%ó‘ìifDp4‰à—-Í>> íâšæ @ùñ,qÉ#_ó~}KMM Úsƒs׋‘ê1šr€#/Bwr߈â !1âÆÒg›ýq¼ó\¯+TŠ£Ž(@täE‹ Ð ˜ÎDÞ 8O°#£qÊ…ÞÙðG9'H‡áêÛæ|¿­A¶‚QéüJÇ€f;²#ÕŽFB•Ñ3ÏO‹ êƒ$¤â©+’ÃhNM5êƒ0adGêA³È¨çŒ+ƩKõ¢Ýµ“Ô A+:z»”àD:²#¬Cç= ú¢uP›°Ù„M…F•äìh?Ä@©Ë¹ñÆj?ü0™A÷åþ}˜ÁQ¿´Œ†ýBf¿ —º²£áÚã 0G=Ò>2Ÿ¿ šº”ìhÐöXðPoÈŽ°v_q£¾èèö—À•=ª:xëzàùF˜WG–&½“\ìÀ=‚£^è(2ø}ò•XY´5¡¤.ƒÆ/¹Ùm¼±qÕ¼ ;p‹®j]°JÇ´šS‘tãÛÿ}XŽ]Þry»‰Î)í7bãaôYë 9ºApÔ˜r9£Ö qhV*.Þ~ðùš «tÆŠ_í7VãM"p?鿟°.sô ÁQ3Öº¦(§@o¤»¾]£Ä/—í7Jãa6áìHæBpÔ€Þ#£ßËþ*œ8$H ÷tE þã—‡öë¿ñ0'NùnFp 6]GÆÀ¼aÿ¿WWH5÷‘èùF“BÛOv *Íû°ôÓOMv„‰i~¤wU1î›öo¹1 '?eÎ6!ô U½í7ú{´:nÖ†oôó- 8‡1"cÞvÞ±tcq‚W x:€èª8#õMº"R䇸7ѰK‡)k˜½Õ^¢â@-4j˾ÿšý0ô·2¸Šc ©Ð˜÷¯ñ[—(=˜4?vܡ蟱ó˜ÁÑÿödîÑã3½ e¾ŠˆD|DÑЇå€Óðéö‹„™p¤{ƒàèUS«/5šñ?!8Ba¨§ðøF¢Xí¨?¾txì8à8¬à+¡ôoчåŒìXÁ(7Ú£ôÀ(tþqj&|ETàK¢ôõ8£8ãÛ`UGX¥Gè±ÊK>ð ;ŒY-ÏRýÔÎ(="ÐÌ÷ +À”è[P‡àË£ôˆBqFq‰'  ÷=Ö@p´6‹—íQz|@v,†àÜ@é2ô÷.Àè[PàÜŒì?²ÂŽ2€•-Œ~jw趆3J&3}¢Â\Ž€+t[êq°@ Cì'|E, ÁѪ¬ÐƒVt”• ‘ Áþ`â^JA€áPtôˆàhI”½Eé>°ÚÆW,á‹tŒà¨CéÔ!XÁð¥GÀ¾\Áø–èÁÑz¬Ö}æw”8:S#8¢È¬y9¥Gø‹5 Xß+Œàh1”ýH">Zú,+k„ƒ¢à‹„NÐ[íF˜Ö Nþˆ·Ùý €IQqüê#`¢#L€¢£+T­$}gôªØ³¯> Ö Tà`(T“n.@ò}Õd(B¨DÑÑ|‘€îQq´ +_ª¯e}Û\ „‰q¸É$’ Nþ¢Èál‡àžýgŽÍýK`z|08‚#Š€ƒßkÌVØ€¡‘`toFp´vzÝrÞ,DIë QÁûŒ€àèL¡Q’S‹æ¨@x…¢#`"G à gtž{·Ù¶zØ ßí£!GÂp(:fAp4»À}Iâ4 îr$[Gç8‚`ýAç(:ÞÀÀsq~ü8aî-ž;ƒ‘QqLÊÝÃ#Íñ…YýYÇï×è°†¡QtBMŽ]2„HŸ/å òûå ƒÈÓ0‚#|ÂÇœq(Dú¥yï7o“>kõ(:ÂÐ(:ÍÌò;7 §·ßB tü›Z”Ë9ÐXÁ€B‹§ühò9~ÏŽ>¿w˦MŠŽ04Ë Ž&eíÝ~Pèoj»Søi€¾5‚ ôƒ½†Âãx¨ ¹ÿßæñjûv¸.QC¬z°öÓ¸¨8šQ Ë|?†=ƒî ÔµÅúŒ‰Š#«2tÍæ@z6( _ FphàÁÑt¸-PìÞ 8@pÑ;© ¸FCp4— ”9çÁdÈ.Ð §0 ‚#@;wÀPŽ&ÂÕ€oÈ.@ðqÜÁ )kú©aLG³ ÜÀ¸¬™"8ÁT!8šBÐÊô­EÄA䎥²;» ‹àB‹ð ÁÑø¸º€9ÝÝ#8©Œ…~j_ ˆà7pÓ›Ð7‚£‘Qn`>dG@ÇŽPîX©Å) ŽàhX”Ã!4¨D|ôŠàUŽÆD¹€¹™²èHÉÆ¦uôkÞ¼ysçÎÝ»woddäwÜ1räÈ2eÊhÝ(!©0‰¼>°!¬€­l4T]›|X³–Qn‚†°¢+&Ø|m€YpWµ£+W®äççÇÄÄ8 /]º´âìÙ³jf’ššê0$33³HÍ"5 çÓºeÉ·NGEE9 /Y²¤âÂ… jfRÔ˜¨7|W -C?´Å¸-#l\çÓºe£$]ÕŽbbbl6Û•+W†_ºtIܨ;åF GGaaa¥K—v®,fgg !”û¬ƒ‡ÔÂW:ÆGpt!>>þÌ™3rRT8p@~)¨M!5Z!¦è7Šî;a¯]h×®]~~þêÕ«•!’$­ZµªL™2iiiÁk©0 ÒS 8ºpß}÷…„„¼óÎ;òuBˆ>úèôéÓ÷Þ{oxxxAjgÆ*:ò…¦Cpt!!!aäÈ‘û÷ï¿ûî»_~ùå|pòäÉ5kÖ|ôÑGƒÔ]¥F>øT³ìMv`Ó•ž²#›VÃãx\{衇ʖ-»páÂÅ‹W¨P¡ÿþC‡•ŸÈpºJßð­fDpt«k×®]»v ê"m6!©Ð #<^΢Ø4&Ã5‚£>À+:znPG­€Aý/sÏžÿÆA™C(´Ý|Q7‘0=ŠO¢Û¢£>[øƒM"¸ø›ÃMv™{öÜôjÕªZ7Ð ™{2S«rÏ ¬Ë/‡ÇQ@épõê°IúgÄ•æüÖV@p€*<Ǫ  Áª  Áª  Áª  Áª  Áª  Áª  Áª„iÝÓÚ¿§NæÎ[·n]­Û?›7oÞܹs÷îÝyÇwŒ9²L™2ÆïÙ³çöíÛÆÅÅ­]»Vë·‚"ñvO€±p¤Ã+Ÿâ Žòå—_jÝÄäÉ“?øàƒ¨¨¨Fú(>>~þüùåÊ•BŒ7î‹/¾xë­·Fír’ììì .têÔiÊ”)Z7~ãÞáH‡Kœâ×8ú]×®]ûõëgå]ÊÜæÎ[PP0tèPù\"„xþùçK—.½dÉ’‚‚—“:tHáP„€Ñù°'À@8Òá§xApô»qãÆ½÷Þ{ï½÷^³fÍ´n üï?þ iݺµ2$44´U«VgΜٴi“ËI<(„HLLÔºíð'öG:\â/èªö»-ZÈüüóÏZ·~&IÒÞ½{ccccccí‡W­ZUqøðᆠ:O%ŸNŽ;6`À€]»vEFFÖ¨QcðàÁ¼¤Ú4|Û`ép‡S¼ â¨wåÊ•üü|çKÝK—.-„8{ö¬Ë©>,„˜:uêÉ“'›6m÷óÏ?gddÌ;Wë7ù¶'À(8Ò¨8j]½zUå0¼dÉ’Bˆ .¸œêرcÇ0`€ûÌaH³fÍî¿ÿþ3f,_¾\9ÇÀ@|Û`é€G_äææÚ?p¡xñâG“q¹‰ÃÂÂJ—.í\oÈÎÎB(w_ªÑ¸qã3fìÙ³Gë7 _øqO€q¤}‘™™©u+@î6q||üÞ½{³³³K•*¥ úè£Ê8«V­6lX•*U¾ÿþ{!ÄK/½ôðÿøâ‹³fÍJIIù矶lÙùúë¯ó£ÆÆ¥fO€qq¤îPq¼óÐC½õÖ[ÉÉÉ‹/>{ölÿþý¿øâ çG¾)ªU«öÍ7ßtëÖíôéÓK—.½páB·nݾÿþûÛo¿]ë·‚"ñvO€±p¤.Ù$IÒº 0*ŽP…àUŽP…àUŽP…àUŽP…àUŽP…àUŽP…àUŽP…àUŽP…àUŽP…àUŽP…àUŽP…àUŽP…àUŽP…àUŽP…àUŽP…àUŽP…àUŽP…àUŽP…àUŽP…àUŽPåÿumÊr°ŠÖÝIEND®B`‚statistics-release-1.6.3/docs/assets/regress_gp_601.png000066400000000000000000000637011456127120000230240ustar00rootroot00000000000000‰PNG  IHDRhŽ\­AgˆIDATxÚíÝw|SõþÇñoJ]PJi™]÷Ò°KÙ{cÙ**Š WÙ¨¨È¸€ ².*"¸áÇÁ"Cö¡,¡”!CVJ™¥ãüþ8z Išœ¦IÎIòz>ø£99çä{VΛÏ÷œƒ$I°ÇOëÀ3  Áª  Áª  ÁQ_¶mÛ6pà@£ÑRªT©† >õÔS;vì°óÈ‘#kBBBêÔ©óüóÏŸ?^ë¥Ñ¯¹sçÊ««^½zZ·ÅÁÖ~ÿý÷«V­ZµjUZZš2p̘1ò˜>úh~?%¯=Ê`0øùùƾ}û8p@Í$E‹ŠŠêÝ»÷ÁƒU~„bÔ¨QV›WEÓ–®Z>iÒ$¹1:tк-Z.Ë7 P¾|yÿÛ·o»¢…V7½Õ# Öþõ"##ã±ÇkÖ¬ÙÇ|üøñ[·n]»vm÷îÝ_~ùe“&M:vìxõêU5ó¹uëÖ¾}ûæÍ›W¹råuëÖi½Xp•>}útíÚµk×®fáÌ$I:~üø¢E‹š4i²aûãß¿ÿܹsK–,©_¿þܹsµ^U€¹Ñ£GÏŸ?ÿÂ… 999·nÝrçG»óÈõD¬ýó׺Bˆ›7o6oÞÜ´œãççg0rrrä—kÖ¬yä‘G6lØP¬X1ËÉ###„YYY/^ÌÍÍBܾ}ûùçŸ?|øpPPÖ˧;!!!111Bˆ²eËjÝ=¶VÙ£„ÙÙÙiii™™™BˆÛ·o1"99Ùö$ׯ_¿qã†"33óå—_nݺu¥J•lŒoªdÉ’îYFø²Ÿ~úIþ£Y³f>úh‘"E´nà1¨8ê‹/¾¨¤ÆæÍ›oÚ´)==ýîÝ»ÉÉÉ={ö”‡ïرcܸqV'_¸páéÓ§OŸ>}þüù7nôïß_þûï¿oܸQë…Ó£¾}ûÊkìÛo¿Õº-zl­²G>}úܹs×®]ëÝ»·üÖN:e{’ôôôuëÖÉÿÉÉÊÊš7ožíñM½þúëš­høŒË—/˼úê«Ã† +\¸°Ö-RåôéÓòá µwðàÁ È÷îÝ{Æ -Z´ )\¸pBBÂ’%Kžzê)ùÝ%K–Ø[ppðû￯|;v,¯1M¯¿ÉÎÎ~ë­·*T¨ðÖ[o)#\¾|yÈ!7 ù׿þõØcíÛ·Ïr>'NœxôÑGK•*Ó¿ÿ .Œ=Zžó˜1cœøYYYY}ôQÓ¦MË•+\£F'Ÿ|Òìª;•£åuãíÛ·ÇŽÛ®]»ÈÈÈÈÈȶmÛ¾þúëy­·ëׯ1¢^½z!!!µjÕšƒÀ> ZûÏþ#o‹bÅŠýñÇ–#\¼xñé¿]¹rExøðae#®_¿Þl’råÊÉo½öÚky}®J„]»vU²é›o¾)¿»aÆÈÈH³½Å`0 >Üt&Û·o7'..N©’*s+øgÝ»w¯~ýú–;°Á`øàƒò;ÚG}$¯[·®2pÏž=ÿú׿,§­X±âæÍ›-×[Ë–-«T©b6r=òZáŸ~ú©ÜM›6Y¶öµ×^³lä­[·ÌÚV¹re³q¦OŸnc?´½G™–®Ož<©f’®]»Êo½øâ‹jÆ·Ít’‡(§Ï%J9rDSÍîdc‡Ì×öÍïgÙX@å¨1Ó½{wÇö½_~ù¥L™2¦#„„„tìØQþ»}ûövWµšOqõQ“ße±»E”ÝÒÔ±cÇØ fT©Ê9Òê˜6Ž\[¡uëÖ–k¸ÿþïù$¯9(ÇX… ”YÉÇØ7”@ÓºuëqãÆõéÓÇÏÏÏlžwïÞUj‘"E7n¬¼4ûV*øg)sxä‘G^~ùå ÈCüýý=š¯Ñ,ƒã;wäë…ÅŠKJJêØ±c`` <¤L™2f!‹ŽŽnР鵧{ö챺ÂÏ;§ŒsùòeI’NŸ>m:« .H’´ÿ~ùePPPff¦ek¯^½zâÄ ¥m_|ñʼn'rss-Û—˜˜¨ì E‹•g˜ß=êÎ;½zõ2[c6&IOOÿä“OäÏõ÷÷ÿõ×_í~„]fçàµk×Ê;‰¿¿ÿºuë”Ñò»;Yîê·o~?ËFpT: CëÖ­ûõëW½zuå7lØß}/333::ZÙó6l¨ìÞ25ÁÑá¨Éײ¨Ù"6‚c~·B~ƒ£#×îVˆˆˆhÞ¼ypp°2dÍš5Ží<–û¼»ŸŸŸ_BBBXX˜Ùš¬R¥Jùòå•—­ZµR¿il¬'×¶O Pƒà¨±ÜÜ\å¼>vìXõZ=gee=zôá‡VÞRÎÙ–L¿ªV­º`Á‚]»vÉÅ$å:3ÓÿnΞ=[%™>}º<¤D‰ûöí“$)''ç¹çž3;bòYMš4‘‡Lœ8Q­]»vòÀÙ³gçk4Ëà8~üxyHñâÅ•sØÁƒ•ÿX+µ[ÓeQfxôèQå,hãÿ¯F£Qç»ï¾“$iÙ²eò—µïÀ~øáI’î߿ߺukeàÌ™3%IÊÉÉyöÙgå!áááNÙ4?®Už ÁQc×®]Svt³êà{ï½',lÛ¶M~×î9XÑ¥K­cf]äµk×–ßZ»v­2ðÖ­[JÆ=pà€$I 6”_¾ñÆÊhwî܉ˆˆ‡[G‡?KÍh4~òÉ'—.]’$éÒ¥K‡>|øðÅ‹Íæf{4Ë(¦ôb(m–MžŸß9˜~Í™3GªTO•'Áùûû;eÓü¸Vyj€<ŽGcJ-GáÜçV¯^}Ö¬YjÆLLL4ëb>~ü¸üGRR’ÕIRSSkÖ¬iu´€€€¤¤¤¯¾úʹŸ•””$_’’òì³Ï †ÄÄÄ:téÒÅôÊ•£YJII±ÚŒ‡zHþÏnjjjnn®Ò9"„0»ðH©)×Ý[j×®Ýûï¿/„ؽ{·B¾À¿AƒW®\ùöÛo÷îÝ« ”GV³ù¬2}üMpppùòåÏœ9#„Pðä€cÇŽµnÝzçÎ!!!–ïš>^'33Sþ^þå—_êÔ©³}ûvË‹´¬>ŽÇ²çËÒúõë•¿-5¥rwR^Zî »Û7¿Ÿeƒ<‡ëׯ¯]»vïÞ½û÷ïÿå—_nÞ¼™×øêÛfúpì"EŠ<ôÐC¦hÛì~Š{ŽõËRÀ-’ß­àÕ«W¯X±¢Y#…’$:uªjÕªùm¶å>Ÿß9˜vF+Gq¹rå”ÎËC»€›¦àǵçX"8j¬hÑ¢¥K—–#ãÑ£GMß*^¼¸r)Ï•+Wîܹ“×LLÏÁþþþU«Vmܸñ!C¬>ôÑ’ÙeÎvŸˆ{õêÕŒŒ ¥\jvˆš~Í9峄ãÇÏÈȘ?¾ü4 I’öíÛ·oß¾I“&5kÖì믿–¯€Q9š™ŒŒ ù¹ƒÂâY‰ÊWä½{÷._¾lú®ò-iõ¥U-[¶ô÷÷ÏÎÎÞ³gONNί¿þ*„hРÁÅ‹¿ýöÛ_~ùåÞ½{rY®\¹rU«VU³ù¬2=U«l›©õë×·iÓFþûÎ;ß~ûíã?ž››{äÈ‘¹sçŽ9Òr’… *“È[­_¿~kÖ¬¹|ùrÿþý7oÞl{|ÇL™2eÀ€ÊFQ¿;)ÌvH+Í쥟eÃýû÷Gý¿ÿýO¹½7 ""ÂôVqõm»uë–2¡Ù=%6ŽMÖ€ŽõËRð-’ß­àfKX¢D yÍ_ºt©jÕªùm¶å>_ÀÝOföcª€›Æ)ǵc§XEpÔ^ëÖ­åk“W®\yåÊ¥ÿeÀ€ BdggGGGÛŽ<›} /^<$$DþïæO?ýg9IéÒ¥CBBŠ+vïÞ=!ÄÕ«WM Ê3ÒœõYBˆÂ… ¿ÿþûo¿ýöš5k¾ýöÛÕ«W_¿~]aëÖ­£FúüóÏÕf¦xñâÊwñÅ‹M—EyôL‘"E þÍR¼xñúõëïØ±###ãÛo¿•YÒ Aù÷!¯^½úí·ßÊÏ¿(H¹Ñ¹{÷îýá‡nݺUñÛo¿©™*<<|òäÉkÖ¬BlÙ²åÒ¥Kfç¿‚hÑ¢ÅÉ“'ÏŸ?ûöí1cÆÌŸ?_Y½*w'E~#µÂϲaÒ¤IòÃqqq#GŽlÒ¤IÕªU ôÉ'Ÿ8ж€€€"EŠÜ¿_qåÊ•ÿûßÊ[JÔ+8÷5ê—¥à[Ĺ[ÁY̾NïÞ½«<êH®,ä·Ù–û¼«¼€›Æ)ǵc§XÅsµ7tèPùÿj7nÜ2dˆò>Åܹs/\¸àÎ&)ßÎÙÙÙÿ2Q²dÉÐÐÐÐÐЀ€ùáyòh?ÿü³2mvvv¾ž:®æ³233/_¾|ùòåÌÌÌž={.X°àÊ•+ëÖ­Sº¶lÙ"„P9šUÊ%çÊOJ˜½¬T©’r¥`A´mÛVþCî³®Zµªrú‡~(ÿñÐC9ms:C©R¥ä?”o[»L+fOõ+ˆ¸¸¸o¾ùFyDègŸ}fúÓdjv'gµÄ‰Ÿ¥l÷>øà…^¨Y³¦¿¿¿Ã?7_¨P!åØ\»v­2\’$ËG넎š|-K·ˆÊ­ „’ôôtÓá.*L9rÄôû_~†€¢H‘"òÍæßyœ»ûYUÀMSÀÉ rj€%‚£ö6l8pà@ùïÅ‹7oÞ|Ë–-reþÀTî¨p%Ü|üñÇÒßOþúë¯K•*#ÿç¯E‹ò[Ó§O—Ÿ4.IÒo¼aö”™‚ÖÑ£GË”)S¦L™²eËžëæÍ›JG›’E~ýõׂüìSݺuå?L÷çÉ“'«,«äž£Fý²d‹¨ß JùîÝ»•kïV¬X‘ßP®òȽÿþË/¿,|ñâÅW_}UÞ¹sçB… |çqÅîgÉMcº~ x¬äÔKtUëÂÛo¿ýã?ÊykçÎ-Z´ðóó+R¤ˆr¶nÔ¨ÑÎ;Ý֞ѣGÏŸ?ÿúõë+W®lݺu‹-Ž9òÃ?Èï>\¾¤}ôèÑŸ~úéýû÷ÓÒÒêÔ©Ó Aƒ3gÎXý=º~VhhhddäåË—³³³›6mÚ©S§°°°ßÿ]ù >ù'jÖ¬©f4«^yå•Ï>ûìÌ™37nÜhÚ´i›6m *´~ýz9'•-[V)qPÆ •n!„ò,±ºuëž={Vþ[^Ûó •ÿwñßÿþ÷È‘#C† qéϦ)åü~ñ¬_¿~Ê^™™™/^TjçC‡uJ±ÖTáÂ…ÇŽ+?ãwݺukÖ¬‘3ŠÊ]×)œõYÁÁÁÁÁÁòÖ|öÙg-Zd0~üñG5¿§’—Q£FÉBJOOoÔ¨Qƒ ÒÒÒlüŽ”cÜsÔ¨_–‚lõ[Aé¸{÷nbbbbbâÕ«W•û„ìràÈ]±bElll•*U~ùå¹xïçç7a„|5»à ^ê7ÕõSÀc­ §X¡õmÝøË¥K—Z¶liuuéÒE¹ÌÅêãxòû,e™í§„|ûí·Vÿ6hÐ Ó'ÖΛ7Ïì[/88¸U«VòßV9ƱÏÚ¹sg^-[¶”r¦~4«¸Ù½{·ÕÂXttôÖ­[í®7ˇqä¥S§NÊÌW¬X!Tž`b9«­}üñÇMiöË1fmSî²Z¼xq^­²½G)W±bÅœœËIòÒ¸qcå·œûË1ÙÙÙÊÃó«V­š­~w²±Cækûð³ÊóÕqqqÊqôÔSO9ж§Ÿ~ÚlžAAAÊ%jÇ£æSÜsÔ¨_•_\VŸù¢r+˜6ÛtL¥*fûqrÖÎSÀ9(—š>hiÛ¶mJSó»iòZ?<ÖTž ]ÕzùóÏ?÷Ýw½zõŠŠŠ*Z´h©R¥š7oþù矯\¹2""Ân ʹ:wî|àÀçž{®víÚqqq>úèæÍ›çÌ™czÝñsÏ=·~ýúnݺ•+W®|ùòݺuÛ¾}{~Ÿn æ³6lxâĉ1cÆÔ«W¯\¹r… .Y²dÓ¦MçÏŸ¿qãÆ¢E‹æk4«êׯðàÁ1cÆ´iÓ&222<<¼uëÖo¼ñÆ¡C‡”'É9…é/¦G«#äeÆŒ?þxDDDPPPõêÕmÜÒèÊS0Î;§k¥FK•+W^°`$Iÿýïµ^ ð~G+Μ9#„ˆŽŽÖº!ašÝ–euëÖmҤɊ+²³³å!3f̨Y³fPPPXXXƒ .\(æ™g:uê$„hÙ²ell¬í‘KG+äàxñâÅ~ýúÕ«W¯E‹/¼ð´n@×äìèæÔ(«U«Vvvö¹sç„ãÆ>|xéÒ¥_}õÕ^xáæÍ›O<ñÄwß}'„1bÄøñã…S¦Lùâ‹/lìã¸ÀÑ*®q´B>ðfÍšÛ¨Q£?þøãçŸÞ¼yó¸qãzöì©fF£ÑlHJJŠÖ‹ðZ+VBœ>}:66ö«¯¾Š_»v­¿¿¿â•W^ ÿñÇ;wî\½zu¹8R¿~ýæÍ› !lŒ¬õ2éˆåiÝg­¸xñb@@ÀðáÃûõë'Ù±cÇ Aƒ&OžÜ´iÓråÊÙ1|RktÑÑô Ë={ö+VL‚Bˆ?ÿüSqçΫækdŸeyZ÷Ù(Ip´âóÏ?7Ò¸qã'Ÿ|rþüùëׯWÒ$ Ó°hû=® ÷•ÅÅÅ !J–,¹cÇŽuëÖ;v,55õÈ‘#ʵ–ò5²ï Ÿ:/\ã¨Výúõ…Ç׺!ݱŒ‰jž îDð÷÷¯P¡BfffçΛ5k¶fÍšJ•*1âèÑ£%J”°:U¾FGK’$åææÊOä7^¨P!!DHHˆÖ èK^ÅE·Õ÷íÛ·uëÖž={úûûoÞ¼yõêÕ3gÎ2dˆ2B^EÄmÛ¶©T-9s¦jÕªO=õ”Ùðýû÷ ¾¦`•íh膺cjjêO}Š/^»vm»#û³AHöÓ‘'î?N¡ÁCJ=•+W¦M›¶sçÎëׯW¬X1!!aðàÁeË–U3­Ñhäq< s|WCa¶3¨éªöÙý‡®jë"""Þ}÷]­[ÜŠ mãæ¨Bp€*G!è§VàUŽP…à@?µ*G¨Bp€*G¨Bp¾Ž U"8àÆoÈC@@@~çÖ¬Y³ÄÄDW·Ù=Ÿ·á·ªð$½{÷®P¡‚Ù@û'ô½{÷Nš4iâĉժUB*T¨P¡BNož{>Z!8àI^zé¥&Mš80áåË—W®\9tèPùå¦M›\Ñ<÷|ŠÓÑO­]Õà/÷ïßÏÍÍÕ¶ ¹¹¹999Z¯ XGpÀ{ܽ{wâĉUªT ŒŽŽ~î¹ç.]º$„xæ™g:uê$„hÙ²ell¬¢U«VÊÕ‡±±±C† 5jTñâÅ‹+Ö Aƒ~ø!;;{ôèÑUªT)^¼x«V­~ûí7åSf̘Q³fÍ   °°° ,\¸PnûS„{öì騱c™2eÊ•+×±cÇ={ö(oÅÆÆ6lîܹáááþþþåË—ñÅoÞ¼©õÅèªàAƒf-´Ãô¹çž[´hQÛ¶m{ì±Ã‡þùç‡Þµk׈#bccÇŽ;eÊ” XN¸`Á‚B… ½ñÆþþþÓ§OïÞ½{íÚµ³³³˜šš:gΜ¾}û&'' !Æ7~üøÖ­[wïÞ=33ó›o¾yâ‰'Š/Þ¹sgÛŸ²jÕªîÝ»—)S¦OŸ>ƒaùòåMš4Y¾|ù#<"°~ýú?üpÀ€•+W^³fÍœ9s²²²æÍ›§Ùæ€% ίuvxâwõ¸qãò:›wíÚU’¤[·n*Tèé§ŸV&yöÙgÃÃÃ/\¸ IÒ÷ß/„Ø´i“üVË–-kÕª%ÿS¤H‘£GÊ/§L™"„HHH¸ÿ¾<¤iÓ¦BˆŒŒ I’ââââãã³²²ä·ÒÓÓýýý_|ñEùe^Ÿ’™™“––&¿•––—™™)·A±|ùrùÝÜÜÜ5jT¨PÁ +ÖÁ÷§ â€'±zWµ| ³ŸŸŸÁ`ؾ}û™3g¢££…óçÏŸ?¾šÙÖ¯_¿råÊòß­ZµBôéÓ§páÂò6mÚlÛ¶íÎ;!!!{öì)V¬˜r÷Ÿþ)„¸sçŽíùïÛ·ïôéÓ3gÎ —‡„‡‡:tذa¨W¯ž"..î±Ç“ß5 ‰‰‰ß~û­Öë 8àIlÜU0sæL¹¿¸Zµj7nß¾ýÃ?\¤H»³UòœB΋–Cd%K–ܱcǺuëŽ;–ššzäÈ‘ììl»óOMMB$$$˜¬Y³¦ü–ãããMßõóãN Ýa“à=þóŸÿüþûïüqÍš5W¯^Ý­[·š5k^¾|ÙYóÏÌÌìܹs³fÍÖ¬YS©R¥#F=z´D‰v'”$IaxðúQùYYYòËbÅŠi½þ`Á/ñçŸîÞ½»hÑ¢Ï=÷ÜÂ… Ïœ93{öì”””>úÈY±mÛ¶Õ«WÏœ9sÏž='N|üñÇãââÔT+Uª$„8tèéÀƒ !ŒF£Ökjð))) 6œ6mšüÒÏϯeË–âÁŽæ>¦ñüùóBˆ*Uª(C–/_~ûöméÁûÁ-?¥víÚQQQ3f̸~ýº<äÚµkÓ§OŽŽæ7 =×8àIæÌ™#ß¹læ©§žª[·nõêÕßyçS§NU¯^=%%eÍš5aaa}úôB„††Ê“_¾|¹wïÞŽ}z«V­‚‚‚ ðøã—/_~çÎ7n,]ºô¶mÛÖ¬YÓ¡C‡¼>¥hÑ¢3fÌèÕ«WíÚµ{öì)IÒ’%K.\¸°lÙ²¢E‹j½R¡ÁO¢?üðÃÉ“'ŽQQQ«W¯=zôìÙ³###[µjuðàÁU«V=zÖ¬Y:t°ñ)ݺuÛ²eË„ ¾øâ !Dbbâ²eËêׯ¯õE>¤?kfŒFcJJŠÖ­ØÂw5ì >»ÿp#T!8@‚#T!8@‚#T!8@‚#T!8@‚#T!8@‚#T!8àfÍše°iíÚµZ·ÞÏ_ëûj×®=räHååìÙ³CCCŸ|òIeHLLŒÖm„÷#8àš5kÖ¬Y3ååüùó+V¬8uêT­ÛßBW5T!8à=bcc‡ ¶wïÞ„„„„„yH=LÇyæ™gJ–,©¼<|øp·nÝ¢¢¢"""Ú·o¿aíúEpÀ«œ;w.))éæÍ› 6´;òºuëêÕ«—œœÜ«W¯gžyæÔ©SIII‹/Öz! S\ãÀ  á§KB*à¾þúëñãÇ¿ùæ›~~vÊC÷ïßÿÏþS¥J•íÛ·!&L˜ÐªU«7Þx£G… Òp=@Ÿ¨8ðIHþ+xûË–-«&5 !öïߟšš:jÔ(95 !Š-úòË/Ÿ:ujß¾}ZoèÁ¯b4Õ¤F!ıcÇ„}ûö5}dß¾}…gÏžÕz9 GtUàUBCCm™™)ÿQ¤H!ÄÔ©SkÔ¨a6NÕªUµ^èÁ/—››kú255Uþ£R¥JBˆ¤¤$åÝß~ûíСCvÓ'|]Õx³ÀÀÀ#GŽäääÈ/·nݺwï^ùïZµjÆiÓ¦¥§§ËC222:tè0lذÀÀ@­=¢â€7{衇fΜ٩S§®]»ž:uêƒ>Pª‰þþþ3gÎ|ä‘Gzö왕•µråÊsçÎ-^¼˜[ªaÁo6yòdI’–/_¾víZI’ºwï^£F3fÈï¶oß~×®]cÆŒY°`AfffBB¼yóÚµk§u«¡SIrÂÿ0e4SRR´nÀü®¾}ûöíÛ·#""´nˆî8°3øàþ#£â€O ÒºðlÜUŽP…àUŽP…àUŽP…àUŽP…àUŽP…à€g?~¼Á`ؾ}»å[­Zµ2 Z7P!bcc{ôè¡u+„â×_5 K–,Ѻ!^…àUŽP…à€×ÊÉÉÉÉÉqì]ÝÊÍÍõÄf{‚#Þ&66vذaï¿ÿ~hhh‘"EjÔ¨ñÚk¯Ý¿_Í»BˆÃ‡wëÖ-***""¢}ûö6l0›óÞ½{òjÀ®]»’’’ªV­:|øð»wï*oíÙ³§cÇŽeÊ”)W®\ÇŽ÷ìÙc:s³ë#Ÿyæ™’%Kš~ôܹsÃÃÃýýýË—/ÿâ‹/Þ¼ySyË–-íÚµ“?tÔ¨Q¦Kg!8à…–-[öòË/7oÞüÕW_-]ºô»ï¾Û®];I’ì¾»nݺzõê%''÷êÕë™gž9uêTRRÒâÅ‹•9Ÿ;w.))éæÍ› 6´úÑl×®]‘"E 1cÆŒfÍšegg !V­ZÕ¤I“C‡õéÓ§wïÞ‡nҤɪU«T.ÔúõëÜ·oßÙ³gתUkΜ9Ç—ßZ±bEëÖ­<اOŸ6mÚ,X°àé§ŸÖz#x# ίuvxâwõ¸qã„Û¶m³|«eË–¦çô˜˜!ÄäÉ“•!£FB,Z´Èö»™™™•*UJLL¼sçŽüÖ½{÷5j—­L;~üøœœ«”G˜:uª2däÈ‘Bˆ¹sçfffÆÆÆÆÄĤ¥¥Éo¥¥¥EGGÇÅÅeffÊÓvïÞÝtnO?ýthh¨éœ—/_.¿ÌÍÍ­Q£F… äFFGG—-[öüùóò».\(W®œbñâÅvW¬;ƒ'î?NAÅ/>bÄå娱cƒƒƒ—.]jûÝýû÷§¦¦Ž5* @~«hÑ¢/¿üò©S§öíÛ')[¶ì›o¾éç—g„ˆŒŒ:t¨òrܸqÁÁÁß}÷ݾ}ûNŸ>=tèÐððp¥C‡=uêÔÔ,T\\Üc=&ÿm0oݺ%„Ø·oß™3g†^¾|y¥‘ƒÖz#x!‚#2húÏIªU«V¤HåePPÑh}úÔ®];**jÆŒׯ_—ߺvíÚôéÓ£££ånåÀÀÀ#GŽ(ÏhܺuëÞ½{Õ|bíÚµãââ¦OŸ~ñâEegÍš¥ñóFtUàJ—.ýÉ'ŸôêÕ«J•*íÛ·½~ýúÖ­[ÿý÷Ö­[¿þúë¦#—-[v̘1;vìHHHعsçºuë5jÔ¯_?ÛïúùùÍœ9ó‘GIHHèÙ³gVVÖÊ•+Ï;·xñb¹OYÀÀÀáÇoÛ¶­Zµj;vìØ°aCRRR·nÝ„3fÌèÕ«WíÚµ{öì)IÒ’%K.\¸°lÙ²¢E‹ !zè¡™3gvêÔ©k×®§NúàƒT–9 .üÞ{ïõìÙ311±W¯^… ^²dIZZšÖ[Ìi}[·òÙ[ôÀƒxîwõñãÇûõëW½zõÀÀÀ *´jÕꫯ¾2{8NLLL×®]7oÞÜ¢E‹%JT®\yäÈ‘÷îÝSó®$Iûöí{øá‡Ë”)S²dÉ–-[þôÓOfs¶Ñ¼˜˜˜W^yeΜ95 ©Q£Æ˜1c²²²”vìØÑ¾}ûÈÈÈÈÈÈöíÛïÞ½[yëÎ;C† )_¾¼|µb÷îÝÇoú8³6}X$I[¶liÛ¶­üÀð%J,[¶Lð8g3H’^¯öXF£1%%EëVlñîïêØØØZµj}óÍ7¼«·oß¾}ûvDD„c“_¸p¡T©RrS vïÞl «èKPPPPPÓËþ†+ps T¡â€·éСƒü}¼ Ø@pÀÛ|øá‡¿ Ø@W5T!8@‚#T!8@‚#T!8®Õ¬Y³€€­[áˆúõë,”-[Öl´ùóç7hÐ $$¤lÙ²ýû÷¿zõªÖ ¸ Áp¦?þø£páÂÔù<Õ8yòdPPP­U«VÍtœ7ÞxcÀ€GmÞ¼yñâÅ?û쳇~øöíÛnn*À=xŽ#àdÙÙÙ¹¹¹úŸ§mׯ_¿víZÏž=—,Y’×8|çwÊ—/¿gÏù¾†:kÖ¬×^{möìÙîl-À=¨8°âäÉ“BˆJ•*ÙgÞ¼y¹¹¹'NT~ö½÷Þ [ºt©›c.À=Ž€Ó¼ð *TBÌŸ?ß`0Ì;WyëÞ½{o¾ùfýúõƒƒƒ+W®þøcy„ŒŒ !DÕªUÍ&”k¢S§NÕzSvxâwõ¸qã„Û¶mÓº!vÄÄÄtïÞ]ëVH’$íÝ»W±xñbÛ£9°3xâþãܸÃ;ï¼SªT)ùïÄÄĘ˜˜+W®!ÒÓÓ?úè£&Mš >\ùÑGíÛ·ï‚ Nž<ù¯ýËrn={öìÖ­[ýúõ•!òÍÎiiiV?}æÌ™999yµmàÀÁÁÁfÏ;øöÛoÜô°y5Rž¹Ü©¢xæ™gJ–,iúÑsçÎ ÷÷÷/_¾ü‹/¾xóæMeä-[¶´k×NþÐQ£FÝ¿ß)kÕ`øçŸ$ Irç&Õ‚# ¥*Uª!6mÚd6üƒ>xùå—­^)¸mÛ¶k×® 6l„ U«V•ÿÃýçŸÚø”€€CÞ”Gÿ(RSSýýý[·nm6|ÇŽBåLóÈ#äää¬]»VA’¤5kÖ„‡‡7nÜXëU ø¢U«V5iÒäСC}úôéÝ»÷áÇ›4i²jÕ*!D‡²³³·nÝ*)ÿqøðaåÛcÓ¦MeÊ”©U«–bݺuõêÕKNNîÕ«×3Ïxð`Ÿ>}Ú´i³`Áå>?‡™†EŒÑúî/ä³wZAúûè'žxBÒ´iÓbÅŠ™V½zõ2eÊÈ÷éÓG1{ölåÝ•+W !jÔ¨auž?þø£xð&ëôôôæÍ› !^xá«­š:uê;yËÈȰœD¾|Þ¼yÊ;vGEEݺuKòûï¿ûùùU®\ùÆòÉ“' !F¥õvì³ñ]-„fÿl³}WuffflllLLLZZš<$---:::...33Sþ&9r¤üV5jÔ¨!„X±b…$Iééé~~~ýû÷—çS©R¥ÄÄÄ;wîÈ#ß»w¯Q£FqqqÙÙÙ’$ÅÄÄ!ÆŸ““cµ%ò¦OW9r¤bîܹ¶)Y»#ûé§Ÿ 5óòåËå—¹¹¹5jÔ¨P¡‚ÜÈèèè²eËž?^~÷Â… r¯ŽcwUÛÞ">{®'8:ŸÏîL$Iî· 2dˆüån78ž?^¾¦fÍšO<ñD»víüüü‚ƒƒ÷íÛguž·nÝú÷¿ÿ-„hРÁ°aÞx≰°°‡~¸hÑ¢‘‘‘¦õ)ˆäää2eÊ!êÔ©Ó·oß&Mšøùù/^|Æ ¦£½÷Þ{Bˆ˜˜˜¶iÓÆ`0Ô©SGyð gžø]m;8îܹS1sæLÓ3fÌBìÙ³G’¤š5kÖ®][’¤k×® †O?ý4((hÈ!’$}÷ÝwJ Ûµk—âÿþïÿLçóÿ÷Ê|bbbÊ–-›Wj”GˆŒŒÌÊÊR†Üºu+88¸S§Nvi78ÆÅÅ™¾Û¯_?ù]¹KÄìY`ï¼óN~ƒ£Êï‰ûSÐUmß… êÔ©3jÔ(­:iÒ¤ÐÐÐO>ùä÷ßW3Iùòå“““GŒáïï¿bÅŠ'N<ùä“ÉÉɉ‰‰Vç´~ýú>}úœ={ö³Ï>;þü¬Y³¾ÿþû7ß|3''gÑ¢ENY„„„_ýµ_¿~—.]úú믯]»Ö¯_¿Ã‡›õ_1báÂ…F£qéÒ¥iii/½ôÒÆ•p§ÔÔT!„ÙE‡òµ%ò[:tHNN¾~ýº=Û´iÓ´iÓÍ›7 !6mÚäïïß¶m[!ıcÇ„}ûö5½¦¥oß¾Bˆ³gÏʳ5~~¶"DõêÕå«¢eAAAF£155Õn#íŠð¶¥ÇBÔ©SÇô]å‹T%Ó^iXÅ]ÕvH’ôꫯZ>sÈË믿þúë¯+/•+ŠL™ýÄKpp°\ºS9Ïèèhùÿ¦Þ|óÍ7ß|Ó‰ R®\¹/¾øÂîh}ûö•Ï(´%I’°¸O¾ :++KѾ}ûwß}wóæÍ;vìˆŠŠŠŠŠjÕªÕ믿žžž¾iÓ¦¦M›Ê·¾)RD1uêT¹/ÛTÕªUå?BCCóÛ<¹ûÅv#-effš¾,V¬X^󷜳ítkJžŽ¼hG;>ÿüsÓ»½Ð'ùÇåÍþ_*?¨Ëh4 !š4iR¼xñ7nÙ²E¾0ºeË–¹¹¹ß}÷Ýþýû;vìh:Ÿ$+VLOOWŸ9"ß #»{÷îÑ£G+Uªd·‘B³G:¨¬DÊ×ðüú믦“““U6˜*£JG[RSSg̘Q¹re­€µk×ŽŠŠš1c†ò¬k×®MŸ>=::Zî±-\¸p›6mV¯^½oß>98Ö­[7$$dòäɹ¹¹Jp¬U«–Ñhœ6mZzzº<$##£C‡Æ TÙ˜K—.Íž=[y9a„ŒŒŒ>}úØmd``à‘#G”»Úºu«ü³j?..núôé/^”‡¤¥¥Íš5KëÍâmèªÎSvvö+¯¼R²dÉ×^{­à÷óàsæÌùþûïM‡øùùMš4©hÑ¢3fÌèÕ«WíÚµ{öì)IÒ’%K.\¸°lÙ²¢E‹ÊcvèÐá›o¾BÈÁ±P¡BÍš5[½zuÅŠå_.BøûûÏœ9ó‘GIHHèÙ³gVVÖÊ•+Ï;·xñbõÜ >|ø¶mÛªU«¶cÇŽ 6$%%uëÖMa»‘=ôÐÌ™3;uêÔµk×S§N}ðÁ*Ëœ… ~ï½÷zö왘˜Ø«W¯Â… /Y²$¯b…ÃŽyš={öÑ£G?ýôSù·wЃ… š ñ÷÷Ÿ4i’¢[·n[¶l™0a‚|rbbâ²eËL×¾C‡BˆÒ¥K+ý­ZµZ½zµRn”µoß~×®]cÆŒY°`AfffBB¼yóÚµk§¾‘/½ôRllì—_~¹nݺ˜˜˜1cƼõÖ[ò[¶9yòdI’–/_¾víZI’ºwï^£F ù¶k»}ôÑ7N˜0᫯¾º~ýz‰%,X`ö8qA¢Kßšäädù’ÿ7ß|óÈ‘#ݺuëÒ¥ËÔ©SÕL«¦äŸÓè„Ñhä›YÏnß¾}ûö툈Ç&¿páB©R¥”R«mvwÎì *ŽVܽ{÷•W^©X±âˆ#›ƒoîL8KPPPPPÓËþvËÓºÕ(é ŽV¼ûî»çÏŸ_´hQ@@€ÖmÐ îª6·gÏžE‹ 8ÐÆ·ø ‚£9ùyQ~ø¡ñoò]`ß~û­ÑhìÔ©“Ö ¬˜?~ƒ BBBÊ–-Û¿ÿ«W¯|’úõë,”-[Vëeh†®jsÑÑÑ?ü°é7nlÛ¶­\¹r‰‰‰ò¯÷ºòÆoLž<9$$¤yóæ'Nœøì³ÏŽ9²qãF—©™ääÉ“AAAòÓzüœ ø4­,Û>|8>>~äÈ‘*Ç÷Ù>‡&8àççW¾|ù?þøC2dÈ!ÄK/½TI®]»&„Ÿ²x%¾«¡p`gðÙý‡®jÀ³Í›7/77wâĉÊ-„ï½÷^XXØÒ¥KÍ~¶+_“œù¤fÍš¯¾úª<ÄÏÏïÝwß]´hÑŸþiu’™3gæäää5Û¹sçŽ"$$ÄlLùÖå\̨œäܹso¿ýöàÁƒå!ëׯïܹó°aÃ’’’¢¢¢´^»€ð+_:gIä㇑ Áï(»Áp•cÇŽegg·k×Î`0(4h°zõj«“Œ=úÞ½{yͰwïÞfÁ1,,Ì`0ܺuËlÌŒŒ ñwÑŒÊIÖ¯_o6BÛ¶mÍÇßß_Q¢D Ö&£¾ŸšÔèNGÀUªV­*„ذaƒéÀ»wïîÙ³'¯I yûã?,'yä‘GrrrÖ®]« ‘$iÍš5ááá7¶ú)v'IMMõ÷÷oݺµÙ„;vìBÔ¬YSëU !5º×8®Ñ»wïÅ‹OŸ>}øðáBI’^ýõ+W®ä5Éÿû_7ÇÈ÷¯˜yöÙg'Mš4~üøŽ;Ê#¼óÎ;—.]5jT‘"EäqnÞ¼yáÂ…"EŠÄÆÆª™$>>¾iÓ¦›7ož?þsÏ='ÏdçÎÓ¦M‹ŠŠzì±Ç´^µ ©Q ‰UîlF£‘;õ ;{ölÓ¦MÏ;W»víÊ•+'''_¹r¥nݺ?þøãñãÇõxíiÓ¦92&&&))éĉ7n¬]»öÚµk•ß•^²dIïÞ½«W¯®\žhw’´oßþÒ¥KuêÔ1gΜٹsgppð7ß|cY‰çRÓO­mjôÙs=]Õ€ EEEíß¿ÿÙgŸMOOÿùçŸkÕªµcÇùÎe«·<;fĈ .4K—.MKK{饗6nܨD@Ç&IHHøõ×_ûõëwéÒ¥¯¿þúÚµkýúõ;|ø0©€PkÔ GçóÙÿ…ÀÒöíÛƒƒƒLÖ®]ûÌ™3iii~~üÏ ÌÙ-7ê!5ú칞óàB/¾øbƒ Μ9£ ùé§Ÿöïßß³gOR#Àãps àB&LèÖ­[:užxâ‰R¥J=ztùòåQQQò½2€üÒC¹Ñ—zä‘G6nÜ8eÊ”eË–]½z5<<¼GÓ¦M+S¦ŒÖM=²ÝOMjÔÁp­-ZÈ?¸(R£p•Ð;R£N€.äÕOMjÔ‚#Ð/R£®€ö¬–IzCpzDjÔ!‚#ÐR£>€ÆÌú©IºEp€*G #”õŒà´dÚOMjÔ9‚#ÐR£þ€f”r#©Ñ#€ÆHž‚à´Djô G  ƒ0ƒDjô G¨Bp Ü艎@ ¤FDpîf0!´nòàÜJNʯÅÀƒ€ûððFpnBjôtGàJjT~f‡àUŽÀå(7z‚#p-.môGàB¤FoBp®b–é§ötGàÔ½Á8Ÿej¤ÜèŽÀɨ5z+‚#T!8g²Zn¤ŸÚ;€ÓÐIíÝŽÀ9òJ”½Á8µF_@pEjôGP ¶S#ýÔÞ„àG­Ñ§€ƒì¦FÊ^†àA­Ñ@¾‘}Á¸ýÔÞ‡àò‡r£Ï"8€|P™)7z%‚#P‹Z£#8UH 8ûò•é§öVG`µFÈŽÀ–ü¦FÊ^ŒàòD­¦ŽÀ:R#åFïFpVPk„%‚#0Gj„UGð‡S#ýÔ^àþA­6À_ ’)7ú‚#‚Z#T 8€‚¦FÊ>‚à€¯£Ö•Žø4R#Ô#8ໜ’é§öG|µFäÁ_ä¬ÔH¹Ñ§ð9Ôá‚#¾…Ô‡ð!ÎMôSû‚#¾‚Z# ˆà€Opzj¤Ü胎x?jp ‚#^Ω‘r£o"8àͨ5‰Žx-¥FÊ>‹à€w¢Ö§#8à…Hp‚#ÞÆ¥©‘~j_FpÀ«Pk„ëð®N”}Á/A­®æ¯u@A B—§FÊ 8àÙ(4ÂmèªÀƒ¹-5Rn„ 8๨5ÂÍŽx$R#Üà€çqsj¤Ÿ2‚#†Z#´Â]ÕÖ¥§§Ïœ9sïÞ½çÏŸ/]ºtõêÕ_~ù常8­ÛðuîO”¡ âhEFFF§N-Z$„hÕªU©R¥V¯^ݹsçÇkÝ4€O£Öm­˜={vZZÚ Aƒ¾ÿþû3f,^¼øí·ßÎÎΞ8q¢ÖMø.MR#åF˜"8Z±sç΀€€^xAÒ­[·2eÊ9r$''GëÖ|µFè×8Z_¬X1ÓE‹½ÿþýû÷´n À·h•)7 ÁÑŠ ˜ ùå—_Ξ=[«V-R#Àͨ5B?޶ìß¿ÿ믿>}úôþýû£¢¢Þ}÷]•F³!)))Z/ Àà BÍR#åF…åiÝgmIIIY¾|¹$IBˆjÕª)RDý„Z·àÙ(4ê‡åiÝg£$7ÇØÒ»wï£GnÛ¶íÕW_]»vmŸ>}nݺ¥u£ÞÔ}"8Úa0J—.Ý¿ÿ^½z]ºtiíÚµZ·àåô駆UGs©©©£G^³fÙðjÕª !._¾¬uÞÌ ©Ñ _; äÁÑ\ñâÅW¬Xñõ×_› ?{ö¬"66Vë¼–{j’$ÙÎŽadKXCp4i4·mÛ¶qãFeà±cÇ.\\¯^=­ðNîì¡¶›%Í;Ë¡KÜUmÅĉûöíû /$&&V¨PáÊ•+{÷îBL™2%<<\ëÖ¼û¯k”³£e@äêFØ@ÅÑŠš5kþðÃ?üðµk×Ö­[wùòå‡zhÕªU:uÒºi/¤ÕÝ0–uG.„mT­‹ŽŽž>}ºÖ­x?mï¡6­; ! ʰà€6´ýa…Rw”$‰›b`Á èáaæMâêFØCpÀÝt•ÿ骦Ü{¸9·Òmj”„ÄÍ1°à€ûè35*ì>ß>Žà€›è65š^ÝHv„ GÜA·©ÑÙy!8àrzNVo¦æ'aÁ×ÒUj„BãÀ…ô–Í›§«g7:Ð?®ç•ëޏ„N~F×Ì’¢+K™+Ú-Ž8ŸÎ 5R«r£Óž2¤[p2Hpi¶3Kl× 8àLž’ÝZntg˜“?…øèGœÆSR£ûhàˆ®ApÀ9<(5º£Ü¨‡ÐF|t6‚#NàA©ÑåôÔˆÎCp  <+5º°Ü¨çp¦ÄG}6ÏC(¢È_kAè52š’$6XAp§„¥Úìôr£Ç­9;zV›uƒà€#¨[yðZ ÛÚQ~Z7Ï㡑ÙåFƒÁSׂB)=B5‚#ùãéyÉi«À ÖÙ1ŸŽäƒç¦F甽 Ðh†ì˜\ã€Z^™Xþ¿p»ŒjTPÅ£S“ʽüvÉ=ï”í!8`Ÿw§&û ï#ËOv´‡à€žžš Tnôšû`T";ÚÄ5ŽäÉׯ|óôÈ g#8`w¤&˾™ùY¼ÑU €>|­{ÚÖy 8`ÎkR£#åF¯Yø";ZCpྜ|çîi•ÈŽŽüÛ‚SþÊtO[Ev|Á€¿xSjdɆìh‚à€vÒš• 6¢—-¹+ÿFpø:_褕$Ézv4I²ì!8|šW–Û¬^Ýh%;>˜%ï[NDÑQApø2¯L6ü“ì›'5ªBv$8|–·¦FÛ7SKÊÏ¢àóÙ‘àðE¾™•%Wú¬IÈ‚#ÀçxkjT¿ärŸ5©Ñ¾]t$8|‹§F;åF/^r7óáÕè¯up¹Nä£'ýS£Rk¤èˆ|¡âð ^ÿ°F[åÆœ|záá&G€—ðµàô@¹Ñ×!8¼O'Ÿ^x¸7Ç<›oÞ@ýO¹‘Ô7"8<˜¯§&__~¸]ÕO峩é¯r£Ï.?´Cpx$ŸMM¤Fhˆàð<¾žš|}ù¡®qxß¼æŸÅÉàÃË­ƒB›¤Fh‰®j€g 5šÿÀ àvG€ 5’¡G€Þ‘ÿº´Ð×8ôËÇo…QÖ‚A”¡G€NQh4Y T¡ tUôˆÔ¨¬®n„~ºCjd-@ŸŽ}!/™®ÊЮqè·Âü…Ô½"8tBã_XÐ1ºªÚ#,ýÅdEPn„#5þ…ÔÝ£« .jüñž€àè|ǧhÝð$¥<¸.(7B·èªv¾øx#¿) ¶‘ÿÁº€ç 8º„$ñ{ô'’Ò?,ÖåFèÁÑUÈŽ`É` 5š 5ÂÓ]ˆì¦ä˜Djü ˆàèZdG“`muPn„þ]ŽìÀÇÑ=mŽÔEpt²#ŸE÷´9B4<ÁÑMÈŽ|É\k„r#<ÁÑ}ÈŽ| ©ñtØÃ+ðË1n%gG¾7x7~HМͯ~Êð Tݺ#ïÆEæHð"G x+:U̱Fà]ŽÚ ;ð2\Âg…½5B¹‡k5£dG¾gx:"£¤Fx#*ŽZ’/¢ôÀ£‘­`¥ÀKµGvà¡èž¶NÅJ¡ÜEpÔ²#ÃÝÓÖ‘áÕŽzAvà)(4æ‰õoGpÔ²#ý£Ð˜'u©‘r#<ÁQ_ÈŽôŒ‚ZžHð GÝ!;Ð!º§maÕÀgõˆì@Wèž¶Euj¤Ü/ÀÀuŠÇƒÐ¾ˆì 5ÂÇõKþ.¢€Vøþ±ƒßCp´îîÝ»K–,Y¾|ùùóçCBBâããû÷ïߤI÷·D.=òÕÀÍøæ±#?+ˆr#¼ÁÑŠììì§Ÿ~:99¹D‰5ºwïÞîÝ»·mÛ6xðàÿüç?îoÙ€;Ñ=m©¾ŠàhÅÒ¥K“““ëÔ©óÉ'Ÿ!RSSŸxâ‰>ø uëÖUªTq“Ȏ܃¯ûHðaÜUmÅ?þ(„xã7äÔ(„¨T©Ò Aƒrrr¶oß®U«äìÈÝÖ\„î¨Â:RTÿƒ¡âhÅéÓ§ƒ‚‚ªU«f:°R¥JBˆsçÎiØ0n—à"|±¨’ÏÕä…åFÓ¨~É› ºDp´bîܹþþækæÈ‘#BˆŠ+jÝ:º­8W4ªåã©QŽ-ä¤ù@ŽVT­ZÕlÈ®]»>þøã¢E‹víÚUÍŒF£Ù””'¶ìÀ)ø&QËg×”R,tÖÒK&³õœ5jyZ÷YG;rrr.\8eÊ”œœœiÓ¦…‡‡«™Ê¹1Ñ*ž  øɇü§Fo(7º4ÛyZ|´<­ûl”$8Ú²{÷îñãÇŸû¬r‡µÞÐm @=¾.òÇS£û«€’'•Ap´"77wĈ?ýôSÛ¶mÇŽ¡u‹ì Û€]|Kä®/ Ó¥GÏAp´â«¯¾úé§Ÿúöí;vìX­Û¢ÝÖlàË!]_\nÔCh“ôÑ ØDp4'IÒ‚ BBB^}õU­Ûâ@ã9=x€Î Ê×R£®º‰é¶Ö=‚£¹´´´³gÏ<þøã–ï>úè£O<ñ„Öm´…nk2¾ ჩQo­¦ÛZߎæÎŸ?/„¸{÷îáÇ-ßÕÛÕVÑm ø8"£ƒ|í{SÏáŒnk½"8š«]»¶žÂè”ßäkáÇi °â<¯ÜèÝÁdG]"8z3J€OáÿŠŽóµÔè)í%;êÁÑûQz¼ÇxõŒì¨3GŸ ”§À»p\”OuÊxh#;ê ÁчÐs x"£ì Ñ“ÊqQ#<ÁÑçÐs x:a'(ðJô°Ôè!-ÍEGÝ 8ú"z®Åaëîy!5j€ì¨GßE|<‡ªÓøÔõ:^–´ÈŽ:@pôu\ø虜‘ÑYœñeç1åF¯ÌXdG­!>úÃ!é|¤F ÀŽø‹iϵàth„cÐUH^ƒ¢£¦Žx€ò½Jµp'ò¢k‘½ ÙQ;GXÇ­3€ò•O”°(8Ê\Ç×¾Å|'N‘5Bp„-ô_¶™†?ar¹°P.ç¼ûþ<£ÜH‚ëaý×€¥¼½ 5z=ŠŽZ 8"(@‚ÿAyR£ ;ºÁùfV€œAá3ˆŒžÔ¸ ÁŽ#AÂw=©Ñ×Ptt/‚#œÀ2A N±ð ü§È“ø`º'0ÉÈŽnDp„3™~c[Þm x ò¢çqö§z@¹‘¨-á*fßáäHèõrFjEGw!8ÂMlçH«ã.Åf¼©2²£[¡ «ßóvŸœÌ©Èk¿bwòx.¸¨‘ÔØFp„ŽØýþWÿ›М‹b™ûÑ;9»Ð(H^€¢£ëáIHÄE)Ÿ}B͸ ®Bj„ ]Œàð>ø¤Æ¿œ$”dGW"8< ÍXçåF2ôÄOë`©ù"áG€¾‘Ý « W®¼¨‘Ôèå¸ÒÑ5Ž]rY¡QGÑU ÐR# Ž+]€Š#@O\üÌR#PG€n¸²Ð(H>ˆ+®j€>uÜ:@FÅ 5×ÿ$ ©ÑwQtt*‚#@S..4 R#àF<ï’##©‘Ôè6„à—SsΓ\|þ<ãÈóŽ ×©p ‚#ÜÁ«Îy€F¬Gv¹¥{ZaEGg 8ÂM¼áœhÍì8ò°#È-ÝÓ‚Ô¸ÁîãÙç<@”ãÈ“Ž w©¶Qt,0‚#ÜÊ#Ïy€ÎÈÇ‘ÇAî*4 R#àzG¸›‡óý‘ ¸“Ú…FAj„J †àwó˜s KÊÿ»ô~¹±Ð(H€»áVsÎtɬZ¯ßãÈ…FAjD~Qt,‚#ÜÇcÎy€.Y½ÆCwÇ‘{»§©p/‚#ÜÄ3Îy€^Ù¸2XGÇ‘{»§©£èè(‚#ÜÁ3Îy€^Ù½ŸLûãÈí…FAj´à¯uàýTžó¸ÏÈ‹š£CË#H‹È(„ 5îGp„ËéýœÀar™“B£µV꿾Nb39‚àÈ?-"£ð”Ôx/‚# ŸÜÞ7ý×ÇzJj¤Žå)(:æÁ šF…FAjôàPG»B£Ðÿ­0·Õ#š‰PtÌ'‚#À êÚê)-FpؤQ¡Qý!8ò ]¡Qá6ôVçÁ`AÓÈ(H€^Ò®oZxÖ­0‚Ôè-(:ªFpüBc>›ëAœ‚àÐ>2 R#à Žàó4í›×=-HÞˆÞjuŽàÃ(4:ÔbÏj/àDGðI:ˆŒ‚Ô]¡è¨Á|Ö}Ó»§© 8€O¡ÐX€F{\“§#8€oÐMdWh¤FŸAoµ=GðvúˆŒÂC ‚$üƒà^M—3 Ï-4 R£ï¡èhÁ¼…Fg4ÝC¸Á¼Žž"£ðÐB£ 5VÀ‹è&2 .4 R£o£·:oGð :‹ŒÂs ‚Ðä‰àžOwÀ/ˆŒ‚Ô!EÇ<À“é¬ÐèÙ‘Q;Žà™t…§©°àße0$}œtü!2ºfI¼`!àLôV[Cp„ï’$Énv$\B_ô…wôM ! Bò  Á>Ívv$5B_tsŒ Ðø*‚#|]^Ù‘ÔÑS¡Ñ{"£ 5Âz«-+Ù‘Ô½ 2ºry¼fQ·!8B<˜IÐ"£‹É›–.DÑñAGà/rv”ÿк-ðyº¹œÑ #£ Ž#8€žè¦Ðè‘Q!8¡«#2ºeÙ¼r±àZôV› 8B<Õ<ßp&"£»Ï[— p‚#`¥ÄHv„ûèãrFÔ8Á¾.¯€Hv„Ëé Ðhø+Ryodá ôVÿà­ Ú~¾”w¬¼EŽ„Sè&2zs^ü{9½~w"8•ԄBíζ¾c½ÜXð˜Kô„¦}Ó>Qb4YZ_XJÀŽ(0YJO!I9_š4Ï|¸r*ͳ“ºàKäpôÔÓÊ„ƒ4-4úJ‰Ñd}gYáôV !ŽÈ7ËÜãÞ³ •ü§Žóå?âQf.9øAöÏʯ®‚; z Q¡Ñ·JŒ&‹íS‹ ¸ Á6im„6Wœü”û`$QÐbTÆMG–¢ kÞ¹’CóK‹B£æEÁ Ô€kñ ·ß b5i¹ÿTç¬ßTÙrÛùÒù‹ïÜí¨áýLž˜YÝ[hôݼø÷òûærÃMè­&8ÂÍIÑ20ùæéÍöR»¹àšÿÖk×geV·-Bީѹ{òõ¼ø÷Zðå¥܃àè“LϾ®<ƒzPLÔÕï ÚºSò;‰WqÖ¦±@òA6kvªfW$/þƒÔ¸ÁÑ—('K#+÷—XœÌ ƒ>¿Ù=è÷óʾ(óËîö-x%^EµÍÆNhãóQ\ÔwòùÞj?­ w§N2к!Ž2þù'Iýsú‡ƒ|²A¤>Æ<5ê3åõ{ƒZ·+LW»é?Ã{À?ÿ´n¯î™­HeÍ©¡nª>ÇÊÎf¹Ošn»¼1%ŸÂY€»Pq´ã«¯¾Òº qeqñ¯OÈãñ‡V¿Á=(5þµDú®;ªG…Ò9”=ÁÆ‘åèAg¶³©)Þã/¾]ø4Ap´.##ãøñãß}÷ÝâÅ‹µnK~¸1/Z=“YÍ[ºM`¶æ5ÙÑúÒ(c™ -ßrd®Ò?ÿéúû¢¬s;HЊÜ[¯u34Bp´®sçΗ.]Òºª¹8/æ«ò‘WùD‡ì6L·-wüJá³ùÆûÆkUÂà‹»œ#¸¨ÐÁѺI“&eff !,X°cÇ­›“wåÅü&%;ê95"_¸Ñ[øl¦Ìƒí‡ pȨE¡ÐÁѺ¦M›ÊüüóÏZ·Å‚^ó¢)N¾Ã±L)¼:Væ÷±öÊÁÂc©:! aÔº !8º„Ñh¾C¥¤¤8a¾®üá2ç>Žò Džs®~&Zqb&6;L8p¬£{š²<­û,‚£K8'&*ÜRbtâé™ò ÔpÊÏ3ê¼ñö—ÎÚÂcŽB#´fyZ÷Ù(IpÔ7Ï)1š4™ò œIŸG§°qhpàü…B# 3G½rYdtéo”Q>T²{PpàPhtˆà¨3.ýU@?Žò  žšÃÁ§R# KGÝp}¯´K»üÔ”O\÷é¼ÝÓ€ŽuÀ3{¥Í 8…F@ߎšrqdôâ» x €' 8j„È €‡à~ç3¶žãHd…Fx&;çzïEÅшŒ`ŠB#àiŽnAdSÏDpt1"#˜¡Ðx,‚£+ DFø…FÀÃùiÝ/e0¸.5JB"5ZeP~wÇytãUäB#ß^€'#8:_ÊñãB’œž  §F­—O¿ä6´1‚žÃ™ÝÆë¼ý€-º§/Apt>c|¼sg¨DFR£]6â—þ,ÛvvÔûë(4^„à¨kDFX_ž’ºòÊŽžÒ~à¯CpÔ/"£ÃÌâ—g¥.ËìèYí„0‰Œì¹€w!8ê—3œ¿<1u™fGOl?|‘ð^<ŽGwˆŒÎ"Ç/M]JvôÐöÃGñ´ÀÛu„4:—œ=7;ž„Èø‚£^Pht.%/zhvTÚ쉇o!2¾„kµÇNg¶Ô<"QWLÛïq‡oárFÀǵÄÓv\Áj‰Îƒâ—eû=¨ñð!-¿e9¾$I¹¹¹ƒÁÏïë‰ *$„ ÑzAá üî ð,é@^¸9ȇ6mÚääälݺU"IÒæÍ›K–,™˜˜h9þ™3gªV­úÔSO™ ß¿¿Âh4j½@pP~÷xŽt /G zôèáçç÷þûïËW; !>þøã«W¯>öØc… –‡Ü¾}ûôéÓçÏŸBÄÄÄÔ©SgÏž=Ë–-Sf²ÿþO?ý´\¹rIIIZ/¤fO€çâHòBW5åÊ•5jÔ»ï¾Û¥K—fÍš9sf×®]ÕªU0`€2ÎæÍ›‡ V©R¥ï¿ÿ^ñÖ[o=ûì³o¾ùæ¢E‹âââþøãäääÀÀÀ·ß~›5ö\jöx.Žt /Tüéß¿ÿ{ï½»zõêk×®=ñÄ_~ù¥å#ß•+Wþæ›oºvízõêÕµk×Þ¸q£k×®ßÿ}Æ µ^H~÷xŽtÀ*ƒ$IZ·€Š#T!8@‚#T!8@‚#T!8@‚#T!8@‚#T!8@‚#T!8@‚#T!8@‚#T!8@‚#T!8@‚#T!8@‚#T!8@‚#T!8@‚#T!8@‚#T!8@‚#T!8@‚#T!8@‚#T!8@‚#T!8@‚#T!8@‚#Tù ôÒš‘ƒÞIEND®B`‚statistics-release-1.6.3/docs/assets/regress_gp_602.png000066400000000000000000000657441456127120000230360ustar00rootroot00000000000000‰PNG  IHDRhŽ\­Ak«IDATxÚíÝwxåþ÷ñ{Ã’„@€@è)G-@@z‘* ˆt;ê=ªŠŠ‚° ”*"xlðPE°ÀAŠŠ€ˆHB(‡"-!Ô@È<ŒŒë¶ÌÖiï×ååEfggîi;ŸýÞ3³6I’P”­c 8@‚#T!8@‚#T!8@‚£¾¬[·nРAiiiqqqåÊ•kÞ¼ù<°aÃ×1wíÚes'..®qãÆÿüç?=ªõÒè׌3äÕÕ¤I­Ûâgk¿úê«¥K—.]º4''G8zôhyÌ»îºË×¹xÚ£l6[DDDZZÚ€~ýõW5o‰ŠŠª^½z¿~ý¶oß®rŠ‘#Gºm^ ‹¦-]µ|üøñrc233µn‹–ËrîܹG}´J•*v»=..îâÅ‹¡h¡ÛMïöÈ…‚õ£G½ÈËË»ûî»Û´ióþûïïÝ»÷Â… gΜùé§Ÿ>ùä“V­ZuëÖíôéÓj¦sáÂ…-[¶Ìœ9³V­Z+W®Ôz±*ýû÷ïÑ£G=œÂY(H’´wïÞ¹sç¶jÕjõêÕEŽõêÕ#GŽÌŸ?¿iÓ¦3fÌÐzUÎF5kÖ¬cÇŽ]¿~ýÂ… áœu8\#býèŸ]ë@!Ο?ß¶m[ÇrNDD„Íf»~ýºüçòåË»wï¾zõê%J¸¾=111::ZqíÚµãÇ !.^¼øÏþsçα±±Z/ŸîÄÅÅ%'' !*Uª¤u[ôØZeBääääçç !.^¼8|øðmÛ¶yËÙ³gÏ;'„ÈÏÏòÉ';tèP£F /ã;*S¦Lx–VöÍ7ßÈÿhÓ¦Í]wÝ©u‹Ã â¨ ?þ¸’Û¶mûÝwßåææ^¾|yÛ¶m}úô‘‡oذa̘1nß>gΜƒ!!ÁqœÔÔT¥JªL-ðy]¹r¥iÓ¦®;°Íf{çw|í½÷Þ“‡ß|óÍÊÀM›6ýãÿp}oµjÕ¾ÿþ{×õÖ®]»Úµk;Ü»woO+ü?ÿùj|]–"·ˆ²[:Ú³g[Áiƒ*Uù#F¸ÓË‘ëe+tèÐÁu 8ÐïÇ퇰OShذ¡ÓÇ~ùòå§NêT¸µÙlò'˜ÊMã}ýx\«<5@ ‚£ö”|¿~ýÔ¿ËË9øìٳŊ“_úàƒÆÎ;§š:Œ3¦ÿþNÓ¼|ù²’P###[¶l©üéô©ø¼”)DGGwïÞýÉ'ŸlÖ¬™<Än·ïÞ½Û§Ñ\ƒã¥K—äë…%J”èÒ¥K·nÝbbbä!+VÌËËsš…,))©Y³fŽ×žnÚ´Éí ?räˆ2ÎÉ“'%I:xð ã¤Ž;&IÒÖ­[å?cccóóó][{úôé}ûö)mûøã÷íÛWXXèÚ¶ÔÔÔŒŒ egˆŠŠ’'èëuéÒ¥¾}û:­1/oÉÍÍýàƒäùÚíö_~ù¥ÈYÉé¼bÅ y'±Ûí+W®TFóuwrÝ!Õo__çå%8* 6›­C‡÷ß½zõ”9®^½Ú×}/???))IÙó›7o®ìÞ25Á±È¹„á¨ñiYÔl/ÁÑ×­àkpôrä¹*T¨Ð¶mÛ’%K*C–/_îßÎãºÏû±ûEDD4hРlÙ²Nk²víÚUªTQþlß¾½úMãeýñ¸ö~j€G*çõ—_~YýÝžƒ¯]»¶{÷îÛn»MyI9g»rü¨S§ÎìÙ³7nÜ(“”ëÌ¿nN›6MX½zuyȤI“ä!¥K—Þ²e‹$Iׯ_ä‘GœŽØ Ì«U«VòqãÆ)£uîÜY8mÚ4ŸFs ŽcÇŽ•‡”*UJ9‡mß¾]ùb­Ôn—E™àîÝ»•³ —ï¯iiiò8_~ù¥$I .”?¬åK—.•$I¹"°[·nžZ+I’r qL`Žm›:uªøàĉ’$8qbçÎ;wî<~ü¸ÓÔ¼æÅ”^ ¥Í² &ÈÃÓÓÓ–¥^½zŽc*ŸAÏ<óŒ§uþÄO8®±gžyFž²\©=z´$Iÿüç??…%¿‚cíÚµ•çÏŸ·Ûÿ|~ÂÂ… =µ­È=ªV­Zr¡Tý[š4irôèQõã« Ž:uª_¿¾§U­rwò²Cªß¾¾ÎËKpüïÿ;{öìÙ³g>|XrîÜ9¥K×5~Ù¶Ö­[ËCžþye´üü|åØT‹œKxŽõË¢r‹H_·Bx‚£ÝnWÚ#IÒâÅ‹åá6›íòåË~4ÛuŸ÷u ŽDÓ§O—ÆÇÇ+ÕSåIpv»=(›&ðãZå©jð8)µ!DpŸwZ¯^½©S§ª3##é‹yïÞ½ò?ºtéâö-ÙÙÙõë×w;Zttt—.]>ýôÓàΫK—.òuÐYYY?ü°ÍfËÈÈÈÌ̼óÎ;¯\Q9𫬬,·Í¸õÖ[å/»ÙÙÙ………JçˆÂéÂ#¥¦\wïªsçÎo¿ý¶â§Ÿ~BÈø7kÖìÔ©S_|ñÅæÍ›•òÈj6Ÿ[Ž¿)Y²d•*U:$„Pðä‡={ötèÐáÇŒ‹‹s}Õññ:ùùùòçòÏ?ÿܸqãõë×»^¤åöq<®=_®V­Z¥üÛõQS*w'åO×RQäöõu^^ÈS8{öìŠ+6oÞ¼uëÖŸþùüùóžÆWß6LJcGFFÞzë­ŽhKxŽõËàñu+„G½zõªU«æÔH!„$I¨S§Ž¯ÍvÝç}‚cg´rW®\Yéú¨²QÔïN §ÒËJsúÓyyqõêÕQ£FýßÿýŸr{ottt… oWß¶ .(otº§Ä˱éÇÃQ£~Yß"¾n…ðpZꘘ˜Ò¥KËkþĉuêÔñµÙ®û|€»ŸÌé3ÇQ€›&(ǵ§¸EpÔ^‡äk“—,YrêÔ)¥ÿåÑG}ôÑG…III^‚c€ç`§OR¥JÅÅÅÉ_7¿ùæ›ÔÔT×·”/_>..®D‰W®\Bœ>}Ú± <#-XóB/^üí·ß~õÕW—/_þÅ_,[¶ììÙ³ò?üðÃÈ‘#?úè#õ£9)Uª”òY|üøqÇeQ=ø'K©R¥š6mºaƼ¼¼/¾øB~dI³fÍä߇<}úô_|!?ÿ"rcpÅÄÄôë×ïÝwßýᇄ¿ýö›šw%$$L˜0aùòåBˆµkמ8qÂéüˆ[n¹eÿþýG½xñâèÑ£gÍš¥¬^•»“Â×H­ðc^^Œ?^¾b855uĈ­ZµªS§ÎàÁƒ?øà?ÚyõêU!Ä©S§nºé&å%%ê.Z/a8j|Z–·ˆÊ­ „’ÜÜ\Çá!*LîÚµËñó_~†€"22R¾Ù<ð'¸»Ÿ[nšßÈ©®ŽÚkÞ¼ù AƒäÏ›7¯mÛ¶k×®•+ó¿þúë Aƒ”;*ÂF 7ï¿ÿ¾tã©ÑŸ}öY¹rå’““å/·Ür‹üÒ¤I“ä'K’ô /8=e&ðyíÞ½»bÅŠ+V¬T©Òþýû…v»½S§Nʽ{ñññB•£¹¥<îÿþïÿ”‡Êîܹsâĉò¿¯¯ „RJ”ãõÍ7ß\¬X± *T¯^]!wéÚl6õ%d¹jriYáéyÅNΞ=«\¨^¢D ·EÿÔ¯_¿L™2=ô<ÍÂÂBÇ®s•»nPk^çÏŸW:Ú”,òË/¿ò³O7ß|³üÇýy„ * Æ*…ç¨Q¿,lõ[Aé"ÿé§Ÿ”kï/^ìk(Wyä^½zõÉ'Ÿ”G>~üø³Ï>+¿ãŽ;Š+øÎŠÝÏ•›Æqýx¬rj€+ºªuáÕW_ýïÿ+ç­üñ–[n‰ˆˆˆŒŒTÎÖ-Z´øñÇÃÖžQ£FÍš5ëìÙ³K–,éСÃ-·Ü²k×®¯¿þZ~uذaò%í£FúÏþsõêÕœœœÆ7kÖìСCn.ÀyÅÇÇ'&&ž,ÿ[^ïÓ‰—¿]üûßÿÞµk×ÓO?ÒŸMSʇž~ñìþûïWîôÊÏÏ?~ü¸R;2dHPŠµŽŠ/þòË/ËÏø]¹råòåË匢r× Š`Í«dÉ’%K–”·æÃ?}Z¹O¨H~¹‹/NII©]»öÏ?ÿ,ï#""^y埚ø‚Bý¦q»~<Ö95À ­oëÆŸNœ8Ñ®];·ÛèÎ;ïT.sqû8_Ÿ¥,óþ”/¾øÂí—°Áƒ;>±væÌ™NŸz%K–lß¾½üo·¿ãß¼~üñGOíÚµ“r¦~4·¸ùé§ŸÜÆ’’’~øá‡"×›ëÃ8<¹ýöÛ•‰/^¼X¨<ÁÄu n[{Ï=÷86Òé—cœÚ¦Üe5oÞè4ÍØØXå5ãQ3—ð5ê—Eå—Ûg¾¨Ü ŽÍvS©ŠyÛ#×ËVhÛ¶­Ü¡°Ûíï½÷^°vž§ \èø ¥uëÖ)MõuÓxZ?k*O Pƒ®j½HLLüöÛo¿üò˾}ûV¯^=**ª\¹rmÛ¶ý裖,YR¡B…"KPÁuÇwüúë¯<òH£FbbbRSSïºë®ï¿ÿ~úôéŽ×?òÈ#«V­êÙ³gåÊ•«T©Ò³gÏõë×ûút5ójÞ¼ù¾}ûFݤI“Ê•+/^¼L™2­[·ž5kÖš5k¢¢¢|Í­¦M›nß¾}ôèÑ;vLLLLHHèСà /¼°cÇåIrAáxã‹cÅÑížLž<ùž{î©P¡Blll½zõ¼ÜÒÊS0Ž9¢?~|zzzlllFFÆSO=µqãF/wè;Íŧ#·lÙ²ëׯôÑGkÖ¬™˜˜x÷Ýw¯\¹R¹ºÉ§f¾àP¹i<­Ÿµ@N pb“n\.Ë<ðÉ'Ÿ!¦OŸ>xð`­›Àµk×¾úê+ì^³Í›7ûí·ƒ *Uª”Ö‹h€e ÑVðÃèÑ£Ç'„èÑ£ÇçŸêfëgÁ¡GøïŸÿü§ü´ê–-[*? váÂ…š5kÊÏãX·nòCO•| Ž@8qs üW¹råmÛ¶ !¶mÛV­ZµÞ½{çææ>óÌ3rj¬[·®c÷+0:®q„ÿž}öYå2¦Q£FÝtÓM7ß|³ü‡råÊÍ;— G0*Žð_ttôªU«æÏŸÿñÇ8pàøñãò#µn½õÖ!C†˜àš*àˆk  ]ÕP…àUŽP…àUŽP…àUŽP…àUŽP…àUŽP…àUŽP…àUŽP…àUŽP…àUŽPÅ®uL(--Më&€ÐÊÊÊÒº  8†„5w&¤¥¥±é­‰MoYlz˲ ›ÖMÐ]Õ>° [Í´šZ·BG¨Bp€*GµlÂ& IëVh†àUŽ@Ðps¥e±é-‹M«!8¨bñ~jAp€JG¨Bp(ýÔ‚à•ŽP…àPú©eG¨b׺h#--Më&@/x–»JG€¥¥¥‘ +ò+ýÔ ºª  Áª<¢ŸÚÁª  ÁÀ=ú©ð8÷zõêµcǧ ëׯ׺iÚ 8ºwøðáèèèäädÇñññZ· @3G7òòòÎ;—™™9eÊ­Û´A?µ+®qtãðáÃB§r#Nl6›ÖMŠàèÆ¡C‡„IIIZ7 k’$™ƒ.ÇŽksQ«V­ûî»oãÆZ¯ X]ÕnÈÁñøñã÷ßÿîÝ»cbbêÔ©3xðà hÝ4€¾ÈÙQ’ÜwhzyÉoýúõ«ZµªâÊ•+;vìøì³Ï,Xðÿ÷ƒ RóöÍ›7?~ܸquëÖÕzåéýÔnÝ8räˆbêÔ©)))-Z´øý÷ß¿ýöÛï¿ÿ~̘1}úôQ3ןKÏÊÊÒz±!á);†"5 !žxâ‰V­Z)îÙ³§G=öX«V­êÕ«WäÛOž<¹dÉ’!C†h¼Ö Åõ´nYG7Ž?=lذûï¿_²aÆÁƒO˜0¡uëÖ•+W.r ÄD°×ì¢ÔèªV­Z³gÏnҤɿÿýïùóçk½&ÌÉõ´nÙ(É5Žn|ôÑGÛ¶mSR£¢eË–÷ÝwßåË—W­Z¥uëzäx½cØR£ìæ›onÕªÕâÅ‹ ä!“'O®_¿~lllÙ²e›5k6gÎyøC=tûí· !Úµk—’’â}d+£ŸÚ‚£ZM›6BìÝ»Wë†tJÎŽaN²† È—Z3fذaåË—öÙg{ì±óçÏß{ï½_~ù¥bøðácÇŽB¼ñÆü±÷‘WtU;“$©°°P¾[Íqx±bÅ„qqqZ7gÕªUB}ìvû÷ß¿lÙ²)S¦<ýôÓÊžŠˆëÖ­S?²EÐOíÁѽ *¼þúëZ· wÞ£a²cvvö½÷Þk³ÙF-„8zô¨¢víÚÊ‹-ºxñ¢S Õ (Žø¯ÈŒô6}úô¯¾úJ‘ŸŸ¿sçÎ 6\½zõÝwß•6¦}ûö±±±>úè=÷ÜS¥J•üqÍš5åË—_·nÝòåË333ããã剜}À€Û¶mBŒ3fìØ±:tèÕ«W~~þçŸ~ï½÷–*UêŽ;îð>—¥K—öêÕ«bÅŠýû÷·Ùl‹-jÕªÕ¢E‹ºwï.°jÕªwß}÷ÑG­U«Öòå˧OŸ~íÚµ™3gj¶9àJB°Õ¬YSë&Š`ÄÏê1cÆx:›÷èÑC’¤ .+VìÁTÞòðÃ'$$;vL’¤¯¾úJñÝwßÉ/µk×®aÆò¿“““###wïÞ-ÿùÆo!4hpõêUyHëÖ­…yyy’$¥¦¦Ö¬YóÚµkòK¹¹¹v»ýñÇ—ÿô4—üüü”””ää䜜ù¥œœœ¤¤¤ÔÔÔüü|¹ BˆE‹ɯ¦§§W­Z5 +ÖÁˆûOPPqÀHÜÞU-ßÂa³ÙÖ¯_èС¤¤$!ĬY³fÍš¥f²M›6­U«–üïöíÛ !ú÷ï_¼xqyHǎ׭[wéÒ¥¸¸¸M›6•(QB¹û?þB\ºtÉûô·lÙrðàÁ)S¦$$$ÈC† 2tèÐ_ýµI“&BˆÔÔÔ»ï¾[~Õf³edd|ñÅZ¯oü Á#ñrWuttô”)Säþâºuë¶lÙ²k×®·Ýv[ddd‘“UòœB΋®CdeʔٰaÃÊ•+÷ìÙ“½k×®‚‚‚"§Ÿ-„hРãÀúõëË/ÉÁ±fÍšŽ¯FDp'†î°I0ýë_ÿûßÿÞÿýúõë/[¶¬gÏžõë×?yòd°¦ŸŸŸÇw´iÓfùòå5jÔ>|øîÝ»K—.]ä%IBØþ~ý¨üˆÇk׮ɖ(QBëõ‡"0‰?þøã§Ÿ~ŠŠŠzä‘GæÌ™sèСiÓ¦eee½÷Þ{ÁšÅºuë–-[6eÊ”M›67îž{îIMMUSq¬Q£†bÇŽŽ·oß.„HKKÓzÍA-‚#&‘••Õ¼yó·ÞzKþ3""¢]»vâïÍ>¦ñèÑ£BˆÚµk+C-ZtñâEéï÷ƒ»Î¥Q£FÕ«WŸ]¾sÙÉúè=÷ÜS¥J•üqÍš5åË—_·nÝòåË333=Í%**jòäÉ}ûömÔ¨QŸ>}$Iš?þ±cÇ.\¥õJ…ZGŒDyÚ¶“Ö­[Ë?|ùå—W¯^½xñâÄÄÄÎ;=Z~wË–-û÷ïÿõ×_ïß¿ßïàX½zõeË–5jÚ´i‰‰‰íÛ·ß¾}ûÒ¥KG5uêÔÌÌL/séÙ³çÚµk_yå•?þX‘‘‘±pá¦M›j½Fá›ð³Fá$---++KëV¼á³ ?vËî?\ãUŽP…àUŽP…àUŽP…àUŽÀêl6­[`G`u’DvT…à@vT…àUŽÀÔ©Sm^­X±Bë6EÇ"Ùµn(Z£FFŒ¡ü9mÚ´øøøûî»O’œœ¬uÍ@ÎŽ’¤u;ôŠà€´iÓ¦M›6ÊŸ³fͪV­Úĉµn¬…®j€¿ÐaíÁóHII:tèæÍ›4hРAyHïÞ½Çy衇ʔ)£ü¹sçΞ={V¯^½B… ]»v]½zµÖ ¡=²£'GLåÈ‘#]ºt9þ|óæÍ‹yåÊ•Mš4Ù¶m[ß¾}zè¡téÒeÞ¼yZ/tŠkø›Ð²Ö$‰@ïËøì³ÏÆŽûâ‹/FDQºzõê¿þõ¯Úµk¯_¿>::ZñÊ+¯´oßþ…^èÝ»w±bÅ4\šã.·¨8ð7’4ü/ðöWªTIMjBlݺ5;;{äÈ‘rjBDEE=ùä“زe‹ÖÛA{tX»"8`*iiijR£bÏž=Bˆ8>rÀ€BˆÃ‡k½Ð#ºª0•øøxï#äççËÿˆŒŒBLœ81==Ýiœ:uêh½º@‡µ‚#&WXXèøgvv¶ü5j!âââºt颼úÛo¿íر£ÈôidGGtU`f111»víº~ýºüç?ü°yófùß 6LKK{ë­·rsså!yyy™™™C‡‰‰ÑºáÐ#*Ž˜Ù­·Þ:eÊ”Ûo¿½Gxçw”j¢ÝnŸ2eJ÷îÝ4hЧOŸk×®-Y²äÈ‘#óæÍ³ø-ÕN(:*Ž˜Ù„ $IZ´hÑŠ+$IêÕ«WzzúäÉ“åW»víºqãÆÑ£GÏž=;??¿Aƒ3gÎìܹ³Ö­†NÙ$òs°¥¥¥eeeiÝ €7ü¬¾xñâÅ‹+T¨ uCtGåÎàXt´àþ#£â€%ÄÆÆÆÆÆjÝ £ÃZps T"8¨ÂoÉ  Á@-‹ ŽP…àà+ßXMp€*G¨Bp€*G¨BpÀÆŽk³ÙÖ¯_ïúRûöímúxHLJJJïÞ½µn…BüòË/6›mþüùZ7ÄTŽP…àUŽ˜Öõëׯ_¿îß«ºUXXhÄf›Á³III:tèÛo¿™žžþÜsÏ]½zUÍ«Bˆ;wöìÙ³zõê*TèÚµëêÕ«¦¼yóæ 4hÐÀS6nÜØ¥K—²eËÖ©Sgذa—/_V^Ú´iS·nÝ*V¬X¹rånݺmÚ´ÉqâN×G>ôÐCeÊ”qœõŒ3ìv{•*UüñóçÏ+#¯]»¶sçÎòLGŽé¸D‚#&´páÂ'Ÿ|²mÛ¶Ï>ûlùòå_ýõÎ;K7~óÄË«+W®lҤɶmÛúöíûÐC8p K—.óæÍS¦|äÈ‘.]ºœ?¾yóæng½}ûöÎ;GFF<¸B… “'OnÓ¦MAAbéÒ¥­ZµÚ±cGÿþýûõë·sçÎV­Z-]ºTåB­Zµê©§ž0`À´iÓ6l8}úôaÆÉ/-^¼¸C‡Û·oï߿ǎgÏžýàƒj½ÌHB°Õ¬YSë&Š`ÄÏê1cÆ!Ö­[çúR»víÏéÉÉÉBˆ &(CFŽ)„˜;w®÷WóóókÔ¨‘‘‘qéÒ%ù¥+W®´hÑ"55µ  @yïØ±c¯_¿î¶‘ò'NT†Œ1B1cÆŒüüü”””ää䜜ù¥œœœ¤¤¤ÔÔÔüü|ù½½zõrœÚƒ>ï8åE‹É¦§§W­ZUndRRR¥J•Ž=*¿zìØ±Ê•+ !æÍ›WäŠõcg0âþTÐjÓ¦Mtt´Ö­Èž={l6ÛO?ýäöÕY³f5kÖ,..®R¥J<}ú´Öí „ ÇWþ|ùå—K–,¹`Áï¯nݺ5;;{äÈ‘ÊWTTÔ“O>yàÀ-[¶ÈC*Uªôâ‹/FDxŒ‰‰‰C† Qþ3fLÉ’%¿üòË-[¶úèîݻ۶m[ªT©?üð¶Ûn»xñ¢VM‚æéAR·nÝÈÈHåÏØØØ´´´ýû÷{uÏž=BˆØ 0@qøðayä´´4/©QQ¯^=»Ýî4ñìììììl!„Ó•‘õë×BÈ/©fÍšŽ*ÍØ»w¯¢qãÆŽ¯fddmmâ{à“ਠ  °°PÿÓ,RnnîŽ;æÌ™3cÆ ·#lß¾ýµ×^«R¥Ê¦M›ä.¡!C†L:õ¹çžó’5´n€Å‹B¸½çãêÕ«ò«^Øív/ßëäWå49qâÄôôt§êÔ©#ÿ#>>Þ×–Ûíö%JH’$„pzPy±bń׮]sûÆüü|Ç?K”(áiú®SöžnáÖ)÷ÒÓÓÛ¶më)5 !fΜYXX8nÜ895 !Þ|óͲeË.X° ü1°9ºíرÃiøµk×~ûí7¹t§øí·ßÓØåË—wïÞ­Tì<½Z£F !D\\\ÕªUËÍÍUŸwíÚ%ß ã8ñ5jÈwjÿöíÛ…iiiòŸNŸ*+‘7Ýt“â—_~q¸mÛ¶ÐoË!8AóØcU­ZU1kÖ,›Íæ¹®\¹òâ‹/6mÚ´dÉ’µjÕš8q¢ã‡ãÕ«W_~ùå-Z”*U*==}àÀ¿ÿþ»÷i®[·î®»îªX±bTTTõêÕ{öìééD¿Íš5kÉ’%K–,éÔ©“ÛÖ®]qÛm·)Cìv{ffæ©S§Üþ$€µjÕ*>>þÕW_Uzœ…×®]2dHnnîwÞé8rNNÎäÉ“•?Ç———w×]wyµaÆiiio½õVnn®üR^^^ffæÐ¡CcbbT¶óĉŽÝ¯¼òJ^^^ÿþý5jT½zõÉ“'Ÿ={V~éÌ™3“&MJJJ’»•cbbvíÚ¥<£ñ‡~ؼy³š96jÔ(55uÒ¤IÇWpêÔ©o0SÒúî²ìVøöÛoÿýï !Z´hñöÛoïܹS’¤Ö­[GFFvîܹR¥J>øà<'îgüã?äOÌ:uêôíÛ·I“&BˆÄÄÄmÛ¶yšæêÕ«£¢¢"##»térß}÷µiÓ&"""::zûöí¡X®GyD±qãFÇ………v»½bÅŠN#¿úê«Bˆ>úHë­Á ŸÕŸ}ö™Ýn/^¼øwÜñÔSOÝwß}ò½Æ:t¸víš2Zrrr¥J•"##»wïþÒK/uîÜYþ‘o…öþêòåË###«W¯>bĈ§Ÿ~:))IþÅgeÊ=zôðÒÂääd9böìÙsôèÑ;vBtéÒűýÉÉÉÏ<óÌÈ‘#«W¯n·Û?ÿüsùUù–š®]»¾÷Þ{Ï<óLlll||¼ã]ÕN³v¼çzñâÅv»=11ñ©§ž>|xÕªU£¢¢wUÁ1ø,»3A’¤£G !yäeHëÖ­… 6<}ú´}z‹-âââÒÓÓGíj7lØÐµk×ÄÄÄÄÄÄ®]»:~”]ºtéé§Ÿ®R¥Š|µb¯^½ÆŽ«28J’´víÚN:É /]ºôÂ… ŽAÇÍ1@8¼öÚkåÊ•“ÿ‘‘‘œœ|êÔ)!Dnnî{ï½×ªU+å¶Bˆ»îºkÀ€³gÏÞ¿ÿ?þñשõéÓ§gÏžM›6U†Ô­[W‘““ãvîS¦Lñòó\ƒ *Y²¤¯KtéÒ%!„\=uTªT)!Ä™3g´ZÕ€éÕ¨Qãã?V3fÛ¶m¿ûî;?^ÍÈÈøê«¯Ü¾tðàAï3UFùä/s5j”ùäÌ™3ëׯòäÉÕ«W—,YR¹kÒiš­[·¾é¦›fÍšµcÇŽ–-[æää,[¶¬E‹QQQ‹/¾é¦›oЖ1" ›””ôÆoŒ1¢Aƒ]ºtÙ·oßš5k7nüì³Ïj»!Â/ÇíØ±c79r¤Ö ÄÇÇ?>>>þƒ>øßÿþ§æ-UªTÙ¶mÛðáÃívûâÅ‹÷íÛwß}÷mÛ¶M~*¸ë4cccW­ZÕ¿ÿÇøá‡G:uêW_}õâ‹/^¿~}îܹá\ÞáÇϙ3'--mÁ‚999O<ñÄš5k”LÆÆ#޼“$éþûïß´iÓwÞ9qâD5oIKK“ïèŸÕPø±3Xvÿ¡âX„>úhÓ¦MZ·@{Go²³³'Ož\«V-­ =‚£GÏ<óL™2ež{î9­Û =îªöhÚ´i»wïþÏþã÷ÃJÌ„àèÞ¶mÛfΜyï½÷¶lÙr×®]¾¾=--Íiˆ5/¡À\Oë–EptãòåËÏ<óLµjÕ†î߈‰˜†ëiݲQ’àèÆë¯¿~ôèѹsçFGGkݽàæg›6mš;wî Aƒ4h u[øËرcm6ÛúõëµnHRRRz÷î­u+„â—_~±ÙlóçÏ׺!æApt–-„x÷ÝwÓnèÙ³§â‹/¾HKK»ýöÛµn àÆ¬Y³š5kW©R¥ž>}:ˆoÙ³gÍfûé§Ÿ´^J€Æèªv–””tÛm·99wîܺuë*W®œ‘‘Q±bE­8{á…&L˜×¶mÛ}ûö}øá‡»víZ³fü#׿eÚ´iZ/"@ŽÎZ·nݺukÇ!»víZ·nÝÍ7߬ò'pÚ¾}ûk¯½V¥J•M›6U®\Y1dÈ©S§>÷ÜsžŸÊ·äææîرcΜ93fÌÐz)ào %I*V¬˜Ö ±ºªc›9sfaaá¸qãä(„xóÍ7Ë–-»`Á‚ÂÂÂ@Þ’žžÞ¶m[R#`,›6mêÖ­[ÅŠ+W®Ü­[7åWs{õêU¼xñ .ÈΟ?ßf³Õ¯__yãˆ#l6ÛÖ­[å?wîÜÙ³gÏêÕ«W¨P¡k×®«W¯VÆLII:tèæÍ›4hàå~€7véÒ¥lÙ²uêÔ6lØåË—‹l¤pw}äC=T¦LÇYϘ1#!!Án·W©RåñÇ?þ¼2òÚµk;wî,ÏtäÈ‘W¯^Õzƒ˜ Á­óçÏ?õÔSéééeË–ÍÌÌüúë¯GŽi³Ù~ùå— LíÚµŽ×WØíöÌÌÌS§Nyº‚^å[fÍšµdÉ’%K–têÔIëµ@•¥K—¶jÕjÇŽýû÷ïׯßÎ;[µjµtéR!DfffAAÁ?ü )ÿcçÎüñ‡<ä»ï¾«X±bÆ …+W®lҤɶmÛúöíûÐC8p K—.óæÍSftäÈ‘.]ºœ?¾yóæn[²}ûöÎ;GFF<¸B… “'OnÓ¦MAA÷Fª±jÕª§žzjÀ€Ó¦MkذáôéÓ‡ &¿´xñâ:lß¾½ÿþ;vœ={öƒ>¨õ61 ÁV³fM­›½8~ü¸ü[çééé½{÷®Q£†Íf«]»¶bóæÍO¿°°Ðn·W¬XÑiø«¯¾*„øè£‚ò–GyD±qãF­W'L^>«…Ðì?ïÆŒ#„X·nÛWóóóSRR’““srrä!999III©©©ùùùGBŒ1B~)=====]±xñbI’rss#""(O§F—.]’G¾råJ‹-RSS $IJNNBŒ;öúõën["0qâDeȈ#„3fÌðÞHù½½zõrœÚƒ>ï8åE‹É¦§§W­ZUndRRR¥J•Ž=*¿zìØ1¹_eÞ¼y~ï A|‹9PqBh̘1{öìyõÕW·oß¾`Á‚={öüë_ÿÚ½{w°¦áÂ…‚‚‚²eË: —‡äääå-€ÕH’fÿbË–-2dHBB‚<$!!aÈ!øõ×_«T©R¿~ý5kÖ!Ξ=»sçΡC‡ÆÆÆ~ÿý÷Bˆ~ø¡°°°[·nBˆ­[·fgg9Ry˜qTTÔ“O>yàÀ-[¶ÈC*Uªôâ‹/FDxL‰‰‰C† Qþ3fLÉ’%¿üòKïT³˜©©©wß}·üo›Í–‘‘!÷¿oÙ²åСCÆ «R¥ŠÒȧžz*Œ;Ž%ps *gÏžýàƒêׯÿì³ÏÊC"""^ýõ¹sç*}CN¦L™rýúuO4hPÉ’%‡\ºtIç4¦üëgΜqˆo`òãäœ.:”¯bÌÎÎnÒ¤IffæÄ‰Ïž=+×,;vìØºuk98~÷Ýwv»]¾.eÏž=Bˆ 0Ài‡nÒ¤‰"--ÍKjBÔ«WÏnÿ+cÄÆÆ¦¥¥eggÙÈ"³fÍšŽ*ÍØ»w¯¢qãÆŽ¯fddh½Y̆à„Êž={ :wîl³Ù”111Íš5[¶l™Û·Œ5êÊ•+ž&د_?§àX¶lY›Í¦\í®ÈËË7ŠˆNüx C$Iáø#„ï;¾v횢k×®¯¿þú÷ß¿aÆêÕ«W¯^½}ûöÏ?ÿ|nnîwß}׺uëÒ¥K !"##…'N”û²Õ©SGþG||¼¯Í³Ûí%J”(²‘®òóóÿ,Q¢„§é»NÙ{º…X¡@¨±ÌItt´—®ê£Gº»îÝ»oß¾}ÅŠýúõ“‡H’´|ùò„„„–-[ºŽo Ó§Oÿꫯ‡DDDŒ?>**jòäÉ}ûömÔ¨QŸ>}$Iš?þ±cÇ.\%™™™ùùçŸ !äàX¬X±6mÚ,[¶¬Zµjuë֕DZÛíS¦LéÞ½{ƒ úôésíÚµ%K–9rdÞ¼yê¸3lذuëÖÕ­[wÆ «W¯îÒ¥‹ü¾Þyë­·N™2åöÛoïÑ£ÇÞyç•eÎâÅ‹¿ùæ›}úôÉÈÈèÛ·oñâÅçÏŸÏ AGpB¥B… ýúõ›7oÞ¤I“äÇŒI’ôüóÏŸ:uÊÓ[þýï{¹9F¾ÅÉÃ?<~üø±cÇvëÖMáµ×^;qâÄÈ‘#å •„çÏŸ?vìXdddJJŠÊ·Ð­9sæ8 ±ÛíãÇBôìÙsíÚµ¯¼òÊÇ,„ÈÈÈX¸paÓ¦M•1333…åË—Wú…Û·o¿lÙ2¥Ü(ëÚµëÆG={öìüüü Ìœ9³sçÎêùÄO¤¤¤|òÉ'+W®LNN=zôK/½$¿ä½‘&L$iÑ¢E+V¬$©W¯^ééé“'OV3Ó»îºkÍš5¯¼òʧŸ~zöìÙÒ¥KÏž=Ûéqâ”ÖÏ2!Ë>Û ®:T­Z5!D£F P§N„„„®]» !öîݬ¹¼ùæ›BˆäääAƒuìØÑf³5nÜøôéÓÊòc{ëÕ«§þ-ŽxŽ#L‰Ïj»páÂÉ“'ý~ûï¿ÿ~åÊ•#óGõ¸Æ¡êÕ«oݺõá‡ÎÍÍýöÛo6l¸aÃùÎå Þ¿<|øð9s椥¥-X° ''ç‰'žX³fM¹rå‚û§ØØØ *øýöÊ•++ô"›àóFá"--M¾ÏX¿~}É’%žXÖ¨Q£C‡åääðœ@C|VCáÇÎ`Ùý‡óB?þx³fÍ:¤ ùæ›o¶nÝÚ§OR#Àp¸9¡W^y¥gÏž7¾÷Þ{Ë•+·{÷îE‹U¯^]¾Wc!8!Ô½{÷5kÖ¼ñÆ .<}útBBBïÞ½ßzë­Š+jÝ4|FpBë–[n¹å–[´nAÀUVP…àUŽP…kV”••¥ü앎‹ äÎ6Û_ÿ.ò—4”‘Mü›6[@Kg6I˜wí˜Áµü‹€ÊÈfM¤Fë 8P49óøœ¤Éâ#¬€à€7¡yòÔ,Ô™åFc!8àQH³$Qz„Áp#<‘Î¥Ç@O¹ÑpŽ8 s’£ô£ 8𭜠J°~9€?ɹMÃ覔‚~j«!8 „nª}†Ëް‚#Àêl6½¤F™²#åFƒ"8,Móîi· ‘u•¶G€ué9ú";ú‡r£q¥çÔ(3qv„AV¤ÿÔhV” à°¥FÝ ´DG€µ.ñè6;‚Ž 1\j”™&;ÒOmtG€U45êkÒ²ŽK0zÖ1AÑ‘r£ ægôÔ(3Av„Ñ&gŽÔ(ÓCvôo}Rn4‚#ÀÌ̔ͦeÊÔ¨‡¢£¯(7šÁ`N¦L2 ³£‰×*Ô 8Lˆ|„Á`6VHê°¦ŸÚLŽ’²#Lƒà0+”µâǺ¥Üh2G€yX-5RtD˜&aµÔ¨”͇à0˦ư-»†áˆà€±é³Ãšr£)†G1,ÔXÃÆF¦ú+:Rn4+‚#ÀÀH@8FEjtº¢£¯ë™r£‰0 ½uXÃ|ŽC¢Ü„Á`<¤FO‚^t¤ŸŽŽƒ!5Z!8`*^éH¹ÑôŽ#¡ÜN¬m8!8 ƒ£’&EGÊV@p©Ñ'gGV8\@ (7ZÁ1øöîÍÒº `6T¿üÀóÀtÇà«Y3‚ˆÔè7¿³£Oëœr£u  Á1$è€`¡Ü ?NI”á Á _¤Æ ð);²ÎáÁ1T(:Lr£ÕCˆì ôD*OI¬sxGpè &èŠÌ޾®sÊDp -ŠŽÀ4Ž!Gv_Qn ù”äö¬D¹jصnCj )yÝ*ÙQù“u5Žá Ãã˜è„rJòówe(7ZÁ1LÈŽ •aÆÚ†O¸Æ ¤FC ÜheÇðá.`hG€.Pn4ÊGp +ŠŽà©0‚#P…r#ŽáFÑœPnŒ‚àЩÑ((7B5AÑÁ ÊFA¹2‚£6(:©0~rнÜÜÜ)S¦lÞ¼ùèÑ£åË—¯W¯Þ“O>™ššÄYð#„C ÜG7òòòn¿ýö¹sç !Ú·o_®\¹eË–ÝqÇ;wîÔºi`|sŒˆàèÆ´iÓrrrüÕW_Mž;xðàÖ­[«W¯þú믫|cZZšÓ¬¬,­—´ÇWe¡Ü¨p=­[ÁÑ›¬¬¬E‹I’$„¨[·ndd¤ú7ªŸ EGôÌõ´nÙ(ÉÍ1Þôë×o÷îÝëÖ­{öÙgW¬XÑ¿ÿ .hÝ(0*¾$åF¸Ep,‚Íf+_¾üÀûöí{âĉ+V„b.Ü^ ÀôHúaã”egg5jùòåNÃëÖ­+„8yò¤Ö  ’$yÏŽ”á ÁÑY©R¥/^üÙgŸ9 ?|ø°"%%%Dó¥èÀÄ(7ê—ìH=^%&&¦¥¥­[·nÍš5ÊÀ={öÌ™3§dÉ’Mš4ѺÛìh³Ù„$(7Âîªvcܸq xì±Ç222ªV­zêÔ©Í›7 !Þxã„„„ÐÍ—Û«˜Ÿlº%gG鯿!5¢HTݨ_¿þ×_}Ûm·9sfåÊ•'Ož¼õÖ[—.]zûí·kÝ40R£Î)uGÇ xBÅѽ¤¤¤I“&…¾a¦Ô¹'E¢â¾ Ÿ©‘{b ÁQw¸½6õPKBpöAQŽ€ Ü¨N×5RwD‘Ž€à#5êßßî§¾qu#ÙÞõˆÞj@Hy¹‡šì/Ž€ £Ü¨sN©ÑõfjžËOŽ:EÑ"äBøà&ÊÆÂ³á‚£~Qt„©¾"8‚†r#`nG¬ˆr#ü@pÔ5z«åFÀôŽ€ 5 åFø‡à¨w€N¢Üh,”á7‚£Ptz@p„r£±PnD ìZ7„Iѩѱ‡‹/pAp4¹·šC€ÞðÑd`n¯‚rÜœN#°¥ApÀ"lÂ&Ù„7â`‘AÐi›ê7¼ކAÑ€Þð¡d$6›Ë|Ê{åɶ·$‚#À¤Fc¸Q&´I"h÷ÄÈžøhIGÌÈ!Ø…äNjâ£%„Þj:Ág‘®…3Ì)ñ‘ÂŽ˜…»ÈŽ7Rذ n0üŠ Í‘tJÞ0ZmùüÄ)Êì¨8`pžû¦Ãú;1t[[ÁàR¾èðÞº­M®jã¡· DÑ}Óšý,5'*ó"8Ô¢¤òÕ„^7†kj´æŠÁdG“"8Ç#X—¿7ÁH’ä%Úl6)¸_ 8W™Á  åFí©(4þ9¢‡NjOÙ1ø©ñÆüÈŽ&CpÀ‚ô´×ìªÔxc~dG3!8G"€p¢Ü¨%Õ…Æ?G/êžÇìÚÔÓáq<蘙]åÔJv Gjä=&BÅÑÀ(:Núš1ͪçŒeG€7¦‰.ãc÷ôŸoRýàF¹‡Úû}ÖAFv4‚#:ã×}0¾¦FùßdGø„àhlƒBŠrc¸ùUhôqÎwÄ5;ÂàŽèCÜQYnôtuø²#ƒ#8Ç €¡ÜV¡_ÝÞŸ¼Cv„<ŽMÉ)*€Ô¨¦Ü¨æy<ÐE¢âpƒrc˜ü{0êܨõ¢þ­5 Šàh€`HVŽçœºŒ‰àpfå<>ÁXËêÁÁÑ$øæ†¤gî>5rê2 ‚#ào(7†VÀ5š ÙÑhŽ„KðR¹áË0&‚£yðµ @à(7†JPÆT©‘³—¡ðGBŒ<³ âh*|mâMH{µšªÜ(ãìeT€Ð*Ž!(7]hîž6a¹QFÑÑ ŽfáÚ M 7mj„q”ƒ'¨wO[ •# 8š‡h#”÷¦Ü= 8€ÕQ ŽP®G«¤F*ºÇ]Õ†»§aT͉ïlT¢Ü¨Ðÿö´UÊ2N`úFpÀ_¡ÏÝÖJ2²£ŽM‹ã@‘(7ú»§aI\ã€Â­Xn„¾Qq43ŠŽ¼ ^æ'RcpÓ+*ލÆ»§Ãšå„fÕŒ ŸPq+¢Üè³Ðß=­Ñré52RtÔ%‚£ÉqÜ@„7h‡¯Ü¨¤FéFÝðŠà–C¹Ña¿{ZƒÔ(Óav¤ø¡?\ãh~òqÇI|fÖOO.j„¿¨8€µ˜5 ™Fi G¹Q.4º EG…Š#§Q¸ÖÅów$ß. âh |aµÌ]’5b(ä¦'TÀBÌŠÆÇ4º™¹Ê2ŠŽðŒŠ£Uð… ¼Ñô1aJêã /v„>À*(7º§Ñ}0Í_?µFÝ¢ø¡G á¸gfý=7Kêcï3EG¸CpK ÜèLëB㟭 Ü¨Å}àæ€õè 2 $ðGká `MúˆIú B£0D­Qo½ÕœÃt€Š#À2ôã¢âh9|a¬†°ôçZÐÓŠk¹‘~jÁ`v:»uÚÔ z«ñwG+⸬COU6–_g« Ü©‘r#‚Šà0)?4Ep´(Ž;À tVk ï’ërá YnÔ[o54Å]ÕsÑedƺ´ð€Š£uQtÌM¯ñ)Äˬ×Å&5'0íPqtïòåËóçÏ_´hÑÑ£GãââjÖ¬9pàÀV­ZiÝ.€zŒš âm17ÙàOG7 |ðÁmÛ¶•.]ºE‹W®\ùé§ŸÖ­[÷ÔSOýë_ÿÒºuP4k…(¹ø¤ã¦Ü|rÑQÇݬŽn,X°`Û¶m7þàƒ¢££…ÙÙÙ÷Þ{ï;ï¼Ó¡C‡ÚµkkÝÀ á¸`xºÿ#5ÂL¸ÆÑÿþ÷¿Bˆ^xANBˆ5j <øúõëëׯ׺uPÝG©à-§îU³ÔHÏ2BƒàèÆÁƒcccëÖ­ë8°FBˆ#GŽhݺ ã cÆ£DFRcØèð¡<œÀ´@Wµ3f̰Û×Ì®]»„ÕªUÓºuàîkp,aèQnDÈݨS§ŽÓ7¾ÿþûQQQ=zôP3…´´4§!YYYZ/–G\éÀtÌßk¦r£å¹žÖ-‹àX„ëׯϙ3ç7Þ¸~ýú[o½• æ]zމLÌÌ_ µlæL:|(O¸*®§uËFI‚£7?ýôÓØ±c÷ïß_©R¥ &´lÙRë… EGúe¨B£Ð<5ê-ÛÁ\Žî]½zuâĉŸ~úi‰%ž|òɇ~X¹Ã&F‹ŒBóÔhAT>‹àèFaaáðáÿùæ›N:½üòË*TкEáÀ¡Ùa.ùS£{«^G7>ýôÓo¾ùfÀ€/¿ü²Ömë1`¡Q/Hu1žãèL’¤Ù³gÇÅÅ=ûì³Z·%üËÎ#±£2`yÎë’paÌ_nÔ-Î^aDÅÑYNNÎáÇ£££ï¹ç×Wïºë®{ï½Wë6€¹ÐHj„E=zTqùòå;wº¾jâ«e\é‘[#/ƒ^R#ýÔ=‚£³FYü)ŒdGaeäB£ÐOj }Þé+\Ž`l>]<2 ¦FX7ÇÀ ®3ŒÂةј7Á蔫€0#‚# ¼l6#^‡å Ü¨+Ô<‚à÷8ý3dú2K¡Q_©1ÌåFù2GXÁf)4 ½¥F(¨y„Áqzf° f–B£ 5ÂÚŽð†ì P&*4 }¦Fn‹AÀx “ÄLThúLZÑíeŽ›–göÈ(H~ã1àCpD ä³‰N+¿¿ÿëpó´,Alª.Ž,]4"Ä‹h¬ÔHPƒvŽJðÂ1`ù½‡e"Á](·ÍbϘöÍGµÁR#|"ŸœÌ¾‡ÁA£”…ùO4(ZÐsžãD4‘^ÎDÁ:Oi²Ó¾aYJÃ¥FÊÐÁAF|´8%Ò…t뻆H]ílgGí3›ö-ËR.5Z#8"$ã£ÐÙI!¢U€ ÿΦ&S’µÏlÚ· ,KIj ßCouPBÊqªyÇ"BG'_œv¶Ð5Fý Ȩg+C6Ú÷¥4hjÔs>ƒ5ž®NZ§ B‡}ÄÂøKhÛŒ»Ö|]Pƒ¦F@Ž7§³9Òˆô0B}Mu>5^«–)4 !H–cÔú¿¡1/9’c\‡ô7>úwÞQsÂÒ~­ZãœjøB#ýÔЂ#ôÅm§¶Îh }¸ñ—æ·j9ýì™în '5"p:¿?ÁCp„~…ívxgŽõàî`¸ÒÕC(ƒ¹`a†ÔH, ½ÕABp„h^1²,sDF'>õ_‡b¯ócR6›M Åf°ÆyÔ ©Ð ‚#BNÍ9OÍ8 ÃÉô+ÙéÛˆ§á:Y’$y?F|N–¦ßÀÊ‚’ "8"ä‚~Î3úóVtÎR+Öu1u»ø^Ž#R£—0Ì“ ÑO­ÿËé­‚#Â!˜ç¼¿¦)¿ý¯#@¬L/¾ÛãˆÔèqAM“=!8"L‚sÎs3Yy:ý~`…ÓqDjt¿”<¬™­ ‘ÏyÊŸA¼Þ_’þì‚p½d ÞÉ+M^0å8"5º_Ja“„dªÔ¨óþ_cqz8|GÅa¥ÔKBq—(ÕGŸ°¢ŒËŸ#ÈJ©QëVfFÅá¢Ôè0}¾R*£¡)ß¾Ô¿Á Ûœ©ÑXåFùþ˜Ááæó9Ï/ô\{¢ôMà”ï]j#klos¦F„¥…ÀÐU°r:ç…®î(è¹vÁª0§£¦èãÈ©‘[a€p"8"||>çñ‘Å7 ·Ç‹·ãÈ©ÑÌ‘ÑXýÔ°ºª&^Îya˜»e/|ä¦iÓðò-ËýqDj<±æù HŽŸÏy¡a© ‰ŒfRdmÞù8"5š€AËÜcvtU#äÔœóÂÖ+ô\›{é¬IÍ1ò×8fO\Ôhˆàˆ g.TÝ$!̷̰Dð™R#‘AÀïVû‹àë2S|4ÇR Pf?Z(5´Ÿ@p„Õ=>·å2S§Fº§ 8B0>*7B¢µ@ ,Th¼±ÀÆ^\É ‹@oµ_ŽÀ_ uÞ ŸÅ£>eræFx8î“ìu£ØfPôV»Cp„W!>f¼ä­àœêTw^ø³1ê[«&brš·‚?¿¢û£¸ ¤Žð,d§4E˜ÎmÁ{pOÚ¢b‘½‡K9üy}­×qTÖ¿).êåF˜ Áø˜]ÏpnÒMÓ{M¼ÆG]ýlŒ÷sÈË´Z±ùpQ©Ë’rÁ½ß0Pä®Hq9z«]Dhݽ;pà@ZZÚ¯¿þªuCÂË÷ãD’$›°9þ' Éñ?S£CCÿü pˆ)®?£u+½.ÁßW¬ãN›Àñ?­[íµ’äÿŽÓ1Oû›û›ý=bZ/<£Ü¨Tݲý£âX„O?ýTë&„/©Ñ©ÌSDe¼¿q¨>Ú\®k4îã½díë”Nñ(¸«×qjŽ3ÒóF¼q ¹îoŽÒ m`¤F˜Áѽ¼¼¼½{÷~ùå—óæÍÓº-á¥"5z9“¹\ú aÊEf.KmÜìèqYýÊ”"°Ò¤è­Å.!R÷ÛÑqszDaнÕGptïŽ;î8qâ„Ö­;Ïdžú²‡SäÒsüú[Û\†ù²£'Á¼¤RoÕ>Ç [uÒ$Ùcí¯Õ{#,’M‚r#LŠàèÞøñãóóó…³gÏÞ°aƒÖÍ —Ôèw™¹t¼þÖ6w·Îè¹ñaã[©RrûO­9~=Ðt›:ÆDáÿ¼ØQG+þ"5¼ŽîµnÝZþÇ·ß~«u[Â-(}dúOžÚ-„aú75¦0Û¨aÜ«qÁÑœŠ~¤N°O“Ö= º&H¡¿4¦ç¶éDžÔC­ÂÄC° ‚£ÙðãšÑÏÏ%Û\ŸËÍþ BÀOêѧ]Àø ¤k¤Fë ·šàh&>DFËï÷!ç)Dº!!¸5…èÄêƒÎ{R$G†©cŠût&---ÌÏqô­ÊHjÔ[nfgS†‚‚£²ù4mǽ=(¤F?}¥Ý8–Ã®× *ޔ߄6|zfˆÞ(ùè÷¯’Ëtüž`5†ø|%‚£!ù!£µww@­àž‚~ܱfãúDW>!T2zåL+ÜXmpZ7¾± ›MØ$!‘Ý-Ÿ-ÀôÜxàO!:éJ7þ³Ýø^}`UGÃ(2Zƒü˜qO¯êü äÞ/H–á§< GWÂWœ$\‘-NŸáBp4€àDF³—ežâ—ÎS£÷Æ¥ý&”ÓC0»¼Ã›W(@ºEj„µu-hUFk¤F™kü2Pêr› Ô~„Vy…¤#R#,à¨StLÂ1~.u9eGõßltÒ'¥‡¼B|ÔÃV0Éø{‘…?–¹«ZäȼÉY¨Ü¨Pâ—S—ÜxåÿZ7Çò¹Ã:(GŸ®òŠt£IŽZ®¶ ‚£¾ðƒ‘õEÃ'·é3¯8=ÄG‡- .}n@ G½Ud´d¹Q8ôð4~Qq„18 ͺ«’Gí…°ÊhùÔ(ŒYºSlÄÆã/€F‰,fí¿6w üBpÔX/g4O×DíG:œ“–±â—SSÕx3³üïŒÍdý×FIí@x5òËux’ó~:q ”~ÞŠà>c%~¹m¤Q 3np1AÒ¸+ß(øáAÃ"8jÀŠwÀ¨©@HîÞRä»ßá5]é?~yižþo }bФ±Z „Á1ÜÂÔ7­ŸÓ›ßŸÂ¾ŸuŠÌUz^EæB²£Áx š©c”$‘Pà>á+4ê*5Þ£œu\J›ŒÔsú*(tv,›)©¡Dp ‹ÞÄ%6h·L&<½Õæ1zK|¤¾ 8†\¸¯hÔI¹1tg>k al:9 uNÛÉgà‚chY±Ð(ÂR/¡ ­„ºèhîr£[aN|hè7VÁ1T´¹uZuŽ0Xá‡+‹pMNÃýæ8A>(€CB›B£S£‚øýäH¤#óôp.ï£yy k‚cðíÍÚkÅîi=àòG„t 3•¿ æ-¡uL¨fZM 檇ӘNŠ%Òÿl^Ï+€Þèä2ÉóBƒŠ#‚D‡ç<ú¯~zø !CÅÑ4?Wé05*¨>"äÞjG6›óÞI|2GãÓ<5ÕG„‚cR ð0Ôó·/¸à+!>"ˆøÂÀzާ‡r£á*%ÄGüBp„Uñì|Dp42Êã§ ¡F?ŽXwUBn¾-pcµÑPq4,Ê¡ÀåxFp4&=¤F#>"œÌ÷ €yá/ÓŸíˆüÁÑ€(7†7_pÁ~1}¹Ñ 7_#D¬v(08îª6ÊÚâæk.n¬6*Žð5.XÁÑP(7ê —?"@|`4Gã 5ê—?,ƒàQ#ñ„$ÀìŽA¹Ñ((@B%¾ƒ0 ‚# @%‰¯R†Ap4ý”9°}E`"G ,(@Œà¨{ú)7"pNHA‚ ÁQßt•é§"d€Ôü΄žW)Gc"8š"AªáÕ¬%V)ÁQÇtUnD¨¹&HaáÄã”ý[„rÀ@¸±Ú ŽP‡ã9l׳¥BdèÖ1Aš~5@(õŠr#„ÙCdPÊŠ>ÑIICm¿u‰ÔW&‘áOŠ®$ž© þ#8B $zã)Dº¾ª!Ý6Ly¦¦NÚÆApÔÊð‰ëÎbS7Z…ŽÓI·5 Á0·aH̓ƒ;Gý#;ºÂ!iGÑa¹‘ÃØ؈n…ÿDÅÀÈ"´nè05Ü@p`mRˆûñÀDŽº¡Ïr#Ýjà‚£>è35AÑÔ!8@¸²#%|À;¾ÅéÁQ(7# 8jMÏ©‘ê,…R…àUŽšÒs¹° ŠŽàÁ‚k?ÁQ;:/7r’ƒ5±ÛÚ¢ð¯oGè<5VÆI < 8jÔèð€àUŽagˆr#8ÁÅ1ÀŽáeˆÔàÁ1ŒH€Qp™# !@#8@‚c¸¨ÜÈÅXÀ‚cX(5±³Œ/cÌ‚àz¤FËHKKÓº Л޲Øô°‚cˆ‘€YCɈ©‘>5@Á­€V8úôŠà2FLž  Á14(7qù±Iä› ³ÙÒjÖÔºþÈÚ›•V“;¿ ð¸à°ü£ÿc'++Kë&h€àU誀*G¨Bp€*G¨Bp€*G¨Bp€*G¨Bp€*G¨Bp€*G¨Bp€*G¨Bp€*v­`ZÈÌÌ\°`Aƒ ´n ‚láÂ… ,Ø·o_LLÌ-·Ü2räÈ2eÊx¿W¯^;vìp˜°~ýz­ñuO€±p¤Ã+Ÿâ Ž¡òé§ŸjÝ„ÄäÉ“ß{ï½ØØØ&Mš:tè³Ï>ËÎÎþä“O¢££=½åðáÃÑÑÑÉÉÉŽãããµ^Ä=‘/¬|Š'8Y^^ÞÞ½{¿üòËyóæiÝ_VVÖû￟˜˜¸hÑ¢ *!ÆÿÉ'Ÿ¼ù曣Gvû–¼¼¼sçÎeffN™2Eëæ#hüØ` ép‹S¼àÇ »ãŽ;î¹ç+ïRæ¶`Á‚ÂÂÂ!C†Èç!ÄsÏ=WºtéåË—º}ËáÇ…NE{ „#nqŠÇ ?~ü»ï¾ûî»ï¶lÙRë¶ ø~þù爈ˆvíÚ)CŠ+Ö¶mÛ?þøcË–-nßrèÐ!!DRR’ÖmG0ù±'À@8Òá§xAWuеnÝZþÇ·ß~«u[d’$íÛ·¯lÙ²eË–u^³fM!Ä‘#Gn¾ùf×wɧ“ãÇßÿý»w‰©S§ÎàÁƒ-xIµiø·'À(8Òá §xAÅPïÒ¥Kׯ_w½Ô½téÒBˆ3gθ}ב#G„S§N=uêT‹-¾ýöÛþýû/X°@낟üÛ`é€Tµ._¾,„ˆu^²dI!ĹsçܾëøñãÑÑÑÆ »ÿþûå!6lóoO€Qp¤^ýQPP0sæLåÏbÅŠýóŸÿÔºQ&·›8>>Þf³]ºtÉiä .ˆÕW}ô‘Ó–-[Þwß}³fÍZµj•rŽø·'À(8Ò/Žþ¸víšã¢¢¢Ž&ãvÛíöÒ¥K»Öòòò„ÊÝ—j4mÚtÖ¬Y{÷îÕzAá î Ð!ŽtÀ ‚£?¢££³²²´nBÈÓ&NLLÜ·o_^^^©R¥””_r_’¤ÂÂB›Íñ·ë‰‹+&„ˆ‹‹ÓzAá'_÷ G:à 7Ç>èØ±ãõë×øáeˆ$Ißÿ}™2e222\Ç?tèP:uxà§á[·nB¤¥¥i½@ð“¯{Œ…#ð„àø wïÞo¿ý¶|µ“âý÷ß?}úôÝwß]¼xqyÈÅ‹ùÄõ‘oŠZµj}þùç=zô8}úôŠ+Î;×£G¯¾úªyóæZ/ âëžcáHܲI’¤u`T  Áª  Áª  Áª  Áª  Áª  Áª  Áª  Áª  Áª  Áª  Áª  Áª  Áª  Áª  Áª  Áª  Áª  Áª  Áª Êÿã© ã¨ÌRIEND®B`‚statistics-release-1.6.3/docs/assets/regress_gp_603.png000066400000000000000000000642401456127120000230250ustar00rootroot00000000000000‰PNG  IHDRhŽ\­AhgIDATxÚíÝg|åÞÆñ{C(iB”sÈÒCè½ 颢УtTå*(å "‚ª¨ R¤‹šªiAJ¨!ež£ãº»ÙÝìîÌîü¾Ÿ¼HfgfïÙ™Ù¹ò¿§˜$I€3AZ7þàUŽP…àUŽP…àUŽú²eË–˜Í戈ˆ%J4lØðÉ'ŸÜ¶m›í˜‡2ÙQ§Nýë_çÎÓziôkΜ9òÇU¯^=­Ûâfk¿ùæ›+V¬X±"==]8fÌyÌG}ÔÕwÉk‹2™LAAAf³¹W¯^ûöíS3IáÂ…+V¬Ø£Gýû÷«| ÅÈ‘#í6/?‹¦-]µ|Ò¤IrcÚ·o¯u[´\–7nôïß¿\¹rÁÁÁ·oßöF í®z»{.|>úGpÔ‹ŒŒŒÇ{¬Y³f|ðÁÑ£GoݺuõêÕ;w~öÙgMš4éСÕ+WÔÌçÖ­[{öì™;wnåʕ׮]«õbÁ[zöìÙ¹sçÎ;[…3o$éèÑ£ ,hÒ¤ÉúõëŽÿþý³gÏ.Z´¨~ýúsæÌÑú£¬5jÞ¼yçÏŸÏÉɹuë–/ßÚ—{®?âóÑ¿`­!„¸yófóæÍ-Ë9AAA&“)''GþsõêÕ<òÈúõë‹)b;y©R¥BBB„YYY.\ÈÍÍBܾ}û_ÿú×Áƒô^>݉ˆˆˆ‹‹B”)SFë¶è±µÊ%„ÈÎÎNOOÏÌÌBܾ}{øðá©©©Ž'¹víÚ7„™™™/¾øbëÖ­+Uªä`|KÅ‹÷Í2ÂȾÿþ{ù—fÍš=ú装 ÒºE€ß â¨ Ï?ÿ¼’›7o¾qãÆëׯ߽{755µ[·nòðmÛ¶7Îîä_|ñÅ©S§N:uîܹ7nôë×Oþ믿nذAë…Ó£^½zÉŸØÊ•+µn‹[«lQ§N:{öìÕ«W{ôè!¿´oß¾“'O:žäúõëk×®•ÿÉÉÊÊš;w®ãñ-½ú꫚}Ð0ŒK—.É¿¼üòËC‡-X° Ö-RåÔ©Sò¿p€†ŽÚÛ¿ÿüùóåß{ôè±~ýú-ZDDD,X0))iÑ¢EO>ù¤üê¢E‹œÎ-<<üwÞQ¾9’ט–çßdggÿç?ÿ)_¾üþóe„K—. <¸qãÆÿøÇ?{ì±={öØÎçøñã>úh‰%âââúõëwþüùQ£FÉs3fŒß+++ëý÷ßoÚ´iÙ²eÃÃÃkÔ¨ñÄOXu§r´¼Îq¼}ûöرcÛ¶m[ªT©R¥JµiÓæÕW_ÍÈÈÈës»víÚðáÃëÕ«Q«V­É“'geeåõ÷êÕKž°W¯^ÊÀ:Èyäe`ãÆå£G¶m­üñ*ýkmÚ´1™L¶'i]½zuøðáuêÔ ¯U«ÖÇìöóECCC¨üyá§“´iÓæá‡V¶÷Þשîݻ˟L||üåË—•áN7'¤«ëWånâTnnîÂ… [µj[¤H‘ØØØ–-[~úé§–ïèjÛΜ9Ó½{÷èèèÒ¥KwéÒå§Ÿ~RÓWßÅ«{Ëâx¤§§Ÿ>}Zî–B\¿~ýôéÓÙÙÙî­Ë÷íÙ³§ãótUî¹¶ïrñâÅÞ½{GGG'$$”*Uê7ÞÈçÆcû%ìÒüñ'NôîÝ;..®|ùò={öqℚI:wî,¿ôüóÏ«ß1ËMH¢>‹+vèÐ!eL5›“ƒ Ò¥õëê{9X@e¯±ÒµkW÷¶½Ÿ~ú©téÒ–#DDDtèÐAþ½]»vN?j5ïâí½ÆÕeqºF”ÍÒÒ‘#GÜX V+T©Ê1Âî˜ö\k¡uëÖ¶Ÿp¿~ýÜÞxì~ »4‡ZµjY}í—,YræÌ™V…[“É$ƒ©\5Ž?Ÿ|î×* Pƒà¨=åߣGõS98_»v­@òK~øa^sPö±òåË+³’÷±7n(¦uëÖãÆëÙ³gPPÕ<ïÞ½«$ÔB… 5nÜXùÓê[)ÿï¥Ì!$$ä‘GyñÅ4h  >|ø°K£ÙÇ;wîÈç !Š)’’’Ò¡C‡ÐÐPyHéÒ¥322¬ÞBÛ AËsOwíÚe÷?{ö¬2Î¥K—$I:uê”å¬ÎŸ?/IÒÞ½{å?ÃÂÂ233m[{åÊ•ãÇ+mûôÓO?ž››kÛ¶„„„äädec(\¸°jÕE^»vmù¥5kÖ(oݺ¥dÜ}ûöI’Ô°aCùÏ×^{MíÎ;111òpÛàèö{)£™Íæ?üðâÅ‹’$]¼xñàÁƒ¼pá‚ÕÜfÅ”^ ¥Í²É“'ËÃkÔ¨aµ,Õ«W·Sùz饗òúÌ_xáËO쥗^’ç,WjÇŒ#IÒ¿þõ/ËoaÉ­àX¥JeàÍ›7ƒƒÿ¸Â’%Kòj›Ó-ªråÊr¡Tý$õêÕ;wîœúñÕÇ6mÚÔ¬Y3¯Zåæä`ƒT¿~]}/Áñ»ï¾›?þüùóÏœ9#¹qã†Ò¥k¿œ¶­iÓ¦òW_}U-33SÙ7ÕG§ï⛽Fý²¨\#R»«kÁ7Á188Xi$IË–-“‡›L¦»wïºÑlÛmÞÕ9X~Íž=[©TO•;Á{dÕä¿Vyh€ÜŽGcJ-GáÙûV¯^}æÌ™jÆLNN¶êb>zô¨üKJJŠÝIŽ;V³fM»£…„„¤¤¤|þùçž}¯””ù<è´´´gžyÆd2%''·oßþᇶÁ¿Aƒ—/_^¹råîÝ»•òÈjVŸ]–·¿ /W®ÜéÓ§…Ê žÜpäȑ֭[oß¾=""ÂöUËÛëdffÊßË?ýôS:u¶nÝj{’–ÝÛñØö|ÙZ·nò»í­¦TnNÊŸ¶¤Âéúuõ½çpíÚµ5kÖìÞ½{ïÞ½?ýôÓÍ›7ó_}Û,oŽ]¨P¡|вí˜ÓwñÍ^£~Yò¹F\] ¾Q½zõ *X5R!IÒÉ“'«V­êj³m·yWç`Ù­ìÅeË–U:Olwí|®šüï×n`‹à¨±Â… —,YRŽŒ‡¶|©hѢʩ<—/_¾sçN^3±<W­ZµqãÆƒ¶{ÓG[V§9gdd8½#î•+W222”r©Õ.jù5ç‘÷BŒ?>##cÞ¼yòÝ($IÚ³gÏž={&MšÔ¬Y³/¿üR>FåhV222äû ›{%*_‘÷îÝ»té’å«Ê·¤Ý?íjÙ²epppvvö®]»rrr~þùg!Dƒ .\¸°råÊŸ~úéÞ½{rY®lÙ²U«VU³úì²7?™ÕwŽ¥|®ì×î`ÁQ{­[·–ÏM^¾|ùåË—•þ—þýû÷ïß_‘ë 8æólõ-P´hшˆùßÍï¿ÿ>!!Áv’’%KFDD)RäÞ½{Bˆ+W®X”{¤y꽄 |çw^ýõÕ«W¯\¹rÕªU×®]“GøñÇGŽùÉ'Ÿ¨ÍJÑ¢E•ïâ .X.‹rë™B… åÿ›¥hÑ¢õë×ß¶m[FFÆÊ•+å[–4hÐ@~>ä•+WV®\)ßÿ"?åFÏ íÑ£Ç{ï½÷ã? !~ùå5SEGGOžc8!!aĈMš4©ZµêÀ?üðC7ÚR¨P¡û÷ï !._¾üÏþSyI‰zù盽Fý²äxv-xŠÕ×éÝ»w•[É•W›m»Í{{Áó¹j<²_»wh€]ÜÇQ{C† ‘ÿW»qãÆàÁƒ•ÿùsæÌ9þ¼/›¤|;gggÿÃBñâÅ######CBBä›çÉ£ýðÃÊ´ÙÙÙ.Ýu\Í{eff^ºtéÒ¥K™™™Ýºu›?þåË—×®]«t1lÞ¼Y¡r4»”SΕGJXýY©R%åLÁühÓ¦ü‹Üg^µjUå<ô÷Þ{OþåÁôØêô„%JÈ¿(ß¶NYV ¬îê— _}õ•r‹Ð?þØòÑdj6'OµÄƒï¥¬÷wß}÷¹çž«Y³fpp°Û›/P €²o®Y³F.I’í­õòÃ{KË’Ï5¢r-(¡äúõë–ýT˜m÷ytù|¯ÈÈÈR¥J]ºt);;»iÓ¦;vŒŠŠúõ×_•GðÉp¨Y³¦šÑìz饗>þøãÓ§O߸q£iÓ¦<ð@Ö­['ç¤2eÊ(%®|jذ¡Òí"„Pî%V·nÝ3gÎÈ¿Ë âx>‘‘‘òÿýï:4xð`¯>6M)æõij¾}û*Wzeff^¸pA©2Ä#ÅZK ;v¬|ßµk×®^½ZÎ(*7]ðÔ{…‡‡‡‡‡Ëkó™gžY°`Édúî»ïÔ9ƽ÷Ú¾}{^-[¶”or¦~4»7¸Ù¹s§ÝÂXllì?þèôs³½G^:vì¨Ì|Ù²eò@å&¶s°ÛÚÞ½{[6ÒêÉ1VmS®²Z¸pa^­r¼E)oW¡B…œœÛIòÒ¸qcåÙž}rLvv¶róüªU«fgg«ßœl.­ß|¾—B¹¿º"!!AÙž|òI7ÚöÔSOYÍ3,,L9BÍíxÔ¼‹oöõË¢ò‹Ëî=_T®Ëf[Ž©TÅߎÇîžë`-4oÞ\îŽP¿ÿþûžÚxò9åÔ@Ë-mÙ²Eiª««&¯Ï'ŸûšÊCÔ «Z/J•*õÃ?|ýõ×Ý»w¯X±báÂ…K”(ѼyóO>ùdùòå111NKPžÕ©S§}ûö=ûì³µk× MHHxôÑG7mÚ4{ölËóŽŸ}öÙuëÖuéÒ¥lÙ²åÊ•ëÒ¥ËÖ­[]½»š÷jذáñãÇÇŒS¯^½²eË,X°xñâM›67oÞ†  .ìÒhvÕ¯_ÿþýcÆŒyàJ•*ݺuë×^{íÀÊä<ÂòÂËŠ£Ýò2}úôÞ½{ÇÄÄ„……U¯^ÝÁ%¡ÜãìÙ³Ê}wó"w¾·mÛvîܹ7n´½iŽG(P@¹õ/¿ü¢\"£rÓõO½×ôéÓkÔ¨!þ| ÇСC÷îÝ«<¾|Á‚J—¨z~ø¡ò8Ó˜˜˜‡~xݺuÍ›7÷ì'à›½Fý²äg¨_ Ÿ}öÙ¤I“jÔ¨–œœdÈ?5ø'ºªí8s挪Ü@^lû¬½”mU®\yþüù’$ý÷¿ÿÕúc@à#8Úqúôi!Dll¬Ö ø Ëìè³Ô(«[·n“&M–-[–-™>}zÍš5⢢4hðÅ_Èß~úéŽ; !Z¶lïxdÀÁÑ98^¸p¡oß¾õêÕkÑ¢ÅsÏ=·oß>­ÛÐ59;ú85ÊjÕª•}öìY!ĸqㆠV²dÉ—_~ù¹çž»yófŸ>}¾þúk!ÄðáÃÇ/„˜2eʧŸ~êxdƒãG»8ÇÑyÇ›9sf|||£F~ûí·~øaÓ¦MãÆëÖ­›š9˜Íf«!iiiZ/ `U¨PAqêÔ©øøøÏ?ÿ<11qÍš5ÁÁÁBˆ—^z)::ú»ï¾ëÔ©SõêÕåâHýúõ›7o.„p0²Öˤ#¶‡uÃ"8ÚqáÂ…aÆõíÛW²mÛ¶Nž<¹iÓ¦eË–u:b"Rkô}ÑÑò Ë]»v)RD‚Bˆßÿ]qçλº4²aÙÖ % Žv|òÉ'VC7nüÄOÌ›7oݺuJš@aߣÇä¾²„„!DñâÅ·mÛ¶víÚ#GŽ;vìСCʹ¶\Ù8è§Î ç8ªU¿~}!ÄÑ£Gµn@wlc¢š{ƒ{о}û‚ƒƒË—/Ÿ™™Ù©S§fÍš­^½ºR¥JÇ?|øp±bÅìNåÒÈ€ âhK’¤ÜÜ\ùŽü–à ( „ˆˆˆÐº}É«¸è³ºãž={~üñÇnݺoÚ´iÕªU3fÌ}ºjÕªO>ù¤Õð½{÷ ŸÓ°Ëq4ôAÝñرc}úô1™LcÆŒBœ;wNQ¥Je„¥K—Þ¾}Ûª‘¹¹¹êG6ú© âh-..®N:»víZ²dÉã?.Ü»wïG}T¶lÙ””­Ð§Ëã!löìÙß|ó"33óàÁƒÛ¶m»ÿþ{ï½'?6¦U«Vaaaýû÷ïÝ»w¹rå¶oß¾aÆ’%KnÙ²eõêÕíÛ·—Ÿ;{öìK—.9YëOú#ÁÆáÇ7nœ˜˜øè£>¼G•+W®]»ööíÛÕLž˜˜¨õœðÇïêqãÆYÁM&Sbbb¯^½¶mÛf9Ú¦M›7nþüãÙgŸMOOŸ7o^É’%SRR$IÊÍÍíÙ³gÑ¢Ek×®ítdƒ°Ú„ä<ùãöãܤÔ/\¾|ùí·ßÞ¾}ûµk×*T¨””4hР2eʨ™Öl6s;Ð9¾«¡°ÚÔtUvû¡«Ú¾˜˜˜7ß|SëVŸâGǸ8ª\sô¨û©Á@¦²ŸÚd‰‰½=Á@-“Iùºb‚#T!8¨ê§6x¹QÔ 5 ‚#T"88A¹QFpFçøGR£‚à€?~¼)!!!®Î­Y³fÉÉÉÞn³oÞ>óªð'=zô(_¾¼ÕÀà`çôÝ»wOš4iâĉժUB(P @ožoÞÅ—(7Z"8àO^xá…&Mš¸1á¥K—–/_>dÈùÏ7z£y¾ySóÀºª€âþýû¹¹¹Ú¶!777''GëOâ”­wïÞ8qb•*UBCCcccŸ}öÙ‹/ !ž~úéŽ; !Z¶l/„hÕª•röa||üàÁƒGŽY´hÑ"EŠ4hÐàÛo¿ÍÎÎ5jT•*UŠ-ÚªU«_~ùEy—éӧ׬Y3,,,**ªAƒ_|ñ…<Üñ»!víÚÕ¡C‡Ò¥K—-[¶C‡»víR^Š:tèœ9s¢££ƒƒƒË•+÷üóÏß¼ySÓÔh‹®jþÎdÒì­óSž}öÙ ´iÓæ±Ç;xðà'Ÿ|rðàÁ;v ><>>~ìØ±S¦LiРí„óçÏ/P Àk¯½òÈ#òëÖ­{ï½÷ú÷ï_¹råÕ«WÏž=;++kîܹš­Ø’ài‰‰‰Z7à„?~W7.¯£yçÎ%IºuëVžzê)e’gžy&::úüùó’$}óÍ7Bˆ7Ê/µlÙ²V­Zòïqqq… :|ø°üç”)S„III÷ïß—‡4mÚT‘‘‘!IRBBBbbbVV–üÒõë׃ƒƒŸþyùϼÞ%333>>>...==]~)===666!!!33SnƒbéÒ¥ò«¹¹¹5jÔ(_¾¼>X»ƒãˆäÛGPqÀŸØ½ªZ¾„9((Èd2mݺõôéÓ±±±BˆyóæÍ›7OÍlëׯ_¹reù÷V­Z !zöìY°`AyÈ<°eË–;wîDDDìÚµ«H‘"ÊuÜ¿ÿþ»âÎ;Žç¿gÏžS§N͘1#::Z=dÈ¡C‡îÛ·¯^½zBˆ„„„Ç{L~Õd2%''¯\¹RëÏCpÀŸ8¸ª:$$dÆŒrqµjÕ7nÜ®]»‡z¨P¡BNg«ä9!„œm‡ÈŠ/¾mÛ¶µk×9r䨱c‡ÊÎÎv:ÿcÇŽ !’’’,Ö¬YS~Iމ‰‰–¯iv%g7æ…‹cÿþ÷¿ýõ×>ø fÍš«V­êÒ¥KÍš5/]ºä©ùgffvêÔ©Y³f«W¯®T©ÒðáÃ>\¬X1§J’$„0ýýüQùYYYòŸEŠÑúóƒGÄï¿ÿ¾sçÎÂ… ?ûì³_|ñÅéÓ§gÍš•––öþûï{ê-¶lÙ²jÕª3fìÚµkâĉ½{÷NHHPSq¬T©’âÀ–÷ïß/„0›ÍZrC¹Ñ‚#"--­aÆo¿ý¶ügPPPË–-Åß;šóy›ÆsçÎ !ªT©¢ YºtéíÛ·¥¿G-Ûw©]»vÅŠ§OŸ~íÚ5yÈÕ«W§M›Ë3 ýç8àOfÏž-_¹låÉ'Ÿ¬[·nõêÕßxã“'OV¯^=--mõêÕQQQ={öBDFFÊ“_ºt©Gî½{«V­ÂÂÂú÷ïß»wïråÊmß¾}Æ %K–ܲeËêÕ«Û·oŸ×».\xúôéÝ»w¯]»v·nÝ$IZ´hÑùóç—,YR¸pa­?Ô¿PntŒà€?Qî¶m¥iÓ¦òíÇŽ»~ýúeË–•*UªmÛ¶cÆŒ‘ïÅݸqãž={~ûí·'Nœp;8V¬XqÕªU£Fš5kV©R¥Zµjµÿþ+VŒ5jæÌ™íÛ·wð.]ºtÙ¼yó„ >ýôS!Drrò’%Kêׯ¯õ'úR£S&‰OÈÓÌfsZZšÖ­8Âw5ÊÆ >8vûáGʪ  ÁåF•ŽP…àŒŽr£JG¨Bp€*G¨Bp€*G¨Bp€*GüÀÌ™3M­Y³Fë6"ðkÝà\íÚµGŒ¡ü9kÖ¬ÈÈÈ'žxB§uøŽøfÍš5kÖLùsÞ¼y*T˜:uªÖ킱ÐU UŽŽøøø¡C‡îÞ½;)))))Iòøã[ŽóôÓO/^\ùóàÁƒ]ºt©X±bLLL»víÖ¯_¯õB@¿Ž”³gϦ¤¤Ü¼y³aÆNG^»vm½zõRSS»wïþôÓOŸ>þñÇ׺BñóÏ?›L¦E‹iÝ€Bp€*G¨Bp `åäääää¸÷ªnåææúc³Á€@?tèÐwÞy'22²P¡B5jÔxå•Wîß¿¯æU!ÄÁƒ»téR±bŘ˜˜víÚ­_¿ÞjλwïNJJJJJÊ«;vìHII‰ŠŠªZµê°aÃîÞ½«¼´k×®:”.]ºlÙ²:tصk—åÌ­Î|úé§‹/nùÖsæÌ‰ŽŽ.W®ÜóÏ?óæMeäÍ›7·mÛV~Ó‘#GZ.<…à@Z²dÉ‹/¾Ø¼yó—_~¹dÉ’o¾ùfÛ¶m%IrúêÚµkëÕ«—ššÚ½{÷§Ÿ~úäÉ“))) .Tæ|öìÙ”””›7o6lØÐî[ïß¿¿mÛ¶… 8p`LLÌôéÓ›5k–-„X±bE“&M8гgÏ=z|¸òçØ±cÃÃÃ/^ìøÕ½{÷;vläÈ‘!!!òK… ~ñÅOž<¹gÏyH™2eF”g„(UªÔ!C”?Çþõ×_ïÙ³çÔ©SC† ‰ŽŽVš1dÈ“'OîÛ·OÍB%$$<öØcòï&“)99ùÖ­[Bˆ={öœ>}zذaåÊ•S9hÐ ­WB"8ðw&M<¤Zµj… Rþ 3›Í'Nœpüê‘#G„½zõ2YèÕ«—âÌ™3òÈf³ÙAjBT¯^=88ØjæÇŽ;vì˜ÂêÌÈš5k !ä—œJLL´üSiÆÑ£G…uêÔ±|599ÙcŸ&þœÿYP$­‡‚ !ì^óqÿþ}ùU‚ƒƒoß¾íøU9MN:µFV#T­ZUþ%22ÒÕ–)RD’$!„ÕÊ ( „ÈÊʲ;aff¦åŸEŠÉkþ¶svœná>SüƒÝ8`5<++ë—_~‘KwŠ_~ùÅ2ݽ{÷ðáÃJÅ.¯W+Uª$„ˆˆˆH±P¡B…ëׯ«Ï‹‡’/…±œy¥J•ä™[µÿþýB³Ù,ÿ™››kùªÊJä?ÿùO!ÄÏ?ÿl9055ÕûëÄpŽø‡&MšDFF¾þúëJ³"++kÈ!ׯ_øá‡-GNOOŸ>}ºòçĉ322}ôQǯ֪UËl6¿ýöÛׯ_—_ÊÈÈhß¾ýСCCCCU¶óâÅ‹³fÍRþœ0aBFFFÏž=k×®]±bÅéÓ§_»vM~éêÕ«Ó¦M‹•»•CCC:¤Ü£ñÇܽ{·šw¬]»vBB´iÓ.\¸ ,àÌ™35^aˆ®jüCÉ’%?üðÃîÝ»W©R¥]»vñññ×®]ûñÇýõ×Ö­[¿úê«–#—)Sf̘1Û¶mKJJÚ¾}ûÚµk5jÔ·o_ǯ͘1ã‘GIJJêÖ­[VVÖòåËÏž=»páB¹OYÐÐÐaÆmÙ²¥ZµjÛ¶m[¿~}JJJ—.]„Ó§OïÞ½{íÚµ»uë&IÒ¢E‹ÎŸ?¿dÉ’Â… !|ðÁ3ftìØ±sçÎ'Ož|÷ÝwU–9 ,øÖ[ouëÖ-99¹{÷î \´hQzzºÖk,i}Yw2ì%úàGü÷»úèÑ£}ûö­^½zhhhùòå[µjõùçŸ[Ý'..®sçΛ6mjÑ¢E±bÅ*W®ªV­Z×®]ÏŸ?ÿÒK/½ùæ›ò«W¯^mذᄠ222:tèòñÇשSgß¾}yÍsÆ mÚ´YµjU­Zµºwï·bÅŠV­Z8pÀSË"Ç3gδnݺxñâ*Txøá‡-³©$I¿üòKLLLÉ’%-'¬^½ºâäÉ“Z¯ €Hð´ÄÄD­›Íœ;wNñì³Ï*Cä¨W«V­+W®ÈCöìÙ#„¨Y³¦üç /¼ „xûí·•I–-[Ô¾}û¼æÙµkW!ÄÎ;•!óæÍBŒ?ÞS òÔSOÉ_f³ù±Ç«[·®Éd*P À| ‘‘!„¨ZµªÕ„rMtêÔ©Z¯ À ü®7nœbË–-Z7ĉ¸¸¸®]»jÝ I’¤Ý»w !.\èx476Ü~<‚‹c_xã7J”(!ÿžœœwùòe!Äõë×ßÿý&Mš 6LùÑGíÕ«×üùóOœ8ñüÃvnݺuëÒ¥Kýúõ•!òÅÎééévß}ÆŒ999yµmÀ€áááVÏž=úúë¯4H²nݺN: :4%%¥bÅŠwîÜBDDDXMX´hQ!ÄÕ«WµþÈžGp|¡aÆ–†‡‡ß»wOqøðáìììÐÐPË"…ò«Gޱüq!DVVÖ‰'Ž?ž––öÙgŸ9x÷Q£FÉ3´«G¶ÁqݺuVCÚ´i3hР)S¦,_¾|РAQQQ&“éÖ­[V£É•Ȩ¨(­?r€ç¯+\¸p±bÅì¾têÔ)!ÄÚµk×®]kûêÙ³gíNuâĉ‘#G®]»öÖ­[… ªR¥JåÊ•÷ïߟWîÞ½ë‘iѢŔ)Sä3) ,uíÚ5«qä!¶÷ ÊÍÍ•$©@Z7Äp¸8ð:“É”×KòlÆŽk÷T’ÚNrëÖ­úõë÷ÝwC‡=tèÐ;wRSS'L˜àÁK’”““c{Kàà`!„‚Ë•+wéÒ%«ì˜––&¿¤ÉG `×®]:t(]ºtÙ²e;tè°k×.yx×®] ,¨ô,Z´Èd2Õ¬YS™pĈ&“iïÞ½òŸìÒ¥KÅŠcbbÚµk·~ýzeÌøøø¡C‡îÞ½;))))))¯–ìØ±#%%%**ªjժÆ ³ü6¯FÊ3—;UO?ýtñâÅ-ßzΜ9ÑÑÑÁÁÁåÊ•{þùçoÞ¼©Œ¼yóæ¶mÛÊo:räÈû÷ïk½B ÁÐR•*U„7n´þî»ï¾øâ‹vÏܲeËÕ«W‡:a„ªU«ÊÿpÿþûïÞ%$$Ä”7åÖ?ŠcÇŽ·nÝÚjø¶mÛ„Ê‘æ‘GÉÉÉY³f2‚$I«W¯ŽŽŽnܸ±Ö-`D+V¬hÒ¤ÉzöìÙ£Gƒ6iÒdÅŠBˆöíÛgggÿøãò˜ò/T¾=6nÜXºtéZµj !Ö®][¯^½ÔÔÔîÝ»?ýôÓ'OžLIIY¸p¡òFgÏžMII¹yó¦Õy8Šýû÷·mÛ¶P¡BŒ‰‰™>}z³fͲ³³7RuëÖ 4¨W¯^³fͪU«ÖìÙ³•sÄ—-[Öºuëýû÷÷ìÙó˜?¾r]±k×.I’jÖ¬Y»vmI’®^½j2™>ú裰°°ÁƒK’ôõ×_+lÇŽBˆÿû¿ÿ³œÏÿýßÿ)󉋋+S¦L^©Q¡T©RYYYÊ[·n…‡‡wìØÑi#Ç„„ËWûöí+¿*w‰XÝ ì7Þ 8z]ÕÎ?¾N:#GŽÔº!ð‘‘‘“&MŠŒŒüðÃýõW5“”+W.55uøðáÁÁÁË–-;~üøO<‘šššœœlwžaaaëÖ­ëÙ³ç™3g>þøãsçÎÍœ9ó›o¾=ztNN΂ <² III?ÿüsß¾}/^¼øå—_^½zµoß¾´ê¿>|ø_|a6›/^œžžþ /lذA¹ñ_:vì˜Âê¤CùÜù¥öíÛ§¦¦^»vMŽž<ð@Ó¦M7mÚ$„ظqcppp›6m„GŽBôêÕËòœ–^½z !Μ9#ÏÖl69ŠÕ«W—ÏŠ–………™ÍæcÇŽ9m¤S‰‰‰–*Í8zô¨¢N:–¯*_¤ð®ªvB’¤—_~Ùöž#@^^}õÕW_}UùS9£È’Õ#^ÂÃÃåÒÊyÆÆÆÊÿý[=zôèÑ£=¸ eË–ýôÓOŽÖ«W/ùˆ@[’$ ›«ñäÓ ³²²„íÚµ{óÍ77mÚ´mÛ¶Š+V¬X±U«V¯¾úêõë×7nÜØ´iSùÒ·B… !¦N*÷e[ªZµªüKdd¤«Í –»_7ÒVff¦åŸEŠÉkþ¶svœná>P'>ùäË«½Ð'ùáòVÿ—Ê7ê2›ÍBˆ&Mš-ZtÆ ›7o–OŒnÙ²ennî×_½wïÞ:XÎ'"""ÅB… ®_¿®>/:tH¾Fv÷îÝÇWªTÉi#…V·tPY‰”ÏáùùçŸ-¦¦¦j·BÁÑ‘cÇŽMŸ>½råÊZ7'j×®]±bÅéÓ§+7ɺzõê´iÓbccåÛ‚ >ðÀ«V­Ú³gëÖ­1yòäÜÜ\%8ÖªUËl6¿ýöÛׯ_—‡ddd´oß~èС¡¡¡*sñâÅY³f)N˜0!##£gÏžNzèÐ!åaW?þø£üØ@5‹Ÿ0mÚ´ .ÈCÒÓÓgΜ©õj 4tUç);;û¥—^*^¼ø+¯¼Âõü˜={ö7ß|c9$((hÒ¤I… ž>}z÷îÝk׮ݭ[7I’-Ztþüù%K–.\X³}ûö_}õ•BŽ hÖ¬ÙªU«*T¨ ?¹Tøàƒ3fÌèØ±cçÎOž<ùî»ïª,s,Xð­·ÞêÖ­[rrr÷îÝ ,¸hÑ¢¼Ä ·ó4k֬ÇôÑGò³wЃ/¾øÂjHppð¤I“„]ºtÙ¼yó„ 䔓““—,Ybù\ûöíÛ !J–,©ô ·jÕjÕªUJ¹QÖ®]»;vŒ3fþüù™™™IIIsçÎmÛ¶­úF¾ð ñññŸ}öÙÚµkãââÆŒóŸÿüG~Éq#'Ož,IÒÒ¥K׬Y#IR×®]kÔ¨!_víÔ£>ºaÆ &|þùç×®]+V¬Øüùó­n'Ž|2ɧ©ÂJjjª|ÊÿèÑ£:Ô¥K—‡~xêÔ©j¦UöFKòã4:a6›ùfÖ³Û·oß¾};&&ƽÉÏŸ?_¢D ¥Ôê˜Ó#»‚Š£wïÞ}饗*T¨0|øp÷æ`Ì O s{rùÖßžb{X·%€àhÇ›o¾yîܹ „„„hݽàªjk»víZ°`Á€<¸À€ŽÖäûE½÷Þ{æ?ÉW­\¹Òl6wìØQëvÌ›7¯AƒeÊ”éׯߕ+W<8É‘#GL&ÓÎ;µ^J€Æèª¶ûÐCY¹qãÆ–-[Ê–-›œœ,?½Е×^{mòäÉÍ›7?~üøÇ|èС 688=È¥I,oÆ04­–í<˜˜˜8bÄ•ãöÁçÐľ}û‚‚‚Ê•+÷Ûo¿ÉC,„xá…ò9ɵk×6oÞ<`Àù»bÇŽZ/+àI|WCáÆÆ`Øí‡®jÀ¿Í;777wâĉÊ%„o½õVTTÔâÅ‹­Ûåê$5jÔhÞ¼ùœ9s´^D€^ïºyóæ AƒjÔ¨Õ¾}ûo¿ýväÈ‘&“ÉêªnÛ¼ysPPåùÁÁÁíÛ·¿|ùòÖ­[ó3ɼyó–/_¾|ùò6mÚhý)ts«V­÷e„{.^¼ØªU«#GŽÔ¨Q£M›6©©©:uòàÓÏ%Iúå—_bbbJ–,i9¼zõêBˆ“'O6kÖÌíIRRRä_¬n0,‚#àEãÆ;räÈ믿þÊ+¯!rssüÎ;ïxjþ·nÝÊÎÎŽŠŠ².±ûV7&RZZšaïá ¸àx˵k×>üðÚ5k¾üòËò   7ß|sÁ‚¿ÿþ»ÝIf̘‘“““×  n9äÎ;Bˆˆˆ«1å¬_½zÕv&nL*z“ôÆd–B6 “$x0²¾o9räHvvvÛ¶mM&“2044´Aƒ«V­²;ɨQ£îÝ»—× {ôèa£¢¢L&Ó­[·¬ÆÌÈÈ­¸1 2‚#à-§NB”)SÆj¸íÅÝ»w]z‹‚ FEE]»vÍj¸<Äî¹1 ø€U¹úÄUÕ€·È7»¹xñ¢ÕðK—.yð]Ê•+wéÒ%« (wÀ•+WÎS“€ÑO­OGÀ[ªV­*„X¿~½åÀ»wïîÚµ+¯IBBBLyûí·ßl'yä‘GrrrÖ¬Y£ ‘$iõêÕÑÑÑ7¶û.nL€ «𞘘˜=z,\¸pÚ´iÆ BH’ôꫯ^¾|9¯Iþûßÿ:¸8F¾~ÅÊ3Ï<3iÒ¤ñãÇwèÐAá7Þ¸xñâÈ‘# *$sóæÍóçÏ*T(>>^å$àKôSû ‚#àEo¾ùæÖ­[‡þÅ_T®\955õòåËíÚµûî»ïì¦À#F¸ú±±±S¦L1bDRRRJJÊñãÇ7lØP§NåRn!ĪU«zôèQ½zõ¨œ4D?µnÑU xQÅŠ÷îÝûÌ3Ï\¿~ý‡~¨U«Ö¶mÛä+—=xý²LÍfóâÅ‹ÓÓÓ_xá… 6”(Q³“€—Pnô#&‰uåif³™{ƒA¶uëÖððð¤¤$˵k×>}útzzzPÿ¹€_޾ѰÇzŽ[€=ÿüó 48}ú´2äûï¿ß»wo·nÝH (7úÎq¼h„ ]ºt©S§NŸ>}J”(qøðá¥K—V¬XQ¾VÿBp¼è‘GÙ°aÔ)S–,YråÊ•èèèÇüí·ß.]º´ÖMíÙ–ý¢ŸÚÈŽ€wµhÑ¢E‹Z·à,+¨Bp ŸÚ  ÁøåF?Ep€*GàSÜôÛ€Æè§öGà;”ýÁª€Ø-7ÒOíGŽP…à4C¹Ñ¿€/pYL 8@‚#ð:.‹ G¨BpÞE¹1`  ÁxS‚#ð5ú©ýÁx åÆCp€*Gày•é§ö_G¨BpžG¹1   ÁxS*‚#ðú©ýÁxåÆFp¾@¹1€ÇPn lG¨Bpžá ÜH?u` 8 “ÚŽÀ»(7 ‚#È/ÊAp€*G/ŽËôS‚#T!8÷Qn4‚#T!87q1µÑ€;œ¦Fú©Áª€Ë(7Áª€k¸&ưŽÀjR#ýÔŠàUŽ@-ÊGp€*G  åF€s\I ApN‘!#8Ï Ÿ:à€#”¡ 8€<©O”€àUŽÀ>ʰBpvpj#l€5R#ì"8€|¡ŸÚ8Žào(7"/GðWS#åFC!8€?Pk„cG ©*€›©‘~j£!8`tÔ¡ÁCs;5Rn4 ‚#ÆE­.!8`PùI”‰à€Qk„ŽN>S#åFÃ"8`,Ôá6‚#BjD~kÝà &“©‘~j##8ø(4Â#èª Ày05Rn48*Ž,OuO2‚#ÉãÝÓ”AW5ˆ“á T(^ꞦÜAp `pF#¼à@  o>@pÀ¿ù ÐH?5dGü…FøÁѾëׯϘ1c÷îÝçÎ+Y²dõêÕ_|ñÅ„„­ÛÀ|vF#åF(¸;v\°`¢U«V%J”XµjU§N<¨uÓ&Ó…Fjð1‚£³fÍJOO8pà7ß|3}úô… ¾þúëÙÙÙ'NÔºi£óqd¤ÜKG;¶oßòÜsÏ)CºtéRºtéC‡åäähÝ:€A)…F@+œãhGdddbbb‘"E,.\øþýû÷ïß ѺcÑê”a…àhÇüùó­†üôÓOgΜ©U«©àcT¡GGöîÝûå—_ž:ujïÞ½+V|óÍ7UNh6›­†¤¥¥i½4?£í“`(7*lë†Ept$--méÒ¥’$ !ªU«V¨P!õjÝv€ãáºb{X7l”4Il•I’tåÊ•¯¿þú­·Þ*Y²ä·ß~îx³ÙLp¸M'}ÓT0챞«ª0™L%K–ìׯ_÷îÝ/^¼¸fͧ“=jÄ- ú¹nšÔ»ŽÖŽ;6jÔ¨Õ«W[ ¯V­šâÒ¥KZ7˜|vƒF“ܸŽàh­hѢ˖-ûòË/­†Ÿ9sFït‰‰fvI€z>.4J’ä8;š„Ip ƒ=Gk¥J•2›Í[¶lÙ°aƒ2ðÈ‘#_|ñExxx½zõ´n phõð@§ÙQûK äÆêZãªj;&NœØ«W¯çž{.99¹|ùò—/_Þ½{·bÊ”)ÑÑÑjæ Iz9I [Ú)äìhµ9»Ñ6ÚýhTޝ¡âhGÍš5¿ýöÛ‡zèêÕ«k×®½téÒƒ>¸bÅŠŽ;jÝ4@ ÐÉE0¶uGŸžþhYJ”‹®–?y´Øú‡b¤oQq´/66vÚ´iù™EG€]º::XÖM&“„×ËJÈóȧ Ìij³EŽøˆ>oë­Ô%IòâE1ÞvV RoŸr  8à º*4Úo¡—Înôq’“߈øèG/¢· tŸaþêªöx¹QÃ%'>zÁ/ÒyÁ25JÂþuÖn.¶ÐAb#>zWU{—\t“¿¤F…Óû;ªZfMnMé€rý5òŠ#ž§ÿ"—ej´<»1¯û;úý2+ÙQ·-ôGPqÀ3ôe{µ¿í}~ÜxMQqôþ·€€ç/©ÑºÙnß»Ñï V¸bÆ-TÈÕ®i¹å²‹Ž¸Ï¯S‡;åF¿^`»ÈŽ® «ÚG(‡@à1VÞð‹ ÜÃAZ5*ޏ,zk]+7jdTPwT‡Š£ïðÿ ¿,ÄÍx§U 8à‚ÀQ.”cU";:Cpô)6Hðk† Q|R£ªâGœ €“ÿZ5åFFFç;æŠ#NpR£áPwÌÁÑרÀ¿Xˆr^n °vl{èª OÆ QÔï â¨þ‡¿x©ÑQ¹Ñpýñ*pÀ¶ApÀšá®'6ÖÒº‚ìøwGm°€njé-Ïr#©Ñ1ŽÙŽüÅp!Êp ì²ãŸ¸8€?pˆ²SnäR¸ŽŠ£føït%€ScžKk Î7ÛB‚#"ÐS£u¹1°—Ö{ÈŽGm±€æ¸€.0ü‘›sÆe„õ·r£ÞDÅQc†ÿ×4c¸e¸öc¹ Ž#2Hˆú«Ühö ’G€á.Dná-Gí»æ ¾fœõG¹Ñ8 ï#8 Äp!Êp ï"8êEGðC…(“0I¦¿ÎÆ3q˜'†`¨Ôø‹–$Éiv$\Â)‚£^Pt/1Ü-¾í>™ÚYv4™L’¡>#¸…àd†{&³“óWv$5B%‚# `­Ð(/°I¶åF…mv$5B=‚£ŽÐ[ dÐÔh¯“ÚŠev$5Â%<«€Œ™Õ®dGR#\BÅQ_(:@þ65ª)7ùApæF'2I’¤æ=€%‚£îPt·95ª/7Zž×Hv„KŽ€aäÔèÊDÖWáÁQ(:€« žU–󺆚앎¿gðÔ¨z"GwÞ!;B ‚£NQt•H*ËNï¼Ã­yàÁàÇH€/þÊp!ÊÞsïFøÁQ¿è­H‚ÔŸ#8ü©ÐÁQ×(:€-Ã…¨<˜r#|àð'¤F@CG½£è Ã…¨¼˜r#4ApøR# 9‚£ è† Q˜r#´BpèáR£C¤Fhˆàè(:0,#¦F#.3üÁ _FLPtRCÇŽ~ƒ¢#£!5zCpè‘”³e¦ÜÍý EGAj´ó:©:@pè ©Ð-‚£Ÿ¡è °1A©XfÊÐ ‚#@/H€ÎýEGɈ JÝ2Sn„~Ú#5~àИ”êe¦Ü]!8ú%z« R££IЂ#@3¤FÀ¿ýEGþΈ Ê•e¦Ü"8ú1²#ÿEjt2.©ºDpø©ðSÁZ7ù"ù.àGŒø­åâ2ë¥Üè¸SK „ï¾Cjôrd”TŒãt4‚£ß£èÀ_ñËÊõeָܨ&2Š¿£~ø?‚#ÀHª¦Ð05ºÿ¤?'7Úú5$.Ž \^ @çHºfú3öå§½’³s"¨8¼Ë”¶Ë¬M¹Ñƒ•B‰nëÀGÅ1@Pt O¤Fµù{j”I”Áà-¤F]óÞY‰dÇÀEp èŠ%(Í—Yƒr£·¯e!;(‚#ÀóHúeòÕÐdÇ@Dp (è¿$(,³OËù¿zÚ%dÇ€Cpx©ÑµI}Ÿ}ŒìXކ¢# ‘aÙ1€Ù€&Œ˜ ò·Ì_nDÀ!8<€ÔèòÔ†JÁ10QtàK¤F]Ó<5ÊÈŽàÈ?JPúYfß•u’edGÿGp Xø©Ñ35" n"5êš>S#EG?Gp dx%(]-³ÊúL2²£?#8\Fjts¾&5àQÇGрǑõNÏåFEG¿Ep |dGä_ JWËL'õßýÁ ©ÑýÙކ@Ñ@þ‘áaýP°Ö Щ»wï.Z´héÒ¥ç΋ˆˆHLLìׯ_“&M´n—ûäìÈ ÷ñ ÄsËL¹1O’6ÛÀŽvdgg?õÔS©©©ÅŠkԨѽ{÷vîܹeË–AƒýûßÿÖºuàk¤Æ|͉ԈBp´cñâÅ©©©uêÔùðÃCBB„ÇŽëÓ§Ï»ï¾Ûºuë*UªhÝ@7Qtà#~o}‰¢£_áG;¾ûî;!Äk¯½&§F!D¥J•˜““³uëV­[¾Cj`‰àhÇ©S§ÂªU«f9°R¥JBˆ³gÏjݺ|á*ê1Ayt™)7ªÅU2þƒ®j;æÌ™lýÉ:tHQ¡B­[—_tXPÈ_¤FÀ‚£U«Vµ²cÇŽ>ø páÂ;wV3³Ùl5$--MëŵHþ!R£¾Ït´=¬Áщœœœ/¾øbÊ”)999o¿ývtt´š©t):pÀˆßž^fžI`l높GGvîÜ9~üø'N”)SfòäÉ7ÖºECv`—¿ü45ê¸>ç&}!#8Úwÿþý©S§~þùçEŠyñÅŸyæå kT¤FÌÔˆ€Fp´#77wøðáßÿ}›6mÆŽ£u‹¼‚¢#KFüBðÓeàÔHÑQ÷Žv|þùçßÿ}¯^½ÆŽ«u[¼‹ì@fį/,3§6zÙQ߸£5I’æÏŸñòË/kÝß,/wvŒŽÔè™YÒI  âh-==ýÌ™3!!!½{÷¶}õÑGíÓ§Öm1\j”ÿW&5êEG#8Z;wîœâîÝ»´}5.¬VÐa –áö}Ã-0àaGkµk×Öù]½ìáöz¯-0åFç8€‘=6cR£7ðôj½"8â\%©Ñc3æ2j Á!;F@jô?F+7Ê(:êÁCv[„(ý,0Ô0 ‚#¬‘@Ejôä¼I>@ÑQŽ`¤FOΛSaTGØAÑ0¤F¿dðr£Œ¢£ÎaÙ¢\XZ//0Ô02‚#òDv€áR£$BjôŠàGÈŽ€ÿò~éMg¼¿´¾K”-Ñ[­'G8Avü‘÷Ko:Cj|‚àçÈŽ€1V¡Ñˆ l<uƒàUÈŽ€¿0\ˆòÉSndG¨EvôÔè•7!5êEG}Öº84ÌmòÿuJ¾Z`.£,á¹èh #àŒU^«}Äp;¦¯ا©‘r#üÁ®!;²¼ ^>ÞG Wh¤F“ø ´Ç9Žp™|\ä|G ¯ôⳂ wÏ ÅUÂüÁîUdG–Ò‹ÚÀËÌ©:Å%2Z#8Â}dG /^Ý; ÷He±25Rn„_áGä §<€TnóÞØ;ŒxF£Ï›Ô8@ÅùE݆âRôìÞaÄ3}¾ØôPûz«5Ep„¼xdï0hß´ðõ‰œ¾N”á‡èª†g(GG#Û`îÅ·÷%qt·"5"/Ü—G;GxŒü oкà²w)ÐèyQhp.'©P‰àãrªüoØ–ñÑéhÆÅ7 cGxÙǃ›4»†#Z|wPnôKôVk„‹cà<]€ËH€îQq„·pÊ#›±×itm7ß\Ep„wqµ5ü©Ñë4úˆ5H”=‹Þj-áu.]O è ©ÑëH€_áGøˆüèÎz„!5z©ùÄSd|ŽŠ#|Šžkø R£wi÷EÀy@~ákô\CÿHÞ¥Ýç«Mj¤ÜˆBp„6ˆÐ'¶I¯#5³¸DÆ·ŽÐñºB¡Ñ»4ÝÕI€G¡=â#4Çæçuš¦rÎk<…འ>B+½Î˜©‘r£ÏÐ[íCGè‹e|$Hx™¿ü£b2™$ý·2¦ ¡åGLj<‹û8ÂëL*nÞh5Ž|ÓGx /‘·+¹ æyL’$Çû‘š½LZĤFÀã¨8Âëäcžƒz‰ƒW)@³´®¹ÏÁ~¤Óz¤Ögp^£±Ð[í+GøB>yÊë$H¸Í#£Âî~¤ÇÔ¨ƒÏZËÔH|A@#8ÂGåûc^^!Rèâ`‡?8¸ !«É’Õ^£qvÔG¡Q"8Âw4?æY½•mXÑÇA0Ш¹55Ÿ¼v÷m²£n ‚ÔøÁ>¢£cÞ_ïnÛHçã@¡òa%|†áð>ù¾ÝtShš§Fè½Õ^Fp„/èè˜çš(™×˜Á¥×ꇠCN÷íGz*4 =¤F Œ‡à¯ÓË1Ï-y5JçÅ6·\¬Ë•¡fïðEjÔÍöa&!©ð=‚#¼NÇ<Ï/”ªÑÜp¾i  …F{м ȽÕÞDp¼H7‡ZÀ]z*4 R# 5‚#À©Ð‚#À†Î B'©þ‚Þj¯!8,è²Ð(4¿æÏ¦è¡€†Ž€?QhtØ4ÐÁ ÇB£ 5"?è­ö‚#žþ ‚ÔèÁ L—…FAjôŠà†¤ãÈ(tr)Œ 5ÖŽ`<ºì›º*4"pš£ÀHôZh:LdÀÁ CÇ…F¡Ÿîé?Û¤«æ:Ap Ðèb›ôÖ"¸‰ÞjO#8@@Óqd¤FÀß péµoZè³{Z'Žˆ(4ºÕ,6 ùEoµG °è>2 ÙP…àDÇ}ÓB·…FAjÔ"8@@ Ð˜Æé³]ðz«=‡à¨Wò1À%z=`ð.}GF¡çB£ O®!8ê€ÝŒèÆ1ÀAÖÔñ€ûü!2 Ý©pÁQ V ÏS_úæc›)u|¤ Š¾Og:/4 R#à‚£¯XF7ß×Û¾£—Â+ Ðè‰&ê¹uðhÚ‘mÉŽð ý;2 p§9æÁ:ãóŽì¼"Ù¦ËB£é2?GFA|‡à½ò~G¶šk¨ÉŽð]ý¾Äh±$°€¿ 8Âhq= ‘ž¡³Bc€”ÿ\yI—Ñ[í.‚#üJ>ÊÊñÒbnÖÕC)©ž¡§Ô8%Æ?—'`ð#Gø™¿ržÅÕLèàxù×x,fnR7[õïÃÑGj ¨£ÅRÒÒ~„à=rÚœüÜêËV®ƒ‘D~/ˆQ7ê[:8©10ó¢ {ÐÁ³›´Ü?ÔÙíËÎážzÞ Ê–;Ηv¤7M ›ÿ\¼€\,hƒÓÝBp„OÙ&/ÞÜ ‘>àx©Ý/¸BC®žtëÑóh‰Ž9 ‘ºzÞ £Ó1óÈ”|ÉäÊY­ù¾e½Ó…ªÙ?/þ¹œ½|€!8Â3ì\_bs03™Lºøö·"¥¿^Ôõ}¿óÊJµ¤C—Vº'î-ê`cs°:ØÅ…F@g‚´n€Þ§Ên×›¤F{ ó·"GþÕ|? ”yU‚ý}uÈuGy!þ¼‡¨^>sßãŒF@ÇŽöuêÔéâÅ‹Z·B/\ª|äU>Ñ!§ ûÛŽë‘Âï³Ë áb ÞË7þ\DT»ˆ–Ÿª$„)¿wƒò{á{Ü”ÇEGû&Mš”™™)„˜?þ¶mÛ´nŽ6ܾ`SÉŽzNùe»\tܸÐ[¨Ür´ˆhgAÞd ðwLjŒ€Ÿ 8Ú×´iSù—~øAë¶øšGnðaÄC dÿìNFöOîeJ!„d ´Âñ‚«yè¥w"#àWŽ^a6›­†¤¥¥iÝ('<{C8£—Oy-¾ã«¶ýëC39¨8:Z"ÓÉÑÉ5ú<ÕσÏþ±ÚM ´ãá?lë†Epô ýÇDK?ßÐå•&nÜ È#²{7!r÷­=òxF­xj±»ƒbÇá¬2臊Óm높GãòÒ3'Œ[>ñ 7>.ÜxR—«IŸGp°kòŽC¡ðgGÃñê3ÊŒ[>ѯ¿qºSÚŽ£ük( ÁÑ@¼}s8ƒ–O·¨Ùd—¡Ä‚£!øà~ÂjÊ'Z |‹ÈÁÝU#82¯öJ[!ø ‘PÇÀdôG–Ð'2ŽàhˆŒ4@‰0®Wð<³Ù¬É}‰Œ|#‰+§9ju¬×Ç@@dàSäEÀ¨ŽþÈÀwÈ‹€áý‘€ü‰à舌|¼£ánŽ*iݸÆ$L’Hv™<ò¼fƒ3ýù#ýù"8ú “0É©Që†è—ü`C#è9œ9m¼ÎÛÿf"/P…®j?@ß´zŠ­ÿ‡e;~¢·þÛÿCg4`…ÞjgŽºFdtƒÝøå/©+¯ìè/í‡ /pÁQ¿è˜v›Uüò¯Ôe›ý«ýÐ)ËÓØš¸‹à¨GóO‰_þ˜º,›í퇎P\àQGÝ¡Ðè)~š-/ÿ¢u[à‡È‹¼ƒà¨#=Ë+Ž€ûäÈÈ&¸ëc"8ê…FÏRò¢ŸfGºªáJŒ|‚û8j4zœUØRs‹D]±l¿ß5¾ÆÍøÁQKJd$5zÝÅ/ÛöûQãáS–‘|‚à¨"£78èØõ‹ø•Wûý¢ñð"#àUÒßï` GmÐ7í NOÔùÉ‚ŽÛOv„DFãâ_ãÒiïÑy.tLÍE0~½€È/.— GŸ¢Ðˆ¼ á7 tUû—NÙlÖº ІW½‰Ô¨kìõ‹Óó@ÅшŒÜAd 3T½ŽÔÀ¤FúCÅÑ‹¸€›Ht‰àè-¸ƒ«§à¡Õö½ÂЩ1Ÿgõc„à(@ïœß:®2 S¢9QëVøTÚÑ4åwsb¾®1TfeN4§MËçÜp›ãÃPZZš+3 G¨ÂUÕP…àUŽP…àUŽP…àUŽP…àUŽP…àUŽP…àUŽP…àUŽP%X묓'O¶oß~ñâÅIIIZ·¶dÉ’Å‹?~<44´E‹#GŽ,^¼¸ƒñ»vízàÀ«ÑÑÑ[·nÕzQ/®n ð/ìéÈ‹‘ñGoùüóϵn¼búôéï¿ÿ~XXX½zõNŸ>ýå—_;vì³Ï> Ék’3g΄„„ÄÅÅYŒŒŒÔzQ/nl ð#ìépÀȇx‚£‡edd=zô믿^¸p¡Öm祥¥}ðÁ¥J•ZºtiLLŒbÒ¤IŸ}öÙ[o½5fÌ»“dddܸq£}ûö3fÌкùð7¶øötØÅ!^pŽ£ÇuêÔ©wïÞFÞ¤ÛâÅ‹sss‡ "K„¯¼òJ±bÅV¯^››kw’3gÎ!¬Šðwnl ð#ìé°‹C¼ 8zܤI“Þ{ï½÷Þ{¯qãÆZ·ž÷ÓO?µlÙRR @æÍ›ÿþûï{öì±;ÉéÓ§…±±±Z·žäÆ–?ž»8Ä ºª=®iÓ¦ò/?üðƒÖm‡I’tüøñ¨¨¨¨¨(Ë቉‰Bˆ³gÏÖ­[×v*ùpráÂ…¾}û>|844´jÕª4à)Õý-þ‚=yá/¨8êݹs'''ÇöT÷bÅŠ !®^½jwª³gÏ !fΜyùòåFEGGÿðÃ={ö\¼x±Ö 7¹·%À_°§PqÔº{÷®",,Ìjxxx¸âÆv§ºpáBHHȰaÃúöí+Ù¶mÛÀ'OžÜ´iÓ²eËj½Xp™{[ü{:àÁÑÙÙÙsçÎUþ,P À¿þõ/­O²»Š###M&Ó;w¬F¾uë–ø³aë“O>±Ò¸qã'žxbÞ¼yëÖ­SŽ1ð#îm ðìé€GwdeeYÞp¡páÂÇcw+V̶ޑ‘!„P®¾T£~ýúóæÍ;zô¨Ö wxpK€±§Ý’––¦u+àEy­âR¥J?~<##£hÑ¢ÊÀS§NÉ/ÙŽ/IRnn®Éd úÛùÄ BDDDh½ p“«[ü {:.Ž\ðÀäääüøãÊI’6mÚT¼xñäädÛñOŸ>]µjÕ'Ÿ|ÒjøÞ½{…f³Yë‚›\Ýà_ØÓ¼<þøãAAAï¼óŽ|¶“âƒ>¸råÊc=V°`AyÈíÛ·O:uîÜ9!D\\\:uvíÚµdÉe&{÷îýè£Ê–-›’’¢õÁMj¶ø/öt /tU.([¶ìÈ‘#ß|ó͇~¸Y³f§OŸÞ±cGµjÕú÷﯌³iÓ¦¡C‡VªTé›o¾Büç?ÿyæ™gF½`Á‚„„„ß~û-55544ôõ×_ç¡ÆþKÍ–ÿÅžä…Š#àš~ýú½õÖ[ñññ«V­ºzõjŸ>}>ûì3Û[¾)*W®üÕW_uîÜùÊ•+kÖ¬¹qãFçοù曆 j½(ÈW·øötÀ.“$IZ·~€Š#T!8@‚#T!8@‚#T!8@‚#T!8@‚#T!8@‚#T!8@‚#T!8@‚#T!8@‚#T!8@‚#T!8@‚#T!8@‚#T!8@‚#T!8@‚#T!8@‚#T!8@‚#T!8@‚#T!8@‚#T!8@‚#T!8@‚#Tù>û½ÉIEND®B`‚statistics-release-1.6.3/docs/assets/regress_gp_604.png000066400000000000000000000650501456127120000230260ustar00rootroot00000000000000‰PNG  IHDRhŽ\­AiïIDATxÚíÝg|åÞÆñ{C(iB”sÈB¨é½@"ÒTT, G¥‰ŠÊ8€¥TD°ãCÁ"EAºAUŠ´ %Ô2Ï‹‘9ëîf3Ùìî´ß÷“Éì”{ÚΕÿ4›$IÈOÖ €1  Áª  Áª  ÁQ_6lØ0xð`»ÝQ¦L™&Mš<øàƒ›6mrísïÞ½6w"""4hðøãŸ››+„¸víÚã?¾gÏž°°0­çOw"""âââ„*Tк-zl­²E !²³³ÓÓÓ333…×®]9rdjjªçA.^¼xùòe!DffæÓO?Ý®]»jÕªyèßQéÒ¥3°²ï¿ÿ^þ¥eË–={ö,V¬˜Ö- ƒŠ£.<ùä“JjlÕªÕ?þxéÒ¥7n¤¦¦öéÓGî¾iÓ¦±cǺüóÏ??zôèÑ£GOžòúý¢¡¡¡C† Qþ<}út¾ƒtèÐáî»ïV¶鍊¯¾}ûÊK&>>þܹsJ÷|7'dAׯÊÝ$_¹¹¹óçÏoÛ¶mlll‰%bccÛ´ióÉ'Ÿ8N± m;~üxß¾}£££Ë—/ß«W¯ŸþYMK :¿î5^Ì‹ç5’žž~ìØ1ù´ŒâÒ¥KÇŽËÎÎön-8N·ÿþž¯ÓU¹çºNåÌ™3÷Ýw_tttBBB¹rå^{íµBn<®_Âý÷Þ{øðáûî»/..®råÊýû÷ÿõ×_…[¶léÛ·o\\\™2eÚ¶mûã?hÕä»| ³_ ÕGäO‚Öþõ¯Éë¢D‰üñ‡k§OŸ~è¶sçÎÉ÷ìÙ£¬ÄÕ«W; R±bEù£^x!¯éÊ¡DÑ£G%›¾üòËò§kÖ¬)W®œÓÖb³ÙFŒá8’7FGG;ö“ TI•±~Z7oÞlÔ¨‘ël³ÙÞyç‚ööÞ{ïÉÝï¸ã¥ã¶mÛþñ¸[¥J•uëÖ¹.·6mÚÔ¨Qéç{ï½7¯þá‡ÊýÄÇÇ+Ë–-+w¬P¡‚Ü%++K9‡ûã?º¶ö…^pmäÕ«WÚV½zu§~¦L™âa;ô¼E9–®>¬f=zÈ=ùä“jú÷Ìq’»(‡ÏR¥JíÝ»WéSÍæäaƒ,Ðú-è´<Ì ²×8éÝ»·wÛÞÏ?ÿ\¾|yÇ"""ºté"ÿÞ©S§|µš©ø{¯)è¼ä»F”ÍÒÑþýû½X N+T©Ê?ûì³nûô°çzX íÚµs]ƒ òzãqû%\ 1Ô«WÏék¿lÙ²Ó§Ow*ÜÚl6ùLåªñ¼| ¹_«<4@ ‚£ö”|¿~ýÔåá|ñâÅ"EŠÈ}ðÁyAÙÇ*W®¬ŒJÞÇ._¾¬švíÚ;¶ÿþAAANã¼q㆒P‹+Ö¬Y3åO§o¥ÂOKCHHH÷îÝŸ~úéÆË]‚ƒƒ÷íÛW Þ\ƒãõë×åë…%J”HIIéÒ¥Khh¨Ü¥|ùòN“ÅÆÆ6nÜØñÚÓmÛ¶¹]à'NœPú9{ö¬$IGuÕ©S§$IÚ¹s§ügXXXff¦kkÏŸ?èÐ!¥mŸ|òÉ¡C‡rss]Û–œœ¬l Å‹—GXÐ-êúõë}ûöuZb¹téÒ| O788ø—_~Éwùr:¯\¹RÞH‚ƒƒW­Z¥ôVÐÍÉuƒT¿~ :-ÁQ9™`³ÙÚµk7pàÀZµj)S\³fMA·½ÌÌÌØØXeËoÒ¤‰²yËÔÇ|§€½¦@ó¢fxŽ]  ŽöÜ|×BLLL«V­ÂÃÕ.+V¬ðnãqÝæ½Øü‚‚‚êÖ­å´$kÔ¨Q©R%å϶mÛª_5–÷kχ¨ApÔXnn®r\å•WÔèöœ••µoß¾»îºKùH9f»rüHJJš;wî–-[äb’r™ã¿›3fÌ;V­ZUî2eʹK©R¥vìØ!IRNNΣ>ê´ÇúdZÍ›7—»L˜0Aé­cÇŽrÇ3f¨7×à8nÜ8¹KÉ’%•cØîÝ»•¬•Ú­ã¼(#Ü·oŸrôðÿ«Ýn—ûùúë¯%IZ´h‘üe-w\¶l™$IÊ]ºtÉ«µ’$)‡ÇæØ¶éÓ§Ë• !„©©©j¶¨Š+þó¶øøx嫼\¹r޵=ÇAÜ ù¿ÿû?õý6,ß͵G‡VŽX³gÏvìMåæäaƒT¿~ :-Áñᇖû9r¤Ò±AƒrÇ7Þx£ ÛÞ;ï¼#w‰ˆˆØ²e‹ÜqذaÊà*ƒ£ç©f¯Q?/*×H^»OA×BAƒ£‡I{^ ]»v½yó¦$Iüñ‡òÒ¼ys¯7§mÞ‹1|ûí·’$ݺu«]»vJÇiÓ¦I’”““óÈ#È]¢££}²j ¿_«<4@ ‚£Æ.\¸ lèNÕÁ7ß|S¸Ø°aƒüi¾Ç`!ÄÝwßíaÒÊ>êtм~ýúòG+W®T:^½zUɸ»ví’$©I“&òŸ/½ô’ÒÛõë×cbbäî®ÁÑëi)½Ùíö>øàÌ™3’$9sfÏž={öì9}ú´ÓØ<÷æÅ”³J›e“&M’»×®]Ûi^jÕªåØ§òôÜsÏåµÌŸzê)Ç%öÜsÏÉc–+µcÆŒ‘$éñÇwü–¼ Ž5jÔP:^¹r%8ø¯ç',Z´(¯¶å»EU¯^].”ª¤aÆ'OžTß¿šàØ¡C‡:uê䵨UnN6Hõë· Óò¿ûsçÎ;÷øñãr—Ë—/+§t]ãW¾mkÑ¢…ÜåÅ_TzËÌÌTöM5Á1ß©f¯Q?/*׈”ÇîSе˜à¬´G’¤%K–ÈÝm6Û7¼h¶ë6_Ð18~Íœ9Sî©TO•'ÁûdÕ~¿Vyh€<ŽGcJ-GáÛçÖªUkúôéjúLNNv:Å|àÀù—””·ƒþøcõ½9)Y²¤ò]|úôiÇyQ=S¬X±Â³”,Y²Q£F›6mÊÈÈøê«¯äG–4nÜX~?äùóç¿úê+ùù…)7úVhhh¿~ýÞ}÷ÝŸ~úIñÛo¿©*::zÒ¤I+V¬B¬_¿þÌ™3NÇ¿ÂhݺõáÇOžœ–²Þßyç'žx¢N:ÁÁÁ^¿n¾H‘"ʾ¹råJ¥»$I®Ö+Œì5š—B®•kA %—.]rìî§ÂäÞ½{¿ÿåg!Š+&ßl^øÇ·›Ÿ[…\5…¼0‡¸"8j¯I“&ƒ–Ÿ?~«V­Ö¯_/WæwíÚ5xð`厊€QÂÍûï¿/Ý~jô_|Q¦L™èè踸8ùŸ¿Ö­[ËM™2E~Ò¸$I/½ô’ÓSf ?­}ûö•/_¾|ùò*T8|ø°"88¸C‡ʽ{‘‘‘B•½¹¥<î¿ÿý¯òPÙ={öLž)Ö:*Z´è+¯¼"?ãwÕªU+V¬3ŠÊM×'|5­ðððððpym>òÈ#óæÍ³Ùlß}÷š÷©äeÔ¨Qòƒ.]ºÔ´iÓÆ§§§{x”w³×¨Ÿ—¬õkA9?pãÆääääääóçÏ+÷ åË‹=wÉ’%ñññ5jÔøùçŸåâ}PPÐøñã ÔìÂÏxa¨_5n—O!÷µÂà†Ö·uã/gΜiÓ¦Ûut÷Ýw+—¹¸}OAŸ¥,óü”¯¾úÊí?aC† q|bíìÙ³¾õÂÃÃÛ¶m+ÿîöÍ1ÞMkóæÍyŒhÓ¦ü3õ½¹}ÀÍÖ­[ÝÆbccúé§|—›ëÃ8òÒµkWeäK–,‘;*O0qƒÛÖÞwß}ŽtzsŒSÛ”»¬æÏŸŸW«Z¿~ýÐÐЄ„„ž={®[·næÌ™Ž×?ú裫W¯îÕ«WÅŠ+UªÔ«W¯7ôéj¦Õ¤I“C‡3¦aÆ+V,Z´héÒ¥[´h1gΜµk×/^¼@½¹Õ¨Q£Ý»w3¦}ûöåÊ•‹ŽŽn×®ÝK/½ô믿*O’ó Ç_+Žn{ÈËÔ©Sï»ï¾˜˜˜°°°Zµjy¸¥Ñ'”§`œ8qByîn^ä“ï;vœ={ö?þèúП(R¤ˆòêß~ûM¹EFå¦ë¾šÖÔ©Sk×®-n¿cøðá;wîT^_>oÞ<唨z|ðò:Ó˜˜˜»ï¾{õêÕ­ZµòíÌ^£~^ ³FÔ¯…O?ýtâĉµk× KNN~æ™g¶lÙâá}§©hÏŠŠÚ¸qãc=–˜˜X®\¹{î¹gÕªUÊÕMjvág¼0T®š¼–O!÷µÂàÄ&ݾ\ð•|ðÓO?BÌœ9sÈ!Z70€¬¬¬o¾ùFøú¬ÙöíÛøá‡Áƒ—,YRëY4À¼øi-xa̘1&LBôèÑãË/¿ôw³õ3ãÐ?‚#¼÷øãËO«nÖ¬™òZ°«W¯&&&ÊÏãØ°aƒò¢'€J Ž@ qs ¼W±bÅÔÔT!Djjj•*Uî½÷ÞK—.=÷Üsrj¬Y³¦ãéW`t\ãï=ÿüóÊeL£Gþç?ÿyÇwÈq(S¦Ì¼yó¸p3¡âï…„„¬^½zÁ‚Ÿ|òÉ‘#GNŸ>-?RëÎ;ï6l˜ ®©ޏƪpªª  Áª  Áª  Áª  Áª  Áª  Áª  Áª  Áª  Á‰Í¦u ,,Xë˜Ýn׺ ˜XšµiiiZ7AG¿°æÆ»ÝΪ·&V½e±êÏf’$„Ðx±Û„EËžœª(›°%Úµn…6ŽP…àUŽjÙ„M’Ö­Ð ÁªŸáæJËbÕ[«>ÀnßR Í  Á@‹_à(ŽP‰àUŽùã<µ 8Cà–j= 8@‚#T ÖºhÃn·kÝ@b¢ðßË÷Yî\à(#8¬Èn·óÞÈøB=NU@‚#€'œ§V  Áª  Á O\àèˆàUŽP…ààç©ð’ÍfÓº @@ÝëÝ»·ÝEóæÍµn@G$IÊ7;ú0\Ž7Îæ ((¨zõê<ðÀ–-[´^° ÞUíÞñãÇCBBâââ;FFFjÝ.€¾ÈÙQ’ÜŸÍôð‘×úõëW¹re!ÄÍ›7ýõ×/¾øbáÂ…ÿýï¬fðíÛ·Oœ8q„ 5kÖÔzáéç©]ÝÈÈȸ|ùrçΧM›¦u[z—WvôGjB<õÔSŽgÀöïßߣG'žx¢yóæµjÕÊwð³gÏ.]ºtذa/5§ªÝ8~ü¸©Ü@^\ÏYû)5ºª^½úܹs%IúÏþ£õb€ùÝ8vì˜"66Vë† Ã1;,5Êî¸ãŽæÍ›/Y²$;;[î2uêÔ:uê„……EEE5nÜøóÏ?—»?üðÃ]»vB´iÓ&>>ÞsÏ€+‚£rp<}úôÀ6lغuë'žxb×®]Z·  krv pj”Õ«W/;;ûĉBˆ±cÇŽ1¢lÙ²Ï?ÿüOñܳÅq£[\ã膼ãMŸ>=>>¾iÓ¦üñÇ?ü°nݺ±cÇöéÓGÍìv»S—´´4­g `ZUªTB=z4>>þ³Ï>KLL\¹repp°â¹çž‹ŽŽþî»ïºuëV«V-¹8Ò¨Q£V­Z !<ô¬õ<éˆëaݲŽnœ>}:$$dĈ”»lÚ´iÈ!“&MjÑ¢EÅŠó1,H©5¾èèx…å¶mÛJ”(!A!ÄŸþ)„¸~ýºÛ Ô³e¹Ö-% Žn|üñÇN]š5köÀÌ™3gõêÕJš@á=?£Çäse BˆÒ¥KoÚ´iÕªUû÷ï?xðàÞ½{•k]¨gëàmÚ´¡C‡*=äUDܰaƒúžAÅÑÕ±cÇ’’’|ðA§î;wà–çh€ºãÁƒï¿ÿ~›Í6fÌ!ÄÉ“'…5jÔPzX¼xñµkל™››«¾g«á<µTÅÅÅ5hÐ`Û¶m‹-º÷Þ{åŽ;wîüðÃ+V¬˜’’¢u:’oÆòy›9sæ7ß|#„ÈÌÌܳgϦM›nݺõî»ïʯiÛ¶mXXØc=vß}÷UªTióæÍk×®-[¶ì† V¬Xѹsgùõ¹3gÎ<{öl¾=k½t¡?\ìÛ·¯Y³f‰‰‰={ö9rd¿~ýªW¯^¿~ýÍ›7«<11Që9äÈßÕcÇŽu<‚Ûl¶ÄÄÄlڴɱ·uëÖ5kÖ,<<üÿøÇ£>šžž>gΜ²e˦¤¤H’”››Û¿ÿ’%KÖ¯_?ßž-ÂicRþéȈÛOhðRC8wîÜ[o½µyóæ‹/V©R¥nݺÏ<óL… Ô k·ÛyèßÕP8m jNU[vûáTµ{111¯¿þºÖ­ÅŽžqs T!8@‚#€œ§VàUŽP…àÀyjUŽP…àUŽP…଎ U"8` ãÆ³å!$$¤ ckÙ²err²¿Û˜© `xW5FÒ¯_¿Ê•+;u Îÿ€¾}ûö‰'N˜0¡fÍšBˆ"EŠ)RÄçÍ ÌT ‚#FòÔSO5oÞ܋Ϟ=»téÒaÆÉþøãþh^`¦âsœ§V‰SÕà/·nÝÊÍÍÕ¶ ¹¹¹999Z/ ¸GpÀúè£gΜB<üðÃ]»vB´iÓ&>>^Ѷm[åêÃøøø¡C‡Ž5ªdÉ’%J”hܸñ·ß~›=zôè5j”,Y²mÛ¶¿ýö›2•©S§Ö©S',,,**ªqãÆŸþ¹ÜÝóT„Û¶mëÒ¥Kùòå+V¬Ø¥K—mÛ¶)ÅÇÇ>|Ö¬YÑÑÑÁÁÁ•*UzòÉ'¯\¹¢õÅßpª€¿³Ù4›´Tئ>úè¼yó:tèpÏ=÷ìÙ³çã?Þ³gÏ–-[FŽÿÊ+¯¼ñÆ7vpîܹEŠy饗‚ƒƒ§L™Ò»wïúõëggg<øàÁƒ3gÎ0`@jjªbìØ±ãÆk×®]ïÞ½333¿üòËûï¿¿dɒݺuó<•eË–õîÝ»|ùòýû÷·Ùl‹/nÞ¼ùâÅ‹»wï.÷°zõêwß}÷±Ç«^½úŠ+fΜ™••5{ölÍV\IðµÄÄD­›È‡¿«ÇŽ›×ѼG’$]½zµH‘"=ô2È#<}êÔ)I’¾ùæ!Ä?þ(Ô¦M›zõêÉ¿ÇÅÅ+Vlß¾}òŸo¼ñ†¢nݺ·nÝ’»´hÑB‘‘‘!IRBBBbbbVV–üÑ¥K—‚ƒƒŸ|òIùϼ¦’™™—žž.”žž›™™)·A±xñbùÓÜÜÜÚµkW®\9 Ö‹ÁˆÛOPqÀHÜÞU-ßÂd³Ù6nÜxìØ±ØØX!Äœ9sæÌ™£f´5ª^½ºü{Û¶m…ýû÷/Z´¨Ü¥}ûö6l¸~ýzDDĶmÛJ”(¡ÜÇýçŸ !®_¿îyü;vì8zôè´iÓ¢££å.ÑÑÑÆ >|ø®]»6l(„HHH¸çž{äOm6[rròW_}¥õòÆß0wU‡„„L›6M>_\³fÍfÍšuêÔé®»î*V¬X¾£UòœB΋®]d¥K—Þ´iÓªU«öïßðàÁ½{÷fggç;þƒ !êÖ­ëØ±N:òGrpLLLtü4(ˆ;1t‡U€yüë_ÿúý÷ßßÿý:uê,_¾¼W¯^uêÔ9{ö¬¯ÆŸ™™Ù­[·–-[®X±¢Zµj#GŽÜ·o_©R¥òP’$!„íï×ÊxÌÊÊ’ÿ,Q¢„ÖËù 8`þùçÖ­[‹/þè£~þùçÇŽ›1cFZZÚ{ï½ç«IlذaùòåÓ¦MÛ¶mÛ„ î»ï¾„„5ÇjÕª !~ýõWÇŽ»wïBØív­—Ô"8`iiiMš4yë­·ä?ƒ‚‚Ú´i#þ~¢¹i½sçΦҫW¯õë×?þ“O>B$''/Z´¨Q£FZ/Q€M*ô³FáÄn·§¥¥iÝ €'|WCáÅÆ`Ùí‡k  Áª  Áª  Áª  Áª  Áª  Á˜>}ºÍ£•+WjÝF˜_°Ö ù«_¿þ³Ï>«ü9cÆŒÈÈÈx@é§ua~G  eË–-[¶Tþœ3gN•*U&Ož¬u»`-œª€*GÌ#>>~øðáÛ·o¯[·nݺuå.÷Þ{¯c??üpéÒ¥•?÷ìÙÓ«W¯ªU«ÆÄÄtêÔiÍš5ZÏô‹à€©œ8q"%%åÊ•+Mš4É·çU«V5lØ055µoß¾?üð‘#GRRRæÏŸ¯õL@§¸Æ€¿± ›†S—„TÈ1|ñÅãÆ{ùå—ƒ‚ò)ݺuë_ÿúW56nÜ"„?~|Û¶m_zé¥{ï½·H‘".èGþF’†?…o… Ô¤F!ÄÎ;<8jÔ(95 !Š/þôÓO9rdÇŽZ¯èÁS±ÛíjR£bÿþýBˆ8>rÀ€BˆãÇk=Ð#NU`*‘‘‘ž{ÈÌÌ”)V¬˜bòäɵk×vê'))Iëù€0¹ÜÜ\Ç?<(ÿR­Z5!DDDDJJŠòéo¿ýö믿æ›>aMœªÀÌBCC÷îÝ›““#ÿùÓO?mß¾]þ½^½zv»ý­·Þºté’Ü%##£sçÎÇ ÕºáÐ#*Ž˜ÙwÞ9mÚ´®]»öèÑãÈ‘#ï¼óŽRM ž6mZ÷îÝëÖ­Û§OŸ¬¬¬¥K—ž8qbþüùÜR ·Ž˜Ù¤I“$IZ¼xñÊ•+%IêÝ»wíÚµ§N*Ú©S§-[¶Œ3fîܹ™™™uëÖ={vÇŽµn5tÊ&I>¸óŽìv{ZZšÖ­xbÁïêk×®]»v-&&Fë†èŽƒ·G,!,,,,,LëVÀظ9ª}ïÀ+Ö®€é  Áª  ÁÑ÷í6›Öð5‚#T!8@‚#T!8@‚#Æ0nÜ8›Í¶qãF×Ú¶mkÓÇ™ñññ÷Þ{¯Ö­Bˆ_~ùÅf³-X°@놘 ÁªýB’„>þñð‚#¦•“““““ãݧº•››kÄf›Á³‰>|øÛo¿Y¬X±Úµk¿ð ·nÝRó©bÏž=½zõªZµjLLL§NÖ¬Yã4æíÛ·×­[·nݺy5`Ë–-)))QQQIII#FŒ¸qã†òѶmÛºtéR¾|ùŠ+véÒeÛ¶mŽ#wº>òá‡.]º´ã¤gÍš\©R¥'Ÿ|òÊ•+JÏë×¯ïØ±£<ÑQ£F9Î|…à€ -Z´èé§ŸnÕªÕóÏ?_¶lÙ×_½cÇŽ’$åûéªU«6l˜ššÚ·o߇~øÈ‘#)))óçÏWÆ|âĉ”””+W®4iÒÄí¤wïÞݱcÇbÅŠ 2$&&fêÔ©-[¶ÌÎÎB,[¶¬yóæ¿þúkÿþýûõë·gÏžæÍ›/[¶LåL­^½ú™gž0`ÀŒ3êÕ«7sæÌ#FÈ-Y²¤]»v»wïîß¿ûöíçÎûÐCi½ÌH‚¯%&&J’Ä¢=“¿«eìØ±Bˆ 6¸~Ô¦MÇcz\\œbÒ¤IJ—Q£F !æÍ›çùÓÌÌÌjÕª%''_¿~]þèæÍ›M›6MHHÈÎÎV†7n\NNŽÛFÊ=Lž­V­š""""ÅA•*U.]º¤>/îÝ»W¾ÆqäÕªU“GîÔþÝ»w !ìv»ügnn®ã§*+‘ÿüç?…¿üò‹cÇÔÔTÿ¯Ë!8` Í›7ŒŒ|õÕW•3ÎBˆ¬¬¬aÆ]ºtéî»ïvì9==}êÔ©ÊŸ&LÈÈÈèÙ³§çOëÕ«g·Ûßzë­K—.ÉeddtîÜyøðá¡¡¡*ÛyæÌ™3f(Ž?>##£ÿþõëׯZµêÔ©S/^¼(táÂ…)S¦ÄÆÆÊ§•CCC÷îÝ«<£ñ§Ÿ~Ú¾}»š)Ö¯_?!!aÊ”)§OŸVfpúôé¯03âT5ÆP¶lÙ>ø oß¾5jÔèÔ©S||üÅ‹úé§ßÿ½]»v/¾ø¢cÏ*T3f̦M›êÖ­»yóæU«V5mÚtàÀž? š6mZ÷îÝëÖ­Û§OŸ¬¬¬¥K—ž8qbþüùò9e5BCCGŒ±aÆš5knÚ´iÍš5)))½zõBL:µoß¾õë×ïÓ§$I ,8uêÔ¢E‹Š/.„¸óÎ;§M›Öµk×=z9räwÞQYæ,Z´è›o¾Ù§OŸäää¾}û-ZtÁ‚éééZ¯13Òú¶nRnÑgé€n÷q*8p`­ZµBCC+W®Ü¶mÛÏ>ûÌéá8qqq=zôX·n]ëÖ­K•*U½zõgŸ}öæÍ›j>•$iÇŽwÝuWùòåK—.ݦM›ï¿ÿÞiÌš÷ÜsÏÍœ9³iÓ¦µk×3fLVV–ÒæM›:uêT®\¹råÊuêÔiëÖ­ÊGׯ_:th¥J•ä«{÷î=nÜ8ÇÇñ8MÚña=’$­_¿¾C‡òÃK•*µhÑ"Áãx|Í&Iz½ذìv{ZZšü»Í&XÀ CŽßÕæ_¯^½/¿üÒ‹OõàÚµk×®]‹‰‰ñnðS§N•)SF®bªáÅÆ`îíÇNU} ózpùÑßðnŽ€*T0›Î;Ë/èóâSÀ‚#fóî»ïzý)৪  ÁÑ¿xc50 ‚#T!8@‚#T!8þÕ²eË­[áFÙ\T¨PÁ©·9sæ4nÜ8""¢B… ƒ :þ¼Ö ø Áð¥?þø£hÑ¢ƒÖù8Õ8|øpXXX½¿«Y³¦c?/½ôÒc=¶oß¾V­Z•,Yò£>ºë®»®]»à¦ƒç8ú|c5o¬¶ŽìììÜÜ\ýÓ³‹/^¸p¡OŸ> ,È«ŸÝ»w¿öÚk•*UÚ¶m›ü‚¯aÆMŸ>ý…^˜1cF [  *ŽÜ8|ø°¢Zµjú™={vnnî„ ”×¾ùæ›QQQ . pÌÁð™'žx¢råÊBˆ9sæØl¶Y³f)ݼyóå—_nÔ¨QxxxõêÕ'Ožì­nݺõÊ+¯4mÚ´dÉ’µk×4hÐüáyœ6lèÙ³gùòå‹/^µjÕ^½zmݺՇórèÐ!‘_p\¿~}PPÐ]wÝ¥t îܹó¹sç6nܨõÚøÁð™¾}ûþç?ÿB4mÚôí·ßnÑ¢…Ü=77÷î»ïþðÃkÖ¬Ù»wïS§N=÷Üs¯¿þºüé… š4i2~üøŒŒŒ.]º„„„|ôÑG 4صkW^ã\»vm‡–/_^¯^½¾}ûÆÅÅ-[¶¬mÛ¶¿þú«¯æEŽÇo×®]éÒ¥«T©r÷Ýw;fSI’~ûí·˜˜˜²eË:X«V-!Ä‘#G´^?àk‰‰‰N]XÌÖqòäI!Ä£>ªt‘£^½zõΟ?/wÙ±c‡¢N:òŸO=õ”â­·ÞRY²dIPPPçÎógïÞ½…[·nUºÌ™3G1nÜ8_ÍÈC=$EØíö{î¹çŽ;î°ÙlEŠyÿý÷å222„IIINÊ5ÑÉ“'k½*€|¸~Wëߨ±c…6lк!ùˆ‹‹ëÝ»·Ö­$IÚ¾}»bþüùž{óbc0âöãÜÂk¯½V¦Lù÷ää丸¸sçÎ !.]ºôÞ{ï5oÞ|ĈJÏ={ö0`Àܹs>üüÃul}úôéÕ«W£F”.òÍÎééén§>mÚ´œœœ¼Ú6xðàððp§Ž'Nœ }õÕWŸyæ¹ËêÕ«»uë6|øð”””ªU«^¿~]á4`É’%….\Ðz‘|àÜX&Mš8þ~óæM!ľ}û²³³CCC/ˆBÈŸîß¿ßmp¼÷Þ{…YYY‡>tèPZZÚ§Ÿ~êaê£G–GèV¿~ý\ƒãêÕ«ºtèÐá™gžyã7–.]úÌ3ÏDEEÙl¶«W¯:õ&W"£¢¢´^äß#8~W¼xñR¥J¹ýèèÑ£BˆU«V­ZµÊõÓ'N¸êðáãFZµjÕÕ«W‹+V£FêÕ«ïÞ½;¯ܸqÃ'3Òºuë7ÞxC¾’²hÑ¢QQQ/^têGîâúœpð¡ÜÜ\I’Š)¢uC,‡›c¿³Ùly}$?Èæ•W^q{)É!C\¹zõj£F¾ûî»áÇïÝ»÷úõë©©©ãÇ÷aƒ%IÊÉÉq}¤Npp°B Á•*U:{ö¬SvLKK“?ÒdQضm[—.]Ê—/_±bÅ.]ºlÛ¶MîÞ»wï¢E‹*g ,X`³ÙêÔ©£ øì³ÏÚl¶;wÊîÙ³§W¯^U«V‰‰éÔ©Óš5k”>ããㇾ}ûöºuëÖ­[7¯–lÙ²%%%%***))iĈŽÿÁæÕHyäòIÅÃ?\ºtiÇIÏš5+:::88¸R¥JO>ùä•+W”ž×¯_ß±cGy¢£Fºuë–Ö+ÄlŽ€–jÔ¨!„øñǺ¿óÎ;O?ý´Û+7lØpáÂ…áÇ?>))Iþ‡ûÏ?ÿô0•[Þ”Gÿ(<Ü®];§î›6mB(GšîÝ»çää¬\¹RéA’¤+VDGG7kÖLëE XѲeËš7oþ믿öïß¿_¿~{öìiÞ¼ù²eË„;wÎÎÎþé§Ÿä>å_öìÙ£|{üøãåË—¯W¯žbÕªU 6LMMíÛ·ïÃ?|äÈ‘”””ùóç+:qâDJJÊ•+Wœ®ÃQìÞ½»cÇŽÅŠ2dHLLÌÔ©S[¶l™í¹‘j¬^½ú™gž0`ÀŒ3êÕ«7sæLåñ%K–´k×n÷îÝýû÷oß¾ýܹs•ûüà3ZßcBnï´bI[„|ôý÷߯tiÑ¢E‰%œz«U«Vùòååßû÷ï/„˜1c†òéÒ¥K…µk×v;Îï¾ûNüý&ëK—.µjÕJñÄO¸mÕäÉ“_Ë[FF†ë òÍà³gÏVºlÚ´)<<¼jÕªW¯^•»üþûïAAAÕ«W¿|ù²ÜeÒ¤IBˆQ£Fi½€üy¸+VÍ~<ó|Wufff|||\\\zzºÜ%===666!!!33Sþ&yöÙgåj×®]»vm!Ä’%K$IºtéRPPРAƒäñT«V-99ùúõërÏ7oÞlÚ´iBBBvv¶$IqqqBˆqãÆåää¸m‰ÜƒãÓž}öY!ĬY³<7RrwGöC=é8æÅ‹ËæææÖ®]»råÊr#ccc+T¨pòäIùÓS§NÉgu¸«Ú‡ˆ3¾Gp´2ù¼mTTÔСCå/÷|ƒãÉ“'å;`êÔ©sÿý÷wìØ1(((<<|ÇŽnÇyõêÕþóŸBˆÆ>üþûºë®»Š/^®\9ÇÇúFjjjùòå… 40`@óæÍƒ‚‚J–,¹fÍÇÞÞ|óM!D\\ÜàÁƒÛ·oo³Ù4h ý›o¾yùå—srræÍ›ç“©[·î/¿ü2pàÀ3gÎ|ñÅ.\8pàž={œÎ_9òóÏ?·Ûí .LOOê©§Ö®]«|xhh¨ÊÆœ9sfƌʟãÇÏÈÈèß¿¾ Ý»w¯ò²«Ÿ~úI~m šÙOHH˜2eÊéÓ§å.éééÓ§O×zµ˜ §ªó”ýÜsÏ•.]ú…^à~~€NÌœ9ó›o¾qì4qâÄâÅ‹O:µoß¾õë×ïÓ§$I ,8uêÔ¢E‹Š/.÷Ù¹sç/¿üR!Ç"EŠ´lÙrùòåUªT‘ß\*„ž6mZ÷îÝëÖ­Û§OŸ¬¬¬¥K—ž8qbþüùê¸:bĈ 6Ô¬YsÓ¦MkÖ¬IIIéÕ«—Âs#ï¼óÎiÓ¦uíÚµGGŽyçwT–9‹-úæ›oöéÓ'99¹oß¾E‹]°`A^/b…׎yš1cƾ}û>üðCùÝ»èÁçŸîÔ%88xâĉBˆ^½z­_¿~üøñòÊÉÉÉ‹-r|¯}çÎ…eË–UÎ ·mÛvùòåJ¹QÖ©S§-[¶Œ3fîܹ™™™uëÖ={vÇŽÕ7ò©§žŠÿôÓOW­Z7f̘ÿûßòGž9iÒ$I’/^¼råJI’z÷î]»vmù¶ë|õìÙsíÚµãÇÿì³Ï.^¼XªT©¹sç:=N…d“xƒ²;©©©ò%ÿ/¿üòÞ½{{õêu÷ÝwOž° `ZZ¿,ÛöìÙ“˜˜øì³Ïªìßó‹ÏYäð­]»vUªTé?þ» :TñÔSOf•£½xñâúõë,ŸlÙ²Eëå¨åù»–âÅÆ`Ùí‡SÕ€±Íž=;77w„ Ê-„o¾ùfTTÔÂ… ^ÛU AT޶víÚ­Zµš5k–Ö‹GÀ¿®\¹òÌ3ÏÔ®];**ªsçÎß~ûí¨Q£l6›Ó U½¶~ýú   Çë+‚ƒƒ;wî|îܹ7z=ˆÊÑΙ3géÒ¥K—.íСƒÖKàw\㘿š5kò\FxçÌ™3mÛ¶Ý¿íÚµ;tèššÚ­[7¾ý\’¤ß~û-&&¦lÙ²ŽÝkÕª%„8räHË–-½DýhSRRä_œ^€0%‚#àGcÇŽÝ¿ÿ«¯¾ú /!rss‡úöÛoûjüW¯^ÍÎÎŽŠŠrê.wqû’V5ƒx1ZÀpÒÒÒ,û gÀkGÀ_.^¼øÁÔ©Sçù矗»½þúëóæÍûóÏ?Ý2mÚ´œœœ¼F8xðàððpÇ.ׯ_BDDD8õ)¿`ýÂ… ®#Q3ˆ£Œˆ³I~Uø·ìÚ„M¼¨W_Ž&I¼±Ú*öïߟݱcG›Í¦t mܸñòåËÝ2zôè›7oæ5Â~ýú9Ǩ¨(›ÍvõêU§>322Äí¡5ƒx1Z€9zô¨¢B… NÝ]»(nܸQ I-Z4**êâÅ‹NÝå.n'¤f/F °îªüE~Í™3gœºŸ={Ö‡S©T©ÒÙ³gBž|®R¥J^âÅh@Áyj³"8þ’””$„X³fcÇ7nlÛ¶-¯ABBBlyûã?\éÞ½{NNÎÊ•+•.’$­X±"::ºY³fn§¢f/F 0=NUþÓ¯_¿ùóçO™2eĈBI’^|ñÅsçÎå5Èþó7ÇÈ÷¦8yä‘G&Nœ8nܸ.]ºÈ=¼öÚkgΜ5jT±bÅä~®\¹rêÔ©bÅŠÅÇÇ«DM?ËÑúÕ5&¤æ5D,x‹8vìX•*U„õë×0`@RRRttt§N„ðÕTÞ|óM!D\\ÜàÁƒÛ·oo³Ù4hpþüy¥‡ùóç !jÕª¥~•ý(}ôQÁ+ÜVÈÜô~˜ä•ƒ|¯jÕª;wî|ä‘G.]ºôÃ?Ô«WoÓ¦MÊ˾šÊÈ‘#?ÿüs»Ý¾páÂôôô§žzjíÚµeÊ”)ä ^Œ„/.p„nÙ$Ö­¯Ùíö|Ÿ ÆNe7n ¯[·®cÇúõë;v,===(ˆÿܘP!q†¸-Fͱޔ8n~ôä“O6nÜøØ±cJ—ï¿ÿ~çÎ}úô!5 ‡›c??~|¯^½4hpÿý÷—)Sfß¾}‹/®Zµª|¯ ÆBpü¨{÷îk×®}ã7-Ztþüùèèè{ï½÷­·Þ*_¾¼ÖM=2Äyj+#8jƒZGëÖ­[·n­u+ @8º™WY@‚#ÐÎSëÁª€oæGʆ@p€*GÍÈ7VÁhŒóÔFAp>À­€àUŽ@Kœ§6‚£–¸?Á–×8Rn4‚#T!8@‚#Ðç© ‡àUŽãÆj€Ñywg åF#"8@‚#T!8€@ã<µA€÷¼~ô7Œˆà¨=î†@pÅyjã"8@•`­€‘¨¿¸È Wþyq#åFC#8ǰ¨>'y7 gGò$‡?ïbŸãP… G]o¬æ ô÷QOñ‘óÔFGpà”óËþˆw&‹”<,ˆàÀ_“„”øhµÔE¹ÑŽhPTÞþ`µøC#8¬N«âŸ¡Km6 ‰€ë/€À³Ù´@ò÷¿éœ§6*Ž‹Ò<2* ]z„¥PqX‘Sš‰O=Qn4 ‚#ÀZôpz:/FÉŽº]€ð7‚#ÀBäÄ£çÐc”ìk"8ê_àWF©“™ìpÀyj3!8,Á(©Qf²ìÓ 8ÌÏX©Q¦ÛìX …I¹ÑdŽ“3bj”é6;²Ž33nj”‘¡+G€i=5Êt•9OmqG}ÑÕ·š9R£Œ£t‚à0!3¥Fƒ¢ÜhJG€Ù˜25Rt„¦bÊÔ(Ó<;šxÙB%‚#ÀT.sÊ–Bpè©Ð ‚#fÃ9+ø Á k”½SÈìÈyj¸Ep話0¼ÎŽ,vä…à¨kœkèåF "8tŠºWáyQ€`±Ã‚#@ˆ/¾R ì¨~±Sn´&‚#&§2;Ö‘/‚#@wH0>çÛ‹æ)7ZÁQï¸?€ÕýÄó…Å5‚µn§ì¨$ER#T"8t„ãoŽ‹W ‘Z朧¶2‚#@/HÆÒFAq#P‹r£Å €ûcXåF@ÿŽ@Ê 8´G¹0‚#@c¤FC ÜAp4 .sš#8´D¹0‚#Èç©!#84C¹0ÞãÞ¥K—¦M›¶}ûö“'O–-[¶V­ZO?ýtBB‚Öíó 5åF(¨8º‘‘‘ѵk×yóæ !Ú¶m[¦L™åË—wëÖmÏž=¶Šûc€¶Žn̘1#==}È!ß|óÍÔ©SçÏŸÿꫯfggO˜0A릀IPn4 ÊpDptcóæÍ!!!O<ñ„Ò¥W¯^åË—ß»woNNŽÖ­Ð×8º™˜˜X¢D ÇŽÅ‹¿uëÖ­[·BBB´n åF£ Ü'G7æÎëÔåçŸ>~üx½zõ´MòeŽ|Û04¾Çã"8z²sçÎ/¾øâèÑ£;wî¬Zµê믿®r@»ÝîÔ%--Më¹ (7*\ë–Epô$--mñâÅ’$ !jÖ¬Y¬X1õjÝvÐ#Ê0"×úe£$7ÇxÒ¯_¿}ûömذáùçŸ_¹reÿþý¯^½ªu£´AṗÍf+[¶ì Aƒúöí{æÌ™•+WjÝ"0*ÊÂyj¸EptvðàÁÑ£G¯X±Â©{Íš5…gÏžÕ¶y<PH6$ðÁÑYÉ’%—,YòÅ_8u?~ü¸">>^ë€!QnÔI’ßGpÀŠS£ãÕdGx@pøåFsûèoÙy!8`-N©ÑíÍÔ¼rnŠûcèåF#ÂkG¬‹g7¢@Ž_¢Ü˜Á‹¢Üˆ‚"8—9ÐÊ€¹°"ÊðÁà”Ó#8`9”á‚£±q™# ÜXÁk¡Ü¯…E¹°ˆ`­GU¹Ñ‡WAñ/…¹ O¾Ì‘€Vø 26·чkÔuül.FFpÀ*þ*7:†9Ç8×ñrêð5‚#À{” CŽk’Ö™ãÔ•ÉfdGLêïµ½¿ÊºJhJ^$AÁÑ ¸Ì€&øæÑ)#†0¤A0‘Ë0ÏntJÄG!8¼A¹Q/ÌZ¢“gǬsgXGŒIuMÎ0åFW u†àh\æ øÂÑ’5‹pŽHK͸Î0¯b“Ë®”øHvÔÁP0µ5@¥Í‘$±@´Bp@¯ }VÚTåFGœ¹ÖÁý!©A| 8‚£yp €à{Æï|ƒL[ntÂ…Dp@¨œ>Á 5ñCâq*7Úl6Éô+Ò£ÿiÝø’òïÀl¶¿‚ŽŸ³Ž$I¶üŽùö` ò±Ðó¢?G€*Ôq|Ïo‘ÑíÕž³£©J’òR%;úÁ€€S •Wv4Ujt˜[²£Ïq# ”}Æÿ7px¾™ZÎŽŽ1Ñœ©ñöÜrÇŒoQq4þ¿ ÈåŒjÁãXw4sj¼=·}ˆŠ# ” KE/%;š<5:Ì0Û±OPqÀŸrÓô_“²È¿½CÝÑŽø‡FwÀ¨kšM’$5Ïè1²c¡Mˆý€é5ùè[ žÎø·iª.7:^×HvDð©€GƶÎùn‹fGKͲïy¢ÜX0Ú›VYnÌëj+fGJ^!8à ú.4Šüž¼c¹ì(8mí ‚£9±/(<Êji}ŒÊrc¾Oޱʣyþ>Ï/ „à@!è¾Ðˆ| ‚àpƒrcþ´.4þÕ žÝXxdGÕަÅ^~¤B#©Ñg8jªCp  ôQh„ï‘U 8œ‘‹ò¤Bã_m¡ÜèsdÇüPB£E="8š?/ŽÜÐS¡ñ¯QnôŸy#87 ÖDvÌC°Ö èéoôº8(7B+Tp‡ÔhqÝ!8š›=§§!ã ê‚àø aéKA¯ ‚rc ‘ÿŽàÀmdg¸";: 8š<5¬™Œpzšr£f8”ÞFpXž¾OOÿÕFR£¶ÈŽB‚#@X¼Ühé™GA ŽÁ¦náôô_-¥Ü} 8,ɧ§¡;–¯ÄÀê Rt³îË€ ‚#XˆyÊs晿ñU¹‘7§ª-Š³Õ Ì\©‘r# „àVa’¸e’Ù¸=7~J¾­r‹ n#8ZEGÆc®ÔÁ`¦KÆ(7Ž` †]†Ÿ—2Ö¥œ­†‚àhqœ­` ¦K~D¹þDpó3vî2vëó˜'c•eÁsúe¢G|ÿm¶ü—)7ÂϨ8Zg«è”\h4]j à&gÈ3½†l´º93t¹‘³Õ–Gpè ©Ð+‚#8[ ˜™ñ2˜ñZ¬\݈€ 8tÃÔ©‘r#L€àÐRc!ƸDÊeŽÖFp„œ­LÊHIÌHm¬‹ç8ºwãÆ ,^¼øäÉ“‰‰‰ƒ jÞ¼¹Öí32{jä$5LƒàèFvvöC=”ššZªT©¦M›Þ¼ysëÖ­6lxæ™gþõ¯iÝ:‘‹Ž¦þê¬Å0{´aêíüù;5r[ ˆàèÆÂ… SSS4hðÁ„„„!Oa€Â²Rj´h¹–Ä5ŽÈ¯® D_9M_­ñó¼ZüÒFùl5,ƒàð)R£ß&få€ 8ÂŠŽ€!è(ªé¨)|àð‹¥Fʰ ‚#òAÑ€*¤FËâ2G+!8€±é"°é¢œ]R#¬ŠàˆüQtà‰ÅR£8O Ý 8B²# OÚg6í[ð9¦Ü #8¼Ej È$‰©Ð‚#Ô¢èèÆ±Ô÷ÇXÁ€üi“)7BgŽ(ŠŽþb½r#ApƒÒ2¹Y/5RndG EGÀêHšªÁR#—9ZÁŒG³ðFj¬àˆ£èX©1€&¬BŸŽðÙÐ6ùÔ€àÈŸõR£–(7BÇŽðEG@D8K¦FÊÞàþ 8Â{dGÀüHŸ6yz¬uÀðœþƒò_вdŠ 4j€GŠ\täHkRò¢ã.`ª2¼õvoS#åF觪QXœ°†5É™Jþqä¿="Ð)ŽÔ/p™£Ù.HZ´€Ô ý#8Â(:Âj<Ç*ì r¤Fy 8Â7ÈŽ€IX/5êåFÁ>Cv¾Ý—å,™µ/7š,5r™£©áKdGXA€Ã•%³\àhŸC!8ÂÇÈŽ€QY/¢ê"5š¬Ü³#8Â÷ÈŽ01õáÊ';'©ý8ÇzH€ÑádG ðH~œc¤FÊ0‚#ü…ìc/ 5Âç¸?ƼŽð#c5Õ±4-R£¦MÑICõŽð/²#,λ]Àzq.@H@!áwò“øË*hväÒFÍ®~R#`XG‚$Qz„á&e©ÿ÷‰Ôè¯ÙÕUj¤ÜÃ"8"pÈŽ°25ÿ>‘ý5»ºJÁý1&¬u`-ÊÓJÇ,˜¯‚–¼ 8ŽÊ1J’ý2»zK”adGš|À²Ø‘ ø§º£šÁf³I¾Úa,¶ï‘ßâT5üÎæîäœÓ%_6ÎaCÇ|žµäÓÖòºþ%Ïû{[ºK€ñáwyó”K¾l6á³j `R²cê‘V*7ê15Rn„ñë%6ž×=ÓOÖr»‘ÝÏ«S£qŒ žyŽÕG@?ô–µœö#R£ûyÕgj¤ÜS 8"pò=æ¡+úÌZÊ~äË;fL„ÔøÁ¥æ˜G|<“÷£¤F}F`?ÐijL„àˆ@SyÌ#>B[zÎZò¤öNj=ωOé75Rn„‰h:æ¡ =g-‡+ƒUìGzžß.R£>qŒéP;æÝF|D é9k9UëóÙô<'¾],ºM€é8;æ¹pŒ$Hø‰ž³–Ûk< º™®S£ÅË0#‚#ÄWÇ<å}ÄGøÖígÑkÝŽ<›çá~2wû‘žgƇ‹…ÔÁPàcž ÄGøœ²t´ò½ŸÌy?"5jŽÔ“ Öº0?•Ç<ïžH'¤1-p¬„Éη5{Çÿú±@j´ ›B¿©Ž$b´©áw;æy9‰¿~1D€N°µ”® ·›¨ó^#8ÂT ¸eòú´ÙˤF@[G˜ç¯uÅ'¡r%:¶ÁÌÛ©€ŸaZœ¿Œ|s¡O–|!Ó§%Ö>©Q(7ÂìŽ0? >äà³èòPz*@ÊÙQþEëåè…9#£ âx‰à¨5&]p,@²4`YzúÒ´‘Qï5¥§ƒ„.hzþšSÕ€Ìä‘QïµCjÌ‹ç¯âšç;¾§ƒï3GFA¡ð‚£Ftp„0€@¿v‰dGXÉ#£ 5ê 7VÁQ ¤Æñóùë¼"Ù¥Ñׂí¯s·fŒ‚ŒøÁ1°¸ùÃk~8­æj²#A‹Ôhþ£ 2¾Gp >¡ÝùkÀ,Qb¼=«¦ŸE ðŽBjô­‚ÇGåxé0çîÊ¡”ÔˆÀ Ô—ƒ%JŒ·gUR#àÇ€ 5úÎßòß혧f@ÇËÿ=ˆG•ä.hn*€&,TbDFCáþc"8ú©±à<„6O?oÏ_+÷ÁH¢°7ĨŒ›–8„C ¿}?X+/ÞžgëÌ+ ‚£Ÿ‘óã6iyy¨+Äý×¾zß Ê–{Η:ÒÃ׬˜…F pŽþDjtá˜|xÓÓû¯ól£Ç¹ö²à C±Ùl’ðÙöiѼ(ˆŒ@ ý†Ô˜˜èAA ºzß §Ë1óÈ”–‹ Æ'IÒÿ6NwÔlŠÖÍ‹‚ÈhƒàèÖKnî/q9˜Ùl6 ¾åU ô¾Á¼òÒxl6‘÷Ææa#ô°‹Y‚2÷Ö›u@‚´n€Þ9rÄn·ïÚµKý iX.5 ›|²MØ$!)?ëGó4&7Êfûë'ï†)×;ˆãbwü±ýo†ÿö£u{ñ·›ë6é¸îòÚÅÌÏvûö‰Ôh’ʧb@G¨8æã³Ï>+è öÄÄ4­›y=þÐíºö©ñmý[Ò–ÇÝ0:¯;`v©Pê“ÃI §MMñÞZ(1zBpt/##ãÀ_ýõüùóµn‹¾x¾¦ÊmÞÒi“›*ò<…mšìè~î ”zòWÝQ^Æ·Ÿ!Ê2ç*F@‡ŽîuëÖíÌ™3Z·B/ TùÈ«|¢Ck˜»{htÛrÿ)h ä/Ü.7:?ÍÞfÅMΙã†fù…èÁѽ‰'fff !æÎ»iÓ&­›£ ¯oØT²£žS£k£o϶74=/nôdÊ¿s|/‘p©)o—ñõÒù‹%ç0‚£{-Z´ùᇴnK ùä>’ È»L)L+==ÖÞÝ#”ÅÀ;Ž(.Dpô »ÝîÔ%-Mï7Ìøöpf(Ÿ Íë眫‰V|˜‰vÃï8yΧKÓÍ"¼a7V»Ö-‹àèú‰Ž|~%¾ÙÊ'$HÿðÉëuÞx—™q.7ºÝA̰ãa.®‡uËFI‚£uùéf.Ÿ¸&HAˆô;}V}ÂNj讆ð9‚£åøõe¦-Ÿ¸Ì’ã<»éä'ßÂ;ޝjµlÚn#8Zˆ¿g˜ò‰oQ†„J?O­fw(ð.ã”Ù øÁÑð¾:OMj G]#2zÁmü2JêÊ+;¥ýf ÄG 5Ђ£~½æ¿Œ•º\³£±ÚoºÊŽ€H·ß¢ }#8ê—3ž¿Œ˜º³£Ûo…ÌŽ>9OM¹€Îð8Ý!2úŠ¿ šº”ìhÐö›„’Y „ 8êŠ Ðè¡^ãÿ¹”S£q³#tAÞx|þ²i5(7Ђ£^˜ªÐ¨äEIE?Â/GG%/4;*m6bãMH.=ª_šMð?‚£öÌShT“…»~ 4 š†ü=l.;:¶Öp‡oPn KÜ£%S=mG>ÎI^í”m· Ów1KÍãµuµýj¼™qŸ5àoÜXmG͘'2 ßUG =ç ¿òj¿!o~*³#穘ÁQæ¹¢ÑæŸsjN Re[ò;¥«ó¾žÛOv´ÎSÐ+®q 4ó\Ñ(rx“nOÈñϼúÕw.ôLÍ…Œ†žA“(è]2`.Ç€2O¡Q¶(¢LÈö÷?M„Phž³các%åF:Æ©ê1ÛË`´:¶üüu Ùív­›müµê)FZ{=¬†Šc ˜*2 TD rþð=—¢cÚ¼c€Pqô;R£¿xu àŽwXÛlöÄDj€ðDÝ#8ú‘ÙNOëñZ±Ù|yzZ?ÿ•@8Uí/挌z>°qþF‰€õý‚Ô¨ Ü €Vx®ïÙ„-Ñž¨u+|,í@š=Ñx7¦H“1bãa5ÝËß2ÐŽ––¦u4@p€*ÜUŽP…àUŽP…àUŽP…àUŽP…àUŽP…àUŽP…àUŽP…àU‚µn€i9r¤sçÎ .¬[·®Öm-Z´háÂ…‡ mݺõ¨Q£J—.í¡ÿÞ½{ÿúë¯N£££7nܨõ¬ P º%ÀXØÓ‘+â ŽþòÙgŸiÝøÅÔ©Sß{ï½°°°† ;vì‹/¾8xðà§Ÿ~’× Ç ‰‹‹sì©õ¬ P¼Ø` ìéðÀʇx‚£edd8pà믿ž?¾Öm便¥½ÿþûåÊ•[¼xqLLŒbâĉŸ~úé›o¾9fÌ·ƒddd\¾|¹sçÎÓ¦MÓºùð/¶{:Üâ/¸ÆÑçºuëvß}÷Yy“2·… æææ6L>–!^xá…R¥J­X±"77×í ÇB8!`t^l 0öt¸Å!^}nâĉï¾ûî»ï¾Û¬Y3­Ûßûù矃‚‚Ú´i£t)R¤H«V­þüóÏ;v¸䨱cBˆØØX­Û_òbK€°§Ã-ñ‚SÕ>×¢E ù—~øAë¶ÀÇ$I:tèPTTTTT”c÷ÄÄD!ĉ'î¸ãסäÃÉéÓ§¸oß¾ÐÐФ¤¤!C†Xð’jÓðnK€Q°§#/âG@½ëׯçää¸^ê^ªT)!Ä… ÜuâÄ !ÄôéÓÏ;×´iÓèèè~ø¡ÿþ .Ôz†à%ï¶{:àG@­7n!œº‡‡‡ !._¾ìv¨Ó§O‡„„Œ1bàÀr—M›6 2dÒ¤I-Z´¨X±¢Ö³…ónK€Q°§½‘={ölåÏ"EŠ<þøãZ7 ¾ävGFFÚl¶ëׯ;õ|õêUq»áêã?vêÒ¬Y³x`Μ9«W¯VŽ10ï¶{:àÁÑYYYŽ\(^¼8ÁÑdÜ®âàààR¥J¹Ö222„ÊÝ—j4jÔhΜ9ÐzFá n Ð!ötÀ‚£7BBBÒÒÒ´nü(¯U\®\¹C‡edd”,YRéxôèQù#×þ%IÊÍ͵ÙlAA»ž¸H‘"Bˆˆˆ­g^*è–caOòÂÍ1@´oß>''ç§Ÿ~RºH’´nݺҥK'''»öìØ±¤¤¤|ЩûÎ;…v»]ë‚— º%ÀXØÓ¼¸÷Þ{ƒ‚‚Þ~ûmùj'!Äûï¿þüù{î¹§hÑ¢r—k×®=zôäÉ“Bˆ¸¸¸ lÛ¶mÑ¢EÊHvîÜùá‡V¬X1%%Eë‚—Ôl 0.öt /œª  bÅŠ£Fzýõ×ï¾ûî–-[;vlË–-5kÖ|ì±Ç”~Ö­[7|øðjÕª}óÍ7Bˆÿûß<òÈË/¿ðþýû++öïß_¨Ü%IR—.]Ô‰5R&Ž;Ö²´ÊÇ{íÚ5eá6mÚH’týúu³Ý]¼xqäÈ‘uëÖ-Z´híÚµ?ýôS§gZ¸pá^xAýñìÙ³ù®Ò¦M›Î;«GˆsûÍWŸ>}”O&..îŸþQ§ç{8Ù9 ýýj>^­%U·æú¾nݺU¿~}ËóE’¤?üÐÑÅþóŸÿ(Ó~øauâŽ;|ðAËuË—/¿qãFËÏ­E‹U«V5[¸W¯^¶>pµ=+..NøÀ(£££•)wîÜQÛp7lØ`YÚ×_ݲ׮]3+[•*UÌ–™1c†ãÐþeZu}ôèQ-«tíÚU™5tèP-ËÛgz)S&Ož¬L)Q¢Äü¡.©åp²s@:ôûut_vÞ »?G×ÕXËSIã9èʧçùo K—.]:rÏÓO?­¬Õ·o_³Åìó6lPç~ÿý÷vv÷Ûo¿•)SÆ´„ÅŠëØ±£òº}ûöê’êׯ™ž={* ØùѲ:¼Á1à¨xË/;ì|]ºt)88X™õñÇÛÚ‚ú\®\9uSʵóÊ•+j iÕªÕ„ úõëd¶Í›7oª µ`Á‚5R4Ýš.ûR·Ö¥K—aÆ5hÐ@™rðàA‡³¼ÚݸqC¹UKQ¨P¡víÚuìØ±páÂÊ”2eÊdffšíBQ¡B… ˜Þ{ºcÇ«ø©S§ÔeÎ;'ËòñãÇM7uæÌY–wíÚ¥üX¤H‘¬¬,ËÒž?þÈ‘#jÙ>ÿüó#GŽäææZ–->>>))I=BCC• :zDݸq£OŸ>fŸ˜U._¾üñÇ+û ùý÷ßóÝE¾ÌÄ?ü $!!!k×®Usôp²< µÿ~Ý—àèÃÏ¡uµ—ÇòTÒx:ýéòa_rr²²Š£Á177·`Á‚ÊÜÿûß¶¶Ÿ••U¡BµT<òˆúÛQ¨ÁQm•’$©U«V¬Q£†ºØO?ý$ÛýѲ:¼Á1°äææª×õñãÇk_Ñê÷Ñ;w<øØc©³Ôk¶%Ó«HµjÕ-Z´mÛ6¥2I½ÏÌô¯ÌY³f)ccc•)3fÌP¦”(Q"--M–圜œÁƒ›]‰uÙWãÆ•)ï¼óŽºXÛ¶m•‰³fÍrh1Ë«Ýĉ•)Å‹W/Ÿ{÷îUëSÕº[Ó÷¢nðàÁƒêØNEEBB‚²Ì·ß~+ËòòåË•ïheâ×_-˲zG`ÇŽm•V–å¢E‹Z^LËöÁ(Õ!„»wïÖrDÅÄÄÝr°-[¶XnD¹IE’¤ T­Zõ»ï¾S¦wîܹN:ù–¡páÂk×®0`@ƒ âãã…ßÿ½2kÈ!êbÏ<óŒ’qOž<©Œà°lÙ2eÖK/½”””$„ ú¿ÿû¿Ò¥K뾯›7o*³”>ŒçÎS^ïß¿ÿþý={öTæj\Ì’ú¡½üòËêÝZ5kÖ1b„Ùª5j¼ôÒKÊë*Uª4mÚTy}âÄ [{Q/HÊÊ]J5jÔPjjwîÜ©NB<ú裎 ëªV­úòË/+¯»térw¸†Ã‡kYýÌ™3j3ÜñãÇoܸ¡¼Ç½{÷V«VM{1jԨѬY3§ß…U×®]ëÖ­ÛÅ‹…¯¾úªé*Bóᤲ< M oÿ÷ëè¾ìðÌá§}]'Ê£Òx:ýéyÉ7†^J•*¥¼0»yÔÔâÅ‹•¦¢S¦L±ü¦íÓ§Ï¢E‹-ZôÊ+¯¨›UÎ_!„rÖØáâê0 Á1°¨u9B}b­Q£Æ| eɤ¤$³&æ?ÿüSyÑ®];5³-ZT͸Jþ0]L]7,,ÌôG½ö¥n3==ýÙgŸŽŽ®[·î¬Y³®_¿^½zuõî‹YJOO·|/Â$½>|XçHev˜Zf¶˜)58nß¾]Üˈ 4xøá‡…EpTv‚éð7E‹-[¶¬òZc÷O«:ÔªU««W¯ZUñžèèh¥õ·ß~«[·îÑ£Gí/¯R?C;Ö­[§F Ë¡¦4N*ËR•ïï×Ñ}Ùá™ÃOûºN”G¥ñtúÓó’o ½\¸pAyQ¼xq[˨oÙt ï‚ ZþmÙ®]»tìØqË–-£Fjݺu¹rå<¨±0.®£Khh¨z¿ŽÙùY¼xqõ‚jš/-™^ƒzè¡Î;Ož<ù·ß~3»Æ³Þ-™™™j‡;[Ο?Ÿ™™©þjvé-_¾¼¾ûBLœ8ñÅ_T‡:“e9--mÒ¤I 4hÖ¬™š¹5.f&33SwPX G§F®[·n)µ*µ‰ÙêVµhÑB©üÛ±cGNNÎï¿ÿ.L‚ão¿ývëÖ-¥m+&&Æ¡º=3ê-_ÚËfÊ´õêúõë‹/V6øÇØÐÛtx3gÎüóÏ?ÊEîܹsêøP¶–W©Ýð5š:uªio퇓Ê쀴ó¡™ýèľlñØá§ý­9Q•–sÐéOÏK¾1tô÷ß+/,»û(®]»¦Ž`d-¿ioß¾=räÈÒ¥K÷ë×oúôéëׯÏÎζÓ¤ïê0 Á1à´jÕJy‘ššj:¤È!C”«éáÇÃÃÃílÁô|øð᯿þúµ×^³:T¸Uf—âÅ‹+VLyýã?±¦_¿~ÅŠSwaöoëŠâô¾„ ˜={vFFÆÒ¥K `:Lô/¿ü¢>§NãbfŠ/^¢D åµÙX3ê T#¾ÓŠ/®táÌÌÌüæ›o”Æ)58ž?þ›o¾Q†½p¥ºQ_… îÛ·¯z+Ø´¬ùî»ï*¯7mÚ¤^uѼys¥SËõë×M³¦öÃIåh¤ve_v6å™ÃOû[s¥R^¸rƒ£;¨wb]ºtIã*¦µžvîßrT||üW_}¥æÅO?ýÔôf8-‡“^%Ñq_;üÜ]íç ÓŸž—|cèB½›¨H‘"êßff‚ƒƒÕoÚ~øA.çÍG¡~|øá‡ÿú׿jÕªrúôiåqqu…àpyä‘çŸ^y½dÉ’fÍšmÚ´IiŽÙ³gÏóÏ?¯ÞÆî1j¸™7ož|oÔè•+W–*U*22²bÅŠÊnÍ›7Wf͘1Ci\–å7ß|Ól”×÷uðàÁ2eÊ”)S&::Z¹a.$$¤M›6Ï>û¬²¼R#«q1«ÔÑþïÿþOIxÿþýï¿ÿ¾òÚôî"W¨U‰J¼~øá‡ƒƒƒK—.­tÚ¸q£B’¤Ö­[kÜ ZcáV·nÝR^ä;L±âÒ¥KjØB… ™õ;qE­ZµJ–,ùÌ3Ï(ÛÌÍÍ5j”:Wã¡« ÷å±ÃÏÝåÑ~:ýéyÉ7†‹þþûïçž{nÅŠÊO>ù¤Z“jIi‘0ûu¼ûî»fÕÿW¯^U._¾¬¼øý÷ßíÿ%¯~8·:¼ϪDï½÷Þ÷߯ä­_ýµyóæAAA T¯Ö 6üõ×_=Vž7ÞxcÁ‚—.]JMMmÕªUóæÍÿøãµåˆ#”»éßxãO>ùäöíÛuëÖmРÁ‰'¬>ÎÅ}…‡‡GEE;w.;;»I“&?þxDDÄÿþ÷?õ)gÊjÕª¥e1«^}õÕO?ýôĉW®\iÒ¤IëÖ­ƒƒƒ×­[§ä¤èèhGo¿³å‘G)V¬˜zQTûH>üðÃ'OžT^+oÄþvÂÃÕ¿.Þ~ûí?þøã•W^Qäjõ¡òÐjKTïÄÍÊÊ:{ö¬Zwžœœ¬{mYƯŒÝ½víÚ5kÖ(QFã¡« ÷å±ÃÏÝåÑ~:ýéyÉ7†Ôsäúõë¦÷<ðÀo¿ý¶G­ kuùòå† 6hÐ ##Ãò©`E‹-Z´¨òµðì³Ï.^¼X’¤ï¿ÿÞêC_,¿@ZÞÅèñ€`Œ¿ÿþ»E‹V‰Î;«w nÞ¼YYÞ•±”ö‡—ûæ›o¬þµý /(CÅ*æÏŸo–WŠ-Ú²eKåµÕ'Ç8·¯_ýÕVÓU‹-nݺåÐbVGFܾ}»Õб *üòË/ù~nêÓœGeÿ“üñÇÕÿ÷¿ÿU&ªwZnÁji `ZH³'ǘ•Mí&µdÉ[¥²D©»+_¾|NNŽå*¶4jÔH}(…¾OŽÉÎÎVϯV­Zvv¶öÃÉÎéÐï×Å}™òÀáçкËcypj<]ùô<ÿaŸÆq­Šˆˆøõ×_óÝ…úpU‘"EÔZÔqÕúUñññêòSO=¥nÐêˆöÕáUhªPQQQ?ÿüó·ß~Û§OŸØØØÐÐÐR¥J5kÖì³Ï>KMM-]ºt¾UPúêÔ©Óž={\§NÂ… ÇÇÇwëÖmãÆsæÌ1íO0xðàuëÖuïÞ=&&¦lٲݻwß²e‹­»¼]Ù×#œ¶téÒ;w^·nå ©3gάY³¦"(((11qøðá»víêÒ¥‹2wñâÅêÈ>V¿@´¯¯"É÷nÚ|ÔSO=µpáB!Äœ9s^xᣋþ`çÎ?ÿüóóÏ?ogÐÇ;wî¬ZµJ8ÛÎîâê0Á>ã¹çžSF«nÔ¨‘úP¬k×®U®\Y¹ƒgóæÍ¶º ×Ñ9>#&&f÷îÝBˆÝ»w—/_¾W¯^—/_~õÕW•ÔX½zuÓæW ;já3nÞ¼ùè£nÞ¼ÙrV©R¥~þùgåvà&Gø’¬¬¬¥K—~þùçÇŽ;{ö¬2ŽÚ£>šœœlç.  ‚#4a8hBp€&GhBp€&GhBp€&GhBp€&GhBp€&GhBp€&GhÐÁñرc {öì±:wùòå½zõJJJjܸñ˜1c.]ºdtyŒÐÁñ‹/¾°5kæÌ™cÇŽ=zôh½zõŠ-ºråÊçž{îæÍ›FÀ0!FÀ™™™þùç·ß~»dÉ« ¤§§Ï›7/**jÅŠ¥K—BLš4iáÂ…Ó¦M7nœÑÅ0F Ö8vêÔiÀ€¶R£bÙ²e¹¹¹ÉÉÉJjB¼þúë%J”X³fMnn®ÑÅ0F Ö8Nš4)++K±hÑ¢­[·Z.ðÛo¿µhÑBܬY³o¿ý6--íá‡6ú ƒc“&M”?ÿü³å\Y–9a:½råÊBˆS§N@` Äàhß7rrrÂÃÃͦ—(QBqñâÅ|·`ô›n”žžntŒAp4§t.R¤ˆÙô¢E‹ !®\¹¢e#^r<%$$xIIàý8Z G 4òãCÅßš}Ø9ƾððpI’nܸa6ýÚµkâ^½#@"8š )Q¢„eÍbff¦Bíg hŽVDEE]¸pAIŠªãÇ+³Œ.€1ŽV´nÝ:''ç—_~Q§È²¼qãÆ’%K&%%]:c­èÕ«WPPÐìÙ³•û…óæÍ;þ|= (`téŒA¯j+bbbF=eÊ”Î;7mÚôĉÛ¶m«^½ú!CŒ.šc³ÃœÃÑí8Z ‡Šÿ!8Z7hРx 55uõêÕÑÑÑO<ñDrr²2"@`’dY6º þ&`Çv @쵞{  Áš  Áš  Áš0Ž#À]Œ. I`Ž­ã‚#À¸ÃûñŽv4U@‚#4!8@‚#4!8@‚#4!8@‚#4!8@‚#4!8pßĉ%ÂÂÂÝZÓ¦M“’’Ü]fÏì<«K}ûö-W®œÙÄü/š;wîœ4iÒ;ï¼S½zu!Dppppp°îÅóÌ^KG̽ôÒK7vbÅsçÎ¥¦¦&''+?nذÁÅóÌ^K4UàQ·oßÎÍÍ5¶ ¹¹¹999Fð=GsóæÍwÞy§jÕª… ®P¡ÂàÁƒÿþûo!Ä3Ï<óøã !Z´h'„hÙ²¥z÷a\\Ü+¯¼2zôèâÅ‹*T¨Aƒß}÷]vvöo¼QµjÕâÅ‹·lÙòÀê^fΜY«V­"EŠDDD4hÐàË/¿T¦Ûß‹bÇŽ;v,S¦LLLLÇŽwìØ¡ÎŠ‹‹>|øÜ¹s###CBBÊ–-;tèЫW¯ý‰ÂgÐT 0‚$¹wYveíÁƒ/^¼¸M›6=zôØ¿ÿgŸ}¶ÿþmÛ¶92..nüøñS§NmР劋- ~óÍ7CBBf̘ѳgÏ:uêdgg?ÿüó‡ž3gNÿþýwïÞ-„˜0aÂĉ[µjÕ³gϬ¬¬¯¾úê‰'ž(^¼x§Nìïå믿îÙ³g™2eúõë'IÒŠ+7n¼bÅŠ.]º( ¬[·î£>2dH•*UÖ¬Y3gΜ;wîÌŸ?ßÈ_|ˆ ½U®\Ùè"€WðÅïà &غbvíÚU–åk×®?ýôÓê*Ï>ûlddä™3gdY^µj•bÆ ʬ-ZÔ®][y]±bÅ‚ >¾råÊwîÜQf]¾|9$$dèСʶö’••W±bÅŒŒ eVFFF… âãã³²²”2!V¬X¡ÌÍÍÍ­Y³f¹råŒþÔ æÄê‹Ç¶.¨qÀœÕ^ÕJæ   I’¶lÙrâĉ *!,X°`Á-›­_¿~•*U”×-[¶Bôëׯ@ʔ֭[oÞ¼ùÆÅŠÛ±cG¡B…Ô~Ü.\BܸqÃþöÓÒÒŽ?ž’’©L‰ŒŒLNN>|øž={êÕ«'„ˆïÑ£‡2W’¤¤¤¤o¾ùÆèÏ>ƒà€9;½ªÃÂÂRRR”öâêÕ«7jÔ¨}ûö=öXÁ‚óݬšç„J^´œ¢(Y²äÖ­[×®]{èСÇÿñÇÙÙÙùnÿðáÃBˆÄÄDÓ‰µjÕRf)Á±råʦsƒ‚èíp¸à˜_|ñÿûß¼yójÕªµzõêîݻתUëܹszm?++«S§NM›6]³fM¥J•FŽyðàÁ%J仢,ËB)ïý£ÊwîÜQ~,T¨ÑŸ|Á\¸paûöí¡¡¡ƒþòË/Oœ81kÖ¬ôôôÿüç?zíbóæÍ«W¯NIIÙ±cÇ;ï¼3`À€øøx-5Ž•*UBìÛ·ÏtâÞ½{… FrðGžžþÈ#LŸ>]ù1((¨E‹"oC³‹Ã4ž>}ZQµjUuÊŠ+®_¿.çí n¹—:uêÄÆÆÎœ9óÒ¥KÊ”‹/Θ1£B… <“ºàGÌÍ™3Gé¹læ©§žzøá‡kÔ¨1yòäcÇŽÕ¨Q#==}Íš5ýúõB„‡‡+«Ÿ;w®oß¾Îí½eË–EŠ2dȀʖ-û믿®_¿þؼyóš5k:tè`k/¡¡¡3gÎìÓ§O:uz÷î-ËòÒ¥KÏœ9³|ùòÐÐP£?Tø‚#æÔѶÍ4iÒDþpüøñ?ýôÓÿûߨ¨¨¶mÛŽ7N‹»Q£Fýúõûî»ïŽ=êtpŒ]½zõo¼1kÖ¬¨¨¨–-[îÝ»÷믿~ã7>øàƒ:ØÙK÷îÝ7mÚôïÿûóÏ?B$%%-_¾¼~ýúF¢ð’ìÚ ¨°”žžnt)Àx|Â'8q ì±Í=ŽÐ„àMŽÐ„àMŽÐ„àMŽÐ„àMŽÐ„àMŽÐ„à€¹ŒŒŒ·Þz«V­Z%J”(UªTýúõ§OŸ~ëÖ-½¶ÿÎ;ïDFFÖ¬YSÑ´iÓ¤¤$[Kþþûï’$-]ºÔèä.û¥õqqqݺu3º~‹à@;wî¬U«ÖÛo¿-„èÙ³gÇŽ/^¼8jÔ¨† Þ¸qÃõí8p`ܸqU«V3fŒ"88888Øè7­•öÒîܹ³[·nüñ‡ÑE†žBŒ.^$33³sçÎW¯^]¾|yÏž=•‰999cÆŒ™:uꫯ¾:{ölwqäÈ!Ä„ Z·n-„ذaƒÑoÚÚK{îܹÔÔÔääd£‹ =QãÀ}Ÿ}öÙÙ³gg̘¡¦F!DppðäÉ“¾üòË;wîhßZnnnNNŽÙDY–…… rÓ[°ºS·òüa‚#÷}øá‡eË–}úé§Í¦K’´`Á‚iÓ¦]½zU™²cÇŽŽ;–)S&&&¦cÇŽ;vìPŽ‹‹>|øÜ¹s###CBBÊ–-;tèPeÅgžy¦k×®Bˆ&MšÄÅÅ !Z¶liz×à¦M›Ú¶mQ­ZµÑ£Gß¾}Û´û÷ïïÞ½{llléÒ¥Û·oÿÓO?iÙ©b÷îÝ:uŠŠŠ*S¦LçÎ÷îÝ«e³fLKkÿm>þøãBˆ-Z(oSKáwîÜ™˜˜˜˜˜øÄO9sÆt×5jÔˆŽŽVêÌ™3kÕªU¤H‘ˆˆˆ |ùå—F8C†Þ*W®ltÀ+øÜ÷á¥K—„ݺuËwÉÔÔÔråÊ%''>¼|ùò!!!©©©ÊÜŠ+Ö¨Q£`Á‚/¾øâ¬Y³:vì(„>>++K–åŠ+ !V¬X¡ÌÍÍÍ­Y³f¹rå”SSS…›7oV~T£Ø­[·*T¨}úôieÖ™3gbbb”à˜••U©R¥¤¤¤7n(soݺհaÃøøøììlû;ÍÎήV­Úƒ>xñâEeîÆ…Æ Ëw³fÌ‚£·¹jÕ*!Ć ”OLKá'Nœ˜““£,_²dÉ–-[ªû;v¬bÿþý²,ÇÇÇW®\ùÎ;ʬ˗/‡„„ :T-ÁÑ}hª@– ûg‡Ò ”ÏÅ1--íøñãÉÉÉ‘‘‘Ê”ÈÈÈäääcÇŽíÙ³G™ߣGåµ$IIII×®]Ëw³'Nœ1bDÙ²e•)ÑÑÑ/¿ü²òz×®]‡=ztXX˜2%44tذaÇŽKKK³¿ÓÝ»w8pàå—_.Y²¤2·Y³füq³fÍ´lÖoSË^¢££ÇŽ«|ø ìÞ½û¦M›ÎŸ?¯Ì]ºtiýúõ«W¯.„رcGZZZHÈݾ.\BèÒáù"8pWll¬âèÑ£Vçž;wî»ï¾;|øðáÇ…‰‰‰¦skÕª%„Pf !”&fU¾aTñçŸ !êÖ­k:Q½¡ðСCBˆþýûK&ú÷ï/„8yò¤ý*[V†T 4¨gÏžZ6k‡Æ·©e/ ¦«÷íÛ7''ç믿B¤¥¥>|X½ñ´dÉ’»ví?~|Ÿ>}êÔ©SµjÕììlç~ãpÃñpWdddllìŽ;nß¾]°`A³¹ ,;v¬Ò2+„$Ét®2º¡ÚçÚ‰NÓJšÙfÕ,¥”çý÷ß7ËBˆjÕªÙß©ÒÃF­¢3¥e³vh|›Zön:½eË–¥K—^¹rå³Ï>»dÉ’ÐÐо}û !²²²ºwï¾zõêzõê=úè£;wnذa:uý´á‚#÷ýë_ÿzã7æÎ;lØ0Óé¹¹¹Ë—/—$©Y³fÊ@ŒûöíkÞ¼¹º€ÒI9!!Áé]?ôÐCBˆßÿ½E‹êDå¶K!D¥J•„ÅŠk×®:÷Àûöí3‹\–”zÁ4mÚT8yòäÌÌÌîÝ»;½Yíœ(|ppp¯^½æÏŸùòåeË–uíÚUigß¼yóêÕ«SRR^yåuaj=†¦jî2dHDDÄk¯½¶páBu¢2øž={ž~úéx N:±±±3gÎTza !.^¼8cÆŒ *¸ò8¾:uêÄÇÇϘ1ãìٳʔŒŒŒ>ø@y]»ví„„„éÓ§_¾|Y™’™™Ù¡C‡áÇ.\Øþ–“’’bccSRR233•)ÇŽ›8qâéÓ§]Ù¬¹¹¹N¾oß¾·oß~óÍ7Oœ8¡¶SŸ>}Z¡ô¤V¬X±âúõë²ýÛW¡j¸¯T©R©©©]»v}ê©§¦NZ¯^½   ­[·:t¨F)))BˆÐÐЙ3g*7ØõîÝ[–å¥K—ž9sfùòå¡¡¡Nïº@Ó¦MëÝ»wRRRŸ>} (°téÒŒŒ enHHHJJJ—.]{÷î}çÎÔÔÔS§N-Y²$ßg*T(%%¥wïÞuëÖíÙ³§$IŸ~úiHHÈ[o½åÊfíSªçÌ™sîܹ¾}û:±—Æ—+WnΜ9111mÛ¶U&¶lÙ²H‘"C† 0`@Ù²eýõ×õë×?ðÀ›7o^³fM‡ÜpPà>jÈ£iÓ¦{÷î=ztNNÎòåËW­Z9mÚ´´´´âÅ‹+Ë(}~«T©òùçŸ/\¸°Zµj[¶lQFövE·nÝÖ¯__³fÍ/¾øbúôéW¯^]´h‘:·}ûöÛ¶m«Y³æ¢E‹.\÷Ã?ôîÝ[ã–7nÜ·`Á‚O>ù¤~ýúÛ¶mSÇ]Ù¬5êׯß?üðþûï;·I’úôé#ËòÀÕ|»zõêråÊÍš5kæÌ™aaa{÷î}ï½÷233ÕÚY¸DÕ®îÒÓÓ.ïCWœ9s¦T©R®TaB#'Ô€=¶iªÀ)C^…¦jhBp€&GhBp€&GhBp€&GhBp€&GhBp€&GhBpÀ\FFÆ[o½U«V­%J”*Uª~ýúÓ§O¿uë–^Ûçw"##kÖ¬)„hÚ´iRR’­%ÿýwI’–.]jôGr—ýÒzƒ¸¸¸nݺ] ¿Ep ;wÖªUëí·ßBôìÙ³cÇŽ/^5jTÆ oܸáúö80nܸªU«Ž3Flô›ÖJ{iwîÜÙ­[·?þøÃè"CO!F/’™™Ù¹sç«W¯._¾¼gÏžÊÄœœœ1cÆL:õÕW_={¶‹»8räˆb„ ­[·BlذÁè7íí¥=wî\jjjrr²ÑE†ž¨qà¾Ï>ûììÙ³3fÌPS£"88xòäÉ _~ùå;w´o-777''Çl¢,ËBˆB… ¹é-XÝ©[y~0 Á€û>üðòeË>ýôÓfÓ%IZ°`Á´iÓ®^½ªLÙ±cGÇŽË”)Ó±cÇ;v¨ ÇÅÅ >|îܹ‘‘‘!!!eË–:t¨²â3Ï<ÓµkW!D“&Mâââ„-[¶4½kpÓ¦MmÛ¶ˆˆ¨V­ÚèÑ£oß¾mZŒýû÷wïÞ=66¶téÒíÛ·ÿé§Ÿ´ìT±{÷îN:EEE•)S¦sçÎ{÷îÕ²Y3¦¥µÿ6üq!D‹-”·©¥ð;wîLLLLLL|â‰'‚‚‚Μ9cºë5jDGG+ uæÌ™µjÕ*R¤HDDDƒ ¾üòK£œ€!Co•+W6ºà|îûðÒ¥KBˆnݺå»djjjHHH¹rå’““‡^¾|ùÔÔTenÅŠkÔ¨Q°`Á_|qÖ¬Y;vB }ú´2ëÌ™3111JpÌÊʪT©RRRÒ7”¹·nÝjذa|||vv¶ýfggW«VíÁ¼xñ¢2wãÆBˆaÆå»Y3fÁÑÎÛ\µj•bÆ Ê'¦¥ð'NÌÉÉQ–/Y²dË–-ÕýŽ;V±ÿ~Y–ããã+W®|çÎeÖåË—CBB†ª–Šàè>4U ˆý³Ci Êç☖–vüøñäääÈÈHeJdddrrò±cÇöìÙ£L‰ïÑ£‡òZ’¤¤¤¤k×®å»Ù'NŒ1¢lٲʔèèè—_~Yy½k׮Ç=:,,L™:lذcÇŽ¥¥¥ÙßéîÝ»8ðòË/—,YR™Û¬Y³?þ¸Y³fZ6k‡Æ·©e/ÑÑÑcÇŽU>ü‚ vïÞ}Ó¦MçÏŸWæ.]º´~ýúÕ«WBìØ±#---$änß .!téðŽ|/"] ÀÅÆÆ !Ž=juî¹sç¾ûî»Ã‡>|X‘˜˜h:·V­ZBe–BibVåF…þù§¢nݺ¦Õ :$„èß¿¿d¢ÿþBˆ“'OÚß©²eeØHÕ Aƒzöì©e³vh|›Zö’`ºzß¾}srr¾þúk!DZZÚáÇÕOK–,¹k×®ñãÇ÷éÓ§N:U«VÍÎÎvî7G1wEFFÆÆÆîرãöíÛ 4›»`Á‚±cÇ*-³BIÊó·ž2º¡ÚçÚ‰NÓJšÙfÕ,¥”çý÷ß7ËBˆjÕªÙß©ÒÃF­¢3¥e³vh|›Zön:½eË–¥K—^¹rå³Ï>»dÉ’ÐÐо}û !²²²ºwï¾zõêzõê=úè£;wnذa:uý´á‚#à'$!d×·¼ýë_o¼ñÆÜ¹s‡ f:=77wùòå’$5kÖLˆqß¾}Í›7WP:)'$$8½ë‡zHñûï¿·hÑB¨Üv)„¨T©’¢X±bíÚµSç8p`ß¾}f‘Ë’R/xàÀ¦M›ª'Ožœ™™Ù½{w§7«…îÕ«×üùó/_¾¼lÙ²®]»*íì›7o^½zuJJÊ+¯¼¢.L£ÇÐT À}C† ‰ˆˆxíµ×.\¨NTß³gÏÓO?ýÀÔ©S'66væÌ™J/l!ÄÅ‹g̘Q¡BWÇW§Nøøø3fœ={V™’‘‘ñÁ(¯k×®0}úôË—/+S233;tè0|øðÂ… ÛßrRRRlllJJJff¦2娱c'N<}ú´+›Õ"77×éÂ÷íÛ÷öíÛo¾ùæ‰'ÔvêÓ§O !”žÔŠ+V\¿~]–ùÛÙ¨qà¾R¥J¥¦¦víÚõ©§žš:uj½zõ‚‚‚¶nÝzèС5j¤¤¤!BCCgΜ©Ü`×»woY–—.]zæÌ™åË—‡††:½ë L›6­wïÞIII}úô)P ÀÒ¥K322”¹!!!)))]ºtILLìÝ»÷;wRSSO:µdÉ’|ŸX¨P¡”””Þ½{×­[·gÏž’$}úé§!!!o½õ–+›µO©Jœ3gιsçúöíëÄ^7n\®\¹9sæÄÄÄ´mÛV™Ø²eË"EŠ 2dÀ€eË–ýõ×_ׯ_ÿÀlÞ¼yÍš5:tpÃAû¨q ¦M›îÝ»wôèÑ999Ë—/_µjUddä´iÓÒÒÒŠ/®,£ôù­R¥Ê矾páÂjÕªmÙ²EÙÛݺu[¿~}Íš5¿øâ‹éÓ§_½zuÑ¢EêÜöíÛoÛ¶­fÍš‹-Z¸pa\\Ü?üлwo[Þ¸qc\\Ü‚ >ùä“úõëoÛ¶Miwe³v4jÔ¨_¿~?üðÃûï¿ïÜ^$IêÓ§,ËTóellìêÕ«Ë•+7kÖ¬™3g†……íÝ»÷½÷ÞËÌÌTkgá>U»ºKHHHOO7ºðFùÞ†èÊ}ŠÜã/Ä÷¡+Μ9SªT)Wª0¡‘jÀÛ4Uà”¡¿¯BS54!8:co€¿"8@‚#à-¨ªx9‚# ÉSáÏÖŽˆž·"8ÆÓø…à Áð’Éð<‚#àQùÆ>]r¡s!’ì#8^Ðð~GÀ%®× º‰›O"8^D6y­W($\™8q¢”W‰%êÕ«·`Á‚ÜÜ\½öòûï¿K’´téR!DÓ¦M“’’Œ~ßð¹CGG@RÞ’µÊs’Å §7@‹¾}ûŽ5jÔ¨Q#GŽìÔ©ÓÑ£G‡ òÚk¯¹c_ÁÁÁÁÁÁù.¶sçÎnݺýñÇF6Z ìUe†^BŒ.़Վ.ïÐêêÂŽîÔV,·ãÊ–@ðÒK/5nÜXýñܹsIII3gÎ5jTTT”¾ûÚ°aƒ–ÅÎ;—šššœœlôg£µÀ^Ufè…GÀa^^ÃÇCeÝEEEõíÛ7''gÿþýF—Eg999999®o'77W—íÀË›4ök‘´­.å·€­YNg>Â" #Y–…wîÜBÄÅÅ >|çΉ‰‰‰‰‰Êû÷ïïÞ½{llléÒ¥Û·oÿÓO?™®¾iÓ¦¶mÛFDDT«VmôèÑ·oßVgµlÙÒô–ÁÝ»wwêÔ)**ªL™2;wÞ»w¯â™gžyüñÇ…-Z´ˆ‹‹S–ܱcGÇŽË”)Ó±cÇ;v¨±ZBSʳgÏ/X°`Íš5_ýuÓRÙÙ¸i•íÌ;7222$$¤lÙ²C‡½zõªÕ2ß¼yówÞ©ZµjáÂ…+T¨0xðà¿ÿþÛè_,CS5 G[¢²úZ2Ÿe¹ð}²íY@¤»Ç¾’ä<###cÙ²eAAAj;uêT»víJ”(Ѷm[!ÄÚµk;wîݧOŸ   ¯¾úª]»v‹-êÛ·¯â¿ÿýoïÞ½K•*Õ¯_¿   E‹}óÍ7Vw´nݺN:EGG8P–åÏ?ÿ¼iÓ¦iii#GŽŒ‹‹?~üÔ©S4h „øúë¯{öìY¦L™~ýúI’´bŊƯX±¢K—.VKhiùòåýõWÇŽ·mÛ6eÊ”_ýuÆ ’$å»q³2ôÑGC† ©R¥Êš5kæÌ™sçÎùóç[–yðàÁ‹/nÓ¦M=öïßÿÙgŸí߿۶mû=B2ôV¹re£‹Y–e×n‘ßkaòÏìG{ÿ„Å?‡6bmuÙÆ伯å¼%×ý̸ãûÐÝ—° &! ðú믿þú믽öÚÓO?]ªT)!ÄË/¿¬,S±bE!ÄĉsrrdYÎÊʪT©RRRÒ7”nݺհaÃøøøììì[·nU¨P!::úôéÓÊÜ3gÎÄÄÄ!–,Y"Ër‹-j×®-ËrvvvµjÕ|ðÁ‹/*KnܸQ1lØ0Y–W­Z%„ذaƒ²Ç¸¸¸Š+fdd(KfddT¨P!>>>++˲„–”Þ}÷]uÊèÑ£…‹/ÎwãjÕí¬X±Bù177·fÍšåÊ•S~4-óµkׂƒƒŸ~úiuÏ>ûlddä™3gÜñ{tˆjÀ^ëiªîsWž”÷Ÿeösˆåê’$gúWÓ#>G­n´ú£Ž¾üòËÉ“'OžÓ‰Jÿë„„Å>pà€i¼yóæÁƒ+W®¬ËÆ-]¸paûöí¡¡¡ƒþòË/Oœ81kÖ¬ôôôÿüç?úÿJà6Gà.çC•tï.CçEMòÞéШ@º}D€_«]»vBBÂôéÓ/_¾¬LÉÌÌìСÃðáà .\§Nøøø3fœ={V™›‘‘ñÁXn')))666%%%33S™rìØ±‰'ž>}Z]Fyìa:ubccgΜyéÒ%eúÅ‹g̘Q¡BíÌÈȘ9s¦úã;3™™Ù­[7]6nJ)szzú#<2}útebPPP‹-„ ðøo Σ©p€dõg/ ‹–Ìš°ó–9ß!'Ø’’’Ò¥K—ÄÄÄÞ½{ß¹s'55õÔ©SK–,QžÎ7mÚ´Þ½{'%%õéÓ§@K—.ÍÈȰÜN¡B…RRRz÷î]·nÝž={J’ôé§Ÿ†„„¼õÖ[â^Óóœ9sÎ;×·oß™3göéÓ§N:½{÷–eyéÒ¥gΜY¾|yhh¨ÆbGGG7nëÖ­‰‰‰¿þúëÚµk6l8pàÀ   ×7®0-s÷îÝkÔ¨1yòäcÇŽÕ¨Q#==}Íš5ýúõ3úGÝ­Ûl}o#lŒ/£qz>ããäFÇ÷þÙ.¿ýpˆ/~*ÃñlÞ¼ÙÎ2+VìÚµ«ÙÄ´´´Ç{¬L™2%K–lÑ¢Å?þh:wÓ¦MmÚ´QºK—(QbùòåÂb8Å–-[Ú¶mÕ¹sçýû÷+ÓsssûõëW¼xñ:uê(S¶nÝÚ¾}û¨¨¨¨¨¨öíÛoß¾Ý~ -ßÂÆ›7o^¢D‰*UªŒ5êÖ­[êv6n6ÙŽž~úéððp«e>uêÔ Aƒ*T¨Û¿ÿƒý —e†ãq„${Óm"þ!!!!==ÝèRÀfm Æé6kÝ|¨–1_ÖÞ‹l÷#’mlÆ?>èŽïCKgΜ)Uª”£Uwº‹‹‹«]»öW_}eôçáœ8Pöئ©°B²3ÕŸ"’ìüû",ÎQ†þ|c¸¸“Ï´»´ÿ‘MªM>ît˜¡ÆʱÔè—yÑŒœOÕ#9ð':tPž8„àä‘'%ú_Û´}¶[®I€Ÿù裌.|ÁѺž={š}*„ˆŒŒÜ²e‹ÑEƒMzÕ JúnÎç¨ññÞÛçI3ÁѺ“'O†……™Uã;ñø&x?+‰'Ð*­’ïnQõà 2‚£™™™W®\éСCJJŠÑe{YéB2RYT= ë‚àhÅÉ“'…Ü5ì[$»³4_¯h”ò~z Ñ*[ÏŽÖ‹àËŸ _ Çcʼn'„*T0º ÐJ‡®>=ÚŽ$™§F['‹{ÙÑrÖ~¤ ø1j­P‚ãÙ³gxðàÁÂ… W«Ví…^HLL4ºhȇe—dcºé–wòùûéP’ô©z´Ñl (G+N:%„øàƒâââ6lø×_ýüóÏ7nœ0aBïÞ½µl!!!ÁlJ`>˜ÈÛXï#›Ž~í9²Sû”<Üò”Ò‘fku.Q€¯³¼¬,‚£gÏž 1bÄÀ•)[·n}á…Þ}÷Ý&MšhyZ1Ñ IV'y*ÔXÆD%ʶ&Ëržå5­­W¥ã½wbëfP³üMdà7,/ë%¹ÇÑŠÏ>ûl÷îÝjjB4jÔèÉ'Ÿ¼yóæºuëŒ.ô y"×ÈBRÿIBVþÝݵ$dI’%I’eÇþåÝŽ,ßÿç9²0¦’`4‚£Võë×BüùçŸFùÈ?ÏXôƒÑ7Y ‹JL´LŠÎ¿Me ’Pÿy:AÚÍŽ’ןFp4'ËrNNNnn®Ùôàà`!D±bÅŒ. \"¹­¢Ñ2/Z ‹n}kžN²3ý¶É‘ðf|ðd×?üàî2Lœ8ÑÖÞûõëç±¢iÓ¦IIIÛ|÷8š;qâD»víêׯÿÅ_˜Nßµk—à{|‹dg†â”rÿ¢ÚmE½mÑ­1ÑÞÛ¿÷þeGžèô›Woy$ÂÔ©SgÔ¨Qê³fÍ òÉ'Õ)â·oß¾åÊ•3›X»vm÷íqçΓ&MzçwªW¯.„VjLSGs+V¬[·îŽ;–/_Þ«W/eâ®]»>ù䓘˜˜víÚ]@8KïÔ¨&%³n.FåE+ïøn¤“Í¢­Î©~¤iÓ¦M›6U\°`Aùòåßÿ}ϗ䥗^jܸ±'÷xîܹÔÔÔäädåÇ 6xþ]Ãû­xë­·ž}öÙ±cÇ.^¼8>>þ¯¿þÚ½{wáÂ…ß{ï½°°0£KsšnjzÆ«UŒÆäEYSkñÝhëîøèàH=Ü*77W–eOÖz~ð<îq´¢J•*_}õU×®]ÏŸ?ÿÃ?\¹r¥k×®«V­zä‘GŒ.§ë#aLïb"OÏhÃÞ ý]›Ì½{ç¥ÜÕª|¯ÙÚrë$Hø™¸¸¸áÇïܹ311Qy6D\\œÚH¥xæ™gJ–,©þ¸ÿþîÝ»ÇÆÆ–.]º}ûö?ýô“+{·³/¥lsçÎŒŒ )[¶ìСC¯^½ª.¼{÷îN:EEE•)S¦sçÎ{÷îU¶ðøã !Z´h'„hÙ²¥é=Ž;vìèØ±c™2ebbb:vì¸cdzOÃÎáO¨q´®téÒS¦L1ºp™~í§^TËh¥p6ê­ϽµòÝA‚HŠð{§Nj×®]‰%Ú¶m›ïÂk×®íܹstttŸ>}‚‚‚¾úê«víÚ-Z´¨oß¾î(Ûºuë>úè£!C†T©ReÍš5sæÌ¹sçÎüùó•Y:uŠŽŽ8p ,ËŸþyÓ¦MÓÒÒFŽ7~üø©S§6hÐÀlƒ_ýuÏž=Ë”)Ó¯_?I’V¬XѸqã+VtéÒ%ß=ÂßÈÐ[åÊ•.‚/Ô­ÿ¶g9òïÞÆîýx÷ñÍúlÜØfoM·Â꾬ÿúàßì~zìkþðÃ[NWºÈLœ81''GÒ³gOÓež~úéððpY–³²²*Uª”””tãÆ eÖ­[·6lŸm¹ñ &X½^7iÒ$ß}©e[±b…òcnnnÍš5Ë•+'ËrvvvµjÕ|ðÁ‹/*s7nÜ(„6l˜,Ë«V­BlذA™Õ¢E‹Úµk+å‹‹«X±bFF†2+##£B… ñññYYYö÷è+œ¸p쵞Gø)ꕆ黯½ª–Qnª}¼[ê?ŸÜÄ·‘èèè±cÇåÇ×®]»>üÿþßÿSï’ 6lXÿþýÓÒÒêÕ«gu-Ë^ÕÚ;tÇÇÇ÷èÑCy-IRRRÒ7ß|#„ؽ{÷>øàµ]»Y³füqñâÅíl---íøñã)))‘‘‘Ê”ÈÈÈäääáÇïÙ³G)¿­=ÂÿáôH-–mÓþMÝ’>±XÖûÊþ$!!AKjB:tHÑ¿ÿþýû›Í:yò¤­àèJ¯êÊ•+›þ¨–Sy†EÍš5Mç4ÈþÖ>,„PnåTÕªUK™¥”ßÖáŽð;.篾Ñm$!˲dZÃê*mÙÑt¢&|Hxx¸ý²²²” B¼ÿþûf‰MQ­Z5] £îKQ¨P!«‹Ý¾}[âØ¥_–e!„”÷Fj¥ëô;wìïþ‡àÿ¢Gj ´È¨Ò¿åÚ";Jy_Ê'‹À`öÈ1¥¢NQ©R%!D±bÅLG>pàÀ¾}ûòMŸŽîË>¥^ðÀ¦cUNž<933óÝwßµµ–Rþ}ûö5oÞ\¨ôÅæ¡ˆÊdø×R£:ÔÎÝ gÇ ÷Gíqây‚–Limgsô†¯+\¸ðü‘““£üøË/¿ìܹSy]»ví„„„éÓ§_¾|Y™’™™Ù¡C‡áÇ.\Xß}Ù—””›’’’™™©L9vìØÄ‰OŸ>­.cùÄÝ:uêÄÆÆÎœ9óÒ¥KÊ”‹/Θ1£B… <“0Qã_b/ºœ¶¢Ñª»-׺ÜÙÉýŽ>úhJJÊã?Þµk×cÇŽ}øá‡jmbHHHJJJ—.]{÷î}çÎÔÔÔS§N-Y²Ä¹±²íì˾B… ¥¤¤ôîÝ»nݺ={ö”$éÓO? y뭷ĽÆ÷9sæœ;wÎtœ ÐÐЙ3göéÓ§N:½{÷–eyéÒ¥gΜY¾|yhh¨Ñ<<à#YýÑ…\8`¥ç]yûY[ÿ%¾ìÝwß•eyÅŠ?üðƒ,Ë={ö¬Y³æÌ™3•¹íÛ·ß¶mÛ¸qã-Z”•••˜˜8þ|-@:±/ûºuë¶qãÆ &,X° 88¸Aƒï¾ûîC=$„hÔ¨Q¿~ý¾ûGš 0Ù½{÷M›6ýûßÿþüóÏ…IIIË—/¯_¿¾ÑŸ: É\#õ–žžnt)üdg† ©‘ŠÆ|éÖáÚâ7eÒŽM½¤ ÀïÃëׯ_¿~½téÒ~¶/ÿæÄ€Ç¶‚Gø8ýR#‘Ñݪ5dC²#|]‘"EŠ)âû‚™?25 :ÇÀËI/Ìg;•2¬öƒ1ú½z5µÇŒ«’i™F#¼ÍpèBj¤yÚ9w³£‹ÍÖ´I€Ï"8Â{Iöç鑌Œ®W¼Qv}š­ïeG[ŸÁ¼Á>ÈN¬°zÐ$ŸMJ§ìÜÑô˜§¥W²˜ç¡7qwœp]²#À‡á$³´§Æ{ï¥4#R£i¡òÛ§­;-{[Ùš#;Òãm¹Ülm7;J&ï”x ^‚àŸb+gØ}Ɖ|wAYxò¦FÓ g§l&ÙÈJ4tˆéŽ´íÝå·èò áÖ²#gÀkÑ«^J²:Éñ|r75*¯=ðAéÞ?ùî?×w¦} ¦­òwÿIî b’…,\z8!ý¬x7¾¢Lá#tJî-¡µ¼èÖo9ßOÅ4>º§(îËŽ|Y€·¡©°w›¢ÕY.§FáÖbr#žÓÕgfoÑ¡íÈù¾A³«w~Ö¡«uÞgŸ$$$]º!8Âí\Íù®o­®Ë,5ºƒ¬îY¶½€S›ueõ|Šaš1uMi:tµ¦Ÿµ? Ìg²ÁŸÐôa†¦jCÒ8WK’ÈÛ-ËžHBºWC¦-èÈ6^«St¹R²=ËÊþÜÐx­ÏÓeÞŠGxÉä¿w_9˜§ìEF½np”Ì7æPPr´.ÚjýåÝ×&µ:Æ=éî/ÁÉñÙ©toF#¼•¾©Q¯"i«e”œn$7TÐ*ÙÑÉî2¶+NÝÜA?‚# &YV4 ÇS£,{"5ÚˆŒù&IYÃ+šîQÇ*ëÝríRWkèoEp„÷q¢®Ñ~Û¨rÛ£+åqþÑØÖ_{‰<ÅÓûÆG²#ø‚#ÜËWÿû©Ñj:Ô%2zaèÓôÉ8µŽ~¡M¯ìH†/AçF—!Mëuâ;oI´¤)ëɜu\¶5U§!{\z,¡I_²#xjá’†)¦%õÞ]h›öúU=êðh€w 8ÂkxOj¼×6íK£ÝD§»ÏކWÂ)¸ÁÞÁ«R£_ÈÜtm‘uªzÔ+;2(ˆàý9|]÷†Ôh·yÚ­aÒ7’ª7eÇ{[³þtÇ—ŒŠàÏ‘lMõ†Ô¨­ë´o„<Èöç¹\Ýç±6k€;áKܘ5íÝù¹Þ@‡êÑlMvßEp„¡©nÔ?5æmžVëͶëý‰Ð’.e–íÌÐ#;êB²xîÈ_8GÇðÔ膑½½?eZ ÇÎlŵfkåyÖNî÷þFîÿ×l"ÀŽð4'†ltWjtïÏŽº½OתuÉŽà&|ÓXEp„|'5úY Ô8Õ%óyÆŒSœÎŽŒ&ÀÌFoà‹Gá’ÙNÅ1R£ÉM¾x#£—ò^vt®xÔ;ð-þÝCp„»XÆ ³ƒïè“ÝpSc€óíùzÇüÊà_îàGx/ýS£•]à>‡> Ùâçû·8·wG›Ÿ©t#8ƒœºµÑ}©ñÞŽ´N4–'‹dÿ!ݲíû%gorrpGk¬Àíøë†àOñ¾Ôè+‘ÑkYÞ'êʃ­uÉŽ·"8Bù_¸íF­CÉœjZvpz€Ðôö½&;)èϺy?‚#ÜϨÁwûÜÖQ¾Ÿ¢lu’ Ù¼“£]<ýÁ^Ä­©QŸ'¦@;²£Ã¬©t +ÉÆTׇöuGèÆú(šÿ8305ü÷€ód‹æ³=žIŠ"i˜¢eV€ 8œ«Òw.5Þ]Aòºjo*‹'Þ å0=†Ô;òk:󲋋QŽÐ‡du’§ºQßO ñíd³œ nw”HvfpqBá.|‡–½šSÙщNÖ2£óp_Za“g‘©Ñ¡UI˜ðTvddGŽ’òÍeã‚# ûåXŸ¾m§F†ø6„Í®H.dG‡K@v  Rc^GèÍ©nÔØŒ’ç¾Sg³£ÆŽ2’æ‰`•dö—˜¼Žpž•! <Øún ä|F„á”÷:nÎŽ®ì`ÁN²2j£‡omäA_ ïøŽÜìÀs¸ÊXCp„N¼,5r²{3Y8“êè(À}̯*¤FŽð4}S#絯Х¯ O²à4þŠÔÁޱþh&Ç;ÄP×!œÌŽî¸Ù‘+ €û¨n´à›´^J?Á\}5|–iO&§G³#£‚p©Ñ.‚#¬pà9¿NÝÚèRÉØ¼‹õñ=ÕÉš‡€ëŽp—uˆ1Ù¼B¾¿YýŸ+¬%)Ï? $FŠü¿ ¨nÌÁZI&/½ë’•õì¯Ìùî(c™mÄG*ا}(bÇZ<ü ÁšX¯Æq‡9ï¾l>Ë~À‰ìhçå¶³cà~ßBä­1ʽ÷ZáOvˆ±½/Îqÿàä %I8••]ØÚ±®œéúùl¡uËYGäayvâÆa]©9£¡…ãÙQÈ€´U†ñw\btàݼàÖFNÙ€¥)ÑÙ>Ø8eª¿E#µ¾¨q„m^»½ÙѲg¾³¨Žüж+©Ñ‚#„0®CŒìàŽh\ê(#dm=&5m\²û#Ù•¶ndáŠã"‚#ŒdõJ™ódõÉŽ6G໸µQÇ€&Ù™áFjþòƒm²­×Ž÷e‘é ZÇý¶‹ÔhÁ[uBpD^tˆ·ºÿ×…¡7;ð=z_q¹ƒà Ù8ÌýÙ1p/ @ ÒXÝèz#›O#8:§ïq¾>ŸÔ]p³#Û$ÓWú5RxjG¿çÀuÒ :Äô¹ZŽ{O”±Æ‰›ø:?Ó’eI"5 ‚#îò‚Ôhç\®sëÈŽ¼Ž¤Û#ë•K©Q‹c}+Hðn½Ù@È·º‘ŠFSGÿ'å;Û‘ÓA’§ '›¾rSÌ»eò&൜®!5:Šàè‡lõw±2ÝñÔèb‡N>¸…ƒ7;2:à»$‹Ö’ó[FR£%‚£’ïÅD[Ç»ó©i¤†w";pýÚR£UÇæ™FjR#ÜÆÅ#ˉÑy€÷Ó¥'5©Ñ‚£ŸÓåiÔÂ…ÔÈyÙ?šz¢Œ+£óïEjt3‚c Òø×˜ŠºFx-Ùòg7Xó‚cà1:ÏÉ6^úp_v´²º½¸Â}'”êFRc¾Ž~Bë æÄT7»yî@£— à$[S]k¤&5jApôùw”6"5ÚÚ§¬a à'EèPƒ5Ï»¼©ÑSŽÂÑûï¯èZ]£•9AáFl°àV’S³BjÔŽàh<¯½^93Ü·¶ÔÈmŽð[–µŽÎcm³^{þJ2ûÁ…êFR£CŽ>LûµÊ‰êF¥‘Úá9õxÎWèE6ù¯Cœ‡ÈËÅQIŽ"8úƒ|omtô¤pýÔœ…ð0ÙÖT¬?æZGLR£Ž¾Ç±+›¤Ä@Ç÷B7jø7eGzX¾Ãju#©Ñ9Goá–kSaÎõ[­m0Ž›BÙ0– Ô¤F§=JrpºK4(5r"§éõ8îEj4ÁÑ'I6^ßÿÑc Ç<^És"ày.\ãH."8ú#gÏ(gªím ð&GAö\”ÿƒ-ìÒ÷¢ÁÑïx25:¸/N_¸I¾‡–£ÇžÓ£óp‡šÔh¤v‚£ñâÔσ Ö$I@_Ê9åôSЩQ'G7’4OÌwuMk9xø.©¾IöÈè<’Å ‘lMÕv鱬 !5ê…àè/\Ir²p¬ºÑö¾x25¼œ$Ü;:I0©Ñ­޾Drù0KNß;Ì)/§Ë!JkÀ[¸ÐªFjÔÁÑgHvf¸pÇ3åà„ïðè£é%¸‡ö[ÍjCHº#8z»|ŸCíRjÔ¯‘ðB²ýyîi°6ûsÌúH«´#5z‚£°ÙɆÔ¸Bsv¤Áð~¤FÏ 8º‹”ß-W!ÉþNÎûZV_yöq2Léu±ã!1Cpô(³ƒÚ™+‹dDjÌoœ¬ð²ÕIš¬yœ à9ÜÚ蕎ná®ë…äjó0·6®pîfG$à—žOMjt3‚£ïp9À9s:™ì”>*ÿC—Ñyïp¸b§ªI@pôÉ©YyÒ#5:vˆZ]Ÿ3¾Âõ‘ÛÙ° ™ü×lâÝW^žø¼&8º—>C¸éÔX̽ÀÙìŒÎÀW@ïèFm}[’= |]ˆÑð^Ë—/_¶lÙ‘#G .ܼyóÑ£G—,YÒ3»–Ì^9q€ZôýTª*„Õx5 îšþ“ï_fˆŒ€Uù'1Ë LÚÐ ¹çÆ[ë©ÑÖ9fc¬oz’!p8wœ»2$¸ÕÑ쀀"yC…IÝý²äA÷w ÇcNé:]¤H³éE‹B\¹rÅÑ ¦§§ ;Ïç2«õï´Pfdêà]‡ìˆåHjtW#µE½‰¥§§øÙJ£¹ððpI’nܸa6ýÚµkâ^½£C$[SÜÜÃ_—ŒøˆÀ!›¼ÕWŒÎ¸ýÔ˜·šÃæEÍ•»%›­mæ;±˜R9P« ŽæBBBJ”(aY³˜™™)„PûY»ÄM‘ÑääqåÖFÂ"™lö‚Ñy×XÖ¬{ËyrïBlÿªÇ5Ñ ÁÑŠ¨¨¨ .(IQuüøqe–«[w[-£ì\%††fN@ Wnvާ©­ì$àè ‚£­[·ÎÉÉùå—_Ô)²,oܸ±dÉ’IIINnÔ3¸”ea¿>߬J_ºûǧ`“GFçü^þݨ-Ù¿¨ §Ú©y ŒkŽVôêÕ+((höìÙÊ}Bˆyóæ?¾G pxs¦ãˆºíHU‡Î—eaý}ƤœFƒ5 #‡êPl]¼d§ÆZ¤¢Ñeôª¶"&&fôèÑS¦LéܹsÓ¦MOœ8±mÛ¶êÕ«2ı yªÇ´•.i9,nmär˜qâ¼p®‡5àë¬Åhò_añZ ål’…ËÏtáŠÌ9jJ’©ˆ²áÛo¿MMMÝ»wotttýúõ“““•yòu¿FÝ#­ijtà¡ïÖú‘Ù:í9DàÇ윯’YpÔ|28p& ›½Ó8õà[ìÇü—³ánjtíiÔr~CEÊ6R¥ÙD)ï•”áö ÁQ zê`r=5 ‚#ž­šõà÷dv$8ÂGi ŽOZv*ÛXŠàh÷8ú0'S#÷såfGnp±®Q¡Kj´ÜKW}•ó§õ€ƒdÓWô°´q¦õ=²„$Ü]×(¸:Žàèœn¤ <'d7õ°&;÷èž¹îéˆà¨?Üà¨Ë­T²æ‰at@_}lšÌ5ÐuGßãd#µÅYdù(w7];¿áÄ3¬yœ ‡©¥|Fx䢿"‚£1Kô‰Œá¶›~®à=œˆ@ázjÔ<îœDpô%ΧF©ý8ZïèPƒµr%é¾E²5Õ‰æ1]S#—>Ý}ݨßÅÍŽ@¾\jCsùJÇuR#‚£o°LZO0I9ÏS²e‹ÿp£ó&ò<`ЩFjçwì§ûZ¼LGà|j ÙÎ ·ÎCz„¯òä­Ü×èYGoçRj”O”ÜÁ¹ˉk²#|‹$<{k#÷byÁÑIÊqôáz¥£÷·Dƒ5|„+Oˆ®´¡‘@pôjº4Rç;R#WÑ`€!ÙýÑQú¦FÇž¥÷' ŽÞËõFj™pÙö ûx!ü–Ǫ=Õ†k¨%‚£—r~ðAí=à!–Øi%q# ü1Ô÷vÄ…ÎGod55:4þŽõÍý¾ÿ&ko°vèÏB'ïçñÔ˜wS÷ÿë|=%8z—R#áèãdÈŽð^^5ìú 8z—Z¨ø€Ñ¹%ÑÑ›%:ÊÀ/ÈÎý䆻°¸V:àèEl¥Fש¸‰Õ3V÷|'Ùx ¸•¤e®—YІæ»ŽÞB—ÔȉxwŽÎ#ÈŽ0ŽúPA§S£ŽÔ6¶÷"8zWSãÝ…Õ³Ñyà+L=Y8•õn¤¶³®‰nBp4ž«÷5 󓊳0žC Ï¡ÑyL¶L†„ǘûí\jt¢‘ÚbG\ãŒEp4˜Ô¨½‘šRÞÈM£ó!ÙŸgPj„áŽFrGjä|=¬áçtMF]é¸Â ‚£th¡vz×F¿wÀÿX‚Ø£óÐQÆðÌ­Ô5z+‚£1ì§FÆßü‡ûº³ÐQzìN”ÌðL#5W7/Fp4©Nœ ŽU:š¯{¨- Ú9?øŽs·6ª«Ûx-¸‡àèiú¤ÆûËðznn°&BG’ާFgîÈÒ¯Z„K¤;=J·û©n¼•ë7;:=:à.Î^t›×#8zN¾©‘FjÀŸ¹otY˜õ=0rÏè·Ž¤×­\î¼ ÁÑCH´súfG[‘‘ìçyM‡®~Þ€àè º¥F>Íý£óÉ¿C•gnm4Ù‹åš\½ ÁÑíô¯ÑûFC`‡Õ'Ðs³#|†³©Ñ±ÚZÒ| Áѽ´¤F©XåÄÍŽdG¸ÎéÁwN·¡É¶w˜ïæ¸F¥ïXßðÔ8çÞ fö?'˜lYâèÍŽÔ;â»Q;¸3!èFŽáÏ2î# ²càlÏp±5b`‰àhN0vÉ–?;Téèd^¸»«»’–Fpþ3—„ã=AjD~Žà-dûóÜÝ`-¬?TÞ@Êo¢d6Ãcu¦«ù ÁCŽÇ_fœã©ì¨®$™ü^BÊûÂÊïÈé‘‹Z€!8z\ð ׳#|Œ‡cœ†1\Úü ÁÑsd§fÀ}ND:':ʈûmÖT:ú§ûP ½om䢿ÇŽž#QÝ@3ÝFç‘e§³£åJ$HïåljA‡8‚àè).œÒ L®Ô²g:Y Ú¬}‡‡ëMW7ú­ÃÃŽàí\†›“7;Š|²#©Ò+x>5RÝÀŽÁ3©8ËæãLmnÊŽ‚øh,CS#W±Dpt?»©Q¶6ÌÈ/œhGvGv$5)ïõš߅3tˆÁÑݨÏà9ßÙžédíܾàVzÔ5 Ç;ÄX¯7úÀÇ À @7ëdíø¾àÉÚÉr®çS# „ 8º—›/^®sújïbvTŸIÈW™ôùÐtjË¢C œ@ptÎ1žáÄÍŽ® fíyÖ¶öO¸Ô‘$îU?ºòÛÓ©5×·€Epô4N6úódG!dkÙÑÚ.`…ó‹’Þ J6G¤G€!8ºÕ<̃ÙQrjw°#ÿÏÒåË C6BG7 J€30¸ ;êO²3ÃÔh¶#?x ‚£pn0„SIN¯ìH†tT¾Ÿ˜¤þO§ÔèL­Õƒp• dGá4à ÎÕ:ÝÉÚÙ=’2ítvGáüà;4R£GqБõžÎu²v=;Jyºq£?%o&Ùx-„\î@-Hp‚£8¸‰š ÈŽ¶›­ÉŽf´v…!5ÂûÁ) @GêWŠ+ÍÕì(„œß-’ã% ÄЩGn#5ÂMŽú«œ`t.§+…ËÙQ¦GËækù;Þ£±©ÈÁü”ÙQ¨õŽy7 W¤+<¿;-sóôƒ1<5Ú(Á*‚#ø/§³£ îžß®­v£ñž`çÜ’ùnG¶?ÏèÔèÚoàè.œ}¼‚çwtj×ëŽíÜfÝšh%n+$5ÂŽ+ôÌŽ’²A;ûÊóÚ²×o,öŽÔH 54"8€¿söÙ€ºeǼpºÎOÇøèIT§æiážÔXEpt;ÎG ç;ÛÀìèBü–~qM—ÔÈ¥ Ý‚3€!dûó¼!;úZ|Ô±gÌýW^–íBŒ.€?ãlž$[ü( k“Ï JvÔa8@ùîæ¬WkIœ,„¾-Ëf¥´.fµ¼ƒdÊ&]௞A#Ãë…¦Áz|ˆÖ't»^Ñ(YéZ£LÔžeÓ•ívˆ!„Â*jÀoéÏÔì¨OÍ–ìRÕ£!œ~’ÐémÚ~ 3u&ïÄw>~xjÀßÈ6^ߟälœTž)£Õ£Åöô­ŽÔekN?‡Qv½ë´Ô¨<ãÑ¡çnËŽÂ4>ÊBäWçè±JG³*FáÖÈ(ò|¶¦÷"áyG+233¯\¹Ò¡C‡””£ËÞÈ<µ¸3; “G5Rÿh+/ 7õ7ùH¹U^‚àhÅÉ“'…fÕ{Üœj^ôd‚ôt^¼·i[Û&DÂ@G+Nœ8!„¨P¡‚Ño$ç}a>Ä£ðD´qk‚”ónËôÑÒw§¸= ᥎V(ÁñìÙ³ûÌlÉF=ùä“ ,X·nš&ÂN¸Ñ½ÙÚ~vô‚'Ç8éÞƒoœg‡| èàxçÎÓwBCC•àhUýúõ,XðçŸ]j0†lw–dž¬S¸±•}:5Z”]6ù/àU:8†……YV>˲œ››+IRPPéôàà`!D±bÅŒ.5@¶xáØÊÒÝn&zÅ_•§z : r}~æÄ‰ÕªU{ꩧ̦ïÚµKð= àYÈv«.>)÷¶áóŽæ*V¬X·nÝ;v,_¾\¸k×®O>ù$&&¦]»vF|–’üv<‰ÞÓða’ì7uþú9tèгÏ>{þüùêÕ«ÇÇÇÿõ×_»wï.\¸ð‡~øÈ#ä»zBB½ªÓ4([Lf÷AZ$§@éÞa÷y0VÛ®56h“E=,`¯õÔ8ZQ¥J•¯¾úªk×®çÏŸÿᇮ\¹Òµk×U«ViI°hzµQõèÏÑÇÍþüÑÁ›tç;J—.=eÊ£KþË´ZÒbüB¿’÷=úáD !8ÜÎsc=z ÍÌZr¤_~6ðQ4UÜE{˵ä-×:õ›öí~‡G€{å}dq÷ùÐ’ m¨ù]È?ÒŠ /Gp¸‘lwºyÏkYßê›q¼ä>÷^°Žè}î>µYº—ļ;UÉ’®ýªDï~@G€žò}8¡lãµårwó–7W@æ÷(EZŸágŽï–·Uûn}¤±LZ¥íDCûY×;“0`Áà ®æ¤{ëK.ÜJè*Í»¦¢þŠàð ÚÇîÉÓ„íØÊöön=ê9¾ªáÇŽïe¯êÎ4 I¶g9Êö¦}*V¬øõ×_·lÙrß¾}z½%8žøàƒ–[ëÝ»w÷îÝëׯ¯NQ:;gddXÝ{JJJNNŽ­²=ÿüóE‹5›xêÔ©Â… ¿÷Þ{/¿ü²2eݺu:u>|x»víbccþDðÇõÈ#˜þX´hÑ[·n !<˜]¸paÓ"…ÊÜC‡Y ޽zõBܹsçèÑ£GŽIOO_¸p¡½¿ñÆÊ­êÛ·¯ep\·nÙ”6mÚ¼üòËS§NMMMUÓ$p‚c -Q¢„ÕYÇB¬]»víÚµ–sO:eu­£GŽ=zíÚµ×®]+X°`ÕªU«T©²wï^[¸yó¦.o¤yóæS§NÕñNJ`Á1I’ͱÌbbb„ãÇŸ0a‚Æ­]»v­~ýú7oÞ5jTß¾}‚ƒƒÓÓÓ—-[¦WeYÎÍÍ•$)((Ow®!„­ ôE¯jäQµjU!Ć ̦øá‡Ã† »xñ¢å*›7o¾xñâðáÃÿýïW«V-88XqáÂ;{ “lS‡þQ>|8$$¤U«VfÓ·nÝ*„¨U«–ÑÇ€`ç†B3QQQýúõ[¼xñìÙ³•îÕBˆ¯¿þú¥—^ªY³fDD„å6•úK¥oâÊ•+o¼ñ†ÂV˜·ß~ÛNç˜âÅ‹›M©\¹r“&M6nܸ`Á‚Áƒ+ýõ×éÓ§ÇÆÆöèÑÃ耀 É2éë,!!!==ÝèRÜuùòå’%KFDD<ù䓽zõjܸqÓ¦MwîÜiv—aÍš5ÏŸ?öìY!Ä_ýÕ¼yó£GÖªU«V­ZçÎûé§Ÿ .¼iÓ¦¤¤$Ëm*ÏŒ>räHƒ 5j”‘‘±zõê† ®[·.<<üÕW_5í í´={ö´oßþï¿ÿ®[·nBB‰'~ýõ×¢E‹~õÕW–5‘¸•W]ë=‰¦j?>iÒ¤ððð?þøÿûŸ–UÊ–-»{÷î‘#G†„„ü÷¿ÿ=räÈ“O>¹{÷n%5Zn³H‘"ëÖ­ëׯßÉ“'?ýôÓÓ§OðÁ«V­;vlNNÎâÅ‹uy#‰‰‰¿ÿþûÀÿþûï•+W^¼xqàÀû÷ï'5à1Ô8ê/`ÿ  @쵞GhBp€&GhBp€&GhBp€&GhBp€&G¸Å‚ 4hP¬X±èèèAƒ?^ÇU:$IÒöíÛ~—‚#ô÷æ›o2äàÁƒÍš5+^¼ø§Ÿ~úØc]¿~]¯UfÍšeô[ ¡³½{÷Nž<¹lÙ²‡úî»ïÒÓÓ_yå•;v¼þúë.®rùòå_~ùå…^øè£Œ~—"‚#t6þüÜÜÜwÞy'&&F™2mÚ´ˆˆˆeË–åææº²JÍš5›5k6wî\£ß"Šàp®^½úòË/׬Y3""¢C‡ß}÷ÝèÑ£%Iúý÷ßuÙþ¦M›‚‚‚{ì1uJHHH‡þùçŸ-[¶¸²Ê‚ RSSSSSÛ´icô§@ 1ºð¨¿ÿþ»eË–‡ªY³f›6mvïÞÝ©S§*Uªèµ}Y–8PºtéxÀtz5„ÇŽkÚ´©Ó«´k×Ny±jÕ*£?H5Že„ ‡zï½÷öîÝ»lÙ²C‡½øâ‹Ôkû×®]ËÎÎŽˆˆ0›®LÉÈÈÐe`jÈ¥K—>þøãZµj½öÚkÊ”   )S¦,^¼øÂ… VWIIIÉÉɱµÁ矾hÑ¢¦Snܸ!„(V¬˜Ù’Å‹B\¼xÑr#N¬ Ap ‡ÊÎÎnÛ¶­$IêÄÂ… 7hÐ`õêÕVWyã7nݺekƒ}ûö5 Ž’$]»vÍlÉÌÌLq¯ÑŒ«CÈñãÇ…ÑÑÑfÓ-§¨nÞ¼éÐ. (qéÒ%³éÊ«;rb`îq Ê`7ÿý·ÙôsçÎ鸗²eËž;wÎ,¦§§+³ôZxÁ1€T«VMñÓO?™N¼yóæŽ;l­&Ùö×_Y®Ò¥K—œœœ~øA"Ëòš5k"##5jdu/N¬<¦êRºté¾}û.Y²dÆŒ#FŒBȲûì¤I“&NœØ±cGeÉ“'ÿý÷ߣG.X° ²ÌÕ«WÏœ9S°`Á¸¸8«ÃË”)S¶lÙ2räÈ/¿ü²J•*»wïþçŸÚ·oÿý÷ß[M£Frt*T˜:uê¨Q£ÛµkwäÈ‘õë××­[WíÊ-„X½zuß¾}kÔ¨±oß>«ÃÑTXbccwíÚõì³Ï^¾|ù矮]»öÖ­[•žË:ö_V‚iBB²eË222^zé¥õë×—*UJßU€‡I²,]“ tìðB[¶l)Z´hbb¢éÄ:uêœ8q"###(ˆ?$ÈŸ7_ëÝŠ X†Ú Aƒ'N¨S~üñÇ]»võîÝ›ÔìãÇÀòïÿ»{÷îuëÖ}â‰'J•*uðàÁ+VÄÆÆ*}eì 8–.]º¬_¿~êÔ©Ë—/?þ|ddd¯^½¦OŸ^¦L£‹¼Á1à4oÞ¼yóæF—ønk€&GhBp€&GhBp€&GhBp€&GhBp€&GhBp€&GhBp€&GhBp€&GhBp€&GhBp€&GhBp€&GhBp€&GhBp€&GhBp€&GhBp€&GhBp€&GhBp€&GhBp€&GhBp€&GhBp€&GhBp€&GhBp€&GhBp€&GhBp€&GhBp€&GhÐÁñرc {öì±:wùòå½zõJJJjܸñ˜1c.]ºdty–`tà38Z G 4âPñ?¿øâ [³fΜ9vìØ£GÖ«W¯hÑ¢+W®|î¹çnÞ¼it‘ bt ™™ùçŸ~ûí·K–,±º@zzú¼yó¢¢¢V¬XQºti!ĤI“.\8mÚ´qãÆ]|cbc§N `+5 !–-[–›››œœ¬¤F!Ä믿^¢D‰5kÖäææ]|cbã¤I“²²²„‹-Úºu«å¿ýö[PPP‹-Ô)ÁÁÁÍš5ûöÛoÓÒÒ~øa£ß€186iÒDyñóÏ?[ΕeùÈ‘#¦Ó+W®,„8uêÁ¦@ Žöݸq#'''<<Ülz‰%„/^Ô²ïéGæ=%÷ãhv-ЈCÅÏÍ)]§‹)b6½hÑ¢Bˆ+W®ä»…ôôt£ß€þü68fggÏŸ?_ý188ø¹çžÓ²bxx¸$I7nÜ0›~íÚ5q¯Þ ùmp¼sçNJJŠúchh¨ÆàR¢D ËšÅÌÌL!„ÚÏ Ðømp sºÉ8**êÈ‘#™™™Å‹W'?~\™eô;0F Žã˜¯Ö­[çääüòË/êY–7nÜX²dɤ¤$£K` ‚£½zõ š={¶r_£bÞ¼yçÏŸïÑ£GŒ.€1ü¶©Ú111£Gž2eJçΛ6mzâĉmÛ¶U¯^}È!F À0Gë ôÀ¤¦¦®^½:::ú‰'žHNNVFäL’,ËF—>€{  Áš  Áš  Áš  ÁÑ-_¾¼W¯^III73fÌ¥K—Œ.¼ÔÍ›7?ûì³Ç¼víÚM›6}öÙg·lÙbt¡àΜ9S·nÝÑ£G]x©}ûö½ôÒK-[¶¬W¯ÞO<±}ûv£KÝýÍÌ™3ÇŽ{ôèÑzõê-ZtåÊ•Ï=÷ÜÍ›7.¼NvvöÓO?ýÞ{ïýóÏ? 6|衇¶oß>hР?üÐè¢Á«É²üÚk¯]»vÍè‚ÀK­_¿¾_¿~ëׯ/]ºtRRÒ®]»¸~ýz£Ë}ðÈA¿’žž>oÞ¼¨¨¨+V”.]Z1iÒ¤… N›6mܸqF—ÞeÙ²e»wï®[·îÇ&„8|øðO<ñᇶjÕªjÕªF^ê³Ï>Û±c‡°TäsïIDATÑ¥€—ºråÊk¯½òñÇ×­[W±wïÞŒ7®E‹AATWù<~…~eÙ²e¹¹¹ÉÉÉJjB¼þúë%J”X³fMnn®Ñ¥ƒwùþûï…o¾ù¦’…•*Uzá…rrrh°†-‡ž9sf•*UŒ.¼ÔÊ•+333_xá%5 !jÕªÕ¡C‡óçÏïÛ·ÏèÒAG¿òÛo¿µhÑBܬY³ .¤¥¥]:x—ãÇ)R¤zõê¦+Uª$„8uê”Ñ¥ƒ7ÊÎÎ~õÕWK–,ùúë¯]x©M›6I’ÔµkWÓ‰S§NMOOOLL4ºtÐMÕþC–å#GŽDDDDDD˜N¯\¹²âÔ©S?ü°Ñe„™;wnHˆù7Àü!„(_¾¼Ñ¥ƒ7š5kÖÁƒ?ùä“âÅ‹]x©ýû÷—,Y²L™2;wîܵk×åË—«T©Ò¦Mµe¾Žàè?nܸ‘““n6½D‰Bˆ‹/]@x—jÕª™MÙ¶mÛ¼yóBCCÍj !ÄîÝ»çÏŸÿÄO4jÔHù0sûöí«W¯>ôÐC&LX¼x±:½|ùò)))5jÔ0º€ÐMÕþCé:]¤H³éE‹B\¹rÅèÂ{åää,\¸pðàÁ7nܘ3;ÇgŸg†eY`‰ í€6 8€(Ž ‚#ˆ‚ࢠ8€(Ž`—={ö¼ñÆ•+W®Zµj³fÍ^}õÕ}ûöyâÄ Æ”Ê•+7lØðõ×_¿zõ*í¥Q¯¥K—r««qãÆ´Ëbci7mÚ´qãÆ7æååñ§L™Â Ù«W/kçbn‹bÆÅÅ%""bÀ€GŽ3Š››[pppRRÒÑ£GE΂7a“ųgÑèÒnÉÅ ¾+uíÚ•a˜þýût7¹±ét:__ߦM›N™2EDZ֬Y³¸ véÒÅÚqMî¹àÌÁF}úô‰‹‹[¶lÙ™3gîÝ»—ŸŸðàÁ•+W¶lÙ²k×®7nÜ3{÷îeff._¾¼víÚ[·n¥½X —þýû÷ìÙ³gÏžáL,Ëž9sfõêÕ-[¶Ü¾}»Åá?~|åÊ•µk×6iÒdéÒ¥´W8¬ 6lÙ²Eüð%%%7oÞÌÈȘ9sfDDÄ”/³’{.h‚Žv@“îÞ½Ûºukýê†aJJJ¸?·lÙÒ£GíÛ·W¨PÁxtwwwBHQQÑõë×KKK !÷ïßýõ×?^©R%Ú˧:•+W®Y³&!$00vYÔXZ~‹"„çååBîß¿?nܸ¬¬,áQnݺuçÎBHaaáèÑ£ÛµkW«V-áõy{{+³Œ å7ÎÒÒÒ¼¼¼3gÎ|÷Ýw_}õ•˜Qøíþýû|=ß­[·úöí{îÜ9777*«€ƒG°ÅÈ‘#ùÔØºuë;wÞ¾}ûáÇYYY‰‰‰\÷}ûöMŸ>ÝäèßÿýÅ‹/^¼xõêÕ;wî :”ëþ÷ßïØ±ƒö©р¸5öã?Ò.‹KËoQ/^¼råJ~~~RR×ëÈ‘#.\åöíÛ[·nå~ä-_¾\xx}“&M¢¶¢ÁzÊoœ)))­[·^¾|9ÿÓZ¿±ýûï¿—/_~íµ×¸îW¯^]²d ­UÀAp«=ztÕªUÜ礤¤íÛ··iÓ¦råÊåÊ•‹‰‰Y»ví«¯¾Êõ]»v­Å©yxx,^¼¸\¹rÜŸ§OŸ67¤þ¥WÅÅÅS§N­^½úÔ©Sùrssßyç-ZT®\ùùçŸïÓ§Off¦ñtÎ;׫W¯ªU«Ö¬YsèС999'Nä¦äjùòå[´hÁÿ©?5IæÅOÁÝݽG£GnÚ´)×E§Ó:uʪÁŒÏv<à.Õ"„T¨P¡S§N]»v­X±"×%    À`œ¦M›ê_{š‘‘ar…_¹r…&77—eÙ‹/êO*''‡eÙÇsVªT©°°Ð¸´7nÜ8wî_¶o¿ýöܹs¥¥¥Æe ‹å7777n‚ÖnQ<èׯŸÁåöíÛ_~ù%7_N÷×_Yœ…Eñë×_å6N·uëV~0k7'ã Rü÷kí¼‚£›ŸUãŠ/ñ®$f,..æ÷'Ÿ|—¿9zêÔ©b¶Šäädnxkƒciiiùòå¹¾~ø¡¹é†„„ð…oÖ¬¿Z8|p䛃†i×®ÝàÁƒëիǶ}ûvVpÏ3:8*G°Nii)^Ÿ6mšøM‹ŠŠN:õÒK/ñ½øs¶1ý³HddäªU«8ÀU&ñ×™éÿØ]´h×188˜ë²`Á®‹§§gff&˲%%%Ç78K2¯–-[r]fΜÉÖ±cG®ã¢E‹¬Ìøl7cÆ ®K•*UøÓçÑ£GùúT¾îVYø ž:uŠ?ëWmˆˆˆà†ùé§ŸX–MKKãN\Ç7²,Ë_صkWs¥eYÖÃÃÃø¤¨_¶… rù !!YYYb¶¨   ž åOuþþþúu{ÝÝÝÿûßÿŠ>99ÙâæÚ³gÏóçÏûøøp._¾\0‘›“À)þûµv^ÁQ™ÍOü¸âËc¼qŠÜGÅu‰‹‹ãº”––òÓ?~ü8+‚ÍÁ‘eÙàà`®/_#nì³Ï>ㆩ\¹ò fJô‚#Ýä¸qãøÑ6lÈuœ;w.ßÑäž+~tp<¸Æ¬sûömþúnþ@Æ™?¾ñsÈöîÝk<îZ†aÊ•+W§NŸþ™ëÞ½{÷ X,CÅŠ·nÝ:pàÀ¦M›†……B~ùå®×ˆ#øÁ^{í5.ã^¾|™{ĺuë¸^£FŠ%„¸¸¸üßÿýŸŸŸŸäózøð!׋»•277—û|üøñãÇ'$$p}EfŒ_io¿ý6µVTTÔØ±c àÕ«W?ùÕ®];..Žû|éÒ%ssáOŸÜs@¸‹¥êÕ«ÇÕÔ:tˆïHyñÅElA¦Õ©Sçí·ßæ>÷èÑC§{òÀ‡³gÏŠ=''‡o ¼xñ⃸e!äÝwßÕÿ¡BDoN<ã R¿ðÂ߯µó Ìæ'~\Êùò·[íÛ·ïÖ­[„Çs«S§NݺuE®:›U­Z•û`pÕ¦¾Õ«WsôëMçÌ™c|ˆëׯߪU«V­ZõÎ;ïð“åvB·¹ °stÐ4G°_—C‘öy°õêÕ[¸p¡˜!ccc š˜Ïœ9Ã}èÔ©ŸY=<<øŒËåýÁøqÝÝÝõÿ”j^ü4³³³‡ ذaÃE‹Ý¿¿nݺüEH"3–m¼,D/½={–{ÎÏà 0¾Ì`0}|pÈU£þùçŸ 6<þ¼ðð<~ ضmÈŒ5%rsâo<‹ß¯µó Ìæ'~\Êù¶hÑ‚»3¦¤¤ä·ß~#„pÿ%„˜»ÚOZ7oÞä>T©RÅÜ0üW¬ÿ ïòåËÿ¨ëÔ©ÓÀ»víºwïÞñãÇ·oß¾zõê§NY;GMCp븹¹ñ—I&ªT©ÂŸPõó¥1ýsð /¼Ð½{÷Ù³gÿù矗ã˜cpwKAAߟ97nÜ(((àœz î”´^„3f¼õÖ[ü×X–ÍÌÌœ5kVÓ¦M[·nÍgn‘ƒ(((àž;HŒGÇG®Gqu'<¾‰ÙäŸ&ÅÇÇs•%%%ýõÑ Žþùç£G¸&¶   «êö ðWÚ‰/›>ýF´û÷ï¯^½š›à‰'Ì=Ð[ÿñ:999ÿþû/w®ÍÍÍåŸenx¾HsçÎÕ¿Å[üæÄ3Ø VšÁŸ6ÌËÅ6?ñ‹fCyx"÷A†aø g7oÞLô‚cß¾}Å/‹ÍþùçîƒñíMœ{÷îñ·êüæ4>Ä=~üxܸq~~~ýû÷Ÿ?þŽ;Š‹‹Ú^¤4 Á¬Ö®];îCzzºþ#EFŒÁMÏž=ëåå%0ýsðÙ³g7nÜøÞ{ï™|T¸I§*UªT®\™ûüÛo¿3¥ÿþ•+Wægap‚4wF±y^„råÊ-^¼8//oíÚµÔLôüÁ¿§Nä`ªT©âééÉ}6xÖ ÿgùòåùˆo³*Uªp7œüøã\oܸñã?rOß°§ºQZ+VLJJâ/\;yò¤˜±|}}?þøcîóîÝ»ù“´$Ú´iÃÝÔrÿþ}ý¬)~sâY©í™—À¤”ÙüÄ/š=å¿ò­Õ[¶l¹{÷.wŽ2íÔ{öìyüø1÷Ùä=à„wwwþý#3!„Ö¼Y³f-X° ¸¸8,,ìóÏ??räHAAA·nÝD–ÇÎÑAÓÁjÉÉÉ\uÎ;wÞyçââbƒ–.]š““£d‘^xáîCqqñóz¼½½½¼¼¼¼¼ÜÝݹ‡çqƒýþûïü¸ÅÅÅV=u\̼ ssssss W­Zõï¿ÿnݺ•?âïÞ½›"r0“øÛVøjƒ?kÕªÅ_)h:p/^LñððˆŒŒä¯‚ÿüóϹö\à(þ‚0îr41ôk=.#³VXXØ?üÀçů¿þZÿRB1›“T%‘p^Šm~r—Ǫ}°aÆÜ:ÌËË›7o—ä”i§æ/ã©T©ÿ£È€««+ˆûõ×_ùîlÙ§ùpø=÷³Ï>ûÏþ­Óé®^½*²}jô† ªV­êëë[³fMîB·6mÚp½,XÀ=iœeÙ>øÀà)3öÏëÔ©SÜs:®C‡Æ ã†çjdEfÿ`¶ÿû¿ÿãà|üøñO?ý”û¬‘“=øªD.^7jÔÈÕÕÕÏÏ»5j×®]„†aÚ·o/r‚|ʼn¬=zÄ}°ø´dέ[·ø{x+T¨`p߉=¢££½½½_{í5n𥥥ãÇçûŠÜt%!á¼Ûüä.µû _é8oÞ<îƒÜÁñŸþyýõ×ׯ_ÏýùÊ+¯ð5ÇÆ¸¦ƒõðñÇԻ߽{—ou¹}û6÷᯿þþ Íï¹¶ïª[|òÉ'¿üò —·öïßߦM—òåËógëæÍ›ïß¿_±òLœ8qÅŠ·nÝJOOo×®]›6mNœ8ÁßG9vìXîjú‰'~õÕW?ÎËËkذaÓ¦M/]ºdò}tvÎËËËËßß?77·¸¸¸U«V/¿ü²ÏßÿÍ¿åŒ{Dtt´˜ÁLz÷Ýw¿þúëK—.ݹs§U«VíÛ·wuuݶm—“­½üΜfÍšU®\™ü­š5º|ù2÷™[áéxyyq¿.>úè£'N¼óÎ;üë‚äÀWr/­66xð`þJÜÂÂÂëׯóuçÉÉÉ’×–•+WnÚ´iܳ»·nݺeË.ʈÜt%!á¼Ûüä.µû`RRÒÌ™3 !ÜÄ‘‘‘ö\Úk¿qÞ¿_¿ñý¹çžûè£Fœ0a÷<©Û·o7oÞ¼iÓ¦yyyƯãòðððððàöÇaÆ­^½ša˜_~ùÅäK_Œ÷\«FDûy@ UÿüóO||¼Éª{÷îüUƒ{öìᆷçYÊáÇËýøã&ëçÞ|óMœåË—ä¶mÛrŸM¾9ƶyíß¿ß\Ã_||ü£G¬Ìä“ݪ­BäsMòññÙ¿¿ÅYð/§áUªT‰¿’„Ž#£/,,Œ?¾úê«üMî¹âGǃ¦j°‘¿¿ÿï¿ÿþÓO?õë×/88ØÍÍ­jÕª­[·þæ›oÒÓÓýüü,VAI«[·nGŽ>|xƒ *V¬Ö«W¯]»v-Y²Dÿ~‚áÇoÛ¶­wïÞAAAÕªUëÝ»÷Þ½{Í]lnϼš5kvîܹ)S¦4nÜ8((¨\¹rÞÞÞ­ZµZ±bÅŽ;ø[8EfR“&MŽ=:eÊ”öíÛûûûûúú¶k×îƒ>8vìX«V­$\·ú7¾è×8šÀœ”””úùùUªT©^½z·QKŽÆÊ•+Wøg\›Ã5¾wìØqùòå;wî4~hŽ$\]]ùçTŸhª'òðáÃ_|qÏž=ƽªV­úûï¿£ÆL*))ѿ׾wïÞ6l ]( Á¹®]»öÛo¿½páÂõë×¹Ç×½øâ‹ÉÉÉ€“+))©R¥Jqqq5 4qâDá{ׂ#ˆ‚Çñ€(Ž ‚#ˆ‚ࢠ8€(Ž ‚#ˆ‚ࢠ8€(Ž ‚#ˆ‚ࢠ8€(N/\¸qäÈ“}ÓÒÒúöíÛ²eËI“&ݺu‹vyhrêàøÝwߙ땒’2yòäóçÏ7nÜØÃÃcÆ ¯¿þúÇi€íPPPPpæÌ™Ÿ~úiÍš5&ÈÎÎ^¶l™¿¿ÿúõëýüü!³fÍZ¹rå¼yó¦L™B»øt8cc·nÝh.5BÖ­[WZZšœœÌ¥FBÈûï¿ïéé¹eË–ÒÒRÚÅ ÃkgÍšUXXHYµjÕ¾}ûŒøóÏ?]\\âããù.®®®­[·þé§Ÿ2335jD{ (pÆàتU+îÃï¿ÿnÜ—eÙsçÎùøøøøøèw'„\¹rÁœ“3Ga<())ñòò2èîééIÉÏÏ·8…ˆˆÚ 2ÊÎΦ]: q·NWªTÉ »‡‡!äÎ;b&¢’í)""B%%õÃÖâak‘xSqàEæŒ7ÇóòòbæÁƒÝïÝ»GžÖ;8!GC:ÎÓÓÓ¸f±  €Âßg àlMð÷÷¿yó&—y/^äzÑ.Ž&´oß¾¤¤ä?þà»°,»k×.ooïØØXÚ¥ ÁÑ„¾}ûº¸¸,^¼˜»®‘²lÙ²7nôéÓ§\¹r´K@îª6!((h„ sæÌéÞ½{\\Ü¥K—8P·nÝ#FÐ.šuœó†/° ¶[ ˆ„MÅñ 8š6tèÐçž{.==}óæÍƒ JNNæžÈàœ–ei—ÁÑ8í³œ„Óžëq#ˆ‚ࢠ8€(Ž ‚#ˆ‚à¢à9Ž —ˆˆÚEÅ9Ÿ­cGÎÇ ~ø…#šª@GÁDApQ@GÁDApQ@GÁà™3f0f¸»»[;µ¸¸¸ØØX¹Ë¬Ì\ÞU `,))©zõêu:Ë'ÍC‡Íš5kæÌ™uëÖ%„¸ºººººJ^>>M›6ýþûï¹îÂs!„dddtíÚ5 ((¨k×®|¯ÐÐÐ1cÆ,]ºÔ××W§ÓU«VmäÈ‘wïÞ¥½FA3ÐT 40 ͹³¬=c>|õêÕ:tèÓ§ÏñãÇ¿ùæ›ãÇ8p`ܸq¡¡¡Ó¦M›;wnÓ¦MG\µj•««ë| Óé,XРAƒâââ7ÞxãìÙ³K–,0`@VV!dúôé3fÌh×®]BBBaaá?ü0hР*UªtëÖMx.7nLHHèß¿?Ã0ëׯoÙ²åúõë{ôèÁ °mÛ¶Ï?ÿ|Ĉµk×Þ²eË’%KŠŠŠ–/_Nóë aAjááá´‹  Z<NŸ>ÝܳgÏž,ËÞ»wÏÕÕuÈ!ü(Æ óõõÍÉÉaYvÓ¦M„;wr½âããëׯÏ}®Y³fùòåO:Åý9wî\BHLLÌãǹ.­Zµ"„°,^TTÄõº}û¶N§9r$÷§¹¹†††Ö¬Y3//ë•——VXXÈ•²~ýz®oiiiTTTõêÕi¯uÊlØPµ¸mK5ކLÞUÍÝÂìââÂ0ÌÞ½{/]ºBY±bÅŠ+ÄL¶I“&µk׿>·mÛ–Ò¿ÿråÊq]Ú·o¿gÏžT®\9##£B… ü}Ü7oÞ$„"„$$$tíÚ5??üøñÍ›7ðàýÓ?yòä”)SêÔ©3iÒ$Bˆ«««««+í…K|i:Ô«W¯'NÐ.2HIG»*RPPн{÷»w殮¥%$$pKJJ&Mš4wîÜwß}wñâÅvÎâܹs„éÓ§·oßž²sçNÚ mñ¥ÍÍÍMOOONN¦]djžùæ›o®_¿¾`Á>5B\]]gÏžñý÷߉ŸZiiiII‰AG–e !*TiLÎTVÊÏhApxæ³Ï>«V­Ú!C º3 ³bÅŠyóæÝ½{—ë’‘‘ѵk×€€€   ®]»fddð‡††Ž3féÒ¥¾¾¾:®Zµj#GŽäF|íµ×zöìIiÕªUhh(!¤mÛ¶úW îÞ½»cÇŽ>>>‘‘‘&Lxüø±~1Ž?Þ»wïàà`??¿Î;oß¾]ÌL9YYYݺuó÷÷èÞ½ûÑ£GÅLÖ€~i…óå—_&„ÄÇÇs‹)¦ð‡Љ‰‰‰‰4h‹‹KNNŽþ¬ëÕ«È%Ô”””èèèJ•*ùøø4mÚôûï¿§½á8 ¤N»àDË’² úZ5)ÛF0GsÇÃ[·nBzõêeqÈôôtNW½zõäää1cÆÔ¨QC§Ó¥§§s}kÖ¬Y¯^½òåË¿õÖ[‹-êÚµ+!døðá,Ë;vlêÔ©„yóæíÚµ‹eÙøøøúõës#nذÁÕÕÕÏÏoäÈ‘£F '„¬Y³†eÙß~û­B… ¡¡¡ãÇ÷ÝwkÕªåêêºzõj‹3eYvëÖ­ü¸ãÆóõõ­R¥Ê¹sç,NÖ€~i…sÆŒ„¹sçr‹i±ð}úôñññ }ýõ×úé'BÈâÅ‹ùù?~œ2a–e§M›Fi׮݌3&MšT§NBÈ?þÈOªgÏžV}ï6l¨šÛ¶¥‚³ƒôœvc*”Ž8j€xÇCB¨ý••E;v¬ðr†††Ö¬Y3//ë’——VXXȲlÍš5 !ëׯçú–––FEEU¯^û3==²gÏîO>Š=zô($$$00ðêÕ«\¯œœœ   .8ÖªU+66öÁƒ\ßG5oÞ<,,¬¸¸Xx¦ÅÅÅ‘‘‘Ï?ÿ|~~>×w×®]„Ñ£G[œ¬ƒà(°˜›6m"„ìܹ“[cb ?cÆŒ’’nxooï¶mÛòóhªP 3 {ïÞ=‹“½téÒØ±c«U«Æu |ûí·¹Ï‡>{öì„ ÜÝݹ.nnn£G¾páBff¦ðL³²²Nž<ùöÛo{{{s}[·nýå—_¶nÝZÌdˆ\L1s œ{öìÙ³g !111ú}£££ !\/B×Ä̳F !gΜ!„4lØP¿#AáéÓ§ ! `ô 0€rùòeá™rSæÉ:thBB‚˜É ¹˜bæ¡?zRRRIIÉÆ !™™™gÏžå/<õöö>|øð´iÓúõë× Aƒ:uêÛöƒµð8U`Ìtd­à,$œ€Còõõ ÎÈÈxüøqùòå ú®X±bòäÉ\Ë,!„aÊì¸ÜÓ ù{®m¸iš«B3˜,Ÿ¥¸ò|úé§ù))((àkgA> ªv%‘M» =n.1ÅÜD¸@É–ý“ëbÐË܈&cÊNS¸ü".€>í‘““SµjU{ª0A$6T§Ý¶ÑT `ܘ Šáý  *hªpph© Æ@.ŒùaT5ŽÔÈ‘ÅLilƒà :¨’uBpP;c¢|7î ¿ApÐ D7 Á‡¬ÑŠJn_ƒÈÐ+$8G H˜Øþ@µ¬ÆØÔ×þDhµ"côAòB€Cp0K»¶alê¥Å%%!8XFë‹Jι,Bp…2wê0‚}ÀfyyyS§NŽŽöôô¬Zµj“&MæÏŸÿèÑ#©¦?sæL__ߨ¨(BH\\\ll¬¹!ÿúë/†aÖ®]K{•úˆ’еk×üüüñãÇ7oÞüÁƒöOÿäÉ“S¦L©S§Î¤I“!®®®®®®´Z,ñ¥=tèP¯^½Nœ8A»È %¼«cæA6&»3r>7›ØšÃÞh)((èÞ½ûÝ»wÓÒÒ¸Ž%%%“&Mš;wî»ï¾»xñb;gqîÜ9BÈôéÓÛ·oOÙ¹s'í…¶‚øÒæææ¦§§'''Ó.2H 5Žàt3Ÿ%Ÿ¸µ}5Í œÍ7ß|sýúõ ð©‘âêê:{ö숈ˆï¿ÿ¾¨¨HüÔJKKKJJ :²,K©P¡‚L‹`r¦²R~Ž@ ‚#€ô”IQxx$€>ûì³jÕª 2Ä ;Ã0+V¬˜7oÞÝ»w¹.]»v  êÚµkFF?phhè˜1c–.]êëë«ÓéªU«6räHnÄ×^{­gÏž„V­Z…††BÚ¶m«ÕàîÝ»;vìèãã9a„Çëãøñã½{÷öóóëܹóöíÛÅÌ”“••Õ­[7ÿ€€€îÝ»=zTÌd è—Vx1_~ùeBH||<·˜b èС˜˜˜˜˜˜Aƒ¹¸¸äääèϺ^½z\BMII‰ŽŽ®T©’OÓ¦M¿ÿþ{ÚŽÓ`AjááᴋईÑ“²]ˆ¸ ½§`rHºÿXÁ?‰Ñ’ ,#kjÍ­+}š;Þºu‹Ò«W/‹C¦§§ëtºêÕ«'''3¦F:.==ë[³fÍzõê•/_þ­·ÞZ´hQ×®] !ÇgYöرcS§N%„Ì›7o×®],ËÆÇÇׯ_ŸqÆ ®®®~~~#GŽ5jT@@@xx8!dÍš5,ËþöÛo*T ?~ü»ï¾[«V-WW×Õ«W[œ)˲[·nåÇ7nœ¯¯o•*UÎ;gq²ôK+¼˜3fÌ „Ì;—[L‹…ïÓ§Ohhè믿þÓO?B/^ÌÏ÷øñã„ &°,;mÚ4BH»víf̘1iÒ¤:uêB~üñG~R={ö´ê{·aCÕܶ-í¥ç´uúñHxý.ŽÙ²SfÍkrE!8‚xÇCB¨ý••E;v¬ðr†††Ö¬Y3//ë’——VXXȲlÍš5 !ëׯçú–––FEEU¯^û3==²gÏîO>Š=zô($$$00ðêÕ«\¯œœœ   .8ÖªU+66öÁƒ\ßG5oÞ<,,¬¸¸Xx¦ÅÅÅ‘‘‘Ï?ÿ|~~>×w×®]„Ñ£G[œ¬ƒà(°˜›6m"„ìܹ“[cb ?cÆŒ’’nxooï¶mÛòóhªg„–Yê(þ°À5ƒº¸X89fff^¼x199Ù××—ëâë뛜œ|áÂ…#GŽp]ÂÂÂúôéÃ}f&66öÞ½{'{éÒ¥±cÇV«VëøöÛosŸ>|öìÙ &¸»»s]ÜÜÜF}áÂ…ÌÌLá™fee_oÞ¼¹zõê‹-JIIqww?zôè'Ÿ|RPPÀ×΂|TíJ.""";;›v)œCžÕº±FÝ0¾óÄ`\“‰-;AãÑŸõPÕ¾eTi¼&ÖÜb_~i±‹Åªj…$p<´GNNNÕªUí©Â‘lØPvÛFS58ÉC‰é ª Ø,ã8lw!3é@Ü£¿TÁÀFej.ÂÄ¥§…dÄU‹ÚÖNÖm‡„àjD¥Êʶ[¤ŸŒÅšhûV;®Ì*lUµBp‡¢\t{š·´— è76‹ˆÚ^X‰œqÊ  îªm±!µH> £—´Æ=[Rý[°ešh‚#8,1‘…µvt†°Í®;â#2"€ÃCp'euÊyZÑȘïï XbO<#º—ã¬1§kA{l»uÆö˜âœ·°òÞ*ŽÔ EŽæ9gdäItÛ5ëà0Ì—w¿æLÿ­;vsò( u¸Æœš¹;` Ö’ÉQÞ2·]ËpÏ5h ‚#hŒìÑÅQµ#=S7Í I8GP)k‰U„ .ÇAóO<°`ÆŒLYžžž7^±bEii©Tsù믿†Y»v-!$...66–ör[As !8‚#³"á0„°„Ejƒ}Úšo ¤MЖ¤¤¤ñãÇ?~ܸqݺu;þüˆ#Þ{ï=9æåêêêêêjq°C‡õêÕëĉ´×Ø«ªÌ ܎ɺÈH¡¢QÑd&Ñ3bÖ=jŠQ£FµlÙ’ÿ3777666%%eüøñþþþÒÎkçÎbËÍÍMOOONN¦½nÄXUe© Æœ®h´ÿ¬GGçï”TRRrüøqÚe‘XIIIII‰ýÓ)--•d: rŽ Ò£º,d « Þmõ Ž„eYBHQQ!$44t̘1‡Љ‰‰‰‰á8~üxïÞ½ƒƒƒýüü:wî¼}ûvýÑwïÞݱcGŸÈÈÈ &<~ü˜ïÕ¶m[ýK³²²ºuëæïïн{÷£GB^{íµ—_~™Ê ™‘‘ѵk×€€€   ®]»fddð1YB}Ü‹/öòò*_¾|TTÔû￯_*‰ë˜›ÎÒ¥K}}}u:]µjÕFŽy÷î]“e~øðáÌ™3ëÔ©S±bÅáÇÿóÏ?´¿X°šªÁq8aó´*è5[#)‚˜§ز ^•œ——·nÝ:>„]¹r¥S§Nžžž;v$„lݺµ{÷îýúõsqqùá‡:uê´jÕª¤¤$BÈÿþ÷¿ÄÄĪU«öïßßÅÅeÕªU?þø£ÉmÛ¶­[·nƒfYöÛo¿‹‹ËÌÌ7n\hhè´iÓæÎÛ´iSBÈÆú÷ïÏ0Ìúõë[¶l¹~ýú=z˜,¡±´´´k×®uíÚ5&&æÀsæÌÙ¿ÿÎ;†±8qƒ2þùç#FŒ¨]»ö–-[–,YRTT´|ùrã2>|õêÕ:tèÓ§ÏñãÇ¿ùæ›ãÇ8p@±ï$À‚ÔÂÃÃiAó˽Ïúõ{bñ˲Oî‚Á?Éÿ™_±¬¥?õ¿hão´KŽã¡Ü§°éÓ§Bøþûï¿ÿþûï½÷Þ!CªV­Jyûí·¹ajÖ¬I™1cFII ˲………µjÕŠ}ðà7À£Gš7oV\\üèÑ£ÀÀÀ«W¯r}srr‚‚‚!kÖ¬aY6>>¾~ýú,ËGFF>ÿüóùùùÜ»ví"„Œ=šeÙM›6BvîÜÉÍ144´fÍšyyyÜyyy!!!aaa………Æ%4Æ ðñÇó]&L˜@Y½zµÅ‰óæ§³~ýzîÏÒÒÒ¨¨¨êÕ«sê—ùÞ½{®®®C† áç8lØ0__ßœœ9¾G«Ø°¡:í¡Éi\F޶!e?Ë‘©dGÖÒŸ€¹ 4Gòã¡Õ\pÔ§ÓéêÖ­;oÞ¼ââbn˜š5kò™Œ«3ûïÿ«?ÿþ÷¿„ŒŒŒ}ûöB>ýôSý¾³gÏ6އ"„,\¸PÈ/¿ü2---ÂöïßOIMMÕ2%%…›£q Õ¬YÓ××— ‚œ{÷îyxxôêÕËâÄ ‚cXX˜þƒöòòâ>ë—ùÁƒ:®V­Zÿý·äßšÅCS58±-¤¸AWn¬é•,ò Â÷±,Ëè= ŠeåÚdöìÙ£Wµ±ˆˆ—'÷ œ>}š2`À€ vùòå{÷îB6l¨ßÝäsÏœ9C‰ŠŠÒï8tèPã!Ïž=K1¸x1::šëÕ¸qcƒšT·nÝòåËóVªT)""âüùób&®/<<\ÿOs3uwwOMMåÚ¯ëÖ­Û¢E‹Î;¿ôÒKúeõCpÕaô>Höžd\Ô¨"_jÃËË‹ÿÌEŸO?ýÔ óB"##wïÞMô.Íä˜LWܽ):åS3·ìÓäž­ÈݾcPB‘t:Ýýû÷ÅL\_… DNÿ­·ÞêӧϦM›~ÿý÷Í›7/[¶,""b×®]’?á䃻ªA2´nŒ°<_®ÌÙÙÙÍš5›?>×ÑÅÅ%>>žR®\9Å¿1°šª2y£R#]h¶ç ÓéRSS{ô蓘˜XTT”žž~åÊ•5kÖpoç›7o^bbblll¿~ýÊ•+·víÚ¼¼<ãéT¨P!55511±aÆ Ã|ýõ×:nêÔ©äiÓó’%Krss“’’RRRúõë× AƒÄÄD–e×®]›“““––æææ&²ØS¦LÙ·o_LLÌþýû·nÝÚ¼yóÁƒ»¸¸Ø?qŽ~™{÷î]¯^½Ù³g_¸p¡^½zÙÙÙ[¶lñññéß¿?í/¬Aûîä´wUÛ¶1Üf˲boË5˜n Vï?£/‚5ÿ§TÛ¨„‡Ü]Õ{öì¦fÍš={ö4蘙™ùÒK/x{{ÇÇÇÿöÛoú}wïÞÝ¡CoooBˆ§§gZZ1º«š³wïÞŽ;úúúúûûwïÞýøñã\÷ÒÒÒþýûW©R¥Aƒ\—}ûöuîÜÙßßßßß¿sçÎ.¡ñ"ìÚµ«M›6žžžµk×?~ü£Gø&npWµÁŒ† ÂßUmPæ+W® :4$$ÄÍÍ-88xÀ€§N¢ý…³¬è •˜ùìTVM—‰8†ˆˆˆììlÚ¥ À¶ª%þ®ƒ º³eo‘¬4 “²_‡@#6kaTЧ= ÈÉÉ©ZµªµUw’ ­_¿þ?ü@{}¨‚È Uÿpä´‡&4Uƒ4¨\Ìfz¿Å Ô*T¶ÍZøªV|uàØ¸GhnŽÇ‚¨U ÷ÊhjAÛƒ?ÕÌú{e5dÒ¥KîmVApGÔ¨ ¸Ï@>ÿüsÚEMBp4-!!ÁàÙ§„__ß½{÷Ò.˜‚,¢!öeG|Õ!8švùòewwwƒj|^ßJ@”ÐdGmBp4¡  àÎ;]ºtIMM¥]§cõ5m%˜ñ­u8™„»ªM¸|ù2!W kvkM“â>kFDÛàxb ÁÑ„K—.BBBBhÄqȲï!5:<£Ô ‡(hª6 Ž×¯_5BZ´hñÊ+¯<|øpÛ¶m´KçÜžf Mì±,aø a þÙºÊL„% ËîŸæ™¿ÞQ_7h5b 8ŠÕ¤IBÈ™3ghĉ‰©‘bÊ3­a,þ3¹¸f$• ÁÑ˲%%%¥¥¥Ý]]] !•+W¦]@‡bE¢™MvT$9çEË£˜ … ËZügœ ‘ Õ¯l¥#/(oáÂ…Œ _ýUî2̘1ÃÜÜû÷ï¯Øªˆ‹‹‹Ulv ¸ÆÑÐ¥K—:uêÔ¤I“ï¾ûN¿ûálj©»^@ŒÅÞÂ1Èb4”óNîºC‘I±L¡l-Ò³M-8ßµþvúž^쨥2ƒiРÁøñãù?-ZäååõÊ+¯ð]{ÄoRRRõêÕ :Ö¯__¾9:thÖ¬Y3gά[·.!ÄÕÕ•«1Їàh¨fÍš 6ÌÈÈHKKëÛ·/×ñðáÃ_}õUPPP§NhP{5ðÙÆbdäó¢ÍIÑ6z Rl´U[o”ÁÝ5`¿¸¸¸¸¸8þÏ+VÔ¨QãÓO?U¾$£FjÙ²¥’sÌÍÍMOOONNæþܹs§òK ê‡àhÂÔ©S‡ 6yòäÕ«W‡……]»v-++«bÅŠŸ|ò‰»»;íÒ9õÅ‘UŒ´ò¢ Oî®ÖN|4ÊŽ"·Æš[ii)˲JÖ*?GP®q4¡víÚ?üðCÏž=oܸñ믿޹s§gÏž›6mjÖ¬í¢9 #€W:ê_Åhv£«ZW‹Îƒyòüm´ã¥2 b¡¡¡cÆŒ9tèPLL ÷nˆÐÐP¾‘ŠóÚk¯y{{ó?~¼wïÞÁÁÁ~~~;wÞ¾}»=s˜W¶¥K—úúúêtºjÕª9òîÝ»üÀYYYݺuó÷÷èÞ½ûÑ£G¹)¼üòË„øøøÐÐPBHÛ¶mõ¯qÌÈÈèÚµk@@@PPP×®]322 Ö†À K¨q4ÍÏÏoΜ9´KáôÄÖ2)tï ±T]ÇU1*šYÖòâ?-_0–a´Qûˆ‡;‚Š]¹r¥S§Nžžž;v´8ðÖ­[»wïد_?—~ø¡S§N«V­JJJ’£lÛ¶mûüóÏGŒQ»ví-[¶,Y²¤¨¨hùòå\¯nݺ<˜eÙo¿ý6...33sܸq¡¡¡Ó¦M›;wnÓ¦M &¸qãÆ„„„€€€þýû3 ³~ýú–-[®_¿¾Gçކ©…‡‡Ó.Ü}¼¶õ2ýö5Xìænÿ§Å1?!Ü?Û¦/Á?›™_&jÅ»te6!ƒÏ¬Q/íÍä²<RܬÄòòòjÔ¨‘qwî™3f”””ð]ô‡2dˆ——˲………µjÕŠ}ðà×ëÑ£GÍ›7 +..6žøôéÓMîÍ­Zµ²8/¾lëׯçþ,--ŠŠª^½:˲ÅÅÅ‘‘‘Ï?ÿ|~~>×w×®]„Ñ£G³,»iÓ&BÈÎ;¹^ñññõë×çÊZ³fͼ¼<®W^^^HHHXXXaa¡ðµ"<<ÜxË0ÞbˆÞaÇ9Ïõ,Ë¢ÆTIŽz&›*¹†i³}•¯b4·h&ë Æ[3µ¨|t@Úþ>'OžìâbùŠ¯Ã‡Ÿ={ö¿ÿý/•¼››ÛèÑ£ ™™Ù¸qc“cßU-þ†î°°°>}úpŸ†‰ýñÇ !YYY'Ož\¸p!߮ݺuë/¿ü²J•*SËÌ̼xñbjjª¯¯/×Å××799y̘1GŽáÊonŽàxA}Ô„Û¦ÕŸÈ®'ûpñQ¥ÙQ\ƒ5.<…EDDˆI„Ó§OB 0`Àƒ^—/_6í¹«:<<\ÿO¾œÜ;,¢¢¢ôû:TxjgÏž%„p—rò¢££¹^\ùÍÍQ»]œ‚#¨Œˆˆ`â® 1—ú‰¦±È(…'ñQô)•fÓÅŽêøËËËKx€ÂÂBîCùòå !Ÿ~ú©Ab#„DFFJR~^œ *˜ìñãÇ„κS?˲„¦ì1–»uº¨¨HxŽàxAiB§sq§zÓ Q ;Zò,¶M;XdÔÇ-¸J㣕Ùu <ƒWŽqu„ZµjB*W®¬ÿ$à“'O;vÌbú´v^¸zÁ“'Oê?«röìÙü±¹±¸ò;v¬M›6|Gî^l¼à i¾2à“‘NtÎãµcºïÓ'ìÐ^HÙqb‰á+ é³£Z™±©€x+Vp$ÙÙÙ´K¡4nGbÍt'z}õÏûüËž)¦FT4Z¤žìøä¾(æIÍ2£wé#cfxb~ãî¥? ý%×,'<Þ¿ÿþýû~~~6/Çq&;›ŸžÌ w¾m›ƒGKòÓ§jS£&#£ñÕÒ•_uUÜ7ÇòáFP‘J•*UªTÉñæåTpÜ€àTQJÍÓšl›6yÏ×Q¢eyrÃ5í«Ÿ-'Ú¬hÀ]Õ •ü†ãª«<5Šìkí¬KØ'7˜Ó^lû—¬†àôШ1hžvÀÔ(Ç Ë½™›~vdmOŒàŸqÊ  ‚#PÁ:팩‘aYí¥F‘¤NxOêkÕ‘ÅvY‚#Ȉ1ßCá&ðpoMV4ª€Zš­¥|Ù¤ÀÂ!Ž`3ÆÊîe†`=›»¨Q«ÍÓªÁeG†eéfGVt›5ò³î¥N Áœ“6O+…{9!õì ('~ª‚#H@|dPøÒF4O+@ÙÑL¥#Â,HωS#ÁsÁ~Œ™Ï&el¤6™5ùpo{W„ì ûä‹e©&rÖôÑœ5ÚDé»W…ˆˆÚEÉ 8‚RTP×耬"÷†ˆ ÿ„pB+š³†ªãœïdÕâß2Ê”}%©ñ0B“pîƒ šªÁ4Fï¿ÒLN©=ÍÜ Ô˜Ÿ,k{_©Q¹]FÁœÓ§F‚àr x"¸Ú1Sã“ÅcMw¤±È”/y´ã©à`šªA»ÎÅJýDsê[aÔ´€úّšGƒ5<%p0°ú8 !5Ž`Qi©Ñ)¡ÞÀ!!8‚í,Ÿ‘˜*ÓCAØÕO!8‚-,Ûß+c=s·Â 5RG3;šÿYƒºH°R£G‹2Ïú¸©Q Ô™Ÿ– ¬ƒàò`”¸[ù»£YÔÛ¬EÎ9L@ucYŽ Úu´— QËŽR?A¾p*HFÁ,5Ÿ !5:Î’B¨fGUoÊš‚ç8‚Ôžþ>“ïd-”C‰EI­£ö|G<ÙÀ‰Ù¾÷ã¸a jARòïfÖ¥FBèämÎÖÒd¡-/”ZžÑcT0ppØÍ%à–‰ÝÙ(¦FB,¤C•Åó èøèdG4X8.YvnT7šà&¨ó ë ×5: dGP’Õ»>R£yŽj¡ù3šÌ»R£ƒQm›5@p«1&;QL"“‡ê +ø§ã¡EW:ª}[ù ºQ‚£*à,%uLÍٴΖ}©ÑG°cüYñÝÌ05"Aj²#ØÏª}áÐŽ`Å©m¯kt‚|©Ñ%ÔÄõŽê-˜gÝQ‰R<ž±z—ÑPjT?Æ0šXN*·&”{6¸™G‚ã¬༰ÿ‹ƒàVP²ÒźÔÈJýNb¹–}²´Ì³–V¸©‰hÔ“JGÂRÏŽ iØ­å†à¶’sï´¥®Q ;ª¤’R¿t’”ˆ5ü‹œ…Ê/íã³£õc–],•|Ý zŒþ'9ÄAp›(›E©ÊwUëW!ÊŒeËŸõ ¼D²åeÖÆß8×EÌèvT:â,à8°?[ÁQèmꊧF+bõ˜ÈS0/š¦?_†jI¬aEv´ø’I™³#h—š›_TwUƒŠ8È#™§Y„UM"aŸ¬Ü'eS7Én²¶û²WÕ¯*0Kìþ‹ŸŽVBp+ɶi>52e#£üXÁŽÆ}Y>˪>>*ú€•_û òAj´‚#XÀü¡à>F=5Š·•UŒâI®…×jÍL²£´ÒTv˜Z×b„û!5ZÁÑ©ð´§ÕG6ÚQÅhÿ²ÙS¹É½¤«âøHž>ÜÑÖ‘­Ñê§i€täÛã°/KÁÑ騾ó(ØH­’Ôh᧪¤­ÒöLF ¢&«ÖøÈ”½MܦU#z½ÊÖ`­²• àhlÜÅPÝh+GÇùR£Ðª°#2*°`gaúâHVWûábGɊݩю R£Áª0_@ùŠ.Ç”Y“TVõh:;ªy#pVj:r€\ÛôMã4?RÕ×r­\½#*ž“ÉeƒàèìŒo`Œ‡PjSiu£è¶iVD%Ù5w•µ\›ÈŽ7Û¶%󯮴ve¨fåÀSHvCpAh¤¶ûrFá§-ªkð‡Ñ ºÏ5•YmÙN‹èƒÝépòªm¤FõµM $QÛ¦&êM„ªi¹6q“µÙºAÆž=²jªjñ°ã*Á1·³É›4“U|ß4êh¹.Ó`m1Úš¢Š…Ð"õî7*«Ð.G@j4Zp_ÌQAœâ³#íuÚ£ºtÁ¥ö15¦F[Ÿ¶£¦Å³0¬íÀàÁàâ–Ôþ™ÐŽÙ Om¤Á”£öçïè\ì/¥Š—ÓÞB>¹ó„nvdÄÝýbgµ~1‘Ô€Ñÿ¤‰Ã±v 8‚'l¤¶¦yZ%VuÜ1JBpT¹Ï–§ïœ©‘îf¬gCyeY¾²wÌ(¼ EU:Ú¿‰¨tDxPŒu»›œO”£½&¨Apt"ŒÑgežõ­ÔH•†ÎOBùKX–ˆo°–bMbŒ>€Z¨àðîAiMr\õÈŠRÂbØS`AiÝ.£Pvm‘35ªýz}™!8:/× *Uݨ 6=sǞşi­,ưåÙº‚±\vT2>ÊôÊAs o´hËŠ H«XÜeÔ³O©ô¤¦ G-±jϱöB9ªmTÚHý4"9É­Óò1X|Vù‡„ 4XK¾™ .‹fk1{+õ²\'„àèÈèžÀT-”ÜÚ%µ—å{ξü¶µÞäÏŽ²?§Ì¼À4¤FuÓÑ.X&v'R*5ª{-(TPÚ«$À–e¹~Y{W€S2w[§ÑpF¿¿œ¾ò‚Ô8: OQ T7N'`‡ã7ÊàbGpn’Ý crµc·UEmˆf!8ª£÷_QC˶ Ðo¤V2+º`` ‚€ó°*5ZìeR£µÏR®²çÌKÓf]£‹L+¢‹2;*PéhÃÔ‘™Á‰ØEPý“šö!8jŒØËAä¡du#kßÒáÙ:ZÇêÒtvp ²ì$Ú¬ pZŽšÄðÿSð¥ï 7Rãå¤ðŒ¦Û¬5]xѬÚÌ¥|„œèŸ|¨n”‚£ì?k0&;9tjÄ sÎŒ5þ,süRò.ƒy U‚ã‘æ}I÷G S#Ë0ÎÜ@Çñh“²©Qù¥SyjTwéÀFò> h°Y‰Ë‹N~ˆ@£ö(߆«†S©ÈÙ;õÞìð”ºØQ£…cë&̘ëjq_yÞ1˜ýµ!\-#òÔφÔ!8jüµq”Ÿ¿cêhâ컩ãucµAoùãë`Ë›¹Â·uÚ— 8j CˆÌoISUj?c1Cb×.Öàí^ì(4_åÐÜÞ´– 8j‡/‘v{éÁ+ÐCþì(Ó"$RäEp.ÖžÈ,&6Ù"_Ѩ̊ÑÜ#; N Ü$黢û CXq•©6dì÷`™¶–}v™2R#8Ûª?¸ÝЦwUÛV݈;`„!8ªžRtS#ÂX‡•w³‘ïk„EpÖí‚vî°Öï‰6§FDFahªV1†ZjTz1EÏ™µ©h‹Ø¯RË Ö%G²™8Ïu¶AÛ´HŽjÅíf”6`ì< rŠ=\®»Ñ¤+9‚&ÈÇâÖň’Fj´ª6÷M[ÁQ}¬h䨹‘šÝÑæÁ@y¬àŸÇUò&k"ßÓyLA ™0f>+1cÕ§FDF« 8ª C¡¢QÍ©ñi mïkÏÀ°Dmuâ¡mÚ6¸9F”ºoZE¤8 8Õ Ó _Š7ÊÈt°Ì%åVlJ۶Ƚ‘Ñf¨q¤F-#O±êFÉ"5BY¬•ÝM ç@ Öš'ÿKÎL“QÑh'Gz¨FFB±‘U, 9³£2 ÖÔ®B§'ñö&ÿKÎL™qE£ÐT­,ý=É™¶[sG\åZ!cƒµÐLê8š¡ÅëñXo© 8Ê@`—RÍ‹êFp?<ô_Ê"×åØS‹=´„Þö*ü»mÓBp”ê7NGMª_ñÚ£¶U*æcòmfÜëdäZ0$DPœÄR£sÀ5ŽNGÍ©{6H@æ‹i\»PÝM1×U}GpÜ#GP„jŽ)ê(˜`ÛW£ü*Wv´;ï"Ï‚rl'´ž¼Ã1W݈û`d‚àè\h>î@fÏΈ½ëÊL±Á?œ™pj¤]:Ç„àèDÔÜH 14XØÊº'C©ìæi¹áæ³ÒÒÒÖ­[wîܹŠ+¶iÓf„ ÞÞÞ´ ¥AO)"Ïã­*§Ã–•áéi°–o©žN[òy ”:2¤F° ‚£&7R›¨äçâ£ýK‡VðOñ#ÈŠµØ[s Ö6@j[!8j¨Ô(-™18Z€|¬ÞºÐ` gy[PYjmApÔ6HNB» ÖÒ28s¡ºQ[5FÍ;˜J‹` ÖÏŠ$z‘Ô1Ю @jÔ:G-¡ÕH}kæó³Nh°Ç£²ÔZ„à¨Uh¤Ð"®ÁZ¾ìhgc8’§Øö-¨ÿÒFãÓªµÁQ3”ÞÁhbìgÕ&Ìÿ­ÅeS±Ñ:F° #0R#HÁQ(4R€<ÙQÞJGáY þ)ÕdAuA:xWµö ‘@ëždG™ÞÌËRÞ…qüP’ú[¨%ZN£Eí %¨qÔýS R#€TDmæÎÔ` ‰üº¬þVUp<— ºÑ䥻ò=Ü !8ªêó”gp–Ódƒµ­ÅÆÙØq8@jd¡€(Üäà¨jŽ÷’ZT¸]ÓºØQ™Ù<)œíe§‚ƒ9.ÇwHŽšÔ@ +s˯’OvDbS!¾ ›¤ æ&ÏYhCsŽê¥ô¥6ÇpÊoÌò¾‡HÓÎŽ¬©1“Eîh­V‚£JQøYfý±†ö¡ àÙ·F9ßC¨Î‹A ¬¾iÆaR#¨‚£¨¡‘»;€Ü LÉ‹íyâ·LƒÇ Úö1 ‚£©ùù;8€±6õ’dx14Ñ` @»ºÑÜ ËÆêF‘ç>äTe!8ªŽzêóUQxºì~´ÙY(Þ`$©iŒÉNŽ”A­ÕE£ÏßÁ!kôÁpí6X£ÞQtÖ±ZS£úi²ÐT!8ª—VR#H‚o°¦’)¥¥ô“9Õší­ndY -ÑÚL«š†à¨"ÔŸ¿ƒý@™ï°¦½x6•Ü)g­ä¢19jj|6!ÖtG¤Ft´ O¨íù;‹‚ýœ+ï ›«t”å˜ sÉAI í¯R‰Ôødr&… 1ƒGUÐ襉5ßQÆŠkîE½úÿÄ/!αrRì¡JtkÜ´{]#ØÁQuÛ±»ƒƒ¡pm‡Ì ÖBÙÑdL”?;"pJËöõIûÇ¿ð© wR;04UÓGáÒF[8|¥ N„Pjöe,UCqw ˜/<íL¢1v®.[¨þt–´ÅÚKŒ`•Vå)SÛ¥`‘¿ž<Ö‘ee¼Ø‘Ø|ñ’uÃÕ’ ¶NÁ úÑAp¤‹Â¥Ïf]æ3c~0œ„ÈVé¨Pv”‡º³ ܱÔÞÕ¢‚5«öKmXѬ©)X;§kÕ‚V#5ö bÇŽÀ%~`=»ØQäUŒ¸QƈäK©üj£~5Qq#5ÃÂ<=ÇÙYöé?ÆYö« 8R£À¥†STÁA@UT¾C(ôXGE²£spàÓºÉ7 R¯æSijdž®û#£Ñ"!>Cp¤ƒú³¾ÍÌrçÄ ÷£x‡µ$ËfÍ´qU@™§«àg?­Ô(4Q©ª…gm&>†GDÈ2WÕCpt*8îh‹Å÷V­@ƒµÈ½Ø†ß¢NÓfMcôˆ^ߌêë)92šZØGž@p¤@µÕ`ŒÝQ&ʽ‡PÙó"cG_%Ù\iA¯ªYß!Ê7RÛ%("Z®•G'5JQ݈x `2 ֲSQ´©!5>›:£‚uâôUŽŠÒJj¤}¤Ð¥Ÿÿ-œYÖÞvM–Ʀ§R[9¤´ã*CÂZží§|u¤Fâ’ó“JŠA‚£r”¿ã̶Ãïv“¿Ò‘dG©~‹ŠX 1K©þ ¨^ÔëÕÔv%•Þ ¡R&Õ¬ú™›=œ‘ù‡i«¨º‘-ÛÓÚ¦ªà˜ M]¯aÄfýC‡¼¿Emm©Ðv²þ4 ¦gò˜c0<±T«žÓ,¼@Â_4+øÙä¢̸£ñ™âYwaÅœ¤ª 1ÚXáµ'T`Ó#Šy†ÀL j¢ªÔ"9ïäÜWq‰$ËRÁq[U©ÑäÅ´×SCpTn£p.Š5XËîäY ÄQjx^£ÊÕ5ªim¨©,4!8ÊŽZj±Ëa7‹SfG‹Ã"5rL®5<¯‘¨¤vC†»§i/’ã@pÐ5gG«—EpòN4µ“e¯nTàe0² ï åE±ºQ Ç §æ0— :Ì‚(Nìjc‘7þ‹¢¢Ô*†à(#u6Rc—PŽc4XK½ Ô’Ѝá‰Ö„ ¦F¬3'…à(uÞ£ŠB8:ev4MgGù¨­ŒŒp¿²m²ª}© ìÐRö*ÐGÙ)½Cí{ØhR*oQÌŽ"2j‹tr°bÕQÑHDŸ¤ÔöÜP%±"º8GY(ÿ’P˜ðÓ¤ •¿ÁZ¹Åf$2Fä›k¹H`-GéÑl¤Æ=1NFékò´uUo>³TUÈTCaÔó°FZ©±Ì´_êX÷†à(=Š©Q±;€uäl°¦­\"*qM Ñt±l>€2Œ‰¶r†ºFÖ¦^ ÁQ.ª¸Öä¤Î=œVvTiPÓC¹„vÞ@m.#ÚUq†RMÍ«xZ+¯,eAaŸ´´Êö8UxÂâ³L”©t$j­w´°Öô¥^…im;jm1Ês©«ÕO6 ¦Fà 8JO¿ä¬-3í8³£¦ŠìhçÜ(¼¨FeWŸÓo¤–íÉ;ÍÜæ 8:Õ€´X½ÿÒ¢\¥#±=;ŠIŽÅ°yšÖåΧÍÓv-‚¤¿¨§F…_ÉÍŠîhÕÎ ÁQzªªnTQQ€8hƒ5¿\2\òhÛtTq£·œï\¶ õÔhmå«b+OMß’Ú!8j®ÐÎŽy»ŒI&/a´¸4Œ@…Ì–*&é_F%Ï:‘|’8£ CpÔ8¤F•¡¾GÒÌŽÄÆì(2¨Ñ ¥ÖÍ—Öë§C¡øÔ(Wu£Ýë„úžG%°(‚èdG†›µ2 høAyüƒ4¥ož¶»šPÍ©Qúµ%}é¡ G-Cu#€ê±=ïký¥Ór³µ-hU4Z¢æÔh¾$ ^Žˆrƒ5Ç^l-ÌÞÇ4Zd1ù™@U©Ñž©[õ3DÖ܉P‹à¨Yªüi <ý󜙳º¼¡J-ÙÑÊÅ´ÿ6jIRìD«hÈZHfækK/  Á€ǾØÑ`1µ\õȘëªäwŒS ËÚŸåb*5Š)­B›{ü*"¬í€MPÝ AÊ_õÇU:ê.;Êõ”>á…'tìbôJI"k­I²lÔ~£€ìPã /Šï°&¦n”¡yNW¶êQ–—2ò_Ñh5¤Fež×hçLX£ ‚£9ÌOvà8[v”'>Ê~i#£xÛ´õ55>-°å. 7GÇ„} €.µíƒôÐc@¶ø( -DFk)m˜º†VpxDí"Ðà¨5¨nÐ+vVůTÅEhÖÇGYKlâûÒTd¤|5NOÎÁQS°[¨›];¨S5X,¸õµò–›ÑXd$ÔS£…§]ÁÑq`ÇaêÍŽ¤l|¤úêÀg÷¾hç¨J?5¢^Ãi 8jvK‡'ƒµª³#ÑKl 'HæYd¤ûôC¨ó‘,ÍE³ðG‡Â þ J²qdEŸ†ov—TôpGáõð´p&:J‚Ñ›6ûä?ªIÐb9ömÔrÓlÁiBpÔ-ï™Bà0y‹4×ѦÊ'5fGŽ~‰˜2ÿ+;˜ˆ’Œ§Ù°øl AqŽÊajÐs™;[|ªÃXLQÆ•ŽDÍٱ̚1³ø cî®è2£;­§FÇú6œ®qÔü¤p8t_'CÌ<ÙQ]×;š(´pÙ˜g—H>ý÷äeÎÖÜé¢âåFC©‘Ý4Á€êçNeGy`®ÊEµ@C©‘"ÕP«UO û'ˆ'þ„o"Ôˆ O¢3–Ʋ£t ®]šH8k90G½@ëL¼‡W‘7T÷6B0O=©‘Ÿ®˜«p†r$Žêfê‡ö@­³ýD«Ôãú4\éè¸è§F{ o÷ Ž*f[¥£•ùÒѬË,…Ë æ¥UEj,[—!f´â b¨|U W7QèIƒœà8ªÂÔN Á@ÊRek­V{v³à¦†QGéíXnª©ñÉ´á)Gµ²c/ÅÞ àh Ÿn~/gízײڳ£óQ[]£š›§AŽðvu*l|:É0!Ee¤ª³£l‰YÔßÈcÍÃÔUA[¥U?¼rP•Œ.@VÁ(Úýen³Vé ¹RD[GŒŒ„ê©Q5¿@E5ñÀÙ±Ê]j&É“WûÑ]´ ëÂYSÑHp7Œ޲ª€¦jõ±ï  u¬p?¥~Ašk³F%”¬´žqbrxŽjgò4Ášù šÆŠî¨ s/•Av”‰åÔÈ0úÿÔ–Á 8ªŒ•»+vmcy§Vö²dGÅXH\XÔž% £Äë¹q'5èCpP#•4XdGEXNózݤ͎ÖÔ_ /:!G5A누ìè@¬{ì[65r¤ÊŽx„0X‚à–!;ÊDÔuüÀ¬q“µt쮼@vtŽªÁ8öó%@jŠ?£ ÙQrÖÖ5ÊxA#š¼@GÍBvÔ,–a$Nö„J3©IŒ!8h›Âgwáìˆø(%®k´¹ÑJ5uê(X€à¨ªÙo@CXòäÐ ÈŽ¨z´ÈêG|£…ÔÁ@ÛX/$5— š­Y×ÕìˆKHÓ<Í=øÛÄ6Bð8°•Žv@",ߢ\*2˜'ww8cNáò´í&†b5¢Âì€Gªð›š­ ØÛ<-¤F°‚£VaÇ},ÿ?zñL8;:U³µºîžæáAß`74UÓƒŸ} ŽÈ4ød0J Ö>; 4[sè”O~Ò7OKÅš­‚êP5Gʰg€ôhgG"xÉ#Q2-)ËÚŠF¢X†¶û¹oGJPÝ«z4—¢¯êQ½ú)!8hk±7í¨›­‰Âµn²QoE#¡¿€ƒApTšUŽ`gÛ©#;Á\¥õ–k«*)¤dÚ8Gôödks$®‰prÖT‰¥ªG¢Í–kµGF"åW³ð@v|Õ#Ñ~˵ª/gä©à8$G¥1Ø™ÀnVEÔQéÈßrMÔU}9#O5ß88GG§¦ìHĵ\õÅGñüsÎé^Mß58GÓŽ;fÐÑ××wïÞ½vMשޜ꡾ìH,E1õÄGk##ÍÒJz]#€1GÓ._¾ìîî^³fMýŽ^^^´Ë`+•eGb}|$Êf2þõ‰ÚˆŒÄ®ïWMÛ¨‚£ wîÜéÒ¥Kjjª”Ó5ÿ’PÔA€EŽzj×DðÖ¢T‚ÔL«4€âM¸|ù2!Ä º€"iR‰ú*y|JSIäIlâ«Õ˜-}³¨¤I 8špéÒ%BHHHí‚HMÅÙ‘cPI䯃™õ/PWQ^|Z ‹©QìÚ ½( rŽ&pÁñúõëƒ>uêTÅŠ###ß|ó͘˜Û'*úH-ü£»4ØKõÙ‘”ÍpÖ¶bt7½,Sãiª.,ê—LþÛ.Õºð 4G®\¹BY¸pahhhóæÍ¯]»öûï¿ïÚµkúô鉉‰vNïú´y­Ø&{£`g!J±¢†ToXÔ+¢úËè"""hA-M¸~ýº»»ûرcÌuÙ·oß›o¾ùñÇ·jÕ*((Èê)bǰ›qÕ q”9¢ƒÀÉE)ÙÙÙ]œ6J:up,..^¾|9ÿ§««ë믿Nùæ›o †lÑ¢Å+¯¼²bÅŠmÛ¶ñiÒf¸BhyvüÑT¥£9›E-¼æ¿>Ð"§ŽEEEúÜqssã‚£IMš4Y±bÅ™3g¬ž C‹°já`ÙÑI ~q"Ï881 œ:8º»»W>³,[ZZÊ0Œ‹‹‹~wWWWBHåÊ•i—Àý@`! ;j¾2 ÇÅþI8˜K—.EFF¾úê«Ý>LœøšpX¨wÒ©(Cp4T³f͆ fdd¤¥¥ñ>üÕW_uêÔɺÉÙ´‡ã˜¶±õI†ÈŽZÀP¬üŽYÁ.8Ý€µÖ™¯,6ãôéÓÆ »qãFݺuî]»–••U±bÅÏ>û¬Y³fG7x’·_šk9bõFÑo2Òœøy àØ¬ÝÇ…‡g›ªõ9ö–”dÍEÆ€¹s¥ ƒYÆW»9GÓþý÷ßùóçïß¿ÿÖ­[5jÔˆ‰‰yûí·ÅŒ«ÿ¸X~wDpshGÖÌ]P+_'(pf!ŽApÉØ‰Ñ®‹½Ày¨%8ÚPP€™/E¸–‘è}ËúS"ŽqÚàˆkec~W7 û-ÈÄŠëâp±£Ú ÖÊ 8* »?¨‹ì¨‚©Qªo '&° ‚£<ð(a>X=.²£à<ª„àFémË–H¤`3G‡eW>@v¤ÅÖºF1#!2‚e€ö“rdGåá ê†à¨;8†5ÈŽJbˆÅGäáŒt!8Ê»5ÐÆZê(þ@…û¬•`ôj‹ß Ž „!¨w”™M/¡ ÁQ98&€†!;Ê5‚¦ 8PF16X7kdGɉHH• *ŽNÁÚ Ys]‘íólÅšOö„EM‚#XÙÑ~ Z¨A«ÀJÈŽv`Ìß c.I²¢‡†¤ öCp€2DÅ dGÛˆxR£>Ö¦^òAp”vlÐ4V¸²£x¢›§­xÄ&íe'¤£]Ð,>;"ÂÃà(P㦉m³FÕ£0z©a$‡àöÂk M³æîiIB’"È Á„ˆÍ"ÈŽëJô‹‘ö@CåbûóuhàˆÄ>­c\ÔH{þà˜À+".y”íáÞ‚ Ž 5gÍŽŒèæiBp8[³5cõý´ÁQ¥ä;øÄÅŹ»»Ó^>[4iÒ„1H»\ŽÀÚ˲)?©‡aÊü£‹±â>­Cp¤F™#̵k×Ê•+÷Æo¨|šbœ?¾R¥Jõ˪[·®ÂÅpN¬Ñb¾‹ao «M&EŠñ‘«e”瀎WÈ€ áÍ1ޝ¸¸¸´´TýÓvëÖ­üüüÄÄĵk×*9_0`K@cŸŽigÀN‡Œ²MÅO_™C»Â@Q¨q”^xD÷?%tþüyBH­ZµhÀ)ÈR×¥ý«Ÿ,¬­mÓcà|ZàèÈþóŸÿT¯^²bÅ †a–.]Ê÷zôèÑäÉ“›4iâááQ»víO?ýT¿ññãÇÓ¦MkÞ¼y•*U¢¢¢†zíÚ5áiîÙ³§W¯^nnnÁÁÁ½{÷>xð „ËrîÜ9‚à u¬ñQLc´Ì Ö .g§‡àèÈúõë÷ÑGBš7o¾xñâV­ZqÝKKK»wïþÕW_Õ­[7!!!''çÝwß3g×7??¿Y³f~øaAAA×®]ÝÝÝ¿þúë† 9rÄÜ4wìØÑ¡C‡Í›7ׯ_¿_¿~5kÖܸqcÛ¶m;&Õ²pÁñòåËíÚµóöö®Q£F÷îݥͦ {⣲Å|†vdDRµ`AjáááW«bëýêÕ«„áÇó]¸¨W¿~ý7np]233 !ÑÑÑÜŸ£F"„ÌŸ?ŸåÿûŸ‹‹K—.]ÌM3!!rðàA¾ËŠ+!3fÌjA† Âm±}úôiÔ¨Ã0®®®Ë–-Sj]8&b͉è o0"±í—ÅD )ö¬&Õ?ÖÚZZæÖ• _PN»tàæ'5{öìªU«rŸccckÖ¬ùï¿ÿBnß¾ýÅ_´lÙrìØ±üÀ½zõ0`ÀªU«ÎŸ?ÿüóÏO-11±wïÞMš4á»p7;çå噜{jjjII‰¹²½ñƯ\¹R±bÅO>ùäí·ßæºlÛ¶­[·ncÆŒéÔ©Spp0í5 6áï›!ª«Ucì(•ñcˆT¶p6Bp”…úÍš5ÓÿÓÃÃãÑ£G„S§NW¬XQÿ‚HB×÷ôéÓ&ƒcß¾} !EEEçÏŸ?wî\vvöÊ•+æ>qâDn‚&%%%ÇmÛ¶téСÃÛo¿=wîÜôôt>M€&©*>>M|¬¥;¦õý8àÔ‘›››§§§É^/^$„lݺuëÖ­Æ}¯\¹br¬óçÏO˜0aëÖ­÷îÝ+_¾|:uj×®}ôèQsxøð¡$ Ò¦M›¹sçJx%%³6*Y7¼~|$6%H{Çc~¾åpfŽÎˆ1ãaPP!dÚ´iÓ§O9µ{÷î5iÒäáÇãÇOJJŠˆˆpuuÍÎÎ^·nTfY¶´´”a—2·sét:Bˆ¹ b(SÁgE‚dŸoäXV–›¦ÍçEIf†ZIp0¸«ʨS§!dçÎÝ?ûì³Ñ£Gççç²gÏžüüü1cÆ|øá‡‘‘‘®®®„›7o ÌÅÝÝ1ôïìÙ³:®]»vÝ÷íÛG‰ŽŽ¦½Ú@lÙû¯b!劯ndôþ±B÷JSo6PÔ8: øûû÷ïßõêÕ‹/æn¯&„lܸqÔ¨QQQQ>>>ÆÓäê/¹{k8wîÜ™8q"!ÄÜ0}ô‘ÀÍ1UªT1èÞªU«]»v­X±bøðá\Çýû÷ÏŸ??88¸OŸ>´W0€3²³.ÍÚ:È'3ã™LŒˆ Ê•ŽàHVÉ49‡ˆˆˆììláaìó–H·oßööööññyå•WúöíÛ²e˸¸¸C‡\euãÆëׯB®]»Ö¦M›óçÏGGGGGGçæænß¾½bÅŠ»wïŽ5ž&÷ÎèsçÎ5mÚ´E‹yyy›7onÞ¼ù¶mÛ¼¼¼Þ}÷]ý´mväÈ‘Î;ÿóÏ? 6Œˆˆ¸téÒþýû=<<~øáãšHþ,ú‡2“ÙˆÕž1Ó‹Ž(kîÉß⎳¬`ÂdÌ_ãÈ–mèfŒ–Wå”I¿¶³Ìè8sS'æ\ïÐTí༼¼fÍšåååõå—_þý÷ßbF©V­ZVVÖ¸qãt:Ýÿþ÷¿sçνòÊ+YYY\j4žf¥J•¶mÛÖ¿ÿË—/ýõ×W¯^]¸pá¦M›&Ož\RR²zõjI$&&毿þ¶ìgFÜ(Œ¸ûLB£s™>}úéÓ§?ùä“£G®[·îôéÓo½õÖ©S§¤šþ½{÷Š‹‹}|| ºs]òòò$(ÒP¢ÒPQ´5ŽNäÖ­[_~ùettô{ï½Çuqqq™3gÎêÕ«oÞ¼ir”ÔÔÔ’’s|ã7<<<ô»]\\ܱcG†yvجX±bÓ¦M7oÞlr”‰'>zôÈÜ“’’ ‚£Ã0÷îÝ3²  €<­D4`Ã(àÄG:™ªY£`Áщ\¼x‘hÐݸ ïáÇVÍ¢\¹r>>>·nÝ2èÎu19#F*p£ávóÏ?ÿtÏÍÍ•p.ÕªUËÍÍ5‚ÙÙÙ\/©FõC½€ãApt"‘‘‘„íÛ·ëw|øðaFF†¹QÜÝÝó®]»fúHàæîþÆ ›5kÖŒ3ºvíÊ 0{öìþùg„ å˗熹{÷nNNNùòåCCCEŽàx1AsËœ9söîÝ;nܸï¿ÿ¾víÚYYYÿþûoçÎùå“)püøñÖÎ"$$dîܹãlj‰éÔ©Ó¹sçvìØÑ°aCþVnBÈæÍ›“’’êÕ«wìØ1‘£€Ó™®hÝ.ðNMÕÎ%88øðáÃÆ »}ûöï¿ÿ^¿~ý}ûöqw.Kxÿ2L#""Ö­[———7jÔ¨;vT­ZUÚQÀ!i=‡i½ü–ÅF.±ˆˆîÆ ¥ƒËÞ½{=<œ˜˜ˆÔÂp£sùðÃ{÷îݰaÃAƒU­ZõÔ©Sëׯæî•Ð4¼@nŽÎ¥G;vì˜;wnZZÚ7|}}ûöí;þü€€ÚEZ“ä€àètÚ´iÓ¦MÚ¥R#€LpY8¨ñ@åÀqˆè£SpNŽb!V‚“CpQ@Gp(ö_æ(< Z«Á™!8€(Ž ‚#8´5Ø Á¨A†ÐGÁDApQ@GÁDApQ@GÁDApQ@GÁDApQ@GÁDApQ@GÁDApQ@GÁDApQ@GÁDApQ@GÁDApQ@GÁDApQ@§Ž.\ˆˆˆ8räˆÉ¾iii}ûömÙ²å¤I“nݺE»¼V‹ˆˆ ]Ð l- ¶ ›ŠãqêàøÝwߙ땒’2yòäóçÏ7nÜØÃÃcÆ ¯¿þúÇi€íPPPPpæÌ™Ÿ~úiÍš5&ÈÎÎ^¶l™¿¿ÿúõëýüü!³fÍZ¹rå¼yó¦L™B»øt8cc·nÝh.5BÖ­[WZZšœœÌ¥FBÈûï¿ïéé¹eË–ÒÒRÚÅ ÃkgÍšUXXHYµjÕ¾}ûŒøóÏ?]\\âããù.®®®­[·þé§Ÿ2335jD{ (pÆàتU+îÃï¿ÿnÜ—eÙsçÎùøøøøøèw'„\¹rÁœ“3Ga<())ñòò2èîééIÉÏÏ3õÜG¦ž’€úakñ°µ€HØT ‚£!îÖéJ•*t÷ðð „ܹsÇâ²³³i/€ô68/_¾œÿÓÕÕõõ×_3¢——Ã0<0è~ïÞ=ò´ÞÀ 9lp,**JMMåÿtssu:§§§qÍbAA!„¿ÏÀÙ8lptww·¹ÉØßßÿܹsUªTá;^¼x‘ëE{ÉèpÆç8ZÔ¾}û’’’?þøƒï²ì®]»¼½½ccci—€Gúöíëââ²xñbîºFBȲeËnܸѧOŸråÊÑ.ÛTm    &Ì™3§{÷îqqq—.]:pà@ݺuGŒA»hÔ 8š6tèÐçž{.==}óæÍƒ JNNæžÈàœ–ei—4×8€(Ž ‚#ˆ‚ࢠ8€(Ž ‚#ˆ‚àè€ÒÒÒúöíÛ²eËI“&ݺu‹v‰@¥>|øÍ7ß¼üòËõë׋‹6lØÞ½{i 4 ''§aÆ&L ]P©cÇŽ5ªmÛ¶74hÐÁƒi—$ƒàèhRRR&Ož|þüùÆ{xxlذáõ×_øð!írê2ä“O>ù÷ß›7oþ /|xðàÁ;vì ].^9èP²³³—-[æïï¿~ýz???BȬY³V®\9oÞ¼)S¦Ð.¨Ëºuë²²²6løå—_º»»BΞ=;hРÏ>û¬]»vuêÔ¡]@P©o¾ù&##ƒv)@¥îܹóÞ{ïétº/¿ü²aÆ„£G8pÊ”)ñññ..¨®Ò<|…eݺu¥¥¥ÉÉÉ\j$„¼ÿþûžžž[¶l)--¥]:P—_~ù…òÁp©‘R«V­7ß|³¤¤ Ö`ÎÙ³gSRRj×®M»  R6l(((xóÍ7¹ÔH‰ŽŽîÒ¥Ë7Ž;F»t G‡ò矺¸¸ÄÇÇó]\]][·n}óæÍÌÌLÚ¥u¹xñb¥J•êÖ­«ß±V­Z„+W®Ð.¨Qqqñ»ï¾ëííýþûïÓ. ¨ÔîÝ»†éÙ³§~ǹsçfggÇÄÄÐ.HMÕŽƒeÙsçÎùøøøøøèw'„\¹r¥Q£F´Ë*²téRÎðpâÄ BH5h—ÔhÑ¢E§NúꫯªT©B», RÇ÷öö8tèÐáÇoß¾]»ví:ð- uŽŽãÁƒ%%%^^^Ý=== !ùùù´ êiÐåÀË–-sss3¨- „dee-_¾|РA-Z´à~`xüøñÝ»w_xá…éÓ§¯^½šï^£FÔÔÔzõêÑ. HMÕŽƒ»uºR¥JÝ=<<!wîÜ¡]@P¯’’’•+W>üÁƒ³gÏöõõ¥]"P—‡¾ûî»5jÔ7ní²€zݽ{—rîܹ͛7Ï™3çàÁƒ»ví=zôµk×Þyç<ßÃ1 ÆÑqxyy1 óàÁƒîÜS3¸zGcœ1cÆùóç?þøã-ZÐ.¨Îœ9s®^½ºzõj48‚€ *pfϞݮ];îó¨Q£rrr6lØðóÏ?'$$Ð.#Ø 5ŽŽC§Óyzz×,Bøû¬x?ž5kÖ«¯¾š““3zôè-[¶ 5‚±ŒŒŒÕ«W¿ñƸ¹„UªT©B… îîîmÛ¶ÕïÞ¡CBÈéÓ§i$€G‡âïïîܹ‚‚ýK×/^¼Èõ¢]:P—ÒÒÒqãÆýöÛo:t˜6m~Z€9gÏž%„|þùçŸþ¹~÷üñǬU«Ö¦M›h—ÔÂÏÏïöíÛ Ãèwä*ª‹‹‹i—$€àèPÚ·oŸýǼôÒK\–ewíÚåííK»t .ß}÷Ýo¿ý6`À€iÓ¦Ñ. ¨ZHHHáܹsgÏž=AAA±±±´ *Ò¶mÛo¿ýöÌ™3Ü=8ÜóàðøOÇÀ°,K» ™œœœöíÛ׬Y3--»'féÒ¥ ,>|8Þ* úX–}ñÅoݺµgÏþ²$‘Nœ8Ñ»wïîÝ»úé§´ËêrêÔ©ž={ÆÄÄ|ñÅܳáŽ;öꫯêtº-[¶T­Z•vÁ^¨qt(AAA&L˜3gN÷îÝãââ.]ºtàÀºuëŽ1‚vÑ@]òòò._¾ìîî>pà@ã¾½zõ4hí2€öÔ©SgìØ± ,èܹs£FdÕªUÒíÛ·/Ók•ûñǬ\¹²_¿~µk×®\¹²ŸŸß“O>¹xñâììlsÞŽ;¾ýöÛwîÜ1ÿm4™6mší÷€Ú¨ƒÑh¼téÒÆ»téòã?Ê]N…üôÓOMš4yíµ×~øá‡äää?þø#!!a×®]S§NõóóÛ¹sç#Ÿ!///55õĉï½÷ž¿¿LLŒÜû@ä.Šçåååìì,ÝÎÍͽsçÎü!„ÈÌÌœ2eÊ™3g¤»ªU«Ö A!„O™ž¿Ü¬ øøøž={Þ¿ß´âàà››+Ýþõ×_ÿñ=z´uëÖ¥¼'™™™¦FcZZZHHHBB‚““SéocAîîî¶ÜkaÅ8þ¼é_§}ûö¼+33344Ôtï/¿ü"w±å4`ÀÓ^<ÿüógΜÉÍÍMNNþôÓO«U«&­ûûû?ò=¹víÚóÏ?oºkéÒ¥æ¼PŒª¨C•*U^}õUÓ¿ýö›t£¤Coß¾=qâÄ.]º¸ºº6hÐà‰'žØµkWÁ Š}`~~þ¦M›‚‚‚êׯ_¹råúõë÷ìÙó‹/¾xøð¡i›·ß~[zà!CÒÒÒ¦L™Ò¾}ûjÕªµiÓæ_ÿúWÁ-‹Ú·oߎ;¤Û3fÌX»vmëÖ­ííí}||ÆŒ³qãF鮸øøK—.•þ†Ô­[wíÚµC† ‘~ü׿þ•™™)÷§@ãUPüü|ÓíÒçË?üðÃÈ‘#oß¾-ý˜‘‘‘””´gÏž_|qÍš5¥ùä“ÁÁÁÉÉÉBˆsçÎ5nÜø‘ïÉĉ¿ýö[!Ä;w>Ü¿›|tŠŽ#uÈÎÎ^µj•t»]»v¾¾¾%m™‘‘1bÄ)5º¹¹ 6,((HºëÓO?ýòË/KzàæÍ›¥Ìg0zõêÖ¢E é®­[·îß¿¿Ðö¼páBýúõ;vìX¹reiqË–-'Ož,é%Ž9"Ý:t¨‹‹KÑ vîÜ;lØ0sÞ–îÝ»WªTIº}âÄ }ôŠà@¡ÂÂÂüþäëëëááñÍ7ß!¼¼¼¾øâ‹R¸`ÁéÄ‘úõë_¾|YÊ|3gΔî-¥ã¸gÏéÆäÉ“üñÇ/¾øâܹsmÛ¶•úé§¢ùøã¯^½kÊŽ%LJÞºuKº]Jð-ƒÁàíí-ݾyófÑ úôéSôZbĈüüü¸¸¸U«VM:µØGeddܽ{WºíææV¦WÌÉÉyë­·>úè#ÓU===M'Ùb0Jù±¨J•*yxx¤¤¤!®^½Zì6wïÞ•^½råÊU«V5§lÓ„ÚËË«è½_}õ•ém€ âG*P¥J•ÐÐPSñ?ÿùOI[V«V­J•*ÒmS+ÎLï¿ÿþ’%Krss}}}#""~þù猌ŒZpG:wî,ÝøþûpO“&M<<<<<|8''GºÝ¡C – E¨Æßþö7éFZZZIÛ Óùøñã¦õ›7ovêÔ©S§NAAA%’#""¤Ë—/íµ×ZµjåààpãÆ îÂK/½$ݸvíšé$q“;v˜Ú‡=zô0ç —-[&ݨZµjÁÑ<XÁ€jÊÅÅÅÅÅEú iéK\ Þ={Jÿ&˜rX²dIÇŽ³³³Fãœ9sæÌ™ãáá‘–––——'mP¹rå­[·{ÞwXX˜4ˆÏÌÌ4}wŽ¢fÍšï¾û®M>ºFÇ€j¸»»K7K7 !<==×­[çêê*„¸uëÖ×_mJ3gÎ,é˜EƒÁðä“OJ·¥sq¾ûî»Úµk›.^0¨UDË–-øá‡‚—ãIII1¥Æ DFF¶iÓ¦ØÇ&'''$$$$$,¦FÛ·o7]x¬‡à@5Lß§wýúõ?þ¸”-‡ rîܹW^y¥}ûö... 40`À¡C‡ÞÿýRµtéÒ–-[ !ìììZ·nýÆoÄÆÆ>õÔSÒ½7n|ä÷G›©K—.—/_^ºti=<==œœüýý ´téÒ‹/?òìííkԨѡC‡·ß~;>>þïÿ»M>zg0r×JñðáÃ;v!† "w- 8G˜…Q5ÌBp€YŽ0 Áf!8À,G˜…à³`‚#ÌBp€YŽ0 Áf!8À,ÇG¸r势¿ÿÏ?ÿ,w!2#8>† ä.@ä.@¡222.]ºôý÷ßoÚ´IîZàX¼Þ¼ySî*„àX¼÷ßÿ?þB|ùå—G•»ù‹×µkWéÆä®@Ž–çïï/w Ä¥Kñe{€Ñ`ƒªlò"J`”»ØˆAèåÏt!7Ž/ã?2š@p´ }þa‚¿¿?½5Êô‹éѬl¿ÏŒæg²TèeT•¨Ê½£ªÚËŠÐÆßzCþHÕõGÚrtÛ$"8Ù#güÅôÈöFòŸE B¨4=˜t ´æ‘¹P·áå@p`#%ýò*öwVÁ€XðqÈ…¥W#ÔÖ|Än–|—†ö¢ÔtH.„XEÑßb¥üò*ÚG´X@,G5*UllÐÜ^B”I‡° ‚#Ë(ô»Œ˜hu…öR‹»Q\L$#BFGåd~R ‹މe-E½HŠúP()¡(GÀböìÙ#w ¶`ú¥öÈ_g¶ ‹rÿfµÖGORTR#`qG@¹HVA£QH€5…"5Z©Q8¨°‚# D¤F« 5êFÀªìä.@a¤F« 5ê©°6‚# ,¤F« 5ê©°‚#  ¤F« 5ê©° ‚# ¤F« 5ê©°‚# ¤F« 5ê©°%‚# ?Ù©*GjlŒàÈLÎï¡Öðo\R£Û#8JGj,ûÞ‘µÔÈ‚àÈIžCIP9R# ‚# R£å‘u€ÔȈàȃÔhy¤F 5ò"82 5Z©QH€ìŽ€>¡r¤F@ Ž€­Év­o­"5ê©P‚#`S ©-½k¤Fí#5ÊApl‡Ôhé]#5j©P‚# iN›#86"C»QÛ©‘v£Ðn”†àØ©ÑÂH:@jˆàÈӨˆԨ¤F@™Ž€ÕÉÐûÓp»‘Ô¨¤F@±Ž€u1¤¶è®‘µÔ(Á© "GÀŠJOqÚX6´u€v# pGÀZ8´Ñ¢»FjÔ>R# |G@ ©Ë²k¤Fí#5ª@p¬ÂÖCj §Fè©P ‚#`y¤8K¢ÝŠAplvcYvÔ¨}´!8ÆÚr»FjÔ>R# .G€'F«H:@»P5‚#PQ¶nÿi¸Ý­#5jGp¬ËÂíF §FÚ xG BR[©Qh7@pÔCÃíFh©Ð‚#P~´-ƒv#¨ÁP ­¶I:@»Ð ‚#PN6m7j55BH€–ȇv#¨ Á(Ú€9h7Cp,ŒsbÌE»QëH€ö2³iP«íFR#¨Á°$†Ô€„v# IG lÈr@»QëH€V‹ñmèK»ÑŒý"5€Z2Ðj–,ˆv# aGÀ2 Âp%ñŠåžN£•v#¨Á0—í²œVS#t€v# mGÀ¸v£Yh7j©Ð<‚#`ÚÞ/R#¨Á¨(Ú€ ÝèÁx4ÚÞ/Ú G Bh7‚v# Gàh7Vx¿h7j©Ð‚#P~´ºâ w6²eË–Í›7'$$T©R¥GÓ¦Msww/eûœœœ/¾øb÷î݉‰‰îîî-[¶7nœŸŸŸÜû[£ÝXáý¢Ý¨q´]ÑEÇqéÒ¥³gÏþå—_Ú·oïââùòË/ggg—´}^^Þ¨Q£-Z”––Ö­[·ÚµkïÝ»÷©§ž:yò¤Ü»¡Ýøh¤FÐíÇøøøÕ«W{yyíÙ³gõêÕ{÷î ;{öì¢E‹JzÈ7ß|súôé'žxâ‡~øè£6lØðùçŸ !fÏž-÷ÞÀ¦h7¥£ÝèöƒãæÍ›óóó'Mšäéé)­Ì˜1ÃÕÕu÷îÝùùùÅ>äôéÓBˆQ£F98üw”ß©S§¦M›^½zõ÷ß—{‡ ´v£Ö‘Ò~p>>Bˆ‚Ñh4¦§§ÛÙÙ™¢$`1´*¡ñàh4jÔ¨Q£F‚ë7B\¿~½ØG 0 råÊï¿ÿþ±cDz³³“““ß~ûí7n„„„T¯^]î}‚”çh7>íF­£Ýè“ÆûgYYYyyynnn…Ö]]]Å_{ŠùûûoذaôèÑ£G6-Ž9ræÌ™f¾®¿¿¡•={öÈýf ¬&&&–p(ö®7n”ù5|}¯\%½j5,åÝÓ¢r|ô «¸$úüèuèñÇ—»¥Ðxp”N®Zµj¡u!ÄÝ»w‹}TFFÆ|™™Ù¼yó–-[¦¦¦>|xÛ¶mÿûßûöíkÎëÆÇÇ˽ë¨?Û ‹¹Kj76,þ 6eTއ(A£h(4·_¥ÒàçX2Úéê£×­¢¿Ö‹vˆtBãÁÑÍÍÍ`0deeZ¿ÿ¾ø³ïXÔôéÓúé§3f<ÿüóÒJrrrhhèo¼±}ûv___¹w ZÁÑUÑø1Ž®®®E;‹BÓyÖݾ}ûÀ52¥F!D­Zµ^ýõ‡~ûí·r﬎8W!ݨu´=ÓxpBxyy¥¦¦JIÑD:4ÇËË«èö©©©Bˆ Z—wîÜ‘{‡ 'Kž£É|JjMÓ~pìÝ»w^^^tt´iÅh4FEE¹»»ݾAƒööö—/_.ôŸÔÒñ 5’{‡`]šŒs€¥ÐntNûÁ1$$ÄÎÎî“O>‘ŽkB¬^½:%%eذaŽŽŽÒJfffbb¢trœ³³s÷îÝ“’’>úè#ÓÂ/_¾Q©R¥   ¹w²¡Ýø¨¢Ý¨q¤F?9FQ«V­iÓ¦-X°`РAݺuKJJЉ‰iÞ¼ùK/½dÚ&**ê7ÞðóóÛ±c‡â½÷Þ{úé§#""víÚÕ¬Y³ÔÔÔŸ~ú)??öìÙ=ö˜Ü; íG!Ä /¼P³fÍmÛ¶íÚµËÇÇgäÈ‘“&M’®ÈS,]»v­\¹òðáÃtwwïÑ£Çk¯½Ö²eK¹wÖe£‹~Ón„ Ñn „àËó÷÷ç:Ž*UÁà˜˜˜hÖÝŽšcîG¯fÇbéá£G±tû»^ûÇ8f¢ÝXÒujÔR# Áf!86D»*D»€ ÁÂfsjÔŒàØ íF¨íFÚ˜…àØíF¨íF…¡w´0Á°>ÚP!ÚŠ"8À,Gèš-æÔ´¡B´‹à³¡_´Ë»S´5Žv#€’`‚#PWá) íF­£Ý Gè”-fÈšœStŒàÀl´µŽv#€Ò¿à´JBp„êʃv£ÖÑnðHGàh7P ‚#t‡PW´µŽv#sK#™4Šàü—o„nÑn`&‚#ô…n`y0§!Ž€„Ób [´˜à T´"8BG¬Ý lèëK»êB»@™N‹)íF@Gè…ÐnPVGÀB †Ä+Wä.²{D»ðGèsjèíFå@p„.X}N­½A8íF@GèíFèíFåCp*Œv#@ŽÐ>íå: "h7(7‚#ô‹95eBp*F{ýLæÔ€¡qÚËu@E0§PGè”eæÔÚ‹¥´%#8€^ÐnPAGhYI AN‹)íF@©Ž@yioN M£Ý âŽ„´Fp„fYwNM»ªB»€E`‚#æÔG»€¥¡MÌ©°8‚# {´æ!8eD»ªÂœ€¡A\÷» h7ÌFpÍ¢ÝÀ²Ž@Y0§èÁZܺ ˜SkíFGpÌF» oGèíÆbÐnÔ4Ú¬àM¡'€õóh,“Òn”ÁÚÇœzÜ€•¡ë  4GÀ ˤ̩5v#ë!8Bã˜S`)Gh„{‚´¡´XÁf!8B˘S`AGhsj³w‡9µ–1§`mG˜…àͲÀœšv#Ôƒv# 8Bõ4–îP,‚# ´5v#Û 8B›˜S`qG¨é›!8:ÀœZÓ˜S°‚#4ˆ95Ö@p„Š‘îÌB»QÓh7°%‚#ÌBp„Ö0§ÀJŽ€¦1§Ö4æÔlŒàµ²V[v#% 8BS,0§ÖÚšF»€í`‚#T‰95tŽv#Y¡Ì©ÿ‚95ÀÒŽ0 ÁêÜڌ}¡Ý¨e̩ȅೡà Ý@FG@Áœ€G#8Be´ðP‚#´€9õÿÐnÔ4æÔäEphc`‚#Ô„€=£Ý@vr`#[¶lÙ¼ysBBB•*Uzôè1mÚ4ww÷ÒrîܹU«VÅÅÅÝ¿ßßßüøñ;v”{?PŒŠÎ©µ”F™S¬IÇ¥K—Ξ=û—_~iß¾½‹‹KddäË/¿œ]ÊCöïß?|øðýû÷{zzÄÆÆ†……íß¿_î]öƒc||üêÕ«½¼¼öìÙ³zõê½{÷†……={vÑ¢E%=äîÝ»o¾ù¦ƒƒÃ† ¾ùæ›Õ«Woܸ±R¥Jo¿ýv~~¾Ü;¤_Zê ZíFMcN @ ´7oÞœŸŸ?iÒ$OOOieÆŒ®®®»wï.)FFFfdd¼úê«mÛ¶•VZµjõÄO¤¤¤œ;wNîÂ_0§Àf´Ož]ìC:d0\pqáÂ…ñññ­[·–{‡èíF ¡ñ“cŒFcBBB5jÔ¨Qp½qãÆBˆëׯ·k×®è£ÎŸ?ïîîîíí}êÔ©ØØØôôô&MšôéÓÇÙÙYîJÀœ`}ŽYYYyyynnn…Ö]]]…¿ÿþ{чäääÜ»w¯Q£Fÿüç?7nÜhZ¯[·î‡~Ø¢E s^×ßß¿ÐÊž={ä~3ÔÍ×·á•+‰‰‰]lè{%ñJ¢H,ßs6ôõM¼rE$–óáEݸqC®÷§¡h˜h¹AYYõ£÷õõ½RôO?”AÆ¿õ°¥Ç\î”BãÁQ:uºjÕª…Ö]\\„wïÞ-ú{÷î !îܹ³`Á‚ž={>xð`ëÖ­Ë—/Ÿ8qâŽ;Ìé;ÆÇÇ˽ëÔ°aC3+øœŠzBU¼4„•ß>\%ãÓу¢¿Ö‹vˆtBãÇ8º¹¹ †¬¬¬Bë÷ïßö ©\¹²tãƒ>¡ƒƒƒ««kÑÎbFF†ÂtžuAU«V­\¹²³³sPPPÁõ>}ú!.^¼(÷›¤GÅžúÌùÔÐN‹ (Ê Ž«W¯~òÉ'‡ ¶aÆb@,//¯ÔÔT))šHG yyyûOOOGGGƒÁPpQšPçææÊý&E»`+Ê Ž¯¼òJíڵϟ?ÿÞ{ïuëÖíµ×^Û»woNNNEž³wïÞyyyÑÑѦ£ÑåîîPìC‚‚‚222.]ºTpQºvO“&Mä~“èíFJ£¬à8yòäüñ믿>|¸‹‹Ëþýû'L˜Ð¥K—þóŸgΜ)ßs†„„ØÙÙ}òÉ'ÒqBˆÕ«W§¤¤ 6ÌÑÑQZÉÌÌLLL47dÈ!ÄìÙ³M]ÏsçÎ}öÙg®®®}ûö•ûM‚%0§ ì”ûŸ³¹¹¹‡úþûï÷ïßÿàÁ!DýúõüÔSOÕ®]»LOµvíÚ Ô®]»[·nIII111Íš5[»v­é2=»vízã7üüüvìØ!­¬ZµjÉ’%®®®íÚµËÊÊ:yò¤Á`â‰'ùrþþþœUmA*:À111ÑÖçW2§V+}ôt•O†¿õPÝþ®WîåxzõêÕ«W¯¬¬¬­[·.Y²$))iÙ²e}ôQûöí‡ 6pà@{{{sžê…^¨Y³æ¶mÛvíÚåãã3räÈI“&IWä)É+¯¼âáá±~ýú£Gº»»÷îÝ{üøñ~~~r¿+ô‚Ô@ýSZZÚ?þ¸gÏžcÇŽIg¥Ô¬YÓÑÑ199YѨQ£O?ýÔÇÇGî2 Óí…X‰å;ŽV›SÛº÷@»Q1¬ñÑUŽ£néöw½;Ž)))?üðÃÞ½{Oœ8‘——'„ðððèׯ_pppÛ¶m…G]ºtéùóçßyç5kÖÈ]/¬È*sj@ñH”IYÁñË/¿Ü»wï©S§òóó…5jÔèß¿ÿO<Ñ®]»‚Sé®]»¶mÛ¶C‡'Ož”»d½PVp|÷Ýw…nnnýúõ{â‰':vìXÒQŒÎÎΕ+WVàœJ§™ó©™SlNYÁqذaÁÁÁ:u2ç¬ÚúÄœšÇœ€b)ë:Ž»wï>vìXI©qüøñýû÷—»FØŽfšƒ–G» eǬ¬¬‡–t×µk×~ýõW¹k„šE¡x´(™ü£ê¨¨¨×^{Íôãúõë¿üòË¢›åççÆzõêÉ]/€NÉííí«W¯.ÝNKK«T©R•*UŠÝÒÍÍmÆŒr× áB<%bN ‰üÁ±k×®111ÒmÿÐÐЙ3gÊ]´ˆ9595…“?84f̘víÚÉ]Š¡¬à8}út¹K€r1§–ÞÞ­¢Ý@ùdŽ_}õ•¢C‡~~~¦K7bÄyk† X~ªÌœ€ “98Λ7O1wî\)8J?–Žàý¢Ý•ÌÁqüøñBˆ–-[J?N:Uî7 ÅœÚÆœ€*ÈÇWðÇ—^zIÞz Ì©P&e}s €1§ÈMæŽãÁƒËúž={Ê[3Xsjj!sp|å•WÊúøøxyk†íUèGæÔXˆÌÁqРAr¿Pb^ñ˜SkíF*"sp —û€Y89JÇœšv#@!øæ(ˆ6b`>æÔÔ…oŽ€Yøæh—6˜Ì©µ‹v#Õá›c h|Ó Ê¡è“c233srrä®6¢þ &sDZXgÏž]¾|y\\Ü;wìììj×®8vìØúõëË]ÔC9”9µv1§ FŠë8.[¶,$$äàÁƒwîÜqrrª\¹òõë׿ûî»ààà7Ê]lŠ95Š¢¬àxèС+VØÛÛ‡……íÛ·ï矎=xðà˜1c„ï½÷Þ™3gä®°ÚÚE»€J)+8nܸÑh4N™2eÖ¬YuëÖ5 BŸéÓ§¿ù曹¹¹Ÿþ¹Ü5Â*,>^Þš¡hÌ©°™ƒã Aƒä~ 3’^a´µ‹95µ“98†‡‡Ëý@qô>§@©”urLéÞ|óÍ^½zÉ]Œî%Œv# ¹ãXTZZÚ?þ˜””Th=;;û‡~°··—»@Àš˜SLYÁñÖ­[Çÿõ×_KÚ`Ĉr×K¢E€Š(+8~þùç¿þúkûöí¸sçÎãÇ¿óÎ;ÎÎÎ/^üòË/GŒ1kÖ,¹k„u•ÿGB(Œ95mPVpŒŽŽvrrŠˆˆ¨^½z¯^½ºvíÚ°aÃÎ; !|}}ß}÷Ýüã~~~r— Xsj€²)ëä˜ß~û­AƒÕ«WBÔ¬YÓÝÝýüùóÒ]!!!îîîŸþ¹Ü5Âbh .Ê ŽB;»ÿ•T¯^½ÄÄDé¶½½½¿¿ÿÙ³gå.V¤ë95íFíbN @3”½½½¯^½š™™)ýX·nÝS§N™î5 7nÜ»FRVpìÓ§OvvöÔ©Sùå!D»ví®]»vøða!DJJÊO?ýT»vm¹k€2 Ý@K”urLXXØÞ½{÷ïßo4W®\Ù½{w‡qãÆ^¼x1+++88Xîa–œ-3§À&”Õqôððøê«¯&OžÜ²eK!DíÚµgÏž““säÈ‘ÔÔÔÞ½{¿ð r×ká›P8eu…¯¼òŠéÇáÇ8ðܹs^^^¾¾¾rWeÀœ€Æ(.8”™™éèèèââÒ©S'¹kR1§ÀV”Ïž=»|ùò¸¸¸;wîØÙÙÕ®];00pìØ±õë×—»4XFѰǜÚC»€ö(ëG!IJeËBBB>^Þš  ÝP!™ƒã Aƒä~Àbh7Ð6™ƒcxx¸Üïl‡P5%~WµâæÍ›.\HJJzøð¡¯¯oÓ¦MkÕª%wQP µàÈœ NŠ Žiiiüñ¦M›òòòL‹öööÏ<ó̤I“\]]å.ŠÇœ€æ)+8æåå½öÚk±±±NNN}úô©_¿¾½½ýÕ«W8ðõ×__¸p᫯¾²··—»L=RVp\·n]lll›6m>þøcOOOÓú;wÆ»nݺ1cÆÈ]&ÊÃb82§@&ʺxtt´Á`øðà ¦F!DÍš5—-[fggwèÐ!¹k€b0§ Ê Ž/^¬_¿¾OÑ»¼¼¼{ì± .È]#P´j¦¬àèää”]Ò½ÙÙÙÎÎÎr×ËÐéœåëëK»€(+86mÚôÖ­[±±±Eï:þü7š4i"w(ò ¬à(}‘Ì„  ËxøðáqãÆ !(w@y1§¨œ²ÎªŽŠŠÚ¶mÛK/½äããÓ A!DRRRrr²bàÀ »Fȇ¾%É`0\¹rEî*À”…|ðAÇŽ?üðÃß~ûí·ß~“kÖ¬ùÆo 2DîêP|Ó Ú ¸àh0†:tèÐÛ·o_½zÕh46hÐÀËËKŠaN­QÒUxå.lAYÁñÆùùùõêÕBxzzºš#t95rSVp þã?Ž9âáá!w-°=Ωi74AYgUûùù !.]º$w!°…Ð0¾-€Þ(+8¾ýöÛÎÎÎ+V¬xðàܵ@IˆŸ(€²FÕžžž‹/~çw 4hРzõêU¯^½Ð6={ö”»L ,˜SkíF:¤¬à$ÝHIIùøã‹Ý&>>^î2Q~z<À­PVp”¾9ša™ 3sj”AYÁ1<<\î‹bN­QÌ©蓲NŽ)$'''++Kî*`1Ì©P5eu%—/_Žˆˆ8sæÌÍ›7óóó½½½[´h1~üø&MšÈ]P´5Šv#ÝR\püôÓO/^œŸŸ/„prr²··¿yóæÍ›7÷ïß?yòä—^zIîa.p@c”5ª>vìØâÅ‹ CXXؾ}û~þùçØØØ¨¨¨_|ÑÎÎnÉ’%ÇŽ“»FRVpüúë¯óóó§M›6kÖ¬ºuë !„··÷´iÓfΜ™ŸŸ¿aùkD9éîGæÔÅœ€ž)+8ž;w®råÊaaaEï>|x•*UÎ;'w°!æÔ(‰‚‚cnnîo¿ýæååeoo_L¡vv>>>ü‡¾Zè=òÑnÔ(ÚtNAÁÑ`0T©RåúõëéééEïÍÈȸzõjË–-å.@§íí퇚ŸŸÿæ›oþñÇïÊÉÉ™1c†Á`3fLùž|Ë–-!!!]ºt™9sfZZšùMNNnÛ¶í´iÓä~‡T¬<8ê½i €â(ër<Ï>ûl\\ÜÁƒûôé3lذ†  †ÄÄÄÿû¿ÿ»yófppðýû÷ÝÝÝ}ÆŒ£G–û½J0§h—‚Nޱ£Ñ˜P£F5j\oܸ±âúõë¥<öã?¾páÂüùó«W¯.÷~¨ ½B´JYG‹ËÊÊÊËËsss+´îêê*„øý÷ßKzà™3gÖ¬Y3räÈÎ;ÇÅÅ•õuýýý ­ìÙ³Gî7Ãf&&&þuA^)ýñ¾¾‰W®ˆ²5@Û´kÕª5mÚ´  4¨[·nIII111Í›7/ø]…QQQo¼ñ†ŸŸßŽ;ä®WÅÔ›ú€bÑn€B´…/¼ðBÍš5·mÛ¶k×.Ÿ‘#GNš4Iê>Âztt€#ßÐþ{ÚòüýýõyÇBG}EõŸÁ111‘+ºi‰ùG>zÝâ£×-Ýþ®×þYÕP •¦Fhsj(ŠàËÐoêcN Ð ‚#¬BG8B‹h7@±ŽP•v,i7ô„àA»JBp„Xà|j xG(sjÔ€àÿÜJApDE©´]XáݦÝЂ#,¬Ì8ê4xB‰h7@éŽ0 Á(;æÔ]"8¢B*z!æÔP æÔðHG˜…à”sj-¢Ýæ 8B>Ì©P‚#ÊOß4H»Q‹h7€™Ž0 Á2aN €Ú³1§Ö"æÔ`>‚#ÊI8 oGÈAsjÚZD»Ê„à³a̩Ђ#Ê£B£fæÔPæÔPVG˜…à< íF-¢Ýå@pD™UèBw31ªFùiüB<Ì©ø+‚#Ê@uÙ(ˆv#TÁ(íFŠ 8¢œ4>§†æÐn€Š#8EÐn 8G˜‹¦!:Gp„õ9!7æÔ`G”‡–¿i95% 8Ð8Ú`)G˜¥üÓfuÍ©i7P2‚#ÊLËsjhíF ÜîÞ½ûꫯ֫WÏÅÅ¥{÷î111rWTŒîÝ»Ï;Wî*t„à ËÈÈh×®ÝçŸÞ­[·1cÆüòË/?þxll¬ÜuýEllì‘#Gä®B_Žx4æÔP)Ú@¹-Y²$!!aõêÕ_}õÕ²eË¢££ Ô)Sä®K!rssÿýïÿóŸÿìß¿~~¾Üåè ÁU9r¤]rrrÁÅ-ZøøøäååUðÉ7mÚäãã&ýèëëûôÓOGEEýöÛoæ<üäÉ“ ðöö6ü•££cÅw<55µÿþsçνsçŽUÞY”Œàˆ²Ñ쎴¨Mhh¨ÑhüöÛoM+qqqqqqÏ=÷œ½½}Ež9##ãÒ¥KAAAƒÁ´Ø«W¯üü|sŽtÜ·o_ÇŽÏ;÷üóÏ¿ûî»BˆÀÀÀ©S§Nž<¹â;îååe4FãÅ‹­÷ö¢XríRלšÃœš×¯_?ww÷ÈÈȱcÇJ+›6mBŒ5ª‚Ï|ëÖ-£ÑèååUpÑÓÓSñÈ&߃Fåããsüøqooo!Ä´iÓúöíÿÎ;ïT«VMî· BpÄ#è"þÑn B•*U:tèºuëRRR<<<„ß|óM‡š7o^hËÜÜÜ;w–ô}àÀ‘‘‘£G®`mÁe Ù954‡v#,«ÀÀV¥üY ýì³Ï¾ûî»1cÆœ>}úòåËE7ËÌÌ+w!°5FÕÐ+æÔP^AAAAAArWÐqDñÊ9pfN €vñhü¦AښÜl€à³a9j™SÓnÔÚ`G£`Ôàœ” ÁB»2¡Ý6Cp€YŽ(L-­C@ÐnÛ"8¢4æਖ°Éœ€ 8P+Ú`cGèíF*†àˆ¿(Ï…xÔ2§†¶ÐnÛ#8Bh7@ݽ{÷ÕW_­W¯ž‹‹K÷îÝcbbJÚòádž¿ªY³¦Ü{PX÷îÝçÎ+wêæ wPf´kËÈÈh׮ݵkמ~úi­[·>þøã(ºqbbb^^^çÎ}}}M‹...rïÄ_ÄÆÆ9r¤wïÞr¢nGüfçÔ´ Œ–,Y’°nݺQ£F !&NœØ¶mÛ)S¦ìß¿¿èÆ Bˆyóæ)0–åææîß¿ÿèÑ£ùùùr—£zŒª¨ íF@2räH;;»äää‚‹-Z´ðññÉËË«à“oÚ´ÉÇÇ',,LúÑ××÷é§ŸŽŠŠúí·ßŠn,ÇF•ïµNž<9`ÀooïBÃnGGÇŠ¿K©©©ýû÷Ÿ;wî;w*þl 8Bëh7ШÐÐP£Ñøí·ßšVââââââž{î9{{ûŠ}úÀ###G]ÁÅ¡iÌ©µ…v#äb†Š?I¹•ò_ò¡¡¡Ÿ}öÙwß}7f̘ӧO_¾|9""¢èf™™™ƒ.ñù‹üµ’bè½{÷ .fdd!jÔ¨QôY…æÔÐÚ LŽYYYyyyÒ÷¦äêê*„øý÷ß‹}”ôÝšÅÄĬ^½ÚÉÉ©”ïV/Èß߿Њ4þV_߆W®$&& !„h(þ¼U¢†âÑÛÈ¥¡oÃÄ+‰Bîênܸ!÷;¡ŠýÃV,>z@íJÿ7Çôõ‰Ðxp”¾³jÕª…Ö]\\„wïÞ}ä3äåå}õÕW .ÌËË[¼x±‡‡‡9¯«–¯!*ø%iøÂ4ƒAJþJ5…|á›BÊP5•¶ùèU+ý¯pÑ_ëE;D:¡ñàèææf0²²² ­ß¿_üÙw,ÅñãÇçÎûË/¿øøøüë_ÿêܹ³Ü;dfÍ©•Œ£° GWWעŌŒ !„é<ë¢rrrÂÃÃ7lØP¹råñãÇ3¦¤‹>° •¶@'4…^^^ Õ«W7-J‡2xyyûüüü)S¦üûßÿîÓ§Ïœ9sJÉ—êU¶]”|Z íF !5€Âiÿr<½{÷ÎËË‹ŽŽ6­ƨ¨(ww÷€€€b²aÆÿûßÏ>ûìòåË5™ RýœØŠöƒcHHˆÝ'Ÿ|"×(„X½zuJJʰaÃ¥•ÌÌÌÄÄDé¼H£Ñøå—_V«VíÍ7ß”»v< íF ¡ÝʧýQu­Zµ¦M›¶`Á‚AƒuëÖ-)))&&¦yóæ/½ô’i›¨¨¨7ÞxÃÏÏoÇŽwîܹvíš³³óˆ#Š>Û!CFŽ)÷>U”væÔëëÞ½{ïÞ½çÌ™#w!*«M“´…/¼ðBÍš5·mÛ¶k×.Ÿ‘#GNš4Iº"OQRß1;;ûüùóEïÕØ‰ÕêžSÓnÔÚ€bÅÆÆ9r¤wïÞr¢²Ú´JÁQ1pàÀ–toppppp°t;00P-Wa´Ú K¹¹¹û÷ï?zôhDDD~~¾Ü娦6ÍÓKp„‰F¢ íF ¡Ý”ÏÈ‘#¿þúë7nÔªUË´Ø¢E‹ÔÔÔ7nØÛÛWäÉSSSû÷ï_}úòåËE7ËÌÌ+sNM»Š ]¾|ù¬Y³’’’V®\Yì6¶6jÔhùòåcÇŽussBää䄇‡»¸¸ 0@ÞÚPqŒªõH­sjhíFÀ‚ºtéR§N+VÔªU«oß¾ÅncñqðÆÝÝÝ‹½¶Ž££ã²eËRSSÛ´i3þü… víÚ5::zþüù^^^6¨ VEp„JÐn€â †gžyÆh4†……UüòfÊÉÉIOOÏÎÎ.öÞààà˜˜˜V­ZEDD„‡‡»ººîÞ½{ܸqr¿U°FÕz¡ú95´‚v#`q‹-Z´h‘•žÜßß¿èßÙQ£F=|ø°Ø³¤%Û·o·öŽ[¬ŠŽ£î¨rNM»Q+H€6³ƒƒÃüùó ®üþûïóçÏ···úé§KìƒFåããsüøqooo!Ä´iÓúöíÿÎ;ïT«VMî· Bp„¬HTÁ ë«—ðïd¥J•†ºnݺ””!Ä7ß|Ó¡C‡æÍ›Ú277wçÎ%=ýSO=Uúëûî»ïÆŒsúôéË—/GDDÝ,33sðàÁ%î\É…¯]»6nܸï¿ÿÞÏÏoß¾}½zõzdIW¯^B´nݺàb«V­„çÏŸ·`mÇ8jš2!íFõ#5ò òôôŒŒŒBlÚ´ÉÉÉ)44´èf®®®Æ’•ôä7nlѢũS§V­ZõŸÿüÇœÔ(„pvvBºâ£tî³]1©£|µA.tõG!Ñ’Ô¨~¤F@vööö!!!kÖ¬IOOß¼yóàÁƒÝÝÝ‹nVŽqð÷ßÿÜsÏýãÿX¹reõêÕÍ/Iše_¸p¡à¢Ôkô÷÷·HmÁQSTsùFR#XHhhèòåËgÍš•””´råÊb·)ë8Øh4NŸ>½nݺ6l(ë Ú5Z¾|ùرcÝÜÜ„999ááá... ¨xmÁ@yÐn¢K—.uêÔY±bE­Zµúöí[ì6Ò8Øüç¼páÂÅ‹›6múâ‹/ºkèСܸqã믿þüóÏ/Y²¤ÐŽŽŽË–-2dH›6m^yå{{û­[·ž:uê£>òòòªxmÁQƒ”~Z íFõ#5Êa0žyæ™Å‹‡……Uðò& Bˆ .š8 !5j4pàÀœœœôôôìììb3gΜˆˆˆ´iÓf÷îݲß ,‚à¨JÈ„fTIjT=R# 4‹-Z´h‘ŸpРA¥ÿ55jÔÇ‹=KZ°}ûvk︿¿?ÿÙgUë‰:¢%Ô@ñàÁƒH_ ]!8j¢O‹¡Ý¨r¤F’cÇŽ5mÚôÙgŸ•»Ø£jxt3Qöv#©´"(((((Hî* :Žš¢Üv#©Qýh7ŽZ ‚v#TŽÔGØíF•#5$Gí(qN-o»‘Ô¨r¤F€ ÁQõ=…&5ª©PÁQ#Ún„š‘…a5´ÕŒÔ(Šà¨nR?Q‰íFR£š‘Å"8 HjFj”„à¨bè'ÊÕn$5ª©P ‚£ê)÷Ûb 6¤F@éŽjE»–Ej<ÁQÝ”Õn$5ª©@)>|ø÷¿ÿ½S§NrRŒîÝ»Ï;Wî*t„à¨E²´IªEjPºÙ³g?~\î*Š{äȹ«Ð¹ @y”vR#ʂԠt?üðCxx¸ƒƒ‚Cnnîþýû=‘ŸŸ/w9úBÇFjT-R# j#GŽ´³³KNN.¸Ø¢E Ÿ¼¼<‹¼Ä­[·ž{î¹_|±N:ezàÉ“' àíímø+GGÇŠW•ššÚ¿ÿ¹sçÞ¹sÇro'ÌBpTeµIªEjÔ.44Ôh4~ûí·¦•¸¸¸¸¸¸çž{ÎÞÞ¾âÏo4ÃÂÂÜÝÝ?üðÃ2=pß¾};vŠý‹úÙgŸ}÷ÝwcÆŒ9}úôåË—#""Šn–™™9xð`ó÷.##cøðá}ûö0aBYKºzõª¢uëÖ[µj%„8þ|Åkƒ¼Žj¢”v#©QH€öyzzFFFŽ3fÓ¦MNNN¡¡¡E7suu-Ó_ÿU«V]¹reðàÁ .”VîÞ½›——·`Á‚zõê >¼”Ç:;; !rss .Jç>ÛÙsfEYkƒ¼Žš@jÄ£M²·· Y³fMzzúæÍ›ìîî^t³²Žƒsrr„K–,)¸˜––6cÆŒž={–ýüü„.\(¸(õýýý+^äEpT™¿*†Ô¨BÔh[hhèòåËgÍš•””´råÊb·)ë8xÖ¬Y³fÍ*¸Ò°aCooïcÇŽ=²žÀÀÀF-_¾|ìØ±nnnBˆœœœððp—T¼6È‹Ëñ¨F‰]E›µI*$5ù—а.]ºÔ©SgÅŠµjÕêÛ·o±ÛHãà’”ãE7nÜèîî^ìµu—-[–ššÚ¦M›ùóç/\¸°k×®ÑÑÑóçÏ÷òò²Am°*‚£šÈÙn$5ªãi@ Ã3Ï<#]sÑ"—o4GNNNzzzvvv±÷ÇÄÄ´jÕ*"""<<ÜÕÕu÷îÝãÆ“û­‚0ªV‡?O‹)á«¿<©QeOº²hÑ¢E‹Yõ% þ8jÔ¨‡{–´$ `ûöíÖÞqþ¡³1:ŽªQL»‘Ôˆâ0ž`m<8pà€ô•0Ð:Ž*Pb»Ñ¯MjTlãØ±cM›6}öÙgå.¶FpTyÚ¤FUáˆF6$wÁQéŠo7’QF€m­´¯Š±â« !HªA£`3G¥³õšF£zÐhØÁQ¹dR“U‚ÈÁQÑ ·­—O«‘ #‚£BÙô<4Õ€ÈÁQ¹lÔn$5*‘ G%2„0Z?52žV<"#@QŽŠSÌÚJ©‘4¢`DF@.þþþr—(ÁQ‰þ2¤¶xj¤Ñ¨lDF@FñññeÚ>11±aÆrW ØÁQYŠR[òÙ…DFå"2Žà¨ Ö=´‘Ù´RIyQŠGpT0K¥FŠD^¨ÁQ) ·-’‰ŒÊC^¨ÁQ,Ÿ‰Œ C^hÁQ~NDF%!/´„à(3K¦F"£2˜Â¢ /´…à(§¿¤F)m”/gåFXèÜèWáÔh4–95þüŸ‘Ôhk†¿2F£ñÊ•+¤F€†K´eË–€€€.]ºÌœ93--Í‚O^Lj,Ãÿš *6QlR4‘¶yüñÇå.òà£×->zè £êâ-]ºtåÊ•U«Vmß¾}RRRddäå˗ׯ_ïìì\ñ'ÿ_j,ÓxÚ4 %)Z_Áѳ„V"t‹¿zõj//¯={ö¬^½zïÞ½aaagÏž]´hQÅŸÜ Âh0ÌOÓ_´&C ŒEÈ])ò#8cóæÍùùù“&Mòôô”Vf̘áêêº{÷îüüür?­Á Â`4£A<"2È‹c(•±rW €‹qòäI;;»ž={šVìíí»wïžššzúôér<á#£0 Eþg$/–ÆPÆRɽ+¨ Ç8f4jÔ¨Q£F‚ë7B\¿~½]»vf>•Ô_Rü3ü÷ÿ C‘í´’^Šh%>dAp,,+++//ÏÍͭк«««â÷ßä3\ºtÉ¡þš¤JÈU6Š[V'ekð÷÷—{_UY¬Š^·øè¡+Dz³³…U«V-´îââ"„¸{÷î#Ÿ~Ð$Žq,ÌÍÍÍ`0deeZ¿ÿ¾ø³ï CÇÂ\]]‹v322„¦ó¬ô†àX //¯ÔÔT))š$&&JwÉ]€<ŽÅèÝ»w^^^tt´iÅh4FEE¹»»È]€<ŽÅ ±³³ûä“O¤ã…«W¯NII6l˜£££ÜÕÈÃÀ)ÀÅZ»ví‚ j׮ݭ[·¤¤¤˜˜˜fÍš­]»¶èezt‚àX¢ï¿ÿ~Û¶mgÏžõññéСäI“¤+òèÁfáG˜…à³`‚#ÌBp€YŽ0 Áf!8ZÌ–-[BBBºté2sæÌ´´4¹+‚-dgg¯[·nÀ€mÚ´éÖ­Û˜1cŽ9"wQ°µäää¶mÛN›6MîB`#çÎ7n\PPPûöíGŽyüøq¹+‚-äää¬Y³fèС½zõš8qâåË—å.ÊÖ¸¸e,]ºtåÊ•U«Vm×®]RRÒÕ«W[µjµ~ýzggg¹KƒåææŽ1âÌ™3®®®mÛ¶}ðàÁÉ“'>|8a„±cÇÊ]lÄh4†……8qbРAááár—«Û¿ÿ„ òóó[¶léêêzäÈ‘ÜÜÜ+VôêÕKîÒ`Eyyy#GŽ<}út­ZµZ¶l™––vòäI;;»/¾ø¢}ûörWgCFTØÅ‹›4iÒ­[·[·nI+ï½÷^ãÆçÍ›'wi°®¯¾úªqãÆÃ‡ÏÊÊ’V.]ºÔ¡C‡¦M›þç?ÿ‘»:ØÈÚµk7nܸqã©S§Ê] ¬.==½]»v­[·>uê”´òóÏ?·hÑ¢sçÎyyyrW+’þÁŸ8qâÇ¥•£G6mÚ´_¿~r—fSŒª-`óæÍùùù“&Mòôô”Vf̘áêêº{÷îüü|¹«ƒíÙ³G1kÖ,SkÙÏÏïÕW_ÍËËc`­—/_^ºti“&Mä.6™‘‘ñꫯ¶mÛVZiÕªÕO<‘’’rîÜ9¹«ƒ>}Z1jÔ(i¥S§NM›6½zõêï¿ÿ.wu¶Cp´©YݳgOÓŠ½½}÷îÝSSS¥?gЪÄÄĪU«6o޼࢟ŸŸâúõërW«ËÍÍ>}º»»ûŒ3ä®6rèÐ!ƒÁ0xðà‚‹ .ŒoݺµÜÕÁŠ|||„3¢ÑhLOO·³³3EI=ÐÑ®Z‰ÑhLHH¨Q£F5 ®7nÜXqýúõvíÚÉ]#¬eÕªUEÿ½ˆ‹‹BÔ­[Wîê`uüñ… Ö®][½zu¹kœ?ÞÝÝÝÛÛûÔ©S±±±éééMš4éÓ§G´kÞ€Ö¯_ÿþûïW©R¥M›6iii7nÜxæ™gtõ/Á±¢²²²òòòÜÜÜ ­»ººŠ¿þ§ ´§Y³f…VbbbV¯^íääT¨!í9sæÌš5kFŽÙ¹sgé¿ y999÷îÝkÔ¨Ñ?ÿùÏ7šÖëÖ­ûᇶhÑBîaEþþþ6l=zôèÑ£M‹#GŽœ9s¦Ü¥Ù£êŠÊÎÎBT­ZµÐº‹‹‹âîÝ»rÉËË[¿~ý‹/¾˜••õÁxxxÈ]¬(;;{úôéuëÖ2eŠÜµÀvîÝ»'„HHHصkׂ Ž?5~üø_ýuâĉүhUFFÆ|™™Ù¼yóÐÐо}û:;;oÛ¶mÿþýr—fSt+ÊÍÍÍ`0deeZ¿ÿ¾ø³ïÍ;~üøÜ¹sùåŸýë_;w–»"Xׂ nܸ±qãF”ºR¹reéÆ|`ºøÎ¸qã’““###wîÜùôÓOË]#¬eúôé?ýôÓŒ3žþyi%99944ô7ÞØ¾}»¯¯¯ÜÚÇŠrpppuu-ÚYÌÈÈB˜Î³†Våää¼ÿþû£FJNN?~üîÝ»Išwâĉ7¾òÊ+œ ¡7U«V­\¹²³³sPPPÁõ>}ú!.^¼(w°–Û·o8p Q£F¦Ô(„¨U«Ö믿þðáÃo¿ýVîm‡Ž£xyy%$$ddd<<611QºKîê`EùùùS¦Lù÷¿ÿݧOŸ9sæðß :!}WDDDDDDDÁõíÛ·oß¾ÝÏÏoÇŽr×kñôôLOO7 ¥Æsnn®ÜÕÁZRSS… 4(´.5ïܹ#w¶Cp´€Þ½{ÇÇÇGGG?ùä“ÒŠÑhŒŠŠrww»:Xц þýï?ûì³sæÌ‘»ØNýúõMÙ%wïÞ=|øp­Zµ¼½½å.VôÅ_\ºtIºt†Dºò—óÔ° ØÛÛ_¾|Ùh4üφøøx!D£Fä.ÐvøÊA HNNîÝ»wƒ ¶lÙ"³jÕª%K–¼øâ‹|w­†Æ~ýú¥¥¥>|Øtäô)..nèС|å \¸paðàÁ­[·^¹r¥t¶sçÎI…Þ½{÷ßþö7¹ „µ¼úê«xýõ×Çogg'„¸|ùrXXØýû÷·mÛöØcÉ] -cíÚµ ,¨]»v·nÝ’’’bbbš5k¶víÚ¢—éfܾ}»[·nÎÎÎÅþ{1dÈ‘#GÊ]#l„à¨+RkÀÕÕµ]»vYYY'Ož4 áááO<ñ„Ü¥ÁŠRRRž~úéß~û­AƒÍš5KMMýé§ŸòóógÏž=bĹ«³FÕ–ñ /Ô¬YsÛ¶m»víòññ9rä¤I“¤î#´êÆBˆìììóçϽ—Sd­zå•W<<<Ö¯_ôèQww÷Þ½{?^úÊ(h˜‡‡Ç®]»V®\yøðჺ»»÷èÑãµ×^kÙ²¥Ü¥ÙG˜…ËñÀ,G˜…à³`‚#ÌBp€YŽ0 Áf!8À,G˜…à³èË´iÓüýý<(w!â“O>ñ÷÷ÿꫯä.ÌEp€Yä.t*((ÈÃãmÛ¶ræ"8€<š7oÞ¼ys¹«€2`T Š“——÷ðáC¹«€ÂŽÔaöìÙþþþááá…ÖÏ;çïïß¹sçÜÜ\!DJJÊ’%K‚ƒƒŸ|òÉ>øàÖ­[%=­t®Ì±cÇ ­7kÖìïÿ{Á•#GŽL˜0¡OŸ>íÛ· ûä“O e»_ýuΜ9ÁÁÁmÚ´éÙ³çË/¿|òäÉRöhÍš5OŽ‘*¹qãÆêÕ«;uêÔ¢E‹víÚ…††îÛ·¯¤gˆmÖ¬Y÷îÝïÝ»gZ¼ÿ~Ïž=›5kvöìY¹?4ZCp BìÝ»·ÐúŽ;„ƒvppHII1bĪU«’““ëÕ«W§NëׯþùçÇOKK«È«/Z´h̘1{÷îÍÍÍõôôüðC//¯­[·¦§§ !.^¼(„ ±··—¶>|øë¯¿Þ§OŸ2½V«V­¦L™bgg'íò믿.„¸zõjIÛ;::.\¸ÐÁÁaöìÙ·oßž5k–³³ó¢E‹Le€¨† Îm¥9õ°aäÇŽ»råÊÇ{Ì´Á;wvîÜY‘MKKKLLôõõ-tt•*U:wîœ}þüy!„”\g̘qâÄ éhKGGlj'Ž?¾L/÷ÄOüÑÕÕÕÞÞÞh4–òfÍš;öæÍ›O=õÔ¯¿þúæ›o6hÐÀZŸ}ãr<T£yóæ 4¸zõj||¼¿¿nnîž={œƒƒƒMÛüú믇:uêÔõëׯ]»VÁC…W®\‘þ¯¿¿±üöÛoBˆ¹sçNš4éĉÏ=÷\åÊ•›5kÖ±cÇ~ýú5kÖ¬L/W§NrùÊ+¯ìÛ·/..®C‡Ç·è»ÿCp &üøã÷ìÙãïï}÷îÝ¡C‡šÓ7n|ï½÷rssëÕ«×®]»>}ú´hÑ"11qÞ¼yez•¼¼½bÅŠ§Ÿ~ú½÷Þ3 f¾t¥J•Êñ¶Ü¿ÿÎ;Bˆ+W®¤§§»¹¹Yÿ£ GGjb Ž'N”fЦ9õýû÷ß}÷ÝJ•*­Zµªk×®¦‡Ü¼y³¬¯’œœœŸŸ/ÝöõõBT©ReæÌ™¥?Ê`0H×BäääDGG¿õÖ[[·níÕ«WïÞ½­ú¶Ì™3çöíÛ§OŸž7oÞ’%K¬úrt‹c¨Iýúõ[´hqåÊ•sçÎýøãõë×o×®t×¹sçòòò ¦Fñçi+¥+4Ñþá‡L·½¼¼jÖ¬ùË/¿ÄÅÅÜ&//oذaݺuKIIùõ×_{õêõüÃto¥J•z÷î-ÍsãÆ «¾'ßÿýîÝ»{ôè±~ýz??¿;w½hXÁ€ÊH§ÈÌš5+++ëé§Ÿ6­{yy !.^¼˜’’"­äååmÚ´éË/¿BdggûlõêÕBlذ!++KZ‰‰‰1]dG2yòäüüüÉ“'_¸pAZ¹ÿþ[o½uþüùæÍ›{xxøøøÜ»wïçŸþôÓOM­Ê«W¯:tHaÕë)Þ¼ysÞ¼yÕªU{÷ÝwçÏŸooo?wîÜŠÜ E1ª 2ÁÁÁ ,ˆ···}ºwïÞÍš5»}ûvBB‚«««··÷ü!m3dÈ'N|ûí·ƒ®]»¶»»û•+W²²²4h ]yÛÎÎnæÌ™3fÌÿì³ÏêÔ©“••õË/¿ÆáÇXé­03fÌÈÈÈø×¿þ%åæ–-[Ž=ú³Ï>›;wî‡~(÷g@kè8POOÏ:!ºuëæééYð®Å‹O˜0¡V­ZÒõ»wï¾mÛ¶Y³f1ÂÞÞ¾Ø/¬[·î×_ݧO;;»Ã‡_ºt©víÚkÖ¬ñðð0mc0>øàƒ>ú¨W¯^ùùùW¯^mذáäÉ“·mÛæîî.m3dÈ/¾ø¢GÎÎÎ/^ÌÊÊêÒ¥KDDÄœ9s¬÷VlØ°áØ±c]»v5è)„˜0aBýúõwïÞ½gÏY?(d(ýò` ™™™©©©uëÖ5ÿ$hЂ#̨f!8À,G˜…à³`‚#ÌBp€YŽ0 Áfùòå[äoš!IEND®B`‚statistics-release-1.6.3/docs/assets/ricecdf_201.png000066400000000000000000000706661456127120000222670ustar00rootroot00000000000000‰PNG  IHDRhŽ\­Aq}IDATxÚíÝyXTeÿÇñ{QðAÍDÜ·RÓÄ-357“P³²\ÊÜ2­|²Õܲŵ̴Ò~šúd*j‰Kî¤([¸¡ Ê"óûãäD¬ÌÌÙÞ¯««k¸gûÞgpæÃ÷>çŒÁd2  8ru 8À"GX„à‹`‚#,Bp€EްÁ!8À"G m(„ƒƒƒ¿¿ÿ³Ï>{üøñÜwY²d‰tƒ6mÚ”è¹J}G«¸wïÞâÅ‹{ôèQ£F *øùù=õÔSsçÎMOO·d›8::zxx<òÈ#o¿ýö7,ߌf“'O¶ÿ¬¨Á€:˜L¦³gÏ®^½ºC‡¿üò‹Üå”Éï¿ÿÞ AƒW^yåçŸNHH¸wï^llìÖ­['Mšäçç·eË–b!;;ûæÍ›|ÿý÷ýýý£¢¢äž]p”»(˜———³³³t9++ëÆ÷îÝB¤¦¦Nœ8ñرcÒU•+W®S§ŽÂÇǧD_ê;–QLLLçÎïÞ½kqttÌÊÊ’.ÿõ×_Ï<óÌo¿ýÖ¼yó"¶Ijjª¹Ñ˜””ëääTôfÌÍÝÝÝž³ &PŒS§N™ßvìØ‘ûªÔÔÔàà`óµþù§ÜÅ–Rï޽ͳ1bıcDz²²¾úê«Ê•+KãþþþÅn“‹/Ž1Â|Õüùó-ÙŒP,UP‡Š+¾üòËæ¯\¹"](lWÅëׯ¿öÚk:tpuu­S§Î“O>¹uëÖÜ7(ðŽ999kÖ¬ ¬]»v… j׮ݹsço¿ýöþýûæÛ¼ýöÛÒû÷”4qâÄ6mÚT®\¹E‹~øaî[æ·cÇŽÍ›7K—§Nº|ùòæÍ›FŸ‘#G®^½Zº*&&æìÙ³Eoš5k._¾¼ÿþÒ~øajjªÜ¯c©€jäää˜/½¾üóÏ?‡„„\¿~]ú1%%åÂ… Û¶m{á…–-[Vć ²víZó/^¼xñbddäæÍ›×­[—çÆÉÉÉ:t8}ú´ôãñãÇ?~ìØ±ÜÇ¢E‹¤ U«V>}zžkŸzê©^½z%$$!Nžzôè¡C‡îܹSØí~øáÜ?V­ZUº{_ÌÜrלÿ¬Ý¥vóæMéB•*Uò_[àéxÌ¥@‰(ÔŽ;¤þŸ"--mãÆC‡ÍÉÉ‰ŽŽ^²dɤI“ ¼WJJÊíÛ·¥Ënnn%zÆÌÌÌ7ß|ó³Ï>3ŸUÑÙÙÙÓÓÓ|Mƒ¡ˆó+_¾¼‡‡Gbb¢âüùóÞæöíÛÒ³W¨P¡R¥J–”m^¡öòòÊí÷ßoÞŒPFìã@*V¬lî þñÇ…ݲråÊ+V”.›[qúàƒæÍ›—••åëë»páÂãǧ¤¤ôéÓÇŠiß¾½taÓ¦Mž¸§Aƒ‹/¶ä÷íÛ—™™)]nÛ¶­K€üŽTã?ÿùt!))©°Û ó òÌãW¯^m×®]»ví [J^¸p¡táË/¿|å•Wš5kæèèxùòe+NáÅ_”.\¼xÑ|¸ÙæÍ›ÍíÃÇÜ’\°`t¡R¥J¹—æÀŽT###CºPô™®Í‘kîܹæ6þü¨¨¨¨¨('''‡Þúîܹ#-" !’““¥ ¿ÿþ{þ³ð”EïÞ½»uë&]~õÕWgΜ)É<33sÕªUÆ “®zøá‡Š~¨«W¯¾ôÒKaaaÒÏ=÷\û}€U°#Õ0>éK« óöÛo¯\¹2%%%>>¾E‹]»v½víÚ/¿ü"];f̘ïåâââââ"}…´ô%.ƒaÛ¶mEL)Ì›7ï‘GIOO7™L3f̘1c†‡‡GRRRvv¶tƒ *„……xÜwhh¨´Ÿššjþî!DµjÕÞ{ï=»¼tŽ#Õpww—.ÄÇǶÜ,„ðôô\±b…«««âÚµk?üðƒ95N›6­°} ÃSO=%]–ŽÅùé§ŸjÔ¨a>yxî VM›6ýùçŸsŸŽ'11ÑœëÔ©Þ¢E‹ï››»˜ªU«nܸÑ|â!°‚#Õ0ŸÞ¥K—>ÿüó"nÙ¿ÿ“'OŽ5ªM›6...uêÔéÝ»÷ž={>øàƒ"î5þü¦M› !š7oþúë¯=zôé§Ÿ–®]½zu±ßm¡:œ;wnþüù?þ¸§§§“““¿¿ß¾}çÏŸæÌ™^½zûF£±jÕªmÛ¶}ûí·cbb}ôQ»¼ôÎ`2™ä®”âþýû›7oBôïß_îZ@qްKÕ°Á!8À"GX„à‹`‚#,Bp€EްÁ!8À"GX„à‹‹çïïüøq¹ Á±«V­’»Ep”»…JII9{öì¦M›Ö¬Y#w-Š@p,XŸ>}®^½*w Bp,Ø|pïÞ=!Äwß}÷Ûo¿É]€üŽ{ì±Ç¤ »ví’»E 8ZŸ¿¿¿Ü% ¬Îž‘»P?“Aî l¥¾ý˜=~RmBŸ¿Lªc(ü Íd*ÍúûûóÒë/½n©ñ¥7û…9“(Õ›©ì,ØBþõý…A¨t~eAp„ŽäIŠ¥K‡ ¯2&?µ†9 Y%[²…üõ˜Áš—;,’(PIƒ Æ“_n¥HºÙ6r!8B›Ìy‘°@F–„BA3 ¡þ6Œò¡)äEöt6ælÑÑP¡PX u¹U´¯„F Â`&Óßÿ€þ~Éû_}ÿú¦Þx øOîÂm¸EŠúÏTÜP-:ŽP=©Ë¨„°¸mÛ6¹K€|¸y0$$dÚ´i>¯¿¿ž‘m۶ɽ1¬«n||¼Ü5(ÎåË—å.ÿâ[×7.>.^ØüwÕ>/}]ߺv™âÔõõ‹Bå½íöÒûúúÆÅÅ !x«Ô†ž={Ê]‚Rh<8J‡NWªT)ϸ‹‹‹âöíÛÞ+%%åã?NMMmܸqÓ¦MoÞ¼¹oß¾ 6<úè£Ý»w·äycbb䞺ÍÕ­[W͢÷íõ‚Øü¥7auí6å0„ɤäiçéi4jOþõü"Ðxptss3 iiiyÆïÞ½+ôó›2eÊï¿ÿ>uêÔ#FH# ÁÁÁ¯¿þúÆ}}}åž–ÌÔ¶^¨Ÿ>W¨ÕvrïU“¡eßÇÑÑÑÑÕÕ5g1%%Ea>Î:·ëׯïÚµ«^½zæÔ(„¨^½úèÑ£ïß¿¿~ýz¹ç xšÚµQ·©QmGO R#t@ãÁQáååuóæM))šI;xyyå¿ýÍ›7…uêÔÉ3.5oܸ!÷„ƒÔ¨zê\× 5B´»víš½wï^óˆÉdŠŒŒtwwÈû:uêÆsçÎåù÷/íßP¯^=¹' (¤FuSáÑÓ '5B´ƒ‚‚¾øâ i¿F!ÄÒ¥KX®\9i$555>>^:8ÎÙÙ¹S§N.\øì³ÏÌg?wîÜÂ… Ë—/(÷„d¦Î·tè©QÝÔ¹<-HÐ#„¨^½úäÉ“gÍšÕ·oߎ;^¸p!**ªqãÆ/¾ø¢ù6‘‘‘¯¿þºŸŸßæÍ›…ï¿ÿþ Aƒ.\¸uëÖFݼyó÷ßÏÉÉyë­·~øa¹' `¤FuSí_¥¤FèŠöƒ£âù矯V­Ú† ¶nÝêãã2~üxéŒ<òððغuëâÅ‹÷íÛ·{÷nww÷Çü•W^iÚ´©ÜSP0R£º©65úúú’¡+üd}þþþ>£jßÞí!>>žó8ÊEÞàhÍ—^o©QçÜyP»!..Žõú¤íÏú"hGš§v£S£:wj¬PC¯Ž(ÚP R£Z©ù …ÔÝ"8P1R£Z‘uÒÅÁ14‰Ô¨JjÞ©Q¡{GªDjT%57©`©`'¤F@ýް”Êßó¡)´ÕGåï ¤F@Bp 2¤Fõ!5ZÁ>ŽÔ„Ô¨2*?F#8P R£Ê¨¼Ñ(H@>,U€}‘U‚ÔäGp„EÔÿÕÓH»‘Ô¨¤F @G*@jTR# ]ìã@éHª¡þCa©(ÁlO'©Qýy‹Ô¥jЦ…v#©Q%H@±Ž(ž&> J¤FuÐÄ{©°Á€Bi!5ê©Ð‚#%ÒHjÔ|»‘Ôè ÁlƒÔ¨¤F D8ª€âh¡Ý¨íÔ¨‰ÓîR#PrGC=¨ ©Qé´ò¦@jJ¥j BjT:R# oG°R£R#8P -´5ŒÔ€à@!´5Ün$5BÀ:HŠGjÊŽàˆ¢håóJ§övc]ߺj.¿HZy 5VAp 3µ§Fañqñra£©i$5°‚#9i 5ªºü"§¦ÔH»°N¥¥ÕÔ¨•/†y0R#`5G²Q}»Q“4Ôh¤FÀÚXªF¡´õñÅQ}jÔd»Q[ÿìI€ÕÈ€Ô¨D¤FÅ!8@ ‘ÔØÁ€½©»ÝHjT|ôèÑäää tëÖÍÙÙYî V¦¦v£ºè 5Ð!Ç´´´ììl77·<ã®®®Bˆ[·nå¿Kffæ;wêÕ«÷ßÿþwõêÕæñš5k~úé§Mš4±äyýýýóŒlÛ¶MîQ ºñññr× —/_–»„’«+Tñ;P×·n|\¼Pj¥y^úº¾¾ñqqB ¶,|}}ãââTñûc;ªüW’ëÙ³§Ü%(…ƃ£tèt¥J•òŒ»¸¸!nß¾ÿ.wîÜBÄÆÆÞ¸qcÖ¬Y;wÎÈÈ ûòË/_{íµÍ›7[ÒwŒ‰‰‘{ê–ª[·®Ü%hŠº¶çßíFå—lÂ$ê*»Ð^zƒA˜LŠ®ÕX¤6S׿z”Nþõü"Ðø>Žnnnƒ!---ÏøÝ»wѾc*T.|üñÇýúõsssóöö;vlÿþý/_¾¼e˹çX‡j©Õµk£>V¨I€n)+8Î;766ÖŠèèèèêêš¿³˜’’"„0g[¥J•*T¨àìì˜{¼[·nBˆ3gÎȽ‘(•>R#=SVp\ºtéSO=5pàÀU«V¸b)xyyݼySJŠfÒN9^^^ÞÅÓÓ³\¹rƒ!÷ ´B••%÷F¬€v£ JÕKj¤Ý虲‚ã¨Q£jÔ¨qêÔ©÷ß¿cÇŽ¯¼òÊöíÛ333Ëò˜]»vÍÎÎÞ»w¯yÄd2EFFº»»x—ÀÀÀ”””³gÏæ”ÎÝÓ A¹7’Õèæcª¥¢Ô¨¤F@ç”'L˜ðË/¿üðÃC† qqqÙ¹s端¾Ú¡C‡ÿþ÷¿ÇŽ+Ýc988|ñÅÒ~Bˆ¥K—&&&8°\¹rÒHjjj||¼ùà¸þýû !Þzë-s×óäÉ“_ýµ««k÷îÝåÞH@Y©¦Ý¨u}}õðw©€rß²²²öìÙ³iÓ¦;wfdd!j׮ݯ_¿§Ÿ~ºF%z¨åË—Ïš5«F;v¼páBTTT£F–/_n>MÏÖ­[_ýu??¿Í›7K#K–,™7ož««këÖ­ÓÒÒ:d0fÏžýä“Oûtþþþª8ªšŽ£ÕÅÇÇ«âøJuGµ †ø¸8U¼ôe›¥r?/d¤–õ°:µ|Ö[rOÇãèèØ¥K—.]º¤¥¥………Í›7ïÂ… ,øì³ÏÚ´i3pàÀ>}úFKêù矯V­Ú† ¶nÝêãã2~üxéŒ<…5j”‡‡ÇÊ•+ûí7ww÷®]»Ž7ÎÏÏOî­”©ÑÚ¥„ɤùS6€DÑA&%%ýòË/Û¶mÛ¿¿tTJµjÕÊ•+— „¨W¯ÞW_}åãã#w™y©å¯:ŽV§üÞƒ:R£POp|ð¯Hù/}™'ªè iþ¥GaÔòYouJì8&&&þüóÏÛ·o?xð`vv¶ÂÃãG½zõjÕª•â·ß~›?þ©S§ÞyçeË–É]/«R[jÔòÈ#…íÅèìì\¡B®Sh•²‚ãÀ{õêÕ®];KŽz¡ÝXŽv£Uë¤Ý@§”uLjˆˆýû÷–Ç÷ÄOÈ]#Û 5* ©@~Ê Žiii÷ïß/쪋/þõ×_rר:Úª@j oò/UGFF¾òÊ+æW®\ùÝwßå¿YNNŽÉdªU«–Üõ*£ŽÔ¨Šv£nR#Fþàh4«T©"]NJJ*_¾|ÅŠ ¼¥››ÛÔ©S宀µ‘†v#€ÂÈ{챨¨(鲿¿ppð´iÓä.Jãôô ¨wêh7*ŸžþÍAþà˜ÛÈ‘#[·n-wìHíFÝ 5(š²‚ã”)Sä.дU‘uÓn$5(–ÌÁñûï¿B´mÛÖÏÏÏücц*oͬƒÔj#spœ9s¦âÝwß•‚£ôcÑŽ€%TÐnT>=¥FÚ,!sp7nœ¢iÓ¦Ò“&M’{ƒZ ‚Ô¨üv#©ò‘98Ž;6÷/¾ø¢¼õ°R£’XNYß ìTÐn¨“ÌÇÝ»w—ô.;w–·fµÓS'ŠD»QIh7(™ƒã¨Q£Jz—˜˜yk”LéíFR£’””ÌÁ±oß¾rox€ÔE’98Ξ=[î-híÆ²•§£Ô¥ÃÁ1ì‚Ô¨$´”ßh„ÒÛP R#€Rã›c-Pzj¤Ý¨¤FeÁ7Ç苞>¡¤FÐ ¾9P=¥·•Lg©‘v#€2RôÁ1©©©™™™rW  ”Ün$5@ ÉÜq,Љ'¾üòËèèè7n888Ô¨Q£eË–cÆŒ©]»¶Ü¥ŠC»±”HPrŠë8.X° ((h÷îÝ7nÜprrªP¡Â¥K—~úé§^½z­^½Zîꔄ’Û€’SVpܳgÏ¢E‹ŒFchhèŽ;Ž?~ôèÑÝ»w9Rñþûï;vLîQt»QÉ©‘v#”в‚ãêÕ«M&Óĉ§OŸ^³fMƒÁ „ðññ™2eÊo¼‘••õÍ7ßÈ]#•#5@i)+8FGG;99 6,ÿU!!!ÎÎÎ'Nœ»FÓÙÇ¥öÑn,Uaúúg@j`]Ê ŽBoooGÇÙ‘Ž’IKK“»@Å!5€F)+8\ºt)%%%ÿU©©©ñññ7–»F@ÝnT&ý¥FÚ¬NYÁ1((Èd2½ùæ›YYY¹Ç³³³§M›–ݵkW¹kä§èÔ¨Øv£ÎØ‚ÌçqÜ¿îFã€ÂÃûwïäëëk0âããÃÂÂ.]ºäïïß³gOy PŦFµIlDæà8|øðÇ,Xg0&&¦}ûö111òÖ ÈKÑíFeÒYjÛ‘98öíÛWî-ÀJ”ÙnÔ_j¤ÝÀvd޳gÏ–{ è…þ>=µI¹íFR£2Ø”²Ž)Úo¼Ñ¥K¹«…"5°5™;Žù%%%ýòË/.\È3žžžþóÏ?F¹ dC»±„Ué®Ý¶¦¬àxíÚµ!C†üõ×_…Ý`èСr×àßHÊ@»€(+8~óÍ7ýõW›6múôé³eË–¼óÎ;ÎÎÎgΜùî»ï†:}út¹kä¡Üv£‘À6”÷îÝëää´páÂ*UªtéÒå±Ç«[·nûöí…¾¾¾ï½÷Þ3Ï<ãçç'w™P`»‘Ô6£¬ƒc®\¹R§N*Uª!ªU«æîî~êÔ)骠  ww÷o¾ùFî(´Ý¨ÀÔ°%eG!„ƒÃ?%ÕªU+>>^ºl4ýýýOœ8!w€½)45*íF°%eGooïóçϧ¦¦J?Ö¬YóðáÃæk ÃåË—å®Q•ô÷a ÛS`»Q¿è¤Fv¦¬àØ­[·ôôôI“&ýùçŸBˆÖ­[_¼xqß¾}BˆÄÄÄßÿ½Frר•BÛ¤F 5°?eº}ûö;wšL¦Å‹wêÔÉÑÑqìØ±-[¶ýý÷ßF¹Ë¬IqíFR£Ì“&5P.eÇ+V=z´E‹Ÿþ¹§§§yüÆãÆ;zôèŠ+FŽ)w™lÔÊ£¬€ïÝ»×`0|úé§¹S£¢Zµj ,pppسgÜ5ª‰.?yU†vc!eð» J¤¬àxæÌ™Úµkûøøä¿ÊËËëá‡>}ú´Ü5Ú¥Ô¨W´(Ÿ²‚£““Szzzaצ§§;;;Ë]#`5Šk7*„.Û¤Fª ¬àذaÃk×®=z4ÿU§Nº|ùrƒ ä®Ð(…´I `Ê ŽÒɼúê«yöeÜ·oߨ±c…}úô‘»FÀ:”Õn$5, ¬£ª{õê¹aÆ_|ÑÇǧN:Bˆ .$$$!úôéÓ»wo¹k`zM´¨ˆ²‚£âã?~ä‘G>ýôÓ+W®\¹rE¬V­Ú믿޿¹«¬ƒv#$¤Fꢸàh0 0`À€ëׯŸ?Þd2Õ©SÇËËKîºRHjÔe»‘Ô@u”/_¾œ““S«V-!„§§gž³9¢DtùA¬Êj7*¿¬ Ê ޽zõºwïÞ¯¿þêáá!w-€M(+5*¡Ý¨×ÔH»€)ë¨j???!ÄÙ³gå.€]@U”ß~ûmggçE‹eddÈ] `}´!HÔLYKÕžžžsçÎ}çwúöíÛ·oßZµjU©R%Ïm:wî,w™€ú)!5êµÝꥬà(]HLLüüóÏ ¼MLLŒÜe¥¡¬v£ìôši7P5eGé›cØ–ìíFR#¨“²‚ãìÙ³å.° µeOzEj Ê:8&ÌÌÌ´´4¹«P%½6t üv€j)«ã(9wîÜÂ… ;võêÕœœooï&MšŒ7®Aƒr—”íÆ\è45Òn  Š Ž_}õÕܹssrr„NNNF£ñêÕ«W¯^ݹsç„ ^|ñE¹ T‹Ô(Û¼I4BYKÕû÷ïŸ;w®Á` ݱcÇñãÇ=ù /888Ì›7oÿþýr×”Œ‚Úò"5€ú)+8þðÃ999“'Ož>}zÍš5 ƒÂÛÛ{òäÉÓ¦MËÉÉYµj•Ü5ê${» ~Ê Ž'Ož¬P¡Bhhhþ«† R±bÅ“'OÊ]#P´ÿF»4AAÁ1++ëÊ•+^^^F£±€B|||x JCÞv#©´BAÁÑ`0T¬XñÒ¥KÉÉÉù¯MII9þ|Ó¦Må.Sôú1­8Ji7’å™7©€)(8Æäää¼ñÆ÷îÝË}UffæÔ©S ÃÈ‘#K÷àëÖ­ èСôiÓ’’’,¿oBBB«V­&Ož,÷ÔF¯©´JY§ãyöÙg£££wïÞÝ­[·Ö­[×`0ÄÇÇÿßÿýßÕ«W{õêu÷îÝÝ»w›oïëë[«V­bvþüù‹/®T©R›6m.\¸~îܹ•+W:;;{_“ÉôÆoܽ{Wîm•¡Ý¨g´h•²‚c¯^½¤ ׯ__´hQžk·nݺuëÖÜ#“&M*öÌŽ111K—.õòò óôôB|ðÁ+W®œ3gÎÛo¿]lI+V¬8xð Ü(©å™7©€f)+8öíÛ·D·¯W¯^±·Y»vmNNÎøñã¥Ô(„˜:uêO?ý1}út‡¢ëÏ;7þü œ9sFîm5QJ»QÎM@j RVpœ={¶ÕóСC;w6ÆN:mÚ´éÈ‘#­[·.ìŽYYYS¦LqwwŸ:uêðáÃåÞ6@ ÉØnÔkjÍSÐÁ1¶`2™bcc«V­ZµjÕÜãõë×B\ºt©ˆû~þùç§OŸþ裪T©"÷< &Šh7²k£h7ÐÎ:·ƒ®^½zÔ¨QÍ›7—»| ääÚ»Q¯©tEãÁQáååuóæM))šIû!yyyå¿ý¹sç„ .ô`À€Bˆ7úûû÷îÝ[î A¡ Â/wÛ‰cbìŽbèŠÆ—ª…]»v‰‰Ù»wïSO=%˜L¦ÈÈHww÷€€€ü·¯]»¶ù–’Û·oïÛ·¯zõêÞÞÞrOP½¶IôFûÁ1((hñâÅ_|ñÅã?.³téÒÄÄÄ^x¡\¹rÒmRSS¯_¿^®\¹‡zè±Ç{ì±Çr?Bttô¾}ûZ·nm‹ÓLB¤SðÈ|05‹Ôöž7©€îh?8V¯^}òäɳfÍêÛ·oÇŽ/\¸Õ¸qãÜßUùúë¯ûùùmÞ¼YîzR!5lOûÁQñüóÏW«VmÆ [·nõññ ?~¼Ô}ÊNgü–gæúM´èï}Öçïï/×yuü9.'spŒ—çŒn´í=ï¼ïœ²½ô/½nÉøY//íU Ø”üíFR£½çÍßÛô‹à äôš@çŽ@éé´Ý¨ãÔH»€ÎÀ"¤F 8¥D»QWH Ž€Z‘í:oR#ApÔ½~¦ËCþv£ sæ7 ôŽà¨ýÛ:N´ÀŒà”˜ÌíF¹NܨK¤FÈà 8zm7’ ‚#P2ºk7ê55ò#8%@jÔÚÁò"5@Ž€¥h7ê© CpÔ½~Äë©Ñ~ó&5@¡Ž€EôuÆo½¦F@ÑŽ€âٹݨãÔH»ŠFpЧ¯v£^‘ XG@Ùh7ÚiÞ¤F(Á(†œíFR£æMj‹!ô›–#8jŸø¶£—v£Ž‡h7€åŽ€"ÙÿĺDj€!8…ÒËÁÔzm7’ ¤Ž€ò°Hmy“ ÄŽ@Ádk7’JEpôJÇ©‘v#”Á(€.ÚzEj€R#8ŠÁ"µ=æMj€Ò#8ªž^€ iÿ`j½þÒ ŒŽÀ¿h‘Z¯©PvG@Hö˜:íF(+G¹ Dû‹ÔzEj„…üýýå.2ˆ‰‰‘»Õ 8r£Ýhóy“Qdò÷÷çu·KÕÀßäi7’m>oR#X ÁÐR#ÀŽ€Ún7ê55¬Žà¨nD 0´ÀêŽíF "5€-9m;oR#ØÁz§Ùs7’ÖFpìÎíF½¦F€M¡k2´ívâF]¢Ý6Ep4G¯íFR#ØÁQÅô¬F›íF½þZ«»}ûöË/¿\«V-—N:EEEÉ]Qij»ÿ¾£££áߪU«&÷ Ԋ惘N‘µ„ÔX]JJJëÖ­/^¼8hÐ °°°ž={îÚµ+ @îÒJV[|||vvvûöí}}}̓...rOB­Ž€VXϼyóbccW¬X1lØ0!Äk¯½ÖªU«‰'îܹSîÒJV[ll¬bæÌ™]»v•»p-`©z¤Ív# qppHHHÈ=ؤIŸììì2>øš5k|||BCC¥}}} yåÊKî~èС޽{{{{çY#.W®\Ù'^¢Ú¤àX¯^½²?/Á°©m8oÚЯàà`“É´~ýzóHtttttôsÏ=g4ËòÈ)))gÏž 4 æÁ.]ºäääX²§ãŽ;yä‘“'OŽ1â½÷ÞkÙ²¥¢eË–“&Mš0aBg]ÒÚbccœœ*W®¼nݺ%K–ìÛ·/33Ó:/€.±T ÝÑà¿I€.õèÑÃÝÝ=<<|̘1ÒÈš5k„ÒnY\»vÍd2yyyåôôôBܸq£èûfdd 6ÌÇÇçÀÞÞÞBˆÉ“'wïÞ=&&æwÞ©\¹²k‹upp¨W¯^RR’4Ò°aÃU«VµjÕªŒ•èÁ°1[·I€^•/_~À€+V¬HLLôððBüøãmÛ¶mܸqž[feemÙ²¥°Çyúé§óŒ¤¥¥ !ªT©’{ÐÕÕUqóæÍ¢«Ú»woBBÂÌ™3¥Ô(„prrš2eJŸ>}ÂÃÇnçÚbccsrrÞ}÷ÝAƒ•+WnãÆ¯¿þz¿~ýN:%Ý %BpT+½¦…²²w»‘Ôh«y“aW¹EePÄ/{ppð×_ýÓO?9òÈ‘#çÎ[¸paþ›¥¦¦öëׯðÇÏûR ½sçNîÁ””!DÕªU‹®öüùóBˆæÍ›çlÖ¬™âÔ©Sö¯m÷îÝ*T0_õüóÏgddŒ3&,,läÈ‘%{%À>ŽT‡Ôû3™äü¯žžžáááBˆ5kÖ899ç¿™«««©pùoïåååààgå711QQ£F¢·•³³³"+++÷`NNŽÂÁ¡€ÔaëÚªW¯ž'PöèÑCmÝ_ ã¡Ý¨¤F 7£Ñ´lÙ²äääµk×öë×ÏÝÝ=ÿÍJºìèèØ¨Q£½{÷æܳgÁ`È¿ž‡ŸŸŸâôéÓ¹¥^£¿¿¿k»páÂæÍ›»téÒ°aCó Ôž¬]»¶_1ÁÚêׯo‡gá¥+a²íV‹‹‹Ëýd6žŒN”ù®õ¯—jfŸ7pë’"ÔèÑ£…Þ&99¹¤I`Á‚BˆM›6I?^»vÍËË«GÅÖ“™™Y¯^=Ÿ¤¤$iäÞ½{:urqq¹zõªk»víZ… :v옙™)dgg;::FGG›oVŠ×]¿*V¡Ä·`µ#8*“­S£ÉžÁQ¯/¿2S£‰à¨!jL999=ôÁ`¨^½zVV–µööíÛÍ›7¯R¥Ê›o¾9kÖ¬† V®\yÿþýÒµ?üðƒ››Û믿^à}·lÙR¾|ùÚµkøá‡³fÍjÓ¦Á`øüóÏíSÛÇìææ¶hÑ"éÇY³f !j×®ýòË/O:Uúv™?ü0÷-ÇR5`6]¤Öå µ`‘(„Á`Mñ›Ô@222víÚ%}% t…à¨Jº *Á"µõ'Mjgÿþý 6|öÙgå.öÆ>ŽÐ8{¶ëúÖ%5Z{Ò¤F@‰å®2 ãX‰AÄÇÅÛìÁIù¡eÙ»Q—© @GÀl}$µþÐn"8B³ì×nä€ëOšÔJDpŒÔP‚£úè2K”˜Úº|¥I dGh©Q¥H pG@yHE"8Bk´ÐnÔR#¨Á(©­9cR#¨Áš¢ú3~ë/5T„à”œÚºL´@EŽ*£Ëha);µIÖœ4©P®Û·o¿üò˵jÕrqqéÔ©STT”Üýãĉƒööövqqiݺõüùó³²²ä.Jå.©€â¤¤¤´nÝúâÅ‹ƒ òðð ëÙ³ç®]»ä.MÄÅÅuîÜ9;;»ÿþµjÕÚ±cÇ„ öìÙ³~ýz¹KÓ>:ŽÐu·õ‡Ô(ܼyóbcc—.]úý÷ß/X°`ïÞ½ƒaâĉr×%„&L¸}ûöŽ;V¬X1sæÌß~ûíùçŸß°aÃöíÛå.MûŽÐu§FýµI€U„„„888$$$älÒ¤‰Ovvv|Íš5>>>¡¡¡Ò¾¾¾ƒ ŠŒŒ¼råŠ%w?tèPïÞ½½½½ ÿV®\¹²O|çÎ:ujÓ¦ydìØ±Bˆýû÷[u£GÀ2¤F«Í˜ÔXGpp°Édʽ>ýÜsÏƲòµk×L&“——WîAOOO!Ä7оoFFưaÃ|||8àíí-„˜ú(÷È­[·>úè#£Ñ8hÐ «odäAp,`‹v#©@Ù”/_~À€+V¬HLLôððBüøãmÛ¶mܸqž[feemÙ²¥°Çyúé§óŒ¤¥¥ !ªT©’{ÐÕÕUqóæÍ¢«Ú»woBBÂÌ™3¥Ô(„prrš2eJŸ>}ÂÃÇ^ÆÚòؽ{÷K/½»hÑ"???»lx]#8ª‰þ’FñìÑn$5ZgƤF¨˜AÊþ ¥VÄ»\ppð×_ýÓO?9òÈ‘#çÎ[¸paþ›¥¦¦öëׯÐÇÏ÷oSŠ¡wîÜÉ=˜’’"„¨ZµjÑÕž?^Ѽyó܃͚5Bœ:uªìµ™]¼xqìØ±›6mòóóÛ±cG—.]¬³¹Q$öqìŽÔ¨I˜dü¯ˆÂ===ÃÃÃ…kÖ¬qrr Î3WWWSáòßÞËËËÁÁ!Ϫtbb¢¢FEo+ggg!Dž³*æää! H%­M²zõê&Mš>|xÉ’%üñ©Ñnè8BÅÔÚnÔR#`;F£1((hÙ²eÉÉÉk×®íׯŸ»»{þ›•t9ØÑѱQ£F{÷îÍ=¸gσÁ<i½øôéÓ¹¥^£¿¿ÙkBlÚ´é¹çž{æ™g/^œg=6g‚µÕ¯_ßFÌË•›0Ù~s”ðâââ,xL}½Š:y“±è¥‡Øî Üv¤x7zôh!DDDD·INN.iX°`bÓ¦MÒ×®]óòòêÑ£G±õdffÖ«WÏÇÇ'))I¹wï^§N\\\®^½ZöÚrrr4hP§N¬¬,kmÃR¼îjüU± :Ž@!ØµÑ Ó¥×Ø\‡zè¡E‹U¯^½{÷îÞFZ.ÑÃ>|ùòåC‡3fŒ››ÛŠ+ÒÒÒÞ}÷]éÚÕ«W=zĈóæÍËsÇråÊ-X° ÿþ-Z´5j”Ñh ;|øðgŸ}–ç0íÒÕvúôé3gÎ4lØð…^ÈsÕ€úôécßͯ;G¨’*OÁCj`ƒaðàÁsçÎ -ãés«R¥JddääÉ“ÃÂÂ’’’Úµk÷ý÷ß›¿o0333999==½ÀûöêÕ+**jÆŒ .ÌÈÈhÑ¢EDDÄOû¬Ü…ÀÞXª†Ê¨¯Ý¨3¤F@å®2ÐKp\·nÝÚµkccc+V¬øøãOž<¹À3]™¥§§ÿøãaaa—/_®\¹rýúõŸþù:È=½S_jÔY»‘ÔÚ¦‹à8þüÅ‹WªT©M›6.\?wîÜÊ•+¥³Ûç—••5|øðcÇŽ¹ºº¶k×.##ãÀûöí{õÕWÍ_$ "5–uº¤FÐ8íïã³téR//¯mÛ¶-]ºtûöí¡¡¡'Nœ(â´µk×;v¬U«V‘‘‘‹-úæ›oÖ¯_ïææöå—_æ?øv£²Sðš£ýà¸víÚœœœñãÇ{zzJ#S§Nuuuˆˆ¾:3¿mÛ¶ !¦OŸnnIúùù½üòËÙÙÙ¿þú«Ü‚mX·ÝHjh‘öƒã¡C‡:wîl1:uºyóæ‘#G ¼K|||¥J•ò|§ôå›—.]’e:Ë!m›¶Ieš.©ôBãû8šL¦ØØØªU«V­Z5÷xýúõ…—.]jݺuþ{-Y²ÄÑ1ï–‰ŽŽBÔ¬YSî9é©Q±H +ŽiiiÙÙÙnnnyÆ]]]…·nÝ*ð^5Ê3µtéR''§~ýúYò¼þþþyF¤åï2¨o§­¦@u…í¦_×zÛ¶®¯o|\œÐÍ+åëë§ëßÌ._¾,w ʤ跲ž={Ê] Rh<8J_£Y©R¥<ã...BˆÛ·oûÙÙÙßÿý'Ÿ|’=wî\Kž7&&Æês©[·®¶˜ýÝn´Ñì B˜D]ë=º~^&zyèç¥4©èÂù?ÖówˆtBãÁÑÍÍÍ`0¤¥¥å¿{÷®xÐw,ÂÞ}÷Ý?ÿüÓÇÇçÃ?lß¾½Ü‚UY{‘:>.N'ÙÔú¤ñàèèèèêêš¿³˜’’"„0g_ffæìÙ³W­ZU¡B…qãÆ9²°“>¦l¸w£-vmÔÇ¢-©tKãÁQáåå›’’R¥Jó ´+ƒ——WwÉÉÉ™8qâÿþ÷¿nݺ͘1£ˆ| ¡¯bH gÚ?O×®]³³³÷îÝk1™L‘‘‘îîîÞeÕªUÿûßÿž}öÙ/¿üR ©QO±äßWE»QO/©tNûÁ1((ÈÁÁá‹/¾ökB,]º411qàÀåÊ•“FRSSããã¥ã"M&Ówß}W¹rå7ÞxCîÚuÔ¨4¤F€ö—ª«W¯>yòäY³fõíÛ·cÇŽ.\ˆŠŠjܸñ‹/¾h¾Mddä믿îçç·yóæ7n\¼xÑÙÙyèСù­ÿþ!!!rÏ e@j,ÍD BR# 7·oß~ã7¶nÝzëÖ­–-[~òÉ'>ú¨ÜEým×®]3gÎŒŽŽÎÎÎnذáĉû÷ï/wQº ýà(„xþùç«U«¶aÆ­[·úøø„„„Œ?^:#O~Rß1==ýÔ©Sù¯åÀjûPÁ×Rë)5JIIiݺõÅ‹ äááÖ³gÏ]»v¶——=mݺõ©§žòõõ qvv 0`À²eË^xá¹KÓ>>¬ÏßßߺçqÔMDy0_å/Rò’ÄÇÇkìd~¤F iï¥×-«¿«×ÿûßwß}wÅŠÆ BÄÅŵjÕ* `çÎr—&š7o~ýúõ3gÎH§ÕKMMmÔ¨QNNN©¿¸¯»nU´¿#ð7§Fí!5 âàà{°I“&>>>ÙÙÙe|ð5kÖøøø„††J?úúú4(22òÊ•+–ÜýСC½{÷ööö6ü›ùè‚R»wï^tttïÞ½Í'c®T©RÇŽ/_¾,}ëlŠà¨tºI)æk£v#©±Ä%5Jl2™Ö¯_o‰ŽŽŽŽŽ~î¹çŒFcY9%%åìÙ³Ò.Î’.]ºäääDEE{÷;v<òÈ#'Ož1bÄ{ï½×²eK!DË–-'Mš4a„2ÎÚh4?~üý÷ß7dee|øð2Ö–Û{ï½+„èÞ½{íÚµm±í‘ÁJAjTR#P0¥þ»þúë¯úé§‘#G9räܹs .̳ÔÔÔ~ýú>¹¼³“bè;wrJßÖ[µjÕ¢K:þ¼¢yóæ¹›5k&„(ðt%%­-·sçÎ¥¥¥íß¿ÿ…^xôÑGOŸ>­„¯íÐ6öq„¦‘K6KR# 2žžžáááBˆ5kÖ899ç¿™«««©pùoïåååààgU:11QQ£F¢K’v4ÌÊÊÊ=˜““#„pp( u”´¶<*V¬Øµk×?þøÖ­[6l÷åÐ:ŽP›´I%›%©P£Ñ´lÙ²äääµk×öë×ÏÝÝ=ÿÍJºìèèØ¨Q£ÜßÖ+„سgÁ`È¿ž‡ŸŸŸâôéÓ¹¥^£¿¿ÙkÛ²eK¿~ý¾ûî»Áƒ›¥Yó&f&X[ýúõ­øh:y‰„Éó´ÊC–䈋‹³þ,ì‚·‚2RïK<¬ûnR¼=z´"""¢ÀÛ$''—4 ,X°@±iÓ&éÇk×®yyyõèÑ£Øz233ëÕ«çãã“””$Ü»w¯S§N...W¯^-{m7nÜptt|â‰'rrr̃Ï>û¬âøñã¥Û†¥xÝÕø«btM­.·õñÐkT­C‡=ôТE‹ªW¯Þ½{÷o#-—èa‡¾|ùò¡C‡Ž3ÆÍÍmÅŠiiiï¾û®tíêÕ«G=bĈyóæå¹c¹rå,Xпÿ-ZŒ5Êh4†……>|ø³Ï>Ës˜véjóðð˜>}ú»ï¾Û¦M›'žxÂ`0üüóÏ?~¼´'%lŠ}!3R£Œ¤óñ’U3 ƒ6™L¡¡¡e<}cnUªT‰ŒŒ¬Ïßß?&&¦, À#»QŽ_·n]›>©Q™ìðÒÃ>ÊþnO™™™ÞÞÞ-Z´Ø¹s§4òöÛo¿ÿþû§Njܸ±uŸëÖ­[O>ùäï¿ÿ~úôi??¿"n™‘‘ñðà !~ÿýwooo!Ľ{÷ºwï[¹re«oËk+L)^wuýªXGÅ!5æ~ ¥F[ãœ;€œ ²>{!ÿîË—/?`À€+V$&&zxx!~üñǶmÛæOYYY[¶l)ìáŸ~ú颟÷îÝ/½ôRllì¢E‹ŠMf{÷îMHH˜9s¦”…NNNS¦LéÓ§OxxøðáÃe¬ eGp„•‘mF# 3¥þû þúë¯úé§‘#G9räܹs .̳ÔÔÔ~ýú:¹Âß^.^¼8vìØM›6ùùùíØ±£K—.Å–tþüy!DóæÍs6kÖLqêÔ)ykCÙqp ‰Ôø¯9‘,00ÐÓÓ3<<\±fÍ''§àààü7suu5®°_½zu“&M>¼dÉ’?þøÃÂdæìì,„ÈsVÅœœ!D;8Ú³6”GX“uÚ¤Æ&Äò4€¢Æ   eË–%''¯]»¶_¿~îîîùoVŠåàM›6=÷ÜsÏ<óÌâÅ‹«T©byIÒzñéÓ§sJ½FykCÙÑɰ¾2î0«ÞðCj´î4U„ƒc4CG<ìÛ·¯cÇŽ£G^¸paDDDÏž=óßæöíÛnnn…=Bþ·“ÉÔ¨Q£ŒŒŒØØØ’ }ÿþýF¥¦¦þñÇÒ“fffvïÞýÈ‘#±±±^^^2ÖVޱGX©ÑŠh4°\‡zè¡E‹U¯^½{÷îÞFZ¶ü1OŸ>}æÌ™† ¾ð y®0`@Ÿ>}V¯^=zôè#FÌ›7/Ï Ê•+·`Á‚þýû·hÑbÔ¨QF£1,,ìðáß}öYþÔh‹ÚìµáuŠà¨,ÚÊ?%|©R£Á „ÐÒV£Ñ D ÃàÁƒçÎj­\ll¬âôéÓyVœ…õêÕëÓ§OfffrrrzzzwïÕ«WTTÔŒ3.\˜‘‘Ñ¢E‹ˆˆk}§K±µYuë"/‚#¬À íÆR§Fme,R#€R˜3gΜ9s¬ø€}ûö-ú½hذa÷ïß/ð(iI@@ÀÆm1ÙbkƒMqT5ÊŠÔh|‹ ÉÈÈØµkWË–-å.öFÇeBj´ "#uÙ¿Æ Ÿ}öY¹ ½¡BJ@å®2 8*ˆêâ<íFÕm¦¢¦B£ &G”©±LS§ÑP!‚#JC†Ô¨¡ÓîÐh¨Ár(EjÔDÒ¢ÑP5‚#J¬¬íF§F"#@ÕŽJ¡–tDj,ͤi44àˆ 5–xÆDF€†a)»¦FM ÃÚ4@cް=ƒ¢„©Qåy‹F#@“ްHéÛ:[ž&24Œà¨ K¤F ùúúFpD1ì”U¾S£ÔhŒ‹‹“»lÈAî höK&“JS£Á`‚¡×@«îß¿ÿ裶k×NîBþqâĉÁƒ{{{»¸¸´nÝzþüùYYYr¥ GÊ®©QˆŒôà­·Þ:pà€ÜUü#..®sçÎÛ¶mëÙ³ç„ Ê—/?a„   ¹ëÒ–ªQ0Rcq…s ]øùçŸgÏží訠À0a„۷oGEEµiÓF1sæÌ‘#G._¾|ûöíO<ñ„ÜÕiGù©6;8‹S£Á Ò™³6 @!BBBr6iÒÄÇÇ';;Û*OqíÚµçž{î…^x衇JtÇC‡õîÝÛÛÛÛðoåÊ•+{U;wîìÔ©“”%cÇŽBìß¿ß*³FŽ(@)Û%J*Ü©‘È@Q‚ƒƒM&ÓúõëÍ#ÑÑÑÑÑÑÏ=÷œÑh,ûã›L¦ÐÐPww÷O?ý´DwܱcÇ#>>ðööBLž<¹{÷î111ï¼óNåÊ•ËX•££ãG}”{äÖ­[}ô‘Ñh4hõ¶. FpÄ¿”&5ZþÅ0*<ç‘€xðV —ÂÞ‚Ê—/?`À€+V$&&zxx!~üñǶmÛ6nÜ8Ï-³²²¶lÙRØã?ýôÓù<øÖ[oÍž=»E‹%ªvïÞ½ 3gΔR£ÂÉÉiÊ”)}úô >|xÙkËm÷îÝ/½ôRllì¢E‹üüü¬¸ÙQ ‚£ÌÕ}+ejÔh£‘ÈÀL±oÁÁÁ_ýõO?ý4räÈ#GŽœ;wnáÂ…ùo–ššÚ¯_?Ëg—’’2dÈîÝ»¿úê«%-éüùóBˆæÍ›çlÖ¬™âÔ©Se¯ÍìâÅ‹cÇŽÝ´i“ŸŸßŽ;ºtéb›mŒ!8âo6Ljk4¨E`` §§gxxøÈ‘#׬Yãääœÿf®®®%zO[²dI\\\¿~ý>ùäiäöíÛÙÙÙ³fͪU«Ö!CЏ¯³³³"ÏYsrr„YQÒÚ$«W¯5j”‹‹Ë’%KžþyEô­mlhaëÔ¨žFd .F£1((hÙ²eÉÉÉk×®íׯŸ»»{þ›•t9833S1o޼܃IIIS§NíܹsÑÁQZ/>}útîA©×èïï_öÚ„›6mzî¹çžyæ™Å‹W©RÅn[BŸ‘Vçïïcá•«HÂJ‘1>>¾nݺrO2à¥×Œ½+ľ}û:vì8zôè… FDDôìÙ3ÿmnß¾íææVØ#XòÖW·n]oooKÎwsÿþýF¥¦¦þñÇÒ“fffvïÞýÈ‘#±±±^^^e¬Íd25jÔ(###66Ö*‹R½îjüU± :ŽrRB¬*qj´ðPõ,OÓe j:tx衇-ZT½zõîÝ»x›Ò-aõêÕ£G1bDž®¤¢\¹r ,èß¿‹-Fe4ÃÂÂ>üÙgŸåO¥¨íôéÓgΜiذá /¼çªôéÓÇfG]+MjÔP£‘È@ ÃàÁƒçÎj­\±233“““ÓÓÓ ¼¶W¯^QQQ3fÌX¸paFFF‹-"""¬õ.±±±BˆÓ§OçY BÔ«WàhkGý²IjTI£‘È@KæÌ™3gΛ>E|||î‡ vÿþý’–lܸÑ•ôíÛ—woñÍ1:e«Ô¨øïƒáÛ_ ì222víÚ%}% t…Ž£ld\Î-Yj´d§FÅ7Í'ï%/@Ùíß¿¿aÆÏ>û¬Ü…ÀÞŽºSâÔ¨‰ÈH^+ ”» È€à¨/ÖO dDF¬‹à¨#%HÅ.O+¸ÑȪ46Bp”‡ý[u%KjŽŒäEl„ਠ–¦FKÊ‹e´°‚£Æ„AaijTU£‘¼€µÌ:F¥FFò"vFp”}Ö{KUi1 /‚£6Y”‹h4*)2’P‚£Ÿ‹]›V@D#/…¿¿¿Ü%ÊEp´7›¦2‹…QöÚ4y€ŒbbbJtûøøøºuëÊ]5`?Gí(}£ñAV“+2šÃ¢ / `G-(¾ÑXtd”;/P‚£]Ùbº˜F£ò"#y•"8ªX1F%EF£Ђ£ýX·ÝXT£±ÀÈh÷ ‹h ÁQ}Šj4íÝ‹hÁQMJíÒbÌaM#8ÚIש ŒæØf¾Æöy‘¶"úDpTºb"£]ò"mE „p»åZ·n]PPP@@@‡¦M›–””Tê‡*]»Ñ Ò0ÿJ†ÿ™„0 a0üýŸÉô÷efÈÇôo¶ØÚÚгgO¹K€NîÔhΈÿdBsXüçðónUÂ\H@6ÅÁ1y¥¥¥egg»¹¹åwuuBܺu«ØG8{ö¬tÄIžÃN ÂPàí¥Hj9¹7 Å«£[¼ôºÅK]!8敞ž.„¨T©Ržq!ÄíÛ·‹}z~@“XªÎËÍÍÍ`0¤¥¥å¿{÷®xÐwÐ!‚c^ŽŽŽ®®®ù;‹)))BóqÖzCp,€——×Í›7¥¤h/]%wuò 8 k×®ÙÙÙ{÷î5˜L¦ÈÈHww÷€€¹«Á±AAA_|ñ…´_£béÒ¥‰‰‰,W®œÜÕÈÃÀ!ÀZ¾|ù¬Y³jԨѱcÇ .DEE5jÔhùòåùOÓ ÇBmÚ´iÆ 'NœðññiÛ¶íøñã¥3òèÁaGX„à‹`‚#,Bp€EްÁ!8Zͺuë‚‚‚:tè0mÚ´¤¤$¹+‚=¤§§¯X±¢wïÞ-Z´èرãÈ‘#ýõW¹‹‚½%$$´jÕjòäÉr;9yò䨱cÛ´iràÀ¹+‚=dff.[¶lÀ€]ºtyíµ×Î;'wQöÆ À­cþüù‹/®T©RëÖ­/\¸pþüùfÍš­\¹ÒÙÙYîÒ`CYYYC‡=v옫«k«V­222:tÿþýW_}u̘1rW;1™L¡¡¡ìÛ·ïìÙ³å.6·sçÎW_}5''§iÓ¦®®®¿þúkVVÖ¢E‹ºté"wi°¡ììì#GŽT¯^½iÓ¦III‡rppøöÛoÛ´i#wuvdB™9s¦Aƒ;v¼víš4òþûïׯ_æÌ™r—Ûúþûïëׯ?dÈ´´4iäìÙ³mÛ¶mذáü!wu°“å˗ׯ_¿~ýú“&M’»Ø\rrrëÖ­›7o~øðaiäøñãMš4iß¾}vv¶ÜÕÁ†¤7ü×^{íþýûÒÈo¿ýÖ°aÃ=zÈ]š]±Tmk×®ÍÉÉ?~¼§§§42uêTWW׈ˆˆœœ¹«ƒ mÛ¶M1}útskÙÏÏïå—_ÎÎÎfÁZ'Î;7þü È]ì$<<<%%åå—_nÕª•4Ò¬Y³'Ÿ|211ñäÉ“rW:räˆbذaŽŽŽÒH»ví6lxþüù[·nÉ]ý­@jVwîÜÙ‰‰‰iÞ¼¹ÜÕÁ†|||„¹3¢ÉdJNNvpp0GI=ÐÑTmÄd2ÅÆÆV­ZµjÕª¹Çëׯ/„¸téRëÖ­å®¶²dÉ’üïÑÑÑBˆš5kÊ]lîóÏ??}úôòåË«T©"w-°“S§N¹»»{{{>|øèÑ£ÉÉÉ 4èÖ­{´k^ïÞ½W®\ùÁT¬X±E‹III .¼|ùòàÁƒuõ@p,«´´´ììl77·<ã®®®âßš@{5j”g$**jéÒ¥NNNyОcÇŽ-[¶,$$¤}ûöÒ_ мÌÌÌ;wîÔ«Wï¿ÿýïêÕ«Íã5kÖüôÓO›4i"w°!ÿU«V >|øðáæÁiÓ¦É]š]±T]VéééBˆJ•*åwqqBܾ}[îa'ÙÙÙ+W®|á…ÒÒÒ>þøc¹+‚ ¥§§O™2¥fÍš'N”»ØÏ;w„±±±[·n5kÖ"##Ç÷×_½öÚkÒÇ´*%%åã?NMMmܸqppp÷îÝ7lذsçN¹K³+:Žeåææf0ÒÒÒòŒß½{W<è;Bó8ðî»ïþùçŸ>>>~øaûöíå®¶5k֬˗/¯^½šJ]©P¡‚táã?6Ÿ|gìØ± ááá[¶l4hÜ5ÂV¦L™òûï¿O:uĈÒHBBBppð믿¾qãF___¹ ´:Žeåèèèêêš¿³˜’’"„0g ­ÊÌÌüàƒ† –0nܸˆˆR£æóžOЧèèèð•ƒzpúôé~ýú5oÞ|ñâÅÒYØNž<):""â?ÿùÜÂV^~ùå]»v=zܸqBˆsçÎ…††Þ½{wÆ ?ü°ÜÚ ÁÑ:–/_>kÖ¬5jtìØñÂ… QQQ5Z¾|yþÓô@3®_¿Þ±cGggçß/ú÷ï"w°‚£®H­WW×Ö­[§¥¥:tÈ`0Ìž=ûÉ'Ÿ”»4ØPbbâ Aƒ®\¹R§NFݼyó÷ßÏÉÉyë­·†*wuöÃRµu<ÿüóÕªUÛ°aÃÖ­[}||BBBÆ/u¡U—/_B¤§§Ÿ:u*ÿµ"hÕ¨Q£<<}„Û·oÏ3¾yóf!D¿~ý‡ºdÉ’„„„Zµj=ôÐC—.]úæ›o† ’””T–gŸ3gÎÈ‘#·oßž••åééyøðáÏ?ÿ<$$äæÍ›Ò Î;×§OŸ5kÖܼyóá‡6™L‘‘‘Ï=÷ÜÎ;KôDK–,™;wn¹råÚµkçêêzôèÑ1cÆDDDx €‘#G^»ví£>2~òÉ'W®\=zt³fÍìý"Ð:‚#uhÓ¦§§ç¥K—þøãó`NNŽª  „?þ|—.]~ýõ× 6lܸqß¾}mÚ´ù믿~ùå—R?õ®]»–-[V³fÍuëÖíÞ½{Ë–-{öìyüñÇ;¶hÑ"é6sæÌIMM}å•W~ûí·ðððÈÈÈéÓ§›L¦ ”è¹Ö®]ûÒK/íÝ»wÅŠ?ÿüóðáÃ…+W®,ìö¯¾úªŸŸ_xxøÞ½{…û÷ïÿñÇ›6múÊ+¯È÷ZÐ,‚#upppxê©§Ä¿›Ž‡¾víZ@@@½zõ„YYY“&MªT©’tƒ*UªH­Ê .”ú©gÍš%„øôÓOÍ=<O?ýÔËË+,,,99YqæÌ!DPPÑh”n3dÈÑ£GwëÖ­DÏÕ¬Y³‰':88HS=z´âüùó…ݾ\¹rŸ|ò‰££ã[o½uýúõéÓ§;;;Ï™3Ç\XÁ€jH0÷º­´N=pà@éÇ1cÆ,^¼øá‡6ßàÆ[¶l)Ë“&%%ÅÇÇûúúæ9ºbÅŠíÛ·OOO?uê”BJ®S§N=xð ´·e¹rå^{íµqãÆ•èéž|òÉÜ?ºººF“ÉTÄ]5j4f̘«W¯>ýôÓýõ×o¼Q§N[½ôÓñPÆשSçüùó111þþþYYYÛ¶msvvîÕ«—ù6ýõמ={>|éÒ¥‹/–q×F!D\\œôÿopåÊ!Ä»ï¾;~üøƒ>÷Üs*ThÔ¨Ñ#<Ò£GF•èézè¡R9jÔ¨;vDGG·mÛvÈ!VÝêð‚#5éÓ§Ï矾mÛ6ÿ½{÷Þ¾}{À€æ…éÕ«W¿ÿþûYYYµjÕjݺu·nÝš4i?sæÌ=Kvv¶¹É—™™)„¨Q£Fa‹ÎÕ«WB<ôÐCëÖ­;zôèž={8pêÔ©#GŽ,Z´hРAï¿ÿ¾Á`°ð©Ë—/_ŠÍr÷îÝ7n!âââ’““ÝÜÜlÿRÐ#‚#51Ç×^{MZƒ6¯Sß½{÷½÷Þ+_¾ü’%K{ì1ó]®^½ZÒgIHHÈÉÉ‘.ûúú !*V¬8mÚ´¢ïe0¤s !233÷îÝûæ›o†……uéÒ¥k×®6Ý,3f̸~ýzË–-92sæÌyóæÙôéèû8P“Úµk7iÒ$..îäÉ“¿üòKíÚµ[·n-]uòäÉììì–-[æNâÁa+E˳¢ýóÏ?›/{yyU«VíÏ?ÿŒŽŽÎ}›ìììvìØ111ñ¯¿þêÒ¥Ë3Ï}Z¹{÷î›o¾yêÔ©Æ{xxøøøÜ¹sçøñã_}õ•¹Uyþüù={ö!lz>Å«W¯Îœ9³råÊï½÷^¹rå>úè#£Ñøî»ï–}çNÈ¥j*Ó«W¯Y³fÅÄÄÆ~ýú™Ç}}}»víúË/¿tïÞ½U«V&“)&&&))ièС+W®ü¿ÿû¿;wîH'ÖÉ­_¿~ß~ûí‘#GºvíÚ¨Q£ë×¯ÇÆÆºººz{{ß»wOºMÿþý<¸~ýú~ýúÕ¨QÃÝÝ=...--­N:Ò™·¦M›6uêÔÙ³gýõ×=ôPZZÚŸþi2™† `£Ma2™¦Nš’’òá‡J¹¹iӦÇÿúë¯ß}÷ÝO?ýTî× €ÖÐq 2žžžmÛ¶BtìØÑÓÓ3÷UsçÎ}õÕW«W¯.ß±S§N6l˜>}úСCFc_X³fÍ~ø¡[·nûöí;{öl5–-[æááa¾Á`øøã?ûì³.]ºäääœ?¾nݺ&Lذaƒ»»»t›þýûûí·?þ¸³³ó™3gÒÒÒ:tè°páÂ3fØnS¬Zµjÿþý=ö˜yGO!Ä«¯¾Z»v툈ˆmÛ¶ÉúBÐ CѧýHMM½yófÍš5-?t…à‹°T ‹`‚#,Bp€EްÁ!8À"GX„à‹ü?C9Ü—–woÐIEND®B`‚statistics-release-1.6.3/docs/assets/ricefit_101.png000066400000000000000000001574571456127120000223200ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A€IDATxÚìÝwX×Úð³ì"—®´„f¡‰"°(EX±½ŠcAE1bAÅ`AÔ%15˜hBT[DLÄ +ˆŠ ¤ÔXB4XR–ï“;ßÜm ºïïññÙ=sv攙ݗ33gA Ú£ €-8Z p´@àhÀQ>Ž;Æ çõëסøøxüvÒ¤Iò.û¯3™••uêÔ©S§NÕÖÖ’‰{öìÁ+6l˜¼+×ÝÉeO~ýúuTT”±±1‹ÅRWWohhw3tÌÆq£à±»œ¤j~@Õ{|‰º{÷®¤/LkkëÐÐÐ[·nQ?"óAÚ­Žnš{BgZ[t…ï蘅ïÒKÞàCòæÍ„Ðùóç}||ä]@ËÊ•+ÓÒÒðkÜ}=’¤j~@ÕïüñEÄï¿ÿþûï¿ÿüóϧN‚ƒT ù~›Áwé‡ GùèÛ·¯™™ùöíÛ·Ïž=”””ÈE 0*ÜÝ©««ãÞ444”wY€çÎÃ/<<<&MšD=¾>Pbw9IÕìyÕ§Ò××WQQÁ¯ù|~mmmss3B¨¡¡aÙ²e7oÞ”Òbttó£»Ë‹'ßúvóÖŽòðàÁòío¿ý6zôhüúܹsƒ ’w»ÌƒŒŒŒ”••»ù:;#44444TÞ¥èvºO7‘•­X±bìØ±ò.N»ËIªfÏ«>ÕO?ýD¯jllœ3gÎáÇB·nݺÿ¾……êÄAÚÍî./ž|ëÛÍ[`0šõáyùòå²eˆª¦¦æààðý÷ßSŸI½…Ïç¯]»¶ÿþk×®%3<{ölñâÅnnnêêê}ôÑ”)SŠ‹‹E·B3uÓOŸ> c³Ùúúú[¶lÍßÐаnÝ:___}}}}}ýÑ£G¯Zµª¾¾^¶uJº'$$§/_¾\JáÁáǽ¼¼LMMûôécjjêééyàÀÖÖVœaåÊ• ƒ<Ó7zôhƒ/“t]NG+øêÕ«eË– 6L]]ÝÁÁaÓ¦MäÖ%immݽ{7‡Ã122RSS2dÈŒ3„®î¢S;jI¦M›vïÞ½°°033³þýû‡„„ܹs!tåÊ•àà`33³~ýúyyyåååÉÜõ²ío4+KU[[ûðáC@€ßÖÕÕ=|øÏç#GJ‡ºO†F“äÑ£GÁÁÁl6ÛÀÀ`òäÉ×®]Í#´ËIª¦”êÓlöΟÐÜÃ¥_Ò·oßÏ>ûŒ|û×_‰m1Òßÿ½xñbwwwMMM33³€€€ììl)Mu耒íЖmOÀÚ=Rdø6Ãjjjf̘ñÑG]¼xQR_SÓ…¾„»Ãw© _&àÿ 8þ<Ù#¥¥¥¢Ö¬Yƒ—zzzÚØØuâŽ;Dsþç?ÿÁ¯×¬Yƒ—þöÛoúúúBg0K—.¥nŽf6I…ôööþ裄>AÍ\TT$š!4`À'Ã:©§nhúôé8=66VJΠ  ±ÈÔ©Sq†¸¸8Ñ¥oÞ¼!b÷îÝø­³³³Ìôôô´µµÊM¬k×®P?¢®®>fÌüÚßßgÚå$USJõi6{ç¿OhîáRŽ/Q¥¥¥džóçÏ -ÍÍÍ%—Þ»wOl‹açÎÓÓÓÝndd$™Gì;t@Éph˼'Ð}üüüƌӷo_œb``P__ßÑuv&pÌÈÈ ¿8¼½½gΜ9xð`r¿ýöAÏŸ?¯®®& yàÀêêj@@ˆû²“¹‚¦¦¦...}úô!SŠŠŠÚmp•‰'FGG»¸¸à‹U^^N¿vB%QPP°··×ÑÑúbµµµ566&ßzyyu¾›hîo4++„Nà(z¤ÈÖ}m4QÍÍͦ¦¦d¥FŒA½uiàØÑf—ùû„æ.åø%%plll ¦6ŽØ*¿––Ö”)S¼¼¼ÈÕþøã’>(Ã…:xh˼'Ðif“bðàÁ ßúùùáAÜ¿!TYY)´ûä“OÈMWôÓ\ggøùù………3æÒ¥K±±±>>>ýû÷///—y…2TPè"òŒ§P6¡b“››3gŽ¡¡áСCwîÜÙÐÐ0hÐ ò©ŽÖŽz^•œèÄÈȈÁ`%Š’¡›hîo4++Ñ#E†îëL£‰69½3BHII‰Ünêèa.ó÷ I†=\fÞÞÞÿüó”<ÕÕÕø9þ„200()))))¹rå y-ŽP2T¼3{»;R D½b,[KKËü!ój¥{ߥﮉz ?0BÓ:’?K¢„.Õ¯¯¯owîßçÏŸÓÌ&=ƒÐ×·o_MMMüúéÓ§õõõøq8Hd².ò×·©©‰œC„Î:;Ùª---Ë–-ÓÓÓ Ù¾}{nn.ŸÏ—y˜G¶ u¥”ž%%$$,X°€œï† ˆâââ7º¸¸Œ9’|CGk'vÓ4çíh7ÑßßhVV¢GJ绯C†½yóæï¿ÿÛŒÔX¼KÈp˜Ëö}"¥‰èìátPOt644:t7ûÝ»w÷ìÙ#¥È^ÖÒÒêÐ;y@µ[ñNî ïîH*Œªª*yt?zôHæÕJñ޾Kß]õ8öXBG‹†††ºº:~}îܹjqBBBhf“¾i¡ÃøíÛ·ä¼ fffä× 9Y†Ð[%%%òºu:ëìd[mܸqÇŽ|>ßÂÂb×®]·nݪ¯¯?~¼lk“­‚2PTTüúë¯kkk322´µµÉEùùùäôC][;é:ÚMô÷7š••è‘ò~ºOˆŠŠ 9577`äogW‘á0—íû¤k‹Ý®¾}ûNŸ>A,++“”S]]¼òÅ‹ÚÊ»> :¹'¼»#Eèo¿·oß’å111éªêS½£ƒñÝ5Q/c/B^ËÌçó?¢ÐÖÖÖÒÒÒÒÒÂgÓhf“âîÝ»555äÛœœ‚ BJJJøVAòž ò™Bo---ÉË7i®“üaº†Lè›W¬]»váß|óͼyóìììX,Ö“'Odnj*ØQÍÍÍÏž={öìYsssPPPzzúßÿ““CN3AN±Ö嵓¢ÝnEg£_Ù.ñºO“É477ǯÉËïBAЙý±£:˜w~ ïH¿~ýð‹W¯^IÊÃ`0ÈšW¯^%ÓŸ>}êêêêêêêåå%éTò»> :³'¼Ó#Eèè&˦¤¤„ÿ,ìÌ—°$]~0¾ç/“ Ç^„|8ÍÞ½{‰ÿÎ~ìØ±~ýú±Ùl333|IÍlR´´´DGG·´´ „þúë¯+VàôñãÇãˆÈÙȾúê+rºàÒÒÒäädüšzeÍu’'q®^½J^!tüøñv¿jÿùçòœù}wãÆ êlpbë(e© ì¨òòrCCÃ{÷î!„X,Öèѣɻwñ 8Ùj'³v»Iýfe»Ê{è>±œE·»iÓ&)#g2ëüaÞù5H!ýø’޼ Kúüá£FÂ/¶oßNŽ¥q¹Ü+W®\¹rEYYYì•ï瀒yOíH¡ÙÚ­­­ÑÑÑx&í¿þú‹œŽ±“_Âïù»ô=™ôHðÈÁ^dåÊ•iii¯^½:yò¤··÷¨Q£îÞ½KÞ’¶téR|1ÍlÒ?~ÜÜÜÜÖÖöÚµkød¥‚‚† ðÒÏ?ÿüûï¿øðáëׯ9Ž“É<þ<þ¢744Œïè:Éé0Þ¾}ëèèèèèøüùsòÂj)ÔÔÔÔÔÔð[sæÌ9tèƒÁøå—_Ä>ÚAKK çüâ‹/îÞ½»xñb¡ž;SÁ±³³Ó××öìŸÏçp8ãÆÓÑÑùã?~þùgœ?¼¡CµëÒ»IýMKK‹Ne»Ê{è>±–/_~ðàA‚ êêê\]]]\\jkk+**ÞŶ:˜wÉ…šÇ—tdÀ‡Z-I||ü?üP__ÿàÁŸgÏžýöÛoxé‚ Ä~êýP2ï 4¿dnm|tÛØØá? ˜LæÆñÒ} Ëë»´CMÄ“÷|@€ :2£ÐüXäuc‡–žûùçŸÅþ9õÙgŸQçÚ¥™MR!GŽ)tÉ ‹Å¢>`€ ˆ«W¯âI=„˜ššæçç˶NrÆ’……9."eGrÆ`êÉÙ€ÿóŸÿ› £f“ò´ƒŽVÎÌgB._¾,él §§'žn~íÄ–dÿþý8qðàÁdbAAÙí&±[¡³¿Ñ¬¬XÒçq{¤t¦ûh6šX³fÍÚ¢ªª*yiÎãH³Ù;ÿ}Ò¡=\ìñ%Jú“cÈ• 0 ­­MJ‹?~œ¼„ŽjÕªUdÑvæ€"èÚÙè)4¿ÍÈŠhii Â*))}÷ÝwbkGmÑ/aú['ÞÁwig¾Ló8ö6ãÇ¿uëVdd¤““Sß¾}-,,&MšÄãñRSS©¿ÓÌ&‰ŽŽÎ¥K—¢¢¢¬¬¬ôõõ§L™’““3wî\jžáÇ߾};>>ÞÇÇG__ŸÍf{{{¯^½úÎ;G¶uþðÃ7n2dˆªªª££ã¢E‹®\¹"t7¨X\.wÈ!è¿ÿˆ‰‰)))™8q"^zèÐ!ò´ —Ë ÓÓÓSUU>~ذaFFFŠŠŠÚÚÚ'---77—¼g~í:N7‰¢³¿Ñ¬lWyÝ'Ö¾}ûȱ.==½ &œ?~äÈ‘ïb[<Ì»d Bè_R“­<~ü˜œ\¬I“&ݹsgîܹÆ SSS3337nÜÅ‹É!4I…|”Ì{ý#¥£­íééÉãñÆß¿CCà  ÜÜ\r:tŒþ—°¿Kßó—IÏà þ{m Ÿ˜˜ˆ mÚ4úõ¢Ÿ¹[‘²ÿ#„ ÜÜÜTUUû÷ï'ä]^ 0âøWVVÖñãÇ'Ož,ï‚´Éd2™Ly—‚‚ &Nœ˜=tèа°0ee劊ŠÝ»wÿý÷W¯^4hBÈÉÉ)66–üÈÎ;µ´´f̘A¦˜™™ut»eeeñññgþüùònƒwhäÈ‘>>>ëÖ­ëüª¨;Õõë×7nܘ˜˜ˆ;¨Ô®“*++Çoaa‘P]]ýÕW_µµµ%''ÓüøíÛ·7nÜÈãñÞ¼ycccÍbAòA‚nüKEEeÑ¢E¾¾¾êêêò.K;òòòä]ºÒÓÓ³³³—/_¾uëV2ñæÍ›göìÙEEE!riZZÚ€èÿ*‹U]]Z¿~½¼Ûà])))¹téRWUºS={öìäÉ“K–,é1µë¤Å‹÷ë×Çã©©©!„œ£¢¢fΜIg<ûþýûžžžmmm“&M2119þüÒ¥K/^¼xâÄ yW ÈNUþÿ矮Y³æ]¬¼¥¥¥wžÛÂg·£££©‰Ó¦M»qãÆ›7oÞÑvñõ¬}úôyGëïP‡¶µµ‘§ò;ÏçŸ;wnýúõ~~~=o§zµiÿ7oÞ\¸paöìÙ8jDÍš5KMMíôéÓt>¾téÒׯ_Ÿ?~ÿþý6l(,,Œˆˆ8yò¤l`¹ƒÀð¯iÓ¦3æë¯¿¾~ýº”lEEEcÆŒ1000223f 3ÃÌÍÍcbb®_¿noooooS/^¼|ùr >}ú¸¸¸œ9s†Ïç¯\¹ÒÖÖVCCÃËË«¬¬Œ\—˵³³SUUÕÑÑqqqùé§ŸÄ–ÁËË _ŽÖÐÐ ý¢ÀÒÒÒÉ“'›˜˜èééùûûÿöÛoÔõ\¼xÑ××WGGgàÀË—/oiiéòVÅ?Ø¥¥¥BéIII·oßVRRêÌÊ%õÅìÙ³BÇÜÜ\ôƒoß¾MLL´µµíÛ·¯©©iddäÓ§OéôB‡:ï_ýµ–––’’Ò!Câââ$5²ôž¢zñâ…ŸŸ_BBBmm­ôö™:uª¢¢"gdd0 ;;;2Cll,ƒÁ())A”jöìÙãÆCyzzR[ïÒ¥Kl6ÛØØxÞ¼yÿüóO»$f̘Ád2%íÉ©Ί‰‰Ù³g›Íf±XÆÆÆóçϧ›æþåÊ•–––áÇ“),ËÞÞžÇãÑ)annîÈ‘#‡ F¦,\¸!tùòešmº8U øƒÁøæ›o ôé§Ÿ^»vMìE„§Nš:uªAHHƒÁÈÌÌtwwÏÌÌœ8q"Îðøñc???MMM___œ’žžÎd2W¯^Íb±vìØ1uêT'''>Ÿ?wîܪªªÔÔÔÐÐЛ7o"„Ö¯_Ÿàíí=uêÔæææ'N„‡‡khhˆ½kSVVÞ¿?ùV ¬]»öï¿ÿ655EåääL˜0ÁÐÐ088XAAáĉ~~~éééÓ§OG?~<((¨_¿~!!! ééé?ÿüs—·ê´iÓÒÒÒ&Mš4gΜɓ'»»»ãQ@=====½Î¬YJ_,[¶ÌÄÄdÆ Û¶m£þ`“"##:4zôè)S¦”––îß¿¿´´ôÊ•+tz~‡"„Ž=ú矎3ÆÞÞþÊ•+III—/_ÎËËša@zO Ñ××Çã©•••666Rš( àØ±cùùù¡üü|„Piié‹/úõë‡ÊËË300ppp ~jÙ²eæææëÖ­Ûºu«‹‹ N¼}ûöرcgΜ9zôèS§NíÞ½[ ìÙ³GÊÖ ‚˜3gÎÁƒ¿ûî»°°0šÝJ¿vt:ëüùó»víŠŠŠ²±±9{öljjjkkë·ß~‹:²ÿ?þ!¤££CMÔÖÖþóÏ?Û­ŸÏ_°`³³35ñáÇ!eeešmºt5+++yÈ™¤}Éû®jI^¿~=B¨ººš ˆ¤¤$„—ËÅ‹¶lÙ‚ºyó&AÍÍÍæææfffµµµximm­©©©……Ess3AøŽ„„„¶¶6œÁÌÌLII©¼¼¿Å×ùÙÛÛ·´´à‡ƒª¯¯'ÂÂÂÂÊʪµµ/ª««c±XóçÏ'Wˆ_{zz:88ˆVdÆ ¡´´4\ZKKKGGÇÆÆF¼´©©ÉÕÕÕ‚Ïç755™šš>yò/­©©122B>|XRIÁçóqÎ?þø!4kÖ,ò³?ýôÓG}„³õéÓÇÛÛ{Ó¦Müñ‡¤îÐÒÒrvv–¾µÛ'OžDˆ~öÍ›7L&“ZÂ9sæ°Ùìšš:½@¿Cñþ°iÓ&rCË—/G:tˆÚ¡Ò{JJ#TTT „Ö¯_/)Ó'OB±±±øí!Cð5yÇÇUSPPˆˆˆÝ©²²²Byyyd­B§NÂoù|¾­­­©©©Øš™™M:U DEE1Œ}ûö2i·vt: !”™™‰ß ‚!C†ôïß·0ýýÿ›o¾»Ï›˜˜ÈP¯/^ >œÉdþþûﲵ̻ Ãw¯ý­‡GÀÿXºtizzz||ü”)S @]T\\üàÁƒ””6›SØlö’%Kbbbnݺ…G¶ ׬Y£ ðÿ—Á >œ8ñòòB…„„(**⟂‚‚ÆÆFuuõ¢¢¢>}ú÷Z¾xñ!ÔØØH³ä§NZ·nÝüùóçÌ™ƒ*))©ªª:xð ŠŠ Π¬¬Z\\Ìçó>|˜œœlllŒ—.Z´(..NÊ&¦OŸÞ¿¡Ä#GŽÿÌ™3’>EÛÓ×ngYXXL™2¿f0ŽŽŽxX±¸¸˜þþ׿qãF¼·`\.·®®®£5ÊËËûôÓO«««SSS---;Z_Ð@àø,kïÞ½nnn‹-ºí±ªª !„/^$á+ƪªªð¼µµ55jD‘‘ B‡¢)˜¶¶vaaaNNNEEEUUÕÝ»wù|>Íb—••͘1ƒÃᤤ¤à<`ƒƒ6¡Ì=Â×½ :”šÞîÜ .twwJ¼yó¦ôÀ‘l(;;»%K–´´´œ:u*&&fݺu#FŒøä“Odè&:}!‰ŠŠJJJ >!;hÐ 777ÿ±cÇâ .ÛíúŠ4hõ:NUUUkkë{÷îQóHï©ÎŽ¡€€€äääW¯^áÁW‡ƒ/ÎËËËc±X£G¦³+++ê[é³Aeeeall|ìØ±/¾øÂÄħ744àkOÅ":>?»%TlòØüý÷ßíý_CC!äããCž¸G8p€ ú5zôèÑÂ… OŸ>miiyþüyooïŽVt8„1â³Ï>KMM=uê5ÿ ]†A[[[ñ[---Ù6ÚÜÜù$**ŠLTRRš6mš¶¶¶¯¯ï™3gd éô… ,˜2eJVVÖ… ²³³÷îÝkmmÍãñ´´´dîšX,VCC5EzOursþþþIII<¯°°ÐÄÄÄÄÄÄËËkÕªUuuuyyyGSS“Îz:t:AGUWW÷öö^¼x1ù˜¦¦¦ Ñ¡$tIÅÆƒˆ4÷|=(õö)üÖÈȈf:4wî\55µ={öDDDÀ Ž4è<€›7o>qâÄÂ… ÿóŸÿ‰øÔÒ;wFE&Þ¾}!dmmÝÉ-dgg§¤¤,^¼˜L¤3âØÖÖ6}úô'OžäççSo7Á¥UWW÷óó#ËÊÊîܹ£¥¥õñÇ#„nܸáééI.%oéè*ªªª¿þúëãÇ©#†Géúöí+Ûš;Ó/^¼¨®®¶²²ŠŒŒŒŒŒ»v튎ŽÞ½{7‡Ã‘­$)++kmm%£ù·oß–——SÛµ×Sìwww ÜÜÜ¢¢¢‘#G"„<==ÁéÓ§KJJð%¼]nܸqø¼vxxxzzzVV¾M»kOUË|È „:´ÿ»¸¸0™Ìk×®‘%lhh(++ ¦S£Ó§OϘ1#((h÷îÝxð|Ð pˆ¡©©™’’2}útêuñNNN&&&\.7,,L[[!ôòåË;v˜ššvþ€ø>[[[2%33³¡¡¡ÝñŒ+Vœ;wîÀBwn:88X[[oß¾=88Çõõõ­­­øF` ‹;v„††"„jkk¿üòË®mFƒºgÏžÄÄÄ•+W’ç7Ö­['é1tt¦/*++ÝÝÝW¯^˜˜ˆRPPÀу¢¢¢Ì½ Imm-—ËýüóÏñÛÄÄÄúúz¡' Jï©Nv¢¢¢Ovvö£GðůÎÎÎêêê›6mj÷G™§Q$‡î¶oßž••µhÑ"•®=UÝ™ÎêÐþ¯¡¡áââ²oß¾ØØXÜA\.·­­Í××·ÝñùçŸ0àÇüPžö¤ƒÀ ^ppðþýûùå2EYY™Ëå;99‘‘‘QSSsôèÑÎϬáå奪ªfll|ùòåÜÜ\]]Ý‚‚‚³gÏâéTD9sfûöíöööBSåÙÚÚ:99¥¤¤Lœ8ÑÞÞ>((¨µµõäÉ“?>|ø0~¸Ü¶mÛ‚‚‚ƒƒƒ322hΜ×!\.·´´4>>~ÿþýC‡Å÷±^ºtéÙ³g«V­rss“mµé ggçÁƒoÙ²åþýûƒ®¬¬<{ö¬ŽŽNHH“É”¡¤044Œ/,,´··¿|ùrNNŽ««ëÌ™3©yX,–”žê|à“ÅxÄ‘Édzxxdgg0@Òqx”ššúìÙ3±SѤ§§·yóæyóæáví©jÙLQQ±CûÿÎ;9‡Ã ­¨¨ÈÈȘ7ožÙQzÊËË+**lmm###…MžŠŒŒ¬­­MKKÓÕÕõóó#$LÇCÞ #„œ¥¸¸xìØ±ÚÚÚžžžçΣïâÅ‹£GÆ#všššGER§ã;» ¾»BÊt< »wïvuuÕÕÕUTTÔ××7n\~~¾¤î 3O»}!e:‚ ?~ajjª¬¬lbbJΰC¿ÚíPœ™Çã5JSSÓÆÆ&66¶©©Iì¾!½§Ä¢3a ®,BHWW—LÁsœ;w.5u:@¢¡¡áääDüw†jæððp6›-vsB™ÛÚÚ\\\¨sÑD§vê,‚ fÍš¥¥¥E¾¥¿ÿ‘íä䤢¢bhhMNÀ$ÐuÒT‰‰‰jw ¦ã¡AtÝ_?³¶¶®¬¬”w)€mÚ4úõ¢Ÿ¹[‘²ÿ#„ ÜÜÜTUUû÷ï'ä]^ 0âøWVVÖñãÇ'Ož,ï‚´Éd2™Ly—‚‚ &Nœ˜=tèа°0ee劊ŠÝ»wÿý÷W¯^4hBÈÉÉ)66–üÈÎ;µ´´f̘A¦˜™™ut»eeeñññgþüùònƒ®wûöí7òx¼7oÞØØØ„……EGG³XúE£îTׯ_߸qcbb"î P»Nª¬¬?~¼……EBBBuuõW_}ÕÖÖ–œœÜÑõ´¶¶zxx0ŒË—/˱: 3 püKEEeÑ¢E¾¾¾êêêò.K;òòòä]ºÒÓÓ³³³—/_¾uëV2ñæÍ›göìÙEEE!riZZÚ€døU¦ª®®F­_¿ÞÇÇGÞmÐÅîß¿ïééÙÖÖ6iÒ$“óçÏ/]ºôâÅ‹'NœèÌj©;Õ³gÏNž<¹dÉ’S»NZ¼xq¿~ýx<žššBÈÙÙ9**jæÌ™Ï^³fÍÕ«WGŒ!Ǻ€N‚SÕ€ÅÇÇÿùçŸkÖ¬y+oiiéç¶ðÙíèèhj¢ƒƒÃ´iÓnܸñæÍ›w´]|=kŸ>}ÞÑú;Ô¡mmmä©üÎ[ºtéëׯϟ?¿ÿþ 6FDDœŸ¿råJ[[[ //¯²²2r \.×ÎÎNUUUGGÇÅÅå§Ÿ~[///|9ZCCƒô‹KKK'Ožlbb¢§§çïïÿÛo¿Q×sñâE___._¾¼¥¥¥Ë[ÿ`—–– ¥'%%ݾ}[II©3+—Ô³gÏ Dq8sssѾ}û611ÑÖÖ¶oß¾¦¦¦‘‘‘OŸ>¥Ó êP¼?|ýõ×ZZZJJJC† ‰‹‹“ÔÈÒ{Š*77wäȑÆ #S.\ˆ=û9uêTEEE2:ÏÈÈ`0vvvd†ØØXƒQRR‚(;ÕìٳLJòôô¤¶Þ¥K—Øl¶±±ñ¼yóþùçŸv;H ̘1ƒÉdJÚ“;S;:³gÏ6›Íb±ŒçÏŸO-6ÍýÿÊ•+---Ç'SX,–½½=Ç£Y)„гgÏf̘Ù¿úŸÝþ€1Œo¾ùfРAŸ~úéµk×Ä^DxêÔ©©S§„„„0ŒÌÌLww÷ÌÌ̉'â ?öóóÓÔÔôõõÅ)éééL&sõêÕ,kÇŽS§NurrâóùsçέªªJMM ½yó&Bhýúõ ÞÞÞS§Nmnn>qâDxx¸†††Ø»v0eeåýû÷“oÁÚµkÿþûoSSS„PNN΄  ƒƒƒNœ8áçç—žž>}út„Ðñãǃ‚‚úõ뢠 žžþóÏ?wy«N›6---mÒ¤IsæÌ™çüã?B³fÍ"?ûÓO?}ôÑG8[Ÿ>}¼½½7mÚôÇHê---gggéûX»}qòäI„PAAègß¼yÃd2©%œ3g›Í®©©¡Ó ô;ï›6m"7´|ùr„СC‡¨*½§ˆö¼xñbøðáL&ó÷ßZôäÉ„Pll,~;dÈ|MÞñãÇqÕ"""Dwª¬¬,„P^^Yk„ЩS§ð[>Ÿokkkjj*¶obbB³IIIÊÊÊ%%%¸T#FŒèL›¼ 2üp÷Úßzqü¥K—¦§§ÇÇÇO™2eÀ€ÔEÅÅÅÿáÇÉÉÉÆÆÆx©¡¡á¢E‹âââ¤lbúôé¢'ÚŽ9òèÑ#)Ÿ ½}ûvnnnnn.ÇËÍÍ]³fͺuëÖ®]+[7Ñé IðÔB>ÄC³iiiiiixi»½@¿Cq©–-[F~vݺu©©©GŽ¡%Jï)éuÉËËûôÓO«««SSS---…–ÛÙÙåææ"„^½zUZZºoß¾èèh7iÒ¤üü|@0fÌ: nee5aÂüšÉd:88äääHÊLÄ‚ ¾ýöÛ™3gFDDé|>ÿÌ™3’>EÛÓ¬β°°˜2e ~Í`0ñ°bqq1ýý¯ãÆxoÁ¸\n]]­Y³&99Yhd|  pü‹µwï^77·E‹ ÝÈYUU…Â/’ðcUUUøÞÚÚš5"„ÈÈ!„à ÑL[[»°°0''§¢¢¢ªªêîÝ»|>Ÿf±ËÊÊf̘ÁápRRRpJEEúoÐ&”ùÑ£Gøº·¡C‡RÓÛráÂ…îîîB‰7oÞ”8’ egg·dÉ’–––S§NÅÄĬ[·nĈŸ|ò‰ ÝD§/$QQQIIIÁ'd äæææïï?vìX|Áe»½@¿CBƒ ¢^Ç©ªªjmm}ïÞ=jé=%©.=Z¸páéÓ§---ÏŸ?ïíí-6[@@@rrò«W¯ðેÃÁçååå±X¬Ñ£GÓip+++ê[é³Aeeeall|ìØ±/¾øÂÄħ744àkOÅ"(óóÓ¬]»%TlòØüý÷ßíý_CC!äããCž¸G8p€ ˆvkT__âëë»hÑ":í º?ÂFŒñÙgŸ¥¦¦ž:uŠšŽØ„®Nÿ ­­­ø­–––lmnnžùä“ &¸ºº:99Ñùì«W¯&Nœ¨©©™™™I.8^INN1dàÀ/^­‹PÈÛyoÞ¼™={ö'Ÿ|E&*))M›6M[[Û××÷Ì™3²ŽtúBŠ L™2%++ëÂ… ÙÙÙ{÷îµ¶¶æñxZZZ2÷M,«¡¡š"½§Ä®äСCsçÎUSSÛ³gODD„”uýýý“’’x<^aa¡‰‰‰‰‰‰——תU«êêêòòò8ަ¦&bwèþt‚ Ž=ª®®îíí½xñbò0MMM‚ÆÓ›hÖŽÎ!#©Øx4÷|=(õö)üÖÈȨÝíÙ³çþýûätT¯_¿nkkKJJ211 ¡ßª ›€À ÆæÍ›Oœ8±páÂÿüç?d">YvçÎQ£F‘‰·oßFY[[wr‹ÙÙÙ)))‹/&éŒ8¶µµMŸ>ýÉ“'ùùùÔÛMpiÕÕÕýüüÈIJ²²;wîhii}üñÇ¡7nxzz’KÉ[:ºŠªªê¯¿þúøñcjàˆáQº¾}ûʶæÎôÅ‹/ª««­¬¬"#####Á®]»¢££wïÞÍápdëIÊÊÊZ[[ÉhþíÛ·åååÔ6Gíõ”è:OŸ>=cÆŒ   Ý»wãÁ0)ÜÝÝ544rss‹ŠŠFމòôô§OŸ.))Á—ðv¹qãÆáóÚáááéééYYYø6m:'vé×NæC!Ô¡ýßÅÅ…Éd^»v<™ÞÐÐPVVÜnðÚ;vì ¦¿zõ*..ÎÓÓÇŽ1455SRR¦OŸN½.ÞÉÉÉÄÄ„Ë内…ikk#„^¾|¹cÇSSÓÎ?ßÇ`kkK¦dff644´;B³bÅŠsçÎ8p@è^TkkëíÛ·ãø£¾¾>  µµßlaa±cÇŽÐÐPCCC„Pmmí—_~ÙµÍÈ`0BCC÷ìÙ“˜˜¸råJòüfCCúuë$=摎ÎôEee¥»»ûêÕ«B 8zPTT”¹$©­­år¹Ÿþ9~›˜˜X__/ô¤Aé=%´B‚ >ÿüóüøãtž¤¨¨èãã“ýèÑ#|ñ«³³³ººú¦M›Ú½ÀQæ™GÉ¡»íÛ·gee-Z´ÈÇÇGEE¥Ý»ª]g:«Cû¿†††‹‹Ë¾}ûbccqq¹Ü¶¶6__ßvk´zõêÕ«WSÍÍÍ àÉ1.âïß¿ÿ—_~!S”••¹\npp°““SPPA555G;WH‡xyy©ªªFEE………_¾|977WWW·  àìÙ³x:QgΜپ}»½½½ÐTy¶¶¶NNN)))'N´·· jmm=yòäãÇ>Œ.·mÛ¶   GGÇàà`EEÅŒŒŒÚÚÚ.oF.—[ZZ¿ÿþ¡C‡âûX/]ºôìÙ³U«V¹¹¹É¶ÚÎô…³³óàÁƒ·lÙrÿþýÁƒWVVž={VGG'$$„ÉdÊÐ RÆÇÇÚÛÛ_¾|9''ÇÕÕuæÌ™Ô<,KJO ­°¼¼¼¢¢ÂÖÖ622RhÑäÉ“Åâød1qd2™ÙÙÙ 45 RSSŸ={&:%}zzz›7ož7o~€a»'v;T;ÙLQQ±CûÿÎ;9‡Ã ­¨¨ÈÈȘ7ožÙQæ?*À‡JÞ·u¿'GŽ™:uªƒƒƒ››ÛÊ•+_¾|ÙîGnß¾½`ÁOOOggç°°°+W®ÐÜV¯½E>èéx¨îß¿otÅÓñ`………þþþúúúúúúþþþW¯^%QgÌ›‚Ï…áér0<èõôéS‚ x<ž›››ššÚG}Y[[›––¦««ëççGH˜Ž‡¼F9Kqqñرc ´µµ===Ï;G-ÞÅ‹GGì455=ФNÇ#vv|w…”éxvïÞíêꪫ««¨¨¨¯¯?nܸüü|IÝAg:žvûBÊt<A<~ü8""ÂÔÔTYYÙÄÄ$44”œa‡~/´Û¡83Ç5j”¦¦¦MlllSS“Ø}CzO‘„®»¥JLL”TY„®®.™‚ç8wî\j6êt< $$DCCÃÉɉøï ;ÔÌááál6[ìæ„2·µµ¹¸¸Pç0’¢£µëPg1kÖ,---ò-ýýŸ ˆììl'''CCÃèèhr¦Ž‚éx>t ¢ü­ÀårwïÞ­ªªêììüðáÃ?þøÃÎÎî‡~ §~•››»hÑ"<땦¦æ¥K—ø|~jjª¤[Û¨¬­­+++å]i O’öƒäxÀ1`l@¢ššš~ýúu~ÜP™››;88È÷!Ë€Øÿeøáõ=ÿ‘ƒ•••{÷îÕ××ÿå—_öîÝû믿Μ9óöíÛÛ¶m“ô‘ׯ_¯X±‚Åbýøã{÷î=tè’’R|||ï|Ø.=ž‘‘QoþÕ½ìÿ€¾ž89rD ,Y²„¼Ý2..NSSóìÙ³’¢ÀcÇŽÕ××öÙgäWvvvÏŸ?¿s玼+>p ùý:§çŽ×®]#ïĘLæÈ‘#_¼xQ\\,ö#/^d0BwŠmݺµ²²Rhº]:DÞ—¦Àyjð^¸ººÊ»€®ÔÃïª&¢ººZGGGèéìx2ýÇ Íß•––jkk\¿~½¤¤¤®®ÎÆÆfôèÑR®‰ d×®]ò. ‹õðÀ±±±±­­Mt Yü¨€—/_Š~¤¥¥åŸþùøãׯ_èÐ!2}À€)))ƒ¦³]Ñ x{ç%´@Ðùgô= tÇÕûÇ;ˆ’ᇻ×þÖ÷ükè^Bnÿ$KHH`0ãÇ]”””Ä`0nݺ%ï†Cæææøúc„‡‡‡¤›Û:ãÆ ###CR]ºtIt‘¯¯/ƒÁhkkÃo>|È`0fÏžMfàóùûöíóðð044ÔÐÐpppˆŽŽ®©©!3|ùå— ©~ýõWª“˜˜Èf³‡ Òå Õ%¨ÚHÙ©ÌÍͧM›F¿^ô3¸¤,¡‚‚777UUÕþýûÇÅÅ y—t™^qª@GVVÖñãÇ'Ož,ï‚´Éd2™Ly—‚‚ &Nœ˜=tèа°0ee劊ŠÝ»wÿý÷W¯^4hBÈÉÉ)66–üÈÎ;µ´´f̘A¦˜™™ut»eeeñññgþüùònƒ®wáÂ… 6ܽ{·­­ÍÖÖvÙ²eA©;Õõë×7nܘ˜˜ˆ;è½¹wïÞÇ,v‘§§ç… „[[[UTTÈ?Z06›][[û>‹-¤²²rüøñ ÕÕÕ_}õU[[[rrrG×3räHŸuëÖɱ.@Ž€©¨¨,Z´È××W]]]ÞeiG^^ž¼‹@WzzzvvöòåË·nÝJ&Þ¼y“ÃáÌž=»¨¨!äáááááA.MKK0`€ ?´TÕÕÕ¡õë×ûøøÈ» ºXvvöرc-,,ÂÃÃUTT233'Ožüí·ßFFFvfµÔêÙ³g'Ož\²dÉ{®šššZxx¸PâÛ·o;fnn.šÿÁƒmmmnnnÔ•¼çb Y¼xq¿~ýx<.‰³³sTTÔÌ™3;4ø]RRréÒ¥ž·÷ö8þ¿jÕª5kÖ|ùå—]¾ò––‹¥ Ðë.Ág·£££©‰Ó¦Mûá‡Þ¼yóŽ~æñõ¬ä3T»\‡:‰uÕ ñÊ•+ Š‹‹ñccW­Z5pàÀ„„„NŽÝ¾¾þ?þ(”¸|ùrCCC±Hà?6lØÐ…–@ BæÎzóæÍ… Ö®]KîØ³fÍŠ‰‰9}ú4À‘ÏççææîÚµ NpwO½îK É´iÓÆŒóõ×__¿~]J¶¢¢¢1cÆ3™aæææ111ׯ_······Ç)‹/^¾|¹††FŸ>}\\\Μ9ÃçóW®\ikk«¡¡áååUVVF®ËåÚÙÙ©ªªêè踸¸üôÓObËàåå…/Gkhh~Q`iiéäÉ“MLLôôôüýýûí7êz.^¼èëë«££3pàÀåË—·´´ty«â˜©´´T(=))éöíÛJJJY¹¤¾˜={v`` BˆÃሩzûömbb¢­­mß¾}MMM###Ÿ>}J§:Ô¡xøú믵´´”””† '©‘¥÷©¹¹ùîÝ»ãÆÃQ#BHUUÕÃÃãÉ“'oß¾ÊqâDxx¸†††Ø»v0eeåýû÷“oÁÚµkÿþûoSSS„PNN΄  ƒƒƒNœ8áçç—žž>}út„Ðñãǃ‚‚úõ뢠 žžþóÏ?wy«N›6---mÒ¤IsæÌ™ŸßÔÔdjjjhhøäɼ´¦¦ÆÈÈ!tøðaIM$ŸÏÇ9ÿøã„ЬY³ÈÏþôÓO}ôÎÖ§OooïM›6ýñÇ’ºCKKËÙÙYú>Ön_œ}ú°Xÿ~/½xñ!ÔØØH³ä§NZ·nÝüùóçÌ™ƒ*))©ªª:xð 9¥¬¬Z\\Ìçó>|˜œœlllŒ—.Z´(..NÊ&¦OŸÞ¿¡Ä#GŽŸf±ËÊÊf̘ÁápRRRp ±ÀA›PæGáëÞ†JMownÈ… º»» %Þ¼ySzàH6”Ý’%KZZZN:³nݺ#F|òÉ'2t¾DEE%%%Ÿ4h›››¿¿ÿرcñ)Îv{~‡"„ D=sªªªjmm}ïÞ=jé=%¥.UUU—/_ŽŒŒ1bDyy¹èÙÿ€€€äääW¯^áÁW‡ƒ¯·ËËËc±X£G¦ÓàVVVÔ·ÒïÉÊÊ"ÂØØøØ±c_|ñ…‰‰ NohhÀמŠEüïd«IIIMMMÔyšDåååõéÓ‡û쳓'Ož:uŠšŽ¿Ù…®Nÿ ­­­ø­–––lmnn?~¼‡‡ÇÙ³g---—-[V^^.:j"Ö«W¯&Nœ¨©©™™™I.8^INNþEÄðáÃñ¸ˆP]ºü¦ï7oÞL›6 _%FRRRš6m¾4SÊŒttúBŠ üñÇ{÷îµ³³ËÎΞÜÝÝ544rss‹ŠŠFމòôô§OŸ.))Á—ðv¹qãÆáóÚáááéééYYYø6múçj9òòåKÑQCª‡feey{{ÛÚÚ’‰õõõ!Ñ÷2_è¿wmÓWÛî§Þ¾}Ëãñ|||DO'%%mÙ²eóæÍŸ}ö™žž^BBŠ+,--´´´~ýõ×’’’M›6 8P胲_˜¢¢b‡–;wr8‡ZQQ‘‘‘1oÞ<|Õœ’î ä}[wÔkoѤz:ªû÷ïã]ñt|¸¶¶v¿~ý8ŽØ.£V!¤««K¦à§°Ì;—š:@  ÑÐÐprr"þ;Ã5sxx8›Í»9¡Ìmmm...Ô9ŒÚuöìY„PRR’è"¼¦¤¤)™™™Ã‡WSSc³ÙÞÞÞgÏž•´Úõ,A³fÍÒÒÒ"ßÒ?X‚ÈÎÎvrrRQQ144ŒŽŽ&gk¢¦ãé¶„ÿ]ÍÚÚº²²RÞ¥ò$i`0HŽGŽw‰jjjúõë×ùqS@ennîàà to>øÐõȃE†î^û[§ªáÙŒ킃¥—ƒÀ€÷ë§´> 8ðþÀ™bЫàÙz ¼»ví’w] æq´@àhÀÐ# G@ Ž€-8Z p´@àhÀ€ÿKSSsذaiii@l›3f\¹rEúªH!!!b·ž˜˜Èf³‡ "ïfèæææ“&M’w)þŸ‡‡‡£££¤¢N›6­û”GŽnܸÁ`0222DÉ¥•º)íƒ*((pssSUUíß¿\\ù¥z$xV5Ä»[ýôéÓû÷ï"âéÓ§ÙÙÙQQQ•••ÉÉÉ¢yšššîܹsìØ±#GŽ|õÕWsçλ**Ñ–••ÅÇÇs8œùóçË­a»Ÿ‘#Gúøø¬[·®ó«b2™L&¿¾~ýúÆ ôÞê"´QjyÞÝVº§u«hæÖÖV•¶¶6j66›][[+ÇJUVVŽ?ÞÂÂ"!!¡ººú«¯¾jkk£~itaã”——¯^½úÚµkÀÍÍ-&&ÆÍÍM4[kk«‡‡ƒÁ¸|ù²[¦§‚À𯅠º»»“oŸ={æèèÈårcccõõõÅæ©¨¨ œ7ož»»ûàÁƒ%­JŠêêj„Ðúõë}||äÝÝEIIÉ¥K—ºªAòòòÈ×Ïž=;yòä’%KÞgu„6J-Ï»ÛJ7Ô¡n›ùÁƒmmmnnnd¢ššš|ëµxñâ~ýúñx<\gg稨¨™3gvèÆÉÏÏ÷õõÕÒÒ a2™¾¾¾§OŸöööʹfÍš«W¯Ž1B¾-ÓSAàÀ7¾ãAG*}}ýéÓ§s¹ÜÒÒR2pbcc“žž>lذ/¾øBÒi,é‚@õéÓçýTª]---,KAÖe}ú”\ÊåríììTUUutt\\\~úé'êš/^¼|ùr >}ú¸¸¸œ9s†Ïç¯\¹ÒÖÖVCCÃËË«¬¬ŒZŒ¯¿þZKKKIIiÈ!qqq---bëXZZ:yòd===ÿß~ûMRk¼xñÂÏÏ/!!¡Ý3S§NUTT|óæ ~›‘‘Á`0ìììÈ ±±± £¤¤!äåå…¯)œ={ö¸qãBžžždk#„.]ºÀf³çÍ›÷Ï?ÿHÚ®”ºHjyÑ’åéh³KéA±U“Þò/^ôõõÕÑÑ8pàòåË%uŸ@0cÆ &“IÝy¤£ß­ífÆãÇLsÓÒwø˜˜˜={ö°Ùl‹ell<þ|j×ÓlŸ+W®´´´ >œLa±Xööö<¯kçÁƒUUUsæÌ!ÿˆÕÒÒŠ‰‰)..¾}û6™íÙ³g3f̈ŒŒ½TtâÕÖÖ9rDAAAlˆFåààÀçó?~ÜÑM,[¶líÚµ¡mÛ¶8p!têÔ)ww÷;wî„„„LŸ>½´´ÔÝÝýÔ©SäG?~ìçç÷Ï?ÿˆ=¹víÚ,]ºÔÑÑqÿþý80E­_¿~éÒ¥ººº+V¬ÀáQxxøéÓ§ÉϦ§§8p`õêÕ ÷ïߟ:uê¨Q£rssçÎ;cÆ Jf>zôhttôÈ‘#W¬X¡««›””äëëKˆ çää 6ìæÍ›ÁÁÁ³gϾÿ¾ŸŸßáÇŶ†¾¾>AATTTHo·€€>ŸŸŸŸß⥥¥/^¼À)yyyB•.[¶,!!!´uëVÜÚ¡Û·o;ÖÒÒråÊ•}ôÑîÝ»cccÅnTz]$µ¼ØRÑov)=(ºé¥=~ü¸··÷íÛ·CBB|||ÒÓÓgÍšÕî<øÝwß………ÑÜÉéwk»™«««•••ÕÕÕ=ºgÏž‚‚)ñn»;üùóç-ZºsçN‡ÔÔÔ¥K—v´}ž?ŽÒÑÑ¡&jkkÓ¼ì’~ãà¯===j¢‘‘BèÎ;dÍœ9S[[;%%…fïY «YYYÉ»@κf@èþ‰Mï"ëׯG………ÅÅÅÅÅÅ­X±bÖ¬YýúõC-Z´ˆš§  @ôã[¶lAýöÛod6QGì¦Ož|øpüÚËË !¢¨¨ˆS||| ÕÕÕqÁ–-[F~vݺu©©©GŽ™>}:™XRRRUUuðàAœ¢¬¬Z\\Œ«#ccc;;»ÜÜ\„ЫW¯JKK÷íÛÍãñ&Mš”ŸŸ/ÆŒCgUVVV&LÀ¯™L¦ƒƒCNNŽh6éu|˜œœlllŒ—.Z´(..NR! ‚X°`Á·ß~;sæÌˆˆ2ÏçŸ9sFÒ§&Nœ(s‹U]]-ðµ ?ÿüsLLL```ii©¦¦¦Pæv›ËÂÂbÊ”)ø5ƒÁpttüùçŸBÅÅÅôÛ¯ãÆ¸ß1.—[WW×µ£¯¯?eÊ”ÌÌ̤¤$üGÑRSSBõõõ¸¾kÖ¬INN;{èB8ð~‰ÄX²¤£«j/Ð,(( y+´|‰z§'ý»ª©ªªªBBgÆñ¥{UUU8Ò²¶¶–t …ŠŠJJJʲeËÌÍÍ äæææïï?vìX%%%„¶¶vaaaNNNEEEUUÕÝ»w….Ê$£U„\DSHƒ «ÅTUU­­­ïÝ»G̓QBCC©ç¸±Gu&pD$''¿zõ Öúøøp8|aY^^‹Å=z4õXYYQßJºI¢ÝºHiyéè7{»=H³´øÚСC‡RÓ¥O-™••E„±±ñ±cǾøâ œÞÐÐ@^ !Šèê?íòòòúôéCžŽˆˆhjjZ°`Affæœ9s„2·Û\B]OV¿ÿþ;ýöÑÐÐ@ùøø¸¸¸‰ ¢Ë'55µ®®ŸÁŒ_¿~½––V}}}HHˆ¯¯ï¢E‹º¶Í(x¿dø-\|7VÓtëÖ-‹Õù«Ñño‰Ðø%eÈt´´´¤¬aÁ‚S¦LÉÊʺpáBvvöÞ½{­­­y<ž––ÖäÉ“³³³‡ öÉ'ŸL˜0ÁÕÕÕÉÉ© Åb544PSpØ”œœ,z{éÀ;¹9ÿ¤¤$WXXhbbbbbâååµjÕªººº¼¼<‡#:%ÍûÙÛ­‹¤–—t?~G577ÓïA饽xñ"ÙͤßÐMÄÑ£GÕÕÕ½½½/^|âÄ œ®©©ÙåÑ¡ø|1Õ'Ÿ|‚º{÷® Í%©ëñ "ÍöÁ´PoAÃoŒŒº¼qtuusrr®\¹‚o¬æp8¸+MLLöìÙsÿþýÀÀ@|µBèõë×mmmIII&&&’=d#2¾ßIyÚU\\œŸŸÔùù/,--BwîÜ5j™ˆo™´¶¶n÷ã/^¼¨®®¶²²ŠŒŒŒŒŒ»v튎ŽÞ½{7‡ÃÉÎÎNIIY¼x1™_†ÛÀIeee­­­äxØÛ·oËËË===E«£®®îççGýà;w¤‡¿t¸»»khhäææ9!äéé)NŸ>]RR‚¯:íBÒë"¥å»ds„PAAý”^Z|Wò7¨ýuóæM)[7n>¡žžžž••…oâ~Ÿ§ª>|˜••åíímkkK&â³´ÔÓÄ24—µ‹‹ “ɼvíYÙ†††²²²ààà.oœ[·nihh¸ºººººâ”ß~ûÁ`¸¹¹UVV"„vìØAÍÿêÕ«¸¸8OOO»Ž|ð_ÿ8dìNªªªÂÃà F|||ç׿äädbbÂårÃÂÂð/_¾Ü±c‡©©)‡ÔUVVº»»¯^½:11!¤  €ùñÝ$Ô_ÜÌÌ̆†™GDjkk¹\î矎ß&&&Ö×× =iÐÁÁÁÚÚzûöíÁÁÁ8R¬¯¯hmm:uj'ÛJQQÑÇÇ';;ûÑ£Gø4¥³³³ººú¦M›Ú½ÀQ†I"¥×åÎ;’Z¾3¥¢Ùƒx+ÒKëäädaa±cÇŽÐÐPCCCÜ›_~ù¥”­“ãmÛ·oÏÊÊZ´h‘ŠŠÊû™™9|øp5556›ííí}öìYI›ëÐOĬY³´´´dh‚ ²³³œœTTT £££ÉÙ”º¼qÎ;‡+ebbùüùsI+„éxÞÑm®”ê1¬­­ñõ ×‚} g377wpp ï´ššš~ýúÑÒîzIûÈð¥Ýk¿çáT5€ÞKôVe@í„À#-0â@çA8Ðó@à³k×.yäNUZ p´@àhÀÐ# G@ Ž€-8Z p´@à@ Œÿ¥©©9lذ´´4@ 6‚‚‚ÍŒ3®\¹"}U¤±[OLLd³ÙC† ‘w3t ssóI“&É»ÿÏÃÃÃÑÑQRQ§M›Ö}Ê#G7nÜ`0¢‹äÒJÝ”öA¸¹¹©ªªöïß?..ŽüÒ=ŽtS Ä ó¯ ·8}úôØØØØØØeË–?þÞ½{QQQ+V¬›gÁ‚ÇŽ5jÔž={$­Šjܸq¢-++‹·µµ]µj•¼›\þnß¾l`` ¦¦æììÌårù|~'×Éd2™L&~}ýúõI“&ݽ{÷}VJh£Ôò¼»­tO#GŽLHHžG |ýõ×öööjjj666[·nmmmEÝ»wOÒŸd^^^r¬Teeåøñã›››Æ÷ÕW_ }iÐÔÚÚ:bÄWWW)y^¿~ýÙgŸ™˜˜¨©©9Rè¯Ö .xyyéééõë×Ãáœ8qBŽÍÒƒ±ä]€÷äèÑ£GŽ©®®îÛ·ï¨Q£–/_®­­-%ÿÔ©Sïܹ#”Èf³/]º$婢^„@„ô ]8.\¸ÐÝÝ|ûìÙ3GGG.—«¯¯/6OEEE``à¼yóÜÝÝ,iURTWW#„Ö¯_ïããóδ{»ÿ¾§§g[[Û¤I“LLLΟ?¿téÒ‹/vò÷///|ýìÙ³“'O.Y²ä}ÖKh£Ôò¼»­tC%%%—.]’¾Ÿ ‚ &dgg\ºtiÅŠ•••ûöíSSS ÊÿöíÛcÇŽ™››Ë±^‹/îׯÇSSSC9;;GEEÍœ9³£çÖ¬YsõêÕ#FHÊP__ïììüèÑ£©S§²ÙìÌÌLÿ .àìììì±cÇZXX„‡‡«¨¨dffNž<ùÛo¿ŒŒ”cãôH½"pär¹»wïVUU6lØÃ‡;VUUõÃ?¨¨¨HúÈ£GTTTÌĮ̀‰ZZZò® ï¾¾þôéÓ¹\nii)8 ±±±IOO6lØ_|!é4–tA „úôé#ïêþ«¥¥…Åb)(Ð:ÓÖÖ†êªñ³¥K—¾~ýúÊ•+Æ CmذaΜ9ß}÷ݯ¿þêçç'ï†y·:Ôì>ŸŸ››[XX¸k×®vÏáþðÃgΜٻwoTTN þî»ïâââ,--üñG¡üË—/744LNN–¹x€ ™÷á7oÞ\¸paíÚµ8jDÍš5+&&æôéÓ srr’““Y,i1ÉŽ;ª««÷ïßÿŸÿü!´xñâ¡C‡.[¶,77!´råJƒââbMMM„ЪU«˜c×#zºŠŠ gÏžá”ÄÄD++« 6HúÈëׯ­¬¬/^,Û­¬¬ä]i g]² ¢ýÓN:Ö¯_*((JÇã7gÏž•’‡ www‹ÕÚÚ*=›¨Y³f‘ßEfff8ñêÕ«úúú†††W¯^%ó›™™-Y²äÚµkvvvvvv¢+lllüâ‹/lllTTTLLLæÌ™ó×_‘KwìØ1dȾ}ûjkk><==ºæE‹ÅÆÆ*+++**><++«µµ5..ÎÆÆF]]ÝÓÓóîÝ»ÔbìܹSMMMAAaðàÁ+V¬hnn&—’k¾sçΤI“  ««ëççwþüyI­·BM)..F­[·N(ç”)SX,Ö?ÿüƒß>|!4dÈ2òeËBÅÅÅAxzz:88ˆmm33³©S§øûû÷ë×ÏÈÈè³Ï>«¯¯—TB)u‘Ôò¢%ËÓÑf—Òƒbw$é-ÏãñF­­­mkkXˆ:|ø°h­q+á×mmmááá ÔGº§OŸRsׯ_/%³›››™™Y[[5_ºt‰ÉdâÃS,é;ü’%KvïÞO¾Í›7Úõ4Û'''!tîÜ9j¢»»û'Ÿ|B³}péëëGEE™™™1BR6kkkCCCéb‘‘‘ 555MMML&322’š?,, !ÔØØH§ 2|i÷Úßúž8nذÁÊÊêØ±cd ŸÏ6l˜«««¤ƒóÎ;VVV\.W¶-öÚ zFàø÷ßáïeBjD¸`Á„Ðýû÷‰ŽwîÜY»v-BhÛ¶m< ˆ“'O²X¬þýû/Y²$&&fÀ€,ëäÉ“8¿™™Ù”)StttÌÍÍ?ýôSц††2 __ßÕ«WOœ8‘Édº¸¸àEëÖ­Cy{{'$$¬ZµÊÖÖ!ôóÏ?“kÖÑÑÑÕÕݰaæM›ØlvŸ>}ÜÜ܆ÎårçÏŸÏ`0ìííÉÌÆÆÆ¡1cƬ\¹_a6räHü“F Ï;×§OssóØØØÏ?ÿÜÒÒ’Éd:tH´ä8ZÊÌ̤&â“Ô›6mÊœ––†ÊÎΦ¶?ƒÁxþü9N:t¨.¨Ý¹s_`·uëVÜÚfffVVVšššÑÑÑÛ¶móðð@‰mØvë"©åE7*8Òov)=(ºé¥=vì“ÉÔÓÓ›?þÂ… ¬¬¬Ú Á¬Y³öïßßñƒŒ¨¨¨8655)))͘1£¹¹ùÒ¥K{öì9wîÜ›7oÄf~ûö­¥¥å¬Y³$­­Ý~ðàÁJJJ ,عsç˜1cBdàE¿}:„º~ý:5qܸqŽŽŽ4›E |òÉ'666 RÇׯ_3ŒÐÐPjâÁƒBÇomm---}úô)¹¨µµUÒŸ—bAàH_ÏÇoccóâÅ jâ²eˬ¬¬®]»&ö#YYYVVVÇ—m‹½vg¤4p ‹‹‹‹‹‹[±bŬY³úõë‡Z´h5؈pË–-¡ß~ûÌ&ŠÃáˆÝôÉ“'ÉÕ677››››™™ÕÖÖ⥵µµ¦¦¦x<_=’ ö¯¾7oÞ0™LêOéœ9sØl6|-,,¬¬¬ð°(Auuu,kþüùø­™™™’’Ryy9~»uëV„½½}KK Náp8!<$ƒ‹Aç–/_ŽÂq 8677[ZZ:::’cMMM®®®|>¿ÝNyñâÅðáÙLæï¿ÿ.´èÉ“'¡ØØXüvÈ!ø´ þÖª««SPPˆˆˆÀK©ZVVB(//¬5BèÔ©Sø-ŸÏ·µµ555-ŒôºHoy¡ Žô›]zR·"½´MMM¦¦¦†††Ož<ÁKkjjŒŒŒ¤Ž **ŠÁ`ìÛ·¯Ý¾«ÝÀñÁƒ¡™3gâk0IŠŠÊãÇ%­­Ý!Dþ¡"† Ò¿ÜVôÛç›o¾{¼›˜˜Ðl–¤¤$eeå’’\*Iãï¿ÿŽЉ‰¡&ž?!´gÏjââã㜜tuusrrhGúzø5ŽATWWëèèèèèPÓñO?vvvýÔÇBýõ×Ì™3ËËËûöí;pàÀÏ>ûÌÞÞ^Þàúé§ŸÈ×,ËÚÚzåÊ•tî6`0„ïÑ™>}zÿþý©)BW ‹U\\üàÁƒ””6›SØl6z¼uëþ5544\³fØ‹á Æ¥K—>|hjjŠJKKÃs¡¢¢¢>}úQ½xñ!ÔØØH~|øðá666ø5D QTTÄ)>>>êêê¸`øt0¶nݺÔÔÔ#GŽLŸ>L,))©ªª:xð y9µ²²rttthhhqq158•——÷é§ŸVWW§¦¦ZZZ -566¶³³Ã—v½zõª´´tß¾}ÑÑÑ<oÒ¤Iùùù!µËÊÊj„ ø5“ÉtppÀ'…H¯ËàÁƒ¥´¼tô›½Ý¤YZ>ŸÿðáÃääd:|ø0nº±cÇ&''Ϙ1#33“¼]!”””ÔÔÔ+emí6—Pד‡Û£Ù>8’óññqqq!8@D»S__âëë»hÑ¢vïÿüó5±¾¾!$40TUUÕØØxùòåÈÈÈ#F”——ëééu¨#ÄýYïµzxàøöí[„ªªªP:¾ÿ ÿy'꯿þRQQYºtéÌ™3qJaaágŸ}¶iÓ&‡ƒG쥃0ˆÕnèFÅ@ :ÓñthïÈ­[·ð…‰m‚@"ã—8”ÁSÙ¡ö&7X°`Á”)S²²².\¸½wï^kkk§¥¥5yòäìììaÆ}òÉ'&LpuuurrêÂF`±X ÔüÛŸœœ,z{éÀÅ®äСCsçÎUSSÛ³gODD„”›Lýýý“’’x<^aa¡‰‰‰‰‰‰——תU«êêêòòò8þó¸]4ïgo·.’Z^ÒýøÕÜÜL¿¥—öâÅ‹Hd7“~C7AGUWW÷öö^¼x19A’¦¦fG£C)p[¹»»SnüXyy9™ÒÔÔôÝwßMž522j·qöìÙsÿþýÀÀ@|‰Bèõë×mmmIII&&&BÏ Ð××WPP¨­­¥&>þ!DŽŒ’úöíëãã³eË–éÓ§Ÿ'{çÎQ£F‘‰·oßFô¾£_¼xQ]]mee)víÚ½{÷n‡“’’²xñb2gæÖ.++kmm%ÇÃÞ¾}[^^îéé)Zuuuêd:eeewîÜþž>}zÆŒAAA»wï:%'ÊÝÝ]CC#77·¨¨häÈ‘!OOO@púôé’’|Õi’^)-oÑ輂‚ú=(½´ü1BèÆÔþºy󦔭7ŸÐOOOÏÊʳÙwí©jUUU ‹ššj"•¨•9räåË—sæÌéªæÒ¡öqqqa2™×®]#+ÛÐÐPVVÜnã´´´ „vìØAMõêU\\œ§§§PàÈb±˜ŸŸOM¼xñ"ƒÁ4hЙ3gÓÓÓƒƒƒÉ¥øä~Föë“fQ±X,MMMÑ‘E<¾Ý¡áëáÇ£ÿŽá°ªªªððpƒßùµ999™˜˜p¹ÜW¯^á”—/_îØ±ÃÔÔ”ÎCê*++GŒ±}ûvüVAAÿò)**â»Ið¥XfffCCƒÌ?*µµµ\.—|›˜˜X__/ô¤AkkëíÛ·×ÕÕá”úúú€€€˜˜˜¾}û ­ ˆÏ?ÿ|À€?þøc»Q#®”Ovvvqq1ÕÕÕ7mÚÔîŽ2<Nz]¤´|g6JE³ñV¤—ÖÉÉÉÂÂbÇŽýõÙ›_~ù¥”­“ãmÛ·o×ÒÒZ´h>…ÏÆJ"C5ÿóŸÿäææâ1Q\-[¶(((P§ ?x𠦦¦ô§Åtf‡ïPûhhh¸¸¸ìÛ·lj.—ÛÖÖæëëÛnã¬^½Zè® òæ˜ .ˆn+**ê?þÀwA!„þþûïÌÌL___sss|¢üûï¿§VðÀ!é¢2èá#Ž!}}ýêêêúúzêw1¾yMì9‚ ~/5Ÿ/Ã× Ðk¥¦¦â/îæææÒÒÒ–––]»vQ#3eee.—ìääDDFFFMMÍÑ£G•••Ûý¸³³óàÁƒ·lÙrÿþýÁƒWVVž={VGG'$$„ÉdªªªFEE………_¾|977WWW·  àìÙ³-ª¡¡a|||aa¡½½ýåË—srr\]]…NG°X¬”””‰'ÚÛÛµ¶¶žCÍŸ?ÿèÑ£¾¾¾aaaýû÷?{öìõë×?ÿüsòÂß·oßòx<éçÖÛm.)ŸUTTìPûìܹ“Ãáp8œÐÐÐŠŠŠŒŒŒyóæá¡–®mœY³f}÷Ýwaaa ,ÐÒÒÚ¿cc#ž†‰Íf¯^½:!!aذa~~~ #''§¨¨hÉ’%ø"iЕä}[÷;—’’bee…/mÆ›››‹‹ 9ãÕƒ¬¬¬ÂÃÃ…Ò¿úê+++«'N´»Å^{‹> } ÓñHŸ|QhžƒaeeZXXØÑUQQ§ãÁ ýýýõõõõõõýýý…&§Î­-êñãǦ¦¦ÊÊÊ&&&¡¡¡äT/<ÏÍÍMMMí£>ŠŒŒ¬­­MKKÃSC‹®Ÿ˜KKK#SBx¢8œ™Çã5JSSÓÆÆ&66¶©©Il!‹‹‹ÇŽk`` ­­íéé)4U2éÔ©S’¾¥%U!¤««K¦à'ˆÌ;—š:ý@  ÑÐÐprr"þwjk,<<œÍfKj^)u‘ÒòBšŽ‡~³KïA¡­´Ûò/^Ä\#„455=ŠhLND[[›‹‹ u!šÄNǃ—””2åÅ‹sçÎ4h†††››ÛO?ýDÍöìY„PRRR»›ëÐOĬY³´´´dh‚ ²³³œœTTT £££Åþ¶Ò!4hãÔÕÕEEEYZZ²ÙìñãÇã)î1@pàÀáÇkkkãgUK*­X0} ¢§Ÿþ¯©©ñññ133;zô(¾'fÏž=;v숌ŒÄS¯!„þþûoEEE|Ihhè7§M›†3”””DDDhiieggKyP!fmm 7Çôr]²м]º;ÜÓÛ˜››;88tòÒ ›¨©©éׯ!íÞ©—´ _Ú½ö·¾çŸª622Z¾|yRRÒ„ <<<>|xåÊ•AƒQ§6àñx111–––øÜÚµkçÌ™³fÍšC‡YXXüùçŸ7oÞìÛ·ïæÍ›Ûè*ðЙ(£7ƒöBzøÍ1XDDĶmÛÌÍͳ³³_¾|þÃ?H™ÔÃÆÆæÄ‰ÏŸ?ÿõ×__¿~˜••5bÄyW@nzþˆ#6~üx±W—ccÆŒº QOO/))IÞ¥tGt„=Oo  «ìÚµKÞEù觪@çAàhÀÐ# G@ Ž€-8Z p´@àhÀ€ÿKSSsذaiii@l›3f\¹rEúªH!!!b·ž˜˜Èf³‡ "ïfèæææ“&M’w)þŸ‡‡‡£££¤¢N›6­û”GŽnܸÁ`0222DÉ¥•º)íƒ*((pssSUUíß¿\\ù¥z$ÿš>}zlllllì²eËÆïÞ½¨¨¨+VˆÍ³`ÁƒcÇŽ5jÏž=’VE5nÜ8Ñ–••ÅÇÇÛÚÚ®ZµJÞ .\ðòòÒÓÓëׯ‡Ã9qâDç×Éd2™L&~}ýúõI“&ݽ{÷}V£x$^êIDATJh£Ôò¼»­t÷îÝ“ôw”———hþÖÖV‹%”SWW—Ìpûöíàà`555ggg.—Ëçóå[ÇÊÊÊñãÇ777'$$Œ7¾úÒîõëן}ö™‰‰‰ššÚÈ‘#…þR^^>yòäO›6­°°þRÐUXò.€.BÄ»\ÿÂ… ÝÝÝÉ·Ïž=sttär¹±±±úúúbóTTTΛ7ÏÝÝ}ðàÁ’V%Euu5Bhýúõ>>>ï³1»¡ììì±cÇZXX„‡‡«¨¨dffNž<ùÛo¿ŒŒìÌjóòòÈ×Ïž=;yòä’%KÞg½„6J-Ï»ÛJ7¡¦¦.”øöíÛcÇŽ™››‹æðàA[[››››……u%øÅýû÷===ÛÚÚ&Mšdbbrþüù¥K—^¼x±KþÀÙâÅ‹ûõëÇãñp9£¢¢fΜIçB}}½³³ó£G¦NÊf³333ýýý/\¸ vL:??ß××WKK+$$„Édfddøúúž>}ÚÛۻݥ + «YYYÉ»@ÎÞÅ>€(ÿw¹õë×#„ „ÒcbbBçÏŸ—’çÚµk¡   é«’ääÉ“Êÿ®577·µµÑÌÌçóù|¾P¢™™Y``  ›¶³³300¨««Ãoß¼ycbbÒ¿ÿ.¬]VVB(//,êÔ©S»¶ÛݨXjv™·"Åõë×B‡]Ôå­khhøüùsÑEgΜ!8Q'NTPP(**"S"""B¿üò‹Ì…ikk݇é·Ï?ÿü£¤¤”˜˜H¦´¶¶ª©©mܸ‘ÎÖ×­[‡Ú¿?~{ïÞ=---///ÑœÀÒÒROOïéÓ§8åÕ«WNNNí.¥C†/í^û[§ªjmm•’ÇÙÙÙÝÝýøñã2œ2›={v`` BˆÃá0EEEcÆŒ1000223fLQQ™ßÜÜ<&&æúõëöööööö¢+|ûömbb¢­­mß¾}MMM###Ÿ>}J.år¹vvvªªª:::...?ýôuÍ‹/^¾|¹††FŸ>}\\\Μ9ÃçóW®\ikk«¡¡áååUVVF-Æ×_­¥¥¥¤¤4dȸ¸¸––±u,--œLa±Xööö<Nk>|ØÐÐpæÌ™ø­……ÅÔ©Sy<Þ_ý%”óÁƒUUUsæÌ!Ï~hiiÅÄÄß¾}[úRÙz H$ïȵêµ…R—ïHÂë®"v˜ðï¿ÿ622RPP¨©©!¤%.X°!tÿþ}¢ƒ#ŽwîÜY»v-BhÛ¶m< ˆ“'O²X¬þýû/Y²$&&fÀ€,ëäÉ“8¿™™Ù”)StttÌÍÍ?ýôSц††2 __ßÕ«WOœ8‘Édº¸¸àExlÃÛÛ;!!aÕªU¶¶¶¡Ÿþ™\³ŽŽŽ®®î† 6mÚÄf³ûôéãææ6|øp.—;þ|ƒaooOf666F3fåÊ•øbµ‘#G âGÏ;×§OssóØØØÏ?ÿÜÒÒ’Éd:tH´ä­­­¥¥¥äx N±³³³³³Íœ––†ÊÎΦ¶?ƒÁ ±†j``€Ëãéééàà€[;!!!´uëVÜÚfffVVVšššÑÑÑÛ¶móðð@‰mØvë"©åE7J–§£Í.¥E·"½´ÇŽc2™zzzóçÏ_¸p¡••joÄQ Ìš5KAA!먷oßZZZΚ5KR†èèheeå/^9rd÷îÝùùùÍÍÍäþ—™™IÍORoÚ´ItUíîðƒVRRZ°`ÁÎ;ÇŒƒŠŒŒìhû:t!týúujâ¸qãÛmׯ_3ŒÐÐPjâÁƒBÇÊŒ¯pàr¹ÔÄcÇŽ!„ÒÓÓ¥/¥Ó50âHŽ]¯×îL€ôŽaaaqqqqqq+V¬˜5kY´h5؈pË–-¡ß~ûÌ&ŠÃáˆÝ4õTuss³¹¹¹™™Ymm-^Z[[kjjjaa>ÍÌÌB bOk¾yó†ÉdR•çÌ™Ãf³qàkaaaeeÕÚÚŠÕÕÕ±X¬ùóçã·fffJJJåååøíÖ­[Bööö---8…Ãá „êëëÉbP­—/_ŽÂq 8677[ZZ:::666âlMMM®®®ÒO8p >>ÞÉÉIWW7''G4Ó'OB±±±øí!Cðõdøç¶®®NAA!""/¥j¢§ªB§NÂoù|¾­­­©©©è¥×EzË mT(p¤ßìÒ{ºé¥mjj255544|òä ^ZSScdd$=pQQQ cß¾}„¬¶lÙ¢¢¢òøñcITTT´µµÉÇÖÖV(,#½xñbøðáL&ó÷ß]Úî"ÃP@0dÈ|]D‡Úç›o¾{¼›˜˜´Û¿ÿþ;B(&&†šxþüy„О={„2ãìiÓ¦Qñ€krr²ô¥tºGúàæº;¡{bˆwv— õL‹Å²¶¶^¹r%»  †PÊôéÓû÷ïOMÁ?TÒ?xð %%…Ífã6›‡oݺ…ÏЮY³FAAÌe6 ãÒ¥K>455E¥¥¥áÁ9„PQQQŸ>}X¬¿ô^¼xjll$?>|øpü"†„„(**⟂‚‚ÆÆFuuu\°eË–‘Ÿ]·n]jjê‘#G¦OŸN&–””TUU_•(Öĉ©oŸ?¾yóæ%K–TÕÕÕ !!_ðóÏ?ÇÄÄ–––’×0`yyyŸ~úiuuujjª¥¥¥èªÚm. ‹)S¦à× ÃÑÑñçŸFÓo¼þ7RwT.—[WW×nãàÂhhhPÓq5qi©ôõõ§L™’™™™””„ÿ(:pà@jj*B¨¾¾^úRº޼?Œ®û  «j7Ö,(( y+´Ç#„¨÷Ò¿«šªªª !$tñ"¾t¯ªª GZÖÖÖb£F„ŠŠJJJʲeËÌÍÍ äæææïï?vìX%%%„¶¶vaaaNNNEEEUUÕÝ»w….Ê$£U„\DSHƒ «ÅTUU­­­ïÝ»GÍSQQ *ê£G¤ŽUUU—/_ŽŒŒ1bDyy¹žžžPž€€€äääW¯^áÁZ‡ƒ/,ËËËc±X£G¦Óæø$IÒD9íÖEJËKG¿ÙÛíAš¥Å׆:”š.}jɬ¬,‚ Œ;öÅ_˜˜˜àô††|‘®Xñ?Ç\RRRSSSll¬” åååõéÓGGG¿ˆˆhjjZ°`Affæœ9sÈ*,\¸ðôéÓ–––çÏŸ—t×p»Í%Ôõäa…i¶û|||\\\ÈÄÑnãàŽº¦Çyd P¥¦¦ÖÕÕá³"¸‚ñññëׯ×ÒÒjw)èB8ðþÈ0L(ipñ]OÍÓ!·nÝÂ&vr=ø‡Vhü‡2ä :Ò,X0eÊ”¬¬¬ .dggïÝ»×ÚÚšÇãiiiMž<9;;{ذaŸ|òÉ„ \]]œœº°X,VCC5‡MÉÉÉ¢ó’ 8PúÚúöíëãã³eË–éÓ§Ÿþ!DvRá+7®\¹rëÖ-}}}‡ƒ»ÇñÒ—‚.# SŠ‹‹óó󃂂$ý†Ñ‡Ï¸Ý¹sgÔ¨Qd"¾)ÒÚںݿxñ¢ººÚÊÊ*22222R ìÚµ+::z÷îÝ';;;%%eñâÅdþÎÌœ\VVÖÚÚJއ½}û¶¼¼ÜÓÓS´:êêê~~~ÔÞ¹sG4ü=sæL```zzzpp0™ˆ¯uûëëî¡‘››[TT4räH„§§§@ 8}útII ¾ê´ I¯‹”–Ç·ht^AAý”^Z|Ïò7¨ýuóæM)[7n>¡žžžž••…o⦪úÈ‘#/_¾$G ÅzøðaVV–··7¾‘Ã#pøDðéÓ§g̘´{÷n¡3¼i.!j&“yíÚ5²² eeeÁÁÁí6‹Å8p`~~>5ýâÅ‹ cРA¢¹uë–†††«««««+Nùí·ß †››[»KA‚éx辤 +8ñÝ…ªªªÂÃà F|||ç׿äädbbÂår_½z…S^¾|¹cÇSSS:©«¬¬1bÄöíÛñ[ü˧¨¨ˆï&¡þgff644Ð.U[[ËårÉ·‰‰‰õõõBOtpp°¶¶Þ¾}{]]N©¯¯ˆ‰‰éÛ·¯Ð ñ™¾ï¿ÿžZ¤ „ÈB*EEEŸìììââb8:;;«««oÚ´©Ý ex"œôºHiùÎl”Šfâ­H/­“““……ÅŽ;È9_jkk¿üòK)['ÇÛ¶oß®¥¥µhÑ"+ u ÔÔÔû´’ŠŠJllìܹsÉñu@œœÌb±|}} ‚øüóÏ ðã?Jé7—Xj —}ûö‘MÍårÛÚÚ|}}é4NTTÔüolBýý÷ß™™™¾¾¾bgGŸ;w®]MM ~[^^žžž>vìX|XôRB6›½zõê„„„aÆùùù1Œœœœ¢¢¢%K–P'h¤ ÀçLqàÈd2=<<²³³  vÀý÷Djjê³gϨ÷ñ´Kz]¤´|g6Jååå%½…¶"¥´L&sÛ¶mAAAŽŽŽÁÁÁŠŠŠB'L%ÑÓÓÛ¼yó¼yó6nܘ˜˜HóTõÛ·oy<žè ߤ¤¤-[¶lÞ¼ù³Ï>ÓÓÓKHHX±b…¥¥%®Ñ¯¿þZRR²iÓ¦–••UTTØÚÚŠ>IhòäÉãÇïPsI)­¢¢b‡Úgç·Ãᄆ†VTTdddÌ›7ÏìØnãÌš5ë»ï¾ [°`––ÖþýûñÌJBƒÚ°aC@@€‹‹Ë¤I“Z[[9¢¢¢òÕW_áÌÒ—‚®$ïÛº{ ^{‹> uÉ>@çà쪘Îä‹Bóì0 ++«ÐÐÐÂÂÂŽ®ŠJôÉ1………þþþúúúúúúþþþW¯^%µûP–ÇGDD˜šš*++›˜˜„††’S½ðx<77755µ>ú(22²¶¶6--MWW×ÏÏOtÍøÄ\ZZ™’˜˜ˆÂó,âÌ<oÔ¨Qššš666±±±MMMb Y\\ t•ššš~ýúÑÒîzIûÈð¥ÝkëáT5ÝD„¼p œtÐ>@ÜhG蘀€:€žGè˜]»vÉ» pªÐ# G@ Ž€-8Z p´@àh Àx'¬­­å] ‹Aà@׫¬¬”w€®§ª-8Z p´@àhÀÐ# G@ Ž€-8Z p´@àhÀÐ# G@ Ž€-8Z p ;B y—ðÞ@àà‚È€ž¤·ŽG6m𣣣»»ûªU«^½zEÿ³555C‡]¾|¹¼+Ý !!BCz^8r¹Ü5kÖÜ»woذajjjÇŽûôÓOß¾}Kç³A¬X±âÍ›7ò®|x ² ‡éùceeåÞ½{õõõùå—½{÷þúë¯3gμ}ûö¶mÛè||ÿþýEEEò®t;8(Ä 4 —èùã‘#GÁ’%KôôôpJ\\œ¦¦æÙ³gôÏVUUq¹\yW><YÐóôüÀñÚµk žžžd “É9rä‹/Š‹‹¥|ÏçþùçÚÚÚqqqò®t/dPÈ ÜþÂøß€ž§‡ŽATWWëèèèèèPÓ­¬¬B?–òÙ;w–——oÞ¼YCCCÞõ€îˆ¼„‘øo)ôšD #=KÞx·ÛÚÚ´´´„Ò555B/_¾”ôÁ›7o~ûí·ááánnnwïÞíèv­­­…R*++åÝÐ5ÿ‰ÿMM$þ÷#| DÖ{­8â[§UUU…ÒÕÔÔB¯_¿–ô©Ï?ÿ|À€Ë–-“m»&z6é ”˜"Hð!ýYﵡdµ´´ Fcc£P:ž^;ŠJJJzòäÉ¡C‡TTTä]è^ÈóÎbI9 §ªèzø5Ž,KSSStd±¾¾!DÞgMUTTtèС¹sçÚÛÛË»ø gbC½v‡ ©‹ |àÃÕÃG„¾¾þ‹/p¤Hzðà^$š¿ªª !´k×.ëÿš¼råÊ Aƒ¢¢¢È<</&&ÆÒÒ2++KÞå€nA(˜ëÚØŽøß)Äánk>=?pDEDDèêêžÐ=@à½9܈_tó“Â08 @÷#€î‹ ¼èÎÑ-½ŽÐ»ˆÀë¶aY÷,½ŽÐK}p§€»mt @ï#ô"R‚Ån–}—`Ы@à½Ñ7܈A €|Aà½E»Áb· Ëpg ݃ñoøJÿS¢îSBœª W­‘z¶Î\ /8è^`¸€n NU@ïòA„eŒ¦Þt/RâÚ"ê ƒSÕ€ ùÐGìà¶ä G@ ŽÐ[|èùƒÀÀ‡ÎV G8Z p€^ÎS:G8[ €¼@àhÀz>8O è8øðÀÙjäG@ ŽÐÃÁyj@WaÉ»Þ•Ž†Œ Æ¿§ â5 ˆ‰xï`Äz&ÆÿïXhõ!„ŒyÀz,ˆ] GèzÉ9\¸·€÷ Gè±ZºÜ=M/nĨ‘qï©5ò#ŽÐÃÁ # «@à= 9ÜØÛÆ!>à=€Àz¾TõìÚÐ}@à=G¯e­r;  !¨tŽÐCôæáF2,†ø€w ¦ã€žƒ!á55±·—€.Ô[Ç£Gù¿öî=ʪò¾ÿøó EЙ!¢õ×4•›8²–ð‚ÉjWÕÆV¼°Ôb5¦‰cQjhlº$KCÚ¨M&«´]”†å…‹h©ÆB1Þ­Ž@¦u5 Ztæùý±Ï~γïûœ³÷Ù·÷k±öìsÎ>gÎ9û³¿ÏmÍš;vyä‘çœs΢E‹º»»Cöß¿ÿ~ðƒçž{nÏž=“&M:õÔSo¸á†OúÓY?¤aEÒaÐÓT•y€ö«DSõŠ+–,Y²sçΙ3gN˜0aíÚµ×]wÝÁƒƒöºð xà!Äyç÷ÉO~rýúõ]tÑ«¯¾šõSø£‘hƒòÇþþþ)S¦lܸ±¿¿Ó¦MW^yåË/¿¼|ùò ›üð‡?|÷Ýw¯¿þúÇ{lÅŠ>øà÷¾÷½?þøŽ;îÈúÙ„ˆª)"””?8®Y³ftttáÂ…“'O¶¶,^¼¸³³sÆ £££¾7ù÷ÿ÷qãÆ}ík_Ó[¾ô¥/{챯½öÚÈÈHÖO åŽÛ¶mëèè8÷Üsõ–1cÆÌž={ß¾}Ï?ÿ¼ïMºººÎ?ÿü#Ž8ÂÜxøá‡:tèСCY?!S…î}Òþ¯ëðü@²J>8F)µcÇŽ‰'Nœ8ÑÜÞÓÓ#„ؽ{÷Œ3¼·ºï¾û\[¶mÛöÖ[ovÚiãÆËú9@Õ…$ã*äf C%ŽÃÃÃ###]]]®íBˆ÷Þ{/üæ/¼ðÂÚµk_xá…ÿ÷ÿþß²eËb>noo¯kËÀÀ@Ö/h†÷´^Y%ŽÖÐéñãÇ»¶O˜0AqàÀð› <üðÃJ)!ÄôéÓ?ñ‰OÄ|\b"€LPoÒà=­W6J–¼cWW—”rxxصýƒ>vÝ1Ä¥—^úúë¯?óÌ3·Þzë¦M›.»ì2놀|b<5ª’DZcÇvvvz+‹CCCB=Î:„”rÒ¤I ,øÊW¾ò?ÿó?›6mÊú9AÉy€ ”<8 !¦L™²oß>+)jƒƒƒÖ¼ûoß¾ýÏÿüÏ7lØàÚ>}út!į~õ«¬Ÿ„dGÀíÔÒVþà8gΜ‘‘‘§Ÿ~ZoQJmÞ¼¹»»»¯¯Ï»ÿÑGý/ÿò/k×®umë­·„¿õ[¿•õB R’,Ê¢µHOùƒã¼yó:::î¾ûnÝ=±¿¿ïÞ½sçÎ=ì°Ã¬-~øáàààž={„S¦Léíí}æ™gž|òI}'o¼ñÆý÷ß?a„™3gfý„* <óI)U2 UÎÁ+W®\¶lÙñÇ?kÖ¬]»vmÙ²å”SNY¹r¥ž¦gýúõ7ÝtÓ´iÓ{ì1!ÄË/¿|ùå—ôÑG}}}¿ñ¿ñÎ;ï<÷ÜsBˆ»îºë /Œ|¸ÞÞ^FU7ÏJ®·¥+JZ?õÝr'@©%ÒN-­ 3vjúâ-ÁÝdÄÉHÚŸ÷˜ç,Zí‘¶ÊžëK>eÁ‚“&MZ·nÝúõë§N:þü… Z3òøúÌg>óøãÿíßþí«¯¾úúë¯{ì±_øÂ¾þõ¯O›6-ë§R Jù”½g ½Åµ³qºŠ™='h'3ƒÆ¼‰";é¨DűÍ*{’ »üà_t4Of:l´$é¸ciý@Qd%®8Ƽ«4^ HeÏõ•¨8"×|ã7 š;»raP@ *I†lЉ =ŽÈšÎˆ!1Î7z “Öýx§ojPj´Vi 8"|}s¡·©Úu?¾Q2èA):Ђ#Ú+¤¸èJrAíËB4ÖM>NEÄ@pD>xÇ»DŽ­¶vðfM3Pê;qM nÜDß#¹Eƒ,€¶)ÿàÈW¶‹ æ ½[¼ƒ¯­:zúÞVçT¥ô#Ñí(–GpDùN²c†?½CPvŒ^¡ÔwnÜ?¥b¢©) Êæd:!­Ò _ ê:´³”‚f>–dà0€¶£âˆ”™³ç¸ÆDëúŸw)±‹!“gò‚ññDk5,*ŽHŸk¶ð)uÚ@?4Óñ °$‘@¨8¢\A­ý¡Í[ì4ʊʵgÓý,()‚#ÚÈUkÌ$–yzR:FU“Qôkl¥Y A4U£-ÌÅ3l#}PejÐànš¶‘3Œ‰ hÁéóN¦˜çV`×hîÌ{dN:ýƒ\¤ÙóÄóiÍë7P04U#Q®Z„'iÞ¹»³&…s}BׄA9;ZÀ"¥´“ÌíÅX;|T•ý_^# EG¤)(5æ™+;2òyâ_eä-…¼$…àˆÔ4r™™íÔ@ÎñãÖvÑÇÉÉÃÉ>&åAž˜åF:8ÆÇœ—@‚ŽhMH¨òމ) ï’Ù­ž¢R¤”Š·i =üœqè@+ŽhwnóŸÆßÃ<æEÈ’ÙÞ2j «(iü×Ü☬ äæRï^­w,H}Ñ2=ˆD8[«=!Låÿª¤p Q4U#!¾ƒ‘ËÇ DG ÇTÀŸºÈáD<ŽhYPl*k–2Ÿ}UBS5Z“t±­Ó=zÈ!;¢]hZ-*ŽhA:M´˜îQI@±ð™Z@pD#øÂµ˜‰¹Äƒp¢©ÍÊýˆ´Z½½w¥GÌäûAÑÑN sTÑ B#n_«wP³5•H@‰[AÂb–\Ù‘Ô(šªÊ7ú袣…4i*å’9ÈÚ©äÁQ|»ôYHH¾ÌìHŽr‹&Ð8‚#B™kO á³àL®vjóµÒxÑ…EpDßµ˜I!|³tyÁaôŒ6J„…ÅúnO“¾!ÛBÔF èà 'Uµmt$ (›qV«3Û÷ 5{P-’V aT«§#bbMB@‰PqDÂÃÛ£ (îñ1 æÔƒ¤Æ4˜Ñ|‘Íí¼ò€¼"8mdÕͼh.É#èõˆz¹Ñû¤—ˆDS5lVˆ1WÉC‚Ú©yåì($ñ¶ó”ÇUzD%ùV¼H3òƒ¦ê iµDIƒcà‡6Ó6ÓBV¯Â+ÌÕßÎÜn‘’/ÐtY‘‘B„æÒLð"q«M—»\ƒ©Í@“KznrUܰåzµdÄ•I@‚cå¹’¢(Ì\<îøe¾ÚB!b$Ò €< 8ÂOm jÂFR|_[^öÊ“¡ÿDJB$ñi¼Ž0¸*ah\KmèdÇ 3ëD–¬HLÇ!„1LŽû5EKg^ "$p©JÅñ¡‡Z³fÍŽ;Ž<òÈsÎ9gÑ¢EÝÝÝ!ûÝÜ8mÚ4!ÄîÝ»³~B(5k ëOÐv%&†Å!JÞÇQ)µcÇŽ‰'Nœ8ÑÜÞÓÓ#„ؽ{÷Œ3¼·úñ›7o¾é¦›¦M›öØc½ûî»o½õÖ¸q㮸â ï½]rÉ%óçÏÏú95EÏðB¹±¸øõ•M¢Š¢üÁQ±`Á‚I“&­[·nýúõS§N?þÂ… ­y¼¬ºãÁƒ_}õUïOXŒ‘v¡›#à%g ¤õööæqǦæ´†qȨÁ¿qv3G„$µ[û±òrK¦•t"õûAÊðwuÕùYŽÜ­±GLâÀRyĨÝj; §çúô•¿#„0¦’F ¸ætdõê‚#š(J4UWTP˜pm'M Ö@[ÐZ ¸ËË›-Xõ¸LÌ%­©8Ú‚àXjf¶0Yë–Ä\¼ùG²°¨få–dxÀÁ±ìtv4úƒ×º¢ !"/AÅé„À©hýUI¾4ÇEc…Bk´“YTÖa‘ÔX\³("*ŽÕ ‹Ž‚.q¥àÊ‹v™ÈXÒþ/¿0ÅBűìÌn:f EGF,8~¢¨6‚c5˜!ƒÀQ2ºÜˆ‚ Ð ¸hª.;ßHAÎ(³yšßfa…„HiüZ™ú@NPq KwjÔ#cH¹§“b¬º# >å†ÕZ-i³FåËŽ%æúÍò‹. :Ï(šªœŠh©ô‰Œ­Î7z7]Õb ¤¨8–¢àTç'º<™<(:(‚#´eªB“FÄ'ë£ÊŽ@éx‹ŽÔ ó  (ŽåE;u•™Ù‘Ô˜f¹‘Òcáxed}TÁ():; A¤ø5Œª.)Ê01Ú:dÀß‘sAbEñ•DpJÇ,4šyÑÜNˆl/Ú©”MÕ@é˜ËÉèkýOñyæP5[«i¹FˈFI˜]eˆÙ¡Ü èhªJÊÛ¯‘+  q2j#ר‚céàÅk 9R*¿oTÂ"*‹àXäŪŠXÒZ•A{5”Á±DôTŒõ+wW­÷CШj-`.Tƒc€òrƒá¢Ð*Ž¥`U•¨'A!„´ŠJøtë÷ݘ&EQFAu @Y +(&2És©I¿,(=? kÖn!û$µƒÿ»Ÿw) ‰ÖjTÁ±à\ÑÐìÍFj,)WÒ’Rê>ŽJ))¤µÿf~œá‡aeJ’%Á±°¬\¨¢k ©±˜)ʯ”hý=ù,ÕÔ{&z@w qŠ£Eç­Ké—®é× 2Ap,8&y.¤\¥ÄÚÆƒ”yÕÑÂáÖ1%/IÒ/¹øh­FöÑÃV|K‰zK›’yÕá½É*”$ (ŽgާÎë‰&%”o)QÔ¶¤ƒ|ïV Ydmþ·¡ƒQõ¿D—IïyÅyÑ2¬JR‘P&Çâ3çý&AV•EÍ eÆ)÷x+äéŸ{¬­{‹4-ëMÕVvõÅ~©.ñ ç½C)¥y`T%‘Z«Q5ÇRÐ1±õ.kh–«:(¬$b¼ch¬pÔØ¨j×hª$˜©wÐ > P×,jWE¨‚cÁùö¯§Ü˜Ý -FË6š¥ò¿¡™±tÃwÃt­ÚìàXûK’×®Äf¸ôþ3qÙŽ°¡ dŽ@îèâ¥Ò ÂiŒª6¯:ôßSºêˆ‘Eƒj“!¡¹‘Çg„ ÒBk5*…àXpžîŒ‰L­¡C¡Ã·‡ð½‰•rÌ_¥õ÷¡z”Uþ:ÈúvÐLò©§P’”µ›@ÙK(Í™õ*Í[ÿ3Õzõʼnadи©¨ÖŒ, #õQÕB«…~ïä³çh¦ÏwI’*TuPtDuvp$i„û¤O5ª6N&^ ÍÕ<ÝHkµFŠU"à )}·q`í'¹xP^Ç"Ë_«"LÞ q’ªáE®Lè?C÷n¼kÇn­¶F¹¦ãq¤¬—3ýÃeÉÒu`˜¨¨¹‡+ù6Ђ# „sÄ}TŒà§ïªé$á]`¦FO»ä7ªZFu‚TfST½KŸ7Ë\;Ñzlïlçmk ÷ î ý‚"w¶g rDVš/«ÃÆ/%Fp,,ʉ“aÁ+"SE)=¥b‡`Î}h&ÂÂ^qÅŒbé=b>;q¢X\³M¥Gpšäj‰ÖS^g}\Ið.]Ñ…Jª¯§Y† YhÇ~dd2ðÖ):–›4'@BW  „Ž@ÃZ]—9ÆÌ>ÙËAvlgIÒ;X[ÿ#ò¼ -Z‰QO’Éê8ÕAdD鋉vê…å3%µ‚ðû‰ZÄ9\­$iŽÜÈóïQgGýßœ ,ñ:GU7úûr„HÝ­UEÜDêG«¥3‰Z«ñäîD‚¤ÑÍ‘J3JŒàˆªJµEƒ¿ã˜Òèq°gœq6æ£×î9Ÿ 2—yÑq€Íʉ5£]tˆŒšô‘Ä ´Ž€?WóbÌÙX¬t^JtM¦cmÊß°˜ƒÙ\ÎNªÔ绬¶ý{!‰Q¢ê7´g\OdördÏ~GêZ#EG”Á±€h§NÝÑ„ðtp4—´Ö[’ΑqC¡½ˆNÌì˜FGÉÀ‘±o(íÐ|´eÈ?‚#P×¶ÅN @ëÊxsdÒ—.ŽÆåB1&÷TƘ§€}QVƇ‚¢#ÊàX4”ýˆB‚WŽöy Èþ‹EË=aÌÉÀÍúbéÞác§âÜ1“P~ukc´5Á…T&tM íÝMÚ=ÓÂÇè½õ Þ¦ç /¶ôqLåi…t‘2~ØÓå%ßÞQ·õ,l¨;O*zPEG”Á•Ó託Jsõe,ivL+AFÎêZLR}­kÞ«EA^D‰ œNÍŠúVY”½Ö³ë\«Ûþ$É&UJ9^⊽'¯„ÙNТ³èY&›÷p1D¥DpÌ%ï8)…Rõ´$*z†×䨗˜Ó=ÂCÚ}C+®Öøë ÇÛØ]!#(V¶49¤-@ÓŽye®Ûáú‰ 5ú?êù™}nèœî © ¡ñ:=²^Y¿: ŸÛW¤Y?*¡èˆòéÈúÚ䡇š7o^__ßYguÛm·½ÿþû1oøË_þ²··÷¥—^Êà ]ËuØß>œœM¹YÚ²>)áK¬Ç\[àd¼4Ò¬ÿÕ¶Ä£¬ÁØ Þ ’R‰à¸bÅŠ%K–ìܹsæÌ™&LX»víu×]wðàÁ8·]½zu–‡îœ¾‘³„I*+-æ+/Ö©²×¤”BHålª¶®v<×<%³žd½(Âêµ(ëËé×K4rñ£oÅ”ù—ÛÉ»€æ”¿©z`` ¿¿Ê”)?üðäÉ“…K—.]µjÕòåËÿâ/þ"èVCCCo¾ùæ£>úàƒfý „e›xÙñÌ\_ªFCý#Wë›1xãrc3BWœRV×;©¬ÎŽžyÂy }%ÚpPŸ2æ ìÈÅÖ‰¡B•¿â¸fÍšÑÑÑ… Z©Q±xñâÎÎÎ 6ŒŽŽÝꢋ.ºâŠ+r‘õ9¸¼YÆ(R)!…’ÂNª+1õCÈZˆôœÚ¤£•´ÖX«‡©'TûPJ^&L”ôíãX›ÚZU¡±>ÙîkÞ7p­8ë \¯YF¶b+GeX¹>€HC>¨ˆòW·mÛÖÑÑqî¹çê-cÆŒ™={ö£>úüóÏϘ1Ã÷VK—.ý¿ÿû?!Ä}÷Ý÷ì³ÏfsèæÁÖ† ›1AÌQ/åMÝyâiž¦Wn| ÎìíZ„=¿Ý9ªÃøUf}(@«J•R;vì˜8qâĉÍí===BˆÝ»wdzÏ>ÛúËSO=•áÑ áóESÍ1zœüòN—Æ+pj¬ÕX³>Œpú##í  u%ŽÃÃÃ###]]]®íBˆ÷Þ{/¥ÇíííumÈúÅ(æŸÒë4›K–zABiw(Ê%\­)e¬õ´Uí¿Qý jñžÖ+«äÁÑ:=~üx×ö &!8Òã&K}{ÞÖ´ÇÎ7ÿ=%Õ”ŒY£”j¿³§c©e2T6lfo{‡ÐÚ¼{ MàÎ2¬wWt-*Ê%LÞÓze£dɃcWW—”rxxصýƒ>vÝ©ªŸcü†Kë:WZó12ø:Öa0\:ÒÛÑ~…U³£ŒÑq3¥7[PÈ«w…l°¤ dû©8U_ ×JÇŽÛÙÙé­, !ô8k¤ÄL„ACUÌD¨çÙ1ùŽ}Ñ«/ÖOãá'>†i´ëwb5—–©‚¸(H[†A$2>×› Ñ,'ƒB+ÿt†$OùHúÏfZÿºÎµƒÃöp®|ãžôü½s€F”?8Λ7¯££ãî»ï¶ú5 !úûû÷îÝ;wîÜÃ;ÌÚòá‡îÙ³'냭ÊU ì4ÅV„î±az7´Î’)&¬N¨¸’÷qBwÜq‹-Z¶lÙÅ_Ý@AÉ"4¿Loooó8ú¥ôPâ°)Öâ­³×ÐnAûÄÿêWBI)½C›­»3ø:èÀô}ª€—K¤´[ÀDwU80sÿ8÷&¬Y{¬}uÅѹø]¥»[¬»RöºþqIšÿ IKæ§@)ß}œ;Ǿ«$QÔ>Ô»Õïͨ´z/cGcfò–^ŠtwKçÍË*ÎÁ•̹¾€*Qq,žâÔ6ôW¿o(‘ÆœŒºæä˜CÔüD0©1÷ô¼Ùm:Ç'2ÕNút˜f2È({ÃaŽhIÃT¹4™üõ‚„Ź4ª?cÕÔSná‹ò‘i¢¤4°±®1ýúA–8‰ÒÓÅEpÌŸâSCŸ ƒ` ìŽzëbTÔ4}ôÁ{ÔÛp ©^ã ŽqöOé5BDcÿ€áÒ|cHQ¶ouT\ù§ãAVtdÌú@=©Ç<….fÍrlYÒå¯à ëc"îI—g¥Ý¹nº¦\œâ2 G¤B9{7¢Ú< vŽ(R¦<£ªÛ«6"Dªj÷ƒÔïÏZÕ|E¢pŽ9SŽ““=8FgGYkürRåiB3”#)ûjåÓh?HG'H8%d!b¨ |MGÁÌ´ôuÑïûOé<ÐàT/ÂîwÅŒQe¦ QÉ£-Ñ)jfït¨ûAŠ!Òœ¥Ë¼¸ì2ApD(é>gš1Î=kwâ×Μ¯« xce*/æñr¡T•îɨjÁ1Oò\z žEÖJ“d<4HšmŽBÚ*”+Gfû¡P¼µSfÏLÞD?Hw6õ”B Ñ–  Á1¤”vW˜ÂµÌ2M2Ö´bC­7C^×$Œµ¢&šÕP?Hß\è·@‹Ìv¤èˆb!8怬÷ú+Â"’a7U;FÆdš«l›4êD‹`æbQá]!#ï/ ‡Žhsz#%µ%­Ifç˜Ù[ø%ŽU¬× ­~åEÑBpÌ…}e˜ßøVvô™j§€Sf j×"žá2í\»Y23séá8J6¹°¡ÉY ÍÉÙEApÌ‚·ï¿î;¥šÏNTÊ'ê©vâϳ¸Ôû£IQ_ZÆxé¿‘ä*ÍþnÑ¡02öyw0K¡ùLj$HäÁ1 ž¹ëÌ“¢j×ì$R¯ßr.v•\ø>Câdm*'½L2—´ö\ÔÇФq,¼ÁÛÅ=¹wS˘frR8l…«Ô]øçƒ’"8f$è¤(Ú:,ÀúÒ ªÖ®éùöBª|GœÔÚ% 1=8f†3!]!ƒzÊ%TûÞ²yPtDnsÀžÄ1W1\ðœìë³öèåìZ«âbŽdŠÜÍñÔèÌ>R(å˜Ó§–¹ ZÖ‘õ@#5æä˜Ÿ‘†€PÊu¢—Ê|-KÞr£°þB*m‚Š÷]¼›Êú#¬yx¤½·¬ýHÄîÔhí/‹Ðè,í—„AýÈ3*ŽY³Gää;Í»ƒ£cSØæ9›ª§Òäº?J{õšÜõH&@Ù ÙöƽǨyÈíU Á1;fC[>f!?M°¤«ÔmVùÎE®³ã7˜4«ïß…_r¬L˜,®Š %rfï˜÷“Ÿ9}Ì~ŸJ)"#ò‰àXN2|š aÏC¡¬èш\st:4ç ÷&½&Š÷úNÛ¾%ýÍòÆ÷+˵Èa“sú4x±¢jÔQÔßaž‚EGä Á1S©ÎQÚ¬lv÷!5¢(ÌUÒ“ŸôTù•2©BV‰³{wÌY»þû¾mꪃȈ|"8VßL(šzkµîÜJ¼s–©®ÂSºÆùVF12æcë—‚žH Á±ªøJAqxÏšõ©òë‹×gÔW1ç´p~-OoWΫ_ƒcâdA߆ìø!Ò¾UH‹¶ÒYÏÞà¨v6±#+‚cv2ZK­öµ¥OÅ̰ƒBÓÑ™ë'^-DB Ùõ¯Íø-ÚþUm¡;î¿iB®«E÷¯Í³c\˜úåcž ¹t§”ÖßõRJú§a–ÃF3ôi­¾§üG&ÒÕÁÕTMc4²Ep¬Š° wh×@v¸8qõt”RØGß6nÇ yëW[+C¡]w¤9´o­b¦ÆúÒˆ¡c´×7¹™ýDpÌH{‹L¸ƒ'ReçKiíÌ'éðT›¿8ÒÃk¤Ý,îÜ^ĬŸ4*àXTAßÖâlÒ¾P&5¢¼£ª•P2`®GJ5æî;=|°‘Á1J6=¹Ý«Ò1_½y|Û£=ŽéòïÅÜžvjëkŠïT„õaÓŸ8ÝÇÑnÅÖÒn­Îúˆ‘Wõ…¬•í× ë-Ùñâ£öZ™ÈÁ1uµ/•6öª’õÓcÖOh¥„¬¿÷ë“„›$ãš­ÖÓÑú)9mçšÒöV”Ž{Ѓºeý®BçY£”€ÖKÇîÕèZóÀ»—­(ßɤ”=Õ³qÝV;-»FÑ ZkRøZÕMŽ‘úÞüsž_›•îήÇôø,ƒÄ·>’@pl»4Û©¥ýÍ êß:a]!­¨{¤j->:ºBúMkÂÌŽˆC_™ˆ¨õ*kÿ©·»¢ž4›ª­÷pìïðz]3â±yç#Á±$tPäšp©nõ‰]÷zÌúÀ€pÆ4ãµþ”õm)šèÿ¤"ÚÁùL Á± L„«MÄc¬,j#\=½´„·h !bÍ„¯ìÙR(«oãSM£$‰˜Žíïl§c¢cñÀàO2S£â¬Œ1›^}žpa$c5ÒÞ¢mgÊÆê}v/Fé®JÚ?ojeBJ’ˆDpÌ)ßOomŽFáøqý§Èލi¬:èØ.t½Æ\§Zé[éáÕÆmìš=³À/q%êÁS %•µ#„à‹ä Œ& B}Ò<¿b¿})fõ€¬ÍæcçËzÁÆ»z! ÙHCŒíFkµtŽÚ1¦oQ̶lÁ¹©ìŽmÄÉHU}•j½t’ô)4Úê?tÅQ²¶‡¬ =1ªûÆ|œ‘sq¿miüWãÚ¦~Êø¯±0[´Ý±¯¹x§-;<\+‹ŽàX0æ9ÌÿÃÉ€v«Uud¾*äˆ=A£¦KÚÔfpŒ±øºÚï°¨#2\’ àØ&Þ9‡›»kº¥?œŽ ùl¢2ÌõÛ­®Š1>}Ž©²Ö»®@sï=HL}I½ÁÙœ].©»ùF½ç•û“)IF?ÆnÁ±0dòׇ@ I×d:†<çÎz~T÷œwË ÂHO-:¦÷©8ÖövEÆ€ø4æ:Õ’¤ï£ø¦|#8“{áôx«·¢tlóì’#‹Y{Âü‹ÑÌ}Šz$Ú«~v¨-Z¨ßü>'G ^’L©(Èœü#8¦«õ÷µo“´ŒîÊTã¹£ÂyÒTƘaÿTÕóh­èXFcuô„á@FœeBëõÞºVQ1©ž…úNR-d0'ÏŽéð=‹Ø}i:gö‘½ŒKïU¡|Šˆõ1§îÏ]ŸëÓñøÝ¹°g‚´Ê™ÊLŠ|‘µOA[Þ’> !ÛP•dN掩Qµ^)F§”úÔÄî&çnfvÌúiyã“3­?Îö<áúÑkëИc´}ï Æs@«”žÒlζÿ—Ü,õ{4Î\Yu¯bNªŽéðmºª·…ÅlMã= Ô¹G½XÃ;„$:Û¢N„æ\õé{|?Ö®ñ4ú¯íùPvþ½z¥TJIWs¶Ô ëoÊ4J¾UIáŒtž«ý¥õö´°ÅxI–-èÈúÊË÷MßÊBÕ„ÐYQf1YéÕetе¦÷ì&ônµMž3(MÐ.*ÞçEÖ®Šüÿ$zcVU=œmCpL“kˆŒßˆé®?UR’דÒYÿÎãdTµ´çUíh ´ž‹PÒ‹žÈØÄ#“á1ÏžÙ§Á5ß3jPö=Œ ƒ¡BÙ"‚c*ìN¾Ž®¾õž™¨øòGÕœŸÌ9nD®°”Ù¢m\+ºV‘öOíÍÒs'Öׄ]jmnÚHݹB¸[«¥õ"º¼óÞC®æjPª}¹-°DêlòŽs˜“0ÝMQY]K¤PR(»s±k¸ïQTˆŠ×îÏIódæ×Í#‡‘H*ï‰(pdŒc­Ýá¾þS}ŸÎá8æÓOäûƒÙ$!„p»6rdX¤lxf«Ù dœr{§.wŒÈ‘Ââm?AçJÉì«‚à˜!R#ª&(êIO/s¹¿R~N”ßt<Ò ÍJ(kös=ó,V{霻ùv£ 9ÓÅ9 r¦,‹Ð Xïï˜îïÛ¨¡øã¶¨À|iý4%®úŽûÀ”ãÀR}òŒà˜×j¶æO"G¥qMƒŠ:ßÄ\ÍY‰Fz.æ°èyÀÂè˜è]&Qÿ•öÌ>BøMiüÅ·˜cÉã,´¾ƒsäx3÷€Ü0g¹ªÿÕÿ\V»º y›Å›<ÒkØ ‹¾›<‡DÇVùAÝqI8›®¤1ëŽã†ª`ç?”Lda/©ÊŸOÑ‘x¤ÝÛCÙ‹[ØÿôÜQA?2ÆŒAöÓ÷\gêê†3TÖGg×ç@··ˆÐ©j/_é͘ä¼iqÞ9Ñs&13Qô8ôòÜèAúÆ>ö(®>ô­·øÜ¼>Ù#2@Å1ÐC=4oÞ¼¾¾¾³Î:ë¶Ûn{ÿý÷ƒöôN7oèìú¶²¿ä¥9‡ªóVJw…¢>Ûªç¢M¶¶CœG‰QÀˆ˜ \wùrìãÔÛÛ›ì«óNZ~”83?7üjxî@…ïã=ΞޞFŸiDmO)²ßÀi˜ª•¬œã?ìû´Z`­ÖX{7ém´ÍVOOOœÝ_ÏoPÐV¾­Ïvs¶îUé;ÆÜj»0w³¶ÖÿØ7R¢Ö[…O–ßGt}êEÔ©öt‹|Ë%Q£#S ëåêéí5§ÊwÌ/ê×ffJS²~ éü&±/]ôg0°$þde¼EÛÍ-Úµs¥Þª¤çk"b.ñ–ÏnÕApô·bÅŠ%K–ìܹsæÌ™&LX»víu×]wðàÁVî3x„Wmn‘ 63kkãb<Šcb‘´(¥b¼-Îçœ@TJèÉFô;²Õ¦?íLÛÚ|Í“SÈÀ—xÝäŠ,ù§¾ÔÛ c¼JRgOû~ÌDh<€s,Ž5O9À€ì²¨òæ3½4NøFíàmµOãUzCG'%æÓLáÕ¸«=œo,2kÕúâ°ÞÑ"Þ³håëE6u%ãî1)¬Ù ÉÒyFVqò+,GýýýS¦LÙ¸qcÿ¦M›®¼òÊ—_~yùòåþ7p\Õ(aLäf%%eªW*æH‚ævH†²¿U‚§âSÁ—§‰¿á©¢ÕW#¼Æ¦!å/#ëtµ#_øÔÁOÖ1錣oF½Z›f a…¿Çeè?õ¯£ÖLuWRé¿(= ëòŽ¡ñ„K³Ã€{ÔNíÁŒpi/çãfëÄŽIŽBŸlxÈ-.µÔU\hŒn[‚ñÎëáø6p†”RÔgRö/ÅhDRþwüdk¿/ÚBwÞ·YÀxnèÊmLJ’J)=3kå}¬Y³ftttáÂ…“'O¶¶,^¼¸³³sÆ £££7óÔ?¬7b}Z ¿Q/õ³rÀ¹ßÑé$½·¬RÑá@´zíIW‚>Ÿæü,M÷¿‰Î­Ñ¯FO¶þ}ðeä˜Ã¯EÇÖë¸Òü‹ãøí¬ ¬k}çl;ˆä78ÆjƒÖ_ þ· º7ÝTßaH‹¶‘/ýíjÞ§³§¦4ûQ˜m‰ÎRh}d+Y:­cpÏ郫0×o?Ͼ}ø]Ý6fýµ5J¿øÁ]Z¥îåÝ[}TÏ[É.RÚ-ÚvéÚ¯$ÙÜ×KÜrcDãCíuP s×v¬JÚPÏ‘õÅèÕ"Cpô±mÛ¶ŽŽŽsÏ=Wo3fÌìÙ³÷íÛ÷üóÏûÜÀþ¦°¾¥j[„ÔïWamO'ö9º¤¿§Ñø’^r̨â{ñ§œ¯F:Ÿ7÷sZEÇÀ›~²zsН¹«7’_¶5âghó&V¯J»ÒP;åëÒfý:ÇZÜ¥…SWÛÐ M†Vã¤0VpüÀ=Ç=s¤1Á¤ã’@ÕC‰Œ³é|æ³›ýÐî™/½—ßÎ}¤wg)Ôzg:⯤ñˆÖnîÓSa›Sá=…¾"x.$¿âký+ÚHÉ®Ýüc´±›û÷î…«×'gKãÀ¤îmìšïÉ8þÚ'ÝûjÔRW=‘+»%¤^ê¶Ç—õo-»¦èèYa>„.:º^ ãÆÜÁUGw•N½ïX»ŽªôÊžƒ¹öa0Eè1 UEptSJíØ±câĉ'N4·[ßwïÞrKýWcI˜0®Ó¶÷Üï>¯'1®Ð÷Ð]_÷îÃv¯XšÊéÜûdÛ>^®f¥‰W#‘'ëJTž¨í)'´µëƒ—ëQO}ÞíÓª™•k]îuvªOŽÛÀáè§ézDOo}¸ø¾,ŽoWcpûlØ[Êùùòî)dYsvwIsÔŽ#í9 rMæ3çgÇì|éÓ†Ï|&`7^±zÓÚqøô u¿ò-ûúh¤ë-mÔ}ÍîÞôqº«ÂÎWÞ|ýèúžt†Y–ö5¡ù=àØâ÷jHós›þ©Aýíaž4ž¸ûÌ}‚w0_"ç, ÖOë]uåm½ƒë ßï—.Þ—´br¸ÜkÆ>üðÃßýÝß=ñÄüqsûOúÓoûÛ·ÜrË5×\cn73¢’R*÷UP>YB˜ÇÑÍ:=~üx×ö &!8vc¥„o¾)ì’’æö ŽºÐ"ƒ®YŒ}DøAû´¾‡Á“mea_—G^•ÒÍ1¾Õz³ôO×Wg¾úˆ@á³nô¥Üû— £Mc‡öºÜúWÀ˜µ.Gcwì” ¢©Ú­««KJ9<<ìÚþÁ!:;;}o¥»}X݉¬ò¸îöbÌø]ÿgë‚Nºº4¹C¥#HC‡Q”'Ûô‘¡ï$üô÷rød#`0–·M3ì§ÂуÐgDˆNú§ácJ|ª9;þA‡*DĆìàÚ9ÎMFü‡Há0[ÌVfãŸqÅ׌ß“~‡Ñü7mS¯¹ãQÒïÂTTÝÆŽÛÙÙé­, !ô8kƈQ{e$)•PF÷tëG‘geµC"—;•:ŒÖ£Ržl+üN¬òEyá…Ëð•õÎÞÓ³1B",;ê¿{·˜•Nï®; ‰†!Çàz¬ðéãñ= s‡ðG Jê!‡áû(‘wï0”÷Gš½§OÒò܉Œ: þX1#ðNŒs´ˆÚAyÔÂP¿2¡âècÊ”)ûöí³’¢688hýÈ»ífô®¿•r}N’:+GÖ{âìP©Ã-ìP¸'ÛÊz·8GB5±º"“¥o‘ÒÛ|ÙÐMB ŸA;¸ÚÜ• ·páBkF€j"8 ú8 ‚#b!8 ‚#b!8 ‚#b!8 ‚cbzè¡yóæõõõuÖY·ÝvÛû￟õÛÁƒÿéŸþé /<í´ÓfÍšuÍ5×üüç?Ïú Jâí·ß>ýôÓ-Z”õÞ+¯¼òo|ã¼óΛ9sæüùó·nÝšõÛ¡C‡~ò“Ÿ|éK_êëë;ÿüóo¼ñÆíÛ·g}PÅóË_þ²··÷¥—^òý)§ª&„¼¤þøã«¯¾ú{ßûÞ;ï¼sÆgœxâ‰[·n]°`Á=÷Ü“õ¡žRêÖ[oÕë°£iO>ùäe—]öä“ONž<¹¯¯ï…^¸òÊ+Ÿ|òɬ«¨FFF®ºêªåË—¿ÿþû³fÍ:þøã7mÚô‡ø‡Û¶mËúÐ fõêÕA?âTÕœ —´¢§*…–½ñÆ'tÒ¬Y³~õ«_Y[î¸ãŽžžž¿ú«¿ÊúЊêþûïïéé¹ì²Ë†‡‡­-o¾ùæç>÷¹“O>ù?ÿó?³>ºb[¹reOOOOOÏŸýÙŸe},¶ÿþ3f|ö³Ÿ}î¹ç¬-/½ôÒ©§žzæ™gŽŒŒd}t…d}êo¼ñÆ>úÈÚòì³Ïž|òÉ_øÂ²>´b8pàÀ¶mÛ¾ýío[ð_|ѵ§ªFE¾¤Õó™ßÿýßß»wï+¯¼’õÑÒóÏ?/„¸êª«ÆŽkm9ãŒ3N>ùäÿú¯ÿzï½÷²>º¸è¢‹®¸âŠ|0hNUŠ|I«yª"8&`Û¶mçž{®Þ2f̘ٳgïÛ·Ïú*D£Ç?}útsã´iÓ„»wïÎúèŠêã?¾å–[º»»/^œõ±Þ¿ýÛ¿I)¿øÅ/šïºë®Ï~ö³Y]!M:UafD¥Ôþýû;::t”Dˆ¥K—Þ{ï½÷Þ{ï™gžé»§ªFE¾¤ÕñÄÿò/ÿòÐÛO8á„üà§žzjÖXH½½½«W¯¾úꫯ¾új½qþüù·Ýv[Ö‡VœªÒPÍSMÕ­²Æ£?Þµ}„ Bˆd}€…722²jÕª?þã?¾óÎ;9昬¨xýéOg}€ÅÆ©*U•:UQqlÕØ±c;;;½—kCCCB=x :tèÐÒ¥K¯ºêª·ß~û†nذaC¹?Šéùÿøxà«_ý*ƒ6’2~üø#Ž8bܸqçwž¹ý‚ .B¼ñÆY`ñ¼óÎ;O=õÔ‰'ž¨S£â¸ãŽû“?ù“>úèg?ûYÖXxœªRRÁSÇL™2eÇŽCCCfîÁÁAëGY]!ŽŽÞ|óÍO<ñÄ\pûí·ó¥Ö kí kl ¹ý‘Gyä‘G¦M›öØce}ŒÅ3yòäýû÷K)ÍVA÷ã?ÎúèŠgß¾}BˆO}êS®íV¡ñÝwßÍúË€SUâªyª"8&`Μ9O?ýôüÁX[”R›7oîîîîëëËúè iõêÕO<ñÄå—_~ûí·g},…÷›¿ù›úi9pàÀ3Ï–28û쳿ïôÍo~S1cÆŒïÿû·ÜrKÖXH—\r‰bÉ’%z8ê+¯¼òÿðŸÿüç³>ºâ7nÜìÙ³wíÚõw÷wz2êíÛ·ß{⦅øÄ'\]ÐNUɪ쩊ŠcŽ;î¸E‹-[¶ìâ‹/ž5kÖ®]»¶lÙ2}úôk¯½6ëC+¤wß}÷­·Þ7nÜW\áýé%—\2þü¬UwòÉ'ó›ßüþ÷¿ÿ{¿÷{3fÌÞ¶m›”réÒ¥Ÿüä'³>ºBºãŽ;¾üå/ß{ï½ëׯ?å”SöíÛ÷‹_übtttÉ’%¿ýÛ¿õÑ•§ªdUöTEpLÆ‚ &Mš´nݺõë×O:uþüù .´¦9@£öìÙ#„8xð૯¾êýiéû£(¾úÕ¯sÌ1«V­zöÙg»»»çÌ™sà 7X‹F  ÇsÌúõëô£=óÌ3ÿú¯ÿÚÝÝ}Î9ç|ík_ûßù¬­<8U%¨²§*©”ÊúPôq@,GÄBp@,GÄBp@,GÄBp@,GÄBp@,GÄBp@,GÄBp@,GÄBp@,GÄBp@,GÄBp@,GÄBp@,GÄBp@,GÄBp@,GÄBp@,GÄBp@,GÄBp@,GÄBp@,GÄBp@,GÄBp@,GÄBp@,ÿžnâúê„IEND®B`‚statistics-release-1.6.3/docs/assets/riceinv_101.png000066400000000000000000000577701456127120000223270ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A_¿IDATxÚíÝy@TåþÇñgEEŒX\RÄ}Á}‰Ä=•DË+ЉKe¥¦‘š©?K½fŠiÞ®¸¥-æ• ®å’K¦™û’vURÁ11…˜ß§¦f;gμ_ñÇðÌ™3ßsŽÀ§ïsÎV«ÀÃ8É]ìÁF!8À(G…à£`‚#ŒBp€QŽ0 ÁF!8Pº¤¤$!®®®?þxddäéÓ§M[óÖ­[¿þú믿þúÖ­[æ×¹råJ©°¶mÛ–xê?þX±bE¯^½j×®]¥J•   ~ýú½ÿþûyyyÆl¬‹‹‹——Wûöíÿïÿþ¯t©eí}S¦L±ÑÑ jGöª  àêÕ«_|ñE»víV®\i†arô4Æ?þذaÃW^yåÛo¿ÍÈÈøã?RRR¾ùæ›É“'mÛ¶í¡k(**ÊÊÊ:vìØ?ÿùÏààà#GŽX¯Z(‡‹Ü@øøø¸¹¹I³³³oß¾-„øã?&L˜Ð­[·   k«V­Zýúõ…~~~ºÁäää®]»þþûﺗÂÂBéñµk×þñ:t¨E‹ålìÝ»wuÆìììÁƒ§¤¤¸ºº–¿ôyzzʸg¨GödýúõiÉÉÉùöÛo«T©"„¸ÿþêÕ«å­mذaRa›7oÖ Nž>>,,¬^½zUªT©W¯^×®]?ýôÓû÷ï—SLéswïÞ½uëVéñ´iÓÖ®]Û¢E ggg??¿1cÆlذAz*99ù—_~)KëÖ­»víÚJß¾ûjÀf˜ª`ß ¤úÄ{öì6lØ7¤oÿý÷ÔÔÔM›6½þúëï¿ÿþC×9tèÐ7ê¾½råÊ•+WöíÛ·uëÖ/¿üÒøÚt}Áš5kΘ1£Ä³ýúõëÛ·oFF†âÌ™3 4xè 'Nœ¸iÓ&!Ä­[·8лwoö8FÇ€½º}ûöÚµk·lÙ"„pqq3fŒ4ž››)¥Ænݺ½óÎ;C‡urrÒjµ‹/^»v­bòäÉ)))<òˆô’O?ýT÷íÆ¥Ô¨Ñhºuë6bĈ¦M›J‹%$$ìÙ³Çø <(=4h»»{é¶mÛvêÔ©S§N=ûì³Æ¬044´råÊÒãcÇŽÉ}8:ŽìI=Jº¹¹­Y³&$$DúvÁ‚Ò¥$Ï=÷œ®AØ©S§ &!fÏž=zôèG}ôÑGurúóžk×®ýÄOHwìØ!=ˆ‰‰Y´h‘ô¸M›6?þø£âÇìÖ­›1¥Þ¿_×ò °Èæk4__ß+W®!~ýõW#÷ϤI“–,YbÑãÀAÑq`÷š6mªûV—ü^|ñEÝà¨Q£œ…W®\)ÿæ;C† ùüóÏ?ÿüó‰'J#¹¹¹÷îÝ“ÿöÛoFV•››«{\«V-Kmì£>Zzý`tØýÛÍüñÇ¿þú«V«=~üxëÖ­<(u uš”u à… š7o^Ö[H¯ÊÎÎÞ¹sç‰'N:uüøñ;wîT´Té¢i‰En0.ÉÊÊ’T¯^½üý£S³fMK½;Gp`OÖ¯_ß½{wÝ·™™™#FŒØ¾}û7F½oß¾ÜÜ\ý›&”™™Yγo½õÖ¿þõ/ÝÝÝÜܼ½½oÞ¼Y¡R+W®ìåå%½×¥K— .sûömé]ªT©RµjUcV«›¡öññyèþËbª€óòòz÷Ýw¥Ç?üðï¿þZ½zu]«o×®])† :´œuΛ7oñâÅ………qqqÿûßÿrssÃÃÃM(¯S§NÒƒ-[¶¼•OÆ ½¼¼¼¼¼V¬XaÌ 8 »Š¼]»vòìtŒàÀ¾é.pö(}[XXø„OOÏ5jÔ¨QÃàg«èÄÅÅI–-[öÊ+¯4oÞÜÅÅ%==Ý„Út'Y^¹r¥ô‡"nݺU×>|ê©§ŒYáÒ¥K¥U«Víܹ³Mw4صììì™3gJ«T©"]¼¬»²xÕªUZ­Vzœ˜˜øè£zyyÕ¯_¿ô ‹º6Þ;wtÙ999Òƒü±BwáÑéß¿¿®˜×^{mΜ9ׯ_—ÞnݺuÑÑÑÒSO<ñD«V­Ê_Õ¯¿þúÒK/%$$Hß>ÿüóúçP€mpŽ#{2bÄÝÍÿøãëׯëÎDœ4i’‹‹‹â­·Þú裲³³¿úê«nݺ=õÔSIIIÛ¶m“‹‰‰Ñ],R£F é„ȹsç&%%Mœ8ÑÝÝÝÝÝ]”>ÜE£ÑìØ±£üÏŒ)Çâŋ۷oŸ——§Õjß~ûí·ß~ÛËË+;;»¨¨HZ J•* ÒßemìÝ»w¥Ä)yì±ÇæÎ+÷¡à´ lgÏž}诲N:ýþûﺗlÞ¼¹F¥{ùå—‹‹‹u‹EEEé?+­¡ô'G„……I£££ËªSwžb›6môÇ8PÖíxêׯ¿mÛ¶ mlÍš5>\ÖKvïÞ-÷á fLU°WÎÎÎÞÞÞ={ö\½zõ÷߯Urxxøÿþ÷¿^x!$$ä‘G 8pà¾}û–/_®Ñht‹-Y²$**ÊÛÛ»jÕªM›6•N—\²dI³fÍ„NNN-Z´xýõ×O:5`Àé%6lxèçJ—йsç .,Y²ä©§žòöövuu ~æ™g–,Yrþüù¾}û³¥5kÖl×®Ýÿýßÿ%''wèÐAî}ÀAi´Ü¿ëÖ­BˆÊ] (ÁFaªF!8À(G…à£`‚#ŒBp€QŽ0 ÁF!8À(G…à£`¹ P¨‚‚‚O?ýtûöíiiižžžÍš5?~|PPÜuÈF£Õjå®AqŠŠŠ†~òäÉZµj5kÖ,;;ûøñãNNNŸ~úiÛ¶må®@GþóŸÿÌž=ûé§Ÿ^´h‘‹‹‹âðáÃcÆŒ©[·îÎ;å®@œãhÀÉ“'…ÑÑÑRjBtìØ±Q£F—.]úí·ßä®@Güüü„úQ«Õæää899é¢$€£!8пÿ*UªÌ›7ïðáÃyyyÿ÷ÿ—žž>xðàêÕ«Ë]€<8ÇѰӧO9òîÝ»º‘áÇOŸ>ÝÙÙù¡¯ –»|`]ÉÉÉr— &^ ÈÍÍ}ï½÷îÞ½Û¤I“fÍšeee8p૯¾êСCÏž=YƒcþcR²àà`ŠÒpP”‰ã¢@rØ&ÁÑ€©S§þøãÓ¦M5j”4’‘‘ùúë¯oÞ¼9 @îdÀ9Ž%ݼysïÞ½ºÔ(„¨U«Ö«¯¾zÿþýM›6É] €<Ž%eee !êׯ_b\j4ÞºuKîäAp,©~ýúÎÎÎ.\(qÙt~I`` ÜȃàX’››[hhèåË—ÿõ¯Kƒ.\ˆ‹‹«\¹rXX˜ÜȃÛñ™™ùÜsÏ]¿~½~ýú7ÎÊÊúñÇ‹‹‹gΜõЗsù›¥¥¥ùûûË]ÀAQ&Ž‹qPÈaÿÖÓq4ÀËËë›o¾;vlÕªU¿ÿþûôôô§žzjãÆÆ¤Fµâv<†=òÈ#111111r t`‚#ŒBp€QŽ0 ÁF!8À(ÜŽG‚ƒƒå.òpÌûÇìÁQ)ˆÿaئª`‚#ŒBp€QŽ0 ÁF!8À(G…à£`‚#ŒBp„âܾ}ûå—_~üñÇÝÝÝCCC9"wE„††Îž=[î*°)‚#”%77·M›6üñ“O>9f̘‹/öéÓçÔ©Sr×õ€S§N|¸““SFF†þ`Ó¦MýüüŠŠŠÌ\y||¼ŸŸßˆ#¤ož{î¹}ûö]¿~ݘ—?~¼ÿþ¾¾¾šUªTÉü ÏÊÊêÝ»÷ìÙ³oݺe•= €²Qa‘‘‘Z­vÓ¦Mº‘¤¤¤¤¤¤çŸÞÙÙÙœ5çææþòË/aaaF7Ø­[·ââbcÎtܽ{wûöíÏœ93jÔ¨¹s熄„!BBB&Ožcþ†ûøøhµZ­V{þüyëí^ËEî`zõêåé陘˜8nÜ8i$>>^mæšoܸ¡Õj}||ô½½½…mòåççGGGûùù=zÔ××W1eÊ”ž={&''Ïš5«Zµjrï6ìÁV¹råAƒ}òÉ'™™™^^^Bˆ/¾ø¢]»vMš4)±daaá¶mÛÊZÏ€JŒÜ»wOQ½zuýA!DVVVùUíß¿?##cΜ9RjB¸ººN:5<<<11qäÈ‘fÖŽŠ¦7a+­¶Ì§"##׬Yóõ×_3æäÉ“.\ˆ‹‹+½ØÝ»w#""Ê^É7bè;wôsss…5kÖ,¿ÚK—. !Z´h¡?ؼys!ÄÙ³gͯ pŽ£¢iµr~•#,,ÌÛÛ;11QïêêYz1mÙJ/ïãããääTbV:33SQ»víò÷•›››¢°°PPºöÙÉÉÀ¿óŠÖè8ÂÎÎ΃^½zuNNÎÆ#""<==K/VÑé`—Æïß¿_ð‡~Ðh4¥çÁK Bœ;wNPê5›_ 8ÂD‘‘‘Ë–-›1cÆåË—W¬Xap¦ƒ_|ñʼn'nݺµÿþBˆ›7o&$$ôìÙÓßß¿üzBBB—-[6nܸ5j! bccÝÝÝ¥U™_Ž©j˜¨sçÎuêÔY¾|y­Zµzöìip¦ƒGŽÙ¢E‹¨¨¨éÓ§/\¸°k×®÷îÝÓ}¸ß† <== Þ[§R¥JK—.ÍÊÊjÙ²åüùó.\Ø¥K—ýû÷ÏŸ?¿ÄeÚ&×€ƒ#8ÂDfÈ!Z­vĈfÞ¾Q_õêÕ÷íÛ7dÈ„„„ØØØÀÀÀ}ûöuèÐAz¶   '''//Ïàkûöí{äÈ‘æÍ›ÇÅÅÅÆÆzxxlß¾}üøñrï*T‚©j˜nÑ¢E‹-²øj=<}öîÝÛªU«Ò §¥¥uêÔ) @7èîî.÷F<àÔ©SìÞ½»Ü…`.‚#”eñâÅ)))Ÿ|òItt´bâĉ­[·~ã7öìÙSzá””!Äœ9sË ÷ìÙsèС¸¸¸ââb¹ËÀ˜ªF… >ÜÉÉ)##C°iÓ¦~~~EEEf®<>>ÞÏÏoĈÒ·Ï=÷ܾ}û®_¿^za)8šö^Çïß¿¿¯¯o‰ÉîJ•*™¿—²²²z÷î={öì[·n™¿6”€àˆ ‹ŒŒÔjµ›6mÒ$%%%%%=ÿüóÎÎÎæ¬977÷—_~ Ó¿ÓA·nÝŠ‹‹ žé˜’’âêêZ­Zµ/¿üråÊ•(((0ò½vïÞݾ}û3gÎŒ5jîܹ!!!BˆÉ“'ÇÄĘ¿—|||´Z­V«=þ¼%ö:òcªÖ«W/OOÏÄÄÄqãÆI#ñññBirÙ7nÜÐjµ>>>úƒÞÞÞBƒ}»””''§ÀÀÀììli¤Q£FëÖ­kݺuùo”ŸŸíççwôèQ___!Ä”)Szö왜œÉÌÌôòòB|ñÅíÚµkÒ¤I‰% ·mÛVÖú PbäÞ½{BˆêÕ«ëzxx!²²²J¯!%%¥¸¸xöìÙÏ=÷\¥J•6oÞüúë¯GDDœ={VzUYöïߟ‘‘1gÎ)5 !\]]§Nž˜˜8räH37U"8*ZYÑMv‘‘‘kÖ¬ùúë¯ÇŒsòäÉ .ÄÅÅ•^ìîÝ»en¶äÖI1ôÎ;úƒ¹¹¹Bˆš5k–^Ã÷ß_¥JÝS£GÎÏÏ7n\BB˜1cÊ©ÿÒ¥KBˆ-Zè6oÞ\qöìYó7UâG˜",,ÌÛÛ;11QïêêYz1mÙJ/ïãããääTbV:33SQ»víÒËתU«D ìÕ«—"))©üúÝÜÜ„………úƒÒµÏNN~(*º!¨G˜ÂÙÙyðàÁ«W¯ÎÉÉÙ¸qcDD„§§géÅ*:ÃëââÒ¸qãýû÷ëþðæô<øåË—·nÝÚ­[·Fé¥öd½zõʯ?((HqîÜ9ýA©×lþ† JG˜(22rÙ²e3f̸|ùòŠ+ .c ï‹/¾8qâÄ­[·öïß_qóæÍ„„„ž={úûû—XÒÍÍmòäÉmÛ¶ýî»ï¤èÇÆÆº¸¸ôìÙ³üâCBB—-[6nܸ5j! bccÝÝÝ¥÷5CP¦ªa¢Î;שSgùòåµjÕ*+¨™0Ã;räÈ-ZDEEMŸ>}áÂ…]»v½wïžîóú,Xàéé)åTooïÙ³gïß¿?((è•W^yë­·Ú´i?gΜÆ !6lØàééiðÞ:•*UZºtiVVVË–-çÏŸ¿páÂ.]ºìß¿þüù%®é6yCP‚#L¤Ñh† ¢ÕjGŒaæíõU¯^}ß¾}C† IHHˆ Ü·o_‡¤góóósrrþøãéÛ©S§&$$øøø|þùç}ô‘§§çöíÛßzë-éÙ‚‚‚œœœ¼¼<ƒoÔ·oß#GŽ4oÞ<...66ÖÃÃcûöíãÇ—{¿M£Ñ8rËÀ¡7ÞJ‚ƒƒ“““­ýã£>:{öì| w!†9øqOKK+}dÇqQ Š¢HÁÑaÓq„jåççïÝ»WúH`>‚#TëðáÃ56l˜Ü… \U Õ “» ÔƒŽ#ŒBp€QŽ0 ÁF!8À(G…à`ÿ¼AAp€‘Ž0 ÁF!8À(G…àå ={¶ÜUØ_mX Á uêÔ©ƒÊ]…ýÕ€õ¸È]ð€ÂÂÂ={ö:t(..®¸¸Xîrì¦6€µqGAp„ †þŸÿü'==½V­ZºÁ¦M›fee¥§§;;;›³ò¬¬¬Þ½{›üòãÇÏž=ûĉ7nÜÐwqq¹ÿ¾™nfmØ;¦ªQa‘‘‘Z­vÓ¦Mº‘¤¤¤¤¤¤çŸÞÌÔ(„ðññÑjµZ­öüùó}íîݻ۷oæÌ™Q£FÍ;7$$D2yò䘘ó7ÜœÚP:ލ°^½zyzz&&&Ž7N‰BDGGËXU~~~tt´ŸŸßÑ£G}}}…S¦LéÙ³grrò¬Y³ªU«&÷nÀî•M£‘óÝË8“£råʃ úä“O233½¼¼„_|ñE»víš4iRbÉÂÂÂmÛ¶•µúX°Øýû÷gddÌ™3GJBWWשS§†‡‡'&&Ž9RÆÚP‚£²)õ$ÜÈÈÈ5kÖ|ýõ×cÆŒ9yòä… âââJ/v÷î݈ˆˆ²7Î’[wéÒ%!D‹-ô›7o.„8{ö¬¼µ œãS„……y{{'&& !âãã]]]###K/æáá¡-›eKrssBêJ×>;9øwnËÚöŽKª%ta ggçÁƒ¯^½:''gãÆžžž¥³åtpPPâܹsúƒR¯188XÞÚP‚#L¹lÙ²3f\¾|yÅŠ—±åtpHHH``à²eËÆW£F !DAAAll¬»»{ÿþýå­ u`ª&êܹs:u–/_^«V­ž={\ÆâÓÁ6lðôô4xoJ•*-]º4++«eË–óçÏ_¸pa—.]öïß?þ|Ô€êa"F3dÈ­V;bÄóoßh¤‚‚‚œœœ¼¼<ƒÏöíÛ÷È‘#Í›7‹‹‹õððؾ}ûøñãåÞU¨SÕ0Ý¢E‹-Zd¥•—îüEGGß¿ßàUÒ’V­ZmÞ¼ÙÚn°6€ZqeŒGØ“üüü½{÷J lŒà{røðáF 6LîBpDLUÞ„……………É]ŠŽ#@™8ÁQÁF!8À(G…à`'8–@p€QŽ0 ÁÀæ©K#8À(G…àPóÔ`‚#çôéÓC† ñõõuwwoӦ͒%K å.ª¤ÐÐÐÙ³gË]À*h7–…àeIMMíÚµëŽ;úôéS¹r嘘˜ÁƒË]×N:uðàA¹«ÀÖ\ä.x@LLÌíÛ·9Ò¶m[!Äœ9sÆŒ³víÚ;wöîÝ[ÞÚ ÷ìÙsèС¸¸¸ââb¹w¶FÇ6|øp''§ŒŒ ýÁ¦M›úùù™¹ò={ö„††J©Q2~üx!ÄáÇyùñãÇû÷ïïëë«yP¥J•Ìß𬬬޽{Ïž=ûÖ­[ß«…`žºGTXdd¤V«Ý´i“n$)))))éùçŸwvv6gÍ………ãÆ“’¢ÎåË—…®®®}ùîݻ۷oæÌ™Q£FÍ;7$$D2yò䘘ó7ÜÇÇG«ÕjµÚóçÏ[g× hLU£Âzõêåé陘˜8nÜ8i$>>^mæš]\\æÏŸ¯?òÛo¿ÍŸ?ßÙÙù¹çž+ÿµùùùÑÑÑ~~~GõõõBL™2¥gÏžÉÉɳfͪV­šÜ» `h7–àˆ «\¹ò Aƒ>ùä“ÌÌL///!Ä_|Ñ®]»&Mš”X²°°pÛ¶me­gÀ€å¿Ñ÷ßÿÒK/¥¤¤,_¾<((¨ü…÷ïߟ‘‘1gÎ)5 !\]]§Nž˜˜8räHËÖ€"8*›FÖw/ûÿ¸"##׬Yóõ×_3æäÉ“.\ˆ‹‹+½ØÝ»w#""Ê\}ÙÿKwåÊ•ñãÇoÙ²%((h÷îÝݺu{h±—.]B´hÑB°yóæBˆ³gÏZ°6€ZÑn|(ÎqT6­¬_e óööNLLBÄÇÇ»ººFFF–^ÌÃÃC[¶²V¾aƦM›ž8qbåÊ•?ÿü³1©Qáææ&„(qÇGéÚg''ÿÎM« GFǦpvvwîœþ Ôk ¶Hm£Ýh ‚#L¹lÙ²3f\¾|yÅŠ—©èt°V«:ujݺu×­[WÑ ´CBB—-[6nܸ5j! bccÝÝÝû÷ïo~m€àX¦3gά\¹2))é÷ßž0aBûöíå.JA:wî\§Nå˗תU«gÏž—‘¦ƒ_ç¹sçΟ?ߨQ£^x¡ÄSƒ ß°a믾:jԨŋ—X R¥JK—.8p`Ë–-ÇŽëììœpâĉýë_>>>æ×P1ÚF"8¶gÏž×^{­¸¸¸Y³fAAA1bÄòåË<ßÎh4š!C†¼ÿþû#FŒ0óö:)))BˆsçΕ˜qB†‡‡ääääåå|yß¾}9òöÛoÇÅÅåçç·lÙrûöí²Þ ªA¾6àöíÛ=zô¸ÿþš5kZ·n-„8}útTTTõêÕ÷ïßoðJ }ÁÁÁÉÉÉzG^â°>ú裳gÏ~ðÁrb~ÜÓÒÒüýýå®%q\ˆƒbm&´ö8WU˜˜˜››ûòË/K©QѼyó§Ÿ~:33óÌ™3rWçÐòóó÷îÝ+}$ æc’ºBŽüðæĕ .LNN.q›@ØØáÇ5j4lØ0¹ ÀqŽ£gÏžõôôôõõ=qâÄ©S§rrr6lØ£GéNQXXXXX˜ÜUT‚vcEK*((¸sçN``à;ï¼³aÃÝxݺu?øàƒ¦M›³’Ò7ܱc‡Ü[%JKK“»Ù¤§§Ë] à¸(ÅJRSSù=ܧO¹‹U ‚cIwîÜB¤¤¤ÜºukÁ‚]»vÍÏÏOHHX¶lÙĉ·nÝjLßÑ1O˜… ü„wß|Åâ¸(ÅJŒÜ±¥ÿ¬üh GÀ9Ž%U©REzðÞ{ïEDDÔ¨QÃ××wüøñLOO/ç³F€½`’Ú4Ç’ªV­Z¥J77·çÒõèÑCqþüy¹ f!5šŒàh€··w¥J•4þ 4C]XX(wuò 8–››ûË/¿èž”(©ÑL\Um@£Fbbb/^ܧOŸ6mÚÜ»wïøñãfÞ¼y>ú¨ÜÕSÍGp4lìØ±^^^Ÿ}öÙ¡C‡<==»wï>a„   ¹ë¦ 5ZÁ±LÏ>ûì³Ï>+wÀ\¤FKáG…àÔŒv£¡\÷ïßïСCÇŽå.Ä€ÐÐÐÙ³gË]à!H–Ep„rÍœ9óèÑ£rWaÀ©S§<(w€‡ 5ZÇ@¡¾ýöÛØØXý-,,ܳgÏ¡C‡ââ⊋‹å.PR£5ÐqD… >ÜÉÉ)##C°iÓ¦~~~EEEy‹7n<ÿüó/¼ðB:u*ôÂãÇ÷ïßß××Wó J•*™_UVVVïÞ½gÏž}ëÖ-ËíN€å‘­„àˆ ‹ŒŒÔjµ›6mÒ$%%%%%=ÿüóÎÎÎæ¯_«ÕŽ1ÂÓÓóƒ>¨Ð wïÞݾ}û3gÎŒ5jîܹ!!!BˆÉ“'ÇÄĘ_˜V«ÕjµçÏŸ·ì.X©Ñz4{Ñ«W/OOÏÄÄÄqãÆI#ñññBˆèèh‹¬?66vß¾}GŽyä‘GŒU~~~tt´ŸŸßÑ£G}}}…S¦LéÙ³grrò¬Y³ªU«&÷nةѪލ°Ê•+4è“O>ÉÌÌôòòB|ñÅíÚµkÒ¤I‰% ·mÛVÖz Pzðرc3gÎŒmÙ²e…ªÚ¿FFÆœ9s¤Ô(„puu:ujxxxbbâÈ‘#ͯ  p¤Fk#8*šF£‘ñÝËùÙ‹ŒŒ\³fÍ×_=f̘“'O^¸p!..®ôbwïÞˆˆ0~ý¹¹¹C‡íÙ³çk¯½VÑj/]º$„hÑ¢…þ`óæÍ…gÏž5¿6€’I1ùímmGESì@XX˜··wbbâ˜1câãã]]]###K/æááQ¡MX¹rejjjDDÄÂ… ¥‘Û·o-X°àñÇ:th9¯ussBêJ×>;98—·¢µ‹F£Ía ggçÁƒ¯^½:''gãÆžžž¥«ètpAAbñâÅúƒÙÙÙÓ¦MëÚµkùÁ1((HqîÜ9ýA©×l~me"5ÚÁ&ŠŒŒ\¶lÙŒ3._¾¼bÅ ƒËTt:xÆŒ3fÌÐñ÷÷÷õõ=|øðCë \¶lÙ¸qãjÔ¨!„(((ˆuwwïß¿¿ùµˆÔhcÜŽ&êܹs:u–/_^«V­ž={\Fš.‹ oºaÃOOOƒ÷Ö©T©ÒÒ¥K³²²Z¶l9þü… véÒeÿþýóçÏ÷ññ±Am#5ÚÁ&Òh4C† ‘î¹h‘Û7£   '''//Ïà³}ûö=räHóæÍãââbcc=<<¶oß>~üx¹wÀ¤w 5ÚSÕ0Ý¢E‹-ZdÕ·HKKÓÿ6::úþýû¯’–´jÕjóæÍÖÞðàà`~[€\ˆŒ2¢ã{’ŸŸ¿wï^é#aˆÔ(/:ް'‡nԨѰaÃä.`kÜ©Q ް'aaaaaarW°5 ÁT5P4R£rÐq Åô´Ò€ÑhT ‚#PŠEp B£QÉŽ@h4*ÁÈF£] 89Ñh´#G¥–»lŠÈhwŽŠœœ,w *—––æïï/w€?íÁا3Ú/‚#°öŽà¬ŽÈ¨G`EDF5!8« 2ªÁX‘Q­ŽÀ’¸hZÅŽÀ2h4ªÁ˜‹Èè ŽÀDR^DF‡ApF‹Ñ1@™“Üû Ñh¤+¦=5jä.@>tÀCÐe„„àÊDd„>‚#(‰Ë¥aÁü#ÊApBa‚#Yià€ƒ¢ÅˆŠ"8àXh1ÂdG-F˜‰à€ÊÑb„¥P-ZŒ°,‚#jC‹VBp@%È‹°6‚#v)i؆“Üiþ¢ÕjI6¢Â÷4Gì SÒ Áû@^„ìŽ(Z@@€ô€¼ÙqŽ# %¿˜ššÊ)ŒP‚#ÊÂ%/P,¦ªPNa„òyv„à€ È‹°GGl‡¼»FpÀºtaQaçŽXÍErìÏG,‹¼#8`äE8‚#¦#/¡¨.vÃ"8`š‹€ª>«úôéÓå/°cǹkØ™ŸMj„#SUpŒŒŒü÷¿ÿ]TTTú©ìììI“&Mœ8Qîv@£‡¼è¨*8z{{øá‡C† ¹té’þøÎ;ûõë·}ûözõêÉ]#@¹J‡Eò"þæð7q* Ž[·n2dÈ™3g"""6lØ „ÈÉɉ‰‰yíµ×rrrÆŒ³yóf¹k( ÍEÀxªº8ÆÝÝ}Μ9O?ýôŒ3Þyço¾ù&555333((hþüùÍš5“»@€Rp¥ `Uu%;vŒ¯Y³æ±cÇ233CBB6mÚDjÐ\̤Âà¸ÿþÁƒÿöÛoMš4ñöö>yòä¸qãnܸ!w]ypæ"`)ª ŽwîÜ™>}ú /¼™™9qâÄ/¿ürëÖ­O?ýô¾}ûúõë—˜˜(w¡¹Xƒª‚£”ƒ‚‚¾üòËW_}ÕÙÙÙÃÃãƒ>X´h‘F£™>}ú˜1cä®`E4a-\R-„PYpÌÌÌ|饗6mÚÔ¸qcýñððð-[¶tìØñÀr×°0š‹€Í¨êªêõë×·jÕÊàS¾¾¾üñºuëä®`\ Øžª‚cY©Q¢ÑhFŒ!wÓé¢ /rPUp¨aP‚#@q‹P®Œù Á œ¶(Á 'š‹€!8l°Ø)‚#À‹°Wœà¨GmÁqûöíŸ}öÙ¥K—Êú­täȹkGAXTFUÁq÷îÝ“&M’;;;Ë]8(®qÔJUÁñ£>BŒ9òÕW_õðð»p 4¡NÌS?HUÁ1%%¥N:o¾ù¦““ª>ƒ”‰°8õ¬û÷ïß¹s§nݺ¤F°­¹ë` êé8:99yxx\¸p¡¸¸˜ìDg€D=ËÙÙù…^ÈÌÌ\²d‰Üµ€Ý£³p‚ciêé8 !úöí{õêÕU«V9räé§Ÿ®S§NåÊ•K,ÓµkW¹Ë…¢³ |ª ŽÝ»w—œ>}úôéÓ—INN–»LPa1--Íßß_Ýhˆª‚ã3Ï<#w `è,0ª‚cll¬Ü%€B˜OUÁ °˜ˆyê2Øwp\¿~½¢]»vAAAºoË%wÕ`E„EÀê4Ñ ÜEÈþƒãœ9s„³gÏ–‚£ômùŽÔ‡°XíÆ²Ùwpœ0a‚¢Y³fÒ·“'O–»"°Â"Û³ïà8~üxýo_|ñE¹++",—}GP=Â"`SÌS—‹àŠCX LGPÂ" ?ÚCpyè'EAX`Ž`;´å¢Ýh‚#Xa°¤Fã¨<8jµÚ={ö¤§§7oÞ¼U«Vr—ÀQ¨’Ú‚ãž={–.]Ú£GéÞà3gÎLHHž:tèÛo¿]â¤"°Â"`¯h7ÍIî,éøñ㯾úêùóç‹‹‹…?ÿüsBB‚‡‡Ç°aÃêÔ©³aÆ={öÈ]#UÑèÑê‘».° UuW¯^­Õjg̘1tèP!Ä®]»„óçÏïÞ½û¥K—úôéóŸÿü§{÷îr— À¾ÑYT…vcE¨ªãøË/¿øúúŽ1¢R¥JBˆ£GV®\ùÉ'ŸBÔ¯_ÿ‰'žHMM5aµ­[·ž2eŠÜÛ@6tu"5Vª‚cNNŽ———ô¸°°ðçŸnÚ´iåÊ•¥‘Gy$33³¢ëÔjµo¾ùæï¿ÿ.÷ư5Â"4áÀ¿T5U]«V­ôôô¢¢"ggç“'Oæçç·oß^zª¸¸8==ý±Ç«è:?ùä“cǎɽel„ihÀÐn¬8UuÛ¶m›““óá‡^»víÃ?B„††JO­]»ö·ß~ ¬Ð /\¸°dÉ’† ʽe¬Eó :‹€£ 5šDUÁñ¥—^ªZµêòåË»uëvìØ±fÍšI÷nüÇ?þ+„=z´ñk+,,œ:uª§§ç´iÓäÞ2–TVR$,@ùTk×®ýÅ_tíÚÕ××·K—.|ð4ë”™™Y½zõ÷Þ{¯C‡ƯíÃ?|x§N’’’*ZFppp‰‘;vȽoZzzºÜ% $”€€Ýcý›*¤¥¥É½õÊÅ‹qP,Ë?À?-5MTä×@Ÿ>}t“ ý•wj Ž’œœœ³gÏ^¿~½V­Z;wvuu­PjÌËË›:ujݺußxã Ó HNN–{ $¹K@IÖ8(\Ýb>~Xˆƒb1!´Â_Tl>ðg]£INNvØì¨¶à˜••µ|ùò„„„¼¼pà@ݸ··÷Þ½{###¥4Y¾cÇŽmذaìØ±-Z´{ƒ”‰sÀöTW®\ùÓO?=õÔS;vìxï½÷tã7n0`À¥K—>û쳇®äÂ… Bˆ¸¸¸à¿ 4H±yóæàààþýû˽•€ã",0íFKPÕTõ±cÇœß}÷ÝGyDÜÙÙyÖ¬Yß~ûíÎ;ÇŽ[þJêիׯ_?ý‘Û·o8p V­Z­Zµòõõ•{+ÇÂ44 °Tjtì* ŽçÎó÷÷×}ê >ww÷€€€K—.=t%]ºtéÒ¥‹þHRRÒÚ´i#Ý €µX’¥{¡i ȽUòPUpôðð¸{÷nYÏfggW«VMîFX`ÌP[”ªÎqlܸñõë×OŸ>]ú©sçÎ]»v­Q£Fr×àoœ³ÀºH–¦ªà8dÈFóÆo”¸ewRRÒ¤I“„&¬¶I“&ÉÉÉÌS¡KŠ„EVDj´UMUwîÜù…^X½zõ Aƒ¤OŒØ½{÷¡C‡.^¼X\\óÌ3e=õøãGDDÔ­[Wîë",P'yœàøUÇØØX¹KäÁL45“{z:ª Ž€C¡¹@ý˜žVûŽßÿ}E_ÒµkW¹«LGXà@h4*}DZcÇVô%ÉÉÉrW T3Ñ‹¢œà¨Ç¾ƒc9WÃöŽæ"G¤¨ÈˆRì;8r5 Ô‡æ"ÇÅÜ´â9ÐG¾ùæ›Ýºu“» Àƒý'wQ`C¶ÿA˜Ä¾;Ž¥egg÷Ýw—/_.1ž——÷í·ß:;;Ë] ð7š‹ „²##'8>HUÁñÆC‡½víZY DEEÉ]#g.ÀßìíŒFÐh…VcþŠì–ª‚ãÇ|íÚµ¶mÛ†‡‡oÛ¶íèÑ£³fÍrss;þüçŸ5cÆ ¹k„ƒ¢¹°·È‰ª‚ãþýû]]]ãââªW¯Þ­[·.]ºøûûwêÔI0wîÜüãAAAr— B^€’ì(2š§–Æ‚ƒå®M&ªº8æúõëõëׯ^½ºâ±Çóôô<{ö¬ôÔàÁƒ===?þøc¹k„úq¥ ¦»†_ŠvKUG!„“ÓßQøñÇOKK“;;;Ÿ>}Zî¡Z4 zôh¹k„ý)Ý\$5@™è2ªšª:Ž………^^^cÇŽÕ :4<<üÌ™3>>>r{ÂÅ.P1öÞeü{C8»±Lªê8†††.\¸0%%EÐÝݽcÇŽ¤F‰“ Âè2: UǬ¬¬5kÖôë×/22òË/¿Ô]^ <y*LCdt8ª Ž #GŽôññ9uêÔÌ™3;wîüÖ[oéß‘(¼¦ÐÏ‹*ûÅYÆ<õŸWÆ8ü$¶ª‚c³fÍÞzë­ï¿ÿ~ݺuC† ©\¹òÿûߨ¨¨^½z­ZµêæÍ›r¥ /€‰h1:6UÇ?7ÉÉ©]»vsæÌ9tèЊ+ÂÃÃoݺõþûïwíÚUÿº8 ò"˜Î"#ŇQÕUÕ%·ÍÅ%,,,,,ìÌ™33fÌHNNþþûïå. 2àúh0‹j.—~Èf’NÍÁ199yÇŽ;vìHMMu"å. ¶£ŸÓÒÒüýýå®ìŠîVפ)üE…ÁñçŸÞ¹sçöíÛ/_¾,4mÚ4<<¼oß¾ÞÞÞrW«£¿ærã›\^»Qº2FîAUÁ166vçÎW¯^•¾­_¿~xxxxxx½zõä. ¶ EFò"˜ˆ#FUÁñ£>Bx{{÷ë×/<<¼I“&rW[ ÅærÀã›oÔÙœ)TÞ¶m[''^-ŽÈ‹`y°bTÿùÏÊ]l)i0³ÒFãG}ª ŽP7ZŒ`.òb ´+ˆà¥#/€0%]©±âŽP.¦¤À\´Í£›§&dJŽPZŒ`´ËG4 Á B‹ÌE‹Ñ¤FS!?ZŒ`.ò¢ñŒN\O]Ár¢Åf!/Ú J‚#äAdÓ‘MF»Ñ<GسÒ`.y1C³a#´Àt´ÍGj´‚#¬ŽÈ&Ò!„¿ð'/š«‚©QžšÀ©ÏIî Zš¿hµZR#T€æ¯/­Z‘–š&wAvŽèg9tay´ÀÌG[CÅS#—Å”ƒàK"2@Åhôó»ÓâÌî5Ò¬,àË 2@Ð\´“BíÆòa."#‹¼h3´ ­ƒàÓÀ(äE355–h7>K#8ÂDFx8ò¢,ˆ{ÖDpDÅà!È‹22#5rv£1Ž0‘ÊÄÅÑJ`Ñ^#KƒŽx8"#FsQ!4!„9Av£‘Ž(‘J¢¹¨4æß¬±Tj¤ÝX‚# #2Àh.*϶Ž0@ú€i¹« /*™%R#íÆ !8â4€Éh;`öI®†S+ˆàˆ?8:š‹öÂB-Aƒ©‘vcùŽ‚¹i‹æ¢}±P£::aÑNYö6´MBpt\DFŽ…™hûeéF#©ÑdGÅÜ4‡@sQ,è¸ ÆG‡C£€ÊUà g4–•i7‰àèXh4P-f¢U†(§HGGA£€ Ñ\T%«]:M»Ñ|G‡@£€zUÌšwÛ!5ZÁQåh4P¢#°f‚#5Z ÁQÍh4°oœ¶è ¬|[o.£¶ ‚£j‘Ø%š‹ÅúŸSNj¤Ýh‚£ 1= ÀÎM><ÔhqGµ¡ÑÀ>™õS›Fh„¤F‹#8ª ©€¢!w£QÍCpTR#%",Bb“È(HVFpTNj ,„Eè³Ud\@m}G»G£€"Qš #£0"5Òn4ÁѾ‘ȉ°ˆ²Ø<2в/…ÑUÄLóí©€ ‹(‡æ¯6üódÌô4©ÑRŽöŠÔÀv‹x(Û¶ÿ~[#¦§å¨KµŽv‰ÔÀê‹0’|‘Q0=msGûCj`!„ðþ~˯<”|Ý<¦§åâ$w¨R#KÒè}i…Њ´Ô4éP&æÏ/­V–F#©QFtí ©€0 “É} ‘·i$5ZÁÑn˜Ž°3) 2Š‡Ñ¨«”¿–ÖCp´¤FFX„ù丽Ž*Œn4Ê]©úí©€±‹°e¤0JCpT:R#€òhü–ß0“2ZŒ¢"‘Qmˆà¨h¤FÐV„5(£Åøg-ÆÍM+¬j‡@pT.R#€¿a%Ši1þYFe#8€Ra= Ë‹¢â‘QIµ;‚£BÑn',”—¹*FY•ˆÔ8ÚŠ° åµ…I‘Qa[àpŽŠCjÔ°›Qd^DF»Ep› ,–”šEÅ#£`nZIŽÊB»PNX„í)8/ S#£R·ÆA„ÔØ=ÚŠ…²ó¢ 2ªÁQ)H€½",B.ŠÏ‹‚Ȩ:G¨ æ !/{ȋ¤È(8QñŽŠ@»P:ÚŠ]åEaRdTüÆàe!,B 4éâ#•i-FAd´+NrÚ€’hô¾´z_€i4~iµi©© OUR­Z¡5¡Ë(ÍM+{ûð7:Ž2#52ã„E(‡F=üi0yVZÐe´[Gއ9h(Šœ¼ø@ÉæÍJÛÕ¶âG9Ñnl‡°¥±Ã E‹G*Å4ÈÞ&£ÿ.ÜÔ£ 2ª ÁQ6´Ë£­e²ÃæâŸ…›ÑbDF5"8–——÷Å_$$$¤§§W«V­Aƒ£Gîܹ³Üu(…°e²Û械P^´ÃíÆÃ (,,9räO?ýäááѱcÇüüü£G8pàµ×^7nœEÞ‚v#`Â"ËÎC“9SÒ‚£ 8°qãÆŸ~ú©uëÖkÖ¬qssB\¸paøðáË–-ëÖ­[£Fä.p<œ°%³çæâŸ[@‹ÆáàìØ±C1cÆ )5 !‚‚‚^~ù墢¢ƒš¿~Ú€Qʺ7?=P½{tÿýeWþÚnLÛö¹õ0GÒÒÒªV­Ú¤IýÁ   !ÄÕ«Wå®P5æ ¡pöß\f÷-FFp4`åÊ•..%÷LRR’¢nݺf®œv#Pa §Š°(,‘g1:<‚£7.1räÈ‘U«V¹ººFDD³†ààà#Òô·$--MîMt8ééér—€¿ùø !ü…¿ômZªÞO?rã‡EÇ? @z–šú÷¨¿ÀÍ<(þnHjÚŸ’VñŸ´€€?`SSÓdÚ rêÓ§Ü%(Áñ!ŠŠŠÖ¯_¿pᢢ¢÷ßßËˢW%''—󬿿¿Ü›åˆØí2+ÕVLKK“Š.AB!ú‡ÅPsQ »Ã„ƒb ¿Xñ-14%­„ýak¥ÿ¬—î9‚cyŽ=:{öì‹/úùù½ûî»:u2s…ÌSñ0 » –™è?·ÆróѪذ0‚£a±±±ëÖ­«R¥Ê„ ÆŒ£»Â@y‹° ê ‹‚¼[!8P\\üÆoìÚµ«Go¿ý¶···ÜÊFX„]PoXäEØ ÁÑ€uëÖíÚµkذao¿ý¶WË<5T…°» º°(,Ô\äE˜„àX’V«ýüóÏ«U«öæ›oÊ]  $|v ì…â /BŽ%ݺuëÊ•+nnnQQQ¥Ÿ8pàðáÃå®°ÚŠ°ê‹þB¡ Ç’¤Ûeååå={¶ô³&_XÍ<5ìaöB¥aQ”j.êî]eʪȋ°(‚cI!!!åß…P!Â"ì…„EavsQa5GÀQa4ž]«®d¥°(Ô¶Ÿ  G[`žJAX„]P{²Ôe.®æ"lˆà¨avÁa¢ ¹{FpÔˆ°» öøcÙ°(h.BŽ€Z¡|ª>añÏM´JXüó’j5î0Ø'¹ P?Np„uiþúÒê}Ê¡Ñüý¥Õ>ð¥z[¨ÑßBKí³ÔÔ4uí0Ø1:Ž€¢¹%s€¶¢°BgQ0 {@pìaJ¦ö³ÿÜJk†E¡æ=õ 8 FX„b9F[Q…!,B±&ï²­‹+c`,Ýþ½@9¦­(‹€qŽ€|h.ByüþþFÕaGóÀO a0 ·ãlKà t 0ú·~ÑhÒRSÕw»œ¿·µŒû昙˺ã >GÀú‹P”“¢Zï­ø÷æZú&‹®–°‡ÄT5`5œ¶åp¤ TÌA õïEÀ0‚£qeŒ#â´E(„ƒÅk\Ú"+oF!8–@s²sà¤(h+¶BpLEsòr°Œc¥¤(h+Ap*ˆæ"äâ`IQØdZ8ÄŽ,†àæ"äâ`Ý0ÚŠ€Â²Ñ\„í9X7Ì6IQ¨G6BpJ!/–,à»Fp´îÅcg˜Œ†Í8XÀ!)jBp„c£¹p¼€c¥‹Z§*r#8Â!‘aUŽmE@½ŽpLFÃz,Ý”ˆ‰‚¤8 ‚#ÔN#„þŸ°Kr°tc³†¢Pÿ¾웓ÜÖ¡ùëK+„V¤¥¦É]ìœFóÀ—VûÀ—ê<¸µš·Ö¬í-Gªq_ªBÇêÂÉ‹°‡í)ú ÁÔ3€2Ðq„*<Ø_$5Âô…V+´©i©Ví)°ktaÏè/ÂÖ ãÂgæ#8‘aG 8Ö»ð™ËYGFp´ >6Æ*È‹¨(NŠ4XÁŠG^„ñ&ãX¯¡à_rͪ݋*Œ‹c T\ïc8Ì…åßÇœÔXb¦¦¦©w/0Á C^DùHЉªÞ…,©j(†4óÆß-”à³Ï6»–E¥û€!7NaD t¸ä€"8B&äEè8^R$&°SGØSÒÐhÄŸŸl'„PaØaÞ€Zqq l¥ÄU/p(†.ÇHKMUÍåVºä™ Y( GXSÒŽIÕ1+5™w |GX SÒE½I‘˜:GX-Fá0I‘˜:GX-FuSiR´FC‘˜@­ް"£*©1)ÀG˜Yi•Q]R$&€eaZŒê ö¤HLË"8Z…VÅ[ˆŒvM]IÑâ Eb"”àã0+m§T”‰‰ ;‚#†£}QKR$&€Q6"£]PiR$&€a‘QÉT‘5B#üÜ3þÁÀ6œä. £B#„–Ô¨$Í_Zí_ö@Sr4Z¡MMKÕß“÷Gé]b'{ìGü….£¢è÷Ðì-YöôDº‰ G•Án' -KgD»Ú ~GÇFd”‘Z’¢É11 À¿ÄˆýìpPœãè¨8—ÑöìóTEƒ§'špnbéSSÓìdþDpt‚£ºÐh¬(¥¶‰‰"8ªFc(µ­hμ31`GU ÑX>æï϶SF¤2§¡HLÈ…Oޱ| ŒA~hIZjª¼WbòDZð,å ãhÏh4êSÒ´É Eº‰%#8Ú-Îh º´Å´3‰‰ûBp´CÞhT@X4­¡HLØ;‚£½qÌF£ÜaÑ" Eb"ÀÞíŠC¥FYâ I‘†"@õŽöÃR£LaÑ„©gb"ÀíºOj”#,V´¡HL@í€*6‹þúßV4)Ü\éÔ”˺‡µ•ÞíÁÛf§¦¥–s·í‡Þd‚£¢©#5Ú*,–ÿÑ,eÅg±`<¦ª•Ê®S£Mf¢?OQ£Bø?°°ýî[äCÇQ‘ì15Z&Úøžbé†bjj EÌDÇQyì+5êš‹V›€Ö=~XOñoDC¬à¨0v‘­9mÌ47Ç@G%Qxj´NsÑ„¤HL@GÅPlj´B^|è4I"8*ƒÒR£¥'£ÚV$) |GPNj´hs±ü¶"I»Cp”›R£…òb…ÚŠ$EìÁQVò¦FKäEÚŠ8‚£|äJfçÅrÂ"I#8ÊÄö©Ñ¼¼hdX$) bGµ3#/–i+à˜Žr°A»ÑÔ¼hLX$)à˜Ž6gíÔ(E¼Š„;Â"0ÁѶ¬—+ÞbÔåEÂ"0ÁÑþU¤Åh°¹HXÆ 8ÚeÛi1–n.jô"$aƒàh‡Œk1–n.€9޶b~»Ñ¸c‰æ¢ô"ÍÃ_ðG›035Ñb, ‹À²ŽÊö°È¨Ÿi.«"8ZŸiíÆr#£Á¼HXVEpTž²##yȈàhej7>,2’€ŒŽÊPFdüûþ9­ /Y@£)32jþ'/Ù­é¡óÔ¥%ZŒäE Gù<Øh¤ÅŽà(‡ú‘‘¼‹àh5eÍSë5‰ŒÀŽmë¯ÔHdv‡àh+MO€"8ZG‰yjýF#‘Ø'‚£õi4úF"#°SG+Ó¥F)2’€Ýr’»U+‘ìÁÑ:þЉ¤F LU[F£Ñ é? ãX¦/¿ürðàÁ­ZµêܹóôéÓ³³³+ðb]j„2ôéÓGîPE™8. ÄAr [²dÉÌ™3/^¼Ø¶m[ww÷ÄÄÄ—^z)//¯«Ð€ª HNN^µj•ÏŽ;V­ZµsçÎ#Fœ>}zÑ¢EƯ„ó€Ê ظqcqqñ¤I“¼½½¥‘iÓ¦yxxlß¾½¸¸Ø¨U€ê 8~ü¸““S×®]u#ÎÎΡ¡¡YYY'Ož”»:yKÒjµ)))5kÖ¬Y³¦þxƒ „W¯^•»@yp;ž’îÝ»WTTT£FãBˆß~û͘•˽(‰ƒ¢@eâ¸( Ap,IºtºjÕª%ÆÝÝÝ…·oß~è’““åÞËcªº¤5jh4š{÷î•ÿý÷ßÅ_}GDp,ÉÅÅÅÃãtg177W¡»ÎÀÑ ðññÉÊÊ’’¢NZZšô”ÜÕȃàh@÷îÝ‹ŠŠöï߯ÑjµûöíóôôlÕª•ÜÕȃàhÀàÁƒœœþýïKç5 !V­Z•™™ùì³ÏVªTIîêä¡Ñò'†¬]»vÁ‚µk×~òÉ'/_¾|äȑƯ]»¶ômzÁ±L[¶lùꫯNŸ>íçç×®]»I“&IwäpLG…s`‚#ŒBp€QŽ0 ÁF!8À(G…àh1_~ùåàÁƒ[µjÕ¹sçéÓ§gggË]‘©èÎÏËËûä“Oú÷ïß²eË'Ÿ|r̘1”{#ÔÆœŸˆŒŒŒÖ­[O™2EîPÊ™3gÆÖ¶mÛáÇ=zTîP›Š”‚‚‚Õ«W4¨U«Vݺu›8qâ… äÞ‡“ššü¿ÿýOîBd@p´Œ%K–Ìœ9óâÅ‹mÛ¶uwwOLL|饗òòòä®Ë!TtçŽ9rþüù7oÞìØ±c``àÑ£GG½lÙ2¹7E=Ìù‰Ðjµo¾ù¦î“âa)&”={ö :tÏž=ÞÞÞ­Zµ:uêÔˆ#öìÙ#÷¦¨GEJQQQttô¢E‹²³³Ÿ|òÉÚµkïܹsÀ€Ç—{S˺uëä.A>Z˜íüùó 6|òÉ'oܸ!üóŸÿlРÁœ9sä.MýLØùëׯoРÁСCïÝ»'üòË/íÚµkÔ¨ÑÏ?ÿ,÷©™?k×®mРAƒ &Ož,÷¦¨‡ %''§M›6-Z´8qâ„4ò¿ÿý¯iÓ¦:u***’{ƒÔÀä__'N¼ÿ¾4rèСFõêÕKî­q·oß>~üø¬Y³¤ßQ?ýô“Üɀޣlܸ±¸¸xÒ¤IÞÞÞÒÈ´iÓ<<<¶oß^\\,wu*gÂÎß±c‡bÆŒnnnÒHPPÐË/¿\TTÄ„µE˜óqáÂ…%K–4lØPîPJbbbnnîË/¿Üºuki¤yóæO?ýtffæ™3gäÞ 50á œ›7oÞ#<Ò²eËìì츸¸ôôô!C†ðSc]ºt‘ìÝ»WîZdCp4×½{÷ŠŠŠjÔ¨QbÜÃÃC<øÿ…°8Óv~ãÆKŒ9rdÕªU®®®%š+0É??ýôÓêÕ«‡Þ©S')ÇÃRL8(wîÜ |çw6lØ ¯[·î|дiS¹·Éî™ö“¼nݺ‘#GŽ9R78|øðéӧ˽ApLU›Kºü­jÕª%ÆÝÝÝ…·oß–»@53ç}öÙg/¼ð½{÷Þ{ï=///¹·Éî™vPòòò¦NZ·nÝ7ÞxCî-P!Ê;w„)))ß|óÍ‚ Ž=ºoß¾ &\»vmâĉÜ2Â|¦ý¤äææ¾÷Þ{wïÞmÒ¤IdddÏž=ÝÜܾúê+.u‡ÍÐq4W54ͽ{÷JŒK7‘þßVbæÎ?zôèìÙ³/^¼èçç÷î»ï:ò9+dÚAY°`Azzú† ˜µJ•*U¤ï½÷^·nݤÇãÇÏÈÈHLLܶmÛsÏ='÷fÙ7Ó~R¦Núã?N›6mÔ¨QÒHFFFddä믿¾y󿀀¹7 êGÇÑ\...¥ÿï077W¡»VÖ`òÎ/((˜7o^tttFFÆ„ ¶oßNj´ʱcÇ6lØ0vìX.¹°JÕªU«T©âææ¦?Þ£G!ÄùóçåÞ&»gÂA¹yóæÞ½{u©QQ«V­W_}õþýû›6m’{›àŽàãã“••%ý´ë¤¥¥IOÉ]Ê™°ó‹‹‹ßxãÏ>û¬{÷î»ví?~<].˪èA‘>÷"...ø/ƒ BlÞ¼988¸ÿþro˜ð“âíí]©R%F£?(ý°ʽAjPу’••%„¨_¿~‰q©ÑxëÖ-¹7àhÝ»w/**Ú¿¿nD«ÕîÛ·ÏÓÓ³U«VrW§r&ìüuëÖíÚµkذaË–-£%l =(õêÕë÷ éÒÅZµjõë×/44Tî R~RÂÂÂrssùåýAé61ÜhÓ"*zPêׯïìì|á­V«?žœœ,„ ”{ƒàä¾¹\»v­aÆ}úô¹sçŽ4²bÅŠ ,\¸PîÒÔϘÿûï¿§¦¦^½zU«Õ÷èÑ£uëÖyyyr×®Z=(¥={–Oޱ,ÊÏ?ÿÜ AƒÁƒgeeI#§OŸnÕªUÛ¶m333åÞ 50á Œ;¶Aƒ|ðîÃ{~ùå—:4mÚ4%%Eî r 3fÌpØOŽáâ ¨U«Ö”)S,XðÌ3Ï<ùä“—/_>räH“&M^|ñE¹KS?cvþ¾}û^ýõ   ­[·ÞºuëÊ•+nnnQQQ¥×6pàÀáÇ˽Mv¯¢Eîz‚ ¥Q£F111‹/îÓ§O›6mîÝ»wüøqF3oÞ¼G}Tî RÊ?ÿùÏçž{...î›o¾iܸqVVÖ?þX\\|ø¤I“¤»*ÀÚ*´óÓÓÓ…yyygÏž-ý,—ÈX ? dÂA;v¬——×gŸ}vèÐ!OOÏîÝ»O˜0Aú˜%XDEŠ——×7ß|³bÅŠ|ÿý÷žžžO=õÔ+¯¼Ò¬Y3¹7ŽB£}ðT À .Ž€QŽ0 ÁF!8À(G…à£`‚#ŒBp€QŽ0 ÁF!8ÀߦL™|øða›­êßÿþwppðúõëõ_õý÷ß|äEp{ràÀ}ûöÉ]å"wàм¼¼Z·nm䳓'OÎÍÍýùçŸå.€#"8€œš4iÒ¤IÓžcª€]****,,”» p,GvCºpäâÅ‹sçÎmÓ¦M“&Mºví:a„ H‹eddüôÓOÏ>ûlóæÍÓÓÓuÏ~óÍ7/¿üòSO=Õ¡C‡‘#G®Y³¦¨¨¨ô{8p`âĉ¡¡¡¡¡¡¯¼òÊ?üPbÌÌÌÅ‹÷íÛ7$$$$$¤_¿~ï½÷Þ7*ºªÕ«W—sù‹þ³ . ÎÎÎ.** nÕªÕôéÓƒƒƒ?ÿüó¯Z¼xqppðûï¿/÷ 6GvfÆŒŸþy~~~½zõ²³³wíÚ5zôè>ú¨ÄbçÎ9räÙ³gÿøãââb!„V«}óÍ7_ýõ½{÷jµZ#GŽ,\¸0***;;[ÿµ[¶lyá…víÚU¥J•œœœ={ö¼ôÒKK—.Õ-™™µråÊŒŒŒÇ¼N:W¯^ýøã‡ZÑU¯M›6ÑÑÑ®®®&::zذa}ûöBìܹS1­V»uëV!Ä€ä>VÔ†àÀΜ:uªk×®‡Þµk×É“'§M›¦ÑhÞÿý .è/6kÖ¬fÍš}üñÇ|üñÇ…›6múꫯ¼½½ãããøá‡;wîÝ»·eË–§NúðÃõ_›˜˜Ø½{÷£GJo1uêT''§¸¸¸Ó§Oë¸téR·nÝ<øÕW_mÞ¼ùÀmÛ¶½víÚwß}W¡U¯[·nÓ§Oä‘Gœœœ¦OŸ>eÊ”Ž;Ö¨Qãĉ™™™ºÅNžwîÜÊ•+¯\¹²K—.úeS­þª,²Cž~úé 6ìØ±£oß¾{öì©^½zXX˜¥÷:AÇ€Ýùïÿ[PP ?²nÝ:!DÓ¦MËy•Ïc=–‘‘qàÀýñ[·níÝ»×ÙÙ¹Q£FºÁ„„„7w”Þ"$$DqæÌ™¢¢¢ýÔ(„8þ|é÷-UѦM//¯Ã‡'$$äçç÷ë×ÏR‘J 8°3¿þúë¤I“rss…ÅÅÅëׯÿä“Oœœœ&L˜Pþ _ýu!ÄÌ™3Ïž=+ܸqc„ ùùùC† ©U«–nÉ«W¯ÆÄÄܽ{Wz‹Ï>ûìÓO?uqq7nœÂÇÇGqþüyÝMpŠŠŠâãã¥qçååé¿iù«2Mqqñ½{÷tßJ×V.^¼X0O Àš˜ª`gúöí»k×®:Ô¯__šöurrЉ‰iذaù/8pàáÇ·lÙòì³ÏÖ©SÇÍÍíâÅ‹ÅÅÅ­Zµš4i’þ’ÁÁÁ;vìøöÛoýýý¯]»–——çââ2sæLé2š€€€îÝ»÷Ýw={ölݺµV«MNNÎÎÎŽŠŠúì³ÏþûßÿÞ¹sgÁ‚ƬÊ5jÔÈÎÎ:tèã?®»ýdß¾}ÿóŸÿäååÕ«W¯eË–r"ªEp`g µfÍš3gθ»»wìØñùçŸïرãC_èää´hÑ¢®]»nÙ²åüùó7oÞl×®]hhèÈ‘#¥ëct>þøã;v|÷ÝwIIIžžžO=õÔ¨Q£ôÙûï¿¿víÚo¾ùæÄ‰uêÔ 5jTPPPQQÑ–-[Ž?nüª*jÚ´ióæÍ»xñb~~¾n°uëÖ=öØ­[·h7°*M9W€¢L™2eóæÍ+W®ìÚµ«Üµ(Kqqq÷îݯ_¿þÝwßÕ®][îr¨ç8€Ý;tèPFFFÛ¶mI¬Šàö-//oÉ’%BˆgŸ}VîZ¨ç8€kÛ¶m~~~AAA`` ôaÙ`=Gv£oß¾ 4(ý!~ŽÌÏÏïÊ•+¡¡¡sæÌ)q‰XÇÀ(œã£`‚#ŒBp€QŽ0ÊÿåªÈÂæ´b%IEND®B`‚statistics-release-1.6.3/docs/assets/ricepdf_101.png000066400000000000000000000702631456127120000222740ustar00rootroot00000000000000‰PNG  IHDRhŽ\­ApzIDATxÚíÝy\TõþÇñï°¨(:àU65…DrIEÑn©(â–i¡årMÛÍRSóª-Úb.eÞrÃòšVšÊ/S-ÓS\®VJŠˆ[© ˆŠ†ÀùýqjBp`–³½ž=àpÎÌ÷ÌÈÌ›Ïç|¿c’$I·â¦ô  GØ„à›`‚#lBp€Mް Á6!8À&GØ„à@]RRRLåpss {ôÑGúé§’‡,Y²DÞ¡C‡•º¯*茬]»vûöíŸ|òÉÓ§OßrzõêÝu×]/¿üò… l -&Nœè²S Gš!IÒ±cÇV­ZÕ©S§o¿ýVéá8Ø•+W8°téÒ;î¸ã›o¾©x碢¢ììì½{÷¾ñÆaaaÉÉÉJ€!x(=(—¿¿¿———üuaaá… þøã!ÄÕ«W_|ñÅüQþQíÚµ›4i"„ ¬ÔíWù@‡Ÿà7~ûí·ââbùìž|òÉÇתU«¼ý¯^½j)4æää 4(--­zõê?†%ùúú*rÊ´M59|ø°åjÛ¶m%tõêÕØØXËOýõW¥ëȼ|ùòÈ‘#-?Ú°aCÅûŸüðÃO>ù¤¼׬Y#g>“ÉÔ½{÷aƵjÕJþѺuë¶oß^jÿï¾ûîÈ‘#7¾ë®»jÔ¨!o\»ví¾}ûªp‚¹¹¹çΓ¿ µåÈÈÈjÕªÉ_ïÝ»×™?¨Ø°aÃBÿR¯^½Ï?ÿ\áïïÿñÇWpà¬Y³ä¹#7>~ü¸œù¦L™"ÿ´‚Šã–-[ä/Æÿí·ß~üñLJjß¾½¼ñÿû_ÙCÞÿý'N$''ò×¥> Ɔ &wá¯^½jùà!Dýúõ_ýu¥G@ÿŽ´Ä××Wþ"##£¸¸ØjáPáçç·|ùòÇ{ìÒ¥KçÎûì³Ï,?š2eJy×,šL¦ûî»O^*Rž‹#„ iܸñŽ;D‰9TŠÕõ‰êÖ­»aÃ˪Cà<´ªh‰å#õN:õþûïW°ç€:ôÔSOuèÐÁÛÛ»I“&ýúõûþûïß|óÍ Žš7oÞwÞ)„psskӦ͸qã<øÀÈ?]µjÕ±cÇ”~ „ÂÝݽnݺ;v|ùå—SSSÿùÏ*="†`’$Ié1€ŠÜ¸qcÓ¦MBy& À‚à›Ðª€Mް Á6!8À&GØ„à›`‚#lBp€Mް Á6!8À&GØ„à›`‚#lBp€Mް Á6ñPz:¦ô€s¥¦¦*=˜ÿ˜ÆSoL<õ†ÅSoX†-Ѫ€Mް Á6!8À&GØ„à8Ì–-[””ÁSoX<õ0‚#lBp€Mް Á6!8À&GØ„à›`¥€Z„……)=(#55Ué!hÁ€¿ ˆ?lG«6!8À&GØ„à›`‚#lBp€Mް Á6!8À&G`Å¥K—ž~úéÛn»ÍÛÛ;22299YéY9}út¥Ga GPZ^^^DDÄÿûß.]ºŒ5ê×_íÓ§ÏÁƒ•×M<øÃ?(= c!8€ÒÞ}÷Ý´´´¸¸¸O?ýtþüùIII&“éÅ_Tz\BQXXøõ×_¿öÚk½{÷...Vz8ÆBp@“† âæævöìÙ’[µjXTTdç¯^½:00pذaò·!!!=ôPbbâo¿ýfËáûöíëׯ_@@€éfžžžöŸxvvvïÞ½§OŸ~á§<²(ÁMŠ•$é‹/¾°lIIIIII:t¨»»»=·œ——wìØ±¨¨(“ÉdÙØ½{÷ââb[®tܶmÛ]wÝuèСÇ{ìõ×_o×®¢]»v&L?~¼ý'îïï/I’$IGuÞà «<”¨Š^½zùúúÆÇÇ=ZÞ²zõj!ÄðáÃí¼åsçÎI’äïï_r£ŸŸŸâ–E¾ëׯ><00pÏž=Bˆ‰'öìÙ355õ•W^©]»¶ÒìBp@“ªU«6pàÀåË—geeÕ«WOñùçŸwìØ±eË–¥ö,,,üꫯʻx Ô–üü|!D:uJn4›ÍBˆìììŠG•””töìÙ3fÈ©QQ½zõI“&õïß?>>~ĈvŽ Ê2Jp\»víš5kÒÒÒjÖ¬Ùµk׉'úúúV|È¡C‡–,Y’’’råÊ•°°°1cÆÜu×]JŸ‡ª•hhIRz4à8%_ß\¯‚WÔØØØ>úèË/¿5jÔŽ?¾pá²»]½z5&&¦üÛ/}r ½|ùrÉyyyBˆºuëV<Ú'N!Ú´iSrcëÖ­…‡¶lP–!®qœ7oÞ´iÓ~ýõ×:x{{ÇÇÇ?ùä“×®]«àíÛ·?òÈ#Û·o÷óó ?xðà°aöoß®ô©¨”É$L&!Iÿ'o}(ùúæúÿ*åçç/„X½zuõêÕcccËîf6›¥ò•ÝßßßßÍÍ­TW:++KÑ AƒŠ+///!DaaaÉòÜg77+©£²cƒ²ô_qLMM‹‹ó÷÷_·n|}Æ›o¾¹bÅŠ¹sç¾üòËV¹téÒK/½äááñÑGµoß^ñóÏ?<øå—_îÖ­›Õ÷†%§Ã²¿Úò–ò~ pww÷Aƒ-]º477wÍš5111Vûi•m{xx´hÑ"))©äÆï¿ÿÞd2•탗*„8räHÉr­1,,Ìþ±Aa’Þ͘1£Y³fñññ–-………:t¸ûî»‹ŠŠ¬òÑG5kÖlÑ¢E%7Nœ8±Y³f?þøã-ï±Y³fJŸ´‹ØøÏÇÿÊþ”žž®ô  žzÝÐâ ¸ïž}öY!DBB‚Õ}rss+›æÏŸ/„ظq£üí¹sçüýý{õêuËñ4mÚ4000''GÞòÇDFFz{{ÿþûï›…<«úµ×^³ó1¬Âó®Å*¡ÿâÙ¾}ûÜÜܺuëfÙâîî™}àÀ«‡ÈT•ºäböìÙ©©©¥.Ú02¹7m ¹s p†N:5lØpÑ¢EAAA={ö´ºOÚÁ#FŒhÓ¦ÍàÁƒ§L™2{öìnݺåçç[>ÜoÕªU¾¾¾V×Öñôôœ?~vvvÛ¶mgΜ9{öìÎ;'%%Íœ9³Ô4í* Òy«Z’¤´´´ºuë–º˜·Y³fBˆS§NEDD”=êðáþ¾¾û÷ï?xð`nnîwÜÑ£Gùº ˆÊ¤F™œy‡3™L?üð;ï¼3lØ0;—o,©N:‰‰‰'N\·n]NNÎÝwßýé§Ÿ†‡‡Ë?-((ÈÍÍ-o¶@ß¾}“““_}õÕ… ^¿~½mÛ¶ ½{÷Vú¡‚è<8æççùøø”Ú.¯)pñâŲ‡\¾|¹iÓ¦¯½öÚªU«,Û5jôÞ{ïµjÕÊ–û-{Ç–-[”~0&$$8==##£rG¥§ “)8=½’‡iÊéÓ§•”ÁSeÍ;wîܹ¿Y³ÙgõGÇ¿qã†ÕYÒ²ððð 68ûÄÃÂÂU•¬ø]­OŸ>Î>­Ðyp”ÿªU«V©íÞÞÞBˆK—.•=D^} --íÂ… ³fÍêÖ­Ûõë××­[·`Á‚^xaÓ¦M¶ÔSSS•>uç vñZ¡ûDyxêa(ׯ_ß±c‡žŠˆÿ —}[·:ÑÇt~£Éd’2-éÊ•+⯺c)5jÔ¿xûí·cbb|||ž{>}º‚™_aOÇ™‹@vïÞݼyóG}TéÀÕt=<<ÌfsÙÊ¢¼Š©¼:O)µjÕªQ£†——WTTTÉí=zôBüc1í¿N‘ì:5mÚ4÷-Q–΃£Âßß?;;[NŠò¥ V§w !üüü<==M7«+š¢ ÈŽh”þƒctttQQQÉUL%IJLLôõõµÌ+%***//ïØ±c%7Êk÷ÜqÇJŸb˜ €Áé?84ÈÍÍíƒ>¯kBÄÅÅeee=øàƒžžžò–«W¯fddXæE0@1mÚ4Ë´ëC‡}ôÑGf³¹¼%²P)Ð"ý_4qâÄY³fÝÿý]ºtÉÌÌLNNnÙ²åO}"""òóó÷íÛg2™Þ|óÍüãJŸ2(7ýG!ÄÈ‘#ëׯ¿~ýúÍ›72dìØ±òŠ<åyê©§êÕ«·bÅŠ]»vùúúFGG3FþüM8K‚ 9&>ÏÇáÂÂÂt¶Ž£“žþ‚cFF‹ùO½nèﶨÂónØ*ú¿ÆªÅ•Žh Á·àÔº Ù !8À&GTD—!€*#8Bat«Ð ‚#lBpD¹\Ö§¦è€&€—.]zúé§o»í6ooïÈÈÈäääòö¼qㆇ‡‡éfõë×Wú J‹ŒŒœ>}ºÒ£Ð6C|r ªÀÅÓbø P•¼¼¼ˆˆˆ“'O>ôÐCõêÕ[·n]Ÿ>}vìØ^v猌Œ¢¢¢{î¹'$$IJ±âOhs½ƒþðÃÑÑÑJDÛŽ ´wß}7--mùòåÇB¼ð íÛ·ñÅ·oß^vç´´4!ÄŒ3TË ·oß¾k×®… +=Í£U µàJG¨”!C†¸¹¹={¶äÆV­ZÙyã«W¯ 6l˜ümHHÈC=”˜˜øÛo¿•ÝYŽM›6­Ú}íÛ·¯_¿~¥šÝžžžö?JÙÙÙ½{÷ž>}ú… ì¿5a]cP¿ØØXI’¾øâ Ë–””””””¡C‡º»»ÛsËyyyÇŽ‹ŠŠ2•øƒ¾{÷îÅÅÅV¯tLKK«^½zíÚµ×®]»dÉ’;wØx_Û¶m»ë®»:ôØc½þúëíÚµB´k×n„ ãÇ·ÿQò÷÷—$I’¤£G:âQ7:ZÕhR¯^½|}}ãããG-oY½zµBn.Ûãܹs’$ùûû—Üèçç'„°Z·KKKssskÚ´iNN޼¥yóæ+W®lß¾}ÅwtýúõáÇîÙ³' @1qâÄž={¦¦¦¾òÊ+µk×Vú1FiG8…IXé:KâeL¦ÈP'«¯i.SÞ‹gµjÕ¸|ùò¬¬¬zõê !>ÿüóŽ;¶lÙ²Ôž………_}õUy·ÿÀ”Ú’ŸŸ/„¨S§NÉf³Y‘]öÒÒÒŠ‹‹§OŸþÐCyzznذaܸq111‡–*ORRÒÙ³gg̘!§F!DõêÕ'MšÔ¿ÿøøø#FØy"p8‚#J³3ºÉ/¯V_æ*ø¨™j_¸bcc?úè£/¿ürÔ¨Q8~üøÂ… ËîvõêÕ˜˜˜rϮ̋¾C/_¾\rc^^ž¢nݺeoá»ï¾«Q£†åG#G޼~ýúèÑ£×­[7jÔ¨ ÆâÄ !D›6mJnlݺµâðáÃöŸŽkáH&a’„TÞ+¬ü£ŠÿpgŠ Ø.**ÊÏÏ/>>^±zõêêÕ«ÇÆÆ–ÝÍl6Kå+»¿¿¿¿››[©®tVV–¢Aƒe÷ *({õê%„HII©xü^^^BˆÂÂÂ’å¹ÏnnV"JeOGÅ#§Æ[î&gGÕþùâîî>hР¥K—æææ®Y³&&&Æ××·ìn•íðzxx´hÑ"))©äÆï¿ÿÞd2•íƒgffnÚ´©{÷îÍ›7·l”Ë“7®xü¡¡¡Bˆ#GŽ”Ü(×ÃÂÂì?8Á7©rŸºRYÐRw$>€bcc,X0uêÔÌÌÌÅ‹[ݧ Þ'žxâ…^Ø´iS¿~ý„çÏŸ_·n]Ïž=ƒƒƒKíéåå5a„:|ûí·ò:ÅÅÅsæÌñððèÙ³gŃo×®]Ó¦M,X0zôh!DAAÁœ9s¼½½åûµÿDàX´ªáU¨ Vж¦[ ¶ëÔ©SÆ -ZT^P«B‡wĈmÚ´Eô!*****JéQÀ1¨8âO¤4P1‚#ªÂ3©iX rGTšóÖß)•™"€ª!}j`‚#*ÇÙË}Ó°@µŽP5ºÕ¨Á•àšO¤è€:ÁŽÀ&GØÊ5åFYÉ¢#ÝjT‚à›aW–e\é€ÚŽ €ŽP/KÑ‘Ë@A‘‘‘Ó§OWzÚ›.qk®ïSTâàÁƒ?üðƒÒ£ÐÞØôÊCé‘‹ŽÄVp±ÂÂÂíÛ·ïÚµkáÂ…ÅÅÅJG3cÓ=‚£¡Ùr£Jr›Ü­ærL°2dÈgŸ}vúôé   ËÆV­ZeggŸ>}ÚÝÝÝžÏÎÎîÝ»w•ß·oßôéÓ÷ïßîܹ’Û=<úòË/GuàÀãÇ/\¸°ìnW¯^‰‰)ÿäyv'NœB´iÓ¦äÆÖ­[ !>¬ìØ`?®q@«¢¢¢üüüâãã…«W¯®^½zlllÙÝÌf³T>ÇÉËËKQXXXr£<÷ÙÍÍJêpåØ`?*Ž(—JúÔ2ºÕP–»»û Aƒ–.]š››»fÍš˜˜__ß²»¹²*„8räHÉr­1,,LÙ±Á~G4,66vÁ‚S§NÍÌÌ\¼x±Õ}\Ùn×®]Ó¦M,X0zôh!DAAÁœ9s¼½½ûõë§ìØ`?ZÕÐ Ö倲:uêÔ°aÃE‹õìÙÓê>o¯ZµÊ×××êÚ:žžžóçÏÏÎÎnÛ¶íÌ™3gϞݹs礤¤™3gúûû»`lp*‚£Aݲ᫪>5 <&“éᇖ$iذaö/ßh£‚‚‚ÜÜÜk×®Yýiß¾}“““[·n½páÂ9sæ˜Íæ„„„çž{Né‡ @«Z" É$™L&þ €¿Í;wîܹNºñ°°°²¯¹Ã‡¿qã†ÕYÒ²ððð 68ûÄ­Ž NEÅTÎõë×wìØ!$ …à+èS*°{÷îæÍ›?úè£J®F«Úˆ4½¢ ÝjP\TTTTT”Ò£€¨8À&G”FŸXEp„öHò’ŽÀµŽÐ*Ñ×"8NÅ3c´Ò§¦è€ë`‚#4Œn5®Dp„VÑ­ÀÅŽø›V.pŠ 8‹¦?3(‹à “„dt«p‚#þDŸTŒà¬øùçŸ~øá€€ooˆyóæ*=¨Ò"##§OŸ®ô( ÄCé¸ÈÚµk׬Y“––V³fÍ®]»Nœ8Ñ××·‚ýzè¡C‡•ÚX¯^½~øAéSÁÍL’I¢V –žžÞ­[·¢¢¢ÜvÛmÛ¶m?~ü÷ßÿÅ_(=´¿}ÚÝÝÝžß¾}{dd¤œeÏ=÷ܲeËvïÞmKpÜ·oßôéÓ÷ïßîܹ’Û=<ÿüóŽ;¶lÙ²Ôž………_}õUy·óÀT|Gß}÷Ý“O>™––¶hÑ¢ÐÐЊwNJJ:{öìŒ3äÔ(„¨^½ú¤I“ú÷ï?bÄÇŽ .¦óà˜ŸŸ_TTTvR‹ÙlB\¼xÑêQ§NBÌŸ??88øî»ï>sæÌŽ;_{íµýë_¶ÜoXXX©-[¶lQö¡ NOÏÈȰö£àôŒô ‘QéUÉ$™Ò3Ò•ÅéÓ§•~   žzýSöÏÓò/Aý裾üòËQ£F8pàøñã .,»ÛÕ«Wcbbʽùò'Nž}ú¸fê§óàxíÚ5!D­ZµJm÷ööB\ºtÉêQ¿ýö›——×øñ㇠&oÙµk×ÓO?ýÖ[ouîܹä5ÈåIMMUúÔ­®Â4D g¡†1@<õ:§ÖÙƒQQQ~~~ñññ£FZ½zuõêÕcccËîf6›«ÀV­ZõÔSOy{{/Y²däÈ‘6eyÅ’R+>Ê“ Üܬ̬¨ÚØ®â_á²oëe+D¡óàèããc2™òóóKm¿råŠø«îXÖòåËKm¹çž{†úá‡nÛ¶Í’&ᦠÿ®/çÅ…n5crww4hÐÒ¥Ksss׬Ycu•â*´ƒ7nÜ8tèÐýë_‹/®S§ŽíC’{ÙGŽ)¹Q®5Z [´ªµEçÁÑÃÃÃl6—­,æåå !,ó¬mѱcÇ?üðرcJŸ“~É‘±â¿;+؇•ÀRllì‚ ¦Nš™™¹xñb«ûT¶,IÒ¤I“5j´råÊÊNÐn×®]Ó¦M,X0zôhùR±‚‚‚9sæx{{÷ë×Ïþ±AY:ŽBÿ´´´¼¼¼’0É—2øûû—Ý_’¤ââb“ÉTª¢.ÿæèo:˜*Vp´%2Êä}lßô®S§N 6\´hQPPPÏž=­îSÙvð‘#GŽ=Ú¼yóÇ¼ÔØ¿ÿU«V=ûì³=öØ»ï¾[jOOÏùóç0 mÛ¶O=õ”»»ûºuëöïßÿŸÿüÇêÛ®JZÕ°‘þƒctttjjjRRÒ}÷Ý'o‘$)11Ñ××7<<¼ìþ™™™½{÷îØ±ãÊ•+Kn?xð Ðì5 ªþ̘* Žø1™L?üð;ï¼3lØ0;—o´HKKB9r¤TÇYÑ´iÓþýûäææÊ ÊêÛ·orrò«¯¾ºpáÂëׯ·mÛ6!!%»õAÿÁqРA‹/þàƒºví*ω‰‹‹ËÊÊzüñÇ===å}®^½zþüyOOφ 6iÒ¤}ûö{÷î]»ví Aƒä<¸lÙ²   þÝ;˜=‘Ö%IþÎD·€!Í;wîܹ¼Áûï¿¿â*àðáÃoܸau–´,<<|Æ Î>ñ°°0ª•.¦ÿà4qâÄY³fÝÿý]ºtÉÌÌLNNnÙ²åOSìG9ê9*íÉÙà*»wïnÞ¼ù£>ªô@àj&j¼¦¶uË+É)}›&!I’’Ó}222XÌϘxêuC…/àp*<ï†ý§bˆŠ£Á©®‘ë¤I’$LTp‚#\Ë©1Vb!pœˆàh\ ´t_ü4 I2 ñ' 8ÂU\Ö2—$‰Ü€á®JL°ÀyŽÐ!“$È8ÁQçT±ËçuKB";àpG8™‚«Ñ·À¡ŽÐâ"NBp„3)Wn”„d&R$Dp„Þ‘p‚£¹hfŒê>ëØ…à¨gJ&7ES£\dü³[-(:€]nܸñÏþóî»ïVz VDFFNŸ>]éQÁTdÚ´i{öìQzViÒ¤þýûÇÇÇ1Âþ±AAGèœÜ­þû²NŠŽ*ϤèÒRù/Y±±±}ôÑ—_~9jÔ¨?~|áÂ…ew»zõjLLŒí·Ÿ——÷È#ôìÙóù矯ìhOœ8!„hÓ¦MÉ­[·B>|Øþ±AYGcqîÌ•2""GQm|‰ŠŠòóó‹5jÔêÕ««W¯7³Ù\©SX²dIzzzLLÌìÙ³å-—.]***š5kÖm·ÝöÈ#Tp¬———¢°°°äFyî³››•™•”Ep„ñ(è…»»û Aƒ–.]š››»fÍš˜˜__ß²»U¶\PP „x÷ÝwKnÌÉÉ™|ø7¬Î’–…‡‡oذÁÙ'FUÒŨ8¬„ EG¨’ë×¯ïØ±CþH ÁvSkŸà$»wïnÞ¼ù£>ªô@àj´ªalL¯€Ê‹ŠŠŠŠŠRzPGØGõ©ËÒŽ¶Þ­6#8êÕ,ÇÌ`'‚#ì úr£M˜"€mް ÁúwëË):`‚#ªJ}j`3‚£!03æÖ(:p+G½¡œ„ÀQ%Z˧–u¾åË­×_Y €aaaJP/‚#JMM­ÔþÁÁÁJpZÕ¨<—å¸Ò€òõ™1¥ðÙƒT ÁFA1;QI:îS˘”ƒà¨+ºu@AGÑ-.s¤è€5GsðÌ—4 „؃àXCÆ  ‚#lBp„Í4Þ§.…Õ¨,‚£~è+שÝjnFp„±¨2‚£ž9rJµë™·îV3(ÁCé†T^Õ[8è Áp!K^”ªºÊ!8ÂúêSËýg[O¨r{—Ãö8(Uþ\…àC“/stä‡ë”eªRø+• ‰`rŒN”-Š9=G•§È˜ªšoºw!$ÁŠ“5 8âVôÕ§vÓ_™Ï!ÈŽ 8ˆœ»ÌŽC Vý×- ‚#ŒÎ¦Ï´=i:¶ÐXf¬” "8¢Bô©+#8$Ø—•’ !8bé.º/²#@ G}bJµãUÜ­vÆE·ÙàjG=pV?Y×}ê’9ЦË+àúÔø×¸ÉŽW"86³ZtT*5þ9$²#ÀuŽ€”M2²#ÀUŒ×®];hРðððN:M™2%''ÇöcÏž=Û¾}û‰'*}®¥ë>uYUéV«!5þ5z²#À çÍ›7mÚ´_ýµC‡ÞÞÞñññO>ùäµk×l9V’¤—^zéÊ•+JŸ¯*Ë€;wép{N†ì¨R¦¿(=pýÇÔÔÔ¸¸8ÿ-[¶ÄÅÅmݺuذa?ÿüóܹsm9|ùòå{÷îUú$*‡)Õ® žr#TÆt3é/¥¶+=L¨ ýÇ5kÖ;ÖÏÏOÞ2yòd³ÙœP\\\ñ±ÇŸ7oÞwÜ¡ôI@eÔ™):*ªlR”Yv(µ @‹ô÷íÛçææÖ­[7Ëww÷ÈÈÈìììTp`aaá¤I“|}}'Ož¬ôITÄ)×"ìG™Í—9ª8 ©xh:f2™BBBÊ&ÅŠ•JJŸØDçÁQ’¤´´´ºuëÖ­[·äöfÍš !N:UÁ±ï¿ÿþ‘#GfΜY§N¥ÏÎRéKÕYk¼é”ÈŽ®c)1¦§§WùFˆ4ÄCé8W~~~QQ‘O©íf³YqñâÅòüñÇ—.]:dÈ{î¹'%%¥²÷VjË–-[œv–Á7Ò]°(½¥²·(ì½M)ñÞê¡ –wNO6™2Êd…Ó§O+}.B!ÒE°)ØuŸhT!!!r^ÌÈȰÿ©—oÊd2Ù“Aázjù­‡“õéÓGé!¨…΃£\=t&!$,‚+ØÓ®GÞi'‡“ %·8ä—KòJŸ"lÅïš”}[/[!2G“É”ŸŸ_j»¼¼Ž\w,kÖ¬Y§OŸ^µj•———ÒgPiL©¶‡|™£õPýMê›ÏDcÖg;ù–ËSP_ãèááa6›ËVóòò„–yÖ%íÝ»wÕªUO=õT›6m”>TLµ :þ=B.vt<ˤigß‘¥ôª¢óà(„ð÷÷ÏÎΖ“¢…|›¿¿Ùý?.„X¸paØ_(„ذaCXXX¿~ý”>!8˜M ê\^$;P!·ª…ÑÑÑ©©©III÷ÝwŸ¼E’¤ÄÄD__ßððð²û7nÜØ²§ìÒ¥K;wî Pú„nâøes ¹Ï-h75Ò°vEzÇrv¤g @=ô ´xñâ>ø k×®òœ˜¸¸¸¬¬¬ÇÜÓÓSÞçêÕ«çÏŸ÷ôôlذaçÎ;wî\òRRRvîÜ1gÎ¥ÏNWÑeŽ¥w•4³ÉŽŽ `z#;PýÇ   ‰'Κ5ëþûïïÒ¥KfffrrrË–-Ÿxâ Ë>‰‰‰ãÆ Ý´i“Òã…ʺ OñÜFv úŽBˆ‘#GÖ¯_ýúõ›7o 2dÈØ±cåê£ÎØ;¥Zýõ3ç(·t¨ÔHÑÑ*IldG*Á+‘ã………¹lÇRq‡àèSÿûa´%o•82##C½+º‘+Ïö¬æš§žì¨Bªþ­‡3¹ò½^Uô?«¨¬??´š¤el*Li̳ 8‚#`õ/èøç8YÖ±T˜edGÊ"8j˜ƒËîS‹2ñOâów Lµ©QFv  ‚#P†IIîUë EG½ ;P ÁQ?ø”jÅh¥[ ¨¼ÜÊ"87Ó÷œŠŽÒPj¤è@G!Œ~£±Ë¡¡Ô(#;p=‚#ð'éæ…²ÿ\”Çöƒy ‡Ë‘¸Á0ŠŽeh®ÜŠ 8j½eÇÓá|ø7ÞèÒ¥Ë3Ï<³uëÖ‚‚¥Ç²­ÜXéË5×­†î8‰º>9füøñãÆ;pàÀƶoß¾}ûö:uêÜwß}111mÛ¶Uz€09øéº&UöœÒµ×}¹œJ½¯¡………ßÿýÆ·oß~ýúu!DãÆcbbxà (=ºŠ„……¥¦¦:õ.s£áÂQ©Ó¯('UíÎÈȶr¼& 8:/5þýÔ« )ÙÔùÔÃ\ð^¯NêjU—äááѽ{÷yóæíÞ½{êÔ©^^^™™™óçÏŽŽ:tèúõë‹ŠŠ”#P-v« v¥#  ÔÕª.%''çÛo¿Ý²eËîÝ» …õë×÷ôôÜ»wïÞ½{—.]úá‡*=L…U}Jµ‘U²º&_æÈã¬i,¿ÉW:í¬8•ƒcVVÖ7ß|³uëÖ½{÷ÊeÅzõêõêÕ«oß¾íÛ·BìÚµkÞ¼y‡~å•W–.]ªôx¡CF¼ÌQèJG@Õ¨+8~òÉ'[·nÝ¿qq±¢nݺ½{÷¾÷Þ{#""ÜÝÝ-»uîܹ}ûö;vÜ·oŸÒCV€cc‘åÜ]’ š=Uʰ…7ŠŽK]Áñõ×_BøøøôêÕëÞ{ï½ë®»JæÅ’¼¼¼jÔ¨AŸp0ŠŽºCvà@ê Ž>ø`ß¾}ï¾ûîòòbIÆ,7Â^UME\æ¨]Ä&puͪNHHؽ{wy©q̘1½{÷VzŒ0 LŒÖâÜj¡·éÕ¤FÁzàG]Á1??ÿÆåýèäÉ“gΜQzŒº`ØkïhÂ`å[Õ‰‰‰Ï<óŒåÛ+V|òÉ'ew+..–$é¶ÛnSz¼êBóÔ• Ô­ÖË•Ž”-¸Ò€C(ÝÝÝëÔ©#““S­Zµš5kZÝÓÇÇgòäÉJš¥Hbn5@G”Ž;wNNN–¿ ‹2eŠÒƒR/Bˆ+:õi¿èH­ŠŽì§|p,iÔ¨QJV¨+8Nš4Ié!€1kh*žUå2GíÖ-µ\t¤´fEGvR88~úé§BˆŽ;†††Z¾­ØàÁƒ•3€1)g̘!„˜>}ºåo+Fp´0Ê _ûi¶l†ª¡¨VŠŽì¡pp3fŒâÎ;0a‚ÒpÇô™éVtAáàøÜsÏ•üö‰'žPv<ú§Ñøb×);8÷h5Gm¢œvKT™º&Ç”%IÒöíÛOŸ>ݺuëððp¥‡EGÀ_T·oß>þü=zÈ]ìiÓ¦­[·NþÑ#<òꫯùW X.´—zv»ÕšB!ÍFTº>«zß¾}Ï>ûìÑ£G‹‹‹…¿üò˺uëÌfó£>Ú°aÃU«Vmß¾]é1ÂpäÈghrÑ`xêª8.]ºT’¤©S§>òÈ#Bˆ¯¿þZ1sæÌèèè'NôéÓç³Ï>‹ŽŽVz˜šEÅËA¸ÌQ(¡U EGU ®àxìØ±€€€aÆÉßîÙ³§Zµj]ºtB4iÒäöÛoOOOWzŒjAp¹5õô©ešîVs¥#@m­êÜÜÜzõêÉ_þòË/­ZµªV­š¼¥fÍšYYYJ€Q<«¹è¨ô(h‰º‚cPPÐéÓ§‹ŠŠ„¸~ýú]wÝ%ÿ¨¸¸øôéÓõë×WzŒÐ‡–ǸÌ¡¶àØ¡C‡ÜÜÜ÷ßÿÌ™3ï¿ÿ¾"22RþѲeË.^¼Ø´iS¥Ç¨YÚm’ª’|™cåÓrUñÊUFÑ@¥¨ëÇ'Ÿ|rãÆ‹-Z´h‘âÎ;ï”×nü׿þõÓO? !FŽ©ô J]Ç |þùçݺu èܹó{ï½'ÿ)œ••U§N·ß~ûŸÿü§ÒcT ÃJ`‡“¨²èH¹ÑNØN]G!Dhhè’%KJm\¹re`` ››ºb. ÅaS¢5=·`lÚˆb 4 5–ÄZ<qU¹±Š—9jÊŠŽ”‚¢#©®â˜°bÅŠ'N”÷fœœ¬ô5ˆ°›º‚ã¶mÛÆŽ+íîî®ôp Aš¸º‘nµƒPnt >H€-Ô?üðC!Ĉ#ž}öY³Ù¬ôp€[0ègò)2`Tê Žiii 6|饗¸¢*D¡PU(9EG·¤¢|vãÆË—/7jÔˆÔè`Æ ;*ƒiz%p¡º)2×PQDsss3›ÍÇ/..Vz,ªcœì@AL¯P1Gww÷Ç<++kÞ¼yJEÕŒxQ-*7tQ¡pÑ‘Ž*(B]×8öíÛ÷Ô©SqqqÉÉÉ÷Þ{oÆ «U«VjŸnݺ)=L—#/sä’I¨W:¨€º‚ctt´üÅÏ?ÿüóÏ?[Ý'55UéaP±”¢®àxÿý÷+=Ý1HMKCÓbô„uytŠ¢#€ò¨+8Ι3Gé!•VõÕéVW¤®àh‘››{øðáß~û-((¨S§NYYYõêÕSzPP+×½{7¡èF¢ºà˜½hÑ¢uëÖ]»vM1|øðN: 0 eË–3gÎôõõUz€C¹ÑeèV°JEËñ!nܸñì³Ï®\¹²N: °l÷óóÛ±cGll¬œ&¦d}«r-Q*cê§õ•ÀF¢®à¸dÉ’ü±k×®[¶lyûí·-Û׬YóÀœ8qbÅŠJ*£Ž>©qWs®[Б˜‹±8€²Ô÷îÝëîîþÖ[oÕ¬Y³ävww÷W^y¥fÍš[·n­Ú-¯]»vРAááá:uš2eJNNNÅûçææ¾öÚkýúõkÛ¶mÏž=Ç—žž®ôõ J0&uÇ#GŽ[ãíí’™™Y…›7oÞ´iÓ~ýõ×:x{{ÇÇÇ?ùä“t½óòòúõë·jÕ*!DTTÔ?þñÍ›7÷ïßÿðáÃJ?B¸™:Ê࣫õŠ¢#€RÔÍfóÕ«WËûiNNNíÚµ+{›©©©qqqþþþ[¶l‰‹‹Ûºuë°aÃ~þùç¹sç–wÈûï¿áÂ…§Ÿ~zÓ¦MóæÍ[½zõÌ™3 ßxã ¥!èLЧ5PWplÑ¢Åo¿ýfõ3cŽ9ræÌ™æÍ›Wö6׬YS\\¿àRð÷§¿7u1¥gTe¾ž¯tl ÎHwðY„„„¤§§«üÁ9}ú´ÒCp¢ôôt“ÉÄÊVéû©‡EŸ>}”‚Z¨.8 !¢¢¢¢¢¢rrrÒÓÓ BBBüýý«vSòÔéZµj•Úîíí-„¸téRҧ¦¦®[·NlÙ²Zµj6Þojjª£¿êPÁò·ÁÁÁ¶[©5G ggu U˜ÎÈ~Î8 M<2š$'è <2FPöm½l…È Ôe¾¾¾íÛ··óF|||L&S~~~©íW®\Õ+ûðÃgeemܸqîܹøê«¯äЩvô=ÏÁíeºÕP1>€Láàøé§ŸVöÁƒWâô<<ÌfsÙÊb^^žÂ2Ϻ&“©~ýú#GŽ*| (ç uMŽY´hQvvöªU«J¦F!Dƒ þóŸÿôèÑã믿ÎÊʲúaÖå š8qâ¬Y³î¿ÿþ.]ºdff&''·lÙò‰'ž°ì“˜˜8nܸÐÐÐM›6 !ÞxãG}ô™gž oذáùóç÷ïß/„˜={v¥îº§¡:QnT!ºÕÔõÉ1 jܸqÙ5jÔHÞ^…׬‘#GÎ;788xóæÍ/^2dÈŠ+Ê.îhѺu믾úê¾ûî»xñâ7ß|sîܹ^½z}ùå—ýúõSú2<-”åË«z°.>‘Æ™Ÿ"Pº*Ž999ÅÅÅå}4j^^ž¯¯oýúõ«pËýû÷ïß¿y?íÛ·oß¾}Kniܸñ»ï¾«ôãA5 €ºPt N]ÇV­Zååå}÷Ýwe´sçΜœyj3µ³¯èH4uRWp”Ë~“&MJHH(ù¶ñõ×_O˜0Á²*¢ã*¥*ûÔŽï-ë£[ ý*¯)ÀÔÕª~ðÁwîܹyóæ±cÇÖ¯_?$$Dþ€ÔóçÏ !ú÷ïÏâÛÐVs´åFP-uG!Ä;ï¼sÏ=÷ÌŸ?ÿÂ… .\7Ž3fÀ€JN1¤u–QGŠ @qª Žnnnƒ z衇Î;—‘‘áááѤI“ªMˆ´ÊÀËüPnԦȆ¥ºà(3™LJ¸5«1nµü(Pt=Q×äØK¯e* 2L‘Œ‰à¨^z °‰!çVÓý•#8p&>EF¿(:Dp„êi¡Omµ>h×gåFP?‚# VºéVSt½ 8j€­“suyQ¤Ê€aÑ­Œ†à8ÝjѧMPé:Ž€æH’0™‚~t³8 :ꋆBÅ*FÔ0bhÁ`®tŒƒà¨R•îO꣡©Gö^æ¨÷¹Õ”@CŽP+ ö©ÓÓ3ô‘ñ°Šà¨v¶®Å¨ :êÝjÀ ŽP% –H7Ýê2èS€¶Gâ³aX# 8ê3c %ºÕ”@sŽPúÔeé·[ Ђ#à t«ÿÆý¢[ èÁp0Šƒ¶ O ZDpT#C_²HŸº<RhEG@ߎªfÓ"ކޙÐ$V'"8BMt]nä2GEG@ÇŽ€ã9««¬‹nõŸW72E4ˆà›¡ºîSËèVà èVzEpÔ8fÆÆ»Õ7­ÂC·´†à8…Æ`/ŠŽ€.UÇRC4Ö’%èSÃÊ¢ß@SŽ€K9à2GŠ™…¡”=¢[ èÁQ˘£nTK*÷ééV€vW£[ ã èè ÁJ£Omå–šBpœˆÊ MèVëEG@OŽ€6‘I.GpT©[/⨙1FíSê³mêSSt- 8ª‹>Ò ”D·Ð ‚#”cŒr£[ÊZèV3-ô„à(ÃPÝj›Ð­Ö5ŠŽ€>8 åFЂ£6éàZHcô©N ÝêÊœEGP5‚#àtå¥;ºÕ0ºÕ€8}jЂ£ÝzG­£Oí@t«¡­#8® ³twK”@—Ž*b댭ό¡ÜX—9ZAÑÔŠàhŸÑê™Ð2ºÕ€¦8}jÐ+‚#\ËÀ}j婺պFÑÐ.‚#  ªéVSn#8P%ŠŽºFÑÐ(‚£êÜbGMO©6pŸºbŽéV«¦èÐ+‚#à:ºvô©@ߎpʨ,ºÕºF·Ð"‚£Zhº µP´¤I¹tซòTEG]£èhÁQS´[–¤O­w”ÀŽ€¾è~ô…¢# -Gu¹ÅZ<Ð5ºÕÖÑ­Õ 8ÂùèSßL5AúÔ`JÀEÖ®]»fÍš´´´š5kvíÚuâĉ¾¾¾ìíÚµÏ?ÿ|ݺu§OŸ®]»v³fÍFŽÙ©S'¥Ï°œLõ”ä$þüÐ3¹[Í߀&"8Λ7oñâŵjÕêСCfff||üñãÇW¬XáååeuÿÂÂÂ#Füøãf³ùî»ï¾~ýúž={vîÜùüóÏ=Z±ÓÐhàý¾2änµ¶.Wà-ŒCÿ­êÔÔÔ¸¸8ÿ-[¶ÄÅÅmݺuذa?ÿüóܹsË;dÍš5?þøcûöí-Zôßÿþ÷‹/¾ðññY°`Á‘#G”>!èþºÕ€=˜"h…þƒãš5kŠ‹‹ÇŽëçç'o™¿à©7ˆ>}ú(=µÐyp¼v횢V­Z¥¶{{{ !.]ºtË[(**úôÓOgÏž]TTôÎ;ïÔ«WÏ–ûMMM­ìPƒƒƒ-ÿ·Âd’\©[TrOG¿*{ÊV÷—„d vÌÜjg?®ŠUûJµÓ®ËÃSoeßÖËVˆ BçÁÑÇÇÇd2åçç—Ú~åÊñWݱ{öì™>}ú¯¿þøÖ[oÝsÏ=JŸPÎìV+óO·¥óàèááa6›ËVóòò„–yÖeÌ™3gåÊ•5jÔ3f̨Q£Ê[ôÖñîný]…ØI£EGÀ8t…þþþiiiyyyuêÔ±l”/£ñ÷÷·zHqqñ‹/¾øõ×_÷èÑãÕW_­ _N¢Å•À]„¢#(GÿËñDGG%%%Y¶H’”˜˜èëënõ•+W~ýõ×>úè‚ HUÁûºz8gAGjBpÖåÔLÿÁqРAnnn|ð|]£"...++ëÁôôô”·\½z5##Cž'IÒ'Ÿ|R»ví—^zÉ5#¼u³’v¦~ñ2UÁbà ý·ªƒ‚‚&Nœ8kÖ¬ûï¿¿K—.™™™ÉÉÉ-[¶|â‰',û$&&Ž7.44tÓ¦M.\8yò¤——×àÁƒËÞÚ€† ¢ô9ÁÖ­vô¥””À°ô…#Gެ_¿þúõë7oÞ8dȱcÇÊ+ò”%ׯ]»vøðá²?uÞÄjý\ÐFŸ€}˜"¨¿™ŽV©uåbPEÁQ[­jÇŒŒŒª­èVÞ3ì°?'÷OHEoçjú—Vå§åQÑ¿´ ñÔVeßëuCÿ×8Úå°Ï­æRJh Sdu"8¡ÔT‚é«Äp9‚£êi«O BÑP!‚#‡rcUUÐI¦[ P‚#›¨«O-£[ ®EpTh¸EGh Ýj@mŽª ‡EéSÛÇÝj;¨±Ü(£è.DpT7 ’Œ¢# *G8åF­¨R·Z½åÆ?OŠ¢#¸ÁP •w«¥PtÔƒà›a7úÔÚRÉnµÚûÔžÝj£è¨ÁPºÕ5#8ª˜&¦TSnÔ"›‹ŽÚ(7þyRuŽ¢# GåéaG`G%i¢¤SO·ZKåFEGp2‚#ì@ŸZ»øøAhÝj@qGVh¯Ü(£èÎDpT+õ·±)7:‹ºÕ¡Ae`‚#ª„r£r\0EF«}jÝj½£è(ˆà¨‘‹ÚÈt«•Appm—eõŽ¢# ‚£Â4¹ú7}j¥1E ‚£b*š6­þ)Õp>EÊ2ŠŽzGÑPÁ•D¹Q(:lCp4És«õSn”QtÔ;ŠŽ€ëõ¢P‚#*ƒ>µ^I’ÞÊ' 8ª3c`¬®yt«õŽn5àbGØŒr£\Ó­þ³ÜÈ0 BG%irG¨ EÇ[£è¨wW"8Â6”•ãìRàßW7RtTˆà¨ ®c\‡¢£ÞQt\†àh›Ýj&SlGpTu–"éS+Íu=d½v«):êEGÀ5Ž€æ1EàGÜ åFý²Þ§¦èm¢è¸ÁнÆ9€†£E)7jDºÕM‹ÑkJ¥è¨wg#8ª‰:gÆ!ލåF•©¸X©¢£qWá¡è¨w§"8°F¯Ýj€Ž  #*sHœ3n¹QFÑQï(:ÎCpD9èSkƒt¤è¸Á0£—eõŽ¢#à$GÕPU›r£Š9pŠŒ½w0‚£2´±ˆ#t‡rãß(:êEGÀŽ(ƒr£ê¹´HÑð‚# 7åu«)7–FÑQï(:GpÄÍ(7ê”]©‘¢#@Ap4Ê¥SdtŒ¢£ÞQt‹àèjÖ'O«dJ5åFr@“š¢#4‹ì8ÁÐ*ŠŽŽAÑlFptÎasb(:B³(:ŽBpÄ_èSëEG[QtÛÀêßp”[M‘KðPt„fQt‚à!åFEG°ÁQT2¥ÚTAP¾ºÑÁÝjŠŽÐ,ŠŽ€ýŽ Ü!(:À­ͳZ´L¦vüŠŽÐ,ŠŽ€ކG¹° èhdGÀG—âjF¸F©µ):VæÔÈŽP.‚£Ò”Í’”õ¢ds؊߀NQtªŒàèj,âEPt¬Ì©QtëŽF¹Q_ä G¹°EG jŒ×®];hРðððN:M™2%''ÇÆÓÓÓÃÂÂ~úé'¥Ï°EÇÊœEG°ÂÁqÞ¼yÓ¦Mûõ×_;tèàííÿä“O^»vÍ–cW®\©ôðƒr£>ñ¼¶¢èT‡ÒpºÔÔÔ¸¸8ÿuëÖùùù !Þ|óÍ+VÌ;÷å—_.屮¼¼cÇŽmܸqõêÕJŸà0rÑÑ‘WÙÊEG]6Ç%r¸þÉÙ‘«;Ûé¿â¸fÍšâââ±cÇÊ©Q1yòd³ÙœP\\\ÞQýû÷>>¥¶›Íf!ÄÅ‹t¿aaa¥¶lÙ²EˆàŒŒ ,222äÁâï¯]&XœàôéÓŠÜoHHHzzúÍOkEÏrºH7›Ò3Ò6‚ôô`“)#Ýq7¨&¶üÊ(õÔÃ!ÒÓÓM&Sz•þóÔDŸ>}”‚Zè<8ÊS§kÕªUj»···âÒ¥KNºßÔÔT«ÛC‚C$!‰à¿·Ûx›ŽaBÁµwj$®~B˹_I&SpÅEGU’‚õZç”D°)ø–EG¥žz8„= kžz#(û¶^¶Bd:Ÿãããc2™òóóKm¿råŠø«îhZÕÞí¿¦#Àt=<<ÌfsÙÊb^^žÂ2ÏZ®/Ïp©–î¨ë¢~Ïèf=p`YGÀ:ŽBÿììl9)ZÈW,ùûû+=:ÀYn™â(:VÙŒ£££‹ŠŠ’’’,[$IJLLôõõ Wzt.D¹QwÔUn”é¸è èÜ’þƒã AƒÜÜÜ>øàùºF!D\\\VVÖƒ>èéé)o¹zõjFF“ã 3Œ¢£Šé|Vµ"((hâĉ³fͺÿþû»té’™™™œœÜ²eË'žx²Obbâ¸qãBCC7mÚ¤ôxƒr£îØXnT`MG}/#É²ŽŒMÿÁQ1räÈúõë¯_¿~óæÍC† ;v¬¼" ElR;þƒd„Þ³#ôŽÏ’*Àï†ã………•]ðÉdB*ñöìÊ·U $®’‘‘ášÝ*û®Vñ?7ÇÇ[Þ¥Ö•ùrÙS—±ñ·Œ§Þ°¬¾×þ¯qtÆáµ§\éÈ,Ð#‚£ÞQnÔ—*.÷Í,Çb–Œ0K°Šà¨k¤F(HßEG²£²Ž€fØÓ¤V¦è¨ïìÆCpT‚kæ PnÔ¦yªEG è”BpŒ‚¢£ã‘ €ì”DpÔ)Êú¢ír£¾³# ÁÑU$',•cpärßL¯v8ŠŽ@Ѱ0Ä'Ç(ÎäâúåFq}­‘Ï’©üÙ‰`S0¿túÆÇÉ2*Ž€±(Ö7ÖuÃ:#=ƒº£îQwÁQή»PnÔ'U8hXª†à¨/¤FQ¶/Æ ëÊŸ;êEG€à kçœÙQÿÈŽ08‚£ŽPnÔ5\†Oú*ÈŽ@v„‘ÕqMj´¥öGÃPÁQ/(7ê…+k4¬svõ¢# ‹àè–Õ¿u¼”tÊY k²#4Žìcbp] Ü¨ ,÷mÃÊÜNY\÷$~1õUÁa@TÎé‘òæ¤J½Ѱª,==º# …ਂÊë4¬«tv4¬è ÁQã(7ê‚â©Q±Ö6Þ·v‘ €‹a(GBè=¿)‰ìhdGÁÑ…>¥šr£.(^n´EǪž ÙQÿÈŽ0‚£f‘uAU©‘†5`²#Œ€àè|ë˜À:U¥FÙÑY(:ÙºGpÔ&ÊÚ§ÂÔ(#;: ÙÑÈŽÐ7‚£‘µOµ©ÎEv qGÀÕÔŸ)::ÙÑ(:BÇŽÎõ÷K‡£¦TSnÔ8õ§FÙщȎ@v„^×ÑJj”‘ˆìhdGèÁQS(7j™¶R£ŒìèDdG ;BŽÚAj„Ñ¡}dGè Áp-–eJm¼{M#;ÙzBpt2G­þM¹QË´›edGç";ÙºApt ;§T“5Ëd2i=5ÊÈŽÎEv4²#ôà8‹uedGç";Ù:@pT=ÊÚ¤Bc)dGç";€œ‰Ð.‚£9à•Ô¨MºL2²£s‘ @nD¡QGÀÁtœedGç";ÙEpt¾*ÏŒ¡Ü¨AºO2²£s‘ì-"8ª©QƒBBBŒedGç’³£®O‚ì "8Ža2™ÒÓÓ•…K©";êøMW¢ôhL—¶©Ê«SnÔÝ,ÖX¶gGg}žµAJÐ5¦Ë@CŽêCjÔ-ÖX6fGÚÖvœ ÙÑȎЂ£Ê5Ű…ÆRlLndG;NK ¶5Ôàèdv~Ø ÔÊÈíi«Ô’uüŽË%Æ@Û*GpTÊA{Ú*UdGJв#T‹àè,•þ•'5j…ÆŠÙXõsâtaŒ¶5¥G m uòPz€fm!?B·¼FC^pÀ$ªºòÀ-!¿Ýêøù’økSÿä^y *Guà @Ýä?úyí¶œÜnù€YÚÖŽ6XM³Ôõ{Š%ÚÖ¼A ŽNóç"Ž6tHêÆŸûUccÕÒ£}'(„ >꟥ô(ˆPÁÑ™l©vUŒ—i;Ù^õ£ôhß9 !x1Ñ?:×P‚#`‘Ñ(=ºkc s eE…@•øƒÞáÔUzút®Î5DpT©Q}x!vªÊ–ñ±Šç(„ >êñŠ 8Bðâë*¶Ç6§w®m‡vø#8*„r£jð‚ëz•ŠÎ*=VjÚE|4â#\†àè&“DùoE¤FuàEVY6Æ6çv®m‡¦ø 8º©Qi–ðâ…U ª×>Vñ…%Ö–ÕéY¢d|¼ÐÁÑŽÎ!9ëcxaþW­JÅGáš©3B§ ÒrN uÍòBÇë‹àèZ”•À_ÞZQ…©3%¿uð8lŠvQ€4 p,‚£ ‘]‹J²½êGÒçø×$H]+U€¼0¢ªŽ®Bjt^õ¡TÕO(xd¥†¢]$Hc AÂNG§L:}kQ1^õÊöØVª)\ …ÓIÆP6A ^?a‚£KPnt^ï Åž)"KÞ±É$„ÆH‚—2*ùâÉ‹*n‰àè|¤F‡âu ¶þJ†E§†ÈŒŒŒ`“©ìv(y*¦òí#Dâ–Ü”€z­]»vРAááá:uš2eJNNNUn…Ôh7Óͤ”Zi}úôQzÆ"Iÿg2ÝôŸ•Kì~ó¾X:«OŸ>7Æ–i”tó¦›ÿ3ÿÖ—|±-õ:¬ôР$*ŽÖÍ›7oñâŵjÕêСCfff||üñãÇW¬XáååuËc¥3æ ¨C”}IRa@„ •úgRqù¯TűTvtL=²RÒ®RçaºÕЦR¯Ã¼PG+RSSãââüýý·lÙ·uëÖaÆýüóÏsçÎ­Ü Qn¬É© ¥‡ Mª¸üWªxó¾’µ}íþ[Жé #ݪ$iÔ¤Δ}¡6•Cé‘ÂñŽV¬Y³¦¸¸xìØ±~~~ò–É“'›Íæ„„„âââ[þç”jR£¢œtX^F$&ÂIJŶŠÃ›µ}%S¹»W)VZPcÒî°dsš$Vj™TS…”5ª‚àhž}ûÜÜܺuëfÙâîî™}àÀ›nBï©Ñd3©|JŸŒ®RáM˜¤²ÿY:–z¬âdikÄ,oLgJÍ¥L©ÂÿL6ÿÕ“*dû[‰Òç¿qci’$¥¥¥Õ­[·nݺ%·7kÖLqêÔ©ˆˆ¥ÇxkÎþ5#öAÇlÿ×]rÖ©­‡HUýÝ´yT’\”ô:`û­º,Nð‚ç¶¿•¸2;òW1‚ciùùùEEE>>>¥¶›Íf!ÄÅ‹oy &ùŠþ$Ç\ç SòôTŒGÆPªò{V‰cŽK­Â¨L’É5AG2NÈTîš*R©}º€ã?P´|6†Tg¿ÏªÁ±´k×® !jÕªUj»···âÒ¥K·¼þX (W½ñR=reHÕ"®q,ÍÇÇÇd2åçç—Ú~åÊñWÝÀ€Ž¥yxx˜Í沕ż¼ýôÓfÍš=òÈ#ùùùò–cÇŽuìØ±yóæ¿üò‹Ò£ƒ‹,[¶¬Y³fÍš5›0a‚ÒcÓåææFDD´iÓfÿþýò–Ÿ~ú©U«V÷ÜsOQQ‘Ò£ƒÉ/ø/¼ðÂ7ä-»víjÞ¼y¯^½”šKѪv€5kÖ;ÖÏÏOÞ2yòd³ÙœP\\¬ôèàD[¶lBL:ÕRZ }úé§‹ŠŠhXÄñãÇçÍ›wÇw(=¸H|||^^ÞÓO?ݾ}{yKëÖ­ï½÷Þ¬¬¬C‡)=:8Ñ„Ç÷ðð·Ü}÷ÝÍ›7?qâÄÅ‹•ë@.VwëÖͲÅÝÝ=222;;[þw½ÊÈȨU«VË–-Kn Bœ:uJéÑÁé 'Mšäëë;yòd¥ÇùþûïM&SLLLɳgÏNMMmÓ¦Ò£ƒ !JfDI’rssÝÜÜ,QÒ tªN"IRZZZݺuëÖ­[r{³fÍ„§NŠˆˆPzŒp–%K–”}½HIIB4jÔHéÑÁéÞÿý#GŽ,[¶¬N:J.røða__߀€€ýû÷ågŸ}Vqâĉòö÷ôôœ={¶‡‡Ç´iÓΟ??uêT//¯¹sçZ†Dp r,Ù·•ûÔ>ø üíèÑ£/^|ûí·[v¸páÂW_}eÏæääddd„„„”š]³fÍ{î¹çÚµk‡BÈÉuòäÉ{÷¶ôôô|á…ÆŒS©»»÷Þ{K~k6›ÝÝÝ%Iªà-ZŒ=ú÷ßàΜ9óÒK/5iÒÄYÏcc9šÑ²eË&Mšœ8q"555,,¬°°pË–-^^^}ûöµìsæÌ™ï¿ÿ~ÿþý§N:yò¤—6 !ÒÓÓåÿ‡……YÝá·ß~BLŸ>}ìØ±{÷î:th5Z´hq×]wõêÕ«E‹•º»† VaO=õÔ¶mÛRRR:vìøÈ#8ôQ€¿hIÿþýßÿý-[¶„……%%%]ºtiàÀ–ÆôªU«ÞxãÂÂÂÛn»-""¢G­ZµÊÈȘ1cF¥î¥¨¨ÈRä+((B4hР¼¦sPP¢aÆk×®=xðà÷ß¿gϞÇ8p`Ñ¢E=ôÐo¼a2™l¼ëjÕªUáa¹råÊ… „ééé¹¹¹>>>Î*Á€–X‚ã /¼ ÷ -}ê+W®¼þúëÕªU[²dIçÎ-‡üþû—³gÏË_‡„„!jÖ¬9eÊ”Š2™Lò@Bˆ‚‚‚¤¤¤ÿûßëÖ­ëÞ½{tt´S–W_}õüùóíÚµ;pàÀŒ3Þ}÷]§ÞÃâGZÒ¸qãV­Z¥§§:tèÛo¿mܸqDD„ü£C‡µk×®djM[©X©Žö7ß|cùÚßß¿~ýú¿þúkJJJÉ}ŠŠŠ|ðÁ.]ºdee9s¦{÷îÿú׿,?­V­Ztt´<›çôéÓN}L6nܘеk×+V„††~õÕWe-‡ 8ÐyŠÌÔ©Sóóózè!Ëv!ÄÑ£G³²²ä-EEE«W¯þä“O„×®]³zk·Ýv›båÊ•ùùùò–äädË";²ñãÇ?þÈ‘#ò–+W®üûßÿ>|øpË–-ëÕ«xùòåŸ~úéÃ?´”*Oœ8ñý÷ß !œºžâï¿ÿ>cƌڵk¿þúëžžž3gÎtwwŸ>}ºýw@Y´ªhLß¾}gÍš•ššêîîcÙýí·ßöìÙ³}ûö’$¥¦¦æää þøãDGG·hÑâüùóiiif³9 à?þ÷0`ÀÞ½{¿øâ‹˜˜˜ øúú¦§§ççç7iÒD^yÛÍÍmÊ”)“'Ož3gÎG}Ô°aÃüüü_ýU’¤Gy$<<ÜI…$I“'OÎËË{ë­·äÜ|çwŽ1â£>š>}ú{ï½§ôs@o¨8Ð??¿Ž; !ºtéâççWòGï¼óÎóÏ?$¯ï¹~ýú©S§<ØÝÝÝê6jÔè³Ï>ëÑ£‡››ÛÎ;;Ö Aƒ¥K—Ö«WϲÉdzûí·ÿóŸÿtïÞ½¸¸øÄ‰ÁÁÁãÇ_¿~½¯¯¯¼Ï€>þøã®]»zyy=z4??¿S§N .|õÕW÷P¬\¹r÷îÝ;w¶\è)„xþùç7nœ°eËEŸ(:dªxy00Ž«W¯fgg7jÔÈöIÐ`(GØ„V5lBp€Mް Á6!8À&GØ„à›`‚#lòÿx¼{Ô0¯x›IEND®B`‚statistics-release-1.6.3/docs/assets/ridge_101.png000066400000000000000000001300001456127120000217340ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A€IDATxÚìÝw|ÕÚð33[²%ÙôÞ„Þ‘ÞAŠ¥ ŠbTP¼"¢"* ^E„+RD¯(^D)”"½H¥×„ôÞ“M6Ù>åýc}×Ü „dg“ý}?þ1{æÌìsÎ ûpfæJp/´Ø@Ó€Äê‰#Ô G¨$ŽP'H N8€˜nܸAÝMÓ±±±O>ùä•+Wªòå—_Ú*ôèÑãî'_ºt©­æ¨Q£Óœ;vPuSQQ!VŸÔGpR‚ $%%mÙ²¥oß¾GŽ; ±øK@@€B¡°m³,[\\l6› !z½þµ×^»|ù²m—»»{dd$!$((HìkR*•¶ØlŒFcaa¡m;88X&“ÙwÑ4þÝMGp›7o:t¨ý£Á`xöÙgüñGBÈ•+WÒÒÒ¢££ !O>ùä“O>)v°µ5jTzzºýã‘#G† fÛ>xð`»víÄààŸ¼à¤”Jå¬Y³ìóóómwzÆ1++kòäɾ¾¾ãÇ?wîÜΜ’’2nÜ8ŸÈÈÈ™3gæåå½õÖ[¶s¾ûî»Õk¾òÊ+}úôqwwoѢń .^¼Ø€m|÷Ýwmß;nÜ8–e-ZºhÑ"Û^žçüñÇÁƒGDD¸¹¹EDD 4è»ï¾³Z­5ÎSTTôÊ+¯ôíÛW£ÑDFFŽ5jß¾}·]c7š=Œ8€óâyÞ¾}÷ÓçÏŸ‹‹+((°}ܹsçáÇû÷ï{Í3gÎ<úè£%%%„²²²7ž8q¢{÷î·×i¿×\UU•––¶sçÎW_}uÅŠ ÞØøøøï¾ûŽ"‚­ä‰'žØºu«½BVVVVVÖ‰'öìÙ³mÛ6{ù¡C‡žzê©¢¢"ÛGN—™™¹ÿþøøø¯¾úJ¬æ@³„GpRF£ñË/¿´mwïÞÝvŸºV‹eâĉ¶¬Q"‘ôêÕ+22²²²òöQ7“É4iÒ$[Ö(“Éúô霖–V=?³ÑétS¦L±¥YC† yÿý÷Ÿxâ š¦Aøì³Ï¾ù曆mìùóçmY£ÝÖ­[mQQ5dÈiÓ¦µoßÞ¶kûöíGµÇ9uêT[Öèéé9a„ÁƒÛv}ýõ×ÿùÏDi4[€x®_¿nÿë(88¸åÿ‹ŠŠR*•¶ò€€€7nØY¿~½­¼{÷î¶’5kÖØJÜÝÝÏž=k+œ;w®ýÌ#GŽ´~öÙg¶FsñâEA8Ž‹·×|çwl5.\h+™8q¢ý«W¯^m+ ¯Kë>l?óõë×o¯ðÎ;ïØ+´mÛö?ÿùÏÙ³gSSSAxæ™gl寽öš½~·nÝl…Ÿ|òI8#""Š‹‹k0 ›€[Õà,òòòn/lݺõ‰'üýýïrà–-[l/¿ürÏž=mÛüñ?ü`¿kcYœ3gN—.]!4Mþùç¿üòKšû÷ï·m<÷ÜsöÂgžyfîܹÇeee]½zµcÇŽ Õv¥RyèСàà`{ÉäÉ“m¯ 0ÀV¢Óé ƒm»¬¬Ì¶qàÀÛÆüùó}}}íý`m5›ÍÇ1 ãàæ@s…ÄœZbbâ!C~ÿýwww÷;ÕIJJ²mTŸè[&“=üðÃö{µ5jŽ1Â^¨P(FŒñý÷ßß³fuÉÉÉ ˜iuéÒ¥zÖhÿ^­V{àÀóçÏ_ºtéܹs•••5LII±môíÛ×^xéÒ%›Ížqgqøðaûݽ^¿eËÛd‡7nܰ?ìx»ªª*û`a```õ]aaaÕ?êt:û@],íöšUUUwÖö dC±ÚY,–×^{Íßßÿ‰'žX±bÅÑ£GY–­1òªÓéì+ÐxzzÞéäŽo4Wqg¤T*§L™²víÚ“'OBnÞ¼y§š …B&“Y,BHQQQË–-í»j,ëçîîîææf2™!%%%-Z´°ï²¿klãáááîînÞ;xð`­ïåøùù5`{)ŠªQ²téRÛ™ÑÑÑóçÏïÛ·oÛ¶mgÍšõïÿ»z‹”J¥íþuiiiTTT­'w|s ¹Âˆ#8/Û†V«½S†aì “ý?Bˆ ǯ^“¢({ÍcÇŽÙËY–µ¿¤lgO@Y–mQ———§§§§§§}‘›F²víZÛÆš5kfϞݱcG‰D’““S£Eöô÷?þ°—ôîÝ»wïÞƒ¶Mi$zs y@âÎË6:HÑëõw©fŸ…ñóÏ?·Ïhýá‡Þ>N9pà@ÛÆgŸ}–˜˜Háí·ß®¾Ü‹}Å— 6ÿ?±âŽ;||||}}mÓý4^Ã+++í÷ŽËËËm.\¸=Áµ·hÅŠöi,W®\yöìÙ³gÏÊårÛí~q›ÍnU€ó²/èl[´úN^ýõ~øA„òòòÞ½{÷ìÙ³¸¸Ø–ÖðÖ[o}óÍ7‹¥¸¸¸[·n={öÌÌÌLKK«µæ×_­ÕjwíÚ5dÈÞ¸qcïÞ½¶½óæÍóöön¼†«ÕjµZm{0ñÙgŸÝ²e EQû÷ï¿}͘wß}wÓ¦M:.==½sçÎC‡-,,|Ø>buñññ‡?~|pppHHÈøñãOŸ>ýÐCÝ^3..îÊ•+ñññ]»vU*•ÑÑÑãÆ;qâĺuën—¥Á­\¹²C‡„š¦;uêôꫯ^ºtéÑGµíݲe‹}†qãÆ]»ví…^èÑ£‡Z­ŽŒŒ3fÌo¿ý¶téRçi4”ýa€¦îüùóÇŽ{á…<<<îëÀéÓ§oÚ´‰²nݺY³f‰ÝŽ¿X­Ö={öBÆ'v,„ q—òüóÏŸ;wŽÒ§OûB…UUU111¶›¿§Nª>“6T‡—cÀ…_¾|™rùòå°°°I“&•——¿ñƶ¬±]»vö´àvqb4~øáS§NݾËÇÇçØ±c¶Ç  VHÀµ˜ÍæŸ~úé»ï¾KKKËÏÏ·ÍbøðÃÏ;÷~ŸŒp5H N0Ô G¨$ŽP'H N8@ q€:Aâu‚Äê‰#Ô G¨$ŽP'H N8@4ÛÄ1---66öÊ•+µîݶmÛ¤I“ºtéÒ·oß… jµÚúÕpÍ6qüþûïï´kåÊ•ï¼óNjjj=ÔjõŽ;žþy£Ñx¿u\JsKu:Ýùóçß{ï½~ø¡Ö ·nÝÚ°aC@@Àþýû7lØpàÀiÓ¦]½zõÓO?½¯:®¦¹%ŽqqqS§NýñÇïTaëÖ­<ÏÏ;×ßßßV²`ÁFó믿ò<_÷:®¦¹%ŽK—.]»víÚµkûôéSk…sçÎÑ4=hÐ { Ã0 (--½xñbÝ븚æ–8öë×oèСC‡ ¹}¯ )))ÞÞÞÞÞÞÕËcbb!ÙÙÙu¬à‚$bàPƒã8OOÏå†RVVVÇ:w+vC qݺuKìDàZ‰£íµh•JU£\­VB***êXçž\ó“3‹ÅEq6¸(Î ×Å á¢8!—$jn·ªïÎÓÓ“¢(ƒÁP£¼ªªŠüÿ˜b]ê¸ ×J%‰F£¹}ÔP§ÓBlïP×¥€ r­Ä‘PZZjËíÒÓÓm»ê^ÀÕ¸\â8tèPŽãNž-vð‰ØÔIJìÑ£GÏœ9³víZžçÅþ‚GÁÞ½{)ŠúðÃí%+V¬ (jÏž=„ÒÒÒ#F,^¼¸¸¸XìHáoqhæN§Wôû₈+†Ü^øÈ#̘1cÉ’%ãÆkÓ¦Mjjê»ï¾;sæÌ1cÆBA „ܺu«uëÖ"ÕaÄıråJ__ßøøxŽãâããýýýW®\)vPp7qqxzz~õÕW£G>|ø‰'Ž9âáá!vPp7Hš9•Œi¨;ŠÚ5jÆŒß~ûíìÙ³,v8pHš¹Î!êk¯÷;ŠÚ ‚™™I¹rå Ïó4‡èœ.ˆfõêÕÇå•WΜ9³zõj±Ã{@ââHJJZ°`Á¬Y³V­Z·pá´´4±ƒ‚»Aâ"à8núôé>>>Ë–-#„¬]»–a˜øøxÛ,<àœ8€–/_~öìÙõë×ÛÞ¤ ]¶lÙ±cÇ6lØ vhpGx9D°`Á‚ T/yñÅ_|ñÅÕbcc1é<0âu‚Äê‰#Ô G¨$Ž"ib°Ø!40$Ž ,ibðî•„Œ¹ÅŽ !!ql,–œdSò%±£h0HXø'ûíÛYo="v8 ‰cs‹îÈWûX°ú±#hHÞ£×ÜíÛºÛÄ a qln-:Ù·3^ v8 ‰c£ÿøWû¶%7Åœ•(vD ‰cc‰üü”};sÞ±Ãhb®^½:yòäÀÀ@µZݽ{÷•+W²,+vP®‰cc‘GW¿a»l†Ø4iiiƒ Ú¿ÿÈ‘#çÍ›'“ÉæÍ›7iÒ$±ãruHQõÖúóŠɘ7o^EEÅáÇ¿ýöÛ%K–œ9sfæÌ™»ví:pà€Ø¡¹4$Ž+hÞzû6Ö!°Û»w/EQ~ø¡½dÅŠEíÙ³‡rôèÑôèÑþwΜ9„ßÿ]ìÀ]šDìš9÷>c Ö¼*˜¶eÿýÜ{ü?Ä \‹1ñ\ö;Š@Ìö¼Û yä‘3f,Y²dܸqmÚ´IMM}÷ÝwgΜ9fÌ–e_zé¥îÝ»W¯Ÿ™™I‘Ëå"60âØèZmNµo—ü°LìpœÅÊ•+}}}ããã9Ž‹÷÷÷_¹r%!D"‘|ôÑG&L°×,++û裆™8q¢ØQ»4$ŽŽà7ã}û6nXØxzz~õÕWgΜ>|ø‰'6nÜèááq{µãÇ÷êÕëܹskÖ¬iÕª•ØQ»4ܪv¯1Ïû¾ýcÞ'Ï¿ño±ƒW!õ öž8Wì(j7jÔ¨3f|ûí·³gÏ~üø+¯¼ræÌ™Õ«WÛËwïÞýôÓO3&11ñùçŸGÖè$8:Nð‚o«,ݺBìˆÄ”””´`Á‚Y³f­Zµ*..náÂ…iii„AÞxã°°°ï¿ÿ¾Ö§A,Èߪú ëÒ­+|MìˆÄÁqÜôéÓ}||–-[FY»vmÛ¶mããã9’˜˜Ø¦M›øøøG?>..NìØ]GG |å‹‚ͱm'M ®uj+€foùòågϞݳgmL144tÙ²e/½ôÒ† ‚‚‚! 5ŽjÙ²%G!qt4þã‹¿[Ì•Û>f½5&ü£=bàh ,X°`Aõ’_|ñÅ_´m ‚ v€P <ã(‚__±o›’/Zr’ÅŽàÞ8Š#ä­Mö팹ÅàÞ8ŠCÕm˜{ÿñö©Ïv;"€{@â(š W¾°os%Ú_Ö‹ÀÝ qSõWª‹7-X«ØÜG‘…¼õ};yJ„ØáÜG‘©º —ú‡Û?&O€“4"$Žâ‹Z{Ö¾-plÙ®µbGP $ŽN¡úÃŽ%ÿù'§¯;"€š8:‹°%ÿµo§No#v85!qtж½¤QöIƒÅŽà qt"Q_œ&ŒÔþ1}N±#øGçóS¦}ÛZQyæ±#DZcÇìïïïããÓ¯_¿;wŠ qt>Õ_”Éÿlá9±#p´}ûö 2$++ë©§žš5kVqqñøñã¿þúk±ãruHQõYÁ“;G{ë­·/^¼øÙgŸ-]ºôâÅ‹ááá‹/;.W‡ÄÑ©º —·°Ä‹2ð@x oÌñ¿ZƒÚ»w/EQ~ø¡½dÅŠEíÙ³Çl6߸qc̘1ƶK¥Rõïß?''Çh4ŠÝ›.M"vP»¨ÏO¦½Ð-Í·}L~2ºÕibM[~Uwj’ˆxM¿½ð‘G™1cÆ’%KÆצM›ÔÔÔwß}wæÌ™cÆŒaYöÊ•+¾¾¾7e¯]»Ö±cG…B!bC#ŽÎ+úË ömÁb*Ú¸HìˆÒÊ•+}}}ããã9Ž‹÷÷÷_¹r%!D"‘´k×. €²iÓ¦E‹õìÙ3??ÅŠb‡ìê0âèÔb¶çÙïS—ïýZÙ¶—ºçh±ƒhžžž_}õÕèÑ£‡~âĉ#GŽxxxÔ¨óÁ¤¤¤B†!vÈ®‰£³«ž;æ-øì˜<~üø+¯¼ræÌ™Õ«WÛ ÷îÝ+•Júé§ê5½¼¼!‚ ˆ²KCâØ4x=ï1x²ý#rGh’’’,X0kÖ¬U«VÅÅÅ-\¸0--Ò³gOBÈÆ«§‰ß}÷!¤wïÞbGíÒ86/­¤dnöI“BÅŽ þ8Ž›>}ºÏ²eË!k×®e&>>^__ß·ß~ûÀ=zôxûí·ßyçž={þðÃsçÎíØ±£Ø»4$ŽMI«Ò(‰ì¯ŸòtŒØÔÓòåËÏž=»~ýzÛ›Ô¡¡¡Ë–-;vìØ† !ï½÷Þwß}Ç0̺uëÖ¯_/“É~üñGÛd= " Ï 4¸ØØØ[·n5Þù«ß§–ú‡G­=+v‹›€ôôô¨¨(±£€ÿ‹âœp]œPÝ/Jcÿ5Wõè7—íjŒ86=Õߪ¶e®]ìˆÀ% ql’ªçއ7—ü¸\술ùCâØTUÏ˶¯Ì[/vDÐÌ!qlªçŽUì«8öÓœ à86mÕsÇÂ5¯Vþ¾[술ÙBâØäUÏóW¼PõǯbGÍÇæ ÕOYöí¼åÏoZ,vDÐ !ql(FÒjKšý£ö—/u'¶‰47H› Jê³-Çþ±`õ+åû¾;(hV86#]=w,úæ’?;&h>86/ý¿ó;®ÊøG±c€f‰c3T=w´ä¥f/+vDÐ qlžªçŽÆ¤ów€¦kÀ€‹ßÇ„!W¯^úˆa˜‰'ŠÝÜæ‰£«ˆZó»Ç Çíµ?¯-Ú¸Hì À¥yzz~õÕWgΜ>|ø‰'6nÜèááÑ€?~¼W¯^çÎ[³fM«V­Änns€[Õ.$pÎ*yTûâÿÏË÷~m¸v:ò³#bÇ+¼sðâ˯ŠEíF5cÆŒo¿ývöìÙƒn¨³²²æÌ™³{÷îV­Z>|xÈ!b7´™Àˆ£kñz$>pοì-Y xÕD$‚íÄ+W®Ü×ÛÓw9pË–-íÛ·?þü—_~yóæMd ‰£Ëñ4)f[nõ’¤‰Ák;.pE«W¯>~üø+¯¼ræÌ™Õ«W?ø»wï~úé§ÇŒ“˜˜øüóÏK$¸¹Ú8º$Šª1)Oò”ˆÊÓ?‹¸–¤¤¤ Ìš5kÕªUqqq .LKK{Axã7¾ÿþû:>. ÷i¸ëŠÙž—ôxá9ÛÇü•³Kú4òó“bÇ.ã¸éÓ§ûøø,[¶Œ²víÚ¶mÛÆÇÇ9r„¢¨ú˜˜˜Ø¦M›øøøG?>..NìF7yH]ZÌÖìÂuó+Žü`ûhÉKÅ áàË—/?{öìž={lCƒ¡¡¡Ë–-{饗6lØð /ÔïÀ   BHBBBBBB£Z¶l‰ÄñÁQ¶Ù5¡ÅÆÆÞºuKì(îƒþ¡ܦW/iñÍuÆÃ[ì¸RzzzTT”ØQÀÿÀEqN¸.N¨î¥Éý9‰zô›Ëv5žq¢ê6¼Æ(cêÌö¹>-v\à\8Â_b¶çQ©ý£þ⑤ÉábN‰#ü­Õ™ƒ'ÿý™c“& fêB8B /­ ykSõ’äɹM;.G¨IÕmXGõ'M ;.G¨]ÌöµõÍÿ°èµˆÜmÁFE‰Ô„‹âœp]œ ^–e=zæÌ™µk×Þ× o½õV``àÅ‹m#> .lÛ¶íâÅ‹ïž8Þ½‡oÿY¿}„ÈE¸\âøí·ßÖ(éÓ§ÏÓO?ýõ×_>|xÚ´ižžžE †ÕªªªÈÿ;Bu1Ûó´ûþ]üÍßEÙIƒÃ—ískÙYìè€êR~¾ü±ˆ/v5=òÈ#3fÌX²dɸqãÚ´i“ššúî»ïΜ9s̘1„€€A!·nÝjݺudYöÊ•+¾¾¾öÊ,Ë^»v­cÇŽÈ„k½#Çq·x3 Cqww·} (--µeŠv¶§Än„óŠÙ–ë=þåê%\EqÒÄàÒmŸ‰8£•+WúúúÆÇÇsïïï¿råÊ9P"‘´k×Îöc½iÓ¦E‹õìÙ3??ÅŠb·µ™p­Ä133³mÛ¶Ó§O¯Q~éÒ%Ríy…¡C‡rwòäI{ANœ8áååÕ¥K±áÔ|Ÿ|+f{ž¢MÏê…¥?}š41Xá°ØÑ€sñôôüꫯΜ93|øð'NlܸÑÃã¡üàƒ>øàƒ‹/vîÜùîÓðAݹ֭êÈÈÈnݺýùçŸÛ¶m›4i’­ðÒ¥Kß|óMpp°ýYŠI“&­_¿þ‹/¾8p í˜ 6”””ÄÇÇK¥R±Ñ„}°Óœ•˜9oHõÂܦš‰ÙŠùŒ-Ò§ó² —ÄŽ¢v£Fš1cÆ·ß~;{öìÁƒ7àÉÉɃá÷ßïÕ«WBBž7{p®5âHY´h‘¯¯ï;ï¼3~üøùóç?ñÄO>ù$MÓ}ô‘ýé‡ààà×_=--mìØ±ï½÷ÞŒ3V®\Ù®]»çž{Nìð› yxë˜íy>“æýO)Ï%M .üòM±£g!‚mŠå+W®Ü×ÛÓu9P©T:tÙ²eeee»ví»­ÍË%Ž­[·Þ¹sçc=VRRràÀŠŠŠÇ{lÏž=½zõª^mæÌ™Ÿ~úiTTÔ¾}ûÊÊÊžzê©M›6Ý>¹#ÜÏäù·O^qèû¤‰ÁEß¼#vt ¾Õ«W?~ü•W^9sæÌêÕ«ðÀ½{÷J¥ÒŸ~ú©zM///BˆPíõM¨7׺UmãïïÿñÇ÷ž• .....Nì`›ƒ˜Ÿ²ôæ~øTõÂò}ß”ïû&ò‹3²ÿ]ü\GRRÒ‚ fÍšµjÕª´´´… ÆÅÅEGG×ûÀž={B6nÜøøãSe«üÝwßBz÷î-vs›—qQ¨º‰ÙžçõØK5Ê3æôIšŒ–\ÇqÓ§O÷ññY¶l!díÚµ ÃÄÇÇßshð.úúú¾ýöÛèÑ£ÇÛo¿ýÎ;ïôìÙó‡~˜;wnÇŽÅnqs€ÄÇï©·c¶ç)Û÷ýŸRΚ418{ѱ£‡Z¾|ùÙ³gׯ_o{!:44tÙ²eÇŽÛ°aÃøÞ{ï}÷Ýw ì[·nýúõ2™ìǬã,?pOnù7¸ØØXWYrðÔX¨ÐFÜ"òó“÷²{KOOwÁ»œ.ŠsÂuqBu¿(øªŸzô›Ëvµ£G»té²|ùò;í}ùå—ï´¾431Ûó_YS£Ð’—š41¸äÇåõ:%4.G'ŽƒÁjµÞiWVVVnn®Ø}ÒŒÉkÅ¡ ðè?.f{^ÀK5o”m_™418oy|½Î ÅoUŸ8qböìÙö›6múÏþs{5žçA»OÔïË-Æ„åÆ„å„–{;A»a•Â»Ñ ž¬<9kaœ)éBõòª?ö%M xþcÍÃO‹#â˜Ä‘aûB@Z­V&“)•ÊZkzzz.X°@ì>i8¼¹ü`/BˆÄ§—Gß-bGãÔÂ?ÜMÉÿ×K•'wV//Üðfá†7==8g•Ø1¸:G$Žýúõ;{ö¬m;66vÊ”) .»á¥òÌÔÛ ÙÒ³e¿DQR²Ý[òðÉbÇ輂^YôÊšô{Z‹þgeBÝñ­ºã[1ú .G?ãøì³ÏÖX£¥™qï³¹÷ë2yX-“ËÖ ýåe¿DU.ðf±#u^QkÿˆÙž'õ¯ùÐBá†7“&ç~4Mì\”£Ç7ÞxcÈ!b·ºÑ©º|ê=6]Õy%Õܾ—«LÑîi]öK”îäcbGê¼¢ÖžÙž'½m]ý…ÃIƒK6(v€.G„%ýõ×M›6eddÜi Iû}í¦N>ÙvcZwr«½x{V{¥ì—(Bˆ,h¤ºÇ:±ãuFQ_œ!„¤LkÍtÕËËv~Q¶ó i@DÔšßÅŽÀU8:q<|øðܹsmÛ ÃˆÝ|ñ迃"XÊÊتÛ+Xò÷Û2HUçOäá“ÄŽ×é´Ü”HÉzs´)õrõrkafÒÄ`EëaÿüYìš?G'Ž_ý5!dÆŒ/¾ø¢F£yàó5%”ÌÛkô5Bˆ%÷gý•…k¸½ŽþòúËoBT]>­õAIWþñ>BHê3í¸Jmõrc⹤‰Á„¢¢×Ÿ—ø‰&@³åègSRRBCCß|óMWË«“…<ê5ú†÷ØtYð¨;ÕÑ_š_öKTÙ/QUç爯si±ñFÌö<kî„´º%M .ýéS±chžš8Z­ÖÊÊʰ°0švtÂêœÔÝ×zM÷›.ñîv§:–¼½¶ Rwjâýœ»™ |ùó˜íyn±ÝoßUºí³¤‰ÁÅßÿS욇&p4Mk4šäädžçÅn¸sñè·Ý–AÊCÇÝ©[vá¯1Ès/òUib‡ì—þR뢅„íÏk“&§Lo#vŒPOW¯^îÝ×J|;pqPŒ4ú«Ë„ܧé/®±×œ•41˜Ñø¼ð±ú¡‘b à ì›+E à—Á^·îÝ»w̘1K—.µ/D¼bÅŠùóçïÞ½{̘1G0`€=k$„Ì™3ç›o¾ùý÷ßY–½ÓÇ¿qãÆ3ÏîðººÀ––B(F¡êú™,È…nÔ2j/ÉÜQQQ9‹7\;u{çä~4¢î9:øu<= à8žžž_}õÕèÑ£‡~âĉ#GŽÔš5?~üùçŸOIIY·n]«V­êxà|’’B>|xDD„Ømm&DHKKK×­[·}ûv£ÑH™>}zß¾}Ç×®]»>úÈËËë¿Á¹E=íõ4!D°”Uþù<[váN5ÎXun¶m›’z¨»¯‘úõ;| }o+!Ä’—š1wá¹{«þØ—41˜øÊþãêq~çÔF#¹Ó˜ŸèF5cÆŒo¿ývöìÙƒ®±7++kΜ9»wïnÕªÕáLJ RÇ !ÉÉɃá÷ßïÕ«WBB‚¿¿¿ØÍmò=·Õj}ñÅ¿ÿþ{qãþþmö÷÷?vìØ”)SlÙ$Ô%ó¶Ï éÞû{ŠQÞ¥²`ÕUþþ´mzHí¯¬EÇÅßdÁ-b¶fÇlÏóžðJ­ þõRÒÄàä'¢Ì™7Å ™Áöðâ•+WjLó¼eË–öíÛŸ?þË/¿¼yófõ¬ñîÚ)•Ê¡C‡.[¶¬¬¬l×®]b·µ9ptâøå—_^¾|yàÀû÷ï_¶l™½|ëÖ­>úhFFƦM›Äî“æCê×Ïë‘¶$RÙq ¡îv¹«®òì3%‘{ÛZr÷ˆ~£ó}â͘íyáþ¸{×Ö!æÌ׆%M ÎzkŒØ‘4[«W¯>~üø+¯¼ræÌ™Õ«WÛËwïÞýôÓO3&11ñù矗H$u9pïÞ½R©ô§Ÿ~ª^Óv3/u4G'Žþù'Ã0~ø¡Rù?#a Ã,Z´H©T8p@ì>ižÜ"ŸöŽKõ›î—ªˆùÇÝ+ œ±êÂ˶$²lw SÊÂ[ÄnA£õLL÷¯ÇlÏó™òz­LÉm³ˆ—nûLì`𕤤¤ Ìš5kÕªUqqq .LKK#„‚ðÆo„……ÙnQÖýÀž={B6nÜX=Müî»ï!½{÷»¹Í£ŸqLHHˆŠŠªõ=µZ‘‘!vŸ4w­hýª¢õ«„3®`ÎüñnõÞpó#ÃÍlŸäS¤ÃdCÅnFÃó™øªÏÄW !ù«^¬<µëö ¥?}ZúÓ§„¿éïyŽ v¼MÇqÓ§O÷ññ±Ý\»vmÛ¶mããã9’˜˜Ø¦M›øøšë¨?~ôèÑw:Ð××÷í·ß^¼xq=FŒAQÔ¡C‡þüóϹsçvìØQì7ŽN5^¯¿Ó^­Vëîî.r—¸ŠQª:}¤êô!DàLúËoZr¹û!æÌ퉦ijãÑFÕùc±ÛÑÀ‚æ® š»¶òì¾ÒÍZòkY¼ø»ÅÅß-&íùȳþ3‹/@“´|ùò³gÏîÙ³Ç6¦ºlÙ²—^ziÆ AAA„„„„„„„GµlÙòÆw:ð…^xï½÷¢££×¬Y³nÝ:š¦Û´ióã?NžýôÓ¯¾úŠ––¢T*SSSyž7n\õW­›¨æý¯kÉiÃõrºÄû;Œ–)ÛÌ—‡Ž£äâLóÞ°ƒ(ÅßÓîýêîu^Z©Œ;#wƒ‘-ç„ëâ„0âØØ0âXwâ,9xìØ±?þ8==Ý^âçç7oÞ¼qãÆQ%vŸ<(—úä¿ö>Wqƒ-;_G1î1RßÞn-Ÿ£!މ³‘~ 3_Øœ~ýîu”†¾»Å1ÍlZ 8'\'„ı±!q¬;q–TÞ·os•I–¼½Æ¤/î¸òaµš\e’)ý;ÛGJª‘hÚ+;.fÔ-ÄnÐý‰X~ж‘ñ~–¼´Z뮜°-H# mñÉJæ&vÔõ$ÚZÕ„//¯nݺ‰ÝÐ`÷ElŒ"öUÛGV{Eé5®*õž Ö kÉ銣/?/ ¡h/ñî.v›ê*òó¿–ÀÎZ8Æ”t±Ö:–œää'£ !²ðÖÞã^ƪ†Ðä4zâ¸yófBÈC=d[•Üöñî¦N*v·@xuÒ 9lÿhJýÆ”þ-oȮ˱ÖüÖü¿§‚—úö¥•!ŠöoÓ’{¿£#®ðÿZq§ä‡Êþ»ºÖ:–¬Ä‚½Tð¯—h…»ÇÀ‰þñKÅŽ NýÇØØXBÈâÅ‹§L™bÿxwMý¡—}îᾘÒ6rºsÖ¶úLQŒ{¬ªÃ‰O:!âc[ڟ׿äžÕ<Nò~ì%YXŒ(AŠÏÒ9'\'„gžq¬»Fq|ùå— !:t°}œ?¾ØM§àý !DÕùÛG®â†áæ2kñiBêð/Aàt‰ºÓOÉx´–xv”‘ú÷»e5y=:ËëÑY„ÒmŸéNl·dÔZMwb›îÄ6B­t÷ÿÐcÀ±¨Iœ·ª›7—ýWHâªÒ 7?äõ¹\å}Îûóÿ(‰Z6Ñ­e¼íÅm§D1&œ-øâUkaæ=k*» ˜ù4(Zì…S]°ÃuqB÷5â(v°MFë‰cÃsÙ?LÊZpÄœ·Û’ós½Ï ñêJÉ4nQÏ8Õ¨dÎ?Ÿ4\>^—š>S^·-¥Ýl AqN¸.NÅ ¹ìo½8‰ãñãÇOœ81{ölBÈáÇwïÞ=bĈѣG‹Ý! Àeÿ09’`.Ñ_{ßZú‡`.©ÿYh™¢Åsÿ~RŸ^b7ˆTžÝ[¸fo¬¼wUFøâg'ŠòƒÂo¡sÂuqB¸(NÈeë8ò<ÿæ›oþòË/„C‡…‡‡Bvîܹ`ÁBH\\ÜòåË›úà.û‡I\Öâ“lÙ%SêÕ×û$”DEɼeÁ£1ÿ $J±Ú’³dŠáêou©I+ÔAó¾Tu,V¨¿…Î ×Å á¢8!—ý­wô<Ž?ÿüó/¿ü0wîÜÀÀ@[áèÑ£U*Õ²eËvïÞÝ¿ÿG}Tìn¦Gê×_ê×_û{‰%Ÿ)u£`ÑÖe.IÕ ¬Þ”ò¥)åK{!£iG+eþCä‘O:¦-¡‹~ü« 9I9‹'³ÚÂ;ÕäU¹Kÿš¾Šñô ~u½¢]oÇ .ÈÑ#ŽS¦L¹råÊ/¿üb›Ö±ºÌÌÌÑ£GwêÔé‡~»[ˆËþ+Ä™Ùþ½Îé-y{M©ÿ8ãžPâÙAò(£Ž–8h´¯òô/«ÿ!°–ºT–ú…¼¸BÙ¡Ÿcb« ¢8'\'„‹â„\ö·ÞÑ#ŽiiiQQQ·g„ˆˆˆ-Z¤¥¥ÝÿYê„ñh­ðh­hýš½„Õ%šÓ¾åÍÅÖ£÷u*¶ü[~­F!%óVļ$ñé!ÑthðàÝûŽuï;Ö¶]üŸjw­»ËÔEÖâìœÅMW$õ÷{f±ºÇˆÆéTp!ŽNÝÜÜL&ÓöšL&†aDîp%Ö’ÎËjšÒ¾3gÿ$˜µ¼©à¾Î&XÊ ×?¨QHI=$>)b^–xvl¨°ýžzÇï©w!‚Å”¿ê¥ª?½KekQVÞÇÏØ¶/ŸIó<žÖh= Í™£Ç:>|8!!¡M›65v%''geeõïïDS¥€kr‹žî=½z oȵ–œ2&®ºßT’"XuÖ‚ÃÖ‚ÃÕ )©†V¹EÏ¡$ªz‡JÉ܂߸÷_Aêu9>eºuþ.õ9mQцEBE{ŽàÞ'έeg‡õ-4iŽNÇøðá_|qéÒ¥}úô±—_¸pá­·ÞaìØ±b÷ @M´2D>Y>¹z¡µè7®*Õœ½ƒ«¸q¿'¬œµByþò‚j_#£$*‰gGEì\‰WçûRå¾ôÛ6oÐå,}ÚtëÜ]ƒàµ¿¬Óþ²ÎöIÙq€"¦›Ï”×Þ»Ðdˆ0ãÒ¥K7mÚD  “J¥YYYYYY„¸¸¸O?ýTì>yP.ûÀ¬3sØ£åÖ¢–¢ã¼>ë~š¼ JæE1nï9Œ{}³Î]6]ñáÙ:Ö§jyxÿYËå¹v6ž÷wN¸.NÅ ¹ìo½8€:tèÓO?ÍÈȰ—øúúÎ;w„ 4M‹Ý'Êeÿ093qÿÚe˯™³~$¬ÁZr†75Ôi)‰Š’zÈ‚FËÃ'0mêxTáWoUÝËUÜÇÄé´›J3ê¿© ¶[ð[èœp]œ.ŠrÙßz1—,++KOO7›ÍQQQM}Þo;—ýÃäÌœó¯]SÊKÁ!"ð¬öbƒž˜¢džòð)R¿¾ŒWZâq§zºßvTÞl¼yö¾Î.lç;uáƒÏ:îœp]œ.ŠrÙßz¬UÝð\ö“3kBír•©æôo9}&gÈâõ™ |vZ&Ǩ"ÖRÿAÕ÷ðfCÙ¶••g÷Z 2îë”&È£Ú{Žp¿±4¡‹âRp]œ.ŠrÙßúF9fóæÍ„‡zÈ6w£íãÝM:Uìn ãÞBÙñƒÛË­Å'-9? Ç–þÉóêyvÞbÎü©¶”Ä»›¼…BÙuŒ<ü FeLø£âèºc?Ýó”ºßvßv·ØöQâæùð4ïq/‰Ý‘Ðð}Ä166–²xñâ)S¦Ø?Þ]SOá]ö_!άÿ{-ýÓœû3xkÁ!Þ\Úð_@1£ ‚¦ò÷"k®ž«¼¿¿1O?ÿg—º÷sû®f|Qš4\'„‹â„\ö·¾ÑG_~ùeBH‡-¤1þ|±› ЬH|’øª^Îó­…Çxcž)ã{Áª«ÿœÀVR¥~ˆ"»m'1gp‚A`u‚9•¿ýh®¼8ÅóùÿÿQÝQѺ‡ç°©²ðÖb÷Ü7<ãØð\ö_!Î ÿ^¯ŽÓÝdµWM©8C.áë´øu=ðfp„×S*gÍçkª¤¤ri`¤ïäùê^ˆÝ+ðüÏâ„pQœËþÖ7úˆã Aƒ:vìøùçŸÛ>véÒåÉ'Ÿ|ýuL2 Æ£-ãÑV1åö]lñ)Sæœ!“X«8}ƃ| -§!´’¨ýjû{F –\ž+g!¥èÛò>ýk´R¡yøie›žn1ÝÄî'¨©ÑǪªª³gÏæææ†„„B ƒÕj»ÕP;‰_?µ_¿ZwYr÷ð†ÎaÎÞExóƒ~Ed¡4 ¥ !ÊÕw²\è¯ÖRÁœÊQyÄh¿g> å ±»ÀÕ5ú­êüã „(•JBˆÁ`H$2™ì.‡\ºtIìny .;|íÌp£§QñÆ|¶ôwSÆf^Ÿ)ðÁZÙøßéO+¤ŒG¬[ô Æ£5-÷»šüÏâ„pQœËþÖ7úˆã{ï½'‘HþüóO½^/vc QЊ YèxYèøZ÷ZòöqºDÞRnÉÙ!°†úÎ"ÞHxcî–v”xu±-Õ(õ$ z˜’jÄî$€æÀÑ/ÇÄÆÆNŸ>}áÂ^»Ì©¸ì¿Bœþ½î„ÒÓÓ£¢"ÙòëæôoÙò”DÅV\#¼ƒe¡•¡RŸ‡x‹VâÕY:žV†ŠÝÎÿ³8!\'䲿õ>âXóÏ>Û½{w±[ N‚’xvtYq§ÝÖ’³‚¹Äpó+Nw%k°…IyCŽÙC±3&®¬-4Fê×—–ûBIüúȦ$j±» @dŽ~«zË–-E 2Dì†@ õíE‘…Ôœ?¼ìç5Ö¼ôª?¶ÉBx"/JISÒ]ï^à¬E¿Ù6ÍÙ;j}Ô†’zJ¼»–rƽ•,ô1‰¦=%u»ÏÞª€¦ÇûÑ—!³?µ—TÙRqà;¶²Œ-αÒ "`OŠ" £iEƒf–„Örká1B«½dÎÚZkÚÍŸV l£n%|’vógÜcÄî?€zjôıOŸ>2dˆí­jBÈæÍ›·mÛv—Cšú[Õàxš¡Oh†>Q½Äœ}ËpéXéŽU|¢ŽBÎÖrÅY8-  –0ž”,ˆ& œ[ÞTÄ›Š!\eŠ%ÿ×;U£%‘(eþ%>=o‘øôD~ NoU@ó$‹•‡ÅzU½°ôÇOX]Y婼¡’Ø–LLçÍéü]Îè)Y-ÑPOd¡4­ <¹$„œpsösö޻գ$R¿~”Ôƒ^âÕU8¯õ€#á­ê†G½vtR'ÿa­¼Ÿï,v,ð¼“脜ä¢X‹²Ëv®¶ä¥šÓoð†z.ê-ñ¡¥” ‰;%¢ð%žú¡¤D`)©—,hãÙžp&©OOZ]—cäº@u¸(NoU;ˆ‹¼U½íJѶ+E/lO$„Pé®yº[À‹}10àt¤þa/|R£-É-Ùò‰áúiÞXU—l’-åÙÒ¿¶«þ¨½£’ªût¡dŒ4˜£èb"¼¥¬Öà©`ÕBÖ`Jûæ^u)‰g{B»"H¼ºÈ‡Ñ¦JB£@í=âhW^^~ýúõüüüààà¾}û–””øúúŠÝ ƒzíèÝ+ºËÞ‰<Ò‘ðïu'Ôä. W^\õç¯Úݬ¥¹‚¥Á>Z¡Vvè'ð¼{ÏQƒ' æRÎiÎÚÆé’h7V—Àë3Ånº=V©Ô»;­ŠäMŒ{+yÈ£´"’y‹Vó×äþgq.;â(BâXZZºnݺíÛ·FBˆíÎuÿþýÛµk÷ÑGyyy‰Ý'꞉c n’§»Fù¸½60\ìØ›-üµë„šÍE1Ü8£ýåKãͳ¼±A×Z¤h· M«: ö=“qÿŸ¿K…µøoÌx«%÷gÞX@(Ú6Ðè(ŠPF&ñé%XËh·`iÀP‰¦5²Ìúi6ÿ³4'HÄjµ>õÔS—/_èÓ§ÏÎ;m‰ã„ ®_¿¹k×.…B!v·<ØØØ#\yñ¿I)%Æ„Âú¼DQ$Ú[ñÑ#-FµñVËý8A³„¿vPó¾(Ö¢lã­óe;VY 2¶ç £ÝT´Ò]Ý}¸û€‰ŠV #½KeÞTÄU%[r~æªÒiE «½Ârç^ÓQã& D1*3J4m¤Ã)¹/D“ÒÜÿgi¢8:È_|±zõê®ZµJ©TÚß•á8î­·ÞúùçŸçÍ›÷ /ˆÝ-äö?LIņÝ7J–ÎÐÙzŸ¶•¯B£Nîì?o`M‰üè}“ƒ¿vk^kAFÕ¹ƒå7±ÚÁÔP+wWÃHT*Û÷£dnƒ§e÷ñïp¾*•3dæ&kŒÇyc.%÷å ¹¼©@ì>«E«£$êœ1‡V„ÈCÇÑŠ J¢j®s¹æÿ,N‰£ƒL›6íüùó¿ýö›í‰Æê/YWUUõïß?**ê¿ÿý¯ØÝò@êò‡iÑþ´oÏåg—?ècR!y¨Fã§|e@X·P,YqGøk× á¢TÇ––ܤ?·Ÿ7­ñŒ»—,¸%¡)e§Aš¡OH¼j­VÇëÂj/±å×(Zf->Éj¯ŠœI0—Þó@±ÐŠ B!”Ä«³Ä§§`)cÔÑRß^”Ü_ìÐî ÿ³8!—M}4!!!**ªÖ÷`ÔjutttFF†Ø}âKFF/ù÷Ô9å¦ÃÉÚÿ\(8’¬½¯óäV˜s+Ìd龿ð?£ažr†¦º†xÌÖ7J#vsà$Þ¾S^÷òzr³Vø¾êÂ!J"{ÀÇ(¹J­ñÖ9Bˆ1áÏÒk¾HNIdn1]Õ½áËu¼ß3´Úó{u‘xu!„È#¦Üó«ÙŠœö2‘¨øª4KÞÞ\FI5¼!Û‘wÌyc¾mÃb̳äí«ÛAŸIýúZ"°‰Gk‰ÿ J¢dÔ-(‰Êa‘8G'Žæ.3kµZwwW6 õt›Ñ#hF ê…ÿ<”q$E›SnJ)1Þï mc™e¦ÿ^+ª±KÆP¡žnÿèÚ6@Õ'R£’1b·îˆb¤ž£gzŽžyû.K^jÕï{x‹©òÔ.kჾy-°ãͳƛg !)ÿ]^c¯,¼`6È#Úx=òœ,¢ s¯´²‰¦DÓζ­h=ïµ9³µìo.%¼Éœµ7ÑroÞTÄó¯ŸïÔ+g´²}° )_ÞóZî'°U”D- EË}xS£Š’ ¡Ý|)‰+þÀA3ãèımÛ¶¸zõjÇŽkìJHHÈÍÍ2dˆØ}â,ÞùÎðÈê%z ÷ё̟¯›Y>ùþ³I '¤•çîJ®uo—wBâé&y¬ƒo\[_o¥ô>O" ná=áBˆïoÖØÅ–ä™3o–íZcÉIx–×?èÛÖ–¬Bˆµ0³êÏý·ï¥$Re§A”T&õ uï3Ö­U—ú2F.õëgÛ”‡O®Ëlùu›ØÒsÖÒ³o¡[z^`«Dyˆ7BÎhNßôwéÞã0JB+CK9%QIý2êhޘǨ"¥ƒšÄÍtpŽ~ÆñôéÓÏ>ûlXXتU«ÚµkgÆñÆóæÍËÈÈøüóÏGŒ!v·<Ç?÷p9¯ré¡Ì³Y,'TZõ»Zø*zGhŠ«,]Bݧwjí¯tdKë O9!\Q[qì'Ãå´\a¸v’-sÄ»/”T¦ì8@Ñú!ÁbRuèÖº‡È½À³¼)ÏZp„­J¥Áœ.ÑZr†p&BIk…ȱÝ?ÚÍŸ"¼Ä£Ä»oÌ¥Ý%~}U$íðÀ§‡Ú¹ì3Ž"Ìãøé§Ÿ~õÕW„èèè´´´¥R™ššÊóü¸qã–-[&vŸ<(çùÃt5¿êë³yYZSA¥å,ÇMðí£ðWKV¾Czj×_•¬{˜È7h£8!\'d-ÊξtÆíÊSÊ"ð¬¶ÐA_ÌH%ž¾ƒ'Ó wY`¤ºç(±{¢¼!‹7 V9÷Þͨ¢xcžµìáxº%G¢¤îo¡e>R¿¾‚µ’P´Ä³£Ä«+!<íÞ’–ùˆ óržßzgå˜cÇŽ}üñÇéééö??¿yóæ7ŽjúÍ4‰?LWó«2ËLs+×ÿž[\eåxq&u“ÐT§`uç÷Œ2c+?å“]¢¼¡yƒr'„‹âœîr]¬EÙUg÷BŒ‰çô—Ž ÖFY/±vEÉÜ”íû*Z?Ä›ôÊý”íûŠÝUu›K8íeÞZA±äíå y”Ü‹°z¶âx±£{`Íx´¦h¹`ÑRŠ@YàÄ3Z&ñìÀ¸ÇP2O±ãkDMâ·¾1ˆ¶ä !D«Õ¦¥¥Y,–èè耀æ3œÞ þ0TZ¶\,H*1r¼ð߫ťgù÷´”¡º†¸ó‚Àñ¤G¸û°oËÇú©º…ªï>·%r'„‹âœäº®Ÿªü}/WVÈ› †ë§ Ï98xJ*W?4‚VzÐ2…²Se‡þ”´áÿ!ê‚©ÈZv7åSuyÆA7.‡¢¥„¢ÙŠ›D¨ÿ”ÀÎ…–¥¹Ä§Å(xSí$ Iˆ@h™DÓ–V8ïÚ¼Íà·¾~DK 233­Vkttt›6m‚ƒƒÅî†á ˜8^Øs³ôDªÖS!¹˜Sy0©Ìdiвn$4y(\£–3ù:K »lR'Nä Ý)XÝ6På&¡ÅÐ!qtNx]xΜ•X¾ÿ[SÚ5ÆÃÛœvÓ‰0ï#­p—GµçÊ‹¥ÁQƒ—‡·‘G?øiÕý]že+®q•)”ÔƒÓÝ´Ÿ!œ™róe˯ –²æ0Ìù¿(©§Àé)ÆMêÛ’(8C.íæ' EE12Æ=†V†5Æ÷ºÂo}­DHµZíêÕ«üñGŽûû£ ÃLž ½…3X¸P[çuR±‘òP¸{+_啼*/¥t@´ÆW%-ª²úª¤­ý•îr‰ÔIjú-t)Í㺘Үé/²M6Tõǯ\¥Ö9nÑR´Ê]Ù¾¯À²ŒÒ]Ù±¿¢MO©_aî1cnó¸(u$X*x«–-ú3d3ªÞTdÉ? XËie8oÈáM…Γz"qt„3fœ={öرcAAA5v4衇úî»ïÄî–‚ÄÑ Õøk× …Uæã)å©eÆy±Þ²ír‘ÖÈFû(2µ¦Œ2£S?°éÜÜåŒÞÂ1Õ&@EQ$Kk’Kè-<+L\Îä.ë噩5,| ÌÒ§uHR±Q!¡:»¸ËJõBé妔Ѹï/ÊQX‹þÊI³š3oVžÜÉ–QR7®¢Xì°ì(J*SuÄxTæfzÆtrï3Vâȸ{?ø©›=Á¢å­lñ)Î˨Âxs©%ÿWÁRÁ¨¢8cÿרçƒBâè½zõÒh4¨uï˜1cŠŠŠþüóO±»å qtBô[Xf°^È©L+5yÈË Öÿ^-.1X;ªÒËLç²uNðt“UYXä¡NCÆÐR†2Z9 MEù(ôf®ÜÈú¨¤±þÊÌ2“ÑʵòS¶ðQœÏ®dhªO”ÆO%ý#K§ÒÃc¼Ý$ôÅÜJ¥”íÉòBžÎ¬‘KÚ©,o刷Bâï.ch¢”6í‡m\(q¬3¶4¿êü!S⟄¦yC¥þòq‡NETG%õ •Gw´çH}ƒÕ½‘…´¢jY®fý Ö V{‰7äPrÁRaÉßÇ›µŒ{+Þ˜sýÊù>/¦‰ 88P„ß~û­Ö½C‡eYöĉbwËAâ脚ÐoaQ•%»Üì&¡ó*̧ÒË‹õÖ¶ªëú‹9• MÂ<Ý.äTUYÔ2†RXiAN všâx¦)µÔ`áõÎÃM¢‘çëÌf–÷RºK¯æWIhªk¨»»\r.K'e¨¡­¼ŠœÍÒIhjXŒw^QY¾EbË‹ª,ù:‹¿»´C :CkÒ[¸hE¤—[r‰‘!Ö_å­d—›¥4ÕÒOá&a*Œ¬BFû(¥õWŽ.v—8šñÖyÁb2%_¬:w€«*§åJKN’À:ËŒf5H"(™\°˜e!-U݇ “Ä7DѺ‡D¤w€š—ý­wôZÕmÚ´9vìØ¥K—ºt©¹˜éõë×srr $vŸˆÉ_-óWË!íUÃcñžT¾Î¢3³D —óªòufo¥TBSûJt&®C°ÚÂòûJ V¾S°ªDo½’WÅrB ‡¬Do­2;zr>¨#ÛØ6Ç ùº¿–-3XËþÖU7þ}Á½7ÿž'±È`ß>“ñ÷‚{Û®‰Ý Ñ04%¥)3ËB¼•R C•TY)Š„{¹±¼P ³04‰õWV¹b½ÅÃMÒÒG‘Unª4q!žò0ûµü[»(•Rú‡·Ž¡I¿HO™„>QÎPÔà–^–OÌ,h£»Ù%@Æj‹Z&ïó´hµ—¢yPHG'Ô/Љåu&–¡(3ǧ”+Ml¨§[¹‘½ž_edùÖþÊ ­)±Ð Ò-}s*s*ÌÁò@Ù±­Á·öW*¤ô±”r+ÇwQ[9á,Ç 1~J™Ë,3 „ø«e&Voæ(Šˆˆk{AF¾‹9™øÖÖ¬Á†‹>\e1£igÉðä+›ÖÓfJÊF ¨dièUYt$[PÄxWtÊ”š(i¶Dä5ç8:ˆ ;wî\µjUaa¡½ÐÏÏïÕW_7nM7ùW)‘8:¡¦˜£4{¸(ΩÖë"ÄÊñz+ga)CWY*Lœ\B+¤tB¡Áhå‚52 M_È©4³|‡ µÞÂɨàx¡{˜{‰Þz1§’¡¨.¡î)%†äb£‡ÓÚ_u!§²¸Êáåà.;–¢µòBû@µ›„>™¦eyÒ=Ìå…?³t¼ ´TëLlr‰‘"$ÒÛ­Ô`-Ñ[Ý$´§BR¢·šY^ÆÐ M,ÍnÒWR¶l¨ñb k^®Ä7”-b¸¨L&J¦áõbGWO<¡u´òм¥¯'„\‘·¸,oåÉUåHü®Ê[TЪ>>••••••÷¬YQQQVV¦ÑhÄî¨E£'Žaaa‚ \½zõž5/_¾L »O ž8Ž=šòÙgŸ™Íw›É`0|üñÇ„‘#ïo.PpŒFOãâ₃ƒ¯_¿þÆo”——×Z§¤¤dÞ¼y©©©¾¾¾5f'Ñ耫Tª•+WΜ9sÿþý¿ýöÛ“O>Ù£GÐÐPÿââ⬬¬sçÎýðÃF£Q.—úé§xÆÀ99bÉÁÎ;ÿôÓO¯¿þzBBÂ×_ýõ×_ß^'22ò“O>éÔ©“صsDâHiÕªÕÎ;9²oß¾›7oæçç›L&©T3räÈÑ£G3 #vo@íBXž˜y^(Š"Á j)Å ¤ÀÈ[xÁß¶r$ÛÀq‚¢dt!ÇÈI(¢d Œ|‰™w—R~r:¹’Ó³| ã.¥®jYŽ–î4CQW´,/¶ÆÂ“å,'6¦Â"dè9†"-Ü™|_læ=¤”¿“¡g ¬à+§Ý¥tr%Ë $HAK(*CÏB‚4'|#'ÄWN›y¡Â*P„¨$”™,<¡)BS„åëß±ëÏŠ}AÄá Ä‘BQÔ°aÆ fû¨ÓéÜÝÝ)Š» ™3óD+OÊ-¼UTºÒ*”šyŠOUhâËÌ‚JB42:µ’Õ³‚¿£’PW´V+O¢Õ C‘ËZÖÊ m=%&N¸Qβiã!)5óYzNÆPaJ&ÏÈ•™yµ”ö”QyÞÄ )åÆP¹N D#£”[x)MxpÂ}µÀ“dhÅîÅFt¶øïí«Z«};¥’µo§Wq¶"I©ük»ÜÂò×vêÿB2ªþÞ.4ý• „TZÿêw^ üý]ø‹ãÇ<<<Än;€‹âbå­E0q‚œ¡xAH¯âÌœ¤`2 ’ÓiF« D«%Z Ÿ¢ã!ÑîL¶žÏ3rj)àF'ë¸ +ï+§ÕR*¡‚夠)BeT±!>rÚÊ“23/"£)+/4éèSEo_/ÿ;ɬ–šdëÿÚÖY¹<Ã_…¦j¹a™ùï¡-ëŒrˆN´Ä 1±B©Eг¼JB•™…<#'â+§3ª¸ï.¡SÏ8!ÀÎ5pYzž¡ˆ¿¨cË̼FF«%ÔµrÖÊ ¾rš’­çxBä4eæ±’™›äïñªbÓßÙU¦þï¬Ë|Ÿ·0Á5ÉhЦˆ™E¼e4Ë U¬ £)7º’ ¬à!¥üÜhÛ£‡A ÆKF%Wr !­<C%ê8†"½$D ·*9†"¼$zVÈ5ðn i£‘”˜ør‹à%§"TL¶7sB¨’ö‘3iU,M‘(£”ЙzNJ“h5CST‘“ÑTˆ’æ¢g)M|ä4'"CÜŠ&MÝès:Nll,¹uKì(D€Äê‰åI©…׳MHr%WbæÔZF“?K¬zNSÒœ@.•±^V0U,ŸoäyДýÑ¢F}lëïT¬²Ú`˜i™s£±]!)ÅP”ÎÊS U2fN(·n ‰PKÊÌ|+øÊé%Yű‰P1~nôÍ –¡H;O‰’¡uœŒ"¼%4ER+9 EÚyJÍœ µJ W1U¬ÀòÄCF{I)+Hiâ!¥e ¡%£ ídß§§§GEE‰!„ôö“Ú·;zýB´tÇë­®‰#@³eæ„*VH«âŠM¼¿­çu,/@“¬cóœC¹1TŽcyÒàùÔÍò¿·oYÿiíËä)£Šª°ò4!‘j‰•JͼCÅxHÊ̼Î*ø»Ñ‘j&Kϱ‰RÓþr&¹’•ÑTk £’ЙzNÁP1 CQZ ïÆPÁ :';+"<\ÁÐòæ’ ;€f‰#€³0pB¥U¸YΙø]dâ/”Z«X!\Åä¸|G%¡!ž¬·¿´ˆ$®&†¢T¢gŠ"A Æ]Jeë9 Euô’Hi*µ’•ÑT7©•ò¼ZBÚ{IõVÁÀ ¾r:LÅXAJo9­–RRŠ’8ã9¹}«§¯´Zù_y¢Ž66vÍš5aaaöòÜÜÜ9sæÜ¼ys÷îÝ?ü°ØÝB!Û¶mÛºukJJŠR©8pà믿îåå%vPÍM™…¿\ÆÒɨâNZt¬@7… S(ŠÈhª½§„RÅ ¡J¦›·ÄÂ)ÕÒ]â)CÂÍ“£_ŽY·n]iié–-[ªg„Ï?ÿ|ذa,))ñõõ·_V®\¹~ýz•JÕ£GÌÌÌ;v$''oÚ´I¡PˆX’oäÎY L!ÔÙb‹Îê\ËŽQ„Ðñ”Ñí<%•VAF“Ž^’–îhµoZÜÎщã¥K—‚ƒƒ#""nß‘™™)ˆ`ܺukÆ Û·o÷÷÷'„,]ºtÓ¦MŸ~úé»ï¾+nlÎ#IÇž/µ2•ZÉž/µ²bg…>rÚÀ îRª·Ÿ,DIWZ…ÓÑKâÆPïa4G'ŽZ­–çyA(ª–Ûy:ÎËËËÏÏOÜNÙºu+Ïósçεe„ üüóÏ¿þúëÛo¿M7§%“î*­Š+4òG Ì ¬U F‡ç†j)ÅñD#£ʤ4å!¡:xIƒ®ÒÿÎÆÑ‰cûöíO:uüøñÁƒרuêÔ)­VÛ¯_?±û„œ;wަéAƒÙK†0`ÀîÝ»/^¼Ø½{w±lH×´ìéb M‘«Z6«Ú‚¹J-¥bÜ%Z ¦d†Ê"ÔŒé €³stâ8zôèS§N½ñÆK–,9r¤}ÜñàÁƒ‹-²U·GAHIIñööööö®^CÉÎÎn¢‰ãé"ËÑ‹ž² \åƒÍG}w4E:yIÕJÆ®ÞÒ>RÛÍbhê8N˜0áÔ©Sûöí›;w®ŸŸ_tt4EQiiiEEE„¸¸¸ &ˆÛ#ƒã8OOÏå†RVVV—“ÄÆÆÖ(Ù¿¿câ/céƒné&ÆÈS\ÃãI(!LÆ™x*DÆ ô0‡È¸»¥…z’¯wL»ï!''Gì &\ç„ëâ„pQD7räH±Cp",9¸bÅŠ>}úüë_ÿ*.....¶½üòËãÆ»CˆÑh$„¨TªåjµšRQQQ—“ܺuË¡&W²{rÌfN¸PÆšt )MZ¹KÈ”jP€Ìmq¼ã„pQœ®‹ÂE×í?ë·¹Gš¦'Mš4qâÄÂÂÂôôt‰D)ú 1vžžžE †åUUUäÿÇEq´À’^ÅíÍ5Õ}í“»ó‘ÓŠ´ÖHÆ…»E«1ý ܃‰£MEEEJJJ~~~pp°ŸŸŸ3ÌÝøWH$æö‘ENG±¿gÝØ.”Z7¦ó|½WI¶ RÐ4Euô’LŠpóÅ;(P_"$Ž¥¥¥ëÖ­Û¾}»í¦ðôéÓûöí;nܸvíÚ}ôÑGΰ:K@@@JJŠN§óð𰦧§Ûv5Æ7¦W±KÙE–Œªz¯Y#¥¢Ü%“"ä<¥Ží3hþ8Z­Ö_|ñòåË#GŽÜ¹s§­ÜßßÿرcS¦LÙµk—諳 :ôÖ­['Ož|ä‘Gl%‚ œ8qÂËË«K—. ò7ÊÙoRù®ª¾“#ʪ›·d|¸[Œ‡hÃÆàRs|ùå——/_8pàªU«”J¥=qܺuë[o½õóÏ?oÚ´é…^·S&Mš´~ýú/¾øbàÀ¶wb6lØPRR/•Ös$¯Â*lJ5)°ÔïÎsiKwÉà@Y ¦¿‘8:qüóÏ?†ùðÕJeõr†a-ZtèСˆž8¿þúëüñرcû÷™yöìÙvíÚ=÷Üs÷רëO™¦d{¿¨%T7éó­”îRÌ€ÎÂщcBBBTTT­ïÁ¨Õêèè茌 ±û„BfΜéçç·k×®}ûö=õÔSsçε>Þž¢—î{L[÷ï’ÓÔÐ Y´;óp\ìvÜ‘£GF£×ßqJh­Vëîî.r—ü¿¸¸¸¸¸¸û=J%¡¤>w¯C2inô‹±Ê.ÞxÙš*G'Ž“'O>xðàk¯½¶jÕªvíÚÙËoܸ1oÞÔ•‰c—.]Ú·o¿sçÎiÓ¦•””ˆÝP'"$Ž>>>›7o5jÔ¥K—&NœxãÆ ±;îM„Ä‘âææ¶råÊ9sæL:uÿþýb÷܃8‰#!„¢¨—_~yåÊ•‚ Ì;÷óÏ?AìÞ€;gG»Q£F…‡‡Ïš5kÍš5ÉÉÉF£Qì€Ú‰6âh×®]»;v´oßþàÁƒ'Ož;¨£ÇZ‰ñ÷÷ß¼yóèÑ£Åî ¸#Gߪþõ×_k-·½.óØc™L&±ûj!ò3Ž5 8Pì vž8nÞ¼™òÐCµjÕÊþñî¦N*v·@Mž8.Y²„²xñb[âhûxwHœP£'Ž/¿ü2!¤C‡¶óçÏ»ÉPž8Ι3§úÇçž{Nì&@}ˆ?#4 z9æ¾àG'ä —cî G'Ôè‰ãܹsk”$$$8p€a˜~ýúEFF2 “žž~òäI–eƒ‚‚.\(vŸ@-=qœ={võYYYßÿ}llìš5kÂÂÂìå¹¹¹sæÌ¹yóæîÝ»~øa±»\ŽYo1êLÙ—óK2ËäJÏñ7%+Ìž¡c¹±0¹Dà[Í)ŠYb+G¯³nݺÒÒÒ-[¶TÏ !!!!Ÿþù°aÑ^U%ú¼›E<Ç×ûÌÚÜ ±ç,8^ºt)888""âö]aaa™™™‚ ˆÝ-àhú2ƒ^k4V˜nI©È×ùFzéŠõɧÒ-«\%Ó—êqÎâô2±›Õ¬8:qÔjµ<Ï ‚@QÔí{u:———ŸŸŸØÝõÁZؼ„"ŠPº¢ÊkûoUé}#½ŠÓJ ’Kx–·ßê½ïÓšY±[„8>qlß¾ý©S§Ž?>xðà»N:¥Õjûõë'vŸ)H*æY¾0¥4ùdš^kô òȹ–¯Í­³÷qÛ7çZ¾ØM©-¡^Ș°AîÅi¥jU»1nj¹ÕÄúDx´ò¥™;Nw»˜¼*v#DàèÄqôèѧNzã7–,Y2räHû¸ãÁƒ-Zd« vŸ4+U¥†‚¤â¬‹9FY¦Þ:™®+¬”È%­±ÞC€¢£(Ê7ÊËÝO]–]®ôtk?"Vê&µ,>^áƒUÞJ±lž8N˜0áÔ©Sûöí›;w®ŸŸ_tt4EQiiiEEE„¸¸¸ &ˆÝ'Ϋ4«¼"_gÖ[®ìI¨(¨Tû(õZcÞÍÂûMÍUq"‘Kx–—ºIZôŽÊ½Öä¦i=¨ÅÐî~*¿(oqÃZ9:q$„¬X±¢OŸ>ÿú×¿Š‹‹‹‹‹m…AAA/¿üò¸qãÄî‡*N+;Z SHJ3µ×&éK J/EYv9g­ÿ[ÀŽ$WÉ8–Wz*Zõ°šXBQaÃ:KäR¿(/±£ƒ&BâHÓô¤I“&NœXXX˜žž.‘H"##ñB 4Y—ò nKäLò©Œ¼›„«™«ûKÁz­Ññ1S¡hÚ3Ø=´}PEQ•ÒÓ-¦_T@+_ZBµöw|<àœ8æääð<NQT````` Ø=po…)¥ùFùÒÎå:¥§¢"_WUZŸ b@®’y…h*Kôjoe‡Ñ±šw³ÁÐÊ/´Cà]^ø¸'^Ž1›Í§OŸÆß :}™¡8­ì꾄â´2uîõmžŽÔáYAmŽCg„f¤td÷0¹RjÖ[ü¢}Úm)w—û·ô£‘‚c9:qlÕªÕõëד’’8@ãIÿ3»$CËZÙ«{´¹Cĸÿ[+Š"C{…h"»…èËŒêØÑ±~ÚÛ’ž%vÔ„8>q|÷Ýwg̘±nݺ®]»º¹¹‰Ý|hb* *¯ýš˜w³Pé¥(¸Uœ{½€çœbBFÊDt õ‹ô*/ÐùGûtÙZäîæ.;.€†äèÄÑßßÅŠ‹-;vìØ±cÃÃÃ=<•ÁšY«‰ÍO,7Š"Áí%r†$¬cpìÀ(7… L®Ëщ£}Á˜’’’Õ«W×ZçÖ­[âv 48mnEIºöÏŸ.—fjÝÜå…É%¬…%©›„¢Ð(Ú mÔÚ³p]Cü¢}Äî!€&ÀÑ‰ãØ±cÅn24¼¢”’ÄciɧӭfÖ¤3isuŽ¢Hh‡ …‡Çòa‚Úk妑ºIÅî€æÃщãòåËÅn2Ü·²ìòs[¯æÞ(Px¸åÞ(¨,Ö;8FJ‡v ïb(7Ft i3¤¥LŒÀÑD˜ü.Þ|óÍsçÎ=zTì@\‹ÕÌ^ûõVqZiIAé–ÓûÌzÇ-FGÑ#¡Õ>Ê.µ—«dÞašØ-Ä£V«=räHfffr£ÑxèÐ!†aÄî€fÈTi.N+˼”sñ¿×uEUVë˜ï¥%´›»¼Ý°V¡‚ 3 Z®–‰ÝõgaUæ2M‹N¡éèı°°ð‰'žÈÍͽS…©S§ŠÜ%MVÚY×ܲ¬Ú<]ÎÕ||#ÍÐþªÎ¶“Ê%A­ý[ôŽ»þ‡•3,ÚŒ’+ÆBOe`YUNJñ&«ÞÏ=² "¹TŸCS4Eh£õþžÊò²‹N)èèÄqãÆ¹¹¹=zôˆ‹‹Û»wïü±hÑ"…B‘˜˜øŸÿügêÔ©o¿ý¶Ø}à¼x–ϽQxëDêµý·Œ¦Æ¾§LQ$´SpX‡@‹‘mÑ3¼íðVbw4¼ÀëÒKõ9nRu•¹ìfÞñ*si€GËâÊÌ\í NàRw©ˆãhÔÏø`‰šVŸ'vëC!õJÜLÖ*¹DÙÂÿ!³µÊÂýÜ##}»èÍÚ×^ø€L;D1ˆðr ]mIöðððôôtÛ6Ã0±±±W¯^»OXÖ•¼“ÿþ3ïf!g妯øŠö¬™ íÔë‰Îþ-}Ån18ˆÑ¢3Y«ªÌ¥ ù¿éŒE¾î‘Å•©Åç,¬ÑCá[¦Ïµ°´B·ÁR!vëJBË2“µRÂÈ[ù÷â®ÊTæ¥ Ž èmf 2Æ-@ÓÒGæ&U7È×is‹Ýbq8:q ÌÈÈÐëõ*•Švþüyû^Š¢rrrÄî€zʸsâ˳Iѵ1–EQû(»>Ö^áéÖ¢wd@K¬tÒ䱜¥Ò\šZôG©>×KT\™ñ×8Ÿ"°¸*CoÖþ]õâ}ŸÜ`)»}uA1´$ijL¢(7ä+ežíC†°¼ÅÊYÝ£C¼ÛI7Â_ì áoŽN‡ öå—_Ο?þüù-Z´èÞ½ûž={N:Õ¯_¿’’’ .„„„ˆÝ'÷ŸXtá¿×ޤu&ÎÚ  RD®”ùFy xö¡ 6š@w±Û wc°è *’ZZ\™‘Tø»Þ¬õV…äho”TeQÅr^¨Ï¿´G¼_oE«åÞFk¥”‘Çô¡)¦ÒT¬Q¶ À^Î(ýÝ£¼TÁb‡ Âщã´iÓ8pôèQAÖ¯_?`À‰D2gΜ®]»&&& †Ñ£G‹Ý'1V˜RÏfÿòlYV9Ç6d‚èâA3tpÛ€ÞOu i vC]šÁRžUv­¤*[%Ód”\ÊÖÞ¤("c¹å õ¸Ï›Z,v{îJ&Qªd½¥B&Q´ @1X*|ÝÃ[ù÷&Dp—ûøkZP„;Lp^ŽN}}}7oÞ¼cÇ–e !!!!ï¼óÎ|púôiBÈСCgΜ)vŸ€+*ÉÐ]{:ób®¹ÊÒ€“cµö÷P{‡{>4©£w¸—Ø­l¶x+ªLÏ*½j´ê¤´üFÞq­!W!󰲦¢Ê Rß7yJîe¶ê¥·ØÀ~‚À›¬Uþî‘­zs<ë¡ð ÔÄ0Ñ€Æ%ÂË1¾¾¾/¼ð‚ýãO<wíÚµ€€€èèh±;š¿ìËy'7ž+ÍÒ–¤kül6­|Ã:ÉU²î;z‡{ŠÝÄ&¬ "9¯<‘å­,o¹”µOo.Ó(+M%%U™÷}.}î}Ò¸(†–„y·ÁÂüÝ£Zô2Y+Ur¯0ïöÞÊP†®ýG9==s$“pеªÕjuï޽Ŏš¡Ì‹¹ç¶]µ-I¿¥ | ;)<ÜbFÓ ÕilÛÈ®¡b·Ïy±<›£½Ær½¹üRÖ>©Ð[Z\™YT™&÷wÓ¿Ìiò?)ã&eäÏz©‚£}»éL%nRU´o÷@MKŠ¢ƒ41bÐè=qܼyóý‚U X {í×Äì+ùwÝh1¼s°ÊGÝ#ì¡)ÅnœÈôfmIUvbþo%U™^ªì²kyå·Â[XSÝïç•ß»„BSoU°‰ÕKhi¤o×`M¬Öë­ ‰ ì§QÈ¥*±pjž8.Y²ä~Aâ÷T–]~òßçnI6UšðTM…wVxºuß!¦_ó¿!X\™Y¤K%•Xp*O›(¡¥¼Àå”ßü{ ðþg~q<¹Då¥ ®4•(¥šö¡C¼”ÁÆ"?÷ˆ–~=Õn˜¨ ±4zâ8wîÜ% `¦_¿~‘‘‘ ä§§Ÿ]"|:)eÇ.ËщcûöíO:uüøñÁƒרuêÔ)­VÛ¯_?±û꯲Xýà­#«O×{ñ•½ÂUÞÊA/ôò‰h˜uVÌVC¹1ïFÞ±¬ÒkÅXX}ZÉ…ûJ°Q1´TBËZáÓ)Ò·s¥±$Ø36& ÞgãèÄqôèѧNzã7–,Y2räHû¸ãÁƒ-Zd« vŸÀ}H<žzóprÚÙ¬ÊzÝz–)¤i= ¾§&Ðý~ͯHJ+>/cy·®ç1X*xs’ŒP&Qò«zt á¡ð³pÆ϶­ü{I™Ø¡ÔŸ£Ç &œ:ujß¾}sçÎõóó‹ŽŽ¦(*--­¨¨ˆ7a±ûî&å÷ÌýË—fjëñʳÚWÑ5´eãÚßåYº caJÑ· ÎXX=/ðiÅçYÞ"v» !„¦µ›O›Àœ`UÊ4­ü{‡y·w“ªÅŽ ÀADXrpÅŠ}úôù׿þU\\\\\l+ zùå—Ç'v‡@My7 Owþú¤z«ðpñÚ€£ZKd !D«ÏÕ ´†ôµÇ>)®ÌV'{WfÖ}é‘Fâ© òŒ©0ùª#ºGŽõV‡ùªÂü´Í‰#MÓ“&Mš8qbaaazzºD"‰ŒŒÄ 1Î#í¬”Ó™çw\5ëïcœ-¦#Ëîn’®ùUò<žç,œÑLÈO솟v×~ˆÑZÞx­ðPø³œÅKÔ5"NÊȼT!-ý{R„zð3¸,GŠ¢Åî ¬…Û±ð×Â[Å¥ÙåµVàƒJ…è|ÂS‚·Žk—AdÖ;%`-ÿgmÄh=•AáÞtÆâMt—°Ñ-²Æ}ÛlDHýõ×M›6eddÜi¾Æ³gÏŠÜ+.àÒ/7~ªªDO¤,ß6“(#­)~l¶àYEhîKh¡(•Ì«{dœBê¡’{ÇöQÊ<Åî'ø›£ÇÇÛW¯f,?ÐèŠ+3ò£(’_–z%k?GW»û<»þ§½/ AàUr¯!Ã"}:«ä^šV˜h Éqtâøõ×_Bf̘ñâ‹/j4˜«àA•Ve'þÎòÖ+9 *’YÞr·ùha)>u˜§2ȃ5±=¢óQ…*0 5@3åèÄ1%%%44ôÍ7ߤiçZLÀ9±<›WžP¤K=²EkÈ'„˜¬õ_Ðù~)¤îá>õ–Š –]ÃãB¼ZË$J±»DãÐÄÑjµVVV¶oßY#€ÁRq#ïÈͼ&k•Þ¬-ªLwØW{´ñT‚í×­Sè…¿ØNÍ¡‰#MÓ&99™çyäŽà:Š+3oä(’Vt.µnæw/»IDATø/pŽøV–¡ó|……*òd.¶¢ó|Õw‡µÔBìþ€¦Ê¡‰#Ã0ñññ+V¬X¹råk¯½&vÛŒÞR^X‘r&åÇÜòBÛ=åÆÅÑT…ŠãG_iAk=ˆ®–›ÈÁmý'.í³¨a}'ÂZÕÙÙÙ6l8{öì¨Q£BCCe²š+·4Hìn¨EbÁ©Äü -MÈÿ­LŸÛØ_GSŒZîÝ=j\þ!Kñ5}åyE]ŽRhÜ"º†<±r¬Ø½Í£Ç¡C‡Ú6®^½zõêÕZëܺuKÜNW–]vý·¤ïrÊo2”´¤*³Q¿K!óh4¢˜`ÏØÎ¡£”ò¿_F>³éB±”¬Ky§‰ÉV÷.çñÓDv{ô½ábw4sŽNÇŽÅ@ˆŒ'ü•¬ýzsÙ¹ŒŸ‹+Óõ‰Ã,g öŒíÛjj°¦µLâv—ʹ7 Nþû\ÂÑ”ºœÙ¿¥OT÷ÐÑ †8¸÷À•9:q\¾|¹ØMWq-çÐõ¼£4ŤŸ«0‘‹ò-4Å„ywhØ"TǰÞªû=ÃÞŽ^Ù“P—U¡½C5‘=0²¢m­êZ½ùæ›çÎ;zô¨Ø@“Qe.û=õ§Ä‚S<ÏæW$5Ò·øª#$Œ´¥¯‡"Çù{D?ø ¦œÿïõäS÷žyÇÍ]Ù=Ï,€3!qÔjµGŽÉ̬ùô˜ÑhxüñÇ[µj%v·@ƒÉ,½RR•y1sOzÉņ}ÙMªŠòíÎ \› =£'R„»­„òëòãg7_ºg5wõ“«Æ· ;^€ûàèÄ1???22ÒÃÃâçççååuýúu[â8iÒ¤/¾øbãÆ~ø¡ØÝõq«ðLfÉåS)›-¬¡Oë&uoiþ* …Ço}£5äg—]Ó[Êü„ZöPÔx/Up‡‡=•Íí…¯§ÿ˜}%ÿîuÚ=ó8^€æÎщ£¯¯ïæÍ›wìØÁ²,!$$$äwÞùàƒNŸ>M:tèÌ™3Åî“ææLêOZ}&kÕƒŸ-§S¤OOePï‹Ý²ÆµåÕ_¥Þ¥ESÝÆwˆ{g¨Ø‘8ˆ/Çøúú¾ð öO<ñD\\ܵk×¢£`17WVe*½–{øHâWU¦Ò?[ ¿‡ZÚ-bL§°‘b·Ìq~ÿþÂáÕ§ï>ÿâ˜w†ö˜ØQìHÍщc—.]ž|òÉ×_½z¡Z­îÝ»7!äå—_NJJ:pà€ØÝÒ4\Ë9t6m›ÞRQðÀk4{©BüÔcf´ðï!v³Ä¡Í©Ø0õC…é.uÆ-Ñyl[±#£GƒÁ`µZï´+++ë.«º¸‹™{ò*nýžúÇ[ä<ZìÙzDû9-ü\4G¬áóG¿-ÍÔÞ¥B÷‰âÞ&v˜âsDâxâĉٳgÛ?nÚ´é?ÿùÏíÕxž!<<\ì>q É…¿ÿz}uqeº•3=Èy:…=ÜÒ¯wË€‡¼”Áb·É¹ìþç‘óÛï6ihhÇ ç6M;L'âˆÄ‘aÛR1„­V+“É”Je­5===,X vŸˆàjΡB]ò…Ì=å†üzŸ$À£¥\¢ìùèCQãÅnóÒk ÿyiWÞÍÂ;UðP¿úkãgõ;CL@Ÿ¯¶]ÃÇø¹GˆÝš&¦0¥tÇ[û “KîT¡Ó˜¶ãÿ9Bì0šG'Žo¼ñFõ‚ äåå ‚BQÍäæ DN¶üùVJáÙzÏ­­ibúÄuz]%÷»5MØŸ?]Þûѱ;íÕ¹Ïû5^ìš%ŽF£ñ·ß~»qãÆìÙ³Š¿Vï=sæÌ¢E‹²³³ !ÞÞÞ¯¿þúøñÍáἸ÷”W²÷×½¾¯:¼{äc>¢|»Š{3±là:ã&Ö‘H™©«î…[€ûæˆÄ199ù•W^IMM%„<÷Üs¶Â„„„Ù³g›L&BˆL&+++{ë­·nÞ¼ùÎ;ïˆÝ'KBË|ÝÃG¶ÿGëÀþbÇÒÜœÝré×ßi¯KŸ—¶O;F€&¬ÑG³Ù_PPЮ]»aƹ¹¹ÙÊW¯^m2™Ú·oÿÅ_=ztÁ‚ßÿýرc;vlVkrDùv ñj3(浛ر4[ÇÖž9¾á;íÿn2ëaŽŠŠ;L€¦­ÑÇ-[¶ 2äóÏ?—J¥¶B­V{üøqŠ¢>ùä“   BȰaÃæÌ™óÑGmÛ¶­©'ŽYÙ%¯|ÝÒ¿§Ø¸„åC¿¬*5Ôº«Ã¨Ø‰¶m§§§ßÇI 6ž8ž8q‚òúë¯Û³FBÈŸþÉq\—.]Z´ha/œ0aÂÇ|á±ûäA]Øni¹Ycã*Ï×mxò½ÖXëÞ‡¦t~dÁ`±chn=qÌÎÎÖh4ÑÑÑÕ mÓ:4¨z¡»»»——WQQ‘Ø}Níüö«»ÿy¤Ö]nòW~yFé©;F€æ©ÑÇâââ°°°…¶Ä±W¯^5ÊY–5›Íb÷ 8©SÏúשZw…w ~vãd±hæ=q ()ùŸ¹— ÒÒÒT*U‡ª—WTTTTT„„„ˆÝ'àtv,üõê¾ÄZw šÕkð¬Þbà=q ;uêÔÍ›7Û¶mk+9tè!¤{÷î ÃT¯yíÚ5BHD&؃¿ýôÚž›G’kÝ5ñ£QFµ;@Òè‰ã˜1cN:µdÉ’ 6xxx”––~ýõׄÁƒÿçÝŽã>ùäBÈc=&vŸ€SØü]I¿Õò*4MSo›¥Ð¸‰ €ËiôÄqìØ±_ýõ¥K— “ššªÓé<<<yä[…âââk×®}ñÅ·nÝò÷÷5j”Ø}"ûòÉònÞ^Ö1(~Ó±£p]ž82 óý÷ßÏ›7ï÷ß¿té!D£Ñ|öÙg¶ ï¿ÿþáÇ !ÞÞÞkÖ¬‘Édb÷ ˆf×û/íºq{¹»Ÿjþ¡çÅŽÀÕ9bÉAooïo¿ý6++ëÆr¹¼{÷îö¬‘âëëÛµk×¾}û>ñÄ>>X[ÅE­}üû¤’ÛË»ŒmûØ’bG„8&q´ ¿½|ñâÅbwˆéغßyöör,- àl—8Ôðßwö_Ù“p{ùC“;=òÖ±£€š8‚ÒÏeûÜöÛË}#½^Þ5Cìè vHÁ¡ŠRK×LØt{y»‡cÿä±£€»AâŽóÁCŸ³®F¡Bã¶àÄl±C€{CâްiÖŽÔ³Y5 1É@Ó⊉ãĉmËVçëë{úôéê%Û¶mÛºukJJŠR©8pà믿îåå%vìMÏÅ]×~ÿÐíåó=ïî§;:¸®˜8fee)ŠÈÈÈê…žžžÕ?®\¹rýúõ*•ªG™™™;vìHNNÞ´i“B¡;ü&#?±hý”Í·—?»ññð.!bG÷ÍåGNWQQ1jÔ¨U«Vݩέ[·6lذ}ûvBÈÒ¥K7mÚôé§Ÿ¾ûî»b· iøgÏÕV3[£°ÍЖSVĉÔ-vŽ–••E©1ÜXÃÖ­[yžŸ;w®-k$„,X°@£Ñüúë¯<Ï‹Ýgwú»óïu^Y#kl;¬Õâ˯"khÒ\nÄ133“q—:çΣizРAö†a °{÷î‹/vïÞ]ìF8©Êý§Ã6Ü^¾øò«b‡ ÀEÇüüüiÓ¦%$$(•ʶmÛΚ5«S§N¶ ‚ ¤¤¤x{{{{{W?0&&†’ıVµ¾7ýè{ûŽk/vhÐ0\.qÌÎÎ&„üë_ÿŠŠŠêÝ»wnnî±cÇNœ8ñþûï?þøã„ƒÁÀq\we!†RVVV—o‰­Q²ÿ~±›ÞX®ü”xéÇÄ…-…õ¥!$==]ì !$''Gì &\ç„ëâ„pQD7räH±Cp.—8æçç+ŠyóæM›6ÍVræÌ™Y³f}øá‡ýúõ 6„•ªæL1jµšRQQQ—o¹uë–Ø u÷»¬¡z‰ÓNè%vP.ŠsÂuqB¸(âºýgýö"ÑlG–e¿úê+ûG†ažþyBÈÿµwçqUÕùÇ¿0C”ÅXFEʃ © š"ŠšiéXŠtlw×FÍÜr '—&%SÇqLsEmddÔbÄ41Å]PAÄ%E#‰.÷÷Çùu»^,ë÷Â}=ÿèqΗï9~Î÷×·g»kÖ¬1ë2tèÐU«VíÝ»7&&ÆÙÙY§Ó˜uËÏÏ¿œw„"iÅ·ûã¾1k|uÕ@Ÿà?È. T‹:‹‹‹M_¸S¿~}58>PÇŽW­Z•žž.„°³³srr*{f1//Oa|ÎÚÊÍh·Ø¬Åѽá„Ä‘²ëÕ¨ÎG{{û²'– Cii©N§³±¹ï=D¶¶¶BˆF©«/^ÌËËstt4öQïÕóðð}d’}»1u÷‡_™5Nýæú êÉ. T/ëzcVVVëÖ­‡ fÖ~üøqar¿BDD„^¯?pà€±ƒÁ`HJJrqq ”}2Íîð±Yjôï©ÌJGjÀXWpôññiß¾ý‘#G¶lÙbl<~üøêÕ«½¼¼ž}öYµeàÀ666K—.UïkB¬X±âöíÛ ¨WÏJÒ©„ó3Ú-Öß÷þóY©ã^úK_Ù¥€Rg/Uÿ–éÓ§1bÚ´i6lðõõ½víZjjjƒ æÏŸoüj//¯I“&ÅÆÆFEE………eee>|ØßßäH+½‡oÉó«s¯ÞwÓgÏ1¡¡¯v]¨QV[¶l¹}ûö… :tèÂ… Mš4éׯßèÑ£===M» >ÜÍÍmÇŽ»wïöôô2dÈØ±cÕ7òX•K‡¯¬}#Þ¬‘o‚À:Y]pB¸»»ÇÆÆ>´[dddd¤U·rü”„“ ÷½Ù»ë뺽ÙYv]@k ŽÐ¢ì w8Ñ€•#8Â\Ùî8{:ŽK!». Á÷Y3rkfJ¶iËÛ[‡º?é*». Á¿2»<­³ÑÍ<6VvQÀR!„—g­}c›iKËnO ^%».`AŽñSNî¾ïéé™ÇÇét²Ë†àhíf.†_WmëÙNO-»(`‰ŽÖËPj˜´Ä´¥U÷'-²êWW€ßAp´R翺¸aÜ.Ó–©ß®ïðˆìº€å"8Z£/Æü3-)ô…—{€‡"8Z™K †_ïjlÒÖóOÿ$»(P ­‹Ù›-Œlñ¤ì¢@í@p´%Eú:þÕ´eæ±±:^º´"8Z…sû.nœpߣ0ÜÔÊ‹àX÷þâx‚¯«ž­Üߨ-»(Pûë¸3ÿóŒqµË°ö½Æ…Ë. ÔJǺlA÷åÿû¡Ð¸>¢cĨ.²‹µÁ±Î2{€zÔŽa®>ej1‚cÝd–yTžìPõH :ëR#¨&\ª®SLScã&Îcv½*»"PwpƱî¸?5:‘@ÕâŒcÁ¹FPÝŽuijäß šk=ÓÔØcT—°eWê&îq¬ÝH Æk1ÓÔÕšÔª—ªk+ÓÔøÂÌžAýdWê8Î8ÖJ¦©ñù©ÝI kÓÔøô ¶^j+»"`޵ŒijlÒÆ³Ïäî²+Ö‚{kÓÔÔÏÿ…™½dW¬gk ÓÔøD§¦¤FPÃŽµÃœ§?1.ÛÖ³‰Y>@vEÀêky]–ß+Q—mluÓSÆÈ®X#‚£¥[?jǽÿWg|7VvEÀJ-Ú7k¿K?i\•:NvEÀz-×Ù½ö,ú¯q•Ôä"8Z¨Ÿó‹6MüÒ¸:åÀ[²+ÖŽàh¡æ‡.3.÷úh£ú²+ÖŽàh‰L_Ù>¢c؈²+ 8ZžÃãŒËMÚxFŒê"»"!Ž–fÓÄ/ óîWÿ´vìŠþÁÑ‚|õ顳{/WyŒX‚£¥(þ¹äëÏWIÀÒ-ÅœN¿~u̧ýe—`ŽàhL£z1à‰ÎÍdW`Žà(_ÜÀÏMW_˜ÑSvE@p”,íëK7/Ü6®rk#°XGɾ»Ó¸<óØXÙåü&‚£L¦·6¾0³§ÎF'»"€ßDp”fùàõÆe¯ÖAýdWð{Žrüsfâs·Œ«¯ñŠìŠ‚à(DZgŒË<j‚£¦·6¾à/»MŽ5mý¨Æe׿ûÍê%»"MŽ5êô¿ÓÒdWGm&»"­Ž5jËäÝÆåIû^—]@9kÎŒÀ_omôháÚð±²+(‚c 9²ù„0üºúÖ–¡²+(‚c ù×¼ýÆeÞ¿j#‚cM0}ÿNŸÉÝd—PÇj?5Á¸l[ÏæéAídWPÇjwr÷yãòô”1²Ë¨ ‚cõ2½Hþ§Ž²Ë¨8‚c5JZqظüˆ}½ˆwºÈ® âŽÕhÜ!ãò{‡Þ‘]@¥«Ë}ORÿ™'©@­Gp¬Û§'š®>=¸ìŠ*‹àX-Rwž1.óºoP7«ÞKö#Ëû¹É. j«ØÍôÛ6ÂÖ¸úæ¦!²+¨Ç*÷ÒçÆåWWýQv9U†àXÅlëýÿ>îçæÜDv9U†àXŦ§ŒÙX¸\p‘Ô9ÇjÁ“Ô î!8@‚#4!8@‚#4!8@‚#4!8@‚#4!8@‚#4!8@‚#4!8@‚#4!8@‚#4!8@‚#4!8@‚#4!8@‚#4!8@‚#4!8@‚#4!8@‚#4!8@‚#4!8@‚#4!8@‚#4!8@‚#4!8@‚#4!8@‚#4!8@“:322üüüNœ8ñÀŸnÙ²eàÀ]ºt™:ujnnnÅú ¶èÝ»·ì`ŽI±LÌ‹bR`9êlpüüóÏëG‹/ž6mÚ¥K—:tèаaÃøøø×^{­°°°¼}¬J] ŽyyyG1cÆ_|ñÀiii+V¬ðððø÷¿ÿ½bÅŠ={öÄÄÄœ*WkSׂcdddttôÆ«ÃæÍ›KKKÇŽëîî®¶Lž<ÙÉÉ)!!¡´´T{kSׂãܹsãâââââBBBØ!%%ÅÆÆ¦k×®Æ[[Ûððð;wî;vL{kSׂchhhDDDDD„··wÙŸ †‹/6nܸqãÆ¦íŠ¢!²³³5ö°Bv² ¨Qz½ÞÙÙÙ¬ÝÉÉIñÃ?hìóP~~~²æ˜ ĤX&æÅ1)°ÖÕÇ¢ÌÚ6l(„¸{÷®Æ>¿/--MöT½ZKJJV®\i\µµµ}íµ×´lèìì¬Óé ÌÚóóóÅ/çµô°Bµ28/Y²Ä¸Z¿~}ÁÑÎÎÎÉÉ©ìYü¼V¨VG{{û _öðð¸xñb^^ž£££±133Sý‘ö>Ö¦®=UýPz½þÀƃÁ””äâ⨽€µ±ºà8pà@›¥K—ª÷, !V¬XqûöíÔ«WO{kS+/UW†——פI“bcc£¢¢Â²²²>ìïï?räÈrõ°6V…ÇwssÛ±cÇîÝ»===‡ 2vìXõm;åê`UtƒAv ¨¬îGT Áš  Áš  Áš ‰5¾¼šlÙ²eóæÍ/^lРÁ3Ï<3iÒ$ÙEÕX-›hßmFFÆsÏ=·yóæ¶mÛÊ K!kR 7mÚ´uëÖ«W¯6jÔHQ”áÇwéÒEöxXY“òã?.Y²äèÑ£W¯^uss 5j”¯¯¯ìñ°Ò?¾„ׯ_ŒŒìÞ½û_þòÙãadMÊÿøÇS§N™måêêzðàAÙCR>¼¼j,^¼xùòåÁÁÁYYY—/_nÓ¦ÍÚµkíííe—V»U``µlR®ÝΚ5ë‹/¾ 8Éš”’’’èèèÔÔT''§öíÛÿüóÏ)))ÅÅÅ£G~ûí·eŠd²&%//¯OŸ>999-Z´hÑ¢Å7Ž?ngg·iÓ¦€€Ù£"™%|| †˜˜˜#GŽDEE…ÔI騱cQQ‘éÎ׬Y#{TÊÉ€J;þ|Ë–-ÃÂÂnÞ¼©¶Ì™3GQ”Ù³gË.­v«ÀÀjÙDãnïÞ½›’’2}útEQEIMM•=A⤬_¿^Q”Áƒ¨-ééé;vlÕªÕÙ³geŒL'EmY´h‘±%>>^Q”—_~Yö¨H&÷ãËhõêÕê'ØÄ‰e‰|'åîÝ»Š¢Œ3FöT‚c˜={¶¢(ñññÆ–’’’:tîÜY¯×Ë®®«ÀÀjÙDãnÃÃÃG•ÄI:t¨¢(§OŸ6ݹú÷âÊ•+eŒL'¥oß¾mÛ¶-,,4Ýyxxx@@@II‰ì‘IîÇ—*==ý©§žŠŠŠ"8ª$NÊ©S§EY¼x±ì1¨<SRRRlllºvíjl±µµ ¿sçαcÇdWW‹U``µl¢q·sç΋‹‹‹‹ ‘=Dâ¤dff:88øûû›î¼E‹BˆììlÙ#“ÄIqvvîÞ½û£>jºóúõëÉ™ä~| !JJJÞ}÷]—É“'Ë K!qR²²²„Íš5“=U€àXYƒáâÅ‹7nܸ±i»¢(Âêÿ>«Œ ¬–M´ï6444"""""ÂÛÛ[ö`X ¹“òÙgŸmܸÑlÿgΜB4iÒDöØH#wRÖ­[·hÑ"Ó)))W®\i×®5ßá-ýãKñÉ'Ÿœ;wnþüùŽŽŽ²ÇÃ"È58Þ¸q#&&¦C‡Ï<óÌ›o¾yâÄ Ù£R&&Fmùæ›oÞxãyóæ…††zyyÉžràRue9;;ëtº‚‚³öüü|ñË¿9PX-›0_•a!“òí·ßFFFÎ;×ÕÕõoû[Ÿ>}dŒL2)ƒ :wî\rròŸÿüç={ö |¸uëÖ«W¯.ûˆ>Êå¡»{÷îqãÆµhÑâË/¿Ô¸‰Æ>FÓ¦MS¿½ž{†TR&åÖ­[aaaöööO<ñDÙ’^|ñÅ!C†È™dý¦œ[7ÂÖĉóòòΞ=+»µ ÷8¨vnnnóçÏüñÇõzý‘#GÔFÿAƒµhÑBvuçììuꔢ(NNN'NœÈÈÈ8wîÜ“O>¹mÛ¶–-[*Š’ššºeË–ëׯ¯^½Zã±—””lܸ±¨¨(&&¦^½zå±²‡ÀŠ *¤§§+ŠÒ®];³öÿýï§N>|¸¢(£F2¶¯X±BQ”uëÖ©«›7oV%88xÿþý¥¥¥ƒáòåË‘‘‘Š¢˜vKHHP¥k×®§OŸV[N:¦vKMMU÷ï߯(J=Nœ8¡¶äääŒ9RQ”>ø \‡pïÞ½´´´qãÆ©Ä¡C‡ÔöåË—+ŠòÆoäçç«-wïÞŽŽVeË–-jËĉE 2dÈÁƒsrrÊ»m«V­öíÛ§¶œ9s¦uëÖŠ¢$''«ß}÷]«V­E¹sçN¹Žýé§ŸnÕª•qUËV¿u8¬—ªT¥‚‚¿û0 99ù­·ÞZ¸pá·2 ü±böìÙݺuÓétBˆfÍš-[¶ÌÖÖÖ´çâÅ‹…sçÎUï˜BLŸ>Ýl‡±±±Bˆ%K–´iÓFmquu]²d‰‡‡ÇÖ­[üñGí‡ðÔSOEFFþë_ÿB¼úê«:uR»•””tëÖmâĉj‹££cdd¤"++Ët‡+W® quu-ï¶/¿ür÷îÝÕåÖ­[ !bbbºté¢6!ŒW+vìÚ·*{8¬—ªT¥²ïq,..¾sçŽbïÞ½QQQÍ›7/»ÕÍ›7srrÜÜÜz÷îmÚÞ¤I“ÐÐPãËqîܹsùòe//¯ÓnŽŽŽyyyêjnnnff¦¯¯¯1\ª4h²}ûöÓ§O‡††j?„† ¶hÑ¢ÿþáááÆÆ·ß~ÛlÜœ5_š‰ŠŠzôÑGM[´okv¥^½ŠýÀFƒÁPác/×Ve€õ 8¨J|c^^ÞìÙ³wíÚ5f̘;w–ÝJ}ÔÚ××W=×hÊÇÇǸÃË—/ !š5kfÖG§Ó5iÒäÌ™3êjFF†ú_??¿yãÆòÂ]»ví¿ÿýïÑ£G³³³¯\¹Rö UÓ¦M+¼­ñ”äï4šZÅŽ½\[=ðpX ‚#€jçèè8kÖ¬ÄÄÄ´´´Ë—/ûøø˜u°³³÷ #ÓKÕEEE¿ÕÍÆÆÆ¬›··w=X——WåjÆ sæÌ)))iÚ´ippp=233gÏž]öð+¼myUìØËµUÙÃ`=Žj‚ƒƒƒ··wFFÆ­[·ÊGµE=ïeÆô½O<ñ„âïèÉÎÎ6.ûúú !4h0uêÔj:œüüü>øà‘Gùì³ÏL¯ü~ÿý÷ÕºíCUìØk`ÄÔ < †4hÐ@üÆùB777OOÏ[·n%&&š¶_»víÀÆUwwwww÷«W¯¿~Fõõ×_›>½ááááæævéÒ%ãÅk•^¯0`@XXØíÛ·+y,§NÒëõAAAf÷ ž?¾Z·}¨Š{ Œ€ºà †¨×£úé§þtÔ¨QBˆéÓ§'''«-ÙÙÙï¼óŽÙ7¦Œ;V1eÊ”ôôtµåüùó³fÍRó¨ñ‚õøñãKKKÇîÜ9µ%??Ê”)§OŸö÷÷¯üãÀêÓ3çÏŸ7&*½^¿qãÆuëÖ !ÔwVǶZh?öÒÒÒ‚‚‚š1u—ªÔõáß#GŽß/cêÅ_úè£yóæ©pÕÔØ«W/³»ît:ÝâÅ‹gÍšœ““STTôæ›o._¾|8>>>>>Þþxjjªâøñãj—€ 2‰—ãÉËË[¼xñ¨Q£:uêtàÀ‡WËËË-Kll¬Ãñ˜˜!Ä… d>Âl6;ÉÏÏWû¾Ã:;pÃpÁ±¢¢âÙgŸmܸñĉÝ „ˆŽŽv8^§N!ÄÅ‹e>…˜Ð+Æ2Â=ÃÇ3fœ8qbùòåQQQ.Oˆ5™LåååÇ•U{”vG ðÆXc¿úê«åË—?ùä“wÜq‡»sªU«ãܲXVV&„°Í³ |0œrŒ „o¿ý¶ù¦¡C‡ !>úè#³Ù<`Àå´¤¤¤óçÏ+IѦ°°PyIí› pˆŒ¨ cuU7mÚôÞ{ïµ?rñâÅ;w&''§¥¥5hÐ@9˜žžžŸŸ¿cÇÛÉV«5'''...--Mí› è˜FÕ+8véÒ¥K—.öG8°sçÎvíÚÍš5Ëvpøðá ,xóÍ7»wï®Ì‰Y´hѹsçüñêÕ««}ø0ð‰±‚£¤äääÉ“'Ϙ1cРA]»v-**Ú½{w«V­žxâ µ‹€hh„Ž®3&11qݺu6lhذá¨Q£222”ÖGt‰È¿™¬<@f6›YÇ !DF-Ž„/"#Šà@8"2"Ž„&M#8Ž„LG‘ÁGp@爌‚#ºEdDhÐ'fÀ äŽè P Áý 2BUGô€È 8 mDFhÁ c ´„à€&ÑÐí!8 1DFhÁÍ 2BÛŽh‘z@p@UDFèÁõ0iºBp@ 44B‡Ž„‘ºEp TˆŒÐ9‚#ÁGdDX 8dÌ€A¸ 8444"¼"#ÂÁ€€"2"|"#ÂÁ€@` €à€hh„að‘Cp êˆŒ0$‚#UAd„Cd„áÀ¤i€à€447pƒÈÜŠà€"#à Á;DFÀ=‚#71ðˆà €‚#À؈Œ€4‚#À¨ˆŒ@ÆCd|Bp 3`_†AC#à‚#ÀˆŒ@ aÈÁ¦ˆŒ@ áˆ0@á…†F hŽ€pAd‚ŒàÐ?"#G€ž"8ô‰È„Á CLšÔ@pè €zŽ 2j#8„Â4ñSÛ¿­sz©]‡ÂM 8€Ñ)‘Ñ>,:Q¯pDF@CŽ`h¦‰Ÿ:DåˆË—B[8fÀÚ¡vªñ ­szÙ÷_‡¶d&R# A´8´„¾i@ÃŽm 2šGW5”ÌÆõVÛ:¦I€¶À dBa(æÇý « ú¦½!8BŽÈ-ÊšX˜:g²òßm ™Íæüü|µK@ÇBù}ï¡3:(ýÔ7#£Ë^r’M9ÿúÔ_˜úGp <‚#Ÿ¹Ü²%Øß÷.¯øµketwq’M x¨aA@‡ŽGpàÏ"˜ß÷Îíü¬[;¦=§C²£ÿ¨ac@‚½,N“D7€Qî”dã3¯µG Ã,Çš ù}¯v1«tK.¶ $²ºF‹#£°¥.‚KÐ1iSGáÏa€ ó‚(Ü## ÜÀàô‹‹‹Ý½Ô¤IµK@sœûF•é3 °pŒ‚n]Ç]»v}øá‡<ð@ZZšâî»ïvw&s™8ðð½Î@’ž£ßjwYlÛÀSíÜ‘×ÖiýC#4-ËK/½´jÕ*!ÄàÁƒmÇkÔ¨qûí·ççç_¹rEQ«V­ßÿþ÷mÛ¶U»¼à;½~ߺ¡Q›·éõ/µ è¢À…T»DšŽÏ?ÿüÚµkkÕª5dȳÙl;Ÿ••e±X¶nÝúÒK/ýøãñññýúõS»¼´Eë’x^·Y[|Œª]k¿ÿï(ôì‡q½h78¬[·.**jñâÅíÛ·w>!22²oß¾­[·0`À믿ޮ];—§€^¸|©Pr³@þ¶2ºk¥ÓÖmÚnWkõ/]Ôà®ëCÒnpü÷¿ÿmµZ}ôQÏq°Q£FãÆ›5kÖ?þñ¥K—ª]jð—s¨ÒЗ}à:¦5tSáËù/µKÝÓnp¢Z›Ç\ŽT²+Ú ŽW¯^ˆˆ¨¬¬ŒŒŒ´?þñÇ;œi2™ªW¯­v© ¼x‹Œj Ut—¨‚ñÑjý¢Ô­ó¼" ,w - *ÙíÇ =zôèÑ£)))žÏ¼téÒÅ‹MÊÿÁÀMá77t$Z]¶Ê˜&~ÔºõÐN]±´5††ç&œž¨@ÑnpLMM=zôè®]»¼Ç-[¶!Z¶l©v‘h‘¾&ðú)0ã´ä:¦Ý}¡*Ô¯ÛÐÓ»[è;°IÎëäÏÍ`¤„€vƒãàÁƒ7mÚôúë¯wïÞ½iÓ¦îN»téÒüùó…÷ÜsÚE Qù* À8-鱌ν¨6Ö9½´¹&¶Ÿl¡Íù`@Ø~}Ê?¼†ob"±þÓnpìÞ½{›6mrssÇ7cÆŒV­Z9ŸSRR’‘‘qòäÉ”””Aƒ©]dÚÞS&ÝĪӒ›4m«I‡”ãüqÁˆ)ªGŸàe Ô~†zZC^m2í¸LVÍ’³WRR2räÈ’’“É4xðàîÝ»·hÑ"99¹´´ôرc~øá¦M›,KllìŠ+š5k¦vyf6›Ù5ÐŽô0ªÎë›—ªÒÐèÐðæ°Ü´CšT+8úÿÑ¡üKÃyÕnûÚóa°£Ö× ÿÛ1í¶8 !’““W®\9mÚ´œœœuëÖ­[·Îùœ{ï½÷¹çžKJJR»°´ÈÃh0ÁW‚ðwÐoß,“G’Cö—F0_ÔôòÐ9MG!DBB¢E‹rss×­[———wâĉ˗/ !âããÛ·o?jÔ¨:¨]FP“9©ê‘ÑáƒÜu­ê=£hdq?+Sï¿h–Öƒ£¢M›6mÚ´QþýÓO?Õ¬Y³F>_íÇ|ýõ׿þúë'N$&&¶nÝzüøñ-Z´p8måÊ•YYY‡®]»v÷îÝ'Ož§vM¨6ÒpM“«yk„Ög ø¢<´D:ðü;5âÿ?x£àh¯nݺþ¼½¬¬lÀ€gÏžMIIéÙ³ç©S§6lذyóæ+V´nÝÚvÚ¼yó,Xݾ}û¢¢¢Õ«WdffFEE©]à‰ózÑ·¾°mÕúNõ¼6§Ð²Ý ËyÜ>ߣ»Á¾z¯.ÿ¹{¢¨—´srr6nÜxäÈ‘ÊÊÊÔÔÔÁƒßu×]þ\pþüùgÏž;vìÿþïÿ*GÖ¬Y3uêÔW^yåƒ>PŽäçç/Z´())iÕªUõë×BLŸ>=33söìÙ/¾ø¢ÚUÀÐ\î³ç<µÙvò/?¡¡Q­ ¼Þo6 ·£ [alKóØß~ nÍ·‰ÛáÇå¨\ƒ×‰;šžU=mÚ´Õ«W;|ôÑG§L™âó5 pâĉݻwתUËv°{÷î.\ÈËËS¶7üÛßþ¶lÙ²¿ÿýïC‡UN°X,;v¬V­ÚÎ;#""<³ªaÚïó’ÉšÊ ¾Ý‘Ë Î·¼enºˆŒöŸnU…lD ŸqÊà zþ¬€|œ×Ïuž^íóç²i;E»-Ž[¶lQRc=ºvíj±X¶lÙ²gÏžýë_:uêÖ­›o—MMMµOBˆš5k^»víÚµkJOôž={"""zôèa;!22²[·nëׯÏÍÍm×®Úu¨õ>BÏk£‘«÷˜¬B˜&l ȯÆ>Ä8ûÓD¨ž‡=r΋ã|Ïë8úùYü·‰ŠðÿA²|ùr!Ä#<²páÂQ£F=üðÃK—.½÷Þ{…kÖ¬ñù²Ë–-›;w®ý‘={ößyçJj´Z­‡Ž·?-55Uqüøqµ+PŸç/9íðZ$}¡J¶žÚý`&“iÂ6aµöWã²GÏV6½Ô§K.+ÊÝ.Ü ÇÝ¥l#ík8d7¸¤ÝÇÂÂB!ÄSO=e;b2™ÆŽûÉ'Ÿøý½{÷®^½º°°pïÞ½Mš4™1c†r¼¼¼\YTÜáü˜˜!Ä… d.n6›ŽÐy°á!Áhs’rØo¤aß¡ùsÓÔÜtÓ„m"1ξÕÍ~xœC/v0>ZE¡¹_„.h78ž:u*..Î!À)ÛÃ\ºtÉÿëççç¯ZµJâÙªU+Ûú>Bˆèèh‡óëÔ©#„¸xñ¢äÅU®>@%ZËŽîºM5UÈ@Ý©ýpÆ Ž^wˆ8ûVëºb«º8K`x]W B»ÁÑjµÖ¬YÓá ?Ë7:1bÄ©S§Nll¬Éd*//w8_I«J»#`X:Í[zoË‘ªv“É*B·:£¾*°ª·ìZ£Óÿ®¡ íÇ0™L‰‰‰cÆŒ9~üøû￟=lذjÕªÅÄÄ8·,–•• !”Õy莮¿=7kY禋¹›£M=í•ý_öÝñ!.F`oGG†–+8,Y²¤[·n÷ÜsýñV­Z !NŸ>­ü˜””tøðá²²²zõêÙÎQÆ\²)6 ¹¹4£Ÿã55ž‡B»…¬Þåç8·8†ëh‡°¹„†±‚c½zõÖ¬YsöìY‡àX\\,„hÞ¼¹òczzz~~þŽ;”IÜB«Õš““—––¦öM€¢ {Àx´'œ–Ñš‰. ãœä‚·í‡‡õ±õ5ÙÝQUÚ]Ül6›L&ç-þÊËË]BìÝ»×ëe tèС·ß~»W¯ŸÿSùþûïGŽ)„ÈÎÎNHHB”””¤§§7kÖlåʕʜ˜… Î;÷ñÇŸùä7ÞØ¿ÿÁƒ4hЧOŸqãÆ¥¤¤ØŸ6f̘ÄÄÄuëÖmذ¡aÆ£FÊÈÈPZƒóÐç%´÷ ª»U'ÝßÉ/‘ÑC£‘nn'BÐYìyŒchÊhŠvƒ£C’  ¦M›:lãÒÀ¨v5Zäa£9žS+#U­ebÓûŠN@ h78Ð8íqzmPÔz££«ŽéÐÔŒÐ~å„U-Ç9sæTõ-'NT»Ô€Ð\Ò“¦}6¡0Ø·6Švƒã¢E‹ªú‚#2a¼¬ú‚ÖÐXµRø÷ øÂŠÁ(d1íGEDDDÛ¶m÷»ßU«¦õ¢áuY;¾G}§ÈXåRߺ~¸»Ç ª‡×m£Cyƒ<Õ€B»Ëñüå/Ù²e˹s焱±±½{÷îׯ_ÇŽµŸ YŽáM_Ëñ覴jDÆ€¬ã(³­‹oWöp¾×Õ¿}û¬*ƒ?“`LÚ ŽBˆÊÊÊÜÜÜìììììle?ÀzõêõîÝ»oß¾;w®^½ºÚtàˆ0&óM¬¡4¦‹à¨j+£Ÿ{®¸±Ø0çµ×;4©ŽA½€Ðxp´±Z­yyyJ‚,))BÔ­[·W¯^ýúõëܹsÍš5Õ.à-ŽcªG¾¼5½x0gÀÈÁ×ÁˆžCgˆ«T„†>‚£½o¿ývÓ¦MÙÙÙÇBDGG÷êÕ«oß¾]»v­U«–Ú¥‚àˆ°¦bpôg§]-n9¨Ïጿ_=ÈBLÁÑæ»ï¾ËÎÎÞ´iÓ±cÇ„QQQyyyjJ‚#œæ ¨]œßš*ÁQ)ÄmKžÎ#£íî¼6(jº­€O´>Ñă–-[šÍæöíÛÏŸ??//¯¢¢BíBT}®¼òœ3´¹Òžë"…Edô“Yäé28Z,–]»vmܸqË–-/^BüêW¿êÓ§Úå\|)zï¥;^Sšfï4”cà\TÂÍÈhšø©¡c#ÓSpt΋ >øà=÷ÜÓ®]»ÈÈHµ £ó™´Ù*&BµJs°ùg]6 ¤\§Æ›­Œš}(ìo02G—yñ¡‡RòbDD„Ú„Ðç—¥Ë)#’û; WóTDr§ÿëò ¶çÏœ‰Ï6\ß´­‰]ù ã‘Ä€–iwrŒË¼Ø§OíçE&Ç“êëÔøP`á~{!ñe²Î_êÖçŽuŸY?¿ÑcdÔÔ“à3¯uëp$°‘‘‘Ä€*´ÛâØ±cG[^9rd¿~ý4žñðEkßbä™ü÷t°#¦Ï©ÑóÝù¶Tµunº˜kˆVFwUÔç®ýX„K4N»ÁQIÑÑÑ»víÚµk—×·lܸQíRºš¯Øàv¢Y“É*„iÂ6ÏÔÎíûÏÖ×ïp0H§Çùõ@˜ÑnpTTVV©] t÷•¤Á…¢ê_ðßÂ. Ÿ{k!ì:¦%kɾžj~ÒnpüøãÕ.`\.[’ª$°CŸÅ؆ƀwLks½0˜ƒ·¨K»Á1%%Eí"U@7Y°¹|és…æ÷åjŒŸí£ÚìÜ÷0•*d“ù,*Ÿ‰5@ÕXh©©©jª¶¹<èò¸ÖÊY¥´ð~ÃëïÅÓ«BX=þÿ§óÅeJ<¾×RhKbõV¹ @×´ÛâèQˆç ø#¨mEþ7i—ÜÒŒÎí£~Þ©ÿƒ‚D¿Gí—Ð ‚#`~n:¨Ky-¤iâ§V± Èõ=ôÚÿ;¨ßèž—+÷ÀöUútù“%—^q2HäÒEü´€àh…×mñBð¡ò«ûÿ‰öÿê'zénÜ›‡m¡µæ×°!8ês—œÜµ–„-N©¾_hVoö¼¸§“ýØ6mñÎêãÔ0G@ªkû¹A 7Î_ðö?:Í«ØWèöC%"£‡Ñ.[s 7þÓÑHb ü•©>²-Ø#)Ý-€¢éÖ8¹VFw£ \fDn‹§ÍÁ!Ûµ€íÇ÷Þ{¯ªo9r¤Ú¥p ‡Æ!µ–tÙjëú¥#£ðit‡æ5¢i3Üh³T´=Ònp|ùå—«ú‚# AsSw•àt^ ;¦«*°C<=ÿ"ä«N;t—=߈ڥ‚B7Á±uëÖ;wîüì³ÏzöìéðÒÎ;KKK»té¢v¿ø0²MxÛ‹Eí{r¼;¥)Ôåmú³}އ†·[^ жžóü>ÝЯð¸€"Ô.€¬þýû !ž}öÙ7ÚwIoÞ¼yÒ¤I¶]Sr•ížOö§‚%'ð6…·íµáM!L&—©1Hó¸…SµÛm4là0TØ¢ÑáJ7-ŽÃ† Û¹sç† 222[´ha2™Ž=zæÌ!ÄÀ‡ ¦v-ÒÎWµç…ôD {r~ãÜt17ð}ÓîÚAÝ:Ò™[òeÎ ›ž_Ú¡›à(„˜3gN§NÞxã³gÏž={V9ذaÃñãÇ2DíÒðÄyî‹CÀ |¾¹9œÑ4ñS—±ÑÏPå²A×þ‚UéðGjpz ŽÇ¿ÿþûOŸ>]XXX­ZµfÍš1!ðL éÁå”ûés§žë»sšSÕŃäI^$àzlMÔc™}fœ;…Ñè)8*.^¼xøðáS§N%'''&&²v# Îë<ŒÀ~{ù°ê¤çé;Aihtê˜æ+\t¶ ‚{º™#„8þü+¯¼Ò£GÇ{ì…^ÈÉÉB 2dìØ±¥¥¥j—5åKË]sF¾ÕdVçñ³~¹‚›0áùf}^Ç1°T±ô8•Äýh°ò€ÐM‹ãõë×ÿô§?ååå%%%õë×oíÚµÊñúõëoß¾}ĈëÖ­‹ŠŠR»˜€ \~uïÛa—Çý¹¦»\~â/·©êêŒ~Þ¦Ï ÃZmµ\ÂcÛká¾þõx/€<ÝÇ… æååuïÞýõ×_¯]»¶-8feeM:õÃ?ÌÌÌ|òÉ'Õ.&RžWx ê˜s†sy$°Û»¹Îhž"£Ö¾Å}[­³Jôÿš!¨’ýµCs/ìU C1ée›¾Ñ£Gýõ×ÿùÏ”f³ùᇞ6mšâÒ¥K]»vmÞ¼ùš5kÔ.¦PÊ–ŸŸ¯v)` îúËB¹sŒ»5½«´†¹»n\ߎ]+£êÛ€Aè¦ÅñàÁƒÍ›7w9¦N:-Z´8vì˜ÚeLf.°ÿ#Ãüløqm+]{nö'¸[àÆÅEœÆ2ê±á tG7Á1&&æòåËî^---­[·®ÚeÉÃZÙ)­ªWðpNU7÷sþw# åy)³ûáŒÄD6Ý̪nÙ²å©S§öíÛçüÒÁƒOž4ÙÔ¡ÛÚ~´¢}ù=ÝŽÉ$„0MØ&?P2¨˜? Ààt…“&MjÛ¶íŒ3Ž=*„8yò¤"11q„ ìUò0EW4+xþ uvc û°èò®]϶̀Ñ@…Vì}G!DÏž={öìYZZzôèÑk×®µhÑ"))IíB!¬x\(—üŸ×¢Ê¦g>l9èðv¹ÚÑÜ‚Þî6N Æ¾Ž Yº㘖–6kÖ,åßqqqmÛ¶íØ±£-5Ž?ž®j„-Ïöð¼kœ»9ײ×Õ åUÜÞÍëŸ`º Žåååׯ_w÷Rqq±Òs ºQI¸YsÇßR™LÖ¹é¦ ÛÜ-µãažMP«Â+-§|,MwUçää<õÔS¶333—-[æ|Zee¥ÕjmÒ¤‰Úå…wßd,dÄ2±Læ:ºJƒÝ…jûhw;»T!KÝì˜öZ±5² 1|V@šŽ‘‘‘õêÕSþ]ZZZ£FÚµk»<366vÊ”)j—ž8ç‡y ßìrä¥dswŽ|ln~¿õ“ª<–‘T¤éàØ¥K—Ý»w+ÿ6›Í#FŒP6§†î¸›X 4ÖœSÕ-ò‚MfËAû’{>Gòf«zƒîö ”¸=“¦¦¿¼Òtp´÷Øcµk×NíRÀ’£åÔ.fHIÞµ·bøùwý|×® ø€îè&8>ûì³jÕ7 Ög™Lb®‹¾i-§F?W €p¢›à¨øì³Ï”3õë×Blݺuýúõ}ûöíß¿¿ÚEC˜Ùt—q$“”!ÛçØµ2ºì‚—©Þmçãò£Uÿu€êLVŒ1ª¬¬|î¹ç>úè#!Ä–-[”9Ôk×®UæÄ 8pÖ¬Y&å›Imf³9??_íRh…ä×­¿•C“QìÓ’mûµƒô¹U*˜Ãñ*—Çý —S¦ÐM‹ãСC·nÝú§?ýiúôé:u²ÿïÿ;uêT«Õ:hÐ µËO¸Ö´n$Ä«À„2úrƒjï£ÍÄáñÿ€Áé&8¦§§=:33óÑGMNNnܸqõêÕ‹‹‹‹‹‹…8p Úe„Úÿ’ÐÚ–ƒ:à÷pFDˆW*$ºéªB<ÿüóo¾ùf³fÍJJJ¾üòË;w'$$¼òÊ+3gÎT»t€¼6(ÊÌ× eÙ6Ð׾骖YC=òð‰ç• Ô.€*ÐM‹£âî»ï¾ûî»/\¸PXXxõêÕæÍ›7hÐ@#ë~ ßúã4ÕôâyûëÜt—Û|ëKpk»ÕáDgÁQ¯v)žüœî[œýÎ1o*¥"×E2™¬"0‘ÑK6u:h+Ëã€ÐÐîÎ1ï½÷ž¢C‡ÊÚÊž9RíR ÁÎ1aÁåVxBb'e‰ÓëÛ…«ITsùsÉç¦ ”VF²`x“y>iqtD»ÁÑl6 !þú׿Ž1Âö£g‰kǰáy'@瓃”ðÔßmOíIÓÐ/ýîVÀ%ívU?^ñ›ßüFùqÒ¤Ij—†£o²*mëÐfÒ4ü¢…Vs¤ÝàøôÓOÛÿøÄO¨]"À/>Op9Ü0èÉŒ'Ú Žì9,\Bd„žvƒ£Ìl™I(Æ2 "#ŒÝêp¢ÝàøòË/Wõ-Gh™Ö¿ ™ƒ q¹úkpz¤Ýà˜‘‘ápäàÁƒÙÙÙ‘‘‘]ºtiÖ¬YdddaaáŽ;nܸѰaÃiÓ¦©]dšŽ×1¦¡Áç¼§.ÿc O»Ëñ8(..1bDBBÂ[o½Õ¸qcÛñ“'O>ýôÓß}÷]Ÿ>}æÏŸ¯v1…`9óЂ¢ÑLIdT…n‚ãÔ©S׬Y³yóæ¦M›:¼tüøñÞ½{ !>ÿüó„„µKJp4:—À¨˜]î¼½aL»]ÕöîÝ›œœìœ…7nÚ´iQQ‘^B0›Ãôg .9×ùχeÉM&!„iÂ6-¶€´M7Á±´´´²²Òjµš”ε[•••ÅÅÅ%&&ª]L@ˆ ÞòmpשÑjBXÕnèQ„ÚÕºuë²²²Ï>ûÌù¥;w–––¶jÕJí2Aá!á9·nº¿Š‰yÓ?é&8öïß_ñì³ÏnܸѾKzóæÍÊn„Ê @˜ À×¶Èxkj¬Bè@¡£®êaÆíܹsÆ ‰‰‰-Z´0™LG=sæŒbàÀÆ S»Œ€ï|éi &MJ7ÁQ1gΜN:½ñÆgÏž={ö¬r°aÆãÇ2dˆÚ¥|çr"¶ðg¬¤ÉdDF@€é)8FDD >üþûï?}útaaaµjÕš5kƄ蚻€è¼Z²ône4Mü”Ø,=GÅÅ‹>|êÔ©äääÄÄÄsçÎiaíF= Æ’1ðŸ5Kk¥ÝôïdÐ*=ÇóçÏ¿óÎ;«V­ª¨¨B<üðÃ;w2dH«V­þþ÷¿ÇÅÅ©]@ÝpÙÊEÈРªMšUë›æ7¨*Ý̪¾~ýúŸþô§¥K—Ö«WÏ~Dcýúõ·oß>bÄ%MÂ+%.¸ì5Mü”i¶¡$Ý<ÿR¬sÓ]Nšs'©àÝÇ… æååuïÞ}Ó¦M¯½öšíxVVÖàÁƒ;–™™©vu$¡MnóŸ›uvœßëðvR#À7ºéªþꫯ"##_}õÕÚµkÛŒŒ|饗¶lÙ’ýä“Oª]L­#1è”Cv¬ÒNÓÎólx¾ÑMpKíÛèžn‚cLLÌå˗ݽZZZZ·n]™ëܸqã‘GÉËË‹‰‰éرã•+W¾üòË;w>óÌ3ãÆ³6oÞ¼ DGG·oß¾¨¨hõêÕ™™™QQQj× Ä1V² 7@Uº Ž-[¶ÌÎÎÞ·oßoû[‡—™ëlÚ´IñüóÏÛÚSRRÆŽk±X>ÿüsåHVVVeeeFF†’…S¦L‰‰‰Ù¸qcee¥Ú5\ôSÛ8Ï) ÆÄse†»ó5•²Îé%3€ÐÐM‹cçÎüñÅ‹:´E‹Bˆ­[·~ñÅGŽ©¬¬2dHß¾}e®SXXݪU+ûƒ)))BˆãÇ+?îÙ³'""¢G¶"##»uë¶~ýúÜÜÜvíÚ©]¾c£$ÏK]¼³ãÏ‘q.­Œ ÑMpBLš4©mÛ¶3fÌ8zô¨âäÉ“BˆÄÄÄ &ÈïU½páÂjÕïZiÅlܸ±Âjµ>|8>>>>>ÞþœÔÔT!ÄñãÇuîr‹8*¿ý—Ôèê3É¥"bοÂ=8Ðtpœ6mÚêÕ«m?î߿͚5>úè”)SÔ.BÄݰB7ÚY禋¹ gÔ—f0®h·«zË–-O?ý´¢G]»vµX,[¶lÙ³gbñâÅݺuS»€nÑU@^WUôð½î÷~Õº¡]¿fB˜&lózB‰vcÌ„%í¶8._¾\ñÈ#L:U92zôè‰'~òÉ'kÖ¬ÑrpD Ø¾³Ý5ÉôV; T©œ^øy8#QC_<ÿ¾t¼V(vwŽQvjyê©§lGL&ÓØ±c…j—:`ëζÿŸYSâ“Lö{ÀÈ\„,Ð#í¶8ž:u*...66Öþ`³fÍ„—.]R»tP™ýÞ€.˜»Aòk1ʶVº™ƒ°A£#Øh78Z­Öš5k:¬Q£†Úå‚îymt—,³Œþ‘ J´ÛU xåµßÙÃKîÞ+#ní›vw}wAXÑÆ@•h·ÅðÌÃW¾?ßôîVŽT>Q˜L’ëìØ.¤]m=‚#´KflYðÓvüÜ›‘Ñ4ñSùÎiw;_ GšާOŸNKK“?¾wï^µ‹ŒÀó0ýÅÃb=ý,fÀ5Îóß'ôS€=MG«ÕZ^^.áÇe‡¯å×¹Ó æØ†—síWδ»sŒ‹5¦¤¤¨]j!Ø9&8œ÷ªöz¾o›Êüò’›IÓ¤Æ0ƸðL»-ŽIоÅ}Ox¬³cT„EðL»Áð‡}w64™¬‚È€k¬ãˆ0W… `n.Íèan ýÔ##8"lyÞðÖC·¬æí²‘RYЛÔ02íNŽÑ/&Çh-ùyÙ9ÐýpƪNÇ ì1ÆaË]Ôû¹AÑÛ ’"ŽC^7™¬B˜&l#P%ŒqDxò:Fí ?´8Â0üØ6‚# ½ºªž~æHß4C‹#ÂuN/a2‰¹n[½Ìž®vL&!„iÂ6!„pµd÷-ë8iG„—›3`¬î7ª¤F|BpDèÈníÓ•­sÓ…²:£ÝÅÙ6Ÿ±å`à±å Kî†úãl‘Ñ6œÑeX ÔÇ`dÇÀ#8:s7¬Ðßá†wš&#XÇÀ#8:ðšá| yK3’,Æ8BonFFÓÄOù£€P"8BWØ6õ°s ‚K¦¿ØÝ¢9·^ÈdŸvY GÌGï¿eAï~.¨‚#‚K²ÙÏu³‹Œ'˜&~J. Ä誆&Ýì˜6MØfÓË9 *Gè‰ ”hqD(xhtþäfÀxnË”ldmp䱎càaǪæ-Ûù.7tùåà­«3JŽt¹®¸d©œËC|À‚cà…wpôg÷gO{U»ZÐ[æÊ.%ßåò4†Nà]Õ¨—¡ÊÖe,³>Ž«‹z߯—Ëúú.åvÈŽ8cr dyˆS>Æ,ÛÒŒ¡mö&à‚#£Ê«m"2)²r8.ÑU )ŒhÒ}Óö½ÆIŽ&CBà_ø¸ŠOÃ] d4¡GpDÕø8«Úï0î ŒìÈ H\"8¢ <Ϫvóß#£ýǹìªf$"¡Dp„ϋԸ͎r{ÀH 4÷ÜaV5‚öÔN0ù<ýÙÝM?%Sà-Ž¢Ä)Ï[üýÅ‚3œ1à\fG"#QîF*Ç­sÓÅ\DF‡bIGT™‹¼e2 !L¶…8ŠÑ­ @(1Æþ æ¶ìà€¦!Åu† ÉNÓî²#Í„]Õð‰Ó ˜àmíòâ¤FBÏdÕÏT½0›Íùùùj—"(L?µÎMB˜&lsxÉÿçy7jöª@u´8BšÉdusmWmŠÂ. ’PÁì&M»k ö¹ïØÝÚî:©€Z˜oäfÀø3šh€.ÐâhPR›¦ØÍ€qhù³{PcŸ»)ô-ᱩ :Bp4<ÛfÓžÏòï‚”ÿ<7:’;%‚£Ù"£ÜîARšŸ}Ê„?tÉ1†äqŒ¶ì¨YÕÂãnÔ‚yÓh ÁÑX¬sÓÅ\O‘Ñk ´å<‡#þÌ©9S¦šÙ3„ÁÑ0n¶2š&~Zå–Æ›1Îe˜ Tzs·ÐÑ 8ƒÝôiÌkJóðFòEyÈ”„Á1ܹÎèœå“_ˆãšË @ÇðåqŒË1…^/é<ÀÑáxœCi‰Œ¨‚àŽ$&M»œÅì!Ù¿ªJn#, :‚cx‘‹ŒÂ¿™(>4U€0@p #À(}zffæìÙ³_|ñEµ‹¶|h\dö ¡dÄ®êŽ9Ò]jBdeeUVVfdd(©Q1eÊ”˜˜˜7VVVª]|¡ÑM1b‹ãôéÓ¯^½*„X¶lÙ_|á|ž={"""zôèa;Ù­[·õë×çææ¶k×Ní;PYˆw׬Hs#!fÄàØ¥KåÛ·ow~Õjµ>|8>>>>>ÞþxjjªâøñãŽÝrÐ+— }3oU18zV^^n±XbccŽÇÄÄ!.\¸ s³ÙìpįݫµÁ]\ Á&.}ÖDFTAptTQQ!„ˆŽŽv8^§N!ÄÅ‹e.1Ñ%aÕÅÆÆšL¦òòr‡ã—.]7ÛáLi ^¼£ÅÕU«V-&&ƹe±¬¬La›gm4êÎDaŒ#Z@pt!))éðáÃeeeõêÕ³,,,T^R»tÆâ2#†`T%pfÄu½JOO·X,;vì°±Z­999qqqiiij—ÎpÜ¥CVy ÄŽ. ><""âÍ7ßTÆ5 !-ZtîܹaÆU¯^]íÒ©C•”F›"šBWµ ÉÉÉ“'Ož1cÆ AƒºvíZTT´{÷îV­Z=ñÄjM»T yÁž‘ìÑâèÚ˜1cfϞݼyó 6\¸paÔ¨Q™™™Î‹; ]ÙÉjµª]†pc6›ÃuGÚcdZiq dèªÖ„ïþìçÁŽZ.- ‚£úB¼û³ÿ´S0š%Æ8ªÌeô±ÎéÅZ3‚wЂ£šh0óÊ]v4Mü”Ú ÄèªÖ.Öš±¯çƒj— Ã!8ª†P(Š@ 誀‚#¤UÔa /GH!8ªÌC£#³g€¦0«ZMJ.ÔÝÎ1À˜Žêc÷g  GM )ícŒ#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁÑ­•+W><--­sçÎÓ¦M+--U»DaÂl6«]­£Š¼¢Š<£~¼¢Š<£~¼2l]›7oÞ /¼päÈ‘öíÛשSgõêÕüã+**Ô.€jŽ.äçç/Z´())iÓ¦M‹-ÊÎÎ=zô¾}ûfÏž­vÑTCpt!++«²²2##£~ýúÊ‘)S¦ÄÄÄlܸ±²²RíÒ¨ƒàèž={"""zôèa;Ù­[·óçÏçææª]:uY­ÖÇÇÇÇÇÇÇÛOMMB?~\í¨£šÚМòòr‹Åëp<&&Fqᙋv²•$êÇ+ªÈ+ªÈ3êÇ+ªÈ3êdzüü|µ‹ ‚£#eêttt´Ãñ:uê!.^¼èõ †}˜@x£«ÚQll¬Éd*//w8~éÒ%q³ÝÀ€ŽŽªU«ãܲXVV&„°Í³0‚£ IIIçÏŸW’¢Maa¡ò’Ú¥PÁÑ…ôôt‹Å²cÇÛ«Õš““—––¦véÔAptaøðáo¾ù¦2®Q±hÑ¢sçÎ 6¬zõêj—@&«Õªv´hÉ’%3fÌhÔ¨Q×®]‹ŠŠvïÞݲeË%K–8/Ó`G·Ö¯_¿nݺ}ûö5lذC‡ÊŠ<ÆDp€Æ8@ ÁRŽBp€‚#¤ …à)ÕÔ.€¾=zôž{îÉÊʺãŽ;œ_]¹reVVÖáÇk׮ݽ{÷É“'ÇÅÅ©]d­ÔÏý÷ßÿí·ß:LHHøüóÏÕ.u(TTT¬X±bÕªU'Nœ¨[·njjê˜1c:wîìpš‘!™*2òSôã?¾þúë_ýõ‰'[·n=~üø-Z8œfäGH¦ŠŒüÙ+))8p`¯^½fÍšåð’‘!™*2à#DpôËÒ¥Kݽ4oÞ¼ DGG·oß¾¨¨hõêÕ™™™QQQj—ZõS\\Õ¬Y3ûƒÙÑñÆ<òH^^^LLLÇŽ¯\¹òå—_îܹó™gž7nœí4#?B’Udا¨¬¬lÀ€gÏžMIIéÙ³ç©S§6lذyóæ+V´nÝÚvš‘!É*2ì#dÏjµ>÷Üs—.]r~ÉÈdñ²¢ê.^¼¸gÏž—^z)555555//Ïá„ï¿ÿþ¶ÛnëÚµëéÓ§•#¯¼òJjjêË/¿¬vÙ5Q?/^LMMýóŸÿ¬vIÕñÞ{復¦>øàƒåååÊ‘C‡uèÐáöÛoÿî»ï”#„dªÈÈO‘ò0Ì;×vdõêÕ©©©<ð€íˆÁ!™*2ò#doÉ’%ÊÿWOš4Éþ¸Á!™*2æ#ÄG_ 8päÈ‘|𻲲²*++322êׯ¯™2eJLLÌÆ+++Õ.¾úõS\\,„pøÍ86mÚ$„xþùçmµ§¤¤Œ;Öb±Øz7 þÉT‘‘Ÿ¢]»vEEE=õÔS¶#C‡mРÁ,‹rÄàLù²)((˜7oÞm·Ýæü’Á!™*2æ#DpôÅôéÓß~ûí·ß~»S§N.OسgODDD=lG"##»uëvþüùÜÜ\µ‹¯~ý !š6mªvIÕQXXݪU+ûƒ)))BˆãÇ+?ü’©"#?E±±±½zõªU«–ýÁš5k^»víÚµkÊ„dªÈÈâÆÏ>ûl\\Ü”)Sœ_5ø#$SEÆ|„ãè‹.]º(ÿؾ}»ó«V«õðáÃññññññöÇSSS…Ço×®Úw fýˆ›ÿ±:ujôèѬ]»vË–-ÇŽërŽQøY¸paµjŽÿé8p@ѸqcÁ#$QEÂØOѲeËŽìÙ³§¸¸øÎ;ïTÚhy„¼V‘0ö#¤˜?þÁƒ—,YR¯^=‡—x„¼V‘0ê#D‹cà•——[,ç±±111Bˆ .¨]@õ)Fo¼ñÆ™3g:v옰}ûö|0++Kí¢…BË–-•ÿóµÙ½{÷¢E‹jÖ¬yß}÷ !‰*†Š{÷î}á…FŽùðÃ7iÒdÆŒÊq!¯U$ ÿååå-^¼xÔ¨Q.»†x„„·*F}„hq ¼ŠŠ !Dtt´Ãñ:uê!.^¼¨vÕwêÔ©¨¨¨ &Œ=Z9òÅ_Œ;öÕW_íÒ¥Krr²Ú ‹ÅòÞ{ïÍœ9Ób±Ì™3'!!AðIT‘à)B‘ŸŸ¿jÕ*«Õ*„hÕªU5”ãù¤‡¡x„dªÈ°„ŽA‘””tþüyå?0›ÂÂBå%µK§2«Õj±XœWsˆŒŒBÔ­[Wí]eeåĉ333ÓÓÓ7oÞüôÓO;ÿEkðGÈkù)*((˜:uêÆŽ+“ÐOŸ>­ühäGH¦Š þ !Þ~ûmóMC‡B|ôÑGf³yÀ€Êi„¼V‘a!‚cP¤§§[,–;vØŽX­Öœœœ¸¸¸´´4µK§²¢¢¢–-[>üðÃÇ÷îÝ+„0›Íj0è–.]ºyóæ‡zè­·Þr÷‡»Á!¯Ud䧨^½zkÖ¬Y½zµÃqeI¹æÍ›+?ù’©"#?BM›6½÷VÊRÉÉÉ÷Þ{o·nݔӌüÉT‘q!µW ×·çŸÞåÎ('Ož¼í¶Ûúõë÷ÓO?)G,Xšš:sæLµ‹¬‰úyðÁSSS³²²lGrssï¼óÎ=zØv W•••½{÷nÛ¶mEE…‡ÓŒüIV‘‘Ÿ¢šÍæmÛ¶ÙŽB’Udä§è·¿ýí'Ÿ|òÆoìß¿ÿàÁƒ 4èӧϸqã”Íul ûIV‘‘!IF~„dó¢ÅR˜)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@J5µ žX­Ö^½z•””!Ö¬YÓªU+µKt‹É“'ôÑG .ìÑ£‡Ë   „ˆ‰‰ÙµkWdd¤ËÓþò—¿,_¾\ñÇ?þqâĉöo´g2™6lؼyó|ðî»ïv¾ŽÅbÉÉÉùðÃ:ôÃ?Ô¬Y³I“&©©©?üpJJŠÚµ@÷Ž4-//OIBˆO>ùÄçà¸sçN‹ÅÒ½{wµnäâÅ‹»víêÒ¥‹óK•••[¶lqù.“É”””dûñêÕ«%%%%%%Ÿþù°aÃ^}õUû“KJJ&Nœ˜››«üU^^þÍ7ß|óÍ7«V­ºï¾û¦OŸî.¹€ ‚#M[¿~½¢yóæ………Ÿ|òÉäÉ“M&“×™4iRYYÙwß}§Ê]DDDTVVnܸÑepÌÍÍ=wîœrŽÃKQQQ999öG~üñÇwÞyçÝwß]½zuß¾}mQøÜ¹s#GŽ,))‰ŽŽÎÈÈèØ±c‹-"""N:µråÊýë_k×®ŒŒœ>}º*5 <0Æ€vY,–7 !^~ùå:uêüðöæ4}iܸqBB–-[,‹ó«ÙÙÙBˆ¶mÛÊ\*66vêÔ©JϸR9ŠiÓ¦•””¤¤¤¬]»vôèÑ)))‘‘‘&“)99ùÏþóâÅ‹kÕªµjÕª]»v©]tŒà@»¾øâ‹ .4mÚ´C‡éééBˆ?þXíBù"22²oß¾JoµÃKV«5;;;66öw¿ûü»ví*„8räˆòcnnnNNŽÉdš1cFÓ¦MÏoß¾ý!C„~ø¡Ú•@ÇŽ´Ké§8p ¢_¿~BˆM›6¹l´Û¶mÛ¸qãºuëÖ¡C‡#F¬]»ÖÖí;sæL³Ù\ZZj±XÌfsZZšbòäÉf³Ù9ƵlÙò®»î²ýxîܹ¹sçöïß¿M›6mÚ´¹÷Þ{_{íµÓ§Oûp/JùíÛyyy§OŸîÝ»wµjU;¤T‚í×­['„=33SѨQ£„„„o¾ùfïÞ½_|ñŬY³„íÚµ»qãÆ|píڵѣGW¯^]²Ê¨ÁcÇŽEEE5kÖ¬²²òرcÿú׿6oÞ¼zõ길¸*ÝN»ví”Þê—_~Ù~†ŠÒOݯ_¿ýû÷K^Êjµ*“iRSS•#yyyBÏSâãã;vì¤_ƒ Å€Fmß¾ýòåËwÜq‡Ò÷Z½zõ^½z !6lØ`Ú–-[233“““×­[÷é§Ÿnذá£>JJJúè£>ûì3!D¯^½¦M›V»v툈ˆiÓ¦MžvìX¯^½>ÿüóuëÖ}ôÑG;wîlß¾ýÉ“'·mÛVÕÛ‰ˆˆèÓ§souvvv½zõ$#ݵk×:4qâÄ={ö!¬?qâ„¢E‹!þ0‚#Rú©•æFÅ=÷Ü#„ؼyóµk×lgÏž-„˜>}úí·ß®IIIÉÈÈB8ÌG®ª7nôìÙsÒ¤IÑÑÑÊ‘zõê)ýæEEE>\P)¿}oõ·ß~[RR⡟º¼¼Ülç7¿ùÍÀ?ùä!Ä£>ªôªÿôÓO—/_B$'';¼}À€f'ÅÅÅþ]0 ºªhQYYÙþóŸÈÈÈþýûÛvéÒ¥nݺ?ýôÓŽ;”¹2.\8vìXrrr§Nìß>`À€víÚÕªUËŸ2Œ7ÎáÈÙ³g•ÐæçÞêM›6 !úöíëî-ë8 !êÔ©“’’2tèÐnݺ)GjÖ¬©ü£´´´^½zö''$$üôÓO¶/\¸`Ÿ¹ ªŽ´hóæÍׯ_B¸ìÃýøã•àXXX(„hܸ±Ã 5jÔhÒ¤‰ÿÅ8yòäþ󟯿þúøñãÅÅÅ¥¥¥þ\Mé­~ÿý÷mÃ4³³³ëÖ­Û¹sgwoq^ÇÑY5âãã• í0¥úÝwßµÿñ÷¿ÿý7ß|ãµ0,‚#-Rú©›4iâЄvõêÕ‚‚‚íÛ·WTTDEE]½zU!?ßÅ3‹ÅbµZm?._¾ü•W^¹qãF“&MÚµk×»wïÖ­[¾üòË>Ä=÷Üóþûï++÷ÝwÇáäÉ“/½ô’ÿÀàŽ4G |ÊdgÊñ;v”••™L&eõÔ©S ”ŠŠŠ^{í5á4餲²²¼¼\ù·2réÒ¥¶#»wï~çwl'+SR¾ÿþûsçÎ)G,Ë|°lÙ2!DEE…Ïw§”þüùÊZ?¶©-~zî¹çbcc¿ùæ›Aƒ­]»V‰V«µ¤¤äÿþïÿ ðã?ú9[誠-EEEû÷ï7™LîæwéÒ%::úòåË[¶l6lذaþüòËõë×8°I“&µjÕ:räÈ7h?#;66¶´´ôÁlÒ¤Éüùóï»ï¾ÿûß¹¹¹ééé-[¶Bˆ¨¨(eËé@iÖ¬Ù‡~øÚk¯uïÞ=11ñÒ¥KåååÕªUëСòeËžzê©¶mÛóW ü™ì§€]¾|ùüùó76™Lj—%¬VëåË—«W¯¨Þp 8@ ]ÕBp€‚#¤ …à)GH!8@ ÁRŽòÿg@Á©žŽgIEND®B`‚statistics-release-1.6.3/docs/assets/sampsizepwr_301.png000066400000000000000000000345171456127120000232500ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A9IDATxÚíÝ”•uøñÏ òCçGÀå7‡bF¥S±Š›?øQ´ºáшݵˆ:´šmYh‡$öݵEžÐµÙ²ê±Ù<ñÃÓÑ3‹º( •ttdÎåf Áàzœ¹ß?î:óóaæÞû<÷¹¯×xæ>÷>Ÿxóy~ܲL&`(åqoÅA8‰p á@$€H„#‘G"ŽD"ˆD8‰p á@$€H„#‘G"ŽD"ˆD8‰p á@$€H„#‘G"ŽD"ˆD8‰p á@$€H„#‘G"ŽD"ˆD8‰p á@$€H„#‘G"ŽD"ˆD8Éè¸7 @6nÜØØØØÒÒ2nܸ¹sç®X±¢ªªªßWž8qâ=ïyÏ@ï3}úôÍ›7ǽ71(‰p\·nÝwÜ1~üøY³fµµµmÚ´é¹çžÛ°aÃØ±cû¾¸¬¬ìœsÎé»üÕW_}þùç+**âÞ€x”e2™¸·!¿š››¯¸âŠI“&Ýwß}“'O!¬^½zÆ K–,¹ù曣¿Ïw¾óüàï|ç;ãÞ'€¤ÿÇÆÆÆ®®®åË—g«1„°råÊŠŠŠ­[·vuuE|“gžyæ?øÁ§?ýiÕ”¬ô‡ã®]»ÊËËçÍ›×½dÔ¨QsæÌiooß½{w”wèìì¼é¦›Þþö·ÿã?þcÜ{›”‡c&“iii©®®®®®î¹¼®®.„pàÀ(orÏ=÷ìÛ·ïË_þò˜1câÞ!€Ø¤üæ˜ŽŽŽÎÎÎÊÊÊ^˳÷¸>|xÈw8~üøí·ß~Á\tÑE?´¾¾>îýò«¹¹9îMˆAÊÃñĉ!„ñãÇ÷Z>a„‘#G†|‡ýèG/¿üò 7ÜpRŸ[šÿ1%Y}}½AIƒ’LÆ% J•ì$QÊOUWVV–••uttôZ~ìØ±ðú¼ã þô§?Ýyç³fÍš9sfÜ»³”‡ãèÑ£+**úÎ,=z4„Ð}Ÿõ@6oÞ|üøñ+¯¼2îýˆ_ÊÃ1„PSSÓÞÞž-Ån­­­Ù ¾îÆÇŽ»`Á‚¸w ~éÇùóçwvvîØ±£{I&“ijjªªªütssó¾}ûÞÿþ÷÷½D ¥?/^\^^¾~ýúìu!„†††C‡-Z´¨ûñ:Çomm=xð`Ï›ššB\pAÜ{)¿«:„0uêÔ+V¬Y³æòË/Ÿ={v[[ÛÎ;g̘qõÕWw¿¦©©éú믟>}úæÍ›»>òÈ#!„óÎ;/î= ¶mÛ÷&ЛAI&ã’@…äH8†–-[6iÒ¤ûï¿Ë–-S¦LY²dÉòå˳OäÈ+¯¼²{÷îÓO?ýïxGÜ›%Ž!„… .\¸p Ÿ^vÙe—]vYÏ%§žzê“O>÷V$Hú¯q '„#‘G"ŽD"ˆD8‰p á@$€H„#‘G"ŽD"ˆD8‰p á@$€H„#‘G"ŽD"ˆD8‰p á@$€H„#‘G"ŽD"úWV÷$Œp áÐÓ} G"ŽD"ˆD8ôVV2™¸7"y„#‘G€þe2î­~á@$Âà \à8áprž}¶9îMˆ‡p8 ee¡®®>î­ˆ‡pŠŒVâ"€d¼ ó].p„p á$HÂOC—ø|¤p áðJ|BqHÂ(…;ß:Ø“p’"á~ ß¼ŽD"€d‰ëì° Å!Ž{€¸õÊ´¤ÖSwØeËòd73»—Iݹâ  ´õM°˜fÞ>á—ðÍ+ §ª „õ[Cn$ff T 2‡6¼“ÁŨG"gºÿ‡˜q€’Tl]8ÂííõìÒL&d2e!cªuHÂèOº+ª¬ì¤NÓ[fç‹pB1Wb e6øizú#€Ó§RM(F$€¤ËËŽƒx㤣¦ìV*wUoܸ±±±±¥¥eܸqsçÎ]±bEUUÕà«<ùä“ßÿþ÷÷íÛwìØ±úúúë®»î/ÿò/ãÞÈ‘7Þ7ÝϹY³p=ø“È*‰ÇuëÖ­Zµêù矟5kÖ„ 6mÚtÍ5ל8qbU|ðÁ«®ºêÁœoÞ¼î%£Fš3gN{{ûîÝ»û]å¿þë¿ÊÊÊ®¸âŠž o¹å–æææw¿ûÝqïäÔëϾþ¿'`')s¢Ÿî¼:éÀR~sL&“iii©®®®®®î¹¼®®.„pàÀóÏ?¿ïZO=õTUUÕgœñ«_ýjÏž=üãÏ>ûì|àcÇŽ{‡ _âú–Á‘ß1˽u’zP)ÇŽŽŽÎÎÎÊÊÊ^Ë+**B‡î»Ê«¯¾ú§?ýéïxÇ×¾öµ{ï½·{ù™gžùÝï~÷ï|g”Ï­¯¯ïµdÛ¶mqÿa”´ƒƽ ôfP’ɸ$PA¥¶µµõ¿È¥iÓj÷ïämúÐ!·*»¼6„0èf÷Zýõßîß_[V²ßNýz}¶îßú¼Õ‚ rþgR¤RŽÙ[§Çßkù„ BGŽé»ÊŸþô§BKKËþð‡5kÖÌ›7ï•W^¹ï¾ûn»í¶/|á ›7oŽ2ïØÜÜ÷®Ó[mmmÜ›@o%™ŒK`Pº?"矕ümúimmíë3€µƒ¯xRïÿçßf2½fû}—¾­÷!*)¿Æ±²²²¬¬¬£££×òcÇŽ…×ç{9õÔS³¿ø×ý×+®¸¢²²òŒ3ÎøÜç>wå•WùÃþ°¢¢â¯þê¯âÞ! Ý™s)¿«:„0uêÔ+V¬Y³æòË/Ÿ={v[[ÛÎ;g̘qõÕWw¿¦©©éú믟>}úæÍ›CçœsÎ 7Üðï|gÁ‚çŸ~GGÇ®]»ÊÊÊV¯^ýæ7¿9‰7­bùô¸W™éDzeË&Mštÿý÷oÙ²eÊ”)K–,Y¾|yö‰<ùô§?=qâÄ 6<úè£UUUóçÏ¿îºë¦OŸ÷®@©òKGòqÊ2þÌr­¾¾Þs“¦µµÕ£é’Æ $“qI ¼J¯xÊmKu¿Û@o›Ã;©oÉ.ɧ—ìßõé¿Æ(A&óA8@‰*XZ yÒ™b!€ÿSÈÂ+ÁûrR@8‰pú1©ÇOéõš+5¡˜'€H„#”¢¿ÄÐ|äðGH§‘ßæ’Ö[¡Uã° GH¡x¯P,ñéÌŽD" ä˜dx„#Ä ­—’nÂÒ&Þ+M(¦˜pò®`_f([óJ8@¡9OM‘Žƒ‚ÍÀõ5øœÜÓuÅõU„ä–pÞ ß혿ÍN憥‰p€T)ñGí˜ÎÌ+áédŽœŽPPE4#Ø7==©§Ä G %Ti¾ GH"šÎ¤ G"Ž@˜,v §¨O%pu՘€H„#¤DQOgR„#‘GˆG¿Ùų»9á’šöòe†%K8#•š&fpÂÒ ßt35HnŽ{€äêNOŠ3ŽP#¿7%ÆO‡,áÅÁIgb' FÒ…ýMaGˆŸÙDŠ‚p€”ùŒ  E²„#äÀàS†¾µ…tŽÀð‰Ú’" f ŸÔ…tŽ0R%xk‹ï¤)M¾9b%¿¦M«ÉœŸùBrÈŒ#%!Æé±_˜â]£_€ôKñIUéF! G‘lºäš?åG±Žn7!ù„#$WYYØ¿¿5ûkeIì„#äÑ× õyê¢Þx†A8r)¾}$Å»F2 G¾RN·’ÝñR&ˆD8@¾$üK¨ád GPY™™áÏ„#i–âI»ï‰%(i#™P”n”á@éJòihUJ GJBá¿vEù‘>Âú—äòKò¶‘b€"6ø$bëÊwI“z£ãÞ€Ù¸qccccKK˸qãæÎ»bÅŠªªªA^ÿ‘|äÉ'Ÿìµpâĉ<òHÜ»@"ä£J³é9ÈÛùÈ«’ÇuëÖÝqÇãÇŸ5kV[[Û¦M›ž{î¹ 6Œ;v U^xá…±cÇžuÖY=VVVƽ+äL¶À’9G¨I¦ô‡csssCCCMMÍ}÷Ý7yòäÂêÕ«7lذvíÚ›o¾¹ßUŽ=zäÈ‘K/½ô»ßýnÜ›À€’Ù|ÝÛ¦üHŸô_ãØØØØÕÕµ|ùòl5†V®\YQQ±uëÖ®®®~Wyá…B½¦()I.¿$oé–þpܵkWyyù¼yóº—Œ5jΜ9ííí»wïîw•¶¶¶ÂÛÞö¶¸·€áSWs)ÇL&ÓÒÒR]]]]]Ýsy]]]áÀý®• Ç_|qéÒ¥³fÍš;wîg>ó™_ÿú×qï @ñIòÙäî—*¥¥üÇŽŽŽÎÎξ7µTTT„>ÜïZÙ ¼õÖ[kkk/¼ðÂßþö·=ôPSSÓ×¾öµ¿ýÛ¿ò¹õõõ½–lÛ¶-î?Œ’vðàÁ¸7Þ J2åv\¦M« !´¶¶æm{k÷ïo-+«Ý¿¿ß¨íóÑ^2mZíþýÙßÕ°…ÝËû}ÁðÖŠ´Seeáõm ¡ŸAÉ÷Ÿ*½-X° îMHŠ”‡ã‰'BãÇïµ|„ !„#GŽô»Ö‹/¾8vìØn¸aéÒ¥Ù%>úèµ×^ûo|ã’K.™:uêŸÛÜÜ÷®Ó[mmmÜ›@o%™r>.yè×çüjùˆ¾Ë{.Éþ:“ eeµýNþ‚A>´ç¶åämð!ßúþµÞw†¨D¤üTueeeYYYGGG¯åÇŽ ¯Ï;öõãÿxïÞ½ÝÕB¸è¢‹>þñŸ8qâ—¿üeÜû@Þ%üLt’·tKy8Ž=º¢¢¢ïÌâÑ£GCÝ÷YGqÁ„ž}öÙ¸÷ €¡%¼ü H¥<C555íííÙRì–½4¤¦¦¦ïë3™Lgggß'õŒ5*„pÚi§Å½CÄ,Þ*ÄÄ(ýá8þüÎÎÎ;vt/Éd2MMMUUU3gÎìûú¶¶¶sÏ=÷ŸøD¯å{öì %|MÀÉJàœ_÷÷Ä$pÛzndb· ÒŽ‹/.//_¿~}öºÆBCCáC‡-Z4f̘ì’ãÇ·¶¶fo[;묳Î;ï¼Ç|ãÆÝo²gÏž;ï¼sêÔ©üàãÞ!’[~¾KštKù]Õ!„©S§®X±bÍš5—_~ùìÙ³ÛÚÚvîÜ9cÆŒ«¯¾ºû5MMM×_ýôéÓ7oÞBøêW¿ú©O}jÕªU÷Þ{ï´iÓ~ûÛßîÝ»wܸqßüæ7ùzkÒAùÁ@Ò?ãBX¶lÙÚµkkkk·lÙrøðá%K–lذ¡ïû}öÙ?ûÙÏ®¸âŠC‡mß¾ýÈ‘#W\qÅæÍ›ßûÞ÷ƽ+ MùAž”e[¹V__ï9ŽIÓÚÚê™gIcP’)‡ã’­·<5\Ï·íûƒ|h¿[5øo‡ü¸A¶-', T²×—ÄŒ#–ä9¿|o[bwFN8ƒ‘|‡u’«ÒM8Ph#©Æl›*…Gò¨ûщ£ü „#Å­mªJ)q€ÒÒ·ü†LÏÂÏ›B2 Gr,¯Ór#|só…0€‚JòÙÞ$o$p =’<Ù ) ˆD8‰p —œ,†Ž‚*…„#…Óg=1Éßa-+A8‰p )’üí,¦!Gr¨¨ïŒ‘†0$áª"ŽäW÷}0ù›2Ì~„øƒ|ŽD"ˆ*¯7¯˜2„äŽäFQßD!8 ‰}bެ„ŽBÄ)þQHá@$€H\ÂG€â,00 TïÃtÌGBBG€ôHò„bßòs á@$€¡ðdñàë: ÅB8¤„Ó¾@¾ G€’P¼7¯˜„äŽD"ˆD8'g¢¡ˆG€4p•!P @Òq×sß§vç<+{~„f…DŽ…“ïvè»XºóË—µ#!ˆD8'g¢¡ˆG“׫ U#áPôÒzIZ÷ Š—p(„È“z€\ŽD"ˆD80 g¢ž„#I¤Y!„#@qKëm7@ G€¼Óv@:G"ŽD"JWYÙ?í÷4w&3ÄŠ#—É8ÃI$ŠXß¶²êr•}®ž„$ §su=i; ·„#@~©7 5„#@‰*äÜ'€~˜(úŽ¥k$×\ÊJ(A X™ ¬TÂqãÆ‹/ž9sæÅ_|ÓM7½üòËÑ×ýÝï~wÞyç­X±"îŠ/Ò¤$Âqݺu«V­zþùçgÍš5a„M›6]sÍ5'Nœˆ²n&“¹ñÆ;÷NäÒ³R’BiJ8677744ÔÔÔlÛ¶­¡¡aûöíK—.}â‰'Ö®]eõÿøÇ?þxÜ;”¨¸n|6[ ô+ýáØØØØÕÕµ|ùòÉ“'g—¬\¹²¢¢bëÖ­]]]ƒ¯ûÜsÏ­[·îì³ÏŽ{'€¤üTuaþüùÍÍÍ;vìø›¿ù›ì’L&ÓÔÔTUU5sæÌ¾¯ÛÛÞÖýʬ#GŽ<üðÃS§N9sægœ÷Ä#ýá¸xñâ;î¸cýúõsçÎÍÞÓÐÐpèСø‡3fLö5Ç饗ƌóÖ·¾õ’K.¹ä’Kz¾Ã¾}û~øáóÏ?ÿ[ßúVÜ{$ÈàÓ~År¥`v´(6ˆ]úÃqêÔ©+V¬X³fÍå—_>{öì¶¶¶;wΘ1ãꫯî~MSSÓõ×_?}úôÍ›7ǽ½@IHìM9ù»ÁHô‡caÙ²e“&Mºÿþû·lÙ2eÊ”%K–,_¾<;û”²Äδuo˜é@ QÊ2þ)×êëë=Ç1iZ[[=-i’0(ÝM6¼8ö©êìDã Ýsaßä<%ÿ8b—„ƒ…^JöïúôßU ? <× ?Â`8ÌÌ%H8ä^‘feYYØ¿ßWTŽ1(ƬŽ@‰Jì¤`b7 @8ÚHºPV1Ž'M½¥I8äøK\d%VÂH-Y<)z’pHõ$™pÒiðéÆ"í³"Ýl 5„#@©Ëí%ž@Š G€“cÚ(Y —rž•›TÃÀ„#@œœ&ŠˆpHŠÁg+"b'„É<\Á Ì|!PR„#æ2H„#ÀIp¾(eÂH­ÂŸG–•@º G ‰JðÂAÑ $Ÿpâ1mZmÜ›PLd%ÂH¨aŸhöP€<Ž!x°@ˆMÑ…š¹L Ä G"Ž@ ÊÊÂþý­ƒü´Ô¦î†ÜåRû’I8$jB8©â2D€üŽ‘ˆNá#ÉJ=  á?íáZÊÎùzr8P:„#,)ËJ€4Ž@z¸¥ ¯„#f¹:ìÝA8‘p á@$Â(¨“º央Pù½/þ ÒŽ@‰Ž@l ùD·TŒœp‚èÈŽD"ˆD8‰p g$_ XV6Ø4.C(á¤ßH²R’tŽÀÉ)ØtHá@$€H„#‘Gà$ŒäÇÞR=ìŸf2înÈ á0 ·Tô$7pÓ4Ž–ÉHg€ G Ñ”@rGàä(9€’5:î ŠF>¾¸¯;CçaßR×þ¤’GàÏL%0á¼A’ÏD'yÛJA©œªÞ¸qccccKK˸qãæÎ»bÅŠªªªA^ÿÇ?þñ»ßýî¯~õ«ƒNš4éï|çu×]7mÚ´¸÷ 6%1ã¸nݺU«V=ÿüó³fÍš0a¦M›®¹æš'N ôú£G~èCº÷Þ{Cï{ßûÞüæ7oÙ²eáÂ…O=õTÜ»¥È…† ‘þplnnnhh¨©©Ù¶m[CCÃöíÛ—.]úÄO¬]»v U¾÷½ïýá¸öÚk7oÞ¼nݺŸüä'ßüæ7_{íµ¯ýëqï @lÒŽ]]]Ë—/ŸüáŸqÆûöíëììŒ{‡ ø y{rÎoÖ.À6” ô‡ã®]»ÊËËçÍ›×½dÔ¨QsæÌiooß½{w¿«TVV¾ÿýï?õÔS{.<å”S^}õÕW_}5î‚|<•„)¿9&“É´´´TWWWWW÷\^WWB8pàÀùçŸßw­»ï¾»×’]»v½ð ïyÏ{ÆŽ÷>Á`¢<†'åáØÑÑÑÙÙYYYÙkyEEEáðáï¾gÏžM›6µ¶¶îÙ³çÿý¿ÿ·fÍšˆŸ[__ßkɶmÛâþÃ(iŒ{ ¦6„ÐÚÚ:¼u__±¶¿wè¹°ö$?¢Ÿ×wÊþýádÞ¬×[ì–Dÿˆ|¼s(¥ƒ¥h”Ø-X° îMHŠ”‡cöÖéñãÇ÷Z>a„‘#G_½¹¹ù¾ûîËd2!„3f¼éMoŠø¹ÍÍÍqï:½ÕÖÖÆ½ E°³Ý+öû=žìG ù†Ã~«|Œlö=Kê¿™¾»O¢”xõýk½ï Q‰Hù5Ž•••eee½–;v,¼>ï8ˆ¿ÿû¿úé§~øáo¼qûöíW]uUvE ÜP`)ÇÑ£GWTTôYëA”••Mš4iÙ²e÷w÷?ÿó?Û·o{Ÿ È]„×ÖRÊÃ1„PSSÓÞÞž-ÅnÙK—jjjú¾þ¹çžûò—¿¼uëÖ^Ëg̘Bøýï÷A^¸¥€!¥?çÏŸßÙÙ¹cÇŽî%™L¦©©©ªªjæÌ™}_úé§ÿÇüǦM›z-á…‚«L€–þp\¼xqyyùúõë»/Olhh8tèТE‹ÆŒ“]rüøñÖÖÖìmk555õõõ?üðƒ>Øý&Ï<óÌ=÷Ü3a„Y³fŽC0 ó‚äUÊïª!L:uÅŠkÖ¬¹üòËgÏžÝÖÖ¶sçÎ3f\}õÕݯijjºþúë§OŸ¾yóæÂ׿þõ~ô£ŸùÌgfΜùÖ·¾õ¥—^úÕ¯~B¸å–[&Nœ÷Aü2™”GjŠw `$ÒŽ!„eË–Mš4éþûïß²eË”)S–,Y²|ùòìyúõ®w½ë¿øÅ­·ÞúÔSO=ýôÓgœqÆ_ÿõ_ö³Ÿ>}zÜ»üŸt—+@2•eü_o®Õ××{ŽcÒ´¶¶–Âõ©Ù–^QõZkð߆ÈÝ6Ȉ=(#ÙM†T"Kq1( T²×§ÿG`„†¼á€!³wD"!%bŒ?“Ž%B8‰pŠs뱎6Ù;Ž“@Þ¤Œpã;¬è&¡Ô‰?"ŽPP 9‰ à ! JmÖ°¤v 9„#‘G /ò7 jº .Â[ªèI8BáŒäΘ<ÝU3ìø“Œ%H8‰p„¢ç”1…!¡ ’ó}€éØN I8BHàÅ‘¡ÇeŽ}+Ó$(@* G`@„„#H'á¸I$™p áÅaxw«¸Á€ŽPÜú=Ýœ“{¢‡}Ûp€´Žt: €„ŽD"¡D™Èàd G(„+ÍwÀ+ÂRËœ"¹%¡ˆ%0 ¸IäŠp á‰f€äŽPŠô(à pï6@)Žw½¦÷ ÖXæÈ-áÅ*§›¸Iäp„tpäœp„ä2@¢GˆSYÙI\‹#õ(Ã#ˆD89c" Ý„#äWžÎ ;Ý @á GH?Oç '„#DRøð*º9ÅâÚZ†A8Bi)º 9„# -OÓ€â"ˆD8B¹¥€4ŽD"!‰Ì)@ÂJˆ`$„#©R,¹Î>‘[ÃP\„#„0hq*<ÈŽPd„,qŽ0"#Ÿª<©/’–ŒÄH8’Årc”ñôGH8B¤âìw^p$©ªá(:€H„#™áMUšà`ä„# ÆuÐM8’*'u‡r^%°8“¶=Ñqo@lܸ±±±±¥¥eܸqsçÎ]±bEUUÕ ¯?qâÄOúÓûî»ïàÁƒ§vZ]]ݲeË.¾øâ¸÷ƒaš6­¶X²)Å Y%ŽëÖ­»ãŽ;Æ?kÖ¬¶¶¶M›6=÷Üs6l;vl¿¯íµ×>ùÉOîÝ»·¢¢â /|å•W{챇~øóŸÿüg?ûÙ¸÷†ë5ŃKÿ©êæææ†††šššmÛ¶544lß¾}éÒ¥O<ñÄÚµkZ¥±±qïÞ½çw^SSÓ¿ýÛ¿ýèG?úÙÏ~VYYyÛm·=ýôÓqïý+|ö MJMúñ±±±««kùòå“'OÎ.Y¹reEEÅÖ­[»ººú]eÛ¶m!„¯|å+ÝS’Ó§O¿öÚk;;;y䑸wˆdIÎU•oéÇ]»v•——Ï›7¯{ɨQ£æÌ™ÓÞÞ¾{÷î~Wimm?~üŒ3z.œ>}záÀqï'mØagNzJù5Ž™L¦¥¥¥ººººººçòºººÂÎ?ÿü¾k}ÿûß=º÷ŸÌ¾}ûBgžyfÜûDPœ¤RÊñ£££³³³²²²×òŠŠŠÂáÇû]ëÜsÏíµdçÎ §œrÊW\åsëëë{-Éžþ&Ÿj[[[ßø‹?ÿè¿þkGYÙìýû[OvÅ7.è·C®uã§M«Ý¿ÿ$W-ZŒ{è‡qI ƒ» Ľ I‘òpõ©úH¨.(€”‡c¡¦¦¦¥¥åèÑ£§Ÿ~z÷ÂìEd555ý®ÒÕÕõÅ/~ñøÀ>ðOÿôOƒô%@éHÿãxæÏŸßÙÙ¹cÇŽî%™L¦©©©ªªjæÌ™ý®r×]w=ðÀýèGo»í6ÕXìrx2:â#MVéÇÅ‹———¯_¿>{]c¡¡¡áСC‹-3fLvÉñãÇ[[[³·­e2™»ï¾û´ÓN»ñÆãÞö’SâOÒVœ$\úOUO:uÅŠkÖ¬¹üòËgÏžÝÖÖ¶sçÎ3f\}õÕݯijjºþúë§OŸ¾yóæ?üá/¼ðÂØ±c?ö±õ}·+¯¼rÉ’%qï@ ÒŽ!„eË–Mš4éþûïß²eË”)S–,Y²|ùòìyúÊÎ;ž8qâ©§žêûS7Vç[Q̺ÅF@ΕD8†.\¸páÂ~zÙe—]vÙeÙ_ÿÅ_ü…§0–ý'%ý×8Rx¾T±WÿE¼…¥¯a¯%B8’Å^` y08$Šp$Í “q¹šªTœ$œp$)ÌÕ@ G89y \Ñ @ò GJ” N8Y‘Rá¦i!áHŽx&/ç–jè—p áHj™ÿ€ÜŽ$‚È€ä+•惘œP·”23Ž”"œ0 ÂÞÀ-Õ0áHÓjPH‘dÉÕcº5%äœp$—’kÃÞ†$l<$–p$~ ÉÍ‘(öí€(„#%'OªH=áH^äêRÅX¶è—p¤X >q¨ÿ ç„#‘G­HÏw@* GJHñ^y I É™áÝ­\øgñ¸ü†G8’\f Q„#‘GŠR ¾lŠŽp¤´ÈM6á@$€H„#ýÆíÌÅò,`Ø„#‰“}L·¦€¤Žô–¨§'öû]/šb!ˆD8r5 ˜p$_ú=Ë /á@$‘¨™>ô,(‘„¨)å&ÄE8‰p áÈdOÇ~C´“Ñ@€H„clv0‡3‘îq€¢#‰dÎ+dÊMˆ‘p áXôRÿµ~±ß©d ÇR¤Ã€aŽD"ù³‚Ýzâ»­  G"Ž%g8ûY<îk€4ŽD"ˆD8Rܱޥ(ÞK% )áXܲ–“ÔsÀà„#ýsC4Ћpääô J“”PR„ciFê©C «TÂqãÆ‹/ž9sæÅ_|ÓM7½üòËWÜ¿}}ý¯ýë¸÷ ¤e¯ãâUá¸nݺU«V=ÿüó³fÍš0a¦M›®¹æš'NDY÷®»îŠ{óSÅü%¯Ñqo@Þ577744ÔÔÔÜwß}“'O!¬^½zÆ k×®½ùæ›ZëèÑ£Ï>ûìÏþóŸüä'qï@"¤Ʊ±±±««kùòåÙj !¬\¹²¢¢bëÖ­]]]­µpáÂ}ìc¥Sù›tw6¤FúgwíÚU^^>oÞ¼î%£Fš3gÎÏþóÝ»wŸþùý®µzõêÿýßÿ !Ü}÷Ý>úhÜ;‘DN:@©Iy8f2™–––êêêêêêžËëêêB(/¹ä’ì/z衸w RŽ•••½–WTT„>œ§Ï­¯¯ïµdÛ¶m9ÿ”iÓj÷ïommÍþ®¶ûWÃz}¿«×–•…«ôzñПØëÍ߸uðàÁ>•A”d2. dPb·`Á‚¸7!)RŽÙ[§Çßkù„ BGŽÉÓç677fkkkûýõ0^?Ðêý.Ï.Œò‰½Þ$ú*yý³"! J2—2(ñêû×zߢ‘ò›c*++ËÊÊ:::z-?vìXx}Þ€(RŽ£G®¨¨è;³xôèÑB÷}Ö )åáB¨©©iooÏ–b·ìuv555qo]^DyüÍ¿rÚ-ÕP‚ÒŽóçÏïììܱcG÷’L&ÓÔÔTUU5sæÌ¸·®„hM(véÇÅ‹———¯_¿>{]c¡¡¡áСC‹-3fLvÉñãÇ[[[ݶ0ˆ”ßUB˜:uêŠ+Ö¬Ysùå—Ïž=»­­mçÎ3f̸úê«»_ÓÔÔtýõ×OŸ>}óæÍqoo?¢ÌÕeO=w¿¬ï*9œðóe0PšÒŽ!„eË–Mš4éþûïß²eË”)S–,Y²|ùòìy„3Ë@Oeukõõõ¹}Žc¿“…Í)öüß(¯¹ú0;Cãk­­­ž‚–4%™ŒK”ÊùßõÅ"ý×8’þ…ÅN8–:7; Ǥs €H„cIˆý|´³áÂ1A:+í¹‰@ÇT‰}fH1áX”rˆBˆN8‰pLŠÜ^Åå²HsÀIŽéç|4Â1Ñ4±¤©R :á@$Â1AFø ïLÆ "GÂ1ïâýÒWI¹"‹b! Á7M) ˆD8&ÂgŸGxß ÀÈ ÇäᵌZÈ-á˜rn£rE8‰pŒÁHÎ {á˜fÈ!á@$±ÐÜé )á@$Â1Yº¾è& i„c1Q“@Œ„c~EI=9á@$±z}m´o‘Š‘p,NgñŽD"“h ÛeL:1ŽD" Ê“w€â%c&%€b!ˆD8‰pLg®€dŽñüËc´#@€H„#‘Ç8yPD„c ~Q#@ò G"ŽåÄ4P¼„c¹„Há@$€H„cœœÈŠˆp,œ^™¨€â"ˆD8‰p á@$€H„#‘ÇmܸqñâÅ3gμøâ‹oºé¦—_~9î-bø,X÷&ЛAI&ã’@…äŽý[·nݪU«žþùY³fM˜0aÓ¦M×\s͉'âÞ.€ØÇ~477744ÔÔÔlÛ¶­¡¡aûöíK—.}â‰'Ö®]÷¦ÄF8ö£±±±««kùòå“'OÎ.Y¹reEEÅÖ­[»ººâÞ:€xÇ~ìÚµ«¼¼|Þ¼yÝKF5gΜöööÝ»wǽuñ޽e2™–––êêêêêêžËëêêBˆ{â1:î HœŽŽŽÎÎÎÊÊÊ^Ë+**B‡Žò&õõõ!„ººP_÷þðºzƒ‘<%™ŒKB8ö–½uzüøñ½–O˜0!„päÈ‘!ß¡¹¹9îÈ=§ª{«¬¬,++ëèèèµüرcáõyG€${=ztEEEߙţG†ºï³(5±555íííÙRìÖÚÚšýQÜ[áØùóçwvvîØ±£{I&“ijjªªªš9sfÜ[áØÅ‹———¯_¿>{]c¡¡¡áСC‹-3fLÜ[²L&÷6$ÑwÞ¹fÍš·¼å-³gÏnkkÛ¹sç¹çž{çwö}L@‰ŽúùÏ~ÿý÷?ñÄS¦L¹à‚ –/_ž}"@iŽDâG"ŽD"ˆD8‰p á@$€HFǽé±qãÆÆÆÆ–––qãÆÍ;wÅŠUUUqoT ùÈG>òä“OöZ8qâÄGy¤çÃTû÷ï¿ôÒKßýîw÷ýi”!0Lù0ȸ8| ìĉ?ýéOï»ï¾ƒžvÚiuuuË–-»øâ‹{½ÌÁRHQÅ‘„c®¬[·îŽ;î?~ü¬Y³ÚÚÚ6mÚôÜsÏmذaìØ±qoZ©xá…ÆŽ{ÖYgõ\Øë+" SaÜu×]ý(ʦ<d\>…ôÚk¯}ò“ŸÜ»woEEÅ…^øÊ+¯<öØc?üðç?ÿùÏ~ö³Ý/s°RÄAq¤„B†{æ™gÎ>ûìÙ³gÿþ÷¿Ï.ùú׿^WW÷/ÿò/qoZ©8räH]]ݾð…A^c˜òíÈ‘#»víúêW¿ZWWWWW·wïÞ^/ˆ2†)熇OÝsÏ=uuuW]uUGGGvɳÏ>{ÁœsÎ9¿ùÍo²K,eP)Y®qÌÆÆÆ®®®åË—Ož<9»dåÊ•[·níêêŠ{ëJ /¼Bèõ¯À^ S¾-\¸ðcûØO~ò“^e SÎ 9.ŸÛ¶m[á+_ùJ÷ÔôéÓ¯½öÚÎÎÎî3ž–‹2(Ž”,ᘻví*//Ÿ7o^÷’Q£FÍ™3§½½}÷îÝqo]Ihkk !¼ímoä5†)ßV¯^}ûí·ß~ûí]tQ¿/ˆ2†)熇Oµ¶¶Ž?~ÆŒ=NŸ>=„pàÀìo,eP)Y®q©L&ÓÒÒR]]]]]Ýsy]]]áÀçŸ~ÜÛ˜~ÙãùÅ_\ºtéÓO?=nܸsÏ=÷Úk¯í¾ À0À%—\’ýÅC=Ô÷§Q†À0åÃàã>÷ýïôèÞùîÛ·/„pæ™gK†”àHyÇ‘êèèèìììuml¡¢¢"„pøðá¸7°$dÿExë­·¾ôÒK^xáĉzè¡«®ºª±±1ûû(C`˜báð)°sÏ=7[ÝvîÜÙÐÐpÊ)§\qÅÁÁ‡!%8R^gÆq¤Nœ8B?~|¯å&L!9r$î , /¾øâرco¸á†¥K—f—<úè£×^{í7¾ñK.¹dêÔ©†)vQ†À0ÅÂá£ÎÎÎ{î¹ç–[néììüö·¿=qâÄà`‰[¿ƒ)¯3ã8R•••eee½–;v,¼þï òíÇ?þñÞ½{»æÂE]ôñüĉ¿üå/ƒaJ€(C`˜báð‰Ëc=¶páÂÕ«WOœ8ñ‡?üáe—]–]î`‰Ñ@ƒ)¯Ž#5zôèŠŠŠ¾ÿ’8zôh¡û¾* ï‚ .!<ûì³Á0%@”!0LÉáðÉ«W_}uõêÕŸøÄ'~÷»ß]wÝu[·níyë’ƒ%ƒÊ@JðHŽ9PSSÓÞÞžý/£[kkköGqo]úe2™ÎÎξO:5jTá´ÓNËþÖ0Å.ʦsø^WW׿øÅ 6ÌŸ?ÿøÜç>×÷ÑЖrP)Ý„cÌŸ?¿³³sÇŽÝK2™LSSSUUÕÌ™3ãÞºôkkk;÷Üs?ñ‰OôZ¾gÏžB}}}ö·†)vQ†À0˜Ã§ðîºë®xà£ýèm·Ý6Ð,”ƒ¥À†GJ7ᘋ/.//_¿~}ö:†BCCáC‡-Z4f̘¸·.ýÎ:ë¬óÎ;ïñÇ߸qc÷Â={öÜyçS§Nýà?˜]b˜be S9| ,“ÉÜ}÷ݧvÚ7Þ8ÈË,…eP)ÝÊ2™LÜÛwÞyçš5kÞò–·Ìž=»­­mçÎçž{îwÞÙ÷¶|òá™gžùÔ§>uèС3fL›6í·¿ýíÞ½{ÇwÛm·½÷½ïí~™a*ŒU«Vmܸ±±±±ûñfÝ¢ aÊ“ÆÅáSH/½ôÒìٳǎûö·¿½ïO¯¼òÊ%K–dí`)˜ˆƒâHÉõµ¯}-îmHƒ™3gžuÖY¿ÿýï~øáÑ£G_zé¥kÖ¬9ýôÓãÞ®R1qâÄ… ¾üòËÏ>ûìSO=uÊ)§Ì›7ïÖ[o=çœsz¾Ì0ƃ>ø›ßüfñâÅgœqF¯EÔ'‹Ã§š››7mÚôÚk¯½ÔŸ³Ï>»û† KÁDGJ–G"q#‘G"ŽD"ˆD8‰p á@$€H„#‘G"ŽD"ˆD8‰p á@$€H„#‘G"ŽD"ˆD8‰p á@$€H„#‘G"ŽD"ˆD8‰p á@$€H„#‘G"ŽD"ˆD8‰p á@$ÿTœÊ‡æø•IEND®B`‚statistics-release-1.6.3/docs/assets/sampsizepwr_401.png000066400000000000000000000461171456127120000232500ustar00rootroot00000000000000‰PNG  IHDRhŽ\­ALIDATxÚíÝy|LçÂÀñg²”,²•D¢®H%!¡mˆ}K$´UÔR­­ÔRÕ–6Ö›WquÑÚZn-%J]K ®*JÑØŠØE5„ˆ}ID‚„$“yÿ8·çÎÍæÈ2çÌÌïû¹Ä3g&Ï™ã6?Ï™s¢3 xµ'ó@8@ŠŽP„p€"„#!Í9}ú´®(UªTiÔ¨ÑСC¯\¹¢öQ÷îÝûâ‹/"##Ÿ}öÙÊ•+{{{7nÜøÓO?½pá‚ÚS+Éĉ¥¿Ýºu3ñû°páBé[7nÜXí·€BØ©=JÝ¿ÿèÑ£Gýþûïׯ_ß¾}{µg„'ð믿¾ñÆwîÜ‘GnܸqãÆÃ‡òÉ'+W®|ýõ×Õž#ï€Ç MóòòrppBäææ^¿~=??_ñàÁƒ¡C‡&$$899©=A(réÒ¥^½zɵT§N§Ÿ~úÚµk—/_BäååõéÓÇÁÁ¡sçÎjÏT[ïC•*U|}}…ÞÞÞjÏ€œª4nåÊ•ÉÉÉÉÉÉW®\ÉÈÈ4h4~ñâÅ;wª=;(µtéÒ´´4!DÕªU:tîܹ\ºtiÿþý>>>B½^ÿÙgŸ©=M‘œœüèÑ#í¼}úô‘þþoܸQí÷€„#`FœçÎkoo/ýñÏ?ÿ4~ôÁƒÿøÇ?Ú·oïååååå9~üøÌÌLyƒ>}úHëÓ§<رcGiðÕW_•[´h! N˜0A¼yóæ‡~Ø¢E‹*Uª<ûì³=zô8zô¨ñŒ? ———7iÒ¤gžyfÒ¤I…wdðàÁÒ–áááÆã«V­’Æv옴¢,ÉÏÏÿá‡ÂÃÃkÕªU¹råZµj………ýë_ÿÊÍÍ-<óž={ž?¾oß¾¾¾¾Ï<óLïÞ½O:%„8pàÀo¼áëëûôÓO‡‡‡ÿöÛoEîõ7úöí[µjU???//¯©S§*ù ùØCSö÷¡ðg½½½uÅxùå—Ë8=g 1 òÿCýõ×J 3BˆèèhyðСCÏ>ûláÿƒ×¬Y3..NÚfÉ’%Ò`íÚµå'V«VMôöö–Frss¥“ãBˆß~ûMܱc‡——W×ét£F’_J®Ì®]»0@úz„ …wpË–-Ò£ööö™™™òøàÁƒ¥ñîÝ»—Ë÷}øða“&M ¿-:nÞ¼yE¾‚ñ<{õê%3FQø‚…uèÐAÚ²C‡ùùùÆ=xðà·¿äååÉãÅ}Ôïµ×^+<ó^x¡jժƛU«VíŸÿü§üÏ yžò1•ŸÛ®]»Ây Tòû£äДý}X°`´}hh¨4R½zõâ~œ½ôÒKeœ€Ç"Í)!ÓÓÓmmm¥‡/^, feeIŸBT®\ùÅ_ìØ±££££4R½zu)Τ‘InÞ¼i0’““¬^»vÍ`0;vLú£““Ó£G CFF†Ü—íÚµ›8PÚòwÞ‘FΟ?/TªT)##£\¾oË–-¥ñÏ>ûL~ùjô9sæx…dž£Â,,55µðå666õêÕ0`ÀêÕ«ïÝ»Wäû3zôhy°Q£FÒàôéÓ ïûÏ?ÿl0rrrŒ[jöìÙƒA¯×Ë«¹U«V-üÜN:=|øÐ`0\½zUþKÒ²eËâÞ…‡¦ìïCáp4v÷î]i//¯«W¯–qz‹p4Ç8‹Ó¥Ky{ùäiå½Ï?ÿ\oР42|øpiä£>2üµüÓ Aéô÷ĉ ÃСC›Ã`04lØPùå—_ä¿ÿ¾¼öyâÄ ƒQ^8::Ê?‹#Ÿ­®U«–4#tîܹ¼¾¯ü ‹/¾qã†Á`¸qãFBBBBBÂõëץ͔‡£Â,Ò­[·† R¥J•"h5¶nÝ*o¼uëÖ+V¬X±âÒ¥KÒHFFF½zõ¤å È37îªo¾ùFtss“Ooß¾]´³³+ð\;;;ù» †uëÖIã:.;;»È÷Gá¡)ûûPB8æççË̵µµÝµkWáã^Šé(Çæ§~ýúÿüç?å?&&&J_¼øâ‹Æ›ÉŸ';wîœtµ¼6vðàA!D||¼¢iÓ¦¡¡¡BˆÃ‡˃ÆŸ={V~}ùBggg½^/¿¾ñ÷ ‘?ˆYœˆˆéluJJŠt•ÏŽ;¤‡^{íµòú¾ò’˜˜8xð`ooïFÍ™3çÁƒÁÁÁ%|Z®8eyÁjÕª-Z´èÎ;{öì™1cFß¾}äG¯^½Ú£GK—.Éߨoß¾;vÜ·oߘ1c"""žyæ™3gÎ÷âÆ'£å¨úøøÈËÉò`aõëׯY³fá}4 ÅÝ™üIM©ß‡|ñÅÿþ÷¿å¯ÃÂÂÊezJF8šæåååû—:uêtéÒeêÔ©ñññòÇ333322¤¯ œ”câáÇ7oÞB„……ÙÙÙ !:¤×ë¥K\åpŒøð¡´Þéãã$½þýû÷Kždjjªñ \¥Q${{û®]»J_KŸ¥Ûµk—4.Ýï\¾ïÇüþûïWªTIú£Á`8zôè”)Sš6mÚ¦M›Û·o?éá(û ÚÙÙµjÕj̘1+V¬HLL¼r劼 üàÁƒåË—K_çääŒ=ÚÓÓ³wïÞ_~ùåÎ;óòò<==‹{Y9ÉŸê+YÞutttuu•¾¾qãFáíKqhJý>gûöí'N”¾îÖ­›ñeïå2=Åáà€¦­\¹2""¢„ \\\\]]¥v¼~ýºñå±×¯_—¾xê©§¤k\\\š4i²ÿþÌÌÌ7J7ëiÚ´©ô; SSS7nÜ(ÝíE^ntqq©R¥Ê½{÷„Û¶móóó+<ùBI‘SXÏž=¿ûî;!ÄÖ­[###oݺ%ŒV"ËåûÚÛÛÏ;÷‹/¾Ø²eËÆ7oÞœžž.=´gÏž±cÇ.]ºô‰Gé^0//ï_ÿú—ôuûöíÿö·¿ÉÕ¨QcΜ9ÇŽÛ·oŸ"))IŸ2eŠt{??¿1cÆ´lÙ2((hذa‹/~¢ +!ý£B–-ßÅIþ÷‰±RšR¿EºtéRïÞ½¥Etÿïy©§@ Â0{‡BlÛ¶­U«Vòø¶mÛ¤/üýý¥…F!Dddäþýû…sçÎB8;;É7.™?¾ô…|š[Q§NéRë¼¼<ã0½sçŽÁ`%ž-Add¤»»{zzz\\ÜO?ý$ Êç©Ëþ}=zt÷î]!„­­í믿þúë¯çååýöÛo}ô‘ôvíÞ½[ÚR.Ni{™Ô²¥xÁììì>ýôÓ””!ĤI“ä‹™dò%ðµjÕ*p æÍ›÷ÒK/I_WÐï(?}úôµk×ä³üÛ·o—ÞÞ§žzJžO¥;4¥xŠ<¬=zôî"îèè¸nÝ:—r™%8U ˜½Ž;J_|ýõ×ò-Žf̘!}m|cdy)QúÅ3¡¡¡¶¶¶žžžÒòO\\œB§Ó/sFFFJ_ÄÄÄH?w…±±±O?ýtÕªU}}}¥Õ'%Ÿ­~ôèÑ—_~)„°µµ5¾y¿ï™3gªW¯^½zuoooé’m;;»ÈÈHùúb777é ù~”?·nÝ:ãÛe?Ñ &oÚ´i+W®”?l———·páBù—I×9Ý»wO>—*·ì‘#G*èwåääŒ1"''Gqýúõ¿ÿýïÒxçÎå«I (õ¡y¢÷¡HÇ—>Œ+}w㻕}z‹GÀì7î»ï¾KIIÉÈÈhÕªUDD„­­í¯¿þ*ýòoooùÓ`BˆfÍšÉ'ò„òmCCCå+ž{î9ã›'ÿßÿýß·ß~›žž¾aÆvíÚµmÛöôéÓ?ÿü³ôè¨Q£ ß;P!ùlµôË‹ÃÂÂŒ?§XÆï+íÅÍ›7óòòZµjÕ©S'‹/Ê¿¼Nþ=1òmn²³³CBBBBBRSSåKŽJñ‚…Mž¨7xð`éêlÝºÕøwÆ”¯uëÖÕ®]»^½zñññÒyj›O>ù¤¸íK}hžè}(lçÎß~û­ôuµjÕ8pàÀùQ'''éwÞTÜßXÜŽМ’sL‘¸Ï?þ(Š'ߢ²,ÓP2NU– I“&'Ožœ8qbDD„——WÕªUÛµk÷ÑG:uÊøSùlµøßÇ"7tîÜùĉC† iذ¡£££ŸŸ_·nÝâââ¾ùæ…—ÂÉøÚj›Â+veü¾Íš5KJJš8qbãÆ}||ìííÝÝÝ[µjõí·ßîܹS¾8Z±lÙ²)S¦4hÐÀÉÉ)$$äƒ>8pà@áË´•¿`amÛ¶½pá¼yó:vìäääT­ZµÆ÷éÓg×®]qqqÆ =kÖ¬ ˆ¿~ÌÈ‘#;&ŸÇ_µj•|J½ì<<<öíÛ÷öÛoxyyõèÑcûöíï¼óNÉÏ*õ¡y¢÷¡Ô*èo,á¯Ï´#77wÓ¦M¢Ä3àe1qâÄÏ>ûLѵk×õë׫½»ÌŸq-²··¯ d€RãT5! áE¸8аâEG(B8@ŠŽP„p€"„#! áEG(B8@ŠŽP„p|Œ .ž8qB퉨Œp|ŒåË—«=M°S{•™™yöìÙŸ~úé‡~P{.š@8­sçÎ7nÜP{B8mÊ”)=B¬X±bÿþýjO@}„cÑZµj%}±k×.µç  „cù T{  b%&&ª=ŽÂ:ÿ2iY`` Ek8(ÚÄqÑ ŠYí"·ã€"„#! áEG(B8Â*pA¢qP´‰ã¢AháEtƒAí9Xn¸€e³ÚŸõ¬8@ŠŽEÐéŠýŸÕ"€•*! u:a0û?«e§ö*JÉ«ƒÖœ€¥C83FšáÌ@qHšá4„@Ô2¨€@4G„#¨@¢%!@ù(² DKB8€'F#Z'ÂzôèË/¿¼}ûö¯¿þzùòåß}÷b„ jï s#'£Q@þgDG;03–ŽkÖ¬ÉÏÏŠŠòôô”F¢££]]]·lÙ’ŸŸ_äSŽ=*„0`€ÝNå7oÞ¼^½z/^¼sçŽÚ;À|6 ȿЎÌå‡c||¼MXX˜xð 88¸Aƒiii{÷îݰaC³fÍÚ·o¯äû’‰€5ûÏ nJ5šWøÇºÕ¦¤…‡£›››N§ËÊÊ*0~ÿþ}ñ׺caãÆ;räHttôÀ¥‘k×®õêÕkäÈ‘7nôóóS{·h—Q ²šÀÒXøgíìì\]] ¯,fff !äë¬Ýºuk×®]uêÔ‘«QáããóÞ{ïåææ®_¿^í} Q\ÀâYx8 !¼¼¼ÒÒÒ¤R”%''KÞ>--Máëë[`\Zh¼}û¶Ú;@‹Š¾¦äî™Ìå‡cDD„^¯ß³gßP§Nµw€¶Ô¦D80W,4€‰qª€Y¢ÀôGæ‡jUŽÌ Õjá3ŽÌ—€ºGæ…FP§ª˜ª´€p uT#há@Ó¨FÐ>ã@£¸´†p E,4€qª€æP M„#m¡@³GB5€–Ž´‚j#hÕÚÇUÕTÆmwÀ\ŽÔÄB#˜NUP Õæ…p ªÌá@T#˜#€©Q`¦G&E5€ù"˜Õfp`"T#˜;îã Âq‹o° „#€ŠÅB#X NU¨@T#XÂ@E¡ÀÂŽ*Õ–‡pPþ¨F°H„#€rF5€¥"”'ª,á ÜP`ÙGåƒj‹G8(T#XÂ@YQ`%GeB5€õ ”ÕV…pPJT#XÂ@iP`…GOŒjëD8x2T#X-ÂÀ ÀšŽ”¢ÀÊŽ¡„#€Ç£‚pðXT#@B8( ÕŽŠE5ŒŽŠF5 jF8(ˆj‰pð?¨F@qGÿE5J@8øªP2€T#@ÂÕP„p¬ÕPˆp¬ÕPŽp¬Õx"„#`¥¨FÀ“"kD5JÁNí ˜ÈÚµk׬Y“””äèèØ¶mÛ±cǺ»»—ü”S§N-\¸ðôéÓ÷ïß 1bDÓ¦MÕÞÕXÅŠã¬Y³&L˜pþüùÆ;;;ÇÆÆ:4;;»„§ìܹ³wïÞ;wîôôô 9vìXÿþýwîÜ©ö®å€åF@éè –þ$11±k×®ÕªUûñÇ===…S¦LY¶lY¿~ý&NœXäS222"##sss/^ܨQ#!ÄÉ“'ûöíëââ²gÏ›ÇÔv```bb¢Úû j€²³ÚŸõ–¿â¸fÍšüüü¨¨(©…ÑÑÑ®®®[¶lÉÏÏ/ò)±±±™™™Ã† “ªQñÜsϽüòË©©©§NR{‡€Ò£eaùáocc&ØÚÚ¶iÓ&--íèÑ£E>e÷îÝ:®k׮ƃӧOOLL|þùçÕÞ! ”¨F@YøÅ1ƒ!))ÉÃÃÃÃÃÃx< @qùòåÐÐÐÂÏJHHpww¯^½úáÇ;v÷îݺuëFFF:88¨½C@)Q€²³ðpÌÊÊÒëõnnnÆ]]]…wîÜ)ü”œœœ{÷îÕ©SgòäÉ«V­’ÇkÖ¬9{öìúõë+ù¾F¬ó“Ъʢðu«eáá(]:íääT`ÜÙÙY‘‘‘Qø)÷îÝB$%%ݾ}{Ú´iaaa>üñÇçÍ›÷á‡nÚ´Iɺ#™í  Œ ÿX·Ú”´ðÏ8º¹¹étº¬¬¬ã÷ïß­;P¹reé‹©S§víÚÕÍÍ­zõêÇïÖ­Û•+W~þùgµ÷ xT# Yx8ÚÙÙ¹ºº^YÌÌÌBÈ×Ysrrª\¹²ƒƒCxx¸ñxdd¤âÏ?ÿT{Ÿ¥¨F@ù²ðpBxyy¥¥¥I¥(KNN–*ò)žžžööö:ÎxP:C——§öŠP€rgùá¡×ë÷ìÙ# †¸¸8ww÷"Ÿž™™yöìYãAéÞ=uëÖU{‡ÔaùáØ³gO›¹sçJŸkBÄÄĤ¦¦öèÑÃÞÞ^yðàArrò•+W¤?vëÖM1aÂù²ëS§N-^¼ØÕÕµ}ûöjïðx,7*‚…_U-„ðññ;vì´iÓºtéÒºuë”””¿ýöÛò6qqq#GŽô÷÷ß´i“¢^½z£Fúꫯ^zé¥ÐÐЬ¬¬øøxN7eÊ”§Ÿ~ZíƒjTËG!Ä AƒªU«¶aÆ͛7{{{÷ë×/**Jº#OqÞyçªU«.[¶lÿþýîîî#FŒð÷÷W{W€Ç Ggà‡Ly³Ú_|ÕQ`Vû³Þò?ãX ªPÑGÀP ³G5LƒpÌÕ0ÂŠŽ€c¹`J„#`®¨F€‰Ž€Y¢¦G8æ‡j¨‚pÌ ÕP ᘪ "Šh:¯\¹réÒ%µghËuÙ©=’tìØñÑ£Gûöí«ZµªÚsTF5T§éG!ÄÙ³gÕž 2ª šlj':88|óÍ7>T{.€j¨F€FhúTµ§§ç—_~9iÒ¤.]ºtéÒåoû›‹‹KmÂÂÂÔž&P¨F€vh:ÃÃÃ¥/RSSçÌ™Sä6‰‰‰jOÀ*h:»té¢ö5±ÜÐM‡ãŒ3Ôž ª 5šGÙÝ»w®_¿îããÓ²eËÔÔTnÐËF54Hëᘖ–öÍ7ßüøãÙÙÙBˆ´lÙ²[·nÁÁÁ_|ñ…»»»ÚÊÕÐ&Mߎ'77÷½÷Þ[¾|¹‹‹K·nÝäqOOÏ]»võêÕKªIÀ’PÍÒt8.\¸ðøñãm۶ݺuëÔ©Såñ5kÖ¼úê«/^\¶l™Ús°šÇC‡ÙÚÚ~þùçŽŽŽÆã¶¶¶“&Mrttüå—_Ôž#PžXnh™¦ÃñÌ™3µk×.ò:ggg??¿””µç”ª qšGWW×÷hzzz•*UÔž#P>¨F€öi:ƒ‚‚®_¿~òäÉÂ9sæêÕ«õêÕS{Ž@9 fAÓáøÆoètºÑ£GŸ>}ÚxüôéÓQQQBˆ®]»ª=Gk¡éû8¶lÙrÈ!‹-êÞ½»ŸŸŸâ×_Ý¿ÿùóçóóó»uëöâ‹/ª=G ¬Xn˜ M‡£b̘15š6mÚ… „W¯^BT«VmÔ¨QÆwvÌÕ0#ZG!Dxxxxxxzzú… rrrüüü¼¼¼ÔžP¨F€yÑt8¦¤¤ÔªUKúÚÝݽQ£FjÏ(7T#Àìh:;tèP«V­ððð°°°ÐÐP{{{µg`½t /z<ÿüó>”¾vrrjÕªUÛ¶mÛ¶m[ä-Áµ#00011QíY@ÓXn³fµ?ë5޹¹¹Ç?xðàÁƒ?ž““#„Ðétõë× ÖétjO³ «ýË…¨F0wVû³^ÓáhìÑ£GÇŽ;xðàNž<™——'„¨Zµê¾}ûÔžZAVû— JP`¬ög½¦?ãh¬R¥JÍš5 ~î¹çâââbccsrrRSSÕžð¨F€Y3ƒp|ðàÁ‘#G¤Öüñ‡^¯BØÚÚ6hРY³fjÏÀZh:¿üò˃&$$H±¨Óéüýý›5kÖ¼yóÆW©REí O€åF€¹Ót8ÆÄÄ!:uêÔ²e˦M›zxx¨=) 4¨F€Ðt8êt:ƒÁ½uëÖÔÔÔk×®5iÒ$((ÈÖÖVí©O€jXM‡ã¡C‡>èСݻwïÚµKáääÔ°aÃ&Mš4nܸAƒvvšÞ€jX ³¹σŽ=*EdBBBnn®ÂÁÁáøñãjO­ «½DE"ÀòXíÏz³Y®srrjݺuÆ 6l¸k×®uëÖåäädgg«=/ $T#À’˜A8J¿?æ÷ßß¿ÿÉ“'¥+¬ííí[´hѶm[µg‹jXM‡ãâÅ‹÷ïßäÈyeÑËËKúuÕ-Z´pttT{‚@±¨F€åÑt8NŸ>]akkÛ°að°°¶mÛÖ­[WíIX)M‡c—.]ÂÂÂZ·níââ¢ö\€'Àr#À"i:g̘!}qãÆ3gΤ¤¤äææúùùÕ«WÏÇÇGíÙE£–JÓá(„HOOŸ3gÎ?ü ]#±µµ}ã7¢¢¢\]]Õž ð?¨F€Ót8êõúwß}÷رc•*UŠŒŒ¬U«–­­íÅ‹wíÚõý÷ߟ9sfåÊ•ühÕ°lšÇ¥K—;vì…^˜3gާ§§<~ûöí#F;vléÒ¥ƒV{šVÁFí ”dÏž=:nöìÙÆÕ(„¨V­Ú?ÿùO›Ý»w«=Gà?XnX>þ»ï¾kÑ¢E›6mÔž €õÒÖ}W­Z%„xë­·.\د_¿,_¾ü•W^B¬[·NíÙ,7¬š¶Â199Yñî»ïÊ#:nذaBˆsçΩ=;X;ª`崎ׯ_wwwwss3”îû}ÿþ}µg«F5 ­p4 •*U*0øÔSO©=/h,mb¹A8E5 ! ˆ¶îã(„¸yófHHˆòñcÇŽ©=eX2–i. CVV–òq âPÓV8nÚ´Ií)ÿA5P€¶ÂÑßß_í) h\åF #‚¨FŠD8ÿƒj 8„#!ÿb¹€ŽÀP”Œp€"„# Ë(@8T#ŠްvT# ŽP„p„Uc¹åGX/ª€'B8@ÂVŠåFž”µ„ãÚµk{öìÒ²eËñãǧ§§+îµk×5j4vìXµwå†j ¬"gÍš5a„óçÏ7nÜØÙÙ966vèСÙÙÙJžk0þþ÷¿ß¿_í@¹¡(ËÇÄÄĘ˜//¯­[·ÆÄÄüòË/ýû÷?yòäÌ™3•<}éÒ¥‡R{'Ôgùá¸fÍšüüü¨¨(OOOi$::ÚÕÕuË–-ùùù%?÷ܹs³fͪ[·®Ú;rÃr#¥fùáocc&ØÚÚ¶iÓ&--íèÑ£%<1//oܸqîîîÑÑÑjïÊÕ@YXx8 †¤¤$ãñ€€!ÄåË—Kxîœ9sΜ9óÅ_¸¸¸¨½ê³S{+++K¯×»¹¹wuuBܹs§¸'?~|Ñ¢EýúõkÑ¢ÅéÓ§ŸôûILLTûͰv,7J§ðu«eáá(]:íääT`ÜÙÙY‘‘‘QܳÆW³fÍÑ£G—îû’‰ZC5J­ðu«MI G777N—••U`\º½Ž´îXØ´iÓ®\¹²jÕ*µ÷å€j \Xøgíìì\]] ¯,fff !äë¬:thÕªUï¼óÎóÏ?¯öô4ÄÂÃQáåå•––&•¢,99Yz¨ðöçÎBÌŸ??ð/Ý»wBlܸ100°S§Njïž Ë” ?U-„ˆˆˆHLLܳgÏ+¯¼" †¸¸8ww÷ÂÛתUKÞR’‘‘±wï^ŸêÕ««½CxT#åÈòñgÏž ,˜;wnÛ¶m¥kbbbbRSS‡ boo/móàÁƒ[·nÙÛÛ?óÌ3­ZµjÕª•ñ+œ>}zïÞ½¡¡¡3fÌP{oTcùáèãã3vìØiÓ¦uéÒ¥uëÖ)))~ûí·åmâââFŽéïï¿iÓ&µç‹rÃr#åËòÃQ1hРjÕªmذaóæÍÞÞÞýúõ‹ŠŠ’Va©¨FÊÎÀO×òÈ}UG8*ŽÕþ¬·ü«ªa…¨F*áKC5PAG(B8¢°Ü@Å!a9¨F*áEGX–¨h„#,Õ€ Ž0{T#¦A8@ÂæåFL†p„£0%ŠŽ0W,7`b„#ÌÕ€éŽP„p„ùa¹UŽ03T#j! ásÂr#*"a6¨FÔE8@ÂæåFTG8 PháEGhËháM£ÐŠŽÐ.–ÐÂE5 5„#!¡E,7 A„#4‡j@›G(B8B[Xn@³GhÕ€–ŽP„p„V°Ü€ÆŽÐªí# áõ±Ü€Y ¡2ªsA8@Âjb¹3B8B5T#æ…p€"„#ÔÁr#f‡p„ ¨FÌáEG˜˘)ŠŽ0)–0_„#L‡jÀ¬ŽP„p„‰°Ü€¹#a T#€p€"„#*ËX‹jÀbŽP„pDb¹KB8¢¢PXŠލ,7`yG”?ª‹D8@ÂåŒåF,áˆòD5`ÁG(B8¢Ü°Ü€e# áˆòÁr#pD9 °„#!QV,7`%G” Õ€õ  áˆÒc¹«B8¢”¨F¬ áEG”ËX!ÂOŒjÀ:ŽP„pÄ“a¹«E8@ÂO€åF¬á¥¨F¬áEG(Âr# ñxT#BØ©=Y»víš5k’’’Û¶m;vìXww÷¶ÏÎÎ^½zõ?þxåÊ•*Uª 4¨eË–jï€j¬"gÍšµ`Á''§Æ§¤¤ÄÆÆž;wnÙ²eEnŸ——÷Ö[o?~ÜÕÕµyóæ>™Õ °ðpÌÊÊÒëõnnnÆ]]]…wîÜ)òYAAAF8S©R¥®]»*ù¾FÕ~3@iþ±nµ,<³³³…NNNÆ…}½^¿råÊéÓ§ëõú/¿ü²jÕªJ¾¯¹g"ËÈ ÿX·Ú”´ðptssÓétYYYÆïß¿/þZw,ÁÁƒ?þøãóçÏ{{{þùç-Z´P{‡TcááhggçêêZxe133S!_g]XNNÎŒ3–/_^¹rå#F <¸¸›>Z–@‘,<…^^^III™™™...ò`rr²ôP‘OÉÏÏ=zô¶mÛ"##ÿñ”З–‡jűüÛñDDDèõú={öÈ#ƒ!..ÎÝÝ=$$¤È§,_¾|Û¶m}úô™7ožUU#@ ,?{öìicc3wî\ésBˆ˜˜˜ÔÔÔ=zØÛÛK#ª” ÂŠŽŽåFP^G(B8Z2–@9"-ÕÊáEGËÄr#(w„£¢@E  áhiXn„p´(T#¨8„#!-Ë BŽ‚jp€"„£%`¹˜áhö¨F`„#!ÍËÀdG3F5S" áh®Xn&F8š%ª˜áEGóÃr#Páhf¨F ÂŠŽæ„åF "ÂÑlP@]„£y €êG(B8š–€ŽZG5  á¨i,7í µ‹jšB8jÕ´†p€"„£±Ü4ˆpÔªhá¨-T#Ð,ŠŽÂr#Ð2ÂQ+¨F q„£&P@ûGõQÀ,Ž*£€¹ ÕD53B8ª†jæ…pT ÕÌ áEG(B8@ŠŽP„p€"„#! áEG(B8@ŠŽP„p€"„#! áEG(B8@ŠŽP„p€"„#!‹µvíÚž={†„„´lÙrüøñéééjÏ¥¨öPE›8.ÄAvŽE›5kÖ„ Ο?߸qcggçØØØ¡C‡fgg«=/ÕŽEHLLŒ‰‰ñòòÚºukLLÌ/¿üÒ¿ÿ“'OΜ9Sí©¨†p,š5kòóó£¢¢<==¥‘èèhWW×-[¶äçç«=;uŽEˆ·±± “GlmmÛ´i“––vôèQµg ± ƒÁ””äáááááa< „¸|ù²ÚP‡ÚМ¬¬,½^ïææV`ÜÕÕUqçÎ%/ÂpÄAÑ Š6q\4ˆƒ  ’.vrr*0îìì,„ÈÈÈxì+$&&ª½åSÕ¹¹¹étº¬¬¬ã÷ïß­;X!± ;;;WW×Â+‹™™™Bù:kkC8ÁËË+--M*EYrr²ôÚ³PáX„ˆˆ½^¿gÏyÄ`0ÄÅŹ»»‡„„¨=;uŽEèÙ³§Íܹs¥Ï5 !bbbRSS{ôèaoo¯öìÔ¡3 jÏA‹–,Y2mÚ´5j´nÝ:%%åÀAAAK–,)|›+A8ë§Ÿ~Ú°aÃÉ“'½½½›4i%Ý‘À:ŽP„Ï8@ŠŽP„p€"„#! áEÇr³víÚž={†„„´lÙrüøñéééjÏȺdgg/]º´S§N/¼ðBëÖ­¼o߾›q˜ÔríÚµF;¶ðCÓ;uêÔðáÃÃÃÃ7nܯ_¿ƒÞ†ãbJ999‹-êÞ½{HHH»ví>üðÃsçÎÞŒƒb.\ >~Ò¤IÒ¬Ž?^`%‡À§ªËÁš5kòóó£¢¢<==¥‘èèhWW×-[¶äçç«=;«°uëV!ÄG}äàà øûû6L¯×Ë'¬9Lj9wîܬY³êÖ­[ø!ŠéÅÆÆfff6¬Q£FÒÈsÏ=÷òË/§¦¦ž:uJḘØÑ£G… °³³“Fš7o^¯^½‹/Þ¹sGá T´Î;÷íÛ÷‡~(n%‡ÀáXâããmllÂÂÂä[[Û6mÚ¤¥¥Iÿ9@EKNNvrr 6ô÷÷B\¾|Yú#‡IyyyãÆswwŽŽ.ü(ÅôvïÞ­Óéºvíj<8}úôÄÄÄçŸ^ú#ÇÅļ½½…r# ! ÃÝ»wmllä”ä T´)S¦ÌŸ?þüù-Z´(r%‡ÀáXVƒ!))ÉÃÃÃÃÃÃx< @U *ÔÂ… ÿ3ñôéÓBˆš5k “zæÌ™sæÌ™/¾øÂÅÅ¥ÀCU$$$¸»»W¯^ýðáË-š1cÆO?ý”-oÀq1½N:U®\yÊ”)¿ÿþ{vvöµk×&NœxåÊ•ž={JÿÇá ˜@«V­""""""Œ?W*Sr¬ä0Ù©=³—••¥×ëÝÜÜ Œ»ººŠÿý$*NPPP‘ÄÄÄTªTIZYá0©âøñã‹-êׯ_‹-¤Ž7ÆA1½œœœ{÷îÕ©SgòäÉ«V­’ÇkÖ¬9{öìúõë Ž‹—/_þÖ[o½õÖ[ò`¿~ýÆ/}ÍAQ’C`%‡‰Dz’þ¥îääT`ÜÙÙY‘‘‘¡ö­Ž^¯_¶lÙ!C²²²¦NZµjUÁaRCvvö¸qãjÖ¬9zôèâ6Óºwïž"))ióæÍÓ¦M;xð`\\܈#®^½úá‡JG„ãbz™™™S§N}ðàAppp¯^½Ú·oïàà°aÆ;wJpPT§äXÉabű¬ÜÜÜt:]VVVñû÷ï‹¿þ“9xðàÇ|þüyooïÏ?ÿ\þ¨ ‡Éô¦M›våÊ•U«VÉW,ÀA1½Ê•+K_L:µ]»vÒ×Ç¿víZllìÏ?ÿüÚk¯q\LoܸqGŽ‰ŽŽ8p 4ríÚµ^½z9rãÆ~~~Õ)9Vr˜Xq,+;;;WW×Âÿ’ÈÌÌBÈ×U¡¢åääL™2eÀ€×®]1bÄ–-[Œ?àÌa2±C‡­ZµêwÞ‘¯·(ŒƒbzNNN•+Wvpp7ŒŒBüù矂ãbr·nÝÚµkW:uäjBøøø¼÷Þ{¹¹¹ëׯ Pr¬ä0ŽåÀËË+--Mú›!KNN–R{vV!??ôèÑË–-‹ˆˆØ¶mÛðáà ¯rq˜LIú¥óçÏüK÷îÝ…7n ìÔ©“´Åô<==íííu:ñ ôÿ—¼¼<éSJKKBøúú÷óóBܾ}[ú#EuJ5&±DDDèõú={öÈ#ƒ!..ÎÝÝ=$$DíÙY…åË—oÛ¶­OŸ>óæÍ+î_u&SªU«Ö+ÿ«U«VBŸW^y¥M›6ÒfÓ ÏÌÌ<{ö¬ñ t£ù^›Sòõõµµµ=wîœÁ`0OLLBÔ©SGú#EuJU&µï@n ®^½Z·nÝ—^zéÞ½{ÒÈ‚ ¦OŸ®öÔ¬B~~~ddd£F²³³K،䮄„„¿9†ƒbzüñG@@@Ïž=ÓÒÒ¤‘“'O†„„4nÜ855UḘØ;ï¼0{ölù—÷œ={¶Y³fõë×OJJ’F8(&óÑGù›c”k8L:Ãÿþ¥³dÉ’iÓ¦Õ¨Q£uëÖ))) Z²dIáËòQînݺպuk‡gŸ}¶ð£ÝºuëׯŸô5‡IE§OŸîÞ½{—.]f̘a<ÎA1½… ~õÕW®®®¡¡¡YYYñññ:nÆŒ/¿ü²¼ ÇÅ”RSS_{íµëׯûúú¥¥¥9r$??„ }ûö•7㠘Ƅ Ö®]»fÍšÂÑVr,þ0ÙNžzôHí©4vìØÀÀÀß~ûÍd{=wîÜÀÀÀ•+Wª½ë¬”Ú€ÿºsçΛo¾™””$„pww¯Y³æ­[·öïß¿ÿþï¾ûîÛo¿õ÷÷W{Žì5ëE8ÐQ£F%%%…„„Lš4)((H¼páÂŒ3vîÜùá‡ÆÆÆ:88¨=MÕö:<<¼jÕª5R{ʬ§ªhÅ¥K—~ÿýw''§˜˜¹Ÿ„~~~_ýuppðùóçwïÞ­ö4ÕÜëààà^½z± @-„#­8}ú´" ÀÅÅ¥ÀCööö‘‘‘ò6¥“““——WŠ'êõúÒ=Q { å‹SÕ´¢R¥JBˆóçϧ¥¥=ýôÓ}ûí·ß|óM;»ÿþW+55uÙ²e¿þúë7„ÞÞÞ­[·8p ———´Áرc7nÜøóÏ?/Y²ä§Ÿ~ÊÍÍ­]»v“&M¢¢¢ÜÜÜV®\¹mÛ¶?þø£J•*-[¶=z´»»»ñ7oÞüý÷߯[·.++ËÛÛ»Aƒ}úôiÞ¼yÉ{±oß¾Õ«WÿñÇõêÕkÒ¤É;ï¼coo_.{½hÑ¢™3gNš4©oß¾Bˆ—_~ùÂ… E¾ìîÝ»å÷áI§Å!hEhh¨««kFFF÷î݇ Ò¾}ûêÕ«ËÚÛÛ·Njjjß¾}/^¼èàààë뛟ŸñâÅï¾ûnÛ¶m±±±r !¢££O:àêêzâĉ .œ9s¦N:ëÖ­«[·n@@ÀñãÇ×®]{íÚµ%K–Ïç£>:vì˜M­ZµnÞ¼¹mÛ¶_ýuôèÑC† )nfΜùí·ß oooOOÏÇ€(ëß¿¿âøñã…¿Kzzzrr²ŸŸ_pp°ñ¸££c‹-²³³ʾ×%˜;wî–-[BBB>ùä“r™Ægh”­­í /¼ð / 6ìüùóãÆKHH˜4iÒöíÛu:âêÕ«»wï>|øðåË—/]º”žž^äëÈK’% J/X@íÚµ Œ<óÌ3•*UºqãFNNÎSO=eüt‘Ê… ‹œÆõë×Ëe¯‹´eË–yóæy{{Ï;WžXyM d„#­øÇ?þ‘šš:yòäjÕªxèÙgŸ;wnXXØåË—¯]»V£FU«V}öÙgyyyûÛßBCC###ëׯŸœœ,¯·•]áPÓét¶¶¶=ÊËË+Ž999Bˆ5jH7Ð)ÌÇǧì{]ä+œ>}:::ºråÊóæÍ«ZµjÙ§Å!hÅÙ³g=Ú£Gù#‰Æ¼¼¼žz꩜œƒÁpÿþýO?ýô©§žZ¸pa«V­äm¤ûò”—äää#7nÜÈÊʪ^½º££c‡¤«›Ç_A{]äÓoݺ5lذGÍž=»À)éRO ŠÃgh…tµÊܹsõz}áGwîÜ™““ãááQ£FS§Néõú† W£âÏ?ÿ,Çù¬[·NZ´“-_¾\!]IS€——WµjÕΟ?_àfÝz½¾G­[·NMM-ã^~ôáÇï¾ûî­[·Þ{ï½—^z©¼¦Å!hEïÞ½=<Ý­[·½{÷fddHã÷îÝ[ºtitt´bìØ±:NºµõŸþ)§^¯ÿá‡V¬X!„ÈÎÎ.—ùܸq#***33S‘ŸŸ¿råÊ¥K—ÚØØŒ1¢ÈíG•ŸŸ?jÔ(ù:èû÷ïÿßÿý_BBBpp°ñIäÒíuáçJ/Þ¡C‡ò‡SÕ´âé§Ÿ^¸páû￟˜˜8xð`!„«««]zzz~~¾âÍ7ßìÞ½»ÂÏÏ/""bÇŽíÛ·oÔ¨‘Á`HLLLOOïÛ·ï²eËÖ­[wïÞ=éN4eѱcÇmÛ¶5kÖÌ××÷úõëYYY666£Fª[·n‘ÛwëÖíСCëׯïÚµk5ÜÝÝ/\¸••åëëûÅ_”}¯ ˆ‹‹Û¼y³";;ûÃ?,ðh÷îÝÃÂÂJ7%(á@Cž{î¹;vlÙ²eÆ )))·oß®T©RíÚµ5jÔ³gOùf„Bˆ/¿ürÉ’%›7o>|øð3Ï<Ó¦M›úûûëõúŸ~ú)>>¾ì“yõÕWûöí»xñâS§N9;;7oÞüÍ7ß,áWêtº©S§†‡‡oذáÌ™3/^¬]»ö‹/¾Ø¿‡rÙkc>”¾Ø³gOáG¥û •zJP$]q¸«%ý®ê… †……©=Ð>ãEG(B8@.Ž€‚:vì Ý@ ãâ(©j(B8@ŠŽP„p€"ÿeûFܬ—IEND®B`‚statistics-release-1.6.3/docs/assets/sigma_pts_101.png000066400000000000000000000223661456127120000226470ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A$½IDATxÚíÝ]Œeáøñ9}¥²Ò—*‰ò{ä%A 6¿ªèEÅŠ½Âƒ±õ¢ù HŒKRc•ÿš`Ó”@‚-¦)%AE½(¤!Á€ lÓÒ"6)-mÅÒ¦íÎÿbà°Ý—³Ïyyf>Ÿô‚=œ.ÏfÏ|ÏóÌÌÖÒ4M`*ÓòqŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽŽ$µZÞ#b HÒtêv—€p I¦jÇZ-IÓ¼‡äM8ðÉÚQ5áÀGÆ·£j„#§ÝŽªmFÞ pí¨ÑÌ8¤^¯ç= g€±²ê{ô•"8Íèóµ#0špà#㯆ю@ƒpà“]C­Œp I¦ºóŽvá@v¿F·æ„#¢""""""""2#ï@_Õëõ¼‡±ááἇ@ž„#•£~ÚV¯×m½*³T @á@á@á@á@á@á@á@á@á@á­«Õ:}B°óÏ?ùòåy¿`HáíHÓfiX«%iš÷“Å‹ 5Î믿¾bÅŠóÎ;oÞ¼yW_}õ“O>™÷¨)4ám™¬‹Q/½ôÒsÏ=×ü9»víºâŠ+þò—¿\ýõ·Þzë¡C‡–/_¾qãÆ¼ÇNqÍÈ{­¬GgbÞÕxòäÉ;vìܹsýúõ###ÍŸüóŸÿü¿ÿýï?þñK.¹$I’Ÿýìg—\rÉ]wݵråÊ_EfÆ:0zÞ±÷Õ844T«ÕÖ­[7Ù8pÝu× íß¿ÊïöÚk¯-\¸0«Æ$IfÏž½dÉ’¼óÎ;}Û~ÄE8@g²vìË\ã¬Y³fΜ9ÙÓ4MÓôõ×_Ÿò»}þóŸß·oßÞ½{³/O:õ /œwÞyŸøÄ'ú¸ùˆ‰¥jˆÆêÕ«W¯^Ý­ïvÛm·ýáX¼xñ-·ÜrÖYgmÛ¶íÕW_}ôÑGó~•—p€Î4æó>Á±UŸþô§oºé¦5kÖÜsÏ=Ù#_úÒ—–.]š÷¸(.KÕÐѱØü=ݶgÏžÚ(mÌÞtÓM¿øÅ/î»ï¾ÿû߇þýï?<<|ÕUWûì~”˜ÍÈ{«¬Ç4b.ÕøÒK/=÷ÜsK—.mòœ½{÷ž:uê _øÂÿüÏÿ4è÷X‰™p€öiÇ>WãÉ“'wìØ±sçÎõë׌Œ4òîÝ»“$¹÷Þ{›÷%4a©:ÒX³îC5 ÕjµuëÖe_8pàºë®Ú¿ÿ”7 Ç /¼0ï FÄÌ8@§&\³î…Y³f Ìœ93ûrpp0MÓ$I†‡‡?ûÙÏ6ÿ»»wïž={öÇ?þñÇüàÁƒ_|ñ•W^9kÖ¬¼71ŽÐ©¬ûÐŽ«W¯^½zu{w÷îÝÓ¦M»ð ß}÷Ýì‘Ï}îs›6mºì²Ëú»µˆ˜¥jèH£§¼GO¾vïÞ=22244ôöÛoïß¿ÿá‡þ׿þõo|ãðáÃyh˜q€ö™eìÛšuþú׿žqÆ ,Ⱦ¼ùæ›;öƒü`Û¶mßýîwóqŽÐ¦ ±°í¸páÂ1|å+_I’äÕW_Í{hDÃR5´£IpÍúÍ7ßüõ¯ýÚk¯~ðÈ‘#I’|êSŸÊ{tDC8@˦œS,ÚŒãœ9sn»í¶[n¹åĉÙ####¿úÕ¯f̘ñå/9ïÑ á-Ë« ×®];þü 6´úäsÎ9ghhèÙgŸýÌg>së­·®^½úòË/ß²e˽÷Þ{ÑEåóbˆs ÇŽ;tèÐñãÇÛxòwÜqÁüò—¿Ü¼yógœqÉ%—<õÔS_ýêWó~MĤ–m2Bª×ëÃÃÃy  ¼¡uÂÖ«8KÕŽŽŽŽŽŽqp*§^¯ç=ˆ’p ZÜ¿Úf©€ € € € € € € € € ±ŠÞxãz½þòË/ç= &±Š6mÚ”÷€øø]ÕräÈ‘]»vmß¾}Ë–-yˆp¬eË–íÛ·/ïQ±Ž²fÍšãÇ'I²yóæ;wæ= 2±B®¹æšìž~úé¼Ç´ –ÔÒ$íü9Ž„ª×ëãÎ{\P~i’6ïÂ6«±Vëê(e+”Ÿp$”F„5iÇ©«q²@ìnêÿ¯HI(ᇠÛqâjÓpý ¸´ÃzI8DcL;žV£+­ ‰6fdx@ë„#@LíXKji-I’xj,׸Å3p:á•Z-M’ZZK“h¯¢V-áPx§/C4ãk9~ôZN{ò O8ÕDr^,I;Ž~ò O8Ìä ¸cJ±Tí˜ÈGˆ@-õÃI€z½î>ŽÐsM›©ýû8ÆH>B!™qÈ[À5"Mê°lóŽ£7…|„‚Ž9 ¾¦xÊ.,[5~ôÂ>ÌGíÅ ú®Å‰´ÒvaèëOM=BAG€~qÛ¶™z„b޽g¬+L=BÞ„#@/ î2õ¹޽!{'›z´m¡ï„#@W9‘±?´#äA8t‰)Æ>ÓŽÐw c’1/ÚúK8t@2æN;B G€¶HÆâÐŽÐ/Óò@„²LQ*ÅѸÅ#ÐK µšÉ­‚ÒŽÐ{–ªÂX›.>kÖÐcÂ`*’1"ÚzI8LN2ŒâG€I¸&RNv„žŽã¸&vÚzÃR5À(Ö¦&gÆàCÖ¦ËĤ#ô€p°6]RÚºÍR5PmÖ¦‚™q*ÌÚté™t„®2ãT’‰F€Ö™qªÇDc¥˜t„î1ãT‰‰F€˜q*ÃDce™t„.1ãT€‰F€n0㔉F“ŽÐÂ(5·õèá””_Ã&¡cÎqÊH2ô€pÊÅu0=c©(×ÁМÕjèŒpÊÂò4@Yªâgy /Ì8‘³rЀ ˜¬½”€púÅA*c|;z(áô…ƒTÌèvôP3òPPIvôPfSe!^R7 ¡’²7€æ×YáôŒjl˜òÈé¸JéŒ~ÐŽ¥!ÞPc49rÚV”ÎøZ;–ƒpz@ MhÂ#§mEéL¶SkÇŽ@·)¡&Æ9m+J§ùN­c'®RBSj9m+J'd§¶×GM8Ý£„eíh[Q:vêÒŽ@—(¡pÙ¶²bÄF8Ý Ã5¶•vb#Ž©Æpc¶•v¢"ΨÆpn+íÄC8Pášl+í˜ {/´N8ôÞ”¢G ]&lÂ…l((<á´E5TpZ§*I8-RU%V¨F€ ŽT@Ðás¬¨6á„Q•'ªáLM5$‰p pš2ÝHùØ«¡]˜œã+£G`ª‘ÈÕ’ZWž4G`"ª‘ø¥IÚ¼ kI-MìçÐá@iMÐŽ~(RÐáŒcº‘™pÞQ5B{„#p:ÕHéŒiGÕmŽÀ(ª‘’j´c-MT#´M8P Y;ªFè„p>dº‘R«%µ´æþ;Ðá$I¢)¹Æ\ã”÷蚎€j¤äƬPkGh›p Ì>ªÆQ´#´G8Bå™n¤¼š\ £¡ ªM5R^S^C­¡U€r:­'ùŒäî<Ðáfº€VG¨*Õ@‹„#eçct‰p„Jr uªG5Ðá@©ù¤Ý#¡bDh—p„*Q$IRsËk M bÒtŠv,SYú°]%¡2AihÒŽö`r ’&lGÕ4%¡ãiÇòí$å{E7áàðÉdíh'G€jËÚ±|ÕXÊyŽPvŸ4—í!eº’èᥦi®±‡hG €p¨ª1Ÿ+ÊÔŽ>2AoG(/ÇNš˜p÷(S;= ª§É‡Š´£LÐ3ÂJʱ“ÉL¹oØs€IG€Š)wúȽ$¡Œ;èá@á¥cº‘ʲóCÍÈ{ôÕã?¾uëÖÝ»wìcûâ¿xûí·ÏŸ??ïAÑUœý5æúcÛ(73Žrÿý÷ß}÷Ý{öì¹âŠ+žx≕+W¾ÿþûy b•Uúè?±ßÇ&n>5Aï ǪÞ¸qãàààŸþô§7þùϾ馛^yå•ûî»/ï¡Ñ=œýR«¹6PE±*¶nÝ:22²jÕªsÎ9'{äÎ;ïœ;wîSO=522’÷è >%¾v”|j‚¾ŽUñ /L›6mÉ’%G¦OŸ¾xñâ¼øâ‹yŽnpàì[¨,áX išîÞ½{Á‚ ,ýø¢E‹’$yë­·ò ”ŠIÇ~ÓòÐ/®ª®„£Gž:ujÞ¼ycŸ;wn’$ ù&õz}üƒÃÃÃy¿8’$qàÌÙ®o-\´íí¼GÐs±²K§Ï<óÌ1 $Irøðáo¢aBµíH·½­sãSô‘¥êJ˜7o^­V;zôè˜Çß{ï½äÃyG"æÀ™ŸÚv¤ÿ÷“$Y´íí]ßZ˜÷pzK8VÂŒ3æÎ;~fñÈ‘#I’4®³B4NalTc¦ÑŽJ¾lkè/áXƒƒƒÈJ±aïÞ½Ù¿Ê{ttÀ3'cª1cÞ(7áXK—.=uêÔ³Ï>Ûx$MÓgžyfþüù—^ziÞ£ƒØüŸÉÿûßñ—N×jIý‰·‡oÐŽ}áSôp¬Š+VL›6íÁÌÎkL’dãÆï¼óÎ 7Ü0sæÌ¼GG»8óÍ56~Çàè?ك沪¥Ž:•ñÈ#¬]»ö“Ÿüäµ×^ûæ›o>ÿüó]tÑ#<2þ6=ãÕëuWU‘pì» W¨'ä:ëÞ²óC„cµlß¾ýÉ'Ÿ|å•WÎ=÷Ü+¯¼rÕªUÙy¦$‹È³ï«1£{ÈþyŽŽEäÀÙ_­VcF;ö„râG€©µW‰ë¬rާ¨g\bûEÎmWcF;vYÔ;?DN8}׸ƒödŠT–VcF;vj„\ GˆP ŽMÚ±H¯®+՘ю@ G '¶cI«1£;U¤ÝªI8BlÊtìÓŽEzi]¯ÆŒv¢&\5Ú±՘юm*Ò•%¼eíX˜&èi5f´cËŠ´‡@• GˆJ)ŸÙ‹*Æ•Ô}¨ÆŒvb$\5R¸íØ·jÌhÇP¥ü¼qŽò>Ǽ¢\Û±Ï՘ю@\„#“ ;8§vÌ¥3Úq åû¼1Ž@šÔ@ßÛ1ÇjÌhÇI©F(á‘(ÓtÊ×ÒÇv̽3Úˆ‚pú.¤€ûRɩƌv«L– ,„#PQ…ªÆŒvüˆj„BŽÑn+`5f´#Pd¨œÂVcF;ú¤…%j)x5f´#PL ÏìK÷DQ™ê¶£ L8UQ5fªØŽªŠM8•]5fªÕŽª O8B!Ô’IîwíPÚ ‘Vc¦Zí›p„BH“tÒvüДO`BQWc¦íè3Ä@8BQ4oÇZRK‡Õ–• 3%oGÕ‘ŽP cÛñã©jlOiª1Sòvb ¡XÆÏ;ªÆö”¬3ålGÓá…3ºUc{JY™²µ£j„¨G(¢¬ki¢ÛPâjÌ”­xG TJ_™’´£éFˆp„"ª%µ´tF«H5f¢oGÕŽP8£ÏkÔŽá*U™ˆÛQ5Bœ„#Ëø«a´cˆ Vc&ÊvT-áòQ5ž~dÕŽÍU¶3Q¶#'áEÑüÎ;Úq2¯ÆLLíhºb&¡(¦¼óŽ[óŒ§âhGÕ‘Ž@¬TãEoGÕñŽP<ޝTㄊގ@ä„#ÕØDAÛÑÇ!(áDF5N©pí¨¡,„#Õ¨@í¨¡D„# ÕØ’B´£j„rŽP0´“Pm(D;%"¨Æ¶åÙŽ>AéG èTc‡òiGÕe$BS]ÑïvTPRÂ(.ÕØEýkGÕå%‚R]×vTPjÂ(¢þUc­–÷kí+×YŽP$fk²ÍÐϹÆ4¢KW–=lG;0”pŠ%‡ê&íXÒêI;–t[£ G @r;¯qÂv,u u¹K½­€áEÎWÃŒiÇ ”P×Ú±Û ÈG  q u£+SB]hÇÊl+ Ž@¢3Y;V©„:jÇŠm+@82Ò]EJ¡¨“K¨b?m¶£j„êŽL ä¸Y±+½RÄjLÂ~Ê¥åvTPI‘‰5?n:dЭƌvlÂ[T•pdR“72èŠBWcF;NÈ[T˜p¤™ñÇM‡ º"‚jÌhÇ1¼@µ G¦0ú¸éAWDS™êíô~Ÿ50™ZZ½÷DÚµ£¥ç*ÐæÅªF&·ë[ m{û´‡*°Í™q„¨ÀQY5Fdì¼cöO`J‘©ÕjÉ¢EõêëE—©Æè|ÔŽªH’D82¥ÑÇ íHÛTc¤m{[5 ‘fÆ/´#mPSÀ(‘IMv¼ÐŽ´D5FL5§ŽL¬ùñB;H5FL5ãG&r¼p@é¾Òõ¸jŒ˜j&2#ïPDŽtN5ÆÊ][É G ûTc¬L4MYªºL5ÆJ5SŽ@7©ÆX©F €pºF5ÆJ5a„#Ъ1Vª&.P±R@+„#Ð)Õ+Õ´H8Q±R@ë„#Ð>Õ+Õ´E8B‘Dõ[Uc”j5Õ´ÍoŽÚ¡£$ΘqZ¦£¤Ž G 5ª1Jªèá´@5FI5]"Pª1JªèáSÔ «Uc|\@ t›«ª©©ÆøHF Ì8SPñQ@o˜qšQ‘ÉÎsP@o˜q„â)ÌiŽª12ÙD£jzF8S‘±< ôžp& #£¾ŽPH¹®V«Æ˜¸çÐG.ŽN£c"þ2ã|D5ÆD5}'¡¨ú¾Z­£ayȉ¥j ITcD$#á¨ÆH¸¹77KÕP`}Y­Vqpso „#TšjŒƒåi „#[/'Uc\‰s¡¢Tc$#P0f¡ðz0騋ÎD#PHf¡rTcÑIF ¨Ì8B º7é¨ ÍD#Plf¡BTcq¹G#3މŽ'Ucq¹G# áñè UcAY›¢b©ÊO5”dbcÆ¢Òú¤£j,"@œÌ8Bl²v kÕX8.‚b&¡´Tc±HF ~–ª!B Öª±X\7 ”‚p„85mGÕX NgJÄR5Dk’“UcQX›JG8BÌÆµ£j,É””p„òPù“Œ@© GˆÜ‡“Žª1g’¨áñKÓ¤VK%K^$#PÂJ¡•»‚Ó5’¨áeѸAŽé›¨$á%’uŒ©Çž’Œ@… G(ËÖ="ÊŽPFÚ±‹¿¡Çö*O8BI9å±s6 Àé„#”—SÛ&&"¡ì,[‡³* Дp„ (õ²u-©¥IÚÉô"@ áÕÐX¶NÊ–Gi’6IÃ)ª±Œ w„#TIIóq²vœ´M1´E8Bõ”1Ç·ãÕ¨:#¡ªJ—£Ûñ£jlÄbY^&@ަå=rðÆoÔëõ—_~9ïPiúÁ¥3ÙŸÈeíXKji-ùàe/0û@gÌ8VѦM›òÓˆª¨s?˜=vü…'+äÈ‘#»víÚ¾}û–-[ò EWAŽ™"M'Zª {„c…,[¶lß¾}y‚HŒ/Ȥ9ùxFÇbó{ôÐáX!kÖ¬9~üx’$›7oÞ¹sgÞÃ!£ãlÜ _oÿÓžs™†Þ¯Q;tp¬k®¹&û‡§Ÿ~:ï±§t’»Û„KáÕëu×Ü@Å™q ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp„¢¨×ëy¡ûjµNŸ…Rþ¿«ÿã UÂè¡4m–†µZ’¦y€`Âè­ÉÚQ5DG8=7¾U#@Œ„#УÛQ5DjFÞª¢ÑŽª RµÔ[8a\~HçvíN’dÑ"ûTÈððpÞC k„#Ð'jKÕ‘rŽ#Уc±ù=z(,áôÜø)Fí#áôÖd ÓÚ :Âè¡æ§3jG€¸G WB.‚q• @D„#Ð+¢ d„#A„#A„#A„#A„#A„#A„#A„#A„#A„#Îo¼Q¯×_~ùå¼Âüñ+V\zé¥W_}õ]wÝõî»ïæ="Zà Ú ¡p6mÚ”÷˜Úý÷ß÷ÝwïÙ³çŠ+®xâ‰'V®\ùþûïç=.BùAƒ6ÌÈ{ÀŽ9²k×®íÛ·oÙ²%ï±0…ááá7nÛ¶íœsÎI’dÍš5¿ùÍoî»ï¾{î¹'ïÑÑŒ4è„p„¢X¶lÙ¾}ûòA¶nÝ:22²jÕª¬“$¹óÎ;÷»ß=õÔS?ùÉO¦M³˜S\~РŠbÍš5ÇO’dóæÍ;wîÌ{84ó /L›6mÉ’%G¦OŸ¾xñâíÛ·¿øâ‹—_~yÞdR~РŠâšk®Éþáé§ŸÎ{,4“¦éîÝ»,X°`Á‚Ñ/Z´(I’·ÞzK8™4è„õ€Ö=zôÔ©SóæÍóøÜ¹s“$9xð`ÞèáКìÒé3Ï|8ïôŠ¥jè«“'O>ôÐC/§OŸ¾råʼEkæÍ›W«ÕŽ=:æñ÷Þ{/ùpÞ ”„#ôÕ‰'xàÆ—³gÏŽÑ™1cÆÜ¹sÇÏ,9r$I’ÆuÖå#¡¯æÌ™3<<œ÷(èÔàààîÝ»9rÖYg5Ü»woö¯ò@¯8Ç eK—.=uêÔ³Ï>Ûx$MÓgžyfþüù—^ziÞ£èáв+VL›6íÁÌÎkL’dãÆï¼óÎ 7Ü0sæÌ¼GÐ+–ªZ¶páÂÛo¿}íÚµ_ÿúׯ½öÚ7ß|óù矿øâ‹¿÷½ïå=4€Ží¸ùæ›Ï>ûì'Ÿ|òüã¹çžûío{ÕªUÙyʪ–¦iÞc Îq ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp Èÿ(Ýôá,£IEND®B`‚statistics-release-1.6.3/docs/assets/silhouette_101.png000066400000000000000000000462721456127120000230500ustar00rootroot00000000000000‰PNG  IHDRhŽ\­ALIDATxÚíÝy@õþÿñÏa1qQEq·DT¼îŠ¢â––»¹^Ór_®š™V–ZYjeæš+.¤y]RCÓD×Ì 4P Tåp~Ì÷žß d˜ó|üuøœ9s>3;ïy¿fæè ƒþ‰…Ú@É@áY( …#d¡p€,Ž…Â²P8@ GÈBáY(š+W®èþÉôéÓ…+W®”þôööÎ×[¼ÿþûÒ {÷î­ôæøûûKïµtéÒ—\U¾¶·À;G¾ HoáïïŸß×îÝ»÷§Ÿ~úé§Ÿ>|¨Ðô[VjOP’ 0àéÓ§Bˆ_~ù¥sçÎjO@‘¢p GGG›œãöööBˆòåË×®][Q­Z5µgZòµ½æ¶s” ޱyóæ<ÚQ8p ÚsüõêÕûù矅5zÉUåk{KÄÎ`ž8Ç€ r=/##ã»ï¾kÛ¶­““S¹rå^}õÕ!C†üþûï/ZÉ£G¦NÚ¬Y³råÊ5iÒdݺuƒ!Û2qqq'Nlݺuùòå]]]ûôésþüyÓLOšÌÌÌœ;wn5æÎ+„èÑ£‡¢R¥J:t(ð$_´½y¼o¡ìSÑÑÑýúõspp¨Zµê믿~æÌ™\ËÊÊ òññ©U«VéÒ¥kÕªÕ±cÇ~ø!##CZ`Ö¬Y:NÊ©…¾¾¾:îÙ³g2_@ PH._¾lüË/¿ü’Ç’ß}÷´XóæÍ¥‘çÏŸ·hÑ"çÿ£t:Ý7ß|c|áœ9s¤ñŽ;Ö«W/ÛÂK–,1}—GGÇœ+œ2eJÎöêÕë­·Þ’Ï™3Ç`0dddÔ¬YsܸqÆ…eNRÎöæñ¾Þ9¹:sæLÕªUM_U¾|ù€€é±ŸŸŸqÉ7ß|3ׯ‰¾}ûJ Ìœ93ç³OŸ>•ùr@Ç@±ðñLJ‡‡ !lllzöì9~üøýë_BƒÁ0qâÄëׯg[þ×_½~ýº‹‹‹———¥¥¥48kÖ¬ôôtéqrrrÿþýãââ„:uš7oÞ€,,, Ã’%KÖ®]›m…gÏžýá‡LG¬¬¬þüóÏo¾ù¦À“”#çû¾üÎ1JOOïÛ·ï_ý%mNË–-k×®ýäÉ“ýû÷g[rûöíÛ·oBètºN: :ÔÐïܹóÈ‘#BˆiӦݺu«L™2Òø?ü`üSÎËhÚ•+í0í8æjÒ¤IÒ’9›jmÚ´‘F>þøcã »té" ._¾\16ê„K—.•7mÚd¼xñ¢48{öliÄ´ãµ|ùri°fÍš9WØ AƒM›6………EFFæº2'™SÇœï[à““±ê-_¾|XX˜48iÒ$ã[;ŽÃ‡—F¦Nj|y³fͤÁŋ˕+' š6•å¿@‰ÆÅ1Š…ÔÔTéÁÆ«U«Ö­[7GGÇ7ÆÇÇ !*Uª”mùúõëO˜0AzܳgO++«ÌÌL!ÄÍ›7===…Òu-BˆÑ£G_5|øðI“&éõúèèèK—.5nÜØøT™2e>ìääTˆ“”CÑ÷ݺu«ôÀؤB,Z´hË–-<0]²_¿~ÒÅLíÛ·—F’““SRR¤Ç=Ê{+^òåJ GŠÈõv<+V|Ñò¯½öštÙJDDÄÈ‘#u:———¿¿=r=½¯nݺÆÇåÊ•«^½úŸþ)„ÐëõÒà7ŒkÎõoÞ¼iZ8zyyå]½`’r(ú¾Æ`z£ïR¥JuíÚÕ´MkÜK‰‰‰<{öì… Μ9óäÉ™[ñ’/PRP8PDÞ·ãÉiþüùÉÉÉ«W¯NKKB †óçÏŸ?~Á‚íÚµ ®\¹²éò;E[§Ó™þ™œœl¼ø÷E¤v‘ƒƒC¡ORåÞ÷éӧƶb¶ëcœ³-œžž>kÖ¬eË–I[!„M•*U²5&_ä%_ ¤àâÅ‚µµõ×_ýðáÃmÛ¶ 4HºO¸ä·ß~“~¨P>[[ÛòåËK:t+7 0}I¶Ò³&©ôûÚØØ”*UJzœ­€KJJʶð‚ –,Y’™™éââòí·ßþþûïÉÉÉÝ»w—¹/ùr%…#õ¥¥¥ÅÅÅÅÅÅ¥¥¥½ùæ››6mzðàÁáÇ9ìñãÇó»N777éAff¦« {{û *T¨P!×¶)âI*ú¾–––uêÔ‘ÿä“O®^½jºØ“'OŒÁýãÇ¥çÎËû6:Æ;ìåJ"Îq ¾Æ;::ÆÅÅeff¶mÛ600°bÅŠwîÜÙ³g´@ïÞ½ó»ÎY³f­^½:11q÷îÝ:uêСÕ+WöíÛ'=;eÊ”<®Ô)²I*ý¾Ó§Oß²e‹Á`xüøq«V­þõ¯=|ø0ç}Ë•+W®\9é¬Ð‘#GnݺU§ÓýüóϹþèK… ¤%?úè£+W®Lœ81_/P²©}? Úñ2¿sêÔ©eÇ;v|þü¹´˜é®˜®°víÚÒxPPqpÏž=¹vãÞ~ûí¬¬¬¼W˜+™“”³½y¼owN®† –í%eË–íÚµ«ôØxÇ~ýúe[ÌÅÅÅÇÇGzüÖ[oW8hÐ ÓŤ_Ž‘ÿr%Q5€b¡eË–·nÝzÿý÷½½½œœ¬­­íííÛ¶m»zõê#G޼òÊ+Xg÷îÝÿý÷Q£F5mÚ´L™2...½{÷>vìØŠ+ä\’R4“Tú}׬YóÎ;ïH«T©Ò£G_~ùÅx·E£/¿üòÕW_BXXXxzzNž<ùÂ… ={ö”žÝºu«ñÎ>_~ùå AƒªT©R¶lÙFI—·Ë9€Mgøß©?­:{öìÑ£GÇŒckkû¢e222öîÝ+ š¹¿äË”Ž…¨²P8@ GÈBáY( …#d¡p€,Ž…Â²P8@ GÈBáY( …#d¡p€,Ž…Â²P8@ GÈb¥öÌ—‡‡‡ÚS¡öT@á¨&óüÌ)ÁÃÃY(Ø“…ˆYXØ“…ˆYX̶ûCT Y( …#d¡p€,ŽEg0Ôžƒ™âÒ6J(³ý§ãY( …#d¡p€,Ž…Â²X©= èt:µ§øÜP(¡SBÔžàÅ–tV{(DÕ…Ž#´‚cYFá­ ª€bkIgNpÔ¢jÈBÇZAT €Â(¡DÕP<‘SkQ5d¡p€,DÕÐ Îq@aŽÐ Îq€b…Sµˆ¨²Ðq„VU 0 GhQ5+ÏkQ5d¡ã­àÐ…Q8B+ˆª øà’j"ª€,t¡DÕ(ŒÂZAT ÅóET Y( Q5´‚X…Q8B+8ÇŠ·Ý13DÕ…Ž#´‚¨…Q8B+ˆª (R›%¢jÈBÇZAT €Â(¡DÕP”8\7KDÕ…Ž#´‚c_Fá­ ª€¢ÄáºY"ª€,t¡û 0 GhQ5 nýmƈª …#d!ª†VpŽ# rjsFá­àG(¥›7¢jÈBÇZÁA0 £p„VU@à(ݼU@:ŽÐ ‚P…#´‚¨ŠG鿍²Ðq„Vp €Â(¡DÕ œ%ùÁ¢jÈDÇZAT €Â(¡DÕ rjüQ5d¡p€,DÕÐ ÎqeSÈÂZÁ9Žð’8—ÿ„¨²Ðq„VU 0 GhQ5!5ä!ª€,t¡DÕ(ŒÂZAT CN Ùˆª GhQ5 £p„VU€|ÄÓ(¢jÈBÇZAT €ÂŠoá8}úô={ö?~ÜÑѱÈVR(o uUÀ?"¡ÆË!ª€,ºb{䛜œìææfeUð¶h~WR(o*“‡‡GDD„Òïb&t:Gøgt ‰Ù~‰ßÂQiVVV:N­ ˜ígN *þw€’Ål¿÷ —Ù~‰«vŽã¬Y³~üñÇo¾ùÆ×××8øìÙ³V­Z•/_þøñã|ðÁŽ;Œ§8011qïÞ½‹/Þ¹sçØ±cG%½äË/¿ ‹‹‹óôôìîî®Ö¾5SÜŽ…©V8ZZZúùùmÞ¼944ÔÇÇG‘””tâÄ ///—\_’‘‘1cÆ cÕ˜œœ¼cÇcUgaa1mÚ´½{÷>~ü8·ž:uªT5 !êÖ­[§Nøøøœ‹%''oÛ¶ÍÝÝ]ÊÄ%cÇŽ½páBBB‚ôg@@@×®]U£ÂÍÍMñèÑ#µv¬ù"ª€l8¢FaSó>Ž›7o>xð T8þ|™2eêÕ«g:Ø»wï{÷î………™^IS ™íÏ\*A§ÓÑq`îè8!³ýW?ª~óæÍ»}ûöÁƒœœ¤‘'N\½zuÀ€żjDáãGV² lj'¾û{÷îÑ£‡½½}ddäÏ?ÿìääÄɅ戎#óD£E¨dŽ;wþá‡V¯^ýóÏ?'&&ÚÛÛûûûÏœ9ÓÁÁAí©hMÉ>DZD3ÛÓ#”ßëñ@3øW…Ù~‰—ìŽ#ðÿU0dÓPW@:ŽÐ ®ª@aŽÐ ¢jÚFBb€¨²Ðq„VU 0 GhQ5€’ˆ% Q5d¡ã­ ª@aŽÐ ¢jÅ‘44¨²P8@¢jhç8 0 Ghç8(ž8»BT Yè8B+ˆªP…#´‚¨@á"br ª€,t¡DÕ(ŒÂZAT à‘>/‡¨²Ðq„VU 0 GhQ5€!¡ Q5d¡ã­ ª@aŽÐ ¢jÀÌ‘GÊ#ª€,Ž…¨ZÁ9Ž(ŒÂZÁ9Ž@qÆ ˆ€&U@:ŽÐ ¢jFá­ ª^i2€BT Yè8B+ˆªP…#´‚¨xI}ø'DÕ…Ž#´‚f £p„VUC¸®@ñFT Y( Q5´‚sQò‘S(æ(¡œãˆ„s”LDÕ…Ž#´‚¨%íF%…#´‚¨rÀK ª€,t¡DÕ(ŒÂZAT]dH{À\U@:ŽÐ ¢jFá­ ªVÙ4@AT ™è8B+ˆªP…#´¢8GÕD½M ª€,Ž…¨ZQŒÏq$§h…#´BÅs9…`ˆª G¨F§ÓæêÔ‹ªi7Ì…#TUXù2a1Ê#ª€,t¡ªb|)4Ȇª*¼¨Zí-@ûˆª G¨ŠN!%…#TÃuД,DՅ²P8@ GÈBáY( …#d¡p€,Ž…Â²P8@~«Z ÓéÔžÀ, µ§ & GhÅ”µgк%՞ʈª Gh…Ù 4 GhQ5@ifߤ ª€,t¡f€Ò(¡DÕ¥™}“‚¨²P8@¢jh…ÙÇ(ÂZÁ9Ž¥™}“‚¨²Ðq„V˜ýQ J£p„VU”föM ¢jÈBÇZaöG(ÂZAT PšÙ7)ˆª Gh…Ù 4 GhQ5@ifߤ ª€,Ž…¨ZaöñJ£p„VpŽ#@ifߤ ª€,t¡f€Ò(¡DÕ¥™}“‚¨²Ðq„V˜ýQ J£p„VU”föM ¢jÈBÇZaöG(ÂZAT PšÙ7)ˆª Gh…Ù 4 GhQ5@ifߤ ª€,Ž…¨ZaöñJ£p„VpŽ#@ifߤ ª€,t¡f€Ò(¡DÕ¥™}“‚¨²Ðq„V˜ýQ J£p„VU”föM ¢jÈBÇZaöG(ÂZAT PšÙ7)ˆª K.Ç»wïfeeÕ¬YSí¹ùaöG(-—Â1 ---44ÔÁÁAíé²U”föMŠ\¢êºuë !nܸ¡öÜPŒäR8¾ÿþû666+V¬xþü¹ÚÓ@q¡3 Ù†bcc¯]»6wîܲeËöèÑ£fÍš¶¶¶Ù–騱£Ú3/ñ<<<"""Ôž…Fèt:µ§0 Rád¶_⹜ãèãã#=ˆ_¾|y®/3Ï…bsJ3ûss){ôè¡ö¬PìäU£h˜m—[ DÕ€¢ATýB?¾|ùòýû÷œœÚ´iÏ zP|U”FTëhBBŠ+vîÜ™šš*„xë­·Ú´iÓ»wï† ~úé§öööjOE-—Â1##cܸq/^tttôóóÛµk—4^¥J•£Göïß÷îÝ666jÏø;³? @i¹Ž+W®¼xñb‡¾úê«2eÊ ÇíÛ·Ïš5ë§Ÿ~Ú°aØ1cÔž9ðwDÕE-éÌ•!¹Ü<<<ÜÒÒò“O>)S¦Œé¸¥¥åܹsË”)sðàAµ§ €¢–KÇñÚµkuêÔÉõ:˜råʹ¸¸Ü¹sGíi9U °\ G;;»gÏž½è‰‰‰åË—W{Ú@DÕEÑ¡È5ªnРÁýû÷/]º”ó©k׮ݻw¯~ýújOE-—±_¿~:nêÔ©W®\1¿råʤI“„½zõR{Ú(j¹ÿrÌ矾jÕ*!„‹‹KTTTõêÕË”)™••Õ»wï… ª=m-0Û›Î+_ŽcÕd¶_â¹ß|Ú´iÍš5[´hQTT”âÞ½{BˆÊ•+O™2¥wïÞjÏÈ ç8Å9Žyüä ObbbTTTzzº‹‹‹£££Ú³€jr)½¼¼8}út!„½½}³fÍLŸ?~ü7¸•#ŠPX.…cJJJFFF®K§¤¤DGGKÉ5P¼UE‡ÂX8;vlìØ±ÆÑ 6lÚ´)çÒYYYƒ¡fÍšjO»€âââ|||úöíûᇪ=€æÿ GKKK[[[éqbbb©R¥²ýÞ Q… fΜ©ö´ N¯×gee©= (€Aö…cÛ¶mäÇýû÷Ÿ={¶Úsòƒ¨ (:¹žã8räÈæÍ›«=±:zôèúõëoݺ•’’R³fÍ>}ú 4ÈÒÒRz6##cÅŠ¡¡¡7oÞtrrjܸñĉ¥ëÁçÍ›·uëV!ÄŽ;vìØ1þüþýû !ž={¶lÙ²3gÎܾ}ÛÙÙ¹I“&“&MªX±¢Ìwø@­ïiŸ§OŸ8pÀÁÁA‘œœìçç—ššzîÜ9 ‹>úhÓ¦M3gÎ>|¸´üáÇ'L˜Ð¶m[é‡pâââÚ·oÿÆo|üñÇÒÓ¦Mûïÿ;a„wÞyGÙ¾}ûûï¿ßºuëuëÖýã;N˜0áàÁƒ;vìhܸ±ôò;w¾÷Þ{¦+|³ýÌ)A§ÓU”µ¤3…c.Qõ™3gÆg0:uê$„¸zõêÎ;íììºuëvüøñ­[·¶k×®sgb~ƒÁP¡B…råÊI#¶¶¶7n|úô©Á`HNNÞºukÓ¦MU£¢K—.{ö쉎ŽÎy1x||üÞ½{ëÖ­;nÜ8ãà›o¾¹oß¾“'OÞ¼yÓÍÍ-wBtíÚÕX5 !ÜÜÜ„=’³EÙFÌóS@qæ¾w¬B¸»çüâ67¹Ž«V­2 ï½÷Þ€„‡B|úé§;w¾s玟Ÿß–-[T)u:Ýk¯½¶gÏž€€€€€ooï&Mš¸ººJÏFFFêõz›   ÓW¥¥¥ !¢¢¢rŽ·oß6 íÚµËÖ@•.ŠŠŠª[·nï(„ðóóBdffFGGÿù矷oßÞ½{·ü-¢L,Lœ³ PÆÿ=0í8ª=)uäR8Þ¸q£jÕªC‡•þ<}út©R¥Úµk'„¨]»¶«««ôÖªøä“O^}õÕüqÕªU«V­²´´ôòò?~|Ë–-ïÞ½+„ ÍùÂû÷ïçü믿„•+WÎ6.]L›÷; !¢££/^š’’bmmíêêêââB9¨¢j€¢èPäZ8>~üØØTËÌ̼zõj£FJ•*%”)S&::Z­éZ[[:tèСñññ.\ 1bDPPTí½ûî»Òy™rT­ZUñðáÃlã<ÿ+óxG77·¾}û¦¥¥1¢[·nuêÔ±´´¼}ûöÔÚ?ʱÈ9ääät÷î]½^/„8þüóçÏÿõ¯IOeeeݽ{7g‹®hÄÄÄ,^¼Xú™l‡.]º¼ÿþûS§NÕëõ¿ýö›‹‹‹"<<<Û«6oÞüÑG%%%å\a:u„¡¡¡Ù®’z–®®®y¿ã¹sç¤ë¸'Nœèææ&Ý çñãǪì¥åÒqôöö Z¾|ùo¼±|ùr!Dûöí¥§Ö®]ûèÑ£:¨2W›5kÖ899µjÕÊø;7RB]³fM‡ÀÀÀ½{÷nÚ´iðàÁÒ³!!!~ø¡»»»q=ÒYB‡nݺíÛ·ïûï¿3fŒ4¸}ûö“'O¶hÑÂÃÃ#>>>w”ÎŒLHH0®ùÉ“'_|ñ…B*»Q¤HPX.·ã¹wï^÷îÝŸ={&ýùê«¯îØ±C§Ó½ù替ÿþ»â‡~Îð+z³gÏ®P¡B‹-Ê–-{õêÕˆˆˆFmÚ´ÉÆÆ&..nðàÁÑÑÑ §N*]ºôæÍ›4h „HNNööö¶³³ëÙ³§¿¿Ó¦Mccc|ïÞ=www¨¨¨+W®˜ÞÇ1wBôìÙóÏ?ÿôôôôòòzôèѱcǼ¼¼Nž]ºté™3gîܹãìììååeúË1y¿cllì_|qúôé´´´zõê½ñÆ=zôøöÛo7lØP½zõààà<¶Ål?sJ p(ŽÂQæ/ÇHîÝ»W­Z5 ™Ë#ofû™S¿(ŽVò­^½ºÚ³^ŒŽ#@QœLŸká(çü۰0µg€"•KᘜœœmÄ`0deeI«V­*ýj3P¼p €Âr)¯^½šmD¯×ÇÆÆ>|xÅŠiiióæÍS{Ú@DÕEÑ¡Èõà9YZZ:;;1bùòåIII“'O–I ´!Ç!Z¶léæævãÆ˜˜Ó{Üêã@…å¯pBT©R寕*UR{æÀßUE‡BfTm”’’rõêU‡²e˪=s©\:ާNÊuÑÄÄÄ7>zôÈ××Wíi9p €Âr)‡ –Ç Ê—/?qâDµ§ ä@T PŠ\ Ç=z¼héš5köêÕËÙÙYíi ¨åR8~öÙgjÏ ÅN¾¯ªŠ)f%„øõ×_óû²Ž;ª=sàï8Ç (:Rá8f̘ü¾,""Bí™ HY‰<¯†J P˜•àjhQ5@Qt(äürÌ_ý•˜˜¨ö< ²ÿUuffæþýû8ðæ›oúøøÇ:ôÉ'Ÿ¸»»Œ5ÊÊŠ ±Q,q €Âþ¯ |øðáøñã/\¸ „èÕ«×ß–°²2 ‡úòË/kÕª¥ö´ˆªŠ¢C!EÕz½~èС.\¨T©Ò»ï¾Û¼ysÓ%xèСÿüç?¶¶¶W®\™2eJVV–ÚÓ@‘3 ;vìpwwïÒ¥Kll¬áÅwîÜ‚ îß¿ÿŸÿü'ç=z4tèЛ7oº»»wêÔéæÍ›ëÖ­;qâÄÎ;¥µÝ¿È!111®®®:t¸sçζmÛBBBÖ¯__·nÝlk“¹p¶ £èU 0¥ ÇV­ZUªTéèÑ£ééé¥J•’÷íÛ'„èÓ§bÙ²eW¯^9sæðáÃ¥g>ÝÂ"{÷tùòå7oÞœ6mÚèÑ£¥‘… ®[·.((hذaBˆ/¾ø"&&f„ ï¼óŽ´ÀöíÛßÿýO>ùdݺuÙÖ&gáœΛ‡‡G¶‘ˆˆ…þ‹hQ5¼ BçËù}m¶”*---ýüü6oÞêãã#„HJJ:qâ„———‹‹KrròÖ­[›6mj¬…]ºt ܳgOtttÍš5…3fÌ0aƒ!!!¡B… åÊ•“Flmm7nÜøôéÓœŸõääämÛ¶¹»»5Ê88vìØ .$$$!âãã÷îÝ[·nÝqãÆxóÍ7÷íÛwòäÉ›7ošöe.œmÂÿˆ2€â/ç÷µÙ–’ ^¸yóæƒJ…ãÁƒ333¥vcdd¤^¯·±± 2}IZZš"**J*…-Z´0>«Óé^{íµ={öx{{7iÒÄÕÕ5×w—Þ¢M›6:Î8hgg·mÛ6éñíÛ· C»víLB´mÛ6,,,**Ê´p”¿°é„Q¤ˆªP˜‚…£———““SHHHff¦••Õ¾}ûlllüýý…wïÞB„†††††æ|áýû÷¥ŽŽŽ¦O}òÉ'¯¾úê?þ¸jÕªU«VYZZzyy?¾eË–ÙV"½EåÊ•_4½¿þú+פwŒ-ÀÂ9'Œ¢CT /ƒÃoÈ `á¨ÓéV¯^}êÔ©zõê…‡‡÷èÑCJ™¥êêÝwß?~|ÞkÈv梵µõСC‡áÂ…°°°ààà#F5nÜØtÉ*Uª!ò¸DºjÕªBˆ‡fðàq†ù]8ç„4CÙû8®^½úàÁƒ·oßÎÊÊ’rj!„‹‹‹"<<<Ûò›7oŽŠŠš0a‚]εÅÄÄlݺÕÓÓóµ×^sppèÒ¥K—.]j×®ýñÇÿöÛoÙ Ç\ß"55µeË–õë× ªS§Ž"44Ô`0˜ÐR4[ž¯…¡Ž•P˜²…cýúõ]\\>|ýúugggoooiÜÁÁ!00pïÞ½›6m}úðáÕ*UêÙ³ç¸qãröMÍ›7ÏÃÃc×®]aaaYYY5jÔ˜4iÒ!Clllr.ìääôÓO?-]º4<<üСCÕ«W9rä¸q㌠;99íÙ³géÒ¥gΜùå—_œûõë7iÒ¤Š+æº6ù C+ 0wûT‹‡‡÷q,,:ލ^ 7ϳýç`ÈBáY?Ç("œã€Â(¡œã/ƒÃoÈ@T Yè8B+8V@aŽÐ ¢jƒÛîà%U@:ŽÐ ¢jFá­ ª€\‘M£ðU@:ŽÐ ¢jFá­ ª€\q\ÂCT Y( Q5´‚,…Q8B+8ÇŒ¸”AT Yè8B+ˆªP…#´‚¨H¨¡0¢jÈBÇZAT €Â(¡DÕ4Œ ÅQ5d¡ã­ ª@aŽÐ ¢jšA0⊨²Ðq„VU 0 GhQ5€’ˆT% Q5d¡p€,DÕÐ ÎqP‘S£d¡p„VpŽ#€b…“¡EDÕ…Ž#´‚¨…Q8B+ˆª+ÍB‹ˆª Gh÷(ŒÂZAT  qM4¢jÈBÇZAT €Â(¡DÕ^ 5'¢jÈBÇZAT €Â(¡DÕ^‡ @žˆª …#d!ª†V0 0 Ghç8fˆ»çE‹¨²Ðq„VUæ‡v#PÄ(¡DÕ€¶‘JÅQ5d¡ã­ ª@aŽÐ ¢j=ÂSf†¨²Ðq„VU 0 GhQ5Ї+Ì Q5d¡ã­ ÷€Â(¡DÕ(\I ÀŒU@ GÈBT ­àGFá­àLJ“ ¤!ª€,t¡DÕ(ŒÂZAT]âPë@ICT Yè8B+h_ 0 GhQu‰C­% Q5d¡ã­ }€Â(¡DÕ‚[j”ET Y( Q5´‚sP…#´€û(DՅ²P8@ Gh‡‡‡ÚSÐöd!bgöd!bgâ%Q8@ GÈBáY( …#dÑñ“*âê6J¨ˆˆµ§  GÈBT Y( …#d¡p€,Ž…Â²P8@ GÈBáY( …#d¡p€,Ž…Â²P8@ GÅíØ±ã7ÞðòòjÓ¦ÍìÙ³ó^>55uýúõMš4i×®ÝÈ‘#CCCÕÞˆb*¿û| ËË|öbcc›5k6}útµ7¢¸(ÀÎüã?Þ}÷]ooïÁƒŸ>}Zí(ò»'ÓÓÓW­Zõúë¯{yyuêÔiâĉ7oÞT{#J†¨¨(ßÿ]퉨ÀrÞ¼yjÏA˾üòËÅ‹?}úÔÛÛ;55õÔ©SáááÝ»w·¶¶ÎuùÌÌÌ¡C‡îܹS¯×·hÑÂÖÖ6<<|×®]-Z´P{kŠ—üî[ði,,/óÙ3 ï¼óÎíÛ·=<<ºvíªö¦¨¯;óÈ‘#£FŠŠŠrqq©]»vxxxpppÆ ëÔ©£öÖ¨)¿{R¯×:488ØÚÚÚÛÛÛÚÚúøñãÛ¶mkÑ¢EõêÕÕÞšânÙ²eüñÇo¼QµjUµçRä PÌõë×ëÕ«×®]»¸¸8iäã?vwwÿðÃ_ô’Í›7»»»0 %%E¹qãF‹-êׯõêUµ7¨)À¾5s| ËK~öÖ®]ëîîîîî>mÚ4µ7E}Ø™?nÞ¼¹§§çÙ³g¥‘ßÿ½Q£F­[·Öëõjoj ü|âĉÒÈÉ“'ëׯߵkWµ·¦øJJJ:sæÌܹs¥Å/^T{F* ªVÐöíÛ³²²&MšT¥JidæÌ™vvvÈÊÊÊõ%?ÿü³â½÷Þ³±±‘FêÖ­ûöÛoëõz"BSØ·fŽOcay™ÏÞÍ›7¿üòËzõꩽÅEvfppprròÛo¿Ý¬Y3i¤qãÆþþþñññüñ‡Ú¤šìÉóçÏ !Þzë-+++i¤U«Võë׿sçΣGÔÞ bª{÷îƒ R{"j¢pTЙ3g,,,:vìh±´´lß¾}BB‚ô/6§Û·o—-[¶aƦƒuëÖBÄÄĨ½AÅHö­™ãÓXX üÙËÌÌœ1c†½½ýÌ™3ÕÞˆâ¢;óøñã:®W¯^¦ƒ‹/ŽˆˆðôôT{ƒTS€=Y­Z5!„ih0?~laaa,%‘Í‚ ¾ýöÛo¿ý¶uëÖjÏE5|8”b0nݺU±bÅŠ+šŽ»»» !bbbš7ožóU+W®Ìù/öÊ•+Bgggµ·©¸(ؾ5g| ËË|ö–/_~íÚµµk×ÚÚÚª½ÅBÁvæåË—ííí«V­zöìÙ .<~ü¸^½z¾¾¾Æ¾¸*Øž ܰa ʔ)Ó¤I“ÄÄÄo¿ýöîÝ»ýúõã#ú"mÛ¶•=zTí¹¨†ÂQ))))z½¾B… ÙÆíììÄßòL5hÐ ÛHXXØ÷ßÿÊ+¯d;Â6gÛ·æŒOca)ðgïâÅ‹«V­}zþüù‘‘‘ÕªUûä“OÌùtŠœ^rßš!>…¥`{rÑ¢EwïÞݺu«9Ç©9`g–.]Zz°páÂN:Iß}÷ÝØØØààà}ûöõíÛWíÍRAÁ>–3fÌ8wîÜÌ™3‡.ÄÆÆöïßòäÉ{öìqqqQ{³PLQ8‚ŒŒŒ¯¾úÊøç+¯¼òïÿÛÊÊÊÎÎ.ç¡^rr²Âxá[NéééŸ}öÙÆK—.=~üø‘#Gòe“M÷­ÙâÓXX °'ÃÃ÷nÝ:nÜ8s¾t#WØ™eË–-]º´N§óññ1÷õõ ¾~ýºÚÛ¤ŽìÉ=zÔÍÍÍX5 !œœœÆ÷ÁìÚµ‹î8^„±ØØØDDDäwtt¼uëVrr²é‰Æ·oß–žÊuUYYYS§N=t误ï|@ ô"Ø·fŽOcaÉïž”~ŠCºÓt|Ïž={öì©[·îÞ½{ÕÞ&ÕàcY¥J•Çët:ÓAéx&33Sí RM~÷dBB‚¢víÚÙÆ¥FãÇÕÞ _œã¨ Î;ëõúß~ûÍ8b0Ž;fooïåå•ëK6nÜxèС~óÍ7|Oç¡ûÖÌñi,,ùÝ“µjÕêöwÒ…™NNNݺukß¾½Ú¤¦|,}||’““oܸa:(ÝqÆœo™ß=Y»vmKKË›7o Óq© âææ¦ö¡SûäZvïÞ½zõêùùù=yòDùî»ïÜÝÝ/^l\æéÓ§QQQ111ƒ!++Ë××·Y³f©©©jϽ¸“³oaŠOcaÉïžÌéòåËürŒ¤;óêÕ«îîîo¼ñFBB‚4réÒ%///ooïøøxµ7H5Ø“cÆŒqwwÿꫯŒ¿¸sãÆ–-[6jÔèÖ­[joPq÷Þ{ï™í/Çè ?Ú@áZ»ví¢E‹ªW¯Þ®]»?ÿü3,,¬Aƒk×®5Þ7aÿþý“'O–⪴k×ÎÆÆÆÕÕ5çªz÷î=xð`µ7¨ùÇ}‹lø4–|íÉœ/¿råÊ믿ޣGÏ>ûLíMQ_væÊ•+—,Ybgg×¼yó”””3gÎètºÏ>ûÌßß_í­QS~÷d|||ß¾}ïß¿_»ví $$$œ;w.++kΜ9ƒ R{kŠ»9sæìرcûöífxî2ç8*kĈ•+WÞ½{÷þýû«U«6xðàI“&I·HÈéîÝ»BˆÔÔÔË—/ç|Öœ/eÍU¾ö-ŸÆÂÃg¯`gŽ3ÆÁÁaÆ 'Ož´··ïܹóøñã¥ß42gùÝ“û÷ïÿî»ïNœ8ñ믿ÚÛÛwèÐaìØ±¯¾úªÚ›‚bŽ#dáâÈBáY( …#d¡p€,Ž…Â²P8@ GÈBáY( …#€¢¦×ëwíÚ5räÈ®]»zzzúúú>|ýúõiii¦‹}ýõ×›7o–þœ>}º‡‡Ç¯¿þjúç©S§ÔÞeI;¡oß¾/Z 55ÕÓÓÓÃÃ#<<\æ:³íIÂ@‘zôèQ=fΜyâĉäädggçäää“'O~úé§]»v½yó¦Ú,¸'N;v,ï‘üêÞ½»â?þˆŽŽÎuãÇ?þ¼råÊÍ›7W{Ð>+µ'À¼L™2åÖ­[^^^sçÎmР4õÙgŸ9rdâĉÁÁÁ666B‡fÍš©=e¹¦M›–œœ|õêÕ•‘‘qôèQ!D@@€ÚÓ`(+W®!ÜÝÝmmm³=emmíëëk\F–––ׯ_ŠŠÊöÔÉ“'Ÿ>}êääÔ¤Iµ§ À,P8(:¯¼òŠ"222!!!ç³£G>{öìØ±c¥?W­ZezqÌ‹\¸paòäÉ;wnÞ¼yÿþý:”mýû÷¿ýöÛ:thÙ²å°aÃÖ¬Y£×ëϾè"› ´lÙÒt$44t„ ¾¾¾ÞÞÞC‡ýúë¯322¤§/^ìáᑘ˜¨×ë=<<¼¼¼rŽÈYO®¤™äl:Jëïï¯Ó錃ñññK–, hÚ´iÓ¦M»uë¶pḸ¸­¿Pö3Á9ŽŠNóæÍíìì’’’^ýõQ£FuéÒ¥jÕªÆg­­­­­­óµÂ#GŽlÞ¼ÙÞÞÞÝÝýÎ;.\?~üÒ¥Kýüü„ƒaæÌ™»wïB8::ÚÙÙ………:uêðáÃ+V¬°··—ÿFŸþùêÕ« CµjÕªT©röìÙÓ§OÿöÛoß~ûm¥J•š7ož™™”žž>tèPkkëfÍše‘³ž½{÷îÝCCC÷ïßÿî»ïõz}HHˆ¢[·nÆÁøøøAƒݹsÇÆÆ¦víÚYYYwîÜY·nÝ¡C‡‚ƒƒóµÉùÚ…òñPüÑqPtlmm—,Ybkkû×_}üñÇ:tð÷÷Ÿ?þÁƒ °Â 6Œ;öĉëÖ­ 2dˆbË–-Ò³»víÚ½{w•*U‚‚‚Ž?~ðàÁ£G6iÒäÂ… Ë—/—ÿ.G]µj•³³óŽ;~ýõ×}ûö?~¼C‡/^\±b…¢S§N³gÏ.S¦Œ……ÅìÙ³§OŸžsDÎz^¤k×®¯¼òJddä7ŒƒgÏžMLL¬Y³fÆ ƒÁÁÁwîÜéÔ©ShhèîÝ»÷ìÙsâÄ ooï{÷îIUfÁxæ4†Â@‘jÛ¶mHHȼyó:tèP¶lÙ¨¨¨-[¶L˜0¡M›6ãÆ»víZ¾ÖÖ¼yóñãÇKA­……ÅèÑ£…Æ;×|õÕWBˆ “âjÕª-_¾ü•W^ ú믿d¾Ë¢E‹¤µ5nÜXqppøê«¯wîÜùøñc¥×S¶lY!ľ}ûŒƒRNí²˜ÌÌLŸiÓ¦•-[V±µµ•.¯ùóÏ? ü_­°ö€’ŽÂ@Q³µµ0`À÷ßæÌ™mÛ¶Mž<ÙËË++++$$¤ÿþ'Ož”¿ªle“£££Â`0!4-7  °ö àGª±´´lÒ¤I“&MÞ~ûíÈÈÈ3f\¾|yîܹ‡6½Ú#5jÔxÑSwîÜBÔ®];çSµjÕ²;pÒµÌQQQ¹.pÿþý"XOûöímmm£££¯\¹Ò°aÃßÿ=..ÎÕÕ5çÚîÝ»wüøñ³gÏÆÄÄDGGì%ö  pPt>øàƒøøøyóæU®\9ÛS®®®_ýuÇŽcbbbcc«W¯.g…¥J•zÑSRß1W–––Bˆ<®ÖëõÆ—§§§ !ªW¯.Ý-(''''9S}ÉõX[[ûùùmß¾}ß¾} 6̵Ý(„غuëÇœ™™Y³fÍæÍ›ûúú6jÔèöíÛ~ø¡œI*ºh…#€¢sãÆóçÏ÷éÓ§S§N9Ÿutt,UªTzzz5Ÿ|R¯1×¶¢ÔŒtqqyÑkccc³²²¤ÇÒbeÊ”™={öËÌçå×Ó½{÷íÛ·8p`úô鹞àøôéÓ>ú¨T©R+W®lÛ¶­q\þÙœŠîÀ9ŽŠN›6m„_ýµéŽ9’žž^±bE™íƼ9::V®\966öĉ¦ã>qâDRR’4þäÉ“õë×Ïœ9S1}út™'8þ£É“' !æÌ™c¼z#..nüøñÏŸ?ïׯŸ°Ö¬YS±qãÆ””i™°°°l·˜™2eJVVÖ”)SŒ×Ó<}útÖ¬Y—/_nذ¡ƒƒƒqɬ¬,ãzrŽÈ_O®t:]`` â³Ï>¹åÔÒµAׯ_7Vrz½>((hÓ¦MBˆÔÔÔ\W[¸{€¶U(:•*UZ¹rå;ï¼1räH!„••Ubb¢Œ2äõ×_/¬·ëÝ»÷©S§þûßÿöéÓ§F666‘‘‘YYY^^^“&M’–éÕ«×?üpþüùÎ;7hÐàÁƒ·nݲ³³«ZµjZZšq=ááá»víêÕ«WõêÕííí£¢¢RRRj×®ýé§Ÿß®B… ‰‰‰ ¨Y³¦tŸÈl#2ד‡ÀÀÀÕ«W?{öLáïïŸíY—Î;‡„„téÒ¥Y³fƒ!"""11qРA6løñÇŸçTuq©îª[õý,¹}ºîÝU·vîÙ{WŽeYhJnØ'€ì@â_Hà ‰#|!q€/$Žð…ľ8ÀGøBâ_Hà ‰#|!q€/$Žð…ľ8ÀGøBâ_Hà ‰#|!q€/$Žð…ľ8ÀGøBâ_Hà ‰#|!q€/$Žð…ľ8ÀGøBâ_Hà ‰#|!q€/$Žð…ľ8ÀGøBâ_òÃ>ˆ:|øðO<ñòË/oÚ´©¤¤dÈ!Ó¦Mëß¿Øçš˲Â>‡È©¯¯///_µjU¯^½† ²gÏž•+Wæææ>ñÄ#GŽ ûìÂAâhðÿñ³gÏ¾à‚ ,XŸŸ/„xûí·¯»îºÞ½{ÿõ¯ ûìÂA£ÁªU«„?þñí¬QqöÙg4è³Ï>Û½{wØgGƒž={ !äѲ¬½{÷æææ:©$@Ò8|ï{ßkӦͯ~õ«·ß~ûÀ[·nýÅ/~±eË–+®¸¢}ûöaŸ@8¨q4[³fÍ”)Söïßﬔ——ÿüç?ÏËËkò¹ Ð+++þ&€cÂÆ«Á×_=wîÜýû÷ûl“¯µZ]B'ä œÐ±¿ÀÌB'x;‹[_­?Ýçb”¯šÐ‘Š’4ǨڵkצM›Â±cÇÊë&LB|üñÇaŸ À@ŸÂHù#8GƒnݺµjÕ*''G^´w¨ëêêÂ>;€™œ;³Fæ{LjGƒ9sæ<ñÄþóŸKKKÅE‹ýú׿ž={ö•W^éýtj jŒ•‹þQã5Ž8â£>*--½âŠ+víÚe¯¬Y³fذa#GŽÜ¹sg“OZÉ¡r„NNèØ_à1†Ö'x[+Ý íujšÇ̰Um0hРT*õü£¬¬ì¦›nš2eÊ•W^yøðáÙ³gwîÜ9쳸²7£½ï:mü.‘€$Žf?ùÉOæÌ™Ó³gÏ·ÞzëóÏ??~üŸþô§ .¸ ìó¸’“¿£ÊÉŸîê²Ë.»ì²ËÂ> €'çÓ“?ïÙàÖÂq“=*È£AsLðhŽ€cŒÍ1Ðу`D­V—Ð ¹@B''tì/Ðh»‘E¤Òr7Œ³è¬ˆTÚcÖ·ÒICsLBBÓ“jÙÍZ8λfѸíï] @Fâˆ9ÿk²fQÏ,É?¨q 5ŽÐbš£¢QG#tÔ8"Q+¹ tB.ÐÉ û 4.ꥇzå¢]­8©xŠ¥U.ڋʺñ5#uՄή(IÀV5 +)ûÑòî³Û„&'ï0—ðFâÈbvm¢ÏšEòBà‘8²˜2å[ëÍ1Á£9ç¿ &Ç÷‘–©å…>øDs ‚µZ]B'ä œÐ±¿@ã¢q‚·ÓòbI]/Æ>ùHï׌ÔU:»¢$[Õ€¬gïV{ÌWû|lEâÈnNÖ(×5zôÁ49î›ÌpCcð¨q€À¹Õ8ú¯hÔQãˆcA#‚µ’ B'ä œÐ±¿@ËT}h,RœÔyª²"RéI§*Ó¿í§ë‹ Orhj3ÃV5 +éÊεq3Úm$¸þtnHÙGOòô;Ç8I¡G͢ϲH6G@öñÈ…4Ë-SEcY›õÃôE{¸ü¥Ú)yt=Î\®}ÌÞ7œÐ-% تÄ„>UÇÿ$ð Ž(?ì ÆlÏÎ'’ AàGøBsLðhŽ#ÿ}09%¬ý5VÚµ‡ëüD±j Ý-Võ~}‘> šcŒ¨Õê:!Hèä„ÎÞ ôÙcYVÙ ·6¹b¹tÌÈQäæ«qËK‹]u2ÖÑMsLfت4»Pkûì•à‰# Ù5™±žÏéY£Ï3àÇàQãFyEE†UÓXïœvmý¾¨Vøhí7”32ë£ÆÁˆZÉ¡r„NN謸@ó¬ïÎS•*CË­xñäÛå/E*m<ÌXi¬¤ŒýNè(DI¶ª-GÙ)¶7¹‹ÍF "H-ÊɌУG@sqKíLQι#Y#54Çæ‰’[P w™˜g}µ3,û`ÚŠZmÜwm­²  ?âp­¾V_]öû„¸¡9ÁˆZ­.¡r„NNè¨] [ŒóØiˆ±\ì/ßËΔŸh¯+‹–K±9Æx>qzà Ù(IÀV5 yÉÛÐεSÝèq0€¨!q4/¹œQÎ唃Ã>efÔ8GI£W4]9£O5ô5½ÌѪ6 gÖ7G#‚µ’ B'ä œÐ!^ ¹œÑ4p[)I©´]Ψ ©ô¤!w;¿}úÀ™êбÆÑšGB‡% ت4;g÷Y¯wÔËÏ¢ÞˆG@³sòB§ÞQÏ9¢’h†}@Ò‘8š‘’#D}¸ò]倰Ð<šcÄU^Q‘¥Ïú.)±ö«ý(9% Ï7õÁX­òõÅ}ú·piŽÙS¥®˜ú`hŽAàhŽA0¢V«Kè„\ ¡“:Ä ”›Q¾ëÝãfý¹Jw‹ý`âðYòŠýkâðYÊk*SÁŒ7E ¼&jo8¡³+J°U ÈD“+Æje»Ù)|”“=¶°)yZ‰# sÙ›’*ϲŽS¦‚;Ïr»ÍŒþ ‚ôhYÔ8Gq•WT¤/æ´3Ìú‹õµ†¶­}Ê­9dXÝ»Ïðš{ö¨+”3¢EPãˆ`D­ä‚Ð ¹@B''t‹] ^AèVΨT.Z–uþ™÷ê‹ãϽÏyüm”Æ…G^óäÛ"H{qRç©Ê1"•¦Æ‘Ð‘Š’lU`²ã²É=h}ŸZ4uckÍŠÄ!½ÇYÏÿŒyž±{Æ­ Æ­·†JG åQãpG~¢ÇLGö£H!qdÈ-kÔ»XŒõ‹òëP³dG@#w++Ÿ/?qÒdì{Ãîdšc‚Gs €¬“WT¤/攨­05§öj½ë²¸ÿøÂü ‡üõúbÁƯD[mÖ÷—ÿ­ÔEmÖ·`Ü7ÂCs ‚µZ]B'ä œÐÏú©´=p[Yœ8|–ü¥eY£/œçt«8ë£.{ÀÒú`ÎýÁ|çgøùgÞë|éi·à8+6½Y'ö?VBÇ J°U IgÜ&VšW”)ÜúaÆŠFû±rCj}ÅYd¦7q$Ž!\JåÑÜY|˜’5ÚÝòN¹#qÔ8GQfœõ[R¢/6ôꢬìÑV?¬®ÐðDná—ÂÔó¶íÒ­=Uú"ã¾)Ô8"Q+¹ tB.ÐÉ },化4[»Ñâ»ír¡á˜‰s•Å3ÊêÏuåÊEy*¸³>iÈÝr£­¬ÇÍJݤñÌcÿc%t ¢$[Õ€#”a:ú¢7ãlgòŽ~$€¬CâB»¨dn¹£ŸE=kÔ ´È $Žhr³³>²[ÿRH¼…©ùZÿ¸Q~ì–†’;Yæ˜àÑ "Œ}09EíôÅÚÓNlµ³FYÜ3´¤íöZy¥ê¤‚VÕ¾þÕh³»N_,ܼÏp>;öè‹u_}¥Ÿ<³¾)4ÇÀìË/¿>|øí·ßîóø¨Õê:!Hèä„öÿÜIÅSô¾“²“Õ¿ÍD*=nìKÖmÿ:£|¡ÒË2ìÆ ¹Æ~à&/Ž;G_4†Ög}‡øÞ:9¡iŽÉ [ÕM°,ëÎ;ï¬f€ìÔä°RÎè6 \ß-w”ÇwË„KsŒüÊa¿Cމcüñwß}7ì³€Ìyôµ(3ºÝ: õ2Gã«)ü£ºÈÔ8zY¿~ýe—]vâ‰'~üñÇ“'O~àü<‹G‘WT¤/ætë¢/>¡“¾X}\ke¥¶(G?ÌXõXôå!}±à‹Ýú¢µ}§¾È¬oD5Žh¤¶¶öâ‹/=zô[o½UZZJc¶‡Žý:9¡ýÏú.;áVùK»Ððü3ﵤ™Þöƒ³~¸ÀùÒù5ä¶ ¥Hqè´oWœ—=ë‡ ägÙßµ£È¡E*]ÖãfŸgžÀ+¡c% تvõðï[·îþûïoß¾}Øç7õjárwi}Y>Ì{dc“ë² ‰£ÙêÕ«—,YR^^>jÔ¨ ž>@öˆ %Q3fuO—ûZ”EãøFù}(£>ÍQ®›ô™SÈ"$ޏãŽ;z÷î=}úôÌ^¡Rö5ˆ ï»°(·ûs•ÇnÉ¥2£[Ž(ßBFÏ ÙÆ¦ú`€¬FsŒÁ=÷ÜóÌ3Ï,]ºtèСBˆµk×^zé¥4LjˆÜ‚}v^§«z¿zd÷®úÓë{vÖÿyvQ»m ÊbU¿Ü|õ%E®a°·(Ü¡>·ø³ý°¼Ï¿Òö€3ëÑGs ,˲V¬XQZZúÐC9+~ø!Í11û $trBÛÝ$ÊdïI§êÏ4änç±sü¨ËWô>gqÐ]ÊÊÐi–6'|ô…ó”“©tÙÀ™òsœ¿Yß!¾·„NNhšc2ÃVµjýúõBˆGyÄ)O¼ôÒK…/¾øâ€¾÷½ï…}‚ „ÖÔ"´IŠ[Ør!£2Ð[ß­f¼Kµ²+­ïn‡ýnF~Ø'9}úô¹è¢‹ä•ªªªåË—÷êÕkذa=zôûà9É+{â?å Ï~PvÚkÂTø¨·TiÜ£„p~××…ß½è=·cÂ~‡ŒǦQã Rr ôÅœ¢v†C{u××ö•v0,öÎÓëL/YP¥®tø´V?¬í§†ÊEëËê‹ÌúF–¢ÆfÔ8Æ#tì/ÐÉ íT ÊC¼ËN¾Ýy쬾pž|¤3ÄÛj\¹hYVé/+”ÊE˲ÌR<}ÊBK«\î}òKÙ¿ˬïß[B''45Ž™¡Æ²’³;¬Œãv¶ªÑxgÙævgjç»ò êq…©®QÞ×ûíÐ,H›6xðàÊÊJŸûÔД¾ý~0¢q¯ŒžÏé÷’Ñk=zbè†bIJ±Řðó<'S”?‰Tn<¨g„ÆÏ½?› û}0šc‚Gs €f•ß½»µ_Ì]7´_«m{•Åíc{mU;WªNj¥¿æ×'Y­ö稪E}õÈâÏ ÿjtØp@Yiµa›~³¾'4Ç Q«Õ%tB.Ðq ­7”(}'v3Êøsï“Ûbìï¯{Vìýî¯Pº[D*}bE£®û×)wªG:ÃÃå(ò˜q‡3\ž µ÷–ÐIMsLfت€ì¦ßTZÞYÖ¿+OgÔdžËwöèwñÙC½#'$ŽÆŠC=½Sr>=·“ ¹£qâ7€Ø£Æ1xÔ8>î;·¤D?¬¶_O}qÏÀ¶úâ×'¢Ô·6ü[PøU޾ØqC½²RüI•á·~eˆ²ÛPãd)jŒ¨•\:!Hè„6ÎÇvŠ¿]1ÕžQ¾P®G´‹KYaW^ì³x¾R i×8*¥"•vF…;+ãÆÎQª-Ë*;áVŸ×’Ì+¡£šÇ̰U ÙÇ­²Ð8ÇcCÙ¸…­?p»K5€¤!q€ìcìkqo ã6gÑ;§”‹&å×aF#L$Ž•”jÑx ·Û=]tn÷›QŽÒcÈÄ¢9&x4ÇÈL^Q‘¥MÃÎ=¾—µ·Q÷É3ûnÞ§öÅäNúhî¯ÆÖµÞªŽû>Ô½NÝjW¾ÞÓ}…u «úùBçµõ§l4´Â4|µC]aÖ7b„æ#jµº„NÈ::¡åÆãa"•6¾à¤â)úbÙÉ·++£/œ'¿”ýkÐ]J¿‹eY}§,ŠTºÏ÷;_öTpù—eYgýpÜc5îËqÖõöæ{oCY$t,CÓ“¶ª `ÞÛ¸~vx5‹ÆÃ”aÝ¢q_‹sXí,;ÝÊñ–|o„‹Ä‚ç–;êMÊnÇ_Í8‚[^ÑgzG‚{Ÿ¹ÒCíquzë €x£Æ1xÔ8ÈL^Q‘¾˜Ó­‹²R3 «~ØŽa­ôÅš“j aòôµV[[ë‹]VŽìðÑ^u‰YßH$jŒ¨•\:!Hèh†vÊ•ÂG{>¶²XÖãf=Êøsï“_Ͳ,{.·¼"õ–‡{—>7[.RC‘JÛ³¾åºIK›õm/ÆûÇJ脦Æ13lU@3Rêmò†²q£Ûί¼g­W.*»ÌÞ/èQˆé¶£­_‹Û]°Ã~×4GhiúXä|ËcJ¢ž) —&e¸£~>Ûwô#õúK·Ó?$ŽÐŒädã·ôE· ÛzÖètÃÓ5å^/γ„–:)¦ÛsõÖ=Y#4ÇæMÊ-(ÐsJOÊÙ¡ö”ìžpRñgä•O/-lÿiŽúä²Ý{·¶WÖ:öúúÀAmxU=tñ:CoÍqÝ}¨§Ú¯Óæãmú‘ú¬oÁ¸oÄÍ1FÔju $tÔB;$ÆÅIÅS”N‘JË㵃Ï(_¨4£œX±P~™—fûø¡/Ý­)R龿^ ?ýô) ­Æ]/òùøœõ-wÒÄõÇJèØ„¦9&3lU@ðÜöm%ƒJm¢ü nƒåÛF;ÏR %;ÝJá£ÅmK]ßË–¿ëqub†Äæ]í''Mæ‘Êk*ù¥RàèàÝ¿"<ï £¼ˆñL<®”܈7jƒG#€&g}‹¾Çëk{†–(+;†žÚ¾ÔïÀíªO;ê‹]Våè‹ÿnzMmÜ7³¾‘LÔ8"Q+¹ tB.Б ­ÌǶ•p«RàhYÖè ç)·-Ë0«Â’ŠE*}Ê ³,©îÐ~páë·èc½åàÎú »*”RH˲ÆLœk5.RtÆ}¯¥YËý¿·„&t¤¢$[Õ Æ’D½xQþ®ò\¥JÒ8¾ÑãKïˆnGHG‡\ã¨Ô)6Ù³â}CýKã FãkÊ•”g.Üo0 ÆH ¥éÈÆ®jý‰JÓ´žw ÷=î:èÖ» šc‚Gs X¹úÔë¼N%Võ~õÈî]õ§o›Ü§Ã§µÊâækê >i4²{Ä­þçqÊa}KvOiÃŽ.êù¼_¬Ö}¥aX7³¾4Ç Q«Õ%tB.ÐQmìƒ1Í>ÿÌ{írçÊÐijŒeY'>=Ç’š`D*}õ;×ËÇØ¿.|ý«ñp‘J÷Y<_?Òžõ-G·g}Ëý.ngžÌ+¡cšæ˜Ì°U ¡ñž’hÜJöîYÉ z“}0¿>€ø!q€fÑdš¥ÜèÅY÷9|[¦×86Ùà"߯£°R>CºaPãtöÀ6_ìU÷í¢?=ïú¯¾\×]Y¼iüÿ¾³÷$y¥WáÞ¶¹µúÓ_ÛÖ__üúuÒxÏ·™õ €æ#jµº„NȺåCëã¾Ëzܬf7£X‡x˜ÕhÖ·}ä9ÿ;Cïe™¿v’²2mÕU–6'¼Ï÷ëÏ~ý‘(öëÛ”YßG¥¶ç»öUÓCèX†¦9&3lU@³S¶¤•·vã>²ñ±÷Þ´r;laªt”_Jß(gó€ÄšÒOÝd»´~˜Ð²Oã³ôIòGåY³)›Ü€ Æ±9Pã$„>î;·¤D?ìài†)ÜÛÎ6Œ ïr®¡Ðð½Öè‹_꤬üùƒÓôÃ:¿ÑZ_ìºb·áb>Û¢¯ÕWW7Ó[Ä5ŽFÔJ. $tˇžÔyª²2qø,û\V8ìFµÐP¤Ò'>=GY±Ë—rûd”Õ¸¢qܲÓËKY¡T=Zß”W*‹e'ܪ_‹>ë;Ü÷–Ð„ÎÆ(IÀV5O)+tÛö¹Ií=…ÛX )×ODãÁ  q€f§&Ê•ˆÎÀmûHùeý¨²:çuä'*Ã~WdGhJë´².´\ÐøXN4ýνQF>Æx³Á°ß!Ù‡æ˜àÑÄOnA>ø:¯“Ú ³ÿÜþm7«À×—·ïøI޲¸÷¼ƒz”?ŒzleÍIúz×Vû”•§¶œ©¶åMCN¯7ÔÓfÖ7šcŒ¨Õê:!Hèf¢Ïú©tÙÉ·+‹çþ`¾2mÛ²¬+*‹"•¾nå­Æ#ÁE*ýÚ¦þnÀ-©?Æžõí¼ <ë[!Ri{Ö·2îÛ™õÁdï˜ýX äÐ4Çd†­jÈ„Çý£åÛRËßu6ˆ•›S{Ü¥Ú‰eœé¨÷Ð8#Ýzq2.šA# 9YT’Byè·Òû"ß3ÆO“Š~g)gbwØ(wŽ!kjƒG#?ú¬o!Dîñ½”•êS»é‡}ùÝ<}qÜy†±Þå]ÞÒU‹Þ£¬0ëhaÔ8"Q+¹ tB.ÐA½ ±œQŸõmYÖøsﳤ:E˲N½ýÛYßÎúÈ—¦Ô2Z–õÒÆSõrÆw?ë£/^øú-Vãjȳ*”™ÞÖ7³¾-©êѲ¬²7[Úìqý“ðc%4¡[ J°U fú±ñg/X~–<úÛy㽪êL¼¿e¬ndW@€HÀLïnñs°± Q~)ŸiœÞ+£ç…z,çãùxßcšDcð¨q²š±œ1§¨¾X7¨¾øÕYmõÅÂñ†)‰³Jÿ¬¬tËÛ§vÏç“õÅËNTVz¾m˜¹ØfÍf}±aÏÃ"#£D#‚µ’ B'ä Ô :c"•.8Óyìü:£|¡¼hYVŸGç)…†"•þÍÇcõÊů¶ôÒûd”¾Øç‰û•<}ÊB«q-£eYö*#'OQJ!«6.ÆøÇJhB·@”$`«š`-W= “óXyà0Žo „þ‚Æra¥ÛÍ åEnW àh‘8À·šlCÑ\”ÚA?ÙXP…†J_Ž1©õˆEîàh‘8H:¥‹Åí0=Í:Ô1ÇíC>ç)nwp9ª3ôþÈÐ-ÿkÉ@BÐ<šc€¬–WT$´Ø'Ÿ¡¹¯w¾¢õÞoÿýjl~ØŒs^ѯ(ªÔÿRÓW_¼çíïë‹]_S;xº¼c迱¾ü§¾È¬o 4Ç Q«Õ%tB.Ð^»Inùœwž§gŸNŽ~ÓÁ}b43jƒG#Õ6ÿßQúâÁjõÅÖ~ûźbûO?ÿ#ýÈ_÷’ŸÐ7jøÛCŸõ-„8îoõÅ‚u_*+Ìúš5ŽFÔJ. $tϵË•E»rÑ~,WZZá£]ÑhIµ†/m·'êí;r§½47GIá‘TùIMé³6~ y,'©r©ß FùÜQù.4šc‚Gs -Œ}0Ö}úb¿®;õÅ1]>Y½¯·â½-½í•Ša†bù ÚÒŸÜ×U_¼çè‹Ý_Ë×;½§ŽûfÖ7ÐÂhŽA0¢V«Kè„\ ¡½;÷󭯳-Ëêóè`þÚI–4Ü­fÓæÊE*=nÙ¿ÉÇØ‹§ÜY!´ùáãϽO‰2©óTý´“ùc%4¡#% ت z뉲Cm¯í6…[|Ó³âla‹Æ÷§Vzh„isYþîþÒZç‰òk*µŒBê•q;Ch$ŽbÎxýF/òÁÆjHç[ú$p§ÌQh£¹%‰MÞTƘ\*}0M^)ŽÇàQãDÓÁÉg(+›'þÜo‹¾xj‡múb—VûvÖË+÷wÿ‡~Øu†¢ÉëÖ_Õ&¯NY\»áxýÈÞ/æ8[ï:2»;Ýçú‘õ» ã¾4jñ­šššÇ{좋.:tè¹çž{íµ×._¾Üçs£VrAè„\ ¡½:­BþÒ.Tf}Ûä±ÞÎñó×N’íßÿkÃKšÔmYVý¶þò«Ùë¿ùx¬|˜ýëêw®WŽ´L³Çå3wV&¶¾:Rï-¡ ¡©qÌ [ÕuuuS¦L¹ÿþû·oß~öÙg÷ë×oÅŠ×^{í¢E‹Â>5™Ó·’•o9Üö”E㡃 ¶éå’ò®´ü-·Íe=–ÛŽ3…ŒBGâhðÌ3Ϭ^½zĈ¯¿þúoûÛÇ{ìOúSÇŽ-Z´nݺ°Ï@†ôdÎy >ó9¡ Y.s•AâÂåV4ÆÁÝrq¤±’BF!"q4xå•W„wÝuWaa¡½Ò¿ÿo¼±¾¾þÍ7ß ûì+½µYÏ…¿^½ßY$â¨WÈA=º åÑcpÞyçí߿ժUòâòå˯»îº+¯¼röìÙÞO§9ˆ 7f}ch[9ýøÍúâwŠ->ûÅp!ÄcƒŸPÔªþÜßV_S_ ,Ú“ÃÎ qYáÿ+VVz¾¼µaËVe±áðáx8hŽÁk×®­¬¬T÷»ß•––.Y²¤É§G­V—Ð ¹Àx‡¶›B|>ÝØ;"·˜XRsŒ²b}Ó£ü²›c”ùáú¸ï¿è¥Œïvž«œ±Ç>·3o០ëÿ¢Mhšc2ÃVµÁ)§œRZZ*¯¼óÎ;‹/nݺõÅ_ìçh¾& »ù©íóSü§ï)ûlLž·±n2±¼Ò£¢‰Ä± õõõO>ùäõ×__SS3wîÜ.]ºøyV¥&ì벞wmŸ[•¡ñåF/ÆÖi·§ëóÃ}ž’G½#e‹²5Ž^V¬X1{öì7öìÙsΜ9£Fòó,jÐå(5ÇXã8ªãF}ñ§ÔQáëj÷ÛÖî)¯~HýÿœÇRã(„èºè­æ~x£Æß:tèÐ}÷Ý7`À€¡C‡>üðÃ555þŸµ’ B'ä“Z©ÔœÔyª²"Rés0_nŸGçé匾~‹¾¸is¥$Q¤Òö¸où°;V_®?÷ŽÕ—[R ¥ý»E9Ï>ÎÓ¯Ú>óØÿX MèDI¶ª ¦OŸþä“OŽ?þÕW_6mš3—@è|–$:Œ£päW¾gÜ';ʯãóüö)$ŽO=õÔ«¯¾zõÕW/Z´¨[·naŸ•3dÛOî¥#× S.èý:ÆÁÞ£…T)‡€¬C⨲,ëücqqñwÞö¹hBf˜œçùojÖï+#Ë^éÒjŸñYò@oºad/šcTÛ·o?ï¼ó O>ùdý»—\rIyy¹÷+Є+¯S‰ó¸~÷ûÁÁÉgèGnžlø pp¿-ëó•ÅGû/Õ\{¸ËmÉ+ wŸ¤¶³ÖÐÝòaUOà n8^_ìýbŽ¾ØæÅw›ûmàæX–eýýï/u·`Á‚&_!jµº„NÈ&'´ÒS2©xвR6p¦%5£ØÎ(_h?;T̪Ðçu?öÉ(}QŸõ-Ré—6žª&õVºm”S*}n¶Þ3`–:ë;9?VB:Q’€­jÕðáÃ+ÝMŸ>=ìÍmŸ×g—Œ0Ý–÷‘õ ‹nw‹–wº=êå±ár™#d#GÙÄ»Eé¶V²4¹¥Æ^?xB­[—´s˜žçɯ ×J*”QáÊwÅÑ”W@DPãæÕ;gðz!Ä{[z{v¨ÊºÍ­ôÅ>sßÓæí(šcŒ¨Õê:!˜„Ðάo¹ËÄ÷í©ôéSZZ#KŸ'î×[^œYßò¯¯¶ôÒóñXeŲ,¥ëE¤ÒC§UXG”‹TúÜÌ7^ ><™?VB:6Q’€­jÙDžË­YôîqыݎñÓ‹ãìƒ{l…ëçcÜÑ€lAâ ›Èi™ž“)*ÆçÊ_M5e —ýLŒgèý:eÔ8G ™øœõ½ó¬®Æ§ï« ÞsöŸõÃ.lû™¾ølõ}ñ7Ëä/;¾o([BoVÇŒUî¶¾ü§~d}uuó½{‚E#‚µ’ B'äcZŸõ-Ré²7++–e™8W.y”g}[ÒTp{Ö·òëÝÏúÈÇØ¿^Úxª²"Ré‘/ÿLyA‘JŸz»È®\”ë E*m,g43ý•ЄŽNhj3ÃV5€,`,^Tö¬=Ê =v„=¶•=–ÏA>=ëœïè{Ö‚-iqAâ êš¼­‹qJ¢üÀ˜*C=úTääÏ­üÑ8R0ë@¼8ˆ4¬Qþ<Ïm<¸þ1¤Íx“@áÙõblˆv»Œü:yJ$€X 9&x4ÇÇÎç¬o!ÄÁÓÔáÛ›®±Ú|ÚZY4Îú¾§Ï‹úâöúb}qö'ß×[ÿ®doÿ|y¥û;5úaùë>×­êýú"³¾,Bs ‚µZ]B'äczRñç±Óe2iÈÝòŠý`øõÎã#s¹Ÿ¸_ïn™¿v’Þ¶òÚ¦þzÇÌu+¬/žX±Pn‚±\&{—|»>¢|bë«3žõ³+¡ Ð4Çd†­j‘¦7¯ïU-¯î{Úª«äùÛúpgñœÿ!‡¶¿5`V…2*ܲ,»/G¹œ²7+'i7ú(G:W-¯ÇõÇJhBgKhšc2ÃV5€pèÛ¾zu ½_¬2ꃽ¸P áÌ€”ƒú/ â„ÇàQã•c™õ-L㾿?d~Ø ­wë‹ÿ½Õ0Ö{çrC%eÏ· óºÛ¬Ù¬/6ìQ+™õ Ä5ŽFÔJ. ÌŠÐn³¾å²EÛ˜‰sír­á€Y–6š{äË?SjïX}¹2èÛ²¬Kßü©R¶hYVß_/Ч‚ŸõÃò1öã²3õ“”«3Co MhB‡% ت&ežŽþ»Ÿ›G{ï ‹)åïG6êOw›:ÉAâ 4ÆÛJ:¨t½(O1¦˜nQôºFŸçéGR¹ áH„CÿôNùpQ¹×ŸòDýó?”Nùˆñ¨¾«|‹Ü@’Ñ<šc7Ç8ë{ÛÙ†§·?k‡²Ò¿dÇñmö*‹ö¢¬úûÉúb7 gÞñ;õņM_ähWT_]Ýl9ÁˆZ­.¡rYzRç©J{ŠeY“†Üí‹çë½,¾~‹²rõ;×[R¯Œý '>=Gén©ôÐizÇÌùgÞ+Ÿžý­I§*×"Ri½×'™?VB:CÓ“¶ª´(?Õc)¤÷«¹íb»u·èq½LóH$ŽZš±LP¾CŒ’óɹãQÕ5z'©ç£Ü´`£Æ1xÔ8ò:•¨K½ºë‡íQ¢/îU¯/ NáîØú€~ØÛOÒÛ¿ÝF_ì¶ÒP¤˜»Á0ëÛªÞ¯/2îHjŒ¨•\:!µÐn³¾å/íòAyÖ·ó­AwU(c½E*]úÜl·GçH˲Nya–2$\¤ÒÊðpû×è çÉ¡Ìún|’—ÃÌ„&tö†¦Æ13lU¼GlœÎcÜ,6n+ƒÄ…vgj!mO_“1Ð$G¡q èÌqtËðš|AŽ·WàÆ0Ð$Gáo #grò^„{7L“žóY£rÏ@y]y Y#x£9&x4ÇBˆ¼N%zïˆÿYß_4Ìú®¶O_,lS{\q•²øÙžNêsßï ?·ûÊZ}±í‡[õźÍ_êÓË郒Œæ#jµº„NÈF*´H¥õ‰ÙÖ7³¾•Û§OY¨/öýõ¹»Å^úÒÝz׋¾xbÅByÊ·ýøŒò…ú ʳǿ=Éâ)Ãø_¡ Q’€­jÁó3å[(´»TË=+r›‹p™à¨ly+O‘cÑ qÐ\šìAñÈEã¬Ñ»úP/X4ÞiFé³&w€£Ecð¨q„qзM÷mœõ½s¸á¯¦'íõúëO /Øu•áÈ’ì1¬~¶E_«¯6LdÔ8"Q+¹ tB.0ÜÐú|lgŒ¶\¹èÌúvˆTúÔÛ ³¾û<:Ïj<—ÛmxŸÅóÕªÇizãøsïSâŠTº¬ÇÍòé¹]KÔÞð$üEhBgc”$`«@ór6…Ýv®íúœy.Ûsõ»ZË_+¡Áþ‘8h^>ëmÊ‘~2N%–ü]· T7@fH4/ïOò‘ú=ÝŽt{a3îö‚€&Ñ<šc@úpìœÒ“rªÔyÝÆYß;O3ÌúÞ7È0š»u‡ƒúbÞûÅ5}ê”ÅŽkò••.«kôç¶Ú°M_lØcè˜aÖ7Í1FÔju 7´>îÛ™õí¬ˆTú¬.}ÛûÝ_ahyyâ~¥åÅî˜ÑÝUaI 4"•}á<ýËN¾]™1n}3ë[YŒþž„ÿ¢MèlŒ’lUh.J‰¡Ò¹’Y¡¡sïi·>c8EŸÅ—A#€æã³F¸Ìë¶é%‰nÝ6rúèÐä95€Ô8G$aÜ·6è[QuJG}qçw ÿ¶¶×!C˜:Ñm?m¥/v}_-‘l[¹C?ÌÚ¾S_dÖ7?¨qD0¢VrAè„\`‹…6ÎÇvÆ};Æciåƒöhnç—}À‰ œõ>‹ç[G‚[–UúË ½DòŒò…Êavy¥ò‚“:OUâZÇ6ë»ÅÞðØÿEhBÇ&J°U  yÌîZm¢ë‡ äcŒ¼-˲Ë­Æ…gýpR¶èDQFˆ—p«÷™gÑý(„&t¼CS㘶ª *++/^ܽ{÷W^yeñâÅýë_ô£­Y³fÁ‚aŸÐôa7Æ/åÝgå»ú†²~_i·L»Ý„ÚƒŸ;\‡ý¦@8<óÌ3 ·Ýv[·nÝì•™3gvèÐáå—_nhhû쀖`œÂ­©,ŠÆºõ„R45\¢Ÿö—&ÓC q4X¹rennî˜1cœ•¼¼¼Ñ£GïÚµkÕªUaŸÐBŒ÷ýóøàPŸà-÷M+/eÌD• ï¨>&tËÉ @4Ǩ,ËÏ\¾FûEœù5ãô³ŽÚQ„&t6†¦Æ13lUŒ?¾¾¾^þÄѲ¬×_½¤¤dذaaŸмœšE·ûP ÷½iã^³±Ò­œñX&uû ȉ£ÁW\‘››û›ßü¦ú›-°Å‹ïܹó²Ë.kÕªÕ±½6‚£½±Š~ï}Ê·|°|¤ž*·‡QŠ#•bÊŒ ÝžKî"q4èի׌3>ýôÓÉ“'Ïš5kÊ”)>øààÁƒ§Nö©™8Ú«èy¤ø&á“_Ð8îÛ­ÏÚ;#4öÊøçq’;@PhŽqõç?ÿù…^X³fMÏž=Ï8ãŒÛn»­ÈÔ= £9—WTdió±³¾­®†Å½‹õŃLþMÚn¯UVZo3u·lýÊp>ÕûõEf}Í1FÔju ôÚnqÆh˽#e'ܪ/žæ½Ê\n‘JŸûƒùò—ö‘£.{@^tzh”昉ÃgÉ5GBÓ—#Ÿg“}0Yñ†guB:Þ¡iŽÉ [Õ@‚è;ËÊÞ‹J9£Ç‹Ë‹Îþµü"ÎŽ¶±‡QŽM$Ž@²xÜXÅ£RÐíÎ1J&*Üo#çˆÆöç°ß@Ó¨q 5Žˆ8ó¬ïÃ]‘ê{vÖôh£/6äÆ}çhPVÚü³F?,w«a¬wÞ=†EÊD5ŽFÔJ. 4.ê•‚"•¶gk˵Œ"•.8S?rÜØ9ò—Nñ¢%8êöº\éÒ阖Ÿ"g“JZÉèoÈ"Ô8GD‡yÖw»vú¢ÕµD_¬íÒV_lheø?œ­ª £¹óv~­FÙk(g´ª÷¢0ë@´Qãˆ`D­ä‚Ð ¹@ËT,hÏúvØ5…rõ¡³8qø,çK§Tqü¹÷ÉÇØìrFõ5Δgz[–UÖãfe¸|†ò fïÎÌ„&tö†¦Æ13lUIá1ýÛ8ÇÛø¥¾»­¼¦¾ymܧº²‰#Þ·õéŒÆ¬Îø"Êw=&Š7Ù‘ˆ8G þܦ+Éœò1a“Cº}Wî¹öÿt@ôÑ<šc–Ü‚uÅmÖwm²ØÐÁÐ1Sß¶•!Jmƒ¾˜WUc8¡½ûôµ†={Ôú`d!šcŒ¨Õê:ƨŒæVšcD*mÏúV8,ò‘rsÌ·/8|–r¤ýtÃkj&Oi÷ÖJÌÏ:QHhBgi”$`«Èb-&Þ7§öîÜ{ZÐÅ8Ù͘Øygòõ)ߢq´ 6ð jƒG#Âb¬q4×±X_khÛÚo”šC†US9£µ_ì]_]ö›Á ÆÁˆZÉ¡cyú¬o‘JO*ž¢”$–p«þ\»HÑ9Ò~0iÈÝò—ò‘êÓM¯©W4êgØLoEìÖ ¼@B:K£$[Õ@L8ctŽêx¡Õ;²1 pCâÄ„ÜÑr´œÛ½5<8qàä|4AšÍ1Á£9-@ïƒBäh‹9% On[¨¯Y­ò /¨Í Bˆš†§ï©2,š&{3î@<Ѓ`D­V—б¼@§õDîe™ÔyªóØ^÷hŽQüf±QsŒ±FŠ¢ŸO ¿·V~Ö ¼@B:K£$[Õ@ó¨Jô¹g­¿›Ý7$Ž@¶j²—¥ÉN·W wQã£ËÅáZ}­¾º:ì·ÂG#‚µ’ BgûškM%‰J£½âÔ&Ú+nc½írFç09´²8!çre%foxôCÇþ Mè,’lU1gïP;»ÌÖÆílã"{ÖL$Ž@l)¹œíÓ>cNé–h’;@‘8ñäýI¡’öSÀ&óBrGHšc‚Gs 2–[P OÒ67ǵ3,¶*þXµ¦yÝZ+Œeëͬo4Ç (Q«Õ%t] ÿYßæ—ÎS­Æ½,n}0r¯ŒGèØ¿áY:öHhBgi”$`«ˆ?óícÍ8*$Ž@B9E䎟¨q 5ŽÈ˜ÿYߢ UæaLc½)g€£B#‚µ’ BgÑRãØäsÝÊýŒõnŽ«NæÏ:úQMèx‡¦Æ13lUÉâ±+Íž5À‰# ÆáŽ2rG€G Aü7\ £9&x4Ç cÍÒC+ 4šcŒ¨Õê:‹.ð(šcü->Ö»9®šÐÑŒBhBÇ;4Í1™a«¾8‘@K ú¨q 5ŽÈØQÔ8úC-#4jŒ¨•\:‹.УÆQ™Îís²75ޱ û $4¡³4J°U D‹qϺÉù‹´G ZŒ#¸ÉQ@âDŽœ;Ò4ˆšc‚Gs üÈ-(ЛTޱ9ÆòÝõB #šcŒ¨Õê:šhl[‘E*m7Ä4y¤ÇbÔ®šÐY…ЄŽwhšc2“vâ ÀÀé†É™¾lbØ'€G räjÚbÑAcð¨q„¹Ç0ÖÛ?j ™Pãˆ`D­ä‚ÐѼÀ£­\T€ûœìµ«&tE!4¡ãšÇ̰U D…÷äã|GZ‰# ~î C½# \Ô8GøÑ5ŽT4@‹¡ÆÁˆZÉ¡£yÇ21{¯šÐY…ЄŽwhj3ÃV5|!q€/Ü9ÆìÀÿõ_ÿõÜsÏmÙ²¥¸¸¸´´ôÚk¯=çœsÂ>/€ÐÐcPWWwÍ5׬^½ºC‡#FŒ8xðàÊ•+kkkÿõ_ÿõæ›onòé4ÇÀclŽ¡ÂEs Žxúé§KKK¯ºêªšš{å“O>9ãŒ3 ôÑG5ùô¨Õê:šx,-/Ù{Մ΢(„&t¼CÓ“j ^yå!Ä]wÝUXXh¯ôïßÿÆo¬¯¯óÍ7Ã>;€p8lÚ´©]»vƒ–û÷ï/„ؼysØg‡ìàç./Ü ]¨q4øè£òóóKKKåÅßÿþ÷3f̸þú뽟N#ü0Ö8R¹Ù‚G¸zûí·‡>dÈ;v4yð„œËK5‘*ìHfèP.P¤ÒÆÃD*ã«&t<¢šÐñMcfÇÓ„úúú§Ÿ~zþüùõõõ .ìÒ¥‹ŸgUVV*+| ™LÖÂq9Ó—Mh¼hß–úüöÙpt8ÖÕÕ-Y²Äù2//ï†nX±bÅìÙ³7nÜØ³gÏ9sæŒ5*ìSFöQrD;k û¤ÈD¢ÇÚÚÚ‡zÈù²uëÖNâxøðáxà©§žjÓ¦Í-·ÜrÝu×9Ö@ì|‘¬ÕhŽ1hhh¸õÖ[_}õÕ &Ìš5«[·nGõtv¥ˆ=šcpÄã?^ZZzÏ=÷döô¨Õê: hwÉØ¿'çª ÕQMèx‡¦9&3ÌqTY–õÇ?þ±¸¸øÎ;ï û\öµ½[ö¹¡D×8íØ±ã‹/¾(,,¼æškôï^rÉ%åååaŸ#²‰ÒUM¥# {Qã¨ZµjÕUW]åöÝn¸aúôéÞ¯@#±G#‚µ’ B‡uNEcìß[BÇ2 ¡ ïÐÔ8f†G Y° ˆG Y5â‡Ä¾Ð<šcˆ=šcŒ¨Õê:!Hè䄎ýšÐY% ت€/$Žð…ÇàQã@ìQãˆ`D­ä‚Ð ¹@B''tì/ЄÎÒ(IÀV5|!q€/$Žð…æ˜àÑ@ìу`D­V—Ð ¹@B''tì/ЄÎÒ(IÀV5|!q€/Ô8GbG#j%„NÈ:9¡c„&t–FI¶ªà ‰#|!q€/4Çæbæ#jµº„NÈ:9¡c„&t–FI¶ªà ‰#|¡Æ1xÔ8{Ô8"Q+¹ tB.ÐÉ û $4¡³4J°U _Hà ‰#|¡9&x4Ç{4Ç Q«Õ%tB.ÐÉ û $4¡³4J°U _Hà 5ŽÁ£Æ€ØKfc~Ø'C_ô_SYYöY i9Ó—Y Çí·H,¶ª‘\ÖÂq9Ó—éëd‘8"ÑôÜ‘¬7$ŽH:9w$kÀ5ŽÀ·¹#Y#øÄ¾8Gv¨Ýze€ÄI'×5’;àĉ¦wÃ;à†ÄÉåÖCM#Ê{ò¹#:îU¼pËA?|â_Hà ‰#|!q€/$Žð…ľ8ÀGøBâ_Hà ‰#|!q€/$Žð…ľ8ÀGøBâ_Hà ‰#|!q€/$Žð…ľ8ÀGøBâ_Hà ‰cÓ¶nÝ:bĈ3f„}"ÈÜ€Â>¨ø¡D?—â‡A‰ý¡86Á²¬;ï¼³ºº:ì‰cüñwß}7쳉£—õë×?øàƒ ûDÂGâ誮®îŽ;î())™9sfØç¾ü°O º~øáuëÖýáhß¾}Øç>G³Õ«W/Y²¤¼¼|Ô¨Qk×®=Ú§'¶Ù*Êø¡D?”hâçAüP¢¦²²2ìS‰£Áî¸ãŽÞ½{OŸ>=ƒ§'ö?&o‰Nëêê–,Yâ|™——wà 7!æÍ›·eË–¥K—†}ŽQ‘èı¶¶ö¡‡r¾lݺõ 7Üðî»ï.]ºô¦›n:thØ'!9–e…}ÑòôÓOß{ï½nßíß¿ÿK/½ö9„ ÑŸ8õéÓ碋.’Wªªª–/_Þ«W¯aÆõèÑ#ìŸ86míÚµ—^zéäÉ“xà°Ï 4 €/$Žð…­jøÂ'Žð…ľ8ÀGøBâ_Hà ‰#|!q Þ|0mÚ´±cÇŽ9²¼¼|ÅŠaŸÙºuëˆ#f̘ö‰$Ýüñï}ï{ßùÎwÎ;ï¼ë®»îÍ7ß û¤’ëÙgŸ½âŠ+† vÎ9çüüç?ß³gOØg”tü‰¸ÄþSBâ°eË–]uÕUË–-ëÖ­Û°aÃÞÿýýèGË–- û¼p„eYwÞyguuuØ'’tuuuS¦L¹ÿþû·oß~öÙg÷ë×oÅŠ×^{í¢E‹Â>µ$zðÁï¾ûî7Ž9²¨¨èù矿á†8öy%@".Éÿ”ä‡}±RUUuçwæçç?úè£#FŒB¬Y³æšk®ùÅ/~1f̘Ü\Òôð=þøãï¾ûnØgñÌ3Ϭ^½zĈ>úhaa¡býúõååå‹-7nÜ AƒÂ>Á©¬¬\¼xq÷îÝŸ{î¹nݺ !~õ«_=ùä“ ,øÅ/~öÙ%@".Éÿ”ÊéùçŸÿúë¯o¼ñF;kBœvÚi\pÁÎ;?øàƒ°Ïbýúõ>øàÀÃ>ˆW^yEq×]wÙÿ( !ú÷ïã7Ö×׳מy晆††Ûn»ÍÎ…3gÎìСÃË/¿ÜÐÐöÙ%@¢,áÿ”8éoû[NNÎÅ_,/Ο?¿²²rèСaŸ]ÒÕÕÕÝqÇ%%%3gÎ û\ 6mÚÔ®]»ÁƒË‹ýû÷BlÞ¼9ì³K–•+WæææŽ3ÆYÉËË=zô®]»V­ZöÙ%@"‹JتÒ‡~XRRÒ£G÷Þ{ïý÷ßß»wïÀ'L˜àü_F„èá‡^·nÝþð‡öíÛ‡}.¿ÿýïóóÕ¿Ö®]+„èÝ»wØg— –emذ¡S§N:u’×KKK…›7o>ýôÓÃ>Ç$âHdñO ‰c`>¼oß¾~ýúÝsÏ=K—.uÖ{÷îýÐCzê©aŸ`¢­^½zÉ’%ååå£F²ÿòE¸N9åeåwÞY¼xqëÖ­•ÏìѬjjjêëë;v쨬wèÐA±{÷î°O0¡øMüS"تо}û„6løË_þ2oÞ¼+V¼þúë·ÜrË—_~yë­·ÒŸ¢Üqǽ{÷ž>}zØçƒúúú'Ÿ|òú믯©©™;wn—.]Â>£±ÿjj×®²^TT$„¨ªª ûÁ¨àŸŸ8f¢®®nÉ’%Ηyyy7ÜpC›6mì/çÎ;nÜ8ûñ´iÓ¶nÝúüóÏÿÏÿüÏå—_ö‰Çœñç"„˜7oÞ–-[–.]JÍ@Ësû¡8V¬X1{öì7öìÙsΜ9£F û”“¥cÇŽ999555ʺ=gÄþÜ!âHtðO‰Ä1µµµ=ôóeëÖ­o¸á†víÚµiÓ&''gìØ±òÁ&Lxþùç?þøã°Ï:þŒ?—wß}wéÒ¥7ÝtýI¡0þPìLJ~àžzê©6mÚÜrË-×]w]Âÿ:E~~~‡ôO¿þúk!„Óg–ÇH៉c& +++õõnݺíÝ»7''G9XQWWöYÇŸñç²~ýz!Ä#<òÈ#Èë/¾øâ‹/¾Ø¿ÿ—^z)ì3·?, Ó§OõÕW'L˜0kÖ,”uïÞ}Æ _ýµ\ì¿iÓ&û[aŸ]Bñ$jø§ÄA⤱cÇ>ñÄŸ|ò‰Ýh³çY$vàSèúôésÑEÉ+UUUË—/ïÕ«×°aÃzôèö &ÔSO=õꫯ^}õÕ³fÍ û\’nüøñ•••o¼ñ†ó'Ų¬×_½¤¤dذaaŸ]Bñ$jø§Ä‘cYVØçëÖ­»øâ‹‡ú»ßýΞmñÁüøÇ?ÎÏÏùå—;wîö B!Ö®]{饗Nž<ùû\ʲ¬‰'îÙ³gùòåNq0²uëÖñãÇ÷íÛ÷ÙgŸµ{b~ÿûßWTT\ýõ ¼oð$+$öŸ>q Ò AƒR©TEEEYYÙé§Ÿ^SS³råÊœœœ_ýêWd€cÇŽ_|ñEaaá5×\£÷’K.)//û¤W¯^3f̘7oÞäÉ“Ï;ï¼Ï?ÿüwÞµ„⢌Ä1`?ùÉOºtéòä“O¾õÖ[%%%ãÇ¿å–[ìqÿl[¶lB8pàÃ?Ô¿KßhË»öÚk»víú /üå/éÙ³gyyùm·Ýfúˆ–ÇD[Õð…àð…ľ8ÀGøBâ_Hà ‰#|!q€/$Žð…ľ8ÀGøBâ_Hà ‰#|!q€/$Žð…ľ8ÀGøBâ_Hà ‰#|!q€/$Žð…ľ8ÀGøBâ_Hà ‰#|!q€/$Žð…ľ8ÀGøBâ_Hà ‰#|ùÿÒöÆ8ï8¿ IEND®B`‚statistics-release-1.6.3/docs/assets/slicesample_201.png000066400000000000000000000277251456127120000231670ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A/œIDATxÚíÝ}˜•uøñ{†AAÐyP üév93‘M›&^èîZjËåK.$e¦v¡¬Ñºye†’¸mM»VŽf‚¬\ñì®¶)J¡¡d#ƒBæÃ ˆC¡3ç÷Çɉ†¾ gæ>ç>¯×_pÏ9ð½Ï5Îýöó=÷¡ •JEp(…q/€Ü """""""""""""""""""""""""""""""""""""""""áÅ_¬ªªúõ¯÷Bb&¡®®.î%d…¢¸¥ZZZ^xá…%K–üä'?‰{-YA8ví‚ .xå•Wâ^@Ž]»í¶Ûþô§?EQtß}÷=þøãq/ ~±kguVú?ûÙÏâ^ @VŽ™WUU÷€ô /„<¬²²2î•=¨¾¾>î%Ä@8öˆüüfê9UUU^Ò òzvOAAÁŸuã!á® é_¤R©¸×ž{|—f–×3ãòvH$áÏÉÖ‹ñîãÓO—@G€êf2vrã‘|A8t!3ɸ/ùä>áÐYAAA&“q_ïæ£vr‘pø‹Ì»tãF@.Žä7f–×ó@zpи?£Çƒò]šY^O2¥0îd…^­ÆïŽr‚ÿÙÍ<—9'žjìp×?Š!·äíµÞÄÈw1Wcdîä á䯂‚‚ø«1M;¹ÀÍ1@žÊ–dìpãœ‰#²®ÓÌì&²‰v²˜pòN–Ž;hG [ G ¿d{5¦iG + G äF5¦iG ûG _äR5¦iG ËG /ä^5¦iG ›G ùrµ²ŒpÈn†Ž@ÖŽ@Â%aܨì $KB5¦iG G ±’SÙA8äCG nÂH¦d޵#+á$P2«1M;ñŽŽ@Ò$yܘfèÄD8‰’üjLÓŽ@„#A„#ù2nL3tzp"¿ª  g:½K8I¿ãFíô"á@áä¼ü7¦:½E8¹-ß«1M;½B8D89̸ñ/ ž'"\eÜØ™¡#ÐÄ#“T#@ïŽ bèô$áäãF€XG€d1tzŒprŒqã¡iG gG‚G —7†2tz€p ˆpr†qãá1t2M8D8¹Á¸±; ŒŽŽ@0nì>CG s„#A„#팔¡#!€ ÂÈjÆ™aèd‚p ˆp²—qc&:GL8D8Yʸ1ó ##"ldÜØS # "¬cÜØ³ @v1nÈZ ÿØ­ºE8D8YÄ>uï1tŸp ˆp²…qco3t“p ˆp²‚qc< Ã!"ø7äáßìVÁ„#A„#3ûÔñ3tÂG‚G NÆÙÂÐ "Ø7fCGàP„#A„#A„#ûÔÙÈn5pP€ ˆqcö2tL8D8½Í¸ G GþšÝjà„#A„#ЫìSçCG +€ Âè=ƹÄÐØp ˆp HQÜ è% .\°`ACCÃ1Ç3nܸ3f”––äñ{÷îýÑ~´bÅŠÆÆÆÒÒÒ‘#G~á _¨¨¨ˆû< ‡Ù§Î=7iÒ¤ãŽ;.îs‚ÜcŸ:·Ù­Þ•ðùYkkk[[[III§ãÅÅÅÑ_Ï÷UUUUWWwå•W^yå•'Ož|óÍ7þ½UUUŽÔ××Çýbݱÿe=o%<Ó·N0 ÓñFQ´k×®.ŸÕÒÒòo|ã­·Þ1bÄÈ‘#›››×®]»xñâ~ô£çž{nÈß+¡ƒqcø\òÛþ—õ¼MÉ„‡cIIIAAAkkk§ã»wïŽÞ;îïÆoüÕ¯~5sæÌþçNyùå—/½ôÒ믿þ§?ýéûÞ÷¾¸O  cQQQqqñþ“Å–––(Š:î³Þ×k¯½ö³Ÿýì”SN鍯(І öùÏþí·ß~øá‡ã>'€x$<£(*//onnN—b‡ÆÆÆô—ö|sssE'Ÿ|r§ãéAã믿÷ A.±On‘ò!'L˜ÐÖÖ¶fÍšŽ#©TjõêÕ¥¥¥ÕÕÕû?þä“OîÓ§ÏæÍ›;½›'ýþ†SN9%îˆGòÃqÒ¤I………óæÍK¿¯1Š¢ÚÚÚ¦¦¦‰'öíÛ7}ä­·Þjllܾ}{Eýû÷;vìÖ­[¿õ­ou|BøæÍ›¿óïuÔQgŸ}vÜ'9ø aòâ.¹{î¹göìÙïyÏ{ÆŒ³uëÖuëÖ >üž{îéø˜žåË—_ýõK—.¢¨©©éÿñÿð‡?œ|òÉÇonnþÕ¯~ÕÞÞ>kÖ¬+®¸â]UU•»ª!މtׄ|¸jÀ!åíµ>áwU§M:uРA‹/^¾|ùСC'Ož\SS“þDž.p ˗/ÿîw¿»víÚÿû¿ÿ+--7nÜÕW_=räȸO 6y1qìeyû!°/ãÆÄ2t„<¾Ö'ÿ=Žd„p2ϸ ‘„#‡Ã:BŽŽ@†Ù§N>CGÈW€ € ÂÈ$ûÔùÂn5ä%á@ádŒq#@² GºÅn5äá@ád†}ê|dèyF8D8D8`Ÿ:Ù­†|""#eÜ'„#GÆn5ä á@áûÔD‘¡#ä á@á@átŸ}jþÂn5äá@át“q#@¾ŽdˆÝjH:á@át‡}j€<$È»Õh€ Â8lö©9CGH.á@á@áûÔšÝjH(á@áãF€|&èv«!‰„#A„#Ê>5@žŽô »Õ8€ ÂbŸšî0t„dŽŽŽÀ¡Ù§¦ûìVC‚G‚G‚GàìSs¤ìVCRG‚Gà`Œè èyv«!„#A„#p@ö©Ø—p WØ­†Ü'"®Ù§&ó !Ç G‚G‚G  ö©é)v«!— G‚G‚G 3ûÔô,»Õ³„#A„#A„#ðWìSÓìVCnŽŽÀ_7p€8Ø­†$"?³O ÀÁ Gbb·rp ˆp¢È>5q1t„œ"""ûÔÄÊn5äá@á@áùÎ>5ñ³[ 9B8D8D8B^³OM¶°[ ¹@8D8D8Bþ²OMv±[ YO8D8Bž2nàp G²†ÝjÈn€ Âò‘}jº¡(îô’… .X° ¡¡á˜cŽ7nÜŒ3JKKþ”gŸ}ö{ßûÞ¦M›vïÞ]UUuíµ×þíßþmÜçt7ò‘¤|ðƒ<ï¼óšššž}öÙ¸O éÜ[ Ù*ùá¸~ýúÂÂÂñãÇwéÓ§ÏØ±c›››7lØÐåS~þóŸ\tÑEû¼ãŽ;êëëO;í´¸O  ¿9&•J544”•••••í{¼²²2Š¢mÛ¶5jÿg=÷Üs¥¥¥C† ùå/ùôÓOïܹóÔSO=çœsú÷ï÷ Á‘²OMnp‹ d¥„‡ckkk[[[III§ãÅÅÅQíØ±cÿ§ìÝ»÷Í7ß<å”Sþíßþíè8~â‰'Þ}÷ÝøÀBþÞªªªNGêëëã~1€îØÿ²ž·Žé[§ ÐéøÀ£(Úµk×þOyóÍ7£(jhhxýõ×gÏž=~üø?þñ=ôÐüùó¿øÅ/.]º4dî( 1ö¿¬çmJ&ü=Ž%%%­­­ŽïÞ½;zwîØI¿~ýÒ¿øÆ7¾qÑE•”” 2ä _øÂÅ_¼}ûöeË–Å}NÐ}ö©É%n‘ì“ðp,***..Þ²ØÒÒEQÇ}Öû0`@¿~ýú÷ïöÙgï{üœsΉ¢è·¿ýmÜ焇cEåååÍÍÍéRìÐØØ˜þR—O»¥¥å…^Ø÷`ú³{N=õÔ¸OºÉ>5¹Çn5d™ä‡ã¤I“ çÍ›—~_cEµµµMMM'NìÛ·oúÈ[o½ÕØØ¸}ûöôo/¾øâ(ŠfÍšÕqÛõ³Ï>û_ÿõ_ÅÅÅçž{nÜ'„ßUEѰaÃf̘1{öì /¼p̘1[·n]·n݈#®ºêªŽÇ¬^½úú믯¨¨XºtiEïÿûo¸á†»îºëþáFÕÚÚº~ýú‚‚‚Ûn»íøãû„â‘üpŒ¢hêÔ©ƒ Z¼xñòåˇ:yòäšššô'òÈg?ûÙN8áÞ{ï}üñÇKKK'L˜píµ×VTTÄ}*ÐMö©ÉU> ²‰ÿ3¯ªªÊç8’m„#9ì® .Ud›¼½Ö'ÿ=Žd„p„ä3n$·¹·²†p ˆp„„3n S„#YÏn5dá@áIfŸ€ Žä»Õ„#A„#$–}j’ÆÐâ&""!™ìS“Lv«!V€ € ÂÈ>5If·â#""!iìS“|v«!&€ € ÂÅ>5ùÂn5ÄA8D8Br7У„#¹Én5ô:á@á aŸ€ž&ÈYv«¡w G‚GHûÔä/CGèEEq/௤R©çŸþñǯ¯¯ojjzýõ×ûõë7hР!C†Œ5ê£ýèñÇ÷òT¶„ãöíÛï»ï¾‡~xçÎ]>àÇ?þqAAÁ>ðÉ“'üã?ꨣâ^2@~)H¥Rñ®àøÃ7¾ñGy$Š¢}èCÕÕÕ§vÚûÞ÷¾’’’’’’½{÷¾ñÆMMM¿ùÍožyæ™õë׿üòË'œpÂÕW_}ùå—fãV{UUU}}}Ü« ا†è® ±_ÎÈ+y{­9ï½÷Þ¹sç:ôSŸúÔ…^8xðàƒ?>•Jýò—¿\¼xñ²eË***¾þõ¯WTTĸþ.åí7qŽ éey{­ybWWWwë­·.]ºô3ŸùÌ!«1Š¢‚‚‚Ñ£GßvÛmÿû¿ÿ;räÈŋǻ~€üóı­­­OŸ>q=½‡äíÿ… ãFø3CGzQÞ^ëcž8vʾ7üñ+W®<ÈÓè9ÙusÉ¥—^:oÞ¼¶¶¶ý¿ôÆoÔÔÔ|ñ‹_Œ{EŒèMÙŽƒþö·¿}É%—üîw¿Û÷øªU«>ñ‰O¬X±â¤“NŠ{d%Ÿ=/»ÂqéÒ¥—\rɳÏ>{ÑE=ðÀQíܹó†n¸îºëvîÜ9mÚ´Ÿþô§q¯ OÅÿ9Žû{â‰'¾üå/ÿþ÷¿?ýôÓ_|ñŦ¦¦ŠŠŠÛo¿}äÈ‘q/-HÞ¾a–^fŸ:s ½%o¯õÙ5qL;ãŒ3~ò“Ÿ”••=õÔSMMMþð‡~øá\©Fbc·zX6†ãš5k&Mš´cÇŽ#F ±hÑ¢¸ÙÂ>5tÍÐzRv…cº+**.\øùϾOŸ>ÅÅÅwß}÷œ9s n¾ùæiӦŽF€<•]áØÔÔ4}úô‡~xøðáû¿à‚ –,YrÆg¬]»6î5ä©¢¸ðWî¿ÿþêêê.¿4dÈüàuuuq¯âgŸæ†G ²ñ3C ²kâx jL+((˜2eJÜkÈS1‡ãC=Ôå?0âå—_þùÏïúòGÌá8þüüãK–,Ù»woø³¶oß~Ûm·ýýßÿý‹/¾ïú¡÷Ù§†Cso5ôŒ˜ßã¸|ùò»ï¾û¦›nºõÖ[?þñŸ{î¹§vÚ±ÇÛ僷nÝúÄO,Y²äW¿úÕ°aÃæÏŸ?vìØx×?²âíÛ7oþÑ~´dÉ’?þñ§œrÊI'TZZZ\\¼wïÞ7Þx£¹¹yÓ¦M»v튢èä“Oþ§ú§‰'öïß?î…w-oÿ"zq#„òÏÒ“òöZŸᘶsçÎ+V<þøãëÖ­kiiéôÕŠŠŠ3Ïæ÷8ÞrË-EEEO=õÔ[o½÷KÀÁÄŽÇü]wÝÕñÛªªª+®¸âæ›oŽùU`?ÙuWõ´iÓF÷* ëØ§†îso5dNv…ã7Þ÷èZÌwU‡dÜ@–Ž$Ý fù¿U ¹B8D8BV³O ™aè™ ""!{Ù§†L²[ GL8D8B–2n ÛGò†Ýj82€ ²‘}jè)†Žp„#A„#A„#dûÔгìVCw G‚GÈ.Æd-á@þ±[ Ý""!‹Ø§†Þcè‡O8D8D8B¶°O ½Ín5&á@áYÁ¸€ì'Ècv«ápG‚GˆŸ}jˆ“¡#ŽÉ—p\¸pá¤I“ª««?ö±Ý|óÍo¼ñFøs_~ùå|ä#3f̈û$â”á8wîÜY³fmÙ²eôèÑ\´hÑôéÓ÷ìÙòÜT*uÓM7íÞ½;î“ ±ìSCüìVC˜ä‡c}}}mmmyyùÊ•+kkkW­Z5eÊ”7Ι3'äé?üáŸz꩸O ~ÉÇ ´··×ÔÔ <8}dæÌ™ÅÅÅ+V¬hoo?øs7oÞcÇŽmnnÞ°aÃAžøÎ;ïÜx㥥¥3gÎŒû$â—ðpL¥R eeeeeeû¯¬¬Œ¢hÛ¶myî·¿ýíçŸþöÛo?î¸ãâ>€øŽ€žÕÚÚÚÖÖVRRÒéxqqqE;vì8Пyæ™ïÿû“'O>óÌ37mÚt¸oUUU§#õõõq¿dûÔ]nx´   •J޲Îþ—õ¼•ðpLß:=`À€NÇEÑ®]»ô¬o¼ñÄOüÒ—¾Ô½¿W&@bìYÏÛ”Lx8–””´¶¶v:žþxôÜq³gÏÞ¾}û<пÿ¸Ï€Ä2n ç$ü=ŽEEEÅÅÅûO[ZZ¢(ê¸Ïz_O=õÔ<ðÙÏ~ö´ÓN‹{ùô.÷VÃA%<£(*//onnN—b‡ÆÆÆô—öüæÍ›£(úÎw¾Sõ®O}êSQýô§?­ªª:ÿüóã>!€x$|«:Š¢ &Ô×ׯY³æŸøDúH*•Z½zuiiiuuõþ?餓:™¶k×®µk×6¬ººzÈ!qŸI`Ÿ²—[dàÀ’Ž“&Múîw¿;oÞ¼qãÆ¥ï‰©­­mjjúÌg>Ó·oßôcÞzë­×^{­oß¾ï}ï{Ï:묳Î:kß?aÓ¦Mk×®5jÔwÞ÷ÙÄ&ùá8lذ3fÌž=û /3fÌÖ­[×­[7bĈ«®ºªã1«W¯¾þúë+**–.]÷zI>ãFrTòÃ1Š¢©S§4hñâÅË—/:tèäÉ“kjjÒÓGèÌn5€ÿ02¯ªªÊç8r&ŽîšàúÈAäíµ>ùwUCVQ|.tE8D8Bï1n § GèŠÝjØp ˆp„^bŸr¡#ü5á@á½Á¸€Žp`v«a€ Âzœ}jÈm†Žð.á@á=˸€ÄŽp(v«!Š"á@ á=È>5$‡¡#G Gè)Æ4†Žä=á@á=¸€äŽÌn5ùM8D8BæÙ§†$3t$ G‚GÈ0ãFH>CGò•p ˆp ˆp„L²O ùÂn5yI8D8BÆ7B~1t$ÿG‚GÈ ãFÈG†Žäá@á`Ü@>ŽpìV“O„#A„#)ûÔï É€ ÂŽˆq#E†Žä á@áÝgÜü…¡#y@8D8B77o„#dˆÝj’N8D8BwاºfèH¢ G‚G8lÆÀÁ:’\€ Âq#ph†Ž$”p ˆp„Ã`Ü„2t$‰„#A„#„2n Ï Gèv«IáAŒ@8@1t$Y„#šq#DÂz–¡# ""áìSGÊБ¤ŽŽp0Æ@f:’€ ÂȸÈ$CGrŸp ˆp„®7™gèHŽŽŽÐãF §:’Ë„#A„#tfÜô,CGr–p ˆp„¿bÜôCGr“p ˆp„¿0nz¡#9H8Ÿ©F88á11t$×Gˆ"ãF  >†ŽäáÆ@¬´#¹C8D8’ïŒø:’#„#A„#y͸ȆŽäá@áHþ2n²‹¡#YO8D8’§ŒldèHvŽä#ÕÝ  ›:’ÅŠâ^@/Y¸pá‚ Ž9æ˜qãÆÍ˜1£´´ô ß³gσ>øÐCmß¾ýØc­¬¬œ:uêÇ>ö±¸Ïƒ 0n²Ý ¤R©¸×åE8Î;÷»ßýî€F½uëÖE‹mÞ¼ùÞ{ïíß¿—çw®¼òÊgžy¦¸¸øŒ3Îøãÿøä“O®]»öºë®»æškâ>€x$«º¾¾¾¶¶¶¼¼|åÊ•µµµ«V­š2eÊÆçÌ™s §,X°à™gžùÈG>²zõêÿøÿøÁ~ðð×””ÌŸ?ÿùçŸû„8"Æ@n°aMVJ~8.X° ½½½¦¦fðàÁé#3gÎ,..^±bE{{{—OY¹reE_þò—;F’ŸûÜçÚÚÚ~ñ‹_Ä}BñH~8®_¿¾°°püøñGúôé3vìØæææ 6tù”ÆÆÆŒ1b߃QmÛ¶-î¢ûŒ\bèHöIø{S©TCCCYYYYYÙ¾Ç+++£(Ú¶mÛ¨Q£öÖ÷¾÷½¢¢Î¯Ì¦M›¢(:ñÄã>'ºI5ÀJx8¶¶¶¶µµ•””t:^\\EÑŽ;º|ÖðáÃ;Y·n]mmíÑG}ÑE…ü½UUUŽÔ××ÇýbkÜ^ö¿¬ç­„‡ãž={¢(0`@§ãŒ¢h×®]‡üÚÚÚî¿ÿþ;­­í›ßüæ 'œò÷ÊÄlcÜä*í˜ö¿¬çmJ&<KJJ Z[[;ß½{wôîÜñ ž|òɯ~õ«[¶l:tè׿þõ3Ï<3îˆMÂñ¨¨¨¸¸xÿÉbKKKE÷YïoïÞ½wÞyg]]]¿~ý®½öÚiÓ¦èCÉ~Æ@n3t$k$<£(*//ohhhii9î¸ã:666¦¿ÔåSÚÛÛ¿ô¥/=òÈ#çœsÎ-·Ür¾$û©FÈ”äÏ„ ÚÚÚÖ¬YÓq$•J­^½º´´´ºººË§ÔÕÕ=òÈ#—_~ùüùóU#ñóÑÇ1vªH¦»&¸pgƒ¼½Ö'ÿ=ŽÞéH¬„# dÜ$™v$>€ ‘¤1n’ÏБ˜GE5ùB;á@áHr7ùÅБ^'IÕä#íH$q#¿ éE‘œ§|§é-€ ‘ÜfÜE†ŽôáHS¡éy‘\¥ — GH CGz˜p$'7tM;Ò“„#¹G5Œv¤ÇG‚GrŒq#À¡:Ò3„#¹D5„ÒŽôáHÎP‡G;’i€ ‘Ü`ÜІŽd”p$¨F€îÓŽdŽp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp ˆp$ÛD7<÷*á@á@á@á@á@á@á@á@á@á@á@á@áIwãq/‚$ŽŽŽŽŽŽŽ)Š{ÙkáÂ… ,hhh8æ˜cÆ7cÆŒÒÒҸǮÍ;wÖ¬Y[¶l=zôÀ-Z4}úô={öĽ.€ØÇ.Ô×××ÖÖ–——¯\¹²¶¶vÕªUS¦LÙ¸qãœ9sâ^@l„c,XÐÞÞ^SS3xðàô‘™3g¯X±¢½½=îÕÄC8vaýúõ………ãÇï8Ò§OŸ±cÇ677oذ!îÕÄC8v–J¥ÊÊÊÊÊÊö=^YYEѶmÛâ^ @<ÜUÝYkkk[[[III§ãÅÅÅQíØ±#䩪ªŠû<’å® q¯ ·UVVº6qä„cgé[§ ÐéøÀ£(Úµk×!ÿ„úúú¸O ólUwVRRRPPÐÚÚÚéøîÝ»£wçŽyH8vVTTT\\¼ÿd±¥¥%Š¢Žû¬òpìByyysssº;466¦¿÷êâ!»0a„¶¶¶5kÖtI¥R«W¯.--­®®Ž{uñŽ]˜4iRaaá¼yóÒïkŒ¢¨¶¶¶©©iâĉ}ûö{uñ(H¥Rq¯!ÝsÏ=³gÏ~Ï{Þ3f̘­[·®[·nøðá÷ÜsÏþÓ'„ã-Y²dñâÅ7n:tèé§Ÿ^SS“þD€ü$â=ŽŽŽŽŽŽŽŽ¶sçÎû·;ÿüó?ô¡{î¹×_ý‹/¾÷¢rÛž={~øÃ¦_Ò1cÆL›6í¿øEÜ‹Jˆ_|±ªªê׿þuÜ ÉU .œ4iRuuõÇ>ö±›o¾ù7Þˆ{E á;3#üðÌ8—øH8fVKKËùçŸÿÀDQtöÙgüñË—/¿à‚ ž{—–«Þyç+¯¼òöÛoíµ×Î8ãŒSN9åÉ'Ÿœ:uêüùóã^ZÔÕÕŽ„6wîÜY³fmÙ²eôèÑ\´hÑôéÓ÷ìÙ÷º’Àwæ‘óÃ3ã\âÿ,Eæ|ík_«¬¬¼ë®»:Ž,Z´¨²²ò’K.‰{i¹êþûﯬ¬¼ì²ËZ[[ÓG^xá…ÓO?ýýïÿo~ó›¸W—«víÚµ~ýúý×­¬¬¬¬¬|æ™gâ^Qîùío{ê©§Ž3æÕW_MIÿç뭷ƽ´æ;3ƒüðÌ8—ø4ÇLzâ‰'ú÷ïõÕWwùÔ§>5dÈM›6µµµÅ½ºœ´råÊ(оüå/÷ïß?}¤¢¢âsŸû\[[›=—n»à‚ ®¸âŠŸüä'q/$‡-X° ½½½¦¦fðàÁé#3gÎ,..^±bE{{{Ü«ËU¾33ÈÏŒs‰O+Š{‰RRRRYYÙ¯_¿}}ôÑ{÷îÝ»woǽ„kll0`Àˆ#ö=XQQEѶmÛâ^]®ºí¶Ûþô§?EQtß}÷=þøãq/''­_¿¾°°püøñGúôé3vìØ%K–lذaÔ¨Qq/0'ùÎÌ ?<3Î%>M8fÒ}÷Ý×éÈúõë_zé¥}èCùó-•YßûÞ÷ŠŠ:—nÚ´)Š¢O<1îÕ媳Î:+ý‹Ÿýìgq¯%'¥R©†††²²²²²²}WVVFQ´mÛ6áØ=¾33ÈÏŒs‰OŽ=âé§Ÿ^´hQccãÓO?ýÿþßÿ›={vÜ+ÊUÇïtdݺuµµµG}ôE]÷êÈS­­­mmm%%%ŽGQ´cÇŽ¸~xö <¿Ä ÇQ__ÿÐC¥R©(ŠFŒqÔQGŽ¢$hkk»ÿþûï¸ã޶¶¶o~ó›'œpBÜ+"O¥o0`@§ãŒ¢h×®]q/þŠž™•ç—xáØï¼óÎ÷¿ÿýŽßöéÓgúôéû>àÒK/½ä’Kššš–,Y2gΜ 6,[¶,}Q¡K‡|IŸ|òɯ~õ«[¶l:tè׿þõ3Ï<3î%g»C¾¤t[IIIAAAkkk§ã»wïŽÞ;B–ðÃ3ãòü/»ãí·ß¾ûî»;~{ôÑGïI.((4hÐÔ©S·mÛöãÿxÕªU'NŒ{áÙë /éÞ½{ï¼óκºº~ýú]{íµÓ¦MË«w“t[Èw)ÝSTTT\\¼ÿd±¥¥%Š¢Žû¬!^~xöœ|¾Ä Çîèß¿}}}§ƒ›7o¾çž{ÆŽ{Þyçí{<}SÛ«¯¾÷ª³Z—/iEííí_úÒ—yä‘sÎ9ç–[nqIw —”Œ(//ohhhii9î¸ã:666¦¿÷êÀÏ s‰ïàs3æ¸ãŽûïÿþïE‹u:þÒK/EQô7ó7q/0'ÕÕÕ=òÈ#—_~ùüùóýà#{L˜0¡­­mÍš5GR©ÔêÕ«KKK«««ã^øá™a.ñ„cÆ”——WUU­]»ö±Çë8øÛßþöþûï8pàèÑ£ã^`îI¥R÷Ýwß±Ç{ÓM7Žø+“&M*,,œ7o^ú}QÕÖÖ655Mœ8±oß¾q¯Ž|ç‡gƹÄw°UI_ûÚ×.¿üò«¯¾ºººú½ï}ïk¯½öË_þ2Š¢;î¸Ã]lÝðú믿ôÒKýû÷¿âŠ+öÿêÅ_tèÐÉ“'×ÔÔäÏ•d3?<{‚K|ZAúƒˆàà¼Ç€ € € € € € € € € € € Âàð<ýôÓÇ;vì›o¾Ùqp÷îÝãÇ>|øÆã^ @Oއ§ººzÚ´i¯¾úêí·ßÞqðŽ;îøÃþðùÏþƒü`Ü è)©T*î5䘷ß~ûâ‹/Þ¼yóþçŽ3æ‰'ž¸òÊ+GŽùàƒöéÓ'îÕôáпùÍo&Mšt ',\¸ðÒK/ݱcÇâÅ‹O>ùä¸×ЃlUtÇðáï¹æšW^y哟üäïÿû›nºI5‰gâÐMmmm“&MÚ´iÓé§Ÿ^WW÷rzœ‰#@7íÞ½ûõ×_¢èÅ_ܹsgÜËèq ›n¹å–×^{íÃþpSSÓ­·Þ÷rzœpèŽ%K–¬X±bܸq÷Þ{oEEŲeËV­Z÷¢z–÷8¶W^yå‚ .H¥RË–-+//öÙg/¹ä’’’’eË–•––ƽ:€žbâpxR©ÔÌ™3[ZZþå_þ¥¼¼<Š¢‘#G^yå•ÍÍÍ_ýêWã^@އ§®®î‰'ž8묳&NœØqðºë®;餓V¬X±råʸÐSlUÄÄ€ € € € € € € € € € € € € € € ÿjk»æf÷8IEND®B`‚statistics-release-1.6.3/docs/assets/statistics.png000066400000000000000000000006421456127120000224630ustar00rootroot00000000000000‰PNG  IHDRddÿ€tIMEß Ó@Ÿ…tEXtCommentCreated with GIMPW1IDATxÚíÜAƒ Ph¼ÿ•颫&mé(Âû«vaŒO%æRJ’º<À‚ ,X`Á‚ ,°`ÁºQ¶c›åüöw‘ˆ±^:9§¥ž³†°`Á‚K`Á‚kvgØ„6­³a…6­Ûï3Óz&+fžaw<­² <,X뾤œËp™ +§ÈåËî†j–ÔMJï>u<±À·¬ÕÞŽÛHw^à›¼†~êpÕeû Zw7„ ,é]ù÷úaå߈3 Ã,X\àÏè¢cßìíü^X±oöömªY°`Á‚%°`ÁÒî´O¤3¬Êö¬t)G´J†!,X°`ÁX°`Á‚K`Á‚uy¦ý®CÄ’Ä9¿ë`ªY°` ,X°`Á‚%°`Áº>Odœ1ë'ø£#IEND®B`‚statistics-release-1.6.3/docs/assets/tcdf_101.png000066400000000000000000000576531456127120000216100ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A_rIDATxÚíÝy\TÕÿÇñ3,j²ˆ ’ (¢¨ 冒h¥…;–ifÙòmÑÌ•\~¥Ùb¸dZ*••hæVf®iæV𠏦(‚ˆš‰h’@0¿?nŽã°8À çÎ×óáãû˜¹3wæsïýï>çž{uz½^w⠻؂#ÌBp€YŽ0 Áf!8À,G˜…à³`‚#ÌBpP~ÿý÷{ï½×¹sç† ºººúùù…‡‡¿ýöÛ©©©Eß¼fÍšï¿ÿþûï¿ÏÌÌ´` ï¼óŽN§Óét]»vµÞ–[|×®]•¯ž5kVE>|åÊ•:ó\½zµôº~ýú¼yózè!WW×   G}túôéyyy&ïSÖÊÍÍ}üñÇ‹]wñâÅÊç_¼xñÌ™3Ï<óŒ²üìÙ³sçÎ-}ãÆ“u8T‚#€òØ¿¿òà©§ž 7,oӦ͌3”ÇIII………Bˆ7ÞxC§ÓbMçÎu:]NNŽbâĉʹq½zõ2þüþýû{ÎÜ™3güqooïÚµk÷îÝ{ïÞ½%UøçŸ¾öÚkmÛ¶½ë®»6lاOŸÄÄDã7õ•+WFŽ~×]wÝwß}ï¾ûî¿ÿþ«¼­”â»wï.„¨Y³fÇŽ ûï¿ÿΛ7¯}ûöuêÔ©^½z‹-žzꩃZõplÞ¼yÍš5ÊãØØØ Ü{ï½ŽŽŽ~~~C† Y²d‰òRrrò‰'Jÿ¨ºuë.X°Àp8Þ}÷]ec@0T  |þùçåÁÑ£Gõz½N§3¼½uëVå±^¯·à—îÛ·/::úÂ… ÊÓï¾ûnóæÍEß¹eË–'Ÿ|Ò0à{íÚµÔÔÔï¾ûîõ×_Ÿ>}ºÉ›ÿúë¯víÚ;vLyzðàÁƒ8p`Ù²e¥×Q¯^½Ç{ÌÉé¿ß¥×¯_ïСÞ={ ï9räÈ‘#G/^úh·nÝΟ?/„8|øpãÆïø¯½öÚwß}'„ÈÌÌܹsçÃ?l¥ÊØ:ŽÊã¾ûîSüøãaaaÓ§Oß½{·2u·jÕªorttBŒ5*%%¥jÕªÊ*_}õ•ñS3ݸq£oß¾Jjtrrjݺuƒ þþûïuëÖ™¼3;;û‰'žPRc§NÞzë­þýû;88èõú3f,X°Àäý[·n=vìXýúõxàWWWeáòåË•vf)Å;99¥§§üñdžš2eŠ’ÝÜÜzôè1tèÐx@¡×ë_{íµãÇ[épüòË/ʃ޽{W¯^½èÖ®]›”””””Ô§Os>°C‡†s+s0;GpPcÆŒñóóS'&&Ž5ªM›6Õ«W KOOBÜu×];wîܵkWZZÚðá˾sêÔ©Ê ¾}ûþôÓOo¾ùæ×_m¸bΤI“Š®2{öìÓ§OïÞ½;))É•àX¦âþùgåÁøñãW­ZõÑGíÞ½»K—.BˆüüüÍ›7[ãXüûᅥÞj`` E>S§ÓÕ®][ylhñS†ìM¼þúëÖØ@êApP5kÖ»~ýºB¯×'&&&&&¾óÎ;+W®¬U«VÅ÷†‰*Uªx{{+e|õocW¯^U®éèêêZ­Z5s>Ö0Bíëë[ôÕÅ‹«öB謇Ž#€2ËÏÏÿü&“ž¢¿¿ÿìÙ³Ûµk§4¾äd) s‰ªU«føÏ 8(ÈÈHåÁÔ©S/^l8}0??þüù[¶lQžÛ¬2´²„Ñ@óo¿ýf87ñÛo¿-Ô}ô‘áRÞï¾ûîï¿ÿnòÎÎ;+âãã ’\¹reÍš5½½½•‹ø”{Ë7qìØ±Úµk×®]ÛÏÏïÔ©SB''§Î;2Dyƒ‡‡‡•Çc=fØêaÆMž<ù?þPªMHHxúé§•—6lZúG]¸pá…^X±b…òô©§ž*åv5ìŽÊ.--Í0ëVáíí}ÿý÷?ðÀÆ »té’ŸŸoXåî»ïV–·iÓ&..îÆz½Þp!DÕªUÛµklü;jÔ¨QÊê0´'«T©a¸ãŸâ‘GQÞyùòeÃqddä›o¾Ù·o_C—ñÿþïÿ”·M˜0AYÒ³gOãM{â‰'L¾º¤âMN¬]»ösÏ=7f̘~ýú®ï3yòdsö­ñU{Ž9bæ9tèI'ÕÛÛ[™H®puuMJJ2¼ÿÈ‘#†—êÔ©Ó¨Q£F.±¤¨U«Vfff±«lÞ¼YÒÿõÈDpPN[·n-åâ/:t¸|ù²ñû `ü†k×®)Ë AÍ 00ÐÐ?3Noƒ6ygµjÕ ³ª ÁQ¯×¯^½ºØöÞÿþ÷¿ÂÂBå=e Ž%ob×®]%ƒGFFþóÏ?æìØòG½^¿sçÎ’ŽHƒ Ö®]küfãX,//¯]»v•´ Á°O̪PN;vLMMýüóÏ×®]{úôéôôôªU«6hÐ ((èùçŸ7ŒeÌœ9S±iÓ¦œœœ€€Ã%µ.\Ø¢E‹o¾ù&55µqãÆ&L6lXÑoüüóÏ«U«¦Ü©ÅÇǧuëÖo¼ñÆO?ýôã?š¼3::úàÁƒo¿ývbbâñãÇk×®}ï½÷>¼C‡åÛØ’Š7Ѻuë”””yóæmذáܹs™™™Õ«WoÖ¬ÙàÁƒŸ}öÙŠÌ×6G»víNž<¿jÕªcÇŽ]½zµAƒÁÁÁ>øàK/½äâârÇOptttwwoÔ¨ÑÃ?qâÄ?üðÍ7ßÈ®@ŽÅ‹ŽŽ¾pá‚ì*T„àX¼wÞyçúõëBˆE‹ýú믲ËàX¼öíÛ+~þùgÙµ¨ÁÑò‚ƒƒe—°aÉ'’e—€;ÑË.@‚£U$'käg>88X3ۢ⠨ºŠ®Œï×h(±ðAÑ•u·Zv[«èÿ`•ˆà@…•ža4Íu3á% ‹¦=½ÔÝj¯£‹\Ç€²Ð÷O_ê? ÐéÊÿO¯Wþ7nlxlŽ#¥2é‘i)±˜ßÿ#¨AApÀ”6’¢9¡8ˆ2"8p{X´¡4UJ:$ Ž(͆ d—Sâ ¨YņÂbIѦÒ!?)@pØCSgè*6#ÚT@„†1«ú¦L™’œœ|ï½÷Ê.P1Eg@«AÉs™A "8´N=yÑœ˜yÌ¿ÈìJ¥!84ʤÅ(§b¢deºæ¤ù—‘”½YÒpŽ#@st"@È ‹DC«1³ígÏ!Ïè84äf‹1-5­r¿·„¶"ÊÅ‚ÝAÙ›¢5tš ´Ÿ*3'ÐY¬€Òû…>Õ"8l\eFF¢ي‰†· mCÕ›Uis_†.™ùCÉ©i©Œ Û::ŽT9]FC‘˜Xòà2)Ю6¥"£}çE"JApØ5#£]æÅ¢1‘€ˆR¶ÀªF%2j=/ÛJ$&¢LŽÕ³R£QÓ-FZ‰°‚#@ݬ‘µØb4IŠÄDXÁ VžÖV‹‘¤ˆÊGp¨’ešh1’!Á >L¶IŠP‚#@M,8U©‘#P‚#àN¬3H­ÂÔH‹(ÁPšH´3¥*¥Ýhû©‘#P&G@åQÏj"#PG@É,ÚnTI£‘È”ÁPv6˜9‘¨8‚# –»ÜÔH‹°‚# 8–¤–˜‰Œ€eea#©100@Ks]@}Jj7ÚBjÔé„N'RSÓH€ÅVQù©Q‰Œz=FÀZªÜÎíÆJNœËT‚#À êNDF rF*| žÊL4JFp܉Ù=½JKDF@ ‚#à¦bÛ* &2–Q íF•…XÀîBˆŠ¶­i4j@pT”US#‘P‚# BíFk§F"# G@qd§F€ Àî•÷ÚVMDF@…Ž€"ÌnVJ45#8€}«ð­b,Y F@ÝŽ€ÛÉh7ÒhlÁìXÑv£¤ÔHdl‚ƒì¶„ÔØ3:Ž`¯ÊÞn´ljdx°9G€4[ÄP5Ø%©íFR#`£ì¥ã¸|ùòeË–¥¤¤T­ZµcÇŽ£Göôô,åý7nÜøê«¯Ö¯_Ÿ––æééÙ¢E‹W_}5((Höv€–J O6Í.:Ž3gΜ0a©S§ÂÃëW¯¾råÊ^x!//¯¤÷<ýôÓÓ¦M»råJDD„¿¿ÿÆ{ôè±wï^Ù›–PÆv£S£^Ojl˜öƒcrrr||¼¯¯ï† âãã7nÜ8hРC‡M›6­¤U–.]š˜˜Øµk×M›6}ôÑG _|ñ…b„ ²·¬ RFŽž4@ûÁqÙ²e………Ç÷ññQ–ÄÆÆº»»¯_¿¾°°°ØU…O?ý´“ÓCùmÚ´iÚ´ééÓ§/_¾,{ƒ bÊx«‹´I€6h?8îÝ»×ÁÁ!22Ò°ÄÑѱC‡YYYJ@,ÊÏÏOaœõzý_ýåàà`ˆ’ V¤ÖéH€vh<8êõú””//////ãå7Bddd»Öc=æêêúÎ;ïìÚµ+//ïüùó'N<{ölLLL5doT@åÞ™š“Ñxÿ,77·  ÀÃÃÃd¹»»»¸½§h,888!!aðàÁƒ6,8pà¸qãÌüÞàà`“%6l½3ÊãìÙ³²K€)Š ÙÐA iii·ž¦¥¦ £%ÆSÓRÓDš¹Ÿn²z`@jjZZ9×®(:(öÃvÊ#<"»µÐxpT¦NW«VÍdyõêÕ…W¯^-v­ììì÷ß?''§Y³f-Z´ÈÊÊÚ¹sçªU«Z·nÝ¥Ks¾799Yö¦[L@@€ì`Šƒ¢B¶qPtBèE€¸­Ô’*ÿoº¼›usxZæn±ƒbglô ý³^´Cd'4=<}ú8;;+KrrrÒÒÒ”Ù^nnn:tHOOÿè£ W?yòä'Ÿ|R¥J•|Pö@Ù™Ýn,ÿ7; ñÉ1Bˆ:uêŒ=zêÔ©Ý»wˆˆHOOß½{w³fÍžþyÃ{¶mÛöú믭Y³F1eÊ”¾}û~òÉ'ëÖ­ ÉÊÊÚ¿aaá„ 6l({ƒÀZÊÝn$5vBûÁQñì³ÏÖªUkÕªUëÖ­óóó8pàðáÕ+òËÛÛ{ݺuóæÍÛ¹sçÖ­[===;vìøÒK/µhÑBö¦@Ù™×n$5¸#žwK ÖÌuÓÒÒlôš[ÆAQ!µkGÕ¦Fµ»¤¥ƒ¢¥¿õe¢ýs·ØGj`%GÐ43nNMj`&‚#Ø Ëe=R#`ŸŽ ]Öi7’»Epû`¡¸GjìÁ4Ê íFR#`çŽ`ŠK|¤FeEpÜ©€ 8€6SW¸ÝHj  8JCj`@pͱ\»‘ÔÀÁì ©@¹@»ˆ~,ŠàÚRêåi7¨‚#hT¢©@±Ž !–h7’”„àZTÞôGjP ‚#hE…Û¤F¥#8À,GМ"CÚ,‚àšPò85©€¥@[ÊžIÌDp-3ÿŠßpGG°}†qjÚ¬‰àšuÇv#©@™ÀÆ•·ÝHjPVGÐ&În`qG°G´”ÁlY ãÔ¥·Iʇà³ÀfÑnP¹Ž`GH*‚à6Îìv#©@À6Æ© ²@;h7°*‚#Ø2óò ©€EÀ7NÍ­bXÁlíF•‹à¶†v#IŽ e´XÁl“Q$,©ÝHj`YG°)\¾€<G°A´È@p "5°‚#ØŽ"ãÔL¦P™Ž`kîÔN¤ÝÀJŽ`#˜@6‚#Ø”;M‹¡ÝÀzŽ ¤FVEp[À´*@pÛQjG‘v#k#8€í¡Ý@ ‚#¨ž2NM»€lG°1´ÈBp›G»@å 8€ºÝ>N]´ÝHjPiŽ0 ÁT¯ä¦"íF•‰à*vûu¿™@.‚#Ø*Ú*ÁÔ­äi1PÉŽ VEîO}Û‹´T:‚#ØÚÔ€àªTêmi7‚à³@­J˜C»€,GPŸR§Å€,GP5ÚÔƒàªT\B$5‹à*Ã85µ"8€zSÓn ÁÔ‡@•Ž &FãÔ´¨ Áf!8€ÊètB¯çæÔTˆàªQÂ|jÆ©¨ÁÔ„@ÅŽ :L‹ NGP®û @õŽ E¦ÅÐn *G˜…à*PÜ85íFjCpuàòTàjD»€ @¶›ãÔ´¨ÁTàö#íFêDp€YŽ •NqÛ´ÚT‹à³@>ÚlÁä¹9N-»0‹“ì*ÉòåË—-[–’’RµjÕŽ;Ž=ÚÓÓ³ôU><þü£G^»v-88xèС<ð€ìíÆ.:Ž3gΜ0a©S§ÂÃëW¯¾råÊ^x!//¯”U¶lÙÒ¿ÿ-[¶øøø„††&%% 4hË–-²7€1N ÀVh?8&''ÇÇÇûúúnذ!>>~ãÆƒ :tèдiÓJZåêÕ«cÇŽurrJHHXºti||ü’%KªT©2qâÄÂÂBÙ@+§`k´—-[VXX8|øpeIll¬»»ûúõëKJ+W®ÌÎÎþßÿþתU+eÉ=÷ÜÓµk×K—.>|XöÐ&ÚÔOûÁqïÞ½‘‘‘†%ŽŽŽ:tÈÊÊJLL,v•íÛ·ëtºž={/üàƒ’““ï½÷^Ù@S¸Í ¢ñÉ1z½>%%ÅËËËËËËxyãÆ…aaaE×:r䈧§gíÚµ÷íÛ—””ô×_5iÒ¤sçÎnnn²7€VÜ§Ö Úl„ƃcnnnAA‡‡‡Érwww!ÄåË—‹®rãÆ¿ÿþ»Q£Fo½õÖ’%K ËëÖ­ûá‡6oÞÜœï 6Y²aÃÙ;£<Ξ=+»˜â ¨P9J€Bè„.5-5M¤ ––&{;4…Ÿ²ÝƒòÈ#È.A-4•©ÓÕªU3Y^½zu!ÄÕ«W‹®ò÷ß !RRR233§NùÏ?ÿ¬X±âã?~íµ×Ö¬YcNß199Yö¦[L@@€ì`Šƒ¢Bå>(7ÛV ã'E…lô ý³^´Cd'4~Ž£‡‡‡N§ËÍÍ5Y~íÚ5q³ïhÂÕÕUyðþûï÷ìÙÓÃãvíÚ¯¾új¯^½Îž=»víZÙÛÀö1Ÿ€mRWpœ>}zJJŠ?ÐÉÉÉÝݽhg1;;[a˜gm¬Zµj®®®nnn>ø ñòÎ; !Ž?.{'ЦŰ9ê Žñññ>úhŸ>}Š=±|}}³²²”¤h œKäëë[ì*>>>ÎÎÎ:Îx¡2BŸŸ/{'ЦŰ!ê Ž/¾ø¢¿¿ÿ‘#G¦L™ñÒK/mܸñÆų̀¨¨‚‚‚;v–èõúmÛ¶yzz†††»Êƒ>˜}âÄ ã…ʵ{š4i"{'°qŒS°Yê Ž#FŒøé§Ÿ¾þúëþýûW¯^}Ë–-Æ k×®Ý[o½uàÀò}fLLŒƒƒÃœ9s”ó…ñññ—.]êÓ§³³³²$'''--Í0Û«W¯^Bˆ &ºž‡þüóÏÝÝÝ»té"{'Ðeœšv#Û¢Ó«õ—V~~þöíÛøá‡-[¶üóÏ?Bˆúõë÷ìÙ³Gþþþeú¨ L:Õßß?"""==}÷îÝ!!! ,0\¦gݺu¯¿þzPPК5k”%óçÏŸ1c†»»{XXXnnîÞ½{u:]\\\×®]ïøuÁÁÁš™U––f£3à4Œƒ¢Be;(Êuõ‚àhUü¤¨–Š–þÖ—‰z/ÇãääÔ©S§N:åææ®X±bÆŒééé³fÍúè£ÂÃÃûôéíèèhÎG=ûì³µjÕZµjÕºuëüüü8|øpåŠ<%yñ޽½.\øë¯¿zzzFEE :4((Hö^`ãHl™z;ŽBˆ+W®üôÓO6lصk—2+¥V­ZÎÎÎçÏŸB4jÔè³Ï>óóó“]¦)-ýWˆ–þëP38(*T†ƒBp¬,ü¤¨–Š–þÖ—‰;Ž—.]Ú´iÓÆ÷ìÙSPP „ðöö~衇ºuëÖªU+!į¿þ:sæÌ#GŽüßÿýß§Ÿ~*»^(‹›·›£®à¸hÑ¢7îÛ·¯°°PáååõðÃwíÚ5,,ÌxTº}ûö­Zµºÿþû÷îÝ+»d0Ûw¥¦ÝÀV©+8¾ýöÛB‡z¨k×®<ð@Ig1º¹¹¹ººªpœ@«ÔûôéÓ­[·6mÚ˜3ë…v#Û£× ¡£ÝÀF©ë:ŽëׯߵkWI©qèС?ü°ì \þ§æ6ƒl˜º‚cnnî¿ÿþ[ÒKgΜ9wîœì Bh7°]ò‡ª·mÛöÒK/ž.\¸pÑ¢EEßVXX¨×ëëÕ«'»^(§ÿ®Â#» (7ùÁÑÑѱFÊã+W®T©R¥jժžÓÃÃ#66Vv½Pv:Á%xh€üàØ¾}ûÝ»w+ƒƒƒŸxâ‰qãÆÉ. ¬‚qj6M~p46dȰ°0ÙU€å1N @ÔÇŒ#»°Úläà¸xñb!Äý÷ßdxZºÈ­ʆh…äà8yòd!ĤI“”à¨<-Á€Íaœ€6HŽC‡B´hÑBy:jÔ(Ù;¬‚qj 98¾úê«ÆOŸþy¹õ€…é„Òp¤Ý@Ô59´G§‚v#M·nÝZÖU"##åÖ `Ÿ$Ç_|±¬«$''Ë­̧̥Öéi7ÐÉÁ±{÷î²÷X‘2N Ú 98ÆÅÅÉÞ0‹ƒì@£§ 9Ü9¬…qjÃcÀŠh7ÐîVpsœZhwŽ«`œ€ö¨zrLNNÎ7dWå´š£Æ[:tèã?>zôhff¦ƒƒƒ¿¿Ë–-_yå•úõëË. Ì ŒS3J @sT×qœ5kVLLÌÖ­[333]\\\]]322¾ÿþûnݺ-Y²Dvu`ži14H]ÁqûöísçÎutt4hÐæÍ›<˜””´uëÖ!C†!¦L™ràÀÙ5€tÄF¤®à¸dɽ^?räÈñãÇ×­[W§Ó !üüüÆŒ3vìØüüü/¾øBvPªÿÆ©@ƒÔ=êââòôÓO}iàÀnnn‡’]#ÜãÔ´J]ÁQQ»vm'§b¦ì(³drssewÂ85RWp ÍÈÈÈÎÎ.úRNNNZZZ³fÍd×%Ó !t´h•º‚cLLŒ^¯ã7òóó—Œ7®   **JvPº4LòuwíÚeüÔÑѱwïÞ+W®ìÒ¥KLLL`` N§KKK[±bEFFFppð#<"·`¸n3@»$ÇÁƒ»üüùó³fÍ2Y˜œœÜ¶mÛääd¹5@)§ a’ƒc÷îÝeï°Ðéé7Ð2ÉÁ1..Nö‹!5Ð6uMŽ)ÝØ±c;uê$» ;%¹ãXÔ•+W~úé§ôôt“åyyy›6mrtt”] G't‚~#SWpüóÏ?û÷ïîܹ’Þ0`ÀÙ5@ñ˜@óÔ¿øâ‹sçÎ…‡‡GGG¯]»ö·ß~û¿ÿû?77·ãÇ/Z´hÀ€ãÇ—]#€RWpܱc‡‹‹Ë'Ÿ|R£FN:µoß>  mÛ¶BˆÀÀÀ·ß~»_¿~AAA²Ë€Û0J À¨krÌüÑ Aƒ5j!jÕªåééyäÈ奘˜OOÏ/¾øBvvJ]ÁQáàp«¤zõꥥ¥)ƒƒƒ:$»@;¥®àX»víÓ§Oçää(OëÖ­»oß>ë:îìÙ³²k€ÛéDZjšì" 2¨+8vîÜ9//oÔ¨Q§NB„……9sfçÎBˆK—.íß¿ßßß_vvJ]“c ´qãÆ-[¶èõúyóæuèÐÁÉÉéÕW_mÙ²åñãÇsss»uë&»F¸E§cV ;¢®Ž£··÷âÅ‹GŒÑ¢E !„¿¿ÿ„ nܸñË/¿deeEEE=ûì³²k€[ô‚«~°#êê8 !¼½½_|ñEÃÓþýûGGG>|Ø××700PvuöKuÁÑXNN޳³sõêÕÛ´i#»0¥:=ýFöDÁñСCüñÑ£G333üýý[¶lùÊ+¯Ô¯__vip‹žÜÀΨëG!ĬY³bbb¶nÝš™™éâââêêš‘‘ñý÷ßwëÖmÉ’%²«€ÿèt²+€J§®à¸}ûö¹sç:::4hóæÍLJJÚºuë!C„S¦L9pà€ì@!„žäÀî¨+8.Y²D¯×9rüøñuëÖÕétB??¿1cÆŒ;6??Ÿ[P Æ©Ø!uÇ£Gº¸¸<ýôÓE_8p ››· ŒS°Oê ŽBˆÚµk;93eG™%“››+»@`œ€RWp ÍÈÈÈÎÎ.úRNNNZZZ³fÍd×ÀÞétäFvJ]Á1&&F¯×¿ñÆùùùÆË ÆWPP%»FBp‚#{$ù:Ž»ví2~êèèØ»wï•+WvéÒ%&&&00P§Ó¥¥¥­X±"###88ø‘G‘[0½Nèˆì‘äà8xðàb—Ÿ?~Ö¬Y& “““Û¶m›œœ,·föL§£ÕÀ~IŽÝ»w—½ ¬§`§$Ǹ¸8Ù{Ì¥Ó1N À®©ñ^ÕBˆ .;v,==ýßÿ lÚ´i:uḑ`×T¯\¹2{öìo¾ù¦  À°ÐÑÑññÇ>|¸»»»ìØ1¥ÝHÀ½RWp,((x饗’’’\\\:wî\¿~}GGÇÓ§OÿüóÏ_ýõ±cÇ/^ìèè(»LöH§DFvN]ÁñË/¿LJJºï¾ûfÏžíããcXž™™9tèФ¤¤/¿ürÈ!²Ë`§§`çÔuð;vètº?üÐ85 !jÕª5kÖ,‡íÛ·Ë®€=úoZ ó©Ø7uÇãÇׯ_ßÏϯèK¾¾¾ 6>>Ó§Oÿ¿ÿû¿îÝ»wïÞ½^½z5jÔ0yOdd¤ì2hŸÒnÔ Á85¨+8>øàƒÊƒK—.Íž=»Ø÷$''Ë.À©+8*wŽ5`œL¨+8ÆÅÅÉ.ŒÇ©·¨krŒ‰7näææÊ®€=úïn1œàFÔÕqTœ9pàÀ…  k׮ݼyó¡C‡6iÒDvi´ïV»Q§ÄF0¢ºàøÙgŸMŸ>½°°PáâââèèxáÂ… .lÙ²eĈÏ?ÿ¼ì씺†ªwíÚ5}útN7hР͛7yôèÑ­[·vîܹOŸ>:.--íÛo¿½páB·nÝ®]»¶uëVÃûëÕ«wÇ9sæ¼yóªU«žžž¾råÊ“'O.\¸ÐÍÍíŽëêõú±cÇ^»vMö¾P§€R¨+8vëÖMypñâŹsçš¼ºnݺuëÖ/5jԯ옜œïëë»bÅ !Ä;ï¼³páÂiÓ¦Mœ8ñŽ%}ùå—{ö쑽cäSWpìÞ½{™ÞߨQ£;¾gÙ²e………ÇWR£"66öûï¿_¿~ýøñãJ¬?yòäÌ™3›4irüøqÙû€Ýš#ô‚›T@ Ôãââ,þ™{÷îuppˆŒŒ4,qttìСÃ?ü˜˜VÒŠùùùcÆŒñôôŒvìØ{ï½W£F ÙÛÀŠ˜fRWÇÑârss <<ú¨²D¯×oÛ¶ÍÓÓ344´èûëׯox§âêÕ«;wî¬S§NhhhíÚµeo cœ̤ýà3oÞ¼9sætìØQ™éÒ¥çž{ÎÙÙYyONNÎÅ‹ï¾ûîöíÛ·oßÞøŽ=ºsçΰ°0k\f€,ŒS@Yi?8Ö©SgôèÑS§NíÞ½{DDDzzúîÝ»›5kf|¯ÂmÛ¶½þúëAAAkÖ¬‘]/§3h?8 !ž}öÙZµj­Zµjݺu~~~>|¸Ò}`Ÿ íFÆ©À|v…ÑÑÑÑÑÑ%½Ú­[·nݺ•ôj³fÍ´t]F€òÑþ¬j0aÚndœÌCp€YŽì‹édj&W€ÙŽìÔÍi1BèãÔ`‚#;B{*‚àÀÝšC³Ø‹âS"ãÔ`6‚#ÌBp`ŒÛŒS@ùØ1Æ© ,ŽìË­«ðʈà@ûŠ”fœÊŽàÀ^1N eDp qL‹K!8À,GZVL»ñæÆ© ¬Žì ãÔP^GšEDË"8° ŒS@ÅhSñíFšPGÚÇÝbÀ"Ž4¨´Æ"ãÔP^Gw«ÝÈ85T Á€ÖÀJŽ4¥ÄÔ¨¼À85TÁ€–1-,ˆà@;î0HM»*†à@³˜–Ep „C°6‚#m2=»‘qj¨0‚#-(õŠß´"À2Ž0 Á€Í+ÚR4Ã85XÁf!8°m¥µEp`ÃîtÅoÆ©À’Ž4…v#XÁ€­2«Ý°‚#í(¦ÝÈ85XÁ€M¢Ÿ•à@‹È•`G¶§ØXÈ85XÁ€¹s3‘v#XÁ€Ðn€J@p`Kh&€DG6£¤Ôx[»‘h VCp EŒS€ØÚ Áf!8°fµ–2N Ö@p væŽ?3N VFp`«h7@%#8P5Ú GêUJ,¾Ý°&‚# aœ¬‰à@¥ÊÐndœ*Á€@…ŽlL‰íFÆ©ÀÊŽT‡v#¨Á€º”ži7€DG*B¯ÔŒàÀfpíF‹à@-ÊÜndœ*Á€*Ü15ÒnéŽl§C@¥#8¯BíFÆ© ²HVžÖ!íFà@&s íFP ‚#[C»$q’]ûUÑv#`‚ƒƒe— MÉÉɲK° GrX 52N »Dı8â¸ùª AùG›§yŽ*›™Ùv#¨ Á@¥ªPÇv#HEp F̉"8¨<k72N 2TóS#íFP'‚#€ÊPÑÔH»T€àÀê˜ÓÚ@p`]eJ´@Íެˆ^#h Á€µ”55Þ¹ÝÀöíß¿_§Ó-]ºTy:eÊooï-ZÈ® f!8P³fR3N hËï¿ÿ>qâĦM›Ž7βŸÜ¡C‡I“&ÉÞ> "8° Ë4 i7š–’’"„xë­·ú÷ïoÁMJJúå—_doœ69É.€YfºÈ›h7£×ë…®®®ù´üüü-[¶üú믟|òIaa¡ìÓ&:Ž,Ìb]BÚ€&lß¾½K—.^^^!!!£G¾qㆲü™gžéÙ³§¢}ûöÿ¢¬¬¬‡~xÒ¤I™™™²7Z³è8°¤r„=îhØ·ß~Û¯_¿š5köïßßÁÁaÑ¢E«W¯V^9rd½zõ&OžK#(–…S#­prrBènGwp0kb®»»;éP…ì"8Μ9sÞ¼yÕªU OOO_¹råÉ“'.\èææVìûóóó|àÀww÷6mÚüóÏ?¿ýöÛÎ;‡ öÊ+¯ÈÞ@],?BM»ЊF !öïßiXxàÀsÖe¨Z´“““ããã}}}W¬Xáãã#„xçw.\8mÚ´‰'»Ê²eË8ЪU«Ï?ÿ\ —'Ož8pàÇÜ©S§¦M›ÊÞ&@”&BùR#íFÀ´lÙ200pÆŒO>ù¤ŸŸŸ"33sÖ¬Yæ¬ËPµ:iÿ:ŽË–-+,,>|¸’…±±±îîîëׯ/éê 6lBŒ?ÞÐ’ úßÿþWPPÀ•è…Ò´|j¤Ýhˆ³³ó´iÓ.^¼úÚk¯5ªeË–f^dQª.‰ì-³_ÚŽ{÷îupp0n’;::vèÐ!+++11±ØUÒÒÒªU«Ö¬Y3ã…AAABˆŒŒ ÙÈÇjfêÕ«×–-[Z´h‘0}úô¿ÿþ{Ñ¢E²‹Bùi|¨Z¯×§¤¤xyyyyy/oܸ±"##Ãp5)cóçÏWÎç5vôèQ!Dݺueo YScÚ4!""bÓ¦MBˆóçÏ׬YÓÅÅÅÐ2ìÑ£‡5Ú‡ÁÁÁt%­DãÁ177·  ÀÃÃÃd¹»»»âòåËÅ®b²d÷îÝñññ...¥œoa,88Ød‰2ümsΞ=+»˜’{PRSÓÒÒÊ»z@`jZjš(~ý!Œ?: 0 ä÷ª ?)*ÄAQ¡:uêÈ.¡D¥ÿ^{ä‘Gd¨ŽyyyBˆjÕª™,¯^½ºâêÕ«wü„‚‚‚Å‹ðÁÓ§O÷öö6ç{“““eoºÅXäþ¡°,YåfC°Bß^bñ:ÐëÌ|³úØP©öƒƒó•þÿ–¢Ö‹vˆì„ƃ£‡‡‡N§ËÍÍ5Y~íÚ5q³ïXŠß~ûmÒ¤I§Nòóó{÷ÝwÛ¶m+{ƒi*>Œ\¶™ÔL‹õÑxptrrrww/ÚYÌÎÎBæYuãÆ¸¸¸„„WWסC‡2¤¤‹>šW‘ËîÜúÒS#g7€-ÐxpBøúú¦¤¤dggרQðP9•Á××·ØU GŽùã?vîÜùÍ7ß,%_šg‘DWæ«6ÒnUÒþåx¢¢¢ vìØaX¢×ë·mÛæééYÒí2~üñÇ'Ÿ|òã?&5žURv#Øíǘ˜‡9sæ(ç5 !âãã/]ºÔ§OgggeINNNZZš2O¯×/Z´è®»î;v¬ìÚ™,çh7€fh¨ºN:£Gž:uj÷îÝ#""ÒÓÓwïÞݬY³çŸÞðžmÛ¶½þúëAAAkÖ¬ÉÌÌðСC?þxíÚµ«W¯6sæÌüü|Ù[©) UvÊJ‘‘v#󥤤!Þzë­¨¨¨ŠZjjjdddAAA¯^½êÕ«·yóæ#Flß¾ý»ï¾“½¡ÚApìŽÅçÁÜúäò¥FöJ¯× !\]]-òi#FŒ¸zõêîÝ»ÃÃÃ…“'O2dÈ‚ 6nÜøðÃËÞV`¨°/Jl“–KX“v# aÛ·oïÒ¥‹——WHHÈèÑ£oܸ¡,æ™gzöì)„hß¾}@@@Å¿hË–-:tPR£âÕW_BìÚµKö>Ð:Ž€½°^£Q˜Ÿi7væÛo¿íׯ_Íš5û÷ïïàà°hÑ¢Õ«W+/9²^½z“'Ož6mšqÚ+ŸüüüW^y%,,ÌxazzºÂÅÅEönЂ# }VŒ¢‚ß¡ÝX‚Nè$~{I¿®_¿>bÄŸ½{÷úûû !ÆgÈvÍ›7?uꔢuëÖíÚµ«` NNNï½÷žñ’Ë—/¿÷Þ{ŽŽŽ}ûö•¸s4†àhœµ{|eH´«Qç•SÓÓÓãââ”Ô(„ðóó6lXllì×ÍÏÏ_»vmI¯öèÑ£ôÕ·nÝú /¤¤¤Ì;7((HöžÐ‚# YÖn4–¹š¢¥Ðn4íĉBˆV­Z/ 5gÝœœå ÈbéKþÕvæÌ™W_}õ‡~ Ú¼ys§NdïMar  A† 4Z;5r‡¥prrBèt· £;8˜•=ÜÝÝõ%+i­%K–4oÞ|ß¾}óçÏÿý÷ßIGÇКJ®è 5íF@ë5j$„Ø¿dd¤aáÌY·CÕ?üðÃSO=Õ¯_¿yóæÕ¨QCöÖkÁÐŽÊ›æÔFwÔ²eËÀÀÀ3f<ùä“~~~BˆÌÌÌY³f™³nY‡ªõzý˜1cêÖ­›àèè({Ó5‹àhA%ŸÎhjÚ€pvvž6mZ¿~ýBCCüqggç¥K—fffš³®2Tmþw;vìøñãM›6}î¹çL^êÝ»wtt´ì¡GÀ¶Uþ ˜²¥FÚ€}ëÕ«×–-[&OžœpåÊww÷E‹ÅÄÄXü‹”»;vìØ±c&/5jÔˆàh)GÀVI™4m™ÔH»°'›6mBœ?¾fÍš...†Vb=ÊÔV,E÷îÝ-õQ(Á°=²®³ÃjQ§NÙ% ¢Ž€-Ñé„Rþ£ºÌ©‘v#h×qlƒáÒŒ©©i¾ÝR©`Ëè8j'ý0–¡¦Ý¶Œà¨—ôÈ(Ê—i7€F5RCdO´ÀÆuQId¤F@G@”¼(ÔWÞ‡àH¦žã­’Ê—i7€ÖiÔ…N­ 8•Mm£Ò· +÷ðté©‘v#hÁ¨<*l1ÞªÍJ'5’@C¸s `uÊM_”®œS#ƒÔÊbÿþý:néÒ¥ÊÓ)S¦x{{·hÑBv]0 Á°“¼¨ÚpeÅÔH»@©~ÿý÷‰'6mÚtܸqÿ´ÿý×ÉÉIw»ZµjÉÞJMa¨°0ÕžÂXL©åž cØTõo$KIIB¼õÖ[QQQÿ´´´´‚‚‚¶mÛV¯^]öVj Á°5ŸÂXLµ<©ñŽ©‘v#€;ÑëõBWWW‹|šC'Ožl‘Šb1T T”úOa,¦fk_ß›Ôà¦íÛ·wéÒÅËË+$$dôèÑ7nÜP–?óÌ3={öB´oß>  â_¤ÇFÉÞb-£ã”“ IßVv‡§ o[› @’o¿ý¶_¿~5kÖìß¿¿ƒƒÃ¢E‹V¯^­¼4räÈzõêMžšÔ(ÁjGR,ʺó¦9¯P‚#T‡¤X ЉkFFaö§ÝöǬÛþV¥ÓÝöO¯¿íÊîÑ }jZªu¾@W†=Nj»DÇÐS,“ʸ w™†§I`¯ް:“˜(HŠf«¤{ÀpR#À<GX1Ñ"*ï¶eM´ÀŽQ!ÄD‹«Ô;M“eApD­ª²#£(ãñ#5€Ý#8¢x73b€ñBb¢5(yQTZdå:©‘Ôàr<E®†c|MœÔÔ4®Œc=†+ì(ÿ*ë[IdÚ¿¿N§[ºt©òtÊ”)ÞÞÞ-Z´]ÌBÇѾkô+„ã­ï&5P‘ßÿ}âĉíÛ·ùå—e׳µ©Ø€(Ȉ²UêYŒ¦ß]ö“ÀÊRRR„o½õVTT”ìZ`‚£m# Ú™-Æÿ*(ï•i7°&½^/„puu•]ÌÅ9Ž6 Øs‹½;'#ªŠá@UöYŒ·¡#5kûöí]ºtñòò =zô7”åÏ<óLÏž=…íÛ·¨ÈW ÒÐqT‹’z‡‚ö¡ ’9$}[¸% ©€%|ûí·ýúõ«Y³fÿþý-Z´zõj契#GÖ«WoòäÉÓ¦M —])ÌBp¬<¥DCA:ÔùCÒ·J©Ø¤FÀæè*þPÂoŒëׯ1ÂÇÇgïÞ½þþþBˆqãÆ………)¯6oÞüÔ©SBˆÖ­[·k×Î"…œðÀñññUªTBôéÓgîܹ²w‰Í#8w Òæâm%Z¢Ñ(H,¬Q£FBˆýû÷GFF8pÀœuË:TýÐCMœ8ñý÷ß¿çž{¾ûî»eË–Í;÷ÓO?mÛ¶íK/½äéé9þü‡~Xö.±yG xªn.ÞªÒ—õ¦ÑÀ:Z¶l8cÆŒ'Ÿ|ÒÏÏO‘™™9kÖ,sÖ-ëPuXXX||ü¤I“òòò:uê´wïÞÆ<øý÷ßï½÷233£££ß}÷]Ù»Äæ[l ¹x«V Ý †ÔÀjœ§M›Ö¯_¿ÐÐÐÇÜÙÙyéÒ¥™™™æ¬[Ö¡j!Ä!C† b¼ÄÕÕõ­·Þzë­·dï íàà°wÆ—T7¾ŒºìºJxëâïÞxo(-èÕ«×–-[Z´h‘0}úô¿ÿþ{Ñ¢E²‹BùÑq„ÝÑÝ~¹35gÄ"¥ë„i©©–¹Å©@¥ˆˆˆØ´i“âüùó5kÖtqq1´{ôèQÖ¶"ä¢ã»PR[ÑfR£ñ-&-´GleÓhF:u\\\dW ¡ãm²á¶¢é–Xè\Æ[(„ 5ʃàÐNR¼µI–ŽŒ‚F# BްULŠ·¶Í:‘QBp„m0‰‰BcIñ¿¼¹?UœF#ÀŽP#»ˆ‰·m°ZŒ·>œÔ° ‚#$+š…æcâ­·Z‹ñ¿ÏW>\öf´‚àˆÊc×ñ¶aå¼(ˆŒ« 8ÂòŠ ˆÂ>3¢±JÈ‹ÿ}‘`G”Ñ,•–FÀ.Ë.ö‹àˆÒ–ò*±D:£H]9wÓ"2ö!99Yv å—––f™;¦Bn9hïŒïÅWô_jZªÉ úlïf}•ɰçŒ÷“Õ¿ôæØ4`eG+=½q3ѰlLvg¥…Åÿ¾È¨T UÛ°’N14Fø³¼Ê†.¦åÛeï €!8ª‹9YЀPXIt·YaQü—DG ÁѺÊYP%Ô“o•¤T"„rv¹àìr€GË;‘| ‚6@W$Ü«!)þW›¡$Ù•ÀäkhܘÉ%êUt‚PÑIAÒénŸø¢‚Št¡YºNPC.,¾`ã"e@qްeº’O!Um@¼­~ã‚eÀ0T]¢åË—ÇÄÄ„††¶k×nܸqW®\‘]‘<òˆÌ¯×Ýé2”¥\ƒRµtÅD—¥^ÉÅá ¨E…8(@DZx3gΜ7o^µjÕÂÃÃÓÓÓW®\yòäÉ… º¹¹É.MtæM6Wsþ+ÃÆšl”ìz(/:ŽÅHNNŽ÷õõݰaC||üÆ tèСiÓ¦É.M•îØ,S§Ð&º†%îŠâþéËÙY@mŽÅX¶lYaaáðáÃ}||”%±±±îîîëׯ/,,”]…˜—ð’Oœ°X ´éDhº÷Ìˈ$E€¶‹±wï^‡ÈÈHÃGGÇ:dee%&&ZìkÊѨ³à?ó^pãÆÚO·óþéɈ{Dp4¥×ëSRR¼¼¼¼¼¼Œ—7nÜX‘‘‘qÇO0«KW¾FÿÙ43ã]9þéÍû€]brŒ©ÜÜÜ‚‚“åîîîBˆË—/›ñæ%‹²ÝŒPŽd‘¬Â:ƒ[í£eo›™eÛH¡ö„ƒ¢Bâ Ø:‚£©¼¼}ú8;;Ë®@ÞÖ/ég ,˜:uª¿¿DDDzzúîÝ»CBB,XPô2=v‚àX¢~øaÕªU‡òóó»ÿþû‡®\‘À>`Îq€YŽ0 Áf!8À,G˜…à³`‚#ÌrþüùV­Z=Zv!ö.//ïË/¿|ì±Çî»ï¾ˆˆˆ!C†üòË/²‹²_Ë—/‰‰ m׮ݸqã®\¹"»"{LjÊñ§Dœd ×ëÇŽk¸s7dÉÏÏ\IBˆØØXww÷õë×Ê®ÎNñ¢fü)Ñ ‚#J“ŸŸ?fÌOOÏØØXÙµ@¤¥¥U«V­Y³fÆ ƒ‚‚„²«³/{÷îuppˆŒŒ4,qttìСCVVVbb¢ìêì? ªÅŸ-a¨¥™={ö±cÇ,XP£F Ùµ@ÌŸ?ßÉÉôgöèÑ£BˆºuëʮΎèõú””//////ãå7Bddd„……É®Ññ¢Zü)Ñ:Ž(Ñ>ýôÓ¶mÛVv-Bˆ%šìÞ½;>>ÞÅÅ¥gÏž²«³#¹¹¹&ËÝÝÝ…—/_–] âDøS¢1G///o̘1uëÖ9r¤ìZPŒ‚‚‚… >÷Üs¹¹¹ï¿ÿ¾···ìŠìH^^ž¢Zµj&Ë«W¯.„¸zõªìÁˆZð§D{ª¶wùùùŸ~ú©á©££ã /¼ „˜:uêÙ³g—,YµE*_IÅà·ß~›4iÒ©S§üüüÞ}÷]þ;¾’yxxètºÜÜ\“åÊuF”¾#$âD=øS¢=G{÷ï¿ÿ~øá‡†§.../¼ðž={–,YòòË/ß{ï½² ´GÅåñ7âââ\]]‡:dÈ~W>'''ww÷¢Åììl!„až5*? ªÂŸMÒéõzÙ5@u/^ùä›o¾)»{•œœ¼cÇÃOŠ^¯ß¶m›§§ghh¨ìêì? jßM¢ã³=z´wïÞÝ»w‹‹“]‹Òëõ=ôЕ+WvîÜéêê*»{wþüù¨¨¨ ,_¾\™3þü3f<÷Üs܇W ~@lJ4€Ž#`233Ïœ9ãææ6`À€¢¯öêÕkàÀ²k´#uêÔ=zôÔ©S»wž¾{÷îfÍš=ÿüó²K³Sü€•ƒà؆³gÏ !òòòŽ9RôUæV¾gŸ}¶V­Z«V­Z·nŸŸßÀ‡®tQùø*CÕ0 €YŽ0 Áf!8À,G˜…à³`‚#ÌBp€YŽ0 Áf!8°/£GÞºu«ìBÄœ9s‚ƒƒ/^,»0Áfq’]Ø©|ÐÛÛ»U«V² s@ŽfÍš5kÖLvP U€êüû￲«SG¶a„ ÁÁÁqqq&Ë>ܶmÛüü|!Ä¥K—f̘ѭ[·–-[¶lÙòÑG}ÿý÷ÿüóÏ’>V™+³k×.“å!!!­[·6^òË/¿ 6¬sçÎááრš3gŽI¶;wîÜ›o¾Ù­[·ûî»/22ò…^Ø»wo)[ôé§ŸOŽQ*9{öl|||›6mš7oöÄOlÞ¼¹¤OHJJ éСÃßÿmXxíÚµÈÈÈC‡É>h´†àÀ6DGG !6nÜh²|Íš5Bˆž={:99]ºtiÀ€óçÏ?þ|½zõî¾ûŒ/¾ø¢ÿþW®\©È·O›6mÈ!7nÌÏÏ÷ññÙ·oßìÙ³˜••¥¼áäÉ“ÑÑÑß|óMVVVÆ õzý¶mÛžzê©-[¶”é‹æÏŸ?}útggç6mÚ¸»»'%%½òÊ+ëׯ/öÍ¡¡¡C† ùóÏ?ß{ï=ÃÂ>øà?þxùå—ï¹çžÊ>H´ŽàÀ6„‡‡ûøødddüþû………J¨êÝ»·båÊ•§OŸîÔ©Ó/¿ü²jÕªÕ«Wïܹ3<<üܹs?ýôS¹¿úçŸþôÓOëÖ­»|ùò­[·®]»vûöí;v8jÔ¨jÕª)o¨Q£†ÒªLOO/÷WO:Uñá‡zxÞÞÞ~ø¡¯¯ïŠ+þúë/!ÄñãÇ…111ŽŽŽÊ{ú÷ïÿòË/wîܹLßuÏ=÷Œ9ÒÁÁAÙä—_~Yqúôé’ÞïììüÁ899M˜0áâÅ‹ãÇwss›6mš¡ ° ‚#›¡D@ãq[eœºOŸ>ÊÓW^yeÞ¼y 64¼!33síÚµùÒ+W®¤¥¥šÌ€®ZµjÛ¶móòòŽ9"„P’kllìž={”³-_{íµ¡C‡–éëºvíjüÔÝÝÝÑÑQ¯×—²JHHÈ+¯¼ráÂ…=zœ;wnìØ± 4°Ö1`߸›Ñ¬Y³ œ>}:999888??Æ nnnݺu3¼çܹsÛ·oß·o_FFÆ™3g*xj£"55UùßàààbßðÇ!&Mš4|øð={ö<õÔS®®®!!!<ðÀC=R¦¯»ûî»ËQä‹/¾¸yóæ£GÞÿýýû÷·è^€[ŽlIttôìÙ³7lؼcÇŽ«W¯öîÝÛ00½dÉ’)S¦äçç׫W/,,¬sçÎÍ›7OKK›\PPвeKãÔ(nN[)Ɉö¦M› }}}kÕªuêÔ©£G¿§   OŸ>—.]:wî\§NúõëgxµJ•*QQQÊlž³gÏZuŸüðÃë×¯ïØ±ãÂ… ƒ‚‚Ö®][ô¢E`G6F™"3~üøÜÜܾ}û–ûúú !Ž?~éÒ%eIAAÁ7ß|³hÑ"!D^^^±ŸV¯^=!DBBBnn®²d÷î݆‹ì(FŒQXX8bĈcÇŽ)K®]»öÆo9r¤Y³fÞÞÞ~~~ÿý÷Áƒ?ûì3C«òôéÓÛ·oBXõzŠ.\˜V´†Ž#ãããsÿý÷ !"""|||Œ_š>}ú°aÃêÔ©£\ß±C‡«V­?~ü€‹½`ݺu¿þúëÎ;;88ìܹóĉþþþŸ~ú©···á=:îý÷ßÿè£:uêTXXxúô退€#F¬ZµÊÓÓSyO¯^½¾ú꫎;º¹¹?~<77·]»vŸ|òÉ›o¾i½]‘°k×®öíÛNôB 6¬~ýúëׯ߰aƒÔ@ƒt¥_ ìGNNNVVVݺuÍŸ v…à³0T ³`‚#ÌBp€YŽ0 Áf!8À,G˜…à³ü?ÂÓvPÞ'SIEND®B`‚statistics-release-1.6.3/docs/assets/tinv_101.png000066400000000000000000000537361456127120000216460ustar00rootroot00000000000000‰PNG  IHDRhŽ\­AW¥IDATxÚíÝw\•uÿÇñïp!Š(šd¨h…@9GåˆÔ\!V®¬»räN­\™æªÛ2GY·h¦iöÃ…#2£Ü#s¡¤ 7àüþ¸ôt<¬ëÌë\缞÷}Î÷\ã{+ôíç{}¯K£ÕjP¥;u 8@‚#d!8@‚#d!8@‚#d!8@‚#d!8@‚#£Ý¸qã£>j×®]ݺu=<<üüü"##§L™’––Vpáõë×ÿßÿýßÿýßÿeeeY°~ø¡F£Ñh4:t°Þ‘Úù:H»þôÓOÍÙøš5k4ò\»v­Ð-,\¸PZ 22Òࣻwï.X°àÙgŸ­Q£†‡‡GPPP§NfÏž““c°äÑ£G îÑÍÍÍÇÇçé§Ÿ~ï½÷ ž¸BW10jÔ(ëJqSºTfÛ¶m½zõºr劮åï¿ÿþûï¿÷íÛ7yòäåË—÷ìÙSùØØØ›7oJ+¶mÛVéîG¥ß¿÷îÝÏœ9£kIMMMMMݸqãܹs.\Ø©S§â·——wùòåË—/ïÙ³çóÏ?߸qc“&M”>,Ê#80¹sç^zé%]j ¬\¹rffæùóç…¹¹¹½{÷öôôŒ‰‰Qº§*P¦L™:uêèÞæää\¼xQz]½zõÒ¥Kë>rq)|t¨|ùòÒüüüt)))ÑÑÑRÞ•¸¹¹åææJ¯/\¸Ð³gÏßÿý‰'ž(¸ÁªU«zzz !nݺ¥+4fgg÷èÑ#55ÕÝݽ˜U x{{+ý°-È6iÒ$éŸ={öèÚÿý÷êÕ«K=õÔSú«”+WNjß¶m›{2uêTi³íÛ··ÞñÚùaÆY㈶mÛ¦û“ùÈ‘#&oçùçŸ×m§_¿~‡ÊÍÍÍÌÌüòË/Ë—//µ‡„„è–?räˆnyý#:wî\¿~ýtÍ;·ÄU8<®q`„ýû÷K/^~ùeýëêš6m:gÎéõÁƒóóó…ï¾û®F£Ñ•¾Úµk§Ñhnݺ%„xï½÷¤+áºvíª¿ýØØØB¯;wî\¯^½|||ªU«öâ‹/îÝ»·¨^¼xqèС͚5+_¾|ݺu»uëvàÀýôw=bĈÈÈÈòåË?ùä“Ó¦M»ÿ¾´X1á…„•+WnÕª•n³÷ïß_°`A‹-ªW¯^®\¹F½üòËüñ‡UOGÁk·mÛ¶~ýzéõرc—,YòÄO¸ººúùù 0`ÅŠÒG)))'Ož,~ã5kÖ\²d‰îM›6M:|ÎŒ¡jF¸sçŽôâèÑ£Z­V£Ñè>Љ‰Ù¾}»ôZ«ÕZp§ûö틉‰ùûï¿¥·k׮ݶm[Ë–- .™””Ô»woÝ€ïÍ›7ÓÒÒÖ®]ûÎ;ïÌž=Û`á«W¯6oÞüøñãÒÛ?þøã?þ8tèЪU«ŠïOË–-kÕªõüóÏ»¹=ø#ôîÝ»QQQ{öìÑ-säÈ‘#GŽ,_¾ü³Ï>{óÍ7­vB }ñÅÒ‹J•*?ÞàÓN:uìØ133Sñ矗¸Á¡C‡®]»V‘•••œœüÜsÏÙìXØ!*ŽŒðä“OJ/¶lÙ1{öì]»vIuË”)Óê!WWW!ÄÈ‘#SSSË”)#­ò¿ÿýOÿ­L÷îÝëÞ½»”ÝÜÜš4iR§N7nlܸÑ`Éëׯ¿ôÒKRjlÓ¦Íĉccc]\\´Zíœ9s–,Yb°üöíÛ?^»ví§Ÿ~ÚÃÃCjüþûï¥rf1wss;{öì矮ÛÔÔ©S¥ÔèééÙ¹sçÁƒ?ýôÓB­V;tèÐ'NØìýöÛoÒ‹_|Q7ήoÆ 99yçÎéé麫 õ͘1CšÏѽ{÷Ÿ~úéƒ>øöÛouwÌÑ]©oÞ¼ygΜٵk×ÁƒuÙQ ŽFuþ矖^Œ?þÇüïÿ»k×®gžyF‘››«ñ¢UÝ¿_Wm °È65Mµjդ׺¢¯>ißÀ;ï¼c›C`cGF¨\¹òü1pà@Ý4 !D~~þñãÇÿ÷¿ÿõêÕ«^½z›7o¶àu—åéÊxBˆ3føúú,™˜˜(½xíµ×týúõ“ÊŸçÎ;|ø°þò 6|ûí·¥×õêÕÓ}K9Õ(º›#ÆÇÇ/Y²DJoñññÒ€u÷îÝ-yŠvýúuÝkÝ\%óU®\¹àö8'‚#ãT©ReñâÅW®\ùõ×_gΜ§©Ü… ºuëvîÜ9KíN7‡CÿFߥK—~öÙg‹Zò¹çžÓ•¾Ê•+———'µŸ:uJùºuëê¿­T©’ôBšÙcÝ•))) ðóó Ÿ7oÞ­[·BCCu;kÓOó¼ÝúåË—¥*T(øiÕªUë û28&Ç0…››[‹-Z´h!½½páÂôéÓ?ûì3!Ä­[·âãã ÎÌ0ÁÍ›7ÿùçéµAüªY³¦þÛëׯë’êÒ¥Kúo ÆC×7iÒ¤ëׯùå—wïÞBhµÚ8pàÃ?lÙ²åš5kªT©bþ·Q¢Ò¥KûøøH‡©÷o}×®]“îéèááQ¶lY9›ÕPW­Zµà§Ë—/Wѭј‰Š#¹rss¿zÈ ¦X£Fyóæ5oÞ\z›ššj‘=zzzêffè¤Äà)|*TÐÕÛ¶lÙ’Z˜ØØX+}3¥J•úì³Ï²²²V®\§ïë_ýÕ–ßkÖ¬™ôbݺuº[ é«W¯žÏ‚ äl099ùÞ½{Òë§žzÊfÀ>Èåææ6eÊ”8𫯾*¸€nríÚµ‹ß”®¼wõêUývƒtèêêêïï/½Ö¿tR«Õêný£(½ÈÍÍ­«ÇÛÛ»bÅŠ+V,ô'æ»{÷îÅ‹/^¼x÷îÝž={.[¶ìŸþÙºu«.fíØ±Ãû-”îúÎsçÎ-\¸ÐàÓõë×ëʇú7¡,†nvQÙ²euÿ0à´ŽŒ-½˜1cÆòåËu—æææ.\¸0))Iz[hiJW¸zÍ»wïÖ]›øÃ?ŒƒÒ‹ÿþ÷¿º[yO›6íØ±cK¶k×Nz±hÑ"Ý$׬YS¹reé&>&¸~ç ?~¼ZµjÕªUóóó;}ú´ÂÍÍ­]»v ¨X±¢µÎGÏ?ÿ¼î{2dÈäÉ“ÿúë/©ÿñññ¯¾úªôQݺuÊßÔßÿ=hРիWKo_~ùeýk(8'®q`„‰'®_¿þòåËwïÞíӧϰaÃ4Mjjªn Å3Ï<£›èŠ+JWN™2åèÑ£C‡-UªTxx¸ôiNNNXXXXXØ¥K—RRR îqÔ¨Qß~û­V«½zõjÓ¦MŸ~ú鬬¬BïŒøî»ï~ùå—ÙÙÙ?þøc›6mZµjuôèÑ 6HŸ>Ü„…vÞ`™Ç¼jÕª/^ÌÍÍmÑ¢ÅóÏ?_©R¥3gÎ$$$H <ÇÚæÌ™óôÓOçäähµÚ>øàƒ>ðññÉÎÎÖ¥|Õ«WK“Í ¼òÊ+RÙøÖ­[Râ”T©ReÊ”)¶< vJégP™íÛ·s«—¨¨¨+W®è/§¿ÀÍ›7¥ö—^zÉ`Ý€€]µläÈ‘º-ôíÛ×`ɲeËêfUë?«:!!¡ÐòÞo¼‘ŸŸ/-3a©±K—.úýÔõG×EuÞÀÎ;‹ŽŽ¾s玜/Ö„gUë®SŒˆˆÐoONN.êÕ©SgÆ ú ë?xºP•*UÚ¹sgQ«ð¬jÀ©Pq`œV­Z¥¥¥}õÕW6l8sæÌÙ³gË”)S§N   ×^{M7–­3wî\!ÄÖ­[oݺåïﯻ¥öÒ¥K5jôÝwߥ¥¥·lÙr„ C† )¸Ç¯¾úªlÙ²Ò“Z|}}›4iòî»ïþôÓO[¶l1X2&&æ?þ˜2eÊNœ8Q­Zµ'žxbذaQQQ¦lQ7ФI“ÔÔÔ $&&^¸p!++«\¹r¡¡¡}ûöíß¿¿9óµMÓ¼yóS§N-Z´èÇ<~üøµk×êÔ©Òºuëÿüç?îîî%nÁÕÕÕËË+00ð¹çž2dˆ€}Òh-úHY°’}ûöýüóϯ¿þz¡wØÁ²0«² Á² Á² Á² Á² Á² Á² Á² Á² Á¨FcÍ ÛµÒ¾ÕÀMé8 ¥»€#;y2%8Ø:ߦ”ü÷xŠ!!!)))J 8Z…sþÇdÏœö7ÜžqRìçÅqR Òh¬õW­FhJÞ²Wª€,GÙ4¡Õ*Ý Å Á²€š8÷X±ÂŽp ‰‰‰Jw†8)ö‰ób‡8)°G!„ÐVPÌ,Á² Á²€j0¥ZYGÈBp€,GÈâ¦t „!!!JwÁ¥¤¤(Ý ÁÑ^r,.$$„o wÿ–ƒ¡j L©VÁ² Á² Á²€ 0¥Ú Á8;îþ-Á²aû÷ï×h4+W®”ÞN:ÕÇǧQ£FJ÷ X Á–wìØ±÷Þ{¯~ýúãÆ³ì–£¢¢&Mš¤ôñl™1v‚àËKMMBLœ8166Ö‚›=xðào¿ý¦ôÁà¼Ü”îV«BxxxXdk¹¹¹III¿ÿþûüùóóóó•>8œG˜hÇŽÏ<óL¥J•4h0jÔ¨{÷îIíýúõëÒ¥‹¢E‹þþþæïèòåËÏ=÷ܤI“²²²”>hœG˜â‡~èÙ³gåÊ•ccc]\\–-[– }4bĈZµjMž|¸¯¯ïÞ½{kÔ¨!„7n\DD„ôiÆ OŸ>-„hÒ¤IóæÍ•<€C°öÌ#nâèô“tŽvÍ>ÿãýôS9ë2T 0ŠÓOG±/G­T©R³fÍêÙ³gXXX¯^½J•*µråJ™7Yd¨õâà0E×®]“’’5j?{öì7n,[¶LéN`4#îÅ*Ž0YË–-·nÝ*„ÈÌ̬\¹²»»»®”عsgk”CBB¨V  ‚#ÌU½zu¥»pL\àhoª€,GÈBp€,Ç’eff†‡‡5JéŽ(‰àX­V;f̘›7o*Ýœ‹ fÆp/cKðÍ7ßìÙ³Gé^(àXœS§NÍ;·^½zJw@yÇ"åææŽ=ÚÛÛ{ìØ±J÷@yܼHóæÍ;~üø’%K*T¨ t_p.ÜúÛ> wèСŋ÷éÓ§Y³fG5võƒ–ÄÄD¥É¥§§K/222”î qRìçÅ9ëIñ×ýnÍ9{iß¾½"åäÉà`Qà¯x§Bp,DNNÎèÑ£kÖ¬9bÄÓ¶’’¢ôA@!üýý } ;ÁI±Oœ;äœ'ÅÚGý`JµŒ<øk]£Ñýýâ¬ñ‘k 1cÆŒŒŒŒ?þØÓÓS龨Æþýû5ÍÊ•+¥·S§NõññiÔ¨‘ÒýCp4´gÏž+V¼þúëO<ñ„Ò}Q«cÇŽ½÷Þ{õë×7nœE6xøðá^½zU«V­\¹rsçÎÍÍÍUú(p: U:uê”bþüùóçÏ×oOHHHHH Z¿~½Ò}´w©©©Bˆ‰'¶mÛÖü­¥¥¥EGGçååuíÚµV­ZÛ¶m>|øŽ;Ö®]«ô¬‚™1v‹àh¨víÚ:uÒo¹víZrrrõêÕêU«¦tU@«Õ !<<<,²µáÇ_»vm×®]‘‘‘BˆÉ“'0`É’%›7o~î¹ç”>VœÁÑP‹-Z´h¡ßrôèÑää䈈ˆ™3g*Ý;;²cÇŽ)S¦ìß¿¿Zµj:uzñÅ¥ö~ýú}óÍ7Bˆ-ZÔ©SÇü9qIIIQQQRj”¼ýöÛK–,Ù¹s'Á["8Â?üðCÏž=+W®ëââ²lÙ²„„é£#FÔªUkòäɳfÍÒO{¦ÉÍÍ}ë­·"""ôÏž=+„pwwWúk¨O©6 ÁÑ®i„FÁ½õu÷îÝáÇûúúîÝ»·FBˆqãÆé²]Æ OŸ>-„hÒ¤IóæÍÍ샛›ÛG}¤ßråÊ•>úÈÕÕµ{÷î ~9+áG{Fp,Yhh¨R÷e´Ï 8pàìÙ³3gΔR£ÂÏÏoÈ!ržÍ˜››»aÆ¢>íܹsñ«oß¾}РA©©©_|ñEPPÒßÎ…à£z€ê13ÆdG­qãÆsæÌéÝ»·ŸŸŸ"++ëÓO?•³®±CÕZ­Vznx||¼«««Ò‡pVÔB…G˜ T©R³fÍêÙ³gXXX¯^½J•*µråʬ¬,9ëJCÕò÷uüøñ'NÔ¯_àÀ½øâ‹111J8‚#Lѵkפ¤¤É“'ÇÇÇggg{yy-[¶¬Gß‘ôôÂãÇ?~Üà£ÀÀ@‚#8ŠzöàµlÙrëÖ­BˆÌÌÌÊ•+»»»ëJ‰;w6ª¬XŒ^xÁR›f"8Â\Õ«WWº ÈÅÌsp;ÈBpÊãGU 8@‚#d!8…Ùlœš™1f"8@‚#@±˜¹óÁ²€’¸ÀQEŽ…àYްŒýû÷k4š•+WJo§NêããÓ¨Q#¥û°kL;Q‚#,ïØ±cï½÷^ýúõÇgþÖîß¿ïææ¦yT•*U”>JœŽ›Ò€JMMBLœ8±mÛ¶æo-===//¯Y³fºÆråÊ)}”5afŒEayZ­Váááa‘­I1tòäɉ¡û¡ŽqjuôÒFª†‰vìØñÌ3ÏTªT©Aƒ£FºwïžÔÞ¯_¿.]º!Z´háïïoþޤà¨ôàì¨8Â?üðCÏž=+W®ëââ²lÙ²„„é£#FÔªUkòäɳfÍŠŒŒ4_©©©îîîåË—ÿþûï¯\¹úÔSO•.]Zéï§Cp´o’{/¢2÷îÝáÇûúúîÝ»·FBˆqãÆEDDHŸ6lØðôéÓBˆ&Mš4oÞÜü^¤¦¦º¸¸fggK-õë×Wò˘ǖ#À\àh)Gûf—U8pàìÙ³3gΔR£ÂÏÏoÈ!cÇŽ-qÝÜÜÜ 6õiçÎ 6¦¦¦æççOš4©{÷î¥J•JHHxçwºtéräÈ///¥¿ œÁF;yò¤ à&gÝ[·nIW@J[XPÞ¾}»‡‡G¥J•¤·ýû÷¿sçÎ[o½µzõê(ýeàDŽ0š›››Bóè0º‹‹¬‰V^^^Z#˨իW7hyöÙg…GUú›˜ˆqj•"8ÂhÒçýû÷GGGë:$g]c‡ªÏž=»~ýú6mÚÔ¯__×xýúu!DíÚµ•þ&ŽŽ{ñ<Šà£5nÜ8 `Μ9½{÷öóóBdee}úé§rÖ5v¨ÚÓÓsäÈ‘‘‘‘?ýôS©R¥„ùùù3gÎtss{æ™g”þ&p.G­T©R³fÍêÙ³gXXX¯^½J•*µråʬ¬,9ë;Tíëë;iÒ¤1cÆuèСbÅŠ›7o>xðà´iÓ4h ô70U<õâà0E×®]“’’5j?{öì7n,[¶ÌJû=zôêÕ««V­ºlÙ²/¿üÒÛÛ{Ó¦Mï¾û®Òß@¸ÀѲ¨8ÂD-[¶Üºu«"33³råÊîîîºRbçÎS¼nݺuëÖMé#ÀÙa®‚³ž( ãÔªÆP5pLæŽSr 8@‚#°JxjGpˆùÔÖ@p¶à8åFù›P+‚#@Ž“s-‰à ãÔVBpVGýÎ1 ÁX—ËŒS[ÁàQŒ¬àËØ¿¿F£Y¹r¥ôvêÔ©>>>5Rº_Àbް¼cÇŽ½÷Þ{õë×7nœÒ}(ŒqjGâ¦tà€RSS…'NlÛ¶­Ò}CÅ–§Õj…Jw 0U^+¨ÊNÛÁ&Ú±cÇ3ÏF½ˆßö»wï>Ü××wïÞ½5jÔBŒ7.""Bú´aƧOŸB4iÒ¤yóæéÈ©S§nÞ¼Ù°aÃR¥JéÓÒÒ®^½Ú¨Q#ýF€Ó¢ÜhGûf—ÿý8pàìÙ³3gΔR£ÂÏÏoÈ!cÇŽ-qÝÜÜÜ 6õiçÎ .ÿ /lÚ´IÚËÌ™3ãââNœ8Ñ·oßÝ»w !üýýƒƒƒ•þVÁ1ˤCp„ÑNž<)„×o “³î­[·¤+ ¥-ð»úÝwßmÛ¶móæÍaaaK—.}ýõ×»víúõ×_{zz¾üòË#GŽÔ ”ìÌ!a4777!„FóÈ8º‹‹¬‰V^^^Zcþ 9wî\ƒ ž}öY!Ĉ#rssÇŽûôÓO/Z´¨téÒBˆnݺ}ñÅJ%…1NmG-00P±ÿþèèh]ã¡C‡ä¬kìPõ³Ï>ûÞ{ïMŸ>ýñÇ_»víªU«¾øâ‹Å‹7kÖì?ÿù··÷Â… Ÿ{î9¥¿À#(7:*‚#ŒÖ¸q €9sæôîÝÛÏÏO‘••õé§ŸÊYר¡êˆˆˆE‹Mš4)''§M›6{÷î îÛ·ïôéÓ?ú裬¬¬˜˜˜iÓ¦)ý•”d±r#·$G­T©R³fÍêÙ³gXXX¯^½J•*µråʬ¬,9ë;T-„0`À€ô[<<<&Nœ8qâD¥¿ @!H_Œ€Ã]»vMJJjÔ¨Q||üìÙ³oܸ±lÙ2¥;pF\ÝhKTa¢–-[nݺU‘™™Y¹rewww])±sçÎÆ–ŽAÅåFwÝvŽ0WõêÕ•î6¡±Ó[,Û CÕÀ2l_³cœÚÆŽÀé1N-ÁXåFg@pÎr£lG`.ÊN‚à ƒÓO©G`&u—§6Á²pp{¢t0åF§Bp´ )))Jw£‘»œ CÕ@5›LÍÌ!Á˜F݃Ԋ€ú Á͹ʌS?Dp€,G`ç*7BÁAõ©f 8gblòåG=G åF'Gp²8•Žp J"8;¥|¹‘qêG@Éašr£ÙŽ ޏL8Ê€ÝQ~…!8€â0H ‚#(’#¤FSûa½°7GàÐ(7ZÁÎʦåÆ"@!œ75¢hnJwÀNåää¬\¹rõêÕåË—îß¿óæÍ•î¶à©ÑŒ®ØIGìÁ±¹¹¹}ûö=tè——WÓ¦Mïܹ³{÷îäää!C†¼õÖ[J÷ÈÀ µ ±jÕªC‡…‡‡õÕWžžžBˆS§NõéÓçóÏ?oÓ¦Mýúõ•î VäåF©­ƒk ‘˜˜(„?~¼”…AAAo¼ñF^^Þo¿ý¦tï°"GHftÅN:b·Ž…HOO/[¶lhh¨~cPPâüùóJ÷kqÔH¹Ñjª.ÄÂ… ÝÜ ¿™£G !jÖ¬©tïpö•)7Ê@p,Dƒ ZvíÚµhÑ"ww÷.]ºÈÙBHHˆA‹4ü ¥ddd(Ýâ¤Ø'΋²ÙI ðOKKOO·á±ù ËîÏ? =-M¿Mÿÿô´tQÄzíÛ··á—b׎%ÈËË[¾|ùÇœ——7{öl9k¥¤¤(Ýqò÷÷Wº 0ÄI±Oœ;dƒ“ò°Ng»³ÿ ÜhÁj4B«5y{Å|ÉÿZ/X!rÇâìÞ½{Ò¤I§OŸöóó›6mZ³fÍ”î–ç—6šs RËFp,ܽ{÷fΜïáá1xðàèfXàH!5š×ûé‹ý#8"??Ĉ[¶li×®Ý|àëë«t° ILˆ±‚c!âãã·lÙÒ»wï>ø@é¾à8HjÇ} iµÚeË–•/_~̘1J÷+²q¹Ñ¾R#LBÅÑPVVÖ¹sç<==ãââ ~Úµk×>}ú(ÝGÌåì©‘r£Iކ¤Ûeåää9r¤à§L¬8R#©Ñ4GC7æ.ŒFj$5šŒkp"¤FR£9Ž8 R#©ÑL UàTŸ5!©QYGŸ#¤Fs€Ôh! UààH¤FK¡â€#³ejÔÂŽR£FAj´$‚#ËÆ©‘©0à€cRwjd*Œ]"8à€TŸ¹¨Ñ.p46K\ÔèlŽ8[¦F†§ ÁÇ¡îÔÈð´Ý#8à̬Ö·/»J OÛÁÕSñE O« ÁusÒái J 8 b¶IöUh$2*‡à€ZÙ,5ÚKdŒM+Œà€úØf*ŒU ŒM«Á•qºB#‘ÑnP¤F»+4íÁu°Ùð4…F…à€ ¨¯ÐHdtDGìmR#‘%"8`¿4!„¿US£% DFGç¢t@á¤BcZZºµ¶/4R¡Ñ©Q£yÐ]R£æá R£Ý£â€Ý±Á< MSetG싵¯h´‹±i"£:°Ö.4a&‚#vÁª…Få#£æá "£šP˜U ‹Œš‡ÑÏ´ÈH^tG”d½B£…##£Ò 8 k‹ŒŒJ;.‚#¶¦‚±is"#yÑq°){›6!2RbtGlÄJ…FÍÃàfVd4mî %F'CpÀê¬)1ÂfŽX—5Ʀ-)1ÂxG¬Å…F‹EFJŒ0Á˳ÇÈhB‰‘¼ˆG°$ûŒäE˜à€eX<2>˜.íojd4¶ÄH^DI\”Ñ<˜c©Ô¨éÑ/Z¡MKO3¥7º•Ø'ÍÃíàT0e«ŒæÞ‘ѨÞP_„ñŽ˜Â‘ÑCÒäE˜à€qì%2’asGä²`d4}Tš¼å¨urÌáÇ‹_ 11Qé>‡¥¦¿<œ·¢y8oEþ-rŒ™òÂ|X‡ZƒãK/½ôÙgŸåååü(;;{ذaC‡UºG`ÙÈhB^ô•5äEXZƒ£¯¯ï¼yózõêuæÌýöÍ›7wêÔiÓ¦Mµk×Vº3(ð™¾GKŒ&ì>=-MV^Ô’auj ŽëׯïիןþÙ¥K—+V!®^½:|øð!C†\½zuÀ€ J÷ JFݱȘ6$-<šâ"” ÖÉ1åÊ•›jÔ¨‘Ò¨E澘2KZæ|Þk’"” ÖŠ£¤iÓ¦ß}÷]¥J•öìÙséҥƯ]»–Ô0–ù£Ò¦ IË«/úø3 ;¡îàøë¯¿öèÑãÊ•+¡¡¡¾¾¾xë­·.^¼¨t¿ê`þ…ŒFIëvY|^ԛ钞–NX„Pkp¼qãÆ¸qãxéÒ¥¡C‡~ÿý÷ëׯïСÃ/¿üÒ©S§5kÖ(ÝA€]3óBFÓó¢n—÷ªa¦ ìZƒ£”ƒ‚‚¾ÿþû7ß|ÓÕÕÕËËë“O>™5k–F£7nÜ€”î#Àî˜Yb´@^,l£„E¨…Zƒã¥K— ´víÚ è·ÇÄĬ[·®iÓ¦ÉÉÉJ÷`GÌ)1—å FsÏE¨“ZgU/_¾<,,¬ÐªU«öõ×_ÇÇÇ+ÝG€òŒz>ŸáºF=°Ä=1'ê§ÖàXTj”h4šW^yEé>c£¼¨Ñ ƒE Cÿ»€Ò_ `6µG eò½MÉ‹„E8‚#À˜VbÔ襼’¯\üwÑ®YÔÛ਎33/£ªd´Ñy‘°<ŠàPcKŒr£‹).‡Ž09/ RqpÜ´iÓÒ¥KÏœ9£-âO‘]»v)ÝG€YŒÊ‹²Š‹„EÀ j ŽÛ¶m6l˜ôÚÕÕUéî,É´¼htXÔ<ºa(‰Zƒã—_~)„èÛ·ï›o¾éåå¥tw ?/–\\”IŠ€‘ÔSSS{ì±1cƸ¸¨õqÛ‰ y‘°(B•©ëþýû7nܨY³&©TJ£ù÷G«}ðSø’zË>\P[Ò†´B#þýÑêý0ƒ*+Ž...^^^§NÊÏÏ';€ŠÈ,.–0]heQ£WY$ Ö¡ÊÔåêê:pàÀK—.Í;Wé¾J&§¸XheñßÔX°²(­,RV¬O•G!DÇŽÏŸ?¿hÑ¢]»vuèÐá±Ç+]º´Á2ÑÑÑJwœšœúb‘—-jó,mB#þý_"`sj ŽmÛ¶•^>|øðáÃ….“’’¢t7ÀéÿxçË5]peÍ¿ëHKPZƒã /¼ tÿ*±¸htX$)öG­ÁqæÌ™JwPB^,<,j4Ü G«¥¬¨…Zƒ#@)ÅF—õ“¢x8¯€¨&8._¾\ñÔSOéÞ/..Né^€ã(¦¸h\X$)ª¥šà8yòd!ĤI“¤à(½-ÁÌTLq±°¨Ñ¿8Q< ‹€CPMpÐh4fíìL¡aQûàÁ~$EV§Ök÷îÝûæ›ož8q"??_qìØ±Õ«W{yyõîÝû±Ç[±bERR’Ò} пfñÁõ‰B£é:Å/Uä–Š¬O­ÇÅ‹kµÚñãÇÇÆÆ !¶lÙ"„øè£Ú¶m{æÌ™öíÛûí·mÛ¶Uº›`ŠGn“£ý·¶(4Ü%€’ÔOžn«°°HR`_Ô:T}õêUéunnî±cÇ6lXºti©¥L™2—.]2gûsçÎ0aÂéÓ§###Ë•+·fÍšAƒåää(}Üʃ1è÷{8꬀fô€Qkp¬^½zFFF^^žâÀwîÜyúé§¥òóó322ªT©bòÆSRR-ZTµjÕÄÄÄE‹mÞ¼ù•W^9|øð¬Y³”>nª§ ‹BCR 2j Ž‘‘‘W¯^7oÞ… æÍ›'„ˆŠŠ’>Z²dÉ•+WMÞøªU«òóó‡ æëë+µŒ;ÖËËkÓ¦MÒ\0Š.)J÷Ê‘Â"I€ê¨584¨lÙ²_|ñE›6möìÙÓ¨Q#éÞ={öœ9s¦¢ÿþ&o|ïÞ½...ÑÑѺWWר¨¨Ë—/8p@éC Ãâƒ+’8µÇ5j¬\¹2::ºZµj-Z´øä“O¤»6^ºt©B… Ó§OoÒ¤‰i[Öjµ©©©•*UªT©’~{pp°âüùóJ:û¥KŠÿ†E’"¢ÖYÕBˆ   … 4ÆÇÇûùù¹¸˜ˆoß¾——W±bEƒv///!Ä•+Wäl$$$Ä %11Qé/Ì©edd(Ýr˜“âà¯{­ZÃg=«íÉÏs^ 'EqíÛ·Wº öBÅÁQrõêÕ#GŽüõ×_Õ«WoÞ¼¹»»»9©Q!M.[¶¬A{¹rå„×®]“³‘””¥¿ò÷÷7#°,µžƒ‡R=ZGôê<(ýCPéyqhœeük½`…ÈI¨88^¾|ù‹/¾X½zµõ^}õÕæÍ›wíÚ544ô£>2ùž‹+VÔh4·oß6h¿yó¦xXwà\MŠš#ÐàtÔzãýû÷ß|óÍøøø *tíÚU×îëëûóÏ?¿ôÒK&ßsÑÍÍÍËË«`eñúõëÒö•>tÖ§yäG£Õ|¸àGÇ¿páBýúõÍÙ~ÿþýgÍšåïï¿qãÆ+W®ôéÓgéÒ¥oîÀŽUS|PVÔ Í¿eE*‹`µV{õêµeË–#F|òÉ'¡¡¡ºö£G>\Ñ¥K3w£ô(š¦÷zeE­´€–G¶€…¨586oÞ|àÀ‹/~ñń۶mûý÷ßOŸ>ŸŸßµk×çž{Né>°´b’¢î•.,,M­ÁQ1räÈððð3f¤¥¥ !.\¸ „¨R¥ÊðáÃõïì@ÅŠOŠÒ›‡ËÀÚT…­[·nݺuvvvZZÚ½{÷¸Ï" n%%EéêD a” îà(ñööWºL¢)ü½AXâô1y¡ÖàØ¤I“—Ùµk—ÒÝPÀäè/üõßkÍ‚„E°Cj ŽÏBhµÚüü|éuµjÕ ½78QSLOK ðеêMX»¥ÖàxìØ1ƒ–¼¼¼ÌÌÌ­[·~ñÅwïÞ8q¢Ò}œ•¦è÷Z­Þ›­Þmr¸lìŸZo^««kÍš5û÷ï?oÞ¼k×®½óÎ;AX,¼¬(]IÀq©58¾ð E}T«V­.]ºÔ¬YSé>v©˜²b{'jŠ ‹‚â"8µÇ™3g*Ý@=ä•6hô–¥¸ø—Zƒ#€â,+ŠâÉRbX* ŽÛ·o7v•èèh¥{ ØPÁ²¢07, ò"@j‚ã믿nì*)))J÷°¦ËŠÂİ(È‹€Â¨&83p"F–®TÂý͈"7pvª ŽÌ†“*´¬(¤'±è‹ ‹‚â"ÀBó‘ƒcÆŒiÓ¦Ò½L¥ÿd?­ÞÐòä¾Gû1xâ_!;)°%ЧšŠcAÙÙÙ?ýôÓÙ³g Úsrr¶nÝêêêªtc:-dˉ6ØI`,µÇ‹/ÆÆÆ^¸p¡¨âââ”î#P¬¢Æ …qaQ¶¢Öàøõ×__¸p!222&&fÆ »wï~ÿý÷===Oœ8±lÙ²¸¸¸ñãÇ+ÝG €¢ÊŠ>-9ÜU\”·IäRkpüõ×_ÝÝÝçÏŸ_¡B…6mÚ´hÑÂßß¿Y³fBˆ€€€)S¦ôìÙ3((Hén²Ã¢°XqQÖ¡ÖÉ1ýõW:u*T¨ „¨R¥Š··÷‘#G¤zôèáííýõ×_+ÝG8±"g·HŸ–0Çåá6äNsyd-滬F­G!„‹Ë¿©·V­ZéééÒkWW×Ç+ÝA8³+‹7cÜ`´Áæ ‹ëQkűZµjgΜ¹uë–ô¶fÍšûöíÓ}ªÑh222”î#œ@ñ•E!äTnɰ¾(kÿÜR`Cj ŽíÚµËÉÉ9räéÓ§…çÎKNNB\ºtiÿþý5jÔPºpPòÃbI®ÐÛ.Êêy µU¿òÊ+›7oNJJÒjµ ,ˆŠŠrss{ûí·7n|âĉ۷owìØQé>Â? -Œ{ZŸiƒÑúû!)¡ÖŠ£ÏòåˇÞ¨Q#!D5&L˜pïÞ½ß~ûíòåËmÛ¶íß¿¿Ò}„Ê•XYFŒD S£ ÝŠPkÅ177×ÇÇçõ×_×µÄÆÆÆÄÄüùçŸU«V PºƒP­]ÔF…yõEA‰`OÔZqŒŠŠúøãSSSõË•+×´iSR#ŒVhqÑp#Š‹Â¼ú¢ Ä°Kj Ž—/_þꫯ:uêôÒK/}ÿý÷ºéÕ€\rF¢…ÑóPÌÌ‹‚1ì˜ZƒãêÕ«ûöí[µjÕƒN˜0¡yóæï¾û®þy€Âmž)1ì™F«æ¿£òóó÷íÛ·~ýúÄÄÄk×® !j׮ݽ{÷.]ºøúú*Õ«””¥¿è)qNôƒÅŒ¾‰¶™×/êïVÍ¿ˆ&JOO÷÷÷Wº0Äy±Cœ;ä´׫µâø ÷..O=õÔäÉ“ÿý÷ ÄÄÄdeeÍž=;::ZÞ œ”^q1=-½ðâ¢0ñ¦ˆfÖõ÷L‰ êŽ:nnn­[·ž5kÖÒ¥KCBBòòò¶oß®t§ 9Ó\,iz^ÔEFûȨ4@Ôz;)))‰‰‰‰‰‰iiiâa%RéNÁ†J¼‡Î¿KšòPg‹ I '•8uÇcÇŽmÞ¼yÓ¦MgÏž•Z6lÓ±cG¯q„ȼrQ!„¿î&MJäEAd8µÇ™3gnÞ¼ùüùóÒÛ:uêÄÄÄÄÄÄÔ®][é®ÁÊäÅ¿õÅô´4£.-—"£ùyQD­ÁñË/¿BøúúvêÔ)&&&44TéÁÊLÊ‹ÿæµôty;±X‰QG­Á±G111‘‘‘..2¿…33/± —MêvM­ÁqêÔ©JwÖdÛ¼((1 ƒZƒ#“­ò¢°h‰QÎà;`T^fÅ4Ë–Íë *Cp„rLË‹Â.JŒº΃à›³m^Rdô·|d4£G¨S’a+2ŸøÈ*F?°À><0-=ÍbÇÁÓΊŠ#¬ÌØú¢°P‰ñÁ>©2`1GXÞŒŠYfG3k\Èh‰~àް4JŒ‚È€ a!æäEa‘Q0i€Ga6†¤…eJyVŒf÷GCp„©L+1 "#jEp„ñÌ)1 ûŒ‚±iŠEp„1”•ÖŒ–è#ŽŒà•VŽŒ‚B#òQ,ÓJŒBM‘ÑÝÀ)Q¥#£BzZ ‘B#Æ 8¢ûˆŒ‚B#v†à=N…FLEp„‰"£…: €3"8:=;ˆŒÂú—3 ˜àèÄì&2 [ýI˜ÉEé@ !4BhMMZ­e 6¸¢1--Ýz»ÀIPqt2&W…ú ‚ái,Šàè4œ/2Z®Ë@‚£S0'2 Wíl0 ÆÒ]ƼÈ(TVh¤F¬†àè¸ìflZتÐ(HXÁÑÙÓØ´°áð´à¢F¬‰àèpìflZ0< €c!8:§,4Z¡ã pGGá”…FAjÀ†Žê笅F+ô‡à¨ræ…ŠS#Sa°=‚£šÙÓð´à¢FÁQìoxZpQ#ŽŽà¨BÎ:ѽuww×Ç{÷îÍœ93>>ÞÃÃcðàÁ ÐͰ¶»¹´‘ÔäpêàèééYè˜r~~þˆ#¶lÙÒ®]»>øÀ××Wéžê!5…8up,J||ü–-[z÷îýÁXk¦•É\@9ÜÇÑV«]¶lYùòåÇŒ£t_¬Žr#Š£¡¬¬¬sçÎyzzÆÅÅü´k×®}úô1wöQn$5£ I·ËÊÉÉ9räHÁO-0±šÔÔ‰àh¨qãÆrïÂàL¸ÆQ (7;@p´-Æ©IÀ> Áц(75#8:R#0ÁÑVì Ü`‚£½bØ‚£S 5ómÂØqjb°?GÇG¹XÁÑþX4vÙ>5GEp´>æS«åFÁÑΨ¼ÜHjÀ ÁÑžPnvŒàheNv#p`GÇD¹XÁÑnX.yq ` GXåFœÁÑ>¨¹ÜHjÀI­‰™1À åF`=G;@øj@pt”€U•Fø*Apt”€µ­†)ÕÀ±¥Úªj;LGpt}ú4kÖìèѣƮ"„H9y2$8X„„!K^Í_¤§§[ÿàüm²û’‘‘¡t`ˆ“bŸ8/vˆ“¢¸öíÛ+Ý{Ap,DNNÎèÑ£kÖ¬9bÄÓ¶’’"„̓²ùûû[õÐ^àhݽØ'k·0'Å>q^ì'EYÿ6—*DNÈ©ƒcnnîâÅ‹uo]]] $„˜1cFFFÆŠ+<==•î#€½pêàxÿþýO>ùD÷ÖÝÝ}РA{öìY±bÅ›o¾ùÄO(ÝA;âÔÁÑÓÓ³`ñùÔ©SBˆùóçÏŸ?_¿=!!!!!!((hýúõJw@N U»víN:é·\»v-99¹zõêaaaÕªUSºƒÊ 8jÑ¢E‹-ô[Ž=šœœ1sæLëí×÷âáÖßÀܲ CÕ% 5övŒŽ‡Š£³àG`&‚#d!8ÚL©0Á² ÁÑ)03˜àYŽ…àh5 ÇBpT÷âª@pt|”>€E Á² Á²3c€¥ ÁQaÜĨÁ² ÁÑ‘13XÁ² Á² Á²•dÕ»3¥XÁ² Á² ÁÑ113XÁ² Á²cÕ»XÁ²­CÑYÍL©Ö@p„Shß¾½Ò]€!NŠ}â¼Ø!N ìÁ² Á² Á²h´Ü¸ÅÒBBBRNž .~±“)'ƒC‚åmÒ'O¦‡(ýààRRR”…¡jÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp´˜ï¿ÿ¾GaaaÍ›77n\vv¶Ò=r"Æ~ù999ß|óÍóÏ?ÿä“O¶lÙrÀ€¿ýö›ÒáhÌùÈÌÌ 5j”ÒáhL8)þùçÛo¿ÝºuëÈÈÈ>}úìÞ½[éƒp4Æž”{÷î-^¼øÅ_ kÓ¦ÍСCO:¥ôA8´´´?þøCéŽ(€àhsçÎ0aÂéÓ§###Ë•+·fÍšAƒåää(Ý/§`ì—Ÿ››Û·oß>úèŸþiÚ´i``àîÝ»û÷ïÿùçŸ+}(ŽÃœß­V;f̘›7o*}ŽÆ„“’””›””äëëvðàÁW^y%))IéCqÆž”¼¼¼W_}uÖ¬YÙÙÙ-[¶¬Q£ÆæÍ›;wî¼wï^¥ŹÄÇÇ+Ýåha¶'NÔ«W¯eË–/^”Z¦N§píÚµ½{÷¾ÿþûÒŸQ‡RºG  âh«V­ÊÏÏ6l˜¯¯¯Ô2vìX//¯M›6åçç+Ý;g—Ÿ˜˜(„?~¼§§§ÔôÆoäåå1`mæüFœ:ujîܹõêÕSú  'eÍš5ׯ_ã7ÂÃÃ¥–ǼC‡—.]úóÏ?•> G`ÂI9pà€âÕW_uss“Zš6mZ¿~ý3gÎ\¹rEér|111qqqß}÷ÒQÁÑöîÝëââ­kquuŠŠº|ù²ôKë1áËOOO/[¶lhh¨~cPPâüùóJ#0ù7"77wôèÑÞÞÞcÇŽUú  'eÇŽ¦K—.úüqJJÊO<¡ô9NŠŸŸŸB?#jµÚ«W¯º¸¸è¢$¬çÃ?œ?þüùó›5k¦t_ÃgæÒjµ©©©•*UªT©’~{pp°âüùóJ÷Ña™öå/\¸°àŸ°GBÔ¬YSécR=s~#æÍ›wüøñ%K–T¨PAéãp(¦”#GŽx{{W«Vmß¾}¼zõj½zõÚµk§+Õæ”çŸ~éÒ¥~øa™2ež|òÉìììùóçgddôêÕ‹ßhÑ¢…ôâçŸVº/Š!8šëöíÛyyy+V4h÷òòþ»gÚ—ß Aƒ–]»v-Z´ÈÝÝÝ ¸˜üqèСŋ÷éÓ§Y³fRއ¥˜pRîÝ»wãÆÀÀÀ‰'®X±B×^³fÍO>ù¤aÆJ“ê™ö›ß·oß¾}ûêûôé3nÜ8¥΂¡jsIÓßÊ–-kÐ^®\9!ĵk×”î #3ÿËÏËË[ºtéÀoß¾=}út¥IõL;)999£G®Y³æˆ#”>dÂI¹qã†"55uãÆ3fÌØ½{÷/¿ü2xðà . :”[F˜Ï´ß”ëׯOŸ>ýÖ­[¡¡¡/½ôÒ3Ï<ãééùã?2Õ6CÅÑ\+VÔh4·oß6h—n&"ýÛVbæ—¿{÷îI“&>}ÚÏÏoÚ´iÎ|ÍŠ™vRf̘‘‘‘±bÅ †A­Á„“âáá!½˜>}z›6m¤×o¿ývffæš5k6lØÐ½{w¥KÝLûM=zôþýûÇŽÛ¯_?©%33ó¥—^zçw”>,8>*Žærssóòò*ø¯Ãëׯ !tså` &ù÷îÝûðÃ_}õÕÌÌÌÁƒoÚ´‰Ôh)&œ”={ö¬X±âõ×_gÊ…•˜pRÊ–-ëáááééÙºukýövíÚ !Nœ8¡ô1©ž 'åŸþùùçŸu©QQ½zõ7ß|óþýûk×®Uú˜àŽPµjÕË—/K¿í:éééÒGJ÷ÎÁ™ðåççç1béÒ¥m۶ݲeËÛo¿M•˲Œ=)Òs/æÏŸòЋ/¾(„HHH yþùç•> G`ÂoН¯o©R¥4~£ôË’››«ô9cOÊåË—…uêÔ1h— YYYJœÁÑÚ¶m›——÷믿êZ´Zí/¿üâíí¦tïœ _~||ü–-[z÷îýùçŸS¶cOJíÚµ;=JšºX½zõN:EEE)}@ŽÀ„ߔ֭[_¿~ýäÉ“úÒmb¸Ñ¦E{RêÔ©ãêêzêÔ)­V«ßž’’"„ Tú€à”¾¹#¸páB½zõÚ·oãÆ ©eÁ‚ÁÁÁü±Ò]s|r¾ü›7o¦¥¥?^«Õæçç·k×.<<<''Gé¾;,cOJAGŽáÉ1–eÂI9vìXppp=._¾,µ>|8,,,22òÒ¥KJ#0᤼þúëÁÁÁŸ|ò‰îá='OžlÒ¤IÆ SSS•> '2~üx§}r “c, zõê£Fš1cÆ /¼Ð²e˳gÏîÚµ+44ôµ×^SºkŽOΗÿË/¿¼óÎ;AAAëׯÏÊÊ:w§g\\\Á­uíÚµOŸ>J“ê{R”î¯S0á¤Ô¯_øðásæÌiß¾}DDÄíÛ·÷îÝ«Ñh>üðÃÊ•++}@ŽÀ„“2uêÔîݻϟ?ãÆ 4¸|ùòþýûóóó'L˜P·n]¥Nàhýû÷¯R¥Ê?þ¸qãF??¿>}ú 6Lº«¬Í¨/?##C‘““säÈ‘‚Ÿ2EÆRø°C&œ”×_ÝÇÇgéÒ¥¿ÿþ»··wÛ¶m,=f aìIñññÙ¸qã‚ ’““·oßîííݪU«ÿüç?5RúPà,4ÚG/• ÅäÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€,GÈBp€5*$$dçÎ6ÛÔgŸ}²|ùrýµ¶oß^è§ ,‚#¨Irrò/¿ü¢t/8)7¥;N­uëÖ>>>ááá2?9räõë×;¦tÇ8#‚#()44444Ô´OÀƪ Jyyy¹¹¹J÷œ Á€jHGNŸ>=eÊ”ˆˆˆÐÐÐèèèÁƒL@‘ËÌÌB|øá‡aaaR‹ŸŸß¼yóÜÝÝ¿ûÿþ[·nõêÕ?ýôÓ *!ÜÜÜ '„øüóÏ¥rss[·n=räȲeËJ-*Tˆ‰‰Bœ={V¿%nÊ®®®Ï>ûl~~þÖ­[uëÖ­BtéÒEéÀ¨L·nÝÜÝÝõ[^yå!Ä¡C‡ô_xáÝÛþùçâÅ‹~~~QQQú‹ùúúFGGçåå?~\ר£G77·‚»8zô¨ôö­·ÞZ°`Aݺuu deemذ¡`oKÜ”™:tè ôF«sss7mÚäææÖ©S'+žΊÛñPƒ–Ç{ÌÝÝýï¿ÿ¾wï^éÒ¥¥FixZçÌ™3Bˆ:uêÜ`íڵţ•€€€Bw‘••uëÖ-©ÊxáÂ…;vìÛ·ïüùóçÎ3¸´Ñ¨M™ãé§Ÿ®T©Òž={²³³½½½wìØqõêÕ6mÚTªTÉêg€ó¡â@e4MÁWW×üü|ýôH£Ã:Z­¶¨ ººº !îß¿_â.\\\J•*%„X±bųÏ>;qâÄÇ×­[·ÿþ_ýõûï¿/¿·ºM™ÉÕÕõ¹çžËËË“®­dœ€UQq 2ééé-ÿý÷íÛ·«U«V¦L™¢Ö’j J¤b¤~i°à.þúë¯Û·o׬Y³téÒ7oÞœ2eJéÒ¥.\Ø¢E ýnÈé­þ¦,ò…tèÐaÅŠ‰‰‰;vLJJªP¡BëÖ­-ý­€T¨Î?üpïÞ=ý–øøx!DÆ ‹Y«jÕªUªTÉÌÌLNNÖoÏÊÊúùçŸ]]]ëׯ¯k\½zµÁÍ¥]4nÜXñçŸæåå5nÜX?5 !Nœ8Qp¿ÅoÊ""""|||vîܹzõê;wîtêÔÉR‘ ¨Ìßÿ=lذëׯ !òóó—/_þÍ7߸¸¸ <¸øßyç!Ä„ Ž9"µ\¼xqðàÁwîÜéÕ«WõêÕuKž?~øðá·nÝ’v±téÒÿýïnnno½õ–¢jÕªBˆ'Nèn‚“——÷ÝwßI7âÎÉÉÑßiñ›2M~~þíÛ·uo¥¹Õ¹¹¹sæÌŒS°&†ª¨LÇŽ·lÙÒ¤I“:uêHþ...ǯW¯^ñ+víÚuçÎëÖ­ëÖ­Ûc=æééyúôéüüü°°°aÆé/’˜˜¸uëVÿ .ää丹¹M˜0AšFжmÛŸ~úé™gž ×jµ)))ÙÙÙqqqK—.ýá‡nܸ1cÆ 9›2AÅŠ³³³ccckÕª¥»ýdÇŽ¿ýöÛœœœÚµk?ùä“JŸ"‹à@e:wî÷ÕW_ýùçŸåÊ•kÚ´éË/¿Ü´iÓWtqq™5kVttôºuëNœ8ñÏ?ÿ<õÔSQQQ}ûö•æÇè|ýõ׉‰‰?ýôÓÑ£G½½½[µjÕ¯_?ý@6{öì%K–lܸqß¾}=öXTTT¿~ý‚‚‚òòòÖ­[·wï^ù›2ÖØ±c?üðÃÓ§Oß¹sG×^¥J•¬¬,ʬJSÌLC°+£FJHHX¸patt´Ò}±/ùùùmÛ¶ý믿~úé§5j(Ý‹k@õ~ÿý÷ÌÌÌÈÈHR#«"8€ºåääÌ;WÑ­[7¥ûÀÁq#¨Xddä;wîÝ»(=,¬‡à@5:vì\ð!~ÎÌÏÏïܹsQQQ“'O6˜âÇäÈÂ5Ž…àYŽ…àYŽåÿð>r‡ ( IEND®B`‚statistics-release-1.6.3/docs/assets/tlscdf_101.png000066400000000000000000001002771456127120000221360ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A€IDATxÚíÝy\TÕÿÇñ3 (ˆ²‰ š"¤n‰¢æ.n¹çúEM-iÓ\Ò4—Ì%ëki¢™ù3 Í4M+5sß÷ !5wRP@˜ß·æ;²9ÀÌÜ;3¯çƒGá̽wÎ=32ï>ç.*F#€ç±‘»0Gè…འ‚#ôBp€^ŽÐ Áz!8@/Gè…à_LLŒê_üñ‡ÜÝÉßæÍ›ùå—_~ùåîÝ»ÚÆ¥K—JÝnÔ¨‘Ü4‘)S¦H»Ü«W/ƒlðáÇÿýïÛ·oÿâ‹/ÚÛÛ{yy5jÔèÓO?MHHÈ»p¾ïBÉ}öÙgÒNuîÜÙxC—oç;wî,½ôüùóK²ñ 6¨ô“’’Rø¦ž>¾téÒ…¬’‹«««Üà SÕ€5êß¿bbbbb⯿þ*w_ÌÏŠ+’““…îîîG‹‹;|øðÕ«WvìX±wJÏ7±Î÷èÑCQ¾|ùÖ­[ãm5 ;vlÞ¼YzAAAÚW‰ŒŒ”[»v­ö[¹mÛ¶ƒ Ò1üã?4ͽ{÷âã㵯²råÊøøx)èä Žú÷P›9$ÞÞÞMš4±··×¶=z´ðqÓnÁÁÁáµ×^1bD“&M¤[[Û‹/|(4ù¥4Ýí·mÛvÚ´i¡¡¡Úéþïÿþ¯ þ?^»ý Ì™3çСCéééù.\È» p|ò䉷··vˆ^yåÝãuƒ£ž;¥ç›XHç‹ý¶®ÁQ›’sýïD! ÿ—›““£=¶rÆŒú¬X‚#P|ú—LŸ>]ZÌÉÉI›«Îž=ëîî.µO˜0AjÔ&åíí}÷îÝ\­Zµ’Z´Gb;Vû* 6”¿üòKmcÙ²eóö0opÔ¿‡º™cÁ‚RãÅ‹µ±ã¹å¥æÍ›KKΜ9SÛØ¡C‡\Û4ìPäMiÚMé&,X 5V­Zµ þß»w/ïIE666þþþƒ^»vmÞºW¾ï‚þÁqáÂ…RK¹rå>,5Ž=:opÔs§Šô&æÛùb¿­…+jpÌÌÌÔ.ÿùçŸëó=þåV­ZUzV[RÕ]%_£GÖóÕ³Æ1Ž€)lÙ²Ez0räHíQquëÖ3fL®¶mÛ&=øðõ¡mĈÒ\Û“'O²³³…ýúõ[µjÕªU«F%-“šššžž.=Ö½LŒÁ{¨U§N÷ß_züÒK/µlÙRzœ””Tøki¯«¹|ùré,ÚÈÈÈóçÏŸ?>88Ø4C±uëVéÁ[o½¥m|ã7ÔjµâêÕ«gÏžÍwÅòåËŸ9s&,,L÷tœœœ‹/®\¹²_¿~/½ô’¶ó¡=PO·Œ÷Å_äÇ/êNûM,öÛjXºàJg&Dùòåón€àr<€iÄÆÆJ^}õUÝöŽ;J%¢¸¸¸œœ›øøxé)mýFQ±bÅS§Né®(mçþýûÛ¶m;~üø©S§Ž;öðáCôPûT®"ÝÜܤÒI!K—.}÷Ýwu¨_¿¾´¯¾úªt®FllìСCU*U@@@çÎ{ôè¡{œ±‡B{ªD®]ÖŠ‹‹«W¯^¾OU¨PáÛo¿]¼xñáÇ>|úôécÇŽi7ø×_õéÓçÂ… ÚÂU i·¬{¡ïR¥JuìØqÕªU%Ù©ÂßÄ"Ñóm5,ÝìnÀ‹«KgÍ !œœœò>›ïåx´CX6‚#`t©©©Ú›^äšâ¬\¹²ôàñãÇ·oßvttÔ.éââRÈ6333'Nœøõ×_k/VçàààááqçΣöP÷Y•J¥»d®_ 1}úôÔÔÔeË–=yòD¡ÑhNžû¬eË–6l¨P¡‚n—Œ1©©©º—ýË×½{÷ _ÀÖÖ¶E‹-Z´~ý믿fÍšõÍ7ß!ÒÒÒ"##'Ož\Œ·#—Gi÷%×ù1UªT)áNûMÌKŸ·µä£‘K©R¥ÜÝÝ¥Ò½ú·®””é³aooïèè¨Ïfoݺ%=È{š‘bõêÕŠ½:`lLUFçäääìì,=¾yó¦îSÚ_K•*U¡B…råÊiODÐÖ<òõÙgŸÍ;7++Ë××wÑ¢EgΜIMM-ö§õï¡AÄÎÎî›o¾¹{÷îÚµk  {Ùä}ûöI× 1öP899i‹UÛ·oÏOhhhÞ³²²þï_W¯^Õ}ªråÊ ,ÐÖGµÓrppО«‘+ çº _±wÊ ôy[¡Y³fÒƒß~û-ß 0½ôÒKîîîîîîÚC{ ·ÿ~í¡“Æ«•fŠà˜‚ŸŸŸô`ûöíºíÚ_kÔ¨akk«R©´S‡GŽÑ.vëÖ­¦M›6mÚ4((HšC\´h‘ôÔÂ… ß{ï½zõêÙÚÚ^¿~ÝØ=Ôƒƒ ºõ,鼇'OžÜ¾}ûöíÛOž<éÛ·ïªU«îܹóûï¿k¿¡÷îÝ+„0ÁPT¯^]z••õ¢WWW—|ïbkkûé§Ÿ†……………ýßÿý_Þ´yW{tA´å½è¶çJ‡jµÚÇÇGz¬{è¤æÙ Ç”d§JNÏ·Õ´Gs^½zuéÒ¥¹žÝ¼y³¶|¨{ÉÉBhï¾íèè¨{˜ApLC{½½¯¿þZ{)æóçÏÏž=[z¬=vMûÝöÕW_i¿ðÂÃÃ¥céJ—.mccóðáCí„£6sœ8qbçÎ…ôA÷üÓ’ôPOžÏ’N8¸xñbÅŠ+V¬èååõçŸ !lmmÛ·o?tèPiEíÄ´ñ†BÒ¾}{éADD„F£‘oذ¡|ùòîîîÕªU+è@É6mÚH¾øâ‹Õ«WKçè!²²²–.]ª}é|‹Uºï‚v¢ùÈ‘#Úcþùç¼q0000ï»óùçŸ_¸pÁP;¥B>Bú¿­×­[7í^9rÆŒR™<33322rðàÁÒS/¾øb@@@᛺uëÖÛo¿½~ýzé××_½ÛÕVJîÓº3¦{…ŽJ•*UÏÏ‘#G4Mzzº¶þäààЭ[·×^{M{¸•——WJJŠ´ÍÛ·okÇ÷ôôìß¿¿îÑT¿þú«F£ÉÉÉÑ^!¥L™2=zôxíµ×toª«½tŽF£yᅤƦM›Îž=;33SSÀuõìa‘.[Wvv¶ö¸±Š+†……?¾oß¾Ú Áh¯œgØ¡ÈÛí¿ÿþ[;Ú¦M›©S§k rŸ|òIA»˜˜¨=ëVáîîÞ¸qã&Mšè6vèÐAºx!ï‚ö4Rç›7o®­ûæÉÓ§OkË“¥J•jÙ²¥öŽíåxôÜ©"½‰ùv¾ØokáŠqGFsöìÙ\•TwwwéDr‰½½ý©S§ ÿ—›ëèÞ *h/¥á:ŽÀ¿Ž@ñ=÷ÒnBˆÝ»wK 9rÄ××7ïÞÞÞûöíÓÝìÏ?ÿ¬=âPפI“´Ëä½ñ®¯¯¯öú؃Ö.9`ÀÝÅ ¹sŒž=,apÔh4‡*h´M›6?6ÆPäÛí_ý5ßJØ»ï¾[Ðe®%»wï.äâ/­Zµúûï¿u—Ï÷]Ð4ÝÎkëgº#9dÈ\K:::jïa£{ç}vªHobA/öÛZˆâGF³ÿþ‚Þ‘jÕªmÙ²EwáçþËuss;tèPA«aÍŽ@ñ)8j4šGM™2¥]»vžžžîîîmÛ¶|¸ÔîááÑ£GC‡Íœ93opÔg§Šô&Ôù’¼­)vpÔh4iiiááá­[·öðð(]º´ŸŸ_=ÂÃÃófÖ|ÿåªÕj77·ÆO™2E·Ö˜w‚#¬™JóïA0ÌËÓ§O7oÞ,„èÕ«—Ü}a(Läøñã»vízçwò½¾ Ázá¬jè…འ‚#ôBp€^ŽÐ Áz!8@/Gè…འ‚#ôBp€^ŽÏ‘àççwæÌ¹; 3‚ãsDFFÊÝE°•» •ššzùòåß~ûíÇ”»/Š@pÌ_÷îÝoݺ%w/„à˜¿Ï>ûìÉ“'BˆU«Vx¼¨Œ³ÙB£¡Õ>Á(Cñ" µÿdApƤ$*Á”LáÑ8hAŽ@…¤C¢¡Õ 8DÒ!ް0[·n•» °F|ð Ã|ðòÆD" FpÀjQ26rw@éfΜûòË/ËÝŠH•çG“ç( *ŽXŠ\Er! à€9Ó ‹$EÁ³òoRô>BaRã€âåwœbbB"©&Fp@‘ :©²Sï¦Ú–€à€’•D%Tªþó¿•¿#ã¨~~~rw0'±±±rw0(Np‘ª€[åhTBhß Í3ïŠF?a¥_ÜG¥à‹ПŸŸÿd` ´‰…°hLªÂn³-4º£¯;­á]ÉÁÓ"/Z¢a>+‹€à€IK¬ÀiåbŒ©6/‹‚à€1‘‹Î1÷¦É‹%ÂYÕAÞ“£‘ŸÜg, •J¨4B“ïOq_CgÛÚé·xA?V‹à€A‘  F4ÜKþUâß=B¡Fóü«ÅT5†À”´Ž|çš ™µ/”_ñOóï««¤WTYuÔ3,‚#%#¥+Ž&yc¢A2¢>3ÂÏ$Â<Ç/Zñ{b,GŠÅZKŒ†Š‰ÏÍ…ú– 9ßńޑ••s%E=c¢Árás_ƒ¼hBœä£eË–r÷BN'NœP©Tk×®•~9s¦»»{ݺuåî 7Ý_,Wáç¯<³d N1)Aÿž} ˜Áf/%%åÝwß­ZµjÙ²e[µjuøðá’oS­V«Õj¹÷¬øZµj5}útCmíÂ… S¦Lñ÷÷Ÿ4i’’û —EGÆÂ“bñÒ¡q:ªï%u`$G˜·ÔÔÔÀÀÀï¾û®eË–C‡ýóÏ?;uêtêÔ©nv÷îÝÇ—{çŠéÔ©S0àããã…Ó¦M Ur?£PYfdÌ7) Õ??2§Ãü{L‰Q8Æ%’™™ikkkc#ÛÿÌ;7>>~ÅŠƒBŒ5ªaÆcǎݹs§µ EVVÖÎ;<¸hÑ¢œœnY£Ñ!ìííÞOÀÀ,ë@ÆÜg´¨žq–öU™;ËŒJBÅÅáãã3jÔ¨qãÆ999ÙÛÛ7iÒdË–-YYY'Nô÷÷wrr ºpá‚váÝÕßxã WWWƒôäÇôòò4hô«¯¯oppðž={nÞ¼ùÜu322fΜéïï_¦Looï°°°[·nIOéãxäÈ‘N:¹¹¹Õ«Wï“O>Y²d‰J¥:sæLQ‡B^¯^=GGG77·&Mš¬^½ÚPoJrrò«¯¾:}úô»wïcõ½{÷vèÐÁÍÍ­V­ZãÆËÌÌÔ¾Y={öB´hÑÂÇÇGö~¦`)%Fݺ¡¶š(TИÇE­©2*GÓªU«ÔjõäÉ“mmmçÎÜ Aƒ¬¬¬wÞy'..nñâÅýû÷?}ú´QûššzùòåÐÐP•ÎÉ{mÛ¶]¶lÙáÇ{õêUøêaaakÖ¬iß¾}Ÿ>}Ο?¿bÅŠóçÏç=Drûöí=zôðòò:thzzú‚ J•*U¼¡˜6mÚôéÓÛ¶müäÉ“78ÐÉÉ©{÷î% OOO©4ûÒK/iÝŸþ¹oß¾åË— µ±±YµjÕ¯¿þ*=5vìØªU«Î˜1cΜ95’·Ÿ€Ñ™m•ñ5ÿû{øÌ‰,æµST•ŠàˆbzôèÑ™3g¤/~[[Ûñãǧ¥¥;vÌÎÎNqöìÙýû÷?|ø°\¹rÆëÃíÛ·5§§§n£‡‡‡â¹Õ¬´´´µk×<ø»ï¾“ZÂÂÂ~ùå—›7ozyyiËÉÉùàƒ*W®|ìØ1777!Äûï¿_¿~ýâ EdddÍš5·mÛfkk+„?~¼»»ûÖ­[ ‹íÉ“'cÆŒñðð8vìXåÊ•…“&M ”ž­S§ÎŸþ)„xå•Wš7o.c?ã2«ÈøoLüw@£ÒöÜwg‘a߈ŒJEpD15nÜX[. B„††JQIÑ®]»ýû÷§§§)8feemÙ²¥ g_{íµ\-éééB'''ÝFggg!Drrrá¯ecc£R©8””äíí-„X¶lÙ²eËr-vêÔ© .|ýõ×RjBøûûÿðÃÅŠ£GÚÛÛK©QÛIi/J8%qòäɤ¤¤Ù³gK©Qáåå5räÈ &–BRÞ–¢JKK“§+ ?¹;$½âÇuSSS…ÚœW‡yóæ;ÖÇǧvíÚÍš5ëÔ©S×®]sMC_¾|YQ¯^=ÝÆ:uêo(\]]<øûï¿_ºt)...&&&++Ë CQÒ>6lØP·QÏËXš²Ÿ€Q(¯Ð˜oLÔé¯Jüt5‰‰‰9òX~DFóÁÉ1ŠöÜ«§õÇxždÈåË—0`øðá...+V¬HOO×ÞÅnÍš5Æ {ã7æÎ›kÅÀÀÀ:uêÌš5+!!¡N:±±±ÑÑÑnnn¹nŽRºtéððð† †„„dddDFF6lØðÀEêjPP££ã[o½5`À€Ê•+:thçÎ*TØ¿tttçÎK8…+d(ìììæÌ™Ó·o߀€€~ýúÙÙÙ­]»VÏ‹,¼Ÿ€™ð ݰ¨Ï? <Ó¥À]¥ÐhÞ8ÆF÷ùçŸ5êܹsï½÷Þ—_~Ù¹sç>øÀPwrrÚ³gO¿~ýÖ¯_?{öìêÕ«ïÙ³ç•W^‘žÍÌÌ|ðàAFFFÞK•*=xðàƒΘ1c÷îÝ:t8pà@ÞRe¯^½¶oßîååµpáÂ#GŽ„‡‡÷èÑCQÔk˜W­Z5**ê…^X°`Axx¸ƒƒÃÙ³gÿûßÿ¦¦¦êYÞ+‰B†BÚÇ;wÖ­[722ò«¯¾zøðáªU«ŒÝ%ÀtTFO…§Xh¿ò¹7´Üƒeä1âpF3§¢Z`p~~~±±±Æ^Å¥¥¥¥¥¥I×Y4™eË–?~Þ¼yÅ[ýéÓ§gÏžõòòªT©’¶qذa+W®LIIÑ^XÇ,è97nÜ(_¾|éÒ¥åîoa”öOÆrNnµ<Æœ›.jYñÙ~©D‰‹‹æôÁ³¸¹i¥ý2*Ž0GGG§ÆÇïÚµ«AƒÅÞ‚Z­nß¾ý€´-)))7nìÚµ«y¥Fý‡¢R¥J O€¾ŒpÒt1ÊŠÏö虣ÜdÚÁ‚E0§o> ¨:äïïß¿ÿboÁÆÆfĈŸ~úipppŸ>}nݺõÝwß=zôh̘1r‡0'-4–¤²øow¬à|—ü÷œÈhiްdAAAÒ­\JbÚ´i*TøöÛoÃÂÂììì–/_®½#Ÿ¹0ÈPæÁ‡3–<, k΋‚“`,Áx©è8bĹ;àyJ\hÔæÅƒÂhÆ(4Z.‚#À"·Ðhââ¿]°âã?C@¡ÑÂf®X…FCÿí‚u—ÿ –à0gE,4#/ "£ 5Z ‚#À<¥Ðhؼ((1êbzÚšfH¿B£Áó¢ 2æB¡ÑÊææy©ÑyQó"5Z‚#À|wÝŒŒŒ™3gúûû—)SÆÛÛ;,,ìÖ­[ÒSAAAº5Ë#GŽtêÔÉÍÍ­^½zŸ|òÉ’%KT*Õ™3gŠ:Bˆðððzõê9::º¹¹5iÒdõêÕ†zSvîÜÙªU«Fi[Þÿ}!Ä¡C‡ôY}ïÞ½:tpss«U«Ö¸qã233µoVÏž=…-Z´ðññ‘½Ÿ°p*¡2þÔ(‘Q/¤F䇩jÓªU«ÔjõäÉ“mmmçÎÜ Aƒ¬¬¬wÞy'..nñâÅýû÷?}ú´QûššzùòåÐÐP•öbnB´mÛvÙ²e‡îÕ«W᫇……­Y³¦}ûö}úô9þüŠ+Ο?Ÿ÷ÉíÛ·÷èÑÃËËkèСééé ,(UªTñ†bÚ´iÓ§OoÛ¶mppð“'O6nÜ8pà@''§îÝ»—p(²²²†¨Û˜””$„(]ºôsWÿùçŸûöí[¾|ùÐÐP›U«Výúë¯ÒScÇŽ­ZµêŒ3æÌ™£›ödé',™êŸÿ5«07­/R# ¢¡Õ¬YÓ«È«Zµj¥J•ºxñ¢ôë—_~)„xùå—333¥–-Z!RSS¥…ƒƒƒuW2dˆ‹‹KÉ»qùòe!Ä| Û¸cÇ!ÄÒ¥K _÷Ñ£GjµzÈ!Ú–¡C‡º»»ß¸qC£Ñ´iÓ¦~ýú&;;»V­Z¾¾¾ÉÉÉÒb.\‚ãéÓ§‹:¾¾¾5kÖ|úô©ôÔƒlmm‡ fŒ÷(99¹qãÆjµúòåË…/ùøñcooo//¯ëׯK-7nܨT©’âÇÔh4›6mBìß¿_Þ~êRÚ?™„„¹»`æ„ÆØ_GB#„ÆÒ¾òŒõÁ#èAi…L†Š£¢©„ªä)¶Âÿ§¼qãÆ/½ô’ô8((Hjgg'µ´k×nÿþýéééåÊ•Óÿ³²²¶lÙRг¯½öZ®–ôôt!„“““n£³³³"99¹ðײ±±Q©THJJòööB,[¶lÙ²e¹;uêÔ… ¾þúk777©Åßß?88ø‡~(ÆP=zÔÞÞÞÖöŸwR'¥½(áPä²{÷î·ß~;>>~ñâÅ5jÔ(|á“'O&%%Íž=»råÊR‹——×È‘#'L˜`ð·¬$ý„ER©„F½(ÍM˽¯f‚Z# EpT4%ÿ¥sww×>–BRÞ–¢JKK“§Ë4òü-“^ñáǺ©©©BmÎ+ˆƒƒÃ¼yóÆŽëããS»vífÍšuêÔ©k×®¹¦¡¥¢f½zõtëÔ©S¼¡puu=xðàï¿ÿ~éÒ¥¸¸¸˜˜˜‚.CSԡкzõêûï¿ÿÛo¿Õ¨QcÇŽmÛ¶}î°KûذaCÝF=OK7e?ay´©Ñˆ/ÁÜt‘ñ<œZò¡¬Y³¦N:Ç_ºté… ôLcRT÷8Q!„^LÙOX’NšFOœS¤FèŠ#L!×ujâââò]¬¨óž¶¶¶µjÕÚ·oŸnãÞ½{U*UíÚµ ïRrrr|||Íš5ÃÂÂÂÂÂrrr-Z4bĈ%K–L:U»˜4ÓºukmcLLL1aÿþýQQQóæÍ5j”î.d(„¿ýöÛ믿޷oß%K–äš¾/\õêÕ…'NœhÓ¦¶QÏ›LÙOX†ÿ]šQeÄÔH¡±ÈHÐÁFW¦L™˜˜˜ììl©P·oß¾ãÇ»¸¸ä]²óžo½õÖ¨Q£6oÞÜ­[7!Ä;wÖ¯_ß¡C‡ç^8&66¶yóæ“'Ož9s¦ÂÆÆFŠM¹&Ùëׯïíí=þ|éôg!D||üºuëŠ1ׯ_Bøûûk[Ö¯_Ÿ–––ï~u(4Íøñã«T©YÔ‚hƒ |}}çÎÛ¿///!ÄÝ»wçÏŸ¯Ïº¦ì',À?áDeôÔHd,R#ôFp„ÑuìØqÞ¼yݺuëÙ³gBBÂÂ… óMâßyÏ"m|È!Ë—/0`ÀðáÃ]\\V¬X‘žž>}útéÙ5kÖ 6ì7Þ˜;wn®ëÔ©3kÖ¬„„„:uêÄÆÆFGG»¹¹…††ê.Vºtéððð† †„„dddDFF6lØðÀEêjPP££ã[o½5`À€Ê•+:thçÎ*TØ¿tttçÎK2/^¼té’¿¿XXX®§z÷îݽ{÷B†ÂÎÎnΜ9}ûö èׯŸÝÚµksPƒ÷³HC 3B¡Q¹H( ‚#ŒîóÏ?×h4ëׯ߶m›F£ ®[·nxx¸A6îää´gÏžqãÆ­_¿þþýûM›6]½zµöÄŽÌÌÌdddä]±T©RÑÑÑS§Nýã?~þùgOOÏ:L™2%o©²W¯^Û·oŸ6mÚÂ… k×®~óæÍõæU«VŠŠš8qâ‚ <==ƒ‚‚Ξ=ûË/¿Lœ8qþüù¹‚cQIw¼xñâÅ‹s=U½zõîÝ»2Ò>îܹsÆŒ‘‘‘÷ïßwvv^µjU®Ë¶ÄsûiðW„ü/™PhTR#ŠHUÔžËÏÏ/66ÖØ«˜£´´´´´4S¾è²eËΟ??oÞ¼â­þôéÓ³gÏzyyI×5” 6låÊ•)))Ú ë˜=‡âÆåË—Wøå¸•öO&11Ñ ·Õ±<ÏÜlÚh©Ñj %ýà‘K@i…L†³ªa:ŽŽŽ&N?ÞµkWƒ нµZݾ}ûh[RRR6nÜØµkWóJúE¥J•ža.ž¹s 1S#§N©ÅBp„%;tè¿¿ÿþý‹½›#FìÞ½;88xÍš5ááá-[¶|ôèј1cäÞ9S ¿®¶£%ÆI*¡bzº˜H(.s*™E$ÝÊ¥$¦M›V¡B…o¿ý6,,ÌÎÎ. `ùòå¹î¶¬| @¹3‰ÑR#‘±˜H(‚#ðRÑqĈrw0¤F¥#5¢dŽxæ<˜š Ÿ­ö<à 5¢ÄŽ€’Ê''5yqr  DHær# Š# ˜ò™ž¤FE"5Â@Ž€âÈ?Š:5rP£a8G@‘™,5KŠÔƒâG@ÑÍ©†Fp©ÑlaG€¾H€•#8ôBj4'”aG -[¶ »r:qâ„J¥Z»v­ôëÌ™3ÝÝÝëÖ­+w¿ ¤F•P‘ ƒÔ£!8ÂìíÚµ+((ÈÃã|ùò-Z´Ø¸qcÉ·©V«ÕjµÜ{VdgÏžíׯ_ÅŠË–-ž••UòÍ^¸paÊ”)þþþ“&M*ùÖž>}jkk«zV… ä<Æ4©Q#4¤F 5˜¸Ì[TTT×®]}}}èàà°~ýúÞ½{ûí·aaa%ÙìîÝ»åÞ³"KHHhÓ¦Mvvv¯^½ªV­ºcÇŽ1cÆìÝ»·äI:>>^1mÚ´víÚ•¼Ÿ‰‰‰ÙÙÙÍš5óõõÕ6–-[VÖÁCaL–åÞQÏGpD‰dffÚÚÚÚØÈVºž8qbÅŠOž<éìì,„˜4iR­Zµ¦OŸ^ÂàhŽC1f̘”””Ç7jÔH1cÆŒ¡C‡._¾|Û¶m¯¾újI¶¬Ñh„öööé§Cg̘a c#5šÊ02¦ªQ>>>£F7nœ“““½½}“&M¶lÙ’••5qâD''§    .h Ñ]ý7Þpuu-y7ž*Ž(¦U«V©ÕêÉ“'ÛÚÚÎ;788¸AƒYYYï¼óN\\ÜâÅ‹û÷ïúôi£öA­VŸ9sÆÝÝ]Û’••uîܹzõê988çÏŸ_±bÅùóç>œk±íÛ·÷èÑÃËËkèСééé ,(UªTñ†bÚ´iÓ§OoÛ¶mppð“'O6nÜ8pà@''§îÝ»—p(²²²†¨Û˜””$„(]ºôsWÿùçŸûöí[¾|ùÐÐP›U«Výúë¯ÒScÇŽ­ZµêŒ3æÌ™£›J‹->>¾téÒåÊ•ûé§ŸþþûïÚµk7nÜ8×B Hf†ÔÓÐÀÐjÖ¬i‚UäU­ZµR¥J]¼xQúõË/¿B¼üòË™™™RK‹-„©©©ÒÂÁÁÁº«2ÄÅÅŰ]Z¹rå”)S4hP¡B…ßÿý¹Ë?zôH­V2DÛ2tèPww÷7nh4š6mÚÔ¯__£ÑdggתUË××799YZìÂ… RÊ9}útQ‡Â××·fÍšOŸ>•žzðà­­í°aÃŒñ%''7nÜX­V_¾|¹ð%?~ìíííååuýúu©åÆ•*UBüøãfÓ¦MBˆýû÷¤c;wvppÐ-9ûûû?~¼HQÚ?™„„¹»``ù9ôCvsVé<¾ÍMNi…L†Š£²©Tr¾z¡ÿóÚ¸qã—^zIz$„ µ³³“ZÚµk·ÿþôôôråÊéÿ‚YYY[¶l)èÙ×^{­u?ýôSi´C‡ÞÞÞÏ}-•JuàÀ¤¤$iùeË–-[¶,×b§NºpáÂ×_íææ&µøûûÿðÃÅŠ£GÚÛÛÛÚþóï.99Y‘žžnØ¡BìÞ½ûí·ßŽ_¼xq5 _øäÉ“III³gÏ®\¹²Ôâåå5räÈ &ã-‹ÏÉÉ™>}zpp°Ý¯¿þúÁôìÙóüùóÚC /j BpT6Ï;èNK!)oKQ¥¥¥I‡Ó0…F\\\zzú¡C‡ÂÂÂ^yå•‹/zxx²¼ƒƒÃ¼yóÆŽëããS»vífÍšuêÔ©k×®¹æL/_¾,„¨W¯žnc:uŠ7®®®üý÷ß/]ºSÐårŠ=W¯^}ÿý÷ûí·5jìØ±£mÛ¶Ïvi6l¨Û¨çe,‹ÑÏÝ»wÛÛÛkƒø›o¾ùøñãáǯ_¿~èСú¼(ŒŠÔh~˜¤† qr dðäÉ“|Û )?w³eÊ”i׮ݬY³þþûoivµpÇ¿råJDDD½zõ¢¢¢z÷î]¯^½Û·oë.£=GDWñ.ñøäÉ“îÝ»·lÙ2::ºFcÇŽ½xñbA5¶â Åš5kêÔ©süøñ¥K—^¸pAŸÔ(„* ªgËÛzž^Œ~VªTI›%;vBÄÄÄcTaX¤FóCj„iQq„)äääèþ—ïbE÷ܲeKÏž=W­ZÕ¯_?m£tðÜsƒfrrr|||Íš5ÃÂÂÂÂÂrrr-Z4bĈ%K–L:U»˜4Óºukmcñ"Îþýû£¢¢æÍ›7jÔ(Ý]6ÈP!~ûí·×_½oß¾K–,qrrÒ¿cÒ Î'NœhÓ¦¶QÏ›ŠÚϤ¤¤Í›7·mÛÖßß_Û˜šš*„Ðç©ÀsateÊ”‰‰‰ÉÎΖ uûöí;~ü¸‹‹KÞ%‹:ïÙ¤I!Äwß}×·o_mÁlåÊ•Bˆ¦M›Þ«ØØØæÍ›Ož¾¾”abG]ÇŽçÍ›×­[·ž={&$$,\¸0ßÔ(þ÷ÔËîîî“'Ož>}z£F^}õU•Jõûï¿=ztôèÑÒQ‰kÖ¬6lØo¼1wîÜ\ëÖ©SgÖ¬Y uêÔ‰ŽŽvss Õ]¬téÒááá!!! 6 ÉÈȈŒŒlذáô¹â®   GGÇ·ÞzkÀ€•+W>tèÐÎ;+T¨°ÿþèèèÎ;—d(.^¼xéÒ%ÿ¼W>ïÝ»w÷îÝ  ;;»9sæôíÛ7  _¿~vvvk×®½{÷®>¯[Ô~zxxLŸ>ý£>ªQ£FçÎ]\\¶mÛvêÔ©Ï?ÿ¼V­ZEO f;I†§R%&$àÚª@QatŸþ¹F£Y¿~ý¶mÛ4MpppݺuÃÃà ²ñ©S§úúú.\¸pñâÅ666þþþ?þø£væ:33óÁƒù^ ¼T©RÑÑÑS§Nýã?~þùgOOÏ:L™2%ï5®{õêµ}ûöiÓ¦-\¸°víÚááá7oÞ}zùòåwíÚõÊ+¯È½s2 , ©@1X~pøõ×_}}}åÞ-(&£NR3Cm,LRC1,üG[[[gg缕ÅÔÔT!D¾×¼sçή]»ªW¯®MBˆJ•* 6ìéÓ§7n”{Ÿ ˜HJȃ£ÂÓÓ399YJŠZÒa"žžžy—ONNBT«V-W»ThÔó¾ 4¤FsE¹JbùÁ±]»vÙÙÙûöíÓ¶h4š={ö¸ººä]¾Zµjjµ:...×Í¥ãªW¯.÷€!Í© cùÁ1$$ÄÆÆæ›o¾‘ŽkBDDDÜ»w¯OŸ>vvvRKZZZbb¢tzšƒƒC«V­’’’¾þúkíÂãââ-ZTªT©   ¹wŠŒøÀ ,üä!D¥J•Æ÷Å_ôèÑ£eË–III‡®]»ö[o½¥]fÏž=|ðA56oÞ,„˜9sfppð¢E‹¢¢¢jÕª•œœ|âĉœœœ?þøÅ_”{‡ h˜¤6Wä}(åG!Ä›o¾Y¡B…M›6EEEyyy 8pôèÑÒyòåîîµdÉ’ýû÷ïÞ½ÛÕÕµuëÖï½÷^ݺuåÞ(1R£Y 5B‘T>—†æççWÔë8c˜XË–-=ztêÔ)¹;"›'NþøãýúõBÌœ9sÞ¼y^^^çÎ3}g”öO&11Q±—ÓË?HæBà¨äžÅSÚ_!“±ücaÍZµj5}útƒlJ­V«Õj¹w¨ÈvíÚäááQ¾|ù-ZêzR.\˜2eŠ¿¿¿þ·S‚"ÍåF(ÁëÔ©S0ÔÖvïÞ}üøq¹÷©h¢¢¢Ú¶m{õêÕ¾ûî»wïÞíÝ»÷²eËJ¾åøøx!Ä´iÓBCCåÞKæ™øaлQÈHP0«8ÆÆ“™™ikkkc£ ÿÉÊÊÚ¹sçÁƒ-Z¤=/^²Îĉ+V¬xòäIé&I“&MªU«ÖôéÓÃÂÂJ¸eé{{{¹v ú0^ü ÜX-}ßÃŒøøøŒ5jܸqNNNöööMš4Ù²eKVVÖĉýýýœœ‚‚‚.\¸ ]8$$Dwõ7ÞxÃÕÕÕH}KNN~õÕW§OŸ^Œ«µgddÌœ9Óßß¿L™2ÞÞÞaaa·nÝ’ž Ò½ðç‘#G:uêäææV¯^½O>ùdÉ’%*•êÌ™3E!Dxxx½zõÝÜÜš4i²zõjƒŒÃ“'Obbbºu립µ¦££cË–-¯_¿.ÝÃý¹öîÝÛ¡C77·Zµj7.33Sjã7zöì)„hÑ¢ÇW™ &©ÍåF(GÓªU«ÔjõäÉ“mmmçÎÜ Aƒ¬¬¬wÞy'..nñâÅýû÷?}ú´é;æéé)ÕÃbcc_zé¥"­¶fÍšöíÛ÷éÓçüùó+V¬8þüáÇs-¶}ûö=zxyy :4==}Á‚¥J•*ÞàL›6múôémÛ¶ ~òäÉÆèääÔ½{÷ŽƒZ­>s挻»»¶%++ëܹsõêÕsppxîê?ÿüsß¾}Ë—/jcc³jÕª_ýUzjìØ±U«V1cÆœ9s5jdœ·%e¤IjR#`åŽ(¦G9sFJf¶¶¶ãÇOKK;vì˜tYõ³gÏîß¿ÿáÇåÊ•“»§úJKK[»víàÁƒ¿ûî;©%,,ì—_~¹yó¦———v±œœœ>ø råÊÇŽsssB¼ÿþûõë×/ÞàDFFÖ¬YsÛ¶m¶¶¶BˆñãÇ»»»oݺµäÁÑÖÖ¶víÚÒãï¿ÿ>>>~Ë–-7oÞüᇞ»î“'OÆŒãááqìØ±Ê•+ !&Mš(=[§N?ÿüSñÊ+¯4oÞÜ ƒ÷èÑ£:uêh/Ë/„HHHxðàAݺuuQdÚhF(7BñŽ(¦ÆkëyÒ uBCCµ_ðíÚµÛ¿zzz‘‚cVVÖ–-[ zöµ×^3êÙØØ¨Tª$%%y{{ !–-[–÷T’S§N]¸pá믿–R£Âßß?88X7é?8Gµ··—R£ø÷Vééé醜O?ýT:¥C‡Ò®îäÉ“III³gÏ–R£ÂËËkäÈ‘&LxîºEígVVV=¢££¥W™={ö€.]º4dÈ#GŽ!|||¶nÝZ³fÍ⼩ÖÊHñƒr£q‘aŽÊ¦’õÕ ý ¦;*E¢¼-E•––&<—wòüIýóÏ?uï¾bÅŠÁƒ{wæÍ›7vìXŸÚµk7kÖ¬S§N]»vÍ5 }ùòe!D½zõtëÔ©S¼Áquu=xðàï¿ÿ~éÒ¥¸¸¸˜˜˜¬¬,ƒ Ž®¸¸¸ôôôC‡………½òÊ+/^ôðð(dyi6l¨Û˜ï½ÝKÞÏüqÇŽÛ¶m øþûïßyç_ýuëÖ­½zõúî»ï^ýõ?üP;QŽçb’€ñ•ÍBÿJ?yò$ßvggç"]‘ÞÓÓsÕªUÚ_›6mZÂŽ >¼OŸ>›7oÞµkWTTTDD„ŸŸßž={<==µËhÏÑU¼K<>yò¤wïÞQQQ5êØ±c=š6mÚ Aƒ N.eÊ”i׮ݬY³þóŸÿlÚ´éí·ß.da©ªR=ó?.zž^Ô~^½zµV­Z;vBŒ;6++k„ Mš4‰ˆˆ"{Ÿ>}/^\ì·j¤F3B¹f‚àSÈuYœ¸¸¸|+ê,gÙ²e `¨N&''ÇÇÇ׬Y3,,,,,,''gÑ¢E#FŒX²dÉÔ©Sµ‹IsÐ111­[·Ö6ÆÄÄã÷ïß5oÞ¼Q£Fé‚AgË–-={ö\µj•t£‰t2ûsƒTÇ=qâD›6m´zžêTÔ~vìØqÊ”)³fͪW¯ÞÆ×­[·xñâo¿ý¶Y³fï½÷ž««ëÒ¥K_}õÕb ¯uú_üàÐFF@p„Ñ•)S&&&&;;[*ËíÛ·ïøñã...y—,ÉllÉÅÆÆ6oÞ|òäÉ3gÎBØØØH±)×´{ýúõ½½½çÏŸ/þ,„ˆ_·n]1^ñúõëBmËúõëÓÒÒòÝÓ¢N“&M„ß}÷]ß¾}µµÃ•+W =J³ 4ðõõ;wnÿþý¥ƒîÞ½;þ|}vª¨ý Œˆˆ˜>}zFFFÛ¶m;V³fÍ!C†Ìš5ë¿ÿýïÝ»w»wïþùçŸcx­šAS#åF££ÜóAp„ÑuìØqÞ¼yݺuëÙ³gBBÂÂ… óM¢Ä³±úX³fͰaÃÞxã¹sçæz*00°N:³fÍJHH¨S§Nllltt´››[®›£”.]:<<<$$¤aÆ!!!‘‘‘ 6—¹ÑäèèøÖ[o 0 råʇÚ¹sg… öïßݹsç’ Ž»»ûäÉ“§OŸÞ¨Q£W_}U¥RýþûïG=z´t€f!Cagg7gΜ¾}ûôë×ÏÎÎníÚµz^³oâСC‡ªÛboo?mÚ´iÓ¦i;0Fü 5©f… €Ãè>ÿüóQ£F;wî½÷ÞûòË/;wîüÁÈÕ™ÌÌÌä{ìR¥JEGG<øàÁƒ3fÌØ½{w‡8÷×½zõÚ¾}»——×Â… 9Þ£GñïD°þªV­õ /,X° <<ÜÁÁáìÙ³ÿýïSSSõ,ïnêÔ©+W®T«Õ‹/^²dI©R¥~üñÇðððç…´;wî¬[·nddäW_}õðáCÝÃI¡hÚÀhTÆ.ðX!??¿ØØXc¯bŽÒÒÒÒÒÒ ?Ÿ×–-[vþüùyóæoõ§OŸž={ÖËË«R¥JÚÆaÆ­\¹2%%E{a³ çPܸq£|ùò¥K—–»¿ÿ£´2‰‰‰²ßD矺“Ôæ¥dåF%|ð¬–Òþ ™ G˜Ž£££ì©ññãÇ»ví*èÌe}¨ÕêöíÛëž”“’’²qãÆ®]»šWjÔ(*Uª¤¨Ôˆ‘ÁÖåСCþþþýû÷/ölllFŒ±{÷îààà5kÖ„‡‡·lÙòÑ£GcÆŒ‘{çL=Pƒ&Gj4Žn„2§ PrAAAÒ­\JbÚ´i*TøöÛoÃÂÂììì–/_®½#Ÿ¹0ÈP@A¸þã#8E&GŒ!wG!¤º•`’ÚÜPn„ybªÌ©Ñüa¶Ž`ÆT½£=©@áŽ`Æ [n„)Pn„9#8€Ùâú;L‹àæI% 8MMj4Ê0sG0W$&Fp3D¹ÑQn„ùã:ŽJáçç'w˜ •P®ÜHj ?‚£"XçÒ!11ÑÇÇGî^Æ$cЫðÀ(7Â"0U fÆ€ „r#€"!8€ùà†ÔfŠr#,ÁÌ„¡S#åF!5‚Àœ*„ÁÌ“ÔfŠr#, ÁïßÔH¹€¼Ž lÚh¾(7ÂâÀ<BÈŽà F¹Ñ|‘ôa‰Ž Tœ@aŽ` R½¢Üh:”a¡Ž HLRP‚#(ϳ©‘ê•™á ƒå"8€å£ÜÀ Ž 0œcÖ(7¢@Iò¤Æ’çÊ …à–ŒÔhR”a鎠F(7€@Œph#åF“"æÃ @8!€9 8€B•°€E¹Ñ¤(7Â:@n”˜ ‚#ÈÊ8©‘r£IQn„Õ 8€•$Š ÁäÃ$µ ÜkBp™0I ÀÜ@q¨a™ Þ*X‚#Èr#3Dp“+45RÃ2¼U°>G°”ÁL‹3©-åFX%‚#˜ÐóRc±ÓåF&@p³Gj45ʰVG0&©˜9‚#˜„©±xe,ʦF¹VŒà½ÀøŒ6IM¹€)@˜ÿ4¼O°nG02Ê,ÁŒ‰3©- åFX=‚#ȯ„r#Ó#8€ÑPn´$”‚#‹1S#åF² 8ð<”!ÁŒ¢(寢fÊäBpCãÐF C¹øÁÌ åF2"8€A±ÜH1Kéx‡G0#ORSn /‚#ôBp)z¹±H³ ”eÀ<5ð,‚#ôBpCàèFËC¹ȃà%åãëSŒPG,`vŽ t”e@®òCp€’Q‰Ä„D¹;¦@p€0þÝ)7Ê€r#P‚#È€dÀ ¸(7°2GtP  Fp€b)A¹QÏdB¹€Ò èŒ?I yPn Ep%¢Ü@ŽPD”-åFàylåüôÓOëÖ­‹/S¦LëÖ­ÇçêêZø*çÎ[ºtiLLÌ£GüüüFŒѤI¹÷€ÜJœõ '”(“UTÃÃÃ?þøã?ÿü³Q£Fe˖ݰaÃÛo¿‘‘QÈ*;wî ݹs§‡‡G@@À©S§ ´sçN¹w`”=X~pŒˆˆðôôܺukDDĶmÛ töìÙ9sæ´JJJÊG}dkk¹víÚˆˆˆ5kÖ”*UjÊ”)999rïù˜d’šr#Ųüà¸nݺœœœÑ£G{xxH-&LpvvŽŽŽ.(nذ!55õÝwßmذ¡ÔR¯^½Î;ß»wïܹsrï3FU €Y³üàxìØ1›6mÚh[Ôju«V­’““Ož<™ï*{÷îU©T={öÔmüòË/ccc_~ùe¹w€L(7Z0=  ?9F£ÑÄÇÇ»¹¹¹¹¹é¶×¬YSqíÚµÀÀÀ¼k?ÞÕÕµbÅŠÇ?uêÔƒ^zé¥öíÛ;88ȽCd™Ô`ñÁ1===;;ÛÅÅ%W»³³³âï¿ÿλJffæÃ‡«W¯>mÚ´5kÖhÛ«T©2oÞ¼:uêèóº~~~¹Z¶nÝ*÷`X…ëׯËÝX&ᓘ˜XгEùà¶_߄ĄD‘¨÷Ö`>¾¾‰ "Ñü†¿x&Ó©S'¹» ¥S§sµ—-[V‘’’’w•‡ !âããïÞ½ûÅ_´iÓæñãÇëׯ_¸pá¨Q£6oÞ¬OÝ166Vî]·^>>>rwG%„FøˆÂ>Zú|ðþ-év`pæ;ìæÛsó’÷k=o…ÈJXø1Ž...*•*===Wû£GÄ¿uÇ\ìíí¥³fÍêÙ³§‹‹KÅŠßÿý^½z]¿~}Ë–-rïÓ2Õ$5G7ʃ£¢PVpüꫯâãã ¸A[[[gg缕ÅÔÔT!„öþüÌ™3[¶lùÞ{ïmÛ¶-33³$Ûl×®]vvö¾}û´-fÏž=®®®ù®”ššzùòeÝFéÚ=/½ô’܃À,QXeÇ1cÆüñÇ?üðChhhÙ²ewîÜ9räÈæÍ›O›6íôéÓÅÛfHHˆÍ7ß|#×(„ˆˆˆ¸wï^Ÿ>}ìì줖´´´ÄÄDíéi½zõB|üñÇÚªç¹sçþïÿþÏÙÙ¹C‡rS¡ÜÏRi”ú¿ÀYYY{÷îýí·ßvîÜùøñc!„··wÏž=_{íµÊ•+iSË—/ÿâ‹/*W®Ü²eˤ¤¤Ã‡תUkùòåÚËôDEE}ðÁ5jÔØ¼y³Ô²téÒ¹sç:;;¦§§;vL¥RÍž=»sçÎÏ}9???Ϊ–Kbb"çÂ0Š’õùàRq$8ÊÃü‹ÀüÅ“‘Õ~×+÷r<¶¶¶mÛ¶mÛ¶mzzúúõëçΛ””4þü¯¿þºQ£F}úôéÞ½»Z­ÖgSo¾ùf… 6mÚååå5pàÀÑ£GKWä)È;ï¼ãîîþý÷ß}ºtéÒ´iS}Îz¡ÜÀ¬Qn`v”uÇèèèC‡”GŒñꫯÊÝG–Ë„“Ô ` ”ÓÓÓŸ>}ZÐSW¯^ý믿äî#åFæHþ©ê={ö¼÷Þ{Ú_¿ÿþûU«Vå],''G£ÑT­ZUîþ°PÆ)7RÞRÞ däŽjµÚÉÉIz|ÿþýR¥J•)S&ß%]\\&L˜ wX"ÓNRSn`¦äŽ-Z´8|ø°ôØÏÏï?ÿùϤI“äîÀâPnJLþà¨kèСr÷€•¡ÜúQVp?~¼Ü]ƒ¡ÂÀÂÈW¯^-„hܸq5´¿nÀ€òö€E¡Üh%Hñ€!Èg̘!„˜>}º¥_ Gp`0\¸ŠBæà8bÄ!Dݺu¥_?üðC¹`q(7"sp|ÿý÷u}ë­·äí+bärcÞ¬Â<5s§¬;Ç@±d®8îÞ½»¨«´iÓFÞ>°&?º‘r£l˜§ GæàøÎ;ïu•ØØXyû ÀìqN ‹ÌÁ±Gr^®"åFÙPn Jæà8{öl¹G€•¡ÜÅÅÉ1`\”eC¹04îÀš˜¤ÜH\`©¸s «!Ç$5åF–„;Ç,…_À¸s ëÀ91PbŠ>9&---33Sî^@èÖ¹˜§– åFÀ8d®8æëìÙ³ .Œ‰‰¹{÷®MåÊ•4h0|øpooo¹»ÀÊÊÊúî»ïäî#³bÚr£¶ÔE¹€ERVpŒ‰‰)]ºôàÁƒó>5pà@‡³gÏÊÝG€‚1O “²‚£¢bÅŠ¶¶ùœ²#%“žž.w˜ŽnƒRVp ¸víZjjjÞ§ÒÒÒk×®-w˜ Τ¶B”#SVp Ñh4'NÌÊÊÒmÏÎΞ4iRvvv»víäî#äÐÀâÉ|ÇC‡éþªV«{÷î½aÆ:„„„øúúªTªÄÄÄõë×_»vÍÏϯS§Nòv€y¯ÜÈ<5 &sp2dH¾í7nܘ?~®ÆØØØfÍšÅÆÆÊÛg€QòŒOæàØ£G¹G€Å¡ÜÆ!spœ={¶Ü#À²Èu&µJh4B%÷Þ[/Ê€I(ëä˜Â}ôÑGmÛ¶•»?Ê,žÌǼîß¿ÿÇ$%%åjÏÈÈøý÷ßÕjµÜ `\‚Ç:QnLEYÁñöíÛ¡¡¡ýõWA 0@î>@~4”X>eÇï¾ûþjÔ¨Q÷îÝ·lÙräÈ‘O>ùÄÁÁáÒ¥K«V­0`ÀäÉ“åî#¥’¯ÜèëëCh` ”÷íÛWºtéE‹999µmÛ¶E‹>>>Íš5Bøúú~úé§}ûö­Q£†ÜÝ <òNRSn”óÔ€ )ë䘛7oV«VÍÉÉIQ¡BWW×óçÏKO…„„¸ºº~÷Ýwr÷ÀJ)+8 !llþ×¥ªU«&&&JÕjµŸŸßÙ³gåî åᜫE¹0-eÇŠ+^¹r%--MúµJ•*Ç×>«R©®_¿.wà*¡JHL»` Ê ŽíÛ·ÏÈÈøðÃÿüóO!D``àÕ«W÷ïß/„¸wïÞ‰'*W®,w( åF0e3hРmÛ¶íܹS£Ñ,Y²¤U«V¶¶¶ï¿ÿ~ƒ .]º”žžÞ¥K¹û@IäN*é²ß ‰r„Ubž09eUÝÝÝW¯^=f̘ºuë !*W®üñÇgff8p 99¹]»vo¾ù¦Ü}°Rʪ8 !ÜÝÝßyçí¯¡¡¡Ý»w?w§§¯¯¯Ü½ $Ê(7j4"‘‚£éQnä ¸à¨+--ÍÎήlÙ²M›6•»/ÖN‰ÁñìÙ³ .Œ‰‰¹{÷®MåÊ•4h0|øpooo¹»@1PnÔJîa°R”™(ëG!ÄüùóCBBvïÞ}÷îÝÒ¥KÛÛÛ_»ví—_~éҥ˚5käîe;5€uRVpÜ»wïâÅ‹Õjõ AƒvìØqæÌ™S§NíÞ½{èСBˆ™3gž>}Zî>À?({°6Ê ŽkÖ¬Ñh4cÇŽ°j”X3™¯ãxèÐ!Ý_ÕjuïÞ½7lØÐ¡C‡___•J•˜˜¸~ýúk×®ùùùuêÔIÞ’Êe^@n2Ç!C†äÛ~ãÆùóççjŒmÖ¬Yll¬¼}`µ(7°r2Ç=zÈ=ÌÂÊT¾dÀ  spœ={¶Ü#@ñ”‘)7€ïU-„¸uëÖÅ‹“’’ž>}êëëëïï_©R%¹; åF@ïß¿¿`Á‚ü1;;[Û¨V«ûõë7zôhggg¹;À´”Qn¥Çììì÷Þ{ïÔ©S¥K—nß¾½···Z­¾råÊ®]»~øá‡‹/®^½Z­VËÝMVGwžšâ«¥¬à¸bÅŠS§NÕ¯_Á‚Úö»wïŽ1âÔ©S+V¬:t¨ÜÝ`*”!ˆê€‚(ëàûöíS©TóæÍÓMBˆ *ÌŸ?߯ÆfïÞ½r÷€©(&5rZ H”/]ºäíííåå•÷)OOÏ_|ñâÅ‹r÷`B”%QVp,]ºtFFFAÏfdd888ÈÝG&¡Ôr#1€5SVpô÷÷¿}ûö©S§ò>uþüùëׯ¿ôÒKr÷`*ät@a”¥ÉŒ92×±Œû÷ïÿý÷…Ý»w—»ŒO©åF°rÊ:«ºK—.{öìÙ´iÓ[o½åååU­Z5!DRRÒ7„Ý»wïÖ­›Ü}`dŠI€\”…³fÍjҤɼyónÞ¼yóæM©±B… |ðA¯^½äî+’·ÜÈÄ©I1Ü€ò(.8ªTªÞ½{÷îÝûÎ;W®\Ñh4ÕªUóôô”»_L‚r#(˜²‚ãõë×srrªV­*„ðððÈu5G€µ Ü(’²‚c—.]žù¤G=zô¨Zµª““S®eÚ´i#w7šâË¡´à$=¸wïÞ‚ ò]&66Vîn°d”eF¹P0eGéÎ1¬‹9” 3 ”gÏž-w˜–ÂR#åF™‘ÐeSÖÉ1¹dff¦§§ËÝ ¡´Š£$..nÑ¢E§OŸ¾uëVNNNÅŠëÔ©3bĈ—^zIî®0(Ê`V—-[öÕW_åää!J—.­V«oݺuëÖ­;wŽ3æ­·Þ’»ƒ¬Ó§&Â@Ч¬©êC‡}õÕW*•jРA;vì8sæÌ©S§öìÙfcc3wîÜC‡ÉÝGB¹̲‚ã?ü““3nܸɓ'W©RE¥R !*V¬8nܸI“&åääDFFÊÝG† °ÔùQn̲‚ã¹sçìíí ”÷©ÐÐÐ2eÊœ;wNî>X)Ǭ¬¬›7ozzzªÕê|:jcãåå¥áÿG  ¼rc!óÔÂLQÌ„‚‚£J¥*S¦Ìµk×úèÉ“'ºOeffN˜0A¥R :´xÿé§ŸBBBš7o>iÒ¤û÷ïë¿î76l8nÜ8¹G°fUnèRÖåxú÷ï³{÷îöíÛ÷éÓÇÇÇG¥R%&&þüóÏ·nÝêҥˣGvïÞ­]Þ××·jÕªÏÝlxxø’%K5j”””´aƸ¸¸ï¿ÿÞÁÁá¹ëj4š>úèÑ£Gr `”—ŸÓ_fPM€Q̇²‚c—.]¤wîÜY¼xq®g£¢¢¢¢¢t[>üðÃç^Ù1666""ÂÓÓsýúõBˆÏ>ûìû￟3gΔ)SžÛ¥+V=zTî`,”@Ê Ž=zô(ÒòÕ«Wî2ëÖ­ËÉÉ=z´”…&Løå—_¢££'OžlcSØd}\\\xxøK/½téÒ%¹Ç0æVn„)PnÌŠ²‚ãìÙ³ ¾ÍcÇŽÙØØ´iÓFÛ¢V«[µjõÛo¿}úÛo¿8p`³fÍbbbŠúº~~~¹Z¶nÝ*÷`X…ëׯËÝäÃÇ×'1!Q$ÊÝgùúø&<§[>‰‰zuš^ñø¡ç#_|ðL¦S§NrwA),<8fdd!sµ—-[V‘’’RÐZãǯR¥Êرc‹÷º±±±rïºõòññ‘» ȇ2ß—çöJÿn+sM¥ £VB|ðL#ï×zÞ ‘•°ðàèââ¢R©ÒÓÓsµK—בêŽy}ñÅׯ__³f>×ëðÝ–ÂÂq´µµuvvÎ[YLMMBhϳÖuôèÑ5kÖ¼óÎ;/¿ü²ÜÝÌŸ"S£^çè;ÈãÂÓÓ399YJŠZÒQ5žžžy—‹‹B,Z´Èï_½{÷Büúë¯~~~ݺu“{‡”åFùÌódáSÕBˆvíÚÅÆÆîÛ·¯k×®R‹F£Ù³g««k@@@Þå½½½µKJRRRöïß_©R¥€€€Š+ʽC€ù0Ûr# _–CBB–,YòÍ7ß´nÝZ:'&""âÞ½{aaavvvÒ2iiiwîܱ³³{á…Z´hÑ¢E Ý-ÄÄÄìß¿?00З™`bú”)‡ã ˜-ËŽ•*U7nÜ_|Ñ£G–-[&%%>|¸víÚº÷*ܳgÏ|P£FÍ›7ËÝ_ÀRPn‹cùÁQñæ›oV¨PaÓ¦MQQQ^^^=z´T}`JMÝ(?Ê€9Siølh~~~\ÇQ.‰‰‰\ÕLÌ<85ÛðÁ+‚£áðÁ“‘Õ~×[þYÕLÍÊR#X‚#ƒRjj„"Ê3Gp`8ºJŽàÀpÌ¿ÜHË\Àü ‚#Qp¹‘yjùQn,Á€!(85 …àÀÂé_n¤(f,Œ,`)ŽJŒr#X‚#€’QvjäèFùQn,Á€Å*Rj$ÞÀs”€²ËÃ"8(.e§F&©B.`YŽ@¼½ åF<y°8Gè…à è,«ÜH]Ì(VÀ‘²S#ÀxŽ, G7*åFÀBåF°bGzS|j,F¹‘Ò˜á1¦€å"8@/Gú±Är# r#`ÑŽô øÔXÌÝ"ä@QXÊ`GÏc¡åF%\ÀÒÊRcñÊ„(*‚#ÀH†8(˜å–Å@pPsHÅß9ªc†Å€ÖàÀŒQnS"8È9”IJA¹°GV‡œÅCpåFèX‚#€g™Cj,Ñþ‘s ¸ŽÌåF¥ †V†à@‡¥—%Apð/3I%)7R 3$F°>GB³I˜ŽnT Ê€U"80›rc S#QJˆàX=3IP28`­ŽÌ“Ô ;‚#`ݬ¦ÜHÌ`JÀŠ+f>©‘r#(Á€å£Ff0 %`ÝŽ€µ¢Ü("‚#`•H(Ê€Õ#8°p¤0‚#`}(7¢àŽ€Õ1ŸÔh˜Ý%í€á(åF!€Bëb>åFR#(Á°æ“ ¶Ç”É ‚qð/‚#`Ì*5Rne"8PC¥FÊd†Á8ÐAp¬€Y•ŠEp,Y¥FÊÊÂ8xÁz!8Í*Ë0 Êò 8–ËZS#Œ„àX(³JPÒ7€üÈr£²0ˆ @p,‘Y•9´ÌÁ°8f• ¼ëTÊJŽAP0‚#9Qn3Bp,‹Y• ›©”ƒ PGÀ‚˜Uj˜‚#`)Ì-5RnTÀóÈ€CÀ‹`nåFï=•²’cèà˜?sK”‡Ô@?GÀÌY}j$ó€É˜µF%"zÐÁ0gæVn4üyÀ„Ž€Ù2·ÔH¹Q‰ˆÞŠ‚à˜'R#™LŽà˜!sKP(¢7€""80:ÊJÄ(:‚#`nÌ­ÜÈ¡`1Ž€Y!5J›¥XVBŒ €b!8æÃÜR#À åF…bÁ0æVn$5*# Ž€9 5€à(ž¹¥Fã¡XVRŒ €’!8Êf†©‘r#X*‚#C2^j¤XVRŒ €#8 fnåFR£r1‚ à(© 0¶rwÀD~úé§uëÖÅÇÇ—)S¦uëÖãÆsuu-dùŒŒŒµk×®_¿þúõëåÊ•«Y³æ›o¾Ù¼ys¹÷VÃÜR£QQ,+)F€XEp _²d‰££c£F’’’6lØ÷ý÷ß;88ä»|VVÖ!CNŸ>íììÜ´iÓÇ9rdÿþý#GŽ>|¸Ü{+`†©‘IjåbŽåOUÇÆÆFDDxzznݺ5""bÛ¶mƒ :{öìœ9s Zeݺu§OŸnذáž={/^üÝwßmܸÑÅÅeáÂ…/^”{‡`éH¥²üà¸nݺœœœÑ£G{xxH-&LpvvŽŽŽÎÉÉÉw•­[· !&Ož¬-IÖ¨QãÝwßÍÎÎ>pà€Ü;(‹QS#Ų’b”åÇcÇŽÙØØ´iÓFÛ¢V«[µj•œœ|òäÉ|WILLttt¬]»¶nc5„×®]“{‡`ÑÌ­ÜHjT4F€¡Yø1Ž&>>ÞÍÍÍÍÍM·½fÍšBˆk×®æ]kéÒ¥¶¶¹G&&&FQ¥J¹÷ –‹ÔP6 ŽéééÙÙÙ...¹Ú…ÿýw¾kÕªU+WËáÇ#""J—.ݳgO}^×ÏÏ/W‹4ý c»~ýºÜ](&_ŸÄ„D‘(w?ôæëã›`Ìûúú$$$&šÉ€(ðƒçã뛘 ÌeQ, üàYªN:ÉÝ¥°ðà˜‘‘!„pttÌÕ^¶lY!DJJÊs·½zõê/¿ü2;;û«¯¾rww×çucccåÞuëåãã#wŠN%„Fø3ë¹ñ†úß)Vse}ðT*¡Ñ(©C0e}ð,WÞ¯õ¼"+aáÁÑÅÅE¥R¥§§çjôè‘ø·îXˆ#GŽLŸ>ýÏ?ÿôòòúüóÏ›5k&÷Á™Û µàÐF°VmmmóVSSS…Úó¬óÊÌÌœ={vdd¤½½ýˆ#†ZÐEkáJGô`4…žžžñññ©©©NNNÚFéÈ)OOÏ|WÉÉÉ;vìöíÛÛ·o?uêÔBò%PRæVn4vj$ó”#À˜,ÿr<íÚµËÎÎÞ·oŸ¶E£ÑìÙ³ÇÕÕ5 ßU"##·oßÞ¿ÿ… ’aD¤Æ\Û'ó€²Y~p ±±±ùæ›o¤ã…÷îÝëÓ§Ô’–––˜˜(ž¦ÑhV­ZU®\¹>úHî¾Ã¢‘smŸÔXr "#³ü©êJ•*7î‹/¾èÑ£GË–-“’’>\»ví·ÞzK»Ìž={>øàƒ5jlÞ¼ùîÝ»W¯^upp0`@Þ­õêÕkàÀrïÌ©Gj`|–…o¾ùf… 6mÚååå5pàÀÑ£GKWäÉKª;fddœ?>ﳜX  5æ} 2˜•†¿Ö†æççÇuå’˜˜¨ô«š‘ó¾„ù§Fù?x0ˆ(:ù?xVÌj¿ë-ÿG@AHy_‚ÀSr "S!8¦BjÌûž’c˜Á@>H€¼Ž€I˜U¹‘Ôh6G¦EpŒÔc 509‚#`d¤Æ¼¯Bà)9€Ž€1‘ó¾ ÌÁ0RcÞW!5ã@&GÀ8Hy_…´cŒ#ù# 5æ}ÒŽA0ŽdEp Ô˜÷UH;`Ž€A‘ó¾ ©ÑPJr³•»€1ŸÔ¨*!„ ®ò-QÇ@H€àˆY¥F f†Ñ  LU†@jÌõ*äb4(Á(1Rc®W!瀅"8%CjÌõ*¤FÃb@( Ç8%`&©Ñ4§ÂBŽÁ1 †à—ù¤FÓDFÁ Ô†Ej <G XHº¯BÂ18Æ€"qŒ#Pt¤FÝW!ác @©¨8Ed©‘ƒÍc @ÁŽ@Q˜Ijä FsEj lG@o¤Fí«oÀ*ý(>5rûi³G xG@æ)4š7€9 8…R !)4ZR#3Ap F¡QzRQ1¾ÌÁ(€²S#…F Aj`VŽ@~Ÿ)4Z†€¹!8y(85Rh´¤Ffˆàÿ<–ò¢J·Þ(µ ˆŒPLG(@ Ï$C•F§]‚òÅ0P\6rwÖMõo¡±(ßã*¡Òþ•Fû£Ñˆ„„DFh€gHŸ>P\T!½«Œÿ•¨y¦²ø¿¯~2žK{d+‘J†à“+ 2æ=m埰¨‘þ£³ßþÐÇ2€AaB*í„Èïìæ\§²õnÑÀÿÀŽ0Šgnâ¬m”~Õù*×MŠ*’" ‚ÈFCpDñå3¹ü¯¾µŸ•Öüs^‹Îb$E 2€ñQ˜B¢¡(ü úßÈÈì3ŒŽ#˜ ÁѪž E1¾‹ÿÝ Jóü»B%B‰LŽàh±ž E‰¿pŸ¹ ´êŸ“Ÿÿù•¼ã¡Ä2!8š}¡0·jž»÷ Ðü¯/q%FÁQAäJ„ùôDäÓ•ÜEÄÜ'(ò"(Áшô ‚Z²|-ꕟ]A»`DäEP‚£á]¾«ÀC°ò ˆBÿƒÉ‹0 ò"(˜Ü°@5kúi4²}ë©„*ßÐäûóÜÍýó£ù÷08ݪö³ P*Žf© ò¡0ÔéÌÔaÀܪh(Œw±ò"Œí™›Qò93Cp”Gá¹P˜ø:ˆäEa,ÁÑ(”• è¢noCÊuAÂ"X ‚£á]޽,.,ÅE eE°œUmx5ýjÊÝ…g©89FëÄ}Ý“õŠŠ£%Ê5OÎ÷8J.ïåì ˆ`}Ž–‚ca@ÄD@~Žf‹²" …˜ÐÁÑ|QBÝ=˜ÐÁQ©ò~Åóå=ÆApT€|¿åùŠGáT_+”€0‚£i‘¡'Õs®!O:˜×q,ÐO?ýмyóI“&Ý¿¿+« øÑä÷ÃéÔ©“Ü](T®kò£{YÄ| $JÿàÁBñÁƒéQqÌ_xxø’%K5j”””´aƸ¸¸ï¿ÿÞÁÁá¹ëÆ^Ž%Z‹çÖs!ðÌÇ|ÄÆÆFDDxzznݺ5""bÛ¶mƒ :{öìœ9sôYݯ¦ŸÜ{ýè_ÿ+v]2!À‚ó±nݺœœœÑ£G{xxH-&LpvvŽŽŽÎÉÉ‘»wV¦ˆI.öòe#Æ>‚ ÀºóqìØ1›6mÚh[Ôju«V­’““Ož<)wä…7ãý1ÉùÕ¬IìÀH8Æ17Fïæææææ¦Û^³fM!ĵk× ßÂ?E/3B„z 8æ–žžžíââ’«ÝÙÙYñ÷ß?w ~5kʽEägQeúYÖîÀ\ðÁƒ,øàÁÄ޹edd!sµ—-[V‘’’òÜ-ÄÆÆÊ½†Ç1޹¹¸¸¨Tªôôô\í=ÿÖ¬Á17[[[gg缕ÅÔÔT!„ö|¸V­ZË—/Ï{™+Ap,Ðo¿ý¶iÓ¦³gÏzyy5nÜxôèÑÒy¬ÁzáGè…འ‚#ôBp€^ŽÐ Áz±•»€ÁŸ;w.W£»»ûäî,ÓO?ý´nݺøøø2eÊ´nÝzܸq®®®rw Ž?tÁ–ãêÕ«ÕªUÓmä.‘0’ððð%K–8::6jÔ())iÆ qqqßÿ½ƒƒƒÜ]ƒ%ãäEp„…HMMMIIéܹó¼yóäî ,_lllDD„§§çúõë=<<„Ÿ}öÙ÷ß?gΜ)S¦ÈÝ;X,þÐAvã qõêU!D®ÿ Œdݺu999£G–R£b„ ÎÎÎÑÑÑ999r÷‹?tÁ"))Iáíí-wG`Ž;fccÓ¦Mm‹Z­nÕªUrròÉ“'åî,è ;‚#,„ô÷ôæÍ›ƒ jÔ¨QëÖ­ß{ï½3gÎÈÝ/X Fïæææææ¦Û^³fM!ĵk×äî ,è ;‚#,„ôm=þü;wî4mÚÔÝÝ}×®]¡¡¡ëÖ­“»k°4éééÙÙÙyOGpvvBüý÷ßrw‹?t'ÇÀBܼyÓÁÁa̘1ƒ ’Z<øî»ï~þùç-Z´¨T©’Ü„åÈÈÈB8::æj/[¶¬"%%EîÂbñ‡²#8ÂÌdee}ûí·Ú_ÕjõÛo¿-„X±bE®%›5köúë¯/[¶lÇŽÚ?²@ɹ¸¸¨Tªôôô\í=ÿÖcàdGp„™yúô©îu(J—.-Ç|5nÜxÙ²e—/_–»×°(¶¶¶ÎÎÎy+‹©©©BíyÖ€ið‡¦Dp„™qppˆÍÕ¨ÑhrrrT*•Í3‡íªÕj!D¹råäî5,§§g|||jjª“““¶111QzJîÞÁ2ñ‡JÀÉ1°IIIµjÕ}ºL™2 .|å•Wäî,ÐòåË¿øâ‹Ê•+·lÙ2))éðáõjÕZ¾|9w †ñð‡²#8Ârܹs端¾:tèÐýû÷«T©òòË/9ÒËËKî~ÁbýöÛo›6m:{ö¬——WãÆG-]‘0þÐA^Gè…c ‚#ôBp€^ŽÐ Áz!8@/Gè…འ‚#ôBp€^Ž¬Ë¸qãüüüvïÞ-wGÄ7ß|ãçç·zõj¹;ú"8@/¶rw¬TPP»»{Æ åîè‹àò¨]»víÚµåîSÕ 8ÙÙÙOŸ>•»Á€yøøãýüüfÏž«ýܹs~~~Íš5ËÊÊBÜ»woîܹ]ºtiРAƒ ºví:kÖ¬Û·o´Yé\™C‡åj¯U«Ö+¯¼¢ÛràÀ‘#G¶oß¾Q£Fƒ úæ›ore»¿þúkêÔ©]ºt©_¿~›6mÞ~ûícÇŽ²Gß~û­îÉ1RO®_¿Ñ´iÓ:uêþç?ÿÙ±cGA[8uêT­ZµZµjõðáCmã£GÚ´iS«V­³gÏÊý¦°4Gæ¡{÷îBˆmÛ¶åjß¼y³¢gÏž¶¶¶÷îÝ0`ÀÒ¥KoܸQµjÕ^xáÚµkß}÷]hhèýû÷KòêsæÌ:tè¶mÛ²²²<<<Ž?¾`Á‚&''K ÄÅÅuïÞýÇLNN~ñÅ5Íž={^ýõ;wé…–.]úÕW_ÙÙÙ5mÚÔÙÙùÔ©SÇŽŽÎwက€¡C‡Þ¾}û¿ÿý¯¶ñË/¿¼yóæ°aÃêÕ«gê7 €¥#805òðð¸víÚ… ´999R¨êÝ»·bÆ W®\iÛ¶í6mÚô믿îß¿¿Q£Fýõ×üQì—Þµk×·ß~[¥J•Ÿ~úi÷îÝ[¶lÙ»woëÖ­OŸ>½xñbi™9s椥¥½÷Þ{ܰaÞ={&Ož¬ÑhæÏŸ_¤×Z·nÝÛo¿½oß¾+VüþûïC† B|ÿý÷-?räÈ5jlذaß¾}BˆC‡­]»¶nݺï½÷ž|ï‹Ep`lllºví*ž-:?~üöíÛÕ«WBdee}øá‡ŽŽŽÒNNNR©2))©Ø/ýÅ_!æÍ›§­á¹»»Ï›7ÏÓÓsýúõ<B\ºtI¢V«¥eBCC‡ Ö¾}û"½V½zõÆŽkcc#íò°aÄW®\)hy;;»/¿üÒÖÖöã?¾sçÎäÉ“æÌ™£íÁ€Ù" î¼­4OݧOé×áÇ/Y²äÅ_Ô.p÷îÝ-[¶”äEïß¿Ÿ˜˜èëë›ë è2eÊ4kÖ,##ãüùóB)¹N˜0áèÑ£ÒÑ–vvv£F1bD‘^®sçκ¿:;;«ÕjFSÈ*µjÕ>|ø­[·^{íµ¿þúë£>ªV­š±ÞÖËñ0µk×®V­Ú•+Wbccýüü²²²¶nÝêààÐ¥Kí2ýõ×Þ½{?~íÚµ«W¯–ðÐF!DBB‚ô_??¿|¸yó¦búôé£G>zôè믿noo_«V­&MštìØ±V­ZEz¹^x¡|çwvìØÓ¸qãÐÐPƒŽ:üÁ€9éÞ½û‚ ¶nÝêçç·oß¾”””Þ½{k'¦×¬Y3sæÌ¬¬¬ªU«¶oß¾N:‰‰‰3fÌ(Ò«dggk‹|™™™BˆÊ•+4é\©R%!Ä /¼ðÓO?:ujïÞ½GŽ9þüÉ“'/^-[¶¼wïÞ_ýÕ¶mÛ¾}ûjŸ-UªT»ví¤³y®_¿nÔ1ùí·ß¢££[·nýý÷ßרQcË–-y/ZAp`f¤Sd&Ožœžž¬m÷ôôB\ºtéÞ½{RKvvö?þ¸jÕ*!DFFF¾[«Zµª"222==]j9|ø°ö";’1cÆäääŒ3æâÅ‹RË£G&NœxþüùÚµk»»»{yy=|øðÌ™3Ë–-Ó–*¯\¹²wï^!„Q¯§xëÖ­3f”+WîÓO?µ³³ûïÿ«V«§OŸ^òƒ; /¦ª˜™.]º|ñű±±jµºgÏžÚv__ßvíÚýñÇ:thذ¡F£‰½ÿþ€¾ÿþûŸþùáÇ҅utõìÙsåÊ•'Ožl×®]­Zµîܹïìì\±bÅ'OžHËôêÕëèÑ£7nìÙ³gåÊ•]]]ÒÓÓ«U«&]yÛÆÆfÒ¤I&L˜={öÿýßÿ½ð éééþù§F£ 0ÒPh4š &¤¦¦~þùçRn®[·î!CþïÿþoúôéóæÍ“û½`i¨8037B´lÙÒÃÃC÷©¯¾újäÈ‘•*U’®ïتU«M›6MžÜz×—‹Ü`‘‘‘=BlÚ´©yóærwÇNlÚ´©gÏžwïÞÕµ\¿~ýúõëœ0a²eËzôè¡¿½ª¯‚J;èСˆˆˆþùG×’3oÞ¼öíÛ翇ÌÌÌ;wîܹsgÿþý³fÍŠ‹‹«W¯žÜ‡(Áp E‹-_¾¼Â××WÏÅ‹ß|óM]j¬P¡BÉ’%¯^½zéÒ%!DFFF¯^½ÜÜÜ:vì(wOU páÂÒŠ’´´´7nH_ûùù,XP÷“Sî#c¹þÇß´iS)ïJ\\\222¤¯¯\¹Ò£GÝ»w¿öÚk9wèãããææ&„HIIÑïÝ»×½{÷„„„B… åó”lJ”(!÷ ¬…¡jÀôêÕ+)))))iõêÕr÷E}–,YrçÎ!„——×þýûÏ;·wïÞ‹/îÞ½ÛÏÏO‘™™9qâD¹»i]•+W–¾ 1g?mÛ¶MÒ³lÙ2ÝC7nÔ¨hÑ¢¹î!×ÿ˜?ýôS]jìׯßÑ£G?~|õêÕ… JûIMMíÙ³g®;\¶l™´Ã›7o^¼x±_¿~RûåË—çÌ™“ÿS²=z´°‚#`u)))_|ñEË–-}|||||Z´h1zôèäääœ[Þ¼ysÈ! 6,V¬XùòåÛ¶m—m›¬¬¬Ÿ~ú)<<ÜßßßÕÕÕßß¿iÓ¦?üðÃÓ§O¥ F¥Ñht¿>[´h¡ÑhRRRDÞ·…ÒCý›ïÝ»7lذڵk-Z´zõê“&MÒ½zþž>}:wîÜFùùù)R¤Zµjo¿ýö±cǬt*òqãÆ!C†4hРhÑ¢¯¾új·nÝ>œÿS:$}ñöÛoëŸÀúõëO›6MúúÈ‘#YYYù_…¼n»ŒŒŒÌõ¹‹/öìÙÓËË«téÒ]»v=pà€ÉeàȨó:uB”,Yòõ×_7á²ZPÎÿ˜7mÚ´fÍéë‘#G.Z´èµ×^svvöõõíß¿ÿòåË¥‡âããÏž=›ÿÎË–-»hÑ"Ýš4i’tø„€‘Nœ8¡{mÚ´)ÿ÷ïßÿꫯæ|ë•-[vÛ¶mú[nܸÑÛÛ;ç–ÑÑÑú›e»‹N'""BÚ`äÈ‘9}ôè‘V«;w®ôm­ZµŒíágŸ}&µ7mÚ4888ÛÆÝ»wéy{üøq:ur¾F£™5k–5N…~·;wî¬kü믿|||rvcèСùô¿U«VÒ–­ZµÊÊÊÒ(%%eësù_…\»¤Õjß|óM©ýÓO?Õ58p téÒú;)Z´h»ví¤¯Û´icÔAxóéüÓ§OË•+7`À.k>6mÚ¤{â‰' yJÎÿ˜»ví*µxzz>|ø0çSÚµkW½zõêÕ«¯\¹RjÉÿ½¼uëVÝ£ëׯ7ä)€Ý#8F3ü7GjjªîF.WW×Ö­[·k×®páÂRKéÒ¥“““¥-þøc_P#îq¬híÚµÒ}ô‘îN¬jÕª :4Û6l¾øôÓOu¡mðàÁÒÈÚ“'O233…={ö\ºtéÒ¥K‡ "m“œœœšš*}­¿LŒÅ{¨2hÐ éëÊ•+7nÜXúúÂ… ù¿–n½ØØØE‹I³hcccOœ8qâĉˆˆÛœŠõë×K_¼ûÆ~ýú9;; !.^¼xüøñ\ŸX²dÉcÇŽEGGëO×ÈÊÊ:}úô?üгgÏÊ•+ë:oºÛòôËxß|óMÎq|cÊä‹hòeµ6ý[r¥¹JQ²dÉœûËñV/}ѺukýöV­ZI%¢sçÎeee999%$$Héê7BˆÒ¥K9rDÿ‰Ò~îÝ»·aƃ9räÀ>´Aue»!ÒÓÓSúBš2oÞ¼>ø@ƒêÕ«KGѺuki®F|||ÿþý5MXXXÛ¶m;uꤓœµO…nbD¶CÖ9wî\hhh®•*UjÁ‚sæÌÙ»wïÞ½{=zàÀݯ\¹Ò­[·S§NéÊTfÒíY¡ï‚ ¶jÕjéÒ¥æTþÑ(^VkÓOó\n]šG/„ðððÈùh®ËñèN&`—Ž€µ$''ë>ô"Ûg™2e¤/?~|ãÆ wwwÝ–Å‹ÏgŸééé£FúþûïuKÓ¹¹¹y{{ß¼yÓª=ÔT£Ñèo™íÛ|Œ?>99yáÂ…Ož<BhµÚÇ>|ø«¯¾jܸñ¯¿þZªT)ý.YãT$''ë/ò—«Û·oç¿‹‹K£F5j$}{åʕɓ'ÿûßÿB¤¤¤ÄÆÆŽ3ƄˑͣGtÇ’m~LÙ²eÍ<(“/bN†\VóÏÆK,XÐËËK:LýÕ¿õ=xð@ú¯ÅÕÕÕÝÝÝÝ^¿~]ú"çÄ#!IJeËT´4:` UÖâááQ¬X1éëk×®é?¤û¶`Á‚¥J•*Z´¨n"‚®Â‘«¯¾újÚ´i³gÏ>vìXrr²É+NÞC‹œ üûßÿ¾uëÖŠ+¢¢¢ôIÞ±c‡´µO…‡‡‡®4µqãÆ„ÜDFFæ|bFFÆÿ=wñâEý‡Ê”)3sæL]}TW15“›››nfF¶4œíSøL>(‹0ä²ÚFƒ ¤/þøã\—dª\¹²——————îþÈüíܹSwë¤-«§€’+ ’¾Ø¸q£~»îÛŠ+º¸¸h4ÝÐá¾}ût›]¿~½~ýúõë×—ÆgÏž-=4kÖ¬?ü044ÔÅÅåòåËÖî¡á;ìÝ»÷õIóžÔ 8ê2Ç¡C‡6oÞœOôg›šÓC¹¹¹ù¼Hš^púôéÒ¥K—.]Ú××÷üùóB—-Zôïß_z¢n`Úz§BÒ¢E é‹ùóçkµZéë_ýµdÉ’^^^åË—ÏëFɦM›J_|óÍ7Ë–-“æè!222æÍ›§{é\KSúWA7мoß>ݽ‰¿ýö[Î8X«V­œWgÒ¤I§N²ÔA"Ÿÿ„ ¿¬6СCÝyøè£&L˜ ÎÓÓÓcccûôé#=ôꫯ†……å¿«ëׯ¿÷Þ{+W®”¾}ûí·óúÀáÈ=­Pýõ8üüü*äfß¾}Z­655UWrssëСÃo¼¡»¹Ê××÷ÁƒÒ>oܸ¡»ûÞÇǧW¯^ú÷N­^½Z«ÕfeeéVH)\¸p§NÞxã ýÐÕ-£Õj_y婱~ýúS¦LIOO׿±Ž£=4jÙêœ233uw‰•.]:::zĈ=zôÐ-£['ϲ§"g·ïÞ½«NmÚ´é_|¡+È}þùçyBRR’nŽ­ÂËË«N:uëÖÕolÙ²¥´x>WA÷ 4Rç6l¨«ûf;“GÕ•' ,ظqcÝ'þItËñxPF]Ä\;oòeÍŸEÖqÔjµÇÏV[õòò’¦–K\]]9’ÿ{9Ûý¾¥J•Ò- ¥eG8<‚#`´—.ä&„غu«´ñ¾}ûsnàïï¿cÇýÝþöÛoº;õ=Z·MÎ٠ԭݧOÝ–QQQú›åóÉ1öÐÌà¨Õj÷ìÙ“×€iÓ¦M?~lS‘k·W¯^k%ìƒ>Èk™kÉÖ­[óYê¥I“&wïÞÕß>׫ Òô;¯«–éŸÉ¾}ûfÛÒÝÝ]÷6úŸcÈAuóê¼É—5– ŽZ­vçÎy]£òå˯]»Vã—¾—===÷ìÙ“×SŽp@GÀhFG­VûèÑ£±cÇ6oÞÜÇÇÇËË«Y³fcÆŒÑ}"‹¾‹/¾ÿþûµk×.R¤Hùòå;tè°}ûvý ®^½Z­Z5!„““Ók¯½öÉ'Ÿ>^ÚòæÍ›QQQÞÞÞîîî!!!Òœäõ»ÖšµZí•+WÆŽ[»vm??¿ ”(Q¢Q£F .Ì×,u*òêö… ¢££kÔ¨Q¸páÀÀÀ.]ºdûȼ<~üxÖ¬YíÚµ«R¥Š»»{©R¥j׮ݫW¯-[¶äÜ8׫ ÕjÓÓÓ¿úê«jÕª¹»»‡……}ôÑG7oÞÌõLfff8Pj÷ööîÔ©Óž={&Nœ˜38rPF]ļ:oÎeÍ‹ƒ£V«MII‰‰‰yýõ×½½½ *Ô©S§˜˜˜œ)6×÷²³³³§§g:uÆŽ«_kÌù‚#FûünªðôéÓ5kÖ!ºté"w_86rðàÁ-[¶¼ÿþû¹®&6Cp€A˜U ƒ`‚# Bp€AŽ0Á!8À G„àƒ`‚# Bp€AŽ0Á!8À G„àƒ`‚#°sMíBcÜŽž?Ía¹ÈÝ;$w€¾ø\;kÏŠ JFÿÖŽñAAAñññr” ŽVá˜ÿ1)™Ã¾Ã•Œ‹¢L\⢘O£ÉåW³Fh„Ƥ_Ù\qd¨Ø9­VîØ ‚#°s¹Þã¨Õ(Fp€AŽ0Á8FÃ0µñŽpëׯ—» ÈŽ‹¢L\⢘I£áVF‹!8£Ñh´B+ˆ“F#8À G„à ÷<šàƒ€Ã Üh‚# BpŽáy¹Q#4¦¯Å£޼ŒÁØ-†¦-‹àÒŽ0Á!8{Ç8µ…€]{15š5¥Úá`‚#°[ZÁ µ%`‚#°S̉±4‚# BpöH£Ñä˜=Í”j3`‚#°;ÜÝhG`_HVCp€AŽÀŽXµÜ¨>µ†àì…^jÌ ™Rm>‚# Bpv91ÖGpêGj´ ‚# Bp*g@¹‘™1ApjÆ µ €jå‘ “VBp€AŽ@¨+ÚÁ¨1©Ñ23cþóÁ¨µF™€ªåCp€AŽ@= YëûÅMXúÛ‚Ž@%¤–Á¨©QŽ@ñHÊ@pÊFjT ‚#P0óR£Åfưú·‚à”‹Z£Â€"™”‰šVEpÊCT$‚#P ¥F–þ¶8‚#Pj FpŠAjT6‚#PR£â€X"5êïÃ’78²ˆãsG 7j*á"w€Óh„¤Fµ 8™PhT†ª€¬™YÁÑJŽÀæ¨5ªÁØ–uR£µ²(Sªõp#°›L…aœÚzŽÀ&žV?†ª€õ‘íG`M¬ÔhGŽÀjl^h´ð ŽÌŒyCÕÀ:l˜ · *ŽÀÒž¶SG`QòUÿXˆÇÚŽÀB(4Ú;‚#°û»Í™19€yä.4J‘•qj 83Ø_¡y#8“È]h„퀑!2rƒcnŽÀŠ›æGÛ 8Ã(²Ðø|f là^F‘‘¶GpùRäØô ´ø8578æàò@¡/"8€TµL‹±‚#У¢È(uV=µG „PYd´æy Œæ‰à€ÃSoddœÚ¶Ž86ÅOš†rpTê-4ZãÔù"8àxì"2ò1ƒ¶GpÀ‘ØEd„\޹‹ˆˆøû￳5zyyíÚµKî®`ûŠŒ Žr 8æîâÅ‹nnnåË—×o,^¼¸ÜýÀHR^ö­ˆ_†à˜‹äää´mÛvúôér÷SÙW‰1'û=2å"8æââÅ‹BˆlåFTÃÞ#£UÆ©)7€à˜‹ .!üýýåîF²÷Èys!Çk×®õîÝûôéÓ… ®R¥Ê|ðÚk¯ÉÝ5òà0‘Q*6jÌߌGpÌÅ¥K—„3f̨_¿þ•+W¶lÙ²mÛ¶qãÆõèÑÃ=ekY¿~½Ü‡åÐ._¾,wE™¸. ôÒ‹(„HJLBˆ¤$¹ûk}B£‰‰I<Ö€À€¤Ä$‘ÇÛ´i#÷1+Á1×®]sss:thïÞ½¥–Ý»wðÁ“&MjÔ¨‘ŸŸßK÷/÷A »€€¹»€ì¸(ÊÄuQ Ü/ʋӥí²Yü?Ô|v˜ó×zÎ ‘ƒp’»J´dÉ’£GêR£¢Aƒo¿ývZZÚ¦M›äîÀái4Ï>`ZúçHX¼Q^GCÕ©SGqöìY¹;p`ú‘–Â|jƒ1TV«ÍÊÊÒh4NN/¤jggg!DÑ¢Eåî Àñ°ˆ·t¤i1? r¢â˜Ý… ªT©Ò§OŸlíGŽ|O@M@` cŽJÛåFc³+_¾|Íš5÷ïßÿË/¿è9²hÑ"??¿Ö­[ËÝA€†¤5¡Õ>›.íð¸»Q ªÎÅçŸÞ¿ÿÏ>ûlùòåW®\9zôháÂ…¿þúk777¹{°k³#ÔˆŠc.*W®¼jÕªÎ;ß¾}{Æ <èܹóš5kêÕ«'w×vJ¯ÄHjÌIWn´ð ŽŒS‰Šcî¼½½¿ùæ¹{p”¡GäÀDiƒYëîFÊÆ#8`[”MÅB<²#8`”MB¹QQŽXyv„à€u0$m6ÊJCpÀ¢(1Z78*ÁK /Z£@GÌ@^TÆ©Í@pÀxäE+ËVn´Ø85©Ñ<G F^„c#8`¦HÛ“©‹à@Þ(1Ú\ÎÔÈ|jå 8yÑþPn´‚#Ï‘åÆ< Gp8<ò¢‚Yfœšr£…IyQ)(7*ÁàH(.*•S#åFË!8yQ,0NMj´(‚#À~‘U‚Ajµ 8ìyÊ–FpØ ò¢:åUndÝo"8ÔŒÉÑ*Çœu!8Tˆâ"òGj´‚#@=È‹ö%Ÿr#ãÔÊDp(ƒÑvŠAj5"8‰â¢]Ë?5šUn$5ZÁ e#8äFqÑÁ0H­^G€LÈ‹饩ÑôqjR£õ6Ä`4¬„ÔhG€õQ\„ªåFØÁ`ñ"nm´G€å‘R£} 8ÌÆH4òe`j4eœšÔh[G€I(.Bv¤F›#8ŒAqF²b¹6Gp¼ ÅE˜Š[í ÁÂ"Ìfxj4ºÜHj” Áð?Ͼ",Â<Ôí’“ÜÈM£ÑýKJLZ-©f2*5Wn$5ÊŠàI/,>KŠäEXµF;ÆP58 n[„ò0™Z]Ž`ïX@6D¹Ñ¾ÀQ\„ŒMF”IÊ@p{AX„¬¨5:‚#¨aÊ`Bj4´ÜHjT‚#¨·-BI¨5:‚#¨ÅE(’i©Ñ r#©QyŽ `„E(µFGCp…!,B%LN//7’•Šà @X„ÚPktLGs\ Næ¤Æ—”IÊFpÛ¢¸•#5:2‚#XavA#4BF¨Á¬ƒ°ûbþMù•I*ApË!,ÂN‘!!8€y‹°wÖ@-HjBpãá0,’s/7RhT!‚#ŒÕsà`X¬Ù _á,8:—r#©QµŽaŽÍ‚…FR£!8€‚°Žax‘oj¤F{@pà`‹@n,þ©0/”YvÇ^8&Dy³x¡1{jämg/ŽìÅEÀ OÃpGö…°ÌâÃÓÏv«+7’íÁ€úãY©Ðø,5rS£"8P'Â"`«§FÞ”vŠà@U˜ã˜ÇJÃÓ‚ÔèŽâ"`!V£¤FûGp H„EÀ¢¬WhÔ½‘Ñ(a°ë.¸#H„à@nܶX- ‚Ôè@Žä Ñè¾&/ÖaƒB£†w°ƒq’»†Fó¿ZmRb¢ÐjùXƒôN#5Ââ¨8°2F¢Û²Å‚Ôè ެ€i.€¬~G£x6æ*Cp`!„E@>6ŠŒ‚ÔèèŽÌÃH4 7«M‹ÿ-¸CjtpGÆ£¸(ƒ- ‚Ô‚##P\ÑQ¼°²7©‚àà%(.Êc£±iAjDvG¹¡¸(’í ‚Ô=GÏQ\Ìv‘Q‘'‚#àð(.Ê(lEöB£ 5">rpH/~úý(“ô.MLJ´E¡1Çð4©9G’3,òkP*iŒí"cŽái~< '†ªÀ`4 *6ºQä26-žF¾Ž€b¦  B6Œ‚Ô£ûBqP'ÛEF‘g¡Qð“/CpìyP-[GFA¡¦#8ªÅ`4 rJˆŒ‚Ôcµ¡¸¨ŸM#£È}lZ0< ã• /vA†È((4ÂbŽ€²‘» y–à”?T`‚# HäEÀ^غÄ(ò‹Œ‚B#ÌCp”„¼Ø"£ÈóvFA¡–@p€¼ØÙ"£ Ðë"82a1À)32 ~ÌÀBŽ€mQ\ì‘ s_ž¿°ôª¹?Hd„¥[áG8`ä)1Š—DFÁØ4¬ƒàX%FÀNÉE~3`¥ÂšŽ€u;%Û¨ôó——^;÷‰Œ°2‚#`QäEÀ~ÉYbDF(Á°ò"`×äŒB¡NrwÀDÇσõë×ËÝG8æÙ?­öÙ?väù;\#½ÃeéЈ¤Ä¤¼>9P÷ã° µÇ7ß|óßÿþwfff·îÝ»÷ñÇ2Dî>Â~‘{§ŸeŒŒB+ˆŒPµGooï™3göìÙóŸþÑoß°aCûöí×­[çïï/waÈ‹€]“¿Ä(ˆŒP4µÇ5kÖôìÙóï¿ÿîܹóòåË…÷ïß:tèG}tÿþýþýû¯^½Zî>ÂŽd+1°/Ùò"‘È‹Z'Ç)Rd„ mÛ¶3f̸qãâââoß¾]±bů¿þºZµjrwv)/€½“y¢´^?„ÈsúK``€àç”A­GIýúõúé'OOÏýû÷ß¾}»F«V­"5Â’ìš"†¤Ÿwå¥UÆÄÄ$~A!ÔwìØÑ½{÷»wïV­ZÕÛÛûðáüqã†Üý‚j1$ Ø;E I?ïJ^‘‘EP,µLJŽ=:::úöíÛC† ùå—_Ö¬YÓ¶mÛmÛ¶µoßþ×_•»ƒPJŒ€]SP‰Q¼<2ò£Š¥Öà(¥ÃŠ+þòË/ pvv.V¬ØôéÓ§NªÑhFÝ¿¹û5àïzÀ®)eÖ‹^‡rŒü(‚Z¨58Þ¾}û½÷Þ[µjU•*UôÛ;vìøÇÔ¯_çÎr÷ ÆBŒ€]S\^/‰Œü(‚Z¨uVõ²eËÂÂÂr}¨téÒ‹/Ž•»P$>œ °kJ™%ýbŸ„È%/JøiuQkpÌ+5J4MïÞ½åî#†ÈØ/ͳt¦ôÈH^„Ú©58†Òh„¬Ø%…æE‘gdäçÔN­÷8/§wëPRb¢Ü½`1J¼…Q¯sú÷22ëv†Š#ìÚöH¹õÅçý“:'’†ý"8ÂŽð£°GJÏ‹â‘Q£yö5?„`¯ް ”»£‚¼(žÅDÍó¯ù!»Gp„Êû¢¢¼¨û~Áq¨88®[·îÇü矴y¼e÷îÝ+waMDFÀލ#/Šÿ•¥Ÿ=Êî+`yj Ž›6múøã¥¯åîlˆ;¢–¼¨Ñ<ïyŽM­ÁqáÂ…Bˆ¾}û0 X±brw6A‰°ªÈ‹ÿû+UJŠÊí)`;j Ž ¯¼òÊ¿þõ/''–¢tDFÀ.(?/ê¢~ääöi€#SeêzúôéÇË–-Kj´¬œ ¨Ÿ¢×ë–zøâ2ÝÏJŒzëx¨²âèääT¬X±sçÎeee‘íUF@ÍtÅE¡Ôúböââó~K=+U¦.ggçèèèÛ·oÇÄÄÈÝXUF@µr•u•Åÿu?i4”—SeÅQÑ®]»K—.ÍŸ?ïÞ½mÛ¶}å•W ,˜m›¦M›ÊÝM‰*# NJ¾y1÷Ê⋽—ºà¥Ô›7o.}qüøñãÇçºM||¼ÜÝ„ÁˆŒ€ )3/ê'E‘ÏÏÝf ê; tj Ž:u’» °"# 6 Ì‹//+¾xRïK­ÁqÊ”)rwf#2ê¡ÀÉ.Æ…Åç‡!Ó¨58Bõ¤[Ó(›¢Š‹†ŽAçvÏŸ#÷1*§šà¸lÙ2!D:u*V¬¨û6QQQr÷¹¡Ð(žBò¢éIQïH¤Ã`ª Ž&LBŒ?^ ŽÒ·ù#8*‘P°ga1@ùò¢’¢ÞñHGÀ‚T,„¨V­šôí§Ÿ~*w` "# TÙŠ‹III¶{u &ÅçÇó|_6;À¨&84HÿÛwß}WîÁ`ÜÎ(ŒŒ3],ŸõŽJ:Ö£šàU¢Ð(‰,w.Z1)ê˜tT¬àë 2Ê`ûâ¢-’âócÓÛ 8 ›äf³âb¶˜(ló#%F@&GX…F@V6È‹¶+(ævxÏ_Õ†/ @ÁBddbÕÁhy й¤txäEp„%06 Ø–•¢F#ž-ä¨Û¹¼ïlJŒ€ÂØOpÔjµ›7o¾|ùrhhhXX˜ÜÝq²ìHt®ÕD¯ã˜Ï¡JÇ @QT7oÞ”û ÖàøÞ{ï¹»»Ï™3§Y³fû÷ï¯V­š´vc=¦L™"„xçwLÞùœœœš6mªkqvvnÒ¤É;w>,÷¡Û…FÀ$Ù¢Ð<ûç1Qï,PbìŒZƒc™2eV¬XÑ´iÓÒ¥K7jÔhúôéÒª·oßöðð˜aÆ  LJLIIrwÄ2._¾,w}\”ÀÀ¡Õ›ä¬Ñ !“Dâ s̹.Bˆ$ݱ«ç¨Î>Þ,ªÖ¦M¹» *Ž’û÷ïŸ8qâÚµk~~~ 6,T¨9©Q!MvwwÏÖ^¤H!ă ÙI||¼Ü'Æ Ï?EP:fIŠø5¼Huå…up¤¼¨}q g_ªì¸²1úº¼¸°N€Ê_™T÷f±39­ç¬9Ç;wîÌ™3gåÊ•RÔëÓ§OÆ »téRµjÕ¯¿þÚä5‹/®ÑhRSS³µ?zôH<¯;Ú3†§!Dnk% !ô‹‹ù´hÕcínÀÁ¨õǧOŸ0 66ÖÃãK—.ºvooï-[¶¼ùæ›&¯¹èââR¬X±œ•Åäädiÿrº5‘á¨òŸà,´éŸiŸþg‡˜õ8*µÇyóæ=zôõ×__¿~ýäÉ“uí?ÿüóo¼ñÏ?ÿüøã&ïÜÇÇçÎ;RRÔIJJ’’ûЭ†Ô‡aÈ:8.Ðíp˜õ86µÇýû÷;;;Oš4©páÂúíÎÎΟþyáÂ…7lØ`òΛ7ož™™¹cÇ]‹V«Ý¶m[‰%¤Eì©vʨO^É5,’… ÄàµÇÓ§Oè>uP_‘"E/\¸`òλwïîääôïÿ[º¯Q1þüÛ·owëÖ­@rº¥±¾7ìˆiŸ¼BXÌ ëx‘Z'Ç+V,%%%¯GïÝ»W´hQ“wîçç7|øðo¾ù¦S§N7¾páÂÞ½{«V­úî»ïÊ}Ü–Fd„šåœ¿bøÎÁ4—|1ë@nÔZq¬R¥Êµk׎?žó¡Ó§O_¹r%88Øœý¿óÎ;S§N ˆ‹‹»{÷î[o½õã?æ\ÜQÝHP‹|@ÅŗЈ€À†¤äE­Çž={nܸqذaÓ§O¯Zµª®ýäÉ“C‡BtîÜÙÌ—èØ±cÇŽå>P«!5BÙÌ©&fßÅECùDKZ¤FÍüE¶ÍzõÜ>-ZîS¢|6 ›°Ÿà¨S¯^½ *\ºtéÒ¥Kr÷En¤F ÿ¤h£>ð.&#/°!; ŽBooo!DÉ’%åHȃ’ⳞP\4Y¶#Ø„ZïqÌGjjê©S§¼¼¼ÜÝÝåî  ú·*ÊûÅÿfºpó¢ñ¸…€¬Ô÷ìÙ“kû½{÷bccïÞ½Û¢E ¹û(+ÊÏösŸ_ÒŸ3]’’’‰l8fIPµǾ}ûæóhÑ¢E‡ "wåCjtHJKŠÏzÅÌh3Qb $j Ž:uÊë¡råÊuîܹlÙ²r÷Q&¤FG¢œèzŲ‹æ#/P$µÇ)S¦ÈÝE"5:e†EAqÑR’ `j ŽÈ©Ñ~)6, ò¢¥Pb ª Ž[·n5ö)M›6•»×€é”yÑRÈ‹TE5Áñý÷ß7ö)ñññr÷Ú†(7Úµ„EA^4CÒTH5Á1ŸÙ0 5ªšÂâ ¸hY”¨™j‚#³aòDjT!å‡EA^´,ò"»`Ÿ9ø¯ý«Y³fr÷È.×OùS>ÐÂø,ivD5ÇœîÝ»÷×_]¸p![{ZZÚŸþéìì,wm‚r£â©¢¸(¨/Z%FöH­ÁñÆ‘‘‘W®\Ékƒ¨¨(¹ûh}¤FÓåE…_"ò¢…‘Ø5µÇÅ‹_¹r¥víÚ;v\»ví¾}û>ÿüs77·3gÎ,]º4**j̘1r÷G-ÅEA^´8ò"Ç Öà¸cÇŽB… Íž=ÛÃãY³f5 hР"00ðË/¿ìÑ£GÅŠåî¦5QnT µyÑXU€#Qëä˜k×®•/_ÞÃÃCQªT©%Jœ8qBz¨{÷î%J”X¼x±Ü}´&R£äœé¢XÌw±<Í‹³^À1¨µâ(„prú_ê-W®\RR’ôµ³³sPPÐñãÇåî ìõE‡Æ4Ǧ֊céÒ¥ÿù矔”éÛ²eËÂCÒ G­CÕ½{÷Þ°aÃæÍ›µZíܹs›4iâââ2hР5jœ9s&55µ]»vr÷Ñ:(7ÚŠ4$­ü“Íx´U0$ ¹QkÅÑËËkÙ²eC‡­V­š¢L™2Ÿ}öYzzú®]»îܹӼyówÞyGî>Z©Ñú²•‹ú¢µ0$ ySkÅ1##ÃËËëý÷ß×µDFFvìØñï¿ÿöññ ”»ƒPÕMy!)Z%F0€Z+ŽMš4ùöÛoô‹)R¿~}»M”­C¥·0ÊÝ{¡¡ÄFPkp¼sçÎÿýßÿµoßþÍ7ßüå—_tÓ«Ã1$íÐÈ‹`<µÇ•+WöíÛ×ÇÇçÈ‘#Ÿ}öYÆ G¥¿"½¡Üh9꺋‘¼haÌ’3¨58V«VmÔ¨Q[·níÙ³gÁ‚ûí·¨¨¨V­ZÍŸ?ÿæÍ›rwJ¤ŠQi†¤­‚!i°V±¿?‘‘‘±cÇŽµk×þõ×_©©©ÎÎÎ7ž7ož, Š·ä)7šMùkë8àª:IIIÖ} ¦¼Ï×Fâ¢(å׫„Z+ŽÙ¸¸¸„‡‡O:õÇ ÊÌÌܺu«Ü‚üt£Ò‰‰IŠM I[õE°µ.Ç“M||üúõëׯ_Ÿ˜˜(„prrªS§ŽÜ²Ê&ÉVb|þIæ â€%F[ ÄÖ¤îàxêÔ© 6¬[·îÂ… RKHHHÇŽÛµkçíí-wï µŒJ“-‰¼6¡Öà8eÊ” 6\ºtIú¶|ùò;vìØ±£¿¿¿Ü]³(ÊÆPxd¤ÄhÒI匀M¨58.\¸Páííݾ}ûŽ;V­ZUîANªˆŒäEK¢ÄrPkpìÞ½{ÇŽk×®íäd'ó{rA¹ÑJŽŒ”­‚#ÈG­ÁqâĉrwòSl´¦Ähy”@ÔíŸb3‘2(¶ÐHd´0ò"( Á*£ÌÈȨ´å1$ ÊCpT$ʹQrd$/Z %FP0‚#ÔAYšÈhIäEP‚#”N…F"£%1$ êApTÖÖ䣨“ÁŒ–¤"@"#¨‰ý.‚•Óh”5B£­ÐJÿäižÿÓŠ¤Ä$Î%¨ G…QNVâ4H=aTÚR’õ#8BY”sG#‘Ñ2˜õv„àQH¡‘Èh”Àî•D!¹I¦C (4-€#Ø/‚#ä§„ÀLd´JŒ`쩑Èh.JŒà0ŽŠ!{€’㈅¬ÃÓDF³Àñ!ys2‘Ñ, I€£"8B2¦F"£é(1€Ã#8*ƒ#SËu¬DFÓQb!ް%¹njÔ 2#àE|V5lD*4Ê’µB›˜”(÷ P•ç'ýìB*ŽŠàãÔ²"cÓF£ÄÈÁVgûÔHd4w1 @p„uÙ85C‰` ‚£ÜìzœÚö©‘Èh(JŒãa-¶L E‰`‚#¬Âf©‘Èh(JŒ³ay¶LDÆ—#2,„à(+{¼ÁÑ6ÇD¡ñå•XÁ–d³ÔHdÌ%F€ua16HóC‰`eGX†mR#‘1w”6Ap”ÝàhíC¡Ð˜'"#À†Ž0— R#‘1;F¥r 8B¹(4æ‚#@>G˜ÅzåF Ùr#8ÊÄ.np´ÒAPh|£ÒÅ 8ÂDÖKDÆg(1†àS­‹ÈP$‚#áié,<ãØ§ XGÍâåF ”ª@p”ƒšgÆ-ŒÈP‚#Œ`ÙÔèèÃÓDF€Ú!Ç-4r##@µŽ0”Ëš)1TŽàƒÍ}„C† ©Y³æ°aÃ6oÞìh§"##cóæÍ»wïž={vVV–÷¬Õj…®®® ï'r¢âè(”5NM¡À‹† 2|øpWW׺uë®]»6##cÔ¨QÁÁÁááá§NÒmܽ{wý§÷ëׯD‰éÉO?ýäëëÛ»woéÛÀÀÀˆˆˆmÛ¶]»ví¥ÏMKK›8qbpppáÂ…ýýý£££¯_¿.=®ã¾}ûÚ´iãééúùçŸÏ;W£Ñ;vÌØS!„ˆ‰‰ uww÷ôô¬[·î²eË,uQîܹӺuëñãÇߺuË„§oß¾½eË–žžžUªT>|xzzºîbuîÜYѨQ£€€Ùû £Pqth2”)4ÈÃÒ¥KÇŒãââ2mÚ´ˆˆˆ5jddd¼ÿþûçΛ3gN¯^½Ž=jÕ>$''Ÿ={622R£Ñè›5k¶pá½{÷véÒ%ÿ§GGG/_¾¼E‹ݺu;qâÄ’%KNœ8‘óÉ7vêÔÉ××·ÿþ©©©3gÎ,X° i§bܸqãÇoÖ¬YDDÄ“'OV­ZõÖ[oyxxtìØÑü³áãã#•ããã+W®lÔsûí·=z”,Y222ÒÉÉiéÒ¥«W¯–6lX¹rå&L˜0uêÔÚµkËÛO‹àè¸äIDFyxôèѱcǤ_ü...#FŒHII9pà@„Çß¹sçÇ‹-j½>ܸqC«Õúøøè7z{{ !^ZÍJIIY±bEŸ>}/^,µDGGÿþûï×®]óõõÕm–••õÉ'Ÿ”)SæÀžžžBˆAƒU¯^Ý´S[©R¥ 6¸¸¸!FŒáååµ~ýz‹G“=yòdèСÞÞÞ(S¦ŒbôèѵjÕ’ 9þ¼¢^½z 6”±Ÿ0ÁÑ!È?NM¡ÀËÔ©SGW. BDFFJQIѼyó;w¦¦¦322Ö®]›×£o¼ñF¶–ÔÔT!„‡‡‡~c±bÅ„wîÜÉÿµœœœ4Í®]».\¸àïï/„X¸páÂ… ³mväÈ‘S§N}ÿý÷RjBGDDüç?ÿ1áTìß¿ßÕÕUJºNJGaæ©0ÇáÇ/\¸0eÊ)5 !|}}?ú裑#G¾ô¹¶ì'L@ptP6-7RhCoVùÿëåå¥ûZ I9[Œ•’’"ÝN—G²wHzŇê7&'' !t9//nnnÓ§O6lX@@@ÕªU4hЦM›öíÛg†>{ö¬"44T¿1$$Ä´SQ¢D‰Ý»wÿùçŸgΜ9wîÜÉ“'322,r*Ì!cÍš5õ \ÆÒ–ý„ ˜kbF@a´Z9ÿYÏ“'Orm/V¬˜6o9·÷ññqrrÊ6*}ûöm!„®x–þóÏ?óçÏ ‹‹ëÚµkhhè7ô·ÑÍÑgÚOž<騱cãÆ×­[W±bÅaÆ>}Zªš*Ì!U@5/þ™bàôp[ö& âhÿrŽSÛ¨ÜHd`5ÙV]9wî\®›;îéââR¥J•;vè7nß¾]£ÑT­Z5ÿ.ݹs'!!¡R¥JÑÑÑÑÑÑYYY³gÏ}ú!CôÙ"§Â*TB:t¨iÓ¦ºF'61T­pG‡c‹ÔȬ©páÂ'OžÌÌÌ” u;vì8xð`ñâÅsni¸ç»ï¾;dÈ5kÖtèÐAqóæÍ•+W¶lÙò¥ ÇÄÇÇ7lØp̘1'NB899I±)Û {õêÕýýýg̘!MB$$$üüóÏ&œ‡Ë—/ !‚ƒƒu-+W®LIIÉõ¸l9\£FÀÀÀiÓ¦õêÕKštëÖ­3fò\†ªŽàK£ÐÀÊZµj5}úô:tîÜ911qÖ¬Y¹¦Fñ|ÜÓ¨÷íÛwÑ¢EQQQ,^¼ø’%KRSSuŸb·|ùòôë×oÚ´iÙžX«V­É“''&&†„„ÄÇǯ[·ÎÓÓ3Û‡£*T(&&¦{÷î5kÖìÞ½{ZZZlllÍš5wíÚåææfTWÃÃÃÝÝÝß}÷ݨ¨¨2eÊìÙ³góæÍ¥J•Ú¹sçºuëÚ¶mkæ©È_>§¢@S§NíÑ£GXXXÏž= (°bÅ Y´x?aYÜãherÏgÎöúV/7’XߤI“† ò÷ßøá‡ß~ûmÛ¶m?ùäKíÜÃÃcÛ¶m={ö\¹rå”)S*T¨°mÛ¶zõêI¦§§ß¿?---ç ,¸nݺ>}úìÞ½{„ [·nmÙ²å®]»r–*»té²qãF__ßY³fíÛ·/&&¦S§NBc×0/W®\\\Ü+¯¼2sæÌ˜˜77·ãÇýõ×ÉÉÉ–÷̑ϩŽqóæÍÕªU‹ýî»ï>|¸téRkw 6 !×[\PPP||ü³o'8*{x:))É"ŸO â¢XÏ ?…ìZJJJJJŠ´Î¢Í,\¸ðĉÓ§O7íéOŸ>=~ü¸¯¯¯ŸŸŸ®qÀ€?üðÃt 먂§âêÕ«%K–,T¨ÜýÍ“ oÇy—eCÅÑX75ò‚lÎÝÝÝÆ©ññãÇ[¶l©Q£†É{pvvnÑ¢ETT”®åÁƒ«V­jß¾½ºR£á§ÂÏÏOÉ©F!8Ú3[”;Yp€#Ù³gOppp¯^½LÞƒ““ÓàÁƒ·nݱ|ùò˜˜˜Æ?zôhèСrœ­OÔHMÜÀV)78˜ððpé£\Ì1nܸR¥J-X° ::º@aaa‹-Ò}"ŸZXäT@uŽ0©L",wG£1Tí,_n$5àx¨8Ú-kÝà¨ìÙÓÀzŽöÏ’åF 80†ªa0R#ŽàhŸtãÔ+7’px Uãe¸©!Žy‰ˆˆøû￳5zyyíÚµKî®ÁåF à9‚cî.^¼èææV¾|yýÆâÅ‹ËÝ/Û"5=Ç\$''?xð mÛ¶&†½¼¤Í-7’À‹˜“‹‹/ !²• ©ä@pÌÅ… „þþþrwD&¤F‚c.¤àxíÚµÞ½{×®]ûõ×_ÿðÃ;fôެõá-¼²iãÔR#XEãÆÃÂÂäî…œ:¤ÑhV¬X!};qâD//¯jÕªÉÝ/‡{sqéÒ%!ÄŒ3êׯåÊ•-[¶lÛ¶mܸq=zô0dAAABˆøç_!Ö¯_o›Î$&& ‘””dÔ’“„¸ç©ÃåË—åî²ã¢@±å>2£?~ü«¯¾Ú¶mÛ£G*W®5xð`sÃéS§ÆŽÛ¨Q£(¤ŸùÿÒlÓ¦Eúi޹¸víš››ÛСC{÷î-µìÞ½ûƒ>˜4iR£Füüü^º‡øøx!„Ðhž}a[Z¡Æ}ú!† R³fÍaÆmÞ¼ÙÑNÅСC}útºžÿûßùl\§N!ÄÙ³gåîõËh¼»‘Ô@† 2|øpWW׺uë®]»6##cÔ¨QÁÁÁááá§NÒmܽ{wý§÷ëׯD‰éÉO?ýäëë««FDDlÛ¶íÚµk/}nZZÚĉƒƒƒ .ìïï}ýúué¡ððpýšå¾}ûÚ´iãééúùçŸÏ;W£ÑH7Óu*„111¡¡¡îîîžžžuëÖ]¶l™¥.ÊæÍ››4i"¥1É Aƒ„{öì1äéÛ·ooÙ²¥§§g•*U†žžž®»X;wB4jÔÈ"ÃföFq芣››[Îâ³V«ÍÊÊÒh4ÙþÈ“îM)Z´¨Ü½ÎÆØHj K—.uvv3fŒ‹‹Ë´iÓ"""jÔ¨‘‘‘ñþûïŸ;wnΜ9½zõ:zô¨Uûœœ|öìÙÈÈHF£klÖ¬ÙÂ… ÷îÝÛ¥K—üŸ½|ùò-ZtëÖíĉK–,9qâÄÞ½{³m¶qãÆN:ùúúöïß?55uæÌ™ 4íTŒ7nüøñÍš5‹ˆˆxòäɪU«Þzë-Ž;šy*222X«V-ýFiòh¡B…^úôß~û­G%K–ŒŒŒtrrZºtéêÕ«¥‡† V®\¹ &L:U?íÉÒOË¡ƒc®.\¸Ðºuë:uêÄÆÆê·9rDØÙ= ¤FJòèÑ£cÇŽU®\Yáââ2bĈ”””(P@qüøñ;w>|øÐªÀ߸qC«Õúøøè7z{{ !nݺ•ÿsSRRV¬XѧOŸÅ‹K-ÑÑÑ¿ÿþûµk×|}}u›eee}òÉ'eÊ”9pà€§§§bРAÕ«W7íTÄÆÆVªTiÆ ÒD#Fxyy­_¿Þüàèââòõ×_ë·Ü½{÷믿vvvŽˆˆÈÿ¹Ož<:t¨··÷Ê”)#„=z´.Û…„„œ?^Q¯^½† ÊØO˜€à˜]ùòåkÖ¬¹ÿþ_~ùE7räÈ‘E‹ùùù)ýn ÃÇ©I€CÒù;1ÍK:Õ©SGŠJBˆððp!Ddd¤•„Í›7ß¹sgjjªQÁ1##cíÚµy=úÆodkIMMBxxxè7+VLqçÎü_ËÉÉI£ÑìÚµëÂ… ÒJÀ .\¸pa¶ÍŽ9rêÔ©ï¿ÿ^JBˆàààˆˆˆÿüç?&œŠýû÷»ººê¦K”ŽÂÌS‘ÍÖ­[ß{d„„9sæT¬X1ÿ>|áÂ…)S¦H©QáëëûÑG9Òâ—Ìœ~ÂÇ\|þùçýû÷ÿì³Ï–/_xåÊ•£G.\øë¯¿vss“»w–@j•YŸDje^^^º¯¥”³ÅX)))Òít¹ŸKíJ¯øðáCýÆääd!„.çåÅÍÍmúôéÆ ¨Zµjƒ Ú´iÓ¾}ûlÃÐÒ½ò¡¡¡ú!!!¦Š%JìÞ½ûÏ?ÿ}Zªš*$Ë—/ 9xðà¼yóN:e`“* ú÷‰ ! œnË~ÂTsçííýÍ7ßÈÝ + 5° YYYúßž;w.×ÍŒ÷tqq©R¥ÊŽ;ô·oß®ÑhªV­š—îܹ“P©R¥èèèèè謬¬Ù³g}È!ú‡l‘S!„øã?Þ~ûí=zÌ;7Ûð}þ*T¨ „8tèPÓ¦MuNl²e?a‚£#!5° … >yòdff¦T¨Û±cÇÁƒ‹/žsKÆ=ß}÷Ý!C†¬Y³¦C‡Bˆ›7o®\¹²eË–/]8&>>¾aÆcÆŒ™8q¢ÂÉÉIŠMÙÙ«W¯îïï?cÆ iú³"!!áçŸ6á<<ÜÝÝýÝwߊŠ*S¦Ìž={6oÞ\ªT©;w®[·®m۶朊ӧOŸ9s&888:::ÛC]»víØ±c>§¢@S§NíÑ£GXXXÏž= (°bÅŠ—NK·R?:¥x)‚£c 5°#“&MÒjµ+W®Ü°aƒV«ˆˆ¨V­ZLLŒEvîáá±mÛ¶áǯ\¹òÞ½{õë×_¶l™nbGzzúýû÷ÓÒÒr>±`Á‚ëÖ­ûâ‹/þúë¯ß~ûÍÇǧeË–cÇŽÍYªìÒ¥ËÆÇ7kÖ¬ªU«ÆÄÄ\»vm×®]Æ®a^®\¹¸¸¸Q£FÍœ9ÓÇÇ'<<üøñã¿ÿþû¨Q£f̘‘-8KúTÀÓ§OŸ>}:ÛC*TèØ±c>§B:ÆÍ›7O˜0!66öÞ½{ÅŠ[ºti¶eÛ-â¥ý´ø+:8±Šá¥‚‚‚tŸU-luzó«7’…HJJâc‘•†‹b=ÿû)dïRRRRRR¤umfáÂ…'Nœ˜>}ºiOúôéñãÇ}}}ýüüt øá‡8[Ÿ ¨‘šþ¸A®¤AjMnÀ²ÂÃÃ¥r1ǸqãJ•*µ`Á‚èèè „……-Z´(Û§-+ŸENT‡à€MIEÇÁƒËÝÀh UÛƒ\&áPn–FpT·Ü'S“€í©XÁÑjl¸ˆ£Þ‹’€µU,û85©XÁQõd©lDp´”€•í©XÁQ­t78>ÿ€u`‚£Ê1H jиqã°°0¹{!§C‡i4š+VHßNœ8ÑËË«Zµjr÷ Æ!8ªÒ³qjÐÈݰ?[¶l ÷öö.Y²d£FV­Zeþ>å>2£?~¼gÏž¥K—.R¤H­Zµbbb222Ìßí©S§ÆŽ2£%&&6mÚ433³K—.åʕ۴iÓСC·oßn~’NHHBŒ7®yóææ÷3)))33³AƒºÆ"EŠÈzòìÁ  ééé...NN² ˆ5ªtéÒ‡.V¬˜bôèÑUªT?~¼™ÁQ§bèС<Ø»woíÚµ…&Lèß¿ÿ¢E‹6lØÐºuksö¬Õj…®®®é§C'L˜`‘Šü1T­>¡Ñ¾ø‘1 vC† >|¸‡‡‡««kݺu×®]›‘‘1jÔ¨àà`ðððS§Né6îÞ½»þÓûõëW¢D ó»ñäÉ““'OvèÐAJBww÷Æ_¾|9--í¥OOKK›8qbpppáÂ…ýýý£££¯_¿.=®ã¾}ûÚ´iãééúùçŸÏ;W£Ñ;vÌØS!„ˆ‰‰ uww÷ôô¬[·î²eË,uQ6oÞܤI)5J $„سg!Oß¾}{Ë–-===«T©2|øðôôtÝÅêܹ³¢Q£Fæ÷S Ž*T°Ô#TÕG—ùÌödéÒ¥ÎÎÎcÆŒqqq™6mZDDD5222ÞÿýsçÎÍ™3§W¯^Gµjœ;æåå¥kÉÈÈøûï¿CCCÝÜÜ^úôèèèåË—·hÑ¢[·n'NœX²dɉ'öîÝ›m³7vêÔÉ××·ÿþ©©©3gÎ,X° i§bܸqãÇoÖ¬YDDÄ“'OV­ZõÖ[oyxxtìØÑÌS‘‘‘1pàÀZµjé7^¸pAQ¨P¡—>ý·ß~ëÑ£GÉ’%###œœ–.]ºzõjé¡aÆ•+Wn„ S§NÕO¥&KHH(T¨PÑ¢Eùå—»wïV­ZµN:ÙN),F K«T©’V«ÕZïÜ>ß1WÏp‰‰‰rwÙqQ¬çÙO!U)_¾|Á‚OŸ>-}ûí·ß !^{íµôôt©¥Q£FBˆäädi㈈ý§÷íÛ·xñâ–íÒ?ü0vìØ5j”*UêÏ?ÿ|éö=rvvîÛ·¯®¥ÿþ^^^W¯^ÕjµM›6­^½ºV«ÍÌ̬R¥J``à;w¤ÍN:%¥œ£G{*+UªôôéSé¡û÷ﻸ¸ 0À×èÎ;uêÔqvv>{ölþ[>~üØßßß××÷òåËRËÕ«Wýüü„?ýô“V«ýïÿ+„عs§E:Ö¶m[777ý’sppðÁƒ ߃ o5¾Ë,‚Š£Ú0P ÀY§Ôå;JR§NÊ•+K_‡‡‡ !"## ( µ4oÞ|çΩ©©E‹5ü322Ö®]›×£o¼ñF>ÏýòË/¥1Ж-[úûû¿ôµœœœ4Í®]».\¸ m¿páÂ… fÛìÈ‘#§Núþûï===¥–àààˆˆˆÿüç?&œŠýû÷»ººº¸<ûm~çÎ!DjjªeO…bëÖ­ï½÷^BBœ9s*V¬˜ÿƇ¾pá”)SÊ”)#µøúú~ôÑG#GŽ´Æ%KHHÈÊÊ?~|DDDV¯^ýÉ'ŸtîÜùĉº[`)GU!50“‚opÑ –BRÎc¥¤¤H·Óåq2ò;çÎKMMݳgOttt½zõNŸ>íííÏönnnÓ§O6lX@@@ÕªU4hЦM›öíÛg3={ö¬"44T¿1$$Ä´SQ¢D‰Ý»wÿùçŸgΜ9wîÜÉ“'óZ.ÇäSqñâÅAƒýñÇ+VÜ´iS³fÍ^zÚ¥c¬Y³¦~£ËXšÐÏ­[·ºººê‚ø;ï¼óøñã®\¹²ÿþ†¼( Çä€ê=yò$×öbÅŠå3èöÒÝ.\¸yóæ“'O¾{÷®4ºš¿þóÏ?óçÏ ‹‹ëÚµkhhè7ô·ÑÍÑgÚOž<騱cãÆ×­[W±bÅaÆ>}:¯›i§bùòå!!!œ7oÞ©S§ IB©ªy±¼màôpúéçç§K’V­Z !Nž}z‡:w˜8kÖ¬\S£x>îiøž½¼¼ÆŒ3~üøÚµk·nÝZ£ÑüùçŸû÷ïÿøã¥»—/_>`À€~ýúM›6-ÛskÕª2yòäÄÄÄøøøuëÖyzzFFFêoV¨P¡˜˜˜îݻ׬Y³{÷îiii±±±5kÖܵk—!+þè www÷Ýw£¢¢Ê”)³gϞ͛7—*UjçÎëÖ­kÛ¶­9§âôéÓgΜ ιòy×®];vì˜Ï©(P ÀÔ©S{ôèÖ³gÏ ¬X±âÖ­[†¼®±ýôöö?~ü¿þõ¯Š+¶mÛ¶xñâ6l8räȤI“ªT©bÔù„!ŽjÀ 5è™4i’V«]¹rå† ´ZmDDDµjÕbbb,²ó/¾ø"00pÖ¬YsæÌqrr þé§Ÿt#×ééé÷ïßÏu1ð‚ ®[·î‹/¾øë¯¿~ûí7Ÿ–-[Ž;6ç×]ºtÙ¸qã¸qãfÍšUµjÕ˜˜˜k×®íÚµËØ5ÌË•+7jÔ¨™3gúøø„‡‡?~ü÷ß5jÔŒ3²GcI3ÊOŸ>}úôélU¨P¡cÇŽùœ é7oÞ>Þ’cÉσ£~Å‘¡j£$%%Yäó `A\ëyöSȤ¤¤¤¤¤ä?ÙÙâ.\xâĉéÓ§›öô§OŸ?~Ü××WZ×P2`À€~øáÁƒº…uTÁÀSqõêÕ’%K²l¸\LxË8λ,fU+åFȃ»»»SããÇ·lÙR£F “÷àììÜ¢E‹¨¨(]˃V­ZÕ¾}{u¥FÃO…ŸŸŸ’S#ŒBpT npÙíÙ³'88¸W¯^&ïÁÉÉiðàÁ[·nˆˆX¾|yLLLãÆ=z4tèP¹ÎÖ§j¤¦?nQåFÆ©@áááÒG¹˜cܸq¥J•Z°`AtttÂÂÂ-Z”íS¡•Ï"§ªCpT0©ÀIEÇÁƒËÝÀh UÀ G¥z±ÜÈ Ž@vG„à¨HÜÝ”‡àƒ•'G¹1Û Ž¬ÅdAp€AŽ ÃÝ@©Ž0Á!8*InãÔ,ý v©qãÆaaar÷BN‡Òh4+V¬¾8q¢——WµjÕäîòCp´f>€=jÒ¤Éøñã-²+gggggg¹Èh[¶l ÷öö.Y²d£FV­Ze‘Ýž:ujìØ±ÁÁÁ£G–û‘‚£b6-†D r9räÈ®]»,µ·­[·|¸‡‡‡««kݺu×®]›‘‘1jÔ¨àà`ðððS§Né6îÞ½»þÓûõëW¢D +õíÎ;­[·?~ü­[·Œ}nZZÚĉƒƒƒ .ìïï}ýúué¡ððpý{÷íÛצMOOÏÐÐÐÏ?ÿ|îܹæØ±cÆž!DLLLhh¨»»»§§gݺu—-[f‘óðäÉ““'OvèÐAJBww÷Æ_¾|9--Í=lß¾½eË–žžžUªT>|xzzºÔÞ¯_¿Î; !5j`ùKË¡â¨hÌŒà8–.]êììý·ß~ëÑ£GÉ’%###œœ–.]ºzõjé¡aÆ•+Wn„ S§N­]»¶u.#,ƒàP„G;vLJf...#FŒHII9pà@„Çß¹sçÇ‹-*wO •’’²bÅŠ>}ú,^¼Xj‰ŽŽþý÷߯]»æëë«Û,++ë“O>)S¦Ì<==…ƒ ª^½ºi''66¶R¥J6lpqqBŒ1ÂËËkýúõæG—ªU«J_ÿøã k×®½víÚþóŸ—>÷É“'C‡õöö>pà@™2e„£G®U«–ôhHHÈùóç…õêÕkذ¡ENþ¹sç=z""Ibbâýû÷«U«¦ß£€qj6£‘õÕóýYW§N]=/<<\©ûß¼yó;w¦¦¦322Ö®]›×£o¼ñ†U×ÉÉI£ÑìÚµëÂ… þþþBˆ… æœJräÈ‘S§N}ÿý÷RjBGDDè2ÃOÎþýû]]]¥Ô(„¸sçŽ"55Õ²'çË/¿”¦³´lÙR:´ü>|øÂ… S¦L‘R£Â××÷£>9räKŸkl?322:uê´nÝ:éU¦L™uæÌ™¾}ûîÛ·O°~ýúJ•*™rQÁ‰‚ÿLÕ•"QÎc¥¤¤H7Ïå~2r¬Rqþüù *è¾]²dIŸ>}L>"77·éÓ§6,  jÕª 4hÓ¦Mûöí³ CŸ={VªßbÚÉ)Q¢ÄîÝ»ÿüóÏ3gΜ;wîäÉ“99úÎ;—ššºgÏžèèèzõê>}ÚÛÛ;Ÿí¥c¬Y³¦~£ËXÛÏŸ~úiÓ¦M6l ûñÇßÿýÕ«W¯_¿¾K—.‹/vss{ûí·?ýôSÝ@9ŒBp”åF0Û“'Orm/V¬˜Ö˜5Ì|||–.]ªû¶~ýúfvlàÀݺu[³fÍ–-[âââæÏŸ´mÛ6Ý6º9"úL[âñÉ“']»v‹‹«]»v«V­:uêT¿~ý5jXäädS¸páæÍ›Ož<ùÍ7ßüïÿûÞ{ïå³±TÕh^¨x8=ÜØ~^¼x±J•*­ZµB 6,##cäÈ‘uëÖ?¾Ù»uë6gΓÜÁ•+çÌqI¶eqÎ;—ëfÆŽr)R$**ÊR¼sçNBBB¥J•¢£££££³²²fÏž=xðà¹sç~ñźͤ1è“'O¾þúëºÆ“'OšðŠ;w‹›>}ú!CôO‚ENÎÚµk;wî¼téÒž={ê¥Éì/ vR÷СCM›6Õ58ÕÉØ~¶jÕjìØ±“'O ]µjÕÏ?ÿ@i¸(Ö/w/l!%%%%%%ÿù¼6°páÂ'NLŸ>Ý´§?}úôøñã¾¾¾~~~ºÆüðÃ<Ð-¬£ žŠ«W¯–,Y²P¡Br÷÷Þ2Žó.Ë†Š£|§󸻻˞?~¼eË–¼f.ÂÙÙ¹E‹ú“r>Þäç&%%È}xÊÁPµâ°P&‚£mqƒ#P-‚# Bp€AŽ0Áц¸Á¨ÁQY˜R ‹à¨¬þ ”€àƒáÚ´i#wE™¸. ÄErm…™1@åŽ0Á!8*kñ%#8À -+ZZPPPÎÆø³ñA•‚Œß™Bœ=_ÉÔçkˆ—» 2 8À UÀ G„àƒ`‚# Bp€AŽ0Á!8À G„àƒ`‚# Bp€AŽ0ÁÑb~ùå—îÝ»‡……5lØpôèÑ÷îÝ“»GÄØ“Ÿ––¶dÉ’:T¯^½qãÆýû÷ßµk—ÜaoÌyG\½zµf͚Ç—û ì åï¿ÿ4hPxxxíÚµßzë­}ûöÉ}öÆØ‹’žž¾`Á‚®]»†……5kÖlÈ!çΓû NbbbPPбcÇäîˆ Ž–óÙgŸ?¾víÚEŠùõ×_ß{ï½´´4¹ûåŒ=ù}ûöýúë¯oÞ¼Y¿~ý *ìÛ·ïwÞ™5k–܇b?ÌyGhµÚýë_=’û ì eóæÍ‘‘‘›7oööö ;räHïÞ½7oÞ,÷¡Øc/JfffŸ>}¦Nzï޽Ɨ)SfÆ o¼ñÆä>Ç+w䣅ÙΜ9S¹råÆ߸qCj™8qb¥J•&L˜ w×ìŸ 'Ù²e•*UŠŒŒLMM•ZΞ=[§NàààS§NÉ}@öÀÌwÄ¢E‹*UªT©R¥O?ýTîC±&\”û÷ïתUëµ×^;xð ÔrìØ± dffÊ}@öÀä_C† yúô©Ô²{÷îàààV­ZÉ}4áÁƒøüóÏ¥ŸQG•»G2 âh?ÿüsVVÖÇìíí-µŒ9²X±bëÖ­ËÊÊ’»wv΄“¿~ýz!Ę1cÜÜܤ–Š+~ðÁ™™™ X[„9ïˆsçÎÅÄÄT®\Y7&\”_ý599ùƒ>¨Y³¦ÔÚ¶mÛÛ·oÿý÷ßr=0á¢>|XѧO©¥~ýúÁÁÁÿüóÏÝ»wå> û×±cǨ¨¨Ÿ~úIîŽÈ‰àhprrjÚ´©®ÅÙÙ¹I“&wîÜ‘Þä°N~RR’»»{ÕªUõ+V¬(„¸té’ÜdL~GdddŒ1¢D‰#GŽ”û ì eûöí¦sçÎúß~ûm||ük¯½&÷Ù.Н¯¯B?#jµÚû÷ï;99é¢$¬ç«¯¾š={öìÙ³4h w_dÃgæÒjµ žžžžžžúí•*UB\ºt©V­Zr÷Ñn™vòçÍ›—ó'ìÉ“'…eË–•û˜TÏœwÄÌ™3OŸ>½hÑ"¹Ã®˜vQNœ8Q¢D‰Ò¥K=$$DîcR=ÓÞ)AAA±±±}ûöíÛ·¯®ñ­·Þ=z´ÜGÁPµ¹¤éoîîîÙÚ‹)"„xðàÜ´gæŸüÌÌÌü1:::55uòäÉ^^^r“ê™vQÒÒÒFŒQ¶lÙaÆÉ}vÈ„‹òðáC!DBBB\\Ü7ß|³oß¾mÛ¶ <øÊ•+C† aÉó™öNINNžW¯^¼çìÙ³õêÕ IHHû€Ș1cö“c˜c~~~Çÿæ›o:uêÔ¸qã .ìÝ»·jÕªï¾û®Ü]³†œümÛ¶}òÉ'+V\³fÍ­[·.^¼èææ•so]ºtyë­·ä>&Õ3ö¢ÈÝ_‡`ÂE :tè´iÓÚ´iS«V­ÔÔÔh4š¯¾úªdÉ’r=0á¢Lœ81""böìÙqqqUªT¹sçΡC‡²²²>ûì³W_}Uî‚C 8ZÆ;ï¼SªT©ÿþ÷¿qqq¾¾¾o½õÖÇ,­ªk3êä_¾|Y‘––vâĉœ2EÆRxG( åý÷ß÷òòúñÇwïÞ]¢D‰æÍ›|xPPО={l¶«ÿûßAAAË–-ÓÖÖ­[s}äEp5Ù¹sç¶mÛäîå"wÀ¡…‡‡{yyÕ¬YÓÀG?ýôÓäääS§NÉÝqŽˆàrªZµjÕªUM{lŒ¡jª”™™™‘‘!w/À±¨†4qäüùó_~ùe­ZµªV­Ú´iÓÁƒg›€"mvõêÕ£GvëÖ-44ôòå˺Gãââ>øàƒ×_½^½z}ûöý¿ÿû¿ÌÌÌœ¯µsçÎ!C†4iÒ¤I“&~øáöíÛ³mpûöíiÓ¦µk×®F5jÔhß¾ýäÉ“oܸaì®,XÏôýG¿ýöÛ   {÷îeff………=:((héÒ¥Ùž5mÚ´   ï¾ûNî+Àި̘1c–.]úøñcÿ{÷îmܸñwÞY¸pa¶ÍNŸ>Ý·oß'N} *¤ÑhúôéÓ«W¯víÚ !6lØ ¿™V«]³fâ7ÞûZ°7G*säÈ‘¦M›îÙ³gãÆ‡9r¤F£ùî»ïÎ;§¿ÙçŸ^­ZµÅ‹ïÚµ«\¹rBˆU«Vý÷¿ÿõööþé§Ÿ¶oß¾aÆ-[¶T¯^ýÈ‘#3gÎÔþÚ¼yó}ûöI/1bÄ''§Ù³g?~\·Á?ÿüÓ¬Y³]»vý÷¿ÿ]½zõÎ;k×®}åÊ•¿þú˨]®Y³f£G.\¸°““ÓèÑ£‡^¿~ýâÅ‹|åÊ• *È}­Ø‚#•ñööþþûï‹/.„pvvîׯ_TTTVVÖìÙ³õ7sww_°`Aƒ ¼¼¼¤–éÓ§ !¾úê«°°0©Å××wæÌ™… úé§Ÿ®_¿®{®ŸŸßŒ3<<<„...ýû÷ŠŠBÌš5KÚ ###<<üÓO?uww—Z<<<:vì(„¸pá‚~7^º+s8;;·jÕ*++ëÏ?ÿÔ5þñÇBˆÎ;Ë}¡Ø!‚#•éÖ­[¡B…ô[z÷î-„8zô¨~c§N\]]ußÞ¼y󯾾¾Mš4ÑßÌÛÛ»iÓ¦™™™§OŸÖ5vïÞÝÅÅ%çKœ}éK899(P@±|ùòV­Z7îøñ㯾úê;ï¼³xñâÏ?ÿÜðÞêve&ggçÖ­[gffJ÷V2N Àª¨8P™¤¤¤l-ׯ_OMM-]ºtáÂ…óz–TkÌv¢D*Fê—s¾Äµk×RSSË–-[°`ÁG}ùå— œ7o^£Fô»aHoõwe‘Ò¶mÛåË—¯_¿¾]»v›7oöðð·ôY!¨8Pß~û-==]¿%66V’ϳ|||J•*uõêÕ;wê·ßºukË–-ÎÎÎÁÁÁºÆ•+Wf[ÜQz‰5j!þþûïÌÌÌ5jè§F!Ä™3gr¾nþ»²ˆZµjyyyíÙ³gåÊ•?nß¾½¥")dCp 2ׯ_ÿøã“““…YYYË–-[²d‰““ÓàÁƒóâ'Ÿ|"„øì³ÏNœ8!µÜ¸qcðàÁ?îÙ³§ŸŸŸnËK—. :4%%Ez‰üñ‡~pqq8p ÂÇÇGqæÌÝ"8™™™?ýô“´wZZšþ‹æ¿+Ódee¥¦¦ê¾•æVgddL›6M0N Àšª 2íÚµÛ¸qc½zõÊ—// û:99 :´råÊù?±K—.{öìùã?ºuëöÊ+¯¸¹¹?>+++,,ìã?Öß2((hýúõþùg@@À•+WÒÒÒ\\\>ûì3iM```óæÍÿú믖-[Ö¬YS«ÕÆÇÇß»w/**êÇüí·ß>|øÍ7ß²+/^üÞ½{‘‘‘åÊ•Ó-?Ù®]»ÿüç?iiiþþþÕ«W—û°[G*óÆoDEEýßÿýßßÿ]¤H‘úõë¿ýöÛõë×霜¦NÚ´iÓ?þøãÌ™37oÞ¬S§N“&Múöí+ÍÑY¼xñúõëÿú믓'O–(Qâõ×_ïׯŸ~ ûî»ï-ZwðàÁW^y¥I“&ýúõ«X±bffæüqàÀÃwe¬‘#G~õÕWçÏŸüø±®±fÍš¥J•ºuëåFV¥Ég¦!(ÊðáÃW¯^=oÞ¼¦M›ÊÝeÉÊÊjÞ¼ùµk×þúë¯2eÊÈÝv‹{@õvïÞ}õêÕÚµk“XÁÔ----&&FÑ­[7¹ûÀÎq#¨XíÚµ?~œžž^¡BéòÀzŽT£]»v•*UÊù!~ŽÌ××÷âÅ‹Mš4™0aB¶)>`qLŽ€A¸Ç!8À G„àƒ`ÿn¦)z\aêÍIEND®B`‚statistics-release-1.6.3/docs/assets/tlspdf_101.png000066400000000000000000000762121456127120000221540ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A|QIDATxÚíÝy\TÕÿÇñ3,*¢€"š"”ŠüDEsAÅ}IsAÍ¥²$+Í4MsÉ\2Ë4ÑÌT4sÍ%MË5sÅÝÜ!HÓ\qAÁ ˜ß7ç;±y™¹w澞=àνwÎ=3Üyû9÷ÜÑéõz<Ò €u 8@‚#d!8@‚#d!8@‚#d!8@‚#d!8@‚#P$qqqº'~ûí7¥›“»_~ùå§Ÿ~úé§Ÿ®_¿nX8þ|©Ù!!!J7ÐBÆ'r—.]L²Ã»wï~öÙg-[¶|öÙgK”(áííòÉ'Ÿ$%%å\9×W¡è>ýôSé Úµkg¾®ËµñíÚµ“žzÖ¬YEÙùºuëtòܹs'×=ÿ+]ºt:u pñâŧ®ïàààááQ¿~ýqãÆå|òz c#FŒ0ßK¨„ƒÒ `v½zõºwïžbûöí-Z´Pº96bûöí={ö¼yó¦aÉ•+W®\¹rôèÑI“&­X±¢GÆë[õ«`¥¿wïÞ±cÇŽ;öý÷߯_¿¾U«Vù¬œ™™™’’’’’røðá9sælÞ¼ù…^PúÕ!8Uºté*Uª!¼½½•n‹õ¹páÂË/¿lHÏ=÷\Ù²eÿù矿ÿþ[‘‘‘Ñ»wo''§Ž;*ÝR+P²dIé­(¹ÿþÕ«W¥Ÿ+T¨P¬X1ÃCvvO%óòòrrrB<~üøòåËYYYBˆ´´´ÄÆÆ:;;çµ~ZZš¡ÐxëÖ­îÝ»'&&/^<Ÿ§È¦L™2J÷%`v UÕ»wïääääääŸþYé¶XŸÅ‹§¤¤!<<<>œpðàÁ .ìß¿¿B… BˆÌÌÌÉ“'+ÝLózþù祋²ŸvíÚ%Y±b…á¡mÛ¶?Tºté§îmÅŠÒÊ/^¼sçÎo¼!-ÿ믿vìØ‘Ïú×®]»páÂ믿.-¿xñâܹsóŠlÆŒ£ÀËXÁ°¨´´´ñãÇ·jÕÊËËËËË«eË–cÆŒIMM͹æµk׆ Ò¨Q#WW×*Uª´k×nóæÍÙÖÉÊÊZµjUXX˜O‰%|||š5k¶dÉ’ÇK+Œ=Z§ÓIƒŒBˆ–-[êtº´´4‘÷5ŽrZh|±à­[·†RºtéZµjM™2Åðìù{üøñ¼yó7n\¡B…R¥JÕ¬Yó•W^9yò¤™º"W¯^2dHÆ K—.ýì³ÏvëÖíØ±cùoòûï¿K?¼òÊ+ÆØ Aƒ3fH??~\*wåó*äuÙe¯^½r½lîÂ… ={öôðð(_¾|×®]9R胒ù"æÓøN: !Ê–-Û´iÓB¼¬PªT©¯¿þÚÑÑQúõìÙ³ù¯_©R¥E‹^‹)S¦HG àôŠ 66Öð×´}ûöüW>|øð³Ï>›óϰR¥J»wï6^sÛ¶måʕ˹fDD„ñjÙ®¢3—V5jTÎGïÝ»§×ëçÍ›'ýZ·nÝ‚¶ð£>’–7kÖ, ÛÊÝ»wj¿=xð ^½z9ŸH§ÓÍ™3Ç]aÜìÎ;þöÛo^^^9›1lذ|ÚߺukiÍÖ­[gee?”––¶ë‰ŒŒŒü_…\›¤×ë_~ùeiù|`XxäÈ‘òåËï¤téÒíÛ·—~nÛ¶mJ拘Oã?~\¹råâeÍÇöíÛ ÆÆÆÊÙ$ÿ?C©,„5j”œõwíÚextË–-r6´ƒà‰ü“ôôtÃ…\%J”hÓ¦MûöíK–,)-)_¾|jjª´æ;w<==¥ånnnݺu 3<˲eˤÕV¯^møTnÞ¼ù«¯¾j>>õë×/Q¢„aÉáÇóï7Üœœ^zé¥Áƒׯ__ZâààpæÌ“w…>·”f¼ÿæÍ›O˜0¡W¯^† é¾ýöÛ¼Ú?räHÃþk×®=}úô¤§§çºr>¯‚üàøðáCC½ð Æ×G™%óȨñ…~YógÚàxëÖ-{{ûlÇžÿŸmVV–áÂÊI“&ÉÙЂ#P$ò?N&Nœ(­æââbÈU§Nòðð–Ê!†+¥|||®_¿žma“&M¤%†‹±†nx–:uêH ¿øâ ÃÂR¥JålaÎà(¿…Æ™cöìÙÒÂ3gÎbÇSËK5’Öœšëíx ýØ6‚#` ©©©†/½È6ÄY±bEé‡\½zÕÙÙÙ°¦››[>û|ôèÑèÑ£¿ú꫌Œ i‰““S¹rå®]»fÖ?ªÓéŒ×Ìök>&Nœ˜ššºpᇠ!ôz½t£æO?ý444tݺužžžÆM2GW¤¦¦& çåÆù¯àààиqãÆK¿^ºtéóÏ?ÿú믅iiiË–-;vl!^ŽlîÝ»g8–lóc*UªTă*ô‹˜“œ—µè½‘?ãTçààP½zõ† 2ÄøòͧºråŠao9]±b…Ý0-†ªKpqqquu•~¾|ù²ñC†_‹+æééYºtiÃDCÙ#WŸ~úéŒ3222üüü¾ù曓'O¦¦¦úŽÓò[h’qttüú믯_¿¾zõê>}úß9yïÞ½Ò=hÌÝ...†æmÛ¶%æ¦W¯^97ÌÈÈøö‰ .?T±bÅÙ³g꣆Ši999¦kdKÃÙ¾…¯Ðer^Vs3¾ÉbBBÂO?ýôá‡(5ÆÄļzõêÕ«W>|Ø£GåË—_»ví×_5|HïÙ³Ga®xî¹ç¤222ž5R¦L77777·\¿ ÄÁÁá“O>‰ˆˆˆˆˆøöÛos®`È»†yÐy1”÷nß¾m¼<[:´··÷õõ•~6¾tRÿß{Çå ŠNæËª~†Amgggãk$‚#`1†ûí}õÕW†[1ÇÆÆN›6MúÙpíšávÊ_~ù¥aÈ,22Rº–®xñâvvvwïÞ5 82Çï¿ÿžëwcê(El¡LNNN^ÿ%Í98sæLùòåË—/ïííýçŸ !Z¶lÙ¿iCÃÀ´ùºBÒ²eK釨¨(½^/ý¼nݺ²eËzxxT©R%¯ %›5k&ý0uêÔ+VHst„óçÏ7mªƒ’#Ÿ·ü—Uµ®\¹2`À€µk×J¿¾òÊ+r¾«Ð¥§uÖÍø&*Tx.7‡Òëõééé†ú“““Ó‹/¾øÒK/¾9×ÛÛûÎ;Ò>¯^½j¸$ßËË«wïÞÆTýüóÏz½>++Ëp‡”’%KvêÔ饗^2þ^]ísôzý3Ï<#-lРÁ´iÓ=z¤Ïã>Ž2[X ÛVç”™™i¸t¬|ùò#GŽìÑ£‡a<Ñpó<ÓvEÎfß¼yÓ0œÚ¬Y³ñãLJ‡‡ rüq^‡œœl˜x+„ððð¨W¯^ýúõ¶jÕJºx>¯‚áh¤Æ7jÔÈP÷ÍÖ“'Nœ0”'‹+jøÆ?‰áv<2ª@/b®/ôËš?“ß\æŸm¶K{=== w€*ÄS¶ŠàÉSïî&„صk—´ò¡C‡üüür®àãã³wï^ãÝþøã†+3ưNÏž=³=êççg¸?ök¯½fX³OŸ>Æ«åóÍ12[XÄà¨×ë8×€i³fÍåÊ•svv 4¾ŸN¡[XD/¼ðBbbâ¸qãBBB*T¨àèèX¦L™Æ/\¸pÇŽÆõBÓvEN;v”îÈX»ví’%KúùùuéÒe÷îÝsçÎÍ~qÓ¦M“’’æÌ™Ó¾}ûêÕ«;;;{zz†„„ôîÝ{çλwï6ž’Ï«°téÒO?ý´fÍšÎÎÎÁÁÁï½÷ÞÁƒ 7­4öí·ß4Hú¹\¹r:uÚ¾}{“&MLxPy‘ù’ÿ²ª½½½»»{½zõÆÿ /(Ý"@tú'WÀ°:?þå—_„]ºtQº-t……=ztçÎo½õV®·³"8@†ª Á² Á² Á² Á² Á² Á² Á² Á² Á² ‹ƒÒ °AþþþJ7˜Q||¼ÒMPÁÑ,4û~Rœ¿¿?ËãEðÆSf;Ÿ¡jÈBp€,GÈBp€,GÈ¢•àøÃ?tïÞ=88¸Q£FcÆŒ¹uë–ümÿùçŸ:uêŒ1BéƒÀÓmÙ²Eé&@‹xãA¼ñ`yšŽ‘‘‘}ôÑŸþRªT©uëÖ 0àþýûr¶Õëõ~øá½{÷”>…Ù~pŒŠŠòòòÚ²eKTTÔÖ­[_}õÕS§NMŸ>]Îæ‹/>|ø°Ò <ÛŽkÖ¬ÉÊÊ:th¹rå¤%£FruuŽŽÎÊÊÊÛ„„„ÈÈÈçŸ^éƒPžíÇ#GŽØÙÙ5kÖ̰ÄÞÞ¾I“&)))ÇŽËgÃŒŒŒ‘#G–)SfÔ¨QJ€òl<8êõúÄÄDwwwwwwãåÕªUBüý÷ßùl;{öì3gÎ|öÙg...J€òlü»ªÓÓÓ333ÝÜܲ-wuuBܼy3¯ Oœ8±`Á‚¾}û6lØ0..® ÏëïïŸm sß,ãâÅ‹J7ZÄŠàg1mÛ¶Uº jaãÁQš:íììœmy©R¥„wîÜÉk«‘#GVªTiøðá…{^m~ñ¹Jøúú*Ýho<(‚7žeäüXÏY!ÒŽnnn:.===Ûréö:RÝ1§©S§^¼xqåÊ•NNNJ€ZØxptpppuuÍYYLMMBæY;|øðÊ•+øÿ÷k§fÿáE}P„G!„——Wbbbjjªñ—ääd顜ë'$$!¾ùæ›o¾ùÆxùÏ?ÿüóÏ?W­Zõ—_~1G;ù äó÷÷çO,Ïöƒc‹-âãã÷îÝÛ¡Ci‰^¯ß½{w™2e‚ƒƒs®ïããcXSrçΘ˜˜ *—/_^éP†íÇîݻϛ7ï믿nÚ´©4'&**êÆŽŽŽÒ:iii×®]stt|æ™g7nܸqcã=ÄÅÅÅÄÄÔ­[wÚ´iJ €bl?8V¨PaĈS§NíÔ©Shhèùóç¸B:~üø¾}ûL¸ÃÄÄD!Ä„ zõê¥ævÌM+÷q„™|øŽ;´Ö;vìØ¿ÿ7ß|“••eÂ=ëõz!D‰%TÞN€¹QqDaøúú2dĈ...%J”¨_¿þ¦M›222FàââvúôiÃÊÝ»w7Þüõ×_/S¦ŒIZ²jÕ*ooïW_}UúÕÏÏ/<<|÷îÝ—/_~ê¶÷ïߟ{öìbÅŠ®+&L˜0qâÄæÍ›‡‡‡?|øpýúõ}ûöuqqÉçkäóòò’JƒñññÏ?ÿ|¶ýñÇ{ôèQ¶lÙ^½zÙÙÙ-_¾ü矖>|xåÊ•'Mš4}úôeÛ PÁ…tïÞ½“'OJü#GŽLKK;r䈣££âÔ©S111wïÞ-]º´ùÚpõêU½^ïååe¼°\¹rBˆ§V³ÒÒÒV¯^ýÚk¯}÷ÝwÒ’ˆˆˆŸ~úéòåËÞÞÞ†Õ²²²ÞÿýŠ+9rÄÝÝ]ñî»ïÖªU«p]±lÙ²jÕªmݺÕÁÁA1räH-[¶˜$8ÚLJ V®\¹#GŽT¬XQ1f̘ºuëJþùçŸBˆ^x¡Q£F ¶ 8‚# ©^½z†rQXX˜¢W¯^RTB´hÑ"&&&==½@Á1##cÓ¦My=úÒK/e[’žž.„pqq1^èêê*„HIIÉÿ¹ìììt:ݾ}ûΟ?ïãã#„X¸páÂ… ³­vüøñÓ§OõÕWRjB„‡‡ÿý÷…èŠÃ‡—(QBJ†FJGQÄ®(ŠcÇŽ?~Ú´iRjBx{{¿÷Þ{£Fzê¶–l'@qGU3€U€^Ÿß£†Ÿ¥”sIA¥¥¥I—ÓåÑžì ’žñîÝ»Æ SSS…†œ—''§™3g>Ü××·F 6lÛ¶m‡² CŸ;wNd¼000°p]Q¦L™ýû÷ÿúë¯gÏžMHHˆ‹‹ËÈÈ0IW…tŒuêÔ1^(ó6––l'@qLŽQ5½^ÉÿÌçáǹ.wuuÕç-çú^^^vvvÙF¥oܸ!„0Ïò1hР¿þú+***((hóæÍ]»v ºzõªñ:†9"Æ w‹Ç‡vìØ1444::ºjժÇ?sæŒT-zW…TÕý÷Ÿ)2§‡[²ÅQq„%d»ëJBBB®«tÜÓÁÁ¡zõê{÷î5^¸gÏNW£Fü›”’’’˜˜X­Zµˆˆˆˆˆˆ¬¬¬o¾ùfðàÁóæÍ?~¼a5i :..®iÓ¦†…qqq…脘˜˜Í›7Ïœ9sÈ!Ƈl’®(Šçž{Nñûï¿7kÖ̰PæÄ&†ª@SŽ0»’%KÆÅÅeffJ…º½{÷=zÔÍÍ-çš…÷|óÍ7‡ òË/¿¼øâ‹Bˆk×®­]»¶U«VO½qL|||£FÆŽ;yòd!„›² ²×ªUËÇÇgÖ¬YÒôg!Dbbâš5k Ñ/^B–¬]»6---×ã²äpíÚµýüüf̘ѻwoibÐõë×gÍš%g[†ª@SŽ0»Ö­[Ïœ9óÅ_ìܹsRRÒœ9srMâɸgvÞ¯_¿E‹õéÓgРAnnn‹/NOO7|‹ÝÊ•+øúë¯Ï˜1#Û†uëÖ üüóÏ“’’ãã㣣£ÝÝݳ}9JñâÅ###»wï^§Nîݻ߿Ù²euêÔÙ·oŸ““Sšæììüæ›oöéÓ§bÅŠرc‡§§gLLLttt»víŠØù˧+§OŸÞ£Gàààž={:::®^½ZæMMÞN€šq#ÌnÊ”)C† ùã?Þyç/¾ø¢]»vï¿ÿ¾©vîââ²{÷îž={®]»vÚ´iÏ=÷ÜîÝ»_xáéÑGݾ}ûþýû97,V¬Xttôk¯½¶ÿþI“&íÚµ«U«VûöíËYªìҥ˶mÛ¼½½çÌ™sèСÈÈÈN: ! zóÊ•+oÞ¼ù™gž™={vdd¤““Ó©S§>ûì³ÔÔT™å½¢È§+¤cܱcGÍš5—-[öå—_Þ½{wùòåænÀê記œ¿¿||¼¹7±FiiiiiiÒ}-fáÂ…±±±3gÎ,Üæ?>uê”··w…  ¸dÉ’;wîn¬cdvÅ?ÿüS¶lÙâÅ‹+ÝÞü¨íO&99Ù$_«o<©í,d1Ta9ÎÎÎN<عsgíÚµ ½{{û–-[öéÓǰäÎ;ëׯïСƒu¥Fù]Q¡B•§F€RްeèÝ»w¡÷`gg7xðà]»v…‡‡¯\¹222244ôÞ½{Æ Súà,ÝXSÉ(¨°°0é«\Šb„ žžž ,ˆˆˆptt ^´h‘áù¬…Iº qGà)¤¢ãàÁƒ•n c¨² Á² Á² Á² Á² Á²\„††+Ý %ýþûï:nõêÕÒ¯“'Oöðð¨Y³¦Òí(‰à«wçηß~»råÊ¥J•jÒ¤ÉÁƒ‹¾O{{{{{{¥¬ÀN:Õ³gÏòåË—*Uªnݺ‘‘‘EßíéÓ§Ç0fÌ5·`nJ7(’ÔÔÔºuë^¸p!<<ÜÃÃcíÚµm۶ݹsgë…»víRúÈ ,))©Y³f™™™]ºt©\¹òöíÛ‡ ¶gÏžõë×qω‰‰Bˆ &´hÑBÍí˜GÉ£G²²²lÀŒ3£¢¢V¬X1kÖ¬½{÷êtºáÇk°+† vçÎíÛ·/^¼xÒ¤Iû÷ïã76lذuëÖ"îY¯× !J”(¡òvÌàˆÂðõõ2dȈ#\\\J”(Q¿~ýM›6eddŒ=: ÀÅÅ%,,ìôéÓ†•»wïn¼ù믿^¦L“´dÕªUÞÞÞ¯¾úªô«ŸŸ_xxøîÝ»/_¾üÔmïß¿?yò䀀€’%KúøøDDD\¹rEz(,,̸fyèС¶mÛº»»}üñÇóæÍÓét'Ož,hW!"##ƒ‚‚œÝÝÝëׯ¿bÅ S½(;vìhÒ¤IHHˆaÉ»ï¾+„8pà€œÍ÷ìÙÓªU+ww÷êÕ«1âÑ£G†«sçÎBˆÆûúú*ÞN€‚ªF!-_¾ÜÞÞ~ìØ±3f̯]»vFFÆ[o½•0wîÜÞ½{Ÿ8q¬mHMM=wî\¯^½t:aaóæÍ.\xðàÁ.]ºä¿yDDÄÊ•+[¶lÙ­[·ØØØÅ‹ÇÆÆæ¼DrÛ¶m:uòööîß¿zzúìÙ³‹+V¸®˜0aÂĉ›7oþðáÃõë×÷íÛ×ÅÅ¥cÇŽE슌ŒŒAƒÕ­[×xáùóç…Å‹êæ?þøc=Ê–-Û«W/;;»åË—ÿüóÏÒCǯ\¹ò¤I“¦OŸnœöi'@az˜ZµjÕ,°‰²ªT©R¬X±3gÎH¿~ñÅBˆÿû¿ÿ{ôè‘´¤qãÆBˆÔÔTiåððpãÍûõëçææVôfœ;wNñþûï/ܾ}»bþüùùo{ïÞ={{û~ýú–ôïßßÃÃãŸþÑëõÍš5«U«–^¯ÏÌ̬^½ºŸŸ_JJŠ´ÚéÓ§¥àxâĉ‚v…ŸŸ_µjÕ?~,=tûöm‡šã5JII©W¯ž½½ý¹sçò_óÁƒ>>>ÞÞÞ/^”–üóÏ?*TB¬ZµJ¯×oذA£l;©íO&))Ié&@‹xã)Hmg!‹¡â¨j:¡+úN M/ôù>>Bˆ… .\¸0ÛjÇ?}úôW_}åîî.- ÿþûï ч.Q¢„ƒÃ¿wR#¥£(bWd³k×®$&&Î;·jÕªù¯|ìØ±óçÏO›6­bÅŠÒooï÷Þ{oÔ¨Q&ÉŠÒN€âŽª–tS–‡‡‡ág)$å\RPiiiÒåt¹÷†>{oHÏx÷î]ã…©©©BCÎË‹““ÓÌ™3‡îëë[£F† ¶mÛ¶C‡Ù†¡¥¢fPPñÂÀÀÀÂuE™2eöïßÿ믿ž={6!!!...¯Ûд+ .\¸ðî»ïnܸ±jÕªÛ·ooÞ¼ùS»]:Æ:uê/”9-Ý’í(ŽÉ1PÀÇs]îêêšOy<çú^^^vvvׯ_7^xãÆ !„¡x–Aƒýõ×_QQQAAA›7oîÚµkPPÐÕ«W×1Ì1V¸[<>|ø°cÇŽ¡¡¡ÑÑÑU«V>|ø™3g¤úhÑ»B²råÊÀÀÀ£GΟ?ÿôéÓ2Ó˜T5¾NTag'ëä`ÉvGÅ–í>5 ¹®VÐqO‡êÕ«ïÝ»×xáž={t:]5òoRJJJbbbµjÕ""""""²²²¾ùæ›ÁƒÏ›7oüøñ†Õ¤1踸¸¦M›ÆÅÅ¢bbb6oÞéÂ… cccgΜY¸Í?~|êÔ)ooo龆’.Y²äÎ;†ëX™]ñÏ?ÿ”-[Vå·ãVÛŸLrr²I¾V(Þx RÛYÈb˜U Ëqvv¶pj|ðàÁÎ;k×®]è=ØÛÛ·lÙ²OŸ>†%wîÜY¿~}‡¬+5ÊïŠ *¨<5”Bp„-;pà@@@@ïÞ½ ½;;»ÁƒïÚµ+<<|åÊ•‘‘‘¡¡¡÷îÝ6l˜Ògé®ÀšJ&@A………I_åR&Lðôô\°`ADD„££cppð¢E‹²}Û²ú™¤+GpžB*:íííííí•>²;uêTÏž=Ë—/_ªT©ºuëFFFfdd}·§OŸ7n\@@À˜1cо·Ç;88èþËÓÓSéÎ<ƒÒ ŠdóæÍ:tðóóëÛ·¯““ÓÚµk»víº`Á‚ˆˆˆ¢ìv×®]JY%%%5kÖ,33³K—.•+WÞ¾}û°aÃöìÙSô$˜˜(„˜0aB‹-ŠÞÎäääÌÌ̆ úùù–*UJÑÎÈBpD‘qâÄ"GkìŠaÆݹsçàÁƒ!!!BˆI“&õïßÑ¢E[·nmÓ¦MQö¬×ë…%J”0I;¥:iÒ$“ÄP€%1TÂðõõ2dȈ#\\\J”(Q¿~ýM›6eddŒ=: ÀÅÅ%,,ìôéÓ†•»wïn¼ù믿^¦L™¢7ãáÇqqq/¾ø¢”…ÎÎΡ¡¡/^¼ÿþS7¿ÿþäÉ“J–,éããqåÊé¡°°0ãk:Ô¶m[ww÷   ?þxÞ¼y:îäÉ“í !DdddPP³³³»»{ýúõW¬XaªeÇŽMš4‘R£äÝwßB8p@Îæ{öìiÕª•»»{õêÕGŒñèÑ#Ëչsg!DãÆ}}}‹ÞN)8>÷Üs¦:p€ÅPqD!-_¾ÜÞÞ~ìØ±3f̯]»vFFÆ[o½•0wîÜÞ½{Ÿ8q¬m°··?yò¤‡‡‡aIFFÆüäääôÔÍ#""V®\Ù²eËnÝºÅÆÆ.^¼866öàÁƒÙVÛ¶m[§N¼½½û÷ž>{öìbÅŠ®+&L˜0qâÄæÍ›‡‡‡?|øpýúõ}ûöuqq騱c»"##cРAuëÖ5^xþüy!DñâÅŸºù?þØ£G²eËöêÕËÎÎnùòå?ÿü³ôÐðáÃ+W®33³zõê~~~)))Òj§OŸ–RΉ' Ú~~~ÕªU{üø±ôÐíÛ·hŽ×(%%¥^½zöööçÎËÍøøøx{{_¼xQZòÏ?ÿT¨PA±jÕ*½^¿aÃ!DLLŒIÖ®];'''ã’s@@ÀÑ£G ´µýÉ$%%)Ýho<©í,d1TÕM§SòÙõú|¬W¯ÞóÏ?/ý&„èÕ«—£££´¤E‹111ééé¥K—–ÿ„›6mÊëÑ—^z)Ÿm?ùäi ´U«V>>>O}.;;;N·oß¾óçÏKë/\¸páÂ…ÙV;~üøéÓ§¿úê+wwwiI@@@xxø÷ß_ˆ®8|øp‰%þý»KIIB¤§§›¶+„»ví0`@bbâܹs«V­šÿÊÇŽ;þü´iÓ*V¬(-ñöö~ï½÷FeŽ—,111++kâĉááᎎŽ?ÿüóûï¿ß¹sçØØXÃ%u"8ª[¾ÑMYÆÄRHʹ¤ ÒÒÒ¤ËéòèŒüz#!!!==ýÀ/¼ð™3gÊ•+—ÏúNNN3gÎ>|¸¯¯o56lضmÛ:d3=wîœ"((Èxa```ẢL™2û÷ïÿõ×_Ïž=›—×ír Ý.\x÷Ýw7nÜXµjÕíÛ·7oÞü©Ý.c:uŒʼe!Ú¹k×®%J‚øo¼ñàÁƒAƒ­]»¶ÿþrž &Ç@>Ìu¹««k>åñ§î¶dÉ’-Z´øüóÏoÞ¼)®æoРAýõWTTTPPÐæÍ›»vítõêUãu sDŒî>ìØ±chhhtttÕªU‡~æÌ™¼jl…늕+W=ztþüù§OŸ–“…RT÷ßò¶Ìéá…hg…  ©QÒºuk!D\\\!z`ITa YYYÆ¿&$$äºZAÇ=7mÚÔ¹sçåË—÷ìÙÓ°Pºxî©A3%%%11±ZµjYYYß|óÍàÁƒçÍ›7~üxÃjÒt\\\Ó¦M qbbb6oÞ ùí·ß¤®ÎÊÊš6mšƒƒC«V­ Ñ«K"8ÂìZ·n=sæÌ_|±sçÎIIIsæÌÉ55Š'ãžò÷ìáá1vìØ‰'†„„´iÓF§Óýú믇:t¨tUâÊ•+øúë¯Ï˜1#Û¶uëÖ üüóÏ“’’ãã㣣£ÝÝÝ{õêe¼ZñâÅ###»wï^§Nîݻ߿Ù²euêÔÙ·oŸœ;þ svv~óÍ7ûôéS±bÅìØ±ÃÓÓ3&&&::º]»vEéŠ3gΜ={6 çÏ»víÚ±cÇ|ºÂÑÑqúôé=zôîÙ³§££ãêÕ«¯_¿.çy ÚÎråÊMœ8ñÃ?¬Zµj»víÜÜܶnÝzüøñ)S¦T¯^½@ý °<‚#ÌnÊ”)z½~íÚµ[·nÕëõááá5kÖŒŒŒ4ÉÎÇïçç7gΜ¹sçÚÙÙ¬ZµÊ0rýèÑ£Û·oçz3ðbÅŠEGG?þ·ß~ûñǽ¼¼Zµj5nܸœ÷¸îҥ˶mÛ&L˜0gΜ5jDFF^¾|yß¾}½‡yåÊ•7oÞûÅ_,_¾¼D‰AAAÑÑÑmÛ¶5ÇsLKW jäð÷÷7÷&Ö(------ÿÉÎ&·páÂØØØ™3gnóÇŸ:uÊÛÛ[º¯¡dàÀK–,¹sçŽáÆ:VAfWüóÏ?eË–•sÛp©íO&99Ù$_«o<©í,d1̪†å8;;[85>xð`çεk×.ôìíí[¶lÙ§OÃ’;wî¬_¿¾C‡Ö•åwE… TžJ!8–8p  wïÞ…ÞƒÝàÁƒwíÚ¾råÊÈÈÈÐÐÐ{÷î 6L郳tW`M%  Â¤¯r)Š &xzz.X° ""ÂÑÑ188xÑ¢EÙ¾ZýLÒ#8O!¬tCPCÕ…àYŽ…àYŽ…àYŽ…àYŽ…àYŽ€,¡¡¡ÁÁÁJ·BI¿ÿþ»N§[½zµôëäÉ“=<¦‚Ù¼ysóæÍ/\¸Ð·oß·ß~ûúõë]»v]¸paÑ÷œ˜˜(„˜0aB¯^½”>J€å8(ÝX·G988ØÙ©è_ ;vìØ¿ÿ7ß|“••¥`KïœÑ£G—/_þرc®®®Bˆ1cÆT¯^}âĉEܳ^¯B”(QB©C(BEŸ÷°"¾¾¾C† 1b„‹‹K‰%êׯ¿iÓ¦ŒŒŒÑ£G¸¸¸„……>}Ú°r÷îÝ7ýõ×Ë”)c¦¶¥¤¤´iÓfâĉׯ_/è¶÷ïߟŒ‹‹{ñÅ¥Ô(„pvv ½xñâýû÷åìaÏž=­Zµrww¯^½úˆ#=z$-ýõ×;wî,„hܸ±¯¯¯é_Bk£Ó ??_Név€ùQqD!-_¾ÜÞÞ~ìØ±3f̯]»vFFÆ[o½•0wîÜÞ½{Ÿ8qÂò óòò’êañññÏ?ÿ|¶ˆˆX¹reË–-»uë»xñâØØØƒf[mÛ¶m:uòööîß¿zzúìÙ³‹+V¸Î™0aÂĉ›7oþðáÃõë×÷íÛ×ÅÅ¥cÇŽEì{{û“'Ozxx–dddüñÇAAANNNOÝüÇìÑ£GÙ²e{õêegg·|ùòŸþYzhøðá•+Wž4iÒôéÓCBBÌó2Z Nèõ"99Ù××WúlÁ…tïÞ½“'OJÉÌÁÁaäÈ‘iiiGŽqttBœ:u*&&æîÝ»¥K—Vº¥r¥¥¥­^½úµ×^ûî»ï¤%?ýôÓåË—½½½ «eee½ÿþû+V|øpذaåÊ•;räHÅŠ…cÆŒ©[·®ôh``àŸþ)„xá…5jd’ÎOHH¸wï^`` ÔE’¤¤¤Û·o׬YÓx¡ªdKŠz½ ;°mGR½zõ õ¼°°0!D¯^½ ð-Z´ˆ‰‰IOO/PpÌÈÈØ´iS^¾ôÒKf=";;;N·oß¾óçÏûøø!.\˜s*ÉñãÇOŸ>ýÕW_I©QnÈäwÎáÇK”(!¥F!DJJŠ"==Ý´óÉ'ŸHÓYZµj%ZþŽ;vþüùiÓ¦I©QáííýÞ{ï5ê©Û´:uŠŽŽ–žeÚ´i}úô9{öl¿~ý:$„ðõõݲeKµjÕ ó¢šS®‘ìÀ¶ÕMÙ«¦òýð3•"QÎ%•––&]<—{sr|ÿùçŸÏ=÷œá×Å‹¿öÚk…>\''§™3g>Ü××·F 6lÛ¶m‡² CŸ;wNd¼000°pS¦L™ýû÷ÿúë¯gÏžMHHˆ‹‹ËÈÈ0IçKHHHOO?pà@DDÄ /¼pæÌ™råÊå³¾tŒuêÔ1^(ó6–mçªU«¶oß¾uëÖààà¥K—¾õÖ[?ÿüó–-[ºtéòÝwß999½òÊ+|ða   ‚£ºÙhÝâáǹ.wuuÕ¤Vãååµ|ùrï 4(bà ԭ[·_~ùeçΛ7oŽŠŠò÷÷ß½{·———aÃc…»ÅãÇ»víºyóæÖ­[wêÔ©Aƒµk×6IçdS²dÉ-Z|þùç/¿üò†  ÏÊRT÷ßé2§‡´.\¨^½zëÖ­…ÇÏÈÈ5jTýúõ£¢¢¤ÈÞ­[·¹sçúÀÍ$Ÿ²"EG6ŒàKÈv[œ„„„\W+è(g©R¥úôécªF¦¤¤$&&V«V-""""""++ë›o¾kÖ,9UÐvÖ­[7**jâĉ÷ïßoÞ¼ù‘#GªU«Ö¯_¿Ï?ÿü³Ï>»~ýzÇŽ§L™Rˆî5Ÿ§):°UG˜]ëÖ­gΜùâ‹/vîÜ9))iΜ9¹¦FQäÑX9V®\9pàÀ×_}ƌ٪[·n``à矞””íîîžíËQŠ/Ù½{÷:uêtïÞýþýûË–-«S§Î¾}ûäÜæÆXXX˜³³ó›o¾Ù§OŸŠ+8p`ÇŽžžž111ÑÑÑíÚµ+JçxxxŒ;vâĉ!!!mÚ´Ñét¿þúëáLJ*] ™OW8::NŸ>½GÁÁÁ={öttt\½zµÌûbâEìß¿ÿþý—”(Qb„ &L(Ð~æÆ ÀavS¦L2dÈüñÎ;ï|ñÅíÚµ{ÿý÷•jÌ£Gn߾밋+ýÚk¯í߿ҤI»víjÕªÕ¾}ûrÞãºK—.Û¶móööž3gΡC‡"##;uê$ž ËW¹råÍ›7?óÌ3³gÏŽŒŒtrr:uêÔgŸ}–šš*³¼—¿ñãÇ/Y²ÄÞÞ~îܹóæÍ+V¬ØªU«"##ŸÚÒ1îØ±£f͚˖-ûòË/ïÞ½k|9)@›tæ.ðh¿¿||¼¹7±FiiiiiiùÏçµ€… ÆÆÆÎœ9³p›?~üøÔ©SÞÞÞ*T0,8pà’%Kîܹc¸±ŽUÙÿüóOÙ²e‹/®t{ÿGÁ?™\Ç ¥€ËY0¡\ßx° |pçDÅ–ãìì¬xj|ðàÁÎ;óš¹,‡½½}Ë–-'åܹsgýúõ:t°®Ô(¿+*T¨ ªÔP ÁÚràÀ€€€Þ½{zvvvƒÞµkWxxøÊ•+###CCCïÝ»7lØ0¥ÎÒ]Ðk*E&}•KQL˜0ÁÓÓsÁ‚ŽŽŽÁÁÁ‹-2|#Ÿµ0IWhMFŸ™[ Àö“ŠŽƒVº!XCÕ…à²0î G0é2G°Z¹Æñ‡~X³fMbbbÉ’%›6m:bĈüïÕ|ûöí™3g=zôâÅ‹žžžƒöóóSú8£‰ŠcddäG}ô矆„„”*Ujݺu Èë 3„©©©/¾øâÊ•+…aaae˖ݼysÇŽccc•>ÅØ~pŒŠŠòòòÚ²eKTTÔÖ­[_}õÕS§NMŸ>=¯MfÏž}ýúõ·ß~û—_~‰ŒŒ\µjÕgŸ}–‘‘1yòd¥€2 }#£Õl‰íÇ5kÖdee :Ôð%£FruuŽŽÎÊÊÊu“899½óÎ;†%]»v-_¾|\\\ff¦Ò  Û¿ÆñÈ‘#vvvÍš53,±··oÒ¤ÉÆ;–ëM›ÝÜܪU«V¢D ã…Å‹ôèÑ£GœœœÌÑN¥» ?6õz}bb¢»»»»»»ñòjÕª !þþûï\ƒãòå˳-9räÈ… jÕªe¦Ô¨Í/J7‡ääd___¥[€m²ñà˜žžž™™éææ–m¹«««âæÍ›ùo~üøñuëÖ%''?~¼råÊS§N•ù¼9ˇ[¶lQº34áâÅ‹J76ÈÏÏ7))999ÏžöÆóÍoc °8ãYLÛ¶m•n‚ZØxp”¦N;;;g[^ªT)!Ä;wòß<>>~íÚµz½^Q£FbÅŠÉ|^*ˆ ¢âsxêû*Ÿôz¡Óùróp˜g<ËÈù±®Ù Ìl|rŒ›››N§KOO϶üÞ½{âIÝ1/¿üò™3gbbb>üðí[·öêÕKÚ@ƒl<8:88¸ººæ¬,¦¦¦ ! ó¬ó¡Óé<==ßxãž={^¹reëÖ­J€2l<8 !¼¼¼RRR¤¤h ]oäåå•sý„„„Ñ£GGGGg[^£F !ÄÕ«W•> eØ~plÑ¢EffæÞ½{ Kôzýîݻ˔)œs}—üqݺuÙ–_¸pAp5  =…¾õ·1nÀ6Ø~pìÞ½»Ý×_m¸<1**êÆݺustt”–¤¥¥%''KÓÓ¼¼¼üýýcbbvìØaØÉÙ³gW¬XQªT©¥@6>«ZQ¡B…#FL:µS§N¡¡¡çÏŸ?xð`5Þ|óMÃ:»wï~ÿý÷«V­úË/¿!&OžÜ»wïwÞy'88ø™gž¹víÚÑ£G…_|ñ…‡‡‡Ò  ÛŽBˆ7ÞxÃÓÓsÆ ›7oöööîÛ·ïСC¥;òä*((hÓ¦M³fÍŠ=sæLùòå[·n=hРªU«*}(ŠÑé¹·˜©ùûûsG¥ðÍ10-™8Êyã™äZIÀg<iö³Þö¯q5`~ @p€,GÈBp€,GÈÓY ‚#XócX;‚#d!8@‚#d!8@‚#äÂLSª™Àª Á² Á² ;¾lrEp‹bb5ëEp€,GÈBp€,GÈBp€ÿ°À”jæÇ°RGÈBp€,GÈBp€,GÈBp€ÿ±Ø·T3±€5"8@‚#d!8@‚#d!8@‚#üËbSª%L¬`uŽ…àYŽ…àYŽ…àBX|Jµ„‰Õ¬ Á² Á² Á²@™)Õ`uŽ $îÈÀŠ Á² Á²hSª@&‚#(Œ‰Õ¬Á² Á² Á€¦1¥ä#8€ò˜X À* Á² Á² Á€v©ê^|øð‚ .\èíí­t34AÁñÆ¿þúëÖ­[>,•=<B¸¹¹µnݺ]»võë×7΋ƜœœJ”(Á85€Å¨+8vëÖ­}ûö 4È+/£Ü ˜³ …¦®YÕÑÑÑÈ+5<¸M›6J·ÌމÕÔI]Á1==ýñãÇy=táÂ…K—.)ÝFR~¨z÷îÝï¼óŽá×¥K—._¾<çjYYYz½¾råÊJ·@£”Žööö...ÒÏ·nÝ*V¬XÉ’%s]ÓÍÍmÔ¨QJ·@£”Ž7>xð ô³¿¿ÿË/¿ø@é@îŽï¾û®ñ¯o¾ù¦²í@^Ô59&'½^¿cÇŽ‹/+ÝíR]pܱcǬY³Z¶l)bôÑGk×®•êÕ«×øñãu|+€B±ºIÊL¬ 6êú®ê#GŽ 8ðìÙ³YYYBˆÓ§O¯]»ÖÕÕµwïÞÏ<óÌÊ•+wìØ¡t4J]Ç èõú±cÇöêÕK±mÛ6!ÄgŸ}Ö¢E‹¿þú«mÛ¶ßÿ}‹-”n&€©+8ž;w®|ùò¯¾úªôë¡C‡Š+*„¨R¥Ê³Ï>›””¤t4J]CÕ·oßöðð~ÎÈÈ8}út```±bŤ%%K–¼qã†ÒmÐ(uÇ *\¼x133SqìØ±Ô¯__z(++ëâÅ‹žžžJ·@£ÔCBBnß¾={öìK—.Íž=[ѤIé¡E‹ݼyó¹çžSº¬Ó“ èÔuã€6nÜ8wîܹsç !jÖ¬)Ý»±G'OžB¼ñÆJ·,‡;òPuU+V¬¸zõêfÍš•/_¾qãÆ3gΔîÚxãÆ —Ï?ÿü…^Pº¥®Š£¢jÕªóçÏ϶pÙ²eÞÞÞvvꊹš¢ºà˜«Š+*Ý­S]pŒŽŽ^ºté_ý¥Ï㢞ƒ*ÝF-RWpܾ}ûСC¥ŸíííM¸ç~øaÍš5‰‰‰%K–lÚ´éˆ#Ê”)“Ïú÷ïß_½zõÚµk/^¼XºtéjÕª½ñÆ5Rº‡óKÀ$Ô.\(„èׯßÀ]]]MµÛÈÈÈyóæ9;;‡„„œ?~ݺu K—.urrÊuýŒŒŒ~ýú8qÂÕÕµAƒ<8tèPLLÌ{ï½7hÐ ¥; €¶0±€z¨+8&&&>óÌ3~ø¡ çÁÄÇÇGEEyyy­]»¶\¹rBˆO?ýtéÒ¥Ó§O7n\®›¬Y³æÄ‰uêÔùöÛo¥p™Ð·oß9sæ4oÞ< @é~P€Šæ)?~üøîÝ»•*U2íìé5kÖdee :TJBˆQ£F¹ººFGGgeeåºÉ–-[„cÇŽ5”$«V­úöÛogffîÛ·Oé~P†Š‚£««kBBB^y®pŽ9bgg׬Y3Ã{{û&M𤤤;v,×M’““kÔ¨a¼°jÕªBˆ¿ÿþ[é~P†Š‚£½½}DDÄ7"##MµO½^Ÿ˜˜èîîîîîn¼¼Zµj"ï8þüU«Ve['„¨T©’Òý  u]ãØ¾}û¿ÿþ;**êàÁƒíÚµ{æ™gŠ+–mãÚáS¥§§gffº¹¹e[.ͼ¹yóf®[U¯^=Û’ƒFEE/^¼sçÎrž×ßß?ÛiøævñâE¥›ÕñóóMJJNN6ãS˜ÿçkÞ€uâŒg1mÛ¶Uº j¡®àØ¢E é‡S§N:u*×uâããåïðþýûBggçlËK•*%„¸sçÎS÷™™¹bÅŠ/¾ø"33óË/¿ôððó¼j$LË××Wé&@u,ð®0ëSèõB§óeb5râŒg9?ÖsVˆ4B]Á±S§N¦Ý¡›››N§KOO϶üÞ½{âIÝ1‡š8qâŸþéíí=eÊ”† *ÝCŠQWpœ6mš‰ÏÁÁÕÕ5ge155Ua˜gÓ£G¦M›¶lÙ²%J <¸ÿþyÝô@#Ô nß¾{ùòå *4jÔèÆ2LjsòòòJLLLMMuqq1,”®òòòÊu“¬¬¬áÇoÛ¶­eË–ãÇÏ'_h‡ŠfUKRRR&OžÜ¬Y³þýûôÑG»wïBtéÒåí·ß¾uëV!vØ¢E‹ÌÌ̽{÷–èõúÝ»w—)S&888×M–-[¶mÛ¶Þ½{Ï™3‡Ô QWp|üøñÀ—-[æââÒ¥KÃòråÊíܹóå—_–&»H÷îÝíìì¾þúkéºF!DTTÔ7ºuëæèè(-IKKKNN–¦§éõúåË——.]úÃ?Tº?•Í|YŸôŃ ,u UÏŸ?ÿĉM›69sfÉ’%ׯ_/-_³fÍèÑ£úé§¥K—¾õÖ[Úg… FŒ1uêÔN:…††ž?þàÁƒ5jÔxóÍ7 ëìÞ½ûý÷߯Zµê/¿ürýúõ .899õéÓ'çÞºtéÒ·o_¥û @ê Ž‡¶··Ÿ2eJÉ’%—ÛÛÛüñÇ¿þúëÖ­[ …o¼ñ†§§ç† 6oÞìííÝ·oß¡C‡JwäÉIª;Þ¿?666ç£L¬š¥®àxæÌ__ß\çÁ”*UÊÏÏﯿþ*Üž;vìØ±cǼmß¾}ûöí¥Ÿk×®Í]rR×5Ž®®®iiiy=zëÖ­Ò¥K+ÝFRWp¬^½úåË—sýΘ3gÎ\ºt) @é6h”º‚cÏž=u:ÝðáÃãâ⌗ÇÅÅ :T!ó«¢@ØÐ”j «(N]×86jÔ(""bÁ‚]»võóóBlß¾}ÿþýþùgVVV—.]Ú´i£tŠÊ?>ÛÒ¿õQWpB|ðÁuêÔ™:ujRR’âÒ¥KBOOÏaÆßÙ -†¼˜44Ž•„HÀÔT…aaaaaa·nÝJJJzô葟Ÿ_^ß °q2ó¢ñjÒ¶ÄGÀtÔ%eÊ”©S§ŽÒ­(¤è±OÚ–ø˜ŽÂÁqÅŠÝ$×/t€lllfŒ¶˜6êÓQ88Nš4© ›h–4±ÚÆÃ™Žø˜‚ÂÁQºÉޱ3gÎlݺÕÞÞ¾qãÆUªT±··ONNÞ»woFF†··÷˜1c”m0À\,ê ñ‘ìŠÂÁñwÞ1þõÂ… Ë–-ó÷÷Ÿ3gN¥J• Ë/]ºôî»ïž>}zãÆ­[·V¶ÍÓ³d˜ÓDå0 uÝ|îܹ)))³gÏ6NBˆŠ+~õÕWBˆm۶ݸqCéfLÊò1NÊŽÜQ( uÇãÇW¨PÁÇÇ'çC•*U’–ëù7"Ø )½)rb×ëù6  Ôu;ž[·neeeéõz]nÉ©©©eÊ”ñôôTº™ÔŽqH렆׉ak  ÔUq LMMݵkW·bbbnݺU£F ¥ÛJ²™zâšíô)`vê ŽíÛ·BŒ92::ÚxHzÛ¶m|ða€uSOj”yÔ5TÝ­[·˜˜˜Í›7:ÔÓÓÓÏÏO§Ó%%%]»vMѱcÇnݺ)ÝF@Ѩ-5J³dPWpB|ùå— 6œ5kÖõëׯ_¿.-ôöö‹ígG[J²# „ 8€©®h”Ãp×¥²‘‚#[R”:— ÙØì°µí•šM€&@u¬¦èHj¤è!8°2Œ•­&;‚ì-!8Ð +J9ÙQÉÐB¹Ð‚#M°ºÔ(QoÝ‘ÔhŒ¢#4ƒàÀöYij”¨7;ÂÙÚ@påF@«ެ^þ1ƪËuIy¡è 8°e6%ùdG⊊ðbÀÖØ,›IUÔ)7ÚFpÀt(:¦Ø&+7J.:Rn”‰ìÛEp`Ýr 36™%ŠeGR#‚#Ø*\ªÃKEp`kl¸Ü(Q èH¹€‚àÀÆØ|j”X4;’ ‡¢#lÁ€íÐHj„Õ ;ÂæX1-ײÍQ´ÜÅr 8°,7ªâ–àÈEGØ‚#[ ÁÔh ”üÁ¬˜‹Ž¤FS¡èBp`­ ÁFãåF¬­Ù¶‚àÀºi<53e8¡Ü 7G°z­EGØ‚#+F¹ÑÀ”Ù‘r#€<FHæCÑÖàÀ*étBè)7þ‡^è…^G2Q5²#¬Á€u"5æFÊŽ…ßžr#€|° ŠŽ°fGÖG'ÍŠA®t…%C¹ÀÓX)5’pòQ˜Ö¤FK¢è«Ep›B&±¼N°NGÖ„7ÊT°¢#åFòX R#l EGX!‚#+CuL&¹EG:€lGÖr£|†JÖÓ³#©QYamŽ(‡ì«Bp`(7Z~EGÊ ˆà@íH°qa=ެ 52™Œ£HîEGº@Á9(ÝÈÏ¿åÆÿe Q¸¯ÓÓxÉRÊŽnÕKJúDy¨Á€úEóΓÏÓ¶æ75û1MFP(G*-Õb¢ ‹d¹îF÷´lÈÿŠŽ¤Fu¢èk@p §…¶œ©ÑôŸªÆ{³¹I±>¼fP=‚#Ë2ä3µ}8Útˆ|r(äEBp`~Ïa ÏäÈ5DÚJÜb–ŒªQt„º˜“”ºLñ!¨Ø‡©áIm AþÛ‰Ü2@!qGf {òŸ¾01K¥%1ý“ÿtV½r½±ôÓ¿ÀÊâ~àP1*ŽLªÈ%F•¦Fcz£#-ÚÁZ”QÍ–Û:(‚#S°ºUtFCؾÂWíÎesÖ…+¡V U(ã!é"ÌåUSõg¨^$'%[Ñøõ“V3`­n XC•¨8(,ÓM|±j¿ÖëUž»X*Ž ®_òÝ«õ_ugUh(:ªEG¨Á@A˜'2 ÛHÆÔu:]ÞKvP Gò˜-2>ý™­w Uñø¨Ó ½žº•ãŃÊ<ù#£­•³1ÄGU¢è@>‚#€¼)We´A–/=Zq©F(:BMŽrcÁÈhãåFcŠ\çÙ.ŠŽêFv„jä`Á*ãSS£ VÍ,ÿÛqO dGr1anê¾ðªCÑê@p „PærF RçÅL¥ÇBÕi):x*‚#efÀÈI68N“ÉG®5ÑkšDÑ*@p´±i•0ÿȵœÔAÑQíÈŽPÁÐ*EoµÃ uîŠ^z,r¹‘ì G@“¸;£j1iù£èEQÁØ´Ìr£¦/Õ+\éñi]&3rPt‚# %*(42H-—¢w ';ªEG(ÇAé°éS†Àfu¤—LN‘XÓZBÅП4Dn¹‘ôO½êQvɯUQtT5ŠŽPGÀ¦Qh´z^Mü—^ïË?°`qTÛ¥šBã“æpucÑä5áÚlé¢#€lŽ€RzêtŽæ 5RFÉegÌÕ,9)‰kXÁ°9*¸áÌ˸ôXð”ÍÕq àØ• O?iƒÔfðov4{ÇRtT5þË"8¶B­…Æ‚¦FÆ© Bg™¯™!;ªÙDpl‚* 0/CÄ.xv$i(‚#`ýTYh|Ò4©-Âü3f(:ªÿ€¥h%8þðÃÝ»wnԨј1cnݺ%sä¤$ÿ“'O*}@nÔ:<ý¤uNŒSË•³§ô…)=@h"8FFF~ôÑGþùgHHH©R¥Ö­[7`À€û÷ïËÙvÙ²eJ7ÈÃÓš•O¾– Q¢¢è¨ja¶ÿÍ1ñññQQQ^^^k×®-W®œâÓO?]ºtéôéÓÇ—×V©©©çÎÛ¸qãªU«”> 7*.4>i ƒÔ 1çwÌHÙ‘WV¥¤ìHÑædûÇ5kÖdee :TJBˆQ£F¹ººFGGgeeåµUÇŽûôéCj„©{xúI “-øÈ“EN71l ÀB,_¾|ÿþýJð„ê##TDÿ”7LáêSU¢#ÌÌÆƒ£^¯OLLtwwwww7^^­Z5!ÄßÿWplܸ±ôÃÎ;•>à +I¤ 3*h&0ϰ5ÙÐ,Žééé™™™nnnÙ–»ºº !nÞ¼i¦çõ÷÷϶dË–-Jw†&\¼xQé&˜…¯Ÿ¯"9)Y$+ÝYÍÉÉn¨ŸŸoRR!¶S˼ñ|ýü’“’DAû(I!|u¾ÉI¹nè[ÈN/Ô« ÓÊý—”ä«Ó%'%)Ý:›Ò¶m[¥› 6¥©ÓÎÎÎÙ–—*UJqçÎ3=o||¼Ò‡®]¾¾¾J7ÁÔž}…Ú¿…¨BµÔª_;Ë4¾ðÏ¢¾:ßœ%B½^èt¾…ØÔ ½Î—¢£òrKèõ¾ X›TÎõœ"°ñÉ1nnn:.===Ûò{÷î‰'uG@Õ¬dxúIcIfSô`êé2ÜÐ Ž®®®9+‹©©©BÃfÉZ@peÍ©‘r£)Ò5¹Ýå±€; ;ª³d`"G@!Vx§Æÿ6ŸqI¤E½SÙQ½ÈŽ0‚# +¼S#,GñJ¬©¿œ€Í 8gÍ…Æ'G`‚r£âéH¥í—ÿÕ¤Š):ªEGÁ°,R#¬E.y$;ªÙECp,ÈúS£©PnÌ úå?¹Â¤_l À‹°ò©0FÇA¹ÑlTsW¨ìHÑQ½(:¢Ž€ùÙÊTS¥FÕ$ä‰ìhcÈŽ(,‚#`f6QhÔÍMMi:÷PAv@pÌËVR#ÌKM©1?E¾C8T„¢# …à˜ ¥F–­%#i\ž¡¢àÓe(:ªÙGpÌÀV¦Â<9©ÍÉ£4ÙÐ*‚#`j¶2æÉј25ZcF2/÷ÈSªQdGÛ@ÑDpLʆ ÀSp‹GÛ@vDAÓ±¹ÔH¹Ñ¼Tß#OO™.CѰGÀlë¢Æ'ÇÄ¥æ¤úÔ(WA¦ËUŠ¢#d#8Ef[5>9&§F›‰IÈÙÑÚ‘!Á(›+4 j`=9ºq‚K 8E`‹©Ñ¬'&Y„ w‡¼K):ªEGÈ@p ËFS#åFdS°8!ï’G²£J‘ñ4G àlq*Ì“#3}j´áúZah¤;ÈŽÖ‹ìˆ|²Å©0OŽŒZ£™Ymj,L– ;¶ˆà„…ÙR£Õ&%3Ð`_­EGäàÈf»©xªBf‰‚Ü!*BvDŽ€<6)7š–ûâiÓe(:ªÙ¹!8Oc»Saž—6š™­¤Æ" ²#`Ž@¾lw*Ì“ã3Wj´•°Td¶ÕdGm¡èˆŽ@ÞlºÐ(¨5ÂòÈŽV‡ìˆÿ"8y 5eç6Ue+[숢‰|§ËÕˆì#G [¿¨QPk´ [L¦‘ït²# fGà¿lý¢FaþÔH^²ù^0MJÆ]¡ñÁ0bë…F °é¼D/˜ZÙ‘¢£‘!„ 8ÿ£ÔÈ 5LÂd)"KÉŽjDvÁB5>9P©ÍO3½`Êì¨';Z ²£æ¡y¸¨ñÉRk4?ͤFÓ#;Ö€àmÓF¡QX$5™4Ø&.?‘­EGm#8BÃH&| ÍE&ºÀÊœ=­Ýì¤Ý#·()Ð6²£µ!8BM(4*Õmf'é°µxäê¢drÐ ½N/t‚ø¨$²£U!8B(4*Ø-§F¨ƒ²Ù‘Ò£òÈŽÖƒà Ð¨`´Ÿ4zت¦pr ô¨8é@|T=îãEiøBÅ#£ÐæÔHj¥ð þžÜëQ§WþÏS£¤ž¿Pu#8B9š›ŠÞ£ñmÐæ™Y»aÙj(Ÿ¤Ò£:½ò§¥À âQG(B£²ÍÐæ9Y£‡m•N”GvT1‚#,‹È¨4ž5zØVLùä@éQY|3¡ZaAŒM+Û Íž„IÖIùä`ø†kâ£"”¿p¹ 8Â"(4*M£ç^í†e¡ŠäÀȵ²”/>ã?Ž03"£Ò´›ø°±Ê—ÅF®…:þ´5Dïü‹àsÒ䨴z"£Ðlvâ3Ææ¨ªô(¹¶N´›øh±]ª(<1r­ †­U€àSÓpdªùÑî©U»G®j)<1r­UüëAÓŽ0"£ h÷ŒªÝ#×"U„‡ÿŽ\ ÕœlŸZþõ QG˜—3*MùÏQe^£G®]j ÄG¥¨â_ZDpD‘i¯Ð¨û÷˜Uô ¡üǧ‚G.øäÐ.µ„â£"Ôò¯m!8¢´Uõ‘ ŠOMŽÊ1„¡øÛÁõjüç¥ÍRË¿´‚àˆB!2ª€¦O•Ôð_êŠ:¡r¶Pá©Ã©èå·}G‘Q4}zÔôÁã)Ô’¤§þ·z¡ÊÓˆ bäÚ"ŽMc‘Q#MÊ"rðP=⣦1rmfGÈ ÉȨ¶“»ÖÏ„TP@*B}'Û¡–×Þ6‘/-EF՞͵~öÓúñ£HÔ!rÄG¡Ö£Úµ¼ö¶†àˆÁQ«l½Ä¨æó,yñ8qC5T1„[|$H3QEÍÙúµÇ¦#£Ÿ¯Ÿø÷øTw„œþ‡¾€Š)'r\þhôȤ¯ÏuVFÿb°&vJ7–¢{òŸÞÖR£Nè ÿ%%'é…^UgRCãôúÿÓ4úVÂð&Õb,Û‚'ÿéŒBäÿÔë…>)9Éø¨tŸY9ã×y#8j€q^´¡OjùRÿ¿3¼Š¼˜{а6z}.!Ò²-0Šy$Hé?¤ (ùJ[†ªm—-N|1>!ª*&þÛ<£“ éè_ŒJÆäœI#,öÖÎmþuŽU²_ )Tyª´Œ_çàhsl./ªü HXÌy6Íø}mé7»Ñ¾Â7ÿ)T U;å¯xU†ªmˆ­ IëþsM‘G¢Ûg<Œ!¸Šš“ëÕfäÔ ¡ÉIÉy a­˜ËX6#Ú£ðÅ êBp´~61ë%¯¤HX´Ùzн>÷ "Í3ôO¹ò¿ëêóÊ‘Jwž•0~uµŠàhµtÖ]b´®²"a1OLòWˆ4Wä(H‚|²ÅÈÂÒð¹Žk­Õ^˜íL¤ž€ø¿þ÷T©áÓ‚ \ñD¶?óžm²M£²>/²“ÕƆRŽÖÀøï×zþxÕÞ!) ó€±PŽ,T‚|²"9¹#8ª˜Usm¨íÌ’sxˆð# ÅEÀÌòÏ‘¢è|EHOVÏ/G õða>Gõ±†¼¨þ³1±H(.ÊÉù7g²ZÎ) óY“ó„¯þ˜ ÁQT<ëUÒª:#ü÷”êûo UÔ@+AXÔ*ï(é›ÿjyïÑx_¹-,h eDI¡²Ï³ª•£Ëmf´rSºìÓþr¿9Ž‚Ÿuy4ѸeIIÉLí•‹yã€ÕÊvÆËuî¶ÜIÜ9§c›bRu®Ÿ¹6Pé¾DÁPq´,Tóú+UÉ?ó9Ç‘gL€²"`»òú›Î뼚}ý\Ë”ŸV¹~ШüS ÙÍO¡°¨æ?EÒ¡å0uм‚Êì[e[ÍÔg‘¼>•ò)FªáƒL³ަ.Þ2a1ÿ ¿‚WO!½˜ s‚È–ÿé!Ï:¥¥ª!ù|Š©öãO ަç_Í?>>¾èûyꕊümÈùÎ²Š…˜ÍSO':ÝCdn×Fšéœ”ÿÇŸ:?=mÁQ2¯¶ä;[þW`‘L”‘ë+Ä‹@99Ï@ú'*E>\žúé©ÂOa+Bp4½sñç”­¢â‹PI j!÷"vPQRê‚ËÜŸ­°çE™ŸÂù”WÕ ùôVŽàhzÕü«}¨ºBd +@@ 9OiyDÉBœüÌýA™¾ôþEïkDp4½sçâ‹òn–¬žÜùŠ %r¢d^kf{¼çÑ¢LWÓhÁ‘€çí‡~èÞ½{ppp£FÆŒsëÖ-™V«æ¯ÏõΧù…Ó¶m[³?G^÷ØÍç~Ú¼À¶Îo< yãéóøO—Ç&yN>¦ ‹Šcî"##çÍ›çììrþüùuëÖ%$$,]ºÔÉÉIé¦Á<˜ª’×¹VW¨­`"TsåååµeË–¨¨¨­[·¾úê«§Nš>}ºÒMC¾tºøsçäV T 䟙 ú|ÿÓÉøE@pÌÅš5k²²²†Z®\9iɨQ£\]]£££³²²”n )\ÂË7üùW«Æ¨h—^ÆrÂ%A3Ç\9rÄÎήY³f†%öööMš4III9vì˜Ò­+2“ǵ"ä<ÿÀSÉ —O šZÅ5ŽÙéõúÄÄDwwwwwwãåÕªUBüý÷ßuëÖÍÿŽ–ª ùrýØÔèÝxŽ9¤§§gffº¹¹e[îêê*„¸yóæS÷à¯ò9úþ6þf÷·õ„:ñƃ"xãÁÂŽÙÝ¿_áììœmy©R¥„wîÜyêLòEÕjÃ5ŽÙ¹¹¹étºôôôlËïÝ»'žÔ4ˆà˜ƒƒƒ««kÎÊbjjªÂ0Ï@k޹ðòòJII‘’¢Arr²ôÒ­PÁ1-Z´ÈÌÌÜ»w¯a‰^¯ß½{w™2e‚ƒƒ•n€2޹èÞ½»Ý×_-]×(„ˆŠŠºqãF·nÝ•n€2tzîê—›E‹M:µbÅŠ¡¡¡çÏŸ?xð`õêÕ-Z”ó6=ApÌÓÆ7lØpêÔ)ooïzõê :Tº#€6 ×8@‚#d!8@‚#d!8@‚#d!8@¥˜Lxxøü‘m¡‡‡Ç¾}û”nlÓ?ü°fÍšÄÄÄ’%K6mÚtĈeÊ”QºQ°qœè ,‚#lÇ… œœœªT©b¼o‰„™DFFΛ7ÏÙÙ9$$äüùóëÖ­KHHXºt©“““ÒMƒ-ãDea#RSSïܹӮ]»™3g*Ýؾøøø¨¨(//¯µk×–+WNñé§Ÿ.]ºtúôéãÆSºu°Yœè 8®q„¸pá‚"Û¿Â3Y³fMVVÖСC¥Ô(„5j”««ktttVV–Ò­ƒÍâDÅa#Ο?/„ðññQº!Є#GŽØÙÙ5kÖ̰ÄÞÞ¾I“&)))ÇŽSºu°Yœè 8‚#l„t>½|ùò«¯¾Ò´iÓwÞyçäÉ“J· 6H¯×'&&º»»»»»/¯V­šâï¿ÿVº°Yœè 8‚#l„ôi=kÖ¬k×®5hÐÀÃÃcçνzõZ³fÒMƒ­IOOÏÌÌÌ9ÁÕÕUqóæM¥›Å‰Šcr lÄåË—œœ† öꫯJKöïßÿöÛoO™2¥qãÆ*TPº°÷ïßB8;;g[^ªT)!Ä;w”n l':(Žà+“‘‘±`Áïööö B,^¼8Ûš 6|å•W.\¸}ûvÃI(:777N—žžžmù½{÷Ä“º#`œè 8‚#¬ÌãÇïCQ¼xq)8æª^½z .œè 8‚#lǵk×¾üòËܺu«R¥Jÿ÷ÿ÷Þ{ïy{{+Ý.ج7nذáÔ©SÞÞÞõêÕ:t¨tGÀ|8ÑAYGÈÂ5Ž…àYŽ…àYŽ…àYŽ…àYŽ…àYŽ…à@[FŒáïï¿k×.¥"¾þúkÿ+V(Ý‹àY”nhTXX˜‡‡G:u”nÈEpeÔ¨Q£FJ· €¡jPÌÌÌÇ+Ý ÈŽàÀ:|ôÑGþþþÓ¦M˶ü?þð÷÷oذaFF†âÆ3fÌhß¾}íÚµk׮ݡC‡Ï?ÿüêÕ«yíVš+sàÀlË«W¯þ //Ù·oß{ï½×²eËW_}õ믿Ζí.]º4~üøöíÛתU«Y³f 8räH>G´`ÁãÉ1RK.^¼Õ AƒÀÀÀºuë¾üòËÛ·oÏkǯ^½z“&MîÞ½kXxïÞ½fÍšU¯^ýÔ©SJ¿hl Á€uèØ±£bëÖ­Ù–ÿòË/BˆÎ;;88ܸq£OŸ>óçÏÿçŸ*W®üÌ3Ïüý÷ßß}÷]¯^½nݺU”gŸ>}zÿþý·nÝš‘‘Q®\¹£GΞ=»oß¾)))Ò ;v\µjUJJʳÏ>«×ëwïÞýÊ+¯ìر£@O4þü/¿üÒÑѱAƒ®®®Ç4hPttt®+÷ïßÿêÕ«Ÿ}ö™aá_|qùòåYúE`ëެCHHH¹råþþûïÓ§OfeeI¡ªk×®BˆuëÖýõ×_Í›7ß·o߆ ~þù瘘˜K—.ýöÛo…~ê;w.X° R¥J?üðî]»6mÚ´gÏž¦M›ž8qbîܹÒ:Ó§OOKK{çwöïß¿nݺݻw;V¯×Ïš5«@ϵfÍšìÝ»wñâÅ¿þúk¿~ý„K—.Íký÷Þ{¯jÕªëÖ­Û»w¯âÀ«W¯®Y³æ;ï¼£ÜkÀfX;;»:ˆÿ=zõêÕàààçž{N‘‘‘öÁ8;;K+¸¸¸H¥ÊóçÏú©§N*„˜9s¦¡†çáá1sæL//¯µk×Þ¾}[qöìY!D÷îÝííí¥uzõê5pàÀ–-[蹂‚‚†ngg'òÀ…ýõW^ë;::~ñÅ}ôѵkׯŽëää4}útC3À„ެ†Çm¥qênݺI¿4hÞ¼yÏ>û¬a…ëׯoÚ´©(OzëÖ­ääd??¿l3 K–,Ù°aÃû÷ïÇÆÆ !¤ä:jԨÇKW[:::2dðàÁzºvíÚÿêêêjoo¯×ëóÙ¤zõêƒ ºråÊK/½téÒ¥?ü°J•*æz h·ã`5jÔ¨Q¥J•¿þú+>>Þßß?##cË–-NNNíÛ·7¬séÒ¥={ö=zôï¿ÿ¾páB/mB$%%Iÿ÷÷÷Ïu…Ë—/ !&Nœ8tèÐÇ¿òÊ+%J”¨^½zýúõ[·n]½zõ=Ý3Ïu±bÅ Ñ-÷îÝ»~ýº"))éöíÛnnnæ)hÁ€51Ç!C†HcІqê{÷î}òÉ'ÅŠ›?~ãÆ ›\¹r¥ ÏòÏ?ÿdeeI?ûùù !J–,9f̘ü·ÒétÒ=€„=Ú»wïèÑ£×®]Û¼yó-Z˜µ[ÆíÚµÚµk;vlÒ¤I3fÌ0ëÓÐ,®q`M|||“’’þøãß~ûÍÇǧnݺÒCüñGfffíÚµS£x2m%ÙF´ýõWÃÏ^^^žžžþùg\\œñ:™™™Ýºu ½qãÆ¥K—š7oÞ£GãŊkÑ¢…4›çâÅ‹fí“7FGG7mÚtéÒ¥U«VÝ´iSΛ€IXiŠÌرcÓÓÓÃÃà ˽¼¼„gÏž½qㆴ$33sÕªUË—/BÜ¿?×½U®\Y±lÙ²ôôtiÉÁƒ 7Ù‘ 6,++kذagΜ‘–Ü»woôèѱ±±5jÔððððöö¾{÷îÉ“'.\h(Uþõ×_{öìB˜õ~ŠW®\™4iRéÒ¥?ùäGGÇÏ>ûÌÞÞ~âĉE¿¸rb¨€•iß¾ýÔ©Sãããííí;wîlXîçç×¢E‹ß~û­U«VuêÔÑëõñññ·nÝêÓ§ÏÒ¥KüñÇ»wïJ7Ö1Ö¹sç%K–;v¬E‹Õ«W¿víZbb¢««kùòå>|(­Ó¥K—ǯ_¿¾sçÎ+V,S¦LRRRzzz•*U¤;oÛÙÙ3fÔ¨QÓ¦MûöÛoŸyæ™ôôô?ÿüS¯×÷êÕ+88ØL]¡×ëG•šš:eÊ)7׬Y³_¿~ß~ûíĉgΜ©ôkÀÖPq`eÊ•+W¯^=!Dhhh¹råŒúòË/ß{ï½ *H÷wlҤɆ ÆŽÛ§O{{û\¿°R¥Jßÿ}Ë–-íììbbbÎ;W±bÅ xxxÖÑétŸþùW_}Õ¼y󬬬¿þúË××wذa6l(S¦Œ´N—.]–,YÒ´iS''§³gϦ§§7jÔè›o¾?~¼ùºbÙ²ehܸ±áBO!Ä{ï½çãã½eËE_(6H—ÿíÁ@;ÒÒÒRRR*Uª$4h Á²0T YŽ…àYŽ…àYŽ…àYŽ…àYþ[/û‡ÓIEND®B`‚statistics-release-1.6.3/docs/assets/tpdf_101.png000066400000000000000000000577471456127120000216310ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A_®IDATxÚíÝw|U¿Çñ³)@h)„)‰@$€×Q¤KšHÑbG¤‰ W@‘&(Ô«DšòÒD”¢DÀ€>!!4…¡Á$sÿX—M6™­Ó>ï/ÝÌÎìžÙÍÎ~ó;gÎX$I@iüÔnôàEŽP„àEŽP„àEŽP„àEŽP„àEŽÜrùòåÉ“'·oßþÎ;ï,W®\TTTbbâ[o½•™™Ytå5kÖüç?ÿùÏþ“““ãÁ6¼ýöÛ‹Åb±<òÈ#ÞÛÓbÿÈ#ÈO=kÖ,w|ÅŠe.^¼Xì#ìß¿¿Øõ+UªÔ¤I“ÁƒŸ8q¢ÔõªV­zß}÷7®è{äè)l9Ò{oÕ¨Ý:¶iÓ¦^½z?ÞºäÏ?ÿüóÏ?wïÞ=qâÄE‹õìÙÓvýÞ½{_¹rEÞ0))Iíæ;G§¿råJZZZZZÚ_|ñõ×_?øàƒ%¬\PPpîܹsçÎíܹóƒ>X»vm³fÍÔÞBpà¢cÇŽ=ñÄÖÔX§N*Uªœ:uêøñãBˆüüü>}úuêÔIí–ê@ùòåk×®mýñÚµk§OŸ–oGGG—)SÆz—Ÿ_é=E‘‘‘AAABˆ¿ÿþû?þ(,,B\½zuðàÁûöí«P¡‚£õ¯^½j-4æææöèÑ###£lÙ²%<…ÐÐPµ_K^DW5}öÙgçÎBT­Zuç·NMM=vìØO?ý-„(((˜4i’ÚÍô®»îºK¾Ñ°aCwç‘Gɲ±hÑ"ë]7n´½«R¥J¥>Ú¢E‹ä•Oœ8qñâÅÈË=ºyóæÖ?sæÌ±cÇž~úiyù‰'æÎ[òSØ3fŒ o_!8pÑ/¿ü"ßxòÉ'­Ëï¿ÿþ3fÈ·÷ìÙ#—»^ýu‹Å"wõ !Ú·oo±X®^½*„7nœ<<®[·n¶ß»wïb‡Í;v¬W¯^U«V­V­Úc=¶k×.G-<}úô+¯¼Ò¼yóJ•*ÝyçÝ»wOKK³]Áö©sss‡ž˜˜X©R¥{î¹çwÞùûï¿åÕJh|çÎ…UªTiÓ¦õaÿþûï>ú¨eË–ÑÑÑ+VlԨѓO>ù믿ªò6U¬XqΜ9ò¿ÿþ{ÉëרQãÓO?µ¾ï¼ó޼§ èªಿþúK¾±ÿ~I’,‹õ®N:ýðÃòmI’<ø¤»wïîÔ©ÓŸþ)ÿøõ×_oÚ´©U«VE×ܼysŸ>}¬¾W®\ÉÌÌüúë¯_}õÕéÓ§Û­|áÂ…-Zh3] 8p]xxøüùóÏŸ?¿mÛ¶©S§öíÛ·^½zÖ{Ož<Ù½{÷cÇŽyêé:$ß°è»L™2:tp´æC=d­‡U¬XÑZx;|ø°íúwÞy§íaaaò ù̧X‡¦§§80**ªI“&³gϾzõjƒ ¬e<ßkذ¡S³”Ë§Ì !*W®\ôÞÈÈÈÚEX_7FÅÉ1ÜвeË–-[Ê?žø`Íš5­wU¯^}öìÙ{öìùñÇ…yÆ   2eÊܸqCqæÌ™:uêXï²» _åÊ•+Uªtùòe!ÄÆccc‹>š÷Ò[``àœ9s&Ož¼nݺU«V­]»677W¾kÛ¶m#GŽüì³Ï¼ôÔVíÛ·Ë/µâÞ{ïõvƒè]Õ\ðÖ[o 4hРAŸ|òIѬç תU«ä‡²–÷.\¸`»ÜZ_”ùûûÇÄÄÈ·m‡NJ’dúÇÊ+óóóï´RìUOÜwýúõÓ§OŸ>}úúõë={ö\¸pá™3g¾ýö[köÚºu«7ž×ã¬Ú*ThÑ¢…ÚÍ G.jÛ¶­|cÊ”)‹-²ÌÏÏŸ7ožõ %ÅÖ«¬Õ,aÓÑüóÏ?[Ç&~õÕWEã`Ó¦Måÿþ÷¿­Sy¿óÎ;°[³}ûöòäädëD’+V¬¨R¥JÕªUåI|\ÞqÛÆÛ9xð`µjÕªU«uäÈ!D@@@ûöí(¯â­÷ÃCþüóÏÁƒ/_¾\þñÉ'ŸTr­&AW5?~Íš5çλ~ýz¿~ý†k±X222¬çU<øàƒ¶sG‡„„È£ßzë­ýû÷¿òÊ+Mš4‘ï½víZBBBBBÂÙ³gÓÓÓ‹>ãÈ‘#¿øâ I’.\¸pÿý÷ßwß}999ÅÎŒøúë¯üñǹ¹¹+W®l×®]›6möïßo=¹xذa.œÆQlãíÖ¹ûî»###OŸ>ŸŸß²eËýë_aaaG]µj•¼‚ÝÕq4â©§ž’+ÄW¯^ýã?¬ËÃÃÃßzë-µ[@K$pÕ?ü _–ºX­[·>þ¼íú}ûöµ]áÊ•+òò'žxÂnÛØØXkÕpĈÖGèß¿¿Ýš*T°žUýðÃ[×\µjU±å½çž{®°°P^ç7ÞvíÚÕ¶ÖöØ>µ£ÆÛÙ±c‡£~ð¶mÛþõ×_J^XÛé÷íÛ§d“}ûöY7Ù´i“Së+,,lÇŽî<ã¡«€ëÚ´i“™™ùÁtìØ1>>¾B… áá቉‰}úôùþûï·lÙj»þÌ™3ûöíQ¡B…† Z§Ô^°`ÁÛo¿Ý¨Q£ *$$$ 2$55µjÕªEŸñ“O>yñÅåÛ;wÞ´iSëÖ­‹®Ù©S'yšÉÆ—/_>66¶[·n[¶l™;w®k'M;j¼fÍšeddŒ7.111:::00044´eË–üñæÍ›Ë–-«ö›Vÿ°°°{ï½wܸqéééÍš5S»E´Å"yô2²à»wïþþûïŸ}öÙb§x ÁŠÐU EŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEÔn€ÅÅÅ©ÝàEéééj7AG¯0ÌïS\\œaöÅ0xS4ˆ7EƒxS4ÈHoŠ‘öÅ)tU@‚#!8@‚#!8@³ÇeË–õèÑ#!!¡E‹cÆŒÉÍÍU¾í©S§š4i2räHµwBëׯW» °Ç›¢A¼)Ä›¢A¼)`Šà8sæÌ7ÞxãÈ‘#‰‰‰+V\±bÅàÁƒ¯]»¦d[I’^{íµ+W®¨½*3~pLOOONNŽŒŒ\¿~}rrò† žzê©ß~ûmÚ´iJ6ÿì³ÏvîÜ©öN¨ÏøÁqéÒ¥………C‡ˆˆ—Œ=:88xݺu………%o{øðá™3gÞu×]jï€úŒwíÚåçç×¶m[ëÿÖ­[Ÿ;w.--­„ óóóG:zôhµw@}Ž’$edd„……………Ù.¯W¯žâøñã%l;{öìƒNž<¹råÊjï€ú ~­ê¼¼¼‚‚‚»åÁÁÁBˆóçÏ;ÚpïÞ½óçÏïׯ_óæÍ÷ïßïìóÆÅÅÙ-Ñé©d'NœP» °Ç›¢A¼)Ä›¢Aú}S~øaµ› Žò©Ó*T°[^±bE!ÄÅ‹m5jÔ¨5j >ܵç5Ò…ÏcbbÔnìñ¦h…åæÿc„Í;"©Ý*ÜÂ'Eƒtú¦ýZ/Z!2 ƒwU‡„„X,–¼¼<»åòô:rݱ¨)S¦œ8qâ½÷Þ R{h’E‹ÒÍY™YÖÛ7ï#2xÅ1 88¸heñÒ¥KBëyÖ¶vîܹxñâ^xáþçÔn>M²”XV”¬¸Ê´….o3RW¡W<8 !"##322.]ºd{ŽKVV–|WÑõ>,„øðÃ?üðCÛå«V­ZµjUݺu׬Y£ö>PÂD(‘á-D#Ž+güà˜”””žž¾mÛ¶G}T^"IÒ–-[BCCŠ®_«V-ëš²‹/nß¾=:::!!¡Zµjjï•ÈÐʳ Ù€á?8öèÑã£>š3gN›6mäsb’““Ïž=;hРÀÀ@y«W¯ž9s&00ðŽ;îhÙ²eË–-maÿþýÛ·ooÚ´éÔ©SÕÞ*q-’‹ñƒcttôÈ‘#§L™Ò¹sçV­Zegg§¦¦6hÐà™gž±®³eË–W_}•nhžGv` ÆŽBˆ„‡‡¯\¹ríÚµQQQýúõ:t¨\}€Ò¹™üÈŽŒÂÁQÑ©S§N:9º·cÇŽ;vttoƒ ‰ ˜—G2Ù€!|Gp‹ÓžÄüŽtàEŽà€Ç;—):Ð9‚#ÇKCÉŽôŒàEŽP„WÏ€¦èsûå—_,Ë’%Kä'MšTµjÕF©Ý.(Bpê8pàÀ¸qãêׯ?fÌÏ>rëÖ­'L˜ öþÁnçƒ ):B!222„ãÇïÝ»·vÏž=?þø£Ú;gLf™ašnÀ‡$IB”+WÎ#–ŸŸ¿yóæŸ~úéÃ?,,,T{猉Š#¨¢#LcëÖ­>ø`XXX||üÈ‘#oܸ!/úé§»ví*„hÙ²eLLŒûOtîܹ‡zh„ 999jï´aQq€[(7žöÕW_õìÙ³J•*½{÷öóó[¸páªU«ä»†^³f͉'N›6-11Ñý犌Œ”K˜éééwÝu—Ú»nLGP °†çXT-`K~¯_¿>lذˆˆˆ]»vU¯^]1f̘¦M›Ê÷6lØðÈ‘#BˆfÍšµhÑBÍ€bGBá o’&{ÓÒÒ²³³§N*§F!DTTÔ!CF]ê¶ùùùß|ó£{»té¢öΙÁÔCцvèÐ!!D“&Ml&$$(ÙöêÕ«òÈbIÚLÊ&@p^ „°ÜÞîç§èÄÜàà`Ò¡@Õ²EGW:u„¿üòKÛ¶m­ ÷îÝ«d[ºªµ‰àn°X„ÿÌ#B°Ñ¸qãØØØ3fôéÓ'**J‘““3kÖ,%ÛÒU­MG¦çZÁOî}“$!DVVÖÍYèl:¢# *00pÚ´i={öLHHèÕ«W``à’%KN²HWµ6188Éb‹¤b¢¼P^€ݺuÛ¼ys£FRRR¦OŸ~ùòå… ªÝ(¸ŽŠ#ss¶Ô'GÆ’É+(Y0V­Z}ûí·BˆS§NU©R¥lÙ²ÖRb—.]¼QVŒ‹‹£Zé%GPÌ©,(—®Oo5L ::Zí&À]tU€2.TåìFAp`bÊ‹|.÷;+ÏŽrÑ4ŒàEŽÌÊåFÖŒ‚à%òÈÉÑ ³#½Õ´àŽ1¥Ø 80%ßÏ}CÑ€þÀ—ì@çŽP„àÀ|”ôS{it£’¢#½Õ´ŠàEŽLFÅr£Œ‘Ž0·_~ùÅb±,Y²DþqÒ¤IU«VmÔ¨‘Úí‚"GÐz«a7n\ýúõÇŒã‘üí·ßzõêU­ZµŠ+6mÚtæÌ™ùùùj率¨ÝÐÌÝ(™!¦—‘‘!„?~|RR’û–™™Ù¶mÛ‚‚‚nݺլYsÓ¦MÆ Ûºuë×_­öŽÁ€™ø~úFŽI’$„(W®œGmذa/^LMMMLLBLœ8qàÀŸ~úé† zè!µ÷Õ èª>+–:Ò‘ÞjÅÖ­[|ðÁ°°°øøø‘#GÞ¸qC^þôÓOwíÚUѲe˘˜÷ŸhóæÍ­[·–S£ì¥—^BìØ±Cí×À8¨8oùꫯzöìY¥J•Þ½{ûùù-\¸pÕªUò]ǯY³æÄ‰§M›f›ö\“ŸŸÿâ‹/6mÚÔvavv¶¢lÙ²j¿ ÆAp`¥öSûxÜ!#á9U Ô’ƒÖõëׇ ±k×®êÕ« !ÆŒcÍv 6ùdÏž=?úè£Ê•+«½÷ÆDpUû©9EÆÕ¸qãØØØ3fôéÓ'**J‘““3kÖ,%Û:ÛU-IÒ¨Q£jÔ¨‘’’âïï¯ö®ÁxE``à´iÓzöì™Ð«W¯ÀÀÀ%K–äää(ÙVîªVþ\üý÷ßëׯ?hÐ »»{ì±N:©ýbÁ€ ”ÜÛ«ñ‚½ÕгnݺmÞ¼yâĉ)))¹¹¹ÁÁÁ .ìÑ£‡ÇŸH¾záÁƒhÏ×™”€ÚŽLÉù~jF.Òg À`ŽP:—Ïwq:;Ò[ @ÃŽ Êç Ó[ @UGæãd?µ›ÓëÐa Øúå—_,Ë’%Kä'MšTµjÕF©Ý.(Bp€’xdRFç²#½Õ0Œ7®~ýúcÆŒqÿÑþþûËíÂÃÃÕÞKCap ŽŒŒ !Äøñã“’’Ü´¬¬¬‚‚‚æÍ›ÇÆÆZV¬XQí½4‚##*a€£3ýÔ¼Œ\tôÀ£q ˆ$IBˆråÊyäÑä:qâDÄP‹®jÐz«a [·n}ðÁÃÂÂâããGŽyãÆ yùÓO?ݵkW!DË–-cbbÜ"98Ö©SGí=62*ŽP<_rÚcEG@?¾ú꫞={V©R¥wïÞ~~~ .\µj•|×ðáÃkÖ¬9qâÄiÓ¦%&&ºÿ\eË–­T©Ò²eËΟ?ß Aƒ{ï½·L™2j¿†Bp`8ôä„Ô-Q;þqýúõaÆEDDìÚµ«zõêBˆ1cÆ4mÚT¾·aÆGŽB4kÖ¬E‹î·"##ÃÏϯN:¹¹¹ò’úõ매¤4iÒDÍÇXŽÌDñG/•(:ʽÕŶ–aŽ(ÊÉ+!ùFZZZvvöÔ©SåÔ(„ˆŠŠ2dÈèÑ£KÝ6??ÿ›o¾qto—.]Š.ÌÈÈ(,,œ0aÂã?¸jÕªW_}µk×®ûöí VûÅ0‚#ðŠC‡ !ì ~ J¶½zõª<²XRqAù‡~(W®\XX˜üã€þúë¯_|qùòåTûÅ0‚#ØóêHDF:Â<„–Û»Ñýü˜,9YFŽŽ¶[Ò¡C!ÄþýûÕ~%ŒƒàÀX<4&Ð[ “Opþå—_Ú¶mk]¸wï^%Û:ÛU½fÍšvíÚÕ¯_ߺðÒ¥KBˆZµj©ýJÁnãƒr EG˜DãÆcccg̘ѧOŸ¨¨(!DNNάY³”lëlWuPPЈ#¿ûî»ÀÀ@!DaaáÔ©S|ðAµ_ ã 8¯ œ6mZÏž=zõê¸dÉ’œœ%Û:ÛU1a„×^{­nݺ<òHHHȆ öìÙóÎ;ïÄÇÇ«ýJ€0ÝõS†Ð­[·Í›77jÔ(%%eúôé—/_^¸p¡—žkÔ¨QË—/ŒŒ\¸páǺnݺ×_]í×ÀP¨80·‡ýù¬Yio5á­ZµúöÛo…§NªR¥JÙ²e­¥Ä.]º8{LɺwïÞ½{wµ÷ØÈŽÀŠžõ Ý¡«€ (ë§öñ +rÑQÍ—œDp`Fí·•{«@Ž [ò0Gð‚#áó~j½Õô…àÀè 0½Õ´àÀÜàÈu\@ ‚#¨ÉÝÞj†9ð!‚#!804Uï§VTtd˜# 8Ð?£ÎàCpc˜#_!80.=ôS˘ÐæñË/¿X,–%K–È?Nš4©jÕª5R»]P„à:Á0GÎÆW¿~ý1cƨÝ( vÀ= pt+##C1~üø¤¤$µÛE¨80/ôSËÜê­f˜#ôI’$!D¹råÔn”"80(\i°(z«¡C[·n}ðÁÃÂÂâããGŽyãÆ yùÓO?ݵkW!DË–-cbbÔn&¡«xËW_}Õ³gÏ*UªôîÝÛÏÏoáÂ…«V­’ï>|xÍš5'Nœ8mÚ´ÄÄDµ[ EŽôÌŽšê§Ü¥n%ÚÁ'éúõëÆ ‹ˆˆØµkWõêÕ…cÆŒiÚ´©|oÆ 9"„hÖ¬Y‹-<ÒÇ_¹r¥aÆօ™™™.\hÔ¨‘íB¸†àZ!st1ÎJœ'dnš|ëÓÒÒ²³³§N*§F!DTTÔ!CF]ê¶ùùùß|ó£{»téRtýÎ;¯[·N~–©S§öíÛ÷÷ßïß¿ÿÏ?ÿ,„ˆ‰‰Y¿~}½zõÔ~UôàÀˆ 9ÀQ&s4êÞÁX:$„hÒ¤‰í„„%Û^½zUY,©ÈGàË/¿Ü´iÓ† ,Xðì³Ï®Zµjýúõݺuû¿ÿû¿   'Ÿ|rĈÖŽr¸†àÀŒè§| @a¹ýŒ.??E'æKÎütìØ±øøø:!†žŸŸ?zôèûî»/99¹L™2BˆîÝ»Ï;Wí—D÷ŽtK=³·¾ožê~ЭÞj@cêÔ©#„øå—_Ú¶mk]¸wï^%Û:ÛUÝ¡C‡qãÆ½ûî»wß}÷×_½téÒ¹sçΟ?¿yóæÏ?ÿ|hhè¼yózè!µ_Ý#80ŸôäÊ‘Q~ž¬¬,y2Û…*`˜#4¦qãÆ±±±3fÌèÓ§OTT”"''gÖ¬YJ¶u¶«ºiÓ¦ÉÉÉ&L¸víZ»vívíÚU¯^½þýû¿û'OÎÉÉéÔ©Ó;ï¼£öK¢{Gpš£h*/ôzpe˜#t"00pÚ´i={öLHHèÕ«W``à’%Krrr”lëlWµbàÀ´]R®\¹ñãÇ?^íWÂ8˜€é¸Ù\jfss–n·.!hL·nÝ6oÞܨQ£”””éÓ§_¾|yáÂ…j7 ®£â@ŸTê“UXé£&XµjÕêÛo¿Bœ:uªJ•*eË–µ–»téâlYê"80oæ5§[ìÈ0GhXtt´ÚM€»èª`.º8g¹ôÞj.Z @ GPÄ…ò!é€Á t.w:“ Á€9ÆWZ¾ÓE?µ»äaŽàG(…›ç¸¸Vtd˜# "8@‚#”Ä#SêP` GzcšŽ®_B†a޼ƒ ÀÀ!Îàí•ùÀ¹@)ÅÅũݘÁÝHOOW» ®ËÊÊŠ‰‰Q»p ]ÕLÁ…~j×òé@ïŽtÅÕŽ:åú0Gð³tU/[¶léÒ¥åË—oÓ¦ÍÈ‘#CCCKXÿÂ… ï¿ÿþîÝ»Oœ8Þ°a×_~966Víýà#º ¢Ž†9JŽC6¸ÊÇ™3g¾ñÆGŽILL¬X±âŠ+|íÚ5Gë_ºté_ÿú×âÅ‹…<ð@•*UÖ®]Û©S§}ûö©½+ôÞjºfüà˜žžžœœ¹~ýúäää 6<õÔS¿ýöÛ´iÓm2{ö윜œçž{nÍš53gÎüòË/'OžœŸŸ?iÒ$µ÷€+t7h“ñƒãÒ¥K ‡!/=ztppðºuë ‹ÝdÇŽAAAÏ?ÿ¼uÉc=V­Zµýû÷¨½C€‰ùj€£Wû©-:2Ì€v?8îÚµËÏϯmÛ¶Ö%þþþ­[·>wî\ZZZ±›„„„´k×®\¹r¶ Ë–-{ãÆ7n¨½Cp;GQ”iÀxšÁOŽ‘$)###,,,,,Ìvy½zõ„ÇoÚ´iÑ­.\h·d×®]ÇŽ»çž{‚‚‚ÔÞ'Þ¥›ÓbÀç óòò BBBì– !Ο?_òæ{öìY±bEVVÖž={jÖ¬9eÊ…Ï[tZÿõë׫ýb¸âĉj7öÌü¦Äˆ˜¬¬¬â–‹b—Ëbcb3³2³D–P*¦„G+–³oJf¦°Xb23•>K¦È´ÄX2³2¿2ÂÁ+ãô¾†™?)š¥ß7åá‡V» Zaðà(Ÿ:]¡B»å+VB\¼x±äÍÓÓÓ—/_.I’¢AƒeÊ”Qø¼ºžÙß³ük™ß”böÝb’ãìV]ß7›”¼¾£{ùm¦èôM)úµnÚ ?|ŒcHHˆÅbÉË˳[~åÊq«îX‚'žxâàÁƒÛ·oíµ×6lØÐ»woyC*ðɬ„>ë§öð¼< sàŽÁÁÁE+‹—.]BXϳ.Åb 0`@¯^½þüóÏ 6¨½Oê0xpBDFFž;wNNŠVò ŸÈÈÈ¢ë>|øõ×__·nÝò !NŸ>­öp‚afpdRZ`üà˜””TPP°mÛ6ëI’¶lÙšPtýÊ•+õÕW+V¬°[~ìØ1¡ÛÁ€ay´kÙÇçSsºcüàØ£G??¿9sæX‡'&''Ÿ={¶{÷îò’«W¯feeÉg{EFFÆÅÅmß¾}óæÍÖùý÷ß-ZT±bÅÄÄDµw0%.»\*r(ï3øYÕBˆèèè‘#GN™2¥sçέZµÊÎÎNMMmРÁ3Ï}žþù„„„;î¸ãÌ™3»wïB¼÷Þ{U«VU{‡(e˜~j·HÄncüà(„0`@xxøÊ•+×®]Õ¯_¿¡C‡Ê3òëî»ïþæ›ofÍšµoß¾ƒV«V­C‡/¾øbݺuÕÞޢʼßr•PáóÊÉÂTdŠà(„èÔ©S§NÝÛ±cÇŽ;Ú.©U«ÖŒ3Ôn5€qð-ãq³`˜#/#8Ð<—†è9Õ««bíÒaiÀxÁtƒÙ¨‹àEŽôÉs½Ë†:dža޼‰à@Û¼?ÀQu„=zAp=qq˜#çÇð‚#S3T?5xÁ€.îy²·šžo^Cp`4úà:Bp a.cx s ‚#óÒT7=Ì´à@o4÷ÀLŽ …ŽBP½à-GZå厺.\rÑjª 8€Vx½PÈù1ÜCp +º®€ÎÿÁ0G^@p`Fš-\*Ï{ sà{GšÄÔß^Â0Gn 8@‚#ý(±ƒYùGÍöS{ÃxÁ´…aŽ4‹à@{àšDp“áü®"8Ð 3 pôØèD†9ð(‚#èÃøÁŠh gÆøÃ¸„à@Ì4ÀQÆèDDp}+e˜# €ç Á€–xs€£Žú©@›ŽôMùGÝñn'3çÇpÁ€æQ*, ÃøÁŠ˜UKpÁ€f8fŒ8Êèd )GÚF©PW†9r~ ' Á€ñéºjIo5í 8@‚#m(ö̘K…†?3ÆY¥ st° Ã(Gps Ï€ÛŽ N×eD>Ap€"GÀÔßâÊ0GPŒà@« ÐǬ5LÀ=GFf˜ðÉ0GZ@p€"GúÃÇ0Ì€÷¨Íù©¿á:†9pÁ€a,|2Ì€êŽP„à@gàX*†9ð‚#í1X3Á€ªœ¿fŒÒ6bøôÌ0GÎà*‚#!8Ð8€ŠŽ ÈýÔNáüÞ@p ¦þvž‡9@iŽ!çÇ(Á€n0ÀÔEp`4ôuËæÀ㎴„Чè…à@%^›ú®c˜#€è@uG†B_·-†9ð,‚#Í ô)ÆEª 8Pµ€ø ÀIG:ÀGßáüŽ}ÝE1Ì€@—ègà{GÚ@µPÄOÎ 8ð9'ÏŒa€#hÁ€AP²tÄéaŽœÀ‚#èýÌ|Œà@¨ªˆø @1‚#ÑVpœ>}zFF†Ú­àMÞ93†’eÉæÀ#´“““}ôÑîÝ»§¤¤œ?^íæ€ÖÑÏ À—´Ÿ}öÙêÕ«ïÛ·oÒ¤I­Zµzþùç7lØpãÆ µÛÀ›¨€N¨Ý€Û 6ìÕW_MKK[½zõºuë6oÞ¼yóæÊ•+?úè£]»v½çž{Ôn ‘\·$¾(¶*ŽB‹ÅÒ¤I“ñãÇÿøãsçÎíØ±ã7/^Ü«W¯:|øá‡'OžT»\ÅGõpÑjîÓ\p´ h×®ÝÌ™3wìØ1vìØ   ìììY³f%%%=ùä“+W®,((P» >o säüEh««ÚNnnîwß}·~ýú;väçç !ÂÃÃwîܹsçÎùóçüñÇQQQj7€¨€~h18ž={öÛo¿Ý°aÃÎ;å²bÕªU;tèбcÇ&Mš!~úé§™3gîÛ·ïÿ÷çÏŸ¯v{@ÿæ@mÇ… nذa÷îÝ………Bˆ°°°‡zè‘GiÚ´©¿¿¿uµ–-[6iÒäÞ{ïݵk—ÚMà- pô8y˜£’WŠ¥­àøÖ[o !BBB:tèðÈ#Üwß}¶yÑVPPP¹råè§ôÄÉ3c åB¾¡­àؽ{÷Ž;ÞÿýŽò¢-Êà]qÀm´uVõºuëvìØá(5¾üòË=ôÚmà9TÉ4…«Ð(¶‚c^^Þßÿíè®cÇŽ1‰#` pôfsàõ»ª·lÙòüóÏ[\°`ÁÂ… ‹®VXX(IRÍš5Õn/hÃø€úÁÑßß¿råÊòíÜÜÜ2eÊ”/_¾Ø5CBBF­v{¸„¡r:Å0G6ÔŽ-[¶LMM•oÇÅÅ=ñÄcÆŒQ»Q¼ú˜Q·P"õƒ£­6mÚTíVP½ŠÙ¸L[ÁqÔ¨Qj7ôŠr!oS98.Z´Hqï½÷Ö­[×úcÉúöí«n›8Ar`*lj' !&L˜ GùÇ’# 2¦#œà•ƒãË/¿,„hÔ¨‘üãˆ#Ô~A¨ŒŽ>PÒ0G:¼8¦rp|饗l|æ™gÔmè©€Wië䘢$IÚ¼yó‰'î¾ûî„„µ›`^š Ž›7ož5kVûöíå^ì7Þxcùòåò]½{÷~óÍ7-\JЗ¢Ã㨉éÃ!´v­ê]»v½ð ¿ÿþ{aa¡âÀË—/îÓ§ÏwܱxñâÍ›7«ÝF^ÄG÷ɽե¯VÂE«>óÑVÅqþüù’$;¶wïÞBˆ7 !&Ožœ””tôèч~ø‹/¾HJJR»™f¤­àxèСjÕª=õÔSò?ÿüs™2eZµj%„¨]»öwÞ™™™©vLJ[]Õ.\¨Zµª|;??ÿÀ 6,S¦Œ¼¤|ùògÏžU»œÁG0mÇèèè'N!ÒÒÒþúë¯ûî»O¾«°°ðĉáááj·€·0ÀÑS¼2ÌQ>?€¹i+8&&&^¸paöìÙ'Ožœ={¶¢uëÖò]Ÿ~úéùóçëÔ©£vLJ[c¼zõê¹sçÎ;WѨQ#yîÆž={þúë¯Bˆ¨ÝF“ÒVűzõêK–,iÛ¶mµjÕZ¶lùþûï˳6ž={¶råÊï¾ûn³fÍÔn#¯PØO P‘¶*ŽBˆºuëΛ7ÏnaJJJTT”ŸŸ¶b.€RxáÌ8*¤ðÚƒ\´€S4‹U½zuµ›¦ÇõcÓÓ\p\·nÝ‚ Ž=*9ø3755Uí6˜‘¶‚ã¦M›†*ßö÷÷÷à#/[¶léÒ¥åË—oÓ¦ÍÈ‘#CCCKXÿÚµkK–,Y¾|ù‰'*UªT¯^½´hÑBíW0&&â]ÐVpüøã…ýû÷á…‚ƒƒ=õ°3gÎüè£*T¨˜˜˜½bŊÇ/X° ((¨Øõóóóû÷ï¿wïÞàààûï¿ÿ¯¿þúù矷oß>dÈ_|Qí Ð-rŸo1Ì€Çi+8fddÜqǯ½öšσIOOONNŽŒŒ\¾|yDD„âí·ß^°`Á´iÓÆWì&K—.Ý»wo“&M>ùä9\>|¸_¿~|ðA»víêׯ¯öëèƒá ‰aŽ€¹iè<å¿ÿþûòåË5jÔðìÙÓK—.-,,:t¨œ…£G^·n]aaa±›¬_¿^1vìXkI²nݺÏ=÷\AAÁ?þ¨öë  G??¿àààÇ;Ês®Ùµk—ŸŸ_Û¶m­Küýý[·n}îܹ´´´b7ÉÊʪP¡Bƒ lÖ­[Wqüøqµ_'Àhàz¡¡àèïï?hР³gÏΜ9ÓS)IRFFFXXXXX˜íòzõê Ç)pÞ¼y_~ù¥ÝÂýû÷ !jÔ¨¡öëè¹O ^¹h5ÓÖÇŽ;?~<99955õ‘G¹ãŽ;Ê”)c·Žmí°Tyyy!!!vËå3oΟ?_ìVñññvKRSS“““Ë–-ÛµkW%Ïg·DîþÖ'N¨ÝØÓÅ›“•™%²l–‘••å`mÇwݾž²ÕT í7EÙëæø]°{ïb4üFØÒö›bRú}S~øaµ› Ú ŽIIIòß~ûí·ß~+vôôtåxíÚ5!D… ì–W¬XQqñâÅR¡  `Ñ¢Eï½÷^AAÁôéÓ«V­ªäyj¤ÆÅÄĨÝØÓÅ›R´‘%4[áiyÇ Ð6¥o$b,1º8?FËoŠiéôM)úµ^´BdÚ Ž;wö솄„X,–¼¼<»åW®\·êŽ%øùçŸ'L˜päÈ‘¨¨¨wÞy§yóæj¿B€Ñ0ÀÑÛ<0)Ü¢­à8uêTï^@@pppÑÊâ¥K—„Ö󬋺qãÆÔ©SSRRÊ•+÷òË/8ÐѤJGîÓ5fsp‹¶‚£Õ… öíÛ÷ÇDGG·hÑâìÙ³ ûˆ‹ŠŒŒÌÈȸtéRåÊ•­ å:‘‘‘ÅnRXX8|øð7¶oßþÍ7ß,!_˜‡†Îª–;wnÒ¤ImÛ¶8pào¼±eË!D·nÝž{î¹ÜÜ\0))©  `Û¶mÖ%’$mÙ²%444!!¡ØMRRR6nÜØ§OŸ>ø€Ô8ÍÓDSíÒyp棭àø÷ß¿ð )))•+WîÖ­›uyDDÄ÷ßÿÄOÈ'»8¥G~~~sæÌ‘Ç5 !’““Ïž=Û½{÷ÀÀ@yÉÕ«W³²²ä³½$IZ¸pa¥J•^{í5µ_ÀàT瘔„Z몞7oÞÞ½{Û´ióþûï—/_þ믿–—/]ºôõ×_ÿÏþ³`Á‚gŸ}Ö©ÇŒŽŽ9rä”)S:wîܪU«ìììÔÔÔ <óÌ3Öu¶lÙòꫯ֭[wÍš5999ÇŽ êÛ·oÑGëÖ­[¿~ýÔ~]¡`h s „ÐZpܹs§¿¿ÿ;ï¼S¾|yÛåþþþÿû¿ÿûí·ßnذÁÙà(„0`@xxøÊ•+×®]Õ¯_¿¡C‡Ê3ò%ׯ]»¶oß¾¢÷rb50-mǃÆÄÄ{LÅŠccc=êÚ#wêÔ©S§NŽîíØ±cÇŽåÛ76Ò,Œ€¯)àÈD< ;Úã|õêUG÷æææVªTIí6€þx~˜#çǦ¤­àÿÇ{͘ƒžlØ0Û™h‘§§þ†ï9qÑj‰w0ÍG!Ä<ðÀäææfffÞ¸q#66Öѵh.ƒ¡h ˜žƒ£,44´I“&j·€jˆ( 5*ÇE‹9»I±t #\iP- +†NôV0•ƒãĉÝ„àhÃÝÀèTŽò$;¶<¸aÃÿ–-[Ö®]Ûßß?++kÛ¶mùùùQQQcÆŒQ·Á”¢§Ù슖œ˜ŒÊÁñù矷ýñرc)))qqq|ðA5¬ËOž<ùÒK/8p`õêÕ:tP·ÍÜÁD<êâüîÐÖàsçÎ=wîÜìÙ³mS£¢zõêÿþ÷¿…7n<{ö¬Ú̓sâÚƒÌD[ÁqÏž=ÑÑѵjÕ*zW5äå)D%˜€¶¦ãÉÍÍ-,,”$ÉRÜQ/]º®v3”ƽÞPúR5aŽ€‰i«âذaÃK—.ýðÃEïÚ¾}{nnnƒ Ôn#×1É‹ÈÁ¯ôÕè­P„¶‚cÇŽ…£FZ·nm—ôÆGŒa]¾§­®êîÝ»oß¾}íÚµC‡ µX,™™™gΜBtêÔ©{÷îj·À¤´…Ó§OoÞ¼ù¬Y³rrrrrrä…QQQ/¿ür·nÝÔn€âØ qs0D‘‰x´ÃÝIy昕患ŸŸ_=üñÓ§OgeeÔ®]›bÀ÷¸ö ;š Ž2‹ÅR­ZµjÕª©Ýܤ­“cèñ€q¸GÙà6z<µÆÝIynÀXŽ·ÉçÇ0:‚#!8ð&âÑz›8‹àÀ ÌÞg s`Epxà 8Ðú©UAÑ€SŽ<ĽŽÐ2z«ÈŽP„àÀUž;3†~jƒ`˜#`tG^D?µöÑÛ @9‚#O fht s ŽTGæ½ 8p SEC ¸‰xÌÁaoõí+q~ ``G€{¨X¦Ap &8jÙ€GÎS0À‘~jCRÔ[ À¸ŽÜCÍâöŠ%Ãã"8P ™SSè­P*‚#Ï£ŸÚÀè­ÌŒàÀIÌàfEpà7:›é§Ö ·z«æ˜Á€‡ÑO FEp8‡aŽ€i¸Š~j#âÜj% 8pFigÆÐOmj sŒŽàp½Õ€9øýÔGo5GŽ\BúC±H€¡(ÆGØ(½·šaŽ€áø•J] n XGÎ#ý€)xýÔ&T|o5åJÀ¸Ž”)m€£¢Ç R©ž‰ sŒ…àEŽœT\Ù~jÓ¢·0‚#¡ŸZwˆì(à‰Ž0)†9Bpà Wû©)7½Õ€yÿØ"8@‚#€ÒX8ÒO J¹n5ã 8Jâzo5ýÜ€á Á€ëè§6 %¥ÃRz«Á@‰Jà”Â9æÁ€‹¸Ì ˜ Á€Q¦4 z«‚#E€pçVBpà˜ãKTsZ œÆ0G@ÿŽEè­@pP*‡p½Õ€Q8@?5Š è˜Áà+ stŽà D.U)7€!8‡y¿MÎÅÞj†9†@pPǦEpàX‘.gN‹p³zÈ0G@ÏŽÏ£·0$‚#O¢ÜFpP„<ÀÑ¥~j˜„[:Ò[ èÁà+ôV:Gpà1ôS› !0!‚#€âÐO Oàòƒ€ÁÜÎÕ)7B¹PÉ0G@ŸŽJG¹Å¢·0‚#€"(Âsè­Œ„àÀýÔp’+EG •€n”‚~j¸©ø¢#Ã"8¸óÅCÊ&G0‚#€’Pn„W6}"8¸Å¥Ž”!ä@z«c 8°A 8FpàP©ýÔäL(g_t¤·Ð!‚#ÀÈ€!ä¡f·Õ9-WÌHG†9ºBpà"ú©aÇé¢#UJ@oŽP„àÀ•~jÊ(–ÓóòH’\ËÐ ‚#!8°G¹îpq2pz@p „$A¨†ß=@?Ž€éY„í„(”á>çÏ–¦ èÁ%ø½Õ€Nüƒr#<Ź¢#¿U€Ns»½Ÿð™"EGJ€ÓS\ì¡Ü§p]ÀxŽnââÔð±ÛŠŽüQèÁ01gú©)7ƒ!8æv+ Rn„*n/:2àÐ:‚#€ÒQn„Ë(:FBpÌÊâĤ߀÷0§# #f ŽË–-ëÑ£GBBB‹-ÆŒ“››«pÃÌÌ̸¸¸_ýUí=).+å·NþuéW“7EƒŒô¦é»Þ)Æãà&‹°HKޤF¨¢äAŒfu4†à˜À­Tèht#©**!;Þüå@3ŽP„à]i£)7Bu%•%y¤#EG@Ž€©‘ÊC³X„ÄùÐRÎ’ŠŽ€ƒ³‹ä`ÎoÊЇÉPÌhÁ0®ƒ!©úBáЂ#`d%” *yj‹<8õƒ¢Ü}*>;ÊçVPÁ0,‹(¾ØHj„NQtTGp K¥\œÐ&Ο4‹à‘ÅbaºoèY1ÙQÂBÑPÁ0&:©¡wŽêŽœí¨ˆà޵ÜH?5 æÖ)2µ¢Üc èh Á0ñÔr|9ΠT@p ʦŸšÔ]»-"2¡# *‚#` $D˜ EGÀ玀A8º’/a@D4‚à„dÿ$Ä[ýÔ¤FÆ?ÙѶ·šD øÁ0‚bˤFŒ£”haØ#à+G@÷,ÂR´ÜHj„!wEI"7¾BpèM‘s«):¾Apô;Ü(/¤ÜãrTt$;>@pt¬˜ÔhEb$`4’$,¾è( ‰ìxÁ0R#ÌÀþ÷œÓ«Ÿ 8zU´ÜÈ÷&ÌÆBÑð-‚# Ka‘D‘qBÊ0IH¶ÙQ’„ÅBv¼ŠàèÏÍÔhs gÃBÐa xÁн›©ÑB¹æcWt¼µŒ¢#à%j7€sbcb%&ølH¶¹ÃZ’,1öÃ9¸Š# 'aÉÌʼm åF ¸>ê̬LꎀÇÝøç„˜[ÕÊŽ€õ*2ÿdGF:^Cpt&&6–ÔË.12Øð8Æ8ú`7ÿÎm©‘~j˜œÍh[ã¥ùB*:w—QqtÀ¶“:+3“Z#P9;fefÊåGꎀQq´Î®^s[j¤Ü!IÂb‰±~2¨;žBÅд۾í,‹23³Ôn =·N‘±ÊÌ̲ˆÆ%Ÿ ãJj¤Ü¸ ä¢£p˜9W(Áð‹E8œïƒZ# =rv´GÀ,!$7f‰£Ü¸Ì¥¢ã­M%!‘ï’¯"XRj¤“P‚ìH|Áð*92º•¸¯Ô¢£(=;Rz—¼äæLÉÝÓJR#åFÀgl®Fh„Éb±üs­BÀ„¨8&wiI’'R#OQRt%ÕÅ­Òc‰«GpÂpŽ@ñ¬'HÚë(4 çS#åFÀgœ*: ç²£¸ýXA|„a{ŽîNÏìMj4ÎkÙQ)=ŠÛ㣠ABŸŽÀ?J¨8WhôPådvEŽÿœ]G:Dp„(-2 g/!èBj¤Ü¨ÂÙ¢£p.;ŠâJÖ‡ÄGè Á¦VrŸ‘‹W&5úâ“ì(R迆¾aR%ÿ•ïzdøspþB1¥ÆGÁQšGp„¹”úg½‹‘Q¸1¨‘r# :ŠŽÂ¦ZèÌg¿ØEÒöG@;Ž0…Ga§Ï€±}R# k®eGát·õ­g“Jø3Õ®)HÐ ‚# Na¿ë…FAjLÏÕì(J;øÐ… ­!8˜”ÿ™îndTòtÁ墣p1; eñQÐ… Í 8ÂPœÍ‹ÂåÈ(Üž©‘r# AîgGáJ¬s*> $ÔCp„8u u«Ähû”¤FÀÜÌŽÂõãƒm|$HhÁze=\ ÅGLEFåOé ¤FÀÈ\í¶¾¹õ­„’CVÑ)‘ð&‚#tƵ?¯=ÌÁ¢ãÍGp½ÛÚ¦Šú¯­OhEÞCp„¸ü—´2Ú5ÂýÃ0åF@<’…þÚt*>Ú>³ A ŽÐ.wy+1Z›â‘ã.©Ð÷³£ðLéQ83üÑîÉetdÃSŽÐ7nž,1Ú6ˆÔ˜“§²£ðÌߟvÃ…ó R"á‚#Ôç‘£˜‡KŒÖ–yê°JjtÊ#ÙQx¬ôx«QNœ@S´!V„H8‹àuxêhåù£mûH„G³£ððáŵ.l»É‘P‚à±=$ ·JÞÊ‹ÂÓ‘QCðTvžì¹¶i‹]ØEÛuóq‘p€à/òø¡Ç‹yÑÚbÏ#I€ax0; ÷\Û´Ñ R8‘žn/ô‡àOòÒñÅëyQx¡Ð(H€áx<; o]òÞS ²hÓÈ‘&Gp„[¼w±ì„Wó¢ðÖQ›Ô“g³£ðn|M¶íµ"Gš ÁN°;@¯Ä-ïíöÇÇ9R#``ÏŽÂëñQ— …'Ž´äH³!8¢$±±1¶?zéà»ââ?OéÅ£3©0>odGá‹ø(n?Ìzüð[rŽ"†(©w~j7b±ØÿËÌÌ’$aýçÉç²y›gðòÅúœß›#5¦ gG¯<²tóÔ‹—žÀv'þ9üÚ–=»+Ö™™YE¿h /TMªØÏjÑ(••åÑ'õ}eÑn‡½ý§.©0/Õo>¸MõQø¢Ó׫•H»Ý²¥ðûAp4>u?“j†EÛý÷Á“òjvE®6í«c·oB¤Ý.Ú"MjÁÑP´ðI³ëãP', Ÿþ™~s9¢æ$ùä àó¤Íþ"…7ð¤IÍ"8ê’£A!ª|~´’ÿiOÿ.§ÐàæAÀG• 6;zÛ3ú¸OIyšJ¯!8jW C†Õýÿ::.0=&È_úE£c”¬mcp‡–-[Ö£G„„„-ZŒ3&77WíyŽÅRÊ¿[3œÆÕ«g„ O-6ÿ$ÝOâýðÃ«ÝØãMÑ }¿)Ö#•íáK§l¾DnûN)õ›šDűx3gÎüè£*T¨˜˜˜½bŊÇ/X° ((Hí¦•Há'M¿Péë`·¿j·\c{ø2Ø‘­Ôo"¾Ñ4‰Šc1ÒÓÓ“““###ׯ_Ÿœœ¼aƧžzê·ß~›6mšOÛQê_cŽ+…š¾B¶ç_¨"ÿ¤Ûÿ€ØÙŠú Fá7š³_”pÁ±K—.-,,:thDD„¼dôèÑÁÁÁëÖ­+,,Tô.d>—S a1/¬‚˜h‚—Š9ôYL&‹yœü¢ôÈ´‰(Á±»víòóókÛ¶­u‰¿¿ëÖ­Ï;—––Vêæé‡¹’ùL˜íXü“ˆ‰à€¤8Mš-\Þö*yâ Ú„ßÑ·íI’”‘‘f»¼^½zBˆãÇ—úqõÌ1)¨’ƒ‘Sÿ$ÿNQrhõøñÆÅÉ1öòòò BBBì– !Ο?_ê#¤J7ÌÇ&]8Ü—¸zžžûÔ¤s©º".ŽKsxS4ˆ7E)O—;Ò-ÅÏf\ÂwŠþ˜£FTÁÑÞµkׄ*T°[^±bE!ÄÅ‹KsÆÒ ;Ë9¥0í— ]ÕöBBB,K^^žÝò+W®ˆ[uG"8Ú .ZY¼té’Âzž5€Ù‹yîÜ99)ZeeeÉw©Ý:u‹‘””TPP°mÛ6ëI’¶lÙš vëÔAp,F=üüüæÌ™#kB$''Ÿ={¶{÷îj·@ÉÄ“X–àÓO?2eJõêÕ[µj•ššÿé§Ÿ¦À$Ž­^½zåÊ•¿ýö[TTÔ½÷Þ;tèPyFs"8@Æ8@‚#!8@‚#!8@‚#!8@‚#9uêT“&MFŽ©vCÌîÚµkŸ}öÙ¿þõ¯{î¹§U«VüñÇÕn”y-[¶¬G -Z´3fLnn®Ú-2;> ÇW‰¨Ýè€$I¯½öšõÊÝPK~~~ÿþý÷îÝ|ÿý÷ÿõ×_?ÿüóöíÛ‡ òâ‹/ªÝ:Ó™9sæG}T¡B…ÄÄÄììì+V>|xÁ‚AAAj7ͤø€h_%Æ@pDé>ûì³;wªÝ ˆ¥K—îÝ»·I“&Ÿ|ò‰œN>ܯ_¿>ø ]»võë×W»&’žžžœœ¹|ùòˆˆ!ÄÛo¿½`Á‚iÓ¦7NíÖ™ã«ÄèªF)>¶téÒ¡C‡Ê©Q1zôèàààuëÖªÝ:“â¢e|•Á%ÉÏÏ5jThhèèÑ£Õn DVVV… 4h`»°nݺBˆãÇ«Ý:sÙµk—ŸŸ_Û¶m­Küýý[·n}îܹ´´4µ[gR|@4‹¯#¡«%™={öÁƒ?ýôÓÊ•+«ÝˆyóæØf÷ïß/„¨Q£†Ú­3I’222ÂÂÂÂÂÂl—׫WOqüøñ¦M›ªÝF3â¢Y|• G8´wïÞùóç÷ëׯyóæj·B/G«ÔÔÔäää²eËvíÚUíÖ™H^^^AAAHHˆÝòàà`!ÄùóçÕn IñÑ&¾J †àˆâ]»vmÔ¨Q5jÔ>|¸ÚmA1 ,X0hР¼¼¼wß}·jÕªj·ÈD®]»&„¨P¡‚ÝòŠ+ !.^¼¨vÁD+ø*1ºªÍ.??þüùÖýýý,„˜2eʉ'/^ÌÜ"¾çèM±úùçŸ'L˜päÈ‘¨¨¨wÞy‡¿ã},$$Äb±äååÙ-—ç‘ëŽPíà«ÄxŽf÷÷ß¿ÿþûÖË–-;xðà;w.^¼ø…^øŸÿùµhFž)òí7nL:5%%¥\¹r/¿üòÀ9û^@@@pppÑÊâ¥K—„Öó¬á{|@4…¯C²H’¤v 9‹-š8q¢£{ëÖ­»f͵ÛhF………¯¼òÊÆÛ·oÿæ›oPTÔ¹s猌ŒÔÔTÛÁþcÆŒY±bEJJʽ÷Þ«v͈ˆÖðUbHTQŒZµj=ú裶K.^¼¸}ûöèèè„„„jÕª©Ý@“JIIÙ¸qcŸ>}Þ|óMµÛbvIIIéééÛ¶m³~R$IÚ²eKhhhBB‚Ú­3)> ZÃW‰!Qq„"û÷ïì±Ç:wî'fÞ¼y3fÌ4h×áU]à«Ä¨8ú““sìØ±   ¾}û½·[·nýúõS»&=räÈ)S¦tîܹU«VÙÙÙ©©© 4xæ™gÔnšIñ|ƒàèÉ'„×®]Û·o_Ñ{9oÔ÷ ¾råʵk×FEEõë×oèСrõ¾Ç𠺪 €@‚#!8@‚#!8@‚#!8@‚#!8@‚#!8@‚#s9rd\\Ü?ü vCÄœ9sâââ-Z¤vC@)‚# P»`R<ð@ÕªU›4i¢vC@)‚#¨£Aƒ 4P»àºª@s þþûoµ[öŽôá7Þˆ‹‹›:uªÝòÿþ÷¿qqqÍ›7ÏÏÏBœ={vÆŒ;vlܸqãÆ}ôÑwß}÷ôéÓŽV>WfÇŽvËããã›5kf»äÇ2dHûöíŸzê©9sæØe»“'O¾ùæ›;v¼çž{Ú¶m;xðà]»v•°GóçÏ·=9Fnɉ'’““ï¿ÿþ† 6mÚô‰'žØ´i“£GسgO|||ëÖ­/_¾l]xåÊ•¶mÛÆÇÇÿöÛoj¿iŒ†à@:uê$„ذaƒÝò5kÖ!ºvípöìÙ¾}ûΛ7ïÔ©S5kÖ¼ãŽ;Ž?þÿ÷½{÷ÎÍÍuçÙ§M›6pàÀ 6äççGDDìÞ½{öìÙýúõ;wÂáÇ;uêôå—_ž;wîÎ;ï”$iË–-O>ùäæÍ›z¢yóæMŸ>=00ðþûïÞ³gÏ‹/¾¸nݺbWNHH8pàéÓ§'Ožl]øÞ{ïýñÇ/¼ðÂÝwßíë7 €ÑèCbbbDDÄñãÇ8`]XXX(‡ªÇ{L±bÅŠ£G¶k×îÇ\¹råªU«¶oßž˜˜xòäÉï¾ûÎå§þþûïçÏŸ_£FeË–ýðÃß|óÍÖ­[Û´i³wïÞ¹sçÊëL›6íêÕ«Ï?ÿüO?ý´bÅŠ-[¶Œ;V’¤Y³f9õ\K—.ûì³o¿ý¶ÿþBˆ 8ZÈ!uëÖ]±bŶmÛ„;vìX²dI£FžþyõÞ+†Ep ~~~>ú¨¸½è¸{÷îÓ§O'$$Ô©SG‘ŸŸÿÀŒ1¢B… ò •+W–K•ÙÙÙ.?õ”)S„ï¿ÿ¾µ†WµjÕ÷ß?22rùòå.\BüþûïBˆ=zøûûËëôîÝû…^hß¾½SÏu÷Ýw>ÜÏÏOÞå^xAqôèQGë¾÷Þ{o¼ñÆ™3gÆŽ4mÚ4k3ÀƒŽtCŽ€¶ý¶r?u÷îÝå_|ñÅ>úèÎ;ï´®““óÍ7߸󤹹¹YYY±±±vg@—/_¾yóæ×®]Û·oŸBN®£GÞ¹s§<Ú200ð•W^yùå—zºGyÄöÇàà`I’JØ$>>þÅ_üóÏ?»téròäÉ×^{­víÚÞz˜ÓñÐ Ô®]ûèÑ£éééqqqùùùëׯ êØ±£u“'Onݺu÷îÝÇ?v옛C…™™™òãââŠ]á?þBL˜0aèС;wî|òÉ'Ë•+ß}÷uèÐ!>>Þ©§»ãŽ;\hä³Ï>»iÓ¦ýû÷ß{ï½½{÷öè«ÿ 8ГN:Íž={ýúõqqqÛ¶m»xñâc=fí˜^¼xñ¤I“òóókÖ¬Ù´iÓöíÛ7lØ0++kâĉN=KAAµÈwãÆ !DõêÕu:GGG !î¸ãŽeË–íÙ³gëÖ­?ÿüó¾}ûÒÒÒæÎûøãOš4Éb±(|ê2eʸð²\¹r%''G‘™™yáÂ…ï¿̈à@O¬Áñ•W^‘û ­ýÔW®\yë­·Ê”)3oÞ¼–-[Z7ùóÏ?}–S§NÊ·ccc…åË—3fLÉ[Y,y !Ä7¶mÛöúë¯/_¾¼]»vIII^}YÞ|óÍ3gÎ4nÜ8--mâĉ3fÌðêÓ0-Æ8ГZµj5lØ033ó¿ÿýïwß}W«V­¦M›Êwý÷¿ÿ-((hܸ±mj·N[)™]ö·ß~k½~äÈ‘ýû÷Û®SPPн{÷V­Z={öäÉ“íÚµëÙ³§õÞ2eÊ$%%Égóœ8q«¯ÉêÕ«×­[צM› Ô­[÷›o¾):ixÁ€ÎȧȌ;6//ïñÇ·.ŒŒBüþûïgÏž•—|ùå— .B\»v­ØG«Y³¦"%%%//O^’ššjdG6lذÂÂÂaÆùäŽ;îÈËË;räˆ$I½{÷NHHðÒK!IÒèÑ£/]ºôÎ;ïȹ¹Q£Fýû÷ÿä“O&L˜ðþûï«ý^0*Žt&""âÞ{ïB´jÕ*""Âö®éÓ§2$::Zžß±uëÖ+W®;vlß¾}ýýý‹½`5¾øâ‹öíÛûùùmß¾ýСCÕ«WŸ?~ÕªU­ëX,–wß}÷ßÿþw»ví =3lذ•+W†††ÊëtëÖíóÏ?oÓ¦MPPÐï¿ÿž——×¢E‹?üðÍ7ßôÞK‘’’²cÇŽ–-[Zz !† R«V­uëÖ­_¿^Õ7 €YJž ÌãêÕ«çΫQ£†ò“ ÀTŽP„®j(Bp€"G(Bp€"G(Bp€"G(Bp€"G(òÿgÏžàËÓ IEND®B`‚statistics-release-1.6.3/docs/assets/tricdf_101.png000066400000000000000000000677761456127120000221520ustar00rootroot00000000000000‰PNG  IHDRhŽ\­AoÅIDATxÚíÝy\TÕÿÇñ3€ ¢²„ ’ ( ¸.™&*®iaŠR™då–š¦RîšKfš&šå–inY.ß,õçŠ’š Šˆ ¸g*Š( Ìï[±0ý3÷õ|ôè1œ¹sçsïeyû9÷ÞÑhµZÅBî`ŽÐ Áz!8@/Gè…à½ÆÖ­[5úyðàAá«Z¾|¹´d‹-äÞ¬b˜:uªTv¯^½ÊàížÝøÕ«Wß{ï=ÝS!!!E¾€Ê1U @9ÏÌÌÌüä“Ož}öÙO>ùDpŽcvvö?þèççW»vmkkëÚµk·oß~Íš5OŸ>Íw÷ïßÿè£Z´hQ¹råçŸ~öìÙ9—”ÄÇÇ÷êÕë™gž©S§Î€nÞ¼9qâDi S§NͻΜ¯íÛ·¯>§ú·ì\»"¯}ûöíØ±CzûìÉ“'¥éÔ-[¶8p C‡9—?tè¢víÚÕªU;sæÌãÇ…›7o>~ü¸ÔÅ|üøq`` ”Ë—/ß¼yóË—/'$$$$$pÓŠ[¶>»â·ß~“TªT)ïú\“SÛ¶mË—/Ÿ‘‘!„8vìÁ@!˜ª ³ëׯ{{{¯_¿>222ç)w9íÞ½[z¼ÿþ5kÖœ={¶Y³fÒàü‘÷%‹/¾|ùrddä©S§¬­­¥ÁãÇK–.]*µåììì"##ûí·k×® 4Ȱ›Vܲ‹ÜOŸ>Õ]räîîn"5MµjդǷnÝÊ»@§NòÞ‹g̘1†ÝWLG2«X±âÞ½{kÔ¨QÈ2o¼ñFÇŽ…mÛ¶•FRRRÒÒÒ¤Ç÷îÝ˵|£FFŒ!=®_¿¾¯¯ïÞ½{…W®\‘uÓÇ#FŒðññBXXX|õÕW¿þúëíÛ· µiÅ-»È]‘’’¢{\ø+–gžyæêÕ«¹ÖyÈÌÇÇ§È $ÍŸÞ¿Ïž='Nœ8uêÔñãÇ>|XÐòuëÖÍù¥£££ô ;;[z »p$ç̬M×®]×­[g¨M+nÙEî ÝEÓBˆ¼wí.±¤¤$éA•*Uò>›ïíxt»€ªÈÌÉÉ©Èe222&NœøÕW_éîVhccãìì\PwP£ÑòeJJŠ®Û—+¨Õ¬YÓ€›Vܲ‹ÜåË—wrr’Nͼ|ùr¾ËE†‡‡KWÆ!^xán>óCp`–,Y"=øæ›o† Ö¤I++«"/@.ˆF£qss“>>>>>wïÞ•¥lÉ‚ Z¶l™žž®Õj§M›6mÚ4''§û÷ïgeeI X[[oÙ²ÅÒÒ2ïkû÷ï_±bE!Djjª”8%U«VýôÓOKY³GÇ€Òi4šW^yEzœ––ö믿þòË/®®®~~~Ò`Τ§Zµj}óÍ7åÊ•“ÖyðàÁ„„„J•*éÖ©Ó´iÓ7ß|S÷î¿ýö[ll¬»»»®íW–eK7nœë®=wïÞÕ¥Æ:uêlݺõùçŸÏ÷µ7oÞŒÏùîŽŽŽ¿þú«>W)P9‚#Ò¸qc!„……ÅsÏ=7f̘S§N½öÚkÒ³7n,òs™ó4hо}ûjÔ¨áêêðÛo¿å{uÈÚµk?ûì³ÆÛÚÚúøø|øá‡‘‘‘úÄ,c”-y饗âââBBBÚµkçìì\¡B//¯=z„„„\¸p¡{÷îE®ÁÒÒÒÑÑñ…^˜:ujllì‹/¾h¨ƒÀŒi ùdXPާOŸîرCÑ«W/ã½Ë;ï¼³víZ!ÄÒ¥K‡j*e@Ù 8P£!C†H?غuëo¾ùF|ôè‘§§§4‡Î%Æ ÇP£5jœ>}Zqúôéš5k&''7NJ 6lÞ¼¹Ü5€âÐq Fééé]ºt ÏûÔ3Ï2ŠÒ5ùaQ b”‚â /ÂŽÔB ‘Q0=­N…ßcéŸÈÈ÷JÏBî”nÖ¬Y±±±Ï=÷œÜ…(9Ðh„F+´æ5R£ÊH‡\:êÿ½oÎßÏÿóŸ–Ô¡ãÀÌI‘Qî*Œ¿™DFõ(ª¿(h1ÂhŽÌ–J榩Q%ô΋‚È£!80O*i4 R£ ¸¹» QÄEò´Q68Ç€"5Âüs cbBBá]FÎbD™!80+ºë`ä.¤L6–Ôh® ½äåߥˆŒ(sLU0ꉌ‚Ôh–ô8‹ñ便ä®*Dp`&H0azÔ‘ò"80yê¹zfˆÈ“Bp`ÚTÕhü{“i7š½g¥…înn‚Èeàâ&ŒÔӣ߅/ÿ..DBb"Ç Ap`ªH019#£>‹ÿsÑ4 LU0I¤F˜½Odü{q!‘ŠDp`zT˜aªŠ]F(Á€‰Qgj¤ÝhzJ©ÊFp`JH0ÅŒ‚F#LÁ€É 5BéJ©&‚àÀ4¨35Âd¡G&@µ©‘v£i(Ñqbn¦ˆà@éHP®5©&‹à@ÑT›¡t¥ˆŒ‚Ô“Ep \jN´•«¤‘QÐh„é#8P(R#”¨¤Ç†F#ÌÁ€©95B¡h4G ¤òÔH»QqJ©æ…à@YH¤Fe)Å!azæ‡à@~h4y(íFÚJQºƒAj„¹"8P •§F(E©‚ÔóEp ¤FÚò+]d4¡Gò#5B~¥Nî¤F¨Á€ÌH‚v£¼JÝh¤F¨ÁdFj”“!ö>©êAp 'Ú“!¦§©jBp R£ Ý(¦§!8‡»›;©ò`z()‚#ȆvcY3D£Q¡br@4B“˜ wP)§“R 8(kœÚø÷~ ÝX– ´»IP9¦ª”)R#ʚᦧ©ªGpÐn,#4ƒ"8(;´Qv Ôh¤F ‚#€2BjÔ¡Ýht†ÛŤF '.ŽPH(;¤FÀhŽP¦h7©0&¦ªíF”ÃÔ(H@ŽŒ‹Ô˜íFc1èž%5aª`âH@Y¡ãÀˆh7æD»Ñð :=-H@QŽŒ…Ôã2t'5EbªÊíF#5r 80 Ú0"R# ‚#Ã#5æB»ÑH€|8Ç`" })Œ 5ÅDp``´s¡ÝhFؤF ¸˜ª(©P‚#C¢ÝÃ#5ŠAp`0¤Æ¼˜§.-R# $œãP$#\ #H@éíÆ¼h7–œqö©(%¦ª©†Dj”ŠàFA»±„H€‚”íF ©P6‚#@hÒŠGpP*´óE*6£í2Ú€”©†AjLÁ ŒvcñÓÁ}”íF”–qnñý÷ºI€Àh7ê˘{ŠÔ SÕJ‚v#J…Ô˜&‚# l‘“EpPl´ ÂTÚt#50ûà¨ÕjãããsŽ{zz !®]»–ï«^}õUkkëÏ>û,"""==ýæÍ›S§N½~ýz```•*UäÞ&0g¤F@É̼––––••eooŸkÜÎÎNü·§˜“——׺uëÞ}÷Ýwß}W74iÒ$=ß×ËË+×ÈîÝ»åÞªvýúu¹K0înî ‰ ‰"±lÞΔŠ[bbí¥²—ïqqswOLHe³Õnæ¼{KÆ”XÌÄË/¿,w JaæÁQºtÚÖÖ6×x¥J•„<È÷U)))sæÌIMMmذaãÆ“’’ÂÃ÷mÛöâ‹/vîÜYŸ÷•{Ó‘››››Ü%˜€2ÞK¦xPþ™°5½Êõ—û¸h4B«-› þ»Ýh‚߯fŠ?,æ$ïŸõ¼"•0óàhoo¯ÑhÒÒÒr?zôHüÓwÌkܸqüñÇ„ Þ{ï=iäæÍ›o¾ùæ˜1c~ýõWwww¹7 0<ÎnDþ8µ@f~Ž£•••]ÞÎbJJŠBwuN·oß>xð`½zõt©QQ£FáÇ?}úô矖{› ¬ü—™G!„‹‹KRR’”u¤h\\\ò.Ÿ””$„¨S§N®q©Ñxçι70<ÚzR×õÔêÚZz1ÿàØ±cǬ¬¬#GŽèF´ZmXX˜ƒƒƒOÞåëÔ©cii§ýïoLéü†zõêɽA`|e›i7¦Âüƒc`` ……Å×_-×(„X±bÅÝ»w{÷î]®\9i$55511QºlÍÆÆ¦mÛ¶W®\ùꫯtw‹‹[²dIùòåýüüäÞ ÀÀh7"7R#€˜ùÅ1Bˆ5jŒ;vîܹ=zôðõõ½råJdddÆ ¬[&,,l̘1;vìBÌš5«OŸ>K–, õööNJJúã?²³³§L™R·n]¹7€ªCpˆv#€œŽ€icžÚl) ÝHj Á”G©ò"8&Œvci(7›)£2Úò"8@/GPÚŒà˜*æ©KCñL¡e‘„àÊ ŒÔ… 8þåîæFzP‚#`’˜§67´˜‚#ÕQ\HSLA!宀rÓC»Ñ¬()5*¢ Fp€^Ž ÚL Á01ÌS—’b¢š¢J½@íh7ÐÁ0%´͇bÚ¤Fú#8P¥¤5¥ÔÅCp€²¥¤ÔH»@±“Á<5@^G(C´˜2‚#µ?³É_” Á0 ÌSðh7(‚#” %µIJ†à˜Ú&OI©JŒà@Hn:´”ÁŒŒÐ À\¥cžÚ´),5ÒnPGè…àÀüÉÖõ£ÝÀ¼EcžÚ„‘˜‚#ÂR#ÁÌíFAp”‹yjƒ¡÷G»€™"8€A)/5Òn`(G@¡h7”†à†C»€Y#80geä”—À°Ž€1O ƒ ÝÀ°Ž`Êk7’ÁJMy©Œà(óÔ†¢æ8G»€1 tÔœO¨ ÁJA‘©‘v##!8ÊÂ<5@±¬ä. ŒlÞ¼yÓ¦Mñññ+Vl×®ÝØ±c ÉÙ³g—/_ýèÑ#//¯‘#G¶lÙRîí ¯²hÒn 2ªè8†„„L™2åÒ¥K-Z´¨T©ÒÖ­[‡ ’žž^ÈK8зoß8;;ûøøœ:uªÿþ{S(†"S#•ùÇØØØ+V¸¸¸ìÞ½{ÅŠ{öìéß¿TTÔüùó zɃÆoeeµnݺŸ~úiÅŠ7n,_¾üÔ©S³³³åÞ ˜3æ©QJ´•ùÇM›6egg=ÚÙÙY™0a‚Ý®]» J[·nMII:th³fͤ‘&MštëÖíîÝ»gÏž•{ƒ(íFªdþÁñøñãíÛ·×XZZ¶mÛ6))éäÉ“ù¾äðáægÏž9¿øâ‹ØØØçž{Nî ‚Ù¢Ýh@ÆÍuJM´›™_£ÕjãããsŽ{zz !®]»Ö¼yó¼¯:wƒCµjÕNœ8qêÔ©äääúõëwêÔÉÆÆFî ™Ç´´´¬¬,{{û\ãvvvBˆ{÷îå}IFFÆÃ‡ëÕ«7}úô7êÆkÖ¬¹páÂFéó¾^^^¹FvïÞ-÷ÎPµëׯË]‚ÜDbb¢ÜE”#7#íL7w÷Ä„¡¼#åîæ–`ˆm6•á Èîå—_–»¥0óà(]:mkk›k¼R¥JBˆä}ÉÇ…ñññwîÜ™;wnûöí?~¼eË–o¾ùfÔ¨Q;vìЧï+÷¦#7777¹K(ÌßóÔŠ®ÑðŒzPŒ·rÅ~/ª0Ån šqPä•÷ÏzÞ‘J˜ù9Žööö&---×ø£GÄ?}Ç\¬­­¥sæÌéÙ³§½½}µjÕFŒÑ«W¯ëׯïܹSîmP#ž‚ÈÙÔMYÁñË/¿Œ7à ­¬¬ìììòvSRR„ºë¬s²µµµ¶¶¶±±ñóóË9Þ©S'!Ä… äÞIdBj zÊ Ž+V¬xå•Wz÷î½nݺ|O@,—¤¤$))êH'¹¸¸äûggçråÊi4šœƒÒ uff¦Ü; fˆë©&AYÁñý÷ßwuu=wîܬY³|}}‡ ¶gÏžŒŒŒÒ¬³cÇŽYYYGŽÑhµÚ°°0Ÿ|_âçç—’’rñâÅœƒÒ½{êׯ/÷N Ú ´à¼ÿþ~ø¡oß¾•*U:pàÀ‡~øÒK/MŸ>ýôéÓ%[g`` ……Å×_-×(„X±bÅÝ»w{÷î]®\9i$55511QwÙZ¯^½„S¦LÑu=Ïž=ûÝwßÙÙÙuîÜYî 0F xJMPÆ4Z¥þ6ÌÌÌ<|øðöíÛ8ðøñc!DíÚµ{öìùÚk¯¹ººkU«V­š;w®«««¯¯ï•+W"##½½½W­Z¥»MOhhè˜1c<<ùäÛo¿•»^ äT›DÁ1̲‚ãúõë÷ìÙsâĉììl!„££c×®]»uëÖ¼yóœ³ÒmÚ´iÖ¬Ù /¼püøq¹K`¾œC¹˜€,”?ýôS!„½½}—.]ºuëÖ²eË‚Îb´±±±¶¶Và<53¡àÔrQVpìÝ»w÷îÝ[µj¥ÏU/´a꘧FÉÐn eÝÇq×®]¥Æ‘#GvíÚUî(”![„´ ?Ê ŽiiiOŸ>-è©«W¯Þ¸qCî@N´ÈHþ©ê°°°aÆé¾\»víúõëó.–­ÕjkÕª%w½€a0O­\´ òGKKË*UªHïß¿_¾|ùŠ+滤½½ý„ 䮀YSvj¤Ý@^òÇ6mÚDFFJ½¼¼Þ|óÍI“&É]£ì¼fBþà˜ÓÀ›7o.w€Ñ1O­PÊŽŸ´ÈNYÁqܸqr—@­”@ dŽ6lB¼ð º/ ׯ_?yk€²G»€ÈgΜ)„˜1c†¥/ Gp„©cžZ‰h7€dŽ#GŽB4nÜXúòã?–{‡0=fŸúh7P™ƒãˆ#r~9xð`yë Ff<À@”õÉ1€ÙcžZqŸi7P™;އ*îKÚ·o/oÍê$sp|ÿý÷‹û’ØØXyk (¥êÒn€â98öèÑCî=”æ©&Mæà8oÞ<¹÷µ¢ÝÅÄÅ1TIñ©ˆOŽÊóÔÆ`Æñv#â“c¨çM0&>9‡v#eâ“c€²À<µ‚Ðn€’RôÅ1©©©rWÀŒ˜Bj¤Ý@±dî8æ+**ê›o¾‰ŽŽ¾s玅……««kÓ¦M?øàƒÚµkË]1…fEqÇE‹:tèÎ;*T°¶¶¾víÚ/¿üÒ½{÷7Ê]PÌS+…)$MÚ”LYÁñðáÃK—.µ´´ìß¿ÿ¾}ûΜ9sêÔ©C‡ 8P1kÖ¬Ó§OË]#€J)+8nܸQ«Õ~ôÑG“'O®Y³¦F£BT¯^}ܸqãÇÏÌÌ\½zµÜ50M´ Ô”£££+T¨ðÎ;ïä}*((ÈÆÆ&**JîâažÚHŠ—M!5€ò)+8 !ªU«fe•Ï%;ÒU2iiirFA»€ò)+8úøø\»v-%%%ïS©©©‰‰‰ 6”»F¦†v#ˆ²‚c`` V«8qbfffÎñ¬¬¬I“&eeeuìØQîÀðh70 2ßÇ1"""ç—–––[·níܹs`` »»»F£ILLܲe˵k×¼¼¼^~ùey Š…¤=DÚ`82Çwß}7ßñ›7o.Z´(×`lllëÖ­cccå­€É0‘ÔH»€©98öèÑCî=½ÈçÍ›'÷Œ…yj™ÑnCSÖÅ1…?~|‡ä®@¥dî8æuÿþýýû÷_¹r%×xzzúÞ½{---å.€Ìôê$Òn#PVpü믿úöí{ãÆ‚èׯŸÜ5zažZN&’Àä(+8®^½úÆ-Z´ð÷÷ß¹sçï¿ÿþÉ'ŸØØØ\¸paýúõýúõ›-w@˜§6*“Šˆ`ž”7nܨÕj?úè£É“'׬YS£Ñ!ªW¯>nܸñãÇgffò‘ƒþeRY’v#3 ¬à]¡B…wÞy'ïSAAA666|ä €\”…ÕªU³²Êç’é*™´´4¹ òǦÝÀì)ëªj!ÄÅ‹å.€¬LoŽTAYÁqêÔ©666K—.}üø±Üµ@1Ðn ÊšªvvvþòË/?ùä“=zôèÑ£V­ZUªTɵLûöíå.€1Ñn¥RVpôóó“ܽ{wñâÅù.+w™P;Np¨“²‚£ôÉ1ÔëŸv£iµ™§ Ê ŽóæÍ“»äOYÇä’‘‘‘––&wÀ0OmD¦ÕfÔUM»€j(«ã(‰‹‹[²dÉéÓ§oݺ•]­ZµF9²~ýúr— ^Š Ž+W®üòË/³³³…*T°´´¼uëÖ­[·8*ÙûÆÆÆÊ½éÈÍÍÍMÆ—ã?4¡Õ>›˜˜ï^Uò®þ»Ý¨à Bɇ@µ8(òÊûg=o‡H%Ì<8ÚÛÛk4š´´´\ãÒíu¤¾c^sçν~ýúÆõ¹_€J˜ù9ŽVVVvvvy;‹)))BÝuÖ9;vlãÆï¿ÿþsÏ='wù€9RþiŒÎÙTÏ̃£ÂÅÅ%))IJŠ:Ò)J...y—‹‹B,Y²ÄëBˆ_ýÕËËëÕW_•{ƒPÖ¸O™1ÙH jaæSÕBˆŽ;ÆÆÆ9rä•W^‘F´ZmXX˜ƒƒƒOÞåk×®­[RòàÁƒððð5jøøøT«VMî LÙL™ùÇÀÀÀeË–}ýõ×íÚµ“®‰Y±bÅÝ»w T®\9i™ÔÔÔÛ·o—+WîÙgŸmÓ¦M›6mr®!:::<<¼y󿯏Í$“À<55Ç5jŒ;vîܹ=zôðõõ½råJdddÆ s~VaXXؘ1c<<󿪀üL9Òn‚#P Np '‚##£Ýæ‚à½ü1Omúµ•Ù”¤Ý¹ ‚#£Qf#QÏÚi7@Gè…àäƒ €v#˜‚#™™rÂu!80Sƒ´  Gè…àäÆ Ž¥E»ÌÁz!80¨b¶Õ¤Ý…#8ÿÁ<5!80Eõ‹[;íF( Áz!80Sn7ôApþÅ ŽeL9Q“yjÐÁ€!('Œ†à@íh7€žŽJv#¨Áø'8ªíFÐÁ@éÐnÕ 8‡»»›ì“v# Á‚yê£ÝjBp R´ ¸ŽJʔۤF(‚#ôBp8Á±DJ×nÔhDBB¢lµÓn€!8@/GÅÇÙ JGè…àµãÇb£ÝjEpPÖL9y€ª‡)‡>ÚPJGè…àUãÇâ¡ÝêFp€^Žôc v£,]KÚ`G¨óÔ Á€8»@p€žŽŠB» „ 8Bµ8ÁQ¦AG…3å¬G» ‹à½Œv# ‚#Ôˆ(‚#€ºÝX–íKÚ` Gæ†ÔFBpS>»`$G¨'8š7Ú`<GyÐnä‡à ,”M¥ÝFEpð_´ 8B]8ÁÑŒÑnc#8Èv# `Gæ€v#”‚#€­Ýhì>&©ʆ•Üe‡Óâåå%w P…ØØX¹K0GB>»‘v£yã/:Ê€——ßizbªz!80.£¶2i7@Y"8B-8Á±0&;O (KG¦Šv#”1‚# z¦Ùn$5@Ù#8BÜÝÜ™§ ”Ž€º¹Ýh¤ÕÓnY ‚# bœÝ(‚#ÌŸFh䮓GpÔÊøíFc¼íF ÜÜÜ宿€àÀd¡rôóósvv~æ™gÚ´ióóÏ?Ë]Ñß²³³¿þúëçž{®R¥Jõë×ÿâ‹/ž>}*wQÿzúôé‹/¾ØªU+¹ 1G@•LóìF@ÍBCC;tèpõêÕ   ¡C‡Þ¹s' `åÊ•r×%²³³{ôèñá‡Ö­[wĈU«V?~üСCå®ë_S¦Lùý÷ßå®ÂLXÉ]`\Ò' &ŠD¹ AiÑn„ÊMœ8±Zµj'Ož´³³BLš4ÉÛÛ{ÆŒƒ ’·°µk×îܹsÅŠƒ–FÞxãU«VM˜0ÁÃÃCîÝ&öîÝ;oÞ<++aÐqÔ‡v#`4!!!Mš4±µµuttlÙ²å†  ²Ú'OžDGG¿úê«RjBØÚÚúúú^¿~===]Ï•DFFvíÚÕÑÑÑÛÛ;88XÿîÛo¿­S§ÎÀu#?ýô“V«Õ35ž>}ÚßßßÅÅ¥Zµj=zôˆŠŠ2HU’¿þúëí·ß4hгÏ>kÀÕªÁ€Q6Òn„I˜>}zpp°4W;lذ‡mß¾½ôk¶´´kˆŠŠêܹsùòå‡êììâëë›™™YÊž>~çÎþùç?ü ç.^¼8oÞ¼?þXúrìØ±óçÏ_µjÕ!CJSØŸþ™‘‘¡ÑhÚ´isüøqi°V­Z?üðÃK/½Tøk³²²Fåêêzüøq!D=Úµk·hÑ¢¯¾úª”{L1oÞ¼°°°ÈÈÈŠ+–~maΤ宀ái4²½u!ÿò:v옵µµîtº¤¤$!DZZZÞ%333wîÜYÐz^{íµB øôÓOããã…;w®]»¶že»¸¸Œ=Z÷åôéÓ—-[¶}ûö\Á±¸…=xð@±víÚ^½z­Y³¦fÍšaaaƒ êÝ»wLLŒ rúôéóçÏ/Z´H·XÛ¶m¿ûî»*Uª”~w;vlÊ”)óæÍ{þùçõÜEÐÁ€¢ÑnD¾”Ù7wpp8zôèÞ½{/\¸]Ð\pjjjÏž= ÞºÂ6/...---""bРA/¾øbLLŒ³³s‘µ5jÔ(ç"¶¶¶^^^qqq¥,¬råÊBˆºuëþøãåË—B¼òÊ+óæÍ{ûí··lÙ¢»\&_/^B4nÜ8çà€J¿»RRRúöíÛ¹sç?ü°È=ƒbáG@MÊjžÚçÃÒzò䉿¿¿¯¯ï®]»<<<>ú裘˜ݵ,¹ØÙÙi Vä{U¬X±cÇŽsæÌ¹wïÞ¶mÛJV°•••µµu) sqqB¼ôÒKRj”H“Ô111…‘‘!•Qd©Å­jùòå Ò%çÎ;wîÜܸqcîܹ7n,Ùî‚„Ž#å¢ÝºpáÂQ£Fé ê8wîuçÎ={ö\¿~ýo¼¡”fxõ šB©ý©Kiééé111]ºt)ea¶¶¶îîî7oÞÌ9xçÎ!D‘2{zz !Ο?ïë뫜3gNJJÊìÙ³KS•I,Xsðþýû&Lhß¾}ß¾}õÙcÈŸ†æéé)w ÐjµZ¡ý÷Û;!!Aîr  Þõy«" ¿žd¡¨Óúuúý÷ß !öì٣ټy³âwÞÉ»prrr±þ4ß¹sÇÊʪk×®ÙÙÙºÁ·ÞzKqæÌ™"k«S§ŽbÁ‚º‘ &!¶nÝZÊ´ZíŒ3,,,¤/³²²zõêeaaqúôé«JOO¯U«Výúõ»ÂØï©ÿ;þç ¸ã…0*uþ°…ÿ zùå—å.P)Ì<8JŸqdkk›k¼R¥JBˆ¹†¬¬¬ 6|ñÅYYY_~ù¥“““>ï«Î»É+G¾Ÿ{¡œÃ(#ÐjË~›‹µŸ¥…ÿn7ªí)˜ê~X€¢¾íóþYÏÛ!R 3Žööö&---×ø£GÄ?}ÇBüþûï3f̸téRõêÕgϞݺuk¹7E`žÚä0I &Ä̃£•••]ÞÎbJJŠBwu^óæÍ[·nµµõÈ‘#XÐM%’㲓ºPf…...ñññ)))UªTÑ J§2¸¸¸äû’ììì>úèÿþïÿ:uê4mÚ´Bò%€Ò Ý¦ÅüoÇÓ±cǬ¬¬#GŽèF´ZmXX˜ƒƒƒO¾/Y·nÝÿýßÿ½õÖ[ß|ó ©¦ÇDZînn&P% óŽ_ýµt^£bÅŠwïÞíÝ»w¹r夑ÔÔÔÄÄDéZB­V»~ýúÊ•+?^îÚQ<œàùrss ”» ˜󟪮Q£ÆØ±cçÎÛ£G__ß+W®DFF6lØpðàÁºeÂÂÂÆŒãáá±cÇŽ;wî\½zÕÆÆ¦_¿~y×Ö«W¯   ¹· (˜LíÆâ¾­Fˆ„ÄD®¤J¦mÛ¶;vœ6mšÜ…!ÄÓ§Omll²²²r:99ݹsGÞ¢¢¢>ûì³°°°GÕ¯_¿_¿~#GŽÌ{Ÿf‹*v߀ªV­ºmÛ¶ÐÐÐêÕ«=Zº#O^Rß1==ýܹsyŸåÂj ô¤S¹m#P2§Núí·ß:vì(w!KLLÌÊÊjݺµ»»»n° ?²e&!!¡}ûöYYY½zõªU«Ö¾}û‚ƒƒ>üóÏ?˼¿Lœ*‚£Âßßßßß¿ g»wïÞ½{wéqÓ¦M¹ £)bžZ“9»@ dff8pàèÑ£K–,ÉÎΖ»œÅÇÇ !fΜ©œ,+„~ðàAddd‹-¤ò¸jÕª={ötíÚUîêL˜ùŸã@Q¸’æ-$$¤I“&¶¶¶ŽŽŽ-[¶Ü°aƒ¡Öœ””Ôµk×3f”x 822²k×®ŽŽŽÞÞÞÁÁÁÒgd”žëÕ«W²—Ÿ>}ÚßßßÅÅ¥Zµj=zôˆŠŠ2HUhÛ¶­”%#FŒBDDDdýªEpPZú7:I0oÓ§O®Zµêøñ㇠öðáà  íÛ·då...Z­V«Õ^¸p¡/ŠŠêܹsùòå‡êììâëë›™™YúÂâãã+T¨P¹råÍ›7/_¾<<<<##CÏ×îÛ·¯U«VÑÑÑýû÷ Šˆˆðõõ½téR)KÊÌÌüàƒ¤¤¨såÊ!D… J¿Éj¦–©jÀü1O Èmݺužžž{öì‘®À7nœ““ÓîÝ» 9WªÌ\¼xqÞ¼yü±ô娱cçÏŸ¿jÕª!C†”rÍñññõêÕ»ÿ¾4Ò AƒuëÖ5kÖ¬ðfee5ÊÕÕõøñãBˆ=z´k×nÑ¢E_}õUiJ²²²úüóÏsŽÜ»wïóÏ?·´´ìÓ§1w³ù#8Âp‚£I ÝCÑŒï^Èo›cÇŽY[[ë®ÛMJJBäýØ[!DffæÎ; ZÏk¯½fð²]\\F­ûrúôéË–-Û¾}{®àX‚Ââãã³³³g̘ѧOŸråÊýúë¯cÆŒéÙ³ç¹sç ÿhßÓ§OŸ?~Ñ¢ERjB´mÛö»ï¾ËùÙ]‡2dH||üÒ¥K=<< ¾oU…à˜Å·I0 ÅþCÑÁÁáèÑ£{÷î½páB\\\tttAsÁ©©©={ö,pðãܨQ£œw¢±µµõòòŠ‹‹+}a‡²¶¶vtt”¾0`ÀãÇ?øàƒ-[¶ 8°’.^¼(„hܸqÎÁpw]½zuĈÛ·o÷ððØ·o_‡ ¾cÕ†s”Šâ#+PFžú(&&¦ –›¶`eS°•••µµué «Q£†.5Jºté"„ˆŽŽ.¼éTH}n¬X²ÝµqãÆF8qbùòåçÏŸ'5G˜<æ©•ŸÝh7B ÂÃÃCCC.\8jÔ(Ý`ADzŸª–ÚŸº”–žž#%¼ÒvåÊ•;vtèСAƒºÁ””!DíÚµ /ÉÓÓSqþüy___Ýàœ9sRRRfÏž]Êݵ}ûö·ß~ûõ×__¶lYÞ¹o”Á€q‘¡ÒçGäÌO[¶lIMMÍ·%VöSÕ·nÝZ¼xñ˜1c¤/gΜ™’’Ò·oßRfccóñÇ·hÑbÿþýÒùfggÏ›7ÏÊʪsçÎ…—äããS«V­… öíÛWÊv 3fÌÈûéˆÅ­J«ÕŽ7®fÍšëÖ­³´´4øÎT3‚#`âßnTÂÏÏÏÖÖvðàÁýúõsuuˆˆ8pà@ÕªUÃÃÃwíÚÕ­[·œ Ks¯|÷7>ü½÷Þ[°`A¾ T¬X1888<<¼aÆGݿ׮]r-VÜœg̘1~üxnݺÙÛÛïÙ³çÔ©S³gÏööö.¼0kkë… ¾þúëÍš5ëÓ§F£Y½zµ••Õ'Ÿ|Rʪbbb.\¸Ð AƒAƒåz* @ ¹›.‚#LóÔò*2µÒn„zÔªU+44tâĉ‹/vqqñóó‹ŠŠúå—_&Nœ¸hÑ¢\ÁÑà222’““ ¹§÷ˆ#ÜÜÜÖ®]»wïÞ:uêL:5o>+™qãÆÕ­[÷‹/¾X¿~½µµu“&MvíÚõòË/ëSX¯^½Â¦OŸ¾råJKKË–-[Ξ=»Ä÷בîI“ë©zõêKCSf'᪇——ZXfô މ‰‰nnnrkŒí—¹ÝXøûžÍö ˜8E~ËÊ•+Ï;·páB¹ 1™ÂtJð¦ÚoN®ª`ô²ôøñãƒ6mÚTîBL¦0” Á&ŒyjyÉÝî𯈈ˆ ¼õÖ[rb2…¡d8Ç0Y n´2æççççç'w¦TJ†Ž##5€¹"8ÂT©}žZ©íFR#˜1‚#€’PjpÁ0AJMm´À¼a’Ô>O­H¤F0{GÀÔ( Ý˜·R#¨Áz!8Âô0O­4´@%Ž€IQÀpà€¼U…††vèÐáêÕ«AAAC‡½sçN@@ÀÊ•+åÞ[&O£U@ÃÌxyyÅÆÆÊ]…y*qpLLLtss“»üÒl¹"ÚR!Â@áÝ䊙RÔqá×iN={öܾ}{ddd‹-¤‘®Zµj÷îÝ]»v-üµnnnÍ›7ß¼y³Á«Òjµ^^^<ˆŠŠrqqB$''7kÖÌÞÞþ?þqw=÷Üs·oß¾pá‚"55ÕÛÛ;;;ûÚµky.Áwšj¿9é8Зbâ+ \!!!Mš4±µµuttlÙ²å†  µæ´mÛV—…#FŒBDDD蹆ÈÈÈ®]»:::z{{§§§—¾ªÄÄĸ¸¸J©Qaoo?f̘“'OFEE鳆ӧOûûû»¸¸T«V­Gz¾ªpOž<‰ŽŽ~õÕW¥Ô(„°µµõõõ½~ýºA¶ZÍŽ0ê§VR^c’(ÄôéÓƒƒƒ«V­:~üøaÆ=|ø0((hûöí¥_sffæ| %E+W®!*T¨ Ï¢¢¢:wî\¾|ù¡C‡:;;‡„„øúú–þI©çììœs°FBˆ³gÏùò}ûöµjÕ*::ºÿþAAA¾¾¾—.]*eU–––gΜ™5kVÎxöìÙ&M𨨨”råj§…¡yzzÊ]‚yÚ’»&$$È]~i¶\)?§†­Ã´ŠùRÔq1¹_§îîîžžžOŸ>•¾LNN¶²²>|¸1Þ+))é…^°´´¼xñb‘ שSG1oÞ<ÝÈÇ,„X¾|y)˸uë–"000ç ps¾]¾233½½½ëÖ­{ïÞ=i$,,L1räHî¨5kÖL:µiÓ¦U«VÝ»wo¾Ë”à;Íä¾9 ÅJîà  PŠi7jýF(‰F#Û[ü#yìØ1kkk+«¿ÿ¶&%% !ÒÒÒò.™™™¹sç΂ÖóÚk¯^¡C‡† ¿téR}ªvqq=z´îËéÓ§/[¶lûöíC† )Ma...½{÷Þ²eËܹs  Õj׬Y³téR!DJJJá%>}úüùó‹-rppFÚ¶mûÝwßU©RÅ€»ëÓO?BtîܹvíÚúì+‚àÓ ÞyjeR£2, „Êüvtpp8zôèÞ½{/\¸]Ð\pjjjÏž= Þ¸·îêÕ«#FŒØ¾}»‡‡Ç¾}û:tè gm5Ò%Z!„­­­——W\\\é [ºtirrò„ &L˜ í„©S§NŸ>ÝÞÞ¾ð’.^¼(„hܸqÎÁpw !âââÒÒÒ""" ôâ‹/ÆÄÄäšXG±pŽ# `Êh7ÒgôñäÉ__ß]»vyxx|ôÑG111º‹3r±³³+d6° ·Ø¸qc£FNœ8±|ùòóçÏëŸóeeeemm]ú¤)à£G.]ºôÿû_lll£F„µjÕ*¼€ŒŒ ©Œ"K-ÙîÒ©X±bÇŽçÌ™sïÞ½mÛ¶•f§Ž#ºpáÂQ£Fé ê8–`îuûöío¿ýö믿¾lÙ²¼“¹E’ÚŸº”–žžÓ¥K—ÒvæÌ™*Uª´jÕªU«VÒÈþýû5MëÖ­ /ÉÓÓSqþüy___Ýàœ9sRRRfÏž]šªvîÜÙ³gÏõë׿ñƺAiB\Ÿ ‰Ba˜§–‘ÔnTFëP´ëׯ !4h Ù²eKjjj¾I¥¸s¯Z­vܸq5kÖ\·n¥¥e Ê»uëÖâŋnj#}9sæÌ”””¾}û–²0!Äûï¿+]L³~ýúW^yEú²>>>µjÕZ¸paß¾}¥(œ0cÆŒ¼w5/nU-[¶B¬^½úõ×_×üs:ìš5k„ºt‹’!8J¥€°Æ$5 ????[[ÛÁƒ÷ë×ÏÕÕ5""âÀU«V ßµkW·nÝr.,ͽê¿ò˜˜˜ .4hÐ`РA¹ž ð÷÷߸qãðáÃß{ï½ 仆Š+‡‡‡7lØðèÑ£û÷ïïÚµk@@@®ÅŠ[˜bæÌ™ÝºukÙ²e¯^½ž>}ºiÓ&›¯¾úJz¶Â¬­­.\øúë¯7kÖ¬OŸ>fõêÕVVVŸ|òI)«rrrš}õêÕŽŽŽsæÌyæ™g¤g /¬W¯^aaaÓ§O_¹r¥¥¥eË–-gÏž]¯^½ÒW5mÚ4ww÷o¾ùféÒ¥ 4øñÇsÎ\£døÈAÃSíljA‚£¢>EM¿Í–¹Ý˜35©Ó;(ê ¨ã¯ÓbY¹rå¹sç.\(w!&S˜9¨?®ª”GI©€IxüøñÁƒ›6m*w!&SJ†àEcžºì‘SÑ Aƒ·ÞzKîBL¦0” ç8 #k»1oj”»û @/~~~~~~rWaJ…¡dè8B¹h7 (G@IÖn '‚#! HÌSr"8B¡Ô8O-_L£×ÐÁP;R#@OG(íÆ²{Û‚S#óÔ€\Ž€zÑk ÁP9š{…§FÚ€¼ŽP5ÎS—9z€ 8r+óæ©P2G(‹êÚŠLÌSòEpT„^# NnnnrWs@p„‚Ðn4õÆoT«V­R¥JÍ›7 ÉÌÌ”»(!„ˆ‰‰ ¨Y³¦««k``àÑ£Gå®H<}úÔÊÊJó_U«V•».“g%wÊ‚þ©‘yj@™Ú·oŸ••Õ«W¯ZµjíÛ·/88øðáÃ?ÿü³¼…9r¤sçÎööö}ûöµ´´üé§Ÿ:wî¼}ûö:ÈXUbbbVVVëÖ­ÝÝÝuƒ•*U’w_™‚#”‚v£ߊ^#`ú‚ƒƒ=88¸jÕªãÇ6lØÃ‡ƒ‚‚¶oß^ú5gff~ðÁRRÔ¹r劢B… ú¬!**ªsçÎåË—:t¨³³sHHˆ¯¯oéO‘¼víšÂÙÙ9ç`5„gÏž-òåûöíkÕªUtttÿþýƒ‚‚"""|}}/]ºTú=_¡B…Ê•+oÞ¼yùòåááá¥_-„†æéé)w ¦Ghû­˜ ÷&æÜÚ²ø¹ÚbïÓ2þ} ¬ƒ‚(긘ܯSwwwOOϧOŸJ_&''[YY >Üï•””ô /XZZ^¼x±È…ëÔ©#„˜7ožnäã?B,_¾¼”eܺuK˜sP ¸9ß._™™™ÞÞÞuëÖ½wïž4&„9rdé÷O·nÝlllt§Aƒ'NœÈwá|§™Ü7§¡pŽ#P¶Êd2˜F#ÌžF¾·.ä‡ëرcÖÖÖVVÿmMJJB¤¥¥å]233sçέçµ×^+¼†C‡ 2$>>~éÒ¥ú”íââ2zôhÝ—Ó§O_¶lÙöíÛ‡ RšÂ\\\z÷î½eË–¹sç0@«Õ®Y³féÒ¥Bˆ”””ÂK:}úôùóç-Z¤‹wmÛ¶ýî»ïªT©RúÝŸ=cÆŒ>}ú”+Wî×_3fLÏž=Ï;ggg§ÏC¾ŽŸê.‹12R#Ô@™ßäGÝ»wï… ââ⢣£ š NMMíÙ³g[Wð?/¯^½:bĈíÛ·{xxìÛ·Oÿ+—5j¤K´B[[[//¯¸¸¸Ò¶téÒäää &L˜0AÚ S§N>}º½½}á%]¼xQѸq㜃 0Èî:tèµµµ£££nµ?þàƒ¶lÙ2pà@=wò"8eÈøíÆ§F.‹JéÉ“'¡¡¡-Z´èÒ¥K=ZµjÕ´iÓ|¶³³ÓÿGnãÆï¿ÿ~¥J•–/_>`À€œA°¬¬¬¬­­K_XÕªU÷îÝ)]XݦM›Ã‡ !jÕªUø ¥“õÙŠT%g™S—.]„ÑÑÑ¥Ùi 8Bf*j7*85(½ðððÐÐÐ… Ž5J7XPDZs¯Û·oûí·_ýõeË–åÌ-’ÔþÔ¥´ôôô˜˜)K•²°3gÎT©R¥U«V­Zµ’Föï߯ÑhZ·n]xIžžžBˆóçÏûúúêçÌ™“’’2{öìÒTuåÊ•;vtèСAƒºAiê¼víÚÅÝuø¹O²4Cª=a¶dŒ}YŒDçûùÇ­4k—å7" òPÔq1­_§ßÿ½bÏž=º‘Í›7 !Þyç¼ '''ëOsvvvýúõëÔ©“™™Y‚Ú¤‹c,X ‘¦•·nÝZÊ´ZmË–-+UªtãÆ éËóçÏW®\ùÕW_-²ªôôôZµjÕ¯_ÿÁƒÒÈ¥K—¬­­ß~ûíRVõ×_Y[[ûúúfddH#YYYo¾ù¦••UtttÞå¹8Ft!'Ú†Y·‚^# 7???[[ÛÁƒ÷ë×ÏÕÕ5""âÀU«V ßµkW·nÝr.\ܹט˜˜ .4hÐ`РA¹ž ð÷÷߸qãðáÃß{ï½ 仆Š+‡‡‡7lØðèÑ£û÷ïïÚµk@@@®ÅJ0)Ý´i“ÍW_}%=[HaÖÖÖ .|ýõ×›5kÖ§OF³zõj++«O>ù¤”U9;;Ϙ1cüøñݺu³··ß³gÏ©S§fÏžííí]üc‹!R£aÖ]êÈÈÙ€AÔªU+44tâĉ‹/vqqñóó‹ŠŠúå—_&Nœ¸hÑ¢\Á±¸¤ÛYÇÄÄÄÄÄäzª^½zþþþÉÉÉ…ÜÓ{Ĉnnnk׮ݻwo:u¦Nš7Ÿ•L—.]vïÞ=}úôÕ«W;::Ì™3ç™gž‘ž-¼°^½z………MŸ>}åÊ•–––-[¶œ={¶AîÚ=nܸºuë~ñÅëׯ·¶¶nҤɮ]»^~ùeƒl²šiŠû ÉËË+66Vî*L@YÇÄÄD777ù6ÕXÑÌ '5Êe>((€¢Ž ¿N‹eåÊ•çÎ[¸p¡Ü…˜La:%øNSí7'ŸyÐn4ÀŠM950¬Ç!„AS#íF@qQ¦H%\F€0U š)¤FÚ€ ãˆ²£Šv£AWO…à(”ñ¦§i7J†àˆ2B»±«BÐh(ÁeÔ¨ï:„FŽŒ´%Fp Á@©‘Däâåå%w þEp„Ñ™»±Ô©±Ìæ¦i7Â´ÄÆÆÊ]‚"$&&º¹¹É] ÁÆFj,âÕBˆ²j4’¥Dp„‘‹x5sÓ“Bp„± {©¢lS#íF@é)i“åV;¤F€AaæÜnÔh„%brÝ‘Ô0‚# ÏÌS£éDF ‹à#5æØ“qwÐnÁ†Djüg?¡€#©`XGŒÙ¦F½OjTB‹1gÕ¤F€aYÈ]€rmÞ¼900ÐÇÇ祗^š4iÒýû÷å®H¹4B£ðÔøòË/—hÃ4ç¯B#˜æŸÿ´ÿü';“H%<(02Ž‹qP Çü…„„L™2åÒ¥K-Z´¨T©ÒÖ­[‡ ’žž.w]J$EF%§Æ’nX‘Qy1gáÁ1±±±+V¬pqqÙ½{÷Š+öìÙÓ¿ÿ¨¨¨ùóçË]šâ(¼ÑXÒ­Ò¾›‹*€Ò"8æcÓ¦MÙÙÙ£Gvvv–F&L˜`gg·k×®ììl¹«S åOO“4ÍMk”uå5©@©óqüøq ‹öíÛëF,--Û¶m›””tòäI¹«“Ÿ.2šIjÌ•µZñߤ˜3,*sƒi4ÊÁ17­Vïèèèèè˜sÜÓÓSqíÚ5¹ ”‡æßxe‘ñŸ­Ñ¡Ñjÿþ¯€¤¨ØM-¸C €Qp;žÜÒÒÒ²²²ìíísÛÙÙ !îÝ»Wä.ÆÆjŠ\ÈôüLLrër]Î*`cLb==½¤^^r—RR^¦[ºYã¸( ApÌMºtÚÖÖ6×x¥J•„<(r ´~L‰i­X¹ ¨ SÕ¹ÙÛÛk4š´´´\ã=ÿôTˆà˜›•••]ÞÎbJJŠBw5€Úóáââ’””$%EÄÄDé)¹«Á1;vÌÊÊ:räˆnD«Õ†……988øøøÈ]€<Žù ´°°øú믥ó…+V¬¸{÷nï޽˕+'wuòÐh¹ÿ[~V­Z5wî\WWW__ß+W®DFFz{{¯Zµ*ïmzT‚àX íÛ·oÛ¶-**ªzõê/¼ðÂèÑ£¥;ò¨ÁzáGè…འ‚#ôBp€^ŽÐ Áz!8ÌæÍ›}||^zé¥I“&Ý¿_îŠÔ.==ýûï¿õÕWŸþy__ßþöÛor…ݼy³Y³fcÇŽ•»!ÄÙ³gGŒáçç×¢E‹   ßÿ]îŠÔ.##ãÛo¿ ðññéСèQ£âââä.J¥¼¼¼Îœ9“ï³jûëOp4Œ)S¦\ºt©E‹•*UÚºuë!CÒÓÓå®K½233ß}÷ÝÏ?ÿüöíÛ­ZµªW¯Þï¿ÿ>`À€o¾ùFîÒ „Z­vüøñºƒ‡¼8зoß8;;ûøøœ:uªÿþ».õÊÊÊzçwæÏŸÿþ}___WW×={ö¼öÚkÇ—»45Z·n]AO©ñ¯¿¥váÂ…úõëûúúþõ×_ÒȬY³<==gΜ)wiêµaÃOOϾ}û¦¥¥I#/^|á…4hpþüy¹«ƒvÕªUžžžžžžü±Üµ¨]rrróæÍŸ{î¹'NH#gΜiÔ¨QëÖ­³²²ä®N¥¤ß`£Fzúô©4rôèÑ téÒEîÒTäÁƒÇÿä“O¤_V§OŸÎµ€:ÿúÓq4€M›6egg=ÚÙÙY™0a‚Ý®]»²³³å®N¥vïÞ-„˜÷ÜsrW§RÕ«WBä̈Z­699ÙÂÂB%alŸ}öÙ’%K–,YÒºuë|Pç_¾ÿJK«ÕÆÇÇ;:::::æ÷ôôB\»v­yóærרFË—/Ïûë5::ZQ³fM¹«SµÅ‹ÇÄĬZµªJ•*r×!„8wƒCµjÕNœ8qêÔ©äääúõëwêÔI×­GÙ{õÕW×®]ûÙgŸU¬Xñù矿ÿþ’%K®_¿þÆoðƒSfÚ´i#=8xð`ÞgUûןàXZiiiYYYööö¹ÆíììÄÿ½ˆ²äíík$22rÅŠ*TÈÕYAY:}úô·ß~Ôºuk)ÇC^>¬W¯ÞôéÓ7nܨ¯Y³æÂ… 5j$w*åååµnݺwß}÷ÝwßÕ Mš4IîÒð7Õþõgªº´¤‹§lmmsWªTIñàÁ¹ „ÈÊÊZ»ví AƒÒÒÒæÌ™ãää$wE*•žž>nܸš5k~ôÑGrׂ¿=|øP:wîÜßÿ=,,läÈ‘7nÜ5j”™_ª`)))sæÌIMMmذá›o¾Ù¹sg›mÛ¶q©»r¨ö¯?ÇÒ²··×h4iii¹Æ¥ûŒHÿò€Œ~ÿý÷3f\ºt©zõê³gÏ.èT”¹sç^¿~}ãÆÌ*‡µµµô`Μ9:t1âæÍ›[·nݹsgŸ>}ä®QÆ÷ÇL˜0á½÷Þ“FnÞ¼ùæ›oŽ3æ×_uww—»@¨÷¯?ÇÒ²²²²³³Ëûo‹””!„îJ+”½ŒŒŒÏ>ûìwÞ¹yóæÈ‘#wíÚEj”ѱcÇ6nÜøþûïs½…¢ØÚÚZ[[ÛØØøùùåïÔ©“âÂ… r¨F·oß>xð`½zõt©QQ£FáÇ?}úô矖»@¡â¿þt ÀÅÅ%>>>%%%ç9ˉ‰‰ÒSrW§RÙÙÙ}ôÑÿýßÿuêÔiÚ´ifü3l*¤½.QÌ9þ믿þúë¯;vì»F•rvvNNNÖh49¥®pff¦ÜÕ©QRR’¢N:¹Æ¥Fã;wä.Sç_‚£tìØ166öÈ‘#¯¼òŠ4¢ÕjÃÂÂ|||ä®N¥Ö­[÷ÿ÷o½õÖ´iÓä®BQ»vm݈äÁƒááá5jÔðññ©V­šÜª—ŸŸßš5k.^¼(] *‘n&½6eQ§NKK˸¸8­V›3ÐÇÆÆ !êÕ«'wø›:ÿú3Um_ýµîóÓV¬Xq÷îÝÞ½{—+WNîêÔH«Õ®_¿¾råÊãÇ—»ü­M›6 þ+88XѼyó Œ7NîÕ«W¯^Bˆ)S¦è®={öìwß}ggg×¹sg¹«S#›¶mÛ^¹r嫯¾ÒÝG:..nÉ’%åË—ÏuRd¤Î¿þt  FcÇŽ;wn=|}}¯\¹Ù°aÃÁƒË]šJݹsçêÕ«666ýúõËûl¯^½‚‚‚ä®PŠ /X°àå—_nÞ¼yZZÚñãÇ5ÍgŸ}öÌ3ÏÈ]JÍš5«OŸ>K–, õööNJJúã?²³³§L™R·n]¹«ÃßÔùןàh ¨Zµê¶mÛBCC«W¯4zôhéš|”½ëׯ !ÒÓÓÏ;—÷Y.‘ryÿý÷œœÖ®]{ôèQ‡Ž;Ž9Rú¤%ÈÂÉÉ)44tÙ²eááá‡rpph׮ݰaÃ7n,wiøþõ×hµZ¹k€ àGè…འ‚#ôBp€^ŽÐ Áz!8@/Gè…འ‚#u;v¬——סC‡ä.D|ýõ×^^^6l»ÐÁz±’»P)???''§fÍšÉ]è‹àòhذaÆ å®Š©jPœ¬¬¬§OŸÊ]äFp`¦L™âåå5oÞ¼\ãgÏžõòòjݺuff¦âîÝ» ,èÞ½{Ó¦M›6múÊ+¯Ì™3篿þ*hµÒµ2¹Æ½½½_|ñÅœ#¿ýöÛ‡~Ø©S§-Zôïßÿ믿Εínܸ1mÚ´îÝ»?ÿüóíÛ·2dÈñãÇ Ù¢o¿ý6çÅ1R%ׯ__±bE«V­5jÔ¼yó7ß|sß¾}­áÔ©SÞÞÞmÛ¶}øð¡nðÑ£GíÛ·÷ööŽŠŠ’û 07G¦Áßß_±gÏž\ã;vìBôìÙÓÊÊêîÝ»ýúõ[¾|ùÍ›7kÕªõì³Ï^»vmõêÕ}ûö½ÿ~iÞ}þüùܳgOff¦³³ó‰'/^”””$-çïïÿã?&%%Õ­[W«Õ†……½ýöÛ(Ö-_¾üË/¿,W®\«V­ìììN:õÁìÚµ+ß…}||ø×_}þùçºÁ/¾øâÏ?ÿ>|x“&MÊú 0wG¦¡E‹ÎÎÎ×®];þ¼n0;;[ UBˆ­[·^¾|¹C‡¿ýöÛ¶mÛ~ýõ×ððð-Zܸqcÿþý%~ëƒ~ûí·5kÖܼyó¡C‡vîÜyøðávíÚ>}zéÒ¥Ò2óçÏOMM6lØÑ£G·nÝ6yòd­V»hÑ¢b½×¦M›† räÈ‘ï¿ÿ~ïÞ½ï¾û®bíÚµ-ÿá‡zxxlݺõÈ‘#BˆˆˆˆŸ~ú©qãÆÃ† “ïX0[G¦ÁÂÂâ•W^ÿm:ž8q⯿þòññ©W¯ž"33ÓÏÏïã?¶µµ•¨R¥ŠÔª¼råJ‰ßzîܹBˆ… êzxNNN .tqqÙ²eKrr²âÂ… BˆÀÀ@KKKi™¾}û>¼S§NÅz¯&Mš|ôÑGÒ&>\qùòå‚–/W®Ü_|aee5eʔ۷oOž<ÙÆÆfþüùº2À€ŽL†sÎÛJóÔ½{÷–¾üàƒ–-[V·n]ÝwîÜÙ¹sgiÞôþýû‰‰‰îîî¹®€®X±bëÖ­ÓÓÓÏ;'„’ë„ Ž;&mY®\¹Q£F9²Xo×­[·œ_ÚÙÙYZZjµÚB^âííýÁܺuëµ×^»qãÆøñãëÔ©c¬c@ݸ“ѰaÃ:uê\¾|966ÖËË+33s÷îÝ666Ý»w×-sãÆÃ‡Ÿ8qâÚµkW¯^-å©Bˆ„„éÿ^^^ù.ðçŸ !f̘1zôècÇŽ½ýöÛÖÖÖÞÞÞ-[¶ìÒ¥‹··w±ÞîÙgŸ-A‘ï¿ÿþ¾}û¢££_xá…¾}ût¯À¿ŽL‰¿¿ÿâÅ‹wïÞíååuäÈ‘è&¦7nÜ8kÖ¬ÌÌÌZµj5oÞ¼S§N5JLLœ9sf±Þ%++K×äËÈÈB¸ºº4é\£F !ijÏ>»yóæS§N>|ø÷ß?wîÜÉ“'—.]Ú§OŸY³fi4=ߺ|ùò%Ø-=ºsçŽ"!!!99ÙÞÞÞø‡€˜]p5j”4­›§~ôèѧŸ~Z¾|ùåË—·iÓF÷’[·n÷]nÞ¼™-=vwwBT¬XqÒ¤I…¿J£ÑH÷Bddd9rdâĉ[¶léСCÇŽº[¦M›vûöí¦M›ž}úèÆ]\\„.\¸{÷®4’••õã?®_¿^‘žžžïÚjÕª%„X·n]ZZš4©»ÉŽ$888;;;888&&FyôèÑĉÏ;×°aC''§êÕ«?|øðÌ™3+W®Ôµ*/_¾|øða!„Qï§xëÖ­™3gV®\ùÓO?-W®ÜçŸnii9cÆŒÒŸÜ y1U ÀÄtïÞ}îܹ±±±–––={öÔ»»»wìØqÿþý;wnÖ¬™V«½ÿ~¿~ýÖ®]û¿ÿýïáÇÒurêÙ³çš5kNž<Ù±cGooïÛ·oÇÇÇÛÙÙU«VíÉ“'Ò2½zõ:vìØÏ?ÿܳgOWWW‡„„„´´´:uêHwÞ¶°°˜4iÒ„ æÍ›÷Ýwß=ûì³iii—.]Òjµ}ûöõññ1Ò®Ðjµ&LHII™={¶”›7nüî»ï~÷Ýw3fÌX¸p¡ÜÇ €¹¡ãÀÄ8;;¿ð B___ggçœO}ùå—~øa5¤û;¶mÛvÛ¶m“'OîׯŸ¥¥e¾X³fÍ~ø¡S§Nááá/^tuuýöÛoœœtËh4š9sæ|õÕW:tÈÎξ|ù²››[ppð¶mÛ¤ezõêµfÍšvíÚÙØØ\¸p!--í¥—^Z²dÉ´iÓŒ·+Ö­[ѦM݉žBˆ?ü°víÚ»víÚ½{·¬ €Ò~{0PÔÔÔ¤¤¤š5kê4¨ Ázaªz!8@/Gè…འ‚#ôBp€^ŽÐ Ázù™=3amIEND®B`‚statistics-release-1.6.3/docs/assets/triinv_101.png000066400000000000000000000646341456127120000222000ustar00rootroot00000000000000‰PNG  IHDRhŽ\­AicIDATxÚíÝy\TõþÇñï)ˆŠ‚»‚î…û$š[†û’iî™™¦’©•–Zšf‰æÍ¥L¯ÛµR«Ÿ(j*fš Šˆ ¸ -Š &(óûãØDÃ63sΙy=< ß9sæsÎ|÷ùžsF£ÕjP;¹ €:`‚# Bp€AŽ0Á!80]»vi sçÎ’WµnÝ:iɶmÛʽYF˜7ožTö€,ðv>>{÷î-u yyyiiiÇŽ{ÿý÷ýüübbbäÞ&*à w¬D¥J•4h û6;;û?þתU«B… º§ììJù_Ö*UªH«ªY³¦Ü›¥D ]ºtù믿t#¹¹¹Òãëׯ:4**ê‰'ž(üZOOO'''!Ľ{÷tÆôôô!C†$%%U¬X±„—èquu•{O°8-˜Á¡C‡tgÎ;'w9–0wî\i{û÷ïoÖ7zî¹çtûvìØ±§OŸÎÍͽqãÆúõë«T©"ûùùé–?wîœnùC‡鯝^½:vìXÝS¡¡¡¥¾€cª€< ž˜››ûÎ;ïÔ©SçwÞŜ㘟Ÿÿå—_Õ¯_ßÑѱ~ýú]ºtÙ´iÓÇ‹\gzzú믿޶mÛ*Uª<ùä“‹/.¸¤$))iÀ€?þxƒ ÆwãÆ7ß|SZüyó ¯³àk‡nÈ©~Æ–­·+ ;tèО={¤ÇsæÌÙ°aÃO|xÓ¦MgÏžmݺµ4øë¯¿~ɪU«._¾sêÔ)GGGiðøñãÒƒ5kÖHm9—˜˜˜ŸþùÚµk&L0í¦[v©»âáǺK޼½½MR¤F£©Q£†ôø÷ß/¼À3ÏeÊéqãÆ<(„¸råŠ4¨›>ž2eŠ¿¿¿ÂÎÎî“O>Ù½{÷ŸþiªM3¶ìRwEff¦îqÉ{Ì(?þøÕ«WõÖ…ÈÌßß¿Ô $ÍŸ¦§§8pàĉ§N:~üøÝ»w‹[¾aÆ¿uss“äççKtŽœ™urrêÙ³ç–-[LµiÆ–]ê®Ð]4-„(|×î2KKK“T­Zµð³EÞŽG·KØ‚#™¹»»—ºLNNΛo¾ùÉ'ŸèîVèäääááQ\wP£Ñ”ðmff¦®Û§ÔêÖ­kÂM3¶ìRwE… ÜÝÝ¥S3/_¾\ä2wîÜ‘ÞÎÑÑÑÙÙÙ:u3Ôžžž…ŸÝ¶m›Ô7Îq 3½TW¤E‹-_¾<77×ÛÛ{õêÕgΜÉÌÌ .Û;V©REwÖ£Âttgš„±e²+:uê$= +|ƒ!!DãÆÝÝÝÝÝÝ×®]kH‘‘‘‘Ò•1BˆvíÚ™póX‚#X½zµôàÓO?}å•WZ¶léààPêÈÅÑh4^^^Òã#GŽèÆsss#"" /,=ÈÈÈ(8nÈ©¦-[òÒK/I®^½ºnÝ:½g÷ìÙ£k>ýôÓ†¬påÊ•ÒggçÎ;—§6Và@éîÞ½«ë êÒÛ¯¿þZ8äNª–/_~áÂ!„V«}ûí·SRRô–ÔM^ÿòË/º3#¿ùæéŽ?.[ñÜsÏ=óÌ3Òã×^{máÂ…¿ýö›"''gË–-£G–žjذ¡tÑO ~ÿý÷‰'îܹSúöÅ_,x%Æ9Ž”®råÊ•+W–>šYúpF³ÿþ"'j ôæ›onذ!''çæÍ›­[·nß¾ý•+Wм‰£îî9ÙÙÙþþþþþþ·nÝJHH¥lÉòåËÛ·oŸ­Õjß}÷Ýwß}×ÝÝ====//OZÀÑÑqçÎööö…_;jÔ¨J•* !îÝ»'%NIõêÕß{ï½rÀêÑq t¦OŸ>Ò㬬¬Ý»wÿßÿý_íÚµƒ‚‚¤Á‚È@õêÕûôÓO{ì1iGŽINN®\¹²n:­ZµzþùçuïþóÏ?'$$x{{ëÚ~–,[Ò¢E ½»öܺuK—4h°k×®'Ÿ|²È×Þ¸q#)))))©à»»¹¹íÞ½Û«”Ø8‚# mÑ¢…ÂÎÎî‰'ž˜1cÆ©S§úõë'=»}ûöR?—¹° &:thàÀµjÕª]»öÀþùç"¯Ù¼yó¢E‹Z´háìììïïÿÚk¯ÅÄijÌQ¶¤sçΉ‰‰¡¡¡O?ý´‡‡GÅŠýüüúöízáÂ…gŸ}¶Ô5ØÛÛ»¹¹µk×nÞ¼y :t0ÕÁ`Å4%|2,(ÇÇ÷ìÙ#„0`€ùÞeôèÑ›7oB¬Y³fÒ¤Ij),ƒàÀMœ8QúøÁN:}úé§Òà_ýåëë+ÍáFFFr‰1èáⶨV­Z§OŸBœ>}ºnݺC† ÉÈȘ5k–”›5kÖ¦M¹kÅ¡ãÀegg÷èÑ#22²ðS?þø‘#G¤sب|õÕW›6mJNNþí·ßÜÝÝ4hУGéÓ§ù‘Í‚# Âíx`‚# Bp€AŽ0Á!8À G„àƒ`‚# Bp€AŽ0Á±éà˜œœìççwæÌ™"ŸÝ±cÇ!Cüýý;wîüÖ[o¥§§Ë]/€œl:8nÙ²¥¸§BCCçÎ{éÒ¥¶mÛV®\y×®]'NÌÎΖ»dÙ8È]€ 233/^¼öå—_¹@BBÂgŸ}æéé¹sçN!Ä¢E‹6oÞüÑGÍ›7Oîòäa‹Çààà#F—…_ýu~~þôéÓ¥Ô(„˜3gŽ‹‹Ë¾}ûòóóå.@¶Øq\´hу„[·nŠŠ*¼ÀñãÇíììºt颱·· ;yòd›6mäÞØbp|ê©§¤GŽ)ü¬V«MJJrsssss+8îëë+„¸víÁØ&[ Ž%ËÊÊÊËË«V­šÞ¸‹‹‹âöíÛ¥®ÁÏÏOîæ• w 2 8ê“.vvvÖ¯\¹²âÎ;†¬Ä6˜”ÌÏσ¢4eâ¸(El¶Id‹Ç”¬Zµj&++Koü¯¿þ÷lÁQŸƒƒƒ‹‹KáÎbff¦Bw5€­!8ÁÓÓ3--MJŠ:)))ÒSrW ‚cºuë–——÷ÓO?éF´ZíÑ£G]]]ýýýå®@Ç" 2ÄÎÎî?ÿùt^£â³Ï>»uëÖ Aƒ{ì1¹«WU¡V­Zo¼ñÆÒ¥KûöípåÊ•˜˜˜fÍš½ôÒKr—†2Ú¿¿Ü%@E™8. ÄAr‹6nܸêÕ«÷Ýwááá5kÖ9räôéÓ¥;òØ&›Žï¿ÿþûï¿_ܳÁÁÁÁÁÁr× œãƒ`‚# Bp€AŽ0Á±éÛñ(‡ŸŸŸÜ%À&$$$È]@ÅŽJÁ¿è°???~ÒeÆT5 Bp€AŽ0Á!8À G„àƒ`‚# Bp€Aް*^^^C† ‘» ¬ÁJtäÈ‘   Çü©§žúöÛoå®è‘üüüÿüç?O<ñDåÊ•7nüá‡>|øPî¢þñðáÃ:tìØQîBÖ‰àÅ ïÚµëÕ«WGŽ9iÒ¤›7o8pýúõr×%òóóûöíûÚk¯5lØpÊ”)Õ«WŸ={ö¤I“ä®ësçÎýå—_ä®`µä.Ð÷æ›oÖ¨QãäÉ“...Bˆ·Þz«iÓ¦ ,˜0a‚¼…mÞ¼yïÞ½Ÿ}öÙK/½$ 6lÆ sæÌñññ‘{·‰ƒ.[¶ÌÁ_j€¹ÐqD…††¶lÙÒÙÙÙÍÍ­}ûöÛ¶m3ÉjúhÆ 'N,Oa¿ýö[NNŽF£yê©§Ž?. Ö«Wïÿû_çÎK~m^^Þ´iÓj×®}üøqWWW!Dß¾}Ÿ~úé•+W~òÉ'åÜcBˆeË–=z4&&¦R¥Jå_Å!8*šF#ç»kµÅ>uìØ1GGGÝétiiiBˆ¬¬¬ÂKæææîÝ»·¸õôëׯ„Þ{、¤$!D÷îÝëׯo`ÙžžžÓ§O×};þüµk׆……éGc »sçŽbóæÍ Ø´iSݺu=:a„AƒÅÇÇKq°8§OŸ>þüÊ•+u‹~ñÅU«V-ÿî:vìØÜ¹s—-[öä“O¸‹(‚£¢•ÝäåêêuðàÁ .$&&ÆÅÅ7|ïÞ½þýû¿%mabbbVVVttô„ :tèïááQjmÍ›7/xˆ³³³ŸŸ_bbb9 «R¥Š¢aÆ_~ùe… „}úôY¶lÙ‹/¾¸sçNÝå2Eºxñ¢¢E‹ÇWþÝ•™™9|øðîÝ»¿öÚk¥îʉsa´ìÛ·ÏÇÇçõ×_×]Ë¢ÇÅÅE[¼Rß«R¥Jݺu[²dÉíÛ·¿ûìàààèèXÎÂ<==…;w–R£Dš¤Ž/¹€œœ©ŒRK5¶ªuëÖ%''Kw”\ºtéÒ¥Kïܹsýúõ¥K—nß¾½l» €âÐq„Ñ"##ÃÃÃW¬X1mÚ4Ý`qGcç^÷îÝÛ¿ÿ­[·6L7(Íð4…RûS—Ò²³³ããã{ôèQΜ½½½oܸQpðæÍ›BˆR/döõõBœ?> @7¸dÉ’ÌÌÌÅ‹—§*)’._¾¼à`zzúœ9sºté2|øpCö†ÒÂÔ|}}-ðý÷¿ÿB8p@7²cÇ!ÄèÑ£ /œ‘‘aÔßÍ›7zö왟Ÿ¯|á…„gΜ)µ¶ !–/_®™3gŽb×®]å,L«Õ.X°ÀÎÎîèÑ£Ò·yyy °³³;}útÉUegg׫W¯qãÆwîÜ‘F.]ºäèèøâ‹/–¿ªÂ{ C‡Å=«¨Ÿ´ääd¹K@8. ÄAQ Eý9µ$:Ž0ZPP³³óK/½4bĈڵkGGGGDDT¯^=22rß¾}½{÷.¸°4÷jøÊÝÝÝß~ûí ´mÛ¶gÏžæàÁƒÇŽ›>}zË–-…Û·oŸ|øPú6##ÃÁÁaòäɦ})8Ο?ßð—4hÐ@±lÙ2ÝÈÌ™3…ëÖ­+=½{÷vrrruuÕýú4iÒäĉ¥¾077·iÓ¦ 6¼}û¶4rôèQ!ÄÔ©SM»Ç´ZmZZZ»víìíí/^¼XøYEý¤%''Ë]ŠÀqQ ŠÒ…ý9µ$ÎqT4ÐÈøîZ¡-î©cÇŽ9:::8<úùIKKBdee^277wï޽ŭ§_¿~&/ÛÓÓsúôéºoçÏŸ¿víÚ°°°‰'–³°¤¤¤üüü  <ø±ÇÛ½{÷Œ3ú÷ïîÜ9—J:}úôùóçW®\© _|ñEÕªUM»»~øá‡‰'&%%­Y³ÆÇÇÇäû`㎊VBt“—««kTTÔÁƒ/\¸˜˜WÜ\ð½{÷ú÷ï_ìjM¿Í›7×%Z!„³³³ŸŸ_bbbù ûá‡ÝÜܤoÇwÿþýW_}uçÎãÇ/¡¤‹/ !Z´hQppܸq&Ü]W¯^2eJXX˜Ï¡C‡ºvíjò ç8Âh<Ø·oŸÏ믿_\ËÍÅÅ¥„Ž·e vppptt,aµjÕÒ¥FI=„qqq% Y0Χl»kûöíÍ›7?qâĺuëΟ?Oj˜ G-222<<|ÅŠÓ¦MÓ ×q´üTµÔþÔ¥´ìììøøx)á•§°+W®ìÙ³§k×®Mš4Ñ fff !êׯ_rI¾¾¾BˆóçÏè—,Y’™™¹xñârî®°°°_|qèСk×®-<÷ 0-ZÆÏ×WîBäAp„ÑRSS…óÓÎ;ïÝ»WdKÌòSÕ¿ÿþûªU«f̘!}»páÂÌÌÌáÇ—³0''§™3g¶mÛöðáÃ=ö˜"??Ù²eÝ»w/¹$ÿzõê­X±bøðáR¶KNN^°`AáOG4¶*­V;kÖ¬ºuënÙ²ÅÞÞÞä;€‚Ž0ZPP³³óK/½4bĈڵkGGGGDDT¯^=22rß¾}½{÷.¸°4÷jÂwß¾}ûäɓǎ»|ùò"¨T©RHHHddd³fÍ¢¢¢>ܳgÏê-fla ,˜={¶OïÞ½«U«vàÀS§N-^¼¸iÓ¦%æèè¸bÅŠ¡C‡¶nÝzðàÁfãÆï¼óN9«Š¿páB“&M&L˜ ÷ÔÀƒƒƒM¸çhµÂÏOî"äAp„ÑêÕ«þæ›o®ZµÊÓÓ3(((66öÿþïÿÞ|óÍ•+WêG“ËÉÉÉÈÈ(ážÞS¦LñòòÚ¼yóÁƒ4h0oÞ¼Âù¬lfÍšÕ°aÃ?üpëÖ­ŽŽŽ-[¶Ü·o_¯^½ )lÀ€G?þúõëíííÛ·o¿xñâ2ßK\Gº'y|||||¼ÞS5"8€iIóÔÂRçè+Æb(Ø??¿„„s¿Ä–­_¿þܹs+V¬»Õ¦£¨Ÿ´””///¹«€>Ž‹qP”CõçÔ’¸ª*sÿþý#GŽ´jÕJîBTS¦Bp„ÊDGG7iÒä…^»Õ€©pŽ#T&(((((Hî*ÔTÀ$8ÁQÐq€Ž¥Ð¥~ °e`‚#€lþGAp(óÔ:G„àP¬GíFæ©…GˆàP4ÎnÔCp(óÔ#8vcaGX//¯!C†È]Ö‰à%Š6lX5*W®Ü¦M›ÐÐÐÜÜ\¹‹BˆøøøÖ­[·víÚC† ‰ŠŠ’»"!„8räHPP‡‡Çã?þÔSO}ûí·rWª÷O»‘yêŽPœäää.]ºìß¿¿W¯^!!!*T QBñ§Ÿ~ò÷÷ŠŠ|(}›‘‘áàà0yòds¼WZZZ»víìíí/^¼Xê 4B,[¶L72sæL!ĺuëÊYÆï¿ÿ.„2dHÁA)à|»"åææ6mÚ´aÆ·oß–FŽ=*„˜:uª wÔ¦M›æÍ›×ªU«êÕ«]÷íüùó×®]6qâÄòæéé9hР;w.]ºtܸqZ­vÓ¦MkÖ¬Bdff–\ÒéÓ§ÏŸ?¿råJWWWi$00ð‹/¾¨Zµª w×{ï½—””$„èÞ½{ýúõ ÙW€‚¸qc©ŽÊ¦Ôó*\]]£¢¢>^ob`În, ç8Âh<Ø·oŸÏ믿¯»8C‹‹K ïâÞbûöíÍ›7?qâĺuëΟ?oxj,’ƒƒƒ££cù “¦€£¢¢Ö¬YóÍ7ß$$$4oÞ\Q¯^½’ ÈÉÉ‘Ê(µÔ²í.J•*uëÖmÉ’%·oßþî»ïʳÓÀÖÐn4G-222<<|ÅŠÓ¦MÓ ×q,ÃÜkXXØ‹/¾8tèеkמÌ-•ÔþÔ¥´ìììøøø=z”¿°3gÎT­ZµcÇŽ;v”F>¬Ñh:uêTrI¾¾¾BˆóçÏè—,Y’™™¹xñâòTµwïÞþýûoݺuذaºAiBÜ  è§FÚÅ 8Âh©©©Bˆ&MšèFvîÜyïÞ½"“бs¯Z­vÖ¬YuëÖݲe‹½½}Êûý÷ßW­Z5cÆ éÛ… fff>¼œ… !^~ù常¸„„ébêøøø­[·öéÓGú¶þþþõêÕ[±bÅðáÃ¥(œœœ¼`Á‚Âw57¶ªöíÛ !6nÜ8tèPÍßgÄnÚ´I¡K·€’Ñk4ÁF rvv~饗FŒQ»víèè興ˆêÕ«GFFîÛ·¯wïÞ–æ^ _y||ü… š4i2a½§¼}ûöÉ“';vùòåE®¡R¥J!!!‘‘‘Íš5‹ŠŠ:|øpÏž=¨·˜±… !.\Ø»wïöíÛ0àáÇ_ýµ““Ó'Ÿ|"=[BaŽŽŽ+V¬:thëÖ­¬Ñh6nÜèààðÎ;*ww÷·ß~{Á‚mÛ¶íÙ³§F£9xðà±cǦOŸÞ²eKã-€vcIŽ0Z½zõÂÃÃß|óÍU«VyzzÅÆÆþßÿýß›o¾¹råJ½àh,éºàøøøøøx½§5jœ“““‘‘QÂÝ­§L™âååµyóæƒ6hÐ`Þ¼y…óYÙôèÑcÿþýóçÏ߸q£››ÛÀ—,YòøãKÏ–\Ø€Ž=:þüõë×ÛÛÛ·oß~ñâÅ5*Uï¾û®··÷§Ÿ~ºfÍ;;»&Mš|ùå—g®% Ýh>r°h999›6mÚ·o_JJŠ««k‹-¦L™bàí`øÈAs[¿~ý¹sçV¬X!w!ª)LGQ?i|Šš2q\ˆƒb>E¤FÃÚŠúsjI\U]„¼¼¼Ñ£GôÑGéééµk×>pà@¿~ýŽ?.wi÷ïß?räH«V­ä.D5…ŠD¯± ˜ª.ÂW_}uòäÉÞ½{ôÑGÒŹÑÑÑãÇŸ;wîä®ÎÖEGG7iÒä…^»Õ(¬èÔÈÙ¥!8áäÉ“BˆÑ£GënéÒ±cÇ&Mšœ;wîöíÛnnnrhÓ‚‚‚‚‚‚ä®BM…`*LU¡fÍšBˆÛ·oëF´ZmFF†!÷pJF»±ÌŽExî¹ç-Z}ãÆy󿥦¦2¤ ÷£ÊÁ©åAÿ¬~~~[¶l3f̘1ctƒ#GŽ|ë­· _ƒÞÈþýûåÞ,@!RRRä.áéNòPŽ‹qPLÈÛË+¹¨¿ƒ^ÞÞ)ÉÉ¢˜¿½zõ’»p¥ 8!33sÉ’%÷îÝkÖ¬Y‹-ÒÒÒ"##¿ûî»:tïÞÝ5Øæ%úPEÝÔCQÅ@‡ã¢@“xÔk,¼35¡Õ–°‹ ÿ³^¸Cd#ŽE˜5kÖ¯¿þ:gΜ±cÇJ#7nÜxþùçg̘±{÷nooo¹ Æa†Ú$8ÇQߟþyäÈ‘FéR£¢V­Z“'O~øðá·ß~+wÀ8%¥F®‰1ÁQ_ZZš¢AƒzãR£ñæÍ›rŒ@¯Ñ„Žú4h`ooŸ˜˜¨÷aŒÒù &ùpa`¥¤FÚF"8êsrr ¼råÊ'Ÿ|’ŸŸ/ &&&®^½ºB… Üáµ 5šÇáý÷ßýôÓ_ýõˆ#ä. ”®ôÔH»±Lè8­R¥J!!!!!!rŒCj4:ް*^^^C† ‘» €lHfEp„ÅÆÆ6¬F•+WnÓ¦Mhhhnn®ÜE !D||üÀëÖ­[»ví!C†DEEÉ]‘xøð¡ƒƒƒæßªW¯.w] Îk47¦ª¡8ÉÉÉ]ºtÉËË0`@½zõ:òã?Ê~÷õŸ~ú©{÷îÕªU>|¸½½ýW_}Õ½{÷°°°®]»ÊXUJJJ^^^§N ~¦QåÊ•åÝW`y¥FÚåCp„â„„„ܹs'&&¦mÛ¶Bˆ… Ž?~Æ èÙ³§\UiµÚñãÇ»¸¸œ9sÆÓÓS1wîÜÖ­[¿ñÆ¿þú«Œ»+))IÚKݺu“± ©Ñ2˜ªF…††¶lÙÒÙÙÙÍÍ­}ûöÛ¶m3Õš#""¥Ô(™2eŠ"::ÚÀ5ÄÄÄôìÙÓÍÍ­iÓ¦!!!ÙÙÙå¯*%%%11qüøñRjBT«VmÆŒ'OžŒ5d §OŸöôô¬Q£Fß¾} |U©¤àÈ­éØ2R£ÅQóçÏ ©^½úìÙ³_yå•»wïŽ92,,¬ükÎÍÍ}õÕW¥¤¨såÊ!DÅŠ YClll÷îÝ+T¨0iÒ$ÐÐЀ€€òŸ"yíÚ5!„‡‡GÁÁZµj !Ξ=[êË:Ô±cǸ¸¸Q£F92::: àÒ¥KåßcIII+V¬R¥ÊŽ;Ö­[™““SþÕ€*h8¯Ñ´05___ ¼D^ÞÞÞ¾¾¾>”¾ÍÈÈppp˜]÷íüùó×®]6qâÄòæéé9hР;w.]ºtܸqZ­vÓ¦MkÖ¬Bdff–\ÒéÓ§ÏŸ?¿råJ]¼ üâ‹/ªV­ZþÝ•”””ŸŸ¿`Á‚Áƒ?öØc»wïž1cFÿþýÏ;çââbÈ52¢ÑÈ$µéM±?æ®®®QQQ¼páBbbb\\\qsÁ÷îÝëß¿±XüoòÕ«W§L™æããsèÐ!ï\nÞ¼¹.Ñ !œýüüË_Øš5k222æÌ™3gÎi'Ì›7oþüùÕªU+¹¤‹/ !Z´hQppܸq&Ù]?üðƒ£££›››nµ÷ïßõÕWwîÜ9~üxw¨ ©Q.GíÁƒ oÛ¶m=úöíÛ±cÇV­Z¹°‹‹‹ÖøßØíÛ·¿üòË•+W^·nݸqã Á2pppptt,aÕ«W?xð`LLŒtaõSO=õã? !êÕ«Wò ¥“ ÙŠ2T%gYP=„qqqåÙi XœÔ(#‚#Œ¾bÅŠiÓ¦é‹ë8–aî5,,ìÅ_:tèÚµk Oæ–JjêRZvvv||¼”¥ÊYØ™3gªV­Ú±cÇŽ;J#‡Öh4:u*¹$___!ÄùóçtƒK–,ÉÌÌ\¼xqyªºråÊž={ºvíÚ¤IÝ 4u^¿~}cw(œt—©‘v£ÉÉ}’¥²ú‹cþûßÿ !8 Ù±c‡bôèÑ…ÎÈÈ0êÇ/??¿qãÆ 4ÈÍÍ-CmÒÅ1Ë—/×HÓÊ»ví*gaZ­¶}ûö•+W¾~ýºôíùóç«T©òÜsÏ•ZUvvv½zõ7n|çÎiäÒ¥KŽŽŽ/¾øb9«úã?rrr¤‘¼¼¼çŸÞÁÁ!..®ðòŠúIã|eâ¸(Ebtd1gÈQÔŸSK¢ã£9;;¿ôÒK#FŒ¨]»vtttDDDõêÕ###÷íÛ×»wï‚ ;÷áÂ…&MšL˜0Aï©oß¾}òäÉcÇŽ]¾|y‘k¨T©RHHHddd³fÍ¢¢¢>ܳgÏê-V†Iá… öîÝ»}ûö xøðá×_íääôÉ'ŸHÏ–P˜££ãŠ+†ÚºuëÁƒk4š7:88¼óÎ;å¬ÊÃÃcÁ‚³gÏöññéÝ»wµjÕ8pêÔ©Å‹7mÚÔøc eôô4½Fó 8ÂhõêÕ óÍ7W­Zåééûÿ÷o¾ùæÊ•+õ‚£±¤ÛYÇÇÇÇÇÇë=Õ¨Q£àààœœœŒŒŒîé=eÊ//¯Í›7=-HEpr*×u0¤FË"8y”«Ñ(H2 8”÷†;¤F9€E•·Ñ(H²!8*…ŸŸŸÜ%`v&¸³7©Q>GE°ÍÏ»´$[þ¤WP4©QfG`v¦ùAR£ÜŽÀŒLÓh¤FE 8s1M£Q•‚àLÏdFAjT‚#0%SFFAjT‚#0“ÍM?Z©QYŽÀLÜh¤F%"8€ò2q£QŠàÊÎ,F!HÊDpeaúÈ(h4*ÁÍôsÓ‚Ô¨G`³4©QŽÀ 抌‚Ô¨GP 3FFAjT‚#(‰YNgügí¤F5!8€¢™½Ñ(¸íŽÊ€>óFFA£Q­ŽàfŒ‚Ô¨bG „e"£ 5ªÁ[g¹È(8©QÝŽØ4ó^4ýÏÛÐh´Gl”…‚Ôh=ŽØËEFAj´*Glˆ¥#£à¤F«BpÀ&X42 Ö‰à€•³td¤F«EpÀjÉÓÓV‹à€’!2 Öà€U‘'2 R£M 8`%䌌‚éi›@p@õd‹Œ‚F£m!8 brFFAj´9GTIþÈ(˜ž¶9GTFæÈ(h4Ú.‚#ª!d¤F›Fp@é4??2 ¦§mÁåÒ!¼¼‘Ôh4B;¹ EСB+DrJŠÜ¥hHÐq@Yq"ã?Õñ‚#J¡¸È(8£ÿBp@~ÊŠŒ‚F#ŠFp@6J¹\ú_5ÑhD±ŽÈ@q-ÆGeÑhDIŽX”r#£ ÑˆR°…FFA£†"8`^J<‘ñŸâh4ÂGÌE¹-ÆGõÑh„qŽ˜ž "£ Ñ£0EÏJÿS%F”ÁPz‹ñQ•4Q.GÊE‘QÐh„ ( uÌJ?ª•F#Lƒà€qTÓbDF˜Áƒ¨©Åø¨bæ¦abGJ¡¦㣊i4Â,ŽM}-FAd„yЧ¾㣺™›†yxD•-ÆG¥Óh„%Pm‹QaQG€íRq‹ñÑ07 ‹"8l‘Š[Œ6€F#d@pØÕ·‘r"8l‚ê[Œ6ƒ¹iȉà°fÖÐb|´%4!?‚c±Îž=»nݺ¸¸¸¿þúËÏÏoêÔ©íÛ·—»(€A¬'/ áåí-‘Š`'w 1|øðˆˆÿS§N5*""BСBû÷—ºi4B£IIN&5B!è8áÎ;³gÏvppøâ‹/Z·n-„ˆ1bļyóºtébgGÚű¦ãß›ô÷éŒ))r—Š2)ö¸x{yI’ÿ>áÏjÎû“.šNIN¢èÓ{PlG¯^½ä.A)ŽúîÞ½+„HJJºyóæÒ¥K»térÿþý;w~úé§Ó¦MÛ³g!}Ç„„¹·ú¼þþWÊÁAQ&¥ýw+¬¼roÞ£sKÞ*¥[SøŸõÂ"Á9Žú¥K–,éß¿µjÕjÔ¨1eÊ”¤¦¦îÝ»WîÀ&Xç)ŒÿÚB®€ú¨&8ÆÆÆ–¼€©æ‚œœ‚‚‚ Ž?óÌ3Bˆ .Ƚ'Àši¬ò*iýä ¨•j‚ãóÏ?ÿŸÿü'//¯ðSéééÓ§OŸ6mš©ÞËÃÃã±ÇÓh4¥êÜÜ\¹÷X!›È‹‚ÈÕSMpôððXµjÕ°aÃ._¾\püÀ}úôÙ·o_ýúõMõ^AAA™™™/^,8xòäI!DãÆåÞ`Ul"/ "£Uùwgɶ¨&8îÙ³gذagÏžíß¿¿t±sFFFHHÈk¯½–‘‘1~üøÝ»w›ê½  „˜;wîíÛ·¥‘³gÏ~ñÅ...Ý»w—{O€5°þSÿÙT"£U±ñSUsUuåÊ•.\Ø»wï·ß~{þüùáááÉÉÉ·nÝòññùàƒZ´haÂ÷jÒ¤IHHÈòåË{õêÕ¦M›¬¬¬ãÇk4šE‹=þøãrï P1«½ cÑ[Ë­amT%;vüòË/ûõëwìØ1!D«V­6oÞüØc™ü^~ùeww÷Í›7GEE¹ººvëÖmêÔ©>>>rïP%ÛÊ‹¶Ù¶SVŠ£ª²àøÓO?I3ÈÍš5»yóæÉ“'_}õÕ÷Þ{ÏÓÓÓäï5hРAƒɽŠb¶˜FX3Õœãx÷îÝ·Þzk„ ·nÝš6mÚŽ;öìÙÓ»wï£GöéÓg×®]rxÄV.‘.bË9ÑšÑn* ŽR:ôññÙ±cÇäÉ“ííí]\\V¬XñÑGi4š·Þzküøñr×6Ívó¢ 2Z?R£D5ÁñÖ­['NüöÛo›6mZp<888,,¬cÇŽ‘‘‘r׶Ȧó¢ 2ÚR£ŽjÎqܶm›¿¿‘OÕ¨QcãÆ[¶l‘»F°-úŸ"mk8—Ñ6 RMp,.5J4ͨQ£ä®l‚^òò¯]@d´¤F=ª Žy‘… 2ÚRcaG@IÈ‹m G»8G@È‹ÿ DØ% 8þáíå%=àßM!ˆŒ¶ˆÔX2ÕÜŽ`>º[ê$§¤Øâ-uŠØ#ÜdÇæèŽ9J@p¥áŒE"2Ú$޹Ô4U½o߾͛7_¾|Y[̉‰‘»FP:N^,Ó6‰ÃnÕÇC‡MŸ>]zloo/w9 2äÅ’l‡½ Tׯ_/„3fÌäÉ“]\\ä.Ô¼X ²ƒMâ°—™j‚cRRR:ufÏžmgÇy™P òbéÈ6‰Ã^Nêa>¼{÷nݺuIP.v)tí —BØ»I¨£ãhggçââ’˜˜˜ŸŸOv=ô B¯ÉVqäMH!ÌÞÞ~„ ·nÝ •»P ú‹†¢×d«8ò&§ŽŽ£âÙgŸ½víÚgŸ}Ó»wï:uêT¨PAo™.]ºÈ]&˜—¦Àcþ),½&[Å‘7ÕÇnݺIbccccc‹\&!!Aî2À,˜Œ6ÁÁVqäÍJ5Á±oß¾r—–F^, ‚ƒMÒüýÛ‘7+ÕÇeË–É]Xy±ŒˆŒ6‰ÃnIª Ž`Ý8y±ìè5Ù$»,”·mÛ&„h×®îÛ’1BîªÀ84Ë…^“Mâ°ËH¹ÁqáÂ…Bˆ HÁQú¶dGjA^,/²ƒí¡Å¨Ê ŽS§NB´hÑBúvæÌ™rWåE^4"£!/*Šrƒã”)S ~ûÒK/É]”'/š ‘Ñ–•I¹ÁTæ¢É l G[áŽ`24MŒ£Í /ªÁÊ‹æ¢émyQuŽPFäE³ 2Úò¢zÀLF› QÂp­ÁJGsÑŒh1Z5MÿÙâ [G­V‘ššÚ²eK¹Ë`mh.š‘ÑzÑ\´Vj Ž+W®|æ™g¤{ƒÏ;wçÎÒSÇ÷Ýw5ÿ¿Ê„æ¢Ù‘)¬ÍE[`'w†:~üøäÉ“/\¸ŸŸ/„8þüÎ;]\\^xá…:uêlß¾=""B¦À—öï/˜žF#4¡Õ>ú‚UŽjÁ˱µbªé8~þùçZ­öí·ß>|¸âûï¿B|ðÁݺu»|ùr¯^½þ÷¿ÿuëÖMî2¨ ÍEËaVÚºÐ\´Yª Ž/^¬Q£Æ¨Q£¤oùå— *!4hаaÃääd¹k œ¹hQÌJ[Ž'T3U‘‘áîî.=ÎÍÍ=þ|óæÍ+T¨ TªTéÖ­[r×@¹ ÏDóŸy1+m-t3ÑOukÕª•ššš——gooòäÉû÷ï·oß^z*???55µzõêr×@Yh.ʃYiõc&ÅQMDZmÛ¶«V­º~ýúªU«„ÒS6l¸}ûv£F䮀"Ð\”‡^W jSdg‘# =ªé8Nœ81,,lÍš5kÖ¬B´hÑBºwãСCÏœ9#„7nœÜ5 ÍE9ÑbT-:‹0–j:޵k×þꫯºtéR£F§žzjÅŠÒ]oݺUµjÕ%K–tèÐAîXÍE™ÑbT!:‹(Õt…>>>ëÖ­ÓܲeKÍš5íìT“€”ÍEùqm­ªè}8 塦à(ÉÈÈ8wîÜo¿ýV«V­Î;W¬X‘ÔX=¢R0+­ÌAÃLÔÓÒÒÖ¬Y³sçÎììl!ÄèÑ£;wî<`À€fÍš}ðÁ®®®rÀĸA·RÐbTÂ",@5½º‡Nž}úé§ŸÞ¿ÿ’%Ktã_ýu¿~ý._¾¼yóf¹kPv\æ¢,Ü[G©ŠKŠ%X†j‚ã±cÇìíí/^\©R¥‚ãöööï¼óN¥J•8 wŒCsQ¼¼½i1*ŠF#¼½½h+B!Tããã½¼¼tŸ:XPåÊ•½½½¯\¹"w "%Eo//š‹ òw0IIN&’ÈN¯­˜œœBX„B¨&8º¸¸Ü»w¯¸gÓÓÓ«T©"wŠU¸¹˜œ’"wQBp£"p¶¢ºh„¦ü+Q)ÕǦM›þöÛo±±±…ŸŠ¿~ýz“&M䮀>Î\T.Îb”U I‘£%SMp6l˜F£yýõ×ãââ ŽÇÅÅMŸ>]Ñ¿¹k g.*-F9­†Fh´6üWM5÷qìܹó„ >ÿüóz{{ !:uéÒ¥üüüôìÙSî›Æ=•Ž{1ZŸ×«¤šà(„˜9sfëÖ­—.]šœœ,„¸~ýº¢zõê!!!ïìÀ’È‹*ÀǽXI¶@MÁQ”žžžœœœ““ãíííéé)wQ€ÍáÕ£™‘mÏS ÕG‰««këÖ­å®°94Uƒ£h ]Gˆ RMpìСC©ËÄÄÄÈ]&`…È‹ªA‹Ñ¤h(BíF¡¢à˜™™©7¢Õjóóó¥Ç5jÔ(òÞàʆÉh•¡Åh $E Tª ŽçÏŸ×ÉËË»qãÆÁƒ׬YóàÁƒùóçË]# z4U†c90õ £Ðn”¨æ>Ž…ÙÛÛ×­[wܸq«V­ºsçÎŒ3´üÒeÂmU¦ðÍa€’ï¤È^D H:*Ž::thԨѵk×®]»&w-€šÕ‡¼h0½˜È=·“°†à(„ðððB<þøãr(ë¢J|<`iJ‰ì6”íÆ‚TsŽc ²²²ÎŸ?ïîîîìì,w-€Bqò¢ZqÕK1¸–AjÔ£šà]äxzzú–-[nß¾ýÌ3ÏÈ]# 8äEµâª—ãBÈ‚ÔX˜j‚ã˜1cJx¶J•*Ó¦M“»F@)È‹jE^ü÷nбíý(ˆj‚cß¾}‹{ª^½zýû÷¯[·®Ü52#/ª˜ OI¡L´‹¤šà¸lÙ2¹Kм¨b¶×b$&BHÅQMp ‡¼¨b¶‘ gDkßbX Rc ”øác_Ò¥K¹«Ì޼¨bVi%Â:K¦ÜàøòË/û’„„¹«Ì…¼¨nVw #1V‰ÔX*åÇ®†lyQݬ¢ÅÈŒ3l©ÑÊ Ž\ [F^T75çEoo/½n`Ð!H†°’œ={v×®]å®(/> PÝ Ú²þ˜>F$'§ðI}°)R£‘Ôh åv KOO?|øð•+WôƳ³³ª Žýû÷8p`£Ftƒ•+WîØ±£Ü¥Á&0%­zE}* Í€•áÒisSÍTuZZÚ_|ѧOŸçŸ~ÇŽ÷îÝ“»"ئ¤UïïIeÐj„–‰fÀZ鿦If¥šà¸sçÎ1cÆxzzž:ujîܹ;w~óÍ7 Þ‘0-ò¢JI‰P// ­–€X1"£Å¨fªºE‹-Z´˜={ö‰'öìÙ³ÿþo¾ùæ›o¾©_¿þàÁƒû÷ïïáá!w°LI«Eѧ! Í£÷w*ä8Ö¹i SMÇñQ¹vvíÚµ[¸paTTÔÚµkƒƒƒoÞ¼ùñÇwéÒ¥àu3@ÐbT¦"¯eÖŸeé‹^"`;˜›–…Ê‚£ŽƒƒCPPÐG}´yóf??¿¼¼¼~øAJzg1B.D½Yf“Þ²€Ze¤š©j= û÷ïß¿rr²ø»i¦÷ºqãFppp×®]—-[&÷vÔ¸±Ž, L1{7"õYä#¤(Ó²SYp<þüöíÛwåÊi¤yóæÁÁÁÏ>û¬™ÎqÔjµ³gÏþ믿äÞt˜ g1ZF©wºIIIñòò2x}äEÀ¦B5ÁqÙ²e¸víšômƒ ‚ƒƒƒƒƒëׯoÖ÷ýïÿ{ìØ1¹·¦A‹ÑÌ~+Dò"`ÛˆŒŠ¢šà¸~ýz!„‡‡GŸ>}‚ƒƒ›5kf7MLL mܸñ… äÞ(;ÂËKËÇÒ÷Ê&/6Ȩ@ª ŽC† nÛ¶­….èÉÍÍ5k–««ëœ9sÆŒ#÷@YèZŒFÏŠÚªâÒ¡°X~#/ 2*˜j‚ãûï¿oáw\µjU||ü† ªV­*÷ÖÃ8œÅX*Å}Ôy€‚Ȩxª ŽvúôéÏ?ÿ|äÈ‘:uŠ‹‹3öå~~~z#û÷ï—{›l‚·——"9%Eú6åïñÔÔT¹K“coxÛdMNN)r<%EXLjjª—·÷£÷MN–¡Å6YÎFŠ·—·"9%Y‘"”õ§ W¯^r— Ç"dggÏš5«nݺ¯¿þzÙÖ ÷FØýcQ³ÒV(ÿê2*rC ÿ³^¸Cd#ŽEXºtijjêöíÛœœä®¥°© ¥7¿\æ Ðj…tâ©ÜÓªCpÔwìØ±íÛ·Ož<ù‰'ž»”ÄŠ#£êbqÛ£Ö `bš¿'ŠˆŒªCpÔ—˜˜(„X½zõêÕ« ŽïÞ½{÷îÝ>>>{öì‘»F›fM¾X[@,nó¬d{˜-Fµ#8ê«_¿~Ÿ>} ŽÜ¹s'22²V­Zþþþ5jÔ»@Û¥êc‘Ñ:y@QˆŒÖà¨ï©§žzê©§ ŽÄÅÅEFF¶iӆϪ–‹Š"£•7 ÙrëßTF`VÚÊ¡hJŽŒ6ÔD4d/ØÜ–(-F«Dp„)íDF2â¿Ü¶»‹ÈhÅŽ¥kÖ¬÷e´Ù[ŒdÄbÑ\P"f¥mÁJaùÈHF4y@‰È‹6…àùY&2މ¡’”†)iDp„œÌ‹j%z‘ B^PZŒ¶Œày˜02ÒJLIIQè *y€h1‚àK+gddÆÙd¸8€ah1B‡à )Ûvˆ‰¦Gs€aÈ‹(Œà³3¼ÅHL4#ò"ÃQ‚#̨äÈHL´ò"ƒq #JEp„Yõ’"Iƌȋ F‹†#8ÂÄt‘Q£z-E2Œyq± cQG˜Œ¦À4D‹¡¹ÀäE”Áe÷¯©gÝ_ þYy€1È‹0 ‚#ŒPäIŠ–ÿŒi›F^` ò"L‹àˆR”pâ‘ÑB8y€‘È‹0‚#ôrí3‘Ñh.0yæFp„Æ´´ˆŒfG^`$ò",†àh£ÊpKE"£1 ÀxäEXÁц”9œÍ…æ"#¼C.y–Gp´råïdiˆŒ&G^`$š‹P‚£u2I2¡ÑhJLF0Þ£¼èE^„RØÉ]LF£ùçK«}ôUÆUýÝhäUy>$¤F¥Ñý9—þj$§$Ë]ðGu3y‹.£i0 ÀHœ¼U 8ª’™b §3– “ÑŒÇÉ‹P‚£š˜¯E£±ìh.0ÍE¨ÁQÌLh4æ"ãÑ\„ 8*—:Y4Cs€‘h.ÂÊ•HÊ'f 'DF#‰æ"¬ÁQA,–O˜›.“ÑŒDs¶€à¨h1>z#!©±4‰æ"l ÁQNN)4‹Fs€‘h.Âfåa±㣷BõÐ\` Â" ޲>ÎroGdÔ¡¹À„E@ÁÑ¢h4ÊC£ñ’€ÓâØÉ]€­>¯^«µhjÔÚrj”öøßû=%9™Ô þdh´þZóGÐGÇÑ,?7-l62ræ"ƒ1 ‹àhvœÑhþmæÌE†",åAp4/R£9·–æ"ƒS!8š‘%S£­LOÓ\`Â"`Gs±pj´ò?Š4€°˜ÁÑ,H¦Ø0š‹JGX,‰àhûAae©‘°À„E@.Gµ²ªF#3ÑJCX”€à¨JÖi.(QÁ¤(‹€2ÕGÝ©‘æ"€âÑVŽà¨2ªL4°¨ÁQ5Ôw) ÍEÅ ,*EpTÕ4i.( ',Öà¨*H4B[°>G¥Stj$/(€¶"`õŽŠ¦ÄÔÈd4€h+6…à¨\ÊJ4ü°Ø,‚£B)%5’0 àoG%’?5’ÛFRP$‚£âșɋ€ {½„ )(†Üà_äIÍ£/­öÑ ùç—_£é÷?9%™Ô 8tD†Ô(µIŠ€m`@9•¢©‘)iÀfp4"8*‚…R#y°´˜ÁQ~–HLIÖ‹¤ÀbŽV#`HŠäBp”™¹Ú´+BR G9™>5Òb¬I€2ecâÔH‹P3’"U 8ÊÔ©‘ȨI€U‹Yi@UHЬÁQåm7ÒbÔ€¤Àú-­\©‘È(I€Õ#8ª‘P’"[Cp´¨²´‰Œ€bØ8‚£å”15™èÅDAR`óŽJE£°8ŠP2‚£…Ñn$2–BR£•„ȘSÏPNGK0¨ÝÈ錀©ÑPÓ"8š]é©‘F#` 4ÀÜŽr£Ñ” E°0‚£¬H€Áh(€ìŽæUì<5ÓÓ@ih(€Òå@£(„†"(ÁÑŒŠn7’)&zýk„˜Êg'w6†Ô[¥š‚_Z¡MNIÖ ­îKãhA¤FØ æÀ*ÍEžšÔëELAp´R#¬1lÁÑüHP9n‹ÍâŸyjR#Ô††" 8Gs"5Bñˆ‰ÃBL”ÁÑlh7BnÄD€iÍ‚œayÄD€¹‹–ýÕW_íܹ355µJ•*¾¾¾ãÆëܹ³¡¯§Ý3#&,àX„ÜÜÜ1cÆœ>}ÚÅÅ¥cÇŽ÷ïßÿå—_"##_{íµW_}Uîê`s gDALÈàX„¯¿þúôéÓ­[·þâ‹/œœœ„‰‰‰#GŽüôÓO»víÚ¤I“ÒWA»eE+ Xvr Dû÷ïB¼ýöÛRjBøøøLš4)//ï矖»:XÐè}i…VïKîx„ŽcRRRœ›5kVpÐÇÇGqíÚ5¹«ƒŠÑM¨Á±ëÖ­spÐß3qqqBˆºuëÊ]Tƒ˜°2Ç"4mÚTo$&&æ³Ï>«X±bÿþý YƒŸŸŸÞˆ4ý ¹¤¦¦šuýÞ^Þ…“S’õFRDŠÜ{BAÌ}PP6â È®W¯^r— ÇRäååmÛ¶íÃ?ÌËËûøãÝÝÝ yUBB‚Ü…CŸ———©Veh+ÑdohµLxP`Bâ È«ð?ë…;D6‚àX’_~ùeÁ‚—.]ªY³æâÅ‹;uê$wE3ÎHŽEËÉÉY¶lÙ–-[§N:~üxÝÖ°nÄDŠCp,B~~þ믿þý÷ß?óÌ3ï¾û®‡‡‡ÜÁ\ˆ‰ŽàX„-[¶|ÿý÷/¼ð»ï¾+w-0%b"åApÔ§Õj·nÝZ¥J•Ù³gË] Ê럤è%1€ò!8ê»yóæÕ«WœœFŒQøÙŒ9RîQ´Š)))\“@9õI·ËÊÎÎ>wî\ág¹°ZQô’" E̊ਯU«VÜ…Q™8Cy¡\4P‚#„¤€’!'’"*Bp„E‘P/‚#Ì®`X$) ^G˜mE¬Á¦A[«GpDÑVÀÖaÚŠØ2‚#JAX‚#Š@X…ña”ŒàhÓ‹ÀpG[¤Ë‹„E`8‚£­ ¹ʉàhåh.S!8Z'ò"09‚£õ`2˜ÁQõh.Ë 8ª˜É‹À2ŽêC‹È‚à¨äE /‚£ 0% ”€à¨\´€¢•ˆ#P ‚£²€b•‚ÈŽà(?"#P‚£œˆŒ@EŽò 2Õ!8Z‘¨ÁÑ¢4BCd*e'w6„ÔTŽ£%0= ¬ÁÑìh4ëÀTµy‘€Õ 8š©X‚£¹€•!8À G³ Ý¬Á!8šíF`}Ž0Á!8À G„àƒ`‚# Bp€AŽ0Á!8À G„àƒ`‚# Bp€AŽ0Á!8À G„àƒ`‚# Bp€AŽ0Á!8À G„àƒ`‚# Bp€AŽ0Á!8À G„àƒ`‚# Bp€AŽ0Á!8À G„àƒ`‚# Bp€AŽ0Á±X;vì2dˆ¿¿çÎßzë­ôôt¹+BÙõêÕKî ƒ¢Lâ @9ŽE ;wî¥K—Ú¶m[¹rå]»vMœ81;;[îºdCp,BBBÂgŸ}æéé¹ÿþÏ>ûìÀ£FŠýè£ä. @6Ç"|ýõ×ùùùÓ§O÷ððFæÌ™ãââ²oß¾üü|¹«Á±Ç·³³ëÒ¥‹nÄÞÞ>000--íäÉ“rW ‚£>­V›””äæææææVpÜ××WqíÚ5¹ ‡ƒÜ(NVVV^^^µjÕôÆ]\\„·oß6d%~~~roôqPˆƒ¢Lâ @!Žú¤K§õÆ+W®,„¸sçN©kHHH{#L©j}ÕªUÓh4YYYzãýõ—ø»ï`ƒŽú\\\ w333…ºë¬l Á±žžžiiiRRÔIII‘ž’»:y‹Ð­[·¼¼¼Ÿ~úI7¢Õj=êêêêïï/wuò 8aÈ!vvvÿùϤó…Ÿ}öÙ­[· ôØcÉ]€<4Z­Vî”hÆ K—.­]»v@@À•+Wbbbš6mºaÆ·é°Çb………}÷Ýw±±±5kÖl×®ÝôéÓ¥;òØ&‚# Â9Ž0Á!8À G„àƒ`‚# Bp4™;v 2Äßß¿sçÎo½õVzzºÜÙcw~vvöÿûßçž{îÉ'Ÿ ?~üÏ?ÿ,÷FX›òüFܸq£uëÖo¼ñ†ÜamÊpPΞ=;eÊ”   ¶mÛŽ9ò—_~‘{#¬±%''çóÏ?8p ¿¿×®]§M›–˜˜(÷FØœääd??¿3gÎÈ]ˆ ަ:wîÜK—.µmÛ¶råÊ»víš8qbvv¶ÜuÙcw~nnî˜1c>øàƒ?ÿü³cÇŽ5úå—_Æ÷駟ʽ)Ö£<¿Z­vöìÙºOЇ©”á DDD ><""ÂÃÃÃßßÿÔ©S£FŠˆˆ{S¬‡±%//oôèÑ}ôQzzz@@@íÚµ8Я_¿ãÇ˽)¶eË–-r— -ÊíÂ… 7øã?¤‘÷ßß××wáÂ…r—fýʰó·mÛæëë;|øð¬¬,iäâÅ‹íÚµkÒ¤ÉùóçåÞ kPÎ߈ 6øúúúúúΜ9SîM±e8(mÚ´yâ‰'Nœ8!œ9s¦yóæ:uÊËË“{ƒ¬A™ÿ|M›6íáÇÒHTTT“&Mzôè!÷ÖØ„;wî?~üwÞ‘þF>}ZîŠd@ÇѾþúëüüüéÓ§{xxH#sæÌqqqÙ·o_~~¾ÜÕY¹2ìüýû÷ !Þ~ûm'''iÄÇÇgÒ¤IyyyLX›Dy~#CCC7n,÷FX›2”]»veffNš4©uëÖÒHË–-{÷î}ëÖ­³gÏʽAÖ  åäÉ“BˆÑ£G;88H#;vlÒ¤ÉåË—oß¾-÷Y¿ààà#F|ùå—r"'‚£ ?~ÜÎήK—.º{{ûÀÀÀ´´4é—æS†Ÿ’’âììܬY³‚ƒ>>>Bˆk׮ɽAÖ Ì¿¹¹¹³fÍruu3gŽÜamÊpP~üñGFÓ¿ÿ‚ƒ~øaBBÂO|øí·ßʽM° GðôôLKK“~ÛuRRR¤§ä®ÎÊ•açççç¿þúë›7oîÖ­Û÷ß?eʺ\¦eìA‘>÷bõêÕ~8p b÷îÝ~~~Ï=÷œÜd Êð›âááñØci4š‚ƒÒ/Knn®Üd Œ=(iiiBˆ èKÆ›7oʽA° GèÖ­[^^ÞO?ý¤ÑjµGuuuõ÷÷—»:+W†¿eË–ï¿ÿþ…^øôÓOi ›ƒ±¥~ýú}þMºt±V­Z}úô ”{ƒ¬A~S‚‚‚233/^¼XpPºM 7Ú4 cJƒ ìííµZmÁñ„„!D£FäÞ Ø¹ï@n ®_¿Þ¸qã^½zݽ{WY»v­¯¯ï‡~(wiÖÏÿ×_%''_»vM«Õæçç?óÌ3­[·ÎÎΖ»v«eìA)ìܹs|rŒi•á œ?Þ××wÈ!iiiÒHll¬¿¿Û¶moݺ%÷Yƒ2”—_~Ù××wÅŠºï¹xñb‡š7ož””$÷Ù·ß~Ûf?9†‹cL V­Zo¼ñÆÒ¥KûöípåÊ•˜˜˜fÍš½ôÒKr—fý ÙùG1c†Ïž={nÞ¼yõêU''§#F^Û€FŽ)÷6©ž±EîzmBJ“&MBBB–/_Þ«W¯6mÚdee?~\£Ñ,Z´èñÇ—{ƒ¬AÊûï¿?xðàÕ«W‡‡‡7mÚ4--í×_ÍÏÏŸ;wnÆ åÞ Ø‚£iŒ7®zõêß}÷]xxxÍš5GŽ9}úté® 07£v~jjª";;ûܹs…ŸåSá7BÊpP^~ùeww÷Í›7GEE¹ººvëÖmêÔ©ÒÇ,Á$Œ=(îîîááák×®ŒŒüá‡\]]Ÿ~úéW^y¥E‹ro l…FûïS%€"qq Bp€AŽ0Á!8À G„àƒ`‚# Bp€AŽ0ÁþñÆoøùùEGG[lUÿùÏüüü¶mÛVðU?üðC‘Ï€¼Ž &‘‘‘G•» 6ÊAîÀ¦¹»»·nÝÚÀggΜ™™™yþüy¹ `‹Ž §fÍš5kÖ¬lÏ€…1U @•òòòrsså®l Á€jHŽ\ºté½÷ÞkÓ¦M³fͺté2uêT½ P¤ÅnܸqúôéAƒµlÙ255U÷lxxø¤I“ž~úé:Œ3æ‹/¾ÈËË+ü^‘‘‘Ó¦M |å•W~üñG½nݺµ|ùògŸ}¶U«V­ZµêÓ§Ï’%KþøãcWõù矗pùKÁg?üðC??¿ôôô¼¼ÜØU®M›6£G®X±¢F£=zô /¼ðì³Ï !8Pp1­V»gÏ!D¿~ýä>V¬ Á€Êœ:uªK—.ÑÑÑßÿýÉ“'çÌ™£Ñh>þøãÄÄÄ‚‹½óÎ;-Z´Ø¸qãÏ?ÿ\¯^=!Ä·ß~ûÝwßyxx|ùå—?þøãŽ9òä“Ož:ujÕªU_»k×®nݺýòË/Ò[Ìš5ËÎÎnõêÕ±±±º._¾Üµkןþù»ï¾Û½{wdddÛ¶m¯_¿~øða£Ve¸®]»¾õÖ[•*U²³³{ë­·ÞxãŽ;V«Víĉ·nÝÒ-vòäÉëׯ7oÞ¼Q£Fr+Ö†à@e<<<>ùä“jÕª !ìííÇŽ;bĈüüüÕ«W\ÌÙÙùóÏ?ïÔ©“»»»4²bÅ !Ä¢E‹üýý¥‘š5k®ZµªbÅŠ_~ùåï¿ÿ®{m­ZµV®\YµjU!„ƒƒÃøñãGŒ!„øôÓO¥rssƒ‚‚fΜéìì,T­Z588XqåÊ•‚e”ºªò°··ïÑ£G~~þÁƒuƒaaaBˆþýûË} X!‚#•4hPÅŠ ŽŒ5Jqúô邃}ûöuttÔ}ûçŸþñÇ5kÖ ,¸˜‡‡G—.]òòòâããuƒC† qpp(üqqqÒ·¯¾úêÚµk6l¨[àæÍ›{÷î-\m©«*§Þ½{‹³Õ¹¹¹ûöísppèÓ§[Åíx¨Œ———ÞH:u*V¬øûï¿çääT¨PA”¦§u._¾,„hРAáÖ¯__ü»Sèíí]ä[ܼyóÞ½{R—ñúõë?þøã‰'®]»võêU½SZUy´oßÞÍÍíØ±cééé®®®?þøcFFF×®]ÝÜÜÌ~$Ø:ŽTF£Ñ±··ÏÏÏ/xƒivXG«Õ·B{{{!ÄÇK} ;;»Ç{L±}ûö=zÌŸ??66¶aÆãÆÛ¸qã;ï¼cxµºU•“½½}Ïž=óòò¤s+™§`Vt¨LJJŠÞÈï¿ÿž••U£FJ•*÷*©×¨w¢DjFl ~‹ß~û-++«nݺ*Tøë¯¿Þ{ï½ *¬[·î©§ž*X†!Õ\•IvHïÞ½·oß¾ÿþgŸ}6""¢jÕªAAA¦Þë GªóÍ7ßäääÙ²e‹¢yóæ%¼ÊÓÓ³zõê7n܈ŒŒ,8~óæÍ#GŽØÛÛ7iÒD7¸sçN½›;JoѪU+!ÄÙ³góòòZµjU05 !.\¸Pø}K^•I´iÓÆÝÝ=::zçÎ÷ïßïÓ§©")è!8P™ßÿ}úôé™™™BˆüüümÛ¶ý÷¿ÿµ³³›:ujÉ/œ1c†bîܹçΓFþøã©S§Þ¿ذaµjÕÒ-yíÚµ{÷îIo±yóæM›6988¼úê«BOOO!Ä… t7ÁÉËËûòË/¥qggg|Ó’WU6ùùùYYYºo¥k«sss—/_.˜§`NLUP™gŸ}öûï¿ïСCƒ ¤i_;;»Æ—üÂDGG‡…… 4¨N:NNN—.]ÊÏÏ÷÷÷Ÿ>}zÁ%ýüüöïßðàA//¯ëׯggg;88Ì;WºŒÆÛÛ»[·n‡îÞ½{ëÖ­µZmBBBzzúˆ#6oÞüÍ7ßܽ{wéÒ¥†¬ª ªU«–žž>|øðzõêén?ùì³ÏþïÿËÎή_¿þ“O>)÷!`µŽT¦_¿~#FŒøâ‹/Ξ=[¹råŽ;¾øâ‹;v,õ…vvv}ôQ—.]ÂÂÂ.\¸ð矶k×.00p̘1Òõ1:7nÜ¿ÿáÇãââ\]]Ÿ~úé±cÇ düñ† ÂÃÃOœ8Q§NÀÀÀ±cÇúøøäåå………?~ÜðUkΜ9‹-ºtéÒýû÷uƒ­[·®^½úÍ›7i70+M W€¢¼ñÆ»wï^·n]—.]ä®EYòóó»uëöÛo¿>|¸víÚr—ÀjqŽ#¨^TTÔ7Ú¶mKj`VGP·ìììÐÐP!Ä Aƒä®€•ãGP±¶mÛÞ¿?''§Q£FÒ‡e€ù¨Æ³Ï>ëëë[øCülYÍš5¯^½¸páB½K|Àä¸8áG„àƒ`‚# Bp€Aþ¨…€ò€¡;IEND®B`‚statistics-release-1.6.3/docs/assets/tripdf_101.png000066400000000000000000000751321456127120000221500ustar00rootroot00000000000000‰PNG  IHDRhŽ\­Az!IDATxÚíÝy\TeßÇñke‰Å%TÀ½pMw-LQ*“¬ÜRÓTÊ]K[LÓD³\È4Qo»]î,ôÑT…Ô\PDAÜKqAD`ž?NMÄ:À0çÌœÏû^pÍ™3×9ƒðíw-£Ñjµ(‰…Ü€i 8@/Gè…འ‚#ôBp`Û·o×èçÁƒÅŸjõêÕÒ‘mÛ¶•û²JaΜ9R·h„—{üøñªU«zõêU»vmkkk^xá‹/¾ÈÌÌÌwdlllÁwÁÊÊÊÙÙ¹}ûösæÌ¹}û¶>OÉgÊ”)rßrÆFpÓóÛo¿5nÜxìØ±ûöí»qãÆãÇÃÂÂÞÿ}Ý»w—x†œœœÔÔÔcÇŽ}òÉ'^^^ÑÑÑr_`%w˜‰ªU«Ö¯__÷mffæï¿ÿ.}]«V­Ê•+ë²°(áY«U«&ªfÍšr_–ÅÇÇwíÚõÑ£Gº++«ììléëëׯ¿üòËG}æ™g >×ÍÍÍÆÆF‘žž®+4Þ»w/ 11±J•*Å<%GGG¹ï£Ó@Ø¿¿î÷̹sçäîŽ1Ìž=[ºÞTè ½øâ‹º{ûÖ[o>}:;;ûÆkÖ¬©V­šÔîåå¥;þܹsºã÷ï߯k¿råÊ[o½¥{(88¸Ä§P9†ªÈ#ïŒÀììì>øàé§ŸþàƒDssss¿ÿþ{__ßzõêY[[׫W¯k×®ëׯòäI¡ç¼wïÞ{ï½×¶mÛjÕª=ûì³óçÏÏ{¤$11qàÀO=õTýúõ‡~ãÆ3fHg˜3gNÁsæ}î!Cô™êWÚnç»í߿׮]Ò×Ó§O_»ví3Ï>þâŋſuêÔY»v­îºæÏŸŸžž.ë¥c¨€üF޹~ýz!„V«-ê˜!C†lÙ²E÷í•+W®\¹±k×®­[·æ;øþýûÏ?ÿ|\\œôí™3gΜ9súôé¼g8zôèK/½tçÎ!ÄÝ»w×­[ѦMÃ^Z©º­Ï­X¹r¥ô…““Ó¬Y³ò=ú /ôë×ïÆBˆ³gÏzzz–ØÃ‰'þðÃBˆÛ·oGFFöîÝÛ°w€9!8Ù‰'®]»Vü1[¶l‘â—F£ñõõ}úé§Ož<) §nÛ¶íÀݺuË{ü¡C‡„õêÕ«Q£Æ™3gþüóO!ÄÖ­[?.U1ÿüóÏ€€)5V®\¹M›6—/_NJJJJJ2ॕ¶ÛúÜŠ#GŽH_øûûÛÙÙ<@Ÿ•1yuîܹråÊYYYBˆcÇŽƒ¡j2»víZÓ¦M7nÜwÊ]^{ö쑾 úùçŸ×¯_öìÙÖ­[K¿ýö[Á§,_¾üòåËÑÑѧN²¶¶–?.}±råJ©,goo}äÈ‘«W¯Ž9Ò°—VÚn—x+ž!DJJŠÔ¨>?~¼···ÂÂÂâË/¿üé§ŸþøãC]Zi»]â­HKKÓ}]ü+•§žzêÊ•+ùÎÈÌÛÛ»Ä $ŸÞ»woïÞ½'Nœ8uêÔñãÇ>|XÔñ 6Ìû­“““ôEnn®ô…náHÞ‘Y›Þ½{oذÁP—VÚn—x+t‹¦…wí.³ÔÔTé‹êÕ«|´Ðíxt·€ªÈÌÙÙ¹Äc²²²f̘ñå—_êv+´±±quu-ª:¨ÑhŠù6--MWíËÔêÔ©cÀK+m·K¼•+Wvvv–¦f^¾|¹ÐcýÔP»¹¹|tÓ¦MRݘã@fùR]¡>ýôÓ%K–dgg7hÐ`ÅŠgΜIKKóóó+Û+V«VM7ëQ a:º„QÚnës+:vì(}±sç΂ !7nìììììì¼jÕ*}:)­ŒB´k×΀—Àü˜€+VH_|ýõ×cÇŽmÙ²¥••U‰ ‹¢ÑhÜÝÝ¥¯<¨kÏÎÎ>pà@Áƒ¥/îß¿Ÿ·]Ÿ©†í¶dÔ¨QÒW®\Y½zu¾GwíÚ¥+véÒEŸ.[¶LúÂÖÖöùçŸ/Oߘ=‚#¥{øð¡®.¨Ko¿ýö[Á§?]¨Z²dÉ… „Z­vÖ¬YÉÉÉùŽÔ ^ÿú믺™‘ÿûßÿ¤ŒÜm!Ä‹/¾Ø£Géëwß}÷£>ºyó¦"++kÆ o¼ñ†ôPÆ ¥E?ŸuëÖèÑ£·mÛ&}ûúë¯çC 1Ç€ÒÙÙÙÙÙÙIÍ,}8ŠF£Ù³gO¡µzš1cÆÚµk³²²n߾ݺuëöíÛ§¤¤º‰£n÷œÌÌLoooooï;wîÄÇÇËÒmÉ’%KÚ·oŸ™™©Õj?üðÃ?üÐÙÙùÞ½{999ÒÖÖÖÛ¶m³´´,øÜaÆU­ZU‘žž.%N‰‹‹ËÇ\ÎŽ0{T(F£yá…¤¯322~úé§ü±víÚ¾¾¾RcÞ¤§ºuë~ýõו*U’ÎyðàÁ¤¤$;;;Ý9uZµjõꫯê^ýÈ‘#ñññ 4ЕýŒÙmI‹-òíÚsçÎ]j¬_¿þöíÛŸ}öÙBŸ{ãÆÄÄÄÄÄļ¯îääôÓO?é³J €Ê˜€ààà-Z!,,,žyæ™É“'Ÿ:u꥗^’ݼys‰ŸË\ÐÈ‘#÷ïßïïï_«V­Úµkûûû9r¤ÐÕ!¡¡¡Ÿ~úi‹-lmm½½½ß}÷Ýèèh}bVEt[òüóÏ'$$wéÒÅÕÕµJ•*^^^ýû÷¾páB¿~ýJ<ƒ¥¥¥““S»víæÌ™ÿÜsÏêÍ`Æ4Å|2,(Ç“'OvíÚ%„8p`ŽÊo¼*„X¹rå˜1cL¥Û`Gj4zôhéã;vìøõ×_K=òôô”Æp###Yb ù°8€ÕªUëôéÓBˆÓ§OשS' àþýûS§N•Rc³fÍÚ´i#w@q¨8P£ÌÌÌ^½zEFF|è©§ž:xð 47Á€J=~üø¿ÿýïúõë“’’nÞ¼éìì\¿~ý^½zMš4©Ðl ¶ã€^ŽÐ Áz!8@/Gè…འ‚#ôBp€^ŽÐ Áz!8@/GèÅJîÉÖ­[·lÙ’˜˜XµjÕ.]ºL™2ÅÑѱÐ#333Ÿ}öÙ¢Îãáá±k×.¹¯@ªŽÁÁÁ«V­²µµmÛ¶mJJÊöíÛBCCmll ¬Ñhš4iR°=++ëÒ¥Kööör_ €<4Z­Vî>T¬øøø¸¸¸lÛ¶ÍÕÕUñé§Ÿ†††Ι3Gÿó,Y²dÍš5[¶liÞ¼¹Ü× óŸã¸eË–ÜÜÜI“&I©Q1}út{{ûðððÜÜ\=OráÂ…5kÖ¼ýöÛ¤F Zæ?naaѵkW]‹¥¥eçÎSSSOž<©ÏrrrfΜٰaÃqãÆÉ}5²1óà¨Õjœœœœœò¶{zz !®^½ªÏI6mÚ;cÆŒJ•*É}A²1óÅ1999ùÚ¥5.wïÞ-ñ ééé+V¬h×®]ÇŽõ|Q///¹¯T¬øøx¹» 3Ž™™™B[[Û|ívvvBˆ”x†uëÖÝ»w/((¨T¯«Î&%óòòâMQÞeâ}Q ÞRm‘È̇ª4MFFF¾öG‰¿ëŽÅxøðáÚµkÛ¶mëíí-÷¥ÈÌ̃£•••½½}ÁÊbZZšB·Îº(»víJOO8p Ü× ?3ŽB77·ÔÔT))ê$''KÿÜ­[·ÚØØôéÓGùÇîÝ»çää>|X×¢Õj#""‹€ŽíÖ­[Á)’*dþÁ1 ÀÂÂ⫯¾’æ5 !BBBîܹ3hÐ Ýö:éééÉÉÉ×®]ËûĈˆ!D»víä¾E0óUÕBˆZµjM™2eáÂ…ýû÷÷ññIII‰ŽŽnÖ¬Ù¨Q£tÇDDDLž<ÙÃÃc×®]ºÆ#GŽ!Z·n-÷ÀöìÙ#woŠ2ñ¾(o ”Ãüƒ£bøðá...;vì «Y³f``à¤I“¤yŠò矞ýôÓ<­š0Œ¹sçIcµcÇŽ}øða``àÎ;ËfKKË3gÎ|òÉ'º–ììì³g϶lÙÒÆÆFŸ3ÄÄÄôìÙ³råÊcÆŒquu öññÉÎÎ.gÇ?~|âÄ éTG Ù·o_zzºžOß¿‡bcc‡ åããséÒ¥òß1!„V«6l˜££ãÒ¥K rB†ªÈKšæ¨ÕÊÝÀ6lØàéé¹wï^i`têÔ©ÎÎÎ{öìñóó+ç™­¬¬š5k&}š˜˜¸{÷î›7oþç?ÿÑó /^\´hÑûï¿/};eʔŋ¯]»vôèÑåéØÍ›7³²²4M§NŽ?.5Ö­[÷?ÿùÏóÏ?_üssrr&NœX»víãÇ;:: !ú÷ïߥK—eË–}ùå—å¼cBˆE‹EDDDGGW­Zµügƒ„à01ò®©*æÿsŽ;fmm­›N—šš*„ÈÈÈ(xdvvöîÝ»‹:ÏK/½TL>þøãÄÄD!DÏž=ëÕ«§g·ÝÜÜ&Mš¤ûvîܹ«V­Ú¹sg¾àXÚŽ=xð@:pàÀõë×שS'""bäÈ‘ƒ Š‹‹“â`QNŸ>}þüùeË–éëܹó·ß~[½zõòß®cÇŽÍž={Ñ¢EÏ>û¬ž·ú 8LŒbKÔŽŽŽGÝ·oß… bcc‹ NOO0`@ÑXÜ&$$dddDEE9ò¹çž‹‹‹suu-±oÍ›7Ï»@ÄÖÖÖËË+!!¡œ«V­š¢aÆßÿ}åÊ•…/¼ð¢E‹^ýõmÛ¶é–ËêâÅ‹Bˆ-Zäm>|xùoWZZÚ!Czöìùî»ï–xgP*Ìq 36åyxüø±ŸŸŸOxx¸‡‡Ç{ï½§[Ë’½½½¶h%¾VÕªU»wï¾`Á‚»wïîØ±£l¶²²²¶¶.gÇÜÜÜ„Ï?ÿ¼”%Ò u\\\ñÈÊÊ’ºQbWKÛ«Õ«W'%%I;J.\¸páÂ…<¸~ýúÂ… 7oÞ\¶Û G 222,,léÒ¥'NÔ5Uq,íØëîÝ» °qãÆW^yE×(ðê4…RùS—Ò233ãââzõêUÎŽÙÚÚ6hÐàÆyoß¾-„(q!³§§§âüùó>>>ºÆ ¤¥¥ÍŸ?¿<½’"é’%Kò6Þ»woúôé]»v2dˆ>w …ÓÂÐ<==åîòKJJ’» ø‡ô‹'ï›Â¯"åPÔ?ÓúuúÝwß !öîÝ«kÙºu«â7Þ(xðýû÷Kõ§ùöíÛVVV½{÷ÎÍÍÕ5¾öÚkBˆ3gΔطúõë !–,Y¢k™>}ºbûöíåì˜V«7ož……EDD„ômNNÎÀ-,,NŸ>]|¯233ëÖ­Û¸qãH-—.]²¶¶~ýõ×Ëß«‚wà¹çž+êÑ2ü¤™Ö§QqÀ|}}mmmG5tèÐÚµkGEE8pÀÅÅ%222<<¼oß¾y–Æ^õ?¹³³ó¬Y³æÍ›×¶mÛÞ½{k4š}ûö;vlÒ¤I-[¶BlÞ¼yܸqo½õV¾2›NÕªUƒ‚‚"##›5kvôèÑŸþ¹wïÞþþþù+mÇ„ãÆÛºukÏž=‡úôÓO‡‡‡Ÿ8qbêÔ©Ï<óLñ³¶¶^ºtéË/¿ÜºuëÁƒk4šuëÖYYY}ðÁåï*sÈiŽ0uëÖ {úé§—/_lccóÙgŸ¥¥¥-[¶¬üçÿðÃׯ_oii¹råÊU«VU®\ùûï¿–ÍÊʺÿ~1{z?~åÊ•7oÞ\ºtéü1gΜ]»väÂ#""Þzë­cÇŽ-[¶¬råÊ›6mZ¸p¡>8p`DD„»»ûš5kÖ®]Û®]»èèèFö­iˆðçåå/w/ð/ÉÉÉîîîr÷‘6nÌ÷¦°›£B(ê ¿NKeÍš5çÎSàf׊í˜N~ÒTûÃIÅ“÷çŸpàÀÑ£GW¬X‘››+wwþ‘˜˜(„øè£”“e…AAA<ˆŽŽnÛ¶­Ô½#F¬]»vïÞ½½{÷–»w&Œ¡j &88¸eË–¶¶¶NNNíÛ·ß´i“¡ÎœššÚ»wïyóæÝ¾}»lgˆŽŽîÝ»·““SÓ¦Mƒ‚‚233 Ò1)86jÔ¨lO?}ú´ŸŸŸ››[5ú÷ïc^8p sçÎRj”Œ?^eó«Á€‘PD„Ù›;wnPP‹‹Ë´iÓÆŽûðáÃÀÀÀ;wäännnZ­V«Õ^¸p¡ O‰‰éÙ³gåʕnjãêêìããc9‰‰‰UªT©V­ÚÖ­[W¯^™••¥çs÷ïßß¡C‡ØØØaÆFEEùøø\ºt©œ]ÊÎÎ~çw¤¤¨“’’"„¨R¥Jù/YͪÀ06lØàéé¹wï^+++!ÄÔ©S÷ìÙãçç'w×ÄÅ‹-ZôþûïKßN™2eñâÅk×®=zt9Ïœ˜˜haaѨQ£{÷îI-Mš4Ù°aCëÖ­‹bNNÎĉk×®}üøqGGG!Dÿþý»té²lÙ²/¿ü²<]²²²úì³Ïò¶Ü½{÷³Ï>³´´µ¢ÈŸËcÇŽY[[K©Q‘šš*„ÈÈÈ(xdvvöîÝ»‹:ÏK/½dðn»¹¹Mš4I÷íܹsW­ZµsçÎ|Á± KLLÌÍÍ7oÞàÁƒ+UªôÓO?Mžþü²eˤÔ(„èܹó·ß~[½zuÃÞ®C‡=:11qåÊ•¿·ªBp˜žbÒ›Œ=ºoß¾ .$$$ÄÆÆ5œžž>`À€"¯®þŸ©yóæºD+„°µµõòòJHH(Ç:dmmíää$};|øð?ÿüówÞÙ¶mÛˆ#ŠéÒÅ‹…-Z´ÈÛ8|øpÞ®+W®Œ?~çÎû÷ïïÖ­›Áo¬Ú0Çxüø±ŸŸŸOxx¸‡‡Ç{ï½WTÉÍÞÞ^[4ãtØÊÊÊÚÚºü«U«–.5Jzõê%„ˆ-¾ÒTȼq¶(e»]›7onÞ¼ù‰'V¯^}þüyR£APq PŒVôDFF†……-]ºtâĉºÆ¢*ŽÆª–ÊŸº”–™™'%¼òt,%%e×®]ݺukÒ¤‰®1--MQ¯^½â»äéé)„8þ¼®qÁ‚iiióçÏ/çíÚ¹sç믿þòË/¯ZµªàØ7ÊŒà€\»vM‘7?mÛ¶-==½Ð’˜ñ‡ªoݺµ|ùòÉ“'Kß~ôÑGiiiC† )gÇlllÞÿý¶mÛþüóÏ•*UBäææ.Z´ÈÊʪgÏžÅwÉÛÛ»nݺK—.2dˆ”í’’’æÍ›WðÓKÛ+­V;uêÔ:uêlذÁÒÒÒà7SÍŽŒÚ!Ìž¯¯¯­­í¨Q£†Z»ví¨¨¨¸¸¸DFF†‡‡÷íÛ7ïÁÒØ«_}óæÍãÆ{ë­·–,YRèU«V ŠŒŒlÖ¬ÙÑ£GþùçÞ½{ûûûç;¬´suu7oÞ´iÓ<<<úöíëàà°wïÞS§NÍŸ?¿iÓ¦ÅwÌÚÚzéÒ¥/¿ürëÖ­¬ÑhÖ­[geeõÁ”³Wqqq.\hÒ¤ÉÈ‘#ó=äï﯄Eî¦K-ÁqëÖ­[¶lILL¬Zµj—.]¦L™¢[ÃU”³gÏ®^½:66öÑ£G^^^&Lhß¾½Ü×P¨ºu놅…͘1cùòånnn¾¾¾111?þøãŒ3–-[–/8\VVÖýû÷‹ÙÓ{üøñîîî¡¡¡ûöí«_¿þœ9s æ³²™:ujÆ ?ÿüó7Z[[·lÙ2<<¼OŸ>útlàÀsçÎ]³f¥¥eûöíçÏŸ_æ½Äu¤=Éãâââââò=Ô¨Q#‚cyhŒ6 WFÁÁÁ«V­²µµmÓ¦MJJÊåË—[¶ljccSÔS8ðî»ïæææ¶hÑÂÞÞþÈ‘#ÙÙÙ+W®Ôgj­——W||¼ÜINNvww—»ªV°â¨ç›B©ÒÈõ…_§¥²fÍšsçÎ-]ºTLÇtÊð“¦ÚNó_Uâææ¶gÏž½{÷6,&&fñâÅE=åÁƒÓ¦M³²²Ú°aÃÿûßÍ›7W®\yΜ9ŠúxP$þùçÁƒ[µj%wGL¦c(óŽ[¶lÉÍÍ4i’«««Ô2}út{{ûððð¢RàöíÛÓÒÒÆŒ£Ûõ¾eË–}ûö½sçÎÙ³gå¾ ò‹ŠŠjÒ¤Ék¯½&wGL¦c(óŽÇ·°°èÚµ«®ÅÒÒ²sçΩ©©'Ož,ô)¿üò‹F£É·€ëóÏ?æ™gä¾ òóõõ={¶>{"Ò1”‡™¿‘Z­611ÑÉÉ)ßÞ¤ÒÞQW¯^mÓ¦MÁg;wÎÑѱF'Nœ8uêÔýû÷7nÜ£GbæD¨ ìæÊaæÁ1###''ÇÁÁ!_»´•ÿÝ»w >%++ëáÇ5š;wîæÍ›uíuêÔYºtióæÍõy]//¯|-{öì‘ûf¨š´¿dåžœœœ÷ûÒ¼)ùŸ‹ŠÃ?¨Sñ¿dt‹ÄaæÁQZÿokk›¯ÝÎÎNñàÁƒ‚Oyøð¡"11ñöíÛ .ìÚµëŸþ¹mÛ¶¯¿þzâĉ»víÒ§î¨Î•V §œ…¢*ôwÉ0ÿ[ ÿ›ÂÛgLÜm¨Pñ?öÿ¬¬©„™ÏqtppÐh4ùÚ=z$þ®;æ£ûàÎ  0ÀÁÁ¡FãÇ8pàµk׊ùÈ#ófæÁÑÊÊÊÞÞ¾`eQúMÝ:ë¼lmm­­­mll|}}ó¶÷èÑCqṯ Piš#@vf…nnn©©©RRÔ‘¦2¸¹¹úWW×J•*iþý—J¡.êãêÌžùÇîÝ»çää>|X×¢Õj#""½½½ }Н¯oZZÚÅ‹ó6J{÷4nÜXî ‡ùÇ€€ ‹¯¾úJš×(„ ¹sçΠAƒ*Uª$µ¤§§'''ëÖ8P1{ölݲë³gÏ~ûí·ööö={ö”û‚5b´”ÀÌWU !jÕª5eÊ”… öïßßÇÇ'%%%::ºY³f£FÒ1yòd]»v !š4i´dÉ’>}ú´iÓ&##ãøñãæÓO?}ê©§ä¾ y˜pB >ÜÅÅeÇŽaaa5kÖ œ4i’´#OQÞ~ûmggçÐÐУG:::vïÞ}„ r_ `zؾ̆*‚£ÂÏÏÏÏϯ¨Gûõëׯ_¿|ƒ 4hÜP óŸãÀ<0Í(3ww÷€€¹{s@pÀ4ÄÄļòÊ+5jÔ°³³kÓ¦Mpp°B6‰‹‹‹ó÷÷¯S§NíÚµŽ=*w„âàÁƒ¾¾¾®®®O=õT§N~øá¹{dŽ˜€¤¤¤®]»îÙ³§OŸ>AAA•+W RBñðáÃÞÞÞG^8==½iÓ¦¹¹¹W¯^-xp~ÒTûÃIÅ€É`š#”/88¸eË–¶¶¶NNNíÛ·ß´i“¡Î|àÀÎ;ëR£büøñBˆ¨¨(=ÏÝ»wo''§¦M›eff–¿WÉÉÉ #FŒÐ}›ƒƒÃäÉ“Ož<£ÏNŸ>íçççææV£Fþýûëù¬â=~ü866öÅ_”R£ÂÖÖÖÇÇçÚµk¹j5#8`sçÎ rqq™6mÚØ±c>|¸sçÎòŸ9;;ûwÞ‘’¢NJJŠ¢J•*úœ!&&¦gÏž•+W3fŒ««kpp°Où§HJù$ï <{ölË–-¥FÙiahžžžrwù%%%ÉÝ•*æwLÙÞ~iU4Eýc1¹_§ 4ðôô|òä‰ôíýû÷­¬¬ÆW¯•ššÚ®];KKË‹/–xpýúõ…‹-Òµ¼ÿþûBˆÕ«W—³·nÝBäm”nÞ—+TvvvÓ¦M6lx÷î]©%""B1aÂÞ¨õë×Ï™3§U«V...ûöí+ô˜2ü¤™Ü§¡¨eG€Y‘qÖBÑ3m;fmmmeõ×ßÖÔÔT!DFFFÁ#³³³wïÞ]Ôy^zé¥â»pèСѣG'&&®\¹Rϧpss›4i’îÛ¹sç®ZµjçΣG.OÇÜÜÜ ´mÛ¶… >\«Õ®_¿~åÊ•Bˆ´´´â»túôéóçÏ/[¶ÌÑÑQjéܹó·ß~[½zuÞ®?þ811QѳgÏzõêés¯P ‚#S"Msd‰ ”ùCàèèxôèÑ}ûö]¸p!!!!66¶¨±àôôô}qE^Ý•+WÆ¿sçNýû÷wëÖMϾ5oÞ\—h…¶¶¶^^^ åïØÊ•+ïß¿?}úôéÓ§K7aΜ9sçÎupp(¾K/^B´hÑ"oãðáà x»„ QQQ#GŽ|î¹çâââò ¬£T˜ã€<~üØÏÏÏÇÇ'<<ÜÃÃã½÷Þ‹‹‹Ó-ÎÈÇÞÞ¾˜ÑÀ¢^bóæÍÍ›7?qâÄêÕ«ÏŸ?¯j,”•••µµuù;& =ztåÊ•ÿûßÿâãã›7o.„¨[·nñÈÊÊ’ºQbWËv»tªV­Ú½{÷ ܽ{wÇŽå¹i â€DFF†……-]ºtâĉºÆ¢*Že{ݹsç믿þòË/¯Zµªà`n‰¤ò§.¥effÆÅÅõêÕ«ü;sæLõêÕ;tèСC©åçŸÖh4;v,¾KžžžBˆóçÏûøøè,X––6þüòôj÷îÝ ظqã+¯¼¢k”Äõ š(Á€‰a´ÊtíÚ5!D“&Mt-Û¶mKOO/4©”vìU«ÕN:µN:6l°´´,C÷nݺµ|ùòÉ“'Kß~ôÑGiiiC† )gÇ„o¿ývlll||¼´˜:..nãÆ/¼ð‚ôm1¼½½ëÖ­»téÒ!C†HQ8))iÞ¼yw5/m¯Ú·o/„X·nÝË/¿¬ù{:ìúõë…ºt‹²!8`¾¾¾¶¶¶£F:thíÚµ£¢¢8àââÞ·oß¼Kc¯úŸ<..îÂ… Mš49rd¾‡üýýýüü6oÞú¨oß¾íÛ·8pà“'O¶lÙbccóå—_JÓ1kkë¥K—¾üòË­[·EM=ŠŽåySˆ¤GQÿXøuZ*kÖ¬9wîÜÒ¥KåîˆÉtL‡Ô«ª˜>{ÈçÏ?ÿ«DRplÔ¨‘A΂#†1wîÜ   —iÓ¦;öáÇ;wî,ÿ™³³³ßyç))ꤤ¤!ªT©¢ÏbbbzöìY¹rå1cƸººûøø”ŠäÕ«W…®®®ykÕª%„8{öl‰Oß¿‡bcc‡ åããséÒ¥òß±ÄÄÄ*UªT«VmëÖ­«W¯ŽŒŒÌÊÊ*ÿi!´04OOO¹»€ü’’’äèù{Űo ¿Ì EQÿXLî×iƒ <==Ÿ}þüùeË–éâ]çοýöÛêÕ«—ÿv%&&æææÎ›7oðàÁ•*Uúé§Ÿ&Ož<`À€sçÎÙÛÛësÇP(‚#s MsäãjÔC™oµ££ãÑ£G÷íÛwáÂ…„„„ØØØ¢Æ‚ÓÓÓ PäÕý£|åÊ•ñãÇïܹÓÃÃcÿþýú¯\nÞ¼¹.Ñ !lmm½¼¼Êß±•+WÞ¿úôéÓ§O—nœ9sæÎëààP|—.^¼(„hÑ¢EÞÆáÇäv:tÈÚÚÚÉÉIwÚ?ÿüówÞÙ¶mÛˆ#ô¼i(ˆà€<~üØßß?,,¬mÛ¶½zõêß¿‡ZµjUèÁöööÚÒÿÎæÍ›ß~ûm;;»Õ«W>WQ†^Ió,óêÕ«—"66¶<7 G 222,,léÒ¥'NÔ5Uq,ÃØëÎ;_ýõ—_~yÕªUsK$•?u)-333..NÊRåìØ™3gªW¯Þ¡C‡:H-?ÿü³F£éرcñ]òôôBœ?ÞÇÇG׸`Á‚´´´ùóç—§W)))»víêÖ­[“&MtÒÐy½zõJ{ëð/rO²4Cª0«dŠšïoödY£ÿë¢xŠúÇbZ¿N¿ûî;!ÄÞ½{u-[·nB¼ñƾÿ~©þ4çææ6nܸ~ýúÙÙÙeè›´8fÉ’%ºiXyûöíåì˜V«mß¾½Ýõë×¥oÏŸ?_­Zµ_|±Ä^effÖ­[·qãÆø œ½ruu7oÞ´iÓ<<<úöíëàà°wïÞS§NÍŸ?¿iÓ¦¥oñ‚#C"ºAµêÖ­6cÆŒåË—»¹¹ùúúÆÄÄüøã3fÌX¶lY¾àXZÒvÖqqqqqqùjÔ¨‘ŸŸ_VVÖýû÷‹ÙÓ{üøñîîî¡¡¡ûöí«_¿þœ9s æ³²éիמ={æÎ»nÝ:'''ÿ <õÔSÒ£ÅwlàÀsçÎ]³f¥¥eûöíçÏŸo]»§NÚ°aÃÏ?ÿ|ãÆÖÖÖ-[¶ ïÓ§A.YÍ4¥ý ”ÈËË+>>^î^à_’““ÝÝÝåî…*è+âM!¶–Ÿ¢þ±ðë´TÖ¬Ysîܹ¥K—ÊÝ“é˜N~ÒTûÃÉ'Ç0|ö TëÏ?ÿ}º½½}xxxnnn¡O¹råŠ"_¹@åÌ?8?~Ü¢k×®ºKKËÎ;§¦¦ž}úÈÝ¥0óà˜™™)„°µµÍ×ngg'„xðàA¡Ïºyó¦MPPаaä–£GŽ3fþüù:uªU«V‰¯ËÇd)P÷ZÁÖ,¨ ‰fœOQã³ÚJ‹;¦@¼)ò*øg]µŸ¢næCÕ&###_û£GÄßuÇ‚¾ûî»Ó§OëR£¢cÇŽ¯¿þzffæþýûå¾&¥À4G0 3ŽVVVööö+‹iiiBÝ:k}´k×NqñâE¹¯ e¤Z APvf…nnn©©©RRÔ‘æ<¹¹¹<^«ÕæääÜ©ÇÒÒRQ­Z5¹/¥¦&8P~æ»wïž““søða]‹V«ˆˆpttôöö.x|JJJÓ¦Mßxã|í§N*žÓ`(:Pæ,,,¾úê+i^£"$$äÎ;ƒ ªT©’Ô’žžžœœ,-[«_¿~ëÖ­;¶uëVÝIN:µvíÚZµjõîÝ[î P:LsC1óUÕBˆZµjM™2eáÂ…ýû÷÷ññIII‰ŽŽnÖ¬Ù¨Q£tÇDDDLž<ÙÃÃc×®]Bˆ>ø`Ĉ³gÏÞ¼ysƒ ®_¿~úôéªU«~öÙgÅ|¼5L‚Ttdyµai4BË0ÿŠ£bøðá‹/vww »{÷n```hhhÁÍu7nüÃ? 0àÎ;{÷î}ðàÁ€víÚõÜsÏÉ})²Ñh)š——û8*Š´8&ï.h «lÇäädcnMGYTOF~_ ÞRíßzUT¡fdD …à5by5e@p„J‘(-‚#U`S(?‚#Ô‹¢#¥Bp„9ceŒ°ZÔƒàU£è€þŽÔ‚iŽPNG¨EGôDp€^ŽEGôBp„ÙbI5 bš#”Á‚¢cY±¨ Áz!8¡è¨ŒV@™ ‚#ÌSÙVÆPt Gà_ÈŽ…à@u˜æeCpò£è@¡ŽÊˆM@mŽ@!(:PÁfˆD‰˜æe@p GÑ€|ŽÐ Á(EGò"8P)¦9@iâPt, {ñ€ anXR @!8% èhÆ­€R!8@/G dG@OdGŽ0+¬ŒAi1ÍôGpôEÑ rG¥Æ&Ž NG (:ÔŒà@í˜æz"8¥CÑ ZG˜–TP¡Ž@©Qt¨Á˜æz!8e¡æ¢#{ñ€j ‚#PFj.:š%F« DG˜ –TPÑŽ@ÙQt¨ Á(²#@=Žð¦9@ñŽ@yQt¨Á怕1FÃ&Ž fGÀ(:Ô€àÿ`š#ƒàEG€ÙSVpüâ‹/åî ¡¬àò / 4hÆ wïÞ•»;@éPt˜7eÇ·ß~»víÚçÎûä“O|||ÆŽ»wïÞ¬¬,¹ûEcI5 ‹iŽP+¹;ð/AAA“'O>yòäÎ;ÃÃÃ8pàÀêÕ«¿ð  xöÙgåî P©èh®A–½x@å”UqBh4šÖ­[Ï;÷È‘#+W®ìׯ_VVÖæÍ›_yå•^½z­X±âúõër÷@u¬¬¬ºuë5kÖ,›”””eË–uïÞýõ×_ß±cGNNŽÜ} ÁLG3Àh5J¹ÁQqïÞ½mÛ¶½ûî» .ÌÌÌB¸¸¸Ô¬YóرcÓ¦Mëß¿ÿÍ›7õ<ÕÖ­[¼½½Ÿþù™3gÞ»wOÿnܸq£uëÖS¦L‘û~ÈIYs%wîÜÙ·oßÞ½{;&•{õêÕ¯_¿Ö­[ !Ž=|îܹ>øà›o¾)ñ„ÁÁÁ«V­²µµmÛ¶mJJÊöíÛBCCmllJ|®V«6mÚ£Gä¾+0%æ=Ó ZÊ Ž7nÜ»wï‰'rss…NNN½{÷îÛ·o›6m,--u‡uêÔ©uëÖíÚµ;~üx‰çŒ qssÛ¶m›«««âÓO? ]¼xñœ9sJ|úwß}wìØ1¹o ФØ|Fv˜eÇ?þXáààЫW¯¾}û¶oß>o^ÌËÆÆÆÚÚºfÍš%žsË–-¹¹¹“&M’R£búôé?þøcxxø¬Y³,,ЬOHHnܸñ… ä¾7ŒJšæÈ*rÈKYÁqРAýúõëСCQy1/}ÊÒa]»vÕµXZZvîÜyçÎ'OžlÓ¦MQOÌÎΞ:uª££ãôéÓß|óM¹ï LEG€™QÖâ˜ðð𨨨¢Rã„ z÷î]ªjµÚÄÄD'''''§¼ížžžBˆ«W¯óÜåË—ÇÅÅ}öÙgÕ«W—ûÆò£üPVÅ1##ãÉ“'E=tåÊ•Òn☑‘‘““ãàà¯ÝÞÞ^Q̧ž>}ú›o¾ ìØ±cllli/ÄËË+_Ëž={ŒqUÈ]$''—xÔµk×dé]’HÒ¸k’’“dyuCs×çVëO®7EÆK6 ¦ð¾¨oŠìúôé#w”Bþà1vìXÝ·¡¡¡7n,xXnn®V«­[·n©N.mâckk›¯ÝÎÎNñàÁƒ¢ž5uêÔ:uê¼÷Þ{e»¨øøxãÝAûk Ø]¯ƒÝÝõ;®ÈøÒ ¿…ß­Vh4î*¬³*ü}Q'Þyü³^°B¤òGKKKÝXð½{÷*W®\µjÕBtpp˜>}z©Nîàà Ñh222òµKÛëHuÇ‚.\xíڵ͛7ë³_P>>)))ÑÑÑÍš55j”ˆˆÉ“'{xxìÚµKÞý‘ÃŒ‰ª@È'L˜ „hÑ¢…ôíûï¿_¯2|øp—;v„……Õ¬Y300pÒ¤IRõ0ŠŽ&ŠÑjÐÑhùuhh^^^ìãh¥ aÉÉÉJØÍtƒcE$'…¼)r]¾b™Ðû¢¼) ¤Ú¿õÊZU ˜7–WLšÌCÕ‡*íSºví*oŸÔIæàøöÛo—ö)ê¬ #Óóe¦£)bš#HdŽýû÷—ûÆFv˜(™ƒ#;#ÊG± aq VÉL‘ùr ”Ó@ÈðÉ1€21Ó`rTñÉ103ä-d!sp?~|Þoó~~4`ö(:L‹¢Ǥ§§geeÉÝ âïiŽ f2W óõ×_ÇÆÆÞ¾}Û¢víÚ­ZµzçwêÕ«'w×£è0!Š«8.[¶, àСC·oß®R¥ŠµµõÕ«WüñÇ~ýúmÞ¼YîÞªÃRb€Ž²‚ã/¿ü²råJKKËaÆíß¿ÿÌ™3§N:tèЈ#„Ÿ|òÉéÓ§åî#``ìéhB­ rÊ Ž›7oÖjµï½÷Þ¬Y³êÔ©£Ñh„5kÖœ:uê´iÓ²³³×­['w!3v‹²‚clll•*UÞxã‚ÚØØÄÄÄÈÝGÀð(:L‚²‚£¢FVV…,Ù‘VÉdddÈÝA•RVpôöö¾zõjZZZÁ‡ÒÓÓ“““›5k&w AÑÑT0Í€š)+8hµÚ3fdggçmÏÉÉ™9sfNNN÷îÝåî#PQÈŽ…“yǨ¨¨¼ßZZZúûûoß¾½gÏž 4Ðh4ÉÉÉÛ¶m»zõª——WŸ>}äí0äÅÊ#c/@^2Ç7ß|³Ðö7n,[¶,_c|||ÇŽãããåí3PqØ d2ÇþýûË} t¤iŽÔb¨ÌÁqÑ¢Erß@Y(:KY‹cŠ7mÚ´nݺÉÝ •’¹âXн{÷~þùç”””|í™™™ûöí³´´”»ƒ@…£èP&eÇßÿ}È!ׯ_/ꀡC‡ÊÝGȆ,å`š#uRVp\·nÝõë×Û¶mëçç·{÷î_ýõƒ>°±±¹páÂÆ‡:kÖ,¹ûEG€)+8>|¸J•*+V¬¨^½z·nÝ:uêäîîÞ±cG!Dƒ >þøã—_~ÙÃÃCînª@E ²Çܼy³~ýúÕ«WB¸¸¸8::ž;wNz( ÀÑÑqݺur÷0>HFáøìA*¤¬à(„°°ø§KuëÖMNN–¾¶´´ôòòЉ‰‘»ƒ*¥¬àX£FË—/§§§KßÖ©SçĉºG5͵k×äî#`<Š¢¬àØ£GÌÌÌ÷ßÿÒ¥KBˆ6mÚ\¹r%22RqçÎß~û­víÚr÷ò`¥²SÖâ˜aÆíÝ»÷ÀZ­vÕªU;w¶²²?~|«V­.\¸‘‘ѯ_?¹ûË«•ŒMy¨²*ŽÎÎΛ6m jÑ¢…¢víÚ³gÏÎÊÊ:räHjjj÷î݇.wccÀ ʪ8 !œß~ûmÝ·C† ñóó;{ö¬››[ƒ äî Ò).8敞ž^©R%;;»:ÈÝ@N X”@‰Á1&&æë¯¿Ž½}û¶……EíÚµ[µjõÎ;ïÔ«WOî®Ad&(Ӎвæ8 !–-[pèС۷oW©RÅÚÚúêÕ«?þøc¿~ý6oÞ,wïÙ0Ó ;eÇ_~ùeåÊ•–––Æ Û¿ÿ™3gN:uèС#F!>ùä“Ó§OËÝG•RVpܼy³V«}ï½÷fÍšU§NF#„¨Y³æÔ©S§M›–ÍGBÍ(:䥬à[¥J•7Þx£àC666|ä ¥áC«¨‡²‚£¢FVV…,Ù‘VÉdddÈÝA@N2RVpôöö¾zõjZZZÁ‡ÒÓÓ“““›5k&wal,©6>–  ¥¬à Õjg̘‘·=''gæÌ™999Ý»w—»€Ì(:*£ÕTBæ}£¢¢ò~kiiéïï¿}ûöž={4hÐ@£Ñ$''oÛ¶íêÕ«^^^}úô‘·Ãª%sp|óÍ7 m¿qãÆ²eËò5ÆÇÇwìØ1>>^Þ>²ãƒd²98öïß_î;½È-Z$÷€¢QW+ EG¥á³¨?«ZqëÖ­¸¸¸”””'Ož4hРI“&µjÕ’»S€²F¦¸àxïÞ½åË—ÿý÷999ºFKKËW^yeÒ¤Iööörw0s”ÍEQVpÌÉÉ;vì©S§ªT©Ò£GzõêYZZ^¾|ùàÁƒÿùÏâââ6mÚdii)w7¥ è0&eÇï¾ûîÔ©SÏ>ûìòåË]]]uí·oßž0a©S§¾ûî»#FÈÝM(Ó˜=em~øðaF³téÒ¼©Qáââ²lÙ2 ‹_~ùEî>ÊÂ~à£QVp¼páB½zõjÖ¬Yð!77·† ÆÅÅÉÝGƒ°(в‚c•*U233‹z433ÓÆÆFî>ŠCÑ`Ê ŽMš4ùý÷ßO:Uð¡sçÎ]»v­qãÆr÷ŠÄ‡V0oÊ ŽÒɼûî»ùæ2FFFŽ?^áçç'w%¢è0e­ªîׯ_DDÄŽ;FU³fÍúõë !RRRnܸ!„ðóó{ñÅåî#`ÎX (†²‚£bÁ‚íÛ·_ºtéÍ›7oÞ¼)5º¸¸Lžû,;;û“O>‘û%`yµ°)s¥¬à8gΛ•+Wþù矆:ç–-[rss'Mš¤øž>}º½½}xxxnnn¡O‰ŠŠ²±±;v¬®Åßß¿F±±±999rß$ dG@QÖGWW×/¾øâƒ>èß¿ÿþýëÖ­[½zõ|ÇtíÚµTç<~ü¸……EÞgYZZvîÜyçÎ'OžlÓ¦MÁ§888xzzZ[[çm¬R¥JVVVVVŸ^cLÔ“K:ÅSVpôõõ•¾¸sçÎòåË =&>>^ÿjµÚÄÄD'''''§¼ížžžBˆ«W¯7nܘ¯åøñãW®\yöÙgI0 ¬’TeGé“c (###''ÇÁÁ!_»½½½âîÝ»Å?ýÔ©SÛ·oONN>uêTݺu.\¨çëzyyåkÙ³gO…Ý6sä.’““ x¾k×®É}IFW–{ènØÛ^<ó~S’’„Fãž”d¼ûi(æý¾˜(ÞÙõéÓGî.(…²‚ã¢E‹ {Bié´­­m¾v;;;!ăŠz||ü¶mÛ´Z­¢Y³f•+WÖóuKUE¡ÜÝÝ~B…Ó ­Æ½ÔEG#ß%³SLôM´Ûæ7E^ÿ¬¬©„²Çä“•••‘‘Qž3888h4š‚'yôè‘ø»îXŒW_}5...22rÚ´i{÷î2dˆôDRbpLHH˜|X×¢Õj#""½½½ _½zõÿýïÛ·oÏ×~åÊÁ,˜ŠŽRVpüÏþ“››;eÊ”Y³fÕ©SG£Ñ!jÔ¨1eÊ”™3gææænذ¡´ç °°°øê«¯tÓCBBîܹ3hРJ•*I-éééÉÉÉÒ²5777//¯ÈÈÈèNráÂ…M›6ÙÙÙµmÛVî›T6q”HY«ªÏž=kmm=lذ‚ 2dñâÅgÏž-í9kÕª5eÊ”… öïßßÇÇ'%%%::ºY³f£FÒ1yòd]»v !>ùä“×^{mìØ±ÞÞÞO?ýôüqâÄ !ÄçŸîìì,÷MJ‡=†¢ ŠcvvöÍ›7ÝÜÜ,-- 騅EÍš5µe*‰ >|ñâÅîîîaaawïÞ -¸¹£NË–-wïÞý /ܽ{wß¾}¿ÿþ{¯^½~üñÇ_|Qî›À”0Í€™QPÅQ£ÑT­ZõêÕ«÷ïß/˜êÒÒÒ._¾Ü¥K—²ÜÏÏÏÏϯ¨Gûõëׯ_¿¼-õêÕ[²d‰Ü·0 ŠŽƒPPÅÑÒÒÒßß?77wÚ´i?ÎûPVVÖôéÓ5͈#äî&*ùÅRPÅQñÚk¯ÅÆÆ:t¨Gƒ rww×h4ÉÉÉÿûßÿnݺկ_¿G:tHw|ƒ êÖ­+w¯ã*Ó2ŠŽJ#м³Òh5 ˜eGÝxñü±råÊ|†……………åmyÿý÷ó®qÌŸ”A¤ys„eRc1Ù̆²‚cÿþýKu|£Fäî2 )2–2>St¤$Vfº¼Hv Ê Ž‹-’» €éÐÅGCdG”A¾¤(eGA|`¾´8 Ó”…4rͦ/FWh}Q›'>þÓȦ<ÌÁ0EµZýã#BhÅJÌŽ`”5T  ìÊ4ñe Ï\F¦<0KTó¢Gõ‘¢£qHÙ‘ ÀœPqLD©V>S}¬0¥ª#juOa7GfŠ#`¾Š®>Rt,›²>3å€Ù â¥`IuE)©úH%LO噳¨BÃM`ú¨8¦ üáNW}Ô5Pt, ¬tÑ0å€É#8j¦ebõÑZ­†­˜6†ª•É3r­ÕJEGÆP‹cðÄN=LÁP¼Š˜„øw|¤V¼ JxdG&Š¡j@Å´Z¡Õjƒ×…3|­1Ï,Svy`ŠŽP–TËH£eîc!ŒPÔ²SSCp”­‚7ËÑhþ^^]š¼6{ÆG&;0!Gy¶æ)°k ö!Ù€© 8(@ťNJNEÅr²#“@p DÁýÀU9r-ïJg–ËP>¶ãüXS$Ù? °¤+„aI·˜z(G)òCÕQ}TN\cØ€bèǬã£Q—Që±úˆì@™Ž€RÉ1N]dÑñŸ#Ì0>*§Ö˜S(ÁP¯²GS3ÚµG™©QÂᔆàà_J.:þs¨É—•œuÈŽ”ƒà™±¤ºp²¯§Ö“)\˘K[®%;P‚#€üJQtüë ¦M¢Ö˜S(û80ÓÙôÑäR£„]ÈŽŠ# < §.uÑñŸg*½ú¨àUæÅE [G@©ÕG…¤ÆrҚ˅09T!'VÆÈ¨Ä²fÙ‹ŽÿœBYÕGs [Ly ‚#€" ; ¥lúhN©QÂ.Œà(Œ&8VYKÊL‰ÓdGÆDpPÃÿ:—<#×ÊLDv`4,Ž`\¯›qÊZ7cÒtÙ‘  BQq”D‘ãÔ†,:þsRmrR’ªf_nÔaÊ## 8B6,©FE^+?5|ÕÙ@…"8(Y…ÿ9{…ÄGå§Æ BvPqŽ€bqœZ‰CâݵGµ©QÂ.*Á€^*¶èøÏË ô¨òÔ(aÊ#€Š@p 0å¹6¹ÔX¡›£“ÁP%çg¤¢ã_/V–øhr©ÑÈŽ ˆ}!–TC/oúøÏ×E#5…] G¥`Ô¢ã?¯ZrõѤS£>Ê›) ‚Š# ¦0N-¿¢«&I˽P>TÕ)gL•§èøÏËçßµ‡$T*Ô”Á@©ÉœÅ?»öË€]”Á2`e @«ÕhµÚŠÿ´kc]Q¯ƒ)ʆàÈÍ4'8Ê^tü«ÖXÁŸvmÞÈŽJ‹Å1L_ivíA^,—P*T”‘ŒEdzÕÇ2¡î@G@V¦9N-¯*d&<Íñ_/Írú!8(;ãõW5Ùø(–ËÐsal,©–—I—8K=O7÷Ñt¯Ù¸´BhÜݹYŠBÅY£˾†ƒÒci$%'s§…àÀ”w寉Œ\Ë8Íñ_Ý`Ê#€"”WE ¶_Œ‰ÄG%`Ê#€B©eŽãÖ­[·lÙ’˜˜XµjÕ.]ºL™2ÅÑѱ˜ã333ÿûßÿnÛ¶íÚµkÕªUóôô>|øóÏ?/÷uÀŒ˜Å8µ~—A6}Ô»<ÈGÁ188xÕªU¶¶¶mÛ¶MIIÙ¾}{BBBhh¨M¡Çggg¿ùæ›§OŸ¶··ïСßþù믿FFF¾ûî»ï¼óŽÜW(‘Tt4ø²§ L-JRIT9=";ÈËü‡ªãããCBBÜÜÜöìÙ²wïÞaÆÅÄÄ,^¼¸¨§lÙ²åôéÓ­[·ŽˆˆX¹råºuë~øá‡¯¿þ:..Nî 2m,©†þŒ‘W¼ÖSè˜pܲeKnnî¤I“\]]¥–éÓ§ÛÛÛ‡‡‡çææú”={ö!fÍš¥+IzxxŒ3&''çÈ‘#r_PvZÊ2ìLG£V¹tñE`Ê#‰ùÇãÇ[XXtíÚU×biiÙ¹sçÔÔÔ“'Oú”ääd[[ÛfÍšåmôððB\½zUî ‚YPÔ`¤á*;Ê36Jé±$dGf>ÇQ«Õ&&&:99999åm÷ôôB\½zµM›6Ÿµzõj+«üw&66VQ§N¹¯ 0srΨSÆÄG¥MsüWߘò¨›™ÇŒŒŒœœ‡|íöööBˆ»wïú¬¦M›æk‰ŽŽ ©R¥Ê€ôy]//¯|-Òð7„»HNN6þË^»vMî+Ïwä¹B¸Wôë&‰$»&)9©Ä#‹|SÜ+¼“%]C’Â]£B$'•|!C¶›Pâ?–$!4îîBˆ$yß&5QÚo0êÓ§Ü]P 3Ž™™™B[[Û|ívvvBˆ”x†œœœM›6}þùç999_|ñ…³³³>¯/÷¥+Ñ_+cÜåyuww™^¸¡Z­\½1Î}ÐóU öW5K o–V+þ޲Tÿdü‰-ñ¥¥ÛÁ‡“‚~ƒ©RÁ?ë+D*aæÁÑÁÁA£Ñdddäkôè‘ø»îXŒ_ýuÞ¼y—.]ªY³æüùó;vì(÷& Ì[ó(q Tƒ×Êİ5 Bf­¬¬ìíí VÓÒÒ„ºuÖeee-Z´hÆ ÖÖÖ&L1bDQ›>0EG£ÇG%OsüW?þÆ043ŽB77·ÄÄÄ´´´êÕ«ë¥ÉCnnn…>%77÷½÷Þû¿ÿû¿=z|øá‡ÅäK ÔL"”[i‹Ž¦>tñQï þtK­¹)€˜ÿv<Ý»wÏÉÉ9|ø°®E«ÕFDD8::z{{ú” 6üßÿýßk¯½öõ×_“a6xL#5ê°kOìò¨‡ùÇ€€ ‹¯¾úJš×(„ ¹sçΠAƒ*Uª$µ¤§§'''KËÖ´ZíÆ«U«6mÚ4¹û˜0=÷t4±Ôø×µñy3… ;j`þCÕµjÕš2eÊÂ… û÷ïïãã“’’ݬY³Q£F鎉ˆˆ˜›ú{  $æ…ÇwqqÙ±cGXXXÍš5'Mš$íÈSTwÌÌÌJ'3QLyÌ’*†ª(‡Ù¦F¯uwB o7 2TU±Ü™·è¨¢¡«>ª›”Õ~3Bp„1°¤BU©Q‡]{Øå0/GÀ(T9ÁQG+´jL]|¹&>šMՒ옂##Ñg?p³ÅžádGÀ,°8@…Ó$ª_7Ã.€©£âT²C8`ZŽ ŒZcÙÍ{4›å2€ !8IãÔÆ¾b=R#EǨ²úHvLû8¢b±¤ZU¨5’ú6}Ôò#(Á€a”êO¾Vh5îüO…þŽZ!4­ÙHvŽ¡j@¡¨biµB«Õªc,—)€’ £Œ ŽFèEÙRcRr3KE#T4ñ‘ì(CÕÊ…Z£Q©iâ#S¢âˆ ÄʳWοë,¯.•6åQͲkvy”†àT eŒS+Ù±ìÔ™ò( CÕʈaDEPÇà5ÃÖ€BPqPü+NÑÑTP}¤î(Á¨æ>NMíG.%|ö ¹ÇG¦<²#8(ŠH IÍSyQQXR­/}Rk4*(=0>‚#`hæ;N]¡©‘¢£á™õÈ5ÙÁ€^¨5*D©G¡Í7>2å0>‚#€’'5Rt¬@f™òû8eŽãÔÔ͇™núÈ.€ÑPqP#ÿ=¦è¨ò®™6Çê#uGÀ8ލ,©6TqÌ™ÙíÚÔGÀŽ€Ù*ç°¹\©‘¢£Q™Wé‘)@EcŽ#`8f4Á‘Z£Š˜ÝÄG¦<‡à ?ÙÿèJEGf;C*2æýÝ…9ÄG²#PAª D XËC«MNJ2Ák¦<Š# O¥µ"s§¦N³¼–ºÎ4`@TüCQb):ÊÌ\vía¹ `@GQTjD‰Œ´—ŽYìÚCv …à‚éS+35RtT Ó/=2å0æ8æ©TQV™©Êbú™ò”G@íþw”¢£²˜þÄG†­ò 8ÂÀÔ¸¤Ú”Ç©žQ<Ù&šx|$;eFpÔËTR#EG…2åøHvʆ9Ž€J™Jj„Ò™ìÜG]v4¥Nr£â”iŽS›\j¤èX¥l•cšÕG-¥G ”Ž€ê˜\j„É0ÍMÉŽ€þŽ€*¦ jº©‘¢£É0ÍÒ£)usaHj\RmRL75ÂĘàÄG¦<ú â”ƒiNp4] ¥ÜÁaS›øÈ”G DG@-Ì£ÜHv4=&M££€ªTÁJÙQ齌ŽàƒaeŒ2™YjD¡”;ͱ¨îšB™òDpÌ™¹¦FŠŽæÀ¤J$ÌqÊDÁãÔº®™kj„ù0‘‰Lyt¨8æÉìÿÎQt4¦0ñ‘)€„à˜!³O(È& –tÊŽLyÁ( S !„jÖ(Qt4C¦Ú3À(Ž0 –T+„Fðg ¦OÙñ‘ì5#8æC…#ÔÍ™‚wíaÊ#TK-ÁqëÖ­ÞÞÞÏ?ÿüÌ™3ïÝ»§ç“’’¼¼¼Îœ9#÷%PajD>JMY†¸*å]S¡NªŽÁÁÁ³gϾtéRÛ¶míìì¶oß>zôèÌÌL}ž»aù»…QäG]jTdï*EGó§à‘k²#ÔÆü÷qŒ qssÛ¶m›«««âÓO? ]¼xñœ9sŠzVZZÚÅ‹wîÜùý÷ßË}@ ¨5B”ºé#»ýôÓÇ !6nÜxôèQ¹/Š¡¼‘`J);ò?0j¡¼êã_sEø÷sgæÁQ«Õ&&&:99999åm÷ôôB\½zµ¨àØ©S'鋃Ê}@‘ø+USd|ä_%Ì›™ÇŒŒŒœœ‡|íöööBˆ»wïVÐëzyyåkÙ³gÜ7£"¹‹ääd¹;Qœk×®èBt¥ ÜÝ“ é»rzXrwA)Ì<8JK§mmmóµÛÙÙ !¬kÑjµŽŽŽÞÞÞr÷(R#ôdþ»9êIñ‘]aNÌ?8XXX|õÕWÒ¼F!DHHÈ;w T©R%©%===99™ekP2R£þ(:â_™ò³aæs…µjÕš2eÊÂ… û÷ïïãã“’’ݬY³Q£F鎉ˆˆ˜J/Æ?s˜*ŽÌ–Ê‹ŽlÊ£/ùª,µ†É!8JDÂPTžQ 2ÅG²#L CÕ(;U,>cœšÔÈFŽÁk]vä>”Š# ,¤Fƒ£èˆRÓUö‚”a"Ž€‚aXLs,£\“¡|G hƧ&5VŠŽ(#£O|$;Bá˜ã(B9S#›8ȸ™ò%£âÈZ£PtDy±úÈ”G(ÁedþKªUÄ#5¢B1ÍÑÀŒyë 4G@N¤Fc¢èƒ1V|$;Bi˜ãȆÔ˜6£Ì}Ô ¡qwüº€2PqäAj”EG^Åoú˜”œLé Ap SÁI0&¦9CÅ\“¡GÀØ žÙ‹§T(:¢¢TüÄG²#dÇG”…ù/©€²©à‰ìòyQq ¨È ƒÔJ Â¢#£ÕÆV‘ÕGvy„Œ¨8ÆCjÔ¥"«Z~¥@T#áW¼¢¨°èÙTXõ‘º#Œàü[ÅŒS“ˆì£ª˜]{¤ìÈÏ1Œ†àˆRceLi‘¡LsT„ (=2åÆDp*©QÉ(:B3rMv„q°8ÈÃÐãÔFHl☤ X7ÃrG ¢ðÜ$Pt„œ ]}dÊ#*Á¨¤F(ÓÊ ñ‘)¨PGào†ô%5šŠŽPCÇG~¦Q˜ãˆÒaIu‰HÊÎps™òˆŠ@Å0$~M›(ŠŽPmúÈ”GÁ0R#”iަÄ#×Ly„a1T ! 0ÁQ–ÔÈ^<$™‰eÑj…îå¹f؆BÅEKNJ*õ‘º# ‚àÿ+oT2Ó‘ÑjSUîe×dG”CÕ(³È+߈/©€ñ”oÙµ.;ò[ eCÅ(R£™QIÑ&¯ÕG–Ë <Ž@Ù‘ÍÙ&£»öQ6G¨^YÇ©I0]Ls4+å(=òS€Ò"8eAj4oabÊ:rÍá(-Ç@_f»2¦ô’ÙÄÀ¿”iÝŒtœB~­Aù¨8BÝJ¾øõªaªÊT}dØz"8¥@j„Ù`š£™+}|$;BG@_¤Fµ¡è“WÊøÈ”G”ˆàè…ÔÀT•f×vyDñŽP1½'8’U‹¢#ÌGéK@AGèEÍKªI0WLsTÒŒ\“Q(‚#PŦFöâ1ŠŽ07zÇG¦<¢ öq„Z‘¼¨™~›>²Ë#ò¡â‰ß•˜qÑ‘ÑjµÓ¯úȰ5t¨8…#5P =ªZ~+BAÅú0Õ1%Sóûù˜qÑøKIÕG¦êAp„Ú‘QZ¡j…ÅG²£z¡j¤F(‹»ö°Ë£J¡^¤F”EG@ˆü»ö0åQ ŽP“<I@^LsD¹&;š7‚c‘¶nÝàííýüóÏÏœ9óÞ½{r÷e×§O¹»`0f³©¿)æZt4õ÷Å,™À›òïøHv4cÇÂÏž=ûÒ¥KmÛ¶µ³³Û¾}ûèÑ£333åî—±™Û’ê®Ë¯ ä•'>2åÑ\ âææ¶gÏž½{÷6,&&fñâÅrw åðw¥ŽÔC1³¢#£Õ0Œ¿ã£öïøsBp,Ä–-[rss'Mšäêê*µLŸ>ÝÞÞ><<<77WîÞ¡\H` yâ#ÙÑœ qüøq ‹®]»êZ,--;wšzòäI¹{‡²#5Âà̬è˜V+´Z²£9!8æ§Õjœœœœœò¶{zz !®^½*wQñ/j´æ±¤ŠCvJðwvä߉°’»Š“‘‘‘““ãàà¯ÝÞÞ^q÷îÝÏp1>ÞŒþmhÍäZ´ZaFÛ½¼¼äîòoñæòó¥…¹\‹91ƒ0­B£Õ¹ü/¼§Ü Á1?ié´­­m¾v;;;!ăJ<ƒ™ü›0?fõÆÄËÝ(=sÚ§#^¥¿‡ªÎÏÁÁA£Ñdddäkôè‘ø»î BÇü¬¬¬ìíí VÓÒÒ„ºuÖjCp,„››[jjª”u’““¥‡äî€<Ž…èÞ½{NNÎáÇu-Z­6""ÂÑÑÑÛÛ[îÞȃàXˆ€€ ‹¯¾úJš×(„ ¹sçΠAƒ*Uª$wïäÁÞv…[»víÂ… k×®íãã“’’Ý´iÓµk×ܦ@%ŽEÚ¹sçŽ;bbbjÖ¬Ù®]»I“&I;ò¨ÁzaŽ#ôBp€^ŽÐ Áz!8@/Gè…འfëÖ­ÞÞÞÏ?ÿüÌ™3ïÝ»'wÔ.33ó»ï¾{ñÅŸ}öYŸ#F9rDîNá7nÜhݺõ”)Säî„âìÙ³ãÇ÷õõmÛ¶m``௿þ*wÔ.++ë›o¾ñ÷÷÷ööîÖ­Ûĉäî”J%%%yyy9s¦ÐGÕöןàhÁÁÁ³gϾtéRÛ¶míìì¶oß>zôèÌÌL¹û¥^ÙÙÙo¾ùægŸ}öÇtèСQ£F¿þúëðáÿþúk¹»!„ÐjµÓ¦MÓ}<äuàÀ!C†8pÀÕÕÕÛÛûÔ©SÆ ;pà€ÜýR¯œœœ7ÞxcñâÅ÷îÝóññ©]»öÞ½{_zé¥ãÇËÝ55Ú°aCQ©ñ¯¿åváÂ…ÆûøøüþûïRË'Ÿ|âééùÑGÉÝ5õÚ´i“§§ç!C222¤–‹/¶k×®I“&çÏŸ—»wЮ]»ÖÓÓÓÓÓóý÷ß—»/jwÿþý6mÚ<óÌ3'NœZΜ9Ó¼yóŽ;æääÈÝ;•’~ƒMœ8ñÉ“'RËÑ£G›4iÒ«W/¹»¦"<8~üø| ý²:}út¾Ôù×ŸŠ£lÙ²%77wÒ¤I®®®RËôéÓíííÃÃÃsssåîJíÙ³G1kÖ,©ÅÃÃc̘1999 XË.!!!88¸qãÆrwB±}ûö´´´1cÆ´nÝZjiÙ²eß¾}ïܹsöìY¹{§R'OžB¼ñÆVVVRK‡š4irùòå»wïÊÝ;µðóó:tè÷ß_ÔêüëOp4€ãÇ[XXtíÚU×biiÙ¹sçÔÔTé?Œ/99ÙÖÖ¶Y³fy=<<„W¯^•»wª–=uêTGGÇéÓ§ËÝ!Ä/¿ü¢Ñh ·ñóÏ?æ™gäîJÕ¬YS‘7#jµÚû÷ï[XXè¢$*Ú§Ÿ~ºbÅŠ+VtìØ±ÐÔùןŸ¿òÒjµ‰‰‰NNNNNNyÛ===…W¯^mÓ¦Ü}T£Õ«Wüõ+„¨S§ŽÜ½SµåË—ÇÅÅ­]»¶zõêr÷BqîÜ9GGÇ5jœ8qâÔ©S÷ïßoܸq=tÕzß‹/¾úé§ŸV­ZõÙgŸ½wïÞŠ+®]»öÊ+¯ðÇh:uê$}qðàÁ‚ªö¯?Á±¼222rrròµÛÛÛ‹ÿÿ"Œ©iÓ¦ùZ¢££CBBªT©’¯²c:}úô7ß|رcG)ÇC^YYY>lÔ¨Ñܹs7oÞ¬k¯S§ÎÒ¥K›7o.wUÊËËkÆ o¾ùæ›o¾©k œ9s¦Ü]Ã_Tûן¡êò’OÙÚÚæk·³³BB$&&†……-\¸ð×_ˆˆ˜0aÂõë×'Nœhæ‹C,--mÁ‚éééÍš5{õÕW{öìicc³cÇ–º+‡jÿúSq,/F“‘‘‘¯]ÚgDú?Èè×_7oÞ¥K—jÖ¬9þü¢¦ªÀ.\xíڵ͛73ªÖÖÖÒ ,èÖ­›ôõøñãoܸ±}ûöÝ»wªÑÔ©Sûí·éÓ§¿õÖ[RË7^}õÕÉ“'ÿôÓO 4»ƒPï_*Žåeeeeoo_ðÿ-ÒÒÒ„º•V0¾¬¬¬O?ýô7Þ¸qãÆ„ ÂÃÃI2:vìØæÍ›ß~ûmÖ[(Š­­­µµµ¯¯oÞö=z!.\¸ wÕè?þ8xð`£Ft©QQ«V­qãÆ=yòä‡~»ƒBÅý©8€››[bbbZZZÞ9ËÉÉÉÒCr÷N¥rssß{ï½ÿû¿ÿëѣLJ~hÆÿ†M…ô¡Òżí?ýôÓO?ýäáá±k×.¹û¨R®®®÷ïß×h4y¥ªpvv¶Ü½S£ÔÔT!DýúõóµK…ÆÛ·oËÝAüEý Žн{÷øøøÃ‡¿ð R‹V«ˆˆpttôöö–»w*µaÆÿû¿ÿ{íµ×>üðC¹û!„¨W¯žîˆäÁƒ‘‘‘µjÕòöö®Q£†ÜT/__ßõë×_¼xQZ *‘6a¯MYÔ¯_ßÒÒ2!!A«Õæ ôñññBˆFÉÝAüEýª6€€€ ‹¯¾úJ÷ùi!!!wîÜ4hP¥J•äîiµÚ7V«VmÚ´ir÷éÔ©Ó’ B´iÓfÉ’%S§N•»ƒê5pà@!ÄìÙ³uë@Ïž=ûí·ßÚÛÛ÷ìÙSîÞ©‘MçÎSRR¾üòKÝ>Ò +V¬¨\¹r¾I‘:ÿúSq4€ZµjM™2eáÂ…ýû÷÷ññIII‰ŽŽnÖ¬Ù¨Q£äîšJݾ}ûÊ•+666C‡-øèÀåî# Mš4 Z²dIŸ>}Ú´i“‘‘qüøqFóé§Ÿ>õÔSr÷N¥>ùä“Áƒ¯X±",,¬iÓ¦©©©¿ýö[nnîìÙ³6l(wïðuþõ'8ÆðáÃ]\\vìØV³fÍÀÀÀI“&Ikòa|×®]Bdffž;w®à£,‘òyûí·CCC=êèèØ½{÷ &HŸ´Y8;;‡……­Zµ*22òСCŽŽŽ]ºt;vl‹-äîþE…ý5Z­Vî>À0Çz!8@/Gè…འ‚#ôBp€^ŽÐ Áz!8@/Gè…à@]¦L™âååuèÐ!¹;"¾úê+//¯M›6ÉÝÐÁz±’» R¾¾¾ÎÎέ[·–»# /‚#È£Y³fÍš5“»P U€âäääûl×®]G}üøñb®è›o¾É»8Fêɵk×BBB:tèмyó6mÚ¼úê«û÷ï/ê §NjÚ´içÎ>|¨k|ôèQ×®]›6m#÷›Àܘ???!ÄÞ½{óµïÚµK1`À++«;wî :tõêÕ7nܨ[·îÓO?}õêÕuëÖ 2äÞ½{åyõÅ‹1bïÞ½ÙÙÙ®®®'NœX¾|y```jjªt@BB‚ŸŸß÷ߟššÚ°aC­Vñúë¯8p T/´zõê/¾ø¢R¥J:t°··?uêÔ;ï¼^èÁÞÞÞ#FŒøý÷ß?ûì3]ãçŸ~óæÍqãÆµlÙÒØosGp`Ú¶mëêêzõêÕóçÏësss¥Påïï/„ؾ}ûåË—»uëväÈ‘;vüôÓO‘‘‘mÛ¶½~ýúÏ?ÿ\æ—>xðà7ß|S§N­[·:th÷îÝ¿üòK—.]NŸ>½råJé˜Å‹§§§;öèÑ£Û·oˆˆ˜5k–V«]¶lY©^kË–-£G>|øðwß}·oß¾7ß|SZÔñï¾û®‡‡ÇöíÛ>,„ˆŠŠúïÿÛ¢E‹±cÇÊ÷^0[G¦ÁÂÂâ…^ÿ.:ž8qâ÷ß÷öönÔ¨‘";;Û××÷ý÷ß·µµ•¨^½ºTªLII)óK/\¸P±téR] ÏÙÙyéÒ¥nnnÛ¶m»ÿ¾âÂ… Bˆ€€KKKé˜!C†Œ7®G¥z­–-[¾÷Þ{Ò%7Nqùò墎¯T©ÒçŸnee5{öì?þøcÖ¬Y666‹/Öu ˆàÀdH0︭4N=hÐ éÛwÞygÕªU 6ÔpûöíÝ»w—çEïÝ»—œœÜ Aƒ|+ «V­Ú±cÇÌÌÌsçÎ !¤ä:}úôcÇŽI³-+Uª4qâÄ &”êåúöí›÷[{{{KKK­V[ÌSš6múÎ;ïܺu륗^º~ýú´iÓêׯ_Qïuc;&£Y³fõë׿|ùr||¼——Wvvöž={lllúõë§;æúõë¿üòˉ'®^½zåÊ•rNmB$%%Iÿõòò*ô€›7o !æÍ›7iÒ¤cÇŽ½þúëÖÖÖM›6mß¾}¯^½š6mZª—{úé§ËÐÉ·ß~{ÿþý±±±íÚµ2dˆAï:üƒàÀ”øùù-_¾|Ïž=^^^‡~ðà¿¿¿n`zóæÍŸ|òIvvvݺuÛ´iÓ£GæÍ›'''ôÑG¥z•œœ]‘/++KQ»ví¢kÕª%„xúé§·nÝzêÔ©_~ùå×_=wîÜÉ“'W®\9xðàO>ùD£ÑèùÒ•+W.ÃmyôèÑíÛ·…III÷ïßwpp¨ø·€˜]pœ8q¢4­§~ôèÑÇ\¹råÕ«WwêÔI÷”[·n•öUnܸ‘››+}Ý A!DÕªUgΜYü³4´"++ëðáÃ3fÌØ¶m[·nݺwï^¡·åÃ?üã?ZµjuòäÉ>úhÉ’%úrT‹9ŽLI½zõš7ož””töìÙŸþ¹^½zmÚ´‘:{ölNNN«V­ò¦Fñ÷²•âåÑÞ·oŸîk777—K—.ÅÆÆæ=&''gРA>>>wîܹ~ýz·nÝ^~ùeÝ£•+WîÞ½»´šçÚµkzOvîÜÞ¥K—ÐÐPÝ»wÜ´ ‚àÀÄHKdfÍš•‘‘1xð`]»›››âÂ… wîÜ‘Zrrr¾ÿþû7 !233 =[ݺu…6lÈÈÈZ¢££u›ìH‚‚‚rssƒ‚‚ââ⤖G͘1ãܹsÍš5svv®Y³æÃ‡Ïœ9³fÍ]©òòåË¿üò‹¢B÷S¼uëÖG}T­Zµ?þ¸R¥JŸ}ö™¥¥å¼yóÊ?¹ b¨€‰éׯßÂ… ããã---  koРA÷îÝþùçž={¶nÝZ«ÕÆÇÇß»woèС¡¡¡ÿûßÿ>|(m¬“×€Ö¯_òäÉîÝ»7mÚô?þHLL´··¯Q£ÆãÇ¥cxìØ±~øaÀ€µk×vttLJJÊÈȨ_¿¾´ó¶……ÅÌ™3§OŸ¾hÑ¢o¿ýöé§ŸÎÈȸté’V«2dˆ··wÝ ­V;}úô´´´ùóçK¹¹E‹o¾ùæ·ß~;oÞ¼¥K—Êý^07T˜WW×víÚ !|||\]]ó>ôÅ_¼ûjÕ’öwìܹóŽ;fÍš5tèPKKËB?°N:ÿùÏzôèaaayñâÅÚµkóÍ7ÎÎκc4Í‚ ¾üòËnÝºåææ^¾|ÙÝÝ=((hÇŽŽŽŽÒ1\¿~}—.]lll.\¸‘‘ñüóϯX±âÃ?¬¸[±aƨ¨¨N:é&z !Þ}÷Ýzõê…‡‡ïÙ³GÖ7 €Ò¿=¨Gzzzjjj:uô_ ªBp€^ª€^ŽÐ Áz!8@/Gè…འ‚#ôBp€^þbâJ¢í”ªNIEND®B`‚statistics-release-1.6.3/docs/assets/unidcdf_101.png000066400000000000000000000516171456127120000222760ustar00rootroot00000000000000‰PNG  IHDRhŽ\­ASVIDATxÚíÝy|L÷þÇñïd!±eid‘†„¢j‰-Ñ’6ŠH+—‹rKµöZR¢ª¥mj¯=uµE«µ”ª%j© ÄR±^BˆŠH’™œß§¿étfÂAâÌòz>úècæ{Ιù|Ïæí{Î÷ŒF’$<ŒÚÀ2 ÁŠ ÁŠ ÁŠ ÁŠ ÁŠëwâÄ ¦M›Ž?>;;Û`“… Ê«5iÒDíò‹µ~ýúüñÇ4®ßL˜Ü·nÝzóÍ7}}}*V¬˜——§v™q÷îÝ ¼øâ‹¾¾¾NNN/¿üò´iÓ Ö|ŒOšÉM Œ5Jí}à/j@Z­6'''''gÿþýsçÎݸqã /¼ vQ&66öÎ;Bˆ­[·†‡‡«]ŽRï½÷Þ¢E‹äÇrýæì·ß~ëÖ­Ûùóçu-éééééé7nœ1cÆÂ… _~ùå¿‚|ÒèÛâåååìì,„ÈËËÓ ÿܸq#&&&==½lÙ²rKÅŠýýý…>>>j—lÁLîÆŸþY~Ö¥K—2eʨ]f±ÒÒÒÚ´i£Ÿn åÇ—.]zíµ×öìÙÓ Aãm~ÒLnbÀÍÍMí=àÿI¬ÝñãÇuä·nݪk¿páÂo¼¡[4cÆ µ+}4*T0î”ùÓ•½~ýzµkyˆW^yE÷ñxã7>\XXxùòåE‹U¬XQn Ò­ÿŸ´â6`ž¸Æ°]~~~‹/îÒ¥‹üôã?Ö]ogòâ¼û÷ï/X° eË–UªT©P¡Býúõÿýï9rÄø•¯]»6tèÐ-Z¸¸¸øûûwìØqãÆú+Œ?^~ý.]º¾ÿþûÏ>ûìû￯[áêÕ«C‡mÞ¼yÅŠkÔ¨}èÐ!ÝÒ÷Þ{O£ÑèFÂ"""4þÅ‚ÞÜ$ý’ôÛccc ®´Ó_óÆï¾ûn“&M*V¬Ø°aÃ?þøþýûºm vcvvvfffQQ‘¼ôæÍ›™™™º>>ýúõ[¾|¹¼(--íôéÓýI`aÔN®J݃uôÓCRR’ܸ`Á¹%44TnùóÏ?Ÿþyã¿C4Íܹsõ_ðçŸöôô4^ó?ÿùnøøx¹±sçν{÷–ÇÇÇËK·mÛæååeüF#FŒWˆ‹‹3~ý;wî(ÜÜ$ý’ôÛ»wï.·9Ò`Í6mÚÔ©SÇàbbbtÛìÆÎ;—}êÔ)yåýû÷רQÃx??¿ääd%»N·¨aÆú/R¹råY³f9::ì“;v·Cºví*¯æîî~ûömã"##6lذaÃU«V=ö'GÀ²0âغV­Zé.³Û¿q«Mš4I^êììüꫯ<¸iÓ¦BI’†zêÔ)yµÜÜÜ=z\»vMáêêݶm[yÑ¢E‹–-[fð²üúë¯õ[rss»wï~õêU!D»ví>øàƒØØX;;;I’¦OŸ¾xñb!ÄÈ‘#ÓÓÓË•+'oòõ×_ëž*Ù¼¤ìرãäɓժUkÚ´©“““ܸråÊ<êK¼öÚkgÏžB899½ôÒK‘‘‘r²²²^ýõÛ·o?t×é>|ø?þhР»»»Ü’=tèÐû÷ïשSÇ××Wn”$iâĉŕô믿ʺvíª;½®oÆ ©©©©©©ÑÑÑJú¨ð“Àœ[§Ñh¼½½åÇW®\)nµ_~ùE~0nܸµk×~þùç)))íÛ·BnݺU^š Ï„¨V­Ú™3gV­Zµ}ûö±cÇÊK¿øâ ƒ—½xñbݺu—-[–’’"_§{…nݺmÛ¶m„ ß~ûí¬Y³äõå óÌ3ÏÔ¨QÃÎÁ|}}kÔ¨¡Ñhn^‚fÏž}þüù”””ÔÔT]v,.8®Y³F2º43((H1eÊyær¥J•vîÜ™””´aÆ””yàðÊ•+üñCw¾Ÿ~úéðáÃW®\i×®®qæÌ™ÿûßÿ.\¸Ð¯_?¹E>…mìþýûrøB”Ⱦzè'M¾äÀÀðáÃKöxGâ™gž‘\N§OwÓ¾¥K—.^¼XNK—.=~üøñãÇ»uë&/ݼy³ü`äÈ‘º³¥ƒ–ÏiÞ½{W«Õê¿l¹rå¶lÙÒ£G¦M›Ê%))I^ôæ›oêV{ã7ìíí….\8zôèúò„›?’zõê 4H~\»ví°°0ùqff棾Ԇ äC† Ñ]WZ¿~ý#F¬ð€]§)„pttŒ‰‰‘]]]‡ "„°³³Ó¿yó¦Ézô? UªT)©=¦ä“Àœq;"''G~P©R¥âÖy饗äù%iiiýúõÓh4!!!;vìÔ©“þµéééòƒ-Zè½½½SSSM¾lHHˆA.ÑÍ´x饗LnræÌ™çž{®¸:ŸpóGbpI¢î¼°nú‹riii&Ë~ñÅåñÚ3gÎéYMî:ÝÉh!„î7UªT‘eõ‹£›4-„(Áû«?ø“fòv<º½ Àü}ÞÐxN‰Îĉsss-Zt÷î]!„$I‡:tèÐäÉ“ÃÂÂV¯^]¹råÜÜÜ[·nÉ뻺º*ykƒ9¹¹¹½'öõë׋[ô„›?*]3ùT9ýýfpãL]üóÏ?¯^½ª¿Ô`×=´ýÐùPeÊ”ñðð÷•þÝ¿õݺuKžîääT¾|y%/ûàOÚ7ß|cA7rl§ª[·{÷î{÷îÉMΛ–9::Ι3';;ûûï¿ïÑ£‡þ=™wíÚ%ߪ¦bÅŠº +º±¥3ˆ8•*UÒuýüóÏé¦ÄÆÆ÷jO¸¹Z*Uªäââ"?þý÷ßõéž–)S¦råÊØu%®yóæòƒŸ~úIÿC:µk×öðððððÐM0…Ÿ4æŒàØ:ÝÄ‘òåËëŸ_Öw÷îÝ«W¯^½zõîÝ»¯½öÚ²eË®]»¶eËÝ×ÿÎ;…Fwövß¾}ºÍ¯\¹Ò¬Y³fÍšµmÛö¡§qkÖ¬)?(,,¬¡ÇÍÍÍÕÕÕÕÕõÁ§Y{s]3¸ìOž!^Úä)2Bïwe ž:8<ÕsDº‹D/\¸°páBƒ¥ë×¯× ¶nÝZÉ *ù¤0sGÀv]¹r¥ÿþ«V­’ŸþûßÿÖ¿²MßÉ“'½½½½½½}||ä[Æ888DDDè&çêNLë2Ä´iÓtÁbÆŒ))))))eË–}è ÓˆˆùAbb¢$IòãÕ«W?óÌ3þþþÆ7¦Ñc=Þæ2???ùÁ¾}ûtJþðþKvI‘ç²!>ÿüsݽÊ?>eÊùqÇŽŸBú^yåÝÎ2dȇ~(Þ»woéÒ¥º[HÖ¨Q#$$äÁ/¥ü“ÀÌq#`[zõê%ŸMÎËËÓ?+Z¹rå>ú¨¸­ž{î9//¯«W¯¶lÙò•W^qww?þüºuëät? 2~üø%K–äææfdd4lØ0<<üêÕ«Û¶m“—¾óÎ;­ð½÷Þ[´hÑ7Ö®]Û®]»Ö­[Ÿ8qB7§xĈºÙ®®®ò}ôщ'†êèè¨|s7–„„„„„„\¿~]7g¥´=úË/¿ÌÌ̼uëVË–-ÃÃÃííí·nÝ*ÿÂŠÏøñãŸN%ú¦OŸÞ´iÓ‚‚I’&L˜0aÂ7nè¦Æ;99­ZµJž±nàñ>iÌÁ°-—/_6ntww_·nÝ&[ØÙÙÉ9¬  àÊ•+‹-Ò_Ú¦M›Ñ£GË===¿úê«7ÞxãÖ­[W¯^ýöÛou«;6**꡺¹¹}ýõ×½zõºyóæŽ;ôüÞzë­>ø@÷´uëÖß|óbïÞ½{÷î8p £££òÍ 4jÔ¨{÷îß}÷"??_¾ýu@@@@@€î.•¥ÇÙÙyÅŠ±±±çÎ+((ÐýÖŸ¢ZµjË–-{À„÷ÒS¿~ý-[¶¼öÚkºþÔ"ÿ¹sç6lØÐä¶÷I`掀²··wqq©Y³æK/½4dȇ~—¿ð ééé ,HJJºtéRvvv… ‚ƒƒûôéÓ·o_ý‰]ºt ôõ“Àœit×Àä(Bp€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"GxRÚÀ¥J#lôFp|ˆsçÎ9rDíBài o™!«9(6¶¬ Áñ!–.]ªv PЬ&”XS_¬¦#‚°huÔ.ÀLåææž>}ú§Ÿ~úî»ïÔ®€9Òh„$=B»Ù’$Ó5[\G¬©/VÓ!„$$ÐH°n“f®¸š-±/àhZTTÔ•+WÔ®€ù2ùÕn‰ßë&ûb¡±¦¾XMG„©ìh¡IËd¶Ð¾<6‚£i“'O¾{÷®bÙ²e{öìQ»æÈà«Ýr¿× úbÑÑõEfÑ}±ªƒ"$Ý9k‹NZÙÑ¢ûòxަµlÙR~ðË/¿¨] ó¥Ë(–þ½®ßK/³"G.+HZºl}y Ç’¤v JÑéÓi&Û &4Ôªe˜ì‹ÕtÄšúb‰BœN;m¢/ÿœ.S+¨–Úe>fGŒûb 9’àX*ÒÒÒžüEP‚‚‚‚8(æÆjŠîÝhLÈÂz'ϙ߲°Žñw/Œ-¬/VuP„F˜¼LÐòºòw^´…¤h€ÛñÀãÓåýëê,‘~À¢/fÂj:"þyVWÿzGK¤ë‹¥wäñà1ŒfYîW»ñµ€ôEuVÓaêZ@Ë\}±ÜŽ<6‚#<“/,qCq3Hè )™¾3ƒÄOòšì‹%väIàqXâW¸uwÄšúb5Ö•«¬©/àOÊš¾æ-eºîCqPÌ5/‹˜ ^ް IIIj—CóÄq1C˜‚#!8>ĤI“ÒÒÒ4h v!*#8@‚#!8@‚#!8@‚#!8@‚#!8@‚#!8@‚#!8@‚#!8@‚#!8@‚#!8@‚#!8@‚#!8@‚#!8@‚#!8@‚#!8@‚#!8@‚#!8@‚#!8@‚#!8@‚#!8@‚#!8@‚#!8@‚#f- z€Ú%!8@‚#fG#4Ô<GÌŽ$$㌨IHj—›FpÀdGR#ÌÁ3¥ËޤF˜ µ Sru#!j!8`F B¡./a8U €™Ò¡69WxúŽ˜#ƒëÉŽ0GÌŽÉÙ0œ­†êŽ˜2"ÌÁ³v.ãœÚ%!8@‚#!8@‚#!8@‚#!8@‚#!8@‚#!8@‚#!8@‚#!8@‚#!8@‚#!8@‚#!8@‚#!8@‚#!8@‚#!8@‚#!8@‚#!8@‚#!8@‚#qP»€§dåÊ•+V¬HOO/W®\ëÖ­Gåææö€õïÝ»÷õ×_oÚ´)##ÃÍÍ­~ýúƒ T»€õ¨.Ijx61â8cÆŒøøø³gÏ6iÒ¤B… «W¯îß¿AAAqëkµÚÞ½{O:õÆaaa¾¾¾›7o~õÕW8 vWTcýÁ1---11ÑËË+)))11qóæÍ½zõ:zôèÔ©S‹Ûäûï¿?tèPÇŽ·lÙòùçŸ/]ºôË/¿BÄÇÇ«ÝÀ²i4jWxÖW¬XQTT4lØ0OOO¹%..ÎÅÅeÓ¦MEEE&79tè¢wïÞÊoÖ¬Y:uΟ?ÿǨÝ!À‚I’éìH ‹`ýÁñÀvvvmڴѵØÛÛ·jÕ*''GˆÆ|||„úQ’¤›7oÚÙÙé¢$€Çcœ5ÁÅŽ`¬<8J’”žžîîîîîî®ß^«V-!DVV–É­^yå''§É“'ïÝ»·  àòåËãÇ¿xñbLLL¥J•Ôî`ñô³#©,ˆ•ŸåççkµZWWWƒvñÏ1E}AAAK—.íÓ§OŸ>}t={ö;v¬Â÷ 2hIJJR{gØ´‹/ª]‚­ ¨nÜ(ÇGýÈsç2Ô®ÔÖñ‡Å qPTסCµK0Vå©ÓåË—7h¯P¡‚âÖ­[&·ÊÍÍýôÓOóòò‚ƒƒëׯŸ““³{÷îµk×¾ð íÛ·Wò¾iiijw†ªW¯þä/‚Çf<¬(çE£v“úøÃb†8(ê2þZ7!²V]]]5M~~¾Aû;wÄÿ;=zôo¿ý÷ÆoÈ-—/_îÞ½ûðáÃ×­[ v·‹§Kœª bå×8:88¸¸¸,æææ !tó¬õ]»ví—_~©Y³¦.5 !ªT©òöÛo߿͚5j÷ °xúa±¸yÖ3dåÁQáåå•““#'EŒŒ y‘ñú999Bƒvy 1;;[í–Íxˆ‘ì–Âúƒcxx¸V«Ýµk—®E’¤ääd77·ãõýýýíííÏœ9#ýóËM¾¾¡fÍšjw°`Řæl5XëŽ111vvvsæÌ‘¯kB$&&^¿~=::ÚÑÑQnÉËËËÈȧ­9;;·jÕ*33óóÏ?×Ý!üÌ™3óæÍ+S¦LÛ¶mÕî`Áˆxj4‚ql äYùä!D•*UF•ЩS§°°°ÌÌÌ”””ààà7ß|S·NrròðáÃׯ_/„˜4iR·nÝæÍ›·qãÆºuëæääüöÛoEEEñññ5jÔP»C€•8w.ƒ9Ô`Y¬?8 !úöí[¹råµk×nܸÑÇǧgϞÆ “ïÈc’‡‡ÇÆ,X°{÷î;v¸¹¹µnÝzàÀõë×W»+€bi„F’òvJ#qꨤqGs“‘‘Á]ÐÌ Åû,--­Aƒjw6Ê ;’OŸ•OŽ‘$)==ÝÝÝÝÝÝ]¿½V­ZBˆ¬¬¬ÐÐPã­Ž?îæææíí}ðàÁÔÔÔ›7oÖ®];""ÂÙÙYíÁ¦é²#©  +ŽùùùZ­ÖÕÕÕ ÝÅÅEñÇorïÞ½Û·o׬Yóƒ>X¾|¹®ÝÏÏoæÌ™õêÕSò¾AAA-IIIjï ›vñâEµKxLÕM¶ë>ž;—¡v™ÃrŠu㸘!Šê:tè v æÂʃ£8|øðã½fLLŒÝœ9säë…‰‰‰×¯_ŽŽvtt”[òòò222tÓÖºté"„ˆ×z;vì¿ÿý¯‹‹KûöíÕÞI°u„H€Z4’¹~ îܹó§Ÿ~Ú¾}ûŸþ)„¨V­ZçÎ_}õU__ßGz©Å‹'$$øúú†……eff¦¤¤Ô­[wñâźÛôlܸqøðáëׯ—[.\8}út—ÐÐÐüüüh4š)S¦tìØñ¡oĬjs“‘‘ÁœDsÃA1O3ÄA1C6û]o¾·ãqpph×®]»víòóóW­Z5}úôÌÌÌY³f}þùçMš4‰ŽŽŽŠŠ²··WòR}ûö­\¹òÚµk7nÜèããÓ³gÏaÆÉwä)΀<<<–,Y²gÏ77·ðððÁƒª½WTc¾#ŽBˆ7nlÛ¶-))iïÞ½ò¬”Ê•+;::^¾|YQ³fÍE‹ùøø¨]¦!›ýWˆ9ãßëfˆƒbž8.fˆƒb†lö»ÞG¯_¿¾eË–Í›7ïß¿_«Õ !<<<^|ñÅÈÈÈÆ !öìÙ3cÆŒãÇ¿ÿþû_|ñ…ÚõØó ŽË–-Û¼yóÁƒ‹ŠŠ„îîî/½ôRÇŽCCCõÏJ·lÙ²qãÆÏ?ÿüÔ.ÀV˜Wpü裄®®®/¾øbÇŽ›6mZÜUŒÎÎÎNNNfxžÀZ™WpŒŽŽŽŒŒlÖ¬™’Y/ 7X=Ô­„’ b"©€ÕS98~øá‡Bˆ‰'ÊÁQ~ú`GfB?;’Ø•ƒãàÁƒ…õë×—ŸŽ9Rí@ÎŽòµk€R§rp4hþÓ7ß|SÝzà¡ä¤øÐF¢$ëc^“cÀü_×È #¡rpܱcÇ£nÒ¦Muk™þuÆseÀú¨ 𨛤¥¥©[3S³aÈŽ¬žÊÁ±S§Njïx&"©€uS98N™2Eí=EìÔ.,l¿Eøå(Â/Ç@~9Š˜õ䘼¼¼{÷î©]„P}ÄѤ£GÎ;÷ĉÙÙÙvvv¾¾¾5zçwªU«¦vi¶ËìFgÍš³cÇŽììì²eË:99eeeýøã‘‘‘Ë—/W»:Ûe^ÁqçÎóçÏ···ïÕ«×Ö­[9’ššºcÇŽ~ýú !&Mštøðaµk°Qæ—/_.IÒ»ï¾;nÜ8???F#„ðññ=zô˜1c ¿üòKµk°QæOœ8Q¶lÙÞ½{/êÙ³§³³óÑ£GÕ®ÀF™WpBx{{;8˜˜²#Ï’ÉÏÏW»@e^Á1$$$+++77×xQ^^^FFFpp°Ú5Ø(ó Ž111’$½÷Þ{………úíZ­vìØ±Z­6<<\íl”Ê÷qÜ»w¯þS{{û®]»®^½º}ûö111&##cÕªUYYYAAA:tP·`›¥rpìÓ§ÉöË—/Ïš5Ë 1--­yóæiiiêÖ `›TŽ:uR{@•ƒã”)SÔÞPļ&Ç<ؘ1cÚµk§v6JåGc7nÜØ¶m[ff¦A{AAÁ–-[ìííÕ.ÀF™Wp¼zõjllì¥K—Š[¡Gj×`£Ì+8~ùå——.]jÒ¤ITTÔ† öíÛ÷þûï;;;Ÿ:ujÙ²e=zô7nœÚ5Ø(ó Ž»ví*[¶ì¼yó*UªÔ®]»–-[V¯^½yóæBˆ€€€>úèµ×^ T»L[d^“c~ÿýwÿJ•* !*W®ìæævüøqyQLLŒ››Û—_~©v6ʼ‚£ÂÎîï’ªV­š‘‘!?¶·· :zô¨ÚØ(ó ŽÞÞÞçÏŸÏËË“Ÿúùù¬v6ʼ‚ãòåË%Iz÷ÝwÇççç§Ñh„>>>£G3fLaa!?9 ó Ž'Nœ([¶lïÞ½õìÙÓÙÙ™ŸP‹yG!„···ƒƒ‰);ò,™üü|µ °QæCBB²²²rssåååedd«]#€2¯à#IÒ{ï½WXX¨ß®ÕjÇŽ«ÕjÃÃÃÕ®ÀF©|ǽ{÷ê?µ··ïÚµëêÕ«Û·o Ñh222V­Z•••Ô¡Cu °Y*Ç>}ú˜l¿|ùò¬Y³ ÓÒÒš7ož––¦nͶIåàØ©S'µ÷Q98N™2Eí=EÌñ·ª…W®\9yòdffæýû÷êÔ©S¥Jµ‹°ifoܸ1{öìï¾ûN«Õêííí_ýõaƹ¸¸¨] €2¯à¨Õj˜ššZ¶lÙˆˆˆjÕªÙÛÛŸ?þ—_~ùöÛoOž<ùÍ7ߨÛÛ«]&€-2¯àøÕW_¥¦¦6lØpöìÙžžžºöìììÁƒ§¦¦~õÕWýúõS»L[d^7ßµk—F£™9s¦~jBT®\yÖ¬Yvvv;wîT»F%# z€Ú%yÇS§NU«VÍÇÇÇx‘——W5Nž<©vŸFhÔ.ðøÌ+8–-[¶   ¸¥ÎÎÎj×àñIB2™ ”`Ì+8Ö©SçêÕ«©©©Æ‹Ž?~ñâÅÚµk«]#€'bœ5B# Iíºg^ÁQþ!™!C†\˸{÷îAƒ !¢¢¢Ô®À“ÒÏŽ¤F° æ5«:22299yíÚµo¾ù¦¿¿¿"33óòåËBˆ¨¨¨W^yEí”9;’À²˜WpB|úé§M›69sæï¿ÿþûï¿Ë•+W>|x—.]Ô®Àc*î*Fƒvr$˜3³ ަk×®]»v½víÚùóç%Iò÷÷÷òòR».OÄ ÊyQw$,€¥0¯àxñâÅ¢¢¢ªU« !<== îæÀ:Èa‘ìǼ‚cddäÝ»wýõWµkP*Œc"Ù,…yͪ Bœ>}ZíB”Šâ"©,‚yÇñãÇ;;;ÏŸ?ÿÏ?ÿT»%€ͼNU{zzN›6íý÷ßïÔ©S§NªV­Z©R%ƒuÚ´i£v™JÀ¹Œs¢ºÚE…yǶmÛÊ®_¿>{öl“뤥¥©]&€-2¯à(ÿr ÌyÇ)S¦¨]L3¯É1îÝ»—ŸŸ¯vÂÜFegΜ™7oÞáǯ\¹RTTäíí]¯^½Áƒ×®][íÒl—ÙÇE‹M›6­¨¨HQ¶lY{{û+W®\¹reûöí#FŒxóÍ7Õ.ÀF™×©ê½{÷N›6M£ÑôêÕkëÖ­GŽIMMMNNþÏþcgg7}úô½{÷ª]#€2¯àøí·ß5jܸq~~~Fáíí=jÔ¨±cÇ-]ºTíl”yÇcÇŽ999õêÕËxQlll¹råŽ;¦v6ÊŒ‚caaáï¿ÿîååeooo¢P;;Iâ÷ÊÔaFÁQ£Ñ”+W.++ëæÍ›ÆKsssÏŸ?_¿~}µË„E à·íxRfííí»víZTT4f̘»wïê/ºwï^\\œF£éׯßã½øÊ•+cbbBBBZ´h1vìØ7n(ßöòåË75j”Ú{@Mæu;žýë_'NœØ±cGDDDtttõêÕ5MFFÆ?üpåÊ•ÈÈÈ;wîìØ±C·~@@@ÕªUú²3fÌX°`Aùòå›4i’™™¹zõê3gÎ,Y²ÄÙÙù¡ÛJ’4f̘;woðÈ4Á¥ ” ó Ž‘‘‘òƒk׮͟?ß`éÆ7nܨß2räȇÞÙ1---11ÑËËkÕªUžžžBˆÉ“'/Y²dêÔ©ãÇhI_}õÕþýûÕÞ1x’d:;(x<æ;uêôHë׬Yó¡ë¬X±¢¨¨hذarjBÄÅÅýøã›6m7nœÝƒNÖŸ9sfÆŒµk×>uê”ÚûÃ8;’xlæ§L™Râ¯yàÀ;;»6mÚèZìíí[µjõÓO?:t(44´¸ Gíææ×§Oµ÷ “œe¤Fž„MŽ) ’$¥§§»»»»»»ë·×ªUK‘••õ€mgÏž}òäÉO>ù¤R¥Jj÷OD‹¤Fžy8–¸üü|­VëêêjÐîââ"„øã?ŠÛððáÃ_|ñEÏž=›7o~âĉG}ß   ƒ–¤¤$µw† )îæ;º¡GÙ¹sjWjÓ.^¼¨v 0ãb†8(ªëСƒÚ%˜ +ŽBˆòåË´W¨PAqëÖ­â¶=z´ŸŸß»ï¾ûxï›––¦v×mšÁÈ¢œMÍ•áæŽ*«^C`Ž8.fˆƒ¢.ã¯uã"aåÁÑÕÕU£Ñäçç´Ë·×‘Ç%$$\¼xqùòåJî×3'‡Åâ³#PÊʯqtpppqq1YÌÍÍBèæYëÛ¿ÿòåË РAµËÇ“2މúseÀ#±òà(„ðòòÊÉÉ‘“¢NFF†¼Èxý3gÎ!æÍ›ôÿºví*„X·n]PPÐ+¯¼¢v‡ Tqƒ‹Œ8ðx¬üTµ"<<<--m×®]/¿ü²Ü"IRrr²››[HHˆñúÕªUÓ­)»uëÖîÝ»«T©âíí­v‡ €’eýÁ1&&fÁ‚sæÌiݺµ<'&11ñúõëÿùÏåuòòò®]»æèèøì³Ï¶lÙ²eË–ú¯pâĉݻw‡††–Æm&ñtœ;—ÁTžõÇ*UªŒ5*!!¡S§Naaa™™™)))ÁÁÁú¿U˜œœ<|øðÀÀÀõë׫]/€™²þà(„èÛ·oåʕ׮]»qãFŸž={6L}€B6…QQQQQQÅ-ŒŒŒŒŒ,nipp0÷e°þYÕ(G(Bp€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"GÀÂh„Fí6ŠàEŽ€(n”‘ÑGÀÓDp,€$$㌨IHj—°!GÀ2dGR#àé#8C—IU8¨]€Qru#!ðt³f uy‘°xú8U X Ýj“se(mGÀ2\×Hv<}GÀ˜œ Cv= rv”Ã"©Ȭ<8æççkµZWWWƒv!Äüar«ºuë´¤¤¤$&&–-[¶sçÎJÞ7((È E>ýmÎ 'èÆõ ÏËP»ÒÇqñâEµK€!Šy⸘!Šê:tè v æÂʃcAA¢|ùòí*TBܺu롯 Õj¿ùæ›Ï>ûL«ÕN›6ÍÃÃCÉû¦¥¥©ÝõGf<¬(çE£vKœ\½º¥VnÅ8(æ‰ãb†8(ê2þZ7!²V]]]5M~~¾Aû;wÄÿ;>À¾}û&NœxöìYŸ?þ¸yóæjwèé‘ÏPk4œª±òàèàààââb<²˜››+„Ðͳ6vïÞ½)S¦,]ºÔÉÉiðàÁýúõ+î¦VI?,ê_ïl™•G!„——Wzzznnn¥J•tò"“›½ûî»?ÿüsDDÄ„ /­’qL$;a ·ã ×jµ»víÒµH’”œœìææbr“¥K—þüóÏÿú׿æÎkk©QÓ‘Ô¬?8ÆÄÄØÙÙÍ™3G¾®Q‘˜˜xýúõèèhGGG¹%///##Cž¶&IÒ²eË*V¬8f̵k0#ÖªºJ•*£FJHHèÔ©SXXXfffJJJppð›o¾©['99yøðáëׯÏÎξpႳ³s=Œ_­K—.={öT»OO@Çúƒ£¢oß¾•+W^»víÆ}||zöì9lØ0ùŽ<ÆäqÇ‚‚‚ãÇ/µ©‰Õúl"8 !¢¢¢¢¢¢Š[)?nÔ¨‘%Þ… ´Yÿ5Ž(G(Bp€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"G(â vàq©]‚•HKKS»‹ApÀR‘xJDPP{R!NU@‚#!8@‚#!8@‚#!8@‚#!8@‚#ø›F£v0cG<ˆFð÷ dLœ8Q£ÑDEE/JHHÐh4GŽQ»F<Áÿ@RTÜ(ciŒ>®_¿þ‡~(ÕîÜ¿ßÁÁAóO•+W.Õ7µjó" I#4’ ÚM6¬ƒ$ FHÿükÞ¸¥D8;;2¤}ûö+V,¥îdddhµÚæÍ›è+T¨PJogSŽ0dœI`õ ²c)¥F!ÄøñãÇŽ?kÖ¬RêKzzºâÃ? /¥·°Yœª† rv”“ÀFÈÙQ”fjBÄÄÄDFFΙ3çàÁƒ¥ôrp¬Y³fiõÁ†aš.;’ÀŠi4ÿøÏd{I¿£fîܹNNNýû÷×jµ¥Ñ©ôôô²eËV¬XqåÊ• .ܽ{÷½{÷Jq'Ú‚#þöÏ¿=4hXIúÇ&ÛKœ¿¿ÿ„ RSSgÏž]JOO·³³«Y³æk¯½öÖ[o………5lØð·ß~+­hK¸Æ3¾®‘AG°òjýÿ—ž#F,[¶lüøñÑÑÑ~~~X³°°pÆ Å-}õÕWÓÓÓ‹ŠŠ&NœØ­[7GGÇuëÖ >¼sçÎÇwqqyz;Ôa‚þuÅͳXƒ¤XÚÙÑÁÁ!11±yóæC† Y³fÍÖÌËËëܹsqK%S%îØ±ÃÉÉÉÝÝ]~Ú·oß?ÿüówÞYµjU¿~ýJ{OZ7NUÃqLÔŸ+°>&3¢n®L)yá…Þzë­µk×þøãXÍÅÅE*žÉMªT©¢K²_|Qqâĉ§±7­#Žø‡âq+VÜÈb©ž­B|òÉ'kÖ¬4hPïÞ½‹[çQOUgff®_¿¾]»vuêÔÑ5æææ !ªU«Vºý±Gül\i‡E}...3gÎìÞ½ûܹs‹[çQOU;;;9²I“&Û¶msttBM™2ÅÁÁ¡}ûöO¯oVŠàˆ!GJÕ믿þÕW_%%%·‚|ªZù zzzNœ8q̘1;vtuuݼysjjêÇ\·n]µ»kñŽ@MóæÍ .(((©=zt5>ûì³eË–999=÷Üs›6mêСƒÚµGð4L˜0a„ ÆíÕ«WÏÏÏ/Ù÷ŠŽŽŽŽŽV»ÇVˆYÕP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽào¡Q»˜/‚#x&Nœ¨Ñh¢¢¢Œ%$$h4š#Gލ]#‚à€­+n”±4Fׯ_ÿÃ?”vNž<ÙµkW???__ߘ˜˜={ö”ö;Ú‚#¶N’qFÔ$¤/ggç!C†Ü¾}»ôº³k×®={ötëÖ-666%%¥}ûöÛ·o/½w´G`˜K)5 !ÆéÒ¥øøøÒêˆ$õë×ÏÅÅåÈ‘#3f̘:uê±cǼ½½GUJïhSŽ@½ìXz©Q9gΜƒ–Æëgddœ9s¦_¿~^^^r‹««ëðáÃ:tôèÑRê”í 8`»4B£ÿŸÉö~GfîܹNNNýû÷×jµ%Þ£¬¬,!„§§§~c•*U„ÇŽ+}hSŽØ.IHúÿ™l/ñ7õ÷÷Ÿ0aBjjêìÙ³KüÅk×®-„0˜ óË/¿!~ÿý÷;[ã vÀ,Èg¨õÿ_zï5bĈeË–?>::ÚÏÏïknذ¡¸¥¯¾úªA‹——WttôªU«úöí+IÒ×_=þ|!DnnîSݡֈà ¯k,íìèàà˜˜Ø¼yó!C†¬Y³ækæååuîܹ¸¥’d¢Âùóçß¼y3.....Náææ6~üø>øÀÕÕõiìJ«FpÀ֙̈¥_xá…·Þzkþüù?þøãVsqq1™ råÊ[¶lIII9r䈗—WË–-wîÜ)„¨Zµj)îDÛ@pÀÖ—Kõlµâ“O>Y³fÍ Aƒz÷î]Ü:zªZqäÈ‘J•*5kÖ¬Y³fr˶mÛ4MóæÍKµ;¶€àþVÚaQŸ‹‹ËÌ™3»wï>wîÜâÖyŒSÕ 8qâDZZš<™úäɓ˖-{ùå—å§x̪ªyýõ×;tèpóæÍâVOUÇä&~øa~~~Ó¦M‡ 2pàÀ–-[:;;þùçj÷Õ€šæÍ›çìì\‚/øâ‹/&%%U­ZõË/¿Ü¸qc×®]ÿ÷¿ÿU¯^]íŽZNU€§a„ &L0n¯^½z~~~ɾWûöíÛ·o¯v­#ŽP„àEŽP„àEŽP„àEŽP„û8`©‚‚‚Ô.¶…à€EJKKS»ØNU@‚#!8@‚#!8@‚#!8@‚#!8@‚c±V®\Ò¢E‹±cÇÞ¸qCᆧÓN«]; uèÐAí`ˆƒbž8.fˆƒóAp4mÆŒñññgÏžmÒ¤I… V¯^Ý¿ÿ‚‚µëP ÁÑ„´´´ÄÄD//¯¤¤¤ÄÄÄÍ›7÷êÕëèÑ£S§N-nÐ>þìÙ³Mš4©P¡ÂêÕ«û÷ï_PP v]¶«°°°OŸ>Ÿ|òɵkך5kV³fÍ}ûöõíÛwîܹj—!„$i̘1ºŸƒ‡º¶oß»}ûvOOÏÔÔÔ^½zmß¾]íºl—V«íÝ»÷Ô©Soܸæëë»yóæW_}õÀj—f‹–.]ZÜ"[üö—ðÄN:U»ví°°°«W¯Ê-“&MªU«Ö‡~¨vi¶ë›o¾©U«Vlll~~¾Ürúôé矾N:ÿûßÿÔ®ÒâÅ‹kÕªU«V­‘#Gª]‹­»yófhhhƒ <(·9r¤^½zÍ›7×jµjWg£ä¿Á†zÿþ}¹eÏž=uêÔyñÅÕ.͆ܺuëÀï¿ÿ¾ü—ÕáÇ V°ÍoFKÀŠ+ŠŠŠ† æéé)·ÄÅŹ¸¸lÚ´©¨¨HíêlTRR’bܸqÎÎÎrK``à[o½¥Õj9a­º3gÎ̘1£víÚj!„X½zunnî[o½Õ¸qc¹å¹çžëرãõë×;¦vu6êСCBˆÞ½{;88È-Íš5«S§Îùóçÿøãµ«³QQQ=zôøî»ïŠ[Á6¿ý Ž%àÀvvvmڴѵØÛÛ·jÕ*''Gþç/##£|ùòÁÁÁúBˆ¬¬,µ«³i………£Gvss‹‹‹S»!ÄÎ;5MçÎõ?ûì³´´´ ¨]òññBègDI’nÞ¼igg§‹’(m“'Ož7oÞ¼yóš7onrÛüöçó÷¤$IJOOwwwwww×o¯U«–"+++44TímÑÂ… ÿz=qâ„ÂÏÏOíêlÚìÙ³Ož<¹xñâJ•*©] „âøñãnnnÞÞÞLMM½yófíÚµ#""t£õxú^yå•%K–Lž<¹\¹r 6¼qãÆ¼yó.^¼øúë¯óç©iÙ²¥üà—_~1^j³ßþÇ'•ŸŸ¯Õj]]] Ú]\\Ä?ÿ½ˆ§©nݺ-)))‰‰‰eË–5YÁÓtøðá/¾ø¢gϞ͛7—s<ÔuïÞ½Û·o׬Yóƒ>X¾|¹®ÝÏÏoæÌ™õêÕS»@´téÒ>}úôéÓGר³gϱcǪ]þb³ßþœª~Ròä©òåË´W¨PAqëÖ-µ „ÐjµK–,ùÏþ“ŸŸÿé§Ÿzxx¨]‘*((=z´ŸŸß»ï¾«v-øËíÛ·…ééé7nLHHØ·o_rròàÁƒ/]º4tèP+ŸjÆrss?ýôÓ¼¼¼àààîÝ»·oßÞÙÙyíÚµLu76ûíψã“ruuÕh4ùùùíò}Fäy@Eûöí›8qâÙ³g}||>þøãâ.UÁSpñâÅåË—sÔ|899É>ýôÓvíÚÉ tùòåÕ«Woذ¡[·nj×h‹FýÛo¿ÅÅŽñÆrËåË—»wï>|øðuëÖ¨] l÷ÛŸÇ'åàààââbüo‹ÜÜ\!„n¦ž¾{÷îMž<¹wïÞ—/_}Zž *“o&½6UáïïoooæÌI’ô}ZZš¢fÍšjˆ¿Øæ·?§ªK@LLŒÝœ9st¿Ÿ–˜˜xýúõèèhGGGµ«³E’$-[¶¬bÅŠcÆŒQ»ü¥eË–ÓÿiĈBˆÐÐÐéÓ§=ZímW—.]„ñññºy ÇŽûïÿëââÒ¾}{µ«³EÎÎέZµÊÌÌüüóÏu÷‘>sæÌ¼yóÊ”)cpQTd›ßþŒ8–€*UªŒ5*!!¡S§Naaa™™™)))ÁÁÁo¾ù¦Ú¥Ù¨ììì .8;;÷èÑÃxi—.]zöì©v€¹¨S§Îˆ#¦OŸÞ¡C‡ÐÐÐüüüh4šÉ“'?óÌ3jWg£&MšÔ­[·yóæmܸ±nݺ999¿ýö[QQQ|||5Ô®±Ío‚cÉèÛ·oåʕ׮]»qãFŸž={6Lž“§ïâÅ‹Bˆ‚‚‚ãÇ/eŠ ``À€K–,Ù³g››[xxøàÁƒå_Z‚*<<<6nܸ`Á‚Ý»wïØ±ÃÍÍ­uëÖ¬_¿¾Ú¥álðÛ_#I’Ú5Àp#!8@‚#!8@‚#!8@‚#!8@‚#!8@‚#!8°-£F Ú±c‡Ú…ˆ9sæ}óÍ7jJ ˆƒÚ€jÛ¶­‡‡GãÆÕ.”"8€:‚ƒƒƒƒƒÕ®§ªÀìhµÚû÷ï«]"8° ñññAAAS¦L1h?vìXPPPóæÍ …ׯ_Ÿ>}zddd£F5jôòË/úé§W¯^-îeå¹2{÷î5h¯[·î /¼ ßò믿2$""¢I“&½zõš3gŽA¶»téÒ„ "##6lئM›þýû8pà=úâ‹/ô'ÇÈ•\¼x111±Y³fõêÕ íÞ½ûÖ­[‹{…ÔÔÔºuë¶jÕêöíÛºÆ;wî´iÓ¦nݺGUû °6G–!**J±yófƒöõë× !:wîìààpýúõ=z,\¸ðòåËU«V}öÙg³²²¾üòËØØØ7n<É»O:µ_¿~›7o.,,ôôôH¬Á€ehÒ¤‰§§gVVÖÿþ÷?]cQQ‘ªºví*„X½zõùóçÛµk÷믿®]»vݺu»wïnҤɥK—¶mÛöØoýË/¿|ñÅ~~~+W®Ü±cdž vîÜÙºuëÇÏŸ?_^gêÔ©yyyܳgÏêÕ«“““Ç'IÒ¬Y³é½V¬XÑ¿ÿ]»v}õÕW[¶léÓ§bÉ’%Å­?dÈÀÀÀÕ«WïÚµK±wïÞï¿ÿ¾~ýúTïX°ZG–ÁÎÎîå—_ÿtûÌÁÁ!>>þÚµkãÆsvvž:uª® (AGCŽ€úçmåóÔÑÑÑòÓwÞygÁ‚5jÔЭ½aÆ'yÓ7ndddÌ€.W®\óæÍ Ž?.„“k\\Üþýûå«-‡:xðàGz»Ž;ê?uqq±··—$é›Ô­[÷wÞ¹råÊ«¯¾zéÒ¥1cÆøûû—Ö1`Û¸‹ìïïþüù´´´   Â¤¤$ggçÈÈHÝ:—.]Ú¹sçÁƒ³²².\¸ð„—6 !Î;'ÿ?((Èä ¿ÿþ»bâĉÆ Û¿ÿ¿ÿýo''§ºuë6mÚôÅ_¬[·î#½Ý³Ï>ûE0`ëÖ­'NœxþùçcccKt¯Àߎ,ITTÔìÙ³“’’‚‚‚víÚuëÖ­®]»êNL/_¾|Ò¤I………U«V ˆˆ¨W¯^FFƇ~øHï¢Õjuƒ|÷îÝBøúúwÒ¹J•*BˆgŸ}våÊ•©©©;wîÜ·oßñãÇ:4þünݺMš4I£Ñ(|ë2eÊ<Æn¹sçNvv¶âܹs7oÞtuu-ýCÀX]p:t¨|ZwžúÎ;}ôQ™2e.\زeKÝ&W®\yÔw¹|ùrQQ‘ü8 @Q®\¹±cÇ>x+F#ßHqïÞ½]»v½÷Þ{«V­j×®]xxx©î– &\»v­Q£F‡úðçOŸ^ªoÀfq#KR­Zµzõê;wîØ±cÛ¶m«V­Zhh¨¼èرcZ­¶Q£Fú©Qüÿ´•38£½eËÝc//¯Ê•+Ÿ={öĉúëhµÚèèè°°°ëׯ_ºt©]»v¯½öšni™2eÂÃÃåÙ</^,Õ}òÓO?mÚ´©uëÖK–, ܰaƒñM‹ DXyŠÌ¸qãòóó»uë¦k÷òòBœ:uêúõër‹V«ýî»ï–-[&„(((0ùjU«VB,]º4??_nIIIÑÝdG6bĈ¢¢¢#FœúÈÑÑñ“O>±··Ÿ8qâ“_Ü Æ8U ÀÂDFF&$$¤¥¥ÙÛÛwîÜY×¾mÛ¶öíÛ7nÜX’¤´´´7nôèÑcÉ’%?üðÃíÛ·åëèëܹó×_}èСðððºuë^»v-==ÝÅÅÅÛÛûîÝ»ò:]ºtÙ¿ÿš5k:wîìëëëæævîܹüü|ùÎÛvvvcÇŽ‹‹›2eÊÿûßgŸ}6??ÿìÙ³’$ÅÆÆ†„„”Ò®$)...77÷ã?–ssýúõûôéóßÿþwâĉ3gÎTûX°6Œ8°0žžžÏ?ÿ¼",,ÌÓÓSÑ´iÓ† R¥JùþŽ­ZµZ»ví¸qãzôèaoooòýüü¾ýöÛˆˆ;;»Ý»wŸ>}Ú××÷‹/¾ðððЭ£Ñh>ýôÓÏ?ÿ¼]»vEEEçÏŸ¯^½úˆ#Ö®]ëææ&¯Ó¥K—¯¿þºuëÖÎÎΧNÊÏÏoѢżyó&L˜Pz»béÒ¥{÷îmÙ²¥îBO!Ä!CªU«¶iÓ¦¤¤$U+¤yðíÁÀväåååääøùù)Ÿ 6…àE8U EŽP„àEŽP„àEŽP„àEŽP„àEþ“\Þh&×IEND®B`‚statistics-release-1.6.3/docs/assets/unidfit_101.png000066400000000000000000001020011456127120000223040ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A€IDATxÚíÝy\TÕßÀñ3,*‚l€&%ˆK˜ ¨ ’¢¹‹ŠZ¹`Vî[šIjšä‚ýrËŸõXÑã¾¥bj¸àŽ.j.Q†¦’»À<ÜßsŸi€á2 Ÿ÷Ë—¯™sïÜ{–{ç~9÷Ü3*µZ-€â˜;¨ #!p€"ŽP„ÀŠT¡ÀqÓ¦M*eîß¿oìÌVh±±±REõìÙ³¤ŸÝ±cǶmÛ¶mÛ–-'~ñÅÒ›7onìÂUt¥©|½Ý¿øðáuëÖµ°°¨U«ÖÇ] %3gΩÒ"##¥”B¹¢ŠY‰Š_èùeðŠªhJYêrP¢ã­²0ìÑ¢ðÒPF_€\˜JÄÂØ@ÕýàÁ!Ä?þnìì@‘>ø`ÕªUÒk©ùLRQŬDůšçW%-u%:®Êq±’BÆR…Çš5kÖ¯__~ûøñã[·nI¯ëÔ©S­Z5y‘™YꈭjÕª%5›››±ó‚BìÙ³GzѦM›ž={jž,•T¡‡\QÅ4½â—²¢PR%:Þ*/ƒ-Æ=ü8ø‹R…ÇÈÈÈ«W¯Êoúé§:H¯÷ìÙÓ¸qccg°pW¯^­S§NõêÕ+ø6KcÀ€ 0v.*œŠÓLòŸXS¦LéÒ¥‹±³c…rEÓôНç¦A”èx«¼ ~´÷ðãà/ ]k…0`€4¸Aó¸éܹ³”ؽ{w9±uëÖRâôéÓåćΘ1#""ÂÅÅÅÅÅ¥C‡Ó¦MËÉÉѽSÍÑüñÇÀœœ¼¼¼\\\æÍ›Wp}%{Q¾Í¢ÆŽDGGKé“'OÖ‘ùüüüµk׆……yxxÔ¨QÃÃÃ#44ô믿~þü¹´Â| R©ä;2:tP©TÒ°ž¢†’”´€wïÞ8qbóæÍkÕªåïï?wî\yïEyþüùŠ+BBBêÔ©cccÓ´iÓ7ÞxãÌ™3%-fN¢¢¢._¾úèÅ_üè£ôk>=*­(ׯ_ïׯŸ“““««k¯^½Ž?^p­C®¨bê(¾Âj/¶–J´G¸ŽóË€UÒéÏ?ÿ;vlpp°]ýúõ### X?Å–ZÉy¡Eù7¡ò/…Ç›¼~I¿ú´ª®‚œV =. ’¬¬¬7Þx㥗^ªS§Nß¾}÷ï߯G;V„ “ßÌF¦®ª~üñG¹ÒÒÒ´–~õÕWÒ"OOO9ÑÙÙYJtss“Rž?nee%%&%%I‰ÇŽ{饗 Vu½zõ’““udI=Û·o_p C‡Õ\Yá^”oS^³Gš;êß¿¿”>iÒ$köí۷ЬOŸ>Ò S§N-¸ôÁƒjµzÅŠÒÛ   ½ êë뫵rTT”Ž òäÉ«¯¾Zp*•jéÒ¥šk[:Íœøûû;99i®æììüÙgŸYZZjíE>fJÙL?ýô“‹‹KÁRL˜0AÂjêÑ£GÁ\ºtI+'o½õ–ôzúôéú5Ÿ•V¨ãÇ»ººj~¤V­Z;w–^wêÔIZMë+ª˜:Н°Úu×R‰¶ û×q~°¢Jt íÙ³§víÚ׌‰‰1Týè.µ’ê-HoÂb¿|oú;«®‚œV –]ä¢5oÞ\«–,--W¬XQÒv4ú…I¿ofã"p¢°ÀñÆòÒ[·n©ÕjÍÛÜBˆ¬¬,µZ}êÔ)é­µµõÓ§OÕjõ£Gä‘”5jÔèØ±cçÎkÖ¬)¥¸ººæää•%Í>K!DíÚµÛ¶mkcc#§ìÚµKZSù^”o³4ãºuëäc½}ûöo¾ùf“&Mä]üôÓOjµúöíÛ™™™r&¿þúëÌÌÌüü|uaç§ÞôððhÑ¢E5ä”cÇŽ[áVVVÝ»w=zt‹-¤ ‹‹/*/VNÌÌÌüüüµ¾ |}}ëÖ­+¿ +}3Ý¿_þ“¦}ûö3gÎŒŽŽ–Çé~ùå—%*¬%ã‹/¾(/’®[ú5_I+­ §OŸzxxÈ…jÙ²¥æ°faÐÀ±¤Õ^°–JºÝG¸ŽóË€¥ü@Ò,½½}ïÞ½ÃÂÂäíûí·©¥VX½:¾”ênåÇ›~çNÁª« §•£¥D—†B¿*­­­¥·æææçÏŸ/Q;ý¤ß7³q8 QXà¨V«}||¤¥Û·oW«Õ6lB¨T*)qÛ¶mjµúßÿþ·ô¶sçÎÒ§fÍš%¥ØÚÚÊGÆÙ³gå?û¦NZT–4µ×_ýÉ“'jµú·ß~“s\Ò½(ßfiÇ!C†H)'N”?øÊ+¯H‰Ÿ~ú©œ(C?þø£œXðüÔ¯€Ÿþ¹”xñâEùÕñG[pp°´ÎìÙ³åĈˆ­­),fNvîÜ©V«Ÿ={Ö¾}{9qñâÅjµ://oذaRŠ““Sé›iÚ´iRŠf÷ççŸ.%º»»—¨°…*´Õ4óܨQ£„„„#GŽ\¾|Yïæ+i¥´téRiZµj9rDJ7nœ¼5W¸¢ŠYTºÂj×QKzl¡Ø#¼¨"°¢Hré<<<²³³µÛ¶mk¨ú)e¤_਻i”oú;ZUWqN+å_; / šEëÚµ«ôUyýúõ—_~Y«Õ”·£ò½—Å…©4ßÌÆÂÇ"É-wäÈ!„4¤£I“&uêÔBœ8qBNB¼öÚkÒ‹;wJ/ÆŒ#ŒhÚ´é„ ´VÐÁÂÂbÙ²eÒSuêÔùä“O¤ô”””'Ožè·—b·YýúõKHHHHH;v¬”’““óèÑ#éõ_ýUÒ êQÀ&MšŒ5JzݰaÃ6mÚH¯¯]»VÔ^?~,½øöÛo¿úê+i¬ú·ß~›–––––Ö§OýJ$Ýı´´ŒŠŠ’íííÇŒ#„033“¿¹îÝ»WúfúᇤǗ‡ bnn.„¸~ýúÙ³g•V5kÖÜ»wïÀ[´háåå¥_ó•¦ÒdkÖ¬‘^hþÕWè ÓRRXí:j©¤[Ðã/‹ŠRx íÞ½[z1iÒ$ù²:zôhÿ§OŸæåå¶~JÙ@¥aÀ¦ÑãÜ)Xu2£ŸVe÷µcii)UÖ«WOþªLLLÔ:´ ¨,.LeWEe‡À±HràxôèQñ1b‹-‚‚‚DÀQ^9==]zѱcGÍ­É‘eFF†<&º(Mš4©W¯žüVÞ”Z­¾råŠ~{)v›¥Ñ±cÇvîÜùСC“&M ñÅ/^¼¨÷õ( Ö¸ùÖŒŽÚ–7žžž>lØ077·W^yåóÏ?øðaãÆå1=%-æ yl:uäîj9± =šé—_~‘W–'±·±±‘¿=322”VÒ_S¥i¾ÒTZÁªg$BT«VMÞ¯)¬vµTÒ-èq„—EE)<233¥r‡ŠÂÕÕõÔ©S§N:räˆÀ°~JÙ@¥aÀ¦ÑãÜ)Xu2£ŸVe÷µÓ¸qcÍ{ôrÞž={ö믿ê½YÝÊâÂTvUTv‹jaa!„8vìX^^ÞÉ“'…Fàxüøñ'Ož¤¥¥ !êÔ©Ó¨Q#!DNNŽü«3Z3?É'ð“'OäYŠ¢u¬Ô¬YÓÎÎNzýÇè·ÝÛ,e]={ölâĉµk×ŽŽŽ^¸pá¾}ûrssõîæÑ¯€òWa¡o 5kÖ¬‘#GÊóݨÕêÔÔÔ9sæ´hÑ¢mÛ¶òO”´t…îZáä %m¦œœœb§¾}û¶òÂêAkô½Aš¯D•&yðàÁŸþYh5jÆâ¡¼ÚuÔRI· Ç^¥ä@Ò<ìíí•äªôõcÀ—”¡šF¿sG«êŠÍIyžVe÷µ£•kkkù«òúõëzoV‡2º0•]•Ç"ÙÚÚJÏ:åää|ÿý÷ÒÃöràxûöíï¿ÿ^z¨^în´µµ•Ýßÿ]skòÛjÕªÉC¶‹¢uä=~üX~Ô¿~ýúúíE÷6KYWsæÌY´hQnn®——ײeËΜ9“““ÓµkW½kÞ ÕX,KKË%K–dgg¯[·nàÀò¢È“n¶tº•´™lmmkÕª%½Þ³gOfa¢££•VZ_…åÖ|Z¬¬¬ä)”åKÄà?"ª¼ÚuÔRI·PA*JÉT«V-ù‰;wî(É•aëLjÕ[ú;zÇ©J”ÃÑ¢­?¤?~,çÇÝݽ,ª¢Œ¾ÙÊ®ŠÊ£.ò áK–,BØØØ4jÔH~*bÙ²eÒ Í{ùiùW´Þ6hÐ@êÈÔáüùóYYYòÛ½{÷ªÕj!DµjÕ¤§ÛôØK±Û”¿}´»h}YJ®Š¥K—¾ûî»Íš5³°°¸yó¦Þ5ojÔíéÓ§·nݺuëÖÓ§Oûöí›ðçŸîÝ»WžAžÌà¥Ó¡Øf*Hž››û’{{{{{{+++å…5ˆrh¾‚ÌÍÍ===¥×ò;!„Z­V2M]I)©ö²ÞBùW”ÂI¥RÉw褡>’?þø£U«V­Zµ +ö6n)ëGï—æ›°ôŒrîèPG‹~´¾*å¼U«VMú»,ÚÑà­SÎß̆B਋ܕ¸oß>!DPP¹¹yíÚµ¥?h’““…*•Jó§-å©­þõ¯É3ͦ¥¥ÍŸ?_z­9L¤(Ïž==zô³gÏ„¿ÿþû”)S¤ô®]»JƒôØK±Û”ï;=zTÔ²yóæb¿þþûoù¦|ŠžteÏŸ?=z´tÓï÷ß—§c,å­œ/LåüÍl(Uè'õвeËZµjÉß/òeAAAò(ŠfÍšiÎ1ûþûïÿ÷ÿ÷µk×îß¿nnnþã?J3Ñ»¹¹ÅÆÆ*ÙõæÍ›===}}}?.ݬ433ûøãK³ÝÛ”{R?~pûömy,°666666Òˆ¢aÆ­Y³F¥RýðÃ…þj‹½½½´æý×?~ìØ±ZSѶuîÖ­[¹¹¹!!!¯¿þº££ã¯¿þúý÷ßK+H¿7P¢Ò„îf*èƒ>XµjÕÝ»w·nÝÚ¾}ûvíÚ?^~¸o„ ŽŽŽöööJ k(åÐ|…š £)vGÉ믿®y˜J‰sçΕ5ç‚’=zTkN‰‡‡ÇtdIžù©mÛ¶Z£4,,,4çÄW¾—mSžšAæåå%ÿá®cÇ~ýúü <ßï[o½%ïbàÀš«é˜ ¿¤T2Y—–Çu»*44Tš!Lyé ÍÉêÕ«¥Ä&MšÈ‰”› ¤ÍTè^¾ÿþûBÿ0}çwä) ¶PºçqÔªùÒ7ŸÂJ+ÔàÁƒµöhmm-&1à<Ž «]w-•f …á…ž_†­(åÒæÍ›å1aš¦M›¦ð(RR?:J­ðãéýMXTÓ”èx+åWŸº"VÊ…—¹höööZÖÕªUûꫯôhGå{/}ë<6JóÍl,ܪ.†|·Zü³Ç±Ð$¯¾úêÙ³gcccÃÃÃ]\\œœœÚ·oÿᇞ;w.$$DÉN:4|øpooo—Þ½{ïÝ»wĈ¥Ù‹’m~óÍ7sæÌiÚ´©µµu@@À˜1cŽ9¢ã‘=Y|||Ó¦MÅÿýJÁøñãO:%ÿ¢÷š5kä;ñññ¬]»¶µµu“&MtÜ®*}5«eË–™™™±±±Í›7¯S§Ž¥¥¥ƒƒCHHȪU«öíÛ'?榼t¥§¤™ êÚµë™3gbbbkÖ¬éååÕ³gÏäääåË—Ë}ÖPÊ¡ù õå—_ʽYµk×îÖ­Û?þضm۲ؗ’j/ë-hQ~~é]Qʤž={ž;wnĈÍ›7·±±©_¿þ믿¾ÿ~¹OÈPõST©õ®^½¿ ÂXçŽåp´(?t%¡¡¡ÉÉÉ]»v}ñÅÝÜÜúöí»oß>ùÇ$ÊÛш¦rþf6•úÿÀèbccgÏž-„èѣǖ-[*ì6 õüùó;vˆ Ûµ^±KWnÍTEœ8qâçŸ1b„­­­±óR¡QQPŽ£Æ8Â0,--M2d¬ ¥3=AAAš·P* Êq´@­j(BàE Ç@z #!p€"ŽP„ÀŠ8@G(BàE #!p€"ŽP„ÀŠT•ÀqÆ QQQÁÁÁÓ¦M»{÷®òÏfee½òÊ+“'O6v!Œ©JŽñññÓ§O¿|ùróæÍmll6mÚôöÛo?~üXÉgÕjõ”)SÓׯ_ŸŸŸ?nܸڵkK)S§Nµ³³ÛµkW~~¾îÏfddÄÇÇ7lØÐØ…0>Ó?nff*§˜››·mÛöÎ;©©©:>˜››ûþûï;88L:ÕØ…0>Õjuff¦££££££fº···âÆ:>ûùçŸ_¼xñ“O>±µµ5v9ŒÏÂØ([=ÊË˳··×J·³³Büõ×_E}ðôéÓÿþ÷¿ ÔºuëóçÏ—h§>>>Æ.7([éééÆÎ‚˜xà(=:mmm­•ncc#„¸ÿ~QŸzÿý÷ëÕ«7qâDýö[5¦ŠÌÇLJF©hh”Љv©€h” ¨Êv™xàhoo¯R©=z¤•.M¯#õ;wóæÍ5kÖXYY»…‰q´°°°³³+س˜““#„Ÿ³ÖtìØ±5kÖŒ1ÂÏÏÏØÙ¨@L|¸¼Nrròøñã4h°cÇcçe‚+ ¥b¢]* ‡éŽBˆ¡C‡:;;oݺ511ÑÍÍmРAãÆ“z J­V;¦† ·0mUöZoúOUÀ  #!p€"ŽP„ÀŠT‰y±³EªšsëèÀ@™«²ž¨øËV9nU@G(BàE #!p€"ŽP„ÀŠ08cR©TFÜ»Z­6v@eB#cSéŸN³fÍR©T]»v-¸(..N¥R9sÆØ'<=={öì)½nÓ¦M@@€ÁwqòäI•Jµnݺ¢ªèСCEDD¨Tª¼¼<éíµk×T*Õ!Cärss¿üòË6mÚ¸¹¹ÙÚÚúûû=:++K^á³Ï>Sé´{÷n=Š3{öl''§¦M›¼¢ B³A+•§§gTT”ÂíTг ÑãEÚ±cÇæÍ›{õêeìŒÏÜÜÜÜÜÜØ¹PD­VwïÞ=11ñ•W^8p`õêÕ/]º´bÅŠÿþïÿ>zôhãÆ…“&M’?òùçŸÛÛÛ¿ñÆrJýúõKºß .ÄÆÆ†„„¼÷Þ{Æ®ƒ2Ô¶mÛððð3f”~SšÕ‰'æÌ™3{öl©ô`³éùóçVVVòß$''§ììlÃTŠCàE²²²3fLDDD­ZµŒ—b$%%; J%$$$&&Nž<ùÓO?•OŸ>2dÈcÇŽ !Ú´iÓ¦MyéªU«êÕ«7þüÒì733S1sæÌððpc×AY9uêÔ¡C‡ U@̓êÖ­[[·n7nœÞ[3ÈÙtõêÕ¼¼¼Ö­[{yyɉ666)/”àV5)66ö·ß~›>}zYlüÙ³gùùùÆ.¢Hw·G­™èïïuòäÉ”Ñ~¥!­5jÔ(£í—¨Aóòò´ºÍJ#77wÏž=3gÎìØ±c…=¨ r6IÑÿÇü­†åË—»pU#)**ªsçÎK–,9qℎՎ;Ö¹sgWW×:uêtîÜYê3“xzzŽ?þĉ~~~~~~RÊØ±c'Ožlkk[£F-Zìܹ377÷ƒ>ðõõµµµ »pႼ…øøøfÍšY[[;::¶hÑâ»ï¾+4aaaÒp´‡ê˜––Ö«W/ww÷ÚµkwêÔé§Ÿ~ÒÜÎþýû#""5j4yòägÏž¼V¥€)--M+=..îìÙ³ÕªU+ÍÆ‹j‹!C†ôèÑCâééYðƒ?ž={¶¯¯oÍš5=<}sssGŒ‘‘‘±|ùòœ>}Z1sæÌY³fµoß¾OŸ>OŸ>ݲeË Aƒlmm }Î@R½zõÕ«WËoóóó?úè£?ÿüÓÃÃC±wïÞnݺ¹¹¹õë×ÏÌÌlË–-;vLHHèß¿¿bóæÍ}ûö}á…¢££ÍÌ̾ÿþ{ƒ×jTTÔªU«zöì9lذ^½zK½€µk×®]»vi¶¬£-&NœèîîþñÇ/X° yóæ?³fÍš:ôîÝ;--mõêÕiiiGŽQÒ ÊT±aÆß~û­sçÎ~~~Gމ‹‹;|øpRR’Ö º[J‹‹‹‹ÔŸšžžÞ°aCU¹iÓ¦DFF !8 „HKK»sçÎ /¼ „HJJruuõ÷÷×üÔĉ===g̘ñé§Ÿ¶hÑBJ<{öl—.]Þ|óÍ:lÛ¶mÅŠùùù_|ñEQ»Vr6+33³zõêµjÕÚ°aÃ_ýÕ¸qãW_}µ”l dÔ04ooocg¨XtœBó©jyž9s¦"33S­VÇÅÅ !âãã¥EóæÍBœ>}Z­V?}úÔÓÓ³~ýúÙÙÙÒÒììl//¯§OŸªÕjéŽY³fåååI+Ô¯_¿Zµj/^”ÞJãüüüüž={&¥„„„!rrrÔjµ———··÷óçÏ¥E÷îݳ°°xï½÷äMõèÑCzêïï_° ü±bÕªURn4hðèÑ#ié“'OZµjååå•››ûäÉ77·›7oJK³²²êÔ©#„X»vmQU¤Cnn®´æ¯¿þ*„}úúõëÅæ°Y³fÍš57nܳg϶mÛ6~üø3f´lÙòµ×^Ó£™”´EQ¬¬¬/^,ÝmܸqëÖ­;uêÔ¥Kéh±­ ¼A…7Ö¼µjmmíããsùòeÍut·”î²+22rþüùwïÞ•:_ÃÃÃCBB¤À1))É¢C‡J¶ãíí­ùVá­ggÓÇ¥q¨…R«ÕRkÔ¨áèè(%:ôÉ“'#GŽÜ¸q£ô×Ê#¯eË–ï¼óÎòåË垉t1Ó&]AŸ?.½µ··×o§OŸ>íÕ«WbbbóæÍ_{íµnݺµjÕ*00PÉgïÞ½Û½{w;;»7Ê‹¯ÌŸ?¿à Ø5Ú¿Á²h…¼¥÷àÁƒ!C†¼öÚkÇ—«U«åàà±sçNýG%m¡ÃÈ‘#{÷î½cÇŽŸþ911qåÊ•>>>ÉÉÉöööz·‚BZ}uº[ª”»ëÔ©S\\\rrrJJŠ»»»»»{XXØ´iÓîÝ»—””bgg§d;z?Ÿ^ÔÙdgg§.îÇœ¤±š¤£åüùó¥¬(DàŠ|òÉ'[¶l5jÔ[o½%'6hÐ@qîܹvíÚɉgÏžBøøø”rLLL\¼xñرcåD%=Žyyyýû÷¿yóæ47‘r[«V­Ž;ʉ.\8w½½ô¤êÉ“'CCCå¥ò#†bmm½{÷î7nhŽ©—®fÍšúm¹4mqçÎÌÌLoo˜˜˜˜üüüeË–=zÅŠ!!!úµBQ.\¸ðüùs9šüøñÅ‹5ë\×R¥l‚àà`[[Û}ûö;v¬mÛ¶BˆÐÐÐüüüíÛ·Ÿ:uJtXÖ =›rsswîÜYÔGºwï~íÚµ;v´oßÞ××WNÏÉÉBHÏ~¡0Ʊ³³[¼xñÍ›7—.]*'º»»ÇÇÇß½{WJù믿-ZäááQú”žcмFnܸñáÇÅöÊL™2eÏž=_|ñEPPfº¿¿¿ÏÂ… ïÝ»'¥äääDFFŽ?¾fÍš^^^‹-úý÷ߥ¥ÙÙÙŸ}ö™a«Q¥R 0àèÑ£³gÏÖœÈðáÇ3fÌ(ê‡é”(M[¤§§·lÙráÂ…Ò[333)’³´´Ô»Š’/¿={vNNŽÖ/ ên©R6¥¥exxxbbbjjª8ÕªUkîܹÅp4Ô$‘…žMÒ­ê¢!¬¬¬&Mš4bĹ 9??þüùò”(kô8€Rýúõ[½zõ?ü §T¯^=>>¾_¿~}ûöU«ÕëÖ­ËÊÊÚ°aCõêÕK¹»°°0kkëáÇ8°nݺ‡Þ·oŸ³³óÁƒwíÚ%M§RÐÎ;.\èççgnn®9Ý ¯¯o``àâÅ‹»wïîçç×·oßçÏŸoݺõÆk×®•~\nÁ‚}ûö èׯŸ¥¥åºuëÊâ—ÜâããÓÒÒbccW¯^ýÊ+¯HÏq:tèÖ­[Ó¦Mkݺµ~›-M[5iÒdÞ¼yW®\iÒ¤Izzú®]»£££ÍÍÍõhÜÜÜbccSRRüüü>¼wïÞV­Z½ù曚ëXXXèh©Ò7Add¤4¾P ÍÍÍÛ´i“˜˜X¯^½¢~QPêé\¾|ù­[· ¨¤ žMÅÞª®]»ö¬Y³¦L™Ò AƒÈÈH{{ûÝ»wŸ:ujîܹ¥¿ƒ…èq€X¶l™ü «¤W¯^û÷ïoذá×_ýÍ7ß4jÔèСC:Æø+çî˜øâ‹/~þùçñññVVVgÏžýä“OrrrttJ3$Ÿ9sfÐ?­Y³FÑ©S§#GŽ4mÚ4!!á›o¾ñôôܽ{wß¾}¥ÏöìÙsß¾}M›6ýöÛo.\ø÷ß'$$¼­¬¬öìÙ³bÅŠÚµkÿüóÏË–-;xð`PPÐþýûgÏž]š-ëÝÕªUÛµk×[o½•’’òñÇ'%%EDD:tÈÓÓS¿VСE‹{÷î½wïÞgŸ}vãÆI“&ýüóÏÇ’ên©R’â]gggù&¾ô0¸ŽîÆÖ­[GGGïÞ½»”?ü¨©àÙT¬÷ßãÆ... «V­rppصk×|`¨,¡X*½;ÛQŸôôtcç¨@tœ*•JëKH%øÔ!++ë…^(}¿)4yzzúûûk=M £ÓãÂ]e¯õܪ¢àã«À­j(B#cS•~@å)ýXPI80&F¢JY¶l™±³” ·ª #!p€"ŽP„ÀŠ8@G(BàE ¿À˜T*cþà ¿[%BàÀØŒ½5f€Êˆ[ÕPˆY³f©Tª®]»\§R©Îœ9cì< OOÏž={J¯Û´i`ð]œÔ=(0--­W¯^îîîµk×îÔ©ÓO?ý¤¹ýû÷GDD8::6jÔhòäÉÏž=3x­JSZZšVz\\ÜÙ³g«U«VšÕC† éÑ£‡"$$ÄÓÓ³à?~<{öl__ßš5kzxxÄÄÄüñÇJZ¡D *K–,±··¯V­ZÓ¦M§NZT%ën)MûöíkÛ¶móæÍå”Q£F !>¬µfŸ>},--åè|ݺu*•ªY³fò “&MR©T§NÕ!C^ýu!Dhh¨fí:t(22ÒÉÉ©nݺï¾ûîßÿ­£ižM:\½z5##cذa...Rн½ýøñãSSSÏž=«ß6QRܪ€"©Tª¥K—6nÜøí·ß>~üx¡ƒ·mÛÖ§OWW×èèh•JµqãÆààà7vïÞ]ZáÆ;v´³³‹ˆˆRÌÍÍ?üðC ‹E‹õéÓ'00077wĈË—/0`ÀéÓ§…3gΜ5kVûöíûôéóôéÓ-[¶ 4ÈÖÖ¶Ðç $Õ«W_½zµü6??ÿ£>úóÏ?=<<„{÷îíÖ­›››[¿~ýÌÌ̶lÙÒ±cÇ„„„þýû !6oÞÜ·oß^x!::ÚÌÌ,!!áûï¿7x­FEE­ZµªgϞÆ ëÕ«Wpp°Ô X»víÚµk—fË:Úbâĉîîîüñ‚ 4,YLLÌš5k:tèлwï´´´Õ«W§¥¥9rDI+(oP!Ć ~ûí·Î;ûùù9r$..îðáÃIIIZSSén)M¹¹¹#GŽ ÒL¼víšt0h­¹iÓ¦DFF !8 „HKK»sçÎ /¼ „HJJruuõ÷÷×üÔĉ===g̘ñé§Ÿ¶hÑBJ<{öl—.]Þ|óÍ:lÛ¶mÅŠùùù_|ñEQ­£älÒíÆÒq¢™X§N!Ĺsç4Ã_”!5 ÍÛÛÛØY*'…ô5dœ:¿gΜ)„ÈÌÌT«ÕqqqBˆøøxiѼyó„§OŸV«ÕOŸ>õôô¬_¿~vv¶´4;;ÛÃÃÃËËëéÓ§jµZz†cÖ¬YyyyÒ õëׯV­ÚÅ‹¥·Ò8???¿gÏžI)!!!BˆœœµZíåååííýüùsiѽ{÷,,,Þ{ï=yS=zô^‡††úûû,ÈÇ,„Xµj•”Û yòÄÃÃÃÍÍíæÍ›ÒÒ¬¬,骼víÚ¢ªH‡ÜÜ\iÍ_ýU1xð`ù³ß}÷ÝK/½$­V£FöíÛÏ;÷×_-ª9ìí탂‚tfŶÅÖ­[…,øÙ˜››kæpذaNNNYYYJZAyƒJÇÃܹsåI·Y׬Y£Ù º[J]œ;wî¼úê«æææ¿üò‹Ö¢›7o !&Mš$½mÚ´©ôŒùæÍ›¥¢™™™ :´àAµcÇ!DRR’\j!ĶmÛ¤·¹¹¹¾¾¾…æGáÙT,©8**J3Qê[?¾’-E w•½Ös«Š1a„¦M›ÆÆÆJšRSS¯^½:nÜ8''')ÅÉÉiܸqW®\‘gqss›>}º™Ùÿß¾úê« 6”^‡…… !¢££---¥éÑG !Ž;–ššjañŸ»CwîÜ‘)±mÛ¶3f¼÷Þ{Æ Bœ:u*##còäÉVVVÒ Õ«W=zô•+WRSSSSS¯]»6a„ºuëÊ93fŒî]ôïßRîîîº?5`À€ÌÌLi¤ZDDĉ'¦M›æåå%…¹úQÒE133“¦’:ê„«V­ÊÎÎvssSÒ ÊTÊÕĉåÏΘ1ÃÆÆfýúõšùÑÝRºË’””Ô²eËãÇ/]º´AƒZKëÖ­Û¬Y³}ûö !îÞ½›––6~üxkkëääd!Äòóó;w½½½»uë&½677÷÷÷øða±ŸÒq6åææn+šÂÅÅ¥wïÞ7nŒ‹‹ËÎÎþóÏ?çÏŸ¿|ùr!DNNN è‰[ÕP ‹•+W¶nÝz̘1Z©fdd!¤Á‹2é–YFF†tKÔÇÇG3jBÈ‘B / ¦HRRRöîÝ{éÒ¥ŒŒŒóçÏ+ŸcåÂ… o¼ñFHHÈâÅ‹¥”K—. ! 0`À­•¯_¿.{{å•W4Ó‹rÔ¨QÁÁÁZ‰§OŸ¾~ýz±9lÖ¬Y³fÍÆ÷ìÙ³mÛ¶?~ÆŒ-[¶|íµ×ôh&%mQ++«Å‹K7d7nܺuëN:uéÒEpYl+(oP!DãÆ5ÇqZ[[ûøø\¾|YsÝ-UTY®_¿>jÔ¨íÛ·7hÐàÇ,êAãÈÈÈùóçß½{Wê|  ‘Ǥ¤$ ‹:(©poooÍ· o=ë8›>|(C-”Z­B,_¾üÞ½{S§N:uªÔ4±±±3gδ··W²w”#¯eË–ï¼óÎòåË¥ž™t1Ó&]AŸ?.½Õû’öôéÓ^½z%&&6oÞüµ×^ëÖ­[«V­•|öîݻݻw·³³Û¸q£¸HñÊüùó ΀ݨQ£ýû÷,‹VÈ[z<2dÈk¯½6|øp9±ZµjQQQ;wîÔ/pTÒ:Œ9²wïÞ;vìøùçŸW®\éã㓜œloo¯w+(daa¡ÕW§»¥ ÝÈš5kFŒaccóÅ_ :Tî-¨S§NqqqÉÉÉ)))îîîîîîaaaÓ¦M»wï^RRRHHˆ’lëý|zQg“º¸ß‘rvvÞ»wï‘#GΜ9ãââ"·ÅvrÃP@‘O>ùdË–-£Fzë­·äDéVà¹sçÚµk''Jxúøø”rLLL\¼xñرcåD%=Žyyyýû÷¿yóæ4Ÿ$r[«V­Ž;ʉ.\8w½ýË/¿,„8yòdhh¨¼T~¤ÃP¬­­wïÞ}ãÆ ÍÀQ"õÒÕ¬YS¿-—¦-îܹ“™™éí퓟Ÿ¿lٲѣG¯X±"$$D¿V(Ê… ž?.Gó?¾xñ¢f‹âZªà6·oßþÆoôíÛwÅŠ¶¶¶º3lkk»oß¾cÇŽµmÛVšŸŸ¿}ûöS§NIƒËZ¡gSnnîÎ;‹úˆô´Ù™3glmm[µjÕªU+)ý§Ÿ~R©T­[·.‡lC0(dgg·xñâ›7o.]ºTN tww¿{÷®”ò×_-Z´ÈÃãô?(=Çàëë+§lܸñáÇÅöÊL™2eÏž=_|ñ…Ö“¶þþþ>>> .¼wïž”’““9~üøš5kzyy-Z´è÷ß—–fggöÙg†­F•J5`À€£GΞ=[s"ÇΘ1£¨¦S¢4m‘žžÞ²eË… JoÍÌ̤HÎÒÒRïV(Jvvv||¼üvöìÙ999Z¿4¨»¥´6¨V«ßÿýzõê}ûí·ÅFR¡ÂÃÃSSS¥À1((¨V­ZsçÎ-v€£¡f-ôl’nUEZgĈÍš5“òâÅ‹ ]ºt‘žâB9 Ç”êׯßêÕ«øá9¥zõêñññýúõ ìÛ·¯Z­^·n]VVÖ†  ΄RRaaaÖÖÖÇ8p`ݺu>¼oß>ggçƒîÚµKšN¥ ;w.\¸ÐÏÏÏÜÜ\sºA__ßÀÀÀÅ‹wïÞÝÏϯo߾ϟ?ߺuë7Ö®]+ý¸Ü‚ úöíЯ_?KKËuëÖegg¼ãããÓÒÒbccW¯^ýÊ+¯HÏq:tèÖ­[Ó¦MÓ»ë¨4mÔ¤I“yóæ]¹r¥I“&ééé»vírtt”~žDVÐÁÍÍ-666%%ÅÏÏïðáÃ{÷îmÕªÕ›o¾©¹Ž………Ž–ÒÚàÅ‹/]ºäë룵¨W¯^…â‘‘‘ÒøB)p477oÓ¦Mbbb½zõ7n\h¶¥žÎå˗ߺu«à”@z(x6)¹UýñÇGFF¶hÑ¢gϞϟ?_¿~½••Õ¿þõ¯ÒçJû±nTeÑŠRÙ§ãÑtåÊéAWÍ DRRR:uêäâââââÒ©S§£GÊ‹4gÌ)4Eº,M—#™={¶â?þP«ÕÉÉÉ­[·¶±±y饗bbb²³³W­ZåììܱcGuÓñÈÂh‘g`IMMíÒ¥‹«««ƒƒChhèž={4³·ÿþ:888!ììì6lØ tNÇSèì6ÒÓ:¦ãyøðáŠ+Zµjåììliiéââòúë¯8p ¨æP2O±m¡c:µZ}ãÆ¡C‡zxxT¯^ÝÝÝ}À€ò ;Ê[¡Ø•VNNNn×®]Æ 'MšôäÉ“B Ý-%Ó)¨iöìÙEVáìì,§H?ç8bÄÍÕ4§ãÉÏÏŽŽ¶µµ ”²Ú§OÍ• äääTèîJt6kÏž=Rs¸»»ÇÄÄܾ}[ùg‹Ât<Ê©Ôúv¶£(>>>éééÆÎPè8)T*•0Ö·Š/@]²²²^xá…Ò÷›B“§§§¿¿)B§Ç…»Ê^ë¹U (ƒÆDàÀØþ9  Â"p`LÜ,F•)ýXPI8PN–-[fì,¥Â<ŽP„ÀŠ8@G(BàE #!p€"ŽP„ÀŠ8@!fÍš¥ú';;»æÍ›¯Zµ*??¿ÐuÌÌÌ6løÆo9rD÷¦dÑÑÑ…î}öìÙNNNM›65v5†§§gÏž=‹ÿצM›€€€¢²UqòcD'OžT©TëÖ­+¸H:¤»víZpQ\\œJ¥:s挱³²ÂoU¨ÄTB¥ê²Û~ÿþý_|ñE!„Z­þã?‡žžž>þü‚ë~üxöìÙ¾¾¾5kÖôððˆ‰‰ùã?ä¥ñññÍš5³¶¶vttlÑ¢Åwß}§¹å±cÇNž<ÙÖÖ¶F-Z´Ø¹sgnnî|àëëkkkváÂÍl,Y²ÄÞÞ¾ZµjM›6:uê³gÏ -cZZZ¯^½ÜÝÝk׮ݩS§Ÿ~ú©¨Ú¸sçNÇŽgÍšUÔKYŸ>},--}ú$''ÿþûïÅ.…¡8¨4TB¥ùOݨ™X¦ÈÎÎ^¿~½™™Y¡!š&ÿÜÜÜ7n”t'Nü裄 ,øú믅Û¶m >wî\tttÿþýÓÒÒ‚ƒƒ·mÛ&äÆ;vüûï¿ ÎóÑGÕ«Wo„ «W¯–S!ÄÌ™3'L˜àììU«Õõë×BÌš5+//¯à¦xð`9eذaNNNYYYjµÚËËËÛÛûùóçÒ¢{÷îYXX¼÷Þ{ÒÛúõëW«VíâÅ‹ÒÛO?ýTáçç÷ìÙ3)%$$D‘““#gcîܹòŽ&Ož,„X³f´´GRq4hðèÑ#iµ'Ož´jÕÊËË+77WGsHãÌ™3‹ZáæÍ›BˆI“&Io›6m*=“¾yóf©hfffC‡•–†††úûûK¯wìØ!„HJJ’K-„ضm›ô677××××Ããàu—EwÍkíT3?%ªvÝ-¨¹ݹ}ò䉇‡‡››ÛÍ›7¥¥YYYuêÔB¬]»¶¨³#33S­VÇÅÅ !âãã5üÓ§O«•‰ŒŒ´²²rppÏ __ß'N\ó—_~BŒ?^3ñÇB|ñź—› =¾£ªìµž‡c“}„º?R¢ ûD¶æ­[ Ÿ>ø@ÉӚݒ‚OUK1Šn©©©W¯^]¼x±“““”âää4nܸñãÇŸ9s¦yóæB77·éÓ§›™rÉÌÌL¥R:tèÚµkBˆU«V­ZµJZzìØ±5jXXüçB uÎ=zôHþø«¯¾Ú°aCéuXX˜"::ÚÒÒRJ ?xðà£G¤g#œœœ4Ǔ͘1cùòåëׯïß¿¿œxêÔ©ŒŒŒÿùŸÿ±²²’RªW¯>zô褦¦JÅÑOݺu›5k¶oß>!ÄÝ»wÓÒÒ¾üòËÑ£G'''÷ìÙóÀùùù;wV²)ooïnݺI¯ÍÍÍýýý÷îÝ[p5ÝeiÒ¤‰Žš×MyµÛ‚ s›››{íÚµùóç×­[WZêææ6f̘©S§›Û &$$$ÄÆÆöîÝ»^½zš‹rsswîÜYÔ»wï.„ÈÌÌÌÏÏŸ5k–4Øàûï¿?~|=ÒÒÒììì4×—Êekk«™(­sçÎÝK•T;"p`LúM¦£5 OÙMÊsðàA…Bk‘nRk>(ªü©jMB­;ãÒнŒŒ )Òòññ)4jBXYY-^¼xâĉžžž7nݺu§NºtéR­Z5!„ƒƒCJJÊÞ½{/]º”‘‘qþüy­A™r´*„—‚)²ÆK›•X[[ûøø\¾|Ys©ãpÀ€š÷¸%ׯ_/Mà(„ˆŒŒœ?þÝ»w¥ÎÚðððääd!DRR’……E‡”lÇÛÛ[ómQå[5¯›òj/¶æVúÊ+¯h¦+|ÙÂÂbåÊ•­[·3fÌ–-[4=|øPQZ­–š¦FŽŽŽRâСCŸÏ^lYŠªyy"§Rzúô©òÔÛýû÷‹‡YQÔ²eËwÞygùòåšCo…vvvju1ÑI7Ä5½öÚkBˆóçÏk¥»¸¸˜™™i=&uûöm!Dݺuu/5H…CBà ²’îJ«…Zz¶ºLg/‘ÔÔÔôíÛW¾‡¨· !Î;×®];9ñìÙ³BŸb?~çÎÌÌLoo˜˜˜˜üüüeË–=zÅŠ!!!‰‰‰‹/;v¬¼¾Ë.\¸ðüùs¹?ìñãÇ/^ -XœZµjuìØQóƒçÎÓþ*lkk»oß¾cÇŽµmÛVšŸŸ¿}ûöS§NIcï HwYtÔ¼Aæ0Bšý‹Ò #ÆŽË—/—®UOŸ>MKKKIIyöìÙ²eË46FoÕ«Wïׯ_```ß¾}Õjõºuë²²²6lØP½zõb?Ô¤I“yóæ]¹r¥I“&ééé»vírttŒŽŽ677·¶¶>|øÀëÖ­{øðá}ûö9;;}4W4h““SQ{ÔQ5¯µS­éx”W»îÔÚK±5¿ÿþ:H3ãØÙÙmذA(˜ŽGÓ•+W¤§¶•OÇ£V«7nÜøê«¯ÚØØ899µoß~×®]Z;Z¼x±œrïÞ½áÇ7hÐÀÉÉ©k×®©©©š›Ò½T¦ãQN¥Ö÷®Šâã㓞žnì\'…Éóôôô÷÷×z¨•TVVÖ /¼ ¤KÛdèñUe¿Ö¸U þ_Á'Ç@z¥©ä‡pTvŽ€ÒZ¶l™±³ ::ÚÜÜ|ݺuÛ·ooß¾}Á•srr‚‚‚®_¿Þ§O''§7vêÔé矖úku/…¡ÐãJ¹¸¸ôïß?///--­¨u6l˜ V«ÿë¿þK¿½¨Õj!D5Œ]Üÿxöì™|w¾Xyyyyyy†Úõ„ îß¿ÿã?®^½úã?NII:tèÖ­[wïÞmìZ)s%ªv£ˆýí·ß¦OŸ®÷Ôjõ°aÃìììΜ9¿`Á‚sçιººNž<¹Ðõ-Z”™™¹råÊï¾ûî³Ï>;pà€J¥š8q¢’¥0G()ª{þü¹Žu‚‚‚‚ƒƒ7oÞ¬ÇMÕ!C†ôèÑCâéé)%;v¬sçή®®uêÔéܹó±cÇäõ===ÇâÄ ?????¿‚|üøñìÙ³}}}kÖ¬éááóÇÈKããã›5kfmmíèèØ¢E‹ï¾ûNsËcÇŽøÀ×××ÖÖ6,,ìÂ… šÙX²d‰½½}µjÕš6m:uêÔgÏžZÆ´´´^½z¹»»×®]»S§N?ýôSQµ±oß¾¶mÛ6oÞ\N5j”âðáÃZköéÓÇÒÒòÁƒÒÛuëÖ©TªfÍšÉ+Lš4I¥R:uJ&õB 2D-*×¶âСC‘‘‘NNNuëÖ}÷Ýwÿþûï¢r¨£,EÕ|ÁÊù)iµëhÁB‹¦»æ÷ïßáèèØ¨Q£É“'Õ|²¨¨¨Î;/Y²äĉÊŽnmW¯^ÍÈÈ6l˜Üooo?~üøÔÔÔ³gÏ\íÚµnnno¾ù¦ôÖËË«OŸ>ÉÉÉ¿ÿþ{±Ka(Ž TvvöúõëÍÌÌ Ñ4ùûûçææÞ¸q£¤»˜8qâG}$„X°`Á×_-„ضm[ppð¹s碣£û÷–¼mÛ6ù#7nÜèØ±ãßÿݲeË‚Œ‰‰ùè£êÕ«7a„€€€Õ«WK©bæÌ™&Lpvvž2eŠ 4hûöíòg¾þúë?üpÖ¬YW®\éÓ§O»víöíÛ7bĈ7Þx#99yÀ€òÊ6l=ztÛ¶m§L™âìì!ÅÙšöîÝÛ¼yóÓ§O÷ë×oÈ!W®\騱ãÚµk æ<77wäÈ‘R¤(»v횢zõêZ+GFFæææ8p@z+½HKK»s玔’””äêêêïï¯UÛ³fÍB|úé§Rm !Ξ=Û¥K— |ðÁ/½ôÒŠ+&MšThcé.KQ5_èN5)¯v-Xp/ºs»yóæöíÛŸ={6:::<<zô褦¦jÞ’.())éí·ßÎÌÌ\¾|yƒ ´–Ö­[·Y³fûöíBܽ{7--íË/¿=ztrrrÏž=8ŸŸß¹sg%îííÝ­[7éµ¹¹¹¿¿ÿÞ½{ ®¦»,Mš4ÑQóº)¯öb[Pansss¯]»6þüºuëJKÝÜÜÆŒ3uêÔbs;a„„„„ØØØÞ½{׫WOsQnnîÎ;‹ú`÷îÝ]\\z÷î½qãÆ¸¸8)¬ÿú믗/_.„ÈÉÉÑZ_*—­­­f¢TpÝK•T;"p`L%zZáÊÊ·YìcÚTø(´éœ———œ¢ü©jMB­;ãÒнŒŒ )Òòññ)4jBXYY-^¼xâĉžžž7nݺu§NºtéR­Z5!„ƒƒCJJÊÞ½{/]º”‘‘qþüy­A™r´*„—‚)²ÆK›•X[[ûøø\¾|YsK—. !  y[rýúõ¢Çëׯ5jûöí 4øñÇ }ÞV9þü»wïJµááá!!!ÉÉÉBˆ¤¤$ ‹:(©soooÍ·EM”SlYtÔ¼nÊ«½ØT˜[ilè+¯¼¢™®ðad ‹•+W¶nÝz̘1ZO»?|øPQZ­B,_¾üÞ½{R¿¾T¢ØØØ™3gÚÛÛZ-ZãM¥øÒÑÑQ÷R%BŽŒIÉ ;åÓñ(ßfÙ9s挅……V£¤‹«Vÿ¥ÊÈè¼Äj9rdïÞ½wìØñóÏ?'&&®\¹ÒÇÇ'99ÙÞÞ¾W¯^‰‰‰Í›7íµ×ºuëÖªU«ÀÀ@V‚……ÅÇ5S¤°iþüùç6oÔ¨Q¡Y³f͈#lll¾øâ‹¡C‡Ê½kuêÔ)...999%%ÅÝÝÝÝÝ=,,lÚ´i÷îÝKJJ ‘úŸŠ¥ðyöbËRTÍË‚”ÒÓ§O•· îÜîß¿_8ÌŠúk¤ –-[¾óÎ;Ë—/×z+„°³³S«‹9÷îÝ{äÈ‘3gθ¸¸„„„H™qww×ZÓÅÅÅÌÌ,;;[3ñöíÛBˆºuëê^j ‡„À ,55õÀ}ûöÕå($Ý“=wî\»víäDéSŸb?~çÎÌÌLoo˜˜˜˜üüüeË–=zÅŠ!!!‰‰‰‹/;v¬¼~iæÖ¾páÂóçÏåþ°Ç_¼x144´`qjÕªÕ±cGÍž;w®Ððwûöío¼ñFß¾}W¬X¡u² àà`[[Û}ûö;v¬mÛ¶BˆÐÐÐüüüíÛ·Ÿ:uJ{g@ºË¢£æg̘a }Zyf>ùä“-[¶Œ5ê­·ÞÒÌŒî[ÕBˆ3gÎØÚÚ¶jÕªU«VRúO?ý¤R©Z·n­µ¾……E£FäçŸ$û÷ïW©T7Ö½Ô  OU€!edd 4H¥RÅÆÆ–~kîîîñññwïÞ•Rþúë¯E‹yxx(¹“˜žžÞ²eË… JoÍÌ̤ÈÀÒÒRzšÄ××W^yãÆ>,¶‹¨(ÙÙÙñññòÛÙ³gçäähýÒ ¿¿¿ÏÂ… ïÝ»'¥äääDFFŽ?¾fÍšZT«Õï¿ÿ~½zõ¾ýöÛb£F©Páá቉‰©©©RàT«V­¹sç;ÀQu—EGÍ—f§š¶ ´ݹ ôòòZ´h‘¼wïÞV­ZÉ“êI,,,/^ܽ{w??¿¾}û>þ|ëÖ­7nÜX»vmÁ¡„/^¼té’¯¯oLLŒÖ¢^½zúCÉ‘‘‘Ò0;)p477oÓ¦Mbbb½zõŠêv’z:—/_~ëÖ-ÍçxŠ¥»,:j¾4;Õ¦»µö¢#·æææ ,èÛ·o@@@¿~ý,--×­[§uÛ·Xýúõ[½zõ?ü §(¹UýñÇGFF¶hÑ¢gϞϟ?_¿~½••Õ¿þõ/ii\\ܼyó>ùä“wÞyG1xð௾újàÀ#GŽ´··_½zõ£G¤Y‡Š] ƒ1öcÝåaÑ¢EÞÞÞÇíµ×¼½½ûôé#OIPÐýû÷ƒƒƒ½½½»té2nܸ~ýúy{{7jÔèܹsJvWeÑŠRy§ã)tª­ud*•ÊÛÛ{À€)))%Ý”&Íéx$))):urqqqqqéÔ©ÓÑ£GåEòL7E¹qãÆÐ¡C=<<ªW¯îîî>`Àyª—äääÖ­[ÛØØ¼ôÒK111ÙÙÙ«V­rvvîØ±cÁ-K7.W­Z%§Ìž=[ñÇÈ+'''·k×ÎÎήaÆ“&MzòäI¡™LMMíÒ¥‹«««ƒƒChhèž={ ͹ր9M³gÏ.ª°Bggg9eþüùBˆ#Fh®¦9ýM~~~tt´­­m`` ”Õ>}úh®(t–Z->>>éééÆ.7Pê¤Pø¸´‰©UHžžžþþþ¥ü iTYYY/¼ð‚’.m“¡ÇwT•½Ö›þÇõë×ççç7Nž›~êÔ©vvv»ví*j|ÉáÇ­¬¬Þ}÷]9¥W¯^®®®çÏŸ7ào°()µ²J£N:U*jD‰˜~àxüøqyT²ÄÜܼmÛ¶wîÜIMM-ô#öööí۷ך‘¡zõêÏž=+ö·;L•‰?£V«333µæÿ”æw½qãFPPPÁO%$$h¥?~üúõëþþþòœûYdd¤’ÂPÙ™xàøèÑ£¼¼¼‚ÓƒIÓÀþõ×_º?~êÔ©M›6]½zõÔ©SîîîÒ/r*Qp~µª9@±lÙ2cg(CJ¦M­"L—Ÿ³ÖA¥R9;;:´_¿~üñÇîÝ»]&ã0ñÀQáâârçÎ)R”]½zUZTpýŒŒŒ>ø`×®]ZéÒ¯ܺuËØ0ÓÃÃÃóòò4ø\­V''';88úK¯¶¶¶›7oÞ´i“Vúõë×…üä%¨²L?pŒŠŠ233[²d‰<¼zõªôƒñ...>>>Ü·oŸ¼‘K—.}÷Ýw666Í›77vŒÃÄŸªBÔ©SgòäÉqqqݺukӦ͵k׎9Ò¸qãáÇËë$''?¾Aƒ;vìBÌž={À€ï¾ûn@@À‹/¾øçŸž8qBñé§Ÿ:99»@Æaú£bèСÎÎÎ[·nMLLtss4hиqã¤y Õ¬Y³;w~öÙgiii/^tuu}íµ×FŽÙ Ac¨¬ªìÔ`JTÒ$…0 *ûÃçTUöZoúc`ŽP„ÀŠ8@G(BàE #!p€"ŽP„ÀŠ8@G(BàE #!p€"ŽP„ÀŠ8@G(BàE #!p€"ŽP„ÀŠ8@G(BàE #!p€"ŽP„ÀŠ8@G(BàE #!p€"ŽP„ÀŠ8@G(BàE #!p€"ŽP„ÀŠ8@G(BàE #!p€"ŽP„ÀŠ8@G(BàE #!p€"ŽP„ÀŠ8@G(BàE #!p€"ŽP„ÀŠ8@G(BàE #!p€"ŽP„ÀŠ8@G(BàE #!p€"ŽP„ÀŠ8@G(BàE #!p€"ŽP„ÀŠ8@G(BàE #!p€"ŽP„ÀŠ8@G(BàE,Œÿ R©Š]G­V;›€ªˆÀ¨xt‡…Å–00¢y8€DóÀG(DàE #©*Çlذaýúõ™™™5kÖl×®ÝäÉ“t¬ÿøñãuëÖmܸñæÍ›µjÕòöö:thpp°±ËQ®TB%„P SxVT%T¦Q!Š{J£ò Q Ò©c||üŠ+¬­­›7o~íÚµM›6edd|óÍ7VVV…®Ÿ››;xðàÓ§OÛÙÙµjÕêÉ“'G=xðà˜1cFŽiìҦäbG¨LÿVuzzúÊ•+]\\~øá‡•+WîÞ½ûÍ7ß<{öì‚ ŠúÈúõëOŸ>ýÊ+¯$''/_¾ü¿ÿû¿·lÙboo¿téÒ‹/»@(1):Q1c ÊŽJp€¨ L?p\¿~}~~þ¸qãj×®-¥L:ÕÎÎn×®]ùùù…~ä‡~B|øá‡r—dƒ Þyç¼¼¼C‡»@åD ¶ˆ·*"“ˆQèk€ÊÈôÇãÇ›™™…††Ê)æææmÛ¶½sçNjjj¡¹zõªµµuãÆ54h „¸qㆱ T†TB%ÿS’^aifX3ÏE¥WF•¢ *-ÿ̳JõŸžàJQEå5¡²@¡L|Œ£Z­ÎÌÌttttttÔL÷ööBܸq#((¨à§¾øâ íš9þ¼¢^½zÆ.S™Óê’ßV¢ ¡ŽUQù»»*S£WÍše1F1²@QLVöFÑ*‹ ´ˆ\aÅôǨ¨(33³%K–Hã…+W®¼}ûvïÞ½---¥”‡^½zõæÍ›BµZP«V­)S¦;ïÆQhDRIÔ‚Ù6±ËØY0XA( T ¦«ºN:“'OŽ‹‹ëÖ­[›6m®]»väÈ‘Æ>\^'99yüøñ 4رcGvvöõë×­¬¬Xpk={ö4h±Ë Â1…îPÓ…C‡uvvÞºukbb¢››Û AƒÆ'ÍÈSÔïøøñã´´´‚Ky°ºbR©Š¿9(Íüô¦âjjp>>>•zGQ …Q8÷¡±³IYL´ ¢2M® À LàZ¯ÓムpÃ0¥'Ä PŽP„ÀÚ§ EàEÀ`æÀ´8@Gü@Q #ذ*ñ[Õ(ŠöO<«…P Ík^eùE8P«<µ®·*¿fþƒ[ÕP„À ŒaŽL#!p€"ŽP„À aŽL#!p€"ŽP„ÀÊØG(BàE ¬p·€‰!p€"ŽP„ÀŠ8@b˜#SBàE«6µ±3*G(Bàe‹aŽL#!p¬ºT‚NPŽP„ÀÊØG(BàXE©„JÍ,Ž $ #”†90ŽP„À±*b€#Ð#!p€rÂ0G•#!p¬ràôCàE ü0Ì@¥FàE«8½8@G(W sPy8@Ç*„Ž 4 #”7†9¨¤ cUÁGPJŽP„ÀŒ€aŽ*#G(BàX%0À”#!pã`˜#€J‡ÀŠ8š>8ƒ p€"Ž`4 sP¹8@GÇG`(ŽP„ÀŒ‰aŽ*G(BàhÊà ˆÀŠ8€‘1Ì@eAàh²¸O ‹ÀŠ8@G0>†9¨M€Á8@G(BàÃT|ÆÎ Žô¦R¼ªÕ|½U#àŸt„†Å…•L·ª #T sPÁ8š8€2BàE án5€ŠŒÀŠ8š8€²CàE ba˜#€ ‹ÀŠ8š8€2EàE Âa˜#€Š‰ÀŠ8š8€²faì  BQLP³FÅT|A(‹ñËb2©Ìe)äv¸ºRd\AA _ï+ª+da–¥"f]¯²TŠ‚@Fà™ºs\¥ýŪª4'¹Jë]Á‚TJ¥2PÛ(¢2`Š«ViÄ(z(Ò0Ç2½“Phm«TªJ;jeºð‚h¦¨*î©SlTܬÿ3“JޤÊsÖCG0 1ŠJ¥ª˜[P"Œq4 på€GF£*x¯°Ôwxe‡ÀU…vŒB€RZírb‚V>Êa˜#”#ª † P:Ž•^YvH¨ d¤"öó©u¼+t ¥\ÚeQ4óKEÉ|‰ÊR‰¥<ËR¶•Pâéx*N£[–bÿ¬DeÑw£+4“ü^©8B'ÝsT˜^:•Jõϯ¢Bf~)æ*RAËR¹çH*¦,•µQʵ,ez«ZŸéx*L£[–âçªýòåËÍ›7·±±Ù´iÓÛo¿ýøñc%ŸýöÛoýrÆà@™ãbSI™þ­êôôô•+Wº¸¸lܸ±víÚBˆ9sæ|óÍ7 ,ˆ-êS999¿üòËöíÛ×®]kì¨êøÑj„é÷8®_¿>??ܸqRÔ(„˜:uªÝ®]»òóó‹úT×®]Xõ¢Fþ”.9•‘é÷8?~ÜÌÌ,44TN177oÛ¶íöíÛSSSƒ‚‚ ýÔœ9sž>}*„HHHHII1v! A÷(g&8ªÕêÌÌLGGGGGGÍtooo!Ä7Š CBB¤?ÿü³± QnøÛèbâã£GòòòìííµÒíìì„ýõWí×ÇÇG+%==ÝØ• c˜#Lƒæ¤³ÿIQ«E…Ÿ‰¶àe½Ê2ñÀQztÚÚÚZ+ÝÆÆFqÿþý2Ú/a"ZŠœ\SNTUÐ_/ëU6”4ñ‡cìííU*Õ£G´Ò5 ’¢Ó±B!p€"ަîFÀT1ÌUŽcEÇGPA8š8º&€NÇ ‚ÀŠ8š2º“Ç0GTt:VŽ@ÅAàh²èn†Eà*îV#Tn sPn+®Ò pä>5À$Ñéh\ŽP„ÀÑÑÝT5Ü­F•B§£8@Ç JïŽt7LŽÆBàEM Ý@•Å0GT5t:#!p¬ˆôàHw#(SŽ Rânuù#pÁ0GeÀÑDpŸPÑéXÎ+œÒüD5@Ù!p4t7ª,:Ë#˜†9(SŽ•Ý€*ŽNÇrCàX±0ÀTXŽ•Ý:Ë #˜†9(;Ž•Ý <8V p@oÜ­.Ž•Ý œ8€©a˜#ª,:Ë#!p¬(J4À‘ûÔŠNÇ2EàE+º‹aލÊèt,;ŽP„À±BP>À‘îFŠE§c!p€"Ž• Ý”c˜#ƒ#p&ˆ»ÕeÀÑøp¤»#0Mt:#˜,†90,ÇÊûÔèNGÃ"p4²ýD5€8Vt7 7: ˆÀLÃcEGw#¥D§£¡8@%BàX¡ÑÝ€AÐéhŽ`âæÀP+.º@…Bàh4 p 5€Š‰aŽ€t:j!p€"ŽeHàHw#•Žš c™£»@Ç0G@7:eŽP„À±¬HénÀÐé(!p€"ŽeˆîF•Ã(AàP<îV G6lØ• †[¦V`z™Ž…X¿~}~~þ¸qãj×®-¥L:ÕÎÎn×®]ùùùʶ¡6/`UƒÆU°*^QÖþ/š¯ôÕòUc!Ž?nff*§˜››·mÛöÎ;©©©×W •üOþ“]3ÑØ€ÂýMUÉniD£,êÊ8M«,=Á•»,ÚK*UA -‹4AU»Ö8jS«Õ™™™ŽŽŽŽŽŽšéÒØä7nùA¡–OoµÆ[SºûÀÄÈ_Sšß`ÿµU9¾Á4¿r +‹üºи”èh”ÊT8À4K¤Ö¸©øÏrU *5÷TÿéáÇ/¿üòÎ;5Ó×­[÷ÑG½ÿþûÆ ÓL—'k”ÿ.ôññ1v!@ÙJOOWÿ*2y³…±3PáHN[[[k¥ÛØØ!îß¿_ì´Ž$Qe&•×?o‰j¿­\L¦,&S(‹æu\kXZå*Héq«Z›½½½J¥zôè‘Vúƒ„vvvÅnáÿFÿò3 PÞ4ºLçØd.+•=ÿ¢ÀfRRŽÚ,,,ììì ö,æää!ä笋"RUí0P©É_\šdTêï1(‚\(‹\ù03vŽ V"cgÄ áâârçÎ)R”]½zUZTèG¤£GþC¤ÊO*)éëKþW©¿Á ~WÆâÈZ¦qYÑl”ÊÞ%\ůõŽ…ÏËË;pà€œ¢V«“““Šú”Ö£UUðI+•—Ö÷Uåýú2¥¯b“i“)‹ü÷•fA*iYôFàXˆ¨¨(33³%K–Hã…+W®¼}ûvïÞ½--- ®/ý2uÁ߬¬dST¨ª ½ò™Òå°2–Å”Å4ʵþ?õÀt<…úꫯâââêÖ­Û¦M›k×®9r¤Q£F_}õ•½½½±³`ŽEÚ¾}ûÖ­[Ïž=ëææöꫯŽ7Nš‘ j"p€"Œq€"ŽP„ÀŠ8@G(BàE £Álذ!*** 88xÚ´iwïÞ5vŽªºÇ¯^½úõ×_÷÷÷oӦͰaÃ:dìLáÿeee½òÊ+“'O6vF „çÎ5jTXXXóæÍ tôèQc稪{öìÙ¿ÿýï^½z´oß~ìØ±ÆÎTuåÊŸ3gκ´ª]ý  #>>~úôé—/_nÞ¼¹Í¦M›Þ~ûíÇ;_UWnnîàÁƒ?ùä“?ÿü³U«V/¿üòÑ£G‡ºtéRcg B¡V«§L™"ÿ<Œkß¾}ÑÑÑûöí«]»v@@À©S§Þ|óÍ}ûö;_UW^^Þ[o½µ`Á‚»wï¶iÓ¦nݺ»wïîÞ½ûñãǵªèÛo¿-jQU¼ú«Qj—.]jذa›6mnݺ%¥Ìž=ÛÛÛûã?6vÖª®ï¾ûÎÛÛ;::úÑ£GRÊ/¿üòꫯúúú^¸pÁعƒú«¯¾òöööööž4i’±óRÕÝ»w/((ÈÏÏïĉRÊ™3gš4iÒºuë¼¼’¾¬NŸ>­µBÕ¼úÓãhëׯÏÏÏ7n\íÚµ¥”©S§ÚÙÙíÚµ+??ߨ¹«¢~øá!ć~hee%¥4hÐàwÞÉËËㆵÑeddÄÇÇ7lØÐØBlÚ´)''çwÞyå•W¤”fÍšEFFÞ¾}ûܹsÆÎ]•šš*„xë­·,,,¤”V­Zùúúþúë¯ýõ—±sWUtíÚuàÀk×®-j…ªyõ'p4€ãÇ›™™…††Ê)æææmÛ¶½sçŽtò£ü]½zÕÚÚºqãÆš‰ 4BܸqÃØ¹«Òrssßÿ}‡©S§;/Bˆýû÷«Tª=zh&~úé§ééé~~~ÆÎ]åææ&„ÐŒÕjõ½{÷ÌÌÌäPemΜ9Ë–-[¶lYëÖ­ ]¡j^ý9þJK­Vgff::::::j¦{{{ !nܸdìlܸqÿþý#""¬¬¬¶nÝÊ£îG•½úÓãXZööö*•êÑ£GZéÒ<#Ò_0¢£GΚ5ëòåËnnnsçÎ-j¨ ÊA\\ÜÍ›7׬YÃ=Њ£FÒ‹yóæµoß^z=jÔ¨¬¬¬M›6íܹ³OŸ>ÆÎcUôþûïŸ|¸±³VEegg_¿~ÝÊÊjàÀ—öìÙsРAÆÎ#PQøúúN˜0aÑ¢E:u zôèÑñãÇU*Õœ9s^xác箊š={vŸ>}–-[–˜˜Ø¨Q£;wîœ(S¦ŒM±bÅ>|¨ºÌl¯yüøñüùó[·n]¦L[[[//¯öíÛýõ×)))Fkæà»—å&FFŒ¡úð–ÎFu^©´´´øøøøøø#GŽÌ™3gëÖ­ 4P]Tö?xð@ñÇøûû«.GÖ§Ÿ~ºxñbíµV¿iùûï¿;wî|åÊCKTTTTTÔÖ­[gΜ¹`Á‚öíÛ?fðÝ@p,‚‹‹‹âádžÁž„„„   ¨¨¨B… i-ÅŠswwB”*UJuÉ&,ËøcÇíEÓ¦M;uêT°`AÕef£øÈÈH__ߌyׯÆ&55U{}ãÆwß}÷àÁƒ5kÖ̼CÉï^–›qttT}x‹§`¦Îœ9cø¥ÿñdžök×®õêÕ˰hæÌ™ª+Íž¢E‹fîTþg({óæÍªkɶ·ÞzËð…éի׉'RSSoÞ¼¹xñâbÅŠiíÞÞÞ†õsðÝ{Ö&òîq,Ž››Û’%K:uꤽýòË/ ÷ÛeyÛÓ§OçϟߤI“Ò¥K-Z´zõêÿùÏNž<™yÏwîÜ-„ïÒ¥‹»»ûk¯½æçç·wïÞçÌß?þøcóæÍÚëÑ£G/Y²¤fÍšÖÖÖ¥J•êӧϪU«´E‘‘‘ÿüóOŽ¿{Lƒêä ¯<'cz ÓçÏŸ¯µÔ­[WkyôèÑo¼‘ù_:nΜ9w¸cÇggçÌk¾ÿþû†uBCCµÆŽ;öèÑC{ª-ݵk—‹‹Kæ6l˜¶ÂèÑ£3ïÿÁƒ’›g)cIÛ»víªµ>ÜhM__ßÊ•+}PPPa[£ÃرcÇÌe_¸pA[ùÈ‘#å˗ϼ‚››Û¾}ûdaQ­Zµœœœ2î¤dÉ’ß~ûmŒŽÉÞ½{Ÿu@2Þyç­¥D‰÷ïßϼI»víjÕªU«V­µk׿ø»Çˆ#`q,T³fÍ ·Ù9räY«}ñÅÚR;;»: 8°~ýúB½^?xðà .h«%%%…„„ܹsGáààèçç§-Z¼xñŠ+Œv{ìØ±Ÿ~ú)cKRRR×®]oß¾-„hѢń ‚ƒƒ­¬¬ôzý7ß|³dÉ!Äðá㢢 .¬mòÓO?ÞÊlž[öîÝ{þüùråÊÕ¯_ßÖÖVk\³fÍÑ£G³»«”””wß}÷Ò¥KB[[Û7ß|³]»vZ®_¿Þ¥K—û÷ï¿ðМ8qâîÝ»5kÖ,Q¢„Ö;xðà§OŸV®\¹L™2Z£^¯Ÿ8q¢|‘ýõ—öâwÞ1\pÏhË–-Ç?~üx`` Ì%¿{ò!‚#`¡t:«««öúÖ­[ÏZmÏž=Ú‹±cÇnذá»ï¾ oÕª•"55õ?þЖN:U›÷P®\¹‹/®]»v÷îÝcƌі.Z´Èh·111UªTY±bExx¸vÓ›a;wÞµk×øñãþùço¿ýV[_ :¯½öZùòå­¬þï_\eÊ”)_¾¼N§“Ü<Íž=ûÊ•+áááÇ7dÇgÇõë×ë3Ýšéíí-„˜>}º6O¹xñâû÷ï Û²eKxx¸6pxëÖ­/¿üò…‡.£M›68qâÖ­[-Z´04Κ5ëܹs×®]ëÓ§Ö¢]–ñôéS-Ž !<==såè½ð»§Ý„`dèС¹òé^Á°\¯½öšöÂèvºŒ è[¾|ù’%K´ ±|ùò3gΜ9s¦sçÎÚÒíÛ·k/†n¸Z:pà@í æãÇÓÒÒ2î¶páÂ;wî ©_¿¾G´E|ðaµ^½zY[[ !®]»vêÔ©çôå%7Ï–jÕª 0@{]©R¥¦M›j¯¯^½šÝ]mÙ²E{1hÐ Ã=…Õ«W6l˜Ñ Ï9tuëÖm×®¢@AAAZ£ƒƒÃ Aƒ„VVV†ë‰’fün”.]:·Ž¡Ìw@>Äãx˯½(^¼ø³ÖyóÍ7µù%‘‘‘}úôÑét>>>mÛ¶}ûí·3Þû¥½hܸ±¡ÑÕÕõøñãYîÖÇÇÇ(…æU¼ùæ›YnrñâÅ5j<«Î—Ü<[ŒnI4\6L‘™eÙ­[·ÖÆk/^¼˜žžndÍòÐ.F ! ³)]º´6(›±QžaÒ´"Ÿ¸þüï^–ã1g Ëe¸J˜yN‰Áĉ“’’/^üøñc!„^¯ˆˆˆˆˆ˜;..îY‹^róì2ä°,ßÊËxÜŒœiˆ€=º}ûvÆ¥F‡î…•d 9P°`A'''íèe|úwF÷îÝÓ&‰ÛÚÚ)RDf·Ïÿî­\¹Ò„íX.UêÀOž<Ñ^g9oZS @ï¿ÿ>66ö—_~ Éøæ?ÿüS{TM±bÅ V #IÏgqŠ/nÙÚ±cGTV‚ƒƒŸµ·—Ü\•âÅ‹ÛÛÛk¯ÿý÷ߌ‹ o ,X²dÉçºW Q£FÚ‹M›6e|êA¥J•œœœœœœ 3²ŸOò» "8Ê0q¤H‘"¯/gôøñãÛ·oß¾}ûñãÇï¾ûîŠ+îܹ³sçNÃì÷ïß/„Ðét†«·‡6l~ëÖ­† 6lØÐÏÏï…—q+T¨ ½HMM-Ÿ£££ƒƒƒƒƒÃó/³æxsC3ºíO›!ž×´)2"Ãß•1zëååec£øÒá¶Ñk×®-X°ÀhéæÍ› Ç͛7—Ù¡Ìw@þDp,έ[·úöí»víZííþóŸŒ÷±etþüyWWWWW×R¥JiŒ±±±iÙ²¥ar®á´!1|ýõ׆1sæÌððððððB… ½ð‚iË–-µ .ÔëõÚëuëÖ½öÚkNNNîîî™LcµÊÙæ777íÅáÇ 7JþöÛoÏJvnÑæ²!¾ûî;óÊÏœ93}útíuÛ¶m_AÏ÷Ö[oï Aƒ&Mš¤ ˆ>yòdùò冇J–/_ÞÇÇçù»’ÿîÈŸ¸Ç°Ý»w×®&?|ø0ãUÑ’%K~þùçÏÚªF...·oßNMMmÒ¤É[o½U¢D‰+W®lܸQ[Áð'@Æ·lÙ²¤¤¤èèèZµjùûûß¾}{×®]ÚÒ?þø…~úé§‹/NHHذaC‹-š7o~öìYÜâaÆæF888hw4~þùçgÏžóÈbRR’Â0ÏÀÒ³àââ¯%Eƒèèhm‘êêÔ 8fÁßß?--íÏ?ÿ4´èõú}ûö9::úøø¨®@ ‚c‚‚‚¬¬¬¾ÿþ{í¾F!ÄÂ… ãââ ( º:5˜U…Ò¥K1bêÔ©o¿ývÓ¦M¯^½^µjÕ>ø@uiÈ¡°°0Õ%À'%â¼äCœäǬõîÝ»dÉ’6lغuk©R¥ºuë6dÈí‰<–É¢ƒã_|ñÅ_-X(‚c¾¦×«üG†»»ûøñã?>{öì¼8QQQVVV*Tx÷Ýwû÷ïß´iÓZµjýý÷ßªÏ –ˆ{ñ²† ¶bÅŠqãÆº¹¹=gÍÔÔÔ-[¶|ø°cÇŽÏZªÏjsïÞ½¶¶¶%J”ÐÞöîÝûÑ£GüñÚµkûô飺ëX‚#rAƒ ú÷ï?oÞ¼ßÿý9«ÙÛÛë%/ÿWéÒ¥ZZ·n-„8{ö¬êN`qŽÈ_}õÕúõë УGg­“ÝKÕW¯^ݼys‹-*W®lhLJJB”+WNu°8Gä{{ûY³fuíÚuΜ9ÏZ'»—ªíìì†^¯^½]»v(P@‘žž>}út›V­Z©î1‡àˆ\Ó¥K—ü1,,ìY+d÷Rµ³³óĉGåååÕ¶m[‡íÛ·?~üË/¿¬R¥Šêî`qŽÈMsçέZµjJJJnípäÈ‘åË—Ÿ6mÚŠ+lmmkÔ¨±mÛ¶6mÚ¨î(–ˆàˆœ?~üøñã3·{xx$''çîgªî1ààCp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤‘'NÔét™M:U§Ó...Z‹ƒƒÃСC#""N:¥º÷X‚c¾¦:…ÿ¼¸9X‚c¾¦z…ÿÈTèîî>~üøãÇÏž=;×»_©R%!„Ñl˜={ö!þý÷_Õ'‹c£º˜¼aÆ­X±bܸqnnnÏY355uË–-ÏZÚ¡C£—ÀÀÀµk×N:µwïÞz½þ§Ÿ~š7ož"))Iu¿°8G¼,›… 6jÔhРAëׯΚ>ìØ±ã³–êõYŒqΛ7/11qôèÑ£GB8::Ž7n„ ªû €Å!8"4hРÿþóæÍûý÷ߟ³š½½}–éð9J–,¹sçÎððð“'Oº¸¸4iÒdÿþýBˆ×_]u§°8G䎯¾újýúõ èѣdzÖÉî¥j!ÄÉ“'‹/Þ°aÆ j-»víÒét5RÝc,Á¹ÃÞÞ~Ö¬Y]»v3gγÖÉÁ¥ê~ýú={622R›L}þüù+V´oß^{ ^%fU#×téÒ¥M›6‰‰‰ÏZA»Tý,Yn2iÒ¤äääúõë4èÃ?lÒ¤‰Ýwß}§º¯X"‚#rÓܹsíììrq‡­[· {ýõ×—.]ºuëÖwÞyçܹsª; €%âR5rbüøñãÇÏÜîáᑜœœ»ŸÕªU«V­Z©î1`ÄrŽBp€‚#¤ …à)GHá9Žù…···êž‡à˜/DFFª.à¸T )GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€ÕäSOž<ùé§Ÿ¶mÛíèèX½zõxyy©® @F³––Ö£G3f$$$4mÚ´L™2Û·oïСÃÑ£GU—  #ŽYøå—_"""Ú¶m;cÆ !Ä¡C‡úôéº}ûvÕÕ¨Áˆc"""„=zôÐR£¢aÆ•+W¾råÊÝ»wUW Á1 ¥J•Bd̈z½>11ÑÊÊÊ%, Á1 o½õ–­­íäÉ“:”’’róæÍqãÆÅÄÄ/^\uujèôz½êò£S§NõìÙóádž–nݺ3ÆÚÚú…Ûz{{gn SÝ'‹S¶lYÕUàpRò'ÎK>dŠ'ÅÓÃSu y«¢wÅÈÈHÕU(À…×,$%%M™2åáÇU«V­^½z||ü6lØÐ AƒV­ZÉìÁ2¿Lùœ‡‡‡ê`Œ“’?q^ò!S<)zaÎ#SÞÂûåwbŠŽY9räßÿ=zôè^½zi-7oÞìÚµëСC7nÜèéiæÿ%îq4vçÎ={öT¨PÁ…¥K—þ裞>}º~ýzÕ¨Ap4/„pww7j×cccU Áј»»»µµõÅ‹¦ i·-V¨PAujÙÙÙ5kÖìêÕ«ß}÷]zzºÖxñâŹsç,XÐÏÏOuj09& _|ñEçÎçλuëÖ*UªÄÇÇÿý÷ßééé¡¡¡åË—W]€Œ8fÁÉÉiëÖ­ýúõ+R¤ÈÞ½{cbbš7oþ믿†„„¨. @F³V¸páaÆ 6Lu!ù#ŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp¹I'tz¡W]òÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽb£º,ŽNè²±¶‡êrÿ"8 €^è%×ŒŽŽöð <"_àR5¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8ðJé„N/ôª«r‚à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ ÅFuù×éÓ§,XpöìÙx{{8°~ýúª‹P†ǬíÞ½;88x÷îÝÎÎÎ>>>ÇïÞ½ûîÝ»U×  #ŽY¸wïÞ¨Q£lll~øá‡:uê!N:2nÜ8___++Ò6°Dd ,¬[·.))©ÿþZjBÔ¨Q£mÛ¶qqq§OŸV]€Ç,ìß¿_§ÓuìØ1cã´iÓ"##kÖ¬©º:5¸T…3gÎ8::ººº;vìøñ㉉‰•*UjÙ²¥êÒ”!8{òäÉýû÷+T¨0a„U«VÚÝÜÜfÍšU­Z5™x{{µ„……©î™E‹‰‰Q]ŒqRò§|r^<=9/z¡W]B^Êæ1Î''ÅbeþÏzæ" Á=ŽÆlmmµS¦L騱£ƒƒƒ««ë€:uê³eËÕ¨a2ÁñÔ©SÏ_!·®)RÄÖÖÖÎÎÎÏÏ/c{Ë–-….\P}$Ô0™àصk×ï¿ÿ>---󢄄„!C† <8·>ËÙÙ¹@:.c£v…:55Uõ‘PÃd‚£³³óìÙ³»téråÊ•ŒíÛ·ooß¾ý¶mÛÊ•+—[Ÿåçç—””ôÏ?ÿdlŒˆˆBTªTIõ‘PÃd‚ãæÍ›»térúôéŽ;j“‡ 6hРÄÄÄ>}úlܸ1·>«S§NBˆÐÐлwïj-§OŸþá‡ìíí[µj¥úH¨a2³ª‹-:iÒ¤¶mÛŽ;v„ [·n½|ùr\\œ——×W_}U½zõ\ü¬Ê•+6ì›o¾iÓ¦Mݺu“““=ªÓé&OžüÚk¯©>j˜LpÔ4lØpõêÕ:t8r䈢víÚË–-+P @®P¿~ýœœœ–-[vðàAGGGÿzyy©>ʘXpüóÏ?µ+ÈU«Vˆˆøøã?ÿüs—\ÿ¬ÀÀÀÀÀ@Õ=È/LæÇû÷ï3æý÷ß‹‹úÈÚÚÚÞÞ~Ö¬Y3fÌÐétcÆŒéÓ§êÌ™ÉǸ¸¸¾}û®_¿¾J•*Û6mÚÔ°aè®Àœ™Ì=Ž+W®ôññÉr‘««ëÒ¥K—/_®ºFsf2#ŽÏJN×½{wÕ5˜3“ ŽP‹à)GH!8@ ÁRŽb2ÏqBlÛ¶mÙ²eW®\ÑëõY®®ºF³e2Áñ?þ2dˆöÚÚÚZu9Çd‚ãâÅ‹…={öüè£ìííU—`qL&8FEE•-[vÔ¨QVVÜ—  €i„°§OŸÞ¿ßÍÍÔ Šiä0+++{{û‹/¦§§«®ÀB™Fp´¶¶~ÿý÷ãââfΜ©º@ÞÒ ^è_~?rÉÜãØ®]»ëׯ/\¸0<<¼mÛ¶eË–-X° Ñ:¾¾¾ªË0[&ýýýµ§N:uêT–ëDFFª.Àl™Lp|ûí·U—`ÑL&8NŸ>]u Í4&Ç@¹ü;â¸råJ!Äo¼áååexû|!!!ª«0[ù78Nš4I1qâD-8joŸàwòop8p ¢zõêÚÛáÇ«®À¢åßà8`À€Œo?øàÕX4&Ç@ ÁRŽBp€‚#¤ %ÿ>Žç…ôzýîÝ»cbbjÔ¨áã㣺3gJÁq÷îÝß~ûmË–-µgƒ‡††®]»V[<~üxN§ºF³e2—ª=úÑG]¸p!==]qîܹµk×ÚÛÛ¿÷Þ{eË–]µjÕîÝ»U×`ÎLfÄqÑ¢Ez½~ìØ±ÁÁÁBˆ;v!¾úê+ÿ+W®´iÓæçŸö÷÷W]&€Ù2™àøÏ?ÿ¸ººvïÞ]{{øðá‚ 6mÚTáîî^¾|ùË—/«®Àœ™Ì¥êÄÄD'''íujjê¹sçªU«V°`A­¥páÂqqqªk0g&K—.“––&„ˆˆˆxôèQýúõµEééé111%K–T]#€93™àX¯^½ÄÄÄÙ³g߸qcöìÙBˆfÍši‹–,Yr÷îÝ *¨®Àœ™Ì=Ž}ûöÝ´iÓ¼yóæÍ›'„¨^½ºöìÆwß}÷äÉ“BˆÞ½{«®Àœ™Ìˆc™2e~ùå___WW×&MšÌš5K{jc\\\ñâŧL™Ò AÕ5˜3“qBxyy-X°À¨qùòå¥J•²²2™ /O'òìïx¨î€|Ì”‚£&11ñÌ™3ÿþûoéÒ¥7n\¨P!R# ¤ú¼Ømtt´‡á@ÖL)8ÆÇÇÏ›7oíÚµ)))Bˆ=z4nܸS§NU«VýꫯU`ÎLf¬îéÓ§}ôÑòåË‹/Þ©S'C»³³óž={ºvíª¥Iä“ Ž ,8qâDóæÍæL™bhÿõ×_;tèpåÊ•eË–©®Àœ™Lp}úöíÛ¯_¿®½uww(W®\ž~î?þxäÈÕ½PÏd‚ãâÅ‹…ÎÎÎíÛ·¨Zµê+øÐ‹/Μ9³R¥J.\P}3™àP¯^=+«W4¡'55uäÈ‘ŽŽŽ£GîÙ³§ê ˜ÉÇ/¾øââìٳϟ?¿dÉ’âÅ‹«î=€z&_±'N,Z´¨[·n5:{ölv7÷öö6j SÝ'‹£ºËÓ“âéaæÂ>:::öÌ%òôôP]ŒU¬¨ºEŽYHII9r¤››Û'Ÿ|’³=DFFªîŒyxðoÞ|'OOŠ^èU÷//åå×™K>¤7믳)Ê4@d)ŽY˜:ujLL̪U«ìììT×_˜ê_ŽÉ;GŽYµjU¿~ýjÖ¬©º€|„Gc/^BÌ;wîܹÛ7nܸqãF//¯Í›7«®@‚£±råʵoß>c˽{÷8PºtiWWWÕ¨Ap4Ö¤I“&Mšdl9{öìêÖ­Ëߪ–Œ{ …à)\ª~±ªU«ò\FF …à)GH!8@ ÁRŽBp€‚#¤ …à)GæF'tz¡W];t:qùr´ê*€ÿCp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽb£º è„Nu Bx¨.YñôäÄx&‚#`¡ôB¯¶€èèh2J~¤WüÕ€±èhÕÿÅ¥jH!8@ Áðt:qù2—E<ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤‹£:½Ð«®`zŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)6ª ȧRRR~ùå—µkׯÄÄ+V¬bÅŠ½{÷nܸ±êº”!8f!55µgÏž'Nœ°··oذá£G>|àÀAƒ}üñǪ«Pƒà˜…_ýõĉuêÔùá‡ììì„/^ìÖ­Ûœ9sZ´hQ¹reÕ(À=ŽY BŒ;VKB//¯þýû§¥¥ýõ×_ª«Pƒà˜…èèè"EŠT­Z5c£———âúõ몫PƒKÕYX°`ñ‘9{ö¬ÂÍÍMuuj³P¥J£–ððð… *T¨cÇŽ2{ðöö6jÑ.C•˜˜˜l­ïé᩺ä¼­ºáé顺d!»?¼œåÚ´i£º„ü‚àøiii+W®œ6mZZZÚ×_íää$³Udd¤êÂaÌÃ#{1E/ôªKÎKù#³éÍú›¨èè²Ùý±àन•ù?ë™Gˆ,Áñy>óÈbRR’Â0ÏÀÒ³àââ¯%Eƒèèhm‘êêÔ 8fÁßß?--íÏ?ÿ4´èõú}ûö9::úøø¨®@ ‚c‚‚‚¬¬¬¾ÿþ{í¾F!ÄÂ… ãââ ( º:5tz½éÍ}–,Y2uêÔ2eÊ4mÚôêÕ«áááUªTY²dIæÇôX‚ã3mÚ´iÆ §N*UªÔo¼1dÈí‰<–‰à)Üã)GH!8@ ÁRŽBp€‚#¤sÍš5k‚‚‚|||7nÜ»wï9sæ¨îŠùx™_„^¯5j”á/Å#·äà¤ìÞ½;88x÷îÝÎÎÎ>>>ÇïÞ½ûîÝ»UwÅ|d÷¤¤¥¥õèÑcÆŒ M›6-S¦ÌöíÛ;tèpôèQÕ]±,Ë—/W]‚:z¼´ .TªT©iÓ¦·oßÖZ¾øâ‹Š+Nš4Iuiæ/åÊ•+V NNNÖZþùçŸ7Þx£råÊçÎSÝ!s𒿈%K–T¬X±bŊÇWÝ󑃓’˜˜X·nÝš5k;vLk9yòdµjÕ5j”––¦ºCæ ÇÿúûLûwÔ‰'TW¤#޹à×_MOO2dˆ³³³Ö2zôh{{ûmÛ¶¥§§«®ÎÌåàà‡…… !ÆŽkgg§µxyyõïß?-- Ö¹âe~/^œ9sf¥J•TwÂÜäब[·.))©ÿþuêÔÑZjԨѶmÛ¸¸¸Ó§O«î9ÈÁI‰ˆˆBôèÑÃÆÆFkiذaåÊ•¯\¹r÷î]Õ2!!!«W¯V]ˆJÇ\pôèQ+++___C‹µµu³fÍâããµ9òN~ttt‘"EªV­š±ÑËËKqýúuÕ29þE¤¦¦Ž9ÒÑÑqôèѪ;anrpRöï߯Óé:v옱qÚ´i‘‘‘5kÖTÝ!sƒ“RªT)!DÆŒ¨×ë­¬¬ QygòäÉsçÎ;wn£FT×¢ ß³—¥×룢¢J”(Q¢D‰Œí+VB\¿~½nݺªk4[9;ø ,ÈüoسgÏ !ÜÜÜT÷Éä½Ì/böìÙçÏŸ_²dIñâÅU÷ìä줜9sÆÑÑÑÕÕõرcÇOLL¬T©RË–- Cõx9;)o½õÖ²eË&Ož\¸páZµj%$$Ì;7&&¦K—.üj^&Mšh/öìÙ£ºeŽ/+999--ÍÁÁÁ¨ÝÞÞ^üïÿ"×åìàW©RŨ%<<|áÂ…… 2\AäøqâĉE‹uëÖ­Q£FZŽGnÉÁIyòäÉýû÷+T¨0a„U«VÚÝÜÜfÍšU­Z5Õ}2y9û¥x{{/_¾¼gÏž={ö44vëÖm̘1ª;KÁ¥ê—¥M+R¤ˆQ{Ñ¢E…÷îÝS] 9{ùƒŸ––¶lÙ²÷ß?99yÊ”)NNNªûdòrvRRRRFŽéææöÉ'Ÿ¨îÊÁI¹ÿ¾"**jëÖ­S§N=|øð¾}ûxãÆÁƒóȈ——³_JRRÒ”)S>|XµjÕ®]»¶jÕÊÎÎnÆ LuÇ+ÈãËrppÐétÉÉÉFíÚÃD´ÿwDyɃøðá‰'^ºt©T©R_~ù¥%ß³’‹rvR¦N³jÕ*.ƒæ…œ[[[íÅ”)SZ´h¡½0`ÀÍ›7×­[·eË–Î;«î–iËÙ/eäÈ‘ÿý÷èÑ£{õꥵܼy³k×®C‡ݸq£§§§ênÁü1âø²lllìíí3ÿßaRR’Â0Wy!ÇÿÉ“'“'OîÑ£ÇÍ›7¸mÛ6RcnÉÁI9räȪU«úõëÇ”‹<’ƒ“R¤H[[[;;;??¿Œí-[¶B\¸pAuŸL^NÊ;wöìÙS¡BCjB”.]ú£>zúôéúõëU÷ à˜ \\\âããµ_»Att´¶Huuf.?==ý“O>Y¶l™¿¿ÿŽ; À(WîÊîIÑþîÅܹs½ÿëwÞBlܸÑÛÛû­·ÞRÝ!sƒ_г³st:]ÆFíÇ’ššªºCæ »'%>>^áîînÔ® 4ÆÆÆªî,Á1øûû§¥¥ýù矆½^¿oß>GGGÕÕ™¹üåË—ïØ±ã½÷Þ›3gCÂy!»'¥\¹ríÿ—6u±téÒíÛ·oÖ¬™ê™ƒüRüüü’’’þù矌ÚcbxÐf®ÈîIqww·¶¶¾xñ¢^¯ÏØ)„¨P¡‚êÁ2¨~¹9¸qãF¥J•Ú´isÿþ}­eþüù+Vœ6mšêÒÌŸÌÁðàÁåË—¯_¿®×ëÓÓÓ[¶lY§N””Õµ›­ìž”ÌΜ9Ã_ŽÉ]98)çΫX±bPPP||¼ÖrêÔ)ŸzõêÅÅÅ©î9ÈÁIéׯ_ÅŠgÍšeøã=ÿüóOƒ ªU«¥ºCdìØ±û—c˜“ J—.=bĈ©S§¾ýöÛM›6½zõjxxxÕªU?øàÕ¥™?™ƒ¿oß¾¡C‡zyymÞ¼966öÚµkvvv!!!™÷Ö©S§nݺ©î“ÉËîIQ]¯EÈÁI©\¹ò°aþùæ›6mÚÔ­[799ùèÑ£:nòäɯ½öšê™ƒœ”/¾ø¢sçÎsçÎݺuk•*UâããÿþûïôôôÐÐÐòåË«î,Á1wôîÝ»dÉ’6lغuk©R¥ºuë6dÈí© ÈkÙ:ø111Bˆ”””3gÎd^Ê™ÜÂ/"ÊÁIéׯŸ““Ó²eË<èèèèïï?pà@íÏ,!Wd÷¤899mݺuþüùØ»w¯££cóæÍ?üðÃêÕ««î ,…Nÿ¿·JYbr ¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GøÿFŒáíí}èСW¶«ï¿ÿÞÛÛ{åÊ•·Ú»wo–K@-‚#˜’ìÛ·Ou,”êÀ¢ùùù999Õ©SGréðáÓ’’Î;§ºp–ˆà*U­ZµjÕª9[ ¯—ª˜¤´´´ÔÔTÕU€e!80ÚÄ‘K—.}þùçuëÖ­Zµª¯¯ïÀ& h«Ý¼yóĉ5jÔˆ‰‰1,ݺukÿþý›7oÞ Aƒž={þðÃiii™?ëÀƒnÖ¬Y³fÍ>üðÃýû÷­÷Í7ß´k×®víÚµk×nß¾ý”)Snß¾Ý]-Z´è9Ó_2.6mš··wBBBZZš···Ï˜1c¼½½W¬Xa´Õ7ß|ãííýõ×_«>cÌ Á€‰;vìŠ+=zT®\¹„„„;vôîÝ{ñâÅF«?¾gÏžgΜyüøqzzºB¯×5jèС{öìÑëõöööáááÓ¦M IHHȸí¦M›Þÿý;vØÚÚ&&&îÞ½»oß¾ß~û­a…¸¸¸ ܼyóõ×_/[¶ìõë×—.]œÝ]É«[·n= *¤ÓézôèñÞ{ïµk×N±}ûöŒ«éõúÍ›7 !:tè ú\07G&æøñã¾¾¾‡Ú±cGDDÄèÑ£u:Ý×_}ñâÅŒ«}öÙgÕ«W_ºté_ýõúë¯ !Ö¯_¿aÃggçÕ«Wïß¿ûöí{öì©U«ÖñãÇgÏžqÛuëÖùûû>|Xûˆ‘#GZYYÍ;÷Ô©S†®\¹Ò¢E‹¿þúkÆ 7n>>ZK©R¥fÏž]¨P¡Õ«Wߺu˰méÒ¥¿ýöÛâÅ‹ !lllúôé"„˜3g޶BjjªŸŸßðáË)¢µ/^< @qõêÕŒe¼pW/ÃÚÚºuëÖééé;wî44nÚ´IѱcGÕ' €"801… ÊØÒ½{w!ĉ'26¾ýöÛ¶¶¶†·wîܹ}ûv©R¥š5k–q5ggg__ß´´´óçσ‚‚lll2ÄÙ³gµ·üñüùóË—/oX!66vË–-™«}á®^RÛ¶mE†«Õ©©©Û¶m³±±iß¾}ž–ŠÇñ01F-eË–-T¨Ð­[·ž}:--­víÚS£âÂ… ™?÷ù»ÊuëÖurr:tèÐÚµk=zÔ¾}ûÜŠ¤`„àÀÄܺukÈ!IIIBˆôôô•+WþøãVVV|þ†C‡B„††ž9sFk¹}ûöÀ=zÔ¥K—Ò¥KÖ¼~ýú°aÃ>|¨}IJeË~úé'›?þXáââ"„¸pá‚á!8iii«W¯ÖÄ’’’ñCŸ¿«œIOOONN6¼ÕæV§¦¦~óÍ7‚ëÔò—ª˜˜víÚíØ±£AƒîîîÚe_++«aÆUªTéùvêÔéСC›6m ,[¶¬Ý¥K—ÒÓÓ}||† ’qMooï°°°;wzxxܸq#%%ÅÆÆ&44T›Fãéééïï¿k×®V­ZÕ©SG¯×GFF&$$„„„,[¶ì·ß~»ÿþÔ©Sev• ÁÁÁ¯¿þºáñ“íÚµûùçŸSRRÊ•+W«V-Õ§€Ù"801:t ùá‡NŸ>]´hц þç?ÿiذá 7´²²š1c†¯¯ï¦M›.\¸pçÎ7Þx£Y³f={öÔæÇ,]º4,,l×®]gÏžuttlÞ¼y¯^½2²¯¿þzÉ’%[·n=vìXÙ²e›5kÖ«W///¯´´´M›6=zT~WÙ5zôèÉ“'_ºtéÑ£G†Æ:uê”,Y266–áFyJ÷œ™†¯Œ1bãÆ ,ðõõU]Kþ’žžîïïÿï¿ÿîÚµ«L™2ªË`¶¸ÇLÞÁƒoÞ¼Y¯^=R#€òÈ#jwÐú¹ºº!|}}Û¶mS^DFFöéÓ§V­ZjwóÞŒûÒ;w._¾¬×ë…ÅÅÅ#FŒHOOwqq©j~ù}ϸˆ wwwµ«lž€•JOO7~Ó·oßnl¿xñâ_ÿúW㤹sçªÝÓ‡ N:+5ÆnoÞ¼Yí¾ÜMUûÒÍ›7‡ fœ´qãÆ»Ï—}¯ªE˜NU6ÇßßÅŠ}úôQ~œ9s¦É¥uW®\3fL»ví\]]7n“––fò&wîÜYºtiDD„ŸŸ_:u{ì±—^z騱c?îêÕ«cÆŒiß¾½V« èÙ³ç–-[ÊÏ0uêTå ¶>}ú”••½óÎ; 4xçw$ûóöÛok4ãyÞ®]»j4šòÉ”c¢|—Ê·0Àäb»òs¼ùæ›­[·vuumÙ²åÌ™3ïܹc\ÖäÇk×®egg+ÃuBˆ7ndgg—••ç/..ž6mZ·nÝ||||||ºví:iÒ¤¢¢"ÉUgœ{îܹ4hÐ`À€'NœB¤¦¦¾øâ‹úÓŸ:wî¼{÷îØ—êÔ©³páBGGGåÇÓ§OÿÁ}€¹S;¹¨.wÂ)’““í;vìðññ1ùE¡ÑhÆgœç·ß~kÓ¦MÅß'fÑ¢Eå?eÛ¶mÞÞÞçüÛßþfœgÊ”)Jcttô!C”×S¦L‘ìO|||Å÷¿uë–|9•ïRùöþýû+íãÇ7™³S§NÍ›77ù ØØXã²K—.UÃÃà CtttÅnŸ>}Z™ùàÁƒ7®8ƒ¿¿JJŠÌª3NjÙ²¥§§gù7ñòòš?¾1í×ÉîÝ»l_òóóS&ÅÇÇ?ð¾Çˆ#`qlT‡ŒWÔüÕW_•o‘éÏøñã333•E¾úê+ã’å<»wï>uêTÆ Ÿzê©Úµk+kÖ¬9tèÐý¾Uiii¿~ýÎ;'„¨]»v=zõê¥T”““óâ‹/Þ¼yóž«Îèèѣׯ_â‰'<<<”–k×®3æÎ;Í›7¯_¿¾Òh0¦OŸþ…߸qCYÃBˆ   ™E*Ý÷Xµ“+€êrÏ!œG}T™úÚk¯)-“&MRZúöíkœmÁ‚Jã£>ª´´oß^iùàƒŒ³uëÖMi\°`É»5lØðÚµk&:tPZŒccBˆU«V¥¦¦ž;wN¾?†*®q”_ÜÄŒ8–/üÔ©SÆìh‚5q¼K·®nݺT?n84ìÝeÕ•Ÿôý÷ß †Û·owéÒÅØ8oÞ<ƒÁ Ó醮´xzzÞ×¾tçÎS§N=ûì³ÆIÿþ÷¿xß+¿H¥âââþÈ×ÀCÁˆ#`»þô§?)/ŒWÎ%''+/^~ùeãlýë_ííí…/^TvSZZªLZ¹råŠ+”§•+W¦§§§§§÷íÛW™ºuëVåÅøñã¡gÔ¨Q-[¶lÙ²åï¿ÿ®ÓéÊ÷ÇÙÙù‡~8pàSO=Õ¨Q#ùþTå.~_Z´hñÆo(¯›5k©¼ÎÎξ߷úþûï•£G6>ôñ±Ç7nœÉ wYuFááá½zõB8::ÆÆÆ*nnn£GBØÙÙÓð7dº§\EªÑh›7onìÌsÏ=÷ä“OJÖXqß`x`»òóó•uëÖU^œ9sFyÑ£GJ9{öìã?Þ£Gåþ’ŒŒŒáÇk4š°°°ž={>÷Üså¯}ÌÌÌT^G(…õêÕ;räH¥of¼Zî¾úSUpñûbrI¢ñ¼°ñöy•v»{÷îÊêÙ³gõz½ÝÿÿË¿âª32žŒBŸqãçç§ÑhLÿˆ-ZÌŸ?_~þŠû^y•>ŽÇ¸J¨ˆàØ®_ýUy¡Ü>RTTtÏgPçåå !¦OŸ^TTôùçŸÿþûïBƒÁ–––––6cÆŒÈÈÈuëÖyyy*K¹¹¹ÉôÇäùþTê.~¿Œ9¬Òå•_oåŸø(ÊEÀß~ûíÊ•+å§š¬º{ö¤|è¼_åSƒƒCHHH»víÆŒc<;/Ãdß3ñõ×_GEE=pT‚#`£öîÝ{ûömåµ2LX·n]WWW寋mÛ¶™œñTxyy !.\8kÖ¬¤¤¤7nÙ²¥  @™aÏž=&LøòË/]]]KJJ„ùùù÷ì’IÄ‘ïO¥þàâj©[·®V«U²ãåË—Ëd^¾|YyQ«V-“ž?pN}<ÕUÜ÷X ‚#`£Œ']\\Œ§’›4i¢œG.+++Y®_¿n0„NNN¿ÿþ»r1œ½½}¿~ýúõëWVV¶{÷îÉ“'+wÈþøãBFÓ¸qcå‘WÞê×_UãW»ví;vÜ}èK¦?Õ±¸1‡™\ö§Ü!^Ý‚ƒƒ•5¹mÛ¶ˆˆc»ñÏÌ98XðoïJ÷=›c›ó믿Ž1bíÚµÊ/½ô’«««òºk׮ʋ„„%Z !Ö­[÷§?ýÉÓÓ3 àæÍ›§NªW¯^½zõ|}}•GÆ888tíÚÕxs®ñÄtÇŽ•Ÿ|ò‰ñÔäܹsSSSSSSyä‘{ž0•éÉ"Æ¡¬[\áïﯼ8pà€ñBÉï¾ûîÁž’}¿”{Y„Ÿ}ö™ñYåéééü±òºgÏž5Ðêp—}€E°à³7xð`åA€ÅÅÅÆ3žB//¯÷ßßøãÛo¿ýùçŸlذ¡K—.;vvìØû￟––vúôézõê=ñÄqqq:t0ÎóôÓOgff.]º499977÷ÚµkuêÔ :tè°aÃÊߨѧOŸððð3f¤¥¥:uÊÓÓ³E‹'N4>æðždú#„˜;w®â‡~(.. 4ž—\¼¢ÄÄÄÇ{ìÛo¿=þ|Ó¦M###§L™¢<û°´iÓæøñã³gÏÞ·o_zzºN§{üñÇÛ¶mûÖ[oYî¹Ý{î{ÌŸÆðßë~€»àæH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€µ;ð¬Y³fõêÕ™™™ÎÎÎ;vœ0a‚»»û]æ/--ýç?ÿ¹víÚK—.¹ºº6mÚtذaíÛ·/?Oß¾}Oœ8a² §§çO?ý¤v¹ê°øà8wîÜ¥K—º¸¸´nÝ:;;{ݺugÏžMLLtrrªtþ²²²¡C‡=zT«Õ¶mÛö·ß~;pàÀÞ½{Gýúë¯g»xñ¢““S@@@ùeÝÜÜÔ.@5ƒÁ v\FFFtt´——×Úµk½½½…3fÌHLL4hÐÔ©S+]äÿøÇôéÓ[µjõÅ_(áòìÙ³ƒ ºyóæºuëš7o.„(**jݺuÏž=çÍ›§v‰æÂ²¯q\½zµ^¯‹‹SR£">>^«Õ&%%éõúJINNBLž<Ù8$4räHNg< }ñâE!„Ép#€³ìàxèÐ!;;»N:[ìíí;t蟟Ÿ––Vé"YYY...¡¡¡åƒ‚‚„999ÊÙÙÙBˆ† ª]€±àk Cff¦‡‡‡‡‡Gùö¦M› !rrrÂÃÃ+.µlÙ2ÓªOž<)„ð÷÷W~T‚ãåË—|êÔ)ggç‘#G>ñÄj   Ž%%%:®â +Z­VqýúõJ— 1iIMMMHHxä‘G¢££•eèqþüùmÛ¶ÍÍÍݵkWJJÊ»ï¾Û¯_¿{v,88XíuªWFF†Ú]PÇÒÒR!„‹‹‹I{:u„………÷|N÷õ×_ôÑG:î“O>ñôôTÚ/_¾ìää4nܸÁƒ+-ûöí9räÌ™3#""üüüîùζ¹3™³àà`6йa£˜'¶‹b£˜!›$²àkÝÜÜ4MII‰Iû­[·ÄÇïâÀ½{÷ž1c†§§ç_|Ñ«W/ã¤/¿üòèÑ£ÆÔ(„h×®ÝK/½TZZº}ûvµëP‡G­V[qd±¨¨Ha¼Ïº¢Û·oϘ1cÈ!¿üò˨Q£’’’ÚµkwÏkÓ¦âÌ™3j×   >U-„ðññÉÌÌ,**ª[·®±1++K™Té"z½þÍ7ßܶm[×®]§M›V1_ ½^¯Ñhììþ'UÛÛÛ !\]]Õ.@<â(„ˆŠŠÒét{öì1¶ †””ww÷°°°JY¹rå¶mÛþò—¿,Z´¨ÒQÉììì!C†˜´9rDØð5 –cccíìì.\¨\×(„HHHÈËË‹‰‰qttTZŠ‹‹³²².]º$„0 «V­ruu}ë­·ªzÏ€€€V­Z¦gË–-cÇŽ Ú¼yóÕ«W###œœ7n\ñ­úôé3hÐ !ÄéÓ§‡ž——Ú¨Q£ÜÜÜ£G:;;/Z´èé§Ÿ¾g—¸ýÍ eeeªÝ ü6Šyb»˜!6вÙc½e_ã(„6l˜——׆ ¶lÙâëë;hР¸¸8å‰<)㎥¥¥ééé§o‘iÖ¬Ùúõë?ùä“ýû÷Ÿ={Ößß?::zôèѾ¾¾j—  ‹q4C6û¯sÆ¿×ÍÅ<±]ÌÅ Ùì±Þ²¯q@!8@ ÁRŽBp€‚#¤Xüs°Mü܇È6Ÿ­óŽX*âÎCA—Ç©jH!8@ ÁRŽBp€‚#¤ …à)GH!8€ÿ§Ñ¨Ý˜1‚#¨ Ó§O×h4½{÷®8iöìÙæØ±cj÷÷@pÀÖU5ÊX£›7oþî»ïªµœ;wî888hþ———Wµ~¨pP»@eƒÐh„Áð?[ ''§Ñ£GwëÖÍÕÕµšÊÉÊÊÒétíÚµkÔ¨‘±±N:Õôq6…àL³c5¥F!ÄÔ©S'Mš4eÊ”ùóçWS-™™™Bˆ÷Þ{/**ªš>Âfqªñßì(ª35 !bcc{õêµpáÂÇWÓG(Á±I“&ÕUƒ #8`»4šÿùïžíã5‹-ª]»öˆ#t:]u•™™ùÈ#¸ºº®Y³fÙ²e{÷î½}ûvõ®G›ApÀv ÿóß=ÛŠ€€€iÓ¦9rdÁ‚ÕQTff¦]“&Múõë7räÈÈÈÈ–-[þûßÿ®Æõh3¸Æñß3Ôåÿ_}Æ·jÕª©S§ÆÄÄøûûßeβ²²ï¿ÿ¾ª©Ï?ÿ|ÅÆÌÌL½^?}úô¾}û:::nܸqìØ±ÑÑÑéééZ­¶æV¨5"8Ó¤XÝÙÑÁÁ!!!¡]»v£G^¿~ý]æ,..ŽŽŽ®jª¡².îÞ½»víÚÊÆ ûí·ß^ýõµk×>¼º×¤u#8`ë*͈ÕŸ~úé‘#G.Y²ä_ÿú×]fÓjµ†û섟ŸŸIK÷îÝ…'Ož¬®blÁ[WU0«Ö³ÕBˆY³f­_¿þ7Þ2dHUóÜï©êìììÍ›7wéÒ¥y󿯯¢¢"!DÆ «·@pêÐjµóæÍëß¿ÿ¢E‹ªšç~OU;99?¾uëÖ;vìpttBèõú?þØÁÁ¡[·njWlñŽàÿU÷(£‰_|ñË/¿LNN®j†û=Uííí=}úô·Þz+((¨gÏžnnn[·n=räÈÌ™3CBBj´6kDpjZ¼xqhhhiiéÃzÉ'6nÜø£>ZµjUíÚµüñ¤¤¤gžyFíB­ÁÔ„iÓ¦M›6­b{```IIÉÃý¬˜˜˜˜˜µ+¶B<RŽBp€‚#¤ …à)GH!8@ ÁRŽBpÿO#4jwæ‹àjÂôéÓ5MïÞ½+Nš={¶F£9vì˜Ú}Ä=°uU2VÇèãæÍ›¿ûî»ê®èÔ©S/¼ð‚¿¿ýúõccc÷íÛWÝŸh#ŽØ:ƒ0T̈¡1ÃCÿ,''§Ñ£Gß¼y³úÊÙ³gOXXؾ}ûúöí;`À€ÔÔÔnݺíܹ³ú>Ñv€iv¬¦Ô(„˜:ujnnî”)Sª«ƒaøðáZ­öرcsçÎ3gΉ'êÕ«7a„júD›BpB”ËŽÕ—…±±±½zõZ¸pááÇ«ãý³²²Îž=;|øp¥ÅÍÍmìØ±iiiǯ¦¢lÁÛ¥šòÿUÚþ?Q£Y´hQíÚµGŒ¡ÓézE999Booïò~~~Bˆ'NTÇ:´)Gl—AÊÿWiûCÿЀ€€iÓ¦9rdÁ‚ýÍ›5k&„0¹f×®]BˆË—/?ô³5jw˜å uùÿWßg7nÕªUS§N‰‰ñ÷÷¿Ëœeeeßÿ}USŸþy“Ÿ˜˜˜µk×Ξ={ذaƒá«¯¾Z²d‰¢¨¨¨FW¨5"8Óë«;;:88$$$´k×nôèÑëׯ¿ËœÅÅÅÑÑÑUM5*éá’%Knܸ/„pwwŸ:uê»ï¾ëææV«Òª°u•fÄêÎŽO?ýôÈ‘#—,Yò¯ýë.³iµÚJÓá]xyyýðé©©ÇŽóññ‰ˆˆøñÇ…>úh5®DÛ@pÀÖU•«õlµbÖ¬Yëׯã7† RÕ<÷{ªZqìØ±ºuë¶mÛ¶mÛ¶JËŽ;4M»víªµ[@pÿ¯ºÃbyZ­vÞ¼yýû÷_´hQUó<À©êW^yåäÉ“ÊÍÔ§NZµjÕ³Ï>«üˆ?‚»ª€j^|ñÅgžyæÆUÍ œª®J¥‹¼÷Þ{%%%O=õÔèÑ£_}õÕˆˆ''§Ï>ûLíZ­Á¨iñâÅNNNñ »wïžœœüè£þýïß²eË /¼ðóÏ?ª]¨5àT5¨ Ó¦M›6mZÅöÀÀÀ’’’‡ûYݺuëÖ­›Ú[!F …à)GH!8@ ÁRŽBp€žã€¥ V» °-G,RFF†Ú]€ÍáT5¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRÔî@ Y³fÍêÕ«333;vì8aÂww÷»Ì_ZZúÏþsíÚµ—.]ruumÚ´é°aÃÚ·o¯v5M£ƒÚx5 ´ŽBÅ,YÍF€»³‰à8wîÜ¥K—º¸¸´nÝ:;;{ݺugÏžMLLtrrªtþ²²²¡C‡=zT«Õ¶mÛö·ß~;pàÀÞ½{Gýú믫] €:¬ÿTuFFFBB‚OrrrBBÂÖ­[|üøñ9sæTµÈêÕ«=ÚªU«”””%K–üýï_¿~½››Û¢E‹N:¥vAÕK£Q»Õ_‹%Öh‰}¶îB„uí` ÉúƒãêÕ«õz}\\œ···Ò¯Õj“’’ôz}¥‹$'' !&Ožl’ 9r¤N§ûé§ŸÔ.¨z •ö,ñXXi-zJ±ªZ,;X4ëއ²³³ëÔ©“±ÅÞÞ¾C‡ùùùiii•.’••åââZ¾1((H‘““£vAÕ®âáÐr…&µXn!ÖT ;X.+¿ÆÑ`0dffzxxxxx”ooÚ´©"'''<<¼âRË–-sp0]3'OžBøûû«]SMP‡Ê!ÐÒ…ÆC»¥bMµ”Ï[VS‹¥2¬<8–””èt:777“v­V+„¸~ýz¥K…„„˜´¤¦¦&$$<òÈ#ÑÑÑ2ŸlÒ¢œþ6gš´”?´?Ÿ¥vO¤–Š…XS-–[ˆ1rYA-–XH¥.]º¤v`Š¢ºgžyFí.˜ +Ž¥¥¥B“ö:uê! ïù:î믿þè£t:Ý'Ÿ|âéé)ó¹j—~ß*–(GÁ íRogNµçÖ[‹å"¬³€BªhÁ·VluU<¬W!²VÝÜÜ4MII‰Iû­[·ÄÇïâÀÓ§O?w¯ïÌ™3Ûµk§vA5G9ï¦ÑXü 8c!åÏ¿[(+«E+)Äj6 Ü“•G­V[qd±¨¨Ha¼Ïº¢Û·oüñÇ+W®¬]»ö¨Q£†^ÕC­RùãŸEMzN-f³¬£#‹®dXypBøøødffÕ­[ר˜••¥Lªt½^ÿæ›onÛ¶­k×®Ó¦M»K¾´J|z8¬´ÏÔ¢:v0°\Öÿ8ž¨¨(N·gÏc‹Á`HIIqww «t‘•+WnÛ¶í/ùË¢E‹H K<VÕgjQ;X4ëޱ±±vvv .T®kB$$$äååÅÄÄ8::*-ÅÅÅYYYÊmkƒaÕªU®®®o½õ–Ú}WÇ::://oëÖ­………ÑÑÑ›7o~úé§Õ.@5ƒÁ v¬Mpp0Ïq47YYY<ÍܰQÌÛÅ ±QÌÍë-~Ä5ƒà)GH!8@ ÁRŽBp€‚#¤ ¥æ‚ã'Ÿ|’™™©v½x@5ž}öÙ˜˜˜•+W^¿~]íÂpj.8¾òÊ+õë×OOOÿàƒ"##_}õÕ­[·Þ¾}[í5)5öIãÆ;vlZZÚ¦M›’’’vîܹsçκuë>ûì³ÑÑÑ-[¶T{UànjôæFÓªU«wß}÷§Ÿ~Z²dI¯^½nß¾ýÍ7ß¼øâ‹Ý»w_¼xqnn®Ú+•Sç®j‡.]ºÌ;wÿþý“'OvrrÊÎΞ?~TTÔK/½´aÃN§öšÀÿ¨¹SÕ& vìØ‘œœ¼ÿþ²²2!„———££ãÁƒ<¸|ùòÏ?ÿÜ××Wíõ€ÿ¨éà˜——÷Ã?lݺõàÁƒÊ°¢§§g÷îÝ{õêÕªU+!ľ}ûæÎ›žžþÎ;ï,_¾\íõ€ÿ¨¹à¸jÕª­[·>|X¯× !<<þ¼ÚkUª¹SÕ7nÜðôôT^—••ýüóÏ-Z´¨U«–Òâì윗—§öÚ@•j.8úùù]ºtI§Ó !ÒÒÒ~ûí·§žzJ™¤×ë/]ºäåå¥öÚ@•j.8¶nÝúÆ ,ÈÍÍ]°`¢C‡ʤ+V\¿~½I“&j¯ T©æ®q1bĦM›–,Y²dÉ!Äc=¦<»±_¿~ÇŽB 6Líµ€*Õ܈cýúõÿùÏvêÔ©^½zóæÍSžÚ˜——W·nÝ?üðé§ŸV{m J5úð   eË–™4®\¹Ò×××ήæ",€šrPQ¿~}µ»€{«Ñà˜”””˜˜xáƒÁPé ©©©j¯T®æ‚ãöíÛãââ”×öööj€ûSsÁñóÏ?B :ôµ×^Ójµj€ûSsÁ133³Aƒo½õ÷ÁX¢Êpwîܹy󦿿?©ÀBÕPŒ³³³ÓjµgÏžÕëõj— €QCÁÑÞÞþoû[^^ÞܹsÕ.¢æ®qìÕ«WNNNBBBjjjÏž=4hP«V-“y:uê¤ö @åj.8FEE)/Ž?~üøñJçÉÈÈP{… r5Ÿ{î9µ‹Àƒ«¹àøñÇ«],œ «úÆééé—/_öóókß¾}^^ž§§§Úë÷P£Á1??É’%k×®---B 2¤}ûö}úô 5k–»»»ÚkUª¹Çqß¹sçµ×^[¹reݺuûôécl÷ööÞµkWÿþý•4 óTsÁqÙ²eGíØ±crrò‡~hl_½zõóÏ?áÂ…ÄÄDµ×ªTsÁñàÁƒööö3gÎtvv.ßnooÿÎ;ï8;;oݺUíµ€*Õ\p~üøV­ZÍž=ûüùóBˆÜÜ\!„——׸qãÊ?Ùf¨¦ÿä`çÎ;wî\PPpþüùÛ·o7jÔÈÇÇGí•€{SáoU !ÜÝÝ[µj¥ví¸Õ¿þúëû]dàÀj® T ƒ0¨Ý‹‡ Q`#ë(D°QÌ’ÕlaEÛ…b†¬i£Ø¬j Žï½÷Þý.BpTßjT+v0ÀÖð­·2Õ•‡ì”wêÔ©­[·ÚÛÛGDDØÛÛgeeíÙ³§¬¬Ì××wÒ¤Ij¯ ƒ0Tú%·Äo~U}¦±ƒ™'6вšZ¬é[Q­ÁñÕW_-ÿãÅ‹W®\¼hÑ"c{nnîo¼ñóÏ?oÚ´©{÷îj¯Tò%·Ð¯w¥¿­¨Euì`fˆb†¬» -¢&¾dÉ’üüü ”OBˆúõëöÙgBˆmÛ¶åå婽B Ä¿äÊk‹þz—/„ZÌ;˜b£˜!k­Å¢ AÍÇ#GŽøùù5lذâ$¥Ý``O2Æ/¹¥½…XÁ¯*+«Åj ±¦Â·ÞÜXY-ÖQˆ«¹ÇñèõzƒÁ Ñh*N-**rww÷òòR{…Ø®òÿ®½K»E|ám­«)Äšj±šB¨Åi×®Ýüùó¯]»víÚ5¥Ñ××wÔ¨Q}úôQ{U@ˆª/[¶Ä¯w¥µXèo«ªjQ»_§kªÅw06Šyâ[ó¤©ù™ Õ+W²²²¬ï†˜àààŒŒ µ{ñpXâo[ë.Äšj±šB¨Å>>k×®õööB̘1#11qΜ9S§N­j©¢¢¢3gÎlÚ´éÛo¿U»³`ý#Ž«W¯ÖëõqqqJjBÄÇÇkµÚ¤¤$½^_ÕR½{÷8p ©ÀÈúG:dggשS'c‹½½}‡6mÚ”––^éR3fÌøý÷ß…«V­Ú·oŸÚE¨Ïʃ£Á`ÈÌÌôððððð(ßÞ´iS!DNNNUÁ1""By±k×.µ‹0 VKJJt:›››I»V«B\¿~½š>788ؤ%99Yí•aÓ.]º¤v`ŠbžØ.fˆ¢ºgžyFí.˜ +ŽÊ­Ó...&íuêÔBVÓçfdd¨]:LªÝ˜b£˜'¶‹b£¨«âa½â‘°ò›cÜÜÜ4MII‰Iû­[·ÄÇ Ãʃ£ƒƒƒV«­8²XTT$„0Þg €{²òà(„ðññÉÏÏW’¢QVV–2IíÞX ëŽQQQ:nÏž=ƃÁ’’âîî¦vï,†õÇØØX;;»… *×5 !òòòbbb•–ââ⬬,n[¸ +¿«Záçç7a„ٳg?÷Üs‘‘‘ÙÙÙ©©©¡¡¡/¿ü²qž”””±cÇmÞ¼Yíþ˜)ëŽBˆaÆyyymذaË–-¾¾¾ƒ Š‹‹SžÈIƒÁ v¬Mpp0Ïq47YYY<ÍܰQÌÛÅ ±QÌÍë­ÿG<GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GHqP»Áš5kV¯^™™éììܱcÇ &¸»»ÿÁEúöí{âÄ “¥<==úé'µËP‡Åǹsç.]ºÔÅÅ¥uëÖÙÙÙëÖ­;{ölbb¢““ÓYäâÅ‹NNNåtssS»\ÕXvpÌÈÈHHHðññY»v­···bÆŒ‰‰‰sæÌ™:uê/RTTTXXسgÏyóæ©]"€¹°ìkW¯^­×ëãââ”(„ˆ×jµIIIz½þ¹xñ¢Âd¸ÀÆYvp3bÁÁÑ`0dffzxxxxx”ooÚ´©"''çQ‚ãåË—ܺuëŽ;¾úê«ÇŽS»b5Yð5Ž%%%:®â +Z­Vqýúõ^DIóçÏ lÛ¶mnnî®]»RRRÞ}÷Ý~ýúÉô-88ؤ%99YífÓ.]º¤v`ŠbžØ.fˆ¢ºgžyFí.˜ Ž¥¥¥B“ö:uê! x‘Ë—/;997nðàÁJ˾}ûFŽ9sæÌˆˆ??¿{ö-##CíÕSjw¦Ø(æ‰íb†Ø(êªxX¯8Bd#,øTµ›››F£)))1i¿uë–øï âƒ-òå—_=zÔ˜…íÚµ{饗JKK·oß®vÝê°ààèàà Õj+Ž, !Œ7MÿÁEŒÚ´i#„8sæŒÚu¨Ã‚ƒ£ÂÇÇ'??_‰}FYYYʤ[Ä`0ètºŠOó±··B¸ººª]4€:,;8FEEétº={ö[ CJJŠ»»{XX؃-’2dÈ“9"løšËޱ±±vvv .T.RB$$$äååÅÄÄ8::*-ÅÅÅYYYÆ[Òî¹H@@@«V­<¸fÍã9rdÅŠ~~~=zôP»huXð]ÕB??¿ &Ìž=û¹çž‹ŒŒÌÎÎNMM }ùå—󤤤Œ;6((hóæÍ’‹¼óÎ;ÇŸ2eÊ7ß|Ó¨Q£ÜÜÜ£G:;;Ïš5ë.ÀºYöˆ£bذasæÌ ܲeËõë× ”˜˜XñI÷µH³fÍÖ¯_——·uëÖÂÂÂèèèÍ›7?ýôÓj—  Á`P»Ö&88˜ç8𛬬,ž‚fnØ(æ‰íb†Ø(fÈfõ?‚Ap€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤h ƒÚ}0SkÖ¬Y½zuff¦³³sÇŽ'L˜àîî.³ Fh ‚µj^‚ƒƒ322ÔîþÅÖ3âX¹¹sçN™2åܹs­[·®S§ÎºuëFŒQZZªv¿à!ÓhÔî¬;˜•!8V"###!!ÁÇÇ'999!!aëÖ­ƒ>~üøœ9sªZD#4÷ÕfÂ`¨üÐn‰ÇûªúL-*²ªŒc=Á±R«W¯ÖëõqqqÞÞÞJK||¼V«MJJÒëõ•.b†ŠûÍŽc°,ízJ±ÒŒB-ª³žŒc=Á±R‡²³³ëÔ©“±ÅÞÞ¾C‡ùùùiiiU-e²?ÙÚžÀ¢•?´[èA½b!Ôb>¬g³ùc=ÁÑ”Á`ÈÌÌôððððð(ßÞ´iS!DNNÎÝ–ýïþdƒ{Kg<´[îAݤ‹(VY‹•bÛÇzµ;`vJJJt:›››I»V«B\¿~ݤ]抇¦ÁMÕ. "88Xí.ÀEugÎTrc»ÉYŦM-`3UZˆ×b5…XL-g*¯¥Ü±ÞFB$ÁÑ”rë´‹‹‹I{:u„………&í&;ŠqúŸv9Àì)CA• :ZÞ¯0c4©0¸e5µXj!Ê>fñµTz¬· œª6åææ¦ÑhJJJLÚoݺ%þ;îXã¨u¥×Ï€Ù*,¯ê6XKa¬ÅÒ ±¦Z¬j³íc=ÁÑ”ƒƒƒV«­8²XTT$„0Þg]‘ɵ¶¹?°D/;³ÜC»I-–[ˆ5ÕbU;˜Íë Ž•ðññÉÏÏW’¢QVV–2©ÒE*½BÖ÷'§ª›,ñ†Jk±ÐŒRU-Ǫv0ŽõÇJEEEétº={ö[ CJJŠ»»{XXX¥‹Tu•ƒ ^ýÀ²Xâñû~k±Ä-±ÏÖ]ˆàX/„ 8V*66ÖÎÎnáÂ…ÊuBˆ„„„¼¼¼˜˜GGÇ{.nS;+c5‡y«)Äšj±šB„ ë5kڌϊ+fÏž]¿~ýÈÈÈìììÔÔÔ+VT|L€ 8ViÓ¦M6l8~ü¸¯¯o›6mâââ”'òØ&‚#¤p#¤ …à)GH!8@ ÁRŽBp|hÖ¬YÖ¾}ûI“&¨Ý#[WZZúå—_þùÏnÙ²eddäðáÃúé'µ;…ÿ÷Ë/¿´jÕj„ jwBqâĉ7Þx£sçέ[·4hÐÔî‘­»}ûöòåË_xá…°°°.]ºŒ3æìÙ³jwÊF?>88øØ±c•Nµµ£?Áñá˜;wî”)SÎ;׺uë:uê¬[·nĈ¥¥¥j÷Ëv••• :tÖ¬YW¯^mÛ¶m“&M80lذE‹©Ý5!„Á`xë­·ŒêÚ¹sç€vîÜéííväÈ‘ÁƒïܹSí~Ù.N7dÈ9sæDFFÖ¯_ëÖ­Ï?ÿü¡C‡Ôîš-Z¹reU“lñèoÀvúôéfÍšEFF^¹rEiùàƒš6múÞ{ï©Ý5Ûõõ×_7mÚtÀ€%%%JË™3gÚ´iÓ¼yóŸþYíÞÁ°bÅŠ¦M›6mÚtüøñj÷ÅÖݸq#<<ü‰'ž8|ø°ÒrìØ±-Z´k×N§Ó©Ý;¥ü3fÌ;w”–}ûö5oÞ¼{÷îjw͆:tèwÞQ~Y=zÔdÛ<ú3âø¬^½Z¯×ÇÅÅy{{+-ñññZ­6))I¯×«Ý;•œœ,„˜|øÈ‘#7nÜhÖ¬Y×®]£õ¨yþóŸg̘áììܲeË‚‚‚Å‹_ºtéÅ_ä‹Sc"""”»víª8ÕfþÇ?ª¤¤D§Ó¹¹¹™´kµZñ¿ÿ^DM 1iIMMMHHxä‘GLFVP“Ž=º|ùòAƒµk×NÉñP×íÛ·oÞ¼Ù¤I“wß}÷›o¾1¶ûûûÏ›7¯E‹jwÐF¯\¹rèСC‡564hÒ¤Ijw ÿa³GNUÿQÊÍS...&íuêÔBªÝAN—˜˜ø·¿ý­¤¤äÃ?ôôôT»G6ª´´tâĉþþþo¾ù¦Ú}ÁܼyS‘™™¹eË–Ù³g8p %%eÔ¨Q¹¹¹cÆŒ±ò›CÍXQQч~X\\Ú¿ÿnݺ999mذ[Ý͇Íýqü£ÜÜÜ4MII‰I»òœå_PѦOŸ~îÜ9__ß™3gVu© jÀìÙ³/]ºôÍ7ßpÔ|Ô®][yñá‡véÒEyýÆoüòË/ëÖ­ûþûïûöí«vmÑĉÿýïÇÇÇÿõ¯UZ~ùå—þýû;vãÆ5R»ƒ°Ý£?#Ž”ƒƒƒV«­øo‹¢¢"!„ñN+Ô¼Û·oϘ1cÈ!¿üò˨Q£’’’H*:xðà7ß|óÊ+¯p¿…Yqqq©]»¶““SçÎË·wíÚUqúôiµ;h‹®^½ºk×®&MšS£ÂÏÏïµ×^»sçÎúõëÕî „°á£?#ŽOfffQQQùk–³²²”Ij÷ÎFéõú7ß|sÛ¶m]»v6mš‡-…òG/”[Ë·oܸqãÆAAA›7oV»6ÊÛÛûƦ|£2*\VV¦vïlQ~~¾" À¤]h¼víšÚÄØæÑŸàøDEEeddìÙ³çÙgŸUZ CJJŠ»»{XX˜Ú½³Q+W®Ü¶mÛ_þò—iÓ¦©Ý!DÆ _EaaáÞ½{ýüüÂÂÂêÕ«§vmWçοúê«3gÎ(wƒ*”‡‰ð¬MUØÛÛŸ={Ö`0”ôBˆ&Mš¨ÝAü‡mý9UýÄÆÆÚÙÙ-\¸Ðø÷ÓòòòbbbÕî-2 «V­ruu}ë­·Ôî þ#""âÓÿ5nÜ8!Dxxø§Ÿ~:qâDµ;h»úôé#„˜2eŠñ>Ð'N|ñÅZ­¶[·nj÷Î999uèÐ!;;û³Ï>3>GúìÙ³‹/®U«–ÉEP‘mýq|üüü&L˜0{öìçž{.222;;;55544ôå—_V»k6êÚµk/^trr8p`Å©}úô4hÚ}ÌEóæÍÇ÷é§Ÿ>óÌ3ááá%%%‡Òh43fÌøÓŸþ¤vïlÔ|зoßÅ‹oÙ²%$$$??ÿßÿþ·^¯Ÿ2eJãÆÕîþÃ6þLJcذa^^^6lزe‹¯¯ï Aƒâââ”{òQó.]º$„(--MOO¯8•[d¯¼òЧ§gbbâ¾}ûÜÝÝ£¢¢F¥ü¥%¨ÂÓÓsË–-K—.Ý»wïîÝ»ÝÝÝ;vìøê«¯>öØcjw ÿÃþƒÁ v`¸ÆRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#Û2a„àààÝ»w«Ý±páÂàà௿þZ펀,‚#¤8¨Ý°Q;wöôôlÕª•ÚYGPGhhhhh¨Ú½€ûÀ©j0;:îÎ;j÷LX†)S¦üñÇ&í'Nœn×®]YY™"//ïÓO?íիדO>ùä“O>ûì³~øá•+Wªz[å^™ýû÷›´‡„„<ýôÓå[~úé§Ñ£GwíÚµuëÖƒ^¸p¡I¶ËÍÍ6mZ¯^½Z¶lÙ©S§#F:tè.-_¾¼üÍ1JO.]º”жmÛ-Z„‡‡÷ïßûöíU½Ã‘#GBBB:tèpóæMcã­[·:uêrüøqµ7kCp`z÷î-„غu«IûæÍ›…ÑÑÑyyy\¶lÙ/¿üòè£6hÐ ''çïÿû€ þȧϙ3gøðá[·n-++óöö>|øð‚  ”ŸŸ¯ÌpöìÙÞ½{ûí·ùùù76 )))/½ôÒÎ;ï냖-[öÉ'Ÿ8::¶mÛV«Õ9räõ×_OJJªtæ°°°áÇ_¹reÖ¬YÆÆ>úèòå˯½öÚã?^Ó €µ#8° ­[·öööÎÉÉùùçŸz½^ U/¼ð‚bݺu.\èÒ¥ËO?ý´aÆ7îÝ»·uëÖ¹¹¹;vìxàÞµk×òåËýýý׬Y³{÷îï¿ÿþÇìØ±ãÑ£G—,Y¢Ì3gΜâââW_}uß¾}ëÖ­KII™|øÊ•+aaaMš4B”••uîÜyüøñ...Ê uëÖU†*³³³ø£gÏž-„˜7ožq ÏÓÓsÞ¼y>>>k×®½qã†âôéÓBˆØØX{{{ež¼öÚk]»v½¯ÏzüñÇß|óM;;;¥ä×^{MqáÂ…ªæwttü裦L™rõêÕÉ“';99Í™3ÇØ xˆŽ,†ËŸ·UÎSÇÄÄ(?¾þúëK—.mܸ±q†k×®}ÿý÷äC ²²²5jdr´³³s»víJKKÓÓÓ…Jr?xð rµ¥££ã˜1cFu_׳gÏò?jµZ{{{ƒÁp—EBBB^ýõ_ýõùçŸÏÍÍ}ë­·ªk°m<ހЏpáBFFFpppYYYrr²““S¯^½Œóäææþøã‡ÎÉɹxñâ¼´QqþüyåÿÁÁÁ•Îpùòe!ÄôéÓãââ<øÒK/Õ®];$$ä©§žêÞ½{HHÈ}}\ƒ  “¯¼òÊöíÛOž<Ù¦M›<ÔµÿàÀ’ôîÝ{Á‚ÉÉÉÁÁÁ{öì),,|á…Œ'¦¿ùæ›>ø ¬¬ìÑG ïÚµk‹-²²²Þ{ï½ûúNgä»}û¶¢~ýúUtöóóB4hÐ`Íš5GŽùñÇ8žžž––¶dÉ’¾}û~ðÁFò£kÕªõ«åÖ­[×®]Bœ?þÆnnnÕ¿)Ø"‚#Kb ŽcÆŒQÎAÏSߺuëý÷߯U«Ö²eË"""Œ‹üúë¯÷û)¿üò‹^¯W^7jÔHáììùä“iiiï½÷Þ§Ÿ~Z­Àfq#KÒ°aÃ-Zœ?þĉ;vìhذaxx¸2éĉ:îÉ'Ÿ,ŸÅo[¹;“3Ú?üðƒñµ——×¹sçNžú¨båÊ•%%%JKjjªñ!;ŠqãÆéõúqãÆ:uJi¹uëÖÛo¿žžêéééëë{óæÍcÇŽ}þùçÆ¡Ê .üøãBˆj}žâ¯¿þúÞ{ﹺº¾ÿþûŽŽŽ³fͲ··Ÿ>}ú¿¸*âT5 Ó«W¯Ù³ggddØÛÛGGGÛ5jµcÇŽnݺµjÕÊ`0ddd 8011ñ»ï¾»yó¦ò`ò¢££¿úê«´´´¨¨¨«W¯fffjµÚzõêýþûïÊ<}úô9xðàúõ룣£ëׯïîî~þüù’’’€€åÉÛvvv“&MŠÿøã¿øâ‹ ”””œ;wÎ`0 0 ,,¬šV…Á`ˆ/**š9s¦’›{챡C‡~ñÅÓ§OŸ7ožÚÛ €µaÄ€…ñöönÓ¦"22ÒÛÛ»ü¤O>ùdôèÑ~~~Êó;tè°aÆɓ'8ÐÞÞ¾Ò?èïïÿü£k×®vvv{÷î=sæLýúõ—/_îééiœG£Ñ|øá‡Ÿ}öY—.]ôzý… Ç·aÃwwwež>}ú|õÕW;vtrr:}útIIIûöí/^f¾sæÌçœ30o?ß9^¯ÀãXÈ]ÌÁF!8À(G…à£`‚#ŒBp€QŽ0 ÁF!8À(GÀ,=|øpÅŠÏ=÷œ‡‡‡——×óÏ?ÿùçŸgeeUN[·nýùçŸþùç›7oW®\©Óét:]ëÖ­åÞCf¬ÈÝxïÞ½#FxxxXYY=ñÄr—ùÆ¿Ecccu…XYY9;;·iÓfæÌ™ùßc%<¥€É“'˽5Ò07ÇŽ«W¯^‘?Ñ[·n­„ªW¯.½â®]» ƒ+V¬ýüüäÞIf¬ÈÝ8jÔ¨üúÁƒr—Y’R½EcbbJþœrttŒŽŽ.ÕS„“&M’{7*d%wpP:ñññ;w~ðàaÄÊÊ*''Gº}ùòå_|ñСCO=õTå×öÄOHqÁÝÝ]îýdÆŠÜ¿þú«tÃßß¿_¿~UªT‘»Ìb•ç-êææfkk+„ÈÈÈ04ïܹœ˜˜XµjÕžR€£££Ü{P#¹“+€ÒéÝ»·áç÷µ×^;yòdNNΕ+W¾þúë'žxB÷öö®è2Šì8¢âvxåt”Ë£´oÑüíÃüo§K—.½öÚk†‡.\øØ§¨hGÀœìܹÓðyZàÑ­[·ÏÿЃÞ{ï½nݺ¹ººººº¼ûî»÷îÝ˿̌3¤çöíÛ÷öíÛ'Nôóó«^½úSO=õÑGeggK‹…††þ/¨4sZxŽÕÈuX2U/¿ü²4^`æ±´[ôØufgg/_¾¼}ûöîîîvvvÍš5 9yòdÉGÄø—0~WØ7nܸxñbµjÕ¤Á5kÖ\¼xñÑ£GeÞ=š9s¦‡‡ÇÌ™3ó?4pàÀÄÄÄW^y¥nݺ/¿üòéÓ§õz}ttô‹/¾X·n]''§Î;ïÝ»×´oÑ’S`¿~ý¤‡\\\ ôG@.LUædùòåÒ ''§éÓ§xôùçŸ ¼råŠâÌ™35’Æ=:hРóçÏ–ܽ{÷îݻ׬Y³fÍšŽ;XÏÝ»wÛ·o'Ý=uêÔ©S§Nž<¹~ýú2WnÚu–v‹ëáÇ;vœÿ„’-[¶œüðÃÊßÐqÌLóæÍwîÜ™ÿÄØ[·n>’ëÕ«·iÓ¦§Ÿ~Ú𨭭íúõë¥ ¯deemݺõ矖‚Eݺuׯ__䙪e˜gŒŽŽžû쳉‰‰+V¬ˆŒŒ¼|ùòÍ›7«W¯îãã3tèÐaÆ•|B‰ñeW„Š8¸åWÚ·ha–––ööö 6ìÑ£ÇØ±cI€Bè ü­R HLUÀ(G…à£`‚#ŒBp€QŽ0 ÁF!8À(G…à£`‚#ŒBp|Œ .x{{Ÿ:uJîBdFp|Œððp¹KP+¹ P¨ôôôsçÎmÙ²å‡~»E 8-((èÚµkrW  Ç¢}ôÑG>B¬Y³æÐ¡Cr— ?‚cÑ:tè ÝØ»w¯Üµ(ÁÑô¼½½å.@¥:w.^îs ×É]É4òn¯Å|‚c…Ðæ›Iɼ½½9(J£šƒ¢Ó ½^î"LG5ÇEMÔqPtB§êùQñmq9…à*–ÊÚZFp€²SÙ<5PHjBp…Ô¨2G(#Ú@ÉHêCp„&DFFÊ] â (ÇE8(P‚#0=ÚªDp|Œ9sæÄÇÇ?õÔSr@Y˜§J@jT+‚#0%R£Š`‚#”óÔ@qh7ªÁ˜©QõŽP:´"‘µ€à£@yÑnÔ‚#”óÔ@a¤Fí 8€²#5j ÁF!8€±˜§  Ý¨5GP¤F "8€Qh7ù‘µ‰à£@éÐnÔ,‚#<óÔ€©QËŽÀX¤F#8£Ap€Ç`ž$Gðx´!ŽP2Ú€ 5⎠$¤F`‚#‹yj€v#ò#8€¢‘QÁŠF»GjDaG…à ¢Ýˆ" ÌSCËH(Áü?R#J@p€QŽPóÔÐ,Ú(ÁAj„Žð´¡M¤Fƒà£Ð:Ú0ÁþóÔÐ R#ŒGp@»H(‚#ŒBp€¿1O ­¡ÝˆÒ"8 E¤F”Á„ Ý!5¢lŽh ©eFp€QŽÀ<54„v#ʃà€VQNGZG»AjDù`‚#êG»&Ap iÌSC H0‚#jFj„ `‚#íbžªG»¦Ep@H09‚#¢Ýu#5¢"`‚#jC»„à@‹˜§†Š‘Qqލ©Šà£hóÔP+Ú¨hGÔ€ÔˆJ@p -´¡J¤FT‚#ŒBpÀ¼ÑnD¥!8Ðæ©¡>¤FT&‚#æŠÔˆJFp ´¡2¤FT>‚#ŒBpÀüÐn„,Ž4yj¨ ©r!8`NHÁF!8P?æ©¡´!/‚#æÔÙ¨íF¨©J@p€QŽ(íF(Á€š1O ð¬ïIj„BP.Ð]Hº wÀߎ0 Á€j1O sÇW¡4G”ˆÔ"8P'Ú0k¤F(ÁF!8 ,´¡XG*Ä<5Ì©JFp@)HP8‚#Š@j„ò¨ óÔPA¬ä. ’lذaýúõ‰‰‰ÕªUëÔ©ÓäÉ“KX>;;û»ï¾Û¾}{RR’££cóæÍGíåå%÷vÔ‰v#Ì‚&:Ž .œ1cÆùóç[·n]½zõM›692++«¸åsss_}õÕùóçß¹sÇßßßÃÃcÇŽ/¼ðÂÑ£GåÞA»æˆÔs¡þàæææ¶cÇŽ!C†œ>}zþüùÅ=åÇ<~üx¯^½vîÜùÅ_„‡‡óÍ7Bˆ3fȽ5µ!5ÂŒ¨?8®_¿>//oüøñ®®®ÒHhh¨½½ýöíÛóòòŠ|ÊñãÇ…¯¾úª•ÕßSùmÛ¶mÒ¤ÉÅ‹oß¾-÷ÈCýÁñèÑ£;w6ŒXZZvìØ1--M ˆ…¹»» !ògD½^÷î] C” @ÌSÃìÐn„yQypÔëõ‰‰‰NNNNNNùÇ5j$„HII)òY½{÷¶±±ù裢££³²²®\¹2sæÌÔÔÔààà5jȽM• 5Â쨼–™™™››ëààP`ÜÞÞ^ü³§˜Ÿ··wxxøÐ¡C‡j ™6mš‘¯ëíí]`$22Rî¡i©©©r—€‚L~P<=ë_¸””$÷†™9~X*g}Ï I’Äãß²ÙõìÙSî”BåÁQ:uÚÎήÀxõêÕ…÷îÝ+òYéééŸ~úiFF†OóæÍÓÒÒ¢¢¢6oÞüì³ÏvïÞݘח{ÓQPýúõå.™ü p”M‚ÝXiŒßÕyþX/Ü!Ò•GN—™™Y`üÁƒâ}ǦL™òÇ„††¾öÚkÒÈ•+W^~ùå &üòË/žžžroÀ¼1I 3¥òï8ZYYÙÛÛî,¦§§ ! çYçwãÆ½{÷6lØÐ…µjÕzë­·=zôÓO?ɽMŠÀi10#¤F˜/•G!„››[ZZš” ¤¯A¹¹¹^>--MQ¯^½ãR£ñæÍ›roÀŒ‘aÖÔrssGGÇN:5ªyóæro €‚h7Â,¡:=¿qMÍÛÛ›ë8*MRRWASS‚£iñÃRAÊ9( ¤ÙÏzõÇyÑn„j˜1ÚP>R#Ô„à@E!5BeŽ0 Á€¹bž G»êCpÀôHP%‚#³D»JFj„Z0%R#TŒà£˜æ©¡X´¡nGLƒÔÕ#803´¡L¤FhÁF!8P^´¡Gæ„yj(©ÚAp ìHЂ#ŒBp`6˜§†ÒÐn„Ö( R#4ˆàÀ<Ðn„¢¡MG…à@éÐn„f˜æ©¡¤FhÁc‘¡qG…à@阧†BÐnŽ<©G G»J@j$GJBj Ž0 Á€r1O ÙÑnò#8P4R#PÁ€BÑn„¼H@aG…à@A´"(óÔ©(Á€ÿGjJ@p€QއyjÈ…v#P2‚#B#( íFȂԃà£ZG»0Á€‚0OÊGjŒGph©(‚#ŒBp ÌS£’ÑnJ‹àÐ"R#PGŠ@»•‰Ô” ÁF!8´…v#PfGòcž•†Ô”Á ¤F œŽdF»•ƒÔ”ÁF!8Ôv#`Grbž•€Ô˜ Á f¤FÀ„Ž0 Á€l˜§FE£Ý˜Á N¤FÀäŽäáéYŸv#*©¨G…àPÚ@!8N'.\H’» ¨©¨8G€z Ep€QŽ*—oD¡ÝT4‚#@ H@% 8¨T´QH@å 8À(G€y£ÝT‚#€ÊÃ<5LŽÔT&‚#À\‘JFp˜%R#PùŽ* óÔ`îŽóC»Á@e Ý"5r!8Ì ©ÁF!8¨pÌSÃTh7ò"8Ì©Á@Ţݓ 5J@p€QŽ¥£Ý(Á@bžåGj”ƒàP.R# (G…à ¢0Or¢Ý( Á D¤F@Ž*íF”©P&+¹ ¨$6lX¿~}bbbµjÕ:uê4yòdGGÇ’ŸræÌ™•+WÆÆÆ>xðÀÛÛ{̘1mÚ´‘{;d£‰ŽãÂ… g̘qþüùÖ­[W¯^}Ó¦M#GŽÌÊÊ*á){öì4hО={\]]}}}Oœ81dÈ={öȽ) ~´ÅRpŒ sss‹ŒŒ Û±cÇ!CNŸ>=þüâžrïÞ½©S§ZYY…‡‡ÿøãaaaëÖ­«R¥ÊÌ™3óòòäÞ À 0O2#5J¦þà¸~ýú¼¼¼ñãÇ»ººJ#¡¡¡öööÛ·o/.nÚ´)==ýÍ7ßlÕª•4Ò¢E‹^½zݺuëÌ™3ro¨©P8õÇ£GZXXtîÜÙ0biiÙ±cÇ´´´ãÇù”ètº¾}ûæüì³ÏâããŸzê)¹7@*?9F¯×'&&:99999åoÔ¨‘"%%ÅÏϯð³bbbkÖ¬yìØ±'Nܽ{·qãÆÝºu³µµ•{ƒ3À<5ʆv# |*Ž™™™¹¹¹Æííí…·oß.ü”ìììû÷ï7lØðƒ>X·na¼víÚ‹-jÖ¬™1¯ëíí]`$22Rî¡i©©©r— )õ“’’»E™ä:.žõ=/$]Hçh?,²ëÙ³§Ü%(…ʃ£tê´]ñêÕ« !îÝ»Wø)÷ïßB$&&Þ¼ysîܹ;wþ믿6nÜøå—_Ž7nëÖ­ÆôãããåÞtT¿~}¹KЄÿµÚÛeªüãòw¯‘·Cñøa‘WáõÂ"Pùwt:]fffñˆÿõ °±±‘n|úé§}ûöupp¨Y³æèÑ£ûõë—ššºmÛ6¹· T…jÀŒ(+8~þù牉‰&\¡•••½½}áÎbzzºÂpžu~vvv666¶¶¶]ºtÉ?Þ­[7!ÄÙ³gåÞIòPVp {þùç ^äËÀÍÍ---MJŠÒ°ÜÜÜŠ|Š«««µµµN§Ë?(ÍPçääȽ“åâ´”íFÀ¼(+8¾ñÆ111sæÌñ÷÷5jÔŽ;²³³Ë³Î€€€ÜÜ܃Fôzýþýû}}}‹|J—.]ÒÓÓÏ;—PºvOãÆåÞI ¤FÀì(+8Nœ8q÷îÝßÿý AƒªW¯¾gÏž±cǶoßþƒ>8yòdÙÖlaa±téRé{Bˆ°°°[·n 0ÀÚÚZÉÈÈHJJ2œ¶Ö¯_?!ÄŒ3 ]Ï3gÎüç?ÿ±··ïÞ½»Ü; P(Ú(R#`Žtz¥þ¦ÏÉÉ9pàÀ–-[öìÙó×_ !êÖ­Û·oß^xÁÃãT«ZµjÕܹs=<<üýý“““>Ü´iÓU«V.Ó1aÂ//¯­[·J#+W®\°`½½½ŸŸ_ffæÑ£Gu:ݼyózõêõØ—óööæ¬j¥IJJâœÄŠVÚàÈAQ¦J;.Gãñâ@šý¬Wîåx¬¬¬ºvíÚµk×ÌÌÌ7.X° 99yñâÅ_|ñEëÖ­ diii̪† æââ²yóæˆˆww÷ñãÇKWä)Îo¼áìì¼zõêC‡9::Œ3ÆËËKî½j@jÌ”r;ŽBˆ;wîìÞ½;222::Z:+ÅÅÅÅÚÚúÊ•+Bˆ† ~ýõ×îîîr—Yfÿ¢dü½¢•ažšƒ¢L•p\H¥Å‹iö³^‰Ç[·níܹsÇŽGŽÉÍÍB8;;?÷Üs­ZµB:tháÂ…111ï½÷ÞW_}%w½c‘³¦¬à¸fÍš;v;v,//OáääÔ£G^½zùùù埕îСC«V­žy晣GÊ]2€V(+8~øá‡B‡çž{®W¯^mÚ´)î[Œ¶¶¶666 œ§4ˆó©a$Ú€¹SVp0`@```Û¶m9ë…v#˜R# ʺŽãöíÛ£££‹KcÆŒéÑ£‡Ü5øÚ0©PeÇÌÌÌG÷Ð¥K—._¾,w%ÿTõþýûGe¸»zõê5kÖ^,//O¯×שSGîz¥C»P ùƒ£¥¥e5¤ÛwîÜ©R¥JµjÕŠ\ÒÁÁ!44Tîzü?æ©ñX¤F@MäŽ:t8|ø°tÛÛÛûå—_ž6mšÜEL€Ô¨ŒüÁ1¿áÇûùùÉ]Š ¬à8eʹK`,æ©Q2Ú€úÈ×®]+„xæ™g¼¼¼ wK6xð`yk<©P%™ƒãìÙ³…³fÍ’‚£t·dG@ h7¢¤F@­dŽcÆŒB4oÞ\º;iÒ$¹wŠ&sp=ztþ»#FŒ·@9ÑnTLY9€Y`žÅ!5ê&sÇqß¾}¥}JçÎå­P$R# z2Ç7Þx£´O‰—·f@ãh7¢H¤F@ dŽ}úô‘{À(2ÇyóæÉ½åE»ÐNŽP ÌS£0R# üå@Ù‘Má/ÇÀ(üåÆbžÐn´†¿( R# AŠ>9&###;;[î*A»ÿDj´IæŽc‘NŸ>ýå—_ÆÆÆÞ¼yÓÂÂÂÃãeË–o¿ývݺuå. @»×q\¼xqppð¾}ûnÞ¼YµjU›”””Ÿþ900pݺurW Ýh—²‚ã–/_nii9dÈ]»v:uêĉûöí>|¸bΜ9'Ož”»F@‹˜§†©Ð2eÇuëÖéõúwÞygúôéµk×ÖétBww÷)S¦L:5''ç›o¾‘»FÐ.R# qÊ Ž±±±U«V}õÕW ?bkk{úôi¹kÐ(eG!DÍš5­¬Š8eG:K&33SîÍažÚ”}}}SRRÒÓÓ ?”‘‘‘””äãã#w E¤FBiÁ188X¯×¿ûî»999ùÇsss§M›–›› w€¶Ðn„ 5ø™¯ãÿ®¥¥eÿþý7mÚÔ½{÷àà`OOON—””´qãÆ””ooïž={Ê[0€fɇZäø•+W/^\`0>>¾]»vñññòÖ šB»€ÌÁ±OŸ>rïÅbž¤FùÉçÍ›'÷Ô eS²©S§víÚUî*­ Ý¨q¤F…ÉÜq,ìÎ;»wïNNN.0ž••µsçNKKK¹ Ð(eÇëׯ4èòåËÅ-0xð`¹kõ£Ý HÊ Žß|óÍåË—[·n´mÛ¶ßÿý½÷Þ³µµ={öìš5k<}út¹k4yj-#5(޲‚ãÁƒ«V­ºlÙ²5jtíÚµC‡õë×o×®ÂÓÓóÃ?|ñ޼¼ä.T˳¾'©@q”urÌÕ«WëÕ«W£F !„‹‹‹££cLLŒôPpp°££ã7ß|#w¥¬à(„°°øÿ’êÔ©“””$ݶ´´ôöö>}ú´ÜêÇ<µfé„îBÒ¹« \Ê Ž5kÖ¼xñbFF†t·víÚÇŽ3<ªÓéRSSå®Ô‰¯6x,eÇnݺeeeMš4éüùóB??¿K—.EEE !nݺõÇxxxÈ]# r´µ‰ÔÀÊ:9fÈ!;vìØ³g^¯_±bEÇŽ­¬¬Fݲe˳gÏfffÊ]#€F)«ãèìì¼víÚ‰'6oÞ\ááá1cÆŒìììß~û---- `ذar×jC»€‘”ÕqB8;;¿ñƆ»ƒ :s挛››§§§ÜÕ*Ç<µ‘OqÁ1¿ŒŒ kkëêÕ«·mÛVîZ@…HJE‰ÁñôéÓ_~ùellìÍ›7-,,<<}úôéÓ§N:5jÔ(°LçÎå.Ô ’)+8véÒEºqëÖ­%K–¹L||¼Üeh‘²‚£ô—cTæ©U†v#€Ê§¬à8oÞ<¹K3@j eS@vvvff¦ÜUj@»QMH䢬ޣ$!!aÙ²e'Ož¼víZ^^^Íš5›5k6f̘ÆË]ÈŒÔ@FŠ Ž_ýõ矞——'„¨Zµª¥¥åµk×®]»¶gÏž‰'Ž1Bî4JYSÕÑÑÑŸþ¹N§2dÈ®]»N:uâĉýû÷¿þúë ,ˆŽŽ–»FÀü0O­´ÈKYÁñûï¿ÏËË›d¢ à¨ÓéªU«–’’r÷îݦ§§_¼x±yóær— •v#…PPp´´´ìß¿^^ÞÔ©S>|˜ÿ¡ìììÐÐPN7|øð²­|Æ ÁÁÁ¾¾¾íÛ·Ÿ6mÚ;wŒî•+WZµj5yòd¹÷PjÌS«©€r(ër<¯¼òJllì¾}ûºuë6`À€úõëëtº¤¤¤ÿþ÷¿×®] |ðàÁ¾}û Ë{zzÖ©S籫]¸páŠ+ìììZ·nœœ¼iÓ¦„„„Õ«WÛÚÚ>ö¹z½~êÔ©<{ßÐ"R#EQVp ”nܸqcùò刈ˆˆˆÈ?2iÒ¤Ç^Ù1>>>,,ÌÍÍmãÆ®®®Bˆ>úhõêÕóçÏŸ9sæcKúöÛo9"÷ŽŸ²‚cŸ>}Jµ|Æ »ÌúõëóòòÆ/¥F!DhhèÏ?ÿ¼}ûöéÓ§[X”4YŸ°páÂÆŸ={Vî}”óÔæŽv#¥QVpœ7ožÉ×yôèQ ‹Î;F,--;vì¸eË–ãÇûùù÷Äœœœ)S¦8::†††:Tî}@[HHA'ÇT½^Ÿ˜˜èääää䔼Q£FBˆ”””ž»dÉ’¸¸¸O>ù¤FroPj´Í©€2)«ãhr™™™¹¹¹Æííí…·oß.î‰'OžüꫯBBBÚµk[Ú×õöö.0)÷ÎдÔÔT¹K¨|õ“’’䮡$š<(F«/ä:|â È®gÏžr— *ŽYYYB;;»ãÕ«WBÜ»w¯¸gM™2¥víÚï¼óNÙ^7>>^îMGAõë×—»6Ùü*”ÅßíFùö ÇE8(ò*ü±^¸C¤*Ž:.33³À¸ty©ïXØÜ¹sSSS×­[gÌõzbžÚ|1I @ÉTþG+++{{ûÂÅôôt!„á<ëüŽ9²nݺ7Þxã©§ž’»|ÚBj p*ŽB77·´´4))H_rss+¼|BB‚bÙ²eÞÿÓ¿!Ä/¿üâííÝ»wo¹7@*ŸªBÄÇÇ|ø°Oþ¿U¸ÿþ &xyymݺUîzr¡ÝhŽHÌ…úƒ£bذa...›7oŽˆˆpww ?~¼Ô}€‘4…AAAAAAÅ=XÜ£>>>\—@¡ÝÀŒ¨ÿ¬j@;˜§6;¤Fæ…àò 50;G@%h7šR#sDp€QŽPÙh70SG@ ˜§6#¤Fæ‹à•‡ÔÀ¬`‚#`ö˜§6´˜;‚#TR# 8æv£Y 5P‚#ŒBp€ŠE»€j3Æ<µò‘¨ Á* ©€Ê`‚#`®˜§V8ÚÔ‡à¦Gj JGÀ,ÑnT2R#µ"8À(G0%ÚTŒà˜æ©‹Ô@ÝŽ`¤FªGp 5Ђ#`f˜§È…àåE»€FsB»QH´ƒàeGj )G…à˜ æ©•†v#­!8@YhÁ0´…Ô@›Ž0 ÁJ‡v#Í"8f€yjå 5Ð2‚#‹Ô@ãŽ0 ÁP:æ©‚v#àñH Ž€ÂÑnTR#HŽ0 ÁJB» Ž€r1O-;R#äGp€¢‘ ‚#ŒBpŠyjyÑn€ÂŽP©ŠDp”ˆv£ŒHP‚#ü?R#”€à£ÅažZ.´ dG‚ÔF 8ÊB»Q¤F0ÁF!8Ð:Ú`$‚#  ÌSW>R#à@»HP*G…à(óÔ•Œv#”Á€‘  Ž€"Ðn¬L¤F(‚#ŒBp -´ ÌŽ€ü˜§®4¤F(‚#­ 5@9`‚# 3æ©+íF(?‚#õ#5€I9Ñn¬¤F0‚#ŒBp f´À„Ž€l˜§®h¤F0-‚#u"5€ÉyÐn¬P¤F¨G…à@mh7@!82`žºâ â¨©*ÁF!8•yê B»*Á€ JE»±" r`‚#óF»* Á¨<ÌS›©*Á€¹"5@%#8À(G ’0OmZ´ ò˜R#È‚àTÚ&Dj¹XÉ]@%Ù°aÃúõë«U«Ö©S§É“';::–°|VVÖ?þ¸qãÆÔÔÔ'žx¢Q£FÆ kß¾½ÜÛ MÇ… ®X±ÂÎήuëÖÉÉÉ›6mJHHX½zµ­­m‘Ëçää :ôäÉ“ööömÛ¶ý믿~ÿý÷¨¨¨±cǾýöÛro  i´@F꟪Ž sss‹ŒŒ Û±cÇ!CNŸ>=þüâž²~ýú“'O¶jÕjÿþýË—/ÿæ›o~úé'‡/¿ü2..Nî ‚ùažÚTH /õÇõë×çåå?ÞÕÕU µ··ß¾}{^^^‘O‰ŒŒBLŸ>ÝÐ’ôòòzóÍ7sssûí7¹7Ð(R#ÈNýÁñèÑ£;w6ŒXZZvìØ1--íøñãE>%))ÉÎÎÎÇÇ'ÿ ———"%%Eî ‚™¡Ýh¤FP•ÇQ¯×'&&:99999åoÔ¨‘"%%ÅÏϯð³V®\ieUpÏÄÆÆ !j×®-÷6ÈCåÁ133377×ÁÁ¡À¸½½½âöíÛE>«iÓ¦F>VµjÕ¾}ûóºÞÞÞF¤éoÈ%55U¾¯Ÿ””$÷P"ãŠg}Ï I’»±2Èú¢qPd׳gO¹KP •Ǭ¬,!„]ñêÕ« !îÝ»÷Ø5äææ®]»ö³Ï>ËÍÍýüóÏyÝøøx¹7Õ¯_¿ò_ôóÔ2¼´Y0æ ü=IÍ.¬D²ü° dyþX/Ü!Ò•GN—™™Y`üÁƒâ}Çüþûï³fÍ:þ¼»»ûÇÜ®];¹7оڊ¢òàheeeoo_¸³˜žž.„0œg]Xvvö¼yóÂÃÃmllÆŒ3|øðâ.ú *ŽB77·ÄÄÄôôô5j¥ïœ¹¹¹ù”¼¼¼wÞyç×_íÖ­Ûûï¿_B¾JÀùÔåD»”Fý—ã ÈÍÍ=xð aD¯×ïß¿ßÑÑÑ×׷ȧ„‡‡ÿú믯¼òÊ—_~IjdAjRp ¶°°Xºt©ô½F!DXXØ­[· `mm-ddd$%%I§­éõú5kÖ<ñÄS§N•»v˜1ÚåAjeRÿTu­Zµ&Ož}úøûû'''>|ØÇÇgĈ†eöïß?aÂ//¯­[·Þ¼yóÒ¥K¶¶¶ƒ.¼¶~ýú…„„ȽM2PpB 6ÌÅÅeóæÍîîî!!!ãÇ—®ÈS˜ÔwÌÊÊŠ‰‰)ü('Vv#(–&‚£"(((((¨¸G¥Û-[¶ä*Œ('æ©ËŒÔJ¦þï80¤FP8‚#ŒBpLŒy겡ÝÊGp ?R#˜‚#`J´Ë€Ôæ‚à£ȉv#˜‚#`2ÌS—©Ì Á€<<ë{’À¼`‚#`ÌS—ŠNè.$]» @éT6¾ÚfŠà˜íFã‘À|YÉ] !5B¼½½å.¦/w æà@é2T†ÿ ©j ¼˜§6íF0wG•Ô*@pÊ…v£1H G…à bÑnÕ 8eÇ<õc‘@MŽ* ©T†à£2bžºd´@}ŽLÔªDpÊ‚vc HŒQ¿~ýàà`¹«@é@Ù>}ú¥—^ªY³fõêÕýüü.\˜““#wQâÑ£GVVVºrqq‘».³g%wT…v# ).\èܹsnnn¿~ýêÔ©³k×®‰'8pà§Ÿ~’·°¤¤¤ÜÜÜvíÚyzz«W¯.óþ2G Ô˜§.©К‰'Þ»wïðáí[·BÌž={øðá«V­Ú±cG=d,,11Qª' @î¤*LU0 R# X .lÑ¢…““S›6mÖ®]kª5ïÙ³§cÇŽRj”Œ=Zmä>Ü£G''§¦M›Nœ81++Ë$…IÁ±aÆ&ÜGÔíƒ>˜8q¢‹‹ËÔ©SGuÿþý-[¶”Í999o¿ý¶” ’““…U«V5f §OŸîÞ½{•*UÞ|óMWW×… úûû›ä+’‰‰‰U«V}â‰'6lذråʨ¨¨ììì Ù¿ÃT5P:ÌS‰v# Xááá5Ú±c‡•••bÊ”)ÎÎΑ‘‘AAAå\³••Õ'Ÿ|’äöíÛŸ|ò‰¥¥åÀYùsçæÍ›7iÒ$éîäÉ“çÏŸ¿jÕª‘#G–³¶ÄÄD ‹† Þ¹sGiÒ¤Ixxx«V­*`kÁ@y‘‰N'ÛK—ðÚ#GŽØØØH©Q‘––&„ÈÌÌ,¼dNNζmÛŠ[Ï /¼Pr ûöí9rdbbâòå˽¼¼Œ)ÛÍÍmüøñ†»|ðÁŠ+¶lÙR 8–¡°ÄÄļ¼¼Y³f 8ÐÚÚú—_~™0aBß¾}cbbìííM·ã5‡à”íÆÂH€2?8:::thçÎgÏžMHHˆ-n.8##£oß¾Åo]±›wéҥѣGoÙ²ÅËËk×®]]»v5²¶fÍš­ÂÎÎÎÛÛ;!!¡ü…íÛ·ÏÆÆÆÉÉIº;lذ¿þúëí·ßÞ¸qãðáÃ+v«ßqPv¤F@á>|äïï¿}ûv//¯wÞy'..®¸–›½½½¾xŽĺuëš5kvìØ±•+WþùçŸÆ§Æ"YYYÙØØ”¿°ZµjR£ä¹çžBÄÆÆÊqÔƒŽ#ª±hÑ¢qãÆ‹ë8–aFxË–-ÿþ÷¿_|ñÅ+VÔ¨Q£´åIíOCÓ1+++..NJxå),99yëÖ­]»vmÒ¤‰a0==]Q·nÝŠÚ×Ú@pŒÅ[³fM‹-¶oßÞ³gÏ ßãj§+U„‡1¼½½ãããå®ÿ””T¿~ýò¬à˜ŸI‚cù *Çå±ø%_*_ýuLLÌ¢E‹ä.¤$e8¦š}pV5€Ò¡ÝÀHýõ×Þ½{[¶l)w!0‚#ðx´ HŒݤI“W^yEîB`2|Ç€±HJ¥K—.]ºt‘» ˜G…à<óÔÚ‚#€Ç#5Á(íFAjüÁF!8( íF€Á(óÔ¤F@~GE#5 8À(G hŸ§¦Ý(Œà  R# HG Zn7’TŽúõëË]J‡àÊnïÞ½]ºtquuý׿þÕ¡C‡Ÿ~úIîŠþ׿ÿÚµk{xx:tHîŠÔ€ààÿÑnP*]»v½téRHHÈ›o¾yóæÍþýûýõ×r×%<èëë{èС4èðáÃÝ»wß³gÜu™=+¹ G³óÔ¤F¥õî»ïÖ¬YóøñãöööBˆiÓ¦5mÚtÖ¬Y¯¿þºŒUéõúáÇÛÛÛŸ:uÊÍÍM1cÆŒV­ZMž<ù?þ{Ÿ™7:Ž„ 5ª¶páÂ-ZØÙÙ999µiÓfíÚµ&YíÇccc{÷î-¥F!„¿¿jjjVV–‘+9|øp=œœœš6m:qâDãŸX‚¤¤¤„„„áÇK©Qáàà0a„ãÇŸ>}ÚôûWKŽÀ?h³ÝHjTìƒ>˜8q¢‹‹ËÔ©SGuÿþý-[¶”Í–––§Nš3gŽa$''çÌ™3-Z´°µµ5f §OŸîÞ½{•*UÞ|óMWW×… úûûçä䔳°””!„««kþÁZµj !Μ9cê¬-LU fááá5Ú±c‡•••bÊ”)ÎÎΑ‘‘AAAå\³•••t{õêÕ‰‰‰Û¶m»zõê÷ßoäÎ;7oÞ¼I“&Iw'Ož<þüU«V9²<…5nÜXqèСñãÇ÷îÝ+„¸zõjìc !8ZG»0ÐÉõÒ%ü9rÄÆÆFJBˆ´´4!Dfffá%srr¶mÛVÜz^xá… øðÃ…Ý»w¯[·®‘e»¹¹åÏv|ðÁŠ+¶lÙR 8–¶077·lܸqîܹÆ Óëõß}÷ÝòåË…ééé¦ÜïÚCpþŸç©I€ )ó§ÉÑÑñСC;wî<{ölBBBlllqsÁ}ûö-vëJüý˜™™ýúë¯?ûì³qqqfŠ‹Ô¬Y3C¢BØÙÙy{{'$$”¿°åË—ß½{744444TÚ 3gÎüàƒ*aŸ«ßq´‹Ô¨Þǃ‚‚üýý·oßîååõÎ;ïÄÅÅÎe)ÀÞÞ^_¼Ç¾VµjÕ>ýôÓÛ·ooÞ¼¹l[YYÙØØ”¿0—;w:thùòåÿýïããã›5k&„¨S§Ž|GC è8 ZQQQ‹-7nœa°¸Žcig„·mÛÖ·oß5kÖ¼ôÒK†AGGGñ¸ö¤Ôþ44³²²âââž{î¹r&„8uêT5Ú¶mÛ¶m[id÷îÝ:®]»v½ÏÕàüMkóÔ´-HMMB4iÒÄ0²qãÆŒŒŒ"ƒ]ig„Û´i#„øæ›o^|ñEîïïw~÷ÝwBC\+Ùµk×–,Y2aÂéîìÙ³ÓÓÓ T΄o¼ñFlll||¼t2u\\Üš5kžþyé.ÊŒàh©Ј.]ºØÙÙ1bðàÁÑÑÑ{öìqqq‰ŠŠÚ¾}{¯^½ò/,Í¿rggçéÓ§Ïš5«uëÖ=zôÐét;wî>>‡Ú½{w=ú÷ï_`±Ò&„˜={v¯^½Ú´iÓ¯_¿G­_¿ÞÖÖö‹/¾û€˜=¾ã¡±v#©ÐŽ:uêDDD<ùä“K–,Y¸p¡­­íéÓ§?ùä“ôôôÅ‹—ýï¿ÿþwß}gii¹|ùò+VT©Rå‡~X¸p¡ôhvvöÝ»wK¸¦÷èÑ£—/_~õêÕE‹ݸqcæÌ™[·n5Ɇ?÷Üs‘‘‘uêÔùæ›o"""ú÷ïÿçŸÖ¯_¿RöºšéJáñXÞÞÞñññrWHJJ*ù÷Á±ò=ö @—Çâ—|©|ýõ×111‹-’»’”á˜jöm@ÇÐ…¤FZð×_íÝ»·eË–r“!8j7’T¦èèè&Mš¼òÊ+r“áä@+H*Y—.]ºté"w0%:Ž0 ÁZ§‘yjÚ€ò#8êGj˜Áš¦…v#©`*G…à¨íF€ ¡]ªŸ§&5L‹à¨©`r\P!R#P¡¼½½å.Á¥úyj$>>¾’_1))©~ýúro7 SÕ€úÐnT‚#´HÅíFR# âõ 5*ÁF!8BsÔ:OM»PÑŽ€•€àmQe»‘Ô¨G…à˜7Ú€JCp,Ö† ‚ƒƒ}}}Û·o?mÚ´;wîÈ]Ê®gÏžBóÔf¥ƒ¥á¸(ÊAp,ÚÂ… g̘qþüùÖ­[W¯^}Ó¦M#GŽÌÊÊ’».àÿ™uj˜#‚câããÃÂÂÜÜÜ"##ÃÂÂvìØ1dÈÓ§OÏŸ?_îÒdCp,ÂúõëóòòÆïêê*„††ÚÛÛoß¾=//OîêPF*›§¦Ý¨|Ç"=zÔ¢sçΆKKËŽ;¦¥¥?~\îêR#@Ç‚ôz}bb¢“““““SþñF !RRRä.eqî\¼jÚ¤F€\¬ä.@q233sss ŒÛÛÛ !nß¾ýØ5œ‹?§:¹·ÿ¤WÕ!ñöö–»6DÍ8. ÄAB ’N¶³³+0^½zu!Ľ{÷»ºA¨pñrÐ$¦ª rppÐét™™™Æ|øpÓ¦MW­ZUø2=Ap,Ö–-[6oÞ|úôiww÷gžyfüøñÒy´‰à£ðG…à£`‚#ŒBp€QŽ0 ÁF!8šÌ† ‚ƒƒ}}}Û·o?mÚ´;wîÈ]‘Öeee}ûí·½{÷~úé§ýýý‡þÛo¿É]þß•+WZµj5yòd¹ Bœ9sfôèÑ]ºtiݺuHHÈï¿ÿ.wEZ—ýÕW_õïßß××·k×®ãÆKHH»(ºpá‚··÷©S§Š|TkŸþGÓX¸páŒ3Ο?ߺuëêÕ«oÚ´iäÈ‘YYYr×¥]999C‡ýä“OnܸѶmÛ† þþûïÆ ûòË/å. B¡×ë§Njøsðמ={ ´gÏWWW__ß'N 2dÏž=r×¥]¹¹¹¯¾úêüùóïܹãïïïáá±cÇŽ^xáèÑ£r—¦EáááÅ=¤ÅO=ÊíìÙ³7ö÷÷¿~ýº42gΜFÍž=[îÒ´kíÚµ54hPff¦4rîܹgžy¦I“&þù§ÜÕA¿jÕªF5jÔhÒ¤Ir×¢uwïÞõóó{ê©§Ž;&œ:uªY³fíÚµËÍÍ•»:’~ƒ7îÑ£GÒÈ¡C‡š4iòÜsÏÉ]š†Ü»wïèÑ£ï½÷žôËêäÉ“Ðæ§?GX¿~}^^Þøñã]]]¥‘ÐÐP{{ûíÛ·çååÉ]FEFF !¦OŸnkk+xyy½ù曹¹¹LXË.!!aáÂ…7–»!ĦM›ÒÓÓß|óÍV­ZI#-Z´èÕ«×­[·Îœ9#wuuüøq!Ä«¯¾jee%´mÛ¶I“&/^¼}û¶ÜÕiEPPÐàÁƒøá‡âÐæ§?ÁÑŽ=jaaѹsgÈ¥¥eÇŽÓÒÒ¤~T¾¤¤$;;;Ÿüƒ^^^Bˆ””¹«Ó´œœœ)S¦8::†††Ê] „âÀ:®oß¾ù?ûì³øøø§žzJîê4ÊÝÝ]‘?#êõú»wïZXX¢$*ÚG}´lÙ²eË–µk׮ȴùéÏû¯¼ôz}bb¢“““““SþñF !RRRüüüä®Q‹V®\Yø×kll¬¢víÚrW§iK–,‰‹‹[µjU5ä®BãèèX³fÍcÇŽ8qâîÝ»7îÖ­›¡[Ê×»wïÕ«WôÑGÕªU{úé§ïܹ³lÙ²ÔÔÔ—^z‰œJÓ¡CéÆÞ½{ ?ªÙO‚cyeffæææ:88···ÿüÿ"*SÓ¦M Œ>|8,,¬jÕª:+¨L'OžüꫯBBBÚµk'åxÈ+;;ûþýû 6üàƒÖ­[g¯]»ö¢E‹š5k&wåíí>tèСC‡CBB¦M›&wiø›f?ý™ª./éä);;»ãÕ«WBÜ»wOî!rssW¯^ýúë¯gff~úé§ÎÎÎrW¤QYYYS¦L©]»ö;ï¼#w-øÛýû÷…‰‰‰sçÎýý÷ß÷ïß?f̘˗/7Nå'‡*Xzzú§Ÿ~š‘‘áããóòË/wïÞÝÖÖvóæÍœê®šýô§ãX^:.33³À¸téÑï¿ÿ>kÖ¬óçÏ»»»üñÇÅ}U•`îܹ©©©ëÖ­cT9lll¤Ÿ~úi×®]¥Û£G¾råʦM›¶mÛ6pà@¹kÔ¢)S¦üñÇ¡¡¡¯½öš4råÊ•—_~y„ ¿üò‹§§§ÜB»ŸþtËËÊÊÊÞÞ¾ðÿ-ÒÓÓ…†3­Pù²³³?úè£W_}õÊ•+cƌپ};©QFGŽY·nÝo¼ÁùŠbgggccckkÛ¥K—üãݺuBœ={VîµèÆ{÷îmذ¡!5 !jÕªõÖ[o=zôè§Ÿ~’»@¡áO:Ž&àææ–˜˜˜žžžÿ;ËIIIÒCrW§Qyyyï¼óί¿þÚ­[·÷ß_Å?ÃæBú£Ò)ŠùÇùå—_~ùÅËËkëÖ­rרQ®®®wïÞÕétù¥®pNNŽÜÕiQZZš¢^½zÆ¥FãÍ›7å.Óæ§?ÁÑâãã<øüóÏK#z½~ÿþýŽŽŽ¾¾¾rW§Qááá¿þúë+¯¼òþûïË] „¢nݺ†ɽ{÷¢¢¢jÕªåëë[³fM¹ Ô®.]º|÷ÝwçΓΕHáZ›²¨W¯ž¥¥eBB‚^¯Ïèããã… 6”»@üM›ŸþLU›@pp°……ÅÒ¥K ?-,,ìÖ­[ °¶¶–»:-ÒëõkÖ¬yâ‰'¦N*w-ø[‡üÓĉ…~~~ ,˜2eŠÜjW¿~ý„3fÌ0œzæÌ™ÿüç?öööÝ»w—»:-²µµíرcrrò_|a¸ŽtBB²e˪T©RàK‘6?ýé8š@­Zµ&Ož}úøûû'''>|ØÇÇgĈr—¦Q7oÞ¼té’­­íàÁƒ ?Ú¯_¿¹k”¢I“&'N\°`AÏž=ýüü233=ªÓé>úè£ýë_rW§QsæÌ8pà²eË"""š6mš––öÇäåå͘1£AƒrW‡¿ióÓŸàhÆ sqqÙ¼ysDD„»»{HHÈøñã¥sòQùRSS…YYY111…å €7ÞxÃÙÙyõêÕ‡rtt 3fŒô—– gg爈ˆ+VDEEíÛ·ÏÑѱS§N£FjÞ¼¹Ü¥á4øé¯Óëõr×3Àw`‚#ŒBp€QŽ0 ÁF!8À(G…à£`‚#ŒBp€QŽ´eòäÉÞÞÞûöí“»±téRooïµk×Ê]‹à£XÉ]hT—.]œ[µj%w!`,‚#ÈÃÇÇÇÇÇGî* ˜ªÅÉÍÍ}ôè‘ÜU@AGæaÆŒÞÞÞóæÍ+0~æÌooïvíÚåää!nݺµ`Á‚ÀÀÀ–-[¶lÙòùçŸÿôÓO¯_¿^Üj¥se¢££ Œ7mÚôÙgŸÍ?òÛo¿;¶[·n­[·2dÈÒ¥K d»Ë—/¿ÿþûO?ýtçÎGŽyôèѶ諯¾ÊrŒTIjjjXXXÛ¶m›5kæçç÷òË/ïÚµ«¸5œ8q¢iÓ¦;v¼ÿ¾aðÁƒ;wnÚ´ééÓ§å>hÔ†àÀ< !vìØQ`|ëÖ­Bˆ¾}ûZYYݺukðàÁ+W®¼råJ:už|òÉ”””o¾ùfРAwîÜ)ϫϟ?øðá;vìÈÉÉquu=vìØ’%KBBBÒÒÒ¤‚‚‚~øá‡´´´ èõúýû÷ÿûßÿÞ³gO©^håÊ•Ÿþ¹µµuÛ¶míííOœ8ñöÛooß¾½È…}}}‡~ýúõO>ùÄ0øÙgŸ]½zõ­·ÞjÑ¢Ee$jGp`Z·níêêš’’òçŸóòò¤PÕ¿!ĦM›.^¼Øµk×ß~ûmóæÍ¿üòKTTTëÖ­/_¾¼{÷î2¿ôÞ½{¿úê«Úµkoذaß¾}Û¶m;pà@§NNž<¹|ùri™ùóçgddŒ5êСC›6mÚ¿ÿôéÓõzýâÅ‹KõZëׯ9räÁƒ¿ýöÛ;w:T±zõêâ–;v¬——צM›<(„ˆŽŽþñÇ›7o>jÔ(ùŽÕ"80Ï?ÿ¼øgÓñرcׯ_÷õõmذ¡"''§K—.“&M²³³“¨Q£†ÔªLNN.óKÏ;W±hÑ"CÏÙÙyÑ¢Ennn7n¼{÷®âìÙ³Bˆàà`KKKi™Aƒ½õÖ[ݺu+ÕkµhÑâwÞ±°°6ù­·ÞB\¼x±¸å­­­?ûì3++«3fܸqcúôé¶¶¶óçÏ7”&Dp`6¤˜ÞVš§0`€t÷í·ß^±bEƒ ܼysÛ¶måyÑ;wî$%%yzz8ºZµjíÚµËÊÊŠ‰‰BHÉ544ôÈ‘#Ò·-­­­Ç7f̘R½\¯^½òßµ···´´Ôëõ%<¥iÓ¦o¿ýöµk×^xá…Ë—/O:µ^½zu h—ã`6|||êÕ«wñâÅøøxooœÈÈH[[ÛÀÀ@Ã2—/_>pàÀ±cÇRRR.]ºTί6 !.\¸ ýëíí]äW¯^BÌš5küøñGŽù÷¿ÿmccÓ´iÓ6mÚ<÷ÜsM›6-ÕË=ùä“e(ò7ÞØµkWllì3Ï<3hÐ “îuøGæ$((hÉ’%‘‘‘ÞÞÞ¼wï^ÿþý ÓëÖ­›3gNNNN:uüüüºuëÖ¬Y³¤¤¤Ù³g—êUrss M¾ììl!„‡‡Gq“εjÕB<ùä“6l8qâÄ~ÿý÷˜˜˜ãÇ/_¾|àÀsæÌÑétF¾t•*Uʰ[Ù²eËöíÛ;uê´zõj//¯mÛ¶¾h˜Á€™‘N‘™>}zffæÀ ãnnnBˆ³gÏÞºuKÉÍÍýá‡Ö¬Y#„ÈÊÊ*rmuêÔB„‡‡gffJ#‡6\dG2qâļ¼¼‰'ÆÅÅI#™™™yþüy½^?hÐ __ß Úz½>444==ýã?–rsóæÍ‡úŸÿügÖ¬Y‹-’ûXP:ŽÌŒ««ë3Ï<#„ð÷÷wuuÍÿÐçŸ>vìØZµjI×wìØ±ãæÍ›§OŸ>xð`KKË"ÿ`íÚµ¿ÿþûnݺYXXDEE;wÎÃÃ㫯¾rvv6,£Óé>ýôÓ/¾ø¢k×®yyy/^¬_¿þĉ7oÞìèè(-Ó¯_¿ï¾û®S§N¶¶¶gÏžÍÌÌlß¾ý²eËÞÿýŠÛáááÑÑÑ:t0|ÑS1vìØºuënß¾=22RÖ@…t%_ ´####--­víÚÆŸ šBp€Q˜ª€QŽ0 ÁF!8À(G…à£`‚#ŒBp€Qþ±ÞFO÷LúIEND®B`‚statistics-release-1.6.3/docs/assets/unifinv_101.png000066400000000000000000000507531456127120000223400ustar00rootroot00000000000000‰PNG  IHDRhŽ\­AQ²IDATxÚíÝy\uãÀñï*ˆ‰‚·¢*já‘7xyg†OžY™¦’W¥–åUX–W¦O¢>¦å#Ѝyd„xä("(x‚¨ ìïy~ûЂ8, ³³ûy¿úc™]f¿3õé»3ƒF«Õ ày¬”Ôp€,„#d! áYGÈB8@Â²Ž…p€,„#d!5yòäÉÊ•+»uëV³fM[[[ww÷Þ½{õÕWYYYe3€;wþç?ÿùÏþ“œœ¬[¸jÕ*F£ÑhZ·n­ôR±Bwãýû÷ßyçš5kÚØØ¼ð =Rz˜Å¼Dþí¹sç4ØØØ8;;·iÓföìÙùêŠø=S¦LQz÷æÃFé믿þ8pà•+WtK‚ƒƒW­ZÕ»wïÒÃ!C>|(„øí·ßüýý•Þ%æïã?^³fôXÚóêRòÚÜÜÜÔÔÔÔÔÔcÇŽ}ÿý÷aaamÛ¶Uz³ËE8êçëë›?lllrrr¤Ç7nÜxã7"##_z饲Û /¼P¯^=!DõêÕ•ÞO*VènÜ»w¯ô S§Nýúõ+_¾¼ÒÃ,ÆàKòCëêêjgg'„xôè‘n¢1--mРA *T(â[ô8::*½{3¢ ¯½öšî×vĈ§OŸÎÉɹyóæš5k^xái¹§§gi£R¥JÒ{ýöÛoJï‹ Ûá;wîTz,ÅVÜÚ˜˜Ýëóÿ€]»vmĈº§‚ƒƒŸû-J á¨À¾}ûtÿuœ>}ºÞ³;wîÔ=—ÿ©‡~òÉ']ºtqqqqqqñ÷÷ÿøãïß¿Ÿÿ5³fÍ’¾·oß¾÷îÝ jÕªU¥J•^zé¥ùóçgggK/›>}zÁÿó|øð¡V«]¹r¥ôe«V­ŠµN½WæÕ›o¾)-Ÿ}ºè#"ÿ-äï ½Ýx÷îÝ+W®T¬XQZ¸aÆ+W®<}úÔà]ñôéÓÙ³g׬YsöìÙùŸ8p`BBÂ[o½U·nÝš5k¾ùæ›ÑÑÑZ­öÈ‘#o¼ñFݺuœœ|}}ãÇoÓ¦B«ÕN˜0áÂ… F<ˆÊîŠ'NHÕXÐéÓ§ïÝ»÷ÒK/999IK’““'L˜ðôéÓÆ׬YSZ¨ÕjçÎ+üÐÍÇÇGwŠgþÖP–GÀÔ=}úôÎ;ÒãúõëËü®Å‹K—²V®\ùðáÃááá»v튊ŠrvvBܾ}û‹/¾(ø]Ë–-»råJTTÔ©S§tq#•Í‹/¾Ø A+«ÿþK£fÍš 4Ðh4ÏIë,ö¨h”Ìœ9sûöíß~ûmTTT×®]…999¿ýö›a‡Ì(»â×_Õ8©Tšn4`W$%%5iÒdÆ QQQùÏ”„††ž>}úöíÛ;wÖ-\ºtéùóç¯]»6jÔ(iÉÙ³gen©a?´EÓh4ÕªU“ß¾}»à ºtéRð^<“&M2Ê»Ž€©ËÈÈÐ=®Q£†ÌïÚµk—ôàÃ?ÔÝZ¯Y³fAAAz/ÐiÚ´é¸qã¤Ç5êÔ©“ôøêÕ«Þˆë4`‹žKw+Áµk×J­"}`=pà@ƒ7ÜÔvEÅŠ÷íÛئM½’kÕªU¯^½„åÊ•4h´°J•*~ø¡ÂÊÊJwâfzzºÌöCû\/¾øbÁõ(K„#`êtן ! ÞùYâââ¤z§‚uëÖMzŸ———ÿ© äÿR÷Á¥Þˊňë4`‹žK·ª¸¸¸Q£FU¯^½eË–Ë–-{ôè‘———n~Ë(”ÝÞÞÞÏ 8݇ÑBÝíljÔ¨¡›N.ô7E3ì‡ö¹RSS¥•+W.ø¬««k½tû€Qpq `êÊ—/ïìì,]»ÿFÊùÝ¿_º=ž­­­½½}FFÆýû÷¥§ôî­¨«„Çß¹s'ÿ³zŸ;Ëùú¹ŒµNÃ¶è¹æÎ›‘‘±fÍš'Ož!´ZíÉ“'Ož<9þüN:mÛ¶­jÕª%ß ¦°+¤O±å L¢;'Á0üÐÊY­îjWWׂÏnܸ‘›Ò¥G@Ú·o/= Õ]èš_£Fœ¥»¢T®\ÙÁÁAzêÖ­[ù_©û²|ùòF¬¢ÒVJ[T®\¹ï¾û.99ùßÿþw```þ;EÿñǦù§ê ÛFù߀b)îísEDDdggK_yå•2ÞÂPwÞyGzpíÚµU«Vé=»sçNÝLŒîn)ÒU"ߟÑûÒÝÝÝÆFùÏtA£wþÜÝ»wõ^)‹d®óÉ“'wîܹsçΓ'OÞxã 6ܽ{wß¾}º(9|øpɇ]Tqp ø¡-Ú7ß|#=°··ïСƒ²[X,ÂP×^{­K—.Òã?üpÞ¼yÒÜRvvvHHȰaä§4hàíí-=–.wB|ûí·'Ož”ÇÄÄ,^¼XzܳgÏ’ I7÷SBµk×–=zôâÅ‹Òã_~ùåСCz¯”¿E2×[­ZµjÕªU¯^]ºµM—.]tW©R¥äÃ. ¥}p€Úg¹}ûö˜1c¶nÝ*}ùü#ÿ9”Ê’òó äøúë¯Û´i“••¥Õj?ýôÓO?ýÔÙÙ9---77Wz­­íÖ­[­­­¥/§Nºnݺ«W¯Þ¿¿cÇŽþþþÖÖÖ¿ýöÛ£G„Õ«WŸ={¶èR¥Šô§‡?ûì³sçÎM˜0¡\¹r%Ù®–-[J²²²¼½½½½½SRRtä'‹d®³yóæ®®®wîÜÉÉÉ騱ãk¯½æäätåÊ•;vH/Ðý©’’ »4”ÒÁ5ºâþÐæ÷öÛoKw¦|ôèQþOä«V­úÙgŸ)½e€åbÆP‡fÍšíÛ·/ÿ…±)))ºÿ׫WoÛ¶m/¿ü²îY;;»-[¶H7^ÉÊÊÚ¹sçþó),êÖ­»eË–B¯K}.ݧŠGŽ™2eJÉç[´h¡»ÛKffæŸþW¿~}Ýd•[$sVVVÛ·o—.¾}ûöš5k-Z´eË–Ç !|}}§NZòa—†R:¸FWÜÚünÞ¼™¿œœvìØQÄ…>J3Ž€jtèÐ!>>~õêÕÛ·o½ÿ~½zõ<==ýüüÞÿý *è½þ•W^‰ŽŽ^¸padddLLLnnnóæÍÛµk7mÚ4ƒ?é BìÛ·ïÑ£Gnnn%¼öV²~ýúfÍšmÞ¼ùòåË:uš5k–tAƒ·Hæ:Û¶m›°råÊððð7n$''WªTÉËËkøðá#GŽ,ú‚ùÃ. ¥qpKCqh ²¶¶vpphذa÷îÝ?üðCªP–Fï–…â£jÈB8@Â²Ž…p€,„#d! áYGÈB8@Â²Ž…p€,Ž—/_öôôtèЉ'Jwä°LŽŸþùçŸþ¬g”#€©àGÈB8@Â²Ž…p€,„#d±èÛñ˜OOO¥‡#‹‹‹Száh*è 3ãééÉ1˜>ª€,„#d! áYGÈB8@Â²Ž…p€,„#d!aVÜÜÜ ¤ô(0O„#LQttôàÁƒ«U«V©R¥V­Zçää(=(ñôéSÍßU­ZUéqPFl” ïòå˾¾¾¹¹¹ýúõ«S§Îo¿ýtøðá_ýUÙ%&&æææ¶oß¾~ýúº…•*URxPVG˜œ   û÷ïGEEµnÝZ1oÞ¼Q£F­]»vÏž=Ý»wWp` Òxüýý•ÞI(€ªa àààæÍ›ÛÛÛ;99µiÓfãÆÆZó|||¤j”Œ7NqäÈ™kˆŠŠêÞ½»““S“&M‚‚‚²²²Œ20)6lhÄÝ€ŠŽ0Äœ9s‚‚‚ªV­:mÚ´÷ßÿÁƒC‡ -ùšsrr>øà©u®^½*„¨P¡‚œ5DGGwíÚµ|ùòï½÷ž‹‹Kppp§NŒrŠdBBB… ^xá…ŸþyÕªUÙÙÙ¥²0I|T C„„„xxxìÙ³ÇÆÆF1uêTggçððð€€€®ÙÆÆæË/¿Ì¿äÞ½{_~ù¥µµõÀå¬áâÅ‹‹/ž>þܹsÏú,øÑ£G}ûö}ö>s ¯]»6nܸÐÐPww÷ß~û­sçÎ2ÇÖ´iS]Ñ !ìíí===ãããK>°C‡ÙÚÚ:99I_Ž9òñãÇ|ðÁÖ­[GUº{À9Ž(¶'OžtêÔi÷îÝîîî}ôQll쳦Ü´Ïö¬·Ø´iSÓ¦MOœ8±jÕªóçÏ˯ÆBÙØØØÚÚ–|`5jÔÐU£¤[·nBˆsçÎ)q(kÌ8¢Ø"""–.]:aÂÝÂgÍ8ð‰phhè?þñ7ÞxcåÊ••+W.îð¤éOݤcVVVll¬Tx%ØÕ«WwîÜÙ¹sçÆëfdd!êÖ­[ZûSB8¢Ø’’’„ùûiëÖ­=*t¢®¸ŸkµÚ©S§Ö®];$$ÄÚÚÚ€áݾ}{Ù²e“&M’¾œ7o^FFÆ!CJ80;;»É“'·nÝzÿþýåÊ•Bäåå-^¼ØÆÆ¦k×®¥¼Ë0 „#ŠÍÏÏÏÞÞþwÞ ¬Y³æ‘#G8PµjÕˆˆˆÝ»w÷ìÙ3ÿ‹¥O„å¯<66öÂ… 7=z´ÞSýû÷Ø´iÓØ±cGŒñõ×_º†Š+EDDxyyEFFîß¿¿{÷îýû÷×{Yqæââ2wîÜiÓ¦¹»»÷ìÙ³J•*{öì9uêÔ_|ѤIe†pD±Õ©S',,ìã?^¶l™«««ŸŸ_ttôþóŸ?þø›o¾Ñ Çâ’n²«÷TÆ ²³³ÓÓÓ‹¸§÷¸qãÜÜÜÖ¯_¿oß¾zõêÍž=û“O>1ʆO:µAƒ‹-Ú°aƒ­­móæÍwïÞÝ£GRßã˜M±&] ‡§§g\\\i‹%[³fMLLÌÒ¥K•HQ8¦Ï•˜˜èææ¦ô( ãb‚8(&Èbÿ%ÏUÕP™ÇE à³Ï>KHHBtíÚµnݺ2‡íêêš¿íæÌ™³råÊÐÐP½p,îÀ\]] °uëÖ… Ž9R«ÕþôÓO+V¬Bddds¿J ÉXB„£I3ÙŸlGGÇÈÈÈ}ûö]¸p!>>þܹsÏú,øÑ£G}ûö}æj‹ÚÀøøøÌÌÌ#GŽŒ=ºmÛ¶±±±zŸªiÓ¦º¢BØÛÛ{zzÆÇÇ—|`+V¬HOOŸ>}úôéÓ¥0{öì9sæT©R¥ ö9 $HF£àGÛ“'O:uê´{÷nww÷>ú(66Vw-‹í³=÷½*V¬èïï¿`Á‚{÷îm߾ݰÛØØØÚÚ–|`U«VÝ·o_ddäŠ+~ùå—¸¸¸¦M› !êÔ©£ÜÑ<ç23Ž(¶ˆˆˆ°°°¥K—N˜0A·ðY3ŽÅýDx×®]}ûöݰaÃàÁƒu Åó¦'u¤éOݤcVVVlll·nÝJ80!Ä™3g*W®Ü®]»víÚIKöï߯ÑhÚ·o_Úû`fŽpD±%%% !7n¬[²uëÖGvÅýD¸M›6BˆuëÖ½ñÆÍOñüé§Ÿ„º\+ÚíÛ·—-[6iÒ$éËyóæedd 2¤„B¼ûî»ç΋‹‹“.¦ŽÝ°aCïÞ½¥/&‚›2–ÂÅæççgooÿÎ;ïÖ¬YóÈ‘#¨ZµjDDÄîÝ»{öì™ÿÅÒ'ÂòWîììÞ&ˆp¦…)F“E8SA2š8Â(dTÂ(‰dTÂ(ƒdTÂÑTxzz*=ÊɨR„£I°Ì?”^–ÝÜÜ”€dT7”’Ñ Ž qosB8€RÁ£ù!€‘‘ŒæŠpFC2š7ÂÉh GP"$£å €HFKC8€b#-áŠd´d„#x>îã A8€¢1ÅÂŽd„Âè#Q(ÂüɈ"Ž…ËÎÎþé§ŸvïÞ˜˜èèèØ¬Y³qãÆ¹»»+=.J Ɉç²Rz¦(77wذaK–,IKKëÔ©SÍš5÷ìÙÓ§OŸãÇ+=4ŒO#4¡Ñ -Õˆ¢1ãXˆÿûß'OžìÙ³ç’%Klll„GŽ5jÔ¬Y³öìÙ£ôè0fQ,Ì8âäÉ“BˆaÆIÕ(„h×®]ãÆ¯\¹rïÞ=¥G€0Ë0ãXˆêÕ« !ò7¢V«MOO·²²Ò¥$jÄ}¼QÌ8âµ×^³µµ?þ‘#G²²²nÞ¼9{ö줤¤AƒU®\YéÑ`ˆüSŒT# £ÑjùÑ)DttôðáÃ=z¤[2tèÐ3fX[[?÷{=== . Wz›,ZRRR­Zµ”þ†ƒbš8.&¨ä¥¾[}!ÄåÄËJoŠZõèѣุ8¥Ç¥>x-DFFÆ‚ =zäååÕ¬Y³ÔÔÔˆˆˆíÛ··mÛ¶k×®rÖ`™?L&ÎÍÍMé!@Å4q\LÁåo×¾p` Uð?ë…NY±S§Ný믿¦OŸ>bÄiÉÍ›7ß|óÍI“&íØ±£~ýúJ€çàri”ÎqÔw÷î݃6lØPWBˆ5jŒ;öéÓ§¿þú«Ò (\.ÒÃŒ£¾ÔÔT!D½zõô–KÉÉÉJ€Â1ˈÒF8ê«W¯žµµu||¼V«Õh4ºåÒù 6Tz€è#Q6ø¨ZŸÏÕ«W¿ýöÛ¼¼˜FYbƱŸþùÀ—/_Ö¤I“ÔÔÔ¿þú+//oÖ¬Y 4Pztpo(ƒÇB8;;‡……½ûî»ööö‡JJJzõÕW·lÙ¨ôЖŽûxCAÌ8®bÅŠAAAAAAJ€ÿâDF(ŽpÀÔ‘Œ0„#¦K#4Âd„©àGL‘î\FþÆ4L3Ž˜>˜†É"0$#Lá€Â¸)#Ô‚p@1L1B]G@2BGÊÉõ"(#$#ÔŽp Ô‘Œ0„#¥ˆd„9!($#Ìထ‘Œ0W„#ÆÁ}¼aöGJŠ)FXÂÑŒ°(„#† aGЇd„Å"‹d„…#x>’„#E#€‘Œ€Â€¿á>ÞÀ³ŽüSŒ@ÑGHF@Â`ÑHF@>Â`¡HF ¸G€Å!ÃŽ B2%A8,É”á0s$#`,„#À•` G}ÙÙÙAöòòJNN>yòä|ðÙgŸ¹ººý½ 0`À¥·@!à¹TsŽãƒf̘1zôè””” &üüóÏ;wîìÙ³çï¿ÿÞ»wïmÛ¶)=@jʼnŒ “jÂQªCww÷ŸþyìØ±ÖÖÖK—.]²d‰F£™1cƨQ£”#•! XTŽ)))cÆŒùõ×_›4i’y@@@hhh»ví"""”#Õ Àª9ÇqãÆÞÞÞ…>U­ZµuëÖ…„„(=F*À¹Œ`0Մ㳪Q¢ÑhÞ~ûm¥ÇÀtI½(HF(Õ„#†)F0€Ù"À¸Gfˆd€Ò@80+$#”€™  ´ŽTd€²¡¦pܽ{÷úõë¯\¹¢ÕþŸ‡¨¨(¥Ç L‘ŒP–TŽ¿ýöÛĉ¥ÇÖÖÖJ€ÂHF({ª Ç5kÖ!†>vìX¥‡@ÜǤšpLHH¨U«Ö´iÓ¬¬Tó÷µSŒ 8uDØÓ§O>>//Oé±(;$#˜u„£µµõèÑ£SRR‚ƒƒ• €²@2€ RÍ9޽zõº~ýúêÕ«£¢¢zöìY«V­òåËë½Æ××Wéa()Îe“¥špô÷÷—DGGGGGúš¸¸8¥‡ Àp$#˜8Õ„ã믿®ô”’TA5á¸xñb¥‡ÀøHFPÕ„#s¢á&ɪbºá¸qãF!Ä+¯¼âîî®û²hJÀsè¦ÝÜÜ” L7çÍ›'„˜;w®ŽÒ—E#SƧҠv¦ŽãÇB4kÖLúròäÉJ€HF0¦ŽãÆËÿå;ï¼£ôˆÉæÄtÀª‘Œ`~GFF2€¹" Éæp`$#X€á¤^$#X€!˜b ¤âpÔjµHJJjÞ¼¹···ÒÃ,ÉKMáxàÀo¾ù¦K—.Ò½ÁgÍšµuëVé©!C†|úé§Fé1æŒd g¥ôä:~üøØ±c/\¸——'„8þüÖ­[Þzë­ZµjmÚ´éÀJ0[¡ÑVh©F°dª™qüᇴZíÌ™3‡ "„Ø»w¯âË/¿ô÷÷¿råJ=þõ¯ùûû+=LÀÜ0ËÐQM8^¼x±Zµjo¿ý¶ôåÑ£GË—/ß©S'!D½zõ4hpùòe¥Ç˜’ G5U§§§;;;KsrrΟ?ß´iÓòåËKK*V¬˜’’¢ô3ÁÓ€B©&kÔ¨‘”””››+„8yòäãÇÛ´i#=•———””TµjU¥Ç¨É(‚j±uëÖéééË–-»qãÆ²eË„>>>ÒSk×®½wï^Æ •# VR/’Œ€¢©æÇ1cÆ„††®X±bÅŠBˆfÍšI÷n|ã7Μ9#„9r¤ÒcÔ‡ò©fƱfÍšÿþ÷¿}}}«U«Ö±cÇ¥K—JwmLII©\¹ò‚ Ú¶m«ô5aŠP\ª™qB¸»»¯ZµJoaHHHõêÕ­¬TSÀ€â˜e€’Ðh„‡‡ÒƒPˆšÂQ’žžsëÖ­5jtèСB… T# ɆÉÿÇé´Záé©ô€¢¦pLMM]±bÅÖ­[³²²„Æ ëСC¿~ý¼¼¼¾üòKGGG¥˜.’ŠK/!TtŽãÓ§OÇŽR¹rå~ýúé–»¸¸ùÄÎÎîÂ… 6l œ9s¦Òc„ybŠ@Ó›YLLLtssSzP€* Ç?þø£B… Ë—/¯\¹rçÎ;vìèææÖ¾}{!Dýúõ?ûì³7ÞxÃÝÝ]éa¬ŒÊ·ã†Z¨æâ˜[·nÕ«W¯råÊBˆªU«:::ÆÄÄHO 4ÈÑÑqݺuJæƒk_”¶g]ÚB5”©fÆQaeõ¿Ì­S§Nbb¢ôØÚÚÚÓÓ3::ZéÂ0Ë ôpu ÔN53ŽÕªU»råÊ£G¤/k×®}âÄ Ý³&))Ié1BݘeP¸ỉj±K—.YYY“'O¾té’¢U«V×®]‹ˆˆB¤¤¤üõ×_5kÖTzŒP+’€q‹0Wªù¨úí·ßÞ³gÏ´ZíÊ•+}||lllÆ×¢E‹ .dfföêÕKé1B}ø`€Qpu ,„jf7nÜÔ¬Y3!DÍš5gÍš•ý矦¦¦úûû9Ré1BM˜ePB\Ý ¤šÇœœggçwß}W·dÈ!gÏžuuu­_¿¾Ò„:po%ÁÕ-°pª™qôññY´hQBBBþ…•*Uj×®Õ9òO1Räã„E@G5ᘚšúã?öîÝûÍ7ßüùçŸu—WÏ¥šúnõéE2å/EbÈO5á¸uëÖáÇ»ººž:ujÖ¬Y:tøøãóß‘(H7Ëx9ñ²Òc`Ò8aC5áØ¬Y³?þøÐ¡C!!!ƒ._¾ü/¿üØ­[·Õ«Wß½{Wé´pí €çbZ(.Õ„ã‡keõÊ+¯Ì›7/22råÊ•ÉÉÉ_}õ•¯¯oþëf`ÉHFE ’PY8êØØØøùù-Y²dýúõžžž¹¹¹‡RzPPÉ  NXŒH5·ãÑ~ùòeñÿ3‘¥ô^7oÞ èܹóâÅ‹•ÞnŽûxÈ›æ¥Deáxþüù={öìÞ½ûêÕ«Ò’¦M›ôêÕËÅÅ¥4ÞQ«ÕN›6íáÇJo: G2‹@PM8.^¼xÏž=ׯ_—¾¬W¯^@@@@@@ݺuKõ}ÿùÏ;vLé­‡>îã @‹@™SM8®Y³FáââÒ»w//¯2xÓøøøàààF]¸pAé€ÿbаpÄ"  Õ„ã AƒZ·nmeUFôäääL:ÕÑÑqúôéÇWz€d,TþRÄ" (Õ„ãçŸ^Æï¸lÙ²ØØØµk×V®\Yé­·t$#`i˜VL“j±Œ>}ú‡~:thûöíÏ;WÜo÷ôôÔ[®ô6©R}·úBéï¾$ŠDƒ×“””¤ô¦@Å4)x\ê×wÓ=¾|ù¿ï‰†ÿê› ~Y×£G¥‡`*ÇBdeeM:µvíÚ}ô‘akˆ‹‹Sz#Tïo³Œn%\™B¸¹c-0*Ši*Ëãòì™E~6þ†_eüÏzÁ" A8báÂ…III›6m²³³Sz,–ˆ¦3Æ ‹€ªŽúŽ;¶iÓ¦±cǾôÒKJÅ⌀Yâ„EÀlŽúâãã…Ë—/_¾|yþå;vìØ±c‡»»ûÎ;•£"3C,f‰pÔW·nÝÞ½{ç_rÿþýˆˆˆ5jx{{W«VMéšîã ˜b0{„£¾Ž;vìØ1ÿ’sçÎEDD´jÕŠ¿UmDL1æX, ሲF2ªÆÕ-€%#QvHF@¥˜V !ŸÏËË‹û2–ɨ±  Â¥‹dTD£º;o‹ ²Rz0[¡ÑVh©FÀdi4ûG«—/'jµT#€Â1ããc–0e| À`„#Œ‰dL±À(G÷ñL±ÀèG”SŒ€I!”*Â"SÀí¸”%ÂÅF2ÊbZ€RGÉ(…X` GÈB2eX`jG<É”NX`âG<É”¦¨á}Ü”(mÄ"•"ñ?L1¥‡X`GA2¥€˜ÂÑÒ‘Œ€1­À¼Ž–‹dŒ‚X`9GKD2%D,°L„£e!ƒ‹@8Z ’(.®n=„£ù#ù˜V€"Žf‹ûx2‹ áh†˜bž‹XŽf…dž… äG3A21­ÆE8ªÉäG,@é!UŒd$Ä"” ÂQ•HF€X€²G8ª É‹ÅÕ- 8ÂQ5HFX ¦À¤ަŽûxÃÒ‹`²GÓÅ#,±ª@8š"’fO£B¸é¾$@¬”þF#4¡Ñ -Õó£Ñüï­V\¾œ¨•~Öùa•`ÆÑT0˳ÄgÐ`NG呌03Ä"˜+ÂQI$#ÌwX A8*ƒd„Ú1­ˆp,k$#Ô‹X G8–îã •":„c©cŠªC, E8–"’jÁÕ-9ÇRA2Âô1­(.±TŒ0MÄ" $GÀÌ‹c!sà ‹€RB8æ€iE@ µ"eŒpÔ„X(ˆpL±0„#`r¸º`šGÀ$0­0}„# b .„#P¦ˆE€zŽ@éâ„E€Ù ãcZ`–GÀ8ˆE€Ù#Ë‹B8ÅC,,á<W· !B0­@A„#ð_Ä"E#aшEä#aY8aƒŽ0ÂMzL)`0+¥” æÿhµâòåD­–j D˜q„ùà„EJáã„EÊá•aZ¥ŽPbS@8ÂD‹˜Â&„XÀ”ŽPW· "„#ÊÓŠ¨ሲ@,`G”b3C8Âh8aóF8¢D˜VÀrŽ(6bËD8BbŽx&bäG8⸺p´tL+™GKD,Ž–‚X%D8š-NXÆE8š¦@é!UXeƒpT%b”=ÂQ8a(Žp,\VVÖ¿ÿýï­[·&%%½ð #GŽìСCYŽiE`RÇBäää >üôéÓíÚµ{üøñÑ£G#"">üðÃ>ø TßšX&‹p,Ä–-[NŸ>ݲeËüÑÎÎN?tèÐï¿ÿ¾sçÎ76îÛ‹@¬”€) BÌœ9SªF!„»»û{ï½—››ûçŸå-4šÿý£Õþï“ÅŒc!ííí½¼¼ò/twwB\¿~ݰuru P;±«V­²±Ñß3çÎBÔ®][þzø ˜±Mš4Ñ[µzõê *ôíÛWΤdôððÔ-IL Wz³,ZRR’ÒC€>Ši⸘ Šâzôè¡ôLáø¹¹¹7n\´hQnnîW_}åìì,ç»þ~1NéáãÜÜÜ”ôqPLÇÅqP”§ÿtOOOƒÖ¤z„cQŽ=:wîÜK—.U¯^ý‹/¾hß¾½Ò#P áX¸ìììÅ‹‡„„ØÚÚŽ?~Ô¨Qº+¬,áXˆ¼¼¼>úhïÞ½]ºtùôÓO]\\”€òÇB„„„ìÝ»÷­·ÞúôÓO• €©ààú´Zí† ^xá…iÓ¦)=ÂŒ£¾äääk×®ÙÙÙ|¶_¿~C‡UzŒ õI·ËÊÊÊŠ‰‰)ø,V‹E8êkÑ¢EÁÛ5€s áYGÈB8@Â²Ž…p€,„#d! áYGÈB8@Â²Ž…p€,„#d! áYGÈB8@Â²Ž…p€,„#d! áYGÈB8@Â²Ž…p€,„#d! áYGÈB8@Â²Ž…p€,„#d! áYGÈB8@Â²Ž…p€,„#d! áYGÈB8@Â²Ž…p€,„#d! áYGÈB8@Â²Ž…p€,„#d! áYGÈB8@Â²Ž…p€,„#d! áYGÈB8@Â²Ž…p€,„#d! áYGÈB8@Â²Ž…p€,„#d! áYGÈB8>ÓÏ?ÿÿ?ï`G}666g322„ºë¬, áXWW×ÔÔT©u¥§”€2ÇBøûûçææþñǺ%Z­ö÷ßwttôööVztÊ  1hÐ ++«ï¾ûN:¯Q±zõê””””+WNéÑ(C£Õj•ƒ)Z»víÂ… kÖ¬Ù©S§«W¯FEE5iÒdíÚµoÓ`!Çg ݾ}{tttõêÕ_y啉'Jwä°L„#dáGÈB8@Â²Ž…p€,„#d! áh4?ÿüó Aƒ¼½½;tè0cÆŒ´´4¥GdAл󳲲þùϾöÚk/¿ür§NFõçŸ*½æ¦$¿7oÞlÙ²å”)S”ÞscÀA9{öì¸qãüüüZ·n=tèУG*½榸%;;û‡~èß¿¿··wçÎ'L˜¯ôFXœË—/{zzž9sFé(€p4ŽàààY³f]ºt©uëÖ•*UÚ¶mÛ˜1c²²²”—E(îÎÏÉÉ>|ø—_~y÷îÝvíÚ5lØðèÑ£#GŽüþûï•ÞóQ’ß­V;mÚ4Ý_Ї±pP80dȸ¸¸x{{Ÿ:uêí·ß>pà€Ò›b>Š{Prss‡ ¶dÉ’´´´N:Õ¬YsÏž=}úô9~ü¸Ò›bYBBB”‚r´(± .4jÔ¨S§NwîÜ‘–|þùçóæÍSzhæÏ€¿qãF!C†dffJK.^¼øÊ+¯4nÜøüùóJo9(áoÄÚµk=<<<<<&Ož¬ô¦˜Jzzz«V­^zé¥'NHKΜ9Ó´iÓöíÛçææ*½AæÀà}M˜0áéÓ§Ò’ÈÈÈÆwëÖMé­±÷ïß?~üø'Ÿ|"ý;êôéÓJHÌ8Á–-[òòò&Nœèââ"-™>}ºƒƒÃîÝ»óòò”™3`燇‡ !fΜigg'-qwwï½÷rssùÀÚ(JòܨQ#¥7ÂÜpP¶mÛ–‘‘ñÞ{ïµlÙRZÒ¼yóž={¦¤¤œ={Vé 2”“'O !† fcc#-i×®]ãÆ¯\¹rïÞ=¥7ÈünÞ¼Yé(‰p4‚ãÇ[YYùúúê–X[[ûøø¤¦¦J¿ä(=ìüÄÄD{{{//¯ü ÝÝÝ…ׯ_WzƒÌÁ¿999S§Nuttœ>}ºÒan 8(‡Öh4}ûöÍ¿pÑ¢Eqqq/½ô’Òd 8(Õ«WBäoD­V›žžnee¥KI”žùóç/_¾|ùòåíÛ·Wz,Šá笤´ZmBB‚“““““SþåBˆëׯ·jÕJé1š-ÃvþªU« þöܹsBˆÚµk+½MªW’߈eË–ÅÆÆ®]»¶råÊJo‡Y1ì ÄÄÄ8::V«Víĉ§NJOOoÔ¨Q—.]tSõ( ÃÊk¯½¶~ýúùóçW¬Xñå—_NKK[¾|yRRÒàÁƒù­);v”\·pèС3fÌPzƒ`)ø¨º¤¤Ëßìííõ–WªTIqÿþ}¥hÎJ¾ósssׯ_?zôèÌÌÌ 8;;+½MªgØAÉÊÊš:ujíÚµ?úè#¥·À pPýõ×_•Þ&XÂÑ\]]SSS¥ßvÄÄDé)¥Ggæ Øùyyy}ôÑúõëýýý÷îÝ;nÜ8f¹Œ«¸Eú»Ë—/÷üýû÷BìØ±ÃÓÓóµ×^SzƒÌ¿)...åÊ•Óh4ùJ¿,999Jo9(îAIMMBÔ«WOo¹4јœœ¬ôÁ"ŽFàï›ûÇè–hµÚßÿÝÑÑÑÛÛ[éÑ™9v~HHÈÞ½{ßzë­ï¿ÿž)áÒP܃R·nÝÞ']ºX£FÞ½{ûøø(½AæÀ€ß??¿ŒŒŒ‹/æ_(Ý&†mEqJ½zõ¬­­ãããµZmþåqqqBˆ† *½A° JßÜܸq£Q£F=zôxðà´dåÊ•‹-RzhæOÎÎøðáåË—¯_¿®ÕjóòòºtéÒ²eˬ¬,¥Çn¶Š{P Љ‰á/Ç—åüùóƒ JMM•–DGG{{{·nÝ:%%Eé 2”wß}×ÃÃcéÒ¥º?ÞsñâŶmÛ6mÚ4!!Aé ² 3gδؿÃÅ1FP£F)S¦,\¸ðõ×_ïÔ©ÓÕ«W£¢¢¼¼¼Þy祇fþäìüßÿ}Ò¤Iîîî;wîLNN¾víš]```Áµõë×oèСJo“ê÷ (=^‹`ÀAiܸqPPÐ×_Ý£GV­Zeff?~\£ÑÌŸ?ÿÅ_TzƒÌåóÏ?8pàòåËÚ4i’ššú×_åååÍš5«AƒJo,áh#GެZµêöíÛêW¯>tèЉ'JwU@i+ÖÎOJJBdeeÅÄÄ|–KdŒ…ßdÀAy÷Ýwׯ_éèèèïï?~üxéÏ,Á(Š{PœÃÂÂV®\qèÐ!GGÇW_}õý÷ßoÖ¬™Ò›K¡ÑþýT  P\YGÈB8@Â²Ž…p€,„#d! áYGÈB8@ÂþgÊ”)žžžGŽ)³U}÷Ýwžžž7nÌÿ]‡*ôYPájñûï¿+= ÊFé€EóóósvvnÙ²¥Ìg'Ožœ‘‘qþüy¥ÀŽ $//////Þ€2ÆGÕT)777''GéQ€e!¨†táÈ¥K—>ûì³V­ZyyyùúúŽ?^ïée7oÞ<}úô€š7ož””¤{6,,ì½÷Þ{õÕWÛ¶m;|øðü177·à{EDDL˜0ÁÇÇÇÇÇçý÷ß?|ø°Þ RRR¾þúë^½zµhÑ¢E‹½{÷^°`Á;wŠ»ª~ø¡ˆË_ò?»hÑ"OOÏ´´´ÜÜ\OOOooï3fxzznذA﻾þúkOOϯ¾úJé#ÀÜŽTfæÌ™6lxüøqݺuÓÒÒöîÝ;räÈ5kÖè½,66vøðá111Ož<ÉËËBhµÚiÓ¦Mš4éàÁƒZ­ÖÁÁ!**jÑ¢Eiiiù¿744tôèÑ{÷îµµµMOO?pàÀ˜1c¾ùæÝ RRRW­ZuóæÍ:uêÔªUëúõëëÖ­2dHqW%_«V­† V¡BF3lذ·Þz«W¯^Bˆ={öä™V«Ý¹s§¢OŸ>J+æ†p 2§Nòõõ=räÈÞ½{Ož<9}útFóÕW_ÅÇÇçÙ'Ÿ|Ò¬Y³uëÖýùçŸuêÔBüúë¯Û·owqqÙ¼yóáÇ÷ìÙsðàÁ—_~ùÔ©SË–-Ëÿ½Û¶mó÷÷?zô¨ôS§Nµ²²Z¾|ytt´îW®\éܹóŸþ¹}ûö;vDDD´nÝúÆû÷ï/ÖªäëܹóŒ3*V¬hee5cÆŒ)S¦´k×®J•*'NœHIIѽìäÉ“7nÜhÚ´iÆ •>VÌ á@e\\\¾ýöÛ*Uª!¬­­GŒ˜——·|ùòü/³··ÿá‡Ú·oïìì,-Yºt©bþüùÞÞÞÒ’êÕ«/[¶¬B… ›7o¾}û¶î{kÔ¨ñÍ7ßT®\Yacc3jÔ¨ÀÀ@!Ä÷ß/½ ''ÇÏÏoòäÉöööÒ’Ê•+!®^½šÏ]UIX[[wëÖ-//oß¾}º…¡¡¡Bˆ¾}û*} ˜!Â€Ê 0 B… ù—¼ýöÛBˆÓ§Oç_øúë¯ÛÚÚê¾¼{÷î;wªW¯îãã“ÿe...¾¾¾¹¹¹±±±º…ƒ ²±±)øçΓ¾üàƒV®\Ù AÝ ’““wíÚUp´Ï]U õìÙSäû´:''g÷îÝ666½{÷.ÅcÀRq;*ãææ¦·¤V­Z*T¸}ûvvvvùò奅ÒÇÓ:W®\BÔ«W¯à ëÖ­+þ>SX¿~ýBß"99ùÑ£GÒ,ã7>|âĉëׯ_»vMïÔÆb­ª$Ú´iãäätìØ±´´4GGÇǧ§§wîÜÙÉÉ©ÔËÃŒ#•Ñh4—X[[çååå¿Aôé°ŽV«}Ö ­­­…OŸ>}î[XYY•+WN±iÓ¦nݺ͙3'::ºAƒ#GŽ\·nÝ'Ÿ|"´ºU•µµu÷îÝsss¥s+ùœ@©bÆ€Ê$&&ê-¹}ûvfffµjÕ*V¬ø¬ï’æõN@”H“‘ù§ ¾Å­[·233k×®]¾|ù‡~öÙgåË—_µjUÇŽóCÎhó¯Ê(;¤gÏž›6m ïÕ«×*W®ìççgì½B0ã@u~ùå—ìììüKBBB„M›6-â»\]]«V­zóæÍˆˆˆüË“““}üñdzgÏVªT©]»vÿøÇ?Úµk÷Üo´²²Z²d‰¯¯ohhè… îÞ½ûÊ+¯øøø >\º>Fgݺuáááû÷ï?w£ã«¯¾:bĈüAöÕW_­]»6,,ìĉµjÕòññ1b„»»{nnnhhèñãÇ寪¸¦OŸ>þüK—.=~üX·°eË–U«VMNNfº@©Òq¥!˜”)S¦ìرcÕªU¾¾¾JÅ´äååùûûߺukÿþý5kÖTz8Ìç8€êEFFÞ¼y³uëÖT#€RE8€ºeee !  ôX˜9Îqkݺõãdz³³6l(ý±l(=„#ÕèÕ«—‡‡GÁ?âgɪW¯~íÚ5Ÿyóæé]âFÇÅ1…s áYGÈB8@²ü°Elн+Ê©IEND®B`‚statistics-release-1.6.3/docs/assets/unifit_101.png000066400000000000000000001073671456127120000221640ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A€IDATxÚíÝwX×þ?ð3ì"½†ŽÒ@¥DT,±74‰"ÆDEA±F¢xÑh4b¾Û5^M̵'Ø06"ŠXƒ EjP/Ñ Q‰€ ìüþ8÷Îo³uXʲ»ï×ãã³{fvæ”™gæœeX–%Êè©; 8/€ŽÀ Gà#ð¢‘ãþýû~^¼x¡î̶j©©©´¢† ÒÐÏ>|øÀ(//ç7mÚD7¢îµv©|•½xñbÒ¤IÎÎÎB¡ÐÌ̬ªªJÝÕÐ0K—.¥•KSdròŠ©AÅ—y~µ6øh> :°5Ïó—'ž‡_3}ÓêòÁ/Tw@S3æåË—„“'OFGG«;;ÀËüùó·lÙB_ÓæÓJòŠ©AÅ׈óK#2©M4ènê=ütùà×ÈÀÑØØØÍÍ{[SSóäÉúÚÉÉ©M›6Ü"==ìRÕ\fff´iÕáøñãôExxø!CÄO %ó“WLí+~+„/&Ñ [s5ùÑ¢ÞÃOG~ cccï߿Ͻ=uêT¯^½èëãÇûúúª;ƒ²Ý¿ßÉÉÉÀÀ •o³1ââââââÔ‹V§õ4÷'Öܹsû÷ï¯îì4™‡œ¼bj_ñ[!| 4‰Øš«Éõ~:rðk‡\\\}æ@¼9ûõëG Ä%vëÖ&.\¸K¬ªªZ´hQLLŒ½½½½½}¯^½,XPYY©x§âU<~üxìØ±666öööË—/—^ŸÏ^øoSÞ#cÆŒ¡é³gÏVy‘H´k×®¨¨(WWWCCCWW×ÈÈÈíÛ·×ÖÖÒæÏŸÏ0 w£¤W¯^ ÃЧmä=áÑÐ>{ölÖ¬Y!!!fffË–-ãö.OmmíÆÜœœLMM;vìøþûï_¿~½¡¥ÏɈ#îÞ½;vìX77·¶mÛŽ3ææÍ›„ .Œ5ÊÍÍí­·ÞŠŠŠ:}ú´ÊM/íÉ“'3fÌèÖ­›™™ÙÛo¿=lذüü|Õ +®¼¼¼´´T$Ñ·ÏŸ?/--­««“Ès]]ÝgŸ}Ö¶mÛÏ>ûLµæS¡ÒäyðàÁ¨Q£lll†zùòeéu$9yÅTP|žÕ®´–´G¸‚óKž?þøcƌݻw·°°pss‹ÍÊÊ’^­ OÃ} ð?µúÝÕÐ)ݦ gVƒvÁ¿*xØ*W…Ä1ÜJÎ_ž­ Â5ˆ*++{ÿý÷ß~ûm''§‘#Gž9sF…vl W@ÕÔ&Ãj¾“'OrÅ)((XºuëVºÈÝÝK´µµ¥‰ŽŽŽ4¥¶¶ÖÈȈ&ž>}š&^ºtéí·ß–®´víÚåää(ÈzöìÙSz ñññâ+óÜ ÿmrkmT+àÚµkibaa!wæ(ø[ª{÷îtôôt.1&&Fbk}ú”aU ñP|“4_ƒ*zùòåü!³Åcñ&Á¿ÚÔRC· Â./ó\YZZòY­YOC¥š£àù~–Ð|gVk« ‰cXiNZòüm¾VÈŒ‰‰ ÷üàÁ•7«@3z-y Ê¤£¹¹9‚TYYyðàA:ž Ÿ>}zðàA:Öën477ç©ßÿ]|kÜÛ6mÚp¥Ë#q@ÔÔÔp#ðÝÜÜTÛ‹âm6²®–.]ºzõ꺺:õë×_¿~½²²ràÀ*×|“T£RúúúëÖ­+//ß½{÷رc­¬¬¸EgÏžåæÂhÚÒ)ÖÐf277733£¯?^"˘1cøVßP-Ö|ŒŒŒ¸™¹+Õä?"Ê¿ÚÔRC·ÐTÌÌ̸§ì+**”Q-íØ|š©DÍwfµ¶ªh’?äiäùÛ|­ ñ{MM ——æ¨ m=Pu"p$„p3„¯[·ŽbjjÚ¡CnTÄúõëé ñŽtn47Y¿Ä[OOOÚ‘©À­[·ÊÊʸ·'Nœ`Y–Ò¦M:èL…½(Ý&÷¥ ñ ŠÄ9,W_ýõ'Ÿ|Ò©S'¡PøèÑ#•k¾IªQ±×¯_?yòäÉ“'¯_¿9räŽ;þøã'Npp“u5yéPÚLÒ¸‡µëêêÞceeeiiiiiiddÄ¿°M¢šOš@ pww§¯¹gø!,Ëò™=®¡øT{soA5 Ãpwµès8ÔãÇCCCCCC£¢¢èí-µ´£j%¢/”~wñ/Ïm6æÌjÌWnãµ¶ÆmÌùÛ¬ßoßÉ\ÞÚ´iCÿ˜oŽvlòÖiáK€Lº8r]‰ÙÙÙ„àà`@`ggGÿÎÈÉÉ!„0 #þ‹“ÜŒSÿ÷ÿÇMä[PP°råJúZüé yÞ¼y“˜˜øæÍBÈï¿ÿ>wî\š>pà@úì‘ {QºMîvÀÅ‹¹gM~øá¥'í_ýÅÝSãΜ_~ù…Vš‚2*XÚ$Õ¨Xaa¡ƒƒƒƒƒƒ££ãÝ»w !B¡°W¯^Üè?zOµÒ©Li3Iãþ¼Ù¼y32 !û÷ïë­·lllÜÜÜþúë/ž…m*-Ð|2Ñ»û]¶lÙíÛ·›|_|ª½¹· €âó«GôÅ—_~Éu¨ddd\¸páÂ… ô&cs·£âLòÇÿ»‹‰xn³1g–Ê_¹MB]'©*Ÿ¿ªµÏï¶¶611‘Þ]üý÷ß¹éyélá+` _dRÿŸ˜-ãÝwß533ã¾¾¹q^ÁÁÁÜà :uŸÂwΜ9ÿú׿JKK_¼x-Nž}Ê=¢«€©©©©©)}`kâĉ;wîdæ§Ÿ~’ù«-–––tÍüã·nÝš1c†Ä ±M[ І{òäI]]]XXØ€¬­­ûí·ƒÒèÏ4¨tMBq3I›?þ–-[ž={–™™Ù³gÏ=zܺu‹s7sæLkkkKKK>…m*-Ð|2Íž=ûßÿþ7˲ϟ? íÚµkyyù;wšc_|ª½¹· çù•ššúí·ßVVVÞ¿? ::úÉ“'§N¢K§NJ_4S;òÌ$ü¿»ø—ˆç6y~42ÛÍA]'©*Ÿ¿ j?úܾ}ûK—.Ñx@ ,]º”.mP;ªë ؘµÉ4÷|?-@é<ŽÔ€Äš¸lÙ2.Q|Š&êâÅ‹SP®®®gÏžU%nB¦ˆˆ‰‡'„B¡øTõü÷Ò mr3&p<<<¸~ó8Ž5JúƒÜ”Â~ø!·‹±cÇŠ¯¦`Þü†ÏZΟ?/ïn`dd$¸‹édædÛ¶m4ÑÏÏKÌÍÍåš ¡Í$s/”ù÷âÇÌMͳ°2)žÇQ¢æß|<+M¦ñãÇKìÑÄÄ„{˜¤ çqäYíŠk©1[y„Ë<¿dúᇸç¨Ä-X° ©Ú±A™T0‘Ÿmòüîâ_"þÛlÌ™¥òW®¼ªhÐÝÈÆe[ÓùË¿zøYZZJŒòiÓ¦ÍÖ­[UhGþ{oŽS¯1j“Е[ÕDìn5ù{£Ì¨.]ºÜ¸q#555::ÚÞÞÞÆÆ¦gÏžŸ~úéÍ›7ÃÂÂøìÔÚÚúܹs“&Mòòò²··6l؉'&OžÜ˜½ðÙæ·ß~»téÒŽ;š˜˜NŸ>ýÂ… FÒq222:vìHþ÷ãÉÉÉW¯^å~Ñ{çÎ\~FFÆØ±cíììLLLüüü »k|5*õî»ï–””¤¦¦†„„899éëë[YY………mÙ²%;;›}Æ¿tǧ™¤ 8ðúõë AAAÆÆÆC† ÉÉÉÙ°a÷ü ÏÂ6•h>™¾ùæ®ÃÌÎÎî½÷Þ;yòdDDDsì‹Oµ7÷$ð?¿† róæÍÉ“'‡„„˜ššº¹¹ 0àÌ™3\? ÕíÈ?“üñÿîâ_"žÛlÌ™¥òWn“P×Iª€Êç/ÿVhèᙓ“3pàÀ¶mÛ:::Ž92;;›ûUŠ;ªñ ØÂ—i û¿'r  ¥¦¦¦§§Büã?¶ÚmÊT[[{øðaÒ2=Þ-®¹K×bͤ#®\¹òóÏ?Ož<ÙÜÜ\Ýy€†Áù«•tåGàO___+CF](ö ¿-ç¯VÒ¡[ÕЀŽÀ Ç/èq^8/€ŽÀ Gà#ð‚ÀxA༠p^8/€ŽÀ GàE¨î ´½{÷îÙ³§¤¤ÄØØ¸G³g϶²²R°þðáÃoÞ¼)‘hccsîÜ9u@=t"pÌÈÈØ¸q£‰‰IHHHiiéþýû‹‹‹¿ýö[###yyðà‘‘‘›››x¢¥¥¥º‹ 6 ˲êÎCó***ø $$¤GŸ|òÉõë×Õ]uÒòÁ1ÕÕÕõõõÒƒZ,,,!þù§ÌOÑ€ò«¯¾rww ýÏþóóÏ?çää,^¼xäÈ‘Jwêíí­îr@ó***RwÔ@ËÇššBˆ‰‰‰Dº©©)!äÅ‹2?õûï¿Íœ9óƒ> )yyyüñ²eËœœœ”îW»&oooí. ÖC j:´ @#j:í$Òò[Õ––– ÃTWWK¤¿|ù’ü¯ßQÚ¶mÛ®]»ÆE„nݺ½ÿþû555'OžTw™ÔCËG¡Phaa!ݳXYYIáÆYóÑ¥KBȯ¿þªî2¨‡–Ž„{{ûŠŠ )rîß¿OI¯Ï²l}}½ôL=€bff¦î¨‡öŽÑÑÑõõõgÏžåRX–ÍÉɱ²² ”^¿´´´C‡~ø¡DúÕ«W‰?Ó ýãˆ#ôôôÖ­[GŸk$„lÞ¼ùéӧÆ Ó××§)UUU÷ïßôè!ÄÍÍ­sçΗ.]Ú»w/·‘«W¯nݺÕÉÉ©OŸ>ê.€zhÿOB¶nݺbÅ ggçðððÒÒÒ .tèÐaëÖ­Ü4=YYYÉÉÉžžž‡&„ܹsgâĉOŸ>õõõõððøÏþsíÚ5cc㯿þúÝwßUº;Œ•Ðn:{­×þGBH||üªU«ÜÝݳ²²þüóÏqãÆ}ûí·Ò“;rÚ·oÿã?<øéÓ§ÇŽ{ñâÅàÁƒ>Ì'jÐV:ÑãØÂtö¯¡³×zèq€ÆC༠p^8/€ŽÀ‹PÝÐBøiJÍ¢›së¨#@³Àw€¦À_ûüáV5ð‚ÀxA༠p^8/€ŽÀ Gà€´†aÔ›–eÕ] ÁÐãвXõý“/--a˜J/Z±bÃ0ׯ_WwÅww÷!C†Ð×áááM¾‹_~ù…a˜Ý»wË«¢sçÎI/Љ‰a¦¾¾ž¾---ef„ Ü uuuß|óMxx¸£££¹¹y@@@bbbYY·ÂW_}Å(tìØ1Š“žžnccÓ±cÇ&¯¨&!Þ ­‚ƒÊÝÝ}ĈêÎ`³SpüëH èq€ÿ:|øð?ü0tèPugD9@ Ô ^X–4hPVVVçÎÇŽk``pçÎ7þë_ÿºxñ¢¯¯/!$(((%%…ûÈÚµk---ßÿ}.ÅÍÍ­¡û½}ûvjjjXXØ”)SÔ]Í("""::zÑ¢Eß”øAuåÊ•¥K—¦§§Ója7nÜXºtiNNÎË—/Û·o?vìØÄÄD¡Pƒ¯×µµµFFFÜW”Myy¹º³ ¦Á"4-##£éÓ§ÇÄĘ™™©;/Jœ>}ZÝYàkÇŽYYY³gÏþâ‹/¸Äk×®………M˜0áÒ¥K„ðððððpné–-[Úµk·råÊÆì·¤¤„²xñâèèhu×As¹zõê¹s皪€âÕ“'O233“’’Z¾P÷îÝ‹ŒŒ¬¯¯2dˆ‹‹ËÉ“'gΜyæÌ™ü±å3ÓTîß¿___ß­[7.ÑÔÔTÝùU p€ÿJMM]°`ÁÂ… ¿úê«&ßø›7o„B¡žžÎ=Cïn'&&Š'Œ1âÛo¿}ùòe3]>é󬆆†ÍT®5(íjjªN⺺ºììì¼¼¼õë׋D¢f* ºÌœ9óÅ‹.\ !„,Y²dâĉ[·n=vìXŸ>}TÛ¦H$bYVôôϘ%K–hñŸ1ºCç¾Ä@ž#Fôë×oݺuW®\Q°Ú¥K—úõëçàààääÔ¯_?ÚgF¹»»'''_¹rÅßßßßߟ¦Ì˜1cöìÙæææ†††]»v=räH]]Ýüùó}||ÌÍÍ£¢¢nß¾Ím!##£S§N&&&ÖÖÖ]»výþûïeæ!**Š>ŽVUU¥ø¡À‚‚‚¡C‡º¸¸ØÙÙõíÛ÷Ô©SâÛ9sæLLLŒµµu‡fÏžýæÍ›&¯U3H¤¯X±âÆmÚ´iÌÆåµÅ„ L sww—þ`MMMzzº±±±««kBBÂãÇù´Bƒ”ëÖ­³´´lÓ¦MÇŽçÍ›'¯’·”¸ŠŠŠ>}ú¤¥¥)½Ñ9|øp}}ý—/_Ò·»wïf¦S§NÜ ))) Ã\½z•ˆT&L0`!$22R¼öÎ;kccãììüÉ'Ÿüõ×_òöËó0–);;;""‚FÔ´iÓ!çÏŸoè¾hýoÚ´ÉÆÆF(:;;O™2E<Û =þ/\¸Ð§OºþÌ™3kjjxŠŽï¼óÿz€Ö‹…¦æåå¥î,€šÉ;Qóày^¼x1!¤¤¤äþýûÆÆÆuuutÑòåË !×®]£o333…BaÛ¶m“’’’““Ûµk' 333éR77·aÆY[[»»»ôÑG4ÅÚÚÚÖÖvÉ’%Ë–-³±±144ìÖ­[—.]222¦L™Â0Œ¿¿?ý8}R­gÏžiii ,ðññ!„ûŒ²jÕªœœéÏÆÅÅ1 óé§Ÿ4H tíÚ•g+ðoP777gggBH¿~ýæÏŸE‰ˆˆ `â ª¸¥ä¹sç!dñâÅòVزe !$++‹¾:u*!„a˜§OŸÒ”Î;;88ÐüpÕÍ›7ÓÒÒ!_|ñ­=777/// ‹ÄÄÄU«VÑç è.Mq*V[[;oÞ¼}ûö‰'Ò›ÔË–-kè¾ÜÜÜüüüÚ´i3uêÔµk×öë×’@—6èø§5`jj:`À€ùóç÷èуÒ¹sçÚÚZ>åJLL400¨¨¨Ø³gÏÆÏž=ûúõk>l1*\¸uöZÀ±ééìÁÍ Y–]±b!$##ƒ._¿~íîîîææV^^N—–——»ººzxxÐËÑ––V__OWpssãÂ8–eés~þþþoÞ¼¡)aaa„ÊÊJ–e=<<¼¼¼¸KÑóçÏ…Bá”)S¸MIŽ–,YBÙ²e Í­§§g```uu5]úêÕ«ÐÐPºººW¯^¹ºº:::>zôˆ.-++srrR8* /pdYöûï¿ûí·éj†††={ö\¶lÙo¿ý&¯9øŽJÛ"33S^¤ûòåK@ žÃ‰'ÚØØ”••ñiþ JñˆgöìÙ„r ª¸¥T‚ÒÀñÑ£G„””ú¶cÇŽtŒù?ü@‹¦§§/}P>|˜rúôi®Ô„зuuu>>>®®®2wª¸ª¢¢¢K—.à×_mè¾h¶¹0T$uìØ±mÛ¶´†tüÓM­\¹’K¡Ã¹6mÚħ±±±FFFVVVÜùâããsåÊÕê¤9 pä·ªàofΜٱcÇÔÔÔ‡J,ÊÏÏ¿ÿ~RR’ M±±±IJJºwï7_££ãÂ… Å}ëÒ¥KûöíékÚç4fÌ}}}šBŸyª®®&„\ºt)??Ÿ=ZQQÁ-âãÀ‹-š2eÊĉ !W¯^-..ž={¶‘‘]ÁÀÀ 11ñÞ½{ùùùùùù¥¥¥3gΤ]b4çÓ§OW¼‹Ñ£G§HqqqQü©¸¸¸’’’ëׯgddÄÄÄ\¹reÁ‚4ÌU Ÿ¶GOON-TZZJS¶lÙR^^îèèȧø7(ÍÕ¬Y³¸Ï.Z´ÈÔÔtÏž=âùQÜR*W!ÄÙÙ¹S§NÙÙÙ„gÏž$''›˜˜äääBΞ=+‰h?œR^^^ï½÷}-ªªªd®© ëêêÈ'½©Ó§O¿ûî»—/_þúë¯===´/ÊÃÃcذaô5Ã0ôƽ Ç¿½½½øh¡Å‹›šš:tˆO¡JJJD"QZZZYYYyyù7ß|óŸÿügðàÁ/^¼hLû‚Z`p üP(ܼys·nݦOŸ.1³¸¸˜B^äÐ'ÆŠ‹‹éSYÞÞÞ&¸È†Bà éÊÊÊ*//ïĉwîÜ)..¾uëV]]Ïlß¾}ûý÷ß [³f M¡ÝQqqqqqq+?xð€^>;wî,ž®tnÈiÓ¦uïÞ]"ñÚµkmhhhmmMããã_½z5uêÔ}ûöÑ?ó@ƒ pIï¾ûîǼaÉ^z øýz­­­¥o---UÛéëׯ‡š••Ò»wï÷Þ{/444((ˆÏgŸ={6hÐ ‹}ûöq WV®\)=v‡Μ9#]–&ôýòåË &ôîÝ{Ò¤I\b›6mFŒaeesäÈÕG>m¡ÀÔ©S‡ vøðáŸþ9++kóæÍÞÞÞ999–––*·OB¡P¢¯NqK5rw}ûö]±bENNN^^ž‹‹‹‹‹KTTÔ‚ ž?~úôé°°0 >Ûá9>]ñalaaÁòøõ¦;wNž<ÙÔÔtÓ¦MñññòfpäsÊÈË6Ýf#¡PhhhȧPô&¸8zØßºu«A{„Ö#ÈðùçŸÿøãÓ¦MûðùDz³ìæÍ›ôÑxêÆ„ooïFî1777++kÍš53fÌàùô8Ö××=úÑ£GgÏžµ³³“È­™™™ø$&·oß¾y󦥥%àùË/¿DFFrK¯]»Ö´ÕhbbrìØ±‡ŠŽí¥366VmËi‹ŠŠŠ’’//¯„„„„„‘H´~ýúÄÄÄ7†……©Ö òܾ}»¶¶–‹ækjj Åëœ(k©F6A÷îÝÍÍͳ³³/]ºA‰ŒŒ‰D‡ºzõ*}„· )>ŒëêêŽ9"ﳃ "„:tèý÷ß9räÆÍÍÍUÞ—b*ÿ´;“‹biSöîÝ[i¡JKK>ܳgO:v‡ª¬¬$„¸ºº6mýC @à2XXX¬Y³fôèÑ_ý5—äââ’‘‘1vìXúœûŸþ¹zõjWWׯÿ Ç ~iÙ·o_UU•ÒÎŒ¹sç?~|ûöíÁÁÁâéÞÞÞ_~ùå¨Q£hüQYY[[[;|øð   Õ«WÇÅÅÑgûÊËË›|K†aâââ6mÚ”žž>þ|îþfUUÕ¢E‹äýÌ#i‹¢¢¢îÝ»úé§ééé„====èëë«Ü ò”——gddÌ™3‡¾MOO¯¬¬”ø¥AÅ-ÕÈ&Ð×׎ŽÎÊÊzðà½+lff¶lÙ2¥8ª0I¤â TzW—eÙ9sæ´k×î»ï¾S:íbcK…ãÿñãÇk×®MNN¦o—,YRYY9fÌ¥…222JII 9uêýB$­\¹R(ÆÄÄ4´†Aí8€l£FÚ¶mÛO?ýÄ¥dddŒ5*((häÈ‘,ËîÞ½»¬¬lïÞ½Ü]TT”‰‰É¤I“ÆŽëìì|þüùììl[[ÛÜÜÜ£GÆÆÆÊüÔ‘#G¾üòK@ >ƒOPPК5k äïï?räÈÚÚÚÌÌ̇îÚµ‹þ¸ÜªU«FŽ8jÔ(}}ýÝ»w7Ç edd¤¦¦nÛ¶­sçÎtë¹sçž_G(*h©Æ7All,}Z—ö8 ‚ðð𬬬víÚÉûEA¿nذáÉ“'£Gæ¿/¥‡±â¨®°°ðÎ;>>> ‹†*ñg†j§ ¥¯¯ßÐãߨØxæÌ™¹¹¹¾¾¾yyy§NêÓ§ý…RÅ…²³³KKK›;w®§§gll¬¥¥å±cÇ®^½ºlÙ²Æ?Šj îaÝZHg‡èG£§ãwïÞ=:Е›Ç‘eÙ¼¼¼¾}ûÚÛÛÛÛÛ÷íÛ÷âÅ‹Ü"ñsd¦Ð{atºŠvz=~ü˜eÙœœœnݺ™šš¾ýöÛ ååå[¶l±µµíÓ§+g:n(Œn–üüüþýû;88XYYEFF?~\<{gΜéÕ«í±³°°Ø»w/iêyY–­ªªÚ¸qchh¨­­­¾¾¾½½ý€Ξ=+¯9xÎ㨸-LÇòìÇããã]]] \\\âââ¸vø·‚Ò¥+çääôèÑâ}ûö)))¯^½’yl(n)™”NÇÖbkk˥Пsœ\|åqãÆÙØØÈÜâ TLæØj*==½¡û’>Çoiiɽåü»¹¹Í™3gÆ ¡¡¡ffftâž“8RûöíëÒ¥‹©©©MÏž==Êÿ³-ÓñðǰªÞ€y¼½½‹ŠŠÔ P'yÇÃ0D'Cp¾ËSVVöÖ[o5¾ßĹ»»hô,ëÿ*\¸uöZ[Õ2F}èÿÀ&^Ðãв˜Æo@3ÄÆÆÒŸª­À åàCÐ)ëׯWw ‰áV5ð‚ÀxA༠p^8/€ŽÀ Gà#ð‚_ŽhQ £¶ßÄïÖ@#!ph9 ÃõEo à v€ÆÀ­j iii à 8PzÑŠ+†¹~ýººóHÜÝ݇ B_‡‡‡6ù.~ùå†avïÞ-¯ŠÎ;'½(&&†a˜úúzú¶´´”a˜ &p+ÔÕÕ}óÍ7áááŽŽŽæææ‰‰‰eeeÜ _}õ£Ð±cÇT(NzzºMÇŽ›¼¢š„xƒ¶ *ww÷#F¨;ƒÍNÁñ¯#5| p€ÿ:|øð?ü î\ð"ºsÁ ˲ƒ JHH¨©©;vlbbâÛo¿½qãF//¯[·nÑu‚‚‚RÄØÛÛ‹§¸¹¹5t¿·oßNMMõññY°`ºë éݸqcÔ¨Q¦¦¦ÁÁÁuuuܦøAuåÊ•!C†p ÔÂ~þù稨(;;»·Þz+,,ìÇTK6šVaaáСCÛµkçìì3MåìÙ³111–––cÆŒ»w‰9tèPÏž=Õ5h0ô8À¥¦¦þç?ÿY¸paslüÍ›7"‘HÝETzw;11Q<1 `Ĉ¿üòËË—/›i¿ôyVCCÃfÚ~ƒ´¾¾ž»•ßx3gÎ|ñâÅÉ“'·mÛ¶dÉ’¼¼¼øøøÌÌLÕnè·6óçÏwppÈÏÏ_½zõÒ¥Kóóó]\\ÒÒÒ³M‘HÔ„õßP,ËNœ8ÑÂÂâúõë«V­ºy󦃃ÃìÙ³Õ•%h Žð_#FŒèׯߺuë®\¹¢`µK—.õë×ÏÁÁÁÉÉ©_¿~´ÏŒrwwONN¾r势¿¿¿¿?M™1cÆìÙ³ÍÍÍ »vízäÈ‘ºººùóçûøø˜››GEEݾ}›ÛBFFF§NLLL¬­­»víúý÷ßËÌCTT}­ªªJñCC‡uqq±³³ëÛ·ï©S§Ä·sæÌ™˜˜kkë:Ìž=ûÍ›7M^«ô‚]PP ‘¾bÅŠ7n´iÓ¦1—×&L>>ÆÆÆ®®® ?æÓ jPz<¬[·ÎÒÒ²M›6;vœ7ož¼JVÜRâ²³³#""BBB¸”iÓ¦BΟ?/±æðáÃõõõ¹è|÷îÝ ÃtêÔ‰[!%%…a˜«W¯±ƒj„  „DFFŠ×Þ¹sçbccmllœ?ùä“¿þúK^yÆÒ^¿~}ëÖ­XXXГðððGÕÔÔ4t_´þ7mÚdcc# §L™"ží†ÿ.\èÓ§]æÌ™ò²$áþýûÅÅÅ'N´··§)–––ÉÉÉùùù7nÜàY3Њ°ÐÔ¼¼¼ÔP3yÇ=åÔöOþù¾xñbBHIIÉýû÷ëêêè¢åË—B®]»Fßfff …¶mÛ&%%%''·k×N(fffÒ¥nnnÆ ³¶¶vwwÿè£hеµµ­­í’%K–-[fccchhØ­[·.]ºdddL™2…aúñE‹Bzöì™––¶`ÁBÈÁƒ¹<˜¾ŽŒŒ `Y¶¶¶v›˜­[·¶mÛ¶M›6………,Ë?~ÜÐÐÐÝÝ=%%eΜ9žžž`çÎt#û÷ïvvvS¦L™6mšƒƒƒ——!d×®]òª(77WzQ¯^½!\ýöÛo„ñãÇÓ·4„500˜2eÊÉ“'kjj”?–––ÁÁÁJWSÐ7oÞüì³Ï!«V­ÊÉÉ‘þl\\Ã0111Ÿ~úé AƒA×®]y¶ÿusssvv&„ôë×oþüùQQQ„ˆˆ‘H$Ñ Š[J\mmí¼yóöíÛ'žHoR/[¶Lbå-[¶B²²²èÛ©S§B†yúô)Méܹ³ƒƒÍwPݼy“öð}ñÅ´öÜÜܼ¼¼,,,W­ZEŸ+ G¸4ŨXmmmAAÁãÇÅS:uêÔ©S'öåæææççצM›©S§®]»¶_¿~„„„º´AÇ?­SSÓÌŸ?¿G„Î;×ÖÖ*-} ##Czôˆ.-++srrR8* /pdYöûï¿ûí·éj†††={ö\¶lÙo¿ý&¯9øŽJÛ"33S^¤ûòåK@ žÃ‰'ÚØØ”••ñiþ JñxŽÞ¤!× Š[ŠU¦¢¢¢K—.à×_•XôèÑ#BHJJ }Û±cG:Æü‡~ EÓÓÓ‹—>¨>L9}ú4WjBÈèÛºº:WWW™ùQ\ümß¾=555((ÈÖÖöĉ*ì‹f› ²E"QÇŽÛ¶mKk¸AÇ?ÝÔÊ•+¹”””BȦM›”„vf1B<‘v‹oP½8ò‡Á1ð73gÎܱcGjjê°aÃÚµk'¾(??ÿþýûkÖ¬±±±¡)666´»ëúõëôÖ¡££ãÂ… õôþÿc0]ºtiß¾=}MûœÆŒ£¯¯OS¢££sss«««ÍÌÌ.]ºdhh(þ÷{©¢¢‚R]]Í3çX´hÑ”)S&NœH¹zõjqqñ¿ÿýo###º‚Abbb\\\~~~]]]iiéÊ•+i—ÍùôéÓçÍ›§`£GnÛ¶­Dâž={766våʕϞ=£¯ÑÑÑaaa999„Ó§O …Bú¤Rô6.GÁlP *°ªªŠ>{*û÷ùù‹‹‹«««ÏŸ?Ÿðî»ïÚÙÙñß—Ìlsçæ¯¿þJxüûùùq*×”ÅÅÅ| µaÆçÏŸÏ›7¦VVV©©©‹/¶´´äSùЪ pIï¾ûîǼaƈ§Ók€Ä¯&Ò+hmm-}«ò•àõë×C‡ÍÊÊ éÝ»÷{ï½Äç³Ïž=4h……ž}û¸À…Æ++W®”ž»C‡gΜ‘.‹DÈÛx/_¾œ0aBïÞ½'MšÄ%¶iÓfĈVVV111GŽQ-päÓ L:uذa‡þù石²²6oÞìíí““cii©r+ð$ «ªªÄS·”Ììܹsòäɦ¦¦›6mŠh$ôíÛwÅŠ999yyy......QQQ ,xþüùéӧøa(ŠñŸ®ø0¶°°ˆ366ŽŽŽ^¾|ùèÑ£333?úè#þûRœmZc<þ…B¡¡¡!ŸBÑ»í.\¸~ýº½½}XX=]\\´Gh 8€ Ÿþù?þ8mÚ´?üK¤·oÞ¼I§è¸HooïFî1777++kÍš53fÌàùô8Ö××=úÑ£GgÏžï’¡¹533ëÓ§—xûöí›7oZZZ¾óÎ;„_~ù%22’[zíÚµ¦­F“cÇŽ=|øPe!*ÿ´;“‹ÑiSöîÝ›Ïý÷ëׯ›››‡†††††ÒôS§N1 Ó­[·¦­h@ ‹5kÖŒ=ú믿惂‚\\\222ÆŽK/fþùçêÕ«]]]ÿ€tJíÛ·¯ªªJigÆÜ¹s?¾}ûöàà`ñô€€ooï/¿ürÔ¨Q4þ¨¬¬Œ­­­>|xPP‡‡ÇêÕ«ãââ !ååå_}õUÓV#Ã0qqq›6mJOOŸ?>w³ªªjÑ¢Eò~æ‘Æ´EQQQ÷îÝ?ýôÓôôtBˆžžôõõUnyÊËË322æÌ™Cߦ§§WVVJüÒ â–’Ø Ë²sæÌi×®Ýwß}Çç׃ôõõ£££³²²ƒOPPК5k äïï?räÈÚÚÚÌÌ̇îÚµ‹þ¸ÜªU«FŽ8jÔ(}}ýÝ»w———7y5fdd¤¦¦nÛ¶­sçÎtë¹sçž>>Ò¿¤2tèP™xll,}Z—ö8 ‚ðð𬬬víÚùúúÊÌ6_7lØðäÉñq}†9qâÄ¥K—’’’ħŸä¹/;Ò××oèñoll}ú°r¦ãá†ÂHàf`ÉÏÏïß¿¿ƒƒƒ••UddäñãÇųwæÌ™^½zÑ; ‹½{÷’¦žÇ‘eÙªªª7†††ÚÚÚêëëÛÛÛ0àìÙ³òšƒç<ŽŠÛBÁt<,Ë>|ø0>>ÞÕÕÕÀÀÀÅÅ%..Ž›a‡+(mPºrNNN=,,,Ú·oŸ’’òêÕ+™Ç†â–âHH$3fŒ¹¹yPPÍêðáÃÅW7nœÌÝ)®@¥D"ÑöíÛ»tébeeE«Zæ©Bc±,;~üxKKKî-ÿãßÍÍmΜ96l 533ëØ±cjj*ŸI9ǧYuqqIHHà¦Òl%0 «ê ÇÛÛ»¨¨Hݹu’w 0 CÔxÆ18ßå*++{ë­·ßo âÜÝÝùÒÐpü«páÖÙk=nUyò$000###%%ÅÞÞ^æ:wîÜ}š{ýäÉ“ÌÌ̤¤¤–,ŽÄNÅóÓ|{i=îÝ»Y__?dÈ—“'OΜ9óÌ™3?þø£ôÊ•••ÁÁÁ<>|¸Í¾}ûúöíûóÏ?Ó>ZÅK5Ôýû÷ëëë»uëæááÁ%šššÊ\Yë§B#€f`ö¹;ÅÙÛÛ=º¾¾¾  @Þ:íÛ·ß±c˲ÿøÇ?TÛ Ë²„CCÃ+—boÞ¼áîÎ+U_____ßT»®««;~üøâÅ‹ûôéÃ?Ú¡AÕ®YfΜùâÅ‹“'OnÛ¶mÉ’%yyyñññ™™™ÇŽ“^yõêÕ%%%›7oþþûï¿úꫳgÏ2 3kÖ,>KU#‰šðVýÓqÉ’%߉ٰaƒÌ•[¾~@G‹Fuµµµ Ö îÞ½û?ü àî›<&L|¸¾¾þË—/éÛÝ»w3 Ó©S'n…””†a®^½J‰ŠŠ¢=.&L O DFFrµM9wî\ll¬³³ó'Ÿ|ò×_ÉÛ¯‚²È«yérùihµ+hA™ES\ógΜ‰‰‰±¶¶îСÃìÙ³å5ŸÒ#G©ìì숈ˆ.eÚ´i„óçÏK¯¼k×.GGÇ>ø€¾õðð>|xNNÎï¿ÿ®tiƒ²MáM›6ÙØØ…Bggç)S¦ˆ7}ƒê‡ráÂ…>}úÐõgΜYSSó~hàøÎ;ïðY¹iëTÄBSóòòRw@Íšä ,‘ø'ØT^¼x1!$77W<ñ?þprrÒÓÓ+++“·5uêTBȽ{÷¯&íæÍ›Ÿ}ö!dÕªU999,Ëfff …¶mÛ&%%%''·k×N(fffÒõÝÜ܆ fmmíîîþÑGIo0..Ža˜˜˜˜O?ýtРA k×®tÑ¢E‹!={öLKK[°`!äàÁƒÜ–­­­mmm—,Y²lÙ2CCÃnݺuéÒ%##cÊ”) Ãøûûs+;;;Búõë7þü¨¨(BHDD„H$¢KL×<~ü¸¡¡¡»»{JJÊœ9s<==ÁÎ;WË;w!‹/–·Â–-[!YYYâõÏ0ÌÓ§OiJçÎh~"##hmÓç&¿øâ ZÛnnn^^^‰‰‰«V­ '„ȬX¥e‘WóÒ;åòÓÐjWЂÒ{QœÛýû÷ ;;»)S¦L›6ÍÁÁÁËË‹²k×.é‚+>r«­­7oÞ¾}ûÄéMêeË–I¬üâÅ †aâââÄÿýïB~øáÅKšm777??¿6mÚL:uíÚµýúõ#„$$$¨P?ô(2550`Àüùó{ôèAéܹsmm-Ÿ*JLL400¨¨¨Ø³gÏÆÏž=ûúõk™k6mýHPáK[g¯õ›žÎLÀiªc@qhØäãØ±cçÍ›7oÞ¼¹sçŽ?þ­·Þ"„LŸ>]|™áòåË !§NâV“&s×™™™Üf_¿~íîîîææV^^N—–——»ººzxxÐk‰››!$--­¾¾^zS/_¾ãÇçR&NœhccC_///îböüùs¡P8eÊúÖÍÍ­M›6………ôí_|Añ÷÷óæ M #„TVVrÙ¿ðÏž=›Bã.p|ýúµ§§g```uu5]íÕ«W¡¡¡uuu šCiàøèÑ#BHJJ }Û±cG:&^ Ÿ?®§§O—Šj‡&„œ>}š+5!äÀôm]]«««ô—EqÍKìT"pä_íŠ[P|/ŠsûêÕ+WWWGGÇGÑ¥eeeNNNò#Åûm¨ŠŠŠ.]º‚_ýUbѯ¿þJINNOGGÇ… êéÉxÌFOOa˜sçΕ––ºººB¶lÙB;ç!—.]244 ÿû¥WQQA©®®æ>Þ¥K—öíÛÓ×´q̘1úúú4%:::77·ººÚÌÌŒfLüÙ©E‹mذaÏž=£Gæ¯^½Z\\üïÿÛÈȈ¦$&&ÆÅÅåçç‹ß»l(ggçN:eggBž={VPPðÍ7ß$&&æää 2äìÙ³"‘ˆö!)åååõÞ{ïÑ× àĉÒ«).‹ŸŸŸ‚šWŒµ+mAž¹­««+--]¹r%í6¦ÕôéÓçÍ›'3‡ ö[WWwäÈyE4hDÊéÓ§?ú裒’’ 6xzzJ,¥Û477O´°° ;U¼´AÙ¦<<<† F_3 xðàABH~~~ƒê‡boo/þE±xñâ7:t(>>^iý”””ˆD¢´´4úÆÁƒ“““\PP@K×Lõ*CàÐr”†n2Ñèû¬ÄÛ&”››Ës(´„‡BÄEòU-®¸¸˜"ñð"}t¯¸¸˜FZÞÞÞ2£FBˆ‘‘Ñš5kfÍšåîîîëëÛ­[·¾}ûöïß¿M›6„++«¼¼¼'Nܹs§¸¸øÖ­[erÑ*!„.Ò)___ºYÊÄÄÄÛÛûîÝ»âëЎø¸¸¸¸8‰¬>xð 1#!$66våʕϞ=£µÑÑÑaaa999„Ó§O …Â^½zñٽɑ7QŽÒ²(¨yÅøW»Òä™[úlhçÎÅÓ ¼U°ßªª*ú®L,ûÿOÒL›6íСCžžž'OžìÙ³§¼ªxÆ´²²’bmm­xiƒ²MI4=wZÑ®;þõCñóóã"Tò¿Ó¡¸¸˜Oýœ>}ÚÐÐ+B||ü«W¯¦Nºoß¾‰'6_ý€Ê8hñ0±…ÇVóqýúuú`bc‹É²Dªÿ’†2ÜKKK[˜:uê°aÃ>üóÏ?geemÞ¼ÙÛÛ;''ÇÒÒrèСYYY!!!½{÷~ï½÷BCCƒ‚‚š°„BaUU•x ›V®\)=·y‡¹»¾}û®X±"'''//ÏÅÅÅÅÅ%**jÁ‚ÏŸ??}útXX˜Do<<dz+-‹¼šç&rj¤×¯_óoAŹ=sæ ‘:Ìäý5¢x¿âÑ¡<;wîœ}JqvvV¼T…ê’×ô4{<ëG¡Phhhȧ~èMpq½{÷&„HOÉÙ„õÀ@34_Gc#åççŸ={väÈ‘ò.‡üÑ›w7oÞ¤Ï×S7nÜ „x{{+ýxEEEII‰——WBBBBB‚H$Z¿~}bbâÆò²²Ö¬Y3cÆ n}†snß¾][[Ëõ‡ÕÔÔFFFJÇÌ̬OŸ>â¼yó¦âð—îÝ»›››ggg_ºt)""‚)‰:tõêUúÔiR\5O‡h4^nn.ÿTœ[:€÷—_~o¯k×®©°_>·ª:ôþûï9rãÆ7R%…Â:œ={V<ñÌ™3 Ãøúú*^Ú˜ê’Рú¡hw&÷ @O‡Þ½{+­ŸÒÒÒÇ÷ìÙ“ŽÝ¡h7!}æ¡™êÓñh:‰#íklUÝÅÅÅãÆc&55µñ[ rqqÉÈÈxöìMùóÏ?W¯^íêêÊg ߢ¢¢wß}÷Ë/¿¤oõôôè•O__ŸŽ&¿8íÛ·¯ªªŠOw‘LåååÜÛôôôÊÊJ‰_ ðööþòË/Ÿ?NS*++ccc“““YWúúúÑÑÑYYYùùù4p 633[¶l™ÒU˜1QqYÔ|cv*Žg Ò½(ÎmPP‡‡ÇêÕ«¹YZÊËË¿úê+öKoÅÊCaYvΜ9íÚµûî»ïGÔ¤I“~ûí7:ЇòÇìÛ·/&&†Î1¤x© Õ%Sƒê‡züøñÚµk¹·K–,©¬¬3fŒÒú122JII™©xiƒ²­ Ïúúúüë‡266ž9sfnn®¯¯o^^Þ©S§úôé3tèPò÷=¥ÙÙÙ¥¥¥Í;×ÓÓ“6â±cÇ®^½ºlÙ2úD3Õ4Šº‡uk!¢;øL¾(1ÏÃ0^^^qqqyyy Ý”8ñéx¨¼¼¼¾}ûÚÛÛÛÛÛ÷íÛ÷âÅ‹Ü"ñ)ezøða||¼«««‹‹K\\7ÕKNNN·nÝLMMß~ûí„„„òòò-[¶ØÚÚöéÓGzËôÆÜ–-[¸”ôôtBÈãǹ•srrzôèaaaѾ}û”””W¯^ÉÌd~~~ÿþý¬¬¬"##?®´N”NÇÖbkkË¥¬\¹’2yòdñÕħ¿‰DcÆŒ177 ¢Y>|¸øÊãÆ³±±‘·GeQPó;•˜Ž‡µ+nA‰½(­ù3gÎôêÕ‹Îcaa±wï^"gºÅûUìÀò.¾éééìÿΗ5kÖpyþüù¤I“<==mll˜ŸŸ/¾AÅKùg[úT?~¼¥¥¥ õãææ6gΜ 6„††š™™uìØ155•ç$ŽÔ¾}ûºtébjjjccÓ³gÏ£Gr‹š¯~$`:þVÕ;5šeïÞ½{öì)))166îÑ£ÇìÙ³ÅgR¬¬¬làÀ={ö¤_ÊJy{{©»Ä N8´›»»{@@€ÌßSVVöÖ[oñéÒÖM:R?*|iëì÷¼NܪÎÈÈØ¸q£‰‰IHHHiiéþýû‹‹‹¿ýö[nŠ/X–;w.÷Ó^ M¤Gõ‚8ÔHÐþÁ1EEE›7o¶··ÿé§Ÿ6oÞ|ìØ±>øàÆ«V­âóñmÛ¶‰ÿT.€ÎÒþÀqÏž="‘())ÉÎÎŽ¦Ì›7ÏÂÂâèÑ£JGùgddp¿j@‰ Uw.Ô@ûÇË—/ssCP ""¢¢¢"??_ÁëêêæÌ™cee¥àw–@­_¿~Μ9ê΀hyàȲlII‰µµµÄ/ÑŸZ¢cåY»vmaaáçŸÎgò-­§åƒcª««ëë륤þןþ)ïƒ×®]ûç?ÿ9nܸnݺIÿð‘RÒ¿r¡›c¯´Ÿ¯ÒZ8ÖÔÔBLLL$ÒMMM !/^¼÷):×ÿ¬Y³TÛ/ÂD­!}Y×ÙPRËGKKK†aª««%Òéô:´ßQÚŠ+=z´sçN>óõè-ÆQ(ZXXH÷,ÒßPçÆY‹»téÒÎ;'Ožìïï¯îì´"Z8Bìíí+**h¤È¹ÿ>]$½~qq1!dýúõÞÿCpóàÁƒÞÞÞ PwÔCËoUB¢££‹ŠŠÎž=Û¿šÂ²lNNŽ••U`` ôú®®®ÜšÔ‹/rssœœÔ] õÐþÀqĈ7n\·n]=蘘͛7?}ú4!!A__Ÿ®SUUõÇèëë·mÛ6,,,,,L| ·nÝÊÍÍ æù[ÕZIûG''§Ù³g¯X±â½÷Þ /--½pႯ¯ï¤I“¸urrr’““===>¬îü´RÚ8Bâããmmm333³²²Ç—””D{€'íC 8ð›o¾¹|ùòÁƒ.\(5öëׯ¨¨H^w£¯¯oQQîSƒKKKcþÎÂÂ"$$dË–-ÜOºK¬£§§×¾}û÷ßÿÂ… Š7Å3fŒÌ½§§§ÛØØtìØQÝÕÐ4ÜÝ݇ ¢î\üááá2Ÿç¦Y1bDëÉýòË/ ÃìÞ½[Ýi¥ÔZŽ"P#] 4Ãï_=ztJJJJJʬY³x÷îÝI“&Í;Wæ:S§NuppØ¿=6mÚ$oSâdNJpûöíÔÔTŸ ¨»ÊÕïÆ£Frpp055 ÎÈȨ««kä6@  ¯¯\¹2dÈ~ «1$v*žŸæÛK«òóÏ?GEEÙÙÙ½õÖ[aaa?þø£‚•_¼xññÇ»¸¸˜ššFDDHüa¦x©†*,,:th»víœGŒ‘——‡úiÕXhj^^^êΨY“|NΦ:/^LÉÍÍO|üø±£££@ xüø±¼u ½½½†¹yó¦‚M)pàÀBÈÉ“'›¨(êçææ6xð`>x÷î]+++ssó?ü055544”¢Ú¦ä¡÷UNŸ>ÍeuøðáÍ]!;m{¹rå !d×®]Mž±#GŽB<<<’““,XàååEùç?ÿ)så/^¼óÎ;mÚ´‰‹‹›>}º“““……E~~>Ÿ¥ÍJAý4ò(:s挽½}RRÒ¬Y³Ú¶mkll|êÔ©®¾´uöZGÍÞÞ~ôèÑõõõòÖiß¾ýŽ;X–ýÇ?þ¡Ú^X–%„ª»¸ÿõæÍîî¼RõõõõõõMµë™3g¾xñâäɓ۶m[²dI^^^|||ffæ±cÇÔ]+Í®AÕ®YæÏŸïààŸŸ¿zõê¥K—æç绸¸¤¥¥É\yõêÕ%%%›7oþþûï¿úꫳgÏ2 Ãýø­â¥ª‰DMx 7˲'N´°°¸~ýzFFƪU«nÞ¼éàà0{öìVR? #ÈE£ºÚÚZëwïÞý‡~Pá¦ê„ L sww§‰—.]êׯŸƒƒƒ““S¿~ý.]ºÄ­ïîîžœœ|åÊ™¿íTSS“žžîããcllìêêšðøñcniFFF§NLLL¬­­»víúý÷ß‹oyÆŒ³gÏ677744ìÚµë‘#GêêêæÏŸïããcnnuûömñl¬[·ÎÒÒ²M›6;vœ7oÞ›7od–±  `èС...vvv}ûö=uꔼÚÈÎÎŽˆˆ áR¦M›F9þ¼ÄšÃ‡×××§?JÙ½{7Ã0:uâVHIIaæêÕ«„¨¨(úLá„ èÓ‘‘‘\mBÎ;kccãììüÉ'Ÿüõ×_òr¨ ,òj^z§\~Zí ZPfÑ×ü™3gbbb¬­­;tè0{ölyͧôÈQìõë×·nÝ0`÷ ·&&&ááá=ª©©‘^×®]ŽŽŽ|ð}ëáá1|øðœœœßÿ]éÒe›Û6m²±± …ÎÎÎS¦LoúÕ!äÂ… }úô¡ëÏœ9Sfé¤Ý¿¿¸¸xâĉÜïqXZZ&''ççç߸q£¹ëT¤î.O-¤³Ý×ÀÑŽ[Õüñ‡“““žž^YY«ðôÔ©S !÷îÝcx«úæÍ›Ÿ}ö!dÕªU999,Ëfff …¶mÛ&%%%''·k×N(fffÒõÝÜ܆ fmmíîîþÑGIo0..Ža˜˜˜˜O?ýtРA k×®tÑ¢E‹!={öLKK[°`!äàÁƒÜ–­­­mmm—,Y²lÙ2CCÃnݺuéÒ%##cÊ”) Ãøûûs+;;;Búõë7þü¨¨(BHDD„H$bÿ~«úøñㆆ†îîî)))sæÌñôô;wî”Îymmí¼yóöíÛ'žH†[¶l™ÄÊ[¶l!„dee‰×?Ã0OŸ>¥);wvpp ù‰ŒŒ  µM;º¾øâ ZÛnnn^^^‰‰‰«V­ '„ȬX¥e‘WóÒ;åòÓÐjWЂÒ{QœÛýû÷ ;;»)S¦L›6ÍÁÁÞA–y+Vñ‘£XmmmAA}؃KéÔ©S§N¤W~ñâÃ0qqqâ‰ÿþ÷¿ !?üðƒâ¥ Ͷ›››ŸŸ_›6m¦NºvíÚ~ýúBT¨z™šš0`þüù=zô „tîܹ¶¶Viýœ>}š’‘‘!ž¸ÿ~B½•Ñ|õ#·ªùCàØôtö`ކŽcÇŽ7oÞ¼yóæÎ;~üø·Þz‹2}útñudF„Ë—/'„ÐÇ’èjÒÂÂÂdî:33“ÛìëׯÝÝÝÝÜÜÊËËéÒòòrWWWׯ_³,ëææFIKK«¯¯—ÞÔË—/Áøñã¹”‰'ÚØØÐÀ×ÃÃÃËË‹»˜=þ\(N™2…¾usskÓ¦Maa!}ûÅ_Büýýß¼yCSèïTVVrÙçè5—pãëׯ===«««éj¯^½ õð𨫫SÚ(]ºt¿þú«Ä¢GBRRRèÛŽ;Ò1éôùüùs==½øøxºTÞ¥K—öíÛÓ×´q̘1ÜïKEGGçææVWW›™™ÑŒ‰?;µhÑ¢ 6ìÙ³gôèÑ\âÕ«W‹‹‹ÿýïуÄÄĸ¸¸üü|ñ[ÒÒNŸ>ýÑG•””lذÁÓÓSb©³³s§N²³³ !Ïž=+((øæ›osrr† röìY‘HDû”òòòzï½÷èk@pâÄ éÕ—ÅÏÏOAÍ+ƿڕ¶ ÏÜÖÕÕ•––®\¹’vÓƒjúôéóæÍ“™Cû­««£c_d4høÛüã%%%„˜˜ZKè6ÍÍÍÅé= ÅK”mÊÃÃcذaô5Ã0$„äçç7¨~!th ÷vñâÅ7n}Z(öêÕ‹OÓ[yå(-‹‚šWŒµ+mAž¹¥Ï†vîÜY<]ÁÔ’ ö[UUEÒ•‰eÿvÎWWWŸ?>!!áÝwß-,,´³³“® ‰gLiüdmm­xiƒ²MI4=wZÑ®;þõCñóóã"Tò¿Ó¡¸¸˜Oýlذáùóçô^ÍvjjêâÅ‹---%ÖoÚú•!phQJ£7Ãce>ë´€ëׯÓ¹z!‘迤¡ 7@Gúr"nêԩÆ ;|øðÏ?ÿœ••µyófooKKË¡C‡fee…„„ôîÝû½÷Þ jÂJ …UUUâ)4lZ¹r¥ôÜæ:t¹‘;wNž<ÙÔÔtÓ¦Mñññâc }ûö]±bENNN^^ž‹‹‹‹‹KTTÔ‚ ž?~úôé°°0n4†b<dz+-‹¼šç=4Òëׯù· âÜž9s†HfòþQ¼_ ‰èP1ccãèèèåË—=:33ó£>_joo¯§§W^^.žøôéSBˆ³³³â¥*T—¼¦§GÏú‘G(ò©zãþÂ… ׯ_··· £ äââ"±fÖ4Gh”üüü³gÏŽ9RA”ý'{óæMú|=EWz{{+ýxEEEII‰——WBBBBB‚H$Z¿~}bbâÆò²²Ö¬Y3cÆ nýÆÌ­}ûöíÚÚZ®?¬¦¦¦°°022Rº8fff}úôÿàÍ›7e†¿‡zÿý÷G޹qãF‰;nÒºwïnnnž}éÒ¥ˆˆBHdd¤H$:tèÐÕ«WéS§MHqYÔ<¢Ñx¹¹¹ü[PqnßyçBÈ/¿ü"Þ^×®]Sa¿JoU9rdðàÁ;vì5j—neeE¤ú# !B¡°C‡gÏžOMB–Rûöí«ªªjPw‘¸òòòŒŒ îmzzzee¥Ä/ x{{ùå—ÏŸ?§)•••±±±ÉÉÉÆÆÆdYvΜ9íÚµûî»ï”F´PÑÑÑYYYùùù4p 633[¶l™ÒU˜1QqYÔ|cv*Žg Ò½(ÎmPP‡‡ÇêÕ«¹YZÊËË¿úê+öKoÅÊCéÚµ+!ä_ÿú—x>·oßNáâ$q“&Múí·ß¸ß¿ýã?öíÛCçR¼T…ê’©AõC=~üxíÚµÜÛ%K–TVVŽ3FiýB&OžÜ©S§²²2ú¶°°pÇŽýû÷§Ãqš©~ 1Ðã °aÃú½üúõë‚‚‚¼¼¼7oÞ¬_¿ÞÏϯñ700ÈÈÈ5jTPPÐÈ‘#Y–ݽ{wYYÙÞ½{ ”~<88ØÏÏoùòå÷îÝóóó+**:zô¨µµõ˜1c‰‰É¤I“ÆŽëìì|þüùììl[[ÛÜÜÜ£GÆÆÆ64«ŽŽŽ©©©yyyþþþçÏŸ?qâDhh(7% ׬Y3hÐ ÿ‘#GÖÖÖfff>|øp×®]ÒÞ¹sÇÇÇ'!!AbÑСC(‡ØØX:_ AxxxVVV»víäu±ÐžÎ 6ýôÓ´´´>}ú0 sâĉK—.%%%чwW¬X±|ùòÏ?ÿüã?&„Œ?~ëÖ­cÇŽ:uª¥¥å¶mÛª««¹ÙÂ/mP¶äY__ŸýPÆÆÆ3gÎÌÍÍõõõÍËË;uêTŸ>}†Jdu¬JX²dIlll×®]‡ R[[»gÏ##£ÿû¿ÿ£K›©~ QÔ=¬[ éì}àhèt<Š'_”˜g‡a//¯¸¸¸¼¼¼†nJœøtvìØ|pãÆU«VÉûÈÚµkËËË?þøãÇgddìÚµëóÏ?¯««KOOWwiÔFûÇ={öˆD¢¤¤$;;;š2oÞ< ‹£GŠD"™9þ¼‘‘Ñ'Ÿ|Â¥ :ÔÁÁáÖ­[õõõê.€zhàxùòe==½ÈÈH.E DDDTTTäççËüˆ¥¥eÏž= Å Þ¼yóæÍu@=´|p ˲%%%ÖÖÖÖÖÖâé^^^„‡KjÇŽ)—/_~ðàA@@€‘‘‘ºËÐ,0>”ÒòÀ±ººº¾¾ÞÒÒR"Ý‚òçŸ*þøÕ«W÷ïßÿþý«W¯º¸¸¬X±‚ç~½½½%RŠŠŠÔ]  é˺ÎÒòÀ‘611‘H755%„¼xñBñÇ‹ŠŠöíÛDz,!Ä××·M›6<÷‹0@kH_Öu6”Ôòg---†©®®–Hùò%ù_¿££G.,,ÌÍÍ;wî±cÇÆŒC? ƒ´Gà #h3ŒŒhB€ŽÀ Gàãc#ð‚À´FÆ4-ŽÀ Gà 9è8ŽÀ GÐNxÀ É!p^8/ 0>@—!p^8‚ÂÈ€æ€ÀxA༠p€†Áø…ÀxAàÚ#cš Gà#ð‚À ãctGà#hŒŒh>€Ž  <æ ƒ8/A{àG€f…ÀxA༠pa| €®A༠p-‘1Í #ð‚ÀxAàªc Ð!€Ž  02  p^8/ qðÛ1:#ð‚À4FÆ´ ŽÀ Gà#ð‚À4ph1€ŽÀ Gà#ð‚À4FÆ´$¡º3ÐBöîÝ»gÏž’’ccã=zÌž=ÛÊÊJÁú555»wïÞ·oߣGÌÌ̼¼¼âãã»wï®îr¨NŽ7n411 )--Ý¿qqñ·ß~kdd$sýºººñãÇ_»vÍÂÂ"44ôÕ«W/^ÌÍÍ>}úÔ©SÕ]õÐþ[ÕEEE›7o¶··ÿé§Ÿ6oÞ|ìØ±>øàÆ«V­’÷‘={ö\»v­sçÎ9996lø×¿þõã?ZZZ~ýõ×………ê.€zhà¸gÏ‘H”””dggGSæÍ›gaaqôèQ‘H$ó#?ýô!äÓO?åº$===?þøãúúúsçΩ»@ê¡ýãåË—õôô"##¹@QQQ‘ŸŸ/ó#÷ïß711ñõõOôôô$„<|øPÝ‚ÿÂÈ€¦åÏ8²,[RRbmmmmm-žîååEyøðapp°ô§6mÚ$JÖÌ­[·!íÚµSw™ÔCËÇêêêúúzKKK‰t BÈŸþ)óS:tH¹páÂæÍ› Ìg¿ÞÞÞ)EEEê® P…ôe]giyàXSSC111‘H755%„¼xñBéêëë¿ÿþû/¾ø¢¾¾þË/¿´±±á³_„‰ZCú²®³¡¤–Ž––– ÃTWWK¤¿|ù’ü¯ßQ‹/¦¥¥Ý½{×ÑÑqÙ²eݺuSwà¿ð€#@ËÓòÀQ(ZXXH÷,VVVB¸qÖÒÞ¼y³råÊï¾ûÎÐÐ011qâĉò&}ÐZ8BìííKJJ*++ÍÍ͹Äû÷ïÓE2?"‰fÍšuüøñ^½z-Z´HA|  ;´:žèèèúúú³gÏr),ËæääXYYÊüÈwß}wüøñ¸¸¸¯¿þQ#¥ýãˆ#ôôôÖ­[GŸk$„lÞ¼ùéӧÆ Ó××§)UUU÷ïßôè!„eÙ;v˜™™Í;WÝyhE´ÿVµ““ÓìÙ³W¬XñÞ{ï…‡‡—––^¸pÁ××wÒ¤IÜ:999ÉÉÉžžž‡.//ðà‘‘ÑØ±c¥·6dÈqãÆ©»Lº#cÔBûGBH||¼­­mfffVV–££ã¸qã’’’èŒ<Òh¿cMMMAAôR ¬Ű,znš˜··7æqäa彇 ?PÓã¨ÂîZ¾€´;µì@ítöZ¯ýÏ8@“@༠p ƒ‘1ê‚ÀxA༠p^8/A“`d €!p^8/€Ž 1ð€#€z ÕP†a”®Ã²Óào8è$¥A!È4Ÿ¿ þ\8èü¹MÏ8/èqÍ€‘1Ð xˆ 9 pmÃ0 îÊ4ܪ^Ðã õX¥ MFÏ¡v݃æß5ª¡Ån%l¾ÇZIšG]ÀH¾Ó®ÐJ¢0¼nUk>…Ñè[ïj/`s?Þ ö4Ž  X‚‘1ê…ñF@8€RoG€VÝ9Ðú!ph´»;/4Œ?¥XV:M´0Žð7ø=SÀ§ùX–o Êï`hÞ‘ ÍZÀV€gV›±DÍ\¥|‡ÆK%6Y‘[¾€ø{ 4G¢ôˬ寷 ¾b[Ãðüó€a>­Ó|ÛÕFUó. Úñ<ü›õ,iÖ*•™ónD5°Iò Ðâ08€®a5û®7€V`;‚fBàÍ! ®’š#ð‚À@§àþ@k³4Çèöo¯5cLH¨2ªºi3ÐÌÓh}x¡Ë?8®õ Z#€Öã.LÿëàPÓoU+®T‹«TÛäšm&N­  xP›~p\q10ihŽÐ2XÂ*¼DòŽ«xvï@“Cà #´äy*^ÓFjCAAW°èt‚Á1À Gà#€.Ð’ûÔZ ç'hŽÐbp}Ðl´Â5€Ög)h ŽÀ G톎 Í€s4æqhi²ç±gY‰t•¦ ™ p€–„ÙŽþGfP(žˆI‚Ö·ª´î}@SB༠pÐVèn€&†ÀZ"ZM…ÀxAà •ЫM#ð‚À@û »šGhym4GíÂ"&Ðø½Ah}8/€ŽÚƒ!„0¸O  -œÏÐêÕÐMôYL<Â¥ þ዇ä I!pÐ Æ*ë>!º«4þÀ‚Ö·ª€ŽÚ}Ú w UA༠puAO €†Aà ñpŸ@»áo,h=8/4ºt:¡•@àj„«!€&Aà ÁÐÝ ;ðg´€ŽÀ GM…ûÔºw«Aí8€záR 18h$t7è&ü¥ê…ÀxA༠pÐ<¸O  Ëp·Ô#¨®ƒš#€†Aw#à-PŽ n‚4GM‚îF ÐéjÀxAà­‹®T€Ö#€ÆÀ}j‡»ÕÐò8‚:1„Á×€¦@à !XÝ ŽÐÂ8@ë€þg€V#€†`T€ èt„–„ÀÔ†! FÒhŽÀ G͆»ÕÐbt%pÜ»wïˆ#»wï¾`Á‚gÏžñüà½{÷¼½½¯_¿®îh?–°КéDà˜‘‘±pá»w„˜ššîß¿ÿ£>ª©©áóÙï¾ûNÝÙPŽÐ2„êÎ@³+**Ú¼y³½½ý¾}ûììì!K—.ýöÛoW­Z•šš*ïS•••¿þúë¡C‡víÚ¥îh'ŒŒÐ8Úßã¸gÏ‘H”””D£FBȼyó,,,Ž=*‰ä}jàÀcÇŽEÔÀÑþÇË—/ëééEFFr) ""âСCùùùÁÁÁ2?µtéÒׯ_BvìØ‘——§îB(Áâí¡ùiyàȲlII‰µµµµµµxº——!äáÇòǰ°0úâçŸVw!tƒÇZ'-«««ëëë---%Ò-,,!þùg3í×ÛÛ["¥¨¨HÝ•ZŽÍDú²®³´×HÙ¼yóÓ§O‡ ¦¯¯OSªªªîß¿ÿèÑ#ug õÒòQÕ„''§Ù³g¯X±â½÷Þ /--½pႯ¯ï¤I“¸urrr’““===>¬îü4æåf¢ý#!$>>ÞÖÖ6333++ËÑÑqܸqIIItFh…0 8@ëİxZ«©y{{kî<Ž Ã(¿X3¤1‡D@Ð{T¡€ÊŸbdøž;-¼G­) ¼À±å È»Zn¼v×ò{Ôú*ÕÀrŽ-_@­§Ñ×úÆÐþg¡UA7€æB༠pÐN˜—šGh0 8@+„À@k¡ÓšGh9 Ñ8´˜š Kð%MF'&€–Ä0¼îcæHƒÀZ)ü~ €fã1帺³ †[ÕjÇâÛš¾d ‰ p„‚®#M‡À@½0Wh ŽÀ Gh½ðû1­ Gh xÀQܧM‚ÀxAà .èn ƒÀZ5<æÐz pP t7€æAàÍ#c´Gà#@ËÃ}jÐH µÃø€V#@ Cw#h*ŽÐ¼02@k phIèn †ÀxAàãcZŽ-÷©@³!p„f„‘1Ú#@Ë@w#h<ŽÀ G€€îÆ&€ñ1j‡Àš pÐ2€ŽÍŒÅ}jÐ,îr@c°?¨G€fÄBt7€&`ðmÊ!p„f‘1Ú#ð‚À ¹0® I0””Bà—5õAàÐ,ÐÝšŽ Ghz •84=t7€æB§#(€ÀxA༠phb¸O šw«AŽÐÄ02@[!phJèní€NG #ð‚À É »´ :AGhJxÀ@‹!p(Ú 3²IDAT^84 ܧíƒ»Õ #ð‚À   »´:AGh2 Ý8/ ÷©@»án5p8/Ý  ÐéGh õ8¨Ý ;Ðé#ð„ÀxAà "ܧ]ƒ»Õ€ÀšFÆèŽ*aYDÊ ƒÐé¨ã8/TÂàOnÐQètÔe¡±ð€#€Ž@༠p€†ÁÝj…ÀxAà †NGÝ„À#ctGà#¨w«uGà#¨Žº#¨#ct GP:u Gà#ð‚Àw«uGPFÆèŽÐXètÔ€ŽÐÐé¨ 8‚*ð€#€Bà(×Þ½{GŒؽ{÷ <{öLæjŒÔ?y‰‹•øçååE«Å$¬–ÇÄ^^^êÎB3c‰Æ• yyyiwÂhý_¦ZvJ_µì‹T®õ|!p”-##cáÂ…wïÞ 155Ý¿ÿG}TSS#señ ã¿ç‹d¢¦“q¾hs9ý@=mŒ1þ~EÐÂ8J®õ¼ p”¡¨¨hóæÍööö?ýôÓæÍ›;öÁܸqcÕªU<· •_ Ф´úJÁh{uõZÀQ†={öˆD¢¤¤$;;;š2oÞ< ‹£GŠD"uçøÐÚÇôÿw­Ò沄Յ°C[±Ü 8Êpùòe==½ÈÈH.E DDDTTTäççK¯Ï†ûG‡Œ°„OTwšžÖ´…–<}$ÿtC5ƒxÿ>¸P{ž‘“ÓˆZR:¢“×z™8JbY¶¤¤ÄÚÚÚÚÚZ<>ÈüðáC¹$¬ø@cî­¶Ž>–(¯VÑ®gºu˜ø£GšÝ¦Ü—ÉßÏ;Pcp…RX@Í.£xYB¿Hµ§% (ï­.`X\#ÿ®ªª*((èwÞ9räˆxúîÝ»?ûì³9sæLœ8Q<ùßÙÀý âíí­îB@ó***"bWFk¢c…„êÎ@«C‡N›˜˜H¤›ššB^¼x¡t GÑðƒI<ó/”°1ë@k 1èöM8Šj:m- tŠt5ú‹”Ï¥PGàVµ$KKK†aª««%Ò_¾|I±°°Pºæ¿£ôY-{âAì*í, h ™Z@ëQë¿Hµµ€¸"p”$ -,,¤{+++ !Ü8kyè!¥Å‡‘Ö4wprO¬«;GÍU@ñ'ôµ²˜M©î5cÕ—f,# ¨­8Ê`oo_QQA#EÎýû÷é"™aþ;uÄßFZ©»MOë šNüïд€Ü?í+ùûÈBP³àR¨ 8Ê]__öìY.…eÙœœ++«ÀÀ@yŸÒú‘V2 ¨ƒç ´f'–ƒ( Ð…jñ¥ûËM[ ÈGFŒ¡§§·nÝ:ú\#!dóæÍOŸ>6l˜¾¾¾ôú !ҿݬ=SWÉ/WpMÇ(ûAæ×·6}§£€šN» ¨ —Bí. ßzÀt<2mݺuÅŠÎÎÎááᥥ¥.\èСÃÖ­[---Õ5õ@à(סC‡233oܸáèèØ¥K—¤¤$:#€nBà¼àGà#ð‚ÀxA༠p^8/€ŽÀKMMͶmÛ >qâÄsçΩ;S ¢²²²Î;Ïž=[݆¹yóæ´iÓ¢¢¢BBBÆwñâEuçæÍ›7ÿüç?‡سgÏ3f«;S Ü½{÷¼½½¯_¿.séÞ½{GŒؽ{÷ <{öLÝùm^A¹ºººñãÇþùçüñGhhè;ï¼sñâÅøøø¯¿þZÝYƒcYvîܹÜï°ƒ¦ÈÎÎ3fLvv¶]``àÕ«W?øàƒììluç øª¯¯ÿðÃW­ZõìÙ³ððpggçcÇŽ 4èòåËêÎ(ñÝwßÉ[”‘‘±pá»w„˜ššîß¿ÿ£>ª©©Qw–›  Ì÷ßïåå5f̘êêjšò믿véÒÅÇÇçöíÛêÎ4ÌÖ­[½¼¼¼¼¼RRRÔàëùóçÁÁÁþþþW®\¡)ׯ_÷óóëÖ­[}}½ºs¼Ð/Ò3fÔÖÖÒ”¼¼<ŸÞ½{«;k Û‹/._¾üÙgŸÑïÌk×®I¬pçÎöíÛ‡‡‡?yò„¦¤§§{yy-Y²DÝyoFèqå~úé'BȧŸ~jddDS<==?þøãúúzܰÖ,ÅÅÅíÛ·WwF aöïß_YYùñÇwîÜ™¦têÔ)66öéÓ§7oÞTwüü|Bȇ~( iJhh¨Ïo¿ýö矪;w ÃÀÇŽ»k×.y+ìÙ³G$%%%ÙÙÙÑ”yóæYXX=zT$©;ûÍ#(wÿþ}___ñDOOOBÈÇÕ;à«®®nΜ9VVVóæÍSw^ aΜ9Ã0ÌàÁƒÅ¿øâ‹¢¢"uçxqtt$„ˆÇˆ,Ë>þ\OO %¡UYºtéúõëׯ_ß­[7™+\¾|YOO/22’Kôï­„ƒ”Û´i“ô÷Ú­[·!íÚµSwµk×nݺÕÜÜ\Ýy†)((°²²rpp¸råÊÕ«WŸ?Þ¾}û^½zq7 õ0`À·ß~»téRcc €gÏž­_¿þÑ£G£FÂ)Ù:………Ñ?ÿü³ôR–eKJJ¬­­­­­ÅÓ½¼¼!> Vw šGP®C‡).\ؼy³D´Z×®]ûç?ÿ9nܸnݺѠ4Å›7oþúë¯wÞygñâÅ;wîäÒÛµk·fÍ???ugxñööþî»ïÆ?~üx.qܸq ,PwÖ@ÕÕÕõõõ–––éäï]ËZ·ª¡aêëë¿ýöÛ„„„êêêåË—ÛØØ¨;G \MMÍœ9sÚµk7kÖ,uç쯿þ"„”””dee­X±ââÅ‹999‰‰‰ÿùÏf̘¡åã7µHeeåòåË«ªª|}}Gcdd”™™‰¡ñŠžz&&&馦¦„/^¨;ƒÍ=ŽÐ/^LKK»{÷®££ã²eËä=ö­ÍŠ+=z´sçNÜÙÔD†††ôÅòåË{öìI_O›6­¬¬lÿþýGŽ>|¸ºóÊÍ™3ç—_~™7oÞ„ hJYYÙèÑ£“““<èáá¡î BÃXZZ2 S]]-‘N';£ýŽZ =ŽÀË›7o–.]úᇖ••%&&=zQ£¦¸téÒÎ;'OžŒQÊÄÄÄÐÐÐÈÈ(**J<½W¯^„;wî¨;ƒ ÜüñóÏ?¿óÎ;\ÔHqrrš2eJmmí?þ¨î Bƒ …B éžÅÊÊJB7ÎZû Ç”‰D³fÍ:~üx¯^½-Z¤ÅçƒV¢?MAÇЧMHHÐ××Wwîš GP¢¼¼üÁƒFFFcÇŽ•^:dÈqãÆ©;ZÎÇÇgæÌ™«W¯îÛ·opppuuõåË—†Yºté[o½¥îÜ/éééÇ_¿~}VVV‡***~ùå‘H´pá·ß~[ݹU899Íž={ÅŠï½÷^xxxiié… |}}'Mš¤î¬5#ޠģG!555ÒK1D eLž<ÙÆÆæÛo¿ÍË˳²²ŠŽŽNLL¤?àÁÆÆ&++kãÆ¹¹¹§OŸ¶²²êÑ£Ç'Ÿ|Ò±cGug Tokk›™™™••åèè8nܸ¤¤$Úû¨­–eÕИŽxA༠p^8/€ŽÀ Gà#ð‚ÀxA༠p^8/€ŽÀ Gà#ð‚ÀxA༠p^8/€ŽÀ Gà#ð‚ÀxA༠p^8/€ŽÀ Gà#ð‚ÀxA༠p^8/€ŽÀ Gàåÿõãˆf˜IEND®B`‚statistics-release-1.6.3/docs/assets/unifpdf_101.png000066400000000000000000000463101456127120000223070ustar00rootroot00000000000000‰PNG  IHDRhŽ\­ALIDATxÚíÝy\TeÿÿñkX e‰EÀ]aÔB%sAE\R£Ü¨L*Ó´4MÜM-Ó\ÓÂÒRÑìN4Ë¥L”Å}!ÅåvÅAqÁQ ˜ßçþÎíÁ3μžô8se>×9óö:Ëht:þ™Úàé@p€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤§ÕÝ»w-ZÔ©S'+++OOÏnݺ}õÕWyyyO¦€7þñÇüñÇ7ô‹/Öh4ÆÏÏOí=ô+u7ÞºukàÀUªTÉÉÉQ»ÌÒ|øðÏ?ÿüûï¿wìØñ! dddddd8pà»ï¾‹ŠŠz饗Ôî‚#ðJJJj×®]Ñè`aa‘ŸŸ¯L_ºtéõ×_ß»wïóÏ?ÿäk«R¥JíÚµ…nnnjï§§X©»qóæÍÊ„¿¿=*Uª¤v™ÿÎÕÕÕÚÚZqÿþý+W® !rrr ”`ccó åsrrô™™™ÁÁÁ)))Ï<óÌCÞ¢µ{#€§Í+¯¼¢ÿ_ø½÷Þ;zôh~~þåË——.]Z¥J¥]«ÕVt¶¶¶Ê{mݺUí]bô;|ãÆj×ò0 úÏgÑÏÆíÛ·û÷ﯟµaƇ/áÂ…÷Þ{O?+,,ì_ß@EãGà)³uëÖ7*ÓãÇ_¶lÙóÏ?onnîææ6`À€U«V)³’’’NŸ>]tÅœœœÉ“'wìØÑÕÕÕÕÕµC‡&LÈÎÎ.ºÌ§Ÿ~ª\Ö£GÌÌÌQ£FùùùU©Rå…^˜1cÆýû÷•Å>ùäF£òìСƒF£Q.¹+yqžä6‹-Y´ª>}ú”zÕÚ£öè_·yÿþýE‹µnÝÚÝÝÝÖÖ¶Q£Fo¿ýö±cÇ~DäßB~WÛ7nÜ8þ¼2\'„ÈÊÊ:þ¼~Œ¹ »"??ÿ³Ï>«^½úgŸ}VtVppð™3gúöí[»víêÕ«÷éÓçĉBˆøøø7Þx£víÚÏ>ûl@@ÀÎ;Ëðѵµµ]°`¥¥¥òòÔ©S_¾FË–-ÓïÕ3fìe€éàT5ð”Y¸p¡2áèè8qâÄbs»uëÖµk×Ë—/ !Nœ8áå奴gΜÑ/¹mÛ¶mÛ¶­X±bÅŠmÚ´)¶¬¬¬V­Z%&&*/;vìØ±£G®^½ºÌ•—ï6µGÿêîÝ»mÚ´9pà€¾%!!!!!aåÊ• ,2dH™;þø»bРAëׯ׿ Bœ:uJ«Õ–mW¼ÿþû?ýô“B§ÓmOIIy饗ÒÓÓ•—¿üò˶mÛ&Mš4zôh}®Ý¹sç®]»vìØÑ¶mÛGí¸µµµ³³³òù¼yó¦Ì*Çÿý÷ß…7n܈‹‹ëܹs9ŠGà)óçŸ*={öÔŸ»,jÓ¦MGŽ9räH¯^½”–¼¼¼×_] VVV;wîÚµkåÊ•…/^|ã7nß¾]l#;wîLLL¬U«VóæÍ­¬¬”Æ5kÖùA’’’”‰bׇuêÔI™HNNÖßx¡¨W¯^Ñ—ú—Å{$å¸Í2ôè_é7•””4`À77·¦M›ÎŸ??''ÇÇÇG?èU.Ôݾ¾¾úW‡þd´BÿŒwwwýpr©¾yT 6üæ›oä—ÏÈÈP&ªV­Zr®««kíô»@ùâæàiR©R%'''åÞ…¢Oÿ.êÖ­[Êý¶VVV666ÙÙÙ·nÝRf{¶¢>%üý÷ß×®]+:·Øyg™ÓÐÿª¼¶Y¶ý«)S¦dgg/]ºôîÝ»BN§<­zúôéþþþëÖ­svv~ü`»B9‹-S˜BMB}È¢………··wË–-‡®?;/C†ÚÕÕµäÜ•+Wòüyà‰aÄxÊ´lÙR™ˆŒŒ,ú½çž{ÎÉÉÉÉÉiÑ¢EBˆªU«ÚÙÙ)³®\¹RtIýËJ•*•c*ªhÔ#KKË ܸqã×_íÛ·oÑÇGïÙ³Ç0¿®l»¢\þ iåÊ•©ÿ'99ù?þ7nÜ#¥Æ¸¸¸{÷î)Ó/¾øâ«@©ŽÀSfàÀÊÄ… /^\lîÆõÃ3ú§¥(wQˆ"?=R쥧§§……úçô¦Øõsׯ_/¶¤|$·y÷îÝk×®]»víîÝ»¯¿þúŠ+®_¿¾eË}RÙ½{÷ã—]ž–ƒ[fú“Ú666­ZµR»ÀÔ§Ì+¯¼Ò¡Ceúã?ž:uª2¶tïÞ½ˆˆˆwß}W™U¯^=___eZ¹ÝAñí·ß>|X™NHH˜3gŽ2Ý¥K—Ç)I? ô˜jÔ¨¡Lìß¿_ÿôòß~û­äã¦å{$¹ÍÄÄÄjÕªU«VÍÍÍMy´……E‡ô7ÛÛÛ?~Ù¡¢®Š®^½:hРµk×*/ß~ûí¢×øPÅSüÏPÀd}ýõ×Í›7ÏËËÓét“'OžýôÓ2”aoo¯üxÌ_|qòäÉáÇë¤lš6mªLäååùúúúúú¦§§ëoþ(J¾G’Ûlܸ±««ëµk×òóó[·nýÊ+¯8::ž;wnÆ ÊÅ~¦leW„ :¸jyçw”‡Pæää=ùîììüÅ_¨]F§P£F¶lÙRôÆØôôt}j¬]»öºuëŠ>$ÏÚÚzõêÕʃWòòò6nÜøÇ(Á¢V­Z«W¯.õfÕ¥?¾oß¾1cÆ<þ¸c“&MôO{ÉÍÍýóÏ?“’’êÖ­«a-C$·iff¶~ýzå6Ž«W¯.]ºôË/¿\½zõßÿ-„h×®ÝØ±c¿ìŠPAW-—/_NIIIII)š7lØð{z<1Œ8O¥V­Z%''‡‡‡¯_¿>11ñÖ­[µk×Öjµƒ~æ™gŠ-ÿâ‹/?~|öìÙ{÷îMHH(((hܸq‹-ÆWæÓaaaBˆ-[¶äääÔ©Sçqî½Õ[¾|y£F~ùå—³gÏzyyùûûOš4Iyˆ`™{$¹Í—^z)%%eÑ¢E111—.]ºqㆭ­­O¿~ýú÷ïÿðJäË®qpUgnnnggW¿~ýÎ;üñǤFÀ@hŠýP)P*NU@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤˜Jp\³fMpp°¯¯o«V­&L˜™™)¿îåË—›6m:f̵; &“Žaaa“&M:s挟ŸŸ­­íºuë ”——'³®N§7nÜ;wÔî€ÊŒ?8&%%…‡‡»ººÆÄÄ„‡‡ÇÆÆ¾óÎ;ÇŸ;w®ÌêÿùÏ8 v'ÔgüÁqõêÕ………¡¡¡...JËøñãíì좣£ ¾nrrrXXØsÏ=§v'ÔgüÁñàÁƒfffíÚµÓ·˜››·iÓ&##ãðáÃY1??ìØ±ãÇW»ê3òà¨ÓéRRR‹¶{yy !.^¼øuçÏŸŸ˜˜8sæÌªU«ªÝõY¨]@ÅÊÍÍ-((°··/Öngg'„¸yóæƒV99Yñý÷ßkÿOÏž=…6lÐjµ¯¼òŠÚP‡‘ŸªB&%%íÙ³§[·nJ‹N§Ûµk—ƒƒƒ¯¯oÉåkÕª¥_RqëÖ­¸¸8www__ßjÕª©Ý!up ^´hÑ‚ Ú¶m«Üžžžþþûï[ZZ*Ëäää\¿~ÝÒÒ²zõê­[·nݺuÑ-œf̘ٳg¿úê«þþþçÏŸ÷ññ8p ~™]»v1ÂÓÓsãÆj׋ £v (Žƒb˜8.ˆƒÃaüÁQÑ¿ggçõë×GEE¹¹¹…„„„††*£dÁQô ¹]»víÚµëƒæúøøð-ã¿«å‚à)GH!8@ ÁRŽb*ã \hµZµK@ùã¹{’Ž<B†‘áò8U )GH!8@ ÁRŽBp€‚#¤ …à)GH!8Ô©S'88Xí*ðhŽ ìŽ?þÆoT«VÍÖÖ¶Y³faaaùùùj%îß¿oaa¡ù'gggµëzêY¨]xZ={¶]»v=zô¨Y³æÖ­[G޹{÷îßÿ]ÝÂRSS Z¶lY·n]}£­­­ÊûëéGpe4räÈ[·nÅÇÇûùù !¦N:`À€eË–ÅÆÆvîÜYÅÂRRR”zÕÞIF…SÕ¹°°°ÆÛØØ8::6oÞ|åÊ•åµåíÛ··iÓFIŠ¡C‡ !öíÛ'¹…øøøÎ;;::z{{92//¯\ S‚cýúõËq7B0nŸþùÈ‘#Ç7xðàÛ·o‡„„DFF>þ–óóó?úè#%)ê?^ñÌ3ÏÈláøñã;v¬T©Ò‡~èââæïï_.—H¦¤¤<óÌ3UªTY³fÍâÅ‹ãââîÝ»W!û×Äpªcáååkaa!„;v¬““SLLLPPÐcnÙÂÂbæÌ™E[nÞ¼9sæLssóÞ½{ËláôéÓsæÌ=z´òr̘1sçÎ]¶lÙ Aƒ³¶””33³úõëgff*- 4ˆˆˆhÚ´iìcBp h4j¾»N÷ÀY°²²RR£"##C‘››[rÉüüüM›6=h;¯½öÚÃkعsç AƒRRR.\èéé)S¶««khh¨þå矾hÑ¢ÈÈÈbÁ± …¥¤¤N™2¥wïÞ–––6l1bD÷îÝìììÊoÇ›‚#åà!ÑM]{÷îݲeË©S§’““Ož<ù sÁ999Ý»wpØÃ . :422ÒÓÓsëÖ­íÛ·—¬­aÆúD+„°±±ÑjµÉÉÉ_ØÎ;­¬¬•—ýû÷ÿûï¿?ú裵k×0 b÷¸QãGŒÖÝ»wƒ‚‚üýý£££===G•˜˜ø !7;;;݃=è-V­ZÕ°aÃC‡-^¼ø¯¿þ’O¥²°°°²²züÂÜÝÝõ©QÑ©S'!ÄÉ“'Õ8ƃGŒV\\\TTÔ¼yó†®o|ЈcÎGFF¾ýöÛ¯¿þú¢E‹ªV­ú¨å)ßúAǼ¼¼ÄÄD%á=Naçϟ߸qcûöí4h oÌÎÎBÔªU«¢öµi 8`´ÒÒÒ„EóÓÚµksrrJ¨{Ô3Â:nìØ±5jÔˆˆˆ077/CyW¯^?þˆ#”—S§NÍÎÎîÓ§Ïcfmm=zôh??¿mÛ¶YZZ ! çÌ™caaѱcÇ ÞåFŽà€Ñ °±±8p`ß¾}=<<öíÛ·}ûvgg縸¸èèè.]º]X9#,¿ñÄÄÄS§N5hÐàý÷ß/6«gÏžAAA«V­2dÈ{ï½÷õ×_—º…Ê•+92..ÎÇÇgïÞ½Û¶mëܹsÏž=‹-ö¨…¹¸¸L™2eܸqžžž]ºt±··=räÈŒ3¼½½U<F€à€ÑªY³fTTÔ'Ÿ|2þ|WW×€€€ãÇÿñÇŸ|òÉ7ß|S,8>*å!Û‰‰‰‰‰‰ÅfÕ¯_?((èÞ½{YYYy¦÷СCëÔ©³|ùò-[¶Ô®]ûÓO?ýì³ÏÊ¥ãcÇŽ­W¯Þ—_~¹bÅ ++«ÆGGG¿üòË¾Çæ‘"}úÄÇÇwìØqûöíj×õÔ³P»ð´úä“OªU«vøða;;;!Ä„ ¼½½§L™òþûï«X•N§0`€Ý±cÇ\]]…“&MjÚ´é˜1cþûßÿª½ÏžnŒ8`äÂÂÂ7nlccãèèØ¼yó•+W–ËfïÞ½{òäÉW^yEIBÿ´´´¼¼<ÉÄÇÇwîÜÙÑÑÑÛÛ{äÈ‘ò+>Djjjrrò€”Ô(„°··1bÄáÇ?^þû×”0fŸþùÈ‘#Ç7xðàÛ·o‡„„DFF>þ–ÍÍÍ;6mÚ4}K~~þ‰'7nlmm-³…ãÇwìØ±R¥J~ø¡‹‹KXX˜¿¿~~þcvñâE!„‹‹KÑFwww!ĉ'Ê{›NU`Ì"""¼¼¼bcc-,,„cÇŽurrЉ‰ zÌ-[XXøøø(ÓË—/OIIÙ´iÓ•+W~þùgÉ-œ>}zΜ9£GV^Ž3fîܹ˖-4hÐãöÜsÏ !öîݪoܱc‡âÊ•+°MÁ€ò¡µÞZ'tšuàÀ+++%5 !222„¹¹¹%—ÌÏÏß´iÓƒ¶óÚk¯=¤€/¾ø"%%EѱcÇZµjI–íêêZ4Û}þùç‹-ŠŒŒ,µ0WW×^½z­]»vöìÙýû÷×ét?ýôÓÂ… …ÙÙÙå¹ßMÁ€òñô¦"‡½{÷nÙ²åÔ©SÉÉÉ'Ož|Ð¹àœœœîÝ»?°wº‡õ.99977wß¾}ï¿ÿþK/½”˜˜XìLq©6l¨O´B­V›œœüø…-\¸0++küøñãÇWv§Ÿ~úùçŸÛÛÛ?}nĸÆ£u÷îÝ   ÿèèhOOÏQ£F%&&êïe)ÆÎÎN÷`ÿú^•+W œ5kÖÍ›7ׯ__¶‚-,,¬¬¬¿0ggç-[¶ìÝ»wáÂ…¿ýö[RRRÆ …5kÖTïhF0ZqqqQQQóæÍ>|¸¾ñA#ŽzFxÓ¦MÝ»w_±bÅo¼¡otppÿ6<©§ êóòò;uêô˜… !Ž;VµjÕ-Z´hÑBiÙ¶m›F£iÙ²eEïsãFpÀh¥¥¥ !4h oY»vmNNN©ÁîQÏ7oÞ\ñã?¾þúëÍÿ®ïüé§Ÿ„ú¸öpW¯^?þˆ#”—S§NÍÎÎîÓ§Ïc&„øàƒNž<™””¤ÜL˜˜¸bÅŠnݺ)/QfGŒV@@€ÍÀûöíëáá±oß¾íÛ·;;;ÇÅÅEGGwéÒ¥èÂÊaù;99Mœ8qÊ”)~~~;wÖh4[¶l9pà@hhhãÆ…«V­2dÈ{ï½÷õ×_—º…Ê•+92..ÎÇÇgïÞ½Û¶mëܹsÏž=‹-ö¨… !¦NÚ¥K—æÍ›÷èÑãþýû«W¯¶¶¶þöÛoÕ> O=®qÀhÕ¬Y3**ªzõêóçÏ ³¶¶>~üøÌ™3³³³¿ùæ›ÇßþäÉ“úé'ssó… .Z´¨R¥J¿üòKXX˜2÷Þ½{YYYy¦÷СC.\xåÊ•yóæ]¿~ýÓO?ݸqc¹t¼S§N1115kÖüñÇ£¢¢zöìù×_Õ©Sç‰ìuc¦yÔ¥Õj“’’Ô®ÿššÊß CÃA1L—ÅùG²téÒ„„„yóæ©]ÈÔᘚìÇ€GP!þþûï;v4iÒDíBPnŽ BìÛ·¯Aƒo½õ–Ú… Üps ¨jWòĈ#¤ …à)GH!8@ ÁRŽBp€À£Ñjµj—¨ƒàÀ#HJJzÂšZ§Nµû Á©jH"8@ ÁR¸Æ¦B£Q»g<×létjWOÁ&¡nÝ:|µcºÞ_£!;0 œª€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH±P»€'dÍš5«W¯NII©\¹rÛ¶mÇŒãààðå³²²æÍ›wèС´´4ggç† 6¬nݺj÷@5&1â6iÒ¤3gÎøùùÙÚÚ®[·nРAyyyZ>;;û•W^Yµj•" àÙgŸŠŠ JHHP»+ª1þà˜””îêêûÎ;ï?~|îܹZeþüù7nÜøðÃ7nÜöË/¿Ìœ93??Ú´ij÷@5ÆW¯^]XXêâ⢴Œ?ÞÎÎ.::º°°°ÔUöíÛgmm=xð`}KÏž=«U«vòäÉ‚‚µ; ãŽ433k×®¾ÅÜܼM›6‡.u{{ûöíÛ[YYm|æ™gîÝ»wïÞ=µ; #¿9F§Ó¥¤¤8:::::m÷òòB\¼x±Y³f%×Z±bE±–ƒ^¸pá…^°¶¶V»Oê0òà˜››[PP`oo_¬ÝÎÎNqóæÍ‡¯~äÈ‘uëÖ¥¦¦9r¤fÍš³gÏ–|_­V[¬%&&Fíaâꤦ¦ª]þ!--MíÊ‘ñ|ÀŒë¸ Šê^~ùeµK0F•[§mllеÛÚÚ !nݺõðÕ“’’Ö®]«Óé„>>>•*U’|ߤ¤$µ»ŽâêÔ©£v (Θ }A…â ¨«ä×zÉ"aä×8ÚÛÛk4šÜÜÜbíwîÜÿ7îøo¾ùfbbb\\ܸqãbccûô飬`‚Œ<8ZXXØÙÙ•YÌÎÎBèï³~FãììÜ¿ÿ7ÞxãêÕ«±±±j÷ @F…®®®JRÔS®Fruu-¹|rrò'Ÿ|]¬ÝÇÇGqíÚ5µ; ãŽ{öìÑ·ètº]»v988øúú–\¾jÕª¿ýöÛºu늵_¸pAp• 0aƃƒƒÍÌÌ,X ¿<1<<<==½W¯^–––JKNNNjjªrÛš«««V«‹‹Û¾}»~#§NZ¹r¥­­­ŸŸŸÚP‡‘ßU-„pww3fÌìÙ³_}õUÿóçÏÇÇÇûøø 8P¿Ì®]»FŒáéé¹qãF!Ä´iÓÞzë­ÁƒûúúV¯^ýúõë‡B|ùå—NNNjw@Æ…ýû÷wvv^¿~}TT”››[HHHhh¨òDžR5nÜxÓ¦Mß|óMBBBbbbµjÕ:uêôÑGyzzªÝÕh”‡¢iµZžãhh4Á'ÝФ¦¦ÍEÃÆô3¦ãb48(Èd¿ëÿG” ‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€à Ž_}õUJJŠÚU †ÃÃûuëÖ«W¯ˆˆˆ›7oª]þ?à Ž|ð‡‡GBB´iÓüýý{ïÞ=µë€°P»€9räˆ#>½}ûöíÛ·W­Zµ[·nÝ»wá…Ô.Àtit:Ú5”.??÷îÝ‘‘‘Û·oÿûï¿…µjÕêÞ½ûk¯½æáá¡vu£Õj“’’Ô®ÿ ÑCý¤›®ÔÔÔ:uê¨]Eù0¦˜1£ÁA1@&û]oX§ª‹²°°hß¾}XXؾ}û&Nœhmm}þüùo¾ù&00ðí·ß^¿~}AAÚ5˜Ã:U]Lffæ¶mÛbbböíÛ—ŸŸ/„pvv¶´´BˆÍ›7 !fΜxîܹ—_~ùçŸ T»LSdXÁñôéÓÕªU{çw”—û÷ï¯T©’¿¿¿¢víÚõêÕ;{ö¬Ú5˜(Ã:U••åää¤Lçççÿõ×_ 6¬T©’ÒR¹råôôtµk0Q†5âèîîž––VPP`nn~øðá¿ÿþ»yóæÊ¬Â´´4ggç²myÍš5«W¯NII©\¹rÛ¶mÇŒãààðåóòò~ýõ×µkצ¥¥U©RÅËË«ÿþ­ZµR{¨Æ°Fýüü²²²æÏŸéÒ¥ùóç !Ú´i£ÌZ¶lÙÍ›7ëׯ_†Í†……Mš4éÌ™3~~~¶¶¶ëÖ­4hP^^Þƒ–ÏÏÏïׯßÌ™3¯_¿Þ¢E‹úõëïß¿¿ÿþß}÷Ú{@5†5â8hРÈÈÈ… .\¸PѨQ#åÙ¯¿þú±cÇ„ýû÷Ôm&%%…‡‡»ºº®]»ÖÅÅE1}úôåË—Ï;÷ÓO?-u•Õ«W=z´iÓ¦?üðƒµµµ"999$$ä»ï¾kß¾}ƒ ÔÞO*0¬G_ýµ]»vÕªUkݺõ¼yó”§6¦§§W­ZuÖ¬Y/½ôÒ£nsõêÕ………¡¡¡JjBŒ?ÞÎÎ.::ZyèOI111Bˆ‰'*©Qáééùá‡üùçŸjï$uÖˆ£ÂÓÓsñâÅÅ#""ÜÜÜÌÌÊsܬY³’«¤¦¦ÚØØøøø+LqñâEµ÷€: .8–ÊÃãl+êtº””GGGGGÇ¢í^^^Bˆ‹/–/^laQ|Ïœ`Æu\ŒEu/¿ü²Ú% à Ž[·n U¦ÍÍ̓ʭÓ666ÅÚmmm…·nÝú×-¬\¹òË/¿,((øê«¯ô™|¸¤¤¤'ºã ¡N:j—€âŒé ÐT(ŠºJ~­—!2†—.]*„èׯß!C”AÁÇdoo¯Ñhrss‹µß¹sGü߸ãCì߿ʔ)gΜqss›1cFË–-ÕÞCª1¬à˜’’R½zõqãÆ•í>˜RºgaaggWrd1;;[¡¿Ïº¤{÷îÍ™3'""ÂÊÊjذa Ðßa `š (8Þ¿ÿöíÛ 6,¯Ô¨puuMIIÉÎήZµª¾Q¹ÉÕÕµÔU Gµyóæ:Lž<ù!ùÀtÐsÍÌÌììì’““ôxŲ ,((سg¾E§ÓíÚµËÁÁAyºxI›7o~ë­·¾ûî;R#€Â€‚£¹¹ùû￟žžVŽ› 633[°`r]£"<<<==½W¯^–––JKNNNjjªrÛšN§[±bE•*UƧö.0 tªZѵk׋/†‡‡ÇÇÇwéÒ¥zõê•*U*¶LÑGyËpww3fÌìÙ³_}õUÿóçÏÇÇÇûøø 8P¿Ì®]»FŒáéé¹qãÆ7n\¸pÁÚÚºoß¾%·Ö£Gµ÷€ +8*Ç?~üx©Ë”áI7ýû÷wvv^¿~}TT”››[HHHhh¨òDž’”qǼ¼¼„„„’s¹±˜,Ã Ž¯¾újm9(((((èAs»víÚµkWeºI“&<… $à ŽsæÌQ»”ΰ‚£^VVVBB•+WÜÝÝ[µj•žž.ù“-¨ 322.\¸víZå×ß}÷ÝV­ZõèÑÃÇÇgæÌ™j`¢ èqzôhÛ¶mcbbfÍš¥o_½zõk¯½vîܹåË—«]#€‰2¬àxàÀssó3fT®\¹h»¹¹ùgŸ}V¹r娨Xµk0Q†ëÔ©Sê}0¶¶¶uëÖ=þ¼Ú5˜(à Žvvv999š›™™Y¥Jµk0Q†½½½¯\¹RêoÆ$&&^ºt©Aƒj×`¢ +8¾ñÆfÔ¨Q'Ož,Ú~òäÉÐÐP!D÷îÝÕ®ÀDÖs[µjõþûï/Y²¤gÏžuëÖBlݺuïÞ½gΜ),,ìÑ£GçÎÕ®ÀDVpBŒ=ºiÓ¦³gÏ>{ö¬âÒ¥KBggç‘#G}²#ž0ƒ ŽBˆ€€€€€€ÌÌ̳gÏÞ»w¯nݺ®®®j`ê 18*š6mªvø•ƒãÊ•+u•¾}ûª[3€iR98N:õQW!8¨Bå਀A°P»€ —””îêêºvíZ!ÄôéÓ—/_>wîÜO?ýôAkeggŸ>}:22ò—_~Q»ÁøGW¯^]XXª¤F!Äøñãíì좣£ ´VPPPß¾}IzÆ?âxðàA33³víÚé[ÌÍÍÛ´iyøðáfÍš•ºÖôéÓïÞ½+„X±bÅÞ½{Õî€úŒ<8êtº””GGGGGÇ¢í^^^Bˆ‹/>(8¶nÝZ™Ø±c‡Ú0Fsss ìí틵ÛÙÙ !nÞ¼YAï«Õj‹µÄÄĨ½3L\ÔÔTµk(¯®ãèKZZšÚ%”#ãù€×q1ÆsPžÚ?_/¿ü²Ú% #ŽÊ­Ó666ÅÚmmm…·nݪ ÷MJJR»ë(®N:j—@_Œ¶#ôÍhÊSÚ‘’_ë%GˆL„‘ßcoo¯Ñhrss‹µß¹sGü߸#dyp´°°°³³+9²˜-„Ðßg €eäÁQáêêš‘‘¡$E=å WWWµ«xjp ,((سg¾E§ÓíÚµËÁÁÁ××WíêžÆƒƒƒÍÌÌ,X \×(„OOOïÕ«—¥¥¥Ò’“““ššj<·­T#¿«Záîî>f̘ٳg¿úê«þþþçÏŸ÷ññ8p ~™]»v1ÂÓÓsãÆj× ` Œ?8 !ú÷ïïìì¼~ýú¨¨(77·ÐÐPå‰<¤Ñétj×`l´Z-Ïq440šOºFhtÂ:“ššú”>Ñ­$cú€Óq1FsPŒæÏ—0áïzã¿Æå‚à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#¤ …à)GH!8@ ÁRŽBp| 5kÖûúú¶jÕj„ ™™™jW•—_~YíP Ž‹â ÀpK6iÒ¤3gÎøùùÙÚÚ®[·nРAyyyj× ‚c)’’’ÂÃÃ]]]cbbÂÃÃcccßyçãÇÏ;WíÒTCp,ÅêÕ« CCC]\\”–ñãÇÛÙÙEGGª]€:Ž¥8xð ™™Y»víô-æææmÚ´ÉÈÈ8|ø°ÚÕ¨ƒàXœN§KIIqttttt,Úîåå%„¸xñ¢Ú¨ÃBí NnnnAA½½}±v;;;!ÄÍ›7ÿu §“Nk„Fí~àŸtÆsH¼´^Z¡U»Šò¡ÕIG„HÒÍ'̨úb4Œæ è4:#鉗ðR»u‹Sn¶±±)Önkk+„¸uëÖ¿nA'tjwF-Ií ìŒå+ÒTÿsªº8{{{F“››[¬ýÎ;âÿÆLÁ±8 ;;»’#‹ÙÙÙBý}Ö¦†àX WW׌Œ %)ꥦ¦*³Ô®@ÇRìÙ³GߢÓévíÚåàààëë«vuê 8–"88ØÌÌlÁ‚ÊuBˆðððôôô^½zYZZª]€:4:±ÜßT®–-[6{ölÿóçÏÇÇÇ{{{/[¶¬äczLÁñ"##ׯ_üøq77·_|144Ty"€i"8@ ×8@ ÁRŽBp€‚#¤ …à)Çr³fÍšàà`__ßV­ZM˜0!33SíŠL]^^ÞþóŸW^yå…^ð÷÷0`ÀŸþ©vQøÿ._¾Ü´iÓ1cƨ]„âĉC‡ ðóó Ù¿¿Ú™º{÷î-Y²¤gÏž¾¾¾íÛ·>|xrr²ÚE™¨³gÏjµÚcÇŽ•:×Ô¾ý Žå#,,lÒ¤IgΜñóó³µµ]·nÝ AƒòòòÔ®Ëtåçç÷ë×oæÌ™×¯_oÑ¢Eýúõ÷ïßß¿ÿï¾ûNíÒ „:nܸqúŸƒ‡º¶oßÞ§OŸíÛ·»¸¸øúú9räwÞÙ¾}»Úu™®‚‚‚wß}wîܹ™™™þþþ±±±¯½öÚÁƒÕ.ÍEDD¹¹¹JËéÓ§_|ñÅ üõ×_jWݲe˼¼¼¼¼¼F­v-¦.++«Y³fÏ?ÿü¡C‡”–cÇŽ5lذeË–jWg¢”¿`Ç¿ÿ¾Ò²wïÞ têÔIíÒLÈ­[·<øÙgŸ)¬Ž=ZlÓüögı¬^½º°°044ÔÅÅEi?~¼]tttaa¡ÚÕ™¨˜˜!Äĉ­­­•OOÏ?ü°  €ÖªKNN {î¹çÔ.B±nݺììì?ü°iÓ¦JKãÆ»té’žž~âÄ µ«3Q‡B¼ûî»JK‹-4hpîܹ›7oª]© êÛ·ï/¿üò LóÛŸàX}úôÊ•+¿ð ™™™ßÿ}ZZÚo¼Áÿ8OLëÖ­•‰;v”œk²ßþÇÇ•››[PP`oo_¬ÝÎÎNüóß‹x’¼½½‹µÄÇLJ‡‡?óÌ3ÅFVð$=ztÉ’%!!!-[¶Tr<ÔuïÞ½Û·oׯ_ÿóÏ?_µj•¾½FóæÍkذ¡Úš(­Vѯ_¿~ýúéCBB&L˜ viø“ýöçTõãRnž²±±)Önkk+„¸uë–ÚB,_¾üý÷ßÏÍÍ5k–“““Ú™¨¼¼¼±cÇÖ¨QcÔ¨Qjׂÿ¹}û¶"%%%**jöìÙû÷ïßµk×°aÃ.]º4|øp#¿9Ô€eggÏš5+''ÇÇÇçÍ7ßìØ±£µµõúõë¹ÕÝp˜ì·?#ŽËÞÞ^£ÑäæækWž3¢üË*Ú¿ÿ”)SΜ9ãææ6cÆŒ]ª‚'`öìÙiii«V­â¨á°²²R&fÍšÕ¾}{ezèС—/_^·nݦM›z÷î­v¦hìØ±ÿýïÇÿÞ{ï)-—/_~óÍ7GŒ±aƺuëª] L÷ÛŸÇÇeaaaggWòßÙÙÙBýVxòîÝ»7}úôwß}÷òåËÆ ‹ŽŽ&5ªèÀ«V­úàƒ¸ßÂ ØØØXYYY[[mïСƒâÔ©SjhŠ®_¿¾cÇŽúõëëS£ÂÝÝ}È!÷ïßÿý÷ßÕ.B˜ð·?#ŽåÀÕÕ5%%%;;»è5Ë©©©Ê,µ«3Q………£FÚ¼ys‡&OžlÄÿ?-”½PnQ,Ú¾aÆ 6xzznܸQíM”‹‹KVV–F£)Ú¨Œ ççç«])ÊÈÈBÔ®]»X»2ÐxãÆ µ Äÿ˜æ·?Á±&%%íÙ³§[·nJ‹N§Ûµk—ƒƒƒ¯¯¯ÚÕ™¨ˆˆˆÍ›7¿õÖ[“'OV»!D­Zµôÿƒ(nݺçîîîëë[­Z5µ 4]?ýôÓéÓ§•»AÊÃDxÖ¦*j×®mnnžœœ¬ÓéŠú¤¤$!DýúõÕ.ÿcšßþœª.ÁÁÁfff ,Ðÿ~Zxxxzzz¯^½,--Õ®Îétº+VT©Reܸqjׂÿiݺõ×ÿ4räH!D³f;þúë±cǪ] éêÑ£‡bÒ¤Iúû@Oœ8ñÃ?ØÙÙuìØQíêL‘µµu›6mΟ?ÿí·ßêŸ#œœüý÷ßWªT©ØEP‘i~û3âXÜÝÝÇŒ3{öìW_}Õßßÿüùóñññ>>>T»4uãÆ .X[[÷íÛ·äÜ=z„„„¨]#`(4h0räȯ¿þúå—_nÖ¬YnnîÁƒ5ÍôéÓŸ}öYµ«3QÓ¦MëÝ»÷÷ßåíí‘‘ñßÿþ·°°pÒ¤IõêÕS»:üi~ûËGÿþýׯ_åææªÜ“'/--M‘———Pr.·ÈÅ|ðÁNNNË—/ß»w¯ƒƒC``à°aÔ_Z‚*œœœ¢¢¢-Z·sçN‡¶mÛ<¸Q£Fj—†0ÁoN§S»<¸ÆRŽBp€‚#¤ …à)GH!8@ ÁRŽBp€‚#Ó2fÌ­V»sçNµ  ,Ðjµ+W®T»Ep€ µ àääÔ´iSµ YGP‡ÚUÀ#àT5œ‚‚‚û÷ï«]Gpðt˜4i’V«3gN±ö'NhµÚ–-[æçç !ÒÓÓ¿þúë®]»6iÒ¤I“&ݺu›5kÖµk×´Yå^™}ûök÷öö~饗жüùçŸüq‡üüüÞyç Ëv—.]š}233çÝçÎ;`À€ØØØüü|—C‡ÍŸ??$$$##CY 999((è—_~ÉÈȨW¯žN§Ûµk×Ûo¿½}ûöGz£Å‹õÕW–––-Z´°³³;räÈG}]ê¾¾¾ ¸víÚÌ™3õ_~ùå•+W† Ò¸qã'};‚#€§ƒŸŸŸ‹‹ËÅ‹ÿúë/}caa¡ªzöì)„X·nݹsçÚ·oÿ矮_¿~Æ qqq~~~—.]Ú¶m[™ßzÇŽK–,©Q£Æš5kvîܹiӦݻw·mÛöèÑ£ .T–™;wnNNÎàÁƒ÷îÝ»nݺ]»vMœ8Q§Ó}óÍ7ô^«W¯4hО={þóŸÿlÙ²¥_¿~BˆåË—?hù?þØÓÓsݺu{öìBìÛ·ï×_mÔ¨ÑàÁƒÕ;VŒÁÀÓÁÌ̬[·nâŸƒŽ‡ºv횯¯oýúõ…ùùù£G¶±±Q¨Zµª2Tyþüù2¿õìÙ³…óæÍÓá999Í›7ÏÕÕuíÚµYYYBˆS§N !‚ƒƒÍÍÍ•eúôé3dÈ:<Ò{5nÜxÔ¨QfffJ—‡ "„8wî܃–·´´üòË/-,,&Mštýúõ‰'Z[[Ï;W_”#‚#€§†‹ž·UÎS÷êÕKyùÑG-Z´¨^½zúnܸ±iÓ¦ÇyÓÌÌÌÔÔÔºu뻺råÊ-[¶ÌËËKHHB(ÉuüøñP®¶´´´>|ø°aÃéíºtéRô¥¹¹¹N§{È*ÞÞÞ}ôÑÕ«W_{íµK—.7®víÚu ˜6Çà©áããS»vísçÎ%%%iµÚüüü˜˜kkë®]»ê—¹téÒîÝ»:tñâÅ .<æ¥Bˆ³gÏ*ÿÕjµ¥.påÊ!Ä”)SBCC8ðöÛo[YYy{{7oÞ¼S§NÞÞÞôvÕ«W/C‘|ðÁÖ­[Ož<ùâ‹/öéÓ§\÷:üGO“   ùóçÇÄÄhµÚ={öܺu«gÏžúÓ«V­š6mZ~~~Íš5›5kÖ¡C‡† ¦¦¦N:õ‘Þ¥  @?ÈwïÞ=!„‡‡ÇƒN:»»» !ªW¯¾fÍš#GŽìÞ½{ÿþý ‡^¸païÞ½§M›¦Ñh$ߺR¥JeØ-wîܹqã†âìÙ³YYYööö(˜"‚#€§‰>8>\9­?O}çÎ/¾ø¢R¥J‹/nݺµ~•«W¯>ê»\¾|¹°°P™®[·®¢råÊ&LxøZFyâÞ½{{öìùä“OÖ®]Û¾}ûÀÀÀ Ý-“'O¾~ýz“&M>>^ÿÅÈ‘# GŽ™˜˜¨´Ü¹sç“O>IHHðññqrrrss»}ûö±cÇ–.]ªªT*u‰ÅÊ&$bbÑäî»f4¨¼`ÂIîù|þ2ï=iÞóöÜ{¾œû+“ÍfìIAÒ cŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDÉÛpüÃþP^^þ /|ì­óçÏŸ0aÂ!C¾üå/_sÍ5Û¶mÛ·mÒ#oÃñž{îù¤›fÍš5mÚ´×_}èСݺu[¸páÅ_ÜÐа·Û¤J¾…c]]ÝóÏ?ýõ×ÿû¿ÿûÇnPUUUQQÑ»wïÇ{¬¢¢bÉ’%“&MZ»víÌ™3÷j€´É·p<í´ÓÎ=÷Ü_ýêWŸ´AeeeSSÓäÉ“{õê•™:ujqqñâÅ‹›ššâ·H›| ÇéÓ§Ï™3gΜ9ÇÿØ V®\YPP0f̘æ‘N:5ª¶¶vÕªUñÛ¤M¾…ãˆ#ÆŽ;vìØC9d÷[³ÙluuuYYYYYÙ®ã !lذ!r€*LzûU}}}cccIII‹ñâââÂÖ­[#·ùtåååIï(Іªªª’žB2Ò޹·EwíÚµÅx·nÝBÛ·oÜfR{<µ‘òòrKÚŠ¬g«³¤­Î’¶.ëÙêR»¤ùöTõ§+))Éd2õõõ-ÆwìØþtM1f€JW8ï~Õ°®®.„{uÌ6)”®p !ôîÝ»¶¶6WÍÖ¯_Ÿ»)~€´I]8Ž;¶±±qÙ²eÍ#ÙlvéÒ¥¥¥¥C† ‰ß mRŽ&L(((˜={vî5‹!„ŠŠŠ-[¶Œ?¾sçÎñÛ¤MºÞUBèÛ·ï”)Sf̘qúé§9²¦¦fÅŠƒ¾è¢‹öjö§t¾s­íXÏVgI[%m]Ö“Ö’ºp !\xá…tТE‹}ôÑ>}úLœ8qòäɹOÛÙ«mR%“Íf“žC¾Iíg;@J¤ö\Ÿº×8°o„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q “ž´”Éìaƒl6é)@* GÚÝ»0“‹tèÐnݺ-\¸ðâ‹/nhhHzú‰I]8Κ5ë¿þë¿Î9çœ%K–Üzë­ÿñÿqÝu×UWWßxãÍÛTUUUTTôîÝû±Ç«¨¨X²dɤI“Ö®];sæÌ¤§˜t…c6›?~Ïž=¯¾úêN:åÏ=÷ÜáÇ?ñÄï½÷^n¤²²²©©iòäɽzõÊL:µ¸¸xñâÅMMMIï@2ÒŽ7n¬¯¯4hÐ°ëø°aÃþøÇ?>ýôÓ¹W®\YPP0f̘æ :uê4jÔ¨ÚÚÚU«V%½ÉHW8„v©âÎ;Cï¼óN!›ÍVWW—••µx»ÌÀC6lHz'’‘®wU÷íÛ·{÷î/½ôÒ;ï¼Óü4ô‡~øøã‡6oÞB¨¯¯oll,))iñ»ÅÅÅ!„­[·Æü¡òòò#UUUIï=°/v?­§VºÂ1“É\tÑE·ÜrË¥—^zÝu× 8ð7Þ¸ù曫««C|ðAøÓõÈ®]»¶øÝnݺ…¶oßó‡d"äÝOë©MÉt…cáÛßþöo¼ñàƒž}öÙ¹‘¾}û~ûÛßþÅ/~ѽ{÷BIII&“©¯¯oñ‹;vìºîB© ÇN:ýä'?™0aÂÊ•+·lÙrÔQG|òÉ>ø`áóŸÿ|¡°°°¸¸x÷+‹uuu!„æ'¸Ò&uá˜ó¥/}éK_úR󹧪9æ˜Ü½{÷®®®®««ëÑ£Gó6ëׯÏÝ”ôÜ’‘®wU‡þùŸÿù /Üõ{b>øàƒ%K–ôìÙsРA¹‘±cÇ666.[¶¬y›l6»téÒÒÒÒ!C†$½ÉH]8–””<ýôÓ·ÜrKîÇÆÆÆýèG;vì8ï¼ó ÿïúë„  fÏž{]c¡¢¢bË–-ãÇïܹsÒ{ŒL6›MzûÕŽ;¾þõ¯×ÔÔ <¸_¿~/¼ð¦M›N8ᄹsç6—Laîܹ3fÌ8äCFŽYSS³bÅŠAƒÍ;w÷éÙ]yy¹wU·®L&¤ì8m[Ö³ÕYÒVgIiçR{®O]8†¶nÝzûí·ÿö·¿Ý¶mÛa‡vê©§^xá…»_J|øá‡-Z´víÚ>}ú 6lòäɹOäÙ£ÔLmÇ)¤uYÏVgI[%¥Kí¹>áØÖR{0µ§Öe=[%mu–”v.µçúԽƀ}#ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆR˜ô€V–Éìaƒl6é)Ò1 GÈ7-º0“QŠ´OUE8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8¥0é Юe2IÏ =Í$›MzÐöÚÃ}­ýÌĽZŽìÇÍf™ŒÕ çÍÜë¡OUE8E8%¯qܹsç¿ýÛ¿-^¼xýúõ¥¥¥ÇsÌ÷¿ÿý´Ølþüù•••ÕÕÕ]ºt=zô”)SJKK“ž;@bRwű±±ñüóÏŸ9sæ¶mÛFŽyÈ!‡,Y²äïÿþïW®\¹ëf³fÍš6mÚ믿>tèÐnݺ-\¸ðâ‹/nhhHzú‰I]8>ðÀ«V­7nÜþçÞ~ûí÷ÜsÏ/ùË´iÓš·©ªªª¨¨èÝ»÷c=VQQ±dÉ’I“&­]»væÌ™IO 1© ÇU«V…Î?ÿüÂÂÿ{šþÄO<ꨣÞxã­[·æF*++›šš&OžÜ«W¯ÜÈÔ©S‹‹‹/^ÜÔÔ”ô$#uáØ§OŸBs#†²Ùì»ï¾[PPМ’+W®,((3fLó6:u5jTmmm®;R(uáøµ¯}íÀœ>}ú³Ï>ÛÐÐðöÛo_{íµ7nœ0aB=BÙl¶ººº¬¬¬¬¬l×_8p`aÆ Iï@2R÷®êòòò{î¹ç‚ .¸à‚ š'NœxÍ5×äþ»¾¾¾±±±¤¤¤Å/‡?¿Tùé¥ÅHUUUÒ»y¨=|+]»š‰¯9¶°ûi=µRŽuuu?ýéOßÿýÁƒsÌ1µµµË—/_´hÑ 'œð•¯|%„{ët×®][üb·nÝBÛ·où+2ö©Ô¬Ä+äŸÝOë©MÉÔ…ã•W^ùûßÿ~êÔ©ÿøÿ˜yûí·¿ñoüà?x衇?üð’’’L&S__ßâwìØþtÝ …ÒõÇwÞyç©§ž:âˆ#š«1„зoßï~÷»~øá¯ýëBaaaqqñîWëêêBÍï³H›t…cmmm¡ÿþ-Æ?üðÂæÍ›s?öîÝ»¶¶6WŠÍÖ¯_Ÿ»)éHFºÂ±ÿþ:uZ·n]öÏ_•{íÂG‘ûqìØ±Ë–-kÞ ›Í.]º´´´tÈ!Iï@2ÒŽEEE£Fª©©¹ýöÛ›?Ê{ݺusæÌùÜç>wÒI'åF&L˜PPP0{öìÜëC[¶l?~|çÎ“Þ €dd²){Gâ–-[Î:ë¬M›6õïßРAµµµ¿ÿýš¦M›vî¹ç6o6wîÜ3frÈ!#Gެ©©Y±bÅ AƒæÎ»ûÇô쮼¼ë÷Jñ­åÓÁä±fWy³y³#y¶/Ÿpluy³y³#íG>ë÷Jº^ãÀ>KÝ€C‚ÚÏ{´“™¸BÞk'÷µö3÷úŽN8Â~åA³Y;9A[s¯oæ^Ÿ^›>Ì9‘@ª¸Ë“7„#{!=}ûáÇéYÌ]ÉñÖå*N’Âã³™5ŸGHLÚN$r¼u9·5/ÆmÔ<#Ù;ixàó0×öÛª¦á ŽÒ+%Çg3jþŽìµ´=𵩔,¦“G’’crÚî MÏ »ãç%áfÿ?ÒåýYÄ’¶º¶^Ò¼_ÀÄ¥a…Uc¾Žì‹|}ÔKê‘._×3Ay¼¤ÎÇû×ã~FŽÒ<&¡]È׳H‚ç¼\R/ÝDÏgdó›pdåßyŃ]«³¤ZþÝÇÛ›¼\a÷ú¼W˜ôèÀ²ÙO{Ù¤írg‘lÈ“%Í$¿¢ùvˆ¶‡%Í{û¹{Üëép„#û.“_íåÊíb­±ícIóê ÝïuñY“7 ¸'‰íl¾,q;¹×Ó¦ñ„#ŸF5æ8¯r €áÀ§IC5úÇ!DŽÅy„#Ÿ( —süãbGA;BáÀÇKÏåF ’pàc¤³]t„O'àÿiGøÂ€–Òy¹Ø#áÀŸQ.:Â'ŽDŽü?—s\t„%àchGØp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp JaÒ€|–É$=h=ÂÚJ6›ô B!d2íe&ttžª Šp Šp Jº^ãØÐÐðÅ/~ñ“n0`À#<Òüãüùó+++«««»té2zôè)S¦”––&½‰IW8f2™£Ž:j÷ñ;w¾þúëÅÅÅÍ#³fͺóÎ;»ví:tèÐššš… ®[·nÞ¼yEEEIï@2ÒŽxà¢E‹v¿å–[Þx㫯¾:÷cUUUEEEïÞ½,XЫW¯ÂôéÓçÍ›7sæÌk¯½6éH†×8†W_}õ¿øÅw¾ó£>:7RYYÙÔÔ4yòä\5†¦NZ\\¼xñ⦦¦¤ç Œ´‡cccã5×\óWõWßýîw›W®\YPP0f̘æ‘N:5ª¶¶vÕªUIO iÇûî»ïå—_¾úê«;wîœÉf³ÕÕÕeeeeee»n9pàÀ† ’ž2@2ÒõÇÞÿý9sæ 6løðá̓õõõ%%%-6νufëÖ­1ÿËååå-Fªªª’Þ]’—Íúò±ÖgI¶¶ûi=µRŽ¿üå/·mÛvÅWì:ØÐÐBèÚµk‹»uëBؾ}{Ìÿ²Lä“´‡oýʧ/k';’OK ìn÷ÓzjS2½OU¿÷Þ{sçÎ:tè!Cv/))Éd2õõõ-¶ß±cGøÓuG€Jo8>òÈ#ï¿ÿþ™gžÙb¼°°°¸¸x÷+‹uuu!„æ÷Y¤MzÃqþüùEEE_ýêWw¿©wïÞµµµ¹Rl¶~ýúÜMIO ) Ǫªª—_~ùä“OÞýµŒ!„±cÇ666.[¶¬y$›Í.]º´´´´ÅóÚé‘Òp\ºtiaذa{ë„  fÏž{]c¡¢¢bË–-ãÇoþÔ€´I黪Ÿ~úéÂqÇ÷±·öíÛwÊ”)3fÌ8ýôÓGŽYSS³bÅŠÁƒ_tÑEIO 1i Ç>ø`ÕªU=zô8âˆ#>i› /¼ð ƒZ´hÑ£>Ú§OŸ‰'Nž<9÷‰<é”Éúð±ÖV^^ž7ŸãèÓév•7«‘7;Ò~äÓ’æÓ¾|vy³y³#íG>ë÷J¯8²W|-¤{=ðI„#Ÿ¦ü Õ¿•a¿i'÷5÷zhŸRú®jö–p Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp JaÒZY&³‡‘l6é)Ò1 GÈ7º6â©j¢G¢G¢G¢G¢G¢G¢G¢G¢øæÈ¾| €V!!ÿéBZ…§ªˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆR˜ô’ñâ‹/þüç?ùå—wìØQ^^~Ùe—ýõ_ÿu‹mæÏŸ_YYY]]Ý¥K—Ñ£GO™2¥´´4é‰$&WŸ|òÉsÎ9çÉ'ŸìÕ«×!CV¯^=iÒ¤'Ÿ|r×mfÍš5mÚ´×_}èСݺu[¸páÅ_ÜÐÐôÜ“Éf³IÏa¿Ú¾}û)§œòá‡Þu×]Çw\aíÚµçž{n=–-[VPPB¨ªª:ãŒ3:è  ôêÕ+„0}úôyóæMœ8ñÚk¯ÝãŸ(//¯ªªJzGóJ&RvœÒÁ8D[%¥Kí¹>uW.\XWWwÉ%—äª1„ð…/|aܸq[¶lyñÅs#•••MMM“'OÎUcaêÔ©ÅÅÅ‹/njjJz’‘ºpüío›ÉdÎ8ãŒ]oºé¦ªªªc=6÷ãÊ•+ ƌӼA§NFU[[»jÕª¤÷ ©{sÌK/½TZZzðÁ?ÿüó«W¯~÷Ýw<òÈSN9¥¨¨(·A6›­®®.+++++ÛõBذaÃñÇŸôN$ ]á¸sçÎ÷Þ{ïˆ#ޏá†î¿ÿþæñ~ýúÝzë­G}t¡¾¾¾±±±¤¤¤ÅnÝó‡ÊËË[Œ¤ó•v?­§VºÂñ½÷Þ !TWWoÞ¼yÆŒcÆŒùàƒ,XpÇwüÓ?ýÓ#·Mß¾}§L™2cÆŒÓO?}äÈ‘555+V¬}ú 6lòäɹOäÙ£Ô~eÛñ­µ´sÑVgIiçR{®Oi8¶©ÔLmÇ)„vÎ!Úê,)í\jÏõ©{#ûF8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8¥0é t0™Ìž³Ù¤g Є#ÀÞ…@jyª€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(…IOZÊdö0˜Í&=EH%áH»£  }òT5Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q “ži—Éìy0›Mz–€p q¢: OUE8E8E8E8E8E8E8E8E8E8E8E8E8¥0é $ଳÎzñÅ[ öìÙóé§ŸÞudþüù•••ÕÕÕ]ºt=zô”)SJKK“ž{J•——WUU%=‹üa=[%m}™LÈf“žDþpˆÒZÒŽo¾ùfQQQÿþýw,))ÙõÇY³fÝyç]»v:thMMÍÂ… ×­[7oÞ¼¢¢¢¤§ŒÔ…c]]ÝöíÛÇwë­·~Ò6UUU½{÷^°`A¯^½BÓ§OŸ7oÞÌ™3¯½öÚ¤÷ ©{ã›o¾Bhq¹±…ÊÊʦ¦¦É“'çª1„0uêÔâââÅ‹755%½ÉH]8ÖÔÔ„=ôÐOÙfåÊ•cÆŒiéÔ©Ó¨Q£jkkW­Z•ô$#¥á¸iÓ¦I“& :tôèÑ—^zé /¼Ð¼A6›­®®.+++++ÛõBذaCÒ{ŒÔ½Æ1W~·ÝvÛa‡vâ‰'¾õÖ[O=õÔÒ¥Ko¸á†³Ï>;„P__ßØØØâ½2!„âââÂÖ­[cþJyyyÒ;šo,i벞­Î’~U¯½ö1£™Ì®?•˜ô4;6‡(­"uá¸iÓ¦¢¢¢+®¸bÒ¤I¹‘gžyæ’K.¹ñÆGŒÑ·o߆††B×®][üb·nÝBÛ·oßãŸð‘ŸÕnÇãÚƒÔ=U}÷Ýw¯Y³¦¹CÇ?ï¼óžxâ‰BIII&“©¯¯oñ‹;vìºîB© Ç5lذÂk¯½B(,,,..ÞýÊb]]]¡ù}Öi“®pÌf³»¤N§NBÝ»wÏýØ»wïÚÚÚ\)6[¿~}w é ÇšššAƒþù-ÆW¯^vyáðرc—-[Ö¼A6›]ºtiiié!C’Þ €d¤+û÷ïÜqÇ=÷ÜsóçÏo\½zõܹsûöí{ê©§æF&L˜PPP0{öìÜëC[¶l?~|çÎ“Þ €ðEÕÐ.e²)»s¾úê«ßúÖ·¶lÙ2xðàÃ?ü­·ÞZ³fM—.]î¸ãŽN8¡y³¹sçΘ1ãC9rdMMÍŠ+ 4wîÜÝ?¦ %RŽ!„wÞyçæ›o~öÙg·mÛÖ¯_¿c=öòË/ïÓ§O‹Í~øáE‹­]»¶OŸ>Æ ›H×kØg€(€(€(€(€(€(…IOöàøÃ¸qã*++=öؤçÒ544<ðÀ ,ظqc÷îÝxá…~ùË_Nz^Ø»ï¾{ë­·>ÿüó7n<è ƒŽ>úèË.»ìðÃOz^yâí·ß>í´ÓN>ùäù—Iz.ÕYgõâ‹/¶ìÙ³çÓO?ôÔèÀ„#íÝ=÷Ü“ô:¼>úè‚ .X³fMqqñ‰'žøÁüîw¿[¾|ùå—_þ½ï}/éÙuHuuu_ûÚ×6oÞ<`À€“N:iÓ¦M>úèã?þÀ}ôÑIÏ®ÃËf³W]uÕŽ;’žHÇöæ›oõïß×A_œËg$i§êêê^{íµ‡~øW¿úUÒséð*++׬YsÜqÇÝu×]EEE!„uëÖMœ8ñŽ;î8ùä“:ꨤ'Øñüìg?Û¼yó%—\òƒü 7òàƒ^}õÕ?þñ±ŸÝÝwßýÜsÏ%=‹Ž­®®nûöíãÆ»õÖ[“ž yÅki§N;í´sÏ=×9¸U<öØc!„ýèG¹j ! 0à’K.illô¤Õ¾yöÙg‹ŠŠ.½ôÒæ‘¯ýë|ðË/¿ÜØØ˜ôì:¶uëÖÍš5ëÈ#Lz"Û›o¾Bhq¹>;Wi§¦OŸþÇ?þ1„pï½÷>óÌ3IO§c[¿~}×®]¼ëà€B6lHzvRIIÉÀ<ðÀ]8à€;wîܹ³9ÐÙ[}ôÑ•W^YZZ:uêÔ .¸ éét`555!„C=4é‰o„#íÔˆ#rÿñÔSO%=—ïç?ÿyaaË;ûË/¿Bèׯ_Ò³ëî½÷Þ#+W®|óÍ7¿øÅ/ªÆÏâg?ûÙ+¯¼2wîÜ=z$=—Ž-Ž›6mš4iÒ+¯¼Ò¥K—Aƒ]rÉ%ÞeÈg$!ÿ 4¨ÅÈŠ+***8à€3Î8#éÙul«W¯^¸páúõëW¯^ý—ù—3fÌHzFØš5kþõ_ÿuâĉÇÏýÆ}–{2á¶Ûn;ì°ÃN<ñÄ·Þzë©§žZºté 7ÜpöÙg'=;:0áéÒØØxß}÷ÝtÓM7ß|sÏž=“žQÇVUUµ`Á‚l6B÷¹¤gÔQ544\yå•ýúõûá˜ô\òÁ¦M›ŠŠŠ®¸âŠI“&åFžyæ™K.¹äÆo1bDß¾}“ž •7Ç@Šüîw¿;í´Ó¦OŸÞ³gÏ»îºëoÿöo“žQ‡÷o|ã•W^Y¾|ùUW]µdÉ’sÎ9LJÈì›3flܸñ¦›nò\«¸ûî»×¬YÓ\!„áÇŸwÞy O<ñDÒ³£Ž ;wîœ>}úùçŸÿöÛo_vÙe‹/>|xÒ“Ê™Læ ƒºð ÿáþá¿ÿû¿—,Y’ôŒ:žçž{îþûïÿÎw¾ãxmjذa!„×^{-é‰Ðyªò_SSÓøÃÇü”SN¹þúë{õê•ôŒ:¶uëÖÍ;wÔ¨QãÆÛu<÷¾õÿùŸÿIz‚ϺuëBsæÌ™3gήã=ôÐC=4`À€Gy$é9v$Ùl¶©©)“ÉüÙå¡N:…ºwïžôéÀ„#ä¿{î¹çñÇÿæ7¿yýõ×'=—|УG|póæÍ-Â1÷Éy‡vXÒìx=ôпû»¿ÛudûöíË—/ïÛ·ï!C>øà¤'ØÁÔÔÔœzê©Ã† kñÍ[«W¯!”——'=A:0áy.›ÍÞ{ï½Ý»w¿êª«’žKžèÝ»wyyùòåËŸ|òÉ“O>97øê«¯Þwß}ݺu:thÒìxFŒÑü \9/¿üòòåË?þxßU½ú÷ïÜqÇ=÷ÜsóçÏŸ0aBnpõêÕsçÎíÛ·ï©§žšôéÀ„#ä¹Í›7ç¾²öÜsÏÝýÖ3Ï}ú$=5:¶LîãÇàÓù8¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢ü/D8ų¿„^”IEND®B`‚statistics-release-1.6.3/docs/assets/vartestn_201.png000066400000000000000000000247651456127120000225350ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A)¼IDATxÚíÝt•õaøñÏ ¡‚Þ$"8¿µVˆ€N96ðC±Û<³-²úƒ¡£Õj-6«e–ž¶;ÕŠ?†]Ñj¶a‹zlAVNqnG-ŠED™FÂXu*‰˜84¹ß?îš±ðS$yrïózýE>÷Iø<äûæóüH&—Ëø$%IO€Â ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆRšôpñÅ¿ôÒK]:ꨧŸ~zï‘E‹-\¸°±±qÀ€&L˜9sfeeeÒsHLÃñõ×_/++;î¸ãö¬¨¨ØûùsçÞwß}åååµµµMMM‹/Þ´iÓ‚ ÊÊÊ’ž>@22¹\.é9ôª–––ÚÚÚóÎ;ïî»ïÞß6 ^xá Aƒ}ôÑÁƒ‡n¹å– L:õ;ßùNÒ{ŒÔ]ãøú믇º,7v±páÂŽŽŽººº|5†fÍš•Íf—-[ÖÑÑ‘ô$#uáØÔÔBøìg?{€mÖ®][RR2qâÄΑ~ýú?¾¹¹yݺuIï@2RŽo½õÖ´iÓjkk'L˜píµ×¾øâ‹är¹ÆÆÆªªªªªª½?qøðá!„­[·&½ÉHÝÍ1ùòûÑ~ô¹Ï}îôÓOã7žzê©•+W~ï{ßûó?ÿóBkkk{{{—{eBÙl6„°cÇŽOü-jjj’ÞK 544$=…d¤.ßzë­²²²o}ë[Ó¦MË<óÌ3×\sÍ­·ÞzÖYg :´­­-„P^^ÞåBصkWÌï’Ú㩇ÔÔÔø#¥/sˆÒÇ9D¹Ôþ‘¦îTõOúÓõë×wVcáŒ3Îø‹¿ø‹¶¶¶ý× !TTTd2™ÖÖÖ.Ÿ¸{÷îðÛuG€J]8îÓØ±cC¯½öZ¡´´4›Ív_Ylii !tÞg 6é Ç\.×ÞÞÞý‘:ýúõ !qÄù«««›››ó¥ØiË–-ù—’Þ €d¤+›ššFŽyÅWtá…Â^7µLš4©½½}ÕªUär¹•+WVVVŽ=:éHFºÂñ¸ãŽ;í´Óž{î¹E‹u¾ð óçÏ:tèŸüÉŸäG¦L™RRR2oÞ¼üu!„úúúíÛ·Ož<¹ÿþIï@2R÷#_}õÕ¯|å+Û·o5jÔñÇÿÆo¬_¿~À€÷ÜsÏýÑun6þü9sæsÌ1ãÆkjjZ³fÍÈ‘#çÏŸßý1=Ý¥öN+H‰Ô¾×§.Cï¼óÎ]wÝõë_ÿzçÎÇ{ì)§œrýõ×2¤ËfK—.]²dɆ † 2vìØºººüy>Qj&H‰Ô¾×§1{Zj&H‰Ô¾×§ëGšp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp JiÒ>­LæS}z.—ôP „#¼—_&# 94œª Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp JÚÃñÍ7ß<í´ÓfΜÙý¥E‹M™2eôèÑgžyæÍ7ß¼sçΤ' ¤T‡c.—»é¦›vïÞÝý¥¹sçΞ={óæÍµµµ\¼xñÕW_ÝÖÖ–ô”“êpüéOúÜsÏuohh¨¯¯¯®®^¾|y}}ýŠ+¦M›¶aÆ;ï¼3é)$&½á¸iÓ¦¹sçžxâ‰Ý_Z¸paGGG]]ÝàÁƒó#³fÍÊf³Ë–-ëèèHzâÉHi8~üñÇ7Þxceeå¬Y³º¿ºvíÚ’’’‰'vŽôë×oüøñÍÍÍëÖ­KzîÉHi8þøÇ?~å•W~øÃyä‘]^ÊårUUUUUU{><„°uëÖ¤çŒÒ¤'€õë×ÿýßÿýÔ©SÏ8ãŒ7vyµµµµ½½½¢¢¢Ëx6› !ìØ±#æ·¨©©é2ÒÐÐô~£ûÛzj¥.ÛÚÚn¼ñÆc=ö†nØß!„òòò.ã !ìÚµ+æw‘‰P4º¿­§6%SŽsæÌÙ¶mÛ#:?8iÒ¤†††U«VunœËåV®\YYY9zôè¤w é dzÎ:묳ÎÚ{dãÆ«W¯3fÌwÜÑ98eÊ”ûî»oÞ¼y&LÈßS__¿}ûö¯~õ«ýû÷Oz'’‘®pŒ4tèЙ3gΙ3ç‚ .7n\SSÓš5kFuÕUW%=5€ÄÇ}›>}ú Aƒ–,Yòøã2dêÔ©uuuùÕG€tÊär¹¤çPljjj<Ç€¾#“ Þí­Ô¾×§ë®jšp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp JiÒ€Þ“É$=;Þ‹r¹¤gPt„#é"&R"­ÜÓœª Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Er¹É$= (XÂ(6™LÈå’žD1ޤ‹EG8h€ÔÑŽÅÍrcÏޤ‘v,Vª±G G H¨Æž&H)‹Žð»ޤ—v,&–{p Õ´cqP½C8…M5öá@ÚYt,hª±7 GÐŽE8@Ú±0YnìeÂ(Hª±÷ Gø ˆjL„p€ÿ¥áJ“ž@_÷é3ºHaÉ·£ïZ_æ”áð >ñýÉ{ô&ãäT5tå„uŸ¥“%`´#t'`ß´c_c¹1qÂ(ª±/ް_ûÕØGG8í„#|í˜,Ë}‡pú.ÕØ§Gød¡û?9¢‰ÇÞ&ûáÑ,õ®œEÇ>Æ©jødò%).èS„#|Õ˜,íØwG8Õ„#ì—jì#,:öÂ(Ú±/ްo–ûí˜8áû ¡;á]©Æ>Ë¢c²„#PH´c‚„#ü–û>í˜áÿK5ÂGøª±€XtL„p ’vì}¥IO ï½÷ÞÝwßýüóÏoÛ¶mРA'tÒŒ3Ž?þø.›-Z´háÂ… ˜0aÂÌ™3+++“ž;=Årc!Ê·£o\¯IÝŠcKKËùçŸÿÈ#„Î>ûìßû½ß{üñÇ¿øÅ/¾üòË{o6wîÜÙ³goÞ¼¹¶¶vàÀ‹/¾úê«ÛÚÚ’ž>=B|@ŒÔ…ãüãwß}÷šk®yì±ÇæÎûóŸÿü‡?üáÇüƒü s›†††úúúêêêåË—××ׯX±bÚ´i6l¸óÎ;“ž>‡žj,hNX÷¦Ô…ã¯ýë²²²k¯½¶säK_úÒÑG½qãÆöööüÈÂ… ;::êêꜙ5kV6›]¶lYGGGÒ{üڱפ.+**Î9çœÃ?|ïÁÃ;lÏž={öìɸvíÚ’’’‰'vnЯ_¿ñãÇ777¯[·.é=àP²ÜX´cïHÝÍ1=ôP—‘µk×¾þúë§žzjYYY!—Ë566VUUUUUí½ÙðáÃC[·n3fLÒ;À¡¡áw’ºpìô /,^¼xË–-/¼ðÂÿûÿoΜ9ùñÖÖÖöööŠŠŠ.Ûg³ÙÂŽ;b¾xMMM—‘†††¤÷€ÿC5™ž»ÃºûÛzj¥7}ôÑ\.B5jÔg>ó™üxþÖéòòò.Û80„°k×®È/žôþ@êôP;v[OmJ¦îÇN—\rÉ+¯¼²zõê›nºiÅŠ—^zéîÝ»C™L¦µµµËöùWóëŽ:ËÅÊÅŽ=*½áBÈd2ƒ š>}ú—¿üåÿú¯ÿZ±bE¡´´4›Ív_Ylii !tÞg @áRÅM;öœt…ã¦M›þú¯ÿzÙ²e]ÆGBxûí·óVWW777çK±Ó–-[ò/%½|*ªZºÂñÈ#ü§ú§Å‹wýõ×CŸûÜçòNš4©½½}ÕªUär¹•+WVVVŽ=:é>EÇ’®p¬®®®©©Y½zõ“O>Ù9øê«¯>üðì­­ÍL™2¥¤¤dÞ¼yùëCõõõÛ·oŸ„pûí·Ÿþù›ÍŸ?Μ9Çs̸qãšššÖ¬Y3räÈùóçwLOw555TÑ"Ä7+=zô{Ú÷úÔ…c¡©©éG?úÑË/¿üöÛo}ôÑ#FŒ¸îºë† Öe³¥K—.Y²dÆ C† ;vl]]]þ‰<Ÿ(µ¤–) ¾Yé!{Bñ§¥ö`‚ÔÒ"Ä7+=„cOH×5Ž4á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@”Ò¤'!„Éä'ærIO(4ý éÜ™Œ@tþcâ_Q§ªˆ"ˆ"ˆ"ˆ"ˆâ®jà`x Iþ@öæ^(VÂ8Hâ€}ÒÐPÄœª Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp ŠpàÉdB.—ô$€#ƒ‘Ë…L&éIл„#p´#]Xn„¢'ƒ§é¤! „#ð©hG‚j„ÔŽÀ§¥SN5BzG¢Gà°è˜Z–!U„#phhÇR6Â8d´cª¨FH!áJÚ1%T#¤“pàw£!µ„#pˆYt(VÂ8ô´c³Üi&¡‹’j„”Ž@OÑŽEF5¥IO€O%=ïÊiØSoÉôeª±ûÄ$¼o.‘„cÁó·½8kç¥ÐÓü-£w8U ô,'¬‹€úò„#Ðã´cAS@'áôíX T#°7áôíXpT#Ð…p`T#ÐpzEG€‚&^¥ ‚åF`Ÿ„#ÐÛ´c§ýŽ@´cŸ¥ð“c€däB&hǾH6û%d2!g]«oRóÀþ9U ÀÿrpÂèm®¢ëã´#°?ÂèUª± hG`ŸÒxc[[Û/~ñ‹G}tÛ¶mGqÄðáçOŸ~æ™gvÙlÑ¢E .lll0`À„ fΜYYY™ôÜ¡°©Æ’oGß/`o© Ç?þøÊ+¯\¿~}6›=ýôÓ?üðÃgŸ}võêÕ×_ýu×]×¹Ùܹsï»ï¾òòòÚÚÚ¦¦¦Å‹oÚ´iÁ‚eeeIï*Rp´#ÐEêNU/\¸pýúõ§vÚÊ•+ò“Ÿ<ðÀ¿üå/+**î¹çžW^y%¿MCCC}}}uuõòåËëëëW¬X1mÚ´ 6ÜyçIO •þ(© ÇåË—‡¾ýíow®6ìšk®iooúé§ó# .ìè訫«}РAK–,yüñLJ 2uêÔºººüy€ý±Ü˜*.v„Êäü¥?Ôjjjzí9ŽþÕ.Eð­,‚]à ø¾“N½ù^ß§¤ëG ‡¨‡Ôr±#¤Šp>-Õ˜rÚÒC8ŸŠjHáÀ§eÑRB8Ïr#´#¤p’j¤ íEO8C5²OÚŠ›p Šp Šp,lÎ §}(±àiÇB§(±hG GH’åF ˆp, ‘j °Çâ¡ ‹j àÇ¢¢€ž#!–(D±ØXtìûT#J8!íØ—©F —p,NÚ±oR4áX´´#ph Gè%–(t±˜Ytì;T#E@89íØ¨FŠCiÒ ÇåÛQ¸pÈù? @ÚGèYÅZíE¹S­X¿Ë]8U NX'EOPL„cZhÇÞ§(2Â1E´coRá@á˜.{‡åFŠ’pLíØÓT#ÅÊãxÒ(—󾞒 9Õ@±Ži”Q7=&gÅ€âåTuêÈšžæbŠ•pLÕØ;´#EI8¦ˆjìMÚ€â#¡§hGŠŒpL ˉЎᘠªøô„cñSɲè@ÑŽEN5öڀ⠋™jì;´#E@8-ÕØ×hG p,Nª±oÒŽ4áX„Tc_¦(\±بƾO;P „#$@;Pˆ„cQ±ÜX@´#G8Õô(áX$Tc!²è@aŽÅ@5.í@ŽO5:í@¡(Mz|*ùàEÀèû„caKIjˆ*è œª Šp Šp Šp Šp Šp Šp Šp Šp ŠŸð b~ªç·ñ£€â >ìÈsª€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(©Çÿøÿ¨©©yñÅ÷ùê¢E‹¦L™2zôè3Ï<óæ›oÞ¹sgÒóHRªÃñÁÜßKsçÎ={öæÍ›kkk¸xñ⫯¾º­­-é)$¦4é $ ¥¥åµ×^[ºtéÏþó}nÐÐÐP___]]ýè£<8„pË-·,X°àÎ;ïüÎw¾“ôô’‘ÆÇ/~ñ‹—_~ùþª1„°páÂŽŽŽººº|5†fÍš•Íf—-[ÖÑÑ‘ôô’‘ÆÇ[n¹å¿ÿû¿C=ôÐ3Ï<Ó}ƒµk×–””Lœ8±s¤_¿~ãÇ_ºtéºuëÆŒ“ô$ áxÖYgåñÔSOu5—Ë566VUUUUUí=>|øðÂÖ­[…#Ni Çkmmmoo¯¨¨è2žÍfC;vìˆù"555]F’Þ3à`t[O-áØUþÖéòòò.ã !ìÚµ+æ‹ÈD(ÝßÖS›’i¼9æÀ***2™Lkkk—ñÝ»w‡ß®;¤p쪴´4›Ív_Ylii !tÞg 6Âqª««›››ó¥ØiË–-ù—’ž@2„ã>Lš4©½½}ÕªU#¹\nåÊ••••£GNzvÉŽû0eÊ”’’’yóæå¯k !Ô××oß¾}òäÉýû÷OzvÉpWõ> :tæÌ™sæÌ¹à‚ Æ×ÔÔ´fÍšQ£F]uÕUIO 1ÂqߦOŸ>hР%K–<þøãC† ™:uj]]]þ‰<é”ÉårIÏ¡ØÔÔÔxŽã¡•ÉÇ)}Gjßë]ã@§ªé2™ƒÜÀJ$ôáHŸ ÿ ïsª€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(Âq¿-Z4eʔѣGŸyæ™7ß|óÎ;“žQzÕÔÔ$=8‡(}œC”CE8îÛܹsgÏž½yóæÚÚÚ.^¼øê«¯nkkKz^‰ŽûÐÐÐP___]]½|ùòúúú+VL›6mÆ wÞygÒSHŒp܇… vttÔÕÕ <8?2kÖ¬l6»lÙ²ŽŽŽ¤g á¸k×®-))™8qbçH¿~ýÆßÜܼnݺ¤g áØU.—kll¬ªªªªªÚ{|øðá!„­[·&=A€d”&=>§µµµ½½½¢¢¢Ëx6› !ìØ±#拸íóGJç¥sˆrHÇ®ò·N———w8p`a×®]Ÿø’Þ €CÏ©ê®***2™Lkkk—ñÝ»w‡ß®;¤p쪴´4›Ív_Ylii !tÞg 6Âqª««›››ó¥ØiË–-ù—’ž@2„ã>Lš4©½½}ÕªU#¹\nåÊ••••£GNzvÉŽû0eÊ”’’’yóæå¯k !Ô××oß¾}òäÉýû÷OzvÉÈär¹¤çÐÍŸ?Μ9Çs̸qãšššÖ¬Y3räÈùóçwL@JÇýZºté’%K6lØ0dȱcÇÖÕÕåŸÈN€(®q Šp Šp Šp Šp Šp Šp JiÒ íÚÚÚN=õÔý½:lذÇ{¬óÃE‹-\¸°±±qÀ€&L˜9sfeeeÒ{@‘ûÑ—^zéþûï߸qãîÝ»kjjf̘ñ‡ø‡Iï©°gÏžŸýìgË–-Û²eKeeåÉ'Ÿüo|cذa{oÓÖÖö‹_üâÑGݶmÛG1|øðéÓ§Ÿyæ™IÏB"IX&“1bD÷ñ={ölÞ¼9›ÍvŽÌ;÷¾ûî+//¯­­mjjZ¼xñ¦M›,XPVV–ôNPÌâÑ'Ÿ|òúë¯ïèè8ù䓇 öôÓOO›6í'?ùÉ9眓ôNPäÚÛÛ¯¸âŠuëÖ :tܸq;wî\±bÅ¿üË¿üìg?«­­ÍoóñÇ_yå•ëׯÏf³§Ÿ~ú‡~øì³Ï®^½úú믿îºë’Þ Gú¤»îºkĈ/½ôRþÃW_}õÄO7nÜÛo¿ùÁ~0|øð¿ù›¿Iz¦¤T—Cô½÷Þ3fÌ)§œòüóÏçG^|ñÅ“N:éŒ3ÎhooOz²¹‡~xøðáßüæ7?úè£üÈ3Ï<3bĈ?þã?î²Í¥—^ÚÚÚšyíµ×ÆŽ;bĈÿ÷Oz(®q¤/zõÕWÿáþák_ûÚI'”Y¸paGGG]]ÝàÁƒó#³fÍÊf³Ë–-ëèèHz¾¤N÷CtñâÅ---×\sÍi§–ùƒ?øƒóÎ;oûöí/½ôRÒó¥È­[·.„pÅW”–þωÄÓO?}ĈÿùŸÿ¹cÇŽüÈòåËCßþö·;ÏÒ 6ìšk®iooúé§“Þ †p¤Ïioo¿ùæ›?ÿùÏýë_ï\»vmIIÉĉ;Gúõë7~üøæææü¿˜ÐköyˆþÛ¿ý[&“¹ð ÷ÞòöÛoohh8å”S’ž2EnÈ!!„ÎF !är¹÷Þ{¯¤¤¤3%·lÙR^^>jÔ¨½?1äÖ­[“Þ †kés~øá7>ðÀýû÷Ïär¹ÆÆÆªªªªªª½·>|xaëÖ­cÆŒIzÖ¤H÷C4„ðòË/WVV}ôÑÏ?ÿü /¼ðÞ{ïxâ‰çž{®kpéçŸþ‚ n¹å–œzê©;wî¼÷Þ{·mÛöå/ùÈ#Ìosÿý÷wFd§7†Ž=öؤ÷€‚!é[>øàƒ{ï½wìØ±gœqFç`kkk{{{EEE—ó÷%ìýŸlèiûþøãsæÌyöÙgW®\9cÆŒ7Þxã›ßüfþ†žÓÒÒrÛm·}ðÁ£Fºä’K¾ð…/”••-Y²äÉ'ŸÜçöííí ,øêW¿ÚÚÚzÛm·uÔQIïÊ#}Èûï¿?þüÚÚÚÑ£Gï=^QQ‘ÉdZ[[»l¿{÷îðÛuGèû;D?üðü/n»í¶Î‡ï|ãßxóÍ7/^üÏÿüÏ_|qÒs§˜Ýxã¿ùÍofÍšõ—ù—ù‘7ß|ó’K.ù«¿ú«_ýêWÇüÞ?ûì³ßÿþ÷7oÞøà¢‹.ê2^ZZšÍf»¯,¶´´„:ﳆž¶¿C´¼¼üðÃ/++;ûì³÷?÷ÜsC¯¾újÒ§˜½óÎ;O=õÔ 'œÐY!„¡C‡~ýë_ÿè£~ùË_vîÙ³ç–[n¹âŠ+Þ|óÍ3f,[¶L5ò»²âH²hÑ¢²²²?ýÓ?íþRuuucccKKKç…Þ!„-[¶ä_Jzâ¤ÅÑÁƒ¿÷Þ{™LfïÁü1üqÒ§˜577‡Ž;î¸.ãù…Æwß}7ÿaGGÇ 7ÜðÄOœ{î¹ßýîwý—›ƒcÅ‘¾¢¡¡aãÆçœsN÷kC“&Mjoo_µjUçH.—[¹reeee—“†ÐC|ˆž}öÙ---¯½öÚÞƒùgExâ‰IÏbvÜqÇõë×oÓ¦M¹\nïñ††† 'œÿðÁ|â‰'.»ì²{î¹G5rЄ#}ÅÊ•+CcÇŽÝç«S¦L)))™7o^þºÆB}}ýöíÛ'Ož¼÷#Q çøÍŸ¿ž={vçmþ/½ôÒ?þã?f³Ù/|á IÏbVVV6~üø¦¦¦¿û»¿ëü›6mº÷Þ{?ó™Ïä/ŸÈår=ôÐGqÓM7%=_ [¦ËP )W\qÅš5k{ì±üi»›?þœ9sŽ9æ˜qãÆ555­Y³fäÈ‘óçÏïþ˜è ŸxˆÞÿýû·›ÍfÇŒÓÚÚºvíÚL&sÇwœwÞyIÏ"·}ûö‹/¾ø­·Þ:î¸ãFŽÙÜÜü›ßü¦££cöìÙ—_~yáwÞ7n\YYÙç?ÿùîŸ~ÑEM:5é 0Gú„?ü°¶¶öðÃî¹çº\%¶·¥K—.Y²dÆ C† ;vl]]]þ‰<ÐÓ"ÑÅ‹/X° ©©©²²òä“Ož1cÆþ*­ÖÖÖûî»oõêÕ[¶l©¬¬<ñį½öÚ“O>9ÿêºuë.½ôÒý}îÕW_}à 7$½á@×8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8åÿÊ6‚sKƒåIEND®B`‚statistics-release-1.6.3/docs/assets/vartestn_301.png000066400000000000000000000247651456127120000225360ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A)¼IDATxÚíÝt•õaøñÏ ¡‚Þ$"8¿µVˆ€N96ðC±Û<³-²úƒ¡£Õj-6«e–ž¶;ÕŠ?†]Ñj¶a‹zlAVNqnG-ŠED™FÂXu*‰˜84¹ß?îš±ðS$yrïózýE>÷Iø<äûæóüH&—Ëø$%IO€Â ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆRšôpñÅ¿ôÒK]:ꨧŸ~zï‘E‹-\¸°±±qÀ€&L˜9sfeeeÒsHLÃñõ×_/++;î¸ãö¬¨¨ØûùsçÞwß}åååµµµMMM‹/Þ´iÓ‚ ÊÊÊ’ž>@22¹\.é9ôª–––ÚÚÚóÎ;ïî»ïÞß6 ^xá Aƒ}ôÑÁƒ‡n¹å– L:õ;ßùNÒ{ŒÔ]ãøú믇º,7v±páÂŽŽŽººº|5†fÍš•Íf—-[ÖÑÑ‘ô$#uáØÔÔBøìg?{€mÖ®][RR2qâÄΑ~ýú?¾¹¹yݺuIï@2RŽo½õÖ´iÓjkk'L˜píµ×¾øâ‹är¹ÆÆÆªªªªªª½?qøðá!„­[·&½ÉHÝÍ1ùòûÑ~ô¹Ï}îôÓOã7žzê©•+W~ï{ßûó?ÿóBkkk{{{—{eBÙl6„°cÇŽOü-jjj’ÞK 544$=…d¤.ßzë­²²²o}ë[Ó¦MË<óÌ3×\sÍ­·ÞzÖYg :´­­-„P^^ÞåBصkWÌï’Ú㩇ÔÔÔø#¥/sˆÒÇ9D¹Ôþ‘¦îTõOúÓõë×wVcáŒ3Îø‹¿ø‹¶¶¶ý× !TTTd2™ÖÖÖ.Ÿ¸{÷îðÛuG€J]8îÓØ±cC¯½öZ¡´´4›Ív_Ylii !tÞg 6é Ç\.×ÞÞÞý‘:ýúõ !qÄù«««›››ó¥ØiË–-ù—’Þ €d¤+›ššFŽyÅWtá…Â^7µLš4©½½}ÕªUär¹•+WVVVŽ=:éHFºÂñ¸ãŽ;í´Óž{î¹E‹u¾ð óçÏ:tèŸüÉŸäG¦L™RRR2oÞ¼üu!„úúúíÛ·Ož<¹ÿþIï@2R÷#_}õÕ¯|å+Û·o5jÔñÇÿÆo¬_¿~À€÷ÜsÏýÑun6þü9sæsÌ1ãÆkjjZ³fÍÈ‘#çÏŸßý1=Ý¥öN+H‰Ô¾×§.Cï¼óÎ]wÝõë_ÿzçÎÇ{ì)§œrýõ×2¤ËfK—.]²dɆ † 2vìØºººüy>Qj&H‰Ô¾×§1{Zj&H‰Ô¾×§ëGšp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp JiÒ>­LæS}z.—ôP „#¼—_&# 94œª Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp JÚÃñÍ7ß<í´ÓfΜÙý¥E‹M™2eôèÑgžyæÍ7ß¼sçΤ' ¤T‡c.—»é¦›vïÞÝý¥¹sçΞ={óæÍµµµ\¼xñÕW_ÝÖÖ–ô”“êpüéOúÜsÏuohh¨¯¯¯®®^¾|y}}ýŠ+¦M›¶aÆ;ï¼3é)$&½á¸iÓ¦¹sçžxâ‰Ý_Z¸paGGG]]ÝàÁƒó#³fÍÊf³Ë–-ëèèHzâÉHi8~üñÇ7Þxceeå¬Y³º¿ºvíÚ’’’‰'vŽôë×oüøñÍÍÍëÖ­KzîÉHi8þøÇ?~å•W~øÃyä‘]^ÊårUUUUUU{><„°uëÖ¤çŒÒ¤'€õë×ÿýßÿýÔ©SÏ8ãŒ7vyµµµµ½½½¢¢¢Ëx6› !ìØ±#æ·¨©©é2ÒÐÐô~£ûÛzj¥.ÛÚÚn¼ñÆc=ö†nØß!„òòò.ã !ìÚµ+æw‘‰P4º¿­§6%SŽsæÌÙ¶mÛ#:?8iÒ¤†††U«VunœËåV®\YYY9zôè¤w é dzÎ:묳ÎÚ{dãÆ«W¯3fÌwÜÑ98eÊ”ûî»oÞ¼y&LÈßS__¿}ûö¯~õ«ýû÷Oz'’‘®pŒ4tèЙ3gΙ3ç‚ .7n\SSÓš5kFuÕUW%=5€ÄÇ}›>}ú Aƒ–,Yòøã2dêÔ©uuuùÕG€tÊär¹¤çPljjj<Ç€¾#“ Þí­Ô¾×§ë®jšp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp JiÒ€Þ“É$=;Þ‹r¹¤gPt„#é"&R"­ÜÓœª Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Er¹É$= (XÂ(6™LÈå’žD1ޤ‹EG8h€ÔÑŽÅÍrcÏޤ‘v,Vª±G G H¨Æž&H)‹Žð»ޤ—v,&–{p Õ´cqP½C8…M5öá@ÚYt,hª±7 GÐŽE8@Ú±0YnìeÂ(Hª±÷ Gø ˆjL„p€ÿ¥áJ“ž@_÷é3ºHaÉ·£ïZ_æ”áð >ñýÉ{ô&ãäT5tå„uŸ¥“%`´#t'`ß´c_c¹1qÂ(ª±/ް_ûÕØGG8í„#|í˜,Ë}‡pú.ÕØ§Gød¡û?9¢‰ÇÞ&ûáÑ,õ®œEÇ>Æ©jødò%).èS„#|Õ˜,íØwG8Õ„#ì—jì#,:öÂ(Ú±/ްo–ûí˜8áû ¡;á]©Æ>Ë¢c²„#PH´c‚„#ü–û>í˜áÿK5ÂGøª±€XtL„p ’vì}¥IO ï½÷ÞÝwßýüóÏoÛ¶mРA'tÒŒ3Ž?þø.›-Z´háÂ… ˜0aÂÌ™3+++“ž;=Årc!Ê·£o\¯IÝŠcKKËùçŸÿÈ#„Î>ûìßû½ß{üñÇ¿øÅ/¾üòË{o6wîÜÙ³goÞ¼¹¶¶vàÀ‹/¾úê«ÛÚÚ’ž>=B|@ŒÔ…ãüãwß}÷šk®yì±ÇæÎûóŸÿü‡?üáÇüƒü s›†††úúúêêêåË—××ׯX±bÚ´i6l¸óÎ;“ž>‡žj,hNX÷¦Ô…ã¯ýë²²²k¯½¶säK_úÒÑG½qãÆöööüÈÂ… ;::êêꜙ5kV6›]¶lYGGGÒ{üڱפ.+**Î9çœÃ?|ïÁÃ;lÏž={öìɸvíÚ’’’‰'vnЯ_¿ñãÇ777¯[·.é=àP²ÜX´cïHÝÍ1=ôP—‘µk×¾þúë§žzjYYY!—Ë566VUUUUUí½ÙðáÃC[·n3fLÒ;À¡¡áw’ºpìô /,^¼xË–-/¼ðÂÿûÿoΜ9ùñÖÖÖöööŠŠŠ.Ûg³ÙÂŽ;b¾xMMM—‘†††¤÷€ÿC5™ž»ÃºûÛzj¥7}ôÑ\.B5jÔg>ó™üxþÖéòòò.Û80„°k×®È/žôþ@êôP;v[OmJ¦îÇN—\rÉ+¯¼²zõê›nºiÅŠ—^zéîÝ»C™L¦µµµËöùWóëŽ:ËÅÊÅŽ=*½áBÈd2ƒ š>}ú—¿üåÿú¯ÿZ±bE¡´´4›Ív_Ylii !tÞg @áRÅM;öœt…ã¦M›þú¯ÿzÙ²e]ÆGBxûí·óVWW777çK±Ó–-[ò/%½|*ªZºÂñÈ#ü§ú§Å‹wýõ×CŸûÜçòNš4©½½}ÕªUär¹•+WVVVŽ=:é>EÇ’®p¬®®®©©Y½zõ“O>Ù9øê«¯>üðì­­ÍL™2¥¤¤dÞ¼yùëCõõõÛ·oŸ„pûí·Ÿþù›ÍŸ?Μ9Çs̸qãšššÖ¬Y3räÈùóçwLOw555TÑ"Ä7+=zô{Ú÷úÔ…c¡©©éG?úÑË/¿üöÛo}ôÑ#FŒ¸îºë† Öe³¥K—.Y²dÆ C† ;vl]]]þ‰<Ÿ(µ¤–) ¾Yé!{Bñ§¥ö`‚ÔÒ"Ä7+=„cOH×5Ž4á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@”Ò¤'!„Éä'ærIO(4ý éÜ™Œ@tþcâ_Q§ªˆ"ˆ"ˆ"ˆ"ˆâ®jà`x Iþ@öæ^(VÂ8Hâ€}ÒÐPÄœª Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp ŠpàÉdB.—ô$€#ƒ‘Ë…L&éIл„#p´#]Xn„¢'ƒ§é¤! „#ð©hG‚j„ÔŽÀ§¥SN5BzG¢Gà°è˜Z–!U„#phhÇR6Â8d´cª¨FH!áJÚ1%T#¤“pàw£!µ„#pˆYt(VÂ8ô´c³Üi&¡‹’j„”Ž@OÑŽEF5¥IO€O%=ïÊiØSoÉôeª±ûÄ$¼o.‘„cÁó·½8kç¥ÐÓü-£w8U ô,'¬‹€úò„#Ðã´cAS@'áôíX T#°7áôíXpT#Ð…p`T#ÐpzEG€‚&^¥ ‚åF`Ÿ„#ÐÛ´c§ýŽ@´cŸ¥ð“c€däB&hǾH6û%d2!g]«oRóÀþ9U ÀÿrpÂèm®¢ëã´#°?ÂèUª± hG`ŸÒxc[[Û/~ñ‹G}tÛ¶mGqÄðáçOŸ~æ™gvÙlÑ¢E .lll0`À„ fΜYYY™ôÜ¡°©Æ’oGß/`o© Ç?þøÊ+¯\¿~}6›=ýôÓ?üðÃgŸ}võêÕ×_ýu×]×¹Ùܹsï»ï¾òòòÚÚÚ¦¦¦Å‹oÚ´iÁ‚eeeIï*Rp´#ÐEêNU/\¸pýúõ§vÚÊ•+ò“Ÿ<ðÀ¿üå/+**î¹çžW^y%¿MCCC}}}uuõòåËëëëW¬X1mÚ´ 6ÜyçIO •þ(© ÇåË—‡¾ýíow®6ìšk®iooúé§ó# .ìè訫«}РAK–,yüñLJ 2uêÔºººüy€ý±Ü˜*.v„Êäü¥?Ôjjjzí9ŽþÕ.Eð­,‚]à ø¾“N½ù^ß§¤ëG ‡¨‡Ôr±#¤Šp>-Õ˜rÚÒC8ŸŠjHáÀ§eÑRB8Ïr#´#¤p’j¤ íEO8C5²OÚŠ›p Šp Šp,lÎ §}(±àiÇB§(±hG GH’åF ˆp, ‘j °Çâ¡ ‹j àÇ¢¢€ž#!–(D±ØXtìûT#J8!íØ—©F —p,NÚ±oR4áX´´#ph Gè%–(t±˜Ytì;T#E@89íØ¨FŠCiÒ ÇåÛQ¸pÈù? @ÚGèYÅZíE¹S­X¿Ë]8U NX'EOPL„cZhÇÞ§(2Â1E´coRá@á˜.{‡åFŠ’pLíØÓT#ÅÊãxÒ(—󾞒 9Õ@±Ži”Q7=&gÅ€âåTuêÈšžæbŠ•pLÕØ;´#EI8¦ˆjìMÚ€â#¡§hGŠŒpL ˉЎᘠªøô„cñSɲè@ÑŽEN5öڀ⠋™jì;´#E@8-ÕØ×hG p,Nª±oÒŽ4áX„Tc_¦(\±بƾO;P „#$@;Pˆ„cQ±ÜX@´#G8Õô(áX$Tc!²è@aŽÅ@5.í@ŽO5:í@¡(Mz|*ùàEÀèû„caKIjˆ*è œª Šp Šp Šp Šp Šp Šp Šp Šp ŠŸð b~ªç·ñ£€â >ìÈsª€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(©Çÿøÿ¨©©yñÅ÷ùê¢E‹¦L™2zôè3Ï<óæ›oÞ¹sgÒóHRªÃñÁÜßKsçÎ={öæÍ›kkk¸xñ⫯¾º­­-é)$¦4é $ ¥¥åµ×^[ºtéÏþó}nÐÐÐP___]]ýè£<8„pË-·,X°àÎ;ïüÎw¾“ôô’‘ÆÇ/~ñ‹—_~ùþª1„°páÂŽŽŽººº|5†fÍš•Íf—-[ÖÑÑ‘ôô’‘ÆÇ[n¹å¿ÿû¿C=ôÐ3Ï<Ó}ƒµk×–””Lœ8±s¤_¿~ãÇ_ºtéºuëÆŒ“ô$ áxÖYgåñÔSOu5—Ë566VUUUUUí=>|øðÂÖ­[…#Ni Çkmmmoo¯¨¨è2žÍfC;vìˆù"555]F’Þ3à`t[O-áØUþÖéòòò.ã !ìÚµ+æ‹ÈD(ÝßÖS›’i¼9æÀ***2™Lkkk—ñÝ»w‡ß®;¤p쪴´4›Ív_Ylii !tÞg 6Âqª««›››ó¥ØiË–-ù—’ž@2„ã>Lš4©½½}ÕªU#¹\nåÊ••••£GNzvÉŽû0eÊ”’’’yóæå¯k !Ô××oß¾}òäÉýû÷OzvÉpWõ> :tæÌ™sæÌ¹à‚ Æ×ÔÔ´fÍšQ£F]uÕUIO 1ÂqߦOŸ>hР%K–<þøãC† ™:uj]]]þ‰<é”ÉårIÏ¡ØÔÔÔxŽã¡•ÉÇ)}Gjßë]ã@§ªé2™ƒÜÀJ$ôáHŸ ÿ ïsª€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(Âq¿-Z4eʔѣGŸyæ™7ß|óÎ;“žQzÕÔÔ$=8‡(}œC”CE8îÛܹsgÏž½yóæÚÚÚ.^¼øê«¯nkkKz^‰ŽûÐÐÐP___]]½|ùòúúú+VL›6mÆ wÞygÒSHŒp܇… vttÔÕÕ <8?2kÖ¬l6»lÙ²ŽŽŽ¤g á¸k×®-))™8qbçH¿~ýÆßÜܼnݺ¤g áØU.—kll¬ªªªªªÚ{|øðá!„­[·&=A€d”&=>§µµµ½½½¢¢¢Ëx6› !ìØ±#拸íóGJç¥sˆrHÇ®ò·N———w8p`a×®]Ÿø’Þ €CÏ©ê®***2™Lkkk—ñÝ»w‡ß®;¤p쪴´4›Ív_Ylii !tÞg 6Âqª««›››ó¥ØiË–-ù—’ž@2„ã>Lš4©½½}ÕªU#¹\nåÊ••••£GNzvÉŽû0eÊ”’’’yóæå¯k !Ô××oß¾}òäÉýû÷OzvÉÈär¹¤çÐÍŸ?Μ9Çs̸qãšššÖ¬Y3räÈùóçwL@JÇýZºté’%K6lØ0dȱcÇÖÕÕåŸÈN€(®q Šp Šp Šp Šp Šp Šp JiÒ íÚÚÚN=õÔý½:lذÇ{¬óÃE‹-\¸°±±qÀ€&L˜9sfeeeÒ{@‘ûÑ—^zéþûï߸qãîÝ»kjjf̘ñ‡ø‡Iï©°gÏžŸýìgË–-Û²eKeeåÉ'Ÿüo|cذa{oÓÖÖö‹_üâÑGݶmÛG1|øðéÓ§Ÿyæ™IÏB"IX&“1bD÷ñ={ölÞ¼9›ÍvŽÌ;÷¾ûî+//¯­­mjjZ¼xñ¦M›,XPVV–ôNPÌâÑ'Ÿ|òúë¯ïèè8ù䓇 öôÓOO›6í'?ùÉ9眓ôNPäÚÛÛ¯¸âŠuëÖ :tܸq;wî\±bÅ¿üË¿üìg?«­­ÍoóñÇ_yå•ëׯÏf³§Ÿ~ú‡~øì³Ï®^½úú믿îºë’Þ Gú¤»îºkĈ/½ôRþÃW_}õÄO7nÜÛo¿ùÁ~0|øð¿ù›¿Iz¦¤T—Cô½÷Þ3fÌ)§œòüóÏçG^|ñÅ“N:éŒ3ÎhooOz²¹‡~xøðáßüæ7?úè£üÈ3Ï<3bĈ?þã?î²Í¥—^ÚÚÚšyíµ×ÆŽ;bĈÿ÷Oz(®q¤/zõÕWÿáþák_ûÚI'”Y¸paGGG]]ÝàÁƒó#³fÍÊf³Ë–-ëèèHz¾¤N÷CtñâÅ---×\sÍi§–ùƒ?øƒóÎ;oûöí/½ôRÒó¥È­[·.„pÅW”–þωÄÓO?}ĈÿùŸÿ¹cÇŽüÈòåËCßþö·;ÏÒ 6ìšk®iooúé§“Þ †p¤Ïioo¿ùæ›?ÿùÏýë_ï\»vmIIÉĉ;Gúõë7~üøæææü¿˜ÐköyˆþÛ¿ý[&“¹ð ÷ÞòöÛoohh8å”S’ž2EnÈ!!„ÎF !är¹÷Þ{¯¤¤¤3%·lÙR^^>jÔ¨½?1äÖ­[“Þ †kés~øá7>ðÀýû÷Ïär¹ÆÆÆªªªªªª½·>|xaëÖ­cÆŒIzÖ¤H÷C4„ðòË/WVV}ôÑÏ?ÿü /¼ðÞ{ïxâ‰çž{®kpéçŸþ‚ n¹å–œzê©;wî¼÷Þ{·mÛöå/ùÈ#Ìosÿý÷wFd§7†Ž=öؤ÷€‚!é[>øàƒ{ï½wìØ±gœqFç`kkk{{{EEE—ó÷%ìýŸlèiûþøãsæÌyöÙgW®\9cÆŒ7Þxã›ßüfþ†žÓÒÒrÛm·}ðÁ£Fºä’K¾ð…/”••-Y²äÉ'ŸÜçöííí ,øêW¿ÚÚÚzÛm·uÔQIïÊ#}Èûï¿?þüÚÚÚÑ£Gï=^QQ‘ÉdZ[[»l¿{÷îðÛuGèû;D?üðü/n»í¶Î‡ï|ãßxóÍ7/^üÏÿüÏ_|qÒs§˜Ýxã¿ùÍofÍšõ—ù—ù‘7ß|ó’K.ù«¿ú«_ýêWÇüÞ?ûì³ßÿþ÷7oÞøà¢‹.ê2^ZZšÍf»¯,¶´´„:ﳆž¶¿C´¼¼üðÃ/++;ûì³÷?÷ÜsC¯¾újÒ§˜½óÎ;O=õÔ 'œÐY!„¡C‡~ýë_ÿè£~ùË_vîÙ³ç–[n¹âŠ+Þ|óÍ3f,[¶L5ò»²âH²hÑ¢²²²?ýÓ?íþRuuucccKKKç…Þ!„-[¶ä_Jzâ¤ÅÑÁƒ¿÷Þ{™LfïÁü1üqÒ§˜577‡Ž;î¸.ãù…Æwß}7ÿaGGÇ 7ÜðÄOœ{î¹ßýîwý—›ƒcÅ‘¾¢¡¡aãÆçœsN÷kC“&Mjoo_µjUçH.—[¹reeee—“†ÐC|ˆž}öÙ---¯½öÚÞƒùgExâ‰IÏbvÜqÇõë×oÓ¦M¹\nïñ††† 'œÿðÁ|â‰'.»ì²{î¹G5rЄ#}ÅÊ•+CcÇŽÝç«S¦L)))™7o^þºÆB}}ýöíÛ'Ož¼÷#Q çøÍŸ¿ž={vçmþ/½ôÒ?þã?f³Ù/|á IÏbVVV6~üø¦¦¦¿û»¿ëü›6mº÷Þ{?ó™Ïä/ŸÈår=ôÐGqÓM7%=_ [¦ËP )W\qÅš5k{ì±üi»›?þœ9sŽ9æ˜qãÆ555­Y³fäÈ‘óçÏïþ˜è ŸxˆÞÿýû·›ÍfÇŒÓÚÚºvíÚL&sÇwœwÞyIÏ"·}ûö‹/¾ø­·Þ:î¸ãFŽÙÜÜü›ßü¦££cöìÙ—_~yáwÞ7n\YYÙç?ÿùîŸ~ÑEM:5é 0Gú„?ü°¶¶öðÃî¹çº\%¶·¥K—.Y²dÆ C† ;vl]]]þ‰<ÐÓ"ÑÅ‹/X° ©©©²²òä“Ož1cÆþ*­ÖÖÖûî»oõêÕ[¶l©¬¬<ñį½öÚ“O>9ÿêºuë.½ôÒý}îÕW_}à 7$½á@×8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8åÿÊ6‚sKƒåIEND®B`‚statistics-release-1.6.3/docs/assets/violin_101.png000066400000000000000000001540461456127120000221620ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A€IDATxÚìuxI‡k°àÜàn‡»în·»»ÜÝÝÝýpw ÜÝe¾?zªW’•™é™M½Ï]×dw¦z²Ùýmw‰$Ë2AADp„íAAaH8AANA‘ ‚ ‚p ŽAA„Sp$‚ ‚ œ‚„#AAá$ ‚ ‚ § áHAA8 G‚ ‚ Â)H8AANA‘ ‚ ‚p ŽAA„Sp$‚ ‚ œ‚„#AAá$ ‚ ‚ § áHAA8 G‚ ‚ Â)H8AANA‘ ‚ ‚p ŽAA„Sp$‚ ‚ œ‚„#AAá$ ‚ ‚ § áHAA8 G‚ ‚ Â)H8AANA‘ ‚ ‚p ŽAA„Sp$‚ ‚ œ‚„#AAá$ ‚ ‚ § áHAA8 G‚ ‚ Â)H8AANA‘ ‚ ‚p ŽAA„Sp$‚ ‚ œ‚„#AAá$ ‚ ‚ § áHAA8 G‚ ‚ Â)H8AANA‘ ‚ ‚p ŽAA„Sp$‚ ‚ œ‚„#AAá$ ÁH’$Ú‚ ‚ œ‚„#a>þ,Ú‚ ‚ ‚„£ú¤I“F‡«Ü¹sGôDUÀ²Ü(IRĈEû¢ÞñKñ²¹xÍD¼i.^3š‹1ñš‰Ž„0¾ÿ.Ú‚ ‚ \€„#!Œ'Ožˆv ‚  áHãñãÇ¢] ‚ ÂH8ÂX½zµh‚ ‚pŽ„0¨AA˜ Ž„0Μ9ƒÍ_¿~‰öˆ ‚ ˆ  áHÃJ8Z™AA Ž„0^½z…Í+Vˆöˆ ‚ ˆ  áH…“'OŠv ‚ ˆ  áH…ˆv ‚ ˆ  áHˆaÏž=¢] ‚ Â5H8bX°`h‚ ‚p Ž„-Zd{°k×®¢ý"‚ Â!$ 1aÂÑ.Aᎄüýý£_?6üþý»hׂ ‚p GB:uRŒ¡}{fÍ;W´wAA؇„#aÆgæM›Šö† ‚ ûp$ô&oÞ¼Š1l˜ínß¾-ÚG‚ ‚ ì@ÂѬ¤H‘B´ îp÷îÝcÇŽ)vÏž¿gϲc©R¥í&AaVLúùhH8štéÒY¤UòäÉEûâ2œÏ§N)ã¬Y!mZfuèÐA´§A„ɸuë–$I I­Ah GóqíÚ5ËfîÝ»wEûâ;wV ??È‘ƒûñÕ«lHuy‚ W¹sç?þ\´;Þ GB?ƧׯÛyÄ”)l:thÑþAf ÇwïÞ‰vÇ;!áHèDذacÒ$ûjÝš ýúµråJÑ^A¦aÖ¬Y¢]ð~H8š›?ŠvÁ)V¯^ýãÇÅnÛÖáCe™ kÕª%Úq‚ Â4˜å3ÑÔp47fYНQ£†b ihŸúõÙ0]ºt¢}'‚ ÌÁU+Oh GssâÄ Ñ.Oüøñ£NàŸ°h^»vmãÆ¢g@A˜C‡‰vÁ !áhn|||D» I“&}òä‰b/]êÔÓŽgÃJ•*mÛ¶Mô<‚ Cóùóg«#“ÅÓ@ÂÑÜ=×<ÐyÕh!bDxýšY%J”8xð è9AeìØ±¢]p47†]qÌ’% ¤ìªj´=:<{Ƭ… ÿ÷ߢgFAG1J•*%Ú5oƒ„£¹Ùµk—hì3gÎ .(¶{ªÑBìØðð!³òåËwúôiÑó#‚ ŒEÊ”)ãÌ64槤©!áh2Þ¿Í_¿~‰öÈkmç‰j´  fÖª” ‚Ù<þœû4Ì– z÷fVš4iD;èUp4Vš‰ "4ֻɞ«F É’ÁÌÊ’% 5•!‚ ,ĉG1öî2„¸qãÆÚµkEûè=p4çÏŸí‚C"EŠÄ寨¥-¤N —/3«V­ZSPck‚ "d"I’b´oE‹þ£5ÈjÕª}ÿþ]´§^ G“aØ]ZI’>}ú¤ØêªF éÓÃÙ³ÌjÛ¶í¿ÿþ+zÞA„0²fͪ)RÀøñŠ)I°a³Â… 'ÚY/„£É0¦pä¾ð6ªÑBÖ¬°z5³fÏž+W.ѳWH‘"…h‚ B ™3gæválc·*V„¦M™eýQE¸ G“a´z4¯_¿ÖO5Z¨V PõÊS§Ná{d5,÷A’$Š¿$‚ÐI’.^¼¨ØŽ>zfÏ)I’Ñ>FM GÓsêÔ)Q—Þ¿Œ1;sfÍU£…xñð…¾ÿ.ü{$Îvùò¥Xg‚ ¼˜7oÞX¿çŸ8Ôž>ÅV¾|ùz£œkÂUH8šžõë× ¹îøñ㋲dhÐtNÜáEªXíˆÅ" G‚ ˜3gޝ¯/wH–!ؘ%Y†rå˜5lذ̙3‹žŠY!áh&¾~ýj{pݺuú{Ò¸qãŽ;*öر°p¡€;"Ë:4³$Iz†:Íè G‚ ­ >|³fÍ;E ¶¹6o†éÓ™uñâEI’nÙ™ŽfÂîââ•+Wtv#kÖ¬ ,Pì={ S'a7åÇÈ‘ƒYqãÆÝ¹s§þ^p$‚ÐŽ¹sçJ’Ä­ž´o®V2nÑ·"€\¹råÏŸ_ôäL G3Ñ«W/Ñ.@èС¹,¶/ X1Á>:…óæJ—.½P÷åÏwïÞ±ñÖ­[ß‚ /"jÔ¨MÑ›<Àºu\åçIÀj‘òèÑ£’$¹F²Ñ áh&#R$6¼ƒ:òiJ½zõ¸¶N² 1cо+0{6LœÈ¬FÙÝÖ×ëø‚ Â-/^,I’U¯]e¨\Ù£óÚœ!kÖ¬\Ô>áŽæÄÇP––-[êpÍ7.]ºT±õI vžví`Äf…^”#÷îÝ}/‚ LO´hÑ4hÀê×Oµžuëàî]|`ÿþý’$Em&»p4 ]»vUŒéÓ!{vféÕW©R%ÅøöMôý°G÷îP¯³DåYSc+‚ O˜={¶$I8@–aà@5/“4©U¶5dÏž=_¾|¢o€¡!áhÆŒ£¤Lɼ}ûVÓ«s"láBVôýpÀâÅ& ³ªW¯.Ú!‚ Â|||¬ÛÉöè¡á׿Ípó&>ðßÿQð áhfPe-Zhw(Q¢(F¹r`µw`4Ђߚ5kV£…A„a™}¸Ÿ¡}ØiÓ¦©{ÝШ›̘Ñ¢‰¾.²f ~ûöm×®]]gÒ¤IVG8 zòAF§aÆÜòȲõÇœ,uÂK•b¶nÝJÛÖH8š€%K–(ÆàÁÖ?F/å)S¦¨x]®Öwóæ¢oƒ[ j{÷îÕè"²Í—c®T;Aaƒ$I‹-Rìœ9  µcàÏ_qUÞ  G£Ã}³›ÎŒä]Û¶mEûk0P>¸vÂñ *ÆnáСC¢gNa\¬'N„“'E;eºu­ä,iGކæË—/»wïVlG-˜›5cÃB… ©ï‡çÔ'NhtæW¯^Y±•’A„…‘#GrmoÞ€U>µÑeŽY!\;’p44"DPŒ êà̚ņ‡²®¶ïÏŸ?WŒbÅDß “q›¯é@AX8}út=[–Í@ÿõ+DŽÌ,MÖhL Gû|þüyþüùåË—Ïš5kÁ‚›6mzäÈ}Xhµ¾tJÊüˆ¦Æ!·±kjá1¢h‚ ˆßäÌ™S1ønÑFçý{6eÊ”«W¯êãW2ªV-§žóå 6÷8 zß¾}úÌTsÐr©ÉÎÓQ)Mhßž ×­['zæAF%thhÚÔóÓĬxÇöŸÝãªy>cöïß_À­ G;lß¾z÷îÍB S§NݲeËŸ?ê³a-ËòÖ­[{ùrgŸÙ°!æÉ“ÇnòMßÕâzõÎüSó’H8j‘X=oÞ<Å@;3Л A1gÎÅ9R´;î‚ÖeBæn5mUÛáÎ;‘"EÊ!>˜:uj¸ÿ¾„ …ýÚµ.þ| G­ýAÅ™’%Kž:uJ±­¶>Õ¥\9è×þ4G’$ÉåoKÚÕ50!Ü—ŠÁƒí?(~øÓ ráÂ…ÚÖ'‚0œv|÷$ ^¿†èÑEûe8qàùsfÍ™3'kÖ¬¢} Gk²gÏîdÙEO¨Y³&WÉE‡EïáË5Êb¹£‰?,]ºT1úô±ÿ Ã‡™ÚnÔ¨ G‚ ̉'¸L__1 UÅìógˆ(S¦L“&MD»%Šq@óæÍW­Z¥Øº ¸‘#qwv× ƒÓŠã¸îAÕ«õP´×¿}ûvÑŽAˆ\¹rY¯_ôèáNQê5úû[©ÆcÇŽmóŠªÆBÂQoºuë6kÖ,ÅÖyÙoÆ ÞëvCÂËÏŸ?7àTüÀó÷ß‹ö ÂpȲ̕¾s$ÉNÆ¡'¸‘=#IЩ“•ŸyòäwŸ  G]6lØhÔHZoÕhaÅ \¿”´£K„ ƒ¢;Plû¤JmÛ2‹n5A„-+W®´îÂU¹2ÄïÂ),‹Žvßc]U½zY§bÅŠÙ…!á¨S§NíÝ»·b |!îÜ ¹r1Ë)AC¢Çª™}™2€÷¬1i„ ˬþùGô$‚ GñâÅ­ÅÙ“' I°`³§`=q¯jWU£$ÁðáøÀ–-[6¨»üi~H8êÄÒ¥KÛ´i£ØÂ¿¾œ8©S3+xíhÒàê1tèPKÆýoœtùö çÏŸ õ9%‚ ²,[§ž4n .unc]-ç?j[·¶Z *”,ËeË–}W  G=¨[·.WÀE¸j´pã Î¡‘lº-?}úT1ªUí®H^¼xÑgO»úDŠ3oÞ¼¢gCaPæÌ™cÝ—ëË$˜;WëJn 3gÎü©Yÿ³CÂQsž’ "¤2fÌë¨Ç·oA’`Å Õ®!IVm~W®\ùòåKÑS7:$µ¥H‘"ŠQ¨àb§Æáý{6,S¦ k.­¢˜µ Q"OP´hÑ?*6.ýí*hëÆ K–,ÑdÊAÞ‚,Ëýû÷çÕ® zzÞþý­>t%Jd]ˆp G 9zôè EäÈЮ³|}}-N8ª.ì,Én8ŠY ùè™Þݸqã~¼1íyp*Ò õë×$;AaË€¬—=òèÃ"n\Ö€×ÂÊ•+¹Ï;"HH8jHþüùãÑ#ÑîÉĉløæÍ›éÓ§ƒ•pT»%˜|T„ã¥K—*Uª¤ØgΨàOĈТ³¢Fªæd ‚ ¼Y–»téÂ’$8rÄåI<{Æ,___ZhtŽZ‘$IÅhÜØµZ¦B@J®U«V p º°–ºÚmUr%-éÓ§O™2eRìk× [6u\š>§ïQ¢ A„3Œ=Úzé±@œw >X}¸Ì›7ïÕ«W¢§e>H8jÂâÅ‹9Õ5ožhœ… K’ä K÷_¾°!W…18¸âD[·Bš4jzÕ²% ¯Î¤ ‚ œD–åZµj)ö!¸Ÿ…CV¯†(Q¬ÎÓ¸qcѳ1%$5¡AƒŠaªÎб#„Ï,®½Þرê\ž¡žÐ¾=&MšÔi‘’›<´h3=z4T­jÿŠA„c–/_>/Çœ:Ì>UêÔ€6£Ó¦MK-=„£úܸqC1ø\ðù3Þ¹sG9n\¢)jíV:Ć¡B…òññqæIœ†ëÔ p¿uY³²fµ]‚ Â17~üø1w(U*ûÝ´ nÝbV‡®^½*Ú}sCÂQe^¿~ÍÙ·_‡õëÙ0¨0MWïɦNº`Á½ ÂEZ·nmÙ¦$iª±EèLÒ¤IÇŒ£Ø–Ï—nÝàÇvlíÚµ¢ÝôH8ª 'Í m¨V­šbtê¤ÂùíjGKçU¢Ñn{°Ñ“'O^´hç›Ðu7nLáÛap°XìØ±£hwB4;w¶Î/=š )‡Z]H8ª ãh^øMöÕ«W+†Z‘Å¸Ç “ŒªüywëÆ† & ‹v+l9qâD;ÔnQpí¤+WØ0}úô"=!¾~ý*Ú…ÎÑ£GíÏ!ƒh×¼ Ž*ã%+Ž6Ñ™õë×W µ²[¬zU«ÂàÁø‹f°E¿óäÉ£êøà6éÒÁüùÌ¢=aX,}Y1\¤¡;ýõ—Ýã‡P]6BH8ªÌýÃã´ÀF8.Z´(nܸŠ-I ÚKjÔ€~ý˜5/¸†=œ2[½Ú“ÆÖªÑ¨´nmßC‚ CçέŽ/^\´S!~èýŸáëë+Ú/oƒ„#a$=zd}údu$À€ß¥C´:Ò¤IÑNy!$ { d¼ù¾k×®N89¦J£´Æ‘$@~~ÿþ={öìA>©Æ"E`äHÑà9y’ ?þ\¤HÑ¡P®\9Å@_³{öì)Ú5‚cĈ¢]ðBH8ªLUÔ€*T펻 ÒåVªeìØ±óQôï{€ŠßÏ•e™ë²m+1"ìÛ'Ø»  ÏtèÐA´CA\¾|yëÖ­Š*y‘L1±cÇí‚BÂQeÖ¬Y£›7ÃÏŸ¢=r¤Ã–.]jûóF9sF±W¯†4iŒà-8QvááÇWPò2|ü(Ìó`As™0a‚ho‚Ș1£bXÞLÖ­c(.Y,åË—í‚÷CÂQ}$H A.}‘•+±U§N»Ê–-ÛT[nÜЩ‘ æÁ|Q___gŠu%ÂUÙÿûOoŸ]…줨Π‚+]˜/¤KP¹2 }Œ"ˆv3ä/^<Ñ.x?$Õ'räÈœ7vO­Zl´ :´õôÔŽcÇâ$èÂ… ¿zõ*Ø'Íž=[1"Gå J¼qãF ð‚A‚áTcôèpäˆb^ºÄ†_¾|¡uGQÔBaQ£FíŽwBÂQ8EõÏ?¢Ýq´È_͹,c1Ú±o_èÒ…YíÚµÛ¿¿3Ïû÷ßãý{=\õ”(“4iRÑÞDH¤yóæœŒ^¿¶~ÿf(IÒ0Uz´®€wübĈ!Úï„„£Vp³qÃòã ¶Ô\·˜ ‘e™Ûš‘$¸pAC?ÿþ† aÖÌ™3'NœèÌó8)\³¦†ªKΜ=:³f̘!Ú!‚AL˜0A’¤Y³fqGŸ<±ÿh^;öîÝ[’¤Í›7‹žD GëÝ?B%$êá¨:iÒ¤¹~ý:Xík¼n¿ˆ;ïuö‘c‹¹ï7òvýúõ•P»gg(R¤È{Îp®€Öõê Ò¬~äìeâÄçÏ™uìØ1®õK0óC¿Ó½ì‘óúüÍÞ¹s'yò䢧Mñι˜b"Ý»w5j”õÑ `ãÆ`ž™%‹í—ç#FtïÞ]ôœ‚Á¿—`‘$éå†d1+Ý+ÖsôyA¨†L¨ŸŸŸe°cÇ«{­æ¿N{Ô<jÓçö«Âº•BëÖÎ\úzµøÎ:ÉóãÇç} >¼òÌyóTþ]èðe)U¬XQ‡—q@@€W¡‰„̹y"C‡uøy9k–³°Ž ÜNœ8Qôbäß‹óÀË É þü¢}ñNh«ZCJ•*ÅéÃ6¤zùºve–ìî‚Ö˜1c¸ò=S§‚ÓËÁcSv'tèÐN>õðáÃ_¾|Qì ;Êtc7»àA„+ܼy³^½z’$I’Ô»wo;$ehÖÌÙ3öíëh[ãÿûŸåB-Z´`}¹- % á¨-Ÿ?VŒ½{¡bEÑÙðå ĊŬR¥Jyr²:uêàN3pâ8-ïòü¹«Å­X„á8 N2>(%|Û¶m¢½!sóîÝ»=zX4œŸŸŸÝšµ¹sƒ,ï_î\C–áÝ;H•ÊîgΜ™0aBI’„ 3xð`Ñ÷à !á¨$5‡S9›6AíÚ¢=âAy-›7o¶Þ^wÔ©SsSþõË£TëmÛ NfYÂ<ò/n\'( 55 ‚pž3gÎ.\X’¤hÑ¢ º×hïÞ Ëpü¸G׋nÞY†ví=äçÏŸýúõ³HØòåËß¼ySôMò.hš¦‚!᨜ÖY±š6íѤ[±b×€UÅ)[.ôé“Ëg2Ê–eVݺu¯£î^®ÌÒ+¾w¢[ê%3"©V­š$I9rä8xð`Pó÷ÿ§ˆª7¨ÀĉÁ†?À–-[üüü$I¢.£ž“-[6Ñ.x'$u‚RsçÂÿþ'Ú#N5Î;·¦ÚjdY6¬bGŠäÚógφ¾}™5vìØ%K–¸;Q¯Y$ Â-V®\)IÒÚµk>¢Z5¸pá·°ÓZ±YÂeþûJ—vô(K `4.Aˆ€„£~pÚqÒ$èÙS¤7HyLš4émª”ûöí/ÜÅ¥Œ¨X÷:uêäÁ\½Bf‘p$×)_¾<î&¢<9 þ[í^ ™2éíÙ_Áöí¿5 Çš3 .Üe.„ á¨+œv1Bå­çA²cĈmÛ¶ÕîRÿá~Ð?âzNz8a„B… é~‚ð¶ ¾Y³B@È2@¢½ûC×®ðü9È2œ?)RàŸŒ3F´sfåܹs¢]ðN\Y"Ô@–ee¹¨o_ˆ :vÔÕ¤Éúöí«CMZnʃCÏž8#Çhy qâÄÿóx[ßKÖçhÅ‘ \¤hÑ¢ŠáçnI+èЋ!sf¸} fLxõÊr¬cÇŽþþþÚÞ)o$kÖ¬¢]ðNH8 €R:AèÐú…<"ÁÑ©S§AA†i«È–-[”Ì›ˆƒjÜrî¬\ɬÀÀ@5&í2‹„#A¸×ÅÞCÕ6rÐògØiŒ+ v?ª—/ÙÛõøñãI8º÷Û'Ôƒ¶ªÅÀíY·o|+U@j£E‹cÇŽÕm¾eË–-P €bãÀG+PÜ­[·ÔwåÌÝf­2ôÉA®À}¿BePÕ:»ÒÑÊ2Pýë\—.öçB8G‘"ED»àpÆ·oߣR%¸xQÛë¡÷„ NŸ>]çù:tH1އ ì<È×— ›6mš2eJU.ݽÿBŽ:O\5dÃ%Jˆö† MÔ¨Q£T)•‹ YT£ªkÇÑ£!iRfåÍ›Wõ»äÝPŒ£FpFذa¹ª„™3ÇZ] ½eÈáÁƒB¦üýûwŨ\ÙúÇ£GÛ7Ìš­Þ A²dÉÒ§O¯Ø½z ™¾GäÊņíÛ·í A÷ïß+†Ç} 8ìªF ªkÇ»wÙðرcjž9@1ŽAÂQ$~~~Û·oWì(Q4¹ ÊÑ‹1â¥K—DÍ7L˜0\T%~‡½pºuc–§íal¸|ù²b .ê¸É³gpê³Æ/Ú!‚0:Ü{ˆ$AÆêœ7Õ¨:+â7IÕß Â=H8 ¦téÒÜ®±ê,Å‹Ã;Ìúøñ£ØùöíÛ74î^ýòåï* 4oÞ<.­iÒˆ½®Ú$r;þA8Àºòë¢E I I õ÷.ÏÛµûíê¦Mø0åÇ„£xZ´hÁÕÄQQ;6k{•úùºgÏÅ`z顯kq]n±óÆ Ð"óF ¦McÃ(Q¢p9FA8`ܸqW®\±óƒŽA’ F •÷¯=gåJ$ &O¶ýáû÷ï;ê\¸ÍüPŒ£Fp4#FŒà:þ©¢‡ 9s˜eÕ… VŒåËÞ½cÒh¹Ƚ¤N-úN8GëÖløÝ(‚ ‚&]ºtÏŸ?Ïd·%Ìë×P¦ HäÉjÔürŸ‹!mZ$¨U ~ý²ýyÁ‚¿ÿ9rd‘NšŠqÔŽFaÅŠ¹sçVlµã’%¸Ñ³qT£ë7A´O=ÙÞ·mµÈ’%K„ {äHÑw"8òåcCÚB„+V¬ .Ȳì0ÙîÄ Hš$ þþpöžÖ¼| 2€$AæÌŽ L®^½Z–僆q©Y+Ah Gqüøñرc+¶ÛÚqåJ¨_ŸYFS0iÒ$Î^´ˆ µ.4Ãe”{ÐpìåÆäNþsß×/5lœ;w®¦w†0>)øft„ó4mÚT–eY–Û´icÿÛ·C¸p IФIP' 6„1èì™G zu$ˆ ìî¤ôêÕËâjµjÕDß6‚° GcñìÙ3Îv/µì{ôè‘è9ÙÁQ£Wçzº«ÎcV¼cûÏîq÷Eß"6oÞ¬Ã! K† ,… £hT{!Ä0yòdY–_¼x¡ô²²b޼߹)µkÃÛ·ê\õþ}([$ &„5kì>¤nݺ½8tèPÑ7ÉKXBÄ»!áh8¸B«Ä@gȘ‘ +V¬?~|ÑrM÷©&LhÞ¼¹b³%òjÙ²e?äˆÁ£G,… ?hWí5$3fÌÍ›7˲|âĉ ØЊ=úïèCŒeÑÑö}Ãr¿¿{¥Kƒ$A’$°m›Ý‹dɒ寲,/Y²Dô]ñ62¢OCBEH8‘(j¦<Ç*X¸Ánwcпۃ͚5Óçê3fÌ(_¾¼bM;"ÆŽ[»vmÑ‚ùñã‡h¼“\¹r=|øP–å 6ĈÃþƒV®ü- Ù;3ë1hùSe’‘©Æ@’ Z4عÓî)“%K¶ÿ~Y–Ï;—Ú,‰z$ 'ªÞ¼uëœ}&ê}ÿþ}Ñó N‹`Ó¦MÙ³gWlãhGäIçÎ;¹±êLx$µ¦bÅŠ/_¾”eyÔ¨Q1cÆ´ÿ A’ìo1ÉØ°!HL˜`÷É“'=z´,ËwîÜáêK„y áhP~ẠU«:õœ²eÙ°T©R‰%= ×È™3§ÎW<}út¼xñ;ztÑ÷€SuêÔ3fŒh‡Cð]Ï„ßM×®]_¼x!ËòîݻÅ gçþþ Iðæŭ I8Õ'Nœ'NȲÐ¥KÑS )Xç *AÂÑ H’ÄedËÌž<Á14;ŒVÛÖ Ê”)£ÿE?~¬oßni­?H5)RdéÒ¥"!ŒÄÏŸ?E»â(^¼ø×¯_eY^½zµd»#áë k×þÖŽ² ãÆAåÊ6ñݵk—,ËOŸ>Í…ÚÍú'NÑ.x'$ ×yïÜ98s&¨G£$˜#GŽˆöÝDk岑®^ë9}2ùùùíÛ·OŒ„áùüù³hBÕªUûõë—,ËuëÖµúX²óç‡ÎñOþ÷¿ÿɲüêÕ+­ë‹„þp44Š‘#‡ÃǵjņiҤɇªF™”)Sb3[°«ªšÁiÇ={ Q#½=@1U‘#G¾î  0A€%½šÐŸ%K–Ȳœ.]:å¥;×Ñ£ì@‘"EdYžà Æ‘ ¼ކ&yòäE‹Ul»å¿}ƒéÓ™uíÚ5Ñ^;‹Õ£ØâÆœv\¸Ðjý@[²eƒW¯˜E²€/x…¤H‘B2N:š‹\¹r¥ªƒ¸óÁƒÓ^áõp4:{÷îUŒ;öªI£cvkÜ£5å´ã¸q0|¸W-U Pm¶ù!Œ†©…ãØ±c™d4¯v\ã ˆwŸ>}D»F(|ûöM´ Þ GÀEÉØV[¿ž …׸q £ G°Òm½z£þ¶jQ·.ìÚeÿêá®m¦ÙX»v-6Ï¡oM¡.ö“â !áh¸·Z«¨¥R–,YD{êŽ`¥Þþýër•ùßÿ`Ù2û×%ǘzå( «þŸæ¡E‹vS%"$@ÂÑpÝiß¼á~†täŠ+D{ꆭ4É[®RVÿƒäIÌ"ÕH8ÏëׯE» \þŸy˜9s¦Ýã-[¶íAh Gsо}{ÅÀ ¯\aÃ4iÒˆvÓK:ô“'O»`AP7åhÚ4è×Y¤ —ð&áøðáCÑ.¸L]|L~ê}ܱ›@x Gs0~üxÅh×î÷maרQC´^Eܸq/¡0H—^¼PçÔ«WCëÖÌ"ÕH¸Ê:ç{Œm¨Iy‰Ž[LmÚ0j; ,ÂÉ“'í‚wBÂÑ̘yŸÚødÈaÿþýŠ;6?îéI›5$ñI5n6mZÑ.¸ÉêÕ«m~ýúU´_.ðßÿ}üøQ±Ë—èÚ•8}ú´¹fD®BÂÑ4L:U1,‹ŽhÇļ…-ŒLáÂ…W­Z¥Øýåé-å‚à…ZK˜°iÓ&ª`lXž>}*Ú7™?¾íÁ¾}ûŠö˸ö ÷î)cÔå5|øð¢Ý$ !áhZ¡ö0\˜#@ïÞ½E{ç)¡Bô¥X½zõ (¶¯¯ûçBâ~üøñ1Q·£ñéÓ'ŠÖ2,掿~ý²=˜ AÑ~9Kܸq£lYH’D1K• hÃÚP±'#ÚÂ$I²»¹9dÈÑ®yJèСE»àC‡) ºoÞ€¿?tìèòYÊ•cÃŒ3rÙNƒMvîܹ´™n@¸Ì-ósãÆ Ñ.8…õ®Î–-Ö¸}›}9<}ú´£·kB7ŒYñÍ 0è2a—úõë‹vA+ »âhûèÔÉåç;[·2ëâÅ‹¢'D˜‰ÇcÓÔÀÍHƒ ¬U£#EÈ—$©K—.¢Ý'•1ô§5aE•*UD» Ưi]ô$óá5ŸvC™“†5iÒ$‹^6l˜OŸçÏ;{®`À›c:vì(IR¤H‘ì&˜‹¥[·n#FŒí…šPŒ£Fp4=$õäúõ늑9sðOèÜ™ )Ržp¯Ž>>>¶S¥J%Ö«]»vYô¢ÃÆÙÑ¢,ƒƒþÔéßßvéѧOŸþùçI’¢Fzúôi±Ó€®]»²U I’råÊ%Ú#ÂÐPVµÉ6ì÷ïßñ‘Œ3Šv*áççW¿~}%æ)yr¢«Z!^°`hß ³bãøë×/ƒç“ÙåÓ§O¶?|ø ÊŸ–-[Θ1#¨GL ¸tÞkça¶ÇcÓ6 ìM{ÿþ½¥pOÏž=í/sêB²dÉ‚0 ™P???íN®´ì´Ç ~ƒp½Z|ˆ)’h_\sÿ ±/7$SÌ[·ØC,…9Ì‚—½?ˆvÁSlß·OŸ>-Ú)u&þþþBœ‰#†ÃÏÅV­àÇü§­Î¿7o ^=G×,T¨A~5—.]è‰*sy¹!D]´/Þ‰ù¾³†phcÚ :T15²ÿ ÔfæÌ™3¢]v“gÏž‰v°×GÊäi—úùóçW¯^YmØð·Â›:´¨,-,^üûE‹ZýðàÁƒúß»dÈA´ ê@1ŽAÂÑd”*U ›‘ìÐZÓ«W/ÅX¸ÐþƒPGA½=þ›çÏ t„ë¢nrŽ;¦ÿE¹2 ÂÛ· Ë g<ÉÞ½ Ëp÷.DŒ¨ÿô ÂH8š «Ò^ÓØêãÇ¢]pÒ¥K+ê@ý›jÕØÐ\MŸÇŽ‹M®z%!Ûƒ\‚¿I˜;w®b $ÚÄÇ€;PëI¶l`/î“ Œ Gs“8qbÑ.¨ƒé–N·o͚߮YÿxíZ6t˜ªiH&Mš„ÍeË–‰öÈSR¤HaF™Å„5–ŸŸhwܧmÛ¶ŠÑ·/ôëǬ…Ž–íµdݺuŠqù2Hþ¾§9EŠ€$Áë×ìÀ¥K—ô¿ Þ×”#0$Í×G3Âívݼ©ŒÑc5=?ŠÔà“­´jÕÊ¢HΜ9SÔ&¤Ì,¼yóF1Ø5j”h×\ãóçÏœ=p 6r(¬%•+W¶Ž!Y»$ ¢F…À@­®záøø€$Áøp›6m¼&²Ð8˜(FÈ\p47$ÂÅf¡T@íŬ;O›'NØܰaƒh¿ÜdÅŠER³fM“r!yóâœÜA†Úí Ž¸qã*¨mÛÈÖ‹³gÏ>zôÈúèû÷4)H’O¨Q$ ²d›öª²,OžH8 ƒïËÅ‹ïß¿¯Ø½{s?nÒ„ üøaÊ¥´îe–0Ç (Æ‘#v¶€?|øpçÎÑ.süøñc)^%½~Ý©§¡nLÉ’%= ‡È²üÏ?ÿ(ö¢El8fÌ3îóZµ®ÍŸ?¿hCCÂÑ|„ E¿5£ãëë+ÚgáªQÚÝ~ÿž ËX*žÿþûO1P•YAçî°<€Ã6ÊgΰaŠ)D{ÍÁ-N£:ÁPº4¤OÏ,ûµÁܹsmsçÎݹsgÑ®¹C„ ±IUÞˆ ! b>H8(Q¢XÉ›7¯h§œ‚[8Iìæ{FŽ ¨Ÿ)´cÆ £ys6ܳghׂ‡{ñ±|•-¶„t^± W$(Z4¨TÉ…'_¾Ì†Óø¨A£aÛrFl-!Oˆ#6­t$AXAÄ|p4Í‘4±Ð«W/ÑNÏãÇçÏŸ¯ØA¤¿ D“;vœ;wN´ïÁpëÖ-ň_´;.À…ÌÆˆA„¿|Ɇ¢:¯ØÂ¥%áFÛN²`'ÃÚ–pá‰vA+¼¦™Íׯ_E»à1F~3 ™¤GûkÒ¥K'Ú©à >À†Ùøµ.€š¹öáýû÷§NªØHÚ'F „j„‰L™2)nã|íÁa+­¶~ W—±P!‡tŒäÉqužèÑ£‹žC®]»¦–Ü^T&pøðá¢t—Þîä¾'J{óæÍÈ‘#úÿàÁ®É›Û‘>fÃòåË œQЄ †MÝ‹á4ß¼à´É{ZCÂÑ|³ú†‡˜ºxŠ­p48mÛ¶åê2â"ŽA€ê¿}û¶F¢çaNZ$#ÊYµj•híÃ%¸T©¹s;ûL´±ØÃ^ÛÝà: Z¥ø¸Døð€*Òsù[F¢dÉ’lläTž`!áH¸ GÂDŠI´ îÕ.6>£Fš‚۸τ¼zõj‡=Ù„Â5ÏA´;N1sæL®¤ÎÚµ®=©aQ¡,Ü‹Á×òäñètûö±áÅ‹߸+©=[·nµ„ʲlÛ©ÈDLœ8›\—H3c´2U^ G‚AÌŸ?¿{÷îŠí¨ \ í8eÊ”1cƈžÇÝ»wíÿ K6l†B B‹-ÃÔ„êÕ!Gfq $uáñãÇÜ·‘W¯T8) ÷4Bø¦#–-[&ÚOyþü96½&9&yòä¢]ðNH8DH¡gÏž\ý­[Á½bò¨‚`×®]ÿý÷_Ñ3Sà’3ðŽÊŸƒâ·F8s¦›g9uŠ 8àúYë—huô¨:'mÕ wd±*Rmòx¸¶*»-+<(Ú/¸p$ˆAÕªUGŒ¡Ø{÷‚ÛM³eƒ‹™5{öìB… ‰žßo¸Ô±ìÙ¹Ÿ¡n+£FíéoªV­ª)R€'*ͽk8®=\*Xùò bSTwóôéÓ^°¶g@þg¯dûöíEûEŽ¡2Ì8Ž?þ:ÔÝ>\¥Ù 2f„oߘuèÐ!#t²æ²”pË; èpûõâ¸té÷{¹}Û£ÓEŠ„u§>ÁŽçÏŸýúµboÚ¤òжiݺuu˜QHƒ‹1øƒñkµ:ƒwÌ€p$•‰1¢h8$Izòä‰bË2àE· ¨ÿøñCx…Ñ«W¯*F:vêkΞ=[¬·`µ±Ž«¹ ¿Ó=xð`­§5kVÅðPø:¢lY6¬P¡‚Ö3 ÑxWw îÅI¨‡W½JÂDˆA´ ÖbNõ°wþ„µ#wéì?í°ÿûï¿ïÞ½å-¤Æ kÖ\YÓÐo¤_¿~šN[¸Í4j™j€oÞ¼ÙkR7Œˆ½xG‚°‚„£ùxûö­hÔÇÔu­0ˆp´³¨Ñ'®,ã$I’?~¬ód#GެeÊ@ÿþö:4 R#K¢.[¶Œë‹¸b…ºggCM¥<*ŠK«ÚЧž«êÂýí„Ð_ ùðÊমãh…„ãåË—¹ ÃÔ©µR~üÀ) $Øïv××iР÷ÅcÛ¶ ]¢´jÅ,QK¤\¸žê¿šÚµ-gÖ¬YS‹)Ì›7O1J”Ðâ (±‰P¯ü@±`äþ¢¦†„#ahÅQEÖ®]›1cFÅN• pŸ8zPÁ”¢E‹Ît»²Œ+LŸ>}ñâŊ팛:âÅc×ïD8µªQ"ú¯Zµêš*”<ݺuS JF÷î͆”^­">ü=Š’%펚¶çÙ!áHZqT‹Ö­[W«VM±G‚›7uºöÉ“€V¡Z´hQºtiM/¸wïÞVhùÐ…-´™þàÁƒZ¨ ·Öpõ% úôÑêJhï8Ê R‹/^hå¹]† aCN³°uèèÑñw?#wuwáézÞ G‚PÂqß¾}Ó¦MSì  kW]=hÜ×Þ¹s§v‹CóæÍ+^¼¸b¯^ .}N µÉ•+WêVÆ™k¬i.B† €ŠDæv¾ùµí¨ñoA;¶b8€?ô&fL\•0S¦Lê–hܸñÀûìY÷“'v|úô©¦{[&LP IljªmÉE¾zÆ£Q#=&¨ÉøÏŸ?uº¨÷RªT)Å`.°cFëDï x•ÑÏÏO´;Þ G‚P!չղɓAxÀ4i`õjf©ØM'|øð ,PìW¯ÀÃ2¿6¥(5ÚáêСƒbèV0/mZøë/f©Õ|EϬy…"E;à]<þ\1p£HT]K‹´*Myóæ ÿþ]´;Þ GÂ|CýëÌŽþÂq®w/´i#ú@µj€z6oÞÜÃó]¹rE’¤¯_¿*‡dù÷þš‡ðJ1T¨Pƒ R÷fĉG1´Kˆ±Ëÿ±á²e˸è.7u˸ áèïï/À/¢º™`ÕE -:fÉ’E´§®…£*/uÂŽæÃ+ €‡ N´ ª¡ÿ/ˆÛ·Õ½øvP  ºY³fyr¦:uêdÈ;¤îº ,C¬XÌêß¿¿Š¯É-[¶p«;Úw´µ>¼ÞWW ´n#GÑÞ˜.Ø iSîgèûžé¾Òã¥h®Æ>¡$͇×kõt^q,P €bÔ¯/zö6 øú”)SºwI’–/_ÎÒb7ùùs¼ëýýûwI’öîÝëù‰Ë—/¯Ÿ?«ï¹`Y¬u+B Å$OèÑ£‡btêdç+W²aáÂ…EûëŸÑßÂj G‚P=¿£ÿþýÈ‘#нh‘èÙÛ€ºÒÜ¿ߥgO™2Å:a¥N »àœ=‹3‘ xñâE‹õä”ÜÚXíÚ jÁ-yÖÉSmL·f(FŽ©cÇÚyDlxðàAÑþºÀùóçE»àýp$Ãm§¢íHcqò$&I’Äùç…ºmÛ¶Ü¡+W`éRm½­ZÕJ˜îß¿_’$n¯Ùi._¾|æÌÅÛòÅš½6ò—/_D»àí œª‹/ŠöÆY. MB#H8„Yáz$Lx?ÔPäÌ hÕ-yòäÁ>cݺu’$ý©ÇI’€,ƒPì#Ëб#>'NœF®×á*àOPÅiÝúô„T´˜”4iRÑÞ˜•68ynþ|‡[¸ Ýxå‹‚+MOh G‚0%?þäz¼—Æ©Slx÷îÝGñØ”)SVE-OfÎý˪¯^á .”$éÇNž J•*ŠQ° ¤I£÷lA‹©-Z´pû4eÊ”à<*ðT½zuxS§NUŒ aêÔlxöìYÑ^» Õ׎aJ„ £vÃÛÆäÉl˜0aB»Ù·oŸ$IÜQY†ÿ㳯/È2äÊ…… ¶}ûöÁ>õÅ‹ëׯWl㊡ĮH+pýÐ÷ìÑÉs$ÝN´"\Õºzùò¥hoÜaܸq¢]ðBH8„§|Ö=O–ëˆ.ýðv£Ñ¦  ,“ĉ[ýè›)2ñmeâ"æ š­z$„dÒ¤IsýúuíÎïëëûæÍè´Æ7û¯O’¤ëÕâ§YóØ: ÍTœ>}ÚnørC²˜•îßöJ 8Õâñµúeu¶–ò s|d®³á‹/bÆŒ <°Õ‘ðó'„2Ø7ÛÔ©¯ ׫W¯¡C‡Ú>°eË–3fÌømøù–oîðó' k÷^®ê¾¼¤åÿ1bÄ0ÎØ;wœ Û5©R¥RúŒ;ó[C¿eãÜ„ ÆR‚‡½›Âmó!jãçç§éù¿_wÚã¿>¸^->DŠI´/îÃ:à½ÜÌ2xûö­v—ã>¥†YÖâ_¿,ã49óÚµÌ÷ðáÃ[fdý®Ô¸±F“RáŸÍúÜÏŸ?­~A>´z“5â¿þa&HÀ×!§õ?~ÔÜaÔ¨zÍš5zýqO@@€h\ÀåW¦©Ôs•½@óæÍEûåmì =áTÜh\¹r%Ø#*rçÎÅÀ…|MÊùòåË‹/j×®Í=àåK˜7O´—Ž©XdbÄ`B£Æ¾¸NTHÙẌ=r£Ç—”ý÷ßš;ŒÚâYçNÎÁ½VQ{˜ @zÝà%œ%Jd÷¸ùªŽá)—Qc= Ú ÇÌ™3+†Ö 5õK•*ÕŠ+”ñšÌ¸¼| Q¢0«ê=}èÐ!²áص‹ S£Z'᫵NýA™ì"DÐþÖx!Ñ¢ES¢D›w-ûÌš¨sŒ‘µ£õJ“&lزeKÑÞy$ ÂS¶oßnudÒ¤I]‹«Ä[§Žè©»úâúzïÜ)Ú3W@%q˜c¡B…”Ç<{&ÚË )QG°íرÃÕpQ7nhèj¥JlèïïlH.Áˆ?¾Ò U’À¥¶¨û÷ã:¬ÆÔŽ\+Kó§9sØ%à˜PŽá)¶…ýžMY´+@üø€«Éû÷lèFiÆ7*†íïTE¶neCOÊO†4–,Y"I’$IÜ;’iˆ§Ná*¤–sŽ?^ôü~Ó¦M›ïß¿+6‹d@‹ŽÆÔ»&…„#A¨F±îüa˜wmw°uþî]Ñ>¹NëÖl)R¤—/_6nÜXùiEÎB¤H€ "r¥¡€ë‹£]æø˜1lÈ-èxðàAŽ9$Iª_¿¾õÏÜN1¾v øò«;v”$)qâÄ\SMÝY²d ÷ºÅœ3‡rÆ‹O ŸÞ G‚0 ¯_¿VŒ‚E»ãVåK’%í»üÙ^ÿøñcÏž=•ã ˆöÌiPZ ׌Î9š Eœ¿¢&ƒ³¡{U'CA‰¹hÑ<­šôàDŠds̱HÕž»wïr×µ å|úô)¥U© G‚ðˆÃ‡ëv­$I’ˆž®6`Al.XI<€Y³f)Ç­Rd N©RlØ¥K—ž:E’iÕàäE]×;cÖ¯_Ìöñ”)ðæ WúðÁQ¡¶-®[ó¡C‡¸([Ô×”©ÉuëÖ•+WN÷¼˜0žŸ‚ ÜF–åÕÈf.кnÝ:»Ç÷ïß_¤Hu¯åµÂ§È˜ $6í–‹ìØÁ²dÆŽ;m «ÂÂØY|dÃçç¬Ɇݺus ×S³&પP£Æo)Ö®î#ÊhÑ¢E‰%R¤H¡é”‡ Ò·o_Åž8gðX#Ëì¾uëÖH‘"}üøQS÷¼Ñ…$½*î׫Åí‚G$CÛ¬¸êl»víT¿Vƒ ”?Ý-[4­·¬UpË¿›7m߉LùÏî¶p¯Üø—3'sÿÀ.½,¹³t霹ÜÂXYœuÌðŸVF(ný ŒŽ×é•™2é¬+Š/Î]¯J+¯^nHfíçÉ“$~Ô‚¶ªÍ7wdu8Z‰ô„ &à ˆžº,^,Ú•0W ¡ @iËSP¶¸3´jÕJ1®^=“—/…š5]x>¯£FJ%Ý€b²jÕª•+WÞºu+bĈ… îÚµ+÷±MVmBt~yØ4¸ ¥©±”RI8VØçlÂЦ¢âß—/^¬”¬WÔÊ}FùF M9ªC† QJÐ ÌÊB¡±;5X‰ß±c‡u©Q÷‚ãeò燣G-VË–-W¯^½ uQ"‚…Víãïïß§OŸÛ·oçÊ•+räÈkÖ¬iÞ¼ùçÏŸEûE‹ºuë*Ƶk€÷k´¨TÌ•rT;ù@’~ÿccÕ1iÃ»Ø ÇtéT9ñ¦¢¾¶ÿìWm.(·š+§ì¥K—V \Üž>eØ1cª6Mo„ËmMs´N¬â9ÕQŽÁA½»wï¦òà.AÂÑׯ_Ÿ9sfܸq·oß>sæÌ;v4lØðÂ… ª'f‡ÛŽ•€Ö¢,×oíÀ•Ï.I\R‚e ú[êòåªßa|ú$Úõ@k¥®†9€bܹ£‚?¨¿ð°aÄÞ£S¾|yŨ^]€è}ÉDA#F ®ÖUùò©F 'O¾}ø€$ITŒ²ðjH8ÚaåÊ•¿~ýêСC‹èÑ£G´hѶmÛöËfM„—² ¼†â½Þ¹ÔÖ9¸4UE5Ú¢®vD§J”(‘ê7Go¾}ãÌ ‚Ô3Ð áøßÿ)Nÿw›õëÙP‹E,o‚K›kß^€袜3#I×ø`þ|Õâ8‹±zÇ‹%Ê—/_´¼M^ G;œ}úôóçOÛÆV–ꉯ^½ræ$iÒ¤±:rýúuµ<|kÞ6^ÄØ±c7)¶93\¸`^»vM‹%“ÀÀÀL™2]ºté·ô’¡çXݾz/Ž;ö³gÏ råÊÊ–,1_Û’ÂðàdÌ(Ú-aÌ™3Çò n]² P¼¦О֭[+†ÀÕÙ-àOi›9rœ>}Ú““åË—[¦ òçåÆäÎŒYÑqèíáÃЧüIN—$IÖôíÔäp´Æ’:ɦ•{äÈ‘ÁiѦ¢L´%Z´hoTé:Jx×Ò×6réR& .ü凪ÈÅ‹ (p„m º-ì´H5¦J•ê¦mÛ0g%í%K¬hP¼Sî-º¤Nš³ÝŽp@\mLZSG¦M›¦ °OŸÎ„ã™3gîܹÃ5’v…š5kr!³Á½;¥gÈxð€I’ôýû÷0aH#Ù¶ª­‰=º$IŸl’%-ùVÔµ…®o]2d`CËêšF>|87náÞç´3ðn‹K”l›4iRûªÑ¤Ø&x‹pt;oiÍš5Š£]-çO¶× ™`pÊ÷~Êp»Wõû÷ïW­Z¥Øz®üÍŸÅŠ1«¦K¥ÅC$­ &L´hÑlW-é±,Ϛɔ(QB1^;(Ô¼bj4süøñ$I’(¶¡t$‰åûøøØ¶gä>! åy°àÊ… oŽ m;â8GÕªUãüywN1`æG‘g„C‡•$éçÏŸÊ!ÜûQÙ²Ò‹’$qÛèÎѽ{wÅÐ#- hÑ6Ö; áh‡¸qã¾|ùÒªÊ;w,?í!˜,Y²(Fݺ`û›š5q]ž®]»jçÒ½{÷Â… §ØiÎÆ¿éÛ­sQ½zõÌ™3+¶YòggͲÿ‘æ-ÂÑ“JIœv,[ÖåçȆ‡}'ŒH«V­$IêÓ§wÔª2Tp\¯žÀ™.;wû6¶¦M›&IR¥J•œ?·ó®Yë VÀEÍ…LØ0~üx??¿Í›7³#¿~ýÊ—/_ž?â@ÌÖ­[-ZT´OêòZFŽéÉ™ ¤Î÷ù@ªÈí„\¯$jÔ¨gÏžµ>Z¹2ȲšPaýze°IŠöì™UdLªT©ãàA1ž£¦í.m²‡¨X‘C6mÚ´~ýú .Ä?wîÜ:tˆì\õÑ4iÒhZŽÇ××÷Í›7ÐiŒ+î¿¾Õø­~$Ú‹à9yò$'íÝù—“Û/ Ô†¦¿2nQÓ“ IR¿,ãëèÉ\òèÑ£»uë¦Ø º¬Ù}S™¼#«uæaû÷’‰qãÆ}ògÉ9iÒ¤l¶îߴਰïõ¦¢¾Z½P!ø‰áù«4gΜJ%¿Õ«¡Z5üÓ…±³6|~Îú9I’°Uϯ_¿ra»Æ“º3ÎÃýi·m “&iq•ëÕ¤ÑâÝxøpèÕ‹YA¿ºòäÉsâĉ߯¬YЬ™3 ½Þ®MŒè½r/DëÇßÛåã¨/ÜŸM` Ýà;1Ž–üú™vNÆBé8úp1ŽD˹4ß©VõD’%óp ËÝWgU!ì el@Μ9±Û:tP~öô©vÑWÚÆ8ªýUN7®ÕµìÇ8šóƒI‡Gî¢bEí^êÄ8Úý׿¿ó¿_+¢ë?Tµ¾{÷î¢_\…¶ªÍ‡mqrBk¸ÊÆ*n÷ç M›BøðÌjÞ¼¹F~6ÃßÎuC­Š4hàüóZµjuñâEž{×5zJ–Ä{:u:ÉïryÄk׊v×x8S•,ëF.¶W#c-µq#ÞK5Ý»ã¯^²Ì2·‚«gÿ÷p«Ì#FèwiSA‘ ‚¡Zµj\ÈöÆîœåóg6œ5kÖ”)S´p•ëþ,°å Õÿûï¿]zjÆŒ­?WÄjGI‚Ý»™µnÝ:®Û$X¥L™¿ö›mÇT÷È—/Ÿbœ .6 J6Ôè¯ÃÔp»viÕµY Ò¥ƒQ£ìOÄ7nÜPŒùóÁÅ÷79u ¯4iÒDÇ{d2H8DP 4h-^Crâ]Ï!è¹mÛ¶µ®ì£3fŒ1¢b ‰.Ç" Ž[ ‹íhG´"¥¼f}ùò%×_Û.fì÷î±aU÷2«làÖ¿ƒí#’'&K–Lôí0"ÜÅÇd¥£P \»f Ž & ÷ÈíÛÝïBä$›7C®\Ìš>}úœ9sô½Sf‚„#A8dýúõýqhŽ'ªÑÚ³+T¨“­Ï]‚ëÎR¸°¦÷Ç>h[ß“ª.²,§L™R±säýfñæ•j”e9ˆlPÓƒÂ4ÕŽ"DP ü}Æ.㜜úðÁA?>ŽZqR5Úü¹s ]¿ßrå Bf­_¿¾E‹:Þ&óA‘ ìPmŸÁ*œ4Nص‹YÑuñ€Ø±c‡ …þ®]oùå¸ ×ÆunݺոqcÅîÔ ‚]ðS… À—K^ö3kÌ72¨vfΜ9U9å§OŸ#Ø ¸Á*Kì.ÆI•n]UvžõîH’:ïØĉqÅòcÇŽQ ž`!áHöᖻΜСÕ9o‰0f ³´¨ ε¯6 t+¤üþ=N"qï£ÂŠyóæÍ›7O±m$úðò´páÂÎLdÛ¶mŠ¡³X7*“'OváÑhÅQ©mDØÃÚÑfµ^µÉ† ø Ás?Q›Ð»wïæA!„#H8„8=7ožÊ6;CÆö¯¥\n²ŸŸú7È.¨Ôù.´°ê!7Pl›Md5ñõÅâýúõÛ¿¿3Ï+Q¢„b,Y¢•{±j¶mÛV­³ž 6!S³&Ò‡w°È²œ‡J;ª§ퟡI(VÌS'7n´òóâÅ‹I“&Õ뙎a §ä:v¼[ª @–,Ì Šõ¨BÆŒÿÁe,Ò¥S V âØeË–å„”Ç$Ož\U–ªUáÍfíÙ³g _¾1hœlà¸$î ©h‰t’J•¥'Nœ¨ÎM¢ýñ'Î4ó ñܾ};þB[º´G§Ã/0O@{áÇWeÛdY®ŽšQÁ¾}ùY£†UGDY–3fÌ¨Š«!Žæã‡êA‚SÅŠá†÷*sî{ïûúõ«ê«,sçÎUŒk×´ÍJ~üÐÊÜ–-[´¸ˆ¶Ú±Z5\IçÇÅ\\Õગwíªšc–^á¬D¶e ®||ñBµSý¡}ûöŠšZëÍž=»ê.ygðõ΀cT\‚½ÆàOÏz·AQΟQ 2ÏYµjÕ† ¬Ývƒ,Y`õjf)RD-ur áh>¸0|BU%J¤±bÁž=Ú^ï×/6S¦LŠía´“zª‘ëQ¦öú±V €Â¸Î¯:&,®¼3`¸”pÀ¿~F¡Ž#„#¸­À²Õ›6±álôž <¨‰²© pa?>˜çØ¤ì„ ¶Dáï޲,ïÙ³gÁ‚´ÇA¸Š¿¿ÿôéÓ[ÿ5'tÅš5kzR7;(4Úy_°€ cÇŽ­É%l¸pá‚ Ú±sgíäùZc÷îÝcÑ"Íï‚ç»ÕéÓ³aðMqœ T©R\6®Ÿïü¤þÀÝO‡ђ¿˜šÿ6—~êLwrÏX±b·¨Ù±#ØôU@&‘"E2Ю‚91±pÜ»wo¥J•X`Ÿ>}Z·n=lذڵk0€^„“lÙ²¥S§NŠ-ꕃª-fÍšõË—/‚ï‹á¹€b•À4&ôµÞ1¸NeG¾y®^eÖ:5ºlse˜Ü¾¥¨dD* PŒB…œ}š3.}3AËÕœKšÑ£G;v(v—.påŠý™þ¡@>|ÐÁ7ïÆ¬ÂñäÉ“­[·¾víÚ¯_¿àÊ•+«W¯Ž-Zݺu%J´lÙ2nÛ‘ pëÖ­òåË+¶ªi€®‘*lÞÌ,®]áNíuîìÚ“ÑÇÉòåËÕr‰‹šúù´I0WTàS•EîråÊ)F޼M6üüùóe9GØÂ©4çƒ ÔJ® Ö%-)Uª·àš!ƒõ#Â…cäI“:tHǼ³ ÇY³fɲܻwïÖ­[ÀÎ;`øðáýû÷Ÿ3gŽ$IK—.í#aR£ÆÊpþ<¨]OÑ5Ê•Ãk`ê'$N¬‰ÛH"|ýúU“K8f,ÞŸrþŽuìȆqâÄ©U«–Š.q«Åøk‰êx’=3`&K–ÌÃæ¶¢Ömpô¨Gçºv ©À^Ðpoê¾i¸ôC¥Ò£­ÉŸ?ÿ\Äßxñàûwfݽ{W7¯¼³ Ç7nÄ‹¯aÆ–øÖãLJ ®`Á‚,Y²”)Sr…H¼‹ïè/ðî wåJPã³ÓS:v„–-í{è\˜>}4ñ¹wo6,íab×á Àé:8(”^õx,î>Ô­ëæ‰´\TÛüÎ;žŸ+`4mš§§K“7"jÞ¼¹V÷ÁüpÛµ ¨‹Œ$ÁãÇÌ:uꔞïܹsñâÅÛ’—öé ?mŠ^S³ Ç7oÞÄŠË2þñãÇ•+W2fÌîÏ¢tĈ_hPÒÖ P.˜*pšlȨQC´G˜6 waIž<¹''ãr´5úôE”ºmQa¸g*o£_ýÊ•+µpiûöíŠáI¤ ´£'Ëh“º7ÒýnóóçÏ_¨()þòã>oß²á¬Y³T8¡÷b§ºá¥KN=3•é¼µIXJoi±{÷nŰä¥E‰Âp­ä 1«pL Áƒ~þü gΜùòå «W÷ëׯè–Ý©?ôÍÉs¸­ÉH‘@ÏN5AºwïÞõ¤¶…þ{ÇBÈ;·b¸’Î\C³/ .T Olµ£Ý¢ÍÎsõ*ÎÄR¥thªT©×$òøñÙp5Ê'l‘e9^¼xŠ)ôêìs~3 ¢Ä#æøqÕ;S»M¿~ý#NÜ^¡L™2¢¼òJÌ*såÊõæÍ›I“&=|øÐ’X]èO6Ùܹs_½zŽ‘yT×C.\¸À­33ɽÿþûï¿îƒû^¿¾†ÞvëÆ†‹t(CcÃq\e:èŠèÓTÓ2\p .ƒ;y8ù‰(þìŠÝ,T×á¢ÇT¬¡óèj'ñ½†Ç×®][±‡gÚ·°Wn†îÌ léRøë/fe̘Qì¢×Yµo¸~ýº@¯¼³ ÇæÍ›GŠiÚ´iÅŠ;qâD¦L™,íÞkÖ¬9zôh°Êmô.hÅÑC¸žu7nˆvÇ1S¦°¡{ßÆã¢¸¨Ä‰úŒɆþ¨ã°AµßºªØQÚ?qïà©SÁ“R¸•°' RçÎÓ¥Kçù4£E‹¦óæy~BŽ?!IÀ[%ì±lÙ2î.‰#IbÛ =Xzô€zõ˜Õ¶mÛ‹/Šž=ü…„,Ãfª`Vá˜0aÂ+V)R$^¼x ?~¼å“õÅ‹Q£F1b„ÝAĉG15œUm4Z·Æ‰ŠõÐÛ´“lÁµ`ð§»–ˆªÀÏm¹âµ úDÔ!V8T¨P¯^½Rl¿/´¡Ÿ,Y²1j4Ôx÷îb7n¬²Ï·o³a«V­´½?^A‹-n¢Pغ’$QùåÊáW¯f•ÅbÏP\øW"{–ÀG±>øùùizþßßï;íñŽ_ßõjñu»Ö„ ¬^ýêþ{¹!™êçÄþ^¾|Ù¥ùz2Ù~Yƹí§Þ¯¡ çÛ}uVÅÉ*UØÏ׬Y£WÖ‰¼*ì}åþÓùÐCMîùÙ³N:³0VnÅß³+-ZTŸßšóˆvÁ>¶öÁþ»^-~ðã«zݸqCôDƒšõ©S§D{ä…»±¼yóæÒ¥K?N Aþüù}||ôÏç"ÌBûöíÃ,;þW®° ´ 2Èî¹=z?ì—ÕßÉãƒÎutx–”)ñâAA¡U«VÕçšÍš5[³f’g% ¼¯÷ÄoÝÂánn¾Šl¨‚„8äËY³:õ4I‹pt2–nëV¶Ã¾oß¾«W¯ª²ÃîõȲl]âÑóß{®\pÿ>¾„èYCŽ9D»à…˜X8¾|ùrÚ´i«W¯þüù34jÔ(þüUªTÉ!ÃðáÃ}}}E;H î=TõH,íH—êÕƒ%K,V‚ ¡Œg ² uPrÐyjÕ‚aÄÜ!FúôéƒÉöpãÖ©Á¶mÛ”—߇и1ÌŸ¯«($C­NèOŸ>]¿~½b9¢¡ÿW¯Â±˜>}zãëƒ`­›6ÜÓU¦MT Ñ˜¿…|ùòõ°ø<f]œûþý{ëÖ­-Z5jTü­7Nœ8ûöí«]»ög½ã4æãÇ¢]0óñçtªTêGbiÊâÅløøñcwj”êðËø ‚[DT£¨µŠpŸ² 8UoR-tèׯŸ*Mb€+þrì˜K÷Âz,iÓB±bÌRk !î…7w.à}.ñå ´nmÿ´FBÿ!³ Ç3fœ;w®páÂÛ·obwV®\Y©R¥»wïrEÔ¼ êbìÓp+ 9® ¶Å,Tgÿ~ûsq’ƒÕwÉŠ;5¿Dpp;§k×ñÈ¿QØœnp55ÕHLqŠL™Ø0}úô¥ ¹HbèVµ*ü)£ë®*={ØðâÅ‹óu^²53\o¤‚>.è7.ô¹³yófÑsrH¿~ý,¢Ö'ÚïĬÂñĉ¡C‡6lXĈññСC÷ë×/bĈÖ]˜¼úcpƒ'NhujVW³P]>.̆îG–¤*m€zBöìÙö®õÌ™l(¤êB¸pá–.]ªØ:d8w¹|ù²*gõ÷÷ðàb¯Y£ùD, ·¾þùG§‹šŸ8qâà凿ù)@ÕªUË9SâG(‹Ñ. ¡:fŽW¯^Mž$¼ Ž®¨æ]¨p½‹&×hK¯ÐØŒ3êuG‚ÿÒ- )R¤åסC‡8—ÆÓêJÚì-rrMÿ6€M›âÎ7Ü3$ÜÛ mG™ *Ì)†îX^‡Y…cúôé?~|áÂÛ]½zõáÇ^\¯á—²Ì··«b á`Ë[¨»èˆ¼bè%S¥J¥÷A÷&¨¢]J—.] /שXwöî]\PS­È–ýû÷s¯:7NËÒÈ0ng’¡²2qãÆUeŽ! (FõêÁ<©ÆÆæ*aFh‰Y…#téÒeúôéÉ“'€‡Þ¼y3f̘Ç>|¸hï4„„£ûØ&L¨Û€3&çÎixrMU©+£b°à`®¯î›78tÏ#’'gÃS¨\³'Ȳ\´hQÅvc…/ˆ¸÷–ó燖-Ñéúwg06l¨»wóh´O=ÏDM1qç(Z´hÑ¢E_¿~ðíÛ·)RÐWO"(Þ½ÓêÌŽjXG¬üø¡áÉ}|DOï7±]O!רãêUΈ’~Z´h¡V¿5®ëÚµnäii´ipä\¼h±âÆË,$P¨P¡ƒ¬°ëÁƒP¨ýÇ¡Š0aÌ-u1ñŠ#Ã××7GŽyóæ%ÕHØÅÏÏO1þûOµóâeb¿~lø¿ÿýOó˹ÄË—¢=ø¹„# :T1<\6;÷Ë™>}º*r‹y:®².”•õìÙ³š5kŠvÈpõt‚Ø­F¡«õOŸ' ŒY¿F8S¿÷˜K]°Ì‰u+RÂû÷ïO Áo£HÀ <<Ä¢Y°ÿÆäŠ‚T}¹qð`6œ0a‚¶·ÌU >a:áØ«W¯Þ½{+öŠP«–›çÊš• oݺ¥Š{\ñ¿lÙÀßß³hºô޾¿­ZµjñâÅ¢Štš®þñóç·aVªTI´×„0ëŠã;Þ¾}ûú>>> &í£¼4ÌJ‘‰?¾b|û¦òÙmópê¨Zœ9ÆI’$Qýy \‰.ãÄ  —¿R»¶›gAE¹3eÊ”2eJÏ;pà×!½º 4í ðâ:Ç„˜U8^±áÒ¥K»wïîÞ½{Ô¨Q¿~ýjÜš ªòêÕ+Ñ.˜ƒ)S¦(†ÛŸÍŽÀ™¡vSG=ÕàÝo˜Lò×D4Ïb|u¼cX¶¬;§@kv ܺAôª ji*X4뢤ЬfË–MÛk™Ÿx¨DA¸ŠY…£-¡C‡Nœ8q“&M&MšôöíÛŽ;†„+´âè$­[·VŒ+Ô¿@}Táý{6LŽÒf‚abçÏÑ2Û^‡Rƒ°jÕ*ÅØ¶Íåh 4µÑ£G«âRÅŠ£ti#ß=€Y³ØðܹsjuåöV¨Ž7á Þ#ýõWªT©îß¿ÿþ}Ѿh­8:O‰%C í¨¨‚†Aûdà‚‘†ÅÉV‚Ø´i“b¸t?ÂÉI]ºtQß\®Üm‚XtT%´¥¥¥ï¥Q¹{÷®ó¦0z /Ž'N_ªhÅÑyvíÚ¥ªïVkÊ¢ElرcGÑÞØÃ€-É’YA» ¸Ý_¾|y®èÉÌ™Î>•SQ«‡ §>ñj½ÛQ¬Q­€à´iU™{HÀ¥Ýüð¦øZHèˆ ÇOŸ>]¹r%V¬X\[U/…VݧE Ñ8Êr(ä¨â;vìP $m4jÔH´³vøþý»b8ùúD{Ü‘#GV+©|ìØ±Šãƒ=Ä*Xõ4²•+Ùr«ƒàãÇÎ?øóçÏ¢ý%Œ…Q"“\å?Õø^¿~½hÑ¢W¯^qû’ÞËŠ+,½¹ gàªÍœ  ‚Á?]7†€f8p@´C@!˜)ƒÅâ¨QÖ?Žƒ E;kŸX±b½`m¦Oœ€Ü¹ƒyª\ø^¥ßÂ7\y bD•gh‘‰±³j \£.Y²dñâÅê_Â+pI8„fŽA÷ÍŒ%JûöíEû¨!aUU]8íØ (`gOÓ Ì™¨±lHHöò„#F(F† `·àÈâÅì«B´hÑ ØÄüÌ™3J¹¥ÑÞ”%K–(_QêÕƒ7¬‚€—.]*Ú_ÂXÐ7 “AKŒªÐ¡C‡j¨«á’‚‘?S¦LñDp¸Ý»kâíĉl(¤ðþ;w8‰€ö÷í6-DÎ,Æ´TÀ‹|AÔ#,XÍ8È)»BC,»Q:¿™@¡/^íI”(‘b €…… Ù°–Û=0 /Å4+Žn”ÏàÚx $ÕbõêÕqãÆUÊ—dÊùŒAª±víÚ­=+†R»ví:uêü6F‚‘#Õw¥guBïôáË—/)ð˜3]¼_¿f7yâĉñãÇïÑ£‡ÎnÍ Aƒúõë÷Û¨_ì&y>̆ ƒ^du…Ý»w+F¾|¢ï„[,^ ~~–aÇŽ¹¨Y³æJ–„¾i“€ºq“ ÀD±…ëÅS®_¿.Úkõ!á¨"OŸ>Ue.]‚¼yÁA¶¾~DŽÌ†‰%Z¶l™Êç u[]ÿ.v£?B„бy3”+çÔÓPMÁž={ÆßPzúöí«Ç%KìÇáÃÙP«Òžq∾ î’:5îÙ³G´7eÉ’%Šp¼z•Ž·n±¡Ñ¾SFÀ4Â1ˆl˜ÅM»Û „»pIÖÇŽÁøñ °¼QåÊ€Êd¨ÕúhÒ¤IíÚµûm$Mª²ÎC©ŠÖÑ ®§ÅìÙΪF H;6nÜ8~üø¥J•ÒÙÿ ಚ^¼°îø×«ªØLh!Ú „>}DßBC7®h/L §;v„páÔi•á*5k† Ø+µNܶmÛ›7oNd‘ˆ*&¡N'5kÖ8p .w àû÷ïápºñàÁд©ËgyÿžUí)]ºô€ú÷ï¯Û‚fÆ J°M‡ KIÂáh!Ø— 3Ò³'[”ݵkWÉ’%E;d8îܹ£VYPè%Õ‘% Þ™Ó½{w.ËÒ«©EÔZƒSimÚÀœ9z{P¿>n¢zªï„ b ò×6¬ 'M~þdÖ Û¯Y³†S­[»¹<92Î'0`@¥J•t›EÐ.\X1–,á~¶q#¶iÓFÅ‹^»vMô¼UÕfâzà¡ÕŠ#Â+#¾1ÍŠ£-¯_¿Þ³gϽ{÷¬Žþüy×®]*–Ã5_¾|±=H¡ßªÀ­;6káÂAƒ:]»iS¬ 4*óòåKe‚?~xºîÈç¡ëYÔ¦Q£FÜŽjÕªõÄK€?*mãÆ¡B…úõë—nÓ ‚°aÃrM(|üøñ*^‘ë[cjÎl÷I3T&7U²bÙ²eTއ°Â¬ÂñéÓ§uêÔ±ª†ášx v?$L]oB’¤ëÕâK’)R¤¨(8íØ°!øøà~nZѪÌ‹}Ði‚àÁžµ8Õ#FŒ×¯_+v³f0k–§'-TkGË]2B}ÇñãÇ+ ŠÃ‡+«hwï²Ç„ £æ{xîܹ·nÝ*zÞjpâž”ho G,2k7w¾}{V À „q0ëVõ¼yó>|˜+W®AƒåÉ“úõë7|øðF…ºaÆúÇé뀺« „-Üûc­Z8èPÚ·‡éÓí_]³ rRÖâT£$IœjܰAÕh¡P!+ -I’ðÎà\%&– ƒ2^U¯8fy/ý©Û£/cIÔ-#`~6lÈuŽ8rÄ΃ÆÇÉééþÔÌ'0¯pV¹/ÚÝ®_¿åÇÜ»wO’$ýŽ3gά–xnÖb K–,ê^®jÕªŠ1¾¨Y{ í«:¦víÚŠìB°,ИW8ßy=I’$¬¸@èСӤIãI{_c²fÍÅàk r?"<&bĈ¯^½RìvíàìY5/0j Ê,!ñC'NœŠ|I‚ ên|ú„Uc»víôQ;w¶^h,\XsY°~½UZ}ñâÅS£m;=™ƒ=Ñ%G[dÅ[LD•*lHïV¤L™R1‚ èÚ²… %£õe%ÄaVá/^¼»wﲕ¡Ä‰Ÿ:uŠýT’$®º©WÀmK¯Á®—áëëûäÉÅΞ]µSß¾{F Œ:ïÕ«WË ¢X)vêÔi"Úa׈¯_¿J’d]ÚzÜ8p½õ¨;4i‚C àÖ­[’$­^½Z«#ræÌ©|Qžüùókqŵk×*†MÒE‚B“¹5T€ûÊ7xp0._ž íÖô B&fŽ%J”øüùs—.],9sæ <|ø0¼xñâôéÓ &í£ÊF­iS½:: $Ü&nܸcÆŒQlµ¾p§JņÂHvëÖ«o÷ * íãã£ÃŽÕ?ÿü>|xîPøð Ë Qo=»¤L ² 5jàc5jÔˆ3¦~>Xqù2¶4*‘-[6ÅP)?faì¬VÿT™3ÙPõ­|rD/ÚÔ.S¦ŒhÇ Ã ›“çÏŸ—*UÊÏϯE‹²,?xð }úôY²dùçŸòæÍëçç7yòdQ¾ùùùiqZ«_tÚ('¦@¢æë᤮W‹‘"Eí‹}òáZ €,ñïå†dA?ÿûöí+zr¿±~i9öYog,,XÌ] ò_÷ÕY=y:à o›øºö*μyóF£+Ž1B¹d±bÝ=ýÿéþk ÐçB*¢Ü£ðÝ»^-¾b¢åFÑþºŒ)&¬+ޱbÅZ²dI§N2eÊ &ìÓ§Ï·oߎ9òòåËâÅ‹7iÒD´j’6mZÅ`Q; °cvÖ#MÅçÏŸE»`Ÿ#¸VÅ£GõaC%-2dÈ0hÐ Ñ“ûÍtTÈz½Æt(qeGeQê м;¾¾ ËТ…•ŸgÕ {uL… ì-šFWìŽB)@\b; œH.Cœ@ìܹS1‚xãEõ%¸xh‚­\Õäýû÷G½}û¶X7´Xq´útÚУ;\¯^=±wo^_qd~*ìÝëΊcïÞFþ»³~é¾~c§EʦMª,AyºâèànÀôéÓuøÕ,_¾œ]¯8jzÑ!C†(óŒ[ü:¢Q—e³-n½}û–{¿ïpÅ‘¿Ÿ{öìí» ˜ë—b:L³âxâĉ`û€EŽ9oÞ¼)¬úµ›®ïöĉ\°Š?[bÕЖP®^®mÐÏœžF4UP"*ìÛ÷{€ ¹iÚ~ãÈ‘#aqûì¨Q­vÊŒ‚ÌÅY¶lÙ²iÓ¦Z_³V­Z¶µµì¿ç<ïÞi=M@»~~~¢½1"×®]ãªwî„È‘ƒzª·_¼xñ¨I:’1plРA¡B…†zöìY~îjÊ>öA`g«mäuëÖM´³ÞIŒ1fá&%®&ÊäÈÁ†AT½Wö¥T©ßTëq.jÅ¡.þþþІ8”(V‹"†bÜ8X¶ ß![¢¥Tc¸ MͶÅÕÕ[½~ýºho ‡¯¯/×fÐ (Y2˜çD¨e¥J•$Iò’n愘F8†þùóç .¬]»v±bÅFu™Ï1ôV4h –i¦›-ƒ ØÏG£šÒ„º4kÖìï¿ÿVlçµ#zä˜1c’'O.z*vðõõU Û„Ö™2dÈ ÅuëÔ©Ó©S'ÅîÝví}3‚£vm@5M._¾¬‰»òÚ/Ç–,Y’˸·ªÁn4Я`_†“(Q¢„$IoÞ¼Qýý7ôíëÔ“ÿþÛªÜcìØ±S¡ÒDÄ4Âñرc'N¬P¡BäÈ‘=z4gΜªU«–,YÒßßß»¿\.^¼X1ØÆ´Õš+úâHý¬µc+úò àL/c´å—/_>#·í Br²RUplØ8´N,zBua—"…Õß WS{r 5líàJ™9=•à/ËŒô„nݺI’´gÏîhäÈ`õV4¿¬~ûömI’ìQ!ÓÇ"”.]z̘1ÇŽ›9sfõêÕ}}}§OŸ^±bŲeËNž<Ù˜›€žÀ¥7‘[Š6•:êYë.äñüùsÅ(R$ø' Ɔ\‚¶ñ0`€b+h©›û‘zlÚ´I1&LP¿÷4F‹EA¤—êÒÖ…‘]ÅŠôAÂmb¶wÊyiLŽX±b…$Ivö .]‚÷ï]>ÝÅ‹¶ÏZ¹r¥$I£F=WBwDgç¸Ï?Ž;6hР‚ úý¡bÅŠÓ§O¿wïž@ÇT̪¶úUqÿ:íáL´\äïï/pú®NÐYÕ˜1b(¿”5k‚ʪnÞœ=°N:¢e^Ñ¢AúôZ¿Kpms¿}Ó(Ͷûê¬vþ|L•ÆËd"˪ÖîZ¶$NœX™dåÊâS§ÿ æÏŸ¯ç±`Ì^;öNÔCµÎª¶ýg¯u“è¹ÚÁ˜¿¯A’ÍÿýL–åóçÏïÚµkçΖƒ3fÕ¥4Mš4ªìž—(QBÙb(^vïæ~Üy/ŒåÓ{Ñz€Y~­’$]¯?͚Ǒ"EúðáƒhwœB–eÜ't½Ü˜~üfOûâvñœ”€S¦êð«Q+[°îMll8u…ö£9Ђ÷¤I“D»ìv‹¼äÉ“Gó kÑW’~ÿ³« ªXÄuêS‘ ² vìØ={öTlƒ(†ªUÙÐNyBkþúK´„Ì-oܸáïï_²dɪU«Î™3çÑ£GñâÅkÖ¬Ùúõë·lÙ"Ú;÷á6†\ªŸ‡úG-]ºô€3i¿„[ü…ß4mCÑ¢lØ¿ÑÎ:Ë0”ÊÃÐ#ø]õEMIâbàØXuÅ“0!6jÔH£ÛS2Øz{Ú3lذd¸eÁ‚‚B¿Ê „ ã »gêS¨†'/^œ _£Rá„×cÊ?¶€€€­[·nݺõöŸjjQ£F-S¦L… råÊ¥M5u᪢äÍ ÿüãÚó_¼€X±,Ã"EŠ˜kÃÚDü÷ßÊ+­gOÜû¾|Á!ä¥$kA‘¥ÂWáIDAT¼xñlæÌ™Só «û©cQv±hGÿ(.\`Ãøñãksw jÔ¨ØÔîBAsçÎå5ø04m ¢*&¢R²dɆÙ:7\%MkéüȆ»wï®Q£†è©:a&á¸mÛ¶­[·^»vÍrÄÇǧhÑ¢+V,T¨ײ̴Œ?þÊ•+Š}ô¨Ë§ˆ† ƒ^½,–é‚MD¹rå”…í•+¡fÍßcTdâĉ¢Ý$xÔÕŽ/ê?ƒ„h™SgdYV´ãܹ0aB0=ë´ S'\†ëpCX}ýÓ4îÕ &Õ¢0p¬^½úÅ?ïÑ¡C‡þ믿*T¨PªT©H‘"‰vM5>~üÈUatû³­gO˜5 îüNï-^¼¸uXB 6oÞ¬|ˆöè¡Ç… ÙcÚÙ¶ˆ$þ É·uƒ­8êF¢D‰ô¿(cË–-åÊ•ûmD‰¢ëÝ€ƒÁߟYô­Ø.ñâÅSÖ?~/ú”$Œ€ib-ª1sæÌ½{÷>xðàܹs«T©âMª"ãïîÛ¶yt.T }ïÞ½\B îÜñü! oøûÑV[¬p,[¶l«V­[çР…٫ÆO æÍ›§®;9 ’ïýøž„„×cáØ®]»;w®ZµªaƱþÄðy\pwÕªP¦Œ§gDßÅëÔ©#z~Þ ×ùÍ¢!P¥Å0bÇŽ­ÛµôÈ×öFÄ G˜:u*gɇ`j©³fÍòÊU(ƒ?>V­Ò䨎ãÀEϘÐÓǶmÛ&MšT´ZQ¸páŸ?*¶Z¥ËÑ÷Nƒç }DqÖ&‚«ÀbÉAY2&J‹aXÅÏiN÷ë×/ÑÓ5%Â…#"šb7¦i]e­„c‹ŽæW`SÖQ iÓ¦‰7©µxo¹zw8$Õè$Ü7@ÕËm"%Ú¤IÑs%ô†„£0†:nÜ8ÅÖô qéRœmCÚQE DM7yµÃ*a¥ŒçIZŽiРb¨ÛvÅ¢­^窫Æ[·Ø0A‚ZÜ"»G8@·nݸN•I’¨|´IeÅŒúË2i”á $Å0uêÔ>}ú(¶_£·mƒÜ¹™EÚQ-B‡-Ú5‰Ì×sÖ4ɺª”Ž‹_ªî1h‘ªÿ••-ˆÛ<¬Ÿå †ŽpøðaŸṮEoS3f,V¬˜è¹šÕûC(À†¨ôB á(€eË–µiÓF±uÛ|9~R§fiGíðšB!ZO${öìŠqäˆúÀ½ªUçæM6Ìœ9³úçw@„t»–“p;ÈÀÇ*œ”ß½(¢Iy¹ƒbÎStBîk2 á¨7;vì¨[·®bë²sã )YÿvaÞˆ­/ ú;µ—²uëVÅ(^\´;®0f rßµ!\¸p¢' ÿý÷Ÿbx^0hÒ$\MŒB]…Ósª¿¡œ¹#Z|ß#Œ G]9tè4öáƒ'ž?‡?»«?~Œ3¦è»ðùógÑ.¸­L$áè$qãÆUŒ¯_áøqÑ9M×®l8yòd­¯öýûwц¿þú‹«­=ºG§ûßÿØðñãÇ¢'g>^¼x¡|©uyúô©è¹zCÂQ?dY.T¨b k!úã¾zõªR¥J‚o!wßœ§ M Gç>|¸b˜¥†ZcÖ§ÿMtu˜.Ìš5K1Þ¾…™3Ý<Š¬Í“'O¼xñDÏÌ||ùòEŸ }ýúUô\ ½!ᨡB¡»=n$N,Ò´õ³qãÆ1hßp[™HÍôœ§G«Q•>”ïF%ŠòçÏìØ1®i–ˆdnO'?9ϼy€VËô¹½Þ‡nzN7…JŽ:Á½ïwè;ŠöˆÓŽ]»v¥7h·¡õE©V­ZW´ókhí˜??üé&LÝ2¸¯ÆfÔ¨QŠáƯåÄPh£Ûè¦çH8†@Lófdj¢E‹¦9s‚¿¿hþðàæÍ›W´7fÅ -àLͨQ£¸@cjÇ¢EáèQféwh–Gà¾À’%.<•yR´Gˆ„ aÙ2f™èÉð>8àãã£Ø©R‰öˆgÒ$Ø¿ŸY:/†™ëo“»9õë;û´À@Üê«tK¸ˆ¿Õò„НI‚»w™uöìYÑs%ô†„£¶Œ1bË–-ŠmÀ—Úµ1×硲,/_¾¼I“&úor«·oƒŸŸè›ñ‡)Spž¯þwÆt˜Åqq¥víœzNÒ¤lxâÄ Ñ30=Ö¯RU^BüI(– dBÂQCŽ9Ò³gOÅ6ìߨäÉ€ÊkÚ,„0µjÕµÞÃ}ݼ iÓŠ¾Ó¦AÛ¶ö=$°{÷nÅp¦\QëÖl.\¸\¹r‰ž7 Ërüøñ[’À“ø RpÔ.gÂà¥ÈΟgÃ/^T©RE´C&&lذ¢]07ÜÒõë¸[±fÌÀšFÔ‡åÛ·oEÞ·à¾{Ô«Ì£§McCªð¢"=*Z´¨b»]I©Æ1bj ÉpÔ nkiÕ*0~)2ôF°~ýúîÝ»ëyqoа¦%[Ïá>–®^–+Sº4´liß+}ñõõui·á²[–. ê¡(NŽK%$Ô`ïÞ½µjÕRl7þšÐS'NüòåKÑs"DBÂQƧٲAõê¢=rô¹ÈÕÔОðáËž¼jpTk•Vº´ÞìØ;w:ô‡p‚ªU«*FÕ$rä`Ã3gΈöÚ Y¾|ù?ÿü£Ø.iGôàÌ™3Šž !ŽšÐ¹sgÅ0×û ê^Í%ƒNCÂQ-8­¶s'Œ­ßµþÔ”6OÝcÍš5ŠÑ©“ÃÇ¡_tŠ)D{íÌ;·páŠí¤vD¿ŽÈ‘#ŸGAMDˆ…„#Á³v-V«VM´7¦!bĈlLÂQE8íØ­èVûµ‡Y·n]8·#ÃBÇW «âJ(i}ùòå¢=  0·u+vëÖM´×„ á¨2œÒÂáâH5ZPw!fL6|e»B@؃„£Ö¬\¹R1¶mÓê2³áÔÉ]8qãÆí‚ûôèÑC1ðWkB•*URŒ¡C>iÊAèK"äAÂQe¸G±…‹=Eq¥…4ããÇ¢çì$u C† Šqïž&×@KŒ ƒM œ†ËÉ`av¨NÙêÕ«EûHð<}ʆ"Dí a H8ªÉ’%K£n]]¯­n°#ÊmäJ iF¤H‘t¸ŠvpÔ (ZT Ñ[¾|yÑÓõ*¸ºu `ûvv [¶l¢ AL™2E1:´ýˆ{ â!á¨&\ÙSðŒɆ\`;áŽú |7Ë“Gý³£—zŒ1DÏÕÛàÂ4ïÝÃùÔ:÷© áp*°T)‡Cë ›6mí5a H8ª ×RVÏÂWAgϸ fçÛ œ;wŽ?.Ú¯E‰…Õâ&£ÔÑ·oߊž«·±yófÅèÛÖ¯gV‰%D{‚¸}û¶Ïo£uk‡›=› ï¢RAÂQeæÌ™£Mš¨v^-ê5ê‘.]:6Î’%‹hw¼¬Î¡`Aõ/€v ¡mkBræÌ©ªwF œ&lذJ ÍiÓìNMž ÿþˬ ˆöš0$U¦J•*Š1¾Êgw¤Õ]nDÛFÆ Sy ^ nÆE¹4‚sªÿq×ûnÆ ¢§Ëñ¥¸zíBˆƒk3oÔ«ÇýxìXh×?˜Âo Gõ J›»j·OŒ¥ô·º{âÝ»³aÏž=5™‹×AÂQ.\¸ ¸‰Š @?=cS×qdd·×1²oß¾¢ý ‰pÚqéR%Õ}èPèÒÅþÃH8jA¼xñCÅÝj ¸O ë@h~>}ú$ÚÀ}&I8jAóæÍC»¦Žh·š¶çTgîܹ¶% Â' ;vü=@ÉÔ¤ »pTŸÈ‘#+Ƽyê_÷ªVÑ£ÙpÈ!êŸßf/0K+Žš²oß¾Y³f)öŠZ])o^ˆ•YTÍQ](ü׸° aœßIö ᨠѢESŒ€Ñî¸J,íÝ»·n—5ûW[Üù†„£ê+VL1^¾ü÷¥:(ŸzË–-\UBm¸ŒB_Ö®]«ì;*J¥O÷ÂtpÔ.·:eJÑî8M²d¢=ðH8ª ·•9y2èPa}©_¿þ¯_¿D߯… ì!ô…ëÖÃ*5¢úkúô›%L GM¨V­ÚôéÓÛA<µjáþ¿:/š}Åsÿþ}Ñ.x\:gþüA5ºP´:thÑ·Á{(P 6‡*Ú#†ðáÙЛޙ µ á¨-Z´øçŸÛàÚqÜ8X¹’Yú¿YxÓÛÓ‹/D»à%H’ôãÇÅ>|X¿kW©5j`O>|(ðV(…÷LNÑ¢E±™9sfÑвåïÁœ9ðå ;L©K„-$5dîܹéÓ§WìØ±E{ä€Ã‡ŲÑpÞ$ß¼y#ÚoÀúKÿWú*‰%Z¼x±¨»¡´ú09¤÷®;c¬] ÷ïC³fö@ á¨-—/_VŒ/ \9ÑÙðý;nÂñäÉ!^PÁ8|ø°xÕÈ®‹šù6hРiÓ¦"où)\¸°hî·Z5H’„YÔ:•p GÍá¾´mÝ ƒ‰öˆ'\86ܰaƒ¨:ÃôÕ–°0xðà‚¸ ŸŸàJ¥;và<Ó¹sç¦Ð¨öxÈ öŸ—(Q¢ˆö…I’¶oßn{|ðàÁ¹sçíaPH8ê§Šú÷‡;D{ô´®Ó«W¯Š+ŠräçÏŸ¢ï!ž9rôë×O±[´€ë×E;У;Ƭ;wîPà—'XÞ÷íÛG_@éÒ¥¹*Ÿ>}úˆö‹0.$u‚+ÑR¦ ! }ø•(Q‚Ò݆Kà Ü%iÒ¤gΜQìåË—&Kž}*zÚ„×bµvpçÎц†„£ÞtêÔi8JÒÔ[;æÏ'O2Kì˜×|ÚÖ0ºpá‚h§ÌA¨Pè-(aB¨F 6@ÿþÌjÞ¼ù¥K—4½ ¨rDH`%_²ô°ž•ö BÂQ=zô8p b릋…£G™%|;ÕkVÏ;gudç΢2ÜZcùòðàh\aÀX¿žYF˜+á¸{÷nц†’cÄЯ_¿ïß¿2ä·-I𝵔*û÷3K¸j/޶Pí\—Ù´I•Ót_“Í™ƒ#«Uáb•*A:°l™Å:~üxž}Z´G„~ Â-”P¼ ÉH”ˆ ·nÝ*Ú‚ Í!á(ÿÖ­[+¶êÚ1IX·ŽYÆQðüùslnذA´GîpðàAÑ.˜’Mxo:iRÑîDÈ¥~ýúØLž<¹hCCÂQþ<þüòåËgÍšµ`Á‚M›6=r䈦WäŠ^¿äˆ ¤IÆ,+¨õýÔ¯_¿Ú=~ìØ1Ñ®š¿þúK´ *ñꕉ-šèy^ËìÙ³±Y¥Jц†„£~üøÑ¸qãáÇ?{ö,oÞ¼©R¥:~üx“&M¦L™¢éu¹EÁ®]áõk÷Ï…ö»ÿ÷¿ÿ°ÈœI#­àä¾×(!]hÓ¦bÌ+Ú È0¤XµŠyíÉG áh‡•+Wž;w.GŽ˜6mÚ¼yóÖ­[=zô)S¦\½zUÓKïÙ³G1bÄpó,µk³aĈ'L˜ ÃMs»·oßí—ktíÚU1,={²Ë—/í qáâñ5þJ¦!¨^'… Â< :”-[Ȳì5ÛA„Fp´ÃöíÛ wïÞ"D°I:uË–-þü©õ_T±bÅêÔ©£ØpÝ»aÅ f}üøQ[æ:7oÞ´=øï¿ÿŠöË5-Z¤ ÆtéÒE´ƒ&áÌѸËêÕlH)A„H8ÚáÎ;‘"EÊ!>˜:uj¸’”5béÒ¥Šñå ¸§\²$¾yóFkoÝÃQÌå¾}ûD»¦&>í¡1?²¡hoÂ}dYíaH8ÚaÆŒ¶›Œ—/_€Ä‰ëàì8y2œ?ïì3Qhã˜1c Po‘% š¨ŠòôéÓcäHe\¸0Z9'¼ äJ –ƒvHŸ>½Õ‘cÇŽÍœ9ÓÇǧråÊΜ! Êh¶pýúu—|¸uëVªT©~Y³ÂãÇ/^0ÏÉ•‹ Ó¦MÛ¹sgÝ|þü™³ÿû"F´ Ë•+güÊA¸ènÝ”ñèÑð§¼E×®]W ÈÂÛÐK8>%…J„1 Ç`øùóçÂ… ›5köéÓ§#FÄŠË™g]·ÁÕë¦L™²GŠÖäìsõ* æ¿Z'ñxBÙ²ecÖ,ëPNÃÆeZáÐO¤àW®\)ÚMã)R$Ñ.xŒ^¿ãÆ+zªA!\8þøñcbæÌ™V8~üx… †+V¬9sæpŠG{†®Ïžóh¤,-»ê†eÛ¶mŠÁZæ ƒyóæícð”/_^1Pïß„Rþ²&Nœ(ÚYƒ6lXÑ.xL°˜AÞEˆŽß¿˜ˆáößq-@?2xÏ+ ÷ÇYð˜ÆÙ°téÒ¢]6" PŒ¾}E»ã:(…nàÀ¢½!‚Ѓ-±hÑ¢;wÖ­[wÊ”)\ ip-UFÕmªU«&Öá Xµj•b$Jdýc´5WÆÎ;9×ÝÄÌ›çð)„-7nˆöÀuØíׯŸho‚ ô€„£5²,/^¼8J”(Ý»wí €¿¿¿bLjçH¸ 4H´¿AQ³fMŰÛÊ•é1l7nùðÝ» ŠV¹EJâ\X…I²énÝíA„Þp´æùóç?~ü¨W¯^5/^¬¿KœR±]ŠCûe} ¼ßÇ)§þý!aB;úï?6¼{÷®+ qayýQ¢õh~õ— ‹$`ðàÁŠÊToG,¯ cÆŒ¢½!‚Ð ªãh̓àóçÏ—.]²ý©™íÛ·+ª«];ÀÍÐcG{¦ mÚ´Š‘)àà6+d™•17n\ÕªUóçÏ/Ú}.EÉ\‡|þÌŠ •/_Þ,%*u£jÕªqãÆUŠ&OwîˆvÊ &N„9s˜¥C:Õq$ p´&{öìn”]Ԛĉ+Ý÷î…bÅ~û÷gYê(KC4½zõân©ƒ~ƒ Cüø–aŒ#¶¸ºƒC†8õœðá¡P!8xÐbåÏŸ_ëvç¦ãÉ“'Ê÷¢»w¡reX¿^´SArà …g}^ŸqâÄy¬WÍH‚ ˆ 0ÕÞPæ<î:ÈR­_½bÇâÿQZFãÔ©S\AJg>eãŃ)S˜eèÀ1cÆ|úôI±{÷vö™¨XÏÑ£GÏœ9#z*†ƒÓ^6€‘M^¿†"E˜õâÅ ÑAè Gsàë뫬=Zb\²d‰hí“ µQ»w}ZëÖP¼8³bĈ!v'NœèÚµ«bŸ;çÚó- r GŽbçbL8í8x04o.Ú#{ܸ襸wïÞ˜1cŠö‰ BWH8š$‹]\ÜbáØ±4© OÞ½› _¿~Ý å"èOž|ØÍ¡°Â.]ºè_‰SxÍ›C½zîŸkÎH•ŠYÉ’%Óy.Æ'_¾|¯_¿æA;F‹k×2Ëßß?00P´OAb áhªT©¢¼p,X° hï8$Iâ’|øpJ dÄË—/¹Ú“W®h2‘L™5§$kG <øÖ­[Š yºLùò€Ôj¯^½Þ¾}+ú6ÀÏŸ?E»@@ÂÑ\p‚Æ0üúõ‹Ó=¥KßTÐv ˆð§´ZÄŠK1öï‡t鴚ȠA¸c$iGG¤L™ÒNºŒFĈ[¶0kÓ¦MC‡}hÅ‘ Ã@ÂÑL<þ\´ Öìß¿?tèЊýÏ?°}»æWE2âË—/*J.îTóæAáÂÚNdÀhØÐþÕ =´£$*ôòåËòåË‹ž÷ohÅ‘ ƒ@ÂÑL°1.×<£wo˜;W§ ó2BÉŤ_?hÜX‰,X(X“´cȲÌHR÷^ñK×ÖiÝ¢!áH„A áh&Œ¶âÈ©œ)S`È]//ËJy{ÊÍ¥A8P¿‰<‰1ËPzÅh¦M›V±ÕÒŽ —/Ìž cËäA„@H8š C­8rJkÀhÝZ€hæÖ­[•*URa. ÀÂ…zOäþ}6|ýúuŽ9ôvÀ<\½z•k\î¹vÌ” =b–U£Æ÷ /†„£™0Ί#§´jÕÂIzƒ>D7nÜØ£GWO3fLÅH˜>‘3gÎp­É žY³fU­ZU±=ÑŽ… ãòò¦Ðdïß¿íA!Žf +ŽáÂ…SŒL™`ùrÁ¡û‘#G.X°Àù§æÌ™ó*-¸UŒÐ‰¬Y³¦{÷î"16kÖ¬)R¤ˆb»§LJƒ™e Õ$ ‚JÑ.ðáÃÑ.@Ö¬Y¿ÿþÛÆÕÊ;׫'pæ`šÕœ:C–™thܸqúôé)]4nܸӧOs'šÈ¨Q£êÖ­›%KÑ>”}ûöeÉ’å{. ¸ðü­[áëWf™E5 G‚ „BÂÑغukÙ²eu¸P:uΟ?¯ØLA:ËŠÐy!IË0wîÜïß¿9rúôiçÎÛ8ºáæMø“è“5kV ý9þ¼5qð ,Ú{DªT8§› ôÍÑ£G#aBgŸö÷ßlX©R%ÕËÈk G‚ BÂÑ4pêpØ0ü#nPN:ÕgÀM5Z(]üý™Õ»woGäÔXëÖ?¿«—z¹1¹í?»ÇÝ™H¿~& ³ræÌ)ävš‚¼yó&K–L±ÉŽzóÇX¿~½èI¸ G‚ B[Õ¦ÁI"([öì…T©·ñÕ’Aƒ)†1U£…`Þx«šK.9rD´k®pêÖ¬YS´7%FŒŠñö­ý¡mî‹„© áH„@H8š€ÄX,ZíS'JĆiV[“-›èûáïÞ½í‚dÊĆ& ËÓ‡ºuë*†+'Í G‚ BÂÑèܺuën \¿¾õ#FŽdÔ)Sjá—cªGF‹-cÖ,Ñî¸Jé0]ÝAÝX²d‰bØtœ9“ GŒ!ÚY°J¨§üz‚ BÂÑè¤þÓ}àÜ9;èÖ U÷áÊ•+ŠÛô™‡™H4@³f¢ÝqU«Øv«%ÁüIÉî¨f“ñ±­*E! ކ†“;¾¾VNždäI“ªîFÉ’%ãËÀ´ J=ž>}:<Áœ‰´:4~w½ExÈ¡`Á‚Ša¥_¿훘©Š*AÞ GCÃm°¾zåðq9sBäÈÌš?¾êžÈ¸äá–-0fŒè{ã¤kÕªe¹ÜÝÊ•¢]tÔAqøðᢽ1(Üt:ÊÕ%(Q¢„h7]ö)A„(H8—Úµk+F°µcPûÚþùG 8íØµ+œ>-òîØ%kV6Œ7îòåË-ãC‡)q½-µQ@5Þ¹Æå"_¾|Š«9NžÌ†ÍnA+ŽAŽÆeÅŠŠáLµêŠÙ°aÆZ¸t÷î]ÅÈ™SÔ±O‡€2Žñö´Òs%~|Ñ^ªCD»`6-bÃ2eʈöÆ5®]»fuäëׯ¢""„BÂѠĉG1¦Lqê96°á"ô1©"I“&åöÁÓÈdØ0Y2ßKP‘‹vT£V„„\ÁÎ;E»£ ´yM„(H8‘›7o>þ\±[·vö™¨¦qøðáµð­Q£F5Rl#hÇ·oq§?~ˆvH>|`ÃÁÞºMÿþlÈi#‚'J”(ŠaéɾzyÇ­ãú+Aè GÃ!á5¼  mZמvi'OžÌJªìøù³°uÇ[·ð¥{÷î]¼xqÛG 4H1,KPfdÜ86,]º´ho M¨Pü;ÛíÛlÈÉJ30Ë^½zî BGH8 N5V¯ÿûŸ;gAÚ±víÚµ"´Š# çÌT=þüCPÞ1Æ××W1(:00iÒ$Ř> cÆŒ)Ú5—0`€h‚ H8ˆ 2(F¼x¸YˆË=ʆ &ÔÈa;ÚQƒ¾5öiÐ7€©\¹rÐù"ÑÑv¶)AY4h Ú£Ó‡£q´Ýo}ñ›8q¢hׂ‰p4 -[¶ä:ûy˜ÿ›7/ŒÅ,I³å@Y–#EФØI“ÂÂ…Þ& ‰ÃâÅÌ?~|°!_\dîÇc(ÀÑmÐ×¢~µƒë”-þ½ ‚ GC°xñâ3f(¶ÕJž{tí *0K;íøáÇråÊ)v£FФ‰FײÌ<`Ö¹sçÚ£” Güoú·l©¡{±y3&Ož\´7& EŠ¢]PnŸšß³~D+)‚ Í á(ž{÷îq›ª¨F 7 ïËž=»FSؼyó(´À óæAÊ”š\‰—¿²,gqÔ¿Û†pá±§γ6>iÒ `€úGfÀ¶ìŽÃ† ¦– ÿ¨5Î{Ô/Š BH8Š'Y²dŠqò¤ÊgGËgÏžm«™`êÚµë ÔTN—9|ØV5ºt®ÙÆ”)pê”F·BeFŒ€7˜õë×/Ñ™ƒ6mÚXÉoÞn“´îX¸paÑÞâ á(nÉß_“>~H`M™2e•'97A’+W.­R­‡…‚™•6mZWU£®ˆI®\Ý5yòzöd–{³™Ø.Í:T´S®Q·n]ÅH•ê÷ dIvŒúÇ¡?$EÂ}¶U­ :hu%$8jÖ¬¹SË>lêkÇI“ OfµlÙòªKEÑI“&傯Œ¿í‹škS›Aq>ªÁ ,[¶L1nÞTÆ­Z±aõêÕE»IDÈ‚„£08ÕXº4¬Y£íõОuéÒ¥[:jhƒ,Ë)qŒ£'úì¿ÿp1ËåË—O›6Íßú÷ïϵ½)RD»ûà)è¾5mÚÔKvZuD£®›úP¿2ûöå~6u*®Ñú}ƒ ‚‡„£8Õø×_°}»æ—ôõÅÉÈýõ—ÛëvÎpëÖ­Tls ÜÕŽß¿ãT€sçÎÕªUËs߸ ë`Áíîƒû |©Ð¡CÏž=[´Cæ#zñ˜Ž(n}dað`ï˜&A¦ƒ„£8Õ˜>=ü÷ŸNN˜._FWN¯QS 7oÞŒ;¶b£Ô`gayÐ6lPq«‘ÛOoÜX»›à&{÷âB•?~üí)1¯¢JZ"áÎ7 (xã?ÝÞ@‚ H8êO˜0aƒWrz>½US™?jwµgÏž)ÆP¯ž OFòºoß¾-µHÔƒK2Z°#ê¸MåúÜfðàÁ–o²,›(¯èÛ·o·nÝRì-ì?-BSiO‚ tƒ„£®ÄŒóçÏŸ¿È‘ñÞ±~äÍ‹wÆ#GެéÕ¸ì¥KÁßß©§!%÷÷߲ݪó˜êÕ«suË£‘'ãÆãm® Ú׈!‚blÜèðqM›²áÝ»w?}ú$Úq‚ B$õ#yòäÜê‘Àâ½¥KÊÌÒº¦4§;u‚C‡‚yÚÔŽ;öÖ­[5rlóæÍQ•ChG~Õ¶Š5áÝìÞ½›+Õ‰š?Ùýip? ‚ 4ƒ„£NdÍš•ËɾqV³&nÙ,IR`` vW{úô©b*Ÿ?;|h½z¸Þ5·Ù­Ì;·b‹ÕŽèêÝ»w×b•08%Q™FØ¿?˜Gÿý7 Ð—ÚÕó"‚ø G=(^¼øùóç[¸j´ðï¿0f ³¸"5j'Nœ-[¶(vĈðæÇeËK—2KŸ¸´ãÇgÍšU±EiGtÝ:Œ1BŒ„8bÆŒ©mÚ€3a¾gà &h²L$u`Ïž={÷îUlƒ¨F ;ãq>>>Ú]ªlÙ²Tì8qì<èÜ96Ô3›áìÙ³éÓ§Wlýµ#ºbëÖ­ýŒ%¼ˆéÓ§s¡,“';ûLC– ‚ H8jN‰%Ãî2›XÐ~è·oß8m§6ýúõSŒïßÁjsOá© —/_V­h¹«ð…¾§L™¢óÜ #Ð õƒqíëeéÒ#³¸”/‚ µ!á¨-\ÞI÷î-šhì>¥ ðíÛ7í.uòäIŰÚGåè4՝ޏuëVâĉ[툮ҠA*ô2±îYï*§N±áÖ­[Ï¡•{‚ u ãù)GtëֳݎZë¼×Ùãc‹¹y‰áO¡Dí¶‰sæÌÉÙ—.AÆŒðû¿0ÝnÅc] Œ/ž’Ê#IÚ† ¹P«V­… Šš8!.]º(FĈnö¬¿}þ,™gË–ÍDu+ ‚0$µâõë×£GVlOÞÇÝ–ƒÎS¡äÍËÖüòçÏäÈ.uýúõ4¬àN¦L¿ï *„ÞÂQÅc]xò䉯¯ïT(‘Vå6‘j¬\¹òòåËΚÅçÏŸÇŽ«Øng·¤HµkßWQìØ±Ÿ?.zrAx!´U­1bÄPŒ½{Ý?‘n Ž2Gݼy³F×ñóó³>Ô³'¶lÙRô€×¯_+ÆÃ‡P½ºú×@/(Q¢¬[·Nô¤ 1DŒQ1<ü£[¶Œ _¼xÁu»&‚P ŽšÀuU.QŠí‘s|ýʆ‚®<ìƒVŒ©Sñ&þ´iÓDß«œî5k/{ÎßÒ¦ïÞ½=]B }PËiˆ<Ïkyñ‚ ‹)"z~Ax!$Õçýû÷.\Pì]»D{ä4áÂAÿþÌÒ®£ ÷yÙ®èiۇӎݺÁÁƒêœwÀ\?…bÑB2C‡U \$ßmbÆ„òå™UªT)ÑS$ÂÛ á¨>?V ÓÉ‚ \8fÍ™3Gó+¢ký‘l5\ߚ…ñЬ›lÛ(aœTcH&T(ôö;~¼jçÝ´‰ wíÚõèÑ#Ñ%« á¨%¸. ‰@òH»®¼å  zò±cÇÞ„>†!|xN÷ê”-Ë,jò’Y¸p!÷µ¡}{5ÏŽ*[%L˜Pô\ ‚ð*H8ª §êÔ펧h'Ç n‡F¦|ùòÜÆº'Û÷¨¡ÜÞ½{¹¬"„ѨQ#ÅP}áù¯¿€.hÓ¦èéá=pT™Ã‡+F¢Ýñ”7nhtf.ÈØ <¸dÉ’ŠížvDÏ>|xQ³äK©:ÐHÕ]»Æ†S§Nå‚.‚ <€„£ÊpKtùó‹vÇLØÝ¼6;wîŒ5ªbs±²&R•*UêÑ£‡è ¸uë÷}ÌùžÔ®²`ÆWô¼ ‚ðH8ª ·â9²hwÜ%R$ý¯YµjUÑÓŠ·oß*ƾ}.$ÊðÅùÖ¯_/z*„HR§N­{öhx¥† ±E‹ŽA¨ G•Ñ.(PWtY+µ ò3þî­›‰2¨"æWÏó² 3óԪ掫K×®rè¦4i®Aƒ„£Ê|ûöM´ j€¢3¹6*ªR¥Jl¦M›Vô´ƒ¡<ª°reðÏiÖŒ ‹-•:"B œzCªN+Ðò‡¾|ù"úaz¨W5a´âxäÈkÁ¤éÓ§=O—‘eY©‹^«Ô¬ÌP!̽¦è|øPôm ÂÜpԌСE{àhöðáà ÇtéÒ‰ž§;”+WnË–-¿zõ`ɇ› Ç«Xá™0'Ür#{ 9 9è<¨!'Âsh«Z3~þ„K—D;á.hűU«V]ĤÂq3NvYºÔáãNƒ۫[á™0!\O)T ^sЫԤtAŽ*s •OƒL™D»ãhm,I’$I“&Õè:iÓ¦µ4ÏØ¾}»¹šïÍœ9S1e çÊņwïÞí2!˜X±b)Æòåº^u"¸víš—Äa!Ž*“&MšÐx“zÚ4ѹNÇŽlxïÞ=­¯Öºuë)Rˆž³küûᅧñé¬]kýˆÊ•Ù0mÚ´Ú‰oÂ,¼|ùR1jÕÒûò¨thß¾}Eß ‚ L Gõá"™Z·펋T«Æ†õêÕÓá‚]ºtá*Û™„ÀÀ@Űý-oØÀ†W¯^í,!˜›7o*†B÷dzá¨Q£Dß‚ L GM¨^½ºbÔ­+ÚW@‹g‹/íqIœ8±bXçCPýúõë§cÇŠv‡ Â}H8jªU«cÙ2Ñî8Mœ8l8}útÑÞºø+ΘA sçÎí&!žå8¨1sf1N  „³gÏ ¾#A˜ŽZ1aÂÅÀ«S†åÚ5xþœY-Z´íÑáDa“&ʶê³ÝOÁ3x0R˜#AnCÂQ+þ÷¿ÿ)ƃ Ú£à@u:._¾,Úàãã£Hs3"Dˆ ÚGB<PÀ+ôì)ÌäÉÙpKpU$ ‚ AÂQCΜ9£o۠ƌӌ=]„P¿~}ÅØ¸­ÔÒ>5VŽƒ‰t% u| ÂSH8jH¶lÙ¸ÜÖªÎh´m (æ*[MÝjTâ±víÚ¢$ÄsáÂÅ+Ý„¥Ô7‚ ܃„£¶|ýúµ2*égDíØ»7L™Â,sâNذaêˆä¨08AˆUòõU©¥!A! Žš³nݺ¢E‹*¶¡´ã¨Q0l³H5ºAfœ$;t(Rþa8P2u¶lÙD{C„)!á¨{÷îÍž=»bD;ΘÝ»3‹T£{Ìš5K1Pé¥îèÞ!™Ø±c‹vá(ê:A‚¢½!”pÔ‰Ó§Osõ„kÇåË¡eKf‘jt›Ü¹s+e£6hmÊ7á1$õãöíÛ1cÆTl1p[·B:Ì"ÕHÚA‘ o‚„£®¼xñ" K«üô „ì9åÊ1ëÓ§O¢ïŠ9rdÑ.F SÁÖúC_ ‚ðŽzóýûwÅxütîe¼{7(€®ÿ˜ŠT{NĈ­Ž”/_^´S„QàVOíA„Gp·5üý;,¨Ó…Ÿ>…’%™uíÚµxñ≾Þ@9´‚ëèbI:µb´o/Ìoߨ0~üø"ïAf†„£8íxø0Ž8Ô$—.]š&MÑ·ÁK°]_$áHØçÃa—N–Œ g̘!úFaVH8 ƒÓŽË—C—.Ú^åq/[¶¬Ž>R5d`+©º2Yºt©bˆúÂöø1V¨PAð!´p §ÇŽ­®„Tã˜1c¨žºpÉòa÷=íÆ ¤Jņ+V¬}?‚01$ÃiÇN`Õ*õ¯Tc‡:wî,zÒâ˜3gŽbdͪ÷åoßfÚ5kоA˜Žâá´cÍšpô¨šgGª±FþÚ-já˜&Mš(Æùóº^;S&6œ?¾è;A„¹!áh=z¤ùóý{ꜩƼyó®\¹RôD "ä2iÒ$ÅÈ—O¿ _ºÄ†5}‚07$ AüøñOž<©ØÉ’ÁÏŸžžu¦I’$ÉQu2 ÇHÂûI†¤mÛ¶Šñß:]5jT6œ6mšè{@„é!áhræÌ¹~ýzÅ^¼pÿt’Z„ êžZK˜„pMÉ 1räHÅС½ÐÝ»ðþ=³Z¢öôAîAÂÑ@TªTiòäÉŠ;¶›'8[?=_¼$\!FŒ¢] J·nÝããGM’á0É“³á)jZC„p4mÚ´‰õbÆîœeÀ6”©;­îPu"¬“á´ãßÙ0S¦L9rä=u‚ ¼ކãÙ³gбh¼{çÚóQ€…4éFd´íH‘.Ã:K­.3{6^¸pAô¤ ‚ðH8‘;w*F´h.¢§H„·AÂÑÐܹsG1¦MlbÐ&õèÑ£E{É!gÍšU´;„9èß¿?goÝêéQŽö7DÏ /„„£ÑY»v­b(`ç8Ê  Zz$t#L˜0l>|xÑî¦áÓŸOåÊyt®1cØ0qâÄ©S§=9‚ ¼ŽF§J•*Šñè‘G 5yV‹º„„EûŒ$ ç‰!B^œÓ¡ƒûçêÚ• EÏŒ ï„„£ :t¨bØ–æAu´I* Zq$ÜæèÑ£Šáv=„R¥Ø°iÓ¦¢çD„×BÂÑôBÕ—Ô‚b8ªþMè G¸`ÇôéÝ9Å®]l8õŒ!‚PŽæ `Á‚бzµ2ž7 {ôè!ÚÍËÔ©S-Éì²,SS`ÂU¸ôê«W¯A:J[±b…èÙáÍp4TŒ5~j,\¸°h زe‹h³räÈÅ(RÄ…g>x€­š5kŠž AÞ G33~<îBU„(Ò¥K'Ú¬äË—O1¾‡_¿œ}f¦LlHïAh GÓмysÅ8tàÂv ¬*Õƒ ‚W{ ÉÁ`xó† K”(!zAx9$M×=¬o_ü£äÉ“‹öŽ Oájo]¹âÔsrçfÃE‹‰žAÞ GÓ'NÅ8p† cu¤%ï`äÈ‘ŠQ¹rðO8y’ ëׯ/Ú}‚ ¼Žf"Z´hŠëÕ«'Ú5‚ T [·nбaC0FJ±_¿~¢}'"D@ÂÑLp;YÎÇÎašá"ÿXGÚ²d 8P´ãÄÿÛ»÷¸˜òÆàß©TSÄx†•k3Õä^¬6Ñ…•˾x°¢äºa³’Ëk­}XµÈus‰¬ðÊJxE!Kj‹•¶²ÕV*]tYä)©ÆVÓüþ8¿gÌN-3Y¾æóþc_s¾sœùÌN¦s¾ç€âÈ&‡n>hÕºË@›üzaçο]Oáƒnnn´S€¦@qd==½æƒSU™ìѱcÇ× ùù-¯´k—üaXXíÈ )PYÅ IHHx½€O@[‚âÈz¶¶¶´#À?iðàÁ¯ââZXCáÆôþþþ´ó€AqdWWWÚà½:tèë…‚å§7n”?\¿~=í° APY¦k×®´#À{wüøñ× 8Z mŠ#Ë,[¶Œvxïþ²Ç16ö/Ï)›Þ¡pÌà@qd±X¬¸hffF;¼™éXXøúñ† ò‡~~~´c€fAqd§¸¨Ô# Ý8tèÐë…Í›iÇ Å‘íPÚ«Q£F½^ß$&7W>†›SÀ‡‡âÈn(Žš%(HþpÂÍc> Gö‘Éd+W®dÌŸ?Ÿvx_ÆŒ£<¤P D; hGVZ¹rehh(íð~­X±âõs«úúzÚ¡@£¡8²’H$²··§Þ¯™3g¾^PØ×H±²²¢4ŠãÛ••• >Ó‰€¦ôtrñ¢|iùòå´€&Bq| ™L¶~ýúššÚA@ikk¿^Pøç+Š#Pâø?üðCRRí ¡¬­­_/äçËr8ÚÑ@¡8¾Innîž={,,,h µeËÚ^Cqü[¾¾¾<7õZÆŽK;Àk:´´]ÈÊÊ 122¢4”Ò]F£G¦ 4ŠcËÒÒÒ‚ƒƒ=<<ììì233Õýã"‘Hi$''‡ö{€v»!€ÇH$___SSÓµk×¶n ¨‰ðþ 8-]ƒƒƒå‹ÚÚÚK–,!„”””„……q¹\Ú”¡8-]öîÝ+_ÔÓÓ[²dIRRRXXØòåËL; éÕ«Wii©âˆ–Îk:4º8r¹ÜæÇ”sss !AAAA½ÁWddddd¤¹¹ù•+Wh âææ¶{÷nÚ)ÑðâØ¢Þ½{Oš4IqäÅ‹ `èС=zô 4Kó“íhAqTfooooo¯8’™™™`cc³sçNÚé@ã 8@Û‰2mŠ#´(Žmš±±±â¢¶¶6íD ¹p¨úíÄb1®ËmÄÈ‘#iGÍ…=ŽlÒ«W/Ú@s¡8° Š#P„âÀ&&&&´#€æBq`}}}Ú@s¡8°‰¹¹9í ¹Pؤk×®´#€æBqd« &ÐŽ€7‚÷ÂíæÈñx<ÚÞU{úPð^Ú vóFÚ&G6ÑÓÓ£4Š#›Ú@s¡8°‰–¾·€|´uººº´#‚âÐö¡8@Á‘Éd´3´7"‘ˆvhWòòòššš˜ÇB¡v 999´#ÐâÀ¾±€2| €J0ÇT‚â*Aq• 8€JP@%(Ž GP Š#¨ÅT‚â*Aq• 8€JP@%(Ž Ú 5=zäêêzîܹÁƒÓÎÒ‰äÇ<þ|III§N„BáÂ… ?þøcÚ¹Z£ªªjïÞ½ÉÉÉ%%%ݺu³¶¶öööîׯí\窱¬lÊ”)NNN;wî¤Em3fÌHOOWäóù‰‰‰´£µFzzú‘#G233kjjD"‘··÷È‘#i‡RƒD"2dÈß=knn~åÊÚÕS__òäÉ«W¯ðx¼®\¹ÒÜÜœv®Öhll|8bÄKKËßÿv:õlÛ¶M(ÊG"""„Bá¬Y³hG{'!!!ÌÏØ—_~I;‹Ú^¼x! W¯^M;È? ªªÊÆÆfðàÁÉÉÉÌȃ¬­­íìì¤R)ítïj÷îÝ–––ééé´ƒ¨‡ù[½zuCC3rçÎKKËñãÇÓŽ¦¶íÛ· …Â-[¶4662#§OŸ …_|ñíhoñÖ߆ÙÙÙ£G~òä 3Â|]óÍ7´³³æ8²É”)SÜÝÝÏž=K;È;¹ví!dÓ¦Mòö™››/[¶L*•²îHâÝ»w¹\®———|äßÿþw=233¥R)ít­”››»gÏ ÚAZ©¸¸˜¢´»‘¥"""ª««—-[6|øpfdРA®®®ÍųKvvö±cÇ–.]ʺ}ó)))„yóæéèüÿ!»Q£FYZZþ÷¿ÿ¥N 2™,<<œÏçoذA[[›tww·³³ûé§Ÿ^¾|I;à›¼õ·á¹sçšššÖ¬YÓ½{wfÄÏϯsçÎW¯^mjj¢ŸÝPÙdûöíAAAAAAvvv´³´^AA¡¡¡X,Vd¦=~ü˜v:õtéÒÅÉÉI___qPOO¯¾¾¾¾¾žvºÖhllôõõåñx~~~´³´RQQ!¤wïÞ´ƒüâãã9ÎÔ©S¿ûœ–ÎofH¥Ò7öïßùòå´³¨­gÏž„ÅŽ(“ɪªª´´´äU’JJJêêꬬ¬ôôôÇGŒñ矶ñÆ¿õ·áýû÷µ´´ÆŽ+ÑÖÖvppxþü9Sý¡ÕØôSöööÌƒØØXÚYZïÈ‘#Í¿^333 !¦¦¦´Ó©çôéÓJ#÷ïß/..2dK§Ñ8p +++$$ÄÈȈv–VbŠcyy¹§§gVV–••Õ²eËØØ´222x<^=’““SSS«ªª,,,\\\XúÓ%wæÌ™ÌÌÌ'NtèÐvµMž<944tûöíC† ©¬¬ *))™5k»þÖhiiB$‰Ò8óÞ§OŸÒø&oþm(“Éòòòºvíªt–P($„<~üØÆÆ†ö;`1GøÐ¬¬¬”F~ùå—£Gêéé)íYa‘ÔÔÔˆˆˆ‚‚‚ÔÔT33³€€Ú‰Z#---88ØÃÃÃÎÎŽ©òlÄì·Þ·o_ß¾}GUZZ÷õ×_öÙg´Ó©¡¾¾þåË— øúë¯ÃÂÂä㦦¦{÷îeÝ^¹ÚÚÚ   #F°ôȉH$:uêÔüùóçÏŸ/ôððظq#íhê:uÊÈÈxúô©üxnCCCLL !äÙ³g´¶^]]T*m~>s&»f´A8T 4I¥ÒÐÐÐÅ‹×ÕÕùûû³å<¾ærrrΟ?Ÿœœ,•JÅb±®®.íDj“H$¾¾¾¦¦¦k×®¥å”——s¹ÜM›6]»vmÿþý!!!:::ß~ûmYYítj`&™åååEGGÜ»w/..ÎÛÛ»´´tõêÕÍw±Å‰'*++}||hi¥êêjÿÚÚZ±Xìææ6nÜ8.—{éÒ¥[·nÑŽ¦‡óùçŸK$//¯H$’¬¬,//¯¼¼¤D †††úúú\.×ÑÑQqÜÅÅ…’M;`k\¹r¥¶¶vÚ´i´ƒ´ÒÓ§Occc  o„@°|ùò†††‹/Ò¨mmí;v„……ùøøxzzîØ±ãâÅ‹ÿú׿!ÌYJGG§sçÎÍ÷,VWWBäÇå¡u°Ç>´¦¦¦µkׯÄĸ¸¸lÙ²…½‡sssCBB\]]ǙƟ´S§NÅÄÄÌ™3çûï¿gok$„]¸p!""Biœ¹Ž`ß¾}iTCïÞ½'ýsÒ¢@ ˜4i’ƒƒ퀪***²²²š7ožÒxjj*!D$ѨGGÇêêj¥¥ÌÅDØx¡ÍœœœÌÌL''§æ“ÏØ¢OŸ>ÚÚÚ¹¹¹2™Lé­B @; z¶nݺpáÂŠŠ ùÈ«W¯®_¿Îçó›ŸÅÈ.ÎÎÎR©ô矖Èd²¸¸8ÇÞimŠ#|P2™ìôéÓ:uZ¿~=í,ïÊØØX$%$$(NŠÏÎÎ>sæLÇŽÙuó1{{ûÀ¿bÎ]°±± ôõõ¥PU}úô>|xRRRxx¸|0555$$D |òÉ'´ª‡9¤»yófùy éééÇïܹó¸qãh§S[\\ùß´–âr¹EEEû÷ï—_G:777((HWWWiRAÛ×¥K—ÄÄÄÀÀ@fQ*•nÚ´©¦¦fîܹìº&es3gÎÔÒÒ:xð üÖ©G­¨¨˜>}:/Õ¦°û'XçÙ³gÌ}„ÝÝÝ›?;mÚ4ÚÕ°mÛ¶9sæxyy :ÔÄÄäéÓ§ÉÉÉ„ï¾û޽gˆ³ÝW_}µhѢ͛7‡……õëׯ´´4--ÍÀÀ`ÇŽ¬;ïÇÒÒÒÇÇ'00p„ 666uuu÷ïßçp8Û·ogã4æšÒò»à°Ô¶mÛf̘meeõüùó_ýµ©©ióæÍýû÷§N=‹-ŠŠŠŠˆˆÈÎÎ655}ðàAyyùG}ôùçŸÓŽö®Áºuë>ýôÓÑ£GýòË/b±¸¼5êPáƒ*))!„H$’ŒŒŒæÏ²î™AƒEEEíÛ·/###++«GãÇ_±bs# ÂÂÂââÅ‹»wï¾{÷nnn®©©éÔ©SW­ZÅÜðƒu–.]ÊçóCCCïܹÃãñœ½½½ÙøöêÕ«””###ÖÏUÂçó£££>œpûöm7fÌ///6N ìØ±ãÙ³g÷ïß_PPзoßÙ³g/\¸P~BV[¸pa·nÝ.]ºݳgO5kÖ°ëbmGi¢@‹0ÇT‚â*Aq• 8€JP@%(Ž GP Š#¨ÅT‚â*Aq• 8+qâÄìÙ³+++ÿxVVÖüùó322þüóϦ¦¦æ/ªú¦._¾¼xñ☘}}ýªªª[·n-Y²dß¾}oxG»víZ´hÑõë×»wïžœœ|àÀçÏŸ3+äææN™2åìٳϟ?ïß¿¿L&‹‹‹›;wî­[·hÐþ¡8‹?^OO/??ÿáÇòÁäääÊÊJ333±X,Œˆˆ(,,trrJLL¼téRdddBB‚­­mii)Ó2å¾ú꫞8q"11ÑÌ̬ù‹ª¾©ˆˆggç{÷îÅÄĤ¤¤øúújiiýöÛo-¾ØØØàà`SSÓðððÛ·oGEEÅÇÇ3&--íСCÌ:»víª­­õòòºsçNDDD\\ܦM›d2Ù›û(À?ÅXÌÐÐÐÑÑ‘%dŽS+ÓØØèèèøå—_2#FFFÌË¢¢"¥mÛÙÙñùü_TõM ‚}ûöBttt-ZäîîNùþûï[Ür@@!dïÞ½Ì ã„>Ÿ¿wï^ccãóçÏWUUB²³³ !3gÎÔÖÖfÖ™={öòåË]\\hÐþ¡8»}úé§DáhµL&c.Ä£TW¬XqøðáþýûËGž={¦X77¨¯¯ÿ†WT}S3gÎÔÑÑQñôô$„dff6_¹²²²   _¿~Š;J !vvv‰$##ƒ2`ÀBˆŸŸ_RRRcc#!¤C‡«W¯ööö¦ýQ@û§óî› ÈÁÁÁÈȨ¸¸833S,?xðàÉ“'ýû÷‰DJk–––ÆÇÇ'''?~ü¸¸¸Xi>¢\‹‡§[·©~ýú)˜˜˜èéé={ö¬¶¶V¾Ã’ÁœþèÑ£æÉååå„­[·®Y³&))iîܹúúúVVV#GŽ?~¼••íÚ?G`·:L˜0áܹsQQQb±¸ÅÝ„°°°mÛ¶566š™™ÙØØ¸¸¸X[[|óÍ7Jk2G–ß@õM)žÓ-ÑÖÖÖÒÒêСƒÒSõõõ„^½zýÝAg@@111 OMM¿wï^FFFJJÊ¡C‡f̘±mÛ¶æ¯ðBqÖ›2eʹsç®^½ºnݺ'8ÖÔÔüç?ÿÑÕÕ=r䈽½½|ü?þP÷µÔÚTAAÒHyyy]]©©©®®®ÒSÌîIƒ7¾9‡Ãa.D©¯¯ÿùçŸ7lØpþüy'''ggg h ÌqÖ³µµíÑ£GYYÙÙ³g‹‹‹-,,”ާ§§K¥ÒaÆ)V=ò¿MԢ֦Ο?/•JGN:Ea:Ÿccãnݺåçç+Í€”J¥Ó§O=ztEEEii©““ÓgŸ}&VWW×ÙÙ™¹ðsÕI€÷ÅXÃáLž<™²sçNÒÒqjcccBHvvvEE3"•JÏž={úôiBˆD"QýµÔÚÔãÇ}||jkk !MMM¡¡¡'OžÔÑÑY±bE‹÷ññijjòññÉÊÊbFjjj6lØ‘‘!‹ù|~Ïž=_¾|ùàÁƒcǎɯ1YXXÈ\W\~.6À{‚CÕÐLž<ùرcLEsuuUz¶_¿~ÎÎÎ7oÞ7nÜðáÃe2YNNNee¥»»{hhè… ^¾|É\ ç­ÔÚ”H$ºvíÚ7úöí[ZZ*‘Httt6oÞÜ»wï7>mÚ´¤¤¤‹/N:µW¯^<ïÑ£Guuu}úôÙ±c!DKKkãÆ~~~;wî<~ü¸‰‰I]]]~~¾L&›={öСCiÐΡ8@{`ii9`À€¼¼›Ãáøûû;::^ºt)++«°°°oß¾Ÿ|ò‰§§'—ËeÖ™6mZÏž=CBBòòò²³³ù|þÇø£œLÓ3“ÉÉ{>gfbq:¸“µ;} 8@‚#!8@‚#!8@‚£_íܹsÔ¨Q6›­J•*ÕªUkÕªÕðáÃwïÞíÏ>$&&Z,‹ÅÒ­[·²?[^^Þ¢E‹xàjÕª…††ÆÅÅM˜0áÊ•+žkÚ´iRúöíë••z÷Ýw¥'Œ‹‹+éï–¨3ëׯÿâ‹/¾øâ‹K—.y¥çZSä –eó*áõý ŽO;Yv¾aJ¤,ÛÜ$CYyµ;`v»ýïÿûgŸ}æÚ¸gÏž={ö$''wëÖ-999""Bín–Ì­[·ºwï¾}ûv¹eÿþýû÷ïÿý÷¿ûî;›Í¦v½oàÀׯ_BlÙ²%>>^íî°‚(Ž1ð~ô?¶ùQqô‡_ýµ}ûö®ƒx@@@¹råäÿ¦¦¦öîÝûÆj÷´d&Nœ( âV«µW¯^=ö˜ÕjB\½zõÉ'ŸôgOªT©R§N:uêDEE©½U ˆÍ«/ 8¾Æ;»؞úBpô‡þ󟇒~nß¾ý7ß|síÚµüüüôôôÇ\jß½{÷Œ3Ôîi 8Î>úHúyÍš5_|ñŪU«RSS¥–ôôô³gÏú­3ƒ :}úôéÓ§×®]«ö†1 6¯¾0àøïïb{ê ÁÑç~øá‡eË–I??ùä“[·níСC•*U›6mºbÅŠáÇK®X±Bþ-×S%nß¾=}úô»îºkúôéң˗/ïÔ©SíÚµ+UªT»víŽ;~ôÑG¿ÿþ»Û_?sæÌO<Q³fÍ~ýúíÛ·¯¸~^¸páùçŸoݺu•*Uî¹çžþýû8pÀÃzåää\½zUþðÃK:tjBˆ'N(Ù>W®\7n\óæÍƒƒƒ›5köá‡þÌ;ö­¸SdNœ8Ñ·oßjÕªÕ©SgĈgÏžý׿þ%-9mÚ´uFúEi Cѹsg‹ÅòÛo¿Iÿýý÷ß-ZÔ¶mÛèèèàààûî»oèСò‡w=õÔSRŸ;uêäÚþé§ŸJí•+W–{rÇmUÜ®åa‹Û¼/^|þùçÛ´iZ§NnݺmذÁ­óÊ÷UxŽg 8%¥d‹ýöÛo/¿ür—.]"#####;wîò@?uêTéQ¹làæ±Çs}æ}ûöÕ¬YÓu*UªtïÞ]ú¹k×®ò’[·nŒŒt{6‹Åòâ‹/·^¿þúë²eË–-[¶f͹Q>è/_¾ü¹sçŠû]yí:vìØ A·¿;oÞ<×…•ômÑ¢ER{‹-äÆ]»v¹ÅU¯^=yÓÉSag&MšTxƒ_¿~ÝétÞ¸q£eË–…µX,ï¼óNÙw!¹¬h·Ûåö§žzJjïׯŸòmUÜ®åa‹Ü¼›7o®Q£Fá_yúé§];¯d_uíRÙ7—É1àÆ€SR%Úb{÷î½çž{ ÷§V­ZÛ·o/üœ…÷±ÂÛÓmGråº#•ôOwìØ±aÆn 0àŽÛ\á»À$CÁÑçäwÝ“O>©ü·äýï®»î’wPé=&× ,ËC=4lذ&MšÈËlݺUz†›7oÖ®][j,_¾|«V­êÔ©SäÛ/77·zõêRãC=4cÆŒü·½xñb%ÎÏÏÿþûï;tè ýÖøñ㕬<¼ÆÆÆÊç`U¬XñæÍ›%ê[áq'???::Zj¬P¡BëÖ­åÿºnLåÉÉÉ9qâDåÊ•¥ö>úèĉ®Ï`µZ{÷î=vìØx@ÞòeÜ…nݺ.=¡ë§¦ü‚~òÉ'Ê·Uq»–‡,¼y]ÿVXXXÿþý]«¡K—.•S¸¯šd´õkÇ€SÒýáŽ[,//O~¡+UªôÈ#tïÞ]îvÍš5åc]ûXáí9a„Ñ.zè!ùWä»ZR»víx R¥JrËÞ½{=os†2WGß*((ßl/¿ü²ò_tÝÑ5j´lÙ²´´´“'O:οÿýïRû¸qãäå›7o.5Ξ=[jyçw¤–*Uª¤¥¥I …ÇñÉ“'K-®GNo¿ý¶Ôx÷Ýwß±·ngÙ?ÿüóÒ›MÉÚ½ùæ›R£<¿&„HOO/Qß ;óæÍ“ZBCC8àt:ÇÓO?íy÷ܧÓ,5nÙ²EnlÓ¦Ôøê«¯Ê]ºt‘ß~ûí²ïHò‹>jÔ(©åäÉ“ò ž››«|[yصŠ[Á›Wþ[µk×¾té’[cûöíݺíy_5Éhë 8w\;œ’îž;ùÊ+¯H-!!!Rür:?üðƒ\|4iÒ÷±"+¸²k×®Õ¯__Z 22R®£—îOËÛ'##CÎŽ®•Ú"·9C™+‚£o¹Þ`ÌíHzΜ9¢;wJÊû_åÊ•Ýæ›6nÜ(MÙœ9sFjÉÍÍ•Ëïò[¥mÛ¶RËäÉ“åß½yó¦<½(ãÿû¿ÿ+µlÚ´I^òúõëò'СC‡<¯¦Û8üñÇ{X^^»† Ê¿þúkùòÿ½?ÔªU«JÔ·ÂãN«V­¤–)S¦È¿˜——'¯~áqüŽq3¦È´Ùl‹/>þ¼Óé<þü‘#GŽ9âaM9y¶ºvíÚRKRR’ÔÒ³gÏm+»–Sqp”GL×O©sçÎ5kÖ¬Y³f<ðÀíÛ·•ï«&mý€§H 8%¥¼“ò¤¹¼‚’™3gJí÷Ýwß÷1Á±   wïÞÒ£åʕ۶m›üP)þt“&M\—”Óö„ d÷Êw”®o‹¥nݺRÅeÛ¶mò%‡·oßþúë¯ËÞ+W7oÞ¼víš´ÍüñÇüöíÛß|óÍ”)SöîÝ+„øöÛo‹üÅaÆIPæ¶c¸éܹsxxøÕ«W·oß¾nÝ:©Qž§.õ¶*‹ÅrÏ=÷>|X±gÏž-ZHíçÏŸ—¾¡µR¥J[·n P²¯Â»pÊ‚§¤l6›ôw7oÞ,Ÿç*ýWú¡~ýú¥øC7oÞìß¿¿t\Z¹råÏ>û,$$Ä?ºH e®¨8ú\«V­F%ý¼|ùòöíÛûí·Ò`wèСQ£F3Fù³ýúë¯ò­4|!¾ÿþûÂÓüqþÖ[oÉw¯9sæ?þè¶dçÎ¥’’’œÜÙ5%%¥ZµjuêÔùõ×_ ÷¤Q£FÒyl—.]’¯(<|ø°|ÑFÓ¦M˾õJ×7!„|ŸŽyóæI':Î)S¦œ>}ºì½BܺuKú!##£fÍš5kÖŒŠŠ’®t._¾|çÎå›,WݱZ­‘U­Z5Qš­Bܼysîܹâ¯å–²l+Ï+èyóÎ;÷üùóÒÏóçÏOKKKKK«X±b@@€ò}^Ä€S 8%%ß§Óõu?räÈo¼!ýìv¿n…ÆŒ³ÿ~ùµp½÷¯ÿtámÎPæNí«sLáÚµkuëÖuÝì®7‘zðÁ¥ _äèvqVAA|ÍWåÊ•{õêÕ»wïŠ+ÊO%_Þ•žž.”W¨P¡]»vn÷q•/r¼råŠ<ÙѱcÇ—_~YþX!ÄôéÓ‹[¯^xA~¶{ï½·E‹Ò«U«vöìÙâ~±¸µ“ÏÁZ¾|y‰úVø¢¼¬¬,yî¬råÊ:uªW¯žëê¾ÈñŽq:òÈ|ðÁ7ÞxãÖ­[‡C¾]pÍš5Ÿ~úé &<þøãòëûÿ÷Þڑܾ—%>>ÞõQ…ÛÊóu…W°ÈÍ{á¹9hРøøx¹ck×®-Ѿj’Ký†Ç NI)ïd^^ž|ÿN«ÕÚ£GÞ½{I-QQQÒÍœßænÛS¾òOQ½zõ15qâDoýiù+Î_zé%Ûœ¡Ì ÁÑOΟ?ïz9˜«^½zÉçÁÜqw:O<ñ„Û3Ô«WO¾ýòðáÃå%ÿö·¿¹-$_qæzÿýµk×yœ:zôh7HËËË“ç¤\…„„¬[·ÎÃÖ(ÑЩ¤oEÞÍá½÷Þ“?W$ÁÁÁò†*Ý8>xð`×'”¾Tà»ï¾+n¸cÇŽ7nÜðÖ^äz'p!Äþó·”l+ÏC[‘+Xäæýì³ÏäsŒ\¹ÞEá¾j’ÑÖŸp\1à”T‰:¹gÏ·”,©]»öŽ;îøœ…·çêÕ«Eñ"""¼õ§‹ ŽEns†2WLUûIddä¶mÛÖ­[÷ÄOÜ}÷Ý+V¬V­Zûöí—,Y²fÍš5jþ’«âÌŸ?ÿ¾ûîB4mÚô…^8xð >>222""⡇š2eÊáÇ]O=ÔËŸ.r›3”¹²8 }[9´ï÷ß_¿~½¢pt(lÿþýÛ¶m5jTá“‹MhøðáÉÉÉBˆÿüç?£GV»;ÆW¢}ÚÄ€Sj 8†ÁP˜žyæé†À­[·–¿ íúõë111ÒÍvîÜézój(5˜·ã1EGG§§§ !ÒÓÓkÕª5`À€k×®M˜0AÄ7n,_ eÄ€ó âcÊÏÏøá‡wîÜYø¡jÕªmÛ¶M:aÊŽæAp„aݼysÅŠ}ôÑ©S§Î;'݆íá‡NHHàì+ÞÅ€“ 8@nÇEŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽÞg³ÙÔîÌÈb±X,µ{ÀËÔîPJG0 kÕe±XœN!ý#;B§Ê«Ý NЉNçŸ-rvtº¶šGpÀW GF™Ôh±XȎЂ#Þç!2º’JdGèç8àeòéŒJpÊ#t„Š#`Ò§=€êÝpÊ#ô‚à€”.2Ê8åº@p LÊ]qÊ#4Žs(½Ψ§EpÀ€(:ÂŽ€¡ðQ””Ë ð:‚#!8ÌËÀåF EGxÁ`R†O²#¼ˆàEŽ32I¹QBÑÞBpÀøÈŽð cÇS§NÙl¶C‡ùèáÇnjÓ©S§¸¸¸!C†ìÙ³§ð2«V­0`@lll›6m&Ož|õêUµ× à5¦*7^dÌà¸téÒâúúë¯øõ×_רQ#66öàÁƒÃ† ûúë¯]—™?þÔ©SOž<œ’’òÌ3Ïäç竽Z/0mj¤èˆ²+¯v¼Én·;vlݺuË—//rÜÜ܉'–/_~ñâÅÍ›7BüðÞ6mZÇŽ„™™™III‘‘‘«W¯®Q£†"11199yΜ9Ó¦MS{(=);:Íœá †ª8öìÙsðàÁÅ¥F!DJJŠÝn=z´”…÷ß·nÝrrr>,µ¬\¹²   !!AJBˆI“&…††¦¦¦¨½Š€21m¹ð CÇÄÄÄ… .\¸°uëÖE.ðí·ßZ,–>}ú¸6Ξ=;33³iÓ¦Ò÷íÛбcGyråʵoßþòåËP{(&¬Q†šªnÛ¶­ôömÛŠ\àÈ‘#ááá5kÖÜ¿ÿÁƒ¯]»Ö AƒÎ;[­Vi§ÓyâĉªU«V­ZÕõcbb„ÙÙÙ-Z´P{-¥D¹(#CGÏnݺõ믿Þ{ï½3fÌøôÓOåöZµjýûßÿnÒ¤‰"//Ïáp„……¹ýnhh¨âÊ•+ ÿ–Ífsýoff¦ÚkÃâƒPˆ7‹Œ3Qj& Ž¿þú«âĉ—.]š5kVÇŽoܸ±zõêwÞyçùçŸ_¿~½Õj•. rûÝàà`!Dnn®Â¿ERhÙ¥c¨s=«T©’ôÃ믿ާOŸ°°°š5kŽ3¦oß¾?ÿüó—_~)„ ³X,yyyn¿{ýúuñGÝ ;”¯0Qp ªT©’ÕjíÔ©“k{çÎ…?ýô“¢|ùò¡¡¡…+‹v»]!_g €Þq• JÁDÁQQ£FÀÀ@·÷‰teÌíÛ·¥ÿFFF^¾|YJвӧOK©½Àña¸¡Üx‹¹‚c§N¤›„»6J7ÙiРôßøøx‡Ã±cÇy§Ó¹}ûöðððØØXµ×P2¤F8ÎDI™+8öíÛW1uêTùúèÇ/^¼844´K—.RË€,X ×(„HJJÊÉÉéß¿`` Úk€7‘Q"&ºªZѰaÃ_|qÞ¼y]»vmÑ¢E^^Þ¾}û,KbbbµjÕ¤e¢££Ç?kÖ¬^½zµk×.+++--­qãÆ#GŽT»û€’¡Üx—¹‚£bÔ¨QÉÉÉ»wï;vlýúõ]—1bDõêÕ׬Y³aƨ¨¨!C†$$$HwäÀ`¸5”cGñ>›ÍÆ}á7ET,Á[…™mt¢ÜX"ŒPÂ\ç8L‚ÔøÁp• !8Œ†r#à#G EG(@p 寲 ;Â3‚#À8H€Oã3€×Qt„G€Ap(øÁüEG‡àƒ>Lˆr£w1Œ HG€î‘ÿ 8€"PtDaG€¾Qnü†àŠFÑnÊ«Ýhëáä €ÆPnô5);2þCBÅwæt F DjüŒà5‚ìhfGP2dGÓ"8t€r# G€Ö‘5ˆ¢£9]âsæÁÞ®YdG"8¢X Özǘ` Ò8Ƴ!8¢ ø©Qøh0‚#@‹H€šCjÔŠŽæApô‡ÏT{¸‘M‚àÐR£~‘Í€àˆ¢1vã8ô…‘Gïs àˆ’aPà#¤F@ûŽõ‘ ƒú‚±*#5 ÙÑÀŽ€Îð ƒa—6$²£QQÆqþÁhc`dGC"8¢Ä ô…× à-G€:(7®ÆCpø›Åb!5šÙÑ`ŽpÇhÀ§¤A†qÆ<ÈŽFBpDi0 ¨…X½Óõ>|ì±(µ» éþxÀ§†aãcȆFè:5B”W»ã“]Hf&Á:ÙôŒŠ#þBy=€"…8©i7à³C׎bzn¤ìH|Ô)¦ªÝàúÂô4Š#í‹…ikÝ!8âOäÞÂx‚;â¬G=bª¥Ç©*:‹¿áæÞP޳u‡Š#ÀkˆŒ(J:BpÄ1Ü( ÎhDYÈg= ⣶1U2aŠ€à†;ðf®µŠ# ”„¡MáuÌ\kÁBJ”‘¾Ãýz4‹©j”Ó zÁ+/bn~À­Â5ˆŠ# (4Ÿ¸hFkŽðÂ<µtPÈ[06"#ÔB|Ô‚#Ày¢Ïk¨Ë5> ¤J8ÇÑì¼uY çÏùW/éÈ Aƒî¿ÿ~µ{áòwÀp:#´CÞ!-P»GæBÅ0N*€BÌJCûäý“¤?M:7DFèNá)‘>Cp„×PÍt꯷j÷Æp O¥²‘}ÄuúMaóÙä-œãh^”ßq8sçÎíÓ§OóæÍ ´téR·Ï­ß~ûíµ×^ëׯ_lll¯^½¦OŸ~åÊé¡ &Øl¶#Gޏ.ÿÕW_Ùl¶Y³fIÿݶmÛðáÃÛ´iÛ»wïääd‡ÃQÒNʧˆÉ'1&xÅ"\7ï'ç©Ý-(´Í-œéGx—Èø_w ž}öÙäääÐÐÐûï¿?##ãÕW_}þùçåÎ;×»wï%K–ܸq£C‡+V¬èÙ³çñãÇ…]»vBlÚ´Éõ9ׯ_/„èÕ«—bÅŠ£G>pà@ݺu›7o~æÌ™ÄÄÄ9sæ(ì^ἑRcadGÿ+.D’&KŠ©jÀ\8£À~ÿý÷£G®^½º~ýúBˆ³gÏŽ9rÓ¦M[·nBÌ;7;;û¹çž{öÙg¥_Y¹rå´iÓfΜùᇶmÛ688xÓ¦MãÆ“ÍËËûæ›oî½÷Þ†  !-Z’šš!„°Ûí]»v]¾|ùøñã<•Ž;Æqˆß—%RväµPE‘›½ÈìÈPYG“ò݇EG@ñÜsÏI©QýòË/ !>ùä!DNNÎúõëëׯÿÏþS^þñÇoÕªÕîÝ»?^¡B…N:eeeIH!Ä–-[nܸѻwo!„Óé¼|ù²Õj – Yºté’%K”|Èñ9©ðÅÕ&M^¡$8šæ‹ˆO¸÷ƒ:¸þ·eË–AAA§NBœ>}Úét¶k×ÎíUhÛ¶­BZÆm¶zýúõ‹¥GB‹ÅòÈ#\¸p¡{÷îsæÌÙ¾}{nnî=÷ÜÓ´iÓråÊ©½Þø¯âª‰ËÿAŠL“r¦T»wê`ªÚŒ|=WÅd(LÎb±H“È®¢¢¢²²²„çÏŸBT¯^ÝmÈÈH!ÄÙ³g…íÚµ«\¹ò¦M›ÆŒsíÚµ]»vÅÅÅEGGKKΜ9ó¾ûîûì³ÏÞ{ï½÷Þ{¯\¹r±±±cÇŽmÕª•Ú«n|Ç‹R²Xfqì±¢Ûÿxžb—´Œàh:œáøš4›ì /^¼x×]w !jÖ¬)„¸té’Ûo]¼xQü+V¬Ø©S§/¿ü2++k÷îÝ·oß–æ©%Æ 6lXNNÎÁƒÓÒÒRRRFŒ±|ùrÃ|ifŬ>§d1G‰WÎqT˜bá]f-5þSÕð 3—ñ½ˆSQõëÛo¿uýïþýûív»tÖcݺu…»vír«ÊïÚµKqÏ=÷Hÿ•f«7oÞüå—_V¨Páᇖڳ³³gÏž-ÍbGDDtéÒeÚ´iãÆs8;vìP{½ñ_Å]7Í•ìº ŸQPä?çÔî¦:ŽæâÏr#ÑföÖ[o>}Zúùܹs3fÌBŒ1Bñè£fff&%%É˯\¹r÷îÝ-[¶´ÙlRKûöí­VëÊ•+÷ïßß©S§©Ýjµ.^¼øõ×_·Ûíò¯ÿüóÏBˆ»ï¾ûŽãM ¸ñ ‹¤vUÆTµ‰0I­/¼^úU¥J•k×®õíÛ·E‹‹åûï¿ÿí·ß†+-ðÒK/¥§§Ï›7oýúõ6›íÔ©SGˆˆ˜>}ºü$•*UêØ±cjjªÂuž:""¢ÿþ)))]ºt‘®¹ùñÇ333›4iÒ¹sgÏ‹‰‰ÉÌÌä{büÃód4÷âQKQ_äÃ+QTáCµŒWÇwj×®½víÚ.]ºdgg§§§7iÒdöìÙS§N•ˆŽŽ^»ví°aÃÊ•+·eË–ßÿý‰'žX·n|‰4[Ú¾}{×ö3fLž<9***--í«¯¾²X, }ô‘ÕjUÒ=×Ú ùú””Ý6ï5-µ;g&ž«‰j÷Ng¨8š…Zå+®°†ÙH7kB¼ñÆ ž2eŠç§ªZµª¢{÷î®í*T>|øðáÃËÞ[ù½)Eðfõ.i{ºfG¶°¸…u>ƒ¼È˜ÁñÔ©Sݺu[¹reÓ¦MÝzì±Ç>ìÖ!–.[µjÕÊ•+Oœ8Q¹rå:Œ?><<\íÕ‚‰0O !ÄçŸ.þ:Oí;$HŸbcúÁ_Ó9[ÜWŒ—.]ZÜCgΜ±Z­uêÔqm sýïüùó-Z—•••’’rüøñääd…Ó@¤n ¡è¨Y¼4ÚTPPpãÆÃ‡¯]»¶nݺò™‘þá– Ù; q.w8bgõCG»Ý~ìØ±uëÖ-_¾¼¸rss»uëöïÿ»¸'‘.uŒŒŒ\½zu5„‰‰‰ÉÉÉsæÌ™6mšÚ«XZ¨]På®\¹Ò¦M!„Åb™0a‚ZÝÞ°ÄGhyQ-† Ž={ö”¾’¡8gΜB¸•ݬ\¹²   !!AJBˆI“&}ñÅ©©©S¦L àr"øœ²>T4xðàk×®õë×OúB¡)äEÕ*8&&&Þ¼yS±lٲݻw^@ú¾¯Úµk{x’}ûötìØQn)W®\ûöí×­[wàÀ-Z¨½–%£BÑQ›x]4ÈjµºÞ—G ˆP¬Tg¨à(šoÛ¶­È¤àxîܹaÆeddT®\¹Q£F£G–¯¡q:'Nœ¨Zµªt1£,&&F‘­¯à¨ÔÀˆP‹tµ{!ÌvÇììl!Ä›o¾yñâÅ|0""bÛ¶m\¹r¥´@^^žÃáp»VF*„¸råŠÂ?dû+µ×[+¸q Ä}hœë _“o¾¨vGð_†ª8Þѹsç¬Vë‹/¾8lØ0©e÷îÝ£Gž9sfÛ¶m£££óóó…AAAn¿,„ÈÍÍUø‡233Õ^Wæ&F5ˆ¥ WÙqà#ÌMk“¹*ŽK–,IOO—S£¢uëÖC‡ÍÏÏß²e‹",,Ìb±äåå¹ýâõë×ÅuG]`4à”á#òW¼¨Ý¸3Wp,RË–-…ÇŽB”/_>44´peÑn· !äë¬QLX{@â‡î0s ïbnZãLN§Ãá(((pk/W®œ¢J•*Ò###/_¾,%EÙéÓ§¥‡Ô^ E´>ÈŽZÃ+‚2’ã#PµÏDÁ1++«Q£F…¿ÝõàÁƒBù–øøx‡Ã±cÇy§Ó¹}ûöððp?Céh?50*J(5 za¢àX§NæÍ›ïÝ»wÕªUrãÁƒ?øàƒèèèGyDj0`@@@À‚ ¤ó…III999ýû÷ T{%ŒƒWa„~¥G”…F1×UÕÓ§Oê©§¦Núé§ŸÖ«Wï—_~IOO¯\¹òk¯½&uttôøñãgÍšÕ«W¯víÚeee¥¥¥5nÜxäÈ‘jwÿÎô•<¸˜WSx9àEN§“Û=B .ÖU… 4øüóÏûôé“““³iÓ¦ÜÜÜ>}ú¬_¿¾U«V®‹1bΜ9uëÖݰaÕ+W† ’œœ\øæŽZ£¯ÔÀØ(=Â3ynšÔ¨/¼Ïf³©rGGNjùc;hâåãå06UF'ìÛ^q챨˜ÕçÔî…vû£C~™«âh`úš9Ù06®˜+.‚Ñ;‚£è75JÈŽ€±1m sÓ@pÔ=½§F-½ˆ„xøÙÑä(4Áš@^Ì€ìhZ¤Fà 8ê›v*UegÚìh¤¸#]Ÿò¨µ+Q´Ö˜ÁQÇŒ8L›5…W¾Æ)fC¹ÑHŽze¼ÔÀTÈŽ&Aj4‚#´Ålå.`fdGÃ#5ÁQ—Œ6Ì–5ˆ—~Cv40R£!õÇØ©QBp̃ìèÁQgÌ̓W‡r£Q¡QÕÅö‡Ÿ‘„Ôh`G=1[ŠìºCj46‚£n˜-5J œµÿ‚xãC›(:©ÑðŽú ýeGv4Žà­3dÝ‹# 8dGý¢ÜhG d2;ê[ª ;ê©Ñ$ŽZGj”)ÁðšwDvÔR£y5„Õ)²C_ÈŽzAj4‚#tà †ƒ@9²# 5Gí"afŒì¨;lv¨ˆì¨q”͆à¨Q¤F5‹ÔhBG茮«_ú=Ðõf‡5ˆÔhNG-Òo¼ðB `BdGM!5šÁQsHF¥÷W–¼Õ‘Õ¡K„ÀœÈŽZ@¹ÑÌŽÚ¢÷¢”?é+;ã•Õ×6‡Q‘ÕEj49‚#P„Ô‚£†£(åOz)€ñÊÞEÑP ÁQ+È¥£—ìhlphÙÑÿ(7B_ã€!!8jÙ¢,¨ùAÑð?‚£úHe§Ù(Ë øÙÑ?(7BFpPbšMêŸ"8ªŒŠ”·es¢èèk”áŠà¨&R£±ûõ%©f@j„‚#Œƒ(˜EGÀoŽª1v9J-ÚÉŽfx}µ³µ²£/PnDaGu˜!Uô‹Ôˆ"a4Z(ƒq`øEGÀŽ* Uøš²£I°©C¢Üˆâ/ãÀP EGÀ׎þFª€ÁPt„¦ËŽr#< 8˜ÔJ3Ð5R#<#8(+ŠŽÐŠŽ€ïýŠr”?ù?ÍðúÐ5ʸ£òjwj²ŒÛêõçtÎW{µ )¦ó‘p:Ⱦ@pô Žb CžeÜVâ }!;–åF(ÁT5ŒÌŸ³Õ|Dq¦# _¤F(DpôRøWÉ^Gp„Áù§ Æ„¢# G”¡Á`Xï"8úå(uùº Æë hÙÑ3Ê(‚#ob¶ÐR#JŠàès”£Œ×Ð>ŠŽ€·a ”Áü‰­ èåF”ÁÑ·(G€Pt¼‚à³ðEŒƒâPt„‘]QnDé0R#JàèC”£´Æ»e0^_@w(:eDpàÌVÚD¹eApJƒr# S&/:’QFG_!X¡M&ÏŽ@Y0Ê(;‚#ÌÅ+50ÊÉÊQt„6QtJ‡à€ñQn„W’¡Üƒ©ŠŽ¤Fx Á€o1[ †ApJ€r#`$&):Rn„øEGh–á³#©ÞEpô êRÀxŽ0RW¿8( ŠŽÐ,)7Â뎩¾@pÄHâ‹0ê¹âí@¹0,ï"8¢XRX”Ò’Ó)M5ªÝ'è³ÕÐ2ƒeGÊð‘òjw%GFWrvd8Í"5Âw¨8¢E¦F‰9KÌS{ EGh™ÁŠŽ€/½ïرc„ €*(7§ŒO:e³Ù:äy±³gÏ6oÞ|üøñ…ZµjÕ€bccÛ´i3yòä«W¯ª½NP åFï¢è-Ó{Ñ‘Ô_3fp\ºté—q:'N¼~ýzá‡æÏŸ?uêÔ“'OÆÅŧ¤¤<óÌ3ùùùj¯–Ÿx˜§–é}¶šì@)*8Úíöýû÷¿üòËŸ|òÉ^²dÉÞ½{ ·gff&%%EFFnܸ1))iÓ¦MÆ ûá‡æÌ™£öú©C¾[£IŽi)7f£ß¢#åFø¡‚cÏž=¼|ùò;.yüøñùóç7hРðC+W®,((HHH¨Q£†Ô2iÒ¤ÐÐÐÔÔÔ‚‚µWÑŠ«&êt$…Qñ…Æé1;’ᆠމ‰‰ .\¸paëÖ­=,vûöí &„‡‡Oš4©ð£ûöí èØ±£ÜR®\¹öíÛ_¾|ùÀj¯¢š‘09CÝDZmÛ¶ÒÛ¶mó°ØÛo¿‘‘ñÁ„„„¸=ät:Oœ8QµjÕªU«º¶ÇÄÄ!²³³[´h¡öZú‰ë­¿-ãþ’™§FÙIEG $Ð,§Ó©£€r#üÆPÁQ‰ôôô÷Þ{oÈ!­[·>zô¨Û£yyy‡#,,Ì­=44Tqåʵ»ï'ÒøSd@4FjÔ× {ì±(¯?gÌêsj¯ïÐ×€½3WpÌÏÏŸ0aB­ZµÆWÜBˆ   ·öàà`!Dnn®ÚkàWžìøâŸ'8šgtÒN±AaÈ;öXqð"}ÿ0Ô9Žw4kÖ¬ŸþyöìÙV«µÈÂÂÂ,K^^ž[»tשîxG111º;«º8Ò÷ÄÈ?0€Â‹¸DÚ§ý«d(7ÂÏL÷îÝûé§ŸŽ5ªiÓ¦Å-S¾|ùÐÐЕE»Ý.„¯³†áQf }¤FøŸ‰‚ãñãÇ… .´ý¡_¿~Bˆµk×Úl¶=zH‹EFF^¾|YJвӧOK©½€¡Pt„öi¿èø“‰Îq¬]»ö£>êÚ’››»sçÎèèèØØØš5kJñññ™™™;vìv:Û·oU{%‚r#Tb¢àضm[ù~=’£Gîܹ³E‹o¼ñ†Ü8`À€E‹-X° C‡Ò51III999O?ýt`` Ú+`žÚŸ¸/´OƒWÉ¡G…¢££Ç?kÖ¬^½zµk×.+++--­qãÆ#GŽT»kj"8aĈÕ«W_³f͆ ¢¢¢† ’ Ua©()MÄ "fˆ¼Ïf³effjgˆ);˸­Î¹ñj÷Â{«ãqÌÕï §ßû8ò)è7Òè¤v/tL ãï¨ËDWUÐ&®­"5BuGQ÷Ö<¤FhÁ­#5B#ŽÀŸ´p-S¥èHj„v¨Ó¡#þÌŽ ©ÚBp„¹0(;ÿdGi¼bÈ‚¦}…¯7“yßóåB›¸8¥!;é, ïfº&ŒXÆ]˜“¡}G˜³?|ª,'>2@AŽ>Äõ1`6ré±Dã?©zÁ9Ž€œàÀ«Jtâ#©:BÅfÁЬ}œæƒ¹ã‰ÜߺCpô-f«À䊛¹æRèSÕøVá™k Ð)‚#LÁóÍ Žüà¯ñÑ;ƒŽÅb!€ÂŸŽ>çt:É%€BÒiŽ|ÂÀ¼Å_Ï æ? 8 'nkË?x·– ‰àèÕŹDŒÁóý}þ8{’ø"8 uÊ¿ ›øŸ"8Âì(Ð2å‘Ññ>Â}ý„:ª…yjÝá6à€L:²-õ&ý.o(xÁ-b>Dp@s¼˜):‹ŽþÃlµÿÝqžšzf@v„·hr09Ži¡YG4ÄG©‘ã1xÁѯ˜­ö'®§ ;>­5’QvÜÇÑÔ,ã¶z}IçÜxµWKñê3@K” }GSÓQÈ+)ÊôÅ?©Q*:2<¢Ô˜ªö7f«%˜S|„7ʂਲ£¯Qn /LRC/ލÉÿ©‘¢#Jà¨ŠŽ¾£°ÜÈñ=-Pk,";¢tŽ0&©„6G°Ð‚£j(:Â[,!íKÒìW”àØ ¥@pTÙÑ»ÌYn´X„ÛJ;dG@´Pn$;¢¤Ž€ŽN²#ÀŽ*£èè-&,7º¦Æ"Ðû®eÂ׿¡…r£„¢#J„à#(EÂ0dd×ÈçÀ¨Žê3d‚¯7I @û´Sn”Pt„rGM ;–šÅ1Àl5@SŽ€aQ•4HkåF EG(DpÔ ŠŽ¥cÚr#ÕD€ÿh‘i `lÚ,7Ê5„¢cI™<[x.:2O  D˜­†GèUÙS£’z‘ÙQúÖAR#ÀëŽÚb€(?“²£ëwU;¤F@‹´?OMÑwDpÔ²£&Ÿ¤v#'E"#À§ŽøœöËŠŽðŒà¨E=£Ühx¼Ä MG";‡H@wôRnîˆà¨]dǼžÙÈà†Ùjx@p„nPk G”a$GM£ð?ŠŽ(ÁQëÈŽÊôˆr# †à¨dGR£©ðrZ@ÑE"8ꃙ³#1€NQn„ñ¡i~Hfå”ÁQ7È7 #(72[ÂŽzb¶ìÈ$5šBpÔódGR#¨Ž¢#ÜõÇ Ù‘Ô@× 0O ‰àÍ!5š¯> 5áŠà¨Kf(:úÛ%ŽzeÔ¬CÁ €Þ1O #8ê˜ñ²#©4ˆÙjÈŽúf¤ìHj@ãŽÐR#c`žÆFpÔ=#ar?šÅl5$G#Ð{v$.  GƒÐovÔHjÔï Æž§¦èAp4=F¤F Áª!5 /GCÑcÑŒÁØóÔf«Ap4½dGÊpÃ.ÚGp4 ígGmFío7ÔeÌàxêÔ)›ÍvèСÂ]»vmÆŒ=zôhÖ¬Y—.]^xá…S§N^lÕªU ˆmÓ¦ÍäÉ“¯^½ªö:‡6S#ÔÅ^½3Ã<µ„Ùj“3fp\ºti‘ív»½GŸ~ú©¢S§NÕªUÛ°aCÏž=9âºØüùó§Nzòäɸ¸¸ààà”””gžy&??_íÕ*Šg¥ÃvÀCG»Ý¾ÿþ—_~ù“O>)r·ß~ûÒ¥K£G^¿~ýüùó—/_þÚk¯Ý¾}ûÕW_•—ÉÌÌLJJŠŒŒÜ¸qcRRÒ¦M›† öÃ?Ì™3Gíõ+mf K(Œ½ÐŠŽfV^íxSÏž=ÏŸ?ïaï¾ûÎjµþãÿ[úõë÷æ›o=zÔáp”+WN±råÊ‚‚‚„„„5jHËLš4é‹/¾HMM2eJ@€ž¢¶ÓéÔÔì‰.òÖ6ڱǢ|±pÌêsj¯`š4Ÿ2TpLLL¼yó¦bÙ²e»wï.¼@XXXLLL¥J•\+V¬xëÖ­[·nY­V!ľ}û:vì(/P®\¹öíÛ¯[·îÀ-Z´P{-KF;1H©Qƒ ŸðØ1@G Û¶m+ý°mÛ¶"X¶l™[˾}ûΜ9Ó¬Y3)5:Î'NT­ZµjÕª®‹ÅÄÄ!²³³u5B_á@;i€ö™s¸f«u4°Ã[ •;xð`JJÊéÓ§û,%%Å­ýÌ™3BˆºuëJÿw8;vìp:Û·oU{%ÊÊŸÙQ×åF QÛw °{fž§†i™(8FFFÚl¶;w~ýõ×rãO?ýôñÇÇÅÅI- X°`t^£")))''§ÿþj¯€jÌuUõ«¯¾:hРüã±±±wÝu×Å‹÷ïß/„˜={vDD„´LttôøñãgÍšÕ«W¯víÚeee¥¥¥5nÜxäÈ‘jwß;üs½°aêI\^í †Ù=pCG³1Wp¼ÿþû¿üòË7ß|óÈ‘#5kÖ|øá‡Ÿ}öÙúõë».6bĈêÕ«¯Y³fÆ QQQC† IHHîÈ%ˆ CJ˜G Þg³Ù´vÇÂ|:ä/8ò áEÆÛ=tD£“^0,ÈxS›Š‰Îq„+ß]öÁ¦ÂµÕ¦Bp„755ryµ·uÙPn„iÍ‹0ð ŠŽæAp45ïfGc“ÈÙegì=Ì€à@ 0O]$ŠŽ&Ap4;oÒÌPL¢èXfØCÀðŽð2“ Ü“#8‚B|ŽC À ˜­6‚#P„l€™!DÙòÅ$xÆÃ`žúŽ(:Á(ŠŽÓ"8¢L(&Á3öÀl(:ÁÿE!M9¶`BÌS‚àÀw(7€Áñ§’ÒÌ (:@q˜­60‚#Ÿ0óqŒ‡yj@BpÄ_(/¤ (:@q(:Á€÷q\†DpDi $3`žºt(:ÁîC(#Ž+À¨Ž@™³c£Ü¸"8Ÿ`¶ÚxŽ(‚ç*‘n(:ºb÷€‘PnÜ€¯Pt4‚#à%”a$”ÂŽÀ‡(: Á%CI©8Ù7ÀðŽ(1€™1Oí] ƒàÀ (7€¯¡L ƒßÊ–q[Õ^Wÿ¡èh G”U%‰ÐU2+ÙÑŽ(õ³R`£zÇÙ€GeB¹€rõŽàˆ;°Xþü%(:€dG]+¯v iT’àåF óÔ€gTï£èè©Ño(:êÁŠŸ0CÑ‘yj åF?£è¨SG€Ù‘UAvÔ#‚#à+Æ.:RnPvdGÝ!8Lr£ºÈŽúBp|ȨEGÊ0 R£u„àTFvÔ ‚#€’¡Üàܨ)dG] 8¾eÔÙj@ïH@)”åF¾#©;jÁð9ŠŽ€¦HÑ„# mr:™³Ö4‚#¥(7úÈøñãm6Û… <,3hРF©ÝS#"#;²ÆQzÔ,‚#à- Ð¨#”µ‰à@ʾó /|ñÅÕªUS»#GjÔ#JZS^ífát:ùÜB‘¢£££££Õî…ÁòÝW8Mo啲X,»jGð¹ß~ûíÕW_íÑ£G\\ÜÓO?ýÍ7ßÌž=Ûf³=zT1uêT×s Ô­[7‡ÃñÚk¯5oÞüý÷ß/ü„Û¶m>|x›6mbcc{÷ìp8Ô^Kí2^j´X¤I÷.ÌÉ¥Gªê¢âø~‹ŽÌS—ENNÎСCO:Óºu댌ŒÑ£G׫WÏóo½òÊ++V¬°Z­•*Ur{hÅŠÓ§O¯P¡BÓ¦M+Uªôý÷ß'&&ž;wnâĉj¯+üAŠŒE’²£Q߬òzIÙ‘AIGð­·ß~ûÔ©SãÆ{æ™g„‰‰‰Ë–-óð+ÙÙÙv»}ñâÅmÛ¶-üè¢E‹BBBRSS#""„v»½k׮˗/?~|@óHfgìì(¯£ >ª„!ð+=^^M¹±,ìvûªU«l6ÛÈ‘#¥–€€€—^z),,ÌÃoýþûï&L(25:ÎË—/[­Öàà`©%$$déÒ¥K–,áe2!iÎÚœØßUAÅ|èäÉ“‡£M›6®'fY­Ö¦M›nß¾ÝÃ/¶lÙ²Èv‹ÅòÈ#¬]»¶{÷îÝ»w‹‹kÖ¬Ù=÷Ü£°?6›Íõ¿™™™jo!³³ŒÛZâßyQXÆýù³.ÿ-¼àUGÀßôu¦#åÆ2úù矅Õ«Wwk/Üâ* 22²¸GgΜyß}÷}öÙgï½÷Þ{ï½W®\¹ØØØ±cǶjÕêŽý!)jsn|‰–w†v­5º¾M•LU—&°LU€OIù/''Ç­ýòåË~Ëb±x8[100pذakÖ¬Ùµkׂ xôèÑ#FüðÃj¯.|ÎõÒi9rp¿!8(寲“&‘¿ûî;ׯ7n”:äeggÏž={Ó¦MBˆˆˆˆ.]ºL›6mܸq‡cÇŽj¯.üÍÌ_ŸhÚ“;ÕEpT ÇKdP:ÕªU{ôÑGüñÇ?üPjq:óæÍó\qôÀjµ.^¼øõ×_·Ûír£4!~÷Ýw«½ºPŸá/©ÞÆÒÉ‘­ÿqŽ#€¢Qnô–—^zéÀ¯¿þúºuëêÕ«—‘‘qùòåvíÚíØ±C¾2Z¹ˆˆˆþýû§¤¤téÒ¥eË–AAA?þøcfff“&M:wî¬öºÂäÙêÂoPc§F—9z㮤æQqÔAÑÑ<¢££×¬YóØcÙíö´´´† ®X±BºOhhh)žpÆŒ“'OŽŠŠJKKûꫯ,KBBÂG}dµZÕ^W2ÞÛMþž·F T®%FR£ºøæGï³Ùl\·%4~m5Go9pà@åÊ•4hàÚØ·oß_~ù%--ÍŸ·ì6ùè¤ÁwœeÜÖ’^Um€?]â®2i GE`¤ö¢3f 0àìÙ³rËÎ;üñÇîÝ»óE/þd¼º£áÉ…Fµ;‚?qŽ# }ÝÐ¥öüóÏ3¦oß¾½zõ ?yò䯣££ÿþ÷¿«Ý5ÓáM§#DFm"8€oÅÇÇôÑGï¿ÿþƯ^½Þ­[·I“&Iß4 ?“²£àÞ‡ÚFjÔ,‚#w Ù^ײeËâ¾Bþ'íÞ”µé Æym4ŠÓk5qÒȸ;£öfÄaP G€I‘5…“dtàà/»ø#^•QóTÄP H:Bp˜ÙQ]¤F}!8ø#8bÌÑ‚# > €ºxª‚Ô¨GGÈŽþFjÔ)‚#€ÿbxfÌàxêÔ)›ÍvèСÂåçç/Y²¤GÍš5k×®ÝSO=µk׮‹­ZµjÀ€±±±mÚ´™÷ÜsÏ>û¬¼Øüùó-Z—•••’’rüøñääd«Õªöš|ÈétòÖ€† Žv»ýرcëÖ­[¾|y‘ ¬\¹2==½yóæ‹/–RàñãLJ òÎ;ï<ôÐC 6Bdff&%%EFF®^½ºFBˆÄÄÄäää9sæL›6MíU@ß(7êš¡¦ª{öì9xðàâR£bãÆBˆ)S¦ÈµÃúõë=ÚápÈÖ+W®,((HHHR£bÒ¤I¡¡¡©©©j¯"à+ åü€¡Fï UqLLL¼yó¦bÙ²e»wï.¼ÀéÓ§ƒ‚‚7nìÚX¿~}!Dvv¶ôß}ûötìØQ^ \¹ríÛ·_·nÝZ´h¡öZ°˜#´€w"à¡‚cÛ¶m¥¶mÛVäï¾ûnùòî«|ôèQ!D­Zµ„N§óĉU«V­Zµªë2111Bˆììl‚#¥C¹Ñ ï¨Q£Fn-iiiIII+VìÓ§"//Ïáp„……¹-*„¸råŠÂ?d³Ù\ÿ›™™©öªž0š®üVttÎWmýþ§gŒÁ\ÁÑ•ÃáøøãgÏžíp8æÎ!„ÈÏÏB¹-,„ÈÍÍUøä$E”sd-3ipܳgÏ+¯¼ròäɨ¨¨™3g¶nÝZj ³X,yyynË_¿~]üQwGqÞE¹Ñ0LoݺõÆo,]º´R¥JcÇŽ}ê©§\ïÎX¾|ùÐÐЕE»Ý.„¯³Œ„ ¹‚cAAÁ¸qã6oÞܹsç—_~¹È yâÄ »Ý"7ž>}ZzHí5€ñQç4‚7£·ptj$†ºã-]ºtóæÍƒ zçwŠ+ÆÇÇ;Ž;vÈ-N§sûöíááá±±±j¯€jLNç²e˪T©2qâD‹ 0 `Á‚ÒyBˆ¤¤¤œœœþýûª½è åFƒ1ÑTõ¥K—Μ9cµZ\øÑ¾}û2D=~üøY³fõêÕ«]»vYYYiii79r¤Úkxc:à³Õ€ÇŸþY‘ŸŸäÈ‘ÂÊV !FŒQ½zõ5kÖlذ!**jÈ! Òy?à³ €1phj<^Q¯³ÙlÜÇeä·àȰn*ŒN¥Ã\©1‰Îqà†1P"G@‹œN§Å¢v'!x?–‡¦†Dp€"GÀ¤(ðF£"8Åì ¼ ÁxåF#8@‚#`FÔ€’b¶G@Ëø  ;—ÁŠP„I€;¢ÜhxGÀtÙ¥Cp4 ½à Ô Ž(űLŽàÊŠr£I(ŠŽ03‚#`.T¥Fp´ŽòãˆÔ<Ž” ‡s0-‚#(=ʦBpL„ñPGJŒÙj˜ÁÐ>¢hófCp€"GJƒ©˜Á0 f”x£Š } ¶PÁ€R2óåFs"8@‚#!8¦À¤à#札fH1-‚# æü|hÁ€2á æAp%À<µ™ Á€²2Ïl5åF“#8ÆÇ@ð ‚# 'æ©j4ˆà€˜á¸Žé  ÁŠƒcj ðcÏV3˜@ ÁÐc—4håFHŽx ‡v06‚#!8O˜§†ŒàÃ=àÌVÃÀŽP„àèõ ~ÃÄ\ð2Žî`TGP4ÊpCpÀû(:ÂŽ€aQ*PŒ!(ŒàEŽ€.1 hïSÁ¸cžE"8à+a0Gð”Q‚#>DÑFBp¢ÜŽ€11ôÚAцAp€"G@¯¨a:¢—7,“ðŒàEŽøƒö‹Ž”qGG(Bp”¡Á?Ñþl5àÁ0 *_ 8à?Ú,:r´ …Ž€Žió`TGüJk‡|”¡ÁŠð7í)7¢DŽP„à€ ´Pt¤Üˆ’"8`F¤F”‚1ƒã©S§l6Û¡C‡J½ÌªU« Û¦M›É“'_½zUíu”âÃÐ -1fp\ºtiY–™?þÔ©SOž<œ’’òÌ3Ïäç竽Z£Q+;r„‰Ò)¯v¼Én·;vlݺuË—//õ2™™™III‘‘‘«W¯®Q£†"11199yΜ9Ó¦MS{Fãt:-‹?S©¥f¨àسgÏóçÏ—q™•+W$$$H©Q1iÒ¤/¾ø"55uÊ”)ƬÑB¿üÿ‘Àëx#C/ oÞ¼)„X¶lÙîÝ»K·Ì¾}û:vì(·”+W®}ûöëÖ­;pà@‹-Ô^KJr#ÊÂPÁ±mÛ¶ÒÛ¶m+Ý2N§óĉU«V­Zµªk{LLŒ";;›àðÿI(#CDzËËËs8aaaní¡¡¡Bˆ+W®(|›ÍæúßÌÌLµ×  uLXCûŽ!]:äÖ,„ÈÍÍUø<$E@)ø4;RnDÙq©Ç_„……Y,–¼¼<·öëׯ‹?êŽøŽnÐCj„Wÿ¢|ùò¡¡¡…+‹v»]!_g €ïpcphÁÑ]ddäåË—¥¤(;}ú´ôÚ½ Ä(7Â[ŽîâããÇŽ;ä§Ó¹}ûöðððØØXµ{0/Ið"‚£»,X°@:¯Q‘”””““Ó¿ÿÀÀ@µ{ÜŸ€a0a "8º‹ŽŽ?~ü©S§zõêõòË/ÿío›?~ãÆGŽ©v×Tãvw!†¡Íw·{¥V—¤ìXêø(ý®?&5øÚi¶W:ÅíxŠ0bĈêÕ«¯Y³fÆ QQQC† IHHîÈ€?I±Ïb±!”'@)k2ÿ¯³°WyÍf3Ø}·FÆ#ßø©jxPø½¬Íw·{¥‘.)‰êFFl(]ôJ§¨8 ž«TáGôÄ->Êg@áLU{'áÂÿŽ;&ÿ£vw¼†Ù%ïbt2žcÇŽé-¯#¦ŽP„Ûñ@‚#!8@‚#!8@‚#!8@‚#!8@‚#!8@‚#!8@‚#!8@‚#Ü?Þf³]¸pÁÃ2ƒ jÔ¨‘Ú=5 AƒÝÿýj÷FpêÔ)›ÍvèСR/³jÕªÄÆÆ¶iÓfòäÉW¯^õi¯òóó—,YÒ£GfÍšµk×î©§žÚµk—zå¡K×®]›1c†Ô¥.]º¼ð §NR}C¹:{ölóæÍǯî†zì±Çl…´iÓFõ uøðá1cÆtêÔ)..nÈ!{öìñÆ2¼òjwà}K—.-Ë2óçÏ_´hQPPP\\\VVVJJÊñãÇ“““­V«/zuûöí¿ýíoééé¡¡¡>øà7öìÙ³sçÎçž{îÙgŸõi¯Šë’ÝnïѣǥK—êׯߩS§sçÎmذaóæÍ+V¬hÒ¤‰ZÊ•Óéœ8qâõë× ?äÏ %„8sæŒÕj­S§ŽkcXX˜¯»ä¹W_ýõsÏ=WPPpß}÷Õ¯_×®]Æ ûÏþóÐCùºWçþê—_~ÉÈÈøý÷ß=,3pàÀ† ªÝS8pà}÷ݧv/ c¹¹¹ûöí›>}zLLLLLLzzz)–ùé§Ÿ4hЮ]» .H-¯¾újLLÌÿýßÿù¨WüqLLÌÀóòò¤–cÇŽµlÙ²aÆ?þø£/zuÇ.IO>oÞ<¹%%%%&&æ‰'žPqC¹úàƒ¤Å^zé%ß½|wìRnnnLLÌóÏ?ïáIü¿¡®]»Ö¢E‹¦M›îß¿_j9tèP“&MZ·níp8|Ô+“`ª£4hP¾<Õh@zöì9xðàåË——e™•+W$$$Ô¨QCj™4iRhhhjjjAA/zµqãF!Ä”)SäJOýúõGíp8ä kïöêŽ]úî»ï¬Vë?þñ¹¥_¿~5kÖþü ~ÈÏêÌ™3B·r£O»¤¤W)))v»}ôèÑÍ›7—Zî¿ÿþnݺåää>|ØG½2 ‚£ýöÛo¯¾új=âââž~úéo¾ùföìÙ6›íèÑ£Bˆ©S§ºžã8hРnݺ9Ž×^{­yóæï¿ÿ~á'ܶmÛðáÃÛ´iÛ»wïäädy`E)8޹sçöéÓ§yóæƒ Zºt©Óét]à·ß~{íµ×úõëÛ«W¯éÓ§_¹rEzh„ 6›íÈ‘#®ËõÕW6›mÖ¬YÒy½ ,11qáÂ… .lݺu©—Ù·o_@@@ÇŽå–råʵoßþòåËðE¯NŸ>Ô¸qcׯúõë !²³³}Ñ«;v),,졇ªT©’kcÅŠoݺuëÖ-µ6”äöíÛ&LŸ4iRáGý¼¡²²²„µk×öð$þßPß~û­ÅbéÓ§kãìÙ³333›6mê£^™U%ÓÉÉÉ:tè©S§bbbZ·n‘‘1zôèzõêyþ­W^yeÅŠV«ÕmB¬X±búôé*ThÚ´i¥J•¾ÿþûÄÄÄsçÎMœ8QíuÕ¥‚‚‚gŸ}ö»ï¾kÖ¬Yxxxzzú÷ß¿oß¾·ÞzKZàܹsC‡ÍÎξçž{:tèðÿþßÿ[±bÅÖ­[—,YR¿~ý®]»~ñÅ›6mr= kýúõBˆ^½z ^/£kÛ¶­ôömÛJ·ŒÓé q{ÈÿJ ŽçÎ6lXFFFåÊ•5j4zôh9Ÿ©²¡Ž9^³fÍýû÷~üø€JÚ%öûï¿=ztõêÕR¹åìÙ³#GŽÜ´iÓÖ­[ããã…sçÎÍÎÎv½h`åʕӦM›9sæ‡~ضmÛàààM›67Nz4//ï›o¾¹÷Þ{6l(x½p'yyy‡ÃíÊ!Dhh¨B®m{Wá»4¤¥¥%%%U¬XQ*©Ò+ÉÁƒSRRNŸ>}ðàÁ»ï¾[®Ü«Õ¥ôôô÷Þ{oÈ!­[·–²µ+ÿ÷J* ¿ùæ›uëÖ}ðÁùå—mÛ¶mß¾}ÆŒ?þ¸*]ºuëÖ¯¿þzï½÷Θ1ãÓO?•ÛkÕªõïÿ[:¨VqÒ;>'ÌÅn·¯ZµÊf³9Rj x饗 ¿y\ýþûï&L(25:ÎË—/[­Öàà`©%$$déÒ¥K–,q›]…rÏ=÷œ”…ÑÑÑ/¿ü²â“O>Bäää¬_¿¾~ýúÿüç?ååüñV­ZíÞ½ûøñã*TèÔ©SVVÖñãÇ¥G·lÙrãÆÞ½{ ^/(ŸŸ/„ rk—ö™ÜÜ\_wÀáp$''?ýôÓyyy¯¿þºt„£b¯233W¯^½ÿ~‡ÃѸqã *¨¸¡òóó'L˜P«V-ùȰð~îÕ¹sç¬Vë”)S6nÜøÖ[o¥¤¤|ðÁåË—Ÿ9sæÙ³gUéÒ¯¿þ*„8qâĆ fÍšµgÏžíÛ·;ö—_~yþùç¥þ¨¾ŸëÁÑ\Nž<ép8Ú´ic±XäF«Õ*Ï)§eË–E¶[,–GyäÂ… Ý»wŸ3gÎöíÛsssï¹çž¦M›–+WNíÕÕ«:¸þ·eË–AAAÒ äNŸ>ít:Ûµkçú Š?&n¤eºví*„Ø´i“ôÐúõë-K=¯ ³X,yyyníÒm_¤zŒïìÙ³§gÏž‰‰‰‹/îÞ½»ê½zòÉ'322vîÜ9qâÄM›6 8Pú£ªtiÖ¬Y?ÿüóìÙ³‹»_Œÿ{µdÉ’ôôôaÆÉ-­[·:th~~þ–-[Té’|JÕ믿ާOŸ°°°š5kŽ3¦oß¾?ÿüó—_~©J¯ ƒàh.?ÿü³¢zõêní…[\DFF÷èÌ™3§L™òÞ{ï=óÌ3>øààÁƒÓÒÒÔ^W½²X,R‰ÅUTTÔ¥K—„çÏŸE½^Ò $ß·k×®råÊRp¼víÚ®]»ââ⢣£¥%y½àYùòåCCC W\ìv»B¾þÔënݺ•˜˜8|øð³gÏŽ;655Õõºµz%±X,Õ«W1bÄO>~óæÍcÆŒ)\Qóg¯Ž?þ¯ý+55Õ­]ºî[¾é„Ÿ7”tþÉÂ… åogéׯŸbíÚµ6›MšUðs¯œN§Ãá(|ói£J•*ªl(!D5Ýff¤êöíÛjõÊŽærÏ=÷!¾ûî;ׯ7n”:4dggÏž=[:þŽˆˆèҥ˴iÓÆçp8vìØ¡öêêÕ·ß~ëúßýû÷Ûívé¬Çºuë !víÚåvJ¢t¯;éõÌVoÞ¼ùË/¿¬P¡ÂÃ?,µózA‰øøx·]Âétnß¾=<<<66ÖqéÒ¥›7o4hÐ;ï¼S\±ÇŸ½ ùì³ÏRRRÜÚ¥{JoCÿo¨Úµk?úWÒ9*ÑÑÑ>úhûöíýß«¬¬¬F >Ü­ýàÁƒB›Í¦Ê†BtêÔÉn·K%O™t“ùæ—þï•1Í¥Zµj>úè?þøá‡J-N§sÞ¼yž+ŽX­ÖÅ‹¿þúë®mÒ„øÝwß­öêêÕ[o½%õ !Î;7cÆ !Ĉ#„>úhfffRR’¼üÊ•+wïÞݲeKy˜nß¾½Õj]¹råþýû;uê$ß³ƒ× J 0 `Á‚ò×Ù%%%åääôïß?00ÐëÎét.[¶¬J•*žï åÏ^EFFÚl¶;w~ýõ×rãO?ýôñÇÇÅÅ©²¡Ú¶m;ï¯^|ñE!D‹-æÍ›7aÂÿ÷ªN:Í›7ß»wïªU«äƃ~ðÁÑÑÑ<òˆ*JÑ·o_!ÄÔ©Såë£>¼xñâÐÐÐ.]º¨Õ+càv<¦óÒK/8pàõ×__·n]½zõ222._¾Ü®]»;vÈWÚ*Ñ¿ÿ”””.]ºH×püøã™™™Mš4‘Î&AIU©RåÚµk}ûömÑ¢…Åbùþûïûí·¡C‡ÊGÀ/½ôRzzú¼yóÖ¯_o³ÙN:uôèшˆˆéÓ§ËOR©R¥Ž;Jm®óÔ¼^P"::züøñ³fÍêÕ«W»ví²²²ÒÒÒ7n,ßÁ».]º$}ÙñàÁƒ ?Ú·oß!C†ø¿W¯¾úê AƒþñÄÆÆÞu×]/^Ü¿¿böìÙòYÈ~î’B~îÕôéÓŸzê©©S§~úé§õêÕûå—_ÒÓÓ+W®üÚk¯ÉçøC5lØðÅ_œ7o^×®][´h‘——·oß>‹Å’˜˜X­Z5µze GÓ‰ŽŽ^³fÍo¼±gÏž´´´V­Z;öí·ß¥½ŽlÆŒ6›íóÏ?OKK+((¸ë®»†Ê—Ä—NíÚµçÍ›·`Á‚~øáÊ•+Mš4éß¿¿kø‹ŽŽ^»ví›o¾¹oß¾-[¶ÔªUë‰'žHHHp»m×®]SSSCCCå , ¯”1bDõêÕ׬Y³aƨ¨¨!C†$$$”âØR ©æŸŸïöG×KdüÙ«ûï¿ÿË/¿|óÍ79’‘‘Q³f͇~øÙgŸ•o•åÿ.)çÏ^5hÐàóÏ?Ÿ;wîwß}wüøñZµjõéÓç¹çž‹ŠŠRwC5*"""99y÷îÝáááñññcÇŽÕÅ˧qnÞf6¨\¹²Û7œöíÛ÷—_~IKKãІ±wïÞ¡C‡8Pšé ìH ¦3cÆŒH÷m‘ìܹóÇìÞ½;©ÑH>ÿüsñ×yjÊˆŠ£élݺu̘1!!!½zõ ?yòäÆkÔ¨±dÉÏßR](((¸qãÆáÇGŒQ«V­7ªÝ#€qÍhïÞ½ï¿ÿ~FFÆÕ«WÃÃÃxàI“&¾é4ô(''§M›6B‹Å²pá‡zH팃àJ~~þo¼qíÚµ~ýúùõâ”ÁŠp1!8@‚#!8@‚#!8@‚#!8@‚#!8@‚#!8@‚#!8@‚#!8@‚#!8@‚#!8@‚#!8@‚#!8@‚#!8@‚#!8@‚#!8@‚#!8@‚#!8@‘ÿvy}j;\‡"IEND®B`‚statistics-release-1.6.3/docs/assets/violin_301.png000066400000000000000000000275471456127120000221710ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A/.IDATxÚíÝ{•åaøñç,EÝ¥rÓØØVXƒõ€mcäbÐÎ81a’ꎱ¤ÚÄ~J“™˜/¡—êf$thVL¨"¨šRH‚’ U³‚YÆ´Ê!)º{~]7»Ëòçœ÷r>ŸÉñeÏî{9ç=ßó¼—S(‹¦.é „#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#ŒB¡ô,ph„cù555%= å'ˆ"ˆ"ˆ"xŸ‹–€G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢GÞW,“ž ½„#Q„#˜B¡ô,p„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q'=UòÐCµ¶¶nÙ²å˜cŽ™>}ú¼yóøùýû÷ÿûß_µjU{{{ccãi§ö¥/}iüøñI/@b Åb1éy¨¸… ÞsÏ=Æ ›2eÊÖ­[_yå•ÓO?}ñâÅC‡í÷ç;;;›››7lØpüñÇŸvÚi¿ùÍoÖ¯__WW÷ýïÿ¬³Î:èŸkjjjkkKz¡!íJ_T] » €ÜÈÿ¡ê¶¶¶–––1cÆ<þøã---O<ñÄå—_þÜsÏÝvÛmzÈ~ðƒ 6\pÁÿþïÿþï|gÉ’%ßûÞ÷B7ÜpCÒK˜ü‡ckkkWWל9sF]š2þüúúúU«Vuuuõû 6„>÷¹Ï üî¡ü|ä#þð‡_yå•;w&½@ÉÈ8–Ž2Ϙ1£{Ê Aƒ¦M›ÖÑÑQ ľÆBèÙˆÅbñÍ7߬««ëNI€Z“óp,‹[¶l9räÈ‘#{NŸ0aBaÛ¶mý>ê /<úè£o¾ùæŸýìgûöí{íµ×n¼ñÆíÛ·Ïš5kĈI/@2r>~¶wïÞÎÎΆ††^ÓëëëÃï)öÔÔÔ´dÉ’+®¸âŠ+®èžØÜÜüå/9òï655õšâr ërŽûöí ! 6¬×ôáLJvíÚÕï£vïÞý­o}ë­·Þ:õÔSO;í´ŽŽŽµk×._¾ü/þâ/Î?ÿü˜¿+€üÉy8644 …½{÷öš¾gÏžðÞ¸c_×]wÝ/~ñ‹ùóçÿõ_ÿuiÊk¯½öÙÏ~vîܹ<òÈÿñ'½X Èù9Žƒ®¯¯ï;²¸{÷îB÷uÖ=½þúë?þñO>ùäîj !üñ÷w÷öÛoÿèG?Jz™’‘óp !Œ3¦£££TŠÝÚÛÛKÿÔ÷ç;::B'tR¯é¥Æ7Þx#éHFþÃqæÌ™kÖ¬éžR,W¯^ÝØØ8iÒ¤¾?ÒI' 4hóæÍ½¾Ð¢tÚâÉ'Ÿœô$#ÿá8kÖ¬ººº;ï¼³t^c¡¥¥eÇŽ—\rÉ!CJSÞzë­öööíÛ·‡†:mÚ´­[·~ç;ßé¾CøæÍ›ï¾ûî|àçž{nÒ Œšø®êE‹-X°à„N˜:uêÖ­[×­[7qâÄE‹uߦgåÊ•sçÎ?~üŠ+B;vìøô§?ýë_ÿú¤“Nš8qbGGÇ/~ñ‹®®®n¸á²Ë.;èŸó]ÕÃwUdNίª.™={ö¨Q£–/_¾råÊqãÆ577Ï™3§tGž~wÜq+W®¼çž{Ö®]ûŸÿùŸÓ§O¿úê«O;í´¤ 151âXeF!†G€ÌÉÿ9Ž”…p Šp Šp Šp Šp Šp Šp Šp Šp¤&”¾¤8€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€÷ …¤gH/á@á@á@á@á@á@á@á@áH­p[c8B€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€÷‹Å¤gH/á@á@áHþ ßàÈ G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢ Nzªä¡‡jmmݲeË1Ç3}úôyóæ566üçŸþÞ{ïÝ´iÓž={ššš®¹æš?ÿó?Oz9S#Ž .¼á†^~ùå³Î:køðá?üð¾ð…}ûö ð§žzê¯þꯞzê©Ñ£GOš4éÙgŸ½üòËŸzꩤ 1…b±˜ôZ~FÓ¦4â‚AÇt1â9ù?Ç€²ŽDŽDŽDŽDŽDŽDŽä\÷M€#$ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"øFŸÔ* IÏ^€(€(€(€(€(€(€(‘R,ºG=v\¤‡p€ôR¤Šp Šp Šp$Ï|!2”‘p Šp€TsGÒC8E8E8E8@ª ¡è¤ƒp Šp Šp Šp Šp Šp¤¶ø [\OMªG¢G¢G¢Gr«P(85ÊH8E8E8E8ð.w9&ˆ"Äø"€lŽDŽDŽDŽDŽDŽÔWòÀáŽDŽDŽDŽäS¡P(“ž €#æœlRE8E8E8E8@ª¹û,é!ˆ"ˆ"ˆ"xWÑíOSÆ-iIá@á@áiçŽ<¤„p¤ÙÀaŽDŽDŽ@µ¹Ã@F GrH—@%GH»BÁíÙIá@á)U,Ý:ŒT޼ÏñP`€(€(ÂRÍ%Õ¤‡p Šp Šp Šp Šp¤F‹¡à¾º)`CÀAy™Â€(€(€(‘¼) n” • ˆ"ˆ"ˆ"ˆ"©]î© ¤œ«ýHá@áH®øt•#ª÷pœZCJGÞ§N€G¢Gjš£?@j9¯ƒŽä‡,'ÅbÑ[ÒF8 3î €(µŽ=ôЬY³&MšôÑ~ôË_þòo~ó›øÇ¾öÚk“'Ož7o^Ò ¤šÇ… Þpà /¿üòYg5|øð‡~ø _øÂ¾}ûb[,¯¿þú={ö$½Ô®B!ÄM ä?ÛÚÚZZZÆŒóøã·´´<ñÄ—_~ùsÏ=wÛm·Å<üþûïæ™g’^*È v)ÿáØÚÚÚÕÕ5gΜѣG—¦ÌŸ?¿¾¾~ÕªU]]]?vóæÍ .<å”S’^Î%ÕPiùÇõë××ÕÕ͘1£{Ê Aƒ¦M›ÖÑѱaÆøÎ;ï\wÝuóçÏOz!¨EîÈCÚä<‹Åâ–-[FŽ9räÈžÓ'L˜BضmÛ½ãŽ;^|ñÅo~ó›#FŒHz9ªÁiÀÀ'=•µwïÞÎÎΆ††^ÓëëëC;wî<Ð7nÜøÝï~·¹¹ùì³ÏÞ´iÓ¡þݦ¦¦^SÚÚÚ’^äñÇ!|å+_é’?~üUW]ÕÙÙù“Ÿü$é‚êýPQ^bdNþÃqýúõuuu3fÌèž2hРiÓ¦uttlذ¡ß‡´··6ìÔSOí9qüøñ!„mÛ¶%½@c·ØÍ@5YÛ•ó‹cŠÅâ–-[FŽ9räÈžÓ'L˜BضmÛ”)Sú>êÞ{ï<¸÷šÙ´iSáÄOLz™ 7—ÈP9ǽ{÷vvv644ôš^__Bعsg¿š8qb¯)ëÖ­kii9ꨣ.ºè¢˜¿ÛÔÔÔkŠËeYÛ³g}´8[k;AYßÐ@5å<÷íÛB6lX¯éÇ!ìڵ렿¡³³óÁ¼å–[:;;o¿ýöãŽ;.æïÊÄoH'9dž††B¡°wïÞ^Ó÷ìÙÞwÀÓO?ýµ¯}íå—_7nÜ7¾ñ³Ï>;é‚*ýô•ópúèk®¹æóŸÿünú‡ÄñÓj²¶I3ÏÈ¢œ‡ca̘1[¶lÙ½{÷ˆ#º'¶··—þ©ß‡tuu]{íµO>ùäyçwÓM7 З À>1»l;ú•ÿÛñÌœ9³³³sÍš5ÝSŠÅâêÕ«'MšÔïC–,Yòä“O^zé¥wÝu—j„Ls_R«X,zn’9ùÇY³fÕÕÕÝyç¥óC---;vì¸ä’K† RšòÖ[oµ··oß¾=„P,xàc=öúë¯OzÞ3ÌÕRž2¶Rgÿ,Z´hÁ‚'œpÂÔ©S·nݺnݺ‰'.Z´¨û6=+W®œ;wîøñãW¬Xñúë¯O:uèСò'Ò÷W]|ñÅÍÍÍÿ9ßUÄÇÁ¤ù‹es¹íÒ¼Â7À·Þ*­¼/7Û‹*Èÿ9Ž!„Ù³g5jùòå+W®7n\ssóœ9sJwäé«4î¸oß¾^x¡ï¿º°š²HíE¹¬F¨ª‘êHã[WÖq1Ò¹—Ïñ¶Kç O#Ž *ã+ÎÆ¢:òŽ#)ÇÕRj)µÉõ1dŽp jèE8B2Òö–œïáÆ’´­ó4¨…ížfÖ?™#)3ûÁ,²Õˆ!bб—ϱs½E†xnSÂjáFHDÙ_zÚ‘*Ž{ùDXí¤A…>°yzSi‘r2v•96T_E_wÚ‘ŠŽ@ÍñÎÚ“[ VY>­y†S9ÂjW-7zg=(WÆTBÕ^tžáTˆp„$Ù¹Cí¨åjä†p¤lì³ÅöRíTSõ_qžáT‚p„Z¤8 ¨]†dÞ[½¯q‚#Ð/á «~»n¤—¾O I ôK8RZ„ŒRHTGõo{dؘJŽP[$>‘$uÙ¹e&9 ZWã…ä³D.n¤B„#$¯já"8$5žÔ•PAGÕHåGÊ@Žu5[H^¼Õç€5™&¡VH„Õl;Ìj©„ж£áF*J8Ô(Ÿ%òG5RiÂR¡Òã:!†Ñ5ªÆk2J8r¤IúÙFôÿ¬ÐÓYa¸‘*ŽïIŽs†(áia¬+%l2ÊS—*Ž£Y)gPF 7#7TZ…>ÔyêRiÂrËpã‘ðLåxm’]ÂRD¬P5î#˜”JW£Ý%9|>4§™­sä¼—¸;`Uç…é©KåGÈ!Õ)Tͦv¤B'=éUz÷5ÞÆ‘ë[7ùíòþ‰¯mü=ÿÓ³—Jð”*¿¦¦¦¶¶¶¤ç¢Ò0¬U¸ö?Êû ‹·ÏLx‰Žø°`âÛå¥O+ï/œ°ì× .NŽÔF>Ur¼ªæ_•7ùí^Qx(Úæ£œŒ8’m‘W¸ö?/ÂØ%Êþ Adç½ôéqÉa¤l‘~ÒqÌ\®ªIö³\÷1k[²pŽ#‡)ña-úe»£ô<‰|ª”~Ò s‡' /I[2Ž‘§7ÝB¡px)SZ ¹YÕ‘†jì–§§1 r¨ò#UïR¤Í{Ç+ÿ7”ë¸g¤¾ózÞÕ$!uìÜS(Ó¥P(tüÛIÿvRaç#GúÛ:þíÝßä㥰K2ýL& „#‡#µûÄZf£TZFßqß{b¼ùó;9iä'þÃÝ£™[!UàÅHŽ9Ç ŸûtÆxN|ì+ýÕèdGŽ„Gȃô¿WQMG~:c<'>fQF‡ÏIáid·žNéß.ÕLÆžä#ÔáÈ!3¸锸kÓ‰‰o¨4ç8d^NgŒçÄÇLp¦#‡G8äAJª1…3”‘p„”ŠHÏPÔ2¯DjpäÐØ3@ÍއÀ™aä†'3‡A8d^±XÉr4†!©Y|[5@F îæ˜ v2*áÈ!ÈèGj{E ¢2ºo,ÑŽáH Éå¾1ÓïX•~ –v\¹Ü}‘E‘"°ÒÆ{! ¬:¯ƒŽÄŽä_©3ZyÝ¡w/S.e¹>¦,›£¦Np¬ôpcͬH2C8Ë!Q(QóTSu>úæõYMÙ G Ýï‚>”…ïªNDzÖ9TpãM·,Jùrä+³Œ5_šŸ|·cþª1÷›Œ²ŽvöæHÙË[Bµ3ô˜ö6Ôà¤g€lÈßgë|°]jY&¶~i …BÎ.—ÉÄʇJ0â=Ù CbБ G€C–à›kª®ƒ‰—§³³¸þIn¶• !ìÇ))×u0IÉÁ39÷ÕX’ƒ-E…G.Ó;ÊBáý/ì²$»2:ÐØW¦[çcÀ‘ŽäV©»‡gÞ;R&Éž¬4ö’ÑÃÖµVYÜFTp$Ÿz&cOÝù˜Ù}ë5 œÍQ!¹hì+[C‰l…ž/D^)Ú‘¾„#P=ýç&å+$—Õ˜ûE;rݯ”d™hGzŽäPi‡;€,–JvßÙÜ"ÔŽê7h'惉ŽD^“‘6™{;¬NÊ‹Ål­–CR(„œÝ¼,úÑ·Êrð©•2Žp@><íH¨†´ ¢dHu«F&†ÓY™ž'O„#9”×½ªýTHJ®ÃH›tVcRì(Ž $¯ûÍŒ~enÓ䵿«£rƒŽÝ×¹÷÷G+¸Õ21ÜH/Ú‘ É«Þðì÷ 'ýÖ¯46ËÁG_²K8’[ý¶ãw„!YY|/¬æLž.¯Nÿpc²Õ˜æáyƒŽGò¬çyZ’ËLïµ8m.›&‹bV{š#&Ç>f’ì‹%Ó{!Žœp$çzïO²z]uÑ}%¯M#ƒŽ†#õmG/Ò@8B–¤ÿM7F߯$FÙƒ&f4±ì¥b¼*^¯OY^,¤p„ìIɈÕ”§®ãõü”i Ò.OÕX¢3Íæ«e‘äãœ*¨œ*¼ƒV´¾b©¢gÔ‰È"ᙑ9$Ukì÷FßÕ9£N;BæGú¹£Š7E혿³ ¼„#@JU9b’º#míH [­f G€42ôU}Ö9”pä \“6ÞÛjA­meÃWYd«Õ&áÙàʘÚQkÕX’x…Ôæj?B‰o5ªO8‘2¾w …ZΗҚL$Djyµ!íXk'=¼ûÖ«]JkཱུQ¥Õ¡P©©‘ƒ+‹v¬P!’±¯žù*\vne¡k‡p„ p‚cþô¨¢¤g%­º×Lå UciÇ!!c §Í¡f½!ÆCU¡ã×^Gp„#@•HÆ#QÞãת± :Öápøb†•.£²¿V•£sÏíxˆâ6à©bsdE÷íuº¿Ír)­Òø}j¬47èÉ7#Žd[áÚÿ(ïOoŸ™ô2õ™sWƤ՛ÆQéê8Ôã×i«Æ›Îüvyòkÿ_ÒË‚qÇ\Žd[ ;¯J î™TrT:‘ǯS8 –’Ϋí˜WÂàpôn4Ę\íƒVõiÇ\²E˯©©©­­-鹨{ÞD |<4…[ä¥O+ï/œ°ì×I/S?zn—ôWãÎGN*ï/ùÉW’^¦”Æ{n 4o|s²MÎÇòŽ”ÑÀû\[$)ýn—ôçc-蕌ÁË$´cž8T æLÇT)½5:Í1ݧ/:BBŽYç‰p84Ÿdèøu>ôbìñOª1-´cnGÈ6ƒŽ©ÕsÒª„’1¨ÆôÑŽù 9•|¬„“¨áéyF¹ ¯¦Ã;Í_>–K|2z]@%G€*qõÌa;е/dˆk«óA8B\©Ž²¼ó¹zæÉQéÒë"XÉIKßWöpø„#‡F @¹8~=°²œÈh”7YÎFÍáx@=ôPkkë–-[Ž9æ˜éÓ§Ï›7¯±±1院†8¬“6Ú"ʦ—J•6Ê[eN-È1áØ¿… ÞsÏ=Æ ;묳¶nÝúðÃoÞ¼yñâÅC‡MzÖ ƒ3ªðû‡ñ …šÎšž+£ß¯œ>B½2ý½‰I/v.ô\©z1Ç„c?ÚÚÚZZZÆŒ³lٲѣG‡n¾ùæÅ‹ßvÛm7ÞxcÒs—ö±øÃIÏ`ºãŽ;Þxã«®ºjîܹ¥)?üáÿñÿñë_ÿº×NÜÿýÏ<óLÒsï2âHn}⟸ì²Ë¼ó¥Çã?BøÊW¾RªÆÂøñ㯺êªÎÎN¬ô³ŸýlèСW_}u÷”O}êScÇŽÝ´iSgggÒsWë6oÞ¼páÂSN9%éwq$·n¾ùæÿû¿ÿ !<ðÀ?ýéO“žB{{û°aÃN=õÔžÇBضm[ÒsW»&L˜pôÑG÷œxÔQGíß¿ÿþýÝ•Oõ½óÎ;×]w]ccãüùó¯¸âФgBŽäØ9çœSú??þñ“žBáÞ{ï<¸÷>gÓ¦M!„O<1鹫]<ð@¯)ëׯõÕWÏ<óLÕ˜¬;î¸ãÅ_\´hш#’žx—pªdâĉ½¦¬[·®¥¥å¨£Žºè¢‹’ž;³Ï>ûð÷··?ûì³ø‡¸`Á‚¤ç¨¦mܸñ»ßýnssóÙgŸ]ú|i tvv>øàƒ·ÜrKggçí·ß~ÜqÇ%=G„¶¶¶eË–‹Å©§žú| é9ª]ûöí»îºëN<ñÄk¯½6éyß#j{úé§¿öµ¯½üòËãÆûÆ7¾qöÙg'=G„Âg?ûÙÏ|æ3;vìxôÑGo»í¶ 6<öØcÇOz¾jÑ‚ ¶oß¾téRg 6®ªªgÿþý7ß|óç>÷¹×^{íšk®Yµj•jL•B¡0jÔ¨Ù³gæ3ŸùŸÿùŸ'žx"é9ªEÏ<óÌÒ¥K¯¼òÊ3Î8#éyÞŒ8UÒÕÕuíµ×>ùä“çwÞM7Ý4zôè¤çˆ°yóæE‹M›6í‚ .è9½tñûÿþïÿ&=ƒµhóæÍ!„»ï¾ûî»ïî9ý‘Gyä‘GÆ¿bÅŠ¤ç‘Ú%*Y²dÉ“O>y饗ÞtÓMIÏ ï1bÄøÃ7Þx£W8¾úê«!„?ú£?Jzkч>ô¡üã=§ìÚµkíÚµÇü¤I“ÆŽ›ô RÓ„#P Åbñ8öØc¯¿þú¤ç…÷3¦©©iíÚµO=õÔÇ>ö±ÒÄ_þò—>øàðáÃÏ:묤g°sÎ9Ýw+Ù´iÓÚµk§L™rë­·&=wÔ:áTÃo¼ñꫯ:ô²Ë.ëû¯_|qsssÒóX£¾þõ¯_zé¥W_}õ¤I“>øÁ¾þúë?ÿùÏC·Ür‹«Ý^„#P Û·o!ìÛ·ï…^èû¯.‘IÐé§ŸþØcýó?ÿó /¼ðâ‹/Ž;ö/ÿò/¿øÅ/–¾Ô §Bé–]00·ã Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Êÿ«,Ö+øå¢õIEND®B`‚statistics-release-1.6.3/docs/assets/violin_401.png000066400000000000000000000274441456127120000221660ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A.ëIDATxÚíÝUå}øñç Dtw©üÒøm…5X5 Ø6FƒvƉÉh “TwŒÅ6j[ˆƒÒDÇ8“ &´õGu3RƒZ[ÔÄQõS ‰( •1+˜al«,‚¢»çûÇÕu]–å½{Ϲç¼^“É$‡½ìsöÀî›Ïùq“4Mìˬ@}ŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDšõjäþûï_²dɆ =ôÐÓN;mÞ¼yMMMý|üîÝ»ô£-_¾¼½½½©©é„NøÚ×¾6a„¬÷ 3Iš¦Y¯aÐ-\¸ðöÛo1bÄÔ©S7nÜøê«¯žx≋/>|xŸßÙÙÙÒÒ²víÚ#<ò„Nøío»fÍš!C†üèG?:ù䓳Þ€l?ÛÚÚÎ9çœÑ£G?ðÀcÆŒ !\ýõ‹/nii¹æškú|É¿ýÛ¿]wÝuguÖM7Ý4tèÐÂSO=uñÅ}ôÑ?þxÖ;â_ã¸dÉ’®®®9sæTª1„0þü†††åË—wuuõù’µk׆¾üå/Wª1„ðÉO~òãÿø«¯¾ºuëÖ¬w ÅÇÊYæ3fto9è ƒ¦OŸÞÑÑQ Ä=?>„гÓ4}ë­·† Ò’eSðpLÓtÆ £F5jTÏí'N !lÚ´©ÏW}öÙ‡rÈõ×_ÿÔSOíÚµëõ×_¿æšk6oÞüðÃôG”õnd à×8:´¡¡aÏÉâöíÛCÝ÷Y÷ôÆoüô§?=öØc»«1„pä‘Gþíßþí;ï¼ó“Ÿü$ë}ÈFÁÃ1„0vìØŽŽŽJ)vkoo¯üÒžßÑÑB8æ˜czm¯ ß|óͬw ÅÇ™3gvvv®\¹²{Kš¦+V¬hjjšò‘ÓO?=ëÈF)îð_´hÑ‚ Ž:ê¨iÓ¦mܸqõêÕ“&MZ´hQ÷cz–-[6wîÜ &,]º4„°eË–/|á ÿýßÿ}Ì1ÇLš4©££ã—¿üeWW×ÕW_}ÁìóÓ577»«€ª¨<DZ ?¬© ¿«ºböìÙ£G~衇–-[6~üø–––9sæTžÈÓ§#Ž8bÙ²e·ß~ûªU«þó?ÿ³©©é´ÓN»ì²ËN8ᄬw 3¥˜8Ö˜‰#ÕbâH®ÿGªB8@~™5’+€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(ÂÈF’$I’d½ öƒp Šp Šp Šp Šp Šp Šp Šp Šp€üòœ|rE8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8™IÓ4ë%@ÞùkB®G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢GJ!I’¬—uO8E8E8E8E8RDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽ_I’d½ø€p Šp Šp¤,Ò4Íz Pß„#Q„#Q„#Q„#Q†f½€¹ÿþû—,Y²aÆC=ô´ÓN›7o^SSSÿ/yá…î¸ãŽuëÖíØ±£¹¹ùòË/ÿ³?û³¬÷ 3¥˜8.\¸ðꫯ~å•WN>ùä‘#G>øàƒ_ùÊWvíÚÕÏKž|òÉ¿üË¿|òÉ'ÇŒ3yòägŸ}ö /|òÉ'³Þ€Ì$…FI[[Û9çœ3zôèx`̘1!„믿~ñâÅ---×\sMŸ/Ù¶mÛgœñÎ;ïÜyçS¦L !<ÿüó\pÁᇾråÊ!CöQÛÍÍÍmmmYï7’$Åÿ£^wˆQyçYȉâO—,YÒÕÕ5gΜJ5†æÏŸßÐа|ùò®®®>_òàƒnß¾ýÒK/­TcáÄO<묳¶lÙò /d½CPÞK  ¾?׬Y3dÈ3fto9è ƒ¦OŸÞÑѱvíÚ>_ò_ÿõ_I’œsÎ9=7Þpà mmm'tRÖ;‚ß“¦é† F5jÔ¨žÛ'NœBØ´iÓÔ©S÷|Õ‹/¾ØÔÔ4nܸ_üâÏ>ûì[o½uÜqÇqÆÇÏz‡‘³¢@ÿ Ž;wîìììlllìµ½¡¡!„°uëÖ=_²{÷îßýîwÇ{ì·¾õ­û{ûÑGýÿøò'óy›››{mqÕ#Pï Ž•[§GŒÑkûÈ‘#CÛ¶mÛó%¿ûÝïB6lxóÍ7,X0cÆŒßÿþ÷<ðÀ­·Þú÷ÿ÷K—.™;ÊD x ~cccc’$;wîìµ}ÇŽáý¹c/‡rHå|ï{ß;çœsÇ÷µ¯}íÜsÏݼyó£>šõ>d£àá8tèІ††='‹Û·o!tßgÝÓˆ#9äáÇŸ~úé=·ŸqÆ!„_ÿú×Yï@6 Ž!„±cÇvttTJ±[{{{å—ú|ɘ1c† ÖëA!•3Ôï¾ûnÖ;â‡ãÌ™3;;;W®\Ù½%MÓ+V455Mž<¹Ï—œ~úéÛ·oùå—{n¬<»ç¸ãŽËz‡²Qüpœ5kÖ!Cn¹å–Êu!„ÖÖÖ-[¶œwÞyÆ «lyûí·ÛÛÛ7oÞ\ù¿çž{náꫯî¾íú…^¸óÎ;Î<ó̬w ¥x˯E‹-X°à¨£Žš6mÚÆW¯^=iÒ¤E‹u?¦gÙ²esçÎ0aÂÒ¥K+[î¸ãŽüà S§Nݹsçš5k’$¹ñÆÏ:ë¬}~:o9˜CÞÝ.‡<20‡”rPÈ•‚?ާböìÙ£G~衇–-[6~üø–––9sæTžÈ³7—\rÉG±xñâŸÿüçMMM3gμüòË'L˜õ®dƦúLsÈÄ1‡ÌQrÈAÉ'ßÁÈâ_ã@UG¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢GÊ"I’¬—õM8E8E8E8R|I’„f½ ¨{€(€(ÂòË£ÄÈád I’ºð ÎG¢G¢G¢G¢G¢G ;iêQ#uD8E8E8ð4õV%À^ GB!IïæôO8E8E8E8E8E8E8E8@®¥ÁSÙÉ á@á@á@á@á@á@áÀ‡¤©‡¿}ŽDŽDŽDŽDŽ„$IÒ4ëE¹'ì$IªVê‡p Šp Šp Šp Šp Šp Šp2¦iH’¬WÀþŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽ”Gšxsdá@á@á@á@á@á@á@HÓÔ㪀}ŽDŽDŽDŽ|H’„4M³^G€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(€(‘‚K’$„4ëU@G¢G¢G¢G I’„Ôµ§uF8E8E8E8E8E8E8E8E8E8¥,áxÿý÷Ïš5kòäÉŸúÔ§¾ñoüö·¿í믿>eÊ”yóæe½”K’$Þš“\)E8.\¸ðꫯ~å•WN>ùä‘#G>øàƒ_ùÊWvíÚóÚ4M¯ºêª;vd½+~8¶µµµ¶¶Ž;ö±Çkmm}üñÇ/¼ðÂçŸþ¦›nŠyù]wÝõÌ3Ïd½P4iš†$ÉzìŸâ‡ã’%KºººæÌ™3f̘ʖùóç744,_¾¼«««ÿ×®_¿~áÂ…Çw\Ö;½â‡ãš5k† 2cÆŒî-tÐôéÓ;::Ö®]ÛÏ ß}÷Ý+¯¼²©©iþüùYï@ö ŽišnذaÔ¨Q£Fê¹}âĉ!„M›6õóÚ›o¾ù¥—^úîw¿{øá‡g½Ùšõ×Î;;;;{mohh!lݺuo/|î¹ç~øÃ¶´´œrÊ)ëÖ­ÛßÏÛÜÜÜkK[[[Ö_ €)x8Vn1bD¯í#GŽ !lÛ¶mo¯ºòÊ+>úè+®¸âÀ>¯L ŠÒÊ£yRç!cÇÆÆÆ$IvîÜÙk{åñ:•¹ãž,X°yóæûî»oøðáYï@^üÇ¡C‡644ì9Yܾ}{¡û>ëžžyæ™ûî»ï’K.9餓²^>@Ž<CcÇŽíè訔b·öööÊ/íùñëׯ!ÜvÛmÍïûüç?Bxøá‡›››Ï>ûì¬w ?UB˜9sf[[ÛÊ•+?ó™ÏT¶¤iºbÅŠ¦¦¦É“'ïùñûØÇº?²bÛ¶m«V­:òÈ#'OžúÑžzê©§žzjÏßaݺu«V­š:uê7Þ˜õÞd¦øáxä‘GΛ7oÁ‚ŸûÜç¦M›¶qãÆÕ«Wüñó7Óý1+V¬˜;wî„ –.]šõz¡’$ Þu Þ?C³gÏ=zôC=´lÙ²ñãÇ·´´Ì™3§2}¤dRϳêE’$¾[‘7~ˆV_ss³ç8æG’$!ôüCîÏ|.tOŽüH’¤r4’$8.yÐ+“฽âßU @UG¢G¢G ;iš¸±â¤ï]´ YŽ”Š[1`ßÒT }ŽDŽ|ð,€~G¢G¢G¢G ÖÞ{¿A`ï¼Q5ù$ˆ")›€'ˆ")²$IBp™P¾y×A€ú!ˆ"ˆ"ˆ" >¤ï]º ™Ž„4M °O€(‘²ñð؇$ ©÷„ú"ˆ"),Oÿ€êŽ@M%Iœ¨O€(Âò%IcyòI8E8E8E8E8E8E8RBÞ®„p²–Jy€ú ˆ")¡$õ^ɰÿ„#Ô4—v!áu# Á92$ˆ"ˆ"ˆ"ˆ"ÚI’$¸® n G¢G¢G ¼]5@=ŽDŽDŽDŽ|Hš—œ}Ž@xˆ#@½Ž„$IT=°O‘òä—\òD€ÜŽS’$!˜Ÿ@5 GÈ—4MßÉ'á@á@áH9¹£Ö<‹ „#äÎ ÂÈ OäÉ oôI8”§‘„#Q„#¥å¬(ìáHѸ3‰pgñÀ~I’Ä_òI8E8Rf.s€ý )8Ö=rÈ1á@á@á@¼ë`>¥Áq!KÂ Ô¼ß O8E8Rrîá€XÂ\Þ6ö‹·!Ï„#Åá!Ž0¨„#Q„#Å‘¦i.X ÎyÈp Šp Šp¤ä’Ô ¿@n¸¥šœŽ@Τ® S€¾y»êÜr YŽååªý"ˆ" ÜCþ G¢G¢G Å»%áÆj2!ˆ"Ø+rzŽ”™÷¤Ô<ÄØ_²çY<ÔáH™yOdØ‘BI’$ÿh€A!A”$Ip@QGúãÆj ›p(#·T@8@]òæ1Ôžp¤äÜXK©ãG‘âpK5 *á@áP:û{gŒ« á@á@ánà€(‘‚pK5 6áP.öž1î‚pO’$Á»Úˆp€º”„ú·µ%ˆ"ˆ"!x"ÄŽ@.¥j~PØ-Õn¬„#Eà!ŽP€(C³^@ÜÿýK–,Ù°aá‡zÚi§Í›7¯©©©Ÿßµk×üÇ<ðÀ›7o>ì°Ã&Nœ8{öìO}êSYï@f’2<jáÂ…·ß~ûˆ#¦NºqãÆW_}õÄO\¼xñðáÃûüøwß}÷‚ .xî¹ç¦L™òûßÿ~Íš5ï¼óÎßýÝß}õ«_Ýç§knnnkkËz§Ë¥§ªKñw¡ÆúðÄA©¾\ãBH,I’ìïWÖs©½âŸªnkkkmm;vìc=ÖÚÚúøã_xá…Ï?ÿüM7Ý´·—,Y²ä¹çž›2eÊŠ+þå_þå_ÿõ_ò“Ÿ466Þzë­/½ôRÖ;â‡ã’%KºººæÌ™3f̘ʖùóç744,_¾¼«««Ï—<öØc!„o~ó›Ý#É &\zé¥?ûÙϲÞ!€l?׬Y3dÈ3fto9è ƒ¦OŸÞÑѱvíÚ>_ÒÞÞ>bĈã?¾çÆ &„6mÚ”õ1H<ü…âàyêà‰úè¬÷‰Þ<‹'Ÿz#ùSðpܹsggggccc¯í !„­[·öùªI“&õÚ²zõêÖÖÖƒ>øœsΉù¼ÍÍͽ¶¸]€êJß›"ûµSðpܵkWaĈ½¶92„°mÛ¶}þ÷Þ{ï 7ÜÐÙÙùýïÿˆ#Žˆù¼2(ž‚‡cccc’$;wîìµ}ÇŽáý¹c?ž~úéë®»î•W^?~üw¾óSN9%ë‚2ISÓJâžÅ™(x8:´¡¡aÏÉâöíÛCÝ÷Yïi÷îÝ7ÞxãÝwß}È!‡\~ùå_|ñÞúP~gLEåþAåTðp !Œ;vÆ Û·o?üðû7¶··W~©Ï—tuu]qÅO<ñÄgœqíµ×öÓ—d®ªwƘouÆeŽÔXñÇ3sæÌÎÎΕ+WvoIÓtÅŠMMM“'Oîó%wß}÷Oüÿø÷ü­Î=÷Ü–––þ?÷ª®¥Axˆc)þR ¶ª=ÄÑ9¸*©ÖŽ=~Cï’\5GoZMÍÿÇÂìÙ³GýÐC-[¶lüøñ---sæÌ©<‘gO•¹ã®]»^|ñÅ=ÕÕ¹âÑßPKþ5_}&Ž538áè/ETómc «ÁÄ1·ªržÚÄ‘š)þ5Ž%Wõj Þ´ÊJ8R¯í»Ñ¬ ¨ç©©wÂbhÇ}s#䇡#ƒD8R¼U !¸Ì1×Üø‘ŽIµôǸ1WjyK5¹eèÈ`Žäq#0tÈ”p$×rVª8@ÎSS Â(ç©!Ÿœ­¦ê„#ù•³qc…¡cÖœ­¦7R hÒ4U×T:R]‘œÊ帱ÂÄëC28Omè˜?IR—+@ GDÎSS$‘<Êñ¸±ÂÄë=n‹üs¶š*Ž@r¶š:aÜHÁGr'÷ãÆ ábÜuÃБjŽ@}2t¨¹¡Y/æëOVù7üÁ§£?4M’ĤÀÞ8OMñGòe¿ÏSGvÞןܟ"dßœ§Î¹4­üÃ&ëu•³Õþ­Ë9U Ô-g«óÁCûdÜH!™8’#ur[LO%=[mÜUqíI?¨îoxݯ¾žõ>Qp¨giIÛ}m}ø˜êþ†£>÷jÖûT‘wíI?¨J:[ÍÀ G áÒ[ÛެîoØüÀëYïS݋M# ÎyjŠJ8’uxžº¤öyž:²óÚ¾p¤"¨/nŽêœ[d²–¦.]7< œŽäBK.n‹©žÅ“!ç©)0áÔ?CG€šŽP¨ÎV3‘ìÕùyêqž ä„#PÎV÷Pû ÝÓÍŽ›p$c7  >8[ÍŽ@”:8Omè˜)CG(áH– 4n¬.dσx2ä<5…'}«ƒqcE野ÙV£¡cq¶š#¡ºÊ.˜p$3…;O]Xu3n¬(ñÐ1'©Ëz¥ ·QZ f5ø#P˜vôÊI8R#¥ GQ¦ãÆ~>u†í˜‹LQ’³v,g5Vä¼!Gʪ¼í¨ó¬ÌÕX‘Ûv,g5:²'áÈ`É븱ÔrT•ŸFIòðc)CGÕX‘Ûv,'íH/‘A‘õ=19—‹LÉL%+‰”¦•LÈzMÙ·£jì©ÒŽùùk’ḱ×Í}9á™È Sr1n¬¬¡×2*í˜y%d׎ªqOïÿ›"ë?ÙIzÜß2½³ÏБž„#ÕgܘC9ªÆ>ågôXsù©Æîz/åqØ«LÆ=“±'íHæ„#U–j¬‹gîÔn¾•‹j¬ 5:檻gÁùiøÌ‡ŽVã^¿&õðÝŽ”Sê6”ëbÇz‰×¶cNª±çE§=¾ ¹¸| ä ©0t¤B8RMù7VôóÏòü,²êiܘ“IWMÚ1?Õ¸çE§ïòs@²I–Ü>‚ÇБ Gª&OÕX‘îå-óµÈAý‰XOÕêg*Y…ÍE5ÖsÇ<0t$GŠ®Ï·Ì›rœ°ÎÉð*zµƒwPTã©q;ævܘ-íˆp¤:ò7n¤ÞÆy38혫jŒù’«à¯Y;æ¼}·%C‘*PVýFÉi5ö³›9\pµÛ1WÕX§œ³Îœ¡cÉ GJ5VI5%§ÕØÏÝù\pÑÅLKxd27öï‹d#[Š&§ÕØ­çƒ^*ÿ#Ï ®ÞÐѸ±Zuè˜y5¾·{yÁ$Wj:–™pd@Œ«ª ’÷j|oGÓ½WuΜõÛX¶zܹ2œ°N?œy{$„v,-áÈSƒ àR¯Ü޹7öù@]ü3¤Šr2nì©×S! sŠ£>Æují˜Ûjì±s\5z$cž—]õ¡c«1ç ËI8r€ŒÍŠjt…>gÝóªœ'cÏ5øˆÔíXB‘¡Ù~Šj¬‘ýoÇü Æ ËF8B>íG ¨ÆÜRƒ­*CGÕ8@Ú±T„#û͸1WTc­ú„u=`;ªFØ/‘ý£kH äU\;7æŸj¬CÇòŽgûãÆÜRµä.™<ÐŽ%!ÙÆð'¬ëŸqcÕiÇ2ŽÄRÙk 7f,íïÐ825¶¿CGÕ8H´cá GÈ¿>E5æ–jÌJ|;ªF8`‘(ÆÐ'¬ëjl†ŽÅ&Ù7Õ˜ ãÆI{G&Cû:ªÆÚÐŽ&¡Î¨F ÿ´cQ GöÁ¸17œÍ«÷‡ŽÆyÐÏÐѸ±Æ´c! Íz00_²ÊùƒOg½KýÐŽp€T#T…p¤?u0nÌuçQI’¦©qc~T†Ži㡳’†ÞÇ‚z'¡¾¤!ä}èØö…#«û‘ͼžõ>H;Œp„:”ïûcJØyÆyÓsèhܘ9íX$nŽ °T#T—‰#À@åÿÇ­SÝõ¹W³Þ§}SùaèXŽbõ577·µµe½Šê¨ƒ›cÊ( !äùTu¹ô<ê˜äF’¼_óY¯¤מôƒêþ†×ýêëYïS’TG½ŽÕ'dïÝësA8æRå¹UHÞÇp#@¤iê!›9Q7¦iê€äŠj,áuK§dÎ5[ù¦óC5†p„ºT¨„$‘ÙH’=«ÑÐ1*ãÆîÿ«ó@5‰p¤?iZ›.“¤×uÉä#5ó~2úAX/´c¶TcÁxûðÞ}!¸Ðfaÿî½0z,ûŒ|¬˜dì¦aà„#û§ÇCß~Uì|«—õ½`¸èAcŸäãàÙ¯dì¦kƸ±¨„#Â…ƒi@¥RáÌu ,{’Õu`ÉØM;Ö€j,0á¸W÷ßÿ’%K6lØp衇žvÚióæÍkjjÊzQ9âÌõ ¨Z©T8s}àáòqà˜ŒÝ´ã RÅ&û¶páÂÛo¿}Ĉ'Ÿ|òÆ|ðÁõë×/^¼xøðáY/-_äc•T9»9s½ßª7hì“|<0ÕJÆn=N›øÎUÝÏ{Ék¥¶#Æ~|0÷RîÅÈH½FŒY/‡Z޽¥iºaÆQ£F5ªçö‰'†6mÚ”õ뉂 !ä¤÷TÞdv#Æþ•¼ ³êÅ=@î#ÁÍ1{Ú¹sggggccc¯í !„­[·Æü&ÍÍÍYïG¾T²;„ðòËå¹&éµïùüSñÁ¡)É 4IRÙå|ŽŠîƒ’$/‡¢“î>ÎÛqùà(¼ür(Ç÷¬½é®ç¼£lµµµe½„lÇÞvíÚB1bD¯í#GŽ !lÛ¶mŸ¿Ciÿ0ñaeþA“cÅ®°:ä€äŸCDONU÷ÖØØ˜$ÉÎ;{mß±cGxîPB±·¡C‡644ì9Yܾ}{¡û>k€²Ž};vlGGG¥»µ··W~)ëÕdC8öaæÌ™+W®ìÞ’¦éŠ+ššš&Ožœõê²!û0kÖ¬!C†ÜrË-•ëC­­­[¶l9ï¼ó† –õ겑xSŸ-Z´`Á‚£Ž:jÚ´i7n\½zõ¤I“-Z´çczJB8îÕ#<òÐC=ÿüóãÇÿÓ?ýÓ9sæTžÈPN€(®q Šp Šp Šp Šp Šp Šp Šp¤ø~ó›ß477ÿêW¿Êz!„]»vÝu×]gŸ}ö'>ñ‰iÓ¦]|ñÅ?ûÙϲ^á­·ÞúÖ·¾U9.gžyæÜ¹só›ßd½(>ðúë¯O™2eÞ¼yY/„#%p÷Ýwg½BáÝw߽袋¾ûÝï¾ñÆŸüä'=öاŸ~zöìÙ·ÞzkÖK+µíÛ·Ÿ}öÙ÷Ýw_áôÓOÿƒ?øƒeË–}ö³Ÿ}ñų^!„¦éUW]µcÇŽ¬!„04ëÀ`Ù¾}ûË/¿üÈ#üû¿ÿ{Ök!„–,YòÜsÏM™2åÎ;ï>|xaýúõ---·Þzë§?ýéüãY/°¤n¾ùæ7ß|óÒK/;wneËüãø‡øö·¿íïNÜu×]Ï<óLÖ«€÷˜8RXŸýìg/¸à?ùòã±Ç !|ó›ß¬Tca„ —^zigg§Özê©§†~Ùe—uoùüç??nܸuëÖuvvf½º²[¿~ýÂ… ;ï1q¤°®¿þúÿû¿ÿ !ÜsÏ=?ÿùϳ^¡½½}ĈÇ|Ï&L!lÚ´)ëÕ•Wccãĉ9äž>øàÝ»wïÞ½»»ò©½wß}÷Ê+¯ljjš?þE]”õr áHzê©•ÿñÓŸþ4ëµBwÜqÇС½¿ç¬[·.„pôÑGg½ºòºçž{zmY³fÍk¯½ö‰O|B5fëæ›o~饗-Ztøá‡g½xpjdÒ¤I½¶¬^½ºµµõàƒ>çœs²^áÙgŸ}ðÁÛÛÛŸ}öÙÿ÷ÿþß‚ ²^Q©=÷Üs?üá[ZZN9å”Ê¿¯ „#ÎÎÎ{ï½÷†nèììüþ÷¿ÄGd½"B[[Û<¦iáøãÿÈG>’õŠÊk×®]W^yåÑG}ÅWd½øáÔÚÓO?}Ýu×½òÊ+ãÇÿÎw¾sÊ)§d½"BáK_úÒ¿øÅ-[¶<òÈ#7ÝtÓÚµk}ôÑ‘#Gf½®2Z°`ÁæÍ›ï»ï>W 7îªjg÷îÝ×_ý—¿üå×_ýòË/_¾|¹jÌ•$IF={öì/~ñ‹ÿó?ÿóøãg½¢2zæ™gî»ï¾K.¹ä¤“NÊz-Л‰#P#]]]W\qÅOó™ÏôܲmÛ¶U«Vyä‘“'O7n\Ö ¤Ô„#P išÞsÏ=‡vØUW]•õZøÀرc›››W­Zõä“O~úÓŸ®lüõ¯}ï½÷Ž9òä“OÎzetê©§v?M¬bݺu«V­š:uê7Þ˜õê(;áÔ›o¾ùÚk¯ >ü‚ .ØóWÏ=÷Ü–––¬×XRßþö·Ï?ÿüË.»lòäÉýèGßxã_üâ!„n¸ÁÝî@/¨…Í›7‡víÚõâ‹/îù«n‘ÉЉ'žøè£þÓ?ýÓ‹/¾øÒK/7î/þâ/¾úÕ¯VÞÔ §¤òÈ.èŸÇñE8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8åÿ‹Ò«)ýwZÖIEND®B`‚statistics-release-1.6.3/docs/assets/violin_501.png000066400000000000000000000303341456127120000221570ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A0£IDATxÚíÝ•u¡øñÏY EV÷Ç4+»-ë…ÆÜº7“‰uÇÒ3n¥\jèf:]ï]rP*kFë¢5bW·‰ë Žµ@9Š ÎýÚp!#q€PFWÖ6~”¥@±án‘»çûDZvø»çyÎs^¯¿ôÙ=»ŸçùpÎó>Ÿóœ³¹|>àx*’¥A8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8Rr¹\ÒC /“’B&%…L ©"_CCCÒC€ÒàŒ˜B&%…L é!ˆ"ˆ"ˆ"ˆ"däóù¤‡@_&%…L ©"dx£h ™”2)¤Šp Šp Šp Šp㪀Ò"ˆ"ˆ"ˆ"ˆ" ½¼‡ŒTŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽD޼.ŸÏ'= Õ„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#¯ËårIH5á@á@á@á@á@á@á@á@á@á@á@á@áé•Ëå’ü•p Šp Êð¤P$+V¬hiiikk;í´Ó¦OŸ¾`Á‚šššcßä™gž¹çž{vìØqèС†††ë¯¿þÿñ“ހĔŊã’%Kn¾ùæ_|qÊ”)•••«V­ºæškºººŽq“'žxâŸøÄO<1fÌ˜ÆÆÆ­[·Î;÷‰'žHzW“ËçóIahµ¶¶Îš5kôèÑ+W®3fLá¶Ûn[¾|ùœ9s¾üå/x“ƒ^rÉ%þóŸ¿÷½ïMš4)„°}ûö«¯¾úŒ3ÎØ°aCEÅqj»¡¡¡µµ5éýæoärÙÿ§^r —ü›—T1))dRH•ì¯8¶´´ôôô455ª1„°p᪪ªµk×öôô x“U«Vutt\{íµ…j !œþù—^zé¾}ûžy晤w ÙÇÍ›7WTT̘1£w˰aæM›¶ÿþ-[¶ x“ÿû¿ÿËår³fÍ:rãí·ßÞÚÚú®w½+éHFÆß“ÏçÛÚÚjkkkkkÜ>~üøž={&OžÜÿVÏ>ûlMMÍØ±cŸ~úé­[·þþ÷¿?ï¼ó.¹ä’‘#G&½C‰Éx8vvvvwwWWW÷Ù^UUB8pà@ÿ›>|øøÃ;Þñޝ|å+>ø`ïösÎ9ç[ßúÖ;ßùΘßÛÐÐÐg‹«€R—ñp,¼uzÔ¨Q}¶WVV†<Øÿ&øÃBmmm¯¼òÊ¢E‹f̘ñÇ?þqåÊ•wÝu×þç®^½:fÝQ&Ù“ñk«««s¹\gggŸí‡ YwìãÔSO-üÇý×Íš5«ººzìØ±ÿþïÿ~ÅWìÝ»÷ÑGMzŸ’‘ñp>|xUUUÿ•ÅŽŽŽBïû¬4jÔ¨SO=uäÈ‘ï{ßûŽÜ~É%—„žþù¤÷ ÇB]]Ýþýû ¥Ø«½½½ð¥o2f̘#Fôù»ò…W¨_{íµ¤w ÙÇ™3gvwwoذ¡wK>Ÿ_¿~}MMMccã€7yßûÞ×ÑÑñ /¹±ðÙ=çw^Ò;Œì‡ãìÙ³+**–.]Z¸®1„ÐÜܼoß¾+¯¼rĈ…-¯¾új{{ûÞ½{ ÿ{ÅW„n¾ùæÞ·]?óÌ3ßûÞ÷ªªªÞÿþ÷'½CÉ(‹¿Ã¶lÙ²E‹}öÙS§NݵkצM›&L˜°lÙ²ÞéY³fÍüùóëëëW¯^]ØrÏ=÷|ó›ß¬ªªš+Ž)dÅ1…¬£¤II!“BªdÿG…p Šp Šp Šp Šp Šp Šp Špã3J‹p Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp“Ëå’o€p Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp€TËçC.—Kz‚p ’p Šp Šp Šp Êð¤P$+V¬hiiikk;í´Ó¦OŸ¾`Á‚šššc|ÿG?úÑgžy¦ÏÆ3Ï<ó'?ùIÒ»Œ²Ç%K–Ü}÷Ý£Fš2eÊ®]»V­ZµsçÎåË—9òh7Ù½{÷È‘#ßö¶·¹±ºº:é]HLöñµµµ¹¹¹®®nåÊ•cÆŒ !ÜvÛmË—/_¼xñ—¿üåoÒÑÑqðàÁK/½ô[ßúVÒÃH‹ì_ãØÒÒÒÓÓÓÔÔT¨ÆÂÂ… «ªªÖ®]ÛÓÓ3àMvïÞBè³ÜP沎›7o®¨¨˜1cFï–aÆM›6mÿþý[¶lð&»ví !¼õ­oMzì)’ñpÌçómmmµµµµµµGn?~|aÏž=ÞªŽ/½ôÒܹs§L™2}úôë®»îç?ÿyÒ{@yÉårù|Òƒ€#düÇÎÎÎîîîþoj©ªª !8p`À[‚òÛßþö¹çžûž÷¼çW¿úÕüãõë×å+_ù—ù—˜ßÛÐÐÐgKkkkÒàø 9¯V€d<»ººB£Fê³½²²2„pðàÁoõÒK/9òóŸÿüܹs [ž|òÉk¯½ök_ûÚE]tÖYg÷÷ÊD {2þRuuuu.—ëììì³ýСCá/ëŽýÝ{ï½Û¶më­ÆÂ…^ø¯ÿú¯]]]ÿû¿ÿ›ô> ¯ŠÇ•ñp>|xUUUÿ•ÅŽŽŽBïû¬c¼ûÝï!¼ð Iï@22Ž!„ºººýû÷J±W{{{áKý¿?ŸÏwww÷ÿ¤žaÆ…N?ýô¤w ÙÇ™3gvwwoذ¡wK>Ÿ_¿~}MMMcccÿïßµkׄ >ùÉOöÙ¾uëÖ0л^ÊDöÃqöìÙK—.-\×BhnnÞ·oß•W^9bĈ–W_}µ½½}ïÞ½!„·½ím“&Mzê©§V¬XÑûC¶nݺlÙ²³Î:ëŸÿùŸ“Þ!€d”Åg.,[¶lÑ¢EgŸ}öÔ©SwíÚµiÓ¦ &,[¶¬÷czÖ¬Y3þüúúúÕ«W‡žþùOúÓûöí›8qâÛßþö_ýêWÛ¶m;í´Óîºë®ú§:î¯khhð®ê´ññ")”ËåBæ%=zߓ˙—´0)¤MöWCóæÍ[¼xñ¹çž»f͚̙3gùòåý?ܱ×yç÷£ýhÖ¬Yûöí[·nÝÁƒgÍšµzõê˜jÈ*Ë0ƒÏŠc YqL!+Žicq+…L iS+Žœ<á@á@á@á@á@á@á@á@!äóù\.éAé&ˆ"ˆ"ø+8á)åÂSÒF8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8@ªår!ŸÏ'= A8I8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8@ªåó!—Ë%= A8I8E8E8E8E8E8E8E8E8¥\ÂqÅŠ³gÏnll|ï{ßûÅ/~ñw¿û]ümýë_Oš4iÁ‚Iï@’Ê"—,YróÍ7¿øâ‹S¦L©¬¬\µjÕ5×\ÓÕÕsÛ|>ÓM7:t(éHXöñµµµ¹¹¹®®î±Çknn^·nÝܹs·oß¾xñ☛ß{ï½O=õTÒ;P$ù|ÈårI‚×år¹|>éAÀ²Ž---===MMMcÆŒ)lY¸paUUÕÚµk{zzŽ}Û;w.Y²ä¼óÎKz'’—ýpܼysEEÅŒ3z· 6lÚ´iû÷ïß²eË1nøÚk¯Ýxã555 .Lz'†œÅ-à¸2Žù|¾­­­¶¶¶¶¶öÈíãÇ!ìٳ緽óÎ;Ÿ{ýëgœqFÒû¼áI`huvvvwwWWW÷Ù^UUB8pàÀÑn¸mÛ¶ï~÷»sæÌ¹ð wìØñFoCCCŸ-­­­I €“’ñp,¼uzÔ¨Q}¶WVV†^§°îØß¢E‹öîÝûàƒŽ92é=H‹Œ_ã8|øðªªªþ+‹!„Þ÷Yé©§žzðÁ?ûÙϾë]ïJzøYÞ‡oˆI"%2Ž!„ºººýû÷J±W{{{áKý¿çÎ!„ï|ç; ñ‘|$„ððÃ744\vÙeIï@22þRuaæÌ™­­­6løÐ‡>TØ’Ïçׯ__SSÓØØØÿûßúÖ·ö~gÁÁƒ7nÜxÖYg566Ž;6éâår¹¼5.8 ÙÇÙ³gß}÷ÝK—.>}zá=1ÍÍÍûöíû·û·#F¾çÕW_}ùå—GŒñæ7¿ù¢‹.ºè¢‹Žü ;vìØ¸qãäÉ“ï¸ãޤ÷ 1ÙdzÎ:kÁ‚‹-úð‡?Ÿô ào G¢G¢G¢G 1ù|ÈårI€X€(€¿a%8á€O~)‚ž4ŽDŽDŽdŸ×à`PGHÏxI'á@á@á@á¥ÁG9’8᛫þJ”p(wýSÞÊ0 áI HV¬XÑÒÒÒÖÖvÚi§MŸ>}Á‚555Çøþßÿþ÷ßúÖ·ž~úé½{÷Ž=úï|çõ×_ÿö·¿=éý û¬Ê“Z¹|üÛ\²dÉÝwß=jԨɓ'ïڵ뗿üåù矿|ùò‘#Gøýüà_yå•úúúúúú—^zië֭ÇÿÁ~ðÎw¾ó¸¿®¡¡¡µµ5鿝 Á¹\(‡í%áÈ“¢yIƒ3ÅÔ$èáh^HVö_ªnmmmnn®««{ì±Çš››×­[7wîÜíÛ·/^¼øh7¹óÎ;_yå•k¯½võêÕK–,ùþ÷¿ÿõ¯ýµ×^»õÖ[“ÞÈ/‰”ì‡cKKKOOOSSÓ˜1c [.\XUUµvíÚžžžoòÓŸþtäÈ‘×]w]ï–|ä#cǎݱcGwwwÒ;@ùò\‹de?7oÞ\QQ1cÆŒÞ-Æ ›6mÚþýû·lÙ2àMª««/¾øâSO=õȧœrÊáÇ>œô$#ãoŽÉçómmmµµµµµµGn?~|aÏž=“'Oî«ûï¿¿Ï–Í›7ïÞ½û‚ .8Úe‘™—ñpììììîî®®®î³½ªª*„pàÀcß|ëÖ­«V­jooߺuë[Þò–E‹EþÞ†††>[¼](-…—D½£ø¼¥š4Ëx8vuu…FÕg{eeeáàÁƒÇ¾ykkëÊ•+ ›'N|Ó›Þù{e"P*d /ã×8VWWçr¹ÎÎÎ>Û:þ²îx ÿøÇŸ{î¹7ÞtÓMëÖ­ûÄ'>Q¸!$ÅûcHPÆÃqøðáUUUýW;::B½ï³>†\.7zôèyóæ}ìcûÍo~³nݺ¤÷ ÇB]]Ýþýû ¥Ø«½½½ð¥þß¿sçÎ/|á k×®í³}âĉ!„ßþö·Iï”6/ŒÂ1¸ƒrÙÇ™3gvwwoذ¡wK>Ÿ_¿~}MMMcccÿï?ãŒ3~øÃ®ZµªÏöÝ»w‡Î=÷ܤw ÙÇÙ³gWTT,]º´÷òÄæææ}ûö]yå•#FŒ(lyõÕWÛÛÛ÷îÝB¨««khhظqãO<ÑûCžþùx ²²rÊ”)Iï@2Ê⣖-[¶hÑ¢³Ï>{êÔ©»víÚ´iÓ„ –-[Öû1=kÖ¬™?~}}ýêÕ«CÛ·o¿êª«þüç?766¾ùÍo~ùå—Ÿ~úéÂí·ß~Ùe—÷×ù[ÕiãoU§Š?‹œ6Ç~mÔÔYüKÕ¦†Ddüãx æÍ›7zôè‡zhÍš5ãÆ›3gNSSSáytþùç?úè£ßþö·Ÿ}öÙçž{nìØ±øÀ>÷¹ÏÕ××'½+œ8Jý¹¢xCœGŸÇ´é=5z‚žVSå¸áhjŠÌŠ#)—ýk $X&ý„#Q„#Q„#”xDG¢G2ÎÅæ0X„#P<:>Ub¦Ãë¡EãÞAIŽDŽDŽDŽDŽDŽDŽP’|XÅ'ˆ"ˆ"ˆ"ä¹T  $G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢G¢GHX.—Ëç“DŽDŽK>r¹\Ò£RA8”#¯'@8@©²L‘ G¢G¢GH’ëM)!Â(gG€R'ˆ"8oÝM3³C1 G œüŠÉeÀ‰ŽOiŽPÚ,ØS4‘2â±N†p(/'öÚ¨ç]CÁëÔ”áƒ$ )eOqG²L¬À Ž@ZX2¡¬xfK)ŽeädbEÙ§œ ¢„#Q„#Q„#› )Q€(ÂrW 8¼?†¡&ˆ¥K Ì G€raé8IŠJÁSº„#"^ H3á@áÙaÙž!%ˆ"ˆ2<éÉŠ+ZZZÚÚÚN;í´éÓ§/X° ¦¦æßßÕÕõƒü`åÊ•{÷î=ýôÓÇ?oÞ¼÷¾÷½Iï@brù2øH€%K–Ü}÷Ý£Fš|Ä Aùtò†ôãxLC*û/U·¶¶677×ÕÕ=öØcÍÍÍëÖ­›;wîöíÛ/^|´›´´´lÛ¶mÒ¤IëׯÿïÿþïÿùŸÿùÑ~T]]}×]w=÷ÜsIï@2²Ž---===MMMcÆŒ)lY¸paUUÕÚµk{zz¼Éc=BøÒ—¾Ô»$Y__íµ×vwwÿä'?Iz‡’‘ýpܼysEEÅŒ3z· 6lÚ´iû÷ïß²eË€7ioo5jÔĉÜX__BسgOÒ;ŒŒ¿9&ŸÏ·µµÕÖÖÖÖÖ¹}üøñ!„={öLž<¹ÿ­î¹çžáÃû™;v„Î9眤÷ ²ÌåYi–ñpììììîî®®®î³½ªª*„pàÀo5a„>[6mÚÔÜÜ|Ê)§Ìš5+æ÷644ôÙâí2äóy®š•ñpìêê !Œ5ªÏöÊÊÊÂÁƒûº»»xàÛo¿½»»ûßøÆ™gžó{e"=Çêêê\.×ÙÙÙgû¡C‡Â_Öág?ûÙW¿úÕ_|qܸq_ûÚ×.¼ð¤wàÄYèNRÆÃqøðáUUUýW;::B½ï³îïðáÃwÜqÇ}÷Ýwê©§^ýõŸþô§ö¡e"ãáB¨««kkkëèè8ãŒ3z7¶··¾4àMzzzn¸á†Çü’K.¹å–[ŽÑ—å#ûÇ3sæÌîîî 6ônÉçóëׯ¯©©illð&÷Ýwßã?~ÕUWÝu×]ª  ûá8{öìŠŠŠ¥K—®k !477ïÛ·ïÊ+¯1bDaË«¯¾ÚÞÞ¾wïÞB>Ÿ¿ÿþûO?ýô›nº)鱤HYü­êeË–-Z´èì³Ïž:uê®]»6mÚ4a„eË–õ~LÏš5kæÏŸ___¿zõê—_~yêÔ©#GŽüû¿ÿûþ?êŠ+®˜3gα¿UþVuJÄ¿!à µ“|sŒ ,C÷.%sÄÊþ5Ž!„yóæ=ú¡‡Z³f͸qãæÌ™ÓÔÔTøDžþ ëŽ]]]Ï>ûlÿ¯zc5P¶ÊbűȬ8¦‡Ç”°â˜VSŠ#%*û×80(„#Q„#Q„#Q„#@¹8ù7däó!—Ë%½@b„#"º„r0to©†¡& ;<ûbH G¢G€²0X/ZÐ:I^§¦¤ GÊ‹s^ñ9MB‘y cèG¢G ],–aà)u û·WÄ}ú™#†ˆp$³<³€Á% <›%„#0„œ)Ó`(fÁ+¡égŽ ÂH'<²Ç“(²A8@6yÆ ŽY6t ]¢$^‚˦‰Á%¡âµ9îd‹pÒÈ2II0M%Á41ˆ„#eÇc(åÃZWâL# ãØZ[[“E¹ÈÝðÄàþÀü7.NzŸJÞ =kpàø•¿NzŸJLÿp<ððÛ÷WÔ~ø—ý~ipB)ˆ÷[.øæàþê¯nû|ÄðÌ'N8>á˜}¸s7ü¿ü7fñU›C+æÄùÂGÇ_ùRÄ2YoØÉ¬8xømý£0î—š©× úŠï-|3¦£‡g¦8q^ª¦y±([9€A G G€LñA0ÉrüÉ6á 2'N€¬ŽDŽP^\Ê ŽDŽdkì²ÄÒ@zGžµ’y€( ;’]ñr]džp€²£ò91€(ÂwÆP„#0˜œ;¡Txµš 4Z²M8d„åÞ9ø” á¤E,€”ŽP¦<+ãŽDŽYžkìÊp+=†špÓ'”œ2 }N†p¤Ly¬€7J8%@è“ZÚ)+ 䥭]„~i1_ÄŽdMÚΠ@†yÀ¡ÜG(w‰$Áaé%)é<òå"é<ò0¤Ê%W¬X1{öìÆÆÆ÷¾÷½_üâ÷»ßEÞð¿øECCÃÏþó¤÷Ê]9„$È]ŒeŽK–,¹ùæ›_|ñÅ)S¦TVV®Zµêšk®éêꊹí}÷Ý—ôðRaxÒr­­­ÍÍÍuuu+W®3fLá¶Ûn[¾|ùâÅ‹¿üå/íV/¼ðÂ#<òýï?é=8ª4¿ZZXÁʧv|''ÍG†NöW[ZZzzzššš ÕBX¸paUUÕÚµk{zzŽv«Ë/¿üꫯVÙPxíÅ+0CêžDMJ åræ%Š9)^­æ¸²¿â¸yóæŠŠŠ3fôn6lØ´iÓyä‘-[¶Lž™ôN08r¹`… mL ¥¨hË*Ž´Éx8æóù¶¶¶ÚÚÚÚÚÚ#·?>„°gÏž£…ãE]TøÿøÇIÏ}¶_G+oèð›²>7_òù×3e°¦);q½“RÜßhÊ8ªŒ¿TÝÙÙÙÝÝ]]]Ýg{UUUáÀCô{úIúH”µÂ ‡ÁT1)édFbùêFwR%ã+Ž…·N5ªÏöÊÊÊÂÁƒ‡è÷¶¶¶&½ëeÊåê‰pØQ*‡=c+X¥rØOFƦŒÁ•ñÇêêê\.×ÙÙÙgû¡C‡Â_Öââ}(w4Ž&ãá8|øðªªªþ+‹!„Þ÷Y”–ÒZ÷ÊL…”Öa‡¡ñp !ÔÕÕíß¿¿PнÚÛÛ _JztPòœJ)åöO=3¹ÏàÊ~8Μ9³»»{Æ ½[òùüúõëkjj“ÀVŠ£BJ‘Y£¿ì‡ãìÙ³+**–.]Z¸®1„ÐÜܼoß¾+¯¼rĈ…-¯¾új{{ûÞ½{“,p|Nf_)Æ: …Œ¿«:„pÖYg-X°`Ñ¢Eþð‡§Nºk×®M›6Mœ8ñ3ŸùLï÷¬_¿~þüùõõõ«W¯Nz¼•7RrJ·`J÷îVºÇüä•î¬1D²Ž!„yóæ=ú¡‡Z³f͸qãæÌ™ÓÔÔTøDàd”ó Ê„väHeŽ!„Ë/¿üòË/?ÚW?øÁ~ðƒðK·Þzë­·Þšôð‰"bÊGÙžÉJýy)N\©s\Ù¿ÆNŒj,pa1½„#p‚œS‹,¼„$|°”ÐÄ1¤„#P’œÆ ÈÜéÂ81cŠ,K¼$ú#K|•ÄÜ1¤„#åÎã`é2w ÕG#ÉôdXöþy§9ú³w´WšçŽ"Žd_á!.— ëËÉŸYMJ¼¢uLïtgRôGŒ"OJ$sW΄#YVxÌ-œtóùƒ]Òc" æ¤8 –¤ôÎKÙÔT-7öŸ”ôÌ‹»^ÙŽdÖ‘¹½ÊùŒ˜G¦|¯´S¥“त->RXGJ۳ߴMÅ!ɦþ¹½RõÈ[ŠNøä:`ʤçl]nŽ=)eugIy5ö*«I!…„#å¨Ï#¯çÍip§à O_ªRfˆ¤dúRu¨Qi“’飘„#TB»oTªµc¹ŽdAªV ²í$_§&^q®n<î¯(B£$^@ žpJ^âåå̰¬G Rõâ1“Rœ¥âËÃr#¼!‘ Ò(”:5Ã1¤ð‹ŽåC8RŽRø°[†´fLJRÊùtŸÎ@÷Ô—4ŽdÓ1yJRŽñ™Ò'?)YZð(fÍãÃü`ð!Iffðä¥dRÞø˜Í`ö G2«7SŽü³È©}Ì-½™bRReÀ;ËÑ><3Ò¹ÜØ«<'…ôŽdYáAöÈ?‹|Ì?Æà¹r‘DN ÅÔÿÎ’ÈÜ ”†Iy£6ƒ™'()_žÉ ǹ8ç!¢3O8Ròœ(pÆ"’ 8a€´Pÿr -¬„‘ê?Û„#eDÃÉŽÀñ9×R4Ö«2À$f˜p²£¤OWê¼d8IÂd%ý,ŽcŽDŽÉóꑆh±ÊA†“'áu^X9§[àxPÍ$á@öyþƒB8™RŠ‹š¦¿RœGú3Ù#)mθÀqy €Á"€¡bÑ1c„#p,–j†š#|4ƒŽ0 "ádHwÉ,Žd–åF\ 1²æØ¬Te†©Ì ᕬàH€lòÌp„¿òbJf”ÄTÊš%1•Ä0•Ù È ]CA8%—÷Œl°544´¶¶&=Šr‘»á‰Aþ‰ßœéNÑëÄÖl^øè¸ÁÆø•/ÐàCʧ²˜Kb~ÛàþÀÚÿ²HC?Ñ©,‰Ç[.øæàþÀ¯nû|Òût,é¿Wr\Âqð ÇbôsƒÇµ#•Ä©÷èƒOûT–ôá-¦ ‡c¹Iÿ½’ãòR5Q„#Q„#Q„#Q„#Q„#Q„#Q„#ü•ÏËŒ’˜Ê|>ï/÷× O¥Ã›6¦#„#pTN½CÍR…Ãë§Aá @úŸÎq\ÂÈš’Xnì¥áä§²+Žp²Jë.ɱ GJ›SÂPs„IÊ Ö†ÆI)¬øªÆ,Žð:nGSZ'ÝRœÇÒ:ÂÅ1èóè Ÿ—§3I8ÙQŠÕX kŽ4Dóè’Çb*Ý;#Ç&ã“5Eà  ip¸ä±8Tc† GJžÓ8WùÇ\œItœ‡Ž‹3O8B™hŽ¡æ\[å|œ‹y7ô²õPpQc9Ž@¬47M–Ò?ÍÇyè½l=¸²tä†'=€ôZ±bEKKK[[Ûi§6}úô ÔÔÔ$=(`Ù;cåóù\.—­}:–g°ÜõP(ÄwÆîƒÇ-Y²äæ›o~ñŧL™RYY¹jÕªk®¹¦««+éq1°“\6È^v ®ÐduúÊäµÔ4\×{¨3´]ïôeò>È€„ãZ[[›››ëêê{ì±æææuëÖÍ;wûöí‹/Nzh¼TµcâÍ1¤2ÿZjzš#ÿò1’d,[Âq---===MMMcÆŒ)lY¸paUUÕÚµk{zz’Ëöù5mRr´³]½2Y3iXh|<.ÉXæ„ã6oÞ\QQ1cÆŒÞ-Æ ›6mÚþýû·lÙ’ôèdé<{¥_âíXV—¥š)‰ìÈÒ,½¯æ§|îj±¯|>ßÖÖV[[[[[{äöñãLJöìÙ“ô9ªÄS¦Ü$xÀ˪{eà•ëÒÊùXpd/–ÊÜ1t¼«º¯ÎÎÎîîîêêê>Û«ªªBˆù! Iï±Æo¾NØøñãs¹Š*)çY+óBÉÁs¹’œ¸ÂªA‰ó“W˜µà¼ÖOkkkÒCH†pì«ðÖéQ£FõÙ^YYB8xðàqBÙþc*Q¦«™µRT†Õ•f>¼TÝWuuu.—ëììì³ýСCá/ëŽeH8ö5|øðªªªþ+‹!„Þ÷Y”á8€ºººýû÷J±W{{{áKI Âq3gÎìîîÞ°aCï–|>¿~ýúšššÆÆÆ¤G á8€Ù³gWTT,]º´p]c¡¹¹yß¾}W^yåˆ#’@2r>“i@Ë–-[´hÑÙgŸ=uêÔ]»vmÚ´i„ Ë–-ëÿ1=eB8Õ#<òÐCmß¾}ܸqï~÷»›šš ŸÈPž„#Q\ã@á@á@á@á@á@á@áHöýâ¿hhhøùÏžô@]]]÷Þ{ïe—]vÁL:õÓŸþôO~ò“¤Eøýïÿ•¯|¥0/ïÿûçÏŸÿ‹_ü"éAñW¿þõ¯'Mš´`Á‚¤‘2pß}÷%=Báµ×^ûÔ§>õõ¯ýå—_~Ï{ÞóŽw¼ãg?ûÙ¼yóîºë®¤‡VÖ:::.»ì²|0„ð¾÷½ïïþîïÖ¬Ysùå—?ûì³IBÈçó7ÝtÓ¡C‡’„Âð¤C¥££ã…^xä‘G¾ÿýï'=B¡¥¥eÛ¶m“&MúÞ÷¾7räÈÂÎ;çÌ™s×]w]|ñÅÿðÿôËÔwÞùÊ+¯\{íµóçÏ/lùáø…/|áÖ[oußIƒ{ï½÷©§žJzð:+ŽdÖå—_~õÕW;ó¥Çc=BøÒ—¾T¨ÆB}}ýµ×^ÛÝÝíëýô§?9räu×]×»å#ùÈØ±cwìØÑÝÝôèÊÝÎ;—,YrÞyç%=xG2ë¶ÛnûÓŸþB¸ÿþûŸ|òɤ‡Choo5jÔĉÜX__BسgOÒ£+_ÕÕÕãÇ?õÔSÜxÊ)§>|øðáý•Oñ½öÚk7ÞxcMMÍÂ… ?õ©O%=A8’a]tQá?~üã'=Báž{î>¼ïcÎŽ;BçœsNÒ£+_÷ߟ-›7oÞ½{÷\ “uçw>÷ÜsË–-;ãŒ3’ ¼N8E2a„>[6mÚÔÜÜ|Ê)§Ìš5+éѶnݺjÕªööö­[·¾å-oY´hQÒ#*kÛ¶mûîw¿;gΜ /¼°ðü Ò@8 èîî~àn¿ýöîîîo|ãgžyfÒ#"´¶¶®\¹2ŸÏ‡&Nœø¦7½)镯®®®o¼ñœsιᆒ ü áÛÏ~ö³¯~õ«/¾øâ¸qã¾öµ¯]xá…IˆBøøÇ?þ±}lß¾}<òÈâÅ‹·lÙòè£VVV&=®r´hÑ¢½{÷>øàƒ® m¼«(žÃ‡ßvÛmŸüä'ýë__ýõk×®U©’ËåF=oÞ¼}ìc¿ùÍoÖ­[—ôˆÊÑSO=õàƒ~ö³Ÿ}×»Þ•ôX /+Ž@‘ôôôÜpà ?þø%—\rË-·Œ3&évîܹlÙ²iÓ¦]zé¥Gn/¼ùý·¿ýmÒ,G;wî !|ç;ßùÎw¾säö‡~øá‡®¯¯_½zuÒc¤| G Hî»ï¾Çüª«®ºå–[’ ¯;ãŒ3~øÃ¾òÊ+}Âq÷îÝ!„sÏ=7é–£·¾õ­úЇŽÜrðàÁ7žuÖYcÇŽMz€”5áC>Ÿ¿ÿþûO?ýô›nº)é±ðWuuu 7n|â‰'.¾øâÂÆçŸþ¨¬¬œ2eJÒ,G]tQ柳ìØ±cãÆ“'O¾ãŽ;’åN8ÅðÊ+¯ìÞ½{äÈ‘W_}uÿ¯^qÅsæÌIzŒeêÖ[o½êª«®»îºÆÆÆ7¿ùÍ/¿üòÓO?B¸ýöÛ½ÛèC8ŰwïÞBWW׳Ï>Ûÿ«Þ"“ óÏ?ÿÑGýö·¿ýì³Ï>÷ÜscÇŽýÀ>ð¹Ï}®ðG}Ž”+|d›ã Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Êÿ¤ùï),‰€IEND®B`‚statistics-release-1.6.3/docs/assets/violin_601.png000066400000000000000000000246261456127120000221670ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A)]IDATxÚíÝ}UåaÀá÷"T +»KåKCÓNk±£î€íT1Î81ŒeÒ*c3¤U3©-”AibÇ8“âGhG±q3RÇ¡EIE@gj‡BR” R„1+‚0¶U ›voÿ¸f³Ù]–w—{ïùzž¿ôÀ.çžwÏ}÷=÷ž-•Ëåg2,é „#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#Q„#ùW*•’ÞÈ'K RE8V_KKKÒ»@_%O¾Ù’B…ôŽä_¹\Nz „#ùçÅ:T…p Šp ŠpàCÞ L8ð!o&ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"d”J%w Èá@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@á@áHQ”Ë¡T*%½a€(€(€(ÂÒ«\.'½ ðK€(€(€(€(€(€(€(€(€(€(€(‘œ+•J~Ñ+T…p Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp Šp ŠpS.—“ÞA8E8E8E8E8E8E8R år(•JIïd•p Šp Šp Šp Šp$ÏJ¥’_† Õ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ÄøÕáÙ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ"ˆ")–r9”J¥¤÷2I8E8E8E8E8E8’[¥R©\Nz' G„#Q„#Q„#Q„#Q„#Q„#Ÿy‡H¥R)é]€_ŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽDŽ@bÊe¿‡ K„#…#V`h„#¤š—»¤Çð¤w Nž}öÙÕ«WïÙ³ç#ùÈ5×\³dÉ’æææ¿äÍ7ß|ì±ÇvíÚuüøñ–––;î¸ã÷ÿ÷“~‰)ÄŠãòåËï¾ûî½{÷^qÅ kÖ¬¹õÖ[;::ø’W_}õOþäO^}õÕqãÆµ¶¶¾ñÆ·ÜrË«¯¾šôCHL©\.'½µÕÞÞ>wîܱcÇ>÷ÜsãÆ !Üwß}O>ùäüùóÿöoÿ¶ß/9zôèœ9s~þóŸ?þøãÓ¦M !ìØ±ãæ›o=zô¦M›† ;Cm·´´´··'ý¸ ¥Rét?Ý¥RÈýO~ÊuޱH•ÊõP#’*•“Å™BJäÅqõêÕ]]] .¬TcaéÒ¥ëׯïêêê÷KÖ¬YsìØ±Ûo¿½R!„K/½ôºë®;tèЛo¾™ôHFþÃqë֭Æ ›5kV÷–sÎ9gæÌ™‡Þ¶m[¿_òÿñ¥Riîܹ=7Þÿýííí—]vYÒˆ(,7C“óÇ”Ëå={öŒ3f̘1=·O™2%„pàÀéÓ§÷ýª;w677O˜0áûßÿþo¼ñ“Ÿüäâ‹/ž3gÎÈ‘#“~@‰Éy8ž8q¢³³³©©©×öÆÆÆ‘#Gú~ÉÉ“'úÓŸ~üãÿêW¿ºjÕªîí“&Múû¿ÿûßýÝßùw[ZZzmñ®G ërŽ•N5ª×ö†††ÂÑ£Gû~ÉOúÓž={ÞÿýeË–Íš5ëg?ûÙsÏ=·bÅŠ¿ú«¿Z»vm̺£Lò'çïqljj*•J'Nœèµýøñãá뎽œwÞy•ÿø»¿û»¹sç655M˜0á/þâ/n¸á†ƒ¾ôÒKI?&€r¯i`9ÇáÇ766ö]Y¼mÛ¶¾ðÔ©SwÞygssóÒ¥K“~ÉËy8–Ëå={öŒ3f̘1=·O™2%„pàÀ¾öá‡~ë­·¾ñoŒ=:éÇPWÞBôkxÒ;P['Nœèììljjêµ½±±1„päÈ‘Ó}áöíÛ¿ýíoÏŸ?ÿÊ+¯Üµk×`ÿÝ–––^[ÚÛÛ“> Qe-ûD7…—óp¬|tzÔ¨Q½¶744„Ž=zº¯ºóÎ;'Mš´xñâ¡ý»2±êÜ‹jÇù•NÆ…Êy8655•J¥'NôÚ^¹½Neݱ¯eË–Öý7+Ž=ºyóæ /¼°µµu„ I? "òFŸ<1šÙ•ÿpœ7oÞ·¾õ­Gyäšk®©|&¦­­íСCög6bĈÊßùàƒÞ{ï½#F|ô£½úꫯ¾úêžßa×®]›7ož>}ú<ô£  Üá4È8^xá…K–,Y¶lÙg>ó™3fì߿˖-—\rÉŸÿùŸwÿ7.Z´hòäÉk×®MzR*ÿáBX°`ÁرcŸþùuëÖMœ8qþüù .¬¬>’~)¹²éµ>˜«¯¥¥Å}«(%áB(•‚óåìõ; Žm² J:õƒBâòÿ©jªB8B,7åê&=[ 'áHªyê€ôŽôÃ;Зp(4ëú@<áƒ` €"ޤ—…HáÙࢉŽ@ýXEÈ4áHJ¥¶0¼â °„#Q„#Q„# š«Õ“p$RûGjD‹d‚p Šp V‚^„# … •|ð¶`P„#©c&€tŽDŽ0D®VP4‘tqRK8E8E8ÂÐy›ã x@Ö GRDX@š G¢G¢G8+ÞæH¾ù O„÷íZ‘´ðD uæ¤K8E8ÂÙr-¯*F€ôޤ‚Kf~€(€(ªÀûó(áHò¼Á ’—©$K8E80K\@7áÕar%[¼EáHÂÌ^€(ªÆÕjàì¹Cš G’äù±8Œ5@G¢G¢G¨&osjÍó Ž$Æ›Þ +” P! ÇË6`h„#Q„#ÉÈñ‚‡‹zCæÐ¤œp€´Èñ‹jòA8E8Bõ¹ä @. GàZ d‘pà̬£A8%ÿÐñ$E8BMxZ „#õfµ2J8E8E8RW…ºNímŽÀ ê’ŒŽ@Í™òA8ÈÙD¼Et@8B ™hÈáHý¸^ P-^—’á@á@áµårÒ 8\i&©op€'I2A8ÅÙ§‰%a(8á@áH=üŒEòA8@&yQJý G¢G¨‡"/ ü y"©9ÝyRäWA€p(/áÒÌèÂH Z©%¡NôY'©-×_jÇ+RêL8E8BýX ü$Ca GjÈujü ¤„ªB8@’d="ˆ"¡®¼9,†£N‘ZqñrF80hV…ÓÃXPO ç,ÿÕ"¡Þ,Q‘š°ÂAðc;ÂãõÙ"!®VE‘êóš³§­«¥vç£1‚Žm"žºŽDŽ +dŽp¤Ê¼ÁòJ85á%DX8?KN2G8ä–.ªK8E8Bb\æ˜ã6Â2Ï -êC8RMÞPE£W P„#@>y!Tp€({²H8ÕgFÈ%áIòþ02D8é%¬3Á0¥„ „#Uãê$¤‡ó¨á@á@áõæ½d”p„„y?;Y!*³”’¸ú×?)a ¨5áHuhÈ=ᤚ€ôžôÔɳÏ>»zõê={ö|ä#¹æšk–,YÒÜÜ<Àßïèèø—ù—çž{îàÁƒçŸþ”)S,XpÕUW%ý8S*àúâòåË¿õ­o5júôéû÷ïÿÑ~t饗>ùä“#GŽì÷ïŸ:uêæ›oÞ¾}{ccã´iÓ~ö³Ÿmݺõç?ÿù_þå_~éK_:ã?×ÒÒÒÞÞžôƒ®7—ªÏF©òt&Vý‡!gǧ’:T¤šQ ¦ò©º½½½­­müøñ6lhkk{ùå—o¹å–;v<øàƒ§û’Õ«Woß¾}Ú´i7nüÇüÇú§ú×ýצ¦¦+V¼õÖ[I? rÈÕXªÈ«8 vòŽ«W¯îêêZ¸pá¸qã*[–.]ÚØØ¸~ýú®®®~¿dÆ !„¯|å+ÝK’“'O¾ýöÛ;;;¿ûÝï&ý€à´¼¥¦òŽ[·n6lجY³º·œsÎ93gÎ<|øð¶mÛúý’}ûö5ê’K.é¹qòäÉ!„$ý€ÒÈ AÎ?S.—÷ìÙ3f̘1cÆôÜ>eʔ¦OŸÞ÷«{ì±áÃ{™]»v…&Mš”ôc‚Tó* ÇrŽ'Nœèììljjêµ½±±1„päÈ‘~¿jêÔ©½¶lÙ²¥­­íÜsÏ;wnÌ¿ÛÒÒÒkK?.Ô_²á^¹Hê“óâŠLËy8vtt„FÕk{CCCáèÑ£güÏ<óÌý÷ßßÙÙùÐC]pÁ1ÿ®L„*’#)‘ópljj*•J'NœèµýøñãáëŽxíµ×î½÷Þ½{÷Nœ8ñë_ÿú•W^™ô"·´é—óp>|xcccß•ÅcÇŽ…º?gÝ×É“'xà§žzê¼óλãŽ;¾ð…/œî¦¸ì*^ˆR;9ÇÂøñã÷ìÙsìØ±Ñ£GwoÜ·o_åúý’®®®Å‹¿òÊ+sæÌ¹çž{èKz’,où¿ÏìÙ³;;;7mÚÔ½¥\.oܸ±¹¹¹µµµß/yê©§^yå•›nºiÅŠªÈ Ëÿ@­å?çÍ›7lذGy¤ò¾ÆB[[Û¡C‡n¼ñÆ#FT¶|ðÁûöí;xð`¡\.?ýôÓçŸþ]wÝ•ô¾+➬+Ä…•+W.[¶ì¢‹.š1cÆþýû·lÙ2uêÔ•+Wvߦgݺu‹-šÿüóëÖ­›8qâüùó.\X¹#O_•uÇŽŽŽ;wöýS¬¦v¼9Œ|ð“œFñSU}…ZqLÉ Gnd}‘ v?Y?2uª“ÑxN=‡É(P ù#U! Rµ* C#ˆ" ¨¼Ó?é½H¯´-e¯40 Ô‚p„ñD@š G†.m‹©å “|ŽTŸåsÈ%ám–²€ºŽOÖ}©:á@áéb…€AIóuj?Ì?‘!Jót*ž0É áT‡© ÷„#@V¥?Ö]­†œŽ[ÚêŽDŽ:Vúå°ô’þëÔòdxÒ;@&¥gÆ*-þ·ê~ÃòC³“~L™÷öM¬î7œòÜ'ý˜2ïÈ ¿YÝo8æ3?Jú1eÞ=—³ºßðÞíôc"ÿJå”Ìÿ9ÒÒÒÒÞÞžô^ÔVzÂ1v‡ÿ[¶Š°T ™;7ûSñöMlfñ°ÔNNÃ#/üfÕ£°àwö#uÏåß<›(,øñ§º\ªÈžl½xsµrC8E8E8B¹´Ç²uºÂt‚|ªH82hYœ´€³'*ðr‚3²î9 ²D£ ŽDŽ™‘õåÆ^­ÎúA/ÂRª€Sì9&ÉŽ ŽWÏ”|œ}ê2M8E8d@>–+,:ÖŸcNµG¢G€´ËÓrcEAÀò7p !½ 2¹‘Aðêê/¯ç×Euæ€SÂ8[y-zŽé•ï(Ï÷X¾ÇŽÂŽ$&ßí˜6Ž6gO8¤”%+ m„#¤š‚^Šs@ŠS¹Óâ E#‰åy ër™éÔ“pH¢½NËYÍmø(á’³L§Î„#pV,®T]1inj&×›£Mý G cò=çe";j$#[äᣠ„#¤]šgÓ¤¦É4È'C#‰âe4}%ûS‘Ëiω–éa5|p†" sd¦#£¯4Ò4Èè°fqø2z¨I–p$ÿ*OŒž«¨Zs¤AI#’B5íÈ` G`pªRÝSÕYÎY¹™öÒ°^U­A9{™Ö: _íŽGæŽ6ÉŽÀ ¤¡ozÉÁ´—£š¸ kM‡/#Ç€ŽšDãQ¯ÿ8Ë㓈êJUö'ýÃZëè¯ÏXdâP“‘3ËúrHeç3ýR¢ê? UünÙùRu~¥gO2¡>cWŸg°ìžAÔ™p¢¤ªoú•Å™/ýG5YYÓìr´‰!3ËJßdkæËÊQMVjÇ4—×ڣMzGà ²5Ašù¨ƒlƒâ b`ÂHŽ'Èd9°ñÒ–2¹»´pRE8B6$òTžÑ 2ýÓ^Fl‚Ò3¦»ôpÒF8ry–$gÒ<í9§†& cjì@8ýËú™†Î O²~F –3ˆ~ G ù˜#S8óåãÀ&%Á-æÀ¥ð "qÂè-Osdªf¾<ؤx³o¥ê " „#dF}žÁó7Gšùr¦Îš¿3b°œAô$_2GÖŽc›EF­B;ÒM82Oš…’ãáN|ÚËñ±M„Õ÷úKü$"%„#BæHŸ«ÈSŽ9A8ÅaÚ#žÜï—“áhެÿ´Wœc[µM£6íXp²¤OÙE›#M{yâŒH„“¨È„#ùWy~+•‚'º¾’š#“”ºM{ÙJîá(ò™’¶!Kí hÇÂŽäYå9·2 ”Ë•gº¤÷)M™#S2(u˜öÒ– gÚÛ‡#„Œ)UÊ´ YßAÉиW‘ÜêùœÛ-[3bM%U§ã’”ž)ß-[ƒR•vLU5žnPRõ fѱ˜„#ùÔ÷9·[ªžy‡ô¸ª0¹%XýJd®鴗ª p?ûIùŠ´eJCêÆ+Ï`Ú±€„#E”ªg^*”M{)¬ÜËSÁ ð+…òtä‰!É¡l=íÖŸ¬éÉ´GæÎˆ´½ôuŠp„bIðcÔ©›«;íe¨Bb%mr¦]ô¾fh¼ÒL;‡p„1GžŽi¯˜œ0XŠ"Ù92ý WùûdnÜC>ã#JïRñiQì fk°~uÏÓ8(^}„pd år9‹Ïéo”úËî d…v,áH¥óõz-oª1 ƒRÌio€GœÅƒ9ˆi>)2ýÒ·˜'Q¡Gòi€Û§!P†¦Z7qLJ&ål¦½4·È÷t™2À-³.ý#5À ¤çd¡˜„#¹Õ=#öüµÈ|ÎMÕ™‰A)à’I÷ ô—T J¥êŒÀé%ý;_À3¨P„#9×ó7½fâ9·ºÒ9G¦P†0ó¥óPê!÷—ìÊM¸dwPr3ô%!·²ž2É2óå’“¢nœAy%!ŸLgÏÌ—]ýŽ“Ξp„2AÖ™}yé•K‘3Èè­‹LÄT‘™/7œ‰påp„\1;V™/œP-²!ë7qÌ4íCæôÉáùaY¥vL~Ùå¼€*ŽfÇZÓŽ04Î<Žª±>Ì™ãÔ€êŽy¦ÆzÒŽ0NœÜŽmªNÇÙU'93·rL-ób"¬…%M;Â`9kòA8Bô{GËÉ2 $!“TchÇ”sŽ@Õ GÈÕ˜6Þœ6†jD8BƨÆT±èŠp¨‹Žéá»C픜]U×ÒÒÒÞÞžô^TYjW¹J‹ÿ­ºß°üÐì¤S³ÇD˜Ú±èööM¬î7œòÜ'ý˜Î 2@iš#/üfu¿á˜Ïü(éÇtZÝçKšG¤âžË¿YÝoxïö¿Nú1 DÓç€p¬¾\†cÈÂSpŽe+ (C¥’{N–4Ž9àR5Psª1„#¤gÛ ñNÇd9Y Ö„#ù¤ãÓCÓç†p8+½fD±’*†ªK8BƘ¡_Ö´RËÐä‰p¨2q_¤‰áH–jÌ™áIï0&ÂôèwRLùmsæŒib8 Z„#±<󦇗ï™à”©È-ÃQ•×·ž¯rÆ¥j€Zq‘´ÖuÔpÔSehTcþGH5oÊ:±’*•á0"µæ‰+Ç„#™4´:©,ƒiÇÚQù&jK¦ÔÂYÖ‰A©…Êj®jÌ7áPs2¥ºªR'.[W—75„OUÔƒOõVK×´*ß§T*… Íùôt¡Xq<­gŸ}vÞ¼y­­­W]uÕ—¿üåÿøÇIïäJKKKÒ»PoÖ«¢êâ]CÖ}mZ5‡pìßòåËï¾ûî½{÷^qÅ kÖ¬¹õÖ[;::’Þ¯„yn…³ä$:••Á}sW®E2–pìG{{{[[Ûøñã7lØÐÖÖöòË/ßrË-;vìxðÁ“Þ5 ó´ãÐÔáSÝKh`’±È„c?V¯^ÝÕÕµpáÂqãÆU¶,]º´±±qýúõ]]]Iïâó‰y¥«žç‚|€ÏM#û±uëÖaÆ͚5«{Ë9çœ3sæÌÇoÛ¶-é½£@<9ç˜4‰—H©ÈÇ^\›¦B8öV.—÷ìÙ3f̘1cÆôÜ>eʔ’ÞA ÄŒ•o>“qF‰¯oÉÇ ùUnÇÓÛ‰':;;›ššzmoll !9r$æ›ðã¢ÔH¾–òýè"M™2%„·“Þ‹4*•>|ÅžøÏIe7J¥·‹N•\NÉ(¤M{{{Ò» áØ[å£Ó£Fêµ½¡¡!„pôèÑ3~‡Âþ0QuE›¥ '?ÿ‰3ôåRuoMMM¥Réĉ½¶?~<übÝ €„coÇoll컲xìØ±B÷笊F8öcüøñ‡®”b·}ûöUþ(é½H†pìÇìÙ³;;;7mÚÔ½¥\.oܸ±¹¹¹µµ5é½H†pìǼyó† öÈ#TÞ×Bhkk;tèÐ7Þ8bĈ¤÷ %·eê×Ê•+—-[vÑE͘1cÿþý[¶l™:uêÊ•+ûÞ¦  „ãi½øâ‹Ï?ÿüŽ;&Nœø{¿÷{ .¬Ü‘ ˜„#Q¼Ç€(€(€(€(€(€(€(‘üûáØÒÒò_ÿõ_Iï¡££ã‰'ž¸þúë/¿üò3f|á _øîw¿›ôN~ò“Ÿ|õ«_­ŒË'?ùÉE‹ýð‡?Lz§ø¥wß}wÚ´iK–,IzG@8RO=õTÒ»@!œ:uêóŸÿü7¾ñ÷Þ{ïþà>þñ¿öÚk ,X±bEÒ»VhÇŽ»þúëW­ZB¸öÚký×}ݺuŸþô§wîÜ™ô®Bårù®»î:~üxÒ;!„0<é€Z9vìØÛo¿ýâ‹/þó?ÿsÒûB!¬^½zûöíÓ¦M{üñÇGŽBؽ{÷üùóW¬Xñ‰O|âw~çw’ÞÁ‚zøá‡ßÿýÛo¿}Ñ¢E•-ßùÎwþæoþæk_ûšs' žxâ‰×_=é½€Yq$·>ýéOß|óÍf¾ôذaCá+_ùJ¥C“'O¾ýöÛ;;;]°NÐþçŽ9ò‹_üb÷–Ï~ö³&LصkWgggÒ{Wt»wï^¾|ùÅ_œôŽÀ‡¬8’[÷Ýwßÿýßÿ…ž~úéï}ï{Iïaß¾}£Fºä’Kznœ÷?ÿó?/¿ürÒ{TD¯¿þúªU«n»í¶Ë.»,é}Þ¬8uÒÕÕµxñâW^yeΜ9÷Üsϸqã’Þ#ÂîÝ»W®\9sæÌë®»®çöʇßÿ÷ÿ7é,¢Ý»w‡}ôÑG}´çö^xá…^˜ö±}êSŸê¹åèÑ£›7o¾ð [[['L˜ôRh¨‡r¹üôÓOŸþùwÝuWÒûÂ/?¾¥¥eóæÍ¯¾úê'>ñ‰ÊÆüàÏ<óLCCÃW\‘ôÑÕW_Ý}7±Š]»vmÞ¼yúôé<ð@Ò{GÑ G ÞÿýwÞygäÈ‘7ß|sß?½á†æÏŸŸô>Ô×¾öµ›nºé‹_übkkëG?úÑ÷Þ{ïûßÿ~áþûï÷iw áÔÃÁƒC;wîìû§>"“ K/½ô¥—^ú‡ø‡;w¾õÖ[&LøÃ?üÃ/}éK•_êÐS©rË.˜ÛñE8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8E8åÿFa\ÍÄ}$IEND®B`‚statistics-release-1.6.3/docs/assets/vmcdf_101.png000066400000000000000000000644301456127120000217560ustar00rootroot00000000000000‰PNG  IHDRhŽ\­AhßIDATxÚíÝy|L÷þÇñïÉ‚f»‘µ$Ej‹¨R{h5µ¥ª4\JëjQJm½­¥íEQ] WT/q¯[{«ˆh).ªü‘ØjO’IÎïÃt:™$“Ìr–y=¿ßä;gÎ|Î7iò¾Ÿï9g$Y–Pµ €>`‚#lBp€Mް Á6!8À&GØ„à›`‚#lBpà‹/–$I’$ooïk׮ݠN:ÊcÇŽuYU‡–Ìxxx\½zÕ|ƒ½{÷J–™™©<µ`Áe¤yóæjÎlñnß¾=þü'žx¢F•*UªW¯ÞÓO?={öìÜÜÜ’çAáååÜ¢E‹7ß|óòå˶¼Ä‚+¿•´€àÀ1ºwïîåå%„ÈÏÏÿî»ï,ž=räÈ©S§”ÇÏ>û¬ZEʲ¼k×.ó‘ŸþY­bìô¿ÿý¯AƒÆ ûþûïÏ;wûöí´´´õë׿þúëõêÕ[·n]©{(((ÈÌÌܽ{÷ôéÓ###-fŠ"8pŒ   ˜˜åñúõë-žÝ°aƒò N:ê6ðvîÜiþe Áñ¾ûî«S§N:uÂÂÂT,تÔÔÔöíÛŸ#####ãÛo¿U«æâ¼þúë7oÞTÿõ¯=pàÀ­[·Î;·hÑ¢ûî»O‘““Ó§O«¯]¶l™r\—.]:}úô_ÿúWeüìÙ³Ÿ}öYÉ/±0qâDµg€K8ŒiµúÒ¥K{÷î5çäälß¾]yl³³³ßzë­Î;‡†††††vêÔiâĉYYYæÛ¼ùæ›Êu=zô¸zõê˜1cš7o~ß}÷=òÈ#ï¾ûî;wl,¯aÆBˆÝ»w*#¿ÿþû±cÇLOY°zŽã;wæÏŸßºuëêÕ«ûúú6nÜø…^°ÚÛ»xñâÈ‘#[µjuß}÷=ðÀ½zõÚ·oŸÅ6¶ïÍÜæÍ›×®]«<?~üâÅ‹~øaOOϰ°°Áƒ/_¾\y*55U9ºÔ¬YsñâÅ=zôP¾|÷Ýw³³³íü1`d28NçΕß-o¿ý¶ipÍš5Ê`DD„ùÆ»wï~àŠþ^ªY³frr²i³É“'+ãíÛ·/šðâããK¨çСC¦-_|ñEåÁ/¿ü¢ùÄü}øá‡ÐÐТ›=Ú´í{³Ð³gOeË   7nÝ 66ö‘Gyä‘G’’’ŠÎÃæÍ›-¶ß¶m›éÙ7Úò#G2­V›_œaÊgæíÆÜÜÜgŸ}öĉBˆJ•*=ù䓱±±•+WBœ9s¦OŸ>7nܰØù¶mÛŽ9R»ví-ZTªTI\¹råž={l©­U«VÊÓjµ²Níááa5À5}úôÝ»w !|||žyæ™W_}µE‹BY–GŽyôèQe³¬¬¬çž{îâÅ‹BˆŽ;¾ýöÛ}ûöõððeyΜ9‹/.ÓÞŠúñÇ•={öôõõ-ºÁºuëöïß¿ÿþ^½zÙr\mÛ¶­P¡‚òX) ¬"8p¤=zxzz !öîÝ{éÒ%eÐê Ž³fÍR®íðóóÛ¾}ûÆ×­[·k×®àà`!Ä… Þ}÷Ý¢ûÿè£Nž<¹k×®ýû÷›²£Á±fÍš÷ß¿0»>F ŽQQQþþþ¶ìaë֭ʃI“&­^½úÃ?ܵk—ÒdÍÏÏß¼y³òìŒ3”»ÛôîÝû‡~xë­·¾þúëyóæ)ÏN™2¥L{³pçÎ%’ !"""ò]“$©ZµjÊã .Ý S§NEïÅóÚk¯9äÝèÁ€#·oß^!˲’;–žž.„¨[·n“&ML[šZ’#FŒ0DظqãÑ£G[l`òàƒ¾òÊ+Êã ´iÓFylºÑOÉ$IRšŽÁÑÔ‰,•éþˆK–,Y¼x±à–,YrèСC‡õîÝ[yÖ”‡ bzí_ÿúW%RŸ>}úàÁƒ¶ïÍ‚ù  Õ«WwÔ7î/ùKÑý€‚#³X­6­S[\䛚šªú(;;;**ÊÔ´3]’òä“Ošús¾¾¾¦C³}o”‹¦EïÚ]n¦Ûžûùù}ÖêíxLóÀ}8˜iµú»ï¾ËÏÏ·z‚cVVÖõëוÇwI¬Q£†òàÖ­[¦5Y…ÅMs¬ÞC§d¦æâ®]»Lwp´=8N™2eøðá+VT¾”eyß¾}ï¼óN‹-Ú¶m«Ä¸¬¬,ÓrŠsåÊ÷VT… ”Õ|!„ù}Í]¿~=33333ÓöK¤M+ÔE¯éÅÜŽçÍ7ß,ëüÐ;‚# iÛ¶­âÚµk?üðCrr²¢~ýú=ôi???Ói…çÏŸ7¹éË *˜ß¡Ú!yä!ÄÎ;•JùË_þR¿~}_îííýñÇ_¾|ù_ÿúW¿~ýÌo’’¢|þžŸŸŸ©)øÝwߥYÓ·o_÷f•)þ®Y³Æê݈4hlº0¼d;vìÈËËSÛx÷Dpàx¦ÕêñãÇߺuKY§BDFF*,>ŸÐôe½zõÌ? Å!¼½½•ó)úé'¥ãøØcÙøÚÛ·o_¼xñâÅ‹·oß~öÙg—.]zéÒ¥ï¿ÿÞ”´L÷ª¬[·®ò ??ÿ3>>>¶ï­(Ó©“§OŸ^°`ųk×®5µÛµkgË¡™.Ü©R¥Êã?îØ9`$GŽ×³gO!Ä”‘¢«<øðÃMwÆ>tèЬY³”ÇO=õ”3jSÚu{öìQî³mû:õ‘#GªU«V­Zµ°°0å.B^^^:u2Ý2 @yЩS'åAbb¢|ïtV­Zõ—¿ü%88¸N:7nܰ}oEuíÚÕô#FŒ˜:uªÒ¦ÍËË[²dÉ€”§xà󫑬ºpáÂСC“’’”/_xáós(À‚ƒÿ×<!BCCÛ´i£,R !4hðàƒZl3nܸÏ?ÿüÔ©Sׯ_oݺuLLŒ§§çæÍ›•Óòœt srr”/mŽ=ôPhhèÅ‹óóó[·nݵk×   “'Oš>Ðôù+&LX´hÑÕ«WW¯^ݱcÇvíÚ>|Øt‘øèÑ£ƒ‚‚lÜ›UsæÌiÑ¢Enn®,Ëo½õÖ[o½|õêUÓõ7•*UJJJRN6µ Ü/3;;Ûü<ªU«N›6ÍsÀ0Žœ">>Þ­~h²ÏŠ+úö훞žž››kú =!DíÚµ—.]jõò^û™'EOOOÛOéóððP‚`nnî… -Zdþlûöíǧ< üòË/®]»¶mÛ6óÏeyùå—ß~ûí2íͪÆÿý÷Ï>ûì¹sç”å‚E:u>ùä“GyÄêkM/1ôí·ßš.»«Xªà½zõRV«…µujÅ£>zðàÁ7ß|3&&&44488¸cÇŽ“&Múõ×_[·ní¤Â‚ƒƒMWÃ<øàƒV?y¥8=öXZZÚ›o¾Ù¼yóêÕ«{{{¶nÝzÑ¢E[¶l1]-„ˆ‹‹ûå—_^|ñŦM›V®\9""¢GÉÉÉŸ}ö™ébpÛ÷fÕã?~üøñ¹sç¶k×.$$¤bÅŠ‘‘‘ݺu›;wîÑ£GMg”ÀÓÓ3((èÑG}óÍ7SSSm?Ý€Û’Lçß% ã›`‚#lBp€Mް Á6!8À&GØ„à›`‚#lBp€Mް Á±ééé‘‘‘¿üò‹Ú…¨ŒàXŠ%K–¨]€&x©]€Feee;vlÍš5ß|óÚµhÁѺ¸¸¸ .¨]€†­{çwnß¾-„XºtéO?ý¤v9ê#8Z׺ukåÁÖ­[Õ®@ŽŽ©v =9–šªv °¢~ñÐSÝõ[Fpt Ûž"##Ýö‡ÏQ˜C;1öcí§ë9”ìÞƒl÷t=v’ìøÈfSoe‹ŸR·p‚#Ų%“Øû`RŽ(;ú Ýû¶Ë|o‹ 8Pl@$8دLYÐá)Ц •ïêÝäÅpp€Û‘Šü“‹ù‡H’Mÿd¹ ÿ\W¼Yʛ׬¯<øãðPG€ÁýûO"´E©ÁI•î ]Gdö³Pl[Ñtغ;<— 8 È<óð÷¿8%GCc'›Â¢BˆÔcÇî6HQ<–ªU¶qãFµKÐ=æÐNL ý˜Cû9d‹[zv%O`ù‘uÊâ(Í©ä ÊHO×ña» Á on­ÏFY¢a—K¿ÌÅ|‚`‚c)¦OŸžššúðë]àOŠæEwc #"ÂKȈ†Tæ¶¢Õ¹3ð9Á 'îœKè#¦§g¸C²+,ÞÝÅŸçeÄÅ1}P®qpŸ?õE¯\qÏœcûÕ-¥íHÂ]'ÑqŽ­s“Èh‘Ý9á8,,ÞÝ‘ÑaŽ2eÿÁ7‹ÇÖ‘ÑÑŽÍ1v‹‘°hÎÁÍÅ?öKdt ‚#@[$#FF¢9g…EÁç¾8ÁQ"##Õ.jJMMU»@ Öh$,ZpüJôŸöN‹ÑŽZAtp[üÏ@.Œéy™sbsñ÷ 2º÷q¨I¹)czF†Þÿì½½¢;³÷n‹¶¾ 7ñv5‚#@5’þoâM^üc*¬ÝÛioFdTKÕèýtFÖ£Mœ{梕÷caZMG€«é÷ºiò¢‰«ó¢ 2jÁàR:M„áš+]¬¼+i]CŽ×Ñ]j$´Uš‹wߘ´®9G€+èî¤FB‹jyQ0ûÚEp8¾nZÔÌ‹Âíg_óŽçÒQjtçТr^î=ûúÁ}a(áááñññjWàzIn{[@×Ýy±¤"Üuöuˆà-º~ýúË/¿\«V-__ß¶mÛîÚµKíŠÊ\Ø;w¼¼¼¤?«ZµªÚG¸Ž¤“Ôè¶¡Eý¼(Üxöu‹¥jhNVVVttôéÓ§{÷”Ô¥K—­[·6iÒDG…edd´jÕ*""Â4èëë«î!.£ýÈè¶—K«¿$}·¦u‰àˆòÈËËBT¨PÁ;Ÿ3gNZZÚ_|1`À!ÄÈ‘#›5k6f̘-[¶¨{Ôe*,--M1uêÔ˜˜uË\O©ÑÝ‹Vò¢ 2êKÕ(ÈÈH‹<4eÊ”æÍ›;dçß|óMXXXBB‚òeDDDïÞ½“““ÏŸ?_¦ý¾ð žžžË–-s}aJp¬[·®CÞ€£˜–F݇&–¤ï–´îá'OžÜ»w¯ýûÉÊÊ:vìX‡$éÏ'èØ±caaa™Ît”eyðàÁ_ýõâÅ‹ûõëçúÂÒÒÒ*V¬xß}÷­\¹rÁ‚;vìPÚ´€ái¶Ýèn¡Å⪵«q³Ù7.–ª¡-/^”e944Ô|0$$Dqùòew"ËòK/½ôå—_.Z´HYVv}aiiiuëÖ½zõª2Ò°aÃ%K–4kÖÌÕs ¸–S£û$eUZý°x·¦ …àçÊÏÏ_·n]qÏ>óÌ3#999B???óA!Dff¦-ï(ËòðáÃ.\˜0hÐ µ KKK+,,œ2eJïÞ½½½½¿ýöÛ×^{­{÷î‡R^6S£ûä Åx· ·™zwBpÔ6³UQ”ø_{AAù—………V7ËÎÎîÞ½{ñï`ùÁÁÁBˆ7n˜fee !‚‚‚l©zíÚµ²,רQcÕªUÓ¦M«U«–*…mÛ¶­R¥J¦§ tëÖ­áÇ'%% <Ø–ôEƒ©Ñ}r‹$$®™¼(ÜiêÝç8j›,«ù¯D·oß6ÿ277×êfþþþrñŠnêááa±ø{åÊ!D5l›3yåÊ•K–,ÉÎÎ9rdq›9»°êÕ«[Ê'žxBqøða{*íÑfj4ü uæg1¦g¤«]ŽRç2G”Ó¹sçÌ¿,î’ç²®{yy5jÔ(%%Å|pûöí’$EEEÙRX×®]»uë&„èß¿ÿÒ¥K×®]ÛµkWvêÔ©µk×vìØ±aƦA¥=Y»vmÌ> %ZKîÐíÒÖYŒwkrƒy‡B†£Õ¯_ßöÓÓÓËú-¨S§ŽbÍš5Ê—'NœPnm]tËk×®•õÇoÞ¼yæ;¿xñbhhèOüðÃýúõ›8qâÌ™3Û·oŸ““3eÊåÙåË—Ž=ºÔ CBBÞ{lŒŒwÞyÇ…͘1#00pþüùÊ[O™2%%%¥^½zÆ ›0aBttô7ß|3uêÔF©ý­FS½Fcß Q[÷Öù£,¦ÝKÕ(§-Z<ýôÓ ,ÈÏÏ2dˆŸŸß´iÓ²g??¿äää±cÇ&%%]½zµeË–Ë–-3}¬_^^Þµk׊;¥ÒÂСC¿øâ‹Y³fõïß¿AƒN-ìÖ­[×®]3ú9nܸx`æÌ™K—.­T©ÒC=´aÆ.]º8ã{¨Bk©Ñ¨ÑE‹«Ò‚…i÷%É|×-22255ÕÆ322ÂÃÃËô-¿ÿþû-Nøs™E‹:tèƒ>P{Cõï¾òC¨ö4è›ΡÃS£=shÔÔX¦ÈèºBãFÆ2͡꿺ÕÂR5tæÖ­[[·nmÚ´©Ú…PŸQ—§µ¸*-X˜†,UCwvîÜÙ°aÃçŸ^íB÷¥‘Ej£FF¡Á…iaÐéFÙQÆ ³ø —éСC‡ÔžÀ}‘uDZŽŒÂ˜kÓ(‚#Êcܸqj—ÀM/Æ¡#G€­To7¬ÑHd„î6!5:òXˆŒÐ'‚#@ “‰ŒÐ5‚# tê¶‘µ…Q¦ÎGp”‚Ô耣’v#£ Ñ[eŒH£ÝF£1æ®Ep”D­v£DFÁP,Rc9ë'2 ŽmÑujÔnd:ŸYhÁ`*íF]g®€áVËV¹fDF8”‡ÚޝvÊCשQ²FS£,ëuZ¡IGhÑõë×_~ùåZµjùúú¶mÛv×®]jWd©mÛ¶S¦LQ» ÀY\ßnŒˆ×c¼‘„¤ÑåiIÒq‡†¡9YYYÑÑÑŸþy›6m|âĉ.]ºìß¿_íºþ°ÿþüQí*ã$‘žž¡ve¬ù^dÔ\j4EFR#œ€àˆòÈËËËËËsÒÎçÌ™“–––˜˜¸lÙ²y󿥤¤H’4f̵Zäçç÷Ýwo¿ýö“O>YXX¨v9€³¸¸Ý¨Ç¾˜F#£`mNGpDyDFFÆÄĘL™2¥yóæÙù7ß|– |Ñ»wïäääóçÏ—i?………/¼ð‚§§ç²eËRXffæ“O>9eʔ˗/;d‡€‘K)X«kÓáú›MèÁŽqòäɽ{÷Ú¿Ÿ¬¬¬cÇŽuèÐAR®BѱcÇÂÂÂ2é(ËòàÁƒ¿þúëÅ‹÷ë×Ï!Ç*˲,ËGuôüîHw9G£FI’”‘ž®³Ù„>¡-/^”e944Ô|0$$Da{ŸO–å—^zéË/¿\¸pá€Ô>&@7\ÙnÔWjÔl£‘µi¸÷qÔ4åÆ`jqȯÈüüüuëÖ÷ì3Ï|áÂ… ƒ rTaHw©Q£‘QpƒF¸ÁQÓ´ø«êž‚‚ó/‹»X$;;»{÷îÅ`‘_yÁÁÁBˆ7n˜fee !‚‚‚l)líÚµ²,רQcÕªUÓ¦M«U«–C  O­¥Ö2ÞÖ›Èõ°Trº}û¶ù—¹¹¹V7ó÷÷—‹WtûÐÐP‹Ué+W®!jÔ¨aKa²,¯\¹rÉ’%ÙÙÙ#GŽ,n³²ÀQôÒnÔî¬MC=tQNçÎ3ÿ²¸KžËº"ìååÕ¨Q£””óÁíÛ·K’eKa]»víÖ­›¢ÿþK—.]»vm×®]í/ 06—µu‘i4Å!8¢œ.\¸`Êdééé°ºY9V„‡ 2räHÓÎ/]º”””Ô¹sçððp[ óð¸ÛGŸ={öÚµkGŒãããca줗Ԩ¹È(t2wp,U£œ¼¼¼ž{î¹¾}ûöéÓ§qãÆÞÞÞV7+ÇŠðÀ~øá~ýúMœ8qæÌ™íÛ·ÏÉÉ1}¾ßòåËG]j…!!!ï½÷^FFÆ;ï¼ã£rM»QÉG‹©‘„–QN-Z´˜4iÒÎ;üñÇ!C†¼òÊ+ŽÚ³ŸŸ_rrrŸ>}’’’fÍšU·nÝäääÇ{Ly6//ïÚµkÅRiaèС-Z´˜5kw^Ô¥ýä£ÅîðáЖªQN’$M˜0a„ ¦‘©S§:jçþþþ‰‰‰VŸ0`À;w:dõÙŒŒ?}Ü­‡‡G™nn£ÈÈHº’0 ´u‘µ…f n‰Ž#tæÖ­[[·nmÚ´©Ú…0Í¥FÖ¦¡at¡3;wîlذáóÏ?¯v!€¸y»Q‹WOky¾‚#Êgذaîâ2:tèСƒÚ©Qs‘Qp·hÁå1nÜ8µK u¤Æ²¤áÉÌÀ9»Ý¨Ù ¤¹åiЂ#À]ÐhìDp·ãžíFm¥FÐ'‚#À‘H6T£É9l@p8Œ‘¶Nj¤Ñ#8€{qÍ'SkFÀ±øä€ch-‘‡£ãnÄyíF­å" ¥F–§a G€½HÅ—¢±©ìCpwá&g7j%5Òh„qŽ# %<<<>>^í*÷¢žš$$ ¥FYÖʼŽCp„]¿~ýå—_®U«–¯¯oÛ¶mwíÚ¥vEwÕªUóõõŽŽž;wn~~¾ÚEjÒTj”…¬~j”$ M àh,UCs²²²¢££OŸ>Ý»wïààत¤.]ºlݺµI“&ê–žžÞ¾}û‚‚‚=zÔªUkóæÍ£GÞ¾}ûþóµç (±×©µÕhŒ‹Ž#Ê#/////ÏI;Ÿ3gNZZZbbâ²eËæÍ›—’’"IÒ˜1cÔ>h1zôèëׯoÞ¼ù‹/¾˜:uêO?ý4hРիWoÚ´IíÒuh$&‘—!8¢<"##cbbÌG¦L™Ò¼ys‡ìü›o¾ KHHP¾ŒˆˆèÝ»wrròùóçË´ŸÂÂÂ^xÁÓÓsÙ²e)lË–-mÛ¶5?ÌW^yE±sçN‡ìpg´5“4‘Yž†Û 8Â1Nž<¹wï^û÷“••uìØ±:HʉB!:vìXXXX¦3eYòûï¿¿÷Þ{žžž½{÷V{Ú€’õìF ¥FÀm5ͬ馇ü2ÌÏÏ_·n]qÏ>óÌ3#999B???óA!Dff¦meËÇ_¸paBB AƒU˜…mÛ¶ :4--í³Ï>«W¯žf Ð-„%õS#·i„["8jš–#˜YXXhu³ìììîÝ»€–G,„¸qã†ù`VV–"((È–ÂÖ®]+Ër5V­Z5mÚ´Zµj9¤0“Ó§O¿òÊ+kÖ¬©W¯ÞæÍ›;vìè„ÙÆáíFR£VfPç8¢œnß¾mþenn®ÕÍüýýåâÝ>44ÔÃÃÃbUúÊ•+Bˆ5jØR˜,Ë+W®\²dIvvöÈ‘#‹Û¬¬…)–/_þàƒîÝ»wÁ‚ÿ÷ÿGj\Ô¨ˆŽ#Êéܹsæ_wÉsYW„½¼¼5j”’’b>¸}ûvI’¢¢¢l)¬k׮ݺuBôïßéÒ¥k×®íÚµ«ý… !Ö¬Yó /<ûì³óçÏ·XLÜ„ê‘IåÔÈò4ÜÁåtáÂS&KOO?pà€ÕÍʱ"úìÙ³×®];bĈ˜˜; “eyܸq5kÖ\²d‰§§§k'('ƒ]£~j$2ÂíQN^^^Ï=÷\\\\aaáÚµk‹»%²"\¦=8P¹‡Îðáþøâ‹œœœ)S¦(Ï._¾üoûÛ_ÿú×9s攼Ÿ÷Þ{oذaï¼óÎôéÓí,ìÈ‘#Gmذá‹/¾hñTÏž=ãââœ?å€ÊÔ N¤F@ Ž(§-Z<ýôÓ ,ÈÏÏ2dˆŸŸß´iÓ²g??¿äää±cÇ&%%]½zµeË–Ë–-3}Þ`^^Þµk׊;¥ÒÂСC¿øâ‹Y³fõïß¿AƒöT•––&„8räÈ‘#G,žª[·.ÁäØv£û¦F–§3îW®\¹bÅŠ´´´Ê•+·k×nìØ±%lŸ——÷å—_nذ!###00°qãÆ¯¼ò w]1'IÒ„ &L˜`™:uª£vîï˜hõ©ܹsçСCVŸÍÈÈ0ÿÒÃãL· /A·nÝÊÚ:à*§FþÃ̸ÅUÕsçΈ[·nmݺµiÓ¦jhšaÚ¤F@SŒSSSCCC7nܘ˜˜¸iÓ¦„„„ƒ¾ÿþûŽä_ÿú×¾}ûžzê©ï¿ÿþÃ?\²dÉçŸ.„˜ÿüój¸ µâ“$$R# 5ÆŽ+V¬(,,5j”ò±uBˆñãÇûûûoذ¡¸{VïÛ·O1`À/¯»Kù-[¶lذáÉ“'ÿýwµH† æ€.‡:Lž<Ùô­``ê¤FI"5Å1~pܳg‡‡GûöíM#žžžmÛ¶ÍÌÌTbQaaaBóŒ(Ëòµk×<<<È+ŠqãÆ½üòËjWÀ:®S«ØnT-5Ê2©(ŽÁƒ£,ËiiiAAAŸVW¿~}!Ä™3g¬¾ªk×®•*UzçwvîÜ™››{îܹ7ß|óìÙ³ñññÜöœMåÔ xïŸåääXŒûûû‹?÷ÍEFF.Y²dàÀ4 öïßâĉ6¾odd¤ÅÈÆ­nyöìYµ' 곸ÜÅø!´Ÿææ0<Ü!?Táéé.úñ4ÍaDxDzFz†põáééBÕÿí¡¹B*a»té¢vuZaðà¨\:]¥J‹q___!Äõë×­¾*++ëÿøGvvvTTTãÆ333wìØ±zõêÇ{¬sçζ¼ojjªíEÚø(00ÕT/À´3‡wשí®ç^÷ÍuÇ~·×èâ¹¼w§F­| ËK;?„úUÜý³^´Cä& $IÊÉɱ¿yó¦¸×w,jܸqÿûßÿÆÿ׿þU9wîÜsÏ=÷Úk¯}ûí·j:+Ô,Oeaðs½¼¼üýý‹v³²²„¦ë¬Í]ºtiëÖ­uëÖ5¥F!DõêÕÿö·¿Ý¹sç?ÿùÚÇÅrÔe1®OSá¤F@û …¡¡¡™™™JR4QÎÙ -º}ff¦¢N:ãJ£ñòåËj$¤ôŒt—¿+©(3ãǘ˜˜‚‚‚””Óˆ,ËÉÉɦ?6W§NOOÏãÇ[|¾œr~CݺuÕ> p.*V¨1~pŒ÷ððøøã•󅉉‰W®\éÕ«—···2’‘‘¡\NåããÓ¶mÛS§N}øá‡¦;„?~üÓO?­P¡B‡Ô> °Î!ëÔÆOÜß°ƒÁ/ŽBT¯^}ìØ±3fÌèÖ­[›6mN:µk×®¨¨¨!C†˜¶INN~íµ×êÕ«·víZ!ÄôéÓ{÷îýé§Ÿ®_¿¾Q£F™™™ÿûßÿ 'OžüÀ¨}@`ê¤F"#`ãG!Ä AƒªV­ºzõêõëׇ……õïßÔ¨QÊy¬ ^¿~ýüùówìØ±mÛ¶ÀÀÀvíÚ 6¬qãÆj 8‘+c©Ð#·ŽBˆ¸¸¸¸¸¸âž5©\¹òèÑ£G­vá(›ðððèèè•+Wª]àjü˜A—TKjtÉøç8B®_¿þòË/תUË××·mÛ¶»víR»"KwîÜyì±ÇZ¶l©v!€Ã¸,Y‘ý"8Bs²²²¢££?ÿüó6mÚ <øÄ‰]ºtÙ¿¿ÚuýÉäÉ“þùgµ«P.…ŠàˆòÈËËËËËsÒÎçÌ™“–––˜˜¸lÙ²y󿥤¤H’4f̵úßÿý¬Y³¼¼ÜåLhŸýëÔÆl7*GEj‡àˆòˆŒŒŒ‰‰1™2eJóæÍ²óo¾ù&,,,!!Aù2""¢wïÞÉÉÉçÏŸ/Ó~ _xáOOÏeË–9ðØ/^¼øÂ /¼øâ‹÷ß¿w ¨ÈÈ©€Cá'OžÜ»w¯ýûÉÊÊ:vìX‡$I2 vìØ±°°°Lg:ʲóÌ3#999B???óAqïcÄK%ËòðáÃ.\˜0hÐ G&„ؽ{÷äÉ“gÍšõÈ#¨1—€^‘à 8jšdÿ.ìPò¯Þ‚‚ó/MÏh!;;»{÷îžE‘ßïÁÁÁBˆ7n˜fee !‚‚‚l){íÚµ²,רQcÕªUÓ¦M«U«–C ËÊÊêÛ·oçÎGŒa÷Ôcç:µ R©0‚£¦iù÷ßíÛ·Í¿ÌÍ͵º™¿¿¿\–ßã¡¡¡«ÒW®\BÔ¨QÖ=Ȳ¼råÊûcÇŽ#GŽüÏþãÂ,XžžÞ½{÷™3g*#ׯ_/((˜1cF­Zµúöíëð Àu©Q9+šÔ8ÁåtîÜ9ó/‹»ä¹¬+Â^^^5JII1ܾ}»$IQQQ¶Öµk×nݺ !ú÷ï¿téÒµk×víÚÕþ”ÛÍ™3Ç|ðêÕ«ãÇoß¾=ÁzdœöœqŽÐ:‚#ÊéÂ… ¦L–žž~àÀ«›•uEX1dÈ‘#Gšv~éÒ¥¤¤¤Î;‡‡‡ÛR˜‡ÇÝ{Ìž={íÚµ#FŒˆ‰‰ñññ±³°I“&Mš4É|$<<¼Zµj;wîtÅtÖhüzjµI€ q;”“——×sÏ=×·oß>}ú4nÜØÛÛÛêfÊŠpq¬¾dàÀ?üp¿~ý&Nœ8sæÌöíÛçääL™2Eyvùòå¶|ŒxHHÈ{ï½—‘‘ñÎ;ï8¤0ÀHœ·H€!QN-Z´˜4iÒÎ;üñÇ!C†¼òÊ+ŽÚ³ŸŸ_rrrŸ>}’’’fÍšU·nÝäääÇ{Ly6//ïÚµkÅRiaèС-Z´˜5kÖÑ£GÕž0@CHʇ¥j”“$I&L˜0a‚idêÔ©ŽÚ¹¿¿bb¢Õ§ pçÎC‡Y}6##ÃüK2Ý6¼L,Þ p1Í®S“£ã¹uëÖÖ­[›6mªv!€^95q‘c#8BgvîÜÙ°aÃçŸ^íB5i¶Ýè’ƒ'5ªa©å1lØ0‹wq™:tèÐAí ôJ÷íFR# *‚#Êcܸqj—@[H€; 8€»p^îrzjäƒam 8€ÎhíGW¤F"#  \nA¯éK¯uÆDp”ŸsÛ¤F@cŽ 'å[§vR#5î†à(R#à†Ž`pÎÈ`¤FÀ=qUµVDFFª]­ÓÚõÔÎ9HR# ]GMHMMU»ËÈÈW» @£tÖn$5ÚÆR5  H€;#8€>”cÚáIÌy©1<"‚ÔhÁ 6IÊHOW»¥#8€1é¦ÝÈ 5 GÐÕ¯§&5G0$Çæ1R#Á R# CGк²®Së ÝHjô‰à(©€9‚#À:R# GÐ4uש}0Z.@éŽ+ßn$5úGpãpT6#5°ŠàøR#€â@»Êt‚£Fã™FËPGÀÜn$5ÆBp#pHB#5(Á4ª¬7âÑR#`DGÐ=͵I€A¤F6!8€Ù¾N­­œ¦­j8ÁÜÃÚ¤FÀèŽàÖHlGpÍqÙ:5©@™ö!5nƒàz¥‰v#©p'GpG¤Få@pm±ñGõ3›úp5‚#¸´I€["8€þØÛHÊàbûxÀõŽ 3´¨…àî‚ÔÀNG€mH€Û#8€VØr‚c¹Ã›½íFR#‚#¸R#‡ 8€n¨“ßHî!8€&8ïFÁщŽÔÀfG0ˆò´IÊ‚àU¦PGjàGPÃoÄNEp-¢Ý@ƒŽà~HÊ…àúVæv#©@y@%œàh{´#5p%‚#¸ R#û@[œÕn$5°ÁT`ÿxH\à›@Clì Òn  ‚#è ©€ZŽàjÅàèøŒGjàPGГ2´IÍKí\dåÊ•+V¬HKK«\¹r»víÆŽXòK~ýõ× >|øæÍ›‘‘‘¯¾új‹-Ô>° ©€¸EÇqîܹ“'O>qâDóæÍ}}}W­Z5tèÐÜÜÜ^²eË–¾}ûnÙ²%$$¤I“&û÷ïOHHزe‹Ú‡@÷ìY§¶µÝHjàÆŽ©©©‰‰‰¡¡¡7nLLLÜ´iSBBÂÁƒßÿýâ^rýúõ7ÞxÃËËkÉ’%ÿú׿—/_^¡B…7ß|³°°Píà¦HTgüà¸bÅŠÂÂÂQ£F…„„(#ãÇ÷÷÷ß°aCq)pÕªUYYY/¿ür³fÍ”‘‡zè©§žºråʯ¿þªö0 Â]0~pܳg‡‡GûöíM#žžžmÛ¶ÍÌÌÜ·oŸÕ—lß¾]’¤îÝ»›Μ9355õá‡Vû€¸#Ú´ÀàÇȲœ––d>^¿~}!Ä™3g¢££‹¾êСCÕªUÛ»wïþýû¯]»Ö AƒN:ùøø¨}@ôÍê Ž¥†=R#0xpÌÉÉ)((°÷÷÷BüþûïE_’——wãÆºuë¾ýöÛË—/7׬Yóƒ>xðÁmyßÈÈH‹‘7ZÝòìÙ³jO’î1‡vbíW†9 ÏÈÈ(:jmÐüyQÊB„GDd¤§‹Ò6Ó,~íÄÚ¯„9ìÒ¥‹ÚÕi…Áƒ£rét•*U,Æ}}}…ׯ_/ú’7n!ÒÒÒ._¾9räÚµkmé;¦¦¦Ú^dxx¸Úó¤{Ì¡˜@ûÙ>‡V·,áåwÛ%ï^’„,ëý»ÈÏ¡˜@û7‡Eÿ¬í¹ ƒŸã IRNNŽÅøÍ›7޾£…J•*)þñtïÞ=  Zµj¯¼òJ=Ξ=»nÝ:µ €¡8`y™j®¢­à8{öì´´4îÐËËËßß¿hg1++KaºÎÚ\•*U*UªäããÓ¡CóñN: !Ž=ªö$ЫâîàXâKÊò±ÔàdÚ Ž‰‰‰O?ýt¯^½–,YbõÄr ÍÌÌT’¢‰r¶Phh¨Õ—„„„x{{K’d>¨¬Pççç«=IŒ£ä^¡M©‘v#ÒVp|饗jÔ¨qèСéÓ§·iÓfذa›6mÊË˳gŸ111)))¦Y–“““›4ibõ%:tÈÊÊ:vì˜ù rïž ¨=Ip©€ki+8Ž=ú‡~øúë¯ûöíëëë»eË–#F<þøão¿ýöÊ·Ïøøx?þX9¯Q‘˜˜xåÊ•^½zy{{+#ÙÙ٦˩zôè!„˜,,¬ÿþ£FRîÈSœ—^z)88ø«¯¾úé§Ÿcbb^}õÕzõê©=+ÜB)íFR#•h78 !®^½úÃ?lܸqçÎÊU)U«VõööÞ½{÷îÝ».\¸hÑ¢°°0[vWܳ±±±±±±ƒ½zõêÕ«—ÚsÀ˜JÈ~¤Fš¥ÅàxåÊ•ï¿ÿ~Ó¦M»wï.((B?ñı±±Íš5BüôÓOsçÎ=tèÐßÿþ÷… ª]/”¢7â ÒVp\ºté¦M›öîÝ[XX(„ zòÉ'Ÿzê©èèhóUéÖ­[7kÖìÑGݳgÚ%€#Ñn eÚ ŽÓ¦MB<ñÄO=õT‹-Š;‹ÑÇǧR¥J6®S€¦ÿH4N[Á±W¯^±±±-[¶´åªÚÜ©€hë>Ž6lعsgq©ñÕW_}òÉ'Õ®ÊÆâÇò´I´A[Á1''çÎ;Å=uúôéß~ûMíÀµH4Cý¥êäääaÆ™¾üꫯ–.]Zt³ÂÂBY–kÕª¥v½àx6},5¨Mýàèéééçç§<¾zõj… *W®luË€€€ñãÇ«]/”ŸÕî!‹ÔôBýàØºuë]»v)###Ÿ{'ª]8†]wp$5Ðõƒ£¹ÁƒGGG«]8EÙÚ¤FÚ£­à8nÜ8µK 5Ð$•ƒã²eË„>úh½zõL_–¬_¿~êÖ 6*uÚz»‘Ô@«TŽS§NBL™2E ŽÊ—%#8У¢i+©èŽÊÁñÕW_B4nÜXùòõ×_W{B@U´h˜ÊÁñ•W^1ÿrÈ!êÖÎ`k»‘Ô@Û´õÉ1`e¾©€æ©Üqܶm[Y_Ò¾}{uk;Yi7’èÊÁñ¥—^*ëKRSSÕ­ÊÄ"’è—ÊÁ±[·njÏl¢rpœ5k–Ú3Žg:Á‘v##áâP©€®ðÉ1à"–íFR#½á“cÀYÌ“!©€ðÉ1à`¥ßÁ‘Ô@ŸøäpŠ’Ú Oš¾8&;;;//Oí*À¡h7Ð-•;ŽV9|øðåË—=<ûÌÓÓ3!!aóæÍ¿üòËþýû·mÛ6xð`!ÄôéÓ8 vP´IôO[Áqùòå²,3fÒ¤I5kÖ”$I6nܸ7Þx#??ÿóÏ?W»F(…)"rM ƒÑVp<|øpÅŠ Pô©þýûûøø^PP0qâÄ‚‚‚˜˜µk€ÒÝm7’‹Ê÷qܹs§ù—žžž={ö\µjUçÎããã#""$IÊÈÈHJJ:sæLddd—.]Ô-Š£œà(‘—ÊÁqàÀVÇÏ;7oÞ<‹ÁÔÔÔV­Z¥¦¦ª[3GÉŠ’Úe€“¨»uë¦ö €#Ñn``*ÇY³f©=à0wÛ¤F¥­‹cJöÆotìØQí*À I! IH²$HŒJåŽcQW¯^ýá‡N:e1ž››ûý÷ß{zzª] ‹ÔÀØ´/^¼Ø·oßß~û­¸ úõë§vP YâºƦ­àøùçŸÿöÛoÍ›7‹‹[·nÝÏ?ÿü÷¿ÿÝÇÇçèÑ£K—.íׯߤI“Ô®¬£ÝÀð´SRR*V¬øé§ŸúùùuìØ±uëÖááá­ZµBDDDL›6íÙgŸ­W¯žÚeÀŸD„‡ Á1ŒO[Çœ?¾N:~~~BˆªU«:tHy*>>>00ðóÏ?W»F°âîÇR€¡i+8 !<<þ(©V­ZÊcOOÏÈÈȃª] ü '6pÚ ŽÕªU;yòdvv¶òeÍš5÷îÝkzV’¤³gϪ]#˜‘$!äô{ÿŒM[Á±S§N¹¹¹¯¿þú‰'„ÑÑѧOŸÞ±c‡âÊ•+ÿûßÿjÔ¨¡vð‰jîD[Ç$$$lÚ´iË–-²,ÏŸ?¿mÛ¶^^^¯¼òJÓ¦M=š““«vp$qr#·¢­Žcppð²eËFݸqc!D5&Ožœ——÷ã?fffÆÄÄ 4Hí@!„$Ñnàn´ÕqB¿ôÒK¦/ûöí÷믿†††FDD¨]!î¦FYÈ’,d!8À›Ð\p4—ííííëëÛ²eKµk€{$å–’²R îC‹ÁñàÁƒŸ|òÉáÇ/_¾ìááQ£F¦M›>¼víÚj—B! I2·áàn´uŽ£bÞ¼yñññÛ¶m»|ùrÅŠ+UªtæÌ™ÿþ÷¿±±±Ë—/W»:nïn»ÑôÿÀh+8nß¾ý³Ï>óôôLHHؼyó/¿ü²ÿþmÛ¶ 5„Önž’’"IÒ|`ž…U«V7ož‡‡ÇöíÛÕ®€AÑQ€Òh+8=z´víÚaaaEŸ }àŽ9¢vÜ‚E»Ñ”*9Á€;ÓVp¬X±bnnnqÏæææúøø¨]##¢Ý6ÐVplذáÅ‹÷ïß_ô©C‡={¶Aƒj×ÀpФÆâÚàæ´•’1b„ŹŒ;vìxå•W„qqqj×ÀXJKm]U›œœ¼zõê!C†„……Õ©SGqêÔ©sçÎ !âââºvíªv ¤Œ½DNpàæ´…ÿøÇ?Z´hñÁœ?þüùóÊ`ÕªU_{íµ=z¨]±–­|,5ëÔpæ‚£$I={öìÙ³ç¥K—Nž<)Ër:uBCCÕ® ÀÝi+8ž={¶°°°V­ZBˆ‹»9€ÃÐn€²ÓVpŒ½}ûö?þ¬v-ŒË¶ÔXdNpàî´uUu½zõ„ÇŽS»ÆEÊK[ÁñÍ7ßôññùì³Ïnݺ¥v-Œ¨˜ÔhµÝH ÚZª ™={ößÿþ÷nݺuëÖ­V­Z~~~Û´oß^í2è“IujZ Ž:tP\¹rå£>²ºMjjªÚe0Ú`#mGå“cÀñʲH °J[ÁqÖ¬Yj—Àˆè€#hëâ yyy999jW@çŠOŵ-^Á Ž ÐVÇQqüøñO?ýôÀ.\(,,¬V­Úƒ>øê«¯6hÐ@íÒè ½FpÍÇE‹Íž=»°°PQ±bEOOÏ .\¸paË–-£G2dˆÚÐS£íF€‰¶–ªwîÜ9{ölI’6oÞüË/¿ìß¿?99ùÅ_ôðð˜3gÎÎ;Õ®€pM ”ƒ¶‚ã×_]XX8vìØI“&Õ¬YS’$!DµjÕÆŽ;qâÄÂÂÂ%K–¨]#pPçÀD[Áñ×_­T©RBBBѧúöí[¹rå_ýUíèA¹©K{¸; Çüüüóçχ††zzzZ)ÔÃ#,,Læ7:€R‘þÀ94%Iª\¹ò™3g®]»VôÙ¬¬¬“'O6nÜXí2h[i©±LíFÖ©Àœ†‚£§§gÏž= ßxãÛ·o›?•——7~üxI’\¾¯\¹2>>¾I“&?þøÄ‰¯^½jûkÏ;׬Y³±cǪ=CJcGj”J[·ãyþùç>¼mÛ¶N:õêÕ+<<\’¤ŒŒŒÿûß.\ˆ½yóæ¶mÛLÛGDDÔªU«ÔÝÎ;wþüùUªTiÞ¼ù©S§V­Zuüøñ¯¾úÊÇǧÔ×ʲüÆoܼySí¹P™¶‚cll¬òàÒ¥KŸ}ö™Å³ëׯ_¿~½ùÈ믿^êSSSCCC“’’BBB„ï¼óÎW_}õþûï¿ù曥–ôÅ_ìÞ½[í‰`ûÚœ ¥ÒVpìÖ­[™¶¯[·n©Û¬X±¢°°pÔ¨QJjBŒ?þ¿ÿýï† &MšäáQÒbýñãÇçÎÛ Aƒ£Gª=7Jä„EjNp Ú Ž³fÍrø>÷ìÙãááѾ}{Óˆ§§gÛ¶m׬Y³oß¾èèèâ^˜ŸŸ?nܸÀÀÀñãÇ8Pí¹P<»»…´Àº8ÆdYNKK 2¯_¿¾âÌ™3%¼ö£>:räÈ{ï½ççç§öq(ž ¡kbÀ!´Õqt¸œœœ‚‚‚€€‹q!Äï¿ÿ^Ü 8°páÂþýû·jÕêðáÃe}ßÈÈH‹‘7ZÝòìÙ³jO’î1‡vÒõ†GDd¤§‹ŒŒÒ¶¥lneƒððÒ^u—®çP#˜C;1ö+a»té¢vuZaðà˜››+„¨R¥ŠÅ¸¯¯¯âúõëŽjܸq5kÖ3fLùÞ755ÕöÃÃÃÕž'Ýcí¤× ”$!Ë¥–~·Ý^òn„øówOp´yfô:‡ZÂÚ‰ ´_qsXôÏzÑ‘›0xp $)''Çb\¹½ŽÒw,jÆŒgÏž]¾|¹-÷ë e,R€üG///ÿ¢Å¬¬,!„é:ks»wï^¾|ùK/½ôðë]>€â9èz.‹Û<8 !BCC333•¤h¢œ·ZtûãÇ !>ýôÓÈ{zöì)„øöÛo###»víªö°5îÑnÇ2øRµ"&&&555%%åé§ŸVFdYNNN lÒ¤IÑík×®mÚRqýúõ;vT¯^½I“&ÕªUSû€·çü&!wp«ŒãããçÏŸÿñÇ·k×N¹&&11ñÊ•+/¾ø¢···²Mvvö¥K—¼½½ï¿ÿþÖ­[·nÝÚ|‡Þ±cGtt´3n3  llN¶´Y§€21~p¬^½úرcg̘ѭ[·6mÚœ:uj×®]QQQæŸU˜œœüÚk¯Õ«WoíÚµj×  xM€²2~pB 4¨jÕª«W¯^¿~}XXXÿþýG¥t膣ۃÅíuj(Ž[G!D\\\\\\qÏÆÆÆÆÆÆ÷lTTT™îË@]´ÀIŒU5#pô"5g7@9h)´à@ÛÊ’í_¤æG(Á€†9§×Hʇà@«Ê˜ï¸&œà@“œ–KØ1ëÔP2‚#ía-4‰à@÷X¤× 8ÐgžÚH+ìAp %ê%;Np€RhFÙS#íFp%‚#mprjØà@œß ,ùX§[¨­\©‘v#¸Á€ª8ñôƒà@=åMem7’NÀ!ŽtÆá‹Ôœà6"8P‰«Ú€´ÀQŽÔàªEj€¸œ Sc©oÅ:5ØŽàÀµX9Ý"8p!;R#‹Ô :‚#Wqyj¤¹ ŽEpàš qœàeBpà|ö¥FÚ GN¦Fj8Á€3©Ô÷£ÝÎ@pà4vÇ7§¶9ÁÊŠà@£X¤­!8põV‹Y§'!8pm/R Ö© \ŽMÕÔH»œ‡àÀ¡4ßk”Á€ã¨Ýî³ñýY§€ò!8pG¤FÚ eGŽ Ô¨v»ŒàÀnD6pGöqPjtY»‘ ÜŽì Ôp ‚#€òb…Ü Á@¹8.5Úßnd\ƒà ì´”.CpPFK,˜€Ë”…žcëÔ`'‚#›945ÒnÝ!8°öR#ÀÅŽl ÉÎ^™ŠbìGpPG§FÚ SG%ÒjjÔd Žà xZMUÃ@==Np‡ 8°Æ ©ÑíFeZЂ#€"´j!8ø3ͧƲÈ:58 Á€Ö€Å#8¸Ç9©QÝv#ÀŽ„úHå*€ujp‚#ݤFÚ .‚#àîÂ#"ˆc[÷&IééNÙ±Ú¬S€c7æ´¥_ÕOm8ÁpWºJœÝZ@pÜ’1Ö©Àᎀûqfj¤ÝFpÜŒÞR#@;Ž€;Ñaj¤ÝÚAp܆S£õh©0 ‚#àôÙ¸ÓgÕ`XGÀ 89i­Ýp‚#`tºMå.œujp‚#`hºM "8Æ¥ç3i7€y©]'$!„³S#íFp7GÀp\ÒhtjjÔs«ŒŒ¥jÀXôŸí+L“e€Q1Dj¤ÝšEpŒ‚Ôp2‚#`.Ö©ÀùŽ€þ¹*5Òn7GptÎ(© }ÜŽÐ-—ܬñî[9?5Ú€Y§ 8úäÂe]zKÕ€.5rv#èÁÐÃ¥FGÔ©‡*@ÿŽ€®±5gÄcc"8úáÚ„¥—EjÚà2G@'Œ˜úÂUÕ€æ¹ð¶;wßÐU©‘EjЂ# m.ÏVúê5²N ®ÄR5 a†N´@wÜ¥ã¸råÊ+V¤¥¥U®\¹]»vcÇŽ ,aûÜÜÜýë_IIIgÏž½ï¾ûêׯ?hРÇ\íã€;1tjè‘[ǹsçΟ?¿J•*Í›7?uêÔªU«Ž?þÕW_ùøøXÝ>??àÀð÷÷oÙ²å­[·~þùç;vŒ1bøðáj ܃ÑS£CŽujp1ã/U§¦¦&&&†††nܸ111qÓ¦M |ÿý÷‹{ÉŠ+8ЬY³äääÏ>ûìóÏ?ÿÏþðÉ'Ÿ9rDí‚ÑI’áS#@§ŒW¬XQXX8jÔ¨edüøñþþþ6l(,,´ú’7 !&MšdjIÖ«Wïå—_.((øñÇÕ> š]›#Â#\œ9»tÊøÁqÏž=íÛ·7xzz¶mÛ633sß¾}V_’‘‘Q¥J•¨¨(óÁzõê !Μ9£öÁ¸ÔÈS’Ò3Òõx”¬S€ëüGY–ÓÒÒ‚‚‚‚‚‚ÌÇëׯ/„8sæLtttÑW-X°ÀËËrf>,„¨Y³¦Úǃ¢ Ð<ƒÇœœœ‚‚‚€€‹q!Äï¿ÿnõU5²ÙµkWbbbÅŠ»wïnËûFFFZŒ(ËßE={VíIÒ=½ÏaxD„"#=]dd¸ø­#Â#Ò3Ò]9áééŽ9ÐðpíÈôþC¨Ì¡˜@û•0‡]ºtQ»:­0xpÌÍÍBT©RÅbÜ××WqýúõR÷PPP°lÙ²™3gÌž=;88Ø–÷MMMµ½ÈððpµçI÷t<‡÷®?€»Ä„ áÚ tÈ{Ý]§ÖÒ÷]Ç?„šÁÚ‰ ´_qsXôÏzÑ‘›0xp $)''ÇbüæÍ›â^ß±?ÿüó”)SNœ8öî»ï¶jÕJ킱¨·<­ÊeԬƀÞ<8zyyùûûí,fee !L×Y•——7kÖ¬%K–TªTéÕW_!5ÂÁÔ¸São®Rj¤ÝÆ`üàïááññÇ+ç5 !¯\¹Ò«W/oooe$;;;##C¹œJ–å¥K—Þwß}o¼ñ†ÚµÃpT=ËÏ© .ã/UW¯^}ìØ±3fÌèÖ­[›6mN:µk×®¨¨¨!C†˜¶INN~íµ×êÕ«·víÚË—/Ÿ>}ÚÇǧ_¿~E÷Ö£Gþýû«}LÐ'·L#1~pB 4¨jÕª«W¯^¿~}XXXÿþýG¥Ü‘§(¥ï˜››{èС¢Ïra5ÊCÕ“…ª©Ñ±i™ujP—[G!D\\\\\\qÏÆÆÆÆÆÆ*›6mZ¦»0¥P{¥–^#ÀQŒŽ# &÷N´À`ܥ㸚ÚËÓÂX© GÀ 4šX¡8Áp4µS£$$!„º©ÑásÀ:5hÁp·_ž6MƒÚýV€SÑ@\ÒBjtÎqñ¨@‡¸ªpR£†fà,tûh`yZ:5Òní 8vÐF{M#©`x,UåEj´¨Dóp":Ž@ÙicyZ¸Ajd4…à”‘fk†O­!86ÓR£Q¨}‹o—¦Ñô†àØF3]5í4ïÖ£•‰8Á(fÂR#íFÐ ‚#P"-õÓ´–î†ÛñÅ#5–\’†¦à tk4¶<-´w)ŒSS#ëÔ MG -uÒ4ØhÚš!€ë3Zj4 ­¦Fçµû3èÁ¸Gcm4ͦFÍÀuŽ€B{'5Þ­ÍÉ©‘v#hÁnOc 4Í6…æ¦ àjG¸15…Û§FÚ qG¸+uÏ´¼<íªpム8ÂýÐh,G…ÚŠÙuáN´©ñî$h{ B‚#܈öšfºXžÖÞ´TCp„ ÑXî"]’i7€^atšì˜‘zDp„qiµÑ(4¿<íJ´@GŽ0(M¶ËtÑh¼[ªç 2‚# ‡F£ýÕº*5Òn}!8Â@4…®‚^# xG…&ó޾µ³H»t‡àÝ ˆ‚F£# Öböhˆ‡Úv$!IééZË;’H¥¼íFÐ!‚#tKI:‹Œâ^£‘Ô0–ª¡C¾FèêŒFEDD¸‹ç’v#èGèŠ$i³ÑhZ›Ö]j”$‘žžáÒw$5€n¡šŒŒBŸkÓw+g…P,UCX›vFñj¤FÚ kGh‘ÑIõ“eGp„Vi52 ޠѲ~V¨åBp„&i5Úè½Ñ(Ô›ZÚ`GhŒVˆŒ‚Ô°ÁšAdtöh´ Ð ‚#4€ÈèìQu‚i7€a¡*­FF¡ÿ+`þ8U¤F0‚#Ô£Õ¥SÃ4…vç KG¨A«F#EF¡ÔH» †à×"2ºìˆÔNã!8ÂUˆŒ.;"mÌ4íF0‚#œO#A¦h]†‹ŒB3FR#ÁÎDdtñq‘ÎDp„sh22*yQ42 mÌ7© ŒàGÓN„1/Ê -Æ»G§F#ÀðŽp(íEcGF¡±)§ÝÆFp„ƒh¯Ñè‘QhiÊI`xGØMcùÅÀ'2þé0µÔh¤FpGØA“‘ÑØyQhnÖ… 5€Û 8¢\4^Ü$2 í5©Ü Áe¤¥ÈxwU:Ü]"£ÐÊÄ›UEjwâ¡vÐIºÛïÒ@x‘„$ I²,äôŒtµËqòÁjhânŽ#l ™f—›\øò§CÖÞÚôµÑn7CpD‰4Ý'/ Í}1å‘ÀýQ mÄ7l1 ­Ì}‰’À-Q„b‹{æE¡‰¹·¡HR#¸+‚#̨[Ü6/ õçÞæ:IàÆŽB¨[ÜðÆ?Ž]?‘QÀ½Ý›t·Ã§Vlqç£ÐOd4B‚£ûR5³¸y^ºŠŒ‚Ô¸‡àè~ÔË,äEµ;¼åª™Ô¸‡àèNTŠŒäE¡·ãe“fŽîÁå±ÅyQ™Î©`àht®Œ4MtÚb¼[¼‚Ô(‚àh\.L.äE]·ï‘P ‚£¹*2’M F@iŽÆâüÈÈɋ挑‘`‚£!8?¿Ð\4g˜¼¨ˆ7ÄqœÎCí`I’$dùî?ÇîûîÞ%IH÷ÞÀ}†d6Ιo5JIˆôŒ µ èÁQ·Ì#Œ÷j-,ºm^´ ï2ËÓ€²`©Z‡œp"#+Ñæ ¶myt÷ñàÎEpÔ‡FF.s1‘¤?}iȼ(¸`7‚£N8(2MÌâQ“⫦ÚeôŽà¨mŽX4%,Š"=Eáañî+«vc 8j•}-F¢›¬>{ø¦W»€‘µ§¼‘ÑmÃbDDxÑAwKŠ ò"À©¸–”ý;îv÷óûã˜þ¥§g˜ß+ÇHw̱uZîý“¹ÃÀ™ŽÚP–Èè&aÑjF,Ý-#þ1?äE€Ë±T­*Iº»ÈZZü1ê2tÑkVþ8Lã¥Ã˜ÏÓp=:ŽÅZ¹re|||“&Müñ‰'^½zÕ‘{¿×@‹¬_ßjD²èµé´³hµkXj±¬}Ä.]º¨} N›Àb:‹Žý!0ðº sh?æÐNL ý˜C[Ðq´nîܹóçϯR¥JóæÍO:µjÕªãÇõÕW>>>öîºøk_ôÕV,¡YøÇQhý ´¥èŒ2M¡ãhEjjjbbbhhèÆ7mÚ”pðàÁ÷ßß®ýZ;‘ñXê1MµKíÚÒ,tó³m!Yû'ù€¦­X±bEaaá¨Q£BBB”‘ñãÇûûûoذ¡°°°Ì»ûsÔ²`õ#ë;/,ÚžË …¶Jü':Dp´bÏž=íÛ·7xzz¶mÛ633sß¾}eØÑ½,&ÉB’EѶ¢a±ù¯¬)8X2©ìÿäÿ GœãhI–å´´´      óñúõë !Μ9]ú^$Iú# H²Mg9-µÔ“Ý*ÏÙpæd©©åyUY¸Ów€b-åääXŒûûû !~ÿý÷R÷p¬HŽ‘„]ÑÃÙ©HSêGFª]‚Z¬É±¨Éi׿Ð~Ì¡˜@û1‡¥"8ZÊÍÍBT©RÅbÜ××WqýúõR÷@wÊ.©©jW¬ãGK’$åääXŒß¼ySÜë;¸!‚£%///ÿ¢Å¬¬,!„é:kwCp´"44433SIŠ&ÊSjW ‚£111)))¦Y–“““›4i¢vuê 8ZïááññÇ+ç5 !¯\¹Ò«W/oooµ«P‡$»ÕMm¶xñâ3fÔ¨Q£M›6§NÚµkW£F/^\ô6=n‚àX¬5kÖ¬^½úàÁƒaaa>úè¨Q£”;ò¸'‚#lÂ9ް Á6!8À&GØ„à›`‚#lBpTÙµk×Þ~ûí®]»>òÈ#;w~íµ×ÒÓÓÕ.JOrss¿øâ eÛ´i3xðàüQí¢ô*===22ò—_~Q»ÝX¹re|||“&Müñ‰'^½zUíŠôŠŸ½òá ýø+\VG5eeeuíÚuùòåBˆ:üå/Y¿~}\\Ü¡C‡Ô.MòóóøÞ{ï]ºt©eË–uëÖýùçŸ ôÉ'Ÿ¨]š.-Y²Díôdîܹ“'O>qâDóæÍ}}}W­Z5tèÐÜÜ\µëÒ%~öÊ_€öã¯pyÈPÏôéÓëׯ?gÎÓȪU«êׯߧOµKÓ‡eË–Õ¯_¿oß¾999ÊȱcÇ}ôц þßÿýŸÚÕéÆõë×÷ìÙó÷¿ÿ½~ýúõë×?pà€ÚéÀÑ£G4hЦM›‹/*#ÊÎS§NU»4=ágÏü´…ËŽ£švîÜéãã3lØ0ÓHÏž=«U«vøðá‚‚µ«Ó7 !&Mšäã㣌ԫWïå—_.((`½Ævqqqýúõûæ›oÔ.DOV¬XQXX8jÔ¨edüøñþþþ6l(,,T»:ÝàgÏü´…ËÁKíÜZ@@@ýúõ+Uªd>X±bż¼¼¼¼<Óï'##£J•*QQQæƒõêÕBœ9sFíêtãwÞ¹}û¶béÒ¥?ýô“ÚåèÞ={<<<Ú·ooñôôlÛ¶íš5köíÛ­vúÀÏž=øh?þ —ÁQMK—.µÙ³gÏéÓ§yä~^m±`Á//ËŸáÇ !jÖ¬©vuºÑºukåÁÖ­[Õ®EdYNKK 2¯_¿¾âÌ™3Gñ³g~Ú¿Âå@pÔ„ýû÷¯Zµ*##cÿþýµjÕš1c†ÚéC£F,FvíÚ•˜˜X±bÅîÝ»«] +''§   ÀbÜßß_ñûï¿«] Ü¿ˆ¿Â¶#8jBjjjRR’,ËBˆ¨¨¨ *¨]‘þ,[¶læÌ™³gÏV»"–rét•*U,Æ}}}…ׯ_W»@¸~Ú‰¿Â¶#8ºB~~þÂ… M_zzz:Ô|ƒçž{®OŸ>W®\Y³fÍûï¿¿oß¾uëÖ)„ l˜ÀŸþyÊ”)'Nœ {÷Ýw[µj¥vÉšSêÂv’$åääXŒß¼ySÜë;.Ã/@ûñWØvGW¸sçÎ|`ú²bÅŠEÿfK’TµjÕAƒ9sæë¯¿Þ´iS¯^½Ô.\+J˜À¼¼¼Y³f-Y²¤R¥J¯¾úêàÁƒ91Å*[~a#///ÿ¢Å¬¬,!„é:kÀÙøè@ü¶ÁÑ|||RSS-?¾xñâ¶mÛ>õÔSæãÊ%r/^T»j ±:BˆÂÂÂ1cÆ|÷Ýw:uzë­·øƒ]‚âæåš–––••åççgÌÈÈPžR»:¸~Ú‰¿ÂåÃ}Uãçç÷ïÿ{ÕªUã§OŸB„‡‡«] ,Y²ä»ï¾{þùç?ùä~i•bbb RRRL#²,'''6iÒDíêàøh'þ —ÁQ5¡¡¡‘‘‘;vìØ²e‹iðèѣ˖-óõõmÞ¼¹Új,ËK—.½ï¾ûÞxã µkÛ‰÷ððøøã•󅉉‰W®\éÕ«—···ÚÕÁøøh?þ —KÕjš>}úóÏ??lذ&MšÜÿý—.]Ú»w¯bæÌ™\WªË—/Ÿ>}ÚÇǧ_¿~EŸíÑ£GÿþýÕ®†U½zõ±cÇΘ1£[·nmÚ´9uêÔ®]»¢¢¢† ¢vip ütþ —ÁQM=ôкuëæÍ›wèС#GŽT«Ví‰'ž>|¸rë”ììÙ³BˆÜÜ\«ŸFÏu…p¶AƒU­ZuõêÕëׯ ëß¿ÿ¨Q£¸ ®Á/@‡à¯p9HÊ]‹€’qŽ#lBp€Mް Á6!8À&GØ„à›`‚#lBp€Mް Á€{;vlddä¶mÛÔ.D|üñÇ‘‘‘Ë–-S»°Á6ñR»pS:tnÖ¬™Ú…€­ޠލ¨¨¨¨(µ«€2`©4§  àÎ;jW–ŽôaòäÉ‘‘‘³fͲÿõ×_###[µj•ŸŸ/„¸råÊœ9sbcc›6mÚ´iÓ§Ÿ~úÿøÇÅ‹‹Û­r­ÌÎ;-Æ5jôØc™üøã#FŒèÔ©SóæÍ>þøc‹l÷Ûo¿½õÖ[±±±<òHûö퇺gÏžŽháÂ…æÇ(•œ={611±eË–>ø`ttôsÏ=·yóæâö°ÿþFµmÛöƦÁ›7o¶oß¾Q£FTû›ÀhŽô!..N±iÓ&‹ñµk× !ºwïîååuåÊ•~ýú-X°àܹsµjÕºÿþûÏœ9óùçŸ÷íÛ÷êÕ«ö¼ûûï¿?xðàM›6åç燄„ìÝ»÷£>êß¿ff¦²ÁñãÇãââ¾ùæ›ÌÌÌx@–åäää^xaË–-ez£ Ìž=ÛÛÛ»eË–þþþû÷ï>|ø† ¬nܤI“Áƒ_¼xñ½÷Þ3 Μ9óüùóûÛßzè!W“Á€>4oÞ<$$äÌ™3ÿ÷ÿg,,,TBUÏž=…«V­:yòdÇŽüñÇÕ«Wûí·;vìhÞ¼ùo¿ýöÃ?”û­·nݺpáš5k®\¹rÛ¶mëÖ­Û¾}{»ví8ðÙgŸ)Û¼ÿþûÙÙÙÆ ûé§ŸV­Z•œœ|øüùóxàÓ—/_^·n=ozõêÕŒŒŒˆˆ‹+ +W®ÜªU«ÜÜÜC‡ !”ä:~üøÝ»w+g[z{{9òÕW_-ÓÛ=õÔSæ_úûû{zzʲ\ÂK5j4|øð .<óÌ3¿ýöÛo¼Q§Ng}¸7nÇ@7¢¢¢êÔ©sòäÉÔÔÔÈÈÈüüü7úøøÄÆÆš¶ùí·ß¶oß¾wïÞ3gΜ>}ÚÎS…éééÊÿŒŒ´ºÁùóç…S¦L5jÔîÝ»_xá…J•*5jÔ¨E‹O<ñD£FÊôv÷ß9Š|饗6oÞ|øðáG}´oß¾uøÁ€žÄÅÅ}ôÑG7nŒŒŒLII¹~ýzÏž=M ÓË—/Ÿ>}z~~~­Zµ¢££;uêôàƒfddL:µLïRPP`jòååå !jÔ¨QÜ¢sõêÕ…÷ßÿÊ•+÷ïß¿}ûöŸþùСCûöíûì³Ïz÷î=}útI’l|ë *”cZnÞ¼yùòe!Dzzúµkלÿ­àŽŽôÄGŽ©¬A›Ö©oÞ¼9mÚ´ *,X° uëÖ¦—\¸p¡¬ïrîܹÂÂBåqDD„¢råÊ'N,ùU’$)÷Bäå奤¤L˜0!))©cÇŽ111N–·ÞzëÒ¥KM›6Ý·oßÔ©SçÌ™ãÔ·à¶8Ç€žÔ®]ûÁLOOÿõ×_øá‡ÚµkGGG+Oýúë¯M›65OâÞe+%³XÑþþûïMCCC«V­zâĉÇ›oSPPЫW¯6mÚ\¹rå·ß~ëØ±ã³Ï>kz¶B… 111ÊÕ++ëÝwßUrsãÆøÏþsÊ”)|ðÚß+FCǀ΄„„<úè£Bˆ6mÚ„„„˜?5{öì#FT¯^]¹¿cÛ¶mW¯^=iÒ¤~ýúyzzZýÀš5k~ýõ×:uòððرcDZcÇjÔ¨±páÂàà`Ó6’$ýãÿøðÃ;vìXXXxòäÉðððÑ£G¯^½:00PÙ¦G_~ùe»ví|||Ž=š““óøãúé§o½õ–ó¦bÉ’%;wîlݺµéDO!Ĉ#j×®½aÆ7ªú`@RÉ·÷‘™™Y³fMÛ/‚·Bp€MXª€Mް Á6!8À&GØ„à›`‚#lBp€Mþ®UüsàCÞ¶IEND®B`‚statistics-release-1.6.3/docs/assets/vminv_101.png000066400000000000000000000623241456127120000220160ustar00rootroot00000000000000‰PNG  IHDRhŽ\­Ad›IDATxÚíÝy\TõþÇñï.(‚‚»B"*Z®©¥Äbfnii.˜šæ–š¥i¥vË-SKíz+·´\Ò›Xý µ4÷õ¦™¦(‚»"(ˆ ŠÀüþ86ÀÃ03ßsf^ÏG3ß™9ó9ç¾ý|Ï¢Óëõx7Ù@ްÁ!8À"GX„à‹`‚#,Bp€EްÁ!8(–¥K—êt:NW¢D‰ôôôüo¨U«–ò†qãÆ9¬ªãÇ댸¹¹¥¥¥¿áСCº]¿~]yiáÂ…ÊHóæÍenÙ| )ìîÝ» ,h×®]ÕªUK—.ܱcÇO>ù$++«ð-£ððððóókÑ¢Å{ï½—’’bÉGL8rçˆà Xºvíêáá!„ÈÉÉÙ¼y³É«'Nœ8wîœòø¥—^’U¤^¯ß·oŸñÈþýûecsÿûßÿêÖ­;|øð-[¶\¾|ùîÝ» 7n|ë­·‚ƒƒ7lØðÐ%äææ^¿~ýÀÓ¦M 1ÙV`à!»ÚV¡B…¨¨¨M›6 !6nÜh’úé'åA­Zµä6ðöîÝûÜsϞ˕+W«V-!DåÊ•%laañññáááýõ—aÄÃÃ#''Gy|éÒ¥—^ziÏž=?þxþxzz !nß¾mh4¦¥¥õèÑ#!!¡T©R…|Ä„¯¯¯ìÍÀ!ôPùd¹rå}ôÑ_|ñ·ß~3yåK+¼°Ÿþ966VyüÎ;ï,]ºôñÇwww¯\¹ò AƒV¯^­¼¯¬o!ªW¯¾téÒnݺ)O?üðÃÛ·oã'%;¹p†Îâ|`\¿~½2düæ<úè£ùU¯^}ûö톷Mš4IÏŸðzôèQH=ÆM²W_}Uyðûï¿+¯&Ð dx›¡ã¸`Áe¤Y³fÊÈ;wžxâ‰üëtºÏ>ûÌø{ùå—€€€üo3fŒá=–/ÍDþÂ^xáe¤B… ·nÝÊÿ‘:4jÔ¨Q£F111ù·Lþö᯿þjx5..Î’p)tØ@=”Ƨbò™q»1++륗^:s挢téÒÏ>ûl‡Ê”)#„¸páBÏž=oݺe²ð_ýõĉ5kÖlÑ¢EéÒ¥•Áµk×|øðáÃ/¾ø¢% +Y²¤òX)ŒØ@·nÝÜÝÝ…‡ºvíš2§<0޳gÏ>{ö¬ÂÛÛ{ÇŽqqq6lØ·oŸŸŸŸâêÕ«~øaþåÏŸ?ÿìÙ³ûöí;|ø°!;Z«W¯^­Z5!ÄÞ½{•%8†††úøøX²„mÛ¶)&NœøÃ?üûßÿÞ·oŸÒdÍÉÉùù矕WgΜ©œbÒ½{÷_~ùåý÷ßÿæ›o>ýôSåÕÉ“'iiuïÞ=%¤ !‚‚‚l²u:]¥J•”ÇW¯^Íÿ†¶mÛæ¿Ï›o¾i“o ~G6àçç.„ÐëõJ^$´J•*Å߉ŠGy$ÿò@Ap`&³Õ†yêž={¿->>^yðì³Ï·k×NypúôiÃY, “"+T¨ <0y[!”Œxúôé”””Ó§O߸qCѪU+ ?n(5>>~РA•+WnÚ´éüùóoß¾jhÑN@yöÙg Ý8//¯ÜÜ\êY¾´‡2œ4-„ÈÕn«.„îííÿÕ€€€Zùö§Gp`†ÙêÍ›7çää˜=À1##ãæÍ›Êc“«$V­ZUypçÎà ¬Âø¢9ùŸZÂÐ\Ü·oŸá Ž–ÇÉ“'1Âp]C½^ÿÛo¿MŸ>½E‹aaaJhËÈÈ0¾˜¢Y©©©.Í%K–Tæ÷…Êì~7oÞ¼~ýúõë×-?EÚ0Cÿ,!ĪU«’òyï½÷ŠºGhÁ€møûû‡…… !ÒÓÓùå—íÛ· !êÔ©óØcÞãíím8¬ðÊ•+Æ7<-Y²dÅŠm[[£F”ËVïÝ»W¹-Ê#<¢\ÊÑ%J”øÏþ“’’òßÿþ7::Úøb×;wîTî¶çíímhnÞ¼9ÁœÞ½{[¸4 ñúõëÍ^Ÿ¨nݺ~~~~~~†3² ·k×®ììlå±…gp)G6c˜­~çwîܹ#òÍS !BBB”&÷'4< V® iC%J”PާܳgÒqlÙ²¥…Ÿ½{÷nrrrrròÝ»w_z饕+W^»vmË–-†\e¸VeíÚµ•999ñõõ-_¾|ùòå===-_š% Sž?~áÂ…&¯ÆÆÆÚ‡O?ý´% 4œÊS¶lÙ§žzʶ{€ 8°™^xÁÍÍMqäÈe$ÿý©;tè <ø÷¿ÿm¸2ö±cÇfÏž­<6¾1  )͹ƒ*×Ù¶|žúĉ•*UªT©RåÊ••«yxx´mÛÖp ÈòåË+Ú¶m«oÞ¼C‡]¼x±bÅŠ 45jTPP캀 F©QçºçÆÞå³s~:tHII ¾råÊáÇ=<<þûßÿ6hÐà¡çô7JJJ ”]ÀNQ'ö‹ ±STA§z½2O­G×ÌOLU›1þü”””aÃ†ÅÆÆÎ;wÍš53fÌÈÉÉ™6mšìÒ€Ã1Iý7‚£{÷îõôô>|¸aä…^¨T©ÒñãÇssseWèïÔèâ§Å(8ÆÑŒòåËשS§téÒÆƒ¥J•ÊÎÎÎÎÎöôô”] pz"8š±råJ“‘ƒž?¾Q£F¤Fಎ…9|øðºuë’’’>\£F™3gZøÁü·«Ž‹‹“½6.íâÅ‹²K€)vŠ:±_Tˆ"K`PPRb¢HJjß¾ý©øSuBê„åïw×=–àX˜øøø˜˜åÄóÐÐÐ’%KZþAÙµÃç$ª;EØ/*ÄN‘@§z½²ÝãããuBgøËÝ•o:ÈÉ1…éի׉'víÚõöÛooÚ´©wïÞýõ—ì¢ä 8>„N§«X±âÀ{öìyõêÕM›6É®ØÙƒçÄp>µSÕ¦NŸ>½téÒ°°°çž{Îx<44T‘œœl/ÍL$\ Ç6€Šp&uÁަ¼½½¿ûî»””“àxþüyaÏ£Lˆ.‹6€Š ÅTµ©€€€]»vmݺÕ0xòäÉU«Vyyy5oÞ\vÀqLæ©]|xãÆ«U«víÚµC‡ !fÍšåçç'»:`.ž -@ÇÑŒÇ{lÆ ;v¼qãÆ–-[’““Ûµk÷ÿ÷:u’]°s©Ñìi1:!ê¸êQFtÍ«Y³æœ9sdW‚^£eè8À"GàÚ h7rùÆüŽÀ…1I]GઠN´Í"8À"G8•ÀÀÀ=zÈ® LRÁjtóæÍaÆըQÃËË+,,lß¾}²+*ra÷îÝóððÐ=¨bÅŠ²× „xHjdžº \Ǫ“‘‘ѬY³óçÏwïÞÝÏÏ/&&¦}ûöÛ¶mkܸ±† KJJÊÍÍ}òÉ'ƒ‚‚ ƒ^^^rW ½Fëaììl!DÉ’%í±ð9sæ$$$|õÕWýû÷BŒ=ºiÓ¦cÇŽ5¾{¸E*,!!A1eÊ”¨¨(¹eФv£8u²+”ˆ©jX#$$Ä$Mž<¹yóæ6Yøš5k*W®Ü¯_?åiPPP÷îÝ·oß~åÊ•"-'//ïå—_vww_µj•ã S‚cíÚµmòÕ›¡ÝX GØÆÙ³g:Tüådddœ:u*""B§ûç_t‘‘‘yyyE:ÒQ¯×4è›o¾Yºtitt´ã KHH(UªT¹råÖ®]»páÂ]»v)mZ€L¤Æâaªê’œœ¬×ëŒýýý…))).D¯×:ô믿^²d‰2­ìøÂÜÜÜj×®––¦ŒÔ«WoÅŠM›6uô6(,HœS8‚#ì+''gÆ ½úüóÏ›Œdff !¼½½}||„ׯ_·äõzýˆ#/^ܯ_¿Ê*,!!!//oòäÉÝ»w/Q¢Ä?þøæ›ovíÚõرcʧЂ£ºé¤€[è?ËrssŸæåå™}ÛíÛ·»víZð7˜~…ŸŸŸâÖ­[ƃBˆ *XRull¬^¯¯Zµêºuë¦NZ£F )…ýú믥K—6¼4pàÀ;wîŒ1"&&fРA–¬À–˜¤¶‚£º©øøÝ»wŸfee™}›¾(kàææf2ù›šš*„¨Zµª%KÐëõk×®-W®\ddäèÑ£¿ÿþ{)…U©RÅd¤]»vBˆãÇe3lÁ²ÔÈ<õCa¥Ë—/?-è”ç¢Î{xxÔ¯_çÎÆƒ;vìÐét¡¡¡–Ö©S§.]º!úöí»råÊØØØN:9¸°sçÎÅÆÆFFFÖ«WÏ0¨´'kÖ¬iƒ­°½FÒÃÖêÔ©ã€ÈU«V-!Äúõë•§gΜQ.mÿéééEýã÷é§Ÿ/<999  ]»vÖ½{wÃË—/˜™™éàÂ’““K—.ݦM›ììle$77·W¯^Ç7y³æö¾­$&&Ê.f°_TˆR\–¥¡øÛ”% þÕÍåx`%^½zõîÝ»gÏž 6,Q¢„Ù·)3Â1û‘<þøãÑÑÑ&L˜5kVxxxffæäÉ“•WW¯^íëë;f̘‡Vèïï?cÆŒ¤¤¤éÓ§; °™3gúúú.X°@ùêÉ“'ïܹ388xøðáï¾ûn³fÍÖ¬Y3eÊ”úõëËÞuàJh7ÚSÕ°R‹-:vì¸p᜜œÁƒ{{{O:Õ&KöööÞ¾}û¸qãbbbÒÒÒZµjµjÕ*Ãmý²³³ÓÓÓ :¤ÒÄ!C¾úê«Ù³g÷íÛ·nݺv-ìÎ;ééé†C?Çÿè£Îš5kåÊ•¥K—~ì±Ç~úé§öíÛÛc_̳85rt£…tzb¸­…„„ÄÇÇÛû#rV«VÍä€?‡Y²dɱcÇæÍ›'{3؆æö¾­$%%Ê®¦Ø/*ÄN±RQzGÃ-ë¸ê¯n¦ª¡1wîÜÙ¶m[“&Mdp-Lz ‚#4gïÞ½õêÕëÓ§ìB*f‡v#Ç8Â:Ç7¹‡ŠÃDDDDDDÈÞ£7h7GXcüøñ²KÀœ"¦FÚEÂT5,Bp΂v£€SàÐFû#8í#5:ÁhœU©‘yj+‚†¦‚à´Œv£€fÑ t,‚#Ð&kS#íF«€Ñk”à‹áT{ôè!» €£ÝÈxöÙgóòòd—®GR¯‘§ÁÖ ‰ŠŠ2™Ÿ^¯:tè×_½dÉ’þýûË^'@±;5rt£MUM'tÅ_ˆÕlò–““³aÆ‚^}þùçMF233…ÞÞÞÆƒ>>>Bˆëׯ[T¶^?bĈŋ÷ë×oàÀ¶* ½FÕ 8ªššÿm”››kü´ “En߾ݵk×W0ß/???!Ä­[·Œ322„*T°¤°ØØX½^_µjÕuëÖM:µF6) ‡-R#íF[áGXéîÝ»ÆO³²²Ì¾ÍÇÇG_°üïpss3™•NMMBT­ZÕ’ÂôzýÚµkW¬XqûöíÑ£Gô¶¢€^£ÊÐq„•._¾lü´ Sž‹:#ìááQ¿~ý;wîØ±C§Ó…††ZRX§Nºté"„èÛ·ïÊ•+ccc;uêTüÂE»Ñ†ްÒÕ«W ™,11ñÈ‘#fßfÅŒðàÁƒGmXøµk×bbbžyæ™ÀÀ@K ss»ßGÿä“Obcc_ýõ¨¨(OOÏâp(u´ÕQ…Z0U +yxxôêÕ«wïÞ={ölذa‰%̾͊á<þøãÑÑÑ&L˜5kVxxxff¦áþ~«W¯öõõ3fÌC+ô÷÷Ÿ1cFRRÒôéÓmRÀql”×h7ÚÁVjÑ¢Åĉ÷îÝ»{÷îÁƒ9ÒVKöööÞ¾}{Ïž=cbbfÏž]»vííÛ··lÙRy5;;;==½ C*M 2¤E‹³gÏæÊ‹ %tùÔŠ©jXI§Ó½ûî»ï¾û®adÊ”)¶Z¸Ï¢E‹Ì¾Ô¿ÿ{÷î;vÌì«IIIÆOÝÜÜŠtÙp …„„Е{±]j¤Ýhst¡1wîÜÙ¶m[“&Md°zêFp„ÆìÝ»·^½z}úô‘]ÀÖlši7ÚSÕ°ÆðáÃMnîâ0²7À%Ð5Ap„5Æ/»€s¡Ý¨LUÙèìiÁHeëÔH»Ñ~Ž@zšBp’Ø!5Ú°ÝH¦ÍàdPwj„YGàptó´‰àœíF 8ǢݨYGà@öI6o7nÍ"8G!ŽiÁN%00°G²«˜c·ÔÈÑCp„ݼysذa5jÔðòò Û·oŸìŠî;zôhÏž=+UªäååÕ¬Y³¹sçæääÈ. ´€Ôè}ºoß¾Ÿ}öYddd½zõdèÌ’““õz}@@€ñ ¿¿¿"%%ÅÂ…èõú¡C‡~ýõ×K–,éß¿¿M óðð˜1c†ñÈ7f̘áîîÞ½{wÙ› Ô‡Ô茎fÄÅÅ !&Nœ¨¤F!Dppð°aÃ>úè£Ý»w;285Ý$°ÉÏ{NNΆ  zõùçŸ7ÉÌÌBx{{úøø!®_¿nYÙú#F,^¼¸_¿~´Ua&~ýõ×!C†$$$|ñÅÁÁÁ6ØRàL˜¡vRG3’’’Ê–-j<¨„ƒ .8²5ÿÐåææ?ÍËË3û¶Û·owíÚµà4]C???!Ä­[·Œ322„*T°¤°ØØX½^_µjÕuëÖM:µF6)Ìàüùó#GŽ\¿~}ppðÏ?ÿi‡­ ZfÿÔh×v#¡·G3.\èáaºeŽ?.„¨^½ºìêÔâîÝ»ÆO³²²Ì¾ÍÇÇG_”Ÿ¿€€777“YéÔÔT!DÕªU-Y‚^¯_»vm¹rå"##G]еrŠZ˜bõêÕC‡õòòZ¸páÀóÿ9W§ñÔˆÂñמõë×7Ù·oߢE‹J•*UHÊXHHˆÉˆ2ýíL._¾lü´ Sž‹:#ìááQ¿~ý;wîØ±C§Ó™ô€ Ò©S§.]º!úöí»råÊØØØN:¿0!Äúõë_~ùå—^ziÁ‚&“éÅ”””dÃ¥iÅÅ‹e—3Ø/*¤¡””˜(ìý;-ÐÞ¿6M–ß¾}ûžÄÇçÿ[Þ…èQ¨œœœ¯¿þ:44´nݺ6l°ä#uêÔ)ê·Xñ¹jÕª%„X¿~½òôÌ™3^^^fÿ8¥§§õß§Ÿ~j¼ðää䀀€víÚYXX÷îÝ ,_¾|```fffñ ËËË«[·n­Zµrrrl»15·÷m%11Qv 0ƒý¢BšÙ) Bo÷o)|=”]öW7ÇÂìß¿òäÉgΜ©\¹ò‡~øä“OÊ®HE<<|øôéÓ§M›VÌÂNœ8qòäÉzõê½úê«&/½ð ;w¶ÿ&sÈLRKGp4/;;{öìÙ+V¬(]ºô¨Q£ d8Ê-ZtìØqáÂ…999ƒöööž:uªM–ìíí½}ûöqãÆÅÄĤ¥¥µjÕjÕªU†û fgg§§§tH¥‰!C†|õÕW³gÏîÛ·oݺu‹SUBB‚âĉ'Nœ0y©víÚG.͉N'q¢U± ‚£yyycǎݼysÛ¶mßÿ}å"‚0¡ÓéÞ}÷Ýwß}×02eÊ[-ÜÇÇgÑ¢Ef_êß¿ÿ½{÷Ž;föU“£RÜÜÜŠtÙðBtéÒ¥¨­Sp ŽŠZ´Õ€;ǘ±bÅŠÍ›7÷éÓç³Ï>#5ªÍ;w¶mÛÖ¤IÙ…H.‡àhJ¯×¯\¹²\¹ro¿ý¶ìZ`ÆÞ½{ëÕ«×§OÙ…€Ës½i]põôÊTµ©”””óçÏ{zzš½Áq·nÝúöí+»Fù†nÛëÑX."""""Bö—çÀÔH»Q=ަ”Ëeeee™=ŠŽ«ãÇ—]@'M®×B-2‚£©&MšÄÇÇË®µ"^¹0Žqsljd’ZmŽÀ2Ni¤Z‚à,àÔ©"8€‡qövœ³¯ŸÍ@¡žªh7ªÁŒÔ#GP×HÌS[ŽàÌqÔˆ"!8€|èÂÁ‚#œJ```=dW'#5Êj7’‹„à5ºyóæ°aÃjÔ¨áåå¶oß>Ù™ºwï^Ë–-[µj%»°5WJ(*‚#T'##£Y³fË–-kӦ͠AƒÎœ9Ó¾}ûÇË®ë“&MÚ¿¿ì*ÀÖH(ÁÖÈÎÎÎÎζÓÂçÌ™“°hÑ¢U«V}úé§;wîÔétcÇŽ•½ÒÿزeËìÙ³=<>^v N.)))00Pv`#*ÈD*O°‚#š";5jâß²7’Ó"8 ²‘&²7’3ãä4Bv ÒDj´Ûº»êš?ˆŽ#ªÇ©0–×I»ÑžލZ`Pô(Dj„‚©jTL§KJL”\©#8 J:¢VR£7‚Ëo‚¿1U €ú¨ 2 M¥Ful0çGp@MTpÌýBHȇà€j¨#iâßÿT«Šmæ*ލFëª%5:ÁÙTHf¾…3cŒG5FAj„ŽH¢¦ìCj„%Ž8œš‚ÔXÈw1Oý ‚#Ž¥¦v™¶N êÚx®ˆà€©)øh«Ñ(¾ñh7æGpÀ!Ô4=­¹F£PWäv]GìOM©GsFñwêvè7Òn4‡à€=Ñh,~Ù*JÝ®Žà€Ý¨)òh±Ñ($mBÚ!8`4mR¹Š‚7„ 8`{jÊ;m4 umEÜGpÀvh4Úªxy©‘yêB°5µÈ4ÝhjÉÞ0Ep ØÔvh4«Ú…"8P<ÒÃŽq-šm4 umH˜GpÀZ4mX¿ R#íÆ‡"8`5$C-o4 µÄo<Á€"RSÒ¡Ñh³Jh7Z€à@Q¨'éh¼Ñ(Ô´-I"8`6¬_EÛ’ÔXn² P»ÄÄÄßÿ]v!©”æ˜:’ŽÒhÔtjTͶDÑÐq|ˆ+VÈ. •ššc4m_íÆ¢ 8š—‘‘qêÔ©õëׯY³Fv-yÔsG4Ú£$RcÍëܹóÕ«WeWGMÍ1v©ŠÔXtGó¦OŸ~÷î]!ÄÊ•+÷ìÙ#»€c©¦9¦:Hd„ZÍkݺµò`Û¶m²k8–:R£¡Ë˜””$eWcEýꎌ´­Cp´‹“‘¸¸8ÙE¹´‹/Ê.¦Ø)êäâû%0(H‘”˜(’’$–$„HLJB$‰$Íí”  @!Dbb’r7dÁ&&¡´öíÛË.Y-Žv/»˜ Ôà?Ø;E\w¿üÝh”¸þËhT‡†vŠQ»V¥5ßï5e“æÿk=‡ÈE.O³ªNpÒ´¿V$3ÔÅCp¸6ÑÈIÓª“ÔXlG€«RAÞ!2:®TR£-.Iv£‘Èè¸R…¤F!8\ŒìÈ£õÈ(ä§î¢”Jd´)‚#À•H<Î…F‚ÔhG€kyˆŒŽ®VAj´7٨ݴiÓâããüqÙ…ŠAi4ÊH=:¡S®³£ÝÔ¨ÓIÜ~V,„žÔhtNM^£Œ.£œš‰ŒöDp8/IG4:Adš:æ~ÁBR£ÎHR¯Ìi"£ Ñsާ#£WFd”V³‚Ôè(G€‘|ˆŒ2Ë&2:ÁàˆŒV¯…f#£ 5:Á qDFëVAwÿ‘–#84‹ÈhÝ*h³Å(ˆŒ*@ph“ÃÏ€!2J.žÈ¨G€Ö8<þh=2jwVú~ýJñ²Ë€ 8´„ÈXÔúµÜbDFõ!8´€ÈX¤â5ÞbDFµ"8ÔÈX¤â¢Å(ˆŒjEp¨˜cÏ€Ñnd¤ÅÇ 8Tɱ­3­GFíæEAdÔ‚#@eˆŒVNd„êAd´¤lg™•DF "8ÔÁ‡3j:2j7/ ZŒÚGpÈæÀ@¤ÅȨ<Ðnd¤Åè4Üdpa:ÝýF£ý3‘NètB§z­¤FeÛèt"11É![È«ð÷ú¿ÿƒÖ2 Ý0†mC^„ª0U p,&¦Í–Ê)/Ђ#ÀuŒV"#yÚBp8„£šˆŒäEhÁ`g‰Œº¿“Œš##yZ§Õ“cŽ=Zøâââd×.Ï!gÀŸû¢ÎÔÈù.pZ ޽zõúÏþ“›››ÿ¥´´´7ÞxcôèѲk×fçÈøwSïéÒäE8­Gÿùóç÷ìÙóìÙ³Æã›6mêØ±ãO?ýT³fMÙ5€«2Ä%;-^Ý-Fò"œ˜VƒclllÏž=ÿøã®]»®^½Z‘žž>f̘×_===}РA?þø£ìÀõØynZÍ-Fò"\VOŽñòòš2eÊsÏ=7qâÄ>ø`ãÆ‰‰‰©©©ÁÁÁ3fÌhذ¡ìÀÅØó 5ŸøÂù.p)Zí8*ZµjµfÍš *8p 55µI“&ßÿ=©Êž]FuÎJš‹Úí/êè/Â*ÚŽ;wîìÑ£Ç7BCCýýýûí·#F$''Ë® \†}"£:O|ɵ•͆EM­äÓjp¼uëÖ„ ^}õÕÔÔÔÑ£G¯]»666ö¹çžÛ¾}{ǎ׭['»@pvö9F…-FM7 ‹°-­G%¯]»öµ×^sww÷ññ™7oÞǬÓé&L˜0hÐ Ù5€“²ÃÜ´ [ŒÎ‘ ‹°-­ÇÔÔÔ!C†|ÿý÷õë×7ïܹóúõë[µjµk×.Ù5€Ó±[dTO‹Q»y‘ÃáZ=«zÕªU76ûR¥J•–-[¶bÅ Ù5€s±éÄ´ÚN”ÖèÉÑ:£Çš*Z¥ÕàXPjTètº~ýúÉ®œ…M/µ£DFò¢õ5=ÖNÕpZ ŽGpÒȨ¹¼HX„JæØ.2ªgVZ[yñŸ°¨…zá´zr À^lwŒJN|ÑÊù.ºNpILJ’]pGÀ?ƒ‚l’•râš“¢1µ– üƒŽ#@q¿/—”˜X¬eÈn1ªÿæ.]‘[eeæÀå{nZîå»U~çh·oÑðTõO?ý´|ùò³gÏê ø ±oß>Ù5€ºû Y'J«y&š h81­ÇŸþù7ÞP»»»Ë.´¦x‘QÊQŒª ‹$E¸­Ç%K–! ðÚk¯ùøøÈ.´Ã‘QJ^TmXTS]€}i58&$$T«Víí·ßvsã0M°Œv"£ ›‹´¡Ñ“cîÝ»wëÖ­êÕ«“À"Å8ýÅa'¾˜=ÇEbjÔq4&;Žnnn>>>§OŸÎËË#;@aŠÑetL‹Q=3Ñô‡ÒdêrwwõÕWSSSçÎ+»P+k»Œh1ªç:ô"ÑdÇQÑ¡C‡ .,Z´hß¾}Ï=÷\µjÕJ–,iòžððpÙe€ ÖvuB'íÕbTÉa‹´âÐjpŒŠŠR=zôèÑ£fß/»Lp,«"£ñµu’’’D Ë¹¿py=Ec$E 8´»té"»P“¢GFû]‹Qîa‹$EÀ~´gÏž-»Pk#£m󢬿¢.ßI°­G€âþÙ%¾×Ö-F)a‘†" ‘f‚ãªU«„O<ñDpp°áiᢣ£eW vcq£Ñ¶yÑÁa‘†" *š ŽS¦LBLž>>Bˆ7nX²“‘¸¸8ÙÌ¥]¼xQv 0å;%蛬Ü?O:1)ÉämI–/Q6çØ/N†"]ûöíe— ŽŠôôôcÇŽ]¹r¥J•*O=õT©R¥Š“…Ê©ÓeË–5÷òòBܼyÓ’…ÄÇÇËÞ00Å]ÔTHs;EgvH¯3½£ÖÖË„æö‹+`§È•ÿ¯õü"¡áàxýúõ/¾ø"&&F‰zýû÷ê©§ºuë:cÆ «¯¹X¾|yN—™™i2þ×_‰¿ûŽ\®!½îþÿôÌ<p!Z=ÆñÞ½{¯½öÚŠ+¼½½»uëf÷÷÷ß¶m[¯^½¬¾æ¢‡‡‡OþÎbFF†²|Ù«À.Ì^ Çø¹^¡× ½r‹Р½¥÷Šg¡Õà¸páÂ#GŽ<ýôÓqqq}ô‘aüÛo¿}þùçÏž=»|ùr«pýúu%)$%%)/É^u6PÈE CF—ÎÑ ½N§äE¥ËHdà’´8àîîþᇖ)SÆxÜÝÝý_ÿúW™2e6mÚdõ£¢¢rsswîÜiÑëõÛ·o÷õõU.ú@[zmmaî.Bot£"#h78ž8q"00Ðp×Ac^^^AAAçγzá=zôpssûÏþ£×(„X´hQjjê‹/¾X¢D Ù«à!,¼KA·û3¹1 ^'ŒzàÒ´zrŒÏíÛ· z5--­\¹rV/¼J•*ãÆ›9sf—.]Ú´isîܹ}ûö…††Ùe®¢˜‡'šY µaQ<´Å(ˆŒ`%­G“û !ôz}^^žò¸R¥Jf¯ À&lï/¶aQX’‘ŠE«ÁñÏ?ÿ4ÉÍͽ|ùò–-[¾øâ‹»wï~ðÁ²kœÇCç­_rñÂâßå:%müMDF(­^P€š‹¯Z[Œ‚È¥Õà8{ölÙ%"=) {†Ea]^DF@«ÁpbjHŠÂÎañï5-â”´qeDFp8ÍÇ_ýµ¨ —]5`•$ÅûÅØç°Å×W'„DFÐÍÇ¡C‡õ#ñññ²« d¥ç 4ÿ^ëZŒIII"°ˆ%@*ÍÇBΆ4AUmEáÀ°(¬>ŠÑ¸V"#¨€f‚#gÃ@sÔ–…cÃâßÁª£M*&5€:8ç-ß~ûíÈÈHÙUÀå8ì>~E.,ßMÿÐb4¾= õEsÏ@PÍtóKKKûå—_Î;g2ž••µeËwwwÙÂ%¨êPÅ sxsñþ÷³Å(è2€zi58&''÷îÝûÒ¥K½!::ZvpN*œ€þ§6IaQÿ(Fã 2€Zi58.[¶ìÒ¥KÍ›7ïܹó† öïßÿ¯ýËÓÓóäÉ“+W®ŒŽŽž8q¢ìá$ÔœïWhÿ èöíÅo1 "#hƒVƒãÎ;K•*õùçŸ{{{GFF¶nÝ:00ðÉ'ŸBM:õ¥—^ –]&4IýIQHm.þS‘\ŒVO޹råJ­Zµ¼½½…+Vôõõ=vì˜òR=|}}—-[&»Fh‰:Oj1-R'á4sÛªØ'¾!„ âôЭG!„›Û?ÅרQ#))IyìîîrôèQÙBÕ 9ZmÔïWb”‹{,£N—”˜HdmÑjp¬T©ÒÙ³goß¾­<­^½ú¡C‡ ¯êtº‹/Ê®ê¢ÚkåXp¾¼(­µÿY+ºŒ MZ ŽmÛ¶ÍÊÊz뭷Μ9#„hÖ¬ÙùóçwíÚ%„HMMýßÿþWµjUÙ5B>CL TR¼_³jò¢°a‹Ñ°nÒW P Z=9¦_¿~›6mÚºu«^¯_°`AXX˜‡‡ÇÈ‘#›4iròäÉÌÌÌ:È®r˜½°bRR’´ü¾È2Ê–zf´i16¹¶NþÕSúŠA«G??¿U«V3¦aÆBˆªU«Nš4);;{÷îÝׯ_ŠŠ8p ìáPš8ZÑLÙjê/ ›·sÓàT´ÚqÌÉÉñóó:t¨a¤wïÞ;wþã?‚‚‚dGPí][^¹šú‹Â-FA—œV;Žaaa³fÍJHH0ôòòjÕª©Ñ¹iåThóÅ«¬¿(ìÑb4¬ªJÖ`;Z Ž×¯_ÿòË/;vìØ«W¯µk×N¯†SÒtXªÌ‹âÁÈhûµUÉJlJ«Á1&&fÀ€‡ž4iÒSO=õî»ï_‘Z§õ°(ÔíU²ª[Óê1Ž 6lذáÛo¿}èÐ¡ØØØ¸¸¸ï¾ûî»ï¾«Y³f÷îÝ»víêïï/»FXÃpØ¢F£‡îX`m6¹C`!«­¶ØšV;Ž÷«ws{â‰'¦L™²gÏž tîÜ9%%å“O> 7>o*g¶¹¨-ê¹¹‹™Úì×btÀµh;8xxxDDD|üñÇË—/ ÉÍÍýõ×_e…‡ÐúL´Pëdô?åÙéÄãõWájìF«SÕ&âãããâââââÅßHÙEÁ<­OF õ]LÇ´<{\[Çì&PçúìFÛÁñÏ?ÿÜ´iÓO?ýtîÜ9e¤Aƒ;wîСÇ8ª yÑÚï(F“­ ÚM°'­ÇÙ³goÚ´éÂ… ÊÓZµjuîܹsçÎ5kÖ”]@^tD…h1 "#@³ÁqÉ’%BÿŽ;vîÜ944TvExyÑAE: ÅhØjÞ‡ÐjpìÑ£GçΛ7oîææ$ç÷8ò¢ƒŠtL‹Ñx‹¨ysE«ÁqÚ´i²KÀ?È‹Ž«Óa-FAd˜Òjp„Z*‘ ÁEF^ttµDF€:a)­çE5ß °ÀšgÀ‚àˆ‡Ðz^÷#c ¶‘„È(´¨’pJ2 ¤é›G‹ï˜˜˜$»‹Ë¶ß}¥Í7›XŠŽ#L9K‹Q{Aˆ.#@åŽø‡5#4š…‡3¬Ap„ó´‘Ñ¢¯Ôf¸¨ÁÑ¥Ñb”\¼ÐBptQZŒÚm1Þ¯ŸÃDpt9εˆŒí"8º"£äú9 qG— éȨõYiÁ0gAptrN5~ˆŒgBptZÚŒNÐbDF€3"8:'–#£Ö“„È(8œàGg£ÑF#‘±ßêÛ GçAd”¹DF€ 8: -ÎM;Gì!2\ÁQó´ØhtŽØ#'2 gHCpÔ6Í5‰ŒÅûb§Ø|Í"8j•æΑy¤EFA£ ÁQ“´ØhÔzæ‘…öC7@ûŽÚ£­Ôè™GfdNº΂à¨%Úšž&2û뵿ÎÅMvj—˜˜òûï¿Ë.ä~£Q!B§»ß&ÓnæÑ NèôB/¹Ñ¨Ý-pFtbÅŠ²KB;ÓÓNÐ#“ÜeN±NŠàh^FFÆ©S§Ö¯_¿fÍÙµh)5j:íÈŒBûàÔŽæuîÜùêÕ«²«B#©Që=2µDF¡åpGó¦OŸ~÷î]!ÄÊ•+÷ìÙ#« õ§F­§UDFA£  GóZ·n­<ضm›¬Tž‰Œ6ªCãÛàJŽvb2W¤%&&%%É^óµ !“„*-1Ÿ‹/þS`"1)Q‘$d®@`PPRb¢ÚÙŽ6e¼S ìb§H×¾}{Ù%¨ÁÑ.âãã‹óñû½ÆÀ@Ùëa®¶æTÕX^!è2Ê-ÿïF£Æ6¢­ªò9Ø/*ÄN‘+ÿ_ëù;D.Â¥ƒcNNÎâÅ‹ OÝÝ݇ "»(õÎPkzNUé2ÊŸ˜VpD#@›\:8Þ»woÞ¼y†§¥J•’Õ™5…:¡KLJTſ׵¾)®Í¥ƒ£§§g1ç”mK…©Që9Ç07-÷XÆ¿«¡ÑÐ6—Žª¢ÎԨ霣Ü3PvJ)à!Ž0Kë9G-—Ú¹_Æ8#8ª‚ªÚZÏ9*j4 íoMŒåSOj¤ÑhÓj4¾5ÈÇMvj7mÚ´øøøÇÜNËWUjÔë5œs”F£ŠR£¦·&æÐq„ŸP¥Ñ€ceRC»Që9‡#p‚£4*IÚÍ94p0‚£ëÒzjTKdß”XŒà(‡ôv£v£Fd!8ºMGHDp”@b»Q»Q‡F#Ò]ˆ¦S£Z"£Ðòv xŽ®B£i‡F#êApt4)óÔÚMj‰ŒB³Û!8:?-¨ÁÑ¡ßnÔhjTKdÚÜ‚ØÁÑ™i.óÐh@ÍŽŽãàv£S£Z"£ÐàæÀþŽÎI[±‡F#š@ptG¶5—Õ…Ö¶ŽEpt6ÚJ>*J4x‚£S!5Z[Ц6’¸É.À%8fžZ[á‡Ô€æÐqtÚ ?jILOPGg@j´ªMm5T€à¨yÊ?j¹ìF¬Bp„ƒÐh@ëŽvg×3c´’‚T‘i4P<G #5Z.0(H ãr)iŠÔŠŠàèŠHÀ GØ©§@p”Ìñ™ÊÑíFR#΂àèZHÀjG{щ‡4Ç*R#(‚#ìƒÔ€Ó!8º ‡¶I8#‚£4Ž W¤FP|² P©¬¬¬ÿþ÷¿111/^,W®\:uøÔSOɮˤF`G3rrr päÈŸV­Zݹsgÿþý»vízýõ×GŒ!»:#5àÔŽf|ûí·GŽiÚ´é—_~ééé)„8}útß¾}?ûì³ÈÈÈzõêÉ.°×n$5àì8ÆÑŒ¸¸8!Äĉ•Ô(„6lXnnîîÝ»eWW¤F`CG3’’’Ê–-j<,„¸pá‚M¾Â©‚–S­ (SÕf,\¸ÐÃÃtË?~\Q½zuÙÕYÊAíFR#.ƒàhFýúõMFöíÛ·hÑ¢R¥JuíÚÕ’%„„„ˆøøÈ2ým$0))É~«”˜”˜$ìøBˆÀ  ¤ÄDaϱ•‹/Ê.¦Ø)êÄ~Q!vŠtíÛ·—]‚Z"77wÕªU³fÍÊÍÍýä“Oüüü,ùT||¼NˆøøøBÞh×Êí½|¥×hçï°%»o;EØ/*ÄN‘+ÿ_èÆ½!—âÒÁ1''gñâņ§îîîC† 1~Ãþýû'Ož|æÌ™Ê•+øá‡O>ù¤ì’-âˆIjf¨p=.ïÝ»7oÞ<ÃÓR¥J‚cvvöìÙ³W¬XQºtéQ£F 4Èp†uñÙ5t‘€¸tpôôô4;›œ——7vìØÍ›7·mÛöý÷ß÷÷÷—]©špU. ²bÅŠÍ›7÷éÓçý÷ß—]KÑØ½ÝHjÀ…qGSz½~åÊ•åÊ•{ûí·e×R4¤F`WtM¥¤¤œ?ÞÓÓ3:::ÿ«ÝºuëÛ·¯ìe 5àòަ”Ëeeee;v,ÿ«Å?±ÚN̾íFR# 8æ×¤I“¯¿èrH@Á1ŽÎÁŽíFR#øÁ#5#GͳW»‘ÔDpt(›‡1GÜ'@Ap„y´@>G c’8Á"5€µÊ.íFR#(ÁÑql˜ÊHÀñŽBÀõÇöíFR#°ÁÑå‘€eŽÃ¿€,GQi_O¥e5"8j‰Û¤FPGWEjEDpÔ [¶I èŽ®‡Ô¬Bpt„âG5›µIÀZGX„਴€íB'Ôw‘nR#(‚£ÚÙ¦ÝHjÅFpt¤F` GU³A»‘Ôl„à‹Õ‹v#P‚£ÝI o¤F`SG•*n»‘ÔlàèŒHÀްÁQŠ5OM»ØÁѹ€ÝUÇúv#©ØÁÑY€í«¨qÎý°‚£S Ýìà¨"V¶IÀ!ŽGjŽBpÔ2R#p ‚£ZpZ P9‚£fÑnŽEpT…"·IÀáŽDj2íÈ€ÇÑ@ŽZC»HBpÔR#‡à(Yæ©I@*‚£F€lG™8-hÁQ h7 8Jci»‘ÔÔà¨n¤F GX„à(‡EóÔ´€ší¥¸©ÔT†à¨J¤F >G ¸|#Ð"‚£úÐnªDpt´‡´I@­ŽjBj*Fp€EŽUØ<5íF nGÛ;_äHjªGptœÛ¤F GX„à(íF G1?OMjÚAp´ !p>² P©ôôôyóæ:tèâÅ‹+VlРÁ¨Q£‚‚‚lù¤K )tÍÈÈÈèÔ©ÓêÕ«…<òÈÆ;wî|ìØ1ëhfžšÔ´†àhÆüùóSRR† ;wîÜ5kÖ̘1#''gÚ´i¶ùR#Ð ‚£{÷îõôô>|¸aä…^¨T©ÒñãÇsss‹º´Âî ãhFùòåëÔ©SºtiãÁR¥Jeggggg{zzké´€6ÍX¹r¥ÉÈÁƒÏŸ?ߨQ#R#pYÇÂ>|xݺuIII‡®Q£ÆÌ™3-ÿlHHˆâTü©:!uBDH\\\`PPRb¢HJ’½Z®èâÅ‹²K€)vŠ:±_Tˆ"]ûöíe— ÇÂÄÇÇÇÄÄèõz!DhhhÉ’%‹ôY!„N蔊ÀÀ@ÙëäºØø*ÄNQ'ö‹ ±Sä2þ«\¡´‡\KÇœœœÅ‹žº»»2Äø ½zõêÙ³gjjêúõë?þøãß~ûmÆ ^^^Ö|“Ô@ã\:8Þ»woÞ¼y†§¥J•2 ŽBNW±bÅ^¸pá›o¾Ù´iÓ‹/¾háòÿ9ŸšÔ´Ï¥ƒ£§§gþæóéÓ§—.]öÜsχ†† !’““eW ×q4åííýÝwß­[·ÎdüüùóÂâ£LôzÚÀÙM„„„ìÚµkëÖ­†Á“'O®ZµÊËË«yóæE[©Q8!N…Ø)êÄ~Q!v ÔÃ¥§ª 2mÚ´>}ú >¼qãÆÕªU»víÚ¡C‡„³fÍòóó+‚HÀ‰Ðq4ã±ÇÛ°aCÇŽoܸ±eË–ääävíÚýßÿý_§N,\·Î‡Ž£y5kÖœ3gN±A»8:ŽvCjÎ…àhÌSç£ÓÓ³5u\õND¸ˆü—‚vGX„©jX„à‹`‚#,Bp€EްÁ!8À"GX„à‹`‚#,Bp€EްÁ!8ÚÌÚµk{ôèѸqã§žzj„ iii²+r!EÝøYYY_}õU§N5jÔ¦M›AƒíÞ½[öJ8›âüD\¾|¹iÓ¦ãÆ“½ÎÆŠòÇŒ92""¢yóæ}ûöÝ¿¿ì•p6EÝ)ÙÙÙ‹/~á…7n9zôèÓ§OË^ —“˜˜òûï¿Ë.D‚£mÌ;wÒ¤IgΜiÞ¼¹——׺uë† ’••%».—PÔŸ““3`À€3f\»v­U«Vµk×Þ¿ÿÀ?ûì3Ù«â<Šó¡×ëß~ûí¿þúKöJ8+vÊÖ­[{÷î½uëVÿÆ>|¸_¿~[·n•½*Σ¨;%77·ÿþüqZZZ›6mªV­ºiÓ¦çŸþàÁƒ²Wŵ¬X±Bv òèQl'Ož¬[·n›6m’““•‘iÓ¦Õ©SgÊ”)²Ks~VlüU«VÕ©S§wïÞ™™™ÊÈ©S§žxâ‰zõêýù矲WÈó'béÒ¥uêÔ©S§Î[o½%{Uœ‡;%==½Y³f?þø¡C‡”‘ßÿ½AƒO>ùdnn®ìrVÿú=zô½{÷”‘={öÔ«W¯]»v²×Æ%ܼyóàÁƒÿú׿”ßQGŽ‘]‘tmàÛo¿ÍËË{ã7üýý•‘wÞyÇÇÇç§Ÿ~ÊËË“]“³bãÇÅÅ !&Nœèé驌6,77— k›(ÎOÄéÓ§çÎ[·n]Ù+ál¬Ø)ëÖ­ËÈÈ6lXÓ¦M•‘Ç{ì¹çžKMMýã?d¯3°b§üöÛoBˆþýû{xx(#­ZµªW¯ÞÙ³goܸ!{…œ_çΣ££×¬Y#»™Ž6pðàA77·ððpÈ»»{XXØõëוrØ?))©lÙ²¡¡¡ÆƒÁÁÁBˆ .È^!g`õODNNÎøñã}}}ßyçÙ+ál¬Ø);vìÐét]»v5œ5kV||üã?.{…œ;¥råÊB㌨×ëÓÓÓÝÜÜ Qö3}úôÏ?ÿüóÏ?òÉ'e×" ΊK¯×'$$T¨P¡B… ÆãuêÔB\¸p¡Y³f²ktZÖmü… æÿ {üøq!DõêÕe¯“æç'bþüù'NœXºt©···ìõp*Öí”cÇŽùúúVªTéСC‡NOO¯[·nÛ¶m ­z‡u;¥S§NË—/Ÿ>}z™2e5j”––öùçŸ_¼x±gÏžüÔ8@ëÖ­•Û¶m“]‹4ÇâÊÌÌÌÍÍ-_¾¼É¸xðß…°9ë6~ýúõMFöíÛ·hÑ¢R¥J™4W`«"Ž9²xñâ¾}û>ùä“Jއ­X±S²³³oݺU»ví>ø`õêÕ†ñêÕ«Ï›7¯Aƒ²×Ió¬ûI Y±bÅ€ `ìÛ·ï„ d¯\SÕÅ¥œþV¶lY“q///!ÄÍ›7eèÌŠ¿ñsss—/_þꫯfff~ôÑG~~~²×Ió¬Û)YYYãǯ^½úرce¯²b§ÜºuK‘°qãÆ™3gîß¿ûöí£FºtéÒèÑ£¹dDñY÷“’‘‘ñÑGݾ};44´W¯^Ï<󌧧ç?üÀ©îp:ŽÅU¾|yN—™™i2®\LDù·#줘ÿþý“'O>sæLåÊ•?üðCW>fņ¬Û)3gμxñâêÕ«™µ+vJéÒ¥•}ôQdd¤òxäÈ‘—/_^·n݆ ºwï.{µ´ÍºŸ”ñãÇÿïÿ{çw^yåeäòå˽zõzóÍ7üñÇ   Ù«çGDZ¸<<<|||òÿë0##Ca8Wö`õÆÏÎΞ>}zÿþý/_¾ýôÓÇoذ¡ìU«ÐéöØc/^4¼ºqãÆaÆ=ýôÓ-[¶0`À—_~™›››ÿ»víÚ5zôè°°°°°°áÃ‡ïØ±Ãä ©©©sæÌéСC“&Mš4iÒ±cÇ>ú(99¹¨‹Z¼xq!§¿¿:kÖ¬´´´ÜÜÜÆO˜0!$$dåÊ•&Ÿš3gNHHÈ'Ÿ|"{p6G3qâÄ•+WÞ¹s§fÍšiii›7o8pà’%KLÞvâĉ;vìîÝ»yyyB½^ÿöÛo¿ùæ›Û¶mÓëõ>>>ûöí›5kVtttZZšñgׯ_ÿꫯnÞ¼¹téÒééé[·n2dȧŸ~jxCjjjttôÂ… /_¾\£FjÕª]¸paÙ²e½{÷.ê¢,׬Y³þýû—*UJ§Óõïß¿OŸ>:tBlÚ´Éømz½>66VñüóÏËÞWœ Á€Æ>|8<<|ïÞ½›7oþí·ßÞyçN÷É'Ÿœ>}Úømÿú׿6l¸lٲݻwרQCñý÷ßÿðÃþþþkÖ¬Ù±cǦM›¶mÛÖ¨Q£Ã‡ÏŸ?ßø³ëÖ­‹ŠŠÚ¿¿òãÇwssûüóÏ=jxÃÙ³g###wïÞýÃ?üøã»víjÞ¼ù¥K—~ùå—"-Êr‘‘‘&L(S¦Œ››Û„ ÆתU«òåË:t(55Õð¶ß~ûíÒ¥K 4¨]»¶ì}ÀÙhŒ¿¿ÿ¿ÿýïòåË !ÜÝÝ_yå•èèè¼¼¼Ï?ÿÜømeË–]¼xñ“O>éç秌̛7O1}úôÆ+#•+Wž?~©R¥Ö¬YsõêUÃg«T©òé§Ÿz{{ !<<< -„øì³Ï”7äääDDD¼õÖ[eË–UF¼½½;wî,„8wîœq]Tq¸»»·k×.//oË–-†Áõë× !ºví*{GpBGóâ‹/–*UÊx¤_¿~Bˆ#GŽvéÒ¥téÒ†§×®]KNN®\¹rXX˜ñÛüýýÃÃÃsssOœ8aìÑ£‡‡‡Gþ¯8~ü¸òtĈ ,xôÑG oHIIÙ°aCþjº¨bzî¹ç„ÑluNNÎO?ýäááѱcG;ËñИÀÀ@“‘jÕª•*UêêÕ«ÙÙÙ%K–T•éiƒ³gÏ !jÕª•5kÖv ƒ‚‚Ì~EJJÊíÛ·•.ã¥K—vìØqèС .œ?ÞäÐÆ"-ª8Z´hQ¡B…¤¥¥ùúúîØ±#===22²B… vß\G£Óéò¸»»çåå_ G™6Ðëõ-ÐÝÝ]qïÞ½‡~…››[‰%„«W¯n×®Ý|pôèÑG}tàÀË–-û׿þeyµ†E“»»û³Ï>›››«[É<5»¢ã@c’’’LF®^½š™™Y©R¥2eÊô)¥×hr¢BiF·óÅ•+W233«W¯^²dÉ¿þúkêÔ©%K–\¸paë֭˰¤ZãEÙdƒ<÷Üs«W¯Ž‹‹ëСÃÖ­[½½½#""l½Õ@:Ž4ç»ï¾ËÎÎ6Y±b…¢Aƒ…|*  bÅŠ—/_Þµk—ñxJJʶmÛÜÝÝëÕ«gŒ‰‰1¹¸£òMš4Büñǹ¹¹Mš41NBˆ“'OæÿÞÂeÍš5óóóÛ»woLLÌ;w:vìh«H &Ž4æêÕ«o¼ñFFF†"//oÕªU_}õ•››Û¨Q£ ÿà›o¾)„˜4iÒ±cÇ”‘äääQ£Fݹs§gÏžUªT1¼óÂ… cÆŒ¹}û¶òË—/ÿúë¯=<þ|XXØ”)SLNñ›ãäX„c`‚#,Bp€EްÁù÷%Ú¯á#w)IEND®B`‚statistics-release-1.6.3/docs/assets/vmpdf_101.png000066400000000000000000000634041456127120000217730ustar00rootroot00000000000000‰PNG  IHDRhŽ\­AfËIDATxÚíÝ{|Ïõÿÿñç{³S³™S¶°•SRÈL%!b!#¢DrüÔtŠ”>•Cú0ŸüBÍ”…/%bÌæTN›16šm¯ß/½{{ï½yí}zÞ·ëÅ¥Þ{½_ï÷ûùzm{½î{<ŸÏ×Ë$I’nÇKí@ŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽœcÉ’%&“Éd2ùúú^ºt©ô õêÕ“W7nœÛZuðàA“//¯ÜÜ\ËöìÙcºUNNŽüÔÂ… å%­ZµRsÏÞn£ÌªU«Ö¢E‹aÆ>}ú¶ëûøø„††¶nÝzêÔ©.\Pø–Üù} GÎÑ£G!DQQÑ–-[¬ž=tèЉ'äÇÏ<óŒZ”$)--ÍrÉO?ý¤VcœîêÕ«{÷î]´hÑ=÷ÜóÍ7ß”¿rqqqNNή]»Þzë­èèh«Ý6ù¨Ý·yóf!Ä×_m•7nÜ(?¨W¯žº¼;w>ñÄæ/Ë ŽÕªU«W¯ž"""BÅ—/<<ÜÏÏOqãÆ3gΔ””!òóó‡ vàÀªU«–µ~~~¾¹Ð˜››Ÿ‘‘qÇw”óV‚ƒƒÕÞzîFÅ€ÓÄÇÇË6nÜ(I’åS›6m’¨Xn4™LBˆüÑr¡姬<ûì³YYYYYY_}õ•Zm¾­+VÈ<}úôåË—,/?~üøÖ­[ËYÿüùó'OžüÇ?þ!/?}úôüùóËÿ+“&MR{ë¸Á€Ó˜{«ÏŸ?¿gÏóò‚‚‚íÛ·Ë­‚c~~þ믿þ裆‡‡‡‡‡wêÔiÒ¤Iyyy–ëL:UT׳gÏÜÜܱcǶjÕªZµj÷ßÿ;ï¼sãÆ …ÍkÔ¨‘b×®]rYNqñâÅ#GŽ˜Ÿ²bsŒã7,XжmÛš5kúûû7mÚtÀ€¿üòKé—Ÿ;wnÔ¨Q=ôPµjÕî¾ûî^½zíÝ»×jå濾¿¿ÿ¼yó|}}å/>\þúuêÔY²dIÏž=å/ßyçüü|û>€§Ày}ôQùØòÆo˜®[·N^e¹ò®]»î¾ûîÒÇ¥:uꤤ¤˜W›2eм¼C‡¥^|||9í9pà€yÍçŸ^~ðË/¿ÈÏš;Ї b^-;;[~vÁ‚ò’–-[ÊK®_¿þÀ”n°Édúøã-?÷»ï¾ /½Ú˜1cÌë(·r6êÛo¿µz¶fÍšòS&LP²þ÷ßo~vÓ¦MJ^ÀcQqàLæÞê 6˜šó™e¹ñÚµkÏ<ó̱cÇ„•+W~üñÇ»téR¥J!Ä©S§úôésåÊ«7ÿþûï:t×]wµnݺråÊòÂÕ«WïÞ½[IÛzè!ù¹·Zî§öòò²àJ{ë­·víÚ%„ðóó{ê©§^~ùåÖ­[ !$I5j”¹Â———×·oßsçÎ !:vìøÆoôë×ÏËËK’¤Ù³g/Y²¤BïV!—.]’?WÑ A%/iß¾}¥J•äÇr{ ,GÎÔ³gOooo!Äž={Ο?//´9ÀqÖ¬YÇBlß¾}Ó¦M6lHKK Bœ={öwÞ)ýþ}ôÑñãÇÓÒÒöíÛgÎŽ ƒc:uj×®-„عs§¼DŽ111JÞaÛ¶mòƒÉ“'¯]»öÃ?LKK“‹¬EEEß~û­üìŒ3äy'½{÷þî»ï^ýõÏ?ÿ|îܹò³‰‰‰z7…ŠŠŠ>œP\\,/¹ÿþû•¼Ðd2Õ¨QC~|öìÙÒ+têÔ©ôµx^}õÕ 5€18Shhh‡„’$ÉyñÈ‘#™™™Bˆúõë7kÖ̼¦¹$ùÊ+¯˜6mÚt̘1V+˜5iÒdäÈ‘òã{î¹§]»vòcó…~Êg2™ä¢£Up4W"oëÚµkòƒeË–-Y²D®í-[¶ìÀèÝ»·ü¬9(:ÔüÚüãr¤>yòäþýû•¿[ùÌ©Î××·Q£FæÖ½{÷æÍ›+Ü®;ï¼S~`5º¬8™Uoµ¹ŸºOŸ>–«¥§§ËüqËå=ö˜üàèÑ£æY,2«‘!!!ò«ÕÊ!gÄ£G^¸páèÑ£/^B´iÓFáËÍMMOO2dHDDD‹->úè£üüü˜˜sÝNžp#¯o.Ñùûû›kGUþnvhÒ¤‰¹À©„ùšç¥Ÿ ¯WŠyçð(\Ç€“õìÙsĈÅÅÅ[¶l)**²9À1//ïòåËòc««$ÖªUK~pýúõsçÎY>kuÑ›×Ð)Ÿ¹¸˜––fn@›6möíÛ§ä剉‰yyy‹/þóÏ?…’$íÝ»wïÞ½o¿ýv»víÖ¬YS½zõ¼¼¼«W¯–ÿ>ÙÙÙ ßí¶M²¼È¢OãÆzè¡Q£F™ûñ•0÷P—žÐ#„X±bE\\\Ew5C¢âÀÉÂÂÂÚ·o/„¸téÒwß}—’’"„hذá½÷Þk^' À<¬ðÌ™3–/7Y©R%%É©Bî¿ÿ~9fíܹS¾WÊwÞÙ°aC…/÷õõ7oÞ… þûßÿöïßßò Ø©©©ò-øªU«&/ܲeK†-ýúõSøn·ey‘Å£Gþ¿ÿ÷ÿ^{íµ ¥Æ;vÊN౎œÏÜ[=a„ëׯ‹RýÔBˆèèhùÕý Í_6hÐ@¾*¤ùúúÊã)üñGy€ãƒ>¨ðµþùç¹sçÎ;÷çŸ>óÌ3Ë—/?þü7ß|c[ækUÖ¯__~PTTt·…ààà      ???åïæjæNíªU«>üðÃîùP:Epà|O?ý´———â矖—”¾aL—.]ä~ø¡ùÊØ˜5k–üØòÆ€N$÷VïÞ½[¾Î¶òއªQ£F5"""ä«ùøøtêÔÉ| È   ùA§NäIIIÒ_wÐY³fÍwÞZ¯^½+W®(7×9{öì°aÃ’““å/ `®•€MŒqà|áááíÚµ“;©…÷ÜsO“&M¬Ö?~ü'Ÿ|râĉ˗/·mÛ6..ÎÛÛûÛo¿•o^1uêTW´MŽò—ʃã½÷Þ~îܹ¢¢¢¶mÛvíÚ5$$äøñãæšoÁ2qâÄÅ‹çææ®]»¶cÇŽ<òÈÁƒÍóÇŒ¤ðÝœkàÀòÅ2óóó- T¯^ýÍ7ßtÅ'0‚#—ˆ7ÇÒýÔB??¿U«Võë×/33óÚµkëׯ7?u×]w-_¾Üæ _ÇY&Eoooå£ú¼¼¼ä xíÚµ³gÏ.^¼ØòÙ:Œ?^~üÙgŸ 8ðÒ¥Kßÿ½å­Y^|ñÅ7Þx£Bïæ\üñGé…!!!_}õ•|M(]Õ\¢W¯^roµ°ÕO-{àöïß?uêÔ¸¸¸ðððÐÐÐŽ;Nž<ù×_mÛ¶­‹jž Ó¤Iå¯}ðÁ322¦NÚªU«š5kúúú·mÛvñâÅ[·n½ãŽ;ÌkvëÖí—_~yþùç›7o^¥J•¨¨¨ž={¦¤¤ÌŸ?ß<\ù»¹‚··wHHÈ<0uêÔôôtåc=x2“yü P*ŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽP„àEŽPÄGí¸ÉêÕ«W­Z•‘‘Q¥J•GydܸqÁÁÁå¬_XXøÙgŸmܸ1+++88¸iÓ¦#GŽlРÚÛ “$Ij·ÁåæÌ™³`Á‚ªU«¶lÙòĉÇ¿÷Þ{—.]êççgsýâââ„„„½{÷Ö¬Y³iÓ¦¹¹¹»wïöòòúì³ÏZµj¥öÖ¨ÃøÁ1==½GÕ«WONN B¼ýöÛK—.MHH˜:uªÍ—|þù牉‰O<ñÄ{ï½çãã#„عsç!CêÔ©³yófµ7@Æã¸jÕª’’’Ñ£GË©Q1a„ÀÀÀ7–””Ø|ÉÞ½{…Ï=÷œœ…mÚ´iÔ¨ÑñãÇ/^¼¨ö¨ÃøÁQîeîСƒy‰··wûöísrrä€XZDD„Â2#J’téÒ%///s”ð4Ž’$edd„„„„„„X.oذ¡âÔ©S6_Õµk×Ê•+¿ýöÛ;wî¼víÚü1uêÔÓ§OÇÇǨ½Mê0xý¬   ¸¸8((Èjy`` ¸µ¦h)::zÙ²eƒ 4hyaBB¤I“”|htt´ÚÛ \(==]í&¨ÃàÁñÚµkBˆªU«Z-÷÷÷B\¾|Ùæ«òòòÞ}÷Ýüüü˜˜˜¦M›æääìØ±cíÚµ>øà£>ªäs•ÿ-„ðóókß¾ý‰'>üðCóÂ=úïÿ»R¥J±±±jo€:ŒËA!Ä’%Kf̘Q«V­víÚ8q"--­qãÆK–,1_¦ç믿~õÕW4h°~ýz!Dvvvï޽Ϝ9S¯^½Æçääüßÿý_IIÉ”)Sú÷ïÛ«ÐL«¬¬¬ÈÈHµ÷¾±ÄtûÐqìC±W¡}Ȭj#|øÄ‰[¶lùÅ_L›6­qãÆjë ®é@ï誆Z·nýä“O.\¸°¨¨hèСo¾ù¦SÞ9 %%eܸqÉÉɹ¹¹mÚ´Y±b…ù¶~………—.]*kH¥•aÆ}úé§³fÍJHH¸çž{\Ú°ëׯ_ºtÉ<ôsüøñwß}÷Ì™3—/_^¹rå{ï½wãÆ;wvÅ÷®@·2”f’4<ýB§¢££ÓÓÓ®œ••Y¡—hAdddíÚµ­ü¹ÍâÅ‹8ðÁ¨½œCõï¾üC¨önМ Ç íC"©Mü:ˆè¸ íCÕÝj¡«:sýúõmÛ¶5oÞ\í†ÀÈÈv`Á:³sçÎF=ûì³j7°#ècaáÇ[ÝCÅmbcccccÕÞx"‚#ì1~üxµ›¸Šú©¹¦#¢«Š Áþæ¶d¦ÈÐ#‚#!8@‚#¨ƒÞjºCp€›¸D”àEŽP„àB¨ÔOÍ0GúBp€"GJddd||¼Ú­À˜ŽÐ¢Ë—/¿øâ‹uëÖõ÷÷oß¾}ZZšÚ-²Ö¾}ûÄÄDµ[§a>5(Ap„æäååµlÙò“O>i×®Ý!CŽ;Ö¹sç}ûö©Ý®¿íÛ·ï‡~P»0†9Ђ#ìQXXXXXè¢7Ÿ={vFFFRRÒŠ+æÎ›ššj2™ÆŽ«öF‹¢¢¢-[¶¼ñÆ?þxII‰ÚÍÀÝްGttt\\œå’ÄÄÄV­Z9åÍ¿øâ‹ˆˆˆÊ_FEEõîÝ;%%åÌ™3zŸ’’’x{{¯X±Â) ËÉÉyüñÇ/\¸à”7@_ŽpŽãÇïÙ³Çñ÷ÉËË;räHll¬Éôw÷]ÇŽKJJ*4ÒQ’¤!C†|þùçK–,éß¿¿S¶1<<\’$I’>ììý5©>À‘Þjzá£v€[œ;wN’¤ððpË…aaaBåu>I’^xá…Ï>ûlñâÅÏ=÷œÚÛ€A5ͤjBrF¦¨¨hÆ e=ûÔSOY-)((BX. Bäää(j¶$1bÑ¢E>>}ûöíׯ_Ÿ>}š6mêëëks5;z„ tß}÷õïßÒ¤I3gÎìСCAAùþ~+W® 3fÌm[6}úô¬¬¬·ß~Û) \ŠÞjÚGp„Z·n=yòä;wþðÃC‡9r¤³Þ9 %%¥OŸ>ÉÉɳfͪ_¿~JJʃ>(?[XXxéÒ¥²†TZ6lXëÖ­g͚ŕp]Õ°“Édš8qâĉÍK¦M›æ¬7 LJJ²ùÔsÏ=wãÆØ|6++ËòK//¯ ]6\¡èèhª’DÅ:sýúõmÛ¶5oÞ\í†@÷àEp„Îìܹ³Q£FÏ>û¬Ú œaŽ4Ž®jØcøðáV7wq›ØØØØØXµwžˆà{Œ?^í&¡Ÿì@W5h½Õ´ŒàEŽP„àÀã0ÀìCpma˜#Í"8@‚#!8@‚#Ï¢‹™1 s MG(Bp„¡DFFÆÇÇ«Ý Œ‰à-º|ùò‹/¾X·n]ÿöíÛ§¥¥©Ý¢›öïßß§OŸ5jøûû·lÙrΜ9EEEj7 7ñQ»€µ¼¼¼–-[žûì³Å‹?÷ÜsNi˜ÏôéÓ-—\¼xqúôéÞÞÞ½{÷V{·àGM3©z `ÉÃò‹ŠŠ6lØPÖ³O=õ”Õ’‚‚!D@@€åÂÀÀ@!DNN޲fK#FŒX´hÑÀ쬆Yùþûï‡ –‘‘1þü 8aOÁõt7ׄù1´†à¨iN‰n.R\\lùeII‰ÍÕòóó{ôèQöZoahh¨âÊ•+– óòò„!!!J¶~ýzI’jÕªµfÍš7ß|³nݺNi˜ÙÉ“'G޹nݺ |ûí·;vtÁÞ@‹ã;ýù矖_^»vÍæjRÙJ¯îååeÕ+-„¨U«–’†I’´zõêeË–åçç5ª¬Õ*Ú0ÙÊ•+›4i²gÏž… þöÛo¤F€G¡â;ýñÇ–_–5å¹¢=Â>>>7NMMµ\¸}ûv“É£¤a]»víÞ½»"!!aùòåëׯïÚµ«ã B¬[·nÀ€Ï<óÌ‚ ¬:ÓðGØéìÙ³æL–™™ùóÏ?Û\ÍŽá¡C‡Ž5ÊüæçÏŸONN~ôÑG###•4ÌËëfýý÷ß_¿~ý+¯¼çççç`Ã$I?~|:u–-[æíííÞ '`° 8Žà;ùøøôíÛ·[·n%%%ëׯ/ë’4rp…ÞyРAò5tFŒôé§Ÿ$&&ÊÏ®\¹ò¥—^úÇ?þ1{öìòß',,lúôéÇûí·ßzë-vèСÇ7jÔèù矷zêé§ŸîÖ­›ëw9<óch Ávjݺõ“O>¹pᢢ¢¡C‡¼ùæ›Ny瀀€”””qãÆ%''çææ¶iÓfÅŠæû ^ºt©¬!•V† ö駟Κ5+!!áž{îq¤UBˆC‡:tÈê©úõ란à;™L¦‰'Nœ8ѼdÚ´iÎzóÀÀÀ¤¤$›O=÷Üs7nÜ8pà€Íg³²²,¿ôòòªÐeÃËѽ{÷Š–N0fUCg®_¿¾mÛ¶æÍ›«Ý<Á:³sçÎF=ûì³j7z¢ëa‚ò0GкªaáÇ«u=šØØØØØXµwžˆà{Œ?^í&w£«Š Á€ÁézfŒŒù14‚àEŽP„àEŽŒÌ@;Ž Ì G(Bp€"GJddd||¼Ú­À˜ŽÐ¢Ë—/¿øâ‹uëÖõ÷÷oß¾}ZZšÚ-²vãÆ|°M›6j7åaf 8Á𓗗ײeËO>ù¤]»vC† 9vìXçÎ÷íÛ§v»n1eÊ”Ÿ~úIíVÀ³0?€êްGaaaaa¡‹Þ|öìÙIII+V¬˜;wnjjªÉd;v¬Úý·o¾ùfÖ¬Y>>>j7·"8ÂÑÑÑqqq–K[µjå”7ÿâ‹/"""(Õ»wï”””3gÎTè}JJJ àíí½bÅ 'nû¹sç ðüóÏ×®]Û‰o €öáÇß³gãï“——wäÈ‘ØØX“éïN¹Ž;–””Th¤£$IC† ùüóÏ—,YÒ¿gm¦$I þàƒœ¹ûÐúÚ -çΓ$)<<ÜraXX˜âÂ… ßD’¤^xá³Ï>[¼xñsÏ=çÄæÍš5+%%%--­J•*jï*Ü3cÀéŽp­¢¢¢ 6”õìSO=eµ¤  @`¹000P‘““£ä%I1bÄ¢E‹8xð`g5L±k×®)S¦Ìš5ëþûïWc_7çLj¨…à¨iêΠ,ÿäT\\lùeII‰ÍÕòóó{ôèQæGHÖ*„¸råŠå¼¼úhdd¤’†yyݼVÀûï¿¿~ýúW^y%..ÎÏÏÏÁ†Mž=++ëí·ßvJÃðpçÌ™3eÊ”cÇŽµjÕÊßßÍš5Æ +kLžlëÖ­ýúõÛºukXXX³fÍöíÛ7pàÀ­[·ª½)ÒºuëÉ“'ïܹó‡~:tèÈ‘#õÎ)))}úôINNž5kVýúõSRR|ðAùÙÂÂÂK—.•ÿí36lXëÖ­gÍšuøðaµwºgü®êôôô¤¤¤ðððäädùr€o¿ýöÒ¥Kß{ゥS§Ú|ÉåË—_{í5Ÿÿüç?-Z´Bìß¿¿ÿþS§NíСƒ¹'ÔÙL¦‰'Nœ8ѼdÚ´iÎzóÀÀÀ¤¤$›O=÷Üs7nÜ8pà€Íg³²²,¿ôòòªÐeÃ+Äê³0<ãg U«V•””Œ=ZNBˆ &nܸ±¬+ȬY³&//ïÅ_”S£âÞ{ï}â‰'²³³ýõWµ7ÈÓ]¿~}Û¶mÍ›7W»!Ð.†€‹?8îÞ½ÛËË«C‡æ%ÞÞÞíÛ·ÏÉÉÙ»w¯Í—Èsx­fNÌœ93==ý¾ûîS{ƒ<ÝÎ;5jôì³ÏªÝ@5’Úyà± ÞU-IRFFFHHˆÕµ£6l(„8uêTË–-K¿êÀÁÁÁ5jÔØ³gϾ}û.]ºtÏ=÷têÔ©ôÌ\5|øp«›»¸Mlllll¬Ú;OdðàXPPP\\dµ\¾…ÝÅ‹K¿¤°°ðÊ•+õë×ã7V®\i^^§N>ø I“&J>7::ÚjɦM›l®yúôiµw’=Ưv EÝá’:ý!,Od¤›w© ûÐíÛèjü9t/v ãÊÙ‡;wV»uZaðà(Ͻ­ZµªÕr!ÄåË—K¿D¾Ù]FFÆ… f̘ѡC‡ëׯ'''üñÇòÅ•ÔÓÓÓ•7Ráå a`ªÿ ¨Þl‘'|"[¤qì@Ç•µKŸÖKWˆ<„ÁÇ8™L¦‚‚«åW¯^Õ­T®\Y~ðî»ïöèÑ#((¨F#GŽìÙ³çéӧ˹×€±<8úøø–®,æåå !Ìó¬-U­ZµråÊ~~~Vé:uê$„àr€€ÆyÈ”jæÇP…Áƒ£"<<<''GNŠfòØ ððp›/ óõõ5™n9,Ë=ÔEEEjo€:Œãâ⊋‹SSSÍK$IJII nÖ¬™Í—ÄÆÆæåå9rÄr¡|íž{î¹Gí P‡ñƒc||¼——×¼yóäqBˆ¤¤¤ììì^½z™o¯œŸŸŸ••ežNÕ³gO!Ä”)SÌÓ®ýõ×ÿüç?>ú¨Ú ƒÏªBÔ¬Ysܸq3fÌèÞ½{»víNœ8‘––3tèPó:)))¯¾újƒ Ö¯_/„hԨј1cfϞݹsç–-[ìÞ½Ûd2½ýöÛwÞy§Ú ãG!ÄàÁƒ«W¯¾víÚ¯¿þ:"""!!aôèÑòyÊò /„††.]ºôÇ Ž‹‹{ùå—4hàºFzìÄ~À‰|øæÍ› Õn8r³A€+ø¨Ý€[Œ3æÕW_Ý»wïºuë6nܸuëÖ­[·<ùä“=zô¸ÿþûÕn íò¨r£L.:*ßj‰8À1Úª8 !L&S‹-Þxã~øaþüù]ºt),,\¹reŸ>}{ì±ÿûß¿ÿþ»ÚmðDš Žf>>>;vœ3gÎÎ;'Ožìççwâĉ¹sçÆÅÅ 0`íÚµÅÅÅj·€Vx`¹QÆHG®j+¹¹¹ß}÷ݦM›vîÜYTT$„¨^½º¯¯ï®]»víÚµhѢŋGDD¨ÝL Åà˜ýÍ7ßlÞ¼y×®]rY144ô±ÇëÒ¥K‹-„?þøãœ9s8ð¯ýkÑ¢Ej·€Ê<¶Ü(«èHG°›¶‚ãòåË7oÞ¼gÏž’’!DHHÈã?þÄO´lÙÒÛÛÛ¼ZÛ¶m[´hñÀìÞ½[í&p æp¸óc8B[ÁñÍ7ßB=öØcO<ñDëÖ­-ó¢%??¿Ê•+ÓO €b› èÀ]´{õêÕ¥K—6mÚ”•-Qnp'mͪ޸qãÎ;ËJ/¿üòã?®vhe63¦WpmÇ‚‚‚7n”õÔÉ“'¹ˆ#€ZÔïªNII>|¸ùË¥K—._¾¼ôj%%%’$Õ­[Wíöp9…³7(7€›©½½½äǹ¹¹•*UªR¥ŠÍ5ƒ‚‚&L˜ v{@£N‘ab5»©Û¶m›––&?ŽŽŽîÛ·ï¤I“Ôn­£Üî§~p´4dÈ–-[ªÝ Ð+®ËÀ¥´Ç¯vèÙT¡rp\±b…âhРùËòõïß_Ý6p)†ß9ˆ¢#×Q98N›6M‘˜˜(GùËòÀAÌ`•ƒãË/¿,„hÚ´©üå?ÿùOµw­£œv[¸ˆÊÁqäÈ‘–_:TÝö ,ÚšSš$I[·n=}úô½÷ÞÛ¬Y3µ›@eÒ¢èÀ4·nÝ:wîÜN:ɽØS¦LINN–Ÿêׯß믿nân¬jÐÖ½ªwïÞýÒK/>|¸¤¤DñÛo¿%''>ûì³µk×^¹råÖ­[Õn#*Æ%4P—¶*Ž‹-’$iòäÉýúõBlÙ²E1}úô¸¸¸ãÇwîÜùóÏ?‹‹S»™ å÷V3±€´9R£FÊ_þôÓO•*Uj×®¢^½zwß}wff¦ÚmðPÚꪾtéRhh¨ü¸¨¨è·ß~kÒ¤I¥J•ä%UªTÉÎÎV»ÔA?µä¢#8‹¶‚cÍš5OŸ>]\\,„Ø»wïõë×[·n-?URRrúôéêÕ«Û÷ΫW¯ŽoÖ¬ÙÃ?úè÷ßÿ裄íÛ·—ŸZ²dÉÅ‹ëׯoÇÛΙ3gÊ”)ÇŽkÕª•¿¿ÿš5k† víÚ5%¯•$éµ×^»zõªÚû0¾r†ÜQn´EGN¤­à8lذªU«ÎŸ?¿cÇŽ»víjÚ´©|íÆgžyfÖ¬YBˆÁƒWô=ÓÓÓ“’’ÂÃÃ7mÚ”””´yóæîß¿ÿ½÷ÞSòòO?ýt×®]jïp>y~ (§­àX«V­ÿþ÷¿:t¨Q£FÛ¶m?øàùªÙÙÙï¾ûîƒ>XÑ÷\µjUIIÉèÑ£ÃÂÂä%&L ܸq£|ÑŸr=ztΜ9÷ÜsÚ;@}ÚšU-„hРÁÂ… ­.[¶,""ÂËËž˜»{÷n//¯:˜—x{{·oß~ݺu{÷îmÙ²eY/,**?~|ppð„  ¤öŽ<ýÔâ.2œE[DzԪU˾Ô(IRFFFHHHHHˆåò†  !N:UÎk?úè£C‡MŸ>= @í >ÍU7nܸtéÒãÇKeüuœ––¦üÝ Š‹‹ƒ‚‚¬– !.^¼XÖ þùçE‹%$$<ôÐC¬èVDGG[-Ù´i“Í5OŸ>íŠÝèQ؇ÒÐŒŒÌÊʲZ™™Yz±¶hh–!3S˜L‘™™¥ö£­}® íïCc:®œ}عsgµ[§Ú Žß~ûíèÑ£åÇÞÞÞŽ¿¡>¥+‹yyyBó åF—)]t”îÓVpŒ‹‹“ìß¿ÿþý6שЕndƒ®^½úÚµk¿þú눈ˆ„„„Ñ£GËÕG(¤­àؽ{w½s·nݺuëVÖ³]ºtéÒ¥KYÏÆÄÄØ‘VØr#h“¶‚#ƒÀÕ˜"ÀnÚ Žf—.]:pàÀ™3gjÖ¬ùðÃggg‡††ªÝ(.Á;Ð ÍÇœœœùóç'''Ëw |î¹ç~øáž={ÆÄÄLŸ>=88Xíp-Šan`Utd~ …4tp!Ä7^zé¥eË–ôìÙÓ¼<,,lÛ¶m}ûö•Ó$ÜO[ÁqáÂ…?ÿüó#<²iÓ¦wß}×¼|ÕªUO=õÔñãÇ—.]ªv<”¶‚ã®]»¼½½ßyç*UªX.÷ööþ׿þU¥J•Í›7«ÝF.D?µÛȽÕP!Ú Ž‡ŠŒŒ´9Æßß?**êĉj·ÀCi+8æçç—õlnnnµjÕÔn#g²œ“A¹ÑÍ,‹Žòü(Ÿ¶‚cãÆÏœ9cóž1‡úý÷ß5j¤v<”¶‚cŸ>}L&ÓØ±cüðC!Ä–-[²³³Õn&7P>mÇ}ûöÕ¬Yó®»î*ýT:uäåÕ 5hër<¹¹¹%%%’$™L6þèÍËË ®^½ºÚÍàôSk ½ÕnK[Ç&Mšäåå}ÿý÷¥ŸÚ±cGnnnLLŒÚmðPÚ Ž]ºtBŒ?~ãÆ–]Ò[¶lùç?ÿi^€1Pn}ÑVWu¯^½vìØñõ×_=ºzõêQQQ&“)33óüùóBˆnݺõêÕKí6p“à.%Z$÷V›$¾3lÓVpB¼ÿþû=ôÐܹs/\¸páÂyaDDÄË/¿Ü³gOµ[à¹4½¼¼âãã{÷î}îܹ¬¬,Ÿzõê1!0ú©µI’¸"€2i.8ÊL&S5jÔ¨¡vCp“¶&Çð&*Z OGnÇÜ mãþ1ʢѮjÐ2“U²Š´±ñ€ñPqàVzì§6 “Õ?IH–ÿ2³2­–HB²\_í-°k«uÙj®EÅl°L{öÕ-_e•)FÐ)‚#÷‘oN­åJ–9á97ÛY½›‹>\àÀ­4{¿9̹'É™?ÅZáFJ7ƒ>˜x4u‹ò‡j°ÉÄj6¸‰Öú©µSíÓl’¢#+GGkùÌ̲©ÁæÁ€ÑE&#>Ð,‚#w0÷S«•ƒt—Ã4é­`‰àÀøäKv«Ý {˜ã£ûÛ/ix <µpç.§bÉÊ|£µ÷CÌ÷¡QçÓ%î"à&*ŽŒIõN^çR±ôfGnâÎ~O£,¹ô( ˆè Á€k¹¹ŸÚð¹Ê“fÌÙ"@Fp`F-4–FÏ5U09€ ¹³Lå)ÊÜs îAp {Ƙ:m·eGæVtUp×ÍŒñØÈhÆŒnCÅ€«¸¡ŸšÔ(“„ä¢Ò£R£ŠÈŽ”#8pGú©Iªs$;Ò[ x‚#WQ23†Ô¨J²#óc8Êîr#©QS쿯 EGÀc¨ƒÔ¨AŒwP>‚#5‹ì G)«ŸºœޤF³#;Ò[ x‚#·"5êBYÙ‘ù1€‡#8°_E§Åu¤Â÷$¤èx‚#7!5êãX!8pR£N‘X"8°S9ýÔV3cHFRÎ0Gz«Ã#8p-R£ÞQt`Fp`GnN ÝQž):ÆFpàB” ƒº#Apà:¤Fƒ!; 8¨°òû©M7çO HÎŽå_œÞjÀÀŽœÔh`ÔOFpP1J¦Åí¶ß_ŠŽ€Q8µ(ÏÁ÷ð@Gp»Ñ&ÁUz<}Ö€"8pÆ5zéæ,¨2³#½Õ€!8©ÑcQw< Á€ReõS“aEGÀxŽœF¾‚#< EGÀs(B¹V,/^Vv¤è Á€ýH0£îxµ@l–=:5ÞZF‹´¹Žç]˜è¯z܆žƒŠ#{”ÎÆàh2ÝþŸ$YþËÊÌ´Zr³¶üFTºîHo5`$TT˜qªJ6³*…·}—~º[H¶þ` îÁÀmXõSë;Xe5uSšíÙFZj¡Ý[vkv”‹ŽúÜ· 8¨ý¥FÝå0«ê®ýæ–RwŒˆà <–…¢rr€¶8Z†-ý$-ÛÊÉ‘ºÚ4ŠŽ€1‚nUÅÜ2h@›,•ýgEGÀxŽÑh0‡'‡Å²Ø ‘ÛdGÀ`ŽÊdî[Ôܹ_«9I5'ÐÜž1gGz« 8¸Û¦F÷ pÔ^*ÒM&HꎀaØ&‡4q¾×RÒ 7&HIÁ7³£$Qttà L*§Fò¢Sh¦ù×Meøn:Fp`ƒÉ$„¤RjT;ß–¤$$“d2™$¾·€Nئ05:³‚$2…«Y%Hv8ÅŽÔF‰Q-7çÌ;aÿ+æø×š’IÁj´‰àÀš›¦/5ÂíH®ËèÁÀ-Ü1}Rmr^R MLØPAG3 ù’)®û"£æ¹¥)IÂd’LjMÀ`/‚#€›ä P…ÆŸ)-NÒ+­G–Hß8åÃ-^Â…Á!8œ>òŒ£Þ¹¬ÿú¯‘ŽdG@O¼Ônõ¹äÌm2ÝœAj4ùû(g=““gEÿuap:@ÅðtQ‘QrjtZ¹‘*£U°ÿú¶ovó !™"©;:@Åðh&aÊÌÊ´÷µ¥ÎóT=DÕGy˜##8ÂÁr£ ˆŒžÆ©×™Y™tXÚGp<—†6ZæE"£g²ŒOòKo>f°# yž2ÆqõêÕ«V­ÊÈȨR¥Ê#<2nܸàààrÖ¿víÚÿûßäääÓ§OW«V­aƃ~øá‡ÕÞÀi,S£=åFê‹°dù“à@ùš ôçÁqΜ9 ,¨Zµj«V­Nœ8±fÍš£G.]ºÔÏÏÏæúEEEƒ úùçŸÛ´isýúõŸ~úiÇŽ¯¼òʈ#ÔÞÀ :7›LB¸ö2áÐ/IþÙ¨Èì¹è˜™i~²# ]ÆïªNOOOJJ ß´iSRRÒæÍ›¸ÿþ÷Þ{¯¬—¬ZµêçŸnÑ¢EJJÊüùó?ùä“/¿ü2((èã?>tèÚ8Êþ³2¡cÃé³4ËøÁqÕªU%%%£G “—L˜0!00pãÆ%%%6_²iÓ&!ÄäÉ“Í%É ¼øâ‹ÅÅÅ?üðƒÚ8¤tjŒŠŠ¼}$2Šã£$‰¨¨È[–M2~pܽ{·——W‡ÌK¼½½Û·oŸ““³wï^›/ÉÊʪZµjLLŒå !N:¥öö³§ÖHd„ƒì­>’ 2øGI’222BBBBBB,—7lØPqêÔ©–-[–~ÕÂ… }|¬÷ÌÁƒ…uêÔQ{›;ÙL&“ÈÌÌ"ÒÖ Ê¦VÑ[ãؾiõí®ž™™e2Y¿ïhÁƒcAAAqqqPPÕòÀÀ@!ÄÅ‹m¾ªqãÆVKÒÒÒ’’’î¸ãŽ=z(ùÜèèh«%r÷wi§OŸV{'éûP‰¨È¨Ì¬Ì,‘Uê™ÈÒ;02*J‘%ÏVÈʲñv‘‘Y6—{*~­•õ’™)„ˆ4™„ùì/§OŸÂÆ«2E¦)ÒþËÔ{~WÎ>ìܹ³Ú­Ó ƒÇk×® !ªV­jµÜßß_qùòåÛ¾CqqñŠ+fΜY\\üþû†*ùÜôôt匌ŒT¾2lb–ïfͦÔN’» ³²jÿ½- BåïSö¹vˆ•òvˆüVªú(I¢tÑQnH¨?„Ž+k–>­—®yƒÇ   “ÉTPP`µüêի⯺c9~úé§ÄÄÄcÇŽEDD¼óÎ;=ôÚT˜Òž>Å×O¡ŸÎáÔÛ^pƒGŸÀÀÀҕż¼JÙp‚# o&a’LBR!<Ò_ñQÂ$‘—cr  c7S£‚0”¡S6fÉØ\I®:2Wp1‚# O&Ó;9·äA8ÂnŽÌ­®à'Ýï¨ i°ÁГI˜LrfTþ ÊÐ/EEGóÊB2IeÞ±€ƒãè‡ùžÌÊ& éæxGî™8ÁЋó_ES£ãåFú©¡ºò¦WÛ\_¾FäÚkTˆàhÛ­çGpÔVîyËîÔH¹†d_ÑQ”•ñ¨‚# žÛ«T¯52ÀN¤ÖÜj‹”} Tâ#  ÁPƒ‚ó“#©‘r# Ì(?; â#p{GÀ½”“H€‹Ü&; â#P‚#à.ŠÏCª÷PÿÕ 4Æâ¬ÞjGŠŽBIvÄGÀ6‚#àz9÷8˜)7ÂC¸#; â#`à¸RÏ7©5ž@ivÄGàoGÀ5*~Žq<5Rn„ö9qnµƒEGQ¡ì(ˆ€GÀùì:¯h-52À¢bÙQá鎀“È'aϹ„jÀ>Ž…ÙQṎ€Ã;y8%5ÒI ¥Zv·ÆGA‚„G 8p82 !4Xk¤Ÿ.¥ú-dÊh•]ÙQX(@»8|†pb÷4åFx8§Å_ÙQØýçý×ðG ‚œqVÐrjÔ`)pùÓ¡ßPâ# à(ã¼aLL…œÞ[í¬¢ã_ͳ·ÛÚ²A‚á0 ‚#p;N­875ÒI ˜i.; †?€Ž@Ùœ}¬×~­‘~jÀÌ9Ùñæ{Ñ ƒ 8¥¸¦wÉé©‘r#tÍs«[tÎÍŽ‚þkÁ°àšz€f/»à¶jmã鿆Ž×\Ô=íŠr#ýÔp3]…S¦Z—ÕVA:Cp„gsñ_ü:J€a¸"; §w[[6WFz@p„GrËŸøÚŸ skkõÓV@%®ÊŽ7ß$t€à㮿é]wv¡Ü#qÑí]Tt®ÎŽ‚$´ŽàÏàÆ?â]:†Ô(äêì(\=ã$4ÉKí®d2Ýü'I7ÿ¹ú…Iþ$µ·¼¢ÍÖ[‹a rÑQ_ä_s“n>v™f€ª¨8 Ôèåqõ FÊ@…¸®èxóý]Ýmmµ12º°¡*‚#ŒE¥n7ô[¹îüÉ)Fåžì(Üy¡Vº°¡*ºªanï’¾åÃ]ß=M­Æ& ©v+ìn¼»º­oùTº°¡*ŽÐ3“I)Ôü›[_×Ü<«‹Ž7?ÅÝÖV›'„"’$Ü‚Š#tèÖúbVf¦:­&÷œ'\zÎ3 ‘™•åêMn+3+ËuE39;ºšœÝ]züKVf&5H¸G臖þžv[iNjÀ)ÜVwªwDXM£š8fÂ0ŽÐ<íûèžPÕº­­ÛA‚„óÑU ­Ru¾K™rW÷´y¸t»¹|#4ÅÕttO‡õ_Û¢f·µ-§NBÅZby8ÓFR¼¥uî-!ÐI 8{:¬o~–º­Ko¿LÛ[hÁjÓÃñËÝ×isÓFk{`.ºuµª[äö =*j–EcèÈFE¡ýªT)Pn\ÄEÇ›Ÿ¨ÁÒ£Õ‘éáÏx¨Žà7ÒÛQI­:©p)÷gG¡ÙÒã-M´U†ú8\ÃmŽp1Ý}Ô*¸ç|f°Þ@‰ñz«-6MÛ¥Ç[ÚJˆ„mG¸€Î2Z¯ p˜*EÇ›­ýÒ£u‹ ‘øÁÎ`uq=MÔ-Pn„»ŠŽêfG¡öÑÆÞ¦"=Áö2Ü!CõC7S1; =–­7 Œ) rR€MG(fÜゎÝn;{Qn,©ž…NKÖ[rkû{¾Áe(}kƒþækáM­°âÎ)2êfGa€Ò£M*7G ÞP<ÁBý­ÖÈ‘Úg,Ê€6™KB%l^©-¢$©[Gä‘1Ñzh Ð Utük“Òs}ûM½]IRxâ‰IކVÖì=û·QSÓSn4B#ÙQ²çúöÛlkK9…iÁQÿÊúÕüvYÓÚ±X#g)@³Ü|1pMeG¡½C–Û÷BÎYOUGm+ç×ÃŒß4xüuóù‰r# „v²£ >–¥œo'M×#8:_ú‘#Š~v…BD–ÿ4?ßÓæ1W;g&@ãÜBMeGA|¬%ß¶²OÐ6ÎÈÚù9Ð /µ`@Ñ  IRø/+3³¼à“0Éc̵v¨uÿ9‰r#tMÎŽnýDIùŸÿnÛ ’<öÑäîa8:#£*Ž0 -ÿi®©J}¡úÕa(?žª’)7Âè°¾uoxÌU{ =G„Æ#£ Öè–³£°¸jÐö¡Cp„îEEF Í7Õ:ýPn„a¸¿è(ôå&a‘Z? ˜“ljgfejüp©å€òip¢ŒF )3+“©3p‚#tI³3¦m4U½ÔH¹ãþéÕ7?WÙQ0ónAW5ôDwz¨5Æ ñ>ë[šÊÌk¸Áú Çƒ º§Ê0$UF:ÞühýdGqk|z;xBËŽÐ:=FF†¤¯ì(¬fÏp …3¡QzÿC™r#à"*…ÅxGÅGAÎCp„æèý/c=žT('ÿvë«ôx³å á0‚#´Â ká\B¹†§nÑñfôÖm}Kã)@Â^G¨ÌHG.-œET?›îAvtBûo-@ C‡ájG¨ÃxÇ)-œ?T?žFïÙñæV ¡ÁneÈ£ƒUh¡è(Œ’on ·Cp„;ø¤†Π€›i*; ýI‚DYŽpË{^õˆCj ÓïTëÛlW©)Œ{H‡G8™çüyj¼3 G):ÞlŒº­­7Íb{Îq¥áø—¨¦Î Ú9kª ;º{)Cz0‚#ìä±Ç ­dÒÎùP‘³£ÐÒÂU[j« )<ì¤àiŽPÊò  <õ¸`øB§0êÇò6™éŽ(¿üfÚ¬h§Ä¨NSEÇ›Mò˜Ò£õ†—"…ÇŸJ €àˆ[ðn“6ËZ;GªÓfvZ=†¸iÜú á,£wGfõ ,ø.E³Õ­Ð`v\z´±+ÊÍ‘‚Óæ=Eé_NÁïçíxr‘€sQz´©ôiˆ³•Æ ˆß:Çi¼6 Á‚  Ú,:Þl¥ÇÛ±y¶â¼¦G]²ù+dÆï’ƒ4^ÐìÐgG¡ùãŒÖ(O“忎#8jEù¿Vø}píW4{.´FËÙQPzt†òO…ÊϪœR+„àè|GÒT FÞü??¸êÒÅ\ËgA@ƒ´Ÿ…N>z¤ü¬ú÷);Òþ7ñ^j7À€F7”„¤ð_fV¦ü@íV{.“éfŸ‘ÆÜZ>ÿš%gG-“>òª(}F6ÿS»iZDÅžKGè“»i¼îx³‘T¡Gx"}µÎ4NÙQ¡GxÝ‘uq¶´O/ÙQ¡mGx =…õržtAGÙQ¡UGŸN¼::Ãz¡¯ì(ˆÐ‚# Ë–êÅ6Ú‘*"8B»Œ}ÈÓõà*Àô>êÑÆ•J GT¸ ÁÚâ G7ƒ™#1Xéñïí²ØO8ÌÂuŽP™Õ(cňŒ€.¯ôxËÖ•"…ÑÀp ‚#ÜÍ3S> †d.=Z~i#sJ-ÍKíh×êÕ«ããã›5köðÃOš4)77Wá 6Œ6ßiþ¶ÿ*´²’¨sçή{s“Å?É⟑¸tzö¡ã ¶ÍÇ Ó­ÿ\Ç`;P!çž@KŸ‘QGÛæÌ™³`Á‚ªU«¶jÕêĉkÖ¬9zôèÒ¥KýüüÔn\¨ôaãGXC8È@ï¨8Úžžž””¾iÓ¦¤¤¤Í›78pÿþýï½÷žÚMƒÓ˜lý“Jý'*}±y,4‹àhêU«JJJF&/™0aB``àÆKJJÔn1ÝîŸDL ’â4I²„mؽ{·——W‡ÌK¼½½Û·oŸ““³wï^µ[ç‰Ê?€IOW˜ Ɉtá¶G0…GB²&œŽàhM’¤ŒŒŒËå 6Bœ:uJí:Ímÿ¢Õοò  ££É…<ŠÂ#a…ª˜Úù-crŒµ‚‚‚âââ   «åBˆ‹/Þöä?û”ªÐÊNÕ0:Z¥O®°Û64Z?Û¢Mì@DZÇ>tPù;°¡ÚÍSΔž®Î—:#ëèDé6Gk×®]BT­ZÕj¹¿¿¿âòåË·}Ý”»ÔúÍ@8Q–BWµµ   “ÉTPP`µüêի⯺#€"8Zóññ ,]YÌËËB˜çYx‚£ ááá999rR4ËÊÊ’ŸR»uê 8ÚW\\œššj^"IRJJJppp³fÍÔn€:Ž6ÄÇÇ{yyÍ›7O×(„HJJÊÎÎîÕ«—¯¯¯Ú­P‡Iâ&Þ¶,Y²dÆŒµjÕj׮݉'ÒÒÒ7n¼dÉ’Ò—éðÇ2­[·níÚµû÷xàF-_‘À3 c ÁŠ ÁŠ ÁŠ ÁQe—.]zã7ºvízÿý÷?ú裯¾újff¦ÚÒ“k×®}úé§òl×®Ý!C~øáµ¥W™™™ÑÑÑ¿üò‹Ú ÑÕ«WÇÇÇ7kÖìᇞ4iRnn®Ú-Ò+~öìÃÐqœ…+Šà¨¦¼¼¼®]»®\¹R{çw~ýõ×ݺu;pà€ÚMÓ‡¢¢¢AƒMŸ>ýüùómÚ´©_¿þO?ý4xðà?þXí¦éÒ²eËÔn‚žÌ™3gÊ”)ÇŽkÕª•¿¿ÿš5k† víÚ5µÛ¥KüìÙ ã8 ÛC‚zÞzë­† Ξ=Û¼dÍš5 6ìÓ§ÚMÓ‡+V4lذ_¿~ò’#GŽ<ðÀ5úí·ßÔnn\¾|y÷îÝÿú׿6lذaßþYíéÀáÇï¹çžvíÚ;wN^"ÿ:O›6Mí¦é ?{Žàè8ÎÂv â¨¦;wúùù >ܼäé§Ÿ®Q£ÆÁƒ‹‹‹ÕnlÚ´I1yòd???yIƒ ^|ñÅââbúk”ëÖ­[ÿþý¿øâ µ¢'«V­*))=ztXX˜¼d„ 7n,))Q»uºÁÏž#8:޳°|Ôn€G jذaåÊ•-ÞqÇ………………æcÊ’••UµjÕ˜˜Ë… 4Bœ:uJíÖéÆÛo¿ýçŸ !–/_þã?ªÝ}ؽ{·——W‡ÌK¼½½Û·o¿nݺ½{÷¶lÙRíê?{Žàè8ÎÂv 8ªiùòåVKvïÞ}òäÉû￟ŸW%.\èãcý3|ðàA!D:uÔnn´mÛV~°mÛ6µÛ¢’$edd„„„„„„X.oذ¡âÔ©SG…øÙs@Çq¶ÁQöíÛ·fÍš¬¬¬}ûöÕ­[wÆŒj·H7nlµ$---))éŽ;îèÑ£‡Ú­ƒaY- B\¼xQíÂ#pt"ÎÂÊ5!===99Y’$!DLLL¥J•Ôn‘þ¯X±bæÌ™ÅÅÅï¿ÿ~hh¨Ú-‚aÉS§«V­jµÜßß_qùòeµÃÐAœ…•#8ºCQQÑ¢E‹Ì_z{{6Ìr…¾}ûöéÓ';;{ݺuï½÷ÞÞ½{7lØ Ÿ„ ìÀŸ~ú)11ñرcï¼óÎC=¤v“5ç¶ûÊ™L¦‚‚«åW¯^Õ·áè8ÎÂÊÝáÆ|ðùË;ô9Ûd2U¯^}ðàÁ§NúüóÏ7oÞÜ«W/µ®åìÀÂÂÂY³f-[¶¬råÊ/¿üò!C˜b“’B(äããXº²˜——'„0ϳ\ qVˆàè~~~éééV =ºdÉ’öíÛ?ñÄ–Ëå)rçÎS»Õbs !JJJÆŽ»eË–N:½þú뜰ËQÖ>„}ÂÃÃ322òòòÌ ³²²ä§Ôn<@q¶×qTM@@Àÿþ÷¿5kÖX-?yò¤"22RíêÀ²e˶lÙòì³Ï~üñÇ4áNqqqÅÅÅ©©©æ%’$¥¤¤7kÖLíÖÁ#ptgaûU½cÇŽ­[·š>|xÅŠþþþ­ZµR»Z'IÒòåË«U«öÚk¯©Ýxœøøx//¯yóæÉã…IIIÙÙÙ½zõòõõU»u0>€Žã,lºªÕôÖ[o=ûì³Ã‡oÖ¬Yíڵϟ?¿gÏ!ÄÌ™3™w[.\8yò¤ŸŸ_ÿþýK?Û³gÏ„„µÛêY³æ¸qãf̘ѽ{÷víÚ8q"---&&fèСj7  Sp¶ÁQM÷Þ{ï† æÎ{àÀC‡Õ¨Qã±Ç1b„|é”ïôéÓBˆk×®Ù¼=ó ájƒ®^½úÚµk¿þú눈ˆ„„„Ñ£G3 îÁÐ)8 ÛÁ$_µ(c ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ Á€g7n\ttô÷߯vCļyó¢££W¬X¡vC@)‚#ñQ»à¡bccCCC[´h¡vC@)‚#¨#&&&&&FíV@ÐU šS\\|ãÆ µ[ÖŽôaÊ”)ÑÑѳfͲZþ믿FGG?ôÐCEEEBˆìììÙ³gwéÒ¥yóæÍ›7òÉ'ß}÷ÝsçΕõ¶ò\™;wZ-oܸñƒ>h¹ä‡~xå•W:uêÔªU«Λ7Ï*Ûýþûﯿþz—.]î¿ÿþ: 6l÷îÝålÑ¢E‹,'ÇÈ-9}útRRR›6mš4iÒ²e˾}û~ûí·e½Ã¾}û7nܾ}û+W®˜^½zµC‡7Þ¿¿Úß4FCp ݺuBlÞ¼Ùjùúõë…=zôðññÉÎÎîß¿ÿÂ… ÿøãºuëÖ®]ûÔ©SŸ|òI¿~ýrssùô÷Þ{oÈ!›7o.** Û³gÏG}”““#¯pôèÑnݺ}ñÅ999wß}·$I))) غuk…>háÂ…ï¿ÿ¾¯¯o›6m÷íÛ7bĈ7Ú\¹Y³fC† 9wîÜôéÓÍ gΜyæÌ™—^zéÞ{ïu÷7 €ÑèC«V­ÂÂÂN:õÛo¿™–””È¡êé§ŸB¬Y³æøñã;vüá‡Ö®]ûÕW_íØ±£U«V¿ÿþûwß}g÷GoÛ¶mÑ¢EuêÔY½zõ÷ß¿aÆíÛ·?òÈ#?ÿüóüùóåuÞ{ï½üüüáÇÿøãkÖ¬III™øÀ\à ýàƒÂÃÓ““/]º$„8|ø°">>ÞÛÛ[^§_¿~/½ôR§N*ôY÷Þ{ïØ±c½¼¼äM~饗„Ç/k}__ß™3gúøøL™2åüùó“'Oöóó{ï½÷ÌÍ'"8Ð 9ZöÛÊýÔ½zõ’¿1bÄ‚ î¾ûnó .\ذaƒ#š›››••e5ºJ•*=ôеk×8 „“ë„ víÚ%¶ôõõ5jÔË/¿\¡{â‰',¿ ôöö–$©œ—4nÜxĈgÏž}ê©§~ÿý÷×^{­^½z®úðl\Ž€nÄÄÄÔ«WïøñãéééÑÑÑEEE›6mòóóëÒ¥‹yßÿ}ûöí{öì9uêÔÉ“'Ú(„ÈÌÌ”ÿms…3gÎ!G½k×®T®\¹qãÆ­[·~ì±Ç7n\¡«]»¶|á…¾ýöÛƒ>ðÀýúõsê^€¿èI·nÝ>úè£M›6EGG§¦¦^¾|ùé§Ÿ6wL¯\¹ò­·Þ***ª[·nË–-;uêÔ¤I“¬¬¬iÓ¦UèSŠ‹‹ÍE¾ÂÂB!D­ZµÊêt®Y³¦¢víÚ«W¯Þ·oßöíÛúé§ìÝ»wþüù½{÷~ë­·L&“®T©’»åêÕ«.\Bdff^ºt)((Èõß žˆà@OÌÁqÔ¨Qr´¹ŸúêÕ«o¾ùf¥J•.\ضm[óKΞ=[ÑOùã?JJJäÇQQQBˆ*UªLš4©üW™L&ù@BˆÂÂÂÔÔÔ‰'&''wìØ1..Î¥»åõ×_?þ|óæÍ÷îÝ;mÚ´Ù³g»ôãx,Æ8Г»îº«I“&™™™¿þúëwß}w×]wµlÙR~ê×_-..nÞ¼¹ejM[)ŸUö7ß|c~^½zõcÇŽ¸J£«€ÎtéÒeÆŒéééÞÞÞ=zô0/ŠŠŠ‹‹ûî»ï}ôÑ-ZH’”žžž››Û¿ÿ¥K—þïÿ»råŠ|aK=zôøì³ÏöîÝ׸qãóçÏgddÖ¨QãÏ?ÿ”×éÙ³ç®]»¾üòË=zÔªU+88833³   ^½zò•·½¼¼&Mš4a„Y³fýç?ÿ©]»vAAÁ±cÇ$Iêׯ_³fÍ\´+$Iš0aB^^Þ;ï¼#çæ¦M›4è?ÿùObbâ| ö÷ €ÑPq 3aaa<ð€¢]»vaaa–O½ÿþû¯¼òJÍš5åë;¶oß~íÚµ“'Oîß¿¿···ÍÖ©SçóÏ?ïÔ©“——׎;Ž9R«V­E‹…††š×1™Lï¾ûî‡~رcÇ’’’ãÇGFFŽ3fíÚµÁÁÁò:={öüì³Ïyä??¿Ã‡<üðÃÿþ÷¿_ýu×íŠeË–íܹ³mÛ¶æžBˆW^yå®»îÚ¸qã¦M›TýF0 Sù—Ï‘ŸŸŸ““S§Nå“ À£ ]ÕP„àEŽP„àEŽP„àEŽP„àEŽPäÿØ]’ïå;DIEND®B`‚statistics-release-1.6.3/docs/assets/wblcdf_101.png000066400000000000000000000624141456127120000221200ustar00rootroot00000000000000‰PNG  IHDRhŽ\­AdÓIDATxÚíÝy\TõþÇñï â†ðCpÉG1MMífŠ Zjj¦b™¦¦×²Ìµ,—¼]5¯™­¦è5·Ëk¸U.¸§)ær%FÜSI%E˜óûãÔ\bs€™9Ûëy}ÜÇpæÌ9ŸïFß}¾çœ1I’$€{1+]´à‡à‚#Bp€CŽpÁ!8À!G8„à‡à‚#e,X°Àô§ÄÄļO…††ÊËÃÂÂò.ßµk—ý%Ë—/w|_ .”_ÕªU+yÉ´iÓä%O?ý´³FTp›%ÚË;w,XðøãתU«|ùò!!!O>ùäܹs³²²ò­yâÄ Sžžžþþþ<òÈ´iÓ®^½êÈKò™8q¢³½"8PÆOþøã%ÚÑsÏ=gµZ­Vëúõë•t!^ýu{j|á…Ž9rûöí‹/.^¼¸råÊBˆÌÌÌgžy¦Ð×®X±BÚ•+WΞ=û /ÈËÏŸ?ÿùçŸÿ’|¦L™¢ô‘ vGбÇcǎݹsG~,ÇÐÐÐ!Ä?ü /ÏÊÊúùçŸåÇù‚㯿þ:vìØ6mÚT®\ùèÛ·oÞImQØ9Žy]¼xñùçŸàjÖ¬Ù¿ÿ;wæ}¶¨ó à”S¿ÿþûøøxùñ¤I“–,YòÐCyxxÔ¨Qcøðá«V­’ŸJJJ:uêTñ›ª]»ö’%Kìuþë_ÿÊÈÈpÍ[À ŽÓ±cÇûî»Oq÷îÝ£GÊ åàØªU«Ö­[‹<Ç£GÊç;–/_¾mÛ¶ölÛ¶í¡‡úøã÷íÛwëÖ­”””¯¾úªeË–¯½öš#5\¸p!,,lùòå)))—.]ŠíܹóÂ… Ývì}A??¿©S§æ{öÉ'ŸìÞ½{³fÍš5kvìØ1G68vìXùÁÕ«WwïÞí¶0‚#ÅT¬Xñ±Ç“Ëy1==]>ë±eË–rpsæÌ<àÒáËMË Þµ»ÔÒÒÒäUªT)øl¡·ãñóóséHèÁ€’L&Óã?“››{äÈ98¶lÙR~¶uëÖ‡:pàÀñãÇïÞ½+„èÒ¥‹Éd’ŸMOOÏ{ïÃB]»v­øòݲbÅŠ>>>7oÞBœ={ÖÕÁñ¾ûîó÷÷—‹CXðÙ+V„‡‡»t\ôŠ©j ³7 ¿ûî»_~ùEa¿iŽ|šcjjêÆå%yç©«T©bïØ}ûí·É…0`@ñ{Ïw`VV–œ…uêÔqÃðÛ´i#?øæ›oäpœOÆ ýýýýýý,XàÈwïÞ÷€³(ìñÇ—›ˆ‹/–—äí8Ê-Z$?È÷Mƒòµ,Bˆœœœòðõõ­ZµjÕªU ýŠ”¼Nœ8qñâEû[¶l‘Üwß}ò—ÍØœ7nÜÈûÂ+W®8eøö³3Ïž=[ð6@ñññöhÛ¾}{G6h¿6(ïEëàG «V­ZóæÍ…çÏŸBx{{7nÜX~ªaÆrOñìÙ³Bˆ&Mšä»‚Äž#£¢¢ä˱…k×®ý¿ÿû?ÿzõêýþûïÅïýîÝ»£G–[}—.]š4i’¼¼gÏžò6µk×–—üðÃöS*¿úê«;v8eø=zô°b̘13f̸té’";;;&&fÈ!òS<ð€|”Šqùòå_|1..NþñùçŸÏ{%”ç8PÞO..N²ù <¸B… BˆŒŒ 9qʪU«6sæLW½aŒŠŽ#åå½&:ß·æ=K¯àWTûúú.[¶¬jÕªBˆ;vLŸ>=...++K1räÈþóŸ÷ÜuÕªUÍfó… ¶nÝ*§Æûî»oÑ¢E‹E^¡E‹Ï>û¬ü833sÏž=IIIÁÁÁù&ÍË¢I“&ß}÷]Þfêµk×쩱^½zk×®mÖ¬Y¡¯½xñ¢|6gÞÔèçç·~ýzgU2‚#åÉ_3-?¶Ÿà(³Çråʵk×®àk{öìùÓO?ýýïoÑ¢E… ‚ƒƒŸ~úé„„„Ï?ÿÜ~zb1:tèгgÏûï¿¿Fýû÷ß¶mÛ /¼wèèèY³f5iÒ¤bÅŠÍ›73fÌþýûË{ì±Ó§OÏ›7¯}ûöåÊ•³X,½zõš7oÞÉ“'»wï~Ï-xxxøùùµnÝzÚ´iIIIûÛßœü&€&ûYA@1è8À!G8„à‡à‚#Bp€CŽpÁ!8À!G8„à‡à‚#Bp¼‡””‹ÅòÓO?)]€ÂŽ÷£t ªà©t*•žž~êÔ©o¾ùfõêÕJ×  ÇÂõìÙóòåËJW "ÇÂÍš5ëÎ;BˆåË—ïÝ»Wér”Gp,\Û¶måÛ·oWºU 8:ŸÅbQºø‹SI§”.Е–IIIJW¡‚£Kó—IÍ, oŠÚð¦8—I˜ŠyV’ƒÛá}Q!Þ²ƒ6‰Ž Iù’¢ãÑJàÚ@R 8‚#¨š=/’(ŽàjD^ BGPò"5#8Â6oÞ¬t È7%92*žy_Tˆ7êAp…©$2À=™•.@íÞy礤¤‡zHéBèI˜LÂ$ ‰Ô@Ž "# ¦ÂþÁÜȨ‹©Ø?RaŒŠsÀ}8PL1mB>‘#8€›ÈF¥«ttèbGp9€“ù¹Á\‹F#PzD•!8€ ‘Gšùô¨ Á\…ÔŽŒ¨YGp R# QoŽàd\ ã*ùè Áœ‰F# „˜h<GpR#t._Rä—ÝxŽà¤Fè E@pBЏ7‚#8íFhI%Dp€²"5B3HŠ(‚#” ©ªFR„S ôHP£¼a‘_O8ÁJ‰Ôµ ­w!8@i¡0ÚŠPÁ ,BiG(1Úp“A<æ—J3+]h ©.gÊóGÖ«HP:ŽP¤F¸ ÓÐЂ# !,BkŽà(ÚpÂ"´Œà!5¢Lìy‘_"hÁ× ¹Ý!8À½ÑnD Ð\„~àHpy@p ´˜Œ†Á 8´Qš‹0*‚#Ž!/ÂðøÊA(íFñ—oÿã«ÿ „&SÙ·¡QG(©ÑèÈ‹™LùÿHÆým`ª€<˜6¸‚ÝDÇÄ‚ŽPÚ†C^4¬|I‘˜X,‚#ÀÀÈ‹FCC±lŽíFCóï³¾àAjÔ9ZŒúƼ³‹@^Ô%ŠnGp€ÿ¡Ý¨CLIë E¥zD‹QHŠ*Cp€?ÐnÔò¢Ö‘ÕàЦ¤5Ф¨)G‚v£vÑbÔ’¢–ÚD‹Q+HŠ:BpÚZCdT¿¼a‘¤¨#G€F0+­f´àÀèh7j-F")Á bDFUaÚðŽ v£J1+­„EäAp¨ -FÅ1¢íFu!2*ˆ¶"Cp(ȨÂ"JŽàP‘ÑÍ‹(‚#ƒbžZI\ûâN„E8ÁàF´݃°× 80"Ú 2ºa®Gp¸‘Ñu‹p/‚#áÝè>DFW ,B9G€ ‹°u 80Ú.Gdt–?Ãb ,B-ÌJÐ “&!$RcÙ˜Lü‘$ù5%E隀?Ðq”]Æ2b&Ap` ÌS;‘±Ô‹Ð ‚# TˆŒ¥cÏ‹„EhÁ€QÐnt&‘±$h.B/Ž€’ Ñè8š‹Ð‚#À1DF‘¡_G†ÀÜ­[·ï¾ûîã?މ‰ùâ‹/„o½õ–Ò£€?™t4=//µÒp\³fÍf7n\@@€¼dÒ¤I>>>›6m²Ùl…¾äðáÃBˆ!C†xzþ1•ÿè£6jÔèÌ™3¿ýö›ÒP$µuÓh$/š¢ÿàxðàA³ÙÜ¡Cû°°°´´49 T£F !DÞŒ(IÒ7Ìf³=J€2ôÑhdJÐ&GI’’““ýüüüüüò.oРâܹs…¾ªGåË—Ÿ5kÖ¾}û²²².^¼8mÚ´óçÏGDDT©REé100­7™’4Nçý³ÌÌÌÜÜܪU«æ[îãã#þÚSÌËb±ÄÄÄ :tèСö…ƒ š2eŠƒûµX,ù–lÞ¼YéƒahçÏŸWºäçô7%8(8ÅšbV¥GæAÁAB7ŒÏE– à`!„5%埭ú|›\„¿Á×µkW¥KP GùÒéŠ+æ[^©R%!ÄÍ›7 }Uzzú»ï¾›‘‘Ѹqã&M𤥥íÞ½{ݺuûÛߺtéâÈ~“’’”:ò Rºäçô7E·ïòŸsÓAÂtæaüëuúö¸ƒn·5¢à?ë;D¡óàXµjU“É”™™™où­[·ÄŸ}Ç‚ÞxãC‡Mš4é…^—\¼xñÙgŸ?~üúõ냃ƒ•#Ñè܈Ð#ŸãèéééããS°³˜žž.„°_gו+W¶oß^¿~}{jBÔ¬Yó•W^¹{÷î×_­ô˜BŸ×Skñ:®zØ;é¤óà(„ LKK““¢Õj•Ÿ*¸~ZZš¢^½zù–ËÆ«W¯*= Æ ¹ë`¸êºcÿï |Œü ®ÿàž››»k×.ûI’|}}›7o^pýzõêyxxœ>}Zúëï…|~Cýúõ•½Ó\£‘#4®˜€Xè#ÓpŒˆˆ0›ÍŸ~ú©|^£"**êÚµk}ûöõòò’—dddX­Vù²5ooï°°°ÔÔÔ?þØ~‡ðÓ§OÏŸ?ÿ¾ûîëØ±£ÒŸ®æ©5ÔhdVD@,#_#„¨Y³æÄ‰ç̙ӫW¯víÚ¥¦¦îß¿¿qãÆ#FŒ°¯“0~üøøøx!Ä;ï¼Ó¯_¿ùóçoܸ1444--íСC6›í­·Þzà”ýÒJ£‘ _ …ž‰È¯mé?8 !† V­ZµuëÖmܸ±Fƒ 7nœ|GžBùûûoܸqÁ‚»wïÞ±c‡¯¯oûöí_~ùå&Mš(=:%ÿ §òÒþzo@%ŠºT…ßSW0IWg³X,ÜÇQm¬V+wASg½)z˜§VS£±ð÷…£¢øÌN=MDÃþ[oˆŽ#¨”úDF(D=y@!jj4¨Yi¸QCŽ4LÃóÔjMò—Jó6\„Œ¨uú¿¨Ž:S£É$L&kJ ÿŒÃ)¿ñ 4„àn¤Î›{s;F”Ñ ˜ª UÚ›§V[däDF” ÓÍFFp·PUjäZi8¬`LäÇÈŽàbªºç‘E£•ˆ{"8Ð$ÍÌS«§ÑHdÄ_ÑJD)ÀeT’‰Œ &ÂIŽà*™ž&21.Bp =jŸ§V¼ÑÈåÒF‰‰p'‚#8•²©‘£ÞÑJ„²Žà< ¦F"£N™LBˆ û¼ÃPß@cÔ;O­Tjä{_t¤Ðï_II±òÍ+P :ŽPfJ] C—Qã˜w†æ li45ˆ˜ 8@¸?5µ#_RäMƒh‰ºNptsj$2ª EÁJÎÍ'5U‰†" ˆà%äÎF#‘Q5h(‚à@CT1Oí¶ÔHdT E  ‚#8Ì=©‘Ȩ’"pOGpŒR#‘јzJà@ž§vuj$2º E ìŽP,W_@Mdt’"àtG(šKDFg#)®Fp ÊÌS»:5’kÊŒ¤¸Á ãºÔH£± HŠ€²ŽP€‹R#‘±äHŠ€ªà¯\‘‰Œ%‘7,rÌU!8P;·žàèôÔHdtmE@+Ž „pÁmwˆŒE#)Ep×4ICÅ4 GªæŽyjç¦F¢­èÁ€±915i+zGp``ÎJŽŒ´C!8P/×ÎS;%522ÒV ‹àÀœ•‘›h+OÙS£´Dp`0eLºŽŒ&“"H~¬Ó!(³Ò@á\r‚cYR£ÉôÇÜ´¾"•<,ûàRR¬º"§¡ãÀ0ʘu¦˜†P:GP–¯ÔËÜ4a@Ù¨‘3ç©KÝhÔ~d$,p.‚#]+KjÔ`Ôâ¾9\Šà@¿J—5Øh´çEMU @{Žtª©QS‘‘ihîGp :N8Á±t©Qõù‹°@YGºSÒÔ¨îF#a€zèK‰R£Z##a€:¨K™æ©KšÕÊ‹Ôà@/Ojj4rA4 !8Ð…¥F¥3ÍEEp }¦FE„E:@p "¥9ÁёԨ\dd&€žh™ƒ©Ñ½©æ"½"8Ь{¦F÷6i.Ð=‚#µ(Ù<µ#©Ñõ Žæ"C!8РâS£ë4Á€ÖÜ35º,Í‘Á€¦“]Óhd2ìŽTÁ¡‹ONu4  ‚#(*5:µÑH^€bhA1©±ÌÉhpÁ€òî1O]hj,s£‘æ"”Á€º•K÷È‹PjG*V05–¶ÑH^€²#8P«BSc syœˆà@a…Ÿà˜/5–°ÑH^W 8PŸ‚©Ñ±H^—"8P™¼©Ñ±F#y܃à@IÅ݈ç^Fò"¸Á€šØÛE§Fò"(…à@5äÔXÄô4yGp öÔø×`H^õ 8PÌÿNp4É?ý/’@…Ž”&§FIäEP7‚#E™„S ·P‚#'0sƼ©‘v#hç8(=ùFûYŒ…?] 5þBÇ@i˜îùE/öÈ(è5€N”€£ß%Mj="8pȽ[Œ…®Gj1JpŒ]³fMrrr… Ú·o?qâD__ßâ_rìØ±… ž8qâÖ­[‹eôèÑ<òˆÒãÜÍÑ£}í¼ë–9Á´ËÇÌ›7ï­·Þúå—_ZµjU©R¥µk×¾øâ‹YYYżdÛ¶m ضm[@@@óæÍ¼mÛ6¥‡¸Oþ{w;ò‚{¥F€¦é?8&%%EEEnÞ¼9**jË–-ƒ>zôèûï¿_ÔKnÞ¼ùæ›ozzzÆÄÄ|ùå—QQQ«V­ºï¾û¦M›f³Ù”àZ÷¸Pº˜×@ïô׬Yc³ÙÆ /™4i’ϦM›ŠJk×®MOO9räÃ?,/iÚ´i·nÝ®]»vìØ1¥¸J‰[Œö—9üæ©@ÓôË*00°Ð—xyy™ì!„g¨srr”>H€£œÓbÌ·­Bž"5€Q¨+8¾ôÒKµjÕ:~üø;ï¼Ó®]»—_~yË–-ÙÙÙeÙfxxxnnî®]»ìK$IJHHðõõmÞ¼y¡/騱czzú©S§ò.”ïÝÓ°aC¥poÎŒŒ¢dwj,rÜÁ´O]Áq„ [·n]¹rå€*Uª´mÛ¶1cÆ<öØcÿüç?9RºmFDD˜ÍæO?ýT>¯QuíÚµ¾}ûzyyÉK222¬V«ý²µ§Ÿ~ZñÖ[oÙ»žÇŽû÷¿ÿíããÓ¥K¥P'GFQôôôÏÒn1INûçÅÉrrrvîÜùÍ7ßlÛ¶íöíÛBˆºuëöîÝû©§žªU«V‰6µdÉ’9sæÔªU«]»v©©©û÷ï ]²d‰ý6=7n?~|HHH||¼¼dáÂ…|ðOË–-333zôè¥ ß_o¯ãÆí–-5´H½G!Äõë×·nݺyóæ}ûöÉW¥T«VÍËËëâÅ‹Bˆúõë/^¼¸FJ—™Ÿaÿ+DÍtùß뮊Œâ^FQâêBƒ£.ßà}Q!Þ2ì¿õjì8^»ví»ï¾Û²eËrss…þþþ?þx÷îÝ~øa!ÄÞ½{çÍ›wüøñüã‹-Rº^ÀÝ\…óS#@7Ô—/_¾eË–üÑf³ !üüüžxâ‰nݺµlÙ2ï¬tÛ¶m~øáÖ­[8æ5|øð–-[*]à>ÊDFÇwY¶v#óÔ 3ê Žo¼ñ†Ò%n¢@d%l42I ø+…ƒãŠ+„­[· ±ÿX¼*[3PFÊDFAj”•ÂÁqÆŒBˆéÓ§ËÁQþ±xGh—b‘QN pp=z´¢I“&ò¯¿þºÒp %#£PæRNpýQ88¾úê«y1b„²õ® ðÌ%Ý=íF@Ôuq  3Ê7Kº{R# h Ç;v”ô%:tP¶fÀ GFQª>'©P,…ƒãK/½TÒ—$%%)[3P<å#£P>5r‚#è’ÂÁ±W¯^JÀiT…ò© W ÇÈÈH¥àjù?µÔÐ!.ŽÊJ-FQÚÔèìv#óÔ W|s Pz*ŠŒB-© c|s Pꊌ‚Ôp¾9(1ÕFHj¸ß”€ê*ˆ@ÏÌJPœŒŒŒììl¥«„Âdú£¯§¢V–‚h7JNWU=zô³Ï>;qâÄÕ«WÍfs­ZµZ´h1jÔ¨ºuë*] JusÓe¬‰Ô(Õu?ú裈ˆˆ;v\½zµ\¹råË—?wîÜþóŸîÝ»¯ZµJéê`8öF£ºJPWpܹsççŸîáá1xðàï¿ÿþ§Ÿ~JLLܱcÇðáÃ…ï¼óΑ#G”®F¡Æ¹i{ejMœàú¦®à¸jÕ*I’^{íµ©S§Ö®]Ûd2 !jÔ¨ñÆo¼ùæ›999_|ñ…Ò5ÂT…:gÍF¡®àxâĉråÊ 2¤àSƒ òöö>zô¨Ò5BçT:7m/®,•1I (uG!DõêÕ== ¹dG¾J&33Sé¡gêm4 R#@yê ŽÍ›7?wî\zzzÁ§222¬VkãÆ•®ú¤êF£ÐFjäGÐ=uLjˆI’&Ožœ“““wynnî”)SrssÃÃÕ®:¤êF£à¼F€Z(|Ç}ûöåýÑÃãOŸ>k×®íÒ¥KDDDpp°Éd²Z­qqqçγX,]»vU¶`èŒú¾x¥°ËX“Ô'Q88:´Ðå/^üè£ò-LJJjÓ¦MRR’²5C74ÐÈÓNjdžŒ@áàØ«W/¥ŒHF¡¥Ô0…ƒcdd¤ÒG†£F£Sª$5œM]ÇïÍ7ßìÔ©“ÒU@ÃÔ~étÞB5P%Àpî8týúõ­[·¦¦¦æ[ž••õÝwßyxx(] ´J3aÌ)…º·ÝÈ Ž`ê Ž¿þúë€.\¸PÔ TºFhÉ$„"5PFê Ž_|ñÅ… ZµjÕ³gÏ 6üðÃÿøÇ?¼½½Ož<¹|ùòN:Ué¡1r³Z­B)]‹cµ–u#¤F€«¨+8îÚµ«\¹róçϯR¥J§NÚ¶mÔ¦M!DppðÌ™3û÷ï¢t™Ðm\:·\ÍÔ 0(u]séÒ¥zõêU©REQ­Z5__ßãÇËOEDDøúú~ñÅJ×mPû—ÁZ®¶£@»‘À8ÔÕqB˜Íÿ˲uêÔ±Z­òc‹ÅrôèQ¥ „Úi¬Ñ(´†¢®ŽcõêÕÏœ9“‘‘!ÿX»víüÑþ¬Éd:þ¼Ò5BÕ4Öh¤F€–¨+8vîÜ9++ëõ×_ÿå—_„-[¶<{öìîÝ»…×®];tèP­Zµ”®꥽³µWq0O F¢®©êÁƒoÙ²eÛ¶m’$-X° ,,ÌÓÓóÕW_mÑ¢ÅÉ“'333»wï®tP#íMO §¦FÚ·PWÇÑßßÅŠ&LhÒ¤‰¢V­Zo½õVvvöž={ÒÒÒÂÃÇ ¦tPíMO R#@“ÔÕqBøûû¿ôÒKö гgÏcÇŽ+]TG““½¤F€6©.8æ•‘‘áååU©R¥G}TéZ :šœžºE …À`Ô=úÙgŸ8qâêÕ«f³¹V­Z-Z´5jTݺu•. j¡Õôåܺi7ÜK]ç8 !>ú裈ˆˆ;v\½zµ\¹råË—?wîÜþóŸîÝ»¯ZµJéê  ¤F!H¨+8îܹóóÏ?÷ðð©Qè952O Ƥ®à!IÒäÉ“srrò.ÏÍÍ2eJnnnxx¸Ò5Â}4|R£Ðt›€Â)|Ç}ûöåýÑÃãOŸ>k×®íÒ¥KDDDpp°Éd²Z­qqqçγX,]»vU¶`¸¶s—+ªWM»`X Ç¡C‡ºüâÅ‹}ôQ¾…IIImÚ´IJJR¶f¸©±À6Iå){õê¥ô€ê lS]©‘À°Ž‘‘‘J¨ˆV¿~:ï4\=÷ ÆïªB\¾|ùçŸNMM½{÷nppp£FjÖ¬©tQp-͇. @eíF€‘©.8^¿~ý“O>Y½zunn®}¡‡‡Ç3Ï<3nÜ8¥ „K‹Ø,© "ê Ž¹¹¹/¿ürbbb¹rå:wî\·n]3gÎlß¾}åÊ•?ÿüóŠ+<<<”.NFj,b³jLœàF¦®à¸téÒÄÄÄfÍš}òÉ'öåW¯^=ztbbâÒ¥K‡®t™p&R#Z¡®€ïÚµËd2}øá‡yS£¢Zµj}ô‘ÙlÞ¹s§Ò5™4º\7U¶§®àxòäɺuëÖ¨Q£àS<ðÀÏ?ÿ¬tpRcÑ[Vijdž N]SÕåÊ•ËÊÊ*êÙ¬¬,ooo¥k„hþ¶;ˆ©uu5jô믿&&&|êøñãçÏŸoذ¡Ò5¢¬´ý ÔyÇ€Á¨+8Ê_$3f̘|ç2îÞ½ûÕW_BôìÙSéQ&$®{ ÝP1uMUwïÞ=!!aݺu#FŒ¨Q£F½zõ„©©©/^BôìÙ³GJ׈ÒÓIj4ê$5'8Ô…ï¾ûî#<òá‡^ºtéÒ¥KòÂjÕª?þé§ŸVº:”©­S]p4™L}úôéÓ§Ï•+WΜ9#IR½zõ•® e¢“¸åÒa¨»Ý€P[p<þ¼Íf«S§Ž" ßÝ¡Q¤F6®öÔÈ<5@¨-8vïÞýÎ;{öìñ÷÷Wº8©Ñ«=5 S×UÕ!!!BˆS§N)]œƒÔ€ž¨+8N›6ÍÛÛûóÏ?¿}û¶Òµ ¬t·\= ÚíP×Tu@@ÀܹsÿñôêÕ«W¯^uêÔ©R¥J¾u:tè t™¸7R£cÛ×FjäG€L]Á±cÇŽòƒk×®}òÉ'…®“””¤t™¸R£cÛ×FjÀN]ÁQþæh©½RWpŒŒŒTº” qËQÚi72O °S×Å1ùdgggff*]¥ŸÔÈ$5…QWÇQvúôéùóç9räòåË6›­zõê>øàèÑ£6l¨ti(©ÝS]p\¼xñܹsm6›¢\¹r—/_¾|ùò¶mÛ&L˜0bÄ¥ D!ô“µÜ0ÚÍR×Tõ¾}ûæÎk2™üý÷ßÿôÓO‰‰‰ ÿûßÍfó|°oß>¥kD~¤Æ’ìBc©‘y©+8®\¹Òf³Mœ8qêÔ©µk×6™LBˆêÕ«Oœ8qÊ”)6›-&&Féñ¤Æ’ìBc©€|Ô;V¾|ùÁƒ|jÀ€*T8vì˜Ò5âHŠŠ‚cNNÎ¥K—=<< )Ôl®Q£†Ä¿îª¡Ÿ¬åž‘h°ÝÈ<5 G“ÉT¡B…sçÎݸq£à³ééégΜiÒ¤‰ÒeB=¥F÷Ð`j  G>}úØl¶7ß|óÎ;yŸÊÎΞ4i’Éd>|xé6ѼyóÇ{lÊ”)ׯ_wüµ/^|øá‡'Nœ¨ôR ]¥F] ×R×íxž{î¹'NìØ±£sçÎ}ûö 2™LV«õ«¯¾º|ùr÷îÝoݺµcÇûúÁÁÁuêÔ¹çfçÍ›·`Á‚Š+¶jÕ*55uíÚµ§OŸŽŽŽööö¾çk%IzóÍ7oݺ¥ô±Q ]-&©( uÇîݻˮ\¹òùçŸç{vãÆ7nÌ»äõ×_¿ç“’’¢¢¢ãâℳfÍŠŽŽ~ÿý÷§M›vÏ’–.]zàÀ¥ \€ÔxÂ9ÁŸº‚c¯^½J´~ýúõï¹Îš5kl6Û¸qãäÔ(„˜4iÒþóŸM›6M:Õl.n²þôéÓóæÍkذáÉ“'•>6ª Ÿv#©€’SWpŒŒŒtú6|¸eË–E½0''ç7Þðõõ4iÒСC•>6Ê#5`p*º8Æ$IJNNöóóóóóË»¼AƒBˆsçÎóÚO>ùä矞={v•*U”‡òô“µÜ6-·™§J]G§ËÌÌÌÍÍ­Zµj¾å>>>Bˆß~û­¨9rdÑ¢Eƒ jӦ͉'Jº_‹Å’oÉæÍ›•>¥”’bµZ•®£ Ο?/? # ²¦X…vX;Ž’ýMªð¾¨oŠâºvíªt j¡óà˜••%„¨X±b¾å•*UBܼy³¨W½ñƵk×~íµ×J·ß¤¤$¥‡î4vè‚”.¤¬‚‚‚äÁ¸g$AAÚ>bî©_ëGI¯x_Tˆ7EYÿY/Ø!2ǪU«šL¦ÌÌÌ|ËåÛëÈ}Ç‚æÌ™sþüùU«V9r¿}ÓÏ µ;£åIjŠ¡ós===}|| vÓÓÓ…öë¬ó:pàÀªU«^z饇zHéò¦§ÔLjtxœà(œÎƒ£"000--MNŠvòù[×?}ú´bþüù–?õéÓG±~ýz‹ÅÒ£G¥„’3™¬))J€æé|ªZž””´k×®'Ÿ|R^"IRBB‚¯¯oóæÍ ®_·n]ûš²›7oîÞ½»f͚͛7¯^½ºÒrý´呸çÒí·(†þƒcDDÄ‚ >ýôÓöíÛË×ÄDEE]»víïÿ»———¼NFFÆ•+W¼¼¼î¿ÿþ¶mÛ¶mÛ6ïNœ8±{÷î–-[ºâ6“ꤟÔèNºHÌSŠ¡ÿàX³f͉'Ι3§W¯^íÚµKMMÝ¿ãÆó~WaBBÂøñãCBBâãã•®WyºJ\€óè?8 !† V­ZµuëÖmܸ±Fƒ 7nœÜ}D>¤FPCG!DÏž={öìYԳݻwïÞ½{QÏ6nÜXO÷e4 w¦FÚcÐÿUÕpœ~:t¤ÆR…Å!8â¤FP<‚#„ k•šŽÚÜÁúÂ$uéGÃ<5àŽÐQ»Q?#@ŽF§Ÿ¬åæ‘è«Ý€#ކFj,íîô–™§8‚à”îR#"8íFP"GƒÒOÖb’w!8©±´»ÓgjäG€ƒŽÐ,ýä_´àh8Ä­RÒi»ÇE?©‘Ij§Œyj€£ŽÐ ýä_´„àh :‰[î†~Û”ÁÑ(t’ÝOש‘yj@‰¡)ä_”Cp4Ä-&©PÁQÿH¥Ý#©€¿ 8B t~Õ…%EpÔ9W)Ñn ‚£žé$52I €:¡n¤FW’yj@‰uKíF=Œý 8ꉫ”ŒÑn tŽP+&©]8Pæ©¥ApÔ!=´õ0ô†àõQ$5¦Ý@©õ†V]i)52O (5‚£®è!5êa èÁjÂ$5*FpÔÍ·êHî.óÔ€Ò#8À!G ÝXª«Ý@¡¤F7˜yj@™õ@ÛíFmW€5ÜUÆk7PvG(ŠIj´ƒà¨mÚn7j»záG@Ù¡¥R#íFJ‹à¨a4ìJŒÔ@¡Nmt÷Й§8ÁQ«4ÜnÔpéÁ†DÇ €2"8j’†{v MR[S¬J\1ÌSœ…à7ÒpàG Òjúâþ;hÁºføÔÈ<5À‰ŽC»(…à×c’] 8j‰&Ûv¤Få0O p.‚#BpÔ Ú%Ù/íFœà—!5*Šyj€ÓµA“íF /G¸íFEÑn¸ÁQ´×n$5 GG8„àg£Ý¨4æ©.BpT;ÍS“Ð/O¥ @y‹Eé ˜¤¤$¥KÐ ‚£ªÑntl¿´ÿ‡yj , ÑÁÈøpSÕpR#zGpT/-µIÁÐæ©.EpD™ÑnÀŽ*¥™yjR#†Apt‚yj€«Õˆvã½öK»QZ¤F5¡Ýp‚#BpTmÌSÓnÀxŽ(9R£Ê0O Íf ©S§ÎìÙ³•®%¿   ˆˆ¥«€«И7n4kÖ¬zõêS¦LY±b…K÷6}út¥Gü?7oÞ9rd:u*Uª¶ÿþ¢Ö¼{÷®§§§é¯ªU«¦ô´ÍSé𘧦ÝJóóó‹•$©[·n‘‘‘tÑŽ÷ìÙ®ôˆÿžžÞ²e˳gÏöë×Ïßß?..®k×®Û·ooÞ¼yÁ•­Vknnn›6m‚ƒƒí +Uª¤ô ´àˆ’ 5ªóÔ€a™L¦ñãÇwíÚuÇŽ:tpâ–srr¶mÛ¶wïÞùóçÛl6¥ú?|ðArròÒ¥K‡ "„;vìÃ?üÚk¯mÛ¶­àÊÉÉÉBˆ3f¨'øêSÕ*¢v#@Mrrr„‹-rîfÓÒÒžxâ‰éÓ§_½zµ,Û±ÙlÏ?ÿ¼‡‡‡³æÓW¯^]£FÁƒË?÷ë×/!!áÒ¥KW–ƒcýúõ{p Žà‡Ñn•Y¶l™â믿¾yó¦7(I’$I'Ož,õF$I>|øÊ•+—,Yâ”ÉôôôôS§NuìØÑd2ÙvêÔÉf³z¦crrr¹rå*W®»páÂÝ»wggg;ñ(ÁŽ!5ªóÔ€‘ݸqcýúõ/¼ðÂ;wÖ¬Y£t9!IÒK/½´lÙ²E‹ÉÓÊe÷믿J’˜wa@@€¢ÐÎhrr²Ùl®_¿~ÿþýGŽÙ®]»fÍš:tHéc£mœã¨ÌS€ åém) øV¯^}çÎqãÆ¥¤¤,]ºtĈ…®–““³aÆ¢6òÔSO¹ liÔ¨Q‹-}zÿþýÏ<óŒ¢oß¾f³Y>ß± ©h®¨M’¤ØØØ˜˜˜ŒŒŒ±cǵZI 4›Íùf¥¯]»&„¨U«VÁõkÖ¬™/P>þøãBˆ'N¸bÔAÇQ˜§ÎÔÅ’c¢«W¯=sæL³9KÈýSÕ=zôèÕ«—bРAË—/ïÑ£GÁÕJZ˜§§ghhè®]»ò.ܹs§Édjܸq¾•SSSããã;uêÔ¨Q#ûB¹=Y·n]§Ù8Ž(‘V­˜§ŒL’¤˜˜˜|044T^Ò¿ÿW^yeëÖ­]ºtÉ·²û§ªíáuîܹñññcÆŒ ÷öö.{a#FŒ;v¬=‰^¹r%..®K—.AAAùÖôöö~ýõ×[µjµuëV///!„Íf‹ŒŒôôô,xˆà8¦ªQ4&©@•¶oß~öìÙþýûÛ—ôéÓÇËËkäȑӦMË·²Ó§ªW­Zåëë;a„{®0{öl«Õ:kÖ¬‚Ï–¢°¡C‡>ôÐCœ2eÊ{ï½×¡C‡ÌÌLû7"Ι3Ç××wÁ‚ò®§OŸ¾k×®—_~yòäÉ-[¶\½zõŒ3ìi¥@pTM½¿ 5:€v#`pÑÑÑBˆ¼Á100pöìÙ·nÝúé§Ÿ\tæ¢]vvö7²²²YùÅ_|ä‘G"##ËrKH»*Uª$$$<óÌ3qqq‘‘‘õë×OHHøÛßþ&?{ûöí7nܹsGþñ7Þˆ‹‹ \¾|ùâÅ‹}}}7mÚ4yòd—Ý3¹ú×Ë€,KRR’ãë«48ê«ÝhµZ Ndh—>‚£ÎÞÝ0æûRÒ¿·±xñâãÇøá‡Jâ¥ø0ìï GF_©àD·oßÞ¾}{‹-”. 8*L¥íFE£v#íÚ·o_£Fž{î9¥ ŒrUullìš5k’““+T¨Ð¾}û‰'úúú³~VVÖ—_~wþüùÊ•+7hÐ`ذa=ö˜Òãp Â, h;vìØ±£ÒU@†ŽóæÍ[°`AÅŠ[µj•ššºvíÚÓ§OGGG¼5€,''gèСGŽñññyôÑGoß¾ýÃ?ìÞ½{̘1£FRz4:E»Ñ1´ ÒÿTuRRRTTT``àæÍ›£¢¢¶lÙ2xðà£G¾ÿþûE½dÍš5GŽyøá‡>ÿüó/¾øâ믿®ZµêgŸ}öóÏ?+= S¤ÝHj@ ô׬Yc³ÙÆ /™4i’ϦM›l6[¡/Ù¼y³bêÔ©ö–dHHÈÈ‘#sss÷ìÙãÄÚT7'¬º‚€Šè?8ûì3W¤F¡Ý¨ÌSTBÿÁ1""Âl6úé§òyBˆ¨¨¨k×®õíÛ×ËËK^’‘‘aµZåk %IZ¾|yåÊ•ß|óM¥k×#R#”™Íf ©S§ÎìÙ³•®%¿   ˆˆ¥«€«èªºfÍš'Nœ3gN¯^½Úµk—ššºÿþÆ1¾NBBÂøñãCBBâãã¯^½zöìYooïÜÚÓO?=hÐ ¥Çä$Ì—kíFݸq£Y³f©©©S¦L©S§N¡ÿ`9KXXXxxøÛo¿­ô 5S˜¾é?8 !† V­ZµuëÖmܸ±Fƒ 7nœ|Gž‚ä¾cVVÖñãÇ >ë” «Uؘ¤Íòóó‹•$©[·n‘‘‘® މ‰‰{öì WzÄš)L÷ …={öìÙ³gQÏvïÞ½{÷îòã-Z8xF” ©±äh7(†Éd?~|×®]wìØ‘÷›uË.''gÛ¶m{÷î?¾ÍfSz (Ì8Œñîo7’Àrrr„‹-rnpLKK{â‰'ʾ›Í6dÈ•+WFGG;¥-ê¬ÂPjú¿8ù©b¦àË–-B|ýõ׎|šã%I’$éäÉ“¥Þˆ$IÇ_¹rå’%Kœ5™î”ÂPGw3bl£ÝX*ÌS(Þ7Ö¯_ÿ /ܹsgÍš5J—ó’$½ôÒKË–-[´hÑ!C”.NÃTµÁ0I %b2)¶ë{ýu½zõê;wîŒ7.%%eéÒ¥yï’WNNΆ ŠÚÈSO=å‚Â¥Q£F-Z´hðàÁÆ +j5÷†²#8jD»P O-[¶Ìb±4mÚ4""âÕW_=uêTƒ ®–‘‘Ñ»wï¢ÇçüÆÇÇK’T«V­µk×Μ9³N:…®æþÂPvLU íFЋӧOïß¿ÿ™gžBôíÛ×l6Ëç;äãã#͵I’“‘‘1vìØ¢Vsa(;:Žn¥ä ޤFí Ýàžä˜(ÇêÕ«‡……EGGÏœ9ÓlÎßrÿŒp=zõê%„4hÐòåËããã{ôèQp5¦ªµˆà€ÆH’óàƒ†††ÊKú÷ïÿÊ+¯lݺµK—.ùVvÿŒ°=¼Î;7>>~̘1áááÞÞÞŠ†²cªÚh7jíF÷´}ûö³gÏöïßß¾¤OŸ>^^^#GŽœ6mZ¾•>#¼jÕ*__ß &ÜsÍ€€€Ù³g[­ÖY³f|–©j-"8ÂHàJÑÑÑBˆ¼Á100pöìÙ·nÝúé§Ÿ\º²³³oܸ‘••åÈÊ/¾øâ#<Éõ©j÷QìG7ï˜ÔX´8béÒ¥K—.Í·ðµ×^{íµ×œ»#‹ÅR0†2äîÝ»Ç/ô%V«5ïf³yÿþýN?…7 ã¨wF¼á8À…nß¾½}ûö-Z(]@p„SÑn,Ú4aß¾}5zî¹ç”. `ªZט¤8[ÇŽ;vì¨tPG8 ©±lh7Ôàè& œjÈÙÀ©Ž:Å$µ¦ÐnhÁeFjÀŽzÄ$µ¦ÐnhÁeC»à 8ºƒ[;€îÜ©±Ìh74„à¨/¤Fà2G@1´ÚBpÔÚÀ•Ž(9R£3ÐnhÁQ/ÜÖn$5€Òl6[HHH:ufÏž­t-ùEDD(]\…àèrîHtܸQkh7(‹7n4kÖ¬zõêS¦LY±b…K÷6}út¥G\šÂîÞ½ëééiú«jÕª)]¸¶y*]4…v£3”‘ŸŸ_ll¬$Iݺu‹ŒŒ8p ‹v”˜˜¸gÏžððp¥G\šÂ¬Vknnn›6m‚ƒƒí +Uª¤tíÚFpÔ>&©ÀL&Óøñã»víºcÇŽ:8qË999Û¶mÛ»wïüùóm6›Ò-eaÉÉÉBˆ3f¨0øjÁŽ!5: íFN”““#„X´h‘sƒcZZÚO>¾GWsia©©©ñññ:ujÔ¨‘}azzº¢nݺN²qQR£óÐnà\’$ÅÄÄ<øàƒ¡¡¡ò’þýû¿òÊ+[·níÒ¥K¾•Ý?Um¯sçÎ3fLxx¸···; óöö~ýõ×[µjµuëV///!„Íf‹ŒŒôôô,xˆà8¦ª5È íFR#¨ØöíÛÏž=Û¿û’>}úxyy9rÚ´iùVvúŒðªU«|}}'L˜pÏ5fÏžmµZgÍšUðY§6gÎ__ß È»ž>}ú®]»BBB^~ùåÉ“'·lÙrõêÕ3f̰§m”ÁQk¸q£ÖÐnàtÑÑÑBˆ¼Á100pöìÙ·nÝúé§Ÿ\tæ¢]vvö7²²²YùÅ_|ä‘G"##ËrKHݾ}ûÆwîÜ‘|ã7âââ—/_¾xñb__ßM›6Mž<ÙÕeè›ÉÕ¿^d±X’’’„‹2íÆR±Z­AAAîß/©±J½)(ž1ßûßÛpÐâÅ‹?þá‡*]ˆs”âÀ°¿3t5…ÔPÚíÛ··oßÞ¢E ¥ ŽÈƒÔèT´èÒ¾}û5jôÜsÏ)]ÀUÕÚáêv#©Ñ©HôªcÇŽ;vTº (ƒŽ#BpÔÚšB» KGŒÔÐ+‚£¸´ÝHjŽ!8ª©QSh7tŒàè*|Ë‘úFpT7ÚÚAjèÁѨH „Ž*æºv#©ÑÙh7Œ€àh<¤Fg#5 ‚à¨V.j7’Ô0‚#c³ÙBBBêÔ©3{öl¥kÉ/(((""Bé*à*GU¢Ý¨´(âÆÍš5«^½ú”)SV¬XáÒ}………MŸ>]éÿáîÝ»žžž¦¿ªV­šÒuˆ§Ò R£F(ÅÏÏ/66V’¤nݺEFF8ÐE;JLLܳgOxx¸Ò#þƒÕjÍÍÍmÓ¦Mpp°}a¥J•”®Ë@ŽÆ@jt6R#Å™L¦ñãÇwíÚuÇŽ:tpâ–srr¶mÛ¶wïÞùóçÛl6¥ú?ÉÉÉBˆ3f¨'Ë SÕ.Qú¦¡+Ú¤Fg#5P‰œœ!Ä¢E‹œ»Ù´´´'žxbúôéW¯^-Ëvl6ÛóÏ?ïááá¬ùt98Ö¯_ß¹ã…ãŽzGjt6R#õX¶l™â믿¾yó¦7(I’$I'Ož,õF$I>|øÊ•+—,Yâ¬ÉôäääråÊU®\966váÂ…»wïÎÎÎvâÀqOG5qz»‘Ôèl¤FêqãÆõë׿ð wîÜY³fÒåü…$I/½ôÒ²eË-Z4dÈgm699Ùl6ׯ_¿ÿþ#GŽl×®]³fÍ:¤ôp „s(’I˜Ü{ñÿ¥ºzõê;wîŒ7.%%eéÒ¥#FŒ(tµœœœ 6µ‘§žzÊùeKÒ¨Q£-Z4xðàaƵZ) KNN¶ÙlÓ§OïׯŸ——×úõëÇß»wïãÇûøø8} (ˆà¨´Uv#`@jþÔ/[¶Ìb±4mÚ4""âÕW_=uêTƒ ®–‘‘Ñ»wï"è‚ûxÄÇÇK’T«V­µk×Μ9³N:…®VŠÂvìØQ¾|y???ùÇaÆݾ}{Ô¨QqqqÇwú@PSÕ:Ejt6R#U9}úôþýûŸyæ!Dß¾}Íf³|¾cA>>>RÑ\Q›$I±±±111cÇŽ-jµRV³fM{j”=þøãBˆ'N¸ëÀGupn»‘Ôèl¤Fj#ÇD98V¯^=,,,::zæÌ™fsþ–û§ª{ôèÑ«W/!Ä Aƒ–/_ߣG‚«•´°ÔÔÔøøøN:5jÔȾ0==]Q·n]çb†à¨;¤Fg#5PI’bbb|ðÁÐÐPyIÿþý_yå•­[·véÒ%ßÊ¶‡×¹sçÆÇÇ3&<<ÜÛÛ»Œ…y{{¿þúë­ZµÚºu«———Âf³EFFzzz5\„©jpb»‘Ôèl¤F*´}ûö³gÏöïßß¾¤OŸ>^^^#GŽœ6mZ¾•>U½jÕ*__ß &ÜsÍ€€€Ù³g[­ÖY³f|¶¤…LŸ>}×®]!!!/¿üòäÉ“[¶l¹zõê3fØ4\à¨4R£Š‘¨Stt´"op œ={ö­[·~úé'¹h—}ãÆ¬¬,GV~ñÅyä‘ÈÈȲÜÒî7Þˆ‹‹ \¾|ùâÅ‹}}}7mÚ4yòd—Žy™\ýëe@‹åÔ©$G«³‚#©±XV«5((¨D/!5ºZ)Þ¸1ߋŒ””¤tZ²xñâãÇøá‡Jâ¥ø0ìï GE‘UÉ$L¤F(ÊíÛ··oßÞ¢E ¥ ¸8FûHNEd€âíÛ·¯Q£FÏ=÷œÒ…@Gå8¥ÝHjt*R#ÜSÇŽ;vì¨tPSÕZFjt*R#Å#8:ŸCWÆ”½ÝHjt*R#÷ÄTµ6‘Ç$LBÝ_G €J•PÆv#©Ñyh4à8¦ªµ†Ôè<¤FJ„Ž£Û•¥ÝHjt¦§(‚£v„F#¥Cpt¯R·IÎ@£€² 8j©±Ì‚ƒ‚‘@Ñ,‹Ò%@pt£ÒµIef¦kJPPÒ…P©¤¤$¥K(ŽÕjåo0¨WU«©±lLÂÄ8 Gw)E»‘ÔXœÎ€ÓÝ¢¤©Ñ$„ 5–‘!8ªÆÒ"2àRG×+Q»‘ÔXr¦?:´DF\‹à¨&¤Æ¢Å€;]ÌÁv#'5–-FApTŽ!/ ,‚£+ݳÝH£ÑäET‚€)666""¢yóæ=öØ”)S®_¿îäÈF²PaäwÛoß-ÿ)Ë»víªô˜oŠ:ñ¾¨o ÔƒŽcáæÍ›·`Á‚Š+¶jÕ*55uíÚµ§OŸŽŽŽööövtÅ´i4ÆÞY4P%:Ž…HJJŠŠŠ Ü¼ysTTÔ–-[|ôèÑ÷ßß [§ÑøÇa0åûcï,’P'‚c!Ö¬Yc³ÙÆ /™4i’ϦM›l6›C›(´Ýh2èu03b¾˜HX@Ž…8xð ÙlîСƒ}‰‡‡GXXXZZÚáÇK¼9SžÈ¨ÓtTh4,&#Ð"‚c~’$%''ûùùùùùå]Þ A!Ĺsçî½a’”?/ª>)þJ Ɉè Çä—™™™››[µjÕ|Ë}||„¿ýöÛ=·`’„&Í奖¥~­EX”.ß"-(ÒhxSÔ‰÷E…xS Çü²²²„+VÌ·¼R¥JBˆ›7oÞs Zí±%)]P7¦ªó«ZµªÉdÊÌÌÌ·üÖ­[âϾ#€óóôôôññ)ØYLOOBد³0‚c!ÓÒÒä¤hgµZå§”®@ÇB„‡‡çææîڵ˾D’¤„„__ßæÍ›+]€2Ž…ˆˆˆ0›ÍŸ~ú©|^£"**êÚµk}ûöõòòRº:e˜$I›—»Ø’%KæÌ™S«V­víÚ¥¦¦îß¿?44tÉ’%oÓ`Ç"}óÍ7ëÖ­;zôh5Z·n=nÜ8ùŽ<ÆDp€C8Ç!8À!G8„à‡à‚#Bp€C<•.@?bcc׬Y“œœ\¡B…öíÛOœ8Ñ××W颌¢¤¿_¿~ÇŽË·ÐßßÏž=JÅ(RRRºuë¶fÍš‡zHéZ ÇñƒÏ'EAYYY_~ùe\\Üùóç+W®Ü AƒaÆ=öØcJ×¥¥8ò†ú¤cÞ¼y ,¨X±b«V­RSS×®]{úôéèèhooo¥KÓ¿Rü³gÏz{{׫W/ïB¾OÒbbb”.Á¸?ø|R”’““3tèÐ#GŽøøø<ú裷oßþá‡vïÞ=f̘Q£F)]ž•îÈë“"¡ÌNž<Ù°aÃvíÚýúë¯ò’wÞy§Aƒ3fÌPº4ý+ÅÁ¿yófƒ ÆŽ«tíFtóæÍƒþãÿhРAƒ Ž9¢tERÒƒÏ'EA+V¬hРÁ€233å%§Njݺu£Fþûßÿ*]ž•âÈí“Â9ŽN°fÍ›Í6nܸ€€yɤI“|||6mÚd³Ù”®NçJqðÏž=+„È÷Ÿ†pž={8põêÕJbD%=ø|R´yóf!ÄÔ©Sí3'!!!#GŽÌÍÍÕåì§z”âÈí“ÂTµŸY­ÖŠ+6nÜ8ïÂ!Ĺsç”®NÏJqäöI!8–•$IÉÉÉ~~~~~~y—7hÐ@qîÜ9‚£ë”îàËòK—. <øçŸ®P¡BhhèÈ‘#¹Jà ڶm+?ؾ}»ÒµNI>Ÿ-\¸ÐÓ3ÿ?Ð'NœBÔ®][éêô¬GÞhŸ¦ªË*33377·à9°>>>Bˆß~ûMéõ¬t_þ¯Æ>úèÊ•+>ú¨¿¿ÿöíÛ °fÍ¥¨Ÿ…††Êÿl·ÿþ¨¨¨råÊõîÝ[éêô¬GÞhŸ:Že•••%„¨X±b¾å•*UBܼySéõ¬tÿÒ¥KÞÞÞ&L)n“=kÖ¬!C†\¼xqôèÑ›6mjÓ¦ÒE‚S޼Ž?)LU;A```rrrzzz•*Uì ­V«ü”ÒÕé\I¾$I6›Íd2™Íù¯&!DåÊ••  |R”e³Ù^{íµo¿ý¶sçÎo¿ý6=·)é‘7à'…Ž£„‡‡çææîڵ˾D’¤„„__ßæÍ›+]Εô০¦†††2$ßòÄÄD!„ÅbQz@€*ðIQVLLÌ·ß~ûÜsÏ}öÙg¤Fw*é‘7à'…àèf³ùÓO?•O­BDEE]»v­oß¾^^^JW§sŽüŒŒ «Õzþüy!D½zõ~øáÄÆÆÚ7’˜˜¸dÉ’š5k>ñÄJP Ÿ•$iùòå•+W~óÍ7•®ÅX<òÿ¤˜$IRº=X²dÉœ9sjÕªÕ®]»ÔÔÔýû÷‡††.Y²D·_U©&÷<ø7n?~|HHH||¼âäɓÇ¿víZãÆƒƒƒ/\¸päÈ‘ *|öÙgûÛß”Q¼õÖ[±±±kÖ¬Ñë­ÎÔ¬¨ƒÏ'E%®\¹Ò®];ooïx à³O?ýô Aƒ”®QŸ<òÿ¤pŽ£s 6¬ZµjëÖ­Û¸qc5 4nÜ8ù¦0pµ’ü† ~ýõ×sçÎÝ·oßéÓ§k׮ݻwï1cÆÔ¨QCé¡*Â'E)r++++ëøñãŸå×)Ý‘7Ú'…Ž#Â9ŽpÁ!8À!G8„à‡à‚#Bp€CŽpÁ!8À!GÆ2qâD‹Å²cÇ¥ Ÿ~ú©ÅbY±b…Ò…€£Žpˆ§Ò€AuìØÑßßÿá‡VºpÁ”ѸqãÆ+]”SÕ :¹¹¹wïÞUº Èà@Þzë-‹Å™où±cÇ,K›6mrrr„×®]ûàƒºwïÞ¢E‹-Z<ùä“ï¾ûþZÔfåkeöíÛ—oyhhèßþö·¼KöìÙ3f̘Î;·jÕjðàÁŸ~úi¾lwáÂ…·ß~»{÷îÍš5ëСË/¾xðàÁbF´hÑ¢¼ÇÈ•œ?>**êÑG}ðÁ[¶lùì³Ï~ÿý÷Em!111444,,ì÷ß·/¼uëV‡BCC=ªô›@oŽ´¡gÏžBˆ-[¶ä[/„èÝ»·§§çµk׸pá‹/Ö©Sçþûï?wîÜ_|1`À€ëׯ—eïï¿ÿþðá÷lÙ’““ðã?~òÉ'ƒ JKK“W8}útÏž=W¯^––öÀH’”ðüóÏoÛ¶­D;Z¸páܹs½¼¼}ôQŸÄÄÄQ£FmÚ´©Ð•›7o>|øð_ýuöìÙö…ï½÷Þ¥K—^y啦M›ºûM wGÚЪU«€€€sçÎý÷¿ÿµ/´Ùlr¨êÓ§bíÚµgΜéÔ©Óž={Ö­[·~ýúÝ»w·jÕêÂ… [·n-õ®·oß¾hÑ¢ÚµkÇÆÆîرcÆ ;wîlß¾ý‘#G>ÿüsy÷ß?##ãå—_Þ»wïÚµk¦N*IÒG}T¢}­Y³æÅ_ܵk×Ò¥K¿ûC‡ !¢££‹Z̘1!!!k׮ݵk—bß¾}_~ùe“&M^~ùeåÞ+ºEp  f³ùÉ'Ÿm:þøã¿þúkóæÍëׯ/„ÈÉÉ騱ã믿^±bEy…*UªÈ­ÊÔÔÔRïzΜ9Bˆ?üÐÞÃó÷÷ÿðÃãâânܸ!„8yò¤"""ÂÃÃC^gÀ€¯¼òJçÎK´¯¦M›¾öÚkf³Yò+¯¼"„8sæLQë{yy½÷Þ{žžžo½õÖ•+W¦NêííýþûïÛË'"8Ð 9æ·•ç©ûöí+ÿ8jÔ¨ <ðÀö®^½ºaƲìôúõëV«5888ßÐ*ThÓ¦MVVÖñãÇ…rr4iÒä³-½¼¼ÆŽ;zôèí®[·nyôñññðð$©˜—„††Ž5êòåËO=õÔ… Þ|óÍzõê¹ê=`lÜŽ€f4nܸ^½zgΜIJJ²X,999›7oöööîÞ½»} .ìܹóÇ}ܸqxþùçË—/úÈ#<þøã¡¡¡%ÚÝý÷ß_Š"_zé¥ï¿ÿþĉ­[·0`€S:üÁ€–ôìÙó“O>Ù¼y³ÅbÙµk×Í›7ûôécŸ˜^µjÕ;3““S§N–-[vîÜùÁ´Z­3fÌ(Ñ^rssíM¾ììl!D­ZµŠšt®Y³¦âþûïMLLܹsç?üpüøñÇþùçýúõ{çwL&“ƒ»¾ï¾ûJqXnݺuõêU!DJJÊ7ªV­êú·€h‰=8Ž;Vžƒ¶ÏSߺukæÌ™÷ÝwßÂ… Û¶mkÉåË—Kº—‹/Úl6ùqpp°¢B… S¦L)þU&“I¾";;{×®]“'OŽ‹‹ëÔ©Sxx¸KËÛo¿}åÊ•-Z>|xÆŒ|ðKwÀ°8Ç€–Ô­[÷ÁLII9vìØÖ­[ëÖ­Û²eKù©cÇŽåææ¶hÑ"oj^¶R¼|3Úß}÷ýq```µjÕ~ùå—'Nä]'77·oß¾íÚµ»víÚ… :uêÔ¿û³÷Ýw_xx¸|5Ïùóç]zL¾ùæ›M›6µoß>:::$$dÆ oZNAp 1ò%2S§NÍÌÌìׯŸ}y`` âäɓ׮]“—äææ®^½zùòåBˆ¬¬¬B·V§N!DLLLff¦¼dÿþýö›ìÈ&L˜`³Ù&L˜ðóÏ?ËKnݺ5yòäãÇ7nÜØßß¿F¿ÿþûO?ý´xñb{«òÌ™3;wîB¸ô~Š—/_ž1cFåÊ•gΜéåå5{öléÓ§—ýäN(ˆ©jÓ½{÷9sæ$%%yxxôîÝÛ¾<888<<|ëÖ­]ºtyøá‡%IJJJº~ýúÀ£££¿úê«ßÿ]¾±N^½{÷^¶lÙáÇÃÃÃCCC¯\¹’œœìããS½zõ;wîÈë<ýôÓøúë¯{÷î]«V-__ß”””ÌÌÌzõêÉwÞ6›ÍS¦L™4iRddä¿ÿýïûï¿?33ó—_~‘$iÀ€Í›7wÑ¡$iÒ¤Iéééÿú׿äÜܤI“¡C‡þûßÿž>}ú‡~¨ô{@oè8И€€€Ö­[ !Úµk÷©¹sçŽ3¦fÍšòýÃÂÂÖ­[7uêÔzxxú€µk×^¹reçÎÍfóîÝ»O:U«V­E‹ùûûÛ×1™Lï¾ûîÇÜ©S'›ÍvæÌ™    &¬[·Î××W^çé§Ÿ^¶lYûöí½½½Ož<™™™ùØcÍŸ?ÿí·ßvÝ¡ˆ‰‰Ù·o_Û¶mí'z !ÆŒS·nÝM›6mÞ¼YÑ7 €™Š¿=GFFFZZZíÚµ¿ …à‡0U ‡à‚#Bp€CŽpÁ!8À!G8„à‡ü?˜ŽfN·ëvIEND®B`‚statistics-release-1.6.3/docs/assets/wblfit_101.png000066400000000000000000001424751456127120000221540ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A€IDATxÚìÝw\Çÿ?ðYîhRÅ£‰Ò Š4 Š€ `‰4±`4"(c‰DQlA…ü’X1&ш1Qƒ`AåcÀ‚¢±|Œ†‘ˆŠÀíïù|ö{¹ÆÞÂëùðáãnvowvfîîÍìÌò,hˆ–¦3oŽÀ Gà#ð‚ÀxA༠p|öîÝËðóôéSBHrr2}:bÄMçýטÂÌÉÉÙ¿ÿþýû+**¸ÄM›6ÑöîÝ[Ó×Òi¤%?}útêÔ©666B¡ÐÈȨººZÓÅ šåË—ÓB‹ˆˆ )r›œ¢Ë|ƒ._îûKÊÆ¹Ç’’ÉMݺu£é’é'Ožä^²sçNþù‘-çæhÀ²ÇlÌYx¶–ÆÔÈë)þgj:-WTTÔ³gÏ!ÇŽ Ñtv€— dffÒÇ´úZ%E—ù]>Ÿ÷WXX÷øüùó^^^ܥݸqƒ>þå—_êëë}Z\\̽dàÀš¾Ê7‰f?ñðyû¦@àø:´k×ÎÞÞž{úâÅ‹GÑÇ;vÔÑÑá6ii¡¸¥322¢µimm­é¼€GŽ¡üýýGŒ!ùþzCÉmrŠ.³•]¾ƒƒƒ““SYY!äüùóS§N¥é%%%b±˜>~þüù•+WÜÝÝéS.ptww·²²â®ÖñÖnò«Ðl±´ŽJie8¾·oßæžþüóÏÜßÁGŽéÞ½»¦3Ødn߾ݱcG]]Ý~ÌÆˆŽŽŽŽŽÖt.Zœ–SMÜ_eóæÍù„ÛáÑ£G³fÍòõõ522êҥ˨Q£$ï㨺›$ÉS?|ø0&&F$9::ZZZ®ZµJvÿêêêÅ‹‡††ZZZZZZ8páÂ…UUUêSÑ ›¨¨(š>wî\%™‹Å»ví ²³³ÓÓÓ³³³ ܾ}{mm-ÝaÁ‚ ÃpwúÈ0 .¦h̪øäÉ“9sæôîÝÛÈÈÈÓÓsÅŠÜÙ©­­Ý¸q£ŸŸ_ÇŽ {ôè1a„‹/ªzu’93f̯¿þcooß©S§¨¨¨Ë—/BΞ=;vìX{{û:åçç«]õêµ7ž+©¢¢âÎ;\GTeeå;wêêêwŠJÕ§F¡)r÷îݱcÇŠD"++«‘#Gþûßÿ–ÝGªÉ)ºL%—ϳØÿy³…+yÉâîV_¾|¹¦¦†>¦c·nÝœœœ!çΣé/^¼¸ví},86˜yåÃéñš¼X4þy«ÞN›…ÀQøŽ”£££——7ô[WW·¦¦FjÏN:qûÓú§OŸš››Ó”ààà%K–DEEqc(·nÝJÀs·3iaa`hhÈ¥>|˜îùüùsnˆ§žž^XXØ AƒÚµkGS¬¬¬ªªªT=fc>¦wïÞÍ}(¿ûî»nnnÜ)~þùg–eÿüóÏòòr.“Û·o///‹Å¬¼2µ/ÐÎÎÎÇÇGOOKᾕ¸¾¾þ°aÃâãã}||hŠP(¼víÿ«“ʉ–––‡‡‡™™™Ô‡¦««« ÷4((¨ñÕij½ñ¼X)|GÙwŠzÕ§j¡Éª©©±³³ã.ªoß¾’#¡I“Žª»ÚŸ'<[¸’÷—\AAAtÏõë×ÓÌ0 CùòË/?ûì3Bˆ@  qÆúõëéž¡¡¡ÜËyf^I„$ÙÔ èS@påÊ•Æ"ñ Õn-<ßM*}â5y±hüóV½œ6 £¨8~öÙg4Qr]‰ .ÈîÙ­[·;wž={ö×_eYváÂ…4]²ŸéóÏ?§‰¶¶¶4…çnÊ39dÈ—/_²,ûŸÿüÇÅÅ…&öïߟ’BSŒ¹7ê¥K—¸>›ùóç«zÌÆ|LOš4‰¦Ì™3‡{aÏž=iâ§Ÿ~Ê%rÁбcǸDÙ2õ.ðóÏ?§‰×®]ã>Ë”üuÛ¿ºOjj*—*u4žW'™“C‡±,ûêÕ«àà`.1##ƒeÙúúú)S¦Ð‘HÔøjâÙÞx^¬\rkMÉ;E½êSµÐd}ùå—t##£³gÏÒÄÙ³gsGS (ºLEé<‹½ñŸ'*µpE— ‹1iÒ$–e?NŸ9s†>>qâ˲\ɧ¥¥©zùÊ#¤¡C‡Ò¦~÷îÝ·ÞzKªa7wàØ˜ÖÂÿÝÄó¯9Š…ÿÙ›ãó¶18mÆ8¶h®®® ôñ°aÄÂÿNf¢CÅ%µk×îèÑ£111>>>ŽŽŽ„ü‘nâæ!B&MšD{.ïÞ½{éÒ%þ»)! ׯ_OgEtìØqåÊ•4½°°ðåË—„C‡Ñ”„„nœJ=>üðCú˜Ûÿ1cìØ±;wîܹsç¬Y³hJUUÕóçÏéã¿þúKÕªqnnn3gΤ»víêïïOß¹sGÑY^¼xAìØ±ã«¯¾¢s vìØQZZZZZ:zôhõ®®W¯^ôn—¶¶ö˜1ch¢©©)mxZZZÜG|eee㫉g{ãy±j}§¨Q})4Îwß}GHvo¬^½ÚÂÂBí«SDÕ·¹ÚŸ'5Z¸Ü0G:´‘þ¯­­íîîîééIG‰™1Ü·¾™—¥­­Í5õÎ;sM=77·¾¾¾ÉëKVcZKó½›4R,ÍñyÛ|EÔ*!plÑè¸oÊÐл&ûžôòòêØ±£dÊÍ›7郰°0n9\CCCîµ4úä¹›nnn;wæžrñ,ËÞºu‹Â-·&¹$‘º^VVÆèçyÌÆ ‹‰‰4hÐéÓ§“’’BBB:uêÄ ¨Wƒ(5@‡»ã)µ›T¶¹ÓM™2ÅÚÚºgÏžŸþyuuu÷îݹÁOª^ä}U}}}ú cÇŽôV d¢,5ª‰g{ãy±j}§¨Q})4Ù¢à–n&„èèè¨:˜UßæjžpÔháJxxxЊW¯^}þü9 ÝÝÝuuuõôôè|êsçνzõª´´”biiÉM²V#ó²ºwï.yûž«²W¯^ýöÛoM^_²ÓZšïݤ‘biŽÏÛæ+¢V c‹&µ¬#÷µ$Kj¨~UUUƒkÿþùçŸ7S˜‹ (î{±©¨ñ6Wïó¤i³-…ë:zô诿þJánSÒÀñÎ;¹¹¹4Eò>u“d^ê¡/^pÕdkkÛ¬NÝZšïÝôú‹¥™Þ°ÍWD­ÇV‹§\WW×EBûöíMMMMMMéÝ4ž»)qåÊ•pO=ʲ,!DGG‡NäæLp¿i!õÔÉɉ¾Éó˜Ü›Ô2©OU¹¸y—_~ùå|àîî. ïß¿¯vQ«qªª©©yôèÑ£Gjjj"##wîÜùÇ=z”[B‚[>­É¯N‰«IŸöÆÿb›Äk¨>YÀÁÁ>þé§Ÿ¸t–eù¬þ¨ªÆ¿Í„Fzûí·é»žûAE©GBÈ–-[è©_lòO9®ÊtttèßHùDjPcZK³¾›4R,Mþ†}Í8­ÇV‹ûèܼy3û¿5Ã÷îÝÛ¡C‘Hdooÿ÷ßóßM‰W¯^ÅÇÇ¿zõŠòûï¿Ï›7¦:”Ž=çVûÿïÿqC×KKKÓÒÒècÉQ;<ÉÝ 9wî7úgß¾} ~Œþý÷ßÜm)î³ì—_~ÉËËS~J¶ªqªºvíš••••••µµ5ín …äæšššª}ujk°šdñioüðC:@˜çnÊíÛ·ÏÁÁÁÕÕõßÿþ7½Y©¥¥µtéRºõ£>ú׿þuçΧOŸúùù…„„‚cǎѰ¶¶NNNVõ˜Üú2/^¼ðòòòòòúóÏ?¹AÓJÒ1OS¦Lùî»ï†ùñÇåþj‹©©)ÝsÙ²eW®\™5k–Ô Ï¹@•¸»»[ZZ>zô¨®®ÎÏÏoÈ!fff¿ýöÛèô‡Tºº&¡¼šdñio¦¦¦|.¶©¼†ê“kîܹß~û-˲•••ýúõóññ©¨¨¸~ýzsœ«ñoó&ù ÂóýÅ ãOOO®WIKK«W¯^Ü=’÷©›0ó´©wíÚµ¨¨ˆš`ùòåt«ÚŸH<©ÝZx~t¨W#M[,šú¼U©ˆ€ürŒ&ð_ÇQjí+nÜØ®]»”ïI8p@îŸJÓ§O—\k—çnŠ2 5œE(Jþx˲çΣ‹zH±³³;yò¤zÇäV<á8::r] JVM;v¬ì ¹†ß{ï=îôG)8J~É@Õ ä³ª™”3gÎ(º¡H—Rãurs²mÛ6šèææÆ%ž:uŠ«U«IîYø´7ž+—òuå¾SS}< M®‰'JÑÀÀ€›Ú„ë8ò,öÆž¨ÔÂ徿”ì¦JHHÜÄõvB~üñGõ2¯dÁBSSS©ÉO:::_}õ•ÜkäðüDâùË1j·þï&žŸxÍQ,üÏÎ6Ãçmc>pÚ Üªn͆zñâÅØØXooïvíÚ9::Ž1¢  `Æ ’ƒßy™™ÙéÓ§§Nêììlii9jÔ¨£GN›6MrŸ>}ú\ºt)999$$ÄÒÒR$üñÇ—/_öóóSï˜_ýõòåË{ôèa``àåå•pöìY©Ù r¥§§÷èуüïÇ?KJJ† F·~÷ÝwÜ-•ôôô˜˜ 777%ÓfU½@5ôíÛ·¼¼<99¹wïÞ;vÔÖÖnß¾½ŸŸ_fff^^7ÿÕ5Ÿj’ŧ½ñ¼Ø¦òªO®­[·ÆÅÅÑÇï¼óαcÇšã\|›7ɤðQôg¦écîÖ-Å GÓÕÕåVékÂÌ :´S§NÖÖÖ‘‘‘yyyÜbû”ÚŸH<©ÝZø¿›T­‘¦- ~Þ¾æœ7ÃþoÀ€J’““SSS !Çÿá‡Zì1媭­ÍÉÉ!­ôDs_Ýk«¦6âüùóÇŸ6mš±±±¦ó-Z hÆ8B[¤­­Ý*Cƶpu­O¯^½¤úÏAkíjà#ð‚ÀxÁäà=ŽÀ Gà#ð‚ÀxA༠p^8/€ŽÀ Gà#ð‚ÀxAà¼5êÅ‹»wïÎÊʺÿ¾‘‘‘³³óäÉ“û÷ï¯é|h ò¬¦óÐâÔÕÕÅÄÄ\¸pÁÄĤgÏž/_¾ü÷¿ÿ][[›§éÜhzåøþûï/\¸Ð³gÏ­[·êëëBÊÊÊÆÿå—_»ººj:ƒ€1Žrüøã„?þ˜F„''§éÓ§××ן>}ZӹРŽrܾ}ÛÀÀ {÷î’‰NNN„{÷îi:wš[ÕrlÚ´I(”.™+W®B:wî¬éÜh&ÇðröìÙ¸¸¸ÚÚÚ¼¼<‘H¤|gMçš×74 @cêëë¿ùæ›O?ý´¾¾~íÚµ FTÛlL-™‹‹ *¥¥A¥´L¨—•ÒµÙN"ŽÊœ;w.%%å×_µ¶¶^±b…¯¯¯¦s 1å{õêUZZÚŽ;ôôôâãã§L™ÂͰh›8Ê!‹çÌ™säÈ‘.^¼ØÂÂBÓ9Ð<ŽrìØ±ãÈ‘#ÑÑÑ‹/Öt^Z ¬ã(eÙ;wÍ›7OÓyhA°´?þøÃßß___¿K—.²[GŒ1~üxåGÀô7€Ö­Í~×ãVµ´û÷ïB^¼xQZZ*»« ÍBà(ÍÛÛ»mþ  Æ8/€ŽÀ Gà#ð‚ÀxÁr<MÏÅÅEÓY`%>ž84 |¼)ð×>¸U ¼ p^8/€ŽÀ Gà#ð‚ÀxÁà¯Ã0šÍ˲š.xƒ¡Çàµb5÷O‰””†a†*»iõêÕ Ã\¼xQÓ%GFŒAûûû{yy5ù)~ùå†avïÞ­¨ˆNŸ>-»)44”a˜úúzúôÎ; ÃLš4‰Û¡®®nëÖ­þþþÖÖÖÆÆÆžžžñññ<àvøì³Ï¥~úé'5.'55U$õèÑ£É ªIHVhK ¤Q988Œ3†ÏAÄb±“““­­íÊ•+5}A*SÒþù—´zèq€ÿÊÉÉÙ·oßÈ‘#5‘† @ é\ð²ì°aÃrss{ö죫«{ýúõ7þë_ÿ:wî\÷îÝ !ÞÞÞIIIÜK>ÿüsSSÓ &p)öööªž÷êÕ«ÉÉÉ~~~3fÌÐt4£€€€Å‹7þP’êüùóË—/OMM¥Ä_ee¥§§ç;w.\hkk£FN.]º´|ùò‚‚‚gÏžuíÚ5&&&>>^(l%ß×µµµþþþ Ü9sFÓyu´’†§¯¯Ÿjdd¤é¼4 ??_ÓYàkçι¹¹sçÎýôÓO¹Ä .øùùMš4©¨¨ˆâïïïïïÏmÍÌÌìܹsZZZcÎ[^^NY²dIHHˆ¦Ë ¹”””œ>}º©.P²Q=zô(;;{öìÙªÄÌÌlÏž=,ËFDD¤¥¥©8Þºu+00°¾¾~Ĉ¶¶¶ÇŽûðÃOœ8ñÃ?4_I¾N‹-:wî\ß¾}5PnUÀ%''ÿç?ÿY´hQsüÕ«Wb±XÓ—¨ôîv||¼d¢§§ç˜1c~ùå—gÏž5ÓyéxV==½f:¾JZ__ÏÝÊo¼ººº#GŽ,Y²$,,¬e6*†a/^¼¨Æ_8~øáÓ§O;¶mÛ¶¥K—Nž<9;;[½á ”X,nÂòoŒ£G¦¥¥µšÞÓ¶ #üט1c ôÅ_œ?^ÉnEEEƒ ²²²êرã AƒhŸåàà˜˜xþüyš2kÖ¬¹sçëééùøø:t¨®®nÁ‚®®®ÆÆÆAAAW¯^厞žîîîn```ffæããóÍ7ßÈÍCPPŽV]]­|P`iiéÈ‘#mmm-,,ÂÃÃþùgÉãœ8q"44ÔÌ̬[·nsçÎ}õêU“—*ýÂ.--•J_½zõ¥K—tttspEu1iÒ¤áÇBüüüd_øâÅ‹ÔÔTWW×víÚÙÙÙÅÆÆ>|øO-¨T¡´=|ñŦ¦¦:::=zô˜?¾¢BV^S’?~–’’RQQ¡¼|F­­­ÍEç»wïfÆÝÝÛ!))‰a˜’’"Ѩ&Mš4dÈBH`` dé>}:""B$ÙØØ|ðÁÿý·’S×ÕÕB¶lÙ¢jæååôîÝ›K™9s&!DÑ]å••˜˜¸iÓ&‘H$ mllf̘!™mõÚ¿X,ž0a‚@ PôöTäÑ£G&LˆíÔ©“ªÅ- MÍÙÙYÓY SÔˆ¦'Ç(Êð’%K!ååå·oßn×®——W]]Ý´jÕ*BÈ… èÓììl¡PØ©S§Ù³g'&&vîÜY(fggÓ­ööö£F233sppxÿý÷iŠ™™™¹¹ùÒ¥KW¬X!‰ôôô|}}ûô铞ž>cÆ †a<<<èËéHµààà”””… ºººB8À|øðáôq`` §§'˲µµµÛ$|õÕW:uÒÑѹví˲GŽÑÓÓsppHJJú補œœÁwß}G²wï^@`aa1cÆŒ™3gZYY9;;BvíÚ¥¨ˆN:%»iàÀ„®Ä~ûí7BÈĉéSÂêêêΘ1ãØ±c/^¼h°ý˜ššöêÕ«ÁÝ”ÔÅåË—?ùäBÈš5k d_Í0LhhèÇhÐ BHll,ݪRû···=z4˲b±xâĉZZZÛ¶mã]ô…o¿ýv×®]«««íííûöí«ÒË››_Ümö»cÓk³ 8onàȲìêÕ« !ééét“dàXSSãàà`oo_QQA·VTTØÙÙ9::ÖÔÔ°,Kçp¤¤¤Ô××Óìíí¹0ŽeY:ÎÏÃÃãÕ«W4ÅÏÏRUUŲ¬£££³³smm-ÝTYY) g̘ÁJ6p”²téRBHff&Í­“““——×óçÏéÖ—/_öë×ÏÑѱ®®îåË—vvvÖÖÖ÷ïß§[cƒu‘­(Ò}öì™@ Ìá”)SD"уøÔÿ ¥íA2â™;w.!„F„\…*¯)%…Ð`àxÿþ}BHRR}Ú£G:Ç|ß¾}ôÒ´´´&Ož,Û¨rrr!ùùùÜUBöïßOŸÖÕÕ¹ººÚÙÙ):ï“'Otuu'M𤥥µyóf¶?~ܧO@póæMÙ­ V!„ CÅbq=:uêDKX¥öOG±XüðÃ;w&''5ªsçÎ’›Š‹‹oß¾‘‘!‰hŠH$¢Ý]/^¤7׬­­-Z¤¥õÃ`úôéÓµkWú˜ö9EEEikkÓ”S§N=þÜÈȨ¨¨HOOÿôøñcBÈóçÏyæ|ÿþý‹/ž1cÆ”)S!%%%eeeß~û­¾¾>ÝAWW7>>>::º¸¸¸®®îÎ;iii´KŒæ}Æ û÷ï—L§_lR¿C¿AkkkéSSSSõNZSS3räÈÜÜÜÞ½{¿ýöÛï¼óN¿~ý¼½½ù¼öÉ“'Æ 311ÉÊÊ⯤¥¥É®€Ý­[·'NÈ^‹TÈÛxÏž=›4iÒÛo¿Íõ9ÑŒ3¦}ûö¡¡¡‡R/päSJÄÅÅ5*''çøñã¹¹¹›7ovqq)((055U»x …ÕÕÕ’)Êkª‘§ _½zuAAAaa¡­­­­­mPPÐÂ… +++óóóýüüLLLø‡ÿüô²²²³gÏÒ¾äQ£F%$$lß¾}ùòå„–ǯ7}÷ÝwÓ¦M344Ü´iÓäÉ“ÍAæó–Q”mzL•Ú?˲{öì122 ž5k÷WeƒµiÓ¦[·n >œ[‘êéÓ§õõõ«W¯¶µµŠŠâY°ÐB p…è' ~¢®mZ¹rå?ü0sæÌ÷Þ{K¤7Ë._¾<`À.ñÒ¥K„—FžñÔ©S¹¹¹³fÍâùô8Ö××7îþýû'Ož´°°Ê­‘‘QXX—xõêÕË—/›šš¾õÖ[„_~ù%00ÛzáÂ…¦-FƒŸ~úéÞ½{’#E{éÚµk§Þ‘S?.//wvvŽ‹Åëׯ߸q£ŸŸŸzµ ÈÕ«Wkkk¹hþŋ׮]“,sÒPM5² ú÷ïollœ——WTT@ ‹Å,))¡Cx›ÖöíÛ !cÇŽ%„XYY|ýõ×Ë–-ÓÒÒâsW÷àÁƒ&LˆŒŒÜ¸q£±±±’©ý–!„¨Ñþ‡ BoÖ?~çÎ999tîyƒE'k¯[·N2ýÉ“'óçÏ DàøÆÁr< ‡‰‰IFFÆýû÷¿üòK.ÑÛÛÛÖÖ6==ýÉ“'4寿þZ·n]ãÎc ÓB©¬¬¬êêê{hæÍ›wäÈ‘M›6õêÕK2ÝÓÓÓÅÅeíÚµ•••4¥ªª*"""11±]»vÞÞÞŽŽŽëÖ­ûý÷ßéÖŠŠŠÏ>û¬i‹‘a˜èèèsçÎ¥¦¦J.¤W]]½xñbE?óÈGcêâÆ}ûö]»v-}ª¥¥E£mmmµkA‘ŠŠŠôôtîijjjUU•Ô/ *¯©FV¶¶vHHHnnnqq1 {õêedd´bÅŠ8ª±H$˲;vìpssãúJ###ïß¿OW¢wu¡/ÿè£:wî¼cÇåQ#iÄ[†¢Fûçú#×®]kjjšðâÅ >õñÇKÍ®à&Ç?~¼‘õ ¯zA>æ} :Ûª±cÇnÛ¶íÇäRtuuÓÓÓÇŽëííɲìîÝ»}zttô²eË”Gu×®]»~ýº««kll¬Ô¦‘#GJý™¡Þ[†ÒÖÖV»ý[XX¬\¹òƒ> ¿ÊÈóþ;´šžÖÝ µŽ)úDæð÷F/Ç#éÖ­[t¢+·Ž#˲………ááá––––––áááçÎã6I®˜#7…Þ £ËåP©©©„‡²,[PPàëëkhhØ¥K—ØØØŠŠŠÌÌLssó°°0VÁr<ÜT)Ü ,ÅÅѶ²²jß¾}``à‘#G$³wâĉ¶oßžbbb²gÏÒÔë8²,[]]½qãÆ~ýú™››kkk[ZZ2ääÉ“Šªƒç:ŽÊëBÉr<,ËÞ»woòäÉvvvººº¶¶¶ÑÑÑÜ ;ük¡Á ¥; 0ÀÄĤk×®III/_¾”Û6”×”\ .ÇÃ],!ÄÜÜœK¡?ç8mÚ4ÉÝ$—ã‹ÅQQQÆÆÆÞÞÞ¬Ä*†œñãÇ‹D"ÙsÑ¡ׯ_—L\³f……ÅСCé‚‘JH*–”šš*»¿J•ŲìĉMMM¹§üÛ¿T Ô××ûøøH.̤,ÇóFcXü¡ÐÔ\\\nܸ¡é\4ŠT/#:U¥¨ 0 £Á’dþ9m$=xð C‡ï7Ižžž­æG–[1´5¾¸[Áw½zp«€Ð¥Ú&´à“c@šlÿ"û¿ÖЖ¡ÇÂr<Í!8´ôWï Õ@àÿ h8#‹‘ŽMC ¡MY¿~½¦³M ·ªA>„‰ #üåÁ"F:´qAt7€,Œq„ÿb$þ—û€{Š˜ mBàÿÅ…ƒŒ‚ÇÐÆáV5ð‚Àþ _@9Ž@È?G4âÞ4È…Àþ «í€r˜ÿèeDwcscÅçøÝh$Žð¸Uݬ†Ñ`ù2 ƒØ·ªÛ:.R”2âþu‘’’Â0ÌСCe7­^½ša˜‹/j:ÄÁÁaĈô±¿¿¿——W“Ÿâ—_~af÷îÝŠŠèôéÓ²›BCC†©¯¯§OïܹÃ0̤I“¸êêê¶nÝêïïommmllìééÿàÁn‡Ï>ûŒQê§Ÿ~RãrRSSE"Q=š¼ š„d…¶J•ƒƒÃ˜1cøD,;99ÙÚÚ®\¹RÓ¤2%íŸ @«‡Àþ‘b[–““³oß>Mç‚@ 4 ^X–6lXllì‹/bbbâãã»té²qãFggç+W®Ð}¼½½“$èêêZZZJ¦ØÛÛ«zÞ«W¯&''»ºº.\¸PÓeÐô.]º4vìX+++CCÃ^½z¥§§×ÕÕ5ò˜’êüùó#FŒà*ˆ¿ÊÊJOOO++«… ~óÍ7jd£¶¶V(Jýå`nnÞü…Ú¼š£Ê@#p«ºMÃi¤¯¯Ÿjdd¤é¼4 ??_ÓYàkçι¹¹sçÎýôÓO¹Ä .øùùMš4©¨¨ˆâïïïïïÏmÍÌÌìܹsZZZcÎ[^^NY²dIHHˆ¦Ë ‰Ýºu+00°¾¾~Ĉ¶¶¶ÇŽûðÃOœ8ñÃ?4æ°’êÑ£GÙÙÙ³gÏVõ fff{öìaY6"""---&&FÕ#ܾ}»¾¾Þ×××ÑÑ‘K444lÎmvÍTe A‹€²­JNN^¸pá¢E‹>ûì³&?ø«W¯„B¡–V›»ËAïnÇÇÇK&zzzŽ3æë¯¿~öìY3Åt<«žž^3]—JJïã7U'ñ‡~øôéÓ³gÏöîÝ›²téÒ)S¦|õÕW?ýôSXXX3]¯J†ILL ÏÏÏ Téµ4â_ºtiFüb±˜eY vÒ·ü*þÚ܇8p‚”1cÆ 4è‹/¾8þ¼’ÝŠŠŠ deeÕ±cÇAƒÑ>3ÊÁÁ!11ñüùó4eÖ¬YsçÎ566ÖÓÓóññ9tèP]]Ý‚ \]]ƒ‚‚®^½Ê!==ÝÝÝÝÀÀÀÌÌÌÇÇGÑ;   :­ººZù ÀÒÒÒ‘#GÚÚÚZXX„‡‡ÿüóÏ’Ç9qâDhh¨™™Y·nÝæÎûêÕ«&/U3•––J¥¯^½úÒ¥K:::9¸¢º˜4iÒðáà !~~~²/|ñâEjjª««k»víìììbcc>|ȧTªPÚ¾øâ SSS=zÌŸ?_Q!+¯)Iyyy4¡fΜI9sæŒÔž£GÖÖÖ~öì}º{÷n†aÜÝݹ’’’†)))!jÒ¤IC† !„J–ÞéÓ§#""D"‘Í|ð÷ß+©zvË–-ªÖ) ßzë-žû+¯¬ÄÄÄM›6‰D"¡Phcc3cÆ Él«×þÅbñ„ ÿ{ñü« Z>ô8!2A$:Û&†a¾üòËîÝ»¿ÿþûÿþ÷¿åöOìß¿ôèÑVVVQQQ Ãdeeõïß?++kذat‡{÷î………™˜˜„††Ò”;w ‚?þX(®[·nôèÑÞÞÞuuuÓ¦M+++Û°aCttô… !K–,III =ztMMÍ?ü0~üxccc¹³v(]]ÝmÛ¶qOÅbñ'Ÿ|òÇØÙÙBŽ=úÎ;ïX[[;VKKë‡~ Û¹sç¸qã!ûö틌ŒìСCTT”––ÖÎ;8Ðä¥:f̘ÌÌÌ#FL™2eäÈ‘ýû÷§½€9²’º˜3gŽ­­íÒ¥K׬Y#ùm͉ýî»ï8jÔ¨ÒÒÒmÛ¶•––ž={–O-ð¯PBÈž={þóŸÿ 4ÈÃÃãìÙ³«W¯>sæL~~¾ÔºTÊkJR]]]\\\¯^½$ïܹCƒÔÎ{÷î=yòdDD!ääÉ“„ÒÒÒÇwèÐ’ŸŸoeeåéé)ùª9sæ888,^¼øÓO?õññ¡‰—.]}ýÑ`e;vlýúõS§NíÚµëáÇ7lØP[[KÃYõÚ?˲S¦LùöÛo¿úê+ž7âUª2x°ÐÔœ5…†¥O%SÐDÔ ¨ B«¹ŠßïK–,!„”——³,»zõjBHzz:Ý´jÕ*BÈ… X–­©©qpp°··¯¨¨ [+**ìììkjjX–¥s8RRRêëëéööö:::×®]£Oé8?W¯^Ñ???BHUUË²ŽŽŽÎÎεµµtSee¥P(œ1cw¨áÇÓÇžžž²²téRBHff&Í­“““——×óçÏéÖ—/_öë×ÏÑѱ®®îåË—vvvÖÖÖ÷ïß§[{öL HæpÊ”)"‘èÁƒ|j…Òö°bÅ îDsçÎ%„|÷Ýw’ª¼¦Ø†<~ü¸OŸ>àæÍ›R›îß¿OIJJ¢O{ôèAç˜ïÛ·^š––ÖäÉ“eUNN!$??Ÿ»jBÈþýûéÓºº:WWW;;;EYzò䉮®î¤I“´´´6oÞÜà%HŠˆˆÐ××oß¾=×´\]]ÏŸ?/wç+‹’••EŸŠÅâ=ztêÔ‰–°JíßÞÞ~ôèÑb±xêÔ© ÃlݺU¥‹â_eš¢Æ÷ñ]ßp«ºíb$þI=åR  úðÃ{ô葜œ|ïÞ=©MÅÅÅ·oßž={¶H$¢)"‘höìÙ·nÝâÖë±¶¶^´h‘äз>}útíÚ•> "„DEEikkÓ:ëùóç„¢¢¢ââb¡ð¿wB?~Ìmâcÿþý‹/ž1cÆ”)S!%%%eeesçÎÕ××§;èêêÆÇÇߺu«¸¸¸¸¸øÎ;~ø¡ —ó„„å§7n\’ [[[å¯ŠŽŽ.//¿xñbzzzhhèùóç.\èèèHÃ\õð© E´´´èÒB´×‡’™™YQQammͧøW(ÍÕœ9s¸×.^¼ØÐÐðûï¿—ÌòšR~-ùùù}ûöý÷¿ÿýå—_:99Imµ±±qwwÏËË#„îììüÎ;ïÐÇÀÓÓ³ººZÑλvíª©©™={¶¿¿¿dx]]Ý~Åè>åååb±8%%åÁƒ[·nýÏþ3|øð§OŸÊž¨ÁÊrtt5j}Ì0Œ——½q¯FûgY6..nË–-&L˜{öì)™ÞàÚ3gÎìß¿¿Tâ… îÞ½Û`ÝÝÝÝÝÝgÏžýêÕ«ýû÷'&&.^¼¸oß¾o¿ý¶Õħ.Ñ××ÏÈÈ 7d»wïîëë>xð`z?´ÁZà_¡„îÝ»KÞf500pqqùõ×_%÷Q^SŠ®åîÝ»3gÎU>Ñdûöí...îîîcÆŒ™9sæÍ›7éË«««éØS¹X–¥¹ÒÓÓ333£‰“'O~ùòe\\\VVý‹HRƒ•%•mî½yóæM¢bûÏÉÉaYÖÆÆfï޽˖-ãþ^âsQ*U´pèqi}ûö>}zvv¶T‡ýF¿AkkkéSSSSõNZSS3tèPÿÇ;99Í™3çÚµk<‡=yòdذa&&&YYY\àBã•´´´eôéÓ‡vÒH]K“Oú~öìÙ˜1c¤fHèèèŒ3†vD:tH½#ó© %âââ~ûí·Í›7»»»çææŽ9ÒÝÝýÑ£G©ž„B¡Ô$ å5%÷ ß}÷››Ûùóç7mÚtõêU%!Hxx¸X,.((8yò¤­­­­­mPPÐ¥K—*++óóóýüüx^ÿùéeeegÏž;v,!dÔ¨QZZZt¼#!ÄÄÄDÉ@ºOÇŽ¹¨‘¢ZÈ.*ɧ²e[öϲìž={vìØQ]]=kÖ,.ÏE©TeСÇäX¹rå?ü0sæÌ÷Þ{K¤÷•._¾<`À.ñÒ¥K„—FžñÔ©S¹¹¹’ßI|zëëëÇwÿþý“'OJN7¡¹522’\ïãêÕ«—/_655¥³VùåÉÕR¸)MÅÀÀà§Ÿ~ºwïÞÔ©S¥6Ñ^ºvíÚ©wäÆÔÅãÇËËËccccccÅbñúõëããã7nÜèçç§^-(rõêÕÚÚZ.šñâŵkפV¨Q^S²Ç jkk‡„„äææÞ½{—ÞêíÕ«—‘‘ÑŠ+à(‹U½^–ewìØáææÖ­[7š9cÆŒŸþ944´Á»ºúúúIII½{÷þùçŸi´-‹ÓÒÒ„B!·L§1•¥Fûçú#×®]›“““¢¯¯ßàE©ZeÐÂ!pùÆŽ»mÛ¶ü‘KÑÕÕMOO;v¬··wdd$˲»wï~ðàÁž={¿¬FPPÁÔ©ScbblllΜ9“——gnn~êԩÇÓåTd:thíÚµR«Ê¹ººz{{gdd 6ÌÃÃ#22²¶¶6;;ûÞ½{»ví¢?.·fÍšÈÈH//¯±cÇjkkïÞ½»¢¢¢É‹1==½´´499yÛ¶m={ö¤óXOŸ>ýèÑ£… úúúªwØÆÔE¯^½ÜÜÜV­ZuëÖ-77·7n>|ØÌÌ,**J ¨Q JX[['''zxxœ9sæèÑ£ýúõ{÷Ýw%÷ …JjJê€×®]»~ýº««kll¬Ô¦‘#GÊ Ä#""èh]Úã(üýýsss;wîܽ{w¹Ù¦ñë† =z$»$Ç¿{÷®ä´§‘#GΚ5kúôéÑÑÑË–-SÕYXX¤¤¤Ì›7ÏÉÉ)""ÂÔÔô§Ÿ~*))Y±b‰rÔ{ËPÚÚÚj· ‹•+W~ðÁË—/OMM¥·ª•ì¯F•A‹¦éiݭЛ8EŸ4b+Èz£—ã‘tëÖ-:Ñ•.ÇC†‡‡[ZZZZZ†‡‡Ÿ;wŽÛ$¹bŽÜz/Œ.—CÑN¯‡²,[PPàëëkhhØ¥K—ØØØŠŠŠÌÌLssó°°0VÁr<ÜT)Ü ,ÅÅѶ²²jß¾}``à‘#G$³wâĉÒ;“={ö¥ËñÈ]݆ήP²OuuõÆûõëgnn®­­mii9dÈ“'O*ª>Ëñ4XJ–ãaYöÞ½{“'O¶³³ÓÕÕµµµŽŽæVØá_ V(ݹ  `À€&&&]»vMJJzùò¥Ü¶¡¼¦8r'êR©©©Š.–bnnΥПsœ6mšän’ËñˆÅ⨨(cccoooö‹ÑHî<~üx‘H${.:´ãúõë’‰kÖ¬±°°:t(ý—eeeõéÓÇÐÐP$>|XÑž*U˲'N455åžòoÿR%P__ïãã#¹0“jTÙë‡åxøcXuo@€"...7nÜÐt.T£|V5æ\«JQ`F“EɼßyðàA‡°qÓrppðôôÄï·|hÿj|q¿‰ßõM·ª]ú mBûþ8¼^XWÞX^Ü)†6%""‚þê´ Y¬_¿^ÓY€&†_ŽÌ}^8/€ŽÀ Gà#ð‚ÀxAà cñs'€ÀxÂ/Ǽ> £á®[üæ!4z^/–ÕØ?ÅRRR†:t¨ì¦Õ«W3 sñâEMqpp1b}ìïïïååÕä§øå—_†Ù½{·¢":}ú´ì¦ÐÐP†aêëëéÓ;wî0 3iÒ$n‡ººº­[·úûû[[[{zzÆÇÇ?xð€Ûá³Ï>c”úé§ŸÔ¸œÔÔT‘HÔ£G&/¨&!Y¡-’Fåàà0fÌ>‹ÅNNN¶¶¶+W®Ôô©LIûç_Ðê¡Çþ+''gß¾}#GŽÔtF&¦sÁ ˲Æ ËÍÍíÙ³gLLŒ®®îõë×7nÜø¯ýëܹsÝ»w'„x{{'%%q/ùüóÏMMM'L˜À¥ØÛÛ«zÞ«W¯&''ûùù͘1CÓeÐôŽ?¾téÒ+W®Ô××»ººÎ™3§ñ1¨d£:þüòåËSSSiñWYYéééyçÎ… ÚÚÚÆÄÄ4&K!!!‹/nβ|jkkõõõ¹?®(‘HTQQ¡é¬Ê8Àéëë'$$„††i:/ ÈÏÏ×tøÚ¹sgnnîܹs?ýôS.ñÂ… ~~~“&M***"„øûûûûûs[333;w–Ö˜ó–——B–,Y¢é2hb¹¹¹ƒvtt?~¼¾¾~VVÖÈ‘#·lÙÛ˜ÃJ6ªGeggÏž=[Õƒ˜™™íÙ³‡eÙˆˆˆ´´´ÆŽ%%%§OŸnÕwûöíúúz___GGG.ÑÐÐPÓùu p€ÿJNN^¸pá¢E‹>ûì³&?ø«W¯„B¡–V›CïnÇÇÇK&zzzŽ3æë¯¿~öìY3}}Òñ¬zzzÍt]*U(íjjªNâ XYY›˜˜B.\Ø­[·”””FŽMˆa˜ÄÄÄðððüüüÀÀ@•^[WW———WXX¸~ýz±XÜ$ù‹Å,Ëj°“žþ³téÒÖ·qmîC¤0„`ºPcÆŒ4hÐ_|qþüy%» 4ÈÊʪcÇŽƒ ¢}f”ƒƒCbbâùóç=<<<<|øO-¨T¡´=|ñŦ¦¦:::=zô˜?¾¢BV^Sœššš+W® 2„F„ÿû÷ï¿xñBjçÑ£Gkkk?{öŒ>ݽ{7Ã0îîîÜIII Ô””‰F5iÒ¤!C†B%KïôéÓ"‘ÈÆÆæƒ>øûï¿•TM]]!dË–-ªÖéãÇÃÂÂRRRxÞÆU^Y‰‰‰›6m‰DB¡ÐÆÆfÆŒ’ÙV¯ý‹Åâ &EoOY4p|ë­·T- h‰XhjÎÎΚ΂ x¶4•(jô-§ÁÉ1Š2¼dÉBHyyùíÛ·ÛµkçååUWWG7­ZµŠráÂú4;;[(vêÔiöìÙ‰‰‰;w …ÙÙÙt«½½ý¨Q£ÌÌÌÞÿ}šbfffnn¾téÒ+VˆD"===__ß>}ú¤§§Ï˜1ƒaúr:–+888%%eáÂ…®®®„p>|8}èééɲlmmí6 _}õU§Nttt®]»Æ²ì‘#Gôôô’’’>úè#'''@ðÝwßуìÝ»W XXX̘1cæÌ™VVVÎÎ΄]»v)*¢S§NÉn8p !„+±ß~û2qâDú”†°ººº3fÌ8vìØ‹/l?¦¦¦½zõjp7%uqùòåO>ù„²fÍš‚‚Ù×FGG3 úñÇ6L øøøð¬þjoooccC4hЂ ‚‚‚!´L²B•×”¤ÚÚÚÒÒÒ‡J¦¸»»»»»Ë™IÉÍÍ¥Oãââ! ÃüùçŸ4¥gÏžVVV4?\£º|ùrJJ !äÓO?¥¥gooïììlbb¿fÍ:®€¶pEèT}}ýÊÊÊ«R®ëׯB–,Y¢dŸ+ËÍÍMGG'..îóÏ?4h!$66–nU©ýÛÛÛ=šeY±Xcƒu‘­(Ò}öì™@ Ìá”)SD"уøÔÿ ¥íaÅŠ܉æÎK¡!W¡ÊkJI!lß¾=99ÙÛÛÛÜÜüèÑ£²;Ü¿Ÿ’””DŸöèуÎ1ß·o½4--­É“'Ë6ªœœBH~~>wÕ„ýû÷Ó§uuu®®®vvvŠ2öäÉ]]ÝI“&iiimÞ¼™U ŸÀ±ÁÊ"„deeѧb±¸G:u¢%¬Rû§£X,ž:u*Ã0[·nUéZ"""ôõõÛ·oϽ_\]]ÏŸ?¯^É4ŽüaŒ#üÇ~¸sçÎäääQ£FuîÜYrSqqñíÛ·322D"M‰D´»ëâÅ‹½{÷&„X[[/Z´Hrè[Ÿ>}ºvíJÓ>§¨¨(mmmšrêÔ©çÏŸééé …ÿý\züø1!äùóçu¡ˆ––]ZèÎ;vvv„ÌÌLÚ9Gi°øW(ÍÕœ9s¸×.^¼xÆ ßÿý¸qã¸Då5¥äZ–-[F†Ò ‘bccãîîž——GyòäIiiéÖ­[ããã FŒqòäI±XLûáäììüÎ;ïÐÇÀÓÓóèÑ£ŠvÞµkWMMÍìÙ³oݺµmÛ¶©S§ÒôºººC‡)zÕ°aÃTm V–££ã¨Q£èc†a¼¼¼8@)..Vµý³,·eË–wß}wòäÉ\:Ÿ‹*//‹Å)))tðÀ‡^ZZÊ 9€7Gø¡P¸yóf__ß„„„~øArSYY!„^äÐceeeô ÞÅÅEjÂÙBhx!›Bµoß¾°°ðèѣׯ_/++»rå (ÆÇÕ«W'L˜àçç—‘‘ASh‡ Ú¤v¾{÷.÷Ö³gOÉô׆œ9sfÿþý¥/\¸ xð`II ÂÛ´h˜H³geeðõ×_/[¶LKK«ioU«ý–!ÿ›à¬Rû2d½Y?~üø;wæääйç ^Ô;wrrr‚ƒƒéܪªªŠ"w€´pèq9LLL222îß¿ÿå—_r‰ÞÞÞ¶¶¶éééOž<¡)ýõ׺uëìììÿ€tƒäWKVVVuuuƒ=1óæÍ;räȦM›zõê%™îéééââ²víÚÊÊJšRUU‘˜˜Ø®];oooGGÇuëÖýþûïtkEEE“/`É0Lttô¹sçRSS%6£ººzñâÅŠ~æ‘ÆÔÅ7úöí»víZúTKK‹FÚÚÚjׂ"éééÜÓÔÔÔªª*©_yQ^SRôññ!„üë_ÿ’ÌÕúõë'›mmíÜÜÜââb8öêÕËÈÈhÅŠ pTcE–ewìØáææÖ­[7šyÿþ}ºº½««ˆªçjLe©Ñþ¹þȵkךšš&$$Ðõ¼(}}ý¤¤¤iÓ¦q}áb±8--M(†††ªzÕ qèqùÆŽ»mÛ¶ü‘KÑÕÕMOO;v¬··wdd$˲»wï~ðàÁž={tuuyº   ƒ©S§ÆÄÄØØØœ9s&//ÏÜÜüÔ©S‡ŽˆˆûªC‡­]»ÖÃÃCjU9WWWooŒaÆyxxDFFÖÖÖfggß»wo×®]ôÇåÖ¬Yéåå5vìXmmíÝ»w7Ç ¥§§—––&''oÛ¶­gÏžtëéÓ§=z´páB___õÛ˜ºèÕ«—››ÛªU«nÝºåæævãÆÃ‡›™™EEE 5jA kkëäääÂÂB3gÎ=z´_¿~ï¾û®ä>B¡PIMIP$}üñÇ)))½{÷ cæèÑ£EEE³gÏ–\ QRDD­KG@àï›Û¹sgE¿(H{:7lØðèÑ#Éy< :~üøÝ»wéì~jäÈ‘³fÍš>}zttô²eËÔÁe©÷–¡´µµÕnÿ+W®üàƒè¯2Ò[ÕÊ÷OII™7ož““SDD„©©éO?ýTRR²bÅ .¼†7‰¦§u·BoÖ}þ-m…¿7z9I·nÝ¢]¹uY–-,, ·´´´´´ ?wî·IrŹ)ô^].‡JMM%„Ðeù |}} »téQ‘™™innÆ*Xއ› #…[¥¸¸xðàÁVVVíÛ· |˜Q¼Xއ?†mº¿~€rqq¹qㆦsÁÿ‘‹ãÈŸ¢6À0 Ñà;ŽÁû]¡tèСñý¦ ÉÁÁÁÓÓSjn>´@hÿj|q¿YßõM·ª]ú mBûþ8¼^ÿ\ÿà ‚ÀàõÁbhS"""è¯Þ@«À±MðEh>ëׯ×t ‰aGà#ð‚ÀxA༠p¾XB° @[†ÀxA༠p^8/€Ž@RRR˜211éÝ»wff¦X,–»––V×®]'L˜pöìYå‡âDEEÉ={jjªH$êÑ£‡¦‹¡i888Œ1BÓ¹ø?þþþ^^^в:f̘–“ úå—_†Ù½{·TºX,vrr²µµ]¹r¥¦ó¨IŠÊ‡h¨!pxs0Í» Ò¸qã’’’’’’æÌ™3tèÐ_ýuêÔ©óæÍ“»O\\œ••ÕÞ½{ °iÓ&E‡’4dÈÙ“^½z599ÙÕÕuáÂ…š.ß$ %%¥I%}|þüù#F\¹råu^‹ÔI%óÓ|gi*•••žžžVVV .üæ›oÔ;È¥K—ÆŽkeeehhØ«W¯ôôôºº:E;?}útúôé¶¶¶†††R˜)ßú†:~üxPP……E‡üüü~øá%;_»vmäÈ‘;w¶±±3fLaa¡äV±XüÅ_xxxvíÚõÓO?­­­Õôõµ:,45gggMg/U«Í…§æjÍö†]²d !äÔ©S’‰>´¶¶>T´Ïµk×\\\†¹|ù²’C)±ÿ~BȱcÇšéÒ^?{{ûáÇ7æÅÅÅZZZK–,iò¼åääBòó󹬎=º¹ Dê¤-ó,çÏŸ'„ìÚµKîV±Xæáá¡Æ‘ýõ×öíÛ¿÷Þ{ÉÉÉýúõ#„(j!OŸ>}ë­·ttt¢££:vìhbbR\\Ìgk³RR>lE‡"„8::&&&.\¸ÐÙÙ™²e˹;Ÿ8qBWW×ÒÒröìÙsæÌéÔ©S»ví~þùgºµ¾¾~ðàÁ ÃŒ1bÞ¼y~~~„É“'óɆÚoÐw}ÓBcÛÅÂj: †!,ÛÜŽ’,--ÇW___ZZªhŸ®]»îܹ“eÙeË–©w–e !zzz¯íº”{õêww¾AõõõõõõMu꺺º#GŽ,Y²$,,ŒZ•Šýõc&11ñâÅ‹ùùùª¾öÃ?|úôé±cǶmÛ¶téÒÂÂÂÉ“'gggÿôÓO²;¯[·®¼¼|óæÍß|óÍgŸ}vòäI†aæÌ™Ãg«zÄbq¶a5,X°ÀÊʪ¸¸xݺuË—//..¶µµ•ÛÝβì”)SLLL.^¼˜žž¾f͚˗/[YYÍ;—îðõ×_:thÓ¦Mûöí[µjÕÉ“'###¿úꫲ²2 ^`ëƒÀ¢Qò{=½zõêß¿ÿ¾}û”Ü}SdÒ¤IÇ'„øùù988ÐÄ¢¢¢AƒYYYuìØqРAEEEÜþ‰‰‰çÏŸ÷ððððð=à‹/RSS]]]ÛµkgggûðáCnkzzº»»»™™™äG‡Y³fÍ;רØXOOÏÇÇçСCuuu ,puu566 ºzõªd6¾øâ SSS=zÌŸ?ÿÕ«Wr¯±´´täÈ‘¶¶¶ááá?ÿü³¢ÒxüøqXXXJJJEE…òr=z´¶¶ö³gÏèÓÝ»w3 ãîîÎí””Ä0LII !$((ˆŽ)œ4i-È•6!äôéÓ"‘ÈÆÆæƒ>øûï¿Wɵ(*yÙ“rùQµØ•Ô ÜKS^ò'Nœ 533ëÖ­ÛܹsU‡6ï-[¶åååôîÝ›K™9s&!äÌ™3²;ïÚµËÚÚúÝwߥOG]PPðûï¿7¸U–òŸ˜˜¸iÓ&‘H$ mllf̘!Yõª–%‹'L˜ xÞÖ¯©©¹råÊ!CLLLhŠ¿¿ÿýû÷_¼x!µóíÛ·ËÊʦL™biiISLMM‹‹‹/]ºDkÇÞÞ~Ê”)ÜKvïÞͲ¬“““ªµÊhºË³zSº¯Õ¨{4žš¥ Ðwkó¼gåÞ_þã?:v쨥¥õàÁVé=踸8BÈ­[·XoU_¾|ù“O>!„¬Y³¦  €eÙììl¡PØ©S§Ù³g'&&vîÜY(fggÓýíííGeffæààðþûïË0::ša˜ÐÐÐ?þxذaÀÇLJnZ¼x1!$888%%eáÂ…®®®„pG633377_ºtéŠ+D"‘žžž¯¯oŸ>}ÒÓÓg̘Á0 w§ÒÞÞÞÆÆ†2hР BÄb1ûÏ[ÕGŽÑÓÓsppHJJú補œœÁwß}§¼X®_¿NQr«:33“’››+Yþ ÃüùçŸ4¥gÏžVVV4?žžž´´iGΧŸ~JKÛÞÞÞÙÙÙÄÄ$>>~Íš5þþþ„¹Ûàµ(*yÙ“rùQµØ•Ô ìY”çvïÞ½ÀÂÂbÆŒ3gδ²²¢wHݪfY–ÎÿÐ×ׯ¬¬äÓ¶©ÚÚÚùóçgeeI&Ò1|+V¬ÚùéÓ§ ÃDGGK&~ûí·„}ûö)ß*{ê¼›››ŽŽN\\ÜçŸ>hÐ BHll¬åÃݪ‹Å'NÔÒÒÚ¶mÿò)--¥ƒa¸wwwwwwÙiwozzºdâÞ½{ !;wî|ùò¥ŽŽÎ„ jjjNŸ>½iÓ¦#GŽ<{öŒgNp«š?DM¯%7&©?TýûÍ…§¦i„üãŸÜô&B£½˜˜˜ùóçÏŸ?Þ¼y'NìС!$!!Ar¹áªU«!t¤ÝM–ŸŸŸÜSgggs‡­©©qpp°··¯¨¨ [+**ìììkjjX–µ··'„¤¤¤Ô××ËêÙ³g`âĉ\Ê”)SD" |kkké¦ÊÊJ¡P8cÆ úÔÞÞ^GGçÚµkôé§Ÿ~JñððxõêM¡ã¥ªªª¸lH~ñÓ›e4.áÇšš'''//¯çÏŸÓÝ^¾|Ù¯_?GGǺº:%ÕÑ`àxÿþ}BHRR}Ú£G:'•••ZZZÜÐ.É@MvŒ#!dÿþýôi]]«««ì•_‹ò’—:©TàȿؕנäY”çöåË—vvvÖÖÖ÷ïß§[4p‹ÅS§NefëÖ­ê•ÌöíÛ“““½½½ÍÍÍ=*»íÃ3fŒd"í¾MKK»}û6!äÝwß•ìܵµµåùG,Gþ„šîñ„×N2|¤y›c12òuâjGnÄ/›Þh’w—„B¡‹‹Ë‚ fÏžÝà ™&4nܸN:I¦Ð/*劋‹oß¾‘‘!‰hŠH$¢]/^¤ßÖÖÖ‹-ÒÒ’3ÌFKK‹a˜Ó§Oß¹sÇÎÎŽ’™™I;ç!EEEzzzBá?ô?~Lyþü9÷ò>}útíÚ•>¦ˆQQQÚÚÚ4%$$äÔ©SÏŸ?722¢“[¶xñâ 6|ÿý÷ãÆãKJJÊÊʾýö[}}}𢫫]\\,ùõ¦*ww÷¼¼žžžG•ÝMùµ¸¹¹))yåø{ƒ5È3·uuuwîÜIKK£ÝÆ´Q%$$ÌŸ?_Q&wíÚUSS3{öì[·nmÛ¶mêÔ©4½®®ŽÎíkذaR)ùùùï¿ÿ~yyù† dïŸÒk166–L¤÷p?~¬|«ìÙ,.GGÇQ£FÑÇ Ãxyy8p€R\\¬jù°,·eË–wß}wòäÉ\ºJå³lÙ²òòrBHhh(mER,--G•••µzõjúwÑöíÛ7lØ@©ªªzúô)!ä믿1bÄöíÛ;wî\PP;jÔ¨k×®µoßž@Aàðz©1»EÑKT=TCæ©S§ú÷ï¯Æ5Ý»wâèèȥ̜9SCÑ1ìRƒéн²²2i¹¸¸È !úúúsæÌqppèÞ½»¯¯oxxøàÁƒutt!íÛ·/,,f̘™3gÞ¼y“–[uu5¤++ñŽ»{÷îÌ™3<èäätìØ±àà`EE!5Æ´ªªŠbff¦|«ìÑ,.©ªçÞV´kS¥òÉÉÉaYÖÆÆfï޽˖-³µµ¥éüˇRVVöüùó3gÎÄÆÆöíÛ÷ÚµkR/Ù°aCee%½1B¯199yÉ’%¦¦¦ô/º.]ºìÚµ‹6¼Áƒ§¥¥M˜0!++‹‹õ¡ñ8¼^jtJu.6C_c#]¼x‘LltÙ°D¦ÿ’†2ÜSSS%Gˆ‹‹5jTNNÎñãÇsss7oÞìââRPP`jj:räÈÜÜÜÞ½{¿ýöÛï¼óN¿~ý¼½½›°„Bauuµd ýöJKK“]Û¼[·n<]xxøêÕ« mmmmmmƒ‚‚.\XYY™ŸŸïççÇÍ6PŽç|ö¯EQÉs󩦦† *Ïí‰'ˆL3Sô×!¤¬¬ììÙ³t0î¨Q£¶oß¾|ùrBˆ‰‰ ËãÍøÝwßM›6ÍÐÐpÓ¦M“'Oæz¥XZZjiiIMúóÏ? !666Ê·ªQ\ŠªžfùBX–ݳg‘‘Qppð¬Y³¸…y–§]»v!!!«V­7n\vvöûï¿/µ½‹}öìÙ‹/ZZZúùùÑÚ´µµ¥-­ÿþ’®Ð?_¯]»Æ?Ð Žo2ÒEyZLìX\\L—½PôuȽywùòåp‰t¾¤‹‹Kƒ/üøqyy¹³³slllll¬X,^¿~}||üÆýüürss322fÍšÅí¯Æ4pÎÕ«Wkkk¹þ°/^\»v-00PörŒŒŒÂÂÂ$_xùòeåá/ýû÷766ÎËË+**  „ŠÅ⃖””ÐQ§MHùµ()y:E£ñN:Å¿•çö­·Þ"„üòË/’õuáÂE§Þ¾};!dìØ±„++«€€€¯¿þzÙ²eZZZ|nÅ„!C†ÐãÇß¹sgNNäÞ`ù:thøðá;wî¤ÅKÑÛÊr#΋/÷ë×.‡Iùù矆ñõõ500ptt|ðàäþ4Înüß´ Ëñ¼ æÿÖq|K96¨¬¬lüøñ Ã$''7þhÞÞÞ¶¶¶éééOž<¡)ýõ׺uëìììøüHÝ7úöí»víZúTKK‹~óikkÓÙ$tb)•••U]]­Rwˆ¤ŠŠŠôôtîijjjUU•Ô/ zzzº¸¸¬]»¶²²’¦TUUEDD$&&¶k×®‘e¥­­’››[\\LÇ^½z­X±¢ÁŽj¬˜¨üZ””|cN*‰g Ò³(Ï­···££ãºuë¸Ul***>ûì3¹çeYvÇŽnnn\'qddäýû÷éâ>ôV¬"ôå}ôQçÎwìØ¡„?þø#+++44”®1¤|«Å%—JåÃÕ8}°víZSSÓ„„º˜NƒåãããCù׿þ%™1©s¡¡¤iÓ¦¹»»sÑáµk×vîÜ9xð`:wç½÷ÞËËË£}´1¬ZµJKK+$$„Kƒµ­Ç[·nEDD|ÿý÷rW€“4zôèË—/K%ŠD¢Ó§Okú"4óc^+&rŸª*Îgjr6l ß[555¥¥¥………¯^½Z¿~½››[㮫«›žž>vìXooïÈÈH–ewïÞýàÁƒ={öèêê6øò^½z¹¹¹­ZµêÖ­[nnn7nÜ8|ø°™™YTT”@ 000˜:ujLLŒÍ™3gòòòÌÍÍO:uøðለU³jmmœœ\XXèááqæÌ™£Göë×[` …Æ óððˆŒŒ¬­­ÍÎξwïÞ®]»šä7÷"""è=A8 ÿÜÜÜÎ;ËvAQ´§sÆ =’œÇÓ å×¢¤äsRIAAAÊkPê,Jr+Ö¬Yéåå5vìXmmíÝ»w+Z;óøñãwïÞ]ºt)—2räÈY³fMŸ>=::zÙ²eÊC±k×®]¿~ÝÕÕ566VjÓÈ‘#‡ºzõêU«V­\¹rúô鄉'~õÕW111qqq¦¦¦Û¶m{þü9·¶ò­*—’²­¨¾¾ÞÇÇGr•%åÄbñöíÛûôéÓ¾}{ú[Õ’g‘-Ÿ#GŽÐë²µµåÖ.¥?~FîØ8†o3 Ý\Šå‘spÞGneZr€ÆsppðôôäfÀíÁƒ:tàÓ¥Ý6µ‘òQãC»Í~η‰[ÕC‡•üÙ±ݽ{—ð[v®Maþ2´tx(‚ò)m"p\¾|yMM !dçÎ……… îçÎBˆÜHÂJàmP›éVBŽ?Îg8þþûïï¾ûîµk×Úµk×­[·éÓ§·å¶8¸#mS›UE‡œöÙgýúõûÏþsüøñ‚‚‚%K–DFFò9‚ìšs­o$:¡ÍZ¿~½¦³¯Ÿ¥dÛŽrüþûïúúú~ø!·¸FaaáôéÓW¬XáççÇgÀG+  @[&ûµÞfCI,.ǶmÛ.\¸ ¹$›¯¯ï„ ^¼xqìØ1Mç®Á\€6#_}úô!ÿûõ÷6Ý@!p”Ʋl}}½ì¯cÑ_z022Òt[t:´¥Ý¹s§[·nô×$•””¶7¦ùßÿÜ?©§ˆÚŽ„R]]}ûömú«ðööö={ö,**¢¿°D•””|õÕW;v Ótf_+VÞ?"/Z=̪&„‚‚‚ÄÄD''§œœBÈ'Ÿ|2eÊ”E‹}÷ÝwŽŽŽÿùÏ.\¸Ð®]»•+Wêëëk:³šG9ºvíúÃ? >üÏ?ÿüé§Ÿž>}:|øðœœœ¾}ûj:kð,î46±–üÃç ÃÙgTkŠæYË9¸ŠGn5Zr)j|h·ÙÏyô8/€¤¤¤0ÿdbbÒ»wïÌÌLni*©}´´´ºví:a„³gÏ*?'**JîÙSSSE"Q=4] MÃÁÁaĈšÎÅÿñ÷÷÷òòR”Õ1cÆ´œühÐ/¿üÂ0ÌîÝ»¥ÒÅb±“““­­íÊ•+5GMRT>DC­4#@ ņϿ&<ã¸qã’’’’’’æÌ™3tèÐ_ýuêÔ©óæÍ“»O\\œ••ÕÞ½{ °iÓ&E‡’4dÈÙ“^½z599ÙÕÕuáÂ…š.rÍ»téÒØ±c­¬¬ {õꕞž^WW×Èc º -!äüùó#FŒ¸råÊë¼(©“Jæ§ùÎÒT*++===­¬¬.\øÍ7ߨq„ÚÚZ¡P(õG”¹¹¹¢ýŸ>}:}út[[[CCÀ€©?Ì8)))M^Œ¡R³çY>µµµ}ûöíׯŸ¦/®¬j€–‹mh±£¦ gΜٿîé£G¼¼¼ÒÓÓ“’’,--åîsýúõáÇðÁýû÷wssSt(%ÊËË !K–, iömÙnݺX__?bÄ[[ÛcÇŽ}øá‡'Nœøá‡sØüü|îñ£G²³³gÏžý:¯Kꤒùi¾³433³={ö°,‘––£ênß¾]__ïëëëèèÈ%ÊݹªªªW¯^wïÞ=z´H$ÊÊÊ ?~ü¸TmIIÉéÓ§[Ç[F¥fϳ|!‹-:w6Ž Ÿ¥¥å¸qãÒÓÓKKK¹ÀQJ×®]wîÜÙ»wïeË–É½Õ :}JOOOÓ—û_¯^½ …ZZ¼îÆÔ×דÿý¬Tã}øá‡OŸ>={ölïÞ½ !K—.2eÊW_}õÓO?µúdU*ö×a˜ÄÄÄðððüüüÀÀ@•^Kÿ4Zºt)Ÿ8oݺuåååÛ¶m£?B1kÖ¬ž={Ι3'//RWW———WXX¸~ýzÙŸ7SX,fY¶9ú€yR©Ù+/ÎÑ£GÓÒÒ„BD8Í¢…¾K % Q]mm­’}zõêÕ¿ÿ}ûö©qSuÒ¤IÇ'„øùù988ÐÄ¢¢¢AƒYYYuìØqРAEEEÜþ‰‰‰çÏŸ÷ððððð=à‹/RSS]]]ÛµkgggûðáCnkzzº»»»™™™äG‡Y³fÍ;רØXOOÏÇÇçСCuuu ,puu566 ºzõªd6¾øâ SSS=zÌŸ?ÿÕ«Wr¯±´´täÈ‘¶¶¶ááá?ÿü³¢ÒÈËË  _ŸÔÌ™3 !gΜ‘ÚsôèÑÚÚÚÏž=£OwïÞÍ0Œ»»;·CRRÃ0ô÷®‚‚‚h̤I“èhÀÀ@®´ !§OŸŽˆˆ‰D666|ðÁßÿ­(‡J®EQÉËž”˪٤å^šò’?qâDhh¨™™Y·nÝæÎ«¨ú8´yoÙ²…WË–@Ç·Þz‹Ïλví²¶¶~÷ÝwéSGGÇÑ£Güþûï„LJ……¥¤¤TTTð9šòŸ˜˜¸iÓ&‘H$ mllf̘!Yõª–%‹'L˜ øßÖçßì,êÑ£G&LˆíÔ©“ª•¼°ÐÔœ5…ˆÜ*6E{ÓöÔ˜#·MÒÛpéñÙ‡%K–BN:%™øÇtìØQKKëÁƒŠö¡âââ!·nÝR¾›¬Ë—/òÉ'„5kÖ°,›- ;uê4{öìÄÄÄÎ; …Âììlº¿½½ý¨Q£ÌÌÌÞÿ}ÙFGG3 úñÇ6L øøøÐM‹/&„§¤¤,\¸ÐÕÕ•ràÀîÈfffæææK—.]±b…H$ÒÓÓóõõíÓ§OzzúŒ3†ñððàv¶±±!„ 4hÁ‚AAA„€€Úycoo?|øpºç‘#Gôôô’’’>úè#'''@ðÝwßÉæ¼¶¶vþüùYYY’‰ônÝŠ+¤vÎÌÌ$„äææJ–?Ã0þù'MéÙ³§••ÍO`` §§'-m:*îÓO?¥¥mooïììlbb¿fÍBˆÜ‚mðZ•¼ìI¹ü¨ZìJjPö,Ês»wï^@`aa1cÆŒ™3gZYY9;;BvíÚ¥¨­Òùúúú•••*½¹âããuuu?~üý÷ßoܸñäÉ“555r÷|úô)Ã0ÑÑÑ’‰ß~û-!dß¾}’‰×¯_'„,Y²DÉylðnnn:::qqqŸþù Aƒ!±±±j”½½ýèÑ£Y–‹Å'NÔÒÒÚ¶mÏÂQ©Ùó)±XüöÛowíÚµººÚÞÞ¾oß¾jRR}Ú£G:'~}VVVjiiMž<™n• ÔècåççsWMÙ¿?}ZWWçêêjgg'›å×¢¼ä¥N*8ò/vå5(yå¹}ùò¥µµõýû÷éÖtìØQIàøäÉ]]ÝI“&iiimÞ¼¹Áº“¡¯¯ß¾}{î½àêêzþüyÙ=oÞ¼IILL”L,ËÆÅÅmÙ²åÝwßûó?fƒs´O:Ås*´”{÷îB$'òŸU-©¬¬Œ"5x‘Ý+++£‘–‹‹‹¢)úúúsæÌqppèÞ½»¯¯oxxøàÁƒutt!íÛ·/,,yò„vÖ†„„øùùBòóó…BáÀù”9½ÉQ4I¢ÁkQRòÊñ/ökgnéØÐž={J¦+_Zrûöí...îîîcÆŒ™9sæÍ›7i¹UWWÓAºr±,K«COOÏÌÌŒ&Nž<ùåË—qqqYYYS¦L‘- ©1¦UUU„îåü5X\RUϽ­hÇžJå“““ò¬ÍÞ½{—-[fkkKÓù”W/ 6{ååSUUš jYJ8¶ôw›ríP]ƒ¡›$†0|–ãQé˜ÍäâÅ‹t`bcˇe‰Lÿ% e¸ :¦¦¦JŽ7jÔ¨œœœãÇçæænÞ¼ÙÅÅ¥  ÀÔÔtäÈ‘¹¹¹½{÷~ûí·ßyç~ýúy{{7a!…ÂêêjÉ6¥¥¥É®mÞ­[7¹ùî»ï¦M›fhh¸iӦɓ'+™¾zõê‚‚‚ÂÂB[[[[[Û   … VVVæççûùùIõf)Âs>{ƒ×¢¨äÍÇWUMM ÿTžÛ'N™f¦dBwYYÙÙ³gé`ÜQ£F%$$lß¾}ùòå„¶¡{8ô&¯¤·ß~›"»ä¤¥¥¥–––ÔÄ—?ÿü“Âuþ5aq)ªzÚêø—!„eÙ={öÏš5‹[I‡OùÞÍ^yùlÚ´éÖ­[ǧ!OŸ>­¯¯_½zµ­­­¢_5 p€F)..>yòddddã¿ 7§._¾<`À.ñÒ¥K„—_þøñãòòrggçØØØØØX±X¼~ýúøøø7úùùåææfddÌš5‹Û¿1kk_½zµ¶¶–ë{ñâŵkפj¡—cdd$¹ªÈÕ«W/_¾,7ü=xðà„ "##7nÜ(u?NVÿþýóòòŠŠŠ!b±øàÁƒ%%%tÔiR~-JJžNÑh¼S§Nñ¯Aå¹¥œùåÉúºpá‚¢Soß¾2vìXBˆ••U@@À×_½lÙ2--­oÅÞ¹s''''88˜ÎM¡h'½§/I(vëÖíäÉ“’‰'Nœ`¦{÷îÍW\RT-BÈ!C耇ñãÇïܹ3''‡Nrçs«š³W^>/^$„¬[·Nrë“'OæÏŸˆÀ± a9ž6v7*„Q ®²²²ñãÇ3 “œœÜø£y{{ÛÚÚ¦§§?yò„¦üõ×_ëÖ­³³³ãó#u7nÜèÛ·ïÚµkéS---úͧ­­Mg“H~ygeeUWWóé‘«¢¢"=={šššZUU%õKƒžžž...k×®­¬¬¤)UUU‰‰‰íÚµ“: ˲}ôQçÎwìØÑ`ÔH/*$$$77·¸¸˜޽zõ222Z±bEƒÕXPùµ()ùÆœTϤgQž[oooGGÇuëÖqk¸TTT|öÙgrÏ˲ìŽ;ÜÜܸNâÈÈÈû÷ïÓÅ}è­XE!úúúIIIÓ¦MãºÌÅb1]b044TötS§Nýí·ßèDBÈü‘••*¹|R—\*•WãôÁÚµkMMM^¼xÁ§|TmöJÊçã?–šÃÁMŽ9~ü¸J¥Ê¡ÇT°aÃú©]SSSZZZXXøêÕ«õë×KþlŒÚtuuÓÓÓÇŽëííɲìîÝ»¡jV­­­“““ =<<Μ9sôèÑ~ýúqËËQB¡0##cذa‘‘‘µµµÙÙÙ÷îÝÛµk—ìPÂk×®]¿~ÝÕÕ566VjÓÈ‘#‡*›‡ˆˆzOŽÀßß?77·sçΊ:¨hOç† =z$9§AʯEIÉ7椒‚‚‚”× ÔY”äV ¬Y³&22ÒËËkìØ±ÚÚÚ»wïV´2âñãÇïÞ½»téRÉê˜5kÖôéÓ£££—-[¦<³°°HII™7ož““ÍäO?ýTRR²bÅ ‰®^½zÕªU+W®œ>}:!dâĉ_}õULLL\\œ©©é¶mÛž?®ÆO 6X\J^«­­Í¿|d¯wåÊ•|ðÁòåËSSS¼UÝ`³o¦òFÑô´îV¨¥MÑ—¬cZ岋æ¨Ô°OƒÞÐåx”/¾(µÎÃ0ÎÎÎÑÑÑ………ªJ’är|ø0·‰¾_222¸”ÊÊÊ©S§:99‰D¢¡C‡ËÏr<*5x–e'Nœhjjªjùȶ¢úúzÉU–”h°Ù«W>\ưOs`Xܦlj...7nÜÐt.þÏ 1üÛ¢ߌìZ?Lm`MÒxN—n “cÚOOÏFþ„4´<èСŸ.í¶©”Ú-í»þµÁ­êÖO2¬`ä®ãØVû!Àk ;ë$¡|@ &ǀʰ¬@Û„GÕDDDðù!€Ö#€jÖ¯_¯é,hnU/€ŽÀ Gà#ð‚ÀxA༠p^8/€Ž@RRR˜211éÝ»wff¦X,–»––V×®]'L˜pöìYå‡âDEEÉ={jjªH$êÑ£‡¦‹¡i888Œ1BÓ¹ø?þþþ^^^в:f̘–“ úå—_†Ù½{·TºX,vrr²µµ]¹r¥¦ó¨IŠÊ‡h¨!p€ÿ7n\RRRRRÒœ9s†ú믿N:uÞ¼yr÷‰‹‹³²²Ú»wï€6mÚ¤èP’† "{Ò«W¯&''»ºº.\¸PÓ yÇ ²°°èСƒŸŸß?üÐøc @@Ÿ?~ĈW®\y%uRÉü4ßYšJee¥§§§••ÕÂ… ¿ùæ›F- %%Eù>OŸ>>}º­­­¡¡a@@€Ôf*êP[[+ ¥þÈ477W¯|x–4†PÓ¾BØæ<þÌ™3û÷ïÏ=}ôè‘——WzzzRR’¥¥¥Ü}®_¿>|øð>ø ÿþnnnŠ¥Dyy9!dÉ’%!!!¯³0[ ÜÜÜÁƒ;::ŽÇ9ïdDøIDAT?^__?++käÈ‘[¶l‰mÌaóóó¹Ç=ÊÎΞ={öë¼.©“Jæ§ùÎÒTÌÌÌöìÙòlDDDZZZLLŒÚ‡*))9}ú´òv^UUÕ«W¯»wïŽ=Z$eee…‡‡?~\ª–ϡ޷oß®¯¯÷õõuttä Õ(ž¥„G€7™×xFKKËqãÆÕ××—––*Ú§k×®;wîdYvÙ²eê…eYBˆžžÞk¼2e^½zÅÝoP}}}}}}SzÁ‚VVVÅÅÅëÖ­[¾|yqq±­­mëèUjJÅþú1 “˜˜xñâE5¢Þººº#GŽ,Y²$,,¬Ák\·n]yyùæÍ›¿ùæ›Ï>ûìäÉ“ ÃÌ™3GCñ$‹›° «þé¸téÒ6lØ Fù(ß M#(D£ºÚÚZ%ûôêÕ«ÿþûöí«««Sõø“&M>|8!ÄÏÏÏÁÁ& 4ÈÊʪcÇŽƒ ***âöwppHLL<þ¼‡‡‡‡‡‡ì_¼x‘ššêêêÚ®];;;»ØØØ‡r[ÓÓÓÝÝÝ ÌÌÌ|||$ï<:88Ìš5kîÜ¹ÆÆÆzzz>>>‡ª««[°`«««±±qPPÐÕ«W%³ñÅ_˜ššêèèôèÑcþüù¯^½’{¥¥¥#GŽ´µµµ°°ÿùçŸåîVSSsåÊ•!C†˜˜˜Ðÿû÷ï¿xñBjçÑ£Gkkk?{öŒ>ݽ{7Ã0îîîÜIII Ô””B‚‚‚hˤI“èhÀÀ@®´ !§OŸŽˆˆ‰D666|ðÁßÿ­¨¾”\‹¢’—=)—U‹]I ʽ4å%âĉÐÐP33³nݺÍ;WQõqhóÞ²e‹* œB?~–’’RQQÑàλví²¶¶~÷ÝwéSGGÇÑ£Güþû慠4Ôà7mÚ$‰„B¡ÍŒ3$«^Õò¡Äbñ„ ÿÛú4p|ë­·øì¬¼|”o…&ÃBSsvvÖt¢U.ýOõf@x¼­6°&oDÁ㦲dÉBÈ©S§$ÿøãŽ;jii=xð@Ñ>T\\!äÖ­[Êw“uùòåO>ù„²fÍš‚‚–e³³³…Ba§NfÏž˜˜Ø¹sg¡P˜M÷···5j”™™™ƒƒÃûï¿/{Àèèh†aBCC?þøãaÆ ºiñâÅ„ààà”””… ºººB8ÀÙÌÌÌÜÜ|éÒ¥+V¬‰Dzzz¾¾¾}úôIOOŸ1cÃ0ÜÎ666„Aƒ-X° ((ˆ ‹éÖáÇÓ=9¢§§çàà””ôÑG999 ‚ï¾ûN6çµµµ¥¥¥>”Lqwwwww—Ý933“’››+Yþ ÃüùçŸ4¥gÏžVVV4?žžž´´iÿå§Ÿ~JKÛÞÞÞÙÙÙÄÄ$>>~Íš5þþþ„¹Ûàµ(*yÙ“rùQµØ•Ô ìY”çvïÞ½ÀÂÂbÆŒ3gδ²²rvv&„ìÚµKQ[¥ó?ôõõ+++Uzsq®_¿NY²d‰¢ž>}Ê0Ltt´dâ·ß~KÙ·oŸJ‡âÓàÝÜÜtttâââ>ÿüóAƒBbccÕ({{ûÑ£G³,+‹'Nœ¨¥¥µmÛ6þů««ûøñãï¿ÿ~ãÆ'Ož¬©©Q£|ø—ž\j|h·äïúfÕF¿×›UKnLDî?ŽMí cbbæÏŸ?þüyóæMœ8±C‡„„„É}äF„«V­"„üüóÏÜn²üüüäž:;;›;lMMƒƒƒ½½}EEÝZQQaggçèèH¿Kìíí !)))õõõ²‡zöì™@ ˜8q"—2eÊ‘HD_GGGggçÚÚZº©²²R(Θ1ƒ>µ··×Ñѹví}úé§ŸB<<<^½zESüüü!UUU\6V¬XÁhîܹ„—pcMM“““——×óçÏén/_¾ìׯŸ££c]]’êØ¾}{rr²···¹¹ùÑ£Gew¸ÿ>!$))‰>íÑ£“N¿ +++µ´´&OžL·Jj999„üü|îª !û÷ï§Oëêê\]]íììdϨüZ”—¼ÔI¥GþÅ®¼%Ï¢<·/_¾´³³³¶¶¾ÿ>ÝúàÁƒŽ;* Ÿ³ Fzìå¸qã:uê$™B¿¨”+..¾}ûvFF†H$¢)"‘ˆv=^¼x±wïÞ„kkëE‹iiÉf£¥¥Å0ÌéÓ§ïܹcggGÉÌ̤s„¢¢"===¡ð¿z?&„<þœ{yŸ>}ºvíJÓNĨ¨(mmmšrêÔ©çÏŸÑŒIŽZ¼xñ† ¾ÿþûqãÆq‰%%%eeeß~û­¾¾>MÑÕÕŽŽ...¦—#ײeËèý»ÐÐPz!RlllÜÝÝóòò!Ož<)--ݺuk|||AAÁˆ#Nž<)‹iRƒœßyçúX xzz=zTv7å×âææ¦¤ä•ã_ì Ö ÏÜÖÕÕݹs'--vÓF•0þ|E™ÜµkWMMÍìÙ³oݺµmÛ¶©S§ÒôºººC‡)zÕ°aÃø”‡^‹±±±d"º@/V% —££ã¨Q£èc†a¼¼¼8@)..Vµ|X–‹‹Û²eË»ï¾;yòd.Où”——‹Åâ””:ãÀ‰‰‰Ã‡/--å†mð)Ÿ¦-=P#Àë£öÔ†GJƒŒ5O:Ås*´”{÷îB$'EòŸU-©¬¬Œ"5x‘Ý+++£‘–‹‹‹Ü¨‘¢¯¯Ÿ‘‘1g·îÝ»ûúú†‡‡„–e÷ìÙcddåCo‚Kzûí· !²Kr*/Ÿ&,=P#¨£ùî–§¸¸øäÉ“‘‘‘ÜM1µ999B._¾<`À.ñÒ¥K„—_þøñãòòrggçØØØØØX±X¼~ýúøøø7úùùåææfddÌš5‹Û_iàœ«W¯ÖÖÖrýa/^¼¸víZ`` ìå………I¾ðòå˲áï¡C‡†¾sçαcÇr‰tà—ܯÞþýûçååBÅbñÁƒKJJè¨Ó&¤üZ””<¢Ñx§Nâ_ƒÊsK'ðþòË/’õuáÂE§Þ¾};!„Ö‹••U@@À×_½lÙ2--­¦½U- »uëvòäIÉÄ'N0 Ó½{÷æ+.)ª–!dÈ!tÀÃøñãwîÜ™““C'¹7X>wîÜÉÉÉ ¦sw(ÚM(;HCyù4aérXŽ åR¿æ5)++?~<Ã0ÉÉÉ?š···­­mzzú“'OhÊ_ýµnÝ:;;;>KøÞ¸q£oß¾k×®¥Oµ´´è7Ÿ¶¶6M"ù唕•U]]­vwQEEEzz:÷455µªªJê—===]\\Ö®][YYISªªª"""Ûµk'u@BÈ¿þõ/É,Ñ¥_¿~²ÐÖÖ ÉÍÍ-..¦c¯^½ŒŒŒV¬XÑàG5–T~-JJ¾1'•ijéY”çÖÛÛÛÑÑqݺuÜ*-Ÿ}ö™Üó²,»cÇ777®“822òþýûtqz+V5.sêÔ©¿ýöèCùã?²²²BCC%—OjÂâ’K¥ò¡¸þȵkךšš&$$Ð5¤,}}ý¤¤¤iÓ¦q·ÄbqZZšP( Uµ|šªô@9ô8€ 6lØ@?—kjjJKK _½zµ~ýzÉŸQ›®®nzzúرc½½½###Y–ݽ{÷ƒöìÙ£««ÛàË{õêåææ¶jÕª[·n¹¹¹Ý¸qãðáÃfffQQQÀÀÀ`êÔ©111666gΜÉËË377?uêÔáÇ#""Tͪµµurrraa¡‡‡Ç™3gŽ=Ú¯_?n9J(fdd 6ÌÃÃ#22²¶¶6;;ûÞ½{»ví’J(‰>þøã”””Þ½{‡……1 sôèÑ¢¢¢Ù³gK.Ð()""‚Þ¤£@ ð÷÷ÏÍÍíܹ³¢.ÚÓ¹aÆGIÎãiòkQRò9©¤   å5(u%¹kÖ¬‰ŒŒôòò;v¬¶¶öîÝ»­Œxüøñ»wï.]º”K9rä¬Y³¦OŸ½lÙ²FÞª^½zõªU«V®\9}útBÈĉ¿ú꫘˜˜¸¸8SSÓmÛ¶=þ\Eà,.%¯ÕÖÖæ_>R,,,V®\ùÁ,_¾<55µÁ[Õ)))óæÍsrr¢•øÓO?•””¬X±‚Fê*•OS•4@ÓÓº[¡–‹/J­³Ã0Œ³³stttaa¡ª‡’$¹UXXniiiii~îÜ9n“ä‰rÝ»woòäÉvvvººº¶¶¶ÑÑÑÜR/¾¾¾†††]ºt‰­¨¨ÈÌÌ477 “=2½1—™™É¥¤¦¦Bè:‹tç‚‚‚˜˜˜tíÚ5))éåË—r3Y\\???úàøñãšÎ @‹€À±Y¸¸¸H¥Ü¸qCÓ™uÈ~­·Y›EË MgàM'ûµÞfCI,Ǽ plÍÐÝMcëÇ"‚€¦€À±Õba5hM8¶ èt€ÆCàØ:¡»šǶŽÐH Ë¢gª‰¹¸¸hvGÉîF©Ç„aˆl3mô,ŒìÁ}d€Hãßõš‚Ç6„%„ Œu!plm0ºš Ç6†Á@GP~«ºUa$þ—Jü/ܪu!plUd£B©;׌ÜÉ1<àV5ð‚ÀKîýqh}8/¡Q¸1”X$ ÕCàØšaMGhBA}Ò)‰hÕ8/AM¸ÐÖ p^8‚:ÐÝÐ!p^8‚ÊÐÝÐ6 5x#1rS°8@«†ÀT&Ò>H†a;´b¸U ¼ p^8B`åz€V#ð‚ÀxA༠plµ°L74-ŽÀ Gà#ð‚ÀxA༠p^8/€ŽÀ Gà#ð‚ÀxA༠p^8/['†VÓy€V#4 –Â"XhÍ8/€ŽÀ Gà#ð‚ÀxAà¼5€fÁ0ŒÜt‹M¨ #´:ÿ e#DFÅ#€$ܪ†7ÃÑ Àk‚ÀZ†Á/4Žð†cY9ŽÉÐ 0ÆÞ(R1"â†5@óCào ©þDÚéHÿA2ò&Ç@c pl…ZsÌÄE‡²}² IaŒ#¼9¸ˆ×H#HDrÿ³,Æ84ŽðÆR4ša–lhá !oêôÿ­ãÈ süßÿèqhrão™èPzÈcC‹8²äŸ(nh¨=ŽÐt^ϬÉÑ7äQ"EnV˜’x#¡ÇZ*EK6Jî FˆŸ–PGÐ$F^'%+9KZjå¹àµ@à&ýI’’cÿ»Ç?ïJÀë‚1Žð†PïÆô?!Øh Žð&à¦Q‰©09¨·ªá !;ª} t:4z¡eãz%Q°‘dçx@à-›Ü0±1±cãït´U¡Eâb»æXv‡û­B‘ª@àØÚ`4LŽ–GjuÓ‘þ­jîtÿ·¢n…8B#53FviqP#´,Ò=~MÚÈÂrƒ&%“¿FÀGhYî·ª i–_¦–û†x@à-úZ̪†–å" ›)j¤!)åà #´, ‘ènl¾N2$EÔÀGh‘èÝÍtd"qï7ÁxÃGhYþÇ5__`“ÿ†!@›Ghy¤ºq+ e@à-[óMŽ‘<bS8BË‚ ÅB༠pÀÝj^8/XާUa¤~yø“ìtÄê<ò ÇxAàðOï GÐ$Üxƒ`Œ#¼^ uæ±tŸ×6ÊPQ~$Ó1䀂Gxݸ_‚aY²Œ¢}^g~¤2Æ=æò „Ž ŠÇj`t!i~¸ óZ;>ÞACZþDÿ„À@B e4 #höÅôéÑ»Òôî‚H€BàØz¼yaN‹ŠÌ¤F4¶¨¼´ AsZL‡£œÌHN²BÇVƒû•ê7¦£Œe Óbºõd£Æ“5€–#ð‚À±5`$~»}ƒ:à‚À4Ëk¼i8¾ñ$G7Òètlæ #hºÞ@ßl’£%¡ÓšGp·àŸ„šÎ¨OQw#Å6´ƒ&rü¿8 ÷©Þ@èq^Ðãø¦b$þ—J”JAçžú$ïV£—Ú<Žo*Ù(¦¥Çˆt&5F ¼±8B3b ‘)þ/±EGºðOãÍèÿbF–ý¿[½ߘîGô• Çš¹ûÔ’O i‰Ñ˜’,InÂGh{8¶-}€ãD*´%ÿ‹%Ÿ"j€6 ·ªáõj]Œrɽ7Í0ˆ -k+=Ž{öìùþûïËËËÛµk7`À€¹sç¶oß^Éþ£G¾|ù²T¢H$:}ú´¦/å $÷>uËÀ¸LJæ¶…ç 9µ‰À1==}ãÆ½{÷¾sçÎÞ½{ËÊʾþúk}}}E/¹{÷®¾¾¾½½½d¢©©©¦/å%5:ðMéw ­?p¼qãÆæÿßÞýÇÈQ~žkQJË÷z[ZBøa{ý…ÂIK¤Ðò£ QA¨‚ÔAùa Ò`4[Ó*4zÄ  6„ˆ+HZ ´üP鬥¥DèÑÞw p÷|ÿ˜ÙgfžÙ}vwvgvæýÊzs»Ï>;³»óÙç×tvŽ3æÏþóèÑ£…K–,Y¹råòåËüãïÒÛÛÛÓÓsÆgÜqÇIW?Âó`š¢ÝŽ…'ðËþÇûï¿pppÁ‚NjB,Z´¨µµuÍš5ƒƒƒÆ»¼ñÆBˆ@s#j’þŽéÕöz«EóŒÑ ²7lØÐÒÒròÉ'{[† 2kÖ¬îîî_|Ñx—;v!;찤뎤Ân3f_â“ñਔڶmÛ¨Q£F¥ooooBìܹÓx/'8¾õÖ[óæÍ›>}úI'tùå—¿ôÒKI?4–1&’9–ñ1Ž}}}áI-­­­Bˆwß}×x/'Pþâ¿8âˆ#Ž?þø7ß|ó©§žZ»víÍ7ßüÍo~Óæq'Nœزyóæ¤wFrš´Ÿ!„é´ž[ŽýýýBˆáǶ1BÑÓÓc¼×[o½5lذk®¹fÞ¼yΖgŸ}ö²Ë.»õÖ[O<ñÄqãÆ•}Ü\ÇĬjŠ%„u>­ç6Jf¼«zäÈ‘Rʾ¾¾Àö÷ß_¸íŽa÷ÜsϦM›¼Ô(„˜1cÆw¾óþþþ¿þõ¯I?'€dd<8:´µµ5ܲØÛÛ+„ðæYÛ8î¸ã„[¶lIú9$#ãÁQ1f̘îîn')z¶oßîü)|{¥ÔÀÀ@x¥ž!C†!<ðÀ¤ŸAª/TM÷.Y‘ýà8{öì§Ÿ~ÚÛ¢”Z»vm[[[GGGøö;vì˜2eÊüùóÛ7nÜ(r<¦¡ *{K²8 ß²çÌ™ÓÒÒrçw:ã…{öì9çœsöÛo?gË|°}ûö]»v !?üðc=ö¹çž{à¼B6nÜØÕÕ5nܸ/}éKI?!€dH•ƒnÄ®®®eË–rÈ!3gÎܱcǺuë¦L™ÒÕÕå-Ó³zõꫯ¾z„ <òˆâµ×^»øâ‹÷ìÙ3uêÔ#<òÍ7ßÜ´iÓp×]w}á _(ûp'Nlð¬jû®jiì8–ñ¼ …ZK–,¥ üY WeÂ¥ÄP8=ï€$Îõ)‘ýG!ÄE]´|ùò#Ž8bõêÕï¾ûîܹsW®\^ÜÑ3iÒ¤|ð¬³ÎÚ³gÏã?ÞÓÓsÖYg=òÈ#6©™É€Eo5 ÇrÑâØ`9mqôÇ)'5‡9†¥ùZŽ€ü¶8f|p4˜ôwUû‚ u4¹\tU£”’%fRg¯•Ž È‚#â$• fG)³–æÈ+‚#ê¥Øm¥Ôè{†ÄG@¾Q/Ååx2°²š†ˆÆä˜¦—Âë *)¥R…në̤Fã)7m€,!8"NŽ…YՙɎz. ÜÌÌs ]Õˆ“ÓÐÜšv¸ Ø ‘ÙxšD#8Öœìž6NdäÁ1s8&]‹ú==mª8ÝÓ€œ!8•ðÚI€üar Ê“¦”ß«œëË yBp„•@HŒŠKï§.f7E)ÿO‰ÙBd-ލ– ýi)ï3cìÈ4Z`…GÔ€Ö5—o/ú¬ÙE€¬ 81B¨p?5Á-G ´ÉædÁÕ¢9MìªfϲˆÉ1@ |£½‹1-G &NX$2²‹àˆj(Á>ŸÂ1­m @f»ªñAÇf•ðõmk™¿ôä-ÊC‹, sލFîâ `9”'e¸éL W,­kä-ŽM©Á ~Ò¸…ÞØ(,ÇÈ(‚#ÊQÑñÁ|ä Á±ùxÓbÖ¨e~ ®@Î`…àØdôUx³›S‹aŽ€,"8¢… ¥È‚c3 /úT££\€Ü!8¢Z̧.Y@曆ÞÜØD#S^½F >²‚àÔ©!Çæݨ£U/¥èÊd Á¨3;²bhÒ@yRûo`c`K¸h7«@TF l§1ЄŽM 1ê—Q+§}ÑË…N^Œú€¦BWuói\j”’>Öj8ÙÑˈÞ>t%©дŽ(G+N‡z3$͉à+GD …,Ns­³3iº49&Ç@‘lÈÓó¢`´( #hq„ÆkbÔçp(Eä©F` Í·€æGp„Ÿwü f5Fž<^Ø&kôМŽM†@RŽˆà5:!Ž0ð:UÝnkÂc ˜U h~G˜èG14Ap„×Ü袡 ‚#Ð8ôVšÁ!,LŽÍ„µx2‚ ÉšÁ®ÀUòPôVšת†‚õsD&4ÙIÑ\ÍàˆFPô³ëœ6Ýjwë‘ü©Îyˆê6FU/öj“D ñŽpq=åú 4èzûÙ¿^fÑÊ&Ò)¡œÿn»ô$Qò%Ĉà˜S*e¼¼è2IW3+¡\J)d(Ϙc}ØÊ¶ª÷ƒq#iªCplõèê•n»—¡žSF=V%2Ã)QŒ†Ñ²m™Wuš´) rŽà˜SNdTRÊp³¢in,Gú÷P‰,R Rz]ÒJøš!‰‰uNä–­¶4X€Žà˜kR)%¥þQwDÆ`zP‘)/KÈ5¶Õ5£ZÒdÙÒ Ž€m&pgš¸÷²Ià„réŽn,þO¼°Éyίá[Ú´«•h¨³,°¢éI]ö³ŽlžZzžTà÷<æ$˜œÍ­®n¬›”RV·‡ ûV­ª†Õå¼³ªkl(µ,°¢ÆÈ[b?$ÈÂI—¾o™Dp„BV‡É'êÙD¢:v7뉼¸þN±üðcÕuVµt›?¥vèU:¾6xϱÒU{JDÌÆç³ªÓ$Q@:sÍY”§8_;óñQúR‘}+QÍëÌ7Œ¨¤LŽIlVµ÷°Ípð£ònÙˆ)Kfô†a!Í‹àØêtÙgrLpk:œjz^Bšç¯¨ºÇ… ;‘›!¦U·‚ …6ÆÜœYaÞÕã£å`MѨÖʪ×<'Mh$‚c®–ãiHc®:XYÔZcIᑎ•5aÚ(õ…°:%°zH}MU¶j­ i°dÐ$€"8æ‘yùƦ>GJ¼2K•sYejYøE³ªk{’•Õ0bc°]-\¬Ö([ÓÌhc…M-¾©ZßÇØPêþ³Ì ‚Æ<Ò$€d›@NGMk\T¯Æ ̪Ží\®ÑÑtqB«>w›”`x"2žÉ1æ]*Üþ˜ƒ{E;Ä–aE|«ö]û¾ïØ1@ÃsÇÉ‹*õ3`ª¾(\¥§jˉÌu|‚Ú¤ÛÇŠ)Þ%®ºàR:¸§jÝòŠFRÆ㘂 Ži'ÝÑñ—œúä>óÕéÂ]· ˜Èl¿¨¸±é1Îά*™¤S%E…KWÖ/MÒÍ   Ç&PëùM_²DË‹¾FÇDýŽºèsüóWT™Õk~0g‰ò‚X±2eó«Ëzhf]ëi3)'®—.ƒ&T„à˜j^scMS’½yÓî…©õÑÊýSÞ‘/©ÈÓT°¡µÒ º%;A®ãž×œsc*Ü|r5ÏpO}«pó2§IëÆÝ†5XF}Õ1®I™xš$J™Gṗˆ•½½åxùa˜e¢„é¢ÏªpSmk$óY-"§ÍV¸®M™É÷‰,Ü;"Þ ¼K>ê¿" ìæô”Ž’…^|×é1®I™xš¤aÈ<‚czZÇÊ6:Êp. œ“œ91nscýgUK_¡ÑOêm‰ªÊv›).·tbe…G#w©ª-Ó8¥º±mÀ¨‚}ß·y壺]§'Ù4I77ÇŒ¦VÃ`sš”Nôt"£3·º¾ÙÑ·àvQñ”Vá´Ài/†îB»ákÁlãœt/;ê!’ÔØ„*I©Ý'–½%–ŸåÒd‰ï`±ìÒ$1Ç4’N€ðÎ…€§j¿øJ¡Ñ¯‘Ñ]n0xsOźWó,¼·k<¯Xܻѧ./,¦~$T¡Ìw$÷›U ó¾+|Ùz“¸M†é4iS€F"8¦X}šœ¼XËRŽNÛ¦ÕG|ñ¼(”°ol,§êÉ1–5L˜ûUø˜Oæ«™ÔuRN8M6~Ðd ȆW)2î¢$Ð0ÇTŠŽ27×ù´ôÛâHÇ*jhœ.à[†P?ßxŽlt”Êpëê÷ŸÓï/ß;%¦ŽÞCí fÆä^eßu{±4~Ðdø)×sµ¹t8i¨‚c„s‰þGÓÆâ_Ea*hø ~-C£œŒ©_LÏ7«º‘ þ:Ûµv&Dψ%r®¢4Ï2¨Ñ“Á6hÒøÔ˜â $…à˜:R”ip²otT"† bl½ ´8–8EyUÕÏ+n3†ÕNŽ)ýÐá:§Wø@뇌¦G”ã¼Úë¸ü¤ ýütºÕ IQÏèFš€à˜J¦0QSú³È¥Ú-ª]4G/Ùx^±Þ!%þÂ'>b¼ÛøK/¦-MÚš¬k•€¦FpLåͪÖY¯Sí»“ž¸¤;À/z>µq„~ õήÏ[»®ÐGî{&îss¯h5ÉF¿Z`öiû¡çq©f NÞsöi²ì/yOšŒŽù Ï g5wÀb­ÙÅåx*¾ìr™<Êg5PÕ¬=)êrñîi²Á /½˜Ð ³NŸU­ô)Ô¾…Á¡î•]‚%|èd7­ëèÞPߨ/ džøœ’Esê-¢q1°›dð&šUࢠ¥sQRñs)=iÒ¾&DLdÁ1ËœÉ1ÞÌh÷úÍÎÇœïÊË +_OÄÝeô_“$I¨@ï¡Åk:'og”+û É‹iÝòÒ¼)Í>MjR¨×UéûF®³L ¡œÌQ˜¿¬ÜÑ“2ÐâXö³+˜WœSv ”åýôæ4‘ïŽi­yX¿¡Ó ¤J ë–Çúª6_§§¸ŠlC‡ Ó÷¬"8fJ8[¸­‹2Ôâh]¦(6wù¢ü‡› ÌéÑâqn–Es¥Ø:âþKI©hhD“Hɺ岸ödTC©ebó5”V~¥Ç²{†¾o¤Á1k­wÅÁ‹Þ•cÊ6.ú?¶”ýÅe‚©TÖc}擹Þâ¨Ø§h*_·¼¢úÖ üÉPùð÷óªV½0ÖÇ[0È8åÜf_‘&QoÇfüÈp—Z 4Mi½Éåv)qa1Ë:ù/9¨¢VªøÂ‰p¥ú8€5ûuËöEÉ8x1=_ÓjIY¶4ÀÁ1]Ük9[½¥ÃBªàF_Ž4dÇâõÄDE%*jcZ>d4ŸÐú 6L:lZþâêZq’tñ¿NÙ%OQ­§e÷­•¨Á1u¤q›éƒ©ì¸7YþÞTŒ jè­·f(2‹æ4œóuÂë­=²ªÊnî™–¨>J*í¿ñ½Ó«îû.]rˆà˜"²ÄÂÙ¦/âªûÊwúHã¢ý'kø’ƒ±LÔ¨x‰ð+ŽzÔçVûFèó9Ž©fÝò†·®`Á ëy9 ¨!ÓwPÁ1µÌw1PJ8o òÊò/¡h-<÷YªèGÔofŒ*L{rÿF*X·<Áa‹eæå(ÃÒ0ȲlĤ 3WŽiš,⻾sôJÚÅ»ÿ­L…–ëøˆšTèü­;“ÿ˵ŽcàzÖ´;Q´PûV´¤4äÝr«¥ M˜9ApL’ÿÝâå6Uº×Z»¿,®í6;éà,Æ8ºXr¬4«-&Î[¢£x|½‹I¨„íz) jõ}WúdÓð\bl´yPTà˜0mAlá6çIorµp~-ÌW6¬:ë_Ù»XDù‡ÕyW—iôsR©Âåm`Í—ÀG PWŒ¤L®CÙ>Eu(¥9NÙ7aÆÛ®Y¶&9×’tòB þñ¶ëÿˆ¸»B.Cçu¸(¡„RR8?V¼¾ý'éw„¤åÌZñX{ÍÌúõ uÄq vÖïªð§}"”ÖÌPüqÿäôdè5LIµãzîÞOxKé¥Ïà™Ùc–hqlãu]ŽG_s£ù¾Î7i.PY_ÜÅ×–ém¬é²µî) Ž–¼‘ŽJŠbjÔ…eßõ& «-V3’²®oÖˆ Þ®øP]‡xöX6åZ®Êž1Ǻ°{›)á{–Õ(½®dçÊúš,ezJô¤2E8Ù‘ë ß*´¶÷˲ÖÐ¨Ï³ŽºPQhˆxFR6Õ¬êæË|"8ÖETã¢Ká¿áëï©â›ÍRØô‘/#BI1MktKá~ç5DÖyô1|Ð'S볪MS¦J3OÙPM±ŠPiÅjûÖ–Uµ7a&µÂ%JcŒc¤x`Μ9'œp 7ܰwï^ãÍìÆ=aH2Š£L ½ÉÅ Ç8Z¹ƒ#ÝkŠè?MôŽ+Ûa-¥”Î]†=èîÛðƉííÆ‡µ¹¯y£¹¶5h|Ö†GÑŽ« ¥RÒù·Ö-½h?2”&•4bĈU«V]rÉ%ýýýƇßÂb°má®nˆ”BÛ ep¢qáÖÚF}ZŒrZ,nq¦P¤ô ªóKìeø»nüÓƒlK)aaÎääª>”2%]Uæi•ÛÃ%Íb[CáeGw9CYeplƒÕ.Ïé̈—¦ÕíØV÷ZÎR••ü’™öýàŒÔ¶©veŠØ Œxa«ª_í^±6ÕÕOì0~.Uÿéç¶zÄùéWQ Ëî¯2¡()¥$Qç±ËÌn‰®ašÏ±uDp4ؼysggç˜1c{ì±ÎÎÎÇ|Þ¼y/¿üòòåË«(Ík\”Á-:%„’Êý¾æ4 é…(·}Q¹,Ö~õZ›‘“ªIR?!«øL,]`5JÅ\`á~Rï•vÎg¾½§/r¤·z+QØXé[^Þ-0\íðI׸ŸM'×Àùµp.¬®@å(ÊTÛ²@ï¾þíÊ´±’ƒGÙPmë}(„ñµdªvDë›mµE¨ÚBTYíÈ×’iÇšÇKTR`è«WÌŸràQŒ‡¾Ä{ªlúím tŽ”ž«J4^ø»Åd(Z‰ÀÉËžñ¾µè}úÙhŒÔ…_e±@§iÓmVáý`Ú]ùLŒGƒûï¿pppÁ‚£Gv¶,Z´¨µµuÍš5ƒƒƒ%îè}ìF}©õ^p^w{÷Œ"ÏhÿUè°p»-Dø[—ýŠ<)øÄôåå}äj·ªå ½;†Ò¢r¥òæ) S¬f¨v…{CÏ»ÕßY]¿»Qo_ôfÎëÕ–Åj{­×Þ*ó,Œ¯v}£/Õ©òÃ(Ëè;a¨ˆqŸ¡lY ñ)¥âÃÏ1Pmí(K»G)ý”‹›­ VÛæ½f]íÈ7Æ] þöÑ!³?ô%^KÚ [Ùz›#UºÚ–êÊV[ØåKQÌLÂû s¢•»L‡á]oC{v†¶•zh>R¦Þi¯ýÒ+PÛ]ªL™Fp4ذaCKKËÉ'Ÿìm2dȬY³º»»_|ñEÃ|C}çoãb±9Ìm\t…Âí‹J?ÇHáµ8f÷»Ž”-o΀þÈVUûe‰+o#,-ˆ­@ïî§• ì­KÚô$eÔW}/Mk¡ÿÚi}’ú©ËÛhS¸’Âmf±èÝ×+Ðm_u?ܽf˜ ô*S(°xr­²†ÁgWh%-è>ŠU¾1*}è´‡ªm_`°Úzr«Ú9ÕXÜ9¾jÇV ñH)c—LÄ‘²-PVX {¤Âo¨§¨¶}UV[Jåv”ß¹…1QÅ#Ue"µhªŸøÜÖ;¡}M­æc$òHUþ1b~a+Uq^çOô§köƒ”RÛ¶m5jÔ¨Q£ôííííBˆ;wFÝQ?[;k.Fù¢‚Å„$E¡gA¿—ó/á_Ö[ m8c¹q“iWâ+¤õ¼!ÖnÔ®ö œ²-¥VrAE.ÜVZœ˜bõËí ­ã>TíÒɸp&Å‘^ÇŒö(Qç’àÂ=úS¾ôF|ê½GB_á/ª’õq¥Ò}³èÿ­¥Àâ½D°X©¼•~š¡/„ö6Ÿ¬½|ÕöåJ÷C ÚBûtª½@ï¿ú޵©vÙõCïU;®/lcµ£½¯(ô'CÕ¶,0|¤ÊW»ÂýàEÌÀw¯°ôyÊ{ mÄŒsÒÔ»A#‘»·øZõ 9UáSÓ˜(ÃLj}Ú7öüHråçtúàƒ>ÿùÏ?þÑGÕ·ÿéOºñÆ.\xñÅëÛ½õ¼s»iN"Ȕ͛7 í쟓õƒXÇ1È™:=|øðÀö#F!zzzŒ÷*´™+%„زy‹Êë*UÎ@!”w­8éÌip_aN‹¸ûEÐi0ÏêBÍ–m{Ê{e*$¼Ñòf.°Ì£h_» zkj†[„6ê/ãR5ÔÞXAúFëm%ºÀÔ퇌Xû‘âÐ ô/{8ÉT´QoG ž¯õ«r(¥ŒŸÆYEWuÐÈ‘#¥”}}}íï¿ÿ¾¢µµÕ²œðºÖî)ÝW¡7µUïÚJ»qæ¨èáÿwäŽNKÒôpewb– ”% ”î%­ëîèßÄvw¼Np£WmÓF_™¦·€pû8RZ ·ÑÔ÷Ô¸õ{…оj+#Õ˜k?R†mvlv}q~3ZÑ?‘Ô»;:Ó¾ìëLWZ7ŒÏ×ÚFmmwîþ×Ì#8 :´µµ5ܲØÛÛ+„ðæYëü/7_æó¦\§B»ã‹½_‹k1z"-¦ËeL‰lT]ÞÊa‘X¬Çý,.¼8õ‘R…?Ks¾T*8¨ß¿QŸQœ¤÷þ[]ÞÆØ |gó"uà ÞÀK<Š^`‰#e_`üGª~‡¾ÄŽM÷¡åH Lí‘Jý¡ž”‹³ ”Ò7ꆜxª/u"‹gn‘Gƒ1cÆtww;Iѳ}ûvçOæûèï Qó«_\Øù¯¶µr~-üh7+ÈYv´Q"l‰ªòV– Œ|”¨ï!þ¢Â}ý‹õ¸3‹õÅ’Ü{›6z¿Û ¼ÖmPyMjO*æÃOÙÛuÑR¿K?Š^`éý`Y`üGª~‡¾ÄŽM÷¡åHÙ˜ü‘Êú¡ú| 8Ìž={``àé§Ÿö¶(¥Ö®]ÛÖÖÖÑѺ¹×\®¼éfBhßEÜÛ~Ü9d%zló¦t6•ç­XöQ¼û6ºÃ†ÊDLÿç²~ßàÆp Ý›7R`ÙË>JðHE<Š}éÜ™)°Ô£ÔçЧs?d°@ãÇiv æÌ™ÓÒÒrçw:ã…{öì9çœsöÛo¿ðí ‡Bx?Bû“¹q1÷dèG˜~-»ÑòfÙ+0ÆG±*Ðÿ2–^Ûyxcøîá›Q`é#%x¤ÒVm ´?Rúæ,0ð“’åxŒººº–-[vÈ!‡Ìœ9sÇŽëÖ­›2eJWW×È‘#“®@2Ž‘þò—¿<ôÐC/¿üòرc;î¸ 8+òäÁVã+GX!8À ÁVްBp€‚#¬cóÀÌ™3§££ã„N¸á†öîÝ›tò®¿¿ÿž{î9óÌ39昙3g^|ñÅÿøÇ?’®ŠvïÞ}ì±Ç^wÝuIWBñÊ+¯\qŧœrÊôéÓçλ~ýú¤k”w~øáÝwßýo|£££ãÔSO½êª«¶nÝšt¥rê?ÿùÏĉ_zé%ã_óvö'8ÆãöÛo_¼xñ믿>}úô#F¬Zµê’K.éïïOº^ùõñÇ_xá…?ûÙÏÞ~ûíã?~üøñëׯ¿è¢‹îºë®¤«!„PJ]ýõÞåà‘¬'Ÿ|òüóÏòÉ'GÝÑѱqãÆyóæ=ùä“I×+¿æÏŸ¿|ùò½{÷Μ9óCyüñÇ¿þõ¯oذ!éªåѽ÷Þõ§<žýjöÚk¯Mš4iæÌ™ÿûßÿœ-·ÜrK{{ûOúÓ¤«–_øÃÚÛÛÏ?ÿü¾¾>gË–-[Ž;î¸É“'ÿë_ÿJºvP]]]íííííí?üá“®KÞíÛ·oÚ´iG}ôóÏ?ïly饗Ž:ê¨3f $]»œr>Á®ºêª>úÈÙòì³ÏNž<ù‹_übÒUË‘žžž 6Üxã·զM›7ÈçÙŸÇÜÿýƒƒƒ ,=z´³eÑ¢E­­­kÖ¬Lºv9õØc !~ô£ 6ÌÙ2a„Ë.»l``€ëÄmݺõöÛoŸ4iRÒB¬Zµª··÷²Ë.;öØc-ŸûÜçÎ8ãŒ={ö¼òÊ+I×.§^|ñE!Äüùó‡êl9þøã'Ožüßÿþ÷ÝwßMºvyñÕ¯~õ‚ .øãÿuƒ|žý Ž1ذaCKKËÉ'Ÿìm2dȬY³º»»7?oûöíÇŸ:uª¾q„ Bˆ;w&]»\ûøã.\ØÖÖ¶hÑ¢¤ë!„øûßÿ.¥<묳ô?ÿùÏ7oÞ|ôÑG']»œ;v¬BψJ©}ûöµ´´xQõ¶dÉ’+V¬X±bÆŒÆäóìÏë¯VJ©mÛ¶5jÔ¨Qúöööv!ÄÎ;§M›–tóè7¿ùMøãõŸÿü§âÐCMºv¹ö«_ýêßÿþwWW×ÿýßÿ%]!Ä«¯¾ÚÖÖvðÁ?ÿüó7nÜ·oߤI“N;í4¯µwæ™g®\¹rÉ’%pÀ1dzwïÞ+VìÚµë[ßúoœ†9ñÄ<õÔSá¿æöìOp¬U__ßÀÀÀÈ‘#Û[[[…ÿû"iÊ”)-ëÖ­ëììüä'?hYA#mÚ´éî»ïž;wîŒ3œd}øá‡ï½÷Þøñão¾ùæûî»ÏÛ~衇ÞqÇGuTÒÌ©‰'Þ{ï½^xá…^èmœ;wî 7ÜtÕPÛ³?]Õµr&O ><°}ĈBˆžžž¤+100°råÊï}ï{}}}K—.=è ƒ’®QNõ÷÷/\¸ðÐC½öÚk“® Þ{ï=!ĶmÛV¯^½lÙ²õëׯ]»öÊ+¯|óÍ7¯ºêªŒOM±ÞÞÞ¥K—~ðÁS§N=ï¼óN?ýôaÆ=ôÐCLuOÜžýiq¬ÕÈ‘#¥”}}}íÎ:#Î7$hýúõ?ùÉO^ýõ±cÇÞzë­QCUÐË–-Ûµk×}÷ÝGhzì¿ÿþÎ?–.]zê©§:ÿ¾âŠ+vïÞ½jÕªG}ôÜsÏMºŽy´páÂ^xaÑ¢Eßýîw-»wï>ï¼ó®¾úê‡~øÈ#Lº‚ÈïÙŸÇZ :´µµ5üÝ¢··WáÍ´Bã}øá‡K–,™?þîÝ»¯¼òÊ5kÖôÜsÏÝwß}—^z)ó-Reøðáûï¿ÿ°aÃN9å}ûi§&„xíµ×’®`½ýöÛO=õÔøñã½Ô(„7nÜ~ðƒ>úèÁLº‚"ÇgZc0f̘mÛ¶õööêc–·oßîü)éÚåÔàààµ×^ûÄOœvÚi7ÝtS†ßÃ͹è…3EQßþðÃ?üðÃ&Lxä‘G’®cN=zß¾}RJ}£Ó*üñÇ']»<êîîB~øáíNCã;3tQϳ?Á1³gÏÞ¼yóÓO?ý•¯|ÅÙ¢”Z»vm[[[GGGҵ˩{ï½÷‰'žøö·¿}ÓM7%]!Äa‡æ½A===Ï<ó̸qã:::>øà¤+˜_§œrÊï~÷»-[¶8³AÎb"¬µ™ˆÃ?|È![·nUJé~óæÍBˆñãÇ']AäóìOWu æÌ™ÓÒÒrçwz×OëììܳgÏ9眳ß~û%]»ûl!ÄâÅ‹½y ¯¼òÊoûÛÖÖÖÓO?=éÚåѰaÃfÍšµcÇŽ_þò—Þ:Ò[·n]±bÅ'>ñ‰À $(ŸgZc0nܸ뮻nÙ²e_ûÚ×fΜ¹cÇŽuëÖM:õûßÿ~ÒUË©wÞyç7Þ6lØ\þëÙgŸ=wîܤë¤ÅäÉ“¯¹æšÛn»íË_þò´iÓúúú6lØ ¥\²dɧ>õ©¤k—S·Ür˹瞻bÅŠÕ«WO™2¥»»û…^\¼xñg>ó™¤k‡‚|žý Žñ¸è¢‹>ýéO?ôÐC«W¯;vìܹs,XàÌÉGãíÚµKÑßßÿꫯ†ÿÊ àÒK/=è ƒV®\ùì³Ï¶µµÍž=ûÊ+¯t®´„DtÐA«W¯þõ¯ýÌ3Ïüíokkk;餓.¿üòÏ~ö³IW >9<ûK¥TÒu@`Œ#¬`…à+GX!8À ÁVްBp€‚#¬`…à+GX!8À ÁVްBp€‚#¬`…à+GX!8À ÁVްBp€‚#¬`…à+GX!8À ÁVްBp€‚#¬`…à+GX!8À ÁVްòÿ°p%(`"IEND®B`‚statistics-release-1.6.3/docs/assets/wblinv_101.png000066400000000000000000000556151456127120000221650ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A[TIDATxÚíÝy\TõþÇñ隸„p \rÜRq+-É%×´,·Rs½e®-×ls¹ä5³ìwoþ4Ì4ý fÅ%»Šæ®šZ¢Ä$n™˜H Š0ç÷DZi¶™afÎöz>|ôΜ9óùžðæó=çŒI’$”ÇGé  G8„à‡à‚#Bp€CŽpÁ!8À!G8„à‡xÕÂ… MJKK³}ªiÓ¦òò˜˜Ûå;wî´¾dùò县עE‹äWµk×N^òöÛoËKž|òIw¨ø6y—âµYݼysáÂ…=zô¨[·n•*U"""{ì±yóæåççÛ­yüøqS1~~~ÁÁÁ<ðÀÛo¿}éÒ%G^bçµ×^s×Π3G^Õ³gOëãï¾ûÎúøÚµkéééòãC‡YŸúþûï­}ôQ¥GàY‡jܸñ‹/¾øÍ7ßœ?þæÍ›7n|õÕW#""6lØPŠ._¾|àÀþóŸQQQûöíSzLôÃOéKXXXDDÄ©S§„ß}÷ÝsÏ='/OKK³X,òã¼¼¼ãÇ·hÑBþÒ[´hQ«V-Çß«F 6BÔ®][éq;T[zzzçί]»f]âççWXX(?>wîÜàÁƒ÷ìÙÓ²eËâ õ÷÷B\¿~ÝÚh¼råÊ Aƒ222*W®\ÆKì*½{¨GÞfm:ÚvåÇ>>·(8pÀú”58öèÑé7:t¨Ùl6›ÍëÖ­SzÐÕöꫯZSãèÑ£>|ãÆóçÏ/^¼¸FBˆ¼¼¼!C†”¸Á+VÈüí·ß²²²F-/?{öìÿþïÿ–ý;Ó¦MSz÷P)‚#o³Ç£GÞ¼yS~,ǦM›FDD!öïß//ÏÏÏÿé§ŸäÇvÁñâÅ‹'NìØ±c5î»ï¾ØNj‹2Ï#Bœ?þÙgŸ½ï¾ûêÔ©3xðào¿ýÖöÙÒÎS|æ™gÜr"`ñÚþûßÿ¦¤¤È§NºdÉ’–-[úúúÖ®]{ìØ±+W®”ŸJOO?yòdÙ¯W¯Þ’%K¬•¿÷Þ{ׯ_wÿ`<GÞÖ¥K—»îºKqëÖ­~øA^(ÇvíÚµoß^Øtøáù|Ç*Uª<üðÃÖlÛ¶­eË–ÿó?ÿ³wïÞk×®eff~ùå—mÛ¶}å•W©áܹs111Ë—/ÏÌ̼páBRRÒ£>ºhÑ"w‹µ/ôæ›oÚ=ûØcõéÓ§U«V­Zµ:zô¨#œ8q¢üàÒ¥K»víRphtƒàÀÛªU«öÐCÉ弘››+Ÿõضm[98?~\n’Y›ˆ:u²ž—››ûôÓO_¼xQѵk×éÓ§?óÌ3>>>’$}øá‡K–,)·†ƒþüóÏ!!!111ÕªUBܺukܸq?þø£R»e÷îÝòƒ§žzªzõêÅWذaCZZZZZÚ€Ù`LLŒÐÅSÿà2‚#Xg«<(„øþûï%I6Ç¢¢"92:tH^ÓvžzΜ9òõܺuë»ï¾ûÅ_|üñÇò³3fÌp¤†~ýúeeeíØ±ã§Ÿ~jÔ¨‘ü¦Å[}ÞqëÖ-9 !ÂÃÃݲM“Éd½–è×_-¾Â£>Zü^<“'OVdЂ#Ø]#ÿ·R¥J-Z´hÕªU¥J•ÄŸM2kDZ{÷îÖ—oÞ¼Y~`½([1zôh___!DVV–u¼4•*UZ°`|­q½zõfÏž-/߸q£í€¼&77×ú¸N:îÚìßþö·âÛ—q; hÙ²ehhèÅ‹üñǼ¼<98¶hÑBNr-Z´8tèÐþýû Ž;&„ µÞGa½:Äö®¶N:e»~qÍš5»÷Þ{­_öîÝ[~PPPðË/¿Üwß}^Þ!òEÓ²âwívÙåË—åwß}wñgK¼OPP—Ç@CŽ`2™zô葘˜XTTtøða98¶mÛV~¶}ûö‡:pàÀ±cÇnݺ%„èÞ½»Éd’ŸÍÍ͵½Óa‰²³³Ë^Áî~ÕªU ¸zõª"++ËûÁñ®»î –Ëþå—_J\çêÕ«ò=«T©"Ÿ—Y.ë uhhhñgW¬XÑ­[7/€¦1U @Öfá7ß|óóÏ? !¬7¦‘Os<}úôÆå%¶óÔwß}·µ?·eË–Œ’<óÌ3e¿»Ý9ùùùrjBÔ¯__‘Ò±cGùÁúõëå¸l§qãÆÁÁÁÁÁÁ .tdƒ»ví*((°Ý¥PAGÊèÑ£‡ÜD\¼x±¼Ä¶ã(?ˆ—Ø}Ò |-‹¢°°ð>5kÖ¬Y³f‰ˆbëøñãçÏŸ·~ùõ×_Ëîºë.ù]¬ ΜœÛþöÛoÚ!Öó5³²²Šß(%%ÅvyäG6h½ZÈö2v¨‚#eÜsÏ=ÑÑÑBˆ³gÏ !üýý›5k&?Õ¸qc¹§˜••%„¸ÿþûí®±æÈO?ýT¾[±fÍš¿ýíoÁÁÁ 6üã?Ê~÷[·n?^nì]¸paêÔ©òò~ýúÉWØÔ«WO^²ÿ~ë)•_~ùåöíÛ=´Cúöíkׄ fΜyáÂ!DAAAbbâÈ‘#å§î»ï>y¿•á×_}þùç“““å/Ÿ}öYÛs(Àeœã@1={ö´^4ݪU+?¿Û?‘|||Ú¶m›šš*i;O-{ã7/^|åÊ•¯¾úªk×®<òÈñãÇ7lØ ?;eÊG®ðøòË/ÃÂÂ7n|àÀ9húúúÆÅÅÉ϶iÓF~ŸŸžžîÑòá‡>ðÀùùù’$½ûî»ï¾ûnppð•+W¬zW©R%99Y޶vFŒQµjU!Äõë×åÄ)»çž{fÍšåѲGб½&ÚîSmÏÉ+þÕË–-«Y³¦bûöí3fÌHNNÎÏÏBÄÆÆNŸ>½Ü·®Y³¦Ï¹sç¶nÝ*§Æ»îº+>>>**J^¡uëÖO?ý´ü8//o÷îÝéééáááv“æîuÿý÷óÍ7¶íÕììlkjlذáš5kZµjUâkÏŸ?/Ÿßi›ƒ‚‚Ö­[칚 Á€bä™–[Op”YƒcåÊ•;uêTüµýúõ;räÈßÿþ÷Ö­[W­Z5<<üÉ'ŸÜ±cÇÿþïÿZOO,CçÎwìØÑ¯_¿{ï½·víÚƒÞ¶mÛèÑ£m×IHHˆ‹‹»ÿþû«U«=a„}ûöy:„=ôÐC§Núè£yä‘Ê•+GEE=þøã}ôщ'úôéSî|}}ƒ‚‚Ú·oÿöÛo§§§?øàƒ-€¡˜¬§e ã‡à‚#Bp€CŽpÁ!8À!G8„à‡à‚#Bp€CŽpˆŸÒxC~~þÿýßÿ%''Ÿ={¶F‘‘‘cÆŒy衇ÊxÉÀ=j·088x÷îÝJ@úŽ………£F:|øp@@@‡nܸ±ÿþ]»vM˜0aܸq¥½*++Ëßß¿aƶ kÖ¬©ôh£ÿà¸zõêÇ·iÓæ³Ï>ó÷÷Bœ:ujøðáŸ|òI×®]›4iRü%¹¹¹W¯^íÝ»÷üùó•.@-ôŽãæÍ›…o¾ù¦œ…±±±EEE¥Í;gee !ìÚ§ÿàh6›«U«Ö¬Y3Û…Bˆ3gΔø’Ó§O !4h tí*¢ÿ©êE‹ùùÙóøñãBˆzõê•ø98^¸paĈ?ýôSÕªU›6mÛ²eK¥G0“IH’ÒEsð&! »ç`’Œ÷?æ¾}ûÆwëÖ­mÛ¶_á7ÞøòË/…aaa‘‘‘çÎ;~ü¸ÏôéÓ\îö£¢¢”"@ÛNžLŒ4âo“ô“'£"#- =ʱ=Ÿžž®`JÑÇÑVQQÑŠ+Þÿý¢¢¢yóæ•˜….\ð÷÷Ÿ2eʈ#ä%{öì‰}ï½÷~øá:uê”ûFÆüŸIÍ¢¢¢8(jÃAQ'Ž‹J˜Lý*1ÖA1™¬É¡_â†méÿG«ýû÷÷ë×/...88ø³Ï>ëÓ§Oik.]ºôðáÃÖÔ(„èØ±ã³Ï>›ŸŸÿßÿþWéqtÎÐóÔP7CÇ‚‚‚¸¸¸‘#Gž?~üøñ›6mêØ±£³iß¾½âäÉ“Jx'8–GÿSÕ‹å•W^Ù²eË£>úî»ï†„„”½¾$I‹Åd2ùøÜ‘ª}}}…5jÔPz@è½VÕÓÇ111qË–-C‡ýä“OÊMBˆÓ§O7mÚtäÈ‘vËÓÒÒ„ÏiÐyp”$iùòå5jÔøÇ?þQÆjׯ_7›ÍgÏžB4lذM›6HJJ²®––¶dÉ’:uêôìÙSé1(Cç·ãùí·ß:uêäïïß}÷öÉ'Ÿ>|¸bãÆ“'OŽˆˆHIIBœ8qbìØ±ÙÙÙÍš5 ?wîÜáÇ«V­úÉ'Ÿ<øàƒå¾©±.Ó³Ù¦t¸E8.Š+>[k ƒ¢øTµÃç8öw½ÎÏq”›ˆùùùÇŽ+þli—È4nÜxíÚµóæÍÛ»wï©S§êի׿ÿ &Ô®][é SЧF8@çÁ±uëÖŽüAЧO»»ó„„„Ì™3GéòTDçç88„{ñ8€à€Zw¶Ö¸#ׂ#Bp€CŽpÁ(еCç·ãÑ >ÉÐàŒyYvˆOJâ’jÇÕ‚è`XüÙÐ ¦ª€rh´j Á!8À!G”Ç„-4࢒¼Ì%Õ#8À!G8„à€ÂT2a˰Q.‚#BpÆ•1Î 8Âi‹%""¢~ýú³gÏVº{aaaƒ Rº ô‰à§åää´jÕªV­ZÓ¦M[±b…Gß+&&fÆŒJø/W¯^­_¿~õêÕcbböíÛWÚš·nÝòóó3Ýéž{îQz œà¨M~Jí JJJ’$©wïÞsçÎ6l˜‡Þ(--m÷îÝݺuSzÄ·åææ¶mÛ6++kàÀÁÁÁÉÉɽzõJMMŽŽ.¾²Ùl.**êØ±cxx¸uaõêÕ•Õ!AACŽp‘Édš}ÕªUµk×1b„üexxøÀwìØqáÂ…â+ËÁ±Q£FîÝ9 êé²reŒ“ŽpݲeË„k×®½zõª7*I’$I'Nœpy#’$;ö‹/¾X²d‰[&ÓsssOž<Ù¥K“Éd]صkW‹ÅR♎•+W®Q£FRRÒ¢E‹víÚUPPàÆ½€÷ᢜœœuëÖ=úæÍ›«W¯Vºœ;H’ô /,[¶,>>^žV®¸‹/J’j»0$$DQbg4##ÃÇǧQ£FƒŽíÔ©S«V­:¤ô¾ .êi½ŽàGU³ém) ìŸe«V­ºyóæ¤I“233—.]úÜsÏ•¸ZaaᆠJÛÈO<á²¥qãÆÅÇÇ1b̘1¥­ælayyyBˆ»ï¾Ûva@@€âòåËÅ·‘‘a±Xf̘1pàÀJ•*­[·nòäÉýû÷?vì˜ü*0(²–UMÍßYË–-‹ŠŠjѢŠAƒ^~ùå“'OFFF_íúõëýû÷/}€îaJJŠ$IuëÖ]³fͬY³êׯ_âjÎ,„øã?læææ !‚‚‚ŠoaûöíUªT±>5f̘7nŒ7.99yìØ±n5^ÀT5\qêÔ©}ûö 2D1`Àù|Çâ¤Òy¢6I’’’’¯_¿>qâÄÒVs¶°ÐÐP»Yéììl!Dݺu‹¯_§N»@Ù£G!ÄñãÇ=1j€Ó¸2Æytá 9&ÊÁ±V­Z111 ³fÍòñ±ÿSÄûSÕ}ûö}üñÇ…Ç_¾|yJJJß¾}‹¯æla~~~M›6ݹs§íÂo¿ýÖd25kÖÌnåÓ§O§¤¤tíÚµI“&Ö…r{²Aƒn2ÞAp„Ó$IJLLlÞ¼yÓ¦Må%ƒ~饗¶nÝÚ½{w»•½?Um ¯óæÍKII™0aB·nÝüýý+^ØsÏ=7qâDkýí·ß’““»wïf·¦¿¿ÿ«¯¾Ú®]»­[·VªTIa±XæÎëççW|0,#žìgÄ1ë SÕpZjjjVVÖàÁƒ­Kžzê©J•*ÅÆÆ¾ýöÛv+»}ªzåÊ•S¦L)wÍÙ³g›Í游¸âϺPبQ£Z¶l9lذiÓ¦½ÿþû;wÎË˳~"âœ9s.\(¿õŒ3vîÜñâ‹/¾ñÆmÛ¶]µjÕÌ™3­iÍ!8Âi BÛà:{öìk×®9rÄCg.Zääääçç;²òóÏ?ÿÀÌ;·"·„´ºûî»wìØ1dÈäää¹sç6jÔhÇŽ>ø üì7rrrnÞ¼)ùúë¯'''‡††._¾|ñâÅ›6mzã7<ºsð(“§ÍPTTTzzº§_bd‹/>vìØüùó•.Ä= {ôÍfsñY~(ŽãâMNÛêç ¨jžºbWÆöG7GhÌ7RSS[·n­t!P!ª Q€ƒŽÐ˜½{÷6iÒdèСJ€ápU54¦K—.]ºtQº €“h±êG`0ÜúÛUG8„à€·nÚÖpÖ-‚#Bp€CŽÀ“Ô6OÍ•1@pÀ«Ô–£Çà‚#ðú«úBp†Á ŽCpÀ{hÀAÓŽpšÅb‰ˆˆ¨_¿þìÙ³•®Å^XXØ Aƒ”® „ &ëÁNËÉÉiÕªU­Zµ¦M›¶bÅ ¾WLLÌŒ3”±– ÀsŽpZPPPRRÒþýû{öì9wî\ϽQZZÚîÝ»•®– ”…+Œà™L¦É“'9rdûöíîÝraaá–-[¦OŸÞ³gO‹Å¢ô@5P­0ÖÌ­±Fk~J +,,BÄÇÇwîÜÙ›½|ùrÏž=+¾‹Å2räÈ/¾ø"!!aذaê) ¢ã×-[¶L±víÚ«W¯ºq³¡¡¡’$I’tâÄ —7"IÒØ±c¿øâ‹%K–¸%5º«0´‹àåää¬[·nôèÑ7oÞ\½zµÒåÜA’¤^xaÙ²eñññ#GŽTº0ÎSs‚£;0U­n&“’ï^æ÷üªU«nÞ¼9iÒ¤ÌÌÌ¥K—>÷Üs%®VXX¸aÆÒ6òÄOx jiܸqñññ#FŒ3fLi«y¿0§Â(8‹à¨n*þ³lÙ²¨¨¨-Z 4èå—_>yòddddñÕ®_¿Þ¿ÿÒÇçþ¦¤¤H’T·nÝ5kÖÌš5«~ýú%®æýÂÐ:¦ªáŠS§NíÛ·oÈ!BˆøøøÈç; •εI’””””˜˜xýúõ‰'–¶š÷ £Pas•yj7¡ãWÈ1Q޵jÕŠ‰‰IHH˜5k–ýŸ"ÞŸîÛ·ïã?.„>|øòåËSRRúöí[|5¦ªpÁN“$)11±yóæM›6•— <ø¥—^Úºuk÷îÝíVöþŒ°5¼Î›7/%%e„ ݺuó÷÷W¼0F¦ÂC… ˜ª†ÓRSS³²²l]òÔSOUªT)66öí·ß¶[Ùí3Â+W® œ2eJ¹k†„„Ìž=Ûl6ÇÅÅ–©jœEp„Ó„¶Á144töìÙ×®];r䈧SWAAANNN~~¾#+?ÿüó<ðÀܹs¹ó"'8ºSÕpÚÒ¥K—.]j·ð•W^yå•WÜûFQQQÅcèÈ‘#oݺuìØ±_b6›m¿ôññÙ·oŸÛ÷@‰…˜§Ö=:ŽÐ˜7n¤¦¦¶nÝZéB0‚#4fïÞ½Mš4:t¨Ò…€£hÃ)‰yj·bªÓ¥K—.]º(] ²Ðq€CŽpÁ2Êü­:ÇÉ ŽîFp€CŽ bÔÙn„ð•’˜§ö‚#Bp@[ÕHŽ@w˜§ö ‚#A'úCp®" ÁN³X,õëן={¶ÒµØ 4hÒUÅ<µÇá´œœœV­ZÕªUkÚ´i+V¬ðè{ÅÄÄ̘1Cé»RØ­[·üüüLwºçž{”.܇v£ñø)]´'((())I’¤Þ½{Ï;wذaz£´´´Ý»wwëÖMé»R˜Ùl.**êØ±cxx¸uaõêÕ•®€—© KG¸Èd2Mž<¹W¯^Û·oïܹ³·\XX¸mÛ¶={ö,X°Àb±(=P ËÈÈBÌœ9S…ÁôŒyjO"8Âu………Bˆøøx÷ÇË—/÷ìÙ³âÛ±X,#GŽüâ‹/ÜÒuª0986jÔÈ{T„žª!qŽ#\·lÙ2!ÄÚµk¯^½êÆÍ†††J’$IÒ‰'\Þˆ$IcÇŽýâ‹/–,Yâ®Ét§ ËÈȨ\¹r5’’’-Z´k×®‚‚7î%¼àåää¬[·nôèÑ7oÞ\½zµÒåÜA’¤^xaÙ²eñññ#GŽT¤†ŒŒ ŸF <866¶S§N­Zµ:tèÒû€7è¿§Ú2OíaLU«›IÑw/ó{oÕªU7oÞœ4iRffæÒ¥KŸ{î¹W+,,ܰaCiyâ‰'Ü_µ$7.>>~ĈcÆŒ)m5O–‘‘a±Xf̘1pàÀJ•*­[·nòäÉýû÷?vìX@@€ÛG €ÕMÅ6-[¶,**ªE‹ƒ zùå—Ož<Y|µëׯ÷ïß¿ÔñyàÖ””I’êÖ­»fÍšY³fÕ¯_¿ÄÕ<]ØöíÛ«T©$9f̘7nŒ7.99yìØ±n5^ÀT5\qêÔ©}ûö 2D1`Àù|Çâ¤Òy¢6I’’’’¯_¿>qâÄÒVótauêÔ±¦FY=„Ç÷ĨÀ{˜§60:Žp…åàX«V­˜˜˜„„„Y³fùøØÿ)âý©ê¾}û>þøãBˆáÇ/_¾<%%¥oß¾ÅWóha§OŸNIIéÚµk“&M¬ sss… 4pû¨ŠjcPqG8M’¤ÄÄÄæÍ›7mÚT^2xðà—^ziëÖ­Ý»w·[ÙûSÕÖð:oÞ¼””” &tëÖÍßßß›…ùûû¿úê«íÚµÛºuk¥J•„‹eîܹ~~~Åwh ¹ØØ˜ª†ÓRSS³²²l]òÔSOUªT)66öí·ß¶[Ùí3Â+W® œ2eJ¹k†„„Ìž=Ûl6ÇÅÅÖí…Í™3'00páÂ…ò[Ϙ1cçÎ/¾øâo¼Ñ¶mÛU«VÍœ9Óš¶îÄ<µWá´„„!„mp ={öµk׎9â¡3­ rrròóóYùùçŸàæÎ[‘[B:èÆ9997oÞ”¿|ýõד““CCC—/_¾xñâÀÀÀM›6½ñÆž.Ï1yú×¼Fåççÿßÿý_rròÙ³gkÔ¨9f̘‡zÈ‘×FEE¥§§;õv.¼ÄÈ/^|ìØ±ùóç+]ˆ{öè›Íæ°°0¥«€=ŽKyb"WEEµóÔ^o7öG7ç8– °°pÔ¨Q‡èСÃ7öïß¿k×® &Œ7NéêŒîÆ©©©nùLBà‚c V¯^}øðá6mÚ|öÙgòE§N>|ø'Ÿ|bw,¼oïÞ½Mš4:t¨Ò…€Á¨¶Ý/âÇlÞ¼Yñæ›oZ/ňˆˆ-**Ú½{·ÒÕ]—.]Þzë-??þæ :$+epYŒK`6›«U«Ö¬Y3Û…Bˆ3gÎ(]^G(†‚©ê-Z´¨xCKþÀzõê)]øíFï"8– øööíÛ÷é§ŸV®\¹Œ[FÛŠŠŠ²["O%2›ÍJ— €³gÏ*]JÀq©˜0O|;«á „©õ'U˜gö¹^½z)=Pµ 8–£¨¨hÅŠï¿ÿ~QQѼy󂃃y•1/чËÔr£ !ÇÅUÎåzdï)|PL&!Iªýß ;§ø¯õâ"ƒ 8–eÿþý3fÌøùçŸk×®ýÞ{ïuìØQéŠÀŸ˜§ö:‚cÉ æÎ›˜˜X¥J•ñãÇ;¶ø‡ \ÇX,–W^yeË–->úè»ï¾¢tEàN´•@p,Abbâ–-[†úî»ï*] @tÛ•ÓíÀà"îãhO’¤å˗רQãÿø‡Òµ¨G{—.]ÊÊÊò÷÷6lXñgŸ|òÉáÇ+]#ÆÆ<µBŽöäÛeåçç;v¬ø³\X °£Ûé\Ý ®#8Úkݺ5wa@½h7*‡sá4‹ÅQ¿~ýÙ³g+]‹½°°°Aƒ)]híF”„à§åää´jÕªV­ZÓ¦M[±b…Gß+&&fÆŒJø¶[·nùùù™îtÏ=÷(]^ÂT5œ”””$IRïÞ½çÎ[âUDn‘––¶{÷înݺ)=âÛÌfsQQQÇŽÃÃí «W¯®t]”¤ÏÆœšGÅ<µ¢Žp‘Édš>>5yòddddñÕ®_¿Þ¿ÿRè¿kSRR$Iª[·îš5kfÍšU¿~ýWs¡°íÛ·W©R%((Hþr̘17nÜ7n\rròرcÝ>À_h7ªSÕpÅ©S§öíÛ7dÈ!Ä€|||äó‹ Jç‰Ú$IJJJJLL¼~ýúĉK[Í…ÂêÔ©cM²=z!Ž?î­@EÔ<©Ëà!tá 9&ÊÁ±V­Z111 ³fÍòñ±ÿSÄûSÕ}ûö}üñÇ…Ç_¾|yJJJß¾}‹¯æla§OŸNIIéÚµk“&M¬ sss… 4pÿ.XÑnT ‚#œ&IRbbbóæÍ›6m*/tà‚#NPs‡NWƒ¡Ý¨JG8„à€!Ñn„óŽ@MH*FpÀQjnÒu$ð*‚#P ÚêÆ}Õ"**JéÆ@»®"8ª‚1?ïÒ›øø]GÜò8ÚªÇT5FBþE€ ÐnÔ‚#åÓIŸN'ÀbŽ@i´5‚à€1ÐnD…€¢h7jÁ€rè¡U§Ú15…à‡Ð;Úp‚#eQmè¼à€®©6ùÒnÔ ‚#ú¥ÚÔm"8P*r—§ÐnÔ&‚#:¥ÚØKjÔ,‚#Bp dªmØi»zÚZFp€CŽèíFxÁ€¨6zi©QûŽè ™CpžG»QŽØÓpÏN¥“õ‚à€^¨35BGŽÀ“h7êÁ€;hµm§ÎºIúBp€CŽhíFxÁ€¿¨3€i©QŽhiÞBp@ËÔ™i7êÁ¸©Q¿ŽÜ¦Îæ¾*†¶€ûÐnÔ5‚#Bh±y§ÂŠIzGp@ƒT˜aGà´ €à€Öúw*,—Ôh GP1¤Fà 8 )*l7Â0Ž£ÓRSa­´„à\Ej4‚#¡¶v#©ÑxŽCS[ÔŒà€¨-áÒn4$‚#ªGj„:Æ¥¶<¦ ¤F#8 jaááÄ[¨Á3™Ì™™Ja[íFC#8 Šyj§‘ à€Z©*Û’Apå#5BAp“ªzyš-†Cp@}T•i7âOGP:R#l†£ªvžªë#5âNGÔ„Ô#8ŒE=Á Ђ#ª¡žTK»%!8 ¤F¨Á` êÉfêEjDéލ€J"-©e"8 4R#4‚à0 •Ä3•"5ÂGEž…vø)]€WefföîÝ{õêÕ-[¶,{Í=zÔnappðîÝ»•@GT’i7Â1Æ Ž‰‰‰®™••åïïß°aCÛ…5kÖTz©$¡©©3DpÌÍÍ=yòäúõëW­ZåàúW¯^íÝ»÷üùó•® _j³¤F8ÃÁ±_¿~¿þú«ãëgee !ìÚíRCBScM¤F8ÉÁ1..îæÍ›BˆåË—ïÙ³§ÜõOŸ>-„hР҅tŠÔm2Dp|øá‡å©©©Ž¬/Ç .Œ1â§Ÿ~ªZµjÓ¦Mccc˽¤m 5Â%†ŽÎ:sæŒâã? ëСùsçRSSwìØ1}úôÁƒ;²…¨¨(»%›7oVzX†vöìY¥K€=Š:éò¸„‡‡efšÍf¥ëøSXx¸93S8\ÛJXx˜9Ó,T³CÔ¯W¯^J— Ç\¸pÁßßÊ”)#FŒ—ìÙ³'66ö½÷Þ{øá‡ëÔ©SîÒÓÓ•ì………)]ìqPÔI—ÇEEƒ2™„$9[;ë7 !‰0¡š¢Å­ï7/ÁÒ¥K>lMBˆŽ;>ûì³ùùùÿýï•®W1CŠ!8:ª}ûöBˆ“'O*]À j¸ E-ÕQaG{’$Y,»å¾¾¾Bˆ5j(] @›HÐ>‚£½Ó§O7mÚtäÈ‘vËÓÒÒ„Ïi-RQ»‘Ô] 8 !Äõë×Íf³|ÙZÆ Û´isàÀ¤¤$ë iiiK–,©S§NÏž=•.gá>\U-„;vì˜|¸jÕª³gÏö÷÷WºX€Ö(Øn$5z€I˜"E¤ÒU(ƒŽc 7n¼víÚþýûgggýõ×W¯^íß¿JJʃ>¨tiG©ežZ-un`’ø¿ÙÝ¢¢¢¸£Ú˜ÍfÝÅ BŠZé鸨%°U¸× íFÏ0 SdT¤1×ÓqènRcÞšÔ÷#8à¤FèÁ 5B޽QË<µ2ƒ'5ƒޏ›"ÑÕDjô“0IÞËÜÇ +Ê·•JÆ 3ð:ޏ©ºFpÀMHÐ;‚#@?”Ÿ§öö€Ið*‚#îàýÐJjô:ƒ_#ŽÝP²ÝHj„1¨R# ƒà€¦¡‚#@›§öò“•Ã Ž‚à€ëH0‚#@ó”i7’a<GœGj4æ©eG€¶éþ¦ßaáa$¨Á'y-«š„0 s¦YéíF+‚#Îðfj”˜¡†ºæíyj/§F¨íF[GCj„áZ¥ÏËbHjB»ÑÁx'¥’¡nGÊCj4$ÚÅù)]®ðÞ<µÞÉ$„ 5ª ©±DGJçÔH>F0U Ð/µIFE»±4GBjT%RcŽÑI»‘Ô¨J¤Æ²qŽ#Åx45r)ŒZ‘ËEph‰7ÚžN$U"5:‚©jl ‰Ôè ‚#"5©ÑqLU4óóÔžÛ:'5ª©Ñ)G<‰F£Z™„IAjt Á  šl7’ÕŠF£k8Ç`x¤Fƒ!5ºŒŽ#@<ØnôĦ9©Q­˜ž® Uwøá‡²Wؼy³Ò5´ÌC©Q"5ª‘Üh$5V„ªƒãÓO?ýŸÿü§¨¨¨øSW®\™4iÒĉ•®àqžj7z.5BeLÂÄô´[¨:8†„„üûßÿ2dÈ/¿üb»ü믿~ì±Ç6mÚÔ A¥kh©Ñ¬‘‘Ô誎)))C† 9zôhÿþýW®\)„ÈÉÉ™2eÊ„ rrrÆŽ»nÝ:¥kx–GÚnߨ‰Ô¨FDF·SõÅ1Õ«WŸ9sfïÞ½ß|óÍéÓ§oܸ1333;;;""böìÙ÷ß¿Ò4È©‘d¢2\ã!ªî8Ê:tè°jÕª   dgg·nÝzíÚµ¤F€*U†¹iÒ@pܹsç Aƒ~ÿý÷fÍš…„„|ÿý÷ãÆ»xñ¢Òu<ÎýóÔnÜ"ÓÓ*CdôUÇ?þøcÚ´iÿûß³³³'Nœ˜”””’’Ò»wï;v<öØckÖ¬Qº@€¦¸75rÏÕ 2zªƒ£œ#""’’’^zé%__߀€€ùóçðÁ&“iÚ´icÇŽUºF€§¸¹ÝèöÔ 2z™ªƒcvvöóÏ?¿víÚ¦M›Ú.ïׯßúõë;tè°k×.¥kh»R#ÓÓªAdT„ª¯ª^±bEttt‰OÕªUëóÏ?OLLTºF€G¸³ÝèÆÔHDQšéöç9rÅ´2TKK2“É4bÄ¥k¨©Q/¸Ãލ:8ŒÉmíF·lHîpWB‹QUŽrWj$®(„£ êâžvcÅ·B£Q!´ÕŒàз¤FB‹×ÑbT?‚#@EÜÐn$5j -F !8t¤‚©‘éi/"/jÁ íV<5`<¼¨iG€.T$5Òhô<ò¢>ªP¡vaS#IÆ3¬aQõ‚àÐ8—S#FÏ ¹¨cG€ò\ïV$5’jÜŠ¼hG€f¹–i4º“ÑFCp(ÌŦ¡Ë©‘xSa4 ‹àÐ R£×Ñ\„ 8”åJtá5LO»„°;G€¦¸–É<#,¢ G€bœξ€F£Ã8mŽ 84Â…ÔH*mgQá‚#@Îå@§Ö¦ÑX ¦¡QAG€ê9ž‰ŒÅáFG€œh :•ÉEBÂ"<†àP1S£áœ°ï 8¼ÍÑ¢ã©Ñ1‰¶"¼àP%GR£Á´¡8‚#À«j#:˜ œLÂ$Ân?&)Bq>JÀÊM&=§F“0Ùþ“„”iΔ„Dj„ÐqxOùDGR£¾ÐЂ#@5ÊN::£‘ëZ QG€—”ÓL,ãiíGFڊЂ#@ÊNLY$EèÁà eµK{NSF’"Œ€àð8§S£ê#£]L$EÁ “IQrjT_£¡‚#ÀÓJn7ª¾ÑHRŠ#8¼®´Ô¨h6#)å"8<¨„ˆX|‘FNR\@px‘]jôbd¤¡TÁà)ö½EÛ¯=i(ž@px…]jtwŠ£¡xÁàw´­_¸©ÑHCP„Ò¨]fffTTÔ‘#G”.´¤„Ôhú³ÑèRÀ3 “í?IHvÿ”1`tË‘˜˜¨t  YÖ[|;97MCP'‚cÉrssOž<¹~ýúU«V)] hÌív£]£±Œõ‰‰€FKÖ¯_¿_ýUé*@³L&!Jn4í"8–,..îæÍ›BˆåË—ïÙ³Gér@3L¦?ã_—Ps½3 Ç’=üðÃòƒÔÔT¥kM‘äÿ ‹$E@7Že·dóæÍJehgÏžUºØã ¨“³Ç%<,ÜnI¦9Ón‰Y˜•–¶ñÍ¢¸^½z)]‚Z="==]é`/,,Lé`ƒ¢Ne—ROO4ýù¼$ ŽªðÍ¢¬â¿Ö‹wˆ ‚à(™CW±ØDF“IbNÐ7‚#@kL´il•n¢|Ñ´IN‚ØèŸFd÷A,ÖÏbÉ4g:ôY,¦;R£Ò£à%t@ÿÜyëDÛ›þ35’ƒ 8€ÞxêÛv‘QR#`4GÐ6/}‹ígÀ£"8€ÆxûƒXlÂ>5’!Cáâ˜rüóŸÿLOOoÙ²¥Ò…0¨Ò®bqè– ¿÷íF#½FB:Ž *^šwv ù½ï\hŸ‰‘€Ñ@1j‰‰6ÂÂÃä:î,ô¯Kal—‘£aª¼¤ÜIg…S£I“0gšKn4ÀCÔï¬Õþ\Æ¿ž*¹¯H»0&¦ªÀ T8éìxé¥VJ<p'‚#8MÃ1ñÎaÈ¥—ôT '5Ú>IžŒ‰àåÐIL¼sHò0Jy¶¬`HjŒŒàwÐaL¼sxòJN0P.Ž`hZº„¥ÂC-õ ˜¿Ö1™33ËÚíFÀØŽŒÅ(1ñÎ1;ËM…¤FLUÐ3Ï;;0~yÌå­F$à‚#ý0zL´å`dަF²%Ap ]ÄÄ’9… 5pÁ€fØ%Eb¢=Ç#£ pÁ€JÑPtŽÉáÈ(œK$LVGª@LtSFAjà:‚#e„‡…Û~ILt… ‘Q8tR#”ˆû8ð†â÷ÙÎ4gêüî‰åÈ­í_bº½³|Xx„ï³í.DFáJ$5(Ž©jnÀŠÞàìÄôíW1= ÀmŽ\Áq¼ÊµÈ(\oÒnP"‚#‡•árd¤FîGpP¦ž•WÁÈ(˜žà~GBÐPT•ŠDFQцaxx@i¸ª0¨²¯zVº:£ríŠé¿^nª`j4™Df¦Yé½@½è8FAOQÕ*Øeœ™Àè8ºEOQ*Øe¼½7¤F’'€rÑqôƒž¢ÆT¼Ë(Üv ©€#Ž€†‘5ÉzÐ*~¸ˆ{¼‹àh IQÛÜÒb¼½)wÞp‡ü ÀAG@ÕHŠ:áÆÈ(ÜôHGpÔ…¤¨7Ô@IG@y¶a‘¤¨žˆŒ‚σ $‚# ÚŠ:çöÈ(<Ò¤ÝÀYGÀKh+‚‡"£p£‘ÔÀGÀSh+‹'"£ðT¾#5p Áp'ÚŠFä¹È(8£€º ¡­hhŠŒÂ³-AÚ\FpœF[ŒŒ‚Ô@½Ž€C‹­ŸXòö™ž jG T„EüÅ£-ÆÛoáñf íFDpî@X„=ïDFáñF#©@ÅÂ"Já…È(¼èHÜ‚àƒ",¢,^‹ŒÂg4’¸ ÁBXDù¼i€&¡s·Ãb˜„E”Í›‘QxïÒi*7òQºÀýLÂdý' IR¦9“Ôˆ’™þü'y±ÑHj Mt¡LCÃi^k1Þ~;oߣ‘ÔÀíŽÐ6k^$, ^ŽŒ‚@'ŽÐš‹p"‘Q(ða0$Už@p„fÐ\D…&2 R#!8BíÈ‹¨Oºt©ï«Xv#5ð‚#ÔˆÉh¸÷[Œ·ßW±F£ 5ð0‚#T„æ"ÜC©È(ntŽàå‘á6ÊFF¡X£ÑZ©€G¡ò"ÜIÁÈ(TÙTPý#8ÂÛÈ‹p'¥®}ù«å‚ÔÀ[Žðò"ÜLÙ£PKd¤F^Dp„g‘á~ŠGF¡¢°¦šBÁA^„G¨$2 U4ÀûŽp'ò"Ð;G©=º<.ZÇAQVñ_ëÅ;D¡ó©êš5kšL¦¼¼<»å×®]ö‹[ºtéáÇ­©QѱcÇgŸ}6??ÿ¿ÿý¯çªe†öt0+-ôLñ€^é<8úùùï,æææ !¬×Y;¢}ûöBˆ“'Oz¨TR#î ék¥ÿ…Q"£Æ(CÓypB„††^¾|YNŠVòÉG¡¡¡Å×—$©¨¨¨øz|}}…5jÔðD‘¤Fܦ£0Vd\ À0ô»uëVTT´sçNëI’vìØ]|ýÓ§O7mÚtäÈ‘vËÓÒÒ„gÎi 5B½´…á"£ 50ýÇAƒùøøüç?ÿ‘ÏkB|úé§ÙÙÙ ¨T©’¼äúõëf³Y¾l­aÆmÚ´9pà@RR’u#iiiK–,©S§NÏž=•tG-FaÄÈ(H FçWU !êÔ©óÚk¯Í™3çñÇïÔ©ÓéÓ§÷íÛ׬Y³çž{κΎ;&Ož‘’’"„xçwÆŽûÖ[o­\¹2<<üܹs‡®ZµêìÙ³Ëøxk×Ðn4.MH ýXôü™eÛxƒ`húï8 !ÆŒóÁ„……mܸñ÷ß>|xBBBñ›;Z5nÜxíÚµýû÷ÏÎÎþú믯^½Ú¿ÿ”””|н…‘ J7³Ò ]FëÐ7hFg’øÉçnQQQŽÜÇ‘ÔèMf³YwA³¹£æU¸Ë¨–ƒ¢ÀÐUM»ÇEÇ8(*äàïzýÑÿT5 <=ÍJ ½ç&FoÔ¡ÁQ!´BO-FaôÈ(H àx‘QwH@pTíF=ÓÙ¬´ 2þµ ¿€àèu¤FÝÒY‹QÙ `àT‘Q¿h4€-‚£WÑnÔýÍJ "ãH`‡à8O-FAd¼;JDpôÚš§Ë£ %٣ѥ!8Ðq‹Qï@j€2½„v£Vé82’Š!5@ÙŽ@I˜•6v 8‚àÜI—-FA2* FpÁј§Ö"£!‘ÀqGž^g¥‘±ìpÁÑãh7ª—^[Œ‚LT>à‚# I¯‘‘;ì8€P .#8Â`ôICå¡ÑAp„!„…‡Ý~¤¿Ð@dt©*ÈGétŽ•gÂ$Ì™f!é.5šL·£i¨<Ö]¨‚#ôË$„Iè0/ "£sØUà.LUCwt{ÁÄ´£˜Æ÷"8zóÔÞ¦× _ ÈÌM€Û¡ DFØ`Ÿ€‡¡e:ž•ÄÑhÏ!8B›tßbDF§‘´ÀÓŽÐÝGF‚Kh4€=…+cÜȈ’°óÀkŽP=NdDéh4€7¡bºo1 "£ëˆÜà}G¨’î##y§Ø… ‚#T†Èˆ217 "8B5ô™•v‚7(Žà¥éøÚ’Ž›°#@%ŽÁ½x¢×£ é¸sÓ G(A¯‘‘Yi·"~€Úá]úŽŒd7aw€:á-ºŒŒ´ÝÈjFp„‡éõÚŽp:#¨Á£Ë£ 2z;4àÐeddVÚ3ˆŒ !G¸•Ž##ÑÆÝÂÃÃû4ÅGé &!LBH:J&Óí’Dºq/y¿ffšÙ¯ -GT˜^#£œ‰6nEMcªÚ#Œò±1:›˜æ,FObÂt€à—è22j<ƒ½ ºAp„“ôi1z‘t†àÇèì>Þ$c€.QZŒp‘tŒàˆÒé(2†…‡ Aœñ,"#è·ãAIts‡?ïÅhÎÌ$Ñx7Ùƒ 8âN:‹ŒÜ‹ÑÈŒ`(LUãOú˜˜æ,Foab ˆà}EF‚Œç±§À°ކgÒxd¤Åè-ìiÁÑÀ4Ýh$Åx-F€ŒàhH:ˆŒ¤¯`gl F»‘‘£±³%"8†Ö##Æ+ØÙ€2 @£‘‘®—±³Ž 8êš##Æ»h1GpÔ)íFF"ŒWÏ. 8ê‘¶nÍH„ñ.ò9ÀeG}ÑP£‘¼è]ìo@ÅõB+‘‘üâ]ìo€µO[‘‘üâ-ìo€Û5Ný§3Òòò.ö7ÀsŽš¥òF#ùÅ»Øß/ 8jš##ùÅ»Øßo"8jjç¦9¥Î‹È‹EµCF"Œ±³Ê"8j ##Æ[¬{Z°³J#8ªžªæ¦É‹Þž¨ÁQÅÔÓh$Åx { fGµRC£‘ãLF´‚à¨>jh4r‰´çËšCpTed£¹Ð4‚£š(•É‹žDXèÁQ™ž&/z a KGðr£‘¼è„E€î•æµÔH^ôÂ"ÀPŽÊñÎô4yÑ­l“¢`§ †à¨O7É‹îC[ÁQ žKäEw ­@‰Ž^ç‰ÔH^¬’"Ž 8z—{S#yÑ%v1Q°ÿp ÁыܕÉ‹N2™„aÖ/Ùm¸ÆGé £â©ÑdºýO’nÿCI¬ûÉv‡efšÙmTG¯¨Hj¤¿Xºâ“΂ý€Ç=ϵÔH^,†sPÁÑÜMäÅRúˆÂлUàÇR%%% 4(::ú¡‡š6mÚ•+WœÞ„ã©Ñç/?ÑnØý«ˆ^½z)=\Øã ¨ÇE…8(P:Ž%ûè£.\X­ZµvíÚ>}zÍš5§NJHHð÷÷wtޤFôKkêzÐèǤ§§úé§¡¡¡›7oþôÓO¿þúë#FüðÃ|ð{Þ@GýÅÒº†å¶µýôÓìììTªTIéê”a’¸__I–,Y2gΜºuëvêÔéôéÓûöíkÚ´é’%KŠß¦À Ž¥Z¿~ýW_}õÃ?Ô®]»}ûö“&M’ïÈ`LG8„sà‚#Bp€CŽpÁ!8À!G8„àè6IIIƒ ŠŽŽ~衇¦M›våÊ¥+2gw~~~þÒ¥KûöíÛªU«N:;v÷îÝJBo*òqþüù6mÚ¼öÚkJBo\8(G}ùå—»téÒ®]»áÇïß¿_éAè³¥   >>þ©§žŠŽŽîÚµëĉO:¥ô '333**êÈ‘#J¢‚£{|ôÑGo½õÖÏ?ÿÜ®]»êÕ«¯Y³æùçŸÏÏÏWº.CpvçŽ5jöìÙ¿ýö[‡5j´ÿþ1cÆ|òÉ'JE?*ò!IÒ?þñë'ÅÃ]\8(Û¶m{æ™g¶mÛ––6bĈmÛ¶)=ýpö 9òƒ>¸råJ§NêÖ­ûõ×_?ñÄTz(Æ’˜˜¨t Ê‘Pa'Nœhܸq§N.^¼(/ùç?ÿ9sæL¥KÓ?vþŠ+"##Ÿy晼¼ù„–°'8{P4hðØäKëÔ©óØcÅÄÄ(= =pá;¥K—.¹¹¹'Ož´](ß&†mº…³¥aƾ¾¾§N’$Évyzzº¢Q£FJÆ ôÈõàܹs7îÕ«×ü!/Y¸paddäû￯tiúçÈοvíZffæ™3g$I²X,>úh›6mòóó•®]·œ=(Å;vŒOŽq/Ê?þ9hР˗/ËK~øá‡èèèvíÚegg+= =pᠼ𠑑‘óçÏ·~xÏÉ“'|ðÁæÍ›gdd(= yóÍ7 ûÉ1\ãuêÔyíµ×æÌ™óøãwêÔéôéÓûöíkÖ¬ÙsÏ=§tiúçÈÎß±cÇäÉ“#""RRR.]º”••åïï?lذâ[{òÉ'‡®ô˜4ÏÙƒ¢t½†àÂAiҤɔ)S>üðÃ^½zµmÛ6//ïàÁƒ&“)..îoû›ÒÒÊ?ÿùÏ.X°`ãÆM›6½|ùò¡C‡,Ë[o½uß}÷)= ÁÑ=ÆŒsÏ=÷|õÕW7n¬]»öðáÃ'Mš$ßUžæÔÎ?{ö¬"??ÿرcÅŸåwá;B…\8(/¼ðBpppBBž={»uë6~üxùc–àΔààà7.\¸p×®]Û·o |ä‘G^|ñÅûï¿_é¡À(LÒ§J%ââ8„à‡à‚#Bp€CŽpÁ!8À!G8„à‡à‚#üåµ×^‹ŠŠÚ»w¯×6õŸÿü'**jÅŠ¶¯Ú¾}{‰Ï€²Ž %»víÚ±c‡ÒU0(?¥ CëÒ¥Kppp›6m|öÕW_ÍÍÍýñÇ•.€@IÍš5kÖ¬™kÏ€—1U @“ŠŠŠ •®Œ…à@3ä G~þùçY³fµmÛ¶Y³f;w?~¼Ý(òjçÏŸ?|øð€Z´hqöìYë³7nŒ}ä‘G|ðÁQ£F}öÙgEEEÅßk×®]'NŒ‰‰‰‰‰yñÅ¿ýö[»²³³?üðÃ>}ú´nݺuëÖ=öØ¿þõ¯‹/:»©øøø2.±}öý÷ßŠŠºråJQQQTTTttô´iÓ¢¢¢–/_n÷ª?ü0**jÞ¼yJ1zCp 1o¾ùæòåËoܸѠAƒ+W®lÙ²e̘1‹/¶[í§Ÿ~5jÔ±cÇnÞ¼i±X„’$ýãÿ˜ÿüógžyÆÙM9®mÛ¶#Gެ\¹²Éd9räСCûôé#„øúë¯mW“$)%%EñÄO(}¬è Á€Æ¤¥¥uîÜyïÞ½[¶lùþûï§Nj2™æÍ›wêÔ)ÛÕÞyçûï¿ÿóÏ?ß½{wýúõ…k×®ýꫯBBBV­Zõí·ß~ýõש©©­ZµJKKû÷¿ÿmûÚ5kÖtëÖmÿþýò[¼þúë>>> ,øá‡¬+üòË/]»vݽ{÷W_}µnݺ]»vµk×îܹs[·nujSŽëÚµë´iÓªV­êãã3mÚ´×^{­C‡5kÖüî»ï²³³­«}ÿý÷çÎkÞ¼y£F”>Vô†à@cBBBþçþ§fÍšB__ßÑ£G6Ìb±,X°ÀvµjÕªÅÇÇwìØ188X^2þ|!D\\\tt´¼¤víÚÿþ÷¿+W®¼jÕª_ýÕúÚ:uê|üñÇwß}·ÂÏÏoìØ±Ã† B|òÉ'ò ………]ºtyõÕW«U«&/¹ûî»ûõë'„8}ú´månª"|}}{ôèa±X¾ùæëÂõë× !ú÷ï¯ô CG3`À€Ê•+Û.1b„âðáö üñ*UªX¿üí·ß.^¼X»v혘ÛÕBBB:wî\TTôÓO?Y4ÈÏϯø[?~\þrܸq .¼ï¾û¬+\ºtiÆ Å«-wSÔ»woa3[]XX¸iÓ&??¿Ç{̃ǀQq;f·äÞ{ï­\¹ò¯¿þZPPp×]wÉ åéi«_~ùEѰaÃâlР¸³S^â[\ºtéúõër—ñܹsß~ûíwß}wæÌ™¬¬,»SÚTE<ðÀAAA¸råJ``à·ß~›““Óµk×    ÆCǀƘL¦âK|}}-‹í zäÙa+I’JÛ ¯¯¯âÖ­[å¾…O¥J•„+W®ìÑ£ÇôéÓøá‡ûî»o̘1Ÿþù;ï¼ãxµÖMU¯¯oÏž=‹ŠŠäs+™§àQthŒÙl¶[ò믿æååÕªU«jÕª¥½Jî5Ú€(“›‘¶­ÁâoqáÂ…¼¼¼zõêÝu×]×®]›5kÖ]wݵhÑ¢‡~ض GªµÝ”[vHïÞ½W®\¹yóæ>}úlÛ¶íî»ïîÒ¥‹»÷:AÇ€æ|ùå—¶K…Í›7/ãU¡¡¡÷ÜsÏùóçwíÚe»üÒ¥K©©©¾¾¾Mš4±.LNN¶»¹£ü­[·B=z´¨¨¨uëÖ¶©Qqâĉâï[ö¦Ü¢mÛ¶ÁÁÁ{÷îMNN¾qãÆc=æ®H vŽ4æ×_4iRnn®Âb±¬X±béÒ¥>>>ãÇ/û…“'OB¼õÖ[ÇŽ“—\¼xqüøñ7nÜ2dH:u¬kž9sfÊ”)ׯ_—ß"!!aÙ²e~~~ãÆB„†† !Nœ8a½ NQQѪU«äqçççÛ¾iÙ›rÅbÉË˳~)_[]XXøá‡ æ©xSÕ4¦OŸ>[¶lyðÁ6l(OûúøøL™2¥qãÆe¿ðÉ'ŸÜ»wïúõë pï½÷úûûÿüóÏ‹%::zÒ¤I¶kFEEmÞ¼ù›o¾ ;wî\~~¾ŸŸß[o½%_FÞ­[·­[·vïÞ½M›6’$¥§§_¹reذa _~ùåü1gÎG6傚5k^¹rå™gž©_¿¾õö“}úôùâ‹/òóó4hЪU+¥Ý"8И'žxbذaŸ}öÙÑ£G«W¯Þ¡C‡gŸ}¶C‡å¾ÐÇÇçƒ>èܹóúõëOœ8ñÛo¿µoß>&&fÔ¨Qòõ1VŸþùæÍ›·nÝzüøñÀÀÀGydôèѶlÞ¼yK–,Ù¸qãwß}wï½÷ÆÄÄŒ=:""¢¨¨hýúõt|SΚ:uj\\ÜÏ?ÿ|ãÆ ëÂ6mÚÜsÏ=—.]¢ÝÀ£Le\iªòÚk¯­[·nÑ¢E;wVºu±X,ݺu»páÂÖ­[ëÖ­«t9t‹s@óöìÙsþüùvíÚ‘xÁ´-??ÿ£>B 0@éZèç8€†µk×îÆ5’?,<‡à@3úôéYüCüŒ¬víÚYYY1113gδ»ÄÜŽ‹càÎq€CŽpÁ!8À!G8äÿ.ÿ”±Ô»ÍIEND®B`‚statistics-release-1.6.3/docs/assets/wblpdf_101.png000066400000000000000000000601371456127120000221350ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A`&IDATxÚíÝy\TeÿÿñkXLTDü!(® €¢YŠZ®¹åVæ–¹•–¹”[›i›š‘™wz·˜b~e1M0{(å’kîÚí’˜¢Äjd¢)¸Àœß§&¶30Ã93çõ¼}Ü8sfæsÎÌ0ï>×uÎ1H’$€Ò¸¨]ÁŠ ÁŠ ÁŠ ÁŠ ÁŠ Á€ú¾üòKÃ?Ž;Vð¦ÐÐPyy—.] .ß³gù.±±±ÊŸkéÒ¥ò½Ú¶m+/yûí·å% °Õ)yÌS§NŠâéé6nܸ‹/–º¾›››ÏC=ôöÛo_¹rEáSôÚk¯Ùøå༎Ô×»woóÏ?ÿü³ùç7n$%%É?ÿïÿËÏÏ7ßtôèQóÏ={öT{ léÆGŒŒlÚ´é?þXòÊùùùW¯^=|øðûï¿rðàAµËàÌÜÔ.D@@@PPйsç„?ÿüó /¼ /?vì˜Éd’ÎÉÉ9uêTË–-å_ÍÁ±eË–µk×Vþ\žžž5BÔ©SGííþ—ŸŸŸ‡‡‡âîÝ»éééòVß¼ysܸq‰‰‰U«V-ný›7ošׯ_sww—=sæLÉëׯ_ÅŠæ’>øàƒ›7oÚã5‚#MèÖ­[¥J•„wïÞýå—_ä…rplÛ¶m»víDŽã/¿ü"Ïw¬\¹r§N̲cÇŽxà¿ÿýïnܸ‘’’òí·ß¶iÓæ•W^QRÃ¥K—ºté›’’’žž׳gÏ¥K—VüÞððð¨U«–üóµk×”ÜeÊ”)òW®\Ù»woÅ× @Ž4¡jÕª;v”–óbvv¶<ë±M›6rpräˆâèÑ£’$‰Çüü|92þïÿ“×,8N=þ|ù0‘Aƒmß¾ýÝwßýúë¯/^,ß:{öl%5ôïß?--m÷îݧOŸnÒ¤‰ü¤³fͪ°——wæÌ™#F˜!ðÁ•ÜÑ`0˜úã? ¯Ð³gÏÂçâ™6mZ…m'@p ÇÇÈÿïîîÞ²eË|Pžó'÷ÒÌÇG}Ô|÷Í›7Ë?˜ÊB<÷Üs®®®Bˆ´´4óxqÜÝÝ¿øâ ùäúõëGDDÈËøá‡‚g²sªswwoÖ¬Ù÷ß//â‰'Z·n­ðAþßÿûòÙÙÙv­€nq:ZñÀøùù]¾|ù×_ÍÉÉ‘ƒcË–-å$ײeËÿýsçNbb¢ÂÏÏÏ|v!ÄÙ³gå ž² sçÎ\¿°æÍ›×«WÏükß¾}åîܹsþüùÆWðiÑ¢…¹cªÄÕ«WåªW¯^øÖ"OÇS³fÍ Þ(à@+ C¯^½bbbòóó?.Ç6mÚÈ·¶k×îÿûßáÇïÞ½+„xôÑG ƒ|kvvö7J~üŒŒŒ’W°8dÕªU½¼¼²²²„iiiv ŽS››[hhh‡¦L™R¹reåb¡öóó+|ëªU«zôèa¿M GÒ»w!Ä?þøÛo¿ !Ì'Íi׮ݒ%KRSSøáyIÁqêêÕ«{zzþõ×_Bˆ­[·~póqÊű˜˜››+§F!Dƒ ìºáåOu{÷î½sçŽy_ÙµZºEp !½zõ2 ’$-_¾\^R°ã(ÿ)ÿ`q¥Á&MšÈ×¹ÎËË+ؼvíš|M‘×M)èÔ©S¿ÿþ»¿¿¿üë–-[ä*Uª$_lÆÜàÌÌÌ,xÇ?ÿüSí='̃ÚOÛâàR«V­V­Z !.^¼(„ðððhÞ¼¹|SÓ¦M===…iiiBˆûï¿ßœðdæ¹lÙ29) !Ö­[÷ÿþßÿóññiÔ¨‘Ü,ÁÝ»w_~ùey<==}ÆŒòòþýûËGØÔ¯__^rèÐ!ó”Êo¿ýv×®]*î´?þøcܸqñññò¯#GŽ”wØGÚÒ»woóAÓ>ø ›Ûߦ\\\Ú´i³sçNùׂãÔ²7ß|sùòåׯ_ÿî»ïºwïþÈ#œ:uÊ|xòôéÓ•òí·ß4mÚôðáÃrÐtuu7ož|kXX˜üCnnn«V­Zµj•‘‘‘””Tñ{iÔ¨QUªTBܼy3==ݼ¼V­ZsçέøzèGÚRð˜h‹«œºWøÕÞÞÞQQQ5jÔBìÚµköìÙñññ¹¹¹BˆñãÇ¿÷Þ{¥>u5\\\.]º´}ûv95VªT)222$$D^¡uëÖO?ý´üsNNξ}û’’’-Í+Àï¿ÿžœœœœœ\05Ö¬YsÆ >>>\ ý 8Ðù2ÓòÏæ Ž2sp¼ï¾û:wî\ø¾ýû÷?qâÄóÏ?ߺuë*Uª0`÷îÝK–,1OO,A×®]wïÞÝ¿ÿzõêÕ©SgÈ!;vìxî¹ç ®=oÞ¼ûï¿¿jÕª­Zµš}Ô¨Qò’ýû÷?þƒ>èÔ©“¿¿©OTä›É`Ðé›L BBBØùZË¢M¼.Ä‹¢AÅ5‰œžóÏq4;tèPÿþýçÍ›çããóÕW_õëׯ¸5W®\yüøqsjBtèÐaäÈ‘¹¹¹Û¶mS{;Ô¡‹àxçÎyóæ=ú÷ßùå—7mÚÔ¡Ck¤]»vBˆ³gϪ½5êpþ¡j“ÉôÊ+¯lݺµgÏžï¾û®¯¯oÉëK’d2™ ƒ‹Ë=©ÚÕÕUáéé©ö¨Ãù;Ž111[·n}æ™g>ÿüóRS£"55544tôèÑË;&t<§ÀɃ£$I±±±žžžo¼ñF «Ý¼yÓh4^¼xQѨQ£°°°Ã‡ÇÅÅ™W8vìØŠ+üýý{÷î­ö6¨ÃÉOÇóçŸvîÜÙÃãqãÆ…o0`Àˆ#„?üðôiÓ‚‚‚„gΜ;vlFFFóæÍ/]ºtüøñ*Uª|þùç?üp©OZÜáoƒpê­iF£1 @í*p^mâuÑ ^ Òí¡îN>ÇQn"æææ&&&¾µ¸Cdš6mº~ýú… 8pàܹsõëןX»ví™3g®ZµÊæ÷î]777ýjÕª¥öv !DVVÖøñã4hP­Zµ.]º}úìܹ³U«V´à€C2 Ó¦MëÓ§Ï®]»ºvíjÃGNNNBÌ™3§Gjoå=þóŸÿ$''¯\¹rôèÑBˆ)S¦„……½òÊ+;vìp ­ph Uà¨òòò„‘‘‘¶}X9r5iÒ¤œc2™FŽéêêj«ñô5kÖÔ©SgÔ¨Qò¯ƒ Ú½{wzzºý¶+Ž$ ƒAí"N$**J±~ýú¬¬,>lrrò}÷Ýçéé·téÒ½{÷Þ¹sÇÚ‘$iìØ±_ýõŠ+l2˜ž}öìÙnݺ |›vïÞÝd29ÓÑ&[ Uà2337lØðÜsÏEEE­]»ö…^°Õ#'''»¸¸4iÒäúõëò’fÍšÅÄÄ„……)|I’^|ñŨ¨¨åË—ËÃÊåwùòeI’üüü .ôõõB\¹rÅ[ÂŽKÅ‘"I*e…5kÖܾ}{êÔ©)))+W®,.8æåå}ÿý÷Å=È“O>Yxarr²Édš={ö AƒÜÝÝ7lØ0mÚ´ðððÄÄD///•K“&MŠŒŒ5jÔ˜1cŠ[ÍÚÂrrr„Õ«W/¸P®çêÕ«6ß ‰à@±JMo*ŠŠŠ iÙ²åàÁƒ_z饳gÏ^íæÍ›áááÅo`[¸k׮ʕ+׬YSþu̘1·nÝš4iR||üرcK-,!!A’¤ºuë®[·nîܹ 4(r5k óññBüõ×_fgg !Ì¥Úp+P$æ8àxÎ;wðàÁ¡C‡ !èââ"Ïw,ÌËËK*^‘wñ÷÷·ˆb½zõBœ:uJIm’$ÅÅÅÅÄÄܼysÊ”)Å­fma~~~...£ÒBˆºuëÚ|+P$:Ž89&ÊÁ±víÚ]ºt‰ŽŽž;w®‹‹eKÈÚáÔÔÔ„„„îÝ»7kÖ̼Pnì5lØPIm?þøOûÀ >|æÌ™}ôQ×®]srrfÏž-ß:þ|ooï/¿üRÉV lŽ8˜èèh!DÁàèççqãÆ'NHå>¢çõ×_÷óó‹]¾|¹··÷¦M›Þ|óMùÖ;wîdffæææ*y¨qãÆ=ôÐC ,8sæLù7¼zõê»wï:th||ü‚ š4i²{÷î‡~X¾õÖ­[™™™·oßV²(Cùß^°’””TäMƒ¦ÐsbF£1 @í*p^mÒçëRÂßmiùò剉‰‹-R»Û(Ã@·ï:ŽÀ ·nÝÚ¹sgëÖ­Õ.* 8+8p Y³fÏ<óŒÚ…@œŽX¡[·nݺuS» ¨ƒŽ#!8@‚#!8@‚#!8@‚#!8@‚#!8@‚#!8à`L&SPPPƒ """Ô®ÅR@@ÀàÁƒÕ®öBpÀÁdff>øàƒµkמ9sæªU«ìñ§OŸ~ê©§êׯ_·nÝÁƒïß¿_í¶Ô¥K—Ù³g«]…îp05kÖŒ‹‹;tèPïÞ½,X`óÇß³gO«V­öïß?hРaÆÜ&µùùùI’$IÒ™3glµ½° Á‡”™™¹aÆçž{îöíÛk×®µÕÃ6mÚTaq4ÌÎ;…ééé D’¤_|1***22rôèÑjï*ØŒ›Úè‹$ ƒAH’Úu2Ô|ö¿0Ö¬Ysûöí©S§¦¤¤¬\¹ò…^(rµ¼¼¼ï¿ÿ¾¸yòÉ'-–øùù 80>>~þüùcÆŒ‘$)**jÉ’%BˆììleUK“&MŠŒŒ5jÔ˜1cŠ[ÍÚ GЧáÿÖŠŠ iÙ²åàÁƒ_z饳gÏ^íæÍ›áááÅo_¸dÉ’ÌÌÌ3f̘1CáííýöÛo¿÷Þ{5jÔPRXBB‚$IuëÖ]·nÝܹs4hPäje( ªc¨Çsîܹƒ:T1pà@y¾ca^^^RñмK­Zµ~üñÇýû÷/Y²äÛo¿MJJjÑ¢…¢¸hA’¤¸¸¸˜˜˜›7oN™2¥¸ÕÊPTGÇÇ#ÇD98Ö®]»K—.ÑÑÑsçÎuq±l •aDøÄ‰Õ«Woß¾}ûöíå%Û·o7 :tPRÛã?þÄO!FŒ›ðøã^¡jGDpÀÁH’Ó¢E‹ÐÐPyÉ!C&Nœ¸}ûöG}Ôbå2Œ¿øâ‹§NJJJ’¦>}útllìc=&ÿZ*sx]¸paBBÂäÉ“{ôèáááQþ :†ªp0;wîLKK2dˆyÉSO=åîî>~üø·ß~Ûbå2ŒÏ™3'''硇šøàƒµkמ9sæªU«ìñ&“é³Ï>{àªU«Ö´iÓ>úèîÝ»jo÷=ºté2{öìV¸{÷®›››á^µjÕR»pÇæ¦vÀ:5kÖŒ‹‹“$©oß¾ ,>|¸mßd2=ñÄ?üðCxxxß¾}÷íÛ÷Æo$%%}õÕWjoúߎ;¶oß¾=z”°ŽÑhÌÏÏïСC`` yaµjÕԮݱpHƒaÚ´i}úôÙµkW×®]møÈÑÑÑßÿý²eË^xáyÉСCW¬X1cÆŒ   79//oÇŽû÷ïÿâ‹/L&SÉ+''' !æÌ™Sr¾„UªÀQååå !"##mû°‘‘‘5;v¬yÉ7ß|#I’µ©Ñd29ÒÕÕÕVãéW¯^íÝ»÷ìÙ³¯\¹RêÊrplÒ¤‰mwŽÎÑq¬h’$ !Ij×p|QQQBˆõë×geeyyyÙä1oß¾ýóÏ?:4//ïçŸNLL èСCÕªU­zI’ÆŽûõ×_¯X±ÂVƒé~~~’$ !’’’š6mZòÊÉÉÉ÷ÝwŸ§§g\\ܵkך7oÞ®]»J•*Ù¤Ý"8à2337lØðÜsÏEEE­]»Ö<¬\NéééwîÜ1 :u:r䈼°Aƒ_ýuÇŽ>ˆ$I/¾øbTTÔòåËG­ÊþINNvqqiÒ¤Éõë×å%Íš5‹‰‰ S¥ç@p xUŸ½Äá©5kÖܾ}{êÔ©)))+W®,.8æåå}ÿý÷Å=È“O>i±$++K=`À€¨¨¨úõëïÞ½ûùçŸ8pàéÓ§½½½K¯Z’&Mš9jÔ¨1cÆ·šµ…Y+99Ùd2Íž={РAîîî6l˜6mZxxxbb¢­º³:Dp xžYÒ²eËÁƒ¿ôÒKgÏž .¼ÚÍ›7ÃÃËݾBs§<==…7^³f<°ûØc-X°`äÈ‘ñññJúš ’$Õ­[wݺusçÎmРA‘«Y[˜µvíÚU¹råš5kÊ¿Ž3æÖ­[“&MŠ/8}VáàϹsç<8tèP!ÄÀ]\\äùŽ…yyyIÅ+¼¾ŸŸŸ¢cÇŽ§ʃԧOŸVR›$Iqqq1117oÞœ2eJq«Y[˜µüýýÍ©QÖ«W/!Ä©S§lÿzèGåàX»ví.]ºDGGÏ;×ÅŲ%díˆpÕªUÿý÷‚ 壘ëÕ«§¤¶Çü‰'žBŒ1"666!!áñÇ/¼š]‡ªSSSºwïÞ¬Y3óÂììl!DÆ ËóÈ:GpÀÁH’Ó¢E‹ÐÐPyÉ!C&Nœ¸}ûöG}Ôbå2Œ=zöìÙ?ýôS—.]„&“éÃ?tqqQxBDsx]¸paBBÂäÉ“{ôèáááQþ”óððxõÕWÛ¶m»}ûvwwwy+,XàææVxA9†ªp0;wîLKK2dˆyÉSO=åîî>~üø·ß~Ûbå2ŒOœ8144ôÑG3fÌ;ï¼óÐC­_¿þÕW_}à„«W¯öööž>}z©uúúúFDDÆyóæ¾ÕæCÕóçÏ÷ööþòË/å§ž={öž={‚‚‚&L˜ðæ›o¶iÓfÍš5sæÌ1§m”Á-„(ýüü"""nܸqâĉòOôññÙ½{÷sÏ=wøðáÅ‹WªTiÕªUóçÏ—o½sçNfffnn®’‡7nÜC=´`Á‚3gÎØ{·Üºu+33óöíÛò¯¯¿þz||¼ŸŸ_llìòå˽½½7mÚôæ›oÚ» çf°ÉüSç“››ûÍ7ßÄÇÇ_¼xÑÓÓ388x̘1 Ï_’””T œ¼âÆ€€µ«À=xQ´IŸ¯K©·aaùò剉‰‹-R»Û(Ã@·ïæ8!//ïÙgŸ=~ü¸——WûöíoݺuèС½{÷NžÑ|ýúõÕ®@Ç">ÃÓÁƒ—-[vß}÷•pªÒ‚BBB,–ÈÃßÿ0jo¥¾\¼xQí`‰E›x] O%/÷éÓGíµ‚àXŠüüüU«V}ôÑGùùù .ôññQr¯RÑ×áÙ.TÇ>× ^mâu•ü¶/üµ^¸C¤Ç’:thöìÙ¿ýö[:u>øàƒ:¨]€jŽE»sç΂ bbb*W®üòË/;¶ðE6t…àX“ÉôÊ+¯lݺµgÏžï¾û®¯¯¯Ú¨àX„˜˜˜­[·>óÌ3ï¾û®Úµhçq´$IRll¬§§ço¼¡v-BÇÑÒ•+WÒÒÒ<<<†^øÖŒ1BíT@p´$ŸÃ,77711±ð­X t‹àh©uëÖ¥ž…±œ$I B’ÔÞTk0Çc2™‚‚‚4h¡v-–¬v°‚#&33óÁ¬]»öÌ™3W­Ze§øå—_†Z»víjÕªµiÓæ“O>ÉËËS{»ÅÝ»wÝÜÜ ÷ªU«–ÚuéCÕ8˜š5kÆÅÅI’Ô·oß y4gy¤¤¤tíÚ5??À€ 4ضmÛôéÓúé§õë׫»áF£1??¿C‡æ…ÕªUS·*]!8à ôiÓúôé³k×®®]»Úð‘§OŸž••uðàÁ¶mÛ !æÌ™3vìØ+VlÙ²¥wïÞ*nrrr²\O=T,CϪÀQÉÃÇ‘‘‘¶}Ø;vtéÒEN²—^zIqàÀ«Çd29ÒÕÕÕVãérplÒ¤‰m·ÊÑqÀQEEE !Ö¯_Ÿ••åååe“ÇÌËË›4iR›6m .LMMBÜwß}ÊG’¤±cÇ~ýõ×+V¬°Õ`zrrò}÷ÝçééwíÚµæÍ›·k×®R¥J¶ÚŸ(Á‡”™™¹aÆçž{.**jíÚµ/¼ð‚MÖÍÍÍâ`ík×®EDD¸ºº4HáƒH’ôâ‹/FEE-_¾|ôèѶÚäääd—&Mš\¿~]^Ò¬Y³˜˜˜°°0[=JFp XaPñÙ%QÒ)׬Ysûöí©S§¦¤¤¬\¹²¸à˜——÷ý÷ß÷ O>ùdÉ5ìÚµkܸqÉÉÉK–, RT¶$Mš4)22rÔ¨QcÆŒ)nµ2–œœl2™fÏž=hÐ ww÷ 6L›6-<<<11ÑV W”Œà@±JŽnêŠŠŠ iÙ²åàÁƒ_z饳gÏ^íæÍ›áááÅn`ñ—£HKK{饗6nÜ´mÛ¶îÝ»+,,!!A’¤ºuë®[·nîܹ 4(rµ2¶k׮ʕ+׬YSþu̘1·nÝš4iR||üرcí¿ËÁÁ18 sçνÔ:}}}#""ŒFã¼yó ßjma¾¾¾³gÏÞ³gOPPЄ Þ|óÍ6mÚ¬Y³fΜ9æ {£ã€ƒ‰ŽŽB Ž~~~}ôщ'$I2Ê~0¸|’íÓ§OŸ>}Úâ¦&MšôïßÿÎ;™™™¹¹¹Jmܸq+W®\°`Áˆ#š6mZÎ ýõ×7nüÑGÅÆÆV®\¹eË–›6mêÓ§}v3Š`(ab,Ê&$$$))©äu ÁޝHF£1 @í*p^mÒçë¢äï6 Z¾|ybbâ¢E‹Ô.Ä6ÊðÐí{†¡j`…[·níܹ³uëÖj0T À– Ÿ-Y˧ÁPhÖ¬Ù3Ï<£v!PÁ€mÈ‘±pL,n9Õ­[·nݺ©]ÔApP^%GCy9ñœsÕ!I¢G¼bIH¥&Byu/û ('‚#€²“S£òõÉŽàÐŽÊÈÚÔ(#;€ã"8(‹²¥F€C#8°Z9S#MGpPU @’ ô,ÀÁXÇVƒÔ)Ʋ#´#$$Dí@p`¦6Â)iü¢Ãú¼€8´‰9ŽTÃdGp,GJÙ£ÝHvBp ƒÔ‚#•ÑtGApP:ÚAp 4À!”‚v#@Fp  4@ûŽJB»`Fp 4@㎪‘$aà+ÚF»PÁŠM•v#£Õ eG(BpPg7ÒtÍ"8@‚#KªLMÓ´‰àEŽî¡z» YGZÄh5hÁŠü‹qj@ Ž4ŠÑjЂ#€¿Ñn”ŒàEŽ´‹ÑjЂ£š$IøN„60N (Á€¦Ñtí 8 ÝP„àEŽP„àèöÇ©™æAp€"G(BptMûãÔ2F«@ ŽP„àEŽ€~9Ê8µŒÑjPÁŠ ÁÐ)ǧ–1Z ê"8ªL’„ïAàŽ€9b» :‚#!8p$LsÝaœP6G(Bpà`­µ ÁÐ&8ÊŒàEŽÓ@G@G§”ÁŠÕ'IÂÀ˜Ð<‚# N6NÍ4G¨xG(Bp€"G@œlœ  ‚#GÅ4G¨`G(BpœãÔ› 8p`ŒV@E"8@7µ ¨P)))}ûö]»ví{öìÆ׬Y£pý¬¬¬¾}û.Z´¨b*”/W-ñåXOžæH8€  ‹àØ¿ÿ?þøCùúiiiB‹v#€Îé"8Λ7ïöíÛBˆØØØýû÷—º~jjª¢aÆj”­8€ é"8vêÔIþaçÎJÖ—ƒczzú¨Q£NŸ>]¥J•ÐÐÐñãÇ—zH €ÓEp´Ö… „‹/hß¾ý¥K—vîܹ{÷î÷Þ{oÈ!J!$$ÄbÉæÍ›K»S€ÑhT{ÓÖÅ‹Õ.A%B³ï+[¾(ÞL‡£ß‹†ñ¢¨®OŸ>j— Ç"¤§§{xxLŸ>}Ô¨Qò’ýû÷?þƒ>èÔ©“¿¿©””T†ç P{Ó™wïßãÔÞn[½(’  ÊÛŒ?,ÚÇ‹¢®Â_ë…;D:Á À‹°råÊãÇ›S£¢C‡#GŽÌÍÍݶm›ÚÕ¨ƒà¨T»ví„gÏžU»u-I’”ŸŸo2™,–»ºº !<==Õ.@GK©©©¡¡¡£G¶X~ìØ1¡ã9 p8z;|pµ«'GpBˆ›7oFù°µF………>|8..μ±cÇV¬Xáïïß»woµ‹PGU !ÄîÝ»§M›” „xçwÆŽûÖ[o­^½:00ðÒ¥KǯR¥JDD„‡‡‡jઃ@ãè8¡iÓ¦ëׯÏÈÈØ²eKVVVxxxBBÂÃ?¬vi€"z§T ƒDËÖBBBÊvG:Žöc4uu4‡ŽöxQbÃ5No‡À‹¢Aeþ®wtt ÁŠgÃp-ÀNŽœgs»"8@‚#àT§ØÁŠ ÁQCä«(ŽûÑVp\¸parr²ÚUŽŠ Ž»ÒVp\¶lÙc=6pàÀ˜˜˜k×®©]þ¥­àøâ‹/Ö­[711ñý÷ßïܹó„ ¶lÙrçεë€pS»€{LŸ>}Ú´iGݸqã¦M›vìØ±cÇŽêÕ«?öØcááá>ø ÚÚÅ8µ™<Í‘½6§­Ž£Â`0„……½÷Þ{ûöí[²dI¿~ýîܹ³zõê¡C‡öêÕë‹/¾¸té’Ú5è‘æ‚£™››[÷îÝ?ùä“Ìš5ËÃÃ#55uñâÅ=zô9räwß}—ŸŸ¯v:¢­¡j ׯ_ß¾}ûæÍ›8——'„¨U«–»»ûáÇ>¹|ùò:uê¨]&€.h18fddüøã[¶l9|ø°ÜVôññéÕ«W¿~ý„û÷ïÿä“OßyçÈÈHµëÔÇ”> Ls{ÐVpŒÝ²eËÏ?ÿl2™„5kÖìÝ»wß¾}Û´iãêêj^­S§NaaaíÚµ;räˆÚ%Û˜|p‰/; =Ú ŽsçÎBÔ¨Q£W¯^}ûö}衇 æÅ‚<<<*W®Ì85@…ÑVp8p`¿~ýÚ·o_\^,ÈùÚ@Ù0& ¨Ú:ªzÓ¦M(.5¾üò˽{÷V»FÒVpÌÉɹ{÷nq7¥¥¥qG ÉÇǨ]8õ‡ªwïÞ=aÂó¯ÑÑѱ±±…W3™L’$5hÐ@íztJýàèêêZ½zuùçëׯWªT©J•*E®Y£F3f¨]/ -LpTõƒc§N<(ÿòôÓOÏœ9Sí¢`IýàXÐØ±cÛ´i£v(‚¶‚ã믿®v êãà€­pý°-•ƒãªU«„íÚµ 2ÿZ²áÇ«[3 ¤"@ER98Ι3G1{öl98Ê¿–Œà  •ƒãË/¿,„¸ÿþûå__}õUµwЦrp|饗 þú /¨[à@§V‚iŽ`CÚ:8¦0I’vìØqñâÅ–-[¶jÕJírôKsÁqÇŽ‹/îÙ³§<ŠýÖ[oÅÇÇË7 6ìÝwß5¸†€ ´u­ê#GŽLœ8ñÌ™3&“Iñ믿ÆÇÇ{yy=óÌ3õêÕ[½zõŽ;Ô®@§´ÕqŒŒŒ”$iÖ¬YÆ BlݺUÑ£GóçÏ÷éÓç믿îÑ£‡ÚeÚ§rD©˜·¨xÚ ŽgÏž­]»ö¨Q£ä_:T©R¥Î; !5jÔ¸qã””µkà`8>lE[CÕ™™™>>>òÏyyy¿þúk‹-*Uª$/©R¥JFF†Ú5è”¶‚£¿¿ÿÅ‹óóó…G½uëÖC=$ßd2™.^¼X«V-µkÐ)mǶmÛfff~úé§—.]úôÓO…]ºt‘oZ±bŵkך4i¢v€úx¨B[sÇ·qãÆ%K–,Y²Dqÿý÷Ëçn2dȉ'„cÆŒQ»FÒVDZnݺß|óM×®]k׮ݩS§E‹ÉgmÌÈȨ^½ú‡~øðë]#Ç#£vàð´ÕqB-]ºÔbaLLL:u\\´sU0N P‹æ‚c‘êÖ­«v S9­Ñ\pÜ´iSttôùóç¥bBÓÁƒÕ®@´·mÛ6uêTùgWWWµËà<8 8”Ÿ¶‚ãòåË…Ï>ûìĉ½¼¼Ô.Т@EÚ ŽÉÉÉõêÕ{ã78@k4”ÏîÞ½û×_Õ¯_ŸÔ AŠh...^^^çÎ3™Lj×K Ž®®®Ï?ÿ|FFÆ'Ÿ|¢v-š Ÿ‘0c‚c9qp('mÍqìׯ߅ –-[vðàÁ¾}ûÖ«W¯R¥JëtíÚUí2ôH[Á±Gò¿üòË/¿üRä:IIIj—  GÚ ŽO<ñ„Ú%Å85@uÚ Ž ,P»M[ÁÑ,333111==Ýßß¿cÇŽ>>>jÀáqý(ÍÇ«W¯.Y²$>>>77W1zôèŽ;0 yóæÞÞÞjX¡ä«%¾ã€hètõÔSBˆmÛ¶íß¿ÿ·ß~3™L èÝ»·Ú5Šqj€vh+8 !^}õÕ°°°ùó秤¤!.]º$„¨U«ÖôéÓ žÙÊŒëÇ@Ùh.8 !ºuëÖ­[·ëׯ§¤¤Ü¹s'00ÐÏÏOí¢ôN‹ÁQæíí¦vø›ÊÁqÕªUÖÞeøðáêÖ T†Sš¢rpœ3g޵wÑap”¬–È@U*Gù$;>}zË–-®®®:ujÔ¨‘«««ÑhܳgO^^^:ufΜ©nÁœÇÇ@¨'L˜Pð×´´´˜˜˜Ï?ÿ¼~ýúæå—.]z饗~ýõ×7öêÕKÝšôI['_²dÉÕ«W?ýôÓ‚©QQ·nÝÿþ÷¿Bˆ­[·fdd¨]&P致F[Áñرcþþþ 6,|SýúõååsýÔ ­Óñ\¿~Ýd2I’d(ê*{ÙÙÙÞÞÞµjÕR»Lp| `sLski«ãØ¢E‹ììì]»v¾iï޽ׯ_oÞ¼¹Ú5è”¶‚c¿~ý„¯¿þú¦M› IoݺõÕW_5¯8=:a ÒÖPõÀ÷îÝûÃ?L:µV­Zƒ!%%åÏ?ÿBôïßàÀj× SÚ ŽBˆ… vèÐañâÅW®\¹r劼°N:/¿üò€Ô®@¿4]\\€Ž(#×à^G”ˆÖc90ÁàdŽÎ¯¼}CF®Ž!ÁJ1r €îuÁf‘Ö£bŒSœ›ÚÀÑH’âïì(ŒÐ:ŽzaãqfF®¡?Ls:Ž(sv¬ÈÖc™¾¸D@ñ[a§8!:Ž(»sm(êŸT–Æc±·Šÿ  ã¨#rÀ³KsÐ<ñ±<^8¨ULÏ®„gQ«$4‰àÛ)ÃÈuÁd¦ÁLV¸$Q’qj€³"8ê‹›Žæ'¥s­ñ°XÊ–¸9ޏE°†|| ÿa@·ްƒ"ã£9`9Ùw®Åæþ™7é|[ Ð=‚£îؽéXð™„óæÅb$ƒ$þiH9to€Bްs×Í ×þ[Á-&DÁQìÛt,Übäb3¢˜©×pPGØNÉEâã¿»âŸhC: Ž gG²qÓQùX´SÇG«ómH€C!8¢|Ê6}Ñ©ãcnC²cCpÔ¯ò6ËÄ‹M®7ã|H­"8Âz¶=Hº ×›Ñ$ÛÏ{c*¤V1Í€nuÍꦣΫÃÈuÉ O…d'Ô@pÔ;¥Ù±ò ñQ ‹S‹³Ÿˆà P3>VôÀ%ó j 8¢Ä¦£Z£ŽU@‚T ÓèÁÅ«ÈFc‘ˆÊ‘ öGp„…›Žš:CóñQ['m¾ˆ§@pD!ª7‹¤ùø¨9F°5‚#þ&IŽÐ£">Z‹!l€í¸¨]4à „tÏ©¦µK’þ\7¨_¯¶Æ©K ýóÏ äeÖ:ùøµ«€ EÇB­O—ŒîcÙ0„ (+‚#îIå½€uÅ#>– ÇЬGpÔ·¢BƒãeG¡Z|t˜qêЀ(FpÔ1Gž.ÝÇ2£Y&œ€ÞõªÄÔèMÇ‚Õ âcYÑ€à¨K zŽEEÄGgn5Ñ€…à¨?Î7B]‚âc€ ûX&4 pG±&5ÊMGg IƔ۞÷љۅqÈâq6GºBÇQO¬ï5:ü€µÅÆæ>–OÁ$»ô‡à¨º¡.ñ±ü¿½"8êC9R£S5 n•({|Ô×8uq8€ô‡9Ž:Pî^£óLv,¼a𹿵+8ýQ—;’iŽôƒŽ£³³ÑµsöÍÛ&Ä¿ÙÑ97Òþh@€ó•3çÅÒÆ¯§.Ѐó"8:/[§Fgn:Zl§àè™rãpFÌqtRöé5:ídÇ"7•éå§›@2Í€NÐqtFö¡ÖKßѼµâžéŒS—ã×àŽNÇþóõ•ŽÓõ³Õö@|Gpt. cW’$„éåõO| ÿþ pÌqt"˜u4Ù±€¿Ç©™þh’0¦õ0ýœ G”‘î¬ o¿àì¶à,ã×òñ1LàÜŽÎBAj]eÇ¢3â³?¢œ¾ÁÑ)¨7µQWÙ±”!h@–—ŸmÓKpŒ‹‹[»vmrrr•*Uyä‘×^{ÍÛÛ»„õ tòäI‹…>>>ûöíS{S Qû€²ã¿h@ÚŠcŽ_3Z Àéé"8~òÉ'_~ùeÕªUÛ¶m›ššºnݺsçÎEGG{xxw—´´4F\X£F µ7¥µS£Ìé³£Õi€ËÏØ„cÆGpbΓ’’–-[æççïëë+„˜7o^ttôÇüöÛoy—ìì쬬¬¾}û.Z´Híò†ÓgDz`üÚ&˜þšáü§ãY»v­Édš:uªœ…3fÌðòòÚ´i“Éd*ò.iiiB‹v£i£Ýh¦Ïsô”Nâ >¶ ›«€–9p:ßnª0ÚŽ\´€ssòà(IRrrrÍš5kÖ¬Ypypp°âÂ… EÞKŽééé£FjÛ¶í#<2a„'N¨½5h25Êœ2;Ú H›(Ù‹PQœ|ŽcNNN~~~áƒZ¼¼¼„×®]+ò^r \¼xq@@@ûöí/]º´sçÎÝ»w¿÷Þ{C† Qò¼!!!K6oÞlÃí F£±‚v¢õRR„Á’¢¡ /^¼X¶;¦SŒÂÛ’’"„ø';SRTÛ;*)ó‹ò¯öY€!@aÔÈ[.@hùãY*¼.°5^ÕõéÓGí´ÂɃcnn®¢jժ˫U«&„ÈÊÊ*ò^éééÓ§O5j”¼dÿþýãÇÿàƒ:uêäïï_êó&%%Ùq« BHÿ\çW«$I š:$  Œ{¬ÌwTäŸ} ËC°m¶o%!þ‰ZhÆÛ÷=CýºÄ‹¢®Â_ë…;D:áäCÕ5jÔ0 999Ëoܸ!þé;¶råÊãÇ›S£¢C‡#GŽÌÍÍݶm›Ê›¤áAj ŒY[‡å§éLsàÄœ<8º¹¹yyyî,fgg !ÌÇY+Ñ®];!ÄÙ³gÕÞ&GâèÙQ…“93²ü˜þvãäÁQáççwõêU9)šÉ3üüü ¯/IR~~~á3õ¸ºº !<==ÕÜÇi7š9zvT Èrâô=`Î{ô葟Ÿ¿gÏóI’vïÞíííݪU«Â맦¦†††Ž=Úbù±cÇ„ºs05Ê4;jâÚq HGܪ#>€í8p|8..Îü ÇŽ[±b…¿¿ïÞ½ÕÞ ‡ä ÙQCÂ.§Š¿fš#gåäGU !üýý_{íµùóç?ñÄ;wNMM=xð`óæÍ_xáó:»wïž6mZPPPBB‚âwÞ;vì[o½µzõêÀÀÀK—.?~¼J•*%\ÞÚ¾¶ÝhfÎŽ:;nØÖ¸Œay˜÷׿€2qþŽ£b̘1üq@@À?üpíÚµ#FDGG>¹£YÓ¦Mׯ_ž‘‘±eË–¬¬¬ððð„„„‡~X püÔ(3·Ì´OãÔ%`»œ¿€21Ht,l-$$ÄÆçqt–àøï*ºSf4­: šÖƒc;^ÒÚÅ^ÌÙѦ{ÎñÞBÿÐÊë‚xQ4ÈößõÂù‡ªžÓ¥FñϰµfŽC~å›÷&¬eŸñkyš£ã½‘ DG¨ƒ)öÂ$È2“wÓ xGmsÆv£™9áh*Û8I—È¢)HŠŒÂ™?€PG sêÔh¦ñak‡G‚,[Œ_3Z Àù¡>†­+ ²l¿€ŽZ¥v£™F†­uÑ"A–ã× „ 8BSh=V(¤µ88Ý#8j’ÎÚ©ØzÔE»±H$Hk)¿fš#'Cp„ÑzT Ò*Œ_Ђ£öè¸ÝXP·i ݃©ã×ô„àM£õ¨2¤rÅ4 ­àLŽC»±p­w$H…h@pjG8»¶iY©'€àŒŽZB»±D/ÂLVQ_á)xa ‘„B2üý?>àÁÆæ#×´Ë«à+A²HÒ?ÿO€ƒ#8jíFkpÐŒF1]2ÎàÀÁá¨l2rM»Ñ^È.ÐpXGm ÝXVL|Ô:²å-.ò¤<4 8‚#œAÙâ#íÆŠvo2@è1A$Çá¢v Ýh3’ô÷ÜÇ‚££Ð"I’dLIùûÕâ5“Iÿ@c(І-¡ãg£°ûH»Qô4­ô24 hÁΉ¹Ž‡ãi,0€öÕÆ8µ=ˆ÷ô¶h7jY‘mH¡×iÑ€üÅ &æ8ÂùI’HI12Î!ÉW N_uäWQ­.óï™ j ã¨*Úèßî#—~sPŒeÿ½ÉòN¸÷W¨Gè‹$ scÙ‚ch¨ƒà¨Újø{vcCg„Îò†³q´©ôØjkQ*Áúe1ò©Õ¤ÅôtrŸBÛnÞðBKÀvŽÐ‘â:= Hç£Û ‘$HöDpT ãÔÚCÒ9io,Ûö£ÕÅ<Í?[}ï¯PGè…ò¯jNK{!²B¶ZÞÞ{€2!8E+<ÔéÜéBwŠ ‘ÂI_i†°ØÁQ ŒSW¸À€À2 2„íü,^Tû7#+h´º˜çþg3 -€Ò¥ÂÖ Œh“ XKV8ÚÎ )Æ[=š] yÍC'{Õ¹˜!Åè8eÄ$Hݱé´H5G«‹¯I`(ø+DÇN®¾›éAêQÁN¤s5#)Æ{¿Al‰ŽcÅbœºbUpG‡¤~•©©Å¦ã½õý³E…–Ð+‚#`{º½j „Pámûo‘y[ - 3G8--ôrô|ñdüÍ™NI‚tàTÚ(ÜŒ”„0HÉPÔ­ZF‚ôŠàX˜àX´Ðn,mHüMúçj€çŽó† A:Cp„Òrj´@ÿrèAí R"'Dp4A'+AaE[]Â6BÛo‹‚¥Ñ†œÁ±¢0N]Q¨ÝXB$,•œ#…Vß dN‡àh!R¬>¡cá—_ã-I$à,Žp*NÐn,COƒ}9ÊÐ6 ppG8çNœï$Ó°%íms0 à˜Ž‚ ް3š‘ŽÎ¾—ÔòÐ6Ó…à'¡«vcÉeÐj*þ]Pä T•¹ž¢Ðµ l€ÔXIºçŸÁpÏ?h‡ÜtTé¹ÿ}‹SRŠx£Tð{E*ðÏðÏ?@ÇÑþ§†–Є"Úݦ h Ávcyhÿ ]±ïLÇò§ö{…Ù€áØ´û-똴Óf‚Ö•ú^)n5Û<»ùI‹ZÀnŽp`¤Æ  z›Io4Ýt,¥ô¢j¶÷;¦È6¤ DöBp`%m&¢$þU‘ïB$`G;ãÈ»qÔ®ŒÓQwÄÒ)9pÓQÑæUÈ;† ‘€}p:8$gþZu|'*ò4@œ ÿRøŽ)ó›¦ð™}xûeEÇއÔ舊j3(YMŸœ¼é¨h(›1)¬yÓ0– ”GêHI1*l3ÑžÄßlØ›”ŠéDòfJDÇÑž˜àhzoÃ8»âšGÅ%'îPÒtTªü½I‹Å4#âáHøÕ-%¬£8O™RUäÖVõž¬M4¶l ð>4(X§”Ç´ÿiàÈŽÐÃ?SÁÕ.@Y›ÊÖº"“”ÂQÒòî¶8M/¤Ã"8B}4«8ÇiË–ˆ›Öo|¡%e«•ý<Gr9,‚#Tæß@ÅsŽìX– ¯À¸YžgÔ´"·ÈæÉRj°Í‘\Ö=là5éó›° ÝfÇ2(O®(ÿÑ Ž‘j*¾1©¨*ò¥æ¡&5åGv¬å¶89@…Ì£°1)4p0¨mó¥U©?G¨€¯:ÀVÈŽÚWþb4 †€ò>ŠMJRž&…ey6»Ô”¬öö¨ƒàˆŠÆ—X˶ý/{œQR8Ø-´(•nϽBBÔ.QGT†§{ ékÙcVy•ŠY³„`ÜX;޶—t6‰?à…ñÅØùŠ2|Ê –òg;©øäX1¬!ž*Ap„Ýñ}Tù#Æ¡ÁÿΕ e¼£U¬Š§zâȵªaOò•Må  ª]   6¹˜5 9R‰ÿ %þSþ$’ÿt‹Ž#ì‚.# ¦j—K¼(¬àÈu ƒ×¼.Ä‹í 8í“O>yë­·~ûí·¶mÛV«VmݺuãÆËÍÍU».8t^`ÁüAfî#€2 8!))iÙ²e~~~›7o^¶lÙ–-[FõË/¿|üñÇj—VÌI‘¼81‹$!€Ç"¬]»Öd2M:Õ××W^2cÆ //¯M›6™L&µ«³½â’"ypz?ìò_€³Ig ‘ŠCp,‘#G\\\ºvíj^âêêÚ¥K—«W¯=zTíêÊÎ" ’$ÿ ¶èDÒ’`Fp´$IRrrrÍš5kÖ¬Ypypp°âÂ… jø¯â‚ Â€HRPœ"ÿV(ÿk£vùì…ÓñXÊÉÉÉÏϯQ£†År///!ĵk×J}ƒTA4ƒC‚­Z?D„TLaÚ¢ëÍ×&^m*îu Jÿæ’ÈŽ6•$ˆãZ£üãàdŽ–äC§«V­j±¼ZµjBˆ¬¬¬R¡âzxI¼o€B¿_Á U[ªQ£†Á`ÈÉɱX~ãÆ ñOß@‡Ž–ÜÜܼ¼¼ w³³³…æã¬ô†àX??¿«W¯ÊIÑÌh4Ê7©]€:ŽEèÑ£G~~þž={ÌK$IÚ½{···w«V­Ô®@Ç" <ØÅÅå³Ï>“ç5 !–-[–‘‘1pà@wwwµ«P‡A’8_V¬X1þüºuëvîÜ955õàÁƒ¡¡¡+V¬(|š 8kãÆß}÷Ý/¿üR§NvíÚM:U>#€> s ÁŠ ÁŠ ÁŠ ˆ›Ú8¸¸¸µk×&''W©Rå‘Gyíµ×¼½½Õ.J/¬Ýùƒ :yò¤ÅBŸ}ûö©½)z‘’’Ò·oßµk×>ðÀj×¢;Êw>Ÿåææ~óÍ7ñññ/^ôôô 3fLÇŽÕ®Ëù•aÏëê“Bp´O>ùäË/¿¬ZµjÛ¶mSSS×­[wîܹèèhµKs~eØùiii5*¸ëIV¤˜˜µKÐ/å;ŸOŠZòòòž}öÙãÇ{yyµoßþÖ­[‡Ú»wïäÉ“'Mš¤vuάl{^_Ÿ åvæÌ™¦M›vîÜùòåËò’÷ß?88xΜ9j—æüʰ󳲲‚ƒƒ§L™¢víz”••uäÈ‘wÞy'88888øøñãjW¤#Öî|>)*ZµjUppð°aÃrrrä%gÏžm×®]³fÍ~ýõWµ«sfeØózû¤0ÇÑÖ®]k2™¦Nêëë+/™1c†——צM›L&“ÚÕ9¹2ìü´´4!„Å¢bôïßøðákÖ¬Q»=²vçóIQÑæÍ›…³fÍ2œ?>??ß)G?µ£ {^oŸ†ªmàÈ‘#...]»v5/quuíÒ¥ËÆ=Ú¦Mµ tfeØù©©©Bˆ† ª]»Í›7ïöíÛBˆØØØýû÷«]޾X»óù¤¨Èh4V­Zµyóæ !.\¸ vuά {^oŸ‚cyI’”œœ\³fÍš5k\,„¸páÁÑ~ʶóåyzzú¨Q£NŸ>]¥J•ÐÐÐñãÇs”FèÔ©“üÃÎ;Õ®Ew¬Ýù|RT´téR77Ë/èS§N !êׯ¯vuά {^oŸ†ªË+'''??¿ðX///!ĵk×Ô.Й•mçËÿÕ¸xñâ?ÿü³}ûö>>>;wî6lØÚµkÕÞ @Cø¤¨(44Tþ`³ƒ.[¶ì¾ûî W»:gV†=¯·O ÇòÊÍÍBT­ZÕbyµjÕ„YYYjèÌʶóÓÓÓ=<<¦OŸ>jÔ(yÉþýûÇÿÁtêÔÉßß_íÍ4OŠFäçç¯Zµê£>ÊÏÏ_¸p¡Úé…Â=¯·O ÇòªQ£†Á`ÈÉɱX~ãÆ ñOë vR¶¿råÊãÇ›?áBˆ:Œ9277wÛ¶mjo |R´àСCýû÷Ÿ7ožÏW_}Õ¯_?µ+Ò å{^oŸ‚cy¹¹¹yyynnegg !̇úÂl¸óÛµk'„8{ö¬ÚÛhŸ” sçÎyóæ=ú÷ßùå—7mÚÔ¡Cµ‹Ò›ìy'þ¤0Tm~~~ÉÉÉÙÙÙÕ«W7/4òMjWçä¬Ýù’$™L&ƒÁàârÏ5¹ºº !<==ÕÞ @ø¤¨Ëd2½òÊ+[·níÙ³ç»ï¾K¢ÂX»çuøI¡ãh=zôÈÏÏß³gy‰$I»wïööönÕª•ÚÕ99kw~jjjhhèèÑ£-–;vL¢öšÀ'E]111[·n}æ™g>ÿüsRcE²vÏëð“Bp´Áƒ»¸¸|öÙgòÔ:!IJeË222èîî®vuNNÉοyó¦Ñh¼xñ¢¢Q£Faaa‡Ž‹‹3?ȱcÇV¬Xáïïß»woµ7P Ÿ$)66ÖÓÓó7ÞP»}Q¸çuþI1H’¤v Î`ÅŠóçϯ[·nçÎSSS<ºbÅ §½T¥–”ºóøá‡iÓ¦%$$!Μ93vìØŒŒŒæÍ›^ºtéøñãUªTùüóÏ~øaµ·F/Þzë­¸¸¸µk×:ë©Î´¬¸Ï'E#þüóÏÎ;{xx4nܸð­ 1b„Ú5:'…{^çŸæ8ÚÆ˜1cjÕªõÝwßýðÃuêÔ1bÄÔ©Så“ÂÀÞ¬ÝùM›6]¿~ýÂ… 8pîܹúõ뇇‡Ož<¹N:jo  !|RÔ"·²rss ßÊ!2öS¶=¯·O G(ÂG(Bp€"G(Bp€"G(Bp€"G(Bp€"G(Bp€"G(Bp /¯½öZHHÈ®]»Ô.D|öÙg!!!«V­R»PŠàEÜÔ.tª[·n>>>aaajJ@Í›7oÞ¼¹ÚU€ªÍÉÏÏ¿{÷®ÚU€%‚#ÇðÖ[o…„„,X°ÀbùÉ“'CBB:tè——'„ÈÈÈøÏþÓ¯_¿Ö­[·nÝú±ÇûðÃ/_¾\ÜÃÊÇÊ8pÀbyhhèÃ?\pɾ}û&OžÜ³g϶mÛŽ5ê³Ï>³Èv—.]z÷Ýwûõë÷àƒvíÚuܸqGŽ)a‹"## #WrñâÅeË–µoß¾E‹mÚ´yúé§·mÛVÜ#;v,44´K—.ýõ—yá7ºvíúË/¿¨ý¢p6GŽ¡ÿþBˆ-[¶X,OHHB„‡‡»¹¹edd >|éÒ¥¿ÿþ{ƒ êÕ«wáÂ…ÿû¿ÿ6lØõë×Ëóìüñرc·lÙ’——çëëûóÏ?úé§#FŒ¸zõª¼Â¹sçú÷ï¿fÍš«W¯6nÜX’¤Ý»w9rÇŽV=ÑÒ¥K.\èîîÞ¾}{//¯cÇŽMš4iÓ¦ME®ÜªU«±cÇ^¾|9""¼ð£>JOOŸ8qbË–-+úEàìŽCÛ¶m}}}/\¸ð믿ššL&9T=õÔSBˆuëÖ?¾{÷îûöíûî»ï6lذwïÞ¶mÛ^ºtiûöíe~ê;wFFFÖ¯_?..n×®]ßÿýO?ýôÈ#?~|É’%ò:üñÍ›7'L˜°ÿþuëÖíÞ½{Ö¬Y’$-^¼ØªçZ»ví¸qãöìÙ³råÊüñÙgŸBDGG·þäÉ“ƒ‚‚Ö­[·gÏ!ľùæ›ûï¿„ ê½VœÁ€cpqqyì±ÇĽMÇŸþùòåË­ZµjÒ¤‰"//¯[·n¯¾újÕªUåªW¯.·*SSSËüÔóçÏB,Z´ÈÜÃóññY´h‘ŸŸ_|||ff¦âÌ™3BˆÁƒ»ººÊë 6lâĉ={ö´ê¹Z¶lùÊ+¯¸¸¸È›rss{ë­·þüóÏY³fyxx|üñÇæ2À†Ž† ŽÛÊãÔ”4iÒ—_~Ù¸qcó W®\ùþûïËó¤×¯_7G@W©R¥C‡¹¹¹‰‰‰B9¹Î˜1ãðáÃòlKww÷)S¦¼üòËV=]ß¾} þêåååêê*IR w 4iÒüñä“O^ºté7ÞhÔ¨‘½^úÆéx8ŒæÍ›7jÔèüùóIII!!!yyy›7oöððèׯŸyK—.ýôÓO?ÿüó… ÒÒÒÊ9µQ‘’’"ÿHHH‘+¤§§ !fÏž=uêÔÇ9²råÊ¡¡¡=ôP¯^½BCC­zºzõê•¡È_|qÛ¶m§Nj׮ݰaÃlº×à_GޤÿþŸ~úéæÍ›CBBöìÙ“••õÔSO™¦W¯^ýþûïçåå5hРM›6={ölÑ¢…Ñhœ3gŽUÏ’ŸŸonòݹsGQ·nÝâýýý…õêÕ‹‹‹;vìØO?ýtèСÄÄÄ£G.Y²dРAï¿ÿ¾Á`PøÔ•*U*Ãn¹qãÆ•+W„)))™™™5jÔ°ÿK@މ98N™2Eƒ6S߸qcîܹ•*UZºti§NÌwùã?¬}–ßÿÝd2É? !ªT©2sæÌ’ïe0äs !îܹ³gÏž7ß|3>>¾{÷î=zô°ëny÷ÝwÿüóÏÖ­[=ztΜ9ÿùÏìútt‹9ŽIÆ [´h‘’’ròäÉíÛ·7lذM›6òM'OžÌÏÏoݺuÁÔ(þ9l¥d#Ú?þø£ùg??¿ZµjýöÛo§N*¸N~~þÀ;w‘qéÒ¥îÝ»2Ä|k¥J•zôè!ÍsñâE»î“7nÚ´é‘G‰ŽŽ úþûï Ÿ´l‚àÀÁȇÈÌš5+''gРAæå~~~Bˆ3gÎdddÈKòóó׬Y+„ÈÍÍ-òÑ4h „ˆ‰‰ÉÉÉ‘—-/¹qãÆ›o¾™˜˜Ø¼ysŸ:uêüõ×_'NœX¾|¹¹UyþüùŸ~úIa×ó)þñÇsæÌñôôœ;w®»»{DD„««ëìÙ³Ë?¹ c¨€ƒéׯßüùó“’’\]]ÃÃÃÍË{ôè±}ûöG}4,,L’¤¤¤¤ëׯ><::úÛo¿ý믿äëuôèÑ=z„††þùçŸÉÉÉ^^^µk×¾}û¶¼Î€>¼~ýúðððºuëz{{§¤¤äää4jÔH>ó¶‹‹ËÌ™3g̘±`Á‚¯¾úª^½z999¿ýö›$IÆ kÕª•v…$I3fÌÈÎÎþàƒäÜ|ÿý÷?ûì³_}õÕìÙ³-Z¤ökÀÙÐqà`|}}Ûµk'„èܹ³¯¯oÁ›.\8yòdùüŽ]ºtùî»ïfÍš5|øpWW×"/X¿~ý¯¿þºgÏž...{÷î={ölݺu###}||Ìë †?üð¿ÿýo÷îÝM&Óùóç¦OŸþÝwßy{{Ëë 0 **ê‘Gñðð8sæLNNNÇŽ¿øâ‹wß}×~»"&&æÀ:u2OôBLž<¹aÆ›6mÚ¼y³ª/'d(ùô` 7oÞ¼zõjýúõ• ºBp€" U@‚#!8@‚#!8@‚#!8@‚#!8@‘ÿj1Õr®?IEND®B`‚statistics-release-1.6.3/docs/assets/wblplot_101.png000066400000000000000000000702621456127120000223420ustar00rootroot00000000000000‰PNG  IHDRhŽ\­ApyIDATxÚíÝy|L×ÿÇñÏ$A’‚RµASj©Ýªö}«¥µ—ª¢ú%UEíjßZK-µ¶ŠdbMQJ­µåk'H"’ÌïÛÎ/ß$âΖ;™¼žþ1sï¹ç~ηÞîª3¼Ž‹Ö } 8@‚#T!8@‚#T!8ÿX¾|¹î_L<+66ÖÝÝ]™•7oÞ$ vïÞÝ´à¦M›Ì]ïÞ½{M‹ÝV£°à×±É&µÇX8 ‚#ð>ø@§Ó)Ÿ9’xÖ©S§^¼x¡|¾wïÞ•+WÏýý÷ß•nnnuëÖÕzZzôèQxxø‚ üýý×­[§u9ŽnÛ¶mK–,Y²dÉŽ;Ò`uvýuÒx,´Bpþáëë[¾|yåó‰'^¾|išuôèÑÄ-ÃÃÃMŸ£££Ïž=«|®Zµª§§§ÖãpÏž=ëÓ§Ïÿû_­ A øuXŒàü¿F)^¼xqêÔ)Óô$ Ç“'OÆÅÅ)Ÿ?øà VZ½zõkÿªX±¢ÖÛÀòâÏœ9³fÍšâÅ‹+³žoÞ¼ ¦®ž}:Å‘ªÙ2F£qÍš5nnn)þpÈ!÷üÚδ“·üú믓Ó¢E Sü‘aÆ%^Ý€”é¹r劵ӯ“ø§Wù£¼j,fìxÒŽ8ÿÏÕÕõý÷ßW>›NOÿþûï "R¹rå*UªˆÈË—/?nš«|hРAâ¿b?ýôÓŸ~úIùP»víìÙ³‹È‹/z÷*åïuN§äWyþüyûöíÏœ9£õK™i;¤xÅçСC“_]7tèÐùóçFåkLQï÷ßoذaTT”e[&""¢W¯^¦8U°`ÁÄ÷ÅOŸ>ýСCi¿Í[·n½aÆR¥J)_ß~ûí 6Œ1¢ZµjEŠQ&nݺ5ñ"¦›NÚ´i“)S&;ý:ü(¯‹M6GCpþ‡élõ¹sçž={&‰ÎYW®\ù½÷ÞS>+g«ß“ø<õüñã?*ŸçÏŸòäIƒÁpîÜ9???‰:t¨YU 4èÎ;>?~¼òBB¨Q£´ÞZ)8þü­[·”Ï%J”HÞàÈ‘#ÅŠëׯßèÑ£ .,"ÇŽ[¼x±27 àâÅ‹ÿý÷“'O>ýôSeâ7&MšdÙ–Ù¶m›ò;º»»‡‡‡ß¸qãÎ;ÇwwwW$~>NšmóR¥JµnÝÚÇÇGùêëëÛºuëªU«êtº?üP™xáÂ…‹/*Ÿ¯\¹búܱcGûý:&ê”WÅ& €£!8ÿÃôPž„„åh¢rèÑÍÍ­|ùò+Vtuu•ƒãü/":®~ýú¦NæÌ™£§)[¶ì'Ÿ|¢L,X°àرc•Ï'Nœøë¯¿T–Ô Aƒ3fäÉ“ÇÓÓs̘1¦“ã[·n½~ýº¶›+&&æï]¼xqÓ¦M-Z´0ÍM1=ž9sfîܹ&L([¶¬ˆÌ›7O9¦›)S¦ŸþY¹#[¶lsæÌQñŠÈwß}gÙ–‰ŽŽ®W¯^½zõúöíkÊýÊç$WÒ|›wîÜÙôÙtÐÑt¸1þüµjղ߯cbñÀ¹ÿ‘7oÞ *(Ÿ•Ȩq|ûí·³eËæáá¡d%8šn‰¨X±bžøàÁƒ޹ÍK•*õî»ï*Ÿùååƒ)8¶oßÞtöüµ,øu’ÓÜ€ss³¾ ÀÉ4lØPI„G½wïÞµk×D¤råÊÊÜ*Uªœ˜û£pnq’2]æxäÈ‘Ä8*L§;ûí7ÓÇ$Áññãǯ]K⣩3Ý H|À)Å;^5”%K– *ôë×ïÔ©S5jÔH±M*y%ùp” ¦—÷˜µeîÞ½[±bÅáÇ8pàåË—þþþ:uš={¶é”i»Í;tè ¬1..nÇŽûöíSnC)Z´¨éÏ¡Ôü:É™û£pnG ©÷Þ{/wîÜ"±mÛ6ebâ#ŽÊ‡={ö(Ge¼¼¼LiRa:¨6bĈW=Ñ`Ê”)*ëIr5¤él£üï‘0å²KåJ5;IòÀ—˜˜˜cÇŽÍ;7ù½SaEâ¡%{éÒ¥-Ø2_~ù¥r“¯¯ï¹sçΞ=»jÕªÏ>û,qú±~›ÛVþüùMï®Üºu«é<µ¹‡­ùu,þQ87‚#”‹‹‹é¡<+W®eJ©R¥”ç˜üøãJD«_¿~’búK÷ĉ‰§GGGïý×Ý»wUÖ“ø1{"²páBÓgÓ_Û¦{„ED9·®xòä‰é¼¹Ã2m®;wFDD¤8Ø9r,XЂ-³k×.åC»víL+zôèQâ­”œšžm(ÉNéÔ©“òaÇŽ¦½tèÐÁæ«~‹”äcàLŽ@ Lg«•'¹˜n¦N§}ŒŒŒT¦$aŒéÈÐÞ½{·oß®|~ùòå‡~¨ÜáÛ²eËW=’:¹;vŒ1âñãÇÏž=›2eŠ)Ó´jÕÊô×vâ GuõêÕ¸¸¸?þø£Y³fÑÑÑZoÎ×0=eúåË—-[¶T"]LLÌ€LYìÛ·¯e[æöíÛʇÇ+wrq1&LP³©møë¨ÿQ^;Nƒ#Ž@ òäÉS±bEÓ×$w$˜.s‘·ß~;ÅCP+V¬Pž·—ð矆„„<þ\D\]]'Ožxðào¿ý–xnâ:JÚž§V˜õ£¤>Nƒà¤¬Q£F¦ÏI‚câ[a^õd–B… …††Î™3§Y³f… Α#G¹råúöí{áÂs߯2iÒ¤ZµjyyyåλeË–‡Nü÷´¢sçÎaaaõë×ÏŸ?Ö¬YæÎ»lÙ2G»ó:EÙ³g_´hÑîÝ»?þøã *dÏž½xñâ­Zµš={vxxø«.+T³e>ÿüsÓS¯}}}›7o¾iÓ¦yóæ•/_^™¸k×®äLR¹Í­Ô¥K—™3g–,Y2kÖ¬o¼ñF’g5hÐ@¹IKD*W®\´hQGþQR §¡3r!3gòÛo¿õïß?GŽZ×b†Š+*Ï 1cÆ Aƒ´.ŽàŽ9R­Zµøøx—7n(P@늀7Ç€ƒùüóÏoÞ¼¹yófåyOz½žÔÀApÄËÛo¿}úôiås¦L™öïߟä ó nŽÇ’#G77·>>êÛ$7cÆŒ xxxT¬X1""âÚµk+V¬Èš5«Ym2×qãÆi]C ¦L™²gÏžŽ;.^¼¸Q£F;vÌ•+×æÍ›ïܹӠAõm’¸páÂðáÃóæÍûË/¿tèСK—.‘‘‘¿þúë³gÏj×®­¾ @äˆ×8Æõë×ûøøŒ5ÊÕÕU™Ø©S§jÕªíÙ³çéÓ§*Û$÷ÓO?%$$ 4(o޼ʔ‘#GzzzîØ±#!!A}€ ȃãÍ›7£¢¢J—.%K–ÄÓ+W®üâÅ‹ƒªl“ÜÑ£G]\\ôz½iŠ««k­Zµ>ÞËË+ÉtOOOyøð¡Ê6j”ü_ZoQ }pØo¤Sš¤F~D¶œ›#GN׫W¯èèè¾}ûžÇ±gÏž×®]Û´iS»ví”) èÙ³ç’%KräÈ¡¾Mb^^^:.***ÉôgϞɿÇÕ´Gj`']]]'NœØ¶mÛ£GÞ¿ßßß?00pÓ¦M"’;wnõmþg¨nnžžžÉFFFŠˆrµš6àÈêÔNBB´®€3rÐà¨x÷Ýwß}÷]ÓWå4ôÛo¿mn__ßK—.EFFæÌ™Ó4ñêÕ«Ê,õmÀ%$Hݺâê*{öh] 'åˆ×8ŠHPPP÷îÝïß¿oš³k×.ŸÒ¥K«o“Dݺuããã÷ïßošb4ü½½Ë—/¯¾ 8š¸8©[W2g&5°# Ž^^^œ>}ºò5>>þ‹/¾xöìY—.]ÜÜÜÔ·yþüùÕ«WoÞ¼©|mÛ¶­‹‹Ëœ9s”kEdÑ¢E÷ïßoݺu¦L™Ô·‡òâ…Ô¯/îî²k—Ö¥pjzªºGÛ·o߸qãùóç *tòäÉÛ·oW©R¥W¯^fµ }úСC±±±óæÍS^S§N^½zuêÔé7Þ8|øpHHHžòá‡Z—Àj»vízôèQ‹-Ìm–={öÙ³gGEE1Âh4<ØÝÝ}öìÙZȸÆlcÁY·Núõ“¶mµ.€ùæÏŸ¿mÛ6åóË—/¯\¹²uëÖfÍšM˜0Á‚f-[¶lÒ¤ÉÚµksäÈqìØ±   ¢E‹j=D 8€ Ì+6ÈgŸI«VZ—À"?þøc’)™3gnÒ¤I’«U6‘9sæ„„„,^¼¸X±b#FŒÐz|¶Á©j°ÖìÙ²aƒ HjÒ±ÿ•påÊ•ÀÀÀÞ½{ïٳǂf"R¸páþýû‹È¸qãÔ\(™.À*3gÊæÍ2x°¼î:(é†N§+R¤ˆr[thh¨ÅÍòæÍ+"yòäÑz@6éj°Üôé²u« *Mšh] [+V¬˜ˆ\¹rÅ&ÍœÁ,4uªlß.#FHÆZ—ÀÜÜÜD$66Ö&ÍœÁ,1y²ìÜ)£FIJï¤à \]]=<<.]ºd“fÎkÀlß|#;wÊ_'pêÔ©+Vؤ™àˆ#€ D74$Éã´@s;ùúkÙ»W¾üRÍ^€#;vìØ±cSœuèÐ!s›%6tèСC‡j=>["8Èþ‰ŒÓ“f=„ˆ9ññ«¯$4TÆŽ½^ë!@š#8p~º¡!É#ã?¦ŠˆNBÔdÇqã$,L¾úJjÖÔzH ®qàäRK&Ó“ŸÅNâË/%,L&L 5ȸŽ "¯ÉŽ_|!ÈĉR­šÖu€vtF£Q뜎Á`Ðk]à¼ôQ¿‹ÕšðúÃ&CBB§¥ðÏéÕ#ß¾ø[îN“O¯üPëÑv§7×ðâU¸ÆÑ.ô¢×ºÄà˜!- ³ÇºlÒ§ÅX° Y‹¨nlV!ª[Ф´óŽ!Ê”)R±b€Y]Ù»˜Öe}ŸÖô`×]̜ΠÖl87NUÀ¿’­6LŽ•iÓ¤bE­kÀGNKÕm1¯6x°üñ‡Ìš%t¨´ÄGHÁÀòÇòÝw¤F CØ·o_½zõ||| (вeËóçÏk]‘ƒ"8pZÆi2ļkýûË©S2w®”-«õØßï¿ÿ^¯^½ˆˆˆÏ?ÿ|äÈ‘—/_®Y³æÝ»w-èªV­ZAAA*¿|ù²J•*U«VM<144´N:yóæÍ;w56oÞœxî“'O>ùä“7ß|3{öìµjÕ OãmEp€ 1N ì×OΜ‘ùó¥ti­ë&,X2|øð„……ÅÅÅ­ZµÊÜ~Nœ8qðàAõíÇŒóÛo¿%žxýúõÎ;òÉ'÷îÝkÕªÕ’%K”¹‘‘‘+VüþûïkÖ¬Ù£GË—/ðÁ'NœHËmÅ5Žðÿ>ùD.\… ¥D ­KVþüóÏÒ¥K*THùêíí]ªT©Ë—/«\<...$$äСCóæÍKHHP¹ÔîÝ»§L™âæö?IlÔ¨Qùòå;~ü¸§§§ˆŒ=ºtéÒAAA={ö‘éÓ§_ºté‡~øè£DdàÀ*T:thHˆ%§V,ÃGÎÌŒ³ÕCBz= ¼pA–.%5Ëýû÷sçÎmúúâÅ‹K—..\Xåâ>^9òg4¯^½úñÇ¿ñÆÝ»wW¹¸¯¯¯Ñh4*o©1]»võööž9sfâé®®®'Ožüúë¯MSâââþüóÏ€€€¬Y³FFFþõ×_uêÔÑét¦ iy¥#§ª8?ã´@¼úÑtè§§§ñÕÌíváÂ…W®\)UªÔ·ß~;yòäÉ“'?yòäï¿ÿžNgº22 dDmÚȃ²q£¤áŽëÈ‘#ýõW‰ŸÅµqãFy÷ÝwŸ?nÃSÕ_|ñÅ_|‘xJ‘"EòåËwøðaù÷ðá÷ßß®];Ó­ÓË—/åí2½zõ8pà¶mÛš4i""wïÞݰaCýúõ‹)’fŠà ÃiÕJ=’Í›ÅËKëR8†—/_6oÞÜßßÿ?þøþûïË—/ߦMWWW NI'6yòäI“&Mœ8ñ“O>I½¥Ï_|T©R¥ ètºÝ»w9rdРA"òñÇ/[¶¬S§NŸ~ú©——×?ü¥þ ‡6Ap±´h!OžÈÏ?ËÿÞ› C«^½z÷îݧNºbÅŠxðàL™2¥¸ThhèW_}uæÌ™øøxÿ¡C‡¶lÙÒ4÷Ô©S&L {öìY©R¥:uêôÙgŸ¹¥áK±¸9Æ.ô¢×ºÄà˜!- ³ÇºlÒ§ÅX° Y‹¨nœ´Y¢cÖnœô‚]ÌNë²¾Okz°ë.fNçk¶@F“={öÎ;'™½qãÆ"EŠˆHBBB³fÍ‚ƒƒ[´hѰaÃ~þùç.\XºtiòÞ‚ƒƒ7n\´hÑÎ;gÍšuÆ ­ZµZ¼xqÏž=EäÊ•+z½>>>¾eË–o¾ùæž={† ²o߾͛7§Ùx ŽÒ7ÎPЯ¯ïÊ•+“L>|xþüù§L™""+V¬Ø¾}û¢E‹L/6lß¾ý²eËFŽéçç—dÁQ£FåË—ïøñãžžž"2zôèÒ¥K)ÁqÈ!Ož< ¯T©’ˆ|õÕW=zôX¶lÙ®]»4h6ãåGé©€• äëë»k×®GuïÞ½@ èÖ­Ûýû÷-ëðСC3fÌX¶lYîܹEdñâÅo½õV=L Ö­[g4“§Æ/^œ9s¦I“&Jjš5kÞ¼y3::ZDBBBjÕª¥¤FEÿþýEäðáÃi¶¹8â ½"5°^ãÆW¬X1eÊ”'Ožøùùõë×/<<ü‡~xðàÁ/¿übno111üq—.]>øàyñâűcÇÚ·owìØ±Ó§O)R¤ZµjÉ—uuu=yò¤iJ\\ÜŸþ5kÖ¸¸¸O?ý´bÅŠ‰‰ˆˆ‘,Y²¤Ùæ"8H—Hl¢~ýú{÷î:uêСC•‰µk×~þüyŠ /³fͺyóæøñ㕯·oߎÕét5jÔ8zô¨2ñÍ7ß\½zuõêÕ“,ëææV¦LåóŠ+.]º´}ûöÛ·o¯^½Z™;qâÄÄí>|8qâDWW×6mÚ¤Ùæ"8HHlH§Ó‰HŸ>}LSªU«¶oß¾¿ÿþ»hÑ¢Û·oÕ‚Í›7Oüõþýû'N4hPÁ‚•)Ož<‘+V´lÙrùòå…  ëÙ³gëÖ­Ï;çííýªžÇéÒ%©_¿~áÂ…“70 ½{÷¾téÒüùó“Ÿõ¶‚#€t¦N^Hl*W®\Ù³g7}U4ÆçÏŸ·xõK¯“<ÓpòäÉ111Æ 3MÉ‘#‡ˆ+VlíÚµ™3g‘ÆO™2¥K—.6l0Ý.“ÜÅ‹£¢¢>ܳgÏ*Uªœ;w.o޼ʬëׯ÷ïßëÖ­~~~{öì LË ÅÍ1ÒŽ5°%Õ™(Ç EÄÓÓÓøj‰‰‰‰Y¶lY«V­råÊešèëë+"Õ«WOÜ¿r’úܹs©—”-[¶ºuëNš4éáÇ[¶lQ&®Y³¦lٲǎ[¸páÙ³gÓ85 G8Ž:CDB’O7NûçÿŒÿ¤Æ±†Œó¼FÚŠ‹‹Syªú§Ÿ~zøðaâ»§EÄÃãhÑ¢·nÝJ<ñÞ½{"b:m²}ûö-Z¬Zµª}ûö¦‰Êél%¤nݺµK—.íÚµ[°`AΜ95Ù GA74D¦§üOg„ˆˆþx (Ç Z× ÃPªzõêÕžžžu”à&òÑGíÛ·¯V­Z"’0iÒ$—ºuë&iùÞ{ï‰È÷ßß®];Ó!ÏåË—‹HÕªUFãˆ# *´råJWWW­6Á€öRI""Ó•÷Ÿq†@SNU¿¶YtttXXXݺu]\’^د_¿õë×ׯ_¿S§N ܱcDZcÇFŒñÎ;ïˆÈäÉ“'Mš4qâÄO>ùÄÇÇç‹/¾ ªT©Rƒ t:ÝîÝ»92hР€€€³gÏž?Þßß_yxb­ZµjÚ´iÚl‚#½&5þûÖ\û!"i}5¨£SLÂÇÇ',,lôèÑظqcÙ²eüñÇ?üP™óøñã/^(_ÇŽ[´hѹsçΟ?ßÅÅÅßßíڵʙkå&ësçÎ%¿8²xñâG‚ÚÔh1ê$Ät½#ØJ¨Õ§3>øàƒTLæÊ•kÁ‚)Î;vìØ±cM_u:]×®]»víš¼e³fÍÔû´7îªà¸þ?5G8¨Rãô@„›ò/^Ðÿÿ ™TÎSs¬€†FŒ±oß>å)ŒHŒ#Ž©€¶2eÊT³fM­«pDq ã´@’ô‰ß¤FpXGä5©qwU€–ŽÇÀÁhÉt¶šÔŽ›chÌ8-°Îq‘צFÎS€Ö8â@cuêˆüóFÁW#5€àˆ#-)©14TDu""IŸì8$D”3Ú­éá½‡ÎÆ`0èµ®H‚êèEdl¨!ñÄ:C –ôÄˆÞ ìb€ýè ÿ^t $g„Í…†j]öB¡Z— }aöX—Mú´¸ Le½Þ¨×[Ô?»»˜ÝÖe}ŸÖô`Û]ÌòÎÙÅ,òøñã>}ú*TÈÃãfÍš‡N¥ñÙ³g[¶lY°`Á ´iÓæàÁƒ*çÆÆÆººº&Ér>>>¦ñññß}÷]@@€‡‡GÉ’%'OžkÃarª€¡€t/22²bŊׯ_oӦφ >øàƒÐÐÐòåË'o¼ÿþúõë{yyuìØÑÕÕuݺuõë×ߺuk``àkç^½z5>>¾ZµjE‹5u˜={våCBBB³fÍ‚ƒƒ[´hѰaÃ~þùç.\Xºt©­FJpÖHœÌôéÓ/]ºôÃ?|ôÑG"2pàÀ * :4$$émF£±Gžžž'OžTÞ…=f̘ * >ü÷ßO}®ˆ\ºtID¾ú꫺uë&/cÅŠÛ·o_´hQ¯^½”)íÛ·_¶lÙÈ‘#ýüül2RHPTTÔäÉ“K—.íááQºtéÞ½{ß¿_ýâk׮͟?×®]•¯E‹mÓ¦MXXØíÛ·“´¼zõêÅ‹{ôè¡äBñòòWD.]º”%K–9r¬_¿~áÂ…ˆUš½xñâØ±c5kÖŒ‹‹;tèТE‹vïÞýüùsÛn+NUH#¤FŽiáÂ…»wïþꫯ¾üòKeJ‹-j×®=bĈիW¿vñ;wîFÓ1B…þîÝ»—¤q©R¥DäСCƒ 2M ‘Û·o׫W/•¹"réÒ%—âÅ‹?zôH™ëïï¿råÊ *ܾ};66V§ÓÕ¨QãèÑ£ÊÜ7ß|sõêÕÕ«W·Õ¶"8H ¤FkÓ¦M™2eúüóÏMSjÖ¬©×ë7oÞœ°}ûöW-Û¼yó¨¨(É™3gâéžžž"òàÁƒ$í}}}[·n½aÆɓ'wïÞÝh4._¾|þüù"™ú\¹téRBBBPPP›6m2eÊôË/¿ <¸E‹§OŸ~ò䉈¬X±¢eË–Ë—//T¨PXXXÏž=[·n}îÜ9ooo›l+‚#»#5pd7nÜ(V¬XæÌ™O,S¦LhhhDDD®\¹Z´hñªeF£ˆ<}ú4ñt%çåÊ•+ù"óçÏüøñÈ‘#GŽ)"ÞÞÞ_~ùå¸qã¼¼¼^;×`0¸»»›ºíÞ½{LĻŸ~ºaÆ:uêˆH±bÅÖ®]«Œ¥qãÆS¦Léҥˆ L·ËX‰àÀ¾HÜ‹/²fÍšdbBB‚ˆdÏžÝÓÓÓ˜êÛR|}}]\\’œ•Vî­yã7’·Ï“'ÏîÝ»ÃÃÕ[§kÔ¨±oß>yóÍ7_;W¹Þ1±÷ß_DΜ9Ó¡C©^½z⬜¤>w¶Á€ÕÑ ©€Ã»|ùrlllâÈuöìYooïÿüs??¿† zyyíÚµëĉß|óMéÒ¥E¤_¿~ëׯ¯_¿~§N ,¸cÇŽcÇŽ1âwÞ±Õ†â9ŽlcÒ—wÞyç矾~ýúÈ‘#ƒƒƒ?úè£S§N¥xkKŠræÌÖ¾}û 6L™2¥xñâaaaUªTQæÆÄÄ<~üøÅ‹Ê×÷ßçÎo¾ùæ÷ßܪU«³gÏšŽM¦>wĈ6lðõõ]µjÕ’%K¼½½wìØ1jÔ(e®OXXX·nÝŽ92k̙֬3ÿøã“'O¶á†âˆ##5H7nܸqc‹÷ôô\´hQŠ³ÆŽ;vìØÄSêׯ¯œ\NQês[·nݺuëWÍÍ•+ׂ ì·•8âÀ–êÔŽÔΉàÀ6âã¥Nqs“­KاªØÀË—òþû’%‹ìÜ©u)`¦®]»*ׯkX+&F6”¬Y%8XëRÀ|¦ÛŸñZœª`•¨(iØP<|êÔ©øøø$ssçÎ]¥J•ªU«6hÐ gΜZ6íèE¯u 3ˆÁ17BZfuÙ¤O‹;1ˆ¡ÔõUOKt´üöÛëZO¬#!¡Ó\Ô¯Kuaú§+-±‹Ùi]Ö÷iM,«~s:7X³àÜ, Ž/_¾Ü±cÇòåËOŸ>­LñòòÊ—/Ÿ···§§gllì£G=ztãÆíÛ·oß¾}„ -Z´èÒ¥K±bÅ´2 =º•µc'‰Š’#G´. K‚ãáÇǎ‘={öÖ­[W©RåwÞ)\¸pò–ÑÑÑgΜùã?vïÞ½fÍšµk×¶oß~èСêè#ànÜÙ]ß{îþü¨ÁCëZÚ0;8Ž9róæÍ•*U4hP`` »»{*³fÍZ±bÅŠ+öìÙ3""bË–-«V­Ú³gÏôéÓß{ï=­Ç@­kפ[7É[äùOÞ¿ÉNÕw½L¬#!ÆiZW°³ƒã_ýµtéÒ5j˜»`áÂ…ؽ{÷%K–üþûïG ½¸rEzôbÅd©çoÊMÓ€ŒÉìà¸qãFkn”Α#ÇàÁƒµ5µ.]’^½ÄÏO-’ÎâRGBÈŽa™ý°Œ$©qþüùÁ©¾¡våÊ•kÖ¬Ñz˜,ñ×_Ò«—”*%‹i] ÀXû”µ™3gþòË/©4X¹råŒ3´&³;'}úH™22¾¥]ØíQŽMXrWõéÓ§¯_¿núzçÎWt¼}ûö7²dÉ¢õ0˜çôiùì3yûm™=[ëRÃ’à¸aÆÄgŸÏž=›úe‹Z€N’åwdæÌ¤³ŒÓu*/sbœhàIÂàD, ŽE‹­V­šòùСCÞÞÞþþþ¯jœ/_¾Ï>ûLëaPë?dð`)_^¦OO¹ªì8„wU€²$8víÚµk×®Êç’%K–+WnÁ‚Z€ ?.C‡JÅŠ2eJjÍþÉŽ")ÇÇ!!Z`Ö¾«º_¿~EŠÑzlàèQ1BÞ{O&Mz}cå€â?ñ1¥YçcvpŒŒŒLüÂÀZ°Ö$Ð\x¸Œ%U«Ê7ߘ±2³Ÿ”Q·nÝ… FGG[¶¾3gÎôèÑcñâÅZÀÿ;tHF’êÕÍK€ŒÆìà8`À€… Ö«WoÊ”)/^T¹TLLLpppÏž=[·nÓ¦M­àÈ_HÍšòõ×Z—plfŸªîÒ¥KýúõÇ¿dÉ’%K–øûûW©R¥\¹r¾¾¾®®®¦–QQQýõ×É“'Oœ8±ÿþgÏžyyyµk×Κ—°¡}ûdìXÑëeìX­K8Ѻ@:göÍ1"Ò³gOÓc]]]{÷î­|>|8©pk×ÊüùòᇤF€ ˜}ÄñæÍ›"R¬X±Ä‹)¢|ðóóÓzDþ±j•,]*]ºH÷îZ—p fÇ—/_ŠH¶lÙOÌž=»ò!K–,Z€ˆÈŠòý÷òÑGòñÇZ—p>\§Ói]9€WúáY¾\ºu“®]µ.àDxs àl–-“•+¥GéÜYëRÎ…à8•%KäÇ¥woéØQëRN‡à8… eíZéÛWÚµÓº€3²08 †$÷Ǥ>½nݺZpróæÉúõòé§Ò¦Ö¥œ”…ÁqذafMÏXïªÒÜœ9²q£|ö™´j¥u)çÅ©j ½Ò Q>øÝ(ñƽ‚ºÐúà߯VZ×pZfdzgÏj]3Ñý§ŠˆŸŸ¼ñ†üõ—Ü2”)©“1N#>lÏìàèêêªuÍ@†¦¢DF)QB  äöígO„6gö»ªSwýúõ‹/j=( C(YR óç¥F“é¦ÙØŠƒãàÁƒ›4i¢õ §Ugh‚rL±T)ÉŸ_ΓÿþW뚆ƒ#û1¤ö÷—|ùäìY¹sçÕ­9è°5‚#Îøû‹¯¯œ=+wïj] ƒáq<@zRº´äÍ+gÎȽ{Z—ÈxŽ@ºQæÊÛyòÊéÓrÿ¾Ö¥2$Ç|ùò=}úTëANhÌÉó8ÏŸʃZ—ȨlçΫõˆ'4z´>,§Š|hxGëZ7ÇŽnäH9|X¾ýVzr° %®qÚðárì˜L**ˆ±R Nþÿµ1¯1„—ÇlŒ#Ž€ã2DŽ“3¤B…¦„Ns‘!*žÎHjØÎh4j]ƒÓ1 z­k@ú÷àr'½ºÍ:ñfÀ“$³Lïy¥!!¡ÓœöŸ…zƒ°‹ö£7ˆèõZWÅ©j»Ð‹^ë4fƒcn„´,Ìšu  ÊwßIÙ²åSê3äŸãŽÉããIýp£Å…Y° Y‹¨nì ºÒ»˜Öe}ŸÖô`×]̜ΠÖl87³ƒã€,XÍìÙ³µ)nôï/gÎȼyâïŸrS.ÔIÈ«f`sfÇÇGFFj]6à´úö•óçeÁ)Yòõ‰‰€´dvp‚#F5’èhÙ±CÜݵ.‹´ðÁòâ…üú«dʤu)XŠàØ]ýú'{öˆ««Ö¥`‚#`_uëJB‚„„ˆN§u)X‡àØQ:""¡¡Z×€-Øò9Ž ª£R#À‰»àX#ÀùÛSRãØPƒÖ…`K¶¼ÆÑÏÏïÅ‹É?ŠéX£AëJ°-[ÇÑ£G§øÈ88C pbœªl†Ôpn6;âõ÷ßß»wïÁƒîîî>>>yóæ-P €Ž‡×!c 5œžµÁñäÉ“ƒáðáçNŠO27wîÜUªT©Zµjƒ ræÌ©õ`{!52 ƒãË—/wìØ±|ùòÓ§O+S¼¼¼òåËçíííééûèÑ£GݸqcûöíÛ·oŸ0aB‹-ºtéR¬X1­‡ Ø©AX>sæÌü±{÷î5kÖ¬]»¶}ûöC‡åè#œ©qèŒF£Y Œ9róæÍ•*UúðÃÝÝÝU.±eË–U«VeΜyúôéï½÷žÖc·ƒÁ ×º¤‰ :záyiNov1À~ô½^ë*਌fjÙ²åþýûÍ]Ê$22rúôésçε¸‡t 4Të ´j Õº»¦×õú´Þ6éÓâN,XЬEÔ6fË»˜&ë²¾Okz°ë.fFçìbx5³OUoܸњ¥säÈ1xð`­Ó2`-ÎP2 ³Ÿã˜$5Ο??888•ö+W®\³fÖÃl‰ÔȘ¬}øÌ™3ùå—T¬\¹rÆŒZ°R# òä®êÓ§O_¿~ÝôõÎ;¯:èxûöí7ndÉ’EëaæÑ I2Å8-PH€ŒÍ’à¸aÆÄgŸÏž=›úe‹ZPëŸÈ8=0ét ÑR# ³$8-Z´ZµjÊçC‡y{{ûûû¿ªq¾|ù>ûì3­‡ ¨¢’<2*”Ôhx7D$мNp–Ç®]»víÚUù\²dÉråÊ-X°@ëÖJ-5êED C NB”ÓÖd4Ö¾«º_¿~EŠÑz€µT¥F26³ƒcdddâ8Ђµ&épX)¤ÆétdPf?ާnݺ .ŒŽŽ¶l}gΜéÑ£ÇâÅ‹µ8ðzk 1³ƒã€.\X¯^½)S¦\¼xQåR111ÁÁÁ={ölݺuLLL›6m´8ðÿR<<<üСCáááׯ_ŒŒŒŒŒTxzzT­ZµZµj©<èp(ªRã72"kÇ“={özõêÕ«WOùyÿþ}wwwŸÌ™3k=:@ã´@„Èô@Ž5 kƒc9sæä9;H§H¤ÎìàxòäI)[¶lâû`€ôîŸ7 T4å<5 £2ûq<íÚµk×®]TTT’éññññññZ°D:""¡¡"CB^Ó”ÔÈÀlsª:::º\¹r"rá­G˜çÿSc¢‹Sh7$Di u½hÆÆ×8éKâÔ¨ø';&Cd€àˆŒ+yjTH‘Ù×8ÎáU©¼ Á© ‘á° ÁKP½°Áǰ†…wU †lÙ²™¾ÆÄÄ(öîÝ›bûºuëj=RdtJjjÑk] é’…Áqذa)Nïׯ_ŠÓy08´e:ÖhкÒ/NUÃùq†›0ûˆãÙ³gµ®0©[1;8ºººj]3 ©âT5œ©Û"8Â9‘°9‚#œ©{ 8ÂÙ°‚#œGB‚Ô©#®®¤Fì‚à''uëJ¦L²g֥ऎp±±R¿¾dÉ"¿þªu)8/‚#Ò½˜iÐ@²e“;µ.§¦3öë}áÂ…¿þú«ˆ¸¹¹ùøøÔ¬Y³M›6nn¾ ;Ý0 z­kÈ0^D¹Mj\Ã={Üç[h] ÒˆÞ ìb€ýè "z½ÖUÀAÙ7Ãݾ}ûôéÓ"òÉ'Ÿ-îÄ‚ÍZDuã´ûVZþIvØÂs³¦»îbætn°f À¹Ù78æÍ›×ÏÏOD,"÷îÝ9r¤ÖC†“xüXZ¶ooÙ´IëRÈìûõëׯ_?Ó×|øðáÃÙ³goܸq«V­Ê•+§õ¸à„nÞ”.]¤P!Y±BëRȬ=â¸råÊÁƒ)RäÙ³gëÖ­kß¾}Æ —,YrïÞ=­Gçqýºté"… “ÐŒ nŽ)P À'Ÿ|²sçÎõë×wêÔÉËËëÊ•+S¦L©]»vŸ>}víÚõòåK­‡‰ôíÚ5ùè#)ZT~øAëRÈÀlù8ž€€€€€€Ñ£G‡……mÙ²%44Ô`0 //¯fÍšµjÕÊßß_ëñ"ý¹rEzôâÅeñb­K c³ýãxÜÜܪU«Ö¨Q£wß}W™òøñã+V´hÑ¢]»váááZéÉŋң‡”(Aj@{¶<â¶cǃÁ-":®\¹r|ðÁùóçwìØqòäÉnݺ͜9³AƒZéÀùóÒ·¯øû˼yZ—lccc÷ïߥL,UªT“&M7n\ @eÊÈ‘#ƒ‚‚‚ƒƒ'OžLpÄk=+Ÿ~*eÊÈœ9Z—DÄúà8bĈ½{÷>{öLùZ¸páÆ7iÒ¤X±bIZzyy3&88øÖ­[qqqnnö}Û!ÒµÓ§å³Ï$ @fÍÒºð/kÓÛÏ?ÿ,"¾¾¾5jÒ¤IÙ²eSiìêêêããS¸paR#Rqê” (åÊÉŒZ—±6ÀuèСqãÆ•*UÒét¯mìååuðàA­‡ ‡vâ„ "ï¾+Ó¦i] ø_ÖÞU/_¾û÷ï§’W®\¹†×ÃAcÇdÈ©T‰Ô€#²68Μ9ó—_~I¥ÁÊ•+gpÆ*9"ÇË{ïÉ·ßj] H‰%§ªOŸ>}ýúuÓ×;wî§ØòöíÛ7nÜÈ’%‹ÖÄ£ —Q£¤Z5™0AëRÀ+X7lØøìóÙ³gœJû€€­‡ ‡vè|ñ…Ô¨!ãÇk] x5K‚cÑ¢E«U«¦|>tè··w*ïÌ—/ßgŸ}¦õ0á¸öï—ÿüGjÕ’  ­K©²$8víÚµk×®Êç’%K–+WnÁ‚ZéRX˜Œ'uêÈþ£u)àu¬}O¿~ýŠ)¢õ(.…„ÈøñR·®Œ£u)@kƒãÀµÒ¥={d©__FÖº op~ýU&N”>Ï?׺ šÙÁ±[·n"R½zõž={š¾¾Ö÷߯õHá(vìo¿•Fdøp­Kæ0;8:tHDòåË—ø+ Òöí2uª4m*C†h] 0“ÙÁqêÔ©"R°`AåëìÙ³µÒ_~‘3¤ys4HëR€ùÌŽM›6MüµAƒZéÖ-2k–´l)h] °7Ç -lÚ$ß}'mÚȧŸj] °”ÙÁqܸq¬Æ²¥àÖ¯—yó¤];éÛWëR€ÌމßR­Á1ÃZ·N,¤O­KÖ1;8öë×Oëš‘n¬^-‹K§NÒ³§Ö¥«™yU TZµJ–.•.]¤{w­K¶ÀÍ1°‹°o¾—?–>Òº`#GØÞ÷ß‹aÅ[Ý»K—.Z—l‡WÂÆ–.•U«¤nÏ+]:Õº`K¼r¶´x±¬^-}úH¾×EŽ8^9›Y°@Ö­“¾}¥];1h] °9^9Û˜7OÖ¯—þý¥uk­KöábÛî>|ø×_EEEi=.¤©ï¾“õëeÀR#ÎÌ6wU_¿~}úô錌ŒT¦äÍ›÷ƒ>èׯŸ···Öc„}Íš%[¶È AÒ¼¹Ö¥{²ÁÇ-[¶4lØpÇŽJjtuu‘»wï®X±¢~ýúÔzŒ°£3dË:”Ô€ó³68^ºtiܸqqqqÅ‹Ÿ9sæ¾}ûΜ9sðàÁï¾ûÎÏÏïéÓ§C‡ýïÿ«õ0aS§Ê/¿ÈðáÒ¤‰Ö¥û³68.]º4::ºL™2›7onذ¡¯¯¯N§óññyÿý÷7oÞðèÑ£ h=LØÞ·ßÊöí2r¤4j¤u) MXOŸ>-"cƌɜ9s’Y™2e3fŒˆœ:uJëaÂÆ&N”;dôhá®z2ko޹~ýº‹‹K™2eRœ[ºtiWW׫W¯j=LØÒ„ ²gŒ#uëj] HCÖqÌ“'OBB£GRœûäÉ“øøø"EŠh=LØÌøñ²gŒKj ñ68*ÿùçŸSœûË/¿ˆHÙ²eµ&R¦’ø¿×¶7NBB$(Hôz­KiÎÚSÕŸ~úiXXجY³²gÏÞ¾}{7·:Œÿé§Ÿ¦Nš)S¦>úHëa"©bâôÀÿ™(!"bœ˜â"ÿùìß/_-Õ«k]=ЂÙÁñ›o¾I2åí·ß¾|ùòW_}µpáÂÒ¥KûúúÞ½{÷ìÙ³ÊSx*T¨pöìÙbÅŠi=Rü#ÅÈøé"¢“äÙñ‹/äÐ!ùæ©ZU똗/_þªYwîܹsçN’‰GŽ9räH’7\CcÓSŸ›$;Ž%áá2i’¼÷žÖ•í˜ûõë§uͰœnhÈkR£"Qvüüs9rD¦L‘е®hÊìà8pà@­k†…Ô¦ÆD† “ß—iÓäÝwµ®hÍÚ›c^+**JD²e˦õHa¦éå.>ò~ê=s¦¼óŽÖÅ`íãx^«K—.ï¿ÿ¾ÖÄÙÊ•ï§Þ³g“À?lpÄ1..îðáÃçÏŸ‹‹K2ëþýûçÎóððÐz˜0Oùòâé)ÇKþþöÛ´®8 kƒcttô'Ÿ|žJ›Úµkk=L˜áÝw%gNùýwyúî­kÄÚSÕ›6m wwwoÚ´iݺuEÄßß¿sçÎíÚµ+P €ˆtëÖí«¯¾²fW®\)Y²äÉ“'Sœ»~ýú¶mÛ–/_¾zõê£G~ÕËÍ]Ä‚nƒ’“§Oµ.8k8nݺUD‚‚‚Z´h!"íÛ·Ï‘#Ç—_~)"Ïž=ûè£80dÈkV±råÊWÍš1cÆ‚ <<<*Uª±qãÆ‹/®X±"kÖ¬Ö,bA·Î¡BÉ‘CŽ“gÏ´.8k8þý÷ßòï«EäwÞ1Ìž=ûèÑ£/^¼¸fÍ zŽŒŒV®,Ù²Ix¸üþ‡„p¸¤ÈÚ›cš6mzðàÁ±cÇž={v̘1 xë­·¶mÛÖ¾}{??¿Å‹GFFV´ÃKŽ£¢¢âãã½¼¼’L÷ôô‘‡Z¶ˆݦÌ`°ùmÈØÔEDtòÞéªYc³†—=ónLâY6¨_ï¨!- ³ÇºlÒ§ÅX° Y‹¨o옺ҒÞQ7BZfuYß§5=X°¬úE¬`}plÞ¼yxxø–-[V­Z5zôhWWצM›~÷ÝwÍ›7Ïœ9sll¬ˆ|ôÑG6¯[99žüÑâÙ³g‘'OžX¶ˆݦ,Ñ™n‡Õn¾Ü•Ÿ~’-îÄ‚ÍZD]cƒÃþéJK»ØÅ¬éÁ®»˜ê–äK¼šµÁÑÅÅeâĉMš49tèN§‘¾}ûž?~ïÞ½±±±®®®ƒ ²Ç+½¼¼t:]T²‹òž={&ÿ ´` ºM§Ú¶•û÷eÃÉ[ëR@:aƒWº¸¸Ô¬Y³fÍšÊWWW×9sæ<}úôÚµkÅ‹·Ó³ÝÜÜ<==“ŒŒŒÓ Ñæ.bA·éQëÖòð¡lÞ,ÉÎɼ’µ7ǼJŽ9Þ~ûm»>1Û××÷ÁƒJ¤3¹zõª2ËâE,è6}iÙR>”Ÿ&5óØ+8¦ºuëÆÇÇïß¿ß4Åh4†……y{{—/_ÞâE,è6iÖL?–mÛ$gN­KéÙ§ª»uë&"Õ«WïÙ³§éëk}ÿý÷6/½mÛ¶ ,˜3gNíÚµ•›W-Ztÿþýž={fÊ”Iióüùó»wïfÊ”©`Á‚*QÓ&jÜX¢¢$8XœýÕ‰À.Ìއ‘|ùò%þª‰ >|òäÉÍš5«Y³fDDDxxx™2ezõêej6xð`??¿mÛ¶©\DM›ô¨aC‰‰‘;%K­Ké“ÙÁQye³rODfÏž­aõÝ»wÏ“'Ï–-[‚ƒƒóçÏß¹sçAƒ)‡ ­YÄ‚n\ƒ+»w‹› Ù9¢iÓ¦‰¿6hÐÀÞ%~ýõ×_ýu*õ$))±F5jÔȬEÔ·I/ê×—¸8Ù»W\Òñ­@{:£Ñ¨u NÇ`0èµ®á__Ö6ucC ZØŒÞ Ž³‹ÎGoH¯±€&Ì>â8nÜ8 VcÙRé—^ôZ— "R§ŽˆHh¨Hš×cƒƒl ³ÇºlÒ§ÅX° Y‹¨nì ºÒ»˜Öe}ŸÖô`×]̜ΠÖl87³ƒãš5k,XMF ŽŽ Qj°³ƒc¿~ý´®¯Gj6gvp8p Ö5ã5HÀlöt–ØØØßÿýÖ­[·nÝúì³Ïž>>¿üò˰aÃ.^¼˜ "qqqgÏžýôÓOwîÜ™3gÎ>}úh=LgCjiÏÚSÕÞÞÞß~û퀶nݺuëVeb@@@||¼ˆ¸»»óÍ7ùòåÓz˜N…Ô4aíG©^½ú®]»Z¶l™={veJ|||Ö¬Y5j´cÇŽúõëk=F§BjZ±Í»ª}||&Mš4iÒ¤;wîܺu+þü¾¾¾:NëÑ9R#еÁñÃ?|ñâÅW_}U¦LñõõõõõÕzPΉÔ´eí©ê+W®œ>}úÊ•+ZÄÉ‘€æ¬ Ž­Zµ‘;wj=gFjŽÀÚà8dÈ ìÝ»wÙ²eʳx`[¤Fà ¬½Æqݺu•+W¾~ýúäÉ“øá‡âÅ‹çÏŸ?S¦LIš7N둦K¤Fà8¬}WuÉ’%Õ43½½:C°Ñ»ªƒêè…÷PÉð®jÀ®xW5RaíÇ~ýúi=GdýëSù=Ôjð"];­‹wU+ óOWZb³ÓºxWõ?mW°688Pë!8!ÎPdƒ7ÇÀ¶HÀ1ÙàÍ1§Nš3gÎùóçccc_Õ&<<\둦¤Fà°¬ ŽgÎœéØ±c\\œÖq¤FàȬ Žsç΋‹+\¸ðСC‹+æêêªõˆÒ+R#pp68â¨ÓéæÏŸ_¬X1­Ç’Ž‘€ã³êæ˜øøø;wîøúú’­Ajé‚UÁQ¹´122’— ZŒÔÒ «‚c–,YÞ}÷ݨ¨¨°°0­’.‘@:bísÇïéé9räÈýû÷k=–t†ÔÒkoŽ oÓ¦Í?üгgÏ¢E‹úùùy{{ëtº$ÍÆ§õH ©¤;Öǯ¾úÊôùÊ•+W®\I±Á11R#HtF£ÑšågÍš¥¦YÆz¥µÁ`пrfP½ˆŒ 5h]%^é ’Ê.ÀJzƒˆ^¯upPÖG¤À`xÕ.—qŽ5Ä ½ÕݤïÂì±.›ôiq',hÖ"j¿zË8ØÅì´.ëû´¦»îbftÎ.†W³ö樗qR#pJÇ4BjéÙ7Ç”.]úµm<==ªT©ÒµkWÞ^-¤FàÌŽñññ¯móðáCƒÁ`0öîÝ;sæL­‡©%R#pfÇ3f¼¶Í“'ONž<ùË/¿=ztôèÑ‹-Òz˜š!5§avplÔ¨‘šf;vlÕªU÷îÝÃÂÂŽ=Z©R%­GªR#p&v¼9¦råÊmÚ´‘ 6h=L €“±ï]ÕÊáÉk×®i=Ì´FjÎǾÁ±P¡B’ñ‚c ½€Ó±opTžÅ“ õ0ÓÔÀFIÀùØ78ÞºuKDÞ|óM­‡™¦ZTú[ëlϾÁñ×_‘Â… k=LXËŽÁñôéÓk×®‘¦M›j=LXËìç8îÝ»÷µmž-îÄ‚ÍZDucýÓ•–ØÅì´.ëû´¦»îbætn°f À¹™Ïž=ûÚ6ÊSxàLÌŽ„B€ŒÉ¾ã€Ó 8@‚#T!8@‚#T!8@‚#T!8@‚#T!8@‚#T!8@‚#T!8@‚#T!8@ÑhÔº§c0ôZ×8/½AØÅûÑDôz­«€ƒrӺ礽Ö%hÌ ÇÜiY˜=Öe“>-îÄ‚ÍZDucýÓ•–ØÅì´.ëû´¦»îbætn°f À¹qªª  Áª  Áª  Áª  Áª  Áª  Áª  Áª  Áª  Áª  Áª  ÁªèŒF£Ö58ƒÁ ×ºÀyé Â.ØÞ ¢×k]”›Ö8'½èµ.Ac18æFHËÂì±.›ôiq',hÖ"ª;蟮´Ä.f§uYß§5=Øu3§sƒ5[ÎSÕP…àUŽP…àUŽP…àUŽP…àUŽP…àUŽP…àUŽP…àUŽP…àUŽP…àUŽP…àUŽP…àUŽP…àUŽP…àUŽP…àUŽP…àUŽP…àUŽP…àUtF£Q뜎Á`Ðk]à¼ôaìGoÑëµ®ÊM뜓^ôZ— 1ƒs#¤eaöX—Mú´¸ 4kÕôOWZb³Óº¬ïÓš캋™Ó¹Áš-çÆ©j¨Bp€*G¨Bp€*G¨Bp€*G¨Bp€*G¨Bp€*G¨Bp€*G¨Bp€*G¨Bp€*G¨Bp€*G¨Bp€*G¨Bp€*G¨Bp€*G¨Bp€*G¨Bp€*G¨Bp€*G¨Bp€*G¨Bp€*G¨Bp€*G¨Bp€*G¨Bp€*G¨Bp€*G¨Bp€*G¨Bp€*G¨Bp€*G¨Bp€*G¨Bp€*G¨â$ÁñÊ•+%K–zôèGYÖ Cq’à¸råJ•-g̘1f̘˗/WªT){öì7nìÝ»wtt´¹m2šô###;6vìØÕ«W«iáÂ…E‹ùúúîܹsÑ¢E»víêÚµë©S§¦NjV€ (}ǦM›vêÔiíÚµ*ÛÿôÓO ƒ Ê›7¯2eäÈ‘žžž;vìHHHPß JßÁq„ óæÍ›7o^µjÕÔ´?zô¨‹‹‹^¯7Mquu­U«ÖƒŽ?®¾ @”¾ƒc5êÖ­[·nÝ7ÞxãµFã¥K—råÊ•+W®ÄÓK”(!"7nÜPÙ crÓº€´ïåå•dº§§§ˆ<|øPe›×*Ù§Ï…… µ®Æô""­«Ð¸0{¬Ë&}Z܉ šµˆ Ön„ôN/Â.fuYß§5=X°¬úE¬ *8*·E{xx$™ž={vyòä‰Ê6¯uáÂ­Ç `{éûTµY¼¼¼t:]TTT’éÏž=“)ªi1e àèæææéé™ü¨add¤ˆ(÷P«i1e à("¾¾¾>~ÿþý¦)F£1,,ÌÛÛ»|ùòêÛd@NŸ?~õêÕ›7o*_Û¶mëââ2gÎåšEY´hÑýû÷[·n)S&õm2 '¿«:,,lðàÁ~~~Û¶m‘ >|òäÉÍš5«Y³fDDDxxx™2ezõêeZDM€ ÈɃcrÝ»wÏ“'Ï–-[‚ƒƒóçÏß¹sçAƒ)OÛ1« @F£3Z×€tÀɯq€­  Áª  Áª  Áª5[¡B…èèh­ œÍ“'OF]¹råJ•*õíÛ÷ÚµkZW8•7nôéÓ§R¥JÕ«W5jÔãǵ®ià˜Öîß¿dz6úâ‹/Ž?>}úô¥K—¾xñ¢[·nQQQZ8‰„„„Ï>ûìåË—‹/ž1cÆÑ£GÇŽ«uQHkښ7oÞ¬Y³´®pNQQQ{öì™7o^5DdæÌ™UªT  Ôº4À\¾|ùܹs›6m*S¦ŒˆtìØñ»ï¾KHHpqá T¦úõëwáÂ…5kÖh]à„nݺU¦L™ *(_=<<ÜÝÝ>|¨u]€óh×®]©R¥”Ï… rsãðS†ÃOÀI/^|ãÆ¦¯ÁÁÁQQQï¾û®ÖuNÂÏÏoüøñ"òðáÃ+W®,Z´¨I“&nÌhø½ÍvåÊ•’%KžzôèGi]/ÎX¿‹%$$¬\¹òóÏ?ïÙ³gÑ¢EµàX¬ßÅúöíÛ©S§Û·owîÜYëÑ ­qÄÑl+W®|Õ¬3f,X°ÀÃãR¥J7n¼xñâŠ+²fͪuÕ@ºaå.1|øð«W¯µmÛVëÑÇú¿ÅÖ­[÷èÑ£ùóçwèÐáÀîîîZ i‡#ŽjEFF;vlìØ±«W¯N±Á… -Zäëë»sçÎE‹íÚµ«k×®§Nš:uªÖµé€Mv±“'O¶lÙ²pá»ví"5‰Y¿‹]½zõĉÊgooïaÆ=þüøñãZ iŠà¨VÓ¦M;uê´víÚW5øé§Ÿ ”7o^eÊÈ‘#===wìØ‘ uù€£³~‹‹‹0`@—.]¦L™’+W.­8ëw±ãÇ8Ðô7ZdddBB§Ô2NU«5a„/^ˆÈªU«:”¼ÁÑ£G]\\ôz½iŠ««k­Zµ¶nÝzüøñŠ+j=À¡Y¿‹üðÃèèèY³fùùù•-[Vë‘!MÕRž '"¡¡¡ÉçÆK—.åÊ•+ÉqŽ%JˆÈ7Ž@ê¬ßÅ._¾l4˜¸ÁÔ©S›6mªõàíY¿‹åÎ{ñâÅS¦L騱cÖ¬Y«V­:qâÄL™2i=2¤)‚£mDEEÅÇÇ{yy%™îéé)"Iž$÷î»ï^¸pAë’ôDÍ.Ö½{÷îÝ»k]).©ü[¬\¹r?þø£ÖÅBK\ãhÊ‹§=<<’LÏž=»ˆ>~ÿþý¦)F£1,,ÌÛÛ»|ùòZW¤{ìb€]±‹A ‚£Í´mÛÖÅÅeΜ9Ê!"²hÑ¢û÷ï·nÝš§ÖcìŠ] jð8›)P ÀðáÃ'OžÜ¬Y³š5kFDD„‡‡—)S¦W¯^Z—8v1À®ØÅ ÁÑ–ºwïž'Ož-[¶çÏŸ¿sç΃ RžeÀzìb€]±‹áµtF£Qëp#T!8@‚#T!8@‚#T!8@‚#T!8@‚#T!8@‚#TqÓºB|||éÒ¥“OÏ–-[¾|ùªW¯Þ¡C‡âÅ‹k]& 5:£Ñ¨u œß«‚£‰««kÿþýûõëgYÿ+V¬¸råJ›6mÊ–-«õXÀiqÄ@šš:uª^¯W>ÇÇÇ_½zõܹsË—/¿víÚ¬Y³t:]ß¾}-è644ôСC•+W&8€ýp#€4•-[¶ÿòòò*_¾ü‡~¸iÓ¦÷ß_DæÌ™sñâE­k¤Œà@{ß~û­——W\\Ü÷߯u9€”8„¬Y³~ôÑG"¯LLHHؼys÷îÝkÔ¨Q¶lÙš5kvèÐáÇŒŽŽ6-8kÖ¬’%K:tHD\²dÉùóç«_ ×8puêÔ™5kVttô_ýåïïŸ0jÔ¨-[¶(sÝÝÝïÞ½{÷îÝ'Nüúë¯K—.uss‘"EŠÔ©Sç?þxôèQéÒ¥}}} .,"*¨ÇGŽâ7ÞP>DDDˆÈÁƒ·lÙ’)S¦o¾ùæ?þ8yòäü1yòdww÷ðððÇ+›5k¶`Áéիׂ 5j¤~q€zGŽ"gΜٲe‘'Ožˆˆrö¹}ûö­[·Îš5«ˆdÍšµE‹õëבóçϧޛ•‹’ãL ¢ÓéLŸ‡>lØ0—¤ÿ¾ŠŠ‘¸¸¸Ô»²rq@rGŽ"22òùóç"âéé)"¦ÌwëÖ­+W®Ü¸qãêÕ«Êg5½Y¹8 9‚#GqëÖ-åÛo¾)"ñññóçÏߺuëµk×”é9sæ|çwüýýÏ;÷ÚÞ¬\Á€£ ‘lÙ²•,YRD¸{÷îœ9s~øá‡ 4(^¼¸ˆŒ?^Mò³rq@rG!::zùòå"òᇺºº>}útïÞ½"²råÊR¥J%nûÚÞ¬\"½¨¨¨‘#G>zô({öì½{÷‘k×®%$$dΜÙÏÏ/qËgÏž8pàµZ¹8 EGi*&&&ú_OŸ>ýóÏ?×­[צM›;wŠH¿~ý”;cŠ/îêê»xñbÓ‹d~ÿý÷>úH¹òþýûÉ;¿}û¶òÁ²Å©ÓF­kàüâããK—.JWW×þýû÷ë×Ï4eÑ¢EÓ¦M‘œ9sæÎû¿ÿýott´ŸŸ_5¾ÿþ{WWWÿ•+W*~5jÔ¦M›\\\ *Ô¥K—.]º˜µ8@ ®q ¥¬Y³æË—¯zõê;v,^¼xâY½{÷~ë­·–/_~ùòåÈÈÈJ•*Õ¨Q£cÇŽqqq÷ïß »s玩ñgŸ}ö÷ߟ:uêñãÇÊ»ÍZ G  ×8@‚#T!8@‚#Tù?Â=\Tº–“IEND®B`‚statistics-release-1.6.3/docs/assets/wblplot_201.png000066400000000000000000000745021456127120000223440ustar00rootroot00000000000000‰PNG  IHDRhŽ\­Ay IDATxÚíÝy|LgûÇñk’ $’ „ j‰½©½ˆ%[Q;µ«}¯-¶jûC[mQj§‹­–¢QEfbMQ[;¡¥v‚D"Éüþ8:O³æL’Ïûõü1sæ>÷\÷™œÇ·÷Ù4ƒA€WqR»d G˜„à“`‚#LBpž[ºt©æ_ÇOþQ||¼«««òQR¬Ø»woãŠ6l0÷{wíÚe\}ß¾}ÊÂo¿ýÖ¸ðï¿ÿ¶íHSíÜôoLLLÔ¼DÞ¼ykÕª5hР¿þúËÖ¿OZūҳé?\ª-EdêÔ©ýúõëׯ_HHˆ­FaÁ¯c“Mj±p@G๷ß~[£Ñ(¯<˜ü£'NÄÅÅ)¯oß¾}éÒ¥äŸþñÇÊ — ¨=5Ý¿?""bÁ‚åÊ•[³fÚå8º-[¶,Y²dÉ’%Û¶mK‡¯³ë¯“Îc ‚#ðœOåÊ••×G}öì™ñ£C‡%oa|{úôiåu­Zµ<==Õ‡Cxüøñ€þùçµ A*øuXŒàüO³fÍ”qqq'Nœ0.O1™<8?~zøðáÌ™3Õ.0Æžö§ÖOœ•vBpþ§iÓ¦Æ×Ég•×Å‹÷õõ•ÿGãqjI-8.[¶¬~ýúùòåË;wÕªU tæÌ™möíÛ÷ú¿>übUƒaÅŠ-[¶ÌŸ?þüùÛ´ió矦h“Æij•+WV–·iÓÆæ[,gΜÅþU¾|ùN:mÜ¸ÑøéÉ“'S-ïâÅ‹íڵ˓'OhhhòÞvíÚÕ§OŸêÕ«çλlÙ²íÛ·Ÿ={¶1—[¶e/^0`@ÕªU•ߢ|ùòm۶ݵk—5=¿ò‡K£å”)S4ÍÞ½{•;wîT~ Áƒ7Ôž={’wò믿?J±Ý¬üuÒöÊåec1¥sÀ¿òæÍ«ì½zõR>zôÈÉÉID:uê¤üs˜-[¶ØØXåÓž={*í (””dìêáÇï¾ûî‹{\Ž9¾ýöÛä_ºsçNã§{÷îU.Y²Ä¸°oß¾):qssûé§Ÿ’w’¼ý_ý•ü£J•*)Ë[·nFã4zxq+[6lØðÅ… R>õóó{±ó={ö,XPy½eË¥ÁãÇ d<Ç4¹ªU«ž[¶lvúu,øQ^6›l(ކàü‡ñhuddäãÇ%Ù1ë5j¼õÖ[Êkåhuò+c’§>vìØÊ•+•×óçÏ?~ü¸^¯ŒŒôóó‘ÄÄÄàà`³ª1bÄÍ›7ïÝ»÷é§Ÿ*ÿð'%%}ðÁjo­Tœ9sæúõëÊëÒ¥K¿ØààÁƒ%K–GŽÉ—GѤI“×_=Õ±?xðàæÍ›l™Ñ£GïØ±cÇŽ!!!qqqüñÇ’%KÞ~ûí»wï:æ6/[¶l•*U”׿üò‹òÂ;vìh åE™2eR|¤Ü76óññ±`ËÄÆÆÎ;wÓ¦M¿ÿþ{òÛs¦AÝmÞ­[7å$Ú}ûöÝ¿?W®\Æ“b­9Nm”Ư“|˜Ê s™3Ž@JÆÓ<˜üGå…ñpçï¿ÿnœqLû˜6ãÕ ŠäN©^ñª¢9rT­ZuðàÁ'Nœ¨S§NªmÒÈ+/G91@a|xY[æÖ­[ÕªU3fÌÞ½{Ÿ={V®\¹®]»Îž=Ûx JªÔÝæ:uR¾1!!aÛ¶m»wïV.C)Q¢„ñïЦü:/2÷G¹”Þzë­|ùò‰HTTÔ–-[”…Ég•;wîTfe¼¼¼ŒiRaœT;vìËîh0mÚ4ëIq6¤ñh£üw&ÌH9íÒH9SÍNRÜðåéÓ§‡ž;wî‹OôNƒqɇöâØË—/oÁ–ùøã• ˜|||"##OŸ>½bÅŠ÷ß?yú±~›ÛV¡B…ŒÏ®Ü¼y³ñ8µ¹ÓÖü:ÿ(27‚#’“““ñ¦<Ë—/77·råÊ)KÊ–-«ÜÇdåÊ•JDkÔ¨QŠbüG÷èÑ£É—ÇÆÆîú×­[·L¬'ùmöDdáÂ…Æ×ƶ׋ˆrl]ñðáCãqs‡eÜ\¿þúkTTTªƒÍ;w‘"E,Ø2Û·oW^¼ûî»Æ/ºÿ~ò­ô"Sz¶¡œ"ÒµkWåŶmÛŒÿõÒ©S'›õËXü£¼8™ ÁH…ñhµr'ãÅÔ"¢Ñh”ÙÇèèheÉ‹Œ1Î íÚµkëÖ­ÊëgÏžuéÒE¹Â·M›6/»%õ‹¶mÛ6vìØ<~üxÚ´iÆLÓ¶m[ã?ÛÉOüàƒ._¾œpìØ±–-[ÆÆÆª½9_Áx—égÏžµiÓF‰tOŸ>6l˜ñ&‹ƒ ²lËܸqCyqàÀåJއöîÝ;Ҙس Ý¿?Å’¶mÛæÌ™S’EÿŠ+*f¥‹”Ç SQûä€#ºuëVòS»ÆŒ“üÓ>ú(ùNtíÚµ{ T>urrzã7‚‚‚Œ÷‘3f[¾ò$Æ~’gMggçÈÈHc'?N~Y·$;5ÍyÓíÉ1/zeçýúõK^|±bÅ’Ÿ ùÚk¯=~üز-S¡B…ä-K”(‘â$ËXÖ³5OŽQtèÐÁ¸< à‹/¾H¾M:v옼˜)S¦˜²©møë˜þ£¼r,2 fTäÏŸ¿ZµjÆ·)®H0žæ("o¼ñFªSPË–-Sî·—””ô矆……=yòDDœ§N:jÔ(Ó‹Qn†’””d̹sçþù矓Ÿlçææ’<ì éÙ³gzNSY,$$$yL‰ŠŠŠW^W«VmÛ¶mÉc·Y[&ùáݤ¤¤K—.ÅÇÇ4È(S=fmJÏÖkÑ¢…ñõ¾}û~ÿý÷äŸ&¿¡£¤ïqj…Y?JÚciÔ5kÖÌø:EpL~)ÌËîÌR´hQN7gΜ–-[+V,wîÜ•*U4hÐÙ³gÍ}[XXØ—_~Y¯^=//¯|ùòµiÓæÀÉÿVtëÖ-<<¼Q£F… Ê™3§¿¿ÿܹs¿ûî;G»ò:Uîîî‹-Ú±cGÏž=«V­êîî^ªT©¶mÛΞ=;""âe§š²eÆg¼ëµO«V­6lØ0o޼ʕ++ ·oßþâ-“LÜæVêÞ½û×_]¦L™œ9s.\8Å=€š4i¢\¤%"5jÔ(Q¢„#ÿ(i@¦¡1p"3€Ì.,,ì÷ß:thîܹծŠժUSî:sæÌ#F¨]À!yòdòü÷ìÙ³ß~ûMDnß¾mb›bbb½¼¼R,÷ôô‘{÷î™ØÆeþKí- d „¡L€‘-€Ì̓£F£éׯ_llì AƒŽ?9hР .ˆÈÓ§OMl“‚2=éææ–b¹»»»ˆ<|øÐÄ6¦8û_joQpÐû8öíÛ÷Ê•+6lx÷Ýw•%¾¾¾}ûö]²dIîܹMo“œ———F£‰‰‰I±üñãÇò)m²& ŽÎÎÎ_|ñE‡:tçÎråÊmذADòåËgz›ÿ ÕÅÅÓÓóÅYÃèèhQ®¡6¥ @Öä ÁQQ¥J•*Uªß*‡¡ßxã sÛùøø\¸p!::ÚÃÃøðòåËÊG¦·È‚ñG™[·n]¿~ý™3gŠ-züøñ7nÔ¬Y³_¿~fµ 9r¤ŸŸß–-[DÄ××w̘1S§NmÙ²eݺu£¢¢"""*T¨|SÚdAÝÝÝW¯^={öìÝ»w_¾|¹xñâ;wîÝ»·ñé‚&¶yQïÞ½óçÏ¿qãÆÐÐÐB… uëÖmĈÊÝvÌjÕ8hp‘¼yóNš4ÉÊ6Íš5kÖ¬YŠ…-Z´hÑ¢EÚ=›ÒØ–&8,Õå†Aj—GŽ ëxCRˆ #;:½8d9!Ai|ô²ÉH Lžxð «««EäîÝ»"“êŠf5θŽ@5†Aq Ó•ƒÔ%J”‘¾È¬Æç8|¸±ÁË&÷îÝkzã G &ÃŒ eÇ ¥Mtþüùnݺi4š?þXDþúë/)W®œ±Áºuëžøæ›o|||´Zí‰'6mÚôÁÌš5«iÓ¦µk×îܹóÖ­[/^¼øÇ¤ÝXí­k3Gà”tø<>þw¡mMœ8qâĉ¯lV¯^½}ûö%_Ò§OŸ>}ú(¯5Í?þhbãLƒàˆ]/•¸8&!8À$G˜„à“`‚#LBp€IŽ0 Á&!8À$G˜„à“`‚#LBpYÚäÉ“5/ðõõmܸqxx¸YÍæÏŸ¯Ñh7nüâ·ùä“"EŠ|þùç×®]‘½{÷®Y³¦yóæ-[¶T{@Ö"8¤bûöí÷ïßoݺµ¹ÍÜÝÝgÏž3vìXƒÁ0räHWW×Ù³g«= àG™?þ–-[”×Ïž=»téÒæÍ›[¶l9eÊ šµiÓæwÞY½zuîܹ>ÛàP5€ìÝ»×犀¤K—.õïßçÎ4‘bÅŠ :TD&Mšdʉ’Áà?4Mñâŕˢu:ÅÍ ( "ùóçW{@6CpHEÉ’%EäÒ¥K6i–9Ráââ""ñññ6i–9Ráìììæævá›4ËŽ©ó÷÷?qâIJeËlÒ,àv< K›8qâĉSýhÿþýæ6K.88888XíñÙ3Ž0 Á&!8À$G˜Dc0Ô®!ÓÑëõj×d^zaì'P/¨vpP\Um¨v *Ó‹Þ17Bzfï²IŸwbÁŠf­brcýëJOìbvú.ëû´¦»îbæt®·f sãP5LBp€IŽ «Û½{wÆ ½½½}}}Û´isæÌµ+rPG¥ýñÇ 6ŒŠŠ7nÜøñã/^¼X·nÝ[·n™ÞÃÇøÚk¯¹»»×«W/"""ÆgΜéСC‘"E¼¼¼6nܘüÓÈÈȶmÛ-Z´páÂ:tHþLšgÏž¹¸¸hþ+þüé¹­¸8di ,HJJ +Z´¨ˆtïÞ½D‰+V¬5j”)«GGGW«VíêÕ«íÛ·÷öö^·nÝÛo¿­Óé*W®übãsçÎU¯^ÝÉÉ©[·n¿üòK›6m.\ؿٳgO£F¼¼¼:wîììì¼fÍšFmÞ¼9((HD._¾œ˜˜X»ví%J;twwOÏmEpYÚŸþY¾|y%5ŠHžžžžÇ÷ññ‘>ú¨jÕªcÆŒùã?DäÂ… "òÉ'Ÿ4hÐ@­mÅ¡j¥Ý¹s'_¾|Æ·qqq.\(V¬˜‰«¯^½ºP¡B=zôPÞ–(Q¢}ûöááá7nÜx±qdd¤¯¯¯’E$GŽwïÞ½sçÎåË—ÏŸ?ß§O%5Šˆ——×È‘#9râÄ ù78–*UJÅmEpYZbb¢‹‹‹ˆ †Ë—/÷ìÙ³pá½{÷6eÝèèèsçÎiµZFc\””””ꙎUªTùçŸ._¾lüêC‡)RÄÛÛûÚµk"R @äí}}}EäÏ?ÿ‘ .äÈ‘#wîÜ?ýôÓÂ… ÷îÝŸÎÛŠCÕçêê*"+V¬ðöö6e­›7o ã¡B ·oß~±ýèÑ£·nÝZ¯^½xxx¬[·îÔ©SK—.‘²eËŠÈþýûGŒal¯ÓéDD™¼¼pá‚““S©R¥îß¿¯|Z®\¹åË—W­Z5ݶÁ@\\\/^|ëÖ­ýû÷·lÙòÝwß]½zubbâÖ­[_¶J«V­bbbDÄÃÃ#ùrOOO¹{÷î‹«¼þúë=zô˜2eÊǬ,iذ¡r΢O»víÖ­[7uêÔÞ½{ †¥K—Ο?_D¢££EäÂ… III“'Onß¾}¶lÙ~ùå—‘#G¶nÝúäÉ“Ê7¦ÇVJŸ¯pdÎÎÎ}ûöU^Ožé³•8Çà?”ë£÷ïßïééix9ñññqrrJqTúÎ;"R¸páÝž|Ë–-ï¼óŽˆÜºukݺu5*^¼xŠöU«VÍ™3çÊ•+ ”#Geá·ß~+""2`À€S§N={V¹˜:22rÅŠÍ›7÷õõ½uëÖèÑ£«W¯¾k×®lÙ²‰HRRÒ´iÓ\\\5j”nŠà²ºgÏžµjÕª\¹rÇŽûþûï+W®Ü¾}{ggg%¦¡gÏžß}÷]×®]‡ âååõÃ?ÄÄÄLžÝ6ç8€¬. `Ú´i|ðAXXXÿþýu:³³³)ëzxx„‡‡wìØqݺuÓ¦M+UªTxxxÍš5•OŸ>}úàÁƒ¸¸8åmÏž=÷îÝ[ºté•+WΚ5+66vÁ‚k×®U>mܸñ¯¿þúÚk¯}ÿý÷¡¡¡mÛ¶=}ú´qærìØ±ëÖ­óññY±bÅ’%KòäɳmÛ¶>ø =73ŽÒ¹sçÎ;[¶®§§ç¢E‹Rýhâĉ'NL¾$ 44ôe]5jÔ(CÏíÚµk×®Š[‰G˜„à“p¨di&LPî°W"8€,­_¿~j—ap¨&!8À$ªv±q£šßþò¾ÀrG`³f©ùíG{ 8»ÐéÔ®¶Æ9Ž0 Á&!8À$ƒÁ v ™Ž^¯T» ó Ô »`?z‘À@µ«È`Μ9óñÇ8pàñãÇ*T3fLëd׿œ8qbÊ”)ááá?.[¶l×®]ßÿ}—Ô¯3yøðá¸qãBCCïÝ»W¥J•¯¾úªfÍš–ueØœN§vêÓtj— ~aöø.›ôiq'¬hÖ*¦6fc³ÛwYß§5=Øu3£sv13={ÖÝÝÝÃÃcðàÁãÇ/_¾¼ˆ,\¸PùôâÅ‹yòäñððxï½÷>þøãZµj‰HëÖ­SíêáÇ¥J•Êž={—.]† æëëëééyäÈ º²UXîóÏ?òäÉž={æÎûÅ_9r¤téÒ&LP>5jÔÇwîÜùÃ?|òÉ'û÷ïïÝ»÷Æ·oßþbW!!!.\X´hÑÊ•+gÍšµgÏFlAWvBpY׈#|||¶oß~ÿþýÞ½{ûúúúúúöêÕëÎ;&öéëëëïﯼ͑#G``àÝ»w•ÂÂÂêÕ«W½zucû¡C‡ŠÈ^ìjõêÕ… êÑ£‡ò¶D‰íÛ·¿qㆹ]Ù Ád]Í›7öìÙ´iÓ7nüôéÓÁƒW©Rå‡~èÝ»·‰=T©RåŸþ¹|ù²ò611ñСCEŠñööNHH2dˆ¢¢D$GŽ)ú‰ŽŽ>wîœV«Õh4Æ…AAAIIIfue?Üd]5ò÷÷ßµk×ôéÓ…ëׯúäÉ77·Wö0zôè­[·Ö«WoÀ€ëÖ­;uêÔÒ¥KEÄÅÅå‹/¾HÞøÞ½{_|ñ…³³sûöíSôsóæMƒÁàãã“|aDäöíÛfue?G¥)3| 0.©]»öîÝ»ÿþûï%Jlݺõe+¶jÕJD^ýõ=zL™2åã?V–7lذAƒ/¶×ëõýû÷¿páÂüùóýüüR|#"ÉzzzŠÈÝ»wÍêÊ~Ž «Ë›7¯»»»ñ­2Ñh0ž½k×®¹rå 2dH­Zµ<˜7o^¥åÕ«W‡ºyóf??¿;w½Ø›···ˆ}æÌ™råÊõíÛ7ÅŠmÛ¶mÑ¢ÅÔ©S¿üòË/¾øbàÀ"Ò³gÏï¾û®k×®C† ñòòúá‡bbb&Ož,"‘‘‘iw•>„à`¹ž={úùùM™2eåÊ•Ê#¤,X Ä» .ˆHddddddеJ•*Õ¢E‹§OŸ>xð ..NYèáá>f̘uëÖÝ¿¿V­Z+W®¬\¹²)]¥Ï` Ž KÓétVöúâò–-[¦=a9qâĉ'&_âéé¹hÑ" ºJ\U “`‚#ÀŒ;v÷îÝ)žþáG€²eËV·n]µ«pDÌ8À$G˜„à“`‚#LBp€IŽ0‰Æž{˜Ùèõú@µk2¯@½°‹ö¨ T» 8*lN§S»õé :µKP¿0{|—Mú´¸ V4kS³‹±‹Ùí»¬ïÓš캋™Òò·ß †-3ÎX¹²¦ 0 hÑ¢nnnuëÖ=pà@OŸ>ݦM›"EŠøúú¶oß~ß¾}É?ŒŒlß¾}áÂ…===k×®ýóÏ?›¾nbbâ7ß|ãïïïææV¦L™©S§ÆÇÇÛp˜<9ˆVûüEó*7Dʨ]N]­Zµ«W¯¶oßÞÛÛ{ݺuo¿ý¶N§«\¹ò‹÷ìÙÓ¨Q#//¯Î;;;;¯Y³¦Q£F›7o ‘sçÎU¯^ÝÉÉ©[·n¿üòK›6m.\Ø¿ÿW®›””Ô²eËÐÐÐÖ­[7mÚtß¾}ãÆ;{öì·ß~k³¡ªÐ3#¦C˜±Ûw1ãh0°‹ ìbvû®¬9ã8c†!0ÐhعSijíFÈ‚&Nœ("?üðƒòöâÅ‹^^^Z­öÅ–III~~~ øçŸ”%÷ïß/Q¢D•*U”·ï½÷žF£9~ü¸òöéÓ§¥K—Η/Ÿ)ë~ÿý÷"²hÑ"ã×½ûî»JµÕH¹8€,êÒ%Ñjeóf©XQt:iÐ@í‚Ô3uêÔòåË»¹¹•/_¾ÿþwîÜ1}õÕ«W*T¨GÊÛ%J´oß><<üÆ)Z^¾|ùüùó}úôñññQ–xyy9òÈ‘#'Nœ‘ÈÈH___åÓ9rÞ½{÷Î;¯\wñâů¿þzŸ>}Œ_·f̓Áàççg« Ep +êÙS”€±v­|óÚÕ¨*))©uëÖãǯT©RHHHÓ¦MW¬XñÆoüõ×_¦¬}îÜ9­V«ÑhŒ ƒ‚‚’’’"""R4¾v횈(P ùB___ùóÏ?E¤J•*ÿüóÏåË—•:T¤Hooï´×‹‹;|øpݺuöïß¿hÑ¢;vùäÇ0`ÀŒ3¶oß~óæÍ±cÇš²úÍ›7 ƒqP¡Ä»Û·o§h\¶lYÙ¿ò…:ND”éÉÑ£GûúúÖ«Wï³Ï>›={¶V«=uêÔ´iÓ^¹î7âãã5M:u иqãòåËï۷φۊ‹cÈB”‹`ræ”ÐPµKq6lÈ–-Û¸qãŒKêÖ­øóÏ?'%%%%%mݺõeë¶jÕ*&&FD<<<’/÷ôô‘»wï¦hïããÓ®]»uëÖM:µwïÞƒaéÒ¥óçÏ‘èèhyýõ×{ôè1eÊ”?þXY¥aÆ 4xåº>‘eË–µiÓféÒ¥E‹ ïÛ·o»ví"##óäÉc“mEp KøôS ùâ ©YSíjɵk×J–,™={öä +T¨ Ó颢¢òæÍÛºuë—­k0¼½½EäÑ£GÉ—+)0oÞ¼/®2þüŒ?~üøñ"’'Ož?þxÒ¤I^^^"Ò£G5kÖLŸ>½k×®¹rå 2dH­Zµ<˜7oÞ4ÖÍ;·ˆ”,YrõêÕÊXš7o>mÚ´îÝ»¯[·®_¿~6ÙVG2¹“'eòû"òÖ[òå—jWãxâââræÌ™baRR’ˆ¸»»{zzÒ|ZŠ““SŠ£Òʵ5… ~±}þüùwìØqüøqŸ:uêìÞ½[D^{íµ“'OþøãC‡ V·hÑ"[¶lM›6]¼xñ¸qãÒXW9V<ˆHdd¤­¶Á€ÌìÝwE‰4[·J®\jWã¨.^¼Ÿ}:Ož<ùóçOHHHûPµ‹‹Kùòå÷ìÙ“|ùîÝ»5M… ^\åøñãµjÕªU«–²d×®]¦víÚ.\‘’%K&o¯¼UŽz§±®››[‰%®_¿ž|]%Î)RÄVŠà@æôã²x±ˆHß¾R¸«>—ª]‘㊟>}ú„ ”·{÷î 8p ˆù¤iÓ¦o½õV›6mž={¶víÚœ9sΞ=[DÜÜÜæÍ›×«W¯ *´mÛÖÕÕu÷îÝááámÛ¶mÕªUÚëŠÈàÁƒúé§FuíÚµH‘"Û¶m;|øðرcß|óM[m(nÇ@¦2~üóÔ8{öóÔˆWzóÍ77mÚtõêÕñãLJ††¾÷Þ{'NœHõÒ–Tyxx„‡‡wìØqݺuÓ¦M+UªTxxxÍ/Azúôéƒâââ”·7þõ×__{íµï¿ÿ>44´mÛ¶§OŸ6ÎMöìÙsïÞ½¥K—^¹rå¬Y³bcc,X°víZSÖõööïÕ«×ÁƒgÍš•={ö•+WN:Õ†ŠG2‰ˆùà­VþïÿÔ®&£iÞ¼ys%q[ÄÓÓsÑ¢E©~4qâD噄F5jÔ¨Ñ˺ }ùÝ’Ò^7oÞ¼ ,°ßV"8`-Mp˜ñµa†:54o.11"":Ú›™Á ý//†ýo¡„‰ˆaFE]ZbÉY¹RDdøpyùU€ °„&8,y^üŸ I¯øøèNm‘bÅä‡ÔÞ"V=”›o㕎˜í¥©Ñ($HF…™ÚE† “?ÿ¬%"ß~+%J¨½E22ãåÏx%®ªÀ<¯NŠ äç>ÚPX˜hµòçŸRõë:©é‡Gì&$H#a¶=`­Õ>¡Ó‰^Ήøª=Hd!Ì81|ýõóÔøÁ\: u0ã€L=NmSQQÒ³§ˆH¹r2ožÚ›YÁ{²úhuŸ>r针ȪUR° ÚÃAÖ¦yåãMó÷ßß¾}ûîÝ»®®®ÞÞÞ ðõõÕh4j1Ýéõú@µk2¯@½°‹AEÚà$³gG…éfXrnØ[|·Ì(-"µ;^k4ðbú 0P/˜>ß… ÇÚÇãÇëõúœ8q"111ŧùòå«Y³f­Zµš4iâáá¡ö`ÓO ª]‚Êô¢wÌž…Ùã»lÒ§ÅX°¢Y«˜ÜØAÿºÒ»˜¾Ë´>ͼPz”©Ó)¾]91GùõW)*RÔš`ÎæÒ›½áeXŸ={¶mÛ¶¥K—ž<,,¬}ûöüñ‡ÚÀÎLNkÖˆV+oºöê%:©ŽËìÇõë×[s¡tîܹGŽ©ö¨°ÊóIG‘—Î;š–ãâäí·EDòä‘aôš'ÀÈìà˜"5Ο?¿X±bÍš5{YûåË—»¸¸tîÜYí‘`KJ.L%>Ž 3~š¶?”ýûEDfΔJ•¸˜€µ·ãùú믵ZmÚÁñÁƒG@¦ôŸø˜lIÚ–1cDDê×—I“Ô`2K‚ãÉ“'¯^½j|{óæÍÐÐÐT[Þ¸qãÚµk9räP{˜Ø‘1,êM˜7lÙR=ÙµKœ,¹/8 K‚ãºuëV­Ze|{úôé´O[ô÷÷W{˜¨ï»ïdùr‘¡C¥];µ«ÌgIp,Q¢DíoHºÿþ}êäätûöí£G^»víìÙ³j4éõú@µk2¯@½°‹!ý%&h>kT_Drz<»iŸÚåØQ ^$0Pí*à ,9T¼eËãÛK—.íÙ³gÕªUwïÞíß¿ÿ7Ô”ú%PíT¦½cn„ô,Ìße“>-îÄ‚ÍZÅäÆúוžØÅ^ö]šà°äo 3‚lRÿÿýŸìÙ#"2}ºT­šM^>Fk¶€]w1s:×[V?²³ƒãîÝ»•ÔX¢D‰·Þz+GŽ¿ÿþ{ddä”)S®\¹rãÆ9r”.]:þüNNN®®®ùòå«ZµªÚÃdrÏ#cÈ’¢FÂÄüø˜Ü‘#,"R§Ž|ú©ÚƒÔfvp\¹r¥ˆÔ®]{áÂ…Ê wGŒ±uëV©P¡Âüùó}||Ô «H52>$" ³,;¶i#ˆˆüö›d˦ö8`öÅ1QQQ"Ò·o_ãmû÷ﯼ3f ©ÞB‚Òþ4Å!ìWZºT´Zyð@ ŽÔ”Ö­ED ’T{x€ƒ1;8>{öLDråÊ•|¡»»»ò"GŽjU˜šM¶,øÍÉGDDæÏ—²eÕàx,¼£F£Q»rlfï^Ñjåò‘<‹NGjRÇ“cYÃËV7n,Ïž‰ˆLÔ9è}Ža÷'Ç`Úà$ëSÏ›'Z­<{&£G‹N§ö‡ÇŒ# CÒÍpÒŠåç8^¿.]»Šˆ”*%‹«= ƒ°08êõú×Ǥ½¼Aƒj€ç ’3gDD–-“¢EÕ®È8, Ž£G6kyÖzV5À 3ÌÚ¾]¾üRD¤M6Lí’€Œ†CÕ€¬B«Ñh$̼ÛxÎìàxúôiµk@DÄ0#HcÚiŽeÚ]/t$HD&N”À@µë2,³ƒ£³³³Ú5ðÜ+³£»»T«&r××ß_fÍR»\ ƒ³ñ¡ê«W¯ÆÅÅñàA@ºI#;Ö¨!Ê›ëÖI¾|j d|6Ž#GŽ-îÄ‚ÍZÅäÆúוž2ë.¦ ‘OΑCjÕ’}Gä‰ë“ƒÛÜDJ‹”¶ÓF°¾Okz°ë.fNçzk¶27³ƒã°aÃ,øšÙ³g«=R€CÓ‡¥ˆŒ"R¹²xzŠˆ:$Ož¸i‚ÃŒþÌŽˆŽŽV»l@¦òbjôñ‘råDD®_—sçÔ®€ˆX÷íÛ·mÛ¶O?ýôÑ£G"Ò¿µ‡ÈlŒ§Ø)žþŸ 0鍯ìà˜={öV­Zyzz0@D‚ƒƒÕ cK>ÝXº´øúŠˆœ>-·n¥Öšì¨Ç‹cêׯŸ?þÛ·o«]? “ps“êÕED>”£GÕ®@j, ަlÙ²G€MT¯.nn""<¿S#dùíxzõêU»vmµëdl›6Ià‘ q“«WåÒ%µ«&˃c@@@@@€Úõ20­VD$Ñ)qO˜³Úµx5žU PÁgŸ=OŸ.{*…«]“éêäIÑje×.©QCt:©UËÌõGqI5 [>rðàÁƒwîÜiÖ¬YŠ×(Þ}W”ë*·ly~5Œˆfi$•ÇÆp4¶œqœ?þÈ‘#_| ÀªU¢ÕÊíÛÒ§ètÿK ÃŒ öê^˜nTeËG^+Êñ§|ùdÝ:+:"5j#8ìèƒ$"BDdÖ,ñ÷O«åóÖŠ‡­G…) Ô Õvñûï2~¼ˆH` LœhÒ*Æhø¿ùßåÔEpØ^óæ#"&Ù«“ÇÄíx¶´d‰hµ#ƉNgIjà°˜qØÆ;2¹C ˆ¼öš,]ªv5ì€à°áÃåÄ ‘%K¤dIµ«`ªXE§­VNœæÍe¢NOj21f–Sž7-":ˆˆ^ízØ3ŽKÌšõ<5~ðÁóÔ ӳ匣ŸŸ_\\Ü‹¯™IT”ôì)"R¶¬ÌŸ¯v5Ò‘-ƒã„ R} È4úö•‹ED~üQ R»é‹s&Ù²EfÌy÷]|!ÌwzÊܵÈôlcbbþþûïÛ·oß½{×ÕÕÕÛÛ»@¾¾¾îý Ÿr:cöìò[Å0ý…ž%-"ÿ>'Ð0CíZصÁñøñãz½þÀ'NœHLLLñi¾|ùjÖ¬Y«V­&Mšxxx¨=X€Ù>ÿ\vìùì3 Mpê©Qäùr„1õdVÇgÏžmÛ¶méÒ¥'OžT–xyy,X0Ož<žžžñññ÷ïß¿ÿþµk×¶nݺuëÖ)S¦´nݺ{÷î%¹Ád‘‘2x°ˆHÕª2}ºˆˆ&8쥩Ñ($ˆìdV–ÇLœ81**ÊÝݽ]»v5kÖ|óÍ7‹+öbËØØØS§N;vlÇŽ«V­Z½zuÇŽƒƒƒ™}×¹³üóˆÈ¦M¢ü¶I©QAv2)Á`0k…ñãÇÿüóÏÕ«WïÒ¥KPP«««‰+FEEmܸqÅŠÙ³g yë­·Ô»Ýèõú@µk2¯@½°‹ÙÕµE›_RD{]©ßãŠq¹68ÉÔà("£Ât3¸Up†¨ T» 8*ƒ™Ú´i³gÏs×2ŠŽŽ ™;w®Å=d:Ú¨OgЩ]‚ú…Ùã»lÒ§ÅX°¢Y«˜Ú˜]ÌnÉqq†À@C` ¡uë”ɨ]"3þ7jWFÜÖ÷iMvÝÅÌèœ] /gö¡êõë×[s¡tîܹGŽ©vZ¤ôÑG²oŸˆHHˆT®¬v5’ÙÇR¤Æùó燆†¦Ñ~ùòå«V­R{˜€—:|X´ZÙ·OêÕÎF©1$H¦öÈØ˜µ·ãùú믵Zm³fÍ^Ö`ùòå<èܹ³Ú#¤¢eKyôHDdçNqv¶]¿£¸8È„, Ž'Ož¼zõªñíÍ›7_6éxãÆk×®åÈ‘CíaRúî;Y¾\DdÈiß^íjd–ÇuëÖ%?ú|úôé´O[ô÷÷W{˜€ÿyð@Ú´)\XV¬0iÃŒ ˜|;™”%Á±D‰µk×V^ïß¿?Ož<åÊ•{Yã‚ ¾ÿþûjðܨQrô¨ˆÈÂ…Rº´¾ƒãÔ@ædIpìÑ£G=”×eÊ”©T©Ò‚ Ôàvï–‰EDš6•±cÍ^IGÖ^3xðàâÅ‹«= À+4l(‰‰"":嘔™n2/³ƒctttò>Ü‚oMÑ À~æÌ‘õëEDÆŽ•¦M­ííyvI%>Ž S¨=böbvplРAß¾}{ôè‘3gN ¾ïÔ©S!!!åË—V{ìÉýõ—tï."âç'‹Ù¬[%>ÿ]®½Úƒ`GfÇaÆ͜9sÙ²e­[·nݺµŸŸŸ)k=}ú4,,lÆ {÷î­Zµj{nüvÖ¿¿œ?/"²|¹)bûþ™Y² ³ƒc÷îÝ5jôé§Ÿ.Y²dÉ’%åÊ•«Y³f¥J•üýý}||œ“Ý=6&&æÜ¹sÇ?zôèž={?~ìåå5yòäwß}ך‡Ò¶m›|õ•ˆH»v2t¨ÚÕÈD,¹8¦`Á‚sçνpáÂòåË7mÚ©,×h4¹sçöôôŒ‹‹{ðàA||¼q•Ò¥K÷èÑ£E‹®®®j23­VDÄÙYvîT»™ŽåWU—*UjòäÉcÆŒ‰ˆˆØ¿DDÄÕ«W££££££•žžžþþþµjÕª]»v7zØÄW_ɶm""“'K½zjW 3²öv<îîî 6lذ¡ò6::úÎ;®®®ÞÞÞÙ³gW{t%œ;'ˆˆT®,!!jW ó²68¦àááÁ}v =uë&ÿ-"òóÏâå¥v525'sW8~üøñãÇ•ÛÈÔ³nhµò÷ßÒ½»èt¤FvgöŒã»ï¾+"‡Î;wòåJ”L~U5ÀN’5Ú†""¹sË/¿¨] €,Ã6‡ªccc+Uª$"gÏžU{DÉMœ(»wבiÓ¤Z5µ«•ØøG€ý=*£F‰ˆ” ¸³à3oµËå chÓF<Ù¾]ög?)¨vE²³/ޤ³eËD«•dÐ Ñé„{P 3Žà¸¢£¥U+‘‚eÕ*KzЇ½¸ÇL° ÁÔèÑòÇ""óæ‰ßzCRɈ â#óÀáìÛ'}$"Ò¨‘L˜`Išà°T#ãs!A"¢‘0²#³À±4i"ññ"":¿)$ˆìÀ,G½^Ÿ+W.ãÛ§OŸ*/víÚ•jû ¨=RptóçËÚµ""ÁÁòÎ;–÷óŠéÆäÈŽÌaap=ztªËœêrn i¸qCºt)YR–,±ª+3R#˜‰CÕ ²AƒäÌ‘¥Kåµ×Ô®^Îìàxúôiµk€Lâ·ßä‹/DDZ·–áÃÕ®^Åìàèìì¬vÍhµÏ_Øý"°žémúôç©ñÿþÔ #áGH?/Jß¾""þþ2k–ÚÕ€™ŽNÞ{O®^ùé'ñö¶×·fi„ «Ø‡ªÀî~þY´Z¹zUºvÎŽ©Ñl£¸‰#30ãvd0HPˆH®\²ukz}©‰“ޤFfbÆìeòäç©ñË/Ó/5* 3‚dTXZ-ÒþRÃŒ#ØÞ‰ÏïËX³æó;5¦¿çóŽ")§G…)Ÿª»‰dDG°±öíåî]‘ÐPÉ™SÍJ”tø<>þw!X@c0ì×ûÂ… ûí7qqqñöö®[·nûöí]\2{ZÕëõj×d^zqØ]lÏŠbaß‘†ý/t¾ªv9€%õ"jWeß wãÆ“'OŠÈÀ>|¸hÑ¢‹/~øá‡jÚî%PíT¦½cn„ô,Ìße“>-îÄ‚ÍZÅäÆŽø×õ䉼óŽˆH²fˆ”)a¿¯c³ÓwYß§5=Øu3§s½5[™›}ƒcüüüDdäÈ‘"rûöíñãÇ«=d°±qãäàA‘o¾‘ŠÕ®ìƾÁqðàÁƒ6¾ÍŸ?ÿ·ß~«öÀf DD4>R»°³Ì~º!ØMÓ¦òô©ˆð¼iY…µ÷qœ;wîõë×Õ¤«E‹D«•§OeÄR#€,ÄÚà8{öì   ž={nÞ¼ù©òŸÞyݺ%Z­¬Z%¯¿.:´j¥vAެ=T]£FC‡8pàÀîîîÍ›7oÛ¶m¥J•ÔØÞСrꔈÈwßIñâjWéÎÚÇåË—‡……9²xñâ?^³fMÇŽ›6mºdÉ’Û·o«=:°;E«•S§¤eKÑéH²(\ãëë;pàÀž8qbãÆ[·n½téÒ´iÓBBBêÖ­Û¶mÛ   lÙ²©=R°Vûü§3ÈâlyUµ¿¿¿¿¿ÿ„ ÂÃÃ7nܨÓéôz½^¯÷òòjÙ²eÛ¶mË•+§öxÀ 3gÊ/¿ˆˆ|ø¡4l¨v5 6ÛߎÇÅÅ¥víÚñññ>üý÷ßEäÁƒË–-[¶lÙ›o¾9jÔ¨š5kª=jx…+W¤W/‘ dε«Ç`ËàøôéÓðððmÛ¶éõúØØXÑh4•*Uzûí·Ïœ9³mÛ¶ãÇ÷êÕë믿nÒ¤‰Ú€—êÝ[._Y³F P»p6Žñññ{öì ‹‰‰Q–-[öwÞiÞ¼¹¯¯¯²düøñ“'O :u*Á€cúå™9SD¤S'0@íjÀÁXÇŽ»k×®Ç+o‹+Ö¼yówÞy§dÉ’)Zzyy}ôÑG¡¡¡×¯_OHHpqá¡5‹rŒ««lÛ¦v)à¬Mo›6mŸfÍš½óÎ;+VL£±³³³··w±bÅHÊgŸÉ®]""Ÿ.µj©] 8*k\§Nš7o^½zuFóÊÆ^^^ûöíS{Èð?'OÊûT¯._}¥v5àØ¬ Ž ¼sçN©qùòå...;wV{¤RÇŽrë–ˆÈæÍâî®v5àð¬}rÌ×_ý‹r—³—X¾|ùLåTsp«W‹V+·nIŸ>¢Ó‘À$–Ì8ž|¸ÚC¥½,5fÏ.Ê9511rð è«„Ú™Û9 9žà ªTI¼¼DD–çD ÒH˜ñ”G€Ì޽zõ‘€€€¾}ûß¾Ò÷߯öHdB/N7æÏ/*ˆˆÜ¸!gϪ]d.fÇýû÷‹HÁ‚“¿GP¿¾(ϱÒëSû˜IG°ŽÙÁqúôé"R¤HåíìÙ³ÕˆŸŸ.,"ræŒüóÚÕ@&evplÑ¢Eò·Mš4Q{²(å8u®\R£†ˆHt´9¢vM©qq €ŒÊ0#¨zäc÷Xw‰ˆ§OÕ.2;³ƒã¤I“,øËÖ€—ÙºU¦Owq¿vM.^T»ÈÌŽÉŸRm:‚#ÒjED²e“o„‰Þä‹]Fqe XÅìà8xð`µku}ñ…üö[ ˆ|ú©Ô©#š`µ €¬ÄìàÈ£b¨âÌ4HD¤Jñû3¾Ë£,4ÌÒÈKŸ7øL7€Õ¸8@Ð¥‹Ü¸!"²q£x=.hüȤìHj[ 8phk×Êüù""={Ê{ï¥ÞæyvI=>Ž S{IðÈAêÙ3iÜXDÄËK~þù• Åçñ1µÖ㑃ÑÇËÞ½""3fH•*¦®EF»â‘ƒËÈèÑ""uëÊ'Ÿ¨] 9À´j%ÑÑ"";vˆ ç`€ƒq²mw÷îÝ;wî\LLŒÚãÁ|ÿ½LÖFGËàÁ¢Ó‘ÀÙæÿ›¯^½²oß¾he®@¤@o¿ýöàÁƒóäÉ£ö8´¤M‘<¾±VæT»ÀKÙ`ÆqãÆM›6ݶm›’EäÖ­[Ë–-kԨѾ}ûÔ#Ç5jÔóÔ¸` [ù»ÚåÒbmp¼pá¤I“J•*õõ×_ïÞ½ûÔ©Sûöíûæ›oüüü=züÏ?ÿ¨=Lg÷nÑjåèQyûmÑé¤Lµ ¼Šµ‡ª¿ýöÛØØØ *¬^½:{öìÊBooïÆkµÚ.]ºœ8qbÁ‚“&MR{¤H£F’ "¢Ó©] ÀdÖÎ8žúè#cj4Ê–-ÛG}$"'NœP{˜Åܹ¢ÕJB‚ŒCj€ ÆÚÇ«W¯:99U¨P!ÕOË—/ïìì|ùòeµ‡ @}ÿ-ݺ‰ˆøùÉ¢EjW0ŸµÁ1þü×®]»ÿ¾ñY2É=|ø011±xñâj€Ê sçDD–/— È`¬=T­Ü|Ó¦M©~úË/¿ˆHÅŠÕ&ÕlÛ&Z­œ;'mÛŠNGj€ ÌÚÇ!C†„‡‡Ïš5ËÝݽcÇŽ.ÿÞ´711qíÚµÓ§OÏ–-Û{ï½§ö0¨c²6PDœœd×.µKXÍìàøù矧XòÆo\¼xñ“O>Y¸paùòå}||nݺuúôiå.·â2¶måþ}‘_•9Ô®.¬}r̆ """\]][´hÑ A)W®\·nÝÞ}÷]___éÕ«×'Ÿ|bÍW\ºt©L™2ÇOõÓŸ~ú©C‡•+W˜0aÂ}埲4™²ŠÝYIJe¢ÕÊýû2p èt¤FÈB¬qܼy³ˆLž<¹uëÖ"Ò±cÇܹsüñÇ"òøñã÷Þ{oïÞ½£F²æ+–/_þ²fΜ¹`Á77·êÕ«GEE­_¿þüùóË–-Ë™3§5«XÐ-ÄFgÓ¶ññ‘Õ«Õ®î¬qüûï¿åß'V‹È›o¾iœtwwŸ0aÂùóçW­ZeAÏÑÑчž8qâ?þ˜jƒ³gÏ.Z´ÈÇÇç×_]´hÑöíÛ{ôèqâĉéÓ§¿¬OSV± [ +3F¾j "sç’ ‹²68Þ¿ßÕÕÕ8W¼xñèèè;wî(o«V­š3gNË.©nÑ¢E×®]W¿ü¨µk×&%%1¢@Ê’ñãÇ{zznÛ¶-))ÉâU,èÈÜöï­VÿF7u:)_^í‚*±68zyy=}ú466Vy[´hQ¹pႱAÁ‚O:eAÏS¦L™7oÞ¼yój×®jƒC‡999—8;;׫WïîÝ»Gޱx º2±·ß–?Ñé¤Í„HµË¨ÉÚàXºti UÞ–(QBD¶oß®¼MLL¼{÷®euuêÔiРAƒ .ü⧃áÂ… yóæÍ›7ï‹õ\»vͲU,èȬ,­Vââ$8Xt:µ«8k/ŽiѢž}û&Nœxúôé>úÈ××÷õ×_ß²eKÇŽýüü/^]Í7މ‰ILLôòòJ±ÜÓÓSDîÝ»gÙ*t›:½ÞæCÎ`u#¤gaöø.›ôùªNþyàÚyVM)áóøÛ‡Eäù3§-øv³V1½±cþu¥§@GÝéY˜=¾Ëú>­éÁ‚uM_Åú¡ÖÇV­ZEDDlܸqÅŠ&LpvvnÑ¢Å7ß|ÓªU«ìÙ³ÇÇÇ‹È{ï½g󺕃ã/ÞZÜÝÝ]D>|hÙ*t›ºdGº³*½£n„ô,Ìße“>Óêdð`‰Œùá)VÌ]$ÐÄmQ°iõûוžv#°‹YÓƒ]w1“[’/ñrÖG''§/¾øâwÞÙ¿¿F£‘Aƒ9sf×®]ñññÎÎÎ#FŒhܸ±ÍëöòòÒh4ʃ°“{üø±ü;AhÁ*t ¤MpØ¿/ÃDÄ0#Èæ_ñÛoòÅ""­ZɈjàxlðÈA''§ºuëÖ­[WyëììÁ錀—±ApLUîܹßxã »–îããsáÂ…èèhãÂË—/+Y¼ŠÝv’jd|.$HD4f}vœ1C¶lùøc ²ý<& ó°öªj5hÐ 11qÏž=Æ%ƒ!<<räH??¿-[¶˜¸Š)m{355ZäÐÆÂ“g‰ˆtí*}ûª=T@ÆavpTÙ¬Là‰ÈìÙ³U¬¾wïÞùóç߸qchhh¡B…ºuë6bÄešÐšU,èP“9“ŽZ­ˆøåÊ%[·ª]6 £1;8¶hÑ"ùÛ&MšØ»ÄÏ>ûì³Ï>K£ž%%׬Y³fÍš™µŠém€Œå“Ož_1Ýå‹?ûÕ´ïµk€LIc0Ô®!ÓÑëõj×€ NœdÞ¡êQaº/½Öí꟞ß«,"~oÝíòåŸjÎZzaì'PÏc,ðRfÏ8Nš4É‚¯±l­Œ+ð?ÛÈŠô¢wÌž…Y÷]f_+ý²ïêÐAîÜÙºUråÊ÷o0 V4k“;è_Wzb³ÓwYß§5=Øu3§s½5[™›ÙÁqÕªU|MV Ž€#X¹R–,é×OºtQ»@Ægvp>~ÅŠß}÷ÝíÛ·•%ï¿ÿþÑ£GGÕ¹sçQ£F9;;«=L ã1ÌÒˆ·oÖL”ÿXSî¹€ÍÙ 8Nš4iýúõ¦téÒ÷îÝ»s玈äÈ‘ãÉ“'K–,¹råÊܹsÕ&!½";Ž SÚ,^,?þ("2|¸´n­vÑ€ÌËÚà¸yóæõë×{xxÌš5«víÚC† Ù¹s§ˆÔªUkùòåÊÛ]»v5hÐ@í‘Òóìø’nßVž#ÅŠÉ?¨]+ ³³68îÚµKD‚ƒƒk×®â£5jLš4iÔ¨Q?þø#Á°Xò _’߉íý÷åäI‘o¿•%Ô®X{qÌéÓ§åålܸ±““ÓÅ‹Õ&©ìÚ%Z­œ<)-ZˆNGj¤k9X­ZµØØØ?ÿüÓÉÉID”cÓgÏžU>MJJªT©’³³óÑ£GÕi:⑃°§ÉÚ@åÅD^íZÔÁ#»â‘ƒHƒµ‡ªË–-{èС+W®”HmÒ#***..®R¥Jj3½9æ£ÀÒÏC³Çw}ýµlÚ$"2a‚4j$’Ž5³xE9h'ìbvú.9ø¼-ðÖª~ã7Ddþüù©~úõ×_‹HùòåÕ&±]¹"Z­lÚ$EÊGëtJj ½Y;ãØ¿ÿ_~ùå—_~1  HJJ‘„„„sçÎÍ;wçÎ P{˜@Ö§\º$"²zµDú±x¢+YóäÉóÕW_ 6lóæÍ›7oVúûû'&&Šˆ««ëçŸ^°`Aµ‡ dH›7KHˆˆHÇŽ2p ˆH¤Ú%²2Ü< `ûöíÓ§Oß±cÇãÇE$111gΜZ­v̘1¾¾¾jÈ”4æÈ!¿þªv)ˆˆM‚£ˆx{{ùå—_~ùåÍ›7¯_¿^¨P!F£öè€ iÊÙ¹óù‹n €j¬ Ž]ºt‰‹‹ûä“O*T¨ ">>>>>>j ȨN’¡CEDªU“iÓÔ®€ÿ²68^ºtéþýû—.]R‚#‹uì(·n‰ˆüò‹äέv5¼ÀÚÛñ´mÛVD~å$,À «W‹V+·nIïÞ¢Ó‘ÊÚÇQ£Fýõ×_¿ýöÛwß}׳gOåù1Lôô©4m*"’7¯¬_¯v5¤ÉÚà¸fÍš5j\½zuêÔ©?üðC©R¥ *”-[¶Í&Mš¤öH‡óᇲ¿ˆÈ×_Ë›oª] ¯bí³ªË”)cJ3ãÓ«³žUW¹x(þ"R>ðv‡‰§Ô.'ƒáYÕ€]ñ¬j¤ÁÚÇÁƒ«=Gä˜ÏMOùDêÖU»ìÌÚàøÉ'Ÿ__ºtéÒ¥K©6#8"“9sF ©REfÌP»Ò…Æ ÜhÎR³fÍ2¥YÖz¤µ^¯T»ØÓì.oÝ¿‘SDÆlÜ—Ëó™Úåd9zaì'P/¨vpPÖG¤B¯g—Ó‹ƒÞ‰ÆÊÂÖ®•ùóEDÞ{OzöTa#ؤO‹;±`E³V1µ1»XæÝÅTÿ.ëû´¦»îbftÎ.†—³Á³ª¬ !A5ñô”Õ®5Wû¿ÿå¶3fH•*jW€JÌŽåË—eOOOÿš5köèу§W#C;rD‚ƒEDêÖ•dW‚™_ÙæÞ½{z½^¯×ïÚµë믿öööV{˜€%Z·–‡EDvìfçYžÙÿΜ9ó•m>|xüøñ_~ùåСC&LX´h‘ÚÃÌóòt©ˆÈàÁÒ¡ƒÚÕàÌŽÍš53¥YçÎÛ¶mÛ»wïðððC‡U¯^]í‘&yð@Ú´)TH~üQíjp$Ö>r0 5jÔhß¾½ˆ¬[·Nía&5êyjœ?ŸÔ@Jv Žòïôä•+WÔ&ð {öˆV+GJ“&¢ÓIÙ²j€ã±ï ÿE‹‚#^£F’ "¢Ó©] ̾3ŽÊ½x’’’Ô&ºyóD«•„3†ÔÀ+ØwÆñúõë"òÚk¯©=L ¥ë×¥kW??áºLaßàøÛo¿‰H±bÅÔ&ðÊÙ³""Ë–IÑ¢jW@aÇCÕ'Ož\½zµˆ´hÑBíaÏûµ V+gÏJ›6¢Ó‘0ƒÙ3Ž»víze›‡þùçŸ6lxúôi•*U´Z­ÚÃDD´Z)«ÑHX˜Ú¥i ƒY+”)SÆôÆeË–3gNѬ6«£×ëÕ®ÿõË´2GC ‰H‡‰§ÊÞV»X%P/ìb€ýêEÕ®Ê.ç8æÊ•«B… Õ«W8p`Ž9Ô£ %PíT¦½ƒl„ó祑7ß”¯¿½ÜN·Âì±lÒ§ÅX°¢Y«˜ÜØQþºTä8»˜Š…9æ.fMvÝÅÌé\oÍ@æfvp<}úô+Û(wáT×½»üõ—ˆÈúõ’7¯ÚÕÁ™ …È6lo¾éÖMúôQ»2ûÞŽHIIÒ ˆˆ»»lÞ¬v5d"Gd*“&Ix¸ˆÈW_IõêjW@æBpD&qü¸Œ!"R»¶L™¢v5dFGdíÚɽ{""Û¶‰««ÚÕIÙñÉ1@:X¾\´Z¹wO ŽÔ€1㈌êÑ#iÙRD¤@Y³FíjÈŽÈÆŒ‘ÇEDæÌ‘ Ô®€¬CÕÈ`öï­V–† E§#5~˜qDFòöÛ'"¢Ó©] Y3ŽÈ,­VââdÔ(R#ê`ÆŽîæMéÔID¤D ùö[µ« #8¡ "§O‹ˆ|ÿ½¼þºÚÕµq¨jÇÑjåôiiÕJt:R#êcÆŽH«}þ‚ÓpÌ8±̘ñ<5~ô©ÇÂŒ#Å¥KÒ§ˆHÅŠòÍ7jW^ 1 j×éèõú@µkÈhæõ¬~;ÊMDF®=à‘?NíràÐõÂ.ØO ^$0Pí*à ˜q´‹@ T»Õh‚ÃŒ¯ 3‚^Ù~ãF™5KD¤Ké×ODjÙµ<½èÓí×±ÇwÙ¤O‹;±`E³V1¹qúýˆ+=ÿ’¶0ÇÜŬéÁ®»˜9ë­ÙÈÜް™ç‘1äaQ#a’f|TNgÌ™SBCÕ®¼ Á¶¡ KŸ ’—ÄÇO?•°0‘/¾š5Õ®˜€àH=5ý•ìøçŸ2l˜ˆÈ[oÉ—_ª]:0ÁÖzEj4 ÒHXû«AwlÝ*¹r©]:0ÁV155мöš”8tG¤o_éÚUíº€ùް;gg©[WD$.NÔ Óu5)hGCp„}½ñ†äË'"rô¨<|hï›í;"8Â^òæ‘[·äôiµ«V#8Â.êÔ½^íR€acÅ‹K±b""çÏËß«] °‚#l&G©UKDäÉ9tHíj€­a•+‹§§ˆÈ¡CòäÉK 3åéÕÀ1aÃŒ Ÿû§Ê_® "ׯ˹sjì†à«hµR^*ˆ)Á0Ý@ç¤vȨ¾þZ´Z‘>NdTXZ­Id|Ì8ÂlQQÒ³§ˆH¹r2oÞó…†A ‘”O ¦|ªvÕÀZG˜§O¹tIDdÕ*)Xð?)éðy|üïB aª-[dÆ ‘ŽeàÀ—6S’¢^ô¨vÉÀ–Ž0‰r:cŽòë¯j—TBpÄ+|þ¹ìØ!"2eŠÔ®­v5@=G¼ÔéÓ2dˆˆHµj2mšÚÕµ‘ºNäæM‘M›ÄÃCíj€à>ŽHiÍÑjåæMéÕKt:R#xNc0Ô®!ÓÑëõj×`‘„8§)o×·<ñ£7ìW» uzÉ »!êEÕ®ŠCÕv‘ïDóᇲ¿ˆÈÌ™R©Rv±n{;žô,Ìße“>-îÄ‚ÍZÅäÆúוžØÅìô]Ö÷iMvÝÅÌé\oÍ@æÆ¡jÈáâÕÊþýR¿¾ètR©’ڇČcVײ¥O“'“€í1㘜=+ŠˆT®,!!jW2)‚c†×µ«\¿."òóÏâå¥v5 óâPuöÓO¢ÕÊõëÒ£‡èt¤F`_Ì8fH Ò¨‘ˆˆ‡‡lÚ¤v5 k 8f<ÿ÷²gˆÈôéRµªÚÕ€,ƒà˜‘9"ÁÁ""uêȧŸª] ÈbŽF›6òàˆÈo¿I¶ljW².ŽÉ–.­V”Ö­ED ’T»µWp°9""2¾”-«v5 ËãPµ#Ú»W´Z9rD7ŽÔ3ާqcyöLDD§S»€d˜qt óæ‰V+ÏžÉèѤFàp˜qtׯK×®""¥JÉâÅjW‚£ú ’3gDD–-“¢EÕ®à%8T­¦íÛE«•3g¤MÑéHÀ¡1㨭VDD£‘°0µK03Ž*˜>ýyjœ8‘Ô2 fÓÕ… Ò¯Ÿˆˆ¿¿Ìš¥v5æ 8¦Ÿ=äÚ5‘uë$_>µ«0‡ªÓÆ ¢ÕʵkÒ­›èt¤F!i ƒÚ5d:z½>ðùKC’|Ò PDr¸%Œß²WíÊ€Ì P/Æ] €ÍêEÕ®ŠCÕv("2y²èõ""S§J."jו~ô¢tÈñ¦gaöø.›ôiq'¬hÖ*&7vп®ôÄ.f§ï²¾Okz°ë.fNçzk¶27‚£]œ8!Ç‹ˆÔª%Ÿ®v5¶@p´½ö3jß},"²m›¸ºª] €pqŒíÝ}œ}ÀÑéH SaÆÑötõœV 2f`‚#LBp€IŽ0 Á&!8À$G˜„à“`‚#LBp€IŽ0 Á&!8À$G˜„à“`‚#LBp€IŽ0 Á&!8À$G˜„à“`‚#LBp€IŽ0 Á&!8À$G˜„à“`‚#LBp€IŽ0 Á&!8À$G˜„à“`‚#LBp€IŽ0 Á&!8À$G˜„à“`’L/]ºT¦L™ãÇ›Òø§Ÿ~êСCåÊ•&L˜pÿþ}ËÚd)™$8._¾ÜÄ–3gÎüè£.^¼X½zuww÷õë×÷ïß?66ÖÜ6YMÆŽÑÑчž8qâ?þhJû³gÏ.Z´ÈÇÇç×_]´hÑöíÛ{ôèqâĉéÓ§›Õ ÊØÁ±E‹]»v]½zµ‰í×®]›””4bĈ (KÆïéé¹mÛ¶¤¤$ÓÛdA;8N™2eÞ¼yóæÍ«]»¶)í:äääh\âìì\¯^½»wï9rÄô6YPÆŽuêÔiРAƒ .üÊÆƒáÂ… yóæÍ›7oòå¥K—‘k×®™Ø krQ»€ô“˜˜èåå•b¹§§§ˆÜ»wÏÄ6¯TfÀ€³ ª=\•ŠˆèÕ®BåÂìñ]6éÓâN,XѬUÌh¬·v#dt"ìböø.ëû´¦ Ö5}ë‡H– ŽÊeÑnnn)–»»»‹ÈÇMlóJgÏžU{¬¶—±U›ÅËËK£ÑÄÄĤXþøñcùwNÑ”6YS Ž...žžž/ÎFGG‹ˆr µ)m²¦,EÄÇÇçîÝ»J 4º|ù²ò‘ém² ¬4h˜˜¸gÏãƒÁž'OžÊ•+›Þ ÊäÁñÉ“'—/_þ믿”·:tprrš3gŽr΢ˆ,Z´èÎ;íڵ˖-›ém² L~UuxxøÈ‘#ýüü¶lÙ""¾¾¾cÆŒ™:ujË–-ëÖ­Q¡B…~ýúW1¥ @”Ƀã‹z÷î?þ7†††*T¨[·n#FŒPî¶cV€¬Fc0Ô®@&?ǶBp€IŽ0 Á&!8À$G˜„à“ÓUBBBHHHíÚµ5jÂM4{ˆ¯Zµjll¬Ú…™ÍÇ'L˜P£FêÕ«4èÊ•+jW„ô–垣®7~þùç"òÁdÏž}èСjd*wîÜ™9s¦ñYólèÃ?¼páBHHˆ‡‡Ç×_Ý«W¯­[·æÊ•Kíº~xrLú‰‹‹«U«Ö‡~Ø®];Y·n]HHÈÞ½{œ˜÷lcÞ¼y³fÍR^;v,gΜjWd111UªT™7o^PPˆDGG׬YsΜ9Ê[dD–ôsîܹ'OžÔ©SGy[§N»wïž9sFíº€ÌcðàÁgÏž]µj•Ú…™Ðõë×+T¨PµjUå­›››««ë½{÷Ô® éŠCÕéçÆ&þüÊÛ h4š;wî¨]¯VªT©õë×߆††*sj×…tÅŒ£Ù.]ºT¦L™ãǧúéO?ýÔ¡C‡Ê•+L˜0áþýûÆâââræÌi<0íäääêêúðáCµ8‹w1¦°~KJJZ¾|ù¸qãúöí[¢D µ„tÅŒ£Ù–/_þ²fΜ¹`Á77·êÕ«GEE­_¿þüùóË–-SN´òôôŒMJJR²cRRÒÓ§O===ÕàX,ÞŘÂÊ],**j̘1—/_ž|øðĉüñÇTœ={vÑ¢E>>>¿þúë¢E‹¶oßÞ£G'NLŸ>]iàíím0Œ§ƒÜ½{×`0\Yœõ»€4Ød;~üx›6mŠ+¶}ûvRcÖDp4U‹-ºvíºzõê—5X»vmRRÒˆ# ( ,?~¼§§ç¶mÛ’’’D¤téÒyóæ=pà€òiDDD¾|ùüüüÔà¬ßŤÁú],!!aذaÝ»wŸ6mZÞ¼yÕÔÁ¡jSM™2%..NDV¬X±ÿþ:tÈÉÉ)00иÄÙÙ¹^½z›7o>räHµjÕ\\\:uêòúë¯'&&†„„têÔÉÅ…Ÿ±Å.¦ö‡fý.¶oß¾›7o–+WÎ8""~~~ÞÞÞjé‡Ôb*ãmtt:Ý‹Ÿ † .äÍ›7Å„•.]ZD®]»¦ü«6lذøøøaƉÈ;ï¼óþûï«=,ÀQØdð2Öïb/^4 ÇOÞ`úôé-Z´P{pH?GÛˆ‰‰ILLôòòJ±\¹öÅx^£F£3f̘1cÔ®È`LÜÅUªT9{ö¬Ú%‰)»XïÞ½{÷î­v¥Pç8Ú†òT\77·ËÝÝÝE„{îVbìŠ] &"8Ú†———F£‰‰‰I±\y`.÷ܬÄ.Ø»LDp´ OOÏÿ›,::ZDŒW¨° »`Wìb0ÁÑf|||îÞ½«ìcF—/_V>R»: ÃcìŠ] ¦ 8ÚLƒ ÷ìÙc\b0ÂÃÃóäÉS¹reµ«2=00Py˜˜xùòåÈÈÈ¥K—^¹reÖ¬YfРAt«Óéöïß_£F ‚#Øç8HW¹råÊý///¯Ê•+wéÒeÆ 7‘9sæœ?^í©#8PŸ››ÛW_}ååå•ðý÷ß«] uG!gΜï½÷žˆ„††&&&* “’’~þùçÞ½{שS§bÅŠuëÖíÔ©ÓÊ•+ccc+Κ5«L™2û÷ï‘‘#G–)Sfþüù¦¯0ç8pZ­vÖ¬Y±±±çÎ+W®\RRÒ|°qãFåSWW×[·nݺuëèÑ£¿ýöÛ·ß~ëââ""Å‹×jµÇŽ»ÿ~ùòå}||Š+&"&®03ŽEáÂ…•QQQ"²oß¾7fË–íóÏ??vìØñãÇ;6uêTWW׈ˆˆ([¶l¹`Á‚råʉH¿~ý,XЬY3ÓW˜ŽàÀQxxxäÊ•KD>|("ÊÑçŽ;¶k×.gΜ"’3gÎÖ­[7jÔHDΜ9“voV®xGj8Fc|=f̘ѣG;9¥üïÛ˜˜IHHH»++W¼ˆàÀQDGG?yòDD<==EĘù®_¿~éÒ¥k×®]¾|Y9âlJoV®xÁ€£¸~ýºòâµ×^‘ÄÄÄùóçoÞ¼ùÊ•+Êr7ß|³\¹r‘‘‘¯ìÍÊÕ/"8p:NDråÊU¦L>|øŽ;<<<ºtéÒ¤I“R¥Jy{{‹È§Ÿ~jJò³ruÀ‹ŽBllìÒ¥KE¤K—.ÎÎÎ=Úµk—ˆ,_¾¼lÙ²É[ÆÇÇ¿²7+W¤Š«ª¨/&&füøñ÷ïßwwwïß¿¿ˆ\¹r%))){öì~~~É[>~üxïÞ½¯ìÐÊÕ©"8HWOŸ>ý×£GþüóÏ5kÖ´oßþ×_‘Áƒ+WÆ”*UÊÙÙ9>>~ñâÅÆÉüñÇï½÷žr*ä;w^ìüÆÊ ËV¤Mc0Ô®@æ—˜˜X¾|ù48;;:tðàÁÆ%‹-š1c†ˆxxxäË—ïŸþ‰õóó«S§Î÷ßïìì\®\¹åË—+·~üàƒ6lØàääT´hÑîÝ»wïÞݬÕ¦àGjÊ™3gÁ‚:wî\ªT©äõïßÿõ×__ºtéÅ‹£££«W¯^§NÎ;'$$ܹs'<<üæÍ›ÆÆï¿ÿþßÿ}âĉ(Ï4ku€)˜q€I8Ç&!8À$G˜„à“ü?«œê[ÐÞrIEND®B`‚statistics-release-1.6.3/docs/assets/wblplot_301.png000066400000000000000000001205521456127120000223420ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A€IDATxÚìÝg\Sgð@Å "¸­8ê¤î+ ¸juï=q"ÖâÞ{Õ…[qC\ˆ»Z·¨E­¾nÅ…äýp1E–IHòdœÿ¯ÂÍ“›sƒÑÓ»™R©ÑX‰@DDDD¦Å‘ˆˆˆˆÔÂâHDDDDjaq$""""µ°8‘ZXÉ¢­]»VöÍ Aƒâ?ekk+=åää”à…]»vU½pÇŽš¾ï±cÇT/?}ú´´påÊ•ª…ÿþû¯n·4É•«ÿŽ111²ddÍšµJ•*}úôyüø±®?)…²fõqIŽ0}úô=zôèÑÃßß_W[¡ÅoG'©>¶…ˆŒ‹#Y´zõêÉd2éñ¹sçâ?uõêÕ/_¾H_¼xqÿþýøÏ^¼xQz`ccS«V-ÑÛ!Ò›7oBCC—,YR¬X±-[¶ˆŽcìöíÛ·bÅŠ+V8pÀo§×ߎ·…ˆŒ‹#Y4ggç2eÊH/_¾üõëWÕSçÏŸ?244TõøóçÏ7nÜW©RÅÞÞ^ôv…>ôêÕëÿûŸè ”þvˆH'XÉÒ5hÐ@zðåË—«W¯ª–'Ø¿8^¹r%::Zz\¯^=-Þ´jÕªÿ|S¾|yÑŸöá¯_¿¾iÓ¦B… IO½{÷nöìÙ¢hÛSþʼnú[òo‡ˆ €Å‘,]ýúõUãïe”(P W®\ø¾8ªŽS#©â¸nݺš5kfË–ÍÎή\¹r}úô¹uëV‚1§OŸþé› .$N¥T*7lØÐ¤I“ìÙ³gÏžÝËËëï¿ÿN0&…ÓÔÊ”)#-÷òòÒù'–>}úüß/^¼M›6»víR={íÚµ$ãÝ»w¯E‹Y²d Œ¿¶cÇŽuëÖ­B… vvvE‹mÙ²å¼yóT½\»OFrïÞ½^½z•+WNú]/^¼yóæÇŽKÍšø‹KaääÉ“e2Ù©S§¤G•~A}ûöU}P'OžŒ¿’ƒªžJð¹¥ò·“²þR’ÛuVND¦MIdÙ¢££³fÍ*}ºté"-|ÿþ½••€6mÚHÿ¦I“æóçÏÒ³;w–Æ;99ÅÆÆªVõîÝ»V­Z%þ–¥K—nåÊ•ñßôèÑ£ªgO:%-\±b…ja÷îݬ$cƌ۶m‹¿’øã?~ÿ©Ò¥KKË›5k–ÂàÖøSR¬]»vâ9s攞-\¸p╟|øÐ§OÕ9¦ñ•+WîÚµkIn©:ŸŒR©Ü´i“M’é :Të5ÿð§úœ4iRâ0Íš5SÕ/Æ ‹ÿv”–gÍš5**JO¿ø¿z5)Ém‹_<"2MÜãH–ÎÚÚºN:ÒcÕáé‹/ÆÆÆ¨X±båÊ•|ýúõÒ¥Kªg¥uëÖÿOl¿~ý¶nÝ*=vuu­Y³f¦L™|ùò¥gÏžÁÁÁê§’þ]—ÉdRðñãÇÖ­[_¿~]ô–4ÕçäŸÞÞމϮóöö^¼x±R©”~Ì•+—ªê]¼x±~ýúŸ>}Òî“ ïÑ£‡ªNåÉ“'þuñþþþ!!!†ÿÌ[´hP´hQéÇR¥JŒ1ÂÍÍ­@Ò½{÷Ɖꢓ–-[¦I“FO¿-~)Ém‹N>("2f,ŽDÿ­¾yóæ‡ï˜uÅŠ+Uª$=–ŽVÇ¿2&þqê¿þúkãÆÒãÅ‹_¹rE¡Pܼy³páÂbbb¼½½5J5xðàgÏž½~ýú?þþá=z´èO+ ·nÝzòä‰ô¸H‘"‰œ;w®`Á‚}ûö3fLþüù\¸paùòåÒ³®®®wïÞý÷ßß½{ׯ_?iá£G¦M›¦Ý'³oß>é÷hkkúèÑ£gÏž]ºtÉÖÖVÿþ8ûÌ‹-Ú¢E GGGéGggç-ZT©RE&“ýöÛoÒÂÛ·oß½{Wz|ÿþ}Õã¶mÛêï·£¢þ/%¹mÑÉEDƌő进òÄÆÆJ{¥]666eÊ”)_¾¼µµ5¾Ç¿þú+&&€L&óôôT­dÁ‚Ò~š’%KöîÝ[Z˜'OéñåË—ïܹ£f¤ºuëΞ=;{öìöööãÆSß»wïÇÅ~\‘‘‘ÿ~s÷îÝ;v4kÖLõl’íÁÃÃãúõë .œ|ðóóSušæÍ›«þÙŽâàèÑ£=âUÿ’%KJf†Ö¿”ÄÛBDfKôȉŒÅóçÏãŸÚ5|øðøÏŽ7.þçÑ£G‰× —Ë¥g­¬¬J•*åá᡺ÿ €Y³f©FþpÕzâwMkkë›7oªVòáÇø—u#Þ©iªÊk°™cûáÊ{ôè?|þüù㟠™/_¾>h÷É”(Q"þH—'YöêÕK»5§fæɯ¿þªZ^µjÕ©S§ÆÿLZ·n?ÌäÉ“Õù¨uøÛQÿ—òÃm!"³Ä=ŽDq²gÏ^¾|yÕ ®HPæ T©RIî‚Z·nt¿½ØØØ¿ÿþ;((èãǬ­­§OŸ>tèPõÃH7C‰Uu;;»;wÆ?Ù.cÆŒþþþñË®R©йsgCî¦Òš¿¿üš%=._¾üâ×n>™ø‡wcccï߿էOU¡Lò˜µ:kN½Æ«Ÿ>}úìÙ³ñŸCGö8µD£_JÊÛBDf‰Å‘è? 4P=NPã_ “ÜYòæÍ¼`Á‚&MšäÏŸßÎήtéÒ}úô¹}û¶¦³±M›6­FÙ²eóòò:sæLü§%íÛ·?~ü¸§§gΜ9Ó§OïêêºpáÂU«VÛ•×IÊ”)Ó²eËŽ9Ò¹sçråÊeÊ”©P¡BÍ›7Ÿ7o^hhhr§ªóÉŒ9Ru×kggç¦M›îرcÑ¢EeÊ”‘:t(ñ-“ÔüÌS©C‡sæÌùùçŸÓ§OŸ;wî÷ª[·®t‘€Š+º¸¸ó/%åm!"³$Sò¤f"2GAAAgÏžíß¿¿è,(_¾¼t¯ÐÙ³g|¸““Óž={Ú´iÓ¡C‡ˆˆˆÃ‡øð¡fÍšê!"""²@ÆxŽ£R©Ü¶m›££ãèÑ£­­­¥…íÚµsss;zôèû÷ïÕ“ØÖ­[cccìää$-5j”½½ýbccÕCDDDdŒ±8>~üøÓ§OÅ‹O—.]üå+VüòåËéÓ§Õ“Øùóç­¬¬är¹j‰µµu5^½zuéÒ%õÇY c,ŽVVV>þœ`yTT€çÏŸ«9&¥R–5kÖWÏ)RÀ£GÔóc …èP0Œñ0X*}¼Qê×iÈ_ŠFï¥î`ËþZõwjθ»›Á'г§ÆÛ¡u*-^¨þKø"½2Æ«ªsåÊeggwíÚµçÏŸ«ŽýúõðáÃ^¼x¡æ˜>}úãàà`¹½½=€×¯_«9F?ÿüsüoß¾-úC%Ò’ 9ä¢S±š={ö`Ø0Ñ9´ÿ϶T}}Eg"2zƸÇQ&“õèÑãóçÏ}úô¹råÊçÏŸoÞ¼Ù§OŸ°°0‘‘‘jŽI@Ú=™1cÆË3eÊàÝ»wjŽQÇíï‰þD‰ˆt¯È¬}سÇ£aCÑYREj{÷¢F ÑQˆŒž1îqн{÷þùgÇŽ­Zµ’–äÊ•«{÷î+V¬°³³SL|2™ìÓ§O –øðßö)ª3†ˆˆ0sf®ý1r$êÕE{aaèÑ‚ƒEG!2FZ­­­§Nú믿ž?þåË—ÅŠóððرc€lÙ²©?æ»Mµ±±··O¼×0""€t¼[1DD–nÆ 8pkt³¢uL¸5žÙš÷ðbdÊ„½{EG!2FZ%eË–-[¶¬êGé0t©R¥4£âìì‘9sfÕÂHO©?†ˆÈrMŸŽƒ1fÌÿ<ÓEk£FáìÙ‚Õ«câDÑQˆLŠ1žãÀ××·k×®/_¾T-‰ŒŒŒñãQ»¶è(ÚswÇׯX»šý+: ‘é1ÒCÕݺuÛ¿ÿöíÛoݺ•7oÞ+W®<}ú´råÊ=¤Ó˜Õsüøñ!C†.\xß¾}råÊ5|øðéÓ§7iÒ¤zõêááá¡¡¡%J”ˆÿuÆYœI“pì||o~Óòú5Z´¾] s_t"Sd¤{3eÊ´yóæ¶mÛ¾}ûöĉY³f:tèŠ+T³ ª9&±®]»Îœ9³@¯_¿nß¾ýºuëܸQ1DDä?pì&L0ÝÖxôèw­‘ˆ´c¤{dÍšu„ ©Ó Aƒ $XظqãÆ§¼fuÆY__(ðõ5ÝûΘP¢,…¾‘y%^¨œå!:ý€ñG""oÂ?Ž?þ@µj¢£h©M<{†е«è(@Uý“èˆ2õѸé¡j""ï÷ßqü8&O6ÝÖèîŽgÏ0{6[£±yÁß#ÉÖ@z*É‘Zðõõ•ÅceeU´hÑ:„††ŠþL‹#%eüxœ<‰)Sàæ&:Š–¤¹ƒƒQº´è(@ÕHwÝ@›6m† 6lذ~ýúåÈ‘cûöí5kÖ\ºt©š/¿pá‚——×õë×}fF‡‡ª‰ˆ(‘±c‚©SQ¹²è(Ú¸t ÞÞ/…1]þ2éä˜uÿþý«V­ªúñÖ­[Íš5ëÓ§OÕªUK–,ù×?{öl×®]ƒý‰ îq$"¢ïƒLŸn¢­qÅ x{#gN¶Fã¢îîF=+Z´è† ”Jåü!:‹Ibq$"¢xFÆ™3ðóCÅŠ¢£h£o_l܈† ñ矢£±*_¾|ÕªUwìØ--™={¶««kÆŒ³fÍZ©R¥7JË»téÒ¨Q#r¹¼@)¶,ŽDDôͨQ ÅÌ™(_^tm¸»ãæMŒaÃDG!ãVºtéèèèG˜0aÂСC³gÏ>räÈ>}ú¼ÿ¾}ûö{÷îàíííëë `ÆŒk×®My°…à9ŽDD1çÏcÖ,”-+:Š6¤Kavî§k Ê›7/€(P`ýúõEŠ9tè4_ñˆ#<ظqã’%K†‡‡¨X±b5¤0Xô6‹#ÇãÂøû£LÑQ4öÏ?èÒà¥0¤6™L¦z|îÜ9[[[©xõê€OŸ>%ùB›%G""‹çíK—0g~ùEtíØùó‘.…L‡tÚÅÅ@–,YBBBŽ9rëÖ­»wï^¿~]uîcb 6K<Ç‘ˆÈ² ŠK—0w®)¶Æñã1>ªTak4ÊYª³»3¦Ò•+WlllòäÉóåË—ÆW¯^ýÀ… ööö¾y󦽽}’¯Òh°¹âG"" 6x0®\ÁüùPã†vƦaC|ú„~ýв¥è(¤sCusÇ$]ºtéäÉ“­Zµ²±±9~üx``àœ9s ¤ÜNÄS§N©?Ø\±8YªAƒpõ*,@‰¢£hLºfåJ¸¸ˆŽBjSÎòA»9ê³5Þ½{·}ûö2™lüøñ?~  X±bª?~T*•ñ_«þ`óÆâHDd‘ ÀµkX´ñþ4 hÚà¥0¦éÇÝQ×­qñâÅûöíðåË—k×®…„„DEE-Z´Hš6ÆÝÝ=cÆŒ=zôh×®]îܹϜ9”={öS§N8p ~ýúÒJž={öÃÁ¢?]C`q$"²<ýûãúu,^Œ¢EEGÑŒB__€­Ñ”ÅuG a}$=«Û·SÝ [&“.\¸iÓ¦ýû÷¯R¥Š´0_¾|£Gž?¾³³³»»ûÕ«WwïÞ=zôè¹sçÖ¯_ßÍÍ­mÛ¶û÷ï¿wïÞÅ‹S,ú£5G"" Ó·/nÞÄÒ¥(RDtÍÌž={ðóÏX²DtJ©ÆÕÇïêχըQãôéÓñ—tëÖ­[·nÒc™Lög¼iˆRl X‰ˆ,IŸ>¸u Ë–¡paÑQ4Ó¡?FÛ¶èÙStÒýÈHúÃâHDd1zõÂ;X± ŠŽ¢_w9?? ‘È|°8Y†ºueŠ×!KP;+Þz˜H4~ ‰ˆ,€»;¢¢0l˜iµÆ«WãZ£O°‚­‘Èp#‘¹“Ê×°µEk×bÍdÏŽ­[¡†ˆ$,ŽDDæëÍ4o˜ÞÝk¤{“×­‹Q£DG!¢xX‰ˆÌÔ©S?0½Ö(í!=uꈎBDßcq$"2GK—bóf-ŠÅ‹EGьԷnEö좣˜±áÃqáärÑ9Èô°8™ñ÷ßhÞˆŽ¢ÇÑ¡`z{HMÊÈ‘8wòä…L‹#‘y©U ±±øý÷¸}w&bï^øûÃÚGŠŽb®FÂÙ³P¬-‚B!:™$G""3"•Å-[àä$:Š|}¡P |yøù‰Žb–T•ÑO] cÃâHDdbbP»6`zz›6EDzõB›6¢£˜ŸÑ£ €3|“®°8™¾«W1h`Œ­Qæ”`IüŠ¥=¤K–àçŸE53cÆàÌ(RK—ŠNCæƒÅ‘ˆÈÄmÞŒ¥K‘3'þüSt”ïÄUF„Ëàã ÆØuM[©±›â … cÙ2ÑqÈܰ8™²qãpú4j×ÆØ±¢£|G攸2Æñ÷ptDÃK[£n‹l`e$=âÜŸDD&ËË §OcÐ Sj@¡B(Y>@Q6H“µRòƃ»;BBP¨"؇­1I¾¾¾²DråÊU§NãÇk4lñâÅ2™¬NRw¨ÿøñcîܹmmmïÞ½+z‹õ‚{‰ˆL“tzà²e(\Xt”ï¤Ü+T@ÆŒxô÷î>q•±@VF²±±Qí5TØÄ‰óäÉ3eÊ”G8uêÔ–-[6lؤIѤG,ŽDD&bÆ øù¡bEìÛ':ŠòåCÙ²ˆŠâw©RbÂ6¸»ãÄ üô‚ƒ±j•èDæãСCoÞ¼iÖ¬™¦Ã2eÊ4oÞ¼OŸ>1B©T2ÄÖÖvÞ¼y¢7H¿xŽ#‘)èÜááèÒ;ŠŽ¢_~A–,xö 7oŠŽbº|}¡Pd??Ö¬Æä-^¼xß·ÿõúúõëýû÷÷îÝÛ¤I“É“'k1ÌËË«Q£F›7o¶³³»pႯ¯¯‹‹‹èMÔ/G""c'w÷€™3Q®œè,? œå!CÜÑêš5!“áöm<}šü †òªêäIsxÈŸ_±¦³rÑÌÁÆ,I›6m£Fœ•¨æ0 , Z¾|yÁ‚GŒ!zûôއª‰ˆŒ›t)ÌÆßã“Ë!“!44ÅÖHÉ™8îîP(/‚ƒ¹£Q‡N:¥ü&66öþýû={ö ’ˆŽl¤® wnlØ :…²¶¶Î˜1cXX˜N†™=G""cR«bcã¦1RØ P¢Ä ¥jW‘p¹¥›2GŽ@®\Ht/˜««ë™3gÖ­[×1ÅÛ]©9̼±8 ©mÙ''ÑQÔõõ+êÔ’Ÿ‘51¡)SäReÌ™þ):ññññññIò©M‡Åçííííí-zû „Å‘ˆÈœ>qã›úìYŒer©Å™:‡ˆÌé`ûçNÑiˆ´ÁâHD$Úĉ6¹ýO‡<³•³™¨§];Þ(õëÔz Z¼P£—¨=ØÿPioÄœ?Â…±l™Zo›÷.zöâ.…©fÈT&óµòóC` dÏŽ­[Ó!é7Ðë×ÊB¿Sd(,ŽDD†%èíÕ mÚˆŽ¢-[°d 2eÂÞ½¢£'UettĶm¢Óé ‹#‘¡¼yƒæÍ`ëVdÏ.:FÂÙ³¨Q¾¾¢£¡™3±?ÀÊHÁJt""Ë׃ƒM«5Ö©ƒ³g1h[cB?ÏÜ wwìßlÙÄÖhüNœ8Q»vmGGÇ\¹ryyyݺuKt"ÓÃâHD¤}ú`áB”)crwÊvwÇׯX·Íš‰ŽbTfÍ‚»{Îý—-ŽC@d2Ñ™è.^¼X»víððð‘#GŽ5êÞ½{Õ«Wþü¹«ªQ£†¯Úÿ#•äà›7o6oÞ|xΜ9ýüüD„‹#‘¾¬YƒµkÓ+_Ò«K–Äüù¢£‰9s°{788`Û6ØðŸN“ôòåKUkðåË—°°0///5_þêÕ«ºuë¦~ðƒîÞ½;zôh©5ppp2dÈ€®^½êêêš`|HHÈìÙ³÷íÛ—-[6Ñ!Às‰ˆô¢C¬]‹êÕM®5¶iƒС[#`θ»c÷n88àÈìÜÉÖhºbbblll(•ÊtîÜ9wîÜ]»vUóåÎÎÎJ¥R©TªsIM ƒ=zÀÉÉ)þÂ\¹røûï¿ ŽŒŒìܹs‡êÕ«'úó‹Ã/‘®I'5N˜€š5EGÑ&øœ9øåÑQ„›;»v€½=¶mCš4¢‘n|ùòÅÖÖ@æÌ™7lØàèèhàE‹2xð`ÕÂàà`OŸ>M0xîܹ?þã?„~fßaq$"Ò7Я`z‡§•Jxx˜bp=˜7;w@æÌض iÓŠDºdcc³|ùòçÏŸ‡„„4iÒ¤U«V›7oމ‰Ù/ÝŒ3)M›6Õaggç-ZLŸ>½k×®J¥ríÚµ‹/äË—/§N:xðà¶F‹RµjU??¿ÐÐÐÑ£GõìÙ388ØÚÚ:õkŽŒŒ|ûöí—/_Ô\§NƒæË—oõêÕÍ›7¿qãFü?Y£F ÑX¸Ç‘ˆHCW®@ºÛêÕøé'Ñi4“;7 FL Nžø{H';ŠÎ¥‹aÛ6ÈÛ¶!C†Nh‘Ú¶mÛ¶mÛÔ¬áçŸN¼{ÒÇÇÇÇÇGÍÁ<=====“{‹zõêòb°8ibüxœ:++;&:ŠÆJ–„£#^¾Äµk¢£ÒâÅØºҧǶmȘQt "ÆâHD¤6éDõV­Ð§è(«^ÖÖ ÃãÇ¢£Ì’%زlm±m2eˆÈä±8©!$cÇÀÖ­Èž]tI'5ž?EG1 UeL—Û¶ÁÎNt o̘1 î°MZ`q$"ú‘¡Cqù2ìì°gè(K“U«€B!:Ša,]ŠÍ› ]:lÝŠÌ™E"cÑ£GÑÌ‹#QФÃÓ]º cGÑQ4–=;J”,¤5FD@ºQsڴض•‘HX‰ˆ’qä¦L€ýû‘!ƒè4+R¹r!"—.%?h¨¹\R=aŽ€õë‘'è4Df‹Å‘ˆ()½záÎäÈM›DGÑŒr–‡ A•N{¤O‡qÿ¾è@úöä Úµwwüþ»è4–h×.Á’Ÿó…tÅ‘ˆ(éðtÿþhÑBtmÈ/y =®\Á›7)Ž3ƒÝÆáâEØ»—M‹2w®à,ކÄâHDÏ®]qÿ ÙÜÓê“Jï±c°žü2Cƒ˜vk¼s½z@ãÆ:Tt‹f²ßÒ‹#Ñ7:àñc,ˆ+DGÑÆÕ«4øö¹tÌÀwõÑ *#€Þ½qûö›JD†ÂâHD|ù‚zõ`ÄÔ¯/:6Ö¬ÁÚµprŠ»}¡D*ˆqõ1Þvé¼½ m[ôì): ‘Åaq$"‹·qcÜ.F“Ý}5h®^Eݺ5*‰gM¾,ªH»„a¿)"S'3ÚY´M˜B¡‹Î@d^ä èékåæ53íÛï\ó]žÛEôVjÉ×]ÀkôM×:ÏDgÑ—ì'n–ðÙ à~÷ZÛUÇHß)9䢃˜¤5jÔªUËÇÇ'Ég¿~ýZ½zu™LvæÌÕÂØØØE‹-_¾üÞ½{yòäéÚµë!CÒ¤I“ä®^½:yòäãÇøð¡hÑ¢íÚµ0`€´òôéÓÇÄÄÄïèèøâÅ Ãl;÷8ê……ãþ:22K¥7Jý:µ^ƒ/Ôè%jÖïïõ븋¦}}íkÔÐõÚu)…OIºfÛ68:ŠI*óòÂÛ·ì¸M~ãüZ‰üNY†Ë—/Ÿ>}ºV­ZÉ 7nÜÙ³g+W®¬ZÛ¤I“ÀÀÀfÍšÕ¯_ÿôéÓ#G޼}ûöÊ•+¿üþýûr¹<&&ÆËË+_¾|G:tè‰'vîÜ àÁƒ111nnn..ÿ}2ð–,ŽDd‘–/ÇŸ&|Ðóñctè`Ò[ †À@øù¸3¸a‘¦ÃD§!‹²hÑ¢ØØØä†9rÄÏÏOÚ;¨²nݺýû÷/[¶L5íaëÖ­W­Z5jԨ… 'XÃСCß½{Z¡B'NìÖ­ÛªU«:T·nݰ°0ia ÍU¯¬„¼+‘HuëâÏ?Q¥Šév®={СllLw Ôàé ??dÈ€àà'MË‹NC¦mðàÁÎηzóæM×®]såÊ•+W®.]º¼|ùRÍ5¼zõªnݺ¾¾¾)~öìY‡ºwïžçûé‹–/_þÓO?uëÖMµdË–-J¥2qkT£F ©5Jú÷ï@:ð-ÇB… ‰ú$Y‰È’<~ wwDEaæÌ¸éM¯/fÏF… 8rDt=ÙºîƸqØ¿_t2 6üúõ«ŸŸ_:u"##ûöí[¶lÙ5kÖtíÚUÍ58;;+•J¥RyëÖ­$(•ÊŽ;fÉ’eΜ9ñ—ùòåÂ… Õ«WŽŽ Y¶lÙ‘#G>~ü˜äJ¢££ûõë'5E•ððpéÒ¥–.]:;;»mÛ¶-]ºôÔ©SQQQ†ü$y¨šˆ,Æœ9ؽ0탻Mšàý{ôê…6mDGÑé´Í7"JOOOWW×cÇŽÍœ9Ó[º£P³fÍÀÀÀ?f̘1õoáççwüøñÐÐÐ ßOmÿôéÓ¨¨(™LV­ZµóçÏK óåË÷çŸV­Z5ÁJlll¦NÉëׯ§NjmmݲeKaaaVVV… zómb¨bÅŠ­_¿¾\¹r†ù$Y‰È2Hu¤V-Œ':Jj7béR)":Š>¬Z…õë`Ú4Tª$: ™™L —4áÀÍÍíĉÿþû¯‹‹Ëþä÷m7mÚô‡+?wîܸqãüüüJ—.à©wïÞX·n——×ÚµkóæÍ{üøñîÝ»·hÑâæÍ›Y²dIaµ …¢gÏžaaa‹/–Žk‡……ÅÆÆúúú¶lÙ2Mš4{öì2dH³fÍ®]»fooo€‘Å‘ˆÌݾ}˜5 /FÑ¢¢Ó¤Dæ”`‰êŒŸ>¡aCÀ´÷–¦H*Å..Hê:S"Èš5kü ¥J¥òãÇÍ’Ÿñú‡7.ŒˆˆhÛ¶­§§çÀ?kgg `Á‚›7oN›6-€† úùùuèÐ! @u¹L>ìß¿ÿÞ½{ .|ôèQ¸¿  …­­mÖ¬Y¥»víÙ¯_¿€€€øçPê‹#™5éN.FÜ3®2&šZZšôe±—“ïxÀ\[ã¼yع,@‰¢Ó9“z›Š´€½½}jnk½téÒû÷ï7kÖlƌҒwïÞÅÄÄLŸ>=_¾|Mš4PµjÕøï.¤¾yóf’+Ü´iS¯^½2eÊ´téÒ®]»Æ¿F;W®\ שSÀõë× ó²8‘™úûoHÿ÷?z4êÔ&%2ï Ä•1Ž¿G¡BØrÉt'ÐNQddÜ®®˜;Wt²\ÑÑÑ©9T-]žâïïá›7oF%—ËÛ¶mëââòäÉ“øÏJ—f'¸øZ²wïÞ:´jÕjÉ’%™3gŽÿTxxø¾}û<<<Šû玲òçÏo˜ÏŠÅ‘ˆÌÑàÁ¸r0}t)µF Bd̈G (´æ2s dÊ”¸ËÂ׬¡þÍ#JR*U;vìØ±ñ—(P GŽª™c:uêäëë{âĉ5jˆ6mš••Uâ{1*•Ê#FäÍ›wýúõÖÖÖ žMŸ>ý°aÃ*T¨pìØ1iÖ™ØØXé¶‘žžž†ù¬X‰È¼DD@Ú=ðÛoHæä!S!—ÀßãÕ+ÀßC† 3™uúÕ+´l nn˜}ú´iÓ¦NÚ»wï›7oÞºu«X±bÝ»wO°’æÍ›7nÜØ××wäÈ‘… ®_¿¾ƒƒÃ¡C‡._¾¸¸ **n¯ÜwLúhõ A¸z€­­è4D¤%G"2qáãGäÉwïhSöË/È’Ïž!™{t˜,ig°—’ºË™G"2Y—.Aš:ì÷ß㪉)“Nj¼}OŸŠŽ¢C |}¸¼,Ј#jÔ¨áìì,:ˆ)aq$"ÓÔ¿?¤Þšl#QÎò!îhµÔCC™ü †šÚqêñãqêòåÃÚµ¢£%!Mš4Õ«WÂİ8‘©QÝÌ¥cGté":MjÙÚ¢reÀü.…‘öw邎EG!"aq$"“âç‡À@À„w4Æ—ãU΢æ×Uój¯_¤&Æ "Óe%:‘ÚÜݹÜm˜gõЇª‰Èh<|ˆNÀÃãÇ‹N£3ÒE#'Â|¦¨ Cpì¬LáÂ"]ˆˆˆ(_¾üÇ[¶léèèP¯^½ààà2eÊ$|òäIOOO‡¶mÛZ[[oÙ²ÅÓÓsïÞ½z}Vï VQ-ˆÅÿoœqîáGƒ½PË=ŽƒÇíÁúü9©q©ýD‘¶éãÇT­Ä¸¾SK–(år¥»»!SñkÅ=ŽÆÀÇÇÀš5k¤ïÝ»çàààîîžxdllláÂ…œœþ÷¿ÿIKÞ¼yãââR¶lY½>kü?E"íÖ-¸»ã¯¿àå…à`ØÚФwîÄík F† ¢ÓèJëÖØ¼µk#èG÷ž$2>Ÿ>}š>}zñâÅ3fÌX¼xñž={¾|ùRý—oÞ¼9gΜ¿Í¢éââÒ²eËãÇ?}ú4ÁÈܽ{·[·nÎÎÎÒ‡!C†\ºtéêÕ«ú{ÖŸ!‹#‰T®×2ôéÁÁ8PtuɼƒTÿ%9`Ëôê;;óºÔØÝÏŸcêTŒ+: ‘Æbcc›5k6jÔ¨Ò¥Kûûûׯ_Æ ¥J•züø±:/ˆˆ¸s玻»»L&S-ôððˆ M0øÑ£Gœœœâ/Ì•+€¿ÿþ[Ïàcdq$"A.]‚»»Ý§h×΄êU\Yô÷Pý—¸>މ%KP³&öìWW._þo÷iåÊ¢ÓicéÒ¥GŽ™8qâŸþÙ«W¯Y³f:tèÙ³g#FŒPçåÏž=S*•ªý|©À½xñ"Áà¢E‹ ‰¿088ÀÓ§Oõ÷¬>F^CD"tè€Ç(‚}ä‹N£–¸v˜xrÿÿîÝ­œåáé‰èh Œ¦ME'Ö•™3±?2gÆîÝ¢£ioÇŽiÒ¤9r¤jIõêÕårùÎ;cccccc÷ïߟÜk›6múéÓ'™3gŽ¿ÜÞÞÀ«W¯ŒwvvnÑ¢E@@ÀôéÓ»víªT*×®]»xñbú{Ö#‹#Ö©SqWLwïŽví`äs¢$àï‘òSî—`ýzäÉ#:ª®4h€ÏŸáåeB'%éÑ£G L›6mü…%J”Ïš5k³fÍ’{­R©tttðþýûøË¥®–5kÖÄ/Y¼xñÛ·oG5jÔ(Y²d?~ü„ ôú¬¾±8‘µhׯÓ›e$îðtòÒ¦…›(ÊåÉc‚À$I:<=>J–…(µ¾|ù’>}ú cccdÊ”ÉÞÞ^™â”(ÎÎÎVVV ŽJK×ÖäÎ;ñøìÙ³9r$44ôÊ•+ÎÎÎÕªU;qâ€|ùòéõY}cq$"ƒ8|S§À AHþëÓ[£³3Š…(+:®Nœ8Àô*>Q îÝ»§ã7²dÉ’={öèèè”UÛØØ/^üäÉ“ñ—Ÿ8qB&“•(Q"ñK®\¹’9sæ*UªT©REZrìØ1™Læææ¦×gõÅ‘ˆô¯~}DF"]:<(:Šî-Š9ðî._EW&LÀñãÈ6ˆŽB¤KQQQ3gÎ3fŒôã©S§Ž?Þ»wo?~LùP5€=z 4hß¾}5ðüùó€€OOÏ $~I¯^½®_¿~ûömé’ç›7onذ¡aÆÒú{VßX‰HŸvíÂܹ0z4êÔF÷*W†­-þùÿüóm‘¿‡ AÊY&{´Z:<Ý¡ºv…HÇììì~ÿý÷k×®U«VíÞ½{K–,É“'ϤI“üðP5€Î;¯Zµª]»výúõsppX³fͧOŸ|}}¥g§OŸ>mÚ´©S§JMtâĉõëׯT©’——×ׯ_·nÝš>}úyóæIƒõ÷¬¾ñv~üxëÖ­üüü *tüøñÊßnPùöíÛ/_¾H?Ö©SçàÁƒùòå[½zu```óæÍoܸ¡Ú7©¿gõ{‰HþüË—f6Cówär@:©Ñ<ÂÏàIdæ6lذaC­_noo¿lÙ²$Ÿòññ‘æ$TñôôôôôLnUú{V¯X‰HÇäî¾Ìæ 9å,¾Ûé˜% ~ù0§ÖèíK—P´(/…ˆŒ‹#éΊظfÎD¹r¢Óè…‹ òåÃçÏ8{6™CMíGéðtß¾øõWÑQˆÈر8‘ŽHý£paŲßä0ÏÖX¶,2gÆ“'¸sGtxñ­ZÀöíPû4/"Õ±cGÃÜ"Û¼±8QªÍ›‡;`ñb-jb“Á¨A:Z-¿äàÆ <žüPÚݸe –,xR#Y ÕåÏ”,ŽD” _¾ ^=øåÌ™#:I­ñôi|ý*:ŠNô쉻wQ¾|Ü1DDêaq$"mM›†C‡`ÍäÏ/:¾ýûï¿/^¼xõê•­­­£££““S®\¹d2™èm48…B!H×ä¾P€"Ø'µëÒâÝ0ä×Ê×] ÏªóN>~cu®b§…¾¼ãÝèI#ó¼MiAúNÉ!„LLj÷8^¹rE¡Pœ9sæêÕ«111 žÍ–-[åÊ•«T©R·nÝÌ™3‹ÞXñð¯bÜ_GFÆ`©ôñF©_§ÖkP@!Ÿyû÷ÀðáhÐà‡kÑè½Ôl _ß»whÖ ˆ;œ[Á﨎Tý.…™?¿HÉ’EŒ'•¼—௕†/Tÿ%Æö"3£eqüúõëÖ®]{íÚ5i‰ƒƒCŽ9²dÉbooõæÍ›7oÞ-˜ˆÄÓ¸8Ž5jçÎ*T. }û¸I‰ˆô@›âxíÚµ‡ª~|öìYr;Ÿ>}úèÑ£téÒ‰ÞL"JʨQ8{fÌ@c¹g¡”){{üï¸uËVædzÓÀ$öë¯xùãÆ¡V-ÑQˆÈœiSâ}¾qãFʧ-ºººŠÞL"úÞñã˜0ärø˜ F~¸»Q.€›7ñì™è¬º"q_¹..¢£/^ÌŸ?×®]ááá666 lݺu¿~ýT·…ñõõ ý}øMöìÙ]]]ûõëçåå%:¾ÑѦ8º¸¸¸¹¹ICBB²dÉR¬X±äçÈ‘cÀ€¢7“ˆâ‘z,ñª[©5†„ *Jt]1·«{ˆtéÂ… 7þßÿþWªT©–-[FEE9sfذa6l8}út† T#Û´i“'O±±±OŸ> lÞ¼ù’%Kzõê•úïÞ½9rd``àëׯ˖-;cƌʕ+'7øæÍ›cÇŽ=þ|ll¬››Û!CT¥ëëׯéÓ§O0QŸ££ã‹/ ö‘jS;vìØ±cGéñÏ?ÿ\ºté%K–,1ioÆŒ¸GBݺ¢ÓTúôn¦PˆŽ¢C¼Å7Qò"""š4iòþýûmÛ¶µlÙRZ3f̘3fŒ1bÁ‚ªÁýû÷¯ZµªêÇððð_~ùÅ××7õÅ1""¢|ùò>lÙ²¥££c@@@½zõ‚ƒƒË”)“xðÉ“'===Ú¶mkmm½eËOOϽ{÷zxxxðàALLŒ›››K¼Ã ™ ;/Tj/ŽéÛ·o ™˜ˆ´`ÿ÷C tWWÌ+:Ž¡åÊ…"E‹'DGÑ•W¯ ýCÈÖH”Œ5kÖ<}útéÒ¥ªÖÀÚÚzÚ´i»wïÞ¸qãìÙ³Ó¤I“äkóçÏ_©R¥Ã‡üø1cÆŒ©‰áïï¶fÍšN:4hP¹rå¼½½ƒ‚‚ŒT*•ݺu³··¿r劳³3€qãÆ•+Wnøðá/^`âĉµÄͬqqŒˆˆˆ?aà Aƒ´x×+!"ýòò*óö-ìÜ Ñi ­D dώׯqõªè(ºrá†Gš48|Xt"ãµpáÂܹswîÜ9Ár™L¶bÅŠÛ·o¿ÿ>k֬ɽüÕ«WÅ‹Oek°yóæœ9sªÕº¸¸´lÙrÕªUOŸ>Í™3gü‘<¸{÷îèÑ£¥ÖÀÁÁaÈ! ¸zõª«««T *$ðSÕøœ˜Zµj-]ºôóçÏÚ½ßõë×»uë¶|ùrÛLdAV¬€»;Þ¾½ß³6‚ƒ-°5V­ŠìÙqƀ ŽÂ…Ù‰RðöíÛ;wîT¬X1mÚ´‰Ÿ­V­Z·nÝ’lJ¥òÿûß„ .]º¤ÝÞ±ø"""îܹãîîÿ6ر±±¡¡¡ ?zô€““Sü…¹råð÷ß K—.ݶmÛ–.]zêÔ©(ƒŸ¯­ñÇΞ={ݺuÍš5kÖ¬YáÂ…ÕyUdddPPÐŽ;N:U®\¹ø;‰H/þýíÛ&y……\p«œå!CÜ…ÕÒ¥0.àÃѱteæLìßOOŒ#: Ñ7Â'„›=;ñ²ððpêŸM—x.åöìÙ3•Ñž={¦T*U{%R5L|EKÑ¢E„„„ þr©&y |ñâÅoß¾5jÔ¨Q£dÉ’eüøñ&Lppp P(lmmU/ìÚµkddd¿~ýºjÊ(í¯ª.T¨¯¯ïðáÃCCCCBBBCC>|!}ìíí]]]«T©âææ–Â‰H7>†4ùg† Hþÿ€ÍÞ¼yع… aEæ (’ï…&Õåî¾ðçŸøþTz"JŽ££c¾|ùÎ;•ø4Ç+VŒ7. …3îúôéãççwâĉŠ£½½½R©L!†³³³••U‚£Ò/_¾;wîÄã³gÏ~äÈ‘ÐÐPéÂêjÕª8qßz°t¾c|uêÔpýúuƒ}°©½O¦L™j×®]»vméLjˆˆ—/_ÚÚÚ:::&y:*é…4O1€™3aÀ“]ŒMçÎǯ¿¢o_,‡‡ ßîv.™¡AL¨5òfDÚéÓ§ÏèÑ£—.]š`"’ØØØmÛ¶Éd²5j¤ðréì»”§MŽŽŽNùPµMñâÅOž<ù‰'d2Y‰%¿äÊ•+™3g®R¥J•oÇŽ;&“ÉÜÜÜÂÃÃ÷íÛçáágœ´·.þüûTS[Èœ93ï³CdP |}ÀÃãÇ‹N#’Ô¯¦N…jFU;ü¯AšVeü¶UŠ`¹è D&§G~~~#GŽ´··WÝ '&&fìØ±W®\éÒ¥KöìÙSxù¢E‹”/_^úQµ,¾ª–b 4hß¾}5ðüùó€€OOÏ$/ÜéÕ«×õë×oß¾-í\¼yóæ† 6l˜+W®çÏŸ6¬B… ÇŽ“n?ëççgccãééi°OUÇÅ‘ˆ ':ª¿,,~w”ÔB’‡:L¬,J=‚ôO]p0 †ÈôdË–m×®]Íš5ëÔ©ÓŒ3*T¨`eerëÖ­’%KΙ3'þàÅ‹ïÛ·OzüåË—‹/ž8q¢dÉ’ªÆ¹}ûöš5kªÆËår¨q¨@çÎW­ZÕ®]»~ýú988¬Y³æÓ§O¾ÒÿðÓ§OŸ6mÚÔ©S{÷î `âĉõëׯT©’——×ׯ_·nÝš>}úyóæprròõõ9rdáÂ…ëׯïààpèС˗/O™2¥xñâûTõ^£££ýýýGŒa°M"²=z , ÆŒÿ_ÓݸwY•ç'àã{{ìÚ%: ‘ «^½úÕ«WçλwïÞmÛ¶e̘±H‘"3gÎ8p`‚9c6nܨzleeU @~ýúMš4IuÞ½½}¶lÙTcllÔmP™3g>~üøðáÃÞ¼yS¥J•7ªæŒŒŒ|ûöí—/_¤ëÔ©sðàÁ &¬^½:k֬͛7Ÿ6mšê}GŒQ°`Á3flذÁÖÖÖÕÕõÀõêÕ3äG*ûaSNÒöíÛ:t÷î][[[77·>}úH× }øð!((èþýû‘‘‘ÒÙ —/_~ôèÑíÛ· ¹U‚) ¹è d¾ŠNÛ•ãÐÿ«óË­ÑÍDÇ1¹I~­NnÈ´²@¦¬QÞÛCDgÔ™üëNXüö—üÍé,: ™-¹âÛNI ÉÝŽ'õ3Y›mö8z{{«vç¸ÿþÉ“'7mÚôêÕ«ž={J÷¨´prÈEGI…~K¥7Š[g@.¬\™È¡ÿTZ¼P£—¨=8‰aC‡âòeÔª…qãÒÂøþÈiiâD£iS‡ÁƒU›dáß)=½Wê×iœ_+õ¿S©Ùv²XÇ'NH­ÑÅÅ¥R¥JéÒ¥;{öìÍ›7'OžüÏ?ÿ<}ú4]ºtEŠÉž=»•••­­m¶lÙ yCs"³äð×?â÷CrçñY餯áÃãîAd& ÂÕ«4ÉŸnOD$ÆÅQ: ÀÍÍméÒ¥Òÿ˜˜˜ÁƒK—£—(QbñâÅ ¦Ö!"í½&MJK-o‰ à[kÜ´ 9Ôßéjü¤óVgÌ@… ¢£ÑwÜÁÀåË—E‡CÝ©xT¤É»wï®:]ÔÚÚZ5™ãðáÃÙ‰t¦C4iàÎÐFfkð¿ÿýw[C³jíÚ!, Ë–±5‘1ÓxããÇ,X0þBÕ½ˆR¸;iÀ×7n¾¼&M0dÈ(ŠˆN¤?2ï Ä “¼N` üü3»€€—Þ¾ÅÆH4-‘QѸ8~ýú@† â/Ì”)“ô å¬ÑmØ€•+ D ,X :~ÅUFÿ$:¢tËîøõqÒ$;†2eàï/:·nÕ­‹¨(ìÜ ÑQˆˆ~@Ëû8Êd2ÑɉÌNh(F€tépð è4z'óJ²2Æñ÷æ”4Ÿéöæ#ºuCûö¢së–tÜýàAðÿº‰Èpæ"#ðò%~ý5îñÊ•pqHï~Ð%þ2)gy¸»H»p! 89‚Apj"25,ŽD¢ýú+^¾€Ñ£Q§Žè4† VkXÍñp¿Á> —‹®SlDd‚X‰Ä5 gÏ@«VèÓGt£“-J•Ìr®f¶F"2MZG…B‘àú˜”—ÇŸ¥‡ˆ°b¤yQ˖ŬY¢Ó£‚‘7/>~Äùóy)k|ï0ãÅÖHD&KËâ8lØ0–[Ö\ÕD)P(àë ™3c÷nÑiPç8uùòÈ” ÿþ‹»wEÇÕ9¶F"2eÅÙ¦M›aÆ 6lèСµk×¾páBóæÍ—.]šÊïÞ½ëÝ»w¾|ù2eÊT£FÐÐPíýúÕÆÆ&AÁÍž=»á?RŸã8dÈk×®ñR²tbútpr–-¢ÓG«]]‘5+^¼Àõ뢓é[#‘ Mš4yÿþý¶mÛZ¶l)-Œ‰‰3fÌŒ3FŒ± Þ´®ýû÷¯ZµªêÇððð_~ùÅ××·W¯^© P¾|ù‡¶lÙÒÑÑ1  ^½zÁÁÁeÊ”ÑtðƒbbbÜÜÜ\âÍ¡šðÙxq ‘N……É{øÆ=Þ¾Y³ŠdìjÔ€•îÜÁ“'I=mÒÇ©££áé °5‰±fÍš§OŸ.]ºTÕX[[O›6m÷îÝ7nœ={vš4i’|mþüù+Uªtøðá?f̘Q»þþþaaakÖ¬éÔ©€Aƒ•+WÎÛÛ;((HÓÁaaa&Nœ(üþ†,ŽDºãé‰èh˜>+ŠNcÔ¤ŽòKΞÅçÏI 2éÖ¦Macƒ#GDG!²P .Ì;wçÎ,—Éd+V¬¸}ûöû÷ï³&ÿ¿÷¯^½*^¼¸Ö­ÀæÍ›sæÌÙ±cGéG—–-[®ZµêéÓ§9sæÔh°T *$úCÕõ9ŽDªO¸»#:={*‚}ØèåKH­QQ6(‰Ö84È´[ãÿþ‡¦MagÇÖH$ÊÛ·oïܹS±bÅ´iÓ&~¶ZµjݺuK²5*•Êÿýï&L¸téÒ Aƒ´qçÎwww™L¦Zèáá›øLÇ K—.ݶmÛ–.]zêÔ©¨¨(!,÷8¥Î̙ؿ<<0~<³›O÷ÆÔ© ¬Ü‘ð¨ WF÷ï£[7äÈM›DG!2ˆ½{hÜ8ñ²ððp PsÕªUK°dàÀ={öÔ:Ô³gÏ”J¥³³sü…NNN^¼x¡éà°°0++«B… ½yóFz¶X±bëׯ/W®œ¾?Ýt\säÈñþý{o‘»vaî\È—k׊Nc2¦OÇÁƒ(U óæÅ-1횘Àµk0..X¹Rt"Cñ÷ ©âÀÊJÝ#«mÚ´É“'ô8**êâÅ‹óæÍ{ñâźuëlllìììvíÚÿüÂèèèýÒ^ƒ¤4mÚTºj;sæÌñ—ÛÛÛxõêU‚ñ?ëëëÛ²eË4iÒìÙ³gÈ!Íš5»víš4Ì`t\.\hÈôDbHå@²?’šŸ’Ôº5ž?G§NHtÒ‘Y8w#G¢D Ä»T“Èüåå_ùòåpïÞ½$Ÿ}öìÙ… Š)R¸paiI‚«ªŒ1ÂÏÏÏÓÓ³K—.‰×ðñãÇfÍš%÷îJ¥ÒÑÑ@‚½i"ÿá`…Bakk«za×®]###ûõëЭ[7C~°<Ç‘H‘‘pwksç"8˜­Q}îîxþsçšikT(0r$*T`k$2ŽŽŽùòå;wî\’ç®X±¢Q£FW¯^Ma }úôpâĉ$Ÿµ··W&€³³³••U‚£Ò/_¾;wîkûáà\¹r%¨›uêÔpÝà·1ã9ŽDjëÒÿü ysÑiLIl,¤#£G^ºtéÕ1"@llì¶mÛd2Y§ò’æ½K—.]’ÏþðPµMñâÅOž<ù‰'d2Y‰%ŒOypxxø¾}û<<<Š+¦zVÚ™?~ª,ŽDj˜<G@ƒ>\tsáBÜgf¶­qûv,X€úõ1b„è(DôŸ=zøùù9ÒÞÞ^u››˜˜˜±cÇ^¹r¥K—.)ϼ²hÑ"åË—OòÙª– 4hß¾}5ðüùó€€OOÏ$/ÙIaðóçχ V¡B…cÇŽI7žŒõóó³±±ñ”nk@2iÛH— …\tÒ‘¼›C .=à}‘œ—jyÅ:¶ÜåÔŸù²æþ<`ÃÙÔ¬G®€q~­ò¯?Q`Uðã•Âú×…HÒwJ¹è úuòäÉfÍš½~ýºD‰*T°²² ¹uëVÉ’%OŸ>-]Œâëë;a„víÚåÍ›WzÕ—/_.^¼xâĉ’%K^¼x1mÚ´‰/ŽQGDDD5²i\Ïœ9#Id†¦Lùoª… Q¼¸è@¦Jj»wãû»’™‘±q#ºwgk$²>|x÷îêGß=Ñxh\OŸ>}àÀ?þøCºÛPjnªNdD Àµkàà€Õ«áà :©º¾Ýä0ãKaìØ+ЮÚµ…ˆ $þ¥0666_¿~H ‹cÚ´i›6mjooß«W/ÞÞÞ¢7(""Ð¥ ^¿€bŰh‘è@¦AæýÝ$ª©_¤Ë‹Ó¦9h-:£Þ8€ùóáå…îÝEG!"á¬x*ZÞŽ§fÍšÙ³gO<Ù"‘ɸu }úÄ=®U ãÆ‰dâ*£ÿw“Ê`Œ­GHÜÜà9ù$ÌõRM…3f ~}hu¶7‘©Ó²8Êd²¢E‹²8’I ÆÄ‰q;t@×®¢™ ™wP‚ÊÇߣzu„XÇÝ]!:§¾œ;__Èå¼_#Y,íoÞ¥K777Ñù‰4±aV®Œ{£GÇ]»kcƒÕ«‘'è@–ÅÇ'N R%L›–ôÓ±5©Å‘ŒFl,ºtÁÇ7/Ö¬•)_œkšš4Áû÷èÝ­[‹ŽblDDšÐeq,\¸ð—/_?&úÇÑ¥ ¢£¤´§‹ôL*QË–¡paÑQ ¹ÁlDDjÓeq3fL’‰’uþ}DG1˜V­ðñ#öíã¥WDDZв8~ýúõÀk×®½víš´ÄÁÁ!GŽY²d±··ŠŠzóæÍ›7o=z´ÿþýû÷Ož<¹Y³f:t(X° èM&ºuÃýû3'V¯Fºt¢QÜ9~S§¢reÑQ ¦S'¼x­[‘1£è(DD&I›âxæÌŸðððL™2µhÑ¢råÊ¿üòKþüùüüùóõë×ÿúë¯#GŽlÚ´ióæÍ­[·öööæÞGKñì:wFd$”+‡™3E¢8Rk<|iÒˆŽb0ýûãáC¬]‹ìÙEG!"2U2¥R©Ñ FµsçÎ *üöÛo¶¶¶j¾0<<|×®]6lH›6­¿¿¥J•Do»Þ( ¹è ¢e¹ôàïuÒã'ËÝÚHt"Šóøzæ•ýËð VˆÎ¢¹©ùZ›²ÓùÈÕ«3Ú¿®ÀƒDÀ·ï”rÑAÈÔ(5äååuòäIM_¥áïï¿páB­×`‚ƒE'jß>¥\÷ߦM¢Óü'Xlºo”úuJkX·N)—+›7×ï[kôu§ækµv­R.WîÜ©ýD3ØŸ^£MeÌ_+üPý—â;ELãCÕÛ·oOÍ…ÒvvvC† Ý–I?–/ÇŸÆ=öõE¢Ñw†Åå˨]cÇŠŽbHGbõj´l‰fÍDG!"2yÇ­qñâÅùóçoРArãׯ_occÓ¶m[Ñ[Júäë …"îñ²eŠÂÿÊÁÖh\|Ýå†Gò_Vstë&OF•*è×Ot""sÚÛñÌ™3ÇÝÝ=åâøöí[G³Õ«îÜ''¬^ ÿŠŽEß‘.…Ù¼Î΢£RDúôA¾|˜2Et""3¡Mq¼víÚÇU?>{ö,000É‘OŸ>}ôèQ:Þ{Åü¼|‰®]ñþ=üò æÌˆ’öô)~û |‚Ζv|Ó¦°¶ÆÚµ¢s™mŠc@@À¦M›T?Þ¸q#åÓ]]]Eo&éÎßÿ7£týúÿÍ4MÆ'0~~ …è0†&íe=zTt""³¢Mqtqqqû6M\HHH–,YŠ+–Üà9r 0@ôf’.:„iÓâwë†öíE²\2ï ø?*gy$3iŽCÙ²˜5Kt\ÓZ#§¢&"Ò5mŠcÇŽ;vì(=þùçŸK—.½dÉÑBú´z5ÖÅÝ”ãÆ¡V-Ñ,W\eôÿ®)Ê„ïëcóæxóÆRë=[#‘Þ¤ö☾}û(P@ôVÞLžüßÁ¾Å‹Q´¨è@Mæ” 2Æñ÷ CÔ¥â´h’?`¾Ø‰ˆôIãâÂÀAƒiñ® VBƨ\¿Y²`õjØÛ‹dé’m*þÖ±ŠÉa±ÅIÚ¿ºoŸèDDfËJÓÔªUkéÒ¥Ÿ?Öîý®_¿Þ­[·åË—‹ÞpJÆÛ·ðò‚»;®_G‰ÆŽl¹{Çþ 5Ù²Á¢[ãÈ‘ø÷_,]ŠŒEG!"2[Ç.]º´víÚ~~~wïÞUóU‘‘‘Ý»woÑ¢EdddË–-Eo8%ró&ÜÝáå…·oáé‰à`,X :©«`A”*…¡P$¼tÆ"Ì›‡sçðûï(RDt""s¦ñ¡ê:xzzþñÇ+V¬X±bE±bÅ*W®\ºtiWWWgggkkkÕÈOŸ>ݹsçÊ•+—/_>yòä‡|}}[µj•šI I÷ŽÅäÉq;uBç΢Ñw~xº|ydÊ„Ç&:«Û·cçNtëw‚#é6ÇäÈ‘cáÂ…aaaëׯ߽{÷Í›7¥å2™ÌÎÎÎÞÞþË—/oß¾ŠŠR½¤H‘";vlܸ±­­­èM¦x֯ǪUqGF:¢‘Æär¸v /_ŠŽ"Dh(,@½zy9‘¡iUu¡B…|}}‡úðáȈˆˆˆi€½½½««k•*UÜÜÜŠYâåFìÓ'Œ‡Ë—ã~œ?%KŠÎDÚZãÉ“ˆ‰EˆG0z4J•ÂÈ‘¢£Y„ÔÞŽ'S¦Lµk×®]»¶ôcDDÄË—/mmmÓ¦M+zë(‘øwd”ɰm²e‰´ag‡rå@¡E”ØXt숬Y1ožè(DD–"µÅ1Ì™3ó>;ÆèâEŒ‡Èȸ{õB›6¢3‘öòæEÁ‚øú§O‹Ž"t#úíÛEç "² Ç+W®(Y²düë`ÈH}ýŠqãpî\ÜnnøãXi|)=WWdÍŠçÏqã†è(ñFßDD"h\[µjàÂ… vvvñ—ÇÄÄ`›46`åʸÇ3bòdüò‹èL¤%å,â.¬®Y2îÜÁ“'¢c ÄÖHD$ˆnUþü¹téÒnß¾-z‹,ÛÕ«7ïßÇýص+:t‰tFºæìY¤tþ¡Añ'­6ClDDâèøGfܸÿÎw+_“&!]:Ñ™HgöŒNï øá¥0fß7؉ˆ„aq4q[·bñâ¸ÇéÒaÒ$”//:éØáÃðŸZ€¢lÉ÷B³o½{ãÃlÙ":‘åbq4M·naÜ8¼z÷c‡èÚUt&Ò‹iÓpèò¹¾[;×ðáÛt‚ñç’ÀÌ[ãöí¸}³fÁÉIt""ËÅâhj|}ÿ;ZùË/˜4 ™2‰ÎDúÒª^¼@§Nø©óe@Žxíð¿iö•ÀªU¸v ÞÞ([Vt""‹Æâh"vîüï.Ç2&M‚››èL¤_ÒE sçÂÕŠDÏšYT9të×ÃÍ ‰ŽBDdéXÛ½{;ÏžÅýغ5z÷‰ô.66îæÖ¼×®aÚ4T¯‹)ÊDDFŒÅÑXM™‚#Gâ/ŽI“%‹èLd.`øp€­À›70..˜8Ñ‚§V$"2"ZG…B‘!CÕ‘ßæ²;vìX’ãkIûOè‡öíìYÿý8ajÖ‰ gÙ2lÚ„ºuX“T~û ’9[šˆˆÄâ¡jC™3»wÇ=Ο“&!OÑ™H°€,\ˆ °¿è(FbÚ4<}ŠÙ³ae%: %ÅQÏ‚ƒ1qâ?Ž Dg"£0v,BBPµ*&MÅHâÐ!té‚Ò¥EG!"¢¤±8êÇË—7ªkÉëÕÃÈ‘¢3‘©W_¾`À4o.:Š‘xü~~(_;ŠŽBDDÉbqÔµÞ½ÿ당raÒ$( :éÚÕ«ñÓO¢£6-üüDç "¢”°8êZ£F¸}ƒ£iSÑQÈè¼} //€—Â$ UéC‡Dç "¢`qÔµF)ïÅG‰á?¶ÆïÉÝ}~(DD¦Å‘ÈfÎÄþý(V ‹‰ŽbT:w8= ‘É`q$Ò»ß~ÃÓ§h×Ý»‹ŽbTfÍBxøÕí]Ó¥…ˆˆÔ"S*•ú[ûÒ¥K> ÀÆÆÆÑѱzõê-[¶´±1÷¶ªP(ä¢3Ñðu—è8ëJ²oDg1"ÎGÿ.6yGxûêºy¨3^®¿VD:$}§ä‹B&F¿îéÓ§×®]лwïwïÞ-[¶ìÞ½{cÇŽ½Õzgá_Ÿ¿ŽŒŒÁRÅ£x“çý"6¼ÖkÐâ…?~Éóç˜ì W×üÝ&>PwýÆø‡Ê`,ü;¥§÷2·¯•Æ#ñ?ýG''§Â… 2d€/^Œ5Jô&Â_aÈ€W}$©ukÈd˜;Wt""ÒŒ~‹cß¾}ûöí«ú1{öì+W®½ÉDz·jÖ¯‡³36oÅI»aƒ‚Dç ""™ûé†D·ª™G×Q¿>FŒÅÅ;xODD&Ç*•¯_¸pá“'ODo‘±pwÇ£ëöcDz5&¥GØ»Wt""ÒRj‹ã¼yó<<<:wî¼wïÞÈÈHÑ›C$’´7Í; ¤vmÑQŒÐ¼y ÃäÉÈ”It""ÒRj‹cÅŠœ9sfذaU«Výý÷ßÿúë/ÑEdhþw 6S¶(ÑqŒB;Ѻ5ÜÜDG!""í¥¶8®_¿>((hÈ! øðáÖ-[Z·n]¿~ý+V¼xñBôÖ®]èÔ iÒð̽d¼y__+†Þ½EG!"¢TImq+W®Þ½{|@Ÿ>hÕJt£Å˨‰ˆÌˆö8&`ccãææÖ Aƒ²eËJKÞ¾}»nݺfÍšµjÕ*44Tô&醻;>|À²elÉck$"2/ºÜãyüøñ(ŠÏŸ?Éd¥K—®W¯Þ­[·8påÊ•.]ºÌ™3§nݺ¢7œ(i2ï„7¦VÎJ8™òÇhÔ`#J™tóÿ;Dç ""ÑAqŒŠŠ:yòd```PPЧOŸ¤…E‹mÔ¨QÆ såÊ%-5j”¯¯o``àôéÓYÉÅUFÿ„5Q† Ä«'NÀÇ`kLÙ’%¸y& KÑQˆˆHgR[GŒqìØ±>H?æÏŸ¿aÆ5*X°`‚‘ãÆ |òäItt´ '­!#"óJ\ãø{!H9Ëcî\ìÚ…Â…±l™èÄFÌ1ä6¶l—jÖ…ˆˆt)µím÷îÝœ4hШQ£’%K¦0ØÚÚÚÑÑ1þüldTRjñtꄇѺ5ï*“¢JŽÝŒB…0p è(DD¤c©-pmÚ´iذa… d2Ù;88œ>}Zô&}GÍÖ(¿äñ˜6 •*‰Nlä7€åËEç ""ÝKíUÕ9räxùòe ­qýúõ›6m½™D©"—Àñ㨼5(•«2sîîÁ>¢s‘^¤¶8Ι3gÏž=) X¿~ýìÙ³Eo&QÒ~¸»1sæ¸Ö¨P@©×Èñæ;DDæN›CÕ×®]{øð¡êÇgÏž&9òéÓ§=J—.èÍ$ÒFþü(P_¾àÌÑQŒß A°e‹èDD¤GÚÇ€€€øGŸoܸ1dÈÆ»ººŠÞL"•. <{†›7EG1~+WâêUŒ ''ÑQˆˆH´)Ž...nnnÒã,Y²¤0—`Ž9  z3‰4#ž¾u ÿûŸè(ÆïüylØ€ÆQ»¶è(DD¤_ÚÇŽ;vìØQzüóÏ?—.]zÉ’%¢7„Hg¤Öxæ ¾|ÅøEFbÄäÏ¡CEG!""½Kííxúöí[ @Ñ[A¤%å,þ»>ÆÖ•+€B!:™©¨_Ö¬ƒˆˆ !µÅqtF<‘éË™?ÿ ¥Ç‹Žb*x5‘…á .d餎Åz89áÍ\¹’üСAª« uêlDD–EãâØ¥KU«VíÞ½»êÇZ½zµè-%J–ÛÕjipÿ>âÝf*¶Æø†ÇׯX¿^t""2(‹cHH€9rÄÿ‘Èt¹»#-Ò^úùBDÙˆ¤o>4[ãÄßcøpäÉ#: ”ÆÅqæÌ™ò|ûcÞ¼y¢7HK‘‘q—v(@†$fdeüÎýûøûoä̉ DG!""CÓ¸86nÜ8þuëÖ½ DÚ8scÆßŸ¤ÇŽøcݺÀŸŠÎADDðâ²D " ?ýž|«^FMDdÙ4.Ž&LÐâm´{‘>të†û÷Ѽ98¥‘fúö€d&¦'""K qqŒ?KµúXÉHH»Ì&MBÕª¢£˜–;pó&†Eúô¢£‘0ǾÒ^"$µÆÀ@– ½ùóáêŠïOq&""K£qqäT1dŠn߆oo9xzžvš4€¹sEç ""Á¬D һ͛ѻ7ÒgþÊÖ¨¹»/ÀÆMDD¯ª&³7|8.\€\Žš>§¹è8¦ÆÇÖ­ƒˆˆŒ§$sV»6bb0t(7†BtÓsò$NœïP#Þ¼¢£‘Qà”ƒd¶¤Ka6l@îÜ¢£˜¨ßGΜººç„ˆˆŒ§$3ôâZµxb^jH½ûÏ?Á}µDDô §$ssø0¦NØS£iS€Ÿ %¤ã«ª_¿~}çÎOŸ>‰Þ.²PS§bêT¸º²ó¤ÂüùˆˆÀ¬Y¢s‘ÑÑÍUÕ>ô÷÷?}útDD„´ÄÉÉ©^½z}ûöÍ’%‹èm$KѪ^¼@çÎèÔItÓuëvì@ýú([Vt""2::Øã¸k×®úõë8p@jÖÖÖž?¾nÝ:OOÏÓ§O‹ÞF²îîxñóæ±5¦NŸ>°±Áˆ¢s‘1Jmq ›0aBttt¡B…æÌ™sâĉëׯŸ>}zþüù… ~ÿþ½··÷ÿþ÷?Ñ›Iæ,&&îBŽà`”*%:I“>Ç#GDç ""#•Úâ¸råÊÏŸ?—(QbçÎõë×wvv–ÉdŽŽŽuêÔÙ¹s§««ë›7o–,Y"z3Él]¸€Úµ^È‘zݺÀ±c¢s‘ñJmq¼ví€qãÆ¥M›6ÁSiÒ¤7n€«W¯ŠÞL2OK—bøpäÉÃÖ˜j›7ãþ}Œ +NCJDDÉJíÅ1>´²²*Q¢D’Ï/^ÜÚÚúÁƒ¢7“ÌPïÞ¸}Mš`ÈÑQLÝË—XºåË£NÑQˆˆÈ¨¥¶8fÏžýÑ£GoÞ¼QÍ%ß»wïbbb ( z3ÉÜH'ãM˜€š5EG1¿þ ~~¢s‘±Kía)éà»wïNòÙ={ö(Y²¤èÍ$³"µÆÝ»ÙuAuaѤ¶8öëׯpáÂsçÎݸqctt´jyLL̦M›fΜ™&MšN¼? éÈýûÿõœÌ™E§1£FÀ–-¢s‘iÐøPõ”)S,)UªÔ½{÷&Nœ¸téÒâÅ‹;;;?þüÆÒ]xÊ•+wãÆ‚ ŠÞR2yÛ¶aÑ"dÈ€ýûEG1GâìYtï''ÑQˆˆÈ4h\×®]›ÜSÏž={öìY‚…çÎ;wî\‚®‰45f ΜAµjøãÑQÌÆäÉøé'´k':™ ‹cß¾}Eg&‹S¯¾|Á€hÞ\t³!ò_½Zt""2%ÇAƒ‰ÎL–EÕp~úIt³Q¯À bˆˆHc©½Ï}úô @† Do)™ž·oáå°áèÖÌ™øò ˆÎADD¦Gï³DtèСï*Lš;vŒ­Q®\ÁþýhÖ ÉÜ´Ÿˆˆ(:Øã}æÌ™[·nÅ¿äåË—7oÞ̘1£èÍ$3s&öïGñâX¸Pt33x02eO8!""­¤¶8~þü¹wïÞ¡¡¡)Œ©ÉÛ4“&~û OŸ¢];tï.:Š™‘NÝ»Wt""2U©-Ž;vì µµµõôôüôéÓ±cÇŠ+V®\¹¨¨¨S§N=yò¤K—.LÍ[Ü¿¿~ýú[·nýå—_?»mÛ¶­[·†……eÈ¡f͚ÇÏ’%KÊ+Tç%Z¬–tBê6³f¡lYÑQÌK¥óø'"¢TImqÜ»w/__ßfÍšhݺµÝøñã|øð¡S§N§N:thjÞbýúõÉ=5{öì%K–d̘±B… áááÛ·o¿{÷îºuëÒ§OŸš—h±ZÒ Î~§/kצü>>¢s‘iKíÅ1ÿþû/¾ÍX à—_~¹råŠô8S¦LcÆŒ¹{÷î¦M›´XsDDÄ… |||þüóÏ$ܾ}{Ù²eÎÎÎ\¶lÙ¡C‡:vìxõêÕ™3g&·Nu^¢Åj)õþú‹­QoþýkÖ¼¬ú3ärÑQˆˆÈ´¥¶8¾yóÆÖÖVµ+®@/_¾”~,W®\úôéO:¥Åš7nÜ®]»Í›7'7`ëÖ­±±±ƒvú6aÚ¨Q£ìíí8«õK´X-¥ÒªU29r°5êGûö®Mj#:™¼ÔG‡ÈÈÈÏŸ?K?æÍ›@XX˜j@Ž9®_¿®Åš'Ož¼hÑ¢E‹¹¹¹%9àüùóVVVòx;Q¬­­kÔ¨ñêÕ«K—.iý-VK©Ñ¿?Ö¯GýúÐjÇ4ýwä‘8)R@`` ô£‹‹ €C‡I?ÆÄļzõJ»uÕªU«U«V­ZµrçÎøY¥R–5kÖ¬Y³&ÎóèÑ#í^¢Åj)5ÜÝqý:Ǝň¢£˜%éôâ;Eç ""3‘Ú‹c7n|úôiŸ7nŒ7.W®\?ýôÓ¾}ûZ·n]¸páåË—GDD”/_^ç¹?}úãàà`¹½½=€×¯_k÷-V›4…Bç›lJäj}î¾rÛ½C²ÚDáÇà ”ÊHßH‹u^¾ŒË—Q·.þú+U©´x¡F/Q°%­äF¹ù†L¥÷Jý:µ^ƒ/Tÿ%©ß.¢ä¥¶86mÚ444t×®]6l3fŒµµuãÆçÏŸß´iÓ´iÓFEEèÔ©“ÎsKÇßZ}nݺuìØ±¨¨(kkëÁƒëcÊA™L&M„߇ðm¡/Ñbµ¤©]»0w.Ҧŷ3H¤,Y":™L9heeU½zõêÕ«K?Z[[/X°àýû÷ÿüóO¡B…ôtïC{{ûÄ»#""¨.ˆÖô%Z¬–4òûï8y•*aÚ4ÑQ̘‡À bˆˆH÷R{qLrìììJ•*¥×;f;;;¿zõJªt*<žÒú%Z¬–ÔÔ¨NžDŸ>lú4e ”J,_.:™!}G¨U«VLLÌÉ“'UK”JåñãdzdÉR¦L­_¢ÅjIîîøøË—£U+ÑQÌØ¹s8r­[£P!ÑQˆˆÈ i|¨ºK—.ªV­Ú½{wÕ?´zõjGÿõ×_—,Y²`Á‚š5kJ¯,[¶ìåË—Ý»wO“&4æãÇÏŸ?O“&Mž qc€ÇN `äHdˆ޽Eç ""ó¤qq #GŽø? ‘+W®áÇOŸ>½I“&Õ«W -Q¢D=TcŽ?>dÈÂ… ïÛ·OÍ—¨3†ÔwâDÜ Élz'Ýë; @t""2[GiÊfi€yóæ Lßµk×ìÙ³ïÚµ+000gΜíÛ·´k™Œ­Ñà¦NE–,hÔHt""²8©-ŽR)ôöövssKðTÅŠ¥»ðüù矢7“tì?0kÊ•CPè(–F:3`ÇÑ9ˆˆÈ¥öPõ7üăuêÔ±²²ºwïžèÍ$]òòÂÛ·èÑ¿ý&:Š¥‘æüž?_t""²P©r°|ùòŸ?þûï¿­¬¬ôë×ïèÑ£Oý!%IDAT·oß–ž-]º´µµõåË—Eo©™õ”ƒ¾îrÝ_Ê]4BtË"‹Ž©é9ém™Ÿþòï$:‹œrH·ä @.‚LOj÷8-Zôüùóÿüó‹‹KâgÃÃÿ|ù¢:ñÑr˜åD¿~¢s%+µÅñúõëmÛ¶ŽŽ½!¤.™ 5k Nj$á||>=Z¶ƒˆˆ(Y©-Ž .ŒŽŽÎŸ?¿··wÁ‚­­­Eo¥$kV¸ºlÆFºÿN` èDDD)ÑÁG™L¶xñâ‚ ŠÞúäˇOŸpîœè(ߺuàç':Ѥª8ÆÄÄ<{öÌÙÙ™­Ñøõüàq'þýwïª1z(on@«W£hQ”//:Ѥê&ÏÒ©±±±¢7„RâîŽ;w0aî6úñh¶FC’R/^,:Ñ¥ª8¦K—®lÙ²Ÿ>}:~ü¸è ¡dIÍdÏÔ¬ å, M±;²5ÒÀÖ­¢s©%µÓÊýñÇööö£F:yò¤èm¡„îÝ‹kÁÁ°³‹[××Ç¡Alõï¿ B½zÈž]t"""µ¤öâ˜ÐÐЖ-[®Y³¦{÷î...… Î’%‹L&K0l„ ¢·ÔâlÛ†E‹!öïOø”ÔeJ¼ §}{9Rt"""u¥¶8Nœ8Qõøþýû÷ïßOr‹£ÐPT¯Žx¿Ÿ„ØEêÖ à$1DDdbdJ¥25¯Ÿ;w®:Ã,kJk…B!ùþ“ëÕˆþbUàÝŠ^ÿŠþ,( Ž!·KŽÝ|¯—ç£6n¢³˜ ¹b¿VDfF®ø6‡‘&R[) …Ào£tRãš5ÈŸ_Ü…Â>á©~üFîî°±Á‘#† ¯õ´x¡F/Qw°Ð¯•pþÒÓ{™ë׊ß)Ò+ÌUMFâÍ4oðø§‘«]€F­‘ˆˆÈH¤öªj2ÇŽ±5š‚?ÿDL ¦NƒˆˆHïq,^¼øÇØÛÛ»ººV®\¹cÇŽœ½Úüüˆ%°`è(”²åËQ¨*WƒˆˆHǘ˜˜ŽyýúµB¡P(ÇŽ›3gŽ£££èÍ4g¿ý†§OѾ}Üuºd¼¤óO—/ƒˆˆHKÇÙ³gÿpÌ»wï®\¹²gÏžóçÏ3fÙ²e¢7ÓlIUÄßeʈŽB)›26nƒˆˆH{Ç ¨3¬mÛ¶Í›7ïÚµëñãÇÏŸ?_¡BÑ[j†T³Â±{þGŽ V-äÊ%: ‘öôxqLÅŠ[¶l @ôfš›Ë—ÙMJëÖ0nœèDDD©¢ß«ª¥Ý“ÿüóèÍ4++WbèPäÈÁÖh"zõØñ‰ˆÈè÷>Žyóæ‹£Nõïë×Ñ †…ÔqîîÜá…KDDdô[¥{ñÄÆÆŠÞL3!ž;6îÒdFŽ„L†öíEç ""ÒýÇ'OžÈ—/ŸèÍ4RkܱY²ˆŽBjªW‚‚Dç ""Ò ýžãxøðaùΚlÂÃÿ»†­ÑdlÝŠ/_0q¢èDDD:£Çâxíڵ͛7hܸ±èÍ4a»v¡sg¤MË‹+LÍâÅøé'T¯.:‘Îh|¨úرc?óîÝ»¿ÿþ{ÇŽ‘‘‘eË–u—v—‘æ~ÿ'O¢reNnlj¤?ó«W‹ÎADD¤K2¥R©Ñ ~þùgõ-ZtÁ‚ÒµÕD¡PÈu°šiª}ùhS§Ï½*­‰Þ$ÒÀÏ~{r^>·®ÿ§¼ÙDg1rtòµ""‰ô’C.:™½\“!C†%JT¨P¡wïÞéÒ¥½¤þ«(í±Z±  ŠÞ ÍÄýudd ”êÕ+úB.¯˜·…Q…×z Z¼P£—¨=ØÿPŒE§ôö^æúµâwŠôJãâxãÆŽ‘îÂCÚyÿMš¼c´‰jÙ||Dç ""Ò=/ޱVƒè2a'N°5š²þý(‚Ù‰ˆÈ<é÷>ޤ‘9s°{7ŠÁÒ¥¢£.]ÂõëèÔIt"""}aq4;âÑ#´nÞ½EG!íx{@ç΀Bt"""½`q4 Ò¥03f BÑQH;<ÀˆˆÌ‹£xRk}ÂýûhÐ@t"""J ‹#† `øpÑ9ˆˆˆ(%,Ž$Ú¥K0t¨èDDDô,Ž$š·74n,:ý‹# õ矰l™èDDDôc,Ž$ÔòåH›… ‹ÎADDD?ÆâHâüþ;:$:©…Å‘Ä9y®®¢C‘ºXIV­`î\Ñ9ˆˆˆH],Ž$Âóçxñ"®;‘‰`q$Z·€>}Dç """ °8’Á8>>¢s‘fXÉà¤Ê(—‹ÎADDDšaq$Ã’îõ-Ý÷›ˆˆˆL ‹#Ö¦MÈš9sŠÎADDDcq$:¶oƒˆˆˆ´ÁâHtù2ÜÜD‡ """-±8’¡4h“'‹ÎADDDZbq$ƒ¸Ÿ?£kWÑ9ˆˆˆH{,Ždݺ@‡¢s‘ö̤8Þ¿ÿ矾råŠ:ƒ·mÛö믿–)S¦jÕªcÆŒyóævcH]àç':¥Š™Çõë׫9röìÙãÆ»wï^… 2eÊ´}ûöž={~þüYÓ1¤©2–//:¥ŠiLjˆˆ .øøøü©Þ ¥oß¾½lÙ2ggçƒ.[¶ìСC;v¼zõêÌ™35Cð÷€={Dç ""¢Ô2íâØ¸qãvíÚmÞ¼YÍñ[·n.W®ÈÆjÇ\ÃSí“Éd±Xôzý=í"2<<¬°Ï”¶oïú÷¿Õ^®šDDÎJQ‘ˆÈºurö¬ÚÝ•{þ#ççœñ 38­!Óè<;>HªHy0ŸÞYÕ?ñ¿œŸsÆ3Ì` ò!Ó˜üìY¹ëô Ä<*í·EûúúÞÓîçç'"£££ ûL©««KíµÎ rþ¼ÄÅ©p ÷>U=-z½ÞÃÃÃd2ÝÓ~ûömù똢’>˜ªFæyT8zzzL>jh4EÄ~µ’>óÓ<*E$88xhhÈ^: û.å}æ¡ùU8&&&Z,–sçÎ9Zl6[SSS```tt´ò>óÐ/ÇÆÆ ï¿þjÿ3%%E£Ñ”••Ù¯Y‘ªªªÁÁÁääd///å}æ¡9~WuSSÓ®]»BCC¿þúkYºtiAAAqqqRRR|||___KKKdddvv¶cˆ’>óÐ/'ËÊÊZ´hQ}}}CCÃ’%K222òóóíOÛ™V€ùÆÃf³©ÜÀ¿Æ®BáE( …#¡p€"ŽP„ŠP8ª`|||Íš5f³Yí@€¹`tttïÞ½k×®‰‰ÉÉÉéííU;"À½õ÷÷oß¾=&&&66¶°°ðæÍ›jG„Y„ÂñA,**r¼€“Þ~ûí¶¶¶?üððáÃwîÜyýõ×M&“ÚAîÊjµîܹóÏ?ÿ¬®®>tèPkkë¾}ûÔ ³È¼{å ºÊËËKKKÕŽ˜;L&Ówß}W^^'"}ôÑ3Ï<ÓÒÒòì³Ïªà–º»»;;;ëêê"##E$--íã?¶Z­ Gš ÂÇ,77·««ë³Ï>S;`ŽˆŒŒ\³fýO___ooïááaµãÜØ+¯¼²jÕ*ûöòåË==9Æ„ÿáÓÀ…„„œ8qÂñgCCƒÉdZ½zµÚqî*44tÿþý"2<<ÜÓÓSUUõâ‹/r¸|¦­§§',,¬££ãÿîýòË/SRR¢££ccc÷îÝ;22¢v¼€p>­¬Vkmmí[o½õÆo<ñÄj/P™ó9•““³eË–k×®edd¨½Ì"qœ¶ÚÚÚ¿ÛuèСÊÊJ__ߘ˜˜¾¾¾'N\¹råèÑ£:Ní¨YÍÉ´êëë+((0 EEE)))j¯PŸó_UÇ©¨¨HMM=þ¼···Úk¬ÀG¥ŒFã?ü°oß¾O?ýôÿvèêꪪª >}útUUÕ™3g^{íµË—/—””¨;0K¹$­:::^~ùå+Vœ9s†ªóœó9e0.]ºdß ܽ{÷ØØX[[›Ú+ÃlAá¨Ô¦M›¶lÙòùçŸÿ]‡/¾øÂjµæçç?òÈ#ö–={öœ:uÊjµª>09ŸVo¾ùfffæÁƒƒ‚‚Ô^ 2çsª­­-//Ïñµe4­V+çÍàÀ©j¥8pçÎùä“Oš››'whmmÕh4 Ž­V»~ýú“'O¶µµ=ýôÓj¯˜uœO« .\¿~=<<üâÅ‹Ž>¡¡¡ .T{q€ œÏ©„„„÷Þ{¯¨¨(==Ýl6—––†††FEE©½2ÌŽJÙŸ'"“÷Úl¶«W¯ÝsÌcåÊ•"ÒßßOáLæ|ZuwwÛl¶¼¼¼»;”””lÚ´IíÅ*p>§,XP]]}ðàÁ´´4N·nݺwß}×ËËKí•a¶ pt “Éd±Xôzý=í"rÏSåV¯^ÝÕÕ¥vÈÀl§$­²²²²²²ÔŽp ¿ªžzê©cÇŽ©,f)®qt û‹§}}}ïi÷óó‘ÑÑQµÜi¸9çQ8º†^¯÷ðð˜ü†\û;©í?æL i¸9çQ8º†§§g@@ÀäŸkF£QD7¯PŽ´\‹œ‚ó(]&88xhhÈž~ƒÁ¾Kíè·DZ®ENÁIŽ.“˜˜h±XÎ;çh±ÙlMMMÑÑÑjG¸%Ò p-r N¢pt™””FSVVf¿XDDªªª“““y03¤àZäœÄãx\féÒ¥ÅÅÅIIIñññ}}}---‘‘‘ÙÙÙj‡¸+Ò p-r N¢pt¥¬¬¬E‹Õ××744,Y²$###??ßþ˜3CZ®ENÁ6›Míà¸ÆŠP8@ G(BáE( …#¡p€"ŽP„ŠP8@ G(â©væ,‹Å1¹ÝÇÇgñâű±±©©©!!!j‡ PÊÃf³©€¹éï G­V»cÇŽÜÜÜ™ÍôèÑžžžÍ›7GEE©½V˜8âàWRR’`ß¶X,ƒ¡³³³¦¦¦···´´ÔÃÃ#''gÓ666677¯]»– ®qðóññyø/z½>:::==½®®nãÆ"RVVvåʵcL€:|}}ßÿ}½^?11qäȵÃL€jt:ÝÖ­[E¤¡¡Áb±Ø­VëW_}•••ŸššzìØ1³ÙìXZZÖÜÜ,"»ví «¨¨P>03\ã@M6l(--5›Í¿üòKxx¸Õj-,,¬¯¯·ïõöö¾qãÆ7.]ºôÍ7ß>|ØÓÓSDüñ 6´··ŒŒDDD¯X±BDÌ G¨iÙ²eö¾¾>¹páB}}½——×;ï¼ÓÞÞÞÑÑÑÞÞ^\\ìííÝÒÒrñâE{礤¤ÊÊÊððpÉÎή¬¬|á…”Ì …#5ùûûûøøˆÈè計ØÏ>¿úê«ÉÉÉ:NDt:ÝK/½ôÜsωÈÏ?ÿ|ÿÙœ¸?ÎÚP™‡‡‡c»  `÷îÝͽ¿iM&“ˆLLLÜ*'‡î€šŒFãØØ˜ˆˆˆ£æèéééïï7 ö3ÎJfsr8àþ(¨i``À¾ñ裊ˆÅb©¨¨8yòdoo¯½ÝßßÿÉ'Ÿ ïììœr6'‡î€šEÄÇÇ',,LDòòò¾ýö[ÿôôôçŸ>$$dáÂ…"²ÿ~%•Ÿ“Ã÷Gá@5f³¹¦¦FDÒÓÓµZí­[·¾ÿþ{©­­]µjÕÝ=ÇÇǧœÍÉá€)qW5u˜L¦={öŒŒŒøùùmÛ¶MDz{{­VëC=zwÏÛ·oŸ?~Ê ˜…#€ÜüaþË­[·~úé§ãÇoÞ¼ùôéÓ"’››k¿3&$$D«ÕŽWWW;^$óã?nݺÕ~)äàààäɯ]»fߘÙp€r6›MíÌM‹%""â>´ZíŽ;rss-UUU|ðˆøûû/X°à÷ß7›Í¡¡¡qqqGŽÑjµáááµµµöG?ÖÕÕi4šåË—gfffffNk8`º¸ÆÀƒ¦Óé/^›––r÷®mÛ¶=öØc555ÝÝÝF£1&&&...--mbbbpp°©©éúõëŽÎ;wîüí·ß._¾|óæMû»§50]q€"\ãE( …#¡p€"ÿ¢ð—ï’X1ˆIEND®B`‚statistics-release-1.6.3/docs/assets/wblplot_401.png000066400000000000000000001212361456127120000223430ustar00rootroot00000000000000‰PNG  IHDRhŽ\­A€IDATxÚìÝg\Çðç# *‚b‹Ø±lнwc/Q±+vMKìhlØbCcÃÞ£ÂÙ5 *Ôh,XP¸ÿ‹Åû#Í㸻¹ò|_äs·;»û›…Å_fvfdJ¥DDDDDßb!:""""2L‰ˆˆˆH-L‰ˆˆˆH-L‰ˆˆˆH-L‰ˆˆˆH-Lɬ­[·NöŰaÃ‰±¶¶–v9::&9°wïÞªwìØ‘Þë;vLuøéÓ§¥¿ÿþ»jã¿ÿþ«Ýš¦xrõ¯'KEΜ9kÔ¨áååõøñcmÿ|Ò ^È™ÕÿÁ¥XÀ¬Y³~úé§Ÿ~úÉÏÏO[µÐà§£•[ª‹º‘câHf­Q£F2™Lú|þüùÄ»®^½úéÓ'éó‹/îÝ»—xï¥K—¤VVVõêÕ]‘^¿~}îܹeË–•*UjË–-¢Ã1tûöí[µjÕªU«<¨‡Ëéô§£çº‘!`âHfÍÉÉ©B… Òç+W®|þüYµëÂ… ‰Kž;wNõùãÇ7nÜ>רQÃÎÎNt= Âû÷ïû÷ïÿßÿ‰„RÀŸiG2wMš4‘>|úôéêÕ«ªíI 'Ž!!!±±±ÒçFipÑš5k>ø¢råÊ¢ïæÁ_¿~}Ó¦ME‹•v½}ûvþüù¢ÔSÝÓþÁ‰ú›óO‡ˆô€‰#™»Æ«>'ne”>.\ØÙÙ_'Žª~j¤”8®_¿¾nݺ¹råÊ–-[¥J•¼¼¼BCC“”9}úô÷_\¼x1yTJ¥rÆ -Z´È;wîܹ[·nýÏ?ÿ$)“Ækj*T¶·nÝZëw,K–,…¾(]ºt§NvíÚ¥Ú{íÚµû{÷nÛ¶msäÈqàÀÄg;vìXŸ>}ªT©’-[¶’%K¶k×náÂ…ª¼\³;#¹{÷nÿþý+Uª$ý,J—.ݦM›cÇŽeäÌßüÁ¥Qrúôé2™ìÔ©SR£GJ? ªnÔÉ“'ŸäСCª]Iî[:iûæ%µº¨sr"2nJ"ó›3gNéqèÕ«—´ñÝ»w:uê$ýs˜)S¦?J{{öì)•wttŒWêíÛ·:tHþ”eΜù÷ßO|Ñ£Gªöž:uJÚ¸jÕ*ÕÆ¾}û&9‰Í¶mÛŸ$qùÇ'ÞU¾|yi{«V­Ò(œÆ’ß%UÉúõë'/7o^io±bÅ’ŸüäÉ“yòä‘>ïÛ·O*ðþý{///Õ;¦‰UªTéÚµk)ÖT;£T*7mÚdee•⽑#Gj|æoþàT·1yÉiÓ¦%¦U«Vªô À¨Q£_nèСÒöœ9sÆÄÄèè§“øG¯æ%µº¤ãÁ#"ãÄG2w––– 4>«º§/]º jÕªÕ«WðùóçË—/«öJ6l˜øŸØAƒmݺUúìêêZ·n][[[Ÿ>}êׯ_pp°úQIÿ®Ëd2)ðáÇŽ;^¿~]ô K™ê>¤øÆ§··wò·ë¼½½ýýý•J¥ôÕÙÙY•ê]ºt©qãÆQQQšÝ™ðððŸ~úI•NåÏŸ?ñ¸x??¿3gÎèÿž·mÛ600°dÉ’Ò×råÊŽ3ÆÍÍ­páÂÒÆ½{÷&>D5è¤]»v™2eÒÑOGƒJjuÑÊ""CÆÄ‘èÿ½Õ7oÞ|ÿþ=õYW­ZµZµjÒg©·:ñȘÄýÔÿý÷Æ¥Ïþþþ!!! …âæÍ›ÅŠçíí®¨†þìÙ³W¯^M:Uú‡?>>~üøñ¢ïV BCCŸ>^jM”𭬬*T¨P¹reKKK|Iÿþû︸82™ÌÓÓSu’Å‹Kí4eË–0`€´1þü>>>Òç+W®Ü¾}[Í6l8þüܹsÛÙÙMš4IÕ9¾wïÞ‡н]ÑÑÑÿ~qçÎ;v´jÕJµ7ÅìÁÃÃãúõëK–,™>}zÙ²e,]ºTjÓÍ”)ÓîÝ»¥Y³f]¼x±ÔÄ `Ñ¢EšÝ™?Ö¯_¿~ýú^^^ª¼ßÕÕÕÆÆFúœdr%á÷¼k×®ªÏªFGUscÞ¼yëÔ©£»ŸŽŠÆ?"2L‰àèèX©R%é³”2J-Žåʕ˚5«”ëH‰£jHDåÊ•sçέ:É­[·TgÛÈÛ·oUeNœ8¡fHýû÷OüU•‰¸yó¦ØÛuêÔ©ü_/^¼mÛ¶ªº»¸¸ôë×/ù!ãÆËœ9sâ-ªZ4lØðûï¿O±îoÞ¼yöì™wfÔ¨QGŽ9r䈟Ÿß§OŸ.]º´jÕªFEDDæ=/Y²dÅŠ¥Ï{öì‘>¨ÇŽ;ªzÏ¿IƒŸNòj¦÷‡BDæÃ*ã§ 27–2 .¼xñâÁƒªV­*í­^½zHHÈ£Gþý÷_Õ ŽIÆS«zƒ‚‚‚‚‚R¼Šú³è%éRT½L 44´aÆ¢oX œœœÖ­[÷Ýwß%ߥš&q-¤%J”H²KêÜWsrrÒàÎ|üøqÉ’%»wïþ믿OÏ™±÷¼k×®ÒK´§OŸ~ýúuÖ¬YU/Åf¤ŸZ%ŸNâjJÒûC!"óÁG" ÑkŽçÏŸOü‚£ôAÕÝù×_©Z“$ŽoÞ¼ùæU·>¦M5:A’¸Á)ůeΜ¹R¥J¼zõj­ZµR,“F¾’¼:Ò‹Õâ=éº3ÏŸ?¯\¹òèÑ£O:õùóçR¥JuéÒeáÂ…ª1(){Ï;uê$]166öàÁƒ'Nœ†¡¸¸¸¨~5 ÎO'¹ôþPˆÈ|0q$€jÕªåÊ• @xxø¾}û¤‰[¥G•ZeìííUÙ¤DÕ¨6f̘Ôf1˜3gŽšñ$yRÕÛˆ¯[ÂT¤×.U¤7Õt$É„/ÑÑÑ/^\²dIò½Ó ªEâª%¯{éÒ¥5¸3?ÿü³4€ÉÉÉéæÍ›7nÜØ°aÃ!Cg?¿çÚ•7o^ÕÚ•{÷îUõS§·¹1#?(Dd>˜8€………jRž€€666¥J•’¶”,YRšÇdãÆRŠæéé™$ Qý£{åÊ•ÄÛ?~üxì‹çÏŸ«Oâiö,_¾\õYõ϶jŒ0©o]òöí[U¿¹ÁRÝ®C‡…‡‡§XÙlÙ²åÏŸ_ƒ;søðaéC‡Tzýúuâ»”œ:gÖ¢$ œºté"}8xð êÿ^:uê¤õK§FãJòº‘©bâH”@Õ[-Íä¢L @&“I­‘‘‘Ò–ä Æ¨Z†Ž;¶ÿ~éóçÏŸüñGi„oëÖ­S›’:¹ƒŽ3æÍ›7ïß¿Ÿ3gŽ*§iÓ¦êŸíÄ/Ž?þþýû±±±ÿýw‹->~ü(úv~ƒj–éÏŸ?·nÝZJ颣£‡ªšdÑËËK³;óôéSéÃÙ³g¥‘oß¾íÝ»w Ò¨yf-zýúu’-mÚ´É’% ¥þeË–•f釯?”äu!"“%zr"Cñüùóįv=:ñÞI“&%~p=z”ü r¹\ÚkaaQ®\9Õü/æÍ›§*ùÍHTçIœkZZZÞ¼ySu’÷ïß'ÖD¯¦©R^½­“Ü7OþÓO?%¾P¡B‰_…,X°àû÷ï5»3eÊ”I\ÒÅÅ%ÉK–ýû÷×ìÌY9FÒ¾}{Õöš5kΘ1#ñ=騱câ`¦OŸ®Î­ÖâOGýÊ7ëBD&‰-ŽD rçÎ]¹reÕ×$#T¯9(W®\ŠMPëׯ—æÛ‹ÿ矂‚‚>|øÀÒÒrÖ¬Y#GŽT?i2”øøxUN-[¶;w&~ÙÎÆÆÆÏÏ/q²«T*ôìÙSŸÍTóóóKœ¦„‡‡ÇÄÄHŸ+W®|ðàÁÄiwºîLâîÝøøø{÷îÅÄÄxyy©Êû¬Õ9sÆ5oÞ\õùôéÓýõW⽉'t„~û©%éú¡¤]"2IL‰þ¯I“&ªÏIÇÄCaR›™¥@ÁÁÁ‹/nÑ¢E¡B…²eËV¾|y//¯[·n¥w5¶   ™3gÖ©SÇÞÞ>W®\­[·>{ölâ§%]»v=~ü¸§§gÞ¼y³dÉâêêºdÉ’Õ«WÚÈëÙÚÚ®X±âÈ‘#={ö¬T©’­­mÑ¢EÛ´i³páÂsçÎ¥öZ¡:wfìØ±ªY¯œœZ¶l¹cÇŽ¥K—V¨PAÚxøðáäS&©yÏ3¨[·n ,(Q¢D–,YòåË—d † Jƒ´T­ZÕÅÅÅ(i×…ˆL’LÉ—š‰Èýõ×_ƒΖ-›èXÒ¡råÊÒ\¡óçÏ>|¸èpˆˆ¾ÂÄ‘ˆÈPœ?ÞÍÍ-..ÎÂÂâÑ£GÎÎ΢#""ú WŽ!"oìØ±?Þ¹s§4ß“\.gÖHDˆ-ŽDDâ•+WîÚµkÒçL™2ÜÑÑQÚ2nÜ8;;»ƒÆÇÇ«_†ˆˆˆÈ bâøøñ㨨¨Ò¥KgΜ9ñöªU«~úôéôéÓj–IîÂ… r¹\µÅÒÒ²N:—/_V¿ ‘2ÄÄÑÂÂÀÇ“l‰‰ðüùs5Ë$¡T*ÃÂÂræÌ™dôLñâÅ(麖º…Íû±Òæ¯U+¸»ë9ªû÷3zMSø«2q¢ê.hPõá3E:eˆ£ª³eËvíÚµçÏŸ«ú‹?þüçŸxñâ…še’ˆŠŠŠ‹‹³··O²ÝÎÎÀ«W¯Ô,£Ž%J$þzëÖ-Ñ7•HC (䋎‚´$4oߢO=_¶woÑO‰^·›6ET†]i¢Œ2ÄG™LöÓO?}üøÑËË+$$äãÇ7oÞôòò ­f™$¤æI›$Ûmmm¼}ûVÍ2ê¸õ5Ñw”ˆàå]»êóšÝº@p°èº ä(üþ;Z· QFb‹#€¾}û>xð`ÇŽ:t¶8;;÷íÛwÕªUÙ²eS¿Lbööö2™,***Éö÷ïßãK›¢:eˆˆŒÒÊ•°n>¯ŒÇ1dˆèº‹i–³NœÉ¤hâhii9cÆŒöíÛ_¸páåË—¥J•òððرc€\¹r©_櫪ZYÙÙÙ%o5ŒŒŒ õw«S†ˆÈ(ýñòæEÁ‚ú¼æ”)°±A›6¢ë.Ä… 3`ÖH&Å@GIÅŠ+V¬¨ú*uC—+W.½eTœœœÂÂÂ"##³gÏ®Úxÿþ}i—úeˆˆŒŒÔaüÇú¼¦4dß>ÑubÕ*l܈‚õÜÄK¤k†øŽ#__ßÞ½{¿|ùRµ%::úðáÃ¥K—V¿LõêÕ‹‹‹;yò¤j‹R©<~üxŽ9*T¨ ~""còä ?Æ—·zôc͘7OtÝ…<7¢ysfdz 4q´··?}ú´ŸŸŸô5..nâĉïß¿ïÖ­›•••úe>|øpÿþýÇK_Û·ooaa±xñbéE+V¬xùòeÛ¶m3eʤ~""cÒ¥ ðedŒ¾¬_2e¨CÈl¸»ãúuLš„‘#E‡B¤}ÚUݧOŸýû÷oß¾=44´@!!!OŸ>­^½úO?ý”®2Ç1bD±bÅöíÛÀÙÙyôèѳfÍjÑ¢EíÚµÃÃÃÏ;W¦L™Ä‡¨S†ˆÈhlÞ ‹éóšR'õâÅ¢ë®RÍ·mƒƒƒèPˆtÂ@G[[ÛÍ›7/\¸ðĉ÷ïß/\¸pçÎ{÷î­Z]PÍ2ÉõîÝ;wîÜ»ví:pà@Þ¼y»ví:|øpi¶t•!"2Ë—ÃÆeËêí‚“'Àöí¢+®g/_¢}{€CaÈÄhâ gΜ“¥??(Ó¤I“&Mš$ÙØ¼yóæÍ›§}fuʺAƒ½ŽOyøÇ£I|½ü–©;zÓ§ÌÓAæ”|£rž‡è¸è 7q$"¢ yÿ7n qc}^³G=ZtÝõiÞ<ìÛ‡²eõü>€ñJHýRÈeÓGÃf ƒcˆˆ(£¤ni*A½èÙ0·F·îݱoºtaÖ¨&™wüÌÕ§ns£Ž•,YrÆ J¥rêÔ©¢c1JL‰ˆLιspsÓÛÕ`ölѵÖ;ЧllÌì]N“R¹råš5kîØ±#66VÚ2þ|WWW›œ9sV«VmãÆÒö^½z5kÖ €\./\¸pÚ…ÍG""Ó"µþI³ÃèÅêÕ(YUªˆ®¸øø`Ñ"¸¹™ë ܦ£|ùò±±±=0yòä‘#GæÎ{ìØ±^^^ïÞ½ëÚµëÞ½{x{{ûúú˜={öºuëÒ.l&øŽ#‘ 9u ÆÓÛ¥4Õß_tÅõ U+¼} //=¯úMºP @Òê!Å‹?|ø°´^ñ˜1c:Ô¼yó²eˆ‡‡¨Zµj:u¤QXtô„‰#‘ ùùghØP?W›6 ¶l]k=äåËQ¼¸èPH d2™êóùóç­­­¥D@DD€¨¨¨LWa“ÄÄ‘ˆÈTH“ïì߯Ÿ«½~’åØ14lGGÑשøxÔ«˜Û•&Nê¤vqq#GŽ3gÎ9r$44ôÎ;ׯ_W½û˜\º ›$¾ãHDd*ŽA¹rÈšU?W[Ø¥ôÚ+.•+̵E9Ï#µ3³wÆ…„„XYYåÏŸÿÓ§OÍ›7¯]»öÁƒ‹+æíí}óæM;;»JWaSÅG""“ --¸p¡~®Ö·/`òÙÔÚµX·yóâ?D‡b~Fjmðä._¾|òäÉ:XYY?~üÀ ,6l˜ª@jˆ§NR¿°©b‹#‘ñ»zÑÑz[¶åÌܽ‹úý¶.uëи1³F-R·ÑQ—Yã;wºví*“É~þùg?PªT)UÀÀÀ>(•ÊÄGÅÇÇ«_Ø´±Å‘ˆÈøIíúZ¶eâDXY¡f§‡€‹èšë†‡”JŒ D‡bj”óŽ ’öj÷rª ºe2Y±bÅZ¶l9xðà_Vã,X°àÆ¿hÑ"'''ww÷«W¯îÞ½{üøñ¿ýö[ãÆÝÜÜ:wî¼ÿþ»wï^ºt)í¢o­>0q$"2rÛ·£P!ýd9›6!..aô¶ zó­[&ÿò¦xRv˜>~½Q‹||||||¾Y¬N:§OŸN¼¥OŸ>}úô‘>Ëd²?½®vasÀÄ‘ˆÈ˜uìk×êçj+V hQ|i¬1-Çcòd€Y£þèîEFÒ&ŽDDFëþ}<ŽnÝôs5© wåJѵօ… ±s'J–45pˆ4ÇÄ‘ˆÈhõîýÿÿê˜Ô=ýåm1ÓÒ§îÝCÇŽ0@t(D†Ž‰#‘qš;ø²êŸŽ=Ž#GP¯œE×Zë¤vÔ3P½ºèPˆŒG""#ôáöjÖÔÃÕ¤)'M]k­“²Æ%‹èPˆŒ''"2BÍšÀôéz¸Tÿþ€éyøPîî›P1fDjcâHDdl~ùvïÖåΟÇíÛ0µÉFöîEq™3™\:L¤sìª&"2*OžàäI4nŒìÙõpµ±c!“¡kWѵ֢iÓpìªU;9³‘\t,DF‡‰#‘QéÒÆŒÑÃ¥5€ 5Ö6íÚ!"ýú¡sg˜îÚ7DºÃÄ‘ˆÈx  èé}í[ñé¦L]e-’†Â,Y‚Ò¥E‡Bd¬˜8‰7ðÏ?èÔI?Wó÷Ç÷ߣvmѵÖ)käKDÃÁ1DDFbÐ àË g“²¬5kDWY+®]cÖH¤-L‰ˆŒA€žRŸÙ³`ýzÑUÖŠ 0d™5i»ª‰ˆ ]®³·ñð¡~Ä{ùB.G¢«q£GãâExzbÂÑ¡™&ŽDD†®Ü„MÀ—õ[t¬}{ðñ]çŒóôDl,FBÓ¦¢C!2ìª&"2l­Zzꤖޢ4…N]wwÄÆ" €Y#©øúúÊ’qvvnРÁñãÇÓUÌßß_&“5hÐ ùU>|ø/_>kkë;w±N°Å‘ˆÈ€:„·oCǶ,©ûK]º„7Þ¥4bïߣysÀ4ò_Ò¾N:åÏŸ_ú{ïÞ½ƒ=z488¸nݺjëß¿ÿºuëŽ9²{÷î–-[&>ÿÌ™3ŸI“f”ªÁƒ׬Y3ñ–}ûö5oÞ|Ú´i‰Ç´‹YXX,[¶¬råÊ#FŒhذ¡µµµT&<<|îܹßÿýÓ}­–]ÕDD†JšDf×.=\JêÑ5îtkéRLš„¢E¼¤oÍš5Ë–-Ûõë×ÓU¬|ùòC‡½ÿþ¼yóTeÆŽýÛo¿eÉ’Etµt…‰#‘AÚ¼fÌÐÃ¥vì@T”‘ˆé×Û¶¡m[¬\):2>VVVªVCõ‹M™2%þü¿þúë£Gœ:ujË–-M›6mÑ¢…è éG""ƒ´|9 Bõêz¸Ô¢EÈŸr¹è*kÌÝwî`Ê ,:2>‡~ýúu+iZzŠÙÚÚ.\¸0**j̘1J¥rĈÖÖÖ .]!Ýâ;ŽDD†Gê¤^»Vo— ]å V`÷ndÏ.:2þþþûöí“>þüùÞ½{{÷îmÑ¢ÅôéÓ5(ÖºuëfÍšmÞ¼9[¶l/^ôõõuqq]EÝbâHDd`–/€¥Kõp)??Àx—|ò]ºÆþn&éÕÆ“lùî»ïš5k–ä­D5‹X¼xqPPÐÊ•+‹)2fÌÑõÓ9vU˜Í›áêŠR¥t}7o°w/jׯ÷ß‹®²@—.°´dÖHérêÔ)åñññ÷îÝóððèׯßÑ£G5( P¡Bƒ0yòdu^”4vL‰ˆ ‰ÔñúÛoz¸TëÖ0eŠè*k`Æ Ì™ƒŠ‘ì_q"õÉd²Â… KâƒSÿ?ostt;wnÑÒvUŒÙ³ Y™. AA¢«¬NðìzõB÷î¢C!SP¤H÷îÝÓJ1“ÇÄ‘ˆÈ0DFâàAÔ® gg]_*$W¯¢kWÈd¢k^ªYWWÑ¡‰°²²£•b&‰#‘a.ÓKÏñðáЧè*§—”5ò¥FÒ*KKK›°°0­3y|Ç‘ˆÈLœû÷ëáRR‚j\ÙWöЙ5’º^½zuýúõZ)fÚØâHD$Ú;8snnÈšU×—Ú½‘‘ iªÑؼ¹âòUÈ‘;vˆ…Œ˜O*ë#9s&½Åóööööö]?=aâHD$Z¿~ðõÄÂ:²`òæEýú¢«¬¾ñãqîÜsyGŸÅ¢C!"&ŽDDbé±VºÔˆ®²ú7Ft4† »ÑÊÞQt,D&ŽDD"Ió5êe‘iÝ•+EWY}Rž»f ¾ÿPˆŽ†ˆ&ŽDDÂ<~Œ]»P¯ž‰yÿ;w¢F -*ºÖꈎFãÆ‡Â™R©ƒÉQ(rÑ1™¹¦÷XÉÝ}(‚}2|¦oóu—ð Vˆ®ô·åü+ÌuÜFèëΘ-é™’C.:22lqÔ 3þ½E¥‹ eüœŸAƒÓuˆÚ… ñ—*C6€à`µ*Ÿ±ê GŽÀJ«÷P'ÏÔŠØ´ ß5kŸš•ú‡˜ï3EzÁÄ‘ˆHïV¬@L æÍÓÃ¥®]Õ+èÔ V†ÿ÷~à@ܼ‰–-&('"ÃcøHˆˆLËË—Ø´ nn¨XQW2ú÷]ëo’†Âøø@. ¥Š+ÇéWûö€žfmlÓ0Š&RÖ¸c³FÒ©'NÔ¯_ßÁÁÁÙÙ¹uëÖ¡¡¡¢#2>L‰ˆôHëýíۇׯ1nœè*§íùóÿÏd™#‡èhÈ”]ºt©~ýúááácÇŽ7nÜÝ»wk×®ýüùsõÏpõêÕŽ;æÉ“ÇÖÖ¶råÊóçÏM­ðÛ·o P°`A[[Û:uêœ;w.ñÞàà`wwwGGÇ\¹rÕªUkçÎê#‘¾¬_ÈHL›¦Ÿ«Í›GÇ„A8êÏ?ѱ#`¢dô–-[4zôè¡C‡?~<66vÆ j~ïÞ=¹\~èСF9ò»ï¾9rd{©!™ÈÈÈÊ•+¯Y³¦víÚ}úô¹{÷n£F®\¹"í=pà€‡‡ÇÇ»ví:`À€/^´iÓfÕªUêìOIZ,:Ñ7@iˆw@oQéâB?§ÆgÐàÀt¢nax¬>|PÊåÊ#48TƒŸ‚\®”Ëu[¡ŒþZΞ­”Ë•C‡êãZº9§a>VfôL¥SµjÕÊ•+—xKõêÕ¨æá-[¶´°°8þ¼jKïÞ½:t(yaiµëµk×J_ïÞ½kooïîî.}uuuÍ“'Ï›7o¤¯ïß¿/X°`þüùÕÙ+[‰ˆô¢iSðóÓÃ¥–,ÑUNC×®8pÝ»'¬C¤{/_¾Ì•+—êë§OŸÂ *¤æáAAAuêÔ©R¥ŠjËàÁƒœ={6yáÍ›7çÍ›·{÷îÒW—víÚ?~üéÓ§Ÿ>}º~ýz³fÍìì줽666µk×~üøñÇÓÞ+úUMD¤:zêŽF` ªTAÉ’¢k饯yóô3®œHgee@©T>xð`„ ùòå“Z ¿)66vРA•+WN¼1<<@æÌ™“ŽŒŒ¼}ûvçÎe2™j£‡‡ÇªU«Î;×¼yó‡Ä'ÿçŸ\]]³dÉ›Æ^Ñ·`âHD¤sÛ¶áÙ3Lœ¨Ÿ«IkõÍž-ºÖ©‘²ÆcÇ`Á./àÓ§OÖÖÖ²gϾaÆÄ)Z¬¬¬f̘‘xË«W¯f̘aiiÙ®]»$…Ÿ={¦T*œœotttðâÅ ++«2eÊHׯ_¶ÿþ§OŸþñÇÒ…ÒØk˜8éR|<–.EÉ’¨__W=]ëݾ0Ÿ$‡Â8VVV+W®|þüù™3gZ´hÑ¡C‡Í›7ÇÅÅíß¿?µCZJ“!$¢P(úõëæïï_¬X±${£¢¢dÏž=ñF©ë9"""ñÆ©S§†……ðôôLÞižö^a7PtDD&­^=@OââE´okkѵNnÛ6,]ŠìÙ±{·èPȬYZZöíÛWúìëë;yòäŽ;Ö«W¯U«V©¢T*UŸ>|8xðà½{÷+VìèÑ£ÉËK­˜ïÞ½K¼122@Μ9o¼sçNTTÔÙ³gûöí[½zõ›7oJ “êì…=DD:Ó³' ¿6//8Pt­“›4 K—¢vmfdPzôèàÌ™3vvviŒ#V•ß´iSÙ²e/^¼¸|ùò7n¤˜5prr²°°xñâEâ/_¾/_¾$…³fÍZ¯^½™3g¾zõj×®]éÚ+[‰ˆtcß>„‡ÃÛ[?WëÐ0ÌNàæÍñþ=† IXdžÈ`HÓw[ZZÆÆÆ~³«zï޽ݺuëСòeË’tC'aeeUºté“'O&ÞxâÄ ™LV¦L™ýû÷·jÕjÆ ¥IL9rä T*ÓÞ+ú†L‰ˆteÞ<*„fÍôp©C‡ðâEÂ Ž†E ³jŠ Ο?ûöíâÅ‹K_·oß bÅŠ>|H»«Z©TŽ3¦@–––ß¼ÐO?ý4lذ}ûö5kÖ ÀóçÏ=== .œ-[6kÖ¬éСƒjØõºuëÔ¨QÃÙÙ9½¢ïÀÄ‘ˆH'¤„iíZý\mÖ,ä̉&MD×:±ØXxz†Ù JfêóçÏ-[¶,UªÔßÿ½fÍš *´k×ÎÒÒ2íö¼›7o†††–*UJõ~¤J›6mš7o>kÖ¬™3gΘ1cÀ€zöì¹zõê.]º 4ÈÞÞ~íÚµQQQ¾¾¾&Nœèëë[¥J•† Êd²#GŽœ?~øðá®®®ÒÞ+G""mëÓŽÓÏÕ¤uûvѵNìâÅ„öOfdHjÖ¬Ù»wï¹sç®_¿>wîÜýúõ›9s¦:-ˆÒèæ›7oÞ¼y3É®¢E‹6oÞ<::úÍ›7Ÿ>}’6fÏžýøñã£G |ýúu56nÜX¡Bi¯‹‹Ë’%Küýý-,,J•*µyófUßtÚ{…câHD¤U6àÞ=Lœ¨Ÿy —-€Å‹E×:±U«°q# Àúõ¢C!JªsçÎ;wNïQ-Z´H»IÒÇÇGZfPÅÎÎnÅŠ)–ÉdÝ»wW­+“®½Â1q$"Òž'OðûïpsÓϬŸ?cËT¨€/€!Cpíš5ÓÛ¨ "Ò'&ŽDDÚÓ¥ LŸ®Ÿ«5hèiùkõH½æ'ê'o&"ýcâHD¤%RÚ¤¯·úÆ€}ûD×:Iõ·mƒzk¸éÙ„ ìííEGaô˜8iÃàÁ€þò¸;wpîZ·†èŠxñ€§‘$JðÓO?‰Ápå"¢ Û±ׯcäH½åqýúÀС¢+ 6–Y#‘ù`âHD”1oÞ`Ñ"T¨€æÍõsÁ 'OãdDæ„]ÕDDÓº5 ¿!*GâéSŒ!ºÖý¾ÖI†IøÊ©¯ùBÚÇÄ‘ˆ(ôž9MŸ;;´h!ºâ€ÜÝWÏu'ÃôÛo‚`â¨OL‰ˆ4%-޲m›Þ.(¥©Âxþ ³Fâo™á;ŽDD9p/ÂËKo³Ï¬Z@ëôì àÔž±¢ã "}câHD”~Ñј3%J$ (Ö½øxlÜWW¸ºŠ®»ÂñhQl6kÑ¡‘¾1q$"J¿Æ/ EëE½z€!47®^'àí²eE‡BDÈÒ^´›4¡P(ä¢c 2-r ç±’…(‚}ôvÅ-?— =å0z×é¬vŸVÜ1èZé©Û·«6¨¡À0H+¤gJ¹è@ŒR:uêÕ«çãóÿ?Ÿ?Î’%K\\\âb/^¼>‡††þüóÏgÏž}ÿþ}™2eFÝ*õA=7oÞœ8qâ… âããÝÜÜFŒáææ¦Úé|¬Ô?Äøž)csåʕӧOדz¾¸ÿ~\\œ›››‹‹‹j£­­­ôáöíÛUªT±°°èÚµköìÙ÷ìÙÓºuëåË—÷“¦òÿÚÉ“'===ííí;wîlii¹eËOOϽ{÷zxx8pà@Ó¦M]\\ºvíš%K–ÀÀÀ6mÚ¬\¹²oß¾ú©>G""µ)8y={¢€ž²F½{=qcl,úö…£#fÏ‘0±±±AAAgΜYºti|||’½aaa¦L™’$¡”üúë¯>|øûï¿]]]Lž<ÙÕÕu„ ÉG¥RÙ§O;;»'''“&MªT©ÒèÑ£/]º`üøñyòä¹|ù²€ &”.]Ú××Wo‰#ßq$"R›¯/ Dz»`·nà¬\qiy˜-[‡A¤©áÇ;99>|øõë×½{÷vvvvvvîÕ«×Ë—/Õ|°±±ÉàùÃÂÂ,,,Š-úúõkiK©R¥*Uª`Ô¨Qû÷ï¯S§Nÿþý³gÏxýúõu)ý_hÉ’%œ9sføðáªÁÁÁž>}jeeU¦LiãúõëÃÂÂöïßÿôéÓ?þøCow’‰#Ñ·L›†ØX,_®ÏkJ Û¾}B+ά‘LˆL&пÕ77·'Nüûï¿...û÷ïOíÀ–-[~óäaaañññ¾¾¾íڵ˔)Óž={FŒѪU«k×®ÙÙÙ}ÿý÷Ý»wŸ>}úÏ?ÿ,•¯_¿~ŠoC:99µmÛ600pÖ¬Y½{÷V*•ëÖ­ó÷÷™¸äÔ©S¥þqOOÏB… éí62q$"JÓ8v }ú xq½]s͘7OhÅ{ö€Ý»…A¤M9sæTt 54*•Ê>¤19Ž:* kkëœ9sJ_{÷î=hРÀÀÀ>}útïÞ}Ë–-sçÎíÒ¥KÖ¬Y?>hР5jœ?^uˆŠ¿¿ÿ›7oÆ7nÜ89räøùçŸ'OžlooŸ¸Ø;w¢¢¢Îž=Û·oßêÕ«ß¼y3I·ŽðG"¢Ô=}Š9sP±"ºvÕçeׯG™2¨XQ\Å'OFx8.Döìâ‚ Ò²ï¾û.ñW© €2uêœÙÙÙ9I Ø Aׯ_¿víÚüáåååíí'OžìÙ³7oÞ|ÅŠwïÞ]¹reòSåÎûÈ‘#gΜñ÷÷ß±cÇ­[·Ê–-  `Á‚IJfÍšµ^½z3gÎ|õêÕ.}­aÏG"¢Ôýø# ï¦?©xñbqµ^½ÇÃÛåʉ ‚Hbcc3ÒU¾oß>R¥J©6J=Ë… zõê€"EŠ$>Dú‘ül!!!Ù³g¯Q£F5¤-ÇŽ“Édnnnû÷ïoÕªÕ† :vì¨*Ÿ#G¨×,ªL‰ˆR!â ¿É“ 0P\­ƒ‚€víЬ™¸ ˆô*ƒ]ÕY²d5jT•*UŽ;–)S&ñññsæÌ±²²’^@Ì’%ËÆ½¼¼2gÎ,òû│Y3…Yýû÷ïýúõ[·nIƒ©oÞ¼¹aƦM›:;;K-¦kÖ¬éСƒª¹Td£Ê2u‰#QJDdâøq4i‚\¹ÕúÞ=LŠÊ•1h ˆºª5>ÜÑÑÑ××wìØ±ÅŠkܸ±½½ýáǯ\¹ò믿–.]ÀÒ¥K{õêU¦L™6mÚX[[Ÿ8qâøñãmÚ´‘Ú2gÍš5sæÌ3f 0À”)S7n\­ZµÖ­[þüyëÖ­Y²dY¸p!‡‰'úúúV©R¥aÆ2™ìÈ‘#çÏŸ>|¸j’H]câHD”Œ´NËæÍz¾¬4³øèÑ‚j‡>};7æÌ‘±3fL‘"EfÏž½aÃkkkWW׃6jÔHÚÛ³gÏbÅŠMŸ>}ãÆïß¿/Y²ä²eËTk½DGG¿yóæÓ§OÒ× :thòäÉk֬ə3g›6mfΜ™ëËÿMúøø¸¸¸,Y²ÄßßߢT©R›7oNÜs­kL‰ˆ¾€¿ÿƘ1ø²rƒ~Hƒ˜EN}S¿>lÝ*." ÖÒÓU¢D‰›'Û¶mÛ¶mÛÔŽªY³æRÜåããããã“x‹§§§§4wl22™¬{÷îÝ»w×Û}K‚£ª‰ˆ¹v «WÃÓëó²'N <^^â*Î)‰H L‰ˆ2¹raÂ=_ÖÇ™3£CAµfÖHDêaâHDô…”?é}H³tÙC‡ÕzèP8|XÐ剄3f̉'œôûRбã;ŽDD„µºÀìÙ‚j­PàŸЯ¾ž™ÈdÊ”©víÚ¢£02lq$"¤7ÍÑÿ•W¯F‰¨REPÅ}}‘+:wty"22L‰Èì-X€G0k¬ôÝ #µr.[&¨â‚ºæ‰Èx1q$"óvâvïFÇŽ¨ZUÏWž6 ¶lTqiºÈÝ»]žˆŒG"2cïÞÁÇÅ‹cÀ=_ùÉ;†† áè(¢âçÎáâEtë†ìÙE\žˆŒG"2c-ZÀòåú¿r—.0nœ Šôî-èòDd¬˜8‘¹7y¡´Ò˜°i¥ŠïÛ'èòDdĘ8‘YjÚ“»9ƒ»wÑ¿¿ Šÿò ðÍJ"2n²×[¤ Q(rÑ1™¹Z|¬Êþ¼ÅáTèÅß¼w0ñ¯¯»ÜÂJùó‘ãú¿´}Hxùákµ¯qw`ý_ Š\È墣 #¤$­ è 4Ä; ·¨tq¡ŒŸSã3hp`ºQ·°«?þPÊåÊ­[µvÂô¨__)—§û(­ýRÉåÊzõ´U}>é|¬Ô?DÀ3eNÞ¼yÓ¿ÿ ØØØÔ®]ûìÙ³i¾qãFëÖ­óçÏïììÜ®]»Ó§O«¿7$$¤C‡NNN666•*Uòóóûüù³š{uŠ+Ç‘9¹|+V ~}´o¯ÿ‹oÚ„ØXüú« ºK¯6=*èòDF/22²råÊ>l×®ƒƒC```£F‚ƒƒ+T¨¼ðÉ“'===ííí;wîlii¹eËOOϽ{÷zxx|sï½{÷äry\\\ëÖ­ ,xôèÑ‘#Gž8qbçÎßÜ«súËÒ͇Ùÿo[ ðœ†Ù4’ŽÂZy¬""”r¹²o_-œJ#_\ ¿TÓ§+åråƒZ¬[ ó±b‹£îøøøX»v­ôõîÝ»öööîîîÉKÆÇÇ+VÌÑÑñ¿ÿþ“¶¼~ýÚÅÅ¥bÅŠßÜ«T*[¶liaaqþüyÕ {÷î àСCßÜ«kCDf£m[XYaåJ!—ÚûÄ\üÖ-9‚-P¨ºˆ¨¨¨Y³f•.]ÚÆÆ¦téÒýúõ{ùò¥ú‡oÞ¼9o޼ݥJ—víÚ?~üéÓ§IJÞ¿ÿÎ;}úôqrJx‘ÚÞÞ~Ĉ—/_¾zõjÚ{Õ©S§J¢¥H àìÙ³ßÜ«kL‰È|8xðà½{÷+VìèÑ£Ò€k5÷êG"2]cÆàÅ ¬ZKK!×?·o£OAÕïÙ&Lty"ÃòéÓ§,Y²$ÙÀÖÖÖÎÎN™æ’(NNNIz¥¥±5ùòåK^>wîÜGŽ9wî\HHˆ““S­ZµNœ8 `Á‚ßÜ `Ó¦Mýû÷·µµ]¾|yïÞ½­¬¾JØÒÞ«SL‰ÈD-]Š 0q"ŠÂرÉе«ˆk׫ðÕF¢¯Ü½{7&&&q£ã7räÈ‘;wîØØØ´»ª­¬¬J—.}òäÉÄÛOœ8!“ÉÊ”)“üìٳרQ£FÒ–cÇŽÉd277·oîÝ»wo·nÝ:tè°lÙ²$ãßÜ«kL‰È8€mÛе+ê×B£F$âÚK—"> ˆª;‘aЉ‰™;wî„/Íð§N:~üø€|øð!í®j?ýôÓ°aÃöíÛ׬Y3ÏŸ? ôôô,\¸pòCú÷ïýúõ[·nIÃ¥oÞ¼¹aƦM›J_ÓØ«T*ÇŒS @€€Ëd½%iïÕ&ŽDdrnÞÄœ9¨UK\'1¶nŧO˜2EĵŸ?Ƕm¨]?ü ªúD†)[¶l¿üò˵k×jÕªu÷îÝeË–åÏŸÚ´i¾ÙU  gÏž«W¯îҥˠAƒìíí×®]åëë+í5kÖÌ™3g̘!e¢S¦LiܸqµjÕZ·nýùóç­[·fÉ’eáÂ…Rá4öÞ¼y344´T©R}ûöM@›6mŠ)’ÆÞæÍ›ëú2q$"Óòñ#Dþü˜:U`þþøþ{Ô®-âÚÒ(n1I+‘Aûá‡Æ7cÆŒqãÆåË—¯G¿þúkâñ(iËž=ûñãÇGøúõë5jlܸQµÞ`ttô›7o>}ú$}mРÁ¡C‡&Ož¼fÍšœ9s¶iÓfæÌ™¹råúæÞ°°07oÞ¼yóf’Š-*e·©íeâHD”NMš@@€À¤ùÖ¬qí¦M¾ÚH”ª¦M›6•ØÙÙ­X±"Å]>>>Òš„*žžžžžž©*µ½-Z´H»íó›-£:Å À‰È„ˆž²ÀìÙ°~½ˆk¯^¨¨„ejˆˆt€‰#™ È#"pð är( ÷kGF" Uª zuw€ˆL»ª‰È$@Ö@ZñëëÞ*}iÙøÒàIDÉtïÞ]ý×)5L‰Èøuïûö‰bÐ @Tî*e¬¢óf"C¦þLÁ®j"2r¿ü‚G°hllFqénÜ@"®½i""0y²Àê‘™`âHDÆlõjœ< oo”-+6Q£€/‹üéUL V¬@¹r¨[Wì "sÀÄ‘ˆŒVp0ж-š5ˆÈ9p6€/³ éG"2Ný…)SP©ÈŽˆŠ4 ¦sg€¯6‘þ0q$"#ôæ Æƒ…æÎ -BþüËõ~á  ü÷7}ˆÈŒÈ´5ÿxTTÔ¿ÿþûâÅ‹ˆˆkkkGGGggg™L&ºŽz§P(ä¢c 2-rT•ÅçØ: ¦¶Ëzz×hÑqÁ×]À'X!àž¸û*­,ŽùYô= £$=SrÈEBF&£Óñ„„„(гgÏ^½z5...ÉÞ\¹rU¯^½F 6Ìž=»èÊê™?Š Ž ŒÞ¢ÒÅ…2~NÏ Áé:D퉊5p‡•U¦]û3tG´ÁÏÖ¬Á÷:þÕJá.uì@vä˜À› Ï'•ú‡hòL©MÃÄñóçÏ\·nݵkפ-öööyòäÉ‘#‡]LLÌëׯ_¿~ýèÑ£ýû÷ïß¿úôé­ZµêÖ­[‘"EDW™ˆŒ™4Ñ÷‘#¢ãÀ›7Ø»µjáûïõ~í³gñüy¼‘DDz¤IâxöìYŸððp[[Û¶mÛV¯^ý‡~(T¨Pò’?~¼~ýúßÿ}äÈ‘M›6mÞ¼¹cÇŽÞÞÞfÕúHDZcËÃHZ·€©SE\{ÂàˤßDDz”îÄqܸq;wî¬R¥ÊðáÃ=<<¬­­Ó(œ%K–Ê•+W®\¹oß¾ááá»víÚ°aÃÑ£GýüüªU«&ºîDdT )k¬Ðü=ìƒdÞPÎóÐëµ¥¹" ã>‘¹Iwâxûöíßÿ½V­Zé=°P¡BÆ ëÝ»÷ªU«.]ºÄÄ‘ˆÒAZ+̲%™wý{ûòï+†‡ 2úJCBŽ^½Dß"2SéN·oßž‘ÒÙ²e1b„èZ‘Q1Œ¶F™wøy”—Àýû_vøé1}>ø²67‘Þ¥;qL’5úûû*T¨I“&©•°²²ê,ÍRKD”^RÖ(f~ídü}úèѣ̙3‹®&!Ë/Žñü¹ˆ ú÷ÿÿ‰ˆÑ$q Ü´i“êë7Ò~mÑÕÕUt5‰ÈØLÖ¨"-*ø×_.ýƒ÷zC»DÆâÅ‹‹-ÚµkWxx¸••U‘"E:vì8hÐ Õ´0¾¾¾“'ON|Hîܹ]]] ÔZšv‹Ñ$qtqqqss“>Ÿ9s&GŽ¥J•J­pž/^lÞ¼ùÿýW®\¹víÚÅÄÄœ={vÔ¨Q6l8}útÖ¬YU%;uê”?~ñññOŸ>=pà@›6m–-[Ö_Íüoß¾;vì^½zU±bÅÙ³gW¯^=µÂ7oÞœ8qâ… âããÝÜÜFŒ¡Jº>þœ%K–$ õ988¼xñBo·T“ı{÷îÝ¿Œé+Q¢Dùòå—-[¦·ˆ‰ÈÄ5n PÖ(ó²Z葯""ðþ½ˆºu¾Œ§&"µEFF¶hÑâÝ»wÛ¶mk÷eÂü¸¸¸ &Ìž={̘1‹/VïjFת8p`áÂ…õ1™²víT^›Eš¸öŸD\û矜<0¾¶è›@dtÖ®]ûôéÓåË—·K´Ì’¥¥åÌ™3wïÞ½qãÆùóçgÊ”)Åc *T­Zµ?ÿüóÇ666 ÃÏÏ/,,líÚµ=zô0lذJ•*y{{%H§T*ûôécggâää`Ò¤I•*U=zô¥K—„……˜2eJ½zõDÝÕtªŽŒŒLüuذa-Z´ÈàIˆˆ GDD`Û6dÉ":”ÿ¡ôpü¸ˆk¿z…S§àé—å;Ñ·Èø,Y²$_¾|=¥Å–‘Éd«V­š;wî»wïÒ8<""¢téÒÌlÞ¼9oÞ¼ª®Z—víÚ?~üéÓ§IJÞ¿ÿÎ;}úô‘²Fööö#FŒ¸|ùòÕ«Wñ%q,Z´¨À»šîı^½zË—/ÿøñ£f×»~ýzŸ>}V®\)°ÎDdˆÄÇX»¢Cù¿k×på :…+•j3R{/8¶m |Y™šˆÒãÍ›7·oß®Zµêwߥðÿ]µjÕêÓ§OΜ9“ïR*•ÿý÷ßäÉ“/_¾½yó&qóiñâÅ»wïÞ¼ysÕ´IDDJÌÞƒãWàãƒ*UDÇò•ýûñú5ÆKøªœ§vî¨Ò:®Ó¦‰¾ Dj0˜9+X° €»w隸÷Ù³g/^,^¼¸ªã4ɨjcÆŒ™3gާ§g¯^½R»Ê‡Zµj•Ú^¥Réàà ÉË”R˜bG¹¿¿ÿ›7oÆ7nÜ89räøùçŸ'Ožloo@¡PX[[«ìÝ»wttô Aƒûô食«ù¨ê¢E‹úúúŽ=úܹsgΜ9wîÜÇ###U_ììì\]]kÔ¨áææ–ÆDDd¾–.Í{ð FJ˜\ÛÌ GG4løÿ-ßÈGIe´pí @ô= 2b <þ|LLLò×W­Z5iÒ¤ÀÀÀ4Þ¸óòòš3gΉ'ÒHíìì”i¾íäädaa‘¤WúåË—òåË—¼|îܹ9rîÜ9i`u­ZµNœ8/y°ô¾cb 4pýúu½ÝØŒNÇckk[¿~ýúõëK_###_¾|immíààâë¨DD ֭ömw½iÚTt(IIoÙ’t{Bî|•>j1e”ìÞ ð¥×Œˆ4ãåå5~üøåË—'Yˆ$>>~Û¶m2™¬N:i.½}—ö²É±±±iwU[YY•.]úäÉ“‰·Ÿ8qB&“•)S&ù!!!!Ù³g¯Q£F5¤-ÇŽ“ÉdnnnáááûöíóððHÜ'µÖÒãÛáM“Èž={’Ž|"¢lÛ†µkѽû£…‹ˆŽ%‰%KÀß?å½R‚˜>&Ú¢5RÒêç'ú6½Ÿ~úiΜ9cÇŽµ³³S͆7qâÄ^½zåÎ;×.]  råÊÒWUYbß쪖Â6lؾ}ûš5kàùóçžžž)Üéß¿ÿõë×oݺ%5.Þ¼ysÆ M›6uvv~þüù¨Q£ªT©rìØ1iúÉøøø9sæXYYyzzêí®j9q$"ú¶Y³pèÚ¶E¯^€Bt4_‰ŽF` ªTAÉ’iÓr²¨²|ùÿÿKD“+W®]»vµjÕªG³gÏ®R¥Š……Å™3gBCCË–-»@z'ä ÿ}ûöIŸ?}útéÒ¥'N”-[V•qnß¾½nݺªòr¹jtUèÙ³çêÕ«»té2hÐ {{ûµk×FEEùúúJ{gÍš5sæÌ3f 0À”)S7n\­ZµÖ­[þüyëÖ­Y²dY¸p!GGG__ß±cÇ+V¬qãÆööö‡¾råʯ¿þZZ# už8ÆÆÆúùù3FoU""ƒ¶aBÞ¼ƒ¦zÈ/¿àäxyèС@ºÏ¯ó_h(î^Dûöh`-b]hi õ‚rüBåÍû™ÒѵLä±Ò¼¤"#u'³•îÄñĉRÖèââR­ZµÌ™3ÿõ×_7oÞœ>}úƒž>}š9sæâÅ‹çÎÛÂÂÂÚÚ:W®\úœÐœˆ Ô A¸q“&!Ñÿ²//8PÐåW¯F¡Bøá‡ŒŸ‰ˆHwÒ8J/¸¹¹-_¾\êø‹‹>|¸4½L™2þþþI–Ö!"s×±#ž?Çüù(_^t()ëÐ8q³f°v­èÛ@D)K2ƒ7€+W®ˆJ u—âQ‘ìÛ·¯êuQKKKÕbŽ£GfÖHD_ñôÄóç0جñÐ!¼xQ£]þòe|ø€AƒDß"¢oKw‹ããÇ)òÕÌkª¹ˆÒ˜ˆÌ‘4+áþýÈšUl 2ï ä¥YufÍBΜ6 ¹·7´k'îÞ©+݉ãçÏŸdýúß[[[éCÚ¬‘y‘²FÑëØ&¤Œ)-(Cü²€íÛ÷믰w¯¨›CD”.Îã(“ÉDGND†Íp²F¿T'ëvÙ傸\â h ß‘#¨P_þß›ˆÈÀ¥ûG"¢o3Œ¬1m(X¯_#ry¥;²uŽ« ‘±aâHDZ&MdmYcÚÍuê@HÀÏCß¹£BãÇ »;DDéÇÄ‘ˆ´'*ÊpÚÓÎË•€S§ÄÅ'­TÛ }+艥á;Ž …"kJc$SÛ^ÏP§ü%"­yüݺÁÊJqd¢\t,i³µE®\ø÷_ÄÆ Š`Ü8À Òk"¢tÑ0q•ÊŒg©m7¯µª‰ÌÐßcÄ8:bËÃ_ʬre¸sGÐå?Æ_¡n]Ñ·ˆ(ÝØUMDvìFŒ@éÒØ²Et(ßV­ðå C1¤îéÉ“Eß "¢tKw‹ã7DÇLD†dëVøû£vmL™":”osrB–,¸}[\Ò”3fˆ¾DDšHw‹£¥FDW“ˆtÃßþþhÙÒ(²F¥Jáóg..n„ ³gÏ3fÌâÅ‹U…\³fMÕ×ððð~øÁ××·ÿþ  råÊ>l×®ƒƒC```£F‚ƒƒ+T¨ÞÂ÷ïß‹‹ssssqqQb+bÑ)-'ŽDdºwÇ£G˜5 U«Š%-Êy2$ÌæX¨Þ¼ÁÛ·)•ÓCÖ }{9Rô]!2k×®}úôéòåËUY#KKË™3gîÞ½{ãÆóçÏÏ”)SŠÇ*T¨Zµjþùç‡lll4 ÀÏÏ/,,líÚµ=zô0lذJ•*y{{¥·pXX€)S¦Ÿß£ª‰(š6Å£GXµÊÀ³F‰Ôa-uRÿýwJ%FêeÁ˜ `ÉÑ÷ƒÈŒ,Y²$_¾|={öL²]&“­ZµjîܹïÞ½KãðˆˆˆÒ¥Kkœ5ؼysÞ¼y»wï.}uqqi×®ÝñãÇŸ>}šÞÂRâX´hQÑ7•‰#¥‹»;¢¢°s'ŠŠº&eõpÚõdÒ#ƒ¤¶F}47þþ;råBéÒ¢o‘¹xóæÍíÛ·«V­úÝwß%ß[«V­>}úäÌ™3ù.¥RùßÿMž<ùòåËÆ Ó8€ÈÈÈÛ·o»»»Ëd2ÕFøøøäo:~³pXXXæÌ™³e˶mÛ¶åË—Ÿ:u*&&FÈeW5©Í`–Tßýû8u -Z xDm™ÕW‹úÈ%ݺ@` è›A¤Ò$S¥ôêpxx8€ÂÒÛÍj¨U«V’-C‡íׯŸÆA={öL©T:99%ÞèèèàÅ‹é-faaQ´hÑׯ_K{K•*P©R%]ßÝ$´œ8æÉ“'í†_"2VF˜5èÝFŒô™)&vÿ>?F—.¢ï‘Îøù  ¥Ä1..€……º=«:uÊŸ?¿ô9&&æÒ¥K .|ñâÅúõë­¬¬²e˶k×®ÄïÆÆÆîß¿?µ³µlÙRµ={öÄÛíììDDD$)ÿÍÂaaañññ¾¾¾íڵ˔)Óž={FŒѪU«k×®IÅôFˉã¾ÁCd’Œ3k”ZúG-¥®}ûоD:c ,àîÝ»)î}öìÙÅ‹‹/^¬X1iK’QÕÆŒ3gÎOOÏ^½z%?ÇZµj•ÚÕ•J¥ƒƒ€$­i‘‘‘’w‘³°B¡°¶¶VØ»wïèèèAƒöéÓGŸ7–ï8Ñ·gÖ¨Pàñc "4ˆ¥K @ôÍ 2; <þ|Šï®ZµªY³fW¯^Mã ^^^Nœ8‘â^;;;eê899YXX$é•~ùò%€|ùò%9Û7 ;;;'I74hàúõëz¾±|Ç‘ˆR'¯ï _ÖÀ×66hÓFhÛ¶¡pa|éÿ""}òòò?~üòåˇ|ýñññÛ¶m“ÉduêÔIãpiݻ̙3§¸÷›]ÕVVV¥K—>yò«ay'NœÉdeÊ”IR>íÂáááûöíóðð(Uª”j¯ÔY¨P!=ßU&ŽD”ŠçÏѱ#`”Y£ÔHºoŸÐ Z´€Õ«Eß "3õÓO?Í™3gìØ±vvvªinâââ&NœÒ«W¯´W^Yºt)€Ê•+§¸÷›]ÕRÆ Û·o_³fÍ<þ<00ÐÓÓ3Å!;i~þüù¨Q£ªT©rìØ1iâÉøøø9sæXYYyzzêù®Ê¤º‘6) ¹èˆ2&ûÍ+\cosfç(ѱ€\õ+ÅÚï¯û¾û¼Â_‹ Ø>$¼üðµw½<êPCT Diž)9ä¢Ñ­“'O¶jÕêÕ«WeÊ”©R¥Š……Å™3gBCCË–-{úôii0Н¯ïäÉ“»téR @é¨OŸ>]ºtéĉeË–½téÒwß}—|pŒ:"##ëÔ©sÿþýAƒÙÛÛ¯]»öñãÇþùgõêÕÌš5kæÌ™3fÌ0`À7 Ïž={ìØ±… jܸ±½½ýáǯ\¹ò믿Ž?^ß÷TIZ,:Ñ7@iˆw@oQéâB?gúÎà秔˕}úhvét¢náôEDÆåýû÷o­v¯çÙ GºÇÓ§O¥nLŸµk ƒˆHg4_9¦fÍšI–'"£1mŽC®\09£är8y8é!Cê•G}“¦àÙ³Gôý "Ò!.9Hd~¤†ÆŽ1`€èP¾-íæFi™Ö«WEG‰/SðdË&:""bâHdN¢¢Ð´)üþ;\\DG£… ãÝ;¼z%:NÁCDæAów“;þü’&"ƒ°{wBÖlY£ÔI}éR¢M~ÉçëÑ9NÁCDfC›‰£¿¿ÿˆ#’&"á* ^ P¦ŒÌX“iôS—*gÏŠœ‚‡ˆÌ»ª‰Ì€»»€aÃh壖% œœðßøôIt(ÒräȦM›6oÞܱcGooo¶>¥‹ÃÉPüâ Îë~ºµu+>}”)¢ãP™9öí‘`2¥R™®Æ·sçÎ*UªüøãÖÖÖj¾k×® 6|÷Ýw~~~ÕªU]wQ(rÑ1 )ûˇ“¡óæøë¡¢cÑ_wyîï? \sAµE®€ÀÇJîîûÑ9Ç_Íåþ“9ž)9ä¢!c£L§Ö­[Ÿ¢¢ÒàÀt’¼°\®”Ë“—Ó0~-ðöN) ½2ógJG×Êø9 ó±R·¤ÙÿSEšIwWõöíÛ32P:[¶l#FŒ-ƒ7oк5<Èö½èpôcÎX¿^t‰]ºd/•©#Ýó8&Éýýý8Fù€€€M›6‰®&‘±Ùº5!k Fþü¢£Ñ“ˆ8¹ ˆEåÇ/ù,‘ÙËèà ,سgOæÏŸ/ºšDF¥_?øû£B3 £"M­íã#:•¨(<}Š-DÇADd(4U}íÚµ‡ª¾>{ö,µFǧOŸ>zô(sæÌ¢«Id<¤9wÆŒAãÆ¢CÑ+i^mÃJ•›6¾]CDô…&‰c```âÞç7n¤ýÚ¢«««èjƒÐPxyÀ‘#°Òæ:ò†ïòeܸ=DÇ‘ØÝ»Ð¿¿è8ˆˆ ˆ&ÿ8¹¸¸¸¹¹IŸÏœ9“#GŽR¥J¥V8OžJ†ÕI}âøúŠŽƒˆÈ°d´;làÀ… ] "c&½Ôèç‡ D‡¢ÉSÆ~H)}ükGþ¨(C#‘ªSGtDD†%݉cddd⇠¦ÁU“œ„ÈL) mZ†ÕÚ–a~iï’!H•;ZT4~Èå¢cNlËX¹RtDD'ÝÓñÔ«Woùòå?~Ôìzׯ_ïÓ§ÏJþE&š8¾¾ÈŸß”²F™wPZYc2Rck@€è¸“Þ½)ZTtDD'݉ãСC—/_^¿~ý9sæÜ¹sGÍ£¢££8зoß¶mÛFGG·“¦k#2[îî8s½z^Ò¤¹td~2ï ??ðZ}A­CôFšwvÿ~Ñq¢twUwëÖÍÓÓsêÔ©«V­ZµjU©R¥ªW¯^¾|yWWW'''KKKUɨ¨¨Û·o‡„„\¹råäÉ“ïß¿···÷õõíСCF-$2n/_¢}{øãäÍ+:a2ÅfÚ»µjÁ±ðѱ|mÏäÍ‹¬YEÇADdˆ4“'Ož%K–„……ìÞ½ûæÍ›Òv™L–-[6;;»OŸ>½yó&&&FuHñâÅ»wïÞ¼yskkkÑU&góf,_˜ÜKéWójmS§B!:’¯Œ ü!:""¥ù¨ê¢E‹úúúŽ=úܹsgΜ9wîÜÇ######¥vvv®®®5jÔpssKc¢G"sQ¿>ââP¹²I.|œ®·Ë—EÅ /DêÃÅ‹¨XQtDD†+£ÓñØÚÚÖ¯_¿~ýúÒ×ÈÈÈ—/_Z[[;88|÷Ýw¢kGdvîÄÂ…P¿>&N`öö°·Gx8`hZ—.0ožè8ˆˆ —–—5Ëž=;çÙ!úŠ4rØÎ»v‰E‡”óй³è8ˆˆ ]º''¢Tݸw÷\go£~}›UÖ(QÎóÀÈ wI‹ þõ—è“;u &O‘Ðòà"óÕ£>püȤºVõDG#ÔȤíŽÅŠÀÅ‹ÒJÃjnüùg¨[WtDDF€‰#Q†9‚_€=г§ÒÀæ´Ö3å<î ¥VVÈ—v/ß÷»jX)#€­[$ÌÊNDDßÂÄ‘(c¤i½-,pì˜èP ˆ” Ê ÖeWw9Ütßüý xqÑq¾ãH¤©uëà8L˜À¬1EÊy#”ŽJŠ,€½{EÇADd4ØâH”~qqVK*Pë׋ޯp]»†+WЩ¬ ó/ÍîÝpr‚­­è8ˆˆŒ†aþ9'2`¿þšÐ€¶x1Ê”A2ú÷GŠÆŽ€Í›EÇADdL4L EÖ¬YU_£££¥ÇRé°«Wϼ™’ixø=z@õê˜1Ct4†®m[GjΟG… ¢ƒ "22&Ž£FJqûÀSÜΉÁÉè ”°æÉΰ·¡Û¿¯^aÜ8Ñq¤¦[7ðó‘‘áà¢o9wîî¸qmÛ"8˜Y£:æÎ…£#6GŠÞ¼ÁãÇhÚTtDDÆ'Ý-Ž7 q¡Y"iÝoÞ†Üçjp|Ýå¶lGj~üRé6!"¢4¤;q´´´3‘^lߎŋ`È´i#:£±t)ðezDCôî>~D‡¢ã "2JUM”wwÈ‘;vˆŘDGcÛ6©òªdÉœ¢cIEûöàå%:""£Äw‰¾¶paBÖ8s&³Æôjܺξ*:T¼}‹OŸÐ©“è8ˆˆŒ[‰¾xý:¡KºlY,Z$:ã3z4<ˆs¢#IU»v€ÁN,IDd˜8Z¶Dd$ ~ÑÑŸÐP\¼ˆöíam-:”Ô¼z…ØXté":""#ÆÄ‘Ì^÷îxô4Àøñ¢£1VÒKƒ©Läj¤æÆ¾}EÇADdĘ8’¹zùÝ»ããGpsÃôé¢2bÒeƒž°èåK(• ó~‘¦˜8’ù ýÿ Ú-0b„而ÛáÃxñÂàgE”S÷î-:""ãÆÄ‘ÌÉÉ“øå—„Ͻ{³ýI+fÎDΜ†½Ëóçг§è8ˆˆŒžL©TêîìË—/ÿóÏ?XYY988Ô®]»]»vVV¦ž­* ¹èèkùvž/¶ð ô9tLËÿ—‘‰ðu—ð VèúBr4~¬äî¾Á>úº+DF@z¦ä‹„ŒŒns¸§OŸ^»v À€Þ¾}»bÅŠ»wïNœ8Qt­uÎÌÅ„?GbåJüñGÂç9sP¹rI ¤±U?ãçÔø i¸l,Z„²_H×µÔ.¬éxòz÷6 ßÉô3¬gJDTæóXeü?SdÞt›8:::+V Àˆ#¼xñbܸq¢«Lfã×_qäHÂç5kß?£²è˜LGl,¶lA… ([Vt(i“æßák DDÚ ÛÄqàÀÍÏ‘;wîßÿ]t•É Œ‰+W G¬_[[ÀÑa™OOðóGÚ?8‘Ö˜úë†dnT“2+†+DGc²¤ù.÷íÇ7I œô›ˆHK2ºVõ’%KžH¯ ôò%š4»;=‚›‚ƒ™5êÎ;8w­[ÃÆFt(i{øàƒDDÚ”ÑÇ… .Z´¨zõêmÛ¶õôô´6ÜåÆÈDqRF½ë׆Ç7õè:‰ŽƒˆÈtd4q¬Zµê… Ξ={öìY[[Û¦M›¶iÓ¦|ùò¢ëEf€“2Šðã€/#yðÀÿÿ§‚ˆˆ´!£‰c@@À“'OöìÙ³k×®û÷ïoÙ²eË–-...mÛ¶mÙ²eîܹEWLÑÎX¸0áó˜1hÜXt@æâèQ<}ŠáÃEÇ¡Ž^½€/‹!‘–dôGÎÎÎ 8tèжmÛºtébooïÞ½9sæÔ­[·ÿþ‡þüù³èj’©X¹îî Yãœ9fÖ¨OÓ§#{v´l):Žoº{‘©Ñæ¨jWWWWW× &?~|×®]ÁÁÁ …B¡PØÛÛ·hÑ¢M›6¥J•]_2Z_Oʈï¿Ùqw€Ý»EÇ¡iþ¶mEÇADdj´?•••››[LLÌÛ·oÿúë/oÞ¼Y¿~ýúõëøá‡‘#GV¯^]t­É¨¤<)#éÕªUðÛo¢ãPÇíÛ€Q Þ!"2>ÚL£££?~ðàA…BññãG2™¬|ùò5 =xð`HHH¯^½,XаaCÑ'cУGÂŒ*œ”QdÞAI¶(çy¤X2>7ÂÕ®®¢ƒV‡4ÿNëÖ¢ã "2AZHcbbNž-ºÊd`8)£¾¨•5~­woÀˆ:~ €fÍDÇADd²2š8æÉ“çåË—idVVV;w]S2<«VaãÆ„Ïsæ reÑÑ~2u}îÀ'XÈE¤†þ€Ñ£EÇADdÊ2š8.X°ÀÝݽI“&©xóæ GúÊŒøóτϜ”Ñ å~íøø1† ‡ú¤ùwRÿ[DDD§IâxíÚµ‡Ò$)€gÏž8p Å’OŸ>}ôèQæÌ™EW“ †·7._8)£¾¹{ǧ«ŸºÌý²66hÓ Ñ‘«%$Æ‘‰Ó$q Ü´i“êë7F¤ù”«qLþF:ÆI‡\ûKé{'RiýlÎóED¤cš$Ž...nnnÒç3gÎäÈ‘#µóäÉ3Ęº»HÛ8)£±‘^ *ŠEMRöĉ¢ã "2}š$ŽÝ»wïÞ½»ô¹D‰åË—_¶l™èŠáᤌÆéûïñö-^÷ Jm!ƒ#Í¿S¿¾è8ˆˆL_FÇ 8°pá¢kA†ÅáT(~öMøÂI Cð< w|{:©“úÊÀ]tÄjºx~þYtDDf!£‰ã°aÃDW É®]øí·„Yà9)£±)]ΜGºHóïxIã(‘‘ã .¤%‰&e¼:§«kå>¢¢¤”ó|¸£££´eܸqvvvŒ×ø N›ª[·àîŽvíðáš5Cp0g!íZ´ùóC.‡VH]F¿T"‘)ËhâhooýñãGék„……© äÉ“çúõëœyúôéK—.]ºt©››[Š.\¸`aa!Oôo¦¥¥e:u"""._¾¬ñ!œ6§OÃÝ=a*ï^½œð‘öH‹Ä¤þ*‡±¹rE‹Š‚ˆˆÒ’Ñıxñâ8 }uqqpøËxḸ¸ˆˆˆt7ÔjÕªU¯^½zõêåË—/ù^¥R–3gΜ9s&çÑ£Gš¢ÁiSàë›0•÷èÑæTÞ¤ ~~°zµè8´EZô†oq¶ŒŽiÞ¼ùéÓ§}||nܸ1iÒ$ggçï¿ÿ~ß¾};v,V¬ØÊ•+###+W®¬õ¸£¢¢âââìíí“l·³³ðêÕ+ÍÑà´)ëÒ%¡íD¡ÐzÝ€Ü +®·¨tq¡¯Ïù6*ÓÞ½5k•|Y8üÂu•¦ë©ðÈœùGà/•ÞÈ ²úúŒJ×Êø95>ƒªHÆëE”ºŒ&Ž-[¶µ¸­­-€·oßjvˆ§M©¼t¦1…AÞ½E¥‹ }uÎVî0ÕßPÿBG¥Áé:DÇ`Ã88¤^Ê0©ôÆ0«¯Ï¨tþXé÷ :}¬Ô+Éä’4’ÑÄÑÂÂbƌ͚5;sæŒL&àååzìØ±˜˜KKËáÇ7hÐ@ëqÛÛÛËd2i!ìÄÞ¿/ „¢Ái‰ôLZTåØ1ÑqhÑï¿H+k$""à…%-,,j×®]ûË$–––‹/~÷î݃Š-šÑ¹S‹ÛÊÊÎÎ.y`dd$Õ€èô¢Ái‰ô)$W¯¢KXdôýdCáxì,\(:""ú6]ýã“-[¶råÊé(k”899EDDH)Êýû÷¥]¢Ái‰ôføpèÛWtÚSzÚv(WNt DDômFÜjQ¯^½¸¸¸“'Oª¶(•ÊãÇçÈ‘£B… ¢Ái‰ô£eKÀd‰‘ܸãÇ‹ŽƒˆˆÔ’î®ê^½z¨Y³fß¾}U_¿iÍš5Z½}ûöË–-[¼xqݺu¥Á++V¬xùòeß¾}3eÊ$•ùðáÃóçÏ3eÊ”?~5Q§ ‘þíÞÈHLœ(:í4tð4éBºÇ3gÎÈ“'Oâ¯B8;;=zÖ¬Y-Z´¨]»vxxø¹sçÊ”)óÓO?©Ê?~|ĈÅŠÛ·oŸš‡¨S†Hÿ,@Þ¼¨__tZôú5€=åß‹„ˆˆÔ”îÄQZ²YjÀ°Pè+í½{÷Î;÷®]»87oÞ®]»>\j&ÌÈ!œ–H§|ÝåRY¶ÝhõêàAºß‹„ˆˆÔ”îıyóæ‰¿6lØP×!N›6mÚ´iiÄ“$¤Äš4iÒ¤I“t¢~"ýþïÌUyûºÿBDDZ$S*•¢c09 …B.:2Ñï­f5¯U¬zÄ3þ‹6UòZ™-ô‰"ØGÍòrøXi‘ôLÉÓ±ˆ A‹ãäÉ“5¸ŒfG/3þ½E¥Ý ¹7€gü“Ásj•ªuH¨/\]媼Ô8«þRé™?S:ºVÆÏipUúJâ/¾t'Ž›6mÒà2æ–8iÅÈ‘päN‰ŽDË|}à·ßDÇADDé“îÄqàÀ¢c&2 ×®áÊtê+-,ðd` ÓYú†ˆÈœ¤û_¤aÒB¹D¤cC†@ÿþ¢ãк}û`Ý:ÑqQºi­)#&&æÒ¥KOžM™2¥L™2œœœœœœDWŠÈ8H‹Älß.:=hÕJtDD¤MïÝ»÷"ì’J"YIDATúõë{÷îI‰#©iÙ2¸\â’Ìûm’]Êy¢£Ó©¹qØ0Ñq‘d4qlÓ¦Íï¿ÿ~èСæÍ›‹® ‘шŖ-xý‘Ë+%ß+CL&}üë/äÊ%:""ÒŽŒŽ9rdÆ ;¶zõji."ú&iÌXHH*»ýL"epàÀÅ©‰ˆLGF[·lÙRµjÕ‡Κ5kíÚµE‹Í›7o¦L™’›NBóæ°³ûj»ZŽFš5^¸ dn7Ñq‘NdtÇ©S§ÚÙÙ7îäÉ“¢ëBdXz÷€‘#SØ•;¦˜>Ž 2Ö¬À˜1^WrÉð‰ˆˆÈetp̹sçÚµk·víÚ¾}ûº¸¸+V,GŽ2™,I±É“'‹®)‘^uëÁÁ©RC‚RÜnÄZ¶éJFÇ)S¦¨>ß»wïÞ½{)câHfE¡ÀãÇ2äÛ%>MLLš¸qøp@!:""Ò ™R©ÌÈñ¿©77y-i­P(ä¢c ¡|Ý噳ƎÛJt z%w÷ÉasfÇ(œ\>VDZ$Wr¹è(Èød´ÅѼ2BµÉ!‚H ( ðè-*i‘˜Cû­ ½Ëe¢I‹\>VDZ$Wr¹è(Èø°O'ä‹A$ïÀþýxÿ ãÆ%ý)è-*]\(ãçLë ·}aoŸÚ^ .®CÔ.,ò—J8±Ï”!De|•¶TÿõŸ©ŒÔÌ»ªÉÔܹ̋Ѱ¡è8ŒÅƒû©‰ˆH-LɤH‹ÄlÝ*:#"§vs&Žd:–.Ñq—7`k+:""2LÉDDGcÛ6T©‚’%E‡bD?ØOMDDêbâH&¢qc˜=[tÆEê§®SGtDDd˜8’)3‡Ñ¹zÖÖ¢ƒ ""£ÁÄ‘Œ^h(.\@ûöLÒééS€ýÔDD”LÉèyyÀÀ¢ã0:R?µ‡‡è8ˆˆÈh0q$ãÖ±#‹ŽÃ]¹Â•¼‰ˆ(]˜8’;|ÏŸcÔ(Ñq£/öSQú0q$#6s&ræDÓ¦¢ã0FR?uƒ¢ã ""cÂÄ‘Œ•´HÌöí¢ã0R.ˆŽ€ˆˆŒG2JË—À¢E¢ã0RoÞì§&"¢tcâHÆ'6›7£B”-+:#%õS7i":""22LÉøxz€ŸŸè8Œ×™3¢# ""£ÄÄ‘ŒÌøñ°w¯è8Œ×»w0b„è8ˆˆÈø0q$c†sçк5lmE‡b¼¤~ê-DÇADDƇ‰#“Ÿ~€¡CEÇaÔNž+&Žd4~üà"1ôñ# ":""2JLÉ8=ЧO1|¸è8ŒÔOݦè8ˆˆÈ(1q$ã0}:²gGË–¢ã0vl°%"¢ `âHF@Z$f÷nÑq»ÏŸÀËKtDDd¬˜8’¡[µ ,‡ ú©;t+&ŽdДJlÜWWüðƒèPLÀ‘#¢# ""ãÆÄ‘ š‡üö›è8L€R |™ÐˆˆˆH#LÉpýü3ìÚ%:“PbÎ^àËœFDDDaâHêþ}œ:…æÍag':“÷àÑ!‘ÑcâHªwo9Rt¦¤W/Ñ‘qcâH†¨[7€sj‘Ÿtï.:""2nLÉà(xü˜«âiÕÞ½¢# ""SÀÄ‘ ޝ/²fåªxZÞ­ŽèˆˆÈè1q$Ã"-³¿è8LÉÂ…î÷v=&Žd@Ö®€yóDÇabvî™&Žd@Ö­CéÒ¨XQt¦‡Ó7‘6È”Òz¤E …B.:#äë.ଈI)ºôpþmçÁ>¢É(¹|¬ˆ´Hz¦ä‹„ŒŒ•èL“™?Š ŽÒÃבKg·Nƒ¨ çBšŸs›/¹êß½\:]‡¨]XO?>ä·ß^ƒÊ°« ŸA§Ÿ)Ò)vU“xA¡@“&È•Kt(&©CÑ‘‰`âHâIóR-:Ó³bxy‰ŽƒˆˆLGLZ‹ÄèĦM¢# ""“ÂÄ‘D:y°EL—Z·™&Ž$Ò/¿ sf¾ƒ§«WÀС¢ã ""ÓÁÄ‘„ñð€C‡DÇaªDG@DD¦†‰#‰±a”JÌš%:ÓÖ¢…興Ȥ0q$1~ÿ%J jUÑq˜ªõë`ÄÑq‘IaâH¸»À²e¢ã0akÖˆŽ€ˆˆLGÒ·iÓ`ËÑq˜¼&MDG@DD¦†‰#éÕ“'8v ÀÑQt(&lãF€3ª‘ö1q$½êÒÆ‡i[µJtDDdš˜8’þôí p‘ýhÐ@tDDd‚˜8’žœ=‹»wѯŸè8LÞÖ­û©‰ˆH'˜8’žL˜++tî,:“çïVV¢ã ""ÄÄ‘ôÁÓŽ‡™Öä!""Ò6&ޤs›6!6Ó§‹ŽÃìØ°Ÿšˆˆt…‰#éÜŠ(Rnn¢ã0‹€µµè8ˆˆÈ41q$Ý’‰áü0úS§ŽèˆˆÈd1q$š1ø25éÜîÝû©‰ˆH‡˜8’®<Ž?ÿD½zpvŠ™X°lmEÇADD&‹‰#éJÇŽ0i’è8Ì ß$%""]bâH:1`ÀEbôiÿ~€ýÔDD¤[LIûÂÎç¼u ½{‹ŽÃ¬Ì öö¢ã ""SÆÄ‘´oãXWݺ‰ŽÃÜT«&:""2qLIË5ØI­g‡À¨Q¢ã ""ÇÄ‘´iëV|ú„ŽS®‰ÄÌHýÔ¢ã ""ÇÄ‘´Éß… ¡dí—¢13±±¨XQtDDdú˜8’ÖH‹Ä¬]+:ssìÀñÔDD¤LI;æÌ€õëEÇa†¤[Ÿ'è8ˆˆÈô1q$-ˆˆÀ¨[ ˆÅ }úWWÑA‘Y`âHZЮLž,:3tü8À~j""Ò&Ž”QƒœG©Ÿ:~Ñq‘Y`âHrù2®_G¢ã0[> LÑA‘¹`âHâí ={ŠŽÃ<> pÞo""Ò&ޤ¹fÍvR $õSÿ½è8ˆˆÈ\0q$ íØàã#:söö-J”™&ޤ¡E‹??ärÑq˜­s玧&""½bâHš‰ ‡9“Ö§.RDtDDdF˜8RºÍŸ«W‹ŽÃÌEDÀÅEtDDd^˜8Rú¼}‹={P« Š9»t `?5éGJŸV­`êTÑq˜9iòæEýú¢ã |™÷û‡DÇADD戉#}ƒ´HÌˆŽƒ$áápr™)&Ž”–… `Å Ñq$4`?5 ÃÄ‘RõávîDõê(VLt($‘ÆSWª$:""2SL)UÍšÀŒ¢ã •{÷+—è ˆˆÈ|1q¤” þ):R¹{à¼ßDD$’‰$Ž÷îÝ+Q¢Dˆ´¢Æ·lÛ¶­}ûö*T¨Y³æ„ ^¿~­Yví®\AÇŽÈ”It(¤"õSW¯.:""2_&’8¨Yrþüù“&Mº{÷n•*Ulmm·oßÞ¯_¿?¦·Œi2 %vëììDADDf͸ÇÈÈÈ‹/úøøü¡Þl1·nÝZ±b…““Ó¡C‡V¬XqøðáîÝ»_½zu®47žÚeL[Û¶‰106^OMDD‚wâØ¼yó.]ºlÞ¼YÍò[·n>|¸£££´eܸqvvvŒW¿Œ Û¿¯^aìXÑqÐ×JÌÝ5kŠ„ˆˆÌšq'ŽÓ§O_ºtéÒ¥KÝÜÜÔ)á ¹\®ÚbiiY§NˆˆˆË—/«_Ƅܹ͋Ѩ‘è8èkÙ¯?†è(ˆˆÈÜwâX«V­zõêÕ«W/_¾|ß,¬T*ÃÂÂræÌ™3gÎÄÛ‹/àÑ£Gj–1aÒ"1[·ŠŽƒ’xü`?5‰g%:ý‰ŠŠŠ‹‹³··O²ÝÎÎÀ«W¯Ô,óM%ú÷¿µ|¹èê¦ÛÒÃEüþ?]‚â]O%…è ‹JûZ»”J(4?­ÆQip`ºIGá TߨÉs~¦tt­ŒŸSã3hp ú‡¤ãä u¯©ÃŒGiX´M²þ>[[[oß¾U³Ì7ý¯½û©ªþã8þ¹÷bã‚_~ø#ÔfV»7¸ÀVh¸ÐPWm-Y )@ÈÅÂÓÀM–Ø޹~”ÝÅ„]æ’•5‰ÍFÚ/ÆTd³ì"ƒËß0ÝUä*÷&qïýþqæý:)qâ„o×ëmooMIIQ?`šåÁqllÌjµþWyš‰999Z­¶¶¶V¹gQa±Xìv{vvö¼›oeV3`šåߪnooß¶m›Ñhüꫯ„Ë–-«¨¨¨®®ÎÊÊÊÈȰÙlIIIÅÅž)jÆÌA³<8NVTT´xñâ–––ÖÖÖ¥K—”——+OÛ™Ö€¹Fãõze×€0Ëïq@   Áª  Áª  Áª%_µj•Ëå’]0ŒŽŽîܹsõêÕ©©©%%%ƒƒƒ²+BÛÐÐÐk¯½–ššš––VYYyõêUÙ!ˆï6»Ý^UUå{6?½ùæ›]]]|ðÁþýûoܸñÊ+¯8NÙE¡Êãñlݺõ¯¿þjhhØ»wï™3gvíÚ%»(‘9÷ÊA¹öíÛg6›eWÌN§ó»ï¾Û·o_zzºâÃ?|üñÇ;;;×®]+»4 $õ÷÷÷öö677'%% !òòò>úè#Ç£Õr¥ BpÅñ.+--íëëûôÓOeÌÃÃÃIII«V­Rþ~åÊÙu!ìÅ_LHHP¶—/_Æ5&ü? B˜Á`8räˆïŸ­­­N§såÊ•²ëB•Ñhܽ{·âÊ•+‹å¹çžãr#|øQ˜¶øøøžžž¿=úÅ_ää䤤¤¤¥¥íܹsddDv½@ð¿­<OSSÓo¼ñꫯ>ôÐC²HæO•””lܸñÂ… ²Wƒ ÂÇikjjú§C{÷î­¯¯ŒŒLMMµÙlGŽ9þüÁƒõz½ìª æg[Ùl¶ŠŠ «ÕZUU•““#{5€|þÿª:|øðÈÈH]]]nnîÉ“'ÃÃÃe¯ A+Žj9Žüq×®]Ÿ|òÉßèëë³X,qqqÇŽ³X,Çùå—Ï;WSS#»v H¤­zzz^xá…+V?~œÔˆ9Îÿž²Z­gÏžU¶ccc·oß>66ÖÕÕ%{eGµÖ¯_¿qãÆÏ>ûìŸ|þùç§¼¼üÞ{ïUöìØ±#::ú믿öx<²Ë‚‘ÿm511ñúë¯îÙ³gÁ‚²HæOuuu•••ù~m9ÇÃçfðá£jµÞzë­7n!>þøãŽŽŽÉΜ9£Õj333}{t:Ý“O>yôèÑ®®®Ç{Lö € ã[:uêâÅ‹&“éôéÓ¾1F£qÑ¢E²HàOeff¾ûî»UUUùùù.—Ël6ÆäädÙ+C° 8ª¥<%NÑÖÖ6ù¨×ëýí·ß,XpÛ5‡~X144Dp&ó¿­úûû½^oYYÙ­jjjÖ¯_/{q€þ÷ÔÂ… öìÙ“——§×ëŸxâ‰wÞygÞ¼y²W†`Ap §Óév»cbbnÛ-„¸í©r+W®ìëë“]2ìÔ´UQQQQQ‘ìJРòWÕ£>zèÐ!ÙÅ"Hqc`(/žŽŒŒ¼mÿüùó…£££² Bm=ÿ#&&F£ÑL~C®òNjå9ÓB[EOÁÇÀ ‹ŽŽžüçšÃáBø¾¼@=Ú ,z þ#8L\\ÜåË—•öó±Z­Ê!ÙÕ!‰¶‹ž‚ŸŽ³nÝ:·Û}âÄ ß¯×ÛÞÞ›’’"»: $ÑV@`ÑSðÁ1`rrr´Zmmm­r³ˆÂb±ØíöììldÌ m=?ñ8ž€Y¶lYEEEuuuVVVFF†ÍfëììLJJ*..–]ªh+ °è)ø‰àHEEE‹/niiimm]ºtiAAAyy¹ò˜3C[EOÁ¯×+»„îq€*G¨Bp€*G¨Bp€*G¨Bp€*G¨Bp€*G¨Bp€*a² 0k¹ÝîÄÄÄÉû#""–,Y’–––››k0d— PKãõze×`vú§àè£Óé¶lÙRZZ:³ó|xâE111™3g–åË—/Éûôé£úâ®]»4Ýî‰'T_?}ú´ôáªU«T>~üX·{šìÊÕßb\\œ,¹sç®U«–‡‡Ç£Gtýû¤^ÈšÕÿá’m `æÌ™ýû÷ïß¿¿ŸŸŸ®öB‹_G'‡TûBDFŽ…#Y´¦M›Êd2éõÙ³g/º|ùò§OŸ¤×/^¼¸{÷nâ¥çÏŸ—^ØØØ4lØPô~ˆôæÍ›ÐÐÐ¥K—–)SfëÖ­¢ã»ýû÷¯\¹råÊ•‡2Àæôúëx_ˆÈ°p$‹æààP©R%éõÅ‹?þ¬Zô÷ß'nªzuíÚ5éu­ZµlmmEï‡QøðáÃÀÿý÷_ÑA(üuˆH'X8’¥kÞ¼¹ôâÓ§O—/_V}žädâÂñÒ¥K±±±Òë¦M›j±Ñ:uêÜÿ¢jÕª¢öá¯^½úÇ/^\ZôîÝ»yóæ‰h }Oý‡õ[ò¯CDÀ‘,]³fÍT¯_e”^-ZÔÑÑ_ŽªûÔH®p\¿~}ƒ òäÉ“#GŽ*Uªxxxܸq#I›Ó§OÿŹsç¾M¥T*7nÜØºuë¼yóæÍ›·]»vÿûßÿ’´Iå1µJ•*IŸ·k×NçG,K–,E¾([¶l—.]öìÙ£ZzåÊ•dãݹs§C‡¹rå:xð`âµ8q¢oß¾ÕªUË‘#GéÒ¥ÝÝÝ.\¨ªËµ;2’;wî 8°J•*ÒoQ¶lÙöíÛŸ8q"=kNó‡K¥å´iÓd2Ù©S§¤Ç—~ Áƒ«Tpppâ•>|Xµ(ÉqK篓º4””öE•‘iSY¶ØØØÜ¹sKÿ9ôîÝ[úðýû÷VVVºté"ýßa† ¢¢¢¤¥½zõ’ÚçË—/>>^µªwïÞuêÔéÛÿÊ2eÊ´jÕªÄ=~ü¸jé©S§¤W®\©ú°_¿~IV’-[¶íÛ·'^Iâö=J¼¨bÅŠÒçmÛ¶M¥q*køö(©Z6jÔèÛ ––(QâÛ•çÏŸ_z½ÿ~©Á‡<<Ü·o_⯨:¸»»gÈAO¿Ž?JJû¢“EDÆŒ…#Ñw«¯_¿þáÃ$ºg]½zõ5jH¯¥»Õ‰{Æ$¾OýÏ?ÿlÚ´IzíïïéÒ%…Bqýúõ%Jˆ‹‹óòòÒ(Õˆ#ž={öúõë)S¦HÿÇ?nÜ8ÑG+7nÜxòä‰ôºdÉ’ß68{öl±bÅ<~üø"EŠ8wîÜŠ+¤¥ÎÎηoß~üøñ»wï† "}øðáÃ3fhwdöïß/ýŽ™3g }øðá³gÏ.\¸9sf©Aâñq vÌK—.Ý¡C{{{é­ƒƒC‡jÕª%“É~üñGéÛ7oÞ¾}[z}÷î]Õë®]»êï×QQÿGIi_tr ˆÈ˜±p$úoPžøøxéj¢téÑÆÆ¦R¥JU«Vµ¶¶Æ—ÂñŸþ‰‹‹ “ÉÜÜÜT+Y´h‘t¦|ùòƒ ’>,T¨ôúâÅ‹·nÝR3R“&MæÍ›—7o^[[Û‰'ªnŽïÛ·ïÁƒbWttôã/nß¾½k×®¶mÛª–&[=¸ºº^½zuñâÅÓ¦M+_¾<€%K–H×t3dȰwï^©GÖ¬Y-Z$]âðûï¿kwd¢¢¢5jÔ¨Q#UÝïììœ-[6éu’Á•„óîÝ»«^«.:ª.7(P ~ýúúûuT´þQˆÈr°p$B¾|ùªT©"½–JFéŠã?ü5kÖlÙ²IµŽT8ªºDT­Z5oÞ¼ª•ܼySµ¶½‰¼{÷NÕæäÉ“jF8p`â·ªJÀõë×Å®S§Nú¢dÉ’:tPí»““Ó€¾ýÊØ±c3eÊ”øÕ^4iÒäûï¿Ovßß¾}ûìÙ3-ŽÌ¨Q£Ž;vìØ1??¿OŸ>?~åÊ•M›6}õê•qóÒ¥KW®\YzýçŸJ/T…cçÎUwÏӤůóínjú£‘å°Iÿ*ˆÌ@³fͤŠðï¿ÿ~ñâÅýû÷T¯^]ZZ³fÍK—.=|øðñãǪ“ô§VÝU Hv+ꢗ䖢êa27nÜhÒ¤‰è– ‡uëÖe̘ñÛEªaï…ô¢T©RII7÷UÍ´82QQQ‹/Þ»wï_ý•xxÎTˆ=æÝ»w—¢=}úô›7o²fͪz(6=÷©URùuï¦ôBÓ…ˆ,¯8‰s<{öl⥪Ûýõ—êŠc’ÂñíÛ·in%ñÕÇÔ©z'H_pJ¶Ç«@™2eªR¥ÊàÁƒ/_¾\·nÝdÛ¤R¯|»;ÒƒÕä=™çÏŸW­ZÕÛÛûÔ©SŸ?.S¦L·nÝ.\¨êƒ’,±Ç¼K—.Òccc:tòäI©Š“““ê<Ô‚:¿Î·4ýQˆÈr°p$€5jäÉ“@xxøþýû¥_q”^?~\º*cgg§ª&%ª‹j£GNiƒÙ³g«™'ÉÓª»øúJ˜ŠôØ¥Šô¤šž$ð%::úܹs‹/þvFïT¨ö"ñ®}»ïeË–ÕâÈüòË/R&‡ëׯ_»vmãÆ?ÿüsâê'ýÇ\· ( š»rß¾}ªûÔš^nLϯ£õBD–ƒ…#XYY©åÙ°a€lÙ²•)SFú¤téÒÒ8&›6m’J477·$Uˆêÿt/^¼˜øó¨¨¨_<þ\Í<‰‡Ù°lÙ2ÕkÕÿm«úî­KÞ½{§ºon´T‡ëðáÃáááÉîlŽ9 *¤Å‘9räˆô¢S§Nª ½yó&ñQú–:kÖ¡$8tëÖMzqèÐ!Õ¿^ºté¢óM§DëåÛ}!"sÅ‘(ênµ4’‹ª35™L&]}Œˆˆ>ùvÂÕ•¡'N8p@zýùóçüQêáÛ®]»”†¤þÖ¡C‡FýöíÛ>Ìž=[UÓ´oß^õÛ‰7nܽ{÷bccÿùçŸÖ­[GEE‰>œiP2ýùóçvíÚI%]ttô°aÃTƒ,zxxhwdž>}*½8sæŒÔ“ãÝ»w}úôIeB5׬CoÞ¼IòIûöí³dÉ‚D¥ùò奎Y†¡õòí¾‘Ù=9‘±xþüyâG»¼½½/8qbâÿp>|øíär¹´ÔÊÊê‡~puuUÿ`îܹª–iN@¢ZOâZÓÚÚúúõ몕|øð!q·n$z4MUòlæ˜o¥¹òþýû'_¤H‘ÄB.\øÃ‡Ú™råÊ%néää”ä!Ëj·æôÌ#騱£êó:uêLŸ>=ñ1éܹsâ0Ó¦MSçPëð×QÿGIs_ˆÈ,ñŠ#Q‚¼yóV­ZUõ6IÕcŽ~øá‡d/A­_¿^o/>>þÿû_@@ÀÇX[[Ïœ9ÓÓÓSý0Ò`(ñññªš GŽ»wïNü°]¶lÙüüü»J¥@¯^½ y™Jk~~~‰Ë”ððð˜˜éuÕªU:”¸ìÖèÈ$¾½÷îݘ˜UA™ì=kuÖœ~­ZµR½>}úô_ý•xiâaØûÔ~”Ô÷…ˆÌ G¢ÿ4oÞ\õ:Iᘸ+LJ#³|÷Ýw‹-jݺu‘"EräÈQ±bE›7oj:[@@ÀŒ3êׯogg—'OžvíÚ9s&ñÿOKºwïäææV @,Y²8;;/^¼xõêÕÆÖó:YÙ³g_¾|ù±cÇzõêU¥J•ìÙ³/^¼}ûö . Mé±BuŽÌ˜1cT£^;88´iÓf×®]K–,©T©’ôá‘#G¾2IÍcžN=zô˜?~©R¥²dÉR°`Á$c5iÒDꤠzõêNNNÆü£¤¾/Dd–dJ>ÔLDæ( ௿þ:thŽ9DgÑ@ÕªU¥±BçÍ›7bÄÑqˆˆ¾Â‘ˆÈXœ={¶víÚqqqVVV>tttˆˆè+œ9†ˆH¼1cÆé“±cÇÚÚÚ:t(>>^ý6DDDDÈ ÇGEFF–-[6S¦L‰?¯^½ú§OŸNŸ>­f›oýý÷ßVVVr¹\õ‰µµuýúõ_½zuáÂõÛY c,­¬¬DEE%ù<&&ÀóçÏÕl“„R© Ë;w’Þ3%K–ððáC5Û¤M¡}Õ¥€Þ£êjZ¯G£/ªÓ8Í6©7Hm)Ï=lB»õèü´Q§™–gŽéœ6êÝlb̸¸‰šø[·n¥‘‚g™"cìUíèè˜#GŽ+W®<þ\u¿øóçÏGðâÅ 5Û$ggg—äs[[[¯_¿V³:J•*•øíÍ›7ET""‹íþ œ=‹6mDÁÀÈAt"]3Æ+Ž2™¬ÿþQQQ—.]ŠŠŠº~ýº‡‡GXX€èèh5Û$!]žÌ–-[’ϳgÏàÝ»wj¶QÇͯ‰>¢DD–¢Zï%0b„ØҵƣGE"]3Æ+Žúõëwÿþý]»vuêÔIúÄÑѱ_¿~+W®Ì‘#‡úm³³³“Éd‘‘‘I>ÿðá¾\ST§ ©Áƒ 0PlŠ.]Œ!‘^iáhmm=}úôŽ;þý÷ß/_¾,S¦Œ««ë®]»äÉ“Gý6_íª­­í·W #""H÷»ÕiCDDÆèÿÃõëá=êšÂßÏžaútÑGƒH?Œ´p”T®\¹råʪ·Òmè~øAÓ6*aaa9sæT}xïÞ=i‘úmˆˆÈè à^…ã£k9·mC³f¨YSôÑ Òc|Æ€¯¯oŸ>}^¾|©ú$::úÈ‘#öööeË–U¿M 6Œ‹‹ V}¢T*ƒ‚‚råÊU©R%õÛ‘qéÑ{xÕÊY³bôhÑGƒHoŒ´p´³³;}ú´ŸŸŸô6..n„ >|èÑ£‡úm>~üxïÞ½GIo;vìheeµhÑ"é™EË—/ùòe‡2|éü¦N""2"!!xôbSHb}4ˆôÉHoU÷íÛ÷À;wî¼qãÆwß}wéÒ¥§OŸÖ¬Y³ÿþµ 9rd‰%öïßÀÑÑÑÛÛ{æÌ™­[·®W¯^xxxhhh¹råE6DDdD&L€L†/%…èÐ|€\ôá Ò##½â˜={ö-[¶tíÚõíÛ·'OžÌ;·§§çÊ•+U³ ªÙæ[}úô™3gNÑ¢E<øúõëîÝ»¯_¿>ÉÀê´!""£Ð¶-Œ°p!^¿ÆÜ¹¢‘þéG¹sçž4iR:Û4oÞ¼yóæI>lÕªU«V­R_³:mˆˆH°#GðîÆŒáÒ%ìÞÖ­Q¹²þ'Æ1#2¯dj}å\Wѹ( Æ[8¥aÆ ä̉¦MF1¶¶9Rô¡0 %£_25¢ `ùhÜŒôV5Q\]`ï^¤1{öˆ>¦Cæ?×d«FÒ¢d/FjÁ××W–ˆ••UéÒ¥{ôè*ú0˜0ŽDDd‚¶o‡R‰©SFhÝ?)I¨Ó¤»Ú@—.]F5jÔ¨!C†äÏŸçÎ 4X¶l™š_?wî\»ví®^½*è˜Þª&""´d D:¢¶?w.Þ¿Ç‚¢ƒ¹òs•!@'÷¬‡Z'ÑyrãÆ¶mÛzxxÔ©S§|ùòi~ýÙ³g{öì!zösãÁ+ŽDDdj¤;Ä7ŠÚþ¹sØ¿íÛÃÙYô¡0ê^nÔ³Ò¥KoܸQ©TN™2Et“Ä‘ˆˆLÊêÕÄ^ëóöFž<øùgч‚´RµjÕ:uêìÚµ+66VúdÞ¼yÎÎÎÙ²eË;w56mÚ$}Þ»wï–-[ËåE‹M½±…`áHDD&eÔ.-ðZŸt¹sÇÑÇÒ¡bÅŠ±±±>0iÒ$OOϼyóŽ3ÆÃÃãýû÷Ý»wß·o///___³fÍZ·n]ê-Ÿq$""Ó!Umþþ¢¶ß¬À1¦ï»ï¾pïÞ½¢E‹nذ¡dÉ’GŽ‘æ+=z´½½ýáÇ[µjU¾|ùððpÕ«W¯_¿>€T‹Þ'aáHDD&Bº=-ݪaÆ DGcÉÑÇÒM&“©^Ÿ={6sæÌR!àÕ«W"##“ý¢FÍ G""211سÕªáË£fvæ ŽAçÎ(SFô¡ t“nR;99È•+WHHȱcÇnܸqûöí«W¯ªž}ü–FÍŸq$""SФ Ìš%jûãÇ#~ $ú8˜,å\WxŠœR<±K—.ÙØØ*TèÓ§O­ZµªW¯Þ¡C‡J”(áååuýúu[[Ûd¿¥QcsÅ+ŽDDdô¤¾·oµ}éÑÊ?þ},‡§nqLÖ… ‚ƒƒ;uêdcctðàÁùóç>\Õ ¥‹ˆ§NR¿±¹âG""2n¯^áÄ 4l{{!ÛwsØ!FÔ½è¨ÏªñöíÛÝ»w—Éd¿üò €G(“èùƒ;v|üøQ©T&þV||¼úͯ8‘qsw€‰…l|êTÄÆbÅ ÑÁ\(çºÊêHຮýýý÷ïßàÓ§OW®\ ‰‰‰Y²d‰4mŒ‹‹K¶lÙú÷ïß­[·‚ ž9s& oÞ¼§N:tèP³fÍìì줕<{ö,ÍÆ¢®!°p$""#6f >,dã'OâÄ tïŽâÅE3’P;IËGÏi©n7§ [&“•(Q¢M›6C‡­U«–ôaáÂ…<8nܸßÿÝÁÁÁÅÅåòåË{÷î7nÜ‚ š5kV»ví®]»8pàÎ;çÏŸO½±èCk,‰ˆÈXÝ¿³gѦ 2e²}|÷úö}ÌŽT&”_¨C>>>>>>i6«_¿þéÓ§Ò·oß¾_~u™L¶yóf5[ŽDDd¬z÷€#„l\ê³~½èƒ`¾ô÷ #é;Ç‘Qòð„õIñu‘‹Û8‘ñbáHDDÆçàAܸ=„l\º½¹fèƒ@d|X8‘ñ™=úô1ü–pò$ä½ïÿ½èƒ@d|X8‘‘‘ž.qŸ8.S¦ÀÉ zÞ}ˆŒ G""2&C†ÀÁƒB6Þ¨¬Z%ú +ŽDDd4öìÁµk9Y²~ãâ.t™ ŽDDd"#±`Ê•Cëֆ߸øñðe¬h"J G""2-ZÀ¢E†ßò‘#8sÀÑQôA0ŒøxøúŠA&‰…#q÷‰££1cJ•B×®¢‚alÛ†† E‡ SÅ™cˆˆH´iÓ`åJ!—f^ºTôA0ŒÎñü9J—Fç΢£IâG""êï¿qü8:wF±b†ß¸uˆ‰ˆ€‹ ž?Çĉð÷†L¯8‘P£G#W. dø-{{ÀÖ­¢€¬^  ©‘IX8‘8Ò¿]» ¿åýûqîF¾|¢‚¾5oލ(T«†Y³DG!“Ç‘ˆˆùñG@Ì5°÷ï1w.Ê•CÇŽ¢‚^=y"ïæ 3g¢zuÑiÈðG""aÍ<}*jPi¤H#ÿÐÂ…èÖ Y5ðõõ•}ÃÑѱqãÆAAA5ó÷÷—Éd7þv+?~,X°`æÌ™oß¾-zõ‚W‰ˆÈà?Æúõ¨Wõë~ãÑ!FÚIůõ墳•.]º*THz{÷îÝC‡?~<00°Aƒj68pàºuëŽ;¶wïÞ6mÚ$^ÿŒ3žãHDD¡T–ž¾NNèÒÅð7ã1?ŒÛŒÐÛȘGŽˆÎbüýý÷ïß/½þüùóÝ»w÷íÛ׺uëiÒ¼—6k×®]Ë–-·lÙ’#GŽsçÎùúú:99‰ÞEýbáHDDáê «V~ËC‡À¾}¢€>¸¸äðãèß_tÓ°iÓ¦$Ÿd̘±eË–IžJT³€E‹¬X±¢X±b£G½zÇ[ÕDD¤ÍšPú~ËÛ¶áêUŒ…ìÙEÝR(¤ë¨!»F±jTß©S§”_ÄÇÇß½{×ÕÕuÀ€Ç×¢€"EŠ :À¤I“ÔyPÒÔ±p$""=óóCt4~ÿÝð[~þþþ¨V -Zˆ>º5t(|}‘'creÆTÉd²¢E‹JÝ¢S~Ž!Ífùòå7o^Ñ;d¼UMDDútå öíC«V(_Þðc vî Àì¦h–Ø8PÈÓ¢æ§X±bîÞ½«“ff…#éÓÏ?#sfxz~ËfØ!fÿ~H£;þ?¸nØØØˆ‰‰ÑI3³ÇÓŽˆˆôFªÝ2ü–µe½éÕ áá(Rk׊ŽbV¬­­³e˦“ffÏ8‘~ôí †ßòæÍ¸u ãÆÁLú*ÄÆÂÅááðòbÕ¨ÎÎΗ/_^¿~½Nš™7^q$""=X¿wïbÜ8ÈdÞòãÇX±µk£qcÑA o9e¾€™ÝtÀÇÇÇÇ'ù~ý!!!š6KÌËËËËËKôþ G""ÒµþÁš5hÚTHíÖ½;|=N³Érwwzõ åÊaÑ"ÑQˆÞª&""‹ÇÈ‘ptĘ1†ß¸¯‹æqm.<..xõêªOGVd†Q*X8‘îˆgÝ:Ü»÷_¯YY•}Ò§IÄÄ fMLŸ.: QR2¥R):ƒÙQ(rÑÈÉà™Cš2ªÓ¦nË6? ™WðÅýlKzW+ÛàEÇIWEíe}øªzÏE.Íéñ¦Š“^·%9rÈEï4™%é\` èj'Uê=ª®6¡õz4ú¢:Ól“zƒÔ–òÌÑÃ&´[ÎOušiyæÏi3~¼R.WÞ¹“žƒ 5¹\)—ërÎ?¿ÿvC“ušü™C&…·ª‰ˆ(ݶlAH†‡“~¯“%Ëfˆ‘ö¡Q#L˜ : QjX8Qú\¿ŽeËàâ‚¶m ¿ñ=“®¯]Ã!°lJ–†( އˆˆÒgð`äɃ_5ü–W®Ä£G˜} k×®š_õêU“&MôÑ8$$dÞ¼yû÷ïÏ“'ÏÝ»woß¾=nÜ8©j`gg7räÈŸþùòåËÎÎ΢"Ÿq$""MíÞ …(]Úð_ºÿþk‚“ª?žP5îÝ›07"V\\œ ¥RyïÞ½^½z,X°Ú¿…ƒƒƒ4¡:]jÔoÝ«W¯=z4mÚÀÇäË—/qGGGÿûßÿDB€W‰ˆH3wïbáBÔ®N ¿ñë×±u+š6EÍš¢ƒF<eΜ@Μ97nÜhoo/6Ï‚ =z4eÊéméÒ¥„„„Œ1BÕ&00ÀÓ§OÅF•°p$""Môí‹ìÙ1mšŒ,Y0fŒèƒ éBãàÁèØQt‚ÍŠ+ž?ÒºuëN:mÙ²%..îÀ)}¥M›6z óòåËéÓ§1¢P¡BÒ':tرcÇÌ™3ûôé£T*×­[çïï ""BôÁX8‘¤hß>?xPôAPßž=X° “‰NC`mmݯ_?鵯¯ï¤I“:wîܰaö)_¯T*õfæÌ™ÑÑÑ£FJü¡¿¿ÿÛ·oÇŽ;vìX¹råúå—_&Mšdgg'úà|Æ‘ˆˆÔ%tðww×J÷îX°ÅŠ!0U£qúé§Ÿ„„„ØÚÚ¦2;³ž¶½zõêöíÛçÎ;ñçyóæ=vìXHHˆ¿¿ÿ®]»nÞ¼Y¾|y… }À^q$""µüø#ÙøÂ…xõ sæˆ>jŠŽF³f0f š6†R ÀÚÚ:66Öð·ª·mÛöúõë¾}û&ùüÒ¥K9sæ¬U«V­Zµ¤ONœ8!“Éj×®-ú€,‰ˆ(m3fàéSÌŸ/äÊÙåËØ½­Z¡JÑÇA7bÕ*À´®ŽZгgÏÞºu«ä—ÙwîÜ  råÊ?~4ü­êÍ›7ÛÚÚªf‹Q8pàÕ«WoÞ¼)u¦¾~ýúÆ[´háhcųp$"¢T­X#GЧ*T²ýáÑ3'4œÝCŒ:mf!" *`þ|ÑY(Ÿ?vuumÓ¦M™2eþùçŸ5kÖTªTÉÝÝÝÚÚ:ÕáÌ™3g̘1}úôAƒ©Ó>***((¨aÆVVIœŒNP¶¬èC‘VÉÙ³Gp€”ç|!ÝcáHDDÀ񴮯±(_^T„qãààч"%¬S |È$ކÄ‘ˆÈâíß­[ѽ{ÂŽ"HUÙ–-¢EêùX5&‡GÅ¢pp""Ëvñ"æÎ…‹K„"Hsdiý¡T²j$RaáHDdÁž?‡§'J–į¿ŠŠ0u*bc±|¹èC‘¬ÈH¸º¬‰°p$"²`;#kV,[&jûÁÁ8qݺ¡D чâ[/^ E dÍʪ‘HE–ÊÛ¤%…B!L\ž9¤©ôœ6r_Š@ù}]äy EÝpV`†de Y½×âOö9Îl÷E/¤3G¹è &©~ýú 6ôñIþ¿ÏŸ?׫WO&“9sFÓ¥’7nüòË/gΜùðáC¹rå¼½½Û&êôîÝ»1cÆoUY#èíaRpþ<Ž(]ëÖ‰ŽBF$66öèÑ£“&MjÒ¤I|||JÍŽ;6{öl-–J~ûí·?/^¼xúôé.\(Y²äøñ㥥~~~aaaË—/ß´iÓ‚ ‚ƒƒe2™———ÁŽ G"" c%Û¤I°fèCñ­“'1j*W¾àßOtÒ¥#F8889räÍ›7}úôqtttttìÝ»÷Ë—/Õ\ëW¯š4iâëëûâÅ‹”Ú<{ö¬Gýúõ+T¨¦KU®_¿îèèèìì,½Í”)“\.õê•uË–- èÙ³§´ÔÉÉÉÝÝ=((èéÓ§†9’,‰ˆ,I§Npì˜À B¯^øþ{ÑG#‰#Gàãƒzõ0w®è(¤c-Z´øüùóìÙ³7n=xðàÊ•+¯]»¶OŸ>j®ÁÁÁAºW{ãÆd(•Êž={æÊ•kþüùš.M¬råÊÿþûï½{÷¤·qqqÿýw¡B…ìíí#""nݺåââ"“ÉTí]]]ãããCCC s$98‘Å9/^`ÍØûãÉ“Q´(~úIôÑHb×.üþ;7Ƹq¢£î¹¹¹9;;Ÿ8qbΜ9ª» 48xðàdzeË–þMÌž=;(((444kÖ¬š.MlÔ¨Q¨_¿þÀsæÌ¹cÇŽ«W¯®[·À³gÏ”J¥ƒƒCâöùòåÊuPÝbáHDdfÍÂ?ÿ`êT±ú6€Õ«E$6nĪUh×ƉŽBú"]¥8p ê“ÚµkŸiÔ¨QÆ DFFÈ™3gâö¶¶¶^½ze˜ÃÈ‘ˆÈ,\ˆC‡0z4êÔ˜Â×E#ì³b6oF·nèÇçÍ\îܹ³gÏ®z+]hT*•?~l›òŒ×Ê´.ŒˆˆèÚµ«››Û°äþá‘úÒoõìÙsëÖ­sæÌéÖ­[Ö¬Yƒ‚‚† R«V­³gÏÚÛÛxÿþ}’õK»f˜cÈ‘ˆÈÜ­\‰Ý»ñóÏhÖL`Š `ãFÑG#‰ùó±w/ú÷Ç?ŠŽBz—1cÆÄoUO ÚÚÚ¦Y¦bÙ²ewïÞmÛ¶í¬Y³¤OÞ½{7sæÌÂ… ?zô(•¥]»vM¼ª+W®lÞ¼yèСªûé­ZµÊ!C³fÍV¬Xáååeee•ä®´Ôi¦`Á‚†9†,‰ˆÌÚæÍØ´ }û¢}{)ŽEHö¿[° “è#’Èo¿áØ1 Ž”¯6‘%ˆMϭꘘ~~~‰?|óæÍرcåry£FRYš¤p|ýú5€bÅŠ%þPzûêÕ+›²eË'^zòäI™LV®\9Ã+ŽDDækϬXD÷îSDGcút”,‰º?>Œ¦pœ8§OcÜ84n,: –Î[Õ&L˜ ]Qÿ¢hÑ¢ùóçWÍ “úÒĪT©’%K–M›6yxxdÊ”IúpÕªUêÔ© ÿþÇ߿˖-<þ|ÇŽnnnE‹5̱âp ‰õ쉇áïÒ¥EG!ƒ ÔÑ?_J•*•æeHÕðÝê,õñññññIüI:u<˜Ò×mmm—/_®ïÕŽDDæåÚ5x{£jULž,6Èøûoxx _>ÑÇDÅݯ^aýz|÷è(D&‰…#‘¹C† lYÌž-6ȇ˜3åÊ%Ìqh¤»æÛ·ÃÞ^t"SÅÎ1DDæâÙ3ôîï¿ÇâÅ¢£ U+X´HtooX±‚U#©Œ=úäÉ“Ifð£ÔñŠ#‘Yˆˆ@—.È—kÖˆŽb|b6lÀ¹s5 Å‹‹ŽBF$C† õêÕÂÄðŠ#‘é‹E›6È‘Ãú¡Œ ;wŠÎ¡rù2V¯FãÆhÑBt"“Ç‘ˆÈô¹¹ÁÆþ):öìÁ?ÿ`Ø0jâÜ´(•> ï`NdX8™8éÆð±c¢sàÍ,X€ Юè(*®®°y³èDf‚…#‘)“fŒ0ŽÇ ¥Ù°çÏCÅèžµ$2y,‰ˆL–1FÆ”굑"2,‰ˆL“T©}=á„(C‡0†g,¿˜0ïßcÕ*Ñ9ˆÌ G""dL×÷¶oÇÕ«ðòBŽ¢£H¶nEH†‡““è(DæF–æ|‹¤1…B!L\ž9¤¹‹/E Œà´‰xži^çZŪ¾î>û²è9o<®ì±ò¹¼Ü5wÑYŒš\Èå¢S R’ΊN vR¥Þ£êjZ¯G£/ªÓ8Í6©7Hm)Ï=lB»õèü´Q§™ºgŽ\®”Ë-Ðfu(IœtÝêÐ!ý«1Ã3'émvÞ¾};pàÀï¾û.[¶lõêÕ;sæL*¯]»Ö®]»B… 9::º»»Ÿ>}ZWK¯_¿îîî^°`A[[ÛÚµkïÞ½Û`G€·ª‰ˆL‡1Ý¡6¾8_íØ!:™§ˆˆˆªU«®Y³¦^½z}ûö½sçNÓ¦M/^¼˜lãàààJ•*…„„¸»»wíÚ544ÔÍÍ- ýKoݺU­Zµ£G¶iÓÆÃÃãíÛ·íÚµ[¾|¹a§$"2FV¦ ‡‰Î¡ââ@è#„Ì•ŸŸ_XXØÚµkúé'ǯR¥Š———ª¤SQ*•}ûöµµµ½té’4öĉ«T©âíí}þüùô,ðÛo¿}üøñŸþqvv0iÒ$ggçñãÇ0ÀW‰ˆL€ô\£ñTü›71v,2gEÒ¡`DLJŒSddäÌ™3Ë–-›-[¶²eË0àåË—ê}Ë–- èÙ³§ôÖÉÉÉÝÝ=((èéÓ§IZÞ»wïöíÛ}ûö•*?vvv#G޼páÂåË—Ó³Àõë×¥ª@¦L™ärù«W¯4Ú­±p$"2zFv­ñÉ,_ŽZµÐ¤‰è(__¼~ Ñ9ȨÅÇÇ·mÛvìØ±+VôóókÖ¬ÙÆøá‡G©óõˆˆˆ[·n¹¸¸Èd2Õ‡®®®ñññ¡¡¡I?|ø@¾|ùèèèàÿû_z–¨\¹ò¿ÿþ{ïÞ=iQ\\Üßÿ]¨P!{{{FŽDDÆíËXÑ9þÓ­üö›è’Ý»¡PÀÃ¥K‹ŽBFmÙ²eÇŽ›ãHDdÄþ»Ö¨å›DÆàÎ,\ˆÚµÑ©“è(dìvíÚ•!C†1cƨ>©W¯ž\.ß½{w|||||üRún›6m"##äÌ™3ñç¶¶¶^½z•¤½ƒƒC‡vìØ1sæÌ>}ú(•ÊuëÖùûûˆˆˆHÏRßÿ}Ïž=§M›öË/¿H›kÔ¨QÆ sY8¥¸84jO}ûÀñã¢s¨ôë‡90mšèd>|X¬X±Œ3&þ°\¹rááá¹sçnÛ¶mJßU*•Òà÷ïß'þ\ªärçÎýíWüýýß¾};vìØ±cÇÈ•+×/¿ü2iÒ$;;»t.íÙ³çÖ­[ç̙ӭ[·¬Y³ 2¤V­ZgÏžM6‰n±p$"2>> U+X[S†õëq÷.~ùÖÖ¢£H¤‹ŸF4Ñ!µOŸ>eÉ’%ɇñññ²gÏnkk«LuJ++«$w¥¥þ( ü¶}Þ¼y;*uŽ®[·îÉ“'.\8=K¯\¹²yóæ¡C‡zyyIjÕªU† š5k¶bÅŠÄ×Sõ„…#‘‘yñ:!{vìÛ':ÊîßÇš5¨_®®¢£HŒë–9™†;wîÄÄÄ$¾èxíÚµ\¹råÍ›7666õ[Õ666eË– NüùÉ“'e2Y¹rå¾ýÊ¥K—ræÌY«V­ZµjIŸœ8qB&“Õ®];=KÃÂÂ+V,ñ¶¤·ßÞ1׎DDÆ$<½z!o^lÛ&:ÊWz÷__Ñ9$]»¬Ic111sæÌ?~¼ôöÔ©SAAAƒ ðñãÇÔoUèß¿ÿðáÃ÷ïßß²eKÏŸ?ß±c‡››[Ñ¢E¿ýÊÀ¯^½zóæM©Côõë×7nÜØ¢E é­ÖKmmm³dɲiÓ&L™2IÛZµj€:uêà²p$"27nÀÃEŠ`íZÑQ¾b\W÷¦OÇ¿ÿbÁÑ9ÈôäÈ‘ã×_½råJݺuïܹ³téÒB… M:@š·ªôêÕkõêÕݺu2dˆÝÚµk###}¿üsjæÌ™3f̘>}ºT‰Nž<¹Y³f5jÔh×®ÝçÏŸ·mÛ–%K–… Jµ^š-[¶%K–ôîÝ»\¹ríÛ·Ïœ9óÉ“'ƒ‚‚Ú·oߦMCÇCDdì.ÞOSÆÈªFi´cc©ÀÑ£èÛ_F?&R_… öîÝûàÁƒ±cÇ|¸páÂkÖ¬9xð`ûöí¯]»¦º6™ž¥½zõ:uêTÉ’%7mÚ´`Á‚¨¨¨¥K—n3Ô= ^q$"2!!'¬C¥Jðóå+«VááC£¹Cýð!æÌAÕªèÞ]t2U-Z´hÑ¢…Ö_·µµMiVhŸ¯Æ[usssssKiUéYZ§Nƒò¸©ðŠ#‘hÇc„WµK[Õ†Ѱ!ê×EÒ³'2e‚¡:&¢o±p$"jÿ~L›†† ÿ7­«è(IõïLœ(:‡DzÐòðaÑ9ˆ,oU‰³müýѲ%¼¼Œgn‰T§;&:Gâ4Æò %™¤ž={JhSz°p$"dÝ:¬]‹Ž1x°è(Iýø#`Åo¿‰Î!™3`öl|=S Á‘ˆÈàæÍßbÐ tî,:JR7n`ëV4i‚/3Vuì@¨ZUt"X8Ú´i8~#G¢ukÑQ’ááÌ™1v¬èž=Ão¿¡Bôé#: %`áHDd@íÛãÍL˜€FDGI†ÔåÐ!Ñ9$]º@&Ãüù¢sÑ8‘¡üø#Þ¼AÇŽÆY5º»ÆÓ!FªaDç ¢¯ÈÒœ™QM‘‘‘?~ñâÅ«W¯2gÎlooŸ/_>GGG™L&z N¡PÈEg $W€gŽ“»ø8¿lÀû’t¹Z6‡/þ×®B=f_rªúFÌJ¤jÿeÙÃþUú¤U”éÌ‘C.:™˜ôÞª¾té’B¡8sæÌåË—ãââ’,Í“'OÍš5kÕªÕ¤I“œ9sŠÞYÃ1•ÿþn˜Â&´^F_T§qšmRoêR½ÿºbögŽÎOÕàÕU2eÒn=)/ÕÁº|íBË–èSµB:W¥ƒcµ?ÂþÅÈ‘øO^çëÑý™£Ç¿9&󇌊–…ãçÏŸ:´nݺ+W®HŸØÙÙåÏŸ?W®\¶¶¶111oÞ¼yóæÍÇ8pàÀiÓ¦µmÛ¶GÅŠ½ËDD†åâ@è#G¦t¯K/†GŽðòC2w.œœŒ³çiS8ž9sÆÇÇ'<<<{öì:t¨Y³f… Š)òm˨¨¨«W¯þóÏ?ÇŽûã?¶lÙÒ¹sg///‹ºúHD–+&MšÒ“ƒ Ñi’'] ýóOÑ9§YµJt"JžÆ…ãØ±cwïÞ]­Zµ#F¸ººfΜ9•ÆY²d©ZµjÕªUûõë¾gÏž7?~ÜÏϯF¢÷ˆHŸn߯€€Qô7‘y}ÕËD9×UzѶ­‘ðe†cICDÉиp¼uëÖªU«êÖ­«é‹)2|øð>}ú¬\¹òüùó,‰Èœ?ŽiÓ??þøCl„’ÑÏõ«À¯ë»wF3ÜÍ®]xð£G‹ÎAD©Ñ¸pܹsgz:JçÈ‘cäÈ‘¢÷šˆHŸV¯Æ† ¨Q3fˆ "ó HR2&ðsÍ• V@»v¨ ßþ0ê‰Çï¿£ti4k&: ¥Fãq“TþþþL¥ý† þýn""Ù4 6 cGã­* &ÃÃc Ä† Àß_t"JCzŸ?þŸ©>S½aÆyóæ‰ÞM""ƒèÝAAðòÂàÁbƒ¤^5Êåø¹&yüQ€®]>ÚHd´éU}åÊ•¨Þ>{ö,¥‹ŽOŸ>}øða¦LF:‘.¹ºB©ÄÂ…øá±AR¯¥gÔ ±¿Ø²ÿþ‹‰Eç "µhS8îØ±#ñÝçk×®¥þØ¢³³³èÝ$"Ò3i™½{aÜÕ*\¸è#?WTý¬ *:Ë–ÁÙ9áV5‘¼xñâ÷ßß³gOxx¸M±bÅ:wî}zðàÁöíÛ/]ºtàÀéñîÝ»1cÆ]¶l™ªj`mm=cÆŒ½{÷nÚ´iÞ¼y2dHö»EŠ©Q£ÆÑ£G?~ü˜-[¶ôÄðóó [»víO?ý`øðáUªTñòò HÚ/M©TöíÛ×ÖÖöÒ¥K&NœX¥JooïóçÏ 0yòä†âžîиWuÄ×w8†ÞZóE#Œå6 ‘¶NBÏž°³SúˆŽ’¶úõãé5kPµ*êÕ…ÌÙâÅ‹ ,Ø«W¯$ŸËd²•+WΙ3çýû÷©|ýÕ«WeË–MgÕ`Ë–- Pݪurrrww zúôi’–÷îÝ»}ûvß¾}¥ª€ÝÈ‘#/\¸pùòe|)‹/.ð¨j\86lØpÙ²eQQQÚmïêÕ«}ûö]±b…À}&"J¯M›ðË/¨P»w‹Ž’¶2e`e…sçDçPiÓfσÌÙÛ·ooݺU½zõŒ3~»´nݺ}ûöÍ;÷·‹”Jå¿ÿþ;iÒ¤ . ><1"""nݺåââ’xlWW×øøøÐo®ÿ?|ø@¾|ùèèèàÿû€°°°L™2åÈ‘cûöíË–-;uêTLLŒ¬Æ·ª‡ 6oÞ¼õë×·mÛ¶mÛ¶%J”Pç[ÑÑÑ»ví:uêT•*U_4&"21Ó§ãèQ´jOOÑQÒfo„‡ãÇZx¶Kµt“Ên„O—ÜpÑáááÔšîÛ¹”‡ 6@šn>ž={¦T*UW%Riøm–Ò¥K 1b„êÃÀÀ@Òåɰ°0++«âÅ‹¿yóFZZ¦L™ 6T©RE‡÷kŽ=zôpss›2eÊÊ•+W®\Y¦L™š5kV¬XÑÙÙÙÁÁÁÚÚZÕ222òÖ­[—.]ºxñbppð‡ììì|}};uꔞI ‰ˆDòðÀ::ˆŽ’"å\W†r,_‘‘¸wOt&@Ñ•xÿ^øœ:¤cÿü#:A2¤®ÇVVêÞYUõªsþüù… ¾xñbýúõ6669r䨳gOâ' +Uª4hР¾}û8p ¥u¶iÓ&22@ίGé²µµðêÕ«$í:tè°cÇŽ™3göéÓG©T®[·Îßß_žñ ‹÷õõuwwÏ!ßþ9räȶmÛ^¹rEZ§hÓ9&þü‹/ Û°aÃÞ½{¯_¿.}.“ÉräÈakkûéÓ§·oß&¾|Z²dÉž={¶jÕJ5l‘éiÞQQ˜=U«ŠŽ’©v”_ppölÊí y¹ñåË"›‚Q»6jÔ}xH§ŒòúqáÂ…ÜIagÏž;w®dÉ’ª§IzU=zôìÙ³ÝÜÜz÷îÒV>~üضmÛ”–*•J{{{I¦”ªÀdo”ûûû¿}ûvìØ±cÇŽ+W®_~ùeÒ¤Ivvv EæÌ™U_ìÓ§Ottô!CvìØÑ·o_ÃXí{U/^Ü×××ÛÛ;444$$$44ôÁƒªŽ/¶¶¶ÎÎεjÕª]»v*=™i°Æ­[ñõHFË墫2•1ž z“ºcG˜6Mô!‹`oo_¸pá³gÏÆÄÄ|û˜ãÊ•+'Nœ¸cÇŽTž¸óðð˜={öÉ“'S)mmm•Je*1¬¬¬’Ü•~ùò%€‚ ~Û>o޼ǎ •:V×­[÷äÉ“øRKÏ;&Ö¸qcW¯^5ØMïp<Ù³goÔ¨Q£F¤·/_¾Ìœ9³½½}²£™$â[Å×J%V¯†Ó¢_Í@hø’@Ó¦>rÑG†,‡‡‡Ç¸qã–-[–d"’øøøíÛ·Ëd²úÒp)ž¾K}Ú䨨ØÔoUÛØØ”-[6888ñç'Ož”ÉdåÊ•ûö+—.]Ê™3g­ZµjÕª%}râÄ ™LV»víðððýû÷»ºº&¾']­+R¤ˆÁŽjz Ç$ræÌ™Ó¸§Û""Ò˜©U  üôŠM(eøoÄ8³ .Y‚OŸàç¼}lÈ‚ôïßöìÙcÆŒ±µµU†7a„K—.õîÝ;oÞ¼©|}É’%ª~y.Eu,±4oUK1†¾ÿþ–-[xþüùŽ;ÜÜÜ’í¸3pàÀ«W¯Þ¼ySº¸xýúõ7¶hÑÂÑÑñùóç£FªV­Ú‰'¤á'ãããgÏžmccãææf°£ªã‘ˆÈ¬\¸//À”ªÆøxøúâûï‘xô:1SQKž<ÁöíhЕ* ч‡,Hž}:þüÉ“'Ë—/¯ª8wîÜÙ AU{¹\5nUèÕ«×êÕ«»uë6dÈ;;»µk×FFFúúúJKgΜ9cÆŒéÓ§4ÀäÉ“›5kV£FvíÚ}þüyÛ¶mY²dY¸p!€|ùòùúúŽ3¦D‰Íš5³³³;räÈÅ‹ûí·²eËì¨ê½pŒõóó=z´Áv‰ˆH76mÂÊ•€)U¤~ŸkֈΡҭLš$:Y¢zõê]¾|yÁ‚ûöíÛ¾}{¶lÙJ–,9gΜaÆ%™3fÓ¦Mª×VVVE‹2dÈÔ©SUÏÝÙÚÚæÉ“GÕÆÆFÝ *gΜAAAÞÞÞ;vìxóæM­Zµ6mÚ¤šo0::úíÛ·Ÿ>}’Þ6nÜøðáÓ&MZ³fMîܹ۷o?cÆ ÕvG]¬X±Y³fmܸ1sæÌÎηjÚ´©!©,ÍJ9Y;wîÀ:‘1’*/”.-:JR %£_2£0Jczލ`ËÑAóñA¦L  ‘yÑrG™L&:9Qº……¡À¨®×ýGælɘÀϵ@Ïgäöð€="$UᇋÎADz¡ñ3ŽDDfbýzôïL™L²jllPêAéˆl:‰Îª²aÌš%:é G"²Hb͸¸çµ±4«FuëÀ…9¿<iV¯FéÒ¨VMt"ÒÎUMD–Gº:a5EKÒ” …艩%"ó¥eá¨P(’ôIýóijô …æÍàÀ$÷ÇÊ$T¨!!_Þû¹Ê êd-Æ”)°u«Ø#CDú¦eá8jÔ(>·¬¹ª‰È8?ŽiÓ#í £’ú}jGGäÊ…Û·#:¨Ê“'@“&È—Ot"Ò/Þª&"Ë0y2Q¢„1 “­± P²$Þ¾ÅãÇ¢£$&ÍW3v¬èD¤wŽ×®]™ˆHCM›âÓ'ôê…Ÿ~%mʹ®2$ѱNøçÑ“†L7D¤+÷ª¶ÖŠèÝ$" æâ‚OŸ°|¹IT©H±CŒ§¸CBp÷.xXˆR÷âÅ‹_ýÕÙÙÙÖÖ6Ož<Õ«WŸ;wntt´ª¯¯¯ìkùòåkÔ¨ÑîÝ»Eg7F:ŽçÁƒ·oß½SDD€7ä.¾nR›²J•àÔ)Ñ9’˜066èÒEt¢ä;wÎÙÙyÊ”)ÜÝÝ›7oþúõëQ£FÕªU+222qË.]ºŒ5jÔ¨Qžžž5:wî\ûöí—-[–ÎïÞ½4hPáÂ…³gÏ^¿~ýÐÐPíþüÙÆÆ&I›7o^ÃR?ã8räÈ+W®°+ ‰·z56lˆÍšÉæ€1ŽÔ˜º$w« ‚­-nÞDl¬èd‰Iƒ;&:Qò"""Z·nýþýûíÛ·»»»KÆÅÅ?~Ö¬Y£G^´h‘ªñСCëHÏ‚ÂÃÃ+T¨àëë;0Ô#""ªV­úàÁwww{{û;v4mÚ400°’ôAMß»w/..®víÚNNNª¯¨&|6$vŽ!"sÔ·/îÞ…›Û©ñµå¢³¤S¦L(^¯_ãéÓ䋺O½y3ââ0}ºà£C”²µk×>}útÙ²eªª€µµõŒ3öîÝ»iÓ¦yóæeÈ!Ùï)R¤FGýøñc¶lÙ´ àçç¶víÚŸ~ú ÀðáëT©âåå iã°°0“'O>¾!gŽ!"³ãâ‚»wáãƒñãEGÑžr®+<Ôª—/'×È3@ÙJПñ+P¢jÖv€ˆÒ²xñâ‚ öêÕ+Éç2™låÊ•sæÌyÿþ}*_õêUÙ²eµ®lÙ²¥@={ö”Þ:99¹»»=Mî_©7– ÇâÅ‹‹>¨,‰Èœ¼Ÿ0É‘# }IL™r®k*bDö‰‘²)lDfïíÛ··nݪ^½zÆŒ¿]Z·nݾ}ûæÎûÛEJ¥òßÿ4iÒ… †®u€ˆˆˆ[·n¹¸¸Èd2Õ‡®®®ñññß>é˜fã°°°L™2åÈ‘cûöíË–-;uêTŒ ¡\y«šˆÌÅ‘#˜10Ÿ¡a<<ààAd˜ôÆ–Èyb~û 6ow`ÈÈìÛ'8@«Vß~ hÑ¢j®£®4û{"Æ 0`€Ö¡ž={¦T*˜/_>/^¼Ð´qXX˜••UñâÅß¼y#--S¦Ì† ªT©¢ï£›„Ž Çüùó§~á—ˆH/~ýÁÁ([‹‹Ž¢[¶àÆ Œƒ,Y œëª€B¹èPÀ³g8v ¡@ÑQÈhøù \áÀÊJÝ;«]ºt)T¨ô:&&æüùó .|ñâÅúõëmllräȱgÏžÄÏÆÆÆ8p ¥µµiÓFêµ3gÎÄŸÛÚÚxõêU’öi6 ‹÷õõuwwÏ!ßþ9räȶmÛ^¹rEjf0:.›ËŸl"2%!.}û¢{wÑQtãÉ,[†š5Ñ´©è(IH#ïL˜ :£¼Æ_¸pawîÜIvé³gÏÎ;W²dÉ_êJÒ«ÀèÑ£gÏžíææÖ»wïo×ðñãǶmÛ¦´u¥Rioo ÉÕ´ˆˆßÞ"O³±B¡Èœ9³ê‹}úô‰ŽŽ2dÈŽ;úJƒð Ÿq$"ç₸8¬^m6U#¾Ìágt]–¥ÛvFY%%aoo_¸pá³gÏ&û,àÊ•+[¶ly9ùNg <<<œ¼{÷NõÖÀ£' ÇÓ§O:thÊ”)ÒhCéTˆH-û÷cî\˜=)<¨nÒ~ú |0¶ζm0‘eKÜÆÆÆæóçÏ¢‰¡qá˜1cÆ6mÚØÚÚ8€———è] "³Ö²%>~Dž<رCty%ÀÛ[t"2Fœ«šˆŒÀ/¿àÔ)À8G2Ô±9P¸0þý¯^}³Ì.:N™4o.2+]^q<{öìÁƒ¿}MD”¢ÈH¸¸àÔ)4on U#€*U‡7DçHVçÎpì˜èDd¤tyÅÑßß?$$¤yóæI^%oî\ìß{÷"gNÑitïÛûÔRo“à`ÑÉ’ŠçÏ1dˆèDd¼øŒ# ââ‚ýûQ»6Ͳj œë ÏÿFü®U HÒ!ƨŒîî¢s‘ñâ3ŽDdp«WcÃX·… ‹Nc Å‹#S&\º$:GJzõ,âS"JŽDdX..P¦ –,ÅplmQ¨ž<Á›7©¶óÔ3æòe„‡£wo1G‡ˆL G"2”]»ðûï°`œE§1¨J•ðù3nÝ#%Ç@Ïž¢s‘±cáHDѸ1>FؼYtƒRÎuu¹§O§ÕTÔåÆÁƒÞ¤&"µ°s éY` \\ðù3|}-­jЮ(*¤ÑÎSÐ\Õ·oãúõ„QxˆˆÒÂ+ŽD¤O;ãùsdÎŒC‡DG`þ|¼}‹yóP±¢« ’´:qÏkC0 €ˆL G"Ò àå#F MÑiÄ€½{Ѷ-*V€À¹VrÈÊǯIw¨P:â¨Q ®l%"Sшô`àÀ„ž ü䜗råJèv¢"x:ÁÄ?ÆùóhÕ 2™è(Dd2øŒ#éÔ½{pqÁ­[èÕË’«FiС]»DçHE÷îàé):™]^q,Q¢Ä§OŸ¾}MD–bìXüõ`Ñ´haôÇà×_àÀÑ9ˆÈÄè²p?~|²¯‰Èü½}›Ð¸MŒ!:H³f!22aÀJ#õæ ‚ƒÑ°!²f…ˆL Ÿq$¢t›1GŽÀ¡CÈœYt‘þú ‡¡cG”//:J*Ú·€‰Eç "Ó£³Â122òñãÇ/^¼xõêUæÌ™íííóåËçèè(ãc×DæMzšO.‡è(â‹|ùFÔ6R3fÀöí¢s‘IJoáxéÒ%…BqæÌ™Ë—/ÇÅÅ%Yš'Ožš5kÖªU«I“&9sæ½³D¤SK—bëVøãäÏ/:xR -#õéŽAíÚ°·…ˆL’–…ãçÏŸ:´nݺ+W®HŸØÙÙåÏŸ?W®\¶¶¶111oÞ¼yóæÍÇ8pàÀiÓ¦µmÛ¶GÅŠ½ËD¤ R•T¡æÏÅ(4iy‡M›À´i¢s‘©Ò¦pÏŸ¦'"J§LR5úûû¢s‘¹ÑønTÆ —-[¥Ýö®^½Ú·oß+VˆÞq"¸¸`÷nT­ŠÀ@V2¯€”ªF++”)ƒ÷ïñÀ¨;Q1dôè!:™ ÇaÆ-[¶¬Q£F³gϾ}û¶šßŠŽŽ>xð`¿~ý:tèíîî.zlj,Þ† Óž¬Z…Ù³E§/•ª@ýúpþ<ÀÏ5q¿£3}:ŽÖNDú ñ­ê=z¸¹¹M™2eåÊ•+W®,S¦LÍš5+V¬èìììàà`mm­jyëÖ­K—.]¼x188øÃ‡vvv¾¾¾:uJϤ…D¤RÉX¼8xù_ r9(¢s¨éèQTª>DDz Mç˜üùó/^¼8,,lÆ {÷î½~ýºô¹L&Ë‘#‡­­í§OŸÞ¾}£úJÉ’%{öìÙªU«Ì™3‹Þe"˶oüü`ÎT©": :%‡†~ý©Ÿ« Fù¤£ôOé'&"Ò5í{U/^Ü×××ÛÛ;444$$$44ôÁƒR[[[ggçZµjÕ®];•‰È@T]§íí±}»è4Æ%¥ûÔùó#OܹƒèhÑÕqø0Lš$:™­ôÇ“={öF5jÔHzñòåËÌ™3ÛÛÛg̘QôÞÑýû#, 7Ƹq¢Ó˜kk”.ˆ<|(:Ššf΄L† Dç "³•ÞÂ1‰œ9srœ"ã2{6¤Ùä›4Áر¢Ó)å\W’^t¬W.\NM`ĽvˆÈôi\8^ºt @ùòå÷ƒ!"c´w/æÏ€¢E±zµè4&&1žFö€ã¿ÿâÆ ´m+:™9 ÇN:8wî\Ž9€Õ$‘Q¸q#áú€ƒ‘%‹è@&¦B C}]»€V32©O7·ª£¢¢*V¬àæÍ›¢÷ˆÈ²ÅÇ£Q#(•0~BDjPÝ­vtD®\¸}‰F†øš±]n\¶ Ö¬ƒˆÌŸŽŸq$"‘<}BH4€L&: Y+шHm ÂÅW¯¢A²jÔ•Ž$<)j2š68-5š–W EÖ¬YUo£££¥'NœH¶}Æ Eï)‘);r3f@ؼYt³¢êcJ¶m€¹sEç "‹£eá8jÔ¨d?}^ïÞ ;;ÑÌŠ4½Î¢shÊß9s¢reÑ9ˆÈâðG"#Ö¼9¢¢`útÔ¬):¹Ù²7n`ôh$º}b š5¾tÿ&"2, Çk×®‰ÎLdFŒÀ¥Kл7zöÆ =}ŠeËP£FBf2=Bt4Ê—ƒˆ,”Æ…£µµµèÌDfmÉlßuê`êTÑiÌ–Ô³HzpÔ”ôè¿ÿ.:Y(Þª&2W®À×òæMèý@úa’bìÙ~~¢s‘åbáHd=J¸’`Û6äÍ+:9ë׎C @&C¥J¢s‘åbáH$ZëÖxÿºtÁÀ¢Ó˜¹ pç&L€©ýñûaÂÞ¥ƒ©ýí$2ññhÓ>@èÓ …èLfîÁ¬^ºuѨ‘è(šËr Õ«‹NAD–Ž…#‘Á) Ï2¨QÃ;h˜ªŸ~€)SDçÐBãÆ0s¦èDdéX8¯¯\uY±kW  :1Õ1®\ÁçÏaƒ›„ˆˆ…#‘þ]º„‘#¡TˆË’ÑzÞB”*%:“eéÕ 0ѪÀÏ?xÔ±& G"Ž…#‘>-\ˆÝ»^7mŠ1c‚¡ƒU£A­^ðpLš$:‡Öé¬YÜ…ˆ2¥R©¿µ/[¶ìèÑ£lllìííëÕ«çîîncr½5¥P(ä¢3PYÃ_Vô\—ñõéíÿ¦ÿøªf‰4¿%W€gŽÎ=»›}iߪå\ž»ÿj’³^É]|crgÙé•bž6¤éÌ‘C.:™¥>ùøø”,Y²dÉ’~~~>>>...S§NÕëB` èj'Uê=ª®6¡õz4ú¢:Óh³nR.Oøß˜1š}gŽ6!—+]]õ»u5§Ù,™J¹<¯›Îi£ÎA0žMh·c9sÔYjRgý^üË—/_‰%Œ9À‹/ÆŽ+ºT&ÒƒˆŒ‰»wÞŽmjS ›'©C̉¢sh':ׯ'ô§&"2ú-ÅÓ§èÜYt"¢äé²Wµ³³³³³óøñヂ‚öìÙ¨P( …]ëÖ­Û·o_¦LÑûK”šÂœÆò/_ªTÁœ9¢‘º®\ÁŽhÑÕª‰Ž’ÒåÆAƒDç "Jžî‡ã±±±©]»vLLÌ»wïþúë/oß¾]¿~ýúõë+T¨àééY³fMÑ{MôµÈHxzâæM'é­§'Zµ‰4óóÏÈž£F‰Î‘Žž€Ù³E!"J‘. Çèèè   C‡)Ѝ¨(2™¬bÅŠM›6½qãÆ¡C‡.]ºÔ»wïùóç7iÒDôŽúïÖ¦“ÓéyîurrÆ#%ó Hò‰r®«ôBê³oŸèˆéSrÞ¨ZUt"¢é pŒ‰‰ >xð`@@@dd¤ôaéÒ¥[¶lÙ¢E ÕcÇŽõõõ=xðàÌ™3Y8’xcÇ⯿^÷îž=|fÇ£”P2ú¹&ýÚÞu…©wˆÁ—M~7ˆÈÌ¥·p=zô‰'>|ø ½-R¤H‹-Z¶lY¬X±$-íìì&NœxðàÁ'OžÄÆÆÚØpÒ!4ô¿9Ür熟ЉR#ó ø¶dLàçZ¢ÞüoÒGü¦ŠS.Ñ)ˆˆR—ÞêmïÞ½š7oÞ²eËòåË§ÒØÚÚÚÞÞ¾H‘"¬I€™3ÿܯ]; &:¥-µª°³CÁ‚xü•7(+¹j²b#Ó¬€KszÈE!"J]z ¸.]º´hÑ¢Zµj2™,ÍÆvvv§OŸ½ËdYrÜ|‚‘Í2æÍC… ¢C‘ZR¯T¬ˆ˜ܾ-:h:]»†èh (:QÚÒ[8æÏŸÿåË—©T6l°±±éÚµ«è=%˳|9þø£ŠôZ.‡è@¤Kr9„„ü\ePõ•11C†@—.à#¶DdôÒ[8Ο?ßÅÅ¥yóæ)5ذaÃÛ·oY8’á<Ž‘#ñä‰ôîš{YùÑ™Hc.^ñ©\n”FdW(D§L¿õë`åJÑ9ˆˆÔ¢MáxåÊ•¨Þ>{öìàÁƒÉ¶|úôéÇ3eÊ$z7É2lÛÿ„×*ÀÏVVÏ¡(+:éV©R°±ÁÅ‹¢sèÄš5°µÅ7½ ‰ˆŒ“6…ãŽ;þøãÕÛk×®92•öÎÎ΢w“ÌZL <=qõjÂÛaÃЮèL¤/¹s£@aÊóÙ³QµªèLd ʹ®2ÀÏ5OäÏðþ} MMëÇ `çNÑ9ˆˆ4¦qáØ»wouêÔéׯŸêmšÖ¬Y#zOÉÔ¬^ ^×­«˜ÒP¹èLdhRíøÃר(ܽ›B#ÓªìÙƒ"EØ‘‹ˆL‘Æ…cHH€üùó'~K¤3¯^ÁÓªB'L@£F8©†Å’_pð×_É-ó `bUc‹°v­èDDÚиpœ3g€B… Io.\(zÈ\ìÚ…ßOx]®æÍC† ¢3‘`Ò`5y|»ÔÄJF> 2’Ã}‘éÒ¸plÕªUâ·Møp7¥S|<<=qéRÂ[tê$:…É“U«S¬“%ýýäƒDd²Ø9†ÄQ(àû¥£´£#æÍC¾|¢3‘±¸”70=z˜Ï€KÙî>€E!"Ҟƅã¤I“´ØŒvß"³åëûßp|]»bÀÑÈèlŸT®H³Ù½Z_èÒEt""íi\8&ž¥Z}, þùžžP* kVøù¡T)љȹ¸fÖ$4~ùEt"¢tѸpFV4ËÂ_HŸ?cÚ4/ŽîÝEGÑ-ið­[k¢£¥§$Ù·~~ ¯K•‚Ÿ²fÀ_HMÀŠ¢sèܦMÈ– ùò±p$"3À))ÝFÂùó ¯ @×®¢‘é‘:ĊΡsÓ¦Àþý¢sé§$mã×_^çˇyóàè(:™¤±c`ófÑ9ôáøq-*:‘ÎpÊAÒÜÔ©8q"áuÇŽàM”‡᯿0p Eç¤1(V¯ƒˆHgtÜ9æõë×/_¾,T¨PÖ„çÛÈŒ\¹‚‘# 2`Þ<”+':™¶ÈHÌš…Ò¥Ít:•Ë—Q£†èDDº¤›ÂñÁƒ~~~§OŸŽˆˆ>É—/_Ó¦Mœ+W.ÑûHé¶d ¶oOxݨ&LˆÌD‹àï/:‡>Hûr *"2/:(÷ìÙ3a„XéB`mm÷üùóõë×ïÞ½{Á‚uêÔ½›¤•Çáé‰çÏÞN™‚ºuEg"óa¶bDEáßѺµèDD:–ÞÂ1,,lÒ¤I±±±Å‹:thåÊ•óåË÷êÕ« .,\¸ðöíÛ^^^{öìQõÂ&Ó°yóâT­ŠÙ³E"sãåà¿ ÙæFº”:r¤èDD:–ÞÂqÕªUQQQåʕ۲eKÆŒ¥ííí7nìââòã?^¾|yéÒ¥“&M½§¤†ÈHŒ‰[·Þzy¡eKÑ™È ýù'.\ÀС°·Eî߇R‰¾}Eç "Ò½ôŽW®\0qâDUÕ¨’!C†‰'vêÔéòåË¢w“Òrðà—3fÄöíÈ™St&2OïÞaÞ<üð:tEO¤iÌm"" ý…レ¬¬Ê¥Ð»¶lÙ²ÖÖÖ÷îݽ›”²±cñ×_ ¯{÷FÏž¢‘™kÛÌvØ¿ÿ€ñãEç "Ò‹ôŽyóæ}øðá›7o’}ŠñÝ»wqqqE9þ­ ŸqréuîÜðóC‘"¢3‘ù3ç1’Ñ£ÀÍMt""½°Jç÷¥À÷îÝ›ìÒ?ÿü@ùòåEï&%2s&\\0n€Çíª#0;w²j$ÆÃÞ³Gtý‘¦\°@t""}IïÇ!C†-X° {öì;w¶±IXa\\ܶmÛæÌ™“!C†Ÿ~úIônpã<=2æÍC… ·¡((:Yˆ]»pù2FŽ„­­è(ú3w.8;‹ÎAD¤/Ž¿ýö[’O~øá‡;wîLžK–,éùЫգի¡:uëbʈԶq#ÂÂ0~<2dEß=Bl,z÷ƒˆÈpÒ;xÄãÇñeÆj*T¸té’ô:{öìãÇ¿}ûöü¡Åš#""Î;çãã³9…™nÞ¼¹|ùr‡Ã‡/_¾üÈ‘#={ö¼|ùòœ9sRZ§:_Ñbµzñê~ú .. Uã„  dÕHFîáC¬Z…:uàæ&:Šôè={ŠÎADd8é-ß¼y“9sfÕ¥¸¢E‹FDD¼|ùRz[¥J•,Y²h×¥ºU«VݺuÛ¢š+ïÛ¶m‹1bD¾|ù¤OÆŽkkk{èСøøx­¿¢Åjul×.¸¸ÀÝ \9=ŠÀ@4jdˆM¥TDM*:‡œ?cƈÎADdPé-íì좣££¢¢¤·ß}÷€°°0Uƒüùó_U I­‰iÓ¦-Y²dÉ’%µk×N¶Áßÿmee%O4žµµuýúõ_½zuá­¿¢Åju#>ÇÃÅ¿ÿƒ#0‹YÀ ?2–Ò!F2j4m*:‘A¥·p,Y²$€ƒJoœœ9rDz÷êÕ+í.ÔÕ­[·aÆ 6,X°à·K•JeXXXîܹs=Òµ”çáÇÚ}E‹Õê@` \\а!._FÁ‚غ “û™ˆ^½ @tÃ8t0û¹·‰ˆ’‘ÞÎ1­Zµ:}ú´Ïµk×&Nœèèèøý÷ßïß¿¿sçÎ%J”X±bEDDDÕªUuž;222..ÎÎÎ.Éç¶¶¶^¿~­ÝW´Xmò µšmߎk×^×­‹† àÚµÿ>Ô7¹ÚQ…oBëõhôEu§Ù&õ©/Õ÷Ï¡+_ïÅÅ÷ááßût¼* z¡§Mz=©Kµ1""¡š›H³™\Û3ÇTNu‚ñlB»õhô-5§ÙLžŽ¿9DJoáØ¦M›ÐÐÐ={ölܸqüøñÖÖÖ­Zµúý÷ßÛ´i“1cƘ˜?ýô“ÎsK7Ç¿Z<{öìÞ½{§ÝW´XmòÝéNÆ?ÿÀÓJ%dÍ ??”*¥óC¤EQhZ¯G£/ªÓ8Í6©7Hy©Â?‡®üõî]¬‚\ùàrzÚ„ˆõ¤ü­uë`ãFüw3DÍMèçÌ1¥ÓFƒ`<›Ðõ™£}c½9DšKoáhee5}úô–-[†„„Èd27nÜ8qâDLLŒµµõˆ#7n¬óÜvvv2™Lš;±>àËB-¾¢Åj5³`öìIxݬFÖù‘!2°¾}!“ÁÇGtƒY»3"¹GhˆˆÌž¦´²²ªW¯^½zõ¤·ÖÖÖ‹-zÿþýýû÷‹/®§±mlllmm¿½@Õ!ZÓ¯h±ZµÜ¿OO¼y“ðvútÔ¬©ÃBd`R‡Ky´_nRïß/:‘:(“•#GŽ~øA¯ÑÂÂÂ"""ræÌ©úðÞ½{Ò"­¿¢ÅjS³~=Ö¬Ix]³&¦O×ë1!2¤îÝËéF-9t… q¬"²XéíU-PÆ ãâ₃ƒUŸ(•Ê   \¹rUªTIë¯h±Úd¼{‡¾}áâ’P5ŽƒÀ@VdNV¬ÀãÇ–1d£Š·7¤<—‘ÙÓøŠcïÞ½Ô©S§_¿~ª·iZ£ºê¦;;v\ºté¢E‹4h u^Y¾|ùË—/ûõë—áËõ€?>þyóæÝ³gÏÁƒ (н{÷#FH— Óó-Vû“ƒH3R‡˜/Ãü[†ØX<|ˆfÍDç "Lã±U«V‰ß6iÒDß§N:5å©Zµj•$RbÍ›7oÞ¼¹F_Q¿ ‘êÜ|€\tjÙÇÏ""’)¥a¨I‡ …\t2ArŒüÌ9²¤xèöBÝf^.^]íY”L_–'ojt[x¿gƒû½å¢³$ÃøO2NÒ™#·¨’.h|ÅqÒ¤IZlF»o™.SùO1áï†)lBëõhôEu§Ù&õ©.ÕûÏ‘W® t;š7G¿êÎfæ|õ­n.¾ï=éûômBogŽQŸ6šãÙ„Î5æ™CFEãÂñ?þÐb3–V8™ŸŸF¶l #ÒX  –·ÛDDÉÓ¸p}B»v¢ƒ—ôŽRQèååU»ví$‹ªW¯.³yófÑ»IDš‘&N²Ä1€ê=À°a¢ƒ—ôŽ×®]CÊ6nÜØÊÊêÎ;¢w“ˆ40g>|€Ð‰èËòô êׂˆÈè¤wÊÁªU«FEEýïÿ³²²0dÈãÇß¼ySZ_±bEkkë‹/ŠÞS┃¤#™;îÎß¹7Žv®ÑáQÓ¡a¢³ˆQéçÕ¶W*}DQ‹‘œ6drä @.‚L2}ºuëV²dÉ;wîHo\²dIÕÒ»wï–,Y²S§NéÜŠ‰ @í¤J½GÕÕ&´^F_T§qšmRoÚRã8sär¥»{zBú‰¢s£ôŽ °··ÿóÏ?Guûöíøøx±±±×®]2dÈáÇsæÌ9pà@Ñ»IDikÚ°à1 ~J·d%QBBpô(ºtAéÒ¢£ˆµ{72e‚Îæb%"23ºùûhoo?cÆŒ3f<{öìÉ“' pppÉd¢÷ŽˆÔ2a €¥?T²q# ]n$"¢ä¥·püñÇ?}ú4yòäråÊpppppp½SD¤©C ÇéǪU/ŸèDDÆ+½…ãÝ»wß¼ys÷î]©p$"#$ó Höså\×Fvˆpè‹Æ“ˆ( é-Û·o¿jժÇ·’f(#"##ó €Ÿk²‹ÊÝ{–/ÎaåJÑÁ¬Y,þO"¢4¤·sŒ§§g“&MNœ8±zõji,"2©Tyó"߇ðü÷‹R¸³g`êTÑ9ˆˆŒ]z¯8nݺµzõê<˜9sæÚµk‹/^ @ 2$i6iÒ$Ñ{JdqR©”+‡ÈHÜÛò½Ì1@9×U“›1c NÑ9ˆˆŒ]zçª.Uª”:ÍT³W[ÎUMZÑí¤Ã.^ñ©TÒµ Å—÷žsu08—)Ê~çYÕ~Kolñ¤uUÑY´Á¹ªI;Ò™#‡\t21é½â8xð`Ñ»`ŒLå?Å„¿¦° ­×£ÑÕiœf›Ô¤ºT·?G@J ’VÒ‡šlڬΜ~.J¶URÛ­«ÙXogŽÞ 2«3'Ýßâ™C¦(½…ãðáÃEïi@ÿ@z¨ðö-ôì):‘i°Ð›SDæ-¥§óåCÞ¼¸w‘‘_/ðsMiÈ3×£ôî-:‘iÐÁÌ1—/_^´hÑ7bbbRj*zO‰,L†²eñáÂÃEG1> E Ñ!ˆˆLFz Ç«W¯víÚ566VôŽQ4€sçDç0½zÀ¨Q¢s™ŒôŽ‹/Ž-R¤ˆ——W±bŬ­­EïA9×U†¯îV'Û!æ?ž9"Ox8jÕ‚ˆÈ”èàŠ£L&ó÷÷/ÆA„‰ŒÕ?ùЧ'üö›èDD¦$]câââž={æààÀª‘ÈØ(çºÂ3@þüÈ“wî :Zt&£rñ"Ô†–ˆˆTÒU8J6FDDp²A"ãdmÒ¥‡Snd÷©§M€¥KEç "21é*3eÊT¹råÈÈÈ   Ñ;BDI)çºÖ«.¤ÜÈ«FÇÃÞ^t""Ó“Þq§L™bkk;vìØàà`ÑûBD_qqEåéžuRžZ5JׯƒˆÈô¤·sLhh¨»»ûÚµkûõëçääT¢D‰\¹rÉd²$Í&Mš$zO‰,‹4È̶mÈ›×€ì›-±d”lÝ ™ Y²ˆÎADdzÒ[8Nž}úýý÷ßÕªU½§Df‹bÒðñ#tí*:‘ÉÓcç˜êÕ«»»»رc‡èÝ$2[C†Àþý¢s³=`ÀÑ9ˆˆLž~{UK—'ïß¿/z7‰ÌÓ¶m¸v ÞÞÈ–Mtcöæ 7‚ˆÈè·püî»ïÀ‘H?ž=ƒ¿?ªW‡zÏX¨ªý—À¸q¢ƒ™ýŽÒX<ñññ¢w“È ué3gŠÎaܲ‡ý‹ªUE§ "2ú-Ÿ4Çñĉi¶y÷îÝÿþ÷¿]»vEGGW®\ÙEº©FDéöèV­BíÚì%¬†C‡`k+:‘Y‘)•J¾PªT)õ—.]zÑ¢ERßj ¢P(ä¢3 ’+æ™ãë"à¨ÖØ]PdSðé½£?çÌ":‹~©sÚ}K:sä‹B&Fã+ŽêÈš5k¹råªU«6hРLy;ÍTþSLø»a ›Ðz=}QÆi¶I½AªKÓXs¢1Ú 23g“/€:9›i·Ÿ6ê4ÓöÌÑûo¡C&pæ¤o=žQœ9ûö)åråÍ›úˆªóÓFfêŸ9_/ÐfE1Š3GŸëá™Cf·ª‰ÄhÝà 1é!=Z²¤èDD„…#‘sæàý{,X :‡é:s¦OƒˆÈ²°p$2´sçpàÚ·‡³³è(¦küx¨YSt""Ë‘Èм½‘'~þYtÓuëŒ%:‘ÅaáHdP¾.r;vˆÎaÒ€-Dç "²8,‰ §Y3€bÒIºÜØ»·èDD–ˆ…#‘̘èhôó¿ :ˆ‰›3zöƒˆÈ±p$2„3gpä:wFÁÒ¢³˜¸Û·Q¨èDDŠ…#‘!Œ0hè¦îØ1˜6Mt"" Å‘Hï\\`ófÑ9ÌÀo¿@á¢sY(ŽDúåæ°CŒµl):‘åbáH¤GS§"6+VˆÎa¤n1^^¢sY.ŽDúrò$Nœ@÷î(^\tópà€èDD–Ž…#‘¾øøà»ïз¯èæáþ}˜0At""‹ÆÂ‘H/¤1ë׋Îa6&N€FDç "²h,‰tOªÙ!F—?F©R¢CY:ŽD:¶í×rÖ®ÜìÝ S§ŠÎADdéX8éÒ‰¸œ·wo)":Š9™?ìíEç "²t,‰t&6S§ÂÁé'RÖ½ND' ""ŽDº#õ=hÕ9ÑAÌ‹¯/xxˆÎADD,‰t„bôE¡€L&:,‰tbüxØ´ItósíL›&:,‰ÒïÈœ9ƒàè(:Šù‘Fü®UKt""™R©Áì( ¹è d(1ÑÖÓ›Õs,õ¾ÿÒóé\•\ž9IÈ]|ßT*zɽRÄÓ†´#Wr¹èd‚”¤s¢¨T©÷¨ºÚ„ÖëÑè‹ê4NÒF.WÊå¬$µ¥}zY§”èDD” G"uíÞK—Ð|øm;;ÑQÌÛÊ•®Lí":%Å‘H-¯_cáBTª„jm‹Îbî8ç7‘±báH¤–ÀÏOt³C†ˆÎADDÉ`áH”6Îc8ãÇ€»»èDD” ŽDi:öíÃB\½ÊAÕ‰ˆŒ G¢ÔlÛ†«W1jÇ¢6ˆ“'ßHDd¼X8¥èùsøû£Z5´h!:Š…ðñ€âÅEç "¢ä±p$JQçÎ0k–èÅÍMt""J G¢ä±CŒ¡-\|éCDDF‰…#Q2 €C‡Dç°(œ‡ˆÈè±p$JjÓ&ܾqã9³è(–ãéSðöƒˆˆRÑè+aåJÔ®ÆEG±('@óæ¢sQjX8}¥G€ÂÞÝ»øþ{Ñ!ˆˆ( ,‰þãë";Äžô0)«u""£Ç‘(AŸ>pâ„èHñÈÑQt""J G"X·÷îÁý×kVüoBˆ¶mE' "¢´ñÿ$‰pÿ>Ö®Eƒ(çò\tË3c .:¥…#z÷€I“Dç°LGŽˆN@DDêbáH–Ž3ĈtçðeŠj""2z,É¢Iƒï°jfÂËEç ""µ°p$˵r%=ÂäÉ¢sX²gÏP®œèDD¤.Žd¡n߯¦MhØõꉎb±vSEç ""u±p$ 5`ll&º#1-;;Ñ9ˆˆH],ÉIbŽƒºu€ˆˆ4À‘,N—.;Ä÷ë¯Ð¯ŸèDD¤ŽdYüýñì¦Oƒ‚ƒ‘!ƒèDD¤ŽdA®]ömhÖ 5kŠŽbá._€iÓDç ""ÍÈ”J¥è fG¡PÈEg äøºÈ3fw Xtäɰ3§në™6ï£÷[,ç´!Ý’Î9䢃©Q’ΊN vR¥Þ£êjZ¯GõE¹\)—ë`+i¶I½AjK-ç̑˕ÞÞúÝDú֣ѷÔl¬¯3ÇtNu‚ñl‚gQ²x«š,‚»;À1FbÀ÷©‰ˆL G2 âÕ+Ì™#:IV¯Àž1DD¦ˆ…#™¹ðËv»w£U+T©": ˆŽ8 ‘©báHfníðŠ9sÂÓSt’L˜pÜo""SÅ‘̙4CÌÞ½¢sÊ… œcˆÈt±p$³Õº5ø*D¡/BC`êTÑ9ˆˆHK,É<Í‹÷ï±`蔘tŸº\9Ñ9ˆˆHK,É ;‡ýûÑ®œEG¡ÄâãÑ èDD¤=Žd†¼½‘'† ƒ[º&Mƒˆˆ´Ç‘ÌÔ!fÇÑ9(‰­[E' "¢ôbáHf¥ys€3Ä¡W¯`øpÑ9ˆˆ(]X8’ù˜9QQX²DtúÖĉж­èDD”.,ÉL„†âðatîŒ2eDG¡oݸGGÑ!ˆˆ(½X8’™7ùócÐ Ñ9è[0mšèDD”^,ÉHbþøCtJÖ”)ðý÷¢sQz±p$“çæ°CŒ‘kÖLt""ÒŽdÚ¦NEl,–/ƒRâç£G‹ÎADD:À‘LXp0Nœ@·n(QBtJɾ}¢‘ΰp$öë¯(Týú‰ÎA)yôƃˆˆtƒ…#™*©C̆ ¢sP*&L€ÆEç ""Ý`áH&IªÙ!ÆØ=x€âÅE‡ ""aáH¦ÇÇÖ¬ƒR·?Àá‰ˆÌ G218y½{sX@£7w.äË':é G2%qq˜2NNèÙStR‡»»èDD¤K,É”4j«V‰ÎAiš:† ƒˆˆt‰…#™ vˆ1%'NˆN@DDºÇ‘LÃ~°q£è¤Ž›7/‰ˆÈŒ°p$pô(n…äéß ŠŽBê†o¬SGt""Ò1Žd좣1}: ”|ÿ㢣š^½‚³³èDD¤{,ÉØ5k–„Ô³u+Àá‰ˆÌ G2jìcz–.€ìÙEç ""ÝcáHÆËÛør‹LC|<³IDd®X8’‘Ú¿çÎÁÃ3˜”‰ woÑ9ˆˆH/X8’1zÿsç¢\9tê$: iäÌdÉ":é G2F­[À¢E¢sF.\8|#‘9cáHF‡bL•tŸºreÑ9ˆˆH_X8’q9v탴…ZµD‡ ""=báHFdÏüó†G®\¢£¦Ö¬xŸšˆÈ̱p$cñæ ,@ÅŠhÛVtÒÂúõ`Å?)DDæŒåÉX´oóæ‰ÎAZøð ƒˆˆô‹…#vˆ1m&@ç΢s‘~±p$ñ†€?ÿƒ´vù2ò䂈ˆôŽ…# ¶};®^…—rä…´sêL›&:é Géùs,Y‚ªUѲ¥è(¤µ_~€R¥Dç ""½cáH"IÅÍž-:¥SÆ¢‘!°p$aØ!Æ,^ |™3†ˆˆÌ Çÿ·wç1QŸ[ÇÏÌ`Ãö2ˆ .×j{ADM+ZL*hÆK¬I£¦Òn)·j$.x‘Ö¥7†m­K^«Þ!Æ(•º—¼6¨]b‰‰Å&WQÙB«Õ€ÊŒPfæýcn'FoáÇ ÎÌ÷ó×Ìó;Ïó˜#œùm5–,9qBuðБ#ª3x#((7dÍñ÷W uêÔ‚ ®^½šÝ©t 7Äô6ÕÕ"|E5À—ôìÆqæÌ™sçÎ=pà€ÆøC‡Ùíöôôô:GÖ¬Yc4Oœ8a·ÛµÇ@»í & ]c/³nˆpÙø žÝ8nÚ´iÇŽ;vì˜4i’–ø‹/êõz“Éä1 S¦L©¯¯/--Õvï–úÚ@ÎP÷6wî<5DuzvãŸ0tèЃǭ[·Âž9r¤ˆÔÖÖjŒF·nÉ—_ÊØ„{S¦¨N]¨°PD~Þ”¬:€~ªð‹Åb³ÙBCCŸ7"rÿþ}1ŠZ²¤ü_ÿR½\ML""?>§/Ê2ùéÿÿoùñß SíÔD-ÁÆ´ÐÁôÝY£WåæŠÈ¤«ÁϯrœL"]ò#ÜÛO§fi î0¬ý€ö¶vÿ²ÑüÐ}~„{ûéÔ,Á†µÐÞÖ”'N¯ZøPãè¼-:((è©ñàà`illÔÓ¡òòrÕkíN›DD÷ŸßZè5L&©¨¿þUuzö©êN Õét‹å©ñGÉÇµÄ¾Ž®|•5Ž~~~F£ñÙ£†MMM"⼇ZK €oò¡ÆQDÂÃÃëëë] KUU•s“öä[cBB‚Íf;sæŒkÄáp÷íÛ7&&F{ €êåcsssUUÕ/¿üâ|›˜˜¨×ë·oßî¼fQDÌfs]]ÝìÙ³ûôé£=Àõò»ª‹‹‹W­ZùÍ7߈È!C233·lÙ2k֬ɓ'×ÔÔ”””Œ3fÑ¢E®)Zb|P/oŸ•šš:`À€Â¢¢¢ÁƒÏ›7/==Ýù´NÅøÃáPz€^~#º #4¡q€&4ŽÐ„ÆšÐ8@GhBãèUmmm999“&Mš6mZNNÑD§´¶¶N˜0ÁjµªN=Cccãºuë&Nœ»téÒêêjÕ¡g¨­­]²dIlll\\ÜÚµkˆå•W>ÿüó»wï–””¨Î Ý]EEŵk×222Æ7qâÄäääââbþTÁ…ÆÑ{nܸÑÜÜï|___ýúuÕy¡HKK+//ÿꫯT'‚ãöíÛcÆŒ™0a‚ómPP¿¿ÿýû÷Uç…àwÞ5j”óõ°aÃüüüTg„n„jðž;wîètº8ß8P§ÓÕÕÕ©Î @/qôèQ×Û¢¢"‹Å2~üxÕy¡»‹ŒŒÜ¸q£ˆÜ¿¿²²Òl6Ϙ1C¯ç0þƒRè´ÊÊʨ¨¨²²²ÿºõðáɉ‰111qqqëÖ­khhpmjii pý÷Óëõþþþª/q»rà˨Kʦ¬¬ìí·ß>|ø©S§è}„ç•SUUuùòeçë¾}û®^½º¹¹¹´´TõÊÐ]Ð8j5sæÌ¹sç8pàÏ:d·ÛÓÓÓèY³fÑh¬ŠHdddÿþýU/Ï‘ç•c2™>ù䓬¬¬””«Õš››9vìXÕ+CwA×¢•ë1:§OŸ~v«Ãá¸uëVXXØSŸìGŽ)"µµµÎ?ÿ+V¬hmm]±b…ˆÌ˜1cùò媗…ç®K*¾Æó²©¨¨p8+W®|2 ;;{æÌ™ª‡çÈóÊéׯ_^^ÞÖ­[“““^ýõ?þ¸OŸ>ªW†î‚ƱkX,›ÍúÔ¸óÞ×u:.33333Su¾è.4VŽÓøñãËËËU§ õ´”MjjjjjªêLѽhü…3nܸýû÷«NÝ×8v ç×=5,"\D4N¸‡#ŽT:t¨óEMMˆœ;w®°°°OŸ>›7o¾råJYYÙ•+W¶lÙâïï_RRráÂgð¬Y³víÚ-"‹-Úµk×›o¾©}:À=4ŽT ‘ÆÆFqž}~÷ÝwgÏž "o½õÖ´iÓDäúõëíïÍÃé€öqÖ€b:Îõ:33sõêÕzýÓŸi-‹ˆ´µµµ¿+§ÚGã@¥¦¦¦ææf1"âêùnß¾]YYY[[[UUå<ã¬eoN´Æ€J·oßv¾xñÅEÄf³íܹóøñãÕÕÕÎñW_}5::úÚµkîÍÃé€öÑ8PéôéÓ"%"+W®üî»ïBBBRRR¦OŸÑ¿Ù¸q£–ÎÏÃé€öÑ8PÆjµîÝ»WDRRR ÃÇøáÉÏÏ5jÔ“‘­­­îÍÃé€qW55,Ëš5k‚ƒƒ/^,"ÕÕÕv»ý…^ˆŒŒ|2òÑ£GgÏžíp‡NtˆÆÀs÷øñcë>|øóÏ? Statistics: bartlett_test

Function Reference: bartlett_test

statistics: h = bartlett_test (x)
statistics: h = bartlett_test (x, group)
statistics: h = bartlett_test (x, alpha)
statistics: h = bartlett_test (x, group, alpha)
statistics: [h, pval] = bartlett_test (…)
statistics: [h, pval, chisq] = bartlett_test (…)
statistics: [h, pval, chisq, df] = bartlett_test (…)

Perform a Bartlett test for the homogeneity of variances.

Under the null hypothesis of equal variances, the test statistic chisq approximately follows a chi-square distribution with df degrees of freedom.

The p-value (1 minus the CDF of this distribution at chisq) is returned in pval. h = 1 if the null hypothesis is rejected at the significance level of alpha. Otherwise h = 0.

Input Arguments:

  • x contains the data and it can either be a vector or matrix. If x is a matrix, then each column is treated as a separate group. If x is a vector, then the group argument is mandatory. NaN values are omitted.
  • group contains the names for each group. If x is a vector, then group must be a vector of the same length, or a string array or cell array of strings with one row for each element of x. x values corresponding to the same value of group are placed in the same group. If x is a matrix, then group can either be a cell array of strings of a character array, with one row per column of x in the same way it is used in anova1 function. If x is a matrix, then group can be omitted either by entering an empty array ([]) or by parsing only alpha as a second argument (if required to change its default value).
  • alpha is the statistical significance value at which the null hypothesis is rejected. Its default value is 0.05 and it can be parsed either as a second argument (when group is omitted) or as a third argument.

See also: levene_test, vartest2, vartestn

Source Code: bartlett_test

statistics-release-1.6.3/docs/barttest.html000066400000000000000000000116561456127120000210060ustar00rootroot00000000000000 Statistics: barttest

Function Reference: barttest

statistics: ndim = barttest (x)
statistics: ndim = barttest (x, alpha)
statistics: [ndim, pval] = barttest (x, alpha)
statistics: [ndim, pval, chisq] = barttest (x, alpha)

Bartlett’s test of sphericity for correlation.

It compares an observed correlation matrix to the identity matrix in order to check if there is a certain redundancy between the variables that we can summarize with a few number of factors. A statistically significant test shows that the variables (columns) in x are correlated, thus it makes sense to perform some dimensionality reduction of the data in x.

ndim = barttest (x, alpha) returns the number of dimensions necessary to explain the nonrandom variation in the data matrix x at the alpha significance level. alpha is an optional input argument and, when not provided, it is 0.05 by default.

[ndim, pval, chisq] = barttest (…) also returns the significance values pval for the hypothesis test for each dimension as well as the associated chi^2 values in chisq

Source Code: barttest

statistics-release-1.6.3/docs/betacdf.html000066400000000000000000000144141456127120000205410ustar00rootroot00000000000000 Statistics: betacdf

Function Reference: betacdf

statistics: p = betacdf (x, a, b)
statistics: p = betacdf (x, a, b, "upper")

Beta cumulative distribution function (CDF).

For each element of x, compute the cumulative distribution function of the Beta distribution with shape parameters a and b. The size of p is the common size of x, a, and b. A scalar input functions as a constant matrix of the same size as the other inputs.

p = betacdf (x, a, b, "upper") computes the upper tail probability of the Beta distribution with parameters a and b, at the values in x.

Further information about the Beta distribution can be found at https://en.wikipedia.org/wiki/Beta_distribution

See also: betainv, betapdf, betarnd, betafit, betalike, betastat

Source Code: betacdf

Example: 1

 

 ## Plot various CDFs from the Beta distribution
 x = 0:0.005:1;
 p1 = betacdf (x, 0.5, 0.5);
 p2 = betacdf (x, 5, 1);
 p3 = betacdf (x, 1, 3);
 p4 = betacdf (x, 2, 2);
 p5 = betacdf (x, 2, 5);
 plot (x, p1, "-b", x, p2, "-g", x, p3, "-r", x, p4, "-c", x, p5, "-m")
 grid on
 legend ({"α = β = 0.5", "α = 5, β = 1", "α = 1, β = 3", ...
          "α = 2, β = 2", "α = 2, β = 5"}, "location", "northwest")
 title ("Beta CDF")
 xlabel ("values in x")
 ylabel ("probability")

                    
plotted figure

statistics-release-1.6.3/docs/betafit.html000066400000000000000000000205301456127120000205630ustar00rootroot00000000000000 Statistics: betafit

Function Reference: betafit

statistics: paramhat = betafit (x)
statistics: [paramhat, paramci] = betafit (x)
statistics: [paramhat, paramci] = betafit (x, alpha)
statistics: [paramhat, paramci] = betafit (x, alpha, options)

Estimate parameters and confidence intervals for the Beta distribution.

paramhat = betafit (x) returns the maximum likelihood estimates of the parameters of the Beta distribution given the data in vector x. paramhat([1, 2]) corresponds to the α and β shape parameters, respectively. Missing values, NaNs, are ignored.

[paramhat, paramci] = betafit (x) returns the 95% confidence intervals for the parameter estimates.

[…] = betafit (x, alpha) also returns the 100 * (1 - alpha) percent confidence intervals of the estimated parameter. By default, the optional argument alpha is 0.05 corresponding to 95% confidence intervals.

[paramhat, paramci] = nbinfit (x, alpha, options) specifies control parameters for the iterative algorithm used to compute ML estimates with the fminsearch function. options is a structure with the following fields and their default values:

  • options.Display = "off"
  • options.MaxFunEvals = 400
  • options.MaxIter = 200
  • options.TolX = 1e-6

The Beta distribution is defined on the open interval (0,1). However, betafit can also compute the unbounded beta likelihood function for data that include exact zeros or ones. In such cases, zeros and ones are treated as if they were values that have been left-censored at sqrt (realmin) or right-censored at 1 - eps/2, respectively.

Further information about the Beta distribution can be found at https://en.wikipedia.org/wiki/Beta_distribution

See also: betacdf, betainv, betapdf, betarnd, betalike, betastat

Source Code: betafit

Example: 1

 

 ## Sample 2 populations from different Beta distibutions
 randg ("seed", 1);   # for reproducibility
 r1 = betarnd (2, 5, 500, 1);
 randg ("seed", 2);   # for reproducibility
 r2 = betarnd (2, 2, 500, 1);
 r = [r1, r2];

 ## Plot them normalized and fix their colors
 hist (r, 12, 15);
 h = findobj (gca, "Type", "patch");
 set (h(1), "facecolor", "c");
 set (h(2), "facecolor", "g");
 hold on

 ## Estimate their shape parameters
 a_b_A = betafit (r(:,1));
 a_b_B = betafit (r(:,2));

 ## Plot their estimated PDFs
 x = [min(r(:)):0.01:max(r(:))];
 y = betapdf (x, a_b_A(1), a_b_A(2));
 plot (x, y, "-pr");
 y = betapdf (x, a_b_B(1), a_b_B(2));
 plot (x, y, "-sg");
 ylim ([0, 4])
 legend ({"Normalized HIST of sample 1 with α=2 and β=5", ...
          "Normalized HIST of sample 2 with α=2 and β=2", ...
          sprintf("PDF for sample 1 with estimated α=%0.2f and β=%0.2f", ...
                  a_b_A(1), a_b_A(2)), ...
          sprintf("PDF for sample 2 with estimated α=%0.2f and β=%0.2f", ...
                  a_b_B(1), a_b_B(2))})
 title ("Two population samples from different Beta distibutions")
 hold off

                    
plotted figure

statistics-release-1.6.3/docs/betainv.html000066400000000000000000000136171456127120000206050ustar00rootroot00000000000000 Statistics: betainv

Function Reference: betainv

statistics: x = betainv (p, a, b)

Inverse of the Beta distribution (iCDF).

For each element of p, compute the quantile (the inverse of the CDF) of the Beta distribution with shape parameters a and b. The size of x is the common size of x, a, and b. A scalar input functions as a constant matrix of the same size as the other inputs.

Further information about the Beta distribution can be found at https://en.wikipedia.org/wiki/Beta_distribution

See also: betacdf, betapdf, betarnd, betafit, betalike, betastat

Source Code: betainv

Example: 1

 

 ## Plot various iCDFs from the Beta distribution
 p = 0.001:0.001:0.999;
 x1 = betainv (p, 0.5, 0.5);
 x2 = betainv (p, 5, 1);
 x3 = betainv (p, 1, 3);
 x4 = betainv (p, 2, 2);
 x5 = betainv (p, 2, 5);
 plot (p, x1, "-b", p, x2, "-g", p, x3, "-r", p, x4, "-c", p, x5, "-m")
 grid on
 legend ({"α = β = 0.5", "α = 5, β = 1", "α = 1, β = 3", ...
          "α = 2, β = 2", "α = 2, β = 5"}, "location", "southeast")
 title ("Beta iCDF")
 xlabel ("probability")
 ylabel ("values in x")

                    
plotted figure

statistics-release-1.6.3/docs/betalike.html000066400000000000000000000126241456127120000207320ustar00rootroot00000000000000 Statistics: betalike

Function Reference: betalike

statistics: nlogL = betalike (params, x)
statistics: [nlogL, avar] = betalike (params, x)

Negative log-likelihood for the Beta distribution.

nlogL = betalike (params, x) returns the negative log likelihood of the data in x corresponding to the Beta distribution with (1) shape parameter α and (2) shape parameter β given in the two-element vector params. Both parameters must be positive real numbers and the data in the range [0,1]. Out of range parameters or data return NaN.

[nlogL, avar] = betalike (params, x) returns the inverse of Fisher’s information matrix, avar. If the input parameter values in params are the maximum likelihood estimates, the diagonal elements of params are their asymptotic variances.

The Beta distribution is defined on the open interval (0,1). However, betafit can also compute the unbounded beta likelihood function for data that include exact zeros or ones. In such cases, zeros and ones are treated as if they were values that have been left-censored at sqrt (realmin) or right-censored at 1 - eps/2, respectively.

Further information about the Beta distribution can be found at https://en.wikipedia.org/wiki/Beta_distribution

See also: betacdf, betainv, betapdf, betarnd, betafit, betastat

Source Code: betalike

statistics-release-1.6.3/docs/betapdf.html000066400000000000000000000136271456127120000205630ustar00rootroot00000000000000 Statistics: betapdf

Function Reference: betapdf

statistics: y = betapdf (x, a, b)

Beta probability density function (PDF).

For each element of x, compute the probability density function (PDF) of the Beta distribution with shape parameters a and b. The size of y is the common size of x, a, and b. A scalar input functions as a constant matrix of the same size as the other inputs.

Further information about the Beta distribution can be found at https://en.wikipedia.org/wiki/Beta_distribution

See also: betacdf, betainv, betarnd, betafit, betalike, betastat

Source Code: betapdf

Example: 1

 

 ## Plot various PDFs from the Beta distribution
 x = 0.001:0.001:0.999;
 y1 = betapdf (x, 0.5, 0.5);
 y2 = betapdf (x, 5, 1);
 y3 = betapdf (x, 1, 3);
 y4 = betapdf (x, 2, 2);
 y5 = betapdf (x, 2, 5);
 plot (x, y1, "-b", x, y2, "-g", x, y3, "-r", x, y4, "-c", x, y5, "-m")
 grid on
 ylim ([0, 2.5])
 legend ({"α = β = 0.5", "α = 5, β = 1", "α = 1, β = 3", ...
          "α = 2, β = 2", "α = 2, β = 5"}, "location", "north")
 title ("Beta PDF")
 xlabel ("values in x")
 ylabel ("density")

                    
plotted figure

statistics-release-1.6.3/docs/betarnd.html000066400000000000000000000122321456127120000205640ustar00rootroot00000000000000 Statistics: betarnd

Function Reference: betarnd

statistics: r = betarnd (a, b)
statistics: r = betarnd (a, b, rows)
statistics: r = betarnd (a, b, rows, cols, …)
statistics: r = betarnd (a, b, [sz])

Random arrays from the Beta distribution.

r = betarnd (a, b) returns an array of random numbers chosen from the Beta distribution with shape parameters a and b. The size of r is the common size of a and b. A scalar input functions as a constant matrix of the same size as the other inputs.

When called with a single size argument, betarnd returns a square matrix with the dimension specified. When called with more than one scalar argument, the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions. The size may also be specified with a row vector of dimensions, sz.

Further information about the Beta distribution can be found at https://en.wikipedia.org/wiki/Beta_distribution

See also: betacdf, betainv, betapdf, betafit, betalike, betastat

Source Code: betarnd

statistics-release-1.6.3/docs/betastat.html000066400000000000000000000107521456127120000207610ustar00rootroot00000000000000 Statistics: betastat

Function Reference: betastat

statistics: [m, v] = betastat (a, b)

Compute statistics of the Beta distribution.

[m, v] = betastat (a, b) returns the mean and variance of the Beta distribution with shape parameters a and b.

The size of m (mean) and v (variance) is the common size of the input arguments. A scalar input functions as a constant matrix of the same size as the other inputs.

Further information about the Beta distribution can be found at https://en.wikipedia.org/wiki/Beta_distribution

See also: betacdf, betainv, betapdf, betarnd, betafit, betalike

Source Code: betastat

statistics-release-1.6.3/docs/binocdf.html000066400000000000000000000145461456127120000205630ustar00rootroot00000000000000 Statistics: binocdf

Function Reference: binocdf

statistics: p = binocdf (x, n, ps)
statistics: p = binocdf (x, n, ps, "upper")

Binomial cumulative distribution function (CDF).

For each element of x, compute the cumulative distribution function (CDF) of the binomial distribution with parameters n and ps, where n is the number of trials and ps is the probability of success. The size of p is the common size of x, n, and ps. A scalar input functions as a constant matrix of the same size as the other inputs.

p = binocdf (x, n, ps, "upper") computes the upper tail probability of the binomial distribution with parameters n and ps, at the values in x.

Further information about the binomial distribution can be found at https://en.wikipedia.org/wiki/Binomial_distribution

See also: binoinv, binopdf, binornd, binofit, binolike, binostat, binotest

Source Code: binocdf

Example: 1

 

 ## Plot various CDFs from the binomial distribution
 x = 0:40;
 p1 = binocdf (x, 20, 0.5);
 p2 = binocdf (x, 20, 0.7);
 p3 = binocdf (x, 40, 0.5);
 plot (x, p1, "*b", x, p2, "*g", x, p3, "*r")
 grid on
 legend ({"n = 20, ps = 0.5", "n = 20, ps = 0.7", ...
          "n = 40, ps = 0.5"}, "location", "southeast")
 title ("Binomial CDF")
 xlabel ("values in x (number of successes)")
 ylabel ("probability")

                    
plotted figure

statistics-release-1.6.3/docs/binofit.html000066400000000000000000000175631456127120000206130ustar00rootroot00000000000000 Statistics: binofit

Function Reference: binofit

statistics: pshat = binofit (x, n)
statistics: [pshat, psci] = binofit (x, n)
statistics: [pshat, psci] = binofit (x, n, alpha)

Estimate parameter and confidence intervals for the binomial distribution.

pshat = binofit (x, n) returns the maximum likelihood estimate (MLE) of the probability of success for the binomial distribution. x and n are scalars containing the number of successes and the number of trials, respectively. If x and n are vectors, binofit returns a vector of estimates whose i-th element is the parameter estimate for x(i) and n(i). A scalar value for x or n is expanded to the same size as the other input.

[pshat, psci] = binofit (x, n, alpha) also returns the 100 * (1 - alpha) percent confidence intervals of the estimated parameter. By default, the optional argument alpha is 0.05 corresponding to 95% confidence intervals.

binofit treats a vector x as a collection of measurements from separate samples, and returns a vector of estimates. If you want to treat x as a single sample and compute a single parameter estimate and confidence interval, use binofit (sum (x), sum (n)) when n is a vector, and binofit (sum (x), n * length (x)) when n is a scalar.

Further information about the binomial distribution can be found at https://en.wikipedia.org/wiki/Binomial_distribution

See also: binocdf, binoinv, binopdf, binornd, binolike, binostat

Source Code: binofit

Example: 1

 

 ## Sample 2 populations from different binomial distibutions
 rand ("seed", 1);    # for reproducibility
 r1 = binornd (50, 0.15, 1000, 1);
 rand ("seed", 2);    # for reproducibility
 r2 = binornd (100, 0.5, 1000, 1);
 r = [r1, r2];

 ## Plot them normalized and fix their colors
 hist (r, 23, 0.35);
 h = findobj (gca, "Type", "patch");
 set (h(1), "facecolor", "c");
 set (h(2), "facecolor", "g");
 hold on

 ## Estimate their probability of success
 pshatA = binofit (r(:,1), 50);
 pshatB = binofit (r(:,2), 100);

 ## Plot their estimated PDFs
 x = [min(r(:,1)):max(r(:,1))];
 y = binopdf (x, 50, mean (pshatA));
 plot (x, y, "-pg");
 x = [min(r(:,2)):max(r(:,2))];
 y = binopdf (x, 100, mean (pshatB));
 plot (x, y, "-sc");
 ylim ([0, 0.2])
 legend ({"Normalized HIST of sample 1 with ps=0.15", ...
          "Normalized HIST of sample 2 with ps=0.50", ...
          sprintf("PDF for sample 1 with estimated ps=%0.2f", ...
                  mean (pshatA)), ...
          sprintf("PDF for sample 2 with estimated ps=%0.2f", ...
                  mean (pshatB))})
 title ("Two population samples from different binomial distibutions")
 hold off

                    
plotted figure

statistics-release-1.6.3/docs/binoinv.html000066400000000000000000000137641456127120000206240ustar00rootroot00000000000000 Statistics: binoinv

Function Reference: binoinv

statistics: x = binoinv (p, n, ps)

Inverse of the Binomial cumulative distribution function (iCDF).

For each element of p, compute the quantile (the inverse of the CDF) of the binomial distribution with parameters n and ps, where n is the number of trials and ps is the probability of success. The size of x is the common size of p, n, and ps. A scalar input functions as a constant matrix of the same size as the other inputs.

Further information about the binomial distribution can be found at https://en.wikipedia.org/wiki/Binomial_distribution

See also: binocdf, binopdf, binornd, binofit, binolike, binostat, binotest

Source Code: binoinv

Example: 1

 

 ## Plot various iCDFs from the binomial distribution
 p = 0.001:0.001:0.999;
 x1 = binoinv (p, 20, 0.5);
 x2 = binoinv (p, 20, 0.7);
 x3 = binoinv (p, 40, 0.5);
 plot (p, x1, "-b", p, x2, "-g", p, x3, "-r")
 grid on
 legend ({"n = 20, ps = 0.5", "n = 20, ps = 0.7", ...
          "n = 40, ps = 0.5"}, "location", "southeast")
 title ("Binomial iCDF")
 xlabel ("probability")
 ylabel ("values in x (number of successes)")

                    
plotted figure

statistics-release-1.6.3/docs/binolike.html000066400000000000000000000122131456127120000207400ustar00rootroot00000000000000 Statistics: binolike

Function Reference: binolike

statistics: nlogL = binolike (params, x)
statistics: [nlogL, acov] = binolike (params, x)

Negative log-likelihood for the binomial distribution.

nlogL = binolike (params, x) returns the negative log likelihood of the binomial distribution with (1) parameter n and (2) parameter ps, given in the two-element vector params, where n is the number of trials and ps is the probability of success, given the number of successes in x. Unlike binofit, which handles each element in x independently, binolike returns the negative log likelihood of the entire vector x.

[nlogL, acov] = binolike (params, x) also returns the inverse of Fisher’s information matrix, acov. If the input parameter values in params are the maximum likelihood estimates, the diagonal elements of params are their asymptotic variances.

Further information about the binomial distribution can be found at https://en.wikipedia.org/wiki/Binomial_distribution

See also: binocdf, binoinv, binopdf, binornd, binofit, binostat

Source Code: binolike

statistics-release-1.6.3/docs/binopdf.html000066400000000000000000000143141456127120000205710ustar00rootroot00000000000000 Statistics: binopdf

Function Reference: binopdf

statistics: y = binopdf (x, n, ps)

Binomial probability density function (PDF).

For each element of x, compute the probability density function (PDF) of the binomial distribution with parameters n and ps, where n is the number of trials and ps is the probability of success. The size of y is the common size of x, n, and ps. A scalar input functions as a constant matrix of the same size as the other inputs.

Matlab incompatibility: Octave’s binopdf does not allow complex input values. Matlab 2021b returns values for complex inputs despite the documentation indicates integer and real value inputs are required.

Further information about the binomial distribution can be found at https://en.wikipedia.org/wiki/Binomial_distribution

See also: binocdf, binoinv, binornd, binofit, binolike, binostat, binotest

Source Code: binopdf

Example: 1

 

 ## Plot various PDFs from the binomial distribution
 x = 0:40;
 y1 = binopdf (x, 20, 0.5);
 y2 = binopdf (x, 20, 0.7);
 y3 = binopdf (x, 40, 0.5);
 plot (x, y1, "*b", x, y2, "*g", x, y3, "*r")
 grid on
 ylim ([0, 0.25])
 legend ({"n = 20, ps = 0.5", "n = 20, ps = 0.7", ...
          "n = 40, ps = 0.5"}, "location", "northeast")
 title ("Binomial PDF")
 xlabel ("values in x (number of successes)")
 ylabel ("density")

                    
plotted figure

statistics-release-1.6.3/docs/binornd.html000066400000000000000000000124561456127120000206100ustar00rootroot00000000000000 Statistics: binornd

Function Reference: binornd

statistics: r = binornd (n, ps)
statistics: r = binornd (n, ps, rows)
statistics: r = binornd (n, ps, rows, cols, …)
statistics: r = binornd (n, ps, [sz])

Random arrays from the Binomial distribution.

r = binornd (n, ps) returns a matrix of random samples from the binomial distribution with parameters n and ps, where n is the number of trials and ps is the probability of success. The size of r is the common size of n and ps. A scalar input functions as a constant matrix of the same size as the other inputs.

When called with a single size argument, binornd returns a square matrix with the dimension specified. When called with more than one scalar argument, the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions. The size may also be specified with a row vector of dimensions, sz.

Further information about the binomial distribution can be found at https://en.wikipedia.org/wiki/Binomial_distribution

See also: binocdf, binoinv, binopdf, binofit, binolike, binostat, binotest

Source Code: binornd

statistics-release-1.6.3/docs/binostat.html000066400000000000000000000112011456127120000207630ustar00rootroot00000000000000 Statistics: binostat

Function Reference: binostat

statistics: [m, v] = binostat (n, ps)

Compute statistics of the binomial distribution.

[m, v] = binostat (n, ps) returns the mean and variance of the binomial distribution with parameters n and ps, where n is the number of trials and ps is the probability of success.

The size of m (mean) and v (variance) is the common size of the input arguments. A scalar input functions as a constant matrix of the same size as the other inputs.

Further information about the binomial distribution can be found at https://en.wikipedia.org/wiki/Binomial_distribution

See also: binocdf, binoinv, binopdf, binornd, binofit, binolike, binotest

Source Code: binostat

statistics-release-1.6.3/docs/binotest.html000066400000000000000000000170721456127120000210030ustar00rootroot00000000000000 Statistics: binotest

Function Reference: binotest

statistics: [h, pval, ci] = binotest (pos, N, p0)
statistics: [h, pval, ci] = binotest (pos, N, p0, Name, Value)

Test for probability p of a binomial sample

Perform a test of the null hypothesis p == p0 for a sample of size N with pos positive results.

Name-Value pair arguments can be used to set various options. "alpha" can be used to specify the significance level of the test (the default value is 0.05). The option "tail", can be used to select the desired alternative hypotheses. If the value is "both" (default) the null is tested against the two-sided alternative p != p0. The value of pval is determined by adding the probabilities of all event less or equally likely than the observed number pos of positive events. If the value of "tail" is "right" the one-sided alternative p > p0 is considered. Similarly for "left", the one-sided alternative p < p0 is considered.

If h is 0 the null hypothesis is accepted, if it is 1 the null hypothesis is rejected. The p-value of the test is returned in pval. A 100(1-alpha)% confidence interval is returned in ci.

Source Code: binotest

Example: 1

 

 % flip a coin 1000 times, showing 475 heads
 % Hypothesis: coin is fair, i.e. p=1/2
 [h,p_val,ci] = binotest(475,1000,0.5)
 % Result: h = 0 : null hypothesis not rejected, coin could be fair
 %         P value 0.12, i.e. hypothesis not rejected for alpha up to 12%
 %         0.444 <= p <= 0.506 with 95% confidence

h = 0
p_val = 0.1212
ci =

   0.4437   0.5065

                    

Example: 2

 

 % flip a coin 100 times, showing 65 heads
 % Hypothesis: coin shows less than 50% heads, i.e. p<=1/2
 [h,p_val,ci] = binotest(65,100,0.5,'tail','left','alpha',0.01)
 % Result: h = 1 : null hypothesis is rejected, i.e. coin shows more heads than tails
 %         P value 0.0018, i.e. hypothesis not rejected for alpha up to 0.18%
 %         0 <= p <= 0.76 with 99% confidence

h = 1
p_val = 1.7588e-03
ci =

        0   0.7580

                    
statistics-release-1.6.3/docs/bisacdf.html000066400000000000000000000176611456127120000205530ustar00rootroot00000000000000 Statistics: bisacdf

Function Reference: bisacdf

statistics: p = bisacdf (x, beta, gamma)
statistics: p = bisacdf (x, beta, gamma, "upper")

Birnbaum-Saunders cumulative distribution function (CDF).

For each element of x, compute the cumulative distribution function (CDF) of the Birnbaum-Saunders distribution with scale parameter beta and shape parameter gamma. The size of p is the common size of x, beta and gamma. A scalar input functions as a constant matrix of the same size as the other inputs.

p = bisacdf (x, beta, gamma, "upper") computes the upper tail probability of the Birnbaum-Saunders distribution with parameters beta and gamma, at the values in x.

Further information about the Birnbaum-Saunders distribution can be found at https://en.wikipedia.org/wiki/Birnbaum%E2%80%93Saunders_distribution

See also: bisainv, bisapdf, bisarnd, bisafit, bisalike, bisastat

Source Code: bisacdf

Example: 1

 

 ## Plot various CDFs from the Birnbaum-Saunders distribution
 x = 0.01:0.01:4;
 p1 = bisacdf (x, 1, 0.5);
 p2 = bisacdf (x, 1, 1);
 p3 = bisacdf (x, 1, 2);
 p4 = bisacdf (x, 1, 5);
 p5 = bisacdf (x, 1, 10);
 plot (x, p1, "-b", x, p2, "-g", x, p3, "-r", x, p4, "-c", x, p5, "-m")
 grid on
 legend ({"β = 1, γ = 0.5", "β = 1, γ = 1", "β = 1, γ = 2", ...
          "β = 1, γ = 5", "β = 1, γ = 10"}, "location", "southeast")
 title ("Birnbaum-Saunders CDF")
 xlabel ("values in x")
 ylabel ("probability")

                    
plotted figure

Example: 2

 

 ## Plot various CDFs from the Birnbaum-Saunders distribution
 x = 0.01:0.01:6;
 p1 = bisacdf (x, 1, 0.3);
 p2 = bisacdf (x, 2, 0.3);
 p3 = bisacdf (x, 1, 0.5);
 p4 = bisacdf (x, 3, 0.5);
 p5 = bisacdf (x, 5, 0.5);
 plot (x, p1, "-b", x, p2, "-g", x, p3, "-r", x, p4, "-c", x, p5, "-m")
 grid on
 legend ({"β = 1, γ = 0.3", "β = 2, γ = 0.3", "β = 1, γ = 0.5", ...
          "β = 3, γ = 0.5", "β = 5, γ = 0.5"}, "location", "southeast")
 title ("Birnbaum-Saunders CDF")
 xlabel ("values in x")
 ylabel ("probability")

                    
plotted figure

statistics-release-1.6.3/docs/bisafit.html000066400000000000000000000231031456127120000205650ustar00rootroot00000000000000 Statistics: bisafit

Function Reference: bisafit

statistics: paramhat = bisafit (x)
statistics: [paramhat, paramci] = bisafit (x)
statistics: [paramhat, paramci] = bisafit (x, alpha)
statistics: […] = bisafit (x, alpha, censor)
statistics: […] = bisafit (x, alpha, censor, freq)
statistics: […] = bisafit (x, alpha, censor, freq, options)

Estimate mean and confidence intervals for the Birnbaum-Saunders distribution.

muhat = bisafit (x) returns the maximum likelihood estimates of the parameters of the Birnbaum-Saunders distribution given the data in x. paramhat(1) is the scale parameter, beta, and paramhat(2) is the shape parameter, gamma.

[paramhat, paramci] = bisafit (x) returns the 95% confidence intervals for the parameter estimates.

[…] = bisafit (x, alpha) also returns the 100 * (1 - alpha) percent confidence intervals for the parameter estimates. By default, the optional argument alpha is 0.05 corresponding to 95% confidence intervals. Pass in [] for alpha to use the default values.

[…] = bisafit (x, alpha, censor) accepts a boolean vector, censor, of the same size as x with 1s for observations that are right-censored and 0s for observations that are observed exactly. By default, or if left empty, censor = zeros (size (x)).

[…] = bisafit (x, alpha, censor, freq) accepts a frequency vector, freq, of the same size as x. freq typically contains integer frequencies for the corresponding elements in x, but it can contain any non-integer non-negative values. By default, or if left empty, freq = ones (size (x)).

[…] = bisafit (…, options) specifies control parameters for the iterative algorithm used to compute ML estimates with the fminsearch function. options is a structure with the following fields and their default values:

  • options.Display = "off"
  • options.MaxFunEvals = 400
  • options.MaxIter = 200
  • options.TolX = 1e-6

Further information about the Birnbaum-Saunders distribution can be found at https://en.wikipedia.org/wiki/Birnbaum%E2%80%93Saunders_distribution

See also: bisacdf, bisainv, bisapdf, bisarnd, bisalike, bisastat

Source Code: bisafit

Example: 1

 

 ## Sample 3 populations from different Birnbaum-Saunders distibutions
 rand ("seed", 5);    # for reproducibility
 r1 = bisarnd (1, 0.5, 2000, 1);
 rand ("seed", 2);    # for reproducibility
 r2 = bisarnd (2, 0.3, 2000, 1);
 rand ("seed", 7);    # for reproducibility
 r3 = bisarnd (4, 0.5, 2000, 1);
 r = [r1, r2, r3];

 ## Plot them normalized and fix their colors
 hist (r, 80, 4.2);
 h = findobj (gca, "Type", "patch");
 set (h(1), "facecolor", "c");
 set (h(2), "facecolor", "g");
 set (h(3), "facecolor", "r");
 ylim ([0, 1.1]);
 xlim ([0, 8]);
 hold on

 ## Estimate their α and β parameters
 beta_gammaA = bisafit (r(:,1));
 beta_gammaB = bisafit (r(:,2));
 beta_gammaC = bisafit (r(:,3));

 ## Plot their estimated PDFs
 x = [0:0.1:8];
 y = bisapdf (x, beta_gammaA(1), beta_gammaA(2));
 plot (x, y, "-pr");
 y = bisapdf (x, beta_gammaB(1), beta_gammaB(2));
 plot (x, y, "-sg");
 y = bisapdf (x, beta_gammaC(1), beta_gammaC(2));
 plot (x, y, "-^c");
 hold off
 legend ({"Normalized HIST of sample 1 with β=1 and γ=0.5", ...
          "Normalized HIST of sample 2 with β=2 and γ=0.3", ...
          "Normalized HIST of sample 3 with β=4 and γ=0.5", ...
          sprintf("PDF for sample 1 with estimated β=%0.2f and γ=%0.2f", ...
                  beta_gammaA(1), beta_gammaA(2)), ...
          sprintf("PDF for sample 2 with estimated β=%0.2f and γ=%0.2f", ...
                  beta_gammaB(1), beta_gammaB(2)), ...
          sprintf("PDF for sample 3 with estimated β=%0.2f and γ=%0.2f", ...
                  beta_gammaC(1), beta_gammaC(2))})
 title ("Three population samples from different Birnbaum-Saunders distibutions")
 hold off

                    
plotted figure

statistics-release-1.6.3/docs/bisainv.html000066400000000000000000000171071456127120000206060ustar00rootroot00000000000000 Statistics: bisainv

Function Reference: bisainv

statistics: x = bisainv (p, beta, gamma)

Inverse of the Birnbaum-Saunders cumulative distribution function (iCDF).

For each element of p, compute the quantile (the inverse of the CDF) of the Birnbaum-Saunders distribution with scale parameter beta and shape parameter gamma. The size of x is the common size of p, beta, and gamma. A scalar input functions as a constant matrix of the same size as the other inputs.

Further information about the Birnbaum-Saunders distribution can be found at https://en.wikipedia.org/wiki/Birnbaum%E2%80%93Saunders_distribution

See also: bisainv, bisapdf, bisarnd, bisafit, bisalike, bisastat

Source Code: bisainv

Example: 1

 

 ## Plot various iCDFs from the Birnbaum-Saunders distribution
 p = 0.001:0.001:0.999;
 x1 = bisainv (p, 1, 0.5);
 x2 = bisainv (p, 1, 1);
 x3 = bisainv (p, 1, 2);
 x4 = bisainv (p, 1, 5);
 x5 = bisainv (p, 1, 10);
 plot (p, x1, "-b", p, x2, "-g", p, x3, "-r", p, x4, "-c", p, x5, "-m")
 grid on
 ylim ([0, 10])
 legend ({"β = 1, γ = 0.5", "β = 1, γ = 1", "β = 1, γ = 2", ...
          "β = 1, γ = 5", "β = 1, γ = 10"}, "location", "northwest")
 title ("Birnbaum-Saunders iCDF")
 xlabel ("probability")
 ylabel ("values in x")

                    
plotted figure

Example: 2

 

 ## Plot various iCDFs from the Birnbaum-Saunders distribution
 p = 0.001:0.001:0.999;
 x1 = bisainv (p, 1, 0.3);
 x2 = bisainv (p, 2, 0.3);
 x3 = bisainv (p, 1, 0.5);
 x4 = bisainv (p, 3, 0.5);
 x5 = bisainv (p, 5, 0.5);
 plot (p, x1, "-b", p, x2, "-g", p, x3, "-r", p, x4, "-c", p, x5, "-m")
 grid on
 ylim ([0, 10])
 legend ({"β = 1, γ = 0.3", "β = 2, γ = 0.3", "β = 1, γ = 0.5", ...
          "β = 3, γ = 0.5", "β = 5, γ = 0.5"}, "location", "northwest")
 title ("Birnbaum-Saunders iCDF")
 xlabel ("probability")
 ylabel ("values in x")

                    
plotted figure

statistics-release-1.6.3/docs/bisalike.html000066400000000000000000000137501456127120000207360ustar00rootroot00000000000000 Statistics: bisalike

Function Reference: bisalike

statistics: nlogL = bisalike (params, x)
statistics: [nlogL, acov] = bisalike (params, x)
statistics: […] = bisalike (params, x, censor)
statistics: […] = bisalike (params, x, censor, freq)

Negative log-likelihood for the Birnbaum-Saunders distribution.

nlogL = bisalike (params, x) returns the negative log likelihood of the data in x corresponding to the Birnbaum-Saunders distribution with (1) scale parameter beta and (2) shape parameter gamma given in the two-element vector params.

[nlogL, acov] = bisalike (params, x) also returns the inverse of Fisher’s information matrix, acov. If the input parameter values in params are the maximum likelihood estimates, the diagonal elements of params are their asymptotic variances.

[…] = bisalike (params, x, censor) accepts a boolean vector, censor, of the same size as x with 1s for observations that are right-censored and 0s for observations that are observed exactly. By default, or if left empty, censor = zeros (size (x)).

[…] = bisalike (params, x, censor, freq) accepts a frequency vector, freq, of the same size as x. freq typically contains integer frequencies for the corresponding elements in x, but it can contain any non-integer non-negative values. By default, or if left empty, freq = ones (size (x)).

Further information about the Birnbaum-Saunders distribution can be found at https://en.wikipedia.org/wiki/Birnbaum%E2%80%93Saunders_distribution

See also: bisacdf, bisainv, bisapdf, bisarnd, bisafit, bisastat

Source Code: bisalike

statistics-release-1.6.3/docs/bisapdf.html000066400000000000000000000170361456127120000205640ustar00rootroot00000000000000 Statistics: bisapdf

Function Reference: bisapdf

statistics: y = bisapdf (x, beta, gamma)

Birnbaum-Saunders probability density function (PDF).

For each element of x, compute the probability density function (PDF) of the Birnbaum-Saunders distribution with scale parameter beta and shape parameter gamma. The size of y is the common size of x, beta, and gamma. A scalar input functions as a constant matrix of the same size as the other inputs.

Further information about the Birnbaum-Saunders distribution can be found at https://en.wikipedia.org/wiki/Birnbaum%E2%80%93Saunders_distribution

See also: bisacdf, bisapdf, bisarnd, bisafit, bisalike, bisastat

Source Code: bisapdf

Example: 1

 

 ## Plot various PDFs from the Birnbaum-Saunders distribution
 x = 0.01:0.01:4;
 y1 = bisapdf (x, 1, 0.5);
 y2 = bisapdf (x, 1, 1);
 y3 = bisapdf (x, 1, 2);
 y4 = bisapdf (x, 1, 5);
 y5 = bisapdf (x, 1, 10);
 plot (x, y1, "-b", x, y2, "-g", x, y3, "-r", x, y4, "-c", x, y5, "-m")
 grid on
 ylim ([0, 1.5])
 legend ({"β = 1 ,γ = 0.5", "β = 1, γ = 1", "β = 1, γ = 2", ...
          "β = 1, γ = 5", "β = 1, γ = 10"}, "location", "northeast")
 title ("Birnbaum-Saunders PDF")
 xlabel ("values in x")
 ylabel ("density")

                    
plotted figure

Example: 2

 

 ## Plot various PDFs from the Birnbaum-Saunders distribution
 x = 0.01:0.01:6;
 y1 = bisapdf (x, 1, 0.3);
 y2 = bisapdf (x, 2, 0.3);
 y3 = bisapdf (x, 1, 0.5);
 y4 = bisapdf (x, 3, 0.5);
 y5 = bisapdf (x, 5, 0.5);
 plot (x, y1, "-b", x, y2, "-g", x, y3, "-r", x, y4, "-c", x, y5, "-m")
 grid on
 ylim ([0, 1.5])
 legend ({"β = 1, γ = 0.3", "β = 2, γ = 0.3", "β = 1, γ = 0.5", ...
          "β = 3, γ = 0.5", "β = 5, γ = 0.5"}, "location", "northeast")
 title ("Birnbaum-Saunders CDF")
 xlabel ("values in x")
 ylabel ("density")

                    
plotted figure

statistics-release-1.6.3/docs/bisarnd.html000066400000000000000000000124161456127120000205730ustar00rootroot00000000000000 Statistics: bisarnd

Function Reference: bisarnd

statistics: r = bisarnd (beta, gamma)
statistics: r = bisarnd (beta, gamma, rows)
statistics: r = bisarnd (beta, gamma, rows, cols, …)
statistics: r = bisarnd (beta, gamma, [sz])

Random arrays from the Birnbaum-Saunders distribution.

r = bisarnd (beta, gamma) returns an array of random numbers chosen from the Birnbaum-Saunders distribution with scale parameter beta and shape parameter gamma. The size of r is the common size of beta and gamma. A scalar input functions as a constant matrix of the same size as the other inputs.

When called with a single size argument, bisarnd returns a square matrix with the dimension specified. When called with more than one scalar argument, the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions. The size may also be specified with a row vector of dimensions, sz.

Further information about the Birnbaum-Saunders distribution can be found at https://en.wikipedia.org/wiki/Birnbaum%E2%80%93Saunders_distribution

See also: bisacdf, bisainv, bisapdf, bisafit, bisalike, bisastat

Source Code: bisarnd

statistics-release-1.6.3/docs/boxplot.html000066400000000000000000000417241456127120000206440ustar00rootroot00000000000000 Statistics: boxplot

Function Reference: boxplot

statistics: s = boxplot (data)
statistics: s = boxplot (data, group)
statistics: s = boxplot (data, notched, symbol, orientation, whisker, …)
statistics: s = boxplot (data, group, notched, symbol, orientation, whisker, …)
statistics: s = boxplot (data, options)
statistics: s = boxplot (data, group, options, …)
statistics: […, h] = boxplot (data, …)

Produce a box plot.

A box plot is a graphical display that simultaneously describes several important features of a data set, such as center, spread, departure from symmetry, and identification of observations that lie unusually far from the bulk of the data.

Input arguments (case-insensitive) recognized by boxplot are:

  • data is a matrix with one column for each data set, or a cell vector with one cell for each data set. Each cell must contain a numerical row or column vector (NaN and NA are ignored) and not a nested vector of cells.
  • notched = 1 produces a notched-box plot. Notches represent a robust estimate of the uncertainty about the median.

    notched = 0 (default) produces a rectangular box plot.

    notched within the interval (0,1) produces a notch of the specified depth. Notched values outside (0,1) are amusing if not exactly impractical.

  • symbol sets the symbol for the outlier values. The default symbol for points that lie outside 3 times the interquartile range is ’o’; the default symbol for points between 1.5 and 3 times the interquartile range is ’+’.
    Alternative symbol settings:

    symbol = ’.’: points between 1.5 and 3 times the IQR are marked with ’.’ and points outside 3 times IQR with ’o’.

    symbol = [’x’,’*’]: points between 1.5 and 3 times the IQR are marked with ’x’ and points outside 3 times IQR with ’*’.

  • orientation = 0 makes the boxes horizontally.
    orientation = 1 plots the boxes vertically (default). Alternatively, orientation can be passed as a string, e.g., ’vertical’ or ’horizontal’.
  • whisker defines the length of the whiskers as a function of the IQR (default = 1.5). If whisker = 0 then boxplot displays all data values outside the box using the plotting symbol for points that lie outside 3 times the IQR.
  • group may be passed as an optional argument only in the second position after data. group contains a numerical vector defining separate categories, each plotted in a different box, for each set of DATA values that share the same group value or values. With the formalism (data, group), both must be vectors of the same length.
  • options are additional paired arguments passed with the formalism (Name, Value) that provide extra functionality as listed below. options can be passed at any order after the initial arguments and are case-insensitive.
    ’Notch’’on’Notched by 0.25 of the boxes width.
    ’off’Produces a straight box.
    scalarProportional width of the notch.
    ’Symbol’’.’Defines only outliers between 1.5 and 3 IQR.
    [’x’,’*’]2nd character defines outliers > 3 IQR
    ’Orientation’’vertical’Default value, can also be defined with numerical 1.
    ’horizontal’Can also be defined with numerical 0.
    ’Whisker’scalarMultiplier of IQR (default is 1.5).
    ’OutlierTags’’on’ or 1Plot the vector index of the outlier value next to its point.
    ’off’ or 0No tags are plotted (default value).
    ’Sample_IDs’’cell’A cell vector with one cell for each data set containing a nested cell vector with each sample’s ID (should be a string). If this option is passed, then all outliers are tagged with their respective sample’s ID string instead of their vector’s index.
    ’BoxWidth’’proportional’Create boxes with their width proportional to the number of samples in their respective dataset (default value).
    ’fixed’Make all boxes with equal width.
    ’Widths’scalarScaling factor for box widths (default value is 0.4).
    ’CapWidths’scalarScaling factor for whisker cap widths (default value is 1, which results to ’Widths’/8 halflength)
    ’BoxStyle’’outline’Draw boxes as outlines (default value).
    ’filled’Fill boxes with a color (outlines are still plotted).
    ’Positions’vectorNumerical vector that defines the position of each data set. It must have the same length as the number of groups in a desired manner. This vector merely defines the points along the group axis, which by default is [1:number of groups].
    ’Labels’cellA cell vector of strings containing the names of each group. By default each group is labeled numerically according to its order in the data set
    ’Colors’character string or Nx3 numerical matrixIf just one character or 1x3 vector of RGB values, specify the fill color of all boxes when BoxStyle = ’filled’. If a character string or Nx3 matrix is entered, box #1’s fill color corrresponds to the first character or first matrix row, and the next boxes’ fill colors corresponds to the next characters or rows. If the char string or Nx3 array is exhausted the color selection wraps around.

Supplemental arguments not described above (…) are concatenated and passed to the plot() function.

The returned matrix s has one column for each data set as follows:

1Minimum
21st quartile
32nd quartile (median)
43rd quartile
5Maximum
6Lower confidence limit for median
7Upper confidence limit for median

The returned structure h contains handles to the plot elements, allowing customization of the visualization using set/get functions.

Example

 
 title ("Grade 3 heights");
 axis ([0,3]);
 set(gca (), "xtick", [1 2], "xticklabel", {"girls", "boys"});
 boxplot ({randn(10,1)*5+140, randn(13,1)*8+135});
 

Source Code: boxplot

Example: 1

 

 axis ([0, 3]);
 randn ("seed", 1);    # for reproducibility
 girls = randn (10, 1) * 5 + 140;
 randn ("seed", 2);    # for reproducibility
 boys = randn (13, 1) * 8 + 135;
 boxplot ({girls, boys});
 set (gca (), "xtick", [1 2], "xticklabel", {"girls", "boys"})
 title ("Grade 3 heights");

                    
plotted figure

Example: 2

 

 randn ("seed", 7);    # for reproducibility
 A = randn (10, 1) * 5 + 140;
 randn ("seed", 8);    # for reproducibility
 B = randn (25, 1) * 8 + 135;
 randn ("seed", 9);    # for reproducibility
 C = randn (20, 1) * 6 + 165;
 data = [A; B; C];
 groups = [(ones (10, 1)); (ones (25, 1) * 2); (ones (20, 1) * 3)];
 labels = {"Team A", "Team B", "Team C"};
 pos = [2, 1, 3];
 boxplot (data, groups, "Notch", "on", "Labels", labels, "Positions", pos, ...
          "OutlierTags", "on", "BoxStyle", "filled");
 title ("Example of Group splitting with paired vectors");

                    
plotted figure

Example: 3

 

 randn ("seed", 1);    # for reproducibility
 data = randn (100, 9);
 boxplot (data, "notch", "on", "boxstyle", "filled", ...
          "colors", "ygcwkmb", "whisker", 1.2);
 title ("Example of different colors specified with characters");

                    
plotted figure

Example: 4

 

 randn ("seed", 5);    # for reproducibility
 data = randn (100, 13);
 colors = [0.7 0.7 0.7; ...
           0.0 0.4 0.9; ...
           0.7 0.4 0.3; ...
           0.7 0.1 0.7; ...
           0.8 0.7 0.4; ...
           0.1 0.8 0.5; ...
           0.9 0.9 0.2];
 boxplot (data, "notch", "on", "boxstyle", "filled", ...
          "colors", colors, "whisker", 1.3, "boxwidth", "proportional");
 title ("Example of different colors specified as RGB values");

                    
plotted figure

statistics-release-1.6.3/docs/burrcdf.html000066400000000000000000000150731456127120000206020ustar00rootroot00000000000000 Statistics: burrcdf

Function Reference: burrcdf

statistics: p = burrcdf (x, lambda, c, k)
statistics: p = burrcdf (x, lambda, c, k, "upper")

Burr type XII cumulative distribution function (CDF).

For each element of x, compute the cumulative distribution function (CDF) of the Burr type XII distribution with scale parameter lambda, first shape parameter c, and second shape parameter k. The size of p is the common size of x, lambda, c, and k. A scalar input functions as a constant matrix of the same size as the other inputs.

p = burrcdf (x, beta, gamma, "upper") computes the upper tail probability of the Birnbaum-Saunders distribution with parameters beta and gamma, at the values in x.

Further information about the Burr distribution can be found at https://en.wikipedia.org/wiki/Burr_distribution

See also: burrinv, burrpdf, burrrnd, burrfit, burrlike

Source Code: burrcdf

Example: 1

 

 ## Plot various CDFs from the Burr type XII distribution
 x = 0.001:0.001:5;
 p1 = burrcdf (x, 1, 1, 1);
 p2 = burrcdf (x, 1, 1, 2);
 p3 = burrcdf (x, 1, 1, 3);
 p4 = burrcdf (x, 1, 2, 1);
 p5 = burrcdf (x, 1, 3, 1);
 p6 = burrcdf (x, 1, 0.5, 2);
 plot (x, p1, "-b", x, p2, "-g", x, p3, "-r", ...
       x, p4, "-c", x, p5, "-m", x, p6, "-k")
 grid on
 legend ({"λ = 1, c = 1, k = 1", "λ = 1, c = 1, k = 2", ...
          "λ = 1, c = 1, k = 3", "λ = 1, c = 2, k = 1", ...
          "λ = 1, c = 3, k = 1", "λ = 1, c = 0.5, k = 2"}, ...
         "location", "southeast")
 title ("Burr type XII CDF")
 xlabel ("values in x")
 ylabel ("probability")

                    
plotted figure

statistics-release-1.6.3/docs/burrfit.html000066400000000000000000000233241456127120000206260ustar00rootroot00000000000000 Statistics: burrfit

Function Reference: burrfit

statistics: paramhat = burrfit (x)
statistics: [paramhat, paramci] = burrfit (x)
statistics: [paramhat, paramci] = burrfit (x, alpha)
statistics: […] = burrfit (x, alpha, censor)
statistics: […] = burrfit (x, alpha, censor, freq)
statistics: […] = burrfit (x, alpha, censor, freq, options)

Estimate mean and confidence intervals for the Burr type XII distribution.

muhat = burrfit (x) returns the maximum likelihood estimates of the parameters of the Burr type XII distribution given the data in x. paramhat(1) is the scale parameter, lambda, paramhat(2) is the first shape parameter, c, and paramhat(3) is the second shape parameter, k

[paramhat, paramci] = burrfit (x) returns the 95% confidence intervals for the parameter estimates.

[…] = burrfit (x, alpha) also returns the 100 * (1 - alpha) percent confidence intervals for the parameter estimates. By default, the optional argument alpha is 0.05 corresponding to 95% confidence intervals. Pass in [] for alpha to use the default values.

[…] = burrfit (x, alpha, censor) accepts a boolean vector, censor, of the same size as x with 1s for observations that are right-censored and 0s for observations that are observed exactly. By default, or if left empty, censor = zeros (size (x)).

[…] = burrfit (x, alpha, censor, freq) accepts a frequency vector, freq, of the same size as x. freq typically contains integer frequencies for the corresponding elements in x, but it can contain any non-integer non-negative values. By default, or if left empty, freq = ones (size (x)).

[…] = burrfit (…, options) specifies control parameters for the iterative algorithm used to compute ML estimates with the fminsearch function. options is a structure with the following fields and their default values:

  • options.Display = "off"
  • options.MaxFunEvals = 1000
  • options.MaxIter = 500
  • options.TolX = 1e-6

Further information about the Burr type XII distribution can be found at https://en.wikipedia.org/wiki/Burr_distribution

See also: burrcdf, burrinv, burrpdf, burrrnd, burrlike, burrstat

Source Code: burrfit

Example: 1

 

 ## Sample 3 populations from different Burr type XII distibutions
 rand ("seed", 4);    # for reproducibility
 r1 = burrrnd (3.5, 2, 2.5, 10000, 1);
 rand ("seed", 2);    # for reproducibility
 r2 = burrrnd (1, 3, 1, 10000, 1);
 rand ("seed", 9);    # for reproducibility
 r3 = burrrnd (0.5, 2, 3, 10000, 1);
 r = [r1, r2, r3];

 ## Plot them normalized and fix their colors
 hist (r, [0.1:0.2:20], [18, 5, 3]);
 h = findobj (gca, "Type", "patch");
 set (h(1), "facecolor", "c");
 set (h(2), "facecolor", "g");
 set (h(3), "facecolor", "r");
 ylim ([0, 3]);
 xlim ([0, 5]);
 hold on

 ## Estimate their α and β parameters
 lambda_c_kA = burrfit (r(:,1));
 lambda_c_kB = burrfit (r(:,2));
 lambda_c_kC = burrfit (r(:,3));

 ## Plot their estimated PDFs
 x = [0.01:0.15:15];
 y = burrpdf (x, lambda_c_kA(1), lambda_c_kA(2), lambda_c_kA(3));
 plot (x, y, "-pr");
 y = burrpdf (x, lambda_c_kB(1), lambda_c_kB(2), lambda_c_kB(3));
 plot (x, y, "-sg");
 y = burrpdf (x, lambda_c_kC(1), lambda_c_kC(2), lambda_c_kC(3));
 plot (x, y, "-^c");
 hold off
 legend ({"Normalized HIST of sample 1 with λ=3.5, c=2, and k=2.5", ...
          "Normalized HIST of sample 2 with λ=1, c=3, and k=1", ...
          "Normalized HIST of sample 3 with λ=0.5, c=2, and k=3", ...
  sprintf("PDF for sample 1 with estimated λ=%0.2f, c=%0.2f, and k=%0.2f", ...
          lambda_c_kA(1), lambda_c_kA(2), lambda_c_kA(3)), ...
  sprintf("PDF for sample 2 with estimated λ=%0.2f, c=%0.2f, and k=%0.2f", ...
          lambda_c_kB(1), lambda_c_kB(2), lambda_c_kB(3)), ...
  sprintf("PDF for sample 3 with estimated λ=%0.2f, c=%0.2f, and k=%0.2f", ...
          lambda_c_kC(1), lambda_c_kC(2), lambda_c_kC(3))})
 title ("Three population samples from different Burr type XII distibutions")
 hold off

                    
plotted figure

statistics-release-1.6.3/docs/burrinv.html000066400000000000000000000142511456127120000206370ustar00rootroot00000000000000 Statistics: burrinv

Function Reference: burrinv

statistics: x = burrinv (p, lambda, c, k)

Inverse of the Burr type XII cumulative distribution function (iCDF).

For each element of p, compute the quantile (the inverse of the CDF) of the Burr type XII distribution with scale parameter lambda, first shape parameter c, and second shape parameter k. The size of x is the common size of p, lambda, c, and k. A scalar input functions as a constant matrix of the same size as the other inputs.

Further information about the Burr distribution can be found at https://en.wikipedia.org/wiki/Burr_distribution

See also: burrcdf, burrpdf, burrrnd, burrfit, burrlike

Source Code: burrinv

Example: 1

 

 ## Plot various iCDFs from the Burr type XII distribution
 p = 0.001:0.001:0.999;
 x1 = burrinv (p, 1, 1, 1);
 x2 = burrinv (p, 1, 1, 2);
 x3 = burrinv (p, 1, 1, 3);
 x4 = burrinv (p, 1, 2, 1);
 x5 = burrinv (p, 1, 3, 1);
 x6 = burrinv (p, 1, 0.5, 2);
 plot (p, x1, "-b", p, x2, "-g", p, x3, "-r", ...
       p, x4, "-c", p, x5, "-m", p, x6, "-k")
 grid on
 ylim ([0, 5])
 legend ({"λ = 1, c = 1, k = 1", "λ = 1, c = 1, k = 2", ...
          "λ = 1, c = 1, k = 3", "λ = 1, c = 2, k = 1", ...
          "λ = 1, c = 3, k = 1", "λ = 1, c = 0.5, k = 2"}, ...
         "location", "northwest")
 title ("Burr type XII iCDF")
 xlabel ("probability")
 ylabel ("values in x")

                    
plotted figure

statistics-release-1.6.3/docs/burrlike.html000066400000000000000000000137411456127120000207720ustar00rootroot00000000000000 Statistics: burrlike

Function Reference: burrlike

statistics: nlogL = burrlike (params, x)
statistics: [nlogL, acov] = burrlike (params, x)
statistics: […] = burrlike (params, x, censor)
statistics: […] = burrlike (params, x, censor, freq)

Negative log-likelihood for the Burr type XII distribution.

nlogL = burrlike (params, x) returns the negative log likelihood of the data in x corresponding to the Burr type XII distribution with (1) scale parameter lambda, (2) first shape parameter c, and (3) second shape parameter k given in the three-element vector params.

[nlogL, acov] = burrlike (params, x) also returns the inverse of Fisher’s information matrix, acov. If the input parameter values in params are the maximum likelihood estimates, the diagonal elements of acov are their asymptotic variances.

[…] = burrlike (params, x, censor) accepts a boolean vector, censor, of the same size as x with 1s for observations that are right-censored and 0s for observations that are observed exactly. By default, or if left empty, censor = zeros (size (x)).

[…] = burrlike (params, x, censor, freq) accepts a frequency vector, freq, of the same size as x. freq typically contains integer frequencies for the corresponding elements in x, but it can contain any non-integer non-negative values. By default, or if left empty, freq = ones (size (x)).

Further information about the Burr type XII distribution can be found at https://en.wikipedia.org/wiki/Burr_distribution

See also: burrcdf, burrinv, burrpdf, burrrnd, burrfit, burrstat

Source Code: burrlike

statistics-release-1.6.3/docs/burrpdf.html000066400000000000000000000142221456127120000206120ustar00rootroot00000000000000 Statistics: burrpdf

Function Reference: burrpdf

statistics: y = burrpdf (x, lambda, c, k)

Burr type XII probability density function (PDF).

For each element of x, compute the probability density function (PDF) of the Burr type XII distribution with with scale parameter lambda, first shape parameter c, and second shape parameter k. The size of y is the common size of x, lambda, c, and k. A scalar input functions as a constant matrix of the same size as the other inputs.

Further information about the Burr distribution can be found at https://en.wikipedia.org/wiki/Burr_distribution

See also: burrcdf, burrinv, burrrnd, burrfit, burrlike

Source Code: burrpdf

Example: 1

 

 ## Plot various PDFs from the Burr type XII distribution
 x = 0.001:0.001:3;
 y1 = burrpdf (x, 1, 1, 1);
 y2 = burrpdf (x, 1, 1, 2);
 y3 = burrpdf (x, 1, 1, 3);
 y4 = burrpdf (x, 1, 2, 1);
 y5 = burrpdf (x, 1, 3, 1);
 y6 = burrpdf (x, 1, 0.5, 2);
 plot (x, y1, "-b", x, y2, "-g", x, y3, "-r", ...
       x, y4, "-c", x, y5, "-m", x, y6, "-k")
 grid on
 ylim ([0, 2])
 legend ({"λ = 1, c = 1, k = 1", "λ = 1, c = 1, k = 2", ...
          "λ = 1, c = 1, k = 3", "λ = 1, c = 2, k = 1", ...
          "λ = 1, c = 3, k = 1", "λ = 1, c = 0.5, k = 2"}, ...
         "location", "northeast")
 title ("Burr type XII PDF")
 xlabel ("values in x")
 ylabel ("density")

                    
plotted figure

statistics-release-1.6.3/docs/burrrnd.html000066400000000000000000000125161456127120000206300ustar00rootroot00000000000000 Statistics: burrrnd

Function Reference: burrrnd

statistics: r = burrrnd (lambda, c, k)
statistics: r = burrrnd (lambda, c, k, rows)
statistics: r = burrrnd (lambda, c, k, rows, cols, …)
statistics: r = burrrnd (lambda, c, k, [sz])

Random arrays from the Burr type XII distribution.

r = burrrnd (lambda, c, k) returns an array of random numbers chosen from the Burr type XII distribution with scale parameter lambda, first shape parameter c, and second shape parameterc, and k. The size of r is the common size of lambda, c, and k. LAMBDA scalar input functions as a constant matrix of the same size as the other inputs.

When called with a single size argument, burrrnd returns a square matrix with the dimension specified. When called with more than one scalar argument, the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions. The size may also be specified with a row vector of dimensions, sz.

Further information about the Burr distribution can be found at https://en.wikipedia.org/wiki/Burr_distribution

See also: burrcdf, burrinv, burrpdf, burrfit, burrlike

Source Code: burrrnd

statistics-release-1.6.3/docs/bvncdf.html000066400000000000000000000134251456127120000204140ustar00rootroot00000000000000 Statistics: bvncdf

Function Reference: bvncdf

statistics: p = bvncdf (x, mu, sigma)
statistics: p = bvncdf (x, [], sigma)

Bivariate normal cumulative distribution function (CDF).

p = bvncdf (x, mu, sigma) will compute the bivariate normal cumulative distribution function of x given a mean parameter mu and a scale parameter sigma.

  • x must be an N×2 matrix with each variable as a column vector.
  • mu can be either a scalar (common mean) or a two-element row vector (each element corresponds to a variable). If empty, a zero mean is assumed.
  • sigma can be a scalar (common variance) or a 2×2 covariance matrix, which must be positive definite.

See also: mvncdf

Source Code: bvncdf

Example: 1

 

 mu = [1, -1];
 sigma = [0.9, 0.4; 0.4, 0.3];
 [X1, X2] = meshgrid (linspace (-1, 3, 25)', linspace (-3, 1, 25)');
 x = [X1(:), X2(:)];
 p = bvncdf (x, mu, sigma);
 Z = reshape (p, 25, 25);
 surf (X1, X2, Z);
 title ("Bivariate Normal Distribution");
 ylabel "X1"
 xlabel "X2"

                    
plotted figure

statistics-release-1.6.3/docs/bvtcdf.html000066400000000000000000000106141456127120000204170ustar00rootroot00000000000000 Statistics: bvtcdf

Function Reference: bvtcdf

statistics: p = bvtcdf (x, rho, df)
statistics: p = bvtcdf (x, rho, df, Tol)

Bivariate Student’s t cumulative distribution function (CDF).

p = bvtcdf (x, rho, df) will compute the bivariate student’s t cumulative distribution function of x, which must be an N×2 matrix, given a correlation coefficient rho, which must be a scalar, and df degrees of freedom, which can be a scalar or a vector of positive numbers commensurate with x.

Tol is the tolerance for numerical integration and by default Tol = 1e-8.

See also: mvtcdf

Source Code: bvtcdf

statistics-release-1.6.3/docs/canoncorr.html000066400000000000000000000105741456127120000211400ustar00rootroot00000000000000 Statistics: canoncorr

Function Reference: canoncorr

statistics: [A, B, r, U, V] = canoncorr (X, Y)

Canonical correlation analysis.

Given X (size k*m) and Y (k*n), returns projection matrices of canonical coefficients A (size m*d, where d is the smallest of m, n, d) and B (size m*d); the canonical correlations r (1*d, arranged in decreasing order); the canonical variables U, V (both k*d, with orthonormal columns); and stats, a structure containing results from Bartlett’s chi-square and Rao’s F tests of significance.

See also: princomp

Source Code: canoncorr

statistics-release-1.6.3/docs/cauchycdf.html000066400000000000000000000143311456127120000211000ustar00rootroot00000000000000 Statistics: cauchycdf

Function Reference: cauchycdf

statistics: p = cauchycdf (x, x0, gamma)
statistics: p = cauchycdf (x, x0, gamma, "upper")

Cauchy cumulative distribution function (CDF).

For each element of x, compute the cumulative distribution function (CDF) of the Cauchy distribution with location parameter x0 and scale parameter gamma. The size of p is the common size of x, x0, and gamma. A scalar input functions as a constant matrix of the same size as the other inputs.

p = cauchycdf (x, x0, gamma, "upper") computes the upper tail probability of the Cauchy distribution with parameters x0 and gamma, at the values in x.

Further information about the Cauchy distribution can be found at https://en.wikipedia.org/wiki/Cauchy_distribution

See also: cauchyinv, cauchypdf, cauchyrnd

Source Code: cauchycdf

Example: 1

 

 ## Plot various CDFs from the Cauchy distribution
 x = -5:0.01:5;
 p1 = cauchycdf (x, 0, 0.5);
 p2 = cauchycdf (x, 0, 1);
 p3 = cauchycdf (x, 0, 2);
 p4 = cauchycdf (x, -2, 1);
 plot (x, p1, "-b", x, p2, "-g", x, p3, "-r", x, p4, "-c")
 grid on
 xlim ([-5, 5])
 legend ({"x0 = 0, γ = 0.5", "x0 = 0, γ = 1", ...
          "x0 = 0, γ = 2", "x0 = -2, γ = 1"}, "location", "southeast")
 title ("Cauchy CDF")
 xlabel ("values in x")
 ylabel ("probability")

                    
plotted figure

statistics-release-1.6.3/docs/cauchyinv.html000066400000000000000000000135251456127120000211440ustar00rootroot00000000000000 Statistics: cauchyinv

Function Reference: cauchyinv

statistics: x = cauchyinv (p, x0, gamma)

Inverse of the Cauchy cumulative distribution function (iCDF).

For each element of p, compute the quantile (the inverse of the CDF) of the Cauchy distribution with location parameter x0 and scale parameter gamma. The size of x is the common size of p, x0, and gamma. A scalar input functions as a constant matrix of the same size as the other inputs.

Further information about the Cauchy distribution can be found at https://en.wikipedia.org/wiki/Cauchy_distribution

See also: cauchycdf, cauchypdf, cauchyrnd

Source Code: cauchyinv

Example: 1

 

 ## Plot various iCDFs from the Cauchy distribution
 p = 0.001:0.001:0.999;
 x1 = cauchyinv (p, 0, 0.5);
 x2 = cauchyinv (p, 0, 1);
 x3 = cauchyinv (p, 0, 2);
 x4 = cauchyinv (p, -2, 1);
 plot (p, x1, "-b", p, x2, "-g", p, x3, "-r", p, x4, "-c")
 grid on
 ylim ([-5, 5])
 legend ({"x0 = 0, γ = 0.5", "x0 = 0, γ = 1", ...
          "x0 = 0, γ = 2", "x0 = -2, γ = 1"}, "location", "northwest")
 title ("Cauchy iCDF")
 xlabel ("probability")
 ylabel ("values in x")

                    
plotted figure

statistics-release-1.6.3/docs/cauchypdf.html000066400000000000000000000135051456127120000211170ustar00rootroot00000000000000 Statistics: cauchypdf

Function Reference: cauchypdf

statistics: y = cauchypdf (x, x0, gamma)

Cauchy probability density function (PDF).

For each element of x, compute the probability density function (PDF) of the Cauchy distribution with location parameter x0 and scale parameter gamma. The size of y is the common size of x, x0, and gamma. A scalar input functions as a constant matrix of the same size as the other inputs.

Further information about the Cauchy distribution can be found at https://en.wikipedia.org/wiki/Cauchy_distribution

See also: cauchycdf, cauchypdf, cauchyrnd

Source Code: cauchypdf

Example: 1

 

 ## Plot various PDFs from the Cauchy distribution
 x = -5:0.01:5;
 y1 = cauchypdf (x, 0, 0.5);
 y2 = cauchypdf (x, 0, 1);
 y3 = cauchypdf (x, 0, 2);
 y4 = cauchypdf (x, -2, 1);
 plot (x, y1, "-b", x, y2, "-g", x, y3, "-r", x, y4, "-c")
 grid on
 xlim ([-5, 5])
 ylim ([0, 0.7])
 legend ({"x0 = 0, γ = 0.5", "x0 = 0, γ = 1", ...
          "x0 = 0, γ = 2", "x0 = -2, γ = 1"}, "location", "northeast")
 title ("Cauchy PDF")
 xlabel ("values in x")
 ylabel ("density")

                    
plotted figure

statistics-release-1.6.3/docs/cauchyrnd.html000066400000000000000000000122011456127120000211210ustar00rootroot00000000000000 Statistics: cauchyrnd

Function Reference: cauchyrnd

statistics: r = cauchyrnd (x0, gamma)
statistics: r = cauchyrnd (x0, gamma, rows)
statistics: r = cauchyrnd (x0, gamma, rows, cols, …)
statistics: r = cauchyrnd (x0, gamma, [sz])

Random arrays from the Cauchy distribution.

r = cauchyrnd (x0, gamma) returns an array of random numbers chosen from the Cauchy distribution with location parameter x0 and scale parameter gamma. The size of r is the common size of x0 and gamma. A scalar input functions as a constant matrix of the same size as the other inputs.

When called with a single size argument, cauchyrnd returns a square matrix with the dimension specified. When called with more than one scalar argument, the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions. The size may also be specified with a row vector of dimensions, sz.

Further information about the Cauchy distribution can be found at https://en.wikipedia.org/wiki/Cauchy_distribution

See also: cauchycdf, cauchyinv, cauchypdf

Source Code: cauchyrnd

statistics-release-1.6.3/docs/cdf.html000066400000000000000000000335631456127120000177130ustar00rootroot00000000000000 Statistics: cdf

Function Reference: cdf

statistics: p = cdf (name, x, A)
statistics: p = cdf (name, x, A, B)
statistics: p = cdf (name, x, A, B, C)
statistics: p = cdf (…, "upper")

Return the CDF of a univariate distribution evaluated at x.

cdf is a wrapper for the univariate cumulative distribution functions available in the statistics package. See the corresponding functions’ help to learn the signification of the parameters after x.

p = cdf (name, x, A) returns the CDF for the one-parameter distribution family specified by name and the distribution parameter A, evaluated at the values in x.

p = cdf (name, x, A, B) returns the CDF for the two-parameter distribution family specified by name and the distribution parameters A and B, evaluated at the values in x.

p = cdf (name, x, A, B, C) returns the CDF for the three-parameter distribution family specified by name and the distribution parameters A, B, and C, evaluated at the values in x.

p = cdf (…, "upper") returns the complement of the CDF using an algorithm that more accurately computes the extreme upper-tail probabilities. "upper" can follow any of the input arguments in the previous syntaxes.

name must be a char string of the name or the abbreviation of the desired cumulative distribution function as listed in the followng table. The last column shows the number of required parameters that should be parsed after x to the desired CDF. The optional input argument "upper" does not count in the required number of parameters.

Distribution NameAbbreviationInput Parameters
"Beta""beta"2
"Binomial""bino"2
"Birnbaum-Saunders""bisa"2
"Burr""burr"3
"Cauchy""cauchy"2
"Chi-squared""chi2"1
"Extreme Value""ev"2
"Exponential""exp"1
"F-Distribution""f"2
"Gamma""gam"2
"Geometric""geo"1
"Generalized Extreme Value""gev"3
"Generalized Pareto""gp"3
"Gumbel""gumbel"2
"Half-normal""hn"2
"Hypergeometric""hyge"3
"Inverse Gaussian""invg"2
"Laplace""laplace"2
"Logistic""logi"2
"Log-Logistic""logl"2
"Lognormal""logn"2
"Nakagami""naka"2
"Negative Binomial""nbin"2
"Noncentral F-Distribution""ncf"3
"Noncentral Student T""nct"2
"Noncentral Chi-Squared""ncx2"2
"Normal""norm"2
"Poisson""poiss"1
"Rayleigh""rayl"1
"Rician""rice"2
"Student T""t"1
"location-scale T""tls"3
"Triangular""tri"3
"Discrete Uniform""unid"1
"Uniform""unif"2
"Von Mises""vm"2
"Weibull""wbl"2

See also: icdf, pdf, cdf, betacdf, binocdf, bisacdf, burrcdf, cauchycdf, chi2cdf, evcdf, expcdf, fcdf, gamcdf, geocdf, gevcdf, gpcdf, gumbelcdf, hncdf, hygecdf, invgcdf, laplacecdf, logicdf, loglcdf, logncdf, nakacdf, nbincdf, ncfcdf, nctcdf, ncx2cdf, normcdf, poisscdf, raylcdf, ricecdf, tcdf, tricdf, unidcdf, unifcdf, vmcdf, wblcdf

Source Code: cdf

statistics-release-1.6.3/docs/cdfcalc.html000066400000000000000000000111561456127120000205300ustar00rootroot00000000000000 Statistics: cdfcalc

Function Reference: cdfcalc

statistics: [yCDF, xCDF, n, emsg, eid] = cdfcalc (x)

Calculate an empirical cumulative distribution function.

[yCDF, xCDF] = cdfcalc (x) calculates an empirical cumulative distribution function (CDF) of the observations in the data sample vector x. x may be a row or column vector, and represents a random sample of observations from some underlying distribution. On return xCDF is the set of x values at which the CDF increases. At XCDF(i), the function increases from YCDF(i) to YCDF(i+1).

[yCDF, xCDF, n] = cdfcalc (x) also returns n, the sample size.

[yCDF, xCDF, n, emsg, eid] = cdfcalc (x) also returns an error message and error id if x is not a vector or if it contains no values other than NaN.

See also: cdfplot

Source Code: cdfcalc

statistics-release-1.6.3/docs/cdfplot.html000066400000000000000000000144411456127120000206040ustar00rootroot00000000000000 Statistics: cdfplot

Function Reference: cdfplot

statistics: hCDF = cdfplot (x)
statistics: [hCDF, stats] = cdfplot (x)

Display an empirical cumulative distribution function.

hCDF = cdfplot (x) plots an empirical cumulative distribution function (CDF) of the observations in the data sample vector x. x may be a row or column vector, and represents a random sample of observations from some underlying distribution.

cdfplot plots F(x), the empirical (or sample) CDF versus the observations in x. The empirical CDF, F(x), is defined as follows:

F(x) = (Number of observations <= x) / (Total number of observations)

for all values in the sample vector x. NaNs are ignored. hCDF is the handle of the empirical CDF curve (a handle hraphics ’line’ object).

[hCDF, stats] = cdfplot (x) also returns a structure with the following fields as a statistical summary.

STATS.minminimum value of x
STATS.maxmaximum value of x
STATS.meansample mean of x
STATS.mediansample median (50th percentile) of x
STATS.stdsample standard deviation of x

See also: qqplot, cdfcalc

Source Code: cdfplot

Example: 1

 

 x = randn(100,1);
 cdfplot (x);

                    
plotted figure

statistics-release-1.6.3/docs/chi2cdf.html000066400000000000000000000145631456127120000204600ustar00rootroot00000000000000 Statistics: chi2cdf

Function Reference: chi2cdf

statistics: p = chi2cdf (x, df)
statistics: p = chi2cdf (x, df, "upper")

Chi-squared cumulative distribution function (CDF).

For each element of x, compute the cumulative distribution function (CDF) of the chi-squared distribution with df degrees of freedom. The chi-squared density function with df degrees of freedom is the same as a gamma density function with parameters df/2 and 2.

The size of p is the common size of x and df. A scalar input functions as a constant matrix of the same size as the other input.

p = chi2cdf (x, df, "upper") computes the upper tail probability of the chi-squared distribution with df degrees of freedom, at the values in x.

Further information about the chi-squared distribution can be found at https://en.wikipedia.org/wiki/Chi-squared_distribution

See also: chi2inv, chi2pdf, chi2rnd, chi2stat

Source Code: chi2cdf

Example: 1

 

 ## Plot various CDFs from the chi-squared distribution
 x = 0:0.01:8;
 p1 = chi2cdf (x, 1);
 p2 = chi2cdf (x, 2);
 p3 = chi2cdf (x, 3);
 p4 = chi2cdf (x, 4);
 p5 = chi2cdf (x, 6);
 p6 = chi2cdf (x, 9);
 plot (x, p1, "-b", x, p2, "-g", x, p3, "-r", ...
       x, p4, "-c", x, p5, "-m", x, p6, "-y")
 grid on
 xlim ([0, 8])
 legend ({"df = 1", "df = 2", "df = 3", ...
          "df = 4", "df = 6", "df = 9"}, "location", "southeast")
 title ("Chi-squared CDF")
 xlabel ("values in x")
 ylabel ("probability")

                    
plotted figure

statistics-release-1.6.3/docs/chi2gof.html000066400000000000000000000343501456127120000204730ustar00rootroot00000000000000 Statistics: chi2gof

Function Reference: chi2gof

statistics: h = chi2gof (x)
statistics: [h, p] = chi2gof (x)
statistics: [p, h, stats] = chi2gof (x)
statistics: […] = chi2gof (x, Name, Value, …)

Chi-square goodness-of-fit test.

chi2gof performs a chi-square goodness-of-fit test for discrete or continuous distributions. The test is performed by grouping the data into bins, calculating the observed and expected counts for those bins, and computing the chi-square test statistic $$ \chi ^ 2 = \sum_{i=1}^N \left (O_i - E_i \right) ^ 2 / E_i $$ where O is the observed counts and E is the expected counts. This test statistic has an approximate chi-square distribution when the counts are sufficiently large.

Bins in either tail with an expected count less than 5 are pooled with neighboring bins until the count in each extreme bin is at least 5. If bins remain in the interior with counts less than 5, chi2gof displays a warning. In that case, you should use fewer bins, or provide bin centers or binedges, to increase the expected counts in all bins.

h = chi2gof (x) performs a chi-square goodness-of-fit test that the data in the vector X are a random sample from a normal distribution with mean and variance estimated from x. The result is h = 0 if the null hypothesis (that x is a random sample from a normal distribution) cannot be rejected at the 5% significance level, or h = 1 if the nullhypothesis can be rejected at the 5% level. chi2gof uses by default 10 bins ("nbins"), and compares the test statistic to a chi-square distribution with nbins - 3 degrees of freedom, to take into account that two parameters were estimated.

[h, p] = chi2gof (x) also returns the p-value p, which is the probability of observing the given result, or one more extreme, by chance if the null hypothesis is true. If there are not enough degrees of freedom to carry out the test, p is NaN.

[h, p, stats] = chi2gof (x) also returns a stats structure with the following fields:

"chi2stat"Chi-square statistic
"df"Degrees of freedom
"binedges"Vector of bin binedges after pooling
"O"Observed count in each bin
"E"Expected count in each bin

[…] = chi2gof (x, Name, Value, …) specifies optional Name/Value pair arguments chosen from the following list.

NameValue
"nbins"The number of bins to use. Default is 10.
"binctrs"A vector of bin centers.
"binedges"A vector of bin binedges.
"cdf"A fully specified cumulative distribution function or a function handle provided in a cell array whose first element is a function handle, and all later elements are its parameter values. The function must take x values as its first argument, and other parameters as later arguments.
"expected"A vector with one element per bin specifying the expected counts for each bin.
"nparams"The number of estimated parameters; used to adjust the degrees of freedom to be nbins - 1 - nparams, where nbins is the number of bins.
"emin"The minimum allowed expected value for a bin; any bin in either tail having an expected value less than this amount is pooled with a neighboring bin. Use the value 0 to prevent pooling. Default is 5.
"frequency"A vector of the same length as x containing the frequency of the corresponding x values.
"alpha"An alpha value such that the hypothesis is rejected if p < alpha. Default is alpha = 0.05.

You should specify either "cdf" or "expected" parameters, but not both. If your "cdf" input contains extra parameters, these are accounted for automatically and there is no need to specify "nparams". If your "expected" input depends on estimated parameters, you should use the "nparams" parameter to ensure that the degrees of freedom for the test is correct.

Source Code: chi2gof

Example: 1

 

 x = normrnd (50, 5, 100, 1);
 [h, p, stats] = chi2gof (x)
 [h, p, stats] = chi2gof (x, "cdf", @(x)normcdf (x, mean(x), std(x)))
 [h, p, stats] = chi2gof (x, "cdf", {@normcdf, mean(x), std(x)})

h = 0
p = 0.5464
stats =

  scalar structure containing the fields:

    chi2stat = 4.0212
    df = 5
    edges =

       38.399   42.726   44.890   47.053   49.217   51.380   53.544   55.708   60.035

    O =

        9    7    9   22   17   14   10   12

    E =

        6.8588    8.2228   13.0313   16.8721   17.8471   15.4236   10.8899   10.8544


h = 0
p = 0.5464
stats =

  scalar structure containing the fields:

    chi2stat = 4.0212
    df = 5
    edges =

       38.399   42.726   44.890   47.053   49.217   51.380   53.544   55.708   60.035

    O =

        9    7    9   22   17   14   10   12

    E =

        6.8588    8.2228   13.0313   16.8721   17.8471   15.4236   10.8899   10.8544


h = 0
p = 0.5464
stats =

  scalar structure containing the fields:

    chi2stat = 4.0212
    df = 5
    edges =

       38.399   42.726   44.890   47.053   49.217   51.380   53.544   55.708   60.035

    O =

        9    7    9   22   17   14   10   12

    E =

        6.8588    8.2228   13.0313   16.8721   17.8471   15.4236   10.8899   10.8544


                    

Example: 2

 

 x = rand (100,1 );
 n = length (x);
 binedges = linspace (0, 1, 11);
 expectedCounts = n * diff (binedges);
 [h, p, stats] = chi2gof (x, "binedges", binedges, "expected", expectedCounts)

h = 0
p = 0.9835
stats =

  scalar structure containing the fields:

    chi2stat = 2.4000
    df = 9
    edges =

     Columns 1 through 8:

       4.2756e-03   1.0230e-01   2.0032e-01   2.9835e-01   3.9637e-01   4.9439e-01   5.9242e-01   6.9044e-01

     Columns 9 through 11:

       7.8847e-01   8.8649e-01   9.8451e-01

    O =

       10    9   12    9    8   10   11    8   10   13

    E =

       10   10   10   10   10   10   10   10   10   10


                    

Example: 3

 

 bins = 0:5;
 obsCounts = [6 16 10 12 4 2];
 n = sum(obsCounts);
 lambdaHat = sum(bins.*obsCounts) / n;
 expCounts = n * poisspdf(bins,lambdaHat);
 [h, p, stats] = chi2gof (bins, "binctrs", bins, "frequency", obsCounts, ...
                          "expected", expCounts, "nparams",1)

h = 0
p = 0.4654
stats =

  scalar structure containing the fields:

    chi2stat = 2.5550
    df = 3
    edges =

       4.9407e-324    8.3333e-01    1.6667e+00    2.5000e+00    3.3333e+00    5.0000e+00

    O =

        6   16   10   12    6

    E =

        7.0429   13.8041   13.5280    8.8383    6.0284


                    
statistics-release-1.6.3/docs/chi2inv.html000066400000000000000000000135501456127120000205130ustar00rootroot00000000000000 Statistics: chi2inv

Function Reference: chi2inv

statistics: x = chi2inv (p, df)

Inverse of the chi-squared cumulative distribution function (iCDF).

For each element of p, compute the quantile (the inverse of the CDF) of the chi-squared distribution with df degrees of freedom. The size of x is the common size of p and df. A scalar input functions as a constant matrix of the same size as the other inputs.

Further information about the chi-squared distribution can be found at https://en.wikipedia.org/wiki/Chi-squared_distribution

See also: chi2cdf, chi2pdf, chi2rnd, chi2stat

Source Code: chi2inv

Example: 1

 

 ## Plot various iCDFs from the chi-squared distribution
 p = 0.001:0.001:0.999;
 x1 = chi2inv (p, 1);
 x2 = chi2inv (p, 2);
 x3 = chi2inv (p, 3);
 x4 = chi2inv (p, 4);
 x5 = chi2inv (p, 6);
 x6 = chi2inv (p, 9);
 plot (p, x1, "-b", p, x2, "-g", p, x3, "-r", ...
       p, x4, "-c", p, x5, "-m", p, x6, "-y")
 grid on
 ylim ([0, 8])
 legend ({"df = 1", "df = 2", "df = 3", ...
          "df = 4", "df = 6", "df = 9"}, "location", "northwest")
 title ("Chi-squared iCDF")
 xlabel ("probability")
 ylabel ("values in x")

                    
plotted figure

statistics-release-1.6.3/docs/chi2pdf.html000066400000000000000000000135271456127120000204740ustar00rootroot00000000000000 Statistics: chi2pdf

Function Reference: chi2pdf

statistics: y = chi2pdf (x, df)

Chi-squared probability density function (PDF).

For each element of x, compute the probability density function (PDF) of the chi-squared distribution with df degrees of freedom. The size of y is the common size of x and df. A scalar input functions as a constant matrix of the same size as the other inputs.

Further information about the chi-squared distribution can be found at https://en.wikipedia.org/wiki/Chi-squared_distribution

See also: chi2cdf, chi2pdf, chi2rnd, chi2stat

Source Code: chi2pdf

Example: 1

 

 ## Plot various PDFs from the chi-squared distribution
 x = 0:0.01:8;
 y1 = chi2pdf (x, 1);
 y2 = chi2pdf (x, 2);
 y3 = chi2pdf (x, 3);
 y4 = chi2pdf (x, 4);
 y5 = chi2pdf (x, 6);
 y6 = chi2pdf (x, 9);
 plot (x, y1, "-b", x, y2, "-g", x, y3, "-r", ...
       x, y4, "-c", x, y5, "-m", x, y6, "-y")
 grid on
 xlim ([0, 8])
 ylim ([0, 0.5])
 legend ({"df = 1", "df = 2", "df = 3", ...
          "df = 4", "df = 6", "df = 9"}, "location", "northeast")
 title ("Chi-squared PDF")
 xlabel ("values in x")
 ylabel ("density")

                    
plotted figure

statistics-release-1.6.3/docs/chi2rnd.html000066400000000000000000000116611456127120000205030ustar00rootroot00000000000000 Statistics: chi2rnd

Function Reference: chi2rnd

statistics: r = chi2rnd (df)
statistics: r = chi2rnd (df, rows)
statistics: r = chi2rnd (df, rows, cols, …)
statistics: r = chi2rnd (df, [sz])

Random arrays from the chi-squared distribution.

r = chi2rnd (df) returns an array of random numbers chosen from the chi-squared distribution with df degrees of freedom. The size of r is the size of df.

When called with a single size argument, chi2rnd returns a square matrix with the dimension specified. When called with more than one scalar argument, the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions. The size may also be specified with a row vector of dimensions, sz.

Further information about the chi-squared distribution can be found at https://en.wikipedia.org/wiki/Chi-squared_distribution

See also: chi2cdf, chi2inv, chi2pdf, chi2stat

Source Code: chi2rnd

statistics-release-1.6.3/docs/chi2stat.html000066400000000000000000000104731456127120000206730ustar00rootroot00000000000000 Statistics: chi2stat

Function Reference: chi2stat

statistics: [m, v] = chi2stat (df)

Compute statistics of the chi-squared distribution.

[m, v] = chi2stat (df) returns the mean and variance of the chi-squared distribution with df degrees of freedom.

The size of m (mean) and v (variance) is the same size of the input argument.

Further information about the chi-squared distribution can be found at https://en.wikipedia.org/wiki/Chi-squared_distribution

See also: chi2cdf, chi2inv, chi2pdf, chi2rnd

Source Code: chi2stat

statistics-release-1.6.3/docs/chi2test.html000066400000000000000000000210171456127120000206730ustar00rootroot00000000000000 Statistics: chi2test

Function Reference: chi2test

statistics: pval = chi2test (x)
statistics: [pval, chisq] = chi2test (x)
statistics: [pval, chisq, dF] = chi2test (x)
statistics: [pval, chisq, dF, E] = chi2test (x)
statistics: […] = chi2test (x, name, value)

Perform a chi-squared test (for independence or homogeneity).

For 2-way contingency tables, chi2test performs and a chi-squared test for independence or homogeneity, according to the sampling scheme and related question. Independence means that the the two variables forming the 2-way table are not associated, hence you cannot predict from one another. Homogeneity refers to the concept of similarity, hence they all come from the same distribution.

Both tests are computationally identical and will produce the same result. Nevertheless, they anwser to different questions. Consider two variables, one for gender and another for smoking. To test independence (whether gender and smoking is associated), we would randomly sample from the general population and break them down into categories in the table. To test homogeneity (whether men and women share the same smoking habits), we would sample individuals from within each gender, and then measure their smoking habits (e.g. smokers vs non-smokers).

When chi2test is called without any output arguments, it will print the result in the terminal including p-value, chi^2 statistic, and degrees of freedom. Otherwise it can return the following output arguments:

pvalthe p-value of the relevant test.
chisqthe chi^2 statistic of the relevant test.
dFthe degrees of freedom of the relevant test.
Ethe EXPECTED values of the original contigency table.

Unlike MATLAB, in GNU Octave chi2test also supports 3-way tables, which involve three categorical variables (each in a different dimension of x. In its simplest form, […] = chi2test (x) will will test for mutual independence among the three variables. Alternatively, when called in the form […] = chi2test (x, name, value), it can perform the following tests:

namevalueDescription
"mutual"[]Mutual independence. All variables are independent from each other, (A, B, C). Value must be an empty matrix.
"joint"scalarJoint independence. Two variables are jointly independent of the third, (AB, C). The scalar value corresponds to the dimension of the independent variable (i.e. 3 for C).
"marginal"scalarMarginal independence. Two variables are independent if you ignore the third, (A, C). The scalar value corresponds to the dimension of the variable to be ignored (i.e. 2 for B).
"conditional"scalarConditional independence. Two variables are independent given the third, (AC, BC). The scalar value corresponds to the dimension of the variable that forms the conditional dependence (i.e. 3 for C).
"homogeneous"[]Homogeneous associations. Conditional (partial) odds-ratios are not related on the value of the third, (AB, AC, BC). Value must be an empty matrix.

When testing for homogeneous associations in 3-way tables, the iterative proportional fitting procedure is used. For small samples it is better to use the Cochran-Mantel-Haenszel Test. K-way tables for k > 3 are supported only for testing mutual independence. Similar to 2-way tables, no optional parameters are required for k > 3 multi-way tables.

chi2test produces a warning if any cell of a 2x2 table has an expected frequency less than 5 or if more than 20% of the cells in larger 2-way tables have expected frequencies less than 5 or any cell with expected frequency less than 1. In such cases, use fishertest.

See also: crosstab, fishertest, mcnemar_test

Source Code: chi2test

statistics-release-1.6.3/docs/cholcov.html000066400000000000000000000151041456127120000206030ustar00rootroot00000000000000 Statistics: cholcov

Function Reference: cholcov

statistics: T = cholcov (sigma)
statistics: [T, p = cholcov (sigma)
statistics: […] = cholcov (sigma, flag)

Cholesky-like decomposition for covariance matrix.

T = cholcov (sigma) computes matrix T such that sigma = TT. sigma must be square, symmetric, and positive semi-definite.

If sigma is positive definite, then T is the square, upper triangular Cholesky factor. If sigma is not positive definite, T is computed with an eigenvalue decomposition of sigma, but in this case T is not necessarily triangular or square. Any eigenvectors whose corresponding eigenvalue is close to zero (within a tolerance) are omitted. If any remaining eigenvalues are negative, T is empty.

The tolerance is calculated as 10 * eps (max (abs (diag (sigma)))).

[T, p = cholcov (sigma) returns in p the number of negative eigenvalues of sigma. If p > 0, then T is empty, whereas if p = 0, sigma) is positive semi-definite.

If sigma is not square and symmetric, P is NaN and T is empty.

[T, p = cholcov (sigma, 0) returns p = 0 if sigma is positive definite, in which case T is the Cholesky factor. If sigma is not positive definite, p is a positive integer and T is empty.

[…] = cholcov (sigma, 1) is equivalent to […] = cholcov (sigma).

See also: chov

Source Code: cholcov

Example: 1

 

 C1 = [2, 1, 1, 2; 1, 2, 1, 2; 1, 1, 2, 2; 2, 2, 2, 3]
 T = cholcov (C1)
 C2 = T'*T

C1 =

   2   1   1   2
   1   2   1   2
   1   1   2   2
   2   2   2   3

T =

  -0.1247  -0.6365   0.7612        0
   0.8069  -0.5114  -0.2955        0
   1.1547   1.1547   1.1547   1.7321

C2 =

   2   1   1   2
   1   2   1   2
   1   1   2   2
   2   2   2   3

                    
statistics-release-1.6.3/docs/cl_multinom.html000066400000000000000000000204101456127120000214640ustar00rootroot00000000000000 Statistics: cl_multinom

Function Reference: cl_multinom

statistics: CL = cl_multinom (X, N, b)
statistics: CL = cl_multinom (X, N, b, method)

Confidence level of multinomial portions.

cl_multinom returns confidence level of multinomial parameters estimated as p = X / sum(X) with predefined confidence interval b. Finite population is also considered.

This function calculates the level of confidence at which the samples represent the true distribution given that there is a predefined tolerance (confidence interval). This is the upside down case of the typical excercises at which we want to get the confidence interval given the confidence level (and the estimated parameters of the underlying distribution). But once we accept (lets say at elections) that we have a standard predefined maximal acceptable error rate (e.g. b=0.02 ) in the estimation and we just want to know that how sure we can be that the measured proportions are the same as in the entire population (ie. the expected value and mean of the samples are roughly the same) we need to use this function.

Arguments

VariableTypeDescription
Xint vectorsample frequencies bins.
Nint scalarPopulation size that was sampled by X. If N < sum (X), infinite number assumed.
breal vectorconfidence interval. If vector, it should be the size of X containing confence interval for each cells. If scalar, each cell will have the same value of b unless it is zero or -1. If value is 0, b = 0.02 is assumed which is standard choice at elections otherwise it is calculated in a way that one sample in a cell alteration defines the confidence interval.
methodstringAn optional argument for defining the calculation method. Available choices are "bromaghin" (default), "cochran", and agresti_cull.

Note! The agresti_cull method is not exactly the solution at reference given below but an adjustment of the solutions above.

Returns

Confidence level.

Example

CL = cl_multinom ([27; 43; 19; 11], 10000, 0.05) returns 0.69 confidence level.

References

  1. "bromaghin" calculation type (default) is based on the article:

    Jeffrey F. Bromaghin, "Sample Size Determination for Interval Estimation of Multinomial Probabilities", The American Statistician vol 47, 1993, pp 203-206.

  2. "cochran" calculation type is based on article:

    Robert T. Tortora, "A Note on Sample Size Estimation for Multinomial Populations", The American Statistician, , Vol 32. 1978, pp 100-102.

  3. "agresti_cull" calculation type is based on article:

    A. Agresti and B.A. Coull, "Approximate is better than ’exact’ for interval estimation of binomial portions", The American Statistician, Vol. 52, 1998, pp 119-126

Source Code: cl_multinom

Example: 1

 

 CL = cl_multinom ([27; 43; 19; 11], 10000, 0.05)

CL = 0.6923
                    
statistics-release-1.6.3/docs/cluster.html000066400000000000000000000124731456127120000206350ustar00rootroot00000000000000 Statistics: cluster

Function Reference: cluster

statistics: T = cluster (Z, "Cutoff", C)
statistics: T = cluster (Z, "Cutoff", C, "Depth", D)
statistics: T = cluster (Z, "Cutoff", C, "Criterion", criterion)
statistics: T = cluster (Z, "MaxClust", N)

Define clusters from an agglomerative hierarchical cluster tree.

Given a hierarchical cluster tree Z generated by the linkage function, cluster defines clusters, using a threshold value C to identify new clusters (’Cutoff’) or according to a maximum number of desired clusters N (’MaxClust’).

criterion is used to choose the criterion for defining clusters, which can be either "inconsistent" (default) or "distance". When using "inconsistent", cluster compares the threshold value C to the inconsistency coefficient of each link; when using "distance", cluster compares the threshold value C to the height of each link. D is the depth used to evaluate the inconsistency coefficient, its default value is 2.

cluster uses "distance" as a criterion for defining new clusters when it is used the ’MaxClust’ method.

See also: clusterdata, dendrogram, inconsistent, kmeans, linkage, pdist

Source Code: cluster

statistics-release-1.6.3/docs/clusterdata.html000066400000000000000000000141401456127120000214600ustar00rootroot00000000000000 Statistics: clusterdata

Function Reference: clusterdata

statistics: T = clusterdata (X, cutoff)
statistics: T = clusterdata (X, Name, Value)

Wrapper function for linkage and cluster.

If cutoff is used, then clusterdata calls linkage and cluster with default value, using cutoff as a threshold value for cluster. If cutoff is an integer and greater or equal to 2, then cutoff is interpreted as the maximum number of cluster desired and the "MaxClust" option is used for cluster.

If cutoff is not used, then clusterdata expects a list of pair arguments. Then you must specify either the "Cutoff" or "MaxClust" option for cluster. The method and metric used by linkage, are defined through the "linkage" and "distance" arguments.

See also: cluster, dendrogram, inconsistent, kmeans, linkage, pdist

Source Code: clusterdata

Example: 1

 

 randn ("seed", 1)  # for reproducibility
 r1 = randn (10, 2) * 0.25 + 1;
 randn ("seed", 5)  # for reproducibility
 r2 = randn (20, 2) * 0.5 - 1;
 X = [r1; r2];

 wnl = warning ("off", "Octave:linkage_savemem", "local");
 T = clusterdata (X, "linkage", "ward", "MaxClust", 2);
 scatter (X(:,1), X(:,2), 36, T, "filled");

                    
plotted figure

statistics-release-1.6.3/docs/cmdscale.html000066400000000000000000000155511456127120000207270ustar00rootroot00000000000000 Statistics: cmdscale

Function Reference: cmdscale

statistics: Y = cmdscale (D)
statistics: [Y, e] = cmdscale (D)

Classical multidimensional scaling of a matrix.

Takes an n by n distance (or difference, similarity, or dissimilarity) matrix D. Returns Y, a matrix of n points with coordinates in p dimensional space which approximate those distances (or differences, similarities, or dissimilarities). Also returns the eigenvalues e of B = -1/2 * J * (D.^2) * J, where J = eye(n) - ones(n,n)/n. p, the number of columns of Y, is equal to the number of positive real eigenvalues of B.

D can be a full or sparse matrix or a vector of length n*(n-1)/2 containing the upper triangular elements (like the output of the pdist function). It must be symmetric with non-negative entries whose values are further restricted by the type of matrix being represented:

* If D is either a distance, dissimilarity, or difference matrix, then it must have zero entries along the main diagonal. In this case the points Y equal or approximate the distances given by D.

* If D is a similarity matrix, the elements must all be less than or equal to one, with ones along the the main diagonal. In this case the points Y equal or approximate the distances given by D = sqrt(ones(n,n)-D).

D is a Euclidean matrix if and only if B is positive semi-definite. When this is the case, then Y is an exact representation of the distances given in D. If D is non-Euclidean, Y only approximates the distance given in D. The approximation used by cmdscale minimizes the statistical loss function known as strain.

The returned Y is an n by p matrix showing possible coordinates of the points in p dimensional space (p < n). The columns are correspond to the positive eigenvalues of B in descending order. A translation, rotation, or reflection of the coordinates given by Y will satisfy the same distance matrix up to the limits of machine precision.

For any k <= p, if the largest k positive eigenvalues of B are significantly greater in absolute magnitude than its other eigenvalues, the first k columns of Y provide a k-dimensional reduction of Y which approximates the distances given by D. The optional return e can be used to consider various values of k, or to evaluate the accuracy of specific dimension reductions (e.g., k = 2).

Reference: Ingwer Borg and Patrick J.F. Groenen (2005), Modern Multidimensional Scaling, Second Edition, Springer, ISBN: 978-0-387-25150-9 (Print) 978-0-387-28981-6 (Online)

See also: pdist

Source Code: cmdscale

statistics-release-1.6.3/docs/combnk.html000066400000000000000000000112261456127120000204200ustar00rootroot00000000000000 Statistics: combnk

Function Reference: combnk

statistics: c = combnk (data, k)

Return all combinations of k elements in data.

Source Code: combnk

Example: 1

 

 c = combnk (1:5, 2);
 disp ("All pairs of integers between 1 and 5:");
 disp (c);

All pairs of integers between 1 and 5:
   1   2
   1   3
   1   4
   1   5
   2   3
   2   4
   2   5
   3   4
   3   5
   4   5
                    
statistics-release-1.6.3/docs/confusionchart.html000066400000000000000000000270211456127120000221740ustar00rootroot00000000000000 Statistics: confusionchart

Function Reference: confusionchart

statistics: confusionchart (trueLabels, predictedLabels)
statistics: confusionchart (m)
statistics: confusionchart (m, classLabels)
statistics: confusionchart (parent, …)
statistics: confusionchart (…, prop, val, …)
statistics: cm = confusionchart (…)

Display a chart of a confusion matrix.

The two vectors of values trueLabels and predictedLabels, which are used to compute the confusion matrix, must be defined with the same format as the inputs of confusionmat. Otherwise a confusion matrix m as computed by confusionmat can be given.

classLabels is an array of labels, i.e. the list of the class names.

If the first argument is a handle to a figure or to a uipanel, then the confusion matrix chart is displayed inside that object.

Optional property/value pairs are passed directly to the underlying objects, e.g. "xlabel", "ylabel", "title", "fontname", "fontsize" etc.

The optional return value cm is a ConfusionMatrixChart object. Specific properties of a ConfusionMatrixChart object are:

  • "DiagonalColor" The color of the patches on the diagonal, default is [0.0, 0.4471, 0.7412].
  • "OffDiagonalColor" The color of the patches off the diagonal, default is [0.851, 0.3255, 0.098].
  • "GridVisible" Available values: on (default), off.
  • "Normalization" Available values: absolute (default), column-normalized, row-normalized, total-normalized.
  • "ColumnSummary" Available values: off (default), absolute, column-normalized,total-normalized.
  • "RowSummary" Available values: off (default), absolute, row-normalized, total-normalized.

Run demo confusionchart to see some examples.

See also: confusionmat, sortClasses

Source Code: confusionchart

Example: 1

 

 ## Setting the chart properties
 Yt = [8 5 6 8 5 3 1 6 4 2 5 3 1 4]';
 Yp = [8 5 6 8 5 2 3 4 4 5 5 7 2 6]';
 confusionchart (Yt, Yp, "Title", ...
   "Demonstration with summaries","Normalization",...
   "absolute","ColumnSummary", "column-normalized","RowSummary",...
   "row-normalized")

ans =

ConfusionMatrixChart with properties:

	NormalizedValues: [ 8x8 double ]
	ClassLabels: { 8x1 cell }


                    
plotted figure

Example: 2

 

 ## Cellstr as inputs
 Yt = {"Positive", "Positive", "Positive", "Negative", "Negative"};
 Yp = {"Positive", "Positive", "Negative", "Negative", "Negative"};
 m = confusionmat (Yt, Yp);
 confusionchart (m, {"Positive", "Negative"});

                    
plotted figure

Example: 3

 

 ## Editing the object properties
 Yt = {"Positive", "Positive", "Positive", "Negative", "Negative"};
 Yp = {"Positive", "Positive", "Negative", "Negative", "Negative"};
 cm = confusionchart (Yt, Yp);
 cm.Title = "This is an example with a green diagonal";
 cm.DiagonalColor = [0.4660, 0.6740, 0.1880];

                    
plotted figure

Example: 5

 

 ## Sorting classes
 Yt = [8 5 6 8 5 3 1 6 4 2 5 3 1 4]';
 Yp = [8 5 6 8 5 2 3 4 4 5 5 7 2 6]';
 cm = confusionchart (Yt, Yp, "Title", ...
   "Classes are sorted in ascending order");
 cm = confusionchart (Yt, Yp, "Title", ...
   "Classes are sorted according to clusters");
 sortClasses (cm, "cluster");

                    
plotted figure

plotted figure

statistics-release-1.6.3/docs/confusionmat.html000066400000000000000000000123001456127120000216460ustar00rootroot00000000000000 Statistics: confusionmat

Function Reference: confusionmat

statistics: C = confusionmat (group, grouphat)
statistics: C = confusionmat (group, grouphat, "Order", grouporder)
statistics: [C, order] = confusionmat (group, grouphat)

Compute a confusion matrix for classification problems

confusionmat returns the confusion matrix C for the group of actual values group and the group of predicted values grouphat. The row indices of the confusion matrix represent actual values, while the column indices represent predicted values. The indices are the same for both actual and predicted values, so the confusion matrix is a square matrix. Each element of the matrix represents the number of matches between a given actual value (row index) and a given predicted value (column index), hence correct matches lie on the main diagonal of the matrix. The order of the rows and columns is returned in order.

group and grouphat must have the same number of observations and the same data type. Valid data types are numeric vectors, logical vectors, character arrays, string arrays (not implemented yet), cell arrays of strings.

The order of the rows and columns can be specified by setting the grouporder variable. The data type of grouporder must be the same of group and grouphat.

MATLAB compatibility: Octave misses string arrays and categorical vectors.

See also: crosstab

Source Code: confusionmat

statistics-release-1.6.3/docs/cophenet.html000066400000000000000000000137131456127120000207570ustar00rootroot00000000000000 Statistics: cophenet

Function Reference: cophenet

statistics: [c, d] = cophenet (Z, y)

Compute the cophenetic correlation coefficient.

The cophenetic correlation coefficient C of a hierarchical cluster tree Z is the linear correlation coefficient between the cophenetic distances d and the euclidean distances y. $$ c = \frac {\sum_{i < j}(Y_{ij}-{\bar {y}})(Z_{ij}-{\bar{z}})} {\sqrt{\sum_{i < j}(Y_{ij}-{\bar {y}})^2(Z_{ij}-{\bar{z}})^2}} $$

It is a measure of the similarity between the distance of the leaves, as seen in the tree, and the distance of the original data points, which were used to build the tree. When this similarity is greater, that is the coefficient is closer to 1, the tree renders an accurate representation of the distances between the original data points.

Z is a hierarchical cluster tree, as the output of linkage. y is a vector of euclidean distances, as the output of pdist.

The optional output d is a vector of cophenetic distances, in the same lower triangular format as y. The cophenetic distance between two data points is the height of the lowest common node of the tree.

See also: cluster, dendrogram, inconsistent, linkage, pdist, squareform

Source Code: cophenet

Example: 1

 

 randn ("seed", 5)  # for reproducibility
 X = randn (10,2);
 y = pdist (X);
 Z = linkage (y, "average");
 cophenet (Z, y)

ans = 0.8025
                    
statistics-release-1.6.3/docs/copulacdf.html000066400000000000000000000144561456127120000211170ustar00rootroot00000000000000 Statistics: copulacdf

Function Reference: copulacdf

statistics: p = copulacdf (family, x, theta)
statistics: p = copulacdf ('t', x, theta, df)

Copula family cumulative distribution functions (CDF).

Arguments

  • family is the copula family name. Currently, family can be 'Gaussian' for the Gaussian family, 't' for the Student’s t family, 'Clayton' for the Clayton family, 'Gumbel' for the Gumbel-Hougaard family, 'Frank' for the Frank family, 'AMH' for the Ali-Mikhail-Haq family, or 'FGM' for the Farlie-Gumbel-Morgenstern family.
  • x is the support where each row corresponds to an observation.
  • theta is the parameter of the copula. For the Gaussian and Student’s t copula, theta must be a correlation matrix. For bivariate copulas theta can also be a correlation coefficient. For the Clayton family, the Gumbel-Hougaard family, the Frank family, and the Ali-Mikhail-Haq family, theta must be a vector with the same number of elements as observations in x or be scalar. For the Farlie-Gumbel-Morgenstern family, theta must be a matrix of coefficients for the Farlie-Gumbel-Morgenstern polynomial where each row corresponds to one set of coefficients for an observation in x. A single row is expanded. The coefficients are in binary order.
  • df is the degrees of freedom for the Student’s t family. df must be a vector with the same number of elements as observations in x or be scalar.

Return values

  • p is the cumulative distribution of the copula at each row of x and corresponding parameter theta.

Examples

 
 
 x = [0.2:0.2:0.6; 0.2:0.2:0.6];
 theta = [1; 2];
 p = copulacdf ("Clayton", x, theta)
 
 
 x = [0.2:0.2:0.6; 0.2:0.1:0.4];
 theta = [0.2, 0.1, 0.1, 0.05];
 p = copulacdf ("FGM", x, theta)
 
 

References

  1. Roger B. Nelsen. An Introduction to Copulas. Springer, New York, second edition, 2006.

See also: copulapdf, copularnd

Source Code: copulacdf

statistics-release-1.6.3/docs/copulapdf.html000066400000000000000000000131261456127120000211250ustar00rootroot00000000000000 Statistics: copulapdf

Function Reference: copulapdf

statistics: y = copulapdf (family, x, theta)

Copula family probability density functions (PDF).

Arguments

  • family is the copula family name. Currently, family can be 'Clayton' for the Clayton family, 'Gumbel' for the Gumbel-Hougaard family, 'Frank' for the Frank family, or 'AMH' for the Ali-Mikhail-Haq family.
  • x is the support where each row corresponds to an observation.
  • theta is the parameter of the copula. The elements of theta must be greater than or equal to -1 for the Clayton family, greater than or equal to 1 for the Gumbel-Hougaard family, arbitrary for the Frank family, and greater than or equal to -1 and lower than 1 for the Ali-Mikhail-Haq family. Moreover, theta must be non-negative for dimensions greater than 2. theta must be a column vector with the same number of rows as x or be scalar.

Return values

  • y is the probability density of the copula at each row of x and corresponding parameter theta.

Examples

 
 
 x = [0.2:0.2:0.6; 0.2:0.2:0.6];
 theta = [1; 2];
 y = copulapdf ("Clayton", x, theta)
 
 
 y = copulapdf ("Gumbel", x, 2)
 
 

References

  1. Roger B. Nelsen. An Introduction to Copulas. Springer, New York, second edition, 2006.

See also: copulacdf, copularnd

Source Code: copulapdf

statistics-release-1.6.3/docs/copularnd.html000066400000000000000000000140401456127120000211330ustar00rootroot00000000000000 Statistics: copularnd

Function Reference: copularnd

Function File: r = copularnd (family, theta, n)
Function File: r = copularnd (family, theta, n, d)
Function File: r = copularnd ('t', theta, df, n)

Random arrays from the copula family distributions.

Arguments

  • family is the copula family name. Currently, family can be 'Gaussian' for the Gaussian family, 't' for the Student’s t family, or 'Clayton' for the Clayton family.
  • theta is the parameter of the copula. For the Gaussian and Student’s t copula, theta must be a correlation matrix. For bivariate copulas theta can also be a correlation coefficient. For the Clayton family, theta must be a vector with the same number of elements as samples to be generated or be scalar.
  • df is the degrees of freedom for the Student’s t family. df must be a vector with the same number of elements as samples to be generated or be scalar.
  • n is the number of rows of the matrix to be generated. n must be a non-negative integer and corresponds to the number of samples to be generated.
  • d is the number of columns of the matrix to be generated. d must be a positive integer and corresponds to the dimension of the copula.

Return values

  • r is a matrix of random samples from the copula with n samples of distribution dimension d.

Examples

 
 
 theta = 0.5;
 r = copularnd ("Gaussian", theta);
 
 
 theta = 0.5;
 df = 2;
 r = copularnd ("t", theta, df);
 
 
 theta = 0.5;
 n = 2;
 r = copularnd ("Clayton", theta, n);
 
 

References

  1. Roger B. Nelsen. An Introduction to Copulas. Springer, New York, second edition, 2006.

Source Code: copularnd

statistics-release-1.6.3/docs/correlation_test.html000066400000000000000000000167651456127120000225440ustar00rootroot00000000000000 Statistics: correlation_test

Function Reference: correlation_test

statistics: h = correlation_test (x, y)
statistics: [h, pval] = correlation_test (y, x)
statistics: [h, pval, stats] = correlation_test (y, x)
statistics: […] = correlation_test (y, x, Name, Value)

Perform a correlation coefficient test whether two samples x and y come from uncorrelated populations.

h = correlation_test (y, x) tests the null hypothesis that the two samples x and y come from uncorrelated populations. The result is h = 0 if the null hypothesis cannot be rejected at the 5% significance level, or h = 1 if the null hypothesis can be rejected at the 5% level. y and x must be vectors of equal length with finite real numbers.

The p-value of the test is returned in pval. stats is a structure with the following fields:

FieldValue
methodthe type of correlation coefficient used for the test
dfthe degrees of freedom (where applicable)
corrcoefthe correlation coefficient
statthe test’s statistic
distthe respective distribution for the test
altthe alternative hypothesis for the test

[…] = correlation_test (…, name, value) specifies one or more of the following name/value pairs:

NameValue
"alpha"the significance level. Default is 0.05.
"tail"a string specifying the alternative hypothesis
"both"corrcoef is not 0 (two-tailed, default)
"left"corrcoef is less than 0 (left-tailed)
"right"corrcoef is greater than 0 (right-tailed)
"method"a string specifying the correlation coefficient used for the test
"pearson"Pearson’s product moment correlation (Default)
"kendall"Kendall’s rank correlation tau
"spearman"Spearman’s rank correlation rho

See also: regression_ftest, regression_ttest

Source Code: correlation_test

statistics-release-1.6.3/docs/crosstab.html000066400000000000000000000105651456127120000207740ustar00rootroot00000000000000 Statistics: crosstab

Function Reference: crosstab

statistics: t = crosstab (x1, x2)
statistics: t = crosstab (x1, …, xn)
statistics: [t, chisq, p, labels] = crosstab (…)

Create a cross-tabulation (contingency table) t from data vectors.

The inputs x1, x2, ... xn must be vectors of equal length with a data type of numeric, logical, char, or string (cell array).

As additional return values crosstab returns the chi-square statistics chisq, its p-value p and a cell array labels, containing the labels of each input argument.

See also: grp2idx, tabulate

Source Code: crosstab

statistics-release-1.6.3/docs/crossval.html000066400000000000000000000146151456127120000210100ustar00rootroot00000000000000 Statistics: crossval

Function Reference: crossval

statistics: results = crossval (f, X, y)
statistics: results = crossval (f, X, y, name, value)

Perform cross validation on given data.

f should be a function that takes 4 inputs xtrain, ytrain, xtest, ytest, fits a model based on xtrain, ytrain, applies the fitted model to xtest, and returns a goodness of fit measure based on comparing the predicted and actual ytest. crossval returns an array containing the values returned by f for every cross-validation fold or resampling applied to the given data.

X should be an n by m matrix of predictor values

y should be an n by 1 vector of predicand values

Optional arguments may include name-value pairs as follows:

"KFold"

Divide set into k equal-size subsets, using each one successively for validation.

"HoldOut"

Divide set into two subsets, training and validation. If the value k is a fraction, that is the fraction of values put in the validation subset (by default k=0.1); if it is a positive integer, that is the number of values in the validation subset.

"LeaveOut"

Leave-one-out partition (each element is placed in its own subset). The value is ignored.

"Partition"

The value should be a cvpartition object.

"Given"

The value should be an n by 1 vector specifying in which partition to put each element.

"stratify"

The value should be an n by 1 vector containing class designations for the elements, in which case the "KFold" and "HoldOut" partitionings attempt to ensure each partition represents the classes proportionately.

"mcreps"

The value should be a positive integer specifying the number of times to resample based on different partitionings. Currently only works with the partition type "HoldOut".

Only one of "KFold", "HoldOut", "LeaveOut", "Given", "Partition" should be specified. If none is specified, the default is "KFold" with k = 10.

See also: cvpartition

Source Code: crossval

statistics-release-1.6.3/docs/datasample.html000066400000000000000000000121651456127120000212650ustar00rootroot00000000000000 Statistics: datasample

Function Reference: datasample

statistics: y = datasample (data, k)
statistics: y = datasample (data, k, dim)
statistics: y = datasample (…, Name, Value)
statistics: [y idcs] = datasample (…)

Randomly sample data.

Return k observations randomly sampled from data. data can be a vector or a matrix of any data. When data is a matrix or a n-dimensional array, the samples are the subarrays of size n - 1, taken along the dimension dim. The default value for dim is 1, that is the row vectors when sampling a matrix.

Output y is the returned sampled data. Optional output idcs is the vector of the indices to build y from data.

Additional options are set through pairs of parameter name and value. Available parameters are:

Replace

a logical value that can be true (default) or false: when set to true, datasample returns data sampled with replacement.

Weigths

a vector of positive numbers that sets the probability of each element. It must have the same size as data along dimension dim.

See also: rand, randi, randperm, randsample

Source Code: datasample

statistics-release-1.6.3/docs/dcov.html000066400000000000000000000161021456127120000201000ustar00rootroot00000000000000 Statistics: dcov

Function Reference: dcov

statistics: [dCor, dCov, dVarX, dVarY] = dcov (x, y)

Distance correlation, covariance and correlation statistics.

It returns the distance correlation (dCor) and the distance covariance (dCov) between x and y, the distance variance of x in (dVarX) and the distance variance of y in (dVarY).

x and y must have the same number of observations (rows) but they can have different number of dimensions (columns). Rows with missing values (NaN) in either x or y are omitted.

The Brownian covariance is the same as the distance covariance:

$$ cov_W (X, Y) = dCov(X, Y) $$

and thus Brownian correlation is the same as distance correlation.

See also: corr, cov

Source Code: dcov

Example: 1

 

 base=@(x) (x- min(x))./(max(x)-min(x));
 N = 5e2;
 x = randn (N,1); x = base (x);
 z = randn (N,1); z = base (z);
 # Linear relations
 cy = [1 0.55 0.3 0 -0.3 -0.55 -1];
 ly = x .* cy;
 ly(:,[1:3 5:end]) = base (ly(:,[1:3 5:end]));
 # Correlated Gaussian
 cz = 1 - abs (cy);
 gy = base ( ly + cz.*z);
 # Shapes
 sx      = repmat (x,1,7);
 sy      = zeros (size (ly));
 v       = 2 * rand (size(x,1),2) - 1;
 sx(:,1) = v(:,1); sy(:,1) = cos(2*pi*sx(:,1)) + 0.5*v(:,2).*exp(-sx(:,1).^2/0.5);
 R       =@(d) [cosd(d) sind(d); -sind(d) cosd(d)];
 tmp     = R(35) * v.';
 sx(:,2) = tmp(1,:); sy(:,2) = tmp(2,:);
 tmp     = R(45) * v.';
 sx(:,3) = tmp(1,:); sy(:,3) = tmp(2,:);
 sx(:,4) = v(:,1); sy(:,4) = sx(:,4).^2 + 0.5*v(:,2);
 sx(:,5) = v(:,1); sy(:,5) = 3*sign(v(:,2)).*(sx(:,5)).^2  + v(:,2);
 sx(:,6) = cos (2*pi*v(:,1)) + 0.5*(x-0.5);
 sy(:,6) = sin (2*pi*v(:,1)) + 0.5*(z-0.5);
 sx(:,7) = x + sign(v(:,1)); sy(:,7) = z + sign(v(:,2));
 sy      = base (sy);
 sx      = base (sx);
 # scaled shape
 sc  = 1/3;
 ssy = (sy-0.5) * sc + 0.5;
 n = size (ly,2);
 ym = 1.2;
 xm = 0.5;
 fmt={'horizontalalignment','center'};
 ff = "% .2f";
 figure (1)
 for i=1:n
   subplot(4,n,i);
   plot (x, gy(:,i), '.b');
   axis tight
   axis off
   text (xm,ym,sprintf (ff, dcov (x,gy(:,i))),fmt{:})

   subplot(4,n,i+n);
   plot (x, ly(:,i), '.b');
   axis tight
   axis off
   text (xm,ym,sprintf (ff, dcov (x,ly(:,i))),fmt{:})

   subplot(4,n,i+2*n);
   plot (sx(:,i), sy(:,i), '.b');
   axis tight
   axis off
   text (xm,ym,sprintf (ff, dcov (sx(:,i),sy(:,i))),fmt{:})
   v = axis ();

   subplot(4,n,i+3*n);
   plot (sx(:,i), ssy(:,i), '.b');
   axis (v)
   axis off
   text (xm,ym,sprintf (ff, dcov (sx(:,i),ssy(:,i))),fmt{:})
 endfor

                    
plotted figure

statistics-release-1.6.3/docs/dendrogram.html000066400000000000000000000311741456127120000212750ustar00rootroot00000000000000 Statistics: dendrogram

Function Reference: dendrogram

statistics: dendrogram (tree)
statistics: dendrogram (tree, p)
statistics: dendrogram (tree, prop, val)
statistics: dendrogram (tree, p, prop, val )
statistics: h = dendrogram (…)
statistics: [h, t, perm] = dendrogram (…)

Plot a dendrogram of a hierarchical binary cluster tree.

Given tree, a hierarchical binary cluster tree as the output of linkage, plot a dendrogram of the tree. The number of leaves shown by the dendrogram plot is limited to p. The default value for p is 30. Set p to 0 to plot all leaves.

The optional outputs are h, t and perm:

  • h is a handle to the lines of the plot.
  • t is the vector with the numbers assigned to each leaf. Each element of t is a leaf of tree and its value is the number shown in the plot. When the dendrogram plot is collapsed, that is when the number of shown leaves p is inferior to the total number of leaves, a single leaf of the plot can represent more than one leaf of tree: in that case multiple elements of t share the same value, that is the same leaf of the plot. When the dendrogram plot is not collapsed, each leaf of the plot is the leaf of tree with the same number.
  • perm is the vector list of the leaves as ordered as in the plot.

Additional input properties can be specified by pairs of properties and values. Known properties are:

  • "Reorder" Reorder the leaves of the dendrogram plot using a numerical vector of size n, the number of leaves. When p is smaller than n, the reordering cannot break the p groups of leaves.
  • "Orientation" Change the orientation of the plot. Available values: top (default), bottom, left, right.
  • "CheckCrossing" Check if the lines of a reordered dendrogram cross each other. Available values: true (default), false.
  • "ColorThreshold" Not implemented.
  • "Labels" Use a char, string or cellstr array of size n to set the label for each leaf; the label is dispayed only for nodes with just one leaf.

See also: cluster, clusterdata, cophenet, inconsistent, linkage, pdist

Source Code: dendrogram

Example: 1

 

 ## simple dendrogram
 y = [4, 5; 2, 6; 3, 7; 8, 9; 1, 10];
 y(:,3) = 1:5;
 dendrogram (y);
 title ("simple dendrogram");

                    
plotted figure

Example: 2

 

 ## another simple dendrogram
 v = 2 * rand (30, 1) - 1;
 d = abs (bsxfun (@minus, v(:, 1), v(:, 1)'));
 y = linkage (squareform (d, "tovector"));
 dendrogram (y);
 title ("another simple dendrogram");

                    
plotted figure

Example: 3

 

 ## collapsed tree, find all the leaves of node 5
 X = randn (60, 2);
 D = pdist (X);
 y = linkage (D, "average");
 subplot (2, 1, 1);
 title ("original tree");
 dendrogram (y, 0);
 subplot (2, 1, 2);
 title ("collapsed tree");
 [~, t] = dendrogram (y, 20);
 find(t == 5)

ans = 5
                    
plotted figure

Example: 4

 

 ## optimal leaf order
 X = randn (30, 2);
 D = pdist (X);
 y = linkage (D, "average");
 order = optimalleaforder (y, D);
 subplot (2, 1, 1);
 title ("original leaf order");
 dendrogram (y);
 subplot (2, 1, 2);
 title ("optimal leaf order");
 dendrogram (y, "Reorder", order);

                    
plotted figure

Example: 5

 

 ## horizontal orientation and labels
 X = randn (8, 2);
 D = pdist (X);
 L = ["Snow White"; "Doc"; "Grumpy"; "Happy"; "Sleepy"; "Bashful"; ...
      "Sneezy"; "Dopey"];
 y = linkage (D, "average");
 dendrogram (y, "Orientation", "left", "Labels", L);
 title ("horizontal orientation and labels");

                    
plotted figure

statistics-release-1.6.3/docs/ecdf.html000066400000000000000000000225141456127120000200520ustar00rootroot00000000000000 Statistics: ecdf

Function Reference: ecdf

statistics: [f, x] = ecdf (y)
statistics: [f, x, flo, fup] = ecdf (y)
statistics: ecdf (…)
statistics: ecdf (ax, …)
statistics: […] = ecdf (y, name, value, …)
statistics: […] = ecdf (ax, y, name, value, …)

Empirical (Kaplan-Meier) cumulative distribution function.

[f, x] = ecdf (y) calculates the Kaplan-Meier estimate of the cumulative distribution function (cdf), also known as the empirical cdf. y is a vector of data values. f is a vector of values of the empirical cdf evaluated at x.

[f, x, flo, fup] = ecdf (y) also returns lower and upper confidence bounds for the cdf. These bounds are calculated using Greenwood’s formula, and are not simultaneous confidence bounds.

ecdf (…) without output arguments produces a plot of the empirical cdf.

ecdf (ax, …) plots into existing axes ax.

[…] = ecdf (y, name, value, …) specifies additional parameter name/value pairs chosen from the following:

namevalue
"censoring"A boolean vector of the same size as Y that is 1 for observations that are right-censored and 0 for observations that are observed exactly. Default is all observations observed exactly.
"frequency"A vector of the same size as Y containing non-negative integer counts. The jth element of this vector gives the number of times the jth element of Y was observed. Default is 1 observation per Y element.
"alpha"A value alpha between 0 and 1 specifying the significance level. Default is 0.05 for 5% significance.
"function"The type of function returned as the F output argument, chosen from "cdf" (the default), "survivor", or "cumulative hazard".
"bounds"Either "on" to include bounds or "off" (the default) to omit them. Used only for plotting.

Type demo ecdf to see examples of usage.

See also: cdfplot, ecdfhist

Source Code: ecdf

Example: 1

 

 y = exprnd (10, 50, 1);    ## random failure times are exponential(10)
 d = exprnd (20, 50, 1);    ## drop-out times are exponential(20)
 t = min (y, d);            ## we observe the minimum of these times
 censored = (y > d);        ## we also observe whether the subject failed

 ## Calculate and plot the empirical cdf and confidence bounds
 [f, x, flo, fup] = ecdf (t, "censoring", censored);
 stairs (x, f);
 hold on;
 stairs (x, flo, "r:"); stairs (x, fup, "r:");

 ## Superimpose a plot of the known true cdf
 xx = 0:.1:max (t); yy = 1 - exp (-xx / 10); plot (xx, yy, "g-");
 hold off;

                    
plotted figure

Example: 2

 

 R = wblrnd (100, 2, 100, 1);
 ecdf (R, "Function", "survivor", "Alpha", 0.01, "Bounds", "on");
 hold on
 x = 1:1:250;
 wblsurv = 1 - cdf ("weibull", x, 100, 2);
 plot (x, wblsurv, "g-", "LineWidth", 2)
 legend ("Empirical survivor function", "Lower confidence bound", ...
         "Upper confidence bound", "Weibull survivor function", ...
         "Location", "northeast");
 hold off

                    
plotted figure

statistics-release-1.6.3/docs/einstein.html000066400000000000000000000212201456127120000207600ustar00rootroot00000000000000 Statistics: einstein

Function Reference: einstein

statistics: einstein ()
statistics: tiles = einstein (a, b)
statistics: [tiles, rhat] = einstein (a, b)
statistics: [tiles, rhat, that] = einstein (a, b)
statistics: [tiles, rhat, that, shat] = einstein (a, b)
statistics: [tiles, rhat, that, shat, phat] = einstein (a, b)
statistics: [tiles, rhat, that, shat, phat, fhat] = einstein (a, b)

Plots the tiling of the basic clusters of einstein tiles.

Scalars a and b define the shape of the einstein tile. See Smith et al (2023) for details: https://arxiv.org/abs/2303.10798

  • tiles is a structure containing the coordinates of the einstein tiles that are tiled on the plot. Each field contains the tile coordinates of the corresponding clusters.
    • tiles.rhat contains the reflected einstein tiles
    • tiles.that contains the three-hat shells
    • tiles.shat contains the single-hat clusters
    • tiles.phat contains the paired-hat clusters
    • tiles.fhat contains the fylfot clusters
  • rhat contains the coordinates of the first reflected tile
  • that contains the coordinates of the first three-hat shell
  • shat contains the coordinates of the first single-hat cluster
  • phat contains the coordinates of the first paired-hat cluster
  • fhat contains the coordinates of the first fylfot cluster

Source Code: einstein

Example: 1

 

 einstein (0.4, 0.6)

                    
plotted figure

Example: 2

 

 einstein (0.2, 0.5)

                    
plotted figure

Example: 3

 

 einstein (0.6, 0.1)

                    
plotted figure

statistics-release-1.6.3/docs/evalclusters.html000066400000000000000000000226261456127120000216710ustar00rootroot00000000000000 Statistics: evalclusters

Function Reference: evalclusters

statistics: eva = evalclusters (x, clust, criterion)
statistics: eva = evalclusters (…, Name, Value)

Create a clustering evaluation object to find the optimal number of clusters.

evalclusters creates a clustering evaluation object to evaluate the optimal number of clusters for data x, using criterion criterion. The input data x is a matrix with n observations of p variables. The evaluation criterion criterion is one of the following:

CalinskiHarabasz

to create a CalinskiHarabaszEvaluation object.

DaviesBouldin

to create a DaviesBouldinEvaluation object.

gap

to create a GapEvaluation object.

silhouette

to create a SilhouetteEvaluation object.

The clustering algorithm clust is one of the following:

kmeans

to cluster the data using kmeans with EmptyAction set to singleton and Replicates set to 5.

linkage

to cluster the data using clusterdata with linkage set to Ward.

gmdistribution

to cluster the data using fitgmdist with SharedCov set to true and Replicates set to 5.

If the criterion is CalinskiHarabasz, DaviesBouldin, or silhouette, clust can also be a function handle to a function of the form c = clust(x, k), where x is the input data, k the number of clusters to evaluate and c the clustering result. The clustering result can be either an array of size n with k different integer values, or a matrix of size n by k with a likelihood value assigned to each one of the n observations for each one of the k clusters. In the latter case, each observation is assigned to the cluster with the higher value. If the criterion is CalinskiHarabasz, DaviesBouldin, or silhouette, clust can also be a matrix of size n by k, where k is the number of proposed clustering solutions, so that each column of clust is a clustering solution.

In addition to the obligatory x, clust and criterion inputs there is a number of optional arguments, specified as pairs of Name and Value options. The known Name arguments are:

KList

a vector of positive integer numbers, that is the cluster sizes to evaluate. This option is necessary, unless clust is a matrix of proposed clustering solutions.

Distance

a distance metric as accepted by the chosen clust. It can be the name of the distance metric as a string or a function handle. When criterion is silhouette, it can be a vector as created by function pdist. Valid distance metric strings are: sqEuclidean (default), Euclidean, cityblock, cosine, correlation, Hamming, Jaccard. Only used by silhouette and gap evaluation.

ClusterPriors

the prior probabilities of each cluster, which can be either empirical (default), or equal. When empirical the silhouette value is the average of the silhouette values of all points; when equal the silhouette value is the average of the average silhouette value of each cluster. Only used by silhouette evaluation.

B

the number of reference datasets generated from the reference distribution. Only used by gap evaluation.

ReferenceDistribution

the reference distribution used to create the reference data. It can be PCA (default) for a distribution based on the principal components of X, or uniform for a uniform distribution based on the range of the observed data. PCA is currently not implemented. Only used by gap evaluation.

SearchMethod

the method for selecting the optimal value with a gap evaluation. It can be either globalMaxSE (default) for selecting the smallest number of clusters which is inside the standard error of the maximum gap value, or firstMaxSE for selecting the first number of clusters which is inside the standard error of the following cluster number. Only used by gap evaluation.

Output eva is a clustering evaluation object.

See also: CalinskiHarabaszEvaluation, DaviesBouldinEvaluation, GapEvaluation, SilhouetteEvaluation

Source Code: evalclusters

statistics-release-1.6.3/docs/evcdf.html000066400000000000000000000177771456127120000202570ustar00rootroot00000000000000 Statistics: evcdf

Function Reference: evcdf

statistics: p = evcdf (x)
statistics: p = evcdf (x, mu)
statistics: p = evcdf (x, mu, sigma)
statistics: p = evcdf (…, "upper")
statistics: [p, plo, pup] = evcdf (x, mu, sigma, pcov)
statistics: [p, plo, pup] = evcdf (x, mu, sigma, pcov, alpha)
statistics: [p, plo, pup] = evcdf (…, "upper")

Extreme value cumulative distribution function (CDF).

For each element of x, compute the cumulative distribution function (CDF) of the extreme value distribution (also known as the Gumbel or the type I generalized extreme value distribution) at the values in x with location parameter mu and scale parameter sigma. The size of p is the common size of x, mu and sigma. A scalar input functions as a constant matrix of the same size as the other inputs.

Default values are mu = 0 and sigma = 1.

When called with three output arguments, i.e. [p, plo, pup], evcdf computes the confidence bounds for p when the input parameters mu and sigma are estimates. In such case, pcov, a 2×2 matrix containing the covariance matrix of the estimated parameters, is necessary. Optionally, alpha, which has a default value of 0.05, specifies the 100 * (1 - alpha) percent confidence bounds. plo and pup are arrays of the same size as p containing the lower and upper confidence bounds.

[…] = evcdf (…, "upper") computes the upper tail probability of the extreme value distribution with parameters x0 and gamma, at the values in x.

The Gumbel distribution is used to model the distribution of the maximum (or the minimum) of a number of samples of various distributions. This version is suitable for modeling minima. For modeling maxima, use the alternative Gumbel CDF, gumbelcdf.

Further information about the Gumbel distribution can be found at https://en.wikipedia.org/wiki/Gumbel_distribution

See also: evinv, evpdf, evrnd, evfit, evlike, evstat, gumbelcdf

Source Code: evcdf

Example: 1

 

 ## Plot various CDFs from the extreme value distribution
 x = -10:0.01:10;
 p1 = evcdf (x, 0.5, 2);
 p2 = evcdf (x, 1.0, 2);
 p3 = evcdf (x, 1.5, 3);
 p4 = evcdf (x, 3.0, 4);
 plot (x, p1, "-b", x, p2, "-g", x, p3, "-r", x, p4, "-c")
 grid on
 legend ({"μ = 0.5, σ = 2", "μ = 1.0, σ = 2", ...
          "μ = 1.5, σ = 3", "μ = 3.0, σ = 4"}, "location", "southeast")
 title ("Extreme value CDF")
 xlabel ("values in x")
 ylabel ("probability")

                    
plotted figure

statistics-release-1.6.3/docs/evfit.html000066400000000000000000000232061456127120000202650ustar00rootroot00000000000000 Statistics: evfit

Function Reference: evfit

statistics: paramhat = evfit (x)
statistics: [paramhat, paramci] = evfit (x)
statistics: [paramhat, paramci] = evfit (x, alpha)
statistics: […] = evfit (x, alpha, censor)
statistics: […] = evfit (x, alpha, censor, freq)
statistics: […] = evfit (x, alpha, censor, freq, options)

Estimate parameters and confidence intervals for the extreme value distribution.

paramhat = evfit (x) returns the maximum likelihood estimates of the parameters of the extreme value distribution (also known as the Gumbel or the type I generalized extreme value distribution) given the data in x. paramhat(1) is the location parameter, mu, and paramhat(2) is the scale parameter, sigma.

[paramhat, paramci] = evfit (x) returns the 95% confidence intervals for the parameter estimates.

[…] = evfit (x, alpha) also returns the 100 * (1 - alpha) percent confidence intervals for the parameter estimates. By default, the optional argument alpha is 0.05 corresponding to 95% confidence intervals. Pass in [] for alpha to use the default values.

[…] = evfit (x, alpha, censor) accepts a boolean vector, censor, of the same size as x with 1s for observations that are right-censored and 0s for observations that are observed exactly. By default, or if left empty, censor = zeros (size (x)).

[…] = evfit (x, alpha, censor, freq) accepts a frequency vector, freq, of the same size as x. freq typically contains integer frequencies for the corresponding elements in x, but it can contain any non-integer non-negative values. By default, or if left empty, freq = ones (size (x)).

[…] = evfit (…, options) specifies control parameters for the iterative algorithm used to compute the maximum likelihood estimates. options is a structure with the following field and its default value:

  • options.TolX = 1e-6

The Gumbel distribution is used to model the distribution of the maximum (or the minimum) of a number of samples of various distributions. This version is suitable for modeling minima. For modeling maxima, use the alternative Gumbel fitting function, gumbelfit.

Further information about the Gumbel distribution can be found at https://en.wikipedia.org/wiki/Gumbel_distribution

See also: evcdf, evinv, evpdf, evrnd, evlike, evstat, gumbelfit

Source Code: evfit

Example: 1

 

 ## Sample 3 populations from different extreme value distibutions
 rand ("seed", 1);    # for reproducibility
 r1 = evrnd (2, 5, 400, 1);
 rand ("seed", 12);    # for reproducibility
 r2 = evrnd (-5, 3, 400, 1);
 rand ("seed", 13);    # for reproducibility
 r3 = evrnd (14, 8, 400, 1);
 r = [r1, r2, r3];

 ## Plot them normalized and fix their colors
 hist (r, 25, 0.4);
 h = findobj (gca, "Type", "patch");
 set (h(1), "facecolor", "c");
 set (h(2), "facecolor", "g");
 set (h(3), "facecolor", "r");
 ylim ([0, 0.28])
 xlim ([-30, 30]);
 hold on

 ## Estimate their MU and SIGMA parameters
 mu_sigmaA = evfit (r(:,1));
 mu_sigmaB = evfit (r(:,2));
 mu_sigmaC = evfit (r(:,3));

 ## Plot their estimated PDFs
 x = [min(r(:)):max(r(:))];
 y = evpdf (x, mu_sigmaA(1), mu_sigmaA(2));
 plot (x, y, "-pr");
 y = evpdf (x, mu_sigmaB(1), mu_sigmaB(2));
 plot (x, y, "-sg");
 y = evpdf (x, mu_sigmaC(1), mu_sigmaC(2));
 plot (x, y, "-^c");
 legend ({"Normalized HIST of sample 1 with μ=2 and σ=5", ...
          "Normalized HIST of sample 2 with μ=-5 and σ=3", ...
          "Normalized HIST of sample 3 with μ=14 and σ=8", ...
          sprintf("PDF for sample 1 with estimated μ=%0.2f and σ=%0.2f", ...
                  mu_sigmaA(1), mu_sigmaA(2)), ...
          sprintf("PDF for sample 2 with estimated μ=%0.2f and σ=%0.2f", ...
                  mu_sigmaB(1), mu_sigmaB(2)), ...
          sprintf("PDF for sample 3 with estimated μ=%0.2f and σ=%0.2f", ...
                  mu_sigmaC(1), mu_sigmaC(2))})
 title ("Three population samples from different extreme value distibutions")
 hold off

                    
plotted figure

statistics-release-1.6.3/docs/evinv.html000066400000000000000000000170571456127120000203060ustar00rootroot00000000000000 Statistics: evinv

Function Reference: evinv

statistics: x = evinv (p)
statistics: x = evinv (p, mu)
statistics: x = evinv (p, mu, sigma)
statistics: [x, xlo, xup] = evinv (p, mu, sigma, pcov)
statistics: [x, xlo, xup] = evinv (p, mu, sigma, pcov, alpha)

Inverse of the extreme value cumulative distribution function (iCDF).

For each element of p, compute the quantile (the inverse of the CDF) of the extreme value distribution (also known as the Gumbel or the type I generalized extreme value distribution) with location parameter mu and scale parameter sigma. The size of x is the common size of p, mu and sigma. A scalar input functions as a constant matrix of the same size as the other inputs.

Default values are mu = 0 and sigma = 1.

When called with three output arguments, i.e. [x, xlo, xup], evinv computes the confidence bounds for x when the input parameters mu and sigma are estimates. In such case, pcov, a 2×2 matrix containing the covariance matrix of the estimated parameters, is necessary. Optionally, alpha, which has a default value of 0.05, specifies the 100 * (1 - alpha) percent confidence bounds. xlo and xup are arrays of the same size as x containing the lower and upper confidence bounds.

The Gumbel distribution is used to model the distribution of the maximum (or the minimum) of a number of samples of various distributions. This version is suitable for modeling minima. For modeling maxima, use the alternative Gumbel iCDF, gumbelinv.

Further information about the Gumbel distribution can be found at https://en.wikipedia.org/wiki/Gumbel_distribution

See also: evcdf, evpdf, evrnd, evfit, evlike, evstat, gumbelinv

Source Code: evinv

Example: 1

 

 ## Plot various iCDFs from the extreme value distribution
 p = 0.001:0.001:0.999;
 x1 = evinv (p, 0.5, 2);
 x2 = evinv (p, 1.0, 2);
 x3 = evinv (p, 1.5, 3);
 x4 = evinv (p, 3.0, 4);
 plot (p, x1, "-b", p, x2, "-g", p, x3, "-r", p, x4, "-c")
 grid on
 ylim ([-10, 10])
 legend ({"μ = 0.5, σ = 2", "μ = 1.0, σ = 2", ...
          "μ = 1.5, σ = 3", "μ = 3.0, σ = 4"}, "location", "northwest")
 title ("Extreme value iCDF")
 xlabel ("probability")
 ylabel ("values in x")

                    
plotted figure

statistics-release-1.6.3/docs/evlike.html000066400000000000000000000144771456127120000204410ustar00rootroot00000000000000 Statistics: evlike

Function Reference: evlike

statistics: nlogL = evlike (params, x)
statistics: [nlogL, acov] = evlike (params, x)
statistics: […] = evlike (params, x, censor)
statistics: […] = evlike (params, x, censor, freq)

Negative log-likelihood for the extreme value distribution.

nlogL = evlike (params, x) returns the negative log likelihood of the data in x corresponding to the extreme value distribution (also known as the Gumbel or the type I generalized extreme value distribution) with (1) location parameter mu and (2) scale parameter sigma given in the two-element vector params.

[nlogL, acov] = evlike (params, x) also returns the inverse of Fisher’s information matrix, acov. If the input parameter values in params are the maximum likelihood estimates, the diagonal elements of acov are their asymptotic variances.

[…] = evlike (params, x, censor) accepts a boolean vector, censor, of the same size as x with 1s for observations that are right-censored and 0s for observations that are observed exactly. By default, or if left empty, censor = zeros (size (x)).

[…] = evlike (params, x, censor, freq) accepts a frequency vector, freq, of the same size as x. freq typically contains integer frequencies for the corresponding elements in x, but it can contain any non-integer non-negative values. By default, or if left empty, freq = ones (size (x)).

The Gumbel distribution is used to model the distribution of the maximum (or the minimum) of a number of samples of various distributions. This version is suitable for modeling minima. For modeling maxima, use the alternative Gumbel likelihood function, gumbellike.

Further information about the Gumbel distribution can be found at https://en.wikipedia.org/wiki/Gumbel_distribution

See also: evcdf, evinv, evpdf, evrnd, evfit, evstat, gumbellike

Source Code: evlike

statistics-release-1.6.3/docs/evpdf.html000066400000000000000000000150161456127120000202540ustar00rootroot00000000000000 Statistics: evpdf

Function Reference: evpdf

statistics: y = evpdf (x)
statistics: y = evpdf (x, mu)
statistics: y = evpdf (x, mu, sigma)

Extreme value probability density function (PDF).

For each element of x, compute the probability density function (PDF) of the extreme value distribution (also known as the Gumbel or the type I generalized extreme value distribution) with location parameter mu and scale parameter sigma. The size of y is the common size of x, mu and sigma. A scalar input functions as a constant matrix of the same size as the other inputs.

Default values are mu = 0 and sigma = 1.

The Gumbel distribution is used to model the distribution of the maximum (or the minimum) of a number of samples of various distributions. This version is suitable for modeling minima. For modeling maxima, use the alternative Gumbel iCDF, gumbelinv.

Further information about the Gumbel distribution can be found at https://en.wikipedia.org/wiki/Gumbel_distribution

See also: evcdf, evinv, evrnd, evfit, evlike, evstat, gumbelpdf

Source Code: evpdf

Example: 1

 

 ## Plot various PDFs from the Extreme value distribution
 x = -10:0.001:10;
 y1 = evpdf (x, 0.5, 2);
 y2 = evpdf (x, 1.0, 2);
 y3 = evpdf (x, 1.5, 3);
 y4 = evpdf (x, 3.0, 4);
 plot (x, y1, "-b", x, y2, "-g", x, y3, "-r", x, y4, "-c")
 grid on
 ylim ([0, 0.2])
 legend ({"μ = 0.5, σ = 2", "μ = 1.0, σ = 2", ...
          "μ = 1.5, σ = 3", "μ = 3.0, σ = 4"}, "location", "northeast")
 title ("Extreme value PDF")
 xlabel ("values in x")
 ylabel ("density")

                    
plotted figure

statistics-release-1.6.3/docs/evrnd.html000066400000000000000000000130421456127120000202630ustar00rootroot00000000000000 Statistics: evrnd

Function Reference: evrnd

statistics: r = evrnd (mu, sigma)
statistics: r = evrnd (mu, sigma, rows)
statistics: r = evrnd (mu, sigma, rows, cols, …)
statistics: r = evrnd (mu, sigma, [sz])

Random arrays from the extreme value distribution.

r = evrnd (mu, sigma) returns an array of random numbers chosen from the extreme value distribution (also known as the Gumbel or the type I generalized extreme value distribution) with location parameter mu and scale parameter sigma. The size of r is the common size of mu and sigma. A scalar input functions as a constant matrix of the same size as the other inputs.

When called with a single size argument, evrnd returns a square matrix with the dimension specified. When called with more than one scalar argument, the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions. The size may also be specified with a row vector of dimensions, sz.

The Gumbel distribution is used to model the distribution of the maximum (or the minimum) of a number of samples of various distributions. This version is suitable for modeling minima. For modeling maxima, use the alternative Gumbel iCDF, gumbelinv.

Further information about the Gumbel distribution can be found at https://en.wikipedia.org/wiki/Gumbel_distribution

See also: evcdf, evinv, evpdf, evfit, evlike, evstat

Source Code: evrnd

statistics-release-1.6.3/docs/evstat.html000066400000000000000000000117041456127120000204560ustar00rootroot00000000000000 Statistics: evstat

Function Reference: evstat

statistics: [m, v] = evstat (mu, sigma)

Compute statistics of the extreme value distribution.

[m, v] = evstat (mu, sigma) returns the mean and variance of the extreme value distribution (also known as the Gumbel or the type I generalized extreme value distribution) with location parameter mu and scale parameter sigma.

The size of m (mean) and v (variance) is the common size of the input arguments. A scalar input functions as a constant matrix of the same size as the other inputs.

The type 1 extreme value distribution is also known as the Gumbel distribution. This version is suitable for modeling minima. The mirror image of this distribution can be used to model maxima by negating x. If y has a Weibull distribution, then x = log (y) has the type 1 extreme value distribution.

Further information about the Gumbel distribution can be found at https://en.wikipedia.org/wiki/Gumbel_distribution

See also: evcdf, evinv, evpdf, evrnd, evfit, evlike

Source Code: evstat

statistics-release-1.6.3/docs/expcdf.html000066400000000000000000000170741456127120000204270ustar00rootroot00000000000000 Statistics: expcdf

Function Reference: expcdf

statistics: p = expcdf (x)
statistics: p = expcdf (x, mu)
statistics: p = expcdf (…, "upper")
statistics: [p, plo, pup] = expcdf (x, mu, pcov)
statistics: [p, plo, pup] = expcdf (x, mu, pcov, alpha)
statistics: [p, plo, pup] = expcdf (…, "upper")

Exponential cumulative distribution function (CDF).

For each element of x, compute the cumulative distribution function (CDF) of the exponential distribution with mean parameter mu. The size of p is the common size of x and mu. A scalar input functions as a constant matrix of the same size as the other inputs.

Default value is mu = 1.

A common alternative parameterization of the exponential distribution is to use the parameter λ defined as the mean number of events in an interval as opposed to the parameter μ, which is the mean wait time for an event to occur. λ and μ are reciprocals, i.e. μ = 1 / λ.

When called with three output arguments, i.e. [p, plo, pup], expcdf computes the confidence bounds for p when the input parameter mu is an estimate. In such case, pcov, a scalar value with the variance of the estimated parameter mu, is necessary. Optionally, alpha, which has a default value of 0.05, specifies the 100 * (1 - alpha) percent confidence bounds. plo and pup are arrays of the same size as p containing the lower and upper confidence bounds.

[…] = expcdf (…, "upper") computes the upper tail probability of the exponential distribution with parameter mu, at the values in x.

Further information about the exponential distribution can be found at https://en.wikipedia.org/wiki/Exponential_distribution

See also: expinv, exppdf, exprnd, expfit, explike, expstat

Source Code: expcdf

Example: 1

 

 ## Plot various CDFs from the exponential distribution
 x = 0:0.01:5;
 p1 = expcdf (x, 2/3);
 p2 = expcdf (x, 1.0);
 p3 = expcdf (x, 2.0);
 plot (x, p1, "-b", x, p2, "-g", x, p3, "-r")
 grid on
 legend ({"μ = 2/3", "μ = 1", "μ = 2"}, "location", "southeast")
 title ("Exponential CDF")
 xlabel ("values in x")
 ylabel ("probability")

                    
plotted figure

statistics-release-1.6.3/docs/expfit.html000066400000000000000000000232251456127120000204500ustar00rootroot00000000000000 Statistics: expfit

Function Reference: expfit

statistics: muhat = expfit (x)
statistics: [muhat, muci] = expfit (x)
statistics: [muhat, muci] = expfit (x, alpha)
statistics: […] = expfit (x, alpha, censor)
statistics: […] = expfit (x, alpha, censor, freq)

Estimate mean and confidence intervals for the exponential distribution.

muhat = expfit (x) returns the maximum likelihood estimate of the mean parameter, muhat, of the exponential distribution given the data in x. x is expected to be a non-negative vector. If x is an array, the mean will be computed for each column of x. If any elements of x are NaN, that vector’s mean will be returned as NaN.

[muhat, muci] = expfit (x) returns the 95% confidence intervals for the parameter estimate. If x is a vector, muci is a two element column vector. If x is an array, each column of data will have a confidence interval returned as a two-row array.

[…] = evfit (x, alpha) also returns the 100 * (1 - alpha) percent confidence intervals for the parameter estimates. By default, the optional argument alpha is 0.05 corresponding to 95% confidence intervals. Pass in [] for alpha to use the default values. Any invalid values for alpha will return NaN for both CI bounds.

[…] = expfit (x, alpha, censor) accepts a logical or numeric array, censor, of the same size as x with 1s for observations that are right-censored and 0s for observations that are observed exactly. Any non-zero elements are regarded as 1s. By default, or if left empty, censor = zeros (size (x)).

[…] = expfit (x, alpha, censor, freq) accepts a frequency array, freq, of the same size as x. freq typically contains integer frequencies for the corresponding elements in x, but it can contain any non-integer non-negative values. By default, or if left empty, freq = ones (size (x)).

Matlab incompatibility: Matlab’s expfit produces unpredictable results for some cases with higher dimensions (specifically 1 x m x n x ... arrays). Octave’s implementation allows for n×D arrays, consistently performing calculations on individual column vectors. Additionally, censor and freq can be used with arrays of any size, whereas Matlab only allows their use when x is a vector.

A common alternative parameterization of the exponential distribution is to use the parameter λ defined as the mean number of events in an interval as opposed to the parameter μ, which is the mean wait time for an event to occur. λ and μ are reciprocals, i.e. μ = 1 / λ.

Further information about the exponential distribution can be found at https://en.wikipedia.org/wiki/Exponential_distribution

See also: expcdf, expinv, explpdf, exprnd, explike, expstat

Source Code: expfit

Example: 1

 

 ## Sample 3 populations from 3 different exponential distibutions
 rande ("seed", 1);   # for reproducibility
 r1 = exprnd (2, 4000, 1);
 rande ("seed", 2);   # for reproducibility
 r2 = exprnd (5, 4000, 1);
 rande ("seed", 3);   # for reproducibility
 r3 = exprnd (12, 4000, 1);
 r = [r1, r2, r3];

 ## Plot them normalized and fix their colors
 hist (r, 48, 0.52);
 h = findobj (gca, "Type", "patch");
 set (h(1), "facecolor", "c");
 set (h(2), "facecolor", "g");
 set (h(3), "facecolor", "r");
 hold on

 ## Estimate their mu parameter
 muhat = expfit (r);

 ## Plot their estimated PDFs
 x = [0:max(r(:))];
 y = exppdf (x, muhat(1));
 plot (x, y, "-pr");
 y = exppdf (x, muhat(2));
 plot (x, y, "-sg");
 y = exppdf (x, muhat(3));
 plot (x, y, "-^c");
 ylim ([0, 0.6])
 xlim ([0, 40])
 legend ({"Normalized HIST of sample 1 with μ=2", ...
          "Normalized HIST of sample 2 with μ=5", ...
          "Normalized HIST of sample 3 with μ=12", ...
          sprintf("PDF for sample 1 with estimated μ=%0.2f", muhat(1)), ...
          sprintf("PDF for sample 2 with estimated μ=%0.2f", muhat(2)), ...
          sprintf("PDF for sample 3 with estimated μ=%0.2f", muhat(3))})
 title ("Three population samples from different exponential distibutions")
 hold off

                    
plotted figure

statistics-release-1.6.3/docs/expinv.html000066400000000000000000000162241456127120000204630ustar00rootroot00000000000000 Statistics: expinv

Function Reference: expinv

statistics: x = expinv (p)
statistics: x = expinv (p, mu)
statistics: [x, xlo, xup] = expinv (p, mu, pcov)
statistics: [x, xlo, xup] = expinv (p, mu, pcov, alpha)

Inverse of the exponential cumulative distribution function (iCDF).

For each element of p, compute the quantile (the inverse of the CDF) of the exponential distribution with mean mu. The size of x is the common size of p and mu. A scalar input functions as a constant matrix of the same size as the other inputs.

Default value is mu = 1.

A common alternative parameterization of the exponential distribution is to use the parameter λ defined as the mean number of events in an interval as opposed to the parameter μ, which is the mean wait time for an event to occur. λ and μ are reciprocals, i.e. μ = 1 / λ.

When called with three output arguments, i.e. [x, xlo, xup], expinv computes the confidence bounds for x when the input parameter mu is an estimate. In such case, pcov, a scalar value with the variance of the estimated parameter mu, is necessary. Optionally, alpha, which has a default value of 0.05, specifies the 100 * (1 - alpha) percent confidence bounds. xlo and xup are arrays of the same size as x containing the lower and upper confidence bounds.

Further information about the exponential distribution can be found at https://en.wikipedia.org/wiki/Exponential_distribution

See also: expcdf, exppdf, exprnd, expfit, explike, expstat

Source Code: expinv

Example: 1

 

 ## Plot various iCDFs from the exponential distribution
 p = 0.001:0.001:0.999;
 x1 = expinv (p, 2/3);
 x2 = expinv (p, 1.0);
 x3 = expinv (p, 2.0);
 plot (p, x1, "-b", p, x2, "-g", p, x3, "-r")
 grid on
 ylim ([0, 5])
 legend ({"μ = 2/3", "μ = 1", "μ = 2"}, "location", "northwest")
 title ("Exponential iCDF")
 xlabel ("probability")
 ylabel ("values in x")

                    
plotted figure

statistics-release-1.6.3/docs/explike.html000066400000000000000000000143301456127120000206070ustar00rootroot00000000000000 Statistics: explike

Function Reference: explike

statistics: nlogL = explike (mu, x)
statistics: [nlogL, avar] = explike (mu, x)
statistics: […] = explike (mu, x, censor)
statistics: […] = explike (mu, x, censor, freq)

Negative log-likelihood for the exponential distribution.

nlogL = explike (mu, x) returns the negative log likelihood of the data in x corresponding to the exponential distribution with mean parameter mu. x must be a vector of non-negative values, otherwise NaN is returned.

[nlogL, avar] = explike (mu, x) also returns the inverse of Fisher’s information matrix, avar. If the input mean parameter, mu, is the maximum likelihood estimate, avar is its asymptotic variance.

[…] = explike (mu, x, censor) accepts a boolean vector, censor, of the same size as x with 1s for observations that are right-censored and 0s for observations that are observed exactly. By default, or if left empty, censor = zeros (size (x)).

[…] = explike (mu, x, censor, freq) accepts a frequency vector, freq, of the same size as x. freq typically contains integer frequencies for the corresponding elements in x, but it can contain any non-integer non-negative values. By default, or if left empty, freq = ones (size (x)).

A common alternative parameterization of the exponential distribution is to use the parameter λ defined as the mean number of events in an interval as opposed to the parameter μ, which is the mean wait time for an event to occur. λ and μ are reciprocals, i.e. μ = 1 / λ.

Further information about the exponential distribution can be found at https://en.wikipedia.org/wiki/Exponential_distribution

See also: expcdf, expinv, exppdf, exprnd, expfit, expstat

Source Code: explike

statistics-release-1.6.3/docs/exppdf.html000066400000000000000000000143101456127120000204320ustar00rootroot00000000000000 Statistics: exppdf

Function Reference: exppdf

statistics: y = exppdf (x)
statistics: y = exppdf (x, mu)

Exponential probability density function (PDF).

For each element of x, compute the probability density function (PDF) of the exponential distribution with mean parameter mu. The size of y is the common size of x and mu. A scalar input functions as a constant matrix of the same size as the other inputs.

Default value for mu = 1.

A common alternative parameterization of the exponential distribution is to use the parameter λ defined as the mean number of events in an interval as opposed to the parameter μ, which is the mean wait time for an event to occur. λ and μ are reciprocals, i.e. μ = 1 / λ.

Further information about the exponential distribution can be found at https://en.wikipedia.org/wiki/Exponential_distribution

See also: expcdf, expinv, exprnd, expfit, explike, expstat

Source Code: exppdf

Example: 1

 

 ## Plot various PDFs from the exponential distribution
 x = 0:0.01:5;
 y1 = exppdf (x, 2/3);
 y2 = exppdf (x, 1.0);
 y3 = exppdf (x, 2.0);
 plot (x, y1, "-b", x, y2, "-g", x, y3, "-r")
 grid on
 ylim ([0, 1.5])
 legend ({"μ = 2/3", "μ = 1", "μ = 2"}, "location", "northeast")
 title ("Exponential PDF")
 xlabel ("values in x")
 ylabel ("density")

                    
plotted figure

statistics-release-1.6.3/docs/exprnd.html000066400000000000000000000125121456127120000204460ustar00rootroot00000000000000 Statistics: exprnd

Function Reference: exprnd

statistics: r = exprnd (mu)
statistics: r = exprnd (mu, rows)
statistics: r = exprnd (mu, rows, cols, …)
statistics: r = exprnd (mu, [sz])

Random arrays from the exponential distribution.

r = exprnd (mu) returns an array of random numbers chosen from the exponential distribution with mean parameter mu. The size of r is the size of mu.

When called with a single size argument, exprnd returns a square matrix with the dimension specified. When called with more than one scalar argument, the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions. The size may also be specified with a row vector of dimensions, sz.

A common alternative parameterization of the exponential distribution is to use the parameter λ defined as the mean number of events in an interval as opposed to the parameter μ, which is the mean wait time for an event to occur. λ and μ are reciprocals, i.e. μ = 1 / λ.

Further information about the exponential distribution can be found at https://en.wikipedia.org/wiki/Exponential_distribution

See also: expcdf, expinv, exppdf, expfit, explike, expstat

Source Code: exprnd

statistics-release-1.6.3/docs/expstat.html000066400000000000000000000113301456127120000206330ustar00rootroot00000000000000 Statistics: expstat

Function Reference: expstat

statistics: [m, v] = expstat (mu)

Compute statistics of the exponential distribution.

[m, v] = expstat (mu) returns the mean and variance of the exponential distribution with mean parameter mu.

The size of m (mean) and v (variance) is the same size of the input argument.

A common alternative parameterization of the exponential distribution is to use the parameter λ defined as the mean number of events in an interval as opposed to the parameter μ, which is the mean wait time for an event to occur. λ and μ are reciprocals, i.e. μ = 1 / λ.

Further information about the exponential distribution can be found at https://en.wikipedia.org/wiki/Exponential_distribution

See also: expcdf, expinv, exppdf, exprnd, expfit, explike

Source Code: expstat

statistics-release-1.6.3/docs/fcdf.html000066400000000000000000000143431456127120000200540ustar00rootroot00000000000000 Statistics: fcdf

Function Reference: fcdf

statistics: p = fcdf (x, df1, df2)
statistics: p = fcdf (x, df1, df2, "upper")

F-cumulative distribution function (CDF).

For each element of x, compute the cumulative distribution function (CDF) of the F-distribution with df1 and df2 degrees of freedom. The size of p is the common size of x, df1, and df2. A scalar input functions as a constant matrix of the same size as the other inputs.

p = fcdf (x, df1, df2, "upper") computes the upper tail probability of the F-distribution with df1 and df2 degrees of freedom, at the values in x.

Further information about the F-distribution can be found at https://en.wikipedia.org/wiki/F-distribution

See also: finv, fpdf, frnd, fstat

Source Code: fcdf

Example: 1

 

 ## Plot various CDFs from the F distribution
 x = 0.01:0.01:4;
 p1 = fcdf (x, 1, 2);
 p2 = fcdf (x, 2, 1);
 p3 = fcdf (x, 5, 2);
 p4 = fcdf (x, 10, 1);
 p5 = fcdf (x, 100, 100);
 plot (x, p1, "-b", x, p2, "-g", x, p3, "-r", x, p4, "-c", x, p5, "-m")
 grid on
 legend ({"df1 = 1, df2 = 2", "df1 = 2, df2 = 1", ...
          "df1 = 5, df2 = 2", "df1 = 10, df2 = 1", ...
          "df1 = 100, df2 = 100"}, "location", "southeast")
 title ("F CDF")
 xlabel ("values in x")
 ylabel ("probability")

                    
plotted figure

statistics-release-1.6.3/docs/ff2n.html000066400000000000000000000077661456127120000200200ustar00rootroot00000000000000 Statistics: ff2n

Function Reference: ff2n

statistics: dFF2 = ff2n (n)

Two-level full factorial design.

dFF2 = ff2n (n) gives factor settings dFF2 for a two-level full factorial design with n factors. dFF2 is m-by-n, where m is the number of treatments in the full-factorial design. Each row of dFF2 corresponds to a single treatment. Each column contains the settings for a single factor, with values of 0 and 1 for the two levels.

@seealso {fullfact

Source Code: ff2n

statistics-release-1.6.3/docs/fillmissing.html000066400000000000000000000307441456127120000214750ustar00rootroot00000000000000 Statistics: fillmissing

Function Reference: fillmissing

statistics: B = fillmissing (A, 'constant', v)
statistics: B = fillmissing (A, method)
statistics: B = fillmissing (A, move_method, window_size)
statistics: B = fillmissing (A, fill_function, window_size)
statistics: B = fillmissing (…, dim)
statistics: B = fillmissing (…, PropertyName, PropertyValue)
statistics: [B, idx] = fillmissing (…)

Replace missing entries of array A either with values in v or as determined by other specified methods. ’missing’ values are determined by the data type of A as identified by the function @ref{ismissing}, curently defined as:

  • NaN: single, double
  • " " (white space): char
  • {""} (white space in cell): string cells.

A can be a numeric scalar or array, a character vector or array, or a cell array of character vectors (a.k.a. string cells).

v can be a scalar or an array containing values for replacing the missing values in A with a compatible data type for isertion into A. The shape of v must be a scalar or an array with number of elements in v equal to the number of elements orthoganal to the operating dimension. E.g., if size(A) = [3 5 4], operating along dim = 2 requires v to contain either 1 or 3x4=12 elements.

If requested, the optional output idx will contain a logical array the same shape as A indicating with 1’s which locations in A were filled.

Alternate Input Arguments and Values:

  • method - replace missing values with:
    next
    previous
    nearest

    next, previous, or nearest non-missing value (nearest defaults to next when equidistant as determined by SamplePoints.)

    linear

    linear interpolation of neigboring, non-missing values

    spline

    piecewise cubic spline interpolation of neigboring, non-missing values

    pchip

    ’shape preserving’ piecewise cubic spline interposaliton of neighboring, non-missing values

  • move_method - moving window calculated replacement values:
    movmean
    movmedian

    moving average or median using a window determined by window_size. window_size must be either a positive scalar value or a two element positive vector of sizes [nb, na] measured in the same units as SamplePoints. For scalar values, the window is centered on the missing element and includes all data points within a distance of half of window_size on either side of the window center point. Note that for compatability, when using a scalar value, the backward window limit is inclusive and the forward limit is exclusive. If a two-element window_size vector is specified, the window includes all points within a distance of nb backward and na forward from the current element at the window center (both limits inclusive).

  • fill_function - custom method specified as a function handle. The supplied fill function must accept three inputs in the following order for each missing gap in the data:
    A_values -

    elements of A within the window on either side of the gap as determined by window_size. (Note these elements can include missing values from other nearby gaps.)

    A_locs -

    locations of the reference data, A_values, in terms of the default or specified SamplePoints.

    gap_locs -

    location of the gap data points that need to be filled in terms of the default or specified SamplePoints.

    The supplied function must return a scalar or vector with the same number of elements in gap_locs. The required window_size parameter follows similar rules as for the moving average and median methods described above, with the two exceptions that (1) each gap is processed as a single element, rather than gap elements being processed individually, and (2) the window extended on either side of the gap has inclusive endpoints regardless of how window_size is specified.

  • dim - specify a dimension for vector operation (default = first non-singeton dimension)
  • PropertyName-PropertyValue pairs
    SamplePoints

    PropertyValue is a vector of sample point values representing the sorted and unique x-axis values of the data in A. If unspecified, the default is assumed to be the vector [1 : size (A, dim)]. The values in SamplePoints will affect methods and properties that rely on the effective distance between data points in A, such as interpolants and moving window functions where the window_size specified for moving window functions is measured relative to the SamplePoints.

    EndValues

    Apply a separate handling method for missing values at the front or back of the array. PropertyValue can be:

    • A constant scalar or array with the same shape requirments as v.
    • none - Do not fill end gap values.
    • extrap - Use the same procedure as method to fill the end gap values.
    • Any valid method listed above except for movmean, movmedian, and fill_function. Those methods can only be applied to end gap values with extrap.
    MissingLocations

    PropertyValue must be a logical array the same size as A indicating locations of known missing data with a value of true. (cannot be combined with MaxGap)

    MaxGap

    PropertyValue is a numeric scalar indicating the maximum gap length to fill, and assumes the same distance scale as the sample points. Gap length is calculated by the difference in locations of the sample points on either side of the gap, and gaps larger than MaxGap are ignored by fillmissing. (cannot be combined with MissingLocations)

Compatibility Notes:

  • Numerical and logical inputs for A and v may be specified in any combination. The output will be the same class as A, with the v converted to that data type for filling. Only single and double have defined ’missing’ values, so except for when the missinglocations option specifies the missing value identification of logical and other numeric data types, the output will always be B = A with idx = false(size(A)).
  • All interpolation methods can be individually applied to EndValues.
  • MATLAB’s fill_function method currently has several inconsistencies with the other methods (tested against version 2022a), and Octave’s implementation has chosen the following consistent behavior over compatibility: (1) a column full of missing data is considered part of EndValues, (2) such columns are then excluded from fill_function processing because the moving window is always empty. (3) operation in dimensions higher than 2 perform identically to operations in dims 1 and 2, most notable on vectors.
  • Method "makima" is not yet implemented in interp1, which is used by fillmissing. Attempting to call this method will produce an error until the method is implemented in interp1.

See also: ismissing, rmmissing, standardizeMissing

Source Code: fillmissing

statistics-release-1.6.3/docs/finv.html000066400000000000000000000135471456127120000201210ustar00rootroot00000000000000 Statistics: finv

Function Reference: finv

statistics: x = finv (p, df1, df2)

Inverse of the F-cumulative distribution function (iCDF).

For each element of p, compute the quantile (the inverse of the CDF) of the F-distribution with df1 and df2 degrees of freedom. The size of x is the common size of p, df1, and df2. A scalar input functions as a constant matrix of the same size as the other inputs.

Further information about the F-distribution can be found at https://en.wikipedia.org/wiki/F-distribution

See also: fcdf, fpdf, frnd, fstat

Source Code: finv

Example: 1

 

 ## Plot various iCDFs from the F distribution
 p = 0.001:0.001:0.999;
 x1 = finv (p, 1, 1);
 x2 = finv (p, 2, 1);
 x3 = finv (p, 5, 2);
 x4 = finv (p, 10, 1);
 x5 = finv (p, 100, 100);
 plot (p, x1, "-b", p, x2, "-g", p, x3, "-r", p, x4, "-c", p, x5, "-m")
 grid on
 ylim ([0, 4])
 legend ({"df1 = 1, df2 = 2", "df1 = 2, df2 = 1", ...
          "df1 = 5, df2 = 2", "df1 = 10, df2 = 1", ...
          "df1 = 100, df2 = 100"}, "location", "northwest")
 title ("F iCDF")
 xlabel ("probability")
 ylabel ("values in x")

                    
plotted figure

statistics-release-1.6.3/docs/fishertest.html000066400000000000000000000201161456127120000213250ustar00rootroot00000000000000 Statistics: fishertest

Function Reference: fishertest

statistics: h = fishertest (x)
statistics: h = fishertest (x, param1, value1, …)
statistics: [h, pval] = fishertest (…)
statistics: [h, pval, stats] = fishertest (…)

Fisher’s exact test.

h = fishertest (x) performs Fisher’s exact test on a 2×2 contingency table given in matrix x. This is a test of the hypothesis that there are no non-random associations between the two 2-level categorical variables in x. fishertest returns the result of the tested hypothsis in h. h = 0 indicates that the null hypothesis (of no association) cannot be rejected at the 5% significance level. h = 1 indicates that the null hypothesis can be rejected at the 5% level. x must contain only non-negative integers. Use the crostab function to generate the contingency table from samples of two categorical variables. Fisher’s exact test is not suitable when all integers in x are very large. Use can use the Chi-square test in this case.

[h, pval] = fishertest (x) returns the p-value in pval. That is the probability of observing the given result, or one more extreme, by chance if the null hypothesis is true. Small values of pval cast doubt on the validity of the null hypothesis.

[p, pval, stats] = fishertest (…) returns the structure stats with the following fields:

OddsRatio– the odds ratio
ConfidenceInterval– the asymptotic confidence interval for the odds ratio. If any of the four entries in the contingency table x is zero, the confidence interval will not be computed, and [-Inf Inf] will be displayed.

[…] = fishertest (…, name, value, …) specifies one or more of the following name/value pairs:

NameValue
"alpha"the significance level. Default is 0.05.
"tail"a string specifying the alternative hypothesis
"both"odds ratio not equal to 1, indicating association between two variables (two-tailed test, default)
"left"odds ratio greater than 1 (right-tailed test)
"right"odds ratio is less than 1 (left-tailed test)

See also: crosstab, chi2test, mcnemar_test, ztest2

Source Code: fishertest

Example: 1

 

 ## A Fisher's exact test example

 x = [3, 1; 1, 3]
 [h, p, stats] = fishertest(x)

x =

   3   1
   1   3

h = 0
p = 0.4857
stats =

  scalar structure containing the fields:

    OddsRatio = 9
    ConfidenceInterval =

         0.3666   220.9270


                    
statistics-release-1.6.3/docs/fitcknn.html000066400000000000000000000364511456127120000206120ustar00rootroot00000000000000 Statistics: fitcknn

Function Reference: fitcknn

statistics: obj = fitcknn (X, Y)
statistics: obj = fitcknn (…, name, value)

Fit a k-Nearest Neighbor classification model.

obj = fitcknn (X, Y) returns a k-Nearest Neighbor classification model, obj, with X being the predictor data, and Y the class labels of observations in X.

  • X must be a N×P numeric matrix of input data where rows correspond to observations and columns correspond to features or variables. X will be used to train the kNN model.
  • Y is N×1 matrix or cell matrix containing the class labels of corresponding predictor data in X. Y can contain any type of categorical data. Y must have same numbers of Rows as X.

obj = fitcknn (…, name, value) returns a k-Nearest Neighbor classification model with additional options specified by Name-Value pair arguments listed below.

NameValue
"PredictorNames"A cell array of character vectors specifying the predictor variable names. The variable names are assumed to be in the same order as they appear in the training data X.
"ResponseName"A character vector specifying the name of the response variable.
"ClassNames"A cell array of character vectors specifying the names of the classes in the training data Y.
"BreakTies"Tie-breaking algorithm used by predict when multiple classes have the same smallest cost. By default, ties occur when multiple classes have the same number of nearest points among the k nearest neighbors. The available options are specified by the following character arrays:
"smallest"This is the default and it favors the class with the smallest index among the tied groups, i.e. the one that appears first in the training labelled data.
"nearest"This favors the class with the nearest neighbor among the tied groups, i.e. the class with the closest member point according to the distance metric used.
"nearest"This randomly picks one class among the tied groups.
"BucketSize"The maximum number of data points in the leaf node of the Kd-tree and it must be a positive integer. By default, it is 50. This argument is meaningful only when the selected search method is "kdtree".
"Cost"A N×R numeric matrix containing misclassification cost for the corresponding instances in X where R is the number of unique categories in Y. If an instance is correctly classified into its category the cost is calculated to be 1, If not then 0. cost matrix can be altered use obj.cost = somecost. default value cost = ones(rows(X),numel(unique(Y))).
"Prior"A numeric vector specifying the prior probabilities for each class. The order of the elements in Prior corresponds to the order of the classes in ClassNames.
"NumNeighbors"A positive integer value specifying the number of nearest neighbors to be found in the kNN search. By default, it is 1.
"Exponent"A positive scalar (usually an integer) specifying the Minkowski distance exponent. This argument is only valid when the selected distance metric is "minkowski". By default it is 2.
"Scale"A nonnegative numeric vector specifying the scale parameters for the standardized Euclidean distance. The vector length must be equal to the number of columns in X. This argument is only valid when the selected distance metric is "seuclidean", in which case each coordinate of X is scaled by the corresponding element of "scale", as is each query point in Y. By default, the scale parameter is the standard deviation of each coordinate in X. If a variable in X is constant, i.e. zero variance, this value is forced to 1 to avoid division by zero. This is the equivalent of this variable not being standardized.
"Cov"A square matrix with the same number of columns as X specifying the covariance matrix for computing the mahalanobis distance. This must be a positive definite matrix matching. This argument is only valid when the selected distance metric is "mahalanobis".
"Distance"is the distance metric used by knnsearch as specified below:
"euclidean"Euclidean distance.
"seuclidean"standardized Euclidean distance. Each coordinate difference between the rows in X and the query matrix Y is scaled by dividing by the corresponding element of the standard deviation computed from X. To specify a different scaling, use the "Scale" name-value argument.
"cityblock"City block distance.
"chebychev"Chebychev distance (maximum coordinate difference).
"minkowski"Minkowski distance. The default exponent is 2. To specify a different exponent, use the "P" name-value argument.
"mahalanobis"Mahalanobis distance, computed using a positive definite covariance matrix. To change the value of the covariance matrix, use the "Cov" name-value argument.
"cosine"Cosine distance.
"correlation"One minus the sample linear correlation between observations (treated as sequences of values).
"spearman"One minus the sample Spearman’s rank correlation between observations (treated as sequences of values).
"hamming"Hamming distance, which is the percentage of coordinates that differ.
"jaccard"One minus the Jaccard coefficient, which is the percentage of nonzero coordinates that differ.
@distfunCustom distance function handle. A distance function of the form function D2 = distfun (XI, YI), where XI is a 1×P vector containing a single observation in P-dimensional space, YI is an N×P matrix containing an arbitrary number of observations in the same P-dimensional space, and D2 is an N×P vector of distances, where (D2k) is the distance between observations XI and (YIk,:).
"DistanceWeight"A distance weighting function, specified either as a function handle, which accepts a matrix of nonnegative distances and returns a matrix the same size containing nonnegative distance weights, or one of the following values: "equal", which corresponds to no weighting; "inverse", which corresponds to a weight equal to 1/distance; "squaredinverse", which corresponds to a weight equal to 1/distance^2.
"IncludeTies"A boolean flag to indicate if the returned values should contain the indices that have same distance as the K^th neighbor. When false, knnsearch chooses the observation with the smallest index among the observations that have the same distance from a query point. When true, knnsearch includes all nearest neighbors whose distances are equal to the K^th smallest distance in the output arguments. To specify K, use the "K" name-value pair argument.
"NSMethod"is the nearest neighbor search method used by knnsearch as specified below.
"kdtree"Creates and uses a Kd-tree to find nearest neighbors. "kdtree" is the default value when the number of columns in X is less than or equal to 10, X is not sparse, and the distance metric is "euclidean", "cityblock", "manhattan", "chebychev", or "minkowski". Otherwise, the default value is "exhaustive". This argument is only valid when the distance metric is one of the four aforementioned metrics.
"exhaustive"Uses the exhaustive search algorithm by computing the distance values from all the points in X to each point in Y.

See also: ClassificationKNN, knnsearch, rangesearch, pdist2

Source Code: fitcknn

statistics-release-1.6.3/docs/fitgmdist.html000066400000000000000000000235671456127120000211540ustar00rootroot00000000000000 Statistics: fitgmdist

Function Reference: fitgmdist

statistics: GMdist = fitgmdist (data, k, param1, value1, …)

Fit a Gaussian mixture model with k components to data. Each row of data is a data sample. Each column is a variable.

Optional parameters are:

  • "start": Initialization conditions. Possible values are:
    • "randSample" (default) Takes means uniformly from rows of data.
    • "plus" Use k-means++ to initialize means.
    • "cluster" Performs an initial clustering with 10% of the data.
    • vector A vector whose length is the number of rows in data, and whose values are 1 to k specify the components each row is initially allocated to. The mean, variance, and weight of each component is calculated from that.
    • structure A structure with fields mu, Sigma and ComponentProportion.

    For "randSample", "plus", and "cluster", the initial variance of each component is the variance of the entire data sample.

  • "Replicates": Number of random restarts to perform.
  • "RegularizationValue" or "Regularize": A small number added to the diagonal entries of the covariance to prevent singular covariances.
  • "SharedCovariance" or "SharedCov" (logical). True if all components must share the same variance, to reduce the number of free parameters
  • "CovarianceType" or "CovType" (string). Possible values are:
    • "full" (default) Allow arbitrary covariance matrices.
    • "diagonal" Force covariances to be diagonal, to reduce the number of free parameters.
  • "Options": A structure with all of the following fields:
    • MaxIter Maximum number of EM iterations (default 100).
    • TolFun Threshold increase in likelihood to terminate EM (default 1e-6).
    • Display Possible values are:
      • "off" (default): Display nothing.
      • "final": Display the total number of iterations and likelihood once the execution completes.
      • "iter": Display the number of iteration and likelihood after each iteration.
  • "Weight": A column vector or N×2 matrix. The first column consists of non-negative weights given to the samples. If these are all integers, this is equivalent to specifying weight(i) copies of row i of data, but potentially faster. If a row of data is used to represent samples that are similar but not identical, then the second column of weight indicates the variance of those original samples. Specifically, in the EM algorithm, the contribution of row i towards the variance is set to at least weight(i,2), to prevent spurious components with zero variance.

See also: gmdistribution, kmeans

Source Code: fitgmdist

Example: 1

 

 ## Generate a two-cluster problem
 C1 = randn (100, 2) + 2;
 C2 = randn (100, 2) - 2;
 data = [C1; C2];

 ## Perform clustering
 GMModel = fitgmdist (data, 2);

 ## Plot the result
 figure
 [heights, bins] = hist3([C1; C2]);
 [xx, yy] = meshgrid(bins{1}, bins{2});
 bbins = [xx(:), yy(:)];
 contour (reshape (GMModel.pdf (bbins), size (heights)));

                    
plotted figure

Example: 2

 

 Angle_Theta = [ 30 + 10 * randn(1, 10),  60 + 10 * randn(1, 10) ]';
 nbOrientations = 2;
 initial_orientations = [38.0; 18.0];
 initial_weights = ones (1, nbOrientations) / nbOrientations;
 initial_Sigma = 10 * ones (1, 1, nbOrientations);
 start = struct ("mu", initial_orientations, "Sigma", initial_Sigma, ...
                 "ComponentProportion", initial_weights);
 GMModel_Theta = fitgmdist (Angle_Theta, nbOrientations, "Start", start , ...
                            "RegularizationValue", 0.0001)

Gaussian mixture distribution with 2 components in 1 dimension(s)
Clust 1: weight 0.70508
	Mean: 52.5568 
	Variance:156.17
Clust 2: weight 0.29492
	Mean: 20.0915 
	Variance:1.8459
AIC=164.862 BIC=169.841 NLogL=77.431 Iter=5 Cged=1 Reg=0.0001
                    
statistics-release-1.6.3/docs/fitlm.html000066400000000000000000000335511456127120000202670ustar00rootroot00000000000000 Statistics: fitlm

Function Reference: fitlm

statistics: tab = fitlm (X, y)
statistics: tab = fitlm (X, y, name, value)
statistics: tab = fitlm (X, y, modelspec)
statistics: tab = fitlm (X, y, modelspec, name, value)
statistics: [tab] = fitlm (…)
statistics: [tab, stats] = fitlm (…)
statistics: [tab, stats] = fitlm (…)

Regress the continuous outcome (i.e. dependent variable) y on continuous or categorical predictors (i.e. independent variables) X by minimizing the sum-of-squared residuals. Unless requested otherwise, fitlm prints the model formula, the regression coefficients (i.e. parameters/contrasts) and an ANOVA table. Note that unlike anovan, fitlm treats all factors as continuous by default. A bootstrap resampling variant of this function, bootlm, is available in the statistics-resampling package and has similar usage.

X must be a column major matrix or cell array consisting of the predictors. A constant term (intercept) should not be included in X - it is automatically added to the model. y must be a column vector corresponding to the outcome variable. modelspec can specified as one of the following:

  • "constant" : model contains only a constant (intercept) term.
  • "linear" (default) : model contains an intercept and linear term for each predictor.
  • "interactions" : model contains an intercept, linear term for each predictor and all products of pairs of distinct predictors.
  • "full" : model contains an intercept, linear term for each predictor and all combinations of the predictors.
  • a matrix of term definitions : an t-by-(N+1) matrix specifying terms in a model, where t is the number of terms, N is the number of predictor variables, and +1 accounts for the outcome variable. The outcome variable is the last column in the terms matrix and must be a column of zeros. An intercept must be specified in the first row of the terms matrix and must be a row of zeros.

fitlm can take a number of optional parameters as name-value pairs.

[…] = fitlm (..., "CategoricalVars", categorical)

  • categorical is a vector of indices indicating which of the columns (i.e. variables) in X should be treated as categorical predictors rather than as continuous predictors.

fitlm also accepts optional anovan parameters as name-value pairs (except for the "model" parameter). The accepted parameter names from anovan and their default values in fitlm are:

  • CONTRASTS : "treatment"
  • SSTYPE: 2
  • ALPHA: 0.05
  • DISPLAY: "on"
  • WEIGHTS: [] (empty)
  • RANDOM: [] (empty)
  • CONTINUOUS: [1:N]
  • VARNAMES: [] (empty)

Type ’help anovan’ to find out more about what these options do.

fitlm can return up to two output arguments:

[tab] = fitlm (…) returns a cell array containing a table of model parameters

[tab, stats] = fitlm (…) returns a structure containing additional statistics, including degrees of freedom and effect sizes for each term in the linear model, the design matrix, the variance-covariance matrix, (weighted) model residuals, and the mean squared error. The columns of stats.coeffs (from left-to-right) report the model coefficients, standard errors, lower and upper 100*(1-alpha)% confidence interval bounds, t-statistics, and p-values relating to the contrasts. The number appended to each term name in stats.coeffnames corresponds to the column number in the relevant contrast matrix for that factor. The stats structure can be used as input for multcompare. Note that if the model contains a continuous variable and you wish to use the STATS output as input to multcompare, then the model needs to be refit with the "contrast" parameter set to a sum-to-zero contrast coding scheme, e.g."simple".

See also: anovan, multcompare

Source Code: fitlm

Example: 1

 

 y =  [ 8.706 10.362 11.552  6.941 10.983 10.092  6.421 14.943 15.931 ...
        22.968 18.590 16.567 15.944 21.637 14.492 17.965 18.851 22.891 ...
        22.028 16.884 17.252 18.325 25.435 19.141 21.238 22.196 18.038 ...
        22.628 31.163 26.053 24.419 32.145 28.966 30.207 29.142 33.212 ...
        25.694 ]';
 X = [1 1 1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5]';

 [TAB,STATS] = fitlm (X,y,"linear","CategoricalVars",1,"display","on");


MODEL FORMULA (based on Wilkinson's notation):

Y ~ 1 + X1

MODEL PARAMETERS (contrasts for the fixed effects)

Parameter               Estimate        SE  Lower.CI  Upper.CI        t Prob>|t|
--------------------------------------------------------------------------------
(Intercept)                   10      1.02      7.93      12.1     9.83    <.001 
X1_1                           8      1.64      4.66      11.3     4.87    <.001 
X1_2                           9      1.44      6.07      11.9     6.25    <.001 
X1_3                          11      1.49      7.97        14     7.38    <.001 
X1_4                          19       1.4      16.2      21.8    13.58    <.001 

ANOVA TABLE (Type II sums-of-squares):

Source                   Sum Sq.    d.f.    Mean Sq.  R Sq.            F  Prob>F
--------------------------------------------------------------------------------
X1                        1561.3       4      390.33  0.855        47.10   <.001 
Error                     265.17      32      8.2866
Total                     1826.5      36 

                    
plotted figure

Example: 2

 

 popcorn = [5.5, 4.5, 3.5; 5.5, 4.5, 4.0; 6.0, 4.0, 3.0; ...
            6.5, 5.0, 4.0; 7.0, 5.5, 5.0; 7.0, 5.0, 4.5];
 brands = {'Gourmet', 'National', 'Generic'; ...
           'Gourmet', 'National', 'Generic'; ...
           'Gourmet', 'National', 'Generic'; ...
           'Gourmet', 'National', 'Generic'; ...
           'Gourmet', 'National', 'Generic'; ...
           'Gourmet', 'National', 'Generic'};
 popper = {'oil', 'oil', 'oil'; 'oil', 'oil', 'oil'; 'oil', 'oil', 'oil'; ...
           'air', 'air', 'air'; 'air', 'air', 'air'; 'air', 'air', 'air'};

 [TAB, STATS] = fitlm ({brands(:),popper(:)},popcorn(:),"interactions",...
                          "CategoricalVars",[1,2],"display","on");


MODEL FORMULA (based on Wilkinson's notation):

Y ~ 1 + X1 + X2 + X1:X2

MODEL PARAMETERS (contrasts for the fixed effects)

Parameter               Estimate        SE  Lower.CI  Upper.CI        t Prob>|t|
--------------------------------------------------------------------------------
(Intercept)                 5.67     0.215       5.2      6.14    26.34    <.001 
X1_1                       -1.33     0.304        -2     -0.67    -4.38    <.001 
X1_2                       -2.17     0.304     -2.83      -1.5    -7.12    <.001 
X2_1                        1.17     0.304     0.504      1.83     3.83     .002 
X1:X2_1                   -0.333      0.43     -1.27     0.604    -0.77     .454 
X1:X2_2                   -0.167      0.43      -1.1     0.771    -0.39     .705 

ANOVA TABLE (Type II sums-of-squares):

Source                   Sum Sq.    d.f.    Mean Sq.  R Sq.            F  Prob>F
--------------------------------------------------------------------------------
X1                         15.75       2       7.875  0.904        56.70   <.001 
X2                           4.5       1         4.5  0.730        32.40   <.001 
X1*X2                   0.083333       2    0.041667  0.048         0.30    .746 
Error                     1.6667      12     0.13889
Total                         22      17 

                    
plotted figure

statistics-release-1.6.3/docs/fitrgam.html000066400000000000000000000271111456127120000206000ustar00rootroot00000000000000 Statistics: fitrgam

Function Reference: fitrgam

statistics: obj = fitrgam (X, Y)
statistics: obj = fitrgam (X, Y, name, value)

Fit a Generalised Additive Model (GAM) for regression.

obj = fitrgam (X, Y) returns an object of class RegressionGAM, with matrix X containing the predictor data and vector Y containing the continuous response data.

  • X must be a N×P numeric matrix of input data where rows correspond to observations and columns correspond to features or variables. X will be used to train the GAM model.
  • Y must be N×1 numeric vector containing the response data corresponding to the predictor data in X. Y must have same number of rows as X.

obj = fitrgam (…, name, value) returns an object of class RegressionGAM with additional properties specified by Name-Value pair arguments listed below.

NameValue
"predictors"Predictor Variable names, specified as a row vector cell of strings with the same length as the columns in X. If omitted, the program will generate default variable names (x1, x2, ..., xn) for each column in X.
"responsename"Response Variable Name, specified as a string. If omitted, the default value is "Y".
"formula"a model specification given as a string in the form "Y ~ terms" where Y represents the reponse variable and terms the predictor variables. The formula can be used to specify a subset of variables for training model. For example: "Y ~ x1 + x2 + x3 + x4 + x1:x2 + x2:x3" specifies four linear terms for the first four columns of for predictor data, and x1:x2 and x2:x3 specify the two interaction terms for 1st-2nd and 3rd-4th columns respectively. Only these terms will be used for training the model, but X must have at least as many columns as referenced in the formula. If Predictor Variable names have been defined, then the terms in the formula must reference to those. When "formula" is specified, all terms used for training the model are referenced in the IntMatrix field of the obj class object as a matrix containing the column indexes for each term including both the predictors and the interactions used.
"interactions"a logical matrix, a positive integer scalar, or the string "all" for defining the interactions between predictor variables. When given a logical matrix, it must have the same number of columns as X and each row corresponds to a different interaction term combining the predictors indexed as true. Each interaction term is appended as a column vector after the available predictor column in X. When "all" is defined, then all possible combinations of interactions are appended in X before training. At the moment, parsing a positive integer has the same effect as the "all" option. When "interactions" is specified, only the interaction terms appended to X are referenced in the IntMatrix field of the obj class object.
"knots"a scalar or a row vector with the same columns as X. It defines the knots for fitting a polynomial when training the GAM. As a scalar, it is expanded to a row vector. The default value is 5, hence expanded to ones (1, columns (X)) * 5. You can parse a row vector with different number of knots for each predictor variable to be fitted with, although not recommended.
"order"a scalar or a row vector with the same columns as X. It defines the order of the polynomial when training the GAM. As a scalar, it is expanded to a row vector. The default values is 3, hence expanded to ones (1, columns (X)) * 3. You can parse a row vector with different number of polynomial order for each predictor variable to be fitted with, although not recommended.
"dof"a scalar or a row vector with the same columns as X. It defines the degrees of freedom for fitting a polynomial when training the GAM. As a scalar, it is expanded to a row vector. The default value is 8, hence expanded to ones (1, columns (X)) * 8. You can parse a row vector with different degrees of freedom for each predictor variable to be fitted with, although not recommended.
"tol"a positive scalar to set the tolerance for covergence during training. By defaul, it is set to 1e-3.

You can parse either a "formula" or an "interactions" optional parameter. Parsing both parameters will result an error. Accordingly, you can only pass up to two parameters among "knots", "order", and "dof" to define the required polynomial for training the GAM model.

See also: RegressionGAM, regress, regress_gp

Source Code: fitrgam

Example: 1

 

 # Train a RegressionGAM Model for synthetic values

 f1 = @(x) cos (3 *x);
 f2 = @(x) x .^ 3;

 # generate x1 and x2 for f1 and f2
 x1 = 2 * rand (50, 1) - 1;
 x2 = 2 * rand (50, 1) - 1;

 # calculate y
 y = f1(x1) + f2(x2);

 # add noise
 y = y + y .* 0.2 .* rand (50,1);
 X = [x1, x2];

 # create an object
 a = fitrgam (X, y, "tol", 1e-3)

a =

  RegressionGAM object with properties:

            BaseModel: [1x1 struct]
                  DoF: [1x2 double]
              Formula: [0x0 double]
            IntMatrix: [0x0 double]
         Interactions: [0x0 double]
                Knots: [1x2 double]
            ModelwInt: [0x0 double]
      NumObservations: [1x1 double]
        NumPredictors: [1x1 double]
                Order: [1x2 double]
       PredictorNames: [1x2 cell]
         ResponseName: Y
             RowsUsed: [50x1 double]
                  Tol: [1x1 double]
                    X: [50x2 double]
                    Y: [50x1 double]

                    
statistics-release-1.6.3/docs/fpdf.html000066400000000000000000000135121456127120000200660ustar00rootroot00000000000000 Statistics: fpdf

Function Reference: fpdf

statistics: y = fpdf (x, df1, df2)

F-probability density function (PDF).

For each element of x, compute the probability density function (PDF) of the F-distribution with df1 and df2 degrees of freedom. The size of y is the common size of x, df1, and df2. A scalar input functions as a constant matrix of the same size as the other inputs.

Further information about the F-distribution can be found at https://en.wikipedia.org/wiki/F-distribution

See also: fcdf, finv, frnd, fstat

Source Code: fpdf

Example: 1

 

 ## Plot various PDFs from the F distribution
 x = 0.01:0.01:4;
 y1 = fpdf (x, 1, 1);
 y2 = fpdf (x, 2, 1);
 y3 = fpdf (x, 5, 2);
 y4 = fpdf (x, 10, 1);
 y5 = fpdf (x, 100, 100);
 plot (x, y1, "-b", x, y2, "-g", x, y3, "-r", x, y4, "-c", x, y5, "-m")
 grid on
 ylim ([0, 2.5])
 legend ({"df1 = 1, df2 = 2", "df1 = 2, df2 = 1", ...
          "df1 = 5, df2 = 2", "df1 = 10, df2 = 1", ...
          "df1 = 100, df2 = 100"}, "location", "northeast")
 title ("F PDF")
 xlabel ("values in x")
 ylabel ("density")

                    
plotted figure

statistics-release-1.6.3/docs/friedman.html000066400000000000000000000176521456127120000207450ustar00rootroot00000000000000 Statistics: friedman

Function Reference: friedman

statistics: p = friedman (x)
statistics: p = friedman (x, reps)
statistics: p = friedman (x, reps, displayopt)
statistics: [p, atab] = friedman (…)
statistics: [p, atab, stats] = friedman (…)

Performs the nonparametric Friedman’s test to compare column effects in a two-way layout. friedman tests the null hypothesis that the column effects are all the same against the alternative that they are not all the same.

friedman requires one up to three input arguments:

  • x contains the data and it must be a matrix of at least two columns and two rows.
  • reps is the number of replicates for each combination of factor groups. If not provided, no replicates are assumed.
  • displayopt is an optional parameter for displaying the Friedman’s ANOVA table, when it is ’on’ (default) and suppressing the display when it is ’off’.

friedman returns up to three output arguments:

  • p is the p-value of the null hypothesis that all group means are equal.
  • atab is a cell array containing the results in a Friedman’s ANOVA table.
  • stats is a structure containing statistics useful for performing a multiple comparison of medians with the MULTCOMPARE function.

If friedman is called without any output arguments, then it prints the results in a one-way ANOVA table to the standard output as if displayopt is ’on’.

Examples:

 
 load popcorn;
 friedman (popcorn, 3);
 
 
 [p, anovatab, stats] = friedman (popcorn, 3, "off");
 disp (p);
 

See also: anova2, kruskalwallis, multcompare

Source Code: friedman

Example: 1

 

 load popcorn;
 friedman (popcorn, 3);

              Friedman's ANOVA Table
Source            SS      df        MS    Chi-sq    Prob>Chi-sq
---------------------------------------------------------------
Columns         99.7500     2    49.8750    13.76    0.0010
Interaction      0.0833     2     0.0417  
Error           16.1667    12     1.3472
Total          116.0000    17
                    

Example: 2

 

 load popcorn;
 [p, atab] = friedman (popcorn, 3, "off");
 disp (p);

1.0289e-03
                    
statistics-release-1.6.3/docs/frnd.html000066400000000000000000000121131456127120000200740ustar00rootroot00000000000000 Statistics: frnd

Function Reference: frnd

statistics: r = frnd (df1, df2)
statistics: r = frnd (df1, df2, rows)
statistics: r = frnd (df1, df2, rows, cols, …)
statistics: r = frnd (df1, df2, [sz])

Random arrays from the F-distribution.

r = frnd (df1, df2) returns an array of random numbers chosen from the F-distribution with df1 and df2 degrees of freedom. The size of r is the common size of df1 and df2. A scalar input functions as a constant matrix of the same size as the other inputs.

When called with a single size argument, frnd returns a square matrix with the dimension specified. When called with more than one scalar argument, the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions. The size may also be specified with a row vector of dimensions, sz.

Further information about the F-distribution can be found at https://en.wikipedia.org/wiki/F-distribution

See also: fcdf, finv, fpdf, fstat

Source Code: frnd

statistics-release-1.6.3/docs/fstat.html000066400000000000000000000106261456127120000202730ustar00rootroot00000000000000 Statistics: fstat

Function Reference: fstat

statistics: [m, v] = fstat (df1, df2)

Compute statistics of the F-distribution.

[m, v] = fstat (df1, df2) returns the mean and variance of the F-distribution with df1 and df2 degrees of freedom.

The size of m (mean) and v (variance) is the common size of the input arguments. A scalar input functions as a constant matrix of the same size as the other inputs.

Further information about the F-distribution can be found at https://en.wikipedia.org/wiki/F-distribution

See also: fcdf, finv, fpdf, frnd

Source Code: fstat

statistics-release-1.6.3/docs/fullfact.html000066400000000000000000000141461456127120000207530ustar00rootroot00000000000000 Statistics: fullfact

Function Reference: fullfact

statistics: A = fullfact (N)

Full factorial design.

If N is a scalar, return the full factorial design with N binary choices, 0 and 1.

If N is a vector, return the full factorial design with ordinal choices 1 through n_i for each factor i.

Values in N must be positive integers.

@seealso {ff2n

Source Code: fullfact

Example: 1

 

 ## Full factorial design with 3 binary variables
 fullfact (3)

ans =

   0   0   0
   0   0   1
   0   1   0
   0   1   1
   1   0   0
   1   0   1
   1   1   0
   1   1   1

                    

Example: 2

 

 ## Full factorial design with 3 ordinal variables
 fullfact ([2, 3, 4])

ans =

   1   1   1
   1   1   2
   1   1   3
   1   1   4
   1   2   1
   1   2   2
   1   2   3
   1   2   4
   1   3   1
   1   3   2
   1   3   3
   1   3   4
   2   1   1
   2   1   2
   2   1   3
   2   1   4
   2   2   1
   2   2   2
   2   2   3
   2   2   4
   2   3   1
   2   3   2
   2   3   3
   2   3   4

                    
statistics-release-1.6.3/docs/gamcdf.html000066400000000000000000000177731456127120000204050ustar00rootroot00000000000000 Statistics: gamcdf

Function Reference: gamcdf

statistics: p = gamcdf (x, k)
statistics: p = gamcdf (x, k, theta)
statistics: p = gamcdf (…, "upper")
statistics: [p, plo, pup] = evcdf (x, k, theta, pcov)
statistics: [p, plo, pup] = evcdf (x, k, theta, pcov, alpha)
statistics: [p, plo, pup] = evcdf (…, "upper")

Gamma cumulative distribution function (CDF).

For each element of x, compute the cumulative distribution function (CDF) of the Gamma distribution with shape parameter k and scale parameter theta. When called with only one parameter, then theta defaults to 1. The size of p is the common size of x, k, and theta. A scalar input functions as a constant matrix of the same size as the other inputs.

When called with three output arguments, i.e. [p, plo, pup], gamcdf computes the confidence bounds for p when the input parameters k and theta are estimates. In such case, pcov, a 2×2 matrix containing the covariance matrix of the estimated parameters, is necessary. Optionally, alpha, which has a default value of 0.05, specifies the 100 * (1 - alpha) percent confidence bounds. plo and pup are arrays of the same size as p containing the lower and upper confidence bounds.

[…] = gamcdf (…, "upper") computes the upper tail probability of the Gamma distribution with parameters k and theta, at the values in x.

There are two equivalent parameterizations in common use:

  1. With a shape parameter k and a scale parameter θ, which is used by gamcdf.
  2. With a shape parameter α = k and an inverse scale parameter β = 1 / θ, called a rate parameter.

Further information about the Gamma distribution can be found at https://en.wikipedia.org/wiki/Gamma_distribution

See also: gaminv, gampdf, gamrnd, gamfit, gamlike, gamstat

Source Code: gamcdf

Example: 1

 

 ## Plot various CDFs from the Gamma distribution
 x = 0:0.01:20;
 p1 = gamcdf (x, 1, 2);
 p2 = gamcdf (x, 2, 2);
 p3 = gamcdf (x, 3, 2);
 p4 = gamcdf (x, 5, 1);
 p5 = gamcdf (x, 9, 0.5);
 p6 = gamcdf (x, 7.5, 1);
 p7 = gamcdf (x, 0.5, 1);
 plot (x, p1, "-r", x, p2, "-g", x, p3, "-y", x, p4, "-m", ...
       x, p5, "-k", x, p6, "-b", x, p7, "-c")
 grid on
 legend ({"α = 1, θ = 2", "α = 2, θ = 2", "α = 3, θ = 2", ...
          "α = 5, θ = 1", "α = 9, θ = 0.5", "α = 7.5, θ = 1", ...
          "α = 0.5, θ = 1"}, "location", "southeast")
 title ("Gamma CDF")
 xlabel ("values in x")
 ylabel ("probability")

                    
plotted figure

statistics-release-1.6.3/docs/gamfit.html000066400000000000000000000233031456127120000204150ustar00rootroot00000000000000 Statistics: gamfit

Function Reference: gamfit

statistics: paramhat = gamfit (x)
statistics: [paramhat, paramci] = gamfit (x)
statistics: [paramhat, paramci] = gamfit (x, alpha)
statistics: […] = gamfit (x, alpha, censor)
statistics: […] = gamfit (x, alpha, censor, freq)
statistics: […] = gamfit (x, alpha, censor, freq, options)

Estimate parameters and confidence intervals for the Gamma distribution.

paramhat = gamfit (x) returns the maximum likelihood estimates of the parameters of the Gamma distribution given the data in x. paramhat(1) is the shape parameter, k, and paramhat(2) is the scale parameter, theta.

[paramhat, paramci] = gamfit (x) returns the 95% confidence intervals for the parameter estimates.

[…] = gamfit (x, alpha) also returns the 100 * (1 - alpha) percent confidence intervals for the parameter estimates. By default, the optional argument alpha is 0.05 corresponding to 95% confidence intervals. Pass in [] for alpha to use the default values.

[…] = gamfit (x, alpha, censor) accepts a boolean vector, censor, of the same size as x with 1s for observations that are right-censored and 0s for observations that are observed exactly. By default, or if left empty, censor = zeros (size (x)).

[…] = gamfit (x, alpha, censor, freq) accepts a frequency vector, freq, of the same size as x. freq typically contains integer frequencies for the corresponding elements in x, but it can contain any non-integer non-negative values. By default, or if left empty, freq = ones (size (x)).

[…] = gamfit (…, options) specifies control parameters for the iterative algorithm used to compute the maximum likelihood estimates. options is a structure with the following field and its default value:

  • options.Display = "off"
  • options.MaxFunEvals = 1000
  • options.MaxIter = 500
  • options.TolX = 1e-6

There are two equivalent parameterizations in common use:

  1. With a shape parameter k and a scale parameter θ, which is used by gamcdf.
  2. With a shape parameter α = k and an inverse scale parameter β = 1 / θ, called a rate parameter.

Further information about the Gamma distribution can be found at https://en.wikipedia.org/wiki/Gamma_distribution

See also: gamcdf, gampdf, gaminv, gamrnd, gamlike

Source Code: gamfit

Example: 1

 

 ## Sample 3 populations from different Gamma distibutions
 randg ("seed", 5);    # for reproducibility
 r1 = gamrnd (1, 2, 2000, 1);
 randg ("seed", 2);    # for reproducibility
 r2 = gamrnd (2, 2, 2000, 1);
 randg ("seed", 7);    # for reproducibility
 r3 = gamrnd (7.5, 1, 2000, 1);
 r = [r1, r2, r3];

 ## Plot them normalized and fix their colors
 hist (r, 75, 4);
 h = findobj (gca, "Type", "patch");
 set (h(1), "facecolor", "c");
 set (h(2), "facecolor", "g");
 set (h(3), "facecolor", "r");
 ylim ([0, 0.62]);
 xlim ([0, 12]);
 hold on

 ## Estimate their α and β parameters
 k_thetaA = gamfit (r(:,1));
 k_thetaB = gamfit (r(:,2));
 k_thetaC = gamfit (r(:,3));

 ## Plot their estimated PDFs
 x = [0.01,0.1:0.2:18];
 y = gampdf (x, k_thetaA(1), k_thetaA(2));
 plot (x, y, "-pr");
 y = gampdf (x, k_thetaB(1), k_thetaB(2));
 plot (x, y, "-sg");
 y = gampdf (x, k_thetaC(1), k_thetaC(2));
 plot (x, y, "-^c");
 hold off
 legend ({"Normalized HIST of sample 1 with k=1 and θ=2", ...
          "Normalized HIST of sample 2 with k=2 and θ=2", ...
          "Normalized HIST of sample 3 with k=7.5 and θ=1", ...
          sprintf("PDF for sample 1 with estimated k=%0.2f and θ=%0.2f", ...
                  k_thetaA(1), k_thetaA(2)), ...
          sprintf("PDF for sample 2 with estimated k=%0.2f and θ=%0.2f", ...
                  k_thetaB(1), k_thetaB(2)), ...
          sprintf("PDF for sample 3 with estimated k=%0.2f and θ=%0.2f", ...
                  k_thetaC(1), k_thetaC(2))})
 title ("Three population samples from different Gamma distibutions")
 hold off

                    
plotted figure

statistics-release-1.6.3/docs/gaminv.html000066400000000000000000000146341456127120000204360ustar00rootroot00000000000000 Statistics: gaminv

Function Reference: gaminv

statistics: x = gaminv (p, k, theta)

Inverse of the Gamma cumulative distribution function (iCDF).

For each element of p, compute the quantile (the inverse of the CDF) of the Gamma distribution with shape parameter k and scale parameter theta. The size of x is the common size of p, k, and theta. A scalar input functions as a constant matrix of the same size as the other inputs.

There are two equivalent parameterizations in common use:

  1. With a shape parameter k and a scale parameter θ, which is used by gaminv.
  2. With a shape parameter α = k and an inverse scale parameter β = 1 / θ, called a rate parameter.

Further information about the Gamma distribution can be found at https://en.wikipedia.org/wiki/Gamma_distribution

See also: gamcdf, gampdf, gamrnd, gamfit, gamlike, gamstat

Source Code: gaminv

Example: 1

 

 ## Plot various iCDFs from the Gamma distribution
 p = 0.001:0.001:0.999;
 x1 = gaminv (p, 1, 2);
 x2 = gaminv (p, 2, 2);
 x3 = gaminv (p, 3, 2);
 x4 = gaminv (p, 5, 1);
 x5 = gaminv (p, 9, 0.5);
 x6 = gaminv (p, 7.5, 1);
 x7 = gaminv (p, 0.5, 1);
 plot (p, x1, "-r", p, x2, "-g", p, x3, "-y", p, x4, "-m", ...
       p, x5, "-k", p, x6, "-b", p, x7, "-c")
 ylim ([0, 20])
 grid on
 legend ({"α = 1, θ = 2", "α = 2, θ = 2", "α = 3, θ = 2", ...
          "α = 5, θ = 1", "α = 9, θ = 0.5", "α = 7.5, θ = 1", ...
          "α = 0.5, θ = 1"}, "location", "northwest")
 title ("Gamma iCDF")
 xlabel ("probability")
 ylabel ("x")

                    
plotted figure

statistics-release-1.6.3/docs/gamlike.html000066400000000000000000000143151456127120000205620ustar00rootroot00000000000000 Statistics: gamlike

Function Reference: gamlike

statistics: nlogL = gamlike (params, x)
statistics: [nlogL, acov] = gamlike (params, x)
statistics: […] = gamlike (params, x, censor)
statistics: […] = gamlike (params, x, censor, freq)

Negative log-likelihood for the Gamma distribution.

nlogL = gamlike (params, x) returns the negative log likelihood of the data in x corresponding to the Gamma distribution with (1) shape parameter k and (2) scale parameter theta given in the two-element vector params.

[nlogL, acov] = gamlike (params, x) also returns the inverse of Fisher’s information matrix, acov. If the input parameter values in params are the maximum likelihood estimates, the diagonal elements of acov are their asymptotic variances.

[…] = gamlike (params, x, censor) accepts a boolean vector, censor, of the same size as x with 1s for observations that are right-censored and 0s for observations that are observed exactly. By default, or if left empty, censor = zeros (size (x)).

[…] = gamlike (params, x, censor, freq) accepts a frequency vector, freq, of the same size as x. freq typically contains integer frequencies for the corresponding elements in x, but it can contain any non-integer non-negative values. By default, or if left empty, freq = ones (size (x)).

There are two equivalent parameterizations in common use:

  1. With a shape parameter k and a scale parameter θ, which is used by gamcdf.
  2. With a shape parameter α = k and an inverse scale parameter β = 1 / θ, called a rate parameter.

Further information about the Gamma distribution can be found at https://en.wikipedia.org/wiki/Gamma_distribution

See also: gamcdf, gampdf, gaminv, gamrnd, gamfit

Source Code: gamlike

statistics-release-1.6.3/docs/gampdf.html000066400000000000000000000146041456127120000204100ustar00rootroot00000000000000 Statistics: gampdf

Function Reference: gampdf

statistics: y = gampdf (x, k, theta)

Gamma probability density function (PDF).

For each element of x, compute the probability density function (PDF) of the Gamma distribution with shape parameter k and scale parameter theta. The size of y is the common size of x, k and theta. A scalar input functions as a constant matrix of the same size as the other inputs.

There are two equivalent parameterizations in common use:

  1. With a shape parameter k and a scale parameter θ, which is used by gampdf.
  2. With a shape parameter α = k and an inverse scale parameter β = 1 / θ, called a rate parameter.

Further information about the Gamma distribution can be found at https://en.wikipedia.org/wiki/Gamma_distribution

See also: gamcdf, gaminv, gamrnd, gamfit, gamlike, gamstat

Source Code: gampdf

Example: 1

 

 ## Plot various PDFs from the Gamma distribution
 x = 0:0.01:20;
 y1 = gampdf (x, 1, 2);
 y2 = gampdf (x, 2, 2);
 y3 = gampdf (x, 3, 2);
 y4 = gampdf (x, 5, 1);
 y5 = gampdf (x, 9, 0.5);
 y6 = gampdf (x, 7.5, 1);
 y7 = gampdf (x, 0.5, 1);
 plot (x, y1, "-r", x, y2, "-g", x, y3, "-y", x, y4, "-m", ...
       x, y5, "-k", x, y6, "-b", x, y7, "-c")
 grid on
 ylim ([0,0.5])
 legend ({"α = 1, θ = 2", "α = 2, θ = 2", "α = 3, θ = 2", ...
          "α = 5, θ = 1", "α = 9, θ = 0.5", "α = 7.5, θ = 1", ...
          "α = 0.5, θ = 1"}, "location", "northeast")
 title ("Gamma PDF")
 xlabel ("values in x")
 ylabel ("density")

                    
plotted figure

statistics-release-1.6.3/docs/gamrnd.html000066400000000000000000000130141456127120000204140ustar00rootroot00000000000000 Statistics: gamrnd

Function Reference: gamrnd

statistics: r = gamrnd (k, theta)
statistics: r = gamrnd (k, theta, rows)
statistics: r = gamrnd (k, theta, rows, cols, …)
statistics: r = gamrnd (k, theta, [sz])

Random arrays from the Gamma distribution.

r = gamrnd (k, theta) returns an array of random numbers chosen from the Gamma distribution with shape parameter k and scale parameter theta. The size of r is the common size of k and theta. A scalar input functions as a constant matrix of the same size as the other inputs.

When called with a single size argument, gamrnd returns a square matrix with the dimension specified. When called with more than one scalar argument, the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions. The size may also be specified with a row vector of dimensions, sz.

There are two equivalent parameterizations in common use:

  1. With a shape parameter k and a scale parameter θ, which is used by gamrnd.
  2. With a shape parameter α = k and an inverse scale parameter β = 1 / θ, called a rate parameter.

Further information about the Gamma distribution can be found at https://en.wikipedia.org/wiki/Gamma_distribution

See also: gamcdf, gaminv, gampdf, gamfit, gamlike, gamstat

Source Code: gamrnd

statistics-release-1.6.3/docs/gamstat.html000066400000000000000000000115241456127120000206100ustar00rootroot00000000000000 Statistics: gamstat

Function Reference: gamstat

statistics: [m, v] = gamstat (k, theta)

Compute statistics of the Gamma distribution.

[m, v] = gamstat (k, theta) returns the mean and variance of the Gamma distribution with with shape parameter k and scale parameter theta.

The size of m (mean) and v (variance) is the common size of the input arguments. A scalar input functions as a constant matrix of the same size as the other inputs.

There are two equivalent parameterizations in common use:

  1. With a shape parameter k and a scale parameter θ, which is used by gamrnd.
  2. With a shape parameter α = k and an inverse scale parameter β = 1 / θ, called a rate parameter.

Further information about the Gamma distribution can be found at https://en.wikipedia.org/wiki/Gamma_distribution

See also: gamcdf, gaminv, gampdf, gamrnd, gamfit, gamlike

Source Code: gamstat

statistics-release-1.6.3/docs/geocdf.html000066400000000000000000000143401456127120000203760ustar00rootroot00000000000000 Statistics: geocdf

Function Reference: geocdf

statistics: p = geocdf (x, ps)
statistics: p = geocdf (x, ps, "upper")

Geometric cumulative distribution function (CDF).

For each element of x, compute the cumulative distribution function (CDF) of the geometric distribution with probability of success parameter ps. The size of p is the common size of x and ps. A scalar input functions as a constant matrix of the same size as the other inputs.

p = geocdf (x, ps, "upper") computes the upper tail probability of the geometric distribution with parameter ps, at the values in x.

The geometric distribution models the number of failures (x) of a Bernoulli trial with probability ps before the first success.

Further information about the geometric distribution can be found at https://en.wikipedia.org/wiki/Geometric_distribution

See also: geoinv, geopdf, geornd, geofit, geostat

Source Code: geocdf

Example: 1

 

 ## Plot various CDFs from the geometric distribution
 x = 0:10;
 p1 = geocdf (x, 0.2);
 p2 = geocdf (x, 0.5);
 p3 = geocdf (x, 0.7);
 plot (x, p1, "*b", x, p2, "*g", x, p3, "*r")
 grid on
 xlim ([0, 10])
 legend ({"ps = 0.2", "ps = 0.5", "ps = 0.7"}, "location", "southeast")
 title ("Geometric CDF")
 xlabel ("values in x (number of failures)")
 ylabel ("probability")

                    
plotted figure

statistics-release-1.6.3/docs/geofit.html000066400000000000000000000171411456127120000204260ustar00rootroot00000000000000 Statistics: geofit

Function Reference: geofit

statistics: pshat = geofit (x)
statistics: [pshat, psci] = geofit (x)
statistics: [pshat, psci] = geofit (x, alpha)
statistics: [pshat, psci] = geofit (x, alpha, freq)

Estimate parameter and confidence intervals for the geometric distribution.

pshat = geofit (x) returns the maximum likelihood estimate (MLE) of the probability of success for the geometric distribution. x must be a vector.

[pshat, psci] = geofit (x, alpha) also returns the 100 * (1 - alpha) percent confidence intervals of the estimated parameter. By default, the optional argument alpha is 0.05 corresponding to 95% confidence intervals. Pass in [] for alpha to use the default values.

[…] = geofit (x, alpha, freq) accepts a frequency vector, freq, of the same size as x. freq typically contains integer frequencies for the corresponding elements in x, but it can contain any non-integer non-negative values. By default, or if left empty, freq = ones (size (x)).

The geometric distribution models the number of failures (x) of a Bernoulli trial with probability ps before the first success.

Further information about the geometric distribution can be found at https://en.wikipedia.org/wiki/Geometric_distribution

See also: geocdf, geoinv, geopdf, geornd, geostat

Source Code: geofit

Example: 1

 

 ## Sample 2 populations from different geometric distibutions
 rande ("seed", 1);    # for reproducibility
 r1 = geornd (0.15, 1000, 1);
 rande ("seed", 2);    # for reproducibility
 r2 = geornd (0.5, 1000, 1);
 r = [r1, r2];

 ## Plot them normalized and fix their colors
 hist (r, 0:0.5:20.5, 1);
 h = findobj (gca, "Type", "patch");
 set (h(1), "facecolor", "c");
 set (h(2), "facecolor", "g");
 hold on

 ## Estimate their probability of success
 pshatA = geofit (r(:,1));
 pshatB = geofit (r(:,2));

 ## Plot their estimated PDFs
 x = [0:15];
 y = geopdf (x, pshatA);
 plot (x, y, "-pg");
 y = geopdf (x, pshatB);
 plot (x, y, "-sc");
 xlim ([0, 15])
 ylim ([0, 0.6])
 legend ({"Normalized HIST of sample 1 with ps=0.15", ...
          "Normalized HIST of sample 2 with ps=0.50", ...
          sprintf("PDF for sample 1 with estimated ps=%0.2f", ...
                  mean (pshatA)), ...
          sprintf("PDF for sample 2 with estimated ps=%0.2f", ...
                  mean (pshatB))})
 title ("Two population samples from different geometric distibutions")
 hold off

                    
plotted figure

statistics-release-1.6.3/docs/geoinv.html000066400000000000000000000136351456127120000204440ustar00rootroot00000000000000 Statistics: geoinv

Function Reference: geoinv

statistics: x = geoinv (p, ps)

Inverse of the geometric cumulative distribution function (iCDF).

For each element of p, compute the quantile (the inverse of the CDF) of the geometric distribution with probability of success parameter ps. The size of x is the common size of p and ps. A scalar input functions as a constant matrix of the same size as the other inputs.

The geometric distribution models the number of failures (p) of a Bernoulli trial with probability ps before the first success.

Further information about the geometric distribution can be found at https://en.wikipedia.org/wiki/Geometric_distribution

See also: geocdf, geopdf, geornd, geofit, geostat

Source Code: geoinv

Example: 1

 

 ## Plot various iCDFs from the geometric distribution
 p = 0.001:0.001:0.999;
 x1 = geoinv (p, 0.2);
 x2 = geoinv (p, 0.5);
 x3 = geoinv (p, 0.7);
 plot (p, x1, "-b", p, x2, "-g", p, x3, "-r")
 grid on
 ylim ([0, 10])
 legend ({"ps = 0.2", "ps = 0.5", "ps = 0.7"}, "location", "northwest")
 title ("Geometric iCDF")
 xlabel ("probability")
 ylabel ("values in x (number of failures)")

                    
plotted figure

statistics-release-1.6.3/docs/geomean.html000066400000000000000000000143621456127120000205660ustar00rootroot00000000000000 Statistics: geomean

Function Reference: geomean

statistics: m = geomean (x)
statistics: m = geomean (x, "all")
statistics: m = geomean (x, dim)
statistics: m = geomean (x, vecdim)
statistics: m = geomean (…, nanflag)

Compute the geometric mean of x.

  • If x is a vector, then geomean(x) returns the geometric mean of the elements in x defined as $$ {\rm geomean}(x) = \left( \prod_{i=1}^N x_i \right)^\frac{1}{N} = exp \left({1\over N} \sum_{i=1}^N log x_i \right) $$ where N is the length of the x vector.
  • If x is a matrix, then geomean(x) returns a row vector with the geometric mean of each columns in x.
  • If x is a multidimensional array, then geomean(x) operates along the first nonsingleton dimension of x.
  • x must not contain any negative or complex values.

geomean(x, "all") returns the geometric mean of all the elements in x. If x contains any 0, then the returned value is 0.

geomean(x, dim) returns the geometric mean along the operating dimension dim of x. Calculating the harmonic mean of any subarray containing any 0 will return 0.

geomean(x, vecdim) returns the geometric mean over the dimensions specified in the vector vecdim. For example, if x is a 2-by-3-by-4 array, then geomean(x, [1 2]) returns a 1-by-1-by-4 array. Each element of the output array is the geometric mean of the elements on the corresponding page of x. If vecdim indexes all dimensions of x, then it is equivalent to geomean (x, "all"). Any dimension in vecdim greater than ndims (x) is ignored.

geomean(…, nanflag) specifies whether to exclude NaN values from the calculation, using any of the input argument combinations in previous syntaxes. By default, geomean includes NaN values in the calculation (nanflag has the value "includenan"). To exclude NaN values, set the value of nanflag to "omitnan".

See also: harmmean, mean

Source Code: geomean

statistics-release-1.6.3/docs/geopdf.html000066400000000000000000000135701456127120000204170ustar00rootroot00000000000000 Statistics: geopdf

Function Reference: geopdf

statistics: y = geopdf (x, ps)

Geometric probability density function (PDF).

For each element of x, compute the probability density function (PDF) of the geometric distribution with probability of success parameter ps. The size of y is the common size of x and ps. A scalar input functions as a constant matrix of the same size as the other inputs.

The geometric distribution models the number of failures (x) of a Bernoulli trial with probability ps before the first success.

Further information about the geometric distribution can be found at https://en.wikipedia.org/wiki/Geometric_distribution

See also: geocdf, geoinv, geornd, geofit, geostat

Source Code: geopdf

Example: 1

 

 ## Plot various PDFs from the geometric distribution
 x = 0:10;
 y1 = geopdf (x, 0.2);
 y2 = geopdf (x, 0.5);
 y3 = geopdf (x, 0.7);
 plot (x, y1, "*b", x, y2, "*g", x, y3, "*r")
 grid on
 ylim ([0, 0.8])
 legend ({"ps = 0.2", "ps = 0.5", "ps = 0.7"}, "location", "northeast")
 title ("Geometric PDF")
 xlabel ("values in x (number of failures)")
 ylabel ("density")

                    
plotted figure

statistics-release-1.6.3/docs/geornd.html000066400000000000000000000121601456127120000204230ustar00rootroot00000000000000 Statistics: geornd

Function Reference: geornd

statistics: r = geornd (ps)
statistics: r = geornd (ps, rows)
statistics: r = geornd (ps, rows, cols, …)
statistics: r = geornd (ps, [sz])

Random arrays from the geometric distribution.

r = geornd (ps) returns an array of random numbers chosen from the Birnbaum-Saunders distribution with probability of success parameter ps. The size of r is the size of ps.

When called with a single size argument, geornd returns a square matrix with the dimension specified. When called with more than one scalar argument, the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions. The size may also be specified with a row vector of dimensions, sz.

The geometric distribution models the number of failures (x) of a Bernoulli trial with probability ps before the first success.

Further information about the geometric distribution can be found at https://en.wikipedia.org/wiki/Geometric_distribution

See also: geocdf, geoinv, geopdf, geofit, geostat

Source Code: geornd

statistics-release-1.6.3/docs/geostat.html000066400000000000000000000105271456127120000206200ustar00rootroot00000000000000 Statistics: geostat

Function Reference: geostat

statistics: [m, v] = geostat (ps)

Compute statistics of the geometric distribution.

[m, v] = geostat (ps) returns the mean and variance of the geometric distribution with probability of success parameter ps.

The size of m (mean) and v (variance) is the same size of the input argument.

Further information about the geometric distribution can be found at https://en.wikipedia.org/wiki/Geometric_distribution

See also: geocdf, geoinv, geopdf, geornd, geofit

Source Code: geostat

statistics-release-1.6.3/docs/gevcdf.html000066400000000000000000000177021456127120000204120ustar00rootroot00000000000000 Statistics: gevcdf

Function Reference: gevcdf

statistics: p = gevcdf (x, k, sigma, mu)
statistics: p = gevcdf (x, k, sigma, mu, "upper")

Generalized extreme value (GEV) cumulative distribution function (CDF).

For each element of x, compute the cumulative distribution function (CDF) of the GEV distribution with shape parameter k, scale parameter sigma, and location parameter mu. The size of p is the common size of x, k, sigma, and mu. A scalar input functions as a constant matrix of the same size as the other inputs.

[…] = gevcdf (x, k, sigma, mu, "upper") computes the upper tail probability of the GEV distribution with parameters k, sigma, and mu, at the values in x.

When k < 0, the GEV is the type III extreme value distribution. When k > 0, the GEV distribution is the type II, or Frechet, extreme value distribution. If W has a Weibull distribution as computed by the wblcdf function, then -W has a type III extreme value distribution and 1/W has a type II extreme value distribution. In the limit as k approaches 0, the GEV is the mirror image of the type I extreme value distribution as computed by the evcdf function.

The mean of the GEV distribution is not finite when k >= 1, and the variance is not finite when k >= 1/2. The GEV distribution has positive density only for values of x such that k * (x - mu) / sigma > -1.

Further information about the generalized extreme value distribution can be found at https://en.wikipedia.org/wiki/Generalized_extreme_value_distribution

References

  1. Rolf-Dieter Reiss and Michael Thomas. Statistical Analysis of Extreme Values with Applications to Insurance, Finance, Hydrology and Other Fields. Chapter 1, pages 16-17, Springer, 2007.

See also: gevinv, gevpdf, gevrnd, gevfit, gevlike, gevstat

Source Code: gevcdf

Example: 1

 

 ## Plot various CDFs from the generalized extreme value distribution
 x = -1:0.001:10;
 p1 = gevcdf (x, 1, 1, 1);
 p2 = gevcdf (x, 0.5, 1, 1);
 p3 = gevcdf (x, 1, 1, 5);
 p4 = gevcdf (x, 1, 2, 5);
 p5 = gevcdf (x, 1, 5, 5);
 p6 = gevcdf (x, 1, 0.5, 5);
 plot (x, p1, "-b", x, p2, "-g", x, p3, "-r", ...
       x, p4, "-c", x, p5, "-m", x, p6, "-k")
 grid on
 xlim ([-1, 10])
 legend ({"ξ = 1, σ = 1, μ = 1", "ξ = 0.5, σ = 1, μ = 1", ...
          "ξ = 1, σ = 1, μ = 5", "ξ = 1, σ = 2, μ = 5", ...
          "ξ = 1, σ = 5, μ = 5", "ξ = 1, σ = 0.5, μ = 5"}, ...
         "location", "southeast")
 title ("Generalized extreme value CDF")
 xlabel ("values in x")
 ylabel ("probability")

                    
plotted figure

statistics-release-1.6.3/docs/gevfit.html000066400000000000000000000227751456127120000204460ustar00rootroot00000000000000 Statistics: gevfit

Function Reference: gevfit

statistics: paramhat = gevfit (x)
statistics: [paramhat, paramci] = gevfit (x)
statistics: [paramhat, paramci] = gevfit (x, alpha)
statistics: […] = gevfit (x, alpha, options)

Estimate parameters and confidence intervals for the generalized extreme value (GEV) distribution.

Arguments

paramhat = gevfit (x) returns the maximum likelihood estimates of the parameters of the GEV distribution given the data in x. paramhat(1) is the shape parameter, k, and paramhat(2) is the scale parameter, sigma, and paramhat(3) is the location parameter, mu.

[paramhat, paramci] = gevfit (x) returns the 95% confidence intervals for the parameter estimates.

[…] = gevfit (x, alpha) also returns the 100 * (1 - alpha) percent confidence intervals for the parameter estimates. By default, the optional argument alpha is 0.05 corresponding to 95% confidence intervals. Pass in [] for alpha to use the default values.

[…] = gevfit (…, options) specifies control parameters for the iterative algorithm used to compute the maximum likelihood estimates. options is a structure with the following field and its default value:

  • options.Display = "off"
  • options.MaxFunEvals = 1000
  • options.MaxIter = 500
  • options.TolX = 1e-6

When k < 0, the GEV is the type III extreme value distribution. When k > 0, the GEV distribution is the type II, or Frechet, extreme value distribution. If W has a Weibull distribution as computed by the wblcdf function, then -W has a type III extreme value distribution and 1/W has a type II extreme value distribution. In the limit as k approaches 0, the GEV is the mirror image of the type I extreme value distribution as computed by the evcdf function.

The mean of the GEV distribution is not finite when k >= 1, and the variance is not finite when k >= 1/2. The GEV distribution has positive density only for values of x such that k * (x - mu) / sigma > -1.

Further information about the generalized extreme value distribution can be found at https://en.wikipedia.org/wiki/Generalized_extreme_value_distribution

References

  1. Rolf-Dieter Reiss and Michael Thomas. Statistical Analysis of Extreme Values with Applications to Insurance, Finance, Hydrology and Other Fields. Chapter 1, pages 16-17, Springer, 2007.

See also: gevcdf, gevinv, gevpdf, gevrnd, gevlike, gevstat

Source Code: gevfit

Example: 1

 

 ## Sample 2 populations from 2 different exponential distibutions
 rand ("seed", 1);   # for reproducibility
 r1 = gevrnd (-0.5, 1, 2, 5000, 1);
 rand ("seed", 2);   # for reproducibility
 r2 = gevrnd (0, 1, -4, 5000, 1);
 r = [r1, r2];

 ## Plot them normalized and fix their colors
 hist (r, 50, 5);
 h = findobj (gca, "Type", "patch");
 set (h(1), "facecolor", "c");
 set (h(2), "facecolor", "g");
 hold on

 ## Estimate their k, sigma, and mu parameters
 k_sigma_muA = gevfit (r(:,1));
 k_sigma_muB = gevfit (r(:,2));

 ## Plot their estimated PDFs
 x = [-10:0.5:20];
 y = gevpdf (x, k_sigma_muA(1), k_sigma_muA(2), k_sigma_muA(3));
 plot (x, y, "-pr");
 y = gevpdf (x, k_sigma_muB(1), k_sigma_muB(2), k_sigma_muB(3));
 plot (x, y, "-sg");
 ylim ([0, 0.7])
 xlim ([-7, 5])
 legend ({"Normalized HIST of sample 1 with ξ=-0.5, σ=1, μ=2", ...
          "Normalized HIST of sample 2 with ξ=0, σ=1, μ=-4",
     sprintf("PDF for sample 1 with estimated ξ=%0.2f, σ=%0.2f, μ=%0.2f", ...
                 k_sigma_muA(1), k_sigma_muA(2), k_sigma_muA(3)), ...
     sprintf("PDF for sample 3 with estimated ξ=%0.2f, σ=%0.2f, μ=%0.2f", ...
                 k_sigma_muB(1), k_sigma_muB(2), k_sigma_muB(3))})
 title ("Two population samples from different exponential distibutions")
 hold off

                    
plotted figure

statistics-release-1.6.3/docs/gevfit_lmom.html000066400000000000000000000115531456127120000214620ustar00rootroot00000000000000 Statistics: gevfit_lmom

Function Reference: gevfit_lmom

statistics: [paramhat, paramci] = gevfit_lmom (data)

Find an estimator (paramhat) of the generalized extreme value (GEV) distribution fitting data using the method of L-moments.

Arguments

  • data is the vector of given values.

Return values

  • parmhat is the 3-parameter maximum-likelihood parameter vector [k; sigma; mu], where k is the shape parameter of the GEV distribution, sigma is the scale parameter of the GEV distribution, and mu is the location parameter of the GEV distribution.
  • paramci has the approximate 95% confidence intervals of the parameter values (currently not implemented).

Examples

 
 
 data = gevrnd (0.1, 1, 0, 100, 1);
 [pfit, pci] = gevfit_lmom (data);
 p1 = gevcdf (data,pfit(1),pfit(2),pfit(3));
 [f, x] = ecdf (data);
 plot(data, p1, 's', x, f)
 
 

See also: gevfit

Source Code: gevfit_lmom

statistics-release-1.6.3/docs/gevinv.html000066400000000000000000000170351456127120000204510ustar00rootroot00000000000000 Statistics: gevinv

Function Reference: gevinv

statistics: x = gevinv (p, k, sigma, mu)

Inverse of the generalized extreme value (GEV) cumulative distribution function (iCDF).

For each element of p, compute the quantile (the inverse of the CDF) of the GEV distribution with shape parameter k, scale parameter sigma, and location parameter mu. The size of p is the common size of x, k, sigma, and mu. A scalar input functions as a constant matrix of the same size as the other inputs.

When k < 0, the GEV is the type III extreme value distribution. When k > 0, the GEV distribution is the type II, or Frechet, extreme value distribution. If W has a Weibull distribution as computed by the wblcdf function, then -W has a type III extreme value distribution and 1/W has a type II extreme value distribution. In the limit as k approaches 0, the GEV is the mirror image of the type I extreme value distribution as computed by the evcdf function.

The mean of the GEV distribution is not finite when k >= 1, and the variance is not finite when k >= 1/2. The GEV distribution has positive density only for values of x such that k * (x - mu) / sigma > -1.

Further information about the generalized extreme value distribution can be found at https://en.wikipedia.org/wiki/Generalized_extreme_value_distribution

References

  1. Rolf-Dieter Reiss and Michael Thomas. Statistical Analysis of Extreme Values with Applications to Insurance, Finance, Hydrology and Other Fields. Chapter 1, pages 16-17, Springer, 2007.

See also: gevcdf, gevpdf, gevrnd, gevfit, gevlike, gevstat

Source Code: gevinv

Example: 1

 

 ## Plot various iCDFs from the generalized extreme value distribution
 p = 0.001:0.001:0.999;
 x1 = gevinv (p, 1, 1, 1);
 x2 = gevinv (p, 0.5, 1, 1);
 x3 = gevinv (p, 1, 1, 5);
 x4 = gevinv (p, 1, 2, 5);
 x5 = gevinv (p, 1, 5, 5);
 x6 = gevinv (p, 1, 0.5, 5);
 plot (p, x1, "-b", p, x2, "-g", p, x3, "-r", ...
       p, x4, "-c", p, x5, "-m", p, x6, "-k")
 grid on
 ylim ([-1, 10])
 legend ({"ξ = 1, σ = 1, μ = 1", "ξ = 0.5, σ = 1, μ = 1", ...
          "ξ = 1, σ = 1, μ = 5", "ξ = 1, σ = 2, μ = 5", ...
          "ξ = 1, σ = 5, μ = 5", "ξ = 1, σ = 0.5, μ = 5"}, ...
         "location", "northwest")
 title ("Generalized extreme value iCDF")
 xlabel ("probability")
 ylabel ("values in x")

                    
plotted figure

statistics-release-1.6.3/docs/gevlike.html000066400000000000000000000143231456127120000205760ustar00rootroot00000000000000 Statistics: gevlike

Function Reference: gevlike

statistics: nlogL = gevlike (params, x)
statistics: [nlogL, acov] = gevlike (params, x)

Negative log-likelihood for the generalized extreme value (GEV) distribution.

nlogL = gevlike (params, x) returns the negative log likelihood of the data in x corresponding to the GEV distribution with (1) shape parameter k, (2) scale parameter sigma, and (3) location parameter mu given in the three-element vector params.

[nlogL, acov] = gevlike (params, x) also returns the inverse of Fisher’s information matrix, acov. If the input parameter values in params are the maximum likelihood estimates, the diagonal elements of acov are their asymptotic variances.

When k < 0, the GEV is the type III extreme value distribution. When k > 0, the GEV distribution is the type II, or Frechet, extreme value distribution. If W has a Weibull distribution as computed by the wblcdf function, then -W has a type III extreme value distribution and 1/W has a type II extreme value distribution. In the limit as k approaches 0, the GEV is the mirror image of the type I extreme value distribution as computed by the evcdf function.

The mean of the GEV distribution is not finite when k >= 1, and the variance is not finite when k >= 1/2. The GEV distribution has positive density only for values of x such that k * (x - mu) / sigma > -1.

Further information about the generalized extreme value distribution can be found at https://en.wikipedia.org/wiki/Generalized_extreme_value_distribution

References

  1. Rolf-Dieter Reiss and Michael Thomas. Statistical Analysis of Extreme Values with Applications to Insurance, Finance, Hydrology and Other Fields. Chapter 1, pages 16-17, Springer, 2007.

See also: gevcdf, gevinv, gevpdf, gevrnd, gevfit, gevstat

Source Code: gevlike

statistics-release-1.6.3/docs/gevpdf.html000066400000000000000000000170161456127120000204250ustar00rootroot00000000000000 Statistics: gevpdf

Function Reference: gevpdf

statistics: y = gevpdf (x, k, sigma, mu)

Generalized extreme value (GEV) probability density function (PDF).

For each element of x, compute the probability density function (PDF) of the GEV distribution with shape parameter k, scale parameter sigma, and location parameter mu. The size of y is the common size of x, k, sigma, and mu. A scalar input functions as a constant matrix of the same size as the other inputs.

When k < 0, the GEV is the type III extreme value distribution. When k > 0, the GEV distribution is the type II, or Frechet, extreme value distribution. If W has a Weibull distribution as computed by the wblcdf function, then -W has a type III extreme value distribution and 1/W has a type II extreme value distribution. In the limit as k approaches 0, the GEV is the mirror image of the type I extreme value distribution as computed by the evcdf function.

The mean of the GEV distribution is not finite when k >= 1, and the variance is not finite when k >= 1/2. The GEV distribution has positive density only for values of x such that k * (x - mu) / sigma > -1.

Further information about the generalized extreme value distribution can be found at https://en.wikipedia.org/wiki/Generalized_extreme_value_distribution

References

  1. Rolf-Dieter Reiss and Michael Thomas. Statistical Analysis of Extreme Values with Applications to Insurance, Finance, Hydrology and Other Fields. Chapter 1, pages 16-17, Springer, 2007.

See also: gevcdf, gevinv, gevrnd, gevfit, gevlike, gevstat

Source Code: gevpdf

Example: 1

 

 ## Plot various PDFs from the generalized extreme value distribution
 x = -1:0.001:10;
 y1 = gevpdf (x, 1, 1, 1);
 y2 = gevpdf (x, 0.5, 1, 1);
 y3 = gevpdf (x, 1, 1, 5);
 y4 = gevpdf (x, 1, 2, 5);
 y5 = gevpdf (x, 1, 5, 5);
 y6 = gevpdf (x, 1, 0.5, 5);
 plot (x, y1, "-b", x, y2, "-g", x, y3, "-r", ...
       x, y4, "-c", x, y5, "-m", x, y6, "-k")
 grid on
 xlim ([-1, 10])
 ylim ([0, 1.1])
 legend ({"ξ = 1, σ = 1, μ = 1", "ξ = 0.5, σ = 1, μ = 1", ...
          "ξ = 1, σ = 1, μ = 5", "ξ = 1, σ = 2, μ = 5", ...
          "ξ = 1, σ = 5, μ = 5", "ξ = 1, σ = 0.5, μ = 5"}, ...
         "location", "northeast")
 title ("Generalized extreme value PDF")
 xlabel ("values in x")
 ylabel ("density")

                    
plotted figure

statistics-release-1.6.3/docs/gevrnd.html000066400000000000000000000152011456127120000204310ustar00rootroot00000000000000 Statistics: gevrnd

Function Reference: gevrnd

statistics: r = gevrnd (k, sigma, mu)
statistics: r = gevrnd (k, sigma, mu, rows)
statistics: r = gevrnd (k, sigma, mu, rows, cols, …)
statistics: r = gevrnd (k, sigma, mu, [sz])

Random arrays from the generalized extreme value (GEV) distribution.

r = gevrnd (k, sigma, mu returns an array of random numbers chosen from the GEV distribution with shape parameter k, scale parameter sigma, and location parameter mu. The size of r is the common size of k, sigma, and mu. A scalar input functions as a constant matrix of the same size as the other inputs.

When called with a single size argument, gevrnd returns a square matrix with the dimension specified. When called with more than one scalar argument, the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions. The size may also be specified with a row vector of dimensions, sz.

When k < 0, the GEV is the type III extreme value distribution. When k > 0, the GEV distribution is the type II, or Frechet, extreme value distribution. If W has a Weibull distribution as computed by the wblcdf function, then -W has a type III extreme value distribution and 1/W has a type II extreme value distribution. In the limit as k approaches 0, the GEV is the mirror image of the type I extreme value distribution as computed by the evcdf function.

The mean of the GEV distribution is not finite when k >= 1, and the variance is not finite when k >= 1/2. The GEV distribution has positive density only for values of x such that k * (x - mu) / sigma > -1.

Further information about the generalized extreme value distribution can be found at https://en.wikipedia.org/wiki/Generalized_extreme_value_distribution

References

  1. Rolf-Dieter Reiss and Michael Thomas. Statistical Analysis of Extreme Values with Applications to Insurance, Finance, Hydrology and Other Fields. Chapter 1, pages 16-17, Springer, 2007.

See also: gevcdf, gevinv, gevpdf, gevfit, gevlike, gevstat

Source Code: gevrnd

statistics-release-1.6.3/docs/gevstat.html000066400000000000000000000124331456127120000206250ustar00rootroot00000000000000 Statistics: gevstat

Function Reference: gevstat

statistics: [m, v] = gevstat (k, sigma, mu)

Compute statistics of the generalized extreme value distribution.

[m, v] = gevstat (k, sigma, mu) returns the mean and variance of the generalized extreme value distribution with shape parameter k, scale parameter sigma, and location parameter mu.

The size of m (mean) and v (variance) is the common size of the input arguments. A scalar input functions as a constant matrix of the same size as the other inputs.

The mean of the GEV distribution is not finite when k >= 1, and the variance is not finite when k >= 1/2. The GEV distribution has positive density only for values of x such that k * (x - mu) / sigma > -1.

Further information about the generalized extreme value distribution can be found at https://en.wikipedia.org/wiki/Generalized_extreme_value_distribution

References

  1. Rolf-Dieter Reiss and Michael Thomas. Statistical Analysis of Extreme Values with Applications to Insurance, Finance, Hydrology and Other Fields. Chapter 1, pages 16-17, Springer, 2007.

See also: gevcdf, gevinv, gevpdf, gevrnd, gevfit, gevlike

Source Code: gevstat

statistics-release-1.6.3/docs/gpcdf.html000066400000000000000000000166221456127120000202370ustar00rootroot00000000000000 Statistics: gpcdf

Function Reference: gpcdf

statistics: p = gpcdf (x, k, sigma, mu)
statistics: p = gpcdf (x, k, sigma, mu, "upper")

Generalized Pareto cumulative distribution function (CDF).

For each element of x, compute the cumulative distribution function (CDF) of the generalized Pareto distribution with shape parameter k, scale parameter sigma, and location parameter mu. The size of p is the common size of x, k, sigma, and mu. A scalar input functions as a constant matrix of the same size as the other inputs.

[…] = gpcdf(x, k, sigma, mu, "upper") computes the upper tail probability of the generalized Pareto distribution with parameters k, sigma, and mu, at the values in x.

When k = 0 and mu = 0, the Generalized Pareto CDF is equivalent to the exponential distribution. When k > 0 and mu = k / k the Generalized Pareto is equivalent to the Pareto distribution. The mean of the Generalized Pareto is not finite when k >= 1 and the variance is not finite when k >= 1/2. When k >= 0, the Generalized Pareto has positive density for x > mu, or, when mu < 0, for 0 <= (x - mu) / sigma <= -1 / k.

Further information about the generalized Pareto distribution can be found at https://en.wikipedia.org/wiki/Generalized_Pareto_distribution

See also: gpinv, gppdf, gprnd, gpfit, gplike, gpstat

Source Code: gpcdf

Example: 1

 

 ## Plot various CDFs from the generalized Pareto distribution
 x = 0:0.001:5;
 p1 = gpcdf (x, 1, 1, 0);
 p2 = gpcdf (x, 5, 1, 0);
 p3 = gpcdf (x, 20, 1, 0);
 p4 = gpcdf (x, 1, 2, 0);
 p5 = gpcdf (x, 5, 2, 0);
 p6 = gpcdf (x, 20, 2, 0);
 plot (x, p1, "-b", x, p2, "-g", x, p3, "-r", ...
       x, p4, "-c", x, p5, "-m", x, p6, "-k")
 grid on
 xlim ([0, 5])
 legend ({"ξ = 1, σ = 1, μ = 0", "ξ = 5, σ = 1, μ = 0", ...
          "ξ = 20, σ = 1, μ = 0", "ξ = 1, σ = 2, μ = 0", ...
          "ξ = 5, σ = 2, μ = 0", "ξ = 20, σ = 2, μ = 0"}, ...
         "location", "northwest")
 title ("Generalized Pareto CDF")
 xlabel ("values in x")
 ylabel ("probability")

                    
plotted figure

statistics-release-1.6.3/docs/gpfit.html000066400000000000000000000224371456127120000202660ustar00rootroot00000000000000 Statistics: gpfit

Function Reference: gpfit

statistics: paramhat = gpfit (x)
statistics: [paramhat, paramci] = gpfit (x)
statistics: [paramhat, paramci] = gpfit (x, alpha)
statistics: […] = gpfit (x, alpha, options)

Estimate parameters and confidence intervals for the generalized Pareto distribution.

paramhat = gpfit (x) returns the maximum likelihood estimates of the parameters of the generalized Pareto distribution given the data in x. paramhat(1) is the shape parameter, k, and paramhat(2) is the scale parameter, sigma. Other functions for the generalized Pareto, such as gpcdf, allow a location parameter, mu. However, gpfit does not estimate a location parameter, and it must be assumed known, and subtracted from x before calling gpfit.

[paramhat, paramci] = gpfit (x) returns the 95% confidence intervals for the parameter estimates.

[…] = gpfit (x, alpha) also returns the 100 * (1 - alpha) percent confidence intervals for the parameter estimates. By default, the optional argument alpha is 0.05 corresponding to 95% confidence intervals. Pass in [] for alpha to use the default values.

[…] = gpfit (x, alpha, options) specifies control parameters for the iterative algorithm used to compute ML estimates with the fminsearch function. options is a structure with the following fields and their default values:

  • options.Display = "off"
  • options.MaxFunEvals = 400
  • options.MaxIter = 200
  • options.TolBnd = 1e-6
  • options.TolFun = 1e-6
  • options.TolX = 1e-6

When k = 0 and mu = 0, the Generalized Pareto CDF is equivalent to the exponential distribution. When k > 0 and mu = k / k the Generalized Pareto is equivalent to the Pareto distribution. The mean of the Generalized Pareto is not finite when k >= 1 and the variance is not finite when k >= 1/2. When k >= 0, the Generalized Pareto has positive density for x > mu, or, when mu < 0, for 0 <= (x - mu) / sigma <= -1 / k.

Further information about the generalized Pareto distribution can be found at https://en.wikipedia.org/wiki/Generalized_Pareto_distribution

See also: gpcdf, gpinv, gppdf, gprnd, gplike, gpstat

Source Code: gpfit

Example: 1

 

 ## Sample 2 populations from different generalized Pareto distibutions
 ## Assume location parameter is known
 mu = 0;
 rand ("seed", 5);    # for reproducibility
 r1 = gprnd (1, 2, mu, 20000, 1);
 rand ("seed", 2);    # for reproducibility
 r2 = gprnd (3, 1, mu, 20000, 1);
 r = [r1, r2];

 ## Plot them normalized and fix their colors
 hist (r, [0.1:0.2:100], 5);
 h = findobj (gca, "Type", "patch");
 set (h(1), "facecolor", "r");
 set (h(2), "facecolor", "c");
 ylim ([0, 1]);
 xlim ([0, 5]);
 hold on

 ## Estimate their α and β parameters
 k_sigmaA = gpfit (r(:,1));
 k_sigmaB = gpfit (r(:,2));

 ## Plot their estimated PDFs
 x = [0.01, 0.1:0.2:18];
 y = gppdf (x, k_sigmaA(1), k_sigmaA(2), mu);
 plot (x, y, "-pc");
 y = gppdf (x, k_sigmaB(1), k_sigmaB(2), mu);
 plot (x, y, "-sr");
 hold off
 legend ({"Normalized HIST of sample 1 with k=1 and σ=2", ...
          "Normalized HIST of sample 2 with k=2 and σ=2", ...
          sprintf("PDF for sample 1 with estimated k=%0.2f and σ=%0.2f", ...
                  k_sigmaA(1), k_sigmaA(2)), ...
          sprintf("PDF for sample 3 with estimated k=%0.2f and σ=%0.2f", ...
                  k_sigmaB(1), k_sigmaB(2))})
 title ("Three population samples from different generalized Pareto distibutions")
 text (2, 0.7, "Known location parameter μ = 0")
 hold off

                    
plotted figure

statistics-release-1.6.3/docs/gpinv.html000066400000000000000000000157421456127120000203010ustar00rootroot00000000000000 Statistics: gpinv

Function Reference: gpinv

statistics: x = gpinv (p, k, sigma, mu)

Inverse of the generalized Pareto cumulative distribution function (iCDF).

For each element of p, compute the quantile (the inverse of the CDF) of the generalized Pareto distribution with shape parameter k, scale parameter sigma, and location parameter mu. The size of x is the common size of p, k, sigma, and mu. A scalar input functions as a constant matrix of the same size as the other inputs.

When k = 0 and mu = 0, the Generalized Pareto CDF is equivalent to the exponential distribution. When k > 0 and mu = k / k the Generalized Pareto is equivalent to the Pareto distribution. The mean of the Generalized Pareto is not finite when k >= 1 and the variance is not finite when k >= 1/2. When k >= 0, the Generalized Pareto has positive density for x > mu, or, when mu < 0, for 0 <= (x - mu) / sigma <= -1 / k.

Further information about the generalized Pareto distribution can be found at https://en.wikipedia.org/wiki/Generalized_Pareto_distribution

See also: gpcdf, gppdf, gprnd, gpfit, gplike, gpstat

Source Code: gpinv

Example: 1

 

 ## Plot various iCDFs from the generalized Pareto distribution
 p = 0.001:0.001:0.999;
 x1 = gpinv (p, 1, 1, 0);
 x2 = gpinv (p, 5, 1, 0);
 x3 = gpinv (p, 20, 1, 0);
 x4 = gpinv (p, 1, 2, 0);
 x5 = gpinv (p, 5, 2, 0);
 x6 = gpinv (p, 20, 2, 0);
 plot (p, x1, "-b", p, x2, "-g", p, x3, "-r", ...
       p, x4, "-c", p, x5, "-m", p, x6, "-k")
 grid on
 ylim ([0, 5])
 legend ({"ξ = 1, σ = 1, μ = 0", "ξ = 5, σ = 1, μ = 0", ...
          "ξ = 20, σ = 1, μ = 0", "ξ = 1, σ = 2, μ = 0", ...
          "ξ = 5, σ = 2, μ = 0", "ξ = 20, σ = 2, μ = 0"}, ...
         "location", "southeast")
 title ("Generalized Pareto iCDF")
 xlabel ("probability")
 ylabel ("values in x")

                    
plotted figure

statistics-release-1.6.3/docs/gplike.html000066400000000000000000000136071456127120000204270ustar00rootroot00000000000000 Statistics: gplike

Function Reference: gplike

statistics: nlogL = gplike (params, x)
statistics: [nlogL, acov] = gplike (params, x)

Negative log-likelihood for the generalized Pareto distribution.

nlogL = gplike (params, x) returns the negative log-likelihood of the data in x corresponding to the generalized Pareto distribution with (1) shape parameter k and (2) scale parameter sigma given in the two-element vector params. gplike does not allow a location parameter and it must be assumed known, and subtracted from x before calling gplike.

[nlogL, acov] = gplike (params, x) returns the inverse of Fisher’s information matrix, acov. If the input parameter values in params are the maximum likelihood estimates, the diagonal elements of acov are their asymptotic variances. acov is based on the observed Fisher’s information, not the expected information.

When k = 0 and mu = 0, the Generalized Pareto CDF is equivalent to the exponential distribution. When k > 0 and mu = k / k the Generalized Pareto is equivalent to the Pareto distribution. The mean of the Generalized Pareto is not finite when k >= 1 and the variance is not finite when k >= 1/2. When k >= 0, the Generalized Pareto has positive density for x > mu, or, when mu < 0, for 0 <= (x - mu) / sigma <= -1 / k.

Further information about the generalized Pareto distribution can be found at https://en.wikipedia.org/wiki/Generalized_Pareto_distribution

See also: gpcdf, gpinv, gppdf, gprnd, gpfit, gpstat

Source Code: gplike

statistics-release-1.6.3/docs/gppdf.html000066400000000000000000000157201456127120000202520ustar00rootroot00000000000000 Statistics: gppdf

Function Reference: gppdf

statistics: y = gppdf (x, k, sigma, mu)

Generalized Pareto probability density function (PDF).

For each element of x, compute the probability density function (PDF) of the generalized Pareto distribution with shape parameter k, scale parameter sigma, and location parameter mu. The size of y is the common size of p, k, sigma, and mu. A scalar input functions as a constant matrix of the same size as the other inputs.

When k = 0 and mu = 0, the Generalized Pareto CDF is equivalent to the exponential distribution. When k > 0 and mu = k / k the Generalized Pareto is equivalent to the Pareto distribution. The mean of the Generalized Pareto is not finite when k >= 1 and the variance is not finite when k >= 1/2. When k >= 0, the Generalized Pareto has positive density for x > mu, or, when mu < 0, for 0 <= (x - mu) / sigma <= -1 / k.

Further information about the generalized Pareto distribution can be found at https://en.wikipedia.org/wiki/Generalized_Pareto_distribution

See also: gpcdf, gpinv, gprnd, gpfit, gplike, gpstat

Source Code: gppdf

Example: 1

 

 ## Plot various PDFs from the generalized Pareto distribution
 x = 0:0.001:5;
 y1 = gppdf (x, 1, 1, 0);
 y2 = gppdf (x, 5, 1, 0);
 y3 = gppdf (x, 20, 1, 0);
 y4 = gppdf (x, 1, 2, 0);
 y5 = gppdf (x, 5, 2, 0);
 y6 = gppdf (x, 20, 2, 0);
 plot (x, y1, "-b", x, y2, "-g", x, y3, "-r", ...
       x, y4, "-c", x, y5, "-m", x, y6, "-k")
 grid on
 xlim ([0, 5])
 ylim ([0, 1])
 legend ({"ξ = 1, σ = 1, μ = 0", "ξ = 5, σ = 1, μ = 0", ...
          "ξ = 20, σ = 1, μ = 0", "ξ = 1, σ = 2, μ = 0", ...
          "ξ = 5, σ = 2, μ = 0", "ξ = 20, σ = 2, μ = 0"}, ...
         "location", "northeast")
 title ("Generalized Pareto PDF")
 xlabel ("values in x")
 ylabel ("density")

                    
plotted figure

statistics-release-1.6.3/docs/gprnd.html000066400000000000000000000141371456127120000202650ustar00rootroot00000000000000 Statistics: gprnd

Function Reference: gprnd

statistics: r = gprnd (k, sigma, mu)
statistics: r = gprnd (k, sigma, mu, rows)
statistics: r = gprnd (k, sigma, mu, rows, cols, …)
statistics: r = gprnd (k, sigma, mu, [sz])

Random arrays from the generalized Pareto distribution.

r = gprnd (k, sigma, mu) returns an array of random numbers chosen from the generalized Pareto distribution with shape parameter k, scale parameter sigma, and location parameter mu. The size of r is the common size of k, sigma, and mu. A scalar input functions as a constant matrix of the same size as the other inputs.

When called with a single size argument, gprnd returns a square matrix with the dimension specified. When called with more than one scalar argument, the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions. The size may also be specified with a row vector of dimensions, sz.

When k = 0 and mu = 0, the Generalized Pareto CDF is equivalent to the exponential distribution. When k > 0 and mu = k / k the Generalized Pareto is equivalent to the Pareto distribution. The mean of the Generalized Pareto is not finite when k >= 1 and the variance is not finite when k >= 1/2. When k >= 0, the Generalized Pareto has positive density for x > mu, or, when mu < 0, for 0 <= (x - mu) / sigma <= -1 / k.

Further information about the generalized Pareto distribution can be found at https://en.wikipedia.org/wiki/Generalized_Pareto_distribution

See also: gpcdf, gpinv, gppdf, gpfit, gplike, gpstat

Source Code: gprnd

statistics-release-1.6.3/docs/gpstat.html000066400000000000000000000126051456127120000204530ustar00rootroot00000000000000 Statistics: gpstat

Function Reference: gpstat

statistics: [m, v] = gpstat (k, sigma, mu)

Compute statistics of the generalized Pareto distribution.

[m, v] = gpstat (k, sigma, mu) returns the mean and variance of the generalized Pareto distribution with shape parameter k, scale parameter sigma, and location parameter mu.

The size of m (mean) and v (variance) is the common size of the input arguments. A scalar input functions as a constant matrix of the same size as the other inputs.

When k = 0 and mu = 0, the generalized Pareto distribution is equivalent to the exponential distribution. When k > 0 and mu = sigma / k, the generalized Pareto distribution is equivalent to the Pareto distribution. The mean of the generalized Pareto distribution is not finite when k >= 1, and the variance is not finite when k >= 1/2. When k >= 0, the generalized Pareto distribution has positive density for x > mu, or, when k < 0, for 0 <= (x - mu) / sigma <= -1 / k.

Further information about the generalized Pareto distribution can be found at https://en.wikipedia.org/wiki/Generalized_Pareto_distribution

See also: gpcdf, gpinv, gppdf, gprnd, gpfit, gplike

Source Code: gpstat

statistics-release-1.6.3/docs/grp2idx.html000066400000000000000000000101551456127120000205260ustar00rootroot00000000000000 Statistics: grp2idx

Function Reference: grp2idx

statistics: [g, gn, gl] = grp2idx (s)

Get index for group variables.

For variable s, returns the indices g, into the variable groups gn and gl. The first has a string representation of the groups while the later has its actual values. The group indices are allocated in order of appearance in s.

NaNs and empty strings in s appear as NaN in g and are not present on either gn and gl.

See also: grpstats

Source Code: grp2idx

statistics-release-1.6.3/docs/grpstats.html000066400000000000000000000240541456127120000210210ustar00rootroot00000000000000 Statistics: grpstats

Function Reference: grpstats

statistics: mean = grpstats (x)
statistics: mean = grpstats (x, group)
statistics: [a, b, …] = grpstats (x, group, whichstats)
statistics: [a, b, …] = grpstats (x, group, whichstats, alpha)

Summary statistics by group. grpstats computes groupwise summary statistics, for data in a matrix x. grpstats treats NaNs as missing values, and removes them.

means = grpstats (x, group), when X is a matrix of observations, returns the means of each column of x by group. group is a grouping variable defined as a categorical variable, numeric, string array, or cell array of strings. group can be [] or omitted to compute the mean of the entire sample without grouping.

[a, b, …] = grpstats (x, group, whichstats), for a numeric matrix X, returns the statistics specified by whichstats, as separate arrays a, b, …. whichstats can be a single function name, or a cell array containing multiple function names. The number of output arguments must match the number of function names in whichstats. Names in whichstats can be chosen from among the following:

"mean"mean
"median"median
"sem"standard error of the mean
"std"standard deviation
"var"variance
"min"minimum value
"max"maximum value
"range"maximum - minimum
"numel"count, or number of elements
"meanci"95% confidence interval for the mean
"predci"95% prediction interval for a new observation
"gname"group name

[…] = grpstats (x, group, whichstats, alpha) specifies the confidence level as 100(1-ALPHA)% for the "meanci" and "predci" options. Default value for alpha is 0.05.

Examples:

 
 load carsmall;
 [m,p,g] = grpstats (Weight, Model_Year, {"mean", "predci", "gname"})
 n = length(m);
 errorbar((1:n)',m,p(:,2)-m)
 set (gca, "xtick", 1:n, "xticklabel", g);
 title ("95% prediction intervals for mean weight by year")
 

See also: grp2idx

Source Code: grpstats

Example: 1

 

 load carsmall;
 [m,p,g] = grpstats (Weight, Model_Year, {"mean", "predci", "gname"})
 n = length(m);
 errorbar((1:n)',m,p(:,2)-m);
 set (gca, "xtick", 1:n, "xticklabel", g);
 title ("95% prediction intervals for mean weight by year");

m =

   3441.3
   3078.7
   2453.5

p =

   1847.1   5035.6
   1457.0   4700.4
   1754.1   3153.0

g =
{
  [1,1] = 70
  [2,1] = 76
  [3,1] = 82
}

                    
plotted figure

Example: 2

 

 load carsmall;
 [m,p,g] = grpstats ([Acceleration,Weight/1000],Cylinders, ...
                     {"mean", "meanci", "gname"}, 0.05)
 [c,r] = size (m);
 errorbar((1:c)'.*ones(c,r),m,p(:,[(1:r)])-m);
 set (gca, "xtick", 1:c, "xticklabel", g);
 title ("95% prediction intervals for mean weight by year");

m =

   11.6406    3.9703
   16.6706    2.3726
   16.4765    3.1255

p =

   11.1762    3.8899   12.1050    4.0506
   16.1385    2.2998   17.2027    2.4454
   16.1622    3.0518   16.7907    3.1992

g =
{
  [1,1] = 8
  [2,1] = 4
  [3,1] = 6
}

                    
plotted figure

statistics-release-1.6.3/docs/gscatter.html000066400000000000000000000157271456127120000207750ustar00rootroot00000000000000 Statistics: gscatter

Function Reference: gscatter

statistics: gscatter (x, y, g)
statistics: gscatter (x, y, g, clr, sym, siz)
statistics: gscatter (…, doleg, xnam, ynam)
statistics: h = gscatter (…)

Draw a scatter plot with grouped data.

gscatter is a utility function to draw a scatter plot of x and y, according to the groups defined by g. Input x and y are numeric vectors of the same size, while g is either a vector of the same size as x or a character matrix with the same number of rows as the size of x. As a vector g can be numeric, logical, a character array, a string array (not implemented), a cell string or cell array.

A number of optional inputs change the appearance of the plot:

  • "clr" defines the color for each group; if not enough colors are defined by "clr", gscatter cycles through the specified colors. Colors can be defined as named colors, as rgb triplets or as indices for the current colormap. The default value is a different color for each group, according to the current colormap.
  • "sym" is a char array of symbols for each group; if not enough symbols are defined by "sym", gscatter cycles through the specified symbols.
  • "siz" is a numeric array of sizes for each group; if not enough sizes are defined by "siz", gscatter cycles through the specified sizes.
  • "doleg" is a boolean value to show the legend; it can be either on (default) or off.
  • "xnam" is a character array, the name for the x axis.
  • "ynam" is a character array, the name for the y axis.

Output h is an array of graphics handles to the line object of each group.

See also: scatter

Source Code: gscatter

Example: 1

 

 load fisheriris;
 X = meas(:,3:4);
 cidcs = kmeans (X, 3, "Replicates", 5);
 gscatter (X(:,1), X(:,2), cidcs, [.75 .75 0; 0 .75 .75; .75 0 .75], "os^");
 title ("Fisher's iris data");

                    
plotted figure

statistics-release-1.6.3/docs/gumbelcdf.html000066400000000000000000000202531456127120000210770ustar00rootroot00000000000000 Statistics: gumbelcdf

Function Reference: gumbelcdf

statistics: p = gumbelcdf (x)
statistics: p = gumbelcdf (x, mu)
statistics: p = gumbelcdf (x, mu, beta)
statistics: p = gumbelcdf (…, "upper")
statistics: [p, plo, pup] = gumbelcdf (x, mu, beta, pcov)
statistics: [p, plo, pup] = gumbelcdf (x, mu, beta, pcov, alpha)
statistics: [p, plo, pup] = gumbelcdf (…, "upper")

Gumbel cumulative distribution function (CDF).

For each element of x, compute the cumulative distribution function (CDF) of the Gumbel distribution (also known as the extreme value or the type I generalized extreme value distribution) with location parameter mu and scale parameter beta. The size of p is the common size of x, mu and beta. A scalar input functions as a constant matrix of the same size as the other inputs.

Default values are mu = 0 and beta = 1.

When called with three output arguments, i.e. [p, plo, pup], gumbelcdf computes the confidence bounds for p when the input parameters mu and beta are estimates. In such case, pcov, a 2×2 matrix containing the covariance matrix of the estimated parameters, is necessary. Optionally, alpha, which has a default value of 0.05, specifies the 100 * (1 - alpha) percent confidence bounds. plo and pup are arrays of the same size as p containing the lower and upper confidence bounds.

[…] = gumbelcdf (…, "upper") computes the upper tail probability of the Gumbel distribution with parameters mu and beta, at the values in x.

The Gumbel distribution is used to model the distribution of the maximum (or the minimum) of a number of samples of various distributions. This version is suitable for modeling maxima. For modeling minima, use the alternative extreme value CDF, evcdf.

[…] = gumbelcdf (…, "upper") computes the upper tail probability of the extreme value (Gumbel) distribution.

Further information about the Gumbel distribution can be found at https://en.wikipedia.org/wiki/Gumbel_distribution

See also: gumbelinv, gumbelpdf, gumbelrnd, gumbelfit, gumbellike, gumbelstat, evcdf

Source Code: gumbelcdf

Example: 1

 

 ## Plot various CDFs from the Gumbel distribution
 x = -5:0.01:20;
 p1 = gumbelcdf (x, 0.5, 2);
 p2 = gumbelcdf (x, 1.0, 2);
 p3 = gumbelcdf (x, 1.5, 3);
 p4 = gumbelcdf (x, 3.0, 4);
 plot (x, p1, "-b", x, p2, "-g", x, p3, "-r", x, p4, "-c")
 grid on
 legend ({"μ = 0.5, β = 2", "μ = 1.0, β = 2", ...
          "μ = 1.5, β = 3", "μ = 3.0, β = 4"}, "location", "southeast")
 title ("Gumbel CDF")
 xlabel ("values in x")
 ylabel ("probability")

                    
plotted figure

statistics-release-1.6.3/docs/gumbelfit.html000066400000000000000000000233071456127120000211300ustar00rootroot00000000000000 Statistics: gumbelfit

Function Reference: gumbelfit

statistics: paramhat = gumbelfit (x)
statistics: [paramhat, paramci] = gumbelfit (x)
statistics: [paramhat, paramci] = gumbelfit (x, alpha)
statistics: […] = gumbelfit (x, alpha, censor)
statistics: […] = gumbelfit (x, alpha, censor, freq)
statistics: […] = gumbelfit (x, alpha, censor, freq, options)

Estimate parameters and confidence intervals for Gumbel distribution.

paramhat = gumbelfit (x) returns the maximum likelihood estimates of the parameters of the Gumbel distribution (also known as the extreme value or the type I generalized extreme value distribution) given in x. paramhat(1) is the location parameter, mu, and paramhat(2) is the scale parameter, beta.

[paramhat, paramci] = gumbelfit (x) returns the 95% confidence intervals for the parameter estimates.

[…] = gumbelfit (x, alpha) also returns the 100 * (1 - alpha) percent confidence intervals for the parameter estimates. By default, the optional argument alpha is 0.05 corresponding to 95% confidence intervals. Pass in [] for alpha to use the default values.

[…] = gumbelfit (x, alpha, censor) accepts a boolean vector, censor, of the same size as x with 1s for observations that are right-censored and 0s for observations that are observed exactly. By default, or if left empty, censor = zeros (size (x)).

[…] = gumbelfit (x, alpha, censor, freq) accepts a frequency vector, freq, of the same size as x. freq typically contains integer frequencies for the corresponding elements in x, but it can contain any non-integer non-negative values. By default, or if left empty, freq = ones (size (x)).

[…] = gumbelfit (…, options) specifies control parameters for the iterative algorithm used to compute the maximum likelihood estimates. options is a structure with the following field and its default value:

  • options.TolX = 1e-6

The Gumbel distribution is used to model the distribution of the maximum (or the minimum) of a number of samples of various distributions. This version is suitable for modeling maxima. For modeling minima, use the alternative extreme value fitting function, evfit.

Further information about the Gumbel distribution can be found at https://en.wikipedia.org/wiki/Gumbel_distribution

See also: gumbelcdf, gumbelinv, gumbelpdf, gumbelrnd, gumbellike, gumbelstat, evfit

Source Code: gumbelfit

Example: 1

 

 ## Sample 3 populations from different Gumbel distibutions
 rand ("seed", 1);    # for reproducibility
 r1 = gumbelrnd (2, 5, 400, 1);
 rand ("seed", 11);    # for reproducibility
 r2 = gumbelrnd (-5, 3, 400, 1);
 rand ("seed", 16);    # for reproducibility
 r3 = gumbelrnd (14, 8, 400, 1);
 r = [r1, r2, r3];

 ## Plot them normalized and fix their colors
 hist (r, 25, 0.32);
 h = findobj (gca, "Type", "patch");
 set (h(1), "facecolor", "c");
 set (h(2), "facecolor", "g");
 set (h(3), "facecolor", "r");
 ylim ([0, 0.28])
 xlim ([-11, 50]);
 hold on

 ## Estimate their MU and BETA parameters
 mu_betaA = gumbelfit (r(:,1));
 mu_betaB = gumbelfit (r(:,2));
 mu_betaC = gumbelfit (r(:,3));

 ## Plot their estimated PDFs
 x = [min(r(:)):max(r(:))];
 y = gumbelpdf (x, mu_betaA(1), mu_betaA(2));
 plot (x, y, "-pr");
 y = gumbelpdf (x, mu_betaB(1), mu_betaB(2));
 plot (x, y, "-sg");
 y = gumbelpdf (x, mu_betaC(1), mu_betaC(2));
 plot (x, y, "-^c");
 legend ({"Normalized HIST of sample 1 with μ=2 and β=5", ...
          "Normalized HIST of sample 2 with μ=-5 and β=3", ...
          "Normalized HIST of sample 3 with μ=14 and β=8", ...
          sprintf("PDF for sample 1 with estimated μ=%0.2f and β=%0.2f", ...
                  mu_betaA(1), mu_betaA(2)), ...
          sprintf("PDF for sample 2 with estimated μ=%0.2f and β=%0.2f", ...
                  mu_betaB(1), mu_betaB(2)), ...
          sprintf("PDF for sample 3 with estimated μ=%0.2f and β=%0.2f", ...
                  mu_betaC(1), mu_betaC(2))})
 title ("Three population samples from different Gumbel distibutions")
 hold off

                    
plotted figure

statistics-release-1.6.3/docs/gumbelinv.html000066400000000000000000000171311456127120000211400ustar00rootroot00000000000000 Statistics: gumbelinv

Function Reference: gumbelinv

statistics: x = gumbelinv (p)
statistics: x = gumbelinv (p, mu)
statistics: x = gumbelinv (p, mu, beta)
statistics: [x, xlo, xup] = gumbelinv (p, mu, beta, pcov)
statistics: [x, xlo, xup] = gumbelinv (p, mu, beta, pcov, alpha)

Inverse of the Gumbel cumulative distribution function (iCDF).

For each element of p, compute the quantile (the inverse of the CDF) of the Gumbel distribution (also known as the extreme value or the type I generalized extreme value distribution) with location parameter mu and scale parameter beta. The size of x is the common size of p, mu and beta. A scalar input functions as a constant matrix of the same size as the other inputs.

Default values are mu = 0 and beta = 1.

When called with three output arguments, i.e. [x, xlo, xup], gumbelinv computes the confidence bounds for x when the input parameters mu and beta are estimates. In such case, pcov, a 2×2 matrix containing the covariance matrix of the estimated parameters, is necessary. Optionally, alpha, which has a default value of 0.05, specifies the 100 * (1 - alpha) percent confidence bounds. xlo and xup are arrays of the same size as x containing the lower and upper confidence bounds.

The Gumbel distribution is used to model the distribution of the maximum (or the minimum) of a number of samples of various distributions. This version is suitable for modeling maxima. For modeling minima, use the alternative extreme value iCDF, evinv.

Further information about the Gumbel distribution can be found at https://en.wikipedia.org/wiki/Gumbel_distribution

See also: gumbelcdf, gumbelpdf, gumbelrnd, gumbelfit, gumbellike, gumbelstat, evinv

Source Code: gumbelinv

Example: 1

 

 ## Plot various iCDFs from the Gumbel distribution
 p = 0.001:0.001:0.999;
 x1 = gumbelinv (p, 0.5, 2);
 x2 = gumbelinv (p, 1.0, 2);
 x3 = gumbelinv (p, 1.5, 3);
 x4 = gumbelinv (p, 3.0, 4);
 plot (p, x1, "-b", p, x2, "-g", p, x3, "-r", p, x4, "-c")
 grid on
 ylim ([-5, 20])
 legend ({"μ = 0.5, β = 2", "μ = 1.0, β = 2", ...
          "μ = 1.5, β = 3", "μ = 3.0, β = 4"}, "location", "northwest")
 title ("Gumbel iCDF")
 xlabel ("probability")
 ylabel ("values in x")

                    
plotted figure

statistics-release-1.6.3/docs/gumbellike.html000066400000000000000000000145711456127120000212750ustar00rootroot00000000000000 Statistics: gumbellike

Function Reference: gumbellike

statistics: nlogL = gumbellike (params, x)
statistics: [nlogL, avar] = gumbellike (params, x)
statistics: […] = gumbellike (params, x, censor)
statistics: […] = gumbellike (params, x, censor, freq)

Negative log-likelihood for the extreme value distribution.

nlogL = gumbellike (params, x) returns the negative log likelihood of the data in x corresponding to the Gumbel distribution (also known as the extreme value or the type I generalized extreme value distribution) with (1) location parameter mu and (2) scale parameter beta given in the two-element vector params.

[nlogL, acov] = gumbellike (params, x) also returns the inverse of Fisher’s information matrix, acov. If the input parameter values in params are the maximum likelihood estimates, the diagonal elements of acov are their asymptotic variances.

[…] = gumbellike (params, x, censor) accepts a boolean vector, censor, of the same size as x with 1s for observations that are right-censored and 0s for observations that are observed exactly. By default, or if left empty, censor = zeros (size (x)).

[…] = gumbellike (params, x, censor, freq) accepts a frequency vector, freq, of the same size as x. freq typically contains integer frequencies for the corresponding elements in x, but it can contain any non-integer non-negative values. By default, or if left empty, freq = ones (size (x)).

The Gumbel distribution is used to model the distribution of the maximum (or the minimum) of a number of samples of various distributions. This version is suitable for modeling maxima. For modeling minima, use the alternative extreme value likelihood function, evlike.

Further information about the Gumbel distribution can be found at https://en.wikipedia.org/wiki/Gumbel_distribution

See also: gumbelcdf, gumbelinv, gumbelpdf, gumbelrnd, gumbelfit, gumbelstat, evlike

Source Code: gumbellike

statistics-release-1.6.3/docs/gumbelpdf.html000066400000000000000000000150751456127120000211220ustar00rootroot00000000000000 Statistics: gumbelpdf

Function Reference: gumbelpdf

statistics: y = gumbelpdf (x)
statistics: y = gumbelpdf (x, mu)
statistics: y = gumbelpdf (x, mu, beta)

Gumbel probability density function (PDF).

For each element of x, compute the probability density function (PDF) of the Gumbel distribution (also known as the extreme value or the type I generalized extreme value distribution) with location parameter mu and scale parameter beta. The size of y is the common size of x, mu and beta. A scalar input functions as a constant matrix of the same size as the other inputs.

Default values are mu = 0 and beta = 1.

The Gumbel distribution is used to model the distribution of the maximum (or the minimum) of a number of samples of various distributions. This version is suitable for modeling maxima. For modeling minima, use the alternative extreme value iCDF, evpdf.

Further information about the Gumbel distribution can be found at https://en.wikipedia.org/wiki/Gumbel_distribution

See also: gumbelcdf, gumbelinv, gumbelrnd, gumbelfit, gumbellike, gumbelstat, evpdf

Source Code: gumbelpdf

Example: 1

 

 ## Plot various PDFs from the Extreme value distribution
 x = -5:0.001:20;
 y1 = gumbelpdf (x, 0.5, 2);
 y2 = gumbelpdf (x, 1.0, 2);
 y3 = gumbelpdf (x, 1.5, 3);
 y4 = gumbelpdf (x, 3.0, 4);
 plot (x, y1, "-b", x, y2, "-g", x, y3, "-r", x, y4, "-c")
 grid on
 ylim ([0, 0.2])
 legend ({"μ = 0.5, β = 2", "μ = 1.0, β = 2", ...
          "μ = 1.5, β = 3", "μ = 3.0, β = 4"}, "location", "northeast")
 title ("Extreme value PDF")
 xlabel ("values in x")
 ylabel ("density")

                    
plotted figure

statistics-release-1.6.3/docs/gumbelrnd.html000066400000000000000000000131621456127120000211270ustar00rootroot00000000000000 Statistics: gumbelrnd

Function Reference: gumbelrnd

statistics: r = gumbelrnd (mu, beta)
statistics: r = gumbelrnd (mu, beta, rows)
statistics: r = gumbelrnd (mu, beta, rows, cols, …)
statistics: r = gumbelrnd (mu, beta, [sz])

Random arrays from the Gumbel distribution.

r = gumbelrnd (mu, beta) returns an array of random numbers chosen from the Gumbel distribution (also known as the extreme value or the type I generalized extreme value distribution) with location parameter mu and scale parameter beta. The size of r is the common size of mu and beta. A scalar input functions as a constant matrix of the same size as the other inputs.

When called with a single size argument, gumbelrnd returns a square matrix with the dimension specified. When called with more than one scalar argument, the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions. The size may also be specified with a row vector of dimensions, sz.

The Gumbel distribution is used to model the distribution of the maximum (or the minimum) of a number of samples of various distributions. This version is suitable for modeling maxima. For modeling minima, use the alternative extreme value iCDF, evinv.

Further information about the Gumbel distribution can be found at https://en.wikipedia.org/wiki/Gumbel_distribution

See also: gumbelcdf, gumbelinv, gumbelpdf, gumbelfit, gumbellike, gumbelstat, evrnd

Source Code: gumbelrnd

statistics-release-1.6.3/docs/harmmean.html000066400000000000000000000143001456127120000207330ustar00rootroot00000000000000 Statistics: harmmean

Function Reference: harmmean

statistics: m = harmmean (x)
statistics: m = harmmean (x, "all")
statistics: m = harmmean (x, dim)
statistics: m = harmmean (x, vecdim)
statistics: m = harmmean (…, nanflag)

Compute the harmonic mean of x.

  • If x is a vector, then harmmean(x) returns the harmonic mean of the elements in x defined as $$ {\rm harmmean}(x) = \frac{N}{\sum_{i=1}^N \frac{1}{x_i}} $$ where N is the length of the x vector.
  • If x is a matrix, then harmmean(x) returns a row vector with the harmonic mean of each columns in x.
  • If x is a multidimensional array, then harmmean(x) operates along the first nonsingleton dimension of x.
  • x must not contain any negative or complex values.

harmmean(x, "all") returns the harmonic mean of all the elements in x. If x contains any 0, then the returned value is 0.

harmmean(x, dim) returns the harmonic mean along the operating dimension dim of x. Calculating the harmonic mean of any subarray containing any 0 will return 0.

harmmean(x, vecdim) returns the harmonic mean over the dimensions specified in the vector vecdim. For example, if x is a 2-by-3-by-4 array, then harmmean(x, [1 2]) returns a 1-by-1-by-4 array. Each element of the output array is the harmonic mean of the elements on the corresponding page of x. If vecdim indexes all dimensions of x, then it is equivalent to harmmean (x, "all"). Any dimension in vecdim greater than ndims (x) is ignored.

harmmean(…, nanflag) specifies whether to exclude NaN values from the calculation, using any of the input argument combinations in previous syntaxes. By default, harmmean includes NaN values in the calculation (nanflag has the value "includenan"). To exclude NaN values, set the value of nanflag to "omitnan".

See also: geomean, mean

Source Code: harmmean

statistics-release-1.6.3/docs/hist3.html000066400000000000000000000166771456127120000202200ustar00rootroot00000000000000 Statistics: hist3

Function Reference: hist3

statistics: hist3 (X)
statistics: hist3 (X, nbins)
statistics: hist3 (X, "Nbins", nbins)
statistics: hist3 (X, centers)
statistics: hist3 (X, "Ctrs", centers)
statistics: hist3 (X, "Edges", edges)
statistics: [N, C] = hist3 (…)
statistics: hist3 (…, prop, val, …)
statistics: hist3 (hax, …)

Produce bivariate (2D) histogram counts or plots.

The elements to produce the histogram are taken from the Nx2 matrix X. Any row with NaN values are ignored. The actual bins can be configured in 3 different: number, centers, or edges of the bins:

Number of bins (default)

Produces equally spaced bins between the minimum and maximum values of X. Defined as a 2 element vector, nbins, one for each dimension. Defaults to [10 10].

Center of bins

Defined as a cell array of 2 monotonically increasing vectors, centers. The width of each bin is determined from the adjacent values in the vector with the initial and final bin, extending to Infinity.

Edge of bins

Defined as a cell array of 2 monotonically increasing vectors, edges. N(i,j) contains the number of elements in X for which:

  • edges{1}(i) <= X(:,1) < edges{1}(i+1)
  • edges{2}(j) <= X(:,2) < edges{2}(j+1)

The consequence of this definition is that values outside the initial and final edge values are ignored, and that the final bin only contains the number of elements exactly equal to the final edge.

The return values, N and C, are the bin counts and centers respectively. These are specially useful to produce intensity maps:

 
 [counts, centers] = hist3 (data);
 imagesc (centers{1}, centers{2}, counts)
 

If there is no output argument, or if the axes graphics handle hax is defined, the function will plot a 3 dimensional bar graph. Any extra property/value pairs are passed directly to the underlying surface object.

See also: hist, histc, lookup, mesh

Source Code: hist3

Example: 1

 

 X = [
    1    1
    1    1
    1   10
    1   10
    5    5
    5    5
    5    5
    5    5
    5    5
    7    3
    7    3
    7    3
   10   10
   10   10];
 hist3 (X)

                    
plotted figure

statistics-release-1.6.3/docs/histfit.html000066400000000000000000000124551456127120000206260ustar00rootroot00000000000000 Statistics: histfit

Function Reference: histfit

statistics: histfit (x, nbins)
statistics: h = histfit (x, nbins)

Plot histogram with superimposed fitted normal density.

histfit (x, nbins) plots a histogram of the values in the vector x using nbins bars in the histogram. With one input argument, nbins is set to the square root of the number of elements in x.

h = histfit (x, nbins) returns the bins and fitted line handles of the plot in h.

Example

 
 histfit (randn (100, 1))
 

See also: bar, hist, pareto

Source Code: histfit

Example: 1

 

 histfit (randn (100, 1))

                    
plotted figure

statistics-release-1.6.3/docs/hmmestimate.html000066400000000000000000000214471456127120000214720ustar00rootroot00000000000000 Statistics: hmmestimate

Function Reference: hmmestimate

statistics: [transprobest, outprobest] = hmmestimate (sequence, states)
statistics: […] = hmmestimate (…, "statenames", statenames)
statistics: […] = hmmestimate (…, "symbols", symbols)
statistics: […] = hmmestimate (…, "pseudotransitions", pseudotransitions)
statistics: […] = hmmestimate (…, "pseudoemissions", pseudoemissions)

Estimation of a hidden Markov model for a given sequence.

Estimate the matrix of transition probabilities and the matrix of output probabilities of a given sequence of outputs and states generated by a hidden Markov model. The model assumes that the generation starts in state 1 at step 0 but does not include step 0 in the generated states and sequence.

Arguments

  • sequence is a vector of a sequence of given outputs. The outputs must be integers ranging from 1 to the number of outputs of the hidden Markov model.
  • states is a vector of the same length as sequence of given states. The states must be integers ranging from 1 to the number of states of the hidden Markov model.

Return values

  • transprobest is the matrix of the estimated transition probabilities of the states. transprobest(i, j) is the estimated probability of a transition to state j given state i.
  • outprobest is the matrix of the estimated output probabilities. outprobest(i, j) is the estimated probability of generating output j given state i.

If 'symbols' is specified, then sequence is expected to be a sequence of the elements of symbols instead of integers. symbols can be a cell array.

If 'statenames' is specified, then states is expected to be a sequence of the elements of statenames instead of integers. statenames can be a cell array.

If 'pseudotransitions' is specified then the integer matrix pseudotransitions is used as an initial number of counted transitions. pseudotransitions(i, j) is the initial number of counted transitions from state i to state j. transprobest will have the same size as pseudotransitions. Use this if you have transitions that are very unlikely to occur.

If 'pseudoemissions' is specified then the integer matrix pseudoemissions is used as an initial number of counted outputs. pseudoemissions(i, j) is the initial number of counted outputs j given state i. If 'pseudoemissions' is also specified then the number of rows of pseudoemissions must be the same as the number of rows of pseudotransitions. outprobest will have the same size as pseudoemissions. Use this if you have outputs or states that are very unlikely to occur.

Examples

 
 
 transprob = [0.8, 0.2; 0.4, 0.6];
 outprob = [0.2, 0.4, 0.4; 0.7, 0.2, 0.1];
 [sequence, states] = hmmgenerate (25, transprob, outprob);
 [transprobest, outprobest] = hmmestimate (sequence, states)
 
 
 symbols = {"A", "B", "C"};
 statenames = {"One", "Two"};
 [sequence, states] = hmmgenerate (25, transprob, outprob, ...
                                   "symbols", symbols, ...
                                   "statenames", statenames);
 [transprobest, outprobest] = hmmestimate (sequence, states, ...
                                   "symbols', symbols, ...
                                   "statenames', statenames)
 
 
 pseudotransitions = [8, 2; 4, 6];
 pseudoemissions = [2, 4, 4; 7, 2, 1];
 [sequence, states] = hmmgenerate (25, transprob, outprob);
 [transprobest, outprobest] = hmmestimate (sequence, states, ...
                              "pseudotransitions", pseudotransitions, ...
                              "pseudoemissions", pseudoemissions)
 
 

References

  1. Wendy L. Martinez and Angel R. Martinez. Computational Statistics Handbook with MATLAB. Appendix E, pages 547-557, Chapman & Hall/CRC, 2001.
  2. Lawrence R. Rabiner. A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition. Proceedings of the IEEE, 77(2), pages 257-286, February 1989.

Source Code: hmmestimate

statistics-release-1.6.3/docs/hmmgenerate.html000066400000000000000000000155601456127120000214500ustar00rootroot00000000000000 Statistics: hmmgenerate

Function Reference: hmmgenerate

statistics: [sequence, states] = hmmgenerate (len, transprob, outprob)
statistics: […] = hmmgenerate (…, "symbols", symbols)
statistics: […] = hmmgenerate (…, "statenames", statenames)

Output sequence and hidden states of a hidden Markov model.

Generate an output sequence and hidden states of a hidden Markov model. The model starts in state 1 at step 0 but will not include step 0 in the generated states and sequence.

Arguments

  • len is the number of steps to generate. sequence and states will have len entries each.
  • transprob is the matrix of transition probabilities of the states. transprob(i, j) is the probability of a transition to state j given state i.
  • outprob is the matrix of output probabilities. outprob(i, j) is the probability of generating output j given state i.

Return values

  • sequence is a vector of length len of the generated outputs. The outputs are integers ranging from 1 to columns (outprob).
  • states is a vector of length len of the generated hidden states. The states are integers ranging from 1 to columns (transprob).

If "symbols" is specified, then the elements of symbols are used for the output sequence instead of integers ranging from 1 to columns (outprob). symbols can be a cell array.

If "statenames" is specified, then the elements of statenames are used for the states instead of integers ranging from 1 to columns (transprob). statenames can be a cell array.

Examples

 
 
 transprob = [0.8, 0.2; 0.4, 0.6];
 outprob = [0.2, 0.4, 0.4; 0.7, 0.2, 0.1];
 [sequence, states] = hmmgenerate (25, transprob, outprob)
 
 
 symbols = {"A", "B", "C"};
 statenames = {"One", "Two"};
 [sequence, states] = hmmgenerate (25, transprob, outprob, ...
                                   "symbols", symbols, ...
                                   "statenames", statenames)
 
 

References

  1. Wendy L. Martinez and Angel R. Martinez. Computational Statistics Handbook with MATLAB. Appendix E, pages 547-557, Chapman & Hall/CRC, 2001.
  2. Lawrence R. Rabiner. A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition. Proceedings of the IEEE, 77(2), pages 257-286, February 1989.

Source Code: hmmgenerate

statistics-release-1.6.3/docs/hmmviterbi.html000066400000000000000000000156611456127120000213240ustar00rootroot00000000000000 Statistics: hmmviterbi

Function Reference: hmmviterbi

statistics: vpath = hmmviterbi (sequence, transprob, outprob)
statistics: vpath = hmmviterbi (…, "symbols", symbols)
statistics: vpath = hmmviterbi (…, "statenames", statenames)

Viterbi path of a hidden Markov model.

Use the Viterbi algorithm to find the Viterbi path of a hidden Markov model given a sequence of outputs. The model assumes that the generation starts in state 1 at step 0 but does not include step 0 in the generated states and sequence.

Arguments

  • sequence is the vector of length len of given outputs. The outputs must be integers ranging from 1 to columns (outprob).
  • transprob is the matrix of transition probabilities of the states. transprob(i, j) is the probability of a transition to state j given state i.
  • outprob is the matrix of output probabilities. outprob(i, j) is the probability of generating output j given state i.

Return values

  • vpath is the vector of the same length as sequence of the estimated hidden states. The states are integers ranging from 1 to columns (transprob).

If "symbols" is specified, then sequence is expected to be a sequence of the elements of symbols instead of integers ranging from 1 to columns (outprob). symbols can be a cell array.

If "statenames" is specified, then the elements of statenames are used for the states in vpath instead of integers ranging from 1 to columns (transprob). statenames can be a cell array.

Examples

 
 
 transprob = [0.8, 0.2; 0.4, 0.6];
 outprob = [0.2, 0.4, 0.4; 0.7, 0.2, 0.1];
 [sequence, states] = hmmgenerate (25, transprob, outprob);
 vpath = hmmviterbi (sequence, transprob, outprob);
 
 
 symbols = {"A", "B", "C"};
 statenames = {"One", "Two"};
 [sequence, states] = hmmgenerate (25, transprob, outprob, ...
                      "symbols", symbols, "statenames", statenames);
 vpath = hmmviterbi (sequence, transprob, outprob, ...
         "symbols", symbols, "statenames", statenames);
 
 

References

  1. Wendy L. Martinez and Angel R. Martinez. Computational Statistics Handbook with MATLAB. Appendix E, pages 547-557, Chapman & Hall/CRC, 2001.
  2. Lawrence R. Rabiner. A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition. Proceedings of the IEEE, 77(2), pages 257-286, February 1989.

Source Code: hmmviterbi

statistics-release-1.6.3/docs/hncdf.html000066400000000000000000000173451456127120000202410ustar00rootroot00000000000000 Statistics: hncdf

Function Reference: hncdf

statistics: p = hncdf (x, mu, sigma)
statistics: p = hncdf (x, mu, sigma, "upper")

Half-normal cumulative distribution function (CDF).

For each element of x, compute the cumulative distribution function (CDF) of the half-normal distribution with location parameter mu and scale parameter sigma. The size of p is the common size of x, mu and sigma. A scalar input functions as a constant matrix of the same size as the other inputs.

[…] = hncdf (x, mu, sigma, "upper") computes the upper tail probability of the half-normal distribution with parameters mu and sigma, at the values in x.

The half-normal CDF is only defined for x >= mu.

Further information about the half-normal distribution can be found at https://en.wikipedia.org/wiki/Half-normal_distribution

See also: hninv, hnpdf, hnrnd, hnfit, hnlike

Source Code: hncdf

Example: 1

 

 ## Plot various CDFs from the half-normal distribution
 x = 0:0.001:10;
 p1 = hncdf (x, 0, 1);
 p2 = hncdf (x, 0, 2);
 p3 = hncdf (x, 0, 3);
 p4 = hncdf (x, 0, 5);
 plot (x, p1, "-b", x, p2, "-g", x, p3, "-r", x, p4, "-c")
 grid on
 xlim ([0, 10])
 legend ({"μ = 0, σ = 1", "μ = 0, σ = 2", ...
          "μ = 0, σ = 3", "μ = 0, σ = 5"}, "location", "southeast")
 title ("Half-normal CDF")
 xlabel ("values in x")
 ylabel ("probability")

                    
plotted figure

Example: 2

 

 ## Plot half-normal against normal cumulative distribution function
 x = -5:0.001:5;
 p1 = hncdf (x, 0, 1);
 p2 = normcdf (x);
 plot (x, p1, "-b", x, p2, "-g")
 grid on
 xlim ([-5, 5])
 legend ({"half-normal with μ = 0, σ = 1", ...
          "standart normal (μ = 0, σ = 1)"}, "location", "southeast")
 title ("Half-normal against standard normal CDF")
 xlabel ("values in x")
 ylabel ("probability")

                    
plotted figure

statistics-release-1.6.3/docs/hnfit.html000066400000000000000000000172731456127120000202670ustar00rootroot00000000000000 Statistics: hnfit

Function Reference: hnfit

statistics: paramhat = hnfit (x, mu)
statistics: [paramhat, paramci] = hnfit (x, mu)
statistics: [paramhat, paramci] = hnfit (x, mu, alpha)

Estimate parameters and confidence intervals for the half-normal distribution.

paramhat = hnfit (x) returns the maximum likelihood estimates of the parameters of the half-normal distribution given the data in vector x. paramhat(1) is the location parameter, mu, and paramhat(2) is the scale parameter, sigma. Although mu is returned in the estimated paramhat, hnfit does not estimate the location parameter mu, and it must be assumed to be known.

[paramhat, paramci] = hnfit (x, mu) returns the 95% confidence intervals for the estimated scale parameter sigma. The first colummn of paramci includes the location parameter mu without any confidence bounds.

[…] = hnfit (x, alpha) also returns the 100 * (1 - alpha) percent confidence intervals of the estimated scale parameter. By default, the optional argument alpha is 0.05 corresponding to 95% confidence intervals.

The half-normal CDF is only defined for x >= mu.

Further information about the half-normal distribution can be found at https://en.wikipedia.org/wiki/Half-normal_distribution

See also: hncdf, hninv, hnpdf, hnrnd, hnlike

Source Code: hnfit

Example: 1

 

 ## Sample 2 populations from different half-normal distibutions
 rand ("seed", 1);   # for reproducibility
 r1 = hnrnd (0, 5, 5000, 1);
 rand ("seed", 2);   # for reproducibility
 r2 = hnrnd (0, 2, 5000, 1);
 r = [r1, r2];

 ## Plot them normalized and fix their colors
 hist (r, [0.5:20], 1);
 h = findobj (gca, "Type", "patch");
 set (h(1), "facecolor", "c");
 set (h(2), "facecolor", "g");
 hold on

 ## Estimate their shape parameters
 mu_sigmaA = hnfit (r(:,1), 0);
 mu_sigmaB = hnfit (r(:,2), 0);

 ## Plot their estimated PDFs
 x = [0:0.2:10];
 y = hnpdf (x, mu_sigmaA(1), mu_sigmaA(2));
 plot (x, y, "-pr");
 y = hnpdf (x, mu_sigmaB(1), mu_sigmaB(2));
 plot (x, y, "-sg");
 xlim ([0, 10])
 ylim ([0, 0.5])
 legend ({"Normalized HIST of sample 1 with μ=0 and σ=5", ...
          "Normalized HIST of sample 2 with μ=0 and σ=2", ...
          sprintf("PDF for sample 1 with estimated μ=%0.2f and σ=%0.2f", ...
                  mu_sigmaA(1), mu_sigmaA(2)), ...
          sprintf("PDF for sample 2 with estimated μ=%0.2f and σ=%0.2f", ...
                  mu_sigmaB(1), mu_sigmaB(2))})
 title ("Two population samples from different half-normal distibutions")
 hold off

                    
plotted figure

statistics-release-1.6.3/docs/hninv.html000066400000000000000000000135601456127120000202740ustar00rootroot00000000000000 Statistics: hninv

Function Reference: hninv

statistics: x = hninv (p, mu, sigma)

Inverse of the half-normal cumulative distribution function (iCDF).

For each element of p, compute the quantile (the inverse of the CDF) of the half-normal distribution with location parameter mu and scale parameter sigma. The size of x is the common size of p, mu, and sigma. A scalar input functions as a constant matrix of the same size as the other inputs.

Further information about the half-normal distribution can be found at https://en.wikipedia.org/wiki/Half-normal_distribution

See also: hncdf, hnpdf, hnrnd, hnfit, hnlike

Source Code: hninv

Example: 1

 

 ## Plot various iCDFs from the half-normal distribution
 p = 0.001:0.001:0.999;
 x1 = hninv (p, 0, 1);
 x2 = hninv (p, 0, 2);
 x3 = hninv (p, 0, 3);
 x4 = hninv (p, 0, 5);
 plot (p, x1, "-b", p, x2, "-g", p, x3, "-r", p, x4, "-c")
 grid on
 ylim ([0, 10])
 legend ({"μ = 0, σ = 1", "μ = 0, σ = 2", ...
          "μ = 0, σ = 3", "μ = 0, σ = 5"}, "location", "northwest")
 title ("Half-normal iCDF")
 xlabel ("probability")
 ylabel ("x")

                    
plotted figure

statistics-release-1.6.3/docs/hnlike.html000066400000000000000000000116411456127120000204220ustar00rootroot00000000000000 Statistics: hnlike

Function Reference: hnlike

statistics: nlogL = hnlike (params, x)
statistics: [nlogL, acov] = hnlike (params, x)

Negative log-likelihood for the half-normal distribution.

nlogL = hnlike (params, x) returns the negative log likelihood of the data in x corresponding to the half-normal distribution with (1) location parameter mu and (2) scale parameter sigma given in the two-element vector params.

[nlogL, acov] = hnlike (params, x) returns the inverse of Fisher’s information matrix, acov. If the input parameter values in params are the maximum likelihood estimates, the diagonal elements of params are their asymptotic variances.

The half-normal CDF is only defined for x >= mu.

Further information about the half-normal distribution can be found at https://en.wikipedia.org/wiki/Half-normal_distribution

See also: hncdf, hninv, hnpdf, hnrnd, hnfit

Source Code: hnlike

statistics-release-1.6.3/docs/hnpdf.html000066400000000000000000000165401456127120000202520ustar00rootroot00000000000000 Statistics: hnpdf

Function Reference: hnpdf

statistics: y = hnpdf (x, mu, sigma)

Half-normal probability density function (PDF).

For each element of x, compute the probability density function (PDF) of the half-normal distribution with location parameter mu and scale parameter sigma. The size of y is the common size of x, mu, and sigma. A scalar input functions as a constant matrix of the same size as the other inputs.

The half-normal CDF is only defined for x >= mu.

Further information about the half-normal distribution can be found at https://en.wikipedia.org/wiki/Half-normal_distribution

See also: hncdf, hninv, hnrnd, hnfit, hnlike

Source Code: hnpdf

Example: 1

 

 ## Plot various PDFs from the half-normal distribution
 x = 0:0.001:10;
 y1 = hnpdf (x, 0, 1);
 y2 = hnpdf (x, 0, 2);
 y3 = hnpdf (x, 0, 3);
 y4 = hnpdf (x, 0, 5);
 plot (x, y1, "-b", x, y2, "-g", x, y3, "-r", x, y4, "-c")
 grid on
 xlim ([0, 10])
 ylim ([0, 0.9])
 legend ({"μ = 0, σ = 1", "μ = 0, σ = 2", ...
          "μ = 0, σ = 3", "μ = 0, σ = 5"}, "location", "northeast")
 title ("Half-normal PDF")
 xlabel ("values in x")
 ylabel ("density")

                    
plotted figure

Example: 2

 

 ## Plot half-normal against normal probability density function
 x = -5:0.001:5;
 y1 = hnpdf (x, 0, 1);
 y2 = normpdf (x);
 plot (x, y1, "-b", x, y2, "-g")
 grid on
 xlim ([-5, 5])
 ylim ([0, 0.9])
 legend ({"half-normal with μ = 0, σ = 1", ...
          "standart normal (μ = 0, σ = 1)"}, "location", "northeast")
 title ("Half-normal against standard normal PDF")
 xlabel ("values in x")
 ylabel ("density")

                    
plotted figure

statistics-release-1.6.3/docs/hnrnd.html000066400000000000000000000122421456127120000202570ustar00rootroot00000000000000 Statistics: hnrnd

Function Reference: hnrnd

statistics: r = hnrnd (mu, sigma)
statistics: r = hnrnd (mu, sigma, rows)
statistics: r = hnrnd (mu, sigma, rows, cols, …)
statistics: r = hnrnd (mu, sigma, [sz])

Random arrays from the half-normal distribution.

r = hnrnd (mu, sigma) returns an array of random numbers chosen from the half-normal distribution with location parameter mu and scale parameter sigma. The size of r is the common size of mu and sigma. A scalar input functions as a constant matrix of the same size as the other inputs.

When called with a single size argument, hnrnd returns a square matrix with the dimension specified. When called with more than one scalar argument, the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions. The size may also be specified with a row vector of dimensions, sz.

Further information about the half-normal distribution can be found at https://en.wikipedia.org/wiki/Half-normal_distribution

See also: hncdf, hninv, hnpdf, hnfit, hnlike

Source Code: hnrnd

statistics-release-1.6.3/docs/hotelling_t2test.html000066400000000000000000000137021456127120000224420ustar00rootroot00000000000000 Statistics: hotelling_t2test

Function Reference: hotelling_t2test

statistics: [h, pval, stats] = hotelling_t2test (x)
statistics: […] = hotelling_t2test (x, m)
statistics: […] = hotelling_t2test (x, y)
statistics: […] = hotelling_t2test (x, m, Name, Value)
statistics: […] = hotelling_t2test (x, y, Name, Value)

Compute Hotelling’s T^2 ("T-squared") test for a single sample or two dependent samples (paired-samples).

For a sample x from a multivariate normal distribution with unknown mean and covariance matrix, test the null hypothesis that mean (x) == m.

For two dependent samples x and y from a multivariate normal distributions with unknown means and covariance matrices, test the null hypothesis that mean (x - y) == 0.

hotelling_t2test treats NaNs as missing values, and ignores the corresponding rows.

Name-Value pair arguments can be used to set statistical significance. "alpha" can be used to specify the significance level of the test (the default value is 0.05).

If h is 1 the null hypothesis is rejected, meaning that the tested sample does not come from a multivariate distribution with mean m, or in case of two dependent samples that they do not come from the same multivariate distribution. If h is 0, then the null hypothesis cannot be rejected and it can be assumed that it holds true.

The p-value of the test is returned in pval.

stats is a structure containing the value of the Hotelling’s T^2 test statistic in the field "Tsq", and the degrees of freedom of the F distribution in the fields "df1" and "df2". Under the null hypothesis, (n-p) T^2 / (p(n-1)) has an F distribution with p and n-p degrees of freedom, where n and p are the numbers of samples and variables, respectively.

See also: hotelling_t2test2

Source Code: hotelling_t2test

statistics-release-1.6.3/docs/hotelling_t2test2.html000066400000000000000000000126731456127120000225320ustar00rootroot00000000000000 Statistics: hotelling_t2test2

Function Reference: hotelling_t2test2

statistics: [h, pval, stats] = hotelling_t2test2 (x, y)
statistics: […] = hotelling_t2test2 (x, y, Name, Value)

Compute Hotelling’s T^2 ("T-squared") test for two independent samples.

For two samples x from multivariate normal distributions with the same number of variables (columns), unknown means and unknown equal covariance matrices, test the null hypothesis mean (x) == mean (y).

hotelling_t2test2 treats NaNs as missing values, and ignores the corresponding rows for each sample independently.

Name-Value pair arguments can be used to set statistical significance. "alpha" can be used to specify the significance level of the test (the default value is 0.05).

If h is 1 the null hypothesis is rejected, meaning that the tested samples do not come from the same multivariate distribution. If h is 0, then the null hypothesis cannot be rejected and it can be assumed that both samples come from the same multivariate distribution.

The p-value of the test is returned in pval.

stats is a structure containing the value of the Hotelling’s T^2 test statistic in the field "Tsq", and the degrees of freedom of the F distribution in the fields "df1" and "df2". Under the null hypothesis, $$ {(n_x+n_y-p-1) T^2 \over p(n_x+n_y-2)} $$ has an F distribution with p and n_×+n_y-p-1 degrees of freedom, where n_× and n_y are the sample sizes and p is the number of variables.

See also: hotelling_t2test

Source Code: hotelling_t2test2

statistics-release-1.6.3/docs/hygecdf.html000066400000000000000000000153351456127120000205650ustar00rootroot00000000000000 Statistics: hygecdf

Function Reference: hygecdf

statistics: p = hygecdf (x, m, k, n)
statistics: p = hygecdf (x, m, k, n, "upper")

Hypergeometric cumulative distribution function (CDF).

For each element of x, compute the cumulative distribution function (CDF) of the hypergeometric distribution with parameters m, k, and n. The size of p is the common size of x, m, k, and n. A scalar input functions as a constant matrix of the same size as the other inputs.

This is the cumulative probability of obtaining not more than x marked items when randomly drawing a sample of size n without replacement from a population of total size m containing k marked items. The parameters m, k, and n must be positive integers with k and n not greater than m.

[…] = hygecdf (x, m, k, n, "upper") computes the upper tail probability of the hypergeometric distribution with parameters m, k, and n, at the values in x.

Further information about the hypergeometric distribution can be found at https://en.wikipedia.org/wiki/Hypergeometric_distribution

See also: hygeinv, hygepdf, hygernd, hygestat

Source Code: hygecdf

Example: 1

 

 ## Plot various CDFs from the hypergeometric distribution
 x = 0:60;
 p1 = hygecdf (x, 500, 50, 100);
 p2 = hygecdf (x, 500, 60, 200);
 p3 = hygecdf (x, 500, 70, 300);
 plot (x, p1, "*b", x, p2, "*g", x, p3, "*r")
 grid on
 xlim ([0, 60])
 legend ({"m = 500, k = 50, n = 100", "m = 500, k = 60, n = 200", ...
          "m = 500, k = 70, n = 300"}, "location", "southeast")
 title ("Hypergeometric CDF")
 xlabel ("values in x (number of successes)")
 ylabel ("probability")

                    
plotted figure

statistics-release-1.6.3/docs/hygeinv.html000066400000000000000000000145001456127120000206160ustar00rootroot00000000000000 Statistics: hygeinv

Function Reference: hygeinv

statistics: x = hygeinv (p, m, k, n)

Inverse of the hypergeometric cumulative distribution function (iCDF).

For each element of p, compute the quantile (the inverse of the CDF) of the hypergeometric distribution with parameters m, k, and n. The size of x is the common size of p, m, k, and n. A scalar input functions as a constant matrix of the same size as the other inputs.

This is the number of drawn marked items x given a probability p, when randomly drawing a sample of size n without replacement from a population of total size m containing k marked items. The parameters m, k, and n must be positive integers with k and n not greater than m.

Further information about the hypergeometric distribution can be found at https://en.wikipedia.org/wiki/Hypergeometric_distribution

See also: hygeinv, hygepdf, hygernd, hygestat

Source Code: hygeinv

Example: 1

 

 ## Plot various iCDFs from the hypergeometric distribution
 p = 0.001:0.001:0.999;
 x1 = hygeinv (p, 500, 50, 100);
 x2 = hygeinv (p, 500, 60, 200);
 x3 = hygeinv (p, 500, 70, 300);
 plot (p, x1, "-b", p, x2, "-g", p, x3, "-r")
 grid on
 ylim ([0, 60])
 legend ({"m = 500, k = 50, n = 100", "m = 500, k = 60, n = 200", ...
          "m = 500, k = 70, n = 300"}, "location", "northwest")
 title ("Hypergeometric iCDF")
 xlabel ("probability")
 ylabel ("values in p (number of successes)")

                    
plotted figure

statistics-release-1.6.3/docs/hygepdf.html000066400000000000000000000157241456127120000206040ustar00rootroot00000000000000 Statistics: hygepdf

Function Reference: hygepdf

statistics: y = hygepdf (x, m, k, n)
statistics: y = hygepdf (…, "vectorexpand")

Hypergeometric probability density function (PDF).

For each element of x, compute the probability density function (PDF) of the hypergeometric distribution with parameters m, k, and n. The size of y is the common size of x, m, k, and n. A scalar input functions as a constant matrix of the same size as the other inputs.

This is the probability of obtaining x marked items when randomly drawing a sample of size n without replacement from a population of total size m containing k marked items. The parameters m, k, and n must be positive integers with k and n not greater than m.

If the optional parameter vectorexpand is provided, x may be an array with size different from parameters m, k, and n (which must still be of a common size or scalar). Each element of x will be evaluated against each set of parameters m, k, and n in columnwise order. The output y will be an array of size r x s, where r = numel (m), and s = numel (x).

Further information about the hypergeometric distribution can be found at https://en.wikipedia.org/wiki/Hypergeometric_distribution

See also: hygecdf, hygeinv, hygernd, hygestat

Source Code: hygepdf

Example: 1

 

 ## Plot various PDFs from the hypergeometric distribution
 x = 0:60;
 y1 = hygepdf (x, 500, 50, 100);
 y2 = hygepdf (x, 500, 60, 200);
 y3 = hygepdf (x, 500, 70, 300);
 plot (x, y1, "*b", x, y2, "*g", x, y3, "*r")
 grid on
 xlim ([0, 60])
 ylim ([0, 0.18])
 legend ({"m = 500, k = 50, μ = 100", "m = 500, k = 60, μ = 200", ...
          "m = 500, k = 70, μ = 300"}, "location", "northeast")
 title ("Hypergeometric PDF")
 xlabel ("values in x (number of successes)")
 ylabel ("density")

                    
plotted figure

statistics-release-1.6.3/docs/hygernd.html000066400000000000000000000125751456127120000206170ustar00rootroot00000000000000 Statistics: hygernd

Function Reference: hygernd

statistics: r = hygernd (m, k, n)
statistics: r = hygernd (m, k, n, rows)
statistics: r = hygernd (m, k, n, rows, cols, …)
statistics: r = hygernd (m, k, n, [sz])

Random arrays from the hypergeometric distribution.

r = hygernd ((m, k, n returns an array of random numbers chosen from the hypergeometric distribution with parameters m, k, and n. The size of r is the common size of m, k, and n. A scalar input functions as a constant matrix of the same size as the other inputs.

The parameters m, k, and n must be positive integers with k and n not greater than m.

When called with a single size argument, hygernd returns a square matrix with the dimension specified. When called with more than one scalar argument, the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions. The size may also be specified with a row vector of dimensions, sz.

Further information about the hypergeometric distribution can be found at https://en.wikipedia.org/wiki/Hypergeometric_distribution

See also: hygecdf, hygeinv, hygepdf, hygestat

Source Code: hygernd

statistics-release-1.6.3/docs/hygestat.html000066400000000000000000000117161456127120000210030ustar00rootroot00000000000000 Statistics: hygestat

Function Reference: hygestat

statistics: [mn, v] = hygestat (m, k, n)

Compute statistics of the hypergeometric distribution.

[mn, v] = hygestat (m, k, n) returns the mean and variance of the hypergeometric distribution parameters m, k, and n.

  • m is the total size of the population of the hypergeometric distribution. The elements of m must be positive natural numbers.
  • k is the number of marked items of the hypergeometric distribution. The elements of k must be natural numbers.
  • n is the size of the drawn sample of the hypergeometric distribution. The elements of n must be positive natural numbers.

The size of mn (mean) and v (variance) is the common size of the input arguments. A scalar input functions as a constant matrix of the same size as the other inputs.

Further information about the hypergeometric distribution can be found at https://en.wikipedia.org/wiki/Hypergeometric_distribution

See also: hygecdf, hygeinv, hygepdf, hygernd

Source Code: hygestat

statistics-release-1.6.3/docs/icdf.html000066400000000000000000000326111456127120000200550ustar00rootroot00000000000000 Statistics: icdf

Function Reference: icdf

statistics: x = icdf (name, p, A)
statistics: x = icdf (name, p, A, B)
statistics: x = icdf (name, p, A, B, C)

Return the inverse CDF of a univariate distribution evaluated at p.

icdf is a wrapper for the univariate quantile distribution functions (iCDF) available in the statistics package. See the corresponding functions’ help to learn the signification of the parameters after p.

x = icdf (name, p, A) returns the iCDF for the one-parameter distribution family specified by name and the distribution parameter A, evaluated at the values in p.

x = icdf (name, p, A, B) returns the iCDF for the two-parameter distribution family specified by name and the distribution parameters A and B, evaluated at the values in p.

x = icdf (name, p, A, B, C) returns the iCDF for the three-parameter distribution family specified by name and the distribution parameters A, B, and C, evaluated at the values in p.

name must be a char string of the name or the abbreviation of the desired quantile distribution function as listed in the followng table. The last column shows the number of required parameters that should be parsed after x to the desired iCDF.

Distribution NameAbbreviationInput Parameters
"Beta""beta"2
"Binomial""bino"2
"Birnbaum-Saunders""bisa"2
"Burr""burr"3
"Cauchy""cauchy"2
"Chi-squared""chi2"1
"Extreme Value""ev"2
"Exponential""exp"1
"F-Distribution""f"2
"Gamma""gam"2
"Geometric""geo"1
"Generalized Extreme Value""gev"3
"Generalized Pareto""gp"3
"Gumbel""gumbel"2
"Half-normal""hn"2
"Hypergeometric""hyge"3
"Inverse Gaussian""invg"2
"Laplace""laplace"2
"Logistic""logi"2
"Log-Logistic""logl"2
"Lognormal""logn"2
"Nakagami""naka"2
"Negative Binomial""nbin"2
"Noncentral F-Distribution""ncf"3
"Noncentral Student T""nct"2
"Noncentral Chi-Squared""ncx2"2
"Normal""norm"2
"Poisson""poiss"1
"Rayleigh""rayl"1
"Rician""rice"2
"Student T""t"1
"location-scale T""tls"3
"Triangular""tri"3
"Discrete Uniform""unid"1
"Uniform""unif"2
"Von Mises""vm"2
"Weibull""wbl"2

See also: icdf, pdf, random, betainv, binoinv, bisainv, burrinv, cauchyinv, chi2inv, evinv, expinv, finv, gaminv, geoinv, gevinv, gpinv, gumbelinv, hninv, hygeinv, invginv, laplaceinv, logiinv, loglinv, logninv, nakainv, nbininv, ncfinv, nctinv, ncx2inv, norminv, poissinv, raylinv, riceinv, tinv, triinv, unidinv, unifinv, vminv, wblinv

Source Code: icdf

statistics-release-1.6.3/docs/inconsistent.html000066400000000000000000000116021456127120000216650ustar00rootroot00000000000000 Statistics: inconsistent

Function Reference: inconsistent

statistics: Y = inconsistent (Z)
statistics: Y = inconsistent (Z, d)

Compute the inconsistency coefficient for each link of a hierarchical cluster tree.

Given a hierarchical cluster tree Z generated by the linkage function, inconsistent computes the inconsistency coefficient for each link of the tree, using all the links down to the d-th level below that link.

The default depth d is 2, which means that only two levels are considered: the level of the computed link and the level below that.

Each row of Y corresponds to the row of same index of Z. The columns of Y are respectively: the mean of the heights of the links used for the calculation, the standard deviation of the heights of those links, the number of links used, the inconsistency coefficient.

Reference Jain, A., and R. Dubes. Algorithms for Clustering Data. Upper Saddle River, NJ: Prentice-Hall, 1988.

See also: cluster, clusterdata, dendrogram, linkage, pdist, squareform

Source Code: inconsistent

statistics-release-1.6.3/docs/index.html000066400000000000000000003547121456127120000202700ustar00rootroot00000000000000 Statistics
statistics

statistics

1.6.3 2024-2-9

The Statistics package for GNU Octave.

Select Category:

Clustering

cluster Define clusters from an agglomerative hierarchical cluster tree.
clusterdata Wrapper function for 'linkage' and 'cluster'.
cmdscale Classical multidimensional scaling of a matrix.
confusionmat Compute a confusion matrix for classification problems
cophenet Compute the cophenetic correlation coefficient.
crossval Perform cross validation on given data.
evalclusters Create a clustering evaluation object to find the optimal number of clusters.
inconsistent Compute the inconsistency coefficient for each link of a hierarchical cluster tree.
kmeans Perform a K-means clustering of the NxD matrix DATA.
knnsearch Find k-nearest neighbors from input data.
linkage Produce a hierarchical clustering dendrogram.
mahal Mahalanobis' D-square distance.
mhsample Draws NSAMPLES samples from a target stationary distribution PDF using Metropolis-Hastings algorithm.
optimalleaforder Compute the optimal leaf ordering of a hierarchical binary cluster tree.
pdist Return the distance between any two rows in X.
pdist2 Compute pairwise distance between two sets of vectors.
procrustes Procrustes Analysis.
rangesearch Find all neighbors within specified distance from input data.
slicesample Draws NSAMPLES samples from a target stationary distribution PDF using slice sampling of Radford M.
squareform Interchange between distance matrix and distance vector formats.

Classification Classes

ClassificationKNN Create a ClassificationKNN class object containing a k-Nearest Neighbor classification model.
ConfusionMatrixChart Create object CMC, a Confusion Matrix Chart object.

Clustering Classes

CalinskiHarabaszEvaluation A Calinski-Harabasz object to evaluate clustering solutions.
ClusterCriterion A clustering evaluation object as created by 'evalclusters'.
DaviesBouldinEvaluation A Davies-Bouldin object to evaluate clustering solutions.
GapEvaluation A gap object to evaluate clustering solutions.
SilhouetteEvaluation A silhouette object to evaluate clustering solutions.

CVpartition (legacy class of set partitions for cross-validation, used in crossval)

@cvpartition/cvpartition Create a partition object for cross validation.
@cvpartition/display Display a 'cvpartition' object, C.
@cvpartition/get Get a field, F, from a 'cvpartition' object, C.
@cvpartition/repartition Return a new cvpartition object.
@cvpartition/set Set FIELD, in a 'cvpartition' object, C.
@cvpartition/test Return logical vector for testing-subset indices from a 'cvpartition' object, C.
@cvpartition/training Return logical vector for training-subset indices from a 'cvpartition' object, C.

Regression Classes

RegressionGAM Create a RegressionGAM class object containing a Generalised Additive Model (GAM) for regression.

Data Manipulation

combnk Return all combinations of K elements in DATA.
crosstab Create a cross-tabulation (contingency table) T from data vectors.
datasample Randomly sample data.
fillmissing Replace missing entries of array A either with values in V or as determined by other specified methods. 'missing' values are determined by the data type of A as identified by the function ismissing, curently defined as:
grp2idx Get index for group variables.
ismissing Find missing data in a numeric or string array.
isoutlier Find outliers in data
normalise_distribution Transform a set of data so as to be N(0,1) distributed according to an idea by van Albada and Robinson.
rmmissing Remove missing or incomplete data from an array.
standardizeMissing Replace data values specified by INDICATOR in A by the standard 'missing' data value for that data type.
tabulate Calculate a frequency table.

Descriptive Statistics

cdfcalc Calculate an empirical cumulative distribution function.
cl_multinom Confidence level of multinomial portions.
geomean Compute the geometric mean of X.
grpstats Summary statistics by group. 'grpstats' computes groupwise summary statistics, for data in a matrix X. 'grpstats' treats NaNs as missing values, and removes them.
harmmean Compute the harmonic mean of X.
jackknife Compute jackknife estimates of a parameter taking one or more given samples as parameters.
mad Compute the mean or median absolute deviation (MAD).
mean Compute the mean of the elements of X.
median Compute the median value of the elements of X.
nanmax Find the maximal element while ignoring NaN values.
nanmin Find the minimal element while ignoring NaN values.
nansum Compute the sum while ignoring NaN values.
std Compute the standard deviation of the elements of X.
trimmean Compute the trimmed mean.
var Compute the variance of the elements of X.

Distribution Fitting

betafit Estimate parameters and confidence intervals for the Beta distribution.
betalike Negative log-likelihood for the Beta distribution.
binofit Estimate parameter and confidence intervals for the binomial distribution.
binolike Negative log-likelihood for the binomial distribution.
bisafit Estimate mean and confidence intervals for the Birnbaum-Saunders distribution.
bisalike Negative log-likelihood for the Birnbaum-Saunders distribution.
burrfit Estimate mean and confidence intervals for the Burr type XII distribution.
burrlike Negative log-likelihood for the Burr type XII distribution.
evfit Estimate parameters and confidence intervals for the extreme value distribution.
evlike Negative log-likelihood for the extreme value distribution.
expfit Estimate mean and confidence intervals for the exponential distribution.
explike Negative log-likelihood for the exponential distribution.
gamfit Estimate parameters and confidence intervals for the Gamma distribution.
gamlike Negative log-likelihood for the Gamma distribution.
geofit Estimate parameter and confidence intervals for the geometric distribution.
gevfit_lmom Find an estimator (PARAMHAT) of the generalized extreme value (GEV) distribution fitting DATA using the method of L-moments.
gevfit Estimate parameters and confidence intervals for the generalized extreme value (GEV) distribution.
gevlike Negative log-likelihood for the generalized extreme value (GEV) distribution.
gpfit Estimate parameters and confidence intervals for the generalized Pareto distribution.
gplike Negative log-likelihood for the generalized Pareto distribution.
gumbelfit Estimate parameters and confidence intervals for Gumbel distribution.
gumbellike Negative log-likelihood for the extreme value distribution.
hnfit Estimate parameters and confidence intervals for the half-normal distribution.
hnlike Negative log-likelihood for the half-normal distribution.
invgfit Estimate mean and confidence intervals for the inverse Gaussian distribution.
invglike Negative log-likelihood for the inverse Gaussian distribution.
logifit Estimate mean and confidence intervals for the logistic distribution.
logilike Negative log-likelihood for the logistic distribution.
loglfit Estimate mean and confidence intervals for the log-logistic distribution.
logllike Negative log-likelihood for the log-logistic distribution.
lognfit Estimate parameters and confidence intervals for the log-normal distribution.
lognlike Negative log-likelihood for the log-normal distribution.
nakafit Estimate mean and confidence intervals for the Nakagami distribution.
nakalike Negative log-likelihood for the Nakagami distribution.
nbinfit Estimate parameter and confidence intervals for the negative binomial distribution.
nbinlike Negative log-likelihood for the negative binomial distribution.
normfit Estimate parameters and confidence intervals for the normal distribution.
normlike Negative log-likelihood for the normal distribution.
poissfit Estimate parameter and confidence intervals for the Poisson distribution.
poisslike Negative log-likelihood for the Poisson distribution.
raylfit Estimate parameter and confidence intervals for the Rayleigh distribution.
rayllike Negative log-likelihood for the Rayleigh distribution.
ricefit Estimate parameters and confidence intervals for the Gamma distribution.
ricelike Negative log-likelihood for the Rician distribution.
unidfit Estimate parameter and confidence intervals for the discrete uniform distribution.
unifit Estimate parameter and confidence intervals for the continuous uniform distribution.
wblfit Estimate mean and confidence intervals for the Weibull distribution.
wbllike Negative log-likelihood for the Weibull distribution.

Distribution Functions

betacdf Beta cumulative distribution function (CDF).
betainv Inverse of the Beta distribution (iCDF).
betapdf Beta probability density function (PDF).
betarnd Random arrays from the Beta distribution.
binocdf Binomial cumulative distribution function (CDF).
binoinv Inverse of the Binomial cumulative distribution function (iCDF).
binopdf Binomial probability density function (PDF).
binornd Random arrays from the Binomial distribution.
bisacdf Birnbaum-Saunders cumulative distribution function (CDF).
bisainv Inverse of the Birnbaum-Saunders cumulative distribution function (iCDF).
bisapdf Birnbaum-Saunders probability density function (PDF).
bisarnd Random arrays from the Birnbaum-Saunders distribution.
burrcdf Burr type XII cumulative distribution function (CDF).
burrinv Inverse of the Burr type XII cumulative distribution function (iCDF).
burrpdf Burr type XII probability density function (PDF).
burrrnd Random arrays from the Burr type XII distribution.
bvncdf Bivariate normal cumulative distribution function (CDF).
bvtcdf Bivariate Student's t cumulative distribution function (CDF).
cauchycdf Cauchy cumulative distribution function (CDF).
cauchyinv Inverse of the Cauchy cumulative distribution function (iCDF).
cauchypdf Cauchy probability density function (PDF).
cauchyrnd Random arrays from the Cauchy distribution.
chi2cdf Chi-squared cumulative distribution function (CDF).
chi2inv Inverse of the chi-squared cumulative distribution function (iCDF).
chi2pdf Chi-squared probability density function (PDF).
chi2rnd Random arrays from the chi-squared distribution.
copulacdf Copula family cumulative distribution functions (CDF).
copulapdf Copula family probability density functions (PDF).
copularnd Random arrays from the copula family distributions.
evcdf Extreme value cumulative distribution function (CDF).
evinv Inverse of the extreme value cumulative distribution function (iCDF).
evpdf Extreme value probability density function (PDF).
evrnd Random arrays from the extreme value distribution.
expcdf Exponential cumulative distribution function (CDF).
expinv Inverse of the exponential cumulative distribution function (iCDF).
exppdf Exponential probability density function (PDF).
exprnd Random arrays from the exponential distribution.
fcdf F-cumulative distribution function (CDF).
finv Inverse of the F-cumulative distribution function (iCDF).
fpdf F-probability density function (PDF).
frnd Random arrays from the F-distribution.
gamcdf Gamma cumulative distribution function (CDF).
gaminv Inverse of the Gamma cumulative distribution function (iCDF).
gampdf Gamma probability density function (PDF).
gamrnd Random arrays from the Gamma distribution.
geocdf Geometric cumulative distribution function (CDF).
geoinv Inverse of the geometric cumulative distribution function (iCDF).
geopdf Geometric probability density function (PDF).
geornd Random arrays from the geometric distribution.
gevcdf Generalized extreme value (GEV) cumulative distribution function (CDF).
gevinv Inverse of the generalized extreme value (GEV) cumulative distribution function (iCDF).
gevpdf Generalized extreme value (GEV) probability density function (PDF).
gevrnd Random arrays from the generalized extreme value (GEV) distribution.
gpcdf Generalized Pareto cumulative distribution function (CDF).
gpinv Inverse of the generalized Pareto cumulative distribution function (iCDF).
gppdf Generalized Pareto probability density function (PDF).
gprnd Random arrays from the generalized Pareto distribution.
gumbelcdf Gumbel cumulative distribution function (CDF).
gumbelinv Inverse of the Gumbel cumulative distribution function (iCDF).
gumbelpdf Gumbel probability density function (PDF).
gumbelrnd Random arrays from the Gumbel distribution.
hncdf Half-normal cumulative distribution function (CDF).
hninv Inverse of the half-normal cumulative distribution function (iCDF).
hnpdf Half-normal probability density function (PDF).
hnrnd Random arrays from the half-normal distribution.
hygecdf Hypergeometric cumulative distribution function (CDF).
hygeinv Inverse of the hypergeometric cumulative distribution function (iCDF).
hygepdf Hypergeometric probability density function (PDF).
hygernd Random arrays from the hypergeometric distribution.
invgcdf Inverse Gaussian cumulative distribution function (CDF).
invginv Inverse of the inverse Gaussian cumulative distribution function (iCDF).
invgpdf Inverse Gaussian probability density function (PDF).
invgrnd Random arrays from the inverse Gaussian distribution.
iwishpdf Compute the probability density function of the inverse Wishart distribution.
iwishrnd Return a random matrix sampled from the inverse Wishart distribution with given parameters.
jsucdf Johnson SU cumulative distribution function (CDF).
jsupdf Johnson SU probability density function (PDF).
laplacecdf Laplace cumulative distribution function (CDF).
laplaceinv Inverse of the Laplace cumulative distribution function (iCDF).
laplacepdf Laplace probability density function (PDF).
laplacernd Random arrays from the Laplace distribution.
logicdf Logistic cumulative distribution function (CDF).
logiinv Inverse of the logistic cumulative distribution function (iCDF).
logipdf Logistic probability density function (PDF).
logirnd Random arrays from the logistic distribution.
loglcdf Log-logistic cumulative distribution function (CDF).
loglinv Inverse of the log-logistic cumulative distribution function (iCDF).
loglpdf Log-logistic probability density function (PDF).
loglrnd Random arrays from the log-logistic distribution.
logncdf Log-normal cumulative distribution function (CDF).
logninv Inverse of the log-normal cumulative distribution function (iCDF).
lognpdf Lognormal probability density function (PDF).
lognrnd Random arrays from the lognormal distribution.
mnpdf Multinomial probability density function (PDF).
mnrnd Random arrays from the multinomial distribution.
mvncdf Multivariate normal cumulative distribution function (CDF).
mvnpdf Multivariate normal probability density function (PDF).
mvnrnd Random vectors from the multivariate normal distribution.
mvtcdf Multivariate Student's t cumulative distribution function (CDF).
mvtpdf Multivariate Student's t probability density function (PDF).
mvtrnd Random vectors from the multivariate Student's t distribution.
mvtcdfqmc Quasi-Monte-Carlo computation of the multivariate Student's T CDF.
nakacdf Nakagami cumulative distribution function (CDF).
nakainv Inverse of the Nakagami cumulative distribution function (iCDF).
nakapdf Nakagami probability density function (PDF).
nakarnd Random arrays from the Nakagami distribution.
nbincdf Negative binomial cumulative distribution function (CDF).
nbininv Inverse of the negative binomial cumulative distribution function (iCDF).
nbinpdf Negative binomial probability density function (PDF).
nbinrnd Random arrays from the negative binomial distribution.
ncfcdf Noncentral F-cumulative distribution function (CDF).
ncfinv Inverse of the noncentral F-cumulative distribution function (iCDF).
ncfpdf Noncentral F-probability density function (PDF).
ncfrnd Random arrays from the noncentral F-distribution.
nctcdf Noncentral t-cumulative distribution function (CDF).
nctinv Inverse of the non-central t-cumulative distribution function (iCDF).
nctpdf Noncentral t-probability density function (PDF).
nctrnd Random arrays from the noncentral t-distribution.
ncx2cdf Noncentral chi-squared cumulative distribution function (CDF).
ncx2inv Inverse of the noncentral chi-squared cumulative distribution function (iCDF).
ncx2pdf Noncentral chi-squared probability distribution function (PDF).
ncx2rnd Random arrays from the noncentral chi-squared distribution.
normcdf Normal cumulative distribution function (CDF).
norminv Inverse of the normal cumulative distribution function (iCDF).
normpdf Normal probability density function (PDF).
normrnd Random arrays from the normal distribution.
poisscdf Poisson cumulative distribution function (CDF).
poissinv Inverse of the Poisson cumulative distribution function (iCDF).
poisspdf Poisson probability density function (PDF).
poissrnd Random arrays from the Poisson distribution.
raylcdf Rayleigh cumulative distribution function (CDF).
raylinv Inverse of the Rayleigh cumulative distribution function (iCDF).
raylpdf Rayleigh probability density function (PDF).
raylrnd Random arrays from the Rayleigh distribution.
ricecdf Rician cumulative distribution function (CDF).
riceinv Inverse of the Rician distribution (iCDF).
ricepdf Rician probability density function (PDF).
ricernd Random arrays from the Rician distribution.
tcdf Student's T cumulative distribution function (CDF).
tinv Inverse of the Student's T cumulative distribution function (iCDF).
tpdf Student's T probability density function (PDF).
trnd Random arrays from the Student's T distribution.
tlscdf Location-scale Student's T cumulative distribution function (CDF).
tlsinv Inverse of the location-scale Student's T cumulative distribution function (iCDF).
tlspdf Location-scale Student's T probability density function (PDF).
tlsrnd Random arrays from the location-scale Student's T distribution.
tricdf Triangular cumulative distribution function (CDF).
triinv Inverse of the triangular cumulative distribution function (iCDF).
tripdf Triangular probability density function (PDF).
trirnd Random arrays from the triangular distribution.
unidcdf Discrete uniform cumulative distribution function (CDF).
unidinv Inverse of the discrete uniform cumulative distribution function (iCDF).
unidpdf Discrete uniform probability density function (PDF).
unidrnd Random arrays from the discrete uniform distribution.
unifcdf Continuous uniform cumulative distribution function (CDF).
unifinv Inverse of the continuous uniform cumulative distribution function (iCDF).
unifpdf Continuous uniform probability density function (PDF).
unifrnd Random arrays from the continuous uniform distribution.
vmcdf Von Mises probability density function (PDF).
vminv Inverse of the von Mises cumulative distribution function (iCDF).
vmpdf Von Mises probability density function (PDF).
vmrnd Random arrays from the von Mises distribution.
wblcdf Weibull cumulative distribution function (CDF).
wblinv Inverse of the Weibull cumulative distribution function (iCDF).
wblpdf Weibull probability density function (PDF).
wblrnd Random arrays from the Weibull distribution.
wienrnd Return a simulated realization of the D-dimensional Wiener Process on the interval [0, T].
wishpdf Compute the probability density function of the Wishart distribution
wishrnd Return a random matrix sampled from the Wishart distribution with given parameters

Distribution Statistics

betastat Compute statistics of the Beta distribution.
binostat Compute statistics of the binomial distribution.
chi2stat Compute statistics of the chi-squared distribution.
evstat Compute statistics of the extreme value distribution.
expstat Compute statistics of the exponential distribution.
fstat Compute statistics of the F-distribution.
gamstat Compute statistics of the Gamma distribution.
geostat Compute statistics of the geometric distribution.
gevstat Compute statistics of the generalized extreme value distribution.
gpstat Compute statistics of the generalized Pareto distribution.
hygestat Compute statistics of the hypergeometric distribution.
lognstat Compute statistics of the log-normal distribution.
nbinstat Compute statistics of the negative binomial distribution.
ncfstat Compute statistics for the noncentral F-distribution.
nctstat Compute statistics for the noncentral t-distribution.
ncx2stat Compute statistics for the noncentral chi-squared distribution.
normstat Compute statistics of the normal distribution.
poisstat Compute statistics of the Poisson distribution.
raylstat Compute statistics of the Rayleigh distribution.
ricestat Compute statistics of the Rician distribution.
tlsstat Compute statistics of the location-scale Student's T distribution.
tstat Compute statistics of the Student's T distribution.
unidstat Compute statistics of the discrete uniform cumulative distribution.
unifstat Compute statistics of the continuous uniform cumulative distribution.
wblstat Compute statistics of the Weibull distribution.

Experimental Design

fullfact Full factorial design.
ff2n Two-level full factorial design.
sigma_pts Calculates 2*N+1 sigma points in N dimensions.
x2fx Convert predictors to design matrix.

Machine Learning

hmmestimate Estimation of a hidden Markov model for a given sequence.
hmmgenerate Output sequence and hidden states of a hidden Markov model.
hmmviterbi Viterbi path of a hidden Markov model.
svmpredict This function predicts new labels from a testing instance matrtix based on an SVM MODEL created with 'svmtrain'.
svmtrain This function trains an SVM MODEL based on known LABELS and their corresponding DATA which comprise an instance matrtix.

Model Fitting

fitcknn Fit a k-Nearest Neighbor classification model.
fitgmdist Fit a Gaussian mixture model with K components to DATA.
fitlm Regress the continuous outcome (i.e. dependent variable) Y on continuous or categorical predictors (i.e. independent variables) X by minimizing the sum-of-squared residuals.
fitrgam Fit a Generalised Additive Model (GAM) for regression.

Hypothesis Testing

adtest Anderson-Darling goodness-of-fit hypothesis test.
anova1 Perform a one-way analysis of variance (ANOVA) for comparing the means of two or more groups of data under the null hypothesis that the groups are drawn from distributions with the same mean.
anova2 Performs two-way factorial (crossed) or a nested analysis of variance (ANOVA) for balanced designs.
anovan Perform a multi (N)-way analysis of (co)variance (ANOVA or ANCOVA) to evaluate the effect of one or more categorical or continuous predictors (i.e. independent variables) on a continuous outcome (i.e. dependent variable).
bartlett_test Perform a Bartlett test for the homogeneity of variances.
barttest Bartlett's test of sphericity for correlation.
binotest Test for probability P of a binomial sample
chi2gof Chi-square goodness-of-fit test.
chi2test Perform a chi-squared test (for independence or homogeneity).
correlation_test Perform a correlation coefficient test whether two samples X and Y come from uncorrelated populations.
fishertest Fisher's exact test.
friedman Performs the nonparametric Friedman's test to compare column effects in a two-way layout. friedman tests the null hypothesis that the column effects are all the same against the alternative that they are not all the same.
hotelling_t2test Compute Hotelling's T^2 ("T-squared") test for a single sample or two dependent samples (paired-samples).
hotelling_t2test2 Compute Hotelling's T^2 ("T-squared") test for two independent samples.
kruskalwallis Perform a Kruskal-Wallis test, the non-parametric alternative of a one-way analysis of variance (ANOVA), for comparing the means of two or more groups of data under the null hypothesis that the groups are drawn from the same population, ...
kstest Single sample Kolmogorov-Smirnov (K-S) goodness-of-fit hypothesis test.
kstest2 Two-sample Kolmogorov-Smirnov goodness-of-fit hypothesis test.
levene_test Perform a Levene's test for the homogeneity of variances.
manova1 One-way multivariate analysis of variance (MANOVA).
mcnemar_test Perform a McNemar's test on paired nominal data.
multcompare Perform posthoc multiple comparison tests or p-value adjustments to control the family-wise error rate (FWER) or false discovery rate (FDR).
ranksum Wilcoxon rank sum test for equal medians.
regression_ftest F-test for General Linear Regression Analysis
regression_ttest Perform a linear regression t-test.
runstest Run test for randomness in the vector X.
sampsizepwr Sample size and power calculation for hypothesis test.
signtest Test for median.
ttest Test for mean of a normal sample with unknown variance.
ttest2 Perform a t-test to compare the means of two groups of data under the null hypothesis that the groups are drawn from distributions with the same mean.
vartest One-sample test of variance.
vartest2 Two-sample F test for equal variances.
vartestn Test for equal variances across multiple groups.
ztest One-sample Z-test.
ztest2 Two proportions Z-test.

I/O

libsvmread This function reads the labels and the corresponding instance_matrix from a LIBSVM data file and stores them in LABELS and DATA respectively.
libsvmwrite This function saves the labels and the corresponding instance_matrix in a file specified by FILENAME.

Plotting

boxplot Produce a box plot.
cdfplot Display an empirical cumulative distribution function.
confusionchart Display a chart of a confusion matrix.
dendrogram Plot a dendrogram of a hierarchical binary cluster tree.
ecdf Empirical (Kaplan-Meier) cumulative distribution function.
einstein Plots the tiling of the basic clusters of einstein tiles.
gscatter Draw a scatter plot with grouped data.
histfit Plot histogram with superimposed fitted normal density.
hist3 Produce bivariate (2D) histogram counts or plots.
manovacluster Cluster group means using manova1 output.
normplot Produce normal probability plot of the data in X.
ppplot Perform a PP-plot (probability plot).
qqplot Perform a QQ-plot (quantile plot).
silhouette Compute the silhouette values of clustered data and show them on a plot.
violin Produce a Violin plot of the data X.
wblplot Plot a column vector DATA on a Weibull probability plot using rank regression.

Regression

canoncorr Canonical correlation analysis.
cholcov Cholesky-like decomposition for covariance matrix.
dcov Distance correlation, covariance and correlation statistics.
logistic_regression Perform ordinal logistic regression.
mnrfit Perform logistic regression for binomial responses or multiple ordinal responses.
monotone_smooth Produce a smooth monotone increasing approximation to a sampled functional dependence.
pca Performs a principal component analysis on a data matrix.
pcacov Perform principal component analysis on covariance matrix
pcares Calculate residuals from principal component analysis.
plsregress Calculate partial least squares regression using SIMPLS algorithm.
princomp Performs a principal component analysis on a NxP data matrix X.
regress Multiple Linear Regression using Least Squares Fit of Y on X with the model 'y = X * beta + e'.
regress_gp Regression using Gaussian Processes.
ridge Ridge regression.
stepwisefit Linear regression with stepwise variable selection.

Transforms

logit Compute the logit for each value of P
probit Probit transformation

Wrappers

cdf Return the CDF of a univariate distribution evaluated at X.
icdf Return the inverse CDF of a univariate distribution evaluated at P.
pdf Return the PDF of a univariate distribution evaluated at X.
random Random arrays from a given one-, two-, or three-parameter distribution.
statistics-release-1.6.3/docs/invgcdf.html000066400000000000000000000150241456127120000205670ustar00rootroot00000000000000 Statistics: invgcdf

Function Reference: invgcdf

statistics: p = invgcdf (x, mu, lambda)
statistics: p = invgcdf (x, mu, lambda, "upper")

Inverse Gaussian cumulative distribution function (CDF).

For each element of x, compute the cumulative distribution function (CDF) of the inverse Gaussian distribution with scale parameter mu and shape parameter lambda. The size of p is the common size of x, mu and lambda. A scalar input functions as a constant matrix of the same size as the other inputs.

p = invgcdf (x, mu, lambda, "upper") computes the upper tail probability of the inverse Gaussian distribution with parameters mu and lambda, at the values in x.

The inverse Gaussian CDF is only defined for mu > 0 and lambda > 0.

Further information about the inverse Gaussian distribution can be found at https://en.wikipedia.org/wiki/Inverse_Gaussian_distribution

See also: invginv, invgpdf, invgrnd, invgfit, invglike

Source Code: invgcdf

Example: 1

 

 ## Plot various CDFs from the inverse Gaussian distribution
 x = 0:0.001:3;
 p1 = invgcdf (x, 1, 0.2);
 p2 = invgcdf (x, 1, 1);
 p3 = invgcdf (x, 1, 3);
 p4 = invgcdf (x, 3, 0.2);
 p5 = invgcdf (x, 3, 1);
 plot (x, p1, "-b", x, p2, "-g", x, p3, "-r", x, p4, "-c", x, p5, "-y")
 grid on
 xlim ([0, 3])
 legend ({"μ = 1, σ = 0.2", "μ = 1, σ = 1", "μ = 1, σ = 3", ...
          "μ = 3, σ = 0.2", "μ = 3, σ = 1"}, "location", "southeast")
 title ("Inverse Gaussian CDF")
 xlabel ("values in x")
 ylabel ("probability")

                    
plotted figure

statistics-release-1.6.3/docs/invgfit.html000066400000000000000000000231131456127120000206130ustar00rootroot00000000000000 Statistics: invgfit

Function Reference: invgfit

statistics: paramhat = invgfit (x)
statistics: [paramhat, paramci] = invgfit (x)
statistics: [paramhat, paramci] = invgfit (x, alpha)
statistics: […] = invgfit (x, alpha, censor)
statistics: […] = invgfit (x, alpha, censor, freq)
statistics: […] = invgfit (x, alpha, censor, freq, options)

Estimate mean and confidence intervals for the inverse Gaussian distribution.

mu0 = invgfit (x) returns the maximum likelihood estimates of the parameters of the inverse Gaussian distribution given the data in x. paramhat(1) is the scale parameter, mu, and paramhat(2) is the shape parameter, lambda.

[paramhat, paramci] = invgfit (x) returns the 95% confidence intervals for the parameter estimates.

[…] = invgfit (x, alpha) also returns the 100 * (1 - alpha) percent confidence intervals for the parameter estimates. By default, the optional argument alpha is 0.05 corresponding to 95% confidence intervals. Pass in [] for alpha to use the default values.

[…] = invgfit (x, alpha, censor) accepts a boolean vector, censor, of the same size as x with 1s for observations that are right-censored and 0s for observations that are observed exactly. By default, or if left empty, censor = zeros (size (x)).

[…] = invgfit (x, alpha, censor, freq) accepts a frequency vector, freq, of the same size as x. freq typically contains integer frequencies for the corresponding elements in x, but it can contain any non-integer non-negative values. By default, or if left empty, freq = ones (size (x)).

[…] = invgfit (…, options) specifies control parameters for the iterative algorithm used to compute ML estimates with the fminsearch function. options is a structure with the following fields and their default values:

  • options.Display = "off"
  • options.MaxFunEvals = 400
  • options.MaxIter = 200
  • options.TolX = 1e-6

Further information about the inverse Gaussian distribution can be found at https://en.wikipedia.org/wiki/Inverse_Gaussian_distribution

See also: invgcdf, invginv, invgpdf, invgrnd, invglike

Source Code: invgfit

Example: 1

 

 ## Sample 3 populations from different inverse Gaussian distibutions
 rand ("seed", 5); randn ("seed", 5);   # for reproducibility
 r1 = invgrnd (1, 0.2, 2000, 1);
 rand ("seed", 2); randn ("seed", 2);   # for reproducibility
 r2 = invgrnd (1, 3, 2000, 1);
 rand ("seed", 7); randn ("seed", 7);   # for reproducibility
 r3 = invgrnd (3, 1, 2000, 1);
 r = [r1, r2, r3];

 ## Plot them normalized and fix their colors
 hist (r, [0.1:0.1:3.2], 9);
 h = findobj (gca, "Type", "patch");
 set (h(1), "facecolor", "c");
 set (h(2), "facecolor", "g");
 set (h(3), "facecolor", "r");
 ylim ([0, 3]);
 xlim ([0, 3]);
 hold on

 ## Estimate their MU and LAMBDA parameters
 mu_lambdaA = invgfit (r(:,1));
 mu_lambdaB = invgfit (r(:,2));
 mu_lambdaC = invgfit (r(:,3));

 ## Plot their estimated PDFs
 x = [0:0.1:3];
 y = invgpdf (x, mu_lambdaA(1), mu_lambdaA(2));
 plot (x, y, "-pr");
 y = invgpdf (x, mu_lambdaB(1), mu_lambdaB(2));
 plot (x, y, "-sg");
 y = invgpdf (x, mu_lambdaC(1), mu_lambdaC(2));
 plot (x, y, "-^c");
 hold off
 legend ({"Normalized HIST of sample 1 with μ=1 and λ=0.5", ...
          "Normalized HIST of sample 2 with μ=2 and λ=0.3", ...
          "Normalized HIST of sample 3 with μ=4 and λ=0.5", ...
          sprintf("PDF for sample 1 with estimated μ=%0.2f and λ=%0.2f", ...
                  mu_lambdaA(1), mu_lambdaA(2)), ...
          sprintf("PDF for sample 2 with estimated μ=%0.2f and λ=%0.2f", ...
                  mu_lambdaB(1), mu_lambdaB(2)), ...
          sprintf("PDF for sample 3 with estimated μ=%0.2f and λ=%0.2f", ...
                  mu_lambdaC(1), mu_lambdaC(2))})
 title ("Three population samples from different inverse Gaussian distibutions")
 hold off

                    
plotted figure

statistics-release-1.6.3/docs/invginv.html000066400000000000000000000141761456127120000206360ustar00rootroot00000000000000 Statistics: invginv

Function Reference: invginv

statistics: x = invginv (p, mu, lambda)

Inverse of the inverse Gaussian cumulative distribution function (iCDF).

For each element of p, compute the quantile (the inverse of the CDF) of the inverse Gaussian distribution with scale parameter mu and shape parameter lambda. The size of x is the common size of p, mu, and lambda. A scalar input functions as a constant matrix of the same size as the other inputs.

The inverse Gaussian CDF is only defined for mu > 0 and lambda > 0.

Further information about the inverse Gaussian distribution can be found at https://en.wikipedia.org/wiki/Inverse_Gaussian_distribution

See also: invgcdf, invgpdf, invgrnd, invgfit, invglike

Source Code: invginv

Example: 1

 

 ## Plot various iCDFs from the inverse Gaussian distribution
 p = 0.001:0.001:0.999;
 x1 = invginv (p, 1, 0.2);
 x2 = invginv (p, 1, 1);
 x3 = invginv (p, 1, 3);
 x4 = invginv (p, 3, 0.2);
 x5 = invginv (p, 3, 1);
 plot (p, x1, "-b", p, x2, "-g", p, x3, "-r", p, x4, "-c", p, x5, "-y")
 grid on
 ylim ([0, 3])
 legend ({"μ = 1, σ = 0.2", "μ = 1, σ = 1", "μ = 1, σ = 3", ...
          "μ = 3, σ = 0.2", "μ = 3, σ = 1"}, "location", "northwest")
 title ("Inverse Gaussian iCDF")
 xlabel ("probability")
 ylabel ("x")

                    
plotted figure

statistics-release-1.6.3/docs/invglike.html000066400000000000000000000137071456127120000207650ustar00rootroot00000000000000 Statistics: invglike

Function Reference: invglike

statistics: nlogL = invglike (params, x)
statistics: [nlogL, acov] = invglike (params, x)
statistics: […] = invglike (params, x, censor)
statistics: […] = invglike (params, x, censor, freq)

Negative log-likelihood for the inverse Gaussian distribution.

nlogL = invglike (params, x) returns the negative log likelihood of the data in x corresponding to the inverse Gaussian distribution with (1) scale parameter mu and (2) shape parameter lambda given in the two-element vector params.

[nlogL, acov] = invglike (params, x) also returns the inverse of Fisher’s information matrix, acov. If the input parameter values in params are the maximum likelihood estimates, the diagonal elements of params are their asymptotic variances.

[…] = invglike (params, x, censor) accepts a boolean vector, censor, of the same size as x with 1s for observations that are right-censored and 0s for observations that are observed exactly. By default, or if left empty, censor = zeros (size (x)).

[…] = invglike (params, x, censor, freq) accepts a frequency vector, freq, of the same size as x. freq typically contains integer frequencies for the corresponding elements in x, but it can contain any non-integer non-negative values. By default, or if left empty, freq = ones (size (x)).

Further information about the inverse Gaussian distribution can be found at https://en.wikipedia.org/wiki/Inverse_Gaussian_distribution

See also: invgcdf, invginv, invgpdf, invgrnd, invgfit

Source Code: invglike

statistics-release-1.6.3/docs/invgpdf.html000066400000000000000000000141661456127120000206120ustar00rootroot00000000000000 Statistics: invgpdf

Function Reference: invgpdf

statistics: y = invgpdf (x, mu, lambda)

Inverse Gaussian probability density function (PDF).

For each element of x, compute the probability density function (PDF) of the inverse Gaussian distribution with scale parameter mu and shape parameter lambda. The size of y is the common size of x, mu, and lambda. A scalar input functions as a constant matrix of the same size as the other inputs.

The inverse Gaussian CDF is only defined for mu > 0 and lambda > 0.

Further information about the inverse Gaussian distribution can be found at https://en.wikipedia.org/wiki/Inverse_Gaussian_distribution

See also: invgcdf, invginv, invgrnd, invgfit, invglike

Source Code: invgpdf

Example: 1

 

 ## Plot various PDFs from the inverse Gaussian distribution
 x = 0:0.001:3;
 y1 = invgpdf (x, 1, 0.2);
 y2 = invgpdf (x, 1, 1);
 y3 = invgpdf (x, 1, 3);
 y4 = invgpdf (x, 3, 0.2);
 y5 = invgpdf (x, 3, 1);
 plot (x, y1, "-b", x, y2, "-g", x, y3, "-r", x, y4, "-c", x, y5, "-y")
 grid on
 xlim ([0, 3])
 ylim ([0, 3])
 legend ({"μ = 1, σ = 0.2", "μ = 1, σ = 1", "μ = 1, σ = 3", ...
          "μ = 3, σ = 0.2", "μ = 3, σ = 1"}, "location", "northeast")
 title ("Inverse Gaussian PDF")
 xlabel ("values in x")
 ylabel ("density")

                    
plotted figure

statistics-release-1.6.3/docs/invgrnd.html000066400000000000000000000125561456127120000206250ustar00rootroot00000000000000 Statistics: invgrnd

Function Reference: invgrnd

statistics: r = invgrnd (mu, lambda)
statistics: r = invgrnd (mu, lambda, rows)
statistics: r = invgrnd (mu, lambda, rows, cols, …)
statistics: r = invgrnd (mu, lambda, [sz])

Random arrays from the inverse Gaussian distribution.

r = invgrnd (mu, lambda) returns an array of random numbers chosen from the inverse Gaussian distribution with location parameter mu and scale parameter lambda. The size of r is the common size of mu and lambda. A scalar input functions as a constant matrix of the same size as the other inputs.

When called with a single size argument, invgrnd returns a square matrix with the dimension specified. When called with more than one scalar argument, the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions. The size may also be specified with a row vector of dimensions, sz.

The inverse Gaussian CDF is only defined for mu > 0 and lambda > 0.

Further information about the inverse Gaussian distribution can be found at https://en.wikipedia.org/wiki/Inverse_Gaussian_distribution

See also: invgcdf, invginv, invgpdf, invgfit, invglike

Source Code: invgrnd

statistics-release-1.6.3/docs/ismissing.html000066400000000000000000000122201456127120000211470ustar00rootroot00000000000000 Statistics: ismissing

Function Reference: ismissing

statistics: TF = ismissing (A)
statistics: TF = ismissing (A, indicator)

Find missing data in a numeric or string array.

Given an input numeric data array, char array, or array of cell strings A, ismissing returns a logical array TF with the same dimensions as A, where true values match missing values in the input data.

The optional input indicator is an array of values that represent missing values in the input data. The values which represent missing data by default depend on the data type of A:

  • NaN: single, double.
  • ' ' (white space): char.
  • {''}: string cells.

Note: logical and numeric data types may be used in any combination for A and indicator. A and the indicator values will be compared as type double, and the output will have the same class as A. Data types other than those specified above have no defined ’missing’ value. As such, the TF output for those inputs will always be false(size(A)). The exception to this is that indicator can be specified for logical and numeric inputs to designate values that will register as ’missing’.

See also: fillmissing, rmmissing, standardizeMissing

Source Code: ismissing

statistics-release-1.6.3/docs/isoutlier.html000066400000000000000000000415221456127120000211700ustar00rootroot00000000000000 Statistics: isoutlier

Function Reference: isoutlier

statistics: TF = isoutlier (x)
statistics: TF = isoutlier (x, method)
statistics: TF = isoutlier (x, "percentiles", threshold)
statistics: TF = isoutlier (x, movmethod, window)
statistics: TF = isoutlier (…, dim)
statistics: TF = isoutlier (…, Name, Value)
statistics: [TF, L, U, C] = isoutlier (…)

Find outliers in data

isoutlier (x) returns a logical array whose elements are true when an outlier is detected in the corresponding element of x. isoutlier treats NaNs as missing values and removes them.

  • If x is a matrix, then isoutlier operates on each column of x separately.
  • If x is a multidimensional array, then isoutlier operates along the first dimension of x whose size does not equal 1.

By default, an outlier is a value that is more than three scaled median absolute deviations (MAD) from the median. The scaled median is defined as c*median(abs(A-median(A))), where c=-1/(sqrt(2)*erfcinv(3/2)).

isoutlier (x, method) specifies a method for detecting outliers. The following methods are available:

MethodDescription
"median"Outliers are defined as elements more than three scaled MAD from the median.
"mean"Outliers are defined as elements more than three standard deviations from the mean.
"quartiles"Outliers are defined as elements more than 1.5 interquartile ranges above the upper quartile (75 percent) or below the lower quartile (25 percent). This method is useful when the data in x is not normally distributed.
"grubbs"Outliers are detected using Grubbs’ test for outliers, which removes one outlier per iteration based on hypothesis testing. This method assumes that the data in x is normally distributed.
"gesd"Outliers are detected using the generalized extreme Studentized deviate test for outliers. This iterative method is similar to "grubbs", but can perform better when there are multiple outliers masking each other.

isoutlier (x, "percentiles", threshold) detects outliers based on a percentile thresholds, specified as a two-element row vector whose elements are in the interval [0, 100]. The first element indicates the lower percentile threshold, and the second element indicates the upper percentile threshold. The first element of threshold must be less than the second element.

isoutlier (x, movmethod, window) specifies a moving method for detecting outliers. The following methods are available:

MethodDescription
"movmedian"Outliers are defined as elements more than three local scaled MAD from the local median over a window length specified by window.
"movmean"Outliers are defined as elements more than three local standard deviations from the from the local mean over a window length specified by window.

window must be a positive integer scalar or a two-element vector of positive integers. When window is a scalar, if it is an odd number, the window is centered about the current element and contains window - 1 neighboring elements. If even, then the window is centered about the current and previous elements. When window is a two-element vector of positive integers [nb, na], the window contains the current element, nb elements before the current element, and na elements after the current element. When "SamplePoints" are also specified, window can take any real positive values (either as a scalar or a two-element vector) and in this case, the windows are computed relative to the sample points.

dim specifies the operating dimension and it must be a positive integer scalar. If not specified, then, by default, isoutlier operates along the first non-singleton dimension of x.

The following optional parameters can be specified as Name/Value paired arguments.

  • "SamplePoints" can be specified as a vector of sample points with equal length as the operating dimension. The sample points represent the x-axis location of the data and must be sorted and contain unique elements. Sample points do not need to be uniformly sampled. By default, the vector is [1, 2, 3, …, n], where n = size (x, dim). You can use unequally spaced "SamplePoints" to define a variable-length window for one of the moving methods available.
  • "ThresholdFactor" can be specified as a nonnegative scalar. For methods "median" and "movmedian", the detection threshold factor replaces the number of scaled MAD, which is 3 by default. For methods "mean" and "movmean", the detection threshold factor replaces the number of standard deviations, which is 3 by default. For methods "grubbs" and "gesd", the detection threshold factor ranges from 0 to 1, specifying the critical alpha-value of the respective test, and it is 0.05 by default. For the "quartiles" method, the detection threshold factor replaces the number of interquartile ranges, which is 1.5 by default. "ThresholdFactor" is not supported for the "quartiles" method.
  • "MaxNumOutliers" is only relevant to the "gesd" method and it must be a positive integer scalar specifying the maximum number of outliers returned by the "gesd" method. By default, it is the integer nearest to the 10% of the number of elements along the operating dimension in x. The "gesd" method assumes the nonoutlier input data is sampled from an approximate normal distribution. When the data is not sampled in this way, the number of returned outliers might exceed the MaxNumOutliers value.

[TF, L, U, C] = isoutlier (…) returns up to 4 output arguments as described below.

  • TF is the outlier indicator with the same size a x.
  • L is the lower threshold used by the outlier detection method. If method is used for outlier detection, then L has the same size as x in all dimensions except for the operating dimension where the length is 1. If movmethod is used, then L has the same size as x.
  • U is the upper threshold used by the outlier detection method. If method is used for outlier detection, then U has the same size as x in all dimensions except for the operating dimension where the length is 1. If movmethod is used, then U has the same size as x.
  • C is the center value used by the outlier detection method. If method is used for outlier detection, then C has the same size as x in all dimensions except for the operating dimension where the length is 1. If movmethod is used, then C has the same size as x. For "median", "movmedian", "mean", and "movmean" methods, C is computed by taking into acount the outlier values. For "grubbs" and "gesd" methods, C is computed by excluding the outliers. For the "percentiles" method, C is the average between U and L thresholds.

See also: filloutliers, rmoutliers, ismissing

Source Code: isoutlier

Example: 1

 

 A = [57 59 60 100 59 58 57 58 300 61 62 60 62 58 57];
 TF = isoutlier (A, "mean")

TF =

  0  0  0  0  0  0  0  0  1  0  0  0  0  0  0

                    

Example: 2

 

 ## Use a moving detection method to detect local outliers in a sine wave

 x = -2*pi:0.1:2*pi;
 A = sin(x);
 A(47) = 0;
 time = datenum (2023,1,1,0,0,0) + (1/24)*[0:length(x)-1] - 730485;
 TF = isoutlier (A, "movmedian", 5*(1/24), "SamplePoints", time);
 plot (time, A)
 hold on
 plot (time(TF), A(TF), "x")
 datetick ('x', 20, 'keepticks')
 legend ("Original Data", "Outlier Data")

                    
plotted figure

Example: 3

 

 ## Locate an outlier in a vector of data and visualize the outlier

 x = 1:10;
 A = [60 59 49 49 58 100 61 57 48 58];
 [TF, L, U, C] = isoutlier (A);
 plot (x, A);
 hold on
 plot (x(TF), A(TF), "x");
 xlim ([1,10]);
 line ([1,10], [L, L], "Linestyle", ":");
 text (1.1, L-2, "Lower Threshold");
 line ([1,10], [U, U], "Linestyle", ":");
 text (1.1, U-2, "Upper Threshold");
 line ([1,10], [C, C], "Linestyle", ":");
 text (1.1, C-3, "Center Value");
 legend ("Original Data", "Outlier Data");

                    
plotted figure

statistics-release-1.6.3/docs/iwishpdf.html000066400000000000000000000107401456127120000207640ustar00rootroot00000000000000 Statistics: iwishpdf

Function Reference: iwishpdf

statistics: y = iwishpdf (W, Tau, df, log_y=false)

Compute the probability density function of the inverse Wishart distribution.

Inputs: A p x p matrix W where to find the PDF and the p x p positive definite scale matrix Tau and scalar degrees of freedom parameter df characterizing the inverse Wishart distribution. (For the density to be finite, need df > (p - 1).) If the flag log_y is set, return the log probability density – this helps avoid underflow when the numerical value of the density is very small.

Output: y is the probability density of Wishart(Sigma, df) at W.

See also: iwishrnd, wishpdf, wishrnd

Source Code: iwishpdf

statistics-release-1.6.3/docs/iwishrnd.html000066400000000000000000000121041456127120000207720ustar00rootroot00000000000000 Statistics: iwishrnd

Function Reference: iwishrnd

statistics: [W, DI] = iwishrnd (Tau, df, DI, n=1)

Return a random matrix sampled from the inverse Wishart distribution with given parameters.

Inputs: the p× p positive definite matrix Tau and scalar degrees of freedom parameter df (and optionally the transposed Cholesky factor DI of Sigma = inv(Tau)).

df can be non-integer as long as df > d

Output: a random p× p matrix W from the inverse Wishart(Tau, df) distribution. (inv(W) is from the Wishart(inv(Tau), df) distribution.) If n > 1, then W is p x p x n and holds n such random matrices. (Optionally, the transposed Cholesky factor DI of Sigma is also returned.)

Averaged across many samples, the mean of W should approach Tau / (df - p - 1).

References

  1. Yu-Cheng Ku and Peter Bloomfield (2010), Generating Random Wishart Matrices with Fractional Degrees of Freedom in OX, http://www.gwu.edu/~forcpgm/YuChengKu-030510final-WishartYu-ChengKu.pdf

See also: iwishpdf, wishpdf, wishrnd

Source Code: iwishrnd

statistics-release-1.6.3/docs/jackknife.html000066400000000000000000000216361456127120000211020ustar00rootroot00000000000000 Statistics: jackknife

Function Reference: jackknife

statistics: jackstat = jackknife (E, x)
statistics: jackstat = jackknife (E, x, …)

Compute jackknife estimates of a parameter taking one or more given samples as parameters.

In particular, E is the estimator to be jackknifed as a function name, handle, or inline function, and x is the sample for which the estimate is to be taken. The i-th entry of jackstat will contain the value of the estimator on the sample x with its i-th row omitted.

 
 
 jackstat (i) = E(x(1 : i - 1, i + 1 : length(x)))
 
 

Depending on the number of samples to be used, the estimator must have the appropriate form:

  • If only one sample is used, then the estimator need not be concerned with cell arrays, for example jackknifing the standard deviation of a sample can be performed with jackstat = jackknife (@std, rand (100, 1)).
  • If, however, more than one sample is to be used, the samples must all be of equal size, and the estimator must address them as elements of a cell-array, in which they are aggregated in their order of appearance:
 
 
 jackstat = jackknife (@(x) std(x{1})/var(x{2}),
 rand (100, 1), randn (100, 1))
 
 

If all goes well, a theoretical value P for the parameter is already known, n is the sample size,

t = n * E(x) - (n - 1) * mean(jackstat)

and

v = sumsq(n * E(x) - (n - 1) * jackstat - t) / (n * (n - 1))

then

(t-P)/sqrt(v) should follow a t-distribution with n-1 degrees of freedom.

Jackknifing is a well known method to reduce bias. Further details can be found in:

References

  1. Rupert G. Miller. The jackknife - a review. Biometrika (1974), 61(1):1-15. doi:10.1093/biomet/61.1.1
  2. Rupert G. Miller. Jackknifing Variances. Ann. Math. Statist. (1968), Volume 39, Number 2, 567-582. doi:10.1214/aoms/1177698418

Source Code: jackknife

Example: 1

 

 for k = 1:1000
   rand ("seed", k);  # for reproducibility
   x = rand (10, 1);
   s(k) = std (x);
   jackstat = jackknife (@std, x);
   j(k) = 10 * std (x) - 9 * mean (jackstat);
 endfor
 figure();
 hist ([s', j'], 0:sqrt(1/12)/10:2*sqrt(1/12))

                    
plotted figure

Example: 2

 

 for k = 1:1000
   randn ("seed", k); # for reproducibility
   x = randn (1, 50);
   rand ("seed", k);  # for reproducibility
   y = rand (1, 50);
   jackstat = jackknife (@(x) std(x{1})/std(x{2}), y, x);
   j(k) = 50 * std (y) / std (x) - 49 * mean (jackstat);
   v(k) = sumsq ((50 * std (y) / std (x) - 49 * jackstat) - j(k)) / (50 * 49);
 endfor
 t = (j - sqrt (1 / 12)) ./ sqrt (v);
 figure();
 plot (sort (tcdf (t, 49)), ...
       "-;Almost linear mapping indicates good fit with t-distribution.;")

                    
plotted figure

statistics-release-1.6.3/docs/jsucdf.html000066400000000000000000000105601456127120000204250ustar00rootroot00000000000000 Statistics: jsucdf

Function Reference: jsucdf

statistics: p = jsucdf (x)
statistics: p = jsucdf (x, alpha1)
statistics: p = jsucdf (x, alpha1, alpha2)

Johnson SU cumulative distribution function (CDF).

For each element of x, return the cumulative distribution functions (CDF) at x of the Johnson SU distribution with shape parameters alpha1 and alpha2. The size of p is the common size of the input arguments x, alpha1, and alpha2. A scalar input functions as a constant matrix of the same size as the other

Default values are alpha1 = 1, alpha2 = 1.

See also: jsupdf

Source Code: jsucdf

statistics-release-1.6.3/docs/jsupdf.html000066400000000000000000000105501456127120000204410ustar00rootroot00000000000000 Statistics: jsupdf

Function Reference: jsupdf

statistics: y = jsupdf (x)
statistics: y = jsupdf (x, alpha1)
statistics: y = jsupdf (x, alpha1, alpha2)

Johnson SU probability density function (PDF).

For each element of x, compute the probability density function (PDF) at x of the Johnson SU distribution with shape parameters alpha1 and alpha2. The size of p is the common size of the input arguments x, alpha1, and alpha2. A scalar input functions as a constant matrix of the same size as the other

Default values are alpha1 = 1, alpha2 = 1.

See also: jsucdf

Source Code: jsupdf

statistics-release-1.6.3/docs/kmeans.html000066400000000000000000000527451456127120000204400ustar00rootroot00000000000000 Statistics: kmeans

Function Reference: kmeans

statistics: idx = kmeans (data, k)
statistics: [idx, centers] = kmeans (data, k)
statistics: [idx, centers, sumd] = kmeans (data, k)
statistics: [idx, centers, sumd, dist] = kmeans (data, k)
statistics: […] = kmeans (data, k, param1, value1, …)
statistics: […] = kmeans (data, [], "start", start, …)

Perform a k-means clustering of the N×D matrix data.

If parameter "start" is specified, then k may be empty in which case k is set to the number of rows of start.

The outputs are:

idxAn N×1 vector whose i-th element is the class to which row i of data is assigned.
centersA K×D array whose i-th row is the centroid of cluster i.
sumdA k×1 vector whose i-th entry is the sum of the distances from samples in cluster i to centroid i.
distAn N×k matrix whose ij-th element is the distance from sample i to centroid j.

The following parameters may be placed in any order. Each parameter must be followed by its value, as in Name-Value pairs.

NameDescription
"Start"The initialization method for the centroids.
ValueDescription
"plus"The k-means++ algorithm. (Default)
"sample"A subset of k rows from data, sampled uniformly without replacement.
"cluster"Perform a pilot clustering on 10% of the rows of data.
"uniform"Each component of each centroid is drawn uniformly from the interval between the maximum and minimum values of that component within data. This performs poorly and is implemented only for Matlab compatibility.
numeric matrixA k×D matrix of centroid starting locations. The rows correspond to seeds.
numeric arrayA k×D×r array of centroid starting locations. The third dimension invokes replication of the clustering routine. Page r contains the set of seeds for replicate r. kmeans infers the number of replicates (specified by the "Replicates" Name-Value pair argument) from the size of the third dimension.
NameDescription
"Distance"The distance measure used for partitioning and calculating centroids.
ValueDescription
"sqeuclidean"The squared Euclidean distance. i.e. the sum of the squares of the differences between corresponding components. In this case, the centroid is the arithmetic mean of all samples in its cluster. This is the only distance for which this algorithm is truly "k-means".
"cityblock"The sum metric, or L1 distance, i.e. the sum of the absolute differences between corresponding components. In this case, the centroid is the median of all samples in its cluster. This gives the k-medians algorithm.
"cosine"One minus the cosine of the included angle between points (treated as vectors). Each centroid is the mean of the points in that cluster, after normalizing those points to unit Euclidean length.
"correlation"One minus the sample correlation between points (treated as sequences of values). Each centroid is the component-wise mean of the points in that cluster, after centering and normalizing those points to zero mean and unit standard deviation.
"hamming"The number of components in which the sample and the centroid differ. In this case, the centroid is the median of all samples in its cluster. Unlike Matlab, Octave allows non-logical data.
NameDescription
"EmptyAction"What to do when a centroid is not the closest to any data sample.
ValueDescription
"error"Throw an error.
"singleton"(Default) Select the row of data that has the highest error and use that as the new centroid.
"drop"Remove the centroid, and continue computation with one fewer centroid. The dimensions of the outputs centroids and d are unchanged, with values for omitted centroids replaced by NaN.
NameDescription
"Display"Display a text summary.
ValueDescription
"off"(Default) Display no summary.
"final"Display a summary for each clustering operation.
"iter"Display a summary for each iteration of a clustering operation.
NameValue
"Replicates"A positive integer specifying the number of independent clusterings to perform. The output values are the values for the best clustering, i.e., the one with the smallest value of sumd. If Start is numeric, then Replicates defaults to (and must equal) the size of the third dimension of Start. Otherwise it defaults to 1.
"MaxIter"The maximum number of iterations to perform for each replicate. If the maximum change of any centroid is less than 0.001, then the replicate terminates even if MaxIter iterations have no occurred. The default is 100.

Example:

[~,c] = kmeans (rand(10, 3), 2, "emptyaction", "singleton");

See also: linkage

Source Code: kmeans

Example: 1

 

 ## Generate a two-cluster problem
 randn ("seed", 31)  # for reproducibility
 C1 = randn (100, 2) + 1;
 randn ("seed", 32)  # for reproducibility
 C2 = randn (100, 2) - 1;
 data = [C1; C2];

 ## Perform clustering
 rand ("seed", 1)  # for reproducibility
 [idx, centers] = kmeans (data, 2);

 ## Plot the result
 figure;
 plot (data (idx==1, 1), data (idx==1, 2), "ro");
 hold on;
 plot (data (idx==2, 1), data (idx==2, 2), "bs");
 plot (centers (:, 1), centers (:, 2), "kv", "markersize", 10);
 hold off;

                    
plotted figure

Example: 2

 

 ## Cluster data using k-means clustering, then plot the cluster regions
 ## Load Fisher's iris data set and use the petal lengths and widths as
 ## predictors

 load fisheriris
 X = meas(:,3:4);

 figure;
 plot (X(:,1), X(:,2), "k*", "MarkerSize", 5);
 title ("Fisher's Iris Data");
 xlabel ("Petal Lengths (cm)");
 ylabel ("Petal Widths (cm)");

 ## Cluster the data. Specify k = 3 clusters
 rand ("seed", 1)  # for reproducibility
 [idx, C] = kmeans (X, 3);
 x1 = min (X(:,1)):0.01:max (X(:,1));
 x2 = min (X(:,2)):0.01:max (X(:,2));
 [x1G, x2G] = meshgrid (x1, x2);
 XGrid = [x1G(:), x2G(:)];

 idx2Region = kmeans (XGrid, 3, "MaxIter", 1, "Start", C);
 figure;
 gscatter (XGrid(:,1), XGrid(:,2), idx2Region, ...
           [0, 0.75, 0.75; 0.75, 0, 0.75; 0.75, 0.75, 0], "..");
 hold on;
 plot (X(:,1), X(:,2), "k*", "MarkerSize", 5);
 title ("Fisher's Iris Data");
 xlabel ("Petal Lengths (cm)");
 ylabel ("Petal Widths (cm)");
 legend ("Region 1", "Region 2", "Region 3", "Data", "Location", "SouthEast");
 hold off

warning: kmeans: failed to converge in 1 iterations
warning: called from
    kmeans at line 442 column 7
    build_DEMOS at line 94 column 11
    function_texi2html at line 112 column 14
    package_texi2html at line 290 column 9

                    
plotted figure

plotted figure

Example: 3

 

 ## Partition Data into Two Clusters

 randn ("seed", 1)  # for reproducibility
 r1 = randn (100, 2) * 0.75 + ones (100, 2);
 randn ("seed", 2)  # for reproducibility
 r2 = randn (100, 2) * 0.5 - ones (100, 2);
 X = [r1; r2];

 figure;
 plot (X(:,1), X(:,2), ".");
 title ("Randomly Generated Data");
 rand ("seed", 1)  # for reproducibility
 [idx, C] = kmeans (X, 2, "Distance", "cityblock", ...
                          "Replicates", 5, "Display", "final");
 figure;
 plot (X(idx==1,1), X(idx==1,2), "r.", "MarkerSize", 12);
 hold on
 plot(X(idx==2,1), X(idx==2,2), "b.", "MarkerSize", 12);
 plot (C(:,1), C(:,2), "kx", "MarkerSize", 15, "LineWidth", 3);
 legend ("Cluster 1", "Cluster 2", "Centroids", "Location", "NorthWest");
 title ("Cluster Assignments and Centroids");
 hold off

Replicate 1, 5 iterations, total sum of distances = 197.416.
Replicate 2, 1 iterations, total sum of distances = 253.651.
Replicate 3, 1 iterations, total sum of distances = 401.899.
Replicate 4, 1 iterations, total sum of distances = 426.406.
Replicate 5, 1 iterations, total sum of distances = 663.780.
Best total sum of distances = 197.416
                    
plotted figure

plotted figure

Example: 4

 

 ## Assign New Data to Existing Clusters

 ## Generate a training data set using three distributions
 randn ("seed", 5)  # for reproducibility
 r1 = randn (100, 2) * 0.75 + ones (100, 2);
 randn ("seed", 7)  # for reproducibility
 r2 = randn (100, 2) * 0.5 - ones (100, 2);
 randn ("seed", 9)  # for reproducibility
 r3 = randn (100, 2) * 0.75;
 X = [r1; r2; r3];

 ## Partition the training data into three clusters by using kmeans

 rand ("seed", 1)  # for reproducibility
 [idx, C] = kmeans (X, 3);

 ## Plot the clusters and the cluster centroids

 figure
 gscatter (X(:,1), X(:,2), idx, "bgm", "***");
 hold on
 plot (C(:,1), C(:,2), "kx");
 legend ("Cluster 1", "Cluster 2", "Cluster 3", "Cluster Centroid")

 ## Generate a test data set
 randn ("seed", 25)  # for reproducibility
 r1 = randn (100, 2) * 0.75 + ones (100, 2);
 randn ("seed", 27)  # for reproducibility
 r2 = randn (100, 2) * 0.5 - ones (100, 2);
 randn ("seed", 29)  # for reproducibility
 r3 = randn (100, 2) * 0.75;
 Xtest = [r1; r2; r3];

 ## Classify the test data set using the existing clusters
 ## Find the nearest centroid from each test data point by using pdist2

 D = pdist2 (C, Xtest, "euclidean");
 [group, ~] = find (D == min (D));

 ## Plot the test data and label the test data using idx_test with gscatter

 gscatter (Xtest(:,1), Xtest(:,2), group, "bgm", "ooo");
 legend ("Cluster 1", "Cluster 2", "Cluster 3", "Cluster Centroid", ...
         "Data classified to Cluster 1", "Data classified to Cluster 2", ...
         "Data classified to Cluster 3", "Location", "NorthWest");
 title ("Assign New Data to Existing Clusters");

                    
plotted figure

statistics-release-1.6.3/docs/knnsearch.html000066400000000000000000000412441456127120000211260ustar00rootroot00000000000000 Statistics: knnsearch

Function Reference: knnsearch

statistics: idx = knnsearch (X, Y)
statistics: [idx, D] = knnsearch (X, Y)
statistics: […] = knnsearch (…, name, value)

Find k-nearest neighbors from input data.

idx = knnsearch (X, Y) finds K nearest neighbors in X for Y. It returns idx which contains indices of K nearest neighbors of each row of Y, If not specified, K = 1. X must be an N×P numeric matrix of input data, where rows correspond to observations and columns correspond to features or variables. Y is an M×P numeric matrix with query points, which must have the same numbers of column as X.

[idx, D] = knnsearch (X, Y) also returns the the distances, D, which correspond to the K nearest neighbour in X for each Y

Additional parameters can be specified by Name-Value pair arguments.

NameValue
"K"is the number of nearest neighbors to be found in the kNN search. It must be a positive integer value and by default it is 1.
"P"is the Minkowski distance exponent and it must be a positive scalar. This argument is only valid when the selected distance metric is "minkowski". By default it is 2.
"Scale"is the scale parameter for the standardized Euclidean distance and it must be a nonnegative numeric vector of equal length to the number of columns in X. This argument is only valid when the selected distance metric is "seuclidean", in which case each coordinate of X is scaled by the corresponding element of "scale", as is each query point in Y. By default, the scale parameter is the standard deviation of each coordinate in X.
"Cov"is the covariance matrix for computing the mahalanobis distance and it must be a positive definite matrix matching the the number of columns in X. This argument is only valid when the selected distance metric is "mahalanobis".
"BucketSize"is the maximum number of data points in the leaf node of the Kd-tree and it must be a positive integer. This argument is only valid when the selected search method is "kdtree".
"SortIndices"is a boolean flag to sort the returned indices in ascending order by distance and it is true by default. When the selected search method is "exhaustive" or the "IncludeTies" flag is true, knnsearch always sorts the returned indices.
"Distance"is the distance metric used by knnsearch as specified below:
"euclidean"Euclidean distance.
"seuclidean"standardized Euclidean distance. Each coordinate difference between the rows in X and the query matrix Y is scaled by dividing by the corresponding element of the standard deviation computed from X. To specify a different scaling, use the "Scale" name-value argument.
"cityblock"City block distance.
"chebychev"Chebychev distance (maximum coordinate difference).
"minkowski"Minkowski distance. The default exponent is 2. To specify a different exponent, use the "P" name-value argument.
"mahalanobis"Mahalanobis distance, computed using a positive definite covariance matrix. To change the value of the covariance matrix, use the "Cov" name-value argument.
"cosine"Cosine distance.
"correlation"One minus the sample linear correlation between observations (treated as sequences of values).
"spearman"One minus the sample Spearman’s rank correlation between observations (treated as sequences of values).
"hamming"Hamming distance, which is the percentage of coordinates that differ.
"jaccard"One minus the Jaccard coefficient, which is the percentage of nonzero coordinates that differ.
@distfunCustom distance function handle. A distance function of the form function D2 = distfun (XI, YI), where XI is a 1×P vector containing a single observation in P-dimensional space, YI is an N×P matrix containing an arbitrary number of observations in the same P-dimensional space, and D2 is an N×P vector of distances, where (D2k) is the distance between observations XI and (YIk,:).
"NSMethod"is the nearest neighbor search method used by knnsearch as specified below.
"kdtree"Creates and uses a Kd-tree to find nearest neighbors. "kdtree" is the default value when the number of columns in X is less than or equal to 10, X is not sparse, and the distance metric is "euclidean", "cityblock", "manhattan", "chebychev", or "minkowski". Otherwise, the default value is "exhaustive". This argument is only valid when the distance metric is one of the four aforementioned metrics.
"exhaustive"Uses the exhaustive search algorithm by computing the distance values from all the points in X to each point in Y.
"IncludeTies"is a boolean flag to indicate if the returned values should contain the indices that have same distance as the K^th neighbor. When false, knnsearch chooses the observation with the smallest index among the observations that have the same distance from a query point. When true, knnsearch includes all nearest neighbors whose distances are equal to the K^th smallest distance in the output arguments. To specify K, use the "K" name-value pair argument.

See also: rangesearch, pdist2, fitcknn

Source Code: knnsearch

Example: 1

 

 ## find 10 nearest neighbour of a point using different distance metrics
 ## and compare the results by plotting
 load fisheriris
 X = meas(:,3:4);
 Y = species;
 point = [5, 1.45];

 ## calculate 10 nearest-neighbours by minkowski distance
 [id, d] = knnsearch (X, point, "K", 10);

 ## calculate 10 nearest-neighbours by minkowski distance
 [idm, dm] = knnsearch (X, point, "K", 10, "distance", "minkowski", "p", 5);

 ## calculate 10 nearest-neighbours by chebychev distance
 [idc, dc] = knnsearch (X, point, "K", 10, "distance", "chebychev");

 ## plotting the results
 gscatter (X(:,1), X(:,2), species, [.75 .75 0; 0 .75 .75; .75 0 .75], ".", 20);
 title ("Fisher's Iris Data - Nearest Neighbors with different types of distance metrics");
 xlabel("Petal length (cm)");
 ylabel("Petal width (cm)");

 line (point(1), point(2), "marker", "X", "color", "k", ...
       "linewidth", 2, "displayname", "query point")
 line (X(id,1), X(id,2), "color", [0.5 0.5 0.5], "marker", "o", ...
       "linestyle", "none", "markersize", 10, "displayname", "eulcidean")
 line (X(idm,1), X(idm,2), "color", [0.5 0.5 0.5], "marker", "d", ...
       "linestyle", "none", "markersize", 10, "displayname", "Minkowski")
 line (X(idc,1), X(idc,2), "color", [0.5 0.5 0.5], "marker", "p", ...
       "linestyle", "none", "markersize", 10, "displayname", "chebychev")
 xlim ([4.5 5.5]);
 ylim ([1 2]);
 axis square;

                    
plotted figure

Example: 2

 

 ## knnsearch on iris dataset using kdtree method
 load fisheriris
 X = meas(:,3:4);
 gscatter (X(:,1), X(:,2), species, [.75 .75 0; 0 .75 .75; .75 0 .75], ".", 20);
 title ("Fisher's iris dataset : Nearest Neighbors with kdtree search");

 ## new point to be predicted
 point = [5 1.45];

 line (point(1), point(2), "marker", "X", "color", "k", ...
       "linewidth", 2, "displayname", "query point")

 ## knnsearch using kdtree method
 [idx, d] = knnsearch (X, point, "K", 10, "NSMethod", "kdtree");

 ## plotting predicted neighbours
 line (X(idx,1), X(idx,2), "color", [0.5 0.5 0.5], "marker", "o", ...
       "linestyle", "none", "markersize", 10, ...
       "displayname", "nearest neighbour")
 xlim ([4 6])
 ylim ([1 3])
 axis square
 ## details of predicted labels
 tabulate (species(idx))

 ctr = point - d(end);
 diameter = 2 * d(end);
 ##  Draw a circle around the 10 nearest neighbors.
 h = rectangle ("position", [ctr, diameter, diameter], "curvature", [1 1]);

 ## here only 8 neighbours are plotted instead of 10 since the dataset
 ## contains duplicate values

       Value    Count    Percent
   virginica        2      20.00%
  versicolor        8      80.00%
                    
plotted figure

statistics-release-1.6.3/docs/kruskalwallis.html000066400000000000000000000246651456127120000220520ustar00rootroot00000000000000 Statistics: kruskalwallis

Function Reference: kruskalwallis

statistics: p = kruskalwallis (x)
statistics: p = kruskalwallis (x, group)
statistics: p = kruskalwallis (x, group, displayopt)
statistics: [p, tbl] = kruskalwallis (x, …)
statistics: [p, tbl, stats] = kruskalwallis (x, …)

Perform a Kruskal-Wallis test, the non-parametric alternative of a one-way analysis of variance (ANOVA), for comparing the means of two or more groups of data under the null hypothesis that the groups are drawn from the same population, i.e. the group means are equal.

kruskalwallis can take up to three input arguments:

  • x contains the data and it can either be a vector or matrix. If x is a matrix, then each column is treated as a separate group. If x is a vector, then the group argument is mandatory.
  • group contains the names for each group. If x is a matrix, then group can either be a cell array of strings of a character array, with one row per column of x. If you want to omit this argument, enter an empty array ([]). If x is a vector, then group must be a vector of the same lenth, or a string array or cell array of strings with one row for each element of x. x values corresponding to the same value of group are placed in the same group.
  • displayopt is an optional parameter for displaying the groups contained in the data in a boxplot. If omitted, it is ’on’ by default. If group names are defined in group, these are used to identify the groups in the boxplot. Use ’off’ to omit displaying this figure.

kruskalwallis can return up to three output arguments:

  • p is the p-value of the null hypothesis that all group means are equal.
  • tbl is a cell array containing the results in a standard ANOVA table.
  • stats is a structure containing statistics useful for performing a multiple comparison of means with the MULTCOMPARE function.

If kruskalwallis is called without any output arguments, then it prints the results in a one-way ANOVA table to the standard output. It is also printed when displayopt is ’on’.

Examples:

 
 x = meshgrid (1:6);
 x = x + normrnd (0, 1, 6, 6);
 [p, atab] = kruskalwallis(x);
 
 
 x = ones (50, 4) .* [-2, 0, 1, 5];
 x = x + normrnd (0, 2, 50, 4);
 group = {"A", "B", "C", "D"};
 kruskalwallis (x, group);
 

Source Code: kruskalwallis

Example: 1

 

 x = meshgrid (1:6);
 x = x + normrnd (0, 1, 6, 6);
 kruskalwallis (x, [], 'off');

              Kruskal-Wallis ANOVA Table
Source        SS      df      MS      Chi-sq  Prob>Chi-sq
---------------------------------------------------------
Columns    3139.67     5     627.93    28.29  3.20103e-05
Error       745.33    30      24.84
Total      3885.00    35
                    

Example: 2

 

 x = meshgrid (1:6);
 x = x + normrnd (0, 1, 6, 6);
 [p, atab] = kruskalwallis(x);

              Kruskal-Wallis ANOVA Table
Source        SS      df      MS      Chi-sq  Prob>Chi-sq
---------------------------------------------------------
Columns    3232.33     5     646.47    29.12  2.19627e-05
Error       652.67    30      21.76
Total      3885.00    35
                    
plotted figure

Example: 3

 

 x = ones (30, 4) .* [-2, 0, 1, 5];
 x = x + normrnd (0, 2, 30, 4);
 group = {"A", "B", "C", "D"};
 kruskalwallis (x, group);

              Kruskal-Wallis ANOVA Table
Source        SS      df      MS      Chi-sq  Prob>Chi-sq
---------------------------------------------------------
Columns   93937.00     3   31312.33    77.63  1.11022e-16
Error     50053.00   116     431.49
Total    143990.00   119
                    
plotted figure

statistics-release-1.6.3/docs/kstest.html000066400000000000000000000200361456127120000204630ustar00rootroot00000000000000 Statistics: kstest

Function Reference: kstest

statistics: h = kstest (x)
statistics: h = kstest (x, name, value)
statistics: [h, p] = kstest (…)
statistics: [h, p, ksstat, cv] = kstest (…)

Single sample Kolmogorov-Smirnov (K-S) goodness-of-fit hypothesis test.

h = kstest (x) performs a Kolmogorov-Smirnov (K-S) test to determine if a random sample x could have come from a standard normal distribution. h indicates the results of the null hypothesis test.

  • h = 0 => Do not reject the null hypothesis at the 5% significance
  • h = 1 => Reject the null hypothesis at the 5% significance

x is a vector representing a random sample from some unknown distribution with a cumulative distribution function F(X). Missing values declared as NaNs in x are ignored.

h = kstest (x, name, value) returns a test decision for a single-sample K-S test with additional options specified by one or more name-value pair arguments as shown below.

"alpha"A value alpha between 0 and 1 specifying the significance level. Default is 0.05 for 5% significance.
"CDF"CDF is the c.d.f. under the null hypothesis. It can be specified either as a function handle or a a function name of an existing cdf function or as a two-column matrix. If not provided, the default is the standard normal, N(0,1).
"tail"A string indicating the type of test:
"unequal""F(X) not equal to CDF(X)" (two-sided) (Default)
"larger""F(X) > CDF(X)" (one-sided)
"smaller""CDF(X) < F(X)" (one-sided)

Let S(X) be the empirical c.d.f. estimated from the sample vector x, F(X) be the corresponding true (but unknown) population c.d.f., and CDF be the known input c.d.f. specified under the null hypothesis. For tail = "unequal", "larger", and "smaller", the test statistics are max|S(X) - CDF(X)|, max[S(X) - CDF(X)], and max[CDF(X) - S(X)], respectively.

[h, p] = kstest (…) also returns the asymptotic p-value p.

[h, p, ksstat] = kstest (…) returns the K-S test statistic ksstat defined above for the test type indicated by the "tail" option

In the matrix version of CDF, column 1 contains the x-axis data and column 2 the corresponding y-axis c.d.f data. Since the K-S test statistic will occur at one of the observations in x, the calculation is most efficient when CDF is only specified at the observations in x. When column 1 of CDF represents x-axis points independent of x, CDF is linearly interpolated at the observations found in the vector x. In this case, the interval along the x-axis (the column 1 spread of CDF) must span the observations in x for successful interpolation.

The decision to reject the null hypothesis is based on comparing the p-value p with the "alpha" value, not by comparing the statistic ksstat with the critical value cv. cv is computed separately using an approximate formula or by interpolation using Miller’s approximation table. The formula and table cover the range 0.01 <= "alpha" <= 0.2 for two-sided tests and 0.005 <= "alpha" <= 0.1 for one-sided tests. CV is returned as NaN if "alpha" is outside this range. Since CV is approximate, a comparison of ksstat with cv may occasionally lead to a different conclusion than a comparison of p with "alpha".

See also: kstest2, cdfplot

Source Code: kstest

statistics-release-1.6.3/docs/kstest2.html000066400000000000000000000150541456127120000205510ustar00rootroot00000000000000 Statistics: kstest2

Function Reference: kstest2

statistics: h = kstest2 (x1, x2)
statistics: h = kstest2 (x1, x2, name, value)
statistics: [h, p] = kstest2 (…)
statistics: [h, p, ks2stat] = kstest2 (…)

Two-sample Kolmogorov-Smirnov goodness-of-fit hypothesis test.

h = kstest2 (x1, x2) returns a test decision for the null hypothesis that the data in vectors x1 and x2 are from the same continuous distribution, using the two-sample Kolmogorov-Smirnov test. The alternative hypothesis is that x1 and x2 are from different continuous distributions. The result h is 1 if the test rejects the null hypothesis at the 5% significance level, and 0 otherwise.

h = kstest2 (x1, x2, name, value) returns a test decision for a two-sample Kolmogorov-Smirnov test with additional options specified by one or more name-value pair arguments as shown below.

"alpha"A value alpha between 0 and 1 specifying the significance level. Default is 0.05 for 5% significance.
"tail"A string indicating the type of test:
"unequal""F(X1) not equal to F(X2)" (two-sided) [Default]
"larger""F(X1) > F(X2)" (one-sided)
"smaller""F(X1) < F(X2)" (one-sided)

The two-sided test uses the maximum absolute difference between the cdfs of the distributions of the two data vectors. The test statistic is D* = max(|F1(x) - F2(x)|), where F1(x) is the proportion of x1 values less or equal to x and F2(x) is the proportion of x2 values less than or equal to x. The one-sided test uses the actual value of the difference between the cdfs of the distributions of the two data vectors rather than the absolute value. The test statistic is D* = max(F1(x) - F2(x)) or D* = max(F2(x) - F1(x)) for tail = "larger" or "smaller", respectively.

[h, p] = kstest2 (…) also returns the asymptotic p-value p.

[h, p, ks2stat] = kstest2 (…) also returns the Kolmogorov-Smirnov test statistic ks2stat defined above for the test type indicated by tail.

See also: kstest, cdfplot

Source Code: kstest2

statistics-release-1.6.3/docs/laplacecdf.html000066400000000000000000000146431456127120000212330ustar00rootroot00000000000000 Statistics: laplacecdf

Function Reference: laplacecdf

statistics: p = laplacecdf (x, mu, beta)
statistics: p = laplacecdf (x, mu, beta, "upper")

Laplace cumulative distribution function (CDF).

For each element of x, compute the cumulative distribution function (CDF) of the Laplace distribution with location parameter mu and scale parameter (i.e. "diversity") beta. The size of p is the common size of x, mu, and beta. A scalar input functions as a constant matrix of the same size as the other inputs.

Both parameters must be reals and beta > 0. For beta <= 0, NaN is returned.

p = laplacecdf (x, mu, beta, "upper") computes the upper tail probability of the Laplace distribution with parameters mu and beta, at the values in x.

Further information about the Laplace distribution can be found at https://en.wikipedia.org/wiki/Laplace_distribution

See also: laplaceinv, laplacepdf, laplacernd

Source Code: laplacecdf

Example: 1

 

 ## Plot various CDFs from the Laplace distribution
 x = -10:0.01:10;
 p1 = laplacecdf (x, 0, 1);
 p2 = laplacecdf (x, 0, 2);
 p3 = laplacecdf (x, 0, 4);
 p4 = laplacecdf (x, -5, 4);
 plot (x, p1, "-b", x, p2, "-g", x, p3, "-r", x, p4, "-c")
 grid on
 xlim ([-10, 10])
 legend ({"μ = 0, β = 1", "μ = 0, β = 2", ...
          "μ = 0, β = 4", "μ = -5, β = 4"}, "location", "southeast")
 title ("Laplace CDF")
 xlabel ("values in x")
 ylabel ("probability")

                    
plotted figure

statistics-release-1.6.3/docs/laplaceinv.html000066400000000000000000000140311456127120000212620ustar00rootroot00000000000000 Statistics: laplaceinv

Function Reference: laplaceinv

statistics: x = laplaceinv (p, mu, beta)

Inverse of the Laplace cumulative distribution function (iCDF).

For each element of p, compute the quantile (the inverse of the CDF) of the Laplace distribution with location parameter mu and scale parameter (i.e. "diversity") beta. The size of x is the common size of p, mu, and beta. A scalar input functions as a constant matrix of the same size as the other inputs.

Both parameters must be reals and beta > 0. For beta <= 0, NaN is returned.

Further information about the Laplace distribution can be found at https://en.wikipedia.org/wiki/Laplace_distribution

See also: laplaceinv, laplacepdf, laplacernd

Source Code: laplaceinv

Example: 1

 

 ## Plot various iCDFs from the Laplace distribution
 p = 0.001:0.001:0.999;
 x1 = cauchyinv (p, 0, 1);
 x2 = cauchyinv (p, 0, 2);
 x3 = cauchyinv (p, 0, 4);
 x4 = cauchyinv (p, -5, 4);
 plot (p, x1, "-b", p, x2, "-g", p, x3, "-r", p, x4, "-c")
 grid on
 ylim ([-10, 10])
 legend ({"μ = 0, β = 1", "μ = 0, β = 2", ...
          "μ = 0, β = 4", "μ = -5, β = 4"}, "location", "northwest")
 title ("Laplace iCDF")
 xlabel ("probability")
 ylabel ("values in x")

                    
plotted figure

statistics-release-1.6.3/docs/laplacepdf.html000066400000000000000000000140171456127120000212430ustar00rootroot00000000000000 Statistics: laplacepdf

Function Reference: laplacepdf

statistics: y = laplacepdf (x, mu, beta)

Laplace probability density function (PDF).

For each element of x, compute the probability density function (PDF) of the Laplace distribution with location parameter mu and scale parameter (i.e. "diversity") beta. The size of y is the common size of x, mu, and beta. A scalar input functions as a constant matrix of the same size as the other inputs.

Both parameters must be reals and beta > 0. For beta <= 0, NaN is returned.

Further information about the Laplace distribution can be found at https://en.wikipedia.org/wiki/Laplace_distribution

See also: laplacecdf, laplacepdf, laplacernd

Source Code: laplacepdf

Example: 1

 

 ## Plot various PDFs from the Laplace distribution
 x = -10:0.01:10;
 y1 = laplacepdf (x, 0, 1);
 y2 = laplacepdf (x, 0, 2);
 y3 = laplacepdf (x, 0, 4);
 y4 = laplacepdf (x, -5, 4);
 plot (x, y1, "-b", x, y2, "-g", x, y3, "-r", x, y4, "-c")
 grid on
 xlim ([-10, 10])
 ylim ([0, 0.6])
 legend ({"μ = 0, β = 1", "μ = 0, β = 2", ...
          "μ = 0, β = 4", "μ = -5, β = 4"}, "location", "northeast")
 title ("Laplace PDF")
 xlabel ("values in x")
 ylabel ("density")

                    
plotted figure

statistics-release-1.6.3/docs/laplacernd.html000066400000000000000000000124501456127120000212540ustar00rootroot00000000000000 Statistics: laplacernd

Function Reference: laplacernd

statistics: r = laplacernd (mu, beta)
statistics: r = laplacernd (mu, beta, rows)
statistics: r = laplacernd (mu, beta, rows, cols, …)
statistics: r = laplacernd (mu, beta, [sz])

Random arrays from the Laplace distribution.

r = laplacernd (mu, beta) returns an array of random numbers chosen from the Laplace distribution with location parameter mu and scale parameter beta. The size of r is the common size of mu and beta. A scalar input functions as a constant matrix of the same size as the other inputs.

Both parameters must be reals and beta > 0. For beta <= 0, NaN is returned.

When called with a single size argument, laplacernd returns a square matrix with the dimension specified. When called with more than one scalar argument, the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions. The size may also be specified with a row vector of dimensions, sz.

Further information about the Laplace distribution can be found at https://en.wikipedia.org/wiki/Laplace_distribution

See also: laplacecdf, laplaceinv, laplacernd

Source Code: laplacernd

statistics-release-1.6.3/docs/levene_test.html000066400000000000000000000160201456127120000214610ustar00rootroot00000000000000 Statistics: levene_test

Function Reference: levene_test

statistics: h = levene_test (x)
statistics: h = levene_test (x, group)
statistics: h = levene_test (x, alpha)
statistics: h = levene_test (x, testtype)
statistics: h = levene_test (x, group, alpha)
statistics: h = levene_test (x, group, testtype)
statistics: h = levene_test (x, group, alpha, testtype)
statistics: [h, pval] = levene_test (…)
statistics: [h, pval, W] = levene_test (…)
statistics: [h, pval, W, df] = levene_test (…)

Perform a Levene’s test for the homogeneity of variances.

Under the null hypothesis of equal variances, the test statistic W approximately follows an F distribution with df degrees of freedom being a vector ([k-1, N-k]).

The p-value (1 minus the CDF of this distribution at W) is returned in pval. h = 1 if the null hypothesis is rejected at the significance level of alpha. Otherwise h = 0.

Input Arguments:

  • x contains the data and it can either be a vector or matrix. If x is a matrix, then each column is treated as a separate group. If x is a vector, then the group argument is mandatory. NaN values are omitted.
  • group contains the names for each group. If x is a vector, then group must be a vector of the same length, or a string array or cell array of strings with one row for each element of x. x values corresponding to the same value of group are placed in the same group. If x is a matrix, then group can either be a cell array of strings of a character array, with one row per column of x in the same way it is used in anova1 function. If x is a matrix, then group can be omitted either by entering an empty array ([]) or by parsing only alpha as a second argument (if required to change its default value).
  • alpha is the statistical significance value at which the null hypothesis is rejected. Its default value is 0.05 and it can be parsed either as a second argument (when group is omitted) or as a third argument.
  • testtype is a string determining the type of Levene’s test. By default it is set to "absolute", but the user can also parse "quadratic" in order to perform Levene’s Quadratic test for equal variances or "median" in order to to perform the Brown-Forsythe’s test. These options determine how the Z_ij values are computed. If an invalid name is parsed for testtype, then the Levene’s Absolute test is performed.

See also: bartlett_test, vartest2, vartestn

Source Code: levene_test

statistics-release-1.6.3/docs/libsvmread.html000066400000000000000000000075051456127120000213040ustar00rootroot00000000000000 Statistics: libsvmread

Function Reference: libsvmread

statistics: [labels, data] = libsvmread (filename)

This function reads the labels and the corresponding instance_matrix from a LIBSVM data file and stores them in labels and data respectively. These can then be used as inputs to svmtrain or svmpredict function.

Source Code: libsvmread

statistics-release-1.6.3/docs/libsvmwrite.html000066400000000000000000000074401456127120000215210ustar00rootroot00000000000000 Statistics: libsvmwrite

Function Reference: libsvmwrite

statistics: libsvmwrite (filename, labels, data)

This function saves the labels and the corresponding instance_matrix in a file specified by filename. data must be a sparse matrix. Both labels, data must be of double type.

Source Code: libsvmwrite

statistics-release-1.6.3/docs/linkage.html000066400000000000000000000163221456127120000205630ustar00rootroot00000000000000 Statistics: linkage

Function Reference: linkage

statistics: y = linkage (d)
statistics: y = linkage (d, method)
statistics: y = linkage (x)
statistics: y = linkage (x, method)
statistics: y = linkage (x, method, metric)
statistics: y = linkage (x, method, arglist)

Produce a hierarchical clustering dendrogram.

d is the dissimilarity matrix relative to n observations, formatted as a (n-1)×n/2x1 vector as produced by pdist. Alternatively, x contains data formatted for input to pdist, metric is a metric for pdist and arglist is a cell array containing arguments that are passed to pdist.

linkage starts by putting each observation into a singleton cluster and numbering those from 1 to n. Then it merges two clusters, chosen according to method, to create a new cluster numbered n+1, and so on until all observations are grouped into a single cluster numbered 2(n-1). Row k of the (m-1)x3 output matrix relates to cluster n+k: the first two columns are the numbers of the two component clusters and column 3 contains their distance.

method defines the way the distance between two clusters is computed and how they are recomputed when two clusters are merged:

"single" (default)

Distance between two clusters is the minimum distance between two elements belonging each to one cluster. Produces a cluster tree known as minimum spanning tree.

"complete"

Furthest distance between two elements belonging each to one cluster.

"average"

Unweighted pair group method with averaging (UPGMA). The mean distance between all pair of elements each belonging to one cluster.

"weighted"

Weighted pair group method with averaging (WPGMA). When two clusters A and B are joined together, the new distance to a cluster C is the mean between distances A-C and B-C.

"centroid"

Unweighted Pair-Group Method using Centroids (UPGMC). Assumes Euclidean metric. The distance between cluster centroids, each centroid being the center of mass of a cluster.

"median"

Weighted pair-group method using centroids (WPGMC). Assumes Euclidean metric. Distance between cluster centroids. When two clusters are joined together, the new centroid is the midpoint between the joined centroids.

"ward"

Ward’s sum of squared deviations about the group mean (ESS). Also known as minimum variance or inner squared distance. Assumes Euclidean metric. How much the moment of inertia of the merged cluster exceeds the sum of those of the individual clusters.

Reference Ward, J. H. Hierarchical Grouping to Optimize an Objective Function J. Am. Statist. Assoc. 1963, 58, 236-244, http://iv.slis.indiana.edu/sw/data/ward.pdf.

See also: pdist, squareform

Source Code: linkage

statistics-release-1.6.3/docs/logicdf.html000066400000000000000000000146711456127120000205650ustar00rootroot00000000000000 Statistics: logicdf

Function Reference: logicdf

statistics: p = logicdf (x, mu, s)
statistics: p = logicdf (x, mu, s, "upper")

Logistic cumulative distribution function (CDF).

For each element of x, compute the cumulative distribution function (CDF) of the logistic distribution with location parameter mu and scale parameter s. The size of p is the common size of x, mu, and s. A scalar input functions as a constant matrix of the same size as the other inputs.

Both parameters must be reals and s > 0. For s <= 0, NaN is returned.

p = logicdf (x, mu, s, "upper") computes the upper tail probability of the logistic distribution with parameters mu and s, at the values in x.

Further information about the logistic distribution can be found at https://en.wikipedia.org/wiki/Logistic_distribution

See also: logiinv, logipdf, logirnd, logifit, logilike, logistat

Source Code: logicdf

Example: 1

 

 ## Plot various CDFs from the logistic distribution
 x = -5:0.01:20;
 p1 = logicdf (x, 5, 2);
 p2 = logicdf (x, 9, 3);
 p3 = logicdf (x, 9, 4);
 p4 = logicdf (x, 6, 2);
 p5 = logicdf (x, 2, 1);
 plot (x, p1, "-b", x, p2, "-g", x, p3, "-r", x, p4, "-c", x, p5, "-m")
 grid on
 legend ({"μ = 5, s = 2", "μ = 9, s = 3", "μ = 9, s = 4", ...
          "μ = 6, s = 2", "μ = 2, s = 1"}, "location", "southeast")
 title ("Logistic CDF")
 xlabel ("values in x")
 ylabel ("probability")

                    
plotted figure

statistics-release-1.6.3/docs/logifit.html000066400000000000000000000225761456127120000206160ustar00rootroot00000000000000 Statistics: logifit

Function Reference: logifit

statistics: paramhat = logifit (x)
statistics: [paramhat, paramci] = logifit (x)
statistics: [paramhat, paramci] = logifit (x, alpha)
statistics: […] = logifit (x, alpha, censor)
statistics: […] = logifit (x, alpha, censor, freq)
statistics: […] = logifit (x, alpha, censor, freq, options)

Estimate mean and confidence intervals for the logistic distribution.

mu0 = logifit (x) returns the maximum likelihood estimates of the parameters of the logistic distribution given the data in x. paramhat(1) is the scale parameter, mu, and paramhat(2) is the shape parameter, s.

[paramhat, paramci] = logifit (x) returns the 95% confidence intervals for the parameter estimates.

[…] = logifit (x, alpha) also returns the 100 * (1 - alpha) percent confidence intervals for the parameter estimates. By default, the optional argument alpha is 0.05 corresponding to 95% confidence intervals. Pass in [] for alpha to use the default values.

[…] = logifit (x, alpha, censor) accepts a boolean vector, censor, of the same size as x with 1s for observations that are right-censored and 0s for observations that are observed exactly. By default, or if left empty, censor = zeros (size (x)).

[…] = logifit (x, alpha, censor, freq) accepts a frequency vector, freq, of the same size as x. freq typically contains integer frequencies for the corresponding elements in x, but it can contain any non-integer non-negative values. By default, or if left empty, freq = ones (size (x)).

[…] = logifit (…, options) specifies control parameters for the iterative algorithm used to compute ML estimates with the fminsearch function. options is a structure with the following fields and their default values:

  • options.Display = "off"
  • options.MaxFunEvals = 400
  • options.MaxIter = 200
  • options.TolX = 1e-6

Further information about the logistic distribution can be found at https://en.wikipedia.org/wiki/Logistic_distribution

See also: logicdf, logiinv, logipdf, logirnd, logilike

Source Code: logifit

Example: 1

 

 ## Sample 3 populations from different logistic distibutions
 rand ("seed", 5)  # for reproducibility
 r1 = logirnd (2, 1, 2000, 1);
 rand ("seed", 2)   # for reproducibility
 r2 = logirnd (5, 2, 2000, 1);
 rand ("seed", 7)   # for reproducibility
 r3 = logirnd (9, 4, 2000, 1);
 r = [r1, r2, r3];

 ## Plot them normalized and fix their colors
 hist (r, [-6:20], 1);
 h = findobj (gca, "Type", "patch");
 set (h(1), "facecolor", "c");
 set (h(2), "facecolor", "g");
 set (h(3), "facecolor", "r");
 ylim ([0, 0.3]);
 xlim ([-5, 20]);
 hold on

 ## Estimate their MU and LAMBDA parameters
 mu_sA = logifit (r(:,1));
 mu_sB = logifit (r(:,2));
 mu_sC = logifit (r(:,3));

 ## Plot their estimated PDFs
 x = [-5:0.5:20];
 y = logipdf (x, mu_sA(1), mu_sA(2));
 plot (x, y, "-pr");
 y = logipdf (x, mu_sB(1), mu_sB(2));
 plot (x, y, "-sg");
 y = logipdf (x, mu_sC(1), mu_sC(2));
 plot (x, y, "-^c");
 hold off
 legend ({"Normalized HIST of sample 1 with μ=1 and s=0.5", ...
          "Normalized HIST of sample 2 with μ=2 and s=0.3", ...
          "Normalized HIST of sample 3 with μ=4 and s=0.5", ...
          sprintf("PDF for sample 1 with estimated μ=%0.2f and s=%0.2f", ...
                  mu_sA(1), mu_sA(2)), ...
          sprintf("PDF for sample 2 with estimated μ=%0.2f and s=%0.2f", ...
                  mu_sB(1), mu_sB(2)), ...
          sprintf("PDF for sample 3 with estimated μ=%0.2f and s=%0.2f", ...
                  mu_sC(1), mu_sC(2))})
 title ("Three population samples from different logistic distibutions")
 hold off

                    
plotted figure

statistics-release-1.6.3/docs/logiinv.html000066400000000000000000000140701456127120000206160ustar00rootroot00000000000000 Statistics: logiinv

Function Reference: logiinv

statistics: x = logiinv (p, mu, s)

Inverse of the logistic cumulative distribution function (iCDF).

For each element of p, compute the quantile (the inverse of the CDF) of the logistic distribution with location parameter mu and scale parameter s. The size of p is the common size of x, mu, and s. A scalar input functions as a constant matrix of the same size as the other inputs.

Both parameters must be reals and s > 0. For s <= 0, NaN is returned.

Further information about the logistic distribution can be found at https://en.wikipedia.org/wiki/Logistic_distribution

See also: logicdf, logipdf, logirnd, logifit, logilike, logistat

Source Code: logiinv

Example: 1

 

 ## Plot various iCDFs from the logistic distribution
 p = 0.001:0.001:0.999;
 x1 = logiinv (p, 5, 2);
 x2 = logiinv (p, 9, 3);
 x3 = logiinv (p, 9, 4);
 x4 = logiinv (p, 6, 2);
 x5 = logiinv (p, 2, 1);
 plot (p, x1, "-b", p, x2, "-g", p, x3, "-r", p, x4, "-c", p, x5, "-m")
 grid on
 legend ({"μ = 5, s = 2", "μ = 9, s = 3", "μ = 9, s = 4", ...
          "μ = 6, s = 2", "μ = 2, s = 1"}, "location", "southeast")
 title ("Logistic iCDF")
 xlabel ("probability")
 ylabel ("x")

                    
plotted figure

statistics-release-1.6.3/docs/logilike.html000066400000000000000000000136351456127120000207540ustar00rootroot00000000000000 Statistics: logilike

Function Reference: logilike

statistics: nlogL = logilike (params, x)
statistics: [nlogL, acov] = logilike (params, x)
statistics: […] = logilike (params, x, censor)
statistics: […] = logilike (params, x, censor, freq)

Negative log-likelihood for the logistic distribution.

nlogL = logilike (params, x) returns the negative log likelihood of the data in x corresponding to the logistic distribution with (1) location parameter mu and (2) scale parameter s given in the two-element vector params.

[nlogL, acov] = logilike (params, x) also returns the inverse of Fisher’s information matrix, acov. If the input parameter values in params are the maximum likelihood estimates, the diagonal elements of params are their asymptotic variances.

[…] = logilike (params, x, censor) accepts a boolean vector, censor, of the same size as x with 1s for observations that are right-censored and 0s for observations that are observed exactly. By default, or if left empty, censor = zeros (size (x)).

[…] = logilike (params, x, censor, freq) accepts a frequency vector, freq, of the same size as x. freq typically contains integer frequencies for the corresponding elements in x, but it can contain any non-integer non-negative values. By default, or if left empty, freq = ones (size (x)).

Further information about the logistic distribution can be found at https://en.wikipedia.org/wiki/Logistic_distribution

See also: logicdf, logiinv, logipdf, logirnd, logifit

Source Code: logilike

statistics-release-1.6.3/docs/logipdf.html000066400000000000000000000140631456127120000205750ustar00rootroot00000000000000 Statistics: logipdf

Function Reference: logipdf

statistics: y = logipdf (x, mu, s)

Logistic probability density function (PDF).

For each element of x, compute the probability density function (PDF) of the logistic distribution with location parameter mu and scale parameter s. The size of p is the common size of x, mu, and s. A scalar input functions as a constant matrix of the same size as the other inputs.

Both parameters must be reals and s > 0. For s <= 0, NaN is returned.

Further information about the logistic distribution can be found at https://en.wikipedia.org/wiki/Logistic_distribution

See also: logicdf, logiinv, logirnd, logifit, logilike, logistat

Source Code: logipdf

Example: 1

 

 ## Plot various PDFs from the logistic distribution
 x = -5:0.01:20;
 y1 = logipdf (x, 5, 2);
 y2 = logipdf (x, 9, 3);
 y3 = logipdf (x, 9, 4);
 y4 = logipdf (x, 6, 2);
 y5 = logipdf (x, 2, 1);
 plot (x, y1, "-b", x, y2, "-g", x, y3, "-r", x, y4, "-c", x, y5, "-m")
 grid on
 ylim ([0, 0.3])
 legend ({"μ = 5, s = 2", "μ = 9, s = 3", "μ = 9, s = 4", ...
          "μ = 6, s = 2", "μ = 2, s = 1"}, "location", "northeast")
 title ("Logistic PDF")
 xlabel ("values in x")
 ylabel ("density")

                    
plotted figure

statistics-release-1.6.3/docs/logirnd.html000066400000000000000000000124371456127120000206120ustar00rootroot00000000000000 Statistics: logirnd

Function Reference: logirnd

statistics: r = logirnd (mu, s)
statistics: r = logirnd (mu, s, rows)
statistics: r = logirnd (mu, s, rows, cols, …)
statistics: r = logirnd (mu, s, [sz])

Random arrays from the logistic distribution.

r = logirnd (mu, s) returns an array of random numbers chosen from the logistic distribution with location parameter mu and scale parameter s. The size of r is the common size of mu and s. A scalar input functions as a constant matrix of the same size as the other inputs.

Both parameters must be reals and s > 0. For s <= 0, NaN is returned.

When called with a single size argument, logirnd returns a square matrix with the dimension specified. When called with more than one scalar argument, the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions. The size may also be specified with a row vector of dimensions, sz.

Further information about the logistic distribution can be found at https://en.wikipedia.org/wiki/Logistic_distribution

See also: logcdf, logiinv, logipdf, logifit, logilike, logistat

Source Code: logirnd

statistics-release-1.6.3/docs/logistic_regression.html000066400000000000000000000152561456127120000232330ustar00rootroot00000000000000 Statistics: logistic_regression

Function Reference: logistic_regression

statistics: [intercept, slope, dev, dl, d2l, P, stats] = logistic_regression (y, x, print, intercept, slope)

Perform ordinal logistic regression.

Suppose y takes values in k ordered categories, and let P_i (x) be the cumulative probability that y falls in one of the first i categories given the covariate x. Then

 
 [intercept, slope] = logistic_regression (y, x)
 

fits the model

 
 logit (P_i (x)) = x * slope + intercept_i,   i = 1 … k-1
 

The number of ordinal categories, k, is taken to be the number of distinct values of round (y). If k equals 2, y is binary and the model is ordinary logistic regression. The matrix x is assumed to have full column rank.

Given y only, intercept = logistic_regression (y) fits the model with baseline logit odds only.

The full form is

 
 
 [intercept, slope, dev, dl, d2l, P, stats]
    = logistic_regression (y, x, print, intercept, slope)
 
 

in which all output arguments and all input arguments except y are optional.

Setting print to 1 requests summary information about the fitted model to be displayed. Setting print to 2 requests information about convergence at each iteration. Other values request no information to be displayed. The input arguments intercept and slope give initial estimates for intercept and slope.

The returned value dev holds minus twice the log-likelihood.

The returned values dl and d2l are the vector of first and the matrix of second derivatives of the log-likelihood with respect to intercept and slope.

P holds estimates for the conditional distribution of y given x.

stats returns a structure that contains the following fields:

  • "intercept": intercept coefficients
  • "slope": slope coefficients
  • "coeff": regression coefficients (intercepts and slops)
  • "covb": estimated covariance matrix for coefficients (coeff)
  • "coeffcorr": correlation matrix for coeff
  • "se": standard errors of the coeff
  • "z": z statistics for coeff
  • "pval": p-values for coeff

Source Code: logistic_regression

statistics-release-1.6.3/docs/logit.html000066400000000000000000000074031456127120000202670ustar00rootroot00000000000000 Statistics: logit

Function Reference: logit

statistics: x = logit (p)

Compute the logit for each value of p

The logit is defined as $$ {\rm logit}(p) = \log\Big({p \over 1-p}\Big) $$ See also: probit, logicdf

Source Code: logit

statistics-release-1.6.3/docs/loglcdf.html000066400000000000000000000156351456127120000205710ustar00rootroot00000000000000 Statistics: loglcdf

Function Reference: loglcdf

statistics: p = loglcdf (x, a, b)
statistics: p = loglcdf (x, a, b, "upper")

Log-logistic cumulative distribution function (CDF).

For each element of x, compute the cumulative distribution function (CDF) of the log-logistic distribution with scale parameter a and shape parameter b. The size of p is the common size of x, a, and b. A scalar input functions as a constant matrix of the same size as the other inputs.

Both parameters, a and b, must be positive reals and x is supported in the range [0,inf), otherwise NaN is returned.

p = loglcdf (x, a, b, "upper") computes the upper tail probability of the log-logistic distribution with parameters a and b, at the values in x.

Further information about the log-logistic distribution can be found at https://en.wikipedia.org/wiki/Log-logistic_distribution

MATLAB compatibility: MATLAB uses an alternative parameterization given by the pair μ, s, i.e. mu and s, in analogy with the logistic distribution. Their relation to the a and b parameters is given below:

  • a = exp (mu)
  • b = 1 / s

See also: loglinv, loglpdf, loglrnd, loglfit, logllike

Source Code: loglcdf

Example: 1

 

 ## Plot various CDFs from the log-logistic distribution
 x = 0:0.001:2;
 p1 = loglcdf (x, 1, 0.5);
 p2 = loglcdf (x, 1, 1);
 p3 = loglcdf (x, 1, 2);
 p4 = loglcdf (x, 1, 4);
 p5 = loglcdf (x, 1, 8);
 plot (x, p1, "-b", x, p2, "-g", x, p3, "-r", x, p4, "-c", x, p5, "-m")
 legend ({"β = 0.5", "β = 1", "β = 2", "β = 4", "β = 8"}, ...
         "location", "northwest")
 grid on
 title ("Log-logistic CDF")
 xlabel ("values in x")
 ylabel ("probability")
 text (0.05, 0.64, "α = 1, values of β as shown in legend")

                    
plotted figure

statistics-release-1.6.3/docs/loglfit.html000066400000000000000000000234401456127120000206100ustar00rootroot00000000000000 Statistics: loglfit

Function Reference: loglfit

statistics: paramhat = loglfit (x)
statistics: [paramhat, paramci] = loglfit (x)
statistics: [paramhat, paramci] = loglfit (x, alpha)
statistics: […] = loglfit (x, alpha, censor)
statistics: […] = loglfit (x, alpha, censor, freq)
statistics: […] = loglfit (x, alpha, censor, freq, options)

Estimate mean and confidence intervals for the log-logistic distribution.

mu0 = loglfit (x) returns the maximum likelihood estimates of the parameters of the log-logistic distribution given the data in x. paramhat(1) is the scale parameter, a, and paramhat(2) is the shape parameter, b.

[paramhat, paramci] = loglfit (x) returns the 95% confidence intervals for the parameter estimates.

[…] = loglfit (x, alpha) also returns the 100 * (1 - alpha) percent confidence intervals for the parameter estimates. By default, the optional argument alpha is 0.05 corresponding to 95% confidence intervals. Pass in [] for alpha to use the default values.

[…] = loglfit (x, alpha, censor) accepts a boolean vector, censor, of the same size as x with 1s for observations that are right-censored and 0s for observations that are observed exactly. By default, or if left empty, censor = zeros (size (x)).

[…] = loglfit (x, alpha, censor, freq) accepts a frequency vector, freq, of the same size as x. freq typically contains integer frequencies for the corresponding elements in x, but it can contain any non-integer non-negative values. By default, or if left empty, freq = ones (size (x)).

[…] = loglfit (…, options) specifies control parameters for the iterative algorithm used to compute ML estimates with the fminsearch function. options is a structure with the following fields and their default values:

  • options.Display = "off"
  • options.MaxFunEvals = 400
  • options.MaxIter = 200
  • options.TolX = 1e-6

Further information about the log-logistic distribution can be found at https://en.wikipedia.org/wiki/Log-logistic_distribution

MATLAB compatibility: MATLAB uses an alternative parameterization given by the pair μ, s, i.e. mu and s, in analogy with the logistic distribution. Their relation to the a and b parameters is given below:

  • a = exp (mu)
  • b = 1 / s

See also: loglcdf, loglinv, loglpdf, loglrnd, logllike

Source Code: loglfit

Example: 1

 

 ## Sample 3 populations from different log-logistic distibutions
 rand ("seed", 5)  # for reproducibility
 r1 = loglrnd (1, 1, 2000, 1);
 rand ("seed", 2)   # for reproducibility
 r2 = loglrnd (1, 2, 2000, 1);
 rand ("seed", 7)   # for reproducibility
 r3 = loglrnd (1, 8, 2000, 1);
 r = [r1, r2, r3];

 ## Plot them normalized and fix their colors
 hist (r, [0.05:0.1:2.5], 10);
 h = findobj (gca, "Type", "patch");
 set (h(1), "facecolor", "c");
 set (h(2), "facecolor", "g");
 set (h(3), "facecolor", "r");
 ylim ([0, 3.5]);
 xlim ([0, 2.0]);
 hold on

 ## Estimate their MU and LAMBDA parameters
 a_bA = loglfit (r(:,1));
 a_bB = loglfit (r(:,2));
 a_bC = loglfit (r(:,3));

 ## Plot their estimated PDFs
 x = [0.01:0.1:2.01];
 y = loglpdf (x, a_bA(1), a_bA(2));
 plot (x, y, "-pr");
 y = loglpdf (x, a_bB(1), a_bB(2));
 plot (x, y, "-sg");
 y = loglpdf (x, a_bC(1), a_bC(2));
 plot (x, y, "-^c");
 legend ({"Normalized HIST of sample 1 with α=1 and β=1", ...
          "Normalized HIST of sample 2 with α=1 and β=2", ...
          "Normalized HIST of sample 3 with α=1 and β=8", ...
          sprintf("PDF for sample 1 with estimated α=%0.2f and β=%0.2f", ...
                  a_bA(1), a_bA(2)), ...
          sprintf("PDF for sample 2 with estimated α=%0.2f and β=%0.2f", ...
                  a_bB(1), a_bB(2)), ...
          sprintf("PDF for sample 3 with estimated α=%0.2f and β=%0.2f", ...
                  a_bC(1), a_bC(2))})
 title ("Three population samples from different log-logistic distibutions")
 hold off

                    
plotted figure

statistics-release-1.6.3/docs/loglinv.html000066400000000000000000000150521456127120000206220ustar00rootroot00000000000000 Statistics: loglinv

Function Reference: loglinv

statistics: x = loglinv (p, a, b)

Inverse of the log-logistic cumulative distribution function (iCDF).

For each element of p, compute the quantile (the inverse of the CDF) of the log-logistic distribution with scale parameter a and shape parameter b. The size of x is the common size of p, a, and b. A scalar input functions as a constant matrix of the same size as the other inputs.

Both parameters, a and b, must be positive reals and p is supported in the range [0,1], otherwise NaN is returned.

Further information about the log-logistic distribution can be found at https://en.wikipedia.org/wiki/Log-logistic_distribution

MATLAB compatibility: MATLAB uses an alternative parameterization given by the pair μ, s, i.e. mu and s, in analogy with the logistic distribution. Their relation to the a and b parameters is given below:

  • a = exp (mu)
  • b = 1 / s

See also: loglcdf, loglpdf, loglrnd, loglfit, logllike

Source Code: loglinv

Example: 1

 

 ## Plot various iCDFs from the log-logistic distribution
 p = 0.001:0.001:0.999;
 x1 = loglinv (p, 1, 0.5);
 x2 = loglinv (p, 1, 1);
 x3 = loglinv (p, 1, 2);
 x4 = loglinv (p, 1, 4);
 x5 = loglinv (p, 1, 8);
 plot (p, x1, "-b", p, x2, "-g", p, x3, "-r", p, x4, "-c", p, x5, "-m")
 ylim ([0, 20])
 grid on
 legend ({"β = 0.5", "β = 1", "β = 2", "β = 4", "β = 8"}, ...
         "location", "northwest")
 title ("Log-logistic iCDF")
 xlabel ("probability")
 ylabel ("x")
 text (0.03, 12.5, "α = 1, values of β as shown in legend")

                    
plotted figure

statistics-release-1.6.3/docs/logllike.html000066400000000000000000000145011456127120000207500ustar00rootroot00000000000000 Statistics: logllike

Function Reference: logllike

statistics: nlogL = logllike (params, x)
statistics: [nlogL, acov] = logllike (params, x)
statistics: […] = logllike (params, x, censor)
statistics: […] = logllike (params, x, censor, freq)

Negative log-likelihood for the log-logistic distribution.

nlogL = logllike (params, x) returns the negative log likelihood of the data in x corresponding to the log-logistic distribution with (1) scale parameter a and (2) shape parameter b given in the two-element vector params.

[nlogL, acov] = logllike (params, x) also returns the inverse of Fisher’s information matrix, acov. If the input parameter values in params are the maximum likelihood estimates, the diagonal elements of params are their asymptotic variances.

[…] = logllike (params, x, censor) accepts a boolean vector, censor, of the same size as x with 1s for observations that are right-censored and 0s for observations that are observed exactly. By default, or if left empty, censor = zeros (size (x)).

[…] = logllike (params, x, censor, freq) accepts a frequency vector, freq, of the same size as x. freq typically contains integer frequencies for the corresponding elements in x, but it can contain any non-integer non-negative values. By default, or if left empty, freq = ones (size (x)).

Further information about the log-logistic distribution can be found at https://en.wikipedia.org/wiki/Log-logistic_distribution

MATLAB compatibility: MATLAB uses an alternative parameterization given by the pair μ, s, i.e. mu and s, in analogy with the logistic distribution. Their relation to the a and b parameters is given below:

  • a = exp (mu)
  • b = 1 / s

See also: loglcdf, loglinv, loglpdf, loglrnd, loglfit

Source Code: logllike

statistics-release-1.6.3/docs/loglpdf.html000066400000000000000000000150741456127120000206030ustar00rootroot00000000000000 Statistics: loglpdf

Function Reference: loglpdf

statistics: y = loglpdf (x, a, b)

Log-logistic probability density function (PDF).

For each element of x, compute the probability density function (PDF) of the log-logistic distribution with with scale parameter a and shape parameter b. The size of y is the common size of x, a, and b. A scalar input functions as a constant matrix of the same size as the other inputs.

Both parameters, a and b, must be positive reals, otherwise NaN is returned. x is supported in the range [0,Inf), otherwise 0 is returned.

Further information about the log-logistic distribution can be found at https://en.wikipedia.org/wiki/Log-logistic_distribution

MATLAB compatibility: MATLAB uses an alternative parameterization given by the pair μ, s, i.e. mu and s, in analogy with the logistic distribution. Their relation to the a and b parameters is given below:

  • a = exp (mu)
  • b = 1 / s

See also: loglcdf, loglinv, loglrnd, loglfit, logllike

Source Code: loglpdf

Example: 1

 

 ## Plot various PDFs from the log-logistic distribution
 x = 0:0.001:2;
 y1 = loglpdf (x, 1, 0.5);
 y2 = loglpdf (x, 1, 1);
 y3 = loglpdf (x, 1, 2);
 y4 = loglpdf (x, 1, 4);
 y5 = loglpdf (x, 1, 8);
 plot (x, y1, "-b", x, y2, "-g", x, y3, "-r", x, y4, "-c", x, y5, "-m")
 grid on
 ylim ([0,3])
 legend ({"β = 0.5", "β = 1", "β = 2", "β = 4", "β = 8"}, ...
         "location", "northeast")
 title ("Log-logistic PDF")
 xlabel ("values in x")
 ylabel ("density")
 text (0.5, 2.8, "α = 1, values of β as shown in legend")

                    
plotted figure

statistics-release-1.6.3/docs/loglrnd.html000066400000000000000000000132261456127120000206120ustar00rootroot00000000000000 Statistics: loglrnd

Function Reference: loglrnd

statistics: r = loglrnd (a, b)
statistics: r = loglrnd (a, b, rows)
statistics: r = loglrnd (a, b, rows, cols, …)
statistics: r = loglrnd (a, b, [sz])

Random arrays from the log-logistic distribution.

r = loglrnd (a, b) returns an array of random numbers chosen from the log-logistic distribution with scale parameter a and shape parameter b. The size of r is the common size of a and b. A scalar input functions as a constant matrix of the same size as the other inputs.

Both parameters must be positive reals, otherwise NaN is returned.

When called with a single size argument, loglrnd returns a square matrix with the dimension specified. When called with more than one scalar argument, the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions. The size may also be specified with a row vector of dimensions, sz.

Further information about the log-logistic distribution can be found at https://en.wikipedia.org/wiki/Log-logistic_distribution

MATLAB compatibility: MATLAB uses an alternative parameterization given by the pair μ, s, i.e. mu and s, in analogy with the logistic distribution. Their relation to the a and b parameters is given below:

  • a = exp (mu)
  • b = 1 / s

See also: loglcdf, loglinv, loglpdf, loglfit, logllike

Source Code: loglrnd

statistics-release-1.6.3/docs/logncdf.html000066400000000000000000000177501456127120000205730ustar00rootroot00000000000000 Statistics: logncdf

Function Reference: logncdf

statistics: p = logncdf (x)
statistics: p = logncdf (x, mu)
statistics: p = logncdf (x, mu, sigma)
statistics: p = logncdf (…, "upper")
statistics: [p, plo, pup] = logncdf (x, mu, sigma, pcov)
statistics: [p, plo, pup] = logncdf (x, mu, sigma, pcov, alpha)
statistics: [p, plo, pup] = logncdf (…, "upper")

Log-normal cumulative distribution function (CDF).

For each element of x, compute the cumulative distribution function (CDF) of the log-normal distribution with mean parameter mu and standard deviation parameter sigma, each corresponding to the associated normal distribution. The size of p is the common size of x, mu, and sigma. A scalar input functions as a constant matrix of the same size as the other inputs.

If a random variable follows this distribution, its logarithm is normally distributed with mean mu and standard deviation sigma.

Default parameter values are mu = 0 and sigma = 1. Both parameters must be reals and sigma > 0. For sigma <= 0, NaN is returned.

When called with three output arguments, i.e. [p, plo, pup], logncdf computes the confidence bounds for p when the input parameters mu and sigma are estimates. In such case, pcov, a 2×2 matrix containing the covariance matrix of the estimated parameters, is necessary. Optionally, alpha, which has a default value of 0.05, specifies the 100 * (1 - alpha) percent confidence bounds. plo and pup are arrays of the same size as p containing the lower and upper confidence bounds.

[…] = logncdf (…, "upper") computes the upper tail probability of the log-normal distribution with parameters mu and sigma, at the values in x.

Further information about the log-normal distribution can be found at https://en.wikipedia.org/wiki/Log-normal_distribution

See also: logninv, lognpdf, lognrnd, lognfit, lognlike, lognstat

Source Code: logncdf

Example: 1

 

 ## Plot various CDFs from the log-normal distribution
 x = 0:0.01:3;
 p1 = logncdf (x, 0, 1);
 p2 = logncdf (x, 0, 0.5);
 p3 = logncdf (x, 0, 0.25);
 plot (x, p1, "-b", x, p2, "-g", x, p3, "-r")
 grid on
 legend ({"μ = 0, σ = 1", "μ = 0, σ = 0.5", "μ = 0, σ = 0.25"}, ...
         "location", "southeast")
 title ("Log-normal CDF")
 xlabel ("values in x")
 ylabel ("probability")

                    
plotted figure

statistics-release-1.6.3/docs/lognfit.html000066400000000000000000000236741456127120000206230ustar00rootroot00000000000000 Statistics: lognfit

Function Reference: lognfit

statistics: paramhat = lognfit (x)
statistics: [paramhat, paramci] = lognfit (x)
statistics: [paramhat, paramci] = lognfit (x, alpha)
statistics: […] = lognfit (x, alpha, censor)
statistics: […] = lognfit (x, alpha, censor, freq)
statistics: […] = lognfit (x, alpha, censor, freq, options)

Estimate parameters and confidence intervals for the log-normal distribution.

paramhat = lognfit (x) returns the maximum likelihood estimates of the parameters of the log-normal distribution given the data in vector x. paramhat([1, 2]) corresponds to the mean and standard deviation, respectively, of the associated normal distribution.

If a random variable follows this distribution, its logarithm is normally distributed with mean mu and standard deviation sigma.

[paramhat, paramci] = lognfit (x) returns the 95% confidence intervals for the parameter estimates.

[…] = lognfit (x, alpha) also returns the 100 * (1 - alpha) percent confidence intervals for the parameter estimates. By default, the optional argument alpha is 0.05 corresponding to 95% confidence intervals. Pass in [] for alpha to use the default values.

[…] = lognfit (x, alpha, censor) accepts a boolean vector, censor, of the same size as x with 1s for observations that are right-censored and 0s for observations that are observed exactly. By default, or if left empty, censor = zeros (size (x)).

[…] = lognfit (x, alpha, censor, freq) accepts a frequency vector, freq, of the same size as x. freq typically contains integer frequencies for the corresponding elements in x, but it can contain any non-integer non-negative values. By default, or if left empty, freq = ones (size (x)).

[…] = lognfit (…, options) specifies control parameters for the iterative algorithm used to compute ML estimates with the fminsearch function. options is a structure with the following fields and their default values:

  • options.Display = "off"
  • options.MaxFunEvals = 400
  • options.MaxIter = 200
  • options.TolX = 1e-6

With no censor, the estimate of the standard deviation, paramhat(2), is the square root of the unbiased estimate of the variance of log (x). With censored data, the maximum likelihood estimate is returned.

Further information about the log-normal distribution can be found at https://en.wikipedia.org/wiki/Log-normal_distribution

See also: logncdf, logninv, lognpdf, lognrnd, lognlike, lognstat

Source Code: lognfit

Example: 1

 

 ## Sample 3 populations from 3 different log-normal distibutions
 randn ("seed", 1);    # for reproducibility
 r1 = lognrnd (0, 0.25, 1000, 1);
 randn ("seed", 2);    # for reproducibility
 r2 = lognrnd (0, 0.5, 1000, 1);
 randn ("seed", 3);    # for reproducibility
 r3 = lognrnd (0, 1, 1000, 1);
 r = [r1, r2, r3];

 ## Plot them normalized and fix their colors
 hist (r, 30, 2);
 h = findobj (gca, "Type", "patch");
 set (h(1), "facecolor", "c");
 set (h(2), "facecolor", "g");
 set (h(3), "facecolor", "r");
 hold on

 ## Estimate their mu and sigma parameters
 mu_sigmaA = lognfit (r(:,1));
 mu_sigmaB = lognfit (r(:,2));
 mu_sigmaC = lognfit (r(:,3));

 ## Plot their estimated PDFs
 x = [0:0.1:6];
 y = lognpdf (x, mu_sigmaA(1), mu_sigmaA(2));
 plot (x, y, "-pr");
 y = lognpdf (x, mu_sigmaB(1), mu_sigmaB(2));
 plot (x, y, "-sg");
 y = lognpdf (x, mu_sigmaC(1), mu_sigmaC(2));
 plot (x, y, "-^c");
 ylim ([0, 2])
 xlim ([0, 6])
 hold off
 legend ({"Normalized HIST of sample 1 with mu=0, σ=0.25", ...
          "Normalized HIST of sample 2 with mu=0, σ=0.5", ...
          "Normalized HIST of sample 3 with mu=0, σ=1", ...
          sprintf("PDF for sample 1 with estimated mu=%0.2f and σ=%0.2f", ...
                  mu_sigmaA(1), mu_sigmaA(2)), ...
          sprintf("PDF for sample 2 with estimated mu=%0.2f and σ=%0.2f", ...
                  mu_sigmaB(1), mu_sigmaB(2)), ...
          sprintf("PDF for sample 3 with estimated mu=%0.2f and σ=%0.2f", ...
                  mu_sigmaC(1), mu_sigmaC(2))}, "location", "northeast")
 title ("Three population samples from different log-normal distibutions")
 hold off

                    
plotted figure

statistics-release-1.6.3/docs/logninv.html000066400000000000000000000150521456127120000206240ustar00rootroot00000000000000 Statistics: logninv

Function Reference: logninv

statistics: x = logninv (p)
statistics: x = logninv (p, mu)
statistics: x = logninv (p, mu, sigma)

Inverse of the log-normal cumulative distribution function (iCDF).

For each element of p, compute the quantile (the inverse of the CDF) of the log-normal distribution with mean parameter mu and standard deviation parameter sigma, each corresponding to the associated normal distribution. The size of x is the common size of p, mu, and sigma. A scalar input functions as a constant matrix of the same size as the other inputs.

If a random variable follows this distribution, its logarithm is normally distributed with mean mu and standard deviation sigma.

Default parameter values are mu = 0 and sigma = 1. Both parameters must be reals and sigma > 0. For sigma <= 0, NaN is returned.

Further information about the log-normal distribution can be found at https://en.wikipedia.org/wiki/Log-normal_distribution

See also: logncdf, lognpdf, lognrnd, lognfit, lognlike, lognstat

Source Code: logninv

Example: 1

 

 ## Plot various iCDFs from the log-normal distribution
 p = 0.001:0.001:0.999;
 x1 = logninv (p, 0, 1);
 x2 = logninv (p, 0, 0.5);
 x3 = logninv (p, 0, 0.25);
 plot (p, x1, "-b", p, x2, "-g", p, x3, "-r")
 grid on
 ylim ([0, 3])
 legend ({"μ = 0, σ = 1", "μ = 0, σ = 0.5", "μ = 0, σ = 0.25"}, ...
         "location", "northwest")
 title ("Log-normal iCDF")
 xlabel ("probability")
 ylabel ("values in x")

                    
plotted figure

statistics-release-1.6.3/docs/lognlike.html000066400000000000000000000146411456127120000207570ustar00rootroot00000000000000 Statistics: lognlike

Function Reference: lognlike

statistics: nlogL = lognlike (params, x)
statistics: [nlogL, avar] = lognlike (params, x)
statistics: […] = lognlike (params, x, censor)
statistics: […] = lognlike (params, x, censor, freq)

Negative log-likelihood for the log-normal distribution.

nlogL = lognlike (params, x) returns the negative log-likelihood of the data in x corresponding to the log-normal distribution with (1) location parameter mu and (2) scale parameter sigma given in the two-element vector params, which correspond to the mean and standard deviation of the associated normal distribution. Missing values, NaNs, are ignored. Negative values of x are treated as missing values.

If a random variable follows this distribution, its logarithm is normally distributed with mean mu and standard deviation sigma.

[nlogL, avar] = lognlike (params, x) returns the inverse of Fisher’s information matrix, avar. If the input parameter values in params are the maximum likelihood estimates, the diagonal elements of avar are their asymptotic variances. avar is based on the observed Fisher’s information, not the expected information.

[…] = lognlike (params, x, censor) accepts a boolean vector, censor, of the same size as x with 1s for observations that are right-censored and 0s for observations that are observed exactly. By default, or if left empty, censor = zeros (size (x)).

[…] = lognlike (params, x, censor, freq) accepts a frequency vector, freq, of the same size as x. freq typically contains integer frequencies for the corresponding elements in x, but it can contain any non-integer non-negative values. By default, or if left empty, freq = ones (size (x)).

Further information about the log-normal distribution can be found at https://en.wikipedia.org/wiki/Log-normal_distribution

See also: logncdf, logninv, lognpdf, lognrnd, lognfit, lognstat

Source Code: lognlike

statistics-release-1.6.3/docs/lognpdf.html000066400000000000000000000150071456127120000206010ustar00rootroot00000000000000 Statistics: lognpdf

Function Reference: lognpdf

statistics: y = lognpdf (x)
statistics: y = lognpdf (x, mu)
statistics: y = lognpdf (x, mu, sigma)

Lognormal probability density function (PDF).

For each element of x, compute the probability density function (PDF) of the lognormal distribution with mean parameter mu and standard deviation parameter sigma, each corresponding to the associated normal distribution. The size of y is the common size of p, mu, and sigma. A scalar input functions as a constant matrix of the same size as the other inputs.

If a random variable follows this distribution, its logarithm is normally distributed with mean mu and standard deviation sigma.

Default parameter values are mu = 0 and sigma = 1. Both parameters must be reals and sigma > 0. For sigma <= 0, NaN is returned.

Further information about the log-normal distribution can be found at https://en.wikipedia.org/wiki/Log-normal_distribution

See also: logncdf, logninv, lognrnd, lognfit, lognlike, lognstat

Source Code: lognpdf

Example: 1

 

 ## Plot various PDFs from the log-normal distribution
 x = 0:0.01:5;
 y1 = lognpdf (x, 0, 1);
 y2 = lognpdf (x, 0, 0.5);
 y3 = lognpdf (x, 0, 0.25);
 plot (x, y1, "-b", x, y2, "-g", x, y3, "-r")
 grid on
 ylim ([0, 2])
 legend ({"μ = 0, σ = 1", "μ = 0, σ = 0.5", "μ = 0, σ = 0.25"}, ...
          "location", "northeast")
 title ("Log-normal PDF")
 xlabel ("values in x")
 ylabel ("density")

                    
plotted figure

statistics-release-1.6.3/docs/lognrnd.html000066400000000000000000000131411456127120000206100ustar00rootroot00000000000000 Statistics: lognrnd

Function Reference: lognrnd

statistics: r = lognrnd (mu, sigma)
statistics: r = lognrnd (mu, sigma, rows)
statistics: r = lognrnd (mu, sigma, rows, cols, …)
statistics: r = lognrnd (mu, sigma, [sz])

Random arrays from the lognormal distribution.

r = lognrnd (mu, sigma) returns an array of random numbers chosen from the lognormal distribution with mean parameter mu and standard deviation parameter sigma, each corresponding to the associated normal distribution. The size of r is the common size of mu, and sigma. A scalar input functions as a constant matrix of the same size as the other inputs. Both parameters must be reals and sigma > 0. For sigma <= 0, NaN is returned.

Both parameters must be reals and sigma > 0. For sigma <= 0, NaN is returned.

When called with a single size argument, lognrnd returns a square matrix with the dimension specified. When called with more than one scalar argument, the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions. The size may also be specified with a row vector of dimensions, sz.

Further information about the log-normal distribution can be found at https://en.wikipedia.org/wiki/Log-normal_distribution

See also: logncdf, logninv, lognpdf, lognfit, lognlike, lognstat

Source Code: lognrnd

statistics-release-1.6.3/docs/lognstat.html000066400000000000000000000111551456127120000210030ustar00rootroot00000000000000 Statistics: lognstat

Function Reference: lognstat

statistics: [m, v] = lognstat (mu, sigma)

Compute statistics of the log-normal distribution.

[m, v] = lognstat (mu, sigma) returns the mean and variance of the log-normal distribution with mean parameter mu and standard deviation parameter sigma, each corresponding to the associated normal distribution.

The size of m (mean) and v (variance) is the common size of the input arguments. A scalar input functions as a constant matrix of the same size as the other inputs.

Further information about the log-normal distribution can be found at https://en.wikipedia.org/wiki/Log-normal_distribution

See also: logncdf, logninv, lognpdf, lognrnd, lognfit, lognlike

Source Code: lognstat

statistics-release-1.6.3/docs/mad.html000066400000000000000000000142211456127120000177060ustar00rootroot00000000000000 Statistics: mad

Function Reference: mad

statistics: m = mad (x)
statistics: m = mad (x, flag)
statistics: m = mad (x, flag, "all")
statistics: m = mad (x, flag, dim)
statistics: m = mad (x, flag, vecdim)

Compute the mean or median absolute deviation (MAD).

mad (x) returns the mean absolute deviation of the values in x. mad treats NaNs as missing values and removes them.

  • If x is a vector, then mad returns the mean or median absolute deviation of the values in X.
  • If x is a matrix, then mad returns the mean or median absolute deviation of each column of X.
  • If x is an multidimensional array, then mad (x) operates along the first non-singleton dimension of x.

mad (x, flag) specifies whether to compute the mean absolute deviation (flag = 0, the default) or the median absolute deviation (flag = 1). Passing an empty variable, defaults to 0.

mad (x, flag, "all") returns the MAD of all the elements in x.

The optional variable dim forces mad to operate over the specified dimension, which must be a positive integer-valued number. Specifying any singleton dimension in x, including any dimension exceeding ndims (x), will result in a MAD equal to zeros (size (x)), while non-finite elements are returned as NaNs.

mad (x, flag, vecdim) returns the MAD over the dimensions specified in the vector vecdim. For example, if x is a 2-by-3-by-4 array, then mad (x, [1 2]) returns a 1-by-1-by-4 array. Each element of the output array is the median of the elements on the corresponding page of x. If vecdim indexes all dimensions of x, then it is equivalent to mad (x, "all"). Any dimension in vecdim greater than ndims (x) is ignored.

See also: median, mean, mode

Source Code: mad

statistics-release-1.6.3/docs/mahal.html000066400000000000000000000102441456127120000202300ustar00rootroot00000000000000 Statistics: mahal

Function Reference: mahal

statistics: d = mahal (y, x)

Mahalanobis’ D-square distance.

Return the Mahalanobis’ D-square distance of the points in y from the distribution implied by points x.

Specifically, it uses a Cholesky decomposition to set

 
  answer(i) = (y(i,:) - mean (x)) * inv (A) * (y(i,:)-mean (x))'
 

where A is the covariance of x.

The data x and y must have the same number of components (columns), but may have a different number of observations (rows).

Source Code: mahal

statistics-release-1.6.3/docs/manova1.html000066400000000000000000000212331456127120000205100ustar00rootroot00000000000000 Statistics: manova1

Function Reference: manova1

statistics: d = manova1 (x, group)
statistics: d = manova1 (x, group, alpha)
statistics: [d, p] = manova1 (…)
statistics: [d, p, stats] = manova1 (…)

One-way multivariate analysis of variance (MANOVA).

d = manova1 (x, group, alpha) performs a one-way MANOVA for comparing the mean vectors of two or more groups of multivariate data.

x is a matrix with each row representing a multivariate observation, and each column representing a variable.

group is a numeric vector, string array, or cell array of strings with the same number of rows as x. x values are in the same group if they correspond to the same value of GROUP.

alpha is the scalar significance level and is 0.05 by default.

d is an estimate of the dimension of the group means. It is the smallest dimension such that a test of the hypothesis that the means lie on a space of that dimension is not rejected. If d = 0 for example, we cannot reject the hypothesis that the means are the same. If d = 1, we reject the hypothesis that the means are the same but we cannot reject the hypothesis that they lie on a line.

[d, p] = manova1 (…) returns P, a vector of p-values for testing the null hypothesis that the mean vectors of the groups lie on various dimensions. P(1) is the p-value for a test of dimension 0, P(2) for dimension 1, etc.

[d, p, stats] = manova1 (…) returns a STATS structure with the following fields:

"W"within-group sum of squares and products matrix
"B"between-group sum of squares and products matrix
"T"total sum of squares and products matrix
"dfW"degrees of freedom for WSSP matrix
"dfB"degrees of freedom for BSSP matrix
"dfT"degrees of freedom for TSSP matrix
"lambda"value of Wilk’s lambda (the test statistic)
"chisq"transformation of lambda to a chi-square distribution
"chisqdf"degrees of freedom for chisq
"eigenval"eigenvalues of (WSSP^-1) * BSSP
"eigenvec"eigenvectors of (WSSP^-1) * BSSP; these are the coefficients for canonical variables, and they are scaled so the within-group variance of C is 1
"canon"canonical variables, equal to XC*eigenvec, where XC is X with columns centered by subtracting their means
"mdist"Mahalanobis distance from each point to its group mean
"gmdist"Mahalanobis distances between each pair of group means
"gnames"Group names

The canonical variables C have the property that C(:,1) is the linear combination of the x columns that has the maximum separation between groups, C(:,2) has the maximum separation subject to it being orthogonal to C(:,1), and so on.

Source Code: manova1

Example: 1

 

 load carbig
 [d,p] = manova1([MPG, Acceleration, Weight, Displacement], Origin)

d = 3
p =

        0
   0.0000
   0.0075
   0.1934

                    
statistics-release-1.6.3/docs/manovacluster.html000066400000000000000000000143301456127120000220310ustar00rootroot00000000000000 Statistics: manovacluster

Function Reference: manovacluster

statistics: manovacluster (stats)
statistics: manovacluster (stats, method)
statistics: h = manovacluster (stats)
statistics: h = manovacluster (stats, method)

Cluster group means using manova1 output.

manovacluster (stats) draws a dendrogram showing the clustering of group means, calculated using the output STATS structure from manova1 and applying the single linkage algorithm. See the dendrogram function for more information about the figure.

manovacluster (stats, method) uses the method algorithm in place of single linkage. The available methods are:

"single"— nearest distance
"complete"— furthest distance
"average"— average distance
"centroid"— center of mass distance
"ward"— inner squared distance

h = manovacluster (…) returns a vector of line handles.

See also: manova1

Source Code: manovacluster

Example: 1

 

 load carbig
 X = [MPG Acceleration Weight Displacement];
 [d, p, stats] = manova1 (X, Origin);
 manovacluster (stats)

                    
plotted figure

statistics-release-1.6.3/docs/mcnemar_test.html000066400000000000000000000137561456127120000216420ustar00rootroot00000000000000 Statistics: mcnemar_test

Function Reference: mcnemar_test

statistics: [h, pval, chisq] = mcnemar_test (x)
statistics: [h, pval, chisq] = mcnemar_test (x, alpha)
statistics: [h, pval, chisq] = mcnemar_test (x, testtype)
statistics: [h, pval, chisq] = mcnemar_test (x, alpha, testtype)

Perform a McNemar’s test on paired nominal data.

@nospell{McNemar’s} test is applied to a 2×2 contingency table x with a dichotomous trait, with matched pairs of subjects, of data cross-classified on the row and column variables to testing the null hypothesis of symmetry of the classification probabilities. More formally, the null hypothesis of marginal homogeneity states that the two marginal probabilities for each outcome are the same.

Under the null, with a sufficiently large number of discordants (x(1,2) + x(2,1) >= 25), the test statistic, chisq, follows a chi-squared distribution with 1 degree of freedom. When the number of discordants is less than 25, then the mid-P exact McNemar test is used.

testtype will force mcnemar_test to apply a particular method for testing the null hypothesis independently of the number of discordants. Valid options for testtype:

  • "asymptotic" Original McNemar test statistic
  • "corrected" Edwards’ version with continuity correction
  • "exact" An exact binomial test
  • "mid-p" The mid-P McNemar test (mid-p binomial test)

The test decision is returned in h, which is 1 when the null hypothesis is rejected (pval < alpha) or 0 otherwise. alpha defines the critical value of statistical significance for the test.

Further information about the McNemar’s test can be found at https://en.wikipedia.org/wiki/McNemar%27s_test

See also: crosstab, chi2test, fishertest

Source Code: mcnemar_test

statistics-release-1.6.3/docs/mean.html000066400000000000000000000155521456127120000200750ustar00rootroot00000000000000 Statistics: mean

Function Reference: mean

statistics: m = mean (x)
statistics: m = mean (x, "all")
statistics: m = mean (x, dim)
statistics: m = mean (x, vecdim)
statistics: m = mean (…, outtype)
statistics: m = mean (…, nanflag)

Compute the mean of the elements of x.

  • If x is a vector, then mean(x) returns the mean of the elements in x defined as $$ {\rm mean}(x) = \bar{x} = {1\over N} \sum_{i=1}^N x_i $$ where N is the length of the x vector.
  • If x is a matrix, then mean(x) returns a row vector with the mean of each columns in x.
  • If x is a multidimensional array, then mean(x) operates along the first nonsingleton dimension of x.

mean (x, dim) returns the mean along the operating dimension dim of x. For dim greater than ndims (x), then m = x.

mean (x, vecdim) returns the mean over the dimensions specified in the vector vecdim. For example, if x is a 2-by-3-by-4 array, then mean (x, [1 2]) returns a 1-by-1-by-4 array. Each element of the output array is the mean of the elements on the corresponding page of x. If vecdim indexes all dimensions of x, then it is equivalent to mean (x, "all"). Any dimension in vecdim greater than ndims (x) is ignored.

mean (x, "all") returns the mean of all the elements in x. The optional flag "all" cannot be used together with dim or vecdim input arguments.

mean (…, outtype) returns the mean with a specified data type, using any of the input arguments in the previous syntaxes. outtype can take the following values:

  • "default" Output is of type double, unless the input is single in which case the output is of type single.
  • "double" Output is of type double.
  • "native". Output is of the same type as the input (class (x)), unless the input is logical in which case the output is of type double or a character array in which case an error is produced.

mean (…, nanflag) specifies whether to exclude NaN values from the calculation, using any of the input argument combinations in previous syntaxes. By default, NaN values are included in the calculation (nanflag has the value "includenan"). To exclude NaN values, set the value of nanflag to "omitnan".

See also: trimmean, median, mad, mode

Source Code: mean

statistics-release-1.6.3/docs/median.html000066400000000000000000000157141456127120000204120ustar00rootroot00000000000000 Statistics: median

Function Reference: median

statistics: m = median (x)
statistics: m = median (x, "all")
statistics: m = median (x, dim)
statistics: m = median (x, vecdim)
statistics: m = median (…, outtype)
statistics: m = median (…, nanflag)

Compute the median value of the elements of x.

When the elements of x are sorted, say s = sort (x), the median is defined as $$ {\rm median} (x) = \cases{s(\lceil N/2\rceil), & $N$ odd; \cr (s(N/2)+s(N/2+1))/2, & $N$ even.} $$ where N is the number of elements of x.

If x is an array, then median (x) operates along the first non-singleton dimension of x.

The optional variable dim forces median to operate over the specified dimension, which must be a positive integer-valued number. Specifying any singleton dimension in x, including any dimension exceeding ndims (x), will result in a median equal to x.

median (x, vecdim) returns the median over the dimensions specified in the vector vecdim. For example, if x is a 2-by-3-by-4 array, then median (x, [1 2]) returns a 1-by-1-by-4 array. Each element of the output array is the median of the elements on the corresponding page of x. If vecdim indexes all dimensions of x, then it is equivalent to median (x, "all"). Any dimension in vecdim greater than ndims (x) is ignored.

median (x, "all") returns the median of all the elements in x. The optional flag "all" cannot be used together with dim or vecdim input arguments.

median (…, outtype) returns the median with a specified data type, using any of the input arguments in the previous syntaxes. outtype can take the following values:

  • "default" Output is of type double, unless the input is single in which case the output is of type single.
  • "double" Output is of type double.
  • "native" Output is of the same type as the input (class (x)), unless the input is logical in which case the output is of type double.

The optional variable nanflag specifies whether to include or exclude NaN values from the calculation using any of the previously specified input argument combinations. The default value for nanflag is "includenan" which keeps NaN values in the calculation. To exclude NaN values set the value of nanflag to "omitnan". The output will still contain NaN values if x consists of all NaN values in the operating dimension.

See also: mean, mad, mode

Source Code: median

statistics-release-1.6.3/docs/mhsample.html000066400000000000000000000271621456127120000207630ustar00rootroot00000000000000 Statistics: mhsample

Function Reference: mhsample

statistics: [smpl, accept] = mhsample (start, nsamples, property, value, …)

Draws nsamples samples from a target stationary distribution pdf using Metropolis-Hastings algorithm.

Inputs:

  • start is a nchain by dim matrix of starting points for each Markov chain. Each row is the starting point of a different chain and each column corresponds to a different dimension.
  • nsamples is the number of samples, the length of each Markov chain.

Some property-value pairs can or must be specified, they are:

(Required) One of:

  • "pdf" pdf: a function handle of the target stationary distribution to be sampled. The function should accept different locations in each row and each column corresponds to a different dimension.

    or

  • "logpdf" logpdf: a function handle of the log of the target stationary distribution to be sampled. The function should accept different locations in each row and each column corresponds to a different dimension.

In case optional argument symmetric is set to false (the default), one of:

  • "proppdf" proppdf: a function handle of the proposal distribution that is sampled from with proprnd to give the next point in the chain. The function should accept two inputs, the random variable and the current location each input should accept different locations in each row and each column corresponds to a different dimension.

    or

  • "logproppdf" logproppdf: the log of "proppdf".

The following input property/pair values may be needed depending on the desired outut:

  • "proprnd" proprnd: (Required) a function handle which generates random numbers from proppdf. The function should accept different locations in each row and each column corresponds to a different dimension corresponding with the current location.
  • "symmetric" symmetric: true or false based on whether proppdf is a symmetric distribution. If true, proppdf (or logproppdf) need not be specified. The default is false.
  • "burnin" burnin the number of points to discard at the beginning, the default is 0.
  • "thin" thin: omits thin-1 of every thin points in the generated Markov chain. The default is 1.
  • "nchain" nchain: the number of Markov chains to generate. The default is 1.

Outputs:

  • smpl: a nsamples x dim x nchain tensor of random values drawn from pdf, where the rows are different random values, the columns correspond to the dimensions of pdf, and the third dimension corresponds to different Markov chains.
  • accept is a vector of the acceptance rate for each chain.

Example : Sampling from a normal distribution

 
 
 start = 1;
 nsamples = 1e3;
 pdf = @(x) exp (-.5 * x .^ 2) / (pi ^ .5 * 2 ^ .5);
 proppdf = @(x,y) 1 / 6;
 proprnd = @(x) 6 * (rand (size (x)) - .5) + x;
 [smpl, accept] = mhsample (start, nsamples, "pdf", pdf, "proppdf", ...
 proppdf, "proprnd", proprnd, "thin", 4);
 histfit (smpl);
 
 

See also: rand, slicesample

Source Code: mhsample

Example: 1

 

 ## Define function to sample
 d = 2;
 mu = [-1; 2];
 rand ("seed", 5)  # for reproducibility
 Sigma = rand (d);
 Sigma = (Sigma + Sigma');
 Sigma += eye (d) * abs (eigs (Sigma, 1, "sa")) * 1.1;
 pdf = @(x)(2*pi)^(-d/2)*det(Sigma)^-.5*exp(-.5*sum((x.'-mu).*(Sigma\(x.'-mu)),1));
 ## Inputs
 start = ones (1, 2);
 nsamples = 500;
 sym = true;
 K = 500;
 m = 10;
 rand ("seed", 8)  # for reproducibility
 proprnd = @(x) (rand (size (x)) - .5) * 3 + x;
 [smpl, accept] = mhsample (start, nsamples, "pdf", pdf, "proprnd", proprnd, ...
                            "symmetric", sym, "burnin", K, "thin", m);
 figure;
 hold on;
 plot (smpl(:, 1), smpl(:, 2), 'x');
 [x, y] = meshgrid (linspace (-6, 4), linspace(-3, 7));
 z = reshape (pdf ([x(:), y(:)]), size(x));
 mesh (x, y, z, "facecolor", "None");
 ## Using sample points to find the volume of half a sphere with radius of .5
 f = @(x) ((.25-(x(:,1)+1).^2-(x(:,2)-2).^2).^.5.*(((x(:,1)+1).^2+(x(:,2)-2).^2)<.25)).';
 int = mean (f (smpl) ./ pdf (smpl));
 errest = std (f (smpl) ./ pdf (smpl)) / nsamples ^ .5;
 trueerr = abs (2 / 3 * pi * .25 ^ (3 / 2) - int);
 printf ("Monte Carlo integral estimate int f(x) dx = %f\n", int);
 printf ("Monte Carlo integral error estimate %f\n", errest);
 printf ("The actual error %f\n", trueerr);
 mesh (x, y, reshape (f([x(:), y(:)]), size(x)), "facecolor", "None");

Monte Carlo integral estimate int f(x) dx = 0.242643
Monte Carlo integral error estimate 0.028039
The actual error 0.019156
                    
plotted figure

Example: 2

 

 ## Integrate truncated normal distribution to find normilization constant
 pdf = @(x) exp (-.5*x.^2)/(pi^.5*2^.5);
 nsamples = 1e3;
 rand ("seed", 5)  # for reproducibility
 proprnd = @(x) (rand (size (x)) - .5) * 3 + x;
 [smpl, accept] = mhsample (1, nsamples, "pdf", pdf, "proprnd", proprnd, ...
                            "symmetric", true, "thin", 4);
 f = @(x) exp(-.5 * x .^ 2) .* (x >= -2 & x <= 2);
 x = linspace (-3, 3, 1000);
 area(x, f(x));
 xlabel ('x');
 ylabel ('f(x)');
 int = mean (f (smpl) ./ pdf (smpl));
 errest = std (f (smpl) ./ pdf (smpl)) / nsamples^ .5;
 trueerr = abs (erf (2 ^ .5) * 2 ^ .5 * pi ^ .5 - int);
 printf ("Monte Carlo integral estimate int f(x) dx = %f\n", int);
 printf ("Monte Carlo integral error estimate %f\n", errest);
 printf ("The actual error %f\n", trueerr);

Monte Carlo integral estimate int f(x) dx = 2.346204
Monte Carlo integral error estimate 0.019410
The actual error 0.046372
                    
plotted figure

statistics-release-1.6.3/docs/mnpdf.html000066400000000000000000000131331456127120000202520ustar00rootroot00000000000000 Statistics: mnpdf

Function Reference: mnpdf

statistics: y = mnpdf (x, pk)

Multinomial probability density function (PDF).

Arguments

  • x is vector with a single sample of a multinomial distribution with parameter pk or a matrix of random samples from multinomial distributions. In the latter case, each row of x is a sample from a multinomial distribution with the corresponding row of pk being its parameter.
  • pk is a vector with the probabilities of the categories or a matrix with each row containing the probabilities of a multinomial sample.

Return values

  • y is a vector of probabilites of the random samples x from the multinomial distribution with corresponding parameter pk. The parameter n of the multinomial distribution is the sum of the elements of each row of x. The length of y is the number of columns of x. If a row of pk does not sum to 1, then the corresponding element of y will be NaN.

Examples

 
 
 x = [1, 4, 2];
 pk = [0.2, 0.5, 0.3];
 y = mnpdf (x, pk);
 
 
 x = [1, 4, 2; 1, 0, 9];
 pk = [0.2, 0.5, 0.3; 0.1, 0.1, 0.8];
 y = mnpdf (x, pk);
 
 

References

  1. Wendy L. Martinez and Angel R. Martinez. Computational Statistics Handbook with MATLAB. Appendix E, pages 547-557, Chapman & Hall/CRC, 2001.
  2. Merran Evans, Nicholas Hastings and Brian Peacock. Statistical Distributions. pages 134-136, Wiley, New York, third edition, 2000.

See also: mnrnd

Source Code: mnpdf

statistics-release-1.6.3/docs/mnrfit.html000066400000000000000000000153761456127120000204600ustar00rootroot00000000000000 Statistics: mnrfit

Function Reference: mnrfit

statistics: B = mnrfit (X, Y)
statistics: B = mnrfit (X, Y, name, value)
statistics: [B, dev] = mnrrfit (…)
statistics: [B, dev, stats] = mnrfit (…)

Perform logistic regression for binomial responses or multiple ordinal responses.

Note: This function is currently a wrapper for the logistic_regression function. It can only be used for fitting an ordinal logistic model and a nominal model with 2 categories (which is an ordinal case). Hierarchical models as well as nominal model with more than two classes are not currently supported. This function is a work in progress.

B = mnrfit (X, Y) returns a matrix, B, of coefficient estimates for a multinomial logistic regression of the nominal responses in Y on the predictors in X. X is an N×P numeric matrix the observations on predictor variables, where N corresponds to the number of observations and P corresponds to predictor variables. Y contains the response category labels and it either be an N×P categorical or numerical matrix (containing only 1s and 0s) or an N×1 numeric vector with positive integer values, a cell array of character vectors and a logical vector. Y can also be defined as a character matrix with each row corresponding to an observation of X.

B = mnrfit (X, Y, name, value) returns a matrix, B, of coefficient estimates for a multinomial model fit with additional parameterss specified Name-Value pair arguments.

NameValue
"model"Specifies the type of model to fit. Currently, only "ordinal" is fully supported. "nominal" is only supported for 2 classes in Y.
"display"A flag to enable/disable displaying information about the fitted model. Default is "off".

[B, dev, stats] = mnrfit (… also returns the deviance of the fit, dev, and the structure stats for any of the previous input arguments. stats currently only returns values for the fields "beta", same as B, "coeffcorr", the estimated correlation matrix for B, "covd", the estimated covariance matrix for B, and "se", the standard errors of the coefficient estimates B.

See also: logistic_regression

Source Code: mnrfit

statistics-release-1.6.3/docs/mnrnd.html000066400000000000000000000144431456127120000202710ustar00rootroot00000000000000 Statistics: mnrnd

Function Reference: mnrnd

statistics: r = mnrnd (n, pk)
statistics: r = mnrnd (n, pk, s)

Random arrays from the multinomial distribution.

Arguments

  • n is the first parameter of the multinomial distribution. n can be scalar or a vector containing the number of trials of each multinomial sample. The elements of n must be non-negative integers.
  • pk is the second parameter of the multinomial distribution. pk can be a vector with the probabilities of the categories or a matrix with each row containing the probabilities of a multinomial sample. If pk has more than one row and n is non-scalar, then the number of rows of pk must match the number of elements of n.
  • s is the number of multinomial samples to be generated. s must be a non-negative integer. If s is specified, then n must be scalar and pk must be a vector.

Return values

  • r is a matrix of random samples from the multinomial distribution with corresponding parameters n and pk. Each row corresponds to one multinomial sample. The number of columns, therefore, corresponds to the number of columns of pk. If s is not specified, then the number of rows of r is the maximum of the number of elements of n and the number of rows of pk. If a row of pk does not sum to 1, then the corresponding row of r will contain only NaN values.

Examples

 
 
 n = 10;
 pk = [0.2, 0.5, 0.3];
 r = mnrnd (n, pk);
 
 
 n = 10 * ones (3, 1);
 pk = [0.2, 0.5, 0.3];
 r = mnrnd (n, pk);
 
 
 n = (1:2)';
 pk = [0.2, 0.5, 0.3; 0.1, 0.1, 0.8];
 r = mnrnd (n, pk);
 
 

References

  1. Wendy L. Martinez and Angel R. Martinez. Computational Statistics Handbook with MATLAB. Appendix E, pages 547-557, Chapman & Hall/CRC, 2001.
  2. Merran Evans, Nicholas Hastings and Brian Peacock. Statistical Distributions. pages 134-136, Wiley, New York, third edition, 2000.

See also: mnpdf

Source Code: mnrnd

statistics-release-1.6.3/docs/monotone_smooth.html000066400000000000000000000132211456127120000223730ustar00rootroot00000000000000 Statistics: monotone_smooth

Function Reference: monotone_smooth

statistics: yy = monotone_smooth (x, y, h)

Produce a smooth monotone increasing approximation to a sampled functional dependence.

A kernel method is used (an Epanechnikov smoothing kernel is applied to y(x); this is integrated to yield the monotone increasing form. See Reference 1 for details.)

Arguments

  • x is a vector of values of the independent variable.
  • y is a vector of values of the dependent variable, of the same size as x. For best performance, it is recommended that the y already be fairly smooth, e.g. by applying a kernel smoothing to the original values if they are noisy.
  • h is the kernel bandwidth to use. If h is not given, a "reasonable" value is computed.

Return values

  • yy is the vector of smooth monotone increasing function values at x.

Examples

 
 
 x = 0:0.1:10;
 y = (x .^ 2) + 3 * randn(size(x)); # typically non-monotonic from the added
 noise
 ys = ([y(1) y(1:(end-1))] + y + [y(2:end) y(end)])/3; # crudely smoothed via
 moving average, but still typically non-monotonic
 yy = monotone_smooth(x, ys); # yy is monotone increasing in x
 plot(x, y, '+', x, ys, x, yy)
 
 

References

  1. Holger Dette, Natalie Neumeyer and Kay F. Pilz (2006), A simple nonparametric estimator of a strictly monotone regression function, Bernoulli, 12:469-490
  2. Regine Scheder (2007), R Package ’monoProc’, Version 1.0-6, http://cran.r-project.org/web/packages/monoProc/monoProc.pdf (The implementation here is based on the monoProc function mono.1d)

Source Code: monotone_smooth

statistics-release-1.6.3/docs/multcompare.html000066400000000000000000000657041456127120000215110ustar00rootroot00000000000000 Statistics: multcompare

Function Reference: multcompare

statistics: C = multcompare (STATS)
statistics: C = multcompare (STATS, "name", value)
statistics: [C, M] = multcompare (...)
statistics: [C, M, H] = multcompare (...)
statistics: [C, M, H, GNAMES] = multcompare (...)
statistics: padj = multcompare (p)
statistics: padj = multcompare (p, "ctype", CTYPE)

Perform posthoc multiple comparison tests or p-value adjustments to control the family-wise error rate (FWER) or false discovery rate (FDR).

C = multcompare (STATS) performs a multiple comparison using a STATS structure that is obtained as output from any of the following functions: anova1, anova2, anovan, kruskalwallis, and friedman. The return value C is a matrix with one row per comparison and six columns. Columns 1-2 are the indices of the two samples being compared. Columns 3-5 are a lower bound, estimate, and upper bound for their difference, where the bounds are for 95% confidence intervals. Column 6-8 are the multiplicity adjusted p-values for each individual comparison, the test statistic and the degrees of freedom. All tests by multcompare are two-tailed.

multcompare can take a number of optional parameters as name-value pairs.

[…] = multcompare (STATS, "alpha", ALPHA)

  • ALPHA sets the significance level of null hypothesis significance tests to ALPHA, and the central coverage of two-sided confidence intervals to 100*(1-ALPHA)%. (Default ALPHA is 0.05).

[…] = multcompare (STATS, "ControlGroup", REF)

  • REF is the index of the control group to limit comparisons to. The index must be a positive integer scalar value. For each dimension (d) listed in DIM, multcompare uses STATS.grpnames{d}(idx) as the control group. (Default is empty, i.e. [], for full pairwise comparisons)

[…] = multcompare (STATS, "ctype", CTYPE)

  • CTYPE is the type of comparison test to use. In order of increasing power, the choices are: "bonferroni", "scheffe", "mvt", "holm" (default), "hochberg", "fdr", or "lsd". The first five methods control the family-wise error rate. The "fdr" method controls false discovery rate (by the original Benjamini-Hochberg step-up procedure). The final method, "lsd" (or "none"), makes no attempt to control the Type 1 error rate of multiple comparisons. The coverage of confidence intervals are only corrected for multiple comparisons in the cases where CTYPE is "bonferroni", "scheffe" or "mvt", which control the Type 1 error rate for simultaneous inference.

    The "mvt" method uses the multivariate t distribution to assess the probability or critical value of the maximum statistic across the tests, thereby accounting for correlations among comparisons in the control of the family-wise error rate with simultaneous inference. In the case of pairwise comparisons, it simulates Tukey’s (or the Games-Howell) test, in the case of comparisons with a single control group, it simulates Dunnett’s test. CTYPE values "tukey-kramer" and "hsd" are recognised but set the value of CTYPE and REF to "mvt" and empty respectively. A CTYPE value "dunnett" is recognised but sets the value of CTYPE to "mvt", and if REF is empty, sets REF to 1. Since the algorithm uses a Monte Carlo method (of 1e+06 random samples), you can expect the results to fluctuate slightly with each call to multcompare and the calculations may be slow to complete for a large number of comparisons. If the parallel package is installed and loaded, multcompare will automatically accelerate computations by parallel processing. Note that p-values calculated by the "mvt" are truncated at 1e-06.

[…] = multcompare (STATS, "df", DF)

  • DF is an optional scalar value to set the number of degrees of freedom in the calculation of p-values for the multiple comparison tests. By default, this value is extracted from the STATS structure of the ANOVA test, but setting DF maybe necessary to approximate Satterthwaite correction if anovan was performed using weights.

[…] = multcompare (STATS, "dim", DIM)

  • DIM is a vector specifying the dimension or dimensions over which the estimated marginal means are to be calculated. Used only if STATS comes from anovan. The value [1 3], for example, computes the estimated marginal mean for each combination of the first and third predictor values. The default is to compute over the first dimension (i.e. 1). If the specified dimension is, or includes, a continuous factor then multcompare will return an error.

[…] = multcompare (STATS, "estimate", ESTIMATE)

  • ESTIMATE is a string specifying the estimates to be compared when computing multiple comparisons after anova2; this argument is ignored by anovan and anova1. Accepted values for ESTIMATE are either "column" (default) to compare column means, or "row" to compare row means. If the model type in anova2 was "linear" or "nested" then only "column" is accepted for ESTIMATE since the row factor is assumed to be a random effect.

[…] = multcompare (STATS, "display", DISPLAY)

  • DISPLAY is either "on" (the default): to display a table and graph of the comparisons (e.g. difference between means), their 100*(1-ALPHA)% intervals and multiplicity adjusted p-values in APA style; or "off": to omit the table and graph. On the graph, markers and error bars colored red have multiplicity adjusted p-values < ALPHA, otherwise the markers and error bars are blue.

[…] = multcompare (STATS, "seed", SEED)

  • SEED is a scalar value used to initialize the random number generator so that CTYPE "mvt" produces reproducible results.

[C, M, H, GNAMES] = multcompare (…) returns additional outputs. M is a matrix where columns 1-2 are the estimated marginal means and their standard errors, and columns 3-4 are lower and upper bounds of the confidence intervals for the means; the critical value of the test statistic is scaled by a factor of 2^(-0.5) before multiplying by the standard errors of the group means so that the intervals overlap when the difference in means becomes significant at approximately the level ALPHA. When ALPHA is 0.05, this corresponds to confidence intervals with 83.4% central coverage. H is a handle to the figure containing the graph. GNAMES is a cell array with one row for each group, containing the names of the groups.

padj = multcompare (p) calculates and returns adjusted p-values (padj) using the Holm-step down Bonferroni procedure to control the family-wise error rate.

padj = multcompare (p, "ctype", CTYPE) calculates and returns adjusted p-values (padj) computed using the method CTYPE. In order of increasing power, CTYPE for p-value adjustment can be either "bonferroni", "holm" (default), "hochberg", or "fdr". See above for further information about the CTYPE methods.

See also: anova1, anova2, anovan, kruskalwallis, friedman, fitlm

Source Code: multcompare

Example: 1

 


 ## Demonstration using balanced one-way ANOVA from anova1

 x = ones (50, 4) .* [-2, 0, 1, 5];
 randn ("seed", 1);    # for reproducibility
 x = x + normrnd (0, 2, 50, 4);
 groups = {"A", "B", "C", "D"};
 [p, tbl, stats] = anova1 (x, groups, "off");
 multcompare (stats);


        HOLM Multiple Comparison (Post Hoc) Test for ANOVA1

Group ID  Group ID   LBoundDiff   EstimatedDiff   UBoundDiff   p-value
----------------------------------------------------------------------
    1         2         -2.789        -2.009         -1.228      <.001
    1         3         -2.489        -1.709         -0.928      <.001
    1         4         -7.365        -6.585         -5.804      <.001
    2         3         -0.480         0.300          1.081       .449
    2         4         -5.356        -4.576         -3.795      <.001
    3         4         -5.656        -4.876         -4.095      <.001

                    
plotted figure

Example: 2

 


 ## Demonstration using unbalanced one-way ANOVA example from anovan

 dv =  [ 8.706 10.362 11.552  6.941 10.983 10.092  6.421 14.943 15.931 ...
        22.968 18.590 16.567 15.944 21.637 14.492 17.965 18.851 22.891 ...
        22.028 16.884 17.252 18.325 25.435 19.141 21.238 22.196 18.038 ...
        22.628 31.163 26.053 24.419 32.145 28.966 30.207 29.142 33.212 ...
        25.694 ]';
 g = [1 1 1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 3 3 3 ...
      4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5]';

 [P,ATAB, STATS] = anovan (dv, g, "varnames", "score", "display", "off");

 [C, M, H, GNAMES] = multcompare (STATS, "dim", 1, "ctype", "holm", ...
                                  "ControlGroup", 1, "display", "on")



        HOLM Multiple Comparison (Post Hoc) Test for ANOVAN

Group ID  Group ID   LBoundDiff   EstimatedDiff   UBoundDiff   p-value
----------------------------------------------------------------------
    1         2        -11.343        -8.000         -4.657      <.001
    1         3        -11.932        -9.000         -6.068      <.001
    1         4        -14.035       -11.000         -7.965      <.001
    1         5        -21.849       -19.000        -16.151      <.001

C =

   1.0000e+00   2.0000e+00  -1.1343e+01  -8.0000e+00  -4.6572e+00   2.8581e-05  -4.8748e+00   3.2000e+01
   1.0000e+00   3.0000e+00  -1.1932e+01  -9.0000e+00  -6.0682e+00   1.0459e-06  -6.2529e+00   3.2000e+01
   1.0000e+00   4.0000e+00  -1.4035e+01  -1.1000e+01  -7.9654e+00   6.3838e-08  -7.3834e+00   3.2000e+01
   1.0000e+00   5.0000e+00  -2.1849e+01  -1.9000e+01  -1.6151e+01   3.1974e-14  -1.3583e+01   3.2000e+01

M =

   10.0000    1.0178    8.5341   11.4659
   18.0000    1.2874   16.1458   19.8542
   19.0000    1.0178   17.5341   20.4659
   21.0001    1.0880   19.4330   22.5673
   29.0001    0.9595   27.6180   30.3822

H = 1
GNAMES =
{
  [1,1] = score=1
  [2,1] = score=2
  [3,1] = score=3
  [4,1] = score=4
  [5,1] = score=5
}

                    
plotted figure

Example: 3

 


 ## Demonstration using factorial ANCOVA example from anovan

 score = [95.6 82.2 97.2 96.4 81.4 83.6 89.4 83.8 83.3 85.7 ...
 97.2 78.2 78.9 91.8 86.9 84.1 88.6 89.8 87.3 85.4 ...
 81.8 65.8 68.1 70.0 69.9 75.1 72.3 70.9 71.5 72.5 ...
 84.9 96.1 94.6 82.5 90.7 87.0 86.8 93.3 87.6 92.4 ...
 100. 80.5 92.9 84.0 88.4 91.1 85.7 91.3 92.3 87.9 ...
 91.7 88.6 75.8 75.7 75.3 82.4 80.1 86.0 81.8 82.5]';
 treatment = {"yes" "yes" "yes" "yes" "yes" "yes" "yes" "yes" "yes" "yes" ...
              "yes" "yes" "yes" "yes" "yes" "yes" "yes" "yes" "yes" "yes" ...
              "yes" "yes" "yes" "yes" "yes" "yes" "yes" "yes" "yes" "yes" ...
              "no"  "no"  "no"  "no"  "no"  "no"  "no"  "no"  "no"  "no"  ...
              "no"  "no"  "no"  "no"  "no"  "no"  "no"  "no"  "no"  "no"  ...
              "no"  "no"  "no"  "no"  "no"  "no"  "no"  "no"  "no"  "no"}';
 exercise = {"lo"  "lo"  "lo"  "lo"  "lo"  "lo"  "lo"  "lo"  "lo"  "lo"  ...
             "mid" "mid" "mid" "mid" "mid" "mid" "mid" "mid" "mid" "mid" ...
             "hi"  "hi"  "hi"  "hi"  "hi"  "hi"  "hi"  "hi"  "hi"  "hi"  ...
             "lo"  "lo"  "lo"  "lo"  "lo"  "lo"  "lo"  "lo"  "lo"  "lo"  ...
             "mid" "mid" "mid" "mid" "mid" "mid" "mid" "mid" "mid" "mid" ...
             "hi"  "hi"  "hi"  "hi"  "hi"  "hi"  "hi"  "hi"  "hi"  "hi"}';
 age = [59 65 70 66 61 65 57 61 58 55 62 61 60 59 55 57 60 63 62 57 ...
 58 56 57 59 59 60 55 53 55 58 68 62 61 54 59 63 60 67 60 67 ...
 75 54 57 62 65 60 58 61 65 57 56 58 58 58 52 53 60 62 61 61]';

 [P, ATAB, STATS] = anovan (score, {treatment, exercise, age}, "model", ...
                            [1 0 0; 0 1 0; 0 0 1; 1 1 0], "continuous", 3, ...
                            "sstype", "h", "display", "off", "contrasts", ...
                            {"simple","poly",""});

 [C, M, H, GNAMES] = multcompare (STATS, "dim", [1 2], "ctype", "holm", ...
                                  "display", "on")



        HOLM Multiple Comparison (Post Hoc) Test for ANOVAN

Group ID  Group ID   LBoundDiff   EstimatedDiff   UBoundDiff   p-value
----------------------------------------------------------------------
    1         2         -4.544        -0.017          4.509      1.000
    1         3          8.963        13.703         18.443      <.001
    1         4         -6.002        -1.529          2.945      1.000
    1         5         -6.174        -1.701          2.771      1.000
    1         6         -0.692         3.957          8.605       .662
    2         3          9.166        13.721         18.276      <.001
    2         4         -6.060        -1.511          3.038      1.000
    2         5         -6.195        -1.684          2.828      1.000
    2         6         -0.533         3.974          8.481       .662
    3         4        -20.018       -15.232        -10.446      <.001
    3         5        -20.112       -15.404        -10.697      <.001
    3         6        -14.228        -9.747         -5.265      <.001
    4         5         -4.650        -0.172          4.305      1.000
    4         6          0.798         5.485         10.172       .204
    5         6          1.035         5.658         10.280       .174

C =

   1.0000e+00   2.0000e+00  -4.5437e+00  -1.7457e-02   4.5087e+00   1.0000e+00  -7.7360e-03   5.3000e+01
   1.0000e+00   3.0000e+00   8.9634e+00   1.3703e+01   1.8443e+01   4.5333e-06   5.7988e+00   5.3000e+01
   1.0000e+00   4.0000e+00  -6.0019e+00  -1.5286e+00   2.9447e+00   1.0000e+00  -6.8538e-01   5.3000e+01
   1.0000e+00   5.0000e+00  -6.1735e+00  -1.7011e+00   2.7714e+00   1.0000e+00  -7.6287e-01   5.3000e+01
   1.0000e+00   6.0000e+00  -6.9212e-01   3.9565e+00   8.6051e+00   6.6201e-01   1.7071e+00   5.3000e+01
   2.0000e+00   3.0000e+00   9.1656e+00   1.3721e+01   1.8276e+01   2.0212e-06   6.0416e+00   5.3000e+01
   2.0000e+00   4.0000e+00  -6.0600e+00  -1.5111e+00   3.0378e+00   1.0000e+00  -6.6630e-01   5.3000e+01
   2.0000e+00   5.0000e+00  -6.1953e+00  -1.6836e+00   2.8281e+00   1.0000e+00  -7.4847e-01   5.3000e+01
   2.0000e+00   6.0000e+00  -5.3340e-01   3.9740e+00   8.4813e+00   6.6201e-01   1.7684e+00   5.3000e+01
   3.0000e+00   4.0000e+00  -2.0018e+01  -1.5232e+01  -1.0446e+01   6.1827e-07  -6.3835e+00   5.3000e+01
   3.0000e+00   5.0000e+00  -2.0112e+01  -1.5404e+01  -1.0697e+01   3.4083e-07  -6.5634e+00   5.3000e+01
   3.0000e+00   6.0000e+00  -1.4228e+01  -9.7468e+00  -5.2654e+00   6.5704e-04  -4.3623e+00   5.3000e+01
   4.0000e+00   5.0000e+00  -4.6499e+00  -1.7249e-01   4.3050e+00   1.0000e+00  -7.7268e-02   5.3000e+01
   4.0000e+00   6.0000e+00   7.9808e-01   5.4851e+00   1.0172e+01   2.0411e-01   2.3473e+00   5.3000e+01
   5.0000e+00   6.0000e+00   1.0354e+00   5.6576e+00   1.0280e+01   1.7402e-01   2.4550e+00   5.3000e+01

M =

   86.9788    1.6031   84.7051   89.2525
   86.9962    1.5774   84.7590   89.2334
   73.2755    1.6514   70.9334   75.6176
   88.5074    1.6166   86.2146   90.8002
   88.6799    1.5948   86.4180   90.9417
   83.0223    1.6130   80.7346   85.3100

H = 1
GNAMES =
{
  [1,1] = X1=yes, X2=lo
  [2,1] = X1=yes, X2=mid
  [3,1] = X1=yes, X2=hi
  [4,1] = X1=no, X2=lo
  [5,1] = X1=no, X2=mid
  [6,1] = X1=no, X2=hi
}

                    
plotted figure

Example: 4

 


 ## Demonstration using one-way ANOVA from anovan, with fit by weighted least
 ## squares to account for heteroskedasticity.

 g = [1, 1, 1, 1, 1, 1, 1, 1, ...
      2, 2, 2, 2, 2, 2, 2, 2, ...
      3, 3, 3, 3, 3, 3, 3, 3]';

 y = [13, 16, 16,  7, 11,  5,  1,  9, ...
      10, 25, 66, 43, 47, 56,  6, 39, ...
      11, 39, 26, 35, 25, 14, 24, 17]';

 [P,ATAB,STATS] = anovan(y, g, "display", "off");
 fitted = STATS.X * STATS.coeffs(:,1); # fitted values
 b = polyfit (fitted, abs (STATS.resid), 1);
 v = polyval (b, fitted);  # Variance as a function of the fitted values
 [P,ATAB,STATS] = anovan (y, g, "weights", v.^-1, "display", "off");
 [C, M] =  multcompare (STATS, "display", "on", "ctype", "mvt")


        MVT Multiple Comparison (Post Hoc) Test for ANOVAN

Group ID  Group ID   LBoundDiff   EstimatedDiff   UBoundDiff   p-value
----------------------------------------------------------------------
    1         2        -42.077       -26.750        -11.423      <.001
    1         3        -26.789       -14.125         -1.461       .027
    2         3         -5.216        12.625         30.466       .199

C =

   1.0000e+00   2.0000e+00  -4.2077e+01  -2.6750e+01  -1.1423e+01   7.5000e-04  -4.3716e+00   2.1000e+01
   1.0000e+00   3.0000e+00  -2.6789e+01  -1.4125e+01  -1.4610e+00   2.7188e-02  -2.7937e+00   2.1000e+01
   2.0000e+00   3.0000e+00  -5.2159e+00   1.2625e+01   3.0466e+01   1.9913e-01   1.7725e+00   2.1000e+01

M =

    9.7500    2.4770    5.3629   14.1371
   36.5000    5.5953   26.5900   46.4100
   23.8750    4.4076   16.0685   31.6815

                    
plotted figure

Example: 5

 


 ## Demonstration of p-value adjustments to control the false discovery rate
 ## Data from Westfall (1997) JASA. 92(437):299-306

 p = [.005708; .023544; .024193; .044895; ...
       .048805; .221227; .395867; .693051; .775755];

 padj = multcompare(p,'ctype','fdr')

padj =

   0.051372
   0.072579
   0.072579
   0.087849
   0.087849
   0.331840
   0.508972
   0.775755
   0.775755

                    
statistics-release-1.6.3/docs/mvncdf.html000066400000000000000000000240001456127120000204160ustar00rootroot00000000000000 Statistics: mvncdf

Function Reference: mvncdf

statistics: p = mvncdf (x)
statistics: p = mvncdf (x, mu, sigma)
statistics: p = mvncdf (x_lo, x_up, mu, sigma)
statistics: p = mvncdf (…, options)
statistics: [p, err] = mvncdf (…)

Multivariate normal cumulative distribution function (CDF).

p = mvncdf (x) returns the cumulative probability of the multivariate normal distribution evaluated at each row of x with zero mean and an identity covariance matrix. The rows of matrix x correspond to observations and its columns to variables. The return argument p is a column vector with the same number of rows as in x.

p = mvncdf (x, mu, sigma) returns cumulative probability of the multivariate normal distribution evaluated at each row of x with mean mu and a covariance matrix sigma. mu can be either a scalar (the same of every variable) or a row vector with the same number of elements as the number of variables in x. sigma covariance matrix may be specified a row vector if it only contains variances along its diagonal and zero covariances of the diagonal. In such a case, the diagonal vector sigma must have the same number of elements as the number of variables (columns) in x. If you only want to specify sigma, you can pass an empty matrix for mu.

The multivariate normal cumulative probability at x is defined as the probability that a random vector V, distributed as multivariate normal, will fall within the semi-infinite rectangle with upper limits defined by x.

  • PrV(1)<=X(1), V(2)<=X(2), ... V(D)<=X(D).

p = mvncdf (x_lo, x_hi, mu, sigma) returns the multivariate normal cumulative probability evaluated over the rectangle (hyper-rectangle for multivariate data in x) with lower and upper limits defined by x_lo and x_hi, respectively.

[p, err] = mvncdf (…) also returns an error estimate err in p.

p = mvncdf (…, options) specifies the structure, which controls specific parameters for the numerical integration used to compute p. The required fieds are:

"TolFun"Maximum absolute error tolerance. Default is 1e-8 for D < 4, or 1e-4 for D >= 4. Note that for bivariate normal cdf, the Octave implementation has a presicion of more than 1e-10.
"MaxFunEvals"Maximum number of integrand evaluations. Default is 1e7 for D > 4.
"Display"Display options. Choices are "off" (default), "iter", which shows the probability and estimated error at each repetition, and "final", which shows the final probability and related error after the integrand has converged successfully.

See also: bvncdf, mvnpdf, mvnrnd

Source Code: mvncdf

Example: 1

 

 mu = [1, -1];
 Sigma = [0.9, 0.4; 0.4, 0.3];
 [X1, X2] = meshgrid (linspace (-1, 3, 25)', linspace (-3, 1, 25)');
 X = [X1(:), X2(:)];
 p = mvncdf (X, mu, Sigma);
 Z = reshape (p, 25, 25);
 surf (X1, X2, Z);
 title ("Bivariate Normal Distribution");
 ylabel "X1"
 xlabel "X2"

                    
plotted figure

Example: 2

 

 mu = [0, 0];
 Sigma = [0.25, 0.3; 0.3, 1];
 p = mvncdf ([0 0], [1 1], mu, Sigma);
 x1 = -3:.2:3;
 x2 = -3:.2:3;
 [X1, X2] = meshgrid (x1, x2);
 X = [X1(:), X2(:)];
 p = mvnpdf (X, mu, Sigma);
 p = reshape (p, length (x2), length (x1));
 contour (x1, x2, p, [0.0001, 0.001, 0.01, 0.05, 0.15, 0.25, 0.35]);
 xlabel ("x");
 ylabel ("p");
 title ("Probability over Rectangular Region");
 line ([0, 0, 1, 1, 0], [1, 0, 0, 1, 1], "Linestyle", "--", "Color", "k");

                    
plotted figure

statistics-release-1.6.3/docs/mvnpdf.html000066400000000000000000000155261456127120000204500ustar00rootroot00000000000000 Statistics: mvnpdf

Function Reference: mvnpdf

statistics: y = mvnpdf (x, mu, sigma)

Multivariate normal probability density function (PDF).

y = mvnpdf (x) returns the probability density of the multivariate normal distribution with zero mean and identity covariance matrix, evaluated at each row of x. Rows of the N-by-D matrix x correspond to observations orpoints, and columns correspond to variables or coordinates. y is an N-by-1 vector.

y = mvnpdf (x, mu) returns the density of the multivariate normal distribution with mean MU and identity covariance matrix, evaluated at each row of x. mu is a 1-by-D vector, or an N-by-D matrix, in which case the density is evaluated for each row of x with the corresponding row of mu. mu can also be a scalar value, which MVNPDF replicates to match the size of x.

y = mvnpdf (x, mu, sigma) returns the density of the multivariate normal distribution with mean mu and covariance sigma, evaluated at each row of x. sigma is a D-by-D matrix, or an D-by-D-by-N array, in which case the density is evaluated for each row of x with the corresponding page of sigma, i.e., mvnpdf computes y(i) using x(i,:) and sigma(:,:,i). If the covariance matrix is diagonal, containing variances along the diagonal and zero covariances off the diagonal, sigma may also be specified as a 1-by-D matrix or a 1-by-D-by-N array, containing just the diagonal. Pass in the empty matrix for mu to use its default value when you want to only specify sigma.

If x is a 1-by-D vector, mvnpdf replicates it to match the leading dimension of mu or the trailing dimension of sigma.

See also: mvncdf, mvnrnd

Source Code: mvnpdf

Example: 1

 

 mu = [1, -1];
 sigma = [0.9, 0.4; 0.4, 0.3];
 [X1, X2] = meshgrid (linspace (-1, 3, 25)', linspace (-3, 1, 25)');
 x = [X1(:), X2(:)];
 p = mvnpdf (x, mu, sigma);
 surf (X1, X2, reshape (p, 25, 25));

                    
plotted figure

statistics-release-1.6.3/docs/mvnrnd.html000066400000000000000000000140771456127120000204620ustar00rootroot00000000000000 Statistics: mvnrnd

Function Reference: mvnrnd

statistics: r = mvnrnd (mu, sigma)
statistics: r = mvnrnd (mu, sigma, n)
statistics: r = mvnrnd (mu, sigma, n, T)
statistics: [r, T] = mvnrnd (…)

Random vectors from the multivariate normal distribution.

r = mvnrnd (mu, sigma) returns an N-by-D matrix r of random vectors chosen from the multivariate normal distribution with mean vector mu and covariance matrix sigma. mu is an N-by-D matrix, and mvnrnd generates each N of r using the corresponding N of mu. sigma is a D-by-D symmetric positive semi-definite matrix, or a D-by-D-by-N array. If sigma is an array, mvnrnd generates each N of r using the corresponding page of sigma, i.e., mvnrnd computes r(i,:) using mu(i,:) and sigma(:,:,i). If the covariance matrix is diagonal, containing variances along the diagonal and zero covariances off the diagonal, sigma may also be specified as a 1-by-D matrix or a 1-by-D-by-N array, containing just the diagonal. If mu is a 1-by-D vector, mvnrnd replicates it to match the trailing dimension of SIGMA.

r = mvnrnd (mu, sigma, n) returns a N-by-D matrix R of random vectors chosen from the multivariate normal distribution with 1-by-D mean vector mu, and D-by-D covariance matrix sigma.

r = mvnrnd (mu, sigma, n, T) supplies the Cholesky factor T of sigma, so that sigma(:,:,J) == T(:,:,J)’*T(:,:,J) if sigma is a 3D array or sigma == T’*T if sigma is a matrix. No error checking is done on T.

[r, T] = mvnrnd (…) returns the Cholesky factor T, so it can be re-used to make later calls more efficient, although there are greater efficiency gains when SIGMA can be specified as a diagonal instead.

See also: mvncdf, mvnpdf

Source Code: mvnrnd

statistics-release-1.6.3/docs/mvtcdf.html000066400000000000000000000210651456127120000204340ustar00rootroot00000000000000 Statistics: mvtcdf

Function Reference: mvtcdf

statistics: p = mvtcdf (x, rho, df)
statistics: p = mvncdf (x_lo, x_up, rho, df)
statistics: p = mvncdf (…, options)
statistics: [p, err] = mvncdf (…)

Multivariate Student’s t cumulative distribution function (CDF).

p = mvtcdf (x, rho, df) returns the cumulative probability of the multivariate student’s t distribution with correlation parameters rho and degrees of freedom df, evaluated at each row of x. The rows of the N×D matrix x correspond to sample observations and its columns correspond to variables or coordinates. The return argument p is a column vector with the same number of rows as in x.

rho is a symmetric, positive definite, D×D correlation matrix. dF is a scalar or a vector with N elements.

Note: mvtcdf computes the CDF for the standard multivariate Student’s t distribution, centered at the origin, with no scale parameters. If rho is a covariance matrix, i.e. diag(rho) is not all ones, mvtcdf rescales rho to transform it to a correlation matrix. mvtcdf does not rescale x, though.

The multivariate Student’s t cumulative probability at x is defined as the probability that a random vector T, distributed as multivariate normal, will fall within the semi-infinite rectangle with upper limits defined by x.

  • PrT(1)<=X(1), T(2)<=X(2), ... T(D)<=X(D).

p = mvtcdf (x_lo, x_hi, rho, df) returns the multivariate Student’s t cumulative probability evaluated over the rectangle (hyper-rectangle for multivariate data in x) with lower and upper limits defined by x_lo and x_hi, respectively.

[p, err] = mvtcdf (…) also returns an error estimate err in p.

p = mvtcdf (…, options) specifies the structure, which controls specific parameters for the numerical integration used to compute p. The required fieds are:

"TolFun"Maximum absolute error tolerance. Default is 1e-8 for D < 4, or 1e-4 for D >= 4.
"MaxFunEvals"Maximum number of integrand evaluations when D >= 4. Default is 1e7. Ignored when D < 4.
"Display"Display options. Choices are "off" (default), "iter", which shows the probability and estimated error at each repetition, and "final", which shows the final probability and related error after the integrand has converged successfully. Ignored when D < 4.

See also: bvtcdf, mvtpdf, mvtrnd, mvtcdfqmc

Source Code: mvtcdf

Example: 1

 

 ## Compute the cdf of a multivariate Student's t distribution with
 ## correlation parameters rho = [1, 0.4; 0.4, 1] and 2 degrees of freedom.

 rho = [1, 0.4; 0.4, 1];
 df = 2;
 [X1, X2] = meshgrid (linspace (-2, 2, 25)', linspace (-2, 2, 25)');
 X = [X1(:), X2(:)];
 p = mvtcdf (X, rho, df);
 surf (X1, X2, reshape (p, 25, 25));
 title ("Bivariate Student's t cummulative distribution function");

                    
plotted figure

statistics-release-1.6.3/docs/mvtcdfqmc.html000066400000000000000000000131051456127120000211310ustar00rootroot00000000000000 Statistics: mvtcdfqmc

Function Reference: mvtcdfqmc

statistics: p = mvtcdfqmc (A, B, Rho, df)
statistics: p = mvtcdfqmc (…, TolFun)
statistics: p = mvtcdfqmc (…, TolFun, MaxFunEvals)
statistics: p = mvtcdfqmc (…, TolFun, MaxFunEvals, Display)
statistics: [p, err] = mvtcdfqmc (…)
statistics: [p, err, FunEvals] = mvtcdfqmc (…)

Quasi-Monte-Carlo computation of the multivariate Student’s T CDF.

The QMC multivariate Student’s t distribution is evaluated between the lower limit A and upper limit B of the hyper-rectangle with a correlation matrix Rho and degrees of freedom df.

"TolFun"— Maximum absolute error tolerance. Default is 1e-4.
"MaxFunEvals"— Maximum number of integrand evaluations. Default is 1e7 for D > 4.
"Display"— Display options. Choices are "off" (default), "iter", which shows the probability and estimated error at each repetition, and "final", which shows the final probability and related error after the integrand has converged successfully.

[p, err, FunEvals] = mvtcdfqmc (…) returns the estimated probability, p, an estimate of the error, err, and the number of iterations until a successful convergence is met, unless the value in MaxFunEvals was reached.

See also: mvtcdf, mvtpdf, mvtrnd

Source Code: mvtcdfqmc

statistics-release-1.6.3/docs/mvtpdf.html000066400000000000000000000146771456127120000204640ustar00rootroot00000000000000 Statistics: mvtpdf

Function Reference: mvtpdf

statistics: y = mvtpdf (x, rho, df)

Multivariate Student’s t probability density function (PDF).

Arguments

  • x are the points at which to find the probability, where each row corresponds to an observation. (N×D matrix)
  • rho is the correlation matrix. (D×D symmetric positive definite matrix)
  • df is the degrees of freedom. (scalar or vector of length N)

The distribution is assumed to be centered (zero mean).

Return values

  • y is the probability density for each row of x. (N×1 vector)

Examples

 
 
 x = [1 2];
 rho = [1.0 0.5; 0.5 1.0];
 df = 4;
 y = mvtpdf (x, rho, df)
 
 

References

  1. Michael Roth, On the Multivariate t Distribution, Technical report from Automatic Control at Linkoepings universitet, http://users.isy.liu.se/en/rt/roth/student.pdf

See also: mvtcdf, mvtcdfqmc, mvtrnd

Source Code: mvtpdf

Example: 1

 

 ## Compute the pdf of a multivariate t distribution with correlation
 ## parameters rho = [1 .4; .4 1] and 2 degrees of freedom.

 rho = [1, 0.4; 0.4, 1];
 df = 2;
 [X1, X2] = meshgrid (linspace (-2, 2, 25)', linspace (-2, 2, 25)');
 X = [X1(:), X2(:)];
 y = mvtpdf (X, rho, df);
 surf (X1, X2, reshape (y, 25, 25));
 title ("Bivariate Student's t probability density function");

                    
plotted figure

statistics-release-1.6.3/docs/mvtrnd.html000066400000000000000000000140371456127120000204640ustar00rootroot00000000000000 Statistics: mvtrnd

Function Reference: mvtrnd

statistics: r = mvtrnd (rho, df)
statistics: r = mvtrnd (rho, df, n)

Random vectors from the multivariate Student’s t distribution.

Arguments

  • rho is the matrix of correlation coefficients. If there are any non-unit diagonal elements then rho will be normalized, so that the resulting covariance of the obtained samples r follows: cov (r) = df/(df-2) * rho ./ (sqrt (diag (rho) * diag (rho))). In order to obtain samples distributed according to a standard multivariate student’s t-distribution, rho must be equal to the identity matrix. To generate multivariate student’s t-distribution samples r with arbitrary covariance matrix rho, the following scaling might be used: r = mvtrnd (rho, df, n) * diag (sqrt (diag (rho))).
  • df is the degrees of freedom for the multivariate t-distribution. df must be a vector with the same number of elements as samples to be generated or be scalar.
  • n is the number of rows of the matrix to be generated. n must be a non-negative integer and corresponds to the number of samples to be generated.

Return values

  • r is a matrix of random samples from the multivariate t-distribution with n row samples.

Examples

 
 
 rho = [1, 0.5; 0.5, 1];
 df = 3;
 n = 10;
 r = mvtrnd (rho, df, n);
 
 
 rho = [1, 0.5; 0.5, 1];
 df = [2; 3];
 n = 2;
 r = mvtrnd (rho, df, 2);
 
 

References

  1. Wendy L. Martinez and Angel R. Martinez. Computational Statistics Handbook with MATLAB. Appendix E, pages 547-557, Chapman & Hall/CRC, 2001.
  2. Samuel Kotz and Saralees Nadarajah. Multivariate t Distributions and Their Applications. Cambridge University Press, Cambridge, 2004.

See also: mvtcdf, mvtcdfqmc, mvtpdf

Source Code: mvtrnd

statistics-release-1.6.3/docs/nakacdf.html000066400000000000000000000152331456127120000205400ustar00rootroot00000000000000 Statistics: nakacdf

Function Reference: nakacdf

statistics: p = nakacdf (x, mu, omega)
statistics: p = nakacdf (x, mu, omega, "upper")

Nakagami cumulative distribution function (CDF).

For each element of x, compute the cumulative distribution function (CDF) of the Nakagami distribution with shape parameter mu and spread parameter omega. The size of p is the common size of x, mu, and omega. A scalar input functions as a constant matrix of the same size as the other inputs.

Both parameters must be positive reals and mu >= 0.5. For mu < 0.5 or omega <= 0, NaN is returned.

p = nakacdf (x, mu, omega, "upper") computes the upper tail probability of the Nakagami distribution with parameters mu and beta, at the values in x.

Further information about the Nakagami distribution can be found at https://en.wikipedia.org/wiki/Nakagami_distribution

See also: nakainv, nakapdf, nakarnd, nakafit, nakalike

Source Code: nakacdf

Example: 1

 

 ## Plot various CDFs from the Nakagami distribution
 x = 0:0.01:3;
 p1 = nakacdf (x, 0.5, 1);
 p2 = nakacdf (x, 1, 1);
 p3 = nakacdf (x, 1, 2);
 p4 = nakacdf (x, 1, 3);
 p5 = nakacdf (x, 2, 1);
 p6 = nakacdf (x, 2, 2);
 p7 = nakacdf (x, 5, 1);
 plot (x, p1, "-r", x, p2, "-g", x, p3, "-y", x, p4, "-m", ...
       x, p5, "-k", x, p6, "-b", x, p7, "-c")
 grid on
 xlim ([0, 3])
 legend ({"μ = 0.5, ω = 1", "μ = 1, ω = 1", "μ = 1, ω = 2", ...
          "μ = 1, ω = 3", "μ = 2, ω = 1", "μ = 2, ω = 2", ...
          "μ = 5, ω = 1"}, "location", "southeast")
 title ("Nakagami CDF")
 xlabel ("values in x")
 ylabel ("probability")

                    
plotted figure

statistics-release-1.6.3/docs/nakafit.html000066400000000000000000000227071456127120000205720ustar00rootroot00000000000000 Statistics: nakafit

Function Reference: nakafit

statistics: paramhat = nakafit (x)
statistics: [paramhat, paramci] = nakafit (x)
statistics: [paramhat, paramci] = nakafit (x, alpha)
statistics: […] = nakafit (x, alpha, censor)
statistics: […] = nakafit (x, alpha, censor, freq)
statistics: […] = nakafit (x, alpha, censor, freq, options)

Estimate mean and confidence intervals for the Nakagami distribution.

mu0 = nakafit (x) returns the maximum likelihood estimates of the parameters of the Nakagami distribution given the data in x. paramhat(1) is the scale parameter, mu, and paramhat(2) is the shape parameter, omega.

[paramhat, paramci] = nakafit (x) returns the 95% confidence intervals for the parameter estimates.

[…] = nakafit (x, alpha) also returns the 100 * (1 - alpha) percent confidence intervals for the parameter estimates. By default, the optional argument alpha is 0.05 corresponding to 95% confidence intervals. Pass in [] for alpha to use the default values.

[…] = nakafit (x, alpha, censor) accepts a boolean vector, censor, of the same size as x with 1s for observations that are right-censored and 0s for observations that are observed exactly. By default, or if left empty, censor = zeros (size (x)).

[…] = nakafit (x, alpha, censor, freq) accepts a frequency vector, freq, of the same size as x. freq typically contains integer frequencies for the corresponding elements in x, but it can contain any non-integer non-negative values. By default, or if left empty, freq = ones (size (x)).

[…] = nakafit (…, options) specifies control parameters for the iterative algorithm used to compute ML estimates with the fminsearch function. options is a structure with the following fields and their default values:

  • options.Display = "off"
  • options.MaxFunEvals = 400
  • options.MaxIter = 200
  • options.TolX = 1e-6

Further information about the Nakagami distribution can be found at https://en.wikipedia.org/wiki/Nakagami_distribution

See also: nakacdf, nakainv, nakapdf, nakarnd, nakalike

Source Code: nakafit

Example: 1

 

 ## Sample 3 populations from different Nakagami distibutions
 randg ("seed", 5)  # for reproducibility
 r1 = nakarnd (0.5, 1, 2000, 1);
 randg ("seed", 2)   # for reproducibility
 r2 = nakarnd (5, 1, 2000, 1);
 randg ("seed", 7)   # for reproducibility
 r3 = nakarnd (2, 2, 2000, 1);
 r = [r1, r2, r3];

 ## Plot them normalized and fix their colors
 hist (r, [0.05:0.1:3.5], 10);
 h = findobj (gca, "Type", "patch");
 set (h(1), "facecolor", "c");
 set (h(2), "facecolor", "g");
 set (h(3), "facecolor", "r");
 ylim ([0, 2.5]);
 xlim ([0, 3.0]);
 hold on

 ## Estimate their MU and LAMBDA parameters
 mu_omegaA = nakafit (r(:,1));
 mu_omegaB = nakafit (r(:,2));
 mu_omegaC = nakafit (r(:,3));

 ## Plot their estimated PDFs
 x = [0.01:0.1:3.01];
 y = nakapdf (x, mu_omegaA(1), mu_omegaA(2));
 plot (x, y, "-pr");
 y = nakapdf (x, mu_omegaB(1), mu_omegaB(2));
 plot (x, y, "-sg");
 y = nakapdf (x, mu_omegaC(1), mu_omegaC(2));
 plot (x, y, "-^c");
 legend ({"Normalized HIST of sample 1 with μ=0.5 and ω=1", ...
          "Normalized HIST of sample 2 with μ=5 and ω=1", ...
          "Normalized HIST of sample 3 with μ=2 and ω=2", ...
          sprintf("PDF for sample 1 with estimated μ=%0.2f and ω=%0.2f", ...
                  mu_omegaA(1), mu_omegaA(2)), ...
          sprintf("PDF for sample 2 with estimated μ=%0.2f and ω=%0.2f", ...
                  mu_omegaB(1), mu_omegaB(2)), ...
          sprintf("PDF for sample 3 with estimated μ=%0.2f and ω=%0.2f", ...
                  mu_omegaC(1), mu_omegaC(2))})
 title ("Three population samples from different Nakagami distibutions")
 hold off

                    
plotted figure

statistics-release-1.6.3/docs/nakainv.html000066400000000000000000000144331456127120000206010ustar00rootroot00000000000000 Statistics: nakainv

Function Reference: nakainv

statistics: x = nakacdf (x, mu, omega)

Inverse of the Nakagami cumulative distribution function (iCDF).

For each element of p, compute the quantile (the inverse of the CDF) of the Nakagami distribution with shape parameter mu and spread parameter omega. The size of x is the common size of x, mu, and omega. A scalar input functions as a constant matrix of the same size as the other inputs.

Both parameters must be positive reals and mu >= 0.5. For mu < 0.5 or omega <= 0, NaN is returned.

Further information about the Nakagami distribution can be found at https://en.wikipedia.org/wiki/Nakagami_distribution

See also: nakacdf, nakapdf, nakarnd, nakafit, nakalike

Source Code: nakainv

Example: 1

 

 ## Plot various iCDFs from the Nakagami distribution
 p = 0.001:0.001:0.999;
 x1 = nakainv (p, 0.5, 1);
 x2 = nakainv (p, 1, 1);
 x3 = nakainv (p, 1, 2);
 x4 = nakainv (p, 1, 3);
 x5 = nakainv (p, 2, 1);
 x6 = nakainv (p, 2, 2);
 x7 = nakainv (p, 5, 1);
 plot (p, x1, "-r", p, x2, "-g", p, x3, "-y", p, x4, "-m", ...
       p, x5, "-k", p, x6, "-b", p, x7, "-c")
 grid on
 ylim ([0, 3])
 legend ({"μ = 0.5, ω = 1", "μ = 1, ω = 1", "μ = 1, ω = 2", ...
          "μ = 1, ω = 3", "μ = 2, ω = 1", "μ = 2, ω = 2", ...
          "μ = 5, ω = 1"}, "location", "northwest")
 title ("Nakagami iCDF")
 xlabel ("probability")
 ylabel ("values in x")

                    
plotted figure

statistics-release-1.6.3/docs/nakalike.html000066400000000000000000000136361456127120000207350ustar00rootroot00000000000000 Statistics: nakalike

Function Reference: nakalike

statistics: nlogL = nakalike (params, x)
statistics: [nlogL, acov] = nakalike (params, x)
statistics: […] = nakalike (params, x, censor)
statistics: […] = nakalike (params, x, censor, freq)

Negative log-likelihood for the Nakagami distribution.

nlogL = nakalike (params, x) returns the negative log likelihood of the data in x corresponding to the Nakagami distribution with (1) scale parameter mu and (2) shape parameter omega given in the two-element vector params.

[nlogL, acov] = nakalike (params, x) also returns the inverse of Fisher’s information matrix, acov. If the input parameter values in params are the maximum likelihood estimates, the diagonal elements of params are their asymptotic variances.

[…] = nakalike (params, x, censor) accepts a boolean vector, censor, of the same size as x with 1s for observations that are right-censored and 0s for observations that are observed exactly. By default, or if left empty, censor = zeros (size (x)).

[…] = nakalike (params, x, censor, freq) accepts a frequency vector, freq, of the same size as x. freq typically contains integer frequencies for the corresponding elements in x, but it can contain any non-integer non-negative values. By default, or if left empty, freq = ones (size (x)).

Further information about the Nakagami distribution can be found at https://en.wikipedia.org/wiki/Nakagami_distribution

See also: nakacdf, nakainv, nakapdf, nakarnd, nakafit

Source Code: nakalike

statistics-release-1.6.3/docs/nakapdf.html000066400000000000000000000144101456127120000205510ustar00rootroot00000000000000 Statistics: nakapdf

Function Reference: nakapdf

statistics: y = nakapdf (x, mu, omega)

Nakagami probability density function (PDF).

For each element of x, compute the probability density function (PDF) of the Nakagami distribution with shape parameter mu and spread parameter omega. The size of y is the common size of x, mu, and omega. A scalar input functions as a constant matrix of the same size as the other inputs.

Both parameters must be positive reals and mu >= 0.5. For mu < 0.5 or omega <= 0, NaN is returned.

Further information about the Nakagami distribution can be found at https://en.wikipedia.org/wiki/Nakagami_distribution

See also: nakacdf, nakapdf, nakarnd, nakafit, nakalike

Source Code: nakapdf

Example: 1

 

 ## Plot various PDFs from the Nakagami distribution
 x = 0:0.01:3;
 y1 = nakapdf (x, 0.5, 1);
 y2 = nakapdf (x, 1, 1);
 y3 = nakapdf (x, 1, 2);
 y4 = nakapdf (x, 1, 3);
 y5 = nakapdf (x, 2, 1);
 y6 = nakapdf (x, 2, 2);
 y7 = nakapdf (x, 5, 1);
 plot (x, y1, "-r", x, y2, "-g", x, y3, "-y", x, y4, "-m", ...
       x, y5, "-k", x, y6, "-b", x, y7, "-c")
 grid on
 xlim ([0, 3])
 ylim ([0, 2])
 legend ({"μ = 0.5, ω = 1", "μ = 1, ω = 1", "μ = 1, ω = 2", ...
          "μ = 1, ω = 3", "μ = 2, ω = 1", "μ = 2, ω = 2", ...
          "μ = 5, ω = 1"}, "location", "northeast")
 title ("Nakagami PDF")
 xlabel ("values in x")
 ylabel ("density")

                    
plotted figure

statistics-release-1.6.3/docs/nakarnd.html000066400000000000000000000124651456127120000205730ustar00rootroot00000000000000 Statistics: nakarnd

Function Reference: nakarnd

statistics: r = nakarnd (mu, omega)
statistics: r = nakarnd (mu, omega, rows)
statistics: r = nakarnd (mu, omega, rows, cols, …)
statistics: r = nakarnd (mu, omega, [sz])

Random arrays from the Nakagami distribution.

r = nakarnd (mu, omega) returns an array of random numbers chosen from the Nakagami distribution with shape parameter mu and spread parameter omega. The size of r is the common size of mu and omega. A scalar input functions as a constant matrix of the same size as the other inputs.

Both parameters must be positive reals and mu >= 0.5. For mu < 0.5 or omega <= 0, NaN is returned.

When called with a single size argument, nakarnd returns a square matrix with the dimension specified. When called with more than one scalar argument, the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions. The size may also be specified with a row vector of dimensions, sz.

Further information about the Nakagami distribution can be found at https://en.wikipedia.org/wiki/Nakagami_distribution

See also: nakacdf, nakainv, nakapdf

Source Code: nakarnd

statistics-release-1.6.3/docs/nanmax.html000066400000000000000000000100361456127120000204270ustar00rootroot00000000000000 Statistics: nanmax

Function Reference: nanmax

statistics: [v, idx] = nanmax (X)
statistics: [v, idx] = nanmax (X, Y)

Find the maximal element while ignoring NaN values.

nanmax is identical to the max function except that NaN values are ignored. If all values in a column are NaN, the maximum is returned as NaN rather than [].

See also: max, nansum, nanmin

Source Code: nanmax

statistics-release-1.6.3/docs/nanmin.html000066400000000000000000000100361456127120000204250ustar00rootroot00000000000000 Statistics: nanmin

Function Reference: nanmin

statistics: [v, idx] = nanmin (X)
statistics: [v, idx] = nanmin (X, Y)

Find the minimal element while ignoring NaN values.

nanmin is identical to the min function except that NaN values are ignored. If all values in a column are NaN, the minimum is returned as NaN rather than [].

See also: min, nansum, nanmax

Source Code: nanmin

statistics-release-1.6.3/docs/nansum.html000066400000000000000000000104701456127120000204500ustar00rootroot00000000000000 Statistics: nansum

Function Reference: nansum

statistics: s = nansum (x)
statistics: s = nansum (x, dim)
statistics: s = nansum (…, "native")
statistics: s = nansum (…, "double")
statistics: s = nansum (…, "extra")

Compute the sum while ignoring NaN values.

nansum is identical to the sum function except that NaN values are treated as 0 and so ignored. If all values are NaN, the sum is returned as 0.

See help text of sum for details on the options.

See also: sum, nanmin, nanmax

Source Code: nansum

statistics-release-1.6.3/docs/nbincdf.html000066400000000000000000000175041456127120000205570ustar00rootroot00000000000000 Statistics: nbincdf

Function Reference: nbincdf

statistics: p = nbincdf (x, r, ps)
statistics: p = nbincdf (x, r, ps, "upper")

Negative binomial cumulative distribution function (CDF).

For each element of x, compute the cumulative distribution function (CDF) of the negative binomial distribution with parameters r and ps, where r is the number of successes until the experiment is stopped and ps is the probability of success in each experiment, given the number of failures in x. The size of p is the common size of x, r, and ps. A scalar input functions as a constant matrix of the same size as the other inputs.

The algorithm uses the cumulative sums of the binomial masses.

p = nbincdf (x, r, ps, "upper") computes the upper tail probability of the negative binomial distribution with parameters r and ps, at the values in x.

When r is an integer, the negative binomial distribution is also known as the Pascal distribution and it models the number of failures in x before a specified number of successes is reached in a series of independent, identical trials. Its parameters are the probability of success in a single trial, ps, and the number of successes, r. A special case of the negative binomial distribution, when r = 1, is the geometric distribution, which models the number of failures before the first success.

r can also have non-integer positive values, in which form the negative binomial distribution, also known as the Polya distribution, has no interpretation in terms of repeated trials, but, like the Poisson distribution, it is useful in modeling count data. The negative binomial distribution is more general than the Poisson distribution because it has a variance that is greater than its mean, making it suitable for count data that do not meet the assumptions of the Poisson distribution. In the limit, as r increases to infinity, the negative binomial distribution approaches the Poisson distribution.

Further information about the negative binomial distribution can be found at https://en.wikipedia.org/wiki/Negative_binomial_distribution

See also: nbininv, nbinpdf, nbinrnd, nbinfit, nbinlike, nbinstat

Source Code: nbincdf

Example: 1

 

 ## Plot various CDFs from the negative binomial distribution
 x = 0:50;
 p1 = nbincdf (x, 2, 0.15);
 p2 = nbincdf (x, 5, 0.2);
 p3 = nbincdf (x, 4, 0.4);
 p4 = nbincdf (x, 10, 0.3);
 plot (x, p1, "*r", x, p2, "*g", x, p3, "*k", x, p4, "*m")
 grid on
 xlim ([0, 40])
 legend ({"r = 2, ps = 0.15", "r = 5, ps = 0.2", "r = 4, p = 0.4", ...
          "r = 10, ps = 0.3"}, "location", "southeast")
 title ("Negative binomial CDF")
 xlabel ("values in x (number of failures)")
 ylabel ("probability")

                    
plotted figure

statistics-release-1.6.3/docs/nbinfit.html000066400000000000000000000226101456127120000205770ustar00rootroot00000000000000 Statistics: nbinfit

Function Reference: nbinfit

statistics: paramhat = nbinfit (x)
statistics: [paramhat, paramci] = nbinfit (x)
statistics: [paramhat, paramci] = nbinfit (x, alpha)
statistics: [paramhat, paramci] = nbinfit (x, alpha, options)

Estimate parameter and confidence intervals for the negative binomial distribution.

paramhat = nbinfit (x) returns the maximum likelihood estimates of the parameters of the negative binomial distribution given the data in vector x. paramhat(1) is the number of successes until the experiment is stopped, r, and paramhat(1) is the probability of success in each experiment, ps.

[paramhat, paramci] = nbinfit (x) returns the 95% confidence intervals for the parameter estimates.

[paramhat, paramci] = nbinfit (x, alpha) also returns the 100 * (1 - alpha) percent confidence intervals of the estimated parameter. By default, the optional argument alpha is 0.05 corresponding to 95% confidence intervals.

[paramhat, paramci] = nbinfit (x, alpha, options) specifies control parameters for the iterative algorithm used to compute ML estimates with the fminsearch function. options is a structure with the following fields and their default values:

  • options.Display = "off"
  • options.MaxFunEvals = 400
  • options.MaxIter = 200
  • options.TolX = 1e-6

When r is an integer, the negative binomial distribution is also known as the Pascal distribution and it models the number of failures in x before a specified number of successes is reached in a series of independent, identical trials. Its parameters are the probability of success in a single trial, ps, and the number of successes, r. A special case of the negative binomial distribution, when r = 1, is the geometric distribution, which models the number of failures before the first success.

r can also have non-integer positive values, in which form the negative binomial distribution, also known as the Polya distribution, has no interpretation in terms of repeated trials, but, like the Poisson distribution, it is useful in modeling count data. The negative binomial distribution is more general than the Poisson distribution because it has a variance that is greater than its mean, making it suitable for count data that do not meet the assumptions of the Poisson distribution. In the limit, as r increases to infinity, the negative binomial distribution approaches the Poisson distribution.

Further information about the negative binomial distribution can be found at https://en.wikipedia.org/wiki/Negative_binomial_distribution

See also: nbincdf, nbininv, nbinpdf, nbinrnd, nbinlike, nbinstat

Source Code: nbinfit

Example: 1

 

 ## Sample 2 populations from different negative binomial distibutions
 randp ("seed", 5); randg ("seed", 5);    # for reproducibility
 r1 = nbinrnd (2, 0.15, 5000, 1);
 randp ("seed", 8); randg ("seed", 8);    # for reproducibility
 r2 = nbinrnd (5, 0.2, 5000, 1);
 r = [r1, r2];

 ## Plot them normalized and fix their colors
 hist (r, [0:51], 1);
 h = findobj (gca, "Type", "patch");
 set (h(1), "facecolor", "c");
 set (h(2), "facecolor", "g");
 hold on

 ## Estimate their probability of success
 r_psA = nbinfit (r(:,1));
 r_psB = nbinfit (r(:,2));

 ## Plot their estimated PDFs
 x = [0:40];
 y = nbinpdf (x, r_psA(1), r_psA(2));
 plot (x, y, "-pg");
 x = [min(r(:,2)):max(r(:,2))];
 y = nbinpdf (x, r_psB(1), r_psB(2));
 plot (x, y, "-sc");
 ylim ([0, 0.1])
 xlim ([0, 50])
 legend ({"Normalized HIST of sample 1 with r=2 and ps=0.15", ...
          "Normalized HIST of sample 2 with r=5 and ps=0.2", ...
          sprintf("PDF for sample 1 with estimated r=%0.2f and ps=%0.2f", ...
                  r_psA(1), r_psA(2)), ...
          sprintf("PDF for sample 2 with estimated r=%0.2f and ps=%0.2f", ...
                  r_psB(1), r_psB(2))})
 title ("Two population samples from negative different binomial distibutions")
 hold off

                    
plotted figure

statistics-release-1.6.3/docs/nbininv.html000066400000000000000000000165731456127120000206240ustar00rootroot00000000000000 Statistics: nbininv

Function Reference: nbininv

statistics: x = nbininv (p, r, ps)

Inverse of the negative binomial cumulative distribution function (iCDF).

For each element of p, compute the quantile (the inverse of the CDF) of the negative binomial distribution with parameters r and ps, where r is the number of successes until the experiment is stopped and ps is the probability of success in each experiment, given the probability in p. The size of x is the common size of p, r, and ps. A scalar input functions as a constant matrix of the same size as the other inputs.

When r is an integer, the negative binomial distribution is also known as the Pascal distribution and it models the number of failures in x before a specified number of successes is reached in a series of independent, identical trials. Its parameters are the probability of success in a single trial, ps, and the number of successes, r. A special case of the negative binomial distribution, when r = 1, is the geometric distribution, which models the number of failures before the first success.

r can also have non-integer positive values, in which form the negative binomial distribution, also known as the Polya distribution, has no interpretation in terms of repeated trials, but, like the Poisson distribution, it is useful in modeling count data. The negative binomial distribution is more general than the Poisson distribution because it has a variance that is greater than its mean, making it suitable for count data that do not meet the assumptions of the Poisson distribution. In the limit, as r increases to infinity, the negative binomial distribution approaches the Poisson distribution.

Further information about the negative binomial distribution can be found at https://en.wikipedia.org/wiki/Negative_binomial_distribution

See also: nbininv, nbinpdf, nbinrnd, nbinfit, nbinlike, nbinstat

Source Code: nbininv

Example: 1

 

 ## Plot various iCDFs from the negative binomial distribution
 p = 0.001:0.001:0.999;
 x1 = nbininv (p, 2, 0.15);
 x2 = nbininv (p, 5, 0.2);
 x3 = nbininv (p, 4, 0.4);
 x4 = nbininv (p, 10, 0.3);
 plot (p, x1, "-r", p, x2, "-g", p, x3, "-k", p, x4, "-m")
 grid on
 ylim ([0, 40])
 legend ({"r = 2, ps = 0.15", "r = 5, ps = 0.2", "r = 4, p = 0.4", ...
          "r = 10, ps = 0.3"}, "location", "northwest")
 title ("Negative binomial iCDF")
 xlabel ("probability")
 ylabel ("values in x (number of failures)")

                    
plotted figure

statistics-release-1.6.3/docs/nbinlike.html000066400000000000000000000144021456127120000207410ustar00rootroot00000000000000 Statistics: nbinlike

Function Reference: nbinlike

statistics: nlogL = nbinlike (params, x)
statistics: [nlogL, avar] = nbinlike (params, x)

Negative log-likelihood for the negative binomial distribution.

nlogL = nbinlike (params, x) returns the negative log likelihood of the negative binomial distribution with (1) parameter r and (2) parameter ps, given in the two-element vector params, where r is the number of successes until the experiment is stopped and ps is the probability of success in each experiment, given the number of failures in x.

[nlogL, avar] = nbinlike (params, x) also returns the inverse of Fisher’s information matrix, avar. If the input parameter values in params are the maximum likelihood estimates, the diagonal elements of params are their asymptotic variances.

When r is an integer, the negative binomial distribution is also known as the Pascal distribution and it models the number of failures in x before a specified number of successes is reached in a series of independent, identical trials. Its parameters are the probability of success in a single trial, ps, and the number of successes, r. A special case of the negative binomial distribution, when r = 1, is the geometric distribution, which models the number of failures before the first success.

r can also have non-integer positive values, in which form the negative binomial distribution, also known as the Polya distribution, has no interpretation in terms of repeated trials, but, like the Poisson distribution, it is useful in modeling count data. The negative binomial distribution is more general than the Poisson distribution because it has a variance that is greater than its mean, making it suitable for count data that do not meet the assumptions of the Poisson distribution. In the limit, as r increases to infinity, the negative binomial distribution approaches the Poisson distribution.

Further information about the negative binomial distribution can be found at https://en.wikipedia.org/wiki/Negative_binomial_distribution

See also: nbincdf, nbininv, nbinpdf, nbinrnd, nbinfit, nbinstat

Source Code: nbinlike

statistics-release-1.6.3/docs/nbinpdf.html000066400000000000000000000165761456127120000206040ustar00rootroot00000000000000 Statistics: nbinpdf

Function Reference: nbinpdf

statistics: y = nbinpdf (x, r, ps)

Negative binomial probability density function (PDF).

For each element of x, compute the probability density function (PDF) at x of the negative binomial distribution with parameters r and ps, where r is the number of successes until the experiment is stopped and ps is the probability of success in each experiment, given the number of failures in x. The size of y is the common size of x, r, and ps. A scalar input functions as a constant matrix of the same size as the other inputs.

When r is an integer, the negative binomial distribution is also known as the Pascal distribution and it models the number of failures in x before a specified number of successes is reached in a series of independent, identical trials. Its parameters are the probability of success in a single trial, ps, and the number of successes, r. A special case of the negative binomial distribution, when r = 1, is the geometric distribution, which models the number of failures before the first success.

r can also have non-integer positive values, in which form the negative binomial distribution, also known as the Polya distribution, has no interpretation in terms of repeated trials, but, like the Poisson distribution, it is useful in modeling count data. The negative binomial distribution is more general than the Poisson distribution because it has a variance that is greater than its mean, making it suitable for count data that do not meet the assumptions of the Poisson distribution. In the limit, as r increases to infinity, the negative binomial distribution approaches the Poisson distribution.

Further information about the negative binomial distribution can be found at https://en.wikipedia.org/wiki/Negative_binomial_distribution

See also: nbininv, nbininv, nbinrnd, nbinfit, nbinlike, nbinstat

Source Code: nbinpdf

Example: 1

 

 ## Plot various PDFs from the negative binomial distribution
 x = 0:40;
 y1 = nbinpdf (x, 2, 0.15);
 y2 = nbinpdf (x, 5, 0.2);
 y3 = nbinpdf (x, 4, 0.4);
 y4 = nbinpdf (x, 10, 0.3);
 plot (x, y1, "*r", x, y2, "*g", x, y3, "*k", x, y4, "*m")
 grid on
 xlim ([0, 40])
 ylim ([0, 0.12])
 legend ({"r = 2, ps = 0.15", "r = 5, ps = 0.2", "r = 4, p = 0.4", ...
          "r = 10, ps = 0.3"}, "location", "northeast")
 title ("Negative binomial PDF")
 xlabel ("values in x (number of failures)")
 ylabel ("density")

                    
plotted figure

statistics-release-1.6.3/docs/nbinrnd.html000066400000000000000000000151201456127120000205760ustar00rootroot00000000000000 Statistics: nbinrnd

Function Reference: nbinrnd

statistics: rnd = nbinrnd (r, ps)
statistics: rnd = nbinrnd (r, ps, rows)
statistics: rnd = nbinrnd (r, ps, rows, cols, …)
statistics: rnd = nbinrnd (r, ps, [sz])

Random arrays from the negative binomial distribution.

rnd = nbinrnd (r, ps) returns an array of random numbers chosen from the Laplace distribution with parameters r and ps, where r is the number of successes until the experiment is stopped and ps is the probability of success in each experiment, given the number of failures in x. The size of rnd is the common size of r and ps. A scalar input functions as a constant matrix of the same size as the other inputs.

When called with a single size argument, return a square matrix with the dimension specified. When called with more than one scalar argument the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions. The size may also be specified with a vector of dimensions sz.

When r is an integer, the negative binomial distribution is also known as the Pascal distribution and it models the number of failures in x before a specified number of successes is reached in a series of independent, identical trials. Its parameters are the probability of success in a single trial, ps, and the number of successes, r. A special case of the negative binomial distribution, when r = 1, is the geometric distribution, which models the number of failures before the first success.

r can also have non-integer positive values, in which form the negative binomial distribution, also known as the Polya distribution, has no interpretation in terms of repeated trials, but, like the Poisson distribution, it is useful in modeling count data. The negative binomial distribution is more general than the Poisson distribution because it has a variance that is greater than its mean, making it suitable for count data that do not meet the assumptions of the Poisson distribution. In the limit, as r increases to infinity, the negative binomial distribution approaches the Poisson distribution.

Further information about the negative binomial distribution can be found at https://en.wikipedia.org/wiki/Negative_binomial_distribution

See also: nbininv, nbininv, nbinpdf, nbinfit, nbinlike, nbinstat

Source Code: nbinrnd

statistics-release-1.6.3/docs/nbinstat.html000066400000000000000000000113521456127120000207710ustar00rootroot00000000000000 Statistics: nbinstat

Function Reference: nbinstat

statistics: [m, v] = nbinstat (r, ps)

Compute statistics of the negative binomial distribution.

[m, v] = nbinstat (r, ps) returns the mean and variance of the negative binomial distribution with parameters r and ps, where r is the number of successes until the experiment is stopped and ps is the probability of success in each experiment, given the number of failures in x.

The size of m (mean) and v (variance) is the common size of the input arguments. A scalar input functions as a constant matrix of the same size as the other inputs.

Further information about the negative binomial distribution can be found at https://en.wikipedia.org/wiki/Negative_binomial_distribution

See also: nbincdf, nbininv, nbininv, nbinrnd, nbinfit, nbinlike

Source Code: nbinstat

statistics-release-1.6.3/docs/ncfcdf.html000066400000000000000000000176561456127120000204070ustar00rootroot00000000000000 Statistics: ncfcdf

Function Reference: ncfcdf

statistics: p = ncfcdf (x, df1, df2, lambda)
statistics: p = ncfcdf (x, df1, df2, lambda, "upper")

Noncentral F-cumulative distribution function (CDF).

For each element of x, compute the cumulative distribution function (CDF) of the noncentral F-distribution with df1 and df2 degrees of freedom and noncentrality parameter lambda. The size of p is the common size of x, df1, df2, and lambda. A scalar input functions as a constant matrix of the same size as the other inputs.

p = ncfcdf (x, df1, df2, lambda, "upper") computes the upper tail probability of the noncentral F-distribution with parameters df1, df2, and lambda, at the values in x.

Further information about the noncentral F-distribution can be found at https://en.wikipedia.org/wiki/Noncentral_F-distribution

See also: ncfinv, ncfpdf, ncfrnd, ncfstat, fcdf

Source Code: ncfcdf

Example: 1

 

 ## Plot various CDFs from the noncentral F distribution
 x = 0:0.01:5;
 p1 = ncfcdf (x, 2, 5, 1);
 p2 = ncfcdf (x, 2, 5, 2);
 p3 = ncfcdf (x, 5, 10, 1);
 p4 = ncfcdf (x, 10, 20, 10);
 plot (x, p1, "-r", x, p2, "-g", x, p3, "-k", x, p4, "-m")
 grid on
 xlim ([0, 5])
 legend ({"df1 = 2, df2 = 5, λ = 1", "df1 = 2, df2 = 5, λ = 2", ...
          "df1 = 5, df2 = 10, λ = 1", "df1 = 10, df2 = 20, λ = 10"}, ...
         "location", "southeast")
 title ("Noncentral F CDF")
 xlabel ("values in x")
 ylabel ("probability")

                    
plotted figure

Example: 2

 

 ## Compare the noncentral F CDF with LAMBDA = 10 to the F CDF with the
 ## same number of numerator and denominator degrees of freedom (5, 20)

 x = 0.01:0.1:10.01;
 p1 = ncfcdf (x, 5, 20, 10);
 p2 = fcdf (x, 5, 20);
 plot (x, p1, "-", x, p2, "-");
 grid on
 xlim ([0, 10])
 legend ({"Noncentral F(5,20,10)", "F(5,20)"}, "location", "southeast")
 title ("Noncentral F vs F CDFs")
 xlabel ("values in x")
 ylabel ("probability")

                    
plotted figure

statistics-release-1.6.3/docs/ncfinv.html000066400000000000000000000171151456127120000204350ustar00rootroot00000000000000 Statistics: ncfinv

Function Reference: ncfinv

statistics: x = ncfinv (p, df1, df2, lambda)

Inverse of the noncentral F-cumulative distribution function (iCDF).

For each element of p, compute the quantile (the inverse of the CDF) of the noncentral F-distribution with df1 and df2 degrees of freedom and noncentrality parameter lambda. The size of x is the common size of p, df1, df2, and lambda. A scalar input functions as a constant matrix of the same size as the other inputs.

ncfinv uses Newton’s method to converge to the solution.

Further information about the noncentral F-distribution can be found at https://en.wikipedia.org/wiki/Noncentral_F-distribution

See also: ncfcdf, ncfpdf, ncfrnd, ncfstat, finv

Source Code: ncfinv

Example: 1

 

 ## Plot various iCDFs from the noncentral F distribution
 p = 0.001:0.001:0.999;
 x1 = ncfinv (p, 2, 5, 1);
 x2 = ncfinv (p, 2, 5, 2);
 x3 = ncfinv (p, 5, 10, 1);
 x4 = ncfinv (p, 10, 20, 10);
 plot (p, x1, "-r", p, x2, "-g", p, x3, "-k", p, x4, "-m")
 grid on
 ylim ([0, 5])
 legend ({"df1 = 2, df2 = 5, λ = 1", "df1 = 2, df2 = 5, λ = 2", ...
          "df1 = 5, df2 = 10, λ = 1", "df1 = 10, df2 = 20, λ = 10"}, ...
         "location", "northwest")
 title ("Noncentral F iCDF")
 xlabel ("probability")
 ylabel ("values in x")

                    
plotted figure

Example: 2

 

 ## Compare the noncentral F iCDF with LAMBDA = 10 to the F iCDF with the
 ## same number of numerator and denominator degrees of freedom (5, 20)

 p = 0.001:0.001:0.999;
 x1 = ncfinv (p, 5, 20, 10);
 x2 = finv (p, 5, 20);
 plot (p, x1, "-", p, x2, "-");
 grid on
 ylim ([0, 10])
 legend ({"Noncentral F(5,20,10)", "F(5,20)"}, "location", "northwest")
 title ("Noncentral F vs F quantile functions")
 xlabel ("probability")
 ylabel ("values in x")

                    
plotted figure

statistics-release-1.6.3/docs/ncfpdf.html000066400000000000000000000167411456127120000204160ustar00rootroot00000000000000 Statistics: ncfpdf

Function Reference: ncfpdf

statistics: y = ncfpdf (x, df1, df2, lambda)

Noncentral F-probability density function (PDF).

For each element of x, compute the probability density function (PDF) of the noncentral F-distribution with df1 and df2 degrees of freedom and noncentrality parameter lambda. The size of y is the common size of x, df1, df2, and lambda. A scalar input functions as a constant matrix of the same size as the other inputs.

Further information about the noncentral F-distribution can be found at https://en.wikipedia.org/wiki/Noncentral_F-distribution

See also: ncfcdf, ncfinv, ncfrnd, ncfstat, fpdf

Source Code: ncfpdf

Example: 1

 

 ## Plot various PDFs from the noncentral F distribution
 x = 0:0.01:5;
 y1 = ncfpdf (x, 2, 5, 1);
 y2 = ncfpdf (x, 2, 5, 2);
 y3 = ncfpdf (x, 5, 10, 1);
 y4 = ncfpdf (x, 10, 20, 10);
 plot (x, y1, "-r", x, y2, "-g", x, y3, "-k", x, y4, "-m")
 grid on
 xlim ([0, 5])
 ylim ([0, 0.8])
 legend ({"df1 = 2, df2 = 5, λ = 1", "df1 = 2, df2 = 5, λ = 2", ...
          "df1 = 5, df2 = 10, λ = 1", "df1 = 10, df2 = 20, λ = 10"}, ...
         "location", "northeast")
 title ("Noncentral F PDF")
 xlabel ("values in x")
 ylabel ("density")

                    
plotted figure

Example: 2

 

 ## Compare the noncentral F PDF with LAMBDA = 10 to the F PDF with the
 ## same number of numerator and denominator degrees of freedom (5, 20)

 x = 0.01:0.1:10.01;
 y1 = ncfpdf (x, 5, 20, 10);
 y2 = fpdf (x, 5, 20);
 plot (x, y1, "-", x, y2, "-");
 grid on
 xlim ([0, 10])
 ylim ([0, 0.8])
 legend ({"Noncentral F(5,20,10)", "F(5,20)"}, "location", "northeast")
 title ("Noncentral F vs F PDFs")
 xlabel ("values in x")
 ylabel ("density")

                    
plotted figure

statistics-release-1.6.3/docs/ncfrnd.html000066400000000000000000000130241456127120000204170ustar00rootroot00000000000000 Statistics: ncfrnd

Function Reference: ncfrnd

statistics: r = ncfrnd (df1, df2, lambda)
statistics: r = ncfrnd (df1, df2, lambda, rows, cols, …)
statistics: r = ncfrnd (df1, df2, lambda, [sz])

Random arrays from the noncentral F-distribution.

x = ncfrnd (p, df1, df2, lambda) returns an array of random numbers chosen from the noncentral F-distribution with df1 and df2 degrees of freedom and noncentrality parameter lambda. The size of r is the common size of df1, df2, and lambda. A scalar input functions as a constant matrix of the same size as the other input.

ncfrnd generates values using the definition of a noncentral F random variable, as the ratio of a noncentral chi-squared distribution and a (central) chi-squared distribution.

When called with a single size argument, ncfrnd returns a square matrix with the dimension specified. When called with more than one scalar argument, the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions. The size may also be specified with a row vector of dimensions, sz.

Further information about the noncentral F-distribution can be found at https://en.wikipedia.org/wiki/Noncentral_F-distribution

See also: ncfcdf, ncfinv, ncfpdf, ncfstat, frnd, ncx2rnd, chi2rnd

Source Code: ncfrnd

statistics-release-1.6.3/docs/ncfstat.html000066400000000000000000000111421456127120000206060ustar00rootroot00000000000000 Statistics: ncfstat

Function Reference: ncfstat

statistics: [m, v] = ncfstat (df1, df1, lambda)

Compute statistics for the noncentral F-distribution.

[m, v] = ncfstat (df1, df1, lambda) returns the mean and variance of the noncentral F-distribution with df1 and df2 degrees of freedom and noncentrality parameter lambda.

The size of m (mean) and v (variance) is the common size of the input arguments. A scalar input functions as a constant matrix of the same size as the other inputs.

Further information about the noncentral F-distribution can be found at https://en.wikipedia.org/wiki/Noncentral_F-distribution

See also: ncfcdf, ncfinv, ncfpdf, ncfrnd, fstat

Source Code: ncfstat

statistics-release-1.6.3/docs/nctcdf.html000066400000000000000000000172611456127120000204150ustar00rootroot00000000000000 Statistics: nctcdf

Function Reference: nctcdf

statistics: p = nctcdf (x, df, mu)
statistics: p = nctcdf (x, df, mu, "upper")

Noncentral t-cumulative distribution function (CDF).

For each element of x, compute the cumulative distribution function (CDF) of the noncentral t-distribution with df degrees of freedom and noncentrality parameter mu. The size of p is the common size of x, df, and mu. A scalar input functions as a constant matrix of the same size as the other inputs.

p = nctcdf (x, df, mu, "upper") computes the upper tail probability of the noncentral t-distribution with parameters df and mu, at the values in x.

Further information about the noncentral t-distribution can be found at https://en.wikipedia.org/wiki/Noncentral_t-distribution

See also: nctinv, nctpdf, nctrnd, nctstat, tcdf

Source Code: nctcdf

Example: 1

 

 ## Plot various CDFs from the noncentral Τ distribution
 x = -5:0.01:5;
 p1 = nctcdf (x, 1, 0);
 p2 = nctcdf (x, 4, 0);
 p3 = nctcdf (x, 1, 2);
 p4 = nctcdf (x, 4, 2);
 plot (x, p1, "-r", x, p2, "-g", x, p3, "-k", x, p4, "-m")
 grid on
 xlim ([-5, 5])
 legend ({"df = 1, μ = 0", "df = 4, μ = 0", ...
          "df = 1, μ = 2", "df = 4, μ = 2"}, "location", "southeast")
 title ("Noncentral Τ CDF")
 xlabel ("values in x")
 ylabel ("probability")

                    
plotted figure

Example: 2

 

 ## Compare the noncentral T CDF with MU = 1 to the T CDF
 ## with the same number of degrees of freedom (10).

 x = -5:0.1:5;
 p1 = nctcdf (x, 10, 1);
 p2 = tcdf (x, 10);
 plot (x, p1, "-", x, p2, "-")
 grid on
 xlim ([-5, 5])
 legend ({"Noncentral T(10,1)", "T(10)"}, "location", "southeast")
 title ("Noncentral T vs T CDFs")
 xlabel ("values in x")
 ylabel ("probability")

                    
plotted figure

statistics-release-1.6.3/docs/nctinv.html000066400000000000000000000166301456127120000204540ustar00rootroot00000000000000 Statistics: nctinv

Function Reference: nctinv

statistics: x = ncx2inv (p, df, mu)

Inverse of the non-central t-cumulative distribution function (iCDF).

For each element of p, compute the quantile (the inverse of the CDF) of the noncentral t-distribution with df degrees of freedom and noncentrality parameter mu. The size of x is the common size of p, df, and mu. A scalar input functions as a constant matrix of the same size as the other inputs.

nctinv uses Newton’s method to converge to the solution.

Further information about the noncentral t-distribution can be found at https://en.wikipedia.org/wiki/Noncentral_t-distribution

See also: nctcdf, nctpdf, nctrnd, nctstat, tinv

Source Code: nctinv

Example: 1

 

 ## Plot various iCDFs from the noncentral T distribution
 p = 0.001:0.001:0.999;
 x1 = nctinv (p, 1, 0);
 x2 = nctinv (p, 4, 0);
 x3 = nctinv (p, 1, 2);
 x4 = nctinv (p, 4, 2);
 plot (p, x1, "-r", p, x2, "-g", p, x3, "-k", p, x4, "-m")
 grid on
 ylim ([-5, 5])
 legend ({"df = 1, μ = 0", "df = 4, μ = 0", ...
          "df = 1, μ = 2", "df = 4, μ = 2"}, "location", "northwest")
 title ("Noncentral T iCDF")
 xlabel ("probability")
 ylabel ("values in x")

                    
plotted figure

Example: 2

 

 ## Compare the noncentral T iCDF with MU = 1 to the T iCDF
 ## with the same number of degrees of freedom (10).

 p = 0.001:0.001:0.999;
 x1 = nctinv (p, 10, 1);
 x2 = tinv (p, 10);
 plot (p, x1, "-", p, x2, "-");
 grid on
 ylim ([-5, 5])
 legend ({"Noncentral T(10,1)", "T(10)"}, "location", "northwest")
 title ("Noncentral T vs T quantile functions")
 xlabel ("probability")
 ylabel ("values in x")

                    
plotted figure

statistics-release-1.6.3/docs/nctpdf.html000066400000000000000000000164531456127120000204340ustar00rootroot00000000000000 Statistics: nctpdf

Function Reference: nctpdf

statistics: y = nctpdf (x, df, mu)

Noncentral t-probability density function (PDF).

For each element of x, compute the probability density function (PDF) of the noncentral t-distribution with df degrees of freedom and noncentrality parameter mu. The size of y is the common size of x, df, and mu. A scalar input functions as a constant matrix of the same size as the other inputs.

Further information about the noncentral t-distribution can be found at https://en.wikipedia.org/wiki/Noncentral_t-distribution

See also: nctcdf, nctinv, nctrnd, nctstat, tpdf

Source Code: nctpdf

Example: 1

 

 ## Plot various PDFs from the noncentral T distribution
 x = -5:0.01:10;
 y1 = nctpdf (x, 1, 0);
 y2 = nctpdf (x, 4, 0);
 y3 = nctpdf (x, 1, 2);
 y4 = nctpdf (x, 4, 2);
 plot (x, y1, "-r", x, y2, "-g", x, y3, "-k", x, y4, "-m")
 grid on
 xlim ([-5, 10])
 ylim ([0, 0.4])
 legend ({"df = 1, μ = 0", "df = 4, μ = 0", ...
          "df = 1, μ = 2", "df = 4, μ = 2"}, "location", "northeast")
 title ("Noncentral T PDF")
 xlabel ("values in x")
 ylabel ("density")

                    
plotted figure

Example: 2

 

 ## Compare the noncentral T PDF with MU = 1 to the T PDF
 ## with the same number of degrees of freedom (10).

 x = -5:0.1:5;
 y1 = nctpdf (x, 10, 1);
 y2 = tpdf (x, 10);
 plot (x, y1, "-", x, y2, "-");
 grid on
 xlim ([-5, 5])
 ylim ([0, 0.4])
 legend ({"Noncentral χ^2(4,2)", "χ^2(4)"}, "location", "northwest")
 title ("Noncentral T vs T PDFs")
 xlabel ("values in x")
 ylabel ("density")

                    
plotted figure

statistics-release-1.6.3/docs/nctrnd.html000066400000000000000000000126261456127120000204440ustar00rootroot00000000000000 Statistics: nctrnd

Function Reference: nctrnd

statistics: r = nctrnd (df, mu)
statistics: r = nctrnd (df, mu, rows, cols, …)
statistics: r = nctrnd (df, mu, [sz])

Random arrays from the noncentral t-distribution.

x = nctrnd (p, df, mu) returns an array of random numbers chosen from the noncentral t-distribution with df degrees of freedom and noncentrality parameter mu. The size of r is the common size of df and mu. A scalar input functions as a constant matrix of the same size as the other input.

nctrnd generates values using the definition of a noncentral t random variable, as the ratio of a normal distribution with non-zero mean and the sqrt of a chi-squared distribution.

When called with a single size argument, nctrnd returns a square matrix with the dimension specified. When called with more than one scalar argument, the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions. The size may also be specified with a row vector of dimensions, sz.

Further information about the noncentral t-distribution can be found at https://en.wikipedia.org/wiki/Noncentral_t-distribution

See also: nctcdf, nctinv, nctpdf, nctstat, trnd, normrnd, chi2rnd

Source Code: nctrnd

statistics-release-1.6.3/docs/nctstat.html000066400000000000000000000110371456127120000206270ustar00rootroot00000000000000 Statistics: nctstat

Function Reference: nctstat

statistics: [m, v] = nctstat (df, mu)

Compute statistics for the noncentral t-distribution.

[m, v] = nctstat (df, mu) returns the mean and variance of the noncentral t-distribution with df degrees of freedom and noncentrality parameter mu.

The size of m (mean) and v (variance) is the common size of the input arguments. A scalar input functions as a constant matrix of the same size as the other inputs.

Further information about the noncentral t-distribution can be found at https://en.wikipedia.org/wiki/Noncentral_t-distribution

See also: nctcdf, nctinv, nctpdf, nctrnd, tstat

Source Code: nctstat

statistics-release-1.6.3/docs/ncx2cdf.html000066400000000000000000000176671456127120000205150ustar00rootroot00000000000000 Statistics: ncx2cdf

Function Reference: ncx2cdf

statistics: p = ncx2cdf (x, df, lambda)
statistics: p = ncx2cdf (x, df, lambda, "upper")

Noncentral chi-squared cumulative distribution function (CDF).

For each element of x, compute the cumulative distribution function (CDF) of the noncentral chi-squared distribution with df degrees of freedom and noncentrality parameter lambda. The size of p is the common size of x, df, and lambda. A scalar input functions as a constant matrix of the same size as the other inputs.

p = ncx2cdf (x, df, lambda, "upper") computes the upper tail probability of the noncentral chi-squared distribution with parameters df and lambda, at the values in x.

Further information about the noncentral chi-squared distribution can be found at https://en.wikipedia.org/wiki/Noncentral_chi-squared_distribution

See also: ncx2inv, ncx2pdf, ncx2rnd, ncx2stat, chi2cdf

Source Code: ncx2cdf

Example: 1

 

 ## Plot various CDFs from the noncentral chi-squared distribution
 x = 0:0.1:10;
 p1 = ncx2cdf (x, 2, 1);
 p2 = ncx2cdf (x, 2, 2);
 p3 = ncx2cdf (x, 2, 3);
 p4 = ncx2cdf (x, 4, 1);
 p5 = ncx2cdf (x, 4, 2);
 p6 = ncx2cdf (x, 4, 3);
 plot (x, p1, "-r", x, p2, "-g", x, p3, "-k", ...
       x, p4, "-m", x, p5, "-c", x, p6, "-y")
 grid on
 xlim ([0, 10])
 legend ({"df = 2, λ = 1", "df = 2, λ = 2", ...
          "df = 2, λ = 3", "df = 4, λ = 1", ...
          "df = 4, λ = 2", "df = 4, λ = 3"}, "location", "southeast")
 title ("Noncentral chi-squared CDF")
 xlabel ("values in x")
 ylabel ("probability")

                    
plotted figure

Example: 2

 

 ## Compare the noncentral chi-squared CDF with LAMBDA = 2 to the
 ## chi-squared CDF with the same number of degrees of freedom (4).

 x = 0:0.1:10;
 p1 = ncx2cdf (x, 4, 2);
 p2 = chi2cdf (x, 4);
 plot (x, p1, "-", x, p2, "-")
 grid on
 xlim ([0, 10])
 legend ({"Noncentral χ^2(4,2)", "χ^2(4)"}, "location", "northwest")
 title ("Noncentral chi-squared vs chi-squared CDFs")
 xlabel ("values in x")
 ylabel ("probability")

                    
plotted figure

statistics-release-1.6.3/docs/ncx2inv.html000066400000000000000000000172131456127120000205400ustar00rootroot00000000000000 Statistics: ncx2inv

Function Reference: ncx2inv

statistics: x = ncx2inv (p, df, lambda)

Inverse of the noncentral chi-squared cumulative distribution function (iCDF).

For each element of p, compute the quantile (the inverse of the CDF) of the noncentral chi-squared distribution with df degrees of freedom and noncentrality parameter mu. The size of x is the common size of p, df, and mu. A scalar input functions as a constant matrix of the same size as the other inputs.

ncx2inv uses Newton’s method to converge to the solution.

Further information about the noncentral chi-squared distribution can be found at https://en.wikipedia.org/wiki/Noncentral_chi-squared_distribution

See also: ncx2cdf, ncx2pdf, ncx2rnd, ncx2stat, chi2inv

Source Code: ncx2inv

Example: 1

 

 ## Plot various iCDFs from the noncentral chi-squared distribution
 p = 0.001:0.001:0.999;
 x1 = ncx2inv (p, 2, 1);
 x2 = ncx2inv (p, 2, 2);
 x3 = ncx2inv (p, 2, 3);
 x4 = ncx2inv (p, 4, 1);
 x5 = ncx2inv (p, 4, 2);
 x6 = ncx2inv (p, 4, 3);
 plot (p, x1, "-r", p, x2, "-g", p, x3, "-k", ...
       p, x4, "-m", p, x5, "-c", p, x6, "-y")
 grid on
 ylim ([0, 10])
 legend ({"df = 2, λ = 1", "df = 2, λ = 2", ...
          "df = 2, λ = 3", "df = 4, λ = 1", ...
          "df = 4, λ = 2", "df = 4, λ = 3"}, "location", "northwest")
 title ("Noncentral chi-squared iCDF")
 xlabel ("probability")
 ylabel ("values in x")

                    
plotted figure

Example: 2

 

 ## Compare the noncentral chi-squared CDF with LAMBDA = 2 to the
 ## chi-squared CDF with the same number of degrees of freedom (4).

 p = 0.001:0.001:0.999;
 x1 = ncx2inv (p, 4, 2);
 x2 = chi2inv (p, 4);
 plot (p, x1, "-", p, x2, "-");
 grid on
 ylim ([0, 10])
 legend ({"Noncentral χ^2(4,2)", "χ^2(4)"}, "location", "northwest")
 title ("Noncentral chi-squared vs chi-squared quantile functions")
 xlabel ("probability")
 ylabel ("values in x")

                    
plotted figure

statistics-release-1.6.3/docs/ncx2pdf.html000066400000000000000000000170451456127120000205200ustar00rootroot00000000000000 Statistics: ncx2pdf

Function Reference: ncx2pdf

statistics: y = ncx2pdf (x, df, lambda)

Noncentral chi-squared probability distribution function (PDF).

For each element of x, compute the probability density function (PDF) of the noncentral chi-squared distribution with df degrees of freedom and noncentrality parameter lambda. The size of y is the common size of x, df, and lambda. A scalar input functions as a constant matrix of the same size as the other inputs.

Further information about the noncentral chi-squared distribution can be found at https://en.wikipedia.org/wiki/Noncentral_chi-squared_distribution

See also: ncx2cdf, ncx2inv, ncx2rnd, ncx2stat, chi2pdf

Source Code: ncx2pdf

Example: 1

 

 ## Plot various PDFs from the noncentral chi-squared distribution
 x = 0:0.1:10;
 y1 = ncx2pdf (x, 2, 1);
 y2 = ncx2pdf (x, 2, 2);
 y3 = ncx2pdf (x, 2, 3);
 y4 = ncx2pdf (x, 4, 1);
 y5 = ncx2pdf (x, 4, 2);
 y6 = ncx2pdf (x, 4, 3);
 plot (x, y1, "-r", x, y2, "-g", x, y3, "-k", ...
       x, y4, "-m", x, y5, "-c", x, y6, "-y")
 grid on
 xlim ([0, 10])
 ylim ([0, 0.32])
 legend ({"df = 2, λ = 1", "df = 2, λ = 2", ...
          "df = 2, λ = 3", "df = 4, λ = 1", ...
          "df = 4, λ = 2", "df = 4, λ = 3"}, "location", "northeast")
 title ("Noncentral chi-squared PDF")
 xlabel ("values in x")
 ylabel ("density")

                    
plotted figure

Example: 2

 

 ## Compare the noncentral chi-squared PDF with LAMBDA = 2 to the
 ## chi-squared PDF with the same number of degrees of freedom (4).

 x = 0:0.1:10;
 y1 = ncx2pdf (x, 4, 2);
 y2 = chi2pdf (x, 4);
 plot (x, y1, "-", x, y2, "-");
 grid on
 xlim ([0, 10])
 ylim ([0, 0.32])
 legend ({"Noncentral T(10,1)", "T(10)"}, "location", "northwest")
 title ("Noncentral chi-squared vs chi-squared PDFs")
 xlabel ("values in x")
 ylabel ("density")

                    
plotted figure

statistics-release-1.6.3/docs/ncx2rnd.html000066400000000000000000000121631456127120000205260ustar00rootroot00000000000000 Statistics: ncx2rnd

Function Reference: ncx2rnd

statistics: r = ncx2rnd (df, lambda)
statistics: r = ncx2rnd (df, lambda, rows, cols, …)
statistics: r = ncx2rnd (df, lambda, [sz])

Random arrays from the noncentral chi-squared distribution.

r = ncx2rnd (df, lambda) returns an array of random numbers chosen from the noncentral chi-squared distribution with df degrees of freedom and noncentrality parameter lambda. The size of r is the common size of df and lambda. A scalar input functions as a constant matrix of the same size as the other input.

When called with a single size argument, ncx2rnd returns a square matrix with the dimension specified. When called with more than one scalar argument, the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions. The size may also be specified with a row vector of dimensions, sz.

Further information about the noncentral chi-squared distribution can be found at https://en.wikipedia.org/wiki/Noncentral_chi-squared_distribution

See also: ncx2cdf, ncx2inv, ncx2pdf, ncx2stat

Source Code: ncx2rnd

statistics-release-1.6.3/docs/ncx2stat.html000066400000000000000000000110411456127120000207100ustar00rootroot00000000000000 Statistics: ncx2stat

Function Reference: ncx2stat

statistics: [m, v] = ncx2stat (df, lambda)

Compute statistics for the noncentral chi-squared distribution.

[m, v] = ncx2stat (df, lambda) returns the mean and variance of the noncentral chi-squared distribution with df degrees of freedom and noncentrality parameter lambda.

The size of m (mean) and v (variance) is the common size of the input arguments. A scalar input functions as a constant matrix of the same size as the other inputs.

Further information about the noncentral chi-squared distribution can be found at https://en.wikipedia.org/wiki/Noncentral_chi-squared_distribution

See also: ncx2cdf, ncx2inv, ncx2pdf, ncx2rnd

Source Code: ncx2stat

statistics-release-1.6.3/docs/normalise_distribution.html000066400000000000000000000134271456127120000237440ustar00rootroot00000000000000 Statistics: normalise_distribution

Function Reference: normalise_distribution

statistics: NORMALISED = normalise_distribution (DATA)
statistics: NORMALISED = normalise_distribution (DATA, DISTRIBUTION)
statistics: NORMALISED = normalise_distribution (DATA, DISTRIBUTION, DIMENSION)

Transform a set of data so as to be N(0,1) distributed according to an idea by van Albada and Robinson.

This is achieved by first passing it through its own cumulative distribution function (CDF) in order to get a uniform distribution, and then mapping the uniform to a normal distribution.

The data must be passed as a vector or matrix in DATA. If the CDF is unknown, then [] can be passed in DISTRIBUTION, and in this case the empirical CDF will be used. Otherwise, if the CDFs for all data are known, they can be passed in DISTRIBUTION, either in the form of a single function name as a string, or a single function handle, or a cell array consisting of either all function names as strings, or all function handles. In the latter case, the number of CDFs passed must match the number of rows, or columns respectively, to normalise. If the data are passed as a matrix, then the transformation will operate either along the first non-singleton dimension, or along DIMENSION if present.

Notes: The empirical CDF will map any two sets of data having the same size and their ties in the same places after sorting to some permutation of the same normalised data:

 
 normalise_distribution([1 2 2 3 4])
 ⇒ -1.28  0.00  0.00  0.52  1.28

 normalise_distribution([1 10 100 10 1000])
 ⇒ -1.28  0.00  0.52  0.00  1.28
 

Original source: S.J. van Albada, P.A. Robinson "Transformation of arbitrary distributions to the normal distribution with application to EEG test-retest reliability" Journal of Neuroscience Methods, Volume 161, Issue 2, 15 April 2007, Pages 205-211 ISSN 0165-0270, 10.1016/j.jneumeth.2006.11.004. (http://www.sciencedirect.com/science/article/pii/S0165027006005668)

Source Code: normalise_distribution

statistics-release-1.6.3/docs/normcdf.html000066400000000000000000000174221456127120000206030ustar00rootroot00000000000000 Statistics: normcdf

Function Reference: normcdf

statistics: p = normcdf (x)
statistics: p = normcdf (x, mu)
statistics: p = normcdf (x, mu, sigma)
statistics: p = normcdf (…, "upper")
statistics: [p, plo, pup] = normcdf (x, mu, sigma, pcov)
statistics: [p, plo, pup] = normcdf (x, mu, sigma, pcov, alpha)
statistics: [p, plo, pup] = normcdf (…, "upper")

Normal cumulative distribution function (CDF).

For each element of x, compute the cumulative distribution function (CDF) of the normal distribution with mean mu and standard deviation sigma. The size of p is the common size of x, mu and sigma. A scalar input functions as a constant matrix of the same size as the other inputs.

Default values are mu = 0, sigma = 1.

When called with three output arguments, i.e. [p, plo, pup], normcdf computes the confidence bounds for p when the input parameters mu and sigma are estimates. In such case, pcov, a 2×2 matrix containing the covariance matrix of the estimated parameters, is necessary. Optionally, alpha, which has a default value of 0.05, specifies the 100 * (1 - alpha) percent confidence bounds. plo and pup are arrays of the same size as p containing the lower and upper confidence bounds.

[…] = normcdf (…, "upper") computes the upper tail probability of the normal distribution with parameters mu and sigma, at the values in x. This can be used to compute a right-tailed p-value. To compute a two-tailed p-value, use 2 * normcdf (-abs (x), mu, sigma).

Further information about the normal distribution can be found at https://en.wikipedia.org/wiki/Normal_distribution

See also: norminv, normpdf, normrnd, normfit, normlike, normstat

Source Code: normcdf

Example: 1

 

 ## Plot various CDFs from the normal distribution
 x = -5:0.01:5;
 p1 = normcdf (x, 0, 0.5);
 p2 = normcdf (x, 0, 1);
 p3 = normcdf (x, 0, 2);
 p4 = normcdf (x, -2, 0.8);
 plot (x, p1, "-b", x, p2, "-g", x, p3, "-r", x, p4, "-c")
 grid on
 xlim ([-5, 5])
 legend ({"μ = 0, σ = 0.5", "μ = 0, σ = 1", ...
          "μ = 0, σ = 2", "μ = -2, σ = 0.8"}, "location", "southeast")
 title ("Normal CDF")
 xlabel ("values in x")
 ylabel ("probability")

                    
plotted figure

statistics-release-1.6.3/docs/normfit.html000066400000000000000000000247501456127120000206330ustar00rootroot00000000000000 Statistics: normfit

Function Reference: normfit

statistics: muhat = normfit (x)
statistics: [muhat, sigmahat] = normfit (x)
statistics: [muhat, sigmahat, muci] = normfit (x)
statistics: [muhat, sigmahat, muci, sigmaci] = normfit (x)
statistics: […] = normfit (x, alpha)
statistics: […] = normfit (x, alpha, censor)
statistics: […] = normfit (x, alpha, censor, freq)
statistics: […] = normfit (x, alpha, censor, freq, options)

Estimate parameters and confidence intervals for the normal distribution.

[muhat, sigmahat] = normfit (x) estimates the parameters of the normal distribution given the data in x. muhat is an estimate of the mean, and sigmahat is an estimate of the standard deviation.

[muhat, sigmahat, muci, sigmaci] = normfit (x) returns the 95% confidence intervals for the mean and standard deviation estimates in the arrays muci and sigmaci, respectively.

  • x can be a vector or a matrix. When x is a matrix, the parameter estimates and their confidence intervals are computed for each column. In this case, normfit supports only 2 input arguments, x and alpha. Optional arguments censor, freq, and options can be used only when x is a vector.
  • alpha is a scalar value in the range (0,1) specifying the confidence level for the confidence intervals calculated as 100×(1 – alpha)%. By default, the optional argument alpha is 0.05 corresponding to 95% confidence intervals. Pass in [] for alpha to use the default values.
  • censor is a logical vector of the same length as x specifying whether each value in x is right-censored or not. 1 indicates observations that are right-censored and 0 indicates observations that are fully observed. With censoring, muhat and sigmahat are the maximum likelihood estimates (MLEs). If empty, the default is an array of 0s, meaning that all observations are fully observed.
  • freq is a vector of the same length as x and it typically contains non-negative integer counts of the corresponding elements in x. If empty, the default is an array of 1s, meaning one observation per element of x. To obtain the weighted MLEs for a data set with censoring, specify weights of observations, normalized to the number of observations in x. However, when there is no censored data (default), the returned estimate for standard deviation is not exactly the WMLE. To compute the weighted MLE, multiply the value returned in sigmahat by (SUM (freq) - 1) / SUM (freq). This correction is needed because normfit normally computes sigmahat using an unbiased variance estimator when there is no censored data. When there is censoring in the data, the correction is not needed, since normfit does not use the unbiased variance estimator in that case.
  • options is a structure with the control parameters for fminsearch which is used internally to compute MLEs for censored data. By default, it uses the following options:
    • options.Display = "off"
    • options.MaxFunEvals = 400
    • options.MaxIter = 200
    • options.TolX = 1e-6

See also: normcdf, norminv, normpdf, normrnd, normlike, normstat

Source Code: normfit

Example: 1

 

 ## Sample 3 populations from 3 different normal distibutions
 randn ("seed", 1);    # for reproducibility
 r1 = normrnd (2, 5, 5000, 1);
 randn ("seed", 2);    # for reproducibility
 r2 = normrnd (5, 2, 5000, 1);
 randn ("seed", 3);    # for reproducibility
 r3 = normrnd (9, 4, 5000, 1);
 r = [r1, r2, r3];

 ## Plot them normalized and fix their colors
 hist (r, 15, 0.4);
 h = findobj (gca, "Type", "patch");
 set (h(1), "facecolor", "c");
 set (h(2), "facecolor", "g");
 set (h(3), "facecolor", "r");
 hold on

 ## Estimate their mu and sigma parameters
 [muhat, sigmahat] = normfit (r);

 ## Plot their estimated PDFs
 x = [min(r(:)):max(r(:))];
 y = normpdf (x, muhat(1), sigmahat(1));
 plot (x, y, "-pr");
 y = normpdf (x, muhat(2), sigmahat(2));
 plot (x, y, "-sg");
 y = normpdf (x, muhat(3), sigmahat(3));
 plot (x, y, "-^c");
 ylim ([0, 0.5])
 xlim ([-20, 20])
 hold off
 legend ({"Normalized HIST of sample 1 with mu=2, σ=5", ...
          "Normalized HIST of sample 2 with mu=5, σ=2", ...
          "Normalized HIST of sample 3 with mu=9, σ=4", ...
          sprintf("PDF for sample 1 with estimated mu=%0.2f and σ=%0.2f", ...
                  muhat(1), sigmahat(1)), ...
          sprintf("PDF for sample 2 with estimated mu=%0.2f and σ=%0.2f", ...
                  muhat(2), sigmahat(2)), ...
          sprintf("PDF for sample 3 with estimated mu=%0.2f and σ=%0.2f", ...
                  muhat(3), sigmahat(3))}, "location", "northwest")
 title ("Three population samples from different normal distibutions")
 hold off

                    
plotted figure

statistics-release-1.6.3/docs/norminv.html000066400000000000000000000146441456127120000206460ustar00rootroot00000000000000 Statistics: norminv

Function Reference: norminv

statistics: x = norminv (p)
statistics: x = norminv (p, mu)
statistics: x = norminv (p, mu, sigma)

Inverse of the normal cumulative distribution function (iCDF).

For each element of p, compute the quantile (the inverse of the CDF) of the normal distribution with mean mu and standard deviation sigma. The size of p is the common size of p, mu and sigma. A scalar input functions as a constant matrix of the same size as the other inputs.

Default values are mu = 0, sigma = 1.

The default values correspond to the standard normal distribution and computing its quantile function is also possible with the probit function, which is faster but it does not perform any input validation.

Further information about the normal distribution can be found at https://en.wikipedia.org/wiki/Normal_distribution

See also: norminv, normpdf, normrnd, normfit, normlike, normstat, probit

Source Code: norminv

Example: 1

 

 ## Plot various iCDFs from the normal distribution
 p = 0.001:0.001:0.999;
 x1 = norminv (p, 0, 0.5);
 x2 = norminv (p, 0, 1);
 x3 = norminv (p, 0, 2);
 x4 = norminv (p, -2, 0.8);
 plot (p, x1, "-b", p, x2, "-g", p, x3, "-r", p, x4, "-c")
 grid on
 ylim ([-5, 5])
 legend ({"μ = 0, σ = 0.5", "μ = 0, σ = 1", ...
          "μ = 0, σ = 2", "μ = -2, σ = 0.8"}, "location", "northwest")
 title ("Normal iCDF")
 xlabel ("probability")
 ylabel ("values in x")

                    
plotted figure

statistics-release-1.6.3/docs/normlike.html000066400000000000000000000132151456127120000207670ustar00rootroot00000000000000 Statistics: normlike

Function Reference: normlike

statistics: nlogL = normlike (params, x)
statistics: [nlogL, avar] = normlike (params, x)
statistics: […] = normlike (params, x, censor)
statistics: […] = normlike (params, x, censor, freq)

Negative log-likelihood for the normal distribution.

nlogL = normlike (params, x) returns the negative log-likelihood for the normal distribution, evaluated at parameters params(1) = mean and params(2) = standard deviation, given x. nlogL is a scalar.

[nlogL, avar] = normlike (params, x) returns the inverse of Fisher’s information matrix, avar. If the input parameter values in params are the maximum likelihood estimates, the diagonal elements of avar are their asymptotic variances. avar is based on the observed Fisher’s information, not the expected information.

[…] = normlike (params, x, censor) accepts a boolean vector of the same size as x that is 1 for observations that are right-censored and 0 for observations that are observed exactly.

[…] = normlike (params, x, censor, freq) accepts a frequency vector of the same size as x. freq typically contains integer frequencies for the corresponding elements in x, but it may contain any non-integer non-negative values. Pass in [] for censor to use its default value.

See also: normcdf, norminv, normpdf, normrnd, normfit, normstat

Source Code: normlike

statistics-release-1.6.3/docs/normpdf.html000066400000000000000000000142121456127120000206120ustar00rootroot00000000000000 Statistics: normpdf

Function Reference: normpdf

statistics: y = normpdf (x)
statistics: y = normpdf (x, mu)
statistics: y = normpdf (x, mu, sigma)

Normal probability density function (PDF).

For each element of x, compute the probability density function (PDF) of the normal distribution with mean mu and standard deviation sigma. The size of y is the common size of p, mu and sigma. A scalar input functions as a constant matrix of the same size as the other inputs.

Default values are mu = 0, sigma = 1.

Further information about the normal distribution can be found at https://en.wikipedia.org/wiki/Normal_distribution

See also: norminv, norminv, normrnd, normfit, normlike, normstat

Source Code: normpdf

Example: 1

 

 ## Plot various PDFs from the normal distribution
 x = -5:0.01:5;
 y1 = normpdf (x, 0, 0.5);
 y2 = normpdf (x, 0, 1);
 y3 = normpdf (x, 0, 2);
 y4 = normpdf (x, -2, 0.8);
 plot (x, y1, "-b", x, y2, "-g", x, y3, "-r", x, y4, "-c")
 grid on
 xlim ([-5, 5])
 ylim ([0, 0.9])
 legend ({"μ = 0, σ = 0.5", "μ = 0, σ = 1", ...
          "μ = 0, σ = 2", "μ = -2, σ = 0.8"}, "location", "northeast")
 title ("Normal PDF")
 xlabel ("values in x")
 ylabel ("density")

                    
plotted figure

statistics-release-1.6.3/docs/normplot.html000066400000000000000000000171741456127120000210310ustar00rootroot00000000000000 Statistics: normplot

Function Reference: normplot

Function File: normplot (x)
Function File: normplot (ax, x)
Function File: h = normplot (…)

Produce normal probability plot of the data in x. If x is a matrix, normplot plots the data for each column. NaN values are ignored.

h = normplot (ax, x) takes a handle ax in addition to the data in x and it uses that axes for ploting. You may get this handle of an existing plot with gca/.

The line joing the 1st and 3rd quantile is drawn solid whereas its extensions to both ends are dotted. If the underlying distribution is normal, the points will cluster around the solid part of the line. Other distribution types will introduce curvature in the plot.

See also: cdfplot, wblplot

Source Code: normplot

Example: 1

 

 h = normplot([1:20]);

                    
plotted figure

Example: 2

 

 h = normplot([1:20;5:2:44]');

                    
plotted figure

Example: 3

 

 ax = newplot();
 h = normplot(ax, [1:20]);
 ax = gca;
 h = normplot(ax, [-10:10]);
 set (ax, "xlim", [-11, 21]);

                    
plotted figure

statistics-release-1.6.3/docs/normrnd.html000066400000000000000000000124651456127120000206340ustar00rootroot00000000000000 Statistics: normrnd

Function Reference: normrnd

statistics: r = normrnd (mu, sigma)
statistics: r = normrnd (mu, sigma, rows)
statistics: r = normrnd (mu, sigma, rows, cols, …)
statistics: r = normrnd (mu, sigma, [sz])

Random arrays from the normal distribution.

r = normrnd (mu, sigma) returns an array of random numbers chosen from the normal distribution with mean mu and standard deviation sigma. The size of r is the common size of mu and sigma. A scalar input functions as a constant matrix of the same size as the other inputs. Both parameters must be finite real numbers and sigma > 0, otherwise NaN is returned.

When called with a single size argument, normrnd returns a square matrix with the dimension specified. When called with more than one scalar argument, the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions. The size may also be specified with a row vector of dimensions, sz.

Further information about the normal distribution can be found at https://en.wikipedia.org/wiki/Normal_distribution

See also: norminv, norminv, normpdf, normfit, normlike, normstat

Source Code: normrnd

statistics-release-1.6.3/docs/normstat.html000066400000000000000000000110461456127120000210160ustar00rootroot00000000000000 Statistics: normstat

Function Reference: normstat

statistics: [m, v] = normstat (mu, sigma)

Compute statistics of the normal distribution.

[m, v] = normstat (mu, sigma) returns the mean and variance of the normal distribution with non-centrality (distance) parameter mu and scale parameter sigma.

The size of m (mean) and v (variance) is the common size of the input arguments. A scalar input functions as a constant matrix of the same size as the other inputs.

Further information about the normal distribution can be found at https://en.wikipedia.org/wiki/Normal_distribution

See also: norminv, norminv, normpdf, normrnd, normfit, normlike

Source Code: normstat

statistics-release-1.6.3/docs/optimalleaforder.html000066400000000000000000000142521456127120000225020ustar00rootroot00000000000000 Statistics: optimalleaforder

Function Reference: optimalleaforder

statistics: leafOrder = optimalleaforder (tree, D)
statistics: leafOrder = optimalleaforder (…, Name, Value)

Compute the optimal leaf ordering of a hierarchical binary cluster tree.

The optimal leaf ordering of a tree is the ordering which minimizes the sum of the distances between each leaf and its adjacent leaves, without altering the structure of the tree, that is without redefining the clusters of the tree.

Required inputs:

  • tree: a hierarchical cluster tree tree generated by the linkage function.
  • D: a matrix of distances as computed by pdist.

Optional inputs can be the following property/value pairs:

  • property ’Criteria’ at the moment can only have the value ’adjacent’, for minimizing the distances between leaves.
  • property ’Transformation’ can have one of the values ’linear’, ’inverse’ or a handle to a custom function which computes S the similarity matrix.

optimalleaforder’s output leafOrder is the optimal leaf ordering.

Reference Bar-Joseph, Z., Gifford, D.K., and Jaakkola, T.S. Fast optimal leaf ordering for hierarchical clustering. Bioinformatics vol. 17 suppl. 1, 2001.

See also: dendrogram, linkage, pdist

Source Code: optimalleaforder

Example: 1

 

 randn ("seed", 5)  # for reproducibility
 X = randn (10, 2);
 D = pdist (X);
 tree = linkage(D, 'average');
 optimalleaforder (tree, D, 'Transformation', 'linear')

ans =

   10    8    3    5    9    7    2    4    6    1

                    
statistics-release-1.6.3/docs/pca.html000066400000000000000000000176161456127120000177230ustar00rootroot00000000000000 Statistics: pca

Function Reference: pca

statistics: coeff = pca (x)
statistics: coeff = pca (x, Name, Value)
statistics: [coeff, score, latent] = pca (…)
statistics: [coeff, score, latent, tsquared] = pca (…)
statistics: [coeff, score, latent, tsquared, explained, mu] = pca (…)

Performs a principal component analysis on a data matrix.

A principal component analysis of a data matrix of N observations in a D dimensional space returns a D×D transformation matrix, to perform a change of basis on the data. The first component of the new basis is the direction that maximizes the variance of the projected data.

Input argument:

  • x : a N×D data matrix

The following Name, Value pair arguments can be used:

  • "Algorithm" defines the algorithm to use:
    • "svd" (default), for singular value decomposition
    • "eig" for eigenvalue decomposition
  • "Centered" is a boolean indicator for centering the observation data. It is true by default.
  • "Economy" is a boolean indicator for the economy size output. It is true by default. Hence, pca returns only the elements of latent that are not necessarily zero, and the corresponding columns of coeff and score, that is, when N <= D, only the first N - 1.
  • "NumComponents" defines the number of components k to return. If k < p, then only the first k columns of coeff and score are returned.
  • "Rows" defines how to handle missing values:
    • "complete" (default), missing values are removed before computation.
    • "pairwise" (only valid when "Algorithm" is "eig"), the covariance of rows with missing data is computed using the available data, but the covariance matrix could be not positive definite, which triggers the termination of pca.
    • "complete", missing values are not allowed, pca terminates with an error if there are any.
  • "Weights" defines observation weights as a vector of positive values of length N.
  • "VariableWeights" defines variable weights:
    • a vector of positive values of length D.
    • the string "variance" to use the sample variance as weights.

Return values:

  • coeff : the principal component coefficients, a D×D transformation matrix
  • score : the principal component scores, the representation of x in the principal component space
  • latent : the principal component variances, i.e., the eigenvalues of the covariance matrix of x
  • tsquared : Hotelling’s T-squared Statistic for each observation in x
  • explained : the percentage of the variance explained by each principal component
  • mu : the estimated mean of each variable of x, it is zero if the data are not centered

Matlab compatibility note: the alternating least square method ’als’ and associated options ’Coeff0’, ’Score0’, and ’Options’ are not yet implemented

References

  1. Jolliffe, I. T., Principal Component Analysis, 2nd Edition, Springer, 2002

See also: barttest, factoran, pcacov, pcares

Source Code: pca

statistics-release-1.6.3/docs/pcacov.html000066400000000000000000000160111456127120000204170ustar00rootroot00000000000000 Statistics: pcacov

Function Reference: pcacov

statistics: coeff = pcacov (K)
statistics: [coeff, latent] = pcacov (K)
statistics: [coeff, latent, explained] = pcacov (K)

Perform principal component analysis on covariance matrix

coeff = pcacov (K) performs principal component analysis on the square covariance matrix K and returns the principal component coefficients, also known as loadings. The columns are in order of decreasing component variance.

[coeff, latent] = pcacov (K) also returns a vector with the principal component variances, i.e. the eigenvalues of K. latent has a length of size (coeff, 1).

[coeff, latent, explained] = pcacov (K) also returns a vector with the percentage of the total variance explained by each principal component. explained has the same size as latent. The entries in explained range from 0 (none of the variance is explained) to 100 (all of the variance is explained).

pcacov does not standardize K to have unit variances. In order to perform principal component analysis on standardized variables, use the correlation matrix R = K ./ (SD * SD'), where SD = sqrt (diag (K)), in place of K. To perform principal component analysis directly on the data matrix, use pca.

References

  1. Jolliffe, I. T., Principal Component Analysis, 2nd Edition, Springer, 2002

See also: bartlett, factoran, pcares, pca

Source Code: pcacov

Example: 1

 

 x = [ 7    26     6    60;
       1    29    15    52;
      11    56     8    20;
      11    31     8    47;
       7    52     6    33;
      11    55     9    22;
       3    71    17     6;
       1    31    22    44;
       2    54    18    22;
      21    47     4    26;
       1    40    23    34;
      11    66     9    12;
      10    68     8    12
     ];
 Kxx = cov (x);
 [coeff, latent, explained] = pcacov (Kxx)

coeff =

  -0.067800  -0.646018   0.567315   0.506180
  -0.678516  -0.019993  -0.543969   0.493268
   0.029021   0.755310   0.403553   0.515567
   0.730874  -0.108480  -0.468398   0.484416

latent =

   517.7969
    67.4964
    12.4054
     0.2372

explained =

   8.6597e+01
   1.1288e+01
   2.0747e+00
   3.9662e-02

                    
statistics-release-1.6.3/docs/pcares.html000066400000000000000000000152431456127120000204270ustar00rootroot00000000000000 Statistics: pcares

Function Reference: pcares

statistics: residuals = pcares (x, ndim)
statistics: [residuals, reconstructed] = pcares (x, ndim)

Calculate residuals from principal component analysis.

residuals = pcares (x, ndim) returns the residuals obtained by retaining ndim principal components of the N×D matrix x. Rows of x correspond to observations, columns of x correspond to variables. ndim is a scalar and must be less than or equal to D. residuals is a matrix of the same size as x. Use the data matrix, not the covariance matrix, with this function.

[residuals, reconstructed] = pcares (x, ndim) returns the reconstructed observations, i.e. the approximation to x obtained by retaining its first ndim principal components.

pcares does not normalize the columns of x. Use pcares (zscore (x), ndim) in order to perform the principal components analysis based on standardized variables, i.e. based on correlations. Use pcacov in order to perform principal components analysis directly on a covariance or correlation matrix without constructing residuals.

References

  1. Jolliffe, I. T., Principal Component Analysis, 2nd Edition, Springer, 2002

See also: factoran, pcacov, pca

Source Code: pcares

Example: 1

 

 x = [ 7    26     6    60;
       1    29    15    52;
      11    56     8    20;
      11    31     8    47;
       7    52     6    33;
      11    55     9    22;
       3    71    17     6;
       1    31    22    44;
       2    54    18    22;
      21    47     4    26;
       1    40    23    34;
      11    66     9    12;
      10    68     8    12];

 ## As we increase the number of principal components, the norm
 ## of the residuals matrix will decrease
 r1 = pcares (x,1);
 n1 = norm (r1)
 r2 = pcares (x,2);
 n2 = norm (r2)
 r3 = pcares (x,3);
 n3 = norm (r3)
 r4 = pcares (x,4);
 n4 = norm (r4)

n1 = 28.460
n2 = 12.201
n3 = 1.6870
n4 = 4.2168e-14
                    
statistics-release-1.6.3/docs/pdf.html000066400000000000000000000325571456127120000177320ustar00rootroot00000000000000 Statistics: pdf

Function Reference: pdf

statistics: y = pdf (name, x, A)
statistics: y = pdf (name, x, A, B)
statistics: y = pdf (name, x, A, B, C)

Return the PDF of a univariate distribution evaluated at x.

pdf is a wrapper for the univariate cumulative distribution functions available in the statistics package. See the corresponding functions’ help to learn the signification of the parameters after x.

y = pdf (name, x, A) returns the CDF for the one-parameter distribution family specified by name and the distribution parameter A, evaluated at the values in x.

y = pdf (name, x, A, B) returns the CDF for the two-parameter distribution family specified by name and the distribution parameters A and B, evaluated at the values in x.

y = pdf (name, x, A, B, C) returns the CDF for the three-parameter distribution family specified by name and the distribution parameters A, B, and C, evaluated at the values in x.

name must be a char string of the name or the abbreviation of the desired cumulative distribution function as listed in the followng table. The last column shows the number of required parameters that should be parsed after x to the desired PDF.

Distribution NameAbbreviationInput Parameters
"Beta""beta"2
"Binomial""bino"2
"Birnbaum-Saunders""bisa"2
"Burr""burr"3
"Cauchy""cauchy"2
"Chi-squared""chi2"1
"Extreme Value""ev"2
"Exponential""exp"1
"F-Distribution""f"2
"Gamma""gam"2
"Geometric""geo"1
"Generalized Extreme Value""gev"3
"Generalized Pareto""gp"3
"Gumbel""gumbel"2
"Half-normal""hn"2
"Hypergeometric""hyge"3
"Inverse Gaussian""invg"2
"Laplace""laplace"2
"Logistic""logi"2
"Log-Logistic""logl"2
"Lognormal""logn"2
"Nakagami""naka"2
"Negative Binomial""nbin"2
"Noncentral F-Distribution""ncf"3
"Noncentral Student T""nct"2
"Noncentral Chi-Squared""ncx2"2
"Normal""norm"2
"Poisson""poiss"1
"Rayleigh""rayl"1
"Rician""rice"2
"Student T""t"1
"location-scale T""tls"3
"Triangular""tri"3
"Discrete Uniform""unid"1
"Uniform""unif"2
"Von Mises""vm"2
"Weibull""wbl"2

See also: cdf, icdf, random, betapdf, binopdf, bisapdf, burrpdf, cauchypdf, chi2pdf, evpdf, exppdf, fpdf, gampdf, geopdf, gevpdf, gppdf, gumbelpdf, hnpdf, hygepdf, invgpdf, laplacepdf, logipdf, loglpdf, lognpdf, nakapdf, nbinpdf, ncfpdf, nctpdf, ncx2pdf, normpdf, poisspdf, raylpdf, ricepdf, tpdf, tripdf, unidpdf, unifpdf, vmpdf, wblpdf

Source Code: pdf

statistics-release-1.6.3/docs/pdist.html000066400000000000000000000207011456127120000202700ustar00rootroot00000000000000 Statistics: pdist

Function Reference: pdist

statistics: D = pdist (X)
statistics: D = pdist (X, Distance)
statistics: D = pdist (X, Distance, DistParameter)

Return the distance between any two rows in X.

D = pdist (X calculates the euclidean distance between pairs of observations in X. X must be an M×P numeric matrix representing M points in P-dimensional space. This function computes the pairwise distances returned in D as an M×(M-1)/P row vector. Use Z = squareform (D) to convert the row vector D into a an M×M symmetric matrix Z, where Z(i,j) corresponds to the pairwise distance between points i and j.

D = pdist (X, Y, Distance) returns the distance between pairs of observations in X using the metric specified by Distance, which can be any of the following options.

"euclidean"Euclidean distance.
"squaredeuclidean"Squared Euclidean distance.
"seuclidean"standardized Euclidean distance. Each coordinate difference between the rows in X and the query matrix Y is scaled by dividing by the corresponding element of the standard deviation computed from X. A different scaling vector can be specified with the subsequent DistParameter input argument.
"mahalanobis"Mahalanobis distance, computed using a positive definite covariance matrix. A different covariance matrix can be specified with the subsequent DistParameter input argument.
"cityblock"City block distance.
"minkowski"Minkowski distance. The default exponent is 2. A different exponent can be specified with the subsequent DistParameter input argument.
"chebychev"Chebychev distance (maximum coordinate difference).
"cosine"One minus the cosine of the included angle between points (treated as vectors).
"correlation"One minus the sample linear correlation between observations (treated as sequences of values).
"hamming"Hamming distance, which is the percentage of coordinates that differ.
"jaccard"One minus the Jaccard coefficient, which is the percentage of nonzero coordinates that differ.
"spearman"One minus the sample Spearman’s rank correlation between observations (treated as sequences of values).
@distfunCustom distance function handle. A distance function of the form function D2 = distfun (XI, YI), where XI is a 1×P vector containing a single observation in P-dimensional space, YI is an N×P matrix containing an arbitrary number of observations in the same P-dimensional space, and D2 is an N×P vector of distances, where (D2k) is the distance between observations XI and (YIk,:).

D = pdist (X, Y, Distance, DistParameter) returns the distance using the metric specified by Distance and DistParameter. The latter one can only be specified when the selected Distance is "seuclidean", "minkowski", and "mahalanobis".

See also: pdist2, squareform, linkage

Source Code: pdist

statistics-release-1.6.3/docs/pdist2.html000066400000000000000000000240421456127120000203540ustar00rootroot00000000000000 Statistics: pdist2

Function Reference: pdist2

statistics: D = pdist2 (X, Y)
statistics: D = pdist2 (X, Y, Distance)
statistics: D = pdist2 (X, Y, Distance, DistParameter)
statistics: D = pdist2 (…, Name, Value)
statistics: [D, I] = pdist2 (…, Name, Value)

Compute pairwise distance between two sets of vectors.

D = pdist2 (X, Y) calculates the euclidean distance between each pair of observations in X and Y. Let X be an M×P matrix representing M points in P-dimensional space and Y be an N×P matrix representing another set of points in the same space. This function computes the M×N distance matrix D, where D(i,j) is the distance between X(i,:) and Y(j,:).

D = pdist2 (X, Y, Distance) returns the distance between each pair of observations in X and Y using the metric specified by Distance, which can be any of the following options.

"euclidean"Euclidean distance.
"squaredeuclidean"Squared Euclidean distance.
"seuclidean"standardized Euclidean distance. Each coordinate difference between the rows in X and the query matrix Y is scaled by dividing by the corresponding element of the standard deviation computed from X. A different scaling vector can be specified with the subsequent DistParameter input argument.
"mahalanobis"Mahalanobis distance, computed using a positive definite covariance matrix. A different covariance matrix can be specified with the subsequent DistParameter input argument.
"cityblock"City block distance.
"minkowski"Minkowski distance. The default exponent is 2. A different exponent can be specified with the subsequent DistParameter input argument.
"chebychev"Chebychev distance (maximum coordinate difference).
"cosine"One minus the cosine of the included angle between points (treated as vectors).
"correlation"One minus the sample linear correlation between observations (treated as sequences of values).
"hamming"Hamming distance, which is the percentage of coordinates that differ.
"jaccard"One minus the Jaccard coefficient, which is the percentage of nonzero coordinates that differ.
"spearman"One minus the sample Spearman’s rank correlation between observations (treated as sequences of values).
@distfunCustom distance function handle. A distance function of the form function D2 = distfun (XI, YI), where XI is a 1×P vector containing a single observation in P-dimensional space, YI is an N×P matrix containing an arbitrary number of observations in the same P-dimensional space, and D2 is an N×P vector of distances, where (D2k) is the distance between observations XI and (YIk,:).

D = pdist2 (X, Y, Distance, DistParameter) returns the distance using the metric specified by Distance and DistParameter. The latter one can only be specified when the selected Distance is "seuclidean", "minkowski", and "mahalanobis".

D = pdist2 (…, Name, Value) for any previous arguments, modifies the computation using Name-Value parameters.

  • D = pdist2 (X, Y, Distance, "Smallest", K) computes the distance using the metric specified by Distance and returns the K smallest pairwise distances to observations in X for each observation in Y in ascending order.
  • D = pdist2 (X, Y, Distance, DistParameter, "Largest", K) computes the distance using the metric specified by Distance and DistParameter and returns the K largest pairwise distances in descending order.

[D, I] = pdist2 (…, Name, Value) also returns the matrix I, which contains the indices of the observations in X corresponding to the distances in D. You must specify either "Smallest" or "Largest" as an optional Name-Value pair pair argument to compute the second output argument.

See also: pdist, knnsearch, rangesearch

Source Code: pdist2

statistics-release-1.6.3/docs/plsregress.html000066400000000000000000000351321456127120000213420ustar00rootroot00000000000000 Statistics: plsregress

Function Reference: plsregress

statistics: [xload, yload] = plsregress (X, Y)
statistics: [xload, yload] = plsregress (X, Y, NCOMP)
statistics: [xload, yload, xscore, yscore, coef, pctVar, mse, stats] = plsregress (X, Y, NCOMP)
statistics: [xload, yload, xscore, yscore, coef, pctVar, mse, stats] = plsregress (…, Name, Value)

Calculate partial least squares regression using SIMPLS algorithm.

plsregress uses the SIMPLS algorithm, and first centers X and Y by subtracting off column means to get centered variables. However, it does not rescale the columns. To perform partial least squares regression with standardized variables, use zscore to normalize X and Y.

[xload, yload] = plsregress (X, Y) computes a partial least squares regression of Y on X, using NCOMP PLS components, which by default are calculated as min (size (X, 1) - 1, size(X, 2)), and returns the the predictor and response loadings in xload and yload, respectively.

  • X is an N×P matrix of predictor variables, with rows corresponding to observations, and columns corresponding to variables.
  • Y is an N×M response matrix.
  • xload is a P×NCOMP matrix of predictor loadings, where each row of xload contains coefficients that define a linear combination of PLS components that approximate the original predictor variables.
  • yload is an M×NCOMP matrix of response loadings, where each row of yload contains coefficients that define a linear combination of PLS components that approximate the original response variables.

[xload, yload] = plsregress (X, Y, NCOMP) defines the desired number of PLS components to use in the regression. NCOMP, a scalar positive integer, must not exceed the default calculated value.

[xload, yload, xscore, yscore, coef, pctVar, mse, stats] = plsregress (X, Y, NCOMP) also returns the following arguments:

  • xscore is an N×NCOMP orthonormal matrix with the predictor scores, i.e., the PLS components that are linear combinations of the variables in X, with rows corresponding to observations and columns corresponding to components.
  • yscore is an N×NCOMP orthonormal matrix with the response scores, i.e., the linear combinations of the responses with which the PLS components xscore have maximum covariance, with rows corresponding to observations and columns corresponding to components.
  • coef is a (P+1)×M matrix with the PLS regression coefficients, containing the intercepts in the first row.
  • pctVar is a 2×NCOMP matrix containing the percentage of the variance explained by the model with the first row containing the percentage of exlpained varianced in X by each PLS component and the second row containing the percentage of explained variance in Y.
  • mse is a 2×(NCOMP+1) matrix containing the estimated mean squared errors for PLS models with 0:NCOMP components with the first row containing the squared errors for the predictor variables in X and the second row containing the mean squared errors for the response variable(s) in Y.
  • stats is a structure with the following fields:
    • stats.W is a P×NCOMP matrix of PLS weights.
    • stats.T2 is the T^2 statistics for each point in xscore.
    • stats.Xresiduals is an N×P matrix with the predictor residuals.
    • stats.Yresiduals is an N×M matrix with the response residuals.

[…] = plsregress (…, Name, Value, …) specifies one or more of the following Name/Value pairs:

NameValue
"CV"The method used to compute mse. When Value is a positive integer K, plsregress uses K-fold cross-validation. Set Value to a cross-validation partition, created using cvpartition, to use other forms of cross-validation. Set Value to "resubstitution" to use both X and Y to fit the model and to estimate the mean squared errors, without cross-validation. By default, Value = "resubstitution".
"MCReps"A positive integer indicating the number of Monte-Carlo repetitions for cross-validation. By default, Value = 1. A different "MCReps" value is only meaningful when using the "HoldOut" method for cross-validation, previously set by a cvpartition object. If no cross-validation method is used, then "MCReps" must be 1.

Further information about the PLS regression can be found at https://en.wikipedia.org/wiki/Partial_least_squares_regression

References

  1. SIMPLS: An alternative approach to partial least squares regression. Chemometrics and Intelligent Laboratory Systems (1993)

Source Code: plsregress

Example: 1

 

 ## Perform Partial Least-Squares Regression

 ## Load the spectra data set and use the near infrared (NIR) spectral
 ## intensities (NIR) as the predictor and the corresponding octave
 ## ratings (octave) as the response.
 load spectra

 ## Perform PLS regression with 10 components
 [xload, yload, xscore, yscore, coef, ptcVar] = plsregress (NIR, octane, 10);

 ## Plot the percentage of explained variance in the response variable
 ## (PCTVAR) as a function of the number of components.
 plot (1:10, cumsum (100 * ptcVar(2,:)), "-ro");
 xlim ([1, 10]);
 xlabel ("Number of PLS components");
 ylabel ("Percentage of Explained Variance in octane");
 title ("Explained Variance per PLS components");

 ## Compute the fitted response and display the residuals.
 octane_fitted = [ones(size(NIR,1),1), NIR] * coef;
 residuals = octane - octane_fitted;
 figure
 stem (residuals, "color", "r", "markersize", 4, "markeredgecolor", "r")
 xlabel ("Observations");
 ylabel ("Residuals");
 title ("Residuals in octane's fitted responce");

                    
plotted figure

plotted figure

Example: 2

 

 ## Calculate Variable Importance in Projection (VIP) for PLS Regression

 ## Load the spectra data set and use the near infrared (NIR) spectral
 ## intensities (NIR) as the predictor and the corresponding octave
 ## ratings (octave) as the response.  Variables with a VIP score greater than
 ## 1 are considered important for the projection of the PLS regression model.
 load spectra

 ## Perform PLS regression with 10 components
 [xload, yload, xscore, yscore, coef, pctVar, mse, stats] = ...
                                                 plsregress (NIR, octane, 10);

 ## Calculate the normalized PLS weights
 W0 = stats.W ./ sqrt(sum(stats.W.^2,1));

 ## Calculate the VIP scores for 10 components
 nobs = size (xload, 1);
 SS = sum (xscore .^ 2, 1) .* sum (yload .^ 2, 1);
 VIPscore = sqrt (nobs * sum (SS .* (W0 .^ 2), 2) ./ sum (SS, 2));

 ## Find variables with a VIP score greater than or equal to 1
 VIPidx = find (VIPscore >= 1);

 ## Plot the VIP scores
 scatter (1:length (VIPscore), VIPscore, "xb");
 hold on
 scatter (VIPidx, VIPscore (VIPidx), "xr");
 plot ([1, length(VIPscore)], [1, 1], "--k");
 hold off
 axis ("tight");
 xlabel ("Predictor Variables");
 ylabel ("VIP scores");
 title ("VIP scores for each predictror variable with 10 components");

                    
plotted figure

statistics-release-1.6.3/docs/poisscdf.html000066400000000000000000000141771456127120000207710ustar00rootroot00000000000000 Statistics: poisscdf

Function Reference: poisscdf

statistics: p = poisscdf (x, lambda)
statistics: p = poisscdf (x, lambda, "upper")

Poisson cumulative distribution function (CDF).

For each element of x, compute the cumulative distribution function (CDF) of the Poisson distribution with rate parameter lambda. The size of p is the common size of x and lambda. A scalar input functions as a constant matrix of the same size as the other inputs.

p = poisscdf (x, lambda, "upper") computes the upper tail probability of the Poisson distribution with parameter lambda, at the values in x.

Further information about the Poisson distribution can be found at https://en.wikipedia.org/wiki/Poisson_distribution

See also: poissinv, poisspdf, poissrnd, poissfit, poisslike, poisstat

Source Code: poisscdf

Example: 1

 

 ## Plot various CDFs from the Poisson distribution
 x = 0:20;
 p1 = poisscdf (x, 1);
 p2 = poisscdf (x, 4);
 p3 = poisscdf (x, 10);
 plot (x, p1, "*b", x, p2, "*g", x, p3, "*r")
 grid on
 ylim ([0, 1])
 legend ({"λ = 1", "λ = 4", "λ = 10"}, "location", "southeast")
 title ("Poisson CDF")
 xlabel ("values in x (number of occurences)")
 ylabel ("probability")

                    
plotted figure

statistics-release-1.6.3/docs/poissfit.html000066400000000000000000000177311456127120000210160ustar00rootroot00000000000000 Statistics: poissfit

Function Reference: poissfit

statistics: lambdahat = poissfit (x)
statistics: [lambdahat, lambdaci] = poissfit (x)
statistics: [lambdahat, lambdaci] = poissfit (x, alpha)
statistics: [lambdahat, lambdaci] = poissfit (x, alpha, freq)

Estimate parameter and confidence intervals for the Poisson distribution.

lambdahat = poissfit (x) returns the maximum likelihood estimate of the rate parameter, lambda, of the Poisson distribution given the data in x. x must be a vector of non-negative values.

[lambdahat, lambdaci] = poissfit (x) returns the 95% confidence intervals for the parameter estimate.

[lambdahat, lambdaci] = poissfit (x, alpha) also returns the 100 * (1 - alpha) percent confidence intervals of the estimated parameter. By default, the optional argument alpha is 0.05 corresponding to 95% confidence intervals. Pass in [] for alpha to use the default values.

[…] = poissfit (x, alpha, freq) accepts a frequency vector or matrix, freq, of the same size as x. freq typically contains integer frequencies for the corresponding elements in x. freq cannot contain negative values.

Further information about the Poisson distribution can be found at https://en.wikipedia.org/wiki/Poisson_distribution

See also: poisscdf, poissinv, poisspdf, poissrnd, poisslike, poisstat

Source Code: poissfit

Example: 1

 

 ## Sample 3 populations from 3 different Poisson distibutions
 randp ("seed", 2);    # for reproducibility
 r1 = poissrnd (1, 1000, 1);
 randp ("seed", 2);    # for reproducibility
 r2 = poissrnd (4, 1000, 1);
 randp ("seed", 3);    # for reproducibility
 r3 = poissrnd (10, 1000, 1);
 r = [r1, r2, r3];

 ## Plot them normalized and fix their colors
 hist (r, [0:20], 1);
 h = findobj (gca, "Type", "patch");
 set (h(1), "facecolor", "c");
 set (h(2), "facecolor", "g");
 set (h(3), "facecolor", "r");
 hold on

 ## Estimate their lambda parameter
 lambdahat = poissfit (r);

 ## Plot their estimated PDFs
 x = [0:20];
 y = poisspdf (x, lambdahat(1));
 plot (x, y, "-pr");
 y = poisspdf (x, lambdahat(2));
 plot (x, y, "-sg");
 y = poisspdf (x, lambdahat(3));
 plot (x, y, "-^c");
 xlim ([0, 20])
 ylim ([0, 0.4])
 legend ({"Normalized HIST of sample 1 with λ=1", ...
          "Normalized HIST of sample 2 with λ=4", ...
          "Normalized HIST of sample 3 with λ=10", ...
          sprintf("PDF for sample 1 with estimated λ=%0.2f", ...
                  lambdahat(1)), ...
          sprintf("PDF for sample 2 with estimated λ=%0.2f", ...
                  lambdahat(2)), ...
          sprintf("PDF for sample 3 with estimated λ=%0.2f", ...
                  lambdahat(3))})
 title ("Three population samples from different Poisson distibutions")
 hold off

                    
plotted figure

statistics-release-1.6.3/docs/poissinv.html000066400000000000000000000134621456127120000210250ustar00rootroot00000000000000 Statistics: poissinv

Function Reference: poissinv

statistics: x = poissinv (p, lambda)

Inverse of the Poisson cumulative distribution function (iCDF).

For each element of p, compute the quantile (the inverse of the CDF) of the Poisson distribution with rate parameter lambda. The size of x is the common size of p and lambda. A scalar input functions as a constant matrix of the same size as the other inputs.

Further information about the Poisson distribution can be found at https://en.wikipedia.org/wiki/Poisson_distribution

See also: poisscdf, poisspdf, poissrnd, poissfit, poisslike, poisstat

Source Code: poissinv

Example: 1

 

 ## Plot various iCDFs from the Poisson distribution
 p = 0.001:0.001:0.999;
 x1 = poissinv (p, 13);
 x2 = poissinv (p, 4);
 x3 = poissinv (p, 10);
 plot (p, x1, "-b", p, x2, "-g", p, x3, "-r")
 grid on
 ylim ([0, 20])
 legend ({"λ = 1", "λ = 4", "λ = 10"}, "location", "northwest")
 title ("Poisson iCDF")
 xlabel ("probability")
 ylabel ("values in x (number of occurences)")

                    
plotted figure

statistics-release-1.6.3/docs/poisslike.html000066400000000000000000000125461456127120000211570ustar00rootroot00000000000000 Statistics: poisslike

Function Reference: poisslike

statistics: nlogL = poisslike (lambda, x)
statistics: [nlogL, avar] = poisslike (lambda, x)
statistics: […] = poisslike (lambda, x, freq)

Negative log-likelihood for the Poisson distribution.

nlogL = poisslike (lambda, x) returns the negative log likelihood of the data in x corresponding to the Poisson distribution with rate parameter lambda. x must be a vector of non-negative values.

[nlogL, avar] = poisslike (lambda, x) also returns the inverse of Fisher’s information matrix, avar. If the input rate parameter, lambda, is the maximum likelihood estimate, avar is its asymptotic variance.

[…] = poisslike (lambda, x, freq) accepts a frequency vector, freq, of the same size as x. freq typically contains integer frequencies for the corresponding elements in x, but it can contain any non-integer non-negative values. By default, or if left empty, freq = ones (size (x)).

Further information about the Poisson distribution can be found at https://en.wikipedia.org/wiki/Poisson_distribution

See also: poisscdf, poissinv, poisspdf, poissrnd, poissfit, poisstat

Source Code: poisslike

statistics-release-1.6.3/docs/poisspdf.html000066400000000000000000000134141456127120000207770ustar00rootroot00000000000000 Statistics: poisspdf

Function Reference: poisspdf

statistics: y = poisspdf (x, lambda)

Poisson probability density function (PDF).

For each element of x, compute the probability density function (PDF) of the Poisson distribution with rate parameter lambda. The size of y is the common size of x and lambda. A scalar input functions as a constant matrix of the same size as the other inputs.

Further information about the Poisson distribution can be found at https://en.wikipedia.org/wiki/Poisson_distribution

See also: poisscdf, poissinv, poissrnd, poissfit, poisslike, poisstat

Source Code: poisspdf

Example: 1

 

 ## Plot various PDFs from the Poisson distribution
 x = 0:20;
 y1 = poisspdf (x, 1);
 y2 = poisspdf (x, 4);
 y3 = poisspdf (x, 10);
 plot (x, y1, "*b", x, y2, "*g", x, y3, "*r")
 grid on
 ylim ([0, 0.4])
 legend ({"λ = 1", "λ = 4", "λ = 10"}, "location", "northeast")
 title ("Poisson PDF")
 xlabel ("values in x (number of occurences)")
 ylabel ("density")

                    
plotted figure

statistics-release-1.6.3/docs/poissrnd.html000066400000000000000000000123521456127120000210110ustar00rootroot00000000000000 Statistics: poissrnd

Function Reference: poissrnd

statistics: r = poissrnd (lambda)
statistics: r = poissrnd (lambda, rows)
statistics: r = poissrnd (lambda, rows, cols, …)
statistics: r = poissrnd (lambda, [sz])

Random arrays from the Poisson distribution.

r = normrnd (lambda) returns an array of random numbers chosen from the Poisson distribution with rate parameter lambda. The size of r is the common size of lambda. A scalar input functions as a constant matrix of the same size as the other inputs. lambda must be a finite real number and greater or equal to 0, otherwise NaN is returned.

When called with a single size argument, poissrnd returns a square matrix with the dimension specified. When called with more than one scalar argument, the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions. The size may also be specified with a row vector of dimensions, sz.

Further information about the Poisson distribution can be found at https://en.wikipedia.org/wiki/Poisson_distribution

See also: poisscdf, poissinv, poisspdf, poissfit, poisslike, poisstat

Source Code: poissrnd

statistics-release-1.6.3/docs/poisstat.html000066400000000000000000000106131456127120000210140ustar00rootroot00000000000000 Statistics: poisstat

Function Reference: poisstat

statistics: [m, v] = poisstat (lambda)

Compute statistics of the Poisson distribution.

[m, v] = poisstat (lambda) returns the mean and variance of the Poisson distribution with rate parameter lambda.

The size of m (mean) and v (variance) is the same size of the input argument.

Further information about the Poisson distribution can be found at https://en.wikipedia.org/wiki/Poisson_distribution

See also: poisscdf, poissinv, poisspdf, poissrnd, poissfit, poisslike

Source Code: poisstat

statistics-release-1.6.3/docs/ppplot.html000066400000000000000000000116011456127120000204620ustar00rootroot00000000000000 Statistics: ppplot

Function Reference: ppplot

statistics: ppplot (x, dist)
statistics: ppplot (x, dist, params)
statistics: [p, y] = ppplot (x, dist, params)

Perform a PP-plot (probability plot).

If F is the CDF of the distribution dist with parameters params and x a sample vector of length n, the PP-plot graphs ordinate y(i) = F (i-th largest element of x) versus abscissa p(i) = (i - 0.5)/n. If the sample comes from F, the pairs will approximately follow a straight line.

The default for dist is the standard normal distribution.

The optional argument params contains a list of parameters of dist.

For example, for a probability plot of the uniform distribution on [2,4] and x, use

 
 ppplot (x, "uniform", 2, 4)
 

dist can be any string for which a function distcdf that calculates the CDF of distribution dist exists.

If no output is requested then the data are plotted immediately. See also: qqplot

Source Code: ppplot

statistics-release-1.6.3/docs/princomp.html000066400000000000000000000120131456127120000207710ustar00rootroot00000000000000 Statistics: princomp

Function Reference: princomp

statistics: COEFF = princomp (X)
statistics: [COEFF, SCORE] = princomp (X)
statistics: [COEFF, SCORE, latent] = princomp (X)
statistics: [COEFF, SCORE, latent, tsquare] = princomp (X)
statistics: […] = princomp (X, "econ")

Performs a principal component analysis on a NxP data matrix X.

  • COEFF : returns the principal component coefficients
  • SCORE : returns the principal component scores, the representation of X in the principal component space
  • LATENT : returns the principal component variances, i.e., the eigenvalues of the covariance matrix X.
  • TSQUARE : returns Hotelling’s T-squared Statistic for each observation in X
  • [...] = princomp(X,’econ’) returns only the elements of latent that are not necessarily zero, and the corresponding columns of COEFF and SCORE, that is, when n <= p, only the first n-1. This can be significantly faster when p is much larger than n. In this case the svd will be applied on the transpose of the data matrix X

References

  1. Jolliffe, I. T., Principal Component Analysis, 2nd Edition, Springer, 2002

Source Code: princomp

statistics-release-1.6.3/docs/probit.html000066400000000000000000000073471456127120000204570ustar00rootroot00000000000000 Statistics: probit

Function Reference: probit

statistics: x = probit (p)

Probit transformation

Return the probit (the quantile of the standard normal distribution) for each element of p.

See also: logit

Source Code: probit

statistics-release-1.6.3/docs/procrustes.html000066400000000000000000000364051456127120000213660ustar00rootroot00000000000000 Statistics: procrustes

Function Reference: procrustes

statistics: d = procrustes (X, Y)
statistics: d = procrustes (X, Y, param1, value1, …)
statistics: [d, Z] = procrustes (…)
statistics: [d, Z, transform] = procrustes (…)

Procrustes Analysis.

d = procrustes (X, Y) computes a linear transformation of the points in the matrix Y to best conform them to the points in the matrix X by minimizing the sum of squared errors, as the goodness of fit criterion, which is returned in d as a dissimilarity measure. d is standardized by a measure of the scale of X, given by

  • sum (sum ((X - repmat (mean (X, 1), size (X, 1), 1)) .^ 2, 1))

i.e., the sum of squared elements of a centered version of X. However, if X comprises repetitions of the same point, the sum of squared errors is not standardized.

X and Y must have the same number of points (rows) and procrustes matches the i-th point in Y to the i-th point in X. Points in Y can have smaller dimensions (columns) than those in X, but not the opposite. Missing dimensions in Y are added with padding columns of zeros as necessary to match the the dimensions in X.

[d, Z] = procrustes (X, Y) also returns the transformed values in Y.

[d, Z, transform] = procrustes (X, Y) also returns the transformation that maps Y to Z.

transform is a structure with fields:

cthe translation component
Tthe orthogonal rotation and reflection component
bthe scale component

So that Z = transform.b * Y * transform.T + transform.c

procrustes can take two optional parameters as Name-Value pairs.

[…] = procrustes (…, "Scaling", false) computes a transformation that does not include scaling, that is transform.b = 1. Setting "Scaling" to true includes a scaling component, which is the default.

[…] = procrustes (…, "Reflection", false) computes a transformation that does not include a reflection component, that is transform.T = 1. Setting "Reflection" to true forces the solution to include a reflection component in the computed transformation, that is transform.T = -1.

[…] = procrustes (…, "Reflection", "best") computes the best fit procrustes solution, which may or may not include a reflection component, which is the default.

See also: cmdscale

Source Code: procrustes

Example: 1

 

 ## Create some random points in two dimensions
 n = 10;
 randn ("seed", 1);
 X = normrnd (0, 1, [n, 2]);

 ## Those same points, rotated, scaled, translated, plus some noise
 S = [0.5, -sqrt(3)/2; sqrt(3)/2, 0.5]; # rotate 60 degrees
 Y = normrnd (0.5*X*S + 2, 0.05, n, 2);

 ## Conform Y to X, plot original X and Y, and transformed Y
 [d, Z] = procrustes (X, Y);
 plot (X(:,1), X(:,2), "rx", Y(:,1), Y(:,2), "b.", Z(:,1), Z(:,2), "bx");

                    
plotted figure

Example: 2

 

 ## Find Procrustes distance and plot superimposed shape

 X = [40 88; 51 88; 35 78; 36 75; 39 72; 44 71; 48 71; 52 74; 55 77];
 Y = [36 43; 48 42; 31 26; 33 28; 37 30; 40 31; 45 30; 48 28; 51 24];
 plot (X(:,1),X(:,2),"x");
 hold on
 plot (Y(:,1),Y(:,2),"o");
 xlim ([0 100]);
 ylim ([0 100]);
 legend ("Target shape (X)", "Source shape (Y)");
 [d, Z] = procrustes (X, Y)
 plot (Z(:,1), Z(:,2), "s");
 legend ("Target shape (X)", "Source shape (Y)", "Transformed shape (Z)");
 hold off

d = 0.2026
Z =

   39.769   87.509
   50.562   86.801
   35.549   72.163
   37.313   73.991
   40.873   75.850
   43.552   76.796
   48.058   75.977
   50.783   74.229
   53.541   70.684

                    
plotted figure

Example: 3

 

 ## Apply Procrustes transformation to larger set of points

 ## Create matrices with landmark points for two triangles
 X = [5, 0; 5, 5; 8, 5];   # target
 Y = [0, 0; 1, 0; 1, 1];   # source

 ## Create a matrix with more points on the source triangle
 Y_mp = [linspace(Y(1,1),Y(2,1),10)', linspace(Y(1,2),Y(2,2),10)'; ...
         linspace(Y(2,1),Y(3,1),10)', linspace(Y(2,2),Y(3,2),10)'; ...
         linspace(Y(3,1),Y(1,1),10)', linspace(Y(3,2),Y(1,2),10)'];

 ## Plot both shapes, including the larger set of points for the source shape
 plot ([X(:,1); X(1,1)], [X(:,2); X(1,2)], "bx-");
 hold on
 plot ([Y(:,1); Y(1,1)], [Y(:,2); Y(1,2)], "ro-", "MarkerFaceColor", "r");
 plot (Y_mp(:,1), Y_mp(:,2), "ro");
 xlim ([-1 10]);
 ylim ([-1 6]);
 legend ("Target shape (X)", "Source shape (Y)", ...
         "More points on Y", "Location", "northwest");
 hold off

 ## Obtain the Procrustes transformation
 [d, Z, transform] = procrustes (X, Y)

 ## Use the Procrustes transformation to superimpose the more points (Y_mp)
 ## on the source shape onto the target shape, and then visualize the results.
 Z_mp = transform.b * Y_mp * transform.T + transform.c(1,:);
 figure
 plot ([X(:,1); X(1,1)], [X(:,2); X(1,2)], "bx-");
 hold on
 plot ([Y(:,1); Y(1,1)], [Y(:,2); Y(1,2)], "ro-", "MarkerFaceColor", "r");
 plot (Y_mp(:,1), Y_mp(:,2), "ro");
 xlim ([-1 10]);
 ylim ([-1 6]);
 plot ([Z(:,1); Z(1,1)],[Z(:,2); Z(1,2)],"ks-","MarkerFaceColor","k");
 plot (Z_mp(:,1),Z_mp(:,2),"ks");
 legend ("Target shape (X)", "Source shape (Y)", ...
         "More points on Y", "Transformed source shape (Z)", ...
         "Transformed additional points", "Location", "northwest");
 hold off

d = 0.044118
Z =

   5.0000   0.5000
   4.5000   4.5000
   8.5000   5.0000

transform =

  scalar structure containing the fields:

    T =

      -0.1240   0.9923
       0.9923   0.1240

    b = 4.0311
    c =

       5.0000   0.5000
       5.0000   0.5000
       5.0000   0.5000


                    
plotted figure

plotted figure

Example: 4

 

 ## Compare shapes without reflection

 T = [33, 93; 33, 87; 33, 80; 31, 72; 32, 65; 32, 58; 30, 72; ...
      28, 72; 25, 69; 22, 64; 23, 59; 26, 57; 30, 57];
 S = [48, 83; 48, 77; 48, 70; 48, 65; 49, 59; 49, 56; 50, 66; ...
      52, 66; 56, 65; 58, 61; 57, 57; 54, 56; 51, 55];
 plot (T(:,1), T(:,2), "x-");
 hold on
 plot (S(:,1), S(:,2), "o-");
 legend ("Target shape (d)", "Source shape (b)");
 hold off
 d_false = procrustes (T, S, "reflection", false);
 printf ("Procrustes distance without reflection: %f\n", d_false);
 d_true = procrustes (T, S, "reflection", true);
 printf ("Procrustes distance with reflection: %f\n", d_true);
 d_best = procrustes (T, S, "reflection", "best");
 printf ("Procrustes distance with best fit: %f\n", d_true);

Procrustes distance without reflection: 0.342463
Procrustes distance with reflection: 0.020428
Procrustes distance with best fit: 0.020428
                    
plotted figure

statistics-release-1.6.3/docs/qqplot.html000066400000000000000000000124041456127120000204660ustar00rootroot00000000000000 Statistics: qqplot

Function Reference: qqplot

statistics: [q, s] = qqplot (x)
statistics: [q, s] = qqplot (x, y)
statistics: [q, s] = qqplot (x, dist)
statistics: [q, s] = qqplot (x, y, params)
statistics: qqplot (…)

Perform a QQ-plot (quantile plot).

If F is the CDF of the distribution dist with parameters params and G its inverse, and x a sample vector of length n, the QQ-plot graphs ordinate s(i) = i-th largest element of x versus abscissa q(if) = G((i - 0.5)/n).

If the sample comes from F, except for a transformation of location and scale, the pairs will approximately follow a straight line.

If the second argument is a vector y the empirical CDF of y is used as dist.

The default for dist is the standard normal distribution. The optional argument params contains a list of parameters of dist. For example, for a quantile plot of the uniform distribution on [2,4] and x, use

 
 qqplot (x, "unif", 2, 4)
 

dist can be any string for which a function distinv or dist_inv exists that calculates the inverse CDF of distribution dist.

If no output arguments are given, the data are plotted directly. See also: ppplot

Source Code: qqplot

statistics-release-1.6.3/docs/random.html000066400000000000000000000326411456127120000204330ustar00rootroot00000000000000 Statistics: random

Function Reference: random

statistics: r = random (name, A)
statistics: r = random (name, A, B)
statistics: r = random (name, A, B, C)
statistics: r = random (name, …, rows, cols)
statistics: r = random (name, …, rows, cols, …)
statistics: r = random (name, …, [sz])

Random arrays from a given one-, two-, or three-parameter distribution.

The variable name must be a string with the name of the distribution to sample from. If this distribution is a one-parameter distribution, A must be supplied, if it is a two-parameter distribution, B must also be supplied, and if it is a three-parameter distribution, C must also be supplied. Any arguments following the distribution parameters will determine the size of the result.

When called with a single size argument, return a square matrix with the dimension specified. When called with more than one scalar argument the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions. The size may also be specified with a vector of dimensions sz.

name must be a char string of the name or the abbreviation of the desired probability distribution function as listed in the followng table. The last column shows the required number of parameters that must be passed passed to the desired *rnd distribution function.

Distribution NameAbbreviationInput Parameters
"Beta""beta"2
"Binomial""bino"2
"Birnbaum-Saunders""bisa"2
"Burr""burr"3
"Cauchy""cauchy"2
"Chi-squared""chi2"1
"Extreme Value""ev"2
"Exponential""exp"1
"F-Distribution""f"2
"Gamma""gam"2
"Geometric""geo"1
"Generalized Extreme Value""gev"3
"Generalized Pareto""gp"3
"Gumbel""gumbel"2
"Half-normal""hn"2
"Hypergeometric""hyge"3
"Inverse Gaussian""invg"2
"Laplace""laplace"2
"Logistic""logi"2
"Log-Logistic""logl"2
"Lognormal""logn"2
"Nakagami""naka"2
"Negative Binomial""nbin"2
"Noncentral F-Distribution""ncf"3
"Noncentral Student T""nct"2
"Noncentral Chi-Squared""ncx2"2
"Normal""norm"2
"Poisson""poiss"1
"Rayleigh""rayl"1
"Rician""rice"2
"Student T""t"1
"location-scale T""tls"3
"Triangular""tri"3
"Discrete Uniform""unid"1
"Uniform""unif"2
"Von Mises""vm"2
"Weibull""wbl"2

See also: cdf, icdf, pdf, betarnd, binornd, bisarnd, burrrnd, cauchyrnd, chi2rnd, evrnd, exprnd, frnd, gamrnd, geornd, gevrnd, gprnd, gumbelrnd, hnrnd, hygernd, invgrnd, laplacernd, logirnd, loglrnd, lognrnd, nakarnd, nbinrnd, ncfrnd, nctrnd, ncx2rnd, normrnd, poissrnd, raylrnd, ricernd, trnd, trirnd, unidrnd, unifrnd, vmrnd, wblrnd

Source Code: random

statistics-release-1.6.3/docs/rangesearch.html000066400000000000000000000352141456127120000214340ustar00rootroot00000000000000 Statistics: rangesearch

Function Reference: rangesearch

statistics: idx = rangesearch (X, Y, r)
statistics: [idx, D] = rangesearch (X, Y, r)
statistics: […] = rangesearch (…, name, value)

Find all neighbors within specified distance from input data.

idx = rangesearch (X, Y, r) returns all the points in X that are within distance r from the points in Y. X must be an N×P numeric matrix of input data, where rows correspond to observations and columns correspond to features or variables. Y is an M×P numeric matrix with query points, which must have the same numbers of column as X. r must be a nonnegative scalar value. idx is an M×1 cell array, where M is the number of observations in Y. The vector Idx{j} contains the indices of observations (rows) in X whose distances to Y(j,:) are not greater than r.

[idx, D] = rangesearch (X, Y, r) also returns the distances, D, which correspond to the points in X that are within distance r from the points in Y. D is an M×1 cell array, where M is the number of observations in Y. The vector D{j} contains the indices of observations (rows) in X whose distances to Y(j,:) are not greater than r.

Additional parameters can be specified by Name-Value pair arguments.

NameValue
"P"is the Minkowski distance exponent and it must be a positive scalar. This argument is only valid when the selected distance metric is "minkowski". By default it is 2.
"Scale"is the scale parameter for the standardized Euclidean distance and it must be a nonnegative numeric vector of equal length to the number of columns in X. This argument is only valid when the selected distance metric is "seuclidean", in which case each coordinate of X is scaled by the corresponding element of "scale", as is each query point in Y. By default, the scale parameter is the standard deviation of each coordinate in X.
"Cov"is the covariance matrix for computing the mahalanobis distance and it must be a positive definite matrix matching the the number of columns in X. This argument is only valid when the selected distance metric is "mahalanobis".
"BucketSize"is the maximum number of data points in the leaf node of the Kd-tree and it must be a positive integer. This argument is only valid when the selected search method is "kdtree".
"SortIndices"is a boolean flag to sort the returned indices in ascending order by distance and it is true by default. When the selected search method is "exhaustive" or the "IncludeTies" flag is true, rangesearch always sorts the returned indices.
"Distance"is the distance metric used by rangesearch as specified below:
"euclidean"Euclidean distance.
"seuclidean"standardized Euclidean distance. Each coordinate difference between the rows in X and the query matrix Y is scaled by dividing by the corresponding element of the standard deviation computed from X. To specify a different scaling, use the "Scale" name-value argument.
"cityblock"City block distance.
"chebychev"Chebychev distance (maximum coordinate difference).
"minkowski"Minkowski distance. The default exponent is 2. To specify a different exponent, use the "P" name-value argument.
"mahalanobis"Mahalanobis distance, computed using a positive definite covariance matrix. To change the value of the covariance matrix, use the "Cov" name-value argument.
"cosine"Cosine distance.
"correlation"One minus the sample linear correlation between observations (treated as sequences of values).
"spearman"One minus the sample Spearman’s rank correlation between observations (treated as sequences of values).
"hamming"Hamming distance, which is the percentage of coordinates that differ.
"jaccard"One minus the Jaccard coefficient, which is the percentage of nonzero coordinates that differ.
@distfunCustom distance function handle. A distance function of the form function D2 = distfun (XI, YI), where XI is a 1×P vector containing a single observation in P-dimensional space, YI is an N×P matrix containing an arbitrary number of observations in the same P-dimensional space, and D2 is an N×P vector of distances, where (D2k) is the distance between observations XI and (YIk,:).
"NSMethod"is the nearest neighbor search method used by rangesearch as specified below.
"kdtree"Creates and uses a Kd-tree to find nearest neighbors. "kdtree" is the default value when the number of columns in X is less than or equal to 10, X is not sparse, and the distance metric is "euclidean", "cityblock", "manhattan", "chebychev", or "minkowski". Otherwise, the default value is "exhaustive". This argument is only valid when the distance metric is one of the four aforementioned metrics.
"exhaustive"Uses the exhaustive search algorithm by computing the distance values from all the points in X to each point in Y.

See also: knnsearch, pdist2

Source Code: rangesearch

Example: 1

 

 ## Generate 1000 random 2D points from each of five distinct multivariate
 ## normal distributions that form five separate classes
 N = 1000;
 d = 10;
 randn ("seed", 5);
 X1 = mvnrnd (d * [0, 0], eye (2), 1000);
 randn ("seed", 6);
 X2 = mvnrnd (d * [1, 1], eye (2), 1000);
 randn ("seed", 7);
 X3 = mvnrnd (d * [-1, -1], eye (2), 1000);
 randn ("seed", 8);
 X4 = mvnrnd (d * [1, -1], eye (2), 1000);
 randn ("seed", 8);
 X5 = mvnrnd (d * [-1, 1], eye (2), 1000);
 X = [X1; X2; X3; X4; X5];

 ## For each point in X, find the points in X that are within a radius d
 ## away from the points in X.
 Idx = rangesearch (X, X, d, "NSMethod", "exhaustive");

 ## Select the first point in X (corresponding to the first class) and find
 ## its nearest neighbors within the radius d.  Display these points in
 ## one color and the remaining points in a different color.
 x = X(1,:);
 nearestPoints = X (Idx{1},:);
 nonNearestIdx = true (size (X, 1), 1);
 nonNearestIdx(Idx{1}) = false;

 scatter (X(nonNearestIdx,1), X(nonNearestIdx,2))
 hold on
 scatter (nearestPoints(:,1),nearestPoints(:,2))
 scatter (x(1), x(2), "black", "filled")
 hold off

 ## Select the last point in X (corresponding to the fifth class) and find
 ## its nearest neighbors within the radius d.  Display these points in
 ## one color and the remaining points in a different color.
 x = X(end,:);
 nearestPoints = X (Idx{1},:);
 nonNearestIdx = true (size (X, 1), 1);
 nonNearestIdx(Idx{1}) = false;

 figure
 scatter (X(nonNearestIdx,1), X(nonNearestIdx,2))
 hold on
 scatter (nearestPoints(:,1),nearestPoints(:,2))
 scatter (x(1), x(2), "black", "filled")
 hold off

                    
plotted figure

plotted figure

statistics-release-1.6.3/docs/ranksum.html000066400000000000000000000172031456127120000206300ustar00rootroot00000000000000 Statistics: ranksum

Function Reference: ranksum

statistics: p = ranksum (x, y)
statistics: p = ranksum (x, y, alpha)
statistics: p = ranksum (x, y, alpha, Name, Value)
statistics: p = ranksum (x, y, Name, Value)
statistics: [p, h] = ranksum (x, y, …)
statistics: [p, h, stats] = ranksum (x, y, …)

Wilcoxon rank sum test for equal medians. This test is equivalent to a Mann-Whitney U-test.

p = ranksum (x, y) returns the p-value of a two-sided Wilcoxon rank sum test. It tests the null hypothesis that two independent samples, in the vectors X and Y, come from continuous distributions with equal medians, against the alternative hypothesis that they are not. x and y can have different lengths and the test assumes that they are independent.

ranksum treats NaN in x, y as missing values. The two-sided p-value is computed by doubling the most significant one-sided value.

[p, h] = ranksum (x, y) also returns the result of the hypothesis test with h = 1 indicating a rejection of the null hypothesis at the default alpha = 0.05 significance level, and h = 0 indicating a failure to reject the null hypothesis at the same significance level.

[p, h, stats] = ranksum (x, y) also returns the structure stats with information about the test statistic. It contains the field ranksum with the value of the rank sum test statistic and if computed with the "approximate" method it also contains the value of the z-statistic in the field zval.

[…] = ranksum (x, y, alpha) or alternatively […] = ranksum (x, y, "alpha", alpha) returns the result of the hypothesis test performed at the significance level ALPHA.

[…] = ranksum (x, y, "method", M) defines the computation method of the p-value specified in M, which can be "exact", "approximate", or "oldexact". M must be a single string. When "method" is unspecified, the default is: "exact" when min (length (x), length (y)) < 10 and length (x) + length (y) < 10, otherwise the "approximate" method is used.

  • "exact" method uses full enumeration for small total sample size (< 10), otherwise the network algorithm is used for larger samples.
  • "approximate" uses normal approximation method for computing the p-value.
  • "oldexact" uses full enumeration for any sample size. Note, that this option can lead to out of memory error for large samples. Use with caution!

[…] = ranksum (x, y, "tail", tail) defines the type of test, which can be "both", "right", or "left". tail must be a single string.

  • "both" – "medians are not equal" (two-tailed test, default)
  • "right" – "median of X is greater than median of Y" (right-tailed test)
  • "left" – "median of X is less than median of Y" (left-tailed test)

Note: the rank sum statistic is based on the smaller sample of vectors x and y.

Source Code: ranksum

statistics-release-1.6.3/docs/raylcdf.html000066400000000000000000000143041456127120000205730ustar00rootroot00000000000000 Statistics: raylcdf

Function Reference: raylcdf

statistics: p = raylcdf (x, sigma)
statistics: p = raylcdf (x, sigma, "upper")

Rayleigh cumulative distribution function (CDF).

For each element of x, compute the cumulative distribution function (CDF) of the Rayleigh distribution with scale parameter sigma. The size of p is the common size of x and sigma. A scalar input functions as a constant matrix of the same size as the other inputs.

p = raylcdf (x, sigma, "upper") computes the upper tail probability of the Rayleigh distribution with parameter sigma, at the values in x.

Further information about the Rayleigh distribution can be found at https://en.wikipedia.org/wiki/Rayleigh_distribution

See also: raylinv, raylpdf, raylrnd, raylfit, rayllike, raylstat

Source Code: raylcdf

Example: 1

 

 ## Plot various CDFs from the Rayleigh distribution
 x = 0:0.01:10;
 p1 = raylcdf (x, 0.5);
 p2 = raylcdf (x, 1);
 p3 = raylcdf (x, 2);
 p4 = raylcdf (x, 3);
 p5 = raylcdf (x, 4);
 plot (x, p1, "-b", x, p2, "g", x, p3, "-r", x, p4, "-m", x, p5, "-k")
 grid on
 ylim ([0, 1])
 legend ({"σ = 0.5", "σ = 1", "σ = 2", ...
          "σ = 3", "σ = 4"}, "location", "southeast")
 title ("Rayleigh CDF")
 xlabel ("values in x")
 ylabel ("probability")

                    
plotted figure

statistics-release-1.6.3/docs/raylfit.html000066400000000000000000000210071456127120000206170ustar00rootroot00000000000000 Statistics: raylfit

Function Reference: raylfit

statistics: sigmaA = raylfit (x)
statistics: [sigmaA, sigmaci] = raylfit (x)
statistics: [sigmaA, sigmaci] = raylfit (x, alpha)
statistics: [sigmaA, sigmaci] = raylfit (x, alpha, censor)
statistics: [sigmaA, sigmaci] = raylfit (x, alpha, censor, freq)

Estimate parameter and confidence intervals for the Rayleigh distribution.

sigmaA = raylfit (x) returns the maximum likelihood estimate of the rate parameter, lambda, of the Rayleigh distribution given the data in x. x must be a vector of non-negative values.

[sigmaA, sigmaci] = raylfit (x) returns the 95% confidence intervals for the parameter estimate.

[sigmaA, sigmaci] = raylfit (x, alpha) also returns the 100 * (1 - alpha) percent confidence intervals of the estimated parameter. By default, the optional argument alpha is 0.05 corresponding to 95% confidence intervals. Pass in [] for alpha to use the default values.

[…] = raylfit (x, alpha, censor) accepts a boolean vector, censor, of the same size as x with 1s for observations that are right-censored and 0s for observations that are observed exactly. By default, or if left empty, censor = zeros (size (x)).

[…] = raylfit (x, alpha, censor, freq) accepts a frequency vector or matrix, freq, of the same size as x. freq typically contains integer frequencies for the corresponding elements in x. freq cannot contain negative values.

Further information about the Rayleigh distribution can be found at https://en.wikipedia.org/wiki/Rayleigh_distribution

See also: raylcdf, raylinv, raylpdf, raylrnd, rayllike, raylstat

Source Code: raylfit

Example: 1

 

 ## Sample 3 populations from 3 different Rayleigh distibutions
 rand ("seed", 2);    # for reproducibility
 r1 = raylrnd (1, 1000, 1);
 rand ("seed", 2);    # for reproducibility
 r2 = raylrnd (2, 1000, 1);
 rand ("seed", 3);    # for reproducibility
 r3 = raylrnd (4, 1000, 1);
 r = [r1, r2, r3];

 ## Plot them normalized and fix their colors
 hist (r, [0.5:0.5:10.5], 2);
 h = findobj (gca, "Type", "patch");
 set (h(1), "facecolor", "c");
 set (h(2), "facecolor", "g");
 set (h(3), "facecolor", "r");
 hold on

 ## Estimate their lambda parameter
 sigmaA = raylfit (r(:,1));
 sigmaB = raylfit (r(:,2));
 sigmaC = raylfit (r(:,3));

 ## Plot their estimated PDFs
 x = [0:0.1:10];
 y = raylpdf (x, sigmaA);
 plot (x, y, "-pr");
 y = raylpdf (x, sigmaB);
 plot (x, y, "-sg");
 y = raylpdf (x, sigmaC);
 plot (x, y, "-^c");
 xlim ([0, 10])
 ylim ([0, 0.7])
 legend ({"Normalized HIST of sample 1 with σ=1", ...
          "Normalized HIST of sample 2 with σ=2", ...
          "Normalized HIST of sample 3 with σ=4", ...
          sprintf("PDF for sample 1 with estimated σ=%0.2f", ...
                  sigmaA), ...
          sprintf("PDF for sample 2 with estimated σ=%0.2f", ...
                  sigmaB), ...
          sprintf("PDF for sample 3 with estimated σ=%0.2f", ...
                  sigmaC)})
 title ("Three population samples from different Rayleigh distibutions")
 hold off

                    
plotted figure

statistics-release-1.6.3/docs/raylinv.html000066400000000000000000000135651456127120000206430ustar00rootroot00000000000000 Statistics: raylinv

Function Reference: raylinv

statistics: x = raylinv (p, sigma)

Inverse of the Rayleigh cumulative distribution function (iCDF).

For each element of p, compute the quantile (the inverse of the CDF) of the Rayleigh distribution with scale parameter sigma. The size of x is the common size of p and sigma. A scalar input functions as a constant matrix of the same size as the other inputs.

Further information about the Rayleigh distribution can be found at https://en.wikipedia.org/wiki/Rayleigh_distribution

See also: raylcdf, raylpdf, raylrnd, raylfit, rayllike, raylstat

Source Code: raylinv

Example: 1

 

 ## Plot various iCDFs from the Rayleigh distribution
 p = 0.001:0.001:0.999;
 x1 = raylinv (p, 0.5);
 x2 = raylinv (p, 1);
 x3 = raylinv (p, 2);
 x4 = raylinv (p, 3);
 x5 = raylinv (p, 4);
 plot (p, x1, "-b", p, x2, "g", p, x3, "-r", p, x4, "-m", p, x5, "-k")
 grid on
 ylim ([0, 10])
 legend ({"σ = 0,5", "σ = 1", "σ = 2", ...
          "σ = 3", "σ = 4"}, "location", "northwest")
 title ("Rayleigh iCDF")
 xlabel ("probability")
 ylabel ("values in x")

                    
plotted figure

statistics-release-1.6.3/docs/rayllike.html000066400000000000000000000125171456127120000207670ustar00rootroot00000000000000 Statistics: rayllike

Function Reference: rayllike

statistics: nlogL = rayllike (sigma, x)
statistics: [nlogL, acov] = rayllike (sigma, x)
statistics: […] = rayllike (sigma, x, freq)

Negative log-likelihood for the Rayleigh distribution.

nlogL = rayllike (sigma, x) returns the negative log likelihood of the data in x corresponding to the Rayleigh distribution with rate parameter sigma. x must be a vector of non-negative values.

[nlogL, acov] = rayllike (sigma, x) also returns the inverse of Fisher’s information matrix, acov. If the input rate parameter, sigma, is the maximum likelihood estimate, acov is its asymptotic variance.

[…] = rayllike (sigma, x, freq) accepts a frequency vector, freq, of the same size as x. freq typically contains integer frequencies for the corresponding elements in x, but it can contain any non-integer non-negative values. By default, or if left empty, freq = ones (size (x)).

Further information about the Rayleigh distribution can be found at https://en.wikipedia.org/wiki/Rayleigh_distribution

See also: raylcdf, raylinv, raylpdf, raylrnd, raylfit, raylstat

Source Code: rayllike

statistics-release-1.6.3/docs/raylpdf.html000066400000000000000000000135261456127120000206150ustar00rootroot00000000000000 Statistics: raylpdf

Function Reference: raylpdf

statistics: y = raylpdf (x, sigma)

Rayleigh probability density function (PDF).

For each element of x, compute the probability density function (PDF) of the Rayleigh distribution with scale parameter sigma. The size of p is the common size of x and sigma. A scalar input functions as a constant matrix of the same size as the other inputs.

Further information about the Rayleigh distribution can be found at https://en.wikipedia.org/wiki/Rayleigh_distribution

See also: raylcdf, raylinv, raylrnd, raylfit, rayllike, raylstat

Source Code: raylpdf

Example: 1

 

 ## Plot various PDFs from the Rayleigh distribution
 x = 0:0.01:10;
 y1 = raylpdf (x, 0.5);
 y2 = raylpdf (x, 1);
 y3 = raylpdf (x, 2);
 y4 = raylpdf (x, 3);
 y5 = raylpdf (x, 4);
 plot (x, y1, "-b", x, y2, "g", x, y3, "-r", x, y4, "-m", x, y5, "-k")
 grid on
 ylim ([0, 1.25])
 legend ({"σ = 0,5", "σ = 1", "σ = 2", ...
          "σ = 3", "σ = 4"}, "location", "northeast")
 title ("Rayleigh PDF")
 xlabel ("values in x")
 ylabel ("density")

                    
plotted figure

statistics-release-1.6.3/docs/raylrnd.html000066400000000000000000000123021456127120000206160ustar00rootroot00000000000000 Statistics: raylrnd

Function Reference: raylrnd

statistics: r = raylrnd (sigma)
statistics: r = raylrnd (sigma, rows)
statistics: r = raylrnd (sigma, rows, cols, …)
statistics: r = raylrnd (sigma, [sz])

Random arrays from the Rayleigh distribution.

r = raylrnd (sigma) returns an array of random numbers chosen from the Rayleigh distribution with scale parameter sigma. The size of r is the size of sigma. A scalar input functions as a constant matrix of the same size as the other inputs. sigma must be a finite real number greater than 0, otherwise NaN is returned.

When called with a single size argument, raylrnd returns a square matrix with the dimension specified. When called with more than one scalar argument, the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions. The size may also be specified with a row vector of dimensions, sz.

Further information about the Rayleigh distribution can be found at https://en.wikipedia.org/wiki/Rayleigh_distribution

See also: raylcdf, raylinv, raylpdf, raylfit, rayllike, raylstat

Source Code: raylrnd

statistics-release-1.6.3/docs/raylstat.html000066400000000000000000000106021456127120000210070ustar00rootroot00000000000000 Statistics: raylstat

Function Reference: raylstat

statistics: [m, v] = raylstat (sigma)

Compute statistics of the Rayleigh distribution.

[m, v] = raylstat (sigma) returns the mean and variance of the Rayleigh distribution with scale parameter sigma.

The size of m (mean) and v (variance) is the same size of the input argument.

Further information about the Rayleigh distribution can be found at https://en.wikipedia.org/wiki/Rayleigh_distribution

See also: raylcdf, raylinv, raylpdf, raylrnd, raylfit, rayllike

Source Code: raylstat

statistics-release-1.6.3/docs/regress.html000066400000000000000000000126041456127120000206220ustar00rootroot00000000000000 Statistics: regress

Function Reference: regress

statistics: [b, bint, r, rint, stats] = regress (y, X, [alpha])

Multiple Linear Regression using Least Squares Fit of y on X with the model y = X * beta + e.

Here,

  • y is a column vector of observed values
  • X is a matrix of regressors, with the first column filled with the constant value 1
  • beta is a column vector of regression parameters
  • e is a column vector of random errors

Arguments are

  • y is the y in the model
  • X is the X in the model
  • alpha is the significance level used to calculate the confidence intervals bint and rint (see ‘Return values’ below). If not specified, ALPHA defaults to 0.05

Return values are

  • b is the beta in the model
  • bint is the confidence interval for b
  • r is a column vector of residuals
  • rint is the confidence interval for r
  • stats is a row vector containing:
    • The R^2 statistic
    • The F statistic
    • The p value for the full model
    • The estimated error variance

r and rint can be passed to rcoplot to visualize the residual intervals and identify outliers.

NaN values in y and X are removed before calculation begins.

See also: regress_gp, regression_ftest, regression_ttest

Source Code: regress

statistics-release-1.6.3/docs/regress_gp.html000066400000000000000000000572561456127120000213240ustar00rootroot00000000000000 Statistics: regress_gp

Function Reference: regress_gp

statistics: [Yfit, Yint, m, K] = regress_gp (X, Y, Xfit)
statistics: [Yfit, Yint, m, K] = regress_gp (X, Y, Xfit, "linear")
statistics: [Yfit, Yint, Ysd] = regress_gp (X, Y, Xfit, "rbf")
statistics: […] = regress_gp (X, Y, Xfit, "linear", Sp)
statistics: […] = regress_gp (X, Y, Xfit, Sp)
statistics: […] = regress_gp (X, Y, Xfit, "rbf", theta)
statistics: […] = regress_gp (X, Y, Xfit, "rbf", theta, g)
statistics: […] = regress_gp (X, Y, Xfit, "rbf", theta, g, alpha)
statistics: […] = regress_gp (X, Y, Xfit, theta)
statistics: […] = regress_gp (X, Y, Xfit, theta, g)
statistics: […] = regress_gp (X, Y, Xfit, theta, g, alpha)

Regression using Gaussian Processes.

[Yfit, Yint, m, K] = regress_gp (X, Y, Xfit) will estimate a linear Gaussian Process model m in the form Y = X' * m, where X is an N×P matrix with N observations in P dimensional space and Y is an N×1 column vector as the dependent variable. The information about errors of the predictions (interpolation/extrapolation) is given by the covarianve matrix K. By default, the linear model defines the prior covariance of m as Sp = 100 * eye (size (X, 2) + 1). A custom prior covariance matrix can be passed as Sp, which must be a P+1×P+1 positive definite matrix. The model is evaluated for input Xfit, which must have the same columns as X, and the estimates are returned in Yfit along with the estimated variation in Yint. Yint(:,1) contains the upper boundary estimate and Yint(:,1) contains the upper boundary estimate with respect to Yfit.

[Yfit, Yint, Ysd, K] = regress_gp (X, Y, Xfit, "rbf") will estimate a Gaussian Process model with a Radial Basis Function (RBF) kernel with default parameters theta = 5, which corresponds to the characteristic lengthscale, and g = 0.01, which corresponds to the nugget effect, and alpha = 0.05 which defines the confidence level for the estimated intervals returned in Yint. The function also returns the predictive covariance matrix in Ysd. For multidimensional predictors X the function will automatically normalize each column to a zero mean and a standard deviation to one.

Run demo regress_gp to see examples.

See also: regress, regression_ftest, regression_ttest

Source Code: regress_gp

Example: 1

 

 ## Linear fitting of 1D Data
 rand ("seed", 125);
 X = 2 * rand (5, 1) - 1;
 randn ("seed", 25);
 Y = 2 * X - 1 + 0.3 * randn (5, 1);

 ## Points for interpolation/extrapolation
 Xfit = linspace (-2, 2, 10)';

 ## Fit regression model
 [Yfit, Yint, m] = regress_gp (X, Y, Xfit);

 ## Plot fitted data
 plot (X, Y, "xk", Xfit, Yfit, "r-", Xfit, Yint, "b-");
 title ("Gaussian process regression with linear kernel");

                    
plotted figure

Example: 2

 

 ## Linear fitting of 2D Data
 rand ("seed", 135);
 X = 2 * rand (4, 2) - 1;
 randn ("seed", 35);
 Y = 2 * X(:,1) - 3 * X(:,2) - 1 + 1 * randn (4, 1);

 ## Mesh for interpolation/extrapolation
 [x1, x2] = meshgrid (linspace (-1, 1, 10));
 Xfit = [x1(:), x2(:)];

 ## Fit regression model
 [Ypred, Yint, Ysd] = regress_gp (X, Y, Xfit);
 Ypred = reshape (Ypred, 10, 10);
 YintU = reshape (Yint(:,1), 10, 10);
 YintL = reshape (Yint(:,2), 10, 10);

 ## Plot fitted data
 plot3 (X(:,1), X(:,2), Y, ".k", "markersize", 16);
 hold on;
 h = mesh (x1, x2, Ypred, zeros (10, 10));
 set (h, "facecolor", "none", "edgecolor", "yellow");
 h = mesh (x1, x2, YintU, ones (10, 10));
 set (h, "facecolor", "none", "edgecolor", "cyan");
 h = mesh (x1, x2, YintL, ones (10, 10));
 set (h, "facecolor", "none", "edgecolor", "cyan");
 hold off
 axis tight
 view (75, 25)
 title ("Gaussian process regression with linear kernel");

                    
plotted figure

Example: 3

 

 ## Projection over basis function with linear kernel
 pp = [2, 2, 0.3, 1];
 n = 10;
 rand ("seed", 145);
 X = 2 * rand (n, 1) - 1;
 randn ("seed", 45);
 Y = polyval (pp, X) + 0.3 * randn (n, 1);

 ## Powers
 px = [sqrt(abs(X)), X, X.^2, X.^3];

 ## Points for interpolation/extrapolation
 Xfit = linspace (-1, 1, 100)';
 pxi = [sqrt(abs(Xfit)), Xfit, Xfit.^2, Xfit.^3];

 ## Define a prior covariance assuming that the sqrt component is not present
 Sp = 100 * eye (size (px, 2) + 1);
 Sp(2,2) = 1; # We don't believe the sqrt(abs(X)) is present

 ## Fit regression model
 [Yfit, Yint, Ysd] = regress_gp (px, Y, pxi, Sp);

 ## Plot fitted data
 plot (X, Y, "xk;Data;", Xfit, Yfit, "r-;Estimation;", ...
                         Xfit, polyval (pp, Xfit), "g-;True;");
 axis tight
 axis manual
 hold on
 plot (Xfit, Yint(:,1), "m-;Upper bound;", Xfit, Yint(:,2), "b-;Lower bound;");
 hold off
 title ("Linear kernel over basis function with prior covariance");

                    
plotted figure

Example: 4

 

 ## Projection over basis function with linear kernel
 pp = [2, 2, 0.3, 1];
 n = 10;
 rand ("seed", 145);
 X = 2 * rand (n, 1) - 1;
 randn ("seed", 45);
 Y = polyval (pp, X) + 0.3 * randn (n, 1);

 ## Powers
 px = [sqrt(abs(X)), X, X.^2, X.^3];

 ## Points for interpolation/extrapolation
 Xfit = linspace (-1, 1, 100)';
 pxi = [sqrt(abs(Xfit)), Xfit, Xfit.^2, Xfit.^3];

 ## Fit regression model without any assumption on prior covariance
 [Yfit, Yint, Ysd] = regress_gp (px, Y, pxi);

 ## Plot fitted data
 plot (X, Y, "xk;Data;", Xfit, Yfit, "r-;Estimation;", ...
                         Xfit, polyval (pp, Xfit), "g-;True;");
 axis tight
 axis manual
 hold on
 plot (Xfit, Yint(:,1), "m-;Upper bound;", Xfit, Yint(:,2), "b-;Lower bound;");
 hold off
 title ("Linear kernel over basis function without prior covariance");

                    
plotted figure

Example: 5

 

 ## Projection over basis function with rbf kernel
 pp = [2, 2, 0.3, 1];
 n = 10;
 rand ("seed", 145);
 X = 2 * rand (n, 1) - 1;
 randn ("seed", 45);
 Y = polyval (pp, X) + 0.3 * randn (n, 1);

 ## Powers
 px = [sqrt(abs(X)), X, X.^2, X.^3];

 ## Points for interpolation/extrapolation
 Xfit = linspace (-1, 1, 100)';
 pxi = [sqrt(abs(Xfit)), Xfit, Xfit.^2, Xfit.^3];

 ## Fit regression model with RBF kernel (standard parameters)
 [Yfit, Yint, Ysd] = regress_gp (px, Y, pxi, "rbf");

 ## Plot fitted data
 plot (X, Y, "xk;Data;", Xfit, Yfit, "r-;Estimation;", ...
                         Xfit, polyval (pp, Xfit), "g-;True;");
 axis tight
 axis manual
 hold on
 plot (Xfit, Yint(:,1), "m-;Upper bound;", Xfit, Yint(:,2), "b-;Lower bound;");
 hold off
 title ("RBF kernel over basis function with standard parameters");
 text (-0.5, 4, "theta = 5\n g = 0.01");

                    
plotted figure

Example: 6

 

 ## Projection over basis function with rbf kernel
 pp = [2, 2, 0.3, 1];
 n = 10;
 rand ("seed", 145);
 X = 2 * rand (n, 1) - 1;
 randn ("seed", 45);
 Y = polyval (pp, X) + 0.3 * randn (n, 1);

 ## Powers
 px = [sqrt(abs(X)), X, X.^2, X.^3];

 ## Points for interpolation/extrapolation
 Xfit = linspace (-1, 1, 100)';
 pxi = [sqrt(abs(Xfit)), Xfit, Xfit.^2, Xfit.^3];

 ## Fit regression model with RBF kernel with different parameters
 [Yfit, Yint, Ysd] = regress_gp (px, Y, pxi, "rbf", 10, 0.01);

 ## Plot fitted data
 plot (X, Y, "xk;Data;", Xfit, Yfit, "r-;Estimation;", ...
                         Xfit, polyval (pp, Xfit), "g-;True;");
 axis tight
 axis manual
 hold on
 plot (Xfit, Yint(:,1), "m-;Upper bound;", Xfit, Yint(:,2), "b-;Lower bound;");
 hold off
 title ("GP regression with RBF kernel and non default parameters");
 text (-0.5, 4, "theta = 10\n g = 0.01");

 ## Fit regression model with RBF kernel with different parameters
 [Yfit, Yint, Ysd] = regress_gp (px, Y, pxi, "rbf", 50, 0.01);

 ## Plot fitted data
 figure
 plot (X, Y, "xk;Data;", Xfit, Yfit, "r-;Estimation;", ...
                         Xfit, polyval (pp, Xfit), "g-;True;");
 axis tight
 axis manual
 hold on
 plot (Xfit, Yint(:,1), "m-;Upper bound;", Xfit, Yint(:,2), "b-;Lower bound;");
 hold off
 title ("GP regression with RBF kernel and non default parameters");
 text (-0.5, 4, "theta = 50\n g = 0.01");

 ## Fit regression model with RBF kernel with different parameters
 [Yfit, Yint, Ysd] = regress_gp (px, Y, pxi, "rbf", 50, 0.001);

 ## Plot fitted data
 figure
 plot (X, Y, "xk;Data;", Xfit, Yfit, "r-;Estimation;", ...
                         Xfit, polyval (pp, Xfit), "g-;True;");
 axis tight
 axis manual
 hold on
 plot (Xfit, Yint(:,1), "m-;Upper bound;", Xfit, Yint(:,2), "b-;Lower bound;");
 hold off
 title ("GP regression with RBF kernel and non default parameters");
 text (-0.5, 4, "theta = 50\n g = 0.001");

 ## Fit regression model with RBF kernel with different parameters
 [Yfit, Yint, Ysd] = regress_gp (px, Y, pxi, "rbf", 50, 0.05);

 ## Plot fitted data
 figure
 plot (X, Y, "xk;Data;", Xfit, Yfit, "r-;Estimation;", ...
                         Xfit, polyval (pp, Xfit), "g-;True;");
 axis tight
 axis manual
 hold on
 plot (Xfit, Yint(:,1), "m-;Upper bound;", Xfit, Yint(:,2), "b-;Lower bound;");
 hold off
 title ("GP regression with RBF kernel and non default parameters");
 text (-0.5, 4, "theta = 50\n g = 0.05");

                    
plotted figure

plotted figure

plotted figure

plotted figure

Example: 7

 

 ## RBF fitting on noiseless 1D Data
 x = [0:2*pi/7:2*pi]';
 y = 5 * sin (x);

 ## Predictive grid of 500 equally spaced locations
 xi = [-0.5:(2*pi+1)/499:2*pi+0.5]';

 ## Fit regression model with RBF kernel
 [Yfit, Yint, Ysd] = regress_gp (x, y, xi, "rbf");

 ## Plot fitted data
 r = mvnrnd (Yfit, diag (Ysd)', 50);
 plot (xi, r', "c-");
 hold on
 plot (xi, Yfit, "r-;Estimation;", xi, Yint, "b-;Confidence interval;");
 plot (x, y, ".k;Predictor points;", "markersize", 20)
 plot (xi, 5 * sin (xi), "-y;True Function;");
 xlim ([-0.5,2*pi+0.5]);
 ylim ([-10,10]);
 hold off
 title ("GP regression with RBF kernel on noiseless 1D data");
 text (0, -7, "theta = 5\n g = 0.01");

                    
plotted figure

Example: 8

 

 ## RBF fitting on noisy 1D Data
 x = [0:2*pi/7:2*pi]';
 x = [x; x];
 y = 5 * sin (x) + randn (size (x));

 ## Predictive grid of 500 equally spaced locations
 xi = [-0.5:(2*pi+1)/499:2*pi+0.5]';

 ## Fit regression model with RBF kernel
 [Yfit, Yint, Ysd] = regress_gp (x, y, xi, "rbf");

 ## Plot fitted data
 r = mvnrnd (Yfit, diag (Ysd)', 50);
 plot (xi, r', "c-");
 hold on
 plot (xi, Yfit, "r-;Estimation;", xi, Yint, "b-;Confidence interval;");
 plot (x, y, ".k;Predictor points;", "markersize", 20)
 plot (xi, 5 * sin (xi), "-y;True Function;");
 xlim ([-0.5,2*pi+0.5]);
 ylim ([-10,10]);
 hold off
 title ("GP regression with RBF kernel on noisy 1D data");
 text (0, -7, "theta = 5\n g = 0.01");

                    
plotted figure

statistics-release-1.6.3/docs/regression_ftest.html000066400000000000000000000150331456127120000225340ustar00rootroot00000000000000 Statistics: regression_ftest

Function Reference: regression_ftest

statistics: [h, pval, stats] = regression_ftest (y, x, fm)
statistics: […] = regression_ftest (y, x, fm, rm)
statistics: […] = regression_ftest (y, x, fm, rm, Name, Value)
statistics: […] = regression_ftest (y, x, fm, [], Name, Value)

F-test for General Linear Regression Analysis

Perform a general linear regression F test for the null hypothesis that the full model of the form y = b_0 + b_1 * x_1 + b_2 * x_2 + … + b_n * x_n + e, where n is the number of variables in x, does not perform better than a reduced model, such as y = b'_0 + b'_1 * x_1 + b'_2 * x_2 + … + b'_k * x_k + e, where k < n and it corresponds to the first k variables in x. Explanatory (dependent) variable y and response (independent) variables x must not contain any missing values (NaNs).

The full model, fm, must be a vector of length equal to the columns of x, in which case the constant term b_0 is assumed 0, or equal to the columns of x plus one, in which case the first element is the constant b_0.

The reduced model, rm, must include the constant term and a subset of the variables (columns) in x. If rm is not given, then a constant term b’_0 is assumed equal to the constant term, b_0, of the full model or 0, if the full model, fm, does not have a constant term. rm must be a vector or a scalar if only a constant term is passed into the function.

Name-Value pair arguments can be used to set statistical significance. "alpha" can be used to specify the significance level of the test (the default value is 0.05). If you want pass optional Name-Value pair without a reduced model, make sure that the latter is passed as an empty variable.

If h is 1 the null hypothesis is rejected, meaning that the full model explains the variance better than the restricted model. If h is 0, it can be assumed that the full model does NOT explain the variance any better than the restricted model.

The p-value (1 minus the CDF of this distribution at f) is returned in pval.

Under the null, the test statistic f follows an F distribution with ’df1’ and ’df2’ degrees of freedom, which are returned as fields in the stats structure along with the test’s F-statistic, ’fstat’

See also: regression_ttest, regress, regress_gp

Source Code: regression_ftest

statistics-release-1.6.3/docs/regression_ttest.html000066400000000000000000000145531456127120000225600ustar00rootroot00000000000000 Statistics: regression_ttest

Function Reference: regression_ttest

statistics: h = regression_ttest (y, x)
statistics: [h, pval] = regression_ttest (y, x)
statistics: [h, pval, ci] = regression_ttest (y, x)
statistics: [h, pval, ci, stats] = regression_ttest (y, x)
statistics: […] = regression_ttest (y, x, Name, Value)

Perform a linear regression t-test.

h = regression_ttest (y, x) tests the null hypothesis that the slope beta1 of a simple linear regression equals 0. The result is h = 0 if the null hypothesis cannot be rejected at the 5% significance level, or h = 1 if the null hypothesis can be rejected at the 5% level. y and x must be vectors of equal length with finite real numbers.

The p-value of the test is returned in pval. A 100(1-alpha)% confidence interval for beta1 is returned in ci. stats is a structure containing the value of the test statistic (tstat), the degrees of freedom (df), the slope coefficient (beta1), and the intercept (beta0). Under the null, the test statistic stats.tstat follows a T-distribution with stats.df degrees of freedom.

[…] = regression_ttest (…, name, value) specifies one or more of the following name/value pairs:

NameValue
"alpha"the significance level. Default is 0.05.
"tail"a string specifying the alternative hypothesis
"both"beta1 is not 0 (two-tailed, default)
"left"beta1 is less than 0 (left-tailed)
"right"beta1 is greater than 0 (right-tailed)

See also: regression_ftest, regress, regress_gp

Source Code: regression_ttest

statistics-release-1.6.3/docs/ricecdf.html000066400000000000000000000175721456127120000205600ustar00rootroot00000000000000 Statistics: ricecdf

Function Reference: ricecdf

statistics: p = ricecdf (x, nu, sigma)
statistics: p = ricecdf (x, nu, sigma, "upper")

Rician cumulative distribution function (CDF).

For each element of x, compute the cumulative distribution function (CDF) of the Rician distribution with non-centrality (distance) parameter nu and scale parameter sigma. The size of p is the common size of x, nu, and sigma. A scalar input functions as a constant matrix of the same size as the other inputs.

p = ricecdf (x, nu, sigma, "upper") computes the upper tail probability of the Rician distribution with parameters nu and sigma, at the values in x.

Further information about the Rician distribution can be found at https://en.wikipedia.org/wiki/Rice_distribution

See also: riceinv, ricepdf, ricernd, ricefit, ricelike, ricestat

Source Code: ricecdf

Example: 1

 

 ## Plot various CDFs from the Rician distribution
 x = 0:0.01:10;
 p1 = ricecdf (x, 0, 1);
 p2 = ricecdf (x, 0.5, 1);
 p3 = ricecdf (x, 1, 1);
 p4 = ricecdf (x, 2, 1);
 p5 = ricecdf (x, 4, 1);
 plot (x, p1, "-b", x, p2, "g", x, p3, "-r", x, p4, "-m", x, p5, "-k")
 grid on
 ylim ([0, 1])
 xlim ([0, 8])
 legend ({"ν = 0, σ = 1", "ν = 0.5, σ = 1", "ν = 1, σ = 1", ...
          "ν = 2, σ = 1", "ν = 4, σ = 1"}, "location", "southeast")
 title ("Rician CDF")
 xlabel ("values in x")
 ylabel ("probability")

                    
plotted figure

Example: 2

 

 ## Plot various CDFs from the Rician distribution
 x = 0:0.01:10;
 p1 = ricecdf (x, 0, 0.5);
 p2 = ricecdf (x, 0, 2);
 p3 = ricecdf (x, 0, 3);
 p4 = ricecdf (x, 2, 2);
 p5 = ricecdf (x, 4, 2);
 plot (x, p1, "-b", x, p2, "g", x, p3, "-r", x, p4, "-m", x, p5, "-k")
 grid on
 ylim ([0, 1])
 xlim ([0, 8])
 legend ({"ν = 0, σ = 0.5", "ν = 0, σ = 2", "ν = 0, σ = 3", ...
          "ν = 2, σ = 2", "ν = 4, σ = 2"}, "location", "southeast")
 title ("Rician CDF")
 xlabel ("values in x")
 ylabel ("probability")

                    
plotted figure

statistics-release-1.6.3/docs/ricefit.html000066400000000000000000000230321456127120000205720ustar00rootroot00000000000000 Statistics: ricefit

Function Reference: ricefit

statistics: paramhat = ricefit (x)
statistics: [paramhat, paramci] = ricefit (x)
statistics: [paramhat, paramci] = ricefit (x, alpha)
statistics: […] = ricefit (x, alpha, censor)
statistics: […] = ricefit (x, alpha, censor, freq)
statistics: […] = ricefit (x, alpha, censor, freq, options)

Estimate parameters and confidence intervals for the Gamma distribution.

paramhat = ricefit (x) returns the maximum likelihood estimates of the parameters of the Rician distribution given the data in x. paramhat(1) is the non-centrality (distance) parameter, nu, and paramhat(2) is the scale parameter, sigma.

[paramhat, paramci] = ricefit (x) returns the 95% confidence intervals for the parameter estimates.

[…] = ricefit (x, alpha) also returns the 100 * (1 - alpha) percent confidence intervals for the parameter estimates. By default, the optional argument alpha is 0.05 corresponding to 95% confidence intervals. Pass in [] for alpha to use the default values.

[…] = ricefit (x, alpha, censor) accepts a boolean vector, censor, of the same size as x with 1s for observations that are right-censored and 0s for observations that are observed exactly. By default, or if left empty, censor = zeros (size (x)).

[…] = ricefit (x, alpha, censor, freq) accepts a frequency vector, freq, of the same size as x. freq typically contains integer frequencies for the corresponding elements in x, but it can contain any non-integer non-negative values. By default, or if left empty, freq = ones (size (x)).

[…] = ricefit (…, options) specifies control parameters for the iterative algorithm used to compute the maximum likelihood estimates. options is a structure with the following field and its default value:

  • options.Display = "off"
  • options.MaxFunEvals = 1000
  • options.MaxIter = 500
  • options.TolX = 1e-6

Further information about the Rician distribution can be found at https://en.wikipedia.org/wiki/Rice_distribution

See also: ricecdf, ricepdf, riceinv, ricernd, ricelike, ricestat

Source Code: ricefit

Example: 1

 

 ## Sample 3 populations from different Gamma distibutions
 randg ("seed", 5);    # for reproducibility
 randp ("seed", 6);
 r1 = ricernd (1, 2, 3000, 1);
 randg ("seed", 2);    # for reproducibility
 randp ("seed", 8);
 r2 = ricernd (2, 4, 3000, 1);
 randg ("seed", 7);    # for reproducibility
 randp ("seed", 9);
 r3 = ricernd (7.5, 1, 3000, 1);
 r = [r1, r2, r3];

 ## Plot them normalized and fix their colors
 hist (r, 75, 4);
 h = findobj (gca, "Type", "patch");
 set (h(1), "facecolor", "c");
 set (h(2), "facecolor", "g");
 set (h(3), "facecolor", "r");
 ylim ([0, 0.7]);
 xlim ([0, 12]);
 hold on

 ## Estimate their α and β parameters
 nu_sigmaA = ricefit (r(:,1));
 nu_sigmaB = ricefit (r(:,2));
 nu_sigmaC = ricefit (r(:,3));

 ## Plot their estimated PDFs
 x = [0.01,0.1:0.2:18];
 y = ricepdf (x, nu_sigmaA(1), nu_sigmaA(2));
 plot (x, y, "-pr");
 y = ricepdf (x, nu_sigmaB(1), nu_sigmaB(2));
 plot (x, y, "-sg");
 y = ricepdf (x, nu_sigmaC(1), nu_sigmaC(2));
 plot (x, y, "-^c");
 hold off
 legend ({"Normalized HIST of sample 1 with k=1 and θ=2", ...
          "Normalized HIST of sample 2 with k=2 and θ=4", ...
          "Normalized HIST of sample 3 with k=7.5 and θ=1", ...
          sprintf("PDF for sample 1 with estimated k=%0.2f and θ=%0.2f", ...
                  nu_sigmaA(1), nu_sigmaA(2)), ...
          sprintf("PDF for sample 2 with estimated k=%0.2f and θ=%0.2f", ...
                  nu_sigmaB(1), nu_sigmaB(2)), ...
          sprintf("PDF for sample 3 with estimated k=%0.2f and θ=%0.2f", ...
                  nu_sigmaC(1), nu_sigmaC(2))})
 title ("Three population samples from different Rician distibutions")
 hold off

                    
plotted figure

statistics-release-1.6.3/docs/riceinv.html000066400000000000000000000137231456127120000206120ustar00rootroot00000000000000 Statistics: riceinv

Function Reference: riceinv

statistics: x = riceinv (p, nu, sigma)

Inverse of the Rician distribution (iCDF).

For each element of p, compute the quantile (the inverse of the CDF) of the Rician distribution with with with non-centrality (distance) parameter nu and scale parameter sigma. The size of x is the common size of x, nu, and sigma. A scalar input functions as a constant matrix of the same size as the other inputs.

Further information about the Rician distribution can be found at https://en.wikipedia.org/wiki/Rice_distribution

See also: ricecdf, ricepdf, ricernd, ricefit, ricelike, ricestat

Source Code: riceinv

Example: 1

 

 ## Plot various iCDFs from the Beta distribution
 p = 0.001:0.001:0.999;
 x1 = riceinv (p, 0, 1);
 x2 = riceinv (p, 0.5, 1);
 x3 = riceinv (p, 1, 1);
 x4 = riceinv (p, 2, 1);
 x5 = riceinv (p, 4, 1);
 plot (p, x1, "-b", p, x2, "-g", p, x3, "-r", p, x4, "-m", p, x5, "-k")
 grid on
 legend ({"ν = 0, σ = 1", "ν = 0.5, σ = 1", "ν = 1, σ = 1", ...
          "ν = 2, σ = 1", "ν = 4, σ = 1"}, "location", "northwest")
 title ("Beta iCDF")
 xlabel ("probability")
 ylabel ("values in x")

                    
plotted figure

statistics-release-1.6.3/docs/ricelike.html000066400000000000000000000137151456127120000207430ustar00rootroot00000000000000 Statistics: ricelike

Function Reference: ricelike

statistics: nlogL = ricelike (params, x)
statistics: [nlogL, acov] = ricelike (params, x)
statistics: […] = ricelike (params, x, censor)
statistics: […] = ricelike (params, x, censor, freq)

Negative log-likelihood for the Rician distribution.

nlogL = ricelike (params, x) returns the negative log likelihood of the data in x corresponding to the Rician distribution with (1) non-centrality (distance) parameter nu and (2) scale parameter sigma given in the two-element vector params.

[nlogL, acov] = ricelike (params, x) also returns the inverse of Fisher’s information matrix, acov. If the input parameter values in params are the maximum likelihood estimates, the diagonal elements of params are their asymptotic variances.

[…] = ricelike (params, x, censor) accepts a boolean vector, censor, of the same size as x with 1s for observations that are right-censored and 0s for observations that are observed exactly. By default, or if left empty, censor = zeros (size (x)).

[…] = ricelike (params, x, censor, freq) accepts a frequency vector, freq, of the same size as x. freq typically contains integer frequencies for the corresponding elements in x, but it can contain any non-integer non-negative values. By default, or if left empty, freq = ones (size (x)).

Further information about the Rician distribution can be found at https://en.wikipedia.org/wiki/Rice_distribution

See also: ricecdf, riceinv, ricepdf, ricernd, ricefit, ricestat

Source Code: ricelike

statistics-release-1.6.3/docs/ricepdf.html000066400000000000000000000137451456127120000205730ustar00rootroot00000000000000 Statistics: ricepdf

Function Reference: ricepdf

statistics: y = ricepdf (x, nu, sigma)

Rician probability density function (PDF).

For each element of x, compute the probability density function (PDF) of the Rician distribution with with non-centrality (distance) parameter nu and scale parameter sigma. The size of y is the common size of x, nu, and sigma. A scalar input functions as a constant matrix of the same size as the other inputs.

Further information about the Rician distribution can be found at https://en.wikipedia.org/wiki/Rice_distribution

See also: ricecdf, riceinv, ricernd, ricefit, ricelike, ricestat

Source Code: ricepdf

Example: 1

 

 ## Plot various PDFs from the Rician distribution
 x = 0:0.01:8;
 y1 = ricepdf (x, 0, 1);
 y2 = ricepdf (x, 0.5, 1);
 y3 = ricepdf (x, 1, 1);
 y4 = ricepdf (x, 2, 1);
 y5 = ricepdf (x, 4, 1);
 plot (x, y1, "-b", x, y2, "-g", x, y3, "-r", x, y4, "-m", x, y5, "-k")
 grid on
 ylim ([0, 0.65])
 xlim ([0, 8])
 legend ({"ν = 0, σ = 1", "ν = 0.5, σ = 1", "ν = 1, σ = 1", ...
          "ν = 2, σ = 1", "ν = 4, σ = 1"}, "location", "northeast")
 title ("Rician PDF")
 xlabel ("values in x")
 ylabel ("density")

                    
plotted figure

statistics-release-1.6.3/docs/ricernd.html000066400000000000000000000123041456127120000205730ustar00rootroot00000000000000 Statistics: ricernd

Function Reference: ricernd

statistics: r = ricernd (nu, sigma)
statistics: r = ricernd (nu, sigma, rows)
statistics: r = ricernd (nu, sigma, rows, cols, …)
statistics: r = ricernd (nu, sigma, [sz])

Random arrays from the Rician distribution.

r = ricernd (nu, sigma) returns an array of random numbers chosen from the Rician distribution with shape parameters nu and sigma. The size of r is the common size of nu and sigma. A scalar input functions as a constant matrix of the same size as the other inputs.

When called with a single size argument, ricernd returns a square matrix with the dimension specified. When called with more than one scalar argument, the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions. The size may also be specified with a row vector of dimensions, sz.

Further information about the Rician distribution can be found at https://en.wikipedia.org/wiki/Rice_distribution

See also: ricecdf, riceinv, ricepdf, ricefit, ricelike, ricestat

Source Code: ricernd

statistics-release-1.6.3/docs/ricestat.html000066400000000000000000000110421456127120000207610ustar00rootroot00000000000000 Statistics: ricestat

Function Reference: ricestat

statistics: [m, v] = ricestat (nu, sigma)

Compute statistics of the Rician distribution.

[m, v] = ricestat (nu, sigma) returns the mean and variance of the Rician distribution with non-centrality (distance) parameter nu and scale parameter sigma.

The size of m (mean) and v (variance) is the common size of the input arguments. A scalar input functions as a constant matrix of the same size as the other inputs.

Further information about the Rician distribution can be found at https://en.wikipedia.org/wiki/Rice_distribution

See also: ricecdf, riceinv, ricepdf, ricernd, ricefit, ricelike

Source Code: ricestat

statistics-release-1.6.3/docs/ridge.html000066400000000000000000000206651456127120000202500ustar00rootroot00000000000000 Statistics: ridge

Function Reference: ridge

statistics: b = ridge (y, X, k)
statistics: b = ridge (y, X, k, scaled)

Ridge regression.

b = ridge (y, X, k) returns the vector of coefficient estimates by applying ridge regression from the predictor matrix X to the response vector y. Each value of b is the coefficient for the respective ridge parameter given k. By default, b is calculated after centering and scaling the predictors to have a zero mean and standard deviation 1.

b = ridge (y, X, k, scaled) performs the regression with the specified scaling of the coefficient estimates b. When scaled = 0, the function restores the coefficients to the scale of the original data thus is more useful for making predictions. When scaled = 1, the coefficient estimates correspond to the scaled centered data.

  • y must be an N×1 numeric vector with the response data.
  • X must be an N×p numeric matrix with the predictor data.
  • k must be a numeric vectir with the ridge parameters.
  • scaled must be a numeric scalar indicating whether the coefficient estimates in b are restored to the scale of the original data. By default, scaled = 1.

Further information about Ridge regression can be found at https://en.wikipedia.org/wiki/Ridge_regression

See also: lasso, stepwisefit, regress

Source Code: ridge

Example: 1

 

 ## Perform ridge regression for a range of ridge parameters and observe
 ## how the coefficient estimates change based on the acetylene dataset.

 load acetylene

 X = [x1, x2, x3];

 x1x2 = x1 .* x2;
 x1x3 = x1 .* x3;
 x2x3 = x2 .* x3;

 D = [x1, x2, x3, x1x2, x1x3, x2x3];

 k = 0:1e-5:5e-3;

 b = ridge (y, D, k);

 figure
 plot (k, b, "LineWidth", 2)
 ylim ([-100, 100])
 grid on
 xlabel ("Ridge Parameter")
 ylabel ("Standardized Coefficient")
 title ("Ridge Trace")
 legend ("x1", "x2", "x3", "x1x2", "x1x3", "x2x3")


                    
plotted figure

Example: 2

 


 load carbig
 X = [Acceleration Weight Displacement Horsepower];
 y = MPG;

 n = length(y);

 rand("seed",1); % For reproducibility

 c = cvpartition(n,'HoldOut',0.3);
 idxTrain = training(c,1);
 idxTest = ~idxTrain;

 idxTrain = training(c,1);
 idxTest = ~idxTrain;

 k = 5;
 b = ridge(y(idxTrain),X(idxTrain,:),k,0);

 % Predict MPG values for the test data using the model.
 yhat = b(1) + X(idxTest,:)*b(2:end);
 scatter(y(idxTest),yhat)

 hold on
 plot(y(idxTest),y(idxTest),"r")
 xlabel('Actual MPG')
 ylabel('Predicted MPG')
 hold off


                    
plotted figure

statistics-release-1.6.3/docs/rmmissing.html000066400000000000000000000130711456127120000211570ustar00rootroot00000000000000 Statistics: rmmissing

Function Reference: rmmissing

statistics: R = rmmissing (A)
statistics: R = rmmissing (A, dim)
statistics: R = rmmissing (…, Name, Value)
statistics: [R TF] = rmmissing (…)

Remove missing or incomplete data from an array.

Given an input vector or matrix (2-D array) A, remove missing data from a vector or missing rows or columns from a matrix. A can be a numeric array, char array, or an array of cell strings. R returns the array after removal of missing data.

The values which represent missing data depend on the data type of A:

  • NaN: single, double.
  • ' ' (white space): char.
  • {''}: string cells.

Choose to remove rows (default) or columns by setting optional input dim:

  • 1: rows.
  • 2: columns.

Note: data types with no default ’missing’ value will always result in R == A and a TF output of false(size(A)).

Additional optional parameters are set by Name-Value pairs. These are:

  • MinNumMissing: minimum number of missing values to remove an entry, row or column, defined as a positive integer number. E.g.: if MinNumMissing is set to 2, remove the row of a numeric matrix only if it includes 2 or more NaN.

Optional return value TF is a logical array where true values represent removed entries, rows or columns from the original data A.

See also: fillmissing, ismissing, standardizeMissing

Source Code: rmmissing

statistics-release-1.6.3/docs/runstest.html000066400000000000000000000153671456127120000210500ustar00rootroot00000000000000 Statistics: runstest

Function Reference: runstest

statistics: h = runstest (x)
statistics: h = runstest (x, v)
statistics: h = runstest (x, "ud")
statistics: h = runstest (…, Name, Value)
statistics: [h, pval, stats] = runstest (…)

Run test for randomness in the vector x.

h = runstest (x) calculates the number of runs of consecutive values above or below the mean of x and tests the null hypothesis that the values in the data vector x come in random order. h is 1 if the test rejects the null hypothesis at the 5% significance level, or 0 otherwise.

h = runstest (x, v) tests the null hypothesis based on the number of runs of consecutive values above or below the specified reference value v. Values exactly equal to v are omitted.

h = runstest (x, "ud") calculates the number of runs up or down and tests the null hypothesis that the values in the data vector x follow a trend. Too few runs indicate a trend, while too many runs indicate an oscillation. Values exactly equal to the preceding value are omitted.

h = runstest (…, Name, Value) specifies additional options to the above tests by one or more Name-Value pair arguments.

NameValue
"alpha"the significance level. Default is 0.05.
"method"a string specifying the method used to compute the p-value of the test. It can be either "exact" to use an exact algorithm, or "approximate" to use a normal approximation. The default is "exact" for runs above/below, and for runs up/down when the length of x is less than or equal to 50. When testing for runs up/down and the length of x is greater than 50, then the default is "approximate", and the "exact" method is not available.
"tail"a string specifying the alternative hypothesis
"both"two-tailed (default)
"left"left-tailed
"right"right-tailed

See also: signrank, signtest

Source Code: runstest

statistics-release-1.6.3/docs/sampsizepwr.html000066400000000000000000000407221456127120000215360ustar00rootroot00000000000000 Statistics: sampsizepwr

Function Reference: sampsizepwr

statistics: n = sampsizepwr (testtype, params, p1)
statistics: n = sampsizepwr (testtype, params, p1, power)
statistics: power = sampsizepwr (testtype, params, p1, [], n)
statistics: p1 = sampsizepwr (testtype, params, [], power, n)
statistics: [n1, n2] = sampsizepwr ("t2", params, p1, power)
statistics: […] = sampsizepwr (testtype, params, p1, power, n, name, value)

Sample size and power calculation for hypothesis test.

sampsizepwr computes the sample size, power, or alternative parameter value for a hypothesis test, given the other two values. For example, you can compute the sample size required to obtain a particular power for a hypothesis test, given the parameter value of the alternative hypothesis.

n = sampsizepwr (testtype, params, p1) returns the sample size N required for a two-sided test of the specified type to have a power (probability of rejecting the null hypothesis when the alternative is true) of 0.90 when the significance level (probability of rejecting the null hypothesis when the null hypothesis is true) is 0.05. params specifies the parameter values under the null hypothesis. P1 specifies the value of the single parameter being tested under the alternative hypothesis. For the two-sample t-test, N is the value of the equal sample size for both samples, params specifies the parameter values of the first sample under the null and alternative hypotheses, and P1 specifies the value of the single parameter from the other sample under the alternative hypothesis.

The following TESTTYPE values are available:

"z"one-sample z-test for normally distributed data with known standard deviation. params is a two-element vector [MU0 SIGMA0] of the mean and standard deviation, respectively, under the null hypothesis. P1 is the value of the mean under the alternative hypothesis.
"t"one-sample t-test or paired t-test for normally distributed data with unknown standard deviation. params is a two-element vector [MU0 SIGMA0] of the mean and standard deviation, respectively, under the null hypothesis. P1 is the value of the mean under the alternative hypothesis.
"t2"two-sample pooled t-test (test for equal means) for normally distributed data with equal unknown standard deviations. params is a two-element vector [MU0 SIGMA0] of the mean and standard deviation of the first sample under the null and alternative hypotheses. P1 is the the mean of the second sample under the alternative hypothesis.
"var"chi-square test of variance for normally distributed data. params is the variance under the null hypothesis. P1 is the variance under the alternative hypothesis.
"p"test of the P parameter (success probability) for a binomial distribution. params is the value of P under the null hypothesis. P1 is the value of P under the alternative hypothesis.
"r"test of the correlation coefficient parameter for significance. params is the value of r under the null hypothesis. P1 is the value of r under the alternative hypothesis.

The "p" test for the binomial distribution is a discrete test for which increasing the sample size does not always increase the power. For N values larger than 200, there may be values smaller than the returned N value that also produce the desired power.

n = sampsizepwr (testtype, params, p1, power) returns the sample size N such that the power is power for the parameter value P1. For the two-sample t-test, N is the equal sample size of both samples.

[n1, n2] = sampsizepwr ("t2", params, p1, power) returns the sample sizes n1 and n2 for the two samples. These values are the same unless the "ratio" parameter, ratio = n2 / n2, is set to a value other than the default (See the name/value pair definition of ratio below).

power = sampsizepwr (testtype, params, p1, [], n) returns the power achieved for a sample size of n when the true parameter value is p1. For the two-sample t-test, n is the smaller one of the two sample sizes.

p1 = sampsizepwr (testtype, params, [], power, n) returns the parameter value detectable with the specified sample size n and power power. For the two-sample t-test, n is the smaller one of the two sample sizes. When computing p1 for the "p" test, if no alternative can be rejected for a given params, n and power value, the function displays a warning message and returns NaN.

[…] = sampsizepwr (…, n, name, value) specifies one or more of the following name / value pairs:

"alpha"significance level of the test (default is 0.05)
"tail"the type of test which can be:
"both"two-sided test for an alternative p1 not equal to params
"right"one-sided test for an alternative p1 larger than params
"left"one-sided test for an alternative p1 smaller than params
"ratio"desired ratio n2 / n2 of the larger sample size n2 to the smaller sample size n1. Used only for the two-sample t-test. The value of ratio is greater than or equal to 1 (default is 1).

sampsizepwr computes the sample size, power, or alternative hypothesis value given values for the other two. Specify one of these as [] to compute it. The remaining parameters (and ALPHA, RATIO) can be scalars or arrays of the same size.

See also: vartest, ttest, ttest2, ztest, binocdf

Source Code: sampsizepwr

Example: 1

 

 ## Compute the mean closest to 100 that can be determined to be
 ## significantly different from 100 using a t-test with a sample size
 ## of 60 and a power of 0.8.
 mu1 = sampsizepwr ("t", [100, 10], [], 0.8, 60);
 disp (mu1);

103.68
                    

Example: 2

 

 ## Compute the sample sizes required to distinguish mu0 = 100 from
 ## mu1 = 110 by a two-sample t-test with a ratio of the larger and the
 ## smaller sample sizes of 1.5 and a power of 0.6.
 [N1,N2] = sampsizepwr ("t2", [100, 10], 110, 0.6, [], "ratio", 1.5)

N1 = 9
N2 = 14
                    

Example: 3

 

 ## Compute the sample size N required to distinguish p=.26 from p=.2
 ## with a binomial test.  The result is approximate, so make a plot to
 ## see if any smaller N values also have the required power of 0.6.
 Napprox = sampsizepwr ("p", 0.2, 0.26, 0.6);
 nn = 1:250;
 pwr = sampsizepwr ("p", 0.2, 0.26, [], nn);
 Nexact = min (nn(pwr >= 0.6));
 plot(nn,pwr,'b-', [Napprox Nexact],pwr([Napprox Nexact]),'ro');
 grid on

warning: sampsizepwr: approximate N.
warning: called from
    sampsizepwr at line 358 column 11
    build_DEMOS at line 94 column 11
    function_texi2html at line 112 column 14
    package_texi2html at line 290 column 9

                    
plotted figure

Example: 4

 

 ## The company must test 52 bottles to detect the difference between a mean
 ## volume of 100 mL and 102 mL with a power of 0.80.  Generate a power curve
 ## to visualize how the sample size affects the power of the test.

 nout = sampsizepwr('t',[100 5],102,0.80);
 nn = 1:100;
 pwrout = sampsizepwr('t',[100 5],102,[],nn);

 figure;
 plot (nn, pwrout, "b-", nout, 0.8, "ro")
 title ("Power versus Sample Size")
 xlabel ("Sample Size")
 ylabel ("Power")

                    
plotted figure

statistics-release-1.6.3/docs/sigma_pts.html000066400000000000000000000151771456127120000211460ustar00rootroot00000000000000 Statistics: sigma_pts

Function Reference: sigma_pts

statistics: pts = sigma_pts (n)
statistics: pts = sigma_pts (n, m)
statistics: pts = sigma_pts (n, m, K)
statistics: pts = sigma_pts (n, m, K, l)

Calculates 2*n+1 sigma points in n dimensions.

Sigma points are used in the unscented transfrom to estimate the result of applying a given nonlinear transformation to a probability distribution that is characterized only in terms of a finite set of statistics.

If only the dimension n is given the resulting points have zero mean and identity covariance matrix. If the mean m or the covaraince matrix K are given, then the resulting points will have those statistics. The factor l scaled the points away from the mean. It is useful to tune the accuracy of the unscented transfrom.

There is no unique way of computing sigma points, this function implements the algorithm described in section 2.6 "The New Filter" pages 40-41 of

Uhlmann, Jeffrey (1995). "Dynamic Map Building and Localization: New Theoretical Foundations". Ph.D. thesis. University of Oxford.

Source Code: sigma_pts

Example: 1

 

 K      = [1 0.5; 0.5 1]; # covaraince matrix
 # calculate and build associated ellipse
 [R,S,~] = svd (K);
 theta   = atan2 (R(2,1), R(1,1));
 v       = sqrt (diag (S));
 v       = v .* [cos(theta) sin(theta); -sin(theta) cos(theta)];
 t       = linspace (0, 2*pi, 100).';
 xe      = v(1,1) * cos (t) + v(2,1) * sin (t);
 ye      = v(1,2) * cos (t) + v(2,2) * sin (t);

 figure(1); clf; hold on
 # Plot ellipse and axes
 line ([0 0; v(:,1).'],[0 0; v(:,2).'])
 plot (xe,ye,'-r');

 col = 'rgb';
 l     = [-1.8 -1 1.5];
 for li = 1:3
  p     = sigma_pts (2, [], K, l(li));
  tmp   = plot (p(2:end,1), p(2:end,2), ['x' col(li)], ...
               p(1,1), p(1,2), ['o' col(li)]);
  h(li) = tmp(1);
 endfor
 hold off
 axis image
 legend (h, arrayfun (@(x) sprintf ("l:%.2g", x), l, "unif", 0));

                    
plotted figure

statistics-release-1.6.3/docs/signtest.html000066400000000000000000000140551456127120000210120ustar00rootroot00000000000000 Statistics: signtest

Function Reference: signtest

statistics: [pval, h, stats] = signtest (x)
statistics: [pval, h, stats] = signtest (x, m)
statistics: [pval, h, stats] = signtest (x, y)
statistics: [pval, h, stats] = signtest (x, y, Name, Value)

Test for median.

Perform a signtest of the null hypothesis that x is from a distribution that has a zero median. x must be a vector.

If the second argument m is a scalar, the null hypothesis is that X has median m.

If the second argument y is a vector, the null hypothesis is that the distribution of x - y has zero median.

The argument "alpha" can be used to specify the significance level of the test (the default value is 0.05). The string argument "tail", can be used to select the desired alternative hypotheses. If "tail" is "both" (default) the null is tested against the two-sided alternative median (x) != m. If "tail" is "right" the one-sided alternative median (x) > m is considered. Similarly for "left", the one-sided alternative median (x) < m is considered.

When "method" is "exact" the p-value is computed using an exact method. When "method" is "approximate" a normal approximation is used for the test statistic. When "method" is not defined as an optional input argument, then for length (x) < 100 the "exact" method is computed, otherwise the "approximate" method is used.

The p-value of the test is returned in pval. If h is 0 the null hypothesis is accepted, if it is 1 the null hypothesis is rejected. stats is a structure containing the value of the test statistic (sign) and the value of the z statistic (zval) (only computed when the ’method’ is ’approximate’.

Source Code: signtest

statistics-release-1.6.3/docs/silhouette.html000066400000000000000000000161421456127120000213360ustar00rootroot00000000000000 Statistics: silhouette

Function Reference: silhouette

statistics: silhouette (X, clust)
statistics: [si, h] = silhouette (X, clust)
statistics: [si, h] = silhouette (…, Metric, MetricArg)

Compute the silhouette values of clustered data and show them on a plot.

X is a n-by-p matrix of n data points in a p-dimensional space. Each datapoint is assigned to a cluster using clust, a vector of n elements, one cluster assignment for each data point.

Each silhouette value of si, a vector of size n, is a measure of the likelihood that a data point is accurately classified to the right cluster. Defining "a" as the mean distance between a point and the other points from its cluster, and "b" as the mean distance between that point and the points from other clusters, the silhouette value of the i-th point is:

$$ S_i = \frac{b_i - a_i}{max(a_1,b_i)} $$

Each element of si ranges from -1, minimum likelihood of a correct classification, to 1, maximum likelihood.

Optional input value Metric is the metric used to compute the distances between data points. Since silhouette uses pdist to compute these distances, Metric is quite similar to the option Metric of pdist and it can be:

  • A known distance metric defined as a string: Euclidean, sqEuclidean (default), cityblock, cosine, correlation, Hamming, Jaccard.
  • A vector as those created by pdist. In this case X does nothing.
  • A function handle that is passed to pdist with MetricArg as optional inputs.

Optional return value h is a handle to the silhouette plot.

Reference Peter J. Rousseeuw, Silhouettes: a Graphical Aid to the Interpretation and Validation of Cluster Analysis. 1987. doi:10.1016/0377-0427(87)90125-7

See also: dendrogram, evalclusters, kmeans, linkage, pdist

Source Code: silhouette

Example: 1

 

 load fisheriris;
 X = meas(:,3:4);
 cidcs = kmeans (X, 3, "Replicates", 5);
 silhouette (X, cidcs);
 y_labels(cidcs([1 51 101])) = unique (species);
 set (gca, "yticklabel", y_labels);
 title ("Fisher's iris data");

                    
plotted figure

statistics-release-1.6.3/docs/slicesample.html000066400000000000000000000241231456127120000214500ustar00rootroot00000000000000 Statistics: slicesample

Function Reference: slicesample

statistics: [smpl, neval] = slicesample (start, nsamples, property, value, …)

Draws nsamples samples from a target stationary distribution pdf using slice sampling of Radford M. Neal.

Input:

  • start is a 1 by dim vector of the starting point of the Markov chain. Each column corresponds to a different dimension.
  • nsamples is the number of samples, the length of the Markov chain.

Next, several property-value pairs can or must be specified, they are:

(Required properties) One of:

  • "pdf": the value is a function handle of the target stationary distribution to be sampled. The function should accept different locations in each row and each column corresponds to a different dimension.

    or

  • logpdf: the value is a function handle of the log of the target stationary distribution to be sampled. The function should accept different locations in each row and each column corresponds to a different dimension.

The following input property/pair values may be needed depending on the desired outut:

  • "burnin" burnin the number of points to discard at the beginning, the default is 0.
  • "thin" thin omitts m-1 of every m points in the generated Markov chain. The default is 1.
  • "width" width the maximum Manhattan distance between two samples. The default is 10.

Outputs:

  • smpl is a nsamples by dim matrix of random values drawn from pdf where the rows are different random values, the columns correspond to the dimensions of pdf.
  • neval is the number of function evaluations per sample.

Example : Sampling from a normal distribution

 
 
 start = 1;
 nsamples = 1e3;
 pdf = @(x) exp (-.5 * x .^ 2) / (pi ^ .5 * 2 ^ .5);
 [smpl, accept] = slicesample (start, nsamples, "pdf", pdf, "thin", 4);
 histfit (smpl);
 
 

See also: rand, mhsample, randsample

Source Code: slicesample

Example: 1

 

 ## Define function to sample
 d = 2;
 mu = [-1; 2];
 rand ("seed", 5)  # for reproducibility
 Sigma = rand (d);
 Sigma = (Sigma + Sigma');
 Sigma += eye (d)*abs (eigs (Sigma, 1, "sa")) * 1.1;
 pdf = @(x)(2*pi)^(-d/2)*det(Sigma)^-.5*exp(-.5*sum((x.'-mu).*(Sigma\(x.'-mu)),1));

 ## Inputs
 start = ones (1,2);
 nsamples = 500;
 K = 500;
 m = 10;
 rande ("seed", 4);  rand ("seed", 5)  # for reproducibility
 [smpl, accept] = slicesample (start, nsamples, "pdf", pdf, "burnin", K, "thin", m, "width", [20, 30]);
 figure;
 hold on;
 plot (smpl(:,1), smpl(:,2), 'x');
 [x, y] = meshgrid (linspace (-6,4), linspace(-3,7));
 z = reshape (pdf ([x(:), y(:)]), size(x));
 mesh (x, y, z, "facecolor", "None");

 ## Using sample points to find the volume of half a sphere with radius of .5
 f = @(x) ((.25-(x(:,1)+1).^2-(x(:,2)-2).^2).^.5.*(((x(:,1)+1).^2+(x(:,2)-2).^2)<.25)).';
 int = mean (f (smpl) ./ pdf (smpl));
 errest = std (f (smpl) ./ pdf (smpl)) / nsamples^.5;
 trueerr = abs (2/3*pi*.25^(3/2)-int);
 fprintf ("Monte Carlo integral estimate int f(x) dx = %f\n", int);
 fprintf ("Monte Carlo integral error estimate %f\n", errest);
 fprintf ("The actual error %f\n", trueerr);
 mesh (x,y,reshape (f([x(:), y(:)]), size(x)), "facecolor", "None");

Monte Carlo integral estimate int f(x) dx = 0.228408
Monte Carlo integral error estimate 0.029831
The actual error 0.033392
                    
plotted figure

Example: 2

 

 ## Integrate truncated normal distribution to find normilization constant
 pdf = @(x) exp (-.5*x.^2)/(pi^.5*2^.5);
 nsamples = 1e3;
 rande ("seed", 4);  rand ("seed", 5)  # for reproducibility
 [smpl, accept] = slicesample (1, nsamples, "pdf", pdf, "thin", 4);
 f = @(x) exp (-.5 * x .^ 2) .* (x >= -2 & x <= 2);
 x = linspace (-3, 3, 1000);
 area (x, f(x));
 xlabel ("x");
 ylabel ("f(x)");
 int = mean (f (smpl) ./ pdf (smpl));
 errest = std (f (smpl) ./ pdf (smpl)) / nsamples ^ 0.5;
 trueerr = abs (erf (2 ^ 0.5) * 2 ^ 0.5 * pi ^ 0.5 - int);
 fprintf("Monte Carlo integral estimate int f(x) dx = %f\n", int);
 fprintf("Monte Carlo integral error estimate %f\n", errest);
 fprintf("The actual error %f\n", trueerr);

Monte Carlo integral estimate int f(x) dx = 2.376284
Monte Carlo integral error estimate 0.017608
The actual error 0.016292
                    
plotted figure

statistics-release-1.6.3/docs/squareform.html000066400000000000000000000117551456127120000213420ustar00rootroot00000000000000 Statistics: squareform

Function Reference: squareform

statistics: z = squareform (y)
statistics: y = squareform (z)
statistics: z = squareform (y, "tovector")
statistics: y = squareform (z, "tomatrix")

Interchange between distance matrix and distance vector formats.

Converts between an hollow (diagonal filled with zeros), square, and symmetric matrix and a vector with of the lower triangular part.

Its target application is the conversion of the vector returned by pdist into a distance matrix. It performs the opposite operation if input is a matrix.

If x is a vector, its number of elements must fit into the triangular part of a matrix (main diagonal excluded). In other words, numel (x) = n * (n - 1) / 2 for some integer n. The resulting matrix will be n by n.

If x is a distance matrix, it must be square and the diagonal entries of x must all be zeros. squareform will generate a warning if x is not symmetric.

The second argument is used to specify the output type in case there is a single element. It will defaults to "tomatrix" otherwise.

See also: pdist

Source Code: squareform

statistics-release-1.6.3/docs/standardizeMissing.html000066400000000000000000000122721456127120000230130ustar00rootroot00000000000000 Statistics: standardizeMissing

Function Reference: standardizeMissing

statistics: B = standardizeMissing (A, indicator)

Replace data values specified by indicator in A by the standard ’missing’ data value for that data type.

A can be a numeric scalar or array, a character vector or array, or a cell array of character vectors (a.k.a. string cells).

indicator can be a scalar or an array containing values to be replaced by the ’missing’ value for the class of A, and should have a data type matching A.

’missing’ values are defined as :

  • NaN: single, double
  • " " (white space): char
  • {""} (empty string in cell): string cells.

Compatibility Notes:

  • Octave’s implementation of standardizeMissing does not restrict indicator of type char to row vectors.
  • All numerical and logical inputs for A and indicator may be specified in any combination. The output will be the same class as A, with the indicator converted to that data type for comparison. Only single and double have defined ’missing’ values, so A of other data types will always output B = A.

See also: fillmissing, ismissing, rmmissing

Source Code: standardizeMissing

statistics-release-1.6.3/docs/std.html000066400000000000000000000172741456127120000177520ustar00rootroot00000000000000 Statistics: std

Function Reference: std

statistics: s = std (x)
statistics: s = std (x, w)
statistics: s = std (x, w, "all")
statistics: s = std (x, w, dim)
statistics: s = std (x, w, vecdim)
statistics: s = std (…, nanflag)
statistics: [s, m] = std (…)

Compute the standard deviation of the elements of x.

  • If x is a vector, then std (x) returns the standard deviation of the elements in x defined as $$ {\rm std}(x) = \sqrt{{1\over N-1} \sum_{i=1}^N |x_i - \bar x |^2} $$ where N is the length of the x vector.
  • If x is a matrix, then std (x) returns a row vector with the standard deviation of each column in x.
  • If x is a multi-dimensional array, then std (x) operates along the first non-singleton dimension of x.

std (x, w) specifies a weighting scheme. When w = 0 (default), the standard deviation is normalized by N-1 (population standard deviation), where N is the number of observations. When w = 1, the standard deviation is normalized by the number of observations (sample standard deviation). To use the default value you may pass an empty input argument [] before entering other options.

w can also be an array of non-negative numbers. When w is a vector, it must have the same length as the number of elements in the operating dimension of x. If w is a matrix or n-D array, or the operating dimension is supplied as a vecdim or "all", w must be the same size as x. NaN values are permitted in w, will be multiplied with the associated values in x, and can be excluded by the nanflag option.

std (x, [], dim) returns the standard deviation along the operating dimension dim of x. For dim greater than ndims (x), then s is returned as zeros of the same size as x and m = x.

std (x, [], vecdim) returns the standard deviation over the dimensions specified in the vector vecdim. For example, if x is a 2-by-3-by-4 array, then var (x, [1 2]) returns a 1-by-1-by-4 array. Each element of the output array is the standard deviation of the elements on the corresponding page of x. If vecdim indexes all dimensions of x, then it is equivalent to std (x, "all"). Any dimension in vecdim greater than ndims (x) is ignored.

std (x, "all") returns the standard deviation of all the elements in x. The optional flag "all" cannot be used together with dim or vecdim input arguments.

std (…, nanflag) specifies whether to exclude NaN values from the calculation using any of the input argument combinations in previous syntaxes. The default value for nanflag is "includenan", and keeps NaN values in the calculation. To exclude NaN values, set the value of nanflag to "omitnan".

[s, m] = std (…) also returns the mean of the elements of x used to calculate the standard deviation. If s is the weighted standard deviation, then m is the weighted mean.

See also: var, mean

Source Code: std

statistics-release-1.6.3/docs/stepwisefit.html000066400000000000000000000126031456127120000215150ustar00rootroot00000000000000 Statistics: stepwisefit

Function Reference: stepwisefit

statistics: [X_use, b, bint, r, rint, stats] = stepwisefit (y, X, penter = 0.05, premove = 0.1, method = "corr")

Linear regression with stepwise variable selection.

Arguments

  • y is an n by 1 vector of data to fit.
  • X is an n by k matrix containing the values of k potential predictors. No constant term should be included (one will always be added to the regression automatically).
  • penter is the maximum p-value to enter a new variable into the regression (default: 0.05).
  • premove is the minimum p-value to remove a variable from the regression (default: 0.1).
  • method sets how predictors are selected at each step, either based on their correlation with the residuals ("corr", default) or on the p values of their regression coefficients when they are successively added ("p").

Return values

  • X_use contains the indices of the predictors included in the final regression model. The predictors are listed in the order they were added, so typically the first ones listed are the most significant.
  • b, bint, r, rint, stats are the results of [b, bint, r, rint, stats] = regress(y, [ones(size(y)) X(:, X_use)], penter);

References

  1. N. R. Draper and H. Smith (1966). Applied Regression Analysis. Wiley. Chapter 6.

See also: regress

Source Code: stepwisefit

statistics-release-1.6.3/docs/svmpredict.html000066400000000000000000000143131456127120000213270ustar00rootroot00000000000000 Statistics: svmpredict

Function Reference: svmpredict

statistics: predicted_label = svmpredict (labels, data, model)
statistics: predicted_label = svmpredict (labels, data, model, libsvm_options)
statistics: [predicted_label, accuracy, decision_values] = svmpredict (labels, data, model, libsvm_options)
statistics: [predicted_label, accuracy, prob_estimates] = svmpredict (labels, data, model, libsvm_options)

This function predicts new labels from a testing instance matrtix based on an SVM model created with svmtrain.

  • labels : An m by 1 vector of prediction labels. If labels of test data are unknown, simply use any random values. (type must be double)
  • data : An m by n matrix of m testing instances with n features. It can be dense or sparse. (type must be double)
  • model : The output of svmtrain function.
  • libsvm_options : A string of testing options in the same format as that of LIBSVM.

libsvm_options :

  • -b : probability_estimates; whether to predict probability estimates. For one-class SVM only 0 is supported.
0return decision values. (default)
1return probability estimates.
  • -q : quiet mode. (no outputs)

The svmpredict function has three outputs. The first one, predicted_label, is a vector of predicted labels. The second output, accuracy, is a vector including accuracy (for classification), mean squared error, and squared correlation coefficient (for regression). The third is a matrix containing decision values or probability estimates (if -b 1’ is specified). If k is the number of classes in training data, for decision values, each row includes results of predicting k(k-1)/2 binary-class SVMs. For classification, k = 1 is a special case. Decision value +1 is returned for each testing instance, instead of an empty vector. For probabilities, each row contains k values indicating the probability that the testing instance is in each class. Note that the order of classes here is the same as Label field in the model structure.

Source Code: svmpredict

statistics-release-1.6.3/docs/svmtrain.html000066400000000000000000000177431456127120000210240ustar00rootroot00000000000000 Statistics: svmtrain

Function Reference: svmtrain

statistics: model = svmtrain (labels, data, libsvm_options)

This function trains an SVM model based on known labels and their corresponding data which comprise an instance matrtix.

  • labels : An m by 1 vector of prediction labels. (type must be double)
  • data : An m by n matrix of m testing instances with n features. It can be dense or sparse. (type must be double)
  • libsvm_options : A string of testing options in the same format as that of LIBSVM.

libsvm_options :

  • -s : svm_type; set type of SVM (default 0)
0C-SVC (multi-class classification)
1nu-SVC (multi-class classification)
2one-class SVM
3epsilon-SVR (regression)
4nu-SVR (regression)
  • -t : kernel_type; set type of kernel function (default 2)
0linear: u’*v
1polynomial: (gamma× u’× v + coef0) ^ degree
2radial basis function: e×p(-gamma× |u-v| ^ 2)
3sigmoid: tanh(gamma× u’× v + coef0)
4precomputed kernel (kernel values in training_instance_matrix)
  • -d : degree; set degree in kernel function (default 3)
  • -g : gamma; set gamma in kernel function (default 1/num_features)
  • -r : coef0; set coef0 in kernel function (default 0)
  • -c : cost; set the parameter C of C-SVC, epsilon-SVR, and nu-SVR (default 1)
  • -n : nu; set the parameter nu of nu-SVC, one-class SVM, and nu-SVR (default 0.5)
  • -p : epsilon; set the epsilon in loss function of epsilon-SVR (default 0.1)
  • -m : cachesize; set cache memory size in MB (default 100)
  • -e : epsilon; set tolerance of termination criterion (default 0.001)
  • -h : shrinking; whether to use the shrinking heuristics, 0 or 1 (default 1)
  • -b : probability_estimates; whether to train a SVC or SVR model for probability estimates, 0 or 1 (default 0)
  • -w : weight; set the parameter C of class i to weight*C, for C-SVC (default 1)
  • -v : n; n-fold cross validation mode
  • -q : quiet mode (no outputs)

The function svmtrain function returns a model structure which can be used for future prediction and it contains the following fields:

  • Parameters : parameters
  • nr_class : number of classes; = 2 for regression/one-class svm
  • totalSV : total #SV
  • rho : -b of the decision function(s) w×+b
  • Label : label of each class; empty for regression/one-class SVM
  • sv_indices : values in [1,...,num_traning_data] to indicate SVs in the training set
  • ProbA : pairwise probability information; empty if -b 0 or in one-class SVM
  • ProbB : pairwise probability information; empty if -b 0 or in one-class SVM
  • nSV : number of SVs for each class; empty for regression/one-class SVM
  • sv_coef : coefficients for SVs in decision functions
  • SVs : support vectors

If you do not use the option -b 1, ProbA and ProbB are empty matrices. If the ’-v’ option is specified, cross validation is conducted and the returned model is just a scalar: cross-validation accuracy for classification and mean-squared error for regression.

Source Code: svmtrain

statistics-release-1.6.3/docs/tabulate.html000066400000000000000000000256271456127120000207620ustar00rootroot00000000000000 Statistics: tabulate

Function Reference: tabulate

statistics: tabulate (x)
statistics: table = tabulate (x)

Calculate a frequency table.

tabulate (x) displays a frequency table of the data in the vector x. For each unique value in x, the tabulate function shows the number of instances and percentage of that value in x.

table = tabulate (x) returns the frequency table, table, as a numeric matrix when x is numeric and as a cell array otherwise. When an output argument is requested, tabulate does not print the frequency table in the command window.

If x is numeric, any missing values (NaNs) are ignored.

If all the elements of x are positive integers, then the frequency table includes 0 counts for the integers between 1 and max (x) that do not appear in x.

See also: bar, pareto

Source Code: tabulate

Example: 1

 

 ## Generate a frequency table for a vector of data in a cell array
 load patients

 ## Display the first seven entries of the Gender variable
 gender = Gender(1:7)

 ## Compute the equency table that shows the number and
 ## percentage of Male and Female patients
 tabulate (Gender)

gender =
{
  [1,1] = Male
  [2,1] = Male
  [3,1] = Female
  [4,1] = Female
  [5,1] = Female
  [6,1] = Female
  [7,1] = Female
}

   Value    Count    Percent
    Male       47      47.00%
  Female       53      53.00%
                    

Example: 2

 

 ## Create a frequency table for a vector of positive integers
 load patients

 ## Display the first seven entries of the Gender variable
 height = Height(1:7)

 ## Create a frequency table that shows, in its second and third columns,
 ## the number and percentage of patients with a particular height.
 table = tabulate (Height);

 ## Display the first and last seven entries of the frequency table
 first = table(1:7,:)

 last = table(end-6:end,:)

height =

   71
   69
   64
   67
   64
   68
   64

first =

   1   0   0
   2   0   0
   3   0   0
   4   0   0
   5   0   0
   6   0   0
   7   0   0

last =

   66   15   15
   67    6    6
   68   15   15
   69    8    8
   70   11   11
   71   10   10
   72    4    4

                    

Example: 3

 

 ## Create a frequency table from a character array
 load carsmall

 ## Tabulate the data in the Origin variable, which shows the
 ## country of origin of each car in the data set
 tabulate (Origin)

    Value    Count    Percent
      USA       69      69.00%
   France        4       4.00%
    Japan       15      15.00%
  Germany        9       9.00%
   Sweden        2       2.00%
    Italy        1       1.00%
                    

Example: 4

 

 ## Create a frequency table from a numeric vector with NaN values
 load carsmall

 ## The carsmall dataset contains measurements of 100 cars
 total_cars = length (MPG)
 ## For six cars, the MPG value is missing
 missingMPG = length (MPG(isnan (MPG)))

 ## Create a frequency table using MPG
 tabulate (MPG)
 table = tabulate (MPG);

 ## Only 94 cars were used
 valid_cars = sum (table(:,2))

total_cars = 100
missingMPG = 6
  Value    Count    Percent
     18        4       4.26%
     15        5       5.32%
     16        2       2.13%
     17        1       1.06%
     14        5       5.32%
     24        4       4.26%
     22        4       4.26%
     21        2       2.13%
     27        6       6.38%
     26        4       4.26%
     25        5       5.32%
     10        2       2.13%
     11        1       1.06%
      9        1       1.06%
     28        4       4.26%
   17.5        2       2.13%
   15.5        1       1.06%
   14.5        1       1.06%
   22.5        1       1.06%
     29        3       3.19%
   24.5        1       1.06%
     33        1       1.06%
     20        2       2.13%
   18.5        1       1.06%
   29.5        1       1.06%
     32        4       4.26%
   26.5        1       1.06%
     13        4       4.26%
     19        2       2.13%
   16.5        2       2.13%
     34        2       2.13%
     31        3       3.19%
     23        1       1.06%
     36        5       5.32%
     37        1       1.06%
     38        4       4.26%
     44        1       1.06%
valid_cars = 94
                    
statistics-release-1.6.3/docs/tcdf.html000066400000000000000000000141141456127120000200660ustar00rootroot00000000000000 Statistics: tcdf

Function Reference: tcdf

statistics: p = tcdf (x, df)
statistics: p = tcdf (x, df, "upper")

Student’s T cumulative distribution function (CDF).

For each element of x, compute the cumulative distribution function (CDF) of the Student’s T distribution with df degrees of freedom. The size of p is the common size of x and df. A scalar input functions as a constant matrix of the same size as the other input.

p = tcdf (x, df, "upper") computes the upper tail probability of the Student’s T distribution with df degrees of freedom, at the values in x.

Further information about the Student’s T distribution can be found at https://en.wikipedia.org/wiki/Student%27s_t-distribution

See also: tinv, tpdf, trnd, tstat

Source Code: tcdf

Example: 1

 

 ## Plot various CDFs from the Student's T distribution
 x = -5:0.01:5;
 p1 = tcdf (x, 1);
 p2 = tcdf (x, 2);
 p3 = tcdf (x, 5);
 p4 = tcdf (x, Inf);
 plot (x, p1, "-b", x, p2, "-g", x, p3, "-r", x, p4, "-m")
 grid on
 xlim ([-5, 5])
 ylim ([0, 1])
 legend ({"df = 1", "df = 2", ...
          "df = 5", 'df = \infty'}, "location", "southeast")
 title ("Student's T CDF")
 xlabel ("values in x")
 ylabel ("probability")

                    
plotted figure

statistics-release-1.6.3/docs/tinv.html000066400000000000000000000137111456127120000201300ustar00rootroot00000000000000 Statistics: tinv

Function Reference: tinv

statistics: x = tinv (p, df)

Inverse of the Student’s T cumulative distribution function (iCDF).

For each element of p, compute the quantile (the inverse of the CDF) of the Student’s T distribution with df degrees of freedom. The size of x is the common size of x and df. A scalar input functions as a constant matrix of the same size as the other input.

This function is analogous to looking in a table for the t-value of a single-tailed distribution. For very large df (>10000), the inverse of the standard normal distribution is used.

Further information about the Student’s T distribution can be found at https://en.wikipedia.org/wiki/Student%27s_t-distribution

See also: tcdf, tpdf, trnd, tstat

Source Code: tinv

Example: 1

 

 ## Plot various iCDFs from the Student's T distribution
 p = 0.001:0.001:0.999;
 x1 = tinv (p, 1);
 x2 = tinv (p, 2);
 x3 = tinv (p, 5);
 x4 = tinv (p, Inf);
 plot (p, x1, "-b", p, x2, "-g", p, x3, "-r", p, x4, "-m")
 grid on
 xlim ([0, 1])
 ylim ([-5, 5])
 legend ({"df = 1", "df = 2", ...
          "df = 5", 'df = \infty'}, "location", "northwest")
 title ("Student's T iCDF")
 xlabel ("probability")
 ylabel ("values in x")

                    
plotted figure

statistics-release-1.6.3/docs/tlscdf.html000066400000000000000000000151761456127120000204360ustar00rootroot00000000000000 Statistics: tlscdf

Function Reference: tlscdf

statistics: p = tlscdf (x, mu, sigma, df)
statistics: p = tlscdf (x, mu, sigma, df, "upper")

Location-scale Student’s T cumulative distribution function (CDF).

For each element of x, compute the cumulative distribution function (CDF) of the location-scale Student’s T distribution with location parameter mu, scale parameter sigma, and df degrees of freedom. The size of p is the common size of x, mu, sigma, and df. A scalar input functions as a constant matrix of the same size as the other inputs.

p = tlscdf (x, mu, sigma, df, "upper") computes the upper tail probability of the location-scale Student’s T distribution with parameters mu, sigma, and df, at the values in x.

Further information about the location-scale Student’s T distribution can be found at https://en.wikipedia.org/wiki/Student%27s_t-distribution#Location-scale_t_distribution

See also: tlsinv, tlspdf, tlsrnd, tlsfit, tlslike, tlsstat

Source Code: tlscdf

Example: 1

 

 ## Plot various CDFs from the location-scale Student's T distribution
 x = -8:0.01:8;
 p1 = tlscdf (x, 0, 1, 1);
 p2 = tlscdf (x, 0, 2, 2);
 p3 = tlscdf (x, 3, 2, 5);
 p4 = tlscdf (x, -1, 3, Inf);
 plot (x, p1, "-b", x, p2, "-g", x, p3, "-r", x, p4, "-m")
 grid on
 xlim ([-8, 8])
 ylim ([0, 1])
 legend ({"mu = 0, sigma = 1, df = 1", "mu = 0, sigma = 2, df = 2", ...
          "mu = 3, sigma = 2, df = 5", 'mu = -1, sigma = 3, df = \infty'}, ...
         "location", "northwest")
 title ("Location-scale Student's T CDF")
 xlabel ("values in x")
 ylabel ("probability")

                    
plotted figure

statistics-release-1.6.3/docs/tlsinv.html000066400000000000000000000142671456127120000204760ustar00rootroot00000000000000 Statistics: tlsinv

Function Reference: tlsinv

statistics: x = tlsinv (p, mu, sigma, df)

Inverse of the location-scale Student’s T cumulative distribution function (iCDF).

For each element of p, compute the quantile (the inverse of the CDF) of the location-scale Student’s T distribution with location parameter mu, scale parameter sigma, and df degrees of freedom. The size of x is the common size of p, mu, sigma, and df. A scalar input functions as a constant matrix of the same size as the other inputs.

Further information about the location-scale Student’s T distribution can be found at https://en.wikipedia.org/wiki/Student%27s_t-distribution#Location-scale_t_distribution

See also: tlscdf, tlspdf, tlsrnd, tlsfit, tlslike, tlsstat

Source Code: tlsinv

Example: 1

 

 ## Plot various iCDFs from the location-scale Student's T distribution
 p = 0.001:0.001:0.999;
 x1 = tlsinv (p, 0, 1, 1);
 x2 = tlsinv (p, 0, 2, 2);
 x3 = tlsinv (p, 3, 2, 5);
 x4 = tlsinv (p, -1, 3, Inf);
 plot (p, x1, "-b", p, x2, "-g", p, x3, "-r", p, x4, "-m")
 grid on
 xlim ([0, 1])
 ylim ([-8, 8])
 legend ({"mu = 0, sigma = 1, df = 1", "mu = 0, sigma = 2, df = 2", ...
          "mu = 3, sigma = 2, df = 5", 'mu = -1, sigma = 3, df = \infty'}, ...
         "location", "southeast")
 title ("Location-scale Student's T iCDF")
 xlabel ("probability")
 ylabel ("values in x")

                    
plotted figure

statistics-release-1.6.3/docs/tlspdf.html000066400000000000000000000142121456127120000204410ustar00rootroot00000000000000 Statistics: tlspdf

Function Reference: tlspdf

statistics: p = tlspdf (x, mu, sigma, df)

Location-scale Student’s T probability density function (PDF).

For each element of x, compute the probability density function (PDF) of the location-scale Student’s T distribution with location parameter mu, scale parameter sigma, and df degrees of freedom. The size of y is the common size of x, mu, sigma, and df. A scalar input functions as a constant matrix of the same size as the other inputs.

Further information about the location-scale Student’s T distribution can be found at https://en.wikipedia.org/wiki/Student%27s_t-distribution#Location-scale_t_distribution

See also: tlscdf, tlspdf, tlsrnd, tlsfit, tlslike, tlsstat

Source Code: tlspdf

Example: 1

 

 ## Plot various PDFs from the Student's T distribution
 x = -8:0.01:8;
 y1 = tlspdf (x, 0, 1, 1);
 y2 = tlspdf (x, 0, 2, 2);
 y3 = tlspdf (x, 3, 2, 5);
 y4 = tlspdf (x, -1, 3, Inf);
 plot (x, y1, "-b", x, y2, "-g", x, y3, "-r", x, y4, "-m")
 grid on
 xlim ([-8, 8])
 ylim ([0, 0.41])
 legend ({"mu = 0, sigma = 1, df = 1", "mu = 0, sigma = 2, df = 2", ...
          "mu = 3, sigma = 2, df = 5", 'mu = -1, sigma = 3, df = \infty'}, ...
         "location", "northwest")
 title ("Location-scale Student's T PDF")
 xlabel ("values in x")
 ylabel ("density")

                    
plotted figure

statistics-release-1.6.3/docs/tlsrnd.html000066400000000000000000000131241456127120000204540ustar00rootroot00000000000000 Statistics: tlsrnd

Function Reference: tlsrnd

statistics: r = tlsrnd (mu, sigma, df)
statistics: r = tlsrnd (mu, sigma, df, rows)
statistics: r = tlsrnd (mu, sigma, df, rows, cols, …)
statistics: r = tlsrnd (mu, sigma, df, [sz])

Random arrays from the location-scale Student’s T distribution.

Return a matrix of random samples from the location-scale Student’s T distribution with location parameter mu, scale parameter sigma, and df degrees of freedom.

r = tlsrnd (df) returns an array of random numbers chosen from the location-scale Student’s T distribution with location parameter mu, scale parameter sigma, and df degrees of freedom. The size of r is the common size of mu, sigma, and df. A scalar input functions as a constant matrix of the same size as the other inputs.

When called with a single size argument, tlsrnd returns a square matrix with the dimension specified. When called with more than one scalar argument, the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions. The size may also be specified with a row vector of dimensions, sz.

Further information about the location-scale Student’s T distribution can be found at https://en.wikipedia.org/wiki/Student%27s_t-distribution#Location-scale_t_distribution

See also: tlscdf, tlsinv, tlspdf, tlsfit, tlslike, tlsstat

Source Code: tlsrnd

statistics-release-1.6.3/docs/tlsstat.html000066400000000000000000000112441456127120000206450ustar00rootroot00000000000000 Statistics: tlsstat

Function Reference: tlsstat

statistics: [m, v] = tlsstat (mu, sigma, df)

Compute statistics of the location-scale Student’s T distribution.

[m, v] = tlsstat (mu, sigma, df) returns the mean and variance of the location-scale Student’s T distribution with location parameter mu, scale parameter sigma, and df degrees of freedom.

The size of m (mean) and v (variance) is the common size of the input arguments. A scalar input functions as a constant matrix of the same size as the other inputs.

Further information about the location-scale Student’s T distribution can be found at https://en.wikipedia.org/wiki/Student%27s_t-distribution#Location-scale_t_distribution

See also: tlscdf, tlsinv, tlspdf, tlsrnd, tlsfit, tlslike

Source Code: tlsstat

statistics-release-1.6.3/docs/tpdf.html000066400000000000000000000133331456127120000201050ustar00rootroot00000000000000 Statistics: tpdf

Function Reference: tpdf

statistics: p = tpdf (x, df)

Student’s T probability density function (PDF).

For each element of x, compute the probability density function (PDF) of the Student’s T distribution with df degrees of freedom. The size of y is the common size of x and df. A scalar input functions as a constant matrix of the same size as the other input.

Further information about the Student’s T distribution can be found at https://en.wikipedia.org/wiki/Student%27s_t-distribution

See also: tcdf, tpdf, trnd, tstat

Source Code: tpdf

Example: 1

 

 ## Plot various PDFs from the Student's T distribution
 x = -5:0.01:5;
 y1 = tpdf (x, 1);
 y2 = tpdf (x, 2);
 y3 = tpdf (x, 5);
 y4 = tpdf (x, Inf);
 plot (x, y1, "-b", x, y2, "-g", x, y3, "-r", x, y4, "-m")
 grid on
 xlim ([-5, 5])
 ylim ([0, 0.41])
 legend ({"df = 1", "df = 2", ...
          "df = 5", 'df = \infty'}, "location", "northeast")
 title ("Student's T PDF")
 xlabel ("values in x")
 ylabel ("density")

                    
plotted figure

statistics-release-1.6.3/docs/tricdf.html000066400000000000000000000144421456127120000204250ustar00rootroot00000000000000 Statistics: tricdf

Function Reference: tricdf

statistics: p = tricdf (x, a, b, c)
statistics: p = tricdf (x, a, b, c, "upper")

Triangular cumulative distribution function (CDF).

For each element of x, compute the cumulative distribution function (CDF) of the triangular distribution with parameters a, b, and c on the interval [a, b]. The size of p is the common size of the input arguments. A scalar input functions as a constant matrix of the same size as the other inputs.

p = tricdf (x, a, b, c, "upper") computes the upper tail probability of the triangular distribution with parameters a, b, and c, at the values in x.

Further information about the triangular distribution can be found at https://en.wikipedia.org/wiki/Triangular_distribution

See also: triinv, tripdf, trirnd

Source Code: tricdf

Example: 1

 

 ## Plot various CDFs from the triangular distribution
 x = 0.001:0.001:10;
 p1 = tricdf (x, 3, 6, 4);
 p2 = tricdf (x, 1, 5, 2);
 p3 = tricdf (x, 2, 9, 3);
 p4 = tricdf (x, 2, 9, 5);
 plot (x, p1, "-b", x, p2, "-g", x, p3, "-r", x, p4, "-c")
 grid on
 xlim ([0, 10])
 legend ({"a = 3, b = 6, c = 4", "a = 1, b = 5, c = 2", ...
          "a = 2, b = 9, c = 3", "a = 2, b = 9, c = 5"}, ...
         "location", "southeast")
 title ("Triangular CDF")
 xlabel ("values in x")
 ylabel ("probability")

                    
plotted figure

statistics-release-1.6.3/docs/triinv.html000066400000000000000000000135761456127120000204740ustar00rootroot00000000000000 Statistics: triinv

Function Reference: triinv

statistics: x = triinv (p, a, b, c)

Inverse of the triangular cumulative distribution function (iCDF).

For each element of p, compute the quantile (the inverse of the CDF) of the triangular distribution with parameters a, b, and c on the interval [a, b]. The size of x is the common size of the input arguments. A scalar input functions as a constant matrix of the same size as the other inputs.

Further information about the triangular distribution can be found at https://en.wikipedia.org/wiki/Triangular_distribution

See also: tricdf, tripdf, trirnd

Source Code: triinv

Example: 1

 

 ## Plot various iCDFs from the triangular distribution
 p = 0.001:0.001:0.999;
 x1 = triinv (p, 3, 6, 4);
 x2 = triinv (p, 1, 5, 2);
 x3 = triinv (p, 2, 9, 3);
 x4 = triinv (p, 2, 9, 5);
 plot (p, x1, "-b", p, x2, "-g", p, x3, "-r", p, x4, "-c")
 grid on
 ylim ([0, 10])
 legend ({"a = 3, b = 6, c = 4", "a = 1, b = 5, c = 2", ...
          "a = 2, b = 9, c = 3", "a = 2, b = 9, c = 5"}, ...
         "location", "northwest")
 title ("Triangular CDF")
 xlabel ("probability")
 ylabel ("values in x")

                    
plotted figure

statistics-release-1.6.3/docs/trimmean.html000066400000000000000000000172351456127120000207710ustar00rootroot00000000000000 Statistics: trimmean

Function Reference: trimmean

statistics: m = trimmean (x, p)
statistics: m = trimmean (x, p, flag)
statistics: m = trimmean (…, "all")
statistics: m = trimmean (…, dim)
statistics: m = trimmean (…, dim)

Compute the trimmed mean.

The trimmed mean of x is defined as the mean of x excluding the highest and lowest k data values of x, calculated as k = n * (p / 100) / 2), where n is the sample size.

m = trimmean (x, p) returns the mean of x after removing the outliers in x defined by p percent.

  • If x is a vector, then trimmean (x, p) is the mean of all the values of x, computed after removing the outliers.
  • If x is a matrix, then trimmean (x, p) is a row vector of column means, computed after removing the outliers.
  • If x is a multidimensional array, then trimmean operates along the first nonsingleton dimension of x.

To specify the operating dimension(s) when x is a matrix or a multidimensional array, use the dim or vecdim input argument.

trimmean treats NaN values in x as missing values and removes them.

m = trimmean (x, p, flag) specifies how to trim when k, i.e. half the number of outliers, is not an integer. flag can be specified as one of the following values:

ValueDescription
"round"Round k to the nearest integer. This is the default.
"floor"Round k down to the next smaller integer.
"weighted"If k = i + f, where i is an integer and f is a fraction, compute a weighted mean with weight (1 – f) for the (i + 1)-th and (n – i)-th values, and full weight for the values between them.

m = trimmean (…, "all") returns the trimmed mean of all the values in x using any of the input argument combinations in the previous syntaxes.

m = trimmean (…, dim) returns the trimmed mean along the operating dimension dim specified as a positive integer scalar. If not specified, then the default value is the first nonsingleton dimension of x, i.e. whose size does not equal 1. If dim is greater than ndims (X) or if size (x, dim) is 1, then trimmean returns x.

m = trimmean (…, vecdim) returns the trimmed mean over the dimensions specified in the vector vecdim. For example, if x is a 2-by-3-by-4 array, then mean (x, [1 2]) returns a 1-by-1-by-4 array. Each element of the output array is the mean of the elements on the corresponding page of x. If vecdim indexes all dimensions of x, then it is equivalent to mean (x, "all"). Any dimension in vecdim greater than ndims (x) is ignored.

See also: mean

Source Code: trimmean

statistics-release-1.6.3/docs/tripdf.html000066400000000000000000000135471456127120000204470ustar00rootroot00000000000000 Statistics: tripdf

Function Reference: tripdf

statistics: y = tripdf (x, a, b, c)

Triangular probability density function (PDF).

For each element of x, compute the probability density function (PDF) of the triangular distribution with parameters a, b, and c on the interval [a, b]. The size of y is the common size of the input arguments. A scalar input functions as a constant matrix of the same size as the other inputs.

Further information about the triangular distribution can be found at https://en.wikipedia.org/wiki/Triangular_distribution

See also: tricdf, triinv, trirnd

Source Code: tripdf

Example: 1

 

 ## Plot various CDFs from the triangular distribution
 x = 0.001:0.001:10;
 y1 = tripdf (x, 3, 6, 4);
 y2 = tripdf (x, 1, 5, 2);
 y3 = tripdf (x, 2, 9, 3);
 y4 = tripdf (x, 2, 9, 5);
 plot (x, y1, "-b", x, y2, "-g", x, y3, "-r", x, y4, "-c")
 grid on
 xlim ([0, 10])
 legend ({"a = 3, b = 6, c = 4", "a = 1, b = 5, c = 2", ...
          "a = 2, b = 9, c = 3", "a = 2, b = 9, c = 5"}, ...
         "location", "northeast")
 title ("Triangular CDF")
 xlabel ("values in x")
 ylabel ("probability")

                    
plotted figure

statistics-release-1.6.3/docs/trirnd.html000066400000000000000000000122431456127120000204510ustar00rootroot00000000000000 Statistics: trirnd

Function Reference: trirnd

statistics: r = trirnd (a, b, c)
statistics: r = trirnd (a, b, c, rows)
statistics: r = trirnd (a, b, c, rows, cols, …)
statistics: r = trirnd (a, b, c, [sz])

Random arrays from the triangular distribution.

r = trirnd (sigma) returns an array of random numbers chosen from the triangular distribution with parameters a, b, and c on the interval [a, b]. The size of r is the common size of a, b, and c. A scalar input functions as a constant matrix of the same size as the other inputs.

When called with a single size argument, trirnd returns a square matrix with the dimension specified. When called with more than one scalar argument, the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions. The size may also be specified with a row vector of dimensions, sz.

Further information about the triangular distribution can be found at https://en.wikipedia.org/wiki/Triangular_distribution

See also: tricdf, triinv, tripdf

Source Code: trirnd

statistics-release-1.6.3/docs/trnd.html000066400000000000000000000122731456127120000201210ustar00rootroot00000000000000 Statistics: trnd

Function Reference: trnd

statistics: r = trnd (df)
statistics: r = trnd (df, rows)
statistics: r = trnd (df, rows, cols, …)
statistics: r = trnd (df, [sz])

Random arrays from the Student’s T distribution.

Return a matrix of random samples from the Students’s T distribution with df degrees of freedom.

r = trnd (df) returns an array of random numbers chosen from the Student’s T distribution with df degrees of freedom. The size of r is the size of df. A scalar input functions as a constant matrix of the same size as the other inputs. df must be a finite real number greater than 0, otherwise NaN is returned.

When called with a single size argument, trnd returns a square matrix with the dimension specified. When called with more than one scalar argument, the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions. The size may also be specified with a row vector of dimensions, sz.

Further information about the Student’s T distribution can be found at https://en.wikipedia.org/wiki/Student%27s_t-distribution

See also: tcdf, tpdf, tpdf, tstat

Source Code: trnd

statistics-release-1.6.3/docs/tstat.html000066400000000000000000000104471456127120000203120ustar00rootroot00000000000000 Statistics: tstat

Function Reference: tstat

statistics: [m, v] = tstat (df)

Compute statistics of the Student’s T distribution.

[m, v] = tstat (df) returns the mean and variance of the Student’s T distribution with df degrees of freedom.

The size of m (mean) and v (variance) is the same size of the input argument.

Further information about the Student’s T distribution can be found at https://en.wikipedia.org/wiki/Student%27s_t-distribution

See also: tcdf, tinv, tpdf, trnd

Source Code: tstat

statistics-release-1.6.3/docs/ttest.html000066400000000000000000000156661456127120000203260ustar00rootroot00000000000000 Statistics: ttest

Function Reference: ttest

statistics: [h, pval, ci, stats] = ttest (x)
statistics: [h, pval, ci, stats] = ttest (x, m)
statistics: [h, pval, ci, stats] = ttest (x, y)
statistics: [h, pval, ci, stats] = ttest (x, m, Name, Value)
statistics: [h, pval, ci, stats] = ttest (x, y, Name, Value)

Test for mean of a normal sample with unknown variance.

Perform a t-test of the null hypothesis mean (x) == m for a sample x from a normal distribution with unknown mean and unknown standard deviation. Under the null, the test statistic t has a Student’s t distribution. The default value of m is 0.

If the second argument y is a vector, a paired-t test of the hypothesis mean (x) = mean (y) is performed. If x and y are vectors, they must have the same size and dimensions.

x (and y) can also be matrices. For matrices, ttest performs separate t-tests along each column, and returns a vector of results. x and y must have the same number of columns. The Type I error rate of the resulting vector of pval can be controlled by entering pval as input to the function multcompare.

ttest treats NaNs as missing values, and ignores them.

Name-Value pair arguments can be used to set various options. "alpha" can be used to specify the significance level of the test (the default value is 0.05). "tail", can be used to select the desired alternative hypotheses. If the value is "both" (default) the null is tested against the two-sided alternative mean (x) != m. If it is "right" the one-sided alternative mean (x) > m is considered. Similarly for "left", the one-sided alternative mean (x) < m is considered. When argument x is a matrix, "dim" can be used to select the dimension over which to perform the test. (The default is the first non-singleton dimension).

If h is 1 the null hypothesis is rejected, meaning that the tested sample does not come from a Student’s t distribution. If h is 0, then the null hypothesis cannot be rejected and it can be assumed that x follows a Student’s t distribution. The p-value of the test is returned in pval. A 100(1-alpha)% confidence interval is returned in ci.

stats is a structure containing the value of the test statistic (tstat), the degrees of freedom (df) and the sample’s standard deviation (sd).

See also: hotelling_ttest, ttest2, hotelling_ttest2

Source Code: ttest

statistics-release-1.6.3/docs/ttest2.html000066400000000000000000000143221456127120000203740ustar00rootroot00000000000000 Statistics: ttest2

Function Reference: ttest2

statistics: [h, pval, ci, stats] = ttest2 (x, y)
statistics: [h, pval, ci, stats] = ttest2 (x, y, Name, Value)

Perform a t-test to compare the means of two groups of data under the null hypothesis that the groups are drawn from distributions with the same mean.

x and y can be vectors or matrices. For matrices, ttest2 performs separate t-tests along each column, and returns a vector of results. x and y must have the same number of columns. The Type I error rate of the resulting vector of pval can be controlled by entering pval as input to the function multcompare.

ttest2 treats NaNs as missing values, and ignores them.

For a nested t-test, use anova2.

The argument "alpha" can be used to specify the significance level of the test (the default value is 0.05). The string argument "tail", can be used to select the desired alternative hypotheses. If "tail" is "both" (default) the null is tested against the two-sided alternative mean (x) != m. If "tail" is "right" the one-sided alternative mean (x) > m is considered. Similarly for "left", the one-sided alternative mean (x) < m is considered.

When "vartype" is "equal" the variances are assumed to be equal (this is the default). When "vartype" is "unequal" the variances are not assumed equal.

When argument x and y are matrices the "dim" argument can be used to select the dimension over which to perform the test. (The default is the first non-singleton dimension.)

If h is 0 the null hypothesis is accepted, if it is 1 the null hypothesis is rejected. The p-value of the test is returned in pval. A 100(1-alpha)% confidence interval is returned in ci. stats is a structure containing the value of the test statistic (tstat), the degrees of freedom (df) and the sample standard deviation (sd).

See also: hotelling_ttest2, anova1, hotelling_ttest, ttest

Source Code: ttest2

statistics-release-1.6.3/docs/unidcdf.html000066400000000000000000000150251456127120000205640ustar00rootroot00000000000000 Statistics: unidcdf

Function Reference: unidcdf

statistics: p = unidcdf (x, N)
statistics: p = unidcdf (x, N, "upper")

Discrete uniform cumulative distribution function (CDF).

For each element of x, compute the cumulative distribution function (CDF) of a discrete uniform distribution with parameter N, which corresponds to the maximum observable value. unidcdf assumes the integer values in the range [1,N] with equal probability. The size of p is the common size of x and N. A scalar input functions as a constant matrix of the same size as the other inputs.

The maximum observable values in N must be positive integers, otherwise NaN is returned.

[…] = unidcdf (x, N, "upper") computes the upper tail probability of the discrete uniform distribution with maximum observable value N, at the values in x.

Warning: The underlying implementation uses the double class and will only be accurate for N < flintmax (2^53 on IEEE 754 compatible systems).

Further information about the discrete uniform distribution can be found at https://en.wikipedia.org/wiki/Discrete_uniform_distribution

See also: unidinv, unidpdf, unidrnd, unidfit, unidstat

Source Code: unidcdf

Example: 1

 

 ## Plot various CDFs from the discrete uniform distribution
 x = 0:10;
 p1 = unidcdf (x, 5);
 p2 = unidcdf (x, 9);
 plot (x, p1, "*b", x, p2, "*g")
 grid on
 xlim ([0, 10])
 ylim ([0, 1])
 legend ({"N = 5", "N = 9"}, "location", "southeast")
 title ("Discrete uniform CDF")
 xlabel ("values in x")
 ylabel ("probability")

                    
plotted figure

statistics-release-1.6.3/docs/unidfit.html000066400000000000000000000166641456127120000206240ustar00rootroot00000000000000 Statistics: unidfit

Function Reference: unidfit

statistics: Nhat = unidfit (x)
statistics: [Nhat, Nci] = unidfit (x)
statistics: [Nhat, Nci] = unidfit (x, alpha)
statistics: [Nhat, Nci] = unidfit (x, alpha, freq)

Estimate parameter and confidence intervals for the discrete uniform distribution.

Nhat = unidfit (x) returns the maximum likelihood estimate (MLE) of the maximum observable value for the discrete uniform distribution. x must be a vector.

[Nhat, Nci] = unidfit (x, alpha) also returns the 100 * (1 - alpha) percent confidence intervals of the estimated parameter. By default, the optional argument alpha is 0.05 corresponding to 95% confidence intervals. Pass in [] for alpha to use the default values.

[…] = unidfit (x, alpha, freq) accepts a frequency vector, freq, of the same size as x. freq typically contains integer frequencies for the corresponding elements in x, but it can contain any non-integer non-negative values. By default, or if left empty, freq = ones (size (x)).

Further information about the discrete uniform distribution can be found at https://en.wikipedia.org/wiki/Discrete_uniform_distribution

See also: unidcdf, unidinv, unidpdf, unidrnd, unidstat

Source Code: unidfit

Example: 1

 

 ## Sample 2 populations from different discrete uniform distibutions
 rand ("seed", 1);    # for reproducibility
 r1 = unidrnd (5, 1000, 1);
 rand ("seed", 2);    # for reproducibility
 r2 = unidrnd (9, 1000, 1);
 r = [r1, r2];

 ## Plot them normalized and fix their colors
 hist (r, 0:0.5:20.5, 1);
 h = findobj (gca, "Type", "patch");
 set (h(1), "facecolor", "c");
 set (h(2), "facecolor", "g");
 hold on

 ## Estimate their probability of success
 NhatA = unidfit (r(:,1));
 NhatB = unidfit (r(:,2));

 ## Plot their estimated PDFs
 x = [0:10];
 y = unidpdf (x, NhatA);
 plot (x, y, "-pg");
 y = unidpdf (x, NhatB);
 plot (x, y, "-sc");
 xlim ([0, 10])
 ylim ([0, 0.4])
 legend ({"Normalized HIST of sample 1 with N=5", ...
          "Normalized HIST of sample 2 with N=9", ...
          sprintf("PDF for sample 1 with estimated N=%0.2f", NhatA), ...
          sprintf("PDF for sample 2 with estimated N=%0.2f", NhatB)})
 title ("Two population samples from different discrete uniform distibutions")
 hold off

                    
plotted figure

statistics-release-1.6.3/docs/unidinv.html000066400000000000000000000143021456127120000206210ustar00rootroot00000000000000 Statistics: unidinv

Function Reference: unidinv

statistics: x = unidinv (p, N)

Inverse of the discrete uniform cumulative distribution function (iCDF).

For each element of p, compute the quantile (the inverse of the CDF) of the discrete uniform distribution with parameter N, which corresponds to the maximum observable value. unidinv assumes the integer values in the range [1,N] with equal probability. The size of x is the common size of p and N. A scalar input functions as a constant matrix of the same size as the other inputs.

The maximum observable values in N must be positive integers, otherwise NaN is returned.

Warning: The underlying implementation uses the double class and will only be accurate for N < flintmax (2^53 on IEEE 754 compatible systems).

Further information about the discrete uniform distribution can be found at https://en.wikipedia.org/wiki/Discrete_uniform_distribution

See also: unidcdf, unidpdf, unidrnd, unidfit, unidstat

Source Code: unidinv

Example: 1

 

 ## Plot various iCDFs from the discrete uniform distribution
 p = 0.001:0.001:0.999;
 x1 = unidinv (p, 5);
 x2 = unidinv (p, 9);
 plot (p, x1, "-b", p, x2, "-g")
 grid on
 xlim ([0, 1])
 ylim ([0, 10])
 legend ({"N = 5", "N = 9"}, "location", "northwest")
 title ("Discrete uniform iCDF")
 xlabel ("probability")
 ylabel ("values in x")

                    
plotted figure

statistics-release-1.6.3/docs/unidpdf.html000066400000000000000000000142371456127120000206050ustar00rootroot00000000000000 Statistics: unidpdf

Function Reference: unidpdf

statistics: y = unidpdf (x, N)

Discrete uniform probability density function (PDF).

For each element of x, compute the probability density function (PDF) of the discrete uniform distribution with parameter N, which corresponds to the maximum observable value. unidpdf assumes the integer values in the range [1,N] with equal probability. The size of x is the common size of p and N. A scalar input functions as a constant matrix of the same size as the other inputs.

The maximum observable values in N must be positive integers, otherwise NaN is returned.

Warning: The underlying implementation uses the double class and will only be accurate for N < flintmax (2^53 on IEEE 754 compatible systems).

Further information about the discrete uniform distribution can be found at https://en.wikipedia.org/wiki/Discrete_uniform_distribution

See also: unidcdf, unidinv, unidrnd, unidfit, unidstat

Source Code: unidpdf

Example: 1

 

 ## Plot various PDFs from the discrete uniform distribution
 x = 0:10;
 y1 = unidpdf (x, 5);
 y2 = unidpdf (x, 9);
 plot (x, y1, "*b", x, y2, "*g")
 grid on
 xlim ([0, 10])
 ylim ([0, 0.25])
 legend ({"N = 5", "N = 9"}, "location", "northeast")
 title ("Descrete uniform PDF")
 xlabel ("values in x")
 ylabel ("density")

                    
plotted figure

statistics-release-1.6.3/docs/unidrnd.html000066400000000000000000000130221456127120000206060ustar00rootroot00000000000000 Statistics: unidrnd

Function Reference: unidrnd

statistics: r = unidrnd (N)
statistics: r = unidrnd (N, rows)
statistics: r = unidrnd (N, rows, cols, …)
statistics: r = unidrnd (N, [sz])

Random arrays from the discrete uniform distribution.

r = unidrnd (N) returns an array of random numbers chosen from the discrete uniform distribution with parameter N, which corresponds to the maximum observable value. unidrnd assumes the integer values in the range [1,N] with equal probability. The size of r is the size of N. A scalar input functions as a constant matrix of the same size as the other inputs.

The maximum observable values in N must be positive integers, otherwise NaN is returned.

When called with a single size argument, unidrnd returns a square matrix with the dimension specified. When called with more than one scalar argument, the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions. The size may also be specified with a row vector of dimensions, sz.

Warning: The underlying implementation uses the double class and will only be accurate for N < flintmax (2^53 on IEEE 754 compatible systems).

Further information about the discrete uniform distribution can be found at https://en.wikipedia.org/wiki/Discrete_uniform_distribution

See also: unidcdf, unidinv, unidrnd, unidfit, unidstat

Source Code: unidrnd

statistics-release-1.6.3/docs/unidstat.html000066400000000000000000000107421456127120000210040ustar00rootroot00000000000000 Statistics: unidstat

Function Reference: unidstat

statistics: [m, v] = unidstat (df)

Compute statistics of the discrete uniform cumulative distribution.

[m, v] = unidstat (df) returns the mean and variance of the discrete uniform cumulative distribution with parameter N, which corresponds to the maximum observable value and must be a positive natural number.

The size of m (mean) and v (variance) is the same size of the input argument.

Further information about the discrete uniform distribution can be found at https://en.wikipedia.org/wiki/Discrete_uniform_distribution

See also: unidcdf, unidinv, unidpdf, unidrnd, unidfit

Source Code: unidstat

statistics-release-1.6.3/docs/unifcdf.html000066400000000000000000000144261456127120000205720ustar00rootroot00000000000000 Statistics: unifcdf

Function Reference: unifcdf

statistics: p = unifcdf (x, a, b)
statistics: p = unifcdf (x, a, b, "upper")

Continuous uniform cumulative distribution function (CDF).

For each element of x, compute the cumulative distribution function (CDF) of the continuous uniform distribution with parameters a and b, which define the lower and upper bounds of the interval [a, b]. The size of p is the common size of x, a, and b. A scalar input functions as a constant matrix of the same size as the other inputs.

[…] = unifcdf (x, a, b, "upper") computes the upper tail probability of the continuous uniform distribution with parameters a, and b, at the values in x.

Further information about the continuous uniform distribution can be found at https://en.wikipedia.org/wiki/Continuous_uniform_distribution

See also: unifinv, unifpdf, unifrnd, unifit, unifstat

Source Code: unifcdf

Example: 1

 

 ## Plot various CDFs from the continuous uniform distribution
 x = 0:0.1:10;
 p1 = unifcdf (x, 2, 5);
 p2 = unifcdf (x, 3, 9);
 plot (x, p1, "-b", x, p2, "-g")
 grid on
 xlim ([0, 10])
 ylim ([0, 1])
 legend ({"a = 2, b = 5", "a = 3, b = 9"}, "location", "southeast")
 title ("Continuous uniform CDF")
 xlabel ("values in x")
 ylabel ("probability")

                    
plotted figure

statistics-release-1.6.3/docs/unifinv.html000066400000000000000000000136331456127120000206310ustar00rootroot00000000000000 Statistics: unifinv

Function Reference: unifinv

statistics: x = unifinv (p, a, b)

Inverse of the continuous uniform cumulative distribution function (iCDF).

For each element of p, compute the quantile (the inverse of the CDF) of the continuous uniform distribution with parameters a and b, which define the lower and upper bounds of the interval [a, b]. The size of x is the common size of p, a, and b. A scalar input functions as a constant matrix of the same size as the other inputs.

Further information about the continuous uniform distribution can be found at https://en.wikipedia.org/wiki/Continuous_uniform_distribution

See also: unifcdf, unifpdf, unifrnd, unifit, unifstat

Source Code: unifinv

Example: 1

 

 ## Plot various iCDFs from the continuous uniform distribution
 p = 0.001:0.001:0.999;
 x1 = unifinv (p, 2, 5);
 x2 = unifinv (p, 3, 9);
 plot (p, x1, "-b", p, x2, "-g")
 grid on
 xlim ([0, 1])
 ylim ([0, 10])
 legend ({"a = 2, b = 5", "a = 3, b = 9"}, "location", "northwest")
 title ("Continuous uniform iCDF")
 xlabel ("probability")
 ylabel ("values in x")

                    
plotted figure

statistics-release-1.6.3/docs/unifit.html000066400000000000000000000172101456127120000204440ustar00rootroot00000000000000 Statistics: unifit

Function Reference: unifit

statistics: paramhat = unifit (x)
statistics: [paramhat, paramci] = unifit (x)
statistics: [paramhat, paramci] = unifit (x, alpha)
statistics: [paramhat, paramci] = unifit (x, alpha, freq)

Estimate parameter and confidence intervals for the continuous uniform distribution.

paramhat = unifit (x) returns the maximum likelihood estimate (MLE) of the parameters a and b of the continuous uniform distribution given the data in x. x must be a vector.

[paramhat, paramci] = unifit (x, alpha) also returns the 100 * (1 - alpha) percent confidence intervals of the estimated parameter. By default, the optional argument alpha is 0.05 corresponding to 95% confidence intervals. Pass in [] for alpha to use the default values.

[…] = unifit (x, alpha, freq) accepts a frequency vector, freq, of the same size as x. freq typically contains integer frequencies for the corresponding elements in x, but it can contain any non-integer non-negative values. By default, or if left empty, freq = ones (size (x)).

Further information about the continuous uniform distribution can be found at https://en.wikipedia.org/wiki/Discrete_uniform_distribution

See also: unifcdf, unifinv, unifpdf, unifrnd, unifstat

Source Code: unifit

Example: 1

 

 ## Sample 2 populations from different continuous uniform distibutions
 rand ("seed", 5);    # for reproducibility
 r1 = unifrnd (2, 5, 2000, 1);
 rand ("seed", 6);    # for reproducibility
 r2 = unifrnd (3, 9, 2000, 1);
 r = [r1, r2];

 ## Plot them normalized and fix their colors
 hist (r, 0:0.5:10, 2);
 h = findobj (gca, "Type", "patch");
 set (h(1), "facecolor", "c");
 set (h(2), "facecolor", "g");
 hold on

 ## Estimate their probability of success
 a_bA = unifit (r(:,1));
 a_bB = unifit (r(:,2));

 ## Plot their estimated PDFs
 x = [0:10];
 y = unifpdf (x, a_bA(1), a_bA(2));
 plot (x, y, "-pg");
 y = unifpdf (x, a_bB(1), a_bB(2));
 plot (x, y, "-sc");
 xlim ([1, 10])
 ylim ([0, 0.5])
 legend ({"Normalized HIST of sample 1 with a=2 and b=5", ...
          "Normalized HIST of sample 2 with a=3 and b=9", ...
          sprintf("PDF for sample 1 with estimated a=%0.2f and b=%0.2f", ...
                  a_bA(1), a_bA(2)), ...
          sprintf("PDF for sample 2 with estimated a=%0.2f and b=%0.2f", ...
                  a_bB(1), a_bB(2))})
 title ("Two population samples from different continuous uniform distibutions")
 hold off

                    
plotted figure

statistics-release-1.6.3/docs/unifpdf.html000066400000000000000000000135751456127120000206130ustar00rootroot00000000000000 Statistics: unifpdf

Function Reference: unifpdf

statistics: y = unifpdf (x, a, b)

Continuous uniform probability density function (PDF).

For each element of x, compute the probability density function (PDF) of the continuous uniform distribution with parameters a and b, which define the lower and upper bounds of the interval [a, b]. The size of y is the common size of x, a, and b. A scalar input functions as a constant matrix of the same size as the other inputs.

Further information about the continuous uniform distribution can be found at https://en.wikipedia.org/wiki/Continuous_uniform_distribution

See also: unifcdf, unifinv, unifrnd, unifit, unifstat

Source Code: unifpdf

Example: 1

 

 ## Plot various PDFs from the continuous uniform distribution
 x = 0:0.001:10;
 y1 = unifpdf (x, 2, 5);
 y2 = unifpdf (x, 3, 9);
 plot (x, y1, "-b", x, y2, "-g")
 grid on
 xlim ([0, 10])
 ylim ([0, 0.4])
 legend ({"a = 2, b = 5", "a = 3, b = 9"}, "location", "northeast")
 title ("Continuous uniform PDF")
 xlabel ("values in x")
 ylabel ("density")

                    
plotted figure

statistics-release-1.6.3/docs/unifrnd.html000066400000000000000000000124241456127120000206150ustar00rootroot00000000000000 Statistics: unifrnd

Function Reference: unifrnd

statistics: r = unifrnd (a, b)
statistics: r = unifrnd (a, b, rows)
statistics: r = unifrnd (a, b, rows, cols, …)
statistics: r = unifrnd (a, b, [sz])

Random arrays from the continuous uniform distribution.

r = unifrnd (a, b) returns an array of random numbers chosen from the continuous uniform distribution with parameters a and b, which define the lower and upper bounds of the interval [a, b]. The size of r is the common size of a and b. A scalar input functions as a constant matrix of the same size as the other inputs.

When called with a single size argument, unifrnd returns a square matrix with the dimension specified. When called with more than one scalar argument, the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions. The size may also be specified with a row vector of dimensions, sz.

Further information about the continuous uniform distribution can be found at https://en.wikipedia.org/wiki/Continuous_uniform_distribution

See also: unifcdf, unifinv, unifpdf, unifit, unifstat

Source Code: unifrnd

statistics-release-1.6.3/docs/unifstat.html000066400000000000000000000111371456127120000210050ustar00rootroot00000000000000 Statistics: unifstat

Function Reference: unifstat

statistics: [m, v] = unifstat (df)

Compute statistics of the continuous uniform cumulative distribution.

[m, v] = unifstat (df) returns the mean and variance of the continuous uniform cumulative distribution with parameters a and b, which define the lower and upper bounds of the interval [a, b].

The size of m (mean) and v (variance) is the common size of the input arguments. A scalar input functions as a constant matrix of the same size as the other inputs.

Further information about the continuous uniform distribution can be found at https://en.wikipedia.org/wiki/Continuous_uniform_distribution

See also: unifcdf, unifinv, unifpdf, unifrnd, unifit

Source Code: unifstat

statistics-release-1.6.3/docs/var.html000066400000000000000000000170511456127120000177410ustar00rootroot00000000000000 Statistics: var

Function Reference: var

statistics: v = var (x)
statistics: v = var (x, w)
statistics: v = var (x, w, "all")
statistics: v = var (x, w, dim)
statistics: v = var (x, w, vecdim)
statistics: v = var (…, nanflag)
statistics: [v, m] = var (…)

Compute the variance of the elements of x.

  • If x is a vector, then var(x) returns the variance of the elements in x defined as $$ {\rm var}(x) = {1\over N-1} \sum_{i=1}^N |x_i - \bar x |^2 $$ where N is the length of the x vector.
  • If x is a matrix, then var (x) returns a row vector with the variance of each column in x.
  • If x is a multi-dimensional array, then var (x) operates along the first non-singleton dimension of x.

var (x, w) specifies a weighting scheme. When w = 0 (default), the variance is normalized by N-1 (population variance) where N is the number of observations. When w = 1, the variance is normalized by the number of observations (sample variance). To use the default value you may pass an empty input argument [] before entering other options.

w can also be an array of non-negative numbers. When w is a vector, it must have the same length as the number of elements in the operating dimension of x. If w is a matrix or n-D array, or the operating dimension is supplied as a vecdim or "all", w must be the same size as x. NaN values are permitted in w, will be multiplied with the associated values in x, and can be excluded by the nanflag option.

var (x, [], dim) returns the variance along the operating dimension dim of x. For dim greater than ndims (x) v is returned as zeros of the same size as x and m = x.

var (x, [], vecdim) returns the variance over the dimensions specified in the vector vecdim. For example, if x is a 2-by-3-by-4 array, then var (x, [1 2]) returns a 1-by-1-by-4 array. Each element of the output array is the variance of the elements on the corresponding page of x. If vecdim indexes all dimensions of x, then it is equivalent to var (x, "all"). Any dimension in vecdim greater than ndims (x) is ignored.

var (x, "all") returns the variance of all the elements in x. The optional flag "all" cannot be used together with dim or vecdim input arguments.

var (…, nanflag) specifies whether to exclude NaN values from the calculation using any of the input argument combinations in previous syntaxes. The default value for nanflag is "includenan", and keeps NaN values in the calculation. To exclude NaN values, set the value of nanflag to "omitnan".

[v, m] = var (…) also returns the mean of the elements of x used to calculate the variance. If v is the weighted variance, then m is the weighted mean.

See also: std, mean

Source Code: var

statistics-release-1.6.3/docs/vartest.html000066400000000000000000000160571456127120000206460ustar00rootroot00000000000000 Statistics: vartest

Function Reference: vartest

statistics: h = vartest (x, v)
statistics: h = vartest (x, v, name, value)
statistics: [h, pval] = vartest (…)
statistics: [h, pval, ci] = vartest (…)
statistics: [h, pval, ci, stats] = vartest (…)

One-sample test of variance.

h = vartest (x, v) performs a chi-square test of the hypothesis that the data in the vector x come from a normal distribution with variance v, against the alternative that x comes from a normal distribution with a different variance. The result is h = 0 if the null hypothesis ("variance is V") cannot be rejected at the 5% significance level, or h = 1 if the null hypothesis can be rejected at the 5% level.

x may also be a matrix or an N-D array. For matrices, vartest performs separate tests along each column of x, and returns a vector of results. For N-D arrays, vartest works along the first non-singleton dimension of x. v must be a scalar.

vartest treats NaNs as missing values, and ignores them.

[h, pval] = vartest (…) returns the p-value. That is the probability of observing the given result, or one more extreme, by chance if the null hypothesisis true.

[h, pval, ci] = vartest (…) returns a 100 * (1 - alpha)% confidence interval for the true variance.

[h, pval, ci, stats] = vartest (…) returns a structure with the following fields:

chisqstatthe value of the test statistic
dfthe degrees of freedom of the test

[…] = vartest (…, name, value), … specifies one or more of the following name/value pairs:

NameValue
"alpha"the significance level. Default is 0.05.
"dim"dimension to work along a matrix or an N-D array.
"tail"a string specifying the alternative hypothesis
"both"variance is not v (two-tailed, default)
"left"variance is less than v (left-tailed)
"right"variance is greater than v (right-tailed)

See also: ttest, ztest, kstest

Source Code: vartest

statistics-release-1.6.3/docs/vartest2.html000066400000000000000000000165431456127120000207300ustar00rootroot00000000000000 Statistics: vartest2

Function Reference: vartest2

statistics: h = vartest2 (x, y)
statistics: h = vartest2 (x, y, name, value)
statistics: [h, pval] = vartest2 (…)
statistics: [h, pval, ci] = vartest2 (…)
statistics: [h, pval, ci, stats] = vartest2 (…)

Two-sample F test for equal variances.

h = vartest2 (x, y) performs an F test of the hypothesis that the independent data in vectors x and y come from normal distributions with equal variance, against the alternative that they come from normal distributions with different variances. The result is h = 0 if the null hypothesis ("variance are equal") cannot be rejected at the 5% significance level, or h = 1 if the null hypothesis can be rejected at the 5% level.

x and y may also be matrices or N-D arrays. For matrices, vartest2 performs separate tests along each column and returns a vector of results. For N-D arrays, vartest2 works along the first non-singleton dimension and x and y must have the same size along all the remaining dimensions.

vartest treats NaNs as missing values, and ignores them.

[h, pval] = vartest (…) returns the p-value. That is the probability of observing the given result, or one more extreme, by chance if the null hypothesisis true.

[h, pval, ci] = vartest (…) returns a 100× (1 - alpha)% confidence interval for the true ratio var(X)/var(Y).

[h, pval, ci, stats] = vartest (…) returns a structure with the following fields:

fstatthe value of the test statistic
df1the numerator degrees of freedom of the test
df2the denominator degrees of freedom of the test

[…] = vartest (…, name, value), … specifies one or more of the following name/value pairs:

NameValue
"alpha"the significance level. Default is 0.05.
"dim"dimension to work along a matrix or an N-D array.
"tail"a string specifying the alternative hypothesis
"both"variance is not v (two-tailed, default)
"left"variance is less than v (left-tailed)
"right"variance is greater than v (right-tailed)

See also: ttest2, kstest2, bartlett_test, levene_test

Source Code: vartest2

statistics-release-1.6.3/docs/vartestn.html000066400000000000000000000351441456127120000210220ustar00rootroot00000000000000 Statistics: vartestn

Function Reference: vartestn

statistics: vartestn (x)
statistics: vartestn (x, group)
statistics: vartestn (…, name, value)
statistics: p = vartestn (…)
statistics: [p, stats] = vartestn (…)
statistics: [p, stats] = vartestn (…, name, value)

Test for equal variances across multiple groups.

h = vartestn (x) performs Bartlett’s test for equal variances for the columns of the matrix x. This is a test of the null hypothesis that the columns of x come from normal distributions with the same variance, against the alternative that they come from normal distributions with different variances. The result is displayed in a summary table of statistics as well as a box plot of the groups.

vartestn (x, group) requires a vector x, and a group argument that is a categorical variable, vector, string array, or cell array of strings with one row for each element of x. Values of x corresponding to the same value of group are placed in the same group.

vartestn treats NaNs as missing values, and ignores them.

p = vartestn (…) returns the probability of observing the given result, or one more extreme, by chance under the null hypothesis that all groups have equal variances. Small values of p cast doubt on the validity of the null hypothesis.

[p, stats] = vartestn (…) returns a structure with the following fields:

chistat– the value of the test statistic
df– the degrees of freedom of the test

[p, stats] = vartestn (…, name, value) specifies one or more of the following name/value pairs:

"display""on" to display a boxplot and table, or "off" to omit these displays. Default "on".
"testtype"One of the following strings to control the type of test to perform
"Bartlett"Bartlett’s test (default).
"LeveneQuadratic"Levene’s test computed by performing anova on the squared deviations of the data values from their group means.
"LeveneAbsolute"Levene’s test computed by performing anova on the absolute deviations of the data values from their group means.
"BrownForsythe"Brown-Forsythe test computed by performing anova on the absolute deviations of the data values from the group medians.
"OBrien"O’Brien’s modification of Levene’s test with W=0.5.

The classical Bartlett’s test is sensitive to the assumption that the distribution in each group is normal. The other test types are more robust to non-normal distributions, especially ones prone to outliers. For these tests, the STATS output structure has a field named fstat containing the test statistic, and df1 and df2 containing its numerator and denominator degrees of freedom.

See also: vartest, vartest2, anova1, bartlett_test, levene_test

Source Code: vartestn

Example: 1

 

 ## Test the null hypothesis that the variances are equal across the five
 ## columns of data in the students’ exam grades matrix, grades.

 load examgrades
 vartestn (grades)


                    Group Summary Table

Group                        Count        Mean       Std Dev
------------------------------------------------------------
1                            120        75.0083     8.720203
2                            120        74.9917     6.542037
3                            120        74.9917     7.430910
4                            120        75.0333     8.601283
5                            120        74.9917     5.258839
Pooled Groups                600        75.0033     7.310655
Pooled valid Groups          600        75.0083     8.720203

Bartlett's statistic             38.73324
Degrees of Freedom               4
p-value                          0.000000

ans = 7.9086e-08
                    
plotted figure

Example: 2

 

 ## Test the null hypothesis that the variances in miles per gallon (MPG) are
 ## equal across different model years.

 load carsmall
 vartestn (MPG, Model_Year)


                    Group Summary Table

Group                        Count        Mean       Std Dev
------------------------------------------------------------
70                            29        17.6897     5.339231
76                            34        21.5735     5.889297
82                            31        31.7097     5.392548
Pooled Groups                 94        23.6576     5.540359
Pooled valid Groups           87        17.6897     5.339231

Bartlett's statistic             0.36619
Degrees of Freedom               2
p-value                          0.832687

ans = 0.8327
                    
plotted figure

Example: 3

 

 ## Use Levene’s test to test the null hypothesis that the variances in miles
 ## per gallon (MPG) are equal across different model years.

 load carsmall
 p = vartestn (MPG, Model_Year, "TestType", "LeveneAbsolute")


                    Group Summary Table

Group                        Count        Mean       Std Dev
------------------------------------------------------------
70                            29        17.6897     5.339231
76                            34        21.5735     5.889297
82                            31        31.7097     5.392548
Pooled Groups                 94        23.6576     5.540359
Pooled valid Groups         2958        23.7181     5.555774

Levene's statistic (absolute)    0.46126
Degrees of Freedom               2,  91
p-value                          0.631954

p = 0.6320
                    
plotted figure

Example: 4

 

 ## Test the null hypothesis that the variances are equal across the five
 ## columns of data in the students’ exam grades matrix, grades, using the
 ## Brown-Forsythe test.  Suppress the display of the summary table of
 ## statistics and the box plot.

 load examgrades
 [p, stats] = vartestn (grades, "TestType", "BrownForsythe", "Display", "off")

p = 1.3121e-06
stats =

  scalar structure containing the fields:

    fstat = 8.4160
    df =

         4   595


                    
statistics-release-1.6.3/docs/violin.html000066400000000000000000000331151456127120000204500ustar00rootroot00000000000000 Statistics: violin

Function Reference: violin

statistics: violin (x)
statistics: h = violin (x)
statistics: h = violin (…, property, value, …)
statistics: h = violin (hax, …)
statistics: h = violin (…, "horizontal")

Produce a Violin plot of the data x.

The input data x can be a N-by-m array containg N observations of m variables. It can also be a cell with m elements, for the case in which the variables are not uniformly sampled.

The following property can be set using property/value pairs (default values in parenthesis). The value of the property can be a scalar indicating that it applies to all the variables in the data. It can also be a cell/array, indicating the property for each variable. In this case it should have m columns (as many as variables).

Color

("y") Indicates the filling color of the violins.

Nbins

(50) Internally, the function calls hist to compute the histogram of the data. This property indicates how many bins to use. See help hist for more details.

SmoothFactor

(4) The fuction performs simple kernel density estimation and automatically finds the bandwith of the kernel function that best approximates the histogram using optimization (sqp). The result is in general very noisy. To smooth the result the bandwidth is multiplied by the value of this property. The higher the value the smoother the violings, but values too high might remove features from the data distribution.

Bandwidth

(NA) If this property is given a value other than NA, it sets the bandwith of the kernel function. No optimization is peformed and the property SmoothFactor is ignored.

Width

(0.5) Sets the maximum width of the violins. Violins are centered at integer axis values. The distance between two violin middle axis is 1. Setting a value higher thna 1 in this property will cause the violins to overlap.

If the string "Horizontal" is among the input arguments, the violin plot is rendered along the x axis with the variables in the y axis.

The returned structure h has handles to the plot elements, allowing customization of the visualization using set/get functions.

Example:

 
 title ("Grade 3 heights");
 axis ([0,3]);
 set (gca, "xtick", 1:2, "xticklabel", {"girls"; "boys"});
 h = violin ({randn(100,1)*5+140, randn(130,1)*8+135}, "Nbins", 10);
 set (h.violin, "linewidth", 2)
 

See also: boxplot, hist

Source Code: violin

Example: 1

 

 clf
 x = zeros (9e2, 10);
 for i=1:10
   x(:,i) = (0.1 * randn (3e2, 3) * (randn (3,1) + 1) + 2 * randn (1,3))(:);
 endfor
 h = violin (x, "color", "c");
 axis tight
 set (h.violin, "linewidth", 2);
 set (gca, "xgrid", "on");
 xlabel ("Variables")
 ylabel ("Values")

                    
plotted figure

Example: 2

 

 clf
 data = {randn(100,1)*5+140, randn(130,1)*8+135};
 subplot (1,2,1)
 title ("Grade 3 heights - vertical");
 set (gca, "xtick", 1:2, "xticklabel", {"girls"; "boys"});
 violin (data, "Nbins", 10);
 axis tight

 subplot(1,2,2)
 title ("Grade 3 heights - horizontal");
 set (gca, "ytick", 1:2, "yticklabel", {"girls"; "boys"});
 violin (data, "horizontal", "Nbins", 10);
 axis tight

                    
plotted figure

Example: 3

 

 clf
 data = exprnd (0.1, 500,4);
 violin (data, "nbins", {5,10,50,100});
 axis ([0 5 0 max(data(:))])

                    
plotted figure

Example: 4

 

 clf
 data = exprnd (0.1, 500,4);
 violin (data, "color", jet(4));
 axis ([0 5 0 max(data(:))])

                    
plotted figure

Example: 5

 

 clf
 data = repmat(exprnd (0.1, 500,1), 1, 4);
 violin (data, "width", linspace (0.1,0.5,4));
 axis ([0 5 0 max(data(:))])

                    
plotted figure

Example: 6

 

 clf
 data = repmat(exprnd (0.1, 500,1), 1, 4);
 violin (data, "nbins", [5,10,50,100], "smoothfactor", [4 4 8 10]);
 axis ([0 5 0 max(data(:))])

                    
plotted figure

statistics-release-1.6.3/docs/vmcdf.html000066400000000000000000000151101456127120000202420ustar00rootroot00000000000000 Statistics: vmcdf

Function Reference: vmcdf

statistics: p = vmcdf (x, mu, k)
statistics: p = vmcdf (x, mu, k, "upper")

Von Mises probability density function (PDF).

For each element of x, compute the cumulative distribution function (CDF) of the von Mises distribution with location parameter mu and concentration parameter k on the interval [-pi,pi]. The size of p is the common size of x, mu, and k. A scalar input functions as a constant matrix of the same same size as the other inputs.

p = vmcdf (x, mu, k, "upper") computes the upper tail probability of the von Mises distribution with parameters mu and k, at the values in x.

Note: the CDF of the von Mises distribution is not analytic. Hence, it is calculated by integrating its probability density which is expressed as a series of Bessel functions. Balancing between performance and accuracy, the integration uses a step of 1e-5 on the interval [-pi,pi], which results to an accuracy of about 10 significant digits.

Further information about the von Mises distribution can be found at https://en.wikipedia.org/wiki/Von_Mises_distribution

See also: vminv, vmpdf, vmrnd

Source Code: vmcdf

Example: 1

 

 ## Plot various CDFs from the von Mises distribution
 x1 = [-pi:0.1:pi];
 p1 = vmcdf (x1, 0, 0.5);
 p2 = vmcdf (x1, 0, 1);
 p3 = vmcdf (x1, 0, 2);
 p4 = vmcdf (x1, 0, 4);
 plot (x1, p1, "-r", x1, p2, "-g", x1, p3, "-b", x1, p4, "-c")
 grid on
 xlim ([-pi, pi])
 legend ({"μ = 0, k = 0.5", "μ = 0, k = 1", ...
          "μ = 0, k = 2", "μ = 0, k = 4"}, "location", "northwest")
 title ("Von Mises CDF")
 xlabel ("values in x")
 ylabel ("probability")

                    
plotted figure

statistics-release-1.6.3/docs/vminv.html000066400000000000000000000144521456127120000203120ustar00rootroot00000000000000 Statistics: vminv

Function Reference: vminv

statistics: x = vminv (p, mu, k)

Inverse of the von Mises cumulative distribution function (iCDF).

For each element of p, compute the quantile (the inverse of the CDF) of the von Mises distribution with location parameter mu and concentration parameter k on the interval [-pi,pi]. The size of x is the common size of p, mu, and k. A scalar input functions as a constant matrix of the same size as the other inputs.

Note: the quantile of the von Mises distribution is not analytic. Hence, it is approximated by a custom searching algorithm using its CDF until it converges up to a tolerance of 1e-5 or 100 iterations. As a result, balancing between performance and accuracy, the accuracy is about 5e-5 for k = 1 and it drops to 5e-5 as k increases.

Further information about the von Mises distribution can be found at https://en.wikipedia.org/wiki/Von_Mises_distribution

See also: vmcdf, vmpdf, vmrnd

Source Code: vminv

Example: 1

 

 ## Plot various iCDFs from the von Mises distribution
 p1 = [0,0.005,0.01:0.01:0.1,0.15,0.2:0.1:0.8,0.85,0.9:0.01:0.99,0.995,1];
 x1 = vminv (p1, 0, 0.5);
 x2 = vminv (p1, 0, 1);
 x3 = vminv (p1, 0, 2);
 x4 = vminv (p1, 0, 4);
 plot (p1, x1, "-r", p1, x2, "-g", p1, x3, "-b", p1, x4, "-c")
 grid on
 ylim ([-pi, pi])
 legend ({"μ = 0, k = 0.5", "μ = 0, k = 1", ...
          "μ = 0, k = 2", "μ = 0, k = 4"}, "location", "northwest")
 title ("Von Mises iCDF")
 xlabel ("probability")
 ylabel ("values in x")

                    
plotted figure

statistics-release-1.6.3/docs/vmpdf.html000066400000000000000000000134671456127120000202740ustar00rootroot00000000000000 Statistics: vmpdf

Function Reference: vmpdf

statistics: y = vmpdf (x, mu, k)

Von Mises probability density function (PDF).

For each element of x, compute the probability density function (PDF) of the von Mises distribution with location parameter mu and concentration parameter k on the interval [-pi, pi]. The size of y is the common size of x, mu, and k. A scalar input functions as a constant matrix of the same size as the other inputs.

Further information about the von Mises distribution can be found at https://en.wikipedia.org/wiki/Von_Mises_distribution

See also: vmcdf, vminv, vmrnd

Source Code: vmpdf

Example: 1

 

 ## Plot various PDFs from the von Mises distribution
 x1 = [-pi:0.1:pi];
 y1 = vmpdf (x1, 0, 0.5);
 y2 = vmpdf (x1, 0, 1);
 y3 = vmpdf (x1, 0, 2);
 y4 = vmpdf (x1, 0, 4);
 plot (x1, y1, "-r", x1, y2, "-g", x1, y3, "-b", x1, y4, "-c")
 grid on
 xlim ([-pi, pi])
 ylim ([0, 0.8])
 legend ({"μ = 0, k = 0.5", "μ = 0, k = 1", ...
          "μ = 0, k = 2", "μ = 0, k = 4"}, "location", "northwest")
 title ("Von Mises PDF")
 xlabel ("values in x")
 ylabel ("density")

                    
plotted figure

statistics-release-1.6.3/docs/vmrnd.html000066400000000000000000000122651456127120000203010ustar00rootroot00000000000000 Statistics: vmrnd

Function Reference: vmrnd

statistics: r = vmrnd (mu, k)
statistics: r = vmrnd (mu, k, rows)
statistics: r = vmrnd (mu, k, rows, cols, …)
statistics: r = vmrnd (mu, k, [sz])

Random arrays from the von Mises distribution.

r = vmrnd (mu, k) returns an array of random angles chosen from a von Mises distribution with location parameter mu and concentration parameter k on the interval [-pi, pi]. The size of r is the common size of mu and k. A scalar input functions as a constant matrix of the same size as the other inputs. Both parameters must be finite real numbers and k > 0, otherwise NaN is returned.

When called with a single size argument, vmrnd returns a square matrix with the dimension specified. When called with more than one scalar argument, the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions. The size may also be specified with a row vector of dimensions, sz.

Further information about the von Mises distribution can be found at https://en.wikipedia.org/wiki/Von_Mises_distribution

See also: vmcdf, vminv, vmpdf

Source Code: vmrnd

statistics-release-1.6.3/docs/wblcdf.html000066400000000000000000000166151456127120000204170ustar00rootroot00000000000000 Statistics: wblcdf

Function Reference: wblcdf

statistics: p = wblcdf (x)
statistics: p = wblcdf (x, lambda)
statistics: p = wblcdf (x, lambda, k)
statistics: p = wblcdf (…, "upper")
statistics: [p, plo, pup] = wblcdf (x, lambda, k, pcov)
statistics: [p, plo, pup] = wblcdf (x, lambda, k, pcov, alpha)
statistics: [p, plo, pup] = wblcdf (…, "upper")

Weibull cumulative distribution function (CDF).

For each element of x, compute the cumulative distribution function (CDF) of the Weibull distribution with scale parameter lambda and shape parameter k. The size of p is the common size of x, lambda and k. A scalar input functions as a constant matrix of the same size as the other inputs.

Default values are lambda = 1, k = 1.

When called with three output arguments, [p, plo, pup] it computes the confidence bounds for p when the input parameters lambda and k are estimates. In such case, pcov, a 2-by-2 matrix containing the covariance matrix of the estimated parameters, is necessary. Optionally, alpha has a default value of 0.05, and specifies 100 * (1 - alpha)% confidence bounds. plo and pup are arrays of the same size as p containing the lower and upper confidence bounds.

[…] = wblcdf (…, "upper") computes the upper tail probability of the lognormal distribution.

Further information about the Weibull distribution can be found at https://en.wikipedia.org/wiki/Weibull_distribution

See also: wblinv, wblpdf, wblrnd, wblstat, wblplot

Source Code: wblcdf

Example: 1

 

 ## Plot various CDFs from the Weibull distribution
 x = 0:0.001:2.5;
 p1 = wblcdf (x, 1, 0.5);
 p2 = wblcdf (x, 1, 1);
 p3 = wblcdf (x, 1, 1.5);
 p4 = wblcdf (x, 1, 5);
 plot (x, p1, "-b", x, p2, "-r", x, p3, "-m", x, p4, "-g")
 grid on
 legend ({"λ = 1, k = 0.5", "λ = 1, k = 1", ...
          "λ = 1, k = 1.5", "λ = 1, k = 5"}, "location", "southeast")
 title ("Weibull CDF")
 xlabel ("values in x")
 ylabel ("probability")

                    
plotted figure

statistics-release-1.6.3/docs/wblfit.html000066400000000000000000000225071456127120000204420ustar00rootroot00000000000000 Statistics: wblfit

Function Reference: wblfit

statistics: paramhat = wblfit (x)
statistics: [paramhat, paramci] = wblfit (x)
statistics: [paramhat, paramci] = wblfit (x, alpha)
statistics: […] = wblfit (x, alpha, censor)
statistics: […] = wblfit (x, alpha, censor, freq)
statistics: […] = wblfit (x, alpha, censor, freq, options)

Estimate mean and confidence intervals for the Weibull distribution.

muhat = wblfit (x) returns the maximum likelihood estimates of the parameters of the Weibull distribution given the data in x. paramhat(1) is the scale parameter, lambda, and paramhat(2) is the shape parameter, k.

[paramhat, paramci] = wblfit (x) returns the 95% confidence intervals for the parameter estimates.

[…] = wblfit (x, alpha) also returns the 100 * (1 - alpha) percent confidence intervals for the parameter estimates. By default, the optional argument alpha is 0.05 corresponding to 95% confidence intervals. Pass in [] for alpha to use the default values.

[…] = wblfit (x, alpha, censor) accepts a boolean vector, censor, of the same size as x with 1s for observations that are right-censored and 0s for observations that are observed exactly. By default, or if left empty, censor = zeros (size (x)).

[…] = wblfit (x, alpha, censor, freq) accepts a frequency vector, freq, of the same size as x. freq typically contains integer frequencies for the corresponding elements in x, but it can contain any non-integer non-negative values. By default, or if left empty, freq = ones (size (x)).

[…] = evfit (…, options) specifies control parameters for the iterative algorithm used to compute ML estimates with the fminsearch function. options is a structure with the following fields and their default values:

  • options.Display = "off"
  • options.TolX = 1e-6

Further information about the Weibull distribution can be found at https://en.wikipedia.org/wiki/Weibull_distribution

See also: wblcdf, wblinv, wblpdf, wblrnd, wbllike, wblstat

Source Code: wblfit

Example: 1

 

 ## Sample 3 populations from 3 different Weibull distibutions
 rande ("seed", 1);    # for reproducibility
 r1 = wblrnd(2, 4, 2000, 1);
 rande ("seed", 2);    # for reproducibility
 r2 = wblrnd(5, 2, 2000, 1);
 rande ("seed", 5);    # for reproducibility
 r3 = wblrnd(1, 5, 2000, 1);
 r = [r1, r2, r3];

 ## Plot them normalized and fix their colors
 hist (r, 30, [2.5 2.1 3.2]);
 h = findobj (gca, "Type", "patch");
 set (h(1), "facecolor", "c");
 set (h(2), "facecolor", "g");
 set (h(3), "facecolor", "r");
 ylim ([0, 2]);
 xlim ([0, 10]);
 hold on

 ## Estimate their lambda parameter
 lambda_kA = wblfit (r(:,1));
 lambda_kB = wblfit (r(:,2));
 lambda_kC = wblfit (r(:,3));

 ## Plot their estimated PDFs
 x = [0:0.1:15];
 y = wblpdf (x, lambda_kA(1), lambda_kA(2));
 plot (x, y, "-pr");
 y = wblpdf (x, lambda_kB(1), lambda_kB(2));
 plot (x, y, "-sg");
 y = wblpdf (x, lambda_kC(1), lambda_kC(2));
 plot (x, y, "-^c");
 hold off
 legend ({"Normalized HIST of sample 1 with λ=2 and k=4", ...
          "Normalized HIST of sample 2 with λ=5 and k=2", ...
          "Normalized HIST of sample 3 with λ=1 and k=5", ...
          sprintf("PDF for sample 1 with estimated λ=%0.2f and k=%0.2f", ...
                  lambda_kA(1), lambda_kA(2)), ...
          sprintf("PDF for sample 2 with estimated λ=%0.2f and k=%0.2f", ...
                  lambda_kB(1), lambda_kB(2)), ...
          sprintf("PDF for sample 3 with estimated λ=%0.2f and k=%0.2f", ...
                  lambda_kC(1), lambda_kC(2))})
 title ("Three population samples from different Weibull distibutions")
 hold off

                    
plotted figure

statistics-release-1.6.3/docs/wblinv.html000066400000000000000000000141431456127120000204510ustar00rootroot00000000000000 Statistics: wblinv

Function Reference: wblinv

statistics: x = wblinv (p)
statistics: x = wblinv (p, lambda)
statistics: x = wblinv (p, lambda, k)

Inverse of the Weibull cumulative distribution function (iCDF).

For each element of p, compute the quantile (the inverse of the CDF) of the Weibull distribution with scale parameter lambda and shape parameter k. The size of x is the common size of p, lambda, and k. A scalar input functions as a constant matrix of the same size as the other inputs.

Default values are lambda = 1, k = 1.

Further information about the Weibull distribution can be found at https://en.wikipedia.org/wiki/Weibull_distribution

See also: wblcdf, wblpdf, wblrnd, wblstat, wblplot

Source Code: wblinv

Example: 1

 

 ## Plot various iCDFs from the Weibull distribution
 p = 0.001:0.001:0.999;
 x1 = wblinv (p, 1, 0.5);
 x2 = wblinv (p, 1, 1);
 x3 = wblinv (p, 1, 1.5);
 x4 = wblinv (p, 1, 5);
 plot (p, x1, "-b", p, x2, "-r", p, x3, "-m", p, x4, "-g")
 ylim ([0, 2.5])
 grid on
 legend ({"λ = 1, k = 0.5", "λ = 1, k = 1",  ...
          "λ = 1, k = 1.5", "λ = 1, k = 5"}, "location", "northwest")
 title ("Weibull iCDF")
 xlabel ("probability")
 ylabel ("x")

                    
plotted figure

statistics-release-1.6.3/docs/wbllike.html000066400000000000000000000140751456127120000206050ustar00rootroot00000000000000 Statistics: wbllike

Function Reference: wbllike

statistics: nlogL = wbllike (params, x)
statistics: [nlogL, acov] = wbllike (params, x)
statistics: […] = wbllike (params, x, alpha, censor)
statistics: […] = wbllike (params, x, alpha, censor, freq)

Negative log-likelihood for the Weibull distribution.

nlogL = wbllike (params, data) returns the negative log-likelihood of the data in x corresponding to the Weibull distribution with (1) scale parameter lambda and (2) shape parameter k given in the two-element vector params.

[nlogL, acov] = wbllike (params, data) also returns the inverse of Fisher’s information matrix, acov. If the input parameter values in params are the maximum likelihood estimates, the diagonal elements of acov are their asymptotic variances. acov is based on the observed Fisher’s information, not the expected information.

[…] = wbllike (params, data, censor) accepts a boolean vector, censor, of the same size as x with 1s for observations that are right-censored and 0s for observations that are observed exactly. By default, or if left empty, censor = zeros (size (x)).

[…] = wbllike (params, data, censor, freq) accepts a frequency vector, freq, of the same size as x. freq typically contains integer frequencies for the corresponding elements in x, but may contain any non-integer non-negative values. By default, or if left empty, freq = ones (size (x)).

Further information about the Weibull distribution can be found at https://en.wikipedia.org/wiki/Weibull_distribution

See also: wblcdf, wblinv, wblpdf, wblrnd, wblfit, wblstat

Source Code: wbllike

statistics-release-1.6.3/docs/wblpdf.html000066400000000000000000000142261456127120000204300ustar00rootroot00000000000000 Statistics: wblpdf

Function Reference: wblpdf

statistics: y = wblinv (x)
statistics: y = wblinv (x, lambda)
statistics: y = wblinv (x, lambda, k)

Weibull probability density function (PDF).

For each element of x, compute the probability density function (PDF) of the Weibull distribution with scale parameter lambda and shpe parameter k. The size of y is the common size of x, lambda, and k. A scalar input functions as a constant matrix of the same size as the other inputs.

Default values are lambda = 1, k = 1.

Further information about the Weibull distribution can be found at https://en.wikipedia.org/wiki/Weibull_distribution

See also: wblcdf, wblinv, wblrnd, wblfit, wbllike, wblstat, wblplot

Source Code: wblpdf

Example: 1

 

 ## Plot various PDFs from the Weibul distribution
 x = 0:0.001:2.5;
 y1 = wblpdf (x, 1, 0.5);
 y2 = wblpdf (x, 1, 1);
 y3 = wblpdf (x, 1, 1.5);
 y4 = wblpdf (x, 1, 5);
 plot (x, y1, "-b", x, y2, "-r", x, y3, "-m", x, y4, "-g")
 grid on
 ylim ([0, 2.5])
 legend ({"λ = 5, k = 0.5", "λ = 9, k = 1", ...
          "λ = 6, k = 1.5", "λ = 2, k = 5"}, "location", "northeast")
 title ("Weibul PDF")
 xlabel ("values in x")
 ylabel ("density")

                    
plotted figure

statistics-release-1.6.3/docs/wblplot.html000066400000000000000000000270341456127120000206360ustar00rootroot00000000000000 Statistics: wblplot

Function Reference: wblplot

statistics: wblplot (data, …)
statistics: handle = wblplot (data, …)
statistics: [handle, param] = wblplot (data)
statistics: [handle, param] = wblplot (data, censor)
statistics: [handle, param] = wblplot (data, censor, freq)
statistics: [handle, param] = wblplot (data, censor, freq, confint)
statistics: [handle, param] = wblplot (data, censor, freq, confint, fancygrid)
statistics: [handle, param] = wblplot (data, censor, freq, confint, fancygrid, showlegend)

Plot a column vector data on a Weibull probability plot using rank regression.

censor: optional parameter is a column vector of same size as data with 1 for right censored data and 0 for exact observation. Pass [] when no censor data are available.

freq: optional vector same size as data with the number of occurences for corresponding data. Pass [] when no frequency data are available.

confint: optional confidence limits for ploting upper and lower confidence bands using beta binomial confidence bounds. If a single value is given this will be used such as LOW = a and HIGH = 1 - a. Pass [] if confidence bounds is not requested.

fancygrid: optional parameter which if set to anything but 1 will turn off the fancy gridlines.

showlegend: optional parameter that when set to zero(0) turns off the legend.

If one output argument is given, a handle for the data marker and plotlines is returned, which can be used for further modification of line and marker style.

If a second output argument is specified, a param vector with scale, shape and correlation factor is returned.

See also: normplot, wblpdf

Source Code: wblplot

Example: 1

 

 x = [16 34 53 75 93 120];
 wblplot (x);

                    
plotted figure

Example: 2

 

 x = [2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67]';
 c = [0 1 0 1 0 1 1 1 0 0 1 0 1 0 1 1 0 1 1]';
 [h, p] = wblplot (x, c);
 p

p =

   82.0192    0.8951    0.9896

                    
plotted figure

Example: 3

 

 x = [16, 34, 53, 75, 93, 120, 150, 191, 240 ,339];
 [h, p] = wblplot (x, [], [], 0.05);
 p
 ## Benchmark Reliasoft eta = 146.2545 beta 1.1973 rho = 0.9999

p =

   146.2545     1.1973     0.9999

                    
plotted figure

Example: 4

 

 x = [46 64 83 105 123 150 150];
 c = [0 0 0 0 0 0 1];
 f = [1 1 1 1 1 1 4];
 wblplot (x, c, f, 0.05);

                    
plotted figure

Example: 5

 

 x = [46 64 83 105 123 150 150];
 c = [0 0 0 0 0 0 1];
 f = [1 1 1 1 1 1 4];
 ## Subtract 30.92 from x to simulate a 3 parameter wbl with gamma = 30.92
 wblplot (x - 30.92, c, f, 0.05);

                    
plotted figure

statistics-release-1.6.3/docs/wblrnd.html000066400000000000000000000124271456127120000204430ustar00rootroot00000000000000 Statistics: wblrnd

Function Reference: wblrnd

statistics: r = wblrnd (lambda, k)
statistics: r = wblrnd (lambda, k, rows)
statistics: r = wblrnd (lambda, k, rows, cols, …)
statistics: r = wblrnd (lambda, k, [sz])

Random arrays from the Weibull distribution.

r = wblrnd (lambda, k) returns an array of random numbers chosen from the Weibull distribution with scale parameter lambda and shape parameter k. The size of r is the common size of lambda and k. A scalar input functions as a constant matrix of the same size as the other inputs. Both parameters must be positive reals.

When called with a single size argument, wblrnd returns a square matrix with the dimension specified. When called with more than one scalar argument, the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions. The size may also be specified with a row vector of dimensions, sz.

Further information about the Weibull distribution can be found at https://en.wikipedia.org/wiki/Weibull_distribution

See also: wblcdf, wblinv, wblpdf, wblfit, wbllike, wblstat, wblplot

Source Code: wblrnd

statistics-release-1.6.3/docs/wblstat.html000066400000000000000000000110541456127120000206260ustar00rootroot00000000000000 Statistics: wblstat

Function Reference: wblstat

statistics: [m, v] = wblstat (lambda, k)

Compute statistics of the Weibull distribution.

[m, v] = wblstat (lambda, k) returns the mean and variance of the Weibull distribution with scale parameter lambda and shape parameter k.

The size of m (mean) and v (variance) is the common size of the input arguments. A scalar input functions as a constant matrix of the same size as the other inputs.

Further information about the Weibull distribution can be found at https://en.wikipedia.org/wiki/Weibull_distribution

See also: wblcdf, wblinv, wblpdf, wblrnd, wblfit, wbllike, wblplot

Source Code: wblstat

statistics-release-1.6.3/docs/wienrnd.html000066400000000000000000000100771456127120000206200ustar00rootroot00000000000000 Statistics: wienrnd

Function Reference: wienrnd

statistics: r = wienrnd (t, d, n)

Return a simulated realization of the d-dimensional Wiener Process on the interval [0, t].

If d is omitted, d = 1 is used. The first column of the return matrix contains time, the remaining columns contain the Wiener process.

The optional parameter n defines the number of summands used for simulating the process over an interval of length 1. If n is omitted, n = 1000 is used.

Source Code: wienrnd

statistics-release-1.6.3/docs/wishpdf.html000066400000000000000000000107161456127120000206160ustar00rootroot00000000000000 Statistics: wishpdf

Function Reference: wishpdf

statistics: y = wishpdf (W, Sigma, df, log_y=false)

Compute the probability density function of the Wishart distribution

Inputs: A p x p matrix W where to find the PDF. The p x p positive definite matrix Sigma and scalar degrees of freedom parameter df characterizing the Wishart distribution. (For the density to be finite, need df > (p - 1).)

If the flag log_y is set, return the log probability density – this helps avoid underflow when the numerical value of the density is very small

Output: y is the probability density of Wishart(Sigma, df) at W.

See also: wishrnd, iwishpdf, iwishrnd

Source Code: wishpdf

statistics-release-1.6.3/docs/wishrnd.html000066400000000000000000000120701456127120000206230ustar00rootroot00000000000000 Statistics: wishrnd

Function Reference: wishrnd

statistics: [W, D] = wishrnd (Sigma, df, D, n=1)

Return a random matrix sampled from the Wishart distribution with given parameters

Inputs: the p× p positive definite matrix Sigma (or the lower-triangular Cholesky factor D of Sigma) and scalar degrees of freedom parameter df.

df can be non-integer as long as df > p

Output: a random p× p matrix W from the Wishart(Sigma, df) distribution. If n > 1, then W is p x p x n and holds n such random matrices. (Optionally, the lower-triangular Cholesky factor D of Sigma is also returned.)

Averaged across many samples, the mean of W should approach df*Sigma, and the variance of each element W_ij should approach df*(Sigma_ij^2 + Sigma_ii*Sigma_jj)

References

  1. Yu-Cheng Ku and Peter Bloomfield (2010), Generating Random Wishart Matrices with Fractional Degrees of Freedom in OX, http://www.gwu.edu/~forcpgm/YuChengKu-030510final-WishartYu-ChengKu.pdf

See also: wishpdf, iwishpdf, iwishrnd

Source Code: wishrnd

statistics-release-1.6.3/docs/x2fx.html000066400000000000000000000161061456127120000200400ustar00rootroot00000000000000 Statistics: x2fx

Function Reference: x2fx

statistics: [d, model, termstart, termend] = x2fx (x)
statistics: [d, model, termstart, termend] = x2fx (x, model)
statistics: [d, model, termstart, termend] = x2fx (x, model, categ)
statistics: [d, model, termstart, termend] = x2fx (x, model, categ, catlevels)

Convert predictors to design matrix.

d = x2fx (x, model) converts a matrix of predictors x to a design matrix d for regression analysis. Distinct predictor variables should appear in different columns of x.

The optional input model controls the regression model. By default, x2fx returns the design matrix for a linear additive model with a constant term. model can be any one of the following strings:

"linear"Constant and linear terms (the default)
"interaction"Constant, linear, and interaction terms
"quadratic"Constant, linear, interaction, and squared terms
"purequadratic"Constant, linear, and squared terms

If x has n columns, the order of the columns of d for a full quadratic model is:

  • The constant term.
  • The linear terms (the columns of X, in order 1,2,...,n).
  • The interaction terms (pairwise products of columns of x, in order (1,2), (1,3), ..., (1,n), (2,3), ..., (n-1,n).
  • The squared terms (in the order 1,2,...,n).

Other models use a subset of these terms, in the same order.

Alternatively, MODEL can be a matrix specifying polynomial terms of arbitrary order. In this case, MODEL should have one column for each column in X and one r for each term in the model. The entries in any r of MODEL are powers for the corresponding columns of x. For example, if x has columns X1, X2, and X3, then a row [0 1 2] in model would specify the term (X1.^0).*(X2.^1).*(X3.^2). A row of all zeros in model specifies a constant term, which you can omit.

d = x2fx (x, model, categ) treats columns with numbers listed in the vector categ as categorical variables. Terms involving categorical variables produce dummy variable columns in d. Dummy variables are computed under the assumption that possible categorical levels are completely enumerated by the unique values that appear in the corresponding column of x.

d = x2fx (x, model, categ, catlevels) accepts a vector catlevels the same length as categ, specifying the number of levels in each categorical variable. In this case, values in the corresponding column of x must be integers in the range from 1 to the specified number of levels. Not all of the levels need to appear in x.

Source Code: x2fx

statistics-release-1.6.3/docs/ztest.html000066400000000000000000000155051456127120000203240ustar00rootroot00000000000000 Statistics: ztest

Function Reference: ztest

statistics: h = ztest (x, m, sigma)
statistics: h = ztest (x, m, sigma, Name, Value)
statistics: [h, pval] = ztest (…)
statistics: [h, pval, ci] = ztest (…)
statistics: [h, pval, ci, zvalue] = ztest (…)

One-sample Z-test.

h = ztest (x, v) performs a Z-test of the hypothesis that the data in the vector x come from a normal distribution with mean m, against the alternative that x comes from a normal distribution with a different mean m. The result is h = 0 if the null hypothesis ("mean is M") cannot be rejected at the 5% significance level, or h = 1 if the null hypothesis can be rejected at the 5% level.

x may also be a matrix or an N-D array. For matrices, ztest performs separate tests along each column of x, and returns a vector of results. For N-D arrays, ztest works along the first non-singleton dimension of x. m and sigma must be a scalars.

ztest treats NaNs as missing values, and ignores them.

[h, pval] = ztest (…) returns the p-value. That is the probability of observing the given result, or one more extreme, by chance if the null hypothesisis true.

[h, pval, ci] = ztest (…) returns a 100 * (1 - alpha)% confidence interval for the true mean.

[h, pval, ci, zvalue] = ztest (…) returns the value of the test statistic.

[…] = ztest (…, Name, Value, …) specifies one or more of the following Name/Value pairs:

NameValue
"alpha"the significance level. Default is 0.05.
"dim"dimension to work along a matrix or an N-D array.
"tail"a string specifying the alternative hypothesis:
"both""mean is not m" (two-tailed, default)
"left""mean is less than m" (left-tailed)
"right""mean is greater than m" (right-tailed)

See also: ttest, vartest, signtest, kstest

Source Code: ztest

statistics-release-1.6.3/docs/ztest2.html000066400000000000000000000145431456127120000204070ustar00rootroot00000000000000 Statistics: ztest2

Function Reference: ztest2

statistics: h = ztest2 (x1, n1, x2, n2)
statistics: h = ztest2 (x1, n1, x2, n2, Name, Value)
statistics: [h, pval] = ztest2 (…)
statistics: [h, pval, zvalue] = ztest2 (…)

Two proportions Z-test.

If x1 and n1 are the counts of successes and trials in one sample, and x2 and n2 those in a second one, test the null hypothesis that the success probabilities p1 and p2 are the same. The result is h = 0 if the null hypothesis cannot be rejected at the 5% significance level, or h = 1 if the null hypothesis can be rejected at the 5% level.

Under the null, the test statistic zvalue approximately follows a standard normal distribution.

The size of h, pval, and zvalue is the common size of x, n1, x2, and n2, which must be scalars or of common size. A scalar input functions as a constant matrix of the same size as the other inputs.

[h, pval] = ztest2 (…) returns the p-value. That is the probability of observing the given result, or one more extreme, by chance if the null hypothesisis true.

[h, pval, zvalue] = ztest2 (…) returns the value of the test statistic.

[…] = ztest2 (…, Name, Value, …) specifies one or more of the following Name/Value pairs:

NameValue
"alpha"the significance level. Default is 0.05.
"tail"a string specifying the alternative hypothesis
"both"p1 is not p2 (two-tailed, default)
"left"p1 is less than p2 (left-tailed)
"right"p1 is greater than p2 (right-tailed)

See also: chi2test, fishertest

Source Code: ztest2

statistics-release-1.6.3/inst/000077500000000000000000000000001456127120000163045ustar00rootroot00000000000000statistics-release-1.6.3/inst/@cvpartition/000077500000000000000000000000001456127120000207465ustar00rootroot00000000000000statistics-release-1.6.3/inst/@cvpartition/cvpartition.m000066400000000000000000000206011456127120000234650ustar00rootroot00000000000000## Copyright (C) 2014 Nir Krakauer ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or ## (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; If not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{C} =} cvpartition (@var{X}, [@var{partition_type}, [@var{k}]]) ## ## Create a partition object for cross validation. ## ## @var{X} may be a positive integer, interpreted as the number of values ## @var{n} to partition, or a vector of length @var{n} containing class ## designations for the elements, in which case the partitioning types ## @var{KFold} and @var{HoldOut} attempt to ensure each partition represents the ## classes proportionately. ## ## @var{partition_type} must be one of the following: ## ## @table @asis ## @item @samp{KFold} ## Divide set into @var{k} equal-size subsets (this is the default, with ## @var{k}=10). ## @item @samp{HoldOut} ## Divide set into two subsets, "training" and "validation". If @var{k} is a ## fraction, that is the fraction of values put in the validation subset; if it ## is a positive integer, that is the number of values in the validation subset ## (by default @var{k}=0.1). ## @item @samp{LeaveOut} ## Leave-one-out partition (each element is placed in its own subset). ## @item @samp{resubstitution} ## Training and validation subsets that both contain all the original elements. ## @item @samp{Given} ## Subset indices are as given in @var{X}. ## @end table ## ## The following fields are defined for the @samp{cvpartition} class: ## ## @table @asis ## @item @samp{classes} ## Class designations for the elements. ## @item @samp{inds} ## Subset indices for the elements. ## @item @samp{n_classes} ## Number of different classes. ## @item @samp{NumObservations} ## @var{n}, number of elements in data set. ## @item @samp{NumTestSets} ## Number of testing subsets. ## @item @samp{TestSize} ## Number of elements in (each) testing subset. ## @item @samp{TrainSize} ## Number of elements in (each) training subset. ## @item @samp{Type} ## Partition type. ## @end table ## ## @seealso{crossval, @@cvpartition/display} ## @end deftypefn function C = cvpartition (X, partition_type = "KFold", k = []) if (nargin < 1 || nargin > 3 || !isvector(X)) print_usage (); endif if (isscalar (X)) n = X; n_classes = 1; else n = numel (X); endif switch (tolower (partition_type)) case {"kfold", "holdout", "leaveout", "resubstitution", "given"} otherwise warning ("cvpartition: unrecognized type, using KFold.") partition_type = "KFold"; endswitch switch (tolower (partition_type)) case {"kfold", "holdout", "given"} if (! isscalar (X)) [y, ~, j] = unique (X(:)); n_per_class = accumarray (j, 1); n_classes = numel (n_per_class); endif endswitch C = struct ("classes", [], "inds", [], "n_classes", [], "NumObservations", ... [], "NumTestSets", [], "TestSize", [], "TrainSize", [], "Type", []); ## The non-Matlab fields classes, inds, n_classes ## are only useful for some methods switch (tolower (partition_type)) case "kfold" if (isempty (k)) k = 10; endif if (n_classes == 1) inds = floor((0:(n-1))' * (k / n)) + 1; else inds = nan(n, 1); for i = 1:n_classes ## Alternate ordering over classes so that ## the subsets are more nearly the same size if (mod (i, 2)) inds(j == i) = floor((0:(n_per_class(i)-1))' * ... (k / n_per_class(i))) + 1; else inds(j == i) = floor(((n_per_class(i)-1):-1:0)' * ... (k / n_per_class(i))) + 1; endif endfor endif C.inds = inds; C.NumTestSets = k; [~, ~, jj] = unique (inds); n_per_subset = accumarray (jj, 1); C.TrainSize = n - n_per_subset; C.TestSize = n_per_subset; case "given" C.inds = j; C.NumTestSets = n_classes; C.TrainSize = n - n_per_class; C.TestSize = n_per_class; case "holdout" if (isempty (k)) k = 0.1; endif if (k < 1) f = k; # target fraction to sample k = round (k * n); # number of samples else f = k / n; endif inds = zeros (n, 1, "logical"); if (n_classes == 1) inds(randsample(n, k)) = true; # indices for test set else # sample from each class k_check = 0; for i = 1:n_classes ki = round(f*n_per_class(i)); inds(find(j == i)(randsample(n_per_class(i), ki))) = true; k_check += ki; endfor if (k_check < k) # add random elements to test set to make it k inds(find(!inds)(randsample(n - k_check, k - k_check))) = true; elseif (k_check > k) # remove random elements from test set inds(find(inds)(randsample(k_check, k_check - k))) = false; endif C.classes = j; endif C.n_classes = n_classes; C.TrainSize = n - k; C.TestSize = k; C.NumTestSets = 1; C.inds = inds; case "leaveout" C.TrainSize = ones (n, 1); C.TestSize = (n-1) * ones (n, 1); C.NumTestSets = n; case "resubstitution" C.TrainSize = C.TestSize = n; C.NumTestSets = 1; endswitch C.NumObservations = n; C.Type = tolower (partition_type); C = class (C, "cvpartition"); endfunction %!demo %! ## Partition with Fisher iris dataset (n = 150) %! ## Stratified by species %! load fisheriris %! y = species; %! ## 10-fold cross-validation partition %! c = cvpartition (species, 'KFold', 10) %! ## leave-10-out partition %! c1 = cvpartition (species, 'HoldOut', 10) %! idx1 = test (c, 2); %! idx2 = training (c, 2); %! ## another leave-10-out partition %! c2 = repartition (c1) %!test %! C = cvpartition (ones (10, 1)); %! assert (isa (C, "cvpartition"), true); %!test %! C = cvpartition (ones (10, 1), "KFold", 5); %! assert (get (C, "NumObservations"), 10); %! assert (get (C, "NumTestSets"), 5); %! assert (get (C, "TrainSize"), ones(5,1) * 8); %! assert (get (C, "TestSize"), ones (5,1) * 2); %! assert (get (C, "inds"), [1 1 2 2 3 3 4 4 5 5]'); %! assert (get (C, "Type"), "kfold"); %!test %! C = cvpartition (ones (10, 1), "KFold", 2); %! assert (get (C, "NumObservations"), 10); %! assert (get (C, "NumTestSets"), 2); %! assert (get (C, "TrainSize"), [5; 5]); %! assert (get (C, "TestSize"), [5; 5]); %! assert (get (C, "inds"), [1 1 1 1 1 2 2 2 2 2]'); %! assert (get (C, "Type"), "kfold"); %!test %! C = cvpartition (ones (10, 1), "HoldOut", 5); %! assert (get (C, "NumObservations"), 10); %! assert (get (C, "NumTestSets"), 1); %! assert (get (C, "TrainSize"), 5); %! assert (get (C, "TestSize"), 5); %! assert (class (get (C, "inds")), "logical"); %! assert (length (get (C, "inds")), 10); %! assert (get (C, "Type"), "holdout"); %!test %! C = cvpartition ([1 2 3 4 5 6 7 8 9 10], "LeaveOut", 5); %! assert (get (C, "NumObservations"), 10); %! assert (get (C, "NumTestSets"), 10); %! assert (get (C, "TrainSize"), ones (10, 1)); %! assert (get (C, "TestSize"), ones (10, 1) * 9); %! assert (get (C, "inds"), []); %! assert (get (C, "Type"), "leaveout"); %!test %! C = cvpartition ([1 2 3 4 5 6 7 8 9 10], "resubstitution", 5); %! assert (get (C, "NumObservations"), 10); %! assert (get (C, "NumTestSets"), 1); %! assert (get (C, "TrainSize"), 10); %! assert (get (C, "TestSize"), 10); %! assert (get (C, "inds"), []); %! assert (get (C, "Type"), "resubstitution"); %!test %! C = cvpartition ([1 2 3 4 5 6 7 8 9 10], "Given", 2); %! assert (get (C, "NumObservations"), 10); %! assert (get (C, "NumTestSets"), 10); %! assert (get (C, "TrainSize"), ones (10, 1) * 9); %! assert (get (C, "TestSize"), ones (10, 1)); %! assert (get (C, "inds"), [1:10]'); %! assert (get (C, "Type"), "given"); %!warning ... %! C = cvpartition ([1 2 3 4 5 6 7 8 9 10], "some", 2); statistics-release-1.6.3/inst/@cvpartition/display.m000066400000000000000000000050111456127120000225660ustar00rootroot00000000000000## Copyright (C) 2014 Nir Krakauer ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or ## (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; If not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {} display (@var{C}) ## ## Display a @samp{cvpartition} object, @var{C}. ## ## @seealso{@@cvpartition/cvpartition} ## @end deftypefn function display (C) if (nargin != 1) print_usage (); endif switch C.Type case "kfold" str = "K-fold"; case "given" str = "Given"; case "holdout" str = "HoldOut"; case "leaveout" str = "Leave-One-Out"; case "resubstitution" str = "Resubstitution"; otherwise str = "Unknown-type"; endswitch disp([str " cross validation partition"]) disp([" N: " num2str(C.NumObservations)]) disp(["NumTestSets: " num2str(C.NumTestSets)]) disp([" TrainSize: " num2str(C.TrainSize')]) disp([" TestSize: " num2str(C.TestSize')]) endfunction %!test %! C = cvpartition (ones (10, 1), "KFold", 5); %! s = evalc ("display (C)"); %! sout = "K-fold cross validation partition"; %! assert (strcmpi (s(1:length (sout)), sout), true); %!test %! C = cvpartition (ones (10, 1), "HoldOut", 5); %! s = evalc ("display (C)"); %! sout = "HoldOut cross validation partition"; %! assert (strcmpi (s(1:length (sout)), sout), true); %!test %! C = cvpartition (ones (10, 1), "LeaveOut", 5); %! s = evalc ("display (C)"); %! sout = "Leave-One-Out cross validation partition"; %! assert (strcmpi (s(1:length (sout)), sout), true); %!test %! C = cvpartition (ones (10, 1), "resubstitution", 5); %! s = evalc ("display (C)"); %! sout = "Resubstitution cross validation partition"; %! assert (strcmpi (s(1:length (sout)), sout), true); %!test %! C = cvpartition (ones (10, 1), "Given", 5); %! s = evalc ("display (C)"); %! sout = "Given cross validation partition"; %! assert (strcmpi (s(1:length (sout)), sout), true); %!error display () statistics-release-1.6.3/inst/@cvpartition/get.m000066400000000000000000000036621456127120000217120ustar00rootroot00000000000000## Copyright (C) 2014 Nir Krakauer ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or ## (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; If not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{s} = get} (@var{C}, @var{f}) ## ## Get a field, @var{f}, from a @samp{cvpartition} object, @var{C}. ## ## @seealso{@@cvpartition/cvpartition} ## @end deftypefn function s = get (c, f) if (nargin == 1) s = c; elseif (nargin == 2) if (ischar (f)) switch (f) case {"classes", "inds", "n_classes", "NumObservations", ... "NumTestSets", "TestSize", "TrainSize", "Type"} s = eval (["struct(c)." f]); otherwise error ("get: invalid property %s.", f); endswitch else error ("get: expecting the property to be a string."); endif else print_usage (); endif endfunction %!shared C %! C = cvpartition (ones (10, 1), "KFold", 5); %!assert (get (C, "NumObservations"), 10); %!assert (get (C, "NumTestSets"), 5); %!assert (get (C, "TrainSize"), ones(5,1) * 8); %!assert (get (C, "TestSize"), ones (5,1) * 2); %!assert (get (C, "inds"), [1 1 2 2 3 3 4 4 5 5]'); %!assert (get (C, "Type"), "kfold"); %!error get (C, "some") %!error get (C, 25) %!error get (C, {25}) statistics-release-1.6.3/inst/@cvpartition/repartition.m000066400000000000000000000054101456127120000234640ustar00rootroot00000000000000## Copyright (C) 2014 Nir Krakauer ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or ## (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; If not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{Cnew} =} repartition (@var{C}) ## ## Return a new cvpartition object. ## ## @var{C} should be a @samp{cvpartition} object. @var{Cnew} will use the same ## partition_type as @var{C} but redo any randomization performed (currently, ## only the HoldOut type uses randomization). ## ## @seealso{@@cvpartition/cvpartition} ## @end deftypefn function Cnew = repartition (C) if (nargin < 1 || nargin > 2) print_usage (); endif Cnew = C; switch (C.Type) case 'kfold' case 'given' case 'holdout' # Currently, only the HoldOut method uses randomization n = C.NumObservations; k = C.TestSize; n_classes = C.n_classes; if (k < 1) f = k; # target fraction to sample k = round (k * n); #number of samples else f = k / n; endif inds = zeros (n, 1, "logical"); if (n_classes == 1) inds(randsample(n, k)) = true; #indices for test set else # sample from each class j = C.classes; #integer class labels n_per_class = accumarray (j, 1); n_classes = numel (n_per_class); k_check = 0; for i = 1:n_classes ki = round(f*n_per_class(i)); inds(find(j == i)(randsample(n_per_class(i), ki))) = true; k_check += ki; endfor if (k_check < k) # add random elements to test set to make it k inds(find(!inds)(randsample(n - k_check, k - k_check))) = true; elseif (k_check > k) # remove random elements from test set inds(find(inds)(randsample(k_check, k_check - k))) = false; endif endif Cnew.inds = inds; case "leaveout" case "resubstitution" endswitch endfunction %!test %! C = cvpartition (ones (10, 1), "KFold", 5); %! Cnew = repartition (C); %! assert (isa (Cnew, "cvpartition"), true); %!test %! C = cvpartition (ones (100, 1), "HoldOut", 5); %! Cnew = repartition (C); %! indC = get (C, "inds"); %! indCnew = get (Cnew, "inds"); %! assert (isequal (indC, indCnew), false); statistics-release-1.6.3/inst/@cvpartition/set.m000066400000000000000000000040541456127120000217220ustar00rootroot00000000000000## Copyright (C) 2014 Nir Krakauer ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or ## (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; If not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{Cnew} =} set (@var{C}, @var{field}, @var{value}) ## ## Set @var{field}, in a @samp{cvpartition} object, @var{C}. ## ## @seealso{@@cvpartition/cvpartition} ## @end deftypefn function s = set (c, varargin) s = struct(c); if (length (varargin) < 2 || rem (length (varargin), 2) != 0) error ("set: expecting field/value pairs."); endif while (length (varargin) > 1) prop = varargin{1}; val = varargin{2}; varargin(1:2) = []; if (ischar (prop)) switch (prop) case {"classes", "inds", "n_classes", "NumObservations", ... "NumTestSets", "TestSize", "TrainSize", "Type"} s = setfield (s, prop, val); otherwise error ("set: invalid field %s.", prop); endswitch else error ("set: expecting the field to be a string."); endif endwhile s = class (s, "cvpartition"); endfunction %!shared C %! C = cvpartition (ones (10, 1), "KFold", 5); %!test %! Cnew = set (C, "inds", [1 2 2 2 3 4 3 4 5 5]'); %! assert (get (Cnew, "inds"), [1 2 2 2 3 4 3 4 5 5]'); %!error set (C) %!error set (C, "NumObservations") %!error set (C, "some", 15) %!error set (C, 15, 15) statistics-release-1.6.3/inst/@cvpartition/test.m000066400000000000000000000040541456127120000221060ustar00rootroot00000000000000## Copyright (C) 2014 Nir Krakauer ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or ## (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; If not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{inds} =} test (@var{C}, [@var{i}]) ## ## Return logical vector for testing-subset indices from a @samp{cvpartition} ## object, @var{C}. @var{i} is the fold index (default is 1). ## ## @seealso{@@cvpartition/cvpartition, @@cvpartition/training} ## @end deftypefn function inds = test (C, i = []) if (nargin < 1 || nargin > 2) print_usage (); endif if (nargin < 2 || isempty (i)) i = 1; endif switch (C.Type) case {"kfold", "given"} inds = C.inds == i; case "holdout" inds = C.inds; case "leaveout" inds = zeros(C.NumObservations, 1, "logical"); inds(i) = true; case "resubstitution" inds = ones(C.NumObservations, 1, "logical"); endswitch endfunction %!shared C %! C = cvpartition (ones (10, 1), "KFold", 5); %!assert (test (C, 1), logical ([1 1 0 0 0 0 0 0 0 0]')) %!assert (test (C, 2), logical ([0 0 1 1 0 0 0 0 0 0]')) %!assert (test (C, 3), logical ([0 0 0 0 1 1 0 0 0 0]')) %!assert (test (C, 4), logical ([0 0 0 0 0 0 1 1 0 0]')) %!assert (test (C, 5), logical ([0 0 0 0 0 0 0 0 1 1]')) %!test %! C = set (C, "inds", [1 2 2 2 3 4 3 4 5 5]'); %!assert (test (C), logical ([1 0 0 0 0 0 0 0 0 0]')) %!assert (test (C, 2), logical ([0 1 1 1 0 0 0 0 0 0]')) %!assert (test (C, 3), logical ([0 0 0 0 1 0 1 0 0 0]')) statistics-release-1.6.3/inst/@cvpartition/training.m000066400000000000000000000041271456127120000227430ustar00rootroot00000000000000## Copyright (C) 2014 Nir Krakauer ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or ## (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; If not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{inds} =} training (@var{C}, [@var{i}]) ## ## Return logical vector for training-subset indices from a @samp{cvpartition} ## object, @var{C}. @var{i} is the fold index (default is 1). ## ## @seealso{@@cvpartition/cvpartition, @@cvpartition/test} ## @end deftypefn function inds = training (C, i = []) if (nargin < 1 || nargin > 2) print_usage (); endif if (nargin < 2 || isempty (i)) i = 1; endif switch (C.Type) case {"kfold", "given"} inds = C.inds != i; case "holdout" inds = ! C.inds; case "leaveout" inds = ones (C.NumObservations, 1, "logical"); inds(i) = false; case "resubstitution" inds = ones (C.NumObservations, 1, "logical"); endswitch endfunction %!shared C %! C = cvpartition (ones (10, 1), "KFold", 5); %!assert (training (C, 1), logical ([0 0 1 1 1 1 1 1 1 1]')) %!assert (training (C, 2), logical ([1 1 0 0 1 1 1 1 1 1]')) %!assert (training (C, 3), logical ([1 1 1 1 0 0 1 1 1 1]')) %!assert (training (C, 4), logical ([1 1 1 1 1 1 0 0 1 1]')) %!assert (training (C, 5), logical ([1 1 1 1 1 1 1 1 0 0]')) %!test %! C = set (C, "inds", [1 2 2 2 3 4 3 4 5 5]'); %!assert (training (C), logical ([0 1 1 1 1 1 1 1 1 1]')) %!assert (training (C, 2), logical ([1 0 0 0 1 1 1 1 1 1]')) %!assert (training (C, 3), logical ([1 1 1 1 0 1 0 1 1 1]')) statistics-release-1.6.3/inst/Classification/000077500000000000000000000000001456127120000212375ustar00rootroot00000000000000statistics-release-1.6.3/inst/Classification/ClassificationKNN.m000066400000000000000000001514171456127120000247300ustar00rootroot00000000000000## Copyright (C) 2023 Mohammed Azmat Khan ## Copyright (C) 2023-2024 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . classdef ClassificationKNN ## -*- texinfo -*- ## @deftypefn {statistics} {@var{obj} =} ClassificationKNN (@var{X}, @var{Y}) ## @deftypefnx {statistics} {@var{obj} =} ClassificationKNN (@dots{}, @var{name}, @var{value}) ## ## Create a @qcode{ClassificationKNN} class object containing a k-Nearest ## Neighbor classification model. ## ## @code{@var{obj} = ClassificationKNN (@var{X}, @var{Y})} returns a ## ClassificationKNN object, with @var{X} as the predictor data and @var{Y} ## containing the class labels of observations in @var{X}. ## ## @itemize ## @item ## @code{X} must be a @math{NxP} numeric matrix of input data where rows ## correspond to observations and columns correspond to features or variables. ## @var{X} will be used to train the kNN model. ## @item ## @code{Y} is @math{Nx1} matrix or cell matrix containing the class labels of ## corresponding predictor data in @var{X}. @var{Y} can contain any type of ## categorical data. @var{Y} must have same numbers of Rows as @var{X}. ## @item ## @end itemize ## ## @code{@var{obj} = ClassificationKNN (@dots{}, @var{name}, @var{value})} ## returns a ClassificationKNN object with parameters specified by ## @qcode{Name-Value} pair arguments. Type @code{help fitcknn} for more info. ## ## A @qcode{ClassificationKNN} object, @var{obj}, stores the labelled training ## data and various parameters for the k-Nearest Neighbor classification model, ## which can be accessed in the following fields: ## ## @multitable @columnfractions 0.28 0.02 0.7 ## @headitem @var{Field} @tab @tab @var{Description} ## ## @item @qcode{obj.X} @tab @tab Unstandardized predictor data, specified as a ## numeric matrix. Each column of @var{X} represents one predictor (variable), ## and each row represents one observation. ## ## @item @qcode{obj.Y} @tab @tab Class labels, specified as a logical or ## numeric vector, or cell array of character vectors. Each value in @var{Y} is ## the observed class label for the corresponding row in @var{X}. ## ## @item @qcode{obj.NumObservations} @tab @tab Number of observations used in ## training the ClassificationKNN model, specified as a positive integer scalar. ## This number can be less than the number of rows in the training data because ## rows containing @qcode{NaN} values are not part of the fit. ## ## @item @qcode{obj.RowsUsed} @tab @tab Rows of the original training data ## used in fitting the ClassificationKNN model, specified as a numerical vector. ## If you want to use this vector for indexing the training data in @var{X}, you ## have to convert it to a logical vector, i.e ## @qcode{X = obj.X(logical (obj.RowsUsed), :);} ## ## @item @qcode{obj.Standardize} @tab @tab A boolean flag indicating whether ## the data in @var{X} have been standardized prior to training. ## ## @item @qcode{obj.Sigma} @tab @tab Predictor standard deviations, specified ## as a numeric vector of the same length as the columns in @var{X}. If the ## predictor variables have not been standardized, then @qcode{"obj.Sigma"} is ## empty. ## ## @item @qcode{obj.Mu} @tab @tab Predictor means, specified as a numeric ## vector of the same length as the columns in @var{X}. If the predictor ## variables have not been standardized, then @qcode{"obj.Mu"} is empty. ## ## @item @qcode{obj.NumPredictors} @tab @tab The number of predictors ## (variables) in @var{X}. ## ## @item @qcode{obj.PredictorNames} @tab @tab Predictor variable names, ## specified as a cell array of character vectors. The variable names are in ## the same order in which they appear in the training data @var{X}. ## ## @item @qcode{obj.ResponseName} @tab @tab Response variable name, specified ## as a character vector. ## ## @item @qcode{obj.ClassNames} @tab @tab Names of the classes in the training ## data @var{Y} with duplicates removed, specified as a cell array of character ## vectors. ## ## @item @qcode{obj.BreakTies} @tab @tab Tie-breaking algorithm used by predict ## when multiple classes have the same smallest cost, specified as one of the ## following character arrays: @qcode{"smallest"} (default), which favors the ## class with the smallest index among the tied groups, i.e. the one that ## appears first in the training labelled data. @qcode{"nearest"}, which favors ## the class with the nearest neighbor among the tied groups, i.e. the class ## with the closest member point according to the distance metric used. ## @qcode{"nearest"}, which randomly picks one class among the tied groups. ## ## @item @qcode{obj.Prior} @tab @tab Prior probabilities for each class, ## specified as a numeric vector. The order of the elements in @qcode{Prior} ## corresponds to the order of the classes in @qcode{ClassNames}. ## ## @item @qcode{obj.Cost} @tab @tab Cost of the misclassification of a point, ## specified as a square matrix. @qcode{Cost(i,j)} is the cost of classifying a ## point into class @qcode{j} if its true class is @qcode{i} (that is, the rows ## correspond to the true class and the columns correspond to the predicted ## class). The order of the rows and columns in @qcode{Cost} corresponds to the ## order of the classes in @qcode{ClassNames}. The number of rows and columns ## in @qcode{Cost} is the number of unique classes in the response. By default, ## @qcode{Cost(i,j) = 1} if @qcode{i != j}, and @qcode{Cost(i,j) = 0} if ## @qcode{i = j}. In other words, the cost is 0 for correct classification and ## 1 for incorrect classification. ## ## @item @qcode{obj.NumNeighbors} @tab @tab Number of nearest neighbors in ## @var{X} used to classify each point during prediction, specified as a ## positive integer value. ## ## @item @qcode{obj.Distance} @tab @tab Distance metric, specified as a ## character vector. The allowable distance metric names depend on the choice ## of the neighbor-searcher method. See the available distance metrics in ## @code{knnseaarch} for more info. ## ## @item @qcode{obj.DistanceWeight} @tab @tab Distance weighting function, ## specified as a function handle, which accepts a matrix of nonnegative ## distances, and returns a matrix the same size containing nonnegative distance ## weights. ## ## @item @qcode{obj.DistParameter} @tab @tab Parameter for the distance ## metric, specified either as a positive definite covariance matrix (when the ## distance metric is @qcode{"mahalanobis"}, or a positive scalar as the ## Minkowski distance exponent (when the distance metric is @qcode{"minkowski"}, ## or a vector of positive scale values with length equal to the number of ## columns of @var{X} (when the distance metric is @qcode{"seuclidean"}. For ## any other distance metric, the value of @qcode{DistParameter} is empty. ## ## @item @qcode{obj.NSMethod} @tab @tab Nearest neighbor search method, ## specified as either @qcode{"kdtree"}, which creates and uses a Kd-tree to ## find nearest neighbors, or @qcode{"exhaustive"}, which uses the exhaustive ## search algorithm by computing the distance values from all points in @var{X} ## to find nearest neighbors. ## ## @item @qcode{obj.IncludeTies} @tab @tab A boolean flag indicating whether ## prediction includes all the neighbors whose distance values are equal to the ## @math{k^th} smallest distance. If @qcode{IncludeTies} is @qcode{true}, ## prediction includes all of these neighbors. Otherwise, prediction uses ## exactly @math{k} neighbors. ## ## @item @qcode{obj.BucketSize} @tab @tab Maximum number of data points in the ## leaf node of the Kd-tree, specified as positive integer value. This argument ## is meaningful only when @qcode{NSMethod} is @qcode{"kdtree"}. ## ## @end multitable ## ## @seealso{fitcknn, knnsearch, rangesearch, pdist2} ## @end deftypefn properties (Access = public) X = []; # Predictor data Y = []; # Class labels NumObservations = []; # Number of observations in training dataset RowsUsed = []; # Rows used in fitting Standardize = []; # Flag to standardize predictors Sigma = []; # Predictor standard deviations Mu = []; # Predictor means NumPredictors = []; # Number of predictors PredictorNames = []; # Predictor variables names ResponseName = []; # Response variable name ClassNames = []; # Names of classes in Y BreakTies = []; # Tie-breaking algorithm Prior = []; # Prior probability for each class Cost = []; # Cost of misclassification NumNeighbors = []; # Number of nearest neighbors Distance = []; # Distance metric DistanceWeight = []; # Distance weighting function DistParameter = []; # Parameter for distance metric NSMethod = []; # Nearest neighbor search method IncludeTies = []; # Flag for handling ties BucketSize = []; # Maximum data points in each node endproperties methods (Access = public) ## Class object contructor function this = ClassificationKNN (X, Y, varargin) ## Check for sufficient number of input arguments if (nargin < 2) error ("ClassificationKNN: too few input arguments."); endif ## Check X and Y have the same number of observations if (rows (X) != rows (Y)) error ("ClassificationKNN: number of rows in X and Y must be equal."); endif ## Assign original X and Y data to the ClassificationKNN object this.X = X; this.Y = Y; ## Get groups in Y [gY, gnY, glY] = grp2idx (Y); ## Set default values before parsing optional parameters Standardize = false; # Flag to standardize predictors PredictorNames = []; # Predictor variables names ResponseName = []; # Response variable name ClassNames = []; # Names of classes in Y BreakTies = []; # Tie-breaking algorithm Prior = []; # Prior probability for each class Cost = []; # Cost of misclassification Scale = []; # Distance scale for 'seuclidean' Cov = []; # Covariance matrix for 'mahalanobis' Exponent = []; # Exponent for 'minkowski' NumNeighbors = []; # Number of nearest neighbors Distance = []; # Distance metric DistanceWeight = []; # Distance weighting function DistParameter = []; # Parameter for distance metric NSMethod = []; # Nearest neighbor search method IncludeTies = false; # Flag for handling ties BucketSize = 50; # Maximum data points in each node ## Number of parameters for Standardize, Scale, Cov (maximum 1 allowed) SSC = 0; ## Parse extra parameters while (numel (varargin) > 0) switch (tolower (varargin {1})) case "standardize" if (SSC < 1) Standardize = varargin{2}; if (! (Standardize == true || Standardize == false)) error (strcat (["ClassificationKNN: Standardize must"], ... [" be either true or false."])); endif SSC += 1; else error (strcat (["ClassificationKNN: Standardize cannot"], ... [" simultaneously be specified with either"], ... [" Scale or Cov."])); endif case "predictornames" PredictorNames = varargin{2}; if (! iscellstr (PredictorNames)) error (strcat (["ClassificationKNN: PredictorNames must"], ... [" be supplied as a cellstring array."])); elseif (columns (PredictorNames) != columns (X)) error (strcat (["ClassificationKNN: PredictorNames must"], ... [" have the same number of columns as X."])); endif case "responsename" ResponseName = varargin{2}; if (! ischar (ResponseName)) error ("ClassificationKNN: ResponseName must be a character array."); endif case "classnames" ClassNames = varargin{2}; if (! iscellstr (ClassNames)) error (strcat (["ClassificationKNN: ClassNames must"], ... [" be a cellstring array."])); endif ## Check that all class names are available in gnY if (! all (cell2mat (cellfun (@(x) any (strcmp (x, gnY)), ClassNames, "UniformOutput", false)))) error ("ClassificationKNN: not all ClassNames are present in Y."); endif case "breakties" BreakTies = varargin{2}; if (! ischar (BreakTies)) error ("ClassificationKNN: BreakTies must be a character array."); endif ## Check that all class names are available in gnY BTs = {"smallest", "nearest", "random"}; if (! any (strcmpi (BTs, BreakTies))) error ("ClassificationKNN: invalid value for BreakTies."); endif case "prior" Prior = varargin{2}; if (! ((isnumeric (Prior) && isvector (Prior)) || (strcmpi (Prior, "empirical") || strcmpi (Prior, "uniform")))) error (strcat (["ClassificationKNN: Prior must be either a"], ... [" numeric vector or a string."])); endif case "cost" Cost = varargin{2}; if (! (isnumeric (Cost) && issquare (Cost))) error ("ClassificationKNN: Cost must be a numeric square matrix."); endif case "numneighbors" NumNeighbors = varargin{2}; if (! (isnumeric (NumNeighbors) && isscalar (NumNeighbors) && NumNeighbors > 0 && fix (NumNeighbors) == NumNeighbors)) error (strcat (["ClassificationKNN: NumNeighbors must be a"], ... [" positive integer."])); endif case "distance" Distance = varargin{2}; DMs = {"euclidean", "seuclidean", "mahalanobis", "minkowski", ... "cityblock", "manhattan", "chebychev", "cosine", ... "correlation", "spearman", "hamming", "jaccard"}; if (ischar (Distance)) if (! any (strcmpi (DMs, Distance))) error ("ClassificationKNN: unsupported distance metric."); endif elseif (is_function_handle (Distance)) ## Check the input output sizes of the user function D2 = []; try D2 = Distance (X(1,:), Y); catch ME error (strcat (["ClassificationKNN: invalid function"], ... [" handle for distance metric."])); end_try_catch Yrows = rows (Y); if (! isequal (size (D2), [Yrows, 1])) error (strcat (["ClassificationKNN: custom distance"], ... [" function produces wrong output size."])); endif else error ("ClassificationKNN: invalid distance metric."); endif case "distanceweight" DistanceWeight = varargin{2}; DMs = {"equal", "inverse", "squareinverse"}; if (is_function_handle (DistanceWeight)) m = eye (5); if (! isequal (size (m), size (DistanceWeight(m)))) error (strcat (["ClassificationKNN: function handle for"], ... [" distance weight must return the same"], ... [" size as its input."])); endif this.DistanceWeight = DistanceWeight; else if (! any (strcmpi (DMs, DistanceWeight))) error ("ClassificationKNN: invalid distance weight."); endif if (strcmpi ("equal", DistanceWeight)) this.DistanceWeight = @(x) x; endif if (strcmpi ("inverse", DistanceWeight)) this.DistanceWeight = @(x) x.^(-1); endif if (strcmpi ("squareinverse", DistanceWeight)) this.DistanceWeight = @(x) x.^(-2); endif endif case "scale" if (SSC < 1) Scale = varargin{2}; if (! (isnumeric (Scale) && isvector (Scale))) error ("ClassificationKNN: Scale must be a numeric vector."); endif SSC += 1; else error (strcat (["ClassificationKNN: Scale cannot"], ... [" simultaneously be specified with either"], ... [" Standardize or Cov."])); endif case "cov" if (SSC < 1) Cov = varargin{2}; [~, p] = chol (Cov); if (p != 0) error (strcat (["ClassificationKNN: Cov must be a"], ... [" symmetric positive definite matrix."])); endif SSC += 1; else error (strcat (["ClassificationKNN: Cov cannot"], ... [" simultaneously be specified with either"], ... [" Standardize or Scale."])); endif case "exponent" Exponent = varargin{2}; if (! (isnumeric (Exponent) && isscalar (Exponent) && Exponent > 0 && fix (Exponent) == Exponent)) error ("ClassificationKNN: Exponent must be a positive integer."); endif case "nsmethod" NSMethod = varargin{2}; NSM = {"kdtree", "exhaustive"}; if (! ischar (NSMethod)) error ("ClassificationKNN: NSMethod must be a character array."); endif if (! any (strcmpi (NSM, NSMethod))) error (strcat (["ClassificationKNN: NSMethod must"], ... [" be either kdtree or exhaustive."])); endif case "includeties" IncludeTies = varargin{2}; if (! (IncludeTies == true || IncludeTies == false)) error (strcat (["ClassificationKNN: IncludeTies must"], ... [" be either true or false."])); endif case "bucketsize" BucketSize = varargin{2}; if (! (isnumeric (BucketSize) && isscalar (BucketSize) && BucketSize > 0 && fix (BucketSize) == BucketSize)) error (strcat (["ClassificationKNN: BucketSize must be a"], ... [" positive integer."])); endif otherwise error (strcat (["ClassificationKNN: invalid parameter name"],... [" in optional pair arguments."])); endswitch varargin (1:2) = []; endwhile ## Get number of variables in training data ndims_X = columns (X); ## Assign the number of predictors to the ClassificationKNN object this.NumPredictors = ndims_X; ## Generate default predictors and response variabe names (if necessary) if (isempty (PredictorNames)) for i = 1:ndims_X PredictorNames {i} = strcat ("x", num2str (i)); endfor endif if (isempty (ResponseName)) ResponseName = "Y"; endif ## Assign predictors and response variable names this.PredictorNames = PredictorNames; this.ResponseName = ResponseName; ## Handle class names if (isempty (ClassNames)) ClassNames = gnY; else ru = logical (zeros (size (Y))); for i = 1:numel (ClassNames) ac = find (gnY, ClassNames{i}); ru = ru | ac; endfor X = X(ru); Y = Y(ru); gY = gY(ru); endif ## Remove missing values from X and Y RowsUsed = ! logical (sum (isnan ([X, gY]), 2)); Y = Y (RowsUsed); X = X (RowsUsed, :); ## Renew groups in Y [gY, gnY, glY] = grp2idx (Y); this.ClassNames = gnY; ## Check X contains valid data if (! (isnumeric (X) && isfinite (X))) error ("ClassificationKNN: invalid values in X."); endif ## Assign the number of observations and their correspoding indices ## on the original data, which will be used for training the model, ## to the ClassificationKNN object this.NumObservations = rows (X); this.RowsUsed = cast (RowsUsed, "double"); ## Handle Standardize flag if (Standardize) this.Standardize = true; this.Sigma = std (X, [], 1); this.Sigma(this.Sigma == 0) = 1; # predictor is constant this.Mu = mean (X, 1); else this.Standardize = false; this.Sigma = []; this.Mu = []; endif ## Handle BreakTies if (isempty (BreakTies)) this.BreakTies = "smallest"; else this.BreakTies = BreakTies; endif ## Handle Prior and Cost if (isempty (Prior) || strcmpi ("uniform", Prior)) this.Prior = ones (size (gnY)) ./ numel (gnY); elseif (strcmpi ("empirical", Prior)) pr = []; for i = 1:numel (gnY) pr = [pr; sum(gY==i)]; endfor this.Prior = pr ./ sum (pr); elseif (isnumeric (Prior)) if (numel (gnY) != numel (Prior)) error (strcat (["ClassificationKNN: the elements in Prior do not"], ... [" correspond to selected classes in Y."])); endif this.Prior = Prior ./ sum (Prior); endif if (isempty (Cost)) this.Cost = cast (! eye (numel (gnY)), "double"); else if (numel (gnY) != sqrt (numel (Cost))) error (strcat (["ClassificationKNN: the number of rows and"], ... [" columns in Cost must correspond to selected"], ... [" classes in Y."])); endif this.Cost = Cost; endif ## Get number of neighbors if (isempty (NumNeighbors)) this.NumNeighbors = 1; else this.NumNeighbors = NumNeighbors; endif ## Get distance metric if (isempty (Distance)) Distance = "euclidean"; endif this.Distance = Distance; ## Get distance weight if (isempty (DistanceWeight)) this.DistanceWeight = @(x) x; endif ## Handle distance metric parameters (Scale, Cov, Exponent) if (! isempty (Scale)) if (! strcmpi (Distance, "seuclidean")) error (strcat (["ClassificationKNN: Scale is only valid when"], ... [" distance metric is seuclidean."])); endif if (numel (Scale) != ndims_X) error (strcat (["ClassificationKNN: Scale vector must have"], ... [" equal length to the number of columns in X."])); endif if (any (Scale < 0)) error (strcat (["ClassificationKNN: Scale vector must contain"], ... [" nonnegative scalar values."])); endif this.DistParameter = Scale; else if (strcmpi (Distance, "seuclidean")) if (Standardize) this.DistParameter = ones (1, ndims_X); else this.DistParameter = std (X, [], 1); endif endif endif if (! isempty (Cov)) if (! strcmpi (Distance, "mahalanobis")) error (strcat (["ClassificationKNN: Cov is only valid when"], ... [" distance metric is mahalanobis."])); endif if (columns (Cov) != ndims_X) error (strcat (["ClassificationKNN: Cov matrix must have"], ... [" equal columns as X."])); endif this.DistParameter = Cov; else if (strcmpi (Distance, "mahalanobis")) this.DistParameter = cov (X); endif endif if (! isempty (Exponent)) if (! strcmpi (Distance, "minkowski")) error (strcat (["ClassificationKNN: Exponent is only valid when"], ... [" distance metric is minkowski."])); endif this.DistParameter = Exponent; else if (strcmpi (Distance, "minkowski")) this.DistParameter = 2; endif endif ## Get Nearest neighbor search method kdm = {"euclidean", "cityblock", "manhattan", "minkowski", "chebychev"}; if (! isempty (NSMethod)) if (strcmpi ("kdtree", NSMethod) && (! any (strcmpi (kdm, Distance)))) error (strcat (["ClassificationKNN: kdtree method is only valid"], ... [" for euclidean, cityblock, manhattan,"], ... [" minkowski, and chebychev distance metrics."])); endif this.NSMethod = NSMethod; else if (any (strcmpi (kdm, Distance)) && ndims_X <= 10) this.NSMethod = "kdtree"; else this.NSMethod = "exhaustive"; endif endif ## Assign IncludeTies and BucketSize properties this.IncludeTies = IncludeTies; this.BucketSize = BucketSize; endfunction ## -*- texinfo -*- ## @deftypefn {ClassificationKNN} {@var{label} =} predict (@var{obj}, @var{XC}) ## @deftypefnx {ClassificationKNN} {[@var{label}, @var{score}, @var{cost}] =} predict (@var{obj}, @var{XC}) ## ## Classify new data points into categories using the kNN algorithm from a ## k-Nearest Neighbor classification model. ## ## @code{@var{label} = predict (@var{obj}, @var{XC})} returns the matrix of ## labels predicted for the corresponding instances in @var{XC}, using the ## predictor data in @code{obj.X} and corresponding labels, @code{obj.Y}, ## stored in the k-Nearest Neighbor classification model, @var{obj}. ## ## @var{XC} must be an @math{MxP} numeric matrix with the same number of ## features @math{P} as the corresponding predictors of the kNN model in ## @var{obj}. ## ## @code{[@var{label}, @var{score}, @var{cost}] = predict (@var{obj}, @var{XC})} ## also returns @var{score}, which contains the predicted class scores or ## posterior probabilities for each instance of the corresponding unique ## classes, and @var{cost}, which is a matrix containing the expected cost ## of the classifications. ## ## @seealso{fitcknn, ClassificationKNN} ## @end deftypefn function [label, score, cost] = predict (this, XC) ## Check for sufficient input arguments if (nargin < 2) error ("ClassificationKNN.predict: too few input arguments."); endif ## Check for valid XC if (isempty (XC)) error ("ClassificationKNN.predict: XC is empty."); elseif (columns (this.X) != columns (XC)) error (strcat (["ClassificationKNN.predict: XC must have the same"], ... [" number of features (columns) as in the kNN model."])); endif ## Get training data and labels X = this.X(logical (this.RowsUsed),:); Y = this.Y(logical (this.RowsUsed),:); ## Standardize (if necessary) if (this.Standardize) X = (X - this.Mu) ./ this.Sigma; XC = (XC - this.Mu) ./ this.Sigma; endif ## Train kNN if (strcmpi (this.Distance, "seuclidean")) [idx, dist] = knnsearch (X, XC, "k", this.NumNeighbors, ... "NSMethod", this.NSMethod, "Distance", "seuclidean", ... "Scale", this.DistParameter, "sortindices", true, ... "includeties", this.IncludeTies, ... "bucketsize", this.BucketSize); elseif (strcmpi (this.Distance, "mahalanobis")) [idx, dist] = knnsearch (X, XC, "k", this.NumNeighbors, ... "NSMethod", this.NSMethod, "Distance", "mahalanobis", ... "cov", this.DistParameter, "sortindices", true, ... "includeties", this.IncludeTies, ... "bucketsize", this.BucketSize); elseif (strcmpi (this.Distance, "minkowski")) [idx, dist] = knnsearch (X, XC, "k", this.NumNeighbors, ... "NSMethod", this.NSMethod, "Distance", "minkowski", ... "P", this.DistParameter, "sortindices", true, ... "includeties",this.IncludeTies, ... "bucketsize", this.BucketSize); else [idx, dist] = knnsearch (X, XC, "k", this.NumNeighbors, ... "NSMethod", this.NSMethod, "Distance", this.Distance, ... "sortindices", true, "includeties", this.IncludeTies, ... "bucketsize", this.BucketSize); endif ## Make prediction label = {}; score = []; cost = []; ## Get IDs and labels for each point in training data [gY, gnY, glY] = grp2idx (Y); ## Evaluate the K nearest neighbours for each new point for i = 1:rows (idx) ## Get K nearest neighbours if (this.IncludeTies) NN_idx = idx{i}; NNdist = dist{i}; else NN_idx = idx(i,:); NNdist = dist(i,:); endif k = numel (NN_idx); kNNgY = gY(NN_idx); ## Count frequency for each class for c = 1:numel (this.ClassNames) freq(c) = sum (kNNgY == c) / k; endfor ## Get label according to BreakTies if (strcmpi (this.BreakTies, "smallest")) [~, idl] = max (freq); else idl = find (freq == max (freq)); tgn = numel (idl); if (tgn > 1) if (strcmpi (this.BreakTies, "nearest")) for t = 1:tgn tgs(t) = find (gY(NN_idx) == idl(t)); endfor [~, idm] = min (tgs); idl = idl(idm); else # "random" idl = idl(randperm (numel (idl))(1)); endif endif endif label = [label; gnY{idl}]; ## Calculate score and cost score = [score; freq]; cost = [cost; 1-freq]; endfor endfunction endmethods endclassdef %!demo %! ## Create a k-nearest neighbor classifier for Fisher's iris data with k = 5. %! ## Evaluate some model predictions on new data. %! %! load fisheriris %! x = meas; %! y = species; %! xc = [min(x); mean(x); max(x)]; %! obj = fitcknn (x, y, "NumNeighbors", 5, "Standardize", 1); %! [label, score, cost] = predict (obj, xc) %!demo %! ## Train a k-nearest neighbor classifier for k = 10 %! ## and plot the decision boundaries. %! %! load fisheriris %! idx = ! strcmp (species, "setosa"); %! X = meas(idx,3:4); %! Y = cast (strcmpi (species(idx), "virginica"), "double"); %! obj = fitcknn (X, Y, "Standardize", 1, "NumNeighbors", 10, "NSMethod", "exhaustive") %! x1 = [min(X(:,1)):0.03:max(X(:,1))]; %! x2 = [min(X(:,2)):0.02:max(X(:,2))]; %! [x1G, x2G] = meshgrid (x1, x2); %! XGrid = [x1G(:), x2G(:)]; %! pred = predict (obj, XGrid); %! gidx = logical (str2num (cell2mat (pred))); %! %! figure %! scatter (XGrid(gidx,1), XGrid(gidx,2), "markerfacecolor", "magenta"); %! hold on %! scatter (XGrid(!gidx,1), XGrid(!gidx,2), "markerfacecolor", "red"); %! plot (X(Y == 0, 1), X(Y == 0, 2), "ko", X(Y == 1, 1), X(Y == 1, 2), "kx"); %! xlabel ("Petal length (cm)"); %! ylabel ("Petal width (cm)"); %! title ("5-Nearest Neighbor Classifier Decision Boundary"); %! legend ({"Versicolor Region", "Virginica Region", ... %! "Sampled Versicolor", "Sampled Virginica"}, ... %! "location", "northwest") %! axis tight %! hold off ## Test constructor with NSMethod and NumNeighbors parameters %!test %! x = [1, 2, 3; 4, 5, 6; 7, 8, 9; 3, 2, 1]; %! y = ["a"; "a"; "b"; "b"]; %! a = ClassificationKNN (x, y); %! assert (class (a), "ClassificationKNN"); %! assert ({a.X, a.Y, a.NumNeighbors}, {x, y, 1}) %! assert ({a.NSMethod, a.Distance}, {"kdtree", "euclidean"}) %! assert ({a.BucketSize}, {50}) %!test %! x = [1, 2, 3; 4, 5, 6; 7, 8, 9; 3, 2, 1]; %! y = ["a"; "a"; "b"; "b"]; %! a = ClassificationKNN (x, y, "NSMethod", "exhaustive"); %! assert (class (a), "ClassificationKNN"); %! assert ({a.X, a.Y, a.NumNeighbors}, {x, y, 1}) %! assert ({a.NSMethod, a.Distance}, {"exhaustive", "euclidean"}) %! assert ({a.BucketSize}, {50}) %!test %! x = [1, 2, 3; 4, 5, 6; 7, 8, 9; 3, 2, 1]; %! y = ["a"; "a"; "b"; "b"]; %! k = 10; %! a = ClassificationKNN (x, y, "NumNeighbors" ,k); %! assert (class (a), "ClassificationKNN"); %! assert ({a.X, a.Y, a.NumNeighbors}, {x, y, 10}) %! assert ({a.NSMethod, a.Distance}, {"kdtree", "euclidean"}) %! assert ({a.BucketSize}, {50}) %!test %! x = ones (4, 11); %! y = ["a"; "a"; "b"; "b"]; %! k = 10; %! a = ClassificationKNN (x, y, "NumNeighbors" ,k); %! assert (class (a), "ClassificationKNN"); %! assert ({a.X, a.Y, a.NumNeighbors}, {x, y, 10}) %! assert ({a.NSMethod, a.Distance}, {"exhaustive", "euclidean"}) %! assert ({a.BucketSize}, {50}) %!test %! x = [1, 2, 3; 4, 5, 6; 7, 8, 9; 3, 2, 1]; %! y = ["a"; "a"; "b"; "b"]; %! k = 10; %! a = ClassificationKNN (x, y, "NumNeighbors" ,k, "NSMethod", "exhaustive"); %! assert (class (a), "ClassificationKNN"); %! assert ({a.X, a.Y, a.NumNeighbors}, {x, y, 10}) %! assert ({a.NSMethod, a.Distance}, {"exhaustive", "euclidean"}) %! assert ({a.BucketSize}, {50}) %!test %! x = [1, 2, 3; 4, 5, 6; 7, 8, 9; 3, 2, 1]; %! y = ["a"; "a"; "b"; "b"]; %! k = 10; %! a = ClassificationKNN (x, y, "NumNeighbors" ,k, "Distance", "hamming"); %! assert (class (a), "ClassificationKNN"); %! assert ({a.X, a.Y, a.NumNeighbors}, {x, y, 10}) %! assert ({a.NSMethod, a.Distance}, {"exhaustive", "hamming"}) %! assert ({a.BucketSize}, {50}) ## Test constructor with Standardize and DistParameter parameters %!test %! x = [1, 2, 3; 4, 5, 6; 7, 8, 9; 3, 2, 1]; %! y = ["a"; "a"; "b"; "b"]; %! weights = ones (4,1); %! a = ClassificationKNN (x, y, "Standardize", 1); %! assert (class (a), "ClassificationKNN"); %! assert ({a.X, a.Y, a.NumNeighbors}, {x, y, 1}) %! assert ({a.NSMethod, a.Distance}, {"kdtree", "euclidean"}) %! assert ({a.Standardize}, {true}) %! assert ({a.Sigma}, {std(x, [], 1)}) %! assert ({a.Mu}, {[3.75, 4.25, 4.75]}) %!test %! x = [1, 2, 3; 4, 5, 6; 7, 8, 9; 3, 2, 1]; %! y = ["a"; "a"; "b"; "b"]; %! weights = ones (4,1); %! a = ClassificationKNN (x, y, "Standardize", false); %! assert (class (a), "ClassificationKNN"); %! assert ({a.X, a.Y, a.NumNeighbors}, {x, y, 1}) %! assert ({a.NSMethod, a.Distance}, {"kdtree", "euclidean"}) %! assert ({a.Standardize}, {false}) %! assert ({a.Sigma}, {[]}) %! assert ({a.Mu}, {[]}) %!test %! x = [1, 2, 3; 4, 5, 6; 7, 8, 9; 3, 2, 1]; %! y = ["a"; "a"; "b"; "b"]; %! s = ones (1, 3); %! a = ClassificationKNN (x, y, "Scale" , s, "Distance", "seuclidean"); %! assert (class (a), "ClassificationKNN"); %! assert ({a.DistParameter}, {s}) %! assert ({a.NSMethod, a.Distance}, {"exhaustive", "seuclidean"}) %! assert ({a.BucketSize}, {50}) %!test %! x = [1, 2, 3; 4, 5, 6; 7, 8, 9; 3, 2, 1]; %! y = ["a"; "a"; "b"; "b"]; %! a = ClassificationKNN (x, y, "Exponent" , 5, "Distance", "minkowski"); %! assert (class (a), "ClassificationKNN"); %! assert (a.DistParameter, 5) %! assert ({a.NSMethod, a.Distance}, {"kdtree", "minkowski"}) %!test %! x = [1, 2, 3; 4, 5, 6; 7, 8, 9; 3, 2, 1]; %! y = ["a"; "a"; "b"; "b"]; %! a = ClassificationKNN (x, y, "Exponent" , 5, "Distance", "minkowski", ... %! "NSMethod", "exhaustive"); %! assert (class (a), "ClassificationKNN"); %! assert (a.DistParameter, 5) %! assert ({a.NSMethod, a.Distance}, {"exhaustive", "minkowski"}) ## Test constructor with BucketSize and IncludeTies parameters %!test %! x = [1, 2, 3; 4, 5, 6; 7, 8, 9; 3, 2, 1]; %! y = ["a"; "a"; "b"; "b"]; %! a = ClassificationKNN (x, y, "BucketSize" , 20, "distance", "mahalanobis"); %! assert (class (a), "ClassificationKNN"); %! assert ({a.NSMethod, a.Distance}, {"exhaustive", "mahalanobis"}) %! assert ({a.BucketSize}, {20}) %!test %! x = [1, 2, 3; 4, 5, 6; 7, 8, 9; 3, 2, 1]; %! y = ["a"; "a"; "b"; "b"]; %! a = ClassificationKNN (x, y, "IncludeTies", true); %! assert (class (a), "ClassificationKNN"); %! assert (a.IncludeTies, true); %! assert ({a.NSMethod, a.Distance}, {"kdtree", "euclidean"}) %!test %! x = [1, 2, 3; 4, 5, 6; 7, 8, 9; 3, 2, 1]; %! y = ["a"; "a"; "b"; "b"]; %! a = ClassificationKNN (x, y); %! assert (class (a), "ClassificationKNN"); %! assert (a.IncludeTies, false); %! assert ({a.NSMethod, a.Distance}, {"kdtree", "euclidean"}) ## Test constructor with Prior and Cost parameters %!test %! x = [1, 2, 3; 4, 5, 6; 7, 8, 9; 3, 2, 1]; %! y = ["a"; "a"; "b"; "b"]; %! a = ClassificationKNN (x, y); %! assert (class (a), "ClassificationKNN") %! assert (a.Prior, [0.5; 0.5]) %! assert ({a.NSMethod, a.Distance}, {"kdtree", "euclidean"}) %! assert ({a.BucketSize}, {50}) %!test %! x = [1, 2, 3; 4, 5, 6; 7, 8, 9; 3, 2, 1]; %! y = ["a"; "a"; "b"; "b"]; %! prior = [0.5; 0.5]; %! a = ClassificationKNN (x, y, "Prior", "empirical"); %! assert (class (a), "ClassificationKNN") %! assert (a.Prior, prior) %! assert ({a.NSMethod, a.Distance}, {"kdtree", "euclidean"}) %! assert ({a.BucketSize}, {50}) %!test %! x = [1, 2, 3; 4, 5, 6; 7, 8, 9; 3, 2, 1]; %! y = ["a"; "a"; "a"; "b"]; %! prior = [0.75; 0.25]; %! a = ClassificationKNN (x, y, "Prior", "empirical"); %! assert (class (a), "ClassificationKNN") %! assert (a.Prior, prior) %! assert ({a.NSMethod, a.Distance}, {"kdtree", "euclidean"}) %! assert ({a.BucketSize}, {50}) %!test %! x = [1, 2, 3; 4, 5, 6; 7, 8, 9; 3, 2, 1]; %! y = ["a"; "a"; "a"; "b"]; %! prior = [0.5; 0.5]; %! a = ClassificationKNN (x, y, "Prior", "uniform"); %! assert (class (a), "ClassificationKNN") %! assert (a.Prior, prior) %! assert ({a.NSMethod, a.Distance}, {"kdtree", "euclidean"}) %! assert ({a.BucketSize}, {50}) %!test %! x = [1, 2, 3; 4, 5, 6; 7, 8, 9; 3, 2, 1]; %! y = ["a"; "a"; "b"; "b"]; %! cost = eye (2); %! a = ClassificationKNN (x, y, "Cost", cost); %! assert (class (a), "ClassificationKNN") %! assert (a.Cost, [1, 0; 0, 1]) %! assert ({a.NSMethod, a.Distance}, {"kdtree", "euclidean"}) %! assert ({a.BucketSize}, {50}) %!test %! x = [1, 2, 3; 4, 5, 6; 7, 8, 9; 3, 2, 1]; %! y = ["a"; "a"; "b"; "b"]; %! cost = eye (2); %! a = ClassificationKNN (x, y, "Cost", cost, "Distance", "hamming" ); %! assert (class (a), "ClassificationKNN") %! assert (a.Cost, [1, 0; 0, 1]) %! assert ({a.NSMethod, a.Distance}, {"exhaustive", "hamming"}) %! assert ({a.BucketSize}, {50}) ## Test input validation for constructor %!error ClassificationKNN () %!error ... %! ClassificationKNN (ones(4, 1)) %!error ... %! ClassificationKNN (ones (4,2), ones (1,4)) %!error ... %! ClassificationKNN (ones (5,3), ones (5,1), "standardize", "a") %!error ... %! ClassificationKNN (ones (5,2), ones (5,1), "scale", [1 1], "standardize", true) %!error ... %! ClassificationKNN (ones (5,2), ones (5,1), "PredictorNames", ["A"]) %!error ... %! ClassificationKNN (ones (5,2), ones (5,1), "PredictorNames", "A") %!error ... %! ClassificationKNN (ones (5,2), ones (5,1), "PredictorNames", {"A", "B", "C"}) %!error ... %! ClassificationKNN (ones (5,2), ones (5,1), "ResponseName", {"Y"}) %!error ... %! ClassificationKNN (ones (5,2), ones (5,1), "ResponseName", 1) %!error ... %! ClassificationKNN (ones (5,2), ones (5,1), "ClassNames", 1) %!error ... %! ClassificationKNN (ones (5,2), ones (5,1), "ClassNames", ["1"]) %!error ... %! ClassificationKNN (ones (5,2), ones (5,1), "ClassNames", {"1", "2"}) %!error ... %! ClassificationKNN (ones (5,2), ones (5,1), "BreakTies", 1) %!error ... %! ClassificationKNN (ones (5,2), ones (5,1), "BreakTies", {"1"}) %!error ... %! ClassificationKNN (ones (5,2), ones (5,1), "BreakTies", "some") %!error ... %! ClassificationKNN (ones (5,2), ones (5,1), "Prior", {"1", "2"}) %!error ... %! ClassificationKNN (ones (5,2), ones (5,1), "Cost", [1, 2]) %!error ... %! ClassificationKNN (ones (5,2), ones (5,1), "Cost", "string") %!error ... %! ClassificationKNN (ones (5,2), ones (5,1), "Cost", {eye(2)}) %!error ... %! ClassificationKNN (ones (5,2), ones (5,1), "NumNeighbors", 0) %!error ... %! ClassificationKNN (ones (5,2), ones (5,1), "NumNeighbors", 15.2) %!error ... %! ClassificationKNN (ones (5,2), ones (5,1), "NumNeighbors", "asd") %!error ... %! ClassificationKNN (ones (5,2), ones (5,1), "Distance", "somemetric") %!error ... %! ClassificationKNN (ones (5,2), ones (5,1), "Distance", ... %! @(v,m)sqrt(repmat(v,rows(m),1)-m,2)) %!error ... %! ClassificationKNN (ones (5,2), ones (5,1), "Distance", ... %! @(v,m)sqrt(sum(sumsq(repmat(v,rows(m),1)-m,2)))) %!error ... %! ClassificationKNN (ones (5,2), ones (5,1), "Distance", [1 2 3]) %!error ... %! ClassificationKNN (ones (5,2), ones (5,1), "Distance", {"mahalanobis"}) %!error ... %! ClassificationKNN (ones (5,2), ones (5,1), "Distance", logical (5)) %!error ... %! ClassificationKNN (ones (5,2), ones (5,1), "DistanceWeight", @(x)sum(x)) %!error ... %! ClassificationKNN (ones (5,2), ones (5,1), "DistanceWeight", "text") %!error ... %! ClassificationKNN (ones (5,2), ones (5,1), "DistanceWeight", [1 2 3]) %!error ... %! ClassificationKNN (ones (5,2), ones (5,1), "Scale", "scale") %!error ... %! ClassificationKNN (ones (5,2), ones (5,1), "Scale", {[1 2 3]}) %!error ... %! ClassificationKNN (ones (5,2), ones (5,1), "standardize", true, "scale", [1 1]) %!error ... %! ClassificationKNN (ones (5,2), ones (5,1), "Cov", ones (2), "Distance", "mahalanobis") %!error ... %! ClassificationKNN (ones (5,2), ones (5,1), "scale", [1 1], "Cov", ones (2)) %!error ... %! ClassificationKNN (ones (5,2), ones (5,1), "Exponent", 12.5) %!error ... %! ClassificationKNN (ones (5,2), ones (5,1), "Exponent", -3) %!error ... %! ClassificationKNN (ones (5,2), ones (5,1), "Exponent", "three") %!error ... %! ClassificationKNN (ones (5,2), ones (5,1), "Exponent", {3}) %!error ... %! ClassificationKNN (ones (5,2), ones (5,1), "NSMethod", {"kdtree"}) %!error ... %! ClassificationKNN (ones (5,2), ones (5,1), "NSMethod", 3) %!error ... %! ClassificationKNN (ones (5,2), ones (5,1), "NSMethod", "some") %!error ... %! ClassificationKNN (ones (5,2), ones (5,1), "IncludeTies", "some") %!error ... %! ClassificationKNN (ones (5,2), ones (5,1), "BucketSize", 42.5) %!error ... %! ClassificationKNN (ones (5,2), ones (5,1), "BucketSize", -50) %!error ... %! ClassificationKNN (ones (5,2), ones (5,1), "BucketSize", "some") %!error ... %! ClassificationKNN (ones (5,2), ones (5,1), "BucketSize", {50}) %!error ... %! ClassificationKNN (ones (5,2), ones (5,1), "some", "some") %!error ... %! ClassificationKNN ([1;2;3;'a';4], ones (5,1)) %!error ... %! ClassificationKNN ([1;2;3;Inf;4], ones (5,1)) %!error ... %! ClassificationKNN (ones (5,2), ones (5,1), "Prior", [1 2]) %!error ... %! ClassificationKNN (ones (5,2), ones (5,1), "Cost", [1 2; 1 3]) %!error ... %! ClassificationKNN (ones (5,2), ones (5,1), "Scale", [1 1]) %!error ... %! ClassificationKNN (ones (5,2), ones (5,1), "Scale", [1 1 1], "Distance", "seuclidean") %!error ... %! ClassificationKNN (ones (5,2), ones (5,1), "Scale", [1 -1], "Distance", "seuclidean") %!error ... %! ClassificationKNN (ones (5,2), ones (5,1), "Cov", eye (2)) %!error ... %! ClassificationKNN (ones (5,2), ones (5,1), "Cov", eye (3), "Distance", "mahalanobis") %!error ... %! ClassificationKNN (ones (5,2), ones (5,1), "Exponent", 3) %!error ... %! ClassificationKNN (ones (5,2), ones (5,1), "Distance", "hamming", "NSMethod", "kdtree") ## Test output for predict method %!shared x, y %! load fisheriris %! x = meas; %! y = species; %!test %! xc = [min(x); mean(x); max(x)]; %! obj = fitcknn (x, y, "NumNeighbors", 5); %! [l, s, c] = predict (obj, xc); %! assert (l, {"setosa"; "versicolor"; "virginica"}) %! assert (s, [1, 0, 0; 0, 1, 0; 0, 0, 1]) %! assert (c, [0, 1, 1; 1, 0, 1; 1, 1, 0]) %!test %! xc = [min(x); mean(x); max(x)]; %! obj = fitcknn (x, y, "NumNeighbors", 5, "Standardize", 1); %! [l, s, c] = predict (obj, xc); %! assert (l, {"versicolor"; "versicolor"; "virginica"}) %! assert (s, [0.4, 0.6, 0; 0, 1, 0; 0, 0, 1]) %! assert (c, [0.6, 0.4, 1; 1, 0, 1; 1, 1, 0]) %!test %! xc = [min(x); mean(x); max(x)]; %! obj = fitcknn (x, y, "NumNeighbors", 10, "distance", "mahalanobis"); %! [l, s, c] = predict (obj, xc); %! assert (s, [0.3, 0.7, 0; 0, 0.9, 0.1; 0.2, 0.2, 0.6], 1e-4) %! assert (c, [0.7, 0.3, 1; 1, 0.1, 0.9; 0.8, 0.8, 0.4], 1e-4) %!test %! xc = [min(x); mean(x); max(x)]; %! obj = fitcknn (x, y, "NumNeighbors", 10, "distance", "cosine"); %! [l, s, c] = predict (obj, xc); %! assert (l, {"setosa"; "versicolor"; "virginica"}) %! assert (s, [1, 0, 0; 0, 1, 0; 0, 0.3, 0.7], 1e-4) %! assert (c, [0, 1, 1; 1, 0, 1; 1, 0.7, 0.3], 1e-4) %!test %! xc = [5.2, 4.1, 1.5, 0.1; 5.1, 3.8, 1.9, 0.4; ... %! 5.1, 3.8, 1.5, 0.3; 4.9, 3.6, 1.4, 0.1]; %! obj = fitcknn (x, y, "NumNeighbors", 5); %! [l, s, c] = predict (obj, xc); %! assert (l, {"setosa"; "setosa"; "setosa"; "setosa"}) %! assert (s, [1, 0, 0; 1, 0, 0; 1, 0, 0; 1, 0, 0]) %! assert (c, [0, 1, 1; 0, 1, 1; 0, 1, 1; 0, 1, 1]) %!test %! xc = [5, 3, 5, 1.45]; %! obj = fitcknn (x, y, "NumNeighbors", 5); %! [l, s, c] = predict (obj, xc); %! assert (l, {"versicolor"}) %! assert (s, [0, 0.6, 0.4], 1e-4) %! assert (c, [1, 0.4, 0.6], 1e-4) %!test %! xc = [5, 3, 5, 1.45]; %! obj = fitcknn (x, y, "NumNeighbors", 10, "distance", "minkowski", "Exponent", 5); %! [l, s, c] = predict (obj, xc); %! assert (l, {"versicolor"}) %! assert (s, [0, 0.5, 0.5], 1e-4) %! assert (c, [1, 0.5, 0.5], 1e-4) %!test %! xc = [5, 3, 5, 1.45]; %! obj = fitcknn (x, y, "NumNeighbors", 10, "distance", "jaccard"); %! [l, s, c] = predict (obj, xc); %! assert (l, {"setosa"}) %! assert (s, [0.9, 0.1, 0], 1e-4) %! assert (c, [0.1, 0.9, 1], 1e-4) %!test %! xc = [5, 3, 5, 1.45]; %! obj = fitcknn (x, y, "NumNeighbors", 10, "distance", "mahalanobis"); %! [l, s, c] = predict (obj, xc); %! assert (l, {"versicolor"}) %! assert (s, [0.1000, 0.5000, 0.4000], 1e-4) %! assert (c, [0.9000, 0.5000, 0.6000], 1e-4) %!test %! xc = [5, 3, 5, 1.45]; %! obj = fitcknn (x, y, "NumNeighbors", 5, "distance", "jaccard"); %! [l, s, c] = predict (obj, xc); %! assert (l, {"setosa"}) %! assert (s, [0.8, 0.2, 0], 1e-4) %! assert (c, [0.2, 0.8, 1], 1e-4) %!test %! xc = [5, 3, 5, 1.45]; %! obj = fitcknn (x, y, "NumNeighbors", 5, "distance", "seuclidean"); %! [l, s, c] = predict (obj, xc); %! assert (l, {"versicolor"}) %! assert (s, [0, 1, 0], 1e-4) %! assert (c, [1, 0, 1], 1e-4) %!test %! xc = [5, 3, 5, 1.45]; %! obj = fitcknn (x, y, "NumNeighbors", 10, "distance", "chebychev"); %! [l, s, c] = predict (obj, xc); %! assert (l, {"versicolor"}) %! assert (s, [0, 0.7, 0.3], 1e-4) %! assert (c, [1, 0.3, 0.7], 1e-4) %!test %! xc = [5, 3, 5, 1.45]; %! obj = fitcknn (x, y, "NumNeighbors", 10, "distance", "cityblock"); %! [l, s, c] = predict (obj, xc); %! assert (l, {"versicolor"}) %! assert (s, [0, 0.6, 0.4], 1e-4) %! assert (c, [1, 0.4, 0.6], 1e-4) %!test %! xc = [5, 3, 5, 1.45]; %! obj = fitcknn (x, y, "NumNeighbors", 10, "distance", "cosine"); %! [l, s, c] = predict (obj, xc); %! assert (l, {"virginica"}) %! assert (s, [0, 0.1, 0.9], 1e-4) %! assert (c, [1, 0.9, 0.1], 1e-4) %!test %! xc = [5, 3, 5, 1.45]; %! obj = fitcknn (x, y, "NumNeighbors", 10, "distance", "correlation"); %! [l, s, c] = predict (obj, xc); %! assert (l, {"virginica"}) %! assert (s, [0, 0.1, 0.9], 1e-4) %! assert (c, [1, 0.9, 0.1], 1e-4) %!test %! xc = [5, 3, 5, 1.45]; %! obj = fitcknn (x, y, "NumNeighbors", 30, "distance", "spearman"); %! [l, s, c] = predict (obj, xc); %! assert (l, {"versicolor"}) %! assert (s, [0, 1, 0], 1e-4) %! assert (c, [1, 0, 1], 1e-4) %!test %! xc = [5, 3, 5, 1.45]; %! obj = fitcknn (x, y, "NumNeighbors", 30, "distance", "hamming"); %! [l, s, c] = predict (obj, xc); %! assert (l, {"setosa"}) %! assert (s, [0.4333, 0.3333, 0.2333], 1e-4) %! assert (c, [0.5667, 0.6667, 0.7667], 1e-4) %!test %! xc = [5, 3, 5, 1.45]; %! obj = fitcknn (x, y, "NumNeighbors", 5, "distance", "hamming"); %! [l, s, c] = predict (obj, xc); %! assert (l, {"setosa"}) %! assert (s, [0.8, 0.2, 0], 1e-4) %! assert (c, [0.2, 0.8, 1], 1e-4) %!test %! xc = [min(x); mean(x); max(x)]; %! obj = fitcknn (x, y, "NumNeighbors", 10, "distance", "correlation"); %! [l, s, c] = predict (obj, xc); %! assert (l, {"setosa"; "versicolor"; "virginica"}) %! assert (s, [1, 0, 0; 0, 1, 0; 0, 0.4, 0.6], 1e-4) %! assert (c, [0, 1, 1; 1, 0, 1; 1, 0.6, 0.4], 1e-4) %!test %! xc = [min(x); mean(x); max(x)]; %! obj = fitcknn (x, y, "NumNeighbors", 10, "distance", "hamming"); %! [l, s, c] = predict (obj, xc); %! assert (l, {"setosa";"setosa";"setosa"}) %! assert (s, [0.9, 0.1, 0; 1, 0, 0; 0.5, 0, 0.5], 1e-4) %! assert (c, [0.1, 0.9, 1; 0, 1, 1; 0.5, 1, 0.5], 1e-4) ## Test input validation for predict method %!error ... %! predict (ClassificationKNN (ones (4,2), ones (4,1))) %!error ... %! predict (ClassificationKNN (ones (4,2), ones (4,1)), []) %!error ... %! predict (ClassificationKNN (ones (4,2), ones (4,1)), 1) statistics-release-1.6.3/inst/Classification/ConfusionMatrixChart.m000066400000000000000000000715061456127120000255400ustar00rootroot00000000000000## Copyright (C) 2020-2021 Stefano Guidoni ## Copyright (C) 2023-2024 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . classdef ConfusionMatrixChart < handle ## -*- texinfo -*- ## @deftypefn {statistics} {@var{cmc} =} ConfusionMatrixChart () ## Create object @var{cmc}, a Confusion Matrix Chart object. ## ## @table @asis ## @item @qcode{"DiagonalColor"} ## The color of the patches on the diagonal, default is [0.0, 0.4471, 0.7412]. ## ## @item @qcode{"OffDiagonalColor"} ## The color of the patches off the diagonal, default is [0.851, 0.3255, 0.098]. ## ## @item @qcode{"GridVisible"} ## Available values: @qcode{on} (default), @qcode{off}. ## ## @item @qcode{"Normalization"} ## Available values: @qcode{absolute} (default), @qcode{column-normalized}, ## @qcode{row-normalized}, @qcode{total-normalized}. ## ## @item @qcode{"ColumnSummary"} ## Available values: @qcode{off} (default), @qcode{absolute}, ## @qcode{column-normalized},@qcode{total-normalized}. ## ## @item @qcode{"RowSummary"} ## Available values: @qcode{off} (default), @qcode{absolute}, ## @qcode{row-normalized}, @qcode{total-normalized}. ## @end table ## ## MATLAB compatibility -- the not implemented properties are: FontColor, ## PositionConstraint, InnerPosition, Layout. ## ## @seealso{confusionchart} ## @end deftypefn properties (Access = public) ## text properties XLabel = "Predicted Class"; YLabel = "True Class"; Title = ""; FontName = ""; FontSize = 0; ## chart colours DiagonalColor = [0 0.4471 0.7412]; OffDiagonalColor = [0.8510 0.3255 0.0980]; ## data visualization Normalization = "absolute"; ColumnSummary = "off"; RowSummary = "off"; GridVisible = "on"; HandleVisibility = ""; OuterPosition = []; Position = []; Units = ""; endproperties properties (GetAccess = public, SetAccess = private) ClassLabels = {}; # a string cell array of classes NormalizedValues = []; # the normalized confusion matrix Parent = 0; # a handle to the parent object endproperties properties (Access = protected) hax = 0.0; # a handle to the axes ClassN = 0; # the number of classes AbsoluteValues = []; # the original confusion matrix ColumnSummaryAbsoluteValues = []; # default values of the column summary RowSummaryAbsoluteValues = []; # default values of the row summary endproperties methods (Access = public) ## class constructor ## inputs: axis handle, a confusion matrix, a list of class labels, ## an array of optional property-value pairs. function this = ConfusionMatrixChart (hax, cm, cl, args) ## class initialization this.hax = hax; this.Parent = get (this.hax, "parent"); this.ClassLabels = cl; this.NormalizedValues = cm; this.AbsoluteValues = cm; this.ClassN = rows (cm); this.FontName = get (this.hax, "fontname"); this.FontSize = get (this.hax, "fontsize"); set (this.hax, "xlabel", this.XLabel); set (this.hax, "ylabel", this.YLabel); ## draw the chart draw (this); ## apply paired properties if (! isempty (args)) pair_idx = 1; while (pair_idx < length (args)) switch (args{pair_idx}) case "XLabel" this.XLabel = args{pair_idx + 1}; case "YLabel" this.YLabel = args{pair_idx + 1}; case "Title" this.Title = args{pair_idx + 1}; case "FontName" this.FontName = args{pair_idx + 1}; case "FontSize" this.FontSize = args{pair_idx + 1}; case "DiagonalColor" this.DiagonalColor = args{pair_idx + 1}; case "OffDiagonalColor" this.OffDiagonalColor = args{pair_idx + 1}; case "Normalization" this.Normalization = args{pair_idx + 1}; case "ColumnSummary" this.ColumnSummary = args{pair_idx + 1}; case "RowSummary" this.RowSummary = args{pair_idx + 1}; case "GridVisible" this.GridVisible = args{pair_idx + 1}; case "HandleVisibility" this.HandleVisibility = args{pair_idx + 1}; case "OuterPosition" this.OuterPosition = args{pair_idx + 1}; case "Position" this.Position = args{pair_idx + 1}; case "Units" this.Units = args{pair_idx + 1}; otherwise close (this.Parent); error ("confusionchart: invalid property %s", args{pair_idx}); endswitch pair_idx += 2; endwhile endif ## init the color map updateColorMap (this); endfunction ## set functions function set.XLabel (this, string) if (! ischar (string)) close (this.Parent); error ("confusionchart: XLabel must be a string."); endif this.XLabel = updateAxesProperties (this, "xlabel", string); endfunction function set.YLabel (this, string) if (! ischar (string)) close (this.Parent); error ("confusionchart: YLabel must be a string."); endif this.YLabel = updateAxesProperties (this, "ylabel", string); endfunction function set.Title (this, string) if (! ischar (string)) close (this.Parent); error ("confusionchart: Title must be a string."); endif this.Title = updateAxesProperties (this, "title", string); endfunction function set.FontName (this, string) if (! ischar (string)) close (this.Parent); error ("confusionchart: FontName must be a string."); endif this.FontName = updateTextProperties (this, "fontname", string); endfunction function set.FontSize (this, value) if (! isnumeric (value)) close (this.Parent); error ("confusionchart: FontSize must be numeric."); endif this.FontSize = updateTextProperties (this, "fontsize", value); endfunction function set.DiagonalColor (this, color) if (ischar (color)) color = this.convertNamedColor (color); endif if (! (isvector (color) && length (color) == 3 )) close (this.Parent); error ("confusionchart: DiagonalColor must be a color."); endif this.DiagonalColor = color; updateColorMap (this); endfunction function set.OffDiagonalColor (this, color) if (ischar (color)) color = this.convertNamedColor (color); endif if (! (isvector (color) && length (color) == 3)) close (this.Parent); error ("confusionchart: OffDiagonalColor must be a color."); endif this.OffDiagonalColor = color; updateColorMap (this); endfunction function set.Normalization (this, string) if (! any (strcmp (string, {"absolute", "column-normalized",... "row-normalized", "total-normalized"}))) close (this.Parent); error ("confusionchart: invalid value for Normalization."); endif this.Normalization = string; updateChart (this); endfunction function set.ColumnSummary (this, string) if (! any (strcmp (string, {"off", "absolute", "column-normalized",... "total-normalized"}))) close (this.Parent); error ("confusionchart: invalid value for ColumnSummary."); endif this.ColumnSummary = string; updateChart (this); endfunction function set.RowSummary (this, string) if (! any (strcmp (string, {"off", "absolute", "row-normalized",... "total-normalized"}))) close (this.Parent); error ("confusionchart: invalid value for RowSummary."); endif this.RowSummary = string; updateChart (this); endfunction function set.GridVisible (this, string) if (! any (strcmp (string, {"off", "on"}))) close (this.Parent); error ("confusionchart: invalid value for GridVisible."); endif this.GridVisible = string; setGridVisibility (this); endfunction function set.HandleVisibility (this, string) if (! any (strcmp (string, {"off", "on", "callback"}))) close (this.Parent); error ("confusionchart: invalid value for HandleVisibility"); endif set (this.hax, "handlevisibility", string); endfunction function set.OuterPosition (this, vector) if (! isvector (vector) || ! isnumeric (vector) || length (vector) != 4) close (this.Parent); error ("confusionchart: invalid value for OuterPosition"); endif set (this.hax, "outerposition", vector); endfunction function set.Position (this, vector) if (! isvector (vector) || ! isnumeric (vector) || length (vector) != 4) close (this.Parent); error ("confusionchart: invalid value for Position"); endif set (this.hax, "position", vector); endfunction function set.Units (this, string) if (! any (strcmp (string, {"centimeters", "characters", "inches", ... "normalized", "pixels", "points"}))) close (this.Parent); error ("confusionchart: invalid value for Units"); endif set (this.hax, "units", string); endfunction ## -*- texinfo -*- ## @deftypefn {ConfusionMatrixChart} {} disp (@var{cmc}, @var{order}) ## Display the properties of the @code{ConfusionMatrixChart} object ## @var{cmc}. ## ## @end deftypefn function disp (this) nv_sizes = size (this.NormalizedValues); cl_sizes = size (this.ClassLabels); printf ("%s with properties:\n\n", class (this)); printf ("\tNormalizedValues: [ %dx%d %s ]\n", nv_sizes(1), nv_sizes(2),... class (this.NormalizedValues)); printf ("\tClassLabels: { %dx%d %s }\n\n", cl_sizes(1), cl_sizes(2),... class (this.ClassLabels)); endfunction ## -*- texinfo -*- ## @deftypefn {ConfusionMatrixChart} {} sortClasses (@var{cmc}, @var{order}) ## Sort the classes of the @code{ConfusionMatrixChart} object @var{cmc} ## according to @var{order}. ## ## Valid values for @var{order} can be an array or cell array including ## the same class labels as @var{cm}, or a value like @code{"auto"}, ## @code{"ascending-diagonal"}, @code{"descending-diagonal"} and ## @code{"cluster"}. ## ## @end deftypefn ## ## @seealso{confusionchart, linkage, pdist} function sortClasses (this, order) ## check the input parameters if (nargin != 2) print_usage (); endif cl = this.ClassLabels; cm_size = this.ClassN; nv = this.NormalizedValues; av = this.AbsoluteValues; cv = this.ColumnSummaryAbsoluteValues; rv = this.RowSummaryAbsoluteValues; scl = {}; Idx = []; if (strcmp (order, "auto")) [scl, Idx] = sort (cl); elseif (strcmp (order, "ascending-diagonal")) [s, Idx] = sort (diag (nv)); scl = cl(Idx); elseif (strcmp (order, "descending-diagonal")) [s, Idx] = sort (diag (nv)); Idx = flip (Idx); scl = cl(Idx); elseif (strcmp (order, "cluster")) ## the classes are all grouped together ## this way one can visually evaluate which are the most similar classes ## according to the learning algorithm D = zeros (1, ((cm_size - 1) * cm_size / 2)); # a pdist like vector maxD = 2 * max (max (av)); k = 1; # better than computing the index at every cycle for i = 1 : (cm_size - 1) for j = (i + 1) : cm_size D(k++) = maxD - (av(i, j) + av(j, i)); # distance endfor endfor tree = linkage (D, "average"); # clustering ## we could have optimal leaf ordering with Idx = optimalleaforder (tree, D); # optimal clustering ## [sorted_v Idx] = sort (cluster (tree, )); nodes_to_visit = 2 * cm_size - 1; nodecount = 0; while (! isempty (nodes_to_visit)) current_node = nodes_to_visit(1); nodes_to_visit(1) = []; if (current_node > cm_size) node = current_node - cm_size; nodes_to_visit = [tree(node,[2 1]) nodes_to_visit]; end if (current_node <= cm_size) nodecount++; Idx(nodecount) = current_node; end end ## scl = cl(Idx); else ## must be an array or cell array of labels if (! iscellstr (order)) if (! ischar (order)) if (isrow (order)) order = vec (order); endif order = num2str (order); endif scl = cellstr (order); endif if (length (scl) != length (cl)) error ("sortClasses: wrong size for order.") endif Idx = zeros (length (scl), 1); for i = 1 : length (scl) Idx(i) = find (strcmp (cl, scl{i})); endfor endif ## rearrange the normalized values... nv = nv(Idx, :); nv = nv(:, Idx); this.NormalizedValues = nv; ## ...and the absolute values... av = av(Idx, :); av = av(:, Idx); this.AbsoluteValues = av; cv = cv([Idx ( Idx + cm_size )]); this.ColumnSummaryAbsoluteValues = cv; rv = rv([Idx ( Idx + cm_size )]); this.RowSummaryAbsoluteValues = rv; ## ...and the class labels this.ClassLabels = scl; ## update the axes set (this.hax, "xtick", (0.5 : 1 : (cm_size - 0.5)), "xticklabel", scl,... "ytick", (0.5 : 1 : (cm_size - 0.5)), "yticklabel", scl); ## get text and patch handles kids = get (this.hax, "children"); t_kids = kids(find (isprop (kids, "fontname"))); # hack to find texts m_kid = kids(find (strcmp (get (kids, "userdata"), "MainChart"))); c_kid = kids(find (strcmp (get (kids, "userdata"), "ColumnSummary"))); r_kid = kids(find (strcmp (get (kids, "userdata"), "RowSummary"))); ## re-assign colors to the main chart cdata_m = reshape (get (m_kid, "cdata"), cm_size, cm_size); cdata_m = cdata_m(Idx, :); cdata_m = cdata_m(:, Idx); cdata_v = vec (cdata_m); set (m_kid, "cdata", cdata_v); ## re-assign colors to the column summary cdata_m = reshape (transpose (get (c_kid, "cdata")), cm_size, 2); cdata_m = cdata_m(Idx, :); cdata_v = vec (cdata_m); set (c_kid, "cdata", cdata_v); ## re-assign colors to the row summary cdata_m = reshape (get (r_kid, "cdata"), cm_size, 2); cdata_m = cdata_m(Idx, :); cdata_v = vec (cdata_m); set (r_kid, "cdata", cdata_v); ## move the text labels for i = 1:length (t_kids) t_pos = get (t_kids(i), "userdata"); if (t_pos(2) > cm_size) ## row summary t_pos(1) = find (Idx == (t_pos(1) + 1)) - 1; set (t_kids(i), "userdata", t_pos); t_pos = t_pos([2 1]) + 0.5; set (t_kids(i), "position", t_pos); elseif (t_pos(1) > cm_size) ## column summary t_pos(2) = find (Idx == (t_pos(2) + 1)) - 1; set (t_kids(i), "userdata", t_pos); t_pos = t_pos([2 1]) + 0.5; set (t_kids(i), "position", t_pos); else ## main chart t_pos(1) = find (Idx == (t_pos(1) + 1)) - 1; t_pos(2) = find (Idx == (t_pos(2) + 1)) - 1; set (t_kids(i), "userdata", t_pos); t_pos = t_pos([2 1]) + 0.5; set (t_kids(i), "position", t_pos); endif endfor updateChart (this); endfunction endmethods methods (Access = private) ## convertNamedColor ## convert a named colour to a colour triplet function ret = convertNamedColor (this, color) vColorNames = ["ymcrgbwk"]'; vColorTriplets = [1 1 0; 1 0 1; 0 1 1; 1 0 0; 0 1 0; 0 0 1; 1 1 1; 0 0 0]; if (strcmp (color, "black")) color = 'k'; endif index = find (vColorNames == color(1)); if (! isempty (index)) ret = vColorTriplets(index, :); else ret = []; # trigger an error message endif endfunction ## updateAxesProperties ## update the properties of the axes function ret = updateAxesProperties (this, prop, value) set (this.hax, prop, value); ret = value; endfunction ## updateTextProperties ## set the properties of the texts function ret = updateTextProperties (this, prop, value) hax_kids = get (this.hax, "children"); text_kids = hax_kids(isprop (hax_kids , "fontname")); # hack to find texts text_kids(end + 1) = get (this.hax, "xlabel"); text_kids(end + 1) = get (this.hax, "ylabel"); text_kids(end + 1) = get (this.hax, "title"); updateAxesProperties (this, prop, value); set (text_kids, prop, value); ret = value; endfunction ## setGridVisibility ## toggle the visibility of the grid function setGridVisibility (this) kids = get (this.hax, "children"); kids = kids(find (isprop (kids, "linestyle"))); if (strcmp (this.GridVisible, "on")) set (kids, "linestyle", "-"); else set (kids, "linestyle", "none"); endif endfunction ## updateColorMap ## change the colormap and, accordingly, the text colors function updateColorMap (this) cm_size = this.ClassN; d_color = this.DiagonalColor; o_color = this.OffDiagonalColor; ## quick hack d_color(find (d_color == 1.0)) = 0.999; o_color(find (o_color == 1.0)) = 0.999; ## 64 shades for each color cm_colormap(1:64,:) = [1.0 : (-(1.0 - o_color(1)) / 63) : o_color(1);... 1.0 : (-(1.0 - o_color(2)) / 63) : o_color(2);... 1.0 : (-(1.0 - o_color(3)) / 63) : o_color(3)]'; cm_colormap(65:128,:) = [1.0 : (-(1.0 - d_color(1)) / 63) : d_color(1);... 1.0 : (-(1.0 - d_color(2)) / 63) : d_color(2);... 1.0 : (-(1.0 - d_color(3)) / 63) : d_color(3)]'; colormap (this.hax, cm_colormap); ## update text colors kids = get (this.hax, "children"); t_kids = kids(find (isprop (kids, "fontname"))); # hack to find texts m_patch = kids(find (strcmp (get (kids, "userdata"), "MainChart"))); c_patch = kids(find (strcmp (get (kids, "userdata"), "ColumnSummary"))); r_patch = kids(find (strcmp (get (kids, "userdata"), "RowSummary"))); m_colors = get (m_patch, "cdata"); c_colors = get (c_patch, "cdata"); r_colors = get (r_patch, "cdata"); ## when a patch is dark, let's use a pale color for the text for i = 1 : length (t_kids) t_pos = get (t_kids(i), "userdata"); color_idx = 1; if (t_pos(2) > cm_size) ## row summary idx = (t_pos(2) - cm_size - 1) * cm_size + t_pos(1) + 1; color_idx = r_colors(idx) + 1; elseif (t_pos(1) > cm_size) ## column summary idx = (t_pos(1) - cm_size - 1) * cm_size + t_pos(2) + 1; color_idx = c_colors(idx) + 1; else ## main chart idx = t_pos(2) * cm_size + t_pos(1) + 1; color_idx = m_colors(idx) + 1; endif if (sum (cm_colormap(color_idx, :)) < 1.8) set (t_kids(i), "color", [.97 .97 1.0]); else set (t_kids(i), "color", [.15 .15 .15]); endif endfor endfunction ## updateChart ## update the text labels and the NormalizedValues property function updateChart (this) cm_size = this.ClassN; cm = this.AbsoluteValues; l_cs = this.ColumnSummaryAbsoluteValues; l_rs = this.RowSummaryAbsoluteValues; kids = get (this.hax, "children"); t_kids = kids(find (isprop (kids, "fontname"))); # hack to find texts normalization = this.Normalization; column_summary = this.ColumnSummary; row_summary = this.RowSummary; ## normalization for labelling row_totals = sum (cm, 2); col_totals = sum (cm, 1); mat_total = sum (col_totals); cm_labels = cm; add_percent = true; if (strcmp (normalization, "column-normalized")) for i = 1 : cm_size cm_labels(:,i) = cm_labels(:,i) ./ col_totals(i); endfor elseif (strcmp (normalization, "row-normalized")) for i = 1 : cm_size cm_labels(i,:) = cm_labels(i,:) ./ row_totals(i); endfor elseif (strcmp (normalization, "total-normalized")) cm_labels = cm_labels ./ mat_total; else add_percent = false; endif ## update NormalizedValues this.NormalizedValues = cm_labels; ## update axes last_row = cm_size; last_col = cm_size; userdata = cell2mat (get (t_kids, "userdata")); cs_kids = t_kids(find (userdata(:,1) > cm_size)); cs_kids(end + 1) = kids(find (strcmp (get (kids, "userdata"),... "ColumnSummary"))); if (! strcmp ("off", column_summary)) set (cs_kids, "visible", "on"); last_row += 3; else set (cs_kids, "visible", "off"); endif rs_kids = t_kids(find (userdata(:,2) > cm_size)); rs_kids(end + 1) = kids(find (strcmp (get (kids, "userdata"),... "RowSummary"))); if (! strcmp ("off", row_summary)) set (rs_kids, "visible", "on"); last_col += 3; else set (rs_kids, "visible", "off"); endif axis (this.hax, [0 last_col 0 last_row]); ## update column summary data cs_add_percent = true; if (! strcmp (column_summary, "off")) if (strcmp (column_summary, "column-normalized")) for i = 1 : cm_size if (col_totals(i) == 0) ## avoid division by zero l_cs([i (cm_size + i)]) = 0; else l_cs([i, cm_size + i]) = l_cs([i, cm_size + i]) ./ col_totals(i); endif endfor elseif strcmp (column_summary, "total-normalized") l_cs = l_cs ./ mat_total; else cs_add_percent = false; endif endif ## update row summary data rs_add_percent = true; if (! strcmp (row_summary, "off")) if (strcmp (row_summary, "row-normalized")) for i = 1 : cm_size if (row_totals(i) == 0) ## avoid division by zero l_rs([i (cm_size + i)]) = 0; else l_rs([i, cm_size + i]) = l_rs([i, cm_size + i]) ./ row_totals(i); endif endfor elseif (strcmp (row_summary, "total-normalized")) l_rs = l_rs ./ mat_total; else rs_add_percent = false; endif endif ## update text label_list = vec (cm_labels); for i = 1 : length (t_kids) t_pos = get (t_kids(i), "userdata"); new_string = ""; if (t_pos(2) > cm_size) ## this is the row summary idx = (t_pos(2) - cm_size - 1) * cm_size + t_pos(1) + 1; if (rs_add_percent) new_string = num2str (100.0 * l_rs(idx), "%3.1f"); new_string = [new_string "%"]; else new_string = num2str (l_rs(idx)); endif elseif (t_pos(1) > cm_size) ## this is the column summary idx = (t_pos(1) - cm_size - 1) * cm_size + t_pos(2) + 1; if (cs_add_percent) new_string = num2str (100.0 * l_cs(idx), "%3.1f"); new_string = [new_string "%"]; else new_string = num2str (l_cs(idx)); endif else ## this is the main chart idx = t_pos(2) * cm_size + t_pos(1) + 1; if (add_percent) new_string = num2str (100.0 * label_list(idx), "%3.1f"); new_string = [new_string "%"]; else new_string = num2str (label_list(idx)); endif endif set (t_kids(i), "string", new_string); endfor endfunction ## draw ## draw the chart function draw (this) cm = this.AbsoluteValues; cl = this.ClassLabels; cm_size = this.ClassN; ## set up the axes set (this.hax, "xtick", (0.5 : 1 : (cm_size - 0.5)), "xticklabel", cl,... "ytick", (0.5 : 1 : (cm_size - 0.5)), "yticklabel", cl ); axis ("ij"); axis (this.hax, [0 cm_size 0 cm_size]); ## prepare the patches indices_b = 0 : (cm_size -1); indices_v = repmat (indices_b, cm_size, 1); indices_vx = transpose (vec (indices_v)); indices_vy = vec (indices_v', 2); indices_ex = vec ((cm_size + 1) * [1; 2] .* ones (2, cm_size), 2); ## normalization for colorization ## it is used a colormap of 128 shades of two colors, 64 shades for each ## color normal = max (max (cm)); cm_norm = round (63 * cm ./ normal); cm_norm = cm_norm + 64 * eye (cm_size); ## default normalization: absolute cm_labels = vec (cm); ## the patches of the main chart x_patch = [indices_vx; ( indices_vx + 1 ); ( indices_vx + 1 ); indices_vx]; y_patch = [indices_vy; indices_vy; ( indices_vy + 1 ); ( indices_vy + 1 )]; c_patch = vec (cm_norm(1 : cm_size, 1 : cm_size)); ## display the patches ph = patch (this.hax, x_patch, y_patch, c_patch); set (ph, "userdata", "MainChart"); ## display the labels userdata = [indices_vy; indices_vx]'; nonzero_idx = find (cm_labels != 0); th = text ((x_patch(1, nonzero_idx) + 0.5), (y_patch(1, nonzero_idx) +... 0.5), num2str (cm_labels(nonzero_idx)), "parent", this.hax ); set (th, "horizontalalignment", "center"); for i = 1 : length (nonzero_idx) set (th(i), "userdata", userdata(nonzero_idx(i), :)); endfor ## patches for the summaries main_values = diag (cm); ct_values = sum (cm)'; rt_values = sum (cm, 2); cd_values = ct_values - main_values; rd_values = rt_values - main_values; ## column summary x_cs = [[indices_b indices_b]; ( [indices_b indices_b] + 1 ); ( [indices_b indices_b] + 1 ); [indices_b indices_b]]; y_cs = [(repmat ([1 1 2 2]', 1, cm_size)) (repmat ([2 2 3 3]', 1, cm_size))] +... cm_size; c_cs = [(round (63 * (main_values ./ ct_values)) + 64); (round (63 * (cd_values ./ ct_values)))]; c_cs(isnan (c_cs)) = 0; l_cs = [main_values; cd_values]; ph = patch (this.hax, x_cs, y_cs, c_cs); set (ph, "userdata", "ColumnSummary"); set (ph, "visible", "off" ); userdata = [y_cs(1,:); x_cs(1,:)]'; nonzero_idx = find (l_cs != 0); th = text ((x_cs(1,nonzero_idx) + 0.5), (y_cs(1,nonzero_idx) + 0.5),... num2str (l_cs(nonzero_idx)), "parent", this.hax); set (th, "horizontalalignment", "center"); for i = 1 : length (nonzero_idx) set (th(i), "userdata", userdata(nonzero_idx(i), :)); endfor set (th, "visible", "off"); ## row summary x_rs = y_cs; y_rs = x_cs; c_rs = [(round (63 * (main_values ./ rt_values)) + 64); (round (63 * (rd_values ./ rt_values)))]; c_rs(isnan (c_rs)) = 0; l_rs = [main_values; rd_values]; ph = patch (this.hax, x_rs, y_rs, c_rs); set (ph, "userdata", "RowSummary"); set (ph, "visible", "off"); userdata = [y_rs(1,:); x_rs(1,:)]'; nonzero_idx = find (l_rs != 0); th = text ((x_rs(1,nonzero_idx) + 0.5), (y_rs(1,nonzero_idx) + 0.5),... num2str (l_rs(nonzero_idx)), "parent", this.hax); set (th, "horizontalalignment", "center"); for i = 1 : length (nonzero_idx) set (th(i), "userdata", userdata(nonzero_idx(i), :)); endfor set (th, "visible", "off"); this.ColumnSummaryAbsoluteValues = l_cs; this.RowSummaryAbsoluteValues = l_rs; endfunction endmethods endclassdef %!demo %! ## Create a simple ConfusionMatrixChart Object %! %! cm = ConfusionMatrixChart (gca, [1 2; 1 2], {"A","B"}, {"XLabel","LABEL A"}) %! NormalizedValues = cm.NormalizedValues %! ClassLabels = cm.ClassLabels ## Test plotting %!test %! hf = figure ("visible", "off"); %! unwind_protect %! cm = ConfusionMatrixChart (gca, [1 2; 1 2], {"A","B"}, {"XLabel","LABEL A"}); %! assert (isa (cm, "ConfusionMatrixChart"), true); %! unwind_protect_cleanup %! close (hf); %! end_unwind_protect statistics-release-1.6.3/inst/Clustering/000077500000000000000000000000001456127120000204235ustar00rootroot00000000000000statistics-release-1.6.3/inst/Clustering/CalinskiHarabaszEvaluation.m000066400000000000000000000227721456127120000260540ustar00rootroot00000000000000## Copyright (C) 2021 Stefano Guidoni ## Copyright (C) 2024 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . classdef CalinskiHarabaszEvaluation < ClusterCriterion ## -*- texinfo -*- ## @deftypefn {statistics} {@var{obj} =} evalclusters (@var{x}, @var{clust}, @qcode{CalinskiHarabasz}) ## @deftypefnx {statistics} {@var{obj} =} evalclusters (@dots{}, @qcode{Name}, @qcode{Value}) ## ## A Calinski-Harabasz object to evaluate clustering solutions. ## ## A @code{CalinskiHarabaszEvaluation} object is a @code{ClusterCriterion} ## object used to evaluate clustering solutions using the Calinski-Harabasz ## criterion. ## ## The Calinski-Harabasz index is based on the ratio between SSb and SSw. ## SSb is the overall variance between clusters, that is the variance of the ## distances between the centroids. ## SSw is the overall variance within clusters, that is the sum of the ## variances of the distances between each datapoint and its centroid. ## ## The best solution according to the Calinski-Harabasz criterion is the one ## that scores the highest value. ## ## @seealso{evalclusters, ClusterCriterion, DaviesBouldinEvaluation, ## GapEvaluation, SilhouetteEvaluation} ## @end deftypefn properties (GetAccess = public, SetAccess = private) endproperties properties (Access = protected) Centroids = {}; # a list of the centroids for every solution endproperties methods (Access = public) ## constructor function this = CalinskiHarabaszEvaluation (x, clust, KList) this@ClusterCriterion(x, clust, KList); this.CriterionName = "CalinskiHarabasz"; this.evaluate(this.InspectedK); # evaluate the list of cluster numbers endfunction ## -*- texinfo -*- ## @deftypefn {CalinskiHarabaszEvaluation} {@var{obj} =} addK (@var{obj}, @var{K}) ## ## Add a new cluster array to inspect the CalinskiHarabaszEvaluation object. ## ## @end deftypefn function this = addK (this, K) addK@ClusterCriterion(this, K); ## if we have new data, we need a new evaluation if (this.OptimalK == 0) Centroids_tmp = {}; pS = 0; # position shift of the elements of Centroids for iter = 1 : length (this.InspectedK) ## reorganize Centroids according to the new list of cluster numbers if (any (this.InspectedK(iter) == K)) pS += 1; else Centroids_tmp{iter} = this.Centroids{iter - pS}; endif endfor this.Centroids = Centroids_tmp; this.evaluate(K); # evaluate just the new cluster numbers endif endfunction ## -*- texinfo -*- ## @deftypefn {CalinskiHarabaszEvaluation} {} plot (@var{obj}) ## @deftypefnx {CalinskiHarabaszEvaluation} {@var{h} =} plot (@var{obj}) ## ## Plot the evaluation results. ## ## Plot the CriterionValues against InspectedK from the ## CalinskiHarabaszEvaluation, @var{obj}, to the current plot. It can also ## return a handle to the current plot. ## ## @end deftypefn function h = plot (this) yLabel = sprintf ("%s value", this.CriterionName); h = gca (); hold on; plot (this.InspectedK, this.CriterionValues, "bo-"); plot (this.OptimalK, this.CriterionValues(this.OptimalIndex), "b*"); xlabel ("number of clusters"); ylabel (yLabel); hold off; endfunction ## -*- texinfo -*- ## @deftypefn {CalinskiHarabaszEvaluation} {@var{obj} =} compact (@var{obj}) ## ## Return a compact CalinskiHarabaszEvaluation object (not implemented yet). ## ## @end deftypefn function this = compact (this) warning (["CalinskiHarabaszEvaluation.compact: this"... " method is not yet implemented."]); endfunction endmethods methods (Access = protected) ## evaluate ## do the evaluation function this = evaluate (this, K) ## use complete observations only UsableX = this.X(find (this.Missing == false), :); if (! isempty (this.ClusteringFunction)) ## build the clusters for iter = 1 : length (this.InspectedK) ## do it only for the specified K values if (any (this.InspectedK(iter) == K)) if (isa (this.ClusteringFunction, "function_handle")) ## custom function ClusteringSolution = ... this.ClusteringFunction(UsableX, this.InspectedK(iter)); if (ismatrix (ClusteringSolution) && ... rows (ClusteringSolution) == this.NumObservations && ... columns (ClusteringSolution) == this.P) ## the custom function returned a matrix: ## we take the index of the maximum value for every row [~, this.ClusteringSolutions(:, iter)] = ... max (ClusteringSolution, [], 2); elseif (iscolumn (ClusteringSolution) && length (ClusteringSolution) == this.NumObservations) this.ClusteringSolutions(:, iter) = ClusteringSolution; elseif (isrow (ClusteringSolution) && length (ClusteringSolution) == this.NumObservations) this.ClusteringSolutions(:, iter) = ClusteringSolution'; else error (["CalinskiHarabaszEvaluation: invalid return value "... "from custom clustering function"]); endif this.ClusteringSolutions(:, iter) = ... this.ClusteringFunction(UsableX, this.InspectedK(iter)); else switch (this.ClusteringFunction) case "kmeans" [this.ClusteringSolutions(:, iter), this.Centroids{iter}] =... kmeans (UsableX, this.InspectedK(iter), ... "Distance", "sqeuclidean", "EmptyAction", "singleton", ... "Replicates", 5); case "linkage" ## use clusterdata this.ClusteringSolutions(:, iter) = clusterdata (UsableX, ... "MaxClust", this.InspectedK(iter), ... "Distance", "euclidean", "Linkage", "ward"); this.Centroids{iter} = this.computeCentroids (UsableX, iter); case "gmdistribution" gmm = fitgmdist (UsableX, this.InspectedK(iter), ... "SharedCov", true, "Replicates", 5); this.ClusteringSolutions(:, iter) = cluster (gmm, UsableX); this.Centroids{iter} = gmm.mu; otherwise error (["CalinskiHarabaszEvaluation: unexpected error, " ... "report this bug"]); endswitch endif endif endfor endif ## get the criterion values for every clustering solution for iter = 1 : length (this.InspectedK) ## do it only for the specified K values if (any (this.InspectedK(iter) == K)) ## not defined for one cluster if (this.InspectedK(iter) == 1) this.CriterionValues(iter) = NaN; continue; endif ## CaliÅ„ski-Harabasz index ## reference: calinhara function from the fpc package of R, ## by Christian Hennig ## https://CRAN.R-project.org/package=fpc W = zeros (columns (UsableX)); # between clusters covariance for i = 1 : this.InspectedK(iter) vIndicesI = find (this.ClusteringSolutions(:, iter) == i); ni = length (vIndicesI); # size of cluster i if (ni == 1) ## if the cluster has just one member the covariance is zero continue; endif ## weighted update of the covariance matrix W += cov (UsableX(vIndicesI, :)) * (ni - 1); endfor S = (this.NumObservations - 1) * cov (UsableX); # within clusters cov. B = S - W; # between clusters means ## tr(B) / tr(W) * (N-k) / (k-1) this.CriterionValues(iter) = (this.NumObservations - ... this.InspectedK(iter)) * trace (B) / ... ((this.InspectedK(iter) - 1) * trace (W)); endif endfor [~, this.OptimalIndex] = max (this.CriterionValues); this.OptimalK = this.InspectedK(this.OptimalIndex(1)); this.OptimalY = this.ClusteringSolutions(:, this.OptimalIndex(1)); endfunction endmethods methods (Access = private) ## computeCentroids ## compute the centroids if they are not available by other means function C = computeCentroids (this, X, index) C = zeros (this.InspectedK(index), columns (X)); for iter = 1 : this.InspectedK(index) vIndicesI = find (this.ClusteringSolutions(:, index) == iter); C(iter, :) = mean (X(vIndicesI, :)); endfor endfunction endmethods endclassdef statistics-release-1.6.3/inst/Clustering/ClusterCriterion.m000066400000000000000000000202151456127120000241010ustar00rootroot00000000000000## Copyright (C) 2021 Stefano Guidoni ## Copyright (C) 2024 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . classdef ClusterCriterion < handle ## -*- texinfo -*- ## @deftypefn {statistics} {@var{obj} =} ClusterCriterion (@var{x}, @var{clust}, @var{criterion}) ## ## A clustering evaluation object as created by @code{evalclusters}. ## ## @code{ClusterCriterion} is a superclass for clustering evaluation objects ## as created by @code{evalclusters}. ## ## List of public properties: ## @table @code ## @item @qcode{ClusteringFunction} ## a valid clustering funtion name or function handle. It can be empty if ## the clustering solutions are passed as an input matric. ## ## @item @qcode{CriterionName} ## a valid criterion name to evaluate the clustering solutions. ## ## @item @qcode{CriterionValues} ## a vector of values as generated by the evaluation criterion for each ## clustering solution. ## ## @item @qcode{InspectedK} ## the list of proposed cluster numbers. ## ## @item @qcode{Missing} ## a logical vector of missing observations. When there are @code{NaN} ## values in the data matrix, the corresponding observation is excluded. ## ## @item @qcode{NumObservations} ## the number of non-missing observations in the data matrix. ## ## @item @qcode{OptimalK} ## the optimal number of clusters. ## ## @item @qcode{OptimalY} ## the clustering solution corresponding to @code{OptimalK}. ## ## @item @qcode{X} ## the data matrix. ## ## @end table ## ## List of public methods: ## @table @code ## @item @qcode{addK} ## add a list of numbers of clusters to evaluate. ## ## @item @qcode{compact} ## return a compact clustering evaluation object. Not implemented ## ## @item @qcode{plot} ## plot the clustering evaluation values against the corresponding number of ## clusters. ## ## @end table ## ## @seealso{evalclusters, CalinskiHarabaszEvaluation, DaviesBouldinEvaluation, ## GapEvaluation, SilhouetteEvaluation} ## @end deftypefn properties (Access = public) ## public properties endproperties properties (GetAccess = public, SetAccess = protected) ClusteringFunction = ""; CriterionName = ""; CriterionValues = []; InspectedK = []; Missing = []; NumObservations = 0; OptimalK = 0; OptimalY = []; X = []; endproperties properties (Access = protected) N = 0; # number of observations P = 0; # number of variables ClusteringSolutions = []; # OptimalIndex = 0; # index of the optimal K endproperties methods (Access = public) ## constructor function this = ClusterCriterion (x, clust, KList) ## parsing input data if ((! ismatrix (x)) || (! isnumeric (x))) error ("ClusterCriterion: 'x' must be a numeric matrix"); endif this.X = x; this.N = rows (this.X); this.P = columns (this.X); ## look for missing values for iter = 1 : this.N if (any (find (x(iter, :) == NaN))) this.Missing(iter) = true; else this.Missing(iter) = false; endif endfor ## number of usable observations this.NumObservations = sum (this.Missing == false); ## parsing the clustering algorithm if (ischar (clust)) if (any (strcmpi (clust, {"kmeans", "linkage", "gmdistribution"}))) this.ClusteringFunction = lower (clust); else error ("ClusterCriterion: unknown clustering algorithm '%s'", clust); endif elseif (isa (clust, "function_handle")) this.ClusteringFunction = clust; elseif (ismatrix (clust)) if (isnumeric (clust) && (length (size (clust)) == 2) && ... (rows (clust) == this.N)) this.ClusteringFunction = ""; this.ClusteringSolutions = clust(find (this.Missing == false), :); else error ("ClusterCriterion: invalid matrix of clustering solutions"); endif else error ("ClusterCriterion: invalid argument"); endif ## parsing the list of cluster sizes to inspect this.InspectedK = parseKList (this, KList); endfunction ## -*- texinfo -*- ## @deftypefn {ClusterCriterion} {@var{obj} =} addK (@var{obj}, @var{K}) ## ## Add a new cluster array to inspect the ClusterCriterion object. ## ## @end deftypefn function this = addK (this, k) ## if there is not a clustering function, then we are using a predefined ## set of clustering solutions, hence we cannot redefine the number of ## solutions if (isempty (this.ClusteringFunction)) warning (["ClusterCriterion.addK: cannot redefine the list of cluster"... "numbers to evaluate when there is not a clustering function"]); return; endif ## otherwise go on newList = this.parseKList ([this.InspectedK k]); ## check if the list has changed if (length (newList) == length (this.InspectedK)) warning ("ClusterCriterion.addK: the list has not changed"); else ## update ClusteringSolutions and CriterionValues ClusteringSolutions_tmp = zeros (this.NumObservations, ... length (newList)); CriterionValues_tmp = zeros (length (newList), 1); for iter = 1 : length (this.InspectedK) idx = find (newList == this.InspectedK(iter)); if (! isempty (idx)) ClusteringSolutions_tmp(:, idx) = this.ClusteringSolutions(:, iter); CriterionValues_tmp(idx) = this.CriterionValues(iter); endif endfor this.ClusteringSolutions = ClusteringSolutions_tmp; this.CriterionValues = CriterionValues_tmp; ## reset the old results this.OptimalK = 0; this.OptimalY = []; this.OptimalIndex = 0; ## update the list of cluster numbers to evaluate this.InspectedK = newList; endif endfunction ## -*- texinfo -*- ## @deftypefn {ClusterCriterion} {} plot (@var{obj}) ## @deftypefnx {ClusterCriterion} {@var{h} =} plot (@var{obj}) ## ## Plot the evaluation results. ## ## Plot the CriterionValues against InspectedK from the ClusterCriterion, ## @var{obj}, to the current plot. It can also return a handle to the ## current plot. ## ## @end deftypefn function h = plot (this) yLabel = sprintf ("%s value", this.CriterionName); h = gca (); hold on; plot (this.InspectedK, this.CriterionValues, "bo-"); plot (this.OptimalK, this.CriterionValues(this.OptimalIndex), "b*"); xlabel ("number of clusters"); ylabel (yLabel); hold off; endfunction ## -*- texinfo -*- ## @deftypefn {ClusterCriterion} {@var{obj} =} compact (@var{obj}) ## ## Return a compact ClusterCriterion object (not implemented yet). ## ## @end deftypefn function this = compact (this) warning ("ClusterCriterion.compact: this method is not yet implemented."); endfunction endmethods methods (Access = private) ## check if a list of cluster sizes is correct function retList = parseKList (this, KList) if (isnumeric (KList) && isvector (KList) && all (find (KList > 0)) && ... all (floor (KList) == KList)) retList = unique (KList); else error (["ClusterCriterion: the list of cluster sizes must be an " ... "array of positive integer numbers"]); endif endfunction endmethods endclassdef statistics-release-1.6.3/inst/Clustering/DaviesBouldinEvaluation.m000066400000000000000000000230521456127120000253630ustar00rootroot00000000000000## Copyright (C) 2021 Stefano Guidoni ## Copyright (C) 2024 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . classdef DaviesBouldinEvaluation < ClusterCriterion ## -*- texinfo -*- ## @deftypefn {Function File} {@var{obj} =} evalclusters (@var{x}, @var{clust}, @qcode{DaviesBouldin}) ## @deftypefnx {Function File} {@var{obj} =} evalclusters (@dots{}, @qcode{Name}, @qcode{Value}) ## ## A Davies-Bouldin object to evaluate clustering solutions. ## ## A @code{DaviesBouldinEvaluation} object is a @code{ClusterCriterion} ## object used to evaluate clustering solutions using the Davies-Bouldin ## criterion. ## ## The Davies-Bouldin criterion is based on the ratio between the distances ## between clusters and within clusters, that is the distances between the ## centroids and the distances between each datapoint and its centroid. ## ## The best solution according to the Davies-Bouldin criterion is the one ## that scores the lowest value. ## ## @seealso{evalclusters, ClusterCriterion, CalinskiHarabaszEvaluation, ## GapEvaluation, SilhouetteEvaluation} ## @end deftypefn properties (GetAccess = public, SetAccess = private) endproperties properties (Access = protected) Centroids = {}; # a list of the centroids for every solution endproperties methods (Access = public) ## constructor function this = DaviesBouldinEvaluation (x, clust, KList) this@ClusterCriterion(x, clust, KList); this.CriterionName = "DaviesBouldin"; this.evaluate(this.InspectedK); # evaluate the list of cluster numbers endfunction ## -*- texinfo -*- ## @deftypefn {DaviesBouldinEvaluation} {@var{obj} =} addK (@var{obj}, @var{K}) ## ## Add a new cluster array to inspect the DaviesBouldinEvaluation object. ## ## @end deftypefn function this = addK (this, K) addK@ClusterCriterion(this, K); ## if we have new data, we need a new evaluation if (this.OptimalK == 0) Centroids_tmp = {}; pS = 0; # position shift of the elements of Centroids for iter = 1 : length (this.InspectedK) ## reorganize Centroids according to the new list of cluster numbers if (any (this.InspectedK(iter) == K)) pS += 1; else Centroids_tmp{iter} = this.Centroids{iter - pS}; endif endfor this.Centroids = Centroids_tmp; this.evaluate(K); # evaluate just the new cluster numbers endif endfunction ## -*- texinfo -*- ## @deftypefn {DaviesBouldinEvaluation} {} plot (@var{obj}) ## @deftypefnx {DaviesBouldinEvaluation} {@var{h} =} plot (@var{obj}) ## ## Plot the evaluation results. ## ## Plot the CriterionValues against InspectedK from the ## DaviesBouldinEvaluation ClusterCriterion, @var{obj}, to the current plot. ## It can also return a handle to the current plot. ## ## @end deftypefn function h = plot (this) yLabel = sprintf ("%s value", this.CriterionName); h = gca (); hold on; plot (this.InspectedK, this.CriterionValues, "bo-"); plot (this.OptimalK, this.CriterionValues(this.OptimalIndex), "b*"); xlabel ("number of clusters"); ylabel (yLabel); hold off; endfunction ## -*- texinfo -*- ## @deftypefn {DaviesBouldinEvaluation} {@var{obj} =} compact (@var{obj}) ## ## Return a compact DaviesBouldinEvaluation object (not implemented yet). ## ## @end deftypefn function this = compact (this) warning (["DaviesBouldinEvaluation.compact: this"... " method is not yet implemented."]); endfunction endmethods methods (Access = protected) ## evaluate ## do the evaluation function this = evaluate (this, K) ## use complete observations only UsableX = this.X(find (this.Missing == false), :); if (! isempty (this.ClusteringFunction)) ## build the clusters for iter = 1 : length (this.InspectedK) ## do it only for the specified K values if (any (this.InspectedK(iter) == K)) if (isa (this.ClusteringFunction, "function_handle")) ## custom function ClusteringSolution = ... this.ClusteringFunction(UsableX, this.InspectedK(iter)); if (ismatrix (ClusteringSolution) && ... rows (ClusteringSolution) == this.NumObservations && ... columns (ClusteringSolution) == this.P) ## the custom function returned a matrix: ## we take the index of the maximum value for every row [~, this.ClusteringSolutions(:, iter)] = ... max (ClusteringSolution, [], 2); elseif (iscolumn (ClusteringSolution) && length (ClusteringSolution) == this.NumObservations) this.ClusteringSolutions(:, iter) = ClusteringSolution; elseif (isrow (ClusteringSolution) && length (ClusteringSolution) == this.NumObservations) this.ClusteringSolutions(:, iter) = ClusteringSolution'; else error (["DaviesBouldinEvaluation: invalid return value "... "from custom clustering function"]); endif this.ClusteringSolutions(:, iter) = ... this.ClusteringFunction(UsableX, this.InspectedK(iter)); else switch (this.ClusteringFunction) case "kmeans" [this.ClusteringSolutions(:, iter), this.Centroids{iter}] =... kmeans (UsableX, this.InspectedK(iter), ... "Distance", "sqeuclidean", "EmptyAction", "singleton", ... "Replicates", 5); case "linkage" ## use clusterdata this.ClusteringSolutions(:, iter) = clusterdata (UsableX, ... "MaxClust", this.InspectedK(iter), ... "Distance", "euclidean", "Linkage", "ward"); this.Centroids{iter} = this.computeCentroids (UsableX, iter); case "gmdistribution" gmm = fitgmdist (UsableX, this.InspectedK(iter), ... "SharedCov", true, "Replicates", 5); this.ClusteringSolutions(:, iter) = cluster (gmm, UsableX); this.Centroids{iter} = gmm.mu; otherwise error (["DaviesBouldinEvaluation: unexpected error, " ... "report this bug"]); endswitch endif endif endfor endif ## get the criterion values for every clustering solution for iter = 1 : length (this.InspectedK) ## do it only for the specified K values if (any (this.InspectedK(iter) == K)) ## not defined for one cluster if (this.InspectedK(iter) == 1) this.CriterionValues(iter) = NaN; continue; endif ## Davies-Bouldin value ## an evaluation of the ratio between within-cluster and ## between-cluster distances ## mean distances between cluster members and their centroid vD = zeros (this.InspectedK(iter), 1); for i = 1 : this.InspectedK(iter) vIndicesI = find (this.ClusteringSolutions(:, iter) == i); vD(i) = mean (vecnorm (UsableX(vIndicesI, :) - ... this.Centroids{iter}(i, :), 2, 2)); endfor ## within-to-between cluster distance ratio Dij = zeros (this.InspectedK(iter)); for i = 1 : (this.InspectedK(iter) - 1) for j = (i + 1) : this.InspectedK(iter) ## centroid to centroid distance dij = vecnorm (this.Centroids{iter}(i, :) - ... this.Centroids{iter}(j, :)); ## within-to-between cluster distance ratio for clusters i and j Dij(i, j) = (vD(i) + vD(j)) / dij; endfor endfor ## ( max_j D1j + max_j D2j + ... + max_j Dkj) / k this.CriterionValues(iter) = sum (max (Dij(i, :), [], 2)) / ... this.InspectedK(iter); endif endfor [~, this.OptimalIndex] = min (this.CriterionValues); this.OptimalK = this.InspectedK(this.OptimalIndex(1)); this.OptimalY = this.ClusteringSolutions(:, this.OptimalIndex(1)); endfunction endmethods methods (Access = private) ## computeCentroids ## compute the centroids if they are not available by other means function C = computeCentroids (this, X, index) C = zeros (this.InspectedK(index), columns (X)); for iter = 1 : this.InspectedK(index) vIndicesI = find (this.ClusteringSolutions(:, index) == iter); C(iter, :) = mean (X(vIndicesI, :)); endfor endfunction endmethods endclassdef statistics-release-1.6.3/inst/Clustering/GapEvaluation.m000066400000000000000000000365141456127120000233510ustar00rootroot00000000000000## Copyright (C) 2021 Stefano Guidoni ## Copyright (C) 2024 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . classdef GapEvaluation < ClusterCriterion ## -*- texinfo -*- ## @deftypefn {statistics} {@var{obj} =} evalclusters (@var{x}, @var{clust}, @qcode{gap}) ## @deftypefnx {statistics} {@var{obj} =} evalclusters (@dots{}, @qcode{Name}, @qcode{Value}) ## ## A gap object to evaluate clustering solutions. ## ## A @code{GapEvaluation} object is a @code{ClusterCriterion} ## object used to evaluate clustering solutions using the gap criterion, ## which is a mathematical formalization of the elbow method. ## ## List of public properties specific to @code{SilhouetteEvaluation}: ## @table @code ## @item @qcode{B} ## the number of reference datasets to generate. ## ## @item @qcode{Distance} ## a valid distance metric name, or a function handle as accepted by the ## @code{pdist} function. ## ## @item @qcode{ExpectedLogW} ## a vector of the expected values for the logarithm of the within clusters ## dispersion. ## ## @item @qcode{LogW} ## a vector of the values of the logarithm of the within clusters dispersion. ## ## @item @qcode{ReferenceDistribution} ## a valid name for the reference distribution, namely: @code{PCA} (default) ## or @code{uniform}. ## ## @item @qcode{SE} ## a vector of the standard error of the expected values for the logarithm ## of the within clusters dispersion. ## ## @item @qcode{SearchMethod} ## a valid name for the search method to use: @code{globalMaxSE} (default) or ## @code{firstMaxSE}. ## ## @item @qcode{StdLogW} ## a vector of the standard deviation of the expected values for the logarithm ## of the within clusters dispersion. ## @end table ## ## The best solution according to the gap criterion depends on the chosen ## search method. When the search method is @code{globalMaxSE}, the chosen ## gap value is the smaller one which is inside a standard error from the ## max gap value; when the search method is @code{firstMaxSE}, the chosen ## gap value is the first one which is inside a standard error from the next ## gap value. ## ## @seealso{evalclusters, ClusterCriterion, CalinskiHarabaszEvaluation, ## DaviesBouldinEvaluation, SilhouetteEvaluation} ## @end deftypefn properties (GetAccess = public, SetAccess = private) B = 0; # number of reference datasets Distance = ""; # pdist parameter ReferenceDistribution = ""; # distribution to use as reference SearchMethod = ""; # the method do identify the optimal number of clusters ExpectedLogW = []; # expected value for the natural logarithm of W LogW = []; # natural logarithm of W SE = []; # standard error for the natural logarithm of W StdLogW = []; # standard deviation of the natural logarithm of W endproperties properties (Access = protected) DistanceVector = []; # vector of pdist distances mExpectedLogW = []; # the result of the Monte-Carlo simulations endproperties methods (Access = public) ## constructor function this = GapEvaluation (x, clust, KList, b = 100, ... distanceMetric = "sqeuclidean", ... referenceDistribution = "pca", searchMethod = "globalmaxse") this@ClusterCriterion(x, clust, KList); ## parsing the distance criterion if (ischar (distanceMetric)) if (any (strcmpi (distanceMetric, {"sqeuclidean", "euclidean", ... "cityblock", "cosine", "correlation", "hamming", "jaccard"}))) this.Distance = lower (distanceMetric); ## kmeans can use only a subset if (strcmpi (clust, "kmeans") && any (strcmpi (this.Distance, ... {"euclidean", "jaccard"}))) error (["GapEvaluation: invalid distance criterion '%s' "... "for 'kmeans'"], distanceMetric); endif else error ("GapEvaluation: unknown distance criterion '%s'", ... distanceMetric); endif elseif (isa (distanceMetric, "function_handle")) this.Distance = distanceMetric; ## kmeans cannot use a function handle if (strcmpi (clust, "kmeans")) error ("GapEvaluation: invalid distance criterion for 'kmeans'"); endif elseif (isvector (distanceMetric) && isnumeric (distanceMetric)) this.Distance = ""; this.DistanceVector = distanceMetric; # the validity check is delegated ## kmeans cannot use a distance vector if (strcmpi (clust, "kmeans")) error (["GapEvaluation: invalid distance criterion for "... "'kmeans'"]); endif else error ("GapEvaluation: invalid distance metric"); endif ## B: number of Monte-Carlo iterations if (! isnumeric (b) || ! isscalar (b) || b != floor (b) || b < 1) error ("GapEvaluation: b must a be positive integer number"); endif this.B = b; ## reference distribution if (! ischar (referenceDistribution) || ! any (strcmpi ... (referenceDistribution, {"pca", "uniform"}))) error (["GapEvaluation: the reference distribution must be either" ... "'PCA' or 'uniform'"]); elseif (strcmpi (referenceDistribution, "pca")) warning (["GapEvaluation: 'PCA' distribution not implemented, " ... "using 'uniform'"]); endif this.ReferenceDistribution = lower (referenceDistribution); if (! ischar (searchMethod) || ! any (strcmpi (searchMethod, ... {"globalmaxse", "firstmaxse"}))) error (["evalclusters: the search method must be either" ... "'globalMaxSE' or 'firstMaxSE'"]); endif this.SearchMethod = lower (searchMethod); ## a matrix to store the results from the Monte-Carlo runs this.mExpectedLogW = zeros (this.B, length (this.InspectedK)); this.CriterionName = "gap"; this.evaluate(this.InspectedK); # evaluate the list of cluster numbers endfunction ## -*- texinfo -*- ## @deftypefn {GapEvaluation} {@var{obj} =} addK (@var{obj}, @var{K}) ## ## Add a new cluster array to inspect the GapEvaluation object. ## ## @end deftypefn function this = addK (this, K) addK@ClusterCriterion(this, K); ## if we have new data, we need a new evaluation if (this.OptimalK == 0) mExpectedLogW_tmp = zeros (this.B, length (this.InspectedK)); pS = 0; # position shift for iter = 1 : length (this.InspectedK) ## reorganize all the arrays according to the new list ## of cluster numbers if (any (this.InspectedK(iter) == K)) pS += 1; else mExpectedLogW_tmp(:, iter) = this.mExpectedLogW(:, iter - pS); endif endfor this.mExpectedLogW = mExpectedLogW_tmp; this.evaluate(K); # evaluate just the new cluster numbers endif endfunction ## -*- texinfo -*- ## @deftypefn {ClusterCriterion} {} plot (@var{obj}) ## @deftypefnx {ClusterCriterion} {@var{h} =} plot (@var{obj}) ## ## Plot the evaluation results. ## ## Plot the CriterionValues against InspectedK from the GapEvaluation ## ClusterCriterion, @var{obj}, and show the standard deviation to the ## current plot. It can also return a handle to the current plot. ## ## @end deftypefn function h = plot (this) yLabel = sprintf ("%s value", this.CriterionName); h = gca (); hold on; errorbar (this.InspectedK, this.CriterionValues, this.StdLogW); plot (this.InspectedK, this.CriterionValues, "bo"); plot (this.OptimalK, this.CriterionValues(this.OptimalIndex), "b*"); xlabel ("number of clusters"); ylabel (yLabel); hold off; endfunction ## -*- texinfo -*- ## @deftypefn {GapEvaluation} {@var{obj} =} compact (@var{obj}) ## ## Return a compact GapEvaluation object (not implemented yet). ## ## @end deftypefn function this = compact (this) warning ("GapEvaluation.compact: this method is not yet implemented."); endfunction endmethods methods (Access = protected) ## evaluate ## do the evaluation function this = evaluate (this, K) ## Monte-Carlo runs for mcrun = 1 : (this.B + 1) ## use complete observations only UsableX = this.X(find (this.Missing == false), :); ## the last run use tha actual data, ## the others are Monte-Carlo runs with reconstructed data if (mcrun <= this.B) ## uniform distribution colMins = min (UsableX); colMaxs = max (UsableX); for col = 1 : columns (UsableX) UsableX(:, col) = colMins(col) + rand (this.NumObservations, 1) *... (colMaxs(col) - colMins(col)); endfor endif if (! isempty (this.ClusteringFunction)) ## build the clusters for iter = 1 : length (this.InspectedK) ## do it only for the specified K values if (any (this.InspectedK(iter) == K)) if (isa (this.ClusteringFunction, "function_handle")) ## custom function ClusteringSolution = ... this.ClusteringFunction(UsableX, this.InspectedK(iter)); if (ismatrix (ClusteringSolution) && ... rows (ClusteringSolution) == this.NumObservations && ... columns (ClusteringSolution) == this.P) ## the custom function returned a matrix: ## we take the index of the maximum value for every row [~, this.ClusteringSolutions(:, iter)] = ... max (ClusteringSolution, [], 2); elseif (iscolumn (ClusteringSolution) && length (ClusteringSolution) == this.NumObservations) this.ClusteringSolutions(:, iter) = ClusteringSolution; elseif (isrow (ClusteringSolution) && length (ClusteringSolution) == this.NumObservations) this.ClusteringSolutions(:, iter) = ClusteringSolution'; else error (["GapEvaluation: invalid return value from " ... "custom clustering function"]); endif this.ClusteringSolutions(:, iter) = ... this.ClusteringFunction(UsableX, this.InspectedK(iter)); else switch (this.ClusteringFunction) case "kmeans" this.ClusteringSolutions(:, iter) = kmeans (UsableX, ... this.InspectedK(iter), "Distance", this.Distance, ... "EmptyAction", "singleton", "Replicates", 5); case "linkage" if (! isempty (this.Distance)) ## use clusterdata Distance_tmp = this.Distance; LinkageMethod = "average"; # for non euclidean methods if (strcmpi (this.Distance, "sqeuclidean")) ## pdist uses different names for its algorithms Distance_tmp = "squaredeuclidean"; LinkageMethod = "ward"; elseif (strcmpi (this.Distance, "euclidean")) LinkageMethod = "ward"; endif this.ClusteringSolutions(:, iter) = clusterdata ... (UsableX, "MaxClust", this.InspectedK(iter), ... "Distance", Distance_tmp, "Linkage", LinkageMethod); else ## use linkage Z = linkage (this.DistanceVector, "average"); this.ClusteringSolutions(:, iter) = ... cluster (Z, "MaxClust", this.InspectedK(iter)); endif case "gmdistribution" gmm = fitgmdist (UsableX, this.InspectedK(iter), ... "SharedCov", true, "Replicates", 5); this.ClusteringSolutions(:, iter) = cluster (gmm, UsableX); otherwise ## this should not happen error (["GapEvaluation: unexpected error, " ... "report this bug"]); endswitch endif endif endfor endif ## get the gap values for every clustering distance_pdist = this.Distance; if (strcmpi (distance_pdist, "sqeuclidean")) distance_pdist = "squaredeuclidean"; endif ## compute LogW for iter = 1 : length (this.InspectedK) ## do it only for the specified K values if (any (this.InspectedK(iter) == K)) wk = 0; for r = 1 : this.InspectedK(iter) vIndicesR = find (this.ClusteringSolutions(:, iter) == r); nr = length (vIndicesR); Dr = pdist (UsableX(vIndicesR, :), distance_pdist); wk += sum (Dr) / (2 * nr); endfor if (mcrun <= this.B) this.mExpectedLogW(mcrun, iter) = log (wk); else this.LogW(iter) = log (wk); endif endif endfor endfor this.ExpectedLogW = mean (this.mExpectedLogW); this.SE = sqrt ((1 + 1 / this.B) * sumsq (this.mExpectedLogW - ... this.ExpectedLogW) / this.B); this.StdLogW = std (this.mExpectedLogW); this.CriterionValues = this.ExpectedLogW - this.LogW; this.OptimalIndex = this.gapSearch (); this.OptimalK = this.InspectedK(this.OptimalIndex(1)); this.OptimalY = this.ClusteringSolutions(:, this.OptimalIndex(1)); endfunction ## gapSearch ## find the best solution according to the gap method function ind = gapSearch (this) if (strcmpi (this.SearchMethod, "globalmaxse")) [gapmax, indgp] = max (this.CriterionValues); for iter = 1 : length (this.InspectedK) ind = iter; if (this.CriterionValues(iter) > (gapmax - this.SE(indgp))) return endif endfor elseif (strcmpi (this.SearchMethod, "firstmaxse")) for iter = 1 : (length (this.InspectedK) - 1) ind = iter; if (this.CriterionValues(iter) > (this.CriterionValues(iter + 1) - ... this.SE(iter + 1))) return endif endfor else ## this should not happen error (["GapEvaluation: unexpected error, please report this bug"]); endif endfunction endmethods endclassdef statistics-release-1.6.3/inst/Clustering/SilhouetteEvaluation.m000066400000000000000000000274131456127120000247650ustar00rootroot00000000000000## Copyright (C) 2021 Stefano Guidoni ## Copyright (C) 2024 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . classdef SilhouetteEvaluation < ClusterCriterion ## -*- texinfo -*- ## @deftypefn {Function File} {@var{obj} =} evalclusters (@var{x}, @var{clust}, @qcode{silhouette}) ## @deftypefnx {Function File} {@var{obj} =} evalclusters (@dots{}, @qcode{Name}, @qcode{Value}) ## ## A silhouette object to evaluate clustering solutions. ## ## A @code{SilhouetteEvaluation} object is a @code{ClusterCriterion} ## object used to evaluate clustering solutions using the silhouette ## criterion. ## ## List of public properties specific to @code{SilhouetteEvaluation}: ## @table @code ## @item @qcode{Distance} ## a valid distance metric name, or a function handle or a numeric array as ## generated by the @code{pdist} function. ## ## @item @qcode{ClusterPriors} ## a valid name for the evaluation of silhouette values: @code{empirical} ## (default) or @code{equal}. ## ## @item @qcode{ClusterSilhouettes} ## a cell array with the silhouette values of each data point for each cluster ## number. ## ## @end table ## ## The best solution according to the silhouette criterion is the one ## that scores the highest average silhouette value. ## ## @seealso{evalclusters, ClusterCriterion, CalinskiHarabaszEvaluation, ## DaviesBouldinEvaluation, GapEvaluation} ## @end deftypefn properties (GetAccess = public, SetAccess = private) Distance = ""; # pdist parameter ClusterPriors = ""; # evaluation of silhouette values: equal or empirical ClusterSilhouettes = {}; # results of the silhoutte function for each K endproperties properties (Access = protected) DistanceVector = []; # vector of pdist distances endproperties methods (Access = public) ## constructor function this = SilhouetteEvaluation (x, clust, KList, ... distanceMetric = "sqeuclidean", clusterPriors = "empirical") this@ClusterCriterion(x, clust, KList); ## parsing the distance criterion if (ischar (distanceMetric)) if (any (strcmpi (distanceMetric, {"sqeuclidean", ... "euclidean", "cityblock", "cosine", "correlation", ... "hamming", "jaccard"}))) this.Distance = lower (distanceMetric); ## kmeans can use only a subset if (strcmpi (clust, "kmeans") && any (strcmpi (this.Distance, ... {"euclidean", "jaccard"}))) error (["SilhouetteEvaluation: invalid distance criterion '%s' "... "for 'kmeans'"], distanceMetric); endif else error ("SilhouetteEvaluation: unknown distance criterion '%s'", ... distanceMetric); endif elseif (isa (distanceMetric, "function_handle")) this.Distance = distanceMetric; ## kmeans cannot use a function handle if (strcmpi (clust, "kmeans")) error (["SilhouetteEvaluation: invalid distance criterion for "... "'kmeans'"]); endif elseif (isvector (distanceMetric) && isnumeric (distanceMetric)) this.Distance = ""; this.DistanceVector = distanceMetric; # the validity check is delegated ## kmeans cannot use a distance vector if (strcmpi (clust, "kmeans")) error (["SilhouetteEvaluation: invalid distance criterion for "... "'kmeans'"]); endif else error ("SilhouetteEvaluation: invalid distance metric"); endif ## parsing the prior probabilities of each cluster if (ischar (distanceMetric)) if (any (strcmpi (clusterPriors, {"empirical", "equal"}))) this.ClusterPriors = lower (clusterPriors); else error (["SilhouetteEvaluation: unknown prior probability criterion"... " '%s'"], clusterPriors); endif else error ("SilhouetteEvaluation: invalid prior probabilities"); endif this.CriterionName = "silhouette"; this.evaluate(this.InspectedK); # evaluate the list of cluster numbers endfunction ## -*- texinfo -*- ## @deftypefn {SilhouetteEvaluation} {@var{obj} =} addK (@var{obj}, @var{K}) ## ## Add a new cluster array to inspect the SilhouetteEvaluation object. ## ## @end deftypefn function this = addK (this, K) addK@ClusterCriterion(this, K); ## if we have new data, we need a new evaluation if (this.OptimalK == 0) ClusterSilhouettes_tmp = {}; pS = 0; # position shift of the elements of ClusterSilhouettes for iter = 1 : length (this.InspectedK) ## reorganize ClusterSilhouettes according to the new list ## of cluster numbers if (any (this.InspectedK(iter) == K)) pS += 1; else ClusterSilhouettes_tmp{iter} = this.ClusterSilhouettes{iter - pS}; endif endfor this.ClusterSilhouettes = ClusterSilhouettes_tmp; this.evaluate(K); # evaluate just the new cluster numbers endif endfunction ## -*- texinfo -*- ## @deftypefn {SilhouetteEvaluation} {} plot (@var{obj}) ## @deftypefnx {SilhouetteEvaluation} {@var{h} =} plot (@var{obj}) ## ## Plot the evaluation results. ## ## Plot the CriterionValues against InspectedK from the ## SilhouetteEvaluation ClusterCriterion, @var{obj}, to the current plot. ## It can also return a handle to the current plot. ## ## @end deftypefn function h = plot (this) yLabel = sprintf ("%s value", this.CriterionName); h = gca (); hold on; plot (this.InspectedK, this.CriterionValues, "bo-"); plot (this.OptimalK, this.CriterionValues(this.OptimalIndex), "b*"); xlabel ("number of clusters"); ylabel (yLabel); hold off; endfunction ## -*- texinfo -*- ## @deftypefn {SilhouetteEvaluation} {@var{obj} =} compact (@var{obj}) ## ## Return a compact SilhouetteEvaluation object (not implemented yet). ## ## @end deftypefn function this = compact (this) warning (["SilhouetteEvaluation.compact: this"... " method is not yet implemented."]); endfunction endmethods methods (Access = protected) ## evaluate ## do the evaluation function this = evaluate (this, K) ## use complete observations only UsableX = this.X(find (this.Missing == false), :); if (! isempty (this.ClusteringFunction)) ## build the clusters for iter = 1 : length (this.InspectedK) ## do it only for the specified K values if (any (this.InspectedK(iter) == K)) if (isa (this.ClusteringFunction, "function_handle")) ## custom function ClusteringSolution = ... this.ClusteringFunction(UsableX, this.InspectedK(iter)); if (ismatrix (ClusteringSolution) && ... rows (ClusteringSolution) == this.NumObservations && ... columns (ClusteringSolution) == this.P) ## the custom function returned a matrix: ## we take the index of the maximum value for every row [~, this.ClusteringSolutions(:, iter)] = ... max (ClusteringSolution, [], 2); elseif (iscolumn (ClusteringSolution) && length (ClusteringSolution) == this.NumObservations) this.ClusteringSolutions(:, iter) = ClusteringSolution; elseif (isrow (ClusteringSolution) && length (ClusteringSolution) == this.NumObservations) this.ClusteringSolutions(:, iter) = ClusteringSolution'; else error (["SilhouetteEvaluation: invalid return value from " ... "custom clustering function"]); endif this.ClusteringSolutions(:, iter) = ... this.ClusteringFunction(UsableX, this.InspectedK(iter)); else switch (this.ClusteringFunction) case "kmeans" this.ClusteringSolutions(:, iter) = kmeans (UsableX, ... this.InspectedK(iter), "Distance", this.Distance, ... "EmptyAction", "singleton", "Replicates", 5); case "linkage" if (! isempty (this.Distance)) ## use clusterdata Distance_tmp = this.Distance; LinkageMethod = "average"; # for non euclidean methods if (strcmpi (this.Distance, "sqeuclidean")) ## pdist uses different names for its algorithms Distance_tmp = "squaredeuclidean"; LinkageMethod = "ward"; elseif (strcmpi (this.Distance, "euclidean")) LinkageMethod = "ward"; endif this.ClusteringSolutions(:, iter) = clusterdata (UsableX,... "MaxClust", this.InspectedK(iter), ... "Distance", Distance_tmp, "Linkage", LinkageMethod); else ## use linkage Z = linkage (this.DistanceVector, "average"); this.ClusteringSolutions(:, iter) = ... cluster (Z, "MaxClust", this.InspectedK(iter)); endif case "gmdistribution" gmm = fitgmdist (UsableX, this.InspectedK(iter), ... "SharedCov", true, "Replicates", 5); this.ClusteringSolutions(:, iter) = cluster (gmm, UsableX); otherwise error (["SilhouetteEvaluation: unexpected error, " ... "report this bug"]); endswitch endif endif endfor endif ## get the silhouette values for every clustering set (0, 'DefaultFigureVisible', 'off'); # temporarily disable figures for iter = 1 : length (this.InspectedK) ## do it only for the specified K values if (any (this.InspectedK(iter) == K)) this.ClusterSilhouettes{iter} = silhouette (UsableX, ... this.ClusteringSolutions(:, iter)); if (strcmpi (this.ClusterPriors, "empirical")) this.CriterionValues(iter) = mean (this.ClusterSilhouettes{iter}); else ## equal this.CriterionValues(iter) = 0; si = this.ClusterSilhouettes{iter}; for k = 1 : this.InspectedK(iter) this.CriterionValues(iter) += mean (si(find ... (this.ClusteringSolutions(:, iter) == k))); endfor this.CriterionValues(iter) /= this.InspectedK(iter); endif endif endfor set (0, 'DefaultFigureVisible', 'on'); # enable figures again [~, this.OptimalIndex] = max (this.CriterionValues); this.OptimalK = this.InspectedK(this.OptimalIndex(1)); this.OptimalY = this.ClusteringSolutions(:, this.OptimalIndex(1)); endfunction endmethods endclassdef statistics-release-1.6.3/inst/PKG_ADD000066400000000000000000000015431456127120000173230ustar00rootroot00000000000000if (compare_versions (version (), "9", "<")) a1_e324kporit985_itogj3_dirlist = ... {"Classification", "Clustering", "datasets", "dist_fit", "dist_fun", ... "dist_stat", "Regression", "shadow9"}; else a1_e324kporit985_itogj3_dirlist = ... {"Classification", "Clustering", "datasets", "dist_fit", "dist_fun", ... "dist_stat", "Regression"}; endif d_2seRTE546_oyi_795jg09_dirname = fileparts (canonicalize_file_name ... (mfilename ("fullpath"))); for iiII123DRT_idx = 1:length (a1_e324kporit985_itogj3_dirlist) addpath (fullfile (d_2seRTE546_oyi_795jg09_dirname, ... a1_e324kporit985_itogj3_dirlist{iiII123DRT_idx})); endfor clear a1_e324kporit985_itogj3_dirlist clear d_2seRTE546_oyi_795jg09_dirname iiII123DRT_idx warning ("off", "Octave:data-file-in-path") statistics-release-1.6.3/inst/PKG_DEL000066400000000000000000000015231456127120000173350ustar00rootroot00000000000000clear -f libsvmread libsvmwrite svmpredict svmtrain if (compare_versions (version (), "9", "<")) a1_e324kporit985_itogj3_dirlist = ... {"Classification", "Clustering", "datasets", "dist_fit", "dist_fun", ... "dist_stat", "Regression", "shadow9"}; else a1_e324kporit985_itogj3_dirlist = ... {"Classification", "Clustering", "datasets", "dist_fit", "dist_fun", ... "dist_stat", "Regression"}; endif d_2seRTE546_oyi_795jg09_dirname = fileparts (canonicalize_file_name ... (mfilename ("fullpath"))); for iiII123DRT_idx = 1:length (a1_e324kporit985_itogj3_dirlist) rmpath (fullfile (d_2seRTE546_oyi_795jg09_dirname, ... a1_e324kporit985_itogj3_dirlist{iiII123DRT_idx})); endfor clear a1_e324kporit985_itogj3_dirlist clear d_2seRTE546_oyi_795jg09_dirname iiII123DRT_idx statistics-release-1.6.3/inst/Regression/000077500000000000000000000000001456127120000204245ustar00rootroot00000000000000statistics-release-1.6.3/inst/Regression/RegressionGAM.m000066400000000000000000001112461456127120000232540ustar00rootroot00000000000000## Copyright (C) 2023 Mohammed Azmat Khan ## Copyright (C) 2023-2024 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . classdef RegressionGAM ## -*- texinfo -*- ## @deftypefn {statistics} {@var{obj} =} RegressionGAM (@var{X}, @var{Y}) ## @deftypefnx {statistics} {@var{obj} =} RegressionGAM (@dots{}, @var{name}, @var{value}) ## ## Create a @qcode{RegressionGAM} class object containing a Generalised Additive ## Model (GAM) for regression. ## ## A @qcode{RegressionGAM} class object can store the predictors and response ## data along with various parameters for the GAM model. It is recommended to ## use the @code{fitrgam} function to create a @qcode{RegressionGAM} object. ## ## @code{@var{obj} = RegressionGAM (@var{X}, @var{Y})} returns an object of ## class RegressionGAM, with matrix @var{X} containing the predictor data and ## vector @var{Y} containing the continuous response data. ## ## @itemize ## @item ## @var{X} must be a @math{NxP} numeric matrix of input data where rows ## correspond to observations and columns correspond to features or variables. ## @var{X} will be used to train the GAM model. ## @item ## @var{Y} must be @math{Nx1} numeric vector containing the response data ## corresponding to the predictor data in @var{X}. @var{Y} must have same ## number of rows as @var{X}. ## @end itemize ## ## @code{@var{obj} = RegressionGAM (@dots{}, @var{name}, @var{value})} returns ## an object of class RegressionGAM with additional properties specified by ## @qcode{Name-Value} pair arguments listed below. ## ## @multitable @columnfractions 0.05 0.2 0.75 ## @headitem @tab @var{Name} @tab @var{Value} ## ## @item @tab @qcode{"predictors"} @tab Predictor Variable names, specified as ## a row vector cell of strings with the same length as the columns in @var{X}. ## If omitted, the program will generate default variable names ## @qcode{(x1, x2, ..., xn)} for each column in @var{X}. ## ## @item @tab @qcode{"responsename"} @tab Response Variable Name, specified as ## a string. If omitted, the default value is @qcode{"Y"}. ## ## @item @tab @qcode{"formula"} @tab a model specification given as a string in ## the form @qcode{"Y ~ terms"} where @qcode{Y} represents the reponse variable ## and @qcode{terms} the predictor variables. The formula can be used to ## specify a subset of variables for training model. For example: ## @qcode{"Y ~ x1 + x2 + x3 + x4 + x1:x2 + x2:x3"} specifies four linear terms ## for the first four columns of for predictor data, and @qcode{x1:x2} and ## @qcode{x2:x3} specify the two interaction terms for 1st-2nd and 3rd-4th ## columns respectively. Only these terms will be used for training the model, ## but @var{X} must have at least as many columns as referenced in the formula. ## If Predictor Variable names have been defined, then the terms in the formula ## must reference to those. When @qcode{"formula"} is specified, all terms used ## for training the model are referenced in the @qcode{IntMatrix} field of the ## @var{obj} class object as a matrix containing the column indexes for each ## term including both the predictors and the interactions used. ## ## @item @tab @qcode{"interactions"} @tab a logical matrix, a positive integer ## scalar, or the string @qcode{"all"} for defining the interactions between ## predictor variables. When given a logical matrix, it must have the same ## number of columns as @var{X} and each row corresponds to a different ## interaction term combining the predictors indexed as @qcode{true}. Each ## interaction term is appended as a column vector after the available predictor ## column in @var{X}. When @qcode{"all"} is defined, then all possible ## combinations of interactions are appended in @var{X} before training. At the ## moment, parsing a positive integer has the same effect as the @qcode{"all"} ## option. When @qcode{"interactions"} is specified, only the interaction terms ## appended to @var{X} are referenced in the @qcode{IntMatrix} field of the ## @var{obj} class object. ## ## @item @tab @qcode{"knots"} @tab a scalar or a row vector with the same ## columns as @var{X}. It defines the knots for fitting a polynomial when ## training the GAM. As a scalar, it is expanded to a row vector. The default ## value is 5, hence expanded to @qcode{ones (1, columns (X)) * 5}. You can ## parse a row vector with different number of knots for each predictor ## variable to be fitted with, although not recommended. ## ## @item @tab @qcode{"order"} @tab a scalar or a row vector with the same ## columns as @var{X}. It defines the order of the polynomial when training the ## GAM. As a scalar, it is expanded to a row vector. The default values is 3, ## hence expanded to @qcode{ones (1, columns (X)) * 3}. You can parse a row ## vector with different number of polynomial order for each predictor variable ## to be fitted with, although not recommended. ## ## @item @tab @qcode{"dof"} @tab a scalar or a row vector with the same columns ## as @var{X}. It defines the degrees of freedom for fitting a polynomial when ## training the GAM. As a scalar, it is expanded to a row vector. The default ## value is 8, hence expanded to @qcode{ones (1, columns (X)) * 8}. You can ## parse a row vector with different degrees of freedom for each predictor ## variable to be fitted with, although not recommended. ## ## @item @tab @qcode{"tol"} @tab a positive scalar to set the tolerance for ## covergence during training. By defaul, it is set to @qcode{1e-3}. ## @end multitable ## ## You can parse either a @qcode{"formula"} or an @qcode{"interactions"} ## optional parameter. Parsing both parameters will result an error. ## Accordingly, you can only pass up to two parameters among @qcode{"knots"}, ## @qcode{"order"}, and @qcode{"dof"} to define the required polynomial for ## training the GAM model. ## ## @seealso{fitrgam, regress, regress_gp} ## @end deftypefn properties (Access = public) X = []; # Predictor data Y = []; # Response data BaseModel = []; # Base model parameters (no interactions) ModelwInt = []; # Model parameters with interactions IntMatrix = []; # Interactions matrix applied to predictor data NumObservations = []; # Number of observations in training dataset RowsUsed = []; # Rows used in fitting NumPredictors = []; # Number of predictors PredictorNames = []; # Predictor variable names ResponseName = []; # Response variable name Formula = []; # Formula for GAM model Interactions = []; # Number or matrix of interaction terms Knots = []; # Knots of spline fitting Order = []; # Order of spline fitting DoF = []; # Degrees of freedom for fitting spline Tol = []; # Tolerence for convergence endproperties methods (Access = public) ## Class object contructor function this = RegressionGAM (X, Y, varargin) ## Check for sufficient number of input arguments if (nargin < 2) error ("RegressionGAM: too few input arguments."); endif ## Get training sample size and number of variables in training data nsample = rows (X); ndims_X = columns (X); ## Check correspodence between predictors and response if (nsample != rows (Y)) error ("RegressionGAM: number of rows in X and Y must be equal."); endif ## Set default values before parsing optional parameters PredictorNames = {}; # Predictor variable names ResponseName = []; # Response variable name Formula = []; # Formula for GAM model Interactions = []; # Interaction terms DoF = ones (1, ndims_X) * 8; # Degrees of freedom Order = ones (1, ndims_X) * 3; # Order of spline Knots = ones (1, ndims_X) * 5; # Knots Tol = 1e-3; # Tolerence for convergence ## Number of parameters for Knots, DoF, Order (maximum 2 allowed) KOD = 0; ## Number of parameters for Formula, Ineractions (maximum 1 allowed) F_I = 0; ## Parse extra parameters while (numel (varargin) > 0) switch (tolower (varargin {1})) case "predictors" PredictorNames = varargin{2}; if (! isempty (PredictorNames)) if (! iscellstr (PredictorNames)) error (strcat (["RegressionGAM: PredictorNames must"], ... [" be a cellstring array."])); elseif (columns (PredictorNames) != columns (X)) error (strcat (["RegressionGAM: PredictorNames must"], ... [" have same number of columns as X."])); endif endif case "responsename" ResponseName = varargin{2}; if (! ischar (ResponseName)) error ("RegressionGAM: ResponseName must be a char string."); endif case "formula" if (F_I < 1) Formula = varargin{2}; if (! ischar (Formula) && ! islogical (Formula)) error ("RegressionGAM: Formula must be a string."); endif F_I += 1; else error ("RegressionGAM: Interactions have been already defined."); endif case "interactions" if (F_I < 1) tmp = varargin{2}; if (isnumeric (tmp) && isscalar (tmp) && tmp == fix (tmp) && tmp >= 0) Interactions = tmp; elseif (islogical (tmp)) Interactions = tmp; elseif (ischar (tmp) && strcmpi (tmp, "all")) Interactions = tmp; else error ("RegressionGAM: invalid Interactions parameter."); endif F_I += 1; else error ("RegressionGAM: Formula has been already defined."); endif case "knots" if (KOD < 2) Knots = varargin{2}; if (! isnumeric (Knots) || ! (isscalar (Knots) || isequal (size (Knots), [1, ndims_X]))) error ("RegressionGAM: invalid value for Knots."); endif DoF = Knots + Order; Order = DoF - Knots; KOD += 1; else error ("RegressionGAM: DoF and Order have been set already."); endif case "order" if (KOD < 2) Order = varargin{2}; if (! isnumeric (Order) || ! (isscalar (Order) || isequal (size (Order), [1, ndims_X]))) error ("RegressionGAM: invalid value for Order."); endif DoF = Knots + Order; Knots = DoF - Order; KOD += 1; else error ("RegressionGAM: DoF and Knots have been set already."); endif case "dof" if (KOD < 2) DoF = varargin{2}; if (! isnumeric (DoF) || ! (isscalar (DoF) || isequal (size (DoF), [1, ndims_X]))) error ("RegressionGAM: invalid value for DoF."); endif Knots = DoF - Order; Order = DoF - Knots; KOD += 1; else error ("RegressionGAM: Knots and Order have been set already."); endif case "tol" Tol = varargin{2}; if (! (isnumeric (Tol) && isscalar (Tol) && (Tol > 0))) error ("RegressionGAM: Tolerance must be a Positive scalar."); endif otherwise error (strcat (["RegressionGAM: invalid parameter name"],... [" in optional pair arguments."])); endswitch varargin (1:2) = []; endwhile ## Assign original X and Y data to the RegressionGAM object this.X = X; this.Y = Y; ## Remove nans from X and Y RowsUsed = ! logical (sum (isnan ([Y, X]), 2)); Y = Y (RowsUsed); X = X (RowsUsed, :); ## Check X and Y contain valid data if (! isnumeric (X) || ! isfinite (X)) error ("RegressionGAM: invalid values in X."); endif if (! isnumeric (Y) || ! isfinite (Y)) error ("RegressionGAM: invalid values in Y."); endif ## Assign the number of observations and their correspoding indices ## on the original data, which will be used for training the model, ## to the RegressionGAM object this.NumObservations = rows (X); this.RowsUsed = cast (RowsUsed, "double"); ## Assign the number of original predictors to the RegressionGAM object this.NumPredictors = ndims_X; ## Generate default predictors and response variabe names (if necessary) if (isempty (PredictorNames)) for i = 1:ndims_X PredictorNames {i} = strcat ("x", num2str (i)); endfor endif if (isempty (ResponseName)) ResponseName = "Y"; endif ## Assign predictors and response variable names this.PredictorNames = PredictorNames; this.ResponseName = ResponseName; ## Assign remaining optional parameters this.Formula = Formula; this.Interactions = Interactions; this.Knots = Knots; this.Order = Order; this.DoF = DoF; this.Tol = Tol; ## Fit the basic model Inter = mean (Y); [iter, param, res, RSS] = this.fitGAM (X, Y, Inter, Knots, Order); this.BaseModel.Intercept = Inter; this.BaseModel.Parameters = param; this.BaseModel.Iterations = iter; this.BaseModel.Residuals = res; this.BaseModel.RSS = RSS; ## Handle interaction terms (if given) if (F_I > 0) if (isempty (this.Formula)) ## Analyze Interactions optional parameter this.IntMatrix = this.parseInteractions (); ## Append interaction terms to the predictor matrix for i = 1:rows (this.IntMatrix) tindex = logical (this.IntMatrix(i,:)); Xterms = X(:,tindex); Xinter = ones (this.NumObservations, 1); for c = 1:sum (tindex) Xinter = Xinter .* Xterms(:,c); endfor ## Append interaction terms X = [X, Xinter]; endfor else ## Analyze Formula optional parameter this.IntMatrix = this.parseFormula (); ## Add selected predictors and interaction terms XN = []; for i = 1:rows (this.IntMatrix) tindex = logical (this.IntMatrix(i,:)); Xterms = X(:,tindex); Xinter = ones (this.NumObservations, 1); for c = 1:sum (tindex) Xinter = Xinter .* Xterms(:,c); endfor ## Append selected predictors and interaction terms XN = [XN, Xinter]; endfor X = XN; endif ## Update length of Knots, Order, and DoF vectors to match ## the columns of X with the interaction terms Knots = ones (1, columns (X)) * Knots(1); # Knots Order = ones (1, columns (X)) * Order(1); # Order of spline DoF = ones (1, columns (X)) * DoF(1); # Degrees of freedom ## Fit the model with interactions [iter, param, res, RSS] = this.fitGAM (X, Y, Inter, Knots, Order); this.ModelwInt.Intercept = Inter; this.ModelwInt.Parameters = param; this.ModelwInt.Iterations = iter; this.ModelwInt.Residuals = res; this.ModelwInt.RSS = RSS; endif endfunction ## -*- texinfo -*- ## @deftypefn {RegressionGAM} {@var{yFit} =} predict (@var{obj}, @var{Xfit}) ## @deftypefnx {RegressionGAM} {@var{yFit} =} predict (@dots{}, @var{Name}, @var{Value}) ## @deftypefnx {RegressionGAM} {[@var{yFit}, @var{ySD}, @var{yInt}] =} predict (@dots{}) ## ## Predict new data points using generalized additive model regression object. ## ## @code{@var{yFit} = predict (@var{obj}, @var{Xfit}} returns a vector of ## predicted responses, @var{yFit}, for the predictor data in matrix @var{Xfit} ## based on the Generalized Additive Model in @var{obj}. @var{Xfit} must have ## the same number of features/variables as the training data in @var{obj}. ## ## @itemize ## @item ## @var{obj} must be a @qcode{RegressionGAM} class object. ## @end itemize ## ## @code{[@var{yFit}, @var{ySD}, @var{yInt}] = predict (@var{obj}, @var{Xfit}} ## also returns the standard deviations, @var{ySD}, and prediction intervals, ## @var{yInt}, of the response variable @var{yFit}, evaluated at each ## observation in the predictor data @var{Xfit}. ## ## @code{@var{yFit} = predict (@dots{}, @var{Name}, @var{Value})} returns the ## aforementioned results with additional properties specified by ## @qcode{Name-Value} pair arguments listed below. ## ## @multitable @columnfractions 0.28 0.02 0.7 ## @headitem @var{Name} @tab @tab @var{Value} ## ## @item @qcode{"alpha"} @tab @tab significance level of the prediction ## intervals @var{yInt}, specified as scalar in range @qcode{[0,1]}. The default ## value is 0.05, which corresponds to 95% prediction intervals. ## ## @item @qcode{"includeinteractions"} @tab @tab a boolean flag to include ## interactions to predict new values based on @var{Xfit}. By default, ## @qcode{"includeinteractions"} is @qcode{true} when the GAM model in @var{obj} ## contains a @qcode{obj.Formula} or @qcode{obj.Interactions} fields. Otherwise, ## is set to @qcode{false}. If set to @qcode{true} when no interactions are ## present in the trained model, it will result to an error. If set to ## @qcode{false} when using a model that includes interactions, the predictions ## will be made on the basic model without any interaction terms. This way you ## can make predictions from the same GAM model without having to retrain it. ## @end multitable ## ## @seealso{fitrgam, RegressionGAM} ## @end deftypefn function [yFit, ySD, yInt] = predict (this, Xfit, varargin) ## Check for sufficient input arguments if (nargin < 2) error ("RegressionGAM.predict: too few arguments."); endif ## Check for valid XC if (isempty (Xfit)) error ("RegressionGAM.predict: Xfit is empty."); elseif (columns (this.X) != columns (Xfit)) error (strcat (["@RegressionGAM/predict: Xfit must have the same"], ... [" number of features (columns) as in the GAM model."])); endif ## Clean Xfit data notnansf = ! logical (sum (isnan (Xfit), 2)); Xfit = Xfit (notnansf, :); ## Default values for Name-Value Pairs alpha = 0.05; if (isempty (this.IntMatrix)) incInt = false; else incInt = true; endif ## Parse optional arguments while (numel (varargin) > 0) switch (tolower (varargin {1})) case "includeinteractions" tmpInt = varargin{2}; if (! islogical (tmpInt) || (tmpInt != 0 && tmpInt != 1)) error (strcat (["RegressionGAM.predict: includeinteractions"], ... [" must be a logical value."])); endif ## Check model for interactions if (tmpInt && isempty (this.IntMat)) error (strcat (["RegressionGAM.predict: trained model"], ... [" does not include any interactions."])); endif incInt = tmpInt; case "alpha" alpha = varargin{2}; if (! (isnumeric (alpha) && isscalar (alpha) && alpha > 0 && alpha < 1)) error (strcat (["RegressionGAM.predict: alpha must be a"], ... [" scalar value between 0 and 1."])); endif otherwise error (strcat(["RegressionGAM.predict: invalid NAME in"], ... [" optional pairs of arguments."])); endswitch varargin (1:2) = []; endwhile ## Choose whether interactions must be included if (incInt) if (! isempty (this.Interactions)) ## Append interaction terms to the predictor matrix for i = 1:rows (this.IntMat) tindex = logical (this.IntMat(i,:)); Xterms = Xfit(:,tindex); Xinter = ones (rows (Xfit), 1); for c = 1:sum (tindex) Xinter = Xinter .* Xterms(:,c); endfor ## Append interaction terms Xfit = [Xfit, Xinter]; endfor else ## Add selected predictors and interaction terms XN = []; for i = 1:rows (this.IntMat) tindex = logical (this.IntMat(i,:)); Xterms = Xfit(:,tindex); Xinter = ones (rows (Xfit), 1); for c = 1:sum (tindex) Xinter = Xinter .* Xterms(:,c); endfor ## Append selected predictors and interaction terms XN = [XN, Xinter]; endfor Xfit = XN; endif ## Get parameters and intercept vectors from model with interactions params = this.ModelwInt.Parameters; Interc = this.ModelwInt.Intercept; ## Update length of DoF vector DoF = ones (1, columns (Xfit)) * this.DoF(1); else ## Get parameters and intercept vectors from base model params = this.BaseModel.Parameters; Interc = this.BaseModel.Intercept; ## Get DoF from model DoF = this.DoF; endif ## Predict values from testing data yFit = predict_val (params, Xfit, Interc); ## Predict Standard Deviation and Intervals of estimated data if requested if (nargout > 0) ## Ensure that RowsUsed in the model are selected Y = this.Y(logical (this.RowsUsed)); X = this.X(logical (this.RowsUsed), :); ## Predict response from training predictor data with the trained model yrs = predict_val (params, X , Interc); ## Get the residuals between predicted and actual response data rs = Y - yrs; var_rs = var (rs); var_pr = var (yFit); # var is calculated here instead take sqrt(SD) t_mul = tinv (1 - alpha / 2, this.DoF); ydev = (yFit - mean (yFit)) .^ 2; ySD = sqrt (ydev / (rows (yFit) - 1)); varargout{1} = ySD; if (nargout > 1) moe = t_mul (1) * ySD; lower = (yFit - moe); upper = (yFit + moe); yInt = [lower, upper]; varargout{2} = yInt; endif endif endfunction endmethods ## Helper functions methods (Access = private) ## Determine interactions from Interactions optional parameter function intMat = parseInteractions (this) if (islogical (this.Interactions)) ## Check that interaction matrix corresponds to predictors if (numel (this.PredictorNames) != columns (this.Interactions)) error (strcat (["RegressionGAM: columns in Interactions logical"], ... [" matrix must equal to the number of predictors."])); endif intMat = this.Interactions elseif (isnumeric (this.Interactions)) ## Need to measure the effect of all interactions to keep the best ## performing. Just check that the given number is not higher than ## p*(p-1)/2, where p is the number of predictors. p = this.NumPredictors; if (this.Interactions > p * (p - 1) / 2) error (strcat (["RegressionGAM: number of interaction terms"], ... [" requested is larger than all possible"], ... [" combinations of predictors in X."])); endif ## Get all combinations except all zeros allMat = flip (fullfact(p)([2:end],:), 2); ## Only keep interaction terms iterms = find (sum (allMat, 2) != 1); intMat = allMat(iterms); elseif (strcmpi (this.Interactions, "all")) ## Calculate all p*(p-1)/2 interaction terms allMat = flip (fullfact(p)([2:end],:), 2); ## Only keep interaction terms iterms = find (sum (allMat, 2) != 1); intMat = allMat(iterms); endif endfunction ## Determine interactions from formula function intMat = parseFormula (this) intMat = []; ## Check formula for syntax if (isempty (strfind (this.Formula, '~'))) error ("RegressionGAM: invalid syntax in Formula."); endif ## Split formula and keep predictor terms formulaParts = strsplit (this.Formula, '~'); ## Check there is some string after '~' if (numel (formulaParts) < 2) error ("RegressionGAM: no predictor terms in Formula."); endif predictorString = strtrim (formulaParts{2}); if (isempty (predictorString)) error ("RegressionGAM: no predictor terms in Formula."); endif ## Spit additive terms (between + sign) aterms = strtrim (strsplit (predictorString, '+')); ## Process all terms for i = 1:numel (aterms) ## Find individual terms (string missing ':') if (isempty (strfind (aterms(i), ':'){:})) ## Search PredictorNames to associate with column in X sterms = strcmp (this.PredictorNames, aterms(i)); ## Append to interactions matrix intMat = [intMat; sterms]; else ## Split interaction terms (string contains ':') mterms = strsplit (aterms{i}, ':'); ## Add each individual predictor to interaction term vector iterms = logical (zeros (1, this.NumPredictors)); for t = 1:numel (mterms) iterms = iterms | strcmp (this.PredictorNames, mterms(t)); endfor ## Check that all predictors have been identified if (sum (iterms) != t) error ("RegressionGAM: some predictors have not been identified."); endif ## Append to interactions matrix intMat = [intMat; iterms]; endif endfor ## Check that all terms have been identified if (! all (sum (intMat, 2) > 0)) error ("RegressionGAM: some terms have not been identified."); endif endfunction ## Fit the model function [iter, param, res, RSS] = fitGAM (this, X, Y, Inter, Knots, Order) ## Initialize variables converged = false; iter = 0; RSS = zeros (1, columns (X)); res = Y - Inter; ns = rows (X); Tol = this.Tol; ## Start training while (! converged) iter += 1; ## Single cycle of backfit for j = 1:columns (X) ## Calculate residuals to fit spline if (iter > 1) res = res + ppval (param(j), X(:, j)); endif ## Fit an spline to the data gk = splinefit (X(:,j), res, Knots(j), "order", Order(j)); ## This might be wrong! We need to check this out RSSk(j) = abs (sum (abs (Y - ppval (gk, X(:,j)) - Inter)) .^ 2) / ns; param(j) = gk; res = res - ppval (param(j), X(:,j)); endfor ## Check if RSS is less than the tolerence if (all (abs (RSS - RSSk) <= Tol)) converged = true; endif ## Update RSS RSS = RSSk; endwhile endfunction endmethods endclassdef ## Helper function for making prediction of new data based on GAM model function ypred = predict_val (params, X, intercept) [nsample, ndims_X] = size (X); ypred = ones (nsample, 1) * intercept; ## Add the remaining terms for j = 1:ndims_X ypred = ypred + ppval (params(j), X (:,j)); endfor endfunction %!demo %! ## Train a RegressionGAM Model for synthetic values %! f1 = @(x) cos (3 * x); %! f2 = @(x) x .^ 3; %! x1 = 2 * rand (50, 1) - 1; %! x2 = 2 * rand (50, 1) - 1; %! y = f1(x1) + f2(x2); %! y = y + y .* 0.2 .* rand (50,1); %! X = [x1, x2]; %! a = fitrgam (X, y, "tol", 1e-3) %!demo %! ## Declare two different functions %! f1 = @(x) cos (3 * x); %! f2 = @(x) x .^ 3; %! %! ## Generate 80 samples for f1 and f2 %! x = [-4*pi:0.1*pi:4*pi-0.1*pi]'; %! X1 = f1 (x); %! X2 = f2 (x); %! %! ## Create a synthetic response by adding noise %! rand ("seed", 3); %! Ytrue = X1 + X2; %! Y = Ytrue + Ytrue .* 0.2 .* rand (80,1); %! %! ## Assemble predictor data %! X = [X1, X2]; %! %! ## Train the GAM and test on the same data %! a = fitrgam (X, Y, "order", [5, 5]); %! [ypred, ySDsd, yInt] = predict (a, X); %! %! ## Plot the results %! figure %! [sortedY, indY] = sort (Ytrue); %! plot (sortedY, "r-"); %! xlim ([0, 80]); %! hold on %! plot (ypred(indY), "g+") %! plot (yInt(indY,1), "k:") %! plot (yInt(indY,2), "k:") %! xlabel ("Predictor samples"); %! ylabel ("Response"); %! title ("actual vs predicted values for function f1(x) = cos (3x) "); %! legend ({"Theoretical Response", "Predicted Response", "Prediction Intervals"}); %! %! ## Use 30% Holdout partitioning for training and testing data %! C = cvpartition (80, "HoldOut", 0.3); %! [ypred, ySDsd, yInt] = predict (a, X(test(C),:)); %! %! ## Plot the results %! figure %! [sortedY, indY] = sort (Ytrue(test(C))); %! plot (sortedY, 'r-'); %! xlim ([0, sum(test(C))]); %! hold on %! plot (ypred(indY), "g+") %! plot (yInt(indY,1),'k:') %! plot (yInt(indY,2),'k:') %! xlabel ("Predictor samples"); %! ylabel ("Response"); %! title ("actual vs predicted values for function f1(x) = cos (3x) "); %! legend ({"Theoretical Response", "Predicted Response", "Prediction Intervals"}); ## Test constructor %!test %! x = [1, 2, 3; 4, 5, 6; 7, 8, 9; 3, 2, 1]; %! y = [1; 2; 3; 4]; %! a = RegressionGAM (x, y); %! assert ({a.X, a.Y}, {x, y}) %! assert ({a.BaseModel.Intercept}, {2.5000}) %! assert ({a.Knots, a.Order, a.DoF}, {[5, 5, 5], [3, 3, 3], [8, 8, 8]}) %! assert ({a.NumObservations, a.NumPredictors}, {4, 3}) %! assert ({a.ResponseName, a.PredictorNames}, {"Y", {"x1", "x2", "x3"}}) %! assert ({a.Formula}, {[]}) %!test %! x = [1, 2, 3, 4; 4, 5, 6, 7; 7, 8, 9, 1; 3, 2, 1, 2]; %! y = [1; 2; 3; 4]; %! pnames = {"A", "B", "C", "D"}; %! formula = "Y ~ A + B + C + D + A:C"; %! intMat = logical ([1,0,0,0;0,1,0,0;0,0,1,0;0,0,0,1;1,0,1,0]); %! a = RegressionGAM (x, y, "predictors", pnames, "formula", formula); %! assert ({a.IntMatrix}, {intMat}) %! assert ({a.ResponseName, a.PredictorNames}, {"Y", pnames}) %! assert ({a.Formula}, {formula}) ## Test input validation for constructor %!error RegressionGAM () %!error RegressionGAM (ones(10,2)) %!error ... %! RegressionGAM (ones(10,2), ones (5,1)) %!error ... %! RegressionGAM ([1;2;3;"a";4], ones (5,1)) %!error ... %! RegressionGAM (ones(10,2), ones (10,1), "some", "some") %!error %! RegressionGAM (ones(10,2), ones (10,1), "formula", {"y~x1+x2"}) %!error %! RegressionGAM (ones(10,2), ones (10,1), "formula", [0, 1, 0]) %!error ... %! RegressionGAM (ones(10,2), ones (10,1), "formula", "something") %!error ... %! RegressionGAM (ones(10,2), ones (10,1), "formula", "something~") %!error ... %! RegressionGAM (ones(10,2), ones (10,1), "formula", "something~") %!error ... %! RegressionGAM (ones(10,2), ones (10,1), "formula", "something~x1:") %!error ... %! RegressionGAM (ones(10,2), ones (10,1), "interactions", "some") %!error ... %! RegressionGAM (ones(10,2), ones (10,1), "interactions", -1) %!error ... %! RegressionGAM (ones(10,2), ones (10,1), "interactions", [1 2 3 4]) %!error ... %! RegressionGAM (ones(10,2), ones (10,1), "interactions", 3) %!error ... %! RegressionGAM (ones(10,2), ones (10,1), "formula", "y ~ x1 + x2", "interactions", 1) %!error ... %! RegressionGAM (ones(10,2), ones (10,1), "interactions", 1, "formula", "y ~ x1 + x2") %!error ... %! RegressionGAM (ones(10,2), ones (10,1), "knots", "a") %!error ... %! RegressionGAM (ones(10,2), ones (10,1), "order", 3, "dof", 2, "knots", 5) %!error ... %! RegressionGAM (ones(10,2), ones (10,1), "dof", 'a') %!error ... %! RegressionGAM (ones(10,2), ones (10,1), "knots", 5, "order", 3, "dof", 2) %!error ... %! RegressionGAM (ones(10,2), ones (10,1), "order", 'a') %!error ... %! RegressionGAM (ones(10,2), ones (10,1), "knots", 5, "dof", 2, "order", 2) %!error ... %! RegressionGAM (ones(10,2), ones (10,1), "tol", -1) %!error ... %! RegressionGAM (ones(10,2), ones (10,1), "responsename", -1) %!error ... %! RegressionGAM (ones(10,2), ones (10,1), "predictors", -1) %!error ... %! RegressionGAM (ones(10,2), ones (10,1), "predictors", ['a','b','c']) %!error ... %! RegressionGAM (ones(10,2), ones (10,1), "predictors", {'a','b','c'}) ## Test input validation for predict method %!error ... %! predict (RegressionGAM (ones(10,1), ones(10,1))) %!error ... %! predict (RegressionGAM (ones(10,1), ones(10,1)), []) %!error ... %! predict (RegressionGAM(ones(10,2), ones(10,1)), 2) %!error ... %! predict (RegressionGAM(ones(10,2), ones(10,1)), ones (10,2), "some", "some") %!error ... %! predict (RegressionGAM(ones(10,2), ones(10,1)), ones (10,2), "includeinteractions", "some") %!error ... %! predict (RegressionGAM(ones(10,2), ones(10,1)), ones (10,2), "includeinteractions", 5) %!error ... %! predict (RegressionGAM(ones(10,2), ones(10,1)), ones (10,2), "alpha", 5) %!error ... %! predict (RegressionGAM(ones(10,2), ones(10,1)), ones (10,2), "alpha", -1) %!error ... %! predict (RegressionGAM(ones(10,2), ones(10,1)), ones (10,2), "alpha", 'a') statistics-release-1.6.3/inst/adtest.m000066400000000000000000001007271456127120000177550ustar00rootroot00000000000000## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{h} =} adtest (@var{x}) ## @deftypefnx {statistics} {@var{h} =} adtest (@var{x}, @var{Name}, @var{Value}) ## @deftypefnx {statistics} {[@var{h}, @var{pval}] =} adtest (@dots{}) ## @deftypefnx {statistics} {[@var{h}, @var{pval}, @var{adstat}, @var{cv}] =} adtest (@dots{}) ## ## Anderson-Darling goodness-of-fit hypothesis test. ## ## @code{@var{h} = adtest (@var{x})} returns a test decision for the null ## hypothesis that the data in vector @var{x} is from a population with a normal ## distribution, using the Anderson-Darling test. The alternative hypothesis is ## that x is not from a population with a normal distribution. The result ## @var{h} is 1 if the test rejects the null hypothesis at the 5% significance ## level, or 0 otherwise. ## ## @code{@var{h} = adtest (@var{x}, @var{Name}, @var{Value})} returns a test ## decision for the Anderson-Darling test with additional options specified by ## one or more Name-Value pair arguments. For example, you can specify a null ## distribution other than normal, or select an alternative method for ## calculating the p-value, such as a Monte Carlo simulation. ## ## The following parameters can be parsed as Name-Value pair arguments. ## ## @multitable @columnfractions 0.25 0.75 ## @headitem Name @tab Description ## @item "Distribution" @tab The distribution being tested for. It tests ## whether @var{x} could have come from the specified distribution. There are ## two choise available for parsing distribution parameters: ## @end multitable ## ## @itemize ## @item ## One of the following char strings: "norm", "exp", "ev", "logn", "weibull", ## for defining either the 'normal', 'exponential', 'extreme value', lognormal, ## or 'Weibull' distribution family, accordingly. In this case, @var{x} is ## tested against a composite hypothesis for the specified distribution family ## and the required distribution parameters are estimated from the data in ## @var{x}. The default is "norm". ## ## @item ## A cell array defining a distribution in which the first cell contains a char ## string with the distribution name, as mentioned above, and the consecutive ## cells containing all specified parameters of the null distribution. In this ## case, @var{x} is tested against a simple hypothesis. ## @end itemize ## ## @multitable @columnfractions 0.25 0.75 ## @item "Alpha" @tab Significance level alpha for the test. Any scalar ## numeric value between 0 and 1. The default is 0.05 corresponding to the 5% ## significance level. ## ## @item "MCTol" @tab Monte-Carlo standard error for the p-value, ## @var{pval}, value. which must be a positive scalar value. In this case, an ## approximation for the p-value is computed directly, using Monte-Carlo ## simulations. ## ## @item "Asymptotic" @tab Method for calculating the p-value of the ## Anderson-Darling test, which can be either true or false logical value. If ## you specify 'true', adtest estimates the p-value using the limiting ## distribution of the Anderson-Darling test statistic. If you specify 'false', ## adtest calculates the p-value based on an analytical formula. For sample ## sizes greater than 120, the limiting distribution estimate is likely to be ## more accurate than the small sample size approximation method. ## @end multitable ## ## @itemize ## @item ## If you specify a distribution family with unknown parameters for the ## distribution Name-Value pair (i.e. composite distribution hypothesis test), ## the "Asymptotic" option must be false. ## @item ## ## If you use MCTol to calculate the p-value using a Monte Carlo simulation, ## the "Asymptotic" option must be false. ## @end itemize ## ## @code{[@var{h}, @var{pval}] = adtest (@dots{})} also returns the p-value, ## @var{pval}, of the Anderson-Darling test, using any of the input arguments ## from the previous syntaxes. ## ## @code{[@var{h}, @var{pval}, @var{adstat}, @var{cv}] = adtest (@dots{})} also ## returns the test statistic, @var{adstat}, and the critical value, @var{cv}, ## for the Anderson-Darling test. ## ## The Anderson-Darling test statistic belongs to the family of Quadratic ## Empirical Distribution Function statistics, which are based on the weighted ## sum of the difference @math{[Fn(x)-F(x)]^2} over the ordered sample values ## @math{X1 < X2 < ... < Xn}, where @math{F} is the hypothesized continuous ## distribution and @math{Fn} is the empirical CDF based on the data sample with ## @math{n} sample points. ## ## @seealso{kstest} ## @end deftypefn function [H, pVal, ADStat, CV] = adtest (x, varargin) ## Check for valid input data if (nargin < 1) print_usage; endif ## Ensure the sample data is a real vector. if (! isvector (x) || ! isreal(x)) error ("adtest: X must be a vector of real numbers."); endif ## Add defaults distribution = "norm"; isCompositeTest = true; alpha = 0.05; MCTol = []; asymptotic = false; ## Parse arguments and check if parameter/value pairs are valid i = 1; while (i <= length (varargin)) switch lower (varargin{i}) case "distribution" i = i + 1; distribution = varargin{i}; ## Check for char string or cell array ## If distribution is a char string, then X is tested against a ## composite hypothesis for the specified distribution family and ## distribution parameters are estimated from the sample data. valid_dists = {"norm", "exp", "ev", "logn", "weibull"}; if (ischar (distribution)) if (! any (strcmpi (distribution, valid_dists))) error ("adtest: invalid distribution family in char string."); endif ## If distribution is a cell array, then X is tested against a ## simple hypothesis for the specified distribution and ## distribution parameters given in the cell array. elseif (iscell (distribution)) if (! any (strcmpi (distribution(1), valid_dists))) error ("adtest: invalid distribution family in cell array."); endif ## Check for valid distribution parameter in cell array err_msg = "adtest: invalid distribution parameters in cell array."; if (strcmpi (distribution(1), "norm")) if (numel (distribution) != 3) error (err_msg); endif z = normcdf (x, distribution{2}, distribution{3}); elseif (strcmpi (distribution(1), "exp")) if (numel (distribution) != 2) error (err_msg); endif z = expcdf (x, distribution{2}); elseif (strcmpi (distribution(1), "ev")) if (numel (distribution) != 3) error (err_msg); endif z = evcdf (x, distribution{2}, distribution{3}); elseif (strcmpi (distribution(1), "logn")) if (numel (distribution) != 3) error (err_msg); endif z = logncdf (x, distribution{2}, distribution{3}); elseif (strcmpi (distribution(1), "weibull")) if (numel (distribution) != 3) error (err_msg); endif z = wblcdf (x, distribution{2}, distribution{3}); endif isCompositeTest = false; else error ("adtest: invalid distribution option."); endif case "alpha" i = i + 1; alpha = varargin{i}; ## Check for valid alpha if (! isscalar (alpha) || ! isnumeric (alpha) || ... alpha <= 0 || alpha >= 1) error ("adtest: invalid value for alpha."); endif case "mctol" i = i + 1; MCTol = varargin{i}; ## Check Monte Carlo tolerance is a numeric scalar greater than 0 if (! isempty (MCTol) && (! isscalar (MCTol) || MCTol <= 0)) error ("adtest: invalid Monte Carlo Tolerance."); endif case "asymptotic" i = i + 1; asymptotic = varargin{i}; ## Check that it is either true or false if (! isbool (asymptotic)) error ("adtest: asymptotic option must be boolean."); endif otherwise error ("adtest: invalid Name argument."); endswitch i = i + 1; endwhile ## Check conflicts with asymptotic option if (asymptotic && isCompositeTest) error (strcat (["adtest: asymptotic option is not valid"], ... [" for the composite distribution test."])); elseif (asymptotic && ! isempty (MCTol)) error (strcat (["adtest: asymptotic option is not valid"], ... [" for the Monte Carlo simulation test."])); endif ## Remove missing values. x = x(! isnan (x)); ## Compute sample size n. n = length (x); ## For composite tests if (isCompositeTest) ## Abort for sample size less than 4 if (n < 4) error ("adtest: not enough data for composite testing."); endif ## If data follow a lognormal distribution, log(x) is normally distributed if (strcmpi (distribution, "logn")) x = log (x); distribution = "norm"; ## If data follow a Weibull distribution, log(x) has a type I extreme-value ## distribution elseif (strcmpi (distribution, "weibull")) x = log (x); distribution = "ev"; endif ## Compute ADStat switch distribution case "norm" ## Check for complex numbers due to log (x) if (any (! isreal (x))) ## Data is not compatible with logn distribution test warning ("adtest: bad data for lognormal distribution."); ADStat = NaN; else z = normcdf (x, mean (x), std (x)); ADStat = ComputeADStat (z, n); endif case "exp" z = expcdf (x, mean (x)); ADStat = ComputeADStat (z, n); case "ev" ## Check for complex numbers due to log (x) if (any (! isreal (x))) ## Data is not compatible with Weibull distribution test warning ("adtest: bad data for Weibull distribution."); ADStat = NaN; else params = evfit (x); z = evcdf (x, params (1), params (2)); ADStat = ComputeADStat (z, n); endif endswitch ## Compute p-value and critical values without Monte Carlo simulation if (isempty (MCTol)) alphas = [0.0005, 0.0010, 0.0015, 0.0020, 0.0050, 0.0100, 0.0250, ... 0.0500, 0.1000, 0.1500, 0.2000, 0.2500, 0.3000, 0.3500, ... 0.4000, 0.4500, 0.5000, 0.5500, 0.6000, 0.6500, 0.7000, ... 0.7500, 0.8000, 0.8500, 0.9000, 0.9500, 0.9900]; switch distribution case "norm" CVs = computeCriticalValues_norm (n); case "exp" CVs = computeCriticalValues_exp (n); case "ev" CVs = computeCriticalValues_ev (n); endswitch ## 1-D interpolation into the tabulated results pp = pchip (log (alphas), CVs); CV = ppval (pp, log (alpha)); ## If alpha is not within the lookup table, throw a warning ## Hypothesis result is computed by comparing the p-value with ## alpha, rather than CV with ADStat if alpha < alphas(1) CV = CVs(1); warning ("adtest: alpha not within the lookup table."); elseif alpha > alphas(end) CV = CVs(end); warning ("adtest: alpha not within the lookup table."); endif if (ADStat > CVs(1)) ## P value is smaller than smallest tabulated value warning (strcat (["adtest: out of range min p-value:"], ... sprintf (" %g", alphas(1)))); pVal = alphas(1); elseif (ADStat < CVs(end)) ## P value is larger than largest tabulated value warning (strcat (["adtest: out of range max p-value:"], ... sprintf (" %g", alphas(end)))); pVal = alphas(end); elseif (isnan (ADStat)) ## Handle certain cases of negative data (ADStat == NaN) pVal = 0; else ## Find p-value by inverse interpolation i = find (ADStat > CVs, 1, "first"); logPVal = fzero (@(x)ppval(pp,x) - ADStat, log(alphas([i-1,i]))); pVal = exp (logPVal); endif ## Compute p-value and critical values without Monte Carlo simulation else [CV, pVal] = adtestMC (ADStat, n, alpha, distribution, mctol); endif ## Calculate H if (isnan (ADStat)) H = true; else if (isempty (MCTol)) if (alpha < alphas(1) || alpha > alphas(end)) H = (pVal < alpha); else H = (ADStat > CV); endif else H = (ADStat > CV); endif endif ## For simple tests else ## Compute the Anderson-Darling statistic ADStat = ComputeADStat (z, n); ## Compute p-value and critical values without Monte Carlo simulation if (isempty (MCTol)) alphas = [0.0005, 0.0010, 0.0015, 0.0020, 0.0050, 0.0100, 0.0250, ... 0.0500, 0.1000, 0.1500, 0.2000, 0.2500, 0.3000, 0.3500, ... 0.4000, 0.4500, 0.5000, 0.5500, 0.6000, 0.6500, 0.7000, ... 0.7500, 0.8000, 0.8500, 0.9000, 0.9500, 0.9900]; if (asymptotic) if (n <= 120) warning ("adtest: asymptotic distribution with small sample size."); endif pVal = 1 - ADInf (ADStat); ## For extra output arguments if (nargout > 3) ## Make sure alpha is within the lookup table validateAlpha (alpha, alphas); ## Find critical values critVals = findAsymptoticDistributionCriticalValues; i = find (alphas > alpha, 1, "first"); startVal = critVals(i-1); CV = fzero(@(ad)1-ADInf(ad)-alpha, startVal); endif else if (n == 1) pVal = 1 - sqrt (1 - 4 * exp (-1 - ADStat)); else if (n < 4) warning ("adtest: small sample size."); endif pVal = 1 - ADn (n, ADStat); endif ## For extra output arguments if (nargout > 3) ## Make sure alpha is within the lookup table validateAlpha (alpha, alphas); ## Find critical values [CVs, sampleSizes] = findCriticalValues; [OneOverSampleSizes, LogAlphas] = meshgrid (1 ./ sampleSizes, ... log (alphas)); CV = interp2 (OneOverSampleSizes, LogAlphas, CVs', 1./n, log (alpha)); endif endif ## Compute p-value and critical values with Monte Carlo simulation else [CV, pVal] = adtestMC (ADStat, n, alpha, "unif", mctol); endif ## Calculate H H = (pVal < alpha); endif endfunction ## Compute Anderson-Darling Statistic function ADStat = ComputeADStat (z, n) ## Sort the data and compute the statistic z = reshape (z, n, 1); z = sort (z); w = 2 * (1:n) - 1; ADStat = - w * (log (z)+ log (1-z(end:-1:1))) / n - n; endfunction ## Anderson-Darling distribution Pr(An= 2); x(ad >= 2) = exp (-exp (1.0776 - (2.30695 - (0.43424 - (0.082433 - ... (0.008056 - 0.0003146 .* adh) .* adh) .* adh) .* adh) .* adh)); ## Compute error function defined between 0 and 1 if (any (x < 0 | x > 1)) error ("adtest: invalid values for error function."); endif e = zeros (size (x)); c = 0.01265 + 0.1757/n; ## Define function by intervals using 3 fixed functions g1, g2, g3. xc1 = x(x < c) / c; g1 = sqrt (xc1) .* (1 - xc1) .* (49 * xc1 - 102); e(x < c) = (0.0037 / n ^ 3 + 0.00078 / n ^ 2 + 0.00006 / n) * g1; xc2 = (x(x >= c & x < 0.8) - c) ./ (0.8 - c); g2 = -0.00022633 + (6.54034 - (14.6538 - (14.458 - (8.259 -... 1.91864 .* xc2) .* xc2) .* xc2) .* xc2) .* xc2; e(x >= c & x < 0.8) = (0.04213 / n + 0.01365 / n ^ 2) * g2; xc3 = x(x >= 0.8); e(x >= 0.8) = 1 / n * (-130.2137 + (745.2337 - (1705.091 - (1950.646 -... (1116.360 - 255.7844 .* ... xc3) .* xc3) .* xc3) .* xc3) .* xc3) .* xc3; p = x + e; endfunction ## Evaluate the Anderson-Darling limit distribution function ad = ADInf (z) ## Distribution is invalid for negative values if (z < 0) error ("adtest: invalid X for asymptotic distribution."); endif ## Due to floating point precision: ## Return 0 below a certain threshold if (z < 0.02) ad = 0; return; ## Return 1 above the following threshold elseif (z >= 32.4) ad = 1; return; endif n = 1:500; K = 1/z*[1, ((4*n + 1).*cumprod((1/2 - n)./n))]; ADTerms = arrayfun(@(j)ADf(z,j),0:500); ad = ADTerms*K'; endfunction ## Series expansion for f(z,j) called by ADInf function f = ADf(z,j) ## Compute t=tj=(4j+1)^2*pi^2/(8z) t = (4 * j + 1) ^ 2 * 1.233700550136170 / z; ## First 2 terms in recursive series ## c0=pi*exp(-t)/(sqrt(2t)) ## c1=pi*sqrt(pi/2)*erfc(sqrt(t)) c0 = 2.221441469079183 * exp (-t) / sqrt (t); c1 = 3.937402486430604 * erfc (sqrt (t)); r = z / 8; f = c0 + c1 * r; ## Evaluate the recursion for n = 2:500 c = 1 / (n - 1) * ((n - 3 / 2 - t) * c1 + t * c0); r = r * (z / 8) * (1 / n); fn = f + c * r; c0 = c1; c1 = c; if (f == fn) return; endif f = fn; endfor endfunction ## An improved version of the Petitt method for the composite normal case. function CVs = computeCriticalValues_norm (n) CVs = [1.5649, 1.4407, 1.3699, 1.3187, 1.1556, 1.0339, 0.8733, ... 0.7519, 0.6308, 0.5598, 0.5092, 0.4694, 0.4366, 0.4084, ... 0.3835, 0.3611, 0.3405, 0.3212, 0.3029, 0.2852, 0.2679, ... 0.2506, 0.2330, 0.2144, 0.1935, 0.1673, 0.1296] + ... [-0.9362, -0.9029, -0.8906, -0.8865, -0.8375, -0.7835, -0.6746, ... -0.5835, -0.4775, -0.4094, -0.3679, -0.3327, -0.3099, -0.2969, ... -0.2795, -0.2623, -0.2464, -0.2325, -0.2164, -0.1994, -0.1784, ... -0.1569, -0.1377, -0.1201, -0.0989, -0.0800, -0.0598] ./ n + ... [-8.3249, -6.6022, -5.6461, -4.9685, -3.2208, -2.1647, -1.2460, ... -0.7803, -0.4627, -0.3672, -0.2833, -0.2349, -0.1442, -0.0229, ... 0.0377, 0.0817, 0.1150, 0.1583, 0.1801, 0.1887, 0.1695, ... 0.1513, 0.1533, 0.1724, 0.2027, 0.3158, 0.6431] ./ n ^ 2; endfunction ## An improved version of the Petitt method for the composite exponential case. function CVs = computeCriticalValues_exp (n) CVs = [3.2371, 2.9303, 2.7541, 2.6307, 2.2454, 1.9621, 1.5928, ... 1.3223, 1.0621, 0.9153, 0.8134, 0.7355, 0.6725, 0.6194, ... 0.5734, 0.5326, 0.4957, 0.4617, 0.4301, 0.4001, 0.3712, ... 0.3428, 0.3144, 0.2849, 0.2527, 0.2131, 0.1581] + ... [1.6146, 0.8716, 0.4715, 0.2066, -0.4682, -0.7691, -0.7388, ... -0.5758, -0.4036, -0.3142, -0.2564, -0.2152, -0.1845, -0.1607, ... -0.1409, -0.1239, -0.1084, -0.0942, -0.0807, -0.0674, -0.0537, ... -0.0401, -0.0261, -0.0116, 0.0047, 0.0275, 0.0780] ./ n; endfunction ## An improved version of the Petitt method for the composite extreme value case function CVs = computeCriticalValues_ev(n) CVs = [1.6473, 1.5095, 1.4301, 1.3742, 1.1974, 1.0667, 0.8961, ... 0.7683, 0.6416, 0.5680, 0.5156, 0.4744, 0.4405, 0.4115, ... 0.3858, 0.3626, 0.3415, 0.3217, 0.3029, 0.2848, 0.2672, ... 0.2496, 0.2315, 0.2124, 0.1909, 0.1633, 0.1223] + ... [-0.7097, -0.5934, -0.5328, -0.4930, -0.3708, -0.2973, -0.2075, ... -0.1449, -0.0892, -0.0619, -0.0442, -0.0302, -0.0196, -0.0112, ... -0.0039, 0.0024, 0.0074, 0.0122, 0.0167, 0.0207, 0.0245, ... 0.0282, 0.0323, 0.0371, 0.0436, 0.0549, 0.0813] ./ n .^ (1 / 2); endfunction ## Find rows of critical values at relevant significance levels function [CVs, sampleSizes] = findCriticalValues CVs = [7.2943, 6.6014, 6.1962, 5.9088, 4.9940, 4.3033, 3.3946, 2.7142, ... 2.0470, 1.6682, 1.4079, 1.2130, 1.0596, 0.9353, 0.8326, 0.7465, ... 0.6740, 0.6126, 0.5606, 0.5170, 0.4806, 0.4508, 0.4271, 0.4091, ... NaN, NaN, NaN; ... %n=1 7.6624, 6.4955, 5.9916, 5.6682, 4.7338, 4.0740, 3.2247, 2.5920, ... 1.9774, 1.6368, 1.4078, 1.2329, 1.0974, 0.9873, 0.8947, 0.8150, ... 0.7448, 0.6820, 0.6251, 0.5727, 0.5240, 0.4779, 0.4337, 0.3903, ... 0.3462, 0.3030, 0.2558; ... %n=2 7.2278, 6.3094, 5.8569, 5.5557, 4.6578, 4.0111, 3.1763, 2.5581, ... 1.9620, 1.6314, 1.4079, 1.2390, 1.1065, 0.9979, 0.9060, 0.8264, ... 0.7560, 0.6928, 0.6350, 0.5816, 0.5314, 0.4835, 0.4371, 0.3907, ... 0.3424, 0.2885, 0.2255; ... %n=3 7.0518, 6.2208, 5.7904, 5.4993, 4.6187, 3.9788, 3.1518, 2.5414, ... 1.9545, 1.6288, 1.4080, 1.2416, 1.1104, 1.0025, 0.9110, 0.8315, ... 0.7611, 0.6977, 0.6397, 0.5859, 0.5352, 0.4868, 0.4395, 0.3920, ... 0.3421, 0.2845, 0.2146; ... %n=4 6.9550, 6.1688, 5.7507, 5.4653, 4.5949, 3.9591, 3.1370, 2.5314, ... 1.9501, 1.6272, 1.4080, 1.2430, 1.1126, 1.0051, 0.9138, 0.8344, ... 0.7640, 0.7005, 0.6424, 0.5884, 0.5375, 0.4888, 0.4411, 0.3930, ... 0.3424, 0.2833, 0.2097; ... %n=5 6.8935, 6.1345, 5.7242, 5.4426, 4.5789, 3.9459, 3.1271, 2.5248, ... 1.9472, 1.6262, 1.4081, 1.2439, 1.1140, 1.0067, 0.9156, 0.8362, ... 0.7658, 0.7023, 0.6441, 0.5901, 0.5391, 0.4901, 0.4422, 0.3938, ... 0.3427, 0.2828, 0.2071; ... %n=6 6.8509, 6.1102, 5.7053, 5.4264, 4.5674, 3.9364, 3.1201, 2.5201, ... 1.9451, 1.6255, 1.4081, 1.2445, 1.1149, 1.0079, 0.9168, 0.8375, ... 0.7671, 0.7036, 0.6454, 0.5912, 0.5401, 0.4911, 0.4430, 0.3944, ... 0.3430, 0.2826, 0.2056; ... %n=7 6.8196, 6.0920, 5.6912, 5.4142, 4.5588, 3.9293, 3.1148, 2.5166, ... 1.9436, 1.6249, 1.4081, 1.2450, 1.1156, 1.0087, 0.9177, 0.8384, ... 0.7681, 0.7045, 0.6463, 0.5921, 0.5409, 0.4918, 0.4436, 0.3949, ... 0.3433, 0.2825, 0.2046; ... %n=8 6.7486, 6.0500, 5.6582, 5.3856, 4.5384, 3.9124, 3.1024, 2.5084, ... 1.9400, 1.6237, 1.4081, 1.2460, 1.1171, 1.0106, 0.9197, 0.8406, ... 0.7702, 0.7066, 0.6483, 0.5941, 0.5428, 0.4935, 0.4451, 0.3961, ... 0.3441, 0.2826, 0.2029; ... %n=12 6.7140, 6.0292, 5.6417, 5.3713, 4.5281, 3.9040, 3.0962, 2.5044, ... 1.9382, 1.6230, 1.4081, 1.2465, 1.1179, 1.0115, 0.9207, 0.8416, ... 0.7712, 0.7077, 0.6493, 0.5950, 0.5437, 0.4944, 0.4459, 0.3968, ... 0.3445, 0.2827, 0.2023; ... %n=16 6.6801, 6.0084, 5.6252, 5.3569, 4.5178, 3.8955, 3.0900, 2.5003, ... 1.9365, 1.6224, 1.4081, 1.2470, 1.1186, 1.0123, 0.9217, 0.8426, ... 0.7723, 0.7087, 0.6503, 0.5960, 0.5446, 0.4952, 0.4466, 0.3974, ... 0.3450, 0.2829, 0.2019; ... %n=24 6.6468, 5.9877, 5.6087, 5.3425, 4.5075, 3.8869, 3.0837, 2.4963, ... 1.9347, 1.6218, 1.4082, 1.2474, 1.1193, 1.0132, 0.9226, 0.8436, ... 0.7732, 0.7097, 0.6513, 0.5969, 0.5455, 0.4960, 0.4474, 0.3980, ... 0.3455, 0.2832, 0.2016; ... %n=48 6.6634, 5.9980, 5.6169, 5.3497, 4.5127, 3.8912, 3.0868, 2.4983, ... 1.9356, 1.6221, 1.4081, 1.2472, 1.1190, 1.0128, 0.9222, 0.8431, ... 0.7728, 0.7092, 0.6508, 0.5965, 0.5451, 0.4956, 0.4470, 0.3977, ... 0.3453, 0.2830, 0.2017; ... %n=32 6.6385, 5.9825, 5.6046, 5.3389, 4.5049, 3.8848, 3.0822, 2.4953, ... 1.9343, 1.6217, 1.4082, 1.2475, 1.1195, 1.0134, 0.9228, 0.8438, ... 0.7735, 0.7099, 0.6516, 0.5972, 0.5458, 0.4962, 0.4476, 0.3982, ... 0.3456, 0.2833, 0.2016; ... %n=64 6.6318, 5.9783, 5.6012, 5.3360, 4.5028, 3.8830, 3.0809, 2.4944, ... 1.9339, 1.6215, 1.4082, 1.2476, 1.1197, 1.0136, 0.9230, 0.8440, ... 0.7737, 0.7101, 0.6517, 0.5974, 0.5459, 0.4964, 0.4477, 0.3984, ... 0.3457, 0.2833, 0.2015; ... %n=88 6.6297, 5.9770, 5.6001, 5.3350, 4.5021, 3.8825, 3.0805, 2.4942, ... 1.9338, 1.6215, 1.4082, 1.2476, 1.1197, 1.0136, 0.9231, 0.8441, ... 0.7738, 0.7102, 0.6518, 0.5974, 0.5460, 0.4965, 0.4478, 0.3984, ... 0.3458, 0.2834, 0.2015; ... %n=100 6.6262, 5.9748, 5.5984, 5.3335, 4.5010, 3.8816, 3.0798, 2.4937, ... 1.9336, 1.6214, 1.4082, 1.2477, 1.1198, 1.0137, 0.9232, 0.8442, ... 0.7739, 0.7103, 0.6519, 0.5975, 0.5461, 0.4966, 0.4479, 0.3985, ... 0.3458, 0.2834, 0.2015; ... %n=128 6.6201, 5.9709, 5.5953, 5.3308, 4.4990, 3.8800, 3.0787, 2.4930, ... 1.9333, 1.6213, 1.4082, 1.2478, 1.1199, 1.0139, 0.9234, 0.8443, ... 0.7740, 0.7105, 0.6521, 0.5977, 0.5463, 0.4967, 0.4480, 0.3986, ... 0.3459, 0.2834, 0.2015; ... %n=256 6.6127, 5.9694, 5.5955, 5.3314, 4.4982, 3.8781, 3.0775, 2.4924, ... 1.9330, 1.6212, 1.4082, 1.2479, 1.1201, 1.0140, 0.9235, 0.8445, ... 0.7742, 0.7106, 0.6523, 0.5979, 0.5464, 0.4969, 0.4481, 0.3987, ... 0.3460, 0.2835, 0.2015]; %n=Inf sampleSizes = [1 2 3 4 5 6 7 8 12 16 24 32 48 64 88 100 128 256 Inf]; endfunction % ------------------------------------------ function critVals = findAsymptoticDistributionCriticalValues critVals = [6.6127034546551, 5.9694013422151, 5.5954643397078, ... 5.3313658857909, 4.4981996466091, 3.8781250216054, ... 3.0774641787107, 2.4923671600494, 1.9329578327416, ... 1.6212385363175, 1.4081977005506, 1.2478596347253, ... 1.1200136586965, 1.0140004020016, 0.9235137094902, ... 0.8445069178452, 0.7742142410993, 0.7106405935247, ... 0.6522701010084, 0.5978828157471, 0.5464229310982, ... 0.4968804113119, 0.4481425895777, 0.3987228486242, ... 0.3460480234939, 0.2835161264344, 0.2014922164166]; %n=Inf endfunction ## Make sure alpha is within the lookup table function validateAlpha (alpha, alphas) if (alpha < alphas(1) || alpha > alphas(end)) error (strcat (["adtest: out of range invalid alpha -"], ... sprintf (" lower limit: %g", alphas(1)),... sprintf (" upper limit: %g", alphas(end)))); endif endfunction ## Simulated critical values and p-values for Anderson-Darling test function [crit, p] = adtestMC (ADStat, n, alpha, distribution, MCTol) ## Initial values vartol = mctol^2; crit = 0; p = 0; mcRepsTot = 0; mcRepsMin = 1000; ## Monte Carlo loop while true mcRepsOld = mcRepsTot; mcReps = ceil(mcRepsMin - mcRepsOld); ADstatMC = zeros(mcReps,1); ## Switch to selected distribution switch distribution case "norm" mu0 = 0; sigma0 = 1; for rep = 1:length (ADstatMC) x = normrnd (mu0, sigma0, n, 1); xCDF = sort (x); nullCDF = normcdf (xCDF, mean (x), std (x)); w = 2 * (1:n) - 1 ; ADstatMC(rep) = - w * (log (nullCDF) + ... log (1 - nullCDF(end:-1:1))) / n - n; endfor case "exp" beta0 = 1; for rep = 1:length (ADstatMC) x = exprnd (beta0, n, 1); xCDF = sort (x); nullCDF = expcdf (xCDF, mean (x)); w = 2 * (1:n) - 1 ; ADstatMC(rep) = - w * (log (nullCDF) + ... log (1 - nullCDF(end:-1:1))) / n - n; endfor case "ev" mu0 = 0; sigma0 = 1; for rep = 1:length (ADstatMC) x = evrnd (mu0, sigma0, n, 1); pHat = evfit (x); xCDF = sort (x); nullCDF = evcdf (xCDF, pHat(1), pHat(2)); w = 2 * (1:n) - 1 ; ADstatMC(rep) = - w * (log (nullCDF) + ... log (1 - nullCDF(end:-1:1))) / n - n; endfor case "unif" for rep = 1:length(ADstatMC) z = sort (rand (n, 1)); w = 2 * (1:n) - 1 ; ADstatMC(rep) = - w * (log (z) + ... log (1 - z(end:-1:1))) / n - n; endfor endswitch critMC = prctile (ADstatMC, 100 * (1 - alpha)); pMC = sum (ADstatMC > ADStat) ./ mcReps; mcRepsTot = mcRepsOld + mcReps; crit = (mcRepsOld * crit + mcReps * critMC) / mcRepsTot; p = (mcRepsOld * p + mcReps * pMC) / mcRepsTot; ## Compute a std err for p, with lower bound (1/N)*(1-1/N)/N when p==0. sepsq = max (p * (1 - p) / mcRepsTot, 1 / mcRepsTot ^ 2); if (sepsq < MCTol ^ 2) break endif ## Based on the current estimate, find the number of trials needed to ## make the MC std err less than the specified tolerance. mcRepsMin = 1.2 * (mcRepsTot * sepsq) / (MCTol ^ 2); endwhile endfunction ## Test input validation %!error adtest (); %!error adtest (ones (20,2)); %!error adtest ([1+i,0-3i]); %!error ... %! adtest (ones (20,1), "Distribution", "normal"); %!error ... %! adtest (rand (20,1), "Distribution", {"normal", 5, 3}); %!error ... %! adtest (rand (20,1), "Distribution", {"norm", 5}); %!error ... %! adtest (rand (20,1), "Distribution", {"exp", 5, 4}); %!error ... %! adtest (rand (20,1), "Distribution", {"ev", 5}); %!error ... %! adtest (rand (20,1), "Distribution", {"logn", 5, 3, 2}); %!error ... %! adtest (rand (20,1), "Distribution", {"Weibull", 5}); %!error ... %! adtest (rand (20,1), "Distribution", 35); %!error ... %! adtest (rand (20,1), "Name", "norm"); %!error ... %! adtest (rand (20,1), "Name", {"norm", 75, 10}); %!error ... %! adtest (rand (20,1), "Distribution", "norm", "Asymptotic", true); %!error ... %! adtest (rand (20,1), "MCTol", 0.001, "Asymptotic", true); %!error ... %! adtest (rand (20,1), "Distribution", {"norm", 5, 3}, "MCTol", 0.001, ... %! "Asymptotic", true); %!error ... %! [h, pval, ADstat, CV] = adtest (ones (20,1), "Distribution", {"norm",5,3},... %! "Alpha", 0.000000001); %!error ... %! [h, pval, ADstat, CV] = adtest (ones (20,1), "Distribution", {"norm",5,3},... %! "Alpha", 0.999999999); %!error ... %! adtest (10); ## Test warnings %!warning ... %! randn ("seed", 34); %! adtest (ones (20,1), "Alpha", 0.000001); %!warning ... %! randn ("seed", 34); %! adtest (normrnd(0,1,100,1), "Alpha", 0.99999); %!warning ... %! randn ("seed", 34); %! adtest (normrnd(0,1,100,1), "Alpha", 0.00001); ## Test results %!test %! load examgrades %! x = grades(:,1); %! [h, pval, adstat, cv] = adtest (x); %! assert (h, false); %! assert (pval, 0.1854, 1e-4); %! assert (adstat, 0.5194, 1e-4); %! assert (cv, 0.7470, 1e-4); %!test %! load examgrades %! x = grades(:,1); %! [h, pval, adstat, cv] = adtest (x, "Distribution", "ev"); %! assert (h, false); %! assert (pval, 0.071363, 1e-6); %!test %! load examgrades %! x = grades(:,1); %! [h, pval, adstat, cv] = adtest (x, "Distribution", {"norm", 75, 10}); %! assert (h, false); %! assert (pval, 0.4687, 1e-4); statistics-release-1.6.3/inst/anova1.m000066400000000000000000000316151456127120000176550ustar00rootroot00000000000000## Copyright (C) 2021-2022 Andreas Bertsatos ## Copyright (C) 2022 Andrew Penn ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{p} =} anova1 (@var{x}) ## @deftypefnx {statistics} {@var{p} =} anova1 (@var{x}, @var{group}) ## @deftypefnx {statistics} {@var{p} =} anova1 (@var{x}, @var{group}, @var{displayopt}) ## @deftypefnx {statistics} {@var{p} =} anova1 (@var{x}, @var{group}, @var{displayopt}, @var{vartype}) ## @deftypefnx {statistics} {[@var{p}, @var{atab}] =} anova1 (@var{x}, @dots{}) ## @deftypefnx {statistics} {[@var{p}, @var{atab}, @var{stats}] =} anova1 (@var{x}, @dots{}) ## ## Perform a one-way analysis of variance (ANOVA) for comparing the means of two ## or more groups of data under the null hypothesis that the groups are drawn ## from distributions with the same mean. For planned contrasts and/or ## diagnostic plots, use @qcode{anovan} instead. ## ## anova1 can take up to three input arguments: ## ## @itemize ## @item ## @var{x} contains the data and it can either be a vector or matrix. ## If @var{x} is a matrix, then each column is treated as a separate group. ## If @var{x} is a vector, then the @var{group} argument is mandatory. ## ## @item ## @var{group} contains the names for each group. If @var{x} is a matrix, then ## @var{group} can either be a cell array of strings of a character array, with ## one row per column of @var{x}. If you want to omit this argument, enter an ## empty array ([]). If @var{x} is a vector, then @var{group} must be a vector ## of the same length, or a string array or cell array of strings with one row ## for each element of @var{x}. @var{x} values corresponding to the same value ## of @var{group} are placed in the same group. ## ## @item ## @var{displayopt} is an optional parameter for displaying the groups contained ## in the data in a boxplot. If omitted, it is 'on' by default. If group names ## are defined in @var{group}, these are used to identify the groups in the ## boxplot. Use 'off' to omit displaying this figure. ## ## @item ## @var{vartype} is an optional parameter to used to indicate whether the ## groups can be assumed to come from populations with equal variance. When ## @qcode{vartype} is @qcode{"equal"} the variances are assumed to be equal ## (this is the default). When @qcode{vartype} is @qcode{"unequal"} the ## population variances are not assumed to be equal and Welch's ANOVA test is ## used instead. ## @end itemize ## ## anova1 can return up to three output arguments: ## ## @itemize ## @item ## @var{p} is the p-value of the null hypothesis that all group means are equal. ## ## @item ## @var{atab} is a cell array containing the results in a standard ANOVA table. ## ## @item ## @var{stats} is a structure containing statistics useful for performing ## a multiple comparison of means with the MULTCOMPARE function. ## @end itemize ## ## If anova1 is called without any output arguments, then it prints the results ## in a one-way ANOVA table to the standard output. It is also printed when ## @var{displayopt} is 'on'. ## ## ## Examples: ## ## @example ## x = meshgrid (1:6); ## x = x + normrnd (0, 1, 6, 6); ## anova1 (x, [], 'off'); ## [p, atab] = anova1(x); ## @end example ## ## ## @example ## x = ones (50, 4) .* [-2, 0, 1, 5]; ## x = x + normrnd (0, 2, 50, 4); ## groups = @{"A", "B", "C", "D"@}; ## anova1 (x, groups); ## @end example ## ## @seealso{anova2, anovan, multcompare} ## @end deftypefn function [p, anovatab, stats] = anova1 (x, group, displayopt, vartype) ## Check for valid number of input arguments if (nargin < 1 || nargin > 4) error ("anova1: invalid number of input arguments."); endif ## Add defaults if (nargin < 2) group = []; endif if (nargin < 3) displayopt = "on"; endif if (nargin < 4) vartype = "equal"; endif plotdata = ! (strcmp (displayopt, 'off')); ## Convert group to cell array from character array, make it a column if (! isempty (group) && ischar (group)) group = cellstr (group); endif if (size (group, 1) == 1) group = group'; endif ## If x is a matrix, convert it to column vector and create a ## corresponging column vector for groups if (length (x) < prod (size (x))) [n, m] = size (x); x = x(:); gi = reshape (repmat ((1:m), n, 1), n*m, 1); if (length (group) == 0) ## no group names are provided group = gi; elseif (size (group, 1) == m) ## group names exist and match columns group = group(gi,:); else error ("anova1: columns in X and GROUP length do not match."); endif endif ## Check that x and group are the same size if (! all (numel (x) == numel (group))) error ("anova1: GROUP must be a vector with the same number of rows as x."); endif ## Identify NaN values (if any) and remove them from X along with ## their corresponding values from group vector nonan = ! isnan (x); x = x(nonan); group = group(nonan, :); ## Convert group to indices and separate names [group_id, group_names] = grp2idx (group); group_id = group_id(:); named = 1; ## Center data to improve accuracy and keep uncentered data for ploting xorig = x; mu = mean(x); x = x - mu; xr = x; ## Get group size and mean for each group groups = size (group_names, 1); xs = zeros (1, groups); xm = xs; xv = xs; for j = 1:groups group_size = find (group_id == j); xs(j) = length (group_size); xm(j) = mean (xr(group_size)); xv(j) = var (xr(group_size), 0); endfor ## Calculate statistics lx = length (xr); ## Number of samples in groups gm = mean (xr); ## Grand mean of groups dfm = length (xm) - 1; ## degrees of freedom for model dfe = lx - dfm - 1; ## degrees of freedom for error SSM = xs .* (xm - gm) * (xm - gm)'; ## Sum of Squares for Model SST = (xr(:) - gm)' * (xr(:) - gm); ## Sum of Squares Total SSE = SST - SSM; ## Sum of Squares Error if (dfm > 0) MSM = SSM / dfm; ## Mean Square for Model else MSM = NaN; endif if (dfe > 0) MSE = SSE / dfe; ## Mean Square for Error else MSE = NaN; endif ## Calculate F statistic if (SSE != 0) ## Regular Matrix case. switch (lower (vartype)) case "equal" ## Assume equal variances (Fisher's One-way ANOVA) F = (SSM / dfm) / MSE; case "unequal" ## Accomodate for unequal variances (Welch's One-way ANOVA) ## Calculate the sampling variance for each group (i.e. the square of the SEM) sv = xv ./ xs; ## Calculate weights as the reciprocal of the sampling variance w = 1 ./ sv; ## Calculate the origin ori = sum (w .* xm) ./ sum (w); ## Calculate Welch's F statistic F = (groups - 1)^-1 * sum (w .* (xm - ori).^2) /... (1 + ((2 * (groups - 2)/(groups^2 - 1)) * ... sum ((1 - w / sum (w)).^2 .* (xs - 1).^-1))); ## Welch's test does not use a pooled error term MSE = NaN; ## Correct the error degrees of freedom dfe = (3 /(groups^2 - 1) * sum ((1 - w / sum (w)).^2 .* (xs-1).^-1))^-1; otherwise error ("anova1: invalid fourth (vartype) argument to anova1."); endswitch p = 1 - fcdf (F, dfm, dfe); ## Probability of F given equal means. elseif (SSM == 0) ## Constant Matrix case. F = 0; p = 1; else ## Perfect fit case. F = Inf; p = 0; end ## Create results table (if requested) if (nargout > 1) switch (lower (vartype)) case "equal" anovatab = {"Source", "SS", "df", "MS", "F", "Prob>F"; ... "Groups", SSM, dfm, MSM, F, p; ... "Error", SSE, dfe, MSE, "", ""; ... "Total", SST, dfm + dfe, "", "", ""}; case "unequal" anovatab = {"Source", "F", "df", "dfe", "F", "Prob>F"; ... "Groups", SSM, dfm, dfe, F, p}; endswitch endif ## Create stats structure (if requested) for MULTCOMPARE if (nargout > 2) if (length (group_names) > 0) stats.gnames = group_names; else stats.gnames = strjust (num2str ((1:length (xm))'), 'left'); end stats.n = xs; stats.source = 'anova1'; stats.vartype = vartype; stats.means = xm + mu; stats.vars = xv; stats.df = dfe; stats.s = sqrt (MSE); endif ## Print results table on screen if no output argument was requested if (nargout == 0 || plotdata) switch (lower (vartype)) case "equal" printf("\n ANOVA Table\n\n"); printf("Source SS df MS F Prob>F\n"); printf("------------------------------------------------------\n"); printf("Groups %10.4f %5.0f %10.4f %8.2f %9.4f\n", SSM, dfm, MSM, F, p); printf("Error %10.4f %5.0f %10.4f\n", SSE, dfe, MSE); printf("Total %10.4f %5.0f\n\n", SST, dfm + dfe); case "unequal" printf("\n Welch's ANOVA Table\n\n"); printf("Source F df dfe Prob>F\n"); printf("-----------------------------------------\n"); printf("Groups %8.2f %5.0f %7.2f %10.4f\n\n", F, dfm, dfe, p); endswitch endif ## Plot data using BOXPLOT (unless opted out) if (plotdata) boxplot (x, group_id, "Notch", "on", "Labels", group_names); endif endfunction %!demo %! x = meshgrid (1:6); %! randn ("seed", 15); # for reproducibility %! x = x + normrnd (0, 1, 6, 6); %! anova1 (x, [], 'off'); %!demo %! x = meshgrid (1:6); %! randn ("seed", 15); # for reproducibility %! x = x + normrnd (0, 1, 6, 6); %! [p, atab] = anova1(x); %!demo %! x = ones (50, 4) .* [-2, 0, 1, 5]; %! randn ("seed", 13); # for reproducibility %! x = x + normrnd (0, 2, 50, 4); %! groups = {"A", "B", "C", "D"}; %! anova1 (x, groups); %!demo %! y = [54 87 45; 23 98 39; 45 64 51; 54 77 49; 45 89 50; 47 NaN 55]; %! g = [1 2 3 ; 1 2 3 ; 1 2 3 ; 1 2 3 ; 1 2 3 ; 1 2 3 ]; %! anova1 (y(:), g(:), "on", "unequal"); ## testing against GEAR.DAT data file and results for one-factor ANOVA from ## https://www.itl.nist.gov/div898/handbook/eda/section3/eda354.htm %!test %! data = [1.006, 0.996, 0.998, 1.000, 0.992, 0.993, 1.002, 0.999, 0.994, 1.000, ... %! 0.998, 1.006, 1.000, 1.002, 0.997, 0.998, 0.996, 1.000, 1.006, 0.988, ... %! 0.991, 0.987, 0.997, 0.999, 0.995, 0.994, 1.000, 0.999, 0.996, 0.996, ... %! 1.005, 1.002, 0.994, 1.000, 0.995, 0.994, 0.998, 0.996, 1.002, 0.996, ... %! 0.998, 0.998, 0.982, 0.990, 1.002, 0.984, 0.996, 0.993, 0.980, 0.996, ... %! 1.009, 1.013, 1.009, 0.997, 0.988, 1.002, 0.995, 0.998, 0.981, 0.996, ... %! 0.990, 1.004, 0.996, 1.001, 0.998, 1.000, 1.018, 1.010, 0.996, 1.002, ... %! 0.998, 1.000, 1.006, 1.000, 1.002, 0.996, 0.998, 0.996, 1.002, 1.006, ... %! 1.002, 0.998, 0.996, 0.995, 0.996, 1.004, 1.004, 0.998, 0.999, 0.991, ... %! 0.991, 0.995, 0.984, 0.994, 0.997, 0.997, 0.991, 0.998, 1.004, 0.997]; %! group = [1:10] .* ones (10,10); %! group = group(:); %! [p, tbl] = anova1 (data, group, "off"); %! assert (p, 0.022661, 1e-6); %! assert (tbl{2,5}, 2.2969, 1e-4); %! assert (tbl{2,3}, 9, 0); %! assert (tbl{4,2}, 0.003903, 1e-6); %! data = reshape (data, 10, 10); %! [p, tbl, stats] = anova1 (data, [], "off"); %! assert (p, 0.022661, 1e-6); %! assert (tbl{2,5}, 2.2969, 1e-4); %! assert (tbl{2,3}, 9, 0); %! assert (tbl{4,2}, 0.003903, 1e-6); %! means = [0.998, 0.9991, 0.9954, 0.9982, 0.9919, 0.9988, 1.0015, 1.0004, 0.9983, 0.9948]; %! N = 10 * ones (1, 10); %! assert (stats.means, means, 1e-6); %! assert (length (stats.gnames), 10, 0); %! assert (stats.n, N, 0); ## testing against one-way ANOVA example dataset from GraphPad Prism 8 %!test %! y = [54 87 45; 23 98 39; 45 64 51; 54 77 49; 45 89 50; 47 NaN 55]; %! g = [1 2 3 ; 1 2 3 ; 1 2 3 ; 1 2 3 ; 1 2 3 ; 1 2 3 ]; %! [p, tbl] = anova1 (y(:), g(:), "off", "equal"); %! assert (p, 0.00004163, 1e-6); %! assert (tbl{2,5}, 22.573418, 1e-6); %! assert (tbl{2,3}, 2, 0); %! assert (tbl{3,3}, 14, 0); %! [p, tbl] = anova1 (y(:), g(:), "off", "unequal"); %! assert (p, 0.00208877, 1e-8); %! assert (tbl{2,5}, 15.523192, 1e-6); %! assert (tbl{2,3}, 2, 0); %! assert (tbl{2,4}, 7.5786897, 1e-6); statistics-release-1.6.3/inst/anova2.m000066400000000000000000000370561456127120000176630ustar00rootroot00000000000000## Copyright (C) 2022 Andreas Bertsatos ## Copyright (C) 2022 Andrew Penn ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{p} =} anova2 (@var{x}, @var{reps}) ## @deftypefnx {statistics} {@var{p} =} anova2 (@var{x}, @var{reps}, @var{displayopt}) ## @deftypefnx {statistics} {@var{p} =} anova2 (@var{x}, @var{reps}, @var{displayopt}, @var{model}) ## @deftypefnx {statistics} {[@var{p}, @var{atab}] =} anova2 (@dots{}) ## @deftypefnx {statistics} {[@var{p}, @var{atab}, @var{stats}] =} anova2 (@dots{}) ## ## Performs two-way factorial (crossed) or a nested analysis of variance ## (ANOVA) for balanced designs. For unbalanced factorial designs, diagnostic ## plots and/or planned contrasts, use @qcode{anovan} instead. ## ## @qcode{anova2} requires two input arguments with an optional third and fourth: ## ## @itemize ## @item ## @var{x} contains the data and it must be a matrix of at least two columns and ## two rows. ## ## @item ## @var{reps} is the number of replicates for each combination of factor groups. ## ## @item ## @var{displayopt} is an optional parameter for displaying the ANOVA table, ## when it is 'on' (default) and suppressing the display when it is 'off'. ## ## @item ## @var{model} is an optional parameter to specify the model type as either: ## ## @itemize ## @item ## "interaction" or "full" (default): compute both main effects and their ## interaction ## ## @item ## "linear": compute both main effects without an interaction. When @var{reps} ## > 1 the test is suitable for a balanced randomized block design. When ## @var{reps} == 1, the test becomes a One-way Repeated Measures (RM)-ANOVA ## with Greenhouse-Geisser correction to the column factor degrees of freedom ## to make the test robust to violations of sphericity ## ## @item ## "nested": treat the row factor as nested within columns. Note that the row ## factor is considered a random factor in the calculation of the statistics. ## ## @end itemize ## @end itemize ## ## @qcode{anova2} returns up to three output arguments: ## ## @itemize ## @item ## @var{p} is the p-value of the null hypothesis that all group means are equal. ## ## @item ## @var{atab} is a cell array containing the results in a standard ANOVA table. ## ## @item ## @var{stats} is a structure containing statistics useful for performing ## a multiple comparison of means with the MULTCOMPARE function. ## @end itemize ## ## If anova2 is called without any output arguments, then it prints the results ## in a one-way ANOVA table to the standard output as if @var{displayopt} is ## 'on'. ## ## Examples: ## ## @example ## load popcorn; ## anova2 (popcorn, 3); ## @end example ## ## ## @example ## [p, anovatab, stats] = anova2 (popcorn, 3, "off"); ## disp (p); ## @end example ## ## @seealso{anova1, anovan, multcompare} ## @end deftypefn function [p, anovatab, stats] = anova2 (x, reps, displayopt, model) ## Check for valid number of input arguments if (nargin < 1 || nargin >4) error ("anova2: invalid number of input arguments."); endif ## Check for NaN values in X if (any (isnan( x(:)))) error ("anova2: NaN values in input are not allowed. Use anovan instead."); endif ## Add defaults if (nargin == 1) reps = 1; endif if (nargin < 3) displayopt = "on"; endif if (nargin < 4) model = "interaction"; endif epsilonhat = []; plotdata = ! (strcmp (displayopt, "off")); ## Calculate group numbers FFGn = size (x, 1) / reps; ## Number of groups in Row Factor SFGn = size (x, 2); ## Number of groups in Column Factor ## Check for valid repetitions if (! (int16 (FFGn) == FFGn)) error ("anova2: the number of rows in X must be a multiple of REPS."); else idx_s = 1; idx_e = reps; for i = 1:FFGn RIdx(i,:) = [idx_s:idx_e]; idx_s += reps; idx_e += reps; endfor endif ## Calculate group sample sizes GTsz = length (x(:)); ## Number of total samples FFGs = prod (size (x(RIdx(1,:),:))); ## Number of group samples of Row Factor SFGs = size (x, 1); ## Number of group samples of Column Factor ## Calculate group means GTmu = sum (x(:)) / GTsz; ## Grand mean of groups for i = 1:FFGn ## Group means of Row Factor FFGm(i) = mean (x(RIdx(i,:),:), "all"); endfor for i = 1:SFGn ## Group means of Column Factor SFGm(i) = mean (x(:,i)); endfor ## Calculate Sum of Squares for Row and Column Factors SSR = sum (FFGs * ((FFGm - GTmu) .^ 2)); ## Rows Sum of Squares SSC = sum (SFGs * ((SFGm - GTmu) .^ 2)); ## Columns Sum of Squares ## Calculate Total Sum of Squares SST = (x(:) - GTmu)' * (x(:) - GTmu); ## Calculate Sum of Squares Error (Within) if (reps > 1) SSE = 0; for i = 1:FFGn for j = 1:SFGn SSE += sum ((x(RIdx(i,:),j) - mean (x(RIdx(i,:),j))) .^ 2); endfor endfor else SSE = SST - SSC - SSR; endif ## Calculate degrees of freedom and Sum of Squares Interaction (if applicable) df_SSR = FFGn - 1; ## Row Factor df_SSC = SFGn - 1; ## Column Factor if (reps > 1) df_SSE = GTsz - (FFGn * SFGn); ## Error with replication df_SSI = df_SSR * df_SSC; ## Interaction: Degrees of Freedom SSI = SST - SSR - SSC - SSE; ## Interaction: Sum of Squares else df_SSE = df_SSR * df_SSC; ## No replication, assuming additive model df_SSI = 0; SSI = 0; endif df_tot = GTsz - 1; ## Total ## Model-specific calculations of sums-of-squares, mean squares and degrees of ## freedom. The calculations are based on equalities for the partitioning of ## variance in fully balanced designs. switch (lower (model)) case {"interaction", "full"} ## TWO-WAY ANOVA WITH INTERACTION (full factorial model) ## Sums--of-squares are already partitioned into main effects and ## interaction. Just calculate mean-squares and degrees of fredom model = "interaction"; MSE = SSE / df_SSE; ## Mean Square for Error (Within) MSR = SSR / df_SSR; ## Mean Square for Row Factor MS_DENOM = MSE; df_DENOM = df_SSE; case "linear" ## TWO-WAY ANOVA WITHOUT INTERACTION (additive, linear model) ## Pool Error and Interaction term model = "linear"; SSE += SSI; df_SSE += df_SSI; SSI = 0; df_SSI = 0; if (reps == 1) ## Assume one-way repeated measures ANOVA. Perform calculations for a ## correction factor (epsilonhat) to make tests of the Column factor ## robust to violations of sphericity vcov = cov (x); N = SFGn^2 * (mean (diag (vcov)) - mean (mean (vcov)))^2; D = (SFGn - 1) * ... (sum (sumsq (vcov)) - 2 * SFGn * sum ((mean (vcov, 2).^2)) + ... SFGn^2 * mean (mean (vcov))^2); epsilonhat = N / D; dfN_GG = epsilonhat * (SFGn - 1); dfD_GG = epsilonhat * (FFGn - 1) * (SFGn - 1); endif reps = 1; ## Set reps to 1 to avoid printing interaction MSE = SSE / df_SSE; ## Mean Square for Error (Within) MSR = SSR / df_SSR; ## Mean Square for Row Factor MS_DENOM = MSE; df_DENOM = df_SSE; case "nested" ## NESTED ANOVA ## Row Factor is nested within Column Factor. Treat Row factor as random. ## Pool Row Factor and Interaction term model = "nested"; SSR += SSI; df_SSR += df_SSI; SSI = 0; df_SSI = 0; reps = 1; ## Set reps to 1 to avoid printing interaction MSE = SSE / df_SSE; ## Mean Square for Error (Within) MSR = SSR / df_SSR; ## Mean Square for Row Factor MS_DENOM = MSR; ## Row factor is random so MSR is denominator df_DENOM = df_SSR; ## Row factor is random so df_SSR is denominator otherwise error ("anova2: model type not recognised"); endswitch ## Calculate F statistics and p values F_MSR = MSR / MSE; ## F statistic for Row Factor p_MSR = 1 - fcdf (F_MSR, df_SSR, df_SSE); MSC = SSC / df_SSC; ## Mean Square for Column Factor F_MSC = MSC / MS_DENOM; ## F statistic for Column Factor if (isempty(epsilonhat)) p_MSC = 1 - fcdf (F_MSC, df_SSC, df_DENOM); else ## Apply correction for sphericity to the p-value of the column factor p_MSC = 1 - fcdf (F_MSC, dfN_GG, dfD_GG); endif ## With replication if (reps > 1) MSI = SSI / df_SSI; ## Mean Square for Interaction F_MSI = MSI / MSE; ## F statistic for Interaction p_MSI = 1 - fcdf (F_MSI, df_SSI, df_SSE); else MSI = 0; F_MSI = 0; p_MSI = NaN; endif ## Create p output (if requested) if (nargout > 0) if (reps > 1) p = [p_MSC, p_MSR, p_MSI]; else p = [p_MSC, p_MSR]; endif endif ## Create results table (if requested) if (nargout > 1 && reps > 1) anovatab = {"Source", "SS", "df", "MS", "F", "Prob>F"; ... "Columns", SSC, df_SSC, MSC, F_MSC, p_MSC; ... "Rows", SSR, df_SSR, MSR, F_MSR, p_MSR; ... "Interaction", SSI, df_SSI, MSI, F_MSI, p_MSI; ... "Error", SSE, df_SSE, MSE, "", ""; ... "Total", SST, df_tot, "", "", ""}; elseif (nargout > 1 && reps == 1) anovatab = {"Source", "SS", "df", "MS", "F", "Prob>F"; ... "Columns", SSC, df_SSC, MSC, F_MSC, p_MSC; ... "Rows", SSR, df_SSR, MSR, F_MSR, p_MSR; ... "Error", SSE, df_SSE, MSE, "", ""; ... "Total", SST, df_tot, "", "", ""}; endif ## Create stats structure (if requested) for MULTCOMPARE if (nargout > 2) stats.source = "anova2"; stats.sigmasq = MS_DENOM; ## MS used to calculate F relating to stats.pval stats.colmeans = SFGm(:)'; stats.coln = SFGs; stats.rowmeans = FFGm(:)'; stats.rown = FFGs; stats.inter = (reps > 1); if stats.inter stats.pval = p_MSI; ## Interaction p-value if stats.inter is true else stats.pval = p_MSC; ## Column Factor p-value if stats.inter is false end stats.df = df_DENOM; ## Degrees of freedom used to calculate stats.pval stats.model = model; endif ## Print results table on screen if no output argument was requested if (nargout == 0 || plotdata) printf("\n ANOVA Table\n\n"); printf("Source SS df MS F Prob>F\n"); printf("-----------------------------------------------------------\n"); printf("Columns %10.4f %5.0f %10.4f %8.2f %9.4f\n", ... SSC, df_SSC, MSC, F_MSC, p_MSC); printf("Rows %10.4f %5.0f %10.4f %8.2f %9.4f\n", ... SSR, df_SSR, MSR, F_MSR, p_MSR); if (reps > 1) printf("Interaction %10.4f %5.0f %10.4f %8.2f %9.4f\n", ... SSI, df_SSI, MSI, F_MSI, p_MSI); endif printf("Error %10.4f %5.0f %10.4f\n", SSE, df_SSE, MSE); printf("Total %10.4f %5.0f\n\n", SST, df_tot); if (! isempty (epsilonhat)) printf (strcat (["Note: Greenhouse-Geisser's correction was applied to the\n"], ... ["degrees of freedom for the Column factor: F(%.2f,%.2f)\n\n"]),... dfN_GG, dfD_GG); endif if (strcmpi (model, "nested")) printf (strcat (["Note: Rows are a random factor nested within the columns.\n"], ... ["The Column F statistic uses the Row MS instead of the MSE.\n\n"])); endif endif endfunction %!demo %! %! # Factorial (Crossed) Two-way ANOVA with Interaction %! %! popcorn = [5.5, 4.5, 3.5; 5.5, 4.5, 4.0; 6.0, 4.0, 3.0; ... %! 6.5, 5.0, 4.0; 7.0, 5.5, 5.0; 7.0, 5.0, 4.5]; %! %! [p, atab, stats] = anova2(popcorn, 3, "on"); %!demo %! %! # One-way Repeated Measures ANOVA (Rows are a crossed random factor) %! %! data = [54, 43, 78, 111; %! 23, 34, 37, 41; %! 45, 65, 99, 78; %! 31, 33, 36, 35; %! 15, 25, 30, 26]; %! %! [p, atab, stats] = anova2 (data, 1, "on", "linear"); %!demo %! %! # Balanced Nested One-way ANOVA (Rows are a nested random factor) %! %! data = [4.5924 7.3809 21.322; -0.5488 9.2085 25.0426; ... %! 6.1605 13.1147 22.66; 2.3374 15.2654 24.1283; ... %! 5.1873 12.4188 16.5927; 3.3579 14.3951 10.2129; ... %! 6.3092 8.5986 9.8934; 3.2831 3.4945 10.0203]; %! %! [p, atab, stats] = anova2 (data, 4, "on", "nested"); ## testing against popcorn data and results from Matlab %!test %! ## Test for anova2 ("interaction") %! ## comparison with results from Matlab for column effect %! popcorn = [5.5, 4.5, 3.5; 5.5, 4.5, 4.0; 6.0, 4.0, 3.0; ... %! 6.5, 5.0, 4.0; 7.0, 5.5, 5.0; 7.0, 5.0, 4.5]; %! [p, atab, stats] = anova2 (popcorn, 3, "off"); %! assert (p(1), 7.678957383294716e-07, 1e-14); %! assert (p(2), 0.0001003738963050171, 1e-14); %! assert (p(3), 0.7462153966366274, 1e-14); %! assert (atab{2,5}, 56.700, 1e-14); %! assert (atab{2,3}, 2, 0); %! assert (atab{4,2}, 0.08333333333333348, 1e-14); %! assert (atab{5,4}, 0.1388888888888889, 1e-14); %! assert (atab{5,2}, 1.666666666666667, 1e-14); %! assert (atab{6,2}, 22); %! assert (stats.source, "anova2"); %! assert (stats.colmeans, [6.25, 4.75, 4]); %! assert (stats.inter, 1, 0); %! assert (stats.pval, 0.7462153966366274, 1e-14); %! assert (stats.df, 12); %!test %! ## Test for anova2 ("linear") - comparison with results from GraphPad Prism 8 %! data = [54, 43, 78, 111; %! 23, 34, 37, 41; %! 45, 65, 99, 78; %! 31, 33, 36, 35; %! 15, 25, 30, 26]; %! [p, atab, stats] = anova2 (data, 1, "off", "linear"); %! assert (atab{2,2}, 2174.95, 1e-10); %! assert (atab{3,2}, 8371.7, 1e-10); %! assert (atab{4,2}, 2404.3, 1e-10); %! assert (atab{5,2}, 12950.95, 1e-10); %! assert (atab{2,4}, 724.983333333333, 1e-10); %! assert (atab{3,4}, 2092.925, 1e-10); %! assert (atab{4,4}, 200.358333333333, 1e-10); %! assert (atab{2,5}, 3.61843363972882, 1e-10); %! assert (atab{3,5}, 10.445909412303, 1e-10); %! assert (atab{2,6}, 0.087266112738617, 1e-10); %! assert (atab{3,6}, 0.000698397753556, 1e-10); %!test %! ## Test for anova2 ("nested") - comparison with results from GraphPad Prism 8 %! data = [4.5924 7.3809 21.322; -0.5488 9.2085 25.0426; ... %! 6.1605 13.1147 22.66; 2.3374 15.2654 24.1283; ... %! 5.1873 12.4188 16.5927; 3.3579 14.3951 10.2129; ... %! 6.3092 8.5986 9.8934; 3.2831 3.4945 10.0203]; %! [p, atab, stats] = anova2 (data, 4, "off", "nested"); %! assert (atab{2,2}, 745.360306290833, 1e-10); %! assert (atab{3,2}, 278.01854140125, 1e-10); %! assert (atab{4,2}, 180.180377467501, 1e-10); %! assert (atab{5,2}, 1203.55922515958, 1e-10); %! assert (atab{2,4}, 372.680153145417, 1e-10); %! assert (atab{3,4}, 92.67284713375, 1e-10); %! assert (atab{4,4}, 10.0100209704167, 1e-10); %! assert (atab{2,5}, 4.02146005730833, 1e-10); %! assert (atab{3,5}, 9.25800729165627, 1e-10); %! assert (atab{2,6}, 0.141597630656771, 1e-10); %! assert (atab{3,6}, 0.000636643812875719, 1e-10); statistics-release-1.6.3/inst/anovan.m000066400000000000000000002223731456127120000177550ustar00rootroot00000000000000## Copyright (C) 2003-2005 Andy Adler ## Copyright (C) 2021 Christian Scholz ## Copyright (C) 2022 Andreas Bertsatos ## Copyright (C) 2022 Andrew Penn ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{p} =} anovan (@var{Y}, @var{GROUP}) ## @deftypefnx {statistics} {@var{p} =} anovan (@var{Y}, @var{GROUP}, @var{name}, @var{value}) ## @deftypefnx {statistics} {[@var{p}, @var{atab}] =} anovan (@dots{}) ## @deftypefnx {statistics} {[@var{p}, @var{atab}, @var{stats}] =} anovan (@dots{}) ## @deftypefnx {statistics} {[@var{p}, @var{atab}, @var{stats}, @var{terms}] =} anovan (@dots{}) ## ## Perform a multi (N)-way analysis of (co)variance (ANOVA or ANCOVA) to ## evaluate the effect of one or more categorical or continuous predictors (i.e. ## independent variables) on a continuous outcome (i.e. dependent variable). The ## algorithms used make @code{anovan} suitable for balanced or unbalanced ## factorial (crossed) designs. By default, @code{anovan} treats all factors ## as fixed. Examples of function usage can be found by entering the command ## @code{demo anovan}. A bootstrap resampling variant of this function, ## @code{bootlm}, is available in the statistics-resampling package and has ## similar usage. ## ## Data is a single vector @var{Y} with groups specified by a corresponding ## matrix or cell array of group labels @var{GROUP}, where each column of ## @var{GROUP} has the same number of rows as @var{Y}. For example, if ## @code{@var{Y} = [1.1;1.2]; @var{GROUP} = [1,2,1; 1,5,2];} then observation ## 1.1 was measured under conditions 1,2,1 and observation 1.2 was measured ## under conditions 1,5,2. If the @var{GROUP} provided is empty, then the linear ## model is fit with just the intercept (no predictors). ## ## @code{anovan} can take a number of optional parameters as name-value pairs. ## ## @code{[@dots{}] = anovan (@var{Y}, @var{GROUP}, "continuous", @var{continuous})} ## ## @itemize ## @item ## @var{continuous} is a vector of indices indicating which of the columns (i.e. ## factors) in @var{GROUP} should be treated as continuous predictors rather ## than as categorical predictors. The relationship between continuous ## predictors and the outcome should be linear. ## @end itemize ## ## @code{[@dots{}] = anovan (@var{Y}, @var{GROUP}, "random", @var{random})} ## ## @itemize ## @item ## @var{random} is a vector of indices indicating which of the columns (i.e. ## factors) in @var{GROUP} should be treated as random effects rather than ## fixed effects. Octave @code{anovan} provides only basic support for random ## effects. Specifically, since all F-statistics in @code{anovan} are ## calculated using the mean-squared error (MSE), any interaction terms ## containing a random effect are dropped from the model term definitions and ## their associated variance is pooled with the residual, unexplained variance ## making up the MSE. In effect, the model then fitted equates to a linear mixed ## model with random intercept(s). Variable names for random factors are ## appended with a ' symbol. ## @end itemize ## ## @code{[@dots{}] = anovan (@var{Y}, @var{GROUP}, "model", @var{modeltype})} ## ## @itemize ## @item ## @var{modeltype} can specified as one of the following: ## ## @itemize ## @item ## "linear" (default) : compute @math{N} main effects with no interactions. ## ## @item ## "interaction" : compute @math{N} effects and @math{N*(N-1)} two-factor ## interactions ## ## @item ## "full" : compute the @math{N} main effects and interactions at all levels ## ## @item ## a scalar integer : representing the maximum interaction order ## ## @item ## a matrix of term definitions : each row is a term and each column is a factor ## @end itemize ## ## @example ## -- Example: ## A two-way ANOVA with interaction would be: [1 0; 0 1; 1 1] ## @end example ## ## @end itemize ## ## @code{[@dots{}] = anovan (@var{Y}, @var{GROUP}, "sstype", @var{sstype})} ## ## @itemize ## @item ## @var{sstype} can specified as one of the following: ## ## @itemize ## @item ## 1 : Type I sequential sums-of-squares. ## ## @item ## 2 or "h" : Type II partially sequential (or hierarchical) sums-of-squares ## ## @item ## 3 (default) : Type III partial, constrained or marginal sums-of-squares ## ## @end itemize ## @end itemize ## ## @code{[@dots{}] = anovan (@var{Y}, @var{GROUP}, "varnames", @var{varnames})} ## ## @itemize ## @item ## @var{varnames} must be a cell array of strings with each element containing a ## factor name for each column of @var{GROUP}. By default (if not parsed as ## optional argument), @var{varnames} are "X1","X2","X3", etc. ## @end itemize ## ## @code{[@dots{}] = anovan (@var{Y}, @var{GROUP}, "alpha", @var{alpha})} ## ## @itemize ## @item ## @var{alpha} must be a scalar value between 0 and 1 requesting ## @math{100*(1-@var{alpha})%} confidence bounds for the regression coefficients ## returned in @var{stats}.coeffs (default 0.05 for 95% confidence). ## @end itemize ## ## @code{[@dots{}] = anovan (@var{Y}, @var{GROUP}, "display", @var{dispopt})} ## ## @itemize ## @item ## @var{dispopt} can be either "on" (default) or "off" and controls the display ## of the model formula, table of model parameters, the ANOVA table and the ## diagnostic plots. The F-statistic and p-values are formatted in APA-style. ## To avoid p-hacking, the table of model parameters is only displayed if we set ## planned contrasts (see below). ## @end itemize ## ## @code{[@dots{}] = anovan (@var{Y}, @var{GROUP}, "contrasts", @var{contrasts})} ## ## @itemize ## @item ## @var{contrasts} can be specified as one of the following: ## ## @itemize ## @item ## A string corresponding to one of the built-in contrasts listed below: ## ## @itemize ## @item ## "simple" or "anova" (default): Simple (ANOVA) contrast coding. (The first ## level appearing in the @var{GROUP} column is the reference level) ## ## @item ## "poly": Polynomial contrast coding for trend analysis. ## ## @item ## "helmert": Helmert contrast coding: the difference between each level with ## the mean of the subsequent levels. ## ## @item ## "effect": Deviation effect coding. (The first level appearing in the ## @var{GROUP} column is omitted). ## ## @item ## "sdif" or "sdiff": Successive differences contrast coding: the difference ## between each level with the previous level. ## ## @item ## "treatment": Treatment contrast (or dummy) coding. (The first level appearing ## in the @var{GROUP} column is the reference level). These contrasts are not ## compatible with @var{sstype} = 3. ## ## @end itemize ## ## @item ## A matrix containing a custom contrast coding scheme (i.e. the generalized ## inverse of contrast weights). Rows in the contrast matrices correspond to ## factor levels in the order that they first appear in the @var{GROUP} column. ## The matrix must contain the same number of columns as there are the number of ## factor levels minus one. ## @end itemize ## ## If the anovan model contains more than one factor and a built-in contrast ## coding scheme was specified, then those contrasts are applied to all factors. ## To specify different contrasts for different factors in the model, ## @var{contrasts} should be a cell array with the same number of cells as there ## are columns in @var{GROUP}. Each cell should define contrasts for the ## respective column in @var{GROUP} by one of the methods described above. If ## cells are left empty, then the default contrasts are applied. Contrasts for ## cells corresponding to continuous factors are ignored. ## @end itemize ## ## @code{[@dots{}] = anovan (@var{Y}, @var{GROUP}, "weights", @var{weights})} ## ## @itemize ## @item ## @var{weights} is an optional vector of weights to be used when fitting the ## linear model. Weighted least squares (WLS) is used with weights (that is, ## minimizing @code{sum (@var{weights} * @var{residuals} .^ 2))}; otherwise ## ordinary least squares (OLS) is used (default is empty for OLS). ## @end itemize ## ## @code{anovan} can return up to four output arguments: ## ## @code{@var{p} = anovan (@dots{})} returns a vector of p-values, one for each ## term. ## ## @code{[@var{p}, @var{atab}] = anovan (@dots{})} returns a cell array ## containing the ANOVA table. ## ## @code{[@var{p}, @var{atab}, @var{stats}] = anovan (@dots{})} returns a ## structure containing additional statistics, including degrees of freedom and ## effect sizes for each term in the linear model, the design matrix, the ## variance-covariance matrix, (weighted) model residuals, and the mean squared ## error. The columns of @var{stats}.coeffs (from left-to-right) report the ## model coefficients, standard errors, lower and upper @math{100*(1-alpha)%} ## confidence interval bounds, t-statistics, and p-values relating to the ## contrasts. The number appended to each term name in @var{stats}.coeffnames ## corresponds to the column number in the relevant contrast matrix for that ## factor. The @var{stats} structure can be used as input for @code{multcompare}. ## ## @code{[@var{p}, @var{atab}, @var{stats}, @var{terms}] = anovan (@dots{})} ## returns the model term definitions. ## ## @seealso{anova1, anova2, multcompare, fitlm} ## @end deftypefn function [P, T, STATS, TERMS] = anovan (Y, GROUP, varargin) if (nargin < 2) error (strcat (["anovan usage: ""anovan (Y, GROUP)""; "], ... [" atleast 2 input arguments required"])); endif ## Check supplied parameters if ((numel (varargin) / 2) != fix (numel (varargin) / 2)) error ("anovan: wrong number of arguments.") endif MODELTYPE = "linear"; DISPLAY = "on"; SSTYPE = 3; VARNAMES = []; CONTINUOUS = []; RANDOM = []; CONTRASTS = {}; ALPHA = 0.05; WEIGHTS = []; for idx = 3:2:nargin name = varargin{idx-2}; value = varargin{idx-1}; switch (lower (name)) case "model" MODELTYPE = value; case "continuous" CONTINUOUS = value; case "random" RANDOM = value; case "nested" error (strcat (["anovan: nested ANOVA is not supported. Please use"], ... [" anova2 for fully balanced nested ANOVA designs."])); case "sstype" SSTYPE = value; case "varnames" VARNAMES = value; case {"display","displayopt"} DISPLAY = value; case "contrasts" CONTRASTS = value; case "alpha" ALPHA = value; case "weights" WEIGHTS = value; otherwise error (sprintf ("anovan: parameter %s is not supported", name)); endswitch endfor ## Evaluate continuous input argument if (isnumeric (CONTINUOUS)) if (any (CONTINUOUS != abs (fix (CONTINUOUS)))) error (strcat (["anovan: the value provided for the CONTINUOUS"], ... [" parameter must be a positive integer"])); endif else error (strcat (["anovan: the value provided for the CONTINUOUS"], ... [" parameter must be numeric"])); endif ## Accomodate for different formats for GROUP ## GROUP can be a matrix of numeric identifiers of a cell arrays ## of strings or numeric idenitiers N = size (GROUP, 2); # number of anova "ways" n = numel (Y); # total number of observations if (prod (size (Y)) != n) error ("anovan: for ""anovan (Y, GROUP)"", Y must be a vector"); endif if (numel (unique (CONTINUOUS)) > N) error (strcat (["anovan: the number of factors assigned as continuous"], ... [" cannot exceed the number of factors in GROUP"])); endif if (any ((CONTINUOUS > N) || any (CONTINUOUS <= 0))) error (strcat (["anovan: one or more indices provided in the value"], ... [" for the continuous parameter are out of range"])); endif cont_vec = false (1, N); cont_vec(CONTINUOUS) = true; if (iscell (GROUP)) if (size (GROUP, 1) == 1) tmp = cell (n, N); for j = 1:N if (isnumeric (GROUP{j})) if (ismember (j, CONTINUOUS)) tmp(:,j) = num2cell (GROUP{j}); else tmp(:,j) = cellstr (num2str (GROUP{j})); endif else if (ismember (j, CONTINUOUS)) error ("anovan: continuous factors must be a numeric datatype"); endif tmp(:,j) = GROUP{j}; endif endfor GROUP = tmp; endif endif if (! isempty (GROUP)) if (size (GROUP,1) != n) error ("anovan: GROUP must be a matrix with the same number of rows as Y"); endif endif if (! isempty (VARNAMES)) if (iscell (VARNAMES)) if (all (cellfun (@ischar, VARNAMES))) nvarnames = numel(VARNAMES); else error (strcat (["anovan: all variable names must be character"], ... [" or character arrays"])); endif elseif (ischar (VARNAMES)) nvarnames = 1; VARNAMES = {VARNAMES}; elseif (isstring (VARNAMES)) nvarnames = 1; VARNAMES = {char(VARNAMES)}; else error (strcat (["anovan: varnames is not of a valid type. Must be a cell"], ... [" array of character arrays, character array or string"])); endif else nvarnames = N; VARNAMES = arrayfun(@(x) ["X",num2str(x)], 1:N, "UniformOutput", 0); endif if (nvarnames != N) error (strcat (["anovan: number of variable names is not equal"], ... [" to the number of grouping variables"])); endif ## Evaluate random argument (if applicable) if (! isempty(RANDOM)) if (isnumeric (RANDOM)) if (any (RANDOM != abs (fix (RANDOM)))) error (strcat (["anovan: the value provided for the RANDOM"], ... [" parameter must be a positive integer"])); endif else error (strcat (["anovan: the value provided for the RANDOM"], ... [" parameter must be numeric"])); endif if (numel (RANDOM) > N) error (strcat (["anovan: the number of elements in RANDOM cannot"], ... [" exceed the number of columns in GROUP."])); endif if (max (RANDOM) > N) error (strcat (["anovan: the indices listed in RANDOM cannot"], ... [" exceed the number of columns in GROUP."])); endif for v = 1:N if (ismember (v, RANDOM)) VARNAMES{v} = strcat (VARNAMES{v},"'"); endif endfor endif ## Evaluate contrasts (if applicable) if isempty (CONTRASTS) CONTRASTS = cell (1, N); planned = false; else if (ischar(CONTRASTS)) contr_str = CONTRASTS; CONTRASTS = cell (1, N); CONTRASTS(:) = {contr_str}; endif if (! iscell (CONTRASTS)) CONTRASTS = {CONTRASTS}; endif for i = 1:N if (! isempty (CONTRASTS{i})) msg = strcat(["columns in CONTRASTS must sum to"], ... [" 0 for SSTYPE 3. Switching to SSTYPE 2 instead."]); if (isnumeric(CONTRASTS{i})) ## Check whether all the columns sum to 0 if (any (abs (sum (CONTRASTS{i})) > eps ('single'))) warning (sprintf ( ... 'Note that the CONTRASTS for predictor %u do not sum to zero', i)); endif ## Check whether contrasts are orthogonal if (any (abs (reshape (corr (CONTRASTS{i}) - ... eye (size (CONTRASTS{i}, 2)), [], 1))... > eps ('single'))) warning (sprintf ( ... 'Note that the CONTRASTS for predictor %u are not orthogonal', i)); endif else if (! ismember (lower (CONTRASTS{i}), ... {"simple","anova","poly","helmert","effect",... "sdif","sdiff","treatment"})) error (strcat(["anovan: valid built-in contrasts are:"], ... [" ""simple"", ""poly"", ""helmert"","],... ["""effect"", ""sdif"" or ""treatment"""])); endif if (strcmpi (CONTRASTS{i}, "treatment") && (SSTYPE==3)) warning (msg); SSTYPE = 2; endif endif endif endfor planned = true; endif ## Evaluate alpha input argument if (! isa (ALPHA,'numeric') || numel (ALPHA) != 1) error("anovan: alpha must be a numeric scalar value"); endif if ((ALPHA <= 0) || (ALPHA >= 1)) error("anovan: alpha must be a value between 0 and 1"); endif ## Remove NaN or non-finite observations if (isempty (GROUP)) excl = any ([isnan(Y), isinf(Y)], 2); else XC = GROUP(:,CONTINUOUS); if iscell(XC) XC = cell2mat (XC); endif excl = any ([isnan(Y), isinf(Y), any(isnan(XC),2), any(isinf(XC),2)], 2); GROUP(excl,:) = []; endif Y(excl) = []; if (size (Y, 1) == 1) Y = Y.'; # if Y is a row vector, make it a column vector endif n = numel (Y); # recalculate total number of observations ## Evaluate weights input argument if (! isempty(WEIGHTS)) if (! isnumeric(WEIGHTS)) error ("anovan: WEIGHTS must be a numeric datatype"); endif if (any (size (WEIGHTS) != [n,1])) error ("anovan: WEIGHTS must be a vector with the same dimensions as Y"); endif if (any(!(WEIGHTS > 0)) || any (isinf (WEIGHTS))) error ("anovan: WEIGHTS must be a vector of positive finite values"); endif # Create diaganal matrix of normalized weights W = diag (WEIGHTS / mean (WEIGHTS)); else # Create identity matrix W = eye (n);; endif ## Evaluate model type input argument and create terms matrix if not provided msg = strcat (["anovan: the number of columns in the term definitions"], ... [" cannot exceed the number of columns of GROUP"]); if (ischar (MODELTYPE)) switch (lower (MODELTYPE)) case "linear" MODELTYPE = 1; case {"interaction","interactions"} MODELTYPE = 2; case "full" MODELTYPE = N; otherwise error ("anovan: model type not recognised"); endswitch endif if (isscalar (MODELTYPE)) TERMS = cell (MODELTYPE,1); v = false (1, N); switch (lower (MODELTYPE)) case 1 ## Create term definitions for an additive linear model TERMS = eye (N); case 2 ## Create term definitions for a model with two factor interactions if (N > 1) Nx = nchoosek (N, 2); else Nx = 0; endif TERMS = zeros (N + Nx, N); TERMS(1:N,:) = eye (N); for j = 1:N for i = j:N-1 TERMS(N+j+i-1,j) = 1; TERMS(N+j+i-1,i+1) = 1; endfor endfor otherwise if (MODELTYPE > N) error (msg); endif ## Create term definitions for a full model Nx = zeros (1, N-1); Nx = 0; for k = 1:N Nx = Nx + nchoosek(N,k); endfor for j = 1:MODELTYPE v(1:j) = 1; TERMS(j) = flipud (unique (perms (v), "rows")); endfor TERMS = cell2mat (TERMS); endswitch TERMS = logical (TERMS); else ## Assume that the user provided a suitable matrix of term definitions if (size (MODELTYPE, 2) > N) error (msg); endif if (! all (ismember (MODELTYPE(:), [0,1]))) error (strcat (["anovan: elements of the model terms matrix"], ... [" must be either 0 or 1"])); endif TERMS = logical (MODELTYPE); endif ## Evaluate terms matrix Ng = sum (TERMS, 2); if (any (diff (Ng) < 0)) error (strcat (["anovan: the model terms matrix must list main"], ... [" effects above/before interactions"])); endif ## Drop terms that include interactions with factors specified as random effects. drop = any (bsxfun (@and, TERMS(:,RANDOM), (Ng > 1)), 2); TERMS (drop, :) = []; Ng(drop) = []; ## Evaluate terms Nm = sum (Ng == 1); Nx = sum (Ng > 1); Nt = Nm + Nx; if (any (any (TERMS(1:Nm,:), 1) != any (TERMS, 1))) error (strcat (["anovan: all factors involved in interactions"], ... [" must have a main effect"])); endif ## Calculate total sum-of-squares ct = sum (Y)^2 / n; % correction term sst = sum (Y.^2) - ct; dft = n - 1; ## Create design matrix mDesignMatrix (); ## Fit linear models, and calculate sums-of-squares for ANOVA switch (lower (SSTYPE)) case 1 ## Type I sequential sums-of-squares (SSTYPE = 1) R = sst; ss = zeros (Nt,1); for j = 1:Nt XS = cell2mat (X(1:j+1)); [b, sse] = lmfit (XS, Y, W); ss(j) = R - sse; R = sse; endfor [b, sse, resid, ucov, hat] = lmfit (XS, Y, W); sstype_char = "I"; case {2,'h'} ## Type II (partially sequential, or hierarchical) sums-of-squares ss = zeros (Nt,1); for j = 1:Nt i = find (TERMS(j,:)); k = cat (1, 1, 1 + find (any (!TERMS(:,i),2))); XS = cell2mat (X(k)); [jnk, R1] = lmfit (XS, Y, W); k = cat (1, j+1, k); XS = cell2mat (X(k)); [jnk, R2] = lmfit (XS, Y, W); ss(j) = R1 - R2; endfor [b, sse, resid, ucov, hat] = lmfit (cell2mat (X), Y, W); sstype_char = "II"; case 3 ## Type III (partial, constrained or marginal) sums-of-squares ss = zeros (Nt, 1); [b, sse, resid, ucov, hat] = lmfit (cell2mat (X), Y, W); for j = 1:Nt XS = cell2mat (X(1:Nt+1 != j+1)); [jnk, R] = lmfit (XS, Y, W); ss(j) = R - sse; endfor sstype_char = "III"; otherwise error ("anovan: sstype value not supported"); endswitch ss = max (0, ss); # Truncate negative SS at 0 dfe = dft - sum (df); ms = ss ./ df; mse = sse / dfe; eta_sq = ss ./ sst; partial_eta_sq = ss ./ (ss + sse); F = ms / mse; P = 1 - fcdf (F, df, dfe); ## Prepare model formula and cell array containing the ANOVA table T = cell (Nt + 3, 7); T(1,:) = {"Source", "Sum Sq.", "d.f.", "Mean Sq.", "Eta Sq.", "F", "Prob>F"}; T(2:Nt+1,2:7) = num2cell ([ss df ms partial_eta_sq F P]); T(end-1,1:4) = {"Error", sse, dfe, mse}; T(end,1:3) = {"Total", sst, dft}; formula = sprintf ("Y ~ 1"); # Initialise model formula for i = 1:Nt str = sprintf ("%s*", VARNAMES{find (TERMS(i,:))}); T(i+1,1) = str(1:end-1); ## Append model term to formula str = regexprep (str, "\\*", ":"); if (strcmp (str(end-1), "'")) ## Random intercept term formula = sprintf ("%s + (1|%s)", formula, str(1:end-2)); ## Remove statistics for random factors from the ANOVA table #T(RANDOM+1,4:7) = cell(1,4); #P(RANDOM) = NaN; else ## Fixed effect term formula = sprintf ("%s + %s", formula, str(1:end-1)); endif endfor ## Calculate a standard error, t-statistic and p-value for each ## of the regression coefficients (fixed effects only) t_crit = tinv (1 - ALPHA / 2, dfe); se = sqrt (diag (ucov) * mse); t = b ./ se; p = 2 * (1 - (tcdf (abs (t), dfe))); coeff_stats = zeros (1 + sum (df), 4); coeff_stats(:,1) = b; # coefficients coeff_stats(:,2) = se; # standard errors coeff_stats(:,3) = b - se * t_crit; # Lower CI bound coeff_stats(:,4) = b + se * t_crit; # Upper CI bound coeff_stats(:,5) = t; # t-statistics coeff_stats(:,6) = p; # p-values ## Assign NaN to p-value to avoid printing statistics relating to ## coefficients for 'random' effects hi = 1 + cumsum(df); for ignore = RANDOM p(hi(ignore)-df(ignore)+1:hi(ignore)) = NaN; endfor ## Compute leverage values and Cook's distance h = diag (hat); % Leverage values D = resid.^2 / ((1 + sum (df)) * mse) ... .* h ./ (1 - h).^2; % Cook's distance ## Create STATS structure for MULTCOMPARE STATS = struct ("source","anovan", ... "resid", resid, ... # These are weighted (not raw) residuals "coeffs", coeff_stats, ... "Rtr", [], ... # Not used by Octave "rowbasis", [], ... # Not used by Octave "dfe", dfe, ... "mse", mse, ... "nullproject", [], ... # Not used by Octave "terms", TERMS, ... "nlevels", nlevels, ... "continuous", cont_vec, ... "vmeans", vmeans, ... "termcols", termcols, ... "coeffnames", {cellstr(char(coeffnames{:}))}, ... "vars", [], ... # Not used by Octave "varnames", {VARNAMES}, ... "grpnames", {levels}, ... "vnested", [], ... # Not used since "nested" argument name is not supported "ems", [], ... # Not used since "nested" argument name is not supported "denom", [], ... # Not used since interactions with random factors is not supported "dfdenom", [], ... # Not used since interactions with random factors is not supported "msdenom", [], ... # Not used since interactions with random factors is not supported "varest", [], ... # Not used since interactions with random factors is not supported "varci", [], ... # Not used since interactions with random factors is not supported "txtdenom", [], ... # Not used since interactions with random factors is not supported "txtems", [], ... # Not used since interactions with random factors is not supported "rtnames", [], ... # Not used since interactions with random factors is not supported ## Additional STATS fields used exclusively by Octave "center_continuous", center_continuous, ... "random", RANDOM, ... "formula", formula, ... "alpha", ALPHA, ... "df", df, ... "contrasts", {CONTRASTS}, ... "X", sparse (cell2mat (X)), ... "Y", Y, ... "W", sparse (W), ... "lmfit", @lmfit, ... "vcov", sparse (ucov * mse), ... "CooksD", D, ... "grps", gid, ... "eta_squared", eta_sq, ... "partial_eta_squared", partial_eta_sq); ## Print ANOVA table switch (lower (DISPLAY)) case {"on", true} ## Print model formula fprintf("\nMODEL FORMULA (based on Wilkinson's notation):\n\n%s\n", formula); ## If applicable, print parameter estimates (a.k.a contrasts) for fixed effects if (planned && ! isempty(GROUP)) ## Parameter estimates correspond to the contrasts we set. To avoid ## p-hacking, don't print contrasts if we don't specify them to start with fprintf("\nMODEL PARAMETERS (contrasts for the fixed effects)\n\n"); fprintf("Parameter Estimate SE Lower.CI Upper.CI t Prob>|t|\n"); fprintf("--------------------------------------------------------------------------------\n"); for j = 1:size (coeff_stats, 1) if (p(j) < 0.001) fprintf ("%-20s %10.3g %9.3g %9.3g %9.3g %8.2f <.001 \n", ... STATS.coeffnames{j}, STATS.coeffs(j,1:end-1)); elseif (p(j) < 0.9995) fprintf ("%-20s %10.3g %9.3g %9.3g %9.3g %8.2f .%03u \n", ... STATS.coeffnames{j}, STATS.coeffs(j,1:end-1), round (p(j) * 1e+03)); elseif (isnan(p(j))) ## Don't display coefficients for 'random' effects since they were ## treated as fixed effects else fprintf ("%-20s %10.3g %9.3g %9.3g %9.3g %8.2f 1.000 \n", ... STATS.coeffnames{j}, STATS.coeffs(j,1:end-1)); endif endfor endif ## Print ANOVA table [nrows, ncols] = size (T); fprintf("\nANOVA TABLE (Type %s sums-of-squares):\n\n", sstype_char); fprintf("Source Sum Sq. d.f. Mean Sq. R Sq. F Prob>F\n"); fprintf("--------------------------------------------------------------------------------\n"); for i = 1:Nt str = T{i+1,1}; l = numel(str); # Needed to truncate source term name at 18 characters ## Format and print the statistics for each model term ## Format F statistics and p-values in APA style if (P(i) < 0.001) fprintf ("%-20s %10.5g %6d %10.5g %4.3f %11.2f <.001 \n", ... str(1:min(18,l)), T{i+1,2:end-1}); elseif (P(i) < 0.9995) fprintf ("%-20s %10.5g %6d %10.5g %4.3f %11.2f .%03u \n", ... str(1:min(18,l)), T{i+1,2:end-1}, round (P(i) * 1e+03)); elseif (isnan(P(i))) fprintf ("%-20s %10.5g %6d \n", str(1:min(18,l)), T{i+1,2:3}); else fprintf ("%-20s %10.5g %6d %10.5g %4.3f %11.2f 1.000 \n", ... str(1:min(18,l)), T{i+1,2:end-1}); endif endfor fprintf("Error %10.5g %6d %10.5g\n", T{end-1,2:4}); fprintf("Total %10.5g %6d \n", T{end,2:3}); fprintf("\n"); ## Make figure of diagnostic plots figure ("Name", "Diagnostic Plots: Model Residuals"); t = STATS.resid ./ (sqrt (mse * (1 - h))); % Studentized residuals fit = STATS.X * STATS.coeffs(:,1); % Fitted values [jnk, DI] = sort (D, "descend"); % Indices of sorted D nk = 4; % Top nk residuals with largest D ## Normal quantile-quantile plot subplot (2, 2, 1); x = ((1 : n)' - .5) / n; [ts, I] = sort (t); q = norminv (x); plot (q, ts, "ok", "markersize", 3); box off; grid on; xlabel ("Theoretical quantiles"); ylabel ("Studentized Residuals"); title ("Normal Q-Q Plot"); arrayfun (@(i) text (q(I == DI(i)), t(DI(i)), ... sprintf (" %u", DI(i))), [1:min(nk,n)]) iqr = [0.25; 0.75]; yl = quantile (t, iqr, 1, 6); xl = norminv (iqr); slope = diff (yl) / diff (xl); int = yl(1) - slope * xl(1); ax1_xlim = get (gca, "XLim"); hold on; plot (ax1_xlim, slope * ax1_xlim + int, "k-"); hold off; set (gca, "Xlim", ax1_xlim); ## Spread-Location Plot subplot (2, 2, 2); plot (fit, sqrt (abs (t)), "ko", "markersize", 3); box off; xlabel ("Fitted values"); ylabel ("sqrt ( | Studentized Residuals | )"); title ("Spread-Location Plot") ax2_xlim = get (gca, "XLim"); hold on; plot (ax2_xlim, ones (1, 2) * sqrt (2), "k:"); plot (ax2_xlim, ones (1, 2) * sqrt (3), "k-."); plot (ax2_xlim, ones (1, 2) * sqrt (4), "k--"); hold off; arrayfun (@(i) text (fit(DI(i)), sqrt (abs (t(DI(i)))), ... sprintf (" %u", DI(i))), [1:min(nk,n)]); xlim (ax2_xlim); ## Residual-Leverage plot subplot (2, 2, 3); plot (h, t, "ko", "markersize", 3); box off; xlabel ("Leverage") ylabel ("Studentized Residuals"); title ("Residual-Leverage Plot") ax3_xlim = get (gca, "XLim"); ax3_ylim = get (gca, "YLim"); hold on; plot (ax3_xlim, zeros (1, 2), "k-"); hold off; arrayfun (@(i) text (h(DI(i)), t(DI(i)), ... sprintf (" %u", DI(i))), [1:min(nk,n)]); set (gca, "ygrid", "on"); xlim (ax3_xlim); ylim (ax3_ylim); ## Cook's distance stem plot subplot (2, 2, 4); stem (D, "ko", "markersize", 3); box off; xlabel ("Obs. number") ylabel ("Cook's distance") title ("Cook's Distance Stem Plot") xlim ([0, n]); ax4_xlim = get (gca, "XLim"); ax4_ylim = get (gca, "YLim"); hold on; plot (ax4_xlim, ones (1, 2) * 4 / dfe, "k:"); plot (ax4_xlim, ones (1, 2) * 0.5, "k-."); plot (ax4_xlim, ones (1, 2), "k--"); hold off; arrayfun (@(i) text (DI(i), D(DI(i)), ... sprintf (" %u", DI(i))), [1:min(nk,n)]); xlim (ax4_xlim); ylim (ax4_ylim); set (findall ( gcf, "-property", "FontSize"), "FontSize", 7) case {"off", false} ## do nothing otherwise error ("anovan: wrong value for 'display' parameter."); endswitch function mDesignMatrix () ## Nested function that returns a cell array of the design matrix for ## each term in the model ## Input variables it uses: ## GROUP, TERMS, CONTINUOUS, CONTRASTS, VARNAMES, n, Nm, Nx, Ng ## Variables it creates or modifies: ## X, grpnames, nlevels, df, termcols, coeffnames, vmeans, gid, CONTRASTS ## EVALUATE FACTOR LEVELS levels = cell (Nm, 1); gid = zeros (n, Nm); nlevels = zeros (Nm, 1); df = zeros (Nm + Nx, 1); termcols = ones (1 + Nm + Nx, 1); for j = 1:Nm if (any (j == CONTINUOUS)) ## CONTINUOUS PREDICTOR nlevels(j) = 1; termcols(j+1) = 1; df(j) = 1; if iscell (GROUP(:,j)) gid(:,j) = cell2mat ([GROUP(:,j)]); else gid(:,j) = GROUP(:,j); end else ## CATEGORICAL PREDICTOR levels{j} = unique (GROUP(:,j), "stable"); if isnumeric (levels{j}) levels{j} = num2cell (levels{j}); endif nlevels(j) = numel (levels{j}); for k = 1:nlevels(j) gid(ismember (GROUP(:,j),levels{j}{k}),j) = k; endfor termcols(j+1) = nlevels(j); df(j) = nlevels(j) - 1; endif endfor ## MAKE DESIGN MATRIX ## MAIN EFFECTS X = cell (1, 1 + Nm + Nx); X(1) = ones (n, 1); coeffnames = cell (1, 1 + Nm + Nx); coeffnames(1) = "(Intercept)"; vmeans = zeros (Nm, 1); center_continuous = cont_vec; for j = 1:Nm if (any (j == CONTINUOUS)) ## CONTINUOUS PREDICTOR if iscell (GROUP(:,j)) X(1+j) = cell2mat (GROUP(:,j)); else X(1+j) = GROUP(:,j); end if (strcmpi (CONTRASTS{j}, 'treatment')) ## Don't center continuous variables if contrasts are 'treatment' center_continuous(j) = false; CONTRASTS{j} = []; else center_continuous(j) = true; vmeans(j) = mean ([X{1+j}]); X(1+j) = [X{1+j}] - vmeans(j); endif ## Create names of the coefficients relating to continuous main effects coeffnames{1+j} = VARNAMES{j}; else ## CATEGORICAL PREDICTOR if (isempty (CONTRASTS{j})) CONTRASTS{j} = contr_simple (nlevels(j)); else switch (lower (CONTRASTS{j})) case {"simple","anova"} ## SIMPLE EFFECT CODING (DEFAULT) ## The first level is the reference level CONTRASTS{j} = contr_simple (nlevels(j)); case "poly" ## POLYNOMIAL CONTRAST CODING CONTRASTS{j} = contr_poly (nlevels(j)); case "helmert" ## HELMERT CONTRAST CODING CONTRASTS{j} = contr_helmert (nlevels(j)); case "effect" ## DEVIATION EFFECT CONTRAST CODING CONTRASTS{j} = contr_sum (nlevels(j)); case {"sdif","sdiff"} ## SUCCESSIVE DEVIATIONS CONTRAST CODING CONTRASTS{j} = contr_sdif (nlevels(j)); case "treatment" ## The first level is the reference level CONTRASTS{j} = contr_treatment (nlevels(j)); otherwise ## EVALUATE CUSTOM CONTRAST MATRIX ## Check that the contrast matrix provided is the correct size if (! all (size (CONTRASTS{j},1) == nlevels(j))) error (strcat (["anovan: the number of rows in the contrast"], ... [" matrices should equal the number of factor levels"])); endif if (! all (size (CONTRASTS{j},2) == df(j))) error (strcat (["anovan: the number of columns in each contrast"], ... [" matrix should equal the degrees of freedom (i.e."], ... [" number of levels minus 1) for that factor"])); endif if (! all (any (CONTRASTS{j}))) error (strcat (["anovan: a contrast must be coded in each"], ... [" column of the contrast matrices"])); endif endswitch endif C = CONTRASTS{j}; func = @(x) x(gid(:,j)); X(1+j) = cell2mat (cellfun (func, num2cell (C, 1), "UniformOutput", false)); ## Create names of the coefficients relating to continuous main effects coeffnames{1+j} = cell (df(j),1); for v = 1:df(j) coeffnames{1+j}{v} = sprintf ("%s_%u", VARNAMES{j}, v); endfor endif endfor ## INTERACTION TERMS if (Nx > 0) row = TERMS((Ng > 1),:); for i = 1:Nx I = 1 + find (row(i,:)); df(Nm+i) = prod (df(I-1)); termcols(1+Nm+i) = prod (df(I-1) + 1); tmp = ones (n,1); for j = 1:numel(I); tmp = num2cell (tmp, 1); for k = 1:numel(tmp) tmp(k) = bsxfun (@times, tmp{k}, X{I(j)}); endfor tmp = cell2mat (tmp); endfor X{1+Nm+i} = tmp; coeffnames{1+Nm+i} = cell (df(Nm+i),1); for v = 1:df(Nm+i) str = sprintf ("%s:", VARNAMES{I-1}); coeffnames{1+Nm+i}{v} = strcat (str(1:end-1), "_", num2str (v)); endfor endfor endif endfunction endfunction ## BUILT IN CONTRAST CODING FUNCTIONS function C = contr_simple (N) ## Create contrast matrix (of doubles) using simple (ANOVA) contrast coding ## These contrasts are centered (i.e. sum to 0) ## Ideal for unordered factors, with comparison to a reference level ## The first factor level is the reference level C = cat (1, zeros (1,N-1), eye(N-1)) - 1/N; endfunction function C = contr_poly (N) ## Create contrast matrix (of doubles) using polynomial contrast coding ## for trend analysis of ordered categorical factor levels ## These contrasts are orthogonal and centered (i.e. sum to 0) ## Ideal for ordered factors [C, jnk] = qr (bsxfun (@power, [1:N]' - mean ([1:N]'), [0:N-1])); C(:,1) = []; s = ones (1, N-1); s(1:2:N-1) *= -1; f = (sign(C(1,:)) != s); C(:,f) *= -1; endfunction function C = contr_helmert (N) ## Create contrast matrix (of doubles) using Helmert coding contrasts ## These contrasts are orthogonal and centered (i.e. sum to 0) C = cat (1, tril (-ones (N-1), -1) + diag (N-1:-1:1), ... -ones (1, N-1)) ./ (N:-1:2); endfunction function C = contr_sum (N) ## Create contrast matrix (of doubles) using deviation effect coding ## These contrasts are centered (i.e. sum to 0) C = cat (1, - (ones (1,N-1)), eye (N-1)); endfunction function C = contr_sdif (N) ## Create contrast matrix (of doubles) using successive differences coding ## These contrasts are centered (i.e. sum to 0) C = tril (ones (N, N - 1), -1) - ones (N, 1) / N * [N - 1 : -1 : 1]; endfunction function C = contr_treatment (N) ## Create contrast matrix (of doubles) using treatment contrast coding ## Not compatible with SSTYPE 3 since contrasts are not centered ## Ideal for unordered factors, with comparison to a reference level ## The first factor level is the reference level C = cat (1, zeros (1,N-1), eye(N-1)); endfunction ## FUNCTION TO FIT THE LINEAR MODEL function [b, sse, resid, ucov, hat] = lmfit (X, Y, W) ## Get model coefficients by solving the linear equation by QR decomposition ## The number of free parameters (i.e. intercept + coefficients) is equal ## to n - dfe. If optional arument W is provided, it should be a diagonal ## matrix of weights or a positive definite covariance matrix if (nargin < 3) ## If no weights are provided, create an identity matrix n = numel (Y); W = eye (n); endif C = chol (W); XW = C*X; YW = C*Y; [Q, R] = qr (XW, 0); b = R \ Q' * YW; ## Get fitted values fit = Q'\R * b; # This is equivalent to fit = XW * b; ## Get residuals from the fit resid = YW - fit; ## Calculate the residual sums-of-squares sse = sum (resid.^2); ## Calculate the unscaled covariance matrix (i.e. inv (X'*X )) if (nargout > 3) ucov = R \ Q' / XW'; endif ## Calculate the Hat matrix if (nargout > 4) w = diag (W); rw = sqrt (w); Q1 = diag (1 ./ rw) * Q; Q2 = diag (rw) * Q; hat = Q1 * Q2'; endif endfunction %!demo %! %! # Two-sample unpaired test on independent samples (equivalent to Student's %! # t-test). Note that the absolute value of t-statistic can be obtained by %! # taking the square root of the reported F statistic. In this example, %! # t = sqrt (1.44) = 1.20. %! %! score = [54 23 45 54 45 43 34 65 77 46 65]'; %! gender = {"male" "male" "male" "male" "male" "female" "female" "female" ... %! "female" "female" "female"}'; %! %! [P, ATAB, STATS] = anovan (score, gender, "display", "on", "varnames", "gender"); %!demo %! %! # Two-sample paired test on dependent or matched samples equivalent to a %! # paired t-test. As for the first example, the t-statistic can be obtained by %! # taking the square root of the reported F statistic. Note that the interaction %! # between treatment x subject was dropped from the full model by assigning %! # subject as a random factor ('). %! %! score = [4.5 5.6; 3.7 6.4; 5.3 6.4; 5.4 6.0; 3.9 5.7]'; %! treatment = {"before" "after"; "before" "after"; "before" "after"; %! "before" "after"; "before" "after"}'; %! subject = {"GS" "GS"; "JM" "JM"; "HM" "HM"; "JW" "JW"; "PS" "PS"}'; %! %! [P, ATAB, STATS] = anovan (score(:), {treatment(:), subject(:)}, ... %! "model", "full", "random", 2, "sstype", 2, ... %! "varnames", {"treatment", "subject"}, ... %! "display", "on"); %!demo %! %! # One-way ANOVA on the data from a study on the strength of structural beams, %! # in Hogg and Ledolter (1987) Engineering Statistics. New York: MacMillan %! %! strength = [82 86 79 83 84 85 86 87 74 82 ... %! 78 75 76 77 79 79 77 78 82 79]'; %! alloy = {"st","st","st","st","st","st","st","st", ... %! "al1","al1","al1","al1","al1","al1", ... %! "al2","al2","al2","al2","al2","al2"}'; %! %! [P, ATAB, STATS] = anovan (strength, alloy, "display", "on", ... %! "varnames", "alloy"); %!demo %! %! # One-way repeated measures ANOVA on the data from a study on the number of %! # words recalled by 10 subjects for three time condtions, in Loftus & Masson %! # (1994) Psychon Bull Rev. 1(4):476-490, Table 2. Note that the interaction %! # between seconds x subject was dropped from the full model by assigning %! # subject as a random factor ('). %! %! words = [10 13 13; 6 8 8; 11 14 14; 22 23 25; 16 18 20; ... %! 15 17 17; 1 1 4; 12 15 17; 9 12 12; 8 9 12]; %! seconds = [1 2 5; 1 2 5; 1 2 5; 1 2 5; 1 2 5; ... %! 1 2 5; 1 2 5; 1 2 5; 1 2 5; 1 2 5;]; %! subject = [ 1 1 1; 2 2 2; 3 3 3; 4 4 4; 5 5 5; ... %! 6 6 6; 7 7 7; 8 8 8; 9 9 9; 10 10 10]; %! %! [P, ATAB, STATS] = anovan (words(:), {seconds(:), subject(:)}, ... %! "model", "full", "random", 2, "sstype", 2, ... %! "display", "on", "varnames", {"seconds", "subject"}); %!demo %! %! # Balanced two-way ANOVA with interaction on the data from a study of popcorn %! # brands and popper types, in Hogg and Ledolter (1987) Engineering Statistics. %! # New York: MacMillan %! %! popcorn = [5.5, 4.5, 3.5; 5.5, 4.5, 4.0; 6.0, 4.0, 3.0; ... %! 6.5, 5.0, 4.0; 7.0, 5.5, 5.0; 7.0, 5.0, 4.5]; %! brands = {"Gourmet", "National", "Generic"; ... %! "Gourmet", "National", "Generic"; ... %! "Gourmet", "National", "Generic"; ... %! "Gourmet", "National", "Generic"; ... %! "Gourmet", "National", "Generic"; ... %! "Gourmet", "National", "Generic"}; %! popper = {"oil", "oil", "oil"; "oil", "oil", "oil"; "oil", "oil", "oil"; ... %! "air", "air", "air"; "air", "air", "air"; "air", "air", "air"}; %! %! [P, ATAB, STATS] = anovan (popcorn(:), {brands(:), popper(:)}, ... %! "display", "on", "model", "full", ... %! "varnames", {"brands", "popper"}); %!demo %! %! # Unbalanced two-way ANOVA (2x2) on the data from a study on the effects of %! # gender and having a college degree on salaries of company employees, %! # in Maxwell, Delaney and Kelly (2018): Chapter 7, Table 15 %! %! salary = [24 26 25 24 27 24 27 23 15 17 20 16, ... %! 25 29 27 19 18 21 20 21 22 19]'; %! gender = {"f" "f" "f" "f" "f" "f" "f" "f" "f" "f" "f" "f"... %! "m" "m" "m" "m" "m" "m" "m" "m" "m" "m"}'; %! degree = [1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0]'; %! %! [P, ATAB, STATS] = anovan (salary, {gender, degree}, "model", "full", ... %! "sstype", 3, "display", "on", "varnames", ... %! {"gender", "degree"}); %!demo %! %! # Unbalanced two-way ANOVA (3x2) on the data from a study of the effect of %! # adding sugar and/or milk on the tendency of coffee to make people babble, %! # in from Navarro (2019): 16.10 %! %! sugar = {"real" "fake" "fake" "real" "real" "real" "none" "none" "none" ... %! "fake" "fake" "fake" "real" "real" "real" "none" "none" "fake"}'; %! milk = {"yes" "no" "no" "yes" "yes" "no" "yes" "yes" "yes" ... %! "no" "no" "yes" "no" "no" "no" "no" "no" "yes"}'; %! babble = [4.6 4.4 3.9 5.6 5.1 5.5 3.9 3.5 3.7... %! 5.6 4.7 5.9 6.0 5.4 6.6 5.8 5.3 5.7]'; %! %! [P, ATAB, STATS] = anovan (babble, {sugar, milk}, "model", "full", ... %! "sstype", 3, "display", "on", ... %! "varnames", {"sugar", "milk"}); %!demo %! %! # Unbalanced three-way ANOVA (3x2x2) on the data from a study of the effects %! # of three different drugs, biofeedback and diet on patient blood pressure, %! # adapted* from Maxwell, Delaney and Kelly (2018): Chapter 8, Table 12 %! # * Missing values introduced to make the sample sizes unequal to test the %! # calculation of different types of sums-of-squares %! %! drug = {"X" "X" "X" "X" "X" "X" "X" "X" "X" "X" "X" "X" ... %! "X" "X" "X" "X" "X" "X" "X" "X" "X" "X" "X" "X"; %! "Y" "Y" "Y" "Y" "Y" "Y" "Y" "Y" "Y" "Y" "Y" "Y" ... %! "Y" "Y" "Y" "Y" "Y" "Y" "Y" "Y" "Y" "Y" "Y" "Y"; %! "Z" "Z" "Z" "Z" "Z" "Z" "Z" "Z" "Z" "Z" "Z" "Z" ... %! "Z" "Z" "Z" "Z" "Z" "Z" "Z" "Z" "Z" "Z" "Z" "Z"}; %! feedback = [1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0; %! 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0; %! 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0]; %! diet = [0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1; %! 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1; %! 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1]; %! BP = [170 175 165 180 160 158 161 173 157 152 181 190 ... %! 173 194 197 190 176 198 164 190 169 164 176 175; %! 186 194 201 215 219 209 164 166 159 182 187 174 ... %! 189 194 217 206 199 195 171 173 196 199 180 NaN; %! 180 187 199 170 204 194 162 184 183 156 180 173 ... %! 202 228 190 206 224 204 205 199 170 160 NaN NaN]; %! %! [P, ATAB, STATS] = anovan (BP(:), {drug(:), feedback(:), diet(:)}, ... %! "model", "full", "sstype", 3, ... %! "display", "on", ... %! "varnames", {"drug", "feedback", "diet"}); %!demo %! %! # Balanced three-way ANOVA (2x2x2) with one of the factors being a blocking %! # factor. The data is from a randomized block design study on the effects %! # of antioxidant treatment on glutathione-S-transferase (GST) levels in %! # different mouse strains, from Festing (2014), ILAR Journal, 55(3):427-476. %! # Note that all interactions involving block were dropped from the full model %! # by assigning block as a random factor ('). %! %! measurement = [444 614 423 625 408 856 447 719 ... %! 764 831 586 782 609 1002 606 766]'; %! strain= {"NIH","NIH","BALB/C","BALB/C","A/J","A/J","129/Ola","129/Ola", ... %! "NIH","NIH","BALB/C","BALB/C","A/J","A/J","129/Ola","129/Ola"}'; %! treatment={"C" "T" "C" "T" "C" "T" "C" "T" "C" "T" "C" "T" "C" "T" "C" "T"}'; %! block = [1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2]'; %! %! [P, ATAB, STATS] = anovan (measurement/10, {strain, treatment, block}, ... %! "sstype", 2, "model", "full", "random", 3, ... %! "display", "on", ... %! "varnames", {"strain", "treatment", "block"}); %!demo %! %! # One-way ANCOVA on data from a study of the additive effects of species %! # and temperature on chirpy pulses of crickets, from Stitch, The Worst Stats %! # Text eveR %! %! pulse = [67.9 65.1 77.3 78.7 79.4 80.4 85.8 86.6 87.5 89.1 ... %! 98.6 100.8 99.3 101.7 44.3 47.2 47.6 49.6 50.3 51.8 ... %! 60 58.5 58.9 60.7 69.8 70.9 76.2 76.1 77 77.7 84.7]'; %! temp = [20.8 20.8 24 24 24 24 26.2 26.2 26.2 26.2 28.4 ... %! 29 30.4 30.4 17.2 18.3 18.3 18.3 18.9 18.9 20.4 ... %! 21 21 22.1 23.5 24.2 25.9 26.5 26.5 26.5 28.6]'; %! species = {"ex" "ex" "ex" "ex" "ex" "ex" "ex" "ex" "ex" "ex" "ex" ... %! "ex" "ex" "ex" "niv" "niv" "niv" "niv" "niv" "niv" "niv" ... %! "niv" "niv" "niv" "niv" "niv" "niv" "niv" "niv" "niv" "niv"}; %! %! [P, ATAB, STATS] = anovan (pulse, {species, temp}, "model", "linear", ... %! "continuous", 2, "sstype", "h", "display", "on", ... %! "varnames", {"species", "temp"}); %!demo %! %! # Factorial ANCOVA on data from a study of the effects of treatment and %! # exercise on stress reduction score after adjusting for age. Data from R %! # datarium package). %! %! score = [95.6 82.2 97.2 96.4 81.4 83.6 89.4 83.8 83.3 85.7 ... %! 97.2 78.2 78.9 91.8 86.9 84.1 88.6 89.8 87.3 85.4 ... %! 81.8 65.8 68.1 70.0 69.9 75.1 72.3 70.9 71.5 72.5 ... %! 84.9 96.1 94.6 82.5 90.7 87.0 86.8 93.3 87.6 92.4 ... %! 100. 80.5 92.9 84.0 88.4 91.1 85.7 91.3 92.3 87.9 ... %! 91.7 88.6 75.8 75.7 75.3 82.4 80.1 86.0 81.8 82.5]'; %! treatment = {"yes" "yes" "yes" "yes" "yes" "yes" "yes" "yes" "yes" "yes" ... %! "yes" "yes" "yes" "yes" "yes" "yes" "yes" "yes" "yes" "yes" ... %! "yes" "yes" "yes" "yes" "yes" "yes" "yes" "yes" "yes" "yes" ... %! "no" "no" "no" "no" "no" "no" "no" "no" "no" "no" ... %! "no" "no" "no" "no" "no" "no" "no" "no" "no" "no" ... %! "no" "no" "no" "no" "no" "no" "no" "no" "no" "no"}'; %! exercise = {"lo" "lo" "lo" "lo" "lo" "lo" "lo" "lo" "lo" "lo" ... %! "mid" "mid" "mid" "mid" "mid" "mid" "mid" "mid" "mid" "mid" ... %! "hi" "hi" "hi" "hi" "hi" "hi" "hi" "hi" "hi" "hi" ... %! "lo" "lo" "lo" "lo" "lo" "lo" "lo" "lo" "lo" "lo" ... %! "mid" "mid" "mid" "mid" "mid" "mid" "mid" "mid" "mid" "mid" ... %! "hi" "hi" "hi" "hi" "hi" "hi" "hi" "hi" "hi" "hi"}'; %! age = [59 65 70 66 61 65 57 61 58 55 62 61 60 59 55 57 60 63 62 57 ... %! 58 56 57 59 59 60 55 53 55 58 68 62 61 54 59 63 60 67 60 67 ... %! 75 54 57 62 65 60 58 61 65 57 56 58 58 58 52 53 60 62 61 61]'; %! %! [P, ATAB, STATS] = anovan (score, {treatment, exercise, age}, ... %! "model", [1 0 0; 0 1 0; 0 0 1; 1 1 0], ... %! "continuous", 3, "sstype", "h", "display", "on", ... %! "varnames", {"treatment", "exercise", "age"}); %!demo %! %! # Unbalanced one-way ANOVA with custom, orthogonal contrasts. The statistics %! # relating to the contrasts are shown in the table of model parameters, and %! # can be retrieved from the STATS.coeffs output. %! %! dv = [ 8.706 10.362 11.552 6.941 10.983 10.092 6.421 14.943 15.931 ... %! 22.968 18.590 16.567 15.944 21.637 14.492 17.965 18.851 22.891 ... %! 22.028 16.884 17.252 18.325 25.435 19.141 21.238 22.196 18.038 ... %! 22.628 31.163 26.053 24.419 32.145 28.966 30.207 29.142 33.212 ... %! 25.694 ]'; %! g = [1 1 1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 3 3 3 ... %! 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5]'; %! C = [ 0.4001601 0.3333333 0.5 0.0 %! 0.4001601 0.3333333 -0.5 0.0 %! 0.4001601 -0.6666667 0.0 0.0 %! -0.6002401 0.0000000 0.0 0.5 %! -0.6002401 0.0000000 0.0 -0.5]; %! %! [P,ATAB, STATS] = anovan (dv, g, "contrasts", C, "varnames", "score", ... %! "alpha", 0.05, "display", "on"); %!demo %! %! # One-way ANOVA with the linear model fit by weighted least squares to %! # account for heteroskedasticity. In this example, the variance appears %! # proportional to the outcome, so weights have been estimated by initially %! # fitting the model without weights and regressing the absolute residuals on %! # the fitted values. Although this data could have been analysed by Welch's %! # ANOVA test, the approach here can generalize to ANOVA models with more than %! # one factor. %! %! g = [1, 1, 1, 1, 1, 1, 1, 1, ... %! 2, 2, 2, 2, 2, 2, 2, 2, ... %! 3, 3, 3, 3, 3, 3, 3, 3]'; %! y = [13, 16, 16, 7, 11, 5, 1, 9, ... %! 10, 25, 66, 43, 47, 56, 6, 39, ... %! 11, 39, 26, 35, 25, 14, 24, 17]'; %! %! [P,ATAB,STATS] = anovan(y, g, "display", "off"); %! fitted = STATS.X * STATS.coeffs(:,1); # fitted values %! b = polyfit (fitted, abs (STATS.resid), 1); %! v = polyval (b, fitted); # Variance as a function of the fitted values %! figure("Name", "Regression of the absolute residuals on the fitted values"); %! plot (fitted, abs (STATS.resid),'ob');hold on; plot(fitted,v,'-r'); hold off; %! xlabel("Fitted values"); ylabel("Absolute residuals"); %! %! [P,ATAB,STATS] = anovan (y, g, "weights", v.^-1); ## Test 1 for anovan example 1 ## Test compares anovan to results from MATLAB's anovan and ttest2 functions %!test %! score = [54 23 45 54 45 43 34 65 77 46 65]'; %! gender = {'male' 'male' 'male' 'male' 'male' 'female' 'female' 'female' ... %! 'female' 'female' 'female'}'; %! %! [P, T, STATS] = anovan (score,gender,'display','off'); %! assert (P(1), 0.2612876773271042, 1e-09); # compared to p calculated by MATLAB anovan %! assert (sqrt(T{2,6}), abs(1.198608733288208), 1e-09); # compared to abs(t) calculated from sqrt(F) by MATLAB anovan %! assert (P(1), 0.2612876773271047, 1e-09); # compared to p calculated by MATLAB ttest2 %! assert (sqrt(T{2,6}), abs(-1.198608733288208), 1e-09); # compared to abs(t) calculated by MATLAB ttest2 ## Test 2 for anovan example 2 ## Test compares anovan to results from MATLAB's anovan and ttest functions %!test %! score = [4.5 5.6; 3.7 6.4; 5.3 6.4; 5.4 6.0; 3.9 5.7]'; %! treatment = {'before' 'after'; 'before' 'after'; 'before' 'after'; %! 'before' 'after'; 'before' 'after'}'; %! subject = {'GS' 'GS'; 'JM' 'JM'; 'HM' 'HM'; 'JW' 'JW'; 'PS' 'PS'}'; %! %! [P, ATAB, STATS] = anovan (score(:),{treatment(:),subject(:)},'display','off','sstype',2); %! assert (P(1), 0.016004356735364, 1e-09); # compared to p calculated by MATLAB anovan %! assert (sqrt(ATAB{2,6}), abs(4.00941576558195), 1e-09); # compared to abs(t) calculated from sqrt(F) by MATLAB anovan %! assert (P(1), 0.016004356735364, 1e-09); # compared to p calculated by MATLAB ttest2 %! assert (sqrt(ATAB{2,6}), abs(-4.00941576558195), 1e-09); # compared to abs(t) calculated by MATLAB ttest2 ## Test 3 for anovan example 3 ## Test compares anovan to results from MATLAB's anovan and anova1 functions %!test %! strength = [82 86 79 83 84 85 86 87 74 82 ... %! 78 75 76 77 79 79 77 78 82 79]'; %! alloy = {'st','st','st','st','st','st','st','st', ... %! 'al1','al1','al1','al1','al1','al1', ... %! 'al2','al2','al2','al2','al2','al2'}'; %! %! [P, ATAB, STATS] = anovan (strength,{alloy},'display','off'); %! assert (P(1), 0.000152643638830491, 1e-09); %! assert (ATAB{2,6}, 15.4, 1e-09); ## Test 4 for anovan example 4 ## Test compares anovan to results from MATLAB's anovan function %!test %! words = [10 13 13; 6 8 8; 11 14 14; 22 23 25; 16 18 20; ... %! 15 17 17; 1 1 4; 12 15 17; 9 12 12; 8 9 12]; %! subject = [ 1 1 1; 2 2 2; 3 3 3; 4 4 4; 5 5 5; ... %! 6 6 6; 7 7 7; 8 8 8; 9 9 9; 10 10 10]; %! seconds = [1 2 5; 1 2 5; 1 2 5; 1 2 5; 1 2 5; ... %! 1 2 5; 1 2 5; 1 2 5; 1 2 5; 1 2 5;]; %! %! [P, ATAB, STATS] = anovan (words(:),{seconds(:),subject(:)},'model','full','random',2,'sstype',2,'display','off'); %! assert (P(1), 1.51865926758752e-07, 1e-09); %! assert (ATAB{2,2}, 52.2666666666667, 1e-09); %! assert (ATAB{3,2}, 942.533333333333, 1e-09); %! assert (ATAB{4,2}, 11.0666666666667, 1e-09); ## Test 5 for anovan example 5 ## Test compares anovan to results from MATLAB's anovan function %!test %! popcorn = [5.5, 4.5, 3.5; 5.5, 4.5, 4.0; 6.0, 4.0, 3.0; ... %! 6.5, 5.0, 4.0; 7.0, 5.5, 5.0; 7.0, 5.0, 4.5]; %! brands = {'Gourmet', 'National', 'Generic'; ... %! 'Gourmet', 'National', 'Generic'; ... %! 'Gourmet', 'National', 'Generic'; ... %! 'Gourmet', 'National', 'Generic'; ... %! 'Gourmet', 'National', 'Generic'; ... %! 'Gourmet', 'National', 'Generic'}; %! popper = {'oil', 'oil', 'oil'; 'oil', 'oil', 'oil'; 'oil', 'oil', 'oil'; ... %! 'air', 'air', 'air'; 'air', 'air', 'air'; 'air', 'air', 'air'}; %! %! [P, ATAB, STATS] = anovan (popcorn(:),{brands(:),popper(:)},'display','off','model','full'); %! assert (P(1), 7.67895738278171e-07, 1e-09); %! assert (P(2), 0.000100373896304998, 1e-09); %! assert (P(3), 0.746215396636649, 1e-09); %! assert (ATAB{2,6}, 56.7, 1e-09); %! assert (ATAB{3,6}, 32.4, 1e-09); %! assert (ATAB{4,6}, 0.29999999999997, 1e-09); ## Test 6 for anovan example 6 ## Test compares anovan to results from MATLAB's anovan function %!test %! salary = [24 26 25 24 27 24 27 23 15 17 20 16, ... %! 25 29 27 19 18 21 20 21 22 19]'; %! gender = {'f' 'f' 'f' 'f' 'f' 'f' 'f' 'f' 'f' 'f' 'f' 'f'... %! 'm' 'm' 'm' 'm' 'm' 'm' 'm' 'm' 'm' 'm'}'; %! degree = [1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0]'; %! %! [P, ATAB, STATS] = anovan (salary,{gender,degree},'model','full','sstype',1,'display','off'); %! assert (P(1), 0.747462549227232, 1e-09); %! assert (P(2), 1.03809316857694e-08, 1e-09); %! assert (P(3), 0.523689833702691, 1e-09); %! assert (ATAB{2,2}, 0.296969696969699, 1e-09); %! assert (ATAB{3,2}, 272.391841491841, 1e-09); %! assert (ATAB{4,2}, 1.17482517482512, 1e-09); %! assert (ATAB{5,2}, 50.0000000000001, 1e-09); %! [P, ATAB, STATS] = anovan (salary,{degree,gender},'model','full','sstype',1,'display','off'); %! assert (P(1), 2.53445097305047e-08, 1e-09); %! assert (P(2), 0.00388133678528749, 1e-09); %! assert (P(3), 0.523689833702671, 1e-09); %! assert (ATAB{2,2}, 242.227272727273, 1e-09); %! assert (ATAB{3,2}, 30.4615384615384, 1e-09); %! assert (ATAB{4,2}, 1.17482517482523, 1e-09); %! assert (ATAB{5,2}, 50.0000000000001, 1e-09); %! [P, ATAB, STATS] = anovan (salary,{gender,degree},'model','full','sstype',2,'display','off'); %! assert (P(1), 0.00388133678528743, 1e-09); %! assert (P(2), 1.03809316857694e-08, 1e-09); %! assert (P(3), 0.523689833702691, 1e-09); %! assert (ATAB{2,2}, 30.4615384615385, 1e-09); %! assert (ATAB{3,2}, 272.391841491841, 1e-09); %! assert (ATAB{4,2}, 1.17482517482512, 1e-09); %! assert (ATAB{5,2}, 50.0000000000001, 1e-09); %! [P, ATAB, STATS] = anovan (salary,{gender,degree},'model','full','sstype',3,'display','off'); %! assert (P(1), 0.00442898146583742, 1e-09); %! assert (P(2), 1.30634252053587e-08, 1e-09); %! assert (P(3), 0.523689833702691, 1e-09); %! assert (ATAB{2,2}, 29.3706293706294, 1e-09); %! assert (ATAB{3,2}, 264.335664335664, 1e-09); %! assert (ATAB{4,2}, 1.17482517482512, 1e-09); %! assert (ATAB{5,2}, 50.0000000000001, 1e-09); ## Test 7 for anovan example 7 ## Test compares anovan to results from MATLAB's anovan function %!test %! sugar = {'real' 'fake' 'fake' 'real' 'real' 'real' 'none' 'none' 'none' ... %! 'fake' 'fake' 'fake' 'real' 'real' 'real' 'none' 'none' 'fake'}'; %! milk = {'yes' 'no' 'no' 'yes' 'yes' 'no' 'yes' 'yes' 'yes' ... %! 'no' 'no' 'yes' 'no' 'no' 'no' 'no' 'no' 'yes'}'; %! babble = [4.6 4.4 3.9 5.6 5.1 5.5 3.9 3.5 3.7... %! 5.6 4.7 5.9 6.0 5.4 6.6 5.8 5.3 5.7]'; %! %! [P, ATAB, STATS] = anovan (babble,{sugar,milk},'model','full','sstype',1,'display','off'); %! assert (P(1), 0.0108632139833963, 1e-09); %! assert (P(2), 0.0810606976703546, 1e-09); %! assert (P(3), 0.00175433329935627, 1e-09); %! assert (ATAB{2,2}, 3.55752380952381, 1e-09); %! assert (ATAB{3,2}, 0.956108477471702, 1e-09); %! assert (ATAB{4,2}, 5.94386771300448, 1e-09); %! assert (ATAB{5,2}, 3.1625, 1e-09); %! [P, ATAB, STATS] = anovan (babble,{milk,sugar},'model','full','sstype',1,'display','off'); %! assert (P(1), 0.0373333189297505, 1e-09); %! assert (P(2), 0.017075098787169, 1e-09); %! assert (P(3), 0.00175433329935627, 1e-09); %! assert (ATAB{2,2}, 1.444, 1e-09); %! assert (ATAB{3,2}, 3.06963228699552, 1e-09); %! assert (ATAB{4,2}, 5.94386771300448, 1e-09); %! assert (ATAB{5,2}, 3.1625, 1e-09); %! [P, ATAB, STATS] = anovan (babble,{sugar,milk},'model','full','sstype',2,'display','off'); %! assert (P(1), 0.017075098787169, 1e-09); %! assert (P(2), 0.0810606976703546, 1e-09); %! assert (P(3), 0.00175433329935627, 1e-09); %! assert (ATAB{2,2}, 3.06963228699552, 1e-09); %! assert (ATAB{3,2}, 0.956108477471702, 1e-09); %! assert (ATAB{4,2}, 5.94386771300448, 1e-09); %! assert (ATAB{5,2}, 3.1625, 1e-09); %! [P, ATAB, STATS] = anovan (babble,{sugar,milk},'model','full','sstype',3,'display','off'); %! assert (P(1), 0.0454263063473954, 1e-09); %! assert (P(2), 0.0746719907091438, 1e-09); %! assert (P(3), 0.00175433329935627, 1e-09); %! assert (ATAB{2,2}, 2.13184977578476, 1e-09); %! assert (ATAB{3,2}, 1.00413461538462, 1e-09); %! assert (ATAB{4,2}, 5.94386771300448, 1e-09); %! assert (ATAB{5,2}, 3.1625, 1e-09); ## Test 8 for anovan example 8 ## Test compares anovan to results from MATLAB's anovan function %!test %! drug = {'X' 'X' 'X' 'X' 'X' 'X' 'X' 'X' 'X' 'X' 'X' 'X' ... %! 'X' 'X' 'X' 'X' 'X' 'X' 'X' 'X' 'X' 'X' 'X' 'X'; %! 'Y' 'Y' 'Y' 'Y' 'Y' 'Y' 'Y' 'Y' 'Y' 'Y' 'Y' 'Y' ... %! 'Y' 'Y' 'Y' 'Y' 'Y' 'Y' 'Y' 'Y' 'Y' 'Y' 'Y' 'Y'; %! 'Z' 'Z' 'Z' 'Z' 'Z' 'Z' 'Z' 'Z' 'Z' 'Z' 'Z' 'Z' ... %! 'Z' 'Z' 'Z' 'Z' 'Z' 'Z' 'Z' 'Z' 'Z' 'Z' 'Z' 'Z'}; %! feedback = [1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0; %! 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0; %! 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0]; %! diet = [0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1; %! 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1; %! 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1]; %! BP = [170 175 165 180 160 158 161 173 157 152 181 190 ... %! 173 194 197 190 176 198 164 190 169 164 176 175; %! 186 194 201 215 219 209 164 166 159 182 187 174 ... %! 189 194 217 206 199 195 171 173 196 199 180 NaN; %! 180 187 199 170 204 194 162 184 183 156 180 173 ... %! 202 228 190 206 224 204 205 199 170 160 NaN NaN]; %! %! [P, ATAB, STATS] = anovan (BP(:),{drug(:),feedback(:),diet(:)},'model','full','sstype', 1,'display','off'); %! assert (P(1), 7.02561843825325e-05, 1e-09); %! assert (P(2), 0.000425806013389362, 1e-09); %! assert (P(3), 6.16780773446401e-07, 1e-09); %! assert (P(4), 0.261347622678438, 1e-09); %! assert (P(5), 0.0542278432357043, 1e-09); %! assert (P(6), 0.590353225626655, 1e-09); %! assert (P(7), 0.0861628249564267, 1e-09); %! assert (ATAB{2,2}, 3614.70355731226, 1e-09); %! assert (ATAB{3,2}, 2227.46639771024, 1e-09); %! assert (ATAB{4,2}, 5008.25614451819, 1e-09); %! assert (ATAB{5,2}, 437.066007908781, 1e-09); %! assert (ATAB{6,2}, 976.180770397332, 1e-09); %! assert (ATAB{7,2}, 46.616653365254, 1e-09); %! assert (ATAB{8,2}, 814.345251396648, 1e-09); %! assert (ATAB{9,2}, 9065.8, 1e-09); %! [P, ATAB, STATS] = anovan (BP(:),{drug(:),feedback(:),diet(:)},'model','full','sstype',2,'display','off'); %! assert (P(1), 9.4879638470754e-05, 1e-09); %! assert (P(2), 0.00124177666315809, 1e-09); %! assert (P(3), 6.86162012732911e-07, 1e-09); %! assert (P(4), 0.260856132341256, 1e-09); %! assert (P(5), 0.0523758623892078, 1e-09); %! assert (P(6), 0.590353225626655, 1e-09); %! assert (P(7), 0.0861628249564267, 1e-09); %! assert (ATAB{2,2}, 3481.72176560122, 1e-09); %! assert (ATAB{3,2}, 1837.08812970469, 1e-09); %! assert (ATAB{4,2}, 4957.20277938622, 1e-09); %! assert (ATAB{5,2}, 437.693674777847, 1e-09); %! assert (ATAB{6,2}, 988.431929811402, 1e-09); %! assert (ATAB{7,2}, 46.616653365254, 1e-09); %! assert (ATAB{8,2}, 814.345251396648, 1e-09); %! assert (ATAB{9,2}, 9065.8, 1e-09); %! [P, ATAB, STATS] = anovan (BP(:),{drug(:),feedback(:),diet(:)},'model','full','sstype', 3,'display','off'); %! assert (P(1), 0.000106518678028207, 1e-09); %! assert (P(2), 0.00125371366571508, 1e-09); %! assert (P(3), 5.30813260778464e-07, 1e-09); %! assert (P(4), 0.308353667232981, 1e-09); %! assert (P(5), 0.0562901327343161, 1e-09); %! assert (P(6), 0.599091042141092, 1e-09); %! assert (P(7), 0.0861628249564267, 1e-09); %! assert (ATAB{2,2}, 3430.88156424581, 1e-09); %! assert (ATAB{3,2}, 1833.68031496063, 1e-09); %! assert (ATAB{4,2}, 5080.48346456693, 1e-09); %! assert (ATAB{5,2}, 382.07709497207, 1e-09); %! assert (ATAB{6,2}, 963.037988826813, 1e-09); %! assert (ATAB{7,2}, 44.4519685039322, 1e-09); %! assert (ATAB{8,2}, 814.345251396648, 1e-09); %! assert (ATAB{9,2}, 9065.8, 1e-09); ## Test 9 for anovan example 9 ## Test compares anovan to results from MATLAB's anovan function %!test %! measurement = [444 614 423 625 408 856 447 719 ... %! 764 831 586 782 609 1002 606 766]'; %! strain= {'NIH','NIH','BALB/C','BALB/C','A/J','A/J','129/Ola','129/Ola', ... %! 'NIH','NIH','BALB/C','BALB/C','A/J','A/J','129/Ola','129/Ola'}'; %! treatment={'C' 'T' 'C' 'T' 'C' 'T' 'C' 'T' 'C' 'T' 'C' 'T' 'C' 'T' 'C' 'T'}'; %! block = [1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2]'; %! %! [P, ATAB, STATS] = anovan (measurement/10,{strain,treatment,block},'model','full','random',3,'display','off'); %! assert (P(1), 0.0914352969909372, 1e-09); %! assert (P(2), 5.04077373924908e-05, 1e-09); %! assert (P(4), 0.0283196918836667, 1e-09); %! assert (ATAB{2,2}, 286.132500000002, 1e-09); %! assert (ATAB{3,2}, 2275.29, 1e-09); %! assert (ATAB{4,2}, 1242.5625, 1e-09); %! assert (ATAB{5,2}, 495.905000000001, 1e-09); %! assert (ATAB{6,2}, 207.007499999999, 1e-09); ## Test 10 for anovan example 10 ## Test compares anovan to results from MATLAB's anovan function %!test %! pulse = [67.9 65.1 77.3 78.7 79.4 80.4 85.8 86.6 87.5 89.1 ... %! 98.6 100.8 99.3 101.7 44.3 47.2 47.6 49.6 50.3 51.8 ... %! 60 58.5 58.9 60.7 69.8 70.9 76.2 76.1 77 77.7 84.7]'; %! temp = [20.8 20.8 24 24 24 24 26.2 26.2 26.2 26.2 28.4 ... %! 29 30.4 30.4 17.2 18.3 18.3 18.3 18.9 18.9 20.4 ... %! 21 21 22.1 23.5 24.2 25.9 26.5 26.5 26.5 28.6]'; %! species = {'ex' 'ex' 'ex' 'ex' 'ex' 'ex' 'ex' 'ex' 'ex' 'ex' 'ex' ... %! 'ex' 'ex' 'ex' 'niv' 'niv' 'niv' 'niv' 'niv' 'niv' 'niv' ... %! 'niv' 'niv' 'niv' 'niv' 'niv' 'niv' 'niv' 'niv' 'niv' 'niv'}; %! %! [P, ATAB, STATS] = anovan (pulse,{species,temp},'model','linear','continuous',2,'sstype','h','display','off'); %! assert (P(1), 6.27153318786007e-14, 1e-09); %! assert (P(2), 2.48773241196644e-25, 1e-09); %! assert (ATAB{2,2}, 598.003953318404, 1e-09); %! assert (ATAB{3,2}, 4376.08256843712, 1e-09); %! assert (ATAB{4,2}, 89.3498685376726, 1e-09); %! assert (ATAB{2,6}, 187.399388123951, 1e-09); %! assert (ATAB{3,6}, 1371.35413763454, 1e-09); ## Test 11 for anovan example 11 ## Test compares anovan to results from MATLAB's anovan function %!test %! score = [95.6 82.2 97.2 96.4 81.4 83.6 89.4 83.8 83.3 85.7 ... %! 97.2 78.2 78.9 91.8 86.9 84.1 88.6 89.8 87.3 85.4 ... %! 81.8 65.8 68.1 70.0 69.9 75.1 72.3 70.9 71.5 72.5 ... %! 84.9 96.1 94.6 82.5 90.7 87.0 86.8 93.3 87.6 92.4 ... %! 100. 80.5 92.9 84.0 88.4 91.1 85.7 91.3 92.3 87.9 ... %! 91.7 88.6 75.8 75.7 75.3 82.4 80.1 86.0 81.8 82.5]'; %! treatment = {'yes' 'yes' 'yes' 'yes' 'yes' 'yes' 'yes' 'yes' 'yes' 'yes' ... %! 'yes' 'yes' 'yes' 'yes' 'yes' 'yes' 'yes' 'yes' 'yes' 'yes' ... %! 'yes' 'yes' 'yes' 'yes' 'yes' 'yes' 'yes' 'yes' 'yes' 'yes' ... %! 'no' 'no' 'no' 'no' 'no' 'no' 'no' 'no' 'no' 'no' ... %! 'no' 'no' 'no' 'no' 'no' 'no' 'no' 'no' 'no' 'no' ... %! 'no' 'no' 'no' 'no' 'no' 'no' 'no' 'no' 'no' 'no'}'; %! exercise = {'lo' 'lo' 'lo' 'lo' 'lo' 'lo' 'lo' 'lo' 'lo' 'lo' ... %! 'mid' 'mid' 'mid' 'mid' 'mid' 'mid' 'mid' 'mid' 'mid' 'mid' ... %! 'hi' 'hi' 'hi' 'hi' 'hi' 'hi' 'hi' 'hi' 'hi' 'hi' ... %! 'lo' 'lo' 'lo' 'lo' 'lo' 'lo' 'lo' 'lo' 'lo' 'lo' ... %! 'mid' 'mid' 'mid' 'mid' 'mid' 'mid' 'mid' 'mid' 'mid' 'mid' ... %! 'hi' 'hi' 'hi' 'hi' 'hi' 'hi' 'hi' 'hi' 'hi' 'hi'}'; %! age = [59 65 70 66 61 65 57 61 58 55 62 61 60 59 55 57 60 63 62 57 ... %! 58 56 57 59 59 60 55 53 55 58 68 62 61 54 59 63 60 67 60 67 ... %! 75 54 57 62 65 60 58 61 65 57 56 58 58 58 52 53 60 62 61 61]'; %! %! [P, ATAB, STATS] = anovan (score,{treatment,exercise,age},'model','full','continuous',3,'sstype','h','display','off'); %! assert (P(5), 0.9245630968248468, 1e-09); %! assert (P(6), 0.791115159521822, 1e-09); %! assert (P(7), 0.9296668751457956, 1e-09); %! [P, ATAB, STATS] = anovan (score,{treatment,exercise,age},'model',[1 0 0; 0 1 0; 0 0 1; 1 1 0],'continuous',3,'sstype','h','display','off'); %! assert (P(1), 0.00158132928938933, 1e-09); %! assert (P(2), 2.12537505039986e-07, 1e-09); %! assert (P(3), 0.00390292555160047, 1e-09); %! assert (P(4), 0.0164086580775543, 1e-09); %! assert (ATAB{2,6}, 11.0956027650549, 1e-09); %! assert (ATAB{3,6}, 20.8195665467178, 1e-09); %! assert (ATAB{4,6}, 9.10966630720186, 1e-09); %! assert (ATAB{5,6}, 4.4457923698584, 1e-09); ## Test 12 for anovan example 12 ## Test compares anovan regression coefficients to R: ## https://www.uvm.edu/~statdhtx/StatPages/Unequal-ns/Unequal_n%27s_contrasts.html %!test %! dv = [ 8.706 10.362 11.552 6.941 10.983 10.092 6.421 14.943 15.931 ... %! 22.968 18.590 16.567 15.944 21.637 14.492 17.965 18.851 22.891 ... %! 22.028 16.884 17.252 18.325 25.435 19.141 21.238 22.196 18.038 ... %! 22.628 31.163 26.053 24.419 32.145 28.966 30.207 29.142 33.212 ... %! 25.694 ]'; %! g = [1 1 1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5]'; %! C = [ 0.4001601 0.3333333 0.5 0.0 %! 0.4001601 0.3333333 -0.5 0.0 %! 0.4001601 -0.6666667 0.0 0.0 %! -0.6002401 0.0000000 0.0 0.5 %! -0.6002401 0.0000000 0.0 -0.5]; %! %! [P,ATAB,STATS] = anovan (dv,g,'contrasts',{C},'display','off'); %! assert (STATS.coeffs(1,1), 19.4001, 1e-04); %! assert (STATS.coeffs(2,1), -9.3297, 1e-04); %! assert (STATS.coeffs(3,1), -5.0000, 1e-04); %! assert (STATS.coeffs(4,1), -8.0000, 1e-04); %! assert (STATS.coeffs(5,1), -8.0000, 1e-04); %! assert (STATS.coeffs(1,2), 0.4831, 1e-04); %! assert (STATS.coeffs(2,2), 0.9694, 1e-04); %! assert (STATS.coeffs(3,2), 1.3073, 1e-04); %! assert (STATS.coeffs(4,2), 1.6411, 1e-04); %! assert (STATS.coeffs(5,2), 1.4507, 1e-04); %! assert (STATS.coeffs(1,5), 40.161, 1e-03); %! assert (STATS.coeffs(2,5), -9.624, 1e-03); %! assert (STATS.coeffs(3,5), -3.825, 1e-03); %! assert (STATS.coeffs(4,5), -4.875, 1e-03); %! assert (STATS.coeffs(5,5), -5.515, 1e-03); %! assert (STATS.coeffs(2,6), 5.74e-11, 1e-12); %! assert (STATS.coeffs(3,6), 0.000572, 1e-06); %! assert (STATS.coeffs(4,6), 2.86e-05, 1e-07); %! assert (STATS.coeffs(5,6), 4.44e-06, 1e-08); statistics-release-1.6.3/inst/bartlett_test.m000066400000000000000000000217621456127120000213520ustar00rootroot00000000000000## Copyright (C) 1995-2017 Kurt Hornik ## Copyright (C) 2022 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{h} =} bartlett_test (@var{x}) ## @deftypefnx {statistics} {@var{h} =} bartlett_test (@var{x}, @var{group}) ## @deftypefnx {statistics} {@var{h} =} bartlett_test (@var{x}, @var{alpha}) ## @deftypefnx {statistics} {@var{h} =} bartlett_test (@var{x}, @var{group}, @var{alpha}) ## @deftypefnx {statistics} {[@var{h}, @var{pval}] =} bartlett_test (@dots{}) ## @deftypefnx {statistics} {[@var{h}, @var{pval}, @var{chisq}] =} bartlett_test (@dots{}) ## @deftypefnx {statistics} {[@var{h}, @var{pval}, @var{chisq}, @var{df}] =} bartlett_test (@dots{}) ## ## Perform a Bartlett test for the homogeneity of variances. ## ## Under the null hypothesis of equal variances, the test statistic @var{chisq} ## approximately follows a chi-square distribution with @var{df} degrees of ## freedom. ## ## The p-value (1 minus the CDF of this distribution at @var{chisq}) is ## returned in @var{pval}. @var{h} = 1 if the null hypothesis is rejected at ## the significance level of @var{alpha}. Otherwise @var{h} = 0. ## ## Input Arguments: ## ## @itemize ## @item ## @var{x} contains the data and it can either be a vector or matrix. ## If @var{x} is a matrix, then each column is treated as a separate group. ## If @var{x} is a vector, then the @var{group} argument is mandatory. ## NaN values are omitted. ## ## @item ## @var{group} contains the names for each group. If @var{x} is a vector, then ## @var{group} must be a vector of the same length, or a string array or cell ## array of strings with one row for each element of @var{x}. @var{x} values ## corresponding to the same value of @var{group} are placed in the same group. ## If @var{x} is a matrix, then @var{group} can either be a cell array of ## strings of a character array, with one row per column of @var{x} in the same ## way it is used in @code{anova1} function. If @var{x} is a matrix, then ## @var{group} can be omitted either by entering an empty array ([]) or by ## parsing only @var{alpha} as a second argument (if required to change its ## default value). ## ## @item ## @var{alpha} is the statistical significance value at which the null ## hypothesis is rejected. Its default value is 0.05 and it can be parsed ## either as a second argument (when @var{group} is omitted) or as a third ## argument. ## @end itemize ## ## @seealso{levene_test, vartest2, vartestn} ## @end deftypefn function [h, pval, chisq, df] = bartlett_test (x, varargin) ## Check for valid number of input arguments if (nargin < 1 || nargin > 3) error ("bartlett_test: invalid number of input arguments."); endif ## Add defaults group = []; alpha = 0.05; ## Check for 2nd argument being ALPHA or GROUP if (nargin > 1) if (isscalar (varargin{1}) && isnumeric (varargin{1}) ... && numel (varargin{1}) == 1) alpha = varargin{1}; ## Check for valid alpha value if (alpha <= 0 || alpha >= 1) error ("bartlett_test: wrong value for alpha."); endif elseif (isvector (varargin{1}) && numel (varargin{1} > 1)) if ((size (x, 2) == 1 && size (x, 1) == numel (varargin{1})) || ... (size (x, 2) > 1 && size (x, 2) == numel (varargin{1}))) group = varargin{1}; else error ("bartlett_test: GROUP and X mismatch."); endif elseif (isempty (varargin{1})) ## Do nothing else error ("bartlett_test: invalid second input argument."); endif endif ## Check for 3rd argument if (nargin > 2) alpha = varargin{2}; ## Check for valid alpha value if (! isscalar (alpha) || ! isnumeric (alpha) || alpha <= 0 || alpha >= 1) error ("bartlett_test: wrong value for alpha."); endif endif ## Convert group to cell array from character array, make it a column if (! isempty (group) && ischar (group)) group = cellstr (group); endif if (size (group, 1) == 1) group = group'; endif ## If x is a matrix, convert it to column vector and create a ## corresponging column vector for groups if (length (x) < prod (size (x))) [n, m] = size (x); x = x(:); gi = reshape (repmat ((1:m), n, 1), n*m, 1); if (length (group) == 0) ## no group names are provided group = gi; elseif (size (group, 1) == m) ## group names exist and match columns group = group(gi,:); else error ("bartlett_test: columns in X and GROUP length do not match."); endif endif ## Check that x and group are the same size if (! all (numel (x) == numel (group))) error (srtcat (["bartlett_test: GROUP must be a vector with the same"], ... [" number of rows as x."])); endif ## Identify NaN values (if any) and remove them from X along with ## their corresponding values from group vector nonan = ! isnan (x); x = x(nonan); group = group(nonan, :); ## Convert group to indices and separate names [group_id, group_names] = grp2idx (group); group_id = group_id(:); ## Get sample size (n_i) and var (s^2_i) for each group with n_i > 1 groups = size (group_names, 1); rgroup = []; n_i = zeros (1, groups); s_i = n_i; for k = 1:groups group_size = find (group_id == k); if (length (group_size) > 1) n_i(k) = length (group_size); s_i(k) = var (x(group_size)); else warning (strcat (sprintf ("bartlett_test: GROUP %s has a single", ... group_names{k}), [" sample and is not included in the test.\n"])); rgroup = [rgroup, k]; n_i(k) = 1; s_i(k) = NaN; endif endfor ## Remove groups with a single sample if (! isempty (rgroup)) n_i(rgroup) = []; s_i(rgroup) = []; k = k - numel (rgroup); endif ## Compute total sample size (N) and pooled variance (S) N = sum (n_i); S = (1 / (N - k)) * sum ((n_i - 1) .* s_i); ## Calculate B statistic. That is, B ~ X^2(k-1) B_nom = (N - k) * log (S) - sum ((n_i - 1) .* log (s_i)); B_den = 1 + (1 / (3 * (k - 1))) * (sum (1 ./ (n_i - 1)) - (1 / (N - k))); chisq = B_nom / B_den; ## Calculate p-value from the chi-square distribution df = k - 1; pval = 1 - chi2cdf (chisq, df); ## Determine the test outcome h = double (pval < alpha); endfunction ## Test input validation %!error bartlett_test () %!error ... %! bartlett_test (1, 2, 3, 4); %!error bartlett_test (randn (50, 2), 0); %!error ... %! bartlett_test (randn (50, 2), [1, 2, 3]); %!error ... %! bartlett_test (randn (50, 1), ones (55, 1)); %!error ... %! bartlett_test (randn (50, 1), ones (50, 2)); %!error ... %! bartlett_test (randn (50, 2), [], 1.2); %!error ... %! bartlett_test (randn (50, 2), [], "alpha"); %!error ... %! bartlett_test (randn (50, 1), [ones(25, 1); 2*ones(25, 1)], 1.2); %!error ... %! bartlett_test (randn (50, 1), [ones(25, 1); 2*ones(25, 1)], "err"); %!warning ... %! bartlett_test (randn (50, 1), [ones(24, 1); 2*ones(25, 1); 3]); ## Test results %!test %! load examgrades %! [h, pval, chisq, df] = bartlett_test (grades); %! assert (h, 1); %! assert (pval, 7.908647337018238e-08, 1e-14); %! assert (chisq, 38.73324, 1e-5); %! assert (df, 4); %!test %! load examgrades %! [h, pval, chisq, df] = bartlett_test (grades(:,[2:4])); %! assert (h, 1); %! assert (pval, 0.01172, 1e-5); %! assert (chisq, 8.89274, 1e-5); %! assert (df, 2); %!test %! load examgrades %! [h, pval, chisq, df] = bartlett_test (grades(:,[1,4])); %! assert (h, 0); %! assert (pval, 0.88118, 1e-5); %! assert (chisq, 0.02234, 1e-5); %! assert (df, 1); %!test %! load examgrades %! grades = [grades; nan(10, 5)]; %! [h, pval, chisq, df] = bartlett_test (grades(:,[1,4])); %! assert (h, 0); %! assert (pval, 0.88118, 1e-5); %! assert (chisq, 0.02234, 1e-5); %! assert (df, 1); %!test %! load examgrades %! [h, pval, chisq, df] = bartlett_test (grades(:,[2,5]), 0.01); %! assert (h, 0); %! assert (pval, 0.01791, 1e-5); %! assert (chisq, 5.60486, 1e-5); %! assert (df, 1); statistics-release-1.6.3/inst/barttest.m000066400000000000000000000142061456127120000203150ustar00rootroot00000000000000## Copyright (C) 2022 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{ndim} =} barttest (@var{x}) ## @deftypefnx {statistics} {@var{ndim} =} barttest (@var{x}, @var{alpha}) ## @deftypefnx {statistics} {[@var{ndim}, @var{pval}] =} barttest (@var{x}, @var{alpha}) ## @deftypefnx {statistics} {[@var{ndim}, @var{pval}, @var{chisq}] =} barttest (@var{x}, @var{alpha}) ## ## Bartlett's test of sphericity for correlation. ## ## It compares an observed correlation matrix to the identity matrix in order to ## check if there is a certain redundancy between the variables that we can ## summarize with a few number of factors. A statistically significant test ## shows that the variables (columns) in @var{x} are correlated, thus it makes ## sense to perform some dimensionality reduction of the data in @var{x}. ## ## @code{@var{ndim} = barttest (@var{x}, @var{alpha})} returns the number of ## dimensions necessary to explain the nonrandom variation in the data matrix ## @var{x} at the @var{alpha} significance level. @var{alpha} is an optional ## input argument and, when not provided, it is 0.05 by default. ## ## @code{[@var{ndim}, @var{pval}, @var{chisq}] = barttest (@dots{})} also ## returns the significance values @var{pval} for the hypothesis test for each ## dimension as well as the associated chi^2 values in @var{chisq} ## ## @end deftypefn function [ndim, pval, chisq] = barttest (x, alpha); ## Check for valid number of input arguments if (nargin < 1 || nargin >2) error ("barttest: invalid number of input arguments."); endif ## Check for NaN values in X if (any (isnan( x(:)))) error ("barttest: NaN values in input are not allowed."); endif ## Add default value for alpha if not supplied if (nargin == 1) alpha = 0.05; endif ## Check for valid value of alpha if (! isscalar (alpha) || ! isnumeric (alpha) || alpha <= 0 || alpha >= 1) error ("barttest: wrong value for alpha."); endif ## Check size of data [row, col] = size (x); if (col <= 1 || row <= 1) error ("barttest: not enough data in X."); endif ## Compute the eigenvalues of X in a more efficient way latent = sort ((svd (x - repmat (mean (x, 1), row, 1)) .^ 2) / (row - 1)); ## The degrees of ffredom should be N-1, where N is the sample size row -= 1; k = (0:col - 2)'; pk = col - k; loglatent = flipud (cumsum (log (latent))); ## Compute the chi-square statistic logsum = log (flipud ((latent(1) + cumsum (latent(2:col))) ./ flipud(pk))); chisq = (pk .* logsum - loglatent(1:col - 1)) * row; ## Calculate the degrees of freedom df = (pk - 1) .* (pk + 2) / 2; ## Find the corresponding p-values pval = 1 - chi2cdf (chisq, df); ## Get ndim dim = min (find (pval > alpha)); if (isempty (dim)) ndim = col; return; endif if (dim == 1) ndim = NaN; warning ("barttest: heuristics are violated."); else ndim = dim - 1; endif endfunction ## Test input validation %!error barttest () %!error barttest ([2,NaN;3,4]) %!error barttest (ones (30, 4), "alpha") %!error barttest (ones (30, 4), 0) %!error barttest (ones (30, 4), 1.2) %!error barttest (ones (30, 4), [0.2, 0.05]) %!error barttest (ones (30, 1)) %!error barttest (ones (30, 1), 0.05) ## Test results %!test %! x = [2, 3, 4, 5, 6, 7, 8, 9; 1, 2, 3, 4, 5, 6, 7, 8]'; %! [ndim, pval, chisq] = barttest (x); %! assert (ndim, 2); %! assert (pval, 0); %! ## assert (chisq, 512.0558, 1e-4); Result differs between octave 6 and 7 ? %!test %! x = [0.53767, 0.62702, -0.10224, -0.25485, 1.4193, 1.5237 ; ... %! 1.8339, 1.6452, -0.24145, -0.23444, 0.29158, 0.1634 ; ... %! -2.2588, -2.1351, 0.31286, 0.39396, 0.19781, 0.20995 ; ... %! 0.86217, 1.0835, 0.31286, 0.46499, 1.5877, 1.495 ; ... %! 0.31877, 0.38454, -0.86488, -0.63839, -0.80447, -0.7536 ; ... %! -1.3077, -1.1487, -0.030051, -0.017629, 0.69662, 0.60497 ; ... %! -0.43359, -0.32672, -0.16488, -0.37364, 0.83509, 0.89586 ; ... %! 0.34262, 0.29639, 0.62771, 0.51672, -0.24372, -0.13698 ; ... %! 3.5784, 3.5841, 1.0933, 0.93258, 0.21567, 0.455 ; ... %! 2.7694, 2.6307, 1.1093, 1.4298, -1.1658, -1.1816 ; ... %! -1.3499, -1.2111, -0.86365, -0.94186, -1.148, -1.4381 ; ... %! 3.0349, 2.8428, 0.077359, 0.18211, 0.10487, -0.014613; ... %! 0.7254, 0.56737, -1.2141, -1.2291, 0.72225, 0.90612 ; ... %! -0.063055,-0.17662, -1.1135, -0.97701, 2.5855, 2.4084 ; ... %! 0.71474, 0.29225, -0.0068493, -0.11468, -0.66689, -0.52466 ; ... %! -0.20497, -7.8874e-06, 1.5326, 1.3195, 0.18733, 0.20296 ; ... %! -0.12414, -0.077029, -0.76967, -0.96262, -0.082494, 0.121 ; ... %! 1.4897, 1.3683, 0.37138, 0.43653, -1.933, -2.1903 ; ... %! 1.409, 1.5882, -0.22558, -0.24835, -0.43897, -0.46247 ; ... %! 1.4172, 1.1616, 1.1174, 1.0785, -1.7947, -1.9471 ]; %! [ndim, pval, chisq] = barttest (x); %! assert (ndim, 3); %! assert (pval, [0; 0; 0; 0.52063; 0.34314], 1e-5); %! chisq_out = [251.6802; 210.2670; 153.1773; 4.2026; 2.1392]; %! assert (chisq, chisq_out, 1e-4); statistics-release-1.6.3/inst/binotest.m000066400000000000000000000122021456127120000203060ustar00rootroot00000000000000## Copyright (C) 2016 Andreas Stahel ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {[@var{h}, @var{pval}, @var{ci}] =} binotest (@var{pos}, @var{N}, @var{p0}) ## @deftypefnx {statistics} {[@var{h}, @var{pval}, @var{ci}] =} binotest (@var{pos}, @var{N}, @var{p0}, @var{Name}, @var{Value}) ## ## Test for probability @var{p} of a binomial sample ## ## Perform a test of the null hypothesis @var{p} == @var{p0} for a sample ## of size @var{N} with @var{pos} positive results. ## ## ## Name-Value pair arguments can be used to set various options. ## @qcode{"alpha"} can be used to specify the significance level ## of the test (the default value is 0.05). The option @qcode{"tail"}, ## can be used to select the desired alternative hypotheses. If the ## value is @qcode{"both"} (default) the null is tested against the two-sided ## alternative @code{@var{p} != @var{p0}}. The value of @var{pval} is ## determined by adding the probabilities of all event less or equally ## likely than the observed number @var{pos} of positive events. ## If the value of @qcode{"tail"} is @qcode{"right"} ## the one-sided alternative @code{@var{p} > @var{p0}} is considered. ## Similarly for @qcode{"left"}, the one-sided alternative ## @code{@var{p} < @var{p0}} is considered. ## ## If @var{h} is 0 the null hypothesis is accepted, if it is 1 the null ## hypothesis is rejected. The p-value of the test is returned in @var{pval}. ## A 100(1-alpha)% confidence interval is returned in @var{ci}. ## ## @end deftypefn function [h, p, ci] = binotest(pos,n,p0,varargin) % Set default arguments alpha = 0.05; tail = 'both'; i = 1; while ( i <= length(varargin) ) switch lower(varargin{i}) case 'alpha' i = i + 1; alpha = varargin{i}; case 'tail' i = i + 1; tail = varargin{i}; otherwise error('Invalid Name argument.',[]); end i = i + 1; end if ~isa(tail,'char') error('tail argument to vartest must be a string\n',[]); end if (n<=0) error('binotest: required n>0\n',[]); end if (p0<0)|(p0>1) error('binotest: required 0<= p0 <= 1\n',[]); end if (pos<0)|(pos>n) error('binotest: required 0<= pos <= n\n',[]); end % Based on the "tail" argument determine the P-value, the critical values, % and the confidence interval. switch lower(tail) case 'both' A_low = binoinv(alpha/2,n,p0)/n; A_high = binoinv(1-alpha/2,n,p0)/n; p_pos = binopdf(pos,n,p0); p_all = binopdf([0:n],n,p0); ind = find(p_all <=p_pos); % p = min(1,sum(p_all(ind))); p = sum(p_all(ind)); if pos==0 p_low = 0; else p_low = fzero(@(pl)1-binocdf(pos-1,n,pl)-alpha/2,[0 1]); endif if pos==n p_high = 1; else p_high = fzero(@(ph) binocdf(pos,n,ph) -alpha/2,[0,1]); endif ci = [p_low,p_high]; case 'left' p = 1-binocdf(pos-1,n,p0); if pos==n p_high = 1; else p_high = fzero(@(ph) binocdf(pos,n,ph) -alpha,[0,1]); endif ci = [0, p_high]; case 'right' p = binocdf(pos,n,p0); if pos==0 p_low = 0; else p_low = fzero(@(pl)1-binocdf(pos-1,n,pl)-alpha,[0 1]); endif ci = [p_low 1]; otherwise error('Invalid fifth (tail) argument to binotest\n',[]); end % Determine the test outcome % MATLAB returns this a double instead of a logical array h = double(p < alpha); end %!demo %! % flip a coin 1000 times, showing 475 heads %! % Hypothesis: coin is fair, i.e. p=1/2 %! [h,p_val,ci] = binotest(475,1000,0.5) %! % Result: h = 0 : null hypothesis not rejected, coin could be fair %! % P value 0.12, i.e. hypothesis not rejected for alpha up to 12% %! % 0.444 <= p <= 0.506 with 95% confidence %!demo %! % flip a coin 100 times, showing 65 heads %! % Hypothesis: coin shows less than 50% heads, i.e. p<=1/2 %! [h,p_val,ci] = binotest(65,100,0.5,'tail','left','alpha',0.01) %! % Result: h = 1 : null hypothesis is rejected, i.e. coin shows more heads than tails %! % P value 0.0018, i.e. hypothesis not rejected for alpha up to 0.18% %! % 0 <= p <= 0.76 with 99% confidence %!test #example from https://en.wikipedia.org/wiki/Binomial_test %! [h,p_val,ci] = binotest (51,235,1/6); %! assert (p_val, 0.0437, 0.00005) %! [h,p_val,ci] = binotest (51,235,1/6,'tail','left'); %! assert (p_val, 0.027, 0.0005) statistics-release-1.6.3/inst/boxplot.m000066400000000000000000001041131456127120000201510ustar00rootroot00000000000000## Copyright (C) 2002 Alberto Terruzzi ## Copyright (C) 2006 Alberto Pose ## Copyright (C) 2011 Pascal Dupuis ## Copyright (C) 2012 Juan Pablo Carbajal ## Copyright (C) 2016 Pascal Dupuis ## Copyright (C) 2020 Andreas Bertsatos ## Copyright (C) 2020 Philip Nienhuis (prnienhuis@users.sf.net) ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{s} =} boxplot (@var{data}) ## @deftypefnx {statistics} {@var{s} =} boxplot (@var{data}, @var{group}) ## @deftypefnx {statistics} {@var{s} =} boxplot (@var{data}, @var{notched}, @var{symbol}, @var{orientation}, @var{whisker}, @dots{}) ## @deftypefnx {statistics} {@var{s} =} boxplot (@var{data}, @var{group}, @var{notched}, @var{symbol}, @var{orientation}, @var{whisker}, @dots{}) ## @deftypefnx {statistics} {@var{s} =} boxplot (@var{data}, @var{options}) ## @deftypefnx {statistics} {@var{s} =} boxplot (@var{data}, @var{group}, @var{options}, @dots{}) ## @deftypefnx {statistics} {[@dots{}, @var{h}] =} boxplot (@var{data}, @dots{}) ## ## Produce a box plot. ## ## A box plot is a graphical display that simultaneously describes several ## important features of a data set, such as center, spread, departure from ## symmetry, and identification of observations that lie unusually far from ## the bulk of the data. ## ## Input arguments (case-insensitive) recognized by boxplot are: ## ## @itemize ## @item ## @var{data} is a matrix with one column for each data set, or a cell vector ## with one cell for each data set. Each cell must contain a numerical row or ## column vector (NaN and NA are ignored) and not a nested vector of cells. ## ## @item ## @var{notched} = 1 produces a notched-box plot. Notches represent a robust ## estimate of the uncertainty about the median. ## ## @var{notched} = 0 (default) produces a rectangular box plot. ## ## @var{notched} within the interval (0,1) produces a notch of the specified ## depth. Notched values outside (0,1) are amusing if not exactly impractical. ## ## @item ## @var{symbol} sets the symbol for the outlier values. The default symbol ## for points that lie outside 3 times the interquartile range is 'o'; ## the default symbol for points between 1.5 and 3 times the interquartile ## range is '+'. @* ## Alternative @var{symbol} settings: ## ## @var{symbol} = '.': points between 1.5 and 3 times the IQR are marked with ## '.' and points outside 3 times IQR with 'o'. ## ## @var{symbol} = ['x','*']: points between 1.5 and 3 times the IQR are marked ## with 'x' and points outside 3 times IQR with '*'. ## ## @item ## @var{orientation} = 0 makes the boxes horizontally. @* ## @var{orientation} = 1 plots the boxes vertically (default). Alternatively, ## orientation can be passed as a string, e.g., 'vertical' or 'horizontal'. ## ## @item ## @var{whisker} defines the length of the whiskers as a function of the IQR ## (default = 1.5). If @var{whisker} = 0 then @code{boxplot} displays all data ## values outside the box using the plotting symbol for points that lie ## outside 3 times the IQR. ## ## @item ## @var{group} may be passed as an optional argument only in the second ## position after @var{data}. @var{group} contains a numerical vector defining ## separate categories, each plotted in a different box, for each set of ## @var{DATA} values that share the same @var{group} value or values. With ## the formalism (@var{data}, @var{group}), both must be vectors of the same ## length. ## ## @item ## @var{options} are additional paired arguments passed with the formalism ## (Name, Value) that provide extra functionality as listed below. ## @var{options} can be passed at any order after the initial arguments and ## are case-insensitive. ## ## @multitable {Name} {Value} {description} @columnfractions .2 .2 .6 ## @item 'Notch' @tab 'on' @tab Notched by 0.25 of the boxes width. ## @item @tab 'off' @tab Produces a straight box. ## @item @tab scalar @tab Proportional width of the notch. ## ## @item 'Symbol' @tab '.' @tab Defines only outliers between 1.5 and 3 IQR. ## @item @tab ['x','*'] @tab 2nd character defines outliers > 3 IQR ## ## @item 'Orientation' @tab 'vertical' @tab Default value, can also be defined ## with numerical 1. ## @item @tab 'horizontal' @tab Can also be defined with numerical 0. ## ## @item 'Whisker' @tab scalar @tab Multiplier of IQR (default is 1.5). ## ## @item 'OutlierTags' @tab 'on' or 1 @tab Plot the vector index of the outlier ## value next to its point. ## @item @tab 'off' or 0 @tab No tags are plotted (default value). ## ## @item 'Sample_IDs' @tab 'cell' @tab A cell vector with one cell for each ## data set containing a nested cell vector with each sample's ID (should be ## a string). If this option is passed, then all outliers are tagged with ## their respective sample's ID string instead of their vector's index. ## ## @item 'BoxWidth' @tab 'proportional' @tab Create boxes with their width ## proportional to the number of samples in their respective dataset (default ## value). ## @item @tab 'fixed' @tab Make all boxes with equal width. ## ## @item 'Widths' @tab scalar @tab Scaling factor for box widths (default ## value is 0.4). ## ## @item 'CapWidths' @tab scalar @tab Scaling factor for whisker cap widths ## (default value is 1, which results to 'Widths'/8 halflength) ## ## @item 'BoxStyle' @tab 'outline' @tab Draw boxes as outlines (default value). ## @item @tab 'filled' @tab Fill boxes with a color (outlines are still ## plotted). ## ## @item 'Positions' @tab vector @tab Numerical vector that defines the ## position of each data set. It must have the same length as the number of ## groups in a desired manner. This vector merely defines the points along ## the group axis, which by default is [1:number of groups]. ## ## @item 'Labels' @tab cell @tab A cell vector of strings containing the names ## of each group. By default each group is labeled numerically according to ## its order in the data set ## ## @item 'Colors' @tab character string or Nx3 numerical matrix @tab If just ## one character or 1x3 vector of RGB values, specify the fill color of all ## boxes when BoxStyle = 'filled'. If a character string or Nx3 matrix is ## entered, box #1's fill color corrresponds to the first character or first ## matrix row, and the next boxes' fill colors corresponds to the next ## characters or rows. If the char string or Nx3 array is exhausted the color ## selection wraps around. ## @end multitable ## @end itemize ## ## Supplemental arguments not described above (@dots{}) are concatenated and ## passed to the plot() function. ## ## The returned matrix @var{s} has one column for each data set as follows: ## ## @multitable @columnfractions .1 .8 ## @item 1 @tab Minimum ## @item 2 @tab 1st quartile ## @item 3 @tab 2nd quartile (median) ## @item 4 @tab 3rd quartile ## @item 5 @tab Maximum ## @item 6 @tab Lower confidence limit for median ## @item 7 @tab Upper confidence limit for median ## @end multitable ## ## The returned structure @var{h} contains handles to the plot elements, ## allowing customization of the visualization using set/get functions. ## ## Example ## ## @example ## title ("Grade 3 heights"); ## axis ([0,3]); ## set(gca (), "xtick", [1 2], "xticklabel", @{"girls", "boys"@}); ## boxplot (@{randn(10,1)*5+140, randn(13,1)*8+135@}); ## @end example ## ## @end deftypefn function [s_o, hs_o] = boxplot (data, varargin) ## Assign parameter defaults if (nargin < 1) print_usage; endif ## Check data if (! (isnumeric (data) || iscell (data))) error ("boxplot: numerical array or cell array containing data expected."); elseif (iscell (data)) ## Check if cell contain numerical data if (! all (cellfun ("isnumeric", data))) error ("boxplot: data cells must contain numerical data."); endif endif ## Default values maxwhisker = 1.5; orientation = 1; symbol = ["+", "o"]; notched = 0; plot_opts = {}; groups = []; sample_IDs = {}; outlier_tags = 0; box_width = "proportional"; widths = 0.4; capwid = 1; box_style = 0; positions = []; labels = {}; nug = 0; bcolor = "y"; ## Optional arguments analysis numarg = nargin - 1; indopt = 1; group_exists = 0; while (numarg) dummy = varargin{indopt++}; if ((! ischar (dummy) || iscellstr (dummy)) && indopt < 6) ## MATLAB allows passing the second argument as a grouping vector if (length (dummy) > 1) if (2 != indopt) error ("boxplot: grouping vector may only be passed as second arg."); endif if (isnumeric (dummy)) groups = dummy; group_exists = 1; else error ("boxplot: grouping vector must be numerical"); endif elseif (length (dummy) == 1) ## Old way: positional argument switch indopt - group_exists case 2 notched = dummy; case 4 orientation = dummy; case 5 maxwhisker = dummy; otherwise error("boxplot: no positional argument allowed at position %d", ... --indopt); endswitch endif numarg--; continue; else if (3 == (indopt - group_exists) && length (dummy) <= 2) symbol = dummy; numarg--; continue; else ## Check for additional paired arguments switch lower (dummy) case "notch" notched = varargin{indopt}; ## Check for string input: "on" or "off" if (ischar (notched)) if (strcmpi (notched, "on")) notched = 1; elseif (strcmpi (notched, "off")) notched = 0; else msg = ["boxplot: 'Notch' input argument accepts only 'on',", ... " 'off' or a numeric scalar as value"]; error (msg); endif elseif (! (isnumeric (notched) && isreal (notched))) error ("boxplot: illegal Notch value"); endif case "symbol" symbol = varargin{indopt}; if (! ischar (symbol)) error ("boxplot; Symbol(s) must be character(s)"); endif case "orientation" orientation = varargin{indopt}; if (ischar (orientation)) ## Check for string input: "vertical" or "horizontal" if (strcmpi (orientation, "vertical")) orientation = 1; elseif (strcmpi (orientation, "horizontal")) orientation = 0; else msg = ["boxplot: 'Orientation' input argument accepts only", ... " 'vertical' (or 1) or 'horizontal' (or 0) as value"]; error (msg); endif elseif (! (isnumeric (orientation) && isreal (orientation))) error ("boxplot: illegal Orientation value"); endif case "whisker" maxwhisker = varargin{indopt}; if (! isscalar (maxwhisker) || ... ! (isnumeric (maxwhisker) && isreal (maxwhisker))) msg = ["boxplot: 'Whisker' input argument accepts only", ... " a real scalar value as input parameter"]; error(msg); endif case "outliertags" outlier_tags = varargin{indopt}; ## Check for string input: "on" or "off" if (ischar (outlier_tags)) if (strcmpi (outlier_tags, "on")) outlier_tags = 1; elseif (strcmpi (outlier_tags, "off")) outlier_tags = 0; else msg = ["boxplot: 'OutlierTags' input argument accepts only", ... " 'on' (or 1) or 'off' (or 0) as value"]; error (msg); endif elseif (! (isnumeric (outlier_tags) && isreal (outlier_tags))) error ("boxplot: illegal OutlierTags value"); endif case "sample_ids" sample_IDs = varargin{indopt}; if (! iscell (sample_IDs)) msg = ["boxplot: 'Sample_IDs' input argument accepts only", ... " a cell array as value"]; error (msg); endif outlier_tags = 1; case "boxwidth" box_width = varargin{indopt}; ## Check for string input: "fixed" or "proportional" if (! ischar (box_width) || ... ! ismember (lower (box_width), {"fixed", "proportional"})) msg = ["boxplot: 'BoxWidth' input argument accepts only", ... " 'fixed' or 'proportional' as value"]; error (msg); endif box_width = lower (box_width); case "widths" widths = varargin{indopt}; if (! isscalar (widths) || ! (isnumeric (widths) && isreal (widths))) msg = ["boxplot: 'Widths' input argument accepts only", ... " a real scalar value as value"]; error (msg); endif case "capwidths" capwid = varargin{indopt}; if (! isscalar (capwid) || ! (isnumeric (capwid) && isreal (capwid))) msg = ["boxplot: 'CapWidths' input argument accepts only", ... " a real scalar value as value"]; error (msg); endif case "boxstyle" box_style = varargin{indopt}; ## Check for string input: "outline" or "filled" if (! ischar (box_style) || ... ! ismember (lower (box_style), {"outline", "filled"})) msg = ["boxplot: 'BoxStyle' input argument accepts only", ... " 'outline' or 'filled' as value"]; error (msg); endif box_style = lower (box_style); case "positions" positions = varargin{indopt}; if (! isvector (positions) || ! isnumeric (positions)) msg = ["boxplot: 'Positions' input argument accepts only", ... " a numeric vector as value"]; error (msg); endif case "labels" labels = varargin{indopt}; if (! iscellstr (labels)) msg = ["boxplot: 'Labels' input argument accepts only", ... " a cellstr array as value"]; error (msg); endif case "colors" bcolor = varargin{indopt}; if (! (ischar (bcolor) || ... (isnumeric (bcolor) && size (bcolor, 2) == 3))) msg = ["boxplot: 'Colors' input argument accepts only", ... " a character (string) or Nx3 numeric array as value"]; error (msg); endif otherwise ## Take two args and append them to plot_opts plot_opts(1, end+1:end+2) = {dummy, varargin{indopt}}; endswitch endif numarg -= 2; indopt++; endif endwhile if (1 == length (symbol)) symbol(2) = symbol(1); endif if (1 == notched) notched = 0.25; endif a = 1-notched; ## Figure out how many data sets we have if (isempty (groups)) if (iscell (data)) nc = nug = length (data); for ind_c = (1:nc) lc(ind_c) = length (data{ind_c}); endfor else if (isvector (data)) data = data(:); endif nc = nug = columns (data); lc = ones (1, nc) * rows (data); endif groups = (1:nc); ## In case sample_IDs exists. check that it has same size as data if (! isempty (sample_IDs) && length (sample_IDs) == 1) for ind_c = (1:nc) if (lc(ind_c) != length (sample_IDs)) error ("boxplot: Sample_IDs must match the data"); endif endfor elseif (! isempty (sample_IDs) && length (sample_IDs) == nc) for ind_c = (1:nc) if (lc(ind_c) != length (sample_IDs{ind_c})) error ("boxplot: Sample_IDs must match the data"); endif endfor elseif (! isempty (sample_IDs) && length (sample_IDs) != nc) error ("boxplot: Sample_IDs must match the data"); endif ## Create labels according to number of datasets as ordered in data ## in case they are not provided by the user as optional argument if (isempty (labels)) for i = 1:nc column_label = num2str (groups(i)); labels(i) = {column_label}; endfor endif else if (! isvector (data)) error ("boxplot: with the formalism (data, group), both must be vectors"); endif ## If sample IDs given, check that their size matches the data if (! isempty (sample_IDs)) if (length (sample_IDs) != 1 || length (sample_IDs{1}) != length (data)) error ("boxplot: Sample_IDs must match the data"); endif nug = unique (groups); dummy_data = cell (1, length (nug)); dummy_sIDs = cell (1, length (nug)); ## Check if groups are parsed as a numeric vector if (isnumeric (groups)) for ind_c = (1:length (nug)) dummy_data(ind_c) = data(groups == nug(ind_c)); dummy_sIDs(ind_c) = {sample_IDs{1}(groups == nug(ind_c))}; endfor ## Create labels according to unique numeric groups in case ## they are not provided by the user as optional argument if (isempty (labels)) for i = 1:nug column_label = num2str (groups(i)); labels(i) = {column_label}; endfor endif ## Check if groups are parsed as a cell string vector elseif iscellstr (groups) for ind_c = (1:length (nug)) dummy_data(ind_c) = data(ismember (group, nug(ind_c))); dummy_sIDs(ind_c) = {sample_IDs{1}(ismember (group, nug(ind_c)))}; endfor ## Create labels according to unique cell string groups in case ## they are not provided by the user as optional argument if (isempty (labels)) labels = nug; endif else error ("boxplot: group argument must be numeric or cell string vector"); endif data = dummy_data; groups = nug(:).'; nc = length (nug); sample_IDs = dummy_sIDs; else nug = unique (groups); dummy_data = cell (1, length (nug)); ## Check if groups are parsed as a numeric vector if (isnumeric (groups)) for ind_c = (1:length (nug)) dummy_data(ind_c) = data(groups == nug(ind_c)); endfor ## Create labels according to unique numeric groups in case ## they are not provided by the user as optional argument if (isempty (labels)) for i = 1:nug column_label = num2str (groups(i)); labels(i) = {column_label}; endfor endif ## Check if groups are parsed as a cell string vector elseif (iscellstr (groups)) for ind_c = (1:length (nug)) dummy_data(ind_c) = data(ismember (group, nug(ind_c))); endfor ## Create labels according to unique cell string groups in case ## they are not provided by the user as optional argument if (isempty (labels)) labels = nug; endif else error ("boxplot: group argument must be numeric vector or cell string"); endif data = dummy_data; nc = length (nug); if (iscell (groups)) groups = [1:nc]; else groups = nug(:).'; endif endif endif ## Compute statistics. ## s will contain ## 1,5 min and max ## 2,3,4 1st, 2nd and 3rd quartile ## 6,7 lower and upper confidence intervals for median s = zeros (7, nc); box = zeros (1, nc); ## Arrange the boxes into desired positions (if requested, otherwise leave ## default 1:nc) if (! isempty (positions)) groups = positions; endif ## Initialize whisker matrices to correct size and all necessary outlier ## variables whisker_x = ones (2, 1) * [groups, groups]; whisker_y = zeros (2, 2 * nc); outliers_x = []; outliers_y = []; outliers_idx = []; outliers_IDs = {}; outliers2_x = []; outliers2_y = []; outliers2_idx = []; outliers2_IDs = {}; for indi = (1:nc) ## Get the next data set from the array or cell array if (iscell (data)) col = data{indi}(:); if (!isempty (sample_IDs)) sIDs = sample_IDs{indi}; else sIDs = num2cell([1:length(col)]); endif else col = data(:, indi); sIDs = num2cell([1:length(col)]); endif ## Skip missing data (NaN, NA) and remove respective sample IDs. ## Do this only on nonempty data if (length (col) > 0) remove_samples = find (isnan (col) | isna (col)); if (length (remove_samples) > 0) col(remove_samples) = []; sIDs(remove_samples) = []; endif endif ## Remember data length nd = length (col); box(indi) = nd; if (nd > 1) ## Min, max and quartiles s(1:5, indi) = statistics (col)(1:5); ## Confidence interval for the median est = 1.57 * (s(4, indi) - s(2, indi)) / sqrt (nd); s(6, indi) = max ([s(3, indi) - est, s(2, indi)]); s(7, indi) = min ([s(3, indi) + est, s(4, indi)]); ## Whiskers out to the last point within the desired inter-quartile range IQR = maxwhisker * (s(4, indi) - s(2, indi)); whisker_y(:, indi) = [min(col(col >= s(2, indi) - IQR)); s(2, indi)]; whisker_y(:, nc+indi) = [max(col(col <= s(4, indi) + IQR)); s(4, indi)]; ## Outliers beyond 1 and 2 inter-quartile ranges outliers = col((col < s(2, indi) - IQR & col >= s(2, indi) - 2 * IQR) | ... (col > s(4, indi) + IQR & col <= s(4, indi) + 2 * IQR)); outliers2 = col(col < s(2, indi) - 2 * IQR | col > s(4, indi) + 2 * IQR); ## Get outliers indices from this dataset if (length (outliers) > 0) for out_i = 1:length (outliers) outliers_idx = [outliers_idx; (find (col == outliers(out_i)))]; outliers_IDs = {outliers_IDs{:}, sIDs{(find (col == outliers(out_i)))}}; endfor endif if (length (outliers2) > 0) for out_i = 1:length (outliers2) outliers2_idx = [outliers2_idx; find(col == outliers2(out_i))]; outliers2_IDs = {outliers2_IDs{:}, sIDs{find(col == outliers2(out_i))}}; endfor endif outliers_x = [outliers_x; (groups(indi) * ones (size (outliers)))]; outliers_y = [outliers_y; outliers]; outliers2_x = [outliers2_x; (groups(indi) * ones (size (outliers2)))]; outliers2_y = [outliers2_y; outliers2]; elseif (1 == nd) ## All statistics collapse to the value of the point s(:, indi) = col; ## Single point data sets are plotted as outliers. outliers_x = [outliers_x; groups(indi)]; outliers_y = [outliers_y; col]; ## Append the single point's index to keep the outliers' vector aligned outliers_idx = [outliers_idx; 1]; outliers_IDs = {outliers_IDs{:}, sIDs{:}}; else ## No statistics if no points s(:, indi) = NaN; endif endfor ## Note which boxes don't have enough stats chop = find (box <= 1); ## Replicate widths (if scalar or shorter vector) to match the number of boxes widths = widths(repmat (1:length (widths), 1, nc)); ## Truncate just in case :) widths([nc+1:end]) = []; ## Draw a box around the quartiles, with box width being fixed or proportional ## to the number of items in the box. if (strcmpi (box_width, "proportional")) box = box .* (widths ./ max (box)); else box = box .* (widths ./ box); endif ## Draw notches if desired. quartile_x = ones (11, 1) * groups + ... [-a; -1; -1; 1 ; 1; a; 1; 1; -1; -1; -a] * box; quartile_y = s([3, 7, 4, 4, 7, 3, 6, 2, 2, 6, 3], :); ## Draw a line through the median median_x = ones (2, 1) * groups + [-a; +a] * box; median_y = s([3, 3], :); ## Chop all boxes which don't have enough stats quartile_x(:, chop) = []; quartile_y(:, chop) = []; whisker_x(:, [chop, chop + nc]) = []; whisker_y(:, [chop, chop + nc]) = []; median_x(:, chop) = []; median_y(:, chop) = []; box(chop) = []; ## Add caps to the remaining whiskers cap_x = whisker_x; if (strcmpi (box_width, "proportional")) cap_x(1, :) -= repmat (((capwid * box .* (widths ./ max (box))) / 8), 1, 2); cap_x(2, :) += repmat (((capwid * box .* (widths ./ max (box))) / 8), 1, 2); else cap_x(1, :) -= repmat ((capwid * widths / 8), 1, 2); cap_x(2, :) += repmat ((capwid * widths / 8), 1, 2); endif cap_y = whisker_y([1, 1], :); ## Calculate coordinates for outlier tags outliers_tags_x = outliers_x + 0.08; outliers_tags_y = outliers_y; outliers2_tags_x = outliers2_x + 0.08; outliers2_tags_y = outliers2_y; ## Do the plot if (orientation) ## Define outlier_tags' vertical alignment outlier_tags_alignment = {"horizontalalignment", "left"}; if (box_style) f = fillbox (quartile_x, quartile_y, bcolor); endif h = plot (quartile_x, quartile_y, "b;;", whisker_x, whisker_y, "b;;", cap_x, cap_y, "b;;", median_x, median_y, "r;;", outliers_x, outliers_y, [symbol(1), "r;;"], outliers2_x, outliers2_y, [symbol(2), "r;;"], plot_opts{:}); ## Print outlier tags if (outlier_tags == 1 && outliers_x > 0) t1 = plot_tags (outliers_tags_x, outliers_tags_y, outliers_idx, outliers_IDs, sample_IDs, outlier_tags_alignment); endif if (outlier_tags == 1 && outliers2_x > 0) t2 = plot_tags (outliers2_tags_x, outliers2_tags_y, outliers2_idx, outliers2_IDs, sample_IDs, outlier_tags_alignment); endif else ## Define outlier_tags' horizontal alignment outlier_tags_alignment = {"horizontalalignment", "left", "rotation", 90}; if (box_style) f = fillbox (quartile_y, quartile_x, bcolor); endif h = plot (quartile_y, quartile_x, "b;;", whisker_y, whisker_x, "b;;", cap_y, cap_x, "b;;", median_y, median_x, "r;;", outliers_y, outliers_x, [symbol(1), "r;;"], outliers2_y, outliers2_x, [symbol(2), "r;;"], plot_opts{:}); ## Print outlier tags if (outlier_tags == 1 && outliers_x > 0) t1 = plot_tags (outliers_tags_y, outliers_tags_x, outliers_idx, outliers_IDs, sample_IDs, outlier_tags_alignment); endif if (outlier_tags == 1 && outliers2_x > 0) t2 = plot_tags (outliers2_tags_y, outliers2_tags_x, outliers2_idx, outliers2_IDs, sample_IDs, outlier_tags_alignment); endif endif ## Distribute handles for box outlines and box fill (if any) nq = 1 : size (quartile_x, 2); hs.box = h(nq); if (box_style) nf = 1 : length (groups); hs.box_fill = f(nf); else hs.box_fill = []; endif ## Distribute handles for whiskers (including caps) and median lines nw = nq(end) + [1 : 2 * (size (whisker_x, 2))]; hs.whisker = h(nw); nm = nw(end)+ [1 : (size (median_x, 2))]; hs.median = h(nm); ## Distribute handles for outliers (if any) and their respective tags ## (if applicable) no = nm; if (! isempty (outliers_y)) no = nm(end) + [1 : size(outliers_y, 2)]; hs.outliers = h(no); if (outlier_tags == 1) nt = 1 : length (outliers_tags_y); hs.out_tags = t1(nt); else hs.out_tags = []; endif else hs.outliers = []; hs.out_tags = []; endif ## Distribute handles for extreme outliers (if any) and their respective tags ## (if applicable) if (! isempty (outliers2_y)) no2 = no(end) + [1 : size(outliers2_y, 2)]; hs.outliers2 = h(no2); if (outlier_tags == 1) nt2 = 1 : length (outliers2_tags_y); hs.out_tags2 = t2(nt2); else hs.out_tags2 = []; endif else hs.outliers2 = []; hs.out_tags2 = []; end ## Redraw the median lines to avoid colour overlapping in case of 'filled' ## BoxStyle if (box_style) set (hs.median, "color", "r"); endif ## Print labels according to orientation and return handle if (orientation) set (gca(), "xtick", groups, "xticklabel", labels); hs.labels = get (gcf, "currentaxes"); else set (gca(), "ytick", groups, "yticklabel", labels); hs.labels = get (gcf, "currentaxes"); endif hold off; ## Return output arguments if desired if (nargout >= 1) s_o = s; endif if (nargout == 2) hs_o = hs; endif endfunction function htags = plot_tags (out_tags_x, out_tags_y, out_idx, out_IDs, ... sample_IDs, opt) for i=1 : length (out_tags_x) if (! isempty (sample_IDs)) htags(i) = text (out_tags_x(i), out_tags_y(i), out_IDs{i}, opt{:}); else htags(i) = text (out_tags_x(i), out_tags_y(i), num2str (out_idx(i)), ... opt{:}); endif endfor endfunction function f = fillbox (quartile_y, quartile_x, bcolor) f = []; for icol = 1 : columns (quartile_x) if (ischar (bcolor)) f = [ f; fill(quartile_y(:, icol), quartile_x(:, icol), ... bcolor(mod (icol-1, numel (bcolor))+1)) ]; else f = [ f; fill(quartile_y(:, icol), quartile_x(:, icol), ... bcolor(mod (icol-1, size (bcolor, 1))+1, :)) ]; endif hold on; endfor endfunction %!demo %! axis ([0, 3]); %! randn ("seed", 1); # for reproducibility %! girls = randn (10, 1) * 5 + 140; %! randn ("seed", 2); # for reproducibility %! boys = randn (13, 1) * 8 + 135; %! boxplot ({girls, boys}); %! set (gca (), "xtick", [1 2], "xticklabel", {"girls", "boys"}) %! title ("Grade 3 heights"); %!demo %! randn ("seed", 7); # for reproducibility %! A = randn (10, 1) * 5 + 140; %! randn ("seed", 8); # for reproducibility %! B = randn (25, 1) * 8 + 135; %! randn ("seed", 9); # for reproducibility %! C = randn (20, 1) * 6 + 165; %! data = [A; B; C]; %! groups = [(ones (10, 1)); (ones (25, 1) * 2); (ones (20, 1) * 3)]; %! labels = {"Team A", "Team B", "Team C"}; %! pos = [2, 1, 3]; %! boxplot (data, groups, "Notch", "on", "Labels", labels, "Positions", pos, ... %! "OutlierTags", "on", "BoxStyle", "filled"); %! title ("Example of Group splitting with paired vectors"); %!demo %! randn ("seed", 1); # for reproducibility %! data = randn (100, 9); %! boxplot (data, "notch", "on", "boxstyle", "filled", ... %! "colors", "ygcwkmb", "whisker", 1.2); %! title ("Example of different colors specified with characters"); %!demo %! randn ("seed", 5); # for reproducibility %! data = randn (100, 13); %! colors = [0.7 0.7 0.7; ... %! 0.0 0.4 0.9; ... %! 0.7 0.4 0.3; ... %! 0.7 0.1 0.7; ... %! 0.8 0.7 0.4; ... %! 0.1 0.8 0.5; ... %! 0.9 0.9 0.2]; %! boxplot (data, "notch", "on", "boxstyle", "filled", ... %! "colors", colors, "whisker", 1.3, "boxwidth", "proportional"); %! title ("Example of different colors specified as RGB values"); ## Input data validation %!error boxplot ("a") %!error boxplot ({[1 2 3], "a"}) %!error boxplot ([1 2 3], 1, {2, 3}) %!error boxplot ([1 2 3], {"a", "b"}) %!error <'Notch' input argument accepts> boxplot ([1:10], "notch", "any") %!error boxplot ([1:10], "notch", i) %!error boxplot ([1:10], "notch", {}) %!error boxplot (1, "symbol", 1) %!error <'Orientation' input argument accepts only> boxplot (1, "orientation", "diagonal") %!error boxplot (1, "orientation", {}) %!error <'Whisker' input argument accepts only> boxplot (1, "whisker", "a") %!error <'Whisker' input argument accepts only> boxplot (1, "whisker", [1 3]) %!error <'OutlierTags' input argument accepts only> boxplot (3, "OutlierTags", "maybe") %!error boxplot (3, "OutlierTags", {}) %!error <'Sample_IDs' input argument accepts only> boxplot (1, "sample_IDs", 1) %!error <'BoxWidth' input argument accepts only> boxplot (1, "boxwidth", 2) %!error <'BoxWidth' input argument accepts only> boxplot (1, "boxwidth", "anything") %!error <'Widths' input argument accepts only> boxplot (5, "widths", "a") %!error <'Widths' input argument accepts only> boxplot (5, "widths", [1:4]) %!error <'Widths' input argument accepts only> boxplot (5, "widths", []) %!error <'CapWidths' input argument accepts only> boxplot (5, "capwidths", "a") %!error <'CapWidths' input argument accepts only> boxplot (5, "capwidths", [1:4]) %!error <'CapWidths' input argument accepts only> boxplot (5, "capwidths", []) %!error <'BoxStyle' input argument accepts only> boxplot (1, "Boxstyle", 1) %!error <'BoxStyle' input argument accepts only> boxplot (1, "Boxstyle", "garbage") %!error <'Positions' input argument accepts only> boxplot (1, "positions", "aa") %!error <'Labels' input argument accepts only> boxplot (3, "labels", [1 5]) %!error <'Colors' input argument accepts only> boxplot (1, "colors", {}) %!error <'Colors' input argument accepts only> boxplot (2, "colors", [1 2 3 4]) %!error boxplot (randn (10, 3), 'Sample_IDs', {"a", "b"}) %!error boxplot (rand (3, 3), [1 2]) ## Test plotting %!test %! hf = figure ("visible", "off"); %! unwind_protect %! [a, b] = boxplot (rand (10, 3)); %! assert (size (a), [7, 3]); %! assert (numel (b.box), 3); %! assert (numel (b.whisker), 12); %! assert (numel (b.median), 3); %! unwind_protect_cleanup %! close (hf); %! end_unwind_protect %!test %! hf = figure ("visible", "off"); %! unwind_protect %! [~, b] = boxplot (rand (10, 3), "BoxStyle", "filled", "colors", "ybc"); %! assert (numel (b.box_fill), 3); %! unwind_protect_cleanup %! close (hf); %! end_unwind_protect statistics-release-1.6.3/inst/canoncorr.m000066400000000000000000000064411456127120000204530ustar00rootroot00000000000000## Copyright (C) 2016-2019 by Nir Krakauer ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {[@var{A}, @var{B}, @var{r}, @var{U}, @var{V}] =} canoncorr (@var{X}, @var{Y}) ## ## Canonical correlation analysis. ## ## Given @var{X} (size @var{k}*@var{m}) and @var{Y} (@var{k}*@var{n}), returns ## projection matrices of canonical coefficients @var{A} (size @var{m}*@var{d}, ## where @var{d} is the smallest of @var{m}, @var{n}, @var{d}) and @var{B} ## (size @var{m}*@var{d}); the canonical correlations @var{r} (1*@var{d}, ## arranged in decreasing order); the canonical variables @var{U}, @var{V} ## (both @var{k}*@var{d}, with orthonormal columns); and @var{stats}, ## a structure containing results from Bartlett's chi-square and Rao's F tests ## of significance. ## ## @seealso{princomp} ## @end deftypefn function [A,B,r,U,V,stats] = canoncorr (X,Y) k = size (X, 1); # should also be size (Y, 1) m = size (X, 2); n = size (Y, 2); d = min ([k m n]); X = center (X); Y = center (Y); [Qx Rx] = qr (X, 0); [Qy Ry] = qr (Y, 0); [U S V] = svd (Qx' * Qy, "econ"); A = Rx \ U(:, 1:d); B = Ry \ V(:, 1:d); ## A, B are scaled to make the covariance matrices of the outputs U, V ## identity matrices f = sqrt (k-1); A .*= f; B .*= f; if (nargout > 2) r = max(0, min(diag(S), 1))'; endif if (nargout > 3) U = X * A; endif if (nargout > 4) V = Y * B; endif if (nargout > 5) Wilks = fliplr(cumprod(fliplr((1 - r .^ 2)))); chisq = - (k - 1 - (m + n + 1)/2) * log(Wilks); df1 = (m - (1:d) + 1) .* (n - (1:d) + 1); pChisq = 1 - chi2cdf (chisq, df1); s = sqrt((df1.^2 - 4) ./ ((m - (1:d) + 1).^2 + (n - (1:d) + 1).^2 - 5)); df2 = (k - 1 - (m + n + 1)/2) * s - df1/2 + 1; ls = Wilks .^ (1 ./ s); F = (1 ./ ls - 1) .* (df2 ./ df1); pF = 1 - fcdf (F, df1, df2); stats.Wilks = Wilks; stats.df1 = df1; stats.df2 = df2; stats.F = F; stats.pF = pF; stats.chisq = chisq; stats.pChisq = pChisq; endif endfunction %!shared X,Y,A,B,r,U,V,k %! k = 10; %! X = [1:k; sin(1:k); cos(1:k)]'; Y = [tan(1:k); tanh((1:k)/k)]'; %! [A,B,r,U,V,stats] = canoncorr (X,Y); %!assert (A, [-0.329229 0.072908; 0.074870 1.389318; -0.069302 -0.024109], 1E-6); %!assert (B, [-0.017086 -0.398402; -4.475049 -0.824538], 1E-6); %!assert (r, [0.99590 0.26754], 1E-5); %!assert (U, center(X) * A, 10*eps); %!assert (V, center(Y) * B, 10*eps); %!assert (cov(U), eye(size(U, 2)), 10*eps); %!assert (cov(V), eye(size(V, 2)), 10*eps); %! rand ("state", 1); [A,B,r] = canoncorr (rand(5, 10),rand(5, 20)); %!assert (r, ones(1, 5), 10*eps); statistics-release-1.6.3/inst/cdf.m000066400000000000000000000372221456127120000172240ustar00rootroot00000000000000## Copyright (C) 2013 Pantxo Diribarne ## Copyright (C) 2022-2024 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or ## (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program. If not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{p} =} cdf (@var{name}, @var{x}, @var{A}) ## @deftypefnx {statistics} {@var{p} =} cdf (@var{name}, @var{x}, @var{A}, @var{B}) ## @deftypefnx {statistics} {@var{p} =} cdf (@var{name}, @var{x}, @var{A}, @var{B}, @var{C}) ## @deftypefnx {statistics} {@var{p} =} cdf (@dots{}, @qcode{"upper"}) ## ## Return the CDF of a univariate distribution evaluated at @var{x}. ## ## @code{cdf} is a wrapper for the univariate cumulative distribution functions ## available in the statistics package. See the corresponding functions' help ## to learn the signification of the parameters after @var{x}. ## ## @code{@var{p} = cdf (@var{name}, @var{x}, @var{A})} returns the CDF for the ## one-parameter distribution family specified by @var{name} and the ## distribution parameter @var{A}, evaluated at the values in @var{x}. ## ## @code{@var{p} = cdf (@var{name}, @var{x}, @var{A}, @var{B})} returns the CDF ## for the two-parameter distribution family specified by @var{name} and the ## distribution parameters @var{A} and @var{B}, evaluated at the values in ## @var{x}. ## ## @code{@var{p} = cdf (@var{name}, @var{x}, @var{A}, @var{B}, @var{C})} returns ## the CDF for the three-parameter distribution family specified by @var{name} ## and the distribution parameters @var{A}, @var{B}, and @var{C}, evaluated at ## the values in @var{x}. ## ## @code{@var{p} = cdf (@dots{}, @qcode{"upper"})} returns the complement of the ## CDF using an algorithm that more accurately computes the extreme upper-tail ## probabilities. @qcode{"upper"} can follow any of the input arguments in the ## previous syntaxes. ## ## @var{name} must be a char string of the name or the abbreviation of the ## desired cumulative distribution function as listed in the followng table. ## The last column shows the number of required parameters that should be parsed ## after @var{x} to the desired CDF. The optional input argument ## @qcode{"upper"} does not count in the required number of parameters. ## ## @multitable @columnfractions 0.4 0.05 0.2 0.05 0.3 ## @headitem Distribution Name @tab @tab Abbreviation @tab @tab Input Parameters ## @item @qcode{"Beta"} @tab @tab @qcode{"beta"} @tab @tab 2 ## @item @qcode{"Binomial"} @tab @tab @qcode{"bino"} @tab @tab 2 ## @item @qcode{"Birnbaum-Saunders"} @tab @tab @qcode{"bisa"} @tab @tab 2 ## @item @qcode{"Burr"} @tab @tab @qcode{"burr"} @tab @tab 3 ## @item @qcode{"Cauchy"} @tab @tab @qcode{"cauchy"} @tab @tab 2 ## @item @qcode{"Chi-squared"} @tab @tab @qcode{"chi2"} @tab @tab 1 ## @item @qcode{"Extreme Value"} @tab @tab @qcode{"ev"} @tab @tab 2 ## @item @qcode{"Exponential"} @tab @tab @qcode{"exp"} @tab @tab 1 ## @item @qcode{"F-Distribution"} @tab @tab @qcode{"f"} @tab @tab 2 ## @item @qcode{"Gamma"} @tab @tab @qcode{"gam"} @tab @tab 2 ## @item @qcode{"Geometric"} @tab @tab @qcode{"geo"} @tab @tab 1 ## @item @qcode{"Generalized Extreme Value"} @tab @tab @qcode{"gev"} @tab @tab 3 ## @item @qcode{"Generalized Pareto"} @tab @tab @qcode{"gp"} @tab @tab 3 ## @item @qcode{"Gumbel"} @tab @tab @qcode{"gumbel"} @tab @tab 2 ## @item @qcode{"Half-normal"} @tab @tab @qcode{"hn"} @tab @tab 2 ## @item @qcode{"Hypergeometric"} @tab @tab @qcode{"hyge"} @tab @tab 3 ## @item @qcode{"Inverse Gaussian"} @tab @tab @qcode{"invg"} @tab @tab 2 ## @item @qcode{"Laplace"} @tab @tab @qcode{"laplace"} @tab @tab 2 ## @item @qcode{"Logistic"} @tab @tab @qcode{"logi"} @tab @tab 2 ## @item @qcode{"Log-Logistic"} @tab @tab @qcode{"logl"} @tab @tab 2 ## @item @qcode{"Lognormal"} @tab @tab @qcode{"logn"} @tab @tab 2 ## @item @qcode{"Nakagami"} @tab @tab @qcode{"naka"} @tab @tab 2 ## @item @qcode{"Negative Binomial"} @tab @tab @qcode{"nbin"} @tab @tab 2 ## @item @qcode{"Noncentral F-Distribution"} @tab @tab @qcode{"ncf"} @tab @tab 3 ## @item @qcode{"Noncentral Student T"} @tab @tab @qcode{"nct"} @tab @tab 2 ## @item @qcode{"Noncentral Chi-Squared"} @tab @tab @qcode{"ncx2"} @tab @tab 2 ## @item @qcode{"Normal"} @tab @tab @qcode{"norm"} @tab @tab 2 ## @item @qcode{"Poisson"} @tab @tab @qcode{"poiss"} @tab @tab 1 ## @item @qcode{"Rayleigh"} @tab @tab @qcode{"rayl"} @tab @tab 1 ## @item @qcode{"Rician"} @tab @tab @qcode{"rice"} @tab @tab 2 ## @item @qcode{"Student T"} @tab @tab @qcode{"t"} @tab @tab 1 ## @item @qcode{"location-scale T"} @tab @tab @qcode{"tls"} @tab @tab 3 ## @item @qcode{"Triangular"} @tab @tab @qcode{"tri"} @tab @tab 3 ## @item @qcode{"Discrete Uniform"} @tab @tab @qcode{"unid"} @tab @tab 1 ## @item @qcode{"Uniform"} @tab @tab @qcode{"unif"} @tab @tab 2 ## @item @qcode{"Von Mises"} @tab @tab @qcode{"vm"} @tab @tab 2 ## @item @qcode{"Weibull"} @tab @tab @qcode{"wbl"} @tab @tab 2 ## @end multitable ## ## @seealso{icdf, pdf, cdf, betacdf, binocdf, bisacdf, burrcdf, cauchycdf, ## chi2cdf, evcdf, expcdf, fcdf, gamcdf, geocdf, gevcdf, gpcdf, gumbelcdf, ## hncdf, hygecdf, invgcdf, laplacecdf, logicdf, loglcdf, logncdf, nakacdf, ## nbincdf, ncfcdf, nctcdf, ncx2cdf, normcdf, poisscdf, raylcdf, ricecdf, ## tcdf, tricdf, unidcdf, unifcdf, vmcdf, wblcdf} ## @end deftypefn function p = cdf (name, x, varargin) ## implemented functions persistent allDF = { ... {"beta" , "Beta"}, @betacdf, 2, ... {"bino" , "Binomial"}, @binocdf, 2, ... {"bisa" , "Birnbaum-Saunders"}, @bisacdf, 2, ... {"burr" , "Burr"}, @burrcdf, 3, ... {"cauchy" , "Cauchy"}, @cauchycdf, 2, ... {"chi2" , "Chi-squared"}, @chi2cdf, 1, ... {"ev" , "Extreme Value"}, @evcdf, 2, ... {"exp" , "Exponential"}, @expcdf, 1, ... {"f" , "F-Distribution"}, @fcdf, 2, ... {"gam" , "Gamma"}, @gamcdf, 2, ... {"geo" , "Geometric"}, @geocdf, 1, ... {"gev" , "Generalized Extreme Value"}, @gevcdf, 3, ... {"gp" , "Generalized Pareto"}, @gpcdf, 3, ... {"gumbel" , "Gumbel"}, @gumbelcdf, 2, ... {"hn" , "Half-normal"}, @hncdf, 2, ... {"hyge" , "Hypergeometric"}, @hygecdf, 3, ... {"invg" , "Inverse Gaussian"}, @invgcdf, 2, ... {"laplace" , "Laplace"}, @laplacecdf, 2, ... {"logi" , "Logistic"}, @logicdf, 2, ... {"logl" , "Log-Logistic"}, @loglcdf, 2, ... {"logn" , "Lognormal"}, @logncdf, 2, ... {"naka" , "Nakagami"}, @nakacdf, 2, ... {"nbin" , "Negative Binomial"}, @nbincdf, 2, ... {"ncf" , "Noncentral F-Distribution"}, @ncfcdf, 3, ... {"nct" , "Noncentral Student T"}, @nctcdf, 2, ... {"ncx2" , "Noncentral Chi-squared"}, @ncx2cdf, 2, ... {"norm" , "Normal"}, @normcdf, 2, ... {"poiss" , "Poisson"}, @poisscdf, 1, ... {"rayl" , "Rayleigh"}, @raylcdf, 1, ... {"rice" , "Rician"}, @ricecdf, 2, ... {"t" , "Student T"}, @tcdf, 1, ... {"tls" , "location-scale T"}, @tlscdf, 3, ... {"tri" , "Triangular"}, @tricdf, 3, ... {"unid" , "Discrete Uniform"}, @unidcdf, 1, ... {"unif" , "Uniform"}, @unifcdf, 2, ... {"vm" , "Von Mises"}, @vmcdf, 2, ... {"wbl" , "Weibull"}, @wblcdf, 2}; ## Check NAME being a char string if (! ischar (name)) error ("cdf: distribution NAME must a char string."); endif ## Check X being numeric and real if (! isnumeric (x)) error ("cdf: X must be numeric."); elseif (! isreal (x)) error ("cdf: values in X must be real."); endif ## Get number of arguments nargs = numel (varargin); ## Get available functions cdfnames = allDF(1:3:end); cdfhandl = allDF(2:3:end); cdf_args = allDF(3:3:end); ## Search for CDF function idx = cellfun (@(x)any(strcmpi (name, x)), cdfnames); if (any (idx)) if (nargs == cdf_args{idx} + 1) ## Check for "upper" option if (! strcmpi (varargin{nargs}, "upper")) error ("cdf: invalid argument for upper tail."); else ## Check that all remaining distribution parameters are numeric if (! all (cellfun (@(x)isnumeric(x), (varargin([1:nargs-1]))))) error ("cdf: distribution parameters must be numeric."); endif ## Call appropriate CDF with "upper" flag p = feval (cdfhandl{idx}, x, varargin{:}); endif elseif (nargs == cdf_args{idx}) ## Check that all distribution parameters are numeric if (! all (cellfun (@(x)isnumeric(x), (varargin)))) error ("cdf: distribution parameters must be numeric."); endif ## Call appropriate CDF without "upper" flag p = feval (cdfhandl{idx}, x, varargin{:}); else if (cdf_args{idx} == 1) error ("cdf: %s distribution requires 1 parameter.", name); else error ("cdf: %s distribution requires %d parameters.", ... name, cdf_args{idx}); endif endif else error ("cdf: %s distribution is not implemented in Statistics.", name); endif endfunction ## Test results %!shared x %! x = [1:5]; %!assert (cdf ("Beta", x, 5, 2), betacdf (x, 5, 2)) %!assert (cdf ("beta", x, 5, 2, "upper"), betacdf (x, 5, 2, "upper")) %!assert (cdf ("Binomial", x, 5, 2), binocdf (x, 5, 2)) %!assert (cdf ("bino", x, 5, 2, "upper"), binocdf (x, 5, 2, "upper")) %!assert (cdf ("Birnbaum-Saunders", x, 5, 2), bisacdf (x, 5, 2)) %!assert (cdf ("bisa", x, 5, 2, "upper"), bisacdf (x, 5, 2, "upper")) %!assert (cdf ("Burr", x, 5, 2, 2), burrcdf (x, 5, 2, 2)) %!assert (cdf ("burr", x, 5, 2, 2, "upper"), burrcdf (x, 5, 2, 2, "upper")) %!assert (cdf ("Cauchy", x, 5, 2), cauchycdf (x, 5, 2)) %!assert (cdf ("cauchy", x, 5, 2, "upper"), cauchycdf (x, 5, 2, "upper")) %!assert (cdf ("Chi-squared", x, 5), chi2cdf (x, 5)) %!assert (cdf ("chi2", x, 5, "upper"), chi2cdf (x, 5, "upper")) %!assert (cdf ("Extreme Value", x, 5, 2), evcdf (x, 5, 2)) %!assert (cdf ("ev", x, 5, 2, "upper"), evcdf (x, 5, 2, "upper")) %!assert (cdf ("Exponential", x, 5), expcdf (x, 5)) %!assert (cdf ("exp", x, 5, "upper"), expcdf (x, 5, "upper")) %!assert (cdf ("F-Distribution", x, 5, 2), fcdf (x, 5, 2)) %!assert (cdf ("f", x, 5, 2, "upper"), fcdf (x, 5, 2, "upper")) %!assert (cdf ("Gamma", x, 5, 2), gamcdf (x, 5, 2)) %!assert (cdf ("gam", x, 5, 2, "upper"), gamcdf (x, 5, 2, "upper")) %!assert (cdf ("Geometric", x, 5), geocdf (x, 5)) %!assert (cdf ("geo", x, 5, "upper"), geocdf (x, 5, "upper")) %!assert (cdf ("Generalized Extreme Value", x, 5, 2, 2), gevcdf (x, 5, 2, 2)) %!assert (cdf ("gev", x, 5, 2, 2, "upper"), gevcdf (x, 5, 2, 2, "upper")) %!assert (cdf ("Generalized Pareto", x, 5, 2, 2), gpcdf (x, 5, 2, 2)) %!assert (cdf ("gp", x, 5, 2, 2, "upper"), gpcdf (x, 5, 2, 2, "upper")) %!assert (cdf ("Gumbel", x, 5, 2), gumbelcdf (x, 5, 2)) %!assert (cdf ("gumbel", x, 5, 2, "upper"), gumbelcdf (x, 5, 2, "upper")) %!assert (cdf ("Half-normal", x, 5, 2), hncdf (x, 5, 2)) %!assert (cdf ("hn", x, 5, 2, "upper"), hncdf (x, 5, 2, "upper")) %!assert (cdf ("Hypergeometric", x, 5, 2, 2), hygecdf (x, 5, 2, 2)) %!assert (cdf ("hyge", x, 5, 2, 2, "upper"), hygecdf (x, 5, 2, 2, "upper")) %!assert (cdf ("Inverse Gaussian", x, 5, 2), invgcdf (x, 5, 2)) %!assert (cdf ("invg", x, 5, 2, "upper"), invgcdf (x, 5, 2, "upper")) %!assert (cdf ("Laplace", x, 5, 2), laplacecdf (x, 5, 2)) %!assert (cdf ("laplace", x, 5, 2, "upper"), laplacecdf (x, 5, 2, "upper")) %!assert (cdf ("Logistic", x, 5, 2), logicdf (x, 5, 2)) %!assert (cdf ("logi", x, 5, 2, "upper"), logicdf (x, 5, 2, "upper")) %!assert (cdf ("Log-Logistic", x, 5, 2), loglcdf (x, 5, 2)) %!assert (cdf ("logl", x, 5, 2, "upper"), loglcdf (x, 5, 2, "upper")) %!assert (cdf ("Lognormal", x, 5, 2), logncdf (x, 5, 2)) %!assert (cdf ("logn", x, 5, 2, "upper"), logncdf (x, 5, 2, "upper")) %!assert (cdf ("Nakagami", x, 5, 2), nakacdf (x, 5, 2)) %!assert (cdf ("naka", x, 5, 2, "upper"), nakacdf (x, 5, 2, "upper")) %!assert (cdf ("Negative Binomial", x, 5, 2), nbincdf (x, 5, 2)) %!assert (cdf ("nbin", x, 5, 2, "upper"), nbincdf (x, 5, 2, "upper")) %!assert (cdf ("Noncentral F-Distribution", x, 5, 2, 2), ncfcdf (x, 5, 2, 2)) %!assert (cdf ("ncf", x, 5, 2, 2, "upper"), ncfcdf (x, 5, 2, 2, "upper")) %!assert (cdf ("Noncentral Student T", x, 5, 2), nctcdf (x, 5, 2)) %!assert (cdf ("nct", x, 5, 2, "upper"), nctcdf (x, 5, 2, "upper")) %!assert (cdf ("Noncentral Chi-Squared", x, 5, 2), ncx2cdf (x, 5, 2)) %!assert (cdf ("ncx2", x, 5, 2, "upper"), ncx2cdf (x, 5, 2, "upper")) %!assert (cdf ("Normal", x, 5, 2), normcdf (x, 5, 2)) %!assert (cdf ("norm", x, 5, 2, "upper"), normcdf (x, 5, 2, "upper")) %!assert (cdf ("Poisson", x, 5), poisscdf (x, 5)) %!assert (cdf ("poiss", x, 5, "upper"), poisscdf (x, 5, "upper")) %!assert (cdf ("Rayleigh", x, 5), raylcdf (x, 5)) %!assert (cdf ("rayl", x, 5, "upper"), raylcdf (x, 5, "upper")) %!assert (cdf ("Rician", x, 5, 1), ricecdf (x, 5, 1)) %!assert (cdf ("rice", x, 5, 1, "upper"), ricecdf (x, 5, 1, "upper")) %!assert (cdf ("Student T", x, 5), tcdf (x, 5)) %!assert (cdf ("t", x, 5, "upper"), tcdf (x, 5, "upper")) %!assert (cdf ("location-scale T", x, 5, 1, 2), tlscdf (x, 5, 1, 2)) %!assert (cdf ("tls", x, 5, 1, 2, "upper"), tlscdf (x, 5, 1, 2, "upper")) %!assert (cdf ("Triangular", x, 5, 2, 2), tricdf (x, 5, 2, 2)) %!assert (cdf ("tri", x, 5, 2, 2, "upper"), tricdf (x, 5, 2, 2, "upper")) %!assert (cdf ("Discrete Uniform", x, 5), unidcdf (x, 5)) %!assert (cdf ("unid", x, 5, "upper"), unidcdf (x, 5, "upper")) %!assert (cdf ("Uniform", x, 5, 2), unifcdf (x, 5, 2)) %!assert (cdf ("unif", x, 5, 2, "upper"), unifcdf (x, 5, 2, "upper")) %!assert (cdf ("Von Mises", x, 5, 2), vmcdf (x, 5, 2)) %!assert (cdf ("vm", x, 5, 2, "upper"), vmcdf (x, 5, 2, "upper")) %!assert (cdf ("Weibull", x, 5, 2), wblcdf (x, 5, 2)) %!assert (cdf ("wbl", x, 5, 2, "upper"), wblcdf (x, 5, 2, "upper")) ## Test input validation %!error cdf (1) %!error cdf ({"beta"}) %!error cdf ("beta", {[1 2 3 4 5]}) %!error cdf ("beta", "text") %!error cdf ("beta", 1+i) %!error ... %! cdf ("Beta", x, "a", 2) %!error ... %! cdf ("Beta", x, 5, "") %!error ... %! cdf ("Beta", x, 5, {2}) %!error cdf ("chi2", x) %!error cdf ("Beta", x, 5) %!error cdf ("Burr", x, 5) %!error cdf ("Burr", x, 5, 2) statistics-release-1.6.3/inst/cdfcalc.m000066400000000000000000000057571456127120000200570ustar00rootroot00000000000000## Copyright (C) 2022 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {[@var{yCDF}, @var{xCDF}, @var{n}, @var{emsg}, @var{eid}] =} cdfcalc (@var{x}) ## ## Calculate an empirical cumulative distribution function. ## ## @code{[@var{yCDF}, @var{xCDF}] = cdfcalc (@var{x})} calculates an empirical ## cumulative distribution function (CDF) of the observations in the data sample ## vector @var{x}. @var{x} may be a row or column vector, and represents a ## random sample of observations from some underlying distribution. On return ## @var{xCDF} is the set of @var{x} values at which the CDF increases. ## At XCDF(i), the function increases from YCDF(i) to YCDF(i+1). ## ## @code{[@var{yCDF}, @var{xCDF}, @var{n}] = cdfcalc (@var{x})} also returns ## @var{n}, the sample size. ## ## @code{[@var{yCDF}, @var{xCDF}, @var{n}, @var{emsg}, @var{eid}] = cdfcalc ## (@var{x})} also returns an error message and error id if @var{x} is not a ## vector or if it contains no values other than NaN. ## ## @seealso{cdfplot} ## @end deftypefn function [yCDF, xCDF, n, emsg, eid] = cdfcalc (x) ## Check number of input and output argument narginchk (1,1); nargoutchk (2,5); ## Add defaults yCDF = []; xCDF = []; n = 0; ## Check that x is a vector if (! isvector (x)) warning ("cdfcalc: vector required as input."); emsg = "VectorRequired"; eid = "VectorRequired"; return endif ## Remove NaNs and check if there are remaining data to calculate ecdf x = x(! isnan (x)); n = length (x); if (n == 0) warning ("cdfcalc: not enough data."); emsg = "NotEnoughData"; eid = "NotEnoughData"; return endif ## Sort data in ascending order x = sort (x(:)); ## Get cumulative sums yCDF = (1:n)' / n; ## Remove duplicates, keep the last one keep_idx = ([diff(x(:)); 1] > 0); xCDF = x(keep_idx); yCDF = [0; yCDF(keep_idx)]; emsg = ''; eid = ''; endfunction %!test %! x = [2, 4, 3, 2, 4, 3, 2, 5, 6, 4]; %! [yCDF, xCDF, n, emsg, eid] = cdfcalc (x); %! assert (yCDF, [0, 0.3, 0.5, 0.8, 0.9, 1]'); %! assert (xCDF, [2, 3, 4, 5, 6]'); %! assert (n, 10); %!shared x %! x = [2, 4, 3, 2, 4, 3, 2, 5, 6, 4]; %!error yCDF = cdfcalc (x); %!error [yCDF, xCDF] = cdfcalc (); %!error [yCDF, xCDF] = cdfcalc (x, x); %!warning [yCDF, xCDF] = cdfcalc (ones(10,2)); statistics-release-1.6.3/inst/cdfplot.m000066400000000000000000000074071456127120000201250ustar00rootroot00000000000000## Copyright (C) 2022 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{hCDF} =} cdfplot (@var{x}) ## @deftypefnx {statistics} {[@var{hCDF}, @var{stats}] =} cdfplot (@var{x}) ## ## Display an empirical cumulative distribution function. ## ## @code{@var{hCDF} = cdfplot (@var{x})} plots an empirical cumulative ## distribution function (CDF) of the observations in the data sample vector ## @var{x}. @var{x} may be a row or column vector, and represents a random ## sample of observations from some underlying distribution. ## ## @code{cdfplot} plots F(x), the empirical (or sample) CDF versus the ## observations in @var{x}. The empirical CDF, F(x), is defined as follows: ## ## F(x) = (Number of observations <= x) / (Total number of observations) ## ## for all values in the sample vector @var{x}. NaNs are ignored. @var{hCDF} ## is the handle of the empirical CDF curve (a handle hraphics 'line' object). ## ## @code{[@var{hCDF}, @var{stats}] = cdfplot (@var{x})} also returns a structure ## with the following fields as a statistical summary. ## ## @multitable @columnfractions 0.05 0.3 0.65 ## @item @tab STATS.min @tab minimum value of @var{x} ## @item @tab STATS.max @tab maximum value of @var{x} ## @item @tab STATS.mean @tab sample mean of @var{x} ## @item @tab STATS.median @tab sample median (50th percentile) of @var{x} ## @item @tab STATS.std @tab sample standard deviation of @var{x} ## @end multitable ## ## @seealso{qqplot, cdfcalc} ## @end deftypefn function [hCDF, stats] = cdfplot (x) ## Check number of input arguments narginchk (1,1); ## Calculate sample cdf [yy, xx, ~, ~, eid] = cdfcalc (x); ## Check for errors returned from cdfcalc if (strcmpi (eid, "VectorRequired")) error ("cdfplot: vector required as input."); elseif (strcmpi (eid, "NotEnoughData")) error("cdfplot: not enough data."); endif ## Create vectors for plotting k = length (xx); n = reshape (repmat (1:k, 2, 1), 2*k, 1); xCDF = [-Inf; xx(n); Inf]; yCDF = [0; 0; yy(1+n)]; ## Plot cdf h = plot (xCDF, yCDF); grid ('on') xlabel ("x") ylabel ("F(x)") title ("CDF plot of x"); ## Return requested output arguments if (nargout > 0) hCDF = h; endif if (nargout > 1) stats.min = nanmin (x); stats.max = nanmax (x); stats.mean = mean (x, "omitnan"); stats.median = median (x, "omitnan"); stats.std = std (x, "omitnan"); endif endfunction %!demo %! x = randn(100,1); %! cdfplot (x); ## Test results %!test %! hf = figure ("visible", "off"); %! unwind_protect %! x = [2, 4, 3, 2, 4, 3, 2, 5, 6, 4]; %! [hCDF, stats] = cdfplot (x); %! assert (stats.min, 2); %! assert (stats.max, 6); %! assert (stats.median, 3.5); %! assert (stats.std, 1.35400640077266, 1e-14); %! unwind_protect_cleanup %! close (hf); %! end_unwind_protect %!test %! hf = figure ("visible", "off"); %! unwind_protect %! x = randn(100,1); %! cdfplot (x); %! unwind_protect_cleanup %! close (hf); %! end_unwind_protect ## Test input validation %!error cdfplot (); %!error cdfplot ([x',x']); %!error cdfplot ([NaN, NaN, NaN, NaN]); statistics-release-1.6.3/inst/chi2gof.m000066400000000000000000000413061456127120000200070ustar00rootroot00000000000000## Copyright (C) 2022 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{h} =} chi2gof (@var{x}) ## @deftypefnx {statistics} {[@var{h}, @var{p}] =} chi2gof (@var{x}) ## @deftypefnx {statistics} {[@var{p}, @var{h}, @var{stats}] =} chi2gof (@var{x}) ## @deftypefnx {statistics} {[@dots{}] =} chi2gof (@var{x}, @var{Name}, @var{Value}, @dots{}) ## ## Chi-square goodness-of-fit test. ## ## @code{chi2gof} performs a chi-square goodness-of-fit test for discrete or ## continuous distributions. The test is performed by grouping the data into ## bins, calculating the observed and expected counts for those bins, and ## computing the chi-square test statistic ## @tex ## $$ \chi ^ 2 = \sum_{i=1}^N \left (O_i - E_i \right) ^ 2 / E_i $$ ## @end tex ## @ifnottex ## SUM((O-E).^2./E), ## @end ifnottex ## where O is the observed counts and E is the expected counts. This test ## statistic has an approximate chi-square distribution when the counts are ## sufficiently large. ## ## Bins in either tail with an expected count less than 5 are pooled with ## neighboring bins until the count in each extreme bin is at least 5. If ## bins remain in the interior with counts less than 5, @code{chi2gof} displays ## a warning. In that case, you should use fewer bins, or provide bin centers ## or binedges, to increase the expected counts in all bins. ## ## @code{@var{h} = chi2gof (@var{x})} performs a chi-square goodness-of-fit test ## that the data in the vector X are a random sample from a normal distribution ## with mean and variance estimated from @var{x}. The result is @var{h} = 0 if ## the null hypothesis (that @var{x} is a random sample from a normal ## distribution) cannot be rejected at the 5% significance level, or @var{h} = 1 ## if the nullhypothesis can be rejected at the 5% level. @code{chi2gof} uses ## by default 10 bins (@qcode{"nbins"}), and compares the test statistic to a ## chi-square distribution with @qcode{@var{nbins} - 3} degrees of freedom, to ## take into account that two parameters were estimated. ## ## @code{[@var{h}, @var{p}] = chi2gof (@var{x})} also returns the p-value @var{p}, ## which is the probability of observing the given result, or one more extreme, ## by chance if the null hypothesis is true. If there are not enough degrees of ## freedom to carry out the test, @var{p} is NaN. ## ## @code{[@var{h}, @var{p}, @var{stats}] = chi2gof (@var{x})} also returns a ## @var{stats} structure with the following fields: ## ## @multitable @columnfractions 0.05 0.3 0.65 ## @item @tab "chi2stat" @tab Chi-square statistic ## @item @tab "df" @tab Degrees of freedom ## @item @tab "binedges" @tab Vector of bin binedges after pooling ## @item @tab "O" @tab Observed count in each bin ## @item @tab "E" @tab Expected count in each bin ## @end multitable ## ## @code{[@dots{}] = chi2gof (@var{x}, @var{Name}, @var{Value}, @dots{})} ## specifies optional Name/Value pair arguments chosen from the following list. ## ## @multitable @columnfractions 0.05 0.2 0.75 ## @headitem @tab Name @tab Value ## @item @tab @qcode{"nbins"} @tab The number of bins to use. Default is 10. ## @item @tab @qcode{"binctrs"} @tab A vector of bin centers. ## @item @tab @qcode{"binedges"} @tab A vector of bin binedges. ## @item @tab @qcode{"cdf"} @tab A fully specified cumulative distribution ## function or a function handle provided in a cell array whose first element is ## a function handle, and all later elements are its parameter values. The ## function must take @var{x} values as its first argument, and other parameters ## as later arguments. ## @item @tab @qcode{"expected"} @tab A vector with one element per bin ## specifying the expected counts for each bin. ## @item @tab @qcode{"nparams"} @tab The number of estimated parameters; used to ## adjust the degrees of freedom to be @qcode{@var{nbins} - 1 - @var{nparams}}, ## where @var{nbins} is the number of bins. ## @item @tab @qcode{"emin"} @tab The minimum allowed expected value for a bin; ## any bin in either tail having an expected value less than this amount is ## pooled with a neighboring bin. Use the value 0 to prevent pooling. Default ## is 5. ## @item @tab @qcode{"frequency"} @tab A vector of the same length as @var{x} ## containing the frequency of the corresponding @var{x} values. ## @item @tab @qcode{"alpha"} @tab An @var{alpha} value such that the hypothesis ## is rejected if @qcode{@var{p} < @var{alpha}}. Default is ## @qcode{@var{alpha} = 0.05}. ## @end multitable ## ## You should specify either @qcode{"cdf"} or @qcode{"expected"} parameters, but ## not both. If your @qcode{"cdf"} input contains extra parameters, these are ## accounted for automatically and there is no need to specify @qcode{"nparams"}. ## If your @qcode{"expected"} input depends on estimated parameters, you should ## use the @qcode{"nparams"} parameter to ensure that the degrees of freedom for ## the test is correct. ## ## @end deftypefn function [h, p, stats] = chi2gof (x, varargin) ## Check imput arguments if (nargin < 1) error ("chi2gof: At least one imput argument is required."); endif if (! isvector(x) || ! isreal(x)) error ("chi2gof: X must ba a vector of real numbers."); endif ## Add initial parameters nbins = []; binctrs = []; binedges = []; cdf_spec = []; expected = []; nparams = []; emin = 5; frequency = []; alpha = 0.05; ## Parse additional arguments numarg = nargin - 1; argpos = 1; while (numarg) argname = varargin{argpos}; switch (lower (argname)) case "nbins" nbins = varargin{argpos + 1}; case "ctrs" binctrs = varargin{argpos + 1}; case "edges" binedges = varargin{argpos + 1}; case "cdf" cdf_spec = varargin{argpos + 1}; case "expected" expected = varargin{argpos + 1}; case "nparams" nparams = varargin{argpos + 1}; case "emin" emin = varargin{argpos + 1}; case "frequency" frequency = varargin{argpos + 1}; case "alpha" alpha = varargin{argpos + 1}; endswitch numarg -= 2; argpos += 2; endwhile ## Check additional arguments for errors if ((! isempty (nbins) + ! isempty (binctrs) + ! isempty (binedges)) > 1) error ("chi2gof: Inconsistent Arguments."); endif if ((! isempty (cdf_spec) + ! isempty (expected)) > 1) error ("chi2gof: Conflicted Arguments."); endif if (! isempty (frequency)) if (! isvector (frequency) || numel (frequency) != numel (x)) error ("chi2gof: X and Frequency vectors mismatch."); endif if (any (frequency < 0)) error ("chi2gof: Frequency vector contains negative numbers."); endif endif if (! isscalar (emin) || emin < 0 || emin != round (emin) || ! isreal (emin)) error("chi2gof: 'emin' must be a positive integer."); endif if (! isempty (nparams)) if (! isscalar (nparams) || nparams < 0 || nparams != round (nparams) ... || ! isreal (nparams)) error ("chi2gof: Wrong number of parameters."); endif endif if (! isscalar (alpha) || ! isreal (alpha) || alpha <= 0 || alpha >= 1) error ("chi2gof: Wrong value of alpha."); endif ## Make X a column vector x = x(:); ## Parse or create a frequeny vector if (isempty (frequency)) frequency = ones (size (x)); else frequency = frequency(:); endif ## Remove NaNs if any remove_NaNs = isnan (frequency) | isnan (x); if (any (remove_NaNs)) x(remove_NaNs) = []; frequency(remove_NaNs) = []; endif ## Check for bin numbers, centers, or edges and calculate bins accordingly if (! isempty (binctrs)) [Observed, binedges] = calculatebins (x, frequency, "ctrs", binctrs); elseif (! isempty (binedges)) [Observed, binedges] = calculatebins (x, frequency, "edges", binedges); else if (isempty (nbins)) if (isempty (expected)) nbins = 10; ## default number of bins else nbins = length (expected); ## determined by Expected vector endif endif [Observed, binedges] = calculatebins (x, frequency, "nbins", nbins); endif Observed = Observed(:); nbins = length (Observed); ## Calculate expected vector cdfargs = {}; if (! isempty (expected)) ## Provided as input argument if (! isvector (expected) || numel (expected) != nbins) error ("chi2gof: Expected counts vector is the wrong size."); endif if (any (expected < 0)) error ("chi2gof: Expected counts vector has negative values."); endif Expected = expected(:); else ## Calculate from the cdf if (isempty (cdf_spec)) ## Use estimated normal as default cdffunc = @normcdf; sumfreq = sum (frequency); mu = sum (x.*frequency)/sumfreq; sigma = sqrt (sum ((x.*frequency - mu) .^ 2) / (sumfreq-1)); cdfargs = {mu, sigma}; if (isempty (nparams)) nparams = 2; endif elseif (isa (cdf_spec, "function_handle")) ## Split function handle to get function name and optional parameters cstr = ostrsplit (func2str (cdf_spec), ","); ## Simple function handle, no parameters: e.g. @normcdf if (isempty (strfind (cstr, "@")) && numel (cstr) == 1) cdffunc = str2func (char (strcat ("@", cstr))); if (isempty (nparams)) nparams = numel (cdfargs); endif ## Complex function handle, no parameters: e.g. @(x) normcdf(x) elseif (! isempty (strfind (cstr, "@")) && numel (cstr) == 1) ## Remove white spaces cstr = char (cstr); cstr(strfind (cstr, " ")) = []; ## Remove input argument in parentheses while (length (strfind (cstr,"("))) cstr(index (cstr, "("):index (cstr, ")")) = []; endwhile cdffunc = str2func (cstr); if (isempty (nparams)) nparams = numel (cdfargs); endif elseif (! isempty (strfind (cstr, "@")) && numel (cstr) > 1) ## Evaluate function name in first cell cstr_f = char (cstr(1)); cstr_f(strfind (cstr_f, " ")) = []; cstr_f(index (cstr_f, "("):index (cstr_f, ")")) = []; cstr_f(index (cstr_f, "("):end) = []; cdffunc = str2func (cstr_f); ## Evaluate optional parameters in remaining cells cstr_idx = 2; while (cstr_idx <= numel (cstr)) cstr_p = char (cstr(cstr_idx)); cstr_p(strfind (cstr_p, " ")) = []; ## Check for numerical value if (isscalar (str2num (cstr_p))) cdfargs{cstr_idx - 1} = cstr_p; else ## Get function handle: e.g. mean cstr_p(index (cstr_p, "("):end) = []; cdfargs{cstr_idx - 1} = feval (str2func (cstr_p), x .* frequency); cstr_idx += 1; endif endwhile if (isempty (nparams)) nparams = numel (cdfargs); endif endif elseif (iscell (cdf_spec)) % Get function and args from cell array cdffunc = cdf_spec{1}; cdfargs = cdf_spec(2:end); if (isempty (nparams)) nparams = numel(cdfargs); endif endif if (! is_function_handle (cdffunc)) error ("chi2gof: Poorly specified cumulative distribution function."); else cdfname = func2str (cdffunc); endif ## Calculate only inner bins, since tail probabilitiyis included in the ## calculation of expected counts for the first and last bins interioredges = binedges(2:end-1); ## Compute the cumulative probabilities Fcdf = feval (cdffunc, interioredges, cdfargs{:}); if (! isvector(Fcdf) || numel (Fcdf) != (nbins - 1)) msg = sprintf("chi2gof: Wrong number of outputs from: %s\n", cdfname); error (msg); endif % Compute the expected values Expected = sum(Observed) * diff([0;Fcdf(:);1]); endif ## Avoid too small expected values if (any (Expected < emin)) [Expected, Observed, binedges] = poolbins (Expected, Observed, binedges, emin); nbins = length (Expected); end ## Compute test statistic cstat = sum(((Observed - Expected) .^ 2) ./ Expected); ## Calculate degrees of freedom if (isempty (nparams)) nparams = 0; endif df = nbins - 1 - nparams; if (df > 0) p = 1 - chi2cdf (cstat, df); else df = 0; p = NaN; endif h = cast (p <= alpha, "double"); ## Create 3rd output argument if necessary if (nargout > 2) stats.chi2stat = cstat; stats.df = df; stats.edges = binedges; stats.O = Observed'; stats.E = Expected'; endif endfunction function [Expected, Observed, binedges] = poolbins (Expected, ... Observed, binedges, emin) i = 1; j = length(Expected); while (i < j - 1 && (Expected(i) < emin || Expected(i + 1) < emin || ... Expected(j) < emin || Expected(j - 1) < emin)) if (Expected(i) < Expected(j)) Expected(i+1) = Expected(i+1) + Expected(i); Observed(i+1) = Observed(i+1) + Observed(i); i = i + 1; else Expected(j-1) = Expected(j-1) + Expected(j); Observed(j-1) = Observed(j-1) + Observed(j); j = j - 1; endif endwhile ## Keep only pooled bins Expected = Expected(i:j); Observed = Observed(i:j); binedges(j+1:end-1) = []; binedges(2:i) = []; endfunction function [Observed, binedges] = calculatebins (x, frequency, binspec, specval) lo = double (min (x(:))); hi = double (max (x(:))); ## Check binspec for bin count, bin centers, or bin edges. switch (binspec) case "nbins" nbins = specval; if (isempty (x)) lo = 0; hi = 1; endif if (lo == hi) lo = lo - floor (nbins / 2) - 0.5; hi = hi + ceil (nbins / 2) - 0.5; endif binwidth = (hi - lo) ./ nbins; binedges = lo + binwidth * (0:nbins); binedges(length (binedges)) = hi; case "ctrs" binctrs = specval(:)'; binwidth = diff (binctrs); binwidth = [binwidth binwidth(end)]; binedges = [binctrs(1)-binwidth(1)/2 binctrs+binwidth/2]; case "edges" binedges = specval(:)'; endswitch ## Update bins nbins = length (binedges) - 1; ## Calculate bin numbers if (isempty (x)) binnum = x; elseif (! isequal (binspec, "edges")) binedges = binedges + eps(binedges); [ignore, binnum] = histc (x, [-Inf binedges(2:end-1) Inf]); else [ignore, binnum] = histc (x, binedges); binnum(binnum == nbins + 1) = nbins; end ## Remove empty bins if (any (binnum == 0)) frequency(binnum == 0) = []; binnum(binnum == 0) = []; end ## Compute Observed vector binnum = binnum(:); Observed = accumarray ([ones(size(binnum)), binnum], frequency, [1, nbins]); endfunction %!demo %! x = normrnd (50, 5, 100, 1); %! [h, p, stats] = chi2gof (x) %! [h, p, stats] = chi2gof (x, "cdf", @(x)normcdf (x, mean(x), std(x))) %! [h, p, stats] = chi2gof (x, "cdf", {@normcdf, mean(x), std(x)}) %!demo %! x = rand (100,1 ); %! n = length (x); %! binedges = linspace (0, 1, 11); %! expectedCounts = n * diff (binedges); %! [h, p, stats] = chi2gof (x, "binedges", binedges, "expected", expectedCounts) %!demo %! bins = 0:5; %! obsCounts = [6 16 10 12 4 2]; %! n = sum(obsCounts); %! lambdaHat = sum(bins.*obsCounts) / n; %! expCounts = n * poisspdf(bins,lambdaHat); %! [h, p, stats] = chi2gof (bins, "binctrs", bins, "frequency", obsCounts, ... %! "expected", expCounts, "nparams",1) ## Test input validation %!error chi2gof () %!error chi2gof ([2,3;3,4]) %!error chi2gof ([1,2,3,4], "nbins", 3, "ctrs", [2,3,4]) %!error chi2gof ([1,2,3,4], "frequency", [2,3,2]) %!error chi2gof ([1,2,3,4], "frequency", [2,3,2,-2]) %!error chi2gof ([1,2,3,4], "frequency", [2,3,2,2], "nparams", i) %!error chi2gof ([1,2,3,4], "frequency", [2,3,2,2], "alpha", 1.3) %!error chi2gof ([1,2,3,4], "expected", [-3,2,2]) %!error chi2gof ([1,2,3,4], "expected", [3,2,2], "nbins", 5) %!error chi2gof ([1,2,3,4], "cdf", @normcdff) %!test %! x = [1 2 1 3 2 4 3 2 4 3 2 2]; %! [h, p, stats] = chi2gof (x); %! assert (h, 0); %! assert (p, NaN); %! assert (stats.chi2stat, 0.1205375022748029, 1e-14); %! assert (stats.df, 0); %! assert (stats.edges, [1, 2.5, 4], 1e-14); %! assert (stats.O, [7, 5], 1e-14); %! assert (stats.E, [6.399995519909668, 5.600004480090332], 1e-14); statistics-release-1.6.3/inst/chi2test.m000066400000000000000000000417621456127120000202210ustar00rootroot00000000000000## Copyright (C) 2022 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{pval} =} chi2test (@var{x}) ## @deftypefnx {statistics} {[@var{pval}, @var{chisq}] =} chi2test (@var{x}) ## @deftypefnx {statistics} {[@var{pval}, @var{chisq}, @var{dF}] =} chi2test (@var{x}) ## @deftypefnx {statistics} {[@var{pval}, @var{chisq}, @var{dF}, @var{E}] =} chi2test (@var{x}) ## @deftypefnx {statistics} {[@dots{}] =} chi2test (@var{x}, @var{name}, @var{value}) ## ## Perform a chi-squared test (for independence or homogeneity). ## ## For 2-way contingency tables, @code{chi2test} performs and a chi-squared test ## for independence or homogeneity, according to the sampling scheme and related ## question. Independence means that the the two variables forming the 2-way ## table are not associated, hence you cannot predict from one another. ## Homogeneity refers to the concept of similarity, hence they all come from the ## same distribution. ## ## Both tests are computationally identical and will produce the same result. ## Nevertheless, they anwser to different questions. Consider two variables, ## one for gender and another for smoking. To test independence (whether gender ## and smoking is associated), we would randomly sample from the general ## population and break them down into categories in the table. To test ## homogeneity (whether men and women share the same smoking habits), we would ## sample individuals from within each gender, and then measure their smoking ## habits (e.g. smokers vs non-smokers). ## ## When @code{chi2test} is called without any output arguments, it will print ## the result in the terminal including p-value, chi^2 statistic, and degrees of ## freedom. Otherwise it can return the following output arguments: ## ## @multitable @columnfractions 0.05 0.1 0.85 ## @item @tab @var{pval} @tab the p-value of the relevant test. ## @item @tab @var{chisq} @tab the chi^2 statistic of the relevant test. ## @item @tab @var{dF} @tab the degrees of freedom of the relevant test. ## @item @tab @var{E} @tab the EXPECTED values of the original contigency table. ## @end multitable ## ## Unlike MATLAB, in GNU Octave @code{chi2test} also supports 3-way tables, ## which involve three categorical variables (each in a different dimension of ## @var{x}. In its simplest form, @code{[@dots{}] = chi2test (@var{x})} will ## will test for mutual independence among the three variables. Alternatively, ## when called in the form @code{[@dots{}] = chi2test (@var{x}, @var{name}, ## @var{value})}, it can perform the following tests: ## ## @multitable @columnfractions 0.2 0.1 0.7 ## @headitem @var{name} @tab @var{value} @tab Description ## @item "mutual" @tab [] @tab Mutual independence. All variables are ## independent from each other, (A, B, C). Value must be an empty matrix. ## @item "joint" @tab scalar @tab Joint independence. Two variables are jointly ## independent of the third, (AB, C). The scalar value corresponds to the ## dimension of the independent variable (i.e. 3 for C). ## @item "marginal" @tab scalar @tab Marginal independence. Two variables are ## independent if you ignore the third, (A, C). The scalar value corresponds ## to the dimension of the variable to be ignored (i.e. 2 for B). ## @item "conditional" @tab scalar @tab Conditional independence. Two variables ## are independent given the third, (AC, BC). The scalar value corresponds to ## the dimension of the variable that forms the conditional dependence ## (i.e. 3 for C). ## @item "homogeneous" @tab [] @tab Homogeneous associations. Conditional ## (partial) odds-ratios are not related on the value of the third, ## (AB, AC, BC). Value must be an empty matrix. ## @end multitable ## ## When testing for homogeneous associations in 3-way tables, the iterative ## proportional fitting procedure is used. For small samples it is better to ## use the Cochran-Mantel-Haenszel Test. K-way tables for k > 3 are supported ## only for testing mutual independence. Similar to 2-way tables, no optional ## parameters are required for k > 3 multi-way tables. ## ## @code{chi2test} produces a warning if any cell of a 2x2 table has an expected ## frequency less than 5 or if more than 20% of the cells in larger 2-way tables ## have expected frequencies less than 5 or any cell with expected frequency ## less than 1. In such cases, use @code{fishertest}. ## ## @seealso{crosstab, fishertest, mcnemar_test} ## @end deftypefn function [pval, chisq, df, E] = chi2test (x, varargin) ## Check input arguments if (nargin < 1) print_usage (); endif if (isvector (x)) error ("chi2test: X must be a matrix."); endif if (! isreal (x)) error ("chi2test: values in X must be real numbers."); endif if (any (isnan (x(:)))) error ("chi2test: X must not have missing values (NaN)."); endif ## Get size and dimensions of contigency table sz = size (x); dim = length (sz); ## Check optional arguments if (dim == 2 && nargin > 1) error ("chi2test: optional arguments are not supported for 2-way tables."); endif if (dim == 3 && mod (numel (varargin(:)), 2) != 0) error ("chi2test: optional arguments must be in pairs."); endif if (dim == 3 && nargin > 1 && ! isnumeric (varargin{2})) error (strcat (["chi2test: value must be numeric in optional argument"], ... [" name/value pair, for 3-way tables."])); endif if (dim == 3 && nargin > 1 && numel (varargin{2}) > 1) error (strcat (["chi2test: value must be empty or scalar in optional"], ... [" argument name/value pair, for 3-way tables."])); endif if (dim >= 4 && nargin > 1) error ("chi2test: optional arguments are not supported for k>3."); endif ## Calculate total sample size n = sum (x(:)); ## For 2-way contigency table if (length (sz) == 2) ## Calculate degrees of freedom df = prod (sz - 1); ## Calculate expected values E = sum (x')' * sum (x) / n; ## For 3-way contigency table elseif (length (sz) == 3) ## Check optional arguments if (nargin == 1 || strcmpi (varargin{1}, "mutual")) ## Calculate degrees of freedom df = prod (sz) - sum (sz) + 2; ## Calculate marginal table sums q1 = sum (sum (x, 2), 3); q2 = sum (sum (x, 1), 3); q3 = sum (sum (x, 1), 2); ns = sum (x(:)) ^ 2; for d1 = 1:size (x, 1) for d2 = 1:size (x, 2) for d3 = 1:size (x, 3) E(d1,d2,d3) = q1(d1,:,:) * q2(:,d2,:) * q3(:,:,d3) / ns; endfor endfor endfor elseif (strcmpi (varargin{1}, "joint")) ## Get dimension of independent variable (dim) c_dim = varargin{2}; ## Calculate degrees of freedom c_sz = sz; c_sz(c_dim) = []; df = (sz(c_dim) - 1) * (prod (c_sz) - 1); ## Rearrange dimensions so that independent variable goes in dim 1 dm = [1, 2, 3]; dm(c_dim) = []; x = permute (x, [c_dim, dm]); ## Calculate partial table sums q1 = sum (sum (x, 1), 1); q2 = sum (sum (x, 2), 3); n = sum (x(:)); for d1 = 1:size (x, 1) for d2 = 1:size (x, 2) for d3 = 1:size (x, 3) E(d1,d2,d3) = q1(:,d2,d3) * q2(d1) / n; endfor endfor endfor ## Rearrange OBSERVED and EXPECTED matrices in original dimensions x = permute (x, [c_dim, dm]); x = permute (x, [c_dim, dm]); E = permute (E, [c_dim, dm]); E = permute (E, [c_dim, dm]); elseif (strcmpi (varargin{1}, "marginal")) ## Get dimension of marginal variable (dim) c_dim = varargin{2}; ## Calculate degrees of freedom c_sz = sz; c_sz(c_dim) = []; df = prod (sz) - sum (c_sz) + 1; ## Rearrange dimensions so that marginal variable goes in dim 1 dm = [1, 2, 3]; dm(c_dim) = []; x = permute (x, [c_dim, dm]); ## Calculate partial table sums q1 = sum (sum (x, 1), 3); q2 = sum (sum (x, 1), 2); n2 = sz(c_dim) * sum (x(:)); ## Calculate expected values for d1 = 1:size (x, 1) for d2 = 1:size (x, 2) for d3 = 1:size (x, 3) E(d1,d2,d3) = q1(:,d2) * q2(:,:,d3) / n2; endfor endfor endfor ## Rearrange OBSERVED and EXPECTED matrices in original dimensions x = permute (x, [c_dim, dm]); E = permute (E, [c_dim, dm]); elseif (strcmpi (varargin{1}, "conditional")) ## Get dimension of conditional variable (dim) c_dim = varargin{2}; ## Calculate degrees of freedom c_sz = sz; c_sz(c_dim) = []; df = prod (c_sz - 1) * sz(c_dim); ## Rearrange dimensions so that conditional variable goes in dim 1 dm = [1, 2, 3]; dm(c_dim) = []; x = permute (x, [c_dim, dm]); ## Calculate partial table sums q1 = sum (sum (x, 3), 3); q2 = sum (sum (x, 2), 2); q3 = sum (sum (x, 2), 3); ## Calculate expected values for d1 = 1:size (x, 1) for d2 = 1:size (x, 2) for d3 = 1:size (x, 3) E(d1,d2,d3) = q1(d1,d2) * q2(d1,:,d3) / q3(d1); endfor endfor endfor ## Rearrange OBSERVED and EXPECTED matrices in original dimensions x = permute (x, [c_dim, dm]); x = permute (x, [c_dim, dm]); E = permute (E, [c_dim, dm]); E = permute (E, [c_dim, dm]); elseif (strcmpi (varargin{1}, "homogeneous")) ## Calculate degrees of freedom df = prod(sz - 1); ## Compute observed marginal totals for any two dimensions omt12 = sum (sum (x, 3), 3); omt13 = sum (sum (x, 2), 2); omt23 = sum (sum (x, 1), 1); ## Produce initial seed 3-way table S = ones (sz); ## Calculate initial expected marginal totals emt12 = sum (sum (S, 3), 3); emt13 = sum (sum (S, 2), 2); emt23 = sum (sum (S, 1), 1); ## Compute difference to converge within certain tolerance or iterations OEdiff = sum (omt12(:) - emt12(:)) + sum (omt13(:) - emt13(:)) + ... sum (omt23(:) - emt23(:)); iter = 1; tol = 1e-6; ## Start Iterative Proportional Fitting Procedure while (OEdiff > tol || iter > 50) ## Rows x Columns for d1 = 1:size (x, 1) for d2 = 1:size (x, 2) for d3 = 1:size (x, 3) E(d1,d2,d3) = S(d1,d2,d3) * omt12(d1,d2) / emt12(d1,d2); endfor endfor endfor ## Update seed and recalculate Rows x Layers expected marginal totals S = E; emt13 = sum (sum (S, 2), 2); ## Rows x Layers for d1 = 1:size (x, 1) for d2 = 1:size (x, 2) for d3 = 1:size (x, 3) E(d1,d2,d3) = S(d1,d2,d3) * omt13(d1,:,d3) / emt13(d1,:,d3); endfor endfor endfor ## Update seed and recalculate Columns x Layers expected marginal totals S = E; emt23 = sum (sum (S, 1), 1); ## Columns x Layers for d1 = 1:size (x, 1) for d2 = 1:size (x, 2) for d3 = 1:size (x, 3) E(d1,d2,d3) = S(d1,d2,d3) * omt23(:,d2,d3) / emt23(:,d2,d3); endfor endfor endfor ## Update seed and recalculate Rows x Layers expected marginal totals S = E; emt12 = sum (sum (S, 3), 3); ## Update difference between OBSERVED and EXPECTED tables OEdiff = sum (omt12(:) - emt12(:)) + sum (omt13(:) - emt13(:)) + ... sum (omt23(:) - emt23(:)); iter += 1; endwhile else error ("chi2test: invalid model name for testing a 3-way table."); endif ## For k-way contigency table, where k > 3 else ## Calculate degrees of freedom df = prod (sz) - sum (sz) + 2; ## Calculate squared sample size ns = sum (x(:)) ^ (dim - 1); ## Calculate marginal table sums for each available dimension for i = 1:dim qi(i) = {x}; remdim = [1:dim]; remdim(remdim == i) = []; for j = 1:length (remdim) qi(i) = sum (qi{i}, remdim(j)); endfor qi(i) = squeeze (qi{i}); endfor ## Iterate through all cells cn = numel (x); for i = 1:cn E(i) = 1; cid = i; ## Keep track of indexing for d = dim - 1:-1:1 idx(d+1) = ceil (cid / prod (sz(1:d))); if (idx(d+1) > 1) cid -= (idx(d+1) - 1) * prod (sz(1:d)); endif endfor idx(1) = cid; ## Calculate the expected value for j = 1:dim E(i) = E(i) * qi{j}(idx(j)); endfor E(i) = E(i) / ns; endfor ## Reshape to original dimensions E = reshape (E, sz); endif ## Check expected values and display warnings if ((dim == 2 && isequal (sz, [2, 2]) && any (E(:) < 5)) || ... (dim == 2 && any (sz > 2) && sum (E(:) < 5) > 0.2 * numel (E)) || ... (dim > 2 && sum (E(:) < 5) > 0.2 * numel (E))) warning ("chi2test: Expected values less than 5."); endif if (any (E(:) < 1)) warning ("chi2test: Expected values less than 1."); endif ## Calculate chi-squared and p-value cells = ((x - E) .^2) ./ E; chisq = sum (cells(:)); pval = 1 - chi2cdf (chisq, df); ## Print results if no output requested if (nargout == 0) printf ("p-val = %f with chi^2 statistic = %f and d.f. = %d.\n", ... pval, chisq, df); endif endfunction ## Input validation tests %!error chi2test (); %!error chi2test ([1, 2, 3, 4, 5]); %!error chi2test ([1, 2; 2, 1+3i]); %!error chi2test ([NaN, 6; 34, 12]); %!error ... %! p = chi2test (ones (3, 3), "mutual", []); %!error ... %! p = chi2test (ones (3, 3, 3), "testtype", 2); %!error ... %! p = chi2test (ones (3, 3, 3), "mutual"); %!error ... %! p = chi2test (ones (3, 3, 3), "joint", ["a"]); %!error ... %! p = chi2test (ones (3, 3, 3), "joint", [2, 3]); %!error ... %! p = chi2test (ones (3, 3, 3, 4), "mutual", []) ## Check warning %!warning p = chi2test (ones (2)); %!warning p = chi2test (ones (3, 2)); %!warning p = chi2test (0.4 * ones (3)); ## Output validation tests %!test %! x = [11, 3, 8; 2, 9, 14; 12, 13, 28]; %! p = chi2test (x); %! assert (p, 0.017787, 1e-6); %!test %! x = [11, 3, 8; 2, 9, 14; 12, 13, 28]; %! [p, chisq] = chi2test (x); %! assert (chisq, 11.9421, 1e-4); %!test %! x = [11, 3, 8; 2, 9, 14; 12, 13, 28]; %! [p, chisq, df] = chi2test (x); %! assert (df, 4); %!test %!shared x %! x(:,:,1) = [59, 32; 9,16]; %! x(:,:,2) = [55, 24;12,33]; %! x(:,:,3) = [107,80;17,56];%! %!assert (chi2test (x), 2.282063427117009e-11, 1e-14); %!assert (chi2test (x, "mutual", []), 2.282063427117009e-11, 1e-14); %!assert (chi2test (x, "joint", 1), 1.164834895206468e-11, 1e-14); %!assert (chi2test (x, "joint", 2), 7.771350230001417e-11, 1e-14); %!assert (chi2test (x, "joint", 3), 0.07151361728026107, 1e-14); %!assert (chi2test (x, "marginal", 1), 0, 1e-14); %!assert (chi2test (x, "marginal", 2), 6.347555814301131e-11, 1e-14); %!assert (chi2test (x, "marginal", 3), 0, 1e-14); %!assert (chi2test (x, "conditional", 1), 0.2303114201312508, 1e-14); %!assert (chi2test (x, "conditional", 2), 0.0958810684407079, 1e-14); %!assert (chi2test (x, "conditional", 3), 2.648037344954446e-11, 1e-14); %!assert (chi2test (x, "homogeneous", []), 0.4485579470993741, 1e-14); %!test %! [pval, chisq, df, E] = chi2test (x); %! assert (chisq, 64.0982, 1e-4); %! assert (df, 7); %! assert (E(:,:,1), [42.903, 39.921; 17.185, 15.991], ones (2, 2) * 1e-3); %!test %! [pval, chisq, df, E] = chi2test (x, "joint", 2); %! assert (chisq, 56.0943, 1e-4); %! assert (df, 5); %! assert (E(:,:,2), [40.922, 23.310; 38.078, 21.690], ones (2, 2) * 1e-3); %!test %! [pval, chisq, df, E] = chi2test (x, "marginal", 3); %! assert (chisq, 146.6058, 1e-4); %! assert (df, 9); %! assert (E(:,1,1), [61.642; 57.358], ones (2, 1) * 1e-3); %!test %! [pval, chisq, df, E] = chi2test (x, "conditional", 3); %! assert (chisq, 52.2509, 1e-4); %! assert (df, 3); %! assert (E(:,:,1), [53.345, 37.655; 14.655, 10.345], ones (2, 2) * 1e-3); %!test %! [pval, chisq, df, E] = chi2test (x, "homogeneous", []); %! assert (chisq, 1.6034, 1e-4); %! assert (df, 2); %! assert (E(:,:,1), [60.827, 31.382; 7.173, 16.618], ones (2, 2) * 1e-3); statistics-release-1.6.3/inst/cholcov.m000066400000000000000000000101661456127120000201230ustar00rootroot00000000000000## Copyright (C) 2022 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{T} =} cholcov (@var{sigma}) ## @deftypefnx {statistics} {[@var{T}, @var{p} =} cholcov (@var{sigma}) ## @deftypefnx {statistics} {[@dots{}] =} cholcov (@var{sigma}, @var{flag}) ## ## Cholesky-like decomposition for covariance matrix. ## ## @code{@var{T} = cholcov (@var{sigma})} computes matrix @var{T} such that ## @var{sigma} = @var{T}' @var{T}. @var{sigma} must be square, symmetric, and ## positive semi-definite. ## ## If @var{sigma} is positive definite, then @var{T} is the square, upper ## triangular Cholesky factor. If @var{sigma} is not positive definite, @var{T} ## is computed with an eigenvalue decomposition of @var{sigma}, but in this case ## @var{T} is not necessarily triangular or square. Any eigenvectors whose ## corresponding eigenvalue is close to zero (within a tolerance) are omitted. ## If any remaining eigenvalues are negative, @var{T} is empty. ## ## The tolerance is calculated as @code{10 * eps (max (abs (diag (sigma))))}. ## ## @code{[@var{T}, @var{p} = cholcov (@var{sigma})} returns in @var{p} the ## number of negative eigenvalues of @var{sigma}. If @var{p} > 0, then @var{T} ## is empty, whereas if @var{p} = 0, @var{sigma}) is positive semi-definite. ## ## If @var{sigma} is not square and symmetric, P is NaN and T is empty. ## ## @code{[@var{T}, @var{p} = cholcov (@var{sigma}, 0)} returns @var{p} = 0 if ## @var{sigma} is positive definite, in which case @var{T} is the Cholesky ## factor. If @var{sigma} is not positive definite, @var{p} is a positive ## integer and @var{T} is empty. ## ## @code{[@dots{}] = cholcov (@var{sigma}, 1)} is equivalent to ## @code{ [@dots{}] = cholcov (@var{sigma})}. ## ## @seealso{chov} ## @end deftypefn function [T, p] = cholcov (sigma, flag) ## Check number of input arguments narginchk (1,2) ## Add default flag if not givens if (nargin < 2) flag = 1; endif ## Check if sigma is a sparse matrix is_sparse = issparse (sigma); ## Check if sigma is single or double class is_type = "double"; if (isa (sigma, "single")) is_type = "single"; endif ## Test for sigma being square and symmetric [col, row] = size (sigma); ## Add tolerance Tol = 10 * eps (max (abs (diag (sigma)))); if ((row == col) && all (all (abs (sigma - sigma') < col * Tol))) ## Check if positive definite [T, p] = chol (sigma); if (p > 0) ## Check flag for factoring using eigenvalue decomposition if (flag) [V, LAMBDA] = eig (full ((sigma + sigma') / 2)); [~, EIGMAX] = max (abs (V), [], 1); neg_idx = (V(EIGMAX + (0:row:(col-1)*row)) < 0); V(:,neg_idx) = -V(:,neg_idx); LAMBDA = diag(LAMBDA); Tol = eps (max (LAMBDA)) * length (LAMBDA); t = (abs (LAMBDA) > Tol); LAMBDA = LAMBDA(t); p = sum (LAMBDA < 0); ## Check for negative eigenvalues if (p == 0) T = diag (sqrt (LAMBDA)) * V(:,t)'; else T = zeros (0, is_type); endif else T = zeros (0, is_type); endif endif else T = zeros (0, is_type); p = NaN (is_type); endif if (is_sparse) T = sparse(T); endif endfunction %!demo %! C1 = [2, 1, 1, 2; 1, 2, 1, 2; 1, 1, 2, 2; 2, 2, 2, 3] %! T = cholcov (C1) %! C2 = T'*T %!test %! C1 = [2, 1, 1, 2; 1, 2, 1, 2; 1, 1, 2, 2; 2, 2, 2, 3]; %! T = cholcov (C1); %! assert (C1, T'*T, 1e-15 * ones (size (C1))); statistics-release-1.6.3/inst/cl_multinom.m000066400000000000000000000131771456127120000210150ustar00rootroot00000000000000## Copyright (C) 2009 Levente Torok ## Copyright (C) 2023 Andreas Bertsatos ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{CL} =} cl_multinom (@var{X}, @var{N}, @var{b}) ## @deftypefnx {statistics} {@var{CL} =} cl_multinom (@var{X}, @var{N}, @var{b}, @var{method}) ## ## Confidence level of multinomial portions. ## ## @code{cl_multinom} returns confidence level of multinomial parameters ## estimated as @math{p = X / sum(X)} with predefined confidence interval ## @var{b}. Finite population is also considered. ## ## This function calculates the level of confidence at which the samples ## represent the true distribution given that there is a predefined tolerance ## (confidence interval). This is the upside down case of the typical excercises ## at which we want to get the confidence interval given the confidence level ## (and the estimated parameters of the underlying distribution). ## But once we accept (lets say at elections) that we have a standard predefined ## maximal acceptable error rate (e.g. @var{b}=0.02 ) in the estimation and we ## just want to know that how sure we can be that the measured proportions are ## the same as in the entire population (ie. the expected value and mean of the ## samples are roughly the same) we need to use this function. ## ## @subheading Arguments ## @multitable @columnfractions 0.1 0.01 0.10 0.01 0.78 ## @headitem Variable @tab @tab Type @tab @tab Description ## @item @var{X} @tab @tab int vector @tab @tab sample frequencies bins. ## @item @var{N} @tab @tab int scalar @tab @tab Population size that was sampled ## by @var{X}. If @qcode{N < sum (@var{X})}, infinite number assumed. ## @item @var{b} @tab @tab real vector @tab @tab confidence interval. If vector, ## it should be the size of @var{X} containing confence interval for each cells. ## If scalar, each cell will have the same value of b unless it is zero or -1. ## If value is 0, @var{b} = 0.02 is assumed which is standard choice at ## elections otherwise it is calculated in a way that one sample in a cell ## alteration defines the confidence interval. ## @item @var{method} @tab @tab string @tab @tab An optional argument ## for defining the calculation method. Available choices are ## @qcode{"bromaghin"} (default), @qcode{"cochran"}, and @qcode{agresti_cull}. ## @end multitable ## ## Note! The @qcode{agresti_cull} method is not exactly the solution at ## reference given below but an adjustment of the solutions above. ## ## @subheading Returns ## Confidence level. ## ## @subheading Example ## CL = cl_multinom ([27; 43; 19; 11], 10000, 0.05) ## returns 0.69 confidence level. ## ## @subheading References ## @enumerate ## @item ## "bromaghin" calculation type (default) is based on the article: ## ## Jeffrey F. Bromaghin, "Sample Size Determination for Interval Estimation ## of Multinomial Probabilities", The American Statistician vol 47, 1993, ## pp 203-206. ## ## @item ## "cochran" calculation type is based on article: ## ## Robert T. Tortora, "A Note on Sample Size Estimation for Multinomial ## Populations", The American Statistician, , Vol 32. 1978, pp 100-102. ## ## @item ## "agresti_cull" calculation type is based on article: ## ## A. Agresti and B.A. Coull, "Approximate is better than 'exact' for ## interval estimation of binomial portions", The American Statistician, ## Vol. 52, 1998, pp 119-126 ## @end enumerate ## ## @end deftypefn function CL = cl_multinom (X, N, b = 0.05, method = "bromaghin") if (nargin < 2 || nargin > 4) print_usage; elseif (! ischar (method)) error ("cl_multinom: argument method must be a string."); endif k = rows (X); nn = sum (X); p = X / nn; if (isscalar (b)) if (b==0) b=0.02; endif b = ones (rows (X), 1 ) * b; if (b<0) b = 1 ./ max (X, 1); endif endif bb = b .* b; if (N == nn) CL = 1; return; endif if (N < nn) fpc = 1; else fpc = (N - 1) / (N - nn); # finite population correction tag endif beta = p .* (1 - p); switch lower (method) case "cochran" t = sqrt (fpc * nn * bb ./ beta); alpha = (1 - normcdf (t)) * 2; case "bromaghin" t = sqrt (fpc * (nn * 2 * bb ) ./ ... (beta - 2 * bb + sqrt (beta .* beta - bb .* (4 * beta - 1)))); alpha = (1 - normcdf (t)) * 2; case "agresti_cull" ts = fpc * nn * bb ./ beta ; if (k <= 2) alpha = 1 - chi2cdf (ts, k - 1); # adjusted Wilson interval else alpha = 1 - chi2cdf (ts / k, 1); # Goodman interval with Bonferroni arg. endif otherwise error ("cl_multinom: unknown calculation type '%s'.", method); endswitch CL = 1 - max( alpha ); endfunction %!demo %! CL = cl_multinom ([27; 43; 19; 11], 10000, 0.05) ## Test input validation %!error cl_multinom (); %!error cl_multinom (1, 2, 3, 4, 5); %!error ... %! cl_multinom (1, 2, 3, 4); %!error ... %! cl_multinom (1, 2, 3, "some string"); statistics-release-1.6.3/inst/cluster.m000066400000000000000000000147631456127120000201560ustar00rootroot00000000000000## Copyright (C) 2021 Stefano Guidoni ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{T} =} cluster (@var{Z}, "Cutoff", @var{C}) ## @deftypefnx {statistics} {@var{T} =} cluster (@var{Z}, "Cutoff", @var{C}, "Depth", @var{D}) ## @deftypefnx {statistics} {@var{T} =} cluster (@var{Z}, "Cutoff", @var{C}, "Criterion", @var{criterion}) ## @deftypefnx {statistics} {@var{T} =} cluster (@var{Z}, "MaxClust", @var{N}) ## ## Define clusters from an agglomerative hierarchical cluster tree. ## ## Given a hierarchical cluster tree @var{Z} generated by the @code{linkage} ## function, @code{cluster} defines clusters, using a threshold value @var{C} to ## identify new clusters ('Cutoff') or according to a maximum number of desired ## clusters @var{N} ('MaxClust'). ## ## @var{criterion} is used to choose the criterion for defining clusters, which ## can be either "inconsistent" (default) or "distance". When using ## "inconsistent", @code{cluster} compares the threshold value @var{C} to the ## inconsistency coefficient of each link; when using "distance", @code{cluster} ## compares the threshold value @var{C} to the height of each link. ## @var{D} is the depth used to evaluate the inconsistency coefficient, its ## default value is 2. ## ## @code{cluster} uses "distance" as a criterion for defining new clusters when ## it is used the 'MaxClust' method. ## ## @seealso{clusterdata, dendrogram, inconsistent, kmeans, linkage, pdist} ## @end deftypefn function T = cluster (Z, opt, varargin) switch (lower (opt)) ## check the input case "cutoff" if (nargin < 3) print_usage (); else C = varargin{1}; D = 2; criterion = "inconsistent"; if (nargin > 3) pair_index = 2; while (pair_index < (nargin - 2)) switch (lower (varargin{pair_index})) case "depth" D = varargin{pair_index + 1}; case "criterion" criterion = varargin{pair_index + 1}; otherwise error ("cluster: unknown property %s", varargin{pair_index}); endswitch pair_index += 2; endwhile endif endif if ((! (isscalar (C) || isvector (C))) || (C < 0)) error ... (["cluster: C must be a positive scalar or a vector of positive"... "numbers"]); endif case "maxclust" if (nargin != 3) print_usage (); else N = varargin{1}; C = []; endif if ((! (isscalar (N) || isvector (N))) || (N < 0)) error ... (["cluster: N must be a positive number or a vector of positive"... "numbers"]); endif otherwise error ("cluster: unknown option %s", opt); endswitch if ((columns (Z) != 3) || (! isnumeric (Z)) ... (! (max (Z(end, 1:2)) == rows (Z) * 2))) error ("cluster: Z must be a matrix generated by the linkage function"); endif ## number of observations n = rows (Z) + 1; ## vector of values used by the threshold check vThresholds = []; ## starting number of clusters nClusters = 1; ## the return value is the matrix T, constituted by one or more vector vT T = []; vT = zeros (1, n); ## main logic ## a few checks and computations before launching the recursive function switch (lower (opt)) case "cutoff" switch (lower (criterion)) case "inconsistent" vThresholds = inconsistent (Z, D)(:, 4); case "distance" vThresholds = Z(:, 3); otherwise error ("cluster: unkown criterion %s", criterion); endswitch case "maxclust" ## the MaxClust case can be regarded as a Cutoff case with distance ## criterion, where the threshold is set to the height of the highest node ## that allows us to have N different clusters vThresholds = Z(:, 3); ## let's build a vector with the apt threshold values for k = 1:length (N); if (N(k) > n) C(end+1) = 0; elseif (N(k) < 2) C(end+1) = Z(end, 3) + 1; else C(end+1) = Z((end + 2 - N(k)), 3); endif endfor endswitch for c_index = 1:length (C) cluster_cutoff_recursive (rows (Z), nClusters, c_index); T = [T; vT]; endfor T = T'; # return value ## recursive function ## for each link check if the cutoff criteria (a threshold value) are met, ## then call recursively this function for every node below that; ## when we find a leaf, we add the index of its cluster to the return value function cluster_cutoff_recursive (index, cluster_number, c_index) vClusterNumber = [cluster_number, cluster_number]; ## check the threshold value if (vThresholds(index) >= C(c_index)) ## create a new cluster nClusters++; vClusterNumber(2) = nClusters; endif; ## go on, down the tree for j = 1:2 if (Z(index,j) > n) new_index = Z(index,j) - n; cluster_cutoff_recursive (new_index, vClusterNumber(j), c_index); else ## if the next node is a leaf, add the index of its cluster to the ## result at the correct position, i.e. the leaf number; ## if leaf 14 belongs to cluster 3: ## vT(14) = 3; vT(Z(index,j)) = vClusterNumber(j); endif endfor endfunction endfunction ## Test input validation %!error cluster () %!error cluster ([1 1], "Cutoff", 1) %!error cluster ([1 2 1], "Bogus", 1) %!error cluster ([1 2 1], "Cutoff", -1) %!error cluster ([1 2 1], "Cutoff", 1, "Bogus", 1) ## Test output %!test % X = [(randn (10, 2) * 0.25) + 1; (randn (10, 2) * 0.25) - 1]; % Z = linkage(X, "ward"); % T = [ones (10, 1); 2 * ones (10, 1)]; % assert (cluster (Z, "MaxClust", 2), T); statistics-release-1.6.3/inst/clusterdata.m000066400000000000000000000105201456127120000207730ustar00rootroot00000000000000## Copyright (C) 2021 Stefano Guidoni ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{T} =} clusterdata (@var{X}, @var{cutoff}) ## @deftypefnx {statistics} {@var{T} =} clusterdata (@var{X}, @var{Name}, @var{Value}) ## ## Wrapper function for @code{linkage} and @code{cluster}. ## ## If @var{cutoff} is used, then @code{clusterdata} calls @code{linkage} and ## @code{cluster} with default value, using @var{cutoff} as a threshold value ## for @code{cluster}. If @var{cutoff} is an integer and greater or equal to 2, ## then @var{cutoff} is interpreted as the maximum number of cluster desired ## and the "MaxClust" option is used for @code{cluster}. ## ## If @var{cutoff} is not used, then @code{clusterdata} expects a list of pair ## arguments. Then you must specify either the "Cutoff" or "MaxClust" option ## for @code{cluster}. The method and metric used by @code{linkage}, are ## defined through the "linkage" and "distance" arguments. ## ## @seealso{cluster, dendrogram, inconsistent, kmeans, linkage, pdist} ## @end deftypefn function T = clusterdata (X, varargin) ## Check for valid number of input arguments if (nargin < 2) error ("clusterdata: function called with too few input arguments."); endif linkage_criterion = "single"; distance_method = "euclidean"; savememory = "off"; clustering_method = []; criterion = "inconsistent"; D = 2; if (isnumeric (varargin{1})) # clusterdata (X, cutoff) if (isinteger (varargin{1}) && (varargin{1} >= 2)) clustering_method = "MaxClust"; else clustering_method = "Cutoff"; endif C = varargin{1}; else # clusterdata (Name, Value) pair_index = 1; while (pair_index < (nargin - 1)) switch (lower (varargin{pair_index})) case "criterion" criterion = varargin{pair_index + 1}; case "cutoff" clustering_method = "Cutoff"; C = varargin{pair_index + 1}; case "depth" D = varargin{pair_index + 1}; case "distance" distance_method = varargin{pair_index + 1}; case "linkage" linkage_criterion = varargin{pair_index + 1}; case "maxclust" clustering_method = "MaxClust"; C = varargin{pair_index + 1}; case "savememory" savememory = varargin{pair_index + 1}; otherwise error ("clusterdata: unknown property %s", varargin{pair_index}); endswitch pair_index += 2; endwhile endif if (isempty (clustering_method)) error (strcat (["clusterdata: you must specify either 'MaxClust'"], ... [" or 'Cutoff' when using name-value arguments."])); endif ## main body Z = linkage (X, linkage_criterion, distance_method, "savememory"); if (strcmp (lower (clustering_method), "cutoff")) T = cluster (Z, clustering_method, C, "Criterion", criterion, "Depth", D); else T = cluster (Z, clustering_method, C); endif endfunction %!demo %! randn ("seed", 1) # for reproducibility %! r1 = randn (10, 2) * 0.25 + 1; %! randn ("seed", 5) # for reproducibility %! r2 = randn (20, 2) * 0.5 - 1; %! X = [r1; r2]; %! %! wnl = warning ("off", "Octave:linkage_savemem", "local"); %! T = clusterdata (X, "linkage", "ward", "MaxClust", 2); %! scatter (X(:,1), X(:,2), 36, T, "filled"); ## Test input validation %!error ... %! clusterdata () %!error ... %! clusterdata (1) %!error clusterdata ([1 1], "Bogus", 1) %!error clusterdata ([1 1], "Depth", 1) statistics-release-1.6.3/inst/cmdscale.m000066400000000000000000000132121456127120000202340ustar00rootroot00000000000000## Copyright (C) 2014 JD Walsh ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or ## (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{Y} =} cmdscale (@var{D}) ## @deftypefnx {statistics} {[@var{Y}, @var{e}] =} cmdscale (@var{D}) ## ## Classical multidimensional scaling of a matrix. ## ## Takes an @var{n} by @var{n} distance (or difference, similarity, or ## dissimilarity) matrix @var{D}. Returns @var{Y}, a matrix of @var{n} points ## with coordinates in @var{p} dimensional space which approximate those ## distances (or differences, similarities, or dissimilarities). Also returns ## the eigenvalues @var{e} of ## @code{@var{B} = -1/2 * @var{J} * (@var{D}.^2) * @var{J}}, where ## @code{J = eye(@var{n}) - ones(@var{n},@var{n})/@var{n}}. @var{p}, the number ## of columns of @var{Y}, is equal to the number of positive real eigenvalues of ## @var{B}. ## ## @var{D} can be a full or sparse matrix or a vector of length ## @code{@var{n}*(@var{n}-1)/2} containing the upper triangular elements (like ## the output of the @code{pdist} function). It must be symmetric with ## non-negative entries whose values are further restricted by the type of ## matrix being represented: ## ## * If @var{D} is either a distance, dissimilarity, or difference matrix, then ## it must have zero entries along the main diagonal. In this case the points ## @var{Y} equal or approximate the distances given by @var{D}. ## ## * If @var{D} is a similarity matrix, the elements must all be less than or ## equal to one, with ones along the the main diagonal. In this case the points ## @var{Y} equal or approximate the distances given by ## @code{@var{D} = sqrt(ones(@var{n},@var{n})-@var{D})}. ## ## @var{D} is a Euclidean matrix if and only if @var{B} is positive ## semi-definite. When this is the case, then @var{Y} is an exact representation ## of the distances given in @var{D}. If @var{D} is non-Euclidean, @var{Y} only ## approximates the distance given in @var{D}. The approximation used by ## @code{cmdscale} minimizes the statistical loss function known as ## @var{strain}. ## ## The returned @var{Y} is an @var{n} by @var{p} matrix showing possible ## coordinates of the points in @var{p} dimensional space ## (@code{@var{p} < @var{n}}). The columns are correspond to the positive ## eigenvalues of @var{B} in descending order. A translation, rotation, or ## reflection of the coordinates given by @var{Y} will satisfy the same distance ## matrix up to the limits of machine precision. ## ## For any @code{@var{k} <= @var{p}}, if the largest @var{k} positive ## eigenvalues of @var{B} are significantly greater in absolute magnitude than ## its other eigenvalues, the first @var{k} columns of @var{Y} provide a ## @var{k}-dimensional reduction of @var{Y} which approximates the distances ## given by @var{D}. The optional return @var{e} can be used to consider various ## values of @var{k}, or to evaluate the accuracy of specific dimension ## reductions (e.g., @code{@var{k} = 2}). ## ## Reference: Ingwer Borg and Patrick J.F. Groenen (2005), Modern ## Multidimensional Scaling, Second Edition, Springer, ISBN: 978-0-387-25150-9 ## (Print) 978-0-387-28981-6 (Online) ## ## @seealso{pdist} ## @end deftypefn function [Y, e] = cmdscale (D) % Check for matrix input if ((nargin ~= 1) || ... (~any(strcmp ({'matrix' 'scalar' 'range'}, typeinfo(D))))) usage ('cmdscale: input must be vector or matrix; see help'); endif % If vector, convert to matrix; otherwise, check for square symmetric input if (isvector (D)) D = squareform (D); elseif ((~issquare (D)) || (norm (D - D', 1) > 0)) usage ('cmdscale: matrix input must be square symmetric; see help'); endif n = size (D,1); % Check for valid format (see help above); If similarity matrix, convert if (any (any (D < 0))) usage ('cmdscale: entries must be nonnegative; see help'); elseif (trace (D) ~= 0) if ((~all (diag (D) == 1)) || (~all (D <= 1))) usage ('cmdscale: input must be distance vector or matrix; see help'); endif D = sqrt (ones (n,n) - D); endif % Build centering matrix, perform double centering, extract eigenpairs J = eye (n) - ones (n,n) / n; B = -1 / 2 * J * (D .^ 2) * J; [Q, e] = eig (B); e = diag (e); etmp = e; e = sort(e, 'descend'); % Remove complex eigenpairs (only possible due to machine approximation) if (iscomplex (etmp)) for i = 1 : size (etmp,1) cmp(i) = (isreal (etmp(i))); endfor etmp = etmp(cmp); Q = Q(:,cmp); endif % Order eigenpairs [etmp, ord] = sort (etmp, 'descend'); Q = Q(:,ord); % Remove negative eigenpairs cmp = (etmp > 0); etmp = etmp(cmp); Q = Q(:,cmp); % Test for n-dimensional results if (size(etmp,1) == n) etmp = etmp(1:n-1); Q = Q(:, 1:n-1); endif % Build output matrix Y Y = Q * diag (sqrt (etmp)); endfunction %!shared m, n, X, D %! m = randi(100) + 1; n = randi(100) + 1; X = rand(m, n); D = pdist(X); %!assert(norm(pdist(cmdscale(D))), norm(D), sqrt(eps)) %!assert(norm(pdist(cmdscale(squareform(D)))), norm(D), sqrt(eps)) statistics-release-1.6.3/inst/combnk.m000066400000000000000000000050051456127120000177330ustar00rootroot00000000000000## Copyright (C) 2010 Soren Hauberg ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{c} =} combnk (@var{data}, @var{k}) ## ## Return all combinations of @var{k} elements in @var{data}. ## ## @end deftypefn function retval = combnk (data, k) ## Check input if (nargin != 2) print_usage; elseif (! isvector (data)) error ("combnk: first input argument must be a vector"); elseif (!isreal (k) || k != round (k) || k < 0) error ("combnk: second input argument must be a non-negative integer"); endif ## Simple checks n = numel (data); if (k == 0 || k > n) retval = resize (data, 0, k); elseif (k == n) retval = data (:).'; else retval = __combnk__ (data, k); endif ## For some odd reason Matlab seems to treat strings differently compared to ## other data-types... if (ischar (data)) retval = flipud (retval); endif endfunction function retval = __combnk__ (data, k) ## Recursion stopping criteria if (k == 1) retval = data (:); else ## Process data n = numel (data); if (iscell (data)) retval = {}; else retval = []; endif for j = 1:n C = __combnk__ (data ((j+1):end), k-1); C = cat (2, repmat (data (j), rows (C), 1), C); if (! isempty (C)) if (isempty (retval)) retval = C; else retval = [retval; C]; endif endif endfor endif endfunction %!demo %! c = combnk (1:5, 2); %! disp ("All pairs of integers between 1 and 5:"); %! disp (c); %!test %! c = combnk (1:3, 2); %! assert (c, [1, 2; 1, 3; 2, 3]); %!test %! c = combnk (1:3, 6); %! assert (isempty (c)); %!test %! c = combnk ({1, 2, 3}, 2); %! assert (c, {1, 2; 1, 3; 2, 3}); %!test %! c = combnk ("hello", 2); %! assert (c, ["lo"; "lo"; "ll"; "eo"; "el"; "el"; "ho"; "hl"; "hl"; "he"]); statistics-release-1.6.3/inst/confusionchart.m000066400000000000000000000250031456127120000215070ustar00rootroot00000000000000## Copyright (C) 2020-2021 Stefano Guidoni ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {} confusionchart (@var{trueLabels}, @var{predictedLabels}) ## @deftypefnx {statistics} {} confusionchart (@var{m}) ## @deftypefnx {statistics} {} confusionchart (@var{m}, @var{classLabels}) ## @deftypefnx {statistics} {} confusionchart (@var{parent}, @dots{}) ## @deftypefnx {statistics} {} confusionchart (@dots{}, @var{prop}, @var{val}, @dots{}) ## @deftypefnx {statistics} {@var{cm} =} confusionchart (@dots{}) ## ## Display a chart of a confusion matrix. ## ## The two vectors of values @var{trueLabels} and @var{predictedLabels}, which ## are used to compute the confusion matrix, must be defined with the same ## format as the inputs of @code{confusionmat}. ## Otherwise a confusion matrix @var{m} as computed by @code{confusionmat} can ## be given. ## ## @var{classLabels} is an array of labels, i.e. the list of the class names. ## ## If the first argument is a handle to a @code{figure} or to a @code{uipanel}, ## then the confusion matrix chart is displayed inside that object. ## ## Optional property/value pairs are passed directly to the underlying objects, ## e.g. @qcode{"xlabel"}, @qcode{"ylabel"}, @qcode{"title"}, @qcode{"fontname"}, ## @qcode{"fontsize"} etc. ## ## The optional return value @var{cm} is a @code{ConfusionMatrixChart} object. ## Specific properties of a @code{ConfusionMatrixChart} object are: ## @itemize @bullet ## @item @qcode{"DiagonalColor"} ## The color of the patches on the diagonal, default is [0.0, 0.4471, 0.7412]. ## ## @item @qcode{"OffDiagonalColor"} ## The color of the patches off the diagonal, default is [0.851, 0.3255, 0.098]. ## ## @item @qcode{"GridVisible"} ## Available values: @qcode{on} (default), @qcode{off}. ## ## @item @qcode{"Normalization"} ## Available values: @qcode{absolute} (default), @qcode{column-normalized}, ## @qcode{row-normalized}, @qcode{total-normalized}. ## ## @item @qcode{"ColumnSummary"} ## Available values: @qcode{off} (default), @qcode{absolute}, ## @qcode{column-normalized},@qcode{total-normalized}. ## ## @item @qcode{"RowSummary"} ## Available values: @qcode{off} (default), @qcode{absolute}, ## @qcode{row-normalized}, @qcode{total-normalized}. ## @end itemize ## ## Run @code{demo confusionchart} to see some examples. ## ## @seealso{confusionmat, sortClasses} ## @end deftypefn function cm = confusionchart (varargin) ## check the input parameters if (nargin < 1) print_usage (); endif p_i = 1; if (ishghandle (varargin{p_i})) ## parameter is a parent figure handle_type = get (varargin{p_i}, "type"); if (strcmp (handle_type, "figure")) h = figure (varargin{p_i}); hax = axes ("parent", h); elseif (strcmp (handle_type, "uipanel")) h = varargin{p_i}; hax = axes ("parent", varargin{p_i}); else ## MATLAB compatibility: on MATLAB are also available Tab objects, ## TiledChartLayout objects, GridLayout objects error ("confusionchart: invalid handle to parent object"); endif p_i++; else h = figure (); hax = axes ("parent", h); endif if (ismatrix (varargin{p_i}) && rows (varargin{p_i}) == ... columns (varargin{p_i})) ## parameter is a confusion matrix conmat = varargin{p_i}; p_i++; if (p_i <= nargin && ((isvector (varargin{p_i}) && ... length (varargin{p_i}) == rows (conmat)) || ... (ischar ( varargin{p_i}) && rows (varargin{p_i}) == rows (conmat)) ... || iscellstr (varargin{p_i}))) ## parameter is an array of labels labarr = varargin{p_i}; if (isrow (labarr)) labarr = vec (labarr); endif p_i++; else labarr = [1 : (rows (conmat))]'; endif elseif (isvector (varargin{p_i})) ## parameter must be a group for confusionmat [conmat, labarr] = confusionmat (varargin{p_i}, varargin{p_i + 1}); p_i = p_i + 2; else close (h); error ("confusionchart: invalid argument"); endif ## remaining parameters are stored i = p_i; args = {}; while (i <= nargin) args{end + 1} = varargin{i++}; endwhile ## prepare the labels if (! iscellstr (labarr)) if (! ischar (labarr)) labarr = num2str (labarr); endif labarr = cellstr (labarr); endif ## MATLAB compatibility: labels are sorted [labarr, I] = sort (labarr); conmat = conmat(I, :); conmat = conmat(:, I); cm = ConfusionMatrixChart (hax, conmat, labarr, args); endfunction ## Demonstration using the confusion matrix example from ## R.Bonnin, "Machine Learning for Developers", pp. 55-56 %!demo %! ## Setting the chart properties %! Yt = [8 5 6 8 5 3 1 6 4 2 5 3 1 4]'; %! Yp = [8 5 6 8 5 2 3 4 4 5 5 7 2 6]'; %! confusionchart (Yt, Yp, "Title", ... %! "Demonstration with summaries","Normalization",... %! "absolute","ColumnSummary", "column-normalized","RowSummary",... %! "row-normalized") ## example: confusion matrix and class labels %!demo %! ## Cellstr as inputs %! Yt = {"Positive", "Positive", "Positive", "Negative", "Negative"}; %! Yp = {"Positive", "Positive", "Negative", "Negative", "Negative"}; %! m = confusionmat (Yt, Yp); %! confusionchart (m, {"Positive", "Negative"}); ## example: editing the properties of an existing ConfusionMatrixChart object %!demo %! ## Editing the object properties %! Yt = {"Positive", "Positive", "Positive", "Negative", "Negative"}; %! Yp = {"Positive", "Positive", "Negative", "Negative", "Negative"}; %! cm = confusionchart (Yt, Yp); %! cm.Title = "This is an example with a green diagonal"; %! cm.DiagonalColor = [0.4660, 0.6740, 0.1880]; ## example: drawing the chart inside a uipanel %!demo %! ## Confusion chart in a uipanel %! h = uipanel (); %! Yt = {"Positive", "Positive", "Positive", "Negative", "Negative"}; %! Yp = {"Positive", "Positive", "Negative", "Negative", "Negative"}; %! cm = confusionchart (h, Yt, Yp); ## example: sortClasses %!demo %! ## Sorting classes %! Yt = [8 5 6 8 5 3 1 6 4 2 5 3 1 4]'; %! Yp = [8 5 6 8 5 2 3 4 4 5 5 7 2 6]'; %! cm = confusionchart (Yt, Yp, "Title", ... %! "Classes are sorted in ascending order"); %! cm = confusionchart (Yt, Yp, "Title", ... %! "Classes are sorted according to clusters"); %! sortClasses (cm, "cluster"); ## Test input validation ## Get current figure visibility so it can be restored after tests %!shared visibility_setting %! visibility_setting = get (0, "DefaultFigureVisible"); %!test %! set (0, "DefaultFigureVisible", "off"); %! fail ("confusionchart ()", "Invalid call"); %! set (0, "DefaultFigureVisible", visibility_setting); %!test %! set (0, "DefaultFigureVisible", "off"); %! fail ("confusionchart ([1 1; 2 2; 3 3])", "invalid argument"); %! set (0, "DefaultFigureVisible", visibility_setting); %!test %! set (0, "DefaultFigureVisible", "off"); %! fail ("confusionchart ([1 2], [0 1], 'xxx', 1)", "invalid property"); %! set (0, "DefaultFigureVisible", visibility_setting); %!test %! set (0, "DefaultFigureVisible", "off"); %! fail ("confusionchart ([1 2], [0 1], 'XLabel', 1)", "XLabel .* string"); %! set (0, "DefaultFigureVisible", visibility_setting); %!test %! set (0, "DefaultFigureVisible", "off"); %! fail ("confusionchart ([1 2], [0 1], 'YLabel', [1 0])", ... %! ".* YLabel .* string"); %! set (0, "DefaultFigureVisible", visibility_setting); %!test %! set (0, "DefaultFigureVisible", "off"); %! fail ("confusionchart ([1 2], [0 1], 'Title', .5)", ".* Title .* string"); %! set (0, "DefaultFigureVisible", visibility_setting); %!test %! set (0, "DefaultFigureVisible", "off"); %! fail ("confusionchart ([1 2], [0 1], 'FontName', [])", ... %! ".* FontName .* string"); %! set (0, "DefaultFigureVisible", visibility_setting); %!test %! set (0, "DefaultFigureVisible", "off"); %! fail ("confusionchart ([1 2], [0 1], 'FontSize', 'b')", ... %! ".* FontSize .* numeric"); %! set (0, "DefaultFigureVisible", visibility_setting); %!test %! set (0, "DefaultFigureVisible", "off"); %! fail ("confusionchart ([1 2], [0 1], 'DiagonalColor', 'h')", ... %! ".* DiagonalColor .* color"); %! set (0, "DefaultFigureVisible", visibility_setting); %!test %! set (0, "DefaultFigureVisible", "off"); %! fail ("confusionchart ([1 2], [0 1], 'OffDiagonalColor', [])", ... %! ".* OffDiagonalColor .* color"); %! set (0, "DefaultFigureVisible", visibility_setting); %!test %! set (0, "DefaultFigureVisible", "off"); %! fail ("confusionchart ([1 2], [0 1], 'Normalization', '')", ... %! ".* invalid .* Normalization"); %! set (0, "DefaultFigureVisible", visibility_setting); %!test %! set (0, "DefaultFigureVisible", "off"); %! fail ("confusionchart ([1 2], [0 1], 'ColumnSummary', [])", ... %! ".* invalid .* ColumnSummary"); %! set (0, "DefaultFigureVisible", visibility_setting); %!test %! set (0, "DefaultFigureVisible", "off"); %! fail ("confusionchart ([1 2], [0 1], 'RowSummary', 1)", ... %! ".* invalid .* RowSummary"); %! set (0, "DefaultFigureVisible", visibility_setting); %!test %! set (0, "DefaultFigureVisible", "off"); %! fail ("confusionchart ([1 2], [0 1], 'GridVisible', .1)", ... %! ".* invalid .* GridVisible"); %! set (0, "DefaultFigureVisible", visibility_setting); %!test %! set (0, "DefaultFigureVisible", "off"); %! fail ("confusionchart ([1 2], [0 1], 'HandleVisibility', .1)", ... %! ".* invalid .* HandleVisibility"); %! set (0, "DefaultFigureVisible", visibility_setting); %!test %! set (0, "DefaultFigureVisible", "off"); %! fail ("confusionchart ([1 2], [0 1], 'OuterPosition', .1)", ... %! ".* invalid .* OuterPosition"); %! set (0, "DefaultFigureVisible", visibility_setting); %!test %! set (0, "DefaultFigureVisible", "off"); %! fail ("confusionchart ([1 2], [0 1], 'Position', .1)", ... %! ".* invalid .* Position"); %! set (0, "DefaultFigureVisible", visibility_setting); %!test %! set (0, "DefaultFigureVisible", "off"); %! fail ("confusionchart ([1 2], [0 1], 'Units', .1)", ".* invalid .* Units"); %! set (0, "DefaultFigureVisible", visibility_setting); statistics-release-1.6.3/inst/confusionmat.m000066400000000000000000000153521456127120000211750ustar00rootroot00000000000000## Copyright (C) 2020 Stefano Guidoni ## Copyright (C) 2022 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{C} =} confusionmat (@var{group}, @var{grouphat}) ## @deftypefnx {statistics} {@var{C} =} confusionmat (@var{group}, @var{grouphat}, "Order", @var{grouporder}) ## @deftypefnx {statistics} {[@var{C}, @var{order}] =} confusionmat (@var{group}, @var{grouphat}) ## ## Compute a confusion matrix for classification problems ## ## @code{confusionmat} returns the confusion matrix @var{C} for the group of ## actual values @var{group} and the group of predicted values @var{grouphat}. ## The row indices of the confusion matrix represent actual values, while the ## column indices represent predicted values. The indices are the same for both ## actual and predicted values, so the confusion matrix is a square matrix. ## Each element of the matrix represents the number of matches between a given ## actual value (row index) and a given predicted value (column index), hence ## correct matches lie on the main diagonal of the matrix. ## The order of the rows and columns is returned in @var{order}. ## ## @var{group} and @var{grouphat} must have the same number of observations ## and the same data type. ## Valid data types are numeric vectors, logical vectors, character arrays, ## string arrays (not implemented yet), cell arrays of strings. ## ## The order of the rows and columns can be specified by setting the ## @var{grouporder} variable. The data type of @var{grouporder} must be the ## same of @var{group} and @var{grouphat}. ## ## MATLAB compatibility: Octave misses string arrays and categorical vectors. ## ## @seealso{crosstab} ## @end deftypefn function [C, order] = confusionmat (group, grouphat, opt = "Order", grouporder) ## check the input parameters if ((nargin < 2) || (nargin > 4)) print_usage(); endif y_true = group; y_pred = grouphat; if (class (y_true) != class (y_pred)) error ("confusionmat: group and grouphat must be of the same data type"); endif if (length (y_true) != length (y_pred)) error ("confusionmat: group and grouphat must be of the same length"); endif if ((nargin > 3) && strcmp (opt, "Order")) unique_tokens = grouporder; if class( y_true ) != class( unique_tokens ) error ("confusionmat: group and grouporder must be of the same data type"); endif endif if (isvector (y_true)) if (isrow (y_true)) y_true = vec(y_true); endif else error ("confusionmat: group must be a vector or array"); endif if (isvector (y_pred)) if (isrow (y_pred)) y_pred = vec(y_pred); endif else error ("confusionmat: grouphat must be a vector or array"); endif if (exist ( "unique_tokens", "var")) if (isvector (unique_tokens)) if (isrow (unique_tokens)) unique_tokens = vec(unique_tokens); endif else error ("confusionmat: grouporder must be a vector or array"); endif endif ## compute the confusion matrix if (isa (y_true, "numeric") || isa (y_true, "logical")) ## numeric or boolean vector ## MATLAB compatibility: ## remove NaN values from grouphat nan_indices = find (isnan (y_pred)); y_pred(nan_indices) = []; ## MATLAB compatibility: ## numeric and boolean values ## are sorted in ascending order if (! exist ("unique_tokens", "var")) unique_tokens = union (y_true, y_pred); endif y_true(nan_indices) = []; C_size = length (unique_tokens); C = zeros (C_size); for i = 1:length (y_true) row_index = find (unique_tokens == y_true(i)); col_index = find (unique_tokens == y_pred(i)); C(row_index, col_index)++; endfor elseif (iscellstr (y_true)) ## string cells ## MATLAB compatibility: ## remove empty values from grouphat empty_indices = []; for i = 1:length (y_pred) if (isempty (y_pred{i})) empty_indices = [empty_indices; i]; endif endfor y_pred(empty_indices) = []; ## MATLAB compatibility: ## string values are sorted according to their ## first appearance in group and grouphat if (! exist ("unique_tokens", "var")) all_tokens = vertcat (y_true, y_pred); unique_tokens = [all_tokens(1)]; for i = 2:length( all_tokens ) if (! any (strcmp (all_tokens(i), unique_tokens))) unique_tokens = [unique_tokens; all_tokens(i)]; endif endfor endif y_true(empty_indices) = []; C_size = length (unique_tokens); C = zeros (C_size); for i = 1:length (y_true) row_index = find (strcmp (y_true{i}, unique_tokens)); col_index = find (strcmp (y_pred{i}, unique_tokens)); C(row_index, col_index)++; endfor elseif (ischar (y_true)) ## character array ## MATLAB compatibility: ## character values are sorted according to their ## first appearance in group and grouphat if (! exist ("unique_tokens", "var")) all_tokens = vertcat (y_true, y_pred); unique_tokens = [all_tokens(1)]; for i = 2:length (all_tokens) if (! any (find (unique_tokens == all_tokens(i)))) unique_tokens = [unique_tokens; all_tokens(i)]; endif endfor endif C_size = length ( unique_tokens ); C = zeros ( C_size ); for i = 1:length( y_true) row_index = find (unique_tokens == y_true(i)); col_index = find (unique_tokens == y_pred(i)); C(row_index, col_index)++; endfor elseif (isstring (y_true)) ## string array ## FIXME: not implemented yet error ("confusionmat: string array not implemented yet"); else error ("confusionmat: invalid data type"); endif order = unique_tokens; endfunction ## Test the confusion matrix example from ## R.Bonnin, "Machine Learning for Developers", pp. 55-56 %!test %! Yt = [8 5 6 8 5 3 1 6 4 2 5 3 1 4]'; %! Yp = [8 5 6 8 5 2 3 4 4 5 5 7 2 6]'; %! C = [0 1 1 0 0 0 0 0; 0 0 0 0 1 0 0 0; 0 1 0 0 0 0 1 0; 0 0 0 1 0 1 0 0; ... %! 0 0 0 0 3 0 0 0; 0 0 0 1 0 1 0 0; 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 2]; %! assert (confusionmat (Yt, Yp), C) statistics-release-1.6.3/inst/cophenet.m000066400000000000000000000111341456127120000202670ustar00rootroot00000000000000## Copyright (C) 2021 Stefano Guidoni ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {[@var{c}, @var{d}] =} cophenet (@var{Z}, @var{y}) ## ## Compute the cophenetic correlation coefficient. ## ## The cophenetic correlation coefficient @var{C} of a hierarchical cluster tree ## @var{Z} is the linear correlation coefficient between the cophenetic ## distances @var{d} and the euclidean distances @var{y}. ## @tex ## \def\frac#1#2{{\begingroup#1\endgroup\over#2}} ## $$ c = \frac {\sum_{i < j}(Y_{ij}-{\bar {y}})(Z_{ij}-{\bar{z}})} ## {\sqrt{\sum_{i < j}(Y_{ij}-{\bar {y}})^2(Z_{ij}-{\bar{z}})^2}} $$ ## @end tex ## ## It is a measure of the similarity between the distance of the leaves, as seen ## in the tree, and the distance of the original data points, which were used to ## build the tree. When this similarity is greater, that is the coefficient is ## closer to 1, the tree renders an accurate representation of the distances ## between the original data points. ## ## @var{Z} is a hierarchical cluster tree, as the output of @code{linkage}. ## @var{y} is a vector of euclidean distances, as the output of @code{pdist}. ## ## The optional output @var{d} is a vector of cophenetic distances, in the same ## lower triangular format as @var{y}. The cophenetic distance between two data ## points is the height of the lowest common node of the tree. ## ## @seealso{cluster, dendrogram, inconsistent, linkage, pdist, squareform} ## @end deftypefn function [c, d] = cophenet (Z, y) ## Check input arguments if (nargin < 2) error ("cophenet: function called with too few input arguments."); endif ## Z must be a tree [m w] = size (Z); if ((w != 3) || (! isnumeric (Z)) || (! (max (Z(end,1:2)) == m * 2))) error ("cophenet: Z must be a matrix as generated by the linkage function."); endif ## Data set size n = m + 1; ## Y must be a vector of distances if ((! isnumeric (y)) || (length (y) != (n - 1) * n / 2)) error ("cophenet: Y must be a vector of euclidean distances."); endif ## Compute the cophenetic distances d d = zeros (1, length (y)); N = sparse ((m - 1), m); # to keep track of the leaves from each branch for i = 1 : m l_n = Z(i, 1); r_n = Z(i, 2); if (l_n > n) l_v = nonzeros (N(l_n - n, :)); # the list of leaves from the left branch else l_v = l_n; endif if (r_n > n) r_v = nonzeros (N(r_n - n, :)); # the list of leaves from the right branch else r_v = r_n; endif j_max = length (l_v); k_max = length (r_v); ## Keep track of the leaves in each sub-branch, i.e. node; ## this does not matter for the last node, which includes all leaves if (i < m) N(i, 1 : (j_max + k_max)) = [l_v' r_v']; endif for j = 1 : j_max for k = 1: k_max ## d is in the same format as y if (l_v(j) < r_v(k)) index = (l_v(j) - 1) * m - sum (1 : (l_v(j) - 2)) + (r_v(k) - l_v(j)); else index = (r_v(k) - 1) * m - sum (1 : (r_v(k) - 2)) + (l_v(j) - r_v(k)); endif d(index) = Z(i, 3); endfor endfor endfor ## Compute the cophenetic correlation c y_mean = mean (y); z_mean = mean (d); Y_sigma = y - y_mean; Z_sigma = d - z_mean; c = sum (Z_sigma .* Y_sigma) / sqrt (sum (Y_sigma .^ 2) * sum (Z_sigma .^ 2)); endfunction %!demo %! randn ("seed", 5) # for reproducibility %! X = randn (10,2); %! y = pdist (X); %! Z = linkage (y, "average"); %! cophenet (Z, y) ## Test input validation %!error cophenet () %!error cophenet (1) %!error ... %! cophenet (ones (2,2), 1) %!error ... %! cophenet ([1 2 1], "a") %!error ... %! cophenet ([1 2 1], [1 2]) statistics-release-1.6.3/inst/correlation_test.m000066400000000000000000000213741456127120000220510ustar00rootroot00000000000000## Copyright (C) 1995-2017 Kurt Hornik ## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{h} =} correlation_test (@var{x}, @var{y}) ## @deftypefnx {statistics} {[@var{h}, @var{pval}] =} correlation_test (@var{y}, @var{x}) ## @deftypefnx {statistics} {[@var{h}, @var{pval}, @var{stats}] =} correlation_test (@var{y}, @var{x}) ## @deftypefnx {statistics} {[@dots{}] =} correlation_test (@var{y}, @var{x}, @var{Name}, @var{Value}) ## ## Perform a correlation coefficient test whether two samples @var{x} and ## @var{y} come from uncorrelated populations. ## ## @code{@var{h} = correlation_test (@var{y}, @var{x})} tests the null ## hypothesis that the two samples @var{x} and @var{y} come from uncorrelated ## populations. The result is @var{h} = 0 if the null hypothesis cannot be ### rejected at the 5% significance level, or @var{h} = 1 if the null hypothesis ## can be rejected at the 5% level. @var{y} and @var{x} must be vectors of ## equal length with finite real numbers. ## ## The p-value of the test is returned in @var{pval}. @var{stats} is a ## structure with the following fields: ## @multitable @columnfractions 0.05 0.2 0.05 0.70 ## @headitem @tab Field @tab @tab Value ## @item @tab @qcode{method} @tab @tab the type of correlation coefficient used ## for the test ## @item @tab @qcode{df} @tab @tab the degrees of freedom (where applicable) ## @item @tab @qcode{corrcoef} @tab @tab the correlation coefficient ## @item @tab @qcode{stat} @tab @tab the test's statistic ## @item @tab @qcode{dist} @tab @tab the respective distribution for the test ## @item @tab @qcode{alt} @tab @tab the alternative hypothesis for the test ## @end multitable ## ## ## @code{[@dots{}] = correlation_test (@dots{}, @var{name}, @var{value})} ## specifies one or more of the following name/value pairs: ## ## @multitable @columnfractions 0.05 0.2 0.75 ## @headitem @tab Name @tab Value ## @item @tab @qcode{"alpha"} @tab the significance level. Default is 0.05. ## ## @item @tab @qcode{"tail"} @tab a string specifying the alternative hypothesis ## @end multitable ## @multitable @columnfractions 0.1 0.25 0.65 ## @item @tab @qcode{"both"} @tab @math{corrcoef} is not 0 (two-tailed, default) ## @item @tab @qcode{"left"} @tab @math{corrcoef} is less than 0 (left-tailed) ## @item @tab @qcode{"right"} @tab @math{corrcoef} is greater than 0 ## (right-tailed) ## @end multitable ## ## @multitable @columnfractions 0.05 0.2 0.75 ## @item @tab @qcode{"method"} @tab a string specifying the correlation ## coefficient used for the test ## @end multitable ## @multitable @columnfractions 0.1 0.25 0.65 ## @item @tab @qcode{"pearson"} @tab Pearson's product moment correlation ## (Default) ## @item @tab @qcode{"kendall"} @tab Kendall's rank correlation tau ## @item @tab @qcode{"spearman"} @tab Spearman's rank correlation rho ## @end multitable ## ## @seealso{regression_ftest, regression_ttest} ## @end deftypefn function [h, pval, stats] = correlation_test (x, y, varargin) if (nargin < 2) print_usage (); endif if (! isvector (x) || ! isvector (y) || length (x) != length (y)) error ("correlation_test: X and Y must be vectors of equal length."); endif ## Force to column vectors x = x(:); y = y(:); ## Check for finite real numbers in X and Y if (! all (isfinite (x)) || ! isreal (x)) error ("correlation_test: X must contain finite real numbers."); endif if (! all (isfinite (y(:))) || ! isreal (y)) error ("correlation_test: Y must contain finite real numbers."); endif ## Set default arguments alpha = 0.05; tail = "both"; method = "pearson"; ## Check additional options i = 1; while (i <= length (varargin)) switch lower (varargin{i}) case "alpha" i = i + 1; alpha = varargin{i}; ## Check for valid alpha if (! isscalar (alpha) || ! isnumeric (alpha) || ... alpha <= 0 || alpha >= 1) error ("correlation_test: invalid value for alpha."); endif case "tail" i = i + 1; tail = varargin{i}; if (! any (strcmpi (tail, {"both", "left", "right"}))) error ("correlation_test: invalid value for tail."); endif case "method" i = i + 1; method = varargin{i}; if (! any (strcmpi (method, {"pearson", "kendall", "spearman"}))) error ("correlation_test: invalid value for method."); endif otherwise error ("correlation_test: invalid Name argument."); endswitch i = i + 1; endwhile n = length (x); if (strcmpi (method, "pearson")) r = corr (x, y); stats.method = "Pearson's product moment correlation"; stats.df = n - 2; stats.corrcoef = r; stats.stat = sqrt (stats.df) .* r / sqrt (1 - r.^2); stats.dist = "Student's t"; cdf = tcdf (stats.stat, stats.df); elseif (strcmpi (method, "kendall")) tau = kendall (x, y); stats.method = "Kendall's rank correlation tau"; stats.df = []; stats.corrcoef = tau; stats.stat = tau / sqrt ((2 * (2*n+5)) / (9*n*(n-1))); stats.dist = "standard normal"; cdf = stdnormal_cdf (stats.stat); else # spearman rho = spearman (x, y); stats.method = "Spearman's rank correlation rho"; stats.df = []; stats.corrcoef = rho; stats.stat = sqrt (n-1) * (rho - 6/(n^3-n)); stats.dist = "standard normal"; cdf = stdnormal_cdf (stats.stat); endif ## Based on the "tail" argument determine the P-value switch lower (tail) case "both" pval = 2 * min (cdf, 1 - cdf); case "right" pval = 1 - cdf; case "left" pval = cdf; endswitch stats.alt = tail; ## Determine the test outcome h = double (pval < alpha); endfunction ## Test input validation %!error correlation_test (); %!error correlation_test (1); %!error ... %! correlation_test ([1 2 NaN]', [2 3 4]'); %!error ... %! correlation_test ([1 2 Inf]', [2 3 4]'); %!error ... %! correlation_test ([1 2 3+i]', [2 3 4]'); %!error ... %! correlation_test ([1 2 3]', [2 3 NaN]'); %!error ... %! correlation_test ([1 2 3]', [2 3 Inf]'); %!error ... %! correlation_test ([1 2 3]', [3 4 3+i]'); %!error ... %! correlation_test ([1 2 3]', [3 4 4 5]'); %!error ... %! correlation_test ([1 2 3]', [2 3 4]', "alpha", 0); %!error ... %! correlation_test ([1 2 3]', [2 3 4]', "alpha", 1.2); %!error ... %! correlation_test ([1 2 3]', [2 3 4]', "alpha", [.02 .1]); %!error ... %! correlation_test ([1 2 3]', [2 3 4]', "alpha", "a"); %!error ... %! correlation_test ([1 2 3]', [2 3 4]', "some", 0.05); %!error ... %! correlation_test ([1 2 3]', [2 3 4]', "tail", "val"); %!error ... %! correlation_test ([1 2 3]', [2 3 4]', "alpha", 0.01, "tail", "val"); %!error ... %! correlation_test ([1 2 3]', [2 3 4]', "method", 0.01); %!error ... %! correlation_test ([1 2 3]', [2 3 4]', "method", "some"); %!test %! x = [6 7 7 9 10 12 13 14 15 17]; %! y = [19 22 27 25 30 28 30 29 25 32]; %! [h, pval, stats] = correlation_test (x, y); %! assert (stats.corrcoef, corr (x', y'), 1e-14); %! assert (pval, 0.0223, 1e-4); %!test %! x = [6 7 7 9 10 12 13 14 15 17]'; %! y = [19 22 27 25 30 28 30 29 25 32]'; %! [h, pval, stats] = correlation_test (x, y); %! assert (stats.corrcoef, corr (x, y), 1e-14); %! assert (pval, 0.0223, 1e-4); statistics-release-1.6.3/inst/crosstab.m000066400000000000000000000107641456127120000203120ustar00rootroot00000000000000## Copyright (C) 1995-2017 Kurt Hornik ## Copyright (C) 2018 John Donoghue ## Copyright (C) 2021 Stefano Guidoni ## Copyright (C) 2022 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{t} =} crosstab (@var{x1}, @var{x2}) ## @deftypefnx {statistics} {@var{t} =} crosstab (@var{x1}, @dots{}, @var{xn}) ## @deftypefnx {statistics} {[@var{t}, @var{chisq}, @var{p}, @var{labels}] =} crosstab (@dots{}) ## ## Create a cross-tabulation (contingency table) @var{t} from data vectors. ## ## The inputs @var{x1}, @var{x2}, ... @var{xn} must be vectors of equal length ## with a data type of numeric, logical, char, or string (cell array). ## ## As additional return values @code{crosstab} returns the chi-square statistics ## @var{chisq}, its p-value @var{p} and a cell array @var{labels}, containing ## the labels of each input argument. ## ## @seealso{grp2idx, tabulate} ## @end deftypefn function [t, chisq, p, labels] = crosstab (varargin) ## check input if (nargin < 2) print_usage (); endif v_length = size (varargin{1}, 1); ## main - begin v_reshape = []; # vector of the dimensions of t X = []; # matrix of the indexed input values labels = {}; # cell array of labels for i = 1 : nargin ## If char array, convert to numerical vector try [vector, gnames] = grp2idx (varargin{i}); catch error ("crosstab: x1, x2 ... xn must be vectors."); end_try_catch if ((! isvector (vector)) || (v_length != length (vector))) error ("crosstab: x1, x2 ... xn must be vectors of the same length."); endif X = [X, vector]; for h = 1 : length (gnames) labels{h, i} = gnames{h, 1}; endfor v_reshape(i) = length (unique (vector)); endfor v = unique (X(:, nargin)); t = []; ## core logic, this employs a recursive function "crosstab_recursive" ## given (x1, x2, x3, ... xn) as inputs ## t(i,j,k,...) = sum (x1(:) == v1(i) & x2(:) == v2(j) & ...) for i = 1 : length (v) t = [t, (crosstab_recursive (nargin - 1,... (X(:, nargin) == v(i) | isnan (v(i)) * isnan (X(:, nargin)))))]; endfor t = reshape(t, v_reshape); # build the nargin-dimensional matrix ## additional statistics if (length (v_reshape) > 1) [p, chisq] = chi2test (t); endif ## main - end ## function: crosstab_recursive ## while there are input vectors, let's do iterations over them function t_partial = crosstab_recursive (x_idx, t_parent) y = X(:, x_idx); w = unique (y); t_partial = []; if (x_idx == 1) ## we have reached the last vector, ## let the computation begin for j = 1 : length (w) t_partial = [t_partial, ... sum(t_parent & (y == w(j) | isnan (w(j)) * isnan (y)));]; endfor else ## if there are more vectors, ## just add data and pass it through to the next iteration for j = 1 : length (w) t_partial = [t_partial, ... (crosstab_recursive (x_idx - 1, ... (t_parent & (y == w(j) | isnan (w(j)) * isnan (y)))))]; endfor endif endfunction endfunction ## Test input validation %!error crosstab () %!error crosstab (1) %!error crosstab (ones (2), [1 1]) %!error crosstab ([1 1], ones (2)) %!error crosstab ([1], [1 2]) %!error crosstab ([1 2], [1]) %!test %! load carbig %! [table, chisq, p, labels] = crosstab (cyl4, when, org); %! assert (table(2,3,1), 38); %! assert (labels{3,3}, "Japan"); %!test %! load carbig %! [table, chisq, p, labels] = crosstab (cyl4, when, org); %! assert (table(2,3,2), 17); %! assert (labels{1,3}, "USA"); statistics-release-1.6.3/inst/crossval.m000066400000000000000000000141421456127120000203200ustar00rootroot00000000000000## Copyright (C) 2014 Nir Krakauer ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or ## (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; If not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{results} =} crossval (@var{f}, @var{X}, @var{y}) ## @deftypefnx {statistics} {@var{results} =} crossval (@var{f}, @var{X}, @var{y}, @var{name}, @var{value}) ## ## Perform cross validation on given data. ## ## @var{f} should be a function that takes 4 inputs @var{xtrain}, @var{ytrain}, ## @var{xtest}, @var{ytest}, fits a model based on @var{xtrain}, @var{ytrain}, ## applies the fitted model to @var{xtest}, and returns a goodness of fit ## measure based on comparing the predicted and actual @var{ytest}. ## @code{crossval} returns an array containing the values returned by @var{f} ## for every cross-validation fold or resampling applied to the given data. ## ## @var{X} should be an @var{n} by @var{m} matrix of predictor values ## ## @var{y} should be an @var{n} by @var{1} vector of predicand values ## ## Optional arguments may include name-value pairs as follows: ## ## @table @asis ## @item @qcode{"KFold"} ## Divide set into @var{k} equal-size subsets, using each one successively ## for validation. ## ## @item @qcode{"HoldOut"} ## Divide set into two subsets, training and validation. If the value ## @var{k} is a fraction, that is the fraction of values put in the ## validation subset (by default @var{k}=0.1); if it is a positive integer, ## that is the number of values in the validation subset. ## ## @item @qcode{"LeaveOut"} ## Leave-one-out partition (each element is placed in its own subset). ## The value is ignored. ## ## @item @qcode{"Partition"} ## The value should be a @var{cvpartition} object. ## ## @item @qcode{"Given"} ## The value should be an @var{n} by @var{1} vector specifying in which ## partition to put each element. ## ## @item @qcode{"stratify"} ## The value should be an @var{n} by @var{1} vector containing class ## designations for the elements, in which case the @qcode{"KFold"} and ## @qcode{"HoldOut"} partitionings attempt to ensure each partition ## represents the classes proportionately. ## ## @item @qcode{"mcreps"} ## The value should be a positive integer specifying the number of times ## to resample based on different partitionings. Currently only works with ## the partition type @qcode{"HoldOut"}. ## ## @end table ## ## Only one of @qcode{"KFold"}, @qcode{"HoldOut"}, @qcode{"LeaveOut"}, ## @qcode{"Given"}, @qcode{"Partition"} should be specified. If none is ## specified, the default is @qcode{"KFold"} with @var{k} = 10. ## ## @seealso{cvpartition} ## @end deftypefn function results = crossval (f, X, y, varargin) [n, m] = size (X); if (numel (y) != n) error ("X, y sizes incompatible") endif ## extract optional parameter-value argument pairs if (numel (varargin) > 1) vargs = varargin; nargs = numel (vargs); values = vargs(2:2:nargs); names = vargs(1:2:nargs)(1:numel(values)); validnames = {"KFold", "HoldOut", "LeaveOut", "Partition", ... "Given", "stratify", "mcreps"}; for i = 1:numel (names) names(i) = validatestring (names(i){:}, validnames); end for i = 1:numel(validnames) name = validnames(i){:}; name_pos = strmatch (name, names); if (! isempty (name_pos)) eval ([name " = values(name_pos){:};"]) endif endfor endif ## construct CV partition if exist ("Partition", "var") P = Partition; elseif exist ("Given", "var") P = cvpartition (Given, "Given"); elseif exist ("KFold", "var") if (! exist ("stratify", "var")) stratify = n; endif P = cvpartition (stratify, "KFold", KFold); elseif (exist ("HoldOut", "var")) if (! exist ("stratify", "var")) stratify = n; endif P = cvpartition (stratify, "HoldOut", HoldOut); if (! exist ("mcreps", "var") || isempty (mcreps)) mcreps = 1; endif elseif (exist ("LeaveOut", "var")) P = cvpartition (n, "LeaveOut"); else #KFold if (! exist ("stratify", "var")) stratify = n; endif P = cvpartition (stratify, "KFold"); endif nr = get (P, "NumTestSets"); # number of test sets to do cross validation on nreps = 1; if (strcmp (get (P, "Type"), "holdout") && exist ("mcreps", "var") && mcreps > 1) nreps = mcreps; endif results = nan (nreps, nr); for rep = 1:nreps if (rep > 1) P = repartition (P); endif for i = 1:nr inds_train = training (P, i); inds_test = test (P, i); result = f (X(inds_train, :), y(inds_train), X(inds_test, :), y(inds_test)); results(rep, i) = result; endfor endfor endfunction %!test %! load fisheriris %! y = meas(:, 1); %! X = [ones(size(y)) meas(:, 2:4)]; %! f = @(X1, y1, X2, y2) meansq (y2 - X2*regress(y1, X1)); %! results0 = crossval (f, X, y); %! results1 = crossval (f, X, y, 'KFold', 10); %! folds = 5; %! results2 = crossval (f, X, y, 'KFold', folds); %! results3 = crossval (f, X, y, 'Partition', cvpartition (numel (y), 'KFold', folds)); %! results4 = crossval (f, X, y, 'LeaveOut', 1); %! mcreps = 2; n_holdout = 20; %! results5 = crossval (f, X, y, 'HoldOut', n_holdout, 'mcreps', mcreps); %! %! ## ensure equal representation of iris species in the training set -- tends %! ## to slightly reduce cross-validation mean square error %! results6 = crossval (f, X, y, 'KFold', 5, 'stratify', grp2idx(species)); %! %! assert (results0, results1, 2e-15); %! assert (results2, results3, 5e-17); %! assert (size(results4), [1 numel(y)]); %! assert (mean(results4), 0.1018, 1e-4); %! assert (size(results5), [mcreps 1]); statistics-release-1.6.3/inst/datasample.m000066400000000000000000000164271456127120000206070ustar00rootroot00000000000000## Copyright (C) 2021 Stefano Guidoni ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{y} =} datasample (@var{data}, @var{k}) ## @deftypefnx {statistics} {@var{y} =} datasample (@var{data}, @var{k}, @var{dim}) ## @deftypefnx {statistics} {@var{y} =} datasample (@dots{}, @var{Name}, @var{Value}) ## @deftypefnx {statistics} {[@var{y} @var{idcs}] =} datasample (@dots{}) ## ## Randomly sample data. ## ## Return @var{k} observations randomly sampled from @var{data}. @var{data} can ## be a vector or a matrix of any data. When @var{data} is a matrix or a ## n-dimensional array, the samples are the subarrays of size n - 1, taken along ## the dimension @var{dim}. The default value for @var{dim} is 1, that is the ## row vectors when sampling a matrix. ## ## Output @var{y} is the returned sampled data. Optional output @var{idcs} is ## the vector of the indices to build @var{y} from @var{data}. ## ## Additional options are set through pairs of parameter name and value. ## Available parameters are: ## ## @table @code ## @item @qcode{Replace} ## a logical value that can be @code{true} (default) or @code{false}: when set ## to @code{true}, @code{datasample} returns data sampled with replacement. ## ## @item @qcode{Weigths} ## a vector of positive numbers that sets the probability of each element. It ## must have the same size as @var{data} along dimension @var{dim}. ## ## @end table ## ## ## @end deftypefn ## ## @seealso{rand, randi, randperm, randsample} function [y, idcs] = datasample (data, k, varargin) ## check input if ( nargin < 2 ) print_usage (); endif ## data: some data, any type, any format but cell ## MATLAB compatibility: there are no "table" or "dataset array" types in ## Octave if (iscell (data)) error ("datasample: data must be a vector or matrix"); endif ## k, a positive integer if ((! isnumeric (k) || ! isscalar (k)) || (! (floor (k) == k)) || (k <= 0)) error ("datasample: k must be a positive integer scalar"); endif dim = 1; replace = true; weights = []; if ( nargin > 2 ) pair_index = 1; if (! ischar (varargin{1})) ## it must be dim dim = varargin{1}; ## the (Name, Value) pairs start further pair_index += 1; ## dim, another positive integer if ((! isscalar (dim)) || (! (floor (dim) == dim)) || (dim <= 0)) error ("datasample: DIM must be a positive integer scalar"); endif endif ## (Name, Value) pairs while (pair_index < (nargin - 2)) switch (lower (varargin{pair_index})) case "replace" if (! islogical (varargin{pair_index + 1})) error ("datasample: expected a logical value for 'Replace'"); endif replace = varargin{pair_index + 1}; case "weights" if ((! isnumeric (varargin{pair_index + 1})) || (! isvector (varargin{pair_index + 1})) || (any (varargin{pair_index + 1} < 0))) error (["datasample: the sampling weights must be defined as a " ... "vector of positive values"]); endif weights = varargin{pair_index + 1}; otherwise error ("datasample: unknown property %s", varargin{pair_index}); endswitch pair_index += 2; endwhile endif ## get the size of the population to sample if (isvector (data)) imax = length (data); else imax = size (data, dim); endif if (isempty (weights)) ## all elements have the same probability of being chosen ## this is easy ## with or without replacement if (replace) idcs = randi (imax, k, 1); else idcs = randperm (imax, k); endif else ## first check if the weights vector is right if (imax != length (weights)) error (["datasample: the size of the vector of sampling weights must"... " be equal to the size of the sampled data"]); endif if (replace) ## easy case: ## normalize the weights, weights_n = cumsum (weights ./ sum (weights)); weights_n(end) = 1; # just to be sure ## then choose k numbers uniformly between 0 and 1 samples = rand (k, 1); ## we have subdivided the space between 0 and 1 accordingly to the ## weights vector: we have just to map back the random numbers to the ## indices of the orginal dataset for iter = 1 : k idcs(iter) = find (weights_n >= samples(iter), 1); endfor else ## complex case ## choose k numbers uniformly between 0 and 1 samples = rand (k, 1); for iter = 1 : k ## normalize the weights weights_n = cumsum (weights ./ sum (weights)); weights_n(end) = 1; # just to be sure idcs(iter) = find (weights_n >= samples(iter), 1); ## remove the element from the set, i. e. set its probability to zero weights(idcs(iter)) = 0; endfor endif endif ## let's get the actual data from the original set if (isvector (data)) ## data is a vector y = data(idcs); else vS = size (data); if (length (vS) == 2) ## data is a 2-dimensional matrix if (dim == 1) y = data(idcs, :); else y = data(:, idcs); endif else ## data is an n-dimensional matrix s = "y = data("; for iter = 1 : length (vS) if (iter == dim) s = [s "idcs,"]; else s = [s ":,"]; endif endfor s = [s ":);"]; eval (s); endif endif endfunction ## some tests %!error datasample(); %!error datasample(1); %!error datasample({1, 2, 3}, 1); %!error datasample([1 2], -1); %!error datasample([1 2], 1.5); %!error datasample([1 2], [1 1]); %!error datasample([1 2], 'g', [1 1]); %!error datasample([1 2], 1, -1); %!error datasample([1 2], 1, 1.5); %!error datasample([1 2], 1, [1 1]); %!error datasample([1 2], 1, 1, "Replace", -2); %!error datasample([1 2], 1, 1, "Weights", "abc"); %!error datasample([1 2], 1, 1, "Weights", [1 -2 3]); %!error datasample([1 2], 1, 1, "Weights", ones (2)); %!error datasample([1 2], 1, 1, "Weights", [1 2 3]); %!test %! dat = randn (10, 4); %! assert (size (datasample (dat, 3, 1)), [3 4]); %!test %! dat = randn (10, 4); %! assert (size (datasample (dat, 3, 2)), [10 3]); statistics-release-1.6.3/inst/datasets/000077500000000000000000000000001456127120000201145ustar00rootroot00000000000000statistics-release-1.6.3/inst/datasets/acetylene.mat000066400000000000000000000045241456127120000225750ustar00rootroot00000000000000Octave-1-L Descriptionÿ sq_stringþÿÿÿi= M xxxy SKC RMT= u 123: ouh eah l ::: une freA t C rum eq c i RRCo cgi ruAe p eaon eic eamt l atnv :,a nrey e cete Tl cdrl t ar . etie r oocs ,E :,cn e rfti n ae g o Tg Dn r tHtn .i . D e e2i n ,Sa s m mo Te tt s ptef ae Raa i eo mr .t o r (n ui s= n ans- rn St= t-eh ag ni d uhce , ec a reop P ei t epnt "r ,a a tda No n (asn eg ", w dn)e wr R i ee e iv t g t As d. h r( o cs g2 em e, e9 c eo a t o sl c yv Rn r e e l. eo r c t e5 g. e er y n7 r1 l na l e e a tt e ( s( t ii n P1 s1 e go e r9 i9 d r) o6 o7 a ( c1 n5 p d % e) ) r e ) s, i, e ) s n d p p i Up Pp c s. r. t e4 a3 o s3 c- r - t2 s H4 i0 y9 c. d. e r , o " g e n D i l u t i o n , " x1ÿmatrixþÿÿÿP”@P”@P”@P”@P”@P”@À’@À’@À’@À’@À’@À’@0‘@0‘@0‘@0‘@x2ÿmatrixþÿÿÿ@"@&@+@1@7@333333@@&@+@1@7@333333@@&@1@x3ÿmatrixþÿÿÿú~j¼t“ˆ?ú~j¼t“ˆ?Zd;ßO‡?9´Èv¾ŸŠ?ÙÎ÷S㥋?ú~j¼t“ˆ?{®Gáz¤?Ûù~j¼t£?ü©ñÒMb ?9´Èv¾Ÿš?œÄ °rh¡?Ë¡E¶óý¤?/Ý$µ?J +‡¹?Zd;ßO·?j¼t“¶?yÿmatrixþÿÿÿ€H@š™™™™I@@I@@H@ÀG@@F@<@€?@@A@€A@C@@C@.@1@€4@€=@statistics-release-1.6.3/inst/datasets/arrhythmia.mat000066400000000000000000037416671456127120000230170ustar00rootroot00000000000000Octave-1-L Descriptionÿ sq_stringþÿÿÿEChSY Nate ortei mdp s121ii:V -6na/at=1 ac/rh 5=l aNen ara o=uarcmc ntrhelavcthisaralryv srraitefshisbh.o yosumiratuitic thsfeasntm is .arice dumialdaaceb a rtisu scea. t sa eoe escfdf seoru r sdo/2a o emm7n f d l9g t/ i a ahdin r seang r tp h nUauf y uCstr t mIe o h e tvm m rmsa i ia/r1 a ccAi hrat virbo anhl reye1 i ts6 alh.: bem lai era sn i wn ig t hr e vp ao ls ui et so r 0y : a n d 1VarNamesÿcellþÿÿÿÿ sq_stringþÿÿÿ Age, yearsÿ sq_stringþÿÿÿSex (0=male, 1=female)ÿ sq_stringþÿÿÿ Height, cmÿ sq_stringþÿÿÿ Weight, kgÿ sq_stringþÿÿÿ QRS durationÿ sq_stringþÿÿÿ P-R intervalÿ sq_stringþÿÿÿ Q-T intervalÿ sq_stringþÿÿÿ T intervalÿ sq_stringþÿÿÿ P intervalÿ sq_stringþÿÿÿ QRS angleÿ sq_stringþÿÿÿT angleÿ sq_stringþÿÿÿP angleÿ sq_stringþÿÿÿ QRST angleÿ sq_stringþÿÿÿJ angleÿ sq_stringþÿÿÿHeart rate per minuteÿ sq_stringþÿÿÿDI Q wave widthÿ sq_stringþÿÿÿDI R wave widthÿ sq_stringþÿÿÿDI S wave widthÿ sq_stringþÿÿÿDI R' wave widthÿ sq_stringþÿÿÿDI S' wave widthÿ sq_stringþÿÿÿDI N of intrinsic deflectionsÿ sq_stringþÿÿÿDI Existence of ragged R waveÿ sq_stringþÿÿÿ-DI Existence of diphasic derivation of R waveÿ sq_stringþÿÿÿDI Existence of ragged P waveÿ sq_stringþÿÿÿ-DI Existence of diphasic derivation of P waveÿ sq_stringþÿÿÿDI Existence of ragged T waveÿ sq_stringþÿÿÿ-DI Existence of diphasic derivation of T waveÿ sq_stringþÿÿÿDII Q wave widthÿ sq_stringþÿÿÿDII R wave widthÿ sq_stringþÿÿÿDII S wave widthÿ sq_stringþÿÿÿDII R' wave widthÿ sq_stringþÿÿÿDII S' wave widthÿ sq_stringþÿÿÿDII N of intrinsic deflectionsÿ sq_stringþÿÿÿDII Existence of ragged R waveÿ sq_stringþÿÿÿ.DII Existence of diphasic derivation of R waveÿ sq_stringþÿÿÿDII Existence of ragged P waveÿ sq_stringþÿÿÿ.DII Existence of diphasic derivation of P waveÿ sq_stringþÿÿÿDII Existence of ragged T waveÿ sq_stringþÿÿÿ.DII Existence of diphasic derivation of T waveÿ sq_stringþÿÿÿDIII Q wave widthÿ sq_stringþÿÿÿDIII R wave widthÿ sq_stringþÿÿÿDIII S wave widthÿ sq_stringþÿÿÿDIII R' wave widthÿ sq_stringþÿÿÿDIII S' wave widthÿ sq_stringþÿÿÿDIII N of intrinsic deflectionsÿ sq_stringþÿÿÿDIII Existence of ragged R waveÿ sq_stringþÿÿÿ/DIII Existence of diphasic derivation of R waveÿ sq_stringþÿÿÿDIII Existence of ragged P waveÿ sq_stringþÿÿÿ/DIII Existence of diphasic derivation of P waveÿ sq_stringþÿÿÿDIII Existence of ragged T waveÿ sq_stringþÿÿÿ/DIII Existence of diphasic derivation of T waveÿ sq_stringþÿÿÿAVR Q wave widthÿ sq_stringþÿÿÿAVR R wave widthÿ sq_stringþÿÿÿAVR S wave widthÿ sq_stringþÿÿÿAVR R' wave widthÿ sq_stringþÿÿÿAVR S' wave widthÿ sq_stringþÿÿÿAVR N of intrinsic deflectionsÿ sq_stringþÿÿÿAVR Existence of ragged R waveÿ sq_stringþÿÿÿ.AVR Existence of diphasic derivation of R waveÿ sq_stringþÿÿÿAVR Existence of ragged P waveÿ sq_stringþÿÿÿ.AVR Existence of diphasic derivation of P waveÿ sq_stringþÿÿÿAVR Existence of ragged T waveÿ sq_stringþÿÿÿ.AVR Existence of diphasic derivation of T waveÿ sq_stringþÿÿÿAVL Q wave widthÿ sq_stringþÿÿÿAVL R wave widthÿ sq_stringþÿÿÿAVL S wave widthÿ sq_stringþÿÿÿAVL R' wave widthÿ sq_stringþÿÿÿAVL S' wave widthÿ sq_stringþÿÿÿAVL N of intrinsic deflectionsÿ sq_stringþÿÿÿAVL Existence of ragged R waveÿ sq_stringþÿÿÿ.AVL Existence of diphasic derivation of R waveÿ sq_stringþÿÿÿAVL Existence of ragged P waveÿ sq_stringþÿÿÿ.AVL Existence of diphasic derivation of P waveÿ sq_stringþÿÿÿAVL Existence of ragged T waveÿ sq_stringþÿÿÿ.AVL Existence of diphasic derivation of T waveÿ sq_stringþÿÿÿAVF Q wave widthÿ sq_stringþÿÿÿAVF R wave widthÿ sq_stringþÿÿÿAVF S wave widthÿ sq_stringþÿÿÿAVF R' wave widthÿ sq_stringþÿÿÿAVF S' wave widthÿ sq_stringþÿÿÿAVF N of intrinsic deflectionsÿ sq_stringþÿÿÿAVF Existence of ragged R waveÿ sq_stringþÿÿÿ.AVF Existence of diphasic derivation of R waveÿ sq_stringþÿÿÿAVF Existence of ragged P waveÿ sq_stringþÿÿÿ.AVF Existence of diphasic derivation of P waveÿ sq_stringþÿÿÿAVF Existence of ragged T waveÿ sq_stringþÿÿÿ.AVF Existence of diphasic derivation of T waveÿ sq_stringþÿÿÿV1 Q wave widthÿ sq_stringþÿÿÿV1 R wave widthÿ sq_stringþÿÿÿV1 S wave widthÿ sq_stringþÿÿÿV1 R' wave widthÿ sq_stringþÿÿÿV1 S' wave widthÿ sq_stringþÿÿÿV1 N of intrinsic deflectionsÿ sq_stringþÿÿÿV1 Existence of ragged R waveÿ sq_stringþÿÿÿ-V1 Existence of diphasic derivation of R waveÿ sq_stringþÿÿÿV1 Existence of ragged P waveÿ sq_stringþÿÿÿ-V1 Existence of diphasic derivation of P waveÿ sq_stringþÿÿÿV1 Existence of ragged T waveÿ sq_stringþÿÿÿ-V1 Existence of diphasic derivation of T waveÿ sq_stringþÿÿÿV2 Q wave widthÿ sq_stringþÿÿÿV2 R wave widthÿ sq_stringþÿÿÿV2 S wave widthÿ sq_stringþÿÿÿV2 R' wave widthÿ sq_stringþÿÿÿV2 S' wave widthÿ sq_stringþÿÿÿV2 N of intrinsic deflectionsÿ sq_stringþÿÿÿV2 Existence of ragged R waveÿ sq_stringþÿÿÿ-V2 Existence of diphasic derivation of R waveÿ sq_stringþÿÿÿV2 Existence of ragged P waveÿ sq_stringþÿÿÿ-V2 Existence of diphasic derivation of P waveÿ sq_stringþÿÿÿV2 Existence of ragged T waveÿ sq_stringþÿÿÿ-V2 Existence of diphasic derivation of T waveÿ sq_stringþÿÿÿV3 Q wave widthÿ sq_stringþÿÿÿV3 R wave widthÿ sq_stringþÿÿÿV3 S wave widthÿ sq_stringþÿÿÿV3 R' wave widthÿ sq_stringþÿÿÿV3 S' wave widthÿ sq_stringþÿÿÿV3 N of intrinsic deflectionsÿ sq_stringþÿÿÿV3 Existence of ragged R waveÿ sq_stringþÿÿÿ-V3 Existence of diphasic derivation of R waveÿ sq_stringþÿÿÿV3 Existence of ragged P waveÿ sq_stringþÿÿÿ-V3 Existence of diphasic derivation of P waveÿ sq_stringþÿÿÿV3 Existence of ragged T waveÿ sq_stringþÿÿÿ-V3 Existence of diphasic derivation of T waveÿ sq_stringþÿÿÿV4 Q wave widthÿ sq_stringþÿÿÿV4 R wave widthÿ sq_stringþÿÿÿV4 S wave widthÿ sq_stringþÿÿÿV4 R' wave widthÿ sq_stringþÿÿÿV4 S' wave widthÿ sq_stringþÿÿÿV4 N of intrinsic deflectionsÿ sq_stringþÿÿÿV4 Existence of ragged R waveÿ sq_stringþÿÿÿ-V4 Existence of diphasic derivation of R waveÿ sq_stringþÿÿÿV4 Existence of ragged P waveÿ sq_stringþÿÿÿ-V4 Existence of diphasic derivation of P waveÿ sq_stringþÿÿÿV4 Existence of ragged T waveÿ sq_stringþÿÿÿ-V4 Existence of diphasic derivation of T waveÿ sq_stringþÿÿÿV5 Q wave widthÿ sq_stringþÿÿÿV5 R wave widthÿ sq_stringþÿÿÿV5 S wave widthÿ sq_stringþÿÿÿV5 R' wave widthÿ sq_stringþÿÿÿV5 S' wave widthÿ sq_stringþÿÿÿV5 N of intrinsic deflectionsÿ sq_stringþÿÿÿV5 Existence of ragged R waveÿ sq_stringþÿÿÿ-V5 Existence of diphasic derivation of R waveÿ sq_stringþÿÿÿV5 Existence of ragged P waveÿ sq_stringþÿÿÿ-V5 Existence of diphasic derivation of P waveÿ sq_stringþÿÿÿV5 Existence of ragged T waveÿ sq_stringþÿÿÿ-V5 Existence of diphasic derivation of T waveÿ sq_stringþÿÿÿV6 Q wave widthÿ sq_stringþÿÿÿV6 R wave widthÿ sq_stringþÿÿÿV6 S wave widthÿ sq_stringþÿÿÿV6 R' wave widthÿ sq_stringþÿÿÿV6 S' wave widthÿ sq_stringþÿÿÿV6 N of intrinsic deflectionsÿ sq_stringþÿÿÿV6 Existence of ragged R waveÿ sq_stringþÿÿÿ-V6 Existence of diphasic derivation of R waveÿ sq_stringþÿÿÿV6 Existence of ragged P waveÿ sq_stringþÿÿÿ-V6 Existence of diphasic derivation of P waveÿ sq_stringþÿÿÿV6 Existence of ragged T waveÿ sq_stringþÿÿÿ-V6 Existence of diphasic derivation of T waveÿ sq_stringþÿÿÿDI JJ wave amplitudeÿ sq_stringþÿÿÿDI Q wave amplitudeÿ sq_stringþÿÿÿDI R wave amplitudeÿ sq_stringþÿÿÿDI S wave amplitudeÿ sq_stringþÿÿÿDI R' wave amplitudeÿ sq_stringþÿÿÿDI S' wave amplitudeÿ sq_stringþÿÿÿDI P wave amplitudeÿ sq_stringþÿÿÿDI T wave amplitudeÿ sq_stringþÿÿÿDI QRSAÿ sq_stringþÿÿÿDI QRSTAÿ sq_stringþÿÿÿDII JJ wave amplitudeÿ sq_stringþÿÿÿDII Q wave amplitudeÿ sq_stringþÿÿÿDII R wave amplitudeÿ sq_stringþÿÿÿDII S wave amplitudeÿ sq_stringþÿÿÿDII R' wave amplitudeÿ sq_stringþÿÿÿDII S' wave amplitudeÿ sq_stringþÿÿÿDII P wave amplitudeÿ sq_stringþÿÿÿDII T wave amplitudeÿ sq_stringþÿÿÿDII QRSAÿ sq_stringþÿÿÿ DII QRSTAÿ sq_stringþÿÿÿDIII JJ wave amplitudeÿ sq_stringþÿÿÿDIII Q wave amplitudeÿ sq_stringþÿÿÿDIII R wave amplitudeÿ sq_stringþÿÿÿDIII S wave amplitudeÿ sq_stringþÿÿÿDIII R' wave amplitudeÿ sq_stringþÿÿÿDIII S' wave amplitudeÿ sq_stringþÿÿÿDIII P wave amplitudeÿ sq_stringþÿÿÿDIII T wave amplitudeÿ sq_stringþÿÿÿ DIII QRSAÿ sq_stringþÿÿÿ DIII QRSTAÿ sq_stringþÿÿÿAVR JJ wave amplitudeÿ sq_stringþÿÿÿAVR Q wave amplitudeÿ sq_stringþÿÿÿAVR R wave amplitudeÿ sq_stringþÿÿÿAVR S wave amplitudeÿ sq_stringþÿÿÿAVR R' wave amplitudeÿ sq_stringþÿÿÿAVR S' wave amplitudeÿ sq_stringþÿÿÿAVR P wave amplitudeÿ sq_stringþÿÿÿAVR T wave amplitudeÿ sq_stringþÿÿÿAVR QRSAÿ sq_stringþÿÿÿ AVR QRSTAÿ sq_stringþÿÿÿAVL JJ wave amplitudeÿ sq_stringþÿÿÿAVL Q wave amplitudeÿ sq_stringþÿÿÿAVL R wave amplitudeÿ sq_stringþÿÿÿAVL S wave amplitudeÿ sq_stringþÿÿÿAVL R' wave amplitudeÿ sq_stringþÿÿÿAVL S' wave amplitudeÿ sq_stringþÿÿÿAVL P wave amplitudeÿ sq_stringþÿÿÿAVL T wave amplitudeÿ sq_stringþÿÿÿAVL QRSAÿ sq_stringþÿÿÿ AVL QRSTAÿ sq_stringþÿÿÿAVF JJ wave amplitudeÿ sq_stringþÿÿÿAVF Q wave amplitudeÿ sq_stringþÿÿÿAVF R wave amplitudeÿ sq_stringþÿÿÿAVF S wave amplitudeÿ sq_stringþÿÿÿAVF R' wave amplitudeÿ sq_stringþÿÿÿAVF S' wave amplitudeÿ sq_stringþÿÿÿAVF P wave amplitudeÿ sq_stringþÿÿÿAVF T wave amplitudeÿ sq_stringþÿÿÿAVF QRSAÿ sq_stringþÿÿÿ AVF QRSTAÿ sq_stringþÿÿÿV1 JJ wave amplitudeÿ sq_stringþÿÿÿV1 Q wave amplitudeÿ sq_stringþÿÿÿV1 R wave amplitudeÿ sq_stringþÿÿÿV1 S wave amplitudeÿ sq_stringþÿÿÿV1 R' wave amplitudeÿ sq_stringþÿÿÿV1 S' wave amplitudeÿ sq_stringþÿÿÿV1 P wave amplitudeÿ sq_stringþÿÿÿV1 T wave amplitudeÿ sq_stringþÿÿÿV1 QRSAÿ sq_stringþÿÿÿV1 QRSTAÿ sq_stringþÿÿÿV2 JJ wave amplitudeÿ sq_stringþÿÿÿV2 Q wave amplitudeÿ sq_stringþÿÿÿV2 R wave amplitudeÿ sq_stringþÿÿÿV2 S wave amplitudeÿ sq_stringþÿÿÿV2 R' wave amplitudeÿ sq_stringþÿÿÿV2 S' wave amplitudeÿ sq_stringþÿÿÿV2 P wave amplitudeÿ sq_stringþÿÿÿV2 T wave amplitudeÿ sq_stringþÿÿÿV2 QRSAÿ sq_stringþÿÿÿV2 QRSTAÿ sq_stringþÿÿÿV3 JJ wave amplitudeÿ sq_stringþÿÿÿV3 Q wave amplitudeÿ sq_stringþÿÿÿV3 R wave amplitudeÿ sq_stringþÿÿÿV3 S wave amplitudeÿ sq_stringþÿÿÿV3 R' wave amplitudeÿ sq_stringþÿÿÿV3 S' wave amplitudeÿ sq_stringþÿÿÿV3 P wave amplitudeÿ sq_stringþÿÿÿV3 T wave amplitudeÿ sq_stringþÿÿÿV3 QRSAÿ sq_stringþÿÿÿV3 QRSTAÿ sq_stringþÿÿÿV4 JJ wave amplitudeÿ sq_stringþÿÿÿV4 Q wave amplitudeÿ sq_stringþÿÿÿV4 R wave amplitudeÿ sq_stringþÿÿÿV4 S wave amplitudeÿ sq_stringþÿÿÿV4 R' wave amplitudeÿ sq_stringþÿÿÿV4 S' wave amplitudeÿ sq_stringþÿÿÿV4 P wave amplitudeÿ sq_stringþÿÿÿV4 T wave amplitudeÿ sq_stringþÿÿÿV4 QRSAÿ sq_stringþÿÿÿV4 QRSTAÿ sq_stringþÿÿÿV5 JJ wave amplitudeÿ sq_stringþÿÿÿV5 Q wave amplitudeÿ sq_stringþÿÿÿV5 R wave amplitudeÿ sq_stringþÿÿÿV5 S wave amplitudeÿ sq_stringþÿÿÿV5 R' wave amplitudeÿ sq_stringþÿÿÿV5 S' wave amplitudeÿ sq_stringþÿÿÿV5 P wave amplitudeÿ sq_stringþÿÿÿV5 T wave amplitudeÿ sq_stringþÿÿÿV5 QRSAÿ sq_stringþÿÿÿV5 QRSTAÿ sq_stringþÿÿÿV6 JJ wave amplitudeÿ sq_stringþÿÿÿV6 Q wave amplitudeÿ sq_stringþÿÿÿV6 R wave amplitudeÿ sq_stringþÿÿÿV6 S wave amplitudeÿ sq_stringþÿÿÿV6 R' wave amplitudeÿ sq_stringþÿÿÿV6 S' wave amplitudeÿ sq_stringþÿÿÿV6 P wave amplitudeÿ sq_stringþÿÿÿV6 T wave amplitudeÿ sq_stringþÿÿÿV6 QRSAÿ sq_stringþÿÿÿV6 QRSTAXÿmatrixþÿÿÿÄÀR@L@K@€K@ÀR@*@D@€H@F@I@O@€F@K@>@F@€G@€G@G@@R@€L@<@€F@B@€L@D@F@A@?@L@€I@€J@M@I@J@@Q@F@I@€A@O@€F@€E@D@>@A@D@ÀR@@Q@>@€D@A@ÀR@<@€C@8@J@R@C@E@G@@@ð?€A@B@;@H@F@K@:@€F@P@€B@€B@?@G@€A@A@€F@€B@L@ÀQ@€B@€L@ÀS@€I@€O@ÀR@3@D@Q@@R@J@P@€O@O@9@€K@€@@€B@J@B@€I@€C@3@;@B@€O@G@€L@1@I@ÀQ@€E@€@@"@=@€C@€R@<@8@M@@Q@I@R@ÀQ@€B@9@M@€N@€J@G@L@H@€C@G@€D@D@€G@€G@€A@€I@€A@ð?€H@?@A@B@2@A@€C@1@H@@@B@A@;@€F@€F@N@€M@G@E@E@K@8@D@9@Q@3@@R@D@F@I@@@L@€K@K@P@;@€P@L@€O@2@F@€L@@P@€N@€G@O@6@€P@€H@N@@P@B@F@;@5@G@*@M@€Q@P@I@€A@€@@G@€J@O@E@€G@&@2@€O@€J@€H@>@1@€P@I@@S@€G@E@L@ÀT@E@ÀP@€B@€E@B@€H@R@T@6@€L@G@€F@€E@B@L@C@€E@O@G@€H@R@N@H@J@F@G@.@M@G@€M@€P@Q@€J@€F@H@F@€@@€A@€C@C@A@€A@M@I@€E@I@R@H@€N@€O@€N@P@@@M@H@?@€D@€H@€L@€A@@R@@P@€@@€A@€L@I@N@€F@D@€K@F@€@@€M@@(@€I@€M@€O@€R@ÀP@?@,@€B@€J@O@D@€D@T@@Q@€Q@P@€L@J@€K@€B@@:@€M@K@C@H@M@ÀP@P@€M@€M@@P@E@€B@3@€G@?@€@@€C@E@K@F@H@R@B@@@4@@T@A@O@P@€J@H@:@€F@€G@€G@L@D@K@O@D@€G@€L@C@G@€E@€M@P@>@Q@G@H@R@.@€Q@ÀP@K@ÀP@ @€P@€L@B@€G@€A@ÀR@€S@€J@F@€Q@€P@B@€I@0@€M@€N@€F@>@€G@ÀQ@€K@"@€P@@O@5@S@9@M@€P@€L@P@€D@€J@ÀP@>@;@@P@I@;@M@€O@=@€I@@B@€A@M@P@ @&@€G@&@€Q@4@€C@@@€A@€B@€H@€B@€B@@P@€D@=@€F@4@€J@€B@B@@@€S@ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?Àg@ d@€e@àe@Àg@ e@d@@d@e@àd@@e@ d@€e@@e@d@Àb@`e@Àc@ d@Àd@d@ e@ c@ d@ c@ e@@e@d@€d@d@àe@`d@d@`c@f@d@€e@€d@`d@àe@ c@d@d@ d@d@€c@d@Àc@àc@àc@€c@€c@€e@`d@ d@d@d@e@ d@d@€[@d@Àc@@d@`c@`c@d@d@Àb@€c@`c@Àf@ d@`d@Àc@ d@ f@`e@ d@€c@€c@ f@Àb@ d@d@àc@ d@@d@ d@Àc@`c@`c@`d@ d@e@ g@Àb@ c@`c@d@€c@`c@ c@@e@d@àe@ d@ c@@e@g@@d@f@`d@€`@€e@d@€e@àc@@d@@e@@c@€d@@e@@e@àc@@d@@g@ g@`c@`d@ d@ d@ c@ f@`c@€e@e@@d@@d@d@@e@`ˆ@Àd@Àb@àe@e@àe@`c@d@d@€c@ e@€e@àd@ d@ e@@d@d@ d@ c@@e@d@@e@f@ d@@d@e@€c@d@d@@f@e@`d@e@€c@d@d@`c@àd@@d@€c@àe@`f@àe@`c@@e@`d@@e@ d@€c@Àd@d@€f@€e@ e@`c@Àd@e@ `@`c@d@d@àc@d@e@@d@@f@f@ c@f@_@€f@Àe@ e@d@d@€c@d@@e@ d@ d@@f@ e@d@ d@`e@e@€e@@e@@e@`e@ e@`d@€d@ d@ e@f@ b@@e@ d@d@`c@ f@Àd@ d@`c@ c@ c@d@ d@@e@àe@@e@d@d@€d@ d@@e@@f@@e@ d@d@d@@e@Àb@`c@d@Àe@`d@d@d@Àc@`e@d@@c@€c@ c@Àb@d@e@àe@@e@àe@ d@ d@àe@d@`c@àe@`d@Àc@@e@@f@ e@d@d@d@@`@ d@@e@ d@€d@@e@f@d@àe@àe@`e@@e@f@€f@d@d@ d@àd@@e@ƒ@Àe@@e@@e@@Z@€f@ d@€d@@e@@e@Àd@e@€c@`c@ d@`e@€g@àe@ d@d@ d@ d@d@€e@@e@ c@@d@ d@`e@Àc@@g@ d@ d@@f@ e@€c@d@@e@ e@àe@àe@@e@Àb@d@ c@@e@`d@@e@€e@@f@ d@d@@e@ f@@b@ d@Àf@@c@`d@d@`d@d@d@^@e@ d@ g@ e@ d@@d@c@€c@@e@@f@d@f@ d@d@Àe@€c@Àc@d@àe@ d@d@^@`c@À_@ d@€c@Àb@d@€b@d@€e@d@@e@d@ d@àd@àd@€e@`d@d@d@àd@@d@@g@À]@`e@d@d@d@@`@@a@Àd@€a@àd@@f@€d@€d@`c@àe@e@f@d@d@@c@Àd@àe@ c@d@Àg@Àd@`c@d@T@P@ÀW@€W@T@€I@J@K@L@ÀP@R@€U@M@@R@V@H@€M@M@€O@R@M@ÀP@ÀR@€M@€K@T@@R@K@@P@ÀT@@U@Q@@R@€Q@ÀR@€F@T@€W@N@T@ÀQ@ÀR@O@€N@€I@€K@ÀQ@€L@€K@Q@€J@J@S@€J@T@€Q@€O@ÀS@€P@M@$@€I@M@€J@€K@@P@€O@@P@ÀQ@€T@N@€V@@R@Y@N@@P@R@@U@@R@L@J@Q@N@S@T@€M@I@@P@€Q@R@Z@V@O@€Q@€K@@Z@€K@O@Z@€Q@N@€M@D@€P@@P@T@€K@€N@€N@X@R@€V@ÀR@€@@@Q@€F@€R@L@ÀR@ÀR@€M@ÀR@€R@J@L@€S@2@ÀW@€O@€U@K@€Q@L@€V@L@N@P@€R@Q@T@T@@@R@P@N@ÀR@N@K@O@K@O@ÀR@€V@N@€I@@R@€N@ÀT@€Q@€Q@T@Q@€S@R@€J@H@€M@€G@T@€Q@@V@T@@P@S@€S@P@ÀP@€K@€Q@P@€Q@€P@@U@T@Q@€S@€K@@U@J@T@O@€N@ÀS@@T@ÀQ@€F@Q@N@>@N@€V@T@€Q@€I@@Z@@P@U@@R@@P@ÀW@9@€O@ÀS@f@T@@P@D@N@T@@S@ÀP@ÀR@U@€K@K@ÀP@€T@€V@@U@ÀS@€R@@U@I@P@ÀT@€Q@R@H@T@€X@K@€S@@U@ÀU@Q@@P@ÀW@€K@P@N@€J@€S@T@Q@_@€J@P@€R@T@ÀR@@U@ÀP@€R@ÀW@€F@€K@O@€V@@U@€Z@€Q@J@€Q@€O@€O@@R@M@€S@€N@T@@X@T@@T@ÀW@M@@P@@Q@M@€Q@M@ÀR@€R@S@ÀR@@P@P@R@>@€G@€T@@P@K@ÀP@T@€K@€M@ÀQ@ÀS@€[@€R@V@€Q@N@€Q@R@@P@$@€T@R@€V@(@@X@€W@ÀT@@Q@€R@€Q@@P@S@R@€R@@U@ÀV@V@@P@@P@L@M@€Q@ÀT@€Q@N@U@P@S@€O@€P@N@N@@V@€O@@P@H@€E@T@€T@€W@€T@H@€Q@@P@Q@T@€P@€N@€U@T@J@€Q@€S@O@@S@@S@€K@C@U@€S@ÀP@Q@<@€T@€R@ÀW@T@€M@€R@G@€Q@U@T@€J@@P@@U@N@€R@@S@@P@J@€W@€T@€Q@9@O@6@€Q@F@K@L@@P@€Q@€R@N@ÀP@N@€J@@S@H@€P@@P@E@€V@Q@€L@ÀW@5@@W@€J@@P@€O@8@=@L@E@N@@P@O@€L@€O@€T@€P@R@I@I@ÀR@€O@ÀR@€L@€Q@@U@Q@€K@€Q@ÀV@@T@@a@Y@V@Y@@S@€S@U@@V@€Y@@S@€S@ÀV@@S@ÀR@€T@€Q@ÀV@€T@ÀT@€V@ÀQ@ÀR@€T@@[@€W@ÀW@€V@X@@U@ÀQ@ÀR@€S@€T@@Q@ÀY@@U@T@€W@T@ÀS@W@U@€U@@R@ÀR@@R@€S@T@@T@ÀT@ÀY@W@V@@S@ÀS@€V@ÀV@ÀT@T@€S@S@€T@@T@T@€T@ÀQ@@R@ÀU@S@@Y@@W@€V@ÀU@V@€W@€W@€V@€S@ÀT@W@@W@Y@ÀT@`d@X@€\@@e@ a@U@€T@ÀS@R@@X@ÀU@€Y@@U@U@€S@ÀS@ÀV@€X@€U@R@@X@€T@€S@@X@€W@€T@€S@ÀS@ÀU@@W@ÀR@€Z@X@V@€V@€R@@U@€V@ÀQ@ÀR@@S@ÀU@ÀW@€R@ÀX@@V@ÀT@€S@Y@T@ÀU@ÀS@€Y@T@@U@@T@@U@ÀW@€T@@X@W@€Y@€U@T@@U@@U@À[@@V@€O@€Q@W@ÀR@@W@ÀT@U@ÀV@@T@@\@W@@T@€R@€S@T@€T@ÀW@€Z@ÀW@Y@€V@V@ÀQ@€S@@S@ÀU@ÀS@@U@ÀV@W@€X@Q@U@W@€[@[@ c@@R@@T@ÀU@ÀU@ÀW@@R@ÀW@Y@X@@X@S@O@€U@ÀQ@ÀX@Q@€V@@b@€U@T@€V@@W@ÀV@À[@@V@ÀS@@S@@R@W@€X@€S@ÀU@€X@U@€T@€V@@U@ÀQ@U@@U@@S@@W@€R@@V@@V@ÀY@@U@V@@T@U@X@€V@€X@€S@@W@T@@U@ÀP@€R@@Q@@Z@ÀW@ÀU@[@ÀX@ÀS@€U@€T@ÀV@@W@T@U@€V@@T@€V@€S@€X@@T@€V@@U@ÀS@€N@€V@ÀS@ÀT@U@€S@€U@R@ÀU@ÀV@€Y@T@€T@Z@@U@ÀT@@T@€W@U@ÀV@ÀX@@Y@€`@ÀS@ÀY@@X@``@ÀV@€V@@^@€S@U@@X@€W@X@ÀV@T@@X@W@€V@€V@À^@@Z@@U@@S@ÀT@W@@U@X@@Q@V@U@ÀZ@ÀV@€R@@V@@[@T@ÀT@W@Y@@\@@Z@ÀX@U@€R@S@ÀU@ÀU@X@V@T@@U@€V@€R@ÀW@€U@€R@ÀW@€R@@R@Z@W@@Z@@X@@Y@ÀT@U@€X@@T@@W@U@€Y@€W@ÀV@Y@W@€W@€X@@b@U@@S@€T@U@S@€Z@€Q@ÀU@€]@€U@€T@X@@V@@W@€T@@X@€U@€g@@W@R@ÀZ@@T@S@ÀT@`b@€T@€[@[@€T@@W@ÀW@T@ g@@R@€S@ÀQ@€U@@U@S@@W@ÀU@X@€U@€S@ÀU@T@€X@ÀR@€S@€T@€W@ÀT@€W@€a@ÀU@€K@ `@ÀT@@S@À^@ÀS@V@T@V@ÀS@@S@ÀU@V@€W@V@€R@@U@V@@T@ÀV@@T@T@Y@[@@W@ÀS@ h@Àe@`d@@i@ f@àd@ `@€]@@`@à`@àa@`c@€f@Àc@€`@ b@^@@c@ f@`o@€^@€`@ c@€a@`@@g@ d@€d@`b@ c@a@@_@ a@ b@@f@Àa@i@ g@`d@@d@@c@@c@c@ f@àc@€c@ a@€l@à`@€f@à`@`b@ c@@i@Àa@ b@f@€^@@^@`b@a@e@@]@Àc@Àb@@c@`e@Àd@`r@ e@`c@@a@àc@€d@€b@`b@`h@`b@àc@@f@ b@€f@`b@àb@àg@h@€d@ k@@h@d@ e@ `@@r@àa@ b@€g@€]@ b@`e@f@`h@Àa@`b@€`@d@`r@`i@@e@àc@ `@`d@ d@ c@Àb@ c@àc@Àa@€f@Àc@@d@ a@Àd@ h@ d@`d@@`@@b@`c@0p@À`@@b@c@€_@€c@àd@à`@ d@ c@`h@àd@@h@à`@À_@À^@ a@f@`e@€d@€d@Àa@_@€^@@^@@h@ c@`g@`b@k@ c@d@À\@àc@ a@a@`d@àf@àc@ b@ c@€b@@d@ i@ c@€e@ d@`a@n@ c@i@@f@`g@ c@g@€c@€`@àg@ a@ b@`a@€c@àg@ g@f@`@`g@d@e@_@a@àe@f@@a@@[@e@ d@d@àb@Àd@e@``@€Z@@f@@\@a@ e@@g@ c@g@ h@Àf@`a@`@€e@àf@ `@`c@€f@`c@Àd@@e@@d@a@ f@€e@ f@ f@b@ f@ c@ `@ c@ b@ b@Àb@€f@@c@@e@ c@`d@l@`d@ b@`c@€c@ e@à`@ c@Àc@@Z@ e@àb@c@t@Àe@ a@Àc@`d@Àe@`b@€i@€h@Àh@€b@`d@ `@ d@Àe@g@€b@ b@ a@€d@ d@g@@e@ b@ b@ d@`c@€a@àe@b@_@ a@ g@ e@k@ i@ h@@f@@c@d@€_@c@Àh@@f@`c@ h@c@Àf@€d@d@Àc@àe@ c@ j@Àc@`a@ j@c@€`@Àb@àh@@`@d@``@@c@@b@@c@e@€c@g@À^@àg@@f@ f@d@ÀY@Àh@€h@àe@àf@d@ e@Àe@àb@€_@ f@ d@€c@€g@`@@d@€\@i@ e@€h@€a@à`@ d@ e@Àf@Àc@€_@€d@ i@àc@Àa@g@f@@^@ a@@_@€]@€d@€b@Àc@`€@€d@`b@€^@@c@ e@Àf@`c@€]@€g@€i@ f@àb@@g@@d@€a@d@ c@``@àg@ `@€f@€d@c@àh@àb@ c@àe@€d@`i@ c@Àb@`d@€b@@_@ b@ b@À^@ b@`c@`c@b@Àa@@b@@e@ c@àa@àa@ c@àa@À`@àb@àh@ a@f@€Z@À_@0w@y@ x@Àw@€v@t@w@€w@ v@ðw@y@Pw@àw@0v@ðx@àu@°u@v@€x@ðx@ðw@u@Àv@`y@@x@àw@Pw@py@@z@y@€y@0u@v@w@Pv@Pv@àv@x@ v@y@ðw@àu@ u@ðw@ðv@àu@ t@w@Ðz@°w@ x@pv@@v@ w@w@€x@€w@Àv@@w@ x@ðq@@t@Pw@`w@àw@°v@ y@àu@€y@Àw@x@@v@v@ z@ðw@0w@ðz@w@@x@°t@ t@Ðu@v@pv@Ðw@ðz@Pw@ðw@0z@x@@z@`u@0w@€t@ u@`y@Àv@Ðx@ |@ n@w@0x@pu@ày@0w@ w@ðy@w@v@€v@àv@w@Àv@ðt@`x@ z@°y@@u@v@àw@Àw@0u@ x@Pt@0u@ w@@w@@u@ x@x@°u@ z@àu@Àw@ v@v@àx@Pv@Àv@0v@u@ m@ðw@ v@0u@0x@°w@w@pw@0t@x@°u@Pv@Àx@Ðy@ w@Pv@ðw@x@ðw@ w@u@ày@u@°u@w@@v@`u@°u@°t@Àw@`v@w@ w@Àw@y@ðu@u@ x@ p@ðy@Àv@p{@s@°u@@u@ðv@ z@`y@Pz@Ðu@ v@€x@°u@ x@Àt@w@Ðy@@v@`x@Àx@€w@`s@ðv@Ðu@px@0v@`{@`w@w@Ðu@t@ y@0u@t@€v@}@Àv@t@pv@`u@@v@@w@`v@€w@ðu@°w@@v@°v@w@ t@`v@ w@y@Ày@àu@ðt@Px@v@@v@v@r@py@ t@v@w@w@s@ t@`t@ v@€w@ u@@x@t@Àv@@s@Pw@°t@Àu@Àu@@t@Px@u@ v@àt@`v@ v@Pv@ðw@w@Ðx@Àw@pz@v@pw@0w@ v@€v@ w@ y@àu@Àv@ðx@@w@Pw@Ðw@ x@àw@ w@0x@Ðw@0v@`x@àu@0w@°v@w@pv@àw@t@x@À{@Pv@ {@@u@ t@°v@`r@ v@Pu@@y@€{@t@v@pv@m@0v@ u@àu@n@@y@Àx@pv@Pv@Ðw@0v@`w@pw@€u@@x@@x@`v@ v@ðw@°w@x@Ðt@Pv@Ðu@€t@Àw@ v@ x@Àv@0x@ w@pv@àr@w@`w@pv@pv@°v@pt@Ðt@u@Ðt@ z@ r@@|@àw@ v@Ðz@y@0w@u@pv@Py@Pw@|@w@Pt@Ðw@@u@Ðx@Ðv@0u@ x@ðr@ x@Pr@ t@w@ðv@Pv@àw@Ðr@ |@ p@°w@py@Pv@t@w@Ð@u@ z@Pu@w@0x@°u@ z@Àq@Ðw@°v@@x@€w@ðz@w@€w@Àx@w@ u@Àu@ v@pu@0u@ v@`w@Àq@p{@pv@ðv@`{@ v@@u@z@Àv@`v@v@Ðw@ v@ r@€v@ðv@@u@px@Pv@ðw@Px@`w@°v@x@Pt@€w@°v@àw@v@Ðv@ x@Àv@Àe@ b@ g@`f@ f@Àe@ `@ c@d@€c@€c@Àb@`d@ c@`d@ e@ e@€^@àe@Àc@ g@ f@ e@àa@ b@`h@l@e@Ðw@Ðr@€e@c@àf@€b@ `@ a@ d@Àe@Àd@àc@ a@d@Àc@b@`b@@a@€e@àa@@`@ b@ a@ e@@d@Àa@@\@d@ d@àe@ d@Àe@€c@`c@c@àd@ j@Àa@ a@ d@àb@c@€e@€d@€d@@d@@f@àd@Àc@Àa@@f@€b@ `@f@€`@ b@ b@@n@`b@Àk@€p@€n@ k@@a@`e@à`@`m@h@e@f@ h@c@€e@@]@€`@Àf@ a@@e@[@h@ a@`i@€b@àd@àd@àd@ a@`c@ d@c@€c@e@@c@ c@Àe@à`@ a@Ài@Àb@`a@Àb@Àb@àe@À`@`b@`f@€c@d@€e@à`@À`@àb@c@Àb@`d@€c@`d@àe@àd@ c@ c@àa@€e@`m@€e@`a@Àc@€f@àa@€a@ e@ f@ e@``@ h@ d@@c@]@€d@`n@€d@ a@`b@Àd@c@b@@a@`a@c@b@Àd@Àh@€e@àg@àd@@`@€d@àl@€^@Àh@@k@ o@@c@À_@ a@ài@ b@Àg@`e@`b@`e@ e@`c@a@€k@e@ n@`b@Àb@°q@àd@g@ j@€e@Àh@i@`d@€a@`b@b@€h@ b@@_@@i@ d@Àd@Àb@`p@Àf@``@g@àb@€a@ b@`d@@^@Àh@ o@€c@b@@c@àc@@e@ j@ f@€^@`a@l@@o@ a@ d@ d@àa@@i@`o@Àh@€e@€e@Àj@ p@àc@ l@a@@f@Àd@@c@ c@@`@@c@ h@àb@`d@€c@àe@Àc@@a@Àa@@b@c@@]@`c@ d@Ào@e@ e@@d@àc@`b@@_@ c@`b@àa@€g@Àg@`i@àc@ p@€`@`o@k@c@k@d@àa@Àf@@e@À_@ l@`g@à`@g@ d@ i@ c@àf@ b@c@ a@`@€d@@a@ e@ `@€g@a@ n@€e@Àa@b@@k@€f@r@`d@Àf@€k@ f@g@@r@Àa@d@@f@Àb@@e@Àc@`e@€b@@e@ e@ d@@b@À_@€c@@a@o@ c@àb@@k@`e@ l@ l@ d@`d@d@ p@ a@`d@ b@@d@c@ n@ m@€c@q@@b@`m@`e@àn@`d@€h@àa@c@€d@`n@`g@àc@`c@ e@Àa@l@ c@Pp@`c@d@Àf@€b@ a@À[@pt@Àe@@c@e@c@àe@€c@@f@À^@@e@@c@@e@g@`f@ c@ào@ e@@i@àc@€_@e@€d@ b@ a@ d@€h@`a@@c@`e@@l@ f@@d@@p@^@àc@ k@ e@€l@`@`d@ c@€b@ a@`f@c@€e@@b@@b@€`@@k@d@Àd@@c@ i@@h@@k@@a@@^@€C@€Y@àa@ÀY@ÀV@@S@€Q@€O@@R@ÀT@@P@@T@Z@€W@@P@€N@J@ÀT@ÀS@àf@€S@€T@W@€T@N@@_@ÀT@ÀX@€T@ÀV@S@€O@ÀT@@Y@T@€W@€R@ÀZ@€Z@U@€W@X@ÀQ@@\@ÀX@@Z@@S@€W@@X@€Z@T@T@Q@@X@V@ÀS@ÀS@K@ÀP@ÀR@T@€S@€O@R@ÀU@@T@@T@€Y@Y@àa@[@€]@Q@W@@T@@T@W@€Y@X@@]@T@ÀW@Q@@X@€Y@€X@]@@Z@@]@€_@Y@@U@X@àe@€T@V@@V@Q@ÀT@@W@b@T@ÀV@@W@@U@@V@@f@€Y@@X@@P@N@€V@X@€V@X@€\@X@@V@Y@ÀY@X@U@X@€`@@X@@\@€Q@ÀT@Z@ÀW@M@@V@ÀV@ÀT@]@À_@ÀS@€Z@W@€Y@€S@ÀT@@R@€S@ÀP@ÀU@Z@€W@ÀP@U@€I@O@R@€U@@X@€U@€R@X@@e@S@@T@ÀP@ÀT@W@€T@@W@€W@X@@Y@V@@W@@X@ b@ÀV@@W@€T@ÀU@À^@€S@À[@€X@€Y@€W@€\@Q@P@ÀX@ÀV@ÀS@@W@@X@@V@@W@ a@ÀP@@^@Z@U@Q@@T@€\@[@ÀU@€N@@W@€X@@Y@€U@Y@@Y@@S@€L@ÀX@M@ÀU@€U@@\@€T@X@@]@@Z@€T@S@Z@€R@ÀQ@Y@[@ÀR@@[@€Z@Y@@U@U@ÀY@^@€X@T@Y@K@ÀS@€V@€T@W@X@@U@ÀW@€Z@ÀU@ÀU@€^@Z@ÀX@Y@@Z@Y@€Q@[@€\@€Q@€Y@P@@X@`c@R@ÀS@X@Z@ÀT@ÀS@T@R@àa@À[@€]@@Y@@]@àa@ÀT@@V@Y@@R@@X@W@À\@ÀY@ÀV@€Y@€T@Y@V@€S@E@Y@€P@ÀU@ÀZ@ÀT@€U@À[@À[@R@@Q@Y@N@@T@@W@€\@P@ÀX@Y@À_@€S@ÀU@€Z@@Z@€Z@@Z@Z@ÀV@ÀZ@€]@T@@U@Y@ÀQ@@V@@S@€\@€S@@U@€U@€U@@Z@@T@@Z@@]@Z@À\@€B@@P@€i@À\@`a@€]@U@P@€U@]@Y@R@€U@@X@Q@€X@@Q@ÀW@@P@]@€S@Z@R@@T@[@€T@€[@À\@T@À[@À\@€Y@ÀV@€V@À[@€K@ÀS@ÀR@€T@ÀU@€U@@[@ i@@U@Q@€O@€W@ÀX@ÀZ@ÀY@€P@Z@R@@W@ÀU@Z@€Z@€W@ÀR@Y@S@[@€T@\@@V@X@ f@@W@@U@Y@@Q@€Z@@T@X@€Y@W@€V@€Q@T@@Y@@T@@W@ÀQ@ÀW@€T@V@R@À\@@V@ÀR@U@\@€R@ÀT@T@@]@@R@]@€O@€S@0À9@X@<@0ÀÀZ@@S@ÀP@€N@@U@R@(@8ÀQ@G@B@@S@€L@@R@(ÀI@@T@O@@J@AÀ€V@$@ À€BÀJÀ*@C@"@€H@O@K@H@À€LÀ€J@ÀP@K@€M@2À2À2@>@€O@,Àð?A@&@P@M@>@A@&ÀE@@T@€_@D@€R@€P@ÀR@L@9@€P@P@BÀA@€@@€O@8À€N@V@]@>@V@O@N@Q@F@€KÀ€T@L@Q@P@O@,@;@À"@*À aÀ3@€@@8@6@:@$À@R@ e@€E@L@Àð¿€B@€V@:@(À€D@M@€S@O@(@€K@0À5ÀJ@.@2@GÀ:@N@L@ð¿€C@=@ÀU@H@€P@€T@€M@@T@M@€K@N@B@ÀQ@V@2À€N@@ÀÀV@7@N@R@€S@8@IÀ€H@€Q@9@I@€W@D@,À@P@ð¿I@&@ÀP@L@€IÀÀ€I@&@ÀIÀ<@=@ÀS@ÀR@€P@&ÀÀT@4@4@€E@@ÀDÀS@O@8@4ÀMÀS@6À€G@A@@R@ÀV@(À€Y@€@@ð¿@ÀF@€W@@T@.À0@€P@@R@T@À[@0@€U@€A@@€J@;@K@ÀS@9@9ÀR@€A@S@O@N@,@@@P@€@@1@€P@O@€S@ð?S@€Q@7@D@€R@@4@€Q@€K@$À€M@;@3À5ÀCÀÀ€OÀBÀHÀ€G@ @ÀU@N@B@À$ÀA@ÀQ@€K@€G@@U@?À=À6@@S@@Q@L@€L@3@&@"@@P@D@€P@À€CÀ @3À:À€HÀ@Q@@R@G@0ÀI@F@FÀM@ÀP@ð¿`c@ @"@€P@ð¿;ÀHÀ€N@T@€G@ð?€C@ÀT@@@5@<@ÀdÀ*@Q@@_@E@R@.@@W@À]@@NÀD@@LÀ8@@Q@ð¿€N@ÀV@J@,@4@€[@P@€P@<@@U@I@€C@?@@Q@€R@M@&À\@@"@€@@H@@ÀOÀÀU@JÀ€J@ @€H@€J@H@"@O@$À*@AÀ€R@S@€K@ @€C@G@ð?@@$À@RÀ&@M@^@ `@W@J@@€T@F@ÀU@J@(À?ÀF@ÀS@P@@T@ÀU@?@C@€Y@€HÀ€@@€F@U@3@€eÀ€A@U@€J@9@ÀQ@€@@ÀO@€R@€R@ÀQ@@S@À€E@7@L@9@P@ÀDÀF@D@ÀcÀ=@ÀU@\@J@2ÀÀPÀ6ÀI@;@€P@ð?W@ÀP@Q@DÀ@P@8@ÀV@€E@€BÀ€U@@UÀK@<@*@€B@A@&@*@€P@€H@@@Q@A@ÀQ@€B@E@€I@4@€F@ÀR@€H@8À<@€C@€S@L@$@1@\@J@H@ c@€e@0@4@@@L@G@7@*@€A@@ À$@ÀH@J@@N@ @2ÀS@G@P@A@"@€F@ÀS@€@@,@>@8À€J@9@7@P@O@G@$@øÿ€F@€E@J@?@3@€F@3@I@Q@€dÀLÀQ@.@ÀJ@G@ÀU@ÀS@aÀàe@.@_ÀÀa@*Àøÿ$@"ÀJ@M@1@€G@À dÀ ÀN@@R@J@5@C@€Q@5@WÀàa@*@E@O@H@1@6@7@3@*@R@€L@€D@€L@@P@M@B@€O@N@€K@F@@S@F@8@@@G@€K@€J@@T@€@@B@€D@>@€I@4@J@(@C@$@E@=@@Q@2@6@$@D@9@ @$@€@@K@€E@ð¿P@€G@€L@€L@J@H@D@Z@@S@I@Q@€P@@R@,@3@3@9@àdÀ.ÀÀP@[@ÀRÀd@€\@6À^@À\À`b@C@7@L@€TÀ0@€H@L@,@€OÀ€A@øÿJ@€eÀA@€Y@€L@€B@`f@1@€U@ÀU@R@øÿJÀ€HÀB@Àe@;ÀÀW@À^ÀP@&@C@€N@@P@H@*@,@ @N@E@ a@N@€\@€O@€d@€H@Àa@øÿ@J@ fÀ@ÀYÀF@€ZÀ€G@ÀP@€P@<@€H@EÀ@]@À_@ÀR@B@dÀ€^@€M@€S@ @E@1@K@€@@>@€@@À(@9@€H@M@ÀQ@€J@0À,@2@€@@E@<@€U@5@(@:@€D@Y@8@I@ ÀÀR@ÀQ@H@5À@^À(@ÀeÀB@,@D@€IÀ"@4@@Z@]ÀB@À&@À]À€O@€@@*À@S@@9@€O@5@€F@ÀV@U@ÀW@0@ `@`dÀ€P@3@@R@ÀZ@€HÀ c@@E@€C@@ÀS@A@&@L@L@€P@@S@ÀC@€F@€D@B@2@J@.@O@P@€`À@\@€C@ b@ÀU@ÀX@@_@@P@bÀøÿX@E@@R@?@&@@d@€J@@T@1À`f@€C@øÿ@S@K@V@[@€D@€I@1@€_@SÀ7À.ÀJ@ÀÀU@"@ f@Àb@R@M@$@€D@ÀY@À\À€G@€J@ÀU@.@B@€D@€\@8@€D@ÀQ@ÀT@6@ `@À€I@ÀøÿB@ÀP@:ÀQÀa@€@@€N@€`ÀK@€L@€U@8@€A@*@Y@€K@1À€G@J@À[@2@B@€K@H@ b@ÀH@,@$ÀF@;@Q@E@@€P@3À=@ÀS@P@1À€Q@À€N@J@ÀR@ @€S@€Q@Q@€H@€D@N@€F@Q@@S@À€N@I@G@ÀP@€F@M@@Z@@c@N@€C@€D@ÀK@€N@@R@€J@ÀQ@€K@B@.@D@€Q@€C@@P@P@€N@N@€L@€Q@B@@S@N@€O@€K@€K@O@øÿB@€K@€N@€P@øÿN@@P@€Q@Q@,ÀO@O@.@€D@N@G@A@ÀP@?@€I@N@€B@H@ÀR@€R@€O@N@€P@L@€L@ÀR@R@N@^@2@€D@P@L@>@€S@2@G@€L@@€E@@Q@€J@M@P@@P@@@øÿI@øÿB@€F@€G@€K@À0@J@øÿ1@Q@O@N@€P@€J@ÀZ@@R@=@€C@P@J@J@N@D@@R@øÿÀQ@€R@6@€G@ÀT@€O@I@>@C@L@N@"À€N@L@@@€S@O@M@B@P@€L@ @L@€O@E@€E@M@G@€M@H@€N@N@À@Q@€G@I@€D@ÀS@@Q@;@øÿ&ÀÀP@øÿF@I@N@€O@"@€K@€E@I@@R@E@K@0@ÀS@E@øÿL@€N@@Q@€L@Q@@PÀ>@@1@€D@øÿ@P@N@€KÀB@€N@L@ÀR@@@S@O@*@ÀP@øÿ€E@øÿN@N@I@€O@M@ÀQ@€K@F@ÀN@€I@€M@€N@@R@€L@€G@@S@ÀQ@L@M@€Q@:@€I@øÿÀV@€R@I@R@H@ÀR@€Q@ÀR@Q@øÿ€P@€N@M@B@K@O@€C@ÀQ@€G@€P@@P@Q@;@€M@€A@A@@eÀ€F@ÀR@@@€I@€J@$À@P@øÿ:@O@€H@A@øÿI@€G@€L@S@€D@€H@Q@M@€E@€N@M@5@€K@øÿ€A@øÿ€F@N@€M@N@L@Q@€D@øÿ@S@øÿ€C@ ÀM@L@@P@IÀL@M@€C@K@€H@L@F@€R@€R@J@Q@J@€P@G@,ÀU@€R@Q@€Q@K@ÀP@€O@K@€Y@€G@€@@ÀQ@P@R@ÀP@€I@I@@øÿNÀ€R@>@€N@€P@€C@@Q@<@E@,@€A@ÀQ@H@>@&@€S@@S@<@Q@ ÀL@€K@J@€E@?@€M@€N@€B@L@R@M@F@€J@F@@WÀ?@9ÀÀP@H@@P@@R@€O@ÀN@>@J@K@E@=@f@€F@G@ÀS@C@€N@;ÀÀP@2@JÀ€J@€R@G@€R@A@€H@€M@øÿ€O@€R@€N@=@H@@Q@€O@N@0@,@N@ÀP@:@€U@R@S@€L@€I@@P@M@€H@K@€F@@@?@R@D@J@€NÀ6ÀJ@À?@€P@4@@V@@P@€I@€P@ÀQ@R@:@*À€O@D@D@ÀR@K@E@ð?€E@T@N@@E@@@S@>@ÀPÀ@À,@€A@5@€G@€J@>@€C@ð¿HÀB@€E@J@€L@(Àð¿,@4@Q@$À;@€@@"@€M@O@?@:@@€@@S@Z@>@Q@O@ÀP@?@€C@€L@M@@@@:@L@ ÀL@€R@`a@(@€T@K@€H@€M@F@:@€T@€O@€T@I@à`À€H@@ð¿"@*ÀI@€I@9@B@@>@ÀÀQ@_@G@€G@@(@<@W@€K@ÀD@O@O@€G@3@E@ð?À€L@;@;@$À€J@L@G@1@H@€C@@T@€G@K@€J@I@@R@L@S@€K@B@€O@J@0@H@F@ @@Q@.@I@I@€R@5@À?@M@9@C@€T@C@0@€K@ð¿M@€A@€O@L@;@F@€B@,@=ÀJ@€C@S@@O@€H@ÀÀN@€H@D@1@EÀ€R@€M@ÀR@&@@ÀÀP@$À3@;@€M@@T@$À€@@@.@5ÀC@X@€R@&@=@K@@T@ÀU@T@0@@Q@ À5@U@ð?ÀT@@U@€H@À€M@€H@€Q@€L@@@*@@@P@B@C@€N@@P@@R@€H@€P@@Y@4@:@@P@øÿ(@€P@€J@€EÀ€K@D@ð?*@<ÀPÀ4À @€C@CÀ€Y@€O@€H@ÀA@:@ÀP@G@F@€P@ ÀÀ9@Q@€O@€P@€K@@(@(@N@€D@€I@,@3À&@ÀÀ&À€M@€O@8@@P@€F@=ÀÀP@€M@2ÀN@$@4@À@À&ÀK@O@<@@6@R@@@(@Q@*À3@ÀP@€Y@E@ÀS@€Q@W@V@2@0À"@€@@€@@EÀ,À@]@€L@ÀS@€@@@P@€@@W@N@€M@?@€T@5@C@A@€J@€L@€E@@Z@4@:@8@@P@(À b@V@=À@P@C@€N@€J@€Q@1@ÀP@ @(@€PÀ@Q@€S@:@7@€C@F@E@G@ÀTÀ7@€K@Q@@_@€T@D@À@Q@@@ÀU@€D@€CÀ@ÀO@Q@€I@@R@ÀV@1À€E@S@3À7@D@P@?@Àd@C@€S@O@8@W@ð¿A@ÀO@N@@R@€K@€G@*@C@H@@T@4@M@@@@Q@B@€B@=ÀD@S@€I@€H@€@@@PÀÀG@€D@€M@@@S@M@€K@<À€K@9@T@E@;ÀÀS@€QÀ€E@€G@øÿøÿ7@øÿøÿøÿøÿøÿU@øÿøÿøÿøÿøÿøÿøÿøÿøÿøÿøÿøÿøÿøÿøÿøÿøÿøÿøÿøÿd@øÿøÿøÿøÿøÿøÿøÿøÿøÿøÿøÿøÿøÿøÿøÿøÿøÿøÿøÿøÿøÿøÿøÿøÿøÿøÿ@WÀøÿøÿøÿøÿøÿøÿøÿøÿøÿøÿøÿøÿøÿøÿ@c@øÿøÿøÿøÿøÿøÿøÿøÿøÿøÿøÿøÿøÿbÀ\Àøÿ@WÀ f@øÿøÿøÿ@VÀøÿøÿøÿøÿøÿàe@øÿøÿøÿøÿøÿøÿøÿøÿÀWÀøÿøÿøÿU@øÿøÿøÿøÿøÿøÿøÿ`dÀøÿøÿøÿøÿøÿøÿøÿøÿøÿøÿøÿøÿ€@ÀøÿøÿøÿøÿB@øÿøÿøÿøÿøÿøÿøÿøÿøÿøÿøÿøÿøÿøÿøÿøÿøÿøÿøÿ2Àøÿøÿøÿøÿøÿøÿøÿøÿøÿøÿøÿ€dÀøÿøÿøÿ[À@^Àøÿøÿøÿøÿøÿøÿøÿøÿøÿøÿøÿ@f@àdÀ d@øÿøÿøÿøÿøÿøÿøÿøÿ€CÀøÿøÿøÿ e@øÿøÿøÿøÿ cÀ€]À@]Àøÿøÿøÿ€LÀøÿøÿøÿ cÀøÿøÿøÿøÿøÿøÿøÿøÿøÿøÿøÿøÿøÿøÿøÿøÿøÿ€d@øÿ€`Àøÿ aÀøÿÀcÀøÿøÿøÿøÿøÿøÿøÿøÿøÿøÿ€`@`a@ e@øÿ`fÀøÿøÿøÿÀbÀøÿøÿøÿøÿøÿøÿøÿøÿøÿøÿøÿøÿøÿøÿøÿøÿøÿøÿøÿøÿøÿøÿøÿøÿ€U@øÿøÿøÿøÿøÿ€_Àøÿøÿøÿ@[Ààb@€@@øÿøÿÀUÀøÿøÿøÿøÿøÿøÿøÿ€^Àøÿøÿøÿøÿøÿøÿøÿøÿøÿøÿ€\@øÿøÿ cÀeÀ€R@øÿøÿøÿÀ]ÀøÿøÿøÿøÿøÿÀV@øÿøÿøÿøÿøÿøÿøÿøÿøÿøÿøÿøÿøÿøÿøÿøÿøÿ€dÀøÿÀ^@øÿb@@\Àøÿ@dÀøÿøÿøÿøÿøÿøÿ a@@ZÀÀdÀøÿ eÀøÿøÿøÿøÿøÿ]@øÿøÿøÿ c@øÿøÿøÿøÿøÿøÿøÿf@`@øÿøÿøÿøÿøÿ€bÀøÿøÿ@^@øÿøÿøÿøÿ*@O@øÿøÿøÿøÿøÿ_ÀøÿøÿøÿøÿøÿøÿøÿøÿøÿøÿøÿøÿøÿÀY@øÿUÀøÿøÿøÿFÀøÿøÿøÿøÿøÿøÿøÿøÿøÿ€VÀøÿøÿøÿøÿøÿøÿøÿøÿU@ÀY@øÿ€O@€J@ÀR@ÀQ@øÿU@€Q@ÀP@P@€O@€Q@R@@R@L@R@S@ÀP@€Q@€P@€P@S@€P@@S@@Q@Q@€O@ÀT@ÀP@ÀS@ÀQ@€I@@T@@W@@Q@T@€O@€Q@O@ÀR@€J@€Q@€T@ÀV@P@ÀS@@V@€X@ÀP@€J@€S@@P@@R@@R@P@€M@€L@€Q@ÀQ@L@€P@Z@W@@P@€Q@ÀP@@R@K@€Q@L@@P@€J@@Q@T@N@€P@N@€O@€Q@@P@€X@€S@€U@€R@@T@I@R@ÀP@S@€O@T@Q@@U@ÀR@ÀY@@W@P@ÀS@@R@€P@R@@R@€O@@Y@@P@€L@@V@€O@R@€U@Q@Q@@U@@S@€S@€L@@P@€N@€U@@W@€Q@@T@T@ÀQ@W@@T@@R@€Q@T@R@S@€O@€N@@T@€O@€Q@M@O@Q@T@@U@ÀR@@a@N@S@@Q@N@O@O@@P@@W@€R@€R@€N@K@M@@P@@S@T@@Q@@R@P@@U@€N@Q@R@N@€U@W@ÀY@@V@€Q@@R@R@ÀR@ÀQ@L@€S@ÀP@€L@ÀR@P@R@ÀS@W@€T@U@@S@€P@@W@P@ÀQ@U@€O@U@@S@€W@€T@€J@X@€R@@V@Q@@T@@R@€Q@N@@Q@P@P@M@ÀV@W@€M@€R@€X@ÀS@@V@@T@€Q@€M@@T@ÀR@€I@U@€P@@T@L@@T@O@R@U@T@N@ÀP@€R@€U@€P@@S@ÀS@V@€S@@V@€O@À\@€N@€X@R@€X@€S@€U@T@S@@X@N@€W@@Q@€W@P@€Y@€U@ÀU@X@R@@W@@R@ÀU@R@ÀU@Q@@R@Q@O@€J@€O@@R@€S@Q@ÀQ@ÀQ@@Q@€T@€R@€S@€K@P@€S@@R@Q@R@S@S@€N@U@€J@€S@@R@R@ÀU@Q@@R@ÀR@@P@F@@W@€P@ÀT@ÀY@I@Y@€U@Q@ÀP@I@@W@€Q@@T@`d@€R@ÀS@@V@_@€M@€P@S@S@ÀP@@R@€O@O@ÀR@@P@€O@€S@U@R@S@ÀR@W@T@@T@@T@ÀQ@€S@M@R@R@€L@S@\@€Q@€O@@P@M@@R@@W@W@@W@R@€J@@Y@ÀU@Q@ÀP@I@L@R@T@ÀR@@T@€P@€N@@Q@@V@€O@X@V@@Q@€S@€N@À^@V@ÀZ@@U@@P@K@@S@ÀR@@]@@S@W@ÀQ@@U@ÀR@@Q@€O@L@ÀU@€P@€U@ÀT@ÀP@€T@€M@€^@@S@@Q@€O@€S@ÀQ@€P@@S@€N@€O@T@@T@Q@@V@€Y@Q@€S@Z@€M@ÀQ@ÀQ@€Q@T@@T@€Q@@P@T@@W@€H@€R@^@ÀQ@@T@@T@O@O@R@€K@@P@Q@O@€S@€Q@ÀR@€O@@R@U@T@ÀR@4@0@4@(@0@4@4@0@4@0@(@0@4@0@4@V@8@8@8@4@8@4@4@R@0@4@0@0@8@0@4@8@8@0@0@0@4@4@4@(@4@8@8@(@<@<@<@4@8@0@8@F@0@4@4@8@4@8@0@8@4@4@4@@@8@4@4@0@4@8@4@<@8@0@4@8@<@0@B@4@4@4@4@4@(@8@0@4@4@F@4@4@4@@@(@4@4@8@B@8@8@0@0@0@0@4@8@0@4@0@0@(@4@0@8@0@4@0@J@H@D@R@H@B@F@F@D@F@B@D@R@W@T@H@H@H@F@L@B@B@F@R@T@T@F@J@R@N@W@T@D@P@F@F@B@J@L@N@J@B@F@Q@R@P@B@R@D@L@R@B@H@N@F@F@S@R@F@B@<@F@D@N@F@N@H@H@N@D@H@H@N@F@Q@B@F@H@H@H@D@N@@@D@€a@L@J@_@^@J@S@F@H@@@B@F@N@L@R@H@F@L@D@J@R@F@F@L@L@B@F@F@D@B@D@B@B@H@J@F@J@S@B@D@F@N@P@Q@B@H@Q@B@D@B@J@F@U@P@H@<@U@H@B@F@D@L@D@D@D@J@D@J@P@J@J@D@a@Q@H@T@Q@H@J@H@B@N@H@N@J@L@L@F@F@N@H@D@H@J@D@V@B@F@J@B@B@B@S@^@P@H@R@H@H@D@F@F@4@Q@F@N@N@J@B@D@F@a@L@D@F@@@H@H@D@F@L@H@<@D@F@F@H@D@B@B@D@N@H@B@J@N@D@J@F@P@B@D@Q@H@F@L@D@F@H@H@Y@H@H@B@F@H@J@P@H@D@J@<@H@N@L@B@D@H@F@D@D@F@D@B@F@D@H@D@F@S@S@J@T@F@N@L@F@R@V@H@L@D@N@P@N@L@H@F@J@H@P@B@U@L@D@L@T@H@H@F@L@R@R@B@P@F@J@@@H@D@4@F@B@B@<@@@Q@L@F@F@J@J@N@B@Q@H@D@H@F@D@F@F@P@D@D@D@J@H@H@D@T@4@J@Q@Q@H@P@B@D@S@R@Q@F@N@Q@P@H@L@S@B@J@<@D@`@D@H@H@L@H@H@F@D@B@D@8@J@D@F@W@B@D@€c@R@F@D@P@H@D@^@F@H@Q@D@R@D@L@0@F@D@P@L@D@Q@L@L@Q@D@L@F@J@H@L@J@H@P@N@T@_@Q@P@B@N@B@B@F@D@J@T@J@F@F@P@B@D@H@B@D@H@@@H@J@F@D@L@F@F@T@4@D@H@B@D@H@<@L@0@<@8@(@B@B@@@0@F@@@0@B@H@B@B@D@D@F@D@L@@@8@@@8@B@H@F@F@B@@@B@0@D@<@N@B@<@0@F@D@H@B@@@@@V@B@H@8@0@@@@@@@(@(@D@H@@@F@@@(@B@4@B@8@H@(@R@4@F@<@0@H@D@H@(@H@H@<@D@8@L@D@D@B@B@H@@@F@B@D@H@L@@@<@F@4@8@B@H@F@D@B@B@8@@@B@D@8@B@0@8@N@B@<@@@F@F@B@B@@@0@D@<@B@D@F@@@<@@@4@@@8@J@D@@@D@B@4@B@@@B@0@B@H@D@D@B@D@4@D@4@D@D@D@0@B@<@B@D@@@P@J@S@4@H@J@@@@@D@N@P@B@8@H@@@H@8@L@4@<@4@<@B@H@F@<@B@B@@@H@F@8@B@<@F@J@F@J@H@F@F@8@4@@@@@(@B@T@P@D@4@B@H@D@@@B@B@F@L@D@<@8@J@4@H@4@D@<@J@@@D@0@Q@H@Q@<@0@0@F@N@@@4@B@D@0@@@8@B@D@<@8@(@(@0@@@8@8@H@<@4@8@8@4@<@B@4@8@@@<@8@4@8@4@<@@@4@8@8@D@F@4@<@@@D@<@<@@@8@8@4@B@8@<@D@8@4@D@<@4@8@0@<@4@@@B@@@4@F@B@@@<@8@<@B@0@8@4@@@<@8@8@@@B@B@B@8@B@8@<@8@H@@@<@8@F@B@B@8@Y@B@@@N@N@<@<@8@<@0@B@D@D@@@@@<@B@<@B@@@<@8@<@@@4@B@8@<@@@@@4@D@B@<@<@4@D@4@4@8@F@B@F@L@4@<@<@@@4@4@<@<@D@8@<@0@B@8@D@8@D@D@4@4@8@<@8@<@D@<@<@8@B@<@8@<@8@4@8@<@4@B@@@8@8@<@<@F@<@<@<@8@H@B@8@8@F@8@<@H@4@F@F@F@4@<@<@<@D@4@8@F@(@D@8@@@J@<@L@4@8@Q@@@@@<@4@8@8@8@8@<@8@@@8@8@4@8@D@4@B@8@@@8@B@<@H@4@<@<@B@0@4@4@B@<@<@F@8@<@<@<@<@<@4@B@<@B@D@D@8@F@F@<@B@<@4@D@<@8@4@4@8@D@B@8@4@8@4@8@@@@@@@<@8@@@D@8@8@B@H@B@8@4@D@D@H@F@B@8@<@@@4@D@F@D@B@<@L@@@<@4@F@H@4@B@8@F@4@<@4@(@8@D@D@0@4@8@F@8@8@<@<@@@4@F@D@8@8@D@D@8@8@8@8@4@8@<@<@8@D@<@ @<@<@<@B@D@H@8@@@8@B@B@@@F@F@<@8@F@J@<@B@4@F@8@<@D@B@<@0@8@B@@@<@<@@@D@8@D@4@F@Q@B@B@4@@@<@4@J@D@@@<@8@@@4@@@8@B@4@8@<@8@8@@@B@8@8@@@4@@@<@@@<@<@D@B@<@U@<@<@0@8@8@4@8@4@8@B@@@F@8@D@4@4@8@B@4@<@4@<@<@8@D@@@8@ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?4@4@<@4@0@S@<@4@4@<@4@(@4@8@8@8@8@8@8@B@B@8@4@4@8@8@8@F@B@8@0@4@4@0@4@8@4@4@0@4@B@0@8@<@D@@@S@0@4@4@<@4@4@4@8@@@4@4@D@4@<@8@4@B@4@0@4@8@<@8@4@B@4@8@8@8@8@8@4@8@4@4@4@4@8@8@@@0@8@D@0@4@4@8@4@(@<@(@4@4@(@<@8@4@0@F@P@L@P@D@F@D@J@F@L@J@D@F@H@R@F@J@H@U@P@F@J@R@H@J@J@H@H@N@D@H@P@D@N@R@J@J@H@<@F@P@J@H@H@<@Q@L@P@F@D@H@H@L@T@R@J@B@W@P@<@F@H@J@T@J@F@F@N@4@R@P@F@L@R@@@T@H@H@U@Q@F@Q@<@W@]@L@U@Z@]@H@P@D@B@D@B@D@H@F@L@@@Q@@@R@S@L@H@N@D@S@H@D@H@F@J@B@R@L@@@L@J@D@F@D@D@H@D@H@N@P@J@F@H@U@J@V@R@H@F@D@T@@@J@U@H@F@F@F@N@F@F@H@@@H@H@T@J@P@]@H@N@H@Q@F@L@H@F@F@B@N@H@B@H@H@N@D@U@F@D@H@V@H@D@N@8@H@S@R@L@W@T@H@N@F@D@L@L@N@U@D@Q@J@F@P@R@F@€`@J@N@H@@@H@T@N@D@N@T@H@V@L@H@T@W@H@S@H@J@F@R@Q@L@H@S@L@J@T@B@Y@L@D@H@L@Q@L@D@T@F@B@@@D@J@0@J@F@H@H@F@H@U@L@D@N@J@P@D@L@B@F@H@U@F@Y@F@F@J@L@R@F@S@J@D@N@B@H@F@L@S@D@J@H@H@N@H@Q@Q@V@H@J@N@R@R@H@F@H@F@R@R@T@J@J@R@D@<@H@D@D@Q@Q@D@<@F@H@R@H@H@Q@4@L@F@F@U@Y@Q@H@N@F@H@H@@@H@J@R@J@D@F@J@F@L@F@J@H@L@F@4@P@B@S@H@S@Q@P@R@[@H@J@8@H@B@H@V@H@J@F@H@F@B@B@J@D@F@L@N@J@L@R@D@L@[@0@F@L@L@N@D@Z@H@Q@D@H@Q@D@P@@@P@H@Q@V@R@D@J@H@N@U@S@D@F@F@D@J@J@P@J@D@P@Q@F@D@T@N@@@L@D@<@D@N@D@Q@F@W@L@N@F@H@D@D@L@F@L@D@P@L@4@J@B@8@B@@@@@(@8@4@F@4@<@B@@@<@B@B@<@Q@4@J@B@L@@@D@B@<@@@S@B@H@D@D@D@8@H@<@H@<@B@8@B@D@@@(@F@@@D@<@H@8@D@8@B@N@D@J@@@H@<@J@0@J@D@F@(@0@<@4@F@H@8@8@B@<@D@4@4@D@0@0@0@H@D@D@(@F@D@F@F@D@D@D@F@H@F@@@8@D@4@B@D@@@N@B@8@<@B@B@B@D@<@F@R@@@B@D@L@B@0@0@B@@@<@F@8@B@H@D@@@F@@@D@B@D@(@B@B@H@Q@J@L@(@@@4@D@<@B@F@H@H@0@0@F@@@(@4@L@F@L@B@H@D@U@H@H@8@J@L@F@8@(@(@L@8@4@<@@@8@@@F@D@0@J@@@@@B@B@@@@@(@B@D@D@<@(@B@8@P@@@J@B@P@D@J@<@8@@@0@P@<@B@@@N@4@F@U@J@<@B@B@B@W@(@8@H@B@L@<@L@8@8@L@0@B@D@<@J@S@Q@B@H@@@8@H@@@0@J@D@4@4@8@D@L@B@4@4@<@4@0@(@0@ @4@(@L@<@8@D@B@8@F@8@<@<@@@<@4@<@J@F@<@<@<@<@F@8@<@8@<@@@B@D@<@D@8@<@0@8@D@4@@@<@<@(@<@4@8@F@@@(@@@@@<@<@8@<@<@J@<@@@@@4@B@F@8@8@<@@@<@8@<@B@@@ @D@<@H@D@@@D@D@H@H@@@@@H@8@H@B@N@B@J@P@D@@@B@8@4@<@B@D@<@<@@@B@F@F@F@<@S@@@<@L@@@@@D@<@@@<@4@D@@@B@@@@@8@@@8@8@B@4@F@8@H@8@8@8@H@<@8@<@8@F@8@<@4@B@<@@@@@D@8@4@4@4@@@4@8@8@8@<@D@B@<@@@@@<@8@@@<@@@8@B@L@8@8@@@8@@@8@@@8@@@@@<@@@F@F@0@H@8@F@@@L@@@B@D@D@8@F@D@H@F@4@4@@@8@D@<@<@N@H@B@@@B@@@J@J@8@@@<@@@B@<@@@F@B@<@0@8@8@<@D@B@N@<@@@H@@@8@F@B@F@4@@@<@@@8@8@D@8@4@0@8@H@ @<@<@<@B@8@<@@@<@8@B@<@8@B@@@4@<@8@<@<@<@8@8@@@@@<@8@<@B@<@8@4@8@<@F@8@D@4@@@H@<@B@D@H@8@@@@@B@P@8@@@<@<@D@F@8@H@<@@@<@8@(@8@F@4@<@F@8@0@<@<@4@B@4@D@(@8@F@F@H@F@8@<@D@<@<@<@D@8@@@8@@@4@D@8@<@<@8@@@<@D@<@<@H@8@@@@@<@@@B@8@8@<@@@@@H@H@D@J@<@@@8@<@8@8@4@<@8@<@B@8@@@@@@@8@F@J@F@4@<@H@<@B@L@D@<@<@8@<@D@8@8@D@8@B@D@8@4@F@<@<@@@@@D@F@<@@@@@@@F@@@8@F@<@8@4@<@8@D@<@8@0@8@8@F@D@<@@@B@B@@@<@4@4@B@@@@@@@D@B@ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?J@@@<@4@J@8@@@T@B@8@0@0@4@8@U@V@H@B@T@8@<@8@R@F@N@U@8@V@4@8@<@8@<@8@4@(@@@4@4@F@J@Q@@@S@<@4@@@H@8@8@L@B@B@D@8@0@4@@@W@4@4@0@<@@@0@B@<@@@0@<@4@4@4@T@8@H@8@<@H@Q@<@R@F@H@D@8@T@0@4@4@@@D@F@J@0@8@@@H@B@@@<@8@L@S@8@F@H@<@N@B@B@8@B@4@4@F@@@J@R@L@4@J@<@D@(@@@Q@<@4@D@U@<@<@P@N@<@B@J@@@F@4@8@H@<@B@F@@@4@8@8@0@L@0@B@@@8@@@<@@@4@4@N@L@8@B@8@T@<@@@8@S@D@@@4@(@R@4@@@4@@@8@8@H@D@@@Q@B@N@4@<@4@@@H@@@8@0@4@4@0@D@8@]@J@B@P@F@L@B@R@Z@F@D@P@D@J@F@R@4@J@N@L@<@D@<@R@F@0@<@<@J@L@4@@@4@@@H@V@D@B@B@B@P@4@F@J@L@X@<@F@0@R@P@<@H@F@P@H@D@L@Q@4@<@B@D@8@J@F@R@H@J@S@U@H@P@8@W@W@J@Q@U@@@<@8@F@8@@@<@4@8@8@R@B@P@4@W@@@H@D@D@<@@@L@Q@N@@@P@@@D@@@0@8@B@<@F@D@D@@@J@H@D@Q@J@W@H@B@F@8@Q@8@@@N@D@8@U@F@H@F@R@F@F@L@8@L@P@T@8@R@0@H@0@N@D@4@@@H@F@4@F@D@F@S@N@8@@@S@F@4@H@4@B@R@H@D@D@Q@0@P@J@D@Q@D@H@L@(@4@B@N@R@4@@@L@R@D@@@4@S@F@8@J@J@B@X@<@8@R@<@H@S@N@P@D@H@H@R@Q@T@D@8@H@L@(@<@F@L@N@8@<@8@@@4@@@<@H@J@L@@@4@@@<@J@P@F@T@<@8@<@S@F@T@F@B@P@B@S@4@8@@@F@N@R@B@D@U@8@V@N@W@D@<@N@4@@@B@F@Q@J@F@P@B@0@<@S@D@P@B@P@8@4@Q@D@8@0@F@B@4@J@8@R@W@J@H@4@H@H@J@8@L@N@@@@@H@F@S@R@0@B@(@D@<@V@4@S@D@P@T@N@<@P@@@B@L@J@F@Q@F@H@@@F@<@N@D@F@N@H@8@L@D@B@N@8@J@X@J@N@N@T@Q@Q@8@F@J@D@4@<@F@P@H@D@L@H@D@S@S@L@H@B@H@0@T@H@J@L@<@@@B@N@J@R@@@4@<@J@4@P@D@T@N@R@@@H@0@R@L@8@S@<@N@4@H@<@<@ @D@B@(@R@<@@@J@@@S@Q@P@0@F@8@<@Q@<@8@N@D@H@8@<@B@@@B@4@D@@@L@B@F@0@@@F@R@4@@@R@F@L@<@J@Q@J@0@H@8@0@J@J@8@F@U@F@4@N@@@B@0@D@<@N@D@Q@<@4@R@J@D@J@L@P@N@8@N@4@<@N@L@Q@B@F@H@L@F@Q@F@Z@P@D@D@R@L@0@8@N@U@F@F@H@J@8@P@<@B@<@B@4@@@4@S@L@L@N@(@8@Q@P@4@P@<@(@J@0@J@S@S@F@F@F@P@L@F@P@J@B@4@B@D@0@B@4@J@H@S@H@F@S@F@D@@@<@B@4@D@8@R@D@4@L@L@R@B@D@J@L@H@Q@H@F@P@D@(@8@R@@@(@B@€`@P@B@Q@D@(@ @(@@@(@4@L@(@D@N@0@@@J@J@Q@8@N@@@H@D@<@B@H@N@B@B@J@<@H@<@J@8@0@0@4@<@B@8@0@(@0@D@0@N@@@P@F@4@H@ @4@J@L@(@H@0@(@(@<@F@8@<@8@8@N@D@J@L@N@H@8@8@4@<@B@B@J@J@8@<@8@F@ @@@D@@@(@F@0@D@@@ @J@0@H@4@J@0@(@B@D@Q@F@4@J@8@@@P@@@0@J@D@N@@@N@F@B@(@<@<@F@<@<@D@8@ @0@D@F@R@@@B@B@D@J@8@D@F@@@J@@@J@@@P@J@4@0@S@<@D@0@0@<@D@L@J@F@F@L@P@4@F@J@J@0@@@<@D@B@0@F@4@@@4@8@0@4@<@8@<@H@4@8@<@0@L@8@@@D@F@D@B@B@J@0@B@ @0@0@@@8@B@4@<@4@D@L@<@J@L@(@B@ @<@D@@@8@(@8@F@L@ @<@4@H@@@0@(@0@@@@@ @L@J@H@8@B@<@0@D@@N@4@8@F@(@H@L@H@(@4@D@<@ @ @F@F@8@D@ @L@N@0@8@H@8@J@D@(@H@P@8@8@@@F@J@L@@@4@J@<@H@(@H@B@D@Q@B@B@H@(@L@(@Q@ @0@0@@@@@F@4@ @ @0@4@B@0@F@F@(@P@@@8@H@<@(@H@D@4@S@(@4@0@J@<@F@H@B@W@J@L@F@<@0@N@ @0@4@F@D@B@B@<@8@N@U@H@J@8@<@F@Q@F@D@4@U@ @F@4@8@H@(@N@J@J@B@ @<@<@@@D@8@H@F@0@B@F@L@<@@8@D@4@(@N@ @@@8@F@B@D@ @D@0@4@H@D@F@8@4@ @4@@@0@<@8@F@B@F@(@<@4@@@8@ @0@B@H@8@F@L@0@R@(@B@D@F@L@N@J@8@8@<@F@F@4@N@<@D@F@4@B@@@B@<@D@0@0@0@(@D@F@<@4@(@(@H@8@D@0@8@D@B@4@<@8@4@D@(@<@(@@@N@ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?J@H@J@P@H@F@F@H@D@L@D@D@F@L@T@D@J@H@S@Q@H@J@R@S@P@S@H@R@H@@@S@H@Q@R@F@H@H@L@J@S@H@P@S@H@J@D@F@J@J@P@J@H@J@Q@@@F@H@J@S@H@F@H@L@B@L@J@L@R@J@J@J@N@J@N@`@N@[@]@H@R@D@F@D@F@L@B@P@J@U@N@J@N@H@F@D@H@B@R@F@J@J@D@B@D@D@H@N@W@H@H@H@H@H@U@S@U@H@S@D@H@U@D@D@D@D@F@J@B@H@H@L@L@J@U@H@J@H@Q@F@L@H@B@D@D@L@D@J@L@H@Q@F@L@U@H@L@H@P@]@B@S@J@J@D@J@F@V@F@L@Q@H@P@H@F@`@P@J@F@@@H@F@D@L@Q@<@L@H@F@U@F@V@F@L@H@T@R@F@R@L@N@T@D@R@D@J@Q@L@F@S@H@H@B@D@B@R@D@H@F@N@L@B@F@J@H@H@J@D@F@F@H@F@F@D@F@R@P@J@S@H@H@L@F@D@L@@@H@F@P@H@H@P@R@@@H@L@Q@H@H@F@Q@S@T@F@L@R@J@@@H@@@J@D@@@F@H@T@@@F@L@D@Q@L@J@F@F@D@H@H@H@L@D@J@F@H@H@J@D@J@N@H@F@J@F@S@J@P@T@T@H@H@^@F@J@H@F@<@D@H@B@B@F@N@J@P@F@a@P@D@J@N@J@D@[@L@H@D@R@P@8@Q@H@Q@T@F@Q@H@R@F@P@J@H@H@J@P@L@F@S@P@H@R@F@J@D@<@D@R@V@H@N@H@J@D@H@D@@@J@D@H@B@R@H@P@@@<@B@0@@@(@<@B@<@B@@@@@0@4@8@8@(@H@H@4@0@D@B@4@B@B@8@4@F@4@<@<@8@@@<@8@B@@@4@B@B@8@4@D@0@@@F@<@4@<@8@<@F@8@@@N@4@4@0@F@0@8@J@B@<@8@0@@@8@0@F@0@<@B@<@D@D@0@4@B@4@4@(@@@<@F@F@4@4@F@B@B@F@8@B@D@B@H@4@D@<@4@J@D@0@@@4@@@8@4@8@<@B@<@4@B@B@F@<@<@0@D@H@<@F@4@8@<@F@0@D@D@0@B@@@@@@@0@<@4@B@4@@@4@H@8@B@F@H@8@4@8@B@@@<@D@F@F@H@0@0@0@4@D@0@@@B@0@4@<@B@<@8@F@<@0@P@0@S@<@8@@@D@@@H@8@4@N@P@8@8@D@4@@@8@@@D@0@D@4@<@4@<@4@B@8@<@4@B@@@4@B@8@B@(@B@8@4@D@@@B@L@B@0@F@H@4@<@8@8@0@<@0@@@N@4@D@T@H@B@4@B@B@<@<@B@0@H@J@@@4@J@(@F@0@8@(@4@4@J@4@<@@@8@4@B@0@D@0@<@@@J@4@4@B@4@4@F@<@4@8@8@B@<@H@<@H@L@F@J@J@L@H@B@F@D@<@F@B@F@S@@@R@H@B@B@F@Q@H@D@D@Q@F@H@D@P@<@@@H@S@Q@H@N@N@F@P@J@B@D@H@F@Q@Q@D@D@B@B@L@T@P@J@<@Q@H@<@H@B@F@J@F@F@H@B@L@@@D@D@@@B@F@@@@@@@B@H@D@B@H@@@0@F@4@D@H@D@B@@@4@<@<@4@B@0@P@B@@@4@(@H@8@B@@@4@<@4@U@N@@@V@R@L@J@H@L@F@N@H@H@H@F@L@J@R@J@L@Q@J@L@B@ @J@J@J@Q@N@R@ @L@(@L@F@H@P@0@L@D@H@H@L@J@D@ @P@N@0@P@L@Q@P@P@U@N@F@J@J@P@R@ @N@L@0@F@Q@0@(@H@H@L@D@J@N@N@J@F@H@H@P@(@L@J@T@W@H@J@H@J@R@Q@H@J@N@F@L@J@N@L@J@J@F@F@ @J@N@P@H@ @L@Q@ @(@R@S@F@R@F@L@J@0@J@H@L@J@D@Q@(@H@D@L@@H@J@N@L@4@H@Q@ @F@R@J@H@J@D@H@(@F@U@H@L@(@(@J@F@N@L@P@H@J@J@H@H@H@J@J@L@P@H@H@P@D@H@(@N@W@R@T@ @U@L@N@0@L@T@N@J@H@R@P@L@Q@F@N@H@D@J@D@N@H@ @0@(@J@H@H@L@L@(@L@P@F@L@J@L@L@H@P@ @H@Q@L@R@N@@Q@Q@ @(@(@Q@P@L@ @J@L@H@J@N@H@J@(@N@H@0@N@H@ @S@R@F@P@D@H@H@ @J@H@P@L@L@ @J@L@N@H@W@R@J@N@L@H@D@F@ @J@J@N@H@L@F@D@L@H@L@J@J@ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?B@J@<@H@(@F@4@<@8@4@8@4@(@4@4@8@0@Q@B@B@4@<@4@4@0@F@T@L@V@P@@@4@4@(@4@4@8@8@4@4@<@<@8@J@F@U@F@8@8@8@8@0@4@4@8@8@<@J@4@4@B@4@8@(@8@B@<@4@N@P@4@J@8@@@4@8@J@8@H@4@4@8@4@8@4@D@(@8@4@8@J@4@0@8@4@4@4@8@8@0@B@@@N@0@0@<@<@<@4@F@@@4@N@4@R@0@@@@@4@@@<@B@<@8@<@8@<@Q@4@F@L@P@4@8@N@4@<@Q@4@@@4@0@0@0@4@8@8@J@4@P@8@4@L@F@B@N@H@<@<@8@D@U@D@B@N@@@8@B@L@S@<@L@<@S@8@Y@Q@P@X@R@F@J@D@B@@@@@L@N@@@<@D@B@R@P@F@L@8@P@R@N@P@B@H@D@P@T@B@<@D@8@D@@@F@B@L@F@D@8@F@8@F@B@J@@@@@<@P@4@J@D@^@N@Q@B@H@H@D@X@R@J@P@H@0@4@P@@@J@N@D@B@J@N@@@@@B@<@B@B@B@D@B@D@L@N@B@8@@@L@V@D@P@F@@@<@B@B@B@<@<@4@T@@@D@P@0@P@4@@@B@H@U@F@<@L@D@B@D@N@4@Q@@@W@4@<@N@L@B@F@L@P@J@N@B@P@B@J@N@@@L@B@H@L@F@8@@@P@_@S@0@Q@D@J@B@8@H@@@L@F@J@N@D@8@F@€`@(@4@8@H@(@L@S@R@D@<@@@B@R@@@@@<@8@B@L@L@D@F@J@D@D@Q@0@@@N@F@@@N@D@@@D@H@B@H@H@@@R@H@J@J@N@D@J@8@@@F@H@B@L@4@@@B@(@F@J@@@8@B@@@F@P@R@D@P@D@L@U@D@U@V@S@B@<@B@R@L@@@B@F@@@F@N@B@R@N@B@N@S@J@D@@@F@T@L@4@J@F@J@B@H@8@B@@@B@4@<@N@J@W@D@L@L@V@<@P@B@<@D@N@B@<@<@N@8@@@@@V@<@B@T@J@T@Q@<@P@H@8@Q@@@N@D@D@N@T@D@Q@R@H@<@<@B@]@D@F@H@L@H@Q@Q@8@8@<@F@N@8@F@@@@@€b@R@B@F@@@_@D@@@R@B@F@<@J@(@H@F@H@D@Q@F@J@4@@@@@4@W@8@J@D@L@D@S@P@F@P@@@L@@@@@B@T@J@T@H@L@D@S@8@0@H@J@D@J@J@P@B@B@4@W@(@B@P@L@D@<@B@B@D@@@Q@<@B@B@H@B@F@B@4@4@@@0@F@L@L@F@8@@@Q@D@L@@@D@0@D@N@H@8@D@<@4@B@B@N@D@<@J@B@B@<@4@F@F@<@4@(@ @D@8@<@B@8@<@N@4@8@N@8@D@R@B@B@H@H@N@4@D@4@@@@@H@J@B@J@L@0@@@F@H@L@<@N@H@D@<@D@@@@@B@U@B@F@4@N@8@Q@B@<@F@4@H@B@0@L@H@N@H@B@F@D@J@@@<@8@0@@@F@D@0@F@N@<@H@D@4@J@H@<@B@H@H@4@J@D@4@(@@@P@B@L@V@L@8@L@D@F@<@N@Q@@@@@<@J@F@D@P@H@@@D@H@R@J@D@D@N@B@@@H@<@N@N@B@N@L@F@@@@@0@S@L@D@J@@@D@F@J@L@B@F@0@J@4@J@H@8@J@D@D@D@W@H@P@<@8@F@Q@D@<@<@@@F@8@B@8@@@D@B@@@D@@@8@8@F@<@0@0@D@4@<@<@4@4@N@ @(@@@8@0@B@B@L@(@B@8@D@B@4@8@4@4@0@0@0@<@L@0@0@F@8@D@8@@@4@ @B@J@@@4@<@8@D@@@4@4@0@4@D@D@4@F@4@D@B@8@(@D@(@8@8@@@0@(@L@U@ @@@ @W@4@B@4@<@H@8@0@B@0@8@@@ @Q@D@<@@@4@8@4@<@F@B@0@8@(@B@4@D@4@4@B@0@F@D@(@4@F@H@4@N@4@4@(@4@4@H@0@0@@@L@4@F@4@@F@ @0@8@<@<@(@0@8@4@8@B@D@8@@@0@4@(@B@4@D@4@<@<@8@<@F@8@8@8@H@D@(@J@B@@@@@<@(@D@@@H@<@@D@8@B@D@(@H@8@@@8@<@H@0@P@D@W@<@L@(@4@@B@8@0@8@F@0@4@B@0@D@N@@@0@<@8@8@<@@@8@<@B@ @4@B@8@0@8@D@4@4@<@4@<@<@0@J@<@@@H@F@8@F@J@0@<@B@4@D@ @0@0@8@8@<@D@(@4@0@8@D@@@<@8@8@@@F@8@<@F@@@(@(@4@@@@@J@B@D@B@@@@@8@F@F@4@8@F@L@8@4@F@@@@@ @<@8@<@8@<@(@4@4@B@8@0@B@<@4@8@J@@@F@0@F@0@0@8@L@D@J@0@H@(@B@0@4@ @B@@@8@4@B@<@L@L@(@H@(@@@8@8@N@@@8@8@F@L@0@0@0@S@4@4@D@J@8@H@8@B@D@0@<@D@(@8@H@4@L@B@0@B@4@X@4@8@J@4@8@(@@@<@8@B@J@8@<@8@<@H@8@0@ @@@<@4@8@<@D@@@L@8@B@0@D@8@8@4@4@B@J@B@@@4@F@(@ @D@<@B@<@H@(@B@ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?H@F@8@(@R@@@4@V@T@<@0@4@B@8@<@0@8@4@8@8@4@8@8@@@F@L@4@4@@@8@4@F@B@8@4@8@0@8@4@4@<@4@0@4@0@D@4@@@B@H@F@8@Q@4@4@@@4@4@4@F@4@4@4@H@8@@@4@4@4@8@H@F@N@0@P@U@4@@@8@<@@@D@4@B@P@8@4@T@8@4@0@0@8@0@@@8@B@4@8@Q@0@8@8@8@@@8@8@<@<@0@(@(@@@N@`@N@F@F@J@B@N@U@8@F@T@D@J@H@Q@8@H@L@R@D@J@F@H@B@8@B@Q@B@H@Q@N@H@@@8@B@R@V@H@F@J@F@P@<@D@H@H@L@S@V@H@<@W@U@Q@D@H@J@P@H@F@N@R@4@T@P@D@B@R@B@S@J@L@S@R@D@Q@<@V@X@L@R@X@T@H@<@<@4@F@B@D@J@D@F@@@R@B@P@S@N@L@Q@F@Q@D@D@R@J@L@B@S@D@8@L@F@@@8@B@@@J@B@F@L@L@N@D@H@H@J@W@N@B@H@F@S@<@H@R@H@F@H@F@L@D@F@H@4@H@L@D@L@R@U@B@P@D@Q@L@L@F@@@D@F@L@<@@@H@L@J@4@U@N@D@T@H@H@L@0@B@S@S@J@<@S@0@N@H@D@P@H@J@T@8@<@8@H@P@R@@@U@R@P@D@<@J@U@H@B@L@N@B@W@H@D@V@F@F@U@U@F@D@R@N@H@H@U@L@H@T@B@S@N@L@8@P@P@P@@@N@B@8@H@L@F@@@H@8@S@J@S@<@B@P@L@P@F@P@S@T@F@T@D@D@J@H@R@H@U@B@D@@@<@B@8@N@R@B@B@F@L@D@S@P@0@F@H@N@Q@4@F@B@H@L@J@D@N@Q@H@R@<@D@F@U@P@T@H@@@D@F@4@L@F@ @H@P@F@S@Y@Q@J@X@F@J@H@<@H@P@Q@H@H@F@Q@D@S@8@F@D@N@F@0@X@<@S@F@P@Q@N@B@Y@B@J@@@J@@@H@S@H@J@D@H@8@@@@@N@D@H@N@R@J@L@T@F@L@J@F@P@L@S@P@W@P@R@<@P@P@D@J@B@L@P@J@J@Q@D@H@@@H@V@T@L@F@F@F@@@L@S@J@@@P@P@D@<@H@P@@@Q@B@8@D@L@B@S@F@W@L@L@B@H@@@D@L@8@S@@@P@U@F@D@0@<@(@0@B@@@P@8@<@D@8@N@N@N@B@D@@@B@R@@@J@@@@@F@8@F@@@F@D@8@B@<@L@P@8@D@@@D@P@4@L@F@H@L@@@J@@@F@H@4@F@J@0@D@Q@H@D@B@L@@@D@@@@@@@(@D@(@4@0@J@F@F@D@F@B@B@H@J@F@B@F@F@8@J@F@N@B@<@B@D@D@@@H@[@Q@B@B@N@8@H@4@H@H@@@F@@@<@J@(@D@F@@@@@8@8@H@0@B@J@N@L@0@B@J@D@D@@@(@F@F@@@(@@@L@H@S@J@0@H@Q@<@X@<@F@F@<@B@J@J@D@0@4@0@8@0@0@H@D@D@L@B@@@4@B@4@<@<@D@<@@@<@B@B@J@4@Q@F@@@D@N@@@(@8@R@H@D@4@P@8@B@T@<@@@B@^@J@B@P@B@T@4@D@ @4@L@@@B@F@L@T@0@ @P@F@H@J@0@H@H@D@4@4@L@N@<@8@4@B@0@B@B@@@F@4@(@ @0@4@8@F@@@L@4@8@@@F@8@<@4@@@<@4@J@@@8@<@<@@@ @<@@@@@8@@@4@D@4@(@4@8@4@D@4@D@<@0@(@@@8@D@F@8@@@<@<@0@<@<@<@J@8@@@@@0@J@@@@@4@<@@@F@<@<@B@@@ @F@<@F@8@@@D@B@8@F@<@@@F@4@D@B@J@@@N@N@B@@@Q@(@ @<@B@D@@@4@8@D@H@D@D@B@L@D@4@L@<@<@D@4@B@<@8@F@8@8@@@<@0@(@4@0@8@8@F@4@H@<@4@8@B@<@<@D@F@<@8@8@J@B@8@@@@@D@8@4@B@4@@@ @8@B@4@<@<@D@0@B@<@@@D@@@8@8@<@@@J@@@0@@@B@<@(@@@8@<@@@@@<@J@J@J@8@T@@@0@@@ @F@<@8@F@B@H@F@(@(@S@8@D@<@ @F@B@D@<@@@B@F@N@4@<@@@8@F@<@<@D@P@8@4@@@@@8@F@8@N@<@B@J@4@<@F@<@F@@@<@H@@@8@8@F@4@(@B@Q@<@0@@@8@B@<@8@(@8@F@<@<@8@B@0@@@8@4@4@8@B@@@<@<@8@<@(@0@0@4@(@F@<@H@<@H@8@(@F@J@J@F@@@H@N@ @<@0@<@D@<@H@8@<@@@J@0@4@H@8@<@D@B@0@4@<@R@0@0@@<@H@4@D@F@B@B@B@<@@@<@D@4@F@4@@@8@B@D@<@<@ @<@8@4@B@D@B@(@@@<@H@@@D@0@J@4@@@(@H@H@D@J@8@@@<@@@(@4@4@@@8@4@B@8@D@<@<@<@H@8@4@@@H@@@D@L@4@@@0@0@8@D@(@8@4@8@8@B@F@0@F@0@<@8@@@D@H@<@8@0@@@D@@@4@H@8@8@D@<@8@D@@@8@(@<@D@@@4@<@@@B@@@4@<@0@4@B@ @@@0@B@B@ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?T@L@V@N@R@N@S@S@L@L@L@R@H@N@P@H@N@R@H@P@P@€a@_@[@V@Q@S@U@N@J@H@H@J@H@B@H@N@P@L@L@P@S@\@L@Q@R@S@N@L@P@P@P@T@L@D@J@V@N@P@S@@@L@H@@@J@F@D@L@N@R@B@T@Q@P@J@S@Q@Q@^@B@R@N@Q@N@F@S@J@N@F@8@8@B@4@4@4@8@8@4@8@F@<@4@0@4@8@@@@@<@8@<@8@4@8@4@<@<@<@8@8@@@B@8@4@4@0@<@<@B@@@@@4@<@<@8@8@4@<@@@8@4@4@8@@@<@<@<@0@8@@@@@8@8@4@F@F@B@8@<@8@H@B@<@8@<@@@8@4@8@@@8@D@4@@@8@8@@@<@B@<@<@8@(@8@<@8@D@<@8@0@B@4@4@8@D@@@<@8@@@B@@@@@@@@@8@<@@@4@8@B@<@4@<@B@@@<@0@D@@@@@4@0@8@@@B@<@<@8@@@4@0@@@<@0@8@<@B@@@H@8@D@8@<@D@8@@@8@8@@@D@8@<@8@8@<@8@8@@@4@P@@@8@<@F@@@4@<@@@D@<@<@B@8@@@B@<@8@4@B@4@@@D@8@@@4@0@B@<@8@4@8@8@@@@@8@(@@@4@@@4@<@@@<@B@<@@@<@<@4@B@<@@@8@4@4@8@@@4@@@<@<@<@4@8@@@4@B@@@\@@@B@k@<@B@H@8@8@8@B@4@0@@@<@4@0@B@U@8@8@R@<@B@<@F@B@8@<@8@<@@@D@<@<@@@B@4@8@<@<@<@8@8@D@<@4@<@B@4@@@@@F@<@<@8@(@@@8@@@8@@@B@4@D@8@0@<@D@8@8@B@<@<@@@4@4@8@8@@@4@<@B@8@@@B@Q@8@8@B@H@<@(@4@<@4@8@H@4@B@<@B@<@H@<@8@0@8@8@4@@@8@<@4@4@@@<@4@<@8@<@4@<@8@<@@@8@B@4@@@4@B@4@<@<@J@B@N@L@F@L@B@P@F@B@F@H@F@H@Q@F@D@N@H@H@D@J@H@J@L@Q@@@H@N@L@D@J@L@N@L@D@J@B@L@N@J@L@N@N@N@(@H@F@H@L@N@F@J@J@S@N@H@L@8@N@L@Q@N@<@F@P@P@J@8@H@@@P@N@H@L@B@N@J@D@B@P@P@H@L@L@L@H@N@Q@N@L@H@L@L@H@J@H@H@N@R@F@Q@J@D@H@N@J@J@J@F@D@B@P@F@<@D@J@J@H@R@J@L@S@B@L@Q@P@F@N@J@H@H@L@N@N@N@F@J@L@@@L@J@N@H@F@N@H@P@Q@N@[@D@L@N@@@L@H@P@Q@J@L@N@L@F@P@J@H@B@P@H@Q@J@H@J@N@@@P@P@@@H@N@F@B@L@B@N@H@L@N@D@N@J@R@J@N@N@J@F@@@J@N@R@P@F@H@L@L@J@P@L@J@D@J@P@N@F@N@N@F@N@L@R@F@N@Q@F@L@P@F@L@P@P@N@F@Q@N@L@B@D@Q@N@J@L@N@Q@R@J@P@P@Q@@@F@D@8@L@J@D@F@N@B@F@L@H@H@H@R@T@N@<@L@D@D@L@D@H@<@L@D@F@H@L@L@F@N@J@H@Q@N@L@@@N@Q@L@N@L@P@[@N@D@P@V@H@8@P@H@J@P@P@]@N@L@F@J@F@J@F@P@L@F@0@L@P@H@J@D@L@H@L@H@Q@H@F@J@N@F@N@J@W@L@F@B@P@4@8@J@@@N@J@H@N@D@F@N@L@H@4@J@N@N@0@J@D@S@@@<@4@@@@@B@D@D@D@N@F@<@<@B@F@D@4@(@B@8@4@<@@@B@8@F@0@<@@@R@B@B@B@<@B@F@B@J@Q@@@(@@@T@J@L@F@F@(@(@<@0@Y@8@(@ @(@Q@(@(@R@<@4@(@R@P@0@4@4@0@(@(@R@ @0@(@0@0@R@0@0@4@4@(@(@(@@0@4@8@4@4@(@4@0@0@0@H@0@4@(@(@(@0@4@0@4@0@ @0@4@4@(@(@ @<@<@8@0@4@P@<@8@0@(@0@4@(@(@(@0@(@8@(@4@(@0@4@0@8@0@4@(@@(@4@ @<@0@(@ @8@ @(@0@8@0@(@0@H@8@4@4@U@4@0@0@4@(@(@8@0@ @0@8@8@S@ @8@4@0@ @@0@4@8@0@4@(@4@ @ @4@0@ @(@0@8@4@<@(@<@(@0@4@(@4@(@(@4@<@0@0@(@(@0@(@(@4@@J@4@T@0@4@4@ @0@4@8@0@4@4@(@4@<@0@(@(@8@(@4@8@0@4@(@ @4@4@0@(@Q@0@4@4@0@@4@(@8@ @0@4@0@8@0@4@0@0@(@4@0@4@(@(@(@R@4@ @4@0@0@(@(@0@0@ @8@4@W@4@8@]@R@8@<@0@ @ @8@(@ @4@0@(@ @V@Q@(@(@H@0@8@R@@@8@S@0@0@0@4@8@0@0@4@4@(@D@S@0@0@S@N@8@P@(@0@0@ @4@4@<@0@0@(@D@4@0@S@(@4@8@(@4@(@ @4@8@0@ @4@U@4@0@T@(@0@(@4@(@0@8@0@4@4@N@(@(@4@V@0@@(@4@N@0@@@(@8@(@8@0@J@0@(@Q@(@0@(@4@(@X@(@J@V@4@ @4@ @4@ @0@(@0@4@(@Q@(@4@(@J@L@0@0@ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?4@4@N@R@0@H@L@N@S@R@€`@^@N@H@N@4@N@U@P@V@V@P@R@Q@T@X@Q@U@U@U@J@N@N@R@<@U@P@T@\@R@B@R@F@D@@@D@D@D@@@8@8@8@B@0@B@B@H@B@<@4@8@F@B@D@D@@@<@4@@@B@B@(@8@@@8@B@0@F@D@B@4@@@<@B@D@B@B@<@8@<@4@D@F@F@D@8@<@@@D@@@J@B@B@8@B@<@<@B@B@@@D@@@<@@@B@F@@@4@8@F@<@H@F@H@8@0@@@4@D@@@J@D@D@(@H@D@B@<@<@F@D@@@D@J@B@@@@@<@@@B@F@D@@@F@B@<@4@@@F@J@8@H@@@B@<@F@@@<@B@F@B@D@B@@@F@D@B@@@D@B@B@D@<@@@@@4@@@<@@@D@@@<@B@@@F@B@F@4@<@<@D@F@B@B@@@J@<@@@<@B@D@8@<@B@H@B@4@J@<@F@@@8@8@N@<@F@@@<@B@B@D@D@B@B@@@@@D@4@B@<@D@B@B@@@L@D@8@D@D@D@F@F@B@8@@@F@D@J@<@F@J@D@B@D@D@H@@@<@H@B@@@8@@@4@@@B@D@F@B@B@D@8@8@B@F@D@B@0@B@D@F@F@H@B@F@D@D@@@F@B@@@B@D@H@D@D@F@@@<@D@<@J@F@B@a@8@H@N@k@D@L@J@@@8@D@B@@@@@@@8@<@F@B@<@8@N@F@H@@@0@B@L@@@B@H@4@F@F@D@F@D@D@N@8@8@@@B@<@<@4@F@@@D@8@D@H@D@8@D@8@F@@@B@<@D@F@8@H@F@N@F@8@H@@@8@<@<@D@B@F@@@D@@@<@D@J@<@8@8@@@L@F@@@B@H@<@D@F@R@@@F@B@B@@@H@H@8@<@D@<@@@J@<@F@F@4@B@@@D@@@B@D@@@B@<@B@8@D@8@D@@@@@8@F@F@B@8@B@F@@@B@D@F@<@<@F@0@@@U@B@F@J@J@<@F@J@N@L@H@H@F@L@H@@@8@B@F@H@P@8@H@B@<@F@F@P@H@F@H@D@F@D@F@H@F@P@H@J@<@@@J@J@B@F@H@J@P@L@B@D@J@D@J@H@J@L@J@L@8@F@B@H@B@L@L@B@F@H@N@L@J@J@H@L@J@J@N@H@N@H@F@L@W@R@J@J@F@@@D@<@F@R@F@D@H@H@P@B@H@L@F@J@B@B@F@J@L@F@L@L@J@F@<@F@H@F@B@4@F@D@D@F@F@L@@@N@D@F@D@D@H@@@F@D@L@J@N@F@B@J@J@L@L@D@H@L@H@H@L@F@F@H@N@B@D@P@D@F@J@H@P@J@L@8@P@J@H@J@8@H@L@J@@@L@F@F@L@P@N@[@N@<@P@H@B@P@L@H@J@H@J@J@F@D@J@Y@J@D@J@F@H@N@F@B@H@J@H@@@L@B@<@N@L@@@@@D@B@F@B@B@J@N@B@F@P@F@H@J@F@L@@@8@H@H@J@F@D@N@F@L@F@H@J@H@H@N@D@H@F@F@@@L@H@H@H@D@P@@@L@H@<@F@J@4@H@N@J@J@F@F@N@N@J@F@4@<@P@L@J@H@L@J@J@L@P@L@U@(@L@@@B@D@D@N@D@H@H@@@J@8@F@@@H@H@J@P@H@4@F@@@J@D@J@J@J@B@J@4@F@H@@@D@B@L@N@F@P@H@H@N@J@J@P@J@D@L@L@L@N@Y@L@P@D@J@Q@D@D@8@D@H@B@L@J@L@J@Z@N@F@N@F@D@F@D@F@H@J@L@F@F@@@L@D@F@L@F@F@J@@@H@J@H@D@B@J@L@H@J@J@T@F@H@N@P@D@<@J@4@H@@@D@N@D@P@H@F@4@@@F@P@H@L@F@<@F@D@N@4@8@4@4@4@F@F@4@B@4@4@ @B@8@<@4@<@D@@@0@0@(@<@F@H@4@8@R@H@<@@@0@@@<@4@X@4@<@D@0@0@(@4@<@8@8@@@4@4@S@0@4@8@8@8@4@0@(@4@8@4@4@(@4@(@4@ @<@<@8@L@4@0@8@8@8@8@0@(@0@(@8@<@8@<@(@4@8@8@4@@@8@8@0@4@0@0@4@8@0@<@4@0@4@4@8@4@(@0@8@0@@@<@@@(@ @4@(@8@T@B@8@8@@@@8@8@0@0@<@8@4@8@B@4@4@4@0@4@4@<@8@4@@@8@4@(@4@<@D@0@<@4@8@0@<@4@0@8@<@4@<@<@B@@@8@8@4@<@8@4@8@0@4@4@R@4@0@4@<@4@0@8@4@@@4@@@(@0@0@8@@@4@8@8@B@0@4@0@8@4@(@0@8@8@8@ @@@0@@@0@0@0@D@0@8@4@0@4@<@8@4@4@4@4@4@4@(@8@0@8@8@8@4@D@8@(@<@4@<@<@8@8@(@4@8@<@B@0@@@B@8@8@<@8@<@4@4@@@4@4@0@4@R@4@8@8@<@4@8@<@S@0@4@<@<@8@ @4@<@8@<@B@4@@@8@8@4@<@8@4@4@<@<@8@0@8@4@0@8@0@D@<@8@B@(@<@F@T@8@D@B@4@(@8@8@0@(@4@(@0@@@4@0@(@<@@@@@4@ @8@D@4@4@<@Q@8@@@<@@@8@8@<@(@P@4@8@0@4@(@<@0@8@0@8@<@8@(@<@(@@@4@8@4@J@@@0@<@@@H@@@(@@@4@(@0@0@<@4@@@4@8@T@4@8@B@4@(@(@0@<@<@4@4@@@4@<@@@L@U@@@4@8@4@R@<@0@4@<@0@4@B@0@@@@@(@8@4@<@4@4@0@4@8@0@8@0@8@(@8@4@4@L@B@@@8@0@4@@@4@8@8@<@4@0@<@ @4@N@4@8@ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?8@8@4@0@T@T@4@0@8@0@U@P@U@W@P@T@X@S@Q@U@T@V@4@T@V@V@S@@@N@H@F@H@J@H@@@B@B@<@D@<@D@F@J@J@H@8@@@D@J@H@D@F@D@D@@@B@P@H@F@B@B@B@F@D@B@H@J@N@J@H@D@N@J@F@B@B@F@D@@@@@D@J@S@H@F@B@D@F@D@D@F@H@J@F@B@D@J@H@D@L@H@D@H@D@J@J@B@D@J@J@B@L@@@4@N@N@4@@@B@F@@@D@B@J@H@H@<@H@H@V@@@B@L@F@H@B@J@D@B@D@B@B@D@F@N@D@H@H@@@@@@@F@N@@@J@@@N@B@H@F@J@B@D@D@F@D@F@J@D@J@J@H@F@F@J@F@J@H@F@H@4@J@F@F@H@H@B@N@D@F@H@L@H@@@@@D@F@H@F@D@L@D@D@F@H@D@H@F@L@D@D@8@N@B@<@<@@@0@D@N@B@J@F@B@H@D@J@F@J@F@H@L@F@<@D@L@D@B@F@D@J@H@@@F@J@F@H@F@D@@@H@J@F@L@D@J@N@H@F@F@F@J@D@D@L@D@F@D@4@D@<@D@D@N@F@D@D@D@@@H@D@J@F@D@D@F@D@H@J@L@H@F@F@H@D@Q@F@D@J@H@J@H@H@F@H@B@H@B@J@L@F@V@H@J@L@€`@L@L@L@D@D@F@F@F@L@B@@@B@F@B@B@@@@@H@L@@@8@F@F@L@H@H@J@J@D@D@F@J@H@N@D@B@H@L@<@J@@@F@J@J@D@J@H@4@F@B@F@F@L@B@B@J@<@F@H@@@J@H@Q@F@J@J@B@<@B@H@H@J@D@F@D@J@F@D@J@J@B@B@@@D@S@H@B@F@L@<@B@4@H@N@D@F@F@D@B@J@D@H@P@B@F@N@H@F@L@@@H@F@8@D@B@D@J@L@F@<@H@B@H@@@P@B@H@@@J@J@H@@@F@L@B@N@H@F@D@@@R@<@L@F@F@H@H@H@4@D@H@N@H@F@F@H@J@H@F@B@4@4@J@F@J@<@@@F@<@P@D@L@H@B@J@J@D@B@@@@@D@@@J@F@<@<@@@F@D@B@@@F@F@D@H@H@D@F@H@F@@@H@J@F@F@B@<@B@@@@@H@H@4@@@F@8@L@F@D@D@@@L@L@F@B@F@L@F@J@Z@F@H@\@U@N@B@D@D@L@@@F@B@Q@F@D@N@J@8@H@D@F@H@D@<@D@H@J@8@N@B@J@H@@@F@D@B@B@8@@@4@F@@@F@@@<@H@B@J@D@N@D@F@<@<@H@<@H@H@J@D@D@F@F@H@H@J@@@F@F@F@S@F@@@D@P@B@@@@@D@D@H@H@N@J@H@B@N@F@B@D@D@<@H@B@F@J@D@@@L@P@Q@[@L@F@<@N@B@@@J@D@F@F@F@@@L@<@4@L@X@J@D@F@F@F@L@F@@@D@L@B@D@H@<@D@H@F@4@8@@@@@D@<@J@F@L@@@B@H@D@J@J@F@H@L@8@F@4@J@<@L@B@D@F@H@D@F@F@H@F@D@L@F@F@D@F@0@J@F@H@J@4@L@@@D@B@B@@@H@F@B@J@J@H@H@D@D@<@@@L@H@ @<@B@N@H@D@F@H@D@D@H@H@H@W@T@H@8@L@D@@@N@B@D@F@N@B@B@F@B@F@D@H@J@D@<@@@B@D@B@F@F@L@F@B@D@@@D@@@H@H@4@@@L@@@J@L@F@J@N@F@H@N@J@B@L@8@J@L@V@D@F@F@<@H@P@<@B@ @H@D@D@J@F@H@D@Y@L@F@J@B@D@H@Z@@@J@J@J@F@B@N@0@B@4@4@J@F@L@F@D@D@F@B@B@N@D@H@J@H@@@H@U@@@D@U@N@0@X@D@D@F@<@0@L@B@N@H@8@<@H@@@L@4@J@8@Q@D@B@L@8@4@S@4@H@8@B@@@@@@@@@@@F@8@8@0@8@D@8@<@B@@@4@(@0@<@@@@@8@<@8@8@4@8@D@@@<@8@4@8@0@<@4@@@@@B@L@<@8@F@@@<@8@8@8@8@4@B@<@B@8@<@<@4@<@<@8@8@8@@@8@<@4@<@B@8@8@D@@@4@8@8@B@B@8@<@B@B@8@D@0@(@D@F@(@0@4@<@0@8@8@@@8@@@0@@@@@@@4@8@@@<@8@8@@@8@4@<@8@8@8@@@D@4@B@@@4@4@4@<@D@B@<@4@D@8@<@@@B@8@8@8@@@8@@@B@8@B@B@@@<@<@@@@@B@@@8@@@S@@@<@<@B@@@8@B@8@@@<@B@D@4@4@<@@@@@<@8@D@<@8@<@<@D@<@<@F@<@<@(@D@4@D@0@0@ @8@F@4@D@<@4@F@@@B@<@<@@@<@B@<@0@8@D@<@8@@@8@B@@@4@<@B@<@@@<@<@4@@@B@<@@@8@B@D@@@<@<@<@@@8@<@D@8@8@8@(@8@0@8@<@8@<@8@8@8@8@0@<@@@<@8@<@8@<@<@B@D@<@<@<@@@8@H@<@8@@@@@B@@@B@<@@@4@B@4@B@B@<@@@4@D@D@V@D@F@F@8@8@<@@@<@D@8@0@8@@@8@8@4@0@B@D@8@0@<@<@F@@@<@B@@@<@F@@@B@@@F@4@8@<@B@0@<@4@<@<@<@8@@@@@(@<@8@<@@@F@(@8@@@4@<@@@4@@@@@J@<@D@B@8@0@4@@@B@@@8@@@4@@@8@<@B@B@8@4@4@4@H@@@8@<@B@0@8@(@B@F@<@<@@@8@J@<@8@<@F@8@<@F@@@@@D@4@@@@@0@<@8@8@D@<@@@4@8@4@B@0@H@8@8@4@D@B@@@4@<@D@8@B@@@<@8@0@L@0@B@@@<@@@ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?8@4@8@4@U@4@0@8@4@0@4@8@0@<@4@8@4@4@4@8@4@T@L@T@B@8@(@0@0@S@4@4@8@8@8@(@V@0@0@(@F@(@8@0@0@0@4@V@4@<@8@J@H@F@L@H@J@D@F@F@L@@@B@H@N@H@H@L@H@F@N@H@F@H@F@H@B@L@H@F@F@H@H@D@F@B@F@J@H@J@N@J@D@F@N@F@@@B@H@F@H@D@F@F@N@H@H@H@F@H@H@@@H@F@L@J@F@D@F@N@B@J@F@H@J@L@B@L@F@F@J@D@H@H@J@L@H@F@<@U@J@H@D@D@F@J@H@F@F@H@H@W@@@N@L@H@B@H@F@J@F@B@D@H@H@B@D@J@D@J@H@B@F@F@F@H@@@H@D@L@F@J@F@F@F@H@H@F@H@D@H@D@F@J@H@F@B@J@D@F@H@N@F@N@J@F@J@F@P@D@F@F@B@L@J@J@B@H@B@H@J@F@H@D@F@D@J@F@D@J@H@H@@@H@@@L@F@B@P@F@B@F@N@J@F@H@N@H@H@F@H@H@D@J@J@H@D@N@L@F@D@F@F@J@D@F@H@F@F@L@H@F@<@H@P@F@F@F@P@D@J@L@H@F@F@H@J@H@F@J@D@L@F@U@B@8@F@F@J@0@F@F@D@F@D@F@J@D@N@J@H@F@L@F@F@J@J@H@F@D@H@F@L@H@J@L@H@J@H@F@F@B@H@H@B@F@J@H@F@J@N@H@H@U@H@H@H@D@H@F@J@<@F@F@B@N@F@D@B@H@D@B@F@F@D@@@H@F@L@F@J@H@D@L@B@B@F@H@F@D@F@H@H@N@B@H@F@D@H@P@D@F@H@B@H@S@H@H@J@0@F@D@H@D@H@J@B@H@F@L@J@F@H@F@F@F@H@D@F@F@F@F@J@S@F@8@H@H@H@H@F@D@V@H@B@H@L@N@B@@@F@R@D@D@H@B@B@F@H@H@H@N@D@F@J@H@L@H@L@F@H@D@D@L@H@H@N@D@@@F@H@F@H@P@J@H@D@<@F@J@F@D@H@F@L@Q@H@J@F@H@J@@@P@J@J@H@J@F@V@H@J@D@F@H@@@D@L@L@J@(@(@8@<@D@J@4@<@L@8@H@D@Q@8@J@L@Q@B@D@B@D@F@8@N@H@8@8@8@D@B@4@H@F@F@D@B@F@F@D@H@(@H@@@D@L@L@F@B@D@D@B@0@F@L@8@@@D@8@L@8@H@8@D@J@L@H@F@H@J@J@D@W@D@F@^@N@J@F@D@F@N@B@D@D@N@F@F@N@4@4@L@B@D@F@F@F@<@B@B@J@4@N@L@H@H@B@F@D@B@F@<@B@D@B@J@D@D@B@L@F@H@D@Q@D@F@8@@@N@8@F@F@H@F@H@F@B@D@H@0@4@J@B@N@H@D@H@Q@8@<@B@B@8@J@F@P@Q@D@D@D@H@@@B@F@D@D@B@J@F@B@D@J@Q@L@Z@D@B@D@@@B@D@B@D@L@L@F@8@J@4@4@N@S@B@D@L@D@H@L@J@@@D@N@D@D@F@F@H@D@B@J@0@<@(@D@8@N@8@J@@@@@L@L@H@J@H@L@D@F@8@J@D@L@J@L@B@H@D@F@B@F@D@H@F@F@F@L@L@H@D@(@J@F@J@H@4@F@4@D@<@H@B@H@Q@H@B@H@D@L@L@@@D@N@8@F@L@L@B@D@R@L@D@J@<@L@B@D@F@<@L@X@T@H@4@T@F@F@N@8@B@J@N@D@D@J@<@@@F@F@F@H@D@@@H@4@D@@@B@D@J@J@B@@@8@D@B@N@H@@@L@F@Q@H@J@D@D@B@L@4@P@H@J@D@N@H@Y@F@D@H@D@F@P@D@D@J@4@D@F@F@D@H@B@[@N@H@F@D@ @N@X@@@D@J@N@J@B@F@_@0@B@D@B@N@F@J@F@8@B@@@@@B@L@H@4@H@J@D@N@V@8@8@T@J@4@R@D@D@N@B@B@4@H@F@L@H@4@D@B@8@J@B@H@4@Q@D@D@4@ @0@ @8@0@(@4@4@0@ @(@8@0@0@D@0@B@@@<@B@@@B@<@<@@@D@D@8@@@B@8@<@D@@@@@B@@@@@@@<@<@8@B@<@<@<@@@@@8@<@8@<@B@@@@@B@B@<@F@B@<@4@8@@@8@@@8@<@<@N@<@<@B@@@@@@@4@<@<@B@@@<@<@8@B@8@@@<@@@@@D@B@B@@@<@B@F@@@@@B@D@F@8@4@4@B@@@8@8@8@@@@@<@<@@@@@J@4@B@@@@@4@@@@@@@<@D@8@@@@@B@8@@@8@@@@@8@@@@@<@@@B@H@8@D@<@B@<@F@<@@@@@<@@@<@@@8@<@B@@@<@H@@@8@<@@@F@<@B@<@<@@@<@<@<@F@<@F@B@@@B@4@@@8@@@B@<@@@D@<@<@@@<@F@B@<@@@D@@@4@B@<@F@H@<@0@@@F@@@<@@@D@H@@@@@@@8@<@@@@@@@0@D@B@<@<@@@<@@@<@<@@@<@<@B@@@@@H@@@F@<@B@<@F@B@@@B@@@8@<@@@@@@@8@@@8@D@<@H@8@(@<@@@B@ @@@@@8@<@F@<@<@<@D@@@<@<@B@<@<@B@@@<@<@<@@@<@B@<@<@D@<@B@<@<@<@D@<@@@F@<@B@H@H@8@D@D@@@8@@@B@<@8@<@<@B@0@D@<@8@F@<@<@8@<@B@@@<@<@8@4@B@@@D@<@@@@@N@B@@@F@<@@@<@D@<@<@@@D@B@B@<@<@D@H@8@F@@@8@@@@@@@@@B@ @<@@@<@8@<@@@8@<@<@B@D@H@@@<@8@<@@@8@<@<@<@<@@@<@<@D@@@@@@@<@@@F@F@<@4@B@@@B@8@0@8@H@@@<@@@4@8@8@<@@@<@B@8@<@B@<@D@@@@@8@@@<@8@D@@@B@D@<@4@@@@@@@@@F@B@@@8@4@@@@@<@<@<@<@D@H@@@@@<@@@B@4@F@D@B@@@ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?4@8@0@0@0@4@8@0@@@0@(@(@(@4@4@V@(@0@<@4@<@4@<@4@8@0@0@4@8@4@<@4@4@8@(@0@4@4@8@<@0@8@4@4@4@0@0@T@0@<@4@8@(@4@0@(@0@8@0@B@4@0@4@<@8@8@8@8@<@0@8@0@4@4@0@B@4@8@4@0@4@0@4@0@4@8@T@8@4@4@0@<@8@0@0@<@4@0@8@0@0@J@H@F@N@J@F@D@H@F@J@B@D@F@J@F@H@J@H@H@P@D@D@H@H@J@F@L@H@J@F@J@F@D@D@B@H@J@H@J@Q@H@B@F@H@H@<@B@H@H@H@D@D@D@J@F@N@H@F@H@F@8@F@H@J@H@D@F@D@L@D@L@H@D@J@L@B@J@F@H@J@F@H@B@J@W@H@F@X@^@J@D@F@D@D@J@D@H@H@H@F@R@@@J@L@H@P@F@F@L@H@@@D@D@D@B@D@H@D@H@J@D@F@H@H@H@@@H@H@L@D@J@H@D@F@F@H@J@F@D@J@F@F@H@F@F@D@F@D@D@D@J@F@J@J@F@H@H@S@F@H@H@F@N@H@J@B@D@B@F@F@F@H@D@H@F@L@F@F@J@J@H@B@F@B@F@F@@@Q@[@F@F@N@H@D@H@J@H@L@H@F@L@F@H@<@J@F@a@J@J@B@B@F@H@F@D@H@B@H@H@F@H@F@D@D@H@L@F@F@H@P@D@P@J@L@D@H@H@H@H@L@H@F@L@F@U@D@B@B@B@F@D@N@H@H@D@4@D@L@N@D@J@H@F@F@L@D@H@F@H@H@D@F@D@H@L@J@J@J@H@H@F@F@D@F@J@J@F@F@J@L@H@J@N@L@J@@@H@H@S@B@H@<@F@D@F@Q@F@F@L@F@@@B@H@D@8@D@D@H@@@H@H@J@D@F@H@D@J@@@F@D@F@F@D@F@H@H@J@B@F@H@D@H@H@F@F@H@F@F@P@J@B@H@F@H@J@J@R@J@F@D@F@H@J@F@F@F@B@]@H@H@D@B@F@F@F@J@B@F@H@J@F@H@L@H@F@^@J@D@F@L@J@B@D@D@R@F@F@H@@@F@@@F@F@J@J@D@B@D@H@D@D@N@B@H@J@B@D@H@J@J@F@D@H@J@B@J@N@@@H@D@@@D@J@D@F@H@F@D@Q@F@J@F@D@J@D@J@H@H@J@H@D@S@H@F@D@F@F@<@B@L@J@J@(@(@B@B@B@J@8@<@L@B@F@B@Q@D@L@H@Q@B@F@D@D@H@@@L@F@4@B@H@B@4@H@<@D@B@@@H@D@J@N@F@B@J@J@B@@@D@B@B@(@D@J@8@@@@@J@4@H@B@D@H@H@F@F@F@H@B@4@B@J@S@P@H@B@F@L@B@J@B@P@D@D@N@B@L@B@D@D@B@D@@@<@H@4@R@L@F@H@@@L@B@H@D@B@@@D@@@H@D@B@@@L@F@F@B@L@B@D@@@P@J@0@N@F@F@F@F@D@B@H@F@4@4@H@B@L@J@D@F@N@B@<@@@J@D@H@N@N@Q@D@D@@@D@<@@@D@D@B@F@F@H@@@@@H@Q@H@L@B@@@D@<@<@B@D@D@<@H@F@H@0@F@4@P@B@D@L@D@L@F@H@8@<@F@L@@@D@F@F@F@B@<@0@H@ @@@0@4@J@4@B@4@J@H@H@H@F@J@B@H@F@L@B@L@P@N@<@F@8@D@F@D@B@F@D@F@F@L@J@H@D@(@H@D@J@F@@@D@0@D@<@L@B@H@P@J@@@D@J@L@D@Q@8@S@<@D@L@D@H@L@<@L@D@B@B@J@X@R@F@B@F@B@D@J@4@H@H@N@D@D@J@H@@@F@B@L@D@H@8@F@0@B@@@F@J@L@@@B@<@0@D@<@H@F@<@J@D@L@N@B@D@H@H@Q@N@@@Q@B@L@H@F@D@F@D@F@N@D@D@S@L@D@F@D@J@@@L@@@S@J@F@D@D@L@X@8@B@N@L@H@@@F@L@(@0@B@L@F@H@F@B@R@<@F@@@N@H@^@F@H@D@L@T@4@R@V@F@4@R@B@F@L@H@B@0@D@D@J@H@4@L@D@4@J@B@D@@@N@D@D@N@0@0@4@0@@@<@<@B@<@@@8@<@<@@@D@<@@@J@B@<@@@<@<@D@D@8@<@<@@@8@@@8@@@<@@@<@8@8@B@<@@@<@@@D@@@4@D@H@@@0@4@<@<@@@4@8@B@L@D@@@@@<@<@B@8@8@<@@@<@4@<@@@B@8@@@<@D@B@B@B@@@B@@@<@D@<@F@@@€`@H@F@Q@R@B@<@<@8@8@@@D@<@@@<@8@H@4@<@<@@@D@8@F@@@<@D@8@8@B@B@8@<@8@<@@@8@@@@@<@<@B@J@@@D@<@@@<@F@<@8@<@<@8@8@@@<@8@<@<@8@F@8@4@D@4@@@<@<@@@8@<@<@@@<@F@@@H@D@B@@@4@8@B@<@<@<@@@D@4@8@@@8@F@B@<@<@D@8@8@<@<@F@H@U@@@8@F@D@F@<@@@F@D@<@<@<@@@<@0@<@<@Z@@@@@8@8@<@F@D@8@D@4@<@8@<@D@8@8@H@<@B@8@D@<@L@4@@@D@B@D@D@<@B@@@B@<@<@B@<@D@8@4@8@B@H@8@F@@@<@D@F@F@<@B@8@@@<@8@<@@@8@<@<@<@<@B@<@8@@@B@@@@@B@@@@@8@<@8@F@<@@@F@<@B@H@H@8@D@F@@@0@8@@@D@8@<@D@<@D@<@F@<@8@B@<@B@4@<@F@@@8@B@@@4@@@@@B@8@8@@@J@@@B@F@F@D@D@B@<@<@<@@@D@<@@@8@D@<@8@F@@@<@<@<@@@D@<@<@B@@@B@8@<@<@8@<@<@@@@@H@8@D@P@<@@@8@D@<@<@@@@@4@<@<@<@D@<@@@@@J@Q@@@8@<@B@@@8@4@4@<@@@<@<@D@<@4@D@8@<@@@8@B@8@<@H@<@B@D@<@@@4@D@<@@@@@<@8@@@@@4@@@8@D@8@<@4@4@@@B@8@<@8@D@F@@@@@8@<@@@8@<@@@<@B@ð?ð?ð?ð?ð?ð?ð?4@4@4@8@0@0@4@(@4@4@8@0@<@4@0@(@0@(@8@4@V@4@4@@@8@@@8@0@8@8@0@8@4@0@4@0@4@(@8@4@8@(@4@8@8@(@0@8@0@(@4@@@0@8@0@4@8@8@<@@@0@4@8@(@4@<@0@0@0@8@8@4@Q@4@8@4@@@4@4@8@4@0@0@<@8@0@8@8@<@<@8@8@4@@@0@4@4@4@8@4@4@<@0@<@8@4@8@4@4@0@0@8@B@D@0@8@4@4@0@4@8@4@0@8@0@0@<@<@(@4@4@0@0@0@8@0@0@(@4@0@0@L@H@F@P@J@B@F@H@D@F@D@D@F@H@P@H@H@J@P@Q@F@D@H@L@J@N@N@H@P@F@H@F@D@H@D@Q@H@J@J@Q@H@B@F@H@H@@@D@H@J@H@D@F@H@L@F@N@J@H@H@F@8@B@F@J@H@J@F@F@L@D@Q@P@S@L@J@B@J@F@H@Q@F@N@@@L@€b@H@F@[@^@J@D@F@D@F@H@F@J@J@H@B@S@B@N@R@F@Q@H@H@N@J@B@D@@@D@B@S@F@D@H@L@D@F@H@H@H@@@J@H@P@B@H@S@D@F@Q@F@J@D@F@T@D@F@S@F@D@D@F@D@B@B@H@B@J@Q@L@H@J@T@F@H@J@S@L@H@J@B@D@B@L@J@D@F@D@N@F@N@B@H@H@N@J@F@N@D@P@J@B@J@\@F@L@P@J@F@F@J@H@N@P@D@R@F@H@Q@H@F@€`@H@J@B@<@H@J@F@D@H@F@J@L@D@H@F@D@H@J@L@F@H@S@N@F@P@J@N@T@H@H@J@H@N@F@J@L@F@T@D@D@B@D@F@F@P@F@H@H@H@D@L@R@B@H@J@D@F@J@F@F@F@J@H@D@F@D@J@U@L@J@J@J@J@H@D@H@H@L@J@Q@L@L@L@J@H@P@N@Q@@@L@H@S@F@J@B@D@D@Q@S@H@J@V@H@B@B@H@D@8@J@D@D@B@H@H@Q@D@F@H@F@L@D@J@H@F@N@F@F@H@F@H@N@H@H@D@H@D@R@F@F@D@F@P@L@H@J@(@H@J@Q@J@R@N@N@F@F@H@L@@@J@F@F@^@H@H@H@D@H@D@F@J@B@F@H@N@H@J@L@D@H@b@H@F@D@L@J@B@^@H@N@F@D@H@B@H@<@F@S@J@L@D@F@H@H@J@B@N@D@F@J@B@D@H@J@J@D@T@H@J@D@R@B@@@H@B@<@H@J@D@H@H@L@D@R@D@F@D@D@J@D@J@F@F@H@F@R@D@H@L@D@8@B@J@B@H@@@B@4@B@H@@@(@B@L@P@<@D@B@@@L@D@0@@@F@B@H@4@B@F@B@F@J@D@F@H@@@D@B@@@H@8@F@D@F@F@D@D@@@H@N@J@0@<@D@N@@@H@N@B@H@L@<@B@4@<@F@0@L@D@F@J@B@D@8@8@B@<@D@J@J@D@H@B@@@@@H@H@J@F@B@D@D@F@J@H@H@H@D@D@@@H@B@F@H@Q@J@B@B@B@@@D@B@B@4@N@D@H@F@D@B@B@D@F@F@(@4@N@B@J@@@H@8@8@8@B@J@B@D@F@F@8@<@F@<@<@F@F@D@F@D@J@B@F@<@L@J@N@P@4@@@B@D@L@D@D@F@F@L@J@H@B@(@F@B@H@B@(@B@8@N@H@L@F@B@D@J@B@Q@P@4@F@F@H@J@8@H@V@N@D@@@N@4@0@J@F@F@B@B@H@H@B@F@@@4@D@0@B@B@H@J@<@B@<@B@4@F@J@D@J@R@B@D@P@L@F@P@J@F@B@B@B@D@P@B@B@R@L@D@H@L@H@4@J@B@J@4@B@R@L@F@@@F@L@@@J@B@D@S@D@<@L@D@[@D@F@B@L@@@0@Q@V@4@D@R@F@D@@@(@B@D@F@4@L@D@8@H@@@J@@@L@@@D@4@4@<@@@<@8@D@@@D@8@8@8@F@D@8@<@H@D@<@<@<@<@D@D@D@8@B@<@8@@@<@B@<@<@8@@@8@B@8@@@<@<@B@<@4@D@H@@@0@4@8@<@@@4@4@D@L@D@<@<@8@<@B@8@B@8@<@8@8@8@@@@@8@@@8@H@B@<@B@<@F@<@@@D@<@F@@@Z@J@H@P@R@B@8@<@4@<@<@F@8@B@<@@@F@D@<@<@<@B@B@H@@@@@B@4@@@D@@@D@8@4@<@@@8@@@8@@@B@D@H@<@F@4@<@8@F@8@8@B@8@F@8@<@8@4@8@8@8@D@4@4@D@0@<@4@<@<@B@8@<@<@8@D@@@F@B@D@<@4@@@B@H@D@8@<@D@8@8@@@@@D@@@8@8@F@D@<@D@8@F@F@N@<@<@D@F@H@8@D@F@H@D@8@<@<@8@@@8@<@X@D@<@4@@@<@F@D@8@F@8@<@<@4@F@8@8@F@<@@@8@D@8@N@8@<@H@B@D@F@8@F@8@B@B@@@@@<@B@8@8@8@B@H@@@F@<@8@F@D@4@<@B@4@8@<@4@<@<@<@8@<@<@<@F@<@8@<@@@@@<@@@@@@@<@8@8@F@<@<@H@@@B@J@H@4@D@H@8@@@8@<@F@8@<@4@D@D@B@F@<@8@@@<@D@4@8@F@@@8@D@8@4@<@<@@@4@4@<@J@<@B@H@H@D@F@D@8@<@8@<@D@<@<@4@D@B@4@F@<@8@<@@@<@J@<@F@F@B@<@@@<@@@@@8@8@<@@@4@H@8@D@N@<@<@8@D@<@8@<@<@@@8@<@<@D@@@<@8@H@R@8@4@D@@@<@4@N@B@8@<@8@<@D@<@0@D@8@<@<@8@D@D@<@H@@@@@D@D@@@@@D@<@@@<@8@D@<@<@B@<@4@D@<@4@0@B@<@B@<@B@<@D@H@<@D@8@8@<@8@<@@@B@@@ð?ð?ð?ð?ð?ð?ð?ð?ð?š™™™™™É¿333333ã¿ð?ÍÌÌÌÌÌì?à?à¿333333Ó¿š™™™™™¹?š™™™™™¹¿š™™™™™Ù¿š™™™™™Ù?š™™™™™É¿š™™™™™É?š™™™™™É?š™™™™™¹?à¿à¿š™™™™™¹?à?࿚™™™™™Ù?š™™™™™¹?š™™™™™¹¿ÍÌÌÌÌÌ쿚™™™™™¹?š™™™™™¹?ÍÌÌÌÌÌì¿333333û¿š™™™™™¹?ffffffæ¿333333㿚™™™™™É?š™™™™™¹¿š™™™™™¹?š™™™™™Ù?š™™™™™é¿š™™™™™É¿333333Ó¿š™™™™™¹¿š™™™™™¹¿333333㿚™™™™™É¿š™™™™™¹?࿚™™™™™é¿š™™™™™É?š™™™™™¹?š™™™™™¹¿š™™™™™É¿333333㿚™™™™™¹¿333333Ó¿š™™™™™Ù¿333333Ó¿š™™™™™¹?š™™™™™¹?333333Ó¿š™™™™™¹¿š™™™™™¹¿à¿333333Ó¿333333㿚™™™™™¹?š™™™™™Ù¿ð¿š™™™™™¹?ffffffæ¿333333ã?š™™™™™¹¿à¿š™™™™™É¿š™™™™™¹?š™™™™™Ù¿333333Ó¿š™™™™™¹¿ø¿à¿š™™™™™¹¿š™™™™™É¿š™™™™™Àš™™™™™¹¿š™™™™™É?š™™™™™¹?š™™™™™¹?š™™™™™Ù¿š™™™™™É¿š™™™™™É?𿚙™™™™¹?š™™™™™¹¿š™™™™™É¿333333Ó¿š™™™™™¹¿š™™™™™¹?š™™™™™É¿š™™™™™¹¿š™™™™™Ù?š™™™™™¹?š™™™™™É?࿚™™™™™¹?࿚™™™™™¹¿ð¿š™™™™™¹?š™™™™™¹¿š™™™™™¹¿š™™™™™Ù?š™™™™™é¿š™™™™™É?࿚™™™™™É¿š™™™™™Ù?š™™™™™¹?333333Ó¿š™™™™™Ù?ÍÌÌÌÌÌì?š™™™™™¹¿š™™™™™¹¿ffffffæ?š™™™™™É?š™™™™™Ù?š™™™™™¹?࿚™™™™™É?š™™™™™Ù?š™™™™™É?š™™™™™É¿š™™™™™É¿333333Ó?333333Ó¿333333Ó¿ð?š™™™™™Ù¿š™™™™™É¿š™™™™™¹?š™™™™™Ù¿š™™™™™Ù¿š™™™™™¹¿ÍÌÌÌÌÌì¿ð¿š™™™™™¹¿333333Ó¿š™™™™™¹¿š™™™™™¹¿à¿à¿ffffff濚™™™™™¹¿ÍÌÌÌÌÌì¿à¿š™™™™™Ù?333333ó¿ð¿333333Àš™™™™™¹¿333333Ó¿333333㿚™™™™™¹¿š™™™™™¹?š™™™™™¹¿š™™™™™Ù¿š™™™™™ñ?࿚™™™™™Ù¿š™™™™™É¿ffffffö¿333333Ó¿š™™™™™¹?š™™™™™Ù¿333333Ó¿ð¿333333ã¿333333Ó¿š™™™™™É?333333ã?à¿ÍÌÌÌÌÌì?à¿333333ã?š™™™™™¹¿ð¿š™™™™™é?š™™™™™É¿š™™™™™Ù¿š™™™™™¹¿š™™™™™¹?š™™™™™¹¿š™™™™™Ù¿š™™™™™¹?333333Ó?š™™™™™¹¿333333Ó¿š™™™™™é¿š™™™™™¹?ÍÌÌÌÌÌì¿333333Ó¿ffffffö¿š™™™™™¹?ffffffæ¿à¿ffffffæ¿333333Ó¿ffffffö¿š™™™™™¹?333333ã¿à¿š™™™™™É?š™™™™™É¿š™™™™™é¿š™™™™™¹?333333Ó¿ffffffæ¿ð¿ffffffæ¿ÍÌÌÌÌÌô¿š™™™™™¹?࿚™™™™™Ù¿š™™™™™é¿š™™™™™É?š™™™™™É¿š™™™™™¹¿š™™™™™¹?࿚™™™™™¹?333333Ó¿š™™™™™É¿š™™™™™É?š™™™™™Ù¿š™™™™™Ù¿š™™™™™¹¿š™™™™™Ù¿à¿š™™™™™É¿š™™™™™¹¿š™™™™™¹¿š™™™™™¹¿333333Ó¿š™™™™™¹?à¿à¿à¿ffffffæ?ffffffæ¿333333Ó¿ÍÌÌÌÌÌô¿ffffffö?333333Ó?š™™™™™É¿š™™™™™¹?š™™™™™É¿š™™™™™¹¿333333㿚™™™™™Ù¿š™™™™™É?š™™™™™Ù?š™™™™™¹?𿚙™™™™¹¿š™™™™™É¿333333㿚™™™™™¹?ÍÌÌÌÌÌì?š™™™™™Ù¿š™™™™™É¿à¿š™™™™™Ù?à¿ÍÌÌÌÌÌì¿ÍÌÌÌÌÌÀš™™™™™É?333333Ó¿š™™™™™Ù¿ffffffæ¿ffffff濚™™™™™¹¿š™™™™™Ù¿333333ã?š™™™™™¹?š™™™™™É?š™™™™™¹¿š™™™™™Ù?š™™™™™Ù¿š™™™™™É¿š™™™™™¹¿š™™™™™É?š™™™™™¹?à?š™™™™™¹¿š™™™™™¹¿š™™™™™É?333333Ó¿ffffff濚™™™™™é¿š™™™™™¹¿ð¿š™™™™™¹¿à¿š™™™™™é¿š™™™™™Ù¿333333ã¿ÍÌÌÌÌÌô¿š™™™™™é¿š™™™™™¹¿à¿š™™™™™¹?š™™™™™¹?𿚙™™™™¹¿ø¿ffffffö¿333333Ó¿ffffff濚™™™™™É¿š™™™™™Ù¿333333㿚™™™™™¹?š™™™™™É?333333ó¿š™™™™™¹?š™™™™™¹?š™™™™™¹?š™™™™™¹¿š™™™™™É¿"ÀÍÌÌÌÌÌô¿š™™™™™É¿š™™™™™Ù?š™™™™™Ù¿333333Ó¿ffffffö¿333333㿚™™™™™É?ffffff濚™™™™™¹¿š™™™™™É¿š™™™™™Ù?š™™™™™É¿333333ã?333333Ó?š™™™™™É¿š™™™™™¹¿š™™™™™É?333333㿚™™™™™¹¿ffffffæ¿333333Ó¿š™™™™™¹¿š™™™™™¹?š™™™™™¹¿333333Ó¿š™™™™™É¿š™™™™™Ù¿š™™™™™¹?š™™™™™É¿š™™™™™Ù¿à¿š™™™™™É¿333333㿚™™™™™Ù?š™™™™™¹?š™™™™™¹?š™™™™™¹¿š™™™™™É¿ð?333333Ó¿333333ã?333333Ó¿š™™™™™É?š™™™™™É?š™™™™™¹¿333333Ó¿š™™™™™¹¿š™™™™™¹?š™™™™™¹¿à¿š™™™™™¹¿š™™™™™¹?š™™™™™¹?š™™™™™¹?š™™™™™É¿š™™™™™¹?š™™™™™Ù¿š™™™™™Ù¿à¿š™™™™™Ù¿333333ã¿à¿à¿š™™™™™é¿333333㿚™™™™™Ù¿š™™™™™Ù¿š™™™™™Ù¿à¿333333ã¿ffffffæ¿à¿š™™™™™Ù¿ÍÌÌÌÌÌÀ333333㿚™™™™™Ù¿ÍÌÌÌÌÌì¿ffffffæ¿ffffff濚™™™™™é¿š™™™™™é¿š™™™™™Àà¿ð¿š™™™™™Ù¿š™™™™™Ù¿ffffffæ¿333333㿚™™™™™Ù¿ÍÌÌÌÌÌô¿ð¿š™™™™™Ù¿š™™™™™Ù¿333333ã¿333333ã¿ÍÌÌÌÌÌì¿333333㿚™™™™™Ù¿š™™™™™é¿š™™™™™ñ¿ø¿š™™™™™Ù¿ffffffö¿333333ã¿ð¿š™™™™™é¿š™™™™™é¿à¿à¿ÍÌÌÌÌÌÀ࿚™™™™™é¿š™™™™™Ù¿ffffff濚™™™™™Ù¿ffffffæ¿à¿ffffffæ¿333333㿚™™™™™é¿š™™™™™é¿ÍÌÌÌÌÌü¿ø¿š™™™™™Ù¿à¿š™™™™™Ù¿333333ã¿à¿333333ã¿ffffffæ¿ffffff濚™™™™™Ù¿š™™™™™é¿š™™™™™ñ¿ð¿333333ã¿ÍÌÌÌÌÌÀ࿚™™™™™Ù¿š™™™™™Ù¿ffffffæ¿333333㿚™™™™™Ù¿ð¿à¿333333㿚™™™™™Ù¿Àffffffæ¿ÍÌÌÌÌÌì¿333333ã¿ffffffÀš™™™™™Ù¿š™™™™™Ù¿333333ã¿ffffffæ¿ÍÌÌÌÌÌü¿ð¿š™™™™™ñ¿à¿š™™™™™Ù¿à¿à¿ffffffæ¿à¿à¿ÍÌÌÌÌÌì¿333333ã¿à¿š™™™™™Ù¿333333ã¿à¿ffffffæ¿333333ã¿333333㿚™™™™™Ù¿ffffff@ÍÌÌÌÌÌ@@333333@ÍÌÌÌÌÌ@š™™™™™@ÍÌÌÌÌÌü?ffffff@ffffff@ @333333@ffffff@333333@š™™™™™ @ffffff$@ffffff@š™™™™™@š™™™™™ @333333@#@333333@@ÍÌÌÌÌÌ@š™™™™™@ffffff@ @ffffffþ?333333@ÍÌÌÌÌÌ$@ffffff)@333333@ffffff@333333@ÍÌÌÌÌÌ"@ffffff@@ÍÌÌÌÌÌ @ffffff@'@333333!@ @@333333@š™™™™™@š™™™™™@ÍÌÌÌÌÌ@ @@ÍÌÌÌÌÌ @š™™™™™&@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ@ffffff!@ffffff@333333@š™™™™™#@ffffff@@ffffff@ @333333@@ffffff@ÍÌÌÌÌÌ @@333333@333333@š™™™™™@ÍÌÌÌÌÌ@333333@ÍÌÌÌÌÌ @ffffff@š™™™™™ @ffffff%@ÍÌÌÌÌÌ @333333 @ffffff@ @š™™™™™@333333@333333@š™™™™™@š™™™™™ @š™™™™™ @ÍÌÌÌÌÌ @333333@š™™™™™@333333û?@@ÍÌÌÌÌÌ@ffffff@ÍÌÌÌÌÌ!@@ffffff@š™™™™™@š™™™™™@ @333333$@ @š™™™™™@š™™™™™!@333333@ffffff&@š™™™™™ @ @333333 @ffffff @@š™™™™™@ffffff@š™™™™™@š™™™™™@@š™™™™™@333333!@@ @333333%@333333 @š™™™™™@@š™™™™™@ÍÌÌÌÌÌ@š™™™™™@@333333@ÍÌÌÌÌÌ)@ÍÌÌÌÌÌ@@@@ÍÌÌÌÌÌ @333333@ffffff@ÍÌÌÌÌÌ @ffffff @ÍÌÌÌÌÌ@@ffffff(@ffffff@ffffff@ffffff@ffffff@333333@ÍÌÌÌÌÌ@333333@333333@š™™™™™@@333333@š™™™™™ @333333@ÍÌÌÌÌÌ@š™™™™™@@@333333@ffffff@ÍÌÌÌÌÌ$@š™™™™™@@ffffff@š™™™™™@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ@ffffff@333333@ÍÌÌÌÌÌ @ffffff@ffffff@333333%@ffffff@@š™™™™™@š™™™™™@333333-@333333"@ffffff@@š™™™™™@333333@333333@333333@333333 @ffffff@ÍÌÌÌÌÌ@$@š™™™™™@ÍÌÌÌÌÌ@333333#@ @333333@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ@@ÍÌÌÌÌÌô?,@ffffff @@ÍÌÌÌÌÌ/@@333333û?@š™™™™™@@š™™™™™@@š™™™™™@ÍÌÌÌÌÌô?š™™™™™@ffffff@ffffff @ÍÌÌÌÌÌ@ÍÌÌÌÌÌ@š™™™™™@@@ÍÌÌÌÌÌ @ffffff@ÍÌÌÌÌÌ@333333@š™™™™™@333333 @@ffffff@ÍÌÌÌÌÌ@!@333333 @ffffff @ffffff@333333#@š™™™™™@ÍÌÌÌÌÌ @@ @333333 @š™™™™™&@ffffff@333333@ffffff"@ffffff@@333333 @@š™™™™™#@š™™™™™@š™™™™™ @š™™™™™@š™™™™™ @ffffff@š™™™™™$@š™™™™™@š™™™™™@ffffff&@š™™™™™@ÍÌÌÌÌÌ@333333@ÍÌÌÌÌÌ'@š™™™™™@333333%@@ffffff@ffffff@ffffff@@@333333@š™™™™™@š™™™™™@ffffff@ffffff@ffffff!@ffffff@š™™™™™,@ÍÌÌÌÌÌ@333333@333333@š™™™™™!@ÍÌÌÌÌÌ@ffffff@333333@š™™™™™@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ@@333333 @š™™™™™@333333$@333333@@ÍÌÌÌÌÌ@š™™™™™@ffffff%@ffffff-@333333@ÍÌÌÌÌÌ!@š™™™™™'@ffffff @"@š™™™™™@333333!@333333@ÍÌÌÌÌÌ@333333@#@ffffff @ffffff@ffffff@ÍÌÌÌÌÌ(@@333333 @ffffff@333333@ÍÌÌÌÌÌô?š™™™™™@333333@333333#@š™™™™™ @@333333@š™™™™1@š™™™™™ @ffffff@333333@ÍÌÌÌÌÌ#@333333@@ffffff@@333333@@š™™™™™@ÍÌÌÌÌÌ@ffffff@ÍÌÌÌÌÌ@@ÍÌÌÌÌÌ@ffffff@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ@@š™™™™™@ÍÌÌÌÌÌ@@333333ã?@@@!@š™™™™™@ffffff@333333@333333!@ÍÌÌÌÌÌ@ffffff@ÍÌÌÌÌÌ)@š™™™™™!@š™™™™™@š™™™™™!@ÍÌÌÌÌÌ@ffffff@ÍÌÌÌÌÌ&@333333@š™™™™™@@š™™™™™@333333@ÍÌÌÌÌÌ @ffffff@$@ÍÌÌÌÌÌ@ffffff"@š™™™™™@ffffff@333333@333333@333333 @ffffff@@333333%@š™™™™™@ÍÌÌÌÌÌ"@š™™™™™ù?ffffff$@fffffæ3@333333)@ffffff@š™™™™™@333333@333333@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ@š™™™™™@š™™™™™ @ @@š™™™™™@š™™™™™@ÍÌÌÌÌÌ'@š™™™™™ @š™™™™™@333333û?ÍÌÌÌÌÌ@ÍÌÌÌÌL2@ffffff @333333#@ffffff!@ÍÌÌÌÌÌ$@@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ @333333@ÍÌÌÌÌÌ@ffffff@ÍÌÌÌÌÌ@333333@333333@ffffff@333333@ffffff@š™™™™™ @333333@š™™™™™@@š™™™™™@ÍÌÌÌÌÌ@ffffff@333333@@@ffffff@ffffff@333333@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ @@@333333@š™™™™™@ÍÌÌÌÌÌ@ffffff@ffffff@ffffff@ÍÌÌÌÌÌ@ffffff @ÍÌÌÌÌÌ @ÍÌÌÌÌÌ@š™™™™™$@ð¿ffffffÀffffffæ¿ffffffö¿š™™™™™Àš™™™™™ñ¿Àffffffþ¿333333û¿š™™™™™é¿333333ã¿ÍÌÌÌÌÌì¿ffffffö¿333333ã¿ffffffö¿š™™™™™é¿š™™™™™Ù¿ffffffæ¿ffffff Àš™™™™™ñ¿ð¿ÍÌÌÌÌÌ쿚™™™™™ù¿ÍÌÌÌÌÌü¿333333ó¿ø¿ffffffö¿ÍÌÌÌÌÌÀÍÌÌÌÌÌì¿ffffffÀÍÌÌÌÌÌô¿ÍÌÌÌÌÌô¿ÍÌÌÌÌÌì¿ffffffæ¿ffffffÀÀÍÌÌÌÌÌü¿Àš™™™™™ù¿š™™™™™ñ¿š™™™™™ù¿333333㿚™™™™™ù¿333333ó¿ ÀÍÌÌÌÌÌì¿ÍÌÌÌÌÌô¿ÍÌÌÌÌÌì¿ÀÍÌÌÌÌÌô¿š™™™™™ñ¿ð¿333333û¿ð¿333333ÀÍÌÌÌÌÌô¿ÍÌÌÌÌÌ À333333ã¿ð¿š™™™™™ñ¿ffffffÀš™™™™™é¿à¿333333㿚™™™™™ù¿333333û¿ø¿ÍÌÌÌÌÌ쿚™™™™™ñ¿š™™™™™Ù¿š™™™™™ù¿š™™™™™ñ¿ À333333ã¿ffffffö¿à¿š™™™™™ñ¿ffffffæ¿ÍÌÌÌÌÌô¿ffffff'À333333ã¿ø¿š™™™™™ÀffffffÀš™™™™™Ù¿ÀÍÌÌÌÌÌÀ333333û¿ÍÌÌÌÌÌì¿à¿ÍÌÌÌÌÌÀ333333û¿š™™™™™é¿š™™™™™ñ¿ÍÌÌÌÌÌü¿ffffffæ¿à¿ÍÌÌÌÌÌÀð¿ÍÌÌÌÌÌü¿Àffffffö¿À333333ó¿š™™™™™Àš™™™™™ñ¿à¿333333ã¿ÍÌÌÌÌÌÀÍÌÌÌÌÌô¿ÍÌÌÌÌÌÀš™™™™™ù¿333333ó¿ÍÌÌÌÌÌì¿À333333Àø¿ø¿333333ó¿š™™™™™é¿ÍÌÌÌÌÌü¿Àà¿333333ó¿ð¿333333ã¿333333Àffffff濚™™™™™é¿ffffffæ¿333333ã¿ffffffÀš™™™™™é¿ffffffö¿333333û¿ffffffÀš™™™™™Àð¿333333û¿333333㿚™™™™™Àš™™™™™ñ¿333333ã¿ffffffö¿333333ó¿ÍÌÌÌÌÌÀffffffþ¿ÍÌÌÌÌÌì¿ffffffÀÀffffffþ¿š™™™™™Ù¿ø¿333333ÀÀÍÌÌÌÌÌô¿ø¿ÍÌÌÌÌÌü¿à¿š™™™™™Ù¿333333ó¿š™™™™™ù¿ÍÌÌÌÌÌü¿ÍÌÌÌÌÌü¿333333ã¿ð¿š™™™™™é¿333333û¿333333û¿333333ó¿333333À333333ó¿ffffff À333333ã¿à¿š™™™™™ÀÀÍÌÌÌÌÌô¿š™™™™™ñ¿ À ÀÍÌÌÌÌÌô¿š™™™™™Ù¿ÍÌÌÌÌÌÀ333333û¿ffffffÀffffffÀ333333À333333㿚™™™™™ñ¿š™™™™™Ù¿ÍÌÌÌÌÌì¿ÍÌÌÌÌÌü¿Àš™™™™™ù¿ð¿ÍÌÌÌÌÌô¿š™™™™™ñ¿ð¿ÍÌÌÌÌÌÀÍÌÌÌÌÌô¿ø¿ð¿š™™™™™ù¿š™™™™™Àš™™™™™ Àffffffþ¿À333333Àš™™™™™é¿333333 Àš™™™™™é¿ffffffæ¿ø¿ffffffö¿š™™™™™Ù¿ffffffæ¿333333ÀffffffÀ333333û¿333333㿚™™™™™é¿333333ÀÍÌÌÌÌÌô¿ffffffö¿ffffffþ¿ÍÌÌÌÌÌô¿À Àš™™™™™ù¿š™™™™™é¿333333㿚™™™™™+À333333ã¿ffffffÀÍÌÌÌÌÌ쿚™™™™™ ÀÍÌÌÌÌÌô¿ÍÌÌÌÌÌô¿ÍÌÌÌÌÌì¿Àš™™™™™Ù¿ffffff ÀÍÌÌÌÌÌÀš™™™™™ À333333ó¿š™™™™™é¿333333ã¿333333û¿ÍÌÌÌÌÌÀ333333㿚™™™™™é¿š™™™™™ñ¿333333û¿š™™™™™é¿ffffffö¿à¿š™™™™™ù¿333333À333333û¿ffffffþ?š™™™™™Ù?š™™™™™Ù?š™™™™™Ù?333333ã?š™™™™™Ù?333333Ó?š™™™™™ñ?ÍÌÌÌÌÌì?ÍÌÌÌÌÌì?š™™™™™É?š™™™™™é?š™™™™™Ù?š™™™™™Ù?š™™™™™é?š™™™™™é?š™™™™™é?š™™™™™Ù?333333ã?333333Ó?š™™™™™Ù?š™™™™™É?ffffffæ?ÍÌÌÌÌÌì?ffffffæ?à?š™™™™™é?333333ã?š™™™™™É¿333333Ó¿š™™™™™é?ffffffæ?ÍÌÌÌÌÌì?333333Ó?333333ã?à?š™™™™™¹¿ffffffæ?ffffffæ?š™™™™™Ù?ffffffö?š™™™™™ù?333333ó?š™™™™™Ù?333333ã?à?š™™™™™é?333333ã?š™™™™™Ù?š™™™™™ñ?ffffffæ?à?333333Ó?ð?ffffffæ?š™™™™™é?š™™™™™é?š™™™™™Ù?š™™™™™É¿ffffffæ?333333ã?š™™™™™é?333333ã?š™™™™™Ù¿ð?š™™™™™é?š™™™™™é?š™™™™™Ù?ÍÌÌÌÌÌì?333333ã?333333ã?š™™™™™é?š™™™™™é?š™™™™™é?š™™™™™é?š™™™™™é?š™™™™™é?š™™™™™ù?ffffffæ?333333ã?ffffffæ?ffffffæ?à?333333ã?333333ã?š™™™™™é?š™™™™™É?ffffffæ?š™™™™™É?333333Ó?à?š™™™™™é?š™™™™™¹¿ÍÌÌÌÌÌì?ÍÌÌÌÌÌì?333333Ó?ÍÌÌÌÌÌì?ÍÌÌÌÌÌì?š™™™™™Ù?ÍÌÌÌÌÌì?š™™™™™é?š™™™™™é?ÍÌÌÌÌÌì?ð?333333ã?ffffffæ?š™™™™™é?333333ã?333333Ó?ð?ð?à?ffffffæ?333333ã?ÍÌÌÌÌÌì?ð?š™™™™™Ù?à?ÍÌÌÌÌÌì?333333ã?ffffffæ?333333Ó?š™™™™™Ù?333333ã?à?ÍÌÌÌÌÌì?࿚™™™™™Ù?š™™™™™é?333333ó?ffffffæ?ffffffæ?ð?333333Ó?š™™™™™ñ?š™™™™™Ù?à?ffffffæ?à?š™™™™™ñ?š™™™™™é?š™™™™™É?š™™™™™é?ffffffæ?ø?š™™™™™é?š™™™™™é?333333ã?à?333333ã?š™™™™™é?ffffffæ?333333Ó?333333ã?ffffffæ?333333ã?à?à?š™™™™™é?š™™™™™é?ÍÌÌÌÌÌì?ffffffæ?333333Ó?ffffffæ?ÍÌÌÌÌÌì?333333ó?š™™™™™é?à?š™™™™™Ù?à?ÍÌÌÌÌÌì?ð?š™™™™™ñ?š™™™™™é?à?š™™™™™Ù?à?333333Ó?ÍÌÌÌÌÌì?333333ã?ffffffæ?ÍÌÌÌÌÌì?à?ð?333333ã?ÍÌÌÌÌÌì?à?333333ó?š™™™™™é?š™™™™™Ù?à?š™™™™™é?à?à?š™™™™™Ù?ÍÌÌÌÌÌì?333333Ó?ÍÌÌÌÌÌì?š™™™™™é?š™™™™™Ù?à?333333ó?à?š™™™™™é?ð?ÍÌÌÌÌÌì?333333ã?š™™™™™É¿333333ã?à?à?ø?333333ã?ÍÌÌÌÌÌì?333333ã?š™™™™™ñ?333333ã?š™™™™™é?š™™™™™é?š™™™™™Ù?š™™™™™É¿ð?š™™™™™Ù?š™™™™™é?333333Ó?à?333333ã?ffffffæ?ffffffæ?ð?ð?333333Ó?ð?ð?333333ã?333333Ó?ffffffæ?333333ã?š™™™™™Ù?à?ÍÌÌÌÌÌì?ð?ffffffæ?333333ó?ÍÌÌÌÌÌì?š™™™™™É?š™™™™™¹¿š™™™™™Ù?ð?š™™™™™Ù?š™™™™™é?à?à?š™™™™™É¿š™™™™™Ù?ffffffæ?š™™™™™é?š™™™™™é?ð?ffffffæ?ÍÌÌÌÌÌì?ÍÌÌÌÌÌì?333333û?333333ã?ffffffæ?š™™™™™Ù?š™™™™™é?à?333333ã?ð?š™™™™™é?ffffffæ?š™™™™™é?ð¿333333ã?š™™™™™É?333333ã?ffffffæ?š™™™™™ñ?333333ã?à?333333Ó¿ð?ffffffæ?ffffffæ?ÍÌÌÌÌÌì?ffffffæ?333333ã?ffffffæ?à?š™™™™™Ù?š™™™™™é?ffffffæ?ÍÌÌÌÌÌì?333333ã?š™™™™™é?ffffffæ?à?š™™™™™Ù?ÍÌÌÌÌÌô?š™™™™™É¿š™™™™™é?333333ã?ÍÌÌÌÌÌô?ffffffæ?ÍÌÌÌÌÌì?š™™™™™Ù?š™™™™™Ù?š™™™™™Ù?333333ã?š™™™™™É?š™™™™™Ù?š™™™™™¹¿ÍÌÌÌÌÌô?š™™™™™ñ?ffffffæ?ÍÌÌÌÌÌì?ffffffæ?333333ã?ÍÌÌÌÌÌì?333333ã?š™™™™™ñ?ð?ð?333333ã?333333ã?à?333333Ó?à?š™™™™™Ù?ð?š™™™™™Ù?ð?ffffffæ?333333Ó?333333Ó?š™™™™™Ù?š™™™™™Ù?ffffffæ?333333ã?š™™™™™Ù?333333ã?333333Ó¿ð?š™™™™™é?à?ffffffæ?š™™™™™Ù?333333ã?ÍÌÌÌÌÌì?ffffffö?ð?à?333333Ó?š™™™™™É?333333ó?š™™™™™é?ffffffæ?333333Ó?à?ÍÌÌÌÌÌô?ffffffö?ÍÌÌÌÌÌì?ÍÌÌÌÌÌì?š™™™™™Ù?š™™™™™é?à?ffffffæ?š™™™™™É?š™™™™™É?ffffffæ?š™™™™™é?333333ã?ffffffæ?ffffffæ?333333ã?333333ã?à?š™™™™™é?ð?š™™™™™é?ð?š™™™™™é?à?333333ó?š™™™™™Ù?ð?š™™™™™¹¿333333ó?ø?ffffffæ?à?š™™™™™é?333333ã?ffffffæ?333333Ó?à?ÍÌÌÌÌÌì?333333ã?ð?š™™™™™é?ÍÌÌÌÌÌì?ffffffæ?š™™™™™é?ø¿à?š™™™™™Ù?š™™™™™Ù?ÍÌÌÌÌÌô?ffffffæ?333333ã?333333ã?š™™™™™É?à?ÍÌÌÌÌÌì?š™™™™™Ù?à?333333ã?à?š™™™™™é?š™™™™™é?š™™™™™é?333333Ó?ÍÌÌÌÌÌì?ÍÌÌÌÌÌô?š™™™™™ñ?š™™™™™Ù?š™™™™™Ù?š™™™™™Ù?ð?š™™™™™ñ?à?à?ÍÌÌÌÌÌì?š™™™™™¹¿à?à?ÍÌÌÌÌÌì?š™™™™™é?à?š™™™™™Ù?ffffffæ?š™™™™™é?ffffffæ?ÍÌÌÌÌÌì?333333ã?š™™™™™Ù?š™™™™™é?ffffffæ?ÍÌÌÌÌÌô?ffffffæ?333333ã?ÍÌÌÌÌÌ@ø?@ffffffþ?ffffff@333333û?ð?ð?ð?ÍÌÌÌÌÌô?š™™™™™Ù?š™™™™™ù?ffffffæ?š™™™™™ñ?ffffff@333333û?ffffffæ?à?ð?333333û?@333333Ó?ð?ð?ffffffþ?ø¿ÍÌÌÌÌÌô?ÍÌÌÌÌÌü?ffffffö¿333333û¿333333ó?ð?333333@ð?ffffffæ?ð?ÍÌÌÌÌÌü?ÍÌÌÌÌÌ@š™™™™™ @š™™™™™ù?ø?ÍÌÌÌÌÌô?ÍÌÌÌÌÌô?š™™™™™ñ?ffffffö?š™™™™™é?š™™™™™ù?š™™™™™é?š™™™™™Ù?š™™™™™Ù?š™™™™™é?ffffffö?333333ó?ø?š™™™™™¹?@š™™™™™ù?ð?š™™™™™Ù?ffffffæ?ð?š™™™™™@333333ó?333333û?ÍÌÌÌÌÌü?ÍÌÌÌÌÌì?à¿ÍÌÌÌÌÌ@š™™™™™ñ?š™™™™™ñ?333333@333333@š™™™™™ñ?333333û?ÍÌÌÌÌÌ@š™™™™™ù?ÍÌÌÌÌÌô¿333333ã?ÍÌÌÌÌÌì?š™™™™™é?ÍÌÌÌÌÌì?ÍÌÌÌÌÌü?š™™™™™Ù?š™™™™™¹?333333Ó?š™™™™™ñ¿333333û¿333333ã?ÍÌÌÌÌÌô¿ÍÌÌÌÌÌü¿ø?333333ó?ffffff@ð?ø?333333ó?333333û?š™™™™™@ffffffþ?ð¿333333û?à?š™™™™™Ù?@ÍÌÌÌÌÌô?à?333333Ó?ÍÌÌÌÌÌ@333333Ó?ð¿ÍÌÌÌÌÌü?ffffffö?ð?333333 @@š™™™™™@@@ffffffþ?à?ÍÌÌÌÌÌì?š™™™™™é?ffffffö?ÍÌÌÌÌÌì?333333ã?š™™™™™@ffffffæ?ÍÌÌÌÌÌì?ffffffæ?š™™™™™é?š™™™™™é?ffffffæ?ÍÌÌÌÌÌô?@ffffffþ?333333ó?333333û?333333ã?ÍÌÌÌÌÌì?ÍÌÌÌÌÌô?ø?š™™™™™ñ?ø?333333@@š™™™™™@@333333@333333ó?š™™™™™ù?š™™™™™é?ÍÌÌÌÌÌ@333333@@š™™™™™ù?š™™™™™@š™™™™™ù?ffffffæ?333333û?š™™™™™ñ?@š™™™™™ñ?ø?ffffffþ?ÍÌÌÌÌÌô?š™™™™™Ù?333333ó?ffffff@š™™™™™ñ?ffffff濚™™™™™Ù?ÍÌÌÌÌÌì?333333ó?333333ã?à?š™™™™™ù?ÍÌÌÌÌÌô?@ÍÌÌÌÌÌü?à¿ffffffö?ffffffö?ð¿333333Ó?ffffffö¿333333ã¿ÍÌÌÌÌÌì?ÍÌÌÌÌÌì¿333333㿚™™™™™À@š™™™™™é?à?š™™™™™é?š™™™™™ù?ÍÌÌÌÌÌô?333333ó?ø?ÍÌÌÌÌÌ@š™™™™™@š™™™™™Ù?ÍÌÌÌÌÌì?333333û¿ÍÌÌÌÌÌ@š™™™™™é¿ÍÌÌÌÌÌô?333333û?ffffffö¿333333@333333Ó?š™™™™™Ù?š™™™™™ñ?š™™™™™É¿333333û?š™™™™™é?@ffffffö¿š™™™™™ù?š™™™™™Ù¿š™™™™™é?ÍÌÌÌÌÌ@ÍÌÌÌÌÌü?ÍÌÌÌÌÌô?333333ã?333333ã?š™™™™™ù?ffffffö?@š™™™™™é?ffffffæ?ð¿ffffffþ?ffffff濚™™™™™ù?ø¿ø?ÍÌÌÌÌÌì¿à¿š™™™™™@š™™™™™é?333333û¿333333@333333Ó?ÍÌÌÌÌÌü?333333ã¿ÍÌÌÌÌÌô?ffffffæ?à?š™™™™™ù?ø?š™™™™™é?ffffff濚™™™™™ñ¿ÍÌÌÌÌÌì?š™™™™™@ÍÌÌÌÌÌÀ࿚™™™™™é?333333Ó?333333ó?333333@333333@333333ã?š™™™™™ù?š™™™™™É?ffffffö?@š™™™™™@ÍÌÌÌÌÌ@333333ó?ffffffþ?ÍÌÌÌÌÌì?ffffffæ?ffffffö?333333ã?@š™™™™™é?333333û?š™™™™™@š™™™™™¹?ÍÌÌÌÌÌ@ffffffö?ÍÌÌÌÌÌô?ø?333333Ó¿ffffffö?333333ó?ÍÌÌÌÌÌô?ÍÌÌÌÌÌü?333333Ó?ÍÌÌÌÌÌô?333333ó?š™™™™™ @š™™™™™é¿š™™™™™ù?š™™™™™Àš™™™™™@ffffffþ?@ÍÌÌÌÌÌô?ÍÌÌÌÌÌ@ð?ffffffæ¿333333ã¿ffffff@ffffffæ?333333û?ÍÌÌÌÌÌô¿ÍÌÌÌÌÌô?ffffff@š™™™™™ù?ffffffæ?ÍÌÌÌÌÌô?ffffffþ?à?ÍÌÌÌÌÌü?ø?š™™™™™É¿333333Ó?333333û?ffffffæ¿ffffffþ¿ð?333333ó?ffffffæ?333333ã¿ÍÌÌÌÌÌô?ffffffö¿@ÍÌÌÌÌÌì?ffffffþ?ffffffþ?333333ó?ø?ffffffæ?ð?ffffffþ?š™™™™™¹?à?ø?333333ó?ffffffæ?ffffff@@ffffffþ?ÍÌÌÌÌÌô?à?à?š™™™™™ñ?333333ã¿ð¿333333ã?ffffff Àš™™™™™É?š™™™™™é¿ffffff濚™™™™™ñ?š™™™™™Àš™™™™™É¿333333Ó¿ÍÌÌÌÌÌì?333333ã?š™™™™™ù?š™™™™™@ÍÌÌÌÌÌô¿š™™™™™Ù?š™™™™™É¿ø?ffffffþ¿333333ã?ÍÌÌÌÌÌì¿ÍÌÌÌÌÌì?ffffff@š™™™™™É?š™™™™™é¿š™™™™™ñ?333333û?š™™™™™@࿚™™™™™ñ?ð?ÍÌÌÌÌÌ@š™™™™™@333333û?š™™™™™É?ffffffþ?ffffff!ÀÍÌÌÌÌÌô¿ffffffæ?š™™™™™@ffffffö?š™™™™™ù?š™™™™™É¿ÍÌÌÌÌÌì¿333333û?333333ó?333333Ó?ÍÌÌÌÌÌô?š™™™™™@ÍÌÌÌÌÌ@333333Ó¿š™™™™™ @š™™™™™@333333ó?333333Ó?ÍÌÌÌÌÌ@ð¿ÍÌÌÌÌÌô?à?ÍÌÌÌÌÌü?333333Ó?ffffffþ?à?333333ã?333333ã?333333Ó¿ffffffö?ffffffþ?ø¿ÍÌÌÌÌÌì?š™™™™™ù?333333ó?ð?333333@ÍÌÌÌÌÌô?ÍÌÌÌÌÌì?š™™™™™É¿š™™™™™ñ?@ÍÌÌÌÌÌì?@333333Ó¿ffffffþ?š™™™™™ñ?š™™™™™ù?ÍÌÌÌÌÌô?š™™™™™Ù¿ÍÌÌÌÌÌô?ø?ffffffö?š™™™™™ù?š™™™™™é?š™™™™™@ffffffæ?ffffffþ?š™™™™™é?š™™™™™ñ?ÍÌÌÌÌÌ@š™™™™™@š™™™™™Ù?333333+@3333331@š™™™™™ÀÍÌÌÌÌL;@333333#@%À333333@ffffff@ffffff@š™™™™™ @š™™™™™@ÍÌÌÌÌÌ#@š™™™™™6@ffffff-@ffffffD@ÍÌÌÌÌÌ*@ÍÌÌÌÌÌ@ffffff@@333333:@ffffff@ffffff@333333&@3333335@ffffff2@ffffff?@š™™™™™ù?ÍÌÌÌÌÌ2@33333³B@ÍÌÌÌÌ C@33333³3@ffffff2@š™™™™™,@>@@š™™™™™ @@ffffff$@ffffff?@ÍÌÌÌÌÌ9@@333333 @333333*@33333³5@3333335@7@š™™™™™(@2@ÍÌÌÌÌÌ@š™™™™™?@fffffæ3@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ1@fffffæ4@!@3333335@š™™™™7@2@333333(@ffffff@ffffff'Àffffff&@ffffff@š™™™™™%@333333%@ffffff!@š™™™™™$@ffffff)@333333,@333333$@33333³3@1@ffffff"@€2@ffffff(@š™™™™™¹?ffffff"ÀÍÌÌÌÌÌ#@ÍÌÌÌÌÌü?š™™™™™&@ÍÌÌÌÌÌ*@ÍÌÌÌÌÌ"@ffffff*@š™™™™™ @š™™™™™ @3333339@ffffff1@$@%@€F@š™™™™™!@š™™™™™5@@š™™™™™4@333333ó¿333333@ffffff'@ffffff5@ @fffff&B@€0@ffffff*@ffffff#Àš™™™™™8@333333%@š™™™™™2@š™™™™™*@š™™™™™.@333333ó¿3333336@š™™™™™3@š™™™™™@#@333333#@š™™™™™&@@ffffff%@ÍÌÌÌÌÌ&@333333"@ÍÌÌÌÌÌ0@€;@š™™™™™@ÍÌÌÌÌÌ2@ffffff@@ffffff'@ffffff-@.@ffffff(@ÍÌÌÌÌLE@ÍÌÌÌÌÌü?-@ffffff$@ø?@š™™™™™ @ÍÌÌÌÌÌ0@@š™™™™™)@ÍÌÌÌÌÌ*@ffffff"@ffffffæ?fffffæ2@ffffff,@@333333@ÍÌÌÌÌÌì?fffffæ4@ffffff@333333@333333@(@@š™™™™™ @ffffff"@ffffff,@fffffæ1@š™™™™™ ÀffffffI@ffffff5@ffffff&@ÍÌÌÌÌÌD@ÍÌÌÌÌL2@ @ÍÌÌÌÌÌ'@ffffff'@ffffff@ÍÌÌÌÌÌ1@ffffff$@ffffff4@ÍÌÌÌÌÌ5@ÍÌÌÌÌÌ0@ÍÌÌÌÌÌ*@6@š™™™™™@2@ÍÌÌÌÌÌ#@ffffff @š™™™™™@@ffffff7@š™™™™™@3333338@ÍÌÌÌÌÌ&@&@3333334@š™™™™™@@@ffffff9@N@333333!@ÍÌÌÌÌÌ@@A@ÍÌÌÌÌL2@š™™™™0@š™™™™™ @š™™™™™Ù¿#@333333&Àš™™™™™G@ffffff.@€6@ÍÌÌÌÌŒG@š™™™™™,@š™™™™™ù¿@ÍÌÌÌÌÌ'@ÍÌÌÌÌÌG@š™™™™6@ffffff@333333@š™™™™™ Àffffff!@ffffff@@*@333333*@ÍÌÌÌÌÌ)@š™™™™™@@š™™™™™@)@ÍÌÌÌÌÌ @333333%@ÍÌÌÌÌÌ@333333@333333@ÍÌÌÌÌÌ6@3333331@+@fffffæ3@ÍÌÌÌÌÌ7@333333@fffffæ8@%@ÍÌÌÌÌÌ:@333333@@€;@33333³:@š™™™™™@ÍÌÌÌÌÌ5@'@333333@š™™™™™'@33333³0@4@fffffæ6@ÍÌÌÌÌÌ.@š™™™™™@ÍÌÌÌÌÌ'@š™™™™1@š™™™™™&@33333³<@š™™™™2@ÍÌÌÌÌÌ"@ÍÌÌÌÌL<@ffffff(@ffffff7@fffff¦@@ÍÌÌÌÌÌ@ffffff3@ÍÌÌÌÌÌ@(@@ffffffþ?ffffff"@$@"@@š™™™™™ @"@š™™™™™@ÍÌÌÌÌÌ/@š™™™™7@fffff&K@)@3333337@ @ffffff:@3333335@š™™™™™%@š™™™™™6@š™™™™7@@ÍÌÌÌÌÌ*@@ffffff$@ffffff5@fffffæ:@3@ÍÌÌÌÌÌ(@333333@ffffff)@€6@€G@À@B@š™™™™?@@ÍÌÌÌÌÌ8@š™™™™™3@fffffæ0@ffffff@@ÍÌÌÌÌÌ%@š™™™™Ù@@€=@@ÍÌÌÌÌL0@9@ÍÌÌÌÌÌ@333333ÀÍÌÌÌÌÌ/@š™™™™™@š™™™™1Àš™™™™™'@ffffff@ÍÌÌÌÌÌ@333333ã?š™™™™™)À33333³3@š™™™™™G@@*@ÍÌÌÌÌÌ/@€8@33333³5@ÍÌÌÌÌÌ@fffffæ6@333333'@ð¿-@ffffff,@ffffff'@š™™™™™À'@ffffff!@ÍÌÌÌÌÌ,@ð?333333@333333%@*@š™™™™™@š™™™™™@ÍÌÌÌÌÌ!@>@"Àš™™™™™,@š™™™™6@333333+@€3@ÍÌÌÌÌÌ3@ffffff@ÍÌÌÌÌÌô?ÍÌÌÌÌL@@fffffæ0@33333³4@š™™™™<@ffffff:@-@€;@333333"@š™™™™™.@@E@"@ÍÌÌÌÌÌ&@333333ó?ÍÌÌÌÌÌ!@fffff&D@@š™™™™™/@33333³6@š™™™™5@ÍÌÌÌÌÌ3@š™™™™™@333333 @333333(@ffffffÀ333333Àš™™™™™ñ¿š™™™™™1@š™™™™3@333333@š™™™™™E@š™™™™™É?š™™™™™1@ffffffc@fffff¦F@š™™™™™@š™™™™™@ffffff+@ @š™™™™™é?333333?@(@š™™™™™À333333;@š™™™™™!@ffffff3@333333@ÍÌÌÌÌL@@fffff¦@Àš™™™™™/@ffffff@ÍÌÌÌÌÌ*@š™™™™™I@ÍÌÌÌÌÌ@ÍÌÌÌÌL@@š™™™™8@333333<@333333+@@$@ffffff@ @@333333&@ÍÌÌÌÌÌ-@š™™™™™(@33333³6@ffffff'@ffffff0@ÍÌÌÌÌÌ3@š™™™™7@,@ÍÌÌÌÌÌÀffffff*@ÍÌÌÌÌÌô¿ÀÍÌÌÌÌÌ!@ÍÌÌÌÌÌ"@ÍÌÌÌÌÌ$@:@ÍÌÌÌÌÌ.@ÍÌÌÌÌL0@ffffff@ffffff:@333333À333333"@!@ffffff'@ffffff@š™™™™™)@ffffffö?333333-@/@š™™™™™@š™™™™™@-@ÍÌÌÌÌL4@ÍÌÌÌÌÌ>@€:@ÍÌÌÌÌÌ3@ÍÌÌÌÌŒF@š™™™™™?@ffffff@%@ffffff+@333333'@+@ÍÌÌÌÌÌ @33333³6@fffffæ:@fffffæ5@š™™™™M@fffffæ9@ÍÌÌÌÌÌ%@%@333333'@33333³C@ÍÌÌÌÌŒB@333333@ÍÌÌÌÌL1@333333;@33333³?@š™™™™0@ffffff%@š™™™™™@@3333335@š™™™™™(@333333>@ÍÌÌÌÌÌ8@€@@fffffæA@"@333333.@ÍÌÌÌÌL;@ÍÌÌÌÌ C@€N@B@ÍÌÌÌÌÌ0@*@š™™™™™5@ÍÌÌÌÌÌ=@ÍÌÌÌÌÌ?@š™™™™;@fffffæ5@3333337@ÍÌÌÌÌÌ!@À@@9@4@333333:@€>@ffffff"@ffffffE@ÀA@ffffffA@ffffff.@ffffff!@ffffffÀ33333³?@ffffff*@ffffff8@fffffæ7@ÍÌÌÌÌÌ/@333333@ÍÌÌÌÌÌ;@6@fffffæ0@ffffffD@š™™™™B@š™™™™™0@33333³>@š™™™™<@ÍÌÌÌÌÌ)@2ÀÍÌÌÌÌÌ+@333333"@3333330@ÍÌÌÌÌL3@š™™™™8@ÍÌÌÌÌÌ/@333333@@š™™™™™.@ÍÌÌÌÌÌ@š™™™™™2@ffffff"Àš™™™™7@3333334@ÍÌÌÌÌL;@ÍÌÌÌÌL9@333333:@333333&@ÍÌÌÌÌÌ0@fffffæ8@š™™™™YG@3333337@fffffæ;@ÍÌÌÌÌÌ?@š™™™™™0@ffffffÀÍÌÌÌÌŒG@fffffæ2@3333335@ffffff,@ÀA@š™™™™™@(@33333³>@š™™™™3@ÍÌÌÌÌL1@33333³B@ÍÌÌÌÌL7@ÍÌÌÌÌL7@€7@ffffff>@€7@ÍÌÌÌÌL4@š™™™™YA@ffffff(@333333>@š™™™™™*@333333@€?@2@€3@ffffff0@ÀG@333333@š™™™™2@3@ÍÌÌÌÌÌ/@€4@š™™™™™*@ÍÌÌÌÌL=@ffffff@ÍÌÌÌÌL2@fffffæ4@fffffæ4@333333%@333333?@333333@@š™™™™™3@ffffff=@ffffff/@ÍÌÌÌÌ C@,@ffffff*@ @fffffæ;@3333339@€5@ffffff4@fffffæ>@33333³<@ÍÌÌÌÌÌô?ÍÌÌÌÌlP@fffffæ=@š™™™™™;@ffffffH@ÍÌÌÌÌL>@ÍÌÌÌÌL5@33333³5@,@ÍÌÌÌÌÌ,@333333E@š™™™™2@ffffff/@š™™™™™8@33333³6@6@ÍÌÌÌÌÌ9@ÍÌÌÌÌÌ@š™™™™™;@33333³2@ÍÌÌÌÌÌ3@fffff&F@ÍÌÌÌÌÌ2@)@33333³A@333333@ffffff(@š™™™™™@š™™™™™É¿333333%@ø?€5@š™™™™™:@š™™™™™8@333333'@fffff&B@<@fffffæ:@)@ÍÌÌÌÌÌ!@33333³3@ÍÌÌÌÌÌ-@33333óO@ÍÌÌÌÌL1@ÍÌÌÌÌL;@ÍÌÌÌÌL6@ÍÌÌÌÌ B@333333 Àš™™™™™-@€9@ÍÌÌÌÌÌ;@fffffæC@š™™™™™"@š™™™™™@333333@ @ÍÌÌÌÌL3@333333"@š™™™™™:@š™™™™™é?ÍÌÌÌÌÌ6@š™™™™™@ÍÌÌÌÌÌì?ffffff(@333333;@ÍÌÌÌÌL5@33333³4@ffffff@š™™™™™*@š™™™™™2@fffff&@@fffffæD@fffffæ1@€9@3333330@33333³7@š™™™™™6@3333339@ffffff @-@ffffffþ¿9@ÍÌÌÌÌÌF@ÍÌÌÌÌÌ%@ffffff@š™™™™E@333333@š™™™™9@ÍÌÌÌÌÌ$@ffffff>@fffffæ9@3333333@ÍÌÌÌÌÌ0@š™™™™6@š™™™™™;@333333@š™™™™3@ÍÌÌÌÌL7@;@ÍÌÌÌÌÌ@ffffffÀffffff-@€8@š™™™™YD@ffffff7@š™™™™ÙE@$@ÍÌÌÌÌÌ7@š™™™™™ @š™™™™™)@ffffff<@33333³:@ÍÌÌÌÌÌ?@š™™™™™-@33333³6@ffffff-@/@€8@333333:@33333“R@š™™™™™0@33333³A@š™™™™9@š™™™™;@fffff&B@33333³3@fffffæ?@ÍÌÌÌÌÌ@@ÍÌÌÌÌÌ@8@š™™™™™/@ÍÌÌÌÌÌ3@ÍÌÌÌÌ B@33333³=@fffffæ=@ÍÌÌÌÌÌ4@33333óA@333333û?€@@ÍÌÌÌÌÌ%@š™™™™:@fffffæH@33333óE@)@€E@333333=@š™™™™™%@333333ó?33333³9@ÍÌÌÌÌL1@@F@5@ÍÌÌÌÌÌ+@ÍÌÌÌÌŒA@ÀA@š™™™™™"@@<@333333%@À33333³5@333333@ÍÌÌÌÌÌ@333333ã? @ffffff-@š™™™™8@/@ffffff4@ffffff3@fffffæ2@fffff¦C@'À33333³D@33333³1@*@š™™™™<@33333³8@ÍÌÌÌÌÌ<@à¿fffffæ1@š™™™™™8@š™™™™™-@333333 @š™™™™™.@€2@2@333333:@ffffff4@fffffæ6@ÍÌÌÌÌLD@Àfffffæ0@š™™™™=@ÍÌÌÌÌÌ@š™™™™™(@š™™™™™;@ffffffCÀ@ffffff;@333333)@š™™™™™:@š™™™™™!@ÍÌÌÌÌL8@333333(@fffff&A@ÍÌÌÌÌÌ*@ÍÌÌÌÌÌ:@fffffP@333333Ó¿1@š™™™™™ñ¿š™™™™3@ffffff0@ffffff#@ÍÌÌÌÌÌ@>@ffffffD@š™™™™5@ffffffö¿š™™™™™/@8@š™™™™™@ffffff&ÀÍÌÌÌÌÌ#@7@š™™™™A@33333³3@ÍÌÌÌÌ L@ø?ffffff;@ÍÌÌÌÌ E@ÀA@š™™™™™)@33333³9@š™™™™™6@3333331@š™™™™™¹¿š™™™™™1@€8@š™™™™™@33333³=@š™™™™™1@fffffæB@š™™™™:@š™™™™>@ÍÌÌÌÌÌ%Àfffffæ@@š™™™™™)@š™™™™™/@R@š™™™™™ÀÍÌÌÌÌŒC@;@fffffæD@š™™™™™1@ÍÌÌÌÌÌ4@ffffff(@ffffff)@333333/@@š™™™™™4@33333³=@333333ã¿=@€6@ffffff;@333333?@fffff&E@ÍÌÌÌÌL7@à?ÍÌÌÌÌÌ(@š™™™™™@3333333@ffffff.@ffffff9@333333"@ffffffD@33333³7@€;@333333.@6@š™™™™™@ffffff5@š™™™™1@3333337@!@33333³A@333333@fffffæ;@š™™™™™4@š™™™™™'@ÍÌÌÌÌÌ4@33333³@@fffffæ5@š™™™™™é?š™™™™™¹?š™™™™™¹?š™™™™™¹?š™™™™™¹¿333333Ó¿333333ó?š™™™™™é¿š™™™™™¹?š™™™™™¹¿š™™™™™¹?š™™™™™É¿333333Ó?š™™™™™¹¿ffffffæ?࿚™™™™™É?š™™™™™¹¿š™™™™™Ù¿à?š™™™™™¹?š™™™™™É¿333333Ó¿š™™™™™Ù?š™™™™™Ù¿š™™™™™É¿333333Ó?š™™™™™¹?š™™™™™¹¿š™™™™™¹¿à¿š™™™™™Ù¿š™™™™™É¿š™™™™™É¿š™™™™™É?333333Ó¿ffffffæ?š™™™™™É¿š™™™™™É?333333Ó¿š™™™™™Ù¿š™™™™™¹¿ð¿à¿š™™™™™É?š™™™™™É?࿚™™™™™Ù¿š™™™™™É¿à¿333333Ó¿333333ã?š™™™™™¹¿š™™™™™¹¿š™™™™™¹?333333Ó¿š™™™™™É?333333Ó?š™™™™™É?333333ӿ࿚™™™™™Ù¿š™™™™™É?333333Ó¿333333û¿š™™™™™ù¿š™™™™™Ù?š™™™™™ù¿333333ó¿š™™™™™É¿333333Ó¿à?ffffff濚™™™™™É¿š™™™™™É¿š™™™™™É¿333333Ó¿š™™™™™Ù¿š™™™™™¹¿à¿š™™™™™¹?š™™™™™É¿333333Ó¿š™™™™™¹?ÍÌÌÌÌÌü¿š™™™™™É?š™™™™™¹¿š™™™™™¹¿ÍÌÌÌÌÌì?š™™™™™É?š™™™™™É¿š™™™™™¹?š™™™™™¹¿š™™™™™É?š™™™™™é¿à¿ð¿š™™™™™¹?ffffffæ?š™™™™™¹?333333Ó¿333333ã?š™™™™™¹¿à?š™™™™™Ù¿š™™™™™¹?š™™™™™¹¿ffffff濚™™™™™¹?š™™™™™¹?š™™™™™¹?š™™™™™é?š™™™™™É¿š™™™™™¹?à?ffffffæ?š™™™™™¹¿š™™™™™Ù¿š™™™™™Ù¿š™™™™™¹?š™™™™™É?࿚™™™™™É¿š™™™™™é¿333333㿚™™™™™¹?š™™™™™¹¿š™™™™™¹¿š™™™™™¹¿à?š™™™™™É?š™™™™™¹?š™™™™™¹¿š™™™™™¹?š™™™™™Ù¿š™™™™™¹¿š™™™™™É¿ÍÌÌÌÌÌ쿚™™™™™Ù?š™™™™™¹?š™™™™™¹?ÍÌÌÌÌÌô¿à¿š™™™™™É¿š™™™™™¹?š™™™™™Ù¿š™™™™™¹?š™™™™™¹?333333Ó¿š™™™™™Ù¿š™™™™™¹?333333Ó?š™™™™™Ù¿333333ã¿333333Ó¿333333Ó¿š™™™™™¹?333333ã¿à¿à¿333333Ó¿š™™™™™É¿š™™™™™¹?š™™™™™É¿333333㿚™™™™™¹?š™™™™™Ù¿333333Ó?š™™™™™é¿ÍÌÌÌÌÌô¿ð¿š™™™™™¹?à?333333Ó¿ffffff濚™™™™™É?à?š™™™™™Ù¿333333ã¿à?333333㿚™™™™™¹¿š™™™™™Ù?š™™™™™É?š™™™™™Ù¿š™™™™™¹¿š™™™™™¹?š™™™™™Ù¿333333Ó?š™™™™™¹¿š™™™™™¹¿š™™™™™Ù¿š™™™™™¹?š™™™™™É¿ÍÌÌÌÌÌô¿ð¿š™™™™™¹¿ø¿š™™™™™Ù¿š™™™™™Ù¿š™™™™™é¿š™™™™™É¿š™™™™™¹¿š™™™™™¹?333333㿚™™™™™Ù?š™™™™™¹?333333Ó¿ffffffæ?ffffffæ¿333333Ó?š™™™™™Ù?𿚙™™™™É?ffffff濚™™™™™Ù¿333333ã?š™™™™™é¿š™™™™™¹¿š™™™™™É¿š™™™™™¹¿š™™™™™É?š™™™™™É?333333Ó?333333Ó¿š™™™™™É¿ÍÌÌÌÌÌì¿à¿š™™™™™Ù?š™™™™™É¿š™™™™™Ù?š™™™™™¹?š™™™™™É?š™™™™™¹?š™™™™™é?š™™™™™¹¿š™™™™™¹¿š™™™™™É¿š™™™™™¹?ÍÌÌÌÌÌ쿚™™™™™¹¿š™™™™™Ù?ffffffæ¿ð¿ø?š™™™™™¹?š™™™™™ñ¿š™™™™™É?ffffff濚™™™™™¹?š™™™™™¹¿š™™™™™Ù?ffffffþ¿š™™™™™Ù?š™™™™™¹?à¿333333Ó¿š™™™™™Ù?333333Ó?à?š™™™™™¹?333333ã?ffffffæ?š™™™™™¹?š™™™™™¹?333333ã¿ffffffö¿ð?ffffffæ¿333333Ó?š™™™™™¹?ffffffö¿333333㿚™™™™™É¿333333Ó?à?š™™™™™Ù¿ø?333333Ó¿333333ӿ࿚™™™™™¹?š™™™™™É¿š™™™™™É¿à¿š™™™™™¹?š™™™™™¹¿à?š™™™™™É?š™™™™™É¿š™™™™™é?š™™™™™É¿à¿ffffff濚™™™™™Ù¿š™™™™™é¿ð?š™™™™™É?š™™™™™¹?ð¿ffffffæ¿ð¿ÍÌÌÌÌÌ쿚™™™™™Ù¿š™™™™™É¿à?š™™™™™¹?š™™™™™É?š™™™™™Ù?ð¿ð¿ÍÌÌÌÌÌì¿à¿à¿à¿333333Ó¿333333Ó¿333333ã?š™™™™™¹?š™™™™™¹¿š™™™™™Ù¿ffffff濚™™™™™¹?š™™™™™¹?333333ã¿ffffff濚™™™™™¹¿333333Àffffffæ?š™™™™™É¿š™™™™™Ù?š™™™™™Ù¿à¿ø¿à¿š™™™™™¹?ffffffæ?š™™™™™Ù¿à?š™™™™™É?333333㿚™™™™™É?š™™™™™é?333333ã?š™™™™™¹?š™™™™™É¿š™™™™™¹¿ð¿š™™™™™¹¿333333㿚™™™™™É?š™™™™™¹¿à¿ÍÌÌÌÌÌì¿à¿à¿š™™™™™Ù?ffffff濚™™™™™Ù?333333Ó¿š™™™™™¹?ffffffþ?š™™™™™é?š™™™™™é¿š™™™™™É?š™™™™™é¿333333Ó¿333333ã¿ÍÌÌÌÌÌì?š™™™™™¹?š™™™™™É?š™™™™™Ù¿š™™™™™é¿333333Ó¿š™™™™™¹¿333333Ó¿333333Ó¿š™™™™™É¿š™™™™™Ù¿333333Ó?à?š™™™™™¹?š™™™™™¹?š™™™™™é?ffffffö?š™™™™™é?š™™™™™Ù¿š™™™™™Ù¿333333ó¿ÍÌÌÌÌÌô¿à¿š™™™™™Ù¿333333 Àffffffö¿ffffff濚™™™™™é¿ø¿333333ó¿à¿š™™™™™é¿š™™™™™ñ¿333333ó¿ð¿š™™™™™é¿à¿ð¿ÍÌÌÌÌÌÀš™™™™™ÀÍÌÌÌÌÌ쿚™™™™™ñ¿š™™™™™é¿š™™™™™ÀÍÌÌÌÌÌô¿ÍÌÌÌÌÌì¿ÍÌÌÌÌÌü¿š™™™™™Àð¿ffffff濚™™™™™Ù¿333333ã¿à¿ÍÌÌÌÌÌì¿ÍÌÌÌÌÌô¿333333ã¿ð¿š™™™™™Ù¿à¿333333û¿š™™™™™Ù¿š™™™™™ñ¿š™™™™™ù¿š™™™™™Àš™™™™™ñ¿ffffffÀš™™™™™Ù¿ffffffæ¿à¿Àffffffæ¿ffffffæ¿à¿š™™™™™ñ¿š™™™™™ñ¿ffffffæ¿ÍÌÌÌÌÌì¿ÍÌÌÌÌÌÀ333333ã¿ÍÌÌÌÌÌô¿ð¿ÍÌÌÌÌÌì¿ÍÌÌÌÌÌÀà¿à¿ð¿ÍÌÌÌÌÌô¿š™™™™™ù¿333333ó¿š™™™™™é¿ÍÌÌÌÌÌü¿š™™™™™Ù¿ÍÌÌÌÌÌì¿ÍÌÌÌÌÌ쿚™™™™™é¿à¿333333ó¿333333ã¿ð¿à¿à¿ð¿à¿ð¿ø¿ÍÌÌÌÌÌô¿333333ã¿333333ã¿333333À333333㿚™™™™™Ù¿š™™™™™é¿š™™™™™ù¿ffffff濚™™™™™Ù¿333333Àš™™™™™Ù¿ÍÌÌÌÌÌ쿚™™™™™Ù¿š™™™™™Ù¿š™™™™™Àš™™™™™é¿à¿à¿333333û?@š™™™™™@333333"@š™™™™™ù?š™™™™3@ffffff@ÍÌÌÌÌÌ @š™™™™™@ÍÌÌÌÌÌ#@š™™™™™@@š™™™™™ @333333-@ÍÌÌÌÌÌ)@š™™™™™@š™™™™™#@@ffffff@333333 @333333@ @333333@ffffff@ffffff&@@ÍÌÌÌÌÌ"@š™™™™™#@333333@@ffffff@@š™™™™™"@@ÍÌÌÌÌÌ @š™™™™™@@ffffff@š™™™™™é?ffffff@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ @š™™™™™0@ffffff@333333 @ÍÌÌÌÌÌ@š™™™™™@333333@ffffff@š™™™™™@@ffffff @ffffff1@@ffffff@ÍÌÌÌÌÌ#@ÍÌÌÌÌÌ@333333@#@š™™™™™@š™™™™™!@š™™™™™@333333*@š™™™™™-@ffffff@ffffff@ffffff)@333333#@333333û?š™™™™™@ÍÌÌÌÌÌ@333333 @ffffff @!@ffffff&@š™™™™™ @333333@'@333333"@333333#@333333)@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ@š™™™™™!@333333@3333333@333333@@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ@333333@ffffff@333333@š™™™™™@333333'@ffffff@333333@ÍÌÌÌÌÌ%@š™™™™™@333333/@!@ÍÌÌÌÌÌ&@333333@333333@ffffff @ÍÌÌÌÌÌ@š™™™™™2@333333@ffffff@ÍÌÌÌÌÌ@@ÍÌÌÌÌÌ-@š™™™™™$@333333@š™™™™™@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ#@333333!@ @ø?ffffff@333333@š™™™™™"@ÍÌÌÌÌÌ@š™™™™™ @@@#@ffffff$@"@!@ffffff@&@š™™™™™'@ÍÌÌÌÌÌ@'@333333@š™™™™™'@333333@ÍÌÌÌÌÌ @333333&@ffffff@ffffff@333333)@ÍÌÌÌÌÌ!@333333@!@@š™™™™™@@333333@ÍÌÌÌÌÌ!@333333@š™™™™™$@ffffff@ÍÌÌÌÌÌ @ @ÍÌÌÌÌÌ#@ffffff @ffffff @ffffff@333333&@333333"@ffffff@ffffff@333333@ @333333@ffffff@333333@ffffff%@@ffffff@ÍÌÌÌÌÌ#@š™™™™™#@@š™™™™™@ @š™™™™™#@ffffff@333333@ffffffæ?333333û?ffffff@333333@"@š™™™™™ @333333@@$@!@333333@ffffff+@@-@+@ÍÌÌÌÌÌ@@š™™™™™@š™™™™™@333333'@š™™™™™&@@š™™™™™@ÍÌÌÌÌL1@333333!@ffffff+@333333!@ffffff@ffffff0@@ffffff@ @ÍÌÌÌÌÌ@ffffffþ?333333@333333@ffffff@333333 @ffffff@ffffff@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ@333333@@ÍÌÌÌÌÌ+@@š™™™™™ @ffffff"@ÍÌÌÌÌÌ*@ÍÌÌÌÌL0@333333@333333@ÍÌÌÌÌÌ@š™™™™™@333333(@333333@ffffff@š™™™™™@ÍÌÌÌÌÌ@ffffff @333333@ffffff'@ffffff%@@ÍÌÌÌÌÌ@š™™™™™@ffffff@š™™™™™Ù?š™™™™™@ÍÌÌÌÌÌ@š™™™™™@333333@333333@"@ffffff@ffffff@ÍÌÌÌÌÌ@333333"@ÍÌÌÌÌÌ @ÍÌÌÌÌÌ@ÍÌÌÌÌÌ@333333@ffffffþ?ffffff @š™™™™™ @333333@ffffff$@333333@š™™™™™@ffffff@@333333'@333333!@333333"@ @ffffff@ÍÌÌÌÌÌ@@š™™™™™@š™™™™™ @333333@ffffff)@ÍÌÌÌÌÌ@ffffff@@@š™™™™™/@š™™™™™@333333 @@fffffæ0@ÍÌÌÌÌÌ@ffffff@š™™™™™"@š™™™™™@ffffff@ÍÌÌÌÌÌ @@ÍÌÌÌÌÌô?ffffff@ffffff*@ÍÌÌÌÌÌ@@š™™™™™%@ÍÌÌÌÌÌ@@ffffff@š™™™™™@ø?ÍÌÌÌÌÌ@š™™™™™#@333333@š™™™™™@š™™™™™@@š™™™™™ @š™™™™™"@333333@ÍÌÌÌÌÌ@333333@333333@š™™™™™ @ÍÌÌÌÌÌì?ÍÌÌÌÌÌ @š™™™™™@333333@!@(@š™™™™™@ÍÌÌÌÌÌ@ffffff@š™™™™™@333333&@ÍÌÌÌÌÌ$@š™™™™™"@333333%@@ffffff@ffffff@!@ÍÌÌÌÌÌ @"@@333333@ffffff @ffffff @ @ÍÌÌÌÌÌ"@@ÍÌÌÌÌÌ@@@š™™™™™@333333@š™™™™™#@333333)@@@š™™™™™@@#@333333@š™™™™™-@333333@333333@ffffff@@š™™™™™#@ÍÌÌÌÌÌ@333333'@@ÍÌÌÌÌÌü?ÍÌÌÌÌÌ@ffffff%@(@333333@%@%@@333333*@333333(@$@ÍÌÌÌÌÌ&@ÍÌÌÌÌÌ!@ffffffæ?ÍÌÌÌÌÌ@ffffff$@ffffff#@-@ffffff@@ÍÌÌÌÌÌ@333333@ffffff@@@š™™™™™1@ÍÌÌÌÌÌ!@333333 @ffffff @ffffff @š™™™™™@ffffff-@ffffff@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ$@333333@-@333333!@333333%@š™™™™™#@ÍÌÌÌÌÌ.@š™™™™™@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ@š™™™™™!@š™™™™™@ffffff)@š™™™™™@ÍÌÌÌÌÌ@333333"@@ÍÌÌÌÌÌ@333333@ÍÌÌÌÌÌ$@ffffff/@333333@333333@ÍÌÌÌÌÌì?@#@ÍÌÌÌÌÌ"@#@!@ffffff@333333%@ffffff!@ÍÌÌÌÌÌ @ÍÌÌÌÌÌ@@ffffff@ffffff@ffffffþ?%@š™™™™™ù?š™™™™™"@ÍÌÌÌÌÌ@ð¿ÍÌÌÌÌÌô¿ÍÌÌÌÌÌÀà¿ffffffÀš™™™™™ñ¿ø¿ffffff濚™™™™™é¿ÍÌÌÌÌÌô¿ÍÌÌÌÌÌÀš™™™™™Ù¿ÍÌÌÌÌÌü¿333333û¿š™™™™™ñ¿333333û¿ÍÌÌÌÌÌô¿š™™™™™ñ¿ÍÌÌÌÌÌì¿ÍÌÌÌÌÌÀffffff濚™™™™™ Àffffffæ¿ÍÌÌÌÌÌÀš™™™™™é¿ø¿ÍÌÌÌÌÌô¿333333û¿ø¿333333ÀÍÌÌÌÌÌô¿š™™™™™ Àš™™™™™ù¿333333ÀÍÌÌÌÌÌÀ333333ó¿ÀÀš™™™™™ù¿ÍÌÌÌÌÌÀffffffÀffffff濚™™™™™ ÀÍÌÌÌÌÌÀÀš™™™™™Ù¿ÍÌÌÌÌÌÀÀš™™™™™Àffffffö¿ffffffÀÍÌÌÌÌÌÀš™™™™™Àð¿ffffffö¿ffffffÀÍÌÌÌÌÌü¿ffffff À333333ó¿ÍÌÌÌÌÌÀð¿333333Àà¿ffffffæ¿ffffffþ¿š™™™™™Àš™™™™™é¿š™™™™™Ù¿ffffffö¿š™™™™™ÀÍÌÌÌÌÌÀffffffÀš™™™™™ñ¿ffffff濚™™™™™Àš™™™™™ ÀÍÌÌÌÌÌü¿à¿š™™™™™ù¿ffffffÀ333333û¿ð¿333333ã¿333333Àš™™™™™ñ¿ÍÌÌÌÌÌô¿ffffffæ¿ÍÌÌÌÌÌÀÍÌÌÌÌÌÀ333333ÀÀÍÌÌÌÌÌÀÀø¿ÍÌÌÌÌÌÀffffff Àš™™™™™ù¿š™™™™™ù¿š™™™™™ Àš™™™™™ÀÍÌÌÌÌÌì¿333333Àš™™™™™Àš™™™™™ñ¿ffffffÀÀ333333û¿ÍÌÌÌÌÌô¿ÍÌÌÌÌÌ쿚™™™™™ù¿ÍÌÌÌÌÌÀÍÌÌÌÌÌô¿333333ÀffffffÀ333333ÀÍÌÌÌÌÌô¿ÍÌÌÌÌÌô¿ÍÌÌÌÌÌÀÍÌÌÌÌÌÀ333333û¿ffffffþ¿ð¿š™™™™™ù¿333333#ÀÍÌÌÌÌÌÀffffffö¿333333À333333ã¿ffffffÀ333333ó¿ð¿ffffffþ¿ffffffö¿333333û¿333333û¿š™™™™™ÀÍÌÌÌÌÌô¿ð¿š™™™™™ÀÀÀÀÍÌÌÌÌÌÀÍÌÌÌÌÌ쿚™™™™™Ù¿ffffffö¿ffffff ÀÍÌÌÌÌÌô¿Àš™™™™™ù¿333333û¿ÍÌÌÌÌÌÀš™™™™™ñ¿ð¿ø¿ffffff濚™™™™™é¿ÀÀ333333ÀÍÌÌÌÌÌÀ333333ÀffffffÀÍÌÌÌÌÌÀÍÌÌÌÌÌü¿ÍÌÌÌÌÌÀ333333ÀÍÌÌÌÌÌì¿ ÀÀÍÌÌÌÌÌÀð¿333333ã¿ffffffæ¿Àð¿ð¿ffffffö¿ÀÀš™™™™™ÀÀš™™™™™À333333ã¿À333333ã¿ffffffÀÍÌÌÌÌÌô¿333333ÀÀffffffÀ333333û¿ø¿ffffffþ¿Àø¿à¿333333û¿ÍÌÌÌÌÌü¿333333û¿ffffffþ¿š™™™™™ÀÍÌÌÌÌÌÀffffffÀffffff Àffffffö¿ø¿333333Àš™™™™™Àš™™™™™Ù¿ffffffö¿š™™™™™ñ¿À333333û¿ÍÌÌÌÌÌÀÍÌÌÌÌÌü¿333333ó¿ffffff ÀÍÌÌÌÌÌô¿ÍÌÌÌÌÌÀÍÌÌÌÌÌô¿333333û¿š™™™™™ÀÀ333333ã¿ÍÌÌÌÌÌ쿚™™™™™À333333À333333Àš™™™™™ù¿ffffff#À333333ó¿ø¿ÍÌÌÌÌÌÀ333333û¿ÍÌÌÌÌÌô¿ÍÌÌÌÌÌÀffffffÀffffff"À333333ÀffffffÀÍÌÌÌÌÌÀÀÀÍÌÌÌÌÌì¿ffffffÀø¿ffffffæ¿ÍÌÌÌÌÌÀš™™™™™ Àš™™™™™ù¿ffffffö¿ÍÌÌÌÌÌì¿ÍÌÌÌÌÌÀ€0À333333ã?ffffffæ?ð?š™™™™™Ù?š™™™™™ @š™™™™™Ù?š™™™™™Ù?ÍÌÌÌÌÌì?š™™™™™Ù?š™™™™™é?333333ó¿ø¿ÍÌÌÌÌÌô?š™™™™™¹?ffffffæ?š™™™™™Ù?ffffffþ?ffffffö?à?333333ã?ÍÌÌÌÌÌü?333333ó?333333û?333333ó?ÍÌÌÌÌÌì?š™™™™™é?ÍÌÌÌÌÌì?333333ó?ffffffö?š™™™™™¹?ÍÌÌÌÌÌì?333333ó?ð?ø?š™™™™™ñ?š™™™™™é?š™™™™™é?š™™™™™¹¿š™™™™™ù?š™™™™™é?š™™™™™ñ?š™™™™™¹?š™™™™™ñ?ffffffæ?ð?333333ó?ffffffþ?ÍÌÌÌÌÌì?š™™™™™ñ?ÍÌÌÌÌÌô?ffffffö?ÍÌÌÌÌÌì?š™™™™™é?ð?ffffffö?ÍÌÌÌÌÌô?š™™™™™é?ÍÌÌÌÌÌü?ÍÌÌÌÌÌô?à?š™™™™™é?ffffffþ?ÍÌÌÌÌÌì?ð?ÍÌÌÌÌÌô?š™™™™™é?š™™™™™É¿š™™™™™é?à?ÍÌÌÌÌÌô?ÍÌÌÌÌÌô?à¿@ø?š™™™™™ù?š™™™™™é?š™™™™™É?ffffffæ?333333ó?ffffffæ?š™™™™™ñ?ÍÌÌÌÌÌô?š™™™™™ñ?333333ã?ÍÌÌÌÌÌü?ffffffö?ð?š™™™™™ñ?š™™™™™ñ?333333ó?@333333ó?ÍÌÌÌÌÌô?ffffffö?333333ã?š™™™™™ñ?š™™™™™Ù?ð?ð?ÍÌÌÌÌÌô?š™™™™™É?ÍÌÌÌÌÌì?ð?š™™™™™é?ffffffö?ffffffæ?ffffffþ?š™™™™™é?š™™™™™ñ?333333ó?ÍÌÌÌÌÌì?ð?333333û?333333ó?ø?š™™™™™é?š™™™™™é?ÍÌÌÌÌÌì?š™™™™™ñ?ÍÌÌÌÌÌ쿚™™™™™é?ffffffæ?ð?ffffffö?š™™™™™¹?š™™™™™Ù?ø?š™™™™™é?š™™™™™é?333333ã?ÍÌÌÌÌÌì?ð?š™™™™™ñ?333333ó?ÍÌÌÌÌÌì?ð?333333ã?333333ó?ÍÌÌÌÌÌô?š™™™™™é?ÍÌÌÌÌÌô?à?ffffffö?ÍÌÌÌÌÌô?ffffffæ?ÍÌÌÌÌÌü?333333ó?ÍÌÌÌÌÌô?ÍÌÌÌÌÌô?š™™™™™ñ?ÍÌÌÌÌÌô?ð?333333û?à?ø?š™™™™™ñ?š™™™™™É?ÍÌÌÌÌÌô?ø?333333ã?ø?ø?ffffffæ?ffffffæ?ð?š™™™™™é?ffffffæ?333333ó?333333û?ffffffæ?333333ã?333333ó?ð?ffffffö?š™™™™™ñ?š™™™™™ñ?š™™™™™é?š™™™™™É?ÍÌÌÌÌÌ@š™™™™™ñ?š™™™™™ñ?ÍÌÌÌÌÌì?ffffffö?ð?š™™™™™Ù?333333ã¿333333ã?š™™™™™ñ?ffffffæ?333333ó?ffffffæ?ffffffö?š™™™™™ñ?333333ã?ÍÌÌÌÌÌì?ø?š™™™™™ñ?ø?333333ã?333333ó?š™™™™™é?à?š™™™™™ñ?ð?š™™™™™Ù¿š™™™™™ñ?š™™™™™é?š™™™™™ñ?ÍÌÌÌÌÌì?333333 @ffffffæ¿ffffffæ?333333ã?ÍÌÌÌÌÌì?333333ã?š™™™™™É¿ÍÌÌÌÌÌô?ÍÌÌÌÌÌì?333333ã¿ø?š™™™™™ñ?š™™™™™ù?š™™™™™ù?333333ã?333333û?ø?333333ã?š™™™™™ñ?š™™™™™¹¿ffffffö?š™™™™™é?š™™™™™ñ?š™™™™™Ù?ð?ffffffæ?ffffffþ?333333ó?ð?à?333333ã?ffffffö?ø?ÍÌÌÌÌÌô?ð?ø?ð?ffffffö?ø?ffffffö?333333û?ø?š™™™™™é?333333ó?š™™™™™É?š™™™™™ñ?š™™™™™ù?š™™™™™ù?ÍÌÌÌÌÌô?ÍÌÌÌÌÌô?333333û?333333ó?š™™™™™é?ÍÌÌÌÌÌì?à?@š™™™™™ù?333333ó?š™™™™™é?ð?333333û?333333û?ð?333333ã?ÍÌÌÌÌÌì?à?333333ó?ffffffö?ÍÌÌÌÌÌì?š™™™™™ñ?333333ã?333333ã?ð¿ÍÌÌÌÌÌì?333333ã?333333ã?š™™™™™é?ÍÌÌÌÌÌü?š™™™™™É?š™™™™™ñ?š™™™™™¹¿š™™™™™é?ð?ð?ÍÌÌÌÌÌì?š™™™™™Ù?ð?š™™™™™é?ÍÌÌÌÌÌì?ð?ffffffæ?ÍÌÌÌÌÌì?ÍÌÌÌÌÌü?ffffffö?ÍÌÌÌÌÌì?š™™™™™ñ?à?à?š™™™™™@š™™™™™É?333333ã?ð?ÍÌÌÌÌÌô?333333ó?š™™™™™ù?333333Ó?ÍÌÌÌÌÌì?ÍÌÌÌÌÌì?ÍÌÌÌÌÌì?ffffffæ¿ø?š™™™™™É¿ÍÌÌÌÌÌô?š™™™™™É?333333ó?ø?333333û?š™™™™™Ù¿333333û?š™™™™™é?ð?ÍÌÌÌÌÌü?ð?š™™™™™é?333333ã?š™™™™™ù?ð?333333ã?ÍÌÌÌÌÌô?333333û?š™™™™™é?333333ó?š™™™™™Ù?333333@š™™™™™é?ð?š™™™™™ñ?ffffffö?333333û?ffffffæ?š™™™™™ñ?333333ó?ÍÌÌÌÌÌô?ffffffæ?ffffffö?š™™™™™ù?ð?ffffffö?ð?@ÍÌÌÌÌÌì?333333ã?š™™™™™É¿à?ÍÌÌÌÌÌ@333333û?ÍÌÌÌÌÌì?ffffffæ?š™™™™™Ù?ÍÌÌÌÌÌì?ÍÌÌÌÌÌü?ÍÌÌÌÌÌì?ð?ð?š™™™™™é?à?333333ã?š™™™™™ñ?ø?š™™™™™é?š™™™™™ù?š™™™™™Ù?š™™™™™é?ffffffæ?ÍÌÌÌÌÌì?ffffffæ?333333ã?ø?333333û?ÍÌÌÌÌÌì?ffffffö?ffffffþ?š™™™™™ñ?ø?à?ÍÌÌÌÌÌô?ÍÌÌÌÌÌô¿333333ó?š™™™™™¹¿333333ã?333333ó?ð?š™™™™™ñ?333333ã?š™™™™™ñ?š™™™™™ñ?333333Ó?š™™™™™ñ?ffffffæ?333333ó?ð?ffffffæ?š™™™™™é?333333ã¿333333ã?š™™™™™Ù?333333û?ÍÌÌÌÌÌô?ÍÌÌÌÌÌô?š™™™™™É?ffffffö?š™™™™™¹?333333Ó¿ø?š™™™™™ñ?ð?ffffff@333333ã?333333ó?333333ó?ÍÌÌÌÌÌü?š™™™™™é?š™™™™™ù?ø?ffffffö?š™™™™™ñ?ffffffæ?333333ã?ð?ÍÌÌÌÌÌì?š™™™™™ñ?333333ó?à?ÍÌÌÌÌÌô?333333û?ffffffö?333333û?333333ó?333333ó?š™™™™™é?ð?ÍÌÌÌÌÌì?š™™™™™é?ð?š™™™™™Ù?ffffffö?ð?ÍÌÌÌÌÌì?ø¿à?ð?ø?333333û?š™™™™™@ø?333333û?333333@ffffffö?ffffffæ?ffffff@333333ó?ffffffö?ÍÌÌÌÌÌü?š™™™™™é?333333û?@ffffff@ÍÌÌÌÌÌ@ffffffæ?š™™™™™É?ÍÌÌÌÌÌü?š™™™™™ @ø?ÍÌÌÌÌÌü?ffffffæ?š™™™™™ù?ÍÌÌÌÌÌü?ÍÌÌÌÌÌ@@š™™™™™¹?š™™™™™é¿333333ó?š™™™™™é?@ÍÌÌÌÌÌü?ÍÌÌÌÌÌì?ÍÌÌÌÌÌì?ø?333333 @@à?ð?333333ã?ffffffþ?ffffffþ?š™™™™™é?ÍÌÌÌÌÌô?ffffffö?š™™™™™É?ffffffö?à?333333û?ffffffö?š™™™™™é?ÍÌÌÌÌÌ@333333ã?@ffffffö?333333ã?š™™™™™¹?ÍÌÌÌÌÌì?ÍÌÌÌÌÌì?@333333@ @333333@š™™™™™é?à?333333@ø?333333û?333333@ÍÌÌÌÌÌ@ø?ffffffö?ffffff @ÍÌÌÌÌÌ@š™™™™™ñ¿š™™™™™Ù¿š™™™™™@š™™™™™é?333333ã?@à?š™™™™™ñ?ffffffþ?ø¿ffffffö¿333333ã?š™™™™™Àffffffæ?à?š™™™™™¹?333333û?333333Ó?ÍÌÌÌÌÌ@333333@ø?š™™™™™ @š™™™™™ñ?ÍÌÌÌÌÌì¿ffffffæ?ð?ffffffö?@333333ó?š™™™™™Ù?à?š™™™™™@ø¿à?ÍÌÌÌÌÌô?š™™™™™ù?ffffff@š™™™™™@ÍÌÌÌÌÌü?š™™™™™@ÍÌÌÌÌÌü?@ÍÌÌÌÌÌô?ffffffö?333333û?ð?ÍÌÌÌÌÌ@ffffff@š™™™™™ñ?@333333ó?ÍÌÌÌÌÌü?333333ó?š™™™™™ñ?333333 @š™™™™™é?ÍÌÌÌÌÌô?333333@š™™™™™@š™™™™™@333333@333333@ð?ffffffö?ÍÌÌÌÌÌü?333333û?ffffff@ÍÌÌÌÌÌ@š™™™™™ @ffffffþ?333333@š™™™™™ù?333333û?ffffffö?333333@333333û?ÍÌÌÌÌÌ@ffffffö?ffffffþ?ÍÌÌÌÌÌ@333333ó?ffffffæ?ÍÌÌÌÌÌü?š™™™™™ù?ffffff@š™™™™™é?ffffff @š™™™™™@@š™™™™™é?@ÍÌÌÌÌÌ@ÍÌÌÌÌÌô?š™™™™™ñ?333333ó?ffffffö?š™™™™™ @ø?ø?333333ó?ffffffö?š™™™™™ù?333333û?š™™™™™Ù¿à?333333 @ffffffæ?ÍÌÌÌÌÌì¿333333Ó¿š™™™™™é?š™™™™™É?š™™™™™Ù?333333ã¿à?@š™™™™™é?ÍÌÌÌÌÌì?333333ó¿ffffffö?@ffffff@ffffffö?333333Àš™™™™™@333333ã?333333ó?ffffffö¿ffffff@333333@333333@@333333ó¿ffffff@@ÍÌÌÌÌÌ@š™™™™™ @ÍÌÌÌÌÌü¿à¿š™™™™™@ffffff濚™™™™™Ù?ð?333333ã¿ÍÌÌÌÌÌü?š™™™™™ù?ÍÌÌÌÌÌ@š™™™™™@š™™™™™ù?à?ÍÌÌÌÌÌô?333333ó?ffffffþ?ø?š™™™™™é?š™™™™™Ù?ffffff@333333ã? @333333ã¿ffffff@à?333333ó¿š™™™™™ù?ø?š™™™™™ñ¿ÍÌÌÌÌÌü?š™™™™™Ù¿@ð¿ffffffþ?333333û?š™™™™™ñ?š™™™™™ù?ffffff@à¿333333ã?š™™™™™ñ?ffffff@ÍÌÌÌÌÌ@333333û¿333333ã?ÍÌÌÌÌÌì?ÍÌÌÌÌÌô?ffffffæ?ÍÌÌÌÌÌ@ffffff@ð?ÍÌÌÌÌÌü?333333Ó?ÍÌÌÌÌÌô?ÍÌÌÌÌÌì?š™™™™™ù?@ÍÌÌÌÌÌ@ @@š™™™™™é?š™™™™™Ù?à?@ÍÌÌÌÌÌì?@ÍÌÌÌÌÌ@ffffffæ?ÍÌÌÌÌÌü?š™™™™™ñ?ÍÌÌÌÌÌô?ffffffö?ð?š™™™™™ù?ffffffþ?333333ã?ÍÌÌÌÌÌì?333333ã?333333@ÍÌÌÌÌÌü?333333ã?š™™™™™ñ¿š™™™™™ù?333333û¿333333@ffffffö?š™™™™™@š™™™™™é¿š™™™™™ù?š™™™™™ñ?333333û?ÍÌÌÌÌÌô¿@333333ã?333333ó?ÍÌÌÌÌÌü¿333333@333333@333333ã?333333@ÍÌÌÌÌÌì?ÍÌÌÌÌÌü?333333ó?ø?@ø?ffffffö?š™™™™™é?ø?š™™™™™Ù?333333û¿š™™™™™@š™™™™™ñ?333333û?ø?š™™™™™À333333Ó?ÍÌÌÌÌÌô?ÍÌÌÌÌÌì?ffffff@ffffffö?333333@ÍÌÌÌÌÌì?ffffffæ?ÍÌÌÌÌÌü?333333 @333333Ó?ÍÌÌÌÌÌü?333333ã?ffffffö?ð?š™™™™™@š™™™™™@š™™™™™ù?ÍÌÌÌÌÌü?à?š™™™™™ñ?ffffff@ÍÌÌÌÌÌì¿333333ó?š™™™™™é?à?ø?ffffff@333333ã?ffffff@333333û¿š™™™™™¹¿ffffff@š™™™™™ñ?š™™™™™@333333û?@333333Ó¿š™™™™™é?à?à?š™™™™™Àffffffæ?ÍÌÌÌÌÌô¿333333 @@š™™™™™Ù?ð?ffffffö?š™™™™™@@333333Ó?š™™™™™ù¿333333Ó?333333ã?ÍÌÌÌÌÌ @ð?ffffffþ?ÍÌÌÌÌÌô?š™™™™™Àš™™™™™¹?ffffffþ?333333@ÍÌÌÌÌÌì?ÍÌÌÌÌÌ@333333ã?ÍÌÌÌÌÌü¿š™™™™™@ÍÌÌÌÌÌ@@š™™™™™ñ?333333@ffffff @à?333333@ffffff@ÍÌÌÌÌÌ @š™™™™™ù?333333@333333Ó?š™™™™™é?333333ã?ð?333333ã?ÍÌÌÌÌÌ@ÍÌÌÌÌÌô?333333Ó?333333û¿š™™™™™¹?ø?š™™™™™ @ÍÌÌÌÌÌü¿à?ffffff@š™™™™™@ÍÌÌÌÌÌ@š™™™™™@š™™™™™ù?ð?333333ã?@ÍÌÌÌÌÌì?ÍÌÌÌÌÌô?333333 @à?ÍÌÌÌÌÌü?333333ó?ffffff@ÍÌÌÌÌÌü?à?ffffffæ?ffffff@š™™™™™ñ?ffffffæ?š™™™™™é?ÍÌÌÌÌÌ@ffffffþ?333333@à?š™™™™™@333333ã?@@š™™™™™ @š™™™™™1@ffffff,@€8@ÍÌÌÌÌÌ@š™™™™YB@+@ffffff3@ÍÌÌÌÌÌ&@ÍÌÌÌÌÌ:@3333333@ÍÌÌÌÌÌ@333333@ffffff@@33333óF@š™™™™™-@ffffff6@ÍÌÌÌÌÌ,@ÍÌÌÌÌÌ/@333333"@ffffff+@€2@<@333333"@fffffæ;@ÍÌÌÌÌÌÀ€5@ffffff.@ffffff'@ffffffÀÍÌÌÌÌÌ)Àš™™™™™#@ffffff6@333333/@333333'@333333>@š™™™™™,@ÍÌÌÌÌÌ/@333333-@fffffæ4ÀÍÌÌÌÌÌ,@š™™™™™0@ÍÌÌÌÌÌ5@ÍÌÌÌÌŒC@333333 @ø?333333.@fffffæ1@š™™™™4@@ffffff@ÍÌÌÌÌÌ"@333333+@ÍÌÌÌÌLG@<@€9@fffffæ6@ffffff@33333³3@333333=@@ffffff.@fffffæ0@ÍÌÌÌÌL<@š™™™™™M@ÍÌÌÌÌÌ'@ffffff @š™™™™;@ÍÌÌÌÌÌ<@ffffffÀffffff<@3333332@ÍÌÌÌÌL0@ @š™™™™™>@š™™™™™*@333333+@š™™™™™#@;@š™™™™C@ÍÌÌÌÌL@@š™™™™™8@ÍÌÌÌÌÌ/@ÍÌÌÌÌÌÀ333333D@@B@ÍÌÌÌÌLI@33333³7@:@ÍÌÌÌÌLF@ffffff"@333333@ÍÌÌÌÌÌ @ÍÌÌÌÌÌ@ÍÌÌÌÌÌÀ@ÍÌÌÌÌÌ+@ffffff)@ffffff@€>@ffffff@ÀI@š™™™™™ ÀÍÌÌÌÌLD@ÍÌÌÌÌÌ9@333333@ffffff@š™™™™™2@fffff¦@@fffffæ7@333333@ffffff$@ffffff0@fffffæ?@ÍÌÌÌÌÌ8@š™™™™™@3333331@@š™™™™™@ffffff:@ÍÌÌÌÌL6@ÍÌÌÌÌÌ@š™™™™™À333333@@ffffff5@š™™™™™!@ÍÌÌÌÌÌ,@+@ÍÌÌÌÌÌ0@33333³8@š™™™™™5@3333335@š™™™™A@š™™™™™/@333333H@333333E@ÍÌÌÌÌÌ@€6@ @š™™™™™G@š™™™™™ @ÍÌÌÌÌÌ @ÍÌÌÌÌLG@333333@@š™™™™4@š™™™™™.@ÍÌÌÌÌÌ)@ffffff+@ÍÌÌÌÌÌ(@ÍÌÌÌÌÌ%@333333À'@ÍÌÌÌÌL5@3333335@33333³:@ffffff6@š™™™™YH@š™™™™™@333333;@š™™™™™/@ÍÌÌÌÌÌ;@ÍÌÌÌÌÌ@?@fffffæ4@À333333@ÍÌÌÌÌÌ%@@š™™™™™$@#Àš™™™™™*@š™™™™™7@€3@333333@ÀD@fffffæ3@ffffff'@)@š™™™™™A@333333.@š™™™™™ @ffffff.@333333Àffffffö¿9@ffffff+@3333334@ffffff@333333%À333333;@@33333³=@ffffff/@ÍÌÌÌÌÌ"@fffffæB@333333@š™™™™YD@L@š™™™™™@333333+@š™™™™™0@ÍÌÌÌÌÌ.@ÍÌÌÌÌŒB@ÍÌÌÌÌLD@ffffff@š™™™™E@š™™™™F@ÍÌÌÌÌÌ9@€1@ÍÌÌÌÌÌ@333333@33333P@333333@š™™™™™!@8@ÍÌÌÌÌÌ(@ @€9@ÍÌÌÌÌÌ@ffffffþ?33333³?@ffffff1@333333-@ÍÌÌÌÌÌ/@š™™™™™%@ÍÌÌÌÌL0@ffffff$@ÍÌÌÌÌŒH@33333³2@2@ÍÌÌÌÌÌ3@33333sI@€F@š™™™™™$@333333=@(@€=@ÍÌÌÌÌL@@333333+@ffffff(@+@ÍÌÌÌÌÌ/@fffffæ6@ÍÌÌÌÌÌ@33333óF@ÍÌÌÌÌÌ6@ÍÌÌÌÌÌü?š™™™™™É?š™™™™™ù¿ÍÌÌÌÌÌ@.ÀÍÌÌÌÌÌÀ333333"Àš™™™™™-@3333332@š™™™™™@3333334@fffffæ?@ffffff,@ÍÌÌÌÌÌü?ÍÌÌÌÌL;@4@š™™™™™8@ÍÌÌÌÌÌ$@fffffæ0@333333㿚™™™™™@š™™™™™!@š™™™™Y@@š™™™™™5@8@&@ÍÌÌÌÌÌ*@š™™™™™,@ÍÌÌÌÌL?@fffffæ>@š™™™™™3@ffffff>@ffffff*@š™™™™™À"@š™™™™™@š™™™™™Ù?ÍÌÌÌÌÌü¿@A@ffffff9@ffffff%@ÍÌÌÌÌÌ$@ÍÌÌÌÌÌ@€>@3333333@333333ã?š™™™™6@L@333333;@ÍÌÌÌÌÌì?ffffff2@3333335@ÍÌÌÌÌÌ$@ÍÌÌÌÌÌ)@à?ÍÌÌÌÌÌ Àš™™™™™&@ffffff;@fffffæ0@3333330@š™™™™™E@š™™™™0@š™™™™™.@€9@333333@š™™™™™ÀÍÌÌÌÌÌ(@š™™™™™1@ffffff!@š™™™™™0@ffffff6@ÍÌÌÌÌÌ@ø?š™™™™0@ÍÌÌÌÌÌ#@33333³2@ffffffÀÍÌÌÌÌL0@333333(@š™™™™™2À€7@ffffff,@š™™™™™@fffff&A@33333³M@ÍÌÌÌÌÌ:@ÍÌÌÌÌÌ(@$@ffffff#@ffffff7@ÍÌÌÌÌL5@ÍÌÌÌÌÌ*@33333³6@ffffff@ÍÌÌÌÌL2@ÍÌÌÌÌÌ,@ÍÌÌÌÌÌ-@š™™™™™1@ffffff4@ÍÌÌÌÌÌ@š™™™™™1@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ/@3333330@ÍÌÌÌÌÌ9@ø¿ffffffÀÍÌÌÌÌL4@š™™™™3Àš™™™™<@ÍÌÌÌÌÌ%@š™™™™™B@ffffffE@8@ÍÌÌÌÌÌ3@š™™™™=@@š™™™™™6@333333㿚™™™™Ù@@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ0@=@333333#@fffffæ7@333333+@ÍÌÌÌÌL7@ÍÌÌÌÌÌ@fffffæ0ÀÍÌÌÌÌÌ@3333339@ffffff$@ffffffþ?€:@€?@ÍÌÌÌÌÌ/@ÍÌÌÌÌÌ@@ÀE@333333(@333333?@ÍÌÌÌÌL;@ffffffÀš™™™™™$@€;@33333³:@ÀE@š™™™™™#@333333?@,@š™™™™™)@ÍÌÌÌÌÌ,Àš™™™™™%@€9@š™™™™?@ffffff<@33333³5À€9@š™™™™™3@š™™™™™:@fffff&P@š™™™™4@ÍÌÌÌÌÌ&@7@)@ÀE@33333óA@š™™™™D@33333³2@š™™™™™?@ffffff@ffffff"@ffffff1@€4@ffffff4@ÍÌÌÌÌÌ:@š™™™™™@ÍÌÌÌÌÌÀfffffæ>@ÍÌÌÌÌÌ.@ÍÌÌÌÌÌÀ3333331@333333?@333333+@3333330@ffffff @333333/À333333@€<@fffffæ0@ÍÌÌÌÌÌ?@(@33333sA@333333;@š™™™™™9@À333333#@ÍÌÌÌÌÌ&@š™™™™™'@3333334@š™™™™™ñ¿ffffff=@€EÀÍÌÌÌÌL=@€5@-@€=@33333óB@ffffffB@fffffæ2@333333U@33333³6@fffffæ6@?@š™™™™™A@333333=@33333³5@ÍÌÌÌÌÌ@F@ÍÌÌÌÌŒN@ÍÌÌÌÌÌ?@ÍÌÌÌÌLE@ÍÌÌÌÌL2@1@š™™™™7@š™™™™YI@š™™™™™:@ÍÌÌÌÌŒC@333333)@ÍÌÌÌÌŒC@ÍÌÌÌÌÌ*@š™™™™B@š™™™™™C@š™™™™™*@3333330Àffffffö¿ÍÌÌÌÌÌ,@33333óD@€<@š™™™™0@€A@š™™™™?@@G@=@š™™™™™1ÀÍÌÌÌÌÌ3@3333335@fffff&A@š™™™™™I@ @ffffff @ÍÌÌÌÌL:@33333³2@š™™™™™=@š™™™™™"@š™™™™3@3333336@3@ÍÌÌÌÌŒL@š™™™™™?@ÍÌÌÌÌŒG@33333³>@,@€4@A@š™™™™™&@š™™™™A@š™™™™ÙB@33333sK@š™™™™9S@€3@ffffff'@33333óG@ÍÌÌÌÌÌC@ffffff"@€H@fffff¦@@€:@+@ÍÌÌÌÌÌK@33333sG@ÍÌÌÌÌÌ@š™™™™™@ÀD@š™™™™E@@B@š™™™™™H@33333³2@ÍÌÌÌÌÌ@33333sJ@7@33333óE@ÍÌÌÌÌÌ?@.ÀÍÌÌÌÌŒJ@*@333333@€0@@.@fffffæ=@ÍÌÌÌÌL9@š™™™™YE@ÍÌÌÌÌÌ.@7@#@33333óL@ @fffff&S@33333³@@ffffff@@š™™™™ÙA@3333330@>@+@33333³5@ÍÌÌÌÌŒB@fffffS@ÍÌÌÌÌÌA@3333336@š™™™™>@4@ffffff%@33333óA@ffffff@@(@š™™™™™%@€4@ffffff&@33333óE@3333330@ÍÌÌÌÌÌ8@ffffff5@8@@I@fffffæ9@>@33333³I@š™™™™ÙA@€P@fffffæO@7@ÍÌÌÌÌL;@ffffff0@33333³M@>@ffffff6@@O@33333³>@fffffæ3@fffffæB@ÍÌÌÌÌÌ9@ÍÌÌÌÌÌ8@3333335@@@ÍÌÌÌÌÌ7@ÍÌÌÌÌÌ)@33333³4@ÍÌÌÌÌLA@ÍÌÌÌÌŒB@fffff&B@ffffff<@ P@€4@ÍÌÌÌÌ I@3333335@33333³M@š™™™™™8@I@€9@333333'@š™™™™ÙE@ffffff3@ffffff*@fffffæ2@333333Ó¿fffff&B@š™™™™™@@333333<@*@€H@š™™™™=@fffffæ5@ÍÌÌÌÌÌ!@š™™™™C@€F@š™™™™™(@#@333333Àš™™™™™@ÍÌÌÌÌL:@š™™™™™/@333333.@š™™™™™)@ÍÌÌÌÌÌ"@ÍÌÌÌÌL@@333333!@€0@ÍÌÌÌÌL8@š™™™™™6@@J@ÍÌÌÌÌÌ-@ @ÍÌÌÌÌ,R@š™™™™™#@5@š™™™™™ù¿33333sC@33333óL@33333³K@3@3333339@ÍÌÌÌÌ L@fffffæN@fffffÆU@š™™™™™?@333333@G@@33333³7@33333³2@š™™™™™.@ffffff#@fffffæ4@3333332@333333*@33333óF@333333C@ffffff9@š™™™™™6@3333335@fffffæ7@33333³9@fffff¦M@ffffff8@5@š™™™™ÙI@€J@ÍÌÌÌÌLS@333333@ffffffF@333333/@€7@G@3333337@š™™™™™¹¿@@@ffffff+@33333óE@š™™™™™ÀÍÌÌÌÌŒN@ÍÌÌÌÌL@@#@333333)@,@Àš™™™™™Àffffff@š™™™™™+@š™™™™™<@à¿ÍÌÌÌÌÌ%@ÍÌÌÌÌL8@@E@fffffæ1@€7@ÍÌÌÌÌLG@ffffff9@š™™™™ÙA@(@;@š™™™™™#@š™™™™™,@ÍÌÌÌÌÌ>@š™™™™H@š™™™™H@H@ffffff4@š™™™™0@33333³0@33333sG@ÀA@A@š™™™™YG@ÍÌÌÌÌÌ1@@€1@š™™™™™'@&@ÍÌÌÌÌÌ@fffff¦F@ÍÌÌÌÌLD@ffffff+@33333³1@ÍÌÌÌÌÌ*@fffffæL@33333³>@š™™™™™@@fffff¦O@@š™™™™@@333333<@fffff&C@@ffffff8@333333(@ffffff@ @33333sH@ffffff6@ÍÌÌÌÌÌ7@ÍÌÌÌÌÌ;@333333D@33333sA@š™™™™™<@fffffæ8@š™™™™™¹?fffffæ7@3333339@2@š™™™™™<@€>@ffffff1@ÍÌÌÌÌÌ@€>@(@À€0@š™™™™™6@8@Àš™™™™™ À€2@ffffff/@š™™™™D@š™™™™S@ÍÌÌÌÌLA@33333³O@3333334@333333)@š™™™™Y@@fffffæH@333333.@333333@@ffffff#@€;@3333334@€B@€@@š™™™™@@ffffff5@š™™™™™4@š™™™™™+@š™™™™™>@333333@š™™™™@@333333$@š™™™™™@€>@333333û¿33333³>@fffffæ=@š™™™™™3@fffffæD@ffffffE@ÍÌÌÌÌL>@33333sF@3333332@ÍÌÌÌÌLC@ffffffþ¿33333sF@333333)@3333334@ÍÌÌÌÌÌÀš™™™™™*@333333@33333³D@ÍÌÌÌÌ N@#@333333 À333333-@ÍÌÌÌÌ F@ÍÌÌÌÌÌ5@333333@%@33333³@@š™™™™™3@ÀM@33333óI@š™™™™™8@33333³B@ÍÌÌÌÌÌ6À333333ÀÍÌÌÌÌÌ9@33333SP@€?@333333K@š™™™™™)@333333@š™™™™™?@fffffæ;@ffffff@š™™™™1@š™™™™ÙE@ffffffM@ÍÌÌÌÌÌ?@ffffffö¿333333H@J@ÍÌÌÌÌŒB@33333óT@š™™™™™6@.@ffffff9@33333³5@ÍÌÌÌÌÌI@€I@š™™™™YG@33333³4@ÍÌÌÌÌÌ#@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ2@š™™™™G@ffffff@33333³7@fffffæF@š™™™™9@33333S@@H@8@@fffffæ4@333333F@8@ÍÌÌÌÌL9@€>@ÍÌÌÌÌÌ(ÀÍÌÌÌÌÌ2@333333B@@B@ÍÌÌÌÌÌE@ÍÌÌÌÌL1@š™™™™ÙB@G@š™™™™@@@š™™™™™-@š™™™™™@@ÍÌÌÌÌÌ9@€B@ÍÌÌÌÌÌ@š™™™™ÙG@@CÀÍÌÌÌÌ F@33333ó@@š™™™™™¹?333333Ó?š™™™™™É¿š™™™™™Ù¿š™™™™™É?š™™™™™Ù¿š™™™™™ñ?š™™™™™¹¿š™™™™™É¿š™™™™™¹¿333333ã?š™™™™™É¿š™™™™™É¿š™™™™™É?š™™™™™É¿š™™™™™É¿ÍÌÌÌÌÌì?š™™™™™É?ffffffæ?ÍÌÌÌÌÌô?š™™™™™¹?š™™™™™¹¿š™™™™™É?š™™™™™É?š™™™™™¹¿š™™™™™¹?š™™™™™¹?š™™™™™É¿š™™™™™é?š™™™™™¹?š™™™™™¹¿š™™™™™¹¿š™™™™™¹¿š™™™™™É?š™™™™™Ù?333333Ó¿ÍÌÌÌÌÌì?š™™™™™É?š™™™™™¹¿š™™™™™¹?š™™™™™¹¿š™™™™™É¿š™™™™™¹?ð¿333333Ó?à?š™™™™™É¿š™™™™™¹?š™™™™™É¿š™™™™™¹¿š™™™™™Ù?š™™™™™¹¿š™™™™™¹?à?š™™™™™¹¿š™™™™™é?š™™™™™Ù¿333333Ó?š™™™™™¹?à?š™™™™™Ù¿š™™™™™É¿š™™™™™¹¿à?š™™™™™¹?333333Ó?š™™™™™É?š™™™™™É¿š™™™™™ñ¿à?ÍÌÌÌÌÌô¿ø?š™™™™™É¿à?ð¿à¿š™™™™™¹?š™™™™™¹¿à¿333333ã?š™™™™™¹¿š™™™™™¹¿333333Ó¿š™™™™™¹?š™™™™™¹?š™™™™™É¿š™™™™™¹?ffffffö¿à?š™™™™™¹?š™™™™™¹¿š™™™™™é?333333Ó¿š™™™™™É?š™™™™™É¿š™™™™™Ù¿š™™™™™É?333333Ó?š™™™™™é?š™™™™™¹?š™™™™™É¿ÍÌÌÌÌÌì?333333ã?ffffffæ?333333ã?š™™™™™Ù¿š™™™™™Ù?š™™™™™é¿š™™™™™É¿à¿à?š™™™™™¹¿š™™™™™¹?š™™™™™¹¿š™™™™™¹?ffffff濚™™™™™¹¿à?š™™™™™¹?š™™™™™¹¿š™™™™™É¿à¿š™™™™™É¿š™™™™™¹?š™™™™™É¿š™™™™™¹?š™™™™™É¿333333㿚™™™™™É¿š™™™™™é¿š™™™™™É?š™™™™™É¿š™™™™™¹¿š™™™™™Ù?š™™™™™¹?š™™™™™¹¿š™™™™™¹?š™™™™™¹¿333333ã?š™™™™™Ù?ffffffæ?š™™™™™¹?š™™™™™Ù?ÍÌÌÌÌÌì¿333333Ó¿š™™™™™¹¿š™™™™™É¿š™™™™™É?š™™™™™¹?š™™™™™É?š™™™™™É?š™™™™™¹¿š™™™™™Ù?333333ã?ffffffæ?š™™™™™É?@333333ã?333333ã¿333333Ó¿š™™™™™Ù¿ø¿à?š™™™™™É?š™™™™™É?333333ó?š™™™™™É?333333㿚™™™™™¹?ffffffæ?š™™™™™¹?š™™™™™é¿à¿š™™™™™¹¿333333Ó?ffffffö¿ffffffæ?š™™™™™¹?࿚™™™™™¹¿š™™™™™Ù¿š™™™™™¹?š™™™™™É?333333Ó?333333Ó¿š™™™™™¹¿š™™™™™¹?333333ã¿333333ã?š™™™™™¹¿333333ã?š™™™™™¹?š™™™™™¹?š™™™™™Ù?š™™™™™ñ?š™™™™™É¿š™™™™™é?š™™™™™¹¿š™™™™™¹?š™™™™™¹?š™™™™™¹¿à¿š™™™™™É?š™™™™™Ù¿š™™™™™É¿ffffffæ?š™™™™™É¿š™™™™™¹?š™™™™™¹¿š™™™™™ñ?333333ó?š™™™™™Ù?333333ã?333333ã?š™™™™™É¿333333ã?ffffffæ?š™™™™™¹¿š™™™™™¹¿à¿š™™™™™¹¿333333ã?à¿à¿š™™™™™É¿š™™™™™¹?š™™™™™É?š™™™™™É?š™™™™™¹?š™™™™™¹?š™™™™™¹¿š™™™™™É¿š™™™™™¹?š™™™™™Ù?š™™™™™É?333333ã?š™™™™™¹?333333ã?š™™™™™¹¿š™™™™™¹?ð?š™™™™™¹¿333333Ó?š™™™™™É¿š™™™™™Ù¿š™™™™™é?333333Ó¿š™™™™™¹¿ffffffæ¿ø?š™™™™™¹?š™™™™™É¿š™™™™™Ù?š™™™™™ñ¿333333ã?š™™™™™É?333333ã?š™™™™™¹¿à¿š™™™™™é¿š™™™™™¹?ÍÌÌÌÌÌì¿à?š™™™™™É?333333Ó¿š™™™™™É?š™™™™™É?š™™™™™¹¿à¿333333Ó?ÍÌÌÌÌÌì?ÍÌÌÌÌÌô?333333Ó¿333333ã?333333ã?š™™™™™é?š™™™™™Ù¿š™™™™™É?ÍÌÌÌÌÌì?ffffffæ¿333333Ó?š™™™™™¹¿š™™™™™É¿ø?š™™™™™Ù¿à¿š™™™™™Ù¿š™™™™™¹¿š™™™™™¹?š™™™™™¹¿à¿š™™™™™¹¿š™™™™™É¿š™™™™™¹¿š™™™™™É?š™™™™™É?š™™™™™¹?š™™™™™É?š™™™™™É¿š™™™™™¹?š™™™™™É?ø?š™™™™™¹?š™™™™™é?࿚™™™™™¹?333333Ó?š™™™™™É?š™™™™™É?š™™™™™¹?š™™™™™¹?333333ó?ffffff濚™™™™™Ù?š™™™™™¹¿š™™™™™Ù?š™™™™™É¿š™™™™™Ù?š™™™™™¹¿ð?š™™™™™¹¿à¿š™™™™™Ù¿333333ó?ffffff濚™™™™™¹¿ffffffæ¿333333㿚™™™™™¹?ffffff@@š™™™™™¹¿š™™™™™¹¿š™™™™™¹?š™™™™™¹¿ÍÌÌÌÌÌô?š™™™™™¹?ffffffæ?š™™™™™É¿š™™™™™É¿à¿š™™™™™Ù?š™™™™™é?š™™™™™¹?333333Ó?š™™™™™¹?࿚™™™™™É?š™™™™™¹¿š™™™™™É?š™™™™™¹?ffffffæ¿ffffff濚™™™™™Ù?š™™™™™É¿š™™™™™é?š™™™™™¹¿@š™™™™™Ù?333333ó¿333333ã¿à?333333Ó¿333333û¿š™™™™™¹¿š™™™™™Ù?333333Ó?333333㿚™™™™™¹?࿚™™™™™Ù¿333333Ó¿š™™™™™¹¿333333ã?333333Ó¿š™™™™™¹?š™™™™™¹?ffffffæ?333333ó?333333ó?333333Ó?ÍÌÌÌÌÌÀš™™™™™ù¿333333㿚™™™™™Ù¿ffffffÀffffffÀÍÌÌÌÌÌÀ ÀÍÌÌÌÌÌÀ333333ã¿à¿š™™™™™Ù¿à¿ffffffæ¿333333%ÀÀÍÌÌÌÌÌÀÍÌÌÌÌÌü¿ÀÍÌÌÌÌÌô¿ÍÌÌÌÌÌì¿ffffffæ¿Àš™™™™™ ÀffffffÀÍÌÌÌÌÌü¿ð¿š™™™™™ À333333ã¿333333û¿ÍÌÌÌÌÌô¿ø¿ø¿333333㿚™™™™™ñ¿š™™™™™Ù¿333333ó¿333333ã¿à¿ÍÌÌÌÌÌü¿š™™™™™ÀÍÌÌÌÌÌÀ333333û¿ÍÌÌÌÌÌÀš™™™™™é¿à¿ffffffþ¿š™™™™™Àà¿ð¿š™™™™™%Àffffffþ¿333333ÀÍÌÌÌÌÌÀ333333ã¿à¿ø¿333333ó¿š™™™™™Àffffffæ¿333333㿚™™™™™Ù¿333333ó¿à¿ÍÌÌÌÌÌì¿ffffffö¿ffffffþ¿ÍÌÌÌÌÌô¿š™™™™™Ù¿333333ó¿ÍÌÌÌÌÌì¿333333㿚™™™™™é¿š™™™™™ À࿚™™™™™ñ¿333333ã¿ÍÌÌÌÌÌì¿ffffffÀÍÌÌÌÌÌÀffffffö¿ÀffffffÀš™™™™™!Àš™™™™™ÀÍÌÌÌÌÌÀÀš™™™™™Ù¿à¿š™™™™™é¿ffffffÀ333333û¿ ÀffffffÀ333333ã¿ÍÌÌÌÌÌô¿š™™™™™ñ¿š™™™™™À333333À333333ó¿333333ã¿ø¿š™™™™™ÀÍÌÌÌÌÌÀà¿333333 ÀffffffÀš™™™™™é¿ÍÌÌÌÌÌÀš™™™™™ Àš™™™™™ñ¿333333û¿š™™™™™À333333ã¿à¿ffffffÀÀÀ333333ó¿ÍÌÌÌÌÌÀffffffæ¿ÍÌÌÌÌÌ Àš™™™™™é¿Àš™™™™™Ù¿ÍÌÌÌÌÌü¿ÍÌÌÌÌÌÀÍÌÌÌÌÌì¿à¿ffffffÀÍÌÌÌÌÌÀÍÌÌÌÌÌô¿ð¿333333Àš™™™™™Àš™™™™™é¿š™™™™™ù¿333333$Àš™™™™™ Àø¿333333ã¿333333ã¿Àš™™™™™ñ¿À333333Àffffffæ¿ÍÌÌÌÌÌ쿚™™™™™Ù¿ÍÌÌÌÌÌ쿚™™™™™Ù¿€0Àffffffæ¿à¿ð¿ð¿ÍÌÌÌÌÌü¿ÍÌÌÌÌÌì¿ÍÌÌÌÌÌü¿à¿ÍÌÌÌÌÌì¿ÍÌÌÌÌÌÀš™™™™™Àà¿333333À333333û¿š™™™™™Àffffffö¿333333 Àà¿ffffffÀš™™™™™ù¿ø¿333333㿚™™™™™Ù¿333333(Àð¿ð¿à¿ÍÌÌÌÌÌü¿333333ã¿ÍÌÌÌÌÌü¿š™™™™™ Àø¿š™™™™™ ÀÍÌÌÌÌÌÀ333333ÀffffffÀš™™™™™Ù¿š™™™™™ñ¿ffffffæ¿Àffffff À333333À࿚™™™™™Ù¿333333ã¿ffffffæ¿ÍÌÌÌÌÌì¿ffffffö?ÍÌÌÌÌÌì?š™™™™™@š™™™™™ù?333333ó?33333³5@š™™™™™@š™™™™™@@š™™™™™ @š™™™™™ù?š™™™™™ñ?333333*@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ@@@ffffff @à?ÍÌÌÌÌÌ@š™™™™™@@ffffffö?@ÍÌÌÌÌÌü?ffffff @333333@š™™™™™Ù?333333ó?ffffff@ffffff@ffffff@à?š™™™™™ @ð?ÍÌÌÌÌÌ@333333@ÍÌÌÌÌÌô?333333$@@333333û?ffffff@ffffff@ffffffæ?ÍÌÌÌÌÌì?š™™™™™ñ?š™™™™™$@ÍÌÌÌÌÌ@ø?ffffff@à?@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ@@#@š™™™™™(@š™™™™™@ffffff@ffffff@333333@à?333333ó?ffffffþ?š™™™™™@ffffffæ?š™™™™™@333333@š™™™™™@333333û?š™™™™™'@š™™™™™ @333333 @š™™™™™@š™™™™™ñ?ffffff @ffffff@š™™™™™@ffffff)@ @ffffff @ffffff@ÍÌÌÌÌÌü?š™™™™™é?333333 @ffffffæ?ffffff@ð?ÍÌÌÌÌÌü?š™™™™™@š™™™™™ù?ffffff$@ffffff#@@š™™™™™Ù?@333333ã?@š™™™™5@ffffffþ?ffffffö?333333û?ffffff@ffffff$@@ffffffö?ÍÌÌÌÌÌ @š™™™™™ù?ÍÌÌÌÌÌ@ffffff@š™™™™™ñ?ÍÌÌÌÌÌì?š™™™™™ @ÍÌÌÌÌÌ@š™™™™™@333333û?ffffff @ffffffþ?š™™™™™@ffffff@š™™™™™@ @@ÍÌÌÌÌÌ@ @š™™™™™@333333 @@333333@š™™™™™@ø?ÍÌÌÌÌÌ@ÍÌÌÌÌÌì?ð?ÍÌÌÌÌÌ@ÍÌÌÌÌÌü?333333û?š™™™™™@@@@@à?333333 @333333@ÍÌÌÌÌÌ@ffffffæ?333333@à? @š™™™™™Ù?333333@333333@ÍÌÌÌÌÌì?ÍÌÌÌÌÌô?š™™™™™ù?ffffff@ÍÌÌÌÌÌì?š™™™™™@š™™™™™ù?ÍÌÌÌÌÌ@@ffffff@š™™™™™ñ?š™™™™™ù?@@à?@ÍÌÌÌÌÌô?š™™™™™@@333333@ÍÌÌÌÌÌ@ffffffæ?@à?333333@ø?ffffff@š™™™™™(@ÍÌÌÌÌÌô?ffffff4@333333@š™™™™™Ù?ffffffæ?ffffffþ?ÍÌÌÌÌÌ*@!@à?à?333333$@ffffff@š™™™™™%@ÍÌÌÌÌÌ"@à?ffffff,@333333 @š™™™™™Ù?ffffff @š™™™™™ù?ÍÌÌÌÌÌ@@ð?ø?ffffff@333333ó?š™™™™™@ffffff@@!@ffffff@333333@ffffff@333333 @ffffff+@333333@@ÍÌÌÌÌÌì?ffffff @333333@š™™™™™é?ÍÌÌÌÌÌì?ÍÌÌÌÌÌ@ÍÌÌÌÌÌ@333333!@ÍÌÌÌÌÌô?ffffffö?š™™™™™é?333333@333333ã?ffffffö?ø?ÍÌÌÌÌÌ@333333@š™™™™™ @ÍÌÌÌÌÌü?š™™™™™Ù?à?@š™™™™™@š™™™™™@@ffffff@š™™™™™Ù?ffffffæ?š™™™™™é?ÍÌÌÌÌÌ@š™™™™™@ÍÌÌÌÌÌô?ÍÌÌÌÌÌ@ffffffæ?ÍÌÌÌÌÌ@ÍÌÌÌÌÌ @333333@ffffffæ?333333ã?333333@333333ã?š™™™™™@ffffff @ffffff@ÍÌÌÌÌÌ @š™™™™™é?ÍÌÌÌÌÌì?333333@ffffff*@š™™™™™@š™™™™™@š™™™™™ù?ffffff @333333ã?ð?š™™™™™ @333333@ÍÌÌÌÌÌ @333333@@ffffff@ÍÌÌÌÌÌô?š™™™™™Ù?à?ÍÌÌÌÌÌü?@ffffff$@š™™™™™@š™™™™™@ð?ÍÌÌÌÌÌô?333333&@@ffffffæ?à?333333ó?ÍÌÌÌÌÌô?ÍÌÌÌÌÌô?ffffff@à?ÍÌÌÌÌÌ@'@ffffff @ffffffþ?ð?š™™™™™@333333@@ÍÌÌÌÌÌ@ffffff@333333ó?ÍÌÌÌÌÌ@ÍÌÌÌÌÌ@@ÍÌÌÌÌÌ@š™™™™™@ffffff"@ffffffþ?@à?š™™™™™ñ?@ffffff@š™™™™™Ù?@ffffff@333333 @@ffffff @333333ã?š™™™™™ @ÍÌÌÌÌÌô?333333ó?%@@333333 @ÍÌÌÌÌÌ@à?333333@ÍÌÌÌÌÌ@333333@ø?ffffff@@ffffff@333333!@š™™™™™@ÍÌÌÌÌÌì?ffffff$@ffffff@!@ffffff@ð?ÍÌÌÌÌÌì?ffffff@@333333&@ffffff@@333333ã?š™™™™™@ffffffæ?ffffffö?@.@š™™™™™@š™™™™™ù?š™™™™™@@ffffff@333333@ffffff@ÍÌÌÌÌÌ@333333%@@@ÍÌÌÌÌÌ@ffffff)@ffffff@ÍÌÌÌÌÌô?š™™™™™Ù?ffffff@š™™™™™!@š™™™™™ @š™™™™™@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ@333333ã?ÍÌÌÌÌÌ@ÍÌÌÌÌÌ0@ÍÌÌÌÌÌô?ø?š™™™™™é?š™™™™™é?ÍÌÌÌÌÌ @ÍÌÌÌÌÌü?@ð?ffffff@@ffffff@333333@ÍÌÌÌÌÌ @ð?ÍÌÌÌÌÌ@ffffffö?à?333333@ø?ÍÌÌÌÌÌ@ÍÌÌÌÌÌì?š™™™™™À࿚™™™™™é¿š™™™™™Ù¿ÍÌÌÌÌÌü¿333333ó¿š™™™™™Ù¿ffffffÀš™™™™™ñ¿ø¿ffffffÀffffffþ¿ÍÌÌÌÌÌ%ÀÍÌÌÌÌÌ À333333Àš™™™™™é¿333333ÀÍÌÌÌÌÌÀÍÌÌÌÌÌì¿333333,À333333ã¿ffffffæ¿Àffffffþ¿Àš™™™™™ñ¿À333333 ÀÍÌÌÌÌÌ À333333ó¿ffffffæ¿ÍÌÌÌÌÌÀÍÌÌÌÌÌÀ333333Àð¿ffffff!Àà¿333333ã¿ À333333Àš™™™™™ù¿ÍÌÌÌÌÌü¿ffffffÀÍÌÌÌÌÌü¿š™™™™™Àffffffæ¿333333ÀÍÌÌÌÌÌô¿ÍÌÌÌÌÌü¿333333㿚™™™™™Àš™™™™™Ù¿š™™™™™Ù¿š™™™™™ À333333Àš™™™™™é¿333333ÀÀÍÌÌÌÌÌÀà¿!ÀÍÌÌÌÌÌ Àš™™™™™ñ¿š™™™™™Ù¿ÍÌÌÌÌÌÀ333333û¿š™™™™™'Àffffffþ¿333333û¿š™™™™™ù¿š™™™™™(ÀÀÍÌÌÌÌÌÀffffffÀÀ333333Àà¿ffffffÀð¿ÍÌÌÌÌÌÀ333333ã¿ð¿Àš™™™™™À333333 Àš™™™™™ Àffffffö¿š™™™™™$ÀffffffÀffffffÀÍÌÌÌÌÌô¿š™™™™™ ÀffffffÀš™™™™™Àš™™™™™ñ¿333333ÀÀffffff#À333333ã¿333333û¿ffffffÀffffff Àš™™™™™ÀÀš™™™™™ñ¿333333ÀÍÌÌÌÌÌÀÀÍÌÌÌÌÌÀ333333ó¿š™™™™™é¿333333Àš™™™™™é¿ffffff ÀÍÌÌÌÌÌÀffffffÀÍÌÌÌÌÌ!À333333(ÀÀš™™™™™Ù¿ffffffÀÀÍÌÌÌÌÌô¿ÍÌÌÌÌÌü¿ Àš™™™™™ Àà¿ÍÌÌÌÌÌÀffffffö¿À ÀÍÌÌÌÌÌÀš™™™™™À333333Àš™™™™™ÀffffffÀ333333ÀffffffÀÍÌÌÌÌÌÀ'Àš™™™™™ù¿ffffffö¿ÍÌÌÌÌÌÀffffff À333333ã¿ÍÌÌÌÌÌÀ333333û¿À(Àš™™™™™Àš™™™™™ Àø¿ffffffÀÀš™™™™™ ÀÀÍÌÌÌÌÌì¿ø¿ffffffÀÍÌÌÌÌÌì¿à¿š™™™™™ÀffffffÀÀ333333À333333Àffffff*ÀÍÌÌÌÌÌÀÍÌÌÌÌÌô¿333333Àš™™™™™ÀÍÌÌÌÌÌÀÀ333333ÀÍÌÌÌÌÌÀ333333À333333ó¿ø¿333333ó¿š™™™™™ Àà¿333333ã¿ÍÌÌÌÌÌÀÍÌÌÌÌÌ&À333333Àš™™™™™ù¿ÍÌÌÌÌÌ(Àð¿ffffffæ¿333333㿚™™™™™Ù¿š™™™™™ÀÍÌÌÌÌÌô¿333333ó¿333333Àà¿ffffffÀ)Àš™™™™™é¿ø¿333333À$ÀffffffÀffffffÀš™™™™™Àð¿333333!Àffffffö¿333333ó¿à¿ÍÌÌÌÌÌÀÍÌÌÌÌL0ÀffffffÀffffffö?ffffff@š™™™™™ù?ffffff @ð?ÍÌÌÌÌÌ@ÍÌÌÌÌÌ-@š™™™™™Ù?ÍÌÌÌÌÌì?ffffffæ?ÍÌÌÌÌÌô?ffffff@š™™™™™@à?š™™™™™Ù?à?ÍÌÌÌÌÌô?ð?333333ó?ÍÌÌÌÌÌ@@ffffff@333333û? @š™™™™™Ù?333333ã?ffffff@333333@ffffffæ?ffffff@š™™™™™Ù?ffffffæ?à?ÍÌÌÌÌÌô?ÍÌÌÌÌÌô¿ffffff濚™™™™™ñ¿333333û¿333333ó¿š™™™™™é?333333Ó¿à?ð¿ð?ffffffæ?333333Ó?333333Ó¿ffffffö?š™™™™™é?ð?à?š™™™™™Ù?š™™™™™Ù?ffffffæ?š™™™™™é?333333ó?š™™™™™É¿333333ã?š™™™™™Ù?333333Ó?š™™™™™ñ?333333Ó?š™™™™™Ù?ffffffæ?š™™™™™Ù?ÍÌÌÌÌÌì?š™™™™™É?333333Ó?ffffffæ¿à?š™™™™™Ù?333333Ó?š™™™™™Ù?ÍÌÌÌÌÌô?à?š™™™™™Ù?333333Ó¿333333Ó?333333ã?š™™™™™É?333333ã?š™™™™™é?ffffffæ?š™™™™™Ù?ÍÌÌÌÌÌì?š™™™™™ñ?š™™™™™¹?ffffffæ?ÍÌÌÌÌÌì?333333ã?333333ã?ffffffæ?š™™™™™Ù?š™™™™™¹?š™™™™™É?333333Ó?333333ã?ÍÌÌÌÌÌì?š™™™™™É¿ð?ÍÌÌÌÌÌì?333333ó?333333ã?ffffffæ¿à?š™™™™™é?š™™™™™É¿š™™™™™É?ffffffæ?š™™™™™Ù?š™™™™™É?š™™™™™ñ?š™™™™™É?à?333333ã?š™™™™™¹¿à?ø?š™™™™™ñ?ffffffæ?ffffffæ?š™™™™™Ù?à?š™™™™™Ù?ffffffæ?š™™™™™é?ffffffæ?š™™™™™¹?š™™™™™é¿š™™™™™Ù?333333ã?ffffffæ?š™™™™™É?ø?333333Ó¿š™™™™™Ù?à?333333㿚™™™™™Ù?š™™™™™ñ?à?š™™™™™é?333333ã?š™™™™™Ù?š™™™™™É?š™™™™™Ù?ffffffö¿š™™™™™É?š™™™™™Ù?à?à?333333Ó¿333333Ó¿ffffffæ?š™™™™™Ù?333333Ó¿š™™™™™Ù?à?333333ã?š™™™™™é?ffffffæ?ð?ffffffæ?š™™™™™¹?š™™™™™Ù?š™™™™™é?333333Ó?ffffffæ?333333Ó?š™™™™™Ù?ÍÌÌÌÌÌì?š™™™™™É?ÍÌÌÌÌÌô?ð?à¿ffffffæ?ð?ffffffæ?333333Ó?š™™™™™¹¿333333Ó?333333ã?333333ã?š™™™™™Ù¿ffffffæ?ffffffæ?š™™™™™¹?š™™™™™ñ?š™™™™™é?š™™™™™Ù?š™™™™™¹?333333ã?333333Ó?à¿333333ã?š™™™™™é?333333ã?š™™™™™Ù?à?à?ÍÌÌÌÌÌì?à?333333ã?š™™™™™Ù?ffffffæ¿ffffffö?š™™™™™é?š™™™™™Ù?š™™™™™É?ÍÌÌÌÌÌô?ffffffæ?š™™™™™¹?ffffff濚™™™™™Ù¿ffffffæ?š™™™™™Ù¿š™™™™™Ù?333333Ó?ÍÌÌÌÌÌì?ffffffæ?𿚙™™™™Ù?à?š™™™™™Ù?ð?š™™™™™¹?à?š™™™™™¹¿à¿ð?š™™™™™Ù?à¿333333ã?à?ffffffæ?š™™™™™Ù?ÍÌÌÌÌÌ@𿚙™™™™É?à¿à¿š™™™™™É?š™™™™™É?ffffffæ?à?333333㿚™™™™™É?ffffffæ?ffffffæ?333333ó?333333ã¿ø?ÍÌÌÌÌÌì?333333Ó¿ffffffæ?š™™™™™É?à?š™™™™™Ù?à?š™™™™™¹?333333ã?à?ÍÌÌÌÌÌô?333333ã?š™™™™™Ù?࿚™™™™™É?š™™™™™é?š™™™™™é?ffffffæ?ffffffæ?ÍÌÌÌÌÌì?333333Ó?š™™™™™ñ?ð?333333ã?š™™™™™é?333333ó?š™™™™™É?š™™™™™Ù?š™™™™™É¿š™™™™™Ù?š™™™™™ñ?ffffffæ?ÍÌÌÌÌÌì?š™™™™™Ù?333333ó?š™™™™™é?ffffffæ?333333ã?333333ã¿333333ó?ÍÌÌÌÌÌì?š™™™™™é?š™™™™™¹?š™™™™™Ù?š™™™™™é?š™™™™™Ù?ÍÌÌÌÌÌì?333333Ó?333333ã?à¿ffffffæ?ÍÌÌÌÌÌì?à¿333333ã?š™™™™™¹?š™™™™™Ù?š™™™™™Ù?333333Ó?à?š™™™™™¹?ffffffæ?ffffffæ?š™™™™™é¿333333ã?à?š™™™™™É?333333ã?à?š™™™™™É?š™™™™™Ù?š™™™™™Ù?š™™™™™Ù?à?ÍÌÌÌÌÌì?333333Ó?à?ÍÌÌÌÌÌô?š™™™™™é?š™™™™™Ù?ffffffæ?š™™™™™É?š™™™™™Ù¿ÍÌÌÌÌÌì?333333Ó?š™™™™™É?š™™™™™Ù?š™™™™™Ù?š™™™™™Ù?š™™™™™é?š™™™™™É?à?à?š™™™™™É?ð¿333333ó?š™™™™™É¿à?š™™™™™ñ¿333333ã?ffffffæ?ð?ÍÌÌÌÌÌì¿ÍÌÌÌÌÌì?333333ã?333333Ó?ÍÌÌÌÌÌô?333333ã?à?š™™™™™Ù?333333ó?ffffffæ?333333Ó?š™™™™™é?ffffffæ?333333ã?à?ffffff濚™™™™™@à?à?ffffffæ?333333ã?š™™™™™ñ?š™™™™™Ù?à?ÍÌÌÌÌÌô?š™™™™™Ù?š™™™™™É?ÍÌÌÌÌÌì?ð?š™™™™™é?š™™™™™é?333333ã?333333ã?š™™™™™é¿333333Ó¿š™™™™™Ù¿š™™™™™Ù?ÍÌÌÌÌÌì?š™™™™™ñ?à?333333ã?ffffffæ¿333333Ó?à?š™™™™™É¿š™™™™™É?ffffffæ?š™™™™™Ù?š™™™™™¹¿š™™™™™Ù¿ÍÌÌÌÌÌì?ð?š™™™™™¹¿š™™™™™ñ?333333ã¿à?à?š™™™™™Ù?333333Ó?333333Ó?ffffffæ?ð?š™™™™™É?ÍÌÌÌÌÌì?š™™™™™ù?333333ã?à?333333Ó?à?333333ó¿š™™™™™¹?ð¿ð¿ffffffæ?à?ffffffæ?333333Ó¿ffffffæ?ffffffæ?à¿333333ã?š™™™™™É?ffffffæ?333333ã?333333Ó?š™™™™™É?ð?333333Ó?à?ffffffö?š™™™™™Ù?ffffffæ?ffffffæ¿ÍÌÌÌÌÌì?š™™™™™É¿š™™™™™é¿ffffffæ?ÍÌÌÌÌÌì?š™™™™™Ù?333333û?š™™™™™¹?333333ã?333333ã?š™™™™™ñ?333333ã?ÍÌÌÌÌÌì?š™™™™™É¿š™™™™™Ù?ffffffæ?š™™™™™Ù?š™™™™™É?333333Ó¿š™™™™™Ù¿à?š™™™™™é?š™™™™™¹?ð?333333ó?333333ó?š™™™™™é?š™™™™™Ù?ffffffæ?š™™™™™Ù?š™™™™™Ù?š™™™™™Ù?š™™™™™Ù?š™™™™™¹?š™™™™™¹?ð?333333Ó?333333Ó?ffffffÀš™™™™™ñ¿š™™™™™Ù?333333㿚™™™™™Ù?š™™™™™É?ÍÌÌÌÌÌì¿333333ã¿ÍÌÌÌÌÌ@333333ã?333333ã¿ÍÌÌÌÌÌü?333333Ó?š™™™™™ñ?š™™™™™É?š™™™™™¹?333333ã?ffffffæ¿333333ã?@š™™™™™É?𿚙™™™™¹¿ffffffæ?ÍÌÌÌÌÌô?š™™™™™é?š™™™™™Ù¿à¿333333@ÍÌÌÌÌÌì?š™™™™™ñ?š™™™™™Ù?š™™™™™ñ?ffffffæ¿333333Ó¿š™™™™™É?š™™™™™é?333333Ó?333333ã¿333333ã¿ffffffæ?š™™™™™ù¿ð¿à¿ÍÌÌÌÌÌì¿333333ã?ffffffæ?ffffffæ¿ffffffæ?333333ã¿ffffffæ¿ð?š™™™™™É?ð?š™™™™™É?à¿333333ã?333333ã?š™™™™™É?š™™™™™é¿š™™™™™É?š™™™™™Ù¿š™™™™™Ù?š™™™™™É¿à¿333333û?ffffffþ?ffffffæ?š™™™™™é¿333333ã?š™™™™™é?š™™™™™Ù?ffffffæ?š™™™™™¹?ffffffæ¿à?333333Ó¿333333ó?ÍÌÌÌÌÌ@š™™™™™Ù?ffffffæ¿ffffffö?333333㿚™™™™™é¿333333ó?š™™™™™É?333333ó?ø?š™™™™™Ù¿ÍÌÌÌÌÌô?š™™™™™É¿š™™™™™ù¿ffffffþ?š™™™™™ñ¿ÍÌÌÌÌÌô¿š™™™™™é¿ÍÌÌÌÌÌì¿ð?š™™™™™ñ?à¿333333ã?𿚙™™™™Ù?ø¿à?ð?ø?š™™™™™É¿š™™™™™¹?333333Ó?š™™™™™Ù¿ÍÌÌÌÌÌ쿚™™™™™é?333333ã¿à?ÍÌÌÌÌÌô?ffffffþ?à¿à¿333333Ó¿š™™™™™Ù¿à¿ð?š™™™™™é?š™™™™™É?ffffffö?ÍÌÌÌÌÌô?333333ã?333333Ó?ffffffæ?ÍÌÌÌÌÌì?333333ã?333333Ó?ÍÌÌÌÌÌ@š™™™™™Ù?š™™™™™É¿š™™™™™Ù?š™™™™™é?333333ó?333333ó?ÍÌÌÌÌÌü?š™™™™™¹?š™™™™™É?š™™™™™Ù?š™™™™™é¿ÍÌÌÌÌÌì?à¿ÍÌÌÌÌÌô?š™™™™™é¿š™™™™™Ù?š™™™™™é¿333333ã?š™™™™™É?š™™™™™ù?à¿333333Ó¿333333ã¿à?333333Ó¿š™™™™™é¿ffffffæ¿333333ã?š™™™™™é?š™™™™™Ù¿ffffffþ?š™™™™™é?š™™™™™ñ?333333Ó?š™™™™™é?ÍÌÌÌÌÌô?š™™™™™Ù?ÍÌÌÌÌÌô?ÍÌÌÌÌÌì?à?@ÍÌÌÌÌÌì?š™™™™™ñ?š™™™™™Ù¿ffffff濚™™™™™Ù¿š™™™™™É¿š™™™™™É?š™™™™™ñ¿ÍÌÌÌÌÌ@ffffffæ?333333ó¿ÍÌÌÌÌÌô?š™™™™™ñ?ffffffæ¿333333ã?à¿ffffff@à?š™™™™™¹¿333333ã?ÍÌÌÌÌÌì¿333333ã¿333333ã?š™™™™™ñ?ffffffæ¿À333333Ó?š™™™™™É?333333ã?ffffffæ?š™™™™™É?š™™™™™ @š™™™™™ñ?333333Ó?ffffffæ?ð¿ÍÌÌÌÌÌ @š™™™™™@š™™™™™@ÍÌÌÌÌÌü¿333333ó¿333333Ó?ð?š™™™™™ù¿š™™™™™ñ?333333Ó¿ð?ffffff濚™™™™™Ù?ffffffö?ÍÌÌÌÌÌì?š™™™™™É?333333ã¿ÍÌÌÌÌÌ쿚™™™™™ñ¿ffffffæ?š™™™™™Ù?š™™™™™ñ?ffffffþ?333333ã?ffffffþ?ffffffö?š™™™™™é?ð?ffffffæ¿333333ó¿333333ã?ÍÌÌÌÌÌì?ð¿333333Ó¿ffffffæ?š™™™™™Ù¿333333ã?š™™™™™ñ?à?š™™™™™¹?š™™™™™é?𿚙™™™™é?@ÍÌÌÌÌÌü?à?š™™™™™Ù?ð?333333Ó?ÍÌÌÌÌÌô?à¿333333ã?ffffffæ¿à?š™™™™™¹?333333Ó¿333333Ó?ø¿333333㿚™™™™™É¿š™™™™™é?š™™™™™ù?ÍÌÌÌÌÌ@š™™™™™Ù?š™™™™™ñ¿333333ӿ࿚™™™™™É?à?š™™™™™É?ffffffæ?š™™™™™Ù¿ffffff濚™™™™™¹¿š™™™™™É?ð?š™™™™™Ù¿ffffffæ?ffffffæ¿ÍÌÌÌÌÌì¿333333ã?š™™™™™@ffffffæ?š™™™™™ À333333ã¿ÍÌÌÌÌÌô¿ð?à?à¿333333ã?ÀÍÌÌÌÌÌ쿚™™™™™Ù¿š™™™™™@ffffff濚™™™™™Ù?333333ó¿à¿333333ó¿š™™™™™ù?š™™™™™É?š™™™™™ñ¿ffffffþ?333333㿚™™™™™É¿ffffffæ?333333Ó¿333333ã?š™™™™™ù?ÍÌÌÌÌÌü?ÍÌÌÌÌÌì?333333Ó¿ð?ffffffæ?333333û?333333Ó¿ÍÌÌÌÌÌô?ÍÌÌÌÌÌ@ÍÌÌÌÌÌü¿ð?š™™™™™ñ¿333333Ó?à?ÍÌÌÌÌÌô¿@333333ã¿333333ã¿ÍÌÌÌÌÌì?š™™™™™ù?š™™™™™É?ffffffö?𿚙™™™™É?333333Ó?ffffffæ?š™™™™™Ù?š™™™™™Ù¿333333ã?ð¿à?ÍÌÌÌÌÌô?š™™™™™Ù¿š™™™™™ù?š™™™™™É? @š™™™™™ù?ffffff@333333ó?333333û?333333㿚™™™™™¹?ÍÌÌÌÌÌ@š™™™™™Ù?ø?š™™™™™¹?š™™™™™é¿ð?à?à?333333ó¿ø?š™™™™™É?333333ã¿ÍÌÌÌÌÌ@š™™™™™ù?š™™™™™É?š™™™™™ù?333333Ó?ð?š™™™™™é¿333333ã?š™™™™™ù¿ð¿š™™™™™ù¿ffffffö?š™™™™™ñ¿ffffffþ?š™™™™™é¿333333@333333ó?ÍÌÌÌÌÌô?@333333ã¿à?ffffffæ?š™™™™™ñ¿ffffffæ?ÍÌÌÌÌÌì?333333@࿚™™™™™Ù?š™™™™™é?ÍÌÌÌÌÌì?333333Ó¿ffffffæ?@ø?à¿ð?333333㿚™™™™™É?𿚙™™™™É?š™™™™™Ù?š™™™™™é?333333ã¿ø¿š™™™™™Ù?š™™™™™¹?ÍÌÌÌÌÌü?ffffff濚™™™™™Ù¿333333ó?š™™™™™ñ?ffffff@333333Ó¿š™™™™™É?à¿ffffffæ?š™™™™™é?ffffffþ¿š™™™™™Ù?ÍÌÌÌÌÌô?š™™™™™é?333333ã¿333333Ó?š™™™™™ñ?ffffffæ?š™™™™™É?333333ó¿š™™™™™é?࿚™™™™™ñ¿333333Ó?š™™™™™É¿ÍÌÌÌÌÌô?à?š™™™™™Ù¿š™™™™™ù?ÍÌÌÌÌÌü¿š™™™™™É?š™™™™™ù?ffffff%Àø¿33333³8@ø¿ÍÌÌÌÌÌÀÍÌÌÌ̬P@ffffff(@ffffff&@333333@ÍÌÌÌÌÌ=@š™™™™™ @333333û¿,Àš™™™™™5@ffffff)@š™™™™™ù?ffffff1@š™™™™™@ÍÌÌÌÌÌ&@3333337ÀÍÌÌÌÌÌ@ÍÌÌÌÌÌ0@ffffff+@ffffff!À#@33333sCÀ33333³<@ÀÍÌÌÌÌÌ3À@FÀ3333338ÀÀ @&Àš™™™™™@š™™™™™)@ffffff@333333@2À33333sGÀÍÌÌÌÌÌ@333333 @ÍÌÌÌÌÌ@š™™™™™2@+À3333330ÀÀ333333Ó?ÍÌÌÌÌÌ!@š™™™™™4ÀÍÌÌÌÌÌÀø?Àš™™™™™;@$@ÍÌÌÌÌÌô¿š™™™™™@,ÀÍÌÌÌÌÌ@š™™™™™8@3333330@š™™™™™@)@ffffff-@ÀB@ÍÌÌÌÌÌ@333333Ó¿2@ÍÌÌÌÌL0@'Àš™™™™™É¿ÍÌÌÌÌÌô?333333&@fffffæ0Àffffff)@333333/@3333333@ÍÌÌÌÌÌ@33333³<@333333(@ffffff,@ffffff-@@ÍÌÌÌÌÌÀ<@ÍÌÌÌÌÌ.@ffffff?@ÍÌÌÌÌÌ'@&@ffffff/Àffffffö¿333333#Àš™™™™™À33333³3Àš™™™™™¹¿333333ó¿ffffffþ?Àffffff Àš™™™™™é¿š™™™™™#ÀÍÌÌÌÌ B@ffffff @ffffff@333333 @ÍÌÌÌÌÌÀš™™™™™Àffffffö?@A@ffffffö¿333333*À@@ÍÌÌÌÌŒ@@333333)@À333333#@ffffff0À333333$Àffffff!@333333 À333333Ó¿€8ÀÍÌÌÌÌÌ@š™™™™™"@"Àš™™™™™@š™™™™™é¿333333@À€4@ÍÌÌÌÌÌ @š™™™™™'@33333³8@@ÍÌÌÌÌŒ@@š™™™™™0@@š™™™™™'@š™™™™™É¿š™™™™™9@ffffff!@š™™™™™+À2@ÍÌÌÌÌÌ À333333 Àš™™™™<@ÍÌÌÌÌÌô¿@š™™™™™!@ÍÌÌÌÌÌ,@ffffffÀš™™™™™)Àš™™™™™@3333330@À#@5@333333"@333333%Àš™™™™™)@ffffff.ÀÍÌÌÌÌÌ @333333Àffffff4@ffffff"@333333&Àffffff'ÀÍÌÌÌÌÌ@333333Àffffff,Àš™™™™™:Àffffff濚™™™™™É?.@"ÀÍÌÌÌÌÌ6@ÍÌÌÌÌÌ&@33333³6À-À33333³8@333333À333333Àš™™™™™ @ÍÌÌÌÌÌ3ÀÍÌÌÌÌÌ!ÀÍÌÌÌÌÌ,@ffffff@ffffffþ¿ÍÌÌÌÌ CÀ0Àffffff2@3333337Àffffff!@333333û?š™™™™™@€D@333333+Àfffff¦F@ÍÌÌÌÌÌ@Àš™™™™™#Àffffff:À@š™™™™C@š™™™™™>@ÍÌÌÌÌÌ%À*ÀÍÌÌÌÌÌ;@ÍÌÌÌÌL2@š™™™™™#@š™™™™™@ÍÌÌÌÌÌÀš™™™™J@š™™™™™@333333À!@š™™™™™É¿ffffffö?š™™™™™5@à¿ffffff,ÀÍÌÌÌÌÌ+@ffffffö?333333#@ffffff!@ÍÌÌÌÌÌ@Àš™™™™™#Àš™™™™™:@š™™™™™É?ÍÌÌÌÌÌÀ333333&@š™™™™=@33333³F@š™™™™™"À3333335@š™™™™™ @ffffff À@$@š™™™™™ Àš™™™™™Àffffff#@333333 @333333$À5@ffffffæ¿ffffff+À333333Àš™™™™8Àffffff)ÀÍÌÌÌÌL8Àš™™™™™?Àffffff4À@š™™™™™"ÀÍÌÌÌÌÌ@ffffff"@š™™™™™¹?š™™™™9Àffffff ÀÍÌÌÌÌÌ@ÍÌÌÌÌÌ&@333333!@š™™™™™@ffffff4@!ÀÍÌÌÌÌÌ$Àffffffæ¿ÍÌÌÌÌÌ1@333333)@ÍÌÌÌÌÌ@@ffffffÀ333333ÀÍÌÌÌÌÌ/ÀÍÌÌÌÌÌ.@333333@&@š™™™™™)À33333³=ÀffffffÀ*ÀÍÌÌÌÌÌ/ÀÍÌÌÌÌÌ"Àfffffæ5@š™™™™™'@ÍÌÌÌÌÌ @ffffff"À33333³4À%@ffffff @%Àffffff)@ffffffB@333333:À33333³3@ffffff!Àš™™™™™#Àffffff@ffffff'À.À3333338À@ÍÌÌÌÌÌ;@ÍÌÌÌÌÌ@(À@ÍÌÌÌÌL0@ÍÌÌÌÌÌì?š™™™™™Àà?š™™™™™ @ÍÌÌÌÌÌÀ'@ÍÌÌÌÌL@@@ffffff @ÀÍÌÌÌÌÌô?š™™™™YB@333333'Àš™™™™™3À3333332Àffffff@333333Àš™™™™GÀÀffffff#@$Àš™™™™™.@š™™™™ÙI@ÍÌÌÌÌÌ@333333À333333Àffffff/@ÍÌÌÌÌÌ+@ÍÌÌÌÌÌ)@333333ó?ÍÌÌÌÌÌ3@ÍÌÌÌÌÌ @à?ø?š™™™™™$@š™™™™™+@333333#@333333,ÀÍÌÌÌÌŒ@@ffffffÀš™™™™™,Àš™™™™™ù?ÍÌÌÌÌÌ!@š™™™™™3À(ÀÍÌÌÌÌÌ5@ÍÌÌÌÌŒGÀ#@ffffffÀ/@2@333333@š™™™™™"Àš™™™™™#@š™™™™™!ÀÀš™™™™™$À€;@ffffff@333333@.Àš™™™™™ñ?ÍÌÌÌÌÌ@*Àffffffæ¿ffffff1ÀÍÌÌÌÌÌ6Àš™™™™™ ÀÍÌÌÌÌÌ#@š™™™™™/@ÍÌÌÌÌÌ@ffffff8@ÍÌÌÌÌÌ#@š™™™™™(À33333³;@ÍÌÌÌÌÌ@333333#@š™™™™™(@€RÀÀEÀffffff@333333=@ÍÌÌÌÌÌ/@fffff¦@@ffffff%@š™™™™™Ù?@.@fffff¦DÀš™™™™™É?ffffff@fffffæ9@333333À*@ÍÌÌÌÌÌü?ÍÌÌÌÌÌ4@ÍÌÌÌÌÌ!@ÍÌÌÌÌÌÀÍÌÌÌÌÌ+@ÍÌÌÌÌÌ/À333333@š™™™™™.À€4@33333³0@š™™™™™:@š™™™™™/@€<@ÀÍÌÌÌÌÌ@š™™™™™ù¿ffffff&@š™™™™™ À/@š™™™™™Àfffffæ;Àffffff@ÍÌÌÌÌÌ @š™™™™™ù?ffffffö¿š™™™™1@š™™™™™A@ffffff@ffffff!À3333339À7Àffffff!@333333ó¿ÍÌÌÌÌÌ.@ffffff&Àffffff>@ÍÌÌÌÌÌ-@ÍÌÌÌÌL2@ÍÌÌÌÌÌ0À333333@ø¿fffffæ0@@ÍÌÌÌÌÌ.Àš™™™™™=@ffffffGÀÍÌÌÌÌÌ'@ffffffÀ333333/ÀÍÌÌÌÌÌô?333333:@ffffff"ÀÍÌÌÌÌÌ*À33333óW@.@š™™™™™@fffffæ1@@@š™™™™™0@333333㿚™™™™™*À€9@š™™™™™@@ÍÌÌÌÌL@@333333@@33333³7Àffffff(@ÍÌÌÌÌÌ7@š™™™™2@333333&Àffffff@-Àš™™™™Ù@@ÍÌÌÌÌÌü?ÍÌÌÌÌÌ+ÀÍÌÌÌÌÌ;ÀÍÌÌÌÌÌ<ÀffffffÀ@333333Àffffff@š™™™™™#@333333ã¿ffffff$@@À33333sJÀffffffþ?š™™™™™ñ?333333"@š™™™™™8@ÍÌÌÌÌÌ2À333333)Àš™™™™™!À333333Àffffff/@ÍÌÌÌÌL3ÀÍÌÌÌÌÌ쿚™™™™™@&À€?@-@333333Ó¿333333Àffffff%Àš™™™™™É?€;@333333-@333333ã¿33333³8@ffffff:@ÍÌÌÌÌLE@333333Àffffff@ÍÌÌÌÌL6@ffffff2@À333333ã?333333Àš™™™™™*@ÍÌÌÌÌL3ÀÍÌÌÌÌL5@333333B@š™™™™™6@š™™™™™ù¿ffffffB@333333"@"@ÍÌÌÌÌL6@333333@࿚™™™™C@š™™™™™'@ÍÌÌÌÌŒB@ÍÌÌÌÌÌ"@š™™™™™*Àš™™™™™@ffffff#Àš™™™™™.Àffffff"Àš™™™™™9Àffffff@ÍÌÌÌÌÌ$@ÀÍÌÌÌÌÌü?š™™™™™&Àø?ÍÌÌÌÌL4ÀffffffC@#@fffffæ3@@š™™™™™Àš™™™™™À333333û¿ÍÌÌÌÌÌ8@š™™™™™ @š™™™™1À333333@33333³1@ÍÌÌÌÌLH@%@ffffffÀÍÌÌÌÌÌ@ffffff3Àš™™™™™,À333333.@333333û¿š™™™™™Ù?333333*À@@333333'@ÀÍÌÌÌÌÌ @ @€>Àš™™™™YC@š™™™™™#@š™™™™™%@€;@333333&@fffff&D@ffffff9@ffffff.@)@ð?33333³<@ø¿Àffffff.@@333333$ÀÍÌÌÌÌL>@ÀÍÌÌÌÌÌ@333333$@ÍÌÌÌÌÌ;@ÍÌÌÌÌÌÀffffff.À333333ó?33333³3@ÍÌÌÌÌÌÀÍÌÌÌÌÌ@.@333333"@333333ÀÍÌÌÌÌL3@€1Àš™™™™™:@š™™™™™ @33333³<@ffffff%@À333333 ÀÍÌÌÌÌÌ@ø?333333Àš™™™™™7Àffffff+@š™™™™™@33333³4@ffffff&ÀÍÌÌÌÌÌ3@ffffff"@š™™™™™7Àš™™™™™)Àš™™™™™0@0@š™™™™™¹?š™™™™™ÀÍÌÌÌÌÌ Àš™™™™™@ffffff#@ÍÌÌÌÌÌ@š™™™™™À333333 À(Àfffffæ1@š™™™™™3Àš™™™™™Àð¿333333#@ÀH@3333331À+À333333@333333ÀÀ3333330ÀÍÌÌÌÌÌ@333333N@ÍÌÌÌÌ B@!ÀÍÌÌÌÌÌÀffffff4@š™™™™YI@33333S@8@ÍÌÌÌÌÌÀ33333ó@@ÍÌÌÌÌÌÀffffffÀ-@(Àffffff @ÍÌÌÌÌL3@š™™™™™@š™™™™3À33333³0@ffffff'@š™™™™™-@ffffff'@333333Ó¿333333+ÀÍÌÌÌÌÌ2À€?@333333 @333333@;@333333@@€M@ @š™™™™:@/@ÍÌÌÌÌÌÀÀš™™™™™-@333333û?š™™™™™)Àš™™™™™ @ÍÌÌÌÌÌ-@333333,ÀÍÌÌÌÌL8@333333@ÍÌÌÌÌÌ#ÀÍÌÌÌÌÌ À3À€8À333333,À,ÀÍÌÌÌÌÌÀ#@š™™™™™Àš™™™™™'@š™™™™™%@ffffff%@333333<Àffffffþ?Àš™™™™™.@š™™™™™"@333333 @33333³6@3ÀÍÌÌÌÌÌ-ÀffffffÀffffff7@33333³8@6@333333&@ffffff$À Àfffffæ3Àffffff0@ÍÌÌÌÌÌ @ÍÌÌÌÌÌ(@ÍÌÌÌÌÌÀÍÌÌÌÌ @Àš™™™™™!Àffffff+À.Àš™™™™™Ù¿fffffæ3@š™™™™2@ø¿ffffff0À.ÀfffffæA@ÍÌÌÌÌÌ @ÍÌÌÌÌ BÀ@š™™™™?@š™™™™™)Àš™™™™9@š™™™™™'ÀÍÌÌÌÌÌÀ333333!À3333331À3333333ÀffffffÀÍÌÌÌÌÌü?ÍÌÌÌÌL?@ffffffþ¿ffffff.À333333À33333³=@@&Àš™™™™™.@š™™™™™é¿À/@€>@š™™™™™@š™™™™1@.@ÍÌÌÌÌÌ@33333ó@@š™™™™™À333333&ÀffffffÀffffffæ?@€:Àfffffæ:Àš™™™™8@š™™™™2À€1@33333³K@ÍÌÌÌÌÌ Àfffff¦A@333333+Àš™™™™™+@š™™™™™1@33333³7@š™™™™™@€:@333333 Àffffffö?š™™™™™ @0@š™™™™™0@š™™™™™@&À€<@ÍÌÌÌÌÌÀÀš™™™™™é¿š™™™™4@ÍÌÌÌÌÌ0À33333³>@33333ó@@fffffæ:Àfffffæ0@ÍÌÌÌÌÌ@š™™™™™"@3333333@š™™™™™<@333333Àš™™™™™4@!ÀÍÌÌÌÌÌ'ÀÍÌÌÌÌÌÀ@A@+@ÍÌÌÌÌÌô¿ffffff@333333@333333û¿š™™™™™ @,@š™™™™0ÀÍÌÌÌÌÌÀffffffþ¿fffffæ0@ÍÌÌÌÌÌ$@ffffff*@ÍÌÌÌÌÌ @ @ÍÌÌÌÌÌ7ÀÀA@ø¿ÍÌÌÌÌL5@ÍÌÌÌÌÌ@333333'À333333AÀÍÌÌÌÌÌ)@ffffffG@333333(@€B@ÍÌÌÌÌÌ-@ÍÌÌÌÌL0Àffffff@š™™™™™3@33333³4Àš™™™™™ ÀÍÌÌÌÌÌ$@ÍÌÌÌÌL@@ffffffþ?ÍÌÌÌÌÌ%@ffffff@fffff¦E@ffffff3@ffffff%Àš™™™™6@fffffæ2À@€8À3333337@ÍÌÌÌÌÌ3@33333³>@333333'@š™™™™™"@ÍÌÌÌÌÌô¿š™™™™™ @ÍÌÌÌÌÌ(@ @ÍÌÌÌÌÌÀ3333336@š™™™™™@€J@š™™™™™ @@333333À@33333³5@ffffff*@ffffff@333333û?ÍÌÌÌÌÌ3Àš™™™™™;ÀÍÌÌÌÌÌ%@@ffffff2@!ÀÍÌÌÌÌÌ6@€3@ffffff.@33333³8Àš™™™™™@ÍÌÌÌÌÌÀ€:@333333@ÍÌÌÌÌÌ1À333333D@ÍÌÌÌÌLMÀffffff+@ffffff@š™™™™™Ù?š™™™™™¹?𿚙™™™™Ù¿š™™™™™¹¿š™™™™™É¿š™™™™™¹?š™™™™™¹?ffffff濚™™™™™¹?š™™™™™¹?š™™™™™¹¿š™™™™™É?š™™™™™¹¿š™™™™™¹¿š™™™™™É?š™™™™™É¿š™™™™™¹?333333㿚™™™™™¹¿š™™™™™¹¿š™™™™™¹¿š™™™™™¹?à?š™™™™™É¿š™™™™™¹¿ffffffæ?ÍÌÌÌÌÌì?š™™™™™¹¿š™™™™™Ù?š™™™™™É?š™™™™™¹¿š™™™™™É¿333333Ó?š™™™™™É?š™™™™™É¿š™™™™™Ù?š™™™™™¹?š™™™™™¹?š™™™™™Ù?š™™™™™¹?š™™™™™¹¿š™™™™™Ù?š™™™™™¹¿š™™™™™É¿š™™™™™¹¿š™™™™™¹?š™™™™™¹¿š™™™™™¹¿333333Ó?š™™™™™¹¿š™™™™™Ù?š™™™™™É?333333Ó¿š™™™™™¹¿š™™™™™¹¿š™™™™™Ù?š™™™™™¹?à?333333Ó?š™™™™™Ù?à?š™™™™™Ù¿š™™™™™É?à?š™™™™™É¿333333ã?š™™™™™¹¿š™™™™™É¿š™™™™™Ù¿š™™™™™¹?à?š™™™™™É?š™™™™™¹?š™™™™™É?š™™™™™¹?š™™™™™¹?š™™™™™É?ffffffþ?š™™™™™ñ?š™™™™™¹¿š™™™™™é?ffffffþ?š™™™™™¹¿š™™™™™Ù¿à?š™™™™™É?š™™™™™¹?š™™™™™é?š™™™™™É?š™™™™™¹?š™™™™™Ù?š™™™™™¹?š™™™™™¹?š™™™™™¹¿š™™™™™ñ?š™™™™™¹?š™™™™™Ù?š™™™™™É¿333333㿚™™™™™É¿333333Ó?š™™™™™¹¿š™™™™™¹?š™™™™™¹¿ffffffæ?š™™™™™Ù?ð?š™™™™™É?š™™™™™¹¿š™™™™™É?š™™™™™¹?à?š™™™™™¹¿š™™™™™É?š™™™™™¹¿š™™™™™¹¿333333ó¿333333ã?š™™™™™¹¿ffffffæ?ð¿à¿š™™™™™¹?š™™™™™Ù¿š™™™™™¹¿à¿333333Ó?š™™™™™É?š™™™™™É?š™™™™™¹¿š™™™™™¹¿š™™™™™É¿š™™™™™É?333333Ó?š™™™™™¹?š™™™™™É?š™™™™™¹?š™™™™™Ù¿š™™™™™Ù?š™™™™™É¿š™™™™™¹¿š™™™™™¹?š™™™™™¹?ffffffæ?š™™™™™¹?š™™™™™É?ÍÌÌÌÌÌì?š™™™™™É?ffffffö?ð?š™™™™™¹?š™™™™™¹?333333Ó?š™™™™™¹¿š™™™™™¹¿š™™™™™É?š™™™™™¹?š™™™™™¹?š™™™™™¹¿š™™™™™¹¿333333ã?ffffffæ?š™™™™™ù?š™™™™™É¿š™™™™™¹?à?š™™™™™¹¿333333Ó?š™™™™™É?š™™™™™Ù?š™™™™™Ù¿š™™™™™Ù?š™™™™™É?ÍÌÌÌÌÌì?š™™™™™¹?š™™™™™¹¿ð?š™™™™™Ù?ð?࿚™™™™™Ù?š™™™™™¹¿š™™™™™¹?࿚™™™™™¹?333333ã?š™™™™™Ù¿à?š™™™™™Ù?š™™™™™É¿š™™™™™¹¿š™™™™™Ù?š™™™™™¹¿š™™™™™É?š™™™™™É?š™™™™™Ù?à?š™™™™™¹?š™™™™™é?š™™™™™¹¿š™™™™™ñ?š™™™™™É¿ffffffæ?š™™™™™Ù?ð?à?333333ã?333333ã?š™™™™™Ù?333333Ó¿š™™™™™É?š™™™™™¹?š™™™™™¹¿š™™™™™¹¿š™™™™™¹?š™™™™™¹?ffffffæ?à¿ÍÌÌÌÌÌì?š™™™™™¹?š™™™™™¹?š™™™™™¹?ffffffæ?š™™™™™Ù¿à?š™™™™™¹?š™™™™™Ù¿333333Ó?š™™™™™¹?333333ã?š™™™™™¹¿š™™™™™É?š™™™™™Ù¿à?š™™™™™¹?ffffffæ?š™™™™™¹?ffffffæ?š™™™™™É¿š™™™™™¹?à?š™™™™™Ù¿š™™™™™¹?š™™™™™¹¿š™™™™™É¿š™™™™™¹?š™™™™™É?š™™™™™É?š™™™™™Ù?ÍÌÌÌÌÌô?š™™™™™Ù¿ffffffæ?333333ã?à?ÍÌÌÌÌÌ쿚™™™™™¹¿à?࿚™™™™™¹?333333Ó?333333ã?š™™™™™¹¿333333ã¿ø?š™™™™™É¿š™™™™™É?š™™™™™¹?š™™™™™¹?š™™™™™Ù¿š™™™™™¹¿ffffff濚™™™™™¹?š™™™™™¹¿à¿š™™™™™É¿ð?ffffffö?š™™™™™Ù¿333333ã?š™™™™™É¿š™™™™™¹?š™™™™™ñ?ffffffæ?š™™™™™É?333333㿚™™™™™Ù?š™™™™™Ù¿š™™™™™¹¿š™™™™™¹?š™™™™™Ù?š™™™™™Ù¿š™™™™™É?š™™™™™¹?à?š™™™™™¹¿333333ã¿333333Ó?333333Ó?ffffff濚™™™™™É?333333ã?333333ã?š™™™™™é?333333Ó?š™™™™™¹¿š™™™™™Ù?333333Ó?ffffffæ?ffffffö?ffffffæ?š™™™™™¹?š™™™™™¹¿š™™™™™¹?š™™™™™¹¿š™™™™™Ù?ffffffæ?333333ó?ð?333333ã?š™™™™™Ù?à?à?š™™™™™É?š™™™™™¹¿333333Ó¿333333Ó?333333Ó?š™™™™™¹?ffffffæ?š™™™™™¹¿333333ã?333333Ó?à?š™™™™™@š™™™™™¹?š™™™™™Ù?š™™™™™Ù¿333333Ó?à?ffffffö?333333Ó?š™™™™™É¿š™™™™™É?š™™™™™¹¿š™™™™™É¿š™™™™™¹?ffffffþ¿ð¿š™™™™™É¿š™™™™™¹¿š™™™™™¹¿š™™™™™¹?ÍÌÌÌÌÌì?333333ã?š™™™™™Ù?š™™™™™Ù¿š™™™™™¹?š™™™™™¹?š™™™™™Ù?à?š™™™™™É?ffffffæ¿333333ã?š™™™™™¹¿š™™™™™¹¿333333Ó¿ÍÌÌÌÌÌ쿚™™™™™¹¿š™™™™™Ù?š™™™™™¹?š™™™™™¹?333333Ó¿333333Ó?333333㿚™™™™™¹?š™™™™™Ù¿š™™™™™¹?š™™™™™É¿333333Ó?š™™™™™¹?š™™™™™Ù?š™™™™™É?333333Ó?š™™™™™Ù¿š™™™™™É¿333333Ó?š™™™™™¹?š™™™™™é¿š™™™™™Ù¿š™™™™™É?333333Àš™™™™™À333333Àffffff À333333 À"ÀffffffÀ333333À333333ÀffffffÀÍÌÌÌÌÌÀ333333ÀÍÌÌÌÌÌÀ À'ÀÍÌÌÌÌÌÀÀffffffÀ333333Àš™™™™™À333333ÀÍÌÌÌÌÌÀ333333À333333À333333ÀffffffÀ333333!ÀÀ Àš™™™™™ù¿333333Àš™™™™™ÀÍÌÌÌÌÌ!Àš™™™™™Àš™™™™™À333333Àš™™™™™"ÀffffffÀš™™™™™À333333ÀffffffÀ333333ÀffffffÀ333333À!ÀffffffÀ333333Àš™™™™™!ÀffffffÀš™™™™™ Àš™™™™™ÀÍÌÌÌÌÌÀš™™™™™ÀffffffÀÍÌÌÌÌÌÀÀ333333ÀÍÌÌÌÌÌ ÀÍÌÌÌÌÌ"ÀÍÌÌÌÌÌÀffffffÀš™™™™™"ÀÀ333333À333333 Àš™™™™™ÀÍÌÌÌÌÌÀffffffÀš™™™™™ÀffffffÀš™™™™™Àš™™™™™Àš™™™™™ÀffffffÀ333333Àš™™™™™)Àffffff ÀffffffÀÍÌÌÌÌÌÀÀÀÀffffff ÀffffffÀ333333$ÀÀ333333$Àš™™™™™À333333ÀffffffÀÍÌÌÌÌÌÀffffffÀÀffffffÀ"Àš™™™™™ ÀÀÍÌÌÌÌÌÀš™™™™™À!ÀÍÌÌÌÌÌ!Àffffff ÀffffffÀ333333 Àffffff ÀffffffÀffffffÀffffff ÀffffffÀÍÌÌÌÌÌ ÀÀš™™™™™À333333ÀÀ!ÀffffffÀš™™™™™À ÀÀffffffÀÍÌÌÌÌÌ Àš™™™™™ÀffffffÀffffff ÀÀffffffÀÀÍÌÌÌÌÌÀ333333ÀÍÌÌÌÌÌÀffffffÀš™™™™™!ÀÍÌÌÌÌÌÀš™™™™™Àš™™™™™ÀffffffÀÍÌÌÌÌÌ À333333ÀÀffffffÀš™™™™™À333333Àš™™™™™ÀÀÀš™™™™™Àš™™™™™ÀÀÀffffffÀ Àš™™™™™Àš™™™™™ÀÍÌÌÌÌÌÀÍÌÌÌÌÌÀ333333À333333Àš™™™™™Àffffffö¿ÀffffffÀš™™™™™"ÀÍÌÌÌÌÌÀÀÀ333333,Àš™™™™™ÀffffffÀš™™™™™&ÀÍÌÌÌÌÌÀÀffffffÀffffffÀÀffffff)ÀffffffÀffffff!ÀÀš™™™™™ÀÍÌÌÌÌÌÀffffffÀ333333À333333Àø¿333333ÀffffffÀš™™™™™Àš™™™™™ÀÀ333333ÀÀÍÌÌÌÌÌÀffffffÀ333333%ÀffffffÀÍÌÌÌÌÌÀ&À333333%À333333ÀffffffÀffffffÀffffffÀÍÌÌÌÌÌÀÍÌÌÌÌÌÀ333333 Àš™™™™™ÀffffffÀffffffÀ333333$À333333À333333À333333ÀÍÌÌÌÌÌô¿ÍÌÌÌÌÌÀÀ333333ÀffffffÀÍÌÌÌÌÌÀffffff ÀffffffÀš™™™™™#Àš™™™™™ÀffffffÀ333333Àš™™™™™ÀffffffÀÀš™™™™™À333333ÀÀ333333Àš™™™™™À ÀÀÍÌÌÌÌÌ)Àš™™™™™ÀffffffÀÀ333333À333333À333333Àš™™™™™ÀÀÍÌÌÌÌÌ ÀÍÌÌÌÌÌ!À333333ÀffffffÀffffffÀ333333ÀffffffÀ%Àš™™™™™ ÀÍÌÌÌÌÌ!À333333#À333333ÀÍÌÌÌÌÌÀÍÌÌÌÌÌÀš™™™™™!ÀÀš™™™™™À#À333333ÀÀš™™™™™#ÀÀÀffffffÀ333333ÀÀffffffÀ ÀÀ333333À333333'Àš™™™™™À333333Àš™™™™™ÀffffffÀš™™™™™ÀÀ333333Àš™™™™™ÀffffffÀÍÌÌÌÌÌÀÍÌÌÌÌÌ!ÀÀ333333ÀÀÀ333333Àš™™™™™ÀÍÌÌÌÌÌÀffffff Àš™™™™™ÀÍÌÌÌÌÌÀš™™™™™Àš™™™™™ÀffffffÀÍÌÌÌÌÌÀÍÌÌÌÌÌÀ333333ÀÍÌÌÌÌÌÀffffffÀffffff%À333333ÀÍÌÌÌÌÌÀš™™™™™ÀÀÀffffffÀ333333!Àffffff#ÀffffffÀš™™™™™ù¿ÍÌÌÌÌÌÀffffff!ÀÍÌÌÌÌÌ#ÀÍÌÌÌÌÌÀš™™™™™Àffffff!Àffffff ÀÍÌÌÌÌÌ#ÀffffffÀffffff,À333333ÀÍÌÌÌÌÌÀÀffffffÀš™™™™™"ÀÍÌÌÌÌÌ ÀffffffÀÀffffffÀÍÌÌÌÌÌÀš™™™™™Àš™™™™™$ÀÍÌÌÌÌÌ Àffffff Àš™™™™™ÀÀ0Àš™™™™™À333333À333333Àffffff"ÀÍÌÌÌÌÌÀffffffÀ333333#ÀÍÌÌÌÌÌÀÍÌÌÌÌÌÀÍÌÌÌÌÌÀ333333Àš™™™™™ ÀÍÌÌÌÌÌÀffffffÀffffffÀÍÌÌÌÌÌÀ333333À!Àš™™™™™ÀffffffÀ333333ó¿333333À333333À333333 Àš™™™™™ À333333À333333À333333Àš™™™™™À333333ÀÀÀš™™™™™À ÀffffffÀffffffÀÀ"ÀÍÌÌÌÌÌü?ÍÌÌÌÌÌü?š™™™™™é?š™™™™™ @333333ã?ÍÌÌÌÌÌô?à?š™™™™™ñ?ÍÌÌÌÌÌô?š™™™™™ù?333333ã?333333ó?š™™™™™ñ?š™™™™™Ù?ÍÌÌÌÌÌì?ð?ð?š™™™™™Ù?ffffffþ?@š™™™™™é?š™™™™™Ù?ffffffþ?š™™™™™ù?ÍÌÌÌÌÌô?ÍÌÌÌÌÌì?ð?ffffffæ?š™™™™™Ù?ÍÌÌÌÌÌì?ð?ÍÌÌÌÌÌô?ffffffæ?333333ã?ø?ÍÌÌÌÌÌì?ffffffæ?333333@333333û?š™™™™™Ù?š™™™™™ù?ffffffþ?ffffffö?333333ã?ÍÌÌÌÌÌ@à?ÍÌÌÌÌÌì?ffffffþ?ÍÌÌÌÌÌì?š™™™™™é?333333ó?ffffffþ?ffffffæ?ø?š™™™™™ñ?ÍÌÌÌÌÌô?ffffff @š™™™™™é?ffffffæ?š™™™™™Ù?ø?à?š™™™™™ñ? @š™™™™™é?à?š™™™™™ñ?333333ó?ffffffö?ffffffæ?ffffffö?@333333ã?333333ó?ÍÌÌÌÌÌì?ÍÌÌÌÌÌ@333333û?ÍÌÌÌÌÌô?š™™™™™Ù?ffffffæ?ø?ð?à?333333ã?ÍÌÌÌÌÌ@à?ÍÌÌÌÌÌ@ÍÌÌÌÌÌ@ð?š™™™™™Ù?333333@š™™™™™@ffffff@@333333û?š™™™™™ñ?333333û?ÍÌÌÌÌÌô?ø?333333ã?š™™™™™@ÍÌÌÌÌÌô?š™™™™™Ù?333333@ffffffö?à?ÍÌÌÌÌÌô?š™™™™™é?ÍÌÌÌÌÌü?ffffffæ?š™™™™™Ù?ÍÌÌÌÌÌì?333333ó?ffffffö?š™™™™™ñ?ffffffæ?@š™™™™™é?š™™™™™ù?š™™™™™é?ffffffö?à?ffffffö?ffffff@333333 @ÍÌÌÌÌÌô?333333ã?ffffffþ?ð?ÍÌÌÌÌÌü?š™™™™™Ù?š™™™™™é?ÍÌÌÌÌÌü?à?š™™™™™ñ?ÍÌÌÌÌÌô?ð?ø?ffffffæ?š™™™™™ñ?333333ã?333333û?š™™™™™é?š™™™™™ù?333333û?ÍÌÌÌÌÌ@ð?ffffffö?333333@@ÍÌÌÌÌÌü?333333ã?ÍÌÌÌÌÌì?ÍÌÌÌÌÌü?@ÍÌÌÌÌÌô?333333û?ÍÌÌÌÌÌü?@š™™™™™ù?à?333333ó?š™™™™™Ù?333333ó?ø?š™™™™™Ù?333333ó?333333ó?š™™™™™Ù?ð?ð?ÍÌÌÌÌÌü?ffffffæ?š™™™™™é?ffffffþ?333333ó?333333ã?ffffff@à?333333@ð?à?ÍÌÌÌÌÌô?333333ó?333333ã?@š™™™™™ù?à?@@333333ó?à? @š™™™™™Ù?ffffff@š™™™™™ @333333@333333@ffffffæ?š™™™™™ù?à?š™™™™™é?ffffffæ?ffffff@ffffffæ?333333û?ø?ø?333333ã?ÍÌÌÌÌÌü?ffffffö?ÍÌÌÌÌÌì?ø?ø?ÍÌÌÌÌÌü?ffffffæ?ÍÌÌÌÌÌì?à?333333ã?š™™™™™é?ffffffþ?ð?š™™™™™ñ?333333ó?à?333333ó?ð?333333ã?ÍÌÌÌÌÌô?ÍÌÌÌÌÌì?ð?š™™™™™Ù?ÍÌÌÌÌÌô?š™™™™™Ù?ÍÌÌÌÌÌô?333333@ÍÌÌÌÌÌì?š™™™™™é?ÍÌÌÌÌÌ@ÍÌÌÌÌÌü?š™™™™™ù?š™™™™™Ù?š™™™™™ù?ÍÌÌÌÌÌ@š™™™™™é?ÍÌÌÌÌÌô?ÍÌÌÌÌÌì?à?333333@ffffffæ?š™™™™™ñ?ffffffæ?š™™™™™'@à?333333ó?333333ã?š™™™™™ù?ÍÌÌÌÌÌì?ffffffæ?ð?š™™™™™@à?ÍÌÌÌÌÌô?š™™™™™ù?š™™™™™ù?š™™™™™ñ?ffffff@š™™™™™Ù?š™™™™™@333333ã?ÍÌÌÌÌÌì?ÍÌÌÌÌÌ@ffffff@ð?à?333333ó?š™™™™™ñ?š™™™™™é?@ffffff@š™™™™™ñ?ø?š™™™™™é?š™™™™™ñ?š™™™™™ñ?333333%@ð?ÍÌÌÌÌÌÀš™™™™™ Àš™™™™™À'Àš™™™™™Àffffff(ÀÀÀð¿"À333333ÀÀÍÌÌÌÌÌÀ333333"Àš™™™™™ÀÀÍÌÌÌÌÌ%À333333 À333333À333333À ÀÍÌÌÌÌÌÀÀffffff"Àš™™™™™ ÀÍÌÌÌÌÌÀ333333%ÀÍÌÌÌÌÌ#ÀÍÌÌÌÌÌÀ333333À333333 Àš™™™™™Àš™™™™™Àš™™™™™Àffffff"Àš™™™™™ÀffffffÀ333333'À333333À333333Àš™™™™™"Àš™™™™™ ÀÀš™™™™™'ÀffffffÀš™™™™™)ÀÀ À333333À333333Àš™™™™™ÀÀÍÌÌÌÌÌÀš™™™™™À!À333333À%À333333%ÀÍÌÌÌÌÌÀ#À333333ÀffffffÀffffffÀš™™™™™!À333333%ÀÍÌÌÌÌÌÀ333333$À#Àš™™™™™é¿ffffffÀ333333À Àš™™™™™Àš™™™™™!À333333ó?ffffffö?@ÍÌÌÌÌÌü?ÍÌÌÌÌÌü?ÍÌÌÌÌÌì?ø?š™™™™™@333333ó?à?@333333ã?333333@ @ð?ð?š™™™™™é?333333ã?333333û?š™™™™™é?š™™™™™Ù?ffffff@333333ã?ÍÌÌÌÌÌü?š™™™™™é?š™™™™™é?ffffffæ?333333ã?š™™™™™@333333ã?ð?@à?š™™™™™ñ?š™™™™™é?333333@@š™™™™™Ù¿š™™™™™é¿333333Ó¿à¿ffffffæ¿ffffffö¿š™™™™™ñ¿š™™™™™Ù¿333333㿚™™™™™ñ¿333333ã¿ð¿š™™™™™ñ¿š™™™™™ñ¿333333ã¿ÍÌÌÌÌÌì¿ÍÌÌÌÌÌì¿ÍÌÌÌÌÌ쿚™™™™™Ù¿ffffff濚™™™™™ñ¿ffffff濚™™™™™ñ¿ð¿à¿š™™™™™¹?š™™™™™É?ffffffö¿333333ã¿ÍÌÌÌÌÌì¿à¿š™™™™™é¿ffffffæ¿à¿ÍÌÌÌÌÌì¿ÍÌÌÌÌÌô¿ffffffæ¿ð¿ffffffö¿ÍÌÌÌÌÌô¿333333ã¿ffffffæ¿ffffffæ¿333333ó¿ÍÌÌÌÌÌì¿333333ã¿ÍÌÌÌÌÌô¿333333ó¿à¿à¿ffffffö¿ffffffæ¿ÍÌÌÌÌÌì¿ð¿à¿333333ã¿ð¿333333Ó¿ffffffæ¿ð¿ÍÌÌÌÌÌì¿ø¿š™™™™™ñ¿ð¿333333ã¿333333Ó¿š™™™™™é¿ÍÌÌÌÌÌì¿333333ã¿ÍÌÌÌÌÌì¿ÍÌÌÌÌÌì¿ÍÌÌÌÌÌì¿à¿333333ó¿ÍÌÌÌÌÌô¿š™™™™™é¿š™™™™™é¿ÍÌÌÌÌÌ쿚™™™™™é¿ÍÌÌÌÌÌô¿ffffffæ¿ÍÌÌÌÌÌ쿚™™™™™ù¿š™™™™™Ù¿ÍÌÌÌÌÌ쿚™™™™™Ù¿333333ã¿333333ã¿ð¿333333ó¿š™™™™™é¿š™™™™™é¿š™™™™™ñ¿š™™™™™é¿š™™™™™ñ¿š™™™™™é¿ÍÌÌÌÌÌì¿ffffffæ¿à¿ð¿333333ó¿ÍÌÌÌÌÌ쿚™™™™™ñ¿333333ã¿à¿š™™™™™ñ¿333333Ó¿ÍÌÌÌÌÌì¿333333Ó?ffffffæ¿333333ã¿ð¿ð¿à¿333333㿚™™™™™ñ¿š™™™™™É?333333ã¿à¿ffffff濚™™™™™é¿ffffffæ¿ð¿333333Ó¿333333ã¿ffffffæ¿333333ó¿ÍÌÌÌÌÌì¿à¿ÍÌÌÌÌÌ쿚™™™™™ñ¿ffffff濚™™™™™Ù?333333ó¿ffffff濚™™™™™ñ¿333333ó¿333333㿚™™™™™ñ¿ffffff濚™™™™™ù¿à¿š™™™™™ñ¿š™™™™™é¿à¿ÍÌÌÌÌÌì¿333333ó¿à¿ð¿š™™™™™ñ¿à¿š™™™™™é¿333333ã¿à¿333333ã¿ð¿ÍÌÌÌÌÌ쿚™™™™™é¿š™™™™™é¿ÍÌÌÌÌÌ쿚™™™™™ñ¿ð¿š™™™™™é¿š™™™™™é¿333333㿚™™™™™Ù¿ffffffö¿ÍÌÌÌÌÌì¿ÍÌÌÌÌÌì¿333333ã¿ÍÌÌÌÌÌì¿ffffffæ¿à¿š™™™™™É?š™™™™™É¿ffffffæ¿333333Ó?ð¿à¿š™™™™™ñ¿š™™™™™é¿ÍÌÌÌÌÌì¿ffffffæ¿ffffffö¿ÍÌÌÌÌÌì¿ð¿š™™™™™é¿ÍÌÌÌÌÌì¿333333Ó¿š™™™™™¹?333333ã¿ð¿333333ã¿ÍÌÌÌÌÌì¿à¿ffffffæ¿333333ã¿ffffffÀš™™™™™¹?333333Ó¿š™™™™™é¿ÍÌÌÌÌÌì¿333333㿚™™™™™Ù¿ffffffæ¿ffffff濚™™™™™Ù¿š™™™™™é¿š™™™™™é¿ÍÌÌÌÌÌô¿š™™™™™ñ¿š™™™™™é¿š™™™™™ñ¿ð¿ffffff濚™™™™™é¿333333ó¿333333ã¿ÍÌÌÌÌÌì¿333333㿚™™™™™é¿š™™™™™Ù¿ÍÌÌÌÌÌô¿ÍÌÌÌÌÌì¿ð¿333333㿚™™™™™¹?ffffffö¿ð¿š™™™™™é¿333333㿚™™™™™ñ¿ffffffæ¿ÍÌÌÌÌÌ쿚™™™™™é¿333333ó¿ÍÌÌÌÌÌô¿š™™™™™ñ¿ð¿ð¿š™™™™™É?333333ӿ𿚙™™™™ñ¿š™™™™™é¿š™™™™™ñ¿ÍÌÌÌÌÌì¿ffffffæ¿ffffffæ¿333333㿚™™™™™Ù?ð¿ÍÌÌÌÌÌô¿ÍÌÌÌÌÌ쿚™™™™™é¿š™™™™™ñ¿ffffffö¿ÀÍÌÌÌÌÌì¿333333ã¿333333ã¿333333㿚™™™™™ñ¿ÍÌÌÌÌÌ쿚™™™™™ñ¿š™™™™™é¿333333Ó¿333333ã¿333333Ó?ffffffæ¿333333Ó¿333333ã¿ð¿ffffffö¿à¿š™™™™™é¿333333Ó¿ffffff濚™™™™™é¿à¿ÍÌÌÌÌÌ쿚™™™™™Ù?à¿ffffffæ¿ffffffæ¿à¿à¿ð¿ÍÌÌÌÌÌô¿ÍÌÌÌÌÌ쿚™™™™™é¿ffffffæ¿333333㿚™™™™™Ù¿333333ó¿à¿ffffff濚™™™™™Ù¿ð¿ÍÌÌÌÌÌì¿333333ó¿ÍÌÌÌÌÌì¿333333ã¿ffffff濚™™™™™É?ÍÌÌÌÌÌ쿚™™™™™¹?333333ó¿š™™™™™é¿ð¿š™™™™™ñ¿333333ó¿š™™™™™É¿333333ó¿š™™™™™é¿š™™™™™ñ¿ffffffö¿š™™™™™ñ¿ffffffæ¿ð¿ð¿333333ã¿333333㿚™™™™™é¿ø¿à¿š™™™™™ñ¿ffffffæ¿333333ó¿333333ã¿333333ã¿ð¿ð¿333333ó¿à¿š™™™™™é¿à¿ÍÌÌÌÌÌì¿ÍÌÌÌÌÌì¿ÍÌÌÌÌÌ쿚™™™™™ñ¿ffffffæ¿ffffffæ¿ffffffæ¿Àffffffæ¿à?333333Ó¿š™™™™™Ù¿š™™™™™ù¿333333ó¿š™™™™™é¿š™™™™™Ù¿š™™™™™ñ¿ø¿à¿ffffffæ¿333333㿚™™™™™é¿à¿333333ã¿ffffff濚™™™™™ñ¿š™™™™™Ù¿ð¿à¿ffffffæ¿333333㿚™™™™™é¿333333㿚™™™™™Ù¿š™™™™™ñ¿ffffffö¿ffffffæ¿ð¿ÍÌÌÌÌÌô¿š™™™™™é¿š™™™™™é¿à¿ÍÌÌÌÌÌì¿à?š™™™™™ñ¿ÍÌÌÌÌÌì¿à¿ð¿š™™™™™é¿š™™™™™é¿333333㿚™™™™™é¿333333㿚™™™™™é¿333333ó¿ÍÌÌÌÌÌì¿ÍÌÌÌÌÌì¿333333㿚™™™™™Ù¿ÍÌÌÌÌÌô?ÍÌÌÌÌÌ쿚™™™™™é¿ð¿ÍÌÌÌÌÌô¿ÍÌÌÌÌÌ쿚™™™™™¹¿ÍÌÌÌÌÌì¿ffffff濚™™™™™É¿333333ó¿ffffff濚™™™™™é¿ÍÌÌÌÌÌô¿à¿š™™™™™ñ¿ffffff濚™™™™™ñ¿à¿333333ó¿ÍÌÌÌÌÌô¿š™™™™™ñ¿ffffffæ¿333333ã¿ð¿š™™™™™é¿ffffff濚™™™™™é¿333333ã¿ÍÌÌÌÌÌ쿚™™™™™ñ¿ÍÌÌÌÌÌì¿ÍÌÌÌÌÌô¿333333㿚™™™™™é¿ffffff濚™™™™™é¿ffffffæ¿333333ã¿ÍÌÌÌÌÌì¿333333㿚™™™™™é¿ÍÌÌÌÌÌì¿à¿š™™™™™¹¿333333㿚™™™™™é¿333333û¿š™™™™™ù¿À333333û¿ø¿333333ÀÍÌÌÌÌÌ쿚™™™™™é¿ffffffþ¿333333ó¿ð¿ÍÌÌÌÌÌü¿333333ã¿ffffffö¿ÀÍÌÌÌÌÌü¿š™™™™™ù¿333333㿚™™™™™Ù¿333333û¿333333Àš™™™™™ñ¿ÍÌÌÌÌÌô¿ÍÌÌÌÌÌ쿚™™™™™ù¿ð¿333333û¿š™™™™™Àš™™™™™¹¿333333ó?š™™™™™ñ¿333333ó¿ffffffÀ333333ó¿ÍÌÌÌÌÌì¿333333ó¿ÍÌÌÌÌÌô¿333333 ÀffffffÀš™™™™™ñ¿š™™™™™ñ¿ÍÌÌÌÌÌì¿ffffffö¿ffffffö¿ð¿š™™™™™ñ¿333333ó¿š™™™™™Ù¿ÍÌÌÌÌÌì¿à¿š™™™™™ñ¿ÍÌÌÌÌÌô¿ð¿ÍÌÌÌÌÌü¿à¿ffffffÀø¿333333㿚™™™™™É¿ÍÌÌÌÌÌô¿ffffffæ¿ÍÌÌÌÌÌÀÍÌÌÌÌÌÀÀÍÌÌÌÌÌÀffffff濚™™™™™¹¿À333333ó¿ffffffö¿333333ÀffffffÀ333333ó¿ø¿š™™™™™À333333À333333ó?ffffffö¿š™™™™™é¿ffffffæ¿ÍÌÌÌÌÌÀš™™™™™Ù¿š™™™™™Ù¿š™™™™™ù¿333333ó?ffffffö?333333ã¿@ø?𿚙™™™™é?ffffffþ¿ð¿ÀÍÌÌÌÌÌü¿ffffffö¿Àš™™™™™ñ¿š™™™™™é?ð¿ffffff濚™™™™™é¿ÍÌÌÌÌÌÀš™™™™™ñ¿š™™™™™Ù¿š™™™™™Ù¿š™™™™™Àð?ffffffæ?ø¿ffffffö¿ø¿333333À333333û¿š™™™™™Àffffffþ¿š™™™™™Àš™™™™™ù¿š™™™™™é¿ÍÌÌÌÌÌô¿š™™™™™é¿ø¿š™™™™™ù¿š™™™™™é¿š™™™™™ÀÍÌÌÌÌÌì¿ÍÌÌÌÌÌô¿ð¿ÍÌÌÌÌÌô¿ÍÌÌÌÌÌÀš™™™™™é¿333333ó¿ Àš™™™™™Àš™™™™™ù¿ffffffÀš™™™™™ñ¿ÍÌÌÌÌÌì¿ø¿ffffffþ¿ð¿ÍÌÌÌÌÌü¿š™™™™™ÀÀš™™™™™Àš™™™™™Àffffffþ¿š™™™™™ñ¿ø¿ø¿ffffffþ¿ÍÌÌÌÌÌÀø¿ÍÌÌÌÌÌÀffffffÀÍÌÌÌÌÌô¿à¿333333û¿333333ó¿ffffffÀ333333ã¿333333ÀÍÌÌÌÌÌÀffffffþ¿à¿ffffffö¿333333 ÀÍÌÌÌÌÌì¿333333㿚™™™™™Ù¿š™™™™™ñ¿ÍÌÌÌÌÌÀð¿ð¿š™™™™™ñ¿ffffffö¿ÀÍÌÌÌÌÌü¿š™™™™™Ù?ÍÌÌÌÌÌì¿333333À333333Ó¿333333Ó?ÍÌÌÌÌÌì?333333Ó¿à¿333333ã¿333333ã?333333û?333333û¿ffffff濚™™™™™ñ¿333333ó?ffffffö¿333333ó¿š™™™™™ù¿ffffffö¿š™™™™™Ù?ffffffÀš™™™™™É?š™™™™™é¿ø?ÍÌÌÌÌÌÀ333333ó¿ÍÌÌÌÌÌÀÍÌÌÌÌÌü¿333333ó?š™™™™™ÀÍÌÌÌÌÌÀÍÌÌÌÌÌ ÀÍÌÌÌÌÌÀ333333Ó?333333ó¿333333Ó¿š™™™™™Àð?š™™™™™é¿à¿š™™™™™Ù?ÍÌÌÌÌÌô¿ø¿ffffffþ¿ffffffþ¿š™™™™™ñ¿à¿ø¿ø¿333333ÀÍÌÌÌÌÌô¿š™™™™™é¿à?333333À333333Ó¿Àš™™™™™é?ÍÌÌÌÌÌü¿ÍÌÌÌÌÌì?š™™™™™é¿š™™™™™À𿚙™™™™ù?ÍÌÌÌÌÌÀ333333ã?š™™™™™Àš™™™™™É?š™™™™™ù¿333333ó¿333333ã¿ÍÌÌÌÌÌô¿À࿚™™™™™Ù¿š™™™™™é?ÍÌÌÌÌÌô¿333333ÀÍÌÌÌÌÌü?š™™™™™É?š™™™™™Ù¿ffffffæ¿ÍÌÌÌÌÌì¿À333333Àffffffæ¿ø¿333333ã¿333333ó¿ÍÌÌÌÌÌü¿ÍÌÌÌÌÌü¿Àš™™™™™ù¿š™™™™™ÀÀffffff濚™™™™™é¿š™™™™™Ù¿š™™™™™Àš™™™™™é¿ÍÌÌÌÌÌü¿ffffffþ¿ffffffæ¿ffffffþ¿ÍÌÌÌÌÌô¿ÍÌÌÌÌÌì¿ø¿š™™™™™Ù¿ø¿ø¿ffffffæ¿ÍÌÌÌÌÌô¿à¿ÍÌÌÌÌÌÀÍÌÌÌÌÌì¿À333333ã?š™™™™™ù¿ffffffþ?ffffffÀø¿ÍÌÌÌÌÌÀ333333Ó¿ffffffÀð¿333333ã¿ÍÌÌÌÌÌì?333333À333333ã¿ffffffö¿š™™™™™ù?À333333Àš™™™™™ñ¿333333û¿š™™™™™ñ¿ffffffþ¿š™™™™™é¿333333û¿333333û¿š™™™™™ñ¿ð¿š™™™™™¹¿š™™™™™ñ¿333333Ó?š™™™™™ù?ffffffþ¿š™™™™™ñ¿ð¿š™™™™™Ù¿š™™™™™¹¿ÍÌÌÌÌÌô?Àà¿ffffffþ¿ffffffö¿ffffff ÀÍÌÌÌÌÌü¿ffffffæ¿333333ó¿Àš™™™™™É¿ð¿333333ó¿ð¿ð¿ÀÀ333333û¿333333ó¿š™™™™™é¿š™™™™™é¿ø¿š™™™™™Ù?š™™™™™Ù¿ffffff濚™™™™™ñ?333333ã¿ÍÌÌÌÌÌô¿333333Ó?ÍÌÌÌÌÌÀÍÌÌÌÌÌô?333333Ó¿ð¿ÍÌÌÌÌÌì¿ffffffö¿š™™™™™ù¿š™™™™™Àš™™™™™Ù?333333㿚™™™™™Ù¿ÍÌÌÌÌÌì¿@333333㿚™™™™™É¿ÍÌÌÌÌÌÀš™™™™™ Àš™™™™™É?ÍÌÌÌÌÌì¿333333ó¿š™™™™™ÀÀ333333Ó¿ÍÌÌÌÌÌô?ffffffæ¿ð¿ÍÌÌÌÌÌÀð¿ð¿š™™™™™ù¿š™™™™™@š™™™™™é?š™™™™™ñ¿š™™™™™ À333333ó¿ffffffþ¿š™™™™™É¿333333ó?ffffffþ¿ø¿š™™™™™ñ¿ÍÌÌÌÌÌô¿š™™™™™ÀffffffÀš™™™™™É¿À333333ÀffffffÀffffffæ¿333333Àš™™™™™É¿ÍÌÌÌÌÌ쿚™™™™™Ù¿ÍÌÌÌÌÌô¿ÍÌÌÌÌÌì?ffffffþ¿ÍÌÌÌÌÌ쿚™™™™™É¿ffffff濚™™™™™¹?ÍÌÌÌÌÌô¿š™™™™™Àffffffö?࿚™™™™™À333333û¿š™™™™™ ÀffffffÀø¿ÍÌÌÌÌÌì¿333333Ó¿ø¿333333ó¿š™™™™™ñ¿š™™™™™Àš™™™™™É¿ÍÌÌÌÌÌü¿ð¿š™™™™™À333333û¿à?ð¿ffffffþ¿333333ó¿ð¿à¿Àø¿Àffffffæ¿333333û¿š™™™™™ñ¿ÍÌÌÌÌÌÀ333333ó¿333333$Àš™™™™™.À Àffffff7ÀÀ333333,Àffffff#À333333*ÀÀ/À333333"ÀÍÌÌÌÌÌ ÀÍÌÌÌÌÌ$Àffffff6ÀGÀ'ÀÍÌÌÌÌÌ+Àffffff%À&ÀÍÌÌÌÌÌ4ÀÍÌÌÌÌÌ+Àš™™™™™(Àš™™™™™6À3333332Àfffffæ8À3333335Àš™™™™™$Àš™™™™0À;À(À333333û¿š™™™™™-À€0À333333>À$À7ÀÍÌÌÌÌÌ(À333333&À5À333333Àffffff(À3333332Àffffff*À€=Àš™™™™™$Àfffffæ0À3333332À3333335À'ÀÍÌÌÌÌL4Àš™™™™™&Àffffff!Àffffff4À33333s@À.À€:À€4ÀÍÌÌÌÌÌ(Àš™™™™™.Àffffff6À333333㿚™™™™™+À333333&À3Àš™™™™ÙAÀš™™™™™ÀÍÌÌÌÌÌ!ÀÍÌÌÌÌL6Àš™™™™™3Àš™™™™™Àš™™™™™6Àš™™™™™0À333333)À+Àfffffæ5ÀÍÌÌÌÌÌ#Àš™™™™™é¿333333.Àš™™™™1À2À33333³7À,ÀÍÌÌÌÌÌ&Àš™™™™™é¿ÍÌÌÌÌL2À€2Àš™™™™BÀ333333'ÀÍÌÌÌÌÌ1Àš™™™™CÀš™™™™™À3333330ÀÍÌÌÌÌÌÀffffff&Àffffff @333333À333333,ÀÍÌÌÌÌÌ;ÀÍÌÌÌÌÌÀ333333<À333333 À33333óBÀffffffþ?fffff&@Àš™™™™™0Àffffff:À$À33333³2À33333³2ÀÍÌÌÌÌL5Àffffff*À333333À)Àš™™™™™/Àš™™™™3ÀÀ333333.À333333#ÀÀ€4Àš™™™™7ÀÀš™™™™™À333333 ÀÀ33333³0Àfffffæ0À333333*ÀÍÌÌÌÌÌ&Àš™™™™ÙBÀ333333-Àš™™™™3ÀÍÌÌÌÌÌ,Àš™™™™™.À'Àffffff=Àfffff&@ÀÀš™™™™™?Àffffff'Àffffff>À333333À333333"Àš™™™™™AÀÍÌÌÌÌÌÀš™™™™™À"Àffffff,ÀffffffÀš™™™™™#À#Àš™™™™™)Àš™™™™™ñ¿š™™™™™"À333333+À333333/Àš™™™™™8Àš™™™™™)ÀÍÌÌÌÌŒ@Àš™™™™™#ÀÍÌÌÌÌL0ÀÍÌÌÌÌÌ1Àš™™™™7À333333À3333335ÀÍÌÌÌÌÌ/Àš™™™™™é¿š™™™™™%Àffffff&À/ÀÍÌÌÌÌÌ0ÀÍÌÌÌÌÌ Àš™™™™™+Àš™™™™5À333333)À(Àš™™™™8À333333/Àfffffæ6À33333³4À33333³8ÀÍÌÌÌÌÌ,ÀÍÌÌÌÌÌ(À€0Àffffff'ÀÍÌÌÌÌÌÀ'À333333Àffffff6À33333sEÀ𿚙™™™1Àš™™™™™/Àš™™™™8Àš™™™™1À333333Àš™™™™2ÀÀ333333/ÀOÀffffff*À333333/À333333CÀÍÌÌÌÌÌ,À0À1À333333ÀÍÌÌÌÌÌDÀÍÌÌÌÌLDÀš™™™™™/ÀÍÌÌÌÌÌÀ333333û¿ÍÌÌÌÌÌÀš™™™™™>ÀÍÌÌÌÌÌÀ$Àš™™™™™1ÀÍÌÌÌÌL0Àffffff濚™™™™™-ÀÍÌÌÌÌÌÀ333333ÀÍÌÌÌÌÌ*À€4Àš™™™™™ Àš™™™™1Àš™™™™™À/À333333.À333333EÀfffffæ5ÀÍÌÌÌÌL3À333333*ÀÍÌÌÌÌÌCÀš™™™™™=À2Àffffff4Àffffff"À€9Àfffff&AÀš™™™™™Àffffff1ÀÍÌÌÌÌÌ(À'ÀÍÌÌÌÌL3À'ÀÍÌÌÌÌÌ<Àffffff7Àffffff$À ÀÍÌÌÌÌÌÀffffff/Àš™™™™™É?+ÀffffffÀš™™™™™'À€7À333333ÀÍÌÌÌÌÌ(Àš™™™™™5Àfffffæ6Àffffff À€5Àš™™™™™-Àš™™™™™/Àffffff'À333333$À333333ÀÍÌÌÌÌÌÀš™™™™™'À+ÀÍÌÌÌÌÌ*À333333"ÀffffffÀ333333-Àš™™™™™5Àš™™™™™DÀfffffæ1ÀÍÌÌÌÌÌ<À€0Àffffff*Àš™™™™™&Àffffff Àš™™™™™#Àš™™™™™#ÀÀÍÌÌÌÌL5Àffffff%À333333 ÀÍÌÌÌÌL0À333333,À5À%ÀÍÌÌÌÌÌÀfffffæ1ÀÍÌÌÌÌŒEÀfffffæBÀÍÌÌÌÌÌ!@fffffæ3À333333:Àffffff Àffffff5ÀffffffÀš™™™™™Àš™™™™™!Àffffff1À333333+Àš™™™™<ÀCÀÍÌÌÌÌÌ!ÀÍÌÌÌÌÌ.Àš™™™™™AÀš™™™™™ Àffffff@ÍÌÌÌÌÌ,Àš™™™™™(À333333@*ÀÍÌÌÌÌÌ"Àš™™™™™ÀÍÌÌÌÌÌü¿333333ÀÍÌÌÌÌL0À333333GÀø?ÍÌÌÌÌÌ-Àffffff*À333333ÀÍÌÌÌÌÌ:À333333$Àš™™™™™,Àš™™™™:À5Àfffffæ2À333333,À333333'Àš™™™™™À€3ÀÍÌÌÌÌÌ/Àffffff5Àš™™™™™,ÀÍÌÌÌÌÌ$À333333$À333333+Àffffff(ÀÍÌÌÌÌÌ(Àffffff0À333333+ÀÍÌÌÌÌÌÀÍÌÌÌÌÌ&Àš™™™™™5ÀÍÌÌÌÌÌ*À€5Àš™™™™™#À@ffffff'Àš™™™™™À€7À.Àfffff¦AÀš™™™™AÀ3333337ÀÍÌÌÌÌÌ<À'À333333#Àš™™™™8À333333ÀÍÌÌÌÌÌ5ÀffffffÀ333333)ÀEÀš™™™™™ À€4Àffffff3À3333337À)À@À3333333Àð¿333333ó¿ffffff&Àš™™™™:Àfffffæ2À€2Àš™™™™™?Àš™™™™™!À3333336À XÀ33333³5ÀÍÌÌÌÌÌ À33333³1ÀÍÌÌÌÌÌ3Àš™™™™8ÀffffffÀ33333s@ÀÍÌÌÌÌÌ,ÀÀffffff"Àffffff!À7ÀÍÌÌÌÌÌ/À33333s@ÀÍÌÌÌÌL:@ÍÌÌÌÌÌ;ÀÍÌÌÌÌÌ&Àffffff4ÀPÀ)À€:À333333:ÀÍÌÌÌÌÌ0ÀÍÌÌÌÌŒ@Àš™™™™™1À33333³6Àffffff+Àfffffæ7Àš™™™™™À333333 Àš™™™™™'À€1À33333³5ÀÍÌÌÌÌL5À333333 À%À33333³6À333333+ÀÍÌÌÌÌÌ@3333331Àš™™™™™,Àš™™™™™Àš™™™™™)À333333À333333@333333'À<ÀÍÌÌÌÌÌ2ÀÍÌÌÌÌÌAÀÍÌÌÌÌÌ1ÀÍÌÌÌÌÌ,Àš™™™™™1À/Àš™™™™™Àš™™™™™ ÀÍÌÌÌÌÌ%ÀffffffÀ1ÀffffffÀš™™™™™,Àš™™™™™2@;À3333334À6À€9À€<ÀÍÌÌÌÌÌAÀÍÌÌÌÌÌ1À€CÀffffff-Àfffffæ1Àffffff4Àš™™™™8À/Àš™™™™7À333333-À?Àš™™™™™MÀÍÌÌÌÌÌ8ÀÍÌÌÌÌL:À333333,Àš™™™™™*Àfffff¦@ÀDÀš™™™™™2Àffffff>ÀÍÌÌÌÌÌ6À33333³AÀffffff?À3333336Àš™™™™™@À=ÀÍÌÌÌÌÌ@%À6Àfffff&CÀ33333³BÀffffff.Àfffffæ>À3333336Àš™™™™ÙDÀš™™™™ÙDÀ(Àš™™™™2À33333³7À5ÀÍÌÌÌÌ CÀ€0ÀÍÌÌÌÌÌ6ÀÍÌÌÌÌÌ9Àš™™™™7À3333331Àš™™™™7ÀÍÌÌÌÌL2ÀÍÌÌÌÌÌ3À333333;À33333sEÀfffffæ1Àš™™™™™GÀÍÌÌÌÌÌ=ÀÍÌÌÌÌL0À33333³0Àš™™™™@À333333À€@ÀÍÌÌÌÌÌ9ÀÀBÀÍÌÌÌÌÌIÀ&ÀÍÌÌÌÌÌ"ÀffffffDÀ€;Àš™™™™™,Àš™™™™YEÀÍÌÌÌÌÌ@À€4ÀÍÌÌÌÌL8À333333EÀ@@Àffffff@333333.ÀÍÌÌÌÌL:Àš™™™™™6À33333³>À333333<Àš™™™™™+ÀffffffÀffffff>À À;Àffffff3À333333!@3333334ÀÍÌÌÌÌÌ/ÀÍÌÌÌÌÌ"À3333334À3333332ÀÍÌÌÌÌÌ'Àš™™™™™5Àfffffæ7Àfffff¦GÀ333333+Àffffff5Àš™™™™8ÀfffffæDÀ333333û¿fffff&MÀ3333337À€;Àš™™™™™)À@AÀÍÌÌÌÌÌ!À-Àfffffæ5Àffffff2Àš™™™™6Àfffff&EÀš™™™™™>ÀÍÌÌÌÌÌ6À33333³<À9À2À33333³9ÀÍÌÌÌÌÌ=Àffffff%Àš™™™™™,À333333+À Àš™™™™YAÀfffffæ5ÀÍÌÌÌÌL4À2Àfffff¦GÀ€>À€7ÀÍÌÌÌÌL6ÀÍÌÌÌÌlPÀÍÌÌÌÌL;ÀÍÌÌÌÌLDÀš™™™™IÀš™™™™™'ÀÍÌÌÌÌLBÀ3333336À33333sEÀfffffæ1À€7Àfffff&JÀ33333³6À€5Àffffff8À€;Àffffff)À4ÀÍÌÌÌÌL4ÀÍÌÌÌÌÌ:Àfffffæ1À2ÀÍÌÌÌÌL<À333333AÀÍÌÌÌÌÌ?ÀÍÌÌÌÌÌ/ÀHÀš™™™™3ÀÍÌÌÌÌŒAÀfffffæ4ÀÍÌÌÌÌ GÀffffff5ÀÍÌÌÌÌ AÀ€2Àffffff#Àfffff¦CÀffffff0ÀÍÌÌÌÌL2ÀÍÌÌÌÌÌ2ÀÍÌÌÌÌÌ(Àš™™™™™;À€;À2Àš™™™™2À@@Àš™™™™™9ÀAÀš™™™™1ÀÍÌÌÌÌL?ÀÀAÀ333333.Àffffff-Àš™™™™™ÀffffffÀ333333+À"Àfffffæ0À3333336Àffffff(À€5À33333³7Àffffff#ÀÍÌÌÌÌL:Àffffff*Àš™™™™™<À33333³0Àš™™™™™(ÀffffffSÀÍÌÌÌÌÌ&Àš™™™™™3À3333330ÀÍÌÌÌÌ AÀÍÌÌÌÌÌ9Àfffff¦@À3333334Àš™™™™™8ÀÍÌÌÌÌLKÀš™™™™YAÀfffff¦BÀ3333331ÀÀÀEÀ333333Àfffffæ8Àffffff"Àfffffæ3ÀffffffÀš™™™™™'Àffffff-À1Àfffffæ9À@AÀ/À33333³5Àfffffæ4À33333³9Àfffff&AÀš™™™™YIÀÍÌÌÌÌL;À333333/Àfffff&BÀš™™™™™DÀÍÌÌÌÌÌIÀ333333 Àš™™™™@ÀffffffÀ33333³?ÀÀGÀš™™™™™,Àš™™™™™é?š™™™™™=Àš™™™™™À333333BÀ#À33333sDÀš™™™™™=ÀÍÌÌÌÌÌ)Àš™™™™™&ÀÍÌÌÌÌÌ2À3333332ÀÀffffffÀffffff*Àffffff?Àš™™™™™ Àš™™™™™ Àffffff0Àfffffæ9Àffffff;ÀÍÌÌÌÌÌ3Àš™™™™DÀ€2À€8ÀÍÌÌÌÌÌ+Àffffff3À33333³5À€4Àš™™™™™:À8À€AÀš™™™™7Àffffff0Àš™™™™™2Àffffff8À33333³LÀ3333336À€DÀfffffæ;Àš™™™™2Àfffffæ8ÀÍÌÌÌÌL2À333333-À3333335ÀÍÌÌÌÌÌÀ33333³=À3333335Àš™™™™™'Àš™™™™™9Àš™™™™™8ÀÍÌÌÌÌÌBÀ.Àffffff3ÀÍÌÌÌÌÌ#ÀJÀ333333*À333333.Àfffffæ<Àš™™™™ÙDÀÍÌÌÌÌÌ$À€BÀš™™™™™1Àš™™™™™#Àš™™™™™À€BÀš™™™™™3À@BÀ333333:À€8À€AÀ333333EÀ€4ÀÍÌÌÌÌÌü¿fffffæ:Àffffff1À333333"À€7Àffffff0À33333³0ÀÀ,ÀÍÌÌÌÌÌ-Àfffffæ:Àffffff+À3333335ÀÍÌÌÌÌÌ1ÀÍÌÌÌÌÌÀš™™™™™<À@€=Àfffffæ<ÀÍÌÌÌÌLAÀÍÌÌÌÌÌ;ÀfffffæEÀÍÌÌÌÌÌCÀš™™™™™À33333³9À33333³AÀffffff6Àfffffæ3ÀÍÌÌÌÌL2Àš™™™™0Àš™™™™™3À333333?À3333339Àš™™™™™<À33333³5ÀÀ0Àffffff=Àffffff"ÀÍÌÌÌÌL8Àffffff-ÀÍÌÌÌÌÌ"@333333.À0ÀÍÌÌÌÌL6À33333³=À€9Àš™™™™™AÀ?Àfffff&AÀÍÌÌÌÌL5ÀÍÌÌÌÌÌ3À33333óCÀÍÌÌÌÌÌô¿333333>ÀÍÌÌÌÌÌ%Àš™™™™2ÀÍÌÌÌÌÌ(À'Àš™™™™™5Àfffff¦AÀJÀ333333"Àš™™™™™¹?ÍÌÌÌÌÌ-ÀÍÌÌÌÌ AÀ333333)À333333À@=Àfffffæ7ÀffffffDÀBÀš™™™™™-À333333>À333333(À/Àš™™™™™/À33333óEÀ;Àš™™™™YAÀ333333Àffffff-Àš™™™™™=À0Àš™™™™™/À€1Àš™™™™™CÀfffff&CÀ333333AÀffffff%@@GÀÍÌÌÌÌÌ<À:ÀÍÌÌÌ̬TÀš™™™™™,ÀÍÌÌÌÌÌ>À333333<ÀÍÌÌÌÌL8À3333339À€>À;À333333/Àš™™™™Y@À333333ÀÍÌÌÌÌÌ/Àš™™™™™=À333333"ÀÍÌÌÌÌÌ8Àš™™™™YBÀ33333³7À333333IÀš™™™™ÙCÀÍÌÌÌÌL6À333333ó¿ÍÌÌÌÌL3Àfffffæ7À3À4ÀÍÌÌÌÌÌ:Àffffff @3333339À333333AÀš™™™™AÀfffffæFÀffffff$ÀÍÌÌÌÌÌ3À333333@À33333³6Àffffff(À%Àffffff?Àffffff/Àš™™™™™>ÀÍÌÌÌÌÌ$Àfffffæ;À%@fffffæEÀš™™™™;À333333Ó¿à?ÍÌÌÌÌÌì?š™™™™™¹¿à?š™™™™™É?š™™™™™¹?à¿à¿š™™™™™¹?š™™™™™¹?š™™™™™É¿š™™™™™¹¿à¿333333Ó¿š™™™™™¹¿š™™™™™É?à?š™™™™™¹?333333Ó?š™™™™™¹¿ÍÌÌÌÌÌì¿333333Ó?ÍÌÌÌÌÌì¿ffffffö¿š™™™™™É¿333333㿚™™™™™¹¿š™™™™™Ù¿š™™™™™Ù?š™™™™™é¿š™™™™™¹¿š™™™™™¹?š™™™™™É¿ffffff濚™™™™™Ù¿š™™™™™É?š™™™™™é¿ffffff濚™™™™™¹?š™™™™™¹¿š™™™™™¹?š™™™™™¹?š™™™™™¹?š™™™™™¹?333333Ó?333333Ó¿š™™™™™É¿š™™™™™É¿à?š™™™™™¹?š™™™™™Ù¿333333Ó¿333333㿚™™™™™É¿333333ó¿š™™™™™¹?333333㿚™™™™™¹?š™™™™™¹¿à?š™™™™™É?333333Ó¿š™™™™™¹¿ÍÌÌÌÌÌ쿚™™™™™¹¿š™™™™™É¿ffffff濚™™™™™¹?š™™™™™Ù¿š™™™™™ñ?ÍÌÌÌÌÌÀš™™™™™¹?࿚™™™™™Ù?š™™™™™¹?š™™™™™¹?š™™™™™¹¿ð¿š™™™™™¹?࿚™™™™™¹?š™™™™™É¿333333ã?࿚™™™™™¹¿š™™™™™É?š™™™™™É¿š™™™™™É?š™™™™™É?š™™™™™Ù¿š™™™™™É¿ffffffæ¿333333Ó¿š™™™™™Ù¿š™™™™™¹¿š™™™™™¹?š™™™™™É?à¿333333ã¿ffffffæ¿333333㿚™™™™™¹?333333㿚™™™™™É?ÍÌÌÌÌÌ@š™™™™™¹?š™™™™™Ù¿š™™™™™¹?333333㿚™™™™™¹?333333Ó¿ffffffæ?š™™™™™¹?š™™™™™É¿š™™™™™¹¿š™™™™™¹¿š™™™™™¹?š™™™™™¹?š™™™™™¹?š™™™™™¹¿à¿š™™™™™¹?333333ã?š™™™™™¹¿š™™™™™¹?š™™™™™É¿š™™™™™¹¿š™™™™™¹?š™™™™™¹¿š™™™™™¹¿š™™™™™É¿š™™™™™¹?š™™™™™Ù¿333333㿚™™™™™Ù¿š™™™™™¹¿š™™™™™É¿š™™™™™É¿š™™™™™Ù¿š™™™™™¹¿š™™™™™¹¿š™™™™™¹?š™™™™™Ù¿š™™™™™¹¿š™™™™™¹?à¿333333ã¿À333333Ó¿333333㿚™™™™™¹?š™™™™™¹¿š™™™™™¹?š™™™™™¹?333333Ó¿ÍÌÌÌÌÌô?š™™™™™Ù¿š™™™™™¹¿333333ó¿š™™™™™É¿š™™™™™Ù?333333ã¿ffffff濚™™™™™¹?š™™™™™¹?š™™™™™É¿ÍÌÌÌÌÌì?š™™™™™É¿š™™™™™¹?333333Ó?333333Ó¿š™™™™™Ù?š™™™™™¹?š™™™™™É¿š™™™™™¹?š™™™™™¹¿š™™™™™¹?š™™™™™Ù¿š™™™™™¹¿š™™™™™¹?333333ã¿333333㿚™™™™™Ù?š™™™™™Ù¿à¿333333ó¿š™™™™™¹¿à¿ffffff濚™™™™™¹¿š™™™™™¹¿333333ã¿333333Ó¿š™™™™™É¿à¿š™™™™™É?š™™™™™É¿333333Ó¿š™™™™™é¿š™™™™™é¿ð¿š™™™™™¹¿ÍÌÌÌÌÌ쿚™™™™™¹¿ÍÌÌÌÌÌì¿333333ã¿à¿š™™™™™¹?š™™™™™É¿š™™™™™¹¿š™™™™™¹?333333Ó¿š™™™™™É?333333ã¿333333Ó¿333333Ó¿333333Ó¿š™™™™™É¿š™™™™™¹¿š™™™™™É¿š™™™™™Ù¿š™™™™™¹¿š™™™™™Ù¿š™™™™™¹¿ffffff濚™™™™™¹?š™™™™™É?š™™™™™¹?š™™™™™É¿š™™™™™É?š™™™™™é¿š™™™™™É¿š™™™™™¹?š™™™™™Ù?333333Ó¿š™™™™™¹?𿚙™™™™Ù?š™™™™™¹¿š™™™™™Ù¿à?š™™™™™¹¿333333㿚™™™™™Ù¿š™™™™™É?333333ã?š™™™™™Ù?š™™™™™¹¿š™™™™™É¿š™™™™™¹¿š™™™™™É?š™™™™™¹?š™™™™™¹¿š™™™™™¹?ffffffæ?š™™™™™É¿333333㿚™™™™™Ù¿š™™™™™Ù¿ð¿š™™™™™¹¿š™™™™™¹¿ÍÌÌÌÌÌì¿à¿š™™™™™Ù¿š™™™™™¹?š™™™™™É?ÍÌÌÌÌÌì¿ffffffæ¿333333Ó?š™™™™™É?š™™™™™Ù¿š™™™™™¹¿š™™™™™É?š™™™™™¹?333333Ó¿š™™™™™¹?š™™™™™¹?š™™™™™¹¿à¿š™™™™™Ù?š™™™™™¹?ÍÌÌÌÌÌ쿚™™™™™¹¿š™™™™™é¿š™™™™™¹¿š™™™™™ñ¿š™™™™™É?š™™™™™É¿ÍÌÌÌÌÌì¿333333Ó¿š™™™™™¹?333333Ó¿š™™™™™¹¿š™™™™™ñ¿š™™™™™¹?ÍÌÌÌÌÌì¿ffffff濚™™™™™Ù¿à¿š™™™™™¹¿ffffff濚™™™™™Ù¿š™™™™™¹?333333ã?š™™™™™Ù¿333333ã?š™™™™™É¿š™™™™™É?š™™™™™¹?š™™™™™É¿š™™™™™É?333333Ó¿ffffffÀš™™™™™ù¿š™™™™™¹¿š™™™™™¹?333333Ó¿š™™™™™É¿š™™™™™¹¿333333ã¿à¿š™™™™™É?ÍÌÌÌÌÌì¿333333Ó¿333333㿚™™™™™É?š™™™™™Ù?š™™™™™ñ?à¿333333Ó¿š™™™™™Ù¿š™™™™™É¿š™™™™™¹¿š™™™™™é¿š™™™™™¹¿š™™™™™É¿š™™™™™É¿à?š™™™™™É¿š™™™™™Ù?š™™™™™¹?333333ӿ࿚™™™™™¹?ø¿š™™™™™Ù¿à?š™™™™™Ù¿333333ó?š™™™™™¹?š™™™™™É¿š™™™™™É?333333Ó?š™™™™™¹¿š™™™™™É?š™™™™™É?à?ffffffæ¿333333ã¿ffffffæ?š™™™™™Ù¿ffffff濚™™™™™É¿š™™™™™É¿ÍÌÌÌÌÌì¿à¿à¿333333Ó¿ÍÌÌÌÌÌÀš™™™™™é¿333333ã¿ÍÌÌÌÌÌÀš™™™™™Ù¿333333 Àà¿ð¿š™™™™™ñ¿333333ã¿ð¿ð¿š™™™™™Ù¿333333ã¿333333ã¿333333û¿à¿ÍÌÌÌÌÌ ÀÍÌÌÌÌÌÀ333333Àà¿à¿333333ã¿ffffffæ¿à¿333333ã¿ffffffÀš™™™™™ù¿ffffffþ¿ffffff Àffffffö¿333333㿚™™™™™Ù¿š™™™™™Ù¿ffffffæ¿à¿à¿š™™™™™ñ¿š™™™™™ñ¿333333ã¿ffffffæ¿333333ó¿333333ó¿ffffffÀ333333û¿ÀÍÌÌÌÌÌÀffffffö¿ð¿š™™™™™é¿à¿š™™™™™Ù¿ffffffæ¿à¿ÍÌÌÌÌÌì¿ð¿333333ó¿ÍÌÌÌÌÌÀš™™™™™ñ¿ffffffæ¿333333ã¿333333ã¿333333㿚™™™™™Ù¿333333ã¿Àð¿333333ã¿ffffffÀffffffÀš™™™™™Ù¿ÀÍÌÌÌÌÌì¿À333333ã¿ffffffæ¿ø¿333333ã¿ffffffæ¿à¿ÍÌÌÌÌÌ쿚™™™™™ñ¿333333ã¿ø¿à¿š™™™™™Àš™™™™™Ù¿Àà¿ÍÌÌÌÌÌì¿ÍÌÌÌÌÌü¿š™™™™™Ù¿š™™™™™Ù¿ÍÌÌÌÌÌô¿333333ã¿333333㿚™™™™™Ù¿ffffffö¿ÍÌÌÌÌÌô¿š™™™™™Ù¿š™™™™™ÀÍÌÌÌÌÌì¿ffffff!Àš™™™™™é¿š™™™™™Ù¿ffffff濚™™™™™ñ¿333333ó¿ð¿ÍÌÌÌÌÌÀš™™™™™ù¿š™™™™™Ù¿333333ó¿à¿333333À333333ã¿ÍÌÌÌÌÌì¿ÍÌÌÌÌÌÀ࿚™™™™™é¿š™™™™™ñ¿ffffffö¿ø¿ð¿ffffff濚™™™™™é¿à¿š™™™™™ Àffffffæ¿Àš™™™™™ÀÍÌÌÌÌÌÀ࿚™™™™™ñ¿333333Àš™™™™™Ù¿ffffffæ¿333333û¿à¿Àš™™™™™é¿š™™™™™Ù¿š™™™™™Ù¿à¿ffffffæ¿333333ã¿ffffffö¿ÍÌÌÌÌÌÀà¿ffffffÀð¿333333ã¿ÍÌÌÌÌÌ@ÍÌÌÌÌÌ@333333û?š™™™™™ @š™™™™™@ÍÌÌÌÌÌü?333333ã?ø?ffffff@ffffff@ffffff@ffffff @333333û?š™™™™™Ù?š™™™™™é?ÍÌÌÌÌÌì?š™™™™™@333333ó?@@ø?333333!@ÍÌÌÌÌÌì?ffffff@333333"@ffffff&@š™™™™™@ffffffþ?ffffff@ÍÌÌÌÌÌ@š™™™™™ñ?ð?333333@333333û? @š™™™™™&@ÍÌÌÌÌÌü?š™™™™™@ffffff@ÍÌÌÌÌÌì?333333@333333@ÍÌÌÌÌÌ@š™™™™™@333333ã?333333!@ffffff@@@ffffffæ?š™™™™™@š™™™™™@ÍÌÌÌÌÌ@333333@@š™™™™™@ffffffþ?š™™™™™Ù?š™™™™™ù?@333333@ÍÌÌÌÌÌô?@ÍÌÌÌÌÌ@š™™™™™ @š™™™™™é?333333#@š™™™™™é?333333@ÍÌÌÌÌÌô?ø?ø?š™™™™™ù?ø? @š™™™™™é?ÍÌÌÌÌÌ@š™™™™™Ù?ÍÌÌÌÌÌ@ÍÌÌÌÌÌô?333333@ÍÌÌÌÌÌ@@333333ó?333333@ÍÌÌÌÌÌ@@ð?ffffff@ÍÌÌÌÌÌ@š™™™™™Ù?333333ã?ffffff @ÍÌÌÌÌÌ@š™™™™™$@333333@333333@ffffff @333333@@š™™™™™@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ@333333ó?ÍÌÌÌÌÌ@ÍÌÌÌÌÌ@@š™™™™™@ÍÌÌÌÌÌ @ffffff@333333û?š™™™™™@ffffffþ?ÍÌÌÌÌÌì?@š™™™™™@š™™™™™é?ÍÌÌÌÌÌü?š™™™™™$@š™™™™™@ffffff@š™™™™™é?ÍÌÌÌÌÌ@ÍÌÌÌÌÌ@ÍÌÌÌÌÌì?@ø?š™™™™™(@ @š™™™™™@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ@š™™™™™Ù?ÍÌÌÌÌÌ @à?333333@š™™™™™@š™™™™™@@ð?333333ã?š™™™™™ @333333û?@ffffff @š™™™™™@333333ã?@@ÍÌÌÌÌÌ@333333ã?ø?@@ð?@ÍÌÌÌÌÌ@ffffff@@ffffff@333333@ffffff@š™™™™™ñ?š™™™™™(@333333@ÍÌÌÌÌÌì?ffffff@@ÍÌÌÌÌÌ@333333 @333333@š™™™™™é?@333333@#@@š™™™™™Ù?š™™™™™ @ @@ÍÌÌÌÌÌì?333333ã?ÍÌÌÌÌÌ@ffffffö? @333333@ffffff@333333)@š™™™™™ñ?ø?ffffff@š™™™™™@š™™™™™Ù?š™™™™™é?ð?333333@à?@333333 @š™™™™™é?@333333 @ffffff@ffffff@š™™™™™ @ffffffæ?ffffff@š™™™™™Ù?ffffffþ?š™™™™™ @333333 @š™™™™™@š™™™™™@333333@ÍÌÌÌÌÌ@333333@@ÍÌÌÌÌÌ@à?ÍÌÌÌÌÌ@ÍÌÌÌÌÌ@@ÍÌÌÌÌÌü?@333333@333333ó?ffffffþ?š™™™™™@@@ffffff@ÍÌÌÌÌÌ@ffffff@ÍÌÌÌÌÌ@ffffff@ÍÌÌÌÌÌ$@ffffff@ffffff @š™™™™™@š™™™™™ù?ÍÌÌÌÌÌ@@ÍÌÌÌÌÌ"@š™™™™™@@à?ffffffþ?333333û?à?ffffff@š™™™™™@ÍÌÌÌÌÌ@ð?ffffffþ?ø?ffffff@ffffff@š™™™™™!@333333@333333ó?ffffffþ?333333@333333@ @ÍÌÌÌÌÌ@š™™™™™@@š™™™™™é?ffffffæ?ffffffæ?@š™™™™™ @š™™™™™ñ?@ÍÌÌÌÌÌ@@@ffffff+@ffffff@ÍÌÌÌÌÌ@333333 @š™™™™™@333333@333333@ffffff#@333333ó?š™™™™™é?ffffffþ?ÍÌÌÌÌÌ@ffffff @š™™™™™Ù?ffffff@"@ffffff@š™™™™™@š™™™™™@ffffffæ?š™™™™™ @š™™™™™ñ?333333@ÍÌÌÌÌÌ@@@333333+@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ@333333*@ÍÌÌÌÌÌ @@š™™™™™@@ð?š™™™™™ @333333@ÍÌÌÌÌÌ@š™™™™™é?š™™™™™ù?š™™™™™ @š™™™™™ñ?ffffffþ?333333 @333333@š™™™™™Ù?ffffff @@ffffff@333333 @š™™™™™@š™™™™™@@@ÍÌÌÌÌÌô?333333&@š™™™™™é?ÍÌÌÌÌÌ@#@ffffff@ø?š™™™™™@ffffff@333333@@333333@š™™™™™é?š™™™™™@ÍÌÌÌÌÌü?š™™™™™@ø?@š™™™™™@ÍÌÌÌÌÌ@ffffff@ffffff@ÍÌÌÌÌÌü?ø?ffffff@ffffff@@š™™™™™@š™™™™™é?š™™™™™ @ffffffæ?š™™™™™@333333/@ÍÌÌÌÌÌ(@333333ó?ÍÌÌÌÌÌì?ffffffö?ÍÌÌÌÌÌü?@š™™™™™Ù?ffffff%@š™™™™™ @@ÍÌÌÌÌÌì?ffffff@@ffffff@ffffffæ?333333(@ffffff@ffffff@ÍÌÌÌÌÌ@š™™™™™@ð?ffffffþ?333333û?š™™™™™Ù?ð?ffffffþ?ÍÌÌÌÌÌ@333333@ÍÌÌÌÌÌ@š™™™™™ñ?ffffff@333333@333333û?333333û?ffffffö?333333@ð?ffffff@ÍÌÌÌÌÌ@ffffff@333333@ÍÌÌÌÌÌ@ÍÌÌÌÌÌô?š™™™™™ @š™™™™™ñ?ÍÌÌÌÌÌ@š™™™™™ñ?à?š™™™™™@š™™™™™@ÍÌÌÌÌÌ@333333@ÍÌÌÌÌÌ%@333333ó?š™™™™™@ð¿ÍÌÌÌÌÌ쿚™™™™™Àš™™™™™Ù¿ÍÌÌÌÌÌô¿ÍÌÌÌÌÌ)ÀffffffÀffffffþ¿ÍÌÌÌÌÌì¿ÍÌÌÌÌÌÀÍÌÌÌÌÌì¿ÀffffffÀš™™™™™ À𿚙™™™™ñ¿333333ó¿ÍÌÌÌÌÌÀ333333ó¿š™™™™™Àš™™™™™ù¿ffffffþ¿ÍÌÌÌÌÌì¿ÍÌÌÌÌÌô¿ÍÌÌÌÌÌô¿š™™™™™À333333ÀÍÌÌÌÌÌÀffffffþ¿Àffffffþ¿š™™™™™Àð¿333333Àffffffö¿ÍÌÌÌÌÌü¿ð¿š™™™™™ ÀÀš™™™™™é¿š™™™™™Ù¿š™™™™™é¿ÍÌÌÌÌÌì¿333333ã¿333333ã¿333333û¿š™™™™™ ÀffffffÀ333333û¿ ÀÍÌÌÌÌÌü¿333333(À𿚙™™™™ñ¿ffffffö¿ffffffÀø¿ffffffþ¿333333ã¿ffffffæ¿Àð¿ffffffþ¿š™™™™™Àffffffæ¿ÍÌÌÌÌÌÀÀš™™™™™Ù¿ffffffþ¿333333Àš™™™™™*Àš™™™™™Àš™™™™™Àffffffö¿š™™™™™ÀÀffffffö¿š™™™™™Àš™™™™™Ù¿ÍÌÌÌÌÌü¿ÍÌÌÌÌÌ쿚™™™™™ù¿ø¿š™™™™™ÀffffffÀffffffö¿ÍÌÌÌÌÌÀÍÌÌÌÌÌ Àš™™™™™ñ¿ø¿ÍÌÌÌÌÌÀš™™™™™Àš™™™™™Àffffffö¿333333Àffffff*ÀÍÌÌÌÌÌ쿚™™™™™ñ¿ÍÌÌÌÌÌô¿333333ÀffffffÀÍÌÌÌÌÌì¿ÍÌÌÌÌÌÀffffffþ¿ÍÌÌÌÌÌô¿333333ó¿ÍÌÌÌÌÌÀffffffæ¿ÍÌÌÌÌÌô¿š™™™™™ù¿š™™™™™Ù¿À333333㿚™™™™™ ÀÀš™™™™™é¿ffffff ÀÍÌÌÌÌÌÀ333333û¿333333 ÀÍÌÌÌÌÌì¿ffffffÀ333333ÀÀffffffö¿š™™™™™ñ¿333333Àà¿ffffffþ¿ffffffÀš™™™™™ù¿š™™™™™é¿ffffffÀffffffþ¿ffffffæ¿À333333ó¿š™™™™™ñ¿ÍÌÌÌÌÌÀffffffö¿š™™™™™ñ¿š™™™™™é¿š™™™™™ ÀÀš™™™™™ñ¿333333ÀÍÌÌÌÌÌü¿š™™™™™Ù¿ffffff濚™™™™™é¿ÍÌÌÌÌÌÀÍÌÌÌÌÌì¿Àš™™™™™Àš™™™™™ù¿ÀÀð¿ÍÌÌÌÌÌÀ333333û¿À333333Àš™™™™™é¿ÍÌÌÌÌÌü¿ð¿ÍÌÌÌÌÌÀffffff À333333Àš™™™™™!ÀÍÌÌÌÌÌÀš™™™™™ñ¿À333333ÀÍÌÌÌÌÌÀš™™™™™Àffffffö¿333333û¿333333 Àà¿À333333Àø¿333333 À333333ÀÍÌÌÌÌÌì¿333333 ÀÍÌÌÌÌÌÀÍÌÌÌÌÌ Àš™™™™™ñ¿ÍÌÌÌÌÌì¿à¿ffffffÀffffffÀffffffö¿ffffffÀ333333ó¿ffffffÀÍÌÌÌÌÌÀÀffffffÀø¿Àffffffö¿333333"À333333㿚™™™™™Àš™™™™™ñ¿ffffffÀ333333À333333û¿ÍÌÌÌÌÌÀø¿ÍÌÌÌÌÌ쿚™™™™™À#À𿚙™™™™ñ¿š™™™™™ÀffffffÀÍÌÌÌÌÌô¿ø¿ÍÌÌÌÌÌì?333333û?ffffff@š™™™™™é?333333ã?š™™™™™é?š™™™™™é?ÍÌÌÌÌÌì?ð?ø?ffffffö?š™™™™™¹¿š™™™™™Ù?š™™™™™É¿ffffffæ?š™™™™™¹¿š™™™™™Ù?333333Ó¿333333ã?333333㿚™™™™™¹¿š™™™™™Ù¿333333Ó?333333ã?š™™™™™¹¿ffffffæ?š™™™™™¹?š™™™™™Ù¿333333Ó?š™™™™™É¿š™™™™™¹¿š™™™™™É?š™™™™™¹¿333333Ó?š™™™™™¹¿š™™™™™Ù¿š™™™™™É¿š™™™™™¹?š™™™™™Ù?à?š™™™™™Ù?333333Ó?š™™™™™É¿ffffffæ?š™™™™™¹?࿚™™™™™Ù?š™™™™™é?ÍÌÌÌÌÌì?à?333333Ó¿š™™™™™Ù?š™™™™™É¿333333Ó¿š™™™™™¹¿š™™™™™¹¿š™™™™™¹¿333333ã¿333333Ó?333333Ó¿š™™™™™É¿333333Ó¿š™™™™™¹¿333333Ó?š™™™™™¹¿š™™™™™É?à?š™™™™™¹¿š™™™™™É¿š™™™™™É¿333333Ó?š™™™™™¹?333333Ó¿š™™™™™Ù¿š™™™™™É¿š™™™™™Ù?š™™™™™É¿š™™™™™¹¿š™™™™™Ù?333333Ó?š™™™™™É¿š™™™™™Ù?à?š™™™™™Ù¿ÍÌÌÌÌÌì?333333Ó?š™™™™™¹¿333333Ó?š™™™™™Ù?à¿à¿š™™™™™¹¿š™™™™™É¿š™™™™™¹¿š™™™™™¹¿333333Ó?333333Ó¿333333Ó¿š™™™™™É¿333333ã?à?š™™™™™¹¿š™™™™™¹¿š™™™™™é?333333ã¿à?à?š™™™™™É¿à?à?333333Ó¿š™™™™™É?š™™™™™É?š™™™™™¹¿ÍÌÌÌÌÌì?š™™™™™É?š™™™™™¹¿333333ã?333333ã?à?à?š™™™™™É¿333333Ó?333333Ó?333333Ó?š™™™™™¹¿333333Ó?š™™™™™É¿š™™™™™¹¿š™™™™™É¿š™™™™™É¿š™™™™™¹¿333333ã¿333333Ó¿à?333333ã?š™™™™™É¿š™™™™™¹¿š™™™™™Ù?š™™™™™é?333333Ó¿333333ã¿à¿333333Ó¿ffffffæ?333333ã?à¿333333Ó¿š™™™™™¹?š™™™™™é?333333ã?š™™™™™¹¿š™™™™™¹¿333333ã?š™™™™™¹¿š™™™™™¹¿š™™™™™Ù?š™™™™™Ù¿š™™™™™¹¿š™™™™™É¿333333Ó?š™™™™™¹¿š™™™™™¹?333333ã?š™™™™™¹¿333333Ó¿333333ã?ffffffæ?š™™™™™É¿à?333333Ó¿333333Ó?š™™™™™¹¿š™™™™™¹¿à?࿚™™™™™Ù?š™™™™™¹¿333333Ó?ffffff濚™™™™™É¿à?š™™™™™É?š™™™™™Ù?333333Ó¿š™™™™™Ù¿š™™™™™Ù?333333Ó?š™™™™™É¿š™™™™™É¿333333ã?š™™™™™¹¿ffffffæ?š™™™™™¹¿333333Ó¿š™™™™™É?š™™™™™É?333333Ó?š™™™™™¹¿š™™™™™Ù¿333333ã?š™™™™™É?š™™™™™¹¿š™™™™™É¿š™™™™™É¿š™™™™™¹?š™™™™™Ù¿333333ã?à?ffffffæ?333333ã?333333Ó?š™™™™™É?š™™™™™É¿š™™™™™¹¿š™™™™™Ù?à?š™™™™™¹¿š™™™™™É?333333㿚™™™™™é?š™™™™™é¿š™™™™™¹¿à?š™™™™™É¿š™™™™™é?333333Ó¿š™™™™™¹?š™™™™™É¿š™™™™™¹¿š™™™™™Ù¿333333Ó?à?ffffffæ?š™™™™™¹?333333ã?š™™™™™¹¿š™™™™™É¿ffffffæ?333333Ó?š™™™™™Ù¿333333Ó¿š™™™™™É¿š™™™™™¹¿à¿ð?š™™™™™¹¿š™™™™™¹¿š™™™™™Ù?333333Ó¿333333ã?333333Ó¿š™™™™™Ù?š™™™™™Ù¿333333Ó¿ÍÌÌÌÌÌì?š™™™™™É¿š™™™™™É?š™™™™™É¿š™™™™™É¿š™™™™™¹¿333333Ó?333333Ó¿à¿ÍÌÌÌÌÌì?š™™™™™Ù¿š™™™™™¹¿š™™™™™¹¿à?š™™™™™¹¿š™™™™™É¿š™™™™™É¿š™™™™™É¿š™™™™™É?š™™™™™é?š™™™™™¹?š™™™™™Ù?š™™™™™É¿333333ã?à?š™™™™™É?ffffffæ?333333Ó¿333333Ó?ÍÌÌÌÌÌì?333333Ó¿š™™™™™Ù?333333ã?à¿à?333333Ó?š™™™™™¹¿333333Ó¿š™™™™™Ù?š™™™™™¹¿š™™™™™Ù¿š™™™™™Ù?š™™™™™Ù?š™™™™™¹¿š™™™™™É¿š™™™™™É?š™™™™™¹¿333333Ó?à?š™™™™™¹¿š™™™™™¹¿333333Ó¿š™™™™™¹¿š™™™™™Ù?š™™™™™É¿333333Ó?333333ã?š™™™™™Ù¿š™™™™™¹?š™™™™™é?ffffffæ?š™™™™™É¿š™™™™™¹¿333333Ó¿ð?š™™™™™Ù?š™™™™™¹¿333333ã?à?š™™™™™¹¿š™™™™™¹?333333ã?š™™™™™Ù¿333333Ó¿š™™™™™¹¿š™™™™™É¿333333Ó?š™™™™™¹¿š™™™™™Ù?ffffffæ?ð¿333333Ó¿š™™™™™É¿333333Ó¿333333Ó?š™™™™™É¿š™™™™™É¿333333Ó?š™™™™™é¿à?333333ã?333333Ó¿š™™™™™¹?333333Ó¿š™™™™™É¿š™™™™™Ù?š™™™™™É?š™™™™™é?࿚™™™™™É¿333333Ó?333333Ó¿š™™™™™Ù¿š™™™™™é?š™™™™™É¿ð?333333ã?333333Ó?à?š™™™™™É¿š™™™™™¹¿š™™™™™¹?à?333333Ó¿š™™™™™Ù¿š™™™™™¹?333333Ó¿ffffffæ?š™™™™™¹¿š™™™™™¹¿š™™™™™¹¿à?ffffffæ?š™™™™™É¿333333Ó¿š™™™™™Ù?333333Ó?à¿333333Ó?š™™™™™Ù?š™™™™™É?ffffffæ?à?ffffffæ?ÍÌÌÌÌÌô?ÍÌÌÌÌÌì?š™™™™™É¿š™™™™™Ù?333333Ó¿š™™™™™É¿š™™™™™¹¿ffffffæ?š™™™™™¹?ð?333333ã?š™™™™™¹¿š™™™™™Ù?333333Ó?ffffffö¿333333Ó?333333Ó?333333ã¿ffffffæ?š™™™™™É¿à?š™™™™™É¿à?333333ã?333333Ó?333333Ó¿à?š™™™™™Ù¿à?š™™™™™Ù?š™™™™™¹¿š™™™™™¹¿333333Ó¿š™™™™™É¿à?š™™™™™¹¿š™™™™™É¿š™™™™™É¿š™™™™™Ù?ffffffæ?š™™™™™¹¿š™™™™™É¿333333ã?333333Ó¿333333ӿ࿚™™™™™É?š™™™™™¹¿š™™™™™É¿š™™™™™¹¿333333Ó?š™™™™™É¿š™™™™™Ù?333333ã?à?333333Ó¿š™™™™™Ù?š™™™™™¹?@ffffffæ?š™™™™™É?333333ó?ffffffæ?ð?333333ó?š™™™™™ñ?š™™™™™Ù¿š™™™™™Ù?ffffffæ?࿚™™™™™é?š™™™™™É¿ffffffæ?š™™™™™¹?š™™™™™É?ð?à?ffffff濚™™™™™¹?š™™™™™é?š™™™™™é?š™™™™™ñ?š™™™™™Ù¿š™™™™™É?333333ã?š™™™™™ñ?ÍÌÌÌÌÌü¿š™™™™™Ù?š™™™™™é?333333ó¿ffffffö¿ffffffæ?333333ã?ffffffö?š™™™™™¹?333333Ó?à?ð?ÍÌÌÌÌÌü?š™™™™™@ÍÌÌÌÌÌô?ÍÌÌÌÌÌì?š™™™™™ñ?333333Ó?333333Ó?ÍÌÌÌÌÌì?š™™™™™É¿š™™™™™ñ?333333ã?š™™™™™Ù¿š™™™™™É?š™™™™™É¿ffffffæ?š™™™™™é?à?š™™™™™É¿ÍÌÌÌÌÌô?ð?à?š™™™™™Ù?š™™™™™É?š™™™™™Ù?ø?š™™™™™¹¿š™™™™™É¿š™™™™™é?š™™™™™Ù?š™™™™™É?ffffffæ?š™™™™™Ù?š™™™™™É?333333ó?ÍÌÌÌÌÌô?š™™™™™Ù?ð?à?ffffff濚™™™™™é¿à?333333Ó¿à?ffffffæ?à?š™™™™™É?à¿ffffffæ¿333333Ó¿ffffffö¿š™™™™™Ù?à¿333333û¿ÍÌÌÌÌÌô?333333ó¿š™™™™™ù?š™™™™™ñ?333333Ó?š™™™™™¹¿ÍÌÌÌÌÌì?š™™™™™¹¿ÍÌÌÌÌÌô?ffffff濚™™™™™ù?š™™™™™¹¿333333Ó¿à?ffffffæ?š™™™™™É?š™™™™™Ù¿ÍÌÌÌÌÌô?š™™™™™Ù?ÍÌÌÌÌÌì¿ð?333333ã?š™™™™™¹¿š™™™™™ñ?333333ó?333333ó?ð?ffffffö?333333ó?333333Ó¿š™™™™™É?š™™™™™Ù?333333ã?š™™™™™É¿š™™™™™É?ÍÌÌÌÌÌì?333333Ó¿š™™™™™¹¿š™™™™™É?à?ÍÌÌÌÌÌì¿à?333333ã?@333333ã?à?š™™™™™Ù?š™™™™™ñ¿š™™™™™Ù?333333ã?ffffffæ?ffffffæ¿333333Ó?ÍÌÌÌÌÌô?š™™™™™Ù?333333û?š™™™™™é?š™™™™™ù?333333ã?š™™™™™ñ?333333Ó¿333333ó?ÍÌÌÌÌÌô?333333ó?š™™™™™é?333333ó?ð?333333Ó?ÍÌÌÌÌÌì?š™™™™™¹¿š™™™™™é?ffffffæ?333333Ó¿à?š™™™™™É?š™™™™™Ù?ffffffæ?ffffffæ?࿚™™™™™Ù¿š™™™™™É?š™™™™™Ù¿š™™™™™¹¿š™™™™™Ù¿š™™™™™é?ffffffæ?ÍÌÌÌÌÌô?ð?333333Ó¿333333ó?š™™™™™Ù¿š™™™™™¹¿ffffffæ?ÍÌÌÌÌÌô¿ÍÌÌÌÌÌ쿚™™™™™é?š™™™™™é¿š™™™™™Ù?Àš™™™™™é?š™™™™™Ù?333333Ó?à?ÍÌÌÌÌÌì?333333Ó?à?ÍÌÌÌÌÌì?ffffff@ð?š™™™™™¹¿333333Ó?𿚙™™™™ñ?š™™™™™À333333Ó?ffffffæ?ð¿ÍÌÌÌÌÌô?333333û¿Àffffffæ¿ø?ð?ÍÌÌÌÌÌì?ð¿ffffffþ?š™™™™™é¿š™™™™™¹¿š™™™™™É¿333333ó?š™™™™™é?š™™™™™¹¿š™™™™™¹¿š™™™™™É¿š™™™™™ñ?š™™™™™é?ÍÌÌÌÌÌ@š™™™™™É¿à?𿚙™™™™¹?š™™™™™Ù¿à¿ÍÌÌÌÌÌô¿à?š™™™™™ñ¿333333Ó?ffffffþ?š™™™™™Ù?ffffffö¿ÍÌÌÌÌÌü?š™™™™™É¿ffffffæ?333333Ó?à?333333Ó¿333333Ó¿ÍÌÌÌÌÌì?à?ffffffæ?ffffffæ¿ffffffö¿ÍÌÌÌÌÌì¿333333ó?š™™™™™ñ¿ð¿333333ã¿à¿ffffffæ?ffffffæ?333333û?333333Ó?ffffffæ?š™™™™™É?š™™™™™é?ÍÌÌÌÌÌü?ø?š™™™™™ñ?à?š™™™™™¹¿à¿š™™™™™É¿333333ó?š™™™™™É?ø?333333ã?333333ã?ÍÌÌÌÌÌô?333333㿚™™™™™ñ?ÍÌÌÌÌÌì?à?333333Ó?š™™™™™Ù¿š™™™™™é?š™™™™™Ù?š™™™™™é?333333ó?333333Ó¿ÍÌÌÌÌÌì¿à?ffffff @š™™™™™É¿š™™™™™ñ?ÍÌÌÌÌÌü¿ÍÌÌÌÌÌô?š™™™™™ñ?ÍÌÌÌÌÌì?ø?ÍÌÌÌÌÌü?à?ÍÌÌÌÌÌô¿333333Ó?š™™™™™ñ?ÍÌÌÌÌÌì?š™™™™™ñ?333333ã?š™™™™™É¿š™™™™™ñ?ÍÌÌÌÌÌô?ð¿ÍÌÌÌÌÌì?ð?š™™™™™¹¿ð?333333ã?ffffff濚™™™™™é¿333333Ó¿š™™™™™ñ?š™™™™™é¿š™™™™™ñ¿š™™™™™É¿ffffffæ?ffffffæ¿ÍÌÌÌÌÌô¿ø?š™™™™™ñ¿ÍÌÌÌÌÌü?š™™™™™Ù?ð?ÍÌÌÌÌÌô?ÍÌÌÌÌÌü¿š™™™™™¹¿333333ã?333333Ó?à?333333ã¿333333ó?š™™™™™Ù?333333Ó?ð?ÍÌÌÌÌÌì?š™™™™™ñ?š™™™™™¹¿š™™™™™Ù?š™™™™™É¿333333Ó¿š™™™™™É¿š™™™™™ñ¿š™™™™™Ù?ÍÌÌÌÌÌÀffffffæ¿333333ó¿ÍÌÌÌÌÌì¿333333Ó¿ð¿333333Ó?ÍÌÌÌÌÌô¿š™™™™™Ù?࿚™™™™™é?ÍÌÌÌÌÌü?š™™™™™é¿333333ã?š™™™™™Ù?ffffffö?ÍÌÌÌÌÌô¿333333Ó?333333Ó¿š™™™™™ñ¿333333Ó?š™™™™™É¿š™™™™™ñ¿š™™™™™Ù?š™™™™™Ù?333333ó?à¿ð?ð?ø?333333ã?š™™™™™é?ð¿333333ó?ÍÌÌÌÌÌÀffffffö¿à¿š™™™™™¹?ÍÌÌÌÌÌì?ffffffæ?333333Ó¿š™™™™™Ù?š™™™™™Ù?à?ffffffö¿ÍÌÌÌÌÌì?š™™™™™ñ?š™™™™™ñ?333333ã¿333333û?š™™™™™é?ffffffæ¿ffffffæ¿ffffffö?š™™™™™é¿š™™™™™ñ?š™™™™™¹¿ÍÌÌÌÌÌô?333333Ó¿š™™™™™é?š™™™™™É¿ffffffæ?š™™™™™é?333333Ó¿333333ã?333333Ó¿333333ã¿à?à?333333Ó? À333333ó?ffffffæ?š™™™™™é?š™™™™™É¿š™™™™™É?ø?333333Ó?š™™™™™Ù?à¿333333ó?333333ã?š™™™™™É?š™™™™™Ù?š™™™™™Ù¿š™™™™™ñ?333333ã?ÍÌÌÌÌÌì?ffffffö?333333Ó?ÍÌÌÌÌÌô?333333Ó¿333333ã?333333ã?333333Ó¿ffffffþ?333333ó?ffffffæ¿333333,@š™™™™™ @ÍÌÌÌÌÌ"ÀÍÌÌÌÌÌ"@ffffff @š™™™™YCÀš™™™™™ ÀÀ333333%ÀffffffÀ @ffffff5@ffffffÀ333333@ffffff@ffffffÀÍÌÌÌÌÌì?333333Àš™™™™6@333333@š™™™™™Àš™™™™™é¿333333(@ffffffæ?ÍÌÌÌÌL?@'À,@fffffæ>@fffffæA@€7@333333@ffffff!@33333³2@333333Ó?333333Ó¿ÍÌÌÌÌÌü?š™™™™™@ffffff6@fffff¦@@ffffffæ?ÍÌÌÌÌÌü¿š™™™™™ù?ÍÌÌÌÌÌì?3333330@€2@ÍÌÌÌÌÌ&@@ffffffæ?€;@ÍÌÌÌÌÌ"@š™™™™™@0@š™™™™™é¿š™™™™™@ÍÌÌÌÌÌ(@š™™™™™ @333333'@@ffffff(À333333&Àffffff@ffffff ÀÀffffff)Àà¿ffffff@ÍÌÌÌÌÌü¿ÍÌÌÌÌÌ*@333333#@š™™™™™@ø¿33333³1@ÍÌÌÌÌÌô¿Àffffff.À!@33333³0À333333û?333333ó¿š™™™™™À@@š™™™™™ Àffffffæ?ffffffÀš™™™™™Ù¿š™™™™™ñ¿š™™™™A@ @2@@ffffff*@333333ã?ÍÌÌÌÌÌ@$@ÍÌÌÌÌÌ @š™™™™™ù?ÍÌÌÌÌL0@333333%@š™™™™™%ÀffffffÀ333333$@333333@š™™™™™1@ffffff!@š™™™™™@š™™™™™/Àš™™™™™(@š™™™™™/@š™™™™™@333333Ó?Àà¿@ÍÌÌÌÌÌ @333333&@%@333333@333333,@ÍÌÌÌÌÌ@š™™™™™5@@š™™™™™É¿ffffffö?ÍÌÌÌÌL0@ @ÍÌÌÌÌÌ @€?@š™™™™™#Àš™™™™™@š™™™™™ Àš™™™™™À333333Ó?333333)À333333ó?ffffffö¿ÀÍÌÌÌÌÌü?ffffffÀÍÌÌÌÌÌÀš™™™™™)@ÍÌÌÌÌÌì¿333333@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ"ÀÍÌÌÌÌÌ%@Àš™™™™™¹¿ffffff ÀÍÌÌÌÌÌ@333333)@š™™™™™@ÀÍÌÌÌÌÌ!@333333 @333333)Àš™™™™™@1@ À33333³2@ffffff@333333#@ffffffþ¿š™™™™™ñ?"@š™™™™™)@333333㿚™™™™™@ÍÌÌÌÌÌ/@š™™™™5@@ffffff.@ÍÌÌÌÌÌ!À333333(@ÍÌÌÌÌÌÀ333333ã¿ÍÌÌÌÌÌ>@3333335@#ÀÍÌÌÌÌÌ$@ffffff@ÍÌÌÌÌÌ @ÍÌÌÌÌÌ5@ÍÌÌÌÌÌ&@š™™™™™ Àš™™™™™¹?ÍÌÌÌÌÌ(@33333sM@ÍÌÌÌÌÌ&@ÍÌÌÌÌÌÀ<@ffffff@ffffff@À33333³0Àš™™™™™#@ffffff=Àš™™™™™4@ÍÌÌÌÌÌ*@-@š™™™™™B@š™™™™™@5ÀÍÌÌÌÌÌ!Àš™™™™™%@=@À333333 ÀÍÌÌÌÌÌÀš™™™™™À333333@ÍÌÌÌÌÌ;À@ÍÌÌÌÌÌ)@ffffff@ÍÌÌÌÌÌ@333333Ó?ÍÌÌÌÌÌÀffffff @ffffff)@ffffff Àš™™™™™ @333333 Àð?š™™™™™É?ÍÌÌÌÌÌ!@š™™™™™(@š™™™™™ À@ÍÌÌÌÌÌ0@š™™™™™ù¿ffffffö¿ffffff*ÀÍÌÌÌÌL3@ÍÌÌÌÌÌÀš™™™™™ À333333.@%@š™™™™™À5@š™™™™™@ffffffÀš™™™™™ù?333333)@@333333'@š™™™™™)@ffffff @š™™™™™(@@ffffff2@ffffff:@€3@333333 @33333³2@ÍÌÌÌÌÌÀÀš™™™™™!@ÍÌÌÌÌL6@333333@ÍÌÌÌÌÌ,@ÍÌÌÌÌÌÀÍÌÌÌÌÌ@@ÍÌÌÌÌÌÀ&@š™™™™™.@ÍÌÌÌÌÌ@333333ÀffffffÀš™™™™™¹?ÍÌÌÌÌÌì?š™™™™™#@ffffff)@š™™™™™?@Àffffff@š™™™™™À€0@333333<@@š™™™™™1@4@ffffff.@333333Àš™™™™™Àš™™™™™é?2@3333337@š™™™™™ @š™™™™™@š™™™™™@333333ó?š™™™™™ ÀÍÌÌÌÌŒD@)À33333³4@ÍÌÌÌÌÌ6@à¿fffffæ5@0@ffffff4@ÍÌÌÌÌÌÀš™™™™™@ÍÌÌÌÌÌ>@ÍÌÌÌÌÌ@333333Àš™™™™™@€1@ffffff@ffffff À%@Àš™™™™:À333333@š™™™™™ ÀÍÌÌÌÌÌ@ÀÍÌÌÌÌL9À(@š™™™™=@ffffff,@@.@ÍÌÌÌÌLB@š™™™™™/@ø¿333333,@ÍÌÌÌÌÌÀ€8À333333㿚™™™™™,@š™™™™™ @ffffff"À333333ó¿À333333#@ÍÌÌÌÌÌ!À333333û?š™™™™™@%@ÍÌÌÌÌÌ Àš™™™™™Àffffff @6@š™™™™™6Àš™™™™™#@333333+@š™™™™™@š™™™™™@ÍÌÌÌÌÌ1@ffffff!@ffffff!Àš™™™™™B@333333ó?333333,@ffffff@@ffffff @š™™™™™7@ÍÌÌÌÌÌÀ333333-@33333³7@ÍÌÌÌÌÌ&@Àš™™™™™ñ¿ø?š™™™™A@@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ0@š™™™™™@333333-@š™™™™2@ffffff@à?š™™™™™'Àffffff À)Àš™™™™™@€5@&Àffffff@ÍÌÌÌÌÌÀ333333@š™™™™Ù\@ÍÌÌÌÌLF@ÍÌÌÌÌÌ@Àš™™™™™À.À333333À333333&@@ffffff(ÀC@333333@š™™™™™@333333*Àš™™™™™2@33333³7ÀÍÌÌÌÌÌ$@ÍÌÌÌÌÌÀš™™™™™ñ?š™™™™<@à?33333³4@&@3333333@à?ffffffÀÍÌÌÌÌÌÀffffffæ¿$Àffffff@333333û?ÍÌÌÌÌÌ@ÍÌÌÌÌÌü?ffffff'@ÍÌÌÌÌÌü¿ffffff!@š™™™™8@š™™™™™ @š™™™™™@ffffffþ¿š™™™™™@š™™™™™&Àfffffæ7Àffffff@ffffff"@ÍÌÌÌÌL1@ffffff4@ÍÌÌÌÌÌü?š™™™™™$@ÍÌÌÌÌÌÀ3@š™™™™™,Àffffff濚™™™™™Ù?ÍÌÌÌÌL1@ÍÌÌÌÌÌ@ÍÌÌÌÌÌÀš™™™™™ @ÍÌÌÌÌL0@333333(À€8@ffffff@š™™™™™!@€6@š™™™™™(@333333ó¿2@€0@ÍÌÌÌÌ EÀffffffö¿333333@333333 Àš™™™™™ÀffffffÀffffff+@ÍÌÌÌÌL6@ÀÍÌÌÌÌÌ#@š™™™™™!@$Àffffffö?333333@<@ffffff,@š™™™™™"Àš™™™™™Ù?ÍÌÌÌÌÌ.@š™™™™™@*@ffffff#À3333334@ÍÌÌÌÌÌ@,@€<@ÍÌÌÌÌÌ$@š™™™™™3@ÍÌÌÌÌL3@ffffffþ?@ÍÌÌÌÌÌ"@fffffæ2@ÍÌÌÌÌ G@ÍÌÌÌÌÌD@š™™™™™@š™™™™™@ffffff @@š™™™™6@3333331@fffffæ3@š™™™™™&@ÍÌÌÌÌÌü¿fffffæ<@333333 @ÍÌÌÌÌÌ&@ffffff5@@š™™™™™ @ffffff4@333333.@333333.@ÍÌÌÌÌÌ@ffffff%Àš™™™™™ ÀÍÌÌÌÌÌ-@ffffffÀ333333 ÀÍÌÌÌÌÌÀš™™™™™ù?ÍÌÌÌÌÌ@ffffff @ÍÌÌÌÌÌ@š™™™™™,@š™™™™™3@1@š™™™™™ñ?š™™™™9@@ÍÌÌÌÌÌ&ÀÍÌÌÌÌL4Àš™™™™™&@fffffæ2ÀÍÌÌÌÌÌ@333333@ð¿ffffff@š™™™™™ù?333333+Àffffffþ¿ÍÌÌÌÌÌ,ÀÍÌÌÌÌÌ@333333Àš™™™™™+@ÍÌÌÌÌÌ+@ÍÌÌÌÌÌ@š™™™™0@6@@ffffff@ÍÌÌÌÌL0@333333@ÍÌÌÌÌÌ%@š™™™™™$@š™™™™B@ffffff&ÀÀš™™™™™,@333333@š™™™™2@ÍÌÌÌÌÌ@ffffff-@š™™™™™'À333333@š™™™™™6@ÍÌÌÌÌÌ@š™™™™™¹¿š™™™™™¹¿ffffff@333333)@$@š™™™™5@ÍÌÌÌÌL4@š™™™™™.@@ffffff:@ÍÌÌÌÌÌô?ÍÌÌÌÌÌì?ffffff!@.@333333@š™™™™™@š™™™™™A@ffffff.À!@š™™™™™É?8@ffffff@333333"À333333@333333"À333333û¿@Àffffff(ÀÍÌÌÌÌÌ-@ffffff"@333333@fffffæ3@ffffffÀš™™™™6@ÍÌÌÌÌÌô?333333@š™™™™™À,@7@333333"@ÍÌÌÌÌÌ@33333³2@š™™™™™%@%Àffffff(@€0@@7@š™™™™™é?ffffff*@333333㿚™™™™™ñ?š™™™™™'@š™™™™™2@@ffffff@333333*@ffffff6@333333@333333-@'À€0@Àš™™™™™@š™™™™™B@š™™™™™2@š™™™™™Ù¿š™™™™™@š™™™™™@ffffff@(@333333@ø?333333À0@ÍÌÌÌÌL6@š™™™™™0@ÍÌÌÌÌÌÀš™™™™>@333333&@*@333333ã¿,Àffffff/@ÍÌÌÌÌÌ*@ffffff;@š™™™™™)@/@ffffff6@%@š™™™™Ù@À333333À3333330@š™™™™™0@333333@33333³2ÀÍÌÌÌÌÌ@À%À333333@333333'Àffffff$@3@ffffffÀÍÌÌÌÌL2@š™™™™™ÀffffffÀÍÌÌÌÌÌ@ÍÌÌÌÌÌ4@ffffffþ?ÍÌÌÌÌÌ@ffffffÀø¿333333$@š™™™™™,@š™™™™=@š™™™™™À!@ÍÌÌÌÌÌ"@š™™™™™ñ¿ÍÌÌÌÌÌ Àš™™™™™/Àš™™™™™ @ffffffö¿333333&Àfffffæ0@:@333333ã?ffffff@š™™™™™6@ffffffÀ@ffffff-@333333@ffffff#@š™™™™™%@ffffff!@ffffff/@&@š™™™™™"@333333'@š™™™™™(@ffffff*@ffffff@ffffff!ÀÍÌÌÌÌÌÀ@333333:@!@ÍÌÌÌÌL;@À@@fffffæ;@ffffff:@š™™™™™,@ ÀÍÌÌÌÌÌÀ333333 ÀffffffÀffffff1@+@š™™™™YE@333333Ó?ffffff@ffffff@'@ÍÌÌÌÌ B@)@4@3333336@*@š™™™™™Ù¿š™™™™™¹?ÍÌÌÌÌÌ@š™™™™™:@fffffæ0@333333Àš™™™™™@333333@@ffffffö¿333333ã¿33333³1@ffffffö¿ÍÌÌÌÌL;@ffffff;@333333%@ÍÌÌÌÌ A@5@š™™™™™#@ÍÌÌÌÌÌô?ÍÌÌÌÌÌ@ffffff'@33333³B@š™™™™™(@ffffffÀÍÌÌÌÌÌ-@:@333333Àffffff@š™™™™1@333333Àš™™™™3À!@ÍÌÌÌÌÌÀš™™™™™ÀÀ1Àš™™™™™@ffffff/@š™™™™™)@333333"@ÍÌÌÌÌÌ&@3333338@fffff&F@ffffff0À33333³;@š™™™™™É?ÍÌÌÌÌL1ÀÍÌÌÌÌÌ@ffffffþ¿š™™™™™@š™™™™™Àš™™™™™É?à?333333#@333333)Àš™™™™™$@ÍÌÌÌÌÌ@š™™™™™(@@ffffffæ¿ffffff&@€5@ffffff4À"@š™™™™™'@š™™™™™@ÍÌÌÌÌÌô¿š™™™™™4@À333333,Àffffff;@ÍÌÌÌÌÌÀÍÌÌÌÌÌ'@ø¿š™™™™™@333333À3333339@ffffffÀ33333³3@ÍÌÌÌÌLB@333333@ÍÌÌÌÌÌì?š™™™™™ @ÍÌÌÌÌÌ$@.@ffffff@333333@š™™™™™ @333333$@(@š™™™™™"@š™™™™™!@333333@š™™™™™ À/ÀffffffÀš™™™™™"@€>@ÍÌÌÌÌÌÀffffff#@333333,À333333"@;@š™™™™Ù@@333333û¿ÍÌÌÌÌÌÀ@ffffff%Àš™™™™™ÀÍÌÌÌÌL0@ffffff"@ffffff!ÀÍÌÌÌÌÌ:@$@)@333333À333333,@ÍÌÌÌÌÌ-Àš™™™™0@)ÀffffffÀ€C@ffffffÀÍÌÌÌÌL;@ÍÌÌÌÌÌ$@333333;@ÍÌÌÌÌÌÀffffffö¿ÍÌÌÌÌÌÀ@ÍÌÌÌÌÌ@š™™™™™@ffffff@ffffffæ¿ÍÌÌÌÌÌ-@333333û?š™™™™™&@ÍÌÌÌÌÌ,À)@333333$@ @@333333$À333333ÀÍÌÌÌÌÌ@ffffff(@š™™™™™-@€=@ffffff@ffffff'@š™™™™™É¿333333)@À333333@333333@ÍÌÌÌÌÌ:@š™™™™™ù?ÍÌÌÌÌL0@ffffff ÀÍÌÌÌÌÌ@š™™™™5@-ÀÍÌÌÌÌ C@333333-@@š™™™™™É?š™™™™™Ù?š™™™™™¹¿333333ã?š™™™™™¹¿š™™™™™É¿š™™™™™É¿š™™™™™ñ?š™™™™™É¿š™™™™™Ù?š™™™™™¹?š™™™™™É¿š™™™™™¹¿š™™™™™Ù?š™™™™™¹¿š™™™™™Ù?à?š™™™™™É¿š™™™™™É?š™™™™™É¿š™™™™™É?š™™™™™É¿š™™™™™¹¿à?š™™™™™¹?š™™™™™É¿š™™™™™¹?š™™™™™Ù?š™™™™™É?š™™™™™¹¿š™™™™™Ù¿š™™™™™¹?š™™™™™é?š™™™™™¹?š™™™™™¹¿š™™™™™É?š™™™™™¹¿š™™™™™Ù?š™™™™™¹?š™™™™™¹¿à¿š™™™™™¹¿à?š™™™™™¹?š™™™™™É¿ffffffæ?š™™™™™É?š™™™™™¹?š™™™™™¹¿333333Ó¿š™™™™™¹¿š™™™™™Ù¿š™™™™™¹¿š™™™™™É?š™™™™™Ù?š™™™™™É?333333Ó¿š™™™™™¹¿333333㿚™™™™™¹?š™™™™™¹?ffffffæ?š™™™™™É¿š™™™™™Ù?š™™™™™¹?š™™™™™É?š™™™™™Ù?š™™™™™¹¿333333Ó¿š™™™™™¹¿š™™™™™É¿š™™™™™¹¿à?š™™™™™¹?š™™™™™ñ¿ÍÌÌÌÌÌô¿à?333333û¿š™™™™™¹?š™™™™™É¿333333ã?š™™™™™Ù?à¿333333Ó¿š™™™™™¹¿š™™™™™¹¿š™™™™™¹?š™™™™™¹¿š™™™™™É¿š™™™™™¹¿š™™™™™Ù?š™™™™™¹¿š™™™™™Ù?333333û¿š™™™™™Ù?š™™™™™¹¿š™™™™™¹¿ð?333333Ó¿š™™™™™Ù¿à¿333333㿚™™™™™É¿š™™™™™¹¿333333ã?š™™™™™¹?š™™™™™É¿š™™™™™Ù¿ffffffæ?š™™™™™¹?ÍÌÌÌÌÌì?333333ã?š™™™™™¹¿š™™™™™É?š™™™™™Ù¿ffffffö¿à¿š™™™™™Ù?š™™™™™¹¿ffffffæ?à?š™™™™™Ù¿š™™™™™¹?š™™™™™¹¿š™™™™™¹?à?333333Ó¿š™™™™™É¿à¿š™™™™™¹?333333Ó¿š™™™™™É?࿚™™™™™¹¿š™™™™™¹¿š™™™™™¹?š™™™™™Ù¿š™™™™™Ù?š™™™™™¹?333333Ó¿š™™™™™É¿š™™™™™¹¿š™™™™™¹?࿚™™™™™¹?š™™™™™¹?š™™™™™É?ÍÌÌÌÌÌô¿333333㿚™™™™™¹¿š™™™™™¹?333333Ó¿š™™™™™É?š™™™™™É?š™™™™™É¿333333Ó?333333Ó?š™™™™™¹?š™™™™™¹¿š™™™™™É¿333333ã?š™™™™™¹?š™™™™™Ù?š™™™™™É?š™™™™™Ù¿à¿š™™™™™Ù¿š™™™™™É¿ÍÌÌÌÌÌ쿚™™™™™É?š™™™™™É?š™™™™™É?࿚™™™™™¹?à?333333ã¿à¿ÍÌÌÌÌÌì¿333333Ó?š™™™™™¹¿ÍÌÌÌÌÌ쿚™™™™™¹?à¿333333Ó¿š™™™™™É?࿚™™™™™¹¿š™™™™™¹¿333333Ó?š™™™™™Ù¿š™™™™™É¿š™™™™™Ù?š™™™™™¹¿š™™™™™¹¿š™™™™™¹¿š™™™™™Ù?š™™™™™É?š™™™™™¹¿š™™™™™¹?š™™™™™¹?š™™™™™é¿š™™™™™Ù?333333㿚™™™™™É¿333333Ó¿š™™™™™Ù¿š™™™™™¹¿à?333333ã?š™™™™™¹¿333333ã?š™™™™™É?à?ffffffæ?333333Ó?ffffffæ?š™™™™™é?š™™™™™Ù?š™™™™™É¿š™™™™™¹?࿚™™™™™É¿333333ã?š™™™™™É¿333333Ó¿š™™™™™¹?š™™™™™É¿333333Ó?š™™™™™Ù?š™™™™™¹?š™™™™™¹?࿚™™™™™É¿š™™™™™Ù¿š™™™™™¹?š™™™™™É¿ffffffæ?333333ã?š™™™™™Ù?š™™™™™¹¿š™™™™™É?š™™™™™¹¿333333㿚™™™™™É?š™™™™™ñ¿š™™™™™Ù¿ÍÌÌÌÌÌì¿333333Ó?š™™™™™Ù?š™™™™™¹?š™™™™™¹?š™™™™™ñ¿333333ã?š™™™™™É?š™™™™™É¿ffffff濚™™™™™É?ffffffö¿à?š™™™™™¹?࿚™™™™™¹¿š™™™™™¹?š™™™™™¹?š™™™™™¹?š™™™™™¹?š™™™™™é?š™™™™™É?à?š™™™™™É¿333333Ó¿333333ã?š™™™™™Ù¿š™™™™™Ù?à?333333ó¿š™™™™™Ù¿š™™™™™Ù?š™™™™™É?š™™™™™Ù¿ffffffö?š™™™™™ñ?š™™™™™Ù¿333333Ó¿š™™™™™É?š™™™™™É¿š™™™™™Ù¿š™™™™™É¿333333ã?š™™™™™Ù?࿚™™™™™Ù?š™™™™™¹¿à¿333333㿚™™™™™É¿š™™™™™¹?à?333333Ó?ffffffæ?š™™™™™Ù¿š™™™™™Ù¿à¿š™™™™™¹¿š™™™™™¹¿à?š™™™™™¹¿š™™™™™É?à?š™™™™™é¿333333Ó¿š™™™™™É¿š™™™™™É¿š™™™™™¹¿š™™™™™Ù¿š™™™™™Ù?ffffffæ?š™™™™™¹?333333Ó¿š™™™™™Ù¿š™™™™™¹?à¿333333Ó?ÍÌÌÌÌÌ쿚™™™™™¹¿333333㿚™™™™™¹¿ffffffæ?ffffffö?š™™™™™É¿š™™™™™¹?š™™™™™É¿š™™™™™¹¿š™™™™™é¿š™™™™™¹?š™™™™™¹?ÍÌÌÌÌÌì?333333ã?333333㿚™™™™™é?ð?ffffffæ?š™™™™™É?š™™™™™Ù?š™™™™™É?š™™™™™¹¿š™™™™™é¿š™™™™™¹¿š™™™™™Ù¿333333ã?š™™™™™¹?ffffffæ¿333333Ó¿333333㿚™™™™™É?š™™™™™¹¿333333ã?š™™™™™¹¿@333333ã?ÍÌÌÌÌÌ쿚™™™™™É¿š™™™™™¹?š™™™™™é¿š™™™™™Ù¿š™™™™™Ù?š™™™™™¹?࿚™™™™™¹?333333Ó¿š™™™™™É¿š™™™™™¹¿ÍÌÌÌÌÌô¿š™™™™™Ù¿š™™™™™É?š™™™™™¹¿š™™™™™¹?š™™™™™É?š™™™™™¹?š™™™™™¹¿š™™™™™é?ffffffö?ð?š™™™™™¹?Àš™™™™™ù¿š™™™™™ù¿à¿333333Àffffffþ¿š™™™™™Ù¿À333333Àffffffö¿š™™™™™Ù¿ffffffæ¿333333Àš™™™™™é¿333333ó¿ð¿ffffffæ¿ð¿š™™™™™é¿333333ó¿ffffffæ¿333333ã¿ÍÌÌÌÌÌì¿ø¿333333Àš™™™™™ñ¿ÍÌÌÌÌÌ쿚™™™™™Ù¿ÍÌÌÌÌÌÀÍÌÌÌÌÌ쿚™™™™™é¿333333Àffffff Àffffff濚™™™™™ñ¿š™™™™™Ù¿333333ã¿ð¿š™™™™™ñ¿333333ã¿ffffffæ¿333333㿚™™™™™Ù¿š™™™™™Ù¿š™™™™™Ù¿333333Àš™™™™™Ù¿333333Àš™™™™™À333333ÀffffffÀffffffæ¿333333À333333ã¿333333ã¿ÍÌÌÌÌÌÀffffffæ¿ffffffæ¿ÍÌÌÌÌÌ쿚™™™™™ù¿333333ã¿ÍÌÌÌÌÌì¿ÍÌÌÌÌÌì¿333333 Àffffffæ¿Àffffffæ¿ÍÌÌÌÌÌì¿ffffffö¿ÍÌÌÌÌÌü¿ffffffö¿ffffff À333333Àš™™™™™Ù¿ÍÌÌÌÌÌü¿À333333ó¿š™™™™™ñ¿333333ó¿333333ó¿ÍÌÌÌÌÌô¿ÍÌÌÌÌÌô¿š™™™™™Ù¿à¿ffffffæ¿333333ã¿à¿ÍÌÌÌÌÌÀ333333ã¿333333ã¿333333㿚™™™™™Ù¿ÍÌÌÌÌÌì¿à¿333333ã¿ffffffö¿333333ó¿š™™™™™Ù¿333333ã¿333333Àffffffæ¿333333ã¿333333û¿š™™™™™Ù¿333333 Àð¿à¿333333ã¿333333Àš™™™™™Ù¿š™™™™™Ù¿à¿š™™™™™é?š™™™™™@š™™™™™@ffffff@fffffæ3@333333@333333@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ!@š™™™™™@ÍÌÌÌÌÌô?ÍÌÌÌÌÌ+@ÍÌÌÌÌÌ @333333@333333!@š™™™™™@š™™™™™ @333333ã?333333@ÍÌÌÌÌÌ@@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ!@333333û?š™™™™™!@ffffff@ffffffæ?@ffffff@@333333 @ÍÌÌÌÌÌ@ffffff @š™™™™™@ffffffö?š™™™™™é?ÍÌÌÌÌÌ@š™™™™™@@š™™™™™*@š™™™™™ @333333û?333333@š™™™™™@š™™™™™Ù? @ffffff@333333@ÍÌÌÌÌÌ+@ÍÌÌÌÌÌ @ÍÌÌÌÌÌ@ffffff@333333@333333@333333!@š™™™™™@333333@š™™™™™@š™™™™™&@333333+@ffffff @333333@ÍÌÌÌÌÌ#@333333@š™™™™™Ù?ÍÌÌÌÌÌ @š™™™™™@@ffffffæ?ÍÌÌÌÌÌ@#@@@333333'@@@š™™™™™#@@š™™™™™@ffffff@ffffff@ÍÌÌÌÌÌ/@ÍÌÌÌÌÌ@ffffff@ÍÌÌÌÌÌ@ffffff@333333ó?š™™™™™é?ÍÌÌÌÌÌì?ffffff@333333@ffffff @333333@ÍÌÌÌÌÌ @š™™™™™@@ffffff)@ffffff"@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ@ffffff @ffffff @ÍÌÌÌÌÌ3@@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ@@ffffff$@ffffff@ffffff@ffffff@ÍÌÌÌÌÌô?ø?333333@333333@ÍÌÌÌÌÌü?à?ffffff@333333@š™™™™™@@333333@ffffffþ?ffffffþ?ÍÌÌÌÌÌ!@š™™™™™@ÍÌÌÌÌÌ@ffffff@333333@š™™™™™"@#@333333@ffffff$@ÍÌÌÌÌÌ@#@@ø?!@ffffff@ @ffffff#@š™™™™™@ffffff@@@ffffff@ffffffæ?š™™™™™ @ffffff@@@ÍÌÌÌÌÌ@@š™™™™™ñ?333333@333333@ffffff@333333@š™™™™™!@ÍÌÌÌÌÌ@š™™™™™Ù?@š™™™™™@ffffff@ð?ÍÌÌÌÌÌü?ÍÌÌÌÌÌ@š™™™™™@š™™™™™@š™™™™™ñ?333333@@š™™™™™@@š™™™™™@š™™™™™ @ffffff@š™™™™™é?333333ó?ffffff@ÍÌÌÌÌÌü?@ÍÌÌÌÌÌì?@š™™™™™Ù?š™™™™™@š™™™™™@ÍÌÌÌÌÌ@*@ffffff@€1@ffffff@ð?š™™™™™é?ffffffæ?š™™™™™@)@ffffff#@š™™™™™Ù?333333@š™™™™™,@@ÍÌÌÌÌÌ'@"@ÍÌÌÌÌÌü?/@@ÍÌÌÌÌÌ@ffffff@ø?ÍÌÌÌÌÌ@@š™™™™™ñ?333333û?ÍÌÌÌÌÌ@š™™™™™ñ?@333333 @š™™™™™@ÍÌÌÌÌÌ@š™™™™™@ffffff$@ffffff@š™™™™™@@$@333333-@ffffffö?333333@333333@@š™™™™™@š™™™™™@@ÍÌÌÌÌÌô?333333 @ÍÌÌÌÌÌ@ÍÌÌÌÌÌü?333333$@@333333ó?ffffff @ÍÌÌÌÌÌ @ÍÌÌÌÌÌü?ø?333333 @333333@š™™™™™@ÍÌÌÌÌÌ@ffffff@333333ó?ffffffþ?@ffffff@š™™™™™@ffffff@š™™™™™@ffffffæ?ffffff@ffffff @ÍÌÌÌÌÌ@š™™™™™ @ @š™™™™™@š™™™™™@š™™™™™@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ@ÍÌÌÌÌÌì?ÍÌÌÌÌÌì?ffffffæ?333333ó?@ffffffþ?333333$@333333@š™™™™™@ø?(@ÍÌÌÌÌÌ@š™™™™™é?@š™™™™™,@à?ffffff @@š™™™™™ù? @š™™™™™Ù?ÍÌÌÌÌÌü?š™™™™™@š™™™™™@ffffff$@@ÍÌÌÌÌÌì?ffffff@š™™™™™@ÍÌÌÌÌÌ @@š™™™™™@@333333 @ÍÌÌÌÌÌ@333333@ffffff@333333û?ffffff@ÍÌÌÌÌÌ$@š™™™™™@à?ÍÌÌÌÌÌ @ð?š™™™™™Ù?333333@@ffffffæ?@š™™™™™&@ÍÌÌÌÌÌ@333333@ø?ffffff@ffffff"@š™™™™™ @@333333!@š™™™™™@333333@ffffff@333333@ffffff@@ÍÌÌÌÌÌô?ÍÌÌÌÌÌ@à?ffffff@š™™™™™@š™™™™™@š™™™™™@333333ã?@à?š™™™™™@ffffff@333333 @š™™™™™ @333333@ffffffþ?333333@š™™™™™é?333333@à?ffffff)@ÍÌÌÌÌÌ@ffffff@ffffff@š™™™™™@ffffff@š™™™™™ @š™™™™™@333333ã?š™™™™™ù?@333333@333333 @ÍÌÌÌÌÌ@š™™™™™#@@@ÍÌÌÌÌÌ&@ffffff@ffffff$@333333@ffffff @@š™™™™™@ffffff @*@š™™™™™@š™™™™™@š™™™™™ @š™™™™™@š™™™™™ñ?333333û?ffffff@ÍÌÌÌÌL0@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ@333333@333333@333333@333333@333333@333333û?ÍÌÌÌÌÌ@ÍÌÌÌÌÌô?333333(@š™™™™™@š™™™™™!@ @333333-@333333@š™™™™™@š™™™™™ @ffffff@333333 @ÍÌÌÌÌÌ%@333333@š™™™™™@š™™™™™@333333@š™™™™™ @š™™™™™@š™™™™™@š™™™™0@š™™™™™ @š™™™™™ @ffffffæ?š™™™™™@š™™™™™@ffffff@333333@š™™™™™@ÍÌÌÌÌÌ@ @333333@333333@@@@333333@š™™™™™Ù?333333#@ffffffö?ffffff@ÍÌÌÌÌÌ@Àffffffæ¿ÍÌÌÌÌÌì¿333333ó¿à¿ffffffæ¿ffffffþ¿ø¿ffffffÀ333333ó¿333333ó¿333333ÀÍÌÌÌÌÌô¿333333ÀffffffÀÀ333333ó¿ÍÌÌÌÌÌ À333333ó¿ð¿š™™™™™#ÀÍÌÌÌÌÌì¿ÍÌÌÌÌÌÀÍÌÌÌÌÌì¿Àš™™™™™ Àš™™™™™ñ¿Àš™™™™™ÀffffffÀš™™™™™ù¿333333㿚™™™™™ À333333 À333333ÀÀš™™™™™ñ¿š™™™™™ñ¿ð¿333333 Àš™™™™™ÀÍÌÌÌÌÌÀš™™™™™Àffffffþ¿ffffffö¿ÍÌÌÌÌÌ À333333ó¿333333ÀÍÌÌÌÌÌô¿ÍÌÌÌÌÌì¿ÍÌÌÌÌÌÀ333333ã¿ÀffffffÀÍÌÌÌÌÌì¿ÍÌÌÌÌÌÀš™™™™™Àffffffþ¿ffffffÀffffffö¿333333À ÀÍÌÌÌÌÌô¿ÍÌÌÌÌÌ Àffffffþ¿ffffffÀš™™™™™Ù¿ffffffÀ𿚙™™™™é¿ÍÌÌÌÌÌÀ ÀÍÌÌÌÌÌÀffffff À333333ó¿ÍÌÌÌÌÌÀø¿à¿ÍÌÌÌÌÌÀÀ333333À333333ó¿š™™™™™ ÀÍÌÌÌÌÌü¿ÍÌÌÌÌÌì¿ffffffÀš™™™™™ ÀÀš™™™™™ Àø¿ffffffö¿ffffff Àš™™™™™ÀÍÌÌÌÌÌì¿333333ÀffffffÀffffff À333333ó¿ffffffÀš™™™™™À333333ã¿333333Àð¿333333ó¿ÍÌÌÌÌÌÀš™™™™™ Àð¿ÀffffffÀffffff Àš™™™™™Ù¿ÍÌÌÌÌÌô¿Àš™™™™™ñ¿ÍÌÌÌÌÌô¿ffffffæ¿ð¿š™™™™™Àø¿ffffffö¿ÀÀÀ333333ã¿333333ã¿ffffffþ¿š™™™™™ÀÍÌÌÌÌÌô¿š™™™™™é¿ð¿ð¿ffffffþ¿ffffffþ¿ffffff濚™™™™™ ÀffffffÀffffffÀ333333 ÀffffffÀffffffæ¿ÍÌÌÌÌÌ ÀffffffÀ333333ã¿333333ÀÍÌÌÌÌÌÀ333333À333333 Àø¿ÍÌÌÌÌÌì¿ÍÌÌÌÌÌÀš™™™™™ÀÀš™™™™™é¿š™™™™™ù¿333333㿚™™™™™ù¿ø¿š™™™™™é¿ÀÀÍÌÌÌÌÌü¿ffffff'ÀÀš™™™™™ÀÍÌÌÌÌÌô¿ÍÌÌÌÌÌü¿š™™™™™Àš™™™™™é¿ð¿333333û¿333333ó¿ÍÌÌÌÌÌÀ333333㿚™™™™™ÀÍÌÌÌÌÌÀÍÌÌÌÌÌÀ333333ó¿333333$ÀÍÌÌÌÌÌÀš™™™™™é¿ffffffæ¿ffffffö¿ffffffö¿š™™™™™Ù¿ÍÌÌÌÌÌì¿333333ÀÍÌÌÌÌÌÀÀÍÌÌÌÌÌì¿333333 Àø¿333333ó¿ÍÌÌÌÌÌü¿ø¿ð¿ffffff Àš™™™™™Àš™™™™™ÀÍÌÌÌÌÌÀš™™™™™#À333333ó¿ffffffÀÍÌÌÌÌÌô¿ffffffþ¿à¿š™™™™™ù¿ Àš™™™™™ñ¿ffffffÀÀffffff%ÀÍÌÌÌÌÌÀš™™™™™Ù¿š™™™™™Ù¿ÍÌÌÌÌÌü¿333333À!À333333À333333ó¿ffffff ÀÍÌÌÌÌÌÀÍÌÌÌÌÌÀš™™™™™ñ¿333333㿚™™™™™ÀÍÌÌÌÌÌ.Àà?333333"@š™™™™™é?ÍÌÌÌÌÌü?à?š™™™™™ù?š™™™™™Ù?ð?333333@ffffffæ?ÍÌÌÌÌÌô?à?ffffffæ?š™™™™™Ù?ÍÌÌÌÌÌì¿Àffffff Àð?š™™™™™É¿333333ã?333333Ó?ffffffö?ð?ffffffæ?š™™™™™É?š™™™™™ù?š™™™™™é?ÍÌÌÌÌÌô?š™™™™™é?ffffffæ?333333ã?à?š™™™™™é?ÍÌÌÌÌÌô?š™™™™™¹?ffffffæ?š™™™™™é?à?š™™™™™ñ?ffffffæ?333333ã?ffffffæ?š™™™™™Ù?333333ó?š™™™™™Ù?333333ã?333333Ó?š™™™™™é?ffffffæ?à?ffffffæ?š™™™™™ù?ffffffæ?ffffffæ?š™™™™™É¿š™™™™™é?ffffffæ?à?ÍÌÌÌÌÌì?ffffffö?ÍÌÌÌÌÌì?333333ã?š™™™™™ñ?ÍÌÌÌÌÌô?333333Ó?ffffffæ?ffffffö?ffffffæ?ffffffæ?ð?333333ã?333333ã?š™™™™™Ù?333333Ó?ÍÌÌÌÌÌì?š™™™™™ñ?333333ã?ø?333333ó?ffffffö?ffffffæ?š™™™™™¹¿ð?ÍÌÌÌÌÌì?š™™™™™É?333333ã?ÍÌÌÌÌÌì?ffffffæ?š™™™™™É?ffffffö?333333ã?ffffffæ?š™™™™™é?š™™™™™é?333333ã?ÍÌÌÌÌÌü?š™™™™™ñ?ð?š™™™™™ù?à?š™™™™™é?š™™™™™Ù?š™™™™™é?ÍÌÌÌÌÌì?ð?ffffffæ?à?ffffffæ?ð?333333ã?š™™™™™ù?333333Ó?ffffffæ?ffffffæ?333333Ó?ffffffæ?ffffffö?ffffffæ?š™™™™™ñ?š™™™™™é?333333ã?ffffffæ?š™™™™™É?ffffffæ?𿚙™™™™Ù?š™™™™™Ù?š™™™™™é?ð?š™™™™™¹?333333Ó?š™™™™™é?š™™™™™¹¿333333Ó?333333ã?ffffffæ?ffffffæ?ffffffæ?333333ã?ð?š™™™™™é?333333Ó?ffffffæ?ð?š™™™™™Ù?š™™™™™é?š™™™™™é?ð?ffffffæ?ø?š™™™™™ñ?š™™™™™é?ffffffæ?ð?333333ó?333333ã?ð?š™™™™™Ù?ð?š™™™™™é?š™™™™™¹?ÍÌÌÌÌÌì?ð?333333Ó?ø?š™™™™™ñ?š™™™™™Ù?à?ffffffæ?333333ã?333333Ó?š™™™™™é?š™™™™™ñ?à?š™™™™™Ù?ÍÌÌÌÌÌì?ÍÌÌÌÌÌì?š™™™™™é?333333ã?š™™™™™é?333333ã?333333Ó?333333û?à?š™™™™™é?š™™™™™Ù?ÍÌÌÌÌÌô?š™™™™™é?š™™™™™É?š™™™™™Ù¿š™™™™™Ù¿š™™™™™é?333333Ó?ffffffæ?š™™™™™Ù?š™™™™™ñ?ÍÌÌÌÌÌì?ffffffæ?333333ã?š™™™™™ñ?333333ã?ÍÌÌÌÌÌô?333333ã?ÍÌÌÌÌÌì?š™™™™™¹?š™™™™™¹¿š™™™™™ñ?ffffffæ?š™™™™™Ù?š™™™™™é?333333ã?ÍÌÌÌÌÌì?333333ã?š™™™™™@ffffffæ¿à¿š™™™™™É?333333ã?š™™™™™Ù?š™™™™™Ù?š™™™™™é?ffffffæ?333333㿚™™™™™Ù?ÍÌÌÌÌÌì?333333ó?š™™™™™ù?š™™™™™É?ø?š™™™™™ñ?š™™™™™É?ÍÌÌÌÌÌì?ð?333333ã?ð?à?š™™™™™é?à?š™™™™™ù?ÍÌÌÌÌÌì?ÍÌÌÌÌÌì?š™™™™™¹¿š™™™™™¹¿333333ó?š™™™™™ñ?š™™™™™é?š™™™™™é?ÍÌÌÌÌÌô?333333ã?333333ó?š™™™™™ñ?š™™™™™ñ?333333ó?ÍÌÌÌÌÌô?š™™™™™Ù?š™™™™™é?š™™™™™É¿š™™™™™É?ÍÌÌÌÌÌô?ð?ð?ð?ÍÌÌÌÌÌô?ð?333333ã?ffffffæ?š™™™™™Ù¿š™™™™™ñ?š™™™™™ñ?ÍÌÌÌÌÌì?š™™™™™Ù?ÍÌÌÌÌÌì?ffffffö?ø?ð?333333Ó?ffffffæ?š™™™™™¹?333333ó?š™™™™™ñ?à?š™™™™™é?š™™™™™¹¿333333Ó?š™™™™™É¿333333ã?š™™™™™Ù?š™™™™™Ù?š™™™™™é?333333ó?333333Ó?š™™™™™é?š™™™™™É¿š™™™™™É?š™™™™™é?333333Ó?š™™™™™Ù?333333Ó¿à?333333ã?333333ã?š™™™™™é?333333Ó?à?ø?ÍÌÌÌÌÌì?333333ã?š™™™™™é?ffffffæ?š™™™™™Ù?š™™™™™ñ?š™™™™™É?š™™™™™Ù?333333Ó?333333ã?š™™™™™ñ?ÍÌÌÌÌÌô?ÍÌÌÌÌÌì?š™™™™™é?à?ÍÌÌÌÌÌì¿333333ó?š™™™™™¹¿š™™™™™é?à?ÍÌÌÌÌÌì?ð?ÍÌÌÌÌÌô?ffffffæ¿333333ó?ffffffæ?š™™™™™é?ÍÌÌÌÌÌì?333333ã?333333ã?š™™™™™é?ÍÌÌÌÌÌô?ffffffæ?š™™™™™Ù?ÍÌÌÌÌÌì?ÍÌÌÌÌÌô?333333ã?š™™™™™é?š™™™™™Ù¿ffffff@ð?š™™™™™é?ÍÌÌÌÌÌô?ÍÌÌÌÌÌì?ÍÌÌÌÌÌô?à?š™™™™™é?š™™™™™ñ?š™™™™™é?š™™™™™Ù?š™™™™™ñ?ÍÌÌÌÌÌô?ÍÌÌÌÌÌì?ð?ffffffæ?ÍÌÌÌÌÌü?333333ã?333333Ó¿š™™™™™Ù?š™™™™™É?@ÍÌÌÌÌÌô?à?à?š™™™™™Ù?ð?š™™™™™¹?333333Ó?š™™™™™é?à?333333Ó?333333Ó?ð?333333ó?333333Ó?ÍÌÌÌÌÌô?š™™™™™¹?ffffffæ?à?333333ã?à?š™™™™™¹?ð?333333ó?à?ð?ÍÌÌÌÌÌü?ÍÌÌÌÌÌì?š™™™™™Ù?š™™™™™Ù?ffffffæ?š™™™™™ñ¿333333ã?š™™™™™Ù¿à?ð?ffffffæ?š™™™™™é?ÍÌÌÌÌÌì?š™™™™™é?š™™™™™¹¿ÍÌÌÌÌÌì?š™™™™™é?ÍÌÌÌÌÌì?ffffffæ?š™™™™™Ù?š™™™™™Ù¿š™™™™™É¿333333ã?à?ø?š™™™™™é?ÍÌÌÌÌÌì?š™™™™™Ù¿ð?š™™™™™Ù?333333㿚™™™™™ñ?ð?à?333333û?333333Ó?š™™™™™é?š™™™™™é?š™™™™™ñ?333333ã?333333ó?š™™™™™é?ÍÌÌÌÌÌì?ÍÌÌÌÌÌì?333333ã?š™™™™™¹¿š™™™™™Ù?ffffffæ?ð?333333Ó?š™™™™™ñ?ffffffö?ÍÌÌÌÌÌô?ÍÌÌÌÌÌô?à?ÍÌÌÌÌÌì?333333ã?ffffffæ?333333ã?à?à?š™™™™™Ù?ð?à?à?ÍÌÌÌÌÌÀÍÌÌÌÌÌì¿ffffffæ?š™™™™™Ù?š™™™™™é?ffffffö?333333ã?333333Ó?ffffff @ffffffæ?333333Ó?ffffff@ffffffæ?ð?333333ó?š™™™™™Ù?š™™™™™ñ?ð?ffffffö?š™™™™™@š™™™™™Ù?š™™™™™Ù¿š™™™™™é?ÍÌÌÌÌÌü?ffffffö?333333ó?š™™™™™É?333333ã?@ø?ø?333333ã¿à?ffffffæ?à?ffffffö?š™™™™™ñ?ffffffæ?š™™™™™é?š™™™™™Ù?333333û?333333Ó?š™™™™™É¿š™™™™™É?š™™™™™É?š™™™™™ñ?333333ó?š™™™™™É?š™™™™™ñ?š™™™™™¹?333333Ó¿333333ó?333333Ó?333333ó?ffffffæ?333333Ó?ÍÌÌÌÌÌô?333333ã?ø?333333ã?š™™™™™¹?š™™™™™É¿333333ó?ffffffæ?333333ó?š™™™™™@ÍÌÌÌÌÌ@ffffffþ?à?š™™™™™¹?ÍÌÌÌÌÌü?š™™™™™é?š™™™™™ñ?333333ó?ð?ÍÌÌÌÌÌì?à?š™™™™™@ffffff @š™™™™™Ù¿à¿ÍÌÌÌÌÌü?š™™™™™Ù?š™™™™™¹?333333û?333333Ó?ð?ffffff@š™™™™™é¿ffffffæ?š™™™™™É?ø¿333333ó?š™™™™™Ù¿š™™™™™é?à?š™™™™™É?333333û?333333û?à?ffffff@333333㿚™™™™™Ù¿š™™™™™Ù?ffffffæ?š™™™™™ñ?š™™™™™@à?333333Ó?à?š™™™™™é?333333ó¿š™™™™™Ù?à?ð?ø?ffffff@333333ã?ð?š™™™™™é?ffffffæ?à?š™™™™™ñ?ÍÌÌÌÌÌô?ffffffæ?š™™™™™ù?ÍÌÌÌÌÌü?ÍÌÌÌÌÌì?ÍÌÌÌÌÌô?ÍÌÌÌÌÌì?ÍÌÌÌÌÌô?š™™™™™é?ð?@333333ã?à?333333û?š™™™™™ù?ffffffö?ÍÌÌÌÌÌ@@à?ÍÌÌÌÌÌì?ffffffö?ð?ffffffö?ÍÌÌÌÌÌì?ÍÌÌÌÌÌ@š™™™™™Ù?ffffffö?š™™™™™Ù?à?ffffffæ?ÍÌÌÌÌÌü?ffffffæ?ÍÌÌÌÌÌì?š™™™™™É?ÍÌÌÌÌÌô?š™™™™™ñ?333333Ó?à?333333ó?ÍÌÌÌÌÌô?ø?š™™™™™Ù¿š™™™™™@ø?ÍÌÌÌÌÌü?à?333333ó?ÍÌÌÌÌÌ@333333ã?š™™™™™ñ?š™™™™™é?ÍÌÌÌÌÌì?@333333ó?ÍÌÌÌÌÌô?333333Ó?ffffffæ?ffffffæ?š™™™™™é?š™™™™™É¿š™™™™™Ù¿ffffff@333333ã?ð¿à?ÍÌÌÌÌÌì?à¿333333ã?à¿ø?š™™™™™é?333333Ó?ð?š™™™™™é¿333333ã?š™™™™™ñ?š™™™™™ù?333333ã?ÀÍÌÌÌÌÌô?š™™™™™¹¿š™™™™™é?333333Ó?ø?ffffff @@š™™™™™ñ?ÍÌÌÌÌÌì?ð?ffffff@@š™™™™™@š™™™™™ù¿ffffffæ¿ÍÌÌÌÌÌô?333333Ó?š™™™™™ñ¿š™™™™™ñ?š™™™™™Ù¿ffffffö?à?ÍÌÌÌÌÌô?@333333ó?š™™™™™É?š™™™™™Ù?ffffffæ?š™™™™™Ù?ÍÌÌÌÌÌô?š™™™™™Ù?ffffffæ?333333@333333ã?ÍÌÌÌÌÌ@333333ã?ffffffö?333333ã?à?333333Ó?ÍÌÌÌÌÌì?š™™™™™¹?333333Ó?š™™™™™é¿ø?š™™™™™é¿333333ó?ffffffö?ffffffæ?š™™™™™Ù?ø?š™™™™™É¿333333ã?333333ó?@ø?š™™™™™é¿ÍÌÌÌÌÌì?š™™™™™Ù?ÍÌÌÌÌÌì?333333Ó?ÍÌÌÌÌÌü?ÍÌÌÌÌÌì?ffffffæ?ÍÌÌÌÌÌì?š™™™™™Ù?333333ã?à?š™™™™™Ù?ÍÌÌÌÌÌì?š™™™™™ñ?š™™™™™@333333@š™™™™™Ù?࿚™™™™™É?ffffffæ?333333Ó?333333ó?333333ã?ÍÌÌÌÌÌô?š™™™™™é?š™™™™™Ù?š™™™™™Ù?333333ó?š™™™™™é?š™™™™™é?ÍÌÌÌÌÌô?š™™™™™Ù¿š™™™™™¹¿333333ã?ffffff @à?ÍÌÌÌÌÌô¿š™™™™™é¿š™™™™™é?š™™™™™É¿333333û?à?333333ó?ÍÌÌÌÌÌô¿à?à?ffffffþ?ÍÌÌÌÌÌì¿ffffffö?333333Ó?333333Ó?ffffffö¿š™™™™™@ÍÌÌÌÌÌô?ffffffæ¿ffffff@š™™™™™É?š™™™™™é?ÍÌÌÌÌÌì?ffffffæ?ÍÌÌÌÌÌô?ÍÌÌÌÌÌü?ÍÌÌÌÌÌô?333333Ó?š™™™™™Ù?333333ã?ÍÌÌÌÌÌì¿@à?ÍÌÌÌÌÌô?333333û?š™™™™™É?333333ã?š™™™™™É?333333Ó?ÍÌÌÌÌÌô?š™™™™™Ù?ÍÌÌÌÌÌ@ø?š™™™™™Ù?333333ó?333333@š™™™™™É?ø?333333Ó?ffffffæ?ffffffæ?š™™™™™ù?š™™™™™ñ?333333ã?333333ó?ffffffæ?š™™™™™é?š™™™™™ù?š™™™™™É¿ffffffö?š™™™™™Ù?ð?ffffffö?@š™™™™™é?ÍÌÌÌÌÌ@š™™™™™Ù¿à¿ffffff@à?ffffffþ?š™™™™™é?š™™™™™Ù?333333Ó?333333ã?à?333333ã¿ÍÌÌÌÌÌô?333333Ó?š™™™™™Ù?@ffffff@333333Ó?333333û?š™™™™™é?ffffffþ?š™™™™™é?š™™™™™É?ø¿ffffffæ¿à¿š™™™™™@ffffffæ¿@š™™™™™Ù?ÍÌÌÌÌÌô?ffffffæ?š™™™™™ù?ÍÌÌÌÌÌ@333333Ó?ÍÌÌÌÌÌô?333333ã?ÍÌÌÌÌÌô¿ø?ffffffö?ffffff@à?333333ó?ffffffþ?333333ã?ÍÌÌÌÌÌô?ø?@ÍÌÌÌÌÌô?ð?333333ã?š™™™™™Ù¿š™™™™™Ù?333333ã¿333333ã¿ð?ð?࿚™™™™™ù¿š™™™™™É?ffffffæ?333333@333333ó¿š™™™™™É¿@š™™™™™ù?@ð?ÍÌÌÌÌÌì?š™™™™™Ù?š™™™™™Ù?ffffffö?333333ó¿ÍÌÌÌÌÌì?ffffff@333333ã?š™™™™™é?à?@333333ó?š™™™™™¹¿š™™™™™É?ø?š™™™™™Ù?333333Ó¿333333Ó?333333ó?š™™™™™ù?ffffffö?š™™™™™¹?ffffffþ?ÍÌÌÌÌÌì¿ÍÌÌÌÌÌì?ÍÌÌÌÌÌü?333333Àffffff@ÍÌÌÌÌL?@š™™™™™#@ À333333D@ffffff,@ffffff-@ÍÌÌÌÌÌ@33333³:@ffffff2@ffffffæ?ÍÌÌÌÌÌ$À€;@ÍÌÌÌÌÌ@@ÍÌÌÌÌÌ@fffffæ3@%@š™™™™™%@ffffffÀš™™™™™&@€2@š™™™™™5@š™™™™™Ù?š™™™™™5@33333³3À33333³4@333333 @ÍÌÌÌÌÌÀ3333338À3333331Àø?#@ÍÌÌÌÌÌ @ÍÌÌÌÌÌ@ÍÌÌÌÌL3@ÍÌÌÌÌÌ#@&@š™™™™™Ù?fffff&AÀÍÌÌÌÌÌ"@š™™™™™/@ÍÌÌÌÌÌ3@333333?@ÍÌÌÌÌÌÀÍÌÌÌÌÌÀ @ @,@š™™™™™ÀÍÌÌÌÌÌ@š™™™™™@fffff¦B@333333+@333333+@š™™™™™(@333333û¿&@ÍÌÌÌÌ B@333333,@ÍÌÌÌÌÌ @333333-@š™™™™™7@š™™™™YE@š™™™™™@ÍÌÌÌÌÌ@33333³<@333333:@333333ÀÍÌÌÌÌÌ,@333333!@333333*@333333'Àš™™™™8@ÍÌÌÌÌÌ,@ffffff0@333333@33333³?@ÍÌÌÌÌÌ6@ffffff7@1@ffffff$@333333À333333?@š™™™™™4@333333E@333333/@š™™™™™3@š™™™™™*@@ffffffö¿š™™™™™ñ?333333Àð¿333333@!@ÍÌÌÌÌÌ$@333333@,@ÍÌÌÌÌÌ쿚™™™™YF@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ4@ÍÌÌÌÌÌ/@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ@ffffff&@ÍÌÌÌÌÌB@ffffff$@ffffffÀš™™™™™@2@ffffff9@€4@š™™™™™é?,@333333ÀÍÌÌÌÌÌÀ3@š™™™™™@333333Ó?ffffff2À333333û?ÍÌÌÌÌÌ @š™™™™™0@333333ó¿!@333333@ffffffÀ33333³:@333333+@ffffff2@š™™™™1@333333&@š™™™™YE@fffffæ;@ÍÌÌÌÌÌ@€8@333333%@ÍÌÌÌÌ B@ffffff"@Àš™™™™™>@ÍÌÌÌÌÌì?à?3333334@ÍÌÌÌÌÌ@333333@&@"@333333@ffffffÀffffff@ffffff3@@š™™™™™3@ÍÌÌÌÌL6@5@š™™™™™À3333335@ffffffÀ3@ÍÌÌÌÌÌ@š™™™™™8@š™™™™™-@ffffff"Àð¿333333)@ffffff@ð?33333³0ÀÍÌÌÌÌÌ@*@š™™™™™0@ffffffö¿š™™™™Y@@5@ÍÌÌÌÌÌÀ333333ó¿:@š™™™™™@ÍÌÌÌÌÌ@š™™™™™%@ÍÌÌÌÌÌ%ÀÍÌÌÌÌÌÀÍÌÌÌÌL3@@ÍÌÌÌÌÌ#@=À333333 À33333³8@ÍÌÌÌÌÌ%Àš™™™™1@333333#@ÍÌÌÌÌÌ @€D@ÍÌÌÌÌÌÀš™™™™E@33333³7@à?š™™™™™ñ?ÍÌÌÌÌÌÀÍÌÌÌÌÌ)@€C@33333sA@š™™™™™À333333(@33333³I@ÍÌÌÌÌÌ4@š™™™™™@@333333@ÍÌÌÌÌ P@@ø?333333/@@à?33333³4@ÍÌÌÌÌÌ@ffffffÀš™™™™™:@š™™™™™@333333%@ffffff,@š™™™™™&@333333@ð?fffffæA@š™™™™™(@@333333.@E@D@ÍÌÌÌÌÌô?3333339@ÍÌÌÌÌÌ#@ffffff@4@ffffff,@š™™™™™É?333333@š™™™™™%@3333332@ÍÌÌÌÌÌ À333333<@333333#@ffffff Àš™™™™™ñ¿ÍÌÌÌÌÌÀffffff@ffffff4Àš™™™™1À*ÀÍÌÌÌÌÌ@ø?ffffff$@š™™™™™-@ffffff1@ffffff À𿚙™™™™)@ffffff2@333333/@@š™™™™™1@ÍÌÌÌÌÌÀÍÌÌÌÌÌ ÀÍÌÌÌÌÌ@ffffff:@ffffff1@ÍÌÌÌÌÌ$@š™™™™™@333333@š™™™™™ù?@3333335@333333/@ÍÌÌÌÌÌ5@333333ÀÍÌÌÌÌÌ(Àš™™™™™ñ?ffffffÀÍÌÌÌÌÌ À&Àš™™™™=@3333331@ÍÌÌÌÌÌ@š™™™™™À3333331@333333@š™™™™1Àš™™™™1@ÍÌÌÌÌ F@ÍÌÌÌÌÌÀ333333@š™™™™™@š™™™™™"@333333ó¿Àš™™™™™.ÀÍÌÌÌÌÌ@š™™™™<@333333@ÍÌÌÌÌÌì?ÍÌÌÌÌÌ3@ÍÌÌÌÌL2@ @ÍÌÌÌÌÌ@ÍÌÌÌÌÌ@š™™™™™À@33333³0@333333>@ffffff"@fffffæ1@ÍÌÌÌÌÌ@333333@3333334@ÍÌÌÌÌÌô¿@ÍÌÌÌÌÌ2À$@ffffffö¿ÍÌÌÌÌL@Àš™™™™™$@š™™™™™.@ø?ÍÌÌÌÌL4@ÍÌÌÌÌ L@3@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ@333333(@š™™™™™6@33333³0@333333@€3@ÍÌÌÌÌÌ@333333 @ffffff@ÍÌÌÌÌL0@ÍÌÌÌÌL0@š™™™™1@ffffffÀ333333=@š™™™™™É¿š™™™™™@ÍÌÌÌÌÌ@3333333@$À$Àffffff:@ÍÌÌÌÌÌ@À€4@ÍÌÌÌÌÌì¿9@333333<@ffffff-@@(@ffffffÀš™™™™™@š™™™™™Àffffff?@ÍÌÌÌÌÌ@š™™™™™'@333333 @ÍÌÌÌÌÌ@š™™™™™/@ð¿ÍÌÌÌÌÌ)@š™™™™™É¿ffffff7Àš™™™™™@ÍÌÌÌÌÌ3@"@š™™™™™@ÍÌÌÌÌL;@ffffff7@ÍÌÌÌÌÌ@ÍÌÌÌÌL>@ffffff>@€0@fffffæ0@33333óAÀ33333³3Àffffff@3333339@ffffff6@33333³H@š™™™™™*@-@ffffff$@333333(@ÍÌÌÌÌÌ=Àš™™™™™@ÍÌÌÌÌL0@€<@ @À(@ÍÌÌÌÌL7@.@š™™™™™1@ffffff,@333333 @š™™™™™'@ÍÌÌÌÌÌü¿ÍÌÌÌÌL=@fffffæ9@š™™™™™A@3333335@fffffæ=@š™™™™™Ù¿š™™™™™@333333 @333333/@ÍÌÌÌÌÌ)@ÍÌÌÌÌL7@ffffffÀš™™™™™,À3333331@333333#@333333À@€7@333333-@)@333333Àš™™™™™3À333333#Àš™™™™™1@ÍÌÌÌÌÌ!@33333³;@333333û?ÍÌÌÌÌŒ@@ffffff6@3@š™™™™™"À333333@333333@(@š™™™™™)@ÍÌÌÌÌÌ'À333333B@FÀÍÌÌÌÌÌ4@ÍÌÌÌÌÌ%@š™™™™™Àffffff'@š™™™™YE@333333)@ffffffþ¿š™™™™YP@š™™™™1@ÍÌÌÌÌÌ0@ÍÌÌÌÌÌ6@333333>@3333339@%@Àfffff&A@33333³D@€1@ÍÌÌÌÌ B@333333)@ffffff @ð¿33333³:@š™™™™™:@ÍÌÌÌÌÌ<@333333ó?33333³8@ffffffæ?333333?@333333.@fffffæ2Àffffff0Àš™™™™™*Àš™™™™™@ffffff4@333333%@ÍÌÌÌÌÌ#@€8@š™™™™™(@ÍÌÌÌÌL:@@š™™™™™AÀ333333%@3333331@33333³9@33333óB@333333ÀÍÌÌÌÌÌì?333333@ffffff@š™™™™™5@Àš™™™™™@ffffff$@ÍÌÌÌÌÌ@š™™™™™E@ÍÌÌÌÌL1@33333³8@ÍÌÌÌÌÌ-@333333ó¿š™™™™™#@š™™™™™F@š™™™™3@0@>@š™™™™D@L@#@ÍÌÌÌÌÌ@fffffæC@ÍÌÌÌÌÌ>@ÍÌÌÌÌÌì?ÍÌÌÌÌÌ6@.@š™™™™2@333333 ÀffffffD@ÍÌÌÌÌ D@*@ø?@E@€8@ffffff8@333333;@ffffff'@ÍÌÌÌÌÌ@ÍÌÌÌÌLH@333333+@€G@33333³1@š™™™™™É¿33333³;@ÍÌÌÌÌÌü?š™™™™™@ÍÌÌÌÌÌ@š™™™™™é¿ffffff$@33333³1@ÍÌÌÌÌÌ%@ÍÌÌÌÌL<@ÍÌÌÌÌÌô?333333%@@ÍÌÌÌÌLH@333333@33333³E@fffffæ2@333333@@0@8@.@333333 ÀÍÌÌÌÌÌ&@š™™™™™;@333333F@ÍÌÌÌÌL7@ @33333³3@ÍÌÌÌÌÌì¿ð?ÍÌÌÌÌÌ9@ffffff,@333333@ffffffÀffffff*@ÍÌÌÌÌÌ@333333;@333333@ÍÌÌÌÌL0@ffffff$@š™™™™™@33333sH@1@ffffff5@ÀB@fffffæ5@33333óI@š™™™™F@š™™™™1@<@33333³0@fffff¦F@š™™™™™4@ÍÌÌÌÌÌ@@B@ffffff0@ÍÌÌÌÌÌ @>@333333"@ÍÌÌÌÌÌ#@ffffff/@ÍÌÌÌÌL6@"@š™™™™™¹?!@€<@š™™™™™+@ÍÌÌÌÌÌ5@fffffæ9@ÍÌÌÌÌL?@ÍÌÌÌÌÌ@33333s@@À33333sF@.@ffffffB@ÍÌÌÌÌL1@À3333332@š™™™™™.@ffffff'@š™™™™™@#À3333337@š™™™™™4@ÍÌÌÌÌÌ7@š™™™™™¹?33333óA@€8@š™™™™™ù¿Àš™™™™™7@€?@ÍÌÌÌÌÌ&@333333@ffffffÀffffffþ?0@333333&@ffffff@ffffff%Àš™™™™™ Àffffff:@š™™™™™ À@333333(@333333,@33333óH@333333ã?À@@@š™™™™™Ù¿ÍÌÌÌÌÌ@ffffff ÀÍÌÌÌÌL8@š™™™™YN@š™™™™ÙH@@ÍÌÌÌÌÌ8@33333³M@€K@fffffFQ@fffffæ9@333333@š™™™™™H@š™™™™™é¿š™™™™™$@š™™™™2@ÀÍÌÌÌÌÌ @33333³1@'@333333û¿333333A@3333334@ÍÌÌÌÌÌ1@3333330@ÍÌÌÌÌÌ-@š™™™™™!@333333 @ÍÌÌÌÌ F@-@ffffff#@fffff&C@@F@ffffffO@ffffff!@333333A@ffffff,@333333'@ffffff6@3333333@ÍÌÌÌÌÌô?ffffff@ffffff@š™™™™B@(À€B@3333332@ÍÌÌÌÌÌì?ffffffæ?ffffffþ?ÍÌÌÌÌÌü?ÍÌÌÌÌÌ*Àš™™™™™Àš™™™™™É¿ÍÌÌÌÌL1@333333Àffffff.@ÍÌÌÌÌÌ2@š™™™™™6@ffffffö¿š™™™™™%@4@€7@š™™™™4@ÍÌÌÌÌÌ!@€5@š™™™™™É?333333Àffffff"@š™™™™Y@@€C@333333;@š™™™™™'@š™™™™™ù?@333333(@€6@33333³7@3333339@@ÍÌÌÌÌÌÀffffff @333333Àffffffæ?š™™™™™À33333³@@ÍÌÌÌÌL:@ffffff@à¿ÍÌÌÌÌÌ@š™™™™E@š™™™™™#@fffffæ:Àš™™™™™@š™™™™ÙH@ÍÌÌÌÌÌÀ333333-@ÍÌÌÌÌÌ @'@333333Ó¿š™™™™™@À333333Àš™™™™™ù?š™™™™™D@š™™™™™%@333333@333333@33333³A@š™™™™™2@ÍÌÌÌÌÌ @3333337@ÍÌÌÌÌÌì¿ffffff"@š™™™™6@ÍÌÌÌÌ A@ÍÌÌÌÌÌ/@ffffff=@+@š™™™™™@ÍÌÌÌÌÌ6@333333@š™™™™™ÀffffffÀffffff(@š™™™™™@ÍÌÌÌÌL0À333333,@š™™™™8@@ÍÌÌÌÌL5@33333óO@€5@J@ffffff=@š™™™™™,@š™™™™<@33333³A@š™™™™™@33333³:@š™™™™™"@(@ÍÌÌÌÌÌ%@ffffff<@fffffæ6@5@333333@ÍÌÌÌÌ @@š™™™™™@.@ffffff@š™™™™™;@ ÀÀ33333óA@333333*ÀÍÌÌÌÌL8@.@6@33333³:@ÍÌÌÌÌL@@ffffff@ÍÌÌÌÌL9@ffffff@š™™™™™#@ÀfffffæC@ffffff&@ @š™™™™™6@ÍÌÌÌÌÌ@3333331@ffffff6@ÍÌÌÌÌLC@š™™™™™@š™™™™™#À@š™™™™Y@@ffffff.@ÍÌÌÌÌÌ$@333333,@ÍÌÌÌÌÌ2@š™™™™™@š™™™™ÙH@š™™™™<@ÍÌÌÌÌL=@€3@ÍÌÌÌÌÌ2Àš™™™™™,À33333³2@ÍÌÌÌÌLI@ÍÌÌÌÌL8@ÍÌÌÌÌÌK@€0@ÍÌÌÌÌÌÀ3333336@3333334@ÍÌÌÌÌÌ&ÀÍÌÌÌÌÌ@€7@fffff¦E@š™™™™™(@š™™™™™é¿ffffff7@ÍÌÌÌÌ G@ÍÌÌÌÌÌ6@š™™™™™8@2@ð?ÍÌÌÌÌÌ*@Àš™™™™8@ÍÌÌÌÌ @@š™™™™D@ffffff0@š™™™™™*@ffffffæ?ÍÌÌÌÌÌ#@€6@ÍÌÌÌÌÌ @ffffff'@š™™™™ÙA@ÍÌÌÌÌÌ'@š™™™™YO@š™™™™™8@333333,@ÍÌÌÌÌÌÀš™™™™™"@333333@@ffffff@3333332@+@3333330À333333ÀÍÌÌÌÌÌ3@fffffæ6@33333sA@333333Ó?fffff&A@fffff&@@33333³4@ffffff%Àš™™™™™@333333-@ÍÌÌÌÌÌ6@ÍÌÌÌÌL6@š™™™™™&Àfffff¦H@33333³HÀfffffæ:@6@š™™™™™¹?š™™™™™Ù?š™™™™™é¿š™™™™™ù?š™™™™™Ù?ÍÌÌÌÌÌô?ffffffæ?à?š™™™™™¹?ffffffæ?š™™™™™¹?333333ã?š™™™™™é?333333ã?333333ó?ÍÌÌÌÌÌô?333333ã?ffffffö?š™™™™™Ù?ffffffæ?š™™™™™Ù?à?š™™™™™Ù?333333@à?ÍÌÌÌÌÌô?ÍÌÌÌÌÌì?š™™™™™ñ?ð?š™™™™™¹?333333ã?š™™™™™ñ?š™™™™™é?à?ffffffæ?ÍÌÌÌÌÌì?ffffffæ?ð?333333Ó?š™™™™™¹?333333ã?à?š™™™™™É?š™™™™™Ù?š™™™™™É?š™™™™™¹?š™™™™™É?333333ó?š™™™™™Ù?š™™™™™Ù?ÍÌÌÌÌÌì?š™™™™™É?ÍÌÌÌÌÌì?ffffffæ?š™™™™™ñ?ÍÌÌÌÌÌì?š™™™™™é?š™™™™™Ù?333333Ó?š™™™™™É?333333ã?š™™™™™Ù?à?š™™™™™¹?ffffffæ?333333ã?š™™™™™Ù?š™™™™™¹?š™™™™™Ù?333333ã?333333ã?333333ã?š™™™™™Ù?ffffffæ?š™™™™™¹?š™™™™™É?à?ÍÌÌÌÌÌì?ð?à?š™™™™™é?š™™™™™é?333333ó?@ÍÌÌÌÌÌü?333333ó?š™™™™™@@333333Ó?š™™™™™¹?š™™™™™¹?š™™™™™¹?333333Ó?š™™™™™¹?333333ã?à?š™™™™™Ù?333333ã?ffffffæ?š™™™™™Ù?š™™™™™ñ?à?š™™™™™É¿ffffffö?š™™™™™É?š™™™™™Ù?š™™™™™Ù?ffffffæ?ÍÌÌÌÌÌô?š™™™™™¹?ð?333333ã?ffffffæ?š™™™™™ñ?à?333333ã?š™™™™™É?ð?š™™™™™É?š™™™™™É?ø?š™™™™™¹?ÍÌÌÌÌÌì?à?333333ã?š™™™™™Ù?š™™™™™¹?ÍÌÌÌÌÌì?à?ffffffæ?š™™™™™@š™™™™™¹?à?ð?ð¿ffffffæ?š™™™™™Ù?š™™™™™¹?ffffffæ?ffffffæ?à?š™™™™™¹?š™™™™™¹?333333ã?š™™™™™¹¿à?333333ã?š™™™™™Ù?š™™™™™¹?à?š™™™™™Ù?ÍÌÌÌÌÌ쿚™™™™™¹?ffffffæ?ð?à?š™™™™™É¿š™™™™™Ù?à?š™™™™™É?š™™™™™ñ?š™™™™™¹?š™™™™™ù?ffffffæ?ÍÌÌÌÌÌì?333333ó?ffffffæ?333333ó?š™™™™™Ù?š™™™™™é?ÍÌÌÌÌÌô?š™™™™™Ù?š™™™™™Ù?ffffffö?ÍÌÌÌÌÌô?à?š™™™™™é?š™™™™™¹¿333333ã?š™™™™™é?ð?ffffff@ÍÌÌÌÌÌì?ÍÌÌÌÌÌì?ffffffæ?333333ã?ð?333333ã?š™™™™™¹?ÍÌÌÌÌÌì?š™™™™™é?š™™™™™¹?š™™™™™¹?ø?š™™™™™¹?ffffffþ?à?š™™™™™¹?@ÍÌÌÌÌÌô?ÍÌÌÌÌÌì?333333ó¿333333ó?ÍÌÌÌÌÌü?š™™™™™Ù¿š™™™™™¹?ÍÌÌÌÌÌì?à?š™™™™™Ù?ffffffæ?à?š™™™™™É?š™™™™™¹¿š™™™™™Ù?š™™™™™¹?š™™™™™é?š™™™™™ñ?à?333333ã?ÍÌÌÌÌÌì?ÍÌÌÌÌÌô?à?ffffffö?š™™™™™ñ?ffffffö?333333ã?ÍÌÌÌÌÌô?š™™™™™É?š™™™™™¹?ÍÌÌÌÌÌü?š™™™™™É?š™™™™™É?333333ã?ÍÌÌÌÌÌì?ø?ffffffæ?š™™™™™Ù?š™™™™™Ù?š™™™™™É?š™™™™™é?ÍÌÌÌÌÌì?š™™™™™ñ?š™™™™™É?ffffffæ?333333ó?ð?333333ã?ffffffö?ð?š™™™™™É?ffffffæ?ÍÌÌÌÌÌì?ffffffæ?š™™™™™Ù?š™™™™™é?š™™™™™Ù?š™™™™™¹¿š™™™™™¹?š™™™™™¹?š™™™™™¹?š™™™™™¹¿à?š™™™™™Ù?ð?š™™™™™É¿ffffffæ?ÍÌÌÌÌÌì?š™™™™™é?ø?š™™™™™é?333333ã?š™™™™™ñ?š™™™™™É¿ÍÌÌÌÌÌì?333333ã?š™™™™™¹?š™™™™™Ù?333333ó?333333û?š™™™™™Ù?333333ã¿333333ã?ÍÌÌÌÌÌô?š™™™™™ñ?š™™™™™¹¿š™™™™™¹¿333333û?š™™™™™Ù¿š™™™™™Ù?ð?ÍÌÌÌÌÌì?à?š™™™™™é?š™™™™™É¿š™™™™™ù?š™™™™™é?à?š™™™™™é?š™™™™™¹?ÍÌÌÌÌÌÀš™™™™™¹?ÍÌÌÌÌÌì?333333û¿š™™™™™Ù?333333ã?à?333333ó?ø?ÍÌÌÌÌÌì?@à?š™™™™™Ù?à?ÍÌÌÌÌÌô?š™™™™™ñ?à?š™™™™™É?š™™™™™¹?š™™™™™¹?š™™™™™ñ?333333ã?š™™™™™¹?š™™™™™Ù¿š™™™™™Ù?ð?333333û?ÍÌÌÌÌÌì?à?š™™™™™¹?ÍÌÌÌÌÌì?š™™™™™É?333333Ó?333333ã?š™™™™™Ù?333333Ó?ø?š™™™™™ñ?ÍÌÌÌÌÌì?à?333333û?š™™™™™ñ?@ð?š™™™™™ñ?š™™™™™é?š™™™™™É?š™™™™™ñ?š™™™™™é?š™™™™™É?ð?ÍÌÌÌÌÌì?ÍÌÌÌÌÌô?ÍÌÌÌÌÌ@š™™™™™É?š™™™™™é?333333@à?š™™™™™Ù?š™™™™™¹?à?š™™™™™¹?š™™™™™Ù?ffffffö¿š™™™™™Ù?à?ffffffæ?ÍÌÌÌÌÌì?ÍÌÌÌÌÌì?333333ã?ÍÌÌÌÌÌì?š™™™™™0@à?š™™™™™¹?ffffffæ?š™™™™™¹¿ð?ð?ffffff@š™™™™™é?š™™™™™¹?ÍÌÌÌÌÌü?š™™™™™¹?333333ã?š™™™™™¹?ffffffæ?Àš™™™™™É¿š™™™™™¹?à?š™™™™™@š™™™™™Ù?š™™™™™É?333333ó?ø?š™™™™™é?š™™™™™¹¿š™™™™™ñ?ð?ÍÌÌÌÌÌì?ÍÌÌÌÌÌì?à?š™™™™™é?333333Ó?333333ã?š™™™™™Ù?@ffffffö?š™™™™™Ù?š™™™™™¹?ffffffæ?333333ó?ffffffö¿ffffffæ?࿚™™™™™¹?ffffffþ?š™™™™™é?à?ÍÌÌÌÌÌì?ÍÌÌÌÌÌì?333333ã?333333ã?333333Ó?333333ã?333333Ó?ffffffæ?š™™™™™Ù?š™™™™™É?333333ã?ð?ÍÌÌÌÌÌü¿ð?š™™™™™Ù?ÀÀÍÌÌÌÌÌÀÍÌÌÌÌÌ$À333333"ÀÍÌÌÌÌÌÀÍÌÌÌÌL2À333333À333333Àš™™™™™ À333333ÀÍÌÌÌÌÌÀffffffÀÍÌÌÌÌÌÀ333333Àffffff%À"À333333À!Àš™™™™™%ÀÍÌÌÌÌÌÀ%À333333,ÀÍÌÌÌÌÌ'Àš™™™™™À333333ÀÀ ÀÍÌÌÌÌÌÀffffffÀš™™™™™ Àffffff ÀÍÌÌÌÌÌÀÀffffffÀ333333ÀÀÍÌÌÌÌÌÀ333333$Àffffff!Àffffff#Àš™™™™™(À1À333333À333333ÀÀ333333Àš™™™™™À333333 À333333+ÀÀ333333À333333$À3333331ÀffffffÀ333333ÀÍÌÌÌÌÌÀ!ÀÀ333333 Àš™™™™™ÀffffffÀš™™™™™Àffffffþ¿333333ÀÀ333333ó¿ffffffÀÍÌÌÌÌÌ)Àš™™™™™ Àffffffæ¿333333"ÀÀÍÌÌÌÌÌ&ÀÍÌÌÌÌÌÀffffffö¿š™™™™™(Àš™™™™™%Àš™™™™3ÀffffffÀš™™™™™Àš™™™™™!ÀÀš™™™™™%ÀÍÌÌÌÌÌÀffffffÀ333333ÀÍÌÌÌÌÌÀÀð?ffffffæ?ÍÌÌÌÌÌ@ÍÌÌÌÌÌô?à?ÍÌÌÌÌÌì?ÍÌÌÌÌÌô?333333ã?333333ã?à?ffffff @333333 @ffffffö?à?ð?ÍÌÌÌÌÌ@@š™™™™™ù?@ð?š™™™™™ñ?333333ó?333333ã?ø?š™™™™™ñ?333333ó?ÍÌÌÌÌÌô?ÍÌÌÌÌÌô?ÍÌÌÌÌÌì?š™™™™™ñ?ÍÌÌÌÌÌ @333333 @ÍÌÌÌÌÌô?ÍÌÌÌÌÌì?à?à?ffffffæ?ffffff@333333@ÍÌÌÌÌÌü?@š™™™™™ñ?@333333ó?ÍÌÌÌÌÌì?ffffffö?ffffffæ?333333û?ÍÌÌÌÌÌô?333333û?à?ÍÌÌÌÌÌô?ffffff@ffffffö?ffffff@š™™™™™ñ?š™™™™™ù?à?333333ó?333333@@333333ã?š™™™™™ñ?ffffffæ?ffffff@š™™™™™@ffffffþ?ÍÌÌÌÌÌì?ÍÌÌÌÌÌì?333333ã?ffffff@333333@ÍÌÌÌÌÌü?š™™™™™ñ?ÍÌÌÌÌÌ@333333@ffffffæ?ffffffæ?ffffffö?š™™™™™é?ÍÌÌÌÌÌü?ffffffþ?333333ã?ffffffö?š™™™™™ñ?ÍÌÌÌÌÌ @ffffff@š™™™™™@333333@ffffff@ÍÌÌÌÌÌ@š™™™™™é?š™™™™™Ù?ÍÌÌÌÌÌô?ÍÌÌÌÌÌì?š™™™™™Ù?@ffffffþ?ÍÌÌÌÌÌì?š™™™™™Ù?@333333ã?333333ó?ø?ffffff@ffffff@š™™™™™é?ð?@333333û?@š™™™™™ù?333333û?ffffff@ÍÌÌÌÌÌô?ð?ffffffþ?ffffffæ?333333ó?ffffffþ?333333û?à?ffffffþ?ffffffæ?ffffffö?ÍÌÌÌÌÌü?333333ã?@333333@ffffff@à?à?@š™™™™™ù?333333 @333333@š™™™™™ù?š™™™™™ñ? @à?333333ã?ffffff@š™™™™™ù?ffffffæ?ð?ffffff@@ffffffþ?333333@š™™™™™ù?š™™™™™@333333ó?ffffffæ?ffffffþ?ø?ffffff@š™™™™™ñ?š™™™™™é?@@ð?333333û?ÍÌÌÌÌÌô?š™™™™™ù?ø?ø?ffffffæ?@š™™™™™Ù?333333%@ @333333ã?š™™™™™@ÍÌÌÌÌÌô?ffffff@333333ã?š™™™™™ñ?ÍÌÌÌÌÌ@@š™™™™™@ffffffþ?ÍÌÌÌÌÌü?š™™™™™ù?ffffff@š™™™™™@ð?ÍÌÌÌÌÌô?ÍÌÌÌÌÌì?ÍÌÌÌÌÌ@š™™™™™Ù?š™™™™™ù?š™™™™™ @ð?ffffff@š™™™™™é?ffffffæ?ffffff@ÍÌÌÌÌÌô?ÍÌÌÌÌÌì?š™™™™™ñ?š™™™™™ñ?š™™™™™ñ?š™™™™™@š™™™™™ @ÍÌÌÌÌÌì?š™™™™™Ù?ffffff@à?š™™™™™@ffffffæ?ÍÌÌÌÌÌô?@ffffffæ?ffffff@333333ó?333333ó?ffffffö?š™™™™™ù?333333ó?š™™™™™ñ?ffffffö?ÍÌÌÌÌÌü?333333ã?š™™™™™Ù?333333ã?ÍÌÌÌÌÌì?š™™™™™@à?ø?ÍÌÌÌÌÌü?ø?š™™™™™ù?š™™™™™ñ?ÍÌÌÌÌÌô?ffffff@à? @ffffffþ?@š™™™™™ @ffffff@fffffæ8@ffffffþ?ÍÌÌÌÌÌ@ÍÌÌÌÌÌ@ÍÌÌÌÌÌì?š™™™™™é?š™™™™™Ù?333333@333333û?š™™™™™Ù?333333û?ÍÌÌÌÌÌô?ffffffæ?š™™™™™Ù?ffffff@ffffff$@ð?à?&@ÍÌÌÌÌÌì?333333@ÍÌÌÌÌÌô?ffffffþ?š™™™™™@š™™™™™é?333333û?š™™™™™ñ?ÍÌÌÌÌÌô?ÍÌÌÌÌÌô?ÍÌÌÌÌÌ@ÍÌÌÌÌÌì?333333ó?ffffff@š™™™™™ @ÍÌÌÌÌÌì?ÍÌÌÌÌÌ@ffffffæ?š™™™™™ñ?ffffffö?ÍÌÌÌÌÌì?ÍÌÌÌÌÌô?ffffff@ÍÌÌÌÌÌü?ffffffæ?ffffff @ffffffö?333333ã?@333333û?333333@ÍÌÌÌÌÌì?ÍÌÌÌÌÌô?ð?333333û?ffffffö?333333ó?ÍÌÌÌÌÌ@š™™™™™é?333333 @ffffff@š™™™™™ñ?ÍÌÌÌÌÌ@333333û?à?333333@š™™™™™@ø?à?ÍÌÌÌÌÌü?ÍÌÌÌÌÌ@š™™™™™ñ?ÍÌÌÌÌÌ@ÍÌÌÌÌÌì?333333ã?š™™™™™é?š™™™™™@333333@ffffffæ?š™™™™™@@š™™™™™ù?333333ó?@ffffff@à?ÍÌÌÌÌÌì?ÍÌÌÌÌÌ@:@333333ó?š™™™™™Ù?š™™™™™ñ?333333@š™™™™™Ù?š™™™™™é?$@à?ffffff@333333ã?@š™™™™™@@@ffffffþ?š™™™™™Ù?ÍÌÌÌÌÌì?ð?ffffffæ?ÍÌÌÌÌÌü?ÍÌÌÌÌÌì?333333ó?ffffffæ?ð?@ffffffö?333333ã?@ffffffæ?@ffffffæ?333333û?š™™™™™ñ?@@ffffffæ?@š™™™™™Ù?ÍÌÌÌÌÌü?š™™™™™é?ÍÌÌÌÌÌ@à?š™™™™™@@š™™™™™!ÀffffffÀffffff8À'À333333ÀÀš™™™™™À!Àš™™™™™Àš™™™™™Àš™™™™™ÀÍÌÌÌÌÌ$Àffffff+Àffffff!ÀÀ333333ÀÀÍÌÌÌÌÌÀÍÌÌÌÌÌ$À"ÀÍÌÌÌÌÌ'Àffffff*À"À)À333333"ÀffffffÀ333333À!ÀffffffÀ$À333333-ÀffffffÀÍÌÌÌÌÌÀš™™™™™ ÀÍÌÌÌÌL0Àš™™™™™ÀÀÀ333333)À"ÀÍÌÌÌÌÌ$Àffffff/Àš™™™™™ ÀÀÀš™™™™™é¿ÍÌÌÌÌÌÀÍÌÌÌÌÌÀÍÌÌÌÌÌ$ÀffffffÀš™™™™™À333333%ÀÀ$Àš™™™™™ À ÀÍÌÌÌÌÌÀÍÌÌÌÌÌÀÍÌÌÌÌÌÀš™™™™™ÀÀ"ÀÍÌÌÌÌÌ"ÀffffffÀÍÌÌÌÌÌ3ÀffffffÀffffffÀ333333À333333û¿333333Àš™™™™™Àffffff ÀÍÌÌÌÌÌÀš™™™™™À333333,ÀÀ333333'ÀÍÌÌÌÌÌÀffffffÀffffffÀ333333À&ÀffffffÀffffffÀš™™™™™.À$À333333À333333Àš™™™™™ À333333 À333333Àš™™™™™"À333333Àš™™™™™ÀÍÌÌÌÌÌÀÍÌÌÌÌÌ(ÀÍÌÌÌÌÌÀ333333ÀÀÍÌÌÌÌÌÀ333333ÀÍÌÌÌÌÌÀš™™™™™$À333333Àš™™™™™!ÀffffffÀ&Àš™™™™™À333333!ÀÀÍÌÌÌÌÌÀ333333%Àš™™™™™!ÀÀ333333ÀffffffÀÍÌÌÌÌÌÀffffffÀ"ÀffffffÀ333333"Àš™™™™™Àš™™™™™ ÀffffffÀÍÌÌÌÌÌ$À ÀffffffÀÍÌÌÌÌÌÀffffff"À333333ÀÍÌÌÌÌÌÀffffffÀ(ÀÍÌÌÌÌÌ#ÀffffffÀ333333&À333333 À333333ÀÀffffffÀ)Àš™™™™™À333333ÀÍÌÌÌÌL0ÀÍÌÌÌÌÌ!ÀÀffffffÀ!Àš™™™™™ÀÍÌÌÌÌÌ"À€0ÀffffffÀš™™™™™"Àffffff&À333333À333333 Àš™™™™™ÀÍÌÌÌÌÌ(ÀÍÌÌÌÌL2ÀÍÌÌÌÌÌÀ333333Àffffff3À333333ÀÍÌÌÌÌÌ Àš™™™™™ ÀÍÌÌÌÌÌ+À333333À!ÀffffffÀ333333Àffffff+À333333À333333 Àš™™™™™ Àš™™™™™ ÀÍÌÌÌÌÌÀš™™™™™Àffffff Àš™™™™™ À!À333333 ÀÍÌÌÌÌÌÀffffff(Àš™™™™™!Àš™™™™™ÀÍÌÌÌÌÌ0ÀÍÌÌÌÌÌ&À333333&Àš™™™™™ÀffffffÀš™™™™™ÀÍÌÌÌÌÌ%ÀÀÍÌÌÌÌÌ(Àš™™™™™À333333Àš™™™™™!Àffffff#ÀÀ!Àš™™™™™ÀÍÌÌÌÌÌÀš™™™™™À333333,Àffffff(Àš™™™™™&À&Àš™™™™™ù¿š™™™™™ÀÀffffff-ÀÀÍÌÌÌÌÌÀÍÌÌÌÌÌÀš™™™™™ÀÍÌÌÌÌÌÀ333333Àš™™™™™ ÀÀffffffÀš™™™™™*ÀÍÌÌÌÌÌÀ333333"Àš™™™™™"À333333!ÀÀffffffÀÀffffffÀffffff#À"À333333À333333ÀÍÌÌÌÌÌ+ÀffffffÀš™™™™™(À&Àffffff À333333$À333333Àš™™™™™Àš™™™™™%ÀÍÌÌÌÌÌÀ Àffffff7Àš™™™™™Àffffff Àš™™™™™ À333333'Àš™™™™™%ÀffffffÀ333333À À333333ÀÀ333333ÀÍÌÌÌÌÌ#À333333À333333-ÀffffffÀ333333À,ÀffffffÀÍÌÌÌÌÌÀÀÀffffffÀ ÀÀÀ333333#ÀÍÌÌÌÌÌÀ333333)Àffffff!ÀffffffÀš™™™™™À333333"À!À333333ÀffffffÀ À'À333333Àš™™™™™ÀffffffÀ*Àš™™™™6À333333 Àffffff(ÀÍÌÌÌÌÌÀ333333ÀÍÌÌÌÌÌ&Àš™™™™™"ÀÍÌÌÌÌL1À333333Àffffff À33333³0ÀÍÌÌÌÌÌ#ÀÍÌÌÌÌÌ!ÀÀffffffþ¿ffffff À$ÀÍÌÌÌÌÌ À333333ÀÍÌÌÌÌÌ*Àš™™™™™À"ÀfffffæBÀ333333#Àffffff Àš™™™™™ÀffffffÀš™™™™0ÀffffffÀffffffÀffffffÀffffff!ÀÍÌÌÌÌÌÀ333333ÀÀš™™™™™À"À33333³6ÀffffffÀ333333ÀÍÌÌÌÌÌ*À333333)Àffffff$Àffffff Àffffff#Àš™™™™0Àš™™™™™ÀÍÌÌÌÌÌ"À333333ÀÍÌÌÌÌÌ&Àš™™™™™#À3333334Àffffff'ÀÍÌÌÌÌÌÀ333333À333333"Àš™™™™™ Àffffff!ÀÀffffffÀ333333/ÀÀš™™™™™-Àš™™™™™À333333%ÀÍÌÌÌÌÌÀ#Àffffff$À333333û¿ffffffö¿ffffff!À333333À333333Àffffffö¿ffffff(Àffffff À@ffffffþ?ÍÌÌÌÌÌô?ÍÌÌÌÌÌü?š™™™™™ñ?ffffff@ÍÌÌÌÌÌü?ÍÌÌÌÌÌü?(@š™™™™™ñ?@ffffff @à?š™™™™™ñ?ffffffþ?š™™™™™@ð?à?ffffffæ?ffffffþ?ÍÌÌÌÌÌô?ø?ÍÌÌÌÌÌü?ð?ÍÌÌÌÌÌô?ffffffæ?333333ó?š™™™™™ñ?ÍÌÌÌÌÌ@333333@333333"@333333@ð?ffffffö?ÍÌÌÌÌÌì?ø?š™™™™™@@ffffff @3333333@ÍÌÌÌÌÌü?à?š™™™™™ñ?333333@ @333333@333333@333333)@š™™™™™Ù¿ffffffæ¿333333Àš™™™™™é¿à?333333Ó?š™™™™™Ù¿š™™™™™Ù¿333333ó¿333333Ó¿š™™™™™É?ffffff濚™™™™™É?š™™™™™¹¿š™™™™™Ù¿š™™™™™é¿š™™™™™É?š™™™™™é¿ÍÌÌÌÌÌì¿333333㿚™™™™™É?š™™™™™É¿333333㿚™™™™™É?à¿333333ã¿333333Ó?š™™™™™é?ÍÌÌÌÌÌÀš™™™™™¹?333333ã¿à¿333333㿚™™™™™¹?š™™™™™Ù?࿚™™™™™É?š™™™™™É¿š™™™™™¹?š™™™™™ñ¿333333㿚™™™™™¹¿à¿333333ó¿š™™™™™Ù¿š™™™™™é¿333333㿚™™™™™Ù¿ÍÌÌÌÌÌ쿚™™™™™Ù¿š™™™™™ñ¿ffffffæ?à?à¿à¿š™™™™™É?š™™™™™é¿333333Ó?࿚™™™™™¹?š™™™™™É?š™™™™™Ù?333333Ó¿333333ã¿333333Ó?ffffffæ?š™™™™™é¿ÍÌÌÌÌÌì¿333333ã¿333333ã¿à¿š™™™™™é¿ffffff濚™™™™™Ù¿š™™™™™é¿333333㿚™™™™™é¿ffffffþ¿ffffff濚™™™™™é¿333333㿚™™™™™é¿š™™™™™Ù¿333333ã¿333333㿚™™™™™Ù¿š™™™™™ñ¿š™™™™™¹¿š™™™™™Ù?š™™™™™¹?333333Ó?š™™™™™Ù?ð¿à¿ÍÌÌÌÌÌì¿333333ó¿š™™™™™ñ¿ffffffæ¿333333ó¿333333㿚™™™™™¹¿š™™™™™ñ¿š™™™™™é¿š™™™™™¹?à?š™™™™™é¿š™™™™™É?š™™™™™¹?š™™™™™¹?333333Ó?࿚™™™™™é¿333333㿚™™™™™¹?š™™™™™É?ffffffæ¿333333ã¿à¿à¿à¿333333Ó¿š™™™™™é¿333333Ó¿333333Ó?333333Ó?š™™™™™é¿ð¿333333Ó¿ffffffþ¿š™™™™™¹?š™™™™™Ù¿333333ã¿333333㿚™™™™™é¿š™™™™™É?š™™™™™é¿ffffff濚™™™™™É?333333ã¿à?š™™™™™é¿š™™™™™Ù?333333Ó¿š™™™™™é¿ffffff濚™™™™™é¿š™™™™™Ù¿333333ã¿333333Ó?ffffff濚™™™™™ñ¿š™™™™™Ù¿š™™™™™Ù¿š™™™™™é¿333333Ó?࿚™™™™™é¿š™™™™™¹?ffffff濚™™™™™¹?š™™™™™É?333333ã¿ÍÌÌÌÌÌì¿333333Ó¿ffffffæ¿ð¿š™™™™™¹?à?ð¿à¿333333Ó?333333㿚™™™™™¹?š™™™™™é¿š™™™™™¹?š™™™™™É?333333ã¿ Àš™™™™™é¿333333Ó¿š™™™™™Ù?š™™™™™¹?š™™™™™Ù¿333333Ó?333333Ó¿ffffffæ¿à¿ð?š™™™™™¹?š™™™™™É?š™™™™™¹¿à¿š™™™™™É?333333㿚™™™™™¹?333333㿚™™™™™¹?š™™™™™¹¿ÍÌÌÌÌÌ쿚™™™™™¹?š™™™™™é¿š™™™™™¹?333333Ó?333333ã?333333Ó?ÍÌÌÌÌÌô¿š™™™™™é¿š™™™™™Ù¿333333ã¿333333ó¿š™™™™™é¿š™™™™™Ù¿ÍÌÌÌÌÌô¿ffffffæ¿333333Ó?š™™™™™ñ¿333333Ó?333333ó¿ffffff濚™™™™™É¿à¿ð¿333333Ó?š™™™™™É?ffffffæ¿à¿š™™™™™é¿š™™™™™¹?š™™™™™Ù?š™™™™™¹?333333ã¿333333Ó?š™™™™™É?𿚙™™™™É?333333㿚™™™™™Ù?333333Ó¿š™™™™™Ù?ÍÌÌÌÌÌì¿à?࿚™™™™™¹¿š™™™™™É¿333333Ó¿š™™™™™¹?333333Ó?š™™™™™É?333333㿚™™™™™Ù¿š™™™™™¹?š™™™™™Ù¿š™™™™™Ù¿à?à¿333333Ó¿š™™™™™Ù?š™™™™™¹¿333333ӿ࿚™™™™™É?333333Ó¿š™™™™™é¿ÍÌÌÌÌÌ쿚™™™™™Ù?ffffffæ¿333333Ó¿ÍÌÌÌÌÌì¿ffffffö¿ffffff濚™™™™™é?𿚙™™™™Ù?š™™™™™¹?ffffffæ¿333333ã¿ffffffæ?333333ã¿ð?ÍÌÌÌÌÌì¿333333Ó¿ffffffö¿333333㿚™™™™™ñ¿333333ó¿ffffffæ¿333333û¿š™™™™™¹¿à¿ÍÌÌÌÌÌì¿ÍÌÌÌÌÌì¿333333ó¿333333ã¿333333ó¿ffffff濚™™™™™É¿333333ã¿ÍÌÌÌÌÌì¿333333ã¿ffffff濚™™™™™É¿à¿ffffffæ¿333333Ó¿333333Ó?š™™™™™É?333333ó¿ffffffæ¿333333Ó¿333333ã¿333333㿚™™™™™¹?ÍÌÌÌÌÌì¿333333ó¿š™™™™™é¿ð¿š™™™™™Ù¿ffffffÀš™™™™™É¿à?à¿ð?ÍÌÌÌÌÌô¿ffffff濚™™™™™é?š™™™™™é¿ð¿333333Ó?š™™™™™Ù¿333333ã?š™™™™™Ù?ÍÌÌÌÌÌô¿š™™™™™ñ¿ð¿š™™™™™Ù¿š™™™™™é¿š™™™™™¹?š™™™™™¹?333333ó¿à?š™™™™™Ù¿ÍÌÌÌÌÌô¿ffffffö¿š™™™™™¹?š™™™™™¹¿š™™™™™É¿ð¿š™™™™™Ù¿š™™™™™¹?š™™™™™Ù¿š™™™™™é¿333333Ó?š™™™™™Ù¿à¿š™™™™™é¿š™™™™™é¿š™™™™™¹?à?š™™™™™ñ¿333333ã¿ffffff濚™™™™™¹?š™™™™™Ù¿ÍÌÌÌÌÌô?333333㿚™™™™™é¿333333ã?š™™™™™é¿333333Ó¿ø¿š™™™™™¹?š™™™™™É?š™™™™™é¿333333Ó?š™™™™™É¿š™™™™™É?333333ó¿š™™™™™Ù?š™™™™™¹?š™™™™™é¿à?ffffffæ¿333333ó¿ffffffæ¿333333ã¿333333ã?333333㿚™™™™™Ù¿š™™™™™ñ?š™™™™™Ù¿ð¿ÍÌÌÌÌÌô¿333333㿚™™™™™É?ÍÌÌÌÌÌì¿333333Ó¿š™™™™™É¿333333ã¿ffffff濚™™™™™Ù?š™™™™™Ù¿333333Ó?š™™™™™¹?333333Ó?š™™™™™¹¿š™™™™™Ù¿ÍÌÌÌÌÌü?ffffffæ?š™™™™™É?333333ã¿333333ã¿ffffff Àš™™™™™Ù¿à¿š™™™™™Ù?333333û?š™™™™™¹¿ð?š™™™™™é?ffffffö¿ÍÌÌÌÌÌü¿š™™™™™Ù¿š™™™™™Ù¿333333Ó¿à?š™™™™™Ù¿à?ffffff@ffffffæ¿Àffffffæ?ffffffæ?ÍÌÌÌÌÌ쿚™™™™™ù¿š™™™™™@333333ã?š™™™™™À@ÍÌÌÌÌÌü?ø?333333Ó¿š™™™™™Ù¿ÍÌÌÌÌÌü?ÍÌÌÌÌÌì?š™™™™™¹¿š™™™™™ñ¿ÍÌÌÌÌÌü¿š™™™™™ù¿ð¿š™™™™™é¿333333ã?š™™™™™é¿ÍÌÌÌÌÌ쿚™™™™™É¿à¿333333ã?š™™™™™É¿š™™™™™é¿š™™™™™é?ffffffö¿333333Ó¿š™™™™™é?ð¿ÍÌÌÌÌÌ@333333Ó¿à¿ffffffæ?ffffffþ?𿚙™™™™ñ?333333ó¿ÍÌÌÌÌÌ쿚™™™™™ù¿š™™™™™ñ¿à?ffffffö?ffffffö¿ffffff濚™™™™™É¿ð¿ÍÌÌÌÌÌì?333333Ó¿ÍÌÌÌÌÌì?š™™™™™ñ¿à¿š™™™™™ù?š™™™™™Ù?à¿ffffffæ?ffffffæ?ffffff濚™™™™™¹¿ø?ð?@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ@š™™™™™@333333 @ffffffö¿š™™™™™É?ÍÌÌÌÌÌ쿚™™™™™É?š™™™™™ñ¿333333ó?333333û¿333333û¿ÍÌÌÌÌÌô¿š™™™™™É¿ð¿333333ã?ð¿333333û¿333333Ó¿š™™™™™ù?ffffffæ¿ÍÌÌÌÌÌü¿ffffff@ffffff@š™™™™™¹¿ð?š™™™™™É¿ffffffÀffffffþ?333333ó¿ÍÌÌÌÌÌì¿ffffffÀš™™™™™¹¿ø?š™™™™™ñ?š™™™™™Ù?333333û?ÍÌÌÌÌÌì¿ÍÌÌÌÌÌì¿ÍÌÌÌÌÌü¿ffffffæ?ffffffæ?333333ã?ÍÌÌÌÌÌì?ð¿à?333333㿚™™™™™É¿333333û¿ð?š™™™™™ñ¿333333ó?š™™™™™ñ¿š™™™™™Ù¿ÍÌÌÌÌÌì?ÍÌÌÌÌÌì¿333333ã¿333333ó¿ffffffæ¿ffffff濚™™™™™ù?ø¿ø¿ÍÌÌÌÌÌô¿ÍÌÌÌÌÌô¿ÍÌÌÌÌÌ쿚™™™™™¹?ø¿ffffffÀø¿ø¿ÍÌÌÌÌÌì?ffffffö¿ð¿Àffffffæ?333333ã¿ÍÌÌÌÌÌü?333333ó¿š™™™™™É¿à?ÍÌÌÌÌÌü¿333333ã?ffffff@ð?ffffff@š™™™™™Ù¿ÍÌÌÌÌÌì¿Àð¿ffffffæ?333333ó¿ÍÌÌÌÌÌü?š™™™™™¹?333333ã?š™™™™™Ù¿ffffff@ffffffæ?333333Ó¿ð?ÍÌÌÌÌÌì¿à¿ÍÌÌÌÌÌô?@333333ó¿š™™™™™É¿ffffffæ?à¿à?333333Ó¿š™™™™™ñ¿ÍÌÌÌÌÌì¿ffffffæ?333333û¿à¿à?ffffffö?ÍÌÌÌÌÌü¿@333333Ó¿333333㿚™™™™™@333333ó¿ÍÌÌÌÌÌì¿ffffff À333333Ó¿@š™™™™™ù?333333ó?333333ó¿ÍÌÌÌÌÌô?š™™™™™é¿š™™™™™ñ?à¿ffffff濚™™™™™É¿333333Ó¿š™™™™™é¿š™™™™™¹¿333333ã¿333333Ó?ð?333333ã¿ø?333333ó?@š™™™™™ù¿@ø?ffffffö?š™™™™™é?š™™™™™ñ?š™™™™™é?ffffffö¿ð¿ffffff@ÍÌÌÌÌÌÀ333333ã?ð¿ÍÌÌÌÌÌô?333333û?ÍÌÌÌÌÌô?ÍÌÌÌÌÌì?à?š™™™™™ù¿333333ó?š™™™™™é¿ð?à?ffffffæ?ffffff@333333ó?ÍÌÌÌÌÌì?ø?š™™™™™é¿ÍÌÌÌÌÌü¿ÍÌÌÌÌÌü¿š™™™™™Ù¿ÍÌÌÌÌÌ@š™™™™™Ù¿ð¿333333Ó¿333333ã¿ÍÌÌÌÌÌ쿚™™™™™Ù?333333Ó?ffffffæ?š™™™™™É?š™™™™™é¿à?š™™™™™¹¿ÍÌÌÌÌÌô¿š™™™™™É¿š™™™™™ñ?ð?ÍÌÌÌÌÌ@à?333333Ó?333333ã?333333ã?ffffffæ?š™™™™™ñ¿š™™™™™Ù¿à¿à?š™™™™™ù?à¿ffffffö¿š™™™™™Ù?à¿ÍÌÌÌÌÌ@333333À333333û¿333333@ffffffæ?š™™™™™ù¿333333Ó¿ÍÌÌÌÌÌì?ÍÌÌÌÌÌì?ffffffö¿@š™™™™™É¿@š™™™™™¹¿š™™™™™ñ¿333333Ó¿ffffff濚™™™™™Àš™™™™™Ù¿š™™™™™ñ?š™™™™™ À333333û?ÍÌÌÌÌÌü?š™™™™™ñ¿à?333333û?à?@333333ӿ࿚™™™™™é?š™™™™™ù?š™™™™™ù?ð?š™™™™™é¿ffffffæ?š™™™™™Ù¿š™™™™™¹¿ffffffö?ÍÌÌÌÌÌô¿333333ã¿333333ó?à¿ÍÌÌÌÌÌ@ÍÌÌÌÌÌô?š™™™™™é¿333333ã?à¿ÀÍÌÌÌÌÌü¿š™™™™™Ù¿š™™™™™ù?333333Ó¿ø?š™™™™™ù?333333ó?ÍÌÌÌÌÌô?ffffffþ? @ffffffþ?š™™™™™ù?ð?š™™™™™ñ?ffffff@333333ã?ð?ffffffæ?ffffffþ¿à¿ÍÌÌÌÌÌô?333333û?š™™™™™@𿚙™™™™É¿ÍÌÌÌÌÌ@š™™™™™Ù¿333333ã?š™™™™™ñ?š™™™™™É¿333333Ó¿š™™™™™¹¿à¿š™™™™™ñ¿š™™™™™Àà?ð?š™™™™™ñ?š™™™™™¹¿š™™™™™ñ¿à¿@š™™™™™Ù?33333³0@ffffffæ?ffffffæ?ÍÌÌÌÌÌô¿à¿ffffffþ?@333333@š™™™™™Ù?ffffffÀ333333Ó¿š™™™™™Ù¿ffffffæ?À333333û?ÍÌÌÌÌÌÀ333333ã¿ffffffþ¿333333û?ÍÌÌÌÌÌô?333333Ó¿š™™™™™É?333333@ø?333333û?333333û¿333333Ó¿ffffffö?ÍÌÌÌÌÌì?333333ã?ffffffæ¿à¿š™™™™™é¿à?333333ó¿š™™™™™É?𿚙™™™™¹¿š™™™™™é¿ÍÌÌÌÌÌü¿333333ó?ffffffö?ffffffÀš™™™™™¹¿Àš™™™™™¹¿ÍÌÌÌÌÌô?à¿ø¿ÍÌÌÌÌÌì¿333333ó?ø¿ffffffæ¿333333ã¿à¿š™™™™™É?š™™™™™É?ø?ÍÌÌÌÌÌô¿š™™™™™¹¿ÍÌÌÌÌÌ@ffffffÀð?š™™™™™ñ?8Àš™™™™™5À33333³2@3333332À9Àš™™™™™NÀfffffæ>À/À-ÀÍÌÌÌÌÌÀ€:À"À333333À"À3333334À33333³<Àš™™™™™2À333333?Àš™™™™Y@À333333'Àš™™™™™3ÀÍÌÌÌÌÌÀÀÍÌÌÌÌL4À33333³7À`QÀffffff2ÀÍÌÌÌÌÌ2À33333³;Àš™™™™Ù@ÀÍÌÌÌÌÌ%À3333337ÀÍÌÌÌÌÌ3Àffffff?ÀÍÌÌÌÌÌ7ÀÍÌÌÌÌÌ5À3333331ÀÍÌÌÌÌÌÀffffff3Àfffffæ9À333333"À1ÀÍÌÌÌÌL6Àš™™™™7Àš™™™™4ÀÍÌÌÌÌÌ(À333333/À3333333Àffffff8Àš™™™™™FÀÍÌÌÌÌÌ%À*À@333333@À7Àfffffæ9ÀÍÌÌÌÌŒDÀÍÌÌÌÌL7À4Àfffffæ1Àš™™™™8@ÍÌÌÌÌÌ!ÀÍÌÌÌÌÌ-Àš™™™™™9Àfffffæ6Àffffff+Àfffffæ1Àš™™™™™4À;Àffffff ÀÍÌÌÌÌÌ6À>ÀÍÌÌÌÌÌ5Àffffff*Àš™™™™4Àš™™™™™Ù?3333331À33333³0À€1Àffffff4À@AÀÍÌÌÌÌL=À€;Àffffff@š™™™™™8À`RÀffffff<Àfffffæ4Àš™™™™ÙUÀÍÌÌÌÌ PÀfffffæ9À€2À33333³3ÀÍÌÌÌÌÌ#ÀÍÌÌÌÌÌ@ð?š™™™™™ù?33333³7ÀÍÌÌÌÌÌ6ÀÍÌÌÌÌL1ÀÍÌÌÌÌÌ)ÀÍÌÌÌÌL@Àš™™™™™ÀÍÌÌÌÌ AÀÍÌÌÌÌÌ'ÀÍÌÌÌÌÌ@Àš™™™™™ÀÍÌÌÌÌÌ#ÀÍÌÌÌÌL0ÀÍÌÌÌÌLAÀš™™™™1À333333+Àš™™™™™,À@CÀ€5À333333À33333³0À9Àffffff5Àš™™™™™.Àš™™™™6Àš™™™™™#Àfffffæ3Àš™™™™™À+ÀÍÌÌÌÌL4Àš™™™™2À333333/ÀÍÌÌÌÌÌ0À333333;ÀÍÌÌÌÌÌ*Àš™™™™™.À3333333À0Àffffff*Àfffffæ8Àfffffæ8À$À33333³0Àffffff,Àffffff;À@&ÀÍÌÌÌÌL2Àš™™™™™À333333À333333Àš™™™™™:ÀffffffÀ333333À'À/ÀffffffÀ€1ÀÍÌÌÌÌL3ÀÍÌÌÌÌÌ1À5À333333ÀÍÌÌÌÌL=À+À333333À33333³<À3333337Àffffff/Àš™™™™™*Àš™™™™;Àš™™™™™*ÀÍÌÌÌÌÌ(À333333(À€;Àfffffæ8Àš™™™™™4À@Àffffff%ÀÍÌÌÌÌÌ*Àffffff2Àffffff0À333333Àffffff@À33333³2À3333330Àš™™™™™AÀ333333,À€3À333333<Àš™™™™™%@ÍÌÌÌÌL9ÀÍÌÌÌÌÌ+ÀÍÌÌÌÌÌ:ÀÍÌÌÌÌ VÀÍÌÌÌÌL8À?Àš™™™™™À3333338À333333=ÀffffffÀ33333³5Àffffff#Àš™™™™™>À€NÀ)À€1Àfffff&LÀfffffæ0Àš™™™™YGÀš™™™™™0ÀÍÌÌÌÌÌ"ÀÍÌÌÌÌÌWÀ33333s@À333333&Àš™™™™™2@ffffff%À#ÀÀEÀ333333 Àš™™™™™/Àfffffæ4À3333330Àffffff5À2À333333 ÀÍÌÌÌÌÌü¿ffffff(ÀÀ𿚙™™™4À33333³1À3333331Àffffff6Àš™™™™™#Àš™™™™1À3333337Àffffff)ÀÀHÀÍÌÌÌÌÌ5Àš™™™™™>À33333³0À333333À.ÀÍÌÌÌÌÌ5À3À33333³?À333333(À#Àš™™™™1ÀÍÌÌÌÌÌ5ÀÀEÀ3333334Àš™™™™5Àš™™™™™À1À333333,ÀÍÌÌÌÌL7À333333DÀ€3ÀÍÌÌÌÌÌ5À9À33333³<Àš™™™™<ÀÍÌÌÌÌ HÀš™™™™>ÀffffffÀ2À-Àš™™™™=Àffffff&À333333À333333&ÀffffffÀ À)Àffffff/À,ÀÍÌÌÌÌÌÀ'Àš™™™™3ÀffffffBÀÍÌÌÌÌL9À3333332Àffffff8À33333³<À333333!À333333*À33333³2À333333Àš™™™™™4À:ÀÍÌÌÌÌL;Àš™™™™2Àffffff5À€9ÀÍÌÌÌÌL5Àš™™™™™,ÀÍÌÌÌÌÌ@@ÍÌÌÌÌÌ,ÀÍÌÌÌÌÌ?À33333³:ÀfffffÎp@š™™™™™ À333333/À,À3333332ÀÍÌÌÌÌÌ)Àš™™™™;À333333,ÀÍÌÌÌÌÌ2À33333sSÀ€8Àš™™™™™2À33333³8À333333BÀ333333BÀffffff>@ffffffE@ffffff+ÀÍÌÌÌÌÌ.ÀffffffB@ffffff,ÀÍÌÌÌÌÌ"Àffffff+À333333Àš™™™™™Àffffff2À33333óCÀffffffÀÍÌÌÌÌÌ$ÀÍÌÌÌÌÌÀ33333óBÀ,À333333'Àffffff$À3333336ÀÍÌÌÌÌÌ:Àffffff4Àffffffþ?33333³2À࿚™™™™1ÀÍÌÌÌÌÌ%Àfffff¦@Àffffff+Àš™™™™™-À333333Àš™™™™™,Àš™™™™™ù?33333³8Àš™™™™™À333333"À333333ÀÍÌÌÌÌÌ$À3333335Àš™™™™YCÀš™™™™™1À€=ÀffffffÀ€6ÀÍÌÌÌÌÌ=Àš™™™™™.À>À33333ÓRÀš™™™™6À333333BÀš™™™™Y@Àš™™™™™@€0Àfffff¦@À3333333ÀffffffIÀÍÌÌÌÌÌÀ3333338ÀÍÌÌÌÌlVÀš™™™™™.À333333BÀffffff:ÀÀffffff1ÀÍÌÌÌÌÌÀ+ÀÍÌÌÌÌÌÀš™™™™ÙM@333333ÀfffffæDÀÍÌÌÌÌL9À&Àš™™™™?Àš™™™™YBÀš™™™™™8Àfffffæ;ÀkÀ9À3333336Àš™™™™™,ÀÀÀ@À€0Àfffff¦\ÀÍÌÌÌÌÌ!Àš™™™™™#@š™™™™™:Àš™™™™™ ÀÍÌÌÌÌL7À333333Àffffff:ÀfffffæE@ffffff.Àš™™™™™+À€4Àš™™™™ÙKÀ%Àfffffæ4À333333 Àš™™™™YAÀš™™™™™1ÀÍÌÌÌÌÌ$À333333@À0À333333@ÀffffffÀš™™™™™+À:Àffffff%Àš™™™™™@À3333338ÀÍÌÌÌÌÌ,ÀÍÌÌÌÌ WÀfffffæ=ÀÍÌÌÌÌÌ/Àš™™™™1@ffffff<Àš™™™™2@ffffff$@š™™™™™1ÀÀ333333$ÀFÀš™™™™0ÀÍÌÌÌÌL?À€5Àfffffæ2À333333$À33333³9ÀÍÌÌÌÌL9Àš™™™™™ Àš™™™™™@3333336À333333*Àš™™™™™6Àš™™™™™2À333333Àš™™™™7@33333³<ÀffffffÀ33333³=ÀÍÌÌÌÌÌ:À333333+Àffffff6À>À33333óMÀÍÌÌÌÌÌ+Àffffff0À333333ÀÍÌÌÌÌÌ@33333óCÀÍÌÌÌÌL;ÀÍÌÌÌÌÌ&Àš™™™™™(À3333337ÀÍÌÌÌÌÌ5À3333336Àffffff8ÀÀ1Àš™™™™™DÀà¿ÍÌÌÌÌÌü¿€<ÀfffffæEÀ ÀÍÌÌÌÌÌ(ÀÍÌÌÌÌLCÀš™™™™™ÀÍÌÌÌÌÌÀ @ffffff:Àffffff8Àffffff.Àš™™™™™,À€6À€=À2ÀÍÌÌÌÌŒ@ÀÍÌÌÌÌŒAÀÍÌÌÌÌÌ/ÀÍÌÌÌÌÌ&ÀÍÌÌÌÌL<Àfffffæ;ÀÍÌÌÌÌÌ5À3333330À#ÀÍÌÌÌÌÌ4À333333=ÀffffffAÀš™™™™™?ÀÍÌÌÌÌL0ÀÍÌÌÌÌÌ%@š™™™™DÀš™™™™™ù¿=À333333GÀ333333/ÀÍÌÌÌÌÌü¿€9ÀÍÌÌÌÌŒ@@3333338À7ÀCÀš™™™™YAÀffffff%À333333@33333s@À@À$À333333@À33333³4Àš™™™™9Àš™™™™™ÀÍÌÌÌÌL?Àš™™™™™À333333@ÍÌÌÌÌÌ'À€6Àffffff)À33333³9ÀffffffBÀÍÌÌÌÌÌ<À33333³4@2À33333³1Àš™™™™:@š™™™™™$@333333@4ÀfffffæDÀffffff1Àš™™™™™=Àffffff!ÀffffffÀffffff*@ffffff/ÀÍÌÌÌÌLCÀ@AÀš™™™™3Àfffffæ9ÀÍÌÌÌÌÌ7Àš™™™™™/ÀÍÌÌÌÌLGÀ333333-ÀÍÌÌÌÌÌ.À333333,À33333³9À33333³5@ffffffö?ÍÌÌÌÌÌ1Àš™™™™™ À3333330Àš™™™™YWÀš™™™™™ ÀÍÌÌÌÌL3ÀÍÌÌÌÌL>Àš™™™™YIÀffffff6À333333ã?ffffff)ÀffffffÀÍÌÌÌÌÌÀš™™™™™+À3333333ÀÍÌÌÌÌ DÀ333333*ÀÍÌÌÌÌÌ&À&Àš™™™™™4À9À333333'À33333³8À2Àš™™™™;Àffffff/À@BÀš™™™™™@3333339À3333332Àffffff1Àà¿ÍÌÌÌÌÌ0Àš™™™™™<Àš™™™™™(À333333,ÀÍÌÌÌÌÌ&@š™™™™YDÀš™™™™3ÀÍÌÌÌÌÌ%À3333339ÀÍÌÌÌÌÌ:ÀÍÌÌÌÌÌÀš™™™™@Àfffff&EÀÍÌÌÌÌŒ@À33333sBÀ@ÍÌÌÌÌ FÀfffffæ6Àffffff8Àffffff6Àfffffæ<À333333ó?ffffff;Àfffffæ<À"ÀÍÌÌÌÌ BÀ333333ÀÍÌÌÌÌÌì¿33333³0Àffffffþ?š™™™™ÙAÀ€1À;À:ÀÍÌÌÌÌÌ&Àffffff*Àš™™™™™-À€0À#ÀÀCÀ333333'@333333,Àfffffæ>À6@CÀš™™™™™6À(À3333332ÀÍÌÌÌÌLAÀÍÌÌÌÌÌ@Àš™™™™™é¿ÍÌÌÌÌL=Àš™™™™7Àffffff$À33333s@Àš™™™™™/ÀÍÌÌÌÌÌ8ÀÍÌÌÌ̬TÀ3333332À333333*ÀÀDÀ33333³@ÀÍÌÌÌÌÌ!À3333333Àffffff)Àffffff*ÀÍÌÌÌÌ FÀ33333³3Àfffffæ8Àffffff*À@A@9À#@fffffæ7À333333ã?33333³7À333333#À7À333333(ÀffffffÀš™™™™™-Àffffff-Àffffffþ¿<À333333-ÀffffffÀÍÌÌÌÌL=Àffffff@š™™™™™ÀÍÌÌÌÌÌÀš™™™™;À33333³:ÀÍÌÌÌÌÌÀÍÌÌÌÌÌ'ÀÍÌÌÌÌÌ!À333333$@š™™™™™ ÀÍÌÌÌÌL?Àffffff;ÀÍÌÌÌÌÌ쿚™™™™YAÀ333333Àš™™™™9Àš™™™™™!Àffffff5ÀÍÌÌÌÌÌÀ(ÀffffffÀÍÌÌÌÌÌ<ÀÍÌÌÌÌÌÀ€@À=À.À333333-À333333@ÍÌÌÌÌÌ*Àffffff2Àfffffæ<ÀffffffBÀÍÌÌÌÌL5Àš™™™™™>ÀÍÌÌÌÌL2À"ÀÍÌÌÌÌÌ,Àffffff*Àffffff,À333333$À/À333333!À333333)ÀÍÌÌÌÌÌ"Àš™™™™™Àš™™™™1Àš™™™™™.Àš™™™™ÙBÀ@Àfffffæ3ÀÍÌÌÌÌÌ*ÀÍÌÌÌÌÌ-À333333&@333333 Àš™™™™0ÀÀfffffæ1Àš™™™™™3Àš™™™™YEÀfffffæ5ÀÍÌÌÌÌÌ:Àš™™™™6ÀÍÌÌÌÌÌ!À3333332ÀÍÌÌÌÌÌ7@ÍÌÌÌÌÌ#À33333sBÀ333333"@33333ãn@3333338À2@ÀÍÌÌÌÌ BÀ333333/ÀÍÌÌÌÌL2À333333û?fffff¦AÀffffffMÀš™™™™:Àffffff@ÍÌÌÌÌÌ9Àš™™™™HÀÀCÀÍÌÌÌÌL7@ÍÌÌÌÌÌÀffffff1ÀÍÌÌÌÌÌÀÍÌÌÌÌÌ,@333333@ÍÌÌÌÌÌ$@š™™™™™7Àš™™™™™ Àffffff5@%Àš™™™™™ÀffffffÀffffff,Àš™™™™™%@3333330Àffffffæ?ÍÌÌÌÌÌ À3333331Àfffffæ0Àš™™™™™?Àffffff5À333333/@ÍÌÌÌÌLBÀÀffffffÀš™™™™™/Àš™™™™™ Àffffffæ¿4Àš™™™™™ù¿fffffæ0À333333/ÀÍÌÌÌÌŒCÀÍÌÌÌÌÌ'ÀÍÌÌÌÌÌ@333333Àffffff@333333Àffffff7ÀÍÌÌÌÌÌü¿ffffff*ÀÍÌÌÌÌÌ=@333333Àffffff,ÀffffffÀ3333335ÀÍÌÌÌÌŒKÀÍÌÌÌÌL2À9ÀÍÌÌÌÌÌ7Àš™™™™™ À3333334À3333337Àffffffþ¿33333s@@ÍÌÌÌÌÌ)Àš™™™™:ÀÍÌÌÌÌÌ@ÍÌÌÌÌÌ2ÀÍÌÌÌÌÌ8Àffffff/ÀÍÌÌÌÌÌÀÍÌÌÌÌL4À!Àffffff1ÀÍÌÌÌÌL2Àš™™™™™A@š™™™™™Ù?€AÀÍÌÌÌÌL0ÀÍÌÌÌÌÌ'ÀÍÌÌÌÌ DÀš™™™™YEÀ333333ã?9ÀÍÌÌÌÌÌ1@š™™™™4À€0ÀÍÌÌÌÌL<Àš™™™™™$Àš™™™™™!ÀÍÌÌÌÌL5@ffffff$Àš™™™™™À"ÀÍÌÌÌÌL=À333333(Àš™™™™™-ÀfffffæBÀ333333&Àø?3333333Àš™™™™™<ÀffffffÀffffffBÀš™™™™™/Àš™™™™3À33333³4@3333332ÀÍÌÌÌÌÌô¿ffffff?À33333óAÀ@8Àš™™™™™@fffffæ3ÀÍÌÌÌÌÌ>À€3Àffffff9À333333BÀffffff)ÀÍÌÌÌÌÌZÀ?À8ÀÀ,ÀÍÌÌÌÌÌ=@33333óFÀš™™™™™2ÀÀAÀ333333&Àffffff:À5À333333EÀ33333³?À333333 Àfffffæ7À333333@ÀÍÌÌÌÌÌ>À333333%ÀÍÌÌÌÌÌ!@ÍÌÌÌÌÌ3Àš™™™™™É¿ffffffAÀ33333³3À3333335@ÍÌÌÌÌÌì¿ÍÌÌÌÌL0ÀÍÌÌÌÌÌ@š™™™™™Ù?ÍÌÌÌÌÌì¿ÍÌÌÌÌÌ@š™™™™™É¿ÍÌÌÌÌÌì?333333û?ÍÌÌÌÌÌì?ffffffæ?š™™™™™é?š™™™™™¹?š™™™™™¹?ð?ffffff@333333ó?š™™™™™ù?333333@š™™™™™¹?ÍÌÌÌÌÌ@333333Ó?333333ã?š™™™™™ñ?333333ó?ð?ð?ffffffþ?333333û?333333ó?à?š™™™™™Ù?ffffffö?š™™™™™Ù?š™™™™™é?333333ó?333333ó?ÍÌÌÌÌÌì?ð?ÍÌÌÌÌÌì?š™™™™™¹?š™™™™™ñ?ffffffæ?ÍÌÌÌÌÌì?š™™™™™¹?ÍÌÌÌÌÌì?š™™™™™¹?@à?š™™™™™é?š™™™™™é?333333Ó?š™™™™™ñ?š™™™™™é?ÍÌÌÌÌÌü?ø?š™™™™™ñ?333333ã?š™™™™™Ù?ÍÌÌÌÌÌì?š™™™™™é?à?à?š™™™™™Ù?š™™™™™Ù?333333ã?š™™™™™¹?333333ã?ÍÌÌÌÌÌì?333333ó?333333ó?à?ð?333333û?š™™™™™¹?ÍÌÌÌÌÌì?ÍÌÌÌÌÌì?333333û?š™™™™™ñ?š™™™™™ñ?333333ã?š™™™™™ñ?ÍÌÌÌÌÌ @ÍÌÌÌÌÌì?š™™™™™ @ffffff@@333333Ó?š™™™™™Ù?333333ó?à¿333333ã?333333Ó¿ffffffæ?š™™™™™É?333333Ó?š™™™™™¹?333333ã?ð?ffffffæ?ffffffæ?š™™™™™É?ÍÌÌÌÌÌì?ÍÌÌÌÌÌì?š™™™™™¹?333333ó?š™™™™™¹?ffffffæ?š™™™™™é?š™™™™™ñ?@ÍÌÌÌÌÌì?333333û?ffffffæ?à?333333ã?ð?ffffffö?š™™™™™É?à?ÍÌÌÌÌÌì?ffffffæ?ÍÌÌÌÌÌü?ÍÌÌÌÌÌì?š™™™™™ñ?ÍÌÌÌÌÌô?ffffffæ?š™™™™™ñ?š™™™™™é?š™™™™™ñ?ÍÌÌÌÌÌì?š™™™™™ñ?333333ã?333333ã?ÍÌÌÌÌÌô?333333û?333333ó?ð?333333ã?333333ó?@ffffffö?š™™™™™¹?ÍÌÌÌÌÌì?ffffffæ?ø?ÍÌÌÌÌÌì?š™™™™™Ù?à?à?333333ã?333333ã?333333û?ÍÌÌÌÌÌô?ÍÌÌÌÌÌô?š™™™™™ñ?š™™™™™é?š™™™™™¹?š™™™™™Ù?333333ã?333333ã?@š™™™™™¹¿š™™™™™@333333ã?š™™™™™é?ffffff@š™™™™™Ù?ÍÌÌÌÌÌì?š™™™™™É?ffffffæ?333333Ó?333333ã?š™™™™™@ffffffæ?333333ó?ð?333333Ó¿@333333ã?333333ó?333333@ffffffö?ø?࿚™™™™™É?š™™™™™ù?š™™™™™¹?ð?š™™™™™Ù?333333@ÍÌÌÌÌÌô?š™™™™™É¿ÍÌÌÌÌÌì?333333ã?@ffffffæ?š™™™™™¹?ÍÌÌÌÌÌ@š™™™™™ñ?š™™™™™Ù?š™™™™™¹¿ð?@ffffff@ð¿ÍÌÌÌÌÌì?š™™™™™ñ?à?333333ó?à?à¿333333ó?ffffffæ?š™™™™™Ù?š™™™™™é?333333ã?š™™™™™ñ?š™™™™™@š™™™™™ù?š™™™™™é?š™™™™™ñ?ffffffæ?ffffff@333333û?333333û?ð?š™™™™™¹¿à?š™™™™™É¿š™™™™™¹¿š™™™™™ñ?š™™™™™¹?š™™™™™¹?333333ã?š™™™™™é?š™™™™™@à?ffffffæ?š™™™™™ñ?333333Ó?ffffffö?ð?@š™™™™™Ù?ffffffö?ÍÌÌÌÌÌô?ø?333333û?ffffffæ?š™™™™™¹?š™™™™™¹?ÍÌÌÌÌÌì?ÍÌÌÌÌÌô?š™™™™™ñ?š™™™™™ù?333333ã?š™™™™™¹?š™™™™™¹?333333Ó?š™™™™™¹?š™™™™™É¿š™™™™™¹?333333ã?š™™™™™ù?š™™™™™ñ?333333ó?ffffffö?333333û?š™™™™™ñ?š™™™™™¹?š™™™™™ù?š™™™™™¹¿ð?š™™™™™é?à?333333ã?333333Ó?š™™™™™ñ?ffffffæ?333333Ó?š™™™™™É?ÍÌÌÌÌÌô?ffffffö¿š™™™™™Ù¿š™™™™™É?š™™™™™@333333Ó¿333333ã?š™™™™™¹¿ø?ffffffæ?ð?ÍÌÌÌÌÌ @ÍÌÌÌÌÌì?ÍÌÌÌÌÌô?š™™™™™é?ÍÌÌÌÌÌì?š™™™™™¹?ø¿à?ð?ÍÌÌÌÌÌô¿ÍÌÌÌÌÌô?ffffffö?š™™™™™Ù?ffffff@ÍÌÌÌÌÌ@333333ã?ÍÌÌÌÌÌô?ÍÌÌÌÌÌü?333333Ó¿ÍÌÌÌÌÌô?š™™™™™é?š™™™™™¹¿š™™™™™Ù?ÍÌÌÌÌÌ@ffffff@ð?333333ã?š™™™™™¹?š™™™™™¹?š™™™™™ñ?ffffffþ?ÍÌÌÌÌÌ@ÍÌÌÌÌÌô?333333ã?š™™™™™¹?à?ø?ø?@š™™™™™É?š™™™™™Ù?333333ã?ø?333333ã?š™™™™™é?333333 @ffffffþ?ffffff@333333ó?333333û?À333333Ó¿@š™™™™™ù?à?š™™™™™Ù?ð?š™™™™™@ÍÌÌÌÌÌ@š™™™™™Ù¿ffffffö? @à?š™™™™™¹?š™™™™™é?š™™™™™¹¿š™™™™™¹?333333ã?ffffffæ?ÍÌÌÌÌÌÀ333333ã?ÍÌÌÌÌÌü?ÍÌÌÌÌÌô?ffffffæ?@ÍÌÌÌÌÌü?ffffffþ?$@š™™™™™É¿š™™™™™¹?š™™™™™@@ÍÌÌÌÌÌì?ÍÌÌÌÌÌ@@à?ÍÌÌÌÌÌ@š™™™™™É?ø?š™™™™™é?ÍÌÌÌÌÌì?ø¿š™™™™™É?š™™™™™Ù?ÍÌÌÌÌÌì?ffffff@333333ã?š™™™™™¹?ÍÌÌÌÌÌô?š™™™™™é?333333ó?à?ÍÌÌÌÌÌ@333333û?ð?ffffffö?ÍÌÌÌÌÌì?ffffff@š™™™™™é¿à?ÍÌÌÌÌÌì?à?ÍÌÌÌÌÌ@@š™™™™™ñ?ø?à?ffffffö?ffffffæ?š™™™™™É?š™™™™™¹?ffffff @ffffffö?ð?š™™™™™ù?š™™™™™é?š™™™™™é?š™™™™™é?ffffffæ?ð?š™™™™™¹?333333@à?š™™™™™ñ?ð?333333û?ffffffÀ@š™™™™™Ù¿à¿š™™™™™é¿ÍÌÌÌÌÌÀÍÌÌÌÌÌÀš™™™™™Ù¿ffffffþ¿š™™™™™À333333!Àš™™™™™(À*Àš™™™™™=Àš™™™™3ÀÀÍÌÌÌÌÌü¿ÍÌÌÌÌÌÀš™™™™™Ù¿ffffff-ÀÍÌÌÌÌL>ÀÍÌÌÌÌÌÀ333333*À333333ÀÍÌÌÌÌÌ ÀÀÍÌÌÌÌÌÀffffff!Àffffff(ÀÍÌÌÌÌÌ1Àffffff ÀÀš™™™™™:ÀÍÌÌÌÌÌÀÍÌÌÌÌÌÀ.Àš™™™™™Àà¿ÍÌÌÌÌÌ2ÀffffffÀ3333335À33333³:À333333Àð¿ffffff+ÀÀ@ÍÌÌÌÌÌ@š™™™™™@333333ó?š™™™™™ù?ÍÌÌÌÌÌ'@ffffff@ffffffæ?333333ó?š™™™™™@@ffffff @ffffff@ÍÌÌÌÌÌ!@ffffff@@š™™™™™é?š™™™™™é?š™™™™™@š™™™™™@333333@š™™™™™@@@333333 @ÍÌÌÌÌÌü?ÍÌÌÌÌÌ@ÍÌÌÌÌÌì?š™™™™™Ù?ÍÌÌÌÌÌì?@ø?ÍÌÌÌÌÌ@ffffffæ?ffffff@@333333û?333333 @ÍÌÌÌÌÌ@333333û?@š™™™™™@š™™™™™@333333 @ÍÌÌÌÌÌ@ÍÌÌÌÌÌì?ffffffö?ø?333333@š™™™™™!@ffffffþ?333333@š™™™™™ù?ÍÌÌÌÌÌ@ÍÌÌÌÌÌ @ @ffffff @ÍÌÌÌÌÌ@333333@ffffff@ÍÌÌÌÌÌü?š™™™™™@ø?@ÍÌÌÌÌÌ@333333@ffffff @ffffff@ffffff@š™™™™™@333333@ÍÌÌÌÌÌ @@ÍÌÌÌÌÌ@ÍÌÌÌÌÌì?ÍÌÌÌÌÌô?š™™™™™ @š™™™™™ù?!@333333'@ÍÌÌÌÌÌ@ø?à?š™™™™™ù?333333ó?ffffff@@333333@333333@ffffff@š™™™™™Ù?š™™™™™@ÍÌÌÌÌÌ$@ÍÌÌÌÌÌ@@@333333@ffffff@š™™™™™ @333333@333333.@ffffff@ÍÌÌÌÌÌü?333333 @333333@ffffff@ffffff@@š™™™™™ @333333 @@š™™™™™ @š™™™™™ù?ÍÌÌÌÌÌì?ffffffö?ffffff@333333û?ð?@ffffff @@ÍÌÌÌÌÌ@ffffff@ffffff@ÍÌÌÌÌÌ@ffffff@ffffff#@@š™™™™™@@š™™™™™@ffffff @š™™™™™@333333@@#@ÍÌÌÌÌÌ @ÍÌÌÌÌÌ@š™™™™™@@333333@@ffffffæ?ÍÌÌÌÌÌ@333333û? @ffffff@ffffff@333333ó?@ÍÌÌÌÌÌ@š™™™™™"@ffffff@ÍÌÌÌÌÌ@ffffffæ?š™™™™™ù?š™™™™™@š™™™™™@333333!@ÍÌÌÌÌÌ @333333@ÍÌÌÌÌÌ @ffffff@ffffff@@š™™™™™@@ffffff@ÍÌÌÌÌÌì?@333333@333333@333333@š™™™™™ñ?333333'@ @ÍÌÌÌÌÌ @ÍÌÌÌÌÌ@ÍÌÌÌÌÌô?ð?ÍÌÌÌÌÌ%@ffffff@š™™™™™@ffffff@š™™™™™ @ÍÌÌÌÌÌ@ÍÌÌÌÌÌ @@ffffff@333333@š™™™™™ @ @ffffff@š™™™™™@333333ó?@ÍÌÌÌÌÌü?š™™™™2@ÍÌÌÌÌÌ@š™™™™™@ÍÌÌÌÌÌ@ffffff@333333@333333ó?š™™™™™ @ÍÌÌÌÌÌü?š™™™™™@@š™™™™™@ÍÌÌÌÌÌ@ffffffæ?@@333333!@š™™™™™,@333333@ffffff@š™™™™™(@333333@ÍÌÌÌÌÌ@333333%@š™™™™™ @š™™™™™#@ÍÌÌÌÌÌ@ÍÌÌÌÌÌü?@ÍÌÌÌÌÌ@ @333333û?š™™™™™@333333ó?š™™™™™@š™™™™™@@333333@ffffff@333333!@ @ð?ø?ÍÌÌÌÌÌ@333333@ø?!@ð?@š™™™™™@333333$@@@š™™™™™ @ @333333@ÍÌÌÌÌÌ@333333@333333 @@@ffffff@ÍÌÌÌÌÌü?ffffff@333333@ffffffþ?ffffff@@ÍÌÌÌÌÌ@ffffff @ffffffæ?333333@ffffff@ÍÌÌÌÌÌ@333333@333333ó?!@333333,@ÍÌÌÌÌÌ(@@š™™™™™!@333333@š™™™™™@ffffffæ?333333@š™™™™™@š™™™™™ñ?ÍÌÌÌÌÌì?ÍÌÌÌÌÌü?ÍÌÌÌÌÌì?@ÍÌÌÌÌÌ"@ffffff@@š™™™™™ù?ÍÌÌÌÌÌ@ffffff@ÍÌÌÌÌÌ@š™™™™™@ffffffæ?@333333 @@š™™™™™ @@š™™™™™é?š™™™™™@š™™™™™ @333333"@ffffff@ @333333@ffffff@ÍÌÌÌÌÌ@š™™™™™é?333333@@ÍÌÌÌÌÌü?ÍÌÌÌÌÌ@ÍÌÌÌÌÌì?$@ffffffþ?ÍÌÌÌÌÌ @@ffffff @š™™™™™"@@@!@333333ó?š™™™™™@ffffff@š™™™™™@ffffff@ÍÌÌÌÌL6@ffffff @ffffff@@š™™™™™@ffffff@ffffff@š™™™™™é?ffffff)@@333333û?333333û?ÍÌÌÌÌÌ@ÍÌÌÌÌÌ)@ @š™™™™™ñ?š™™™™™ù?ÍÌÌÌÌÌ@ffffff#@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ@333333@ÍÌÌÌÌÌ@333333@ø?333333@š™™™™™ @ffffff@š™™™™™ @@š™™™™™@ffffff@ÍÌÌÌÌÌ@@ffffff@ÍÌÌÌÌÌ@ffffff@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ%@ffffff@ÍÌÌÌÌÌ!@ÍÌÌÌÌÌ@ffffffþ?333333 @š™™™™™@ÍÌÌÌÌÌü?ÍÌÌÌÌÌ@€<@ð?ffffff$@333333@ffffffþ?ffffff@ @š™™™™™ @š™™™™™@ @333333ó?š™™™™™ @ffffff@ffffff@@ffffff@ffffff@ð?ffffff@'@ÍÌÌÌÌÌ@@ÍÌÌÌÌÌ@š™™™™™ @333333 @ÍÌÌÌÌÌ@ffffff@333333 @š™™™™™@ffffff @ÍÌÌÌÌÌ@333333@333333@ffffffþ?ffffffþ?à?ffffff @ffffff3@333333@333333'@š™™™™™Àš™™™™™ÀffffffÀš™™™™™ÀÀfffff¦EÀ€1ÀÍÌÌÌÌÌ!Àš™™™™™À!ÀÍÌÌÌÌÌ)ÀÍÌÌÌÌÌÀš™™™™™ À À333333ÀÍÌÌÌÌÌ'Àffffff#Àš™™™™™*ÀÀffffffÀffffff#ÀffffffÀ333333%Àffffff%À33333³0Àš™™™™™'À333333Àš™™™™™!ÀffffffÀffffffÀ333333&ÀffffffÀÍÌÌÌÌÌ&Àš™™™™™Àffffff"ÀÀÍÌÌÌÌÌÀš™™™™™ Àš™™™™™À333333!À333333(À333333'ÀÍÌÌÌÌÌ!À333333ÀffffffÀffffffÀffffff,ÀÍÌÌÌÌÌÀffffff!À333333ÀÍÌÌÌÌÌÀffffff)Àffffff!Àš™™™™™0Àš™™™™™.Àš™™™™™%Àffffff&ÀÍÌÌÌÌÌÀ333333ÀÍÌÌÌÌÌÀ333333$ÀÍÌÌÌÌÌ&À333333ÀffffffÀffffffÀš™™™™™ÀÀš™™™™™'À&ÀffffffÀffffff"ÀÍÌÌÌÌÌ%Àš™™™™™ À)Àffffff#ÀÍÌÌÌÌÌ'ÀÍÌÌÌÌÌ$À)ÀÍÌÌÌÌÌÀš™™™™7À0Àffffff,Àš™™™™™ ÀffffffÀffffff&ÀÍÌÌÌÌÌÀÀš™™™™™ Àš™™™™™ ÀffffffÀš™™™™™ Àš™™™™™!À333333 À333333-Àffffff*ÀÍÌÌÌÌÌ'ÀÀffffff+À333333À333333(À33333³0ÀÀ333333Àš™™™™™#À5ÀÍÌÌÌÌÌ0ÀÍÌÌÌÌÌÀffffff2ÀffffffÀ"À333333 ÀÍÌÌÌÌÌ À333333 Àš™™™™™À!ÀffffffÀ333333û¿ffffffÀÀffffff"À333333&À À(Àš™™™™™À'À333333+À-Àš™™™™™!À)ÀÍÌÌÌÌÌ0Àš™™™™™ù¿ffffffÀ333333"Àš™™™™™ÀÍÌÌÌÌÌ#À33333³1ÀÍÌÌÌÌÌ!ÀÍÌÌÌÌÌÀÀÍÌÌÌÌÌÀffffff"À333333!À333333À333333"ÀÀ333333 ÀÍÌÌÌÌÌ+À$ÀÀffffffÀ&Àffffff/ÀÍÌÌÌÌÌÀš™™™™™À!Àš™™™™™Àffffff'ÀÍÌÌÌÌÌ"À4Àffffff&ÀÀ33333³3ÀÀ333333%À333333!À333333À"ÀÀffffffÀffffff+ÀÍÌÌÌÌL1ÀÍÌÌÌÌÌÀÍÌÌÌÌÌ,À333333(Àš™™™™™À4ÀÍÌÌÌÌÌ&À333333(À,À333333+Àš™™™™™ÀÍÌÌÌÌÌÀÍÌÌÌÌÌ$ÀÍÌÌÌÌÌÀš™™™™™-ÀÍÌÌÌÌÌ À@AÀ/ÀÀ333333ÀÍÌÌÌÌL2À333333ÀÍÌÌÌÌÌÀš™™™™™Àfffffæ7Àš™™™™™)ÀÀ3333331Àš™™™™™)Àffffff)Àfffffæ5ÀffffffÀÍÌÌÌÌÌ!À$Àffffff À333333 Àš™™™™™Àš™™™™™ÀÍÌÌÌÌÌ À333333ÀÍÌÌÌÌÌ#À+ÀffffffÀ333333)ÀffffffÀ"ÀÍÌÌÌÌL=À333333)Àffffff$Àš™™™™™$Àš™™™™™-ÀffffffÀš™™™™™ À333333Àffffff%ÀÍÌÌÌÌÌ'ÀÍÌÌÌÌÌÀÍÌÌÌÌÌ'À€1ÀffffffÀš™™™™™À)ÀÀš™™™™™"Àš™™™™™/À€2À$À/ÀÀÍÌÌÌÌÌÀÍÌÌÌÌÌÀš™™™™™À0À333333À333333ÀffffffÀš™™™™™ÀffffffÀffffff ÀÍÌÌÌÌÌÀ333333"ÀffffffÀffffff"Àš™™™™™ÀffffffÀÍÌÌÌÌÌ%À Àffffff'À#À333333Àš™™™™™ÀÍÌÌÌÌÌÀÀÍÌÌÌÌÌÀÍÌÌÌÌÌ%ÀÍÌÌÌÌÌ#ÀÍÌÌÌÌÌÀ!ÀÍÌÌÌÌÌ$ÀÍÌÌÌÌÌÀ333333ÀÍÌÌÌÌÌ1Àffffff!Àš™™™™™Ù¿š™™™™™*Àš™™™™™#Àš™™™™™$À333333À333333Àš™™™™™!ÀÀ À(Àš™™™™™ À333333,À"Àffffffþ¿ ÀÀÀ)Àš™™™™™%À(ÀÍÌÌÌÌÌ&ÀÍÌÌÌÌÌ2À2Àffffff À333333Àš™™™™™ Àffffff'ÀÀÍÌÌÌÌÌ"Àš™™™™™ÀÍÌÌÌÌÌ ÀÍÌÌÌÌÌ/À.ÀÍÌÌÌÌÌô¿š™™™™™ÀÀffffffÀ333333Àffffff&ÀÍÌÌÌÌÌ*ÀffffffÀ333333*À333333À À)Àš™™™™™+À333333&ÀffffffÀ333333Àš™™™™™'ÀÍÌÌÌÌÌ)Àffffff,Àš™™™™™/Àffffff-Àš™™™™™7À>Àš™™™™™!ÀÍÌÌÌÌÌ2ÀffffffÀffffffÀ333333Àffffff-ÀÍÌÌÌÌÌ*ÀÍÌÌÌÌÌ#ÀÍÌÌÌÌÌ-À;Àš™™™™™%ÀÍÌÌÌÌÌÀffffff(ÀÀÍÌÌÌÌÌÀffffffÀffffffÀ#ÀÍÌÌÌÌÌ À$À333333À€5Àš™™™™™+À'Àš™™™™™À€=À333333ÀÍÌÌÌÌÌ Àfffffæ0ÀÀš™™™™Y@Àffffff,ÀÍÌÌÌÌÌ$Àø¿ÍÌÌÌÌÌÀ333333'ÀÍÌÌÌÌL2Àffffff%Àš™™™™™+Àš™™™™™À Àffffff#À333333/ÀÀffffff#À€3ÀÍÌÌÌÌÌÀ+Àffffff+À3333335ÀÍÌÌÌÌÌ+À.À333333#ÀÍÌÌÌÌÌ0ÀÍÌÌÌÌÌÀ333333$Àš™™™™™(ÀffffffÀš™™™™™CÀ(Àffffff!À333333"Àš™™™™™À333333À333333,À333333%ÀffffffÀÍÌÌÌÌÌ.ÀÀ333333À+ÀÀffffff$Àš™™™™™"À)ÀÍÌÌÌÌÌü¿ffffffö¿*À333333 Àš™™™™™Àffffff ÀÍÌÌÌÌÌ!ÀffffffÀ,ÀÀš™™™™™@@@ø?ÍÌÌÌÌÌô?š™™™™™é?@333333 @ÍÌÌÌÌÌü?ÍÌÌÌÌÌ@ÍÌÌÌÌÌì?ÍÌÌÌÌÌô?š™™™™™Ù?333333 @333333ó?@š™™™™™ù?š™™™™™@@ÍÌÌÌÌÌ@ffffffö?ffffffæ?ÍÌÌÌÌÌì?ÍÌÌÌÌÌ@š™™™™™ @ÍÌÌÌÌÌ-@ð?ÍÌÌÌÌÌ@š™™™™™ù?ÍÌÌÌÌÌ@ð?ÍÌÌÌÌÌÀš™™™™™ñ¿Àš™™™™™É?š™™™™™é?à?à¿ffffff濚™™™™™é?333333ã¿333333ã?࿚™™™™™é?š™™™™™É¿š™™™™™É?š™™™™™¹?333333Ó?࿚™™™™™é¿š™™™™™Ù¿333333Ó?š™™™™™¹¿š™™™™™É¿333333Ó¿š™™™™™Ù?333333Ó¿333333Ó?š™™™™™ñ?š™™™™™ù¿š™™™™™Ù?š™™™™™É¿š™™™™™É?š™™™™™¹?š™™™™™¹?à?š™™™™™Ù¿333333Ó?š™™™™™¹?š™™™™™¹?ffffffö¿333333Ó?š™™™™™Ù¿333333Ó¿š™™™™™É?333333Ó¿à?333333Ó¿š™™™™™¹?333333Ó?333333ӿ࿚™™™™™¹¿š™™™™™é?ffffff濚™™™™™Ù¿š™™™™™É?š™™™™™É?š™™™™™¹?š™™™™™É¿š™™™™™É?š™™™™™¹?à?333333Ó?š™™™™™É?333333Ó?š™™™™™¹¿š™™™™™É¿333333Ó?333333Ó?333333Ó?333333Ó?š™™™™™Ù¿à¿š™™™™™¹?š™™™™™¹?š™™™™™Ù¿333333ã¿ffffffÀš™™™™™¹¿š™™™™™É¿š™™™™™é¿š™™™™™Ù¿š™™™™™Ù¿333333Ó¿š™™™™™É¿333333Ó?š™™™™™É¿333333ã?333333Ó?333333Ó¿333333Ó?š™™™™™Ù¿333333Ó?à?ffffffæ¿333333Ó?š™™™™™¹¿š™™™™™ñ¿333333㿚™™™™™É¿š™™™™™É?333333Ó¿333333Ó?ffffffæ?333333Ó¿š™™™™™Ù?333333Ó?333333Ó¿š™™™™™¹?š™™™™™¹¿333333㿚™™™™™¹?ffffffæ?š™™™™™É¿š™™™™™Ù¿š™™™™™Ù?š™™™™™É?š™™™™™¹?š™™™™™Ù?ffffff濚™™™™™Ù¿333333ã¿ÍÌÌÌÌÌì?š™™™™™¹¿à¿š™™™™™¹?ffffff濚™™™™™é?š™™™™™É?š™™™™™Ù?š™™™™™é?333333Ó?š™™™™™¹?š™™™™™Ù?ffffffæ?š™™™™™é¿333333Ó?š™™™™™¹?š™™™™™Ù?š™™™™™Ù¿333333Ó?š™™™™™¹¿š™™™™™¹?à¿333333Ó¿333333Ó?š™™™™™É¿š™™™™™Ù?š™™™™™¹?š™™™™™É?333333Ó?š™™™™™É?333333ã¿333333Ó?š™™™™™É?333333ã?333333ã?࿚™™™™™¹?333333Ó?š™™™™™É¿à?š™™™™™Ù¿š™™™™™¹?š™™™™™Ù?333333Ó?333333Ó?ffffff濚™™™™™É¿à?333333Ó?š™™™™™É?࿚™™™™™¹?š™™™™™¹?š™™™™™É?ffffffö¿ÍÌÌÌÌÌ쿚™™™™™É?š™™™™™é?š™™™™™É?š™™™™™¹?š™™™™™é?š™™™™™É¿š™™™™™É?333333Ó?333333ó?š™™™™™É?ÍÌÌÌÌÌì?š™™™™™¹¿333333Ó¿à?š™™™™™Ù¿š™™™™™¹?ÍÌÌÌÌÌ쿚™™™™™¹?à¿333333Ó?333333Ó¿š™™™™™Ù?š™™™™™É?š™™™™™ñ?333333Ó?ÍÌÌÌÌÌ쿚™™™™™Ù¿333333Ó¿š™™™™™¹?333333ã¿ffffffæ¿ffffff濚™™™™™É¿à?𿚙™™™™É?࿚™™™™™Ù?š™™™™™É¿333333Ó¿à¿333333Ó?333333Ó?333333㿚™™™™™¹?ffffff濚™™™™™Ù¿ffffffæ?š™™™™™¹?š™™™™™¹¿š™™™™™Ù?š™™™™™¹?ÍÌÌÌÌÌ쿚™™™™™¹?333333ã¿à?š™™™™™¹?ffffffæ?333333ã¿ð?š™™™™™é?š™™™™™É?š™™™™™¹¿333333Ó¿š™™™™™¹?333333Ó?333333ã?š™™™™™¹?š™™™™™É¿š™™™™™¹?š™™™™™¹¿š™™™™™é¿à?š™™™™™¹¿š™™™™™¹?à?š™™™™™É¿š™™™™™¹?š™™™™™¹¿š™™™™™Ù¿š™™™™™¹?333333Ó¿ffffffæ¿333333Ó?࿚™™™™™¹?à?š™™™™™Ù?à?333333Ó?š™™™™™¹?š™™™™™¹?š™™™™™É?333333Ó?333333Ó¿š™™™™™Ù?š™™™™™É?333333Ó?š™™™™™É¿š™™™™™É¿333333㿚™™™™™¹?ffffffæ¿ffffff濚™™™™™Ù¿ð¿š™™™™™Ù¿š™™™™™¹?333333㿚™™™™™É?333333ã?࿚™™™™™É¿333333Ó¿š™™™™™É?333333Ó?333333Ó¿š™™™™™É?š™™™™™É¿š™™™™™Ù¿š™™™™™Ù?š™™™™™Ù¿333333Ó¿š™™™™™Ù?š™™™™™É?ffffff濚™™™™™É?š™™™™™¹¿333333Ó¿š™™™™™Ù¿š™™™™™É?333333Ó¿ffffffæ¿à¿š™™™™™Ù¿333333Ó?𿚙™™™™É¿333333ã?š™™™™™É?ÍÌÌÌÌÌì?ÍÌÌÌÌÌ쿚™™™™™É?ð?333333ã?š™™™™™É?ð?333333ã¿à?333333ã?333333Ó?š™™™™™ñ¿š™™™™™É?ÍÌÌÌÌÌ쿚™™™™™¹¿š™™™™™¹?333333Ó?š™™™™™¹?š™™™™™é?š™™™™™Ù¿ÍÌÌÌÌÌ쿚™™™™™ñ¿š™™™™™¹?š™™™™™¹?š™™™™™Ù¿à?š™™™™™é¿333333Ó?333333㿚™™™™™¹?š™™™™™É?š™™™™™É¿š™™™™™É?š™™™™™ù¿š™™™™™É¿333333Ó?ÍÌÌÌÌÌì?š™™™™™é¿š™™™™™É?š™™™™™Ù¿š™™™™™É?š™™™™™É?𿚙™™™™Ù?š™™™™™É?333333ã?ffffff濚™™™™™Ù?š™™™™™Ù?š™™™™™Ù?à?š™™™™™¹?š™™™™™Ù?š™™™™™Ù¿š™™™™™É?333333㿚™™™™™Ù?333333Ó?à?à?š™™™™™¹¿š™™™™™É?š™™™™™Ù?š™™™™™¹?࿚™™™™™Ù¿ffffffæ?ð?š™™™™™É¿š™™™™™é¿à¿333333ã¿333333Ó?š™™™™™É?333333Ó¿š™™™™™¹?š™™™™™É?š™™™™™É¿š™™™™™Ù?à?ffffffæ?š™™™™™¹?à?š™™™™™É?š™™™™™Ù¿ffffff @à?š™™™™™Ù?333333@@333333À333333@ÍÌÌÌÌÌ@333333 @@@ÍÌÌÌÌÌ@333333@š™™™™™ÀÍÌÌÌÌÌì¿333333ã?ÍÌÌÌÌÌô?333333 @ffffff@š™™™™™é?333333ã?ffffff@š™™™™™ù?ÍÌÌÌÌÌ@ @š™™™™™@š™™™™™é?ð?ffffff@š™™™™™@ffffffö?š™™™™™@ÍÌÌÌÌÌô?333333@333333û?ÍÌÌÌÌÌ @ffffff@ÍÌÌÌÌÌ@333333@ffffffö?@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ@ffffffþ?333333@ffffff@š™™™™™¹¿ÍÌÌÌÌÌ@333333û?333333 @š™™™™™ñ?š™™™™™¹¿š™™™™™ @š™™™™™¹¿@@ø?ÍÌÌÌÌÌ@š™™™™™@ffffff@ÍÌÌÌÌÌ@333333@ÍÌÌÌÌÌô?ÍÌÌÌÌÌ@ffffff@ÍÌÌÌÌÌ@š™™™™™@ÍÌÌÌÌÌ @333333ó?ffffffö?@ÍÌÌÌÌÌì?ÍÌÌÌÌÌü?š™™™™™@š™™™™™@@333333@@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ@ffffffæ?ffffffþ?š™™™™™ù?ffffff @ÍÌÌÌÌÌ@ÍÌÌÌÌÌ@ffffff@ÍÌÌÌÌÌ@#@ÍÌÌÌÌÌ@@$@ÍÌÌÌÌÌ@333333Ó?š™™™™™@@ffffffþ?@ÍÌÌÌÌÌ@333333Ó?ÍÌÌÌÌÌô?š™™™™™Ù?ð?š™™™™™@ÍÌÌÌÌÌü?š™™™™™É¿ffffffö?ÍÌÌÌÌÌ@@ÍÌÌÌÌÌü?ø?ffffff@333333@ @@333333@ÍÌÌÌÌÌì¿@333333@@š™™™™™@ffffff@ÍÌÌÌÌÌ@333333 @333333û?š™™™™™@333333ã?@š™™™™™@333333@ffffff@333333@š™™™™™ @š™™™™™ù?ø?ÍÌÌÌÌÌ@@333333Ó?@ffffff @š™™™™™ñ?š™™™™™Ù?ÍÌÌÌÌÌ@@à¿333333@š™™™™™@@@333333@ @ffffffæ?š™™™™™É¿š™™™™™é¿š™™™™™ @š™™™™™ @š™™™™™é?ð?@333333ã?333333û?š™™™™™ @à?à?š™™™™™@@ÍÌÌÌÌÌ@333333Ó¿333333û?@š™™™™™@ÍÌÌÌÌÌü?ÍÌÌÌÌÌ@333333Ó?@ffffff@ffffffæ?š™™™™™ù¿š™™™™™ñ?333333 @ @@333333Ó?@@ÍÌÌÌÌÌü?@š™™™™™Ù?ffffffþ?ffffff@ð?333333@@333333ó?ffffffþ?ÍÌÌÌÌÌ@à?@ÍÌÌÌÌÌ@š™™™™™ù?ÍÌÌÌÌÌ@@333333@š™™™™™É¿ffffff@ÍÌÌÌÌÌ@@š™™™™™@ffffff @ffffff@š™™™™™ @š™™™™™ @š™™™™™é¿š™™™™™ À@ffffff!@ffffff@ffffff@ffffff@š™™™™™ù?š™™™™™ñ?ÍÌÌÌÌÌ@ø?š™™™™™É¿ÍÌÌÌÌÌ @@@ÍÌÌÌÌÌ@ÍÌÌÌÌÌô?333333@@š™™™™™@@ffffffþ?ffffff @333333û?@ffffff@š™™™™™é?@š™™™™™ñ¿š™™™™™@ÍÌÌÌÌÌ @ffffffæ? @š™™™™™ù?ffffffö?š™™™™™ù?š™™™™™ù?333333 @333333@š™™™™™ù?@à¿ffffff@333333ã¿333333û?333333 @@333333 @ÍÌÌÌÌÌ@333333ó?ÍÌÌÌÌÌ@ÍÌÌÌÌÌ@š™™™™™ @ffffffæ?ÍÌÌÌÌÌì?333333@š™™™™™ñ?ffffffö? @ @š™™™™™@333333 @š™™™™™@ffffff@š™™™™™É?333333û?ÍÌÌÌÌÌô?ÍÌÌÌÌÌ@333333㿚™™™™™@ÍÌÌÌÌÌ@333333@ffffff@ffffff@š™™™™™ @ÍÌÌÌÌÌ@333333ã?333333@ÍÌÌÌÌÌì?š™™™™™@ð?ÍÌÌÌÌÌì?š™™™™™@š™™™™™@@š™™™™™Ù?ffffff@ffffffÀš™™™™™ÀÍÌÌÌÌÌü?ffffff!@@ÍÌÌÌÌÌì?š™™™™™ù?ffffffö?333333ã?ffffffö?@ÍÌÌÌÌÌ@333333@š™™™™™ @ffffff@ÍÌÌÌÌÌ@š™™™™™ @ÍÌÌÌÌÌÀ@ffffffþ?ÍÌÌÌÌÌÀ@š™™™™™@š™™™™™É¿ÍÌÌÌÌÌ@@š™™™™™é?ffffff @ffffff@ffffffö?ÍÌÌÌÌÌÀš™™™™™@š™™™™™@ÍÌÌÌÌÌì?š™™™™™ @ffffff@@ffffff@@ffffffæ?š™™™™™ñ?š™™™™™@@333333 @š™™™™™@š™™™™™é?333333@ffffffæ?š™™™™™Ù¿ffffffö?@@333333ã?@@333333û?333333û?ffffffö¿333333@ÍÌÌÌÌÌü?333333@ffffffþ?333333 @333333@ø?ffffff@š™™™™™ @š™™™™™ñ?333333@@ffffff@333333"@š™™™™™ñ¿ @ffffff*@ÍÌÌÌÌÌì?ÍÌÌÌÌÌì?ffffff@ffffff@333333Ó?333333Ó?ffffffö?ffffffþ?333333!Àš™™™™™ñ?ÍÌÌÌÌÌ@@333333@333333@ÍÌÌÌÌÌ @ffffff@@ÍÌÌÌÌÌ'@ffffffö?ffffffö?š™™™™™@333333ã?ÍÌÌÌÌÌ&@ffffff@š™™™™™"@ÍÌÌÌÌÌ@š™™™™™é?333333û?š™™™™™é?333333@ffffffæ?š™™™™™@š™™™™™Àffffff @333333ã¿ÍÌÌÌÌÌ@ @š™™™™™Ù¿ÍÌÌÌÌÌ@ÍÌÌÌÌÌ@@@š™™™™™ñ?š™™™™™ù?ÍÌÌÌÌÌ@333333 @333333ó?ø?ffffff@𿚙™™™™ñ?š™™™™™@š™™™™™@š™™™™™@š™™™™™@ÍÌÌÌÌÌ@ÍÌÌÌÌÌô?ÍÌÌÌÌÌì?ffffff@ÍÌÌÌÌÌÀ333333 @ð¿333333ã¿@ffffffö?333333@ÍÌÌÌÌÌ@333333@š™™™™™ñ?ffffff @ÍÌÌÌÌÌ @ffffffæ?ø?333333@ÍÌÌÌÌÌ@ffffff@ø?š™™™™™!@À@ÍÌÌÌÌÌ@333333)Àffffff0Àfffffæ4@ffffff)ÀÍÌÌÌÌÌ(Àš™™™™Ù[Àfffff&GÀ€4ÀÍÌÌÌÌÌ+Àš™™™™™%Àfffff¦AÀ333333$ÀÍÌÌÌÌÌü¿ffffff'@à?š™™™™™6Àffffff3Àš™™™™4ÀÍÌÌÌÌÌDÀÍÌÌÌÌÌ@ffffff Àffffffö¿ÍÌÌÌÌÌì?ffffff+À33333³4ÀIÀ€9À)Àfffffæ0À€3ÀÍÌÌÌÌÌÀÍÌÌÌÌÌ(Àffffff1Àš™™™™™+Àš™™™™™7ÀÍÌÌÌÌÌ0Àš™™™™1À333333 Àffffff"ÀÍÌÌÌÌÌÀffffffö¿4ÀÍÌÌÌÌÌ2À&Àffffff+À333333À333333)ÀÍÌÌÌÌÌ%À33333³5ÀfffffæBÀš™™™™™ ÀffffffÀ333333û?!Àffffff8Àfffffæ2ÀffffffCÀÍÌÌÌÌŒBÀ5Àš™™™™:À333333"@ÍÌÌÌÌÌÀš™™™™™!Àš™™™™6À"À333333,À+Àffffffæ¿ÍÌÌÌÌÌ9ÀÀffffff"À333333:À333333;Àffffff$ÀÍÌÌÌÌL3À&Àš™™™™YGÀffffff(Àffffff<ÀÍÌÌÌÌL8Àš™™™™AÀfffffæ1Àfffff¦AÀffffff"@ffffffGÀš™™™™ihÀÍÌÌÌÌL9ÀÍÌÌÌÌÌ<Àfffff¦\ÀÀOÀffffff=À333333 Àfffffæ;À333333Ó¿ffffff@)@ÍÌÌÌÌÌ @333333 Àš™™™™™=Àš™™™™™ù¿ffffff@fffffæ7Àš™™™™<Àš™™™™™AÀÍÌÌÌÌÌô?š™™™™™2À€6À333333&À,ÀÍÌÌÌÌÌÀÍÌÌÌÌÌÀffffffÀš™™™™0ÀÍÌÌÌÌŒFÀfffff¦BÀ!ÀÍÌÌÌÌ BÀš™™™™™À2À333333Àffffffæ?333333/ÀÍÌÌÌÌÌ0À333333À€0Àš™™™™™¹¿333333/Àš™™™™™@/Àffffff*À3Àffffff-Àš™™™™3ÀffffffÀfffffæ>Àš™™™™2À333333%ÀÍÌÌÌÌÌ$Àffffff*ÀÍÌÌÌÌL?À333333@#ÀÍÌÌÌÌÌ À333333+Àfffffæ4ÀÍÌÌÌÌ AÀ333333*ÀÍÌÌÌÌÌÀÍÌÌÌÌÌÀ333333-Àfffffæ2ÀÍÌÌÌÌÌ0Àffffff$Àfffffæ0ÀÍÌÌÌÌL1Àš™™™™™+Àš™™™™5Àffffff8ÀÍÌÌÌÌÌ"À333333Àš™™™™7À33333³:ÀÀÀ€:À333333#À3333332À333333/Àš™™™™=Àffffff=À333333#À33333³HÀ333333%@33333³>À€1Àš™™™™™+Àffffff'Àffffff@$Àš™™™™Y@À33333³AÀffffffÀfffffæ=À€9ÀÍÌÌÌÌL2@ÍÌÌÌÌŒIÀ€<Àš™™™™™=Àfffff†RÀÍÌÌÌÌ FÀÍÌÌÌÌÌCÀ=@š™™™™™0À3À333333À33333sEÀš™™™™™ÀÍÌÌÌÌìPÀÍÌÌÌÌL?Àš™™™™™!Àš™™™™™À33333sDÀffffffÀÍÌÌÌÌÌ_ÀÀÍÌÌÌÌÌ"À33333“]Àš™™™™9ÀÀÍÌÌÌÌÌ Àš™™™™0À€:À€MÀffffff@š™™™™™Àš™™™™™6Àš™™™™™8ÀÍÌÌÌÌÌLÀÍÌÌÌÌÌ-ÀÀš™™™™™@$Àš™™™™™ñ?ÍÌÌÌÌÌ@€9ÀÍÌÌÌÌÌ:Àfffffæ<ÀÍÌÌÌÌÌ=Àš™™™™™@333333Àfffffæ7@ffffff(ÀffffffHÀš™™™™™"@%À3333335À3333337À333333û¿333333@š™™™™™1À5Àffffff'Àffffff7À)À€4À€GÀffffffÀÍÌÌÌÌÌ3Àffffff@š™™™™1Àffffffö?ffffffAÀ@MÀÍÌÌÌÌÌ1Àfffffæ;Àš™™™™™5À@NÀ7À33333³<Àffffff0À333333Ó¿š™™™™™¹¿ÍÌÌÌÌÌ-Àš™™™™7Àffffff%ÀÍÌÌÌÌÌ#Àffffffö¿š™™™™™@333333ÀÍÌÌÌÌÌ Àffffff @33333³1ÀÍÌÌÌÌÌÀ333333+ÀÍÌÌÌÌÌ+ÀÍÌÌÌÌÌü¿š™™™™™;À Àffffff9À3333333À333333@ÍÌÌÌÌÌÀ3333330À333333@š™™™™™+À333333+Àš™™™™=Àš™™™™3À€0ÀÀffffff)ÀÍÌÌÌÌÌ*ÀÍÌÌÌÌÌH@*ÀÍÌÌÌÌÌ9À3333337@ÍÌÌÌ̼`@333333#@@3333334À€8ÀÍÌÌÌÌÌÀfffffæ2Àffffff'Àš™™™™™/ÀÍÌÌÌÌì[À333333)Àffffff3ÀÍÌÌÌÌÌ>À€9À33333óAÀ3333331À333333%@š™™™™™3À333333À%@ÍÌÌÌÌÌ-ÀffffffÀ@@ÀÍÌÌÌÌL6Àfffff&AÀffffff1Àš™™™™™4À333333ó¿š™™™™™À333333@3333339À@ÍÌÌÌÌÌ,Àffffffæ¿ffffff/ÀfffffæEÀffffff6À,@ÍÌÌÌÌÌ%ÀÀš™™™™™+ÀÀš™™™™™:À333333?À€1Àø¿Àffffff%@š™™™™9À33333³0Àffffff@333333,ÀÍÌÌÌÌÌÀš™™™™™#À€FÀ0Àfffff¦BÀffffff3À33333sGÀš™™™™™1À€9À33333sIÀÍÌÌÌÌ GÀ333333Àš™™™™¹SÀÍÌÌÌÌ GÀ Àš™™™™™(À333333ó??ÀÍÌÌÌÌLBÀš™™™™™@33333óCÀ `À33333³6Àfffffæ;Àfffffæ0Àffffffö?333333%Àš™™™™™'ÀÍÌÌÌÌÌÀÀ33333³@@'À333333UÀÍÌÌÌÌÌ1Àš™™™™™@ÍÌÌÌÌLLÀ€@Àffffff>ÀÍÌÌÌÌÌ/ÀfffffF`ÀffffffÀ)ÀÀEÀÍÌÌÌÌÌ@€MÀÍÌÌÌÌÌ5À°bÀÀÍÌÌÌÌÌ&@ÍÌÌÌÌÌ-ÀÍÌÌÌÌÌÀš™™™™™8Àš™™™™™?À€1Àš™™™™™%ÀÍÌÌÌÌÌ!@3333334Àffffff-À€7À€2Àffffff0À333333?@ffffff-Àffffff @ÍÌÌÌÌÌ0Àš™™™™™JÀ€5Àffffff8Àfffff¦HÀš™™™™™%ÀÍÌÌÌÌLBÀš™™™™™+ÀÍÌÌÌÌÌ5ÀÍÌÌÌÌÌ:À333333/ÀðbÀ5Àš™™™™2À33333³5ÀÍÌÌÌÌÌ4Àffffffö¿š™™™™™@ÍÌÌÌÌÌ4Àffffff(@ÍÌÌÌÌÌ#À333333?ÀÍÌÌÌÌÌÀÀ33333³BÀš™™™™™À3333339Àš™™™™™.Àš™™™™™5Àffffff@ÍÌÌÌÌÌ@ÍÌÌÌÌL9ÀÍÌÌÌÌL7À333333+À€6Àš™™™™™,Àš™™™™9R@ÍÌÌÌÌÌ0À+@ffffff.@333333ó?ÍÌÌÌÌÌÀ2@333333!@fffffÆWÀÍÌÌÌÌÌô¿@$@9@š™™™™YKÀffffff1Àš™™™™™@š™™™™™6@ÍÌÌÌÌŒA@33333ó@@ffffff(À333333(À3333338@š™™™™4@ÍÌÌÌÌÌ3@ÍÌÌÌÌÌ@@ÍÌÌÌÌL7@ÍÌÌÌÌÌÀ333333 Àffffff À@š™™™™™¹?333333 @333333Ó¿fffff&C@š™™™™™@ÍÌÌÌÌL8@š™™™™™;@333333@333333@ø¿33333³@@ffffff,@33333³1@ÍÌÌÌÌÌ-@@@ffffff'À333333@ffffff@6@ÍÌÌÌÌÌÀ6Àš™™™™™$@š™™™™™#Àš™™™™™2@333333<@š™™™™™ @ffffff2@€@@ffffff@š™™™™4@333333@333333*À@A@š™™™™ÙF@333333-@ffffffÀÍÌÌÌÌÌ=@ffffffÀffffff#@33333³9@€2À%@€@@ÍÌÌÌÌŒA@ÍÌÌÌÌÌÀš™™™™2@š™™™™™ñ?ÍÌÌÌÌ A@ÍÌÌÌÌÌ1ÀÀÍÌÌÌÌÌ"ÀÍÌÌÌÌÌÀ333333@ffffff;@ ÀÍÌÌÌÌÌ>@333333=À`SÀC@š™™™™™K@ffffff7@ÍÌÌÌÌÌô?:ÀÍÌÌÌÌÌ#@š™™™™™Ù¿ffffff(@ÍÌÌÌÌL>@fffff¦F@ÍÌÌÌÌÌ&@ @:Àffffff@fffffæ;@š™™™™™@š™™™™=Àš™™™™6ÀÍÌÌÌÌÌ=@333333/@š™™™™™À@8@ÍÌÌÌÌL5@333333<@š™™™™™7@š™™™™™@ÍÌÌÌÌ KÀ3333337@ÍÌÌÌÌL3@#@ffffff2@7@33333³4@fffffæ=@333333Ó?š™™™™C@333333Ó?333333Ó?š™™™™™=@š™™™™™"@€5@ @š™™™™YA@ÍÌÌÌÌÌ@333333Àffffff"@ÍÌÌÌÌÌ:@š™™™™™ Àš™™™™™@ÍÌÌÌÌÌ0@ffffffö¿333333Àfffffæ@@ÀD@ÍÌÌÌÌÌ @,@ffffff0@ÍÌÌÌÌÌ"@ÍÌÌÌÌŒA@33333ó@@ÍÌÌÌÌÌ3@ @ffffff À7À33333³;@fffffæ1@333333Àš™™™™™ÀÍÌÌÌÌÌ@ffffffÀÍÌÌÌÌÌô?#@š™™™™™Àffffffö¿ffffff@ffffff'@33333³1@š™™™™™!À333333%ÀÍÌÌÌÌÌ'@ÍÌÌÌÌÌM@@€B@š™™™™™:À@A@š™™™™™@ÍÌÌÌÌÌ/@ÀDÀffffff"Àš™™™™2@ÍÌÌÌÌÌ3@ÍÌÌÌÌ O@ÍÌÌÌÌÌ ÀÍÌÌÌÌÌÀ333333@ÍÌÌÌÌÌ#@À5ÀfffffæD@€2ÀÍÌÌÌÌÌ-Àš™™™™™-@fffffæ>@ÍÌÌÌÌŒ@Àffffff,ÀÍÌÌÌÌÌD@ffffff'ÀÍÌÌÌÌÌ=@-@š™™™™™:Àš™™™™™'@ffffffö¿333333@š™™™™™&Àš™™™™™.@333333 Àš™™™™™&@š™™™™™MÀ7@"@333333@š™™™™™@ffffff-ÀÍÌÌÌÌLIÀš™™™™™@ÍÌÌÌÌLQ@€1@ÍÌÌÌÌŒF@1@333333@š™™™™™,À€AÀš™™™™™¹?333333À333333D@ffffff0@š™™™™<@š™™™™8@ÍÌÌÌÌÌ À-@33333³8@fffffæN@ÍÌÌÌÌÌG@3333331@33333sH@ÍÌÌÌÌÌ@š™™™™™3@š™™™™ùW@š™™™™™É?2@ÍÌÌÌÌ CÀ€2@ffffffA@333333%À€1@@ffffff(À333333ó?ÀffffffÀÍÌÌÌÌLA@333333Ó¿š™™™™™D@ÍÌÌÌÌÌ3À33333³C@ÍÌÌÌÌ EÀš™™™™™CÀ/@33333sF@ffffff0@š™™™™Ù@À333333$ÀÍÌÌÌÌÌ%@@€<@333333@333333À33333³;@ffffffþ¿š™™™™™Ù¿€A@€B@3333334@fffffæ8@€H@@š™™™™™ÀÍÌÌÌÌÌô?ffffffÀ@O@ÍÌÌÌÌÌ=Àš™™™™™&@š™™™™™:@ÍÌÌÌÌÌ4@33333³L@ÍÌÌÌÌÌ?@ffffff*@š™™™™™8@#ÀÍÌÌÌÌÌ @33333³0À@ÍÌÌÌÌÌÀÍÌÌÌÌÌ@:@ÍÌÌÌÌÌ"@ffffffP@!À0@!Àš™™™™9Y@9@š™™™™¹Z@333333@-ÀÍÌÌÌÌÌ!@ÍÌÌÌÌÌÀ333333ó¿ÍÌÌÌÌÌô¿33333sJÀÍÌÌÌÌÌ*@33333óC@@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ!ÀÍÌÌÌÌÌ.@š™™™™3À333333!@333333$@ÍÌÌÌÌÌÀš™™™™™M@fffff&H@fffff&AÀffffffÀfffff¦H@333333Àš™™™™™5@3333336@ÍÌÌÌÌÌ@33333³DÀÍÌÌÌÌÌ@333333G@š™™™™™ ÀÍÌÌÌÌÌ?@$@3333331@š™™™™™?@33333³E@ÍÌÌÌÌÌô¿ÍÌÌÌÌÌ@ÍÌÌÌÌL=@€2@š™™™™™)@ÍÌÌÌÌÌ;@š™™™™™$À5@š™™™™™é?@š™™™™™(Àš™™™™8@33333sP@ffffff$À3333336@ffffff&@ÍÌÌÌÌL7ÀÍÌÌÌÌÌ@fffff¦HÀfffff&O@€;À333333'@333333Àfffff¦@@š™™™™7À333333@š™™™™™>ÀÍÌÌÌÌÌÀ333333@fffffæ9@ÍÌÌÌÌŒG@ÍÌÌÌÌÌ@fffffæM@333333À333333ÀÍÌÌÌÌŒQ@š™™™™™-À%À%@33333SR@ÍÌÌÌÌÌÀ#À333333@€2@€<Àð?33333³NÀÍÌÌÌÌÌ7@€H@š™™™™™.Àffffff$@3333335@333333&@333333B@š™™™™™@À?@ffffff @ÍÌÌÌÌLV@ÍÌÌÌÌÌ*@fffffæ1@š™™™™YJ@fffffæ1@ffffffæ?š™™™™™¹¿ÍÌÌÌÌ G@š™™™™9Àš™™™™™:@;ÀÍÌÌÌÌLC@š™™™™8ÀÍÌÌÌÌ A@33333SW@3333339À333333(@fffffæ^@fffff&D@fffffæ:@ffffffÀÍÌÌÌÌŒ@À@L@@š™™™™YAÀ333333@333333(@ÍÌÌÌÌÌ8ÀÍÌÌÌÌÌÀÍÌÌÌÌÌÀ@`UÀÍÌÌÌÌLI@ffffff @ffffffÀ$Àfffffæ1@š™™™™YIÀffffff*@333333 @333333)ÀP@333333%@š™™™™™7@333333À3333332@333333.ÀÍÌÌÌÌL0@'@fffffæ0@fffffæ1@K@𿚙™™™6@333333Àš™™™™ÙR@ffffff)@fffffæO@š™™™™Ù@@š™™™™™¹¿ffffffæ?à¿@š™™™™™ñ?š™™™™™é?ø?š™™™™™Ù?ÍÌÌÌÌÌ쿚™™™™™¹¿ø?š™™™™™é?ø?š™™™™™ù?š™™™™™¹?š™™™™™ù?ffffffæ?ffffffþ?ÍÌÌÌÌÌì?ÍÌÌÌÌÌì?š™™™™™é?š™™™™™ù?š™™™™™ @š™™™™™É¿333333û¿333333ó?š™™™™™Ù?333333ã?š™™™™™É?ffffffæ?ÍÌÌÌÌÌì?š™™™™™¹?š™™™™™Ù?š™™™™™é?ffffffæ¿333333ã?333333ã?࿚™™™™™¹¿ÍÌÌÌÌÌì?š™™™™™É¿š™™™™™Ù¿ø?333333㿚™™™™™ñ?š™™™™™é?333333Ó?š™™™™™É?š™™™™™É?ÍÌÌÌÌÌì?333333ó?š™™™™™é?à?ð?š™™™™™¹?š™™™™™¹?š™™™™™É?333333Ó?š™™™™™¹?š™™™™™¹?š™™™™™Ù?š™™™™™¹?š™™™™™¹?ÍÌÌÌÌÌô?333333ã?š™™™™™é?ð?š™™™™™ @333333Ó¿à?ffffffæ?ÍÌÌÌÌÌì?333333ã?ffffffö?333333ã?š™™™™™¹?333333.@š™™™™™é¿š™™™™™ @333333 @@333333Ó?š™™™™™É?š™™™™™ù?ð¿333333û?࿚™™™™™ñ?š™™™™™¹?࿚™™™™™¹?ø?ø?ÍÌÌÌÌÌô?333333ã?ÍÌÌÌÌÌ@š™™™™™¹?š™™™™™@š™™™™™ñ¿š™™™™™Ù¿333333ã?ffffffæ?ffffffþ?ÍÌÌÌÌÌ@ffffffæ?333333û?ffffff濚™™™™™É¿333333Ó¿ð?š™™™™™ñ?à?š™™™™™Ù¿ffffffæ?š™™™™™É?333333Ó?333333ã?ÍÌÌÌÌÌì?ÍÌÌÌÌÌô?š™™™™™É¿333333ó?à?à?ÍÌÌÌÌÌì?ð?333333ã¿ffffffæ?ÍÌÌÌÌÌô?333333ã?ffffffæ?333333Ó?ÍÌÌÌÌÌì?š™™™™™é?ÍÌÌÌÌÌô?ÍÌÌÌÌÌ@š™™™™™É?š™™™™™É?ffffffæ?333333@ffffffæ?ffffffæ?ffffffæ?š™™™™™¹?š™™™™™é?š™™™™™é?š™™™™™ñ?š™™™™™É?š™™™™™¹?š™™™™™É?š™™™™™é?š™™™™™¹¿š™™™™™É?ÍÌÌÌÌÌì?ø?š™™™™™é¿@š™™™™™¹?333333ó?š™™™™™@š™™™™™¹¿333333Ó¿š™™™™™Ù?š™™™™™É¿š™™™™™Ù¿š™™™™™¹?š™™™™™É¿333333ã?ÍÌÌÌÌÌô?ffffffæ?333333û¿š™™™™™é?š™™™™™¹?333333ó?@š™™™™™ñ?333333û?ø¿ffffffö?š™™™™™¹?ffffffö?333333Ó¿333333@š™™™™™é?࿚™™™™™¹¿à¿ffffffæ?333333@š™™™™™É?333333@ÍÌÌÌÌÌì?š™™™™™¹¿ÍÌÌÌÌÌ@š™™™™™@š™™™™™ñ?@Àà?š™™™™™ñ?š™™™™™¹?@333333ó¿ÍÌÌÌÌÌì¿333333ó?ffffffö?333333ã?333333Ó?ffffffæ?š™™™™™ù?@à?ÍÌÌÌÌÌì?š™™™™™Ù?333333û¿à?333333ó?ÍÌÌÌÌÌì?ffffffæ?š™™™™™ñ?ffffffþ¿333333ã?š™™™™™é¿š™™™™™ñ?ø?š™™™™™É¿à?333333Ó?š™™™™™@š™™™™™¹?š™™™™™¹?ÍÌÌÌÌÌô?ÍÌÌÌÌÌì?ÍÌÌÌÌÌü?ÍÌÌÌÌÌì?ÍÌÌÌÌÌ@š™™™™™ñ?š™™™™™É?š™™™™™@š™™™™™é¿ffffffþ?š™™™™™¹?š™™™™™¹?333333ã?333333ó?š™™™™™¹¿ÍÌÌÌÌÌô?š™™™™™Ù?ffffff濚™™™™™¹?š™™™™™É¿333333ã?š™™™™™¹?à¿ffffffæ?š™™™™™Ù¿ð?ÍÌÌÌÌÌì?333333ó?š™™™™™é?ffffffæ?333333Ó¿333333Ó?333333Ó?ffffffæ?333333ã?333333ã?333333Ó¿333333Ó?ÍÌÌÌÌÌ@333333ã?š™™™™™Ù?š™™™™™¹?ffffffÀš™™™™™¹¿ffffffæ?ø?š™™™™™é¿š™™™™™Ù?333333Ó¿ÍÌÌÌÌÌ@ffffffö?ffffff @š™™™™™@š™™™™™¹¿š™™™™™¹?333333û?š™™™™™ù?à?ffffffæ¿à?333333ó?ÍÌÌÌÌÌô¿ð?ð?ÍÌÌÌÌÌì?ffffff @ÍÌÌÌÌÌ@š™™™™™É¿ffffffþ?333333㿚™™™™™Ù¿333333@š™™™™™¹¿ffffffæ¿ÍÌÌÌÌÌì¿333333ã?333333@333333@333333ó?š™™™™™¹?@ffffffæ¿ffffffö?š™™™™™@ÍÌÌÌÌÌ@333333ã?ÍÌÌÌÌÌ쿚™™™™™ñ?@š™™™™™¹?ffffffö?ð?à?š™™™™™Ù?à?ÍÌÌÌÌÌ@333333@ffffff@ÍÌÌÌÌÌü?333333Ó¿@š™™™™™À333333û¿@š™™™™™ñ?à?࿚™™™™™é?ø?333333@š™™™™™é¿ffffffþ?ÍÌÌÌÌÌ@š™™™™™ñ?ÍÌÌÌÌÌì¿à¿à?š™™™™™É¿š™™™™™É?š™™™™™É?ffffff À333333ã?ÍÌÌÌÌÌü?ÍÌÌÌÌÌô?š™™™™™¹?ÍÌÌÌÌÌ@à?333333 @ffffff@࿚™™™™™É¿ @ÍÌÌÌÌÌ@333333ã?ffffff@ÍÌÌÌÌÌô?à?333333@š™™™™™É?333333û?š™™™™™ñ?ð¿à?à?š™™™™™¹?š™™™™™ù?š™™™™™¹?333333Ó¿š™™™™™¹¿š™™™™™¹¿ÍÌÌÌÌÌ@à?333333ó?ÍÌÌÌÌÌô?ÍÌÌÌÌÌì?333333@š™™™™™É?š™™™™™@333333ó¿š™™™™™É?š™™™™™¹?333333ã?%@ÍÌÌÌÌÌ@ÍÌÌÌÌÌì?ffffffþ?333333Ó?ÍÌÌÌÌÌô?ffffff濚™™™™™Ù?333333û?ffffff @š™™™™™É?š™™™™™ñ?ÍÌÌÌÌÌô?à?333333Ó?ffffffæ?333333ã?333333ã?š™™™™™é?333333@š™™™™™é?ffffffæ?ð?ð?ffffff濚™™™™™@ÍÌÌÌÌÌ쿚™™™™™é¿ÀÍÌÌÌÌÌì¿à¿ÍÌÌÌÌL6ÀÍÌÌÌÌL7Àffffffæ¿ð¿ð¿à¿33333s@À333333Àffffff3À333333ÀÍÌÌÌÌÌ Àffffff$À/À€=ÀÀÍÌÌÌÌÌ'ÀÍÌÌÌÌÌ*À2Àð¿%Àfffffæ1Àš™™™™1Àš™™™™™$ÀÍÌÌÌÌÌì¿ffffff%ÀÍÌÌÌÌÌ @333333@333333@"@!@ÍÌÌÌÌÌ3@š™™™™™ @ÍÌÌÌÌÌ@333333@333333@ÍÌÌÌÌÌ'@@ffffff@ÍÌÌÌÌÌ&@š™™™™™ @š™™™™™@ffffffö?333333û?@ÍÌÌÌÌÌ,@@333333,@!@ÍÌÌÌÌÌ%@š™™™™™@ffffff"@ffffff@@@ffffff@333333@ffffff@333333@š™™™™™ù?š™™™™™@ÍÌÌÌÌÌ@ffffff(@ÍÌÌÌÌÌ#@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ!@ÍÌÌÌÌÌ@ffffff@ffffff&@@ÍÌÌÌÌÌ@333333$@#@@333333@333333@3333332@ÍÌÌÌÌÌ#@ffffff0@ÍÌÌÌÌÌ @ffffff%@ffffff@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ@ffffff @@š™™™™™.@ffffff @š™™™™™@š™™™™™@ÍÌÌÌÌÌ!@333333@š™™™™™@ÍÌÌÌÌÌ/@@333333%@ffffff@+@ø?ÍÌÌÌÌÌ@@ÍÌÌÌÌL3@333333@ÍÌÌÌÌÌ @š™™™™™ @ffffff@ÍÌÌÌÌÌ.@333333@ÍÌÌÌÌÌ+@ÍÌÌÌÌÌ@@š™™™™™3@#@ÍÌÌÌÌÌô?š™™™™™ @@š™™™™™@ffffff @ÍÌÌÌÌÌ$@ffffff@š™™™™™,@ÍÌÌÌÌÌ@@ffffff@š™™™™™-@0@š™™™™™@333333@@ÍÌÌÌÌÌ(@,@@3333331@ffffff<@ffffff$@333333@š™™™™™@333333@ÍÌÌÌÌÌ@ffffff@ffffff)@ffffff @š™™™™™@(@333333(@@@š™™™™™ù?ffffff@š™™™™™%@333333@š™™™™™!@@ÍÌÌÌÌÌ @333333@ffffff@š™™™™™@333333#@ffffff@ÍÌÌÌÌÌ@ffffff@š™™™™™3@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ#@ffffff#@š™™™™3@ffffff @@š™™™™™@@333333#@ffffff"@š™™™™™@ @333333@333333"@@š™™™™™é?š™™™™™@ÍÌÌÌÌÌ@š™™™™™@-@333333)@ffffff @ffffff@ÍÌÌÌÌÌ@ÍÌÌÌÌL5@ÍÌÌÌÌÌ$@333333$@ÍÌÌÌÌÌü?ffffff@š™™™™™@ÍÌÌÌÌÌ%@š™™™™™&@ffffff@%@@33333³5@š™™™™™ @ÍÌÌÌÌÌ@ffffff@š™™™™™@š™™™™™/@ @š™™™™™"@š™™™™™(@333333@ffffff @@3333332@ÍÌÌÌÌÌ @ffffff"@ffffff@š™™™™™ù?à?ÍÌÌÌÌÌ @š™™™™5@ @ffffff@333333@ffffff@ÍÌÌÌÌÌ/@ÍÌÌÌÌL4@ÍÌÌÌÌÌ+@ffffff @333333@š™™™™™&@@ffffff!@ÍÌÌÌÌÌ%@š™™™™™@ffffff@@333333;@333333"@š™™™™™!@@333333#@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ'@ffffff@š™™™™™)@ÍÌÌÌÌÌ%@ÍÌÌÌÌÌ*@š™™™™™@333333@ @š™™™™™+@š™™™™™(@fffffæ9@333333@(@33333³2@333333%@333333@3333335@ÍÌÌÌÌÌ"@3333331@@š™™™™™@333333&@ÍÌÌÌÌÌ @š™™™™™@333333 @ÍÌÌÌÌÌô?ffffff)@ÍÌÌÌÌÌ @š™™™™™$@ÍÌÌÌÌÌ@ffffff@ @333333&@š™™™™™%@ÍÌÌÌÌÌ!@ffffff@ÍÌÌÌÌÌ@š™™™™™&@š™™™™™!@š™™™™™ @ffffff#@ffffff @ @"@ffffff(@333333&@333333&@ÍÌÌÌÌÌ%@@š™™™™™@š™™™™™ @333333@ffffff(@ffffff@333333@ffffff@333333@fffffæ1@"@ffffff@š™™™™™#@@333333 @š™™™™™@@š™™™™™(@š™™™™™'@@333333-@ffffff@ffffff1@fffffæ:@ÍÌÌÌÌÌ8@š™™™™™"@ffffff4@š™™™™™.@333333@ÍÌÌÌÌÌ@333333@š™™™™™#@ÍÌÌÌÌÌ%@ÍÌÌÌÌÌ@ffffff@333333@333333 @€7@$@š™™™™™ @"@0@333333$@€0@š™™™™™ @ffffff@333333"@ffffff$@1@š™™™™™@ffffff@ÍÌÌÌÌÌ*@ÍÌÌÌÌÌ*@š™™™™™@š™™™™™1@ffffff @!@ÍÌÌÌÌÌ&@#@ffffff@ffffff@ÍÌÌÌÌÌ@@333333@@š™™™™™@ÍÌÌÌÌÌ.@ÍÌÌÌÌÌ%@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ*@,@333333@ffffff$@š™™™™™@ffffff@333333.@'@ffffffö?ÍÌÌÌÌÌ@ÍÌÌÌÌÌ+@ffffff@š™™™™5@2@š™™™™™@#@š™™™™™@ÍÌÌÌÌÌ0@ffffff@333333@ffffff6@@š™™™™™ù?š™™™™™@ÍÌÌÌÌÌ$@333333@ÍÌÌÌÌÌ/@@š™™™™™ @333333@@333333)@ffffff@333333!@-@@333333@ffffff@š™™™™™@ÍÌÌÌÌÌ)@@š™™™™™@ffffff@ffffff#@@#@ÍÌÌÌÌÌü?ÍÌÌÌÌÌ(@š™™™™™@@ÍÌÌÌÌÌ@ffffff/@@š™™™™™$@333333*@ @"@ÍÌÌÌÌÌ,@ÍÌÌÌÌÌ@š™™™™™#@33333³:@ÍÌÌÌÌÌ@ffffff1@333333.@ÍÌÌÌÌÌ @š™™™™™@333333@ffffff @333333@@š™™™™™@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ@333333@333333@ÍÌÌÌÌÌ @ffffff@"@333333@!@ÍÌÌÌÌÌ,@ffffff@@ @%@!@š™™™™™@333333@333333@@ÍÌÌÌÌÌ@ffffff@333333@333333@ffffff @ffffff!@ÍÌÌÌÌÌô?ffffff(@ÍÌÌÌÌL2@š™™™™™!@33333³4@$ÀÍÌÌÌÌÌÀffffffÀš™™™™™Àffffff$À333333HÀ&À"Àš™™™™™$À333333Àš™™™™™2À333333"À333333Àš™™™™™ ÀÀffffff Àš™™™™™'ÀffffffÀÍÌÌÌÌL1Àš™™™™™À333333À33333³6ÀÀffffff$À333333 À33333³6À-ÀÍÌÌÌÌÌ ÀÍÌÌÌÌÌÀffffffÀffffffÀffffffÀ333333$ÀÍÌÌÌÌÌÀ333333$ÀffffffÀš™™™™™.Àš™™™™™ÀÍÌÌÌÌÌ ÀÀffffffÀÍÌÌÌÌÌ&À333333Àffffffö¿333333Àš™™™™™!À333333"À333333ÀffffffÀ333333*À%Àffffff*Àffffff$ÀÍÌÌÌÌÌ&ÀÍÌÌÌÌÌÀffffff!À+Àš™™™™™,À$À)ÀÀ333333ÀÍÌÌÌÌÌÀÍÌÌÌÌÌ ÀffffffÀš™™™™™%ÀÍÌÌÌÌÌÀffffffÀ333333&ÀÀÍÌÌÌÌÌ#ÀÍÌÌÌÌÌÀÀffffffÀÍÌÌÌÌÌ)Àš™™™™™ À333333,À333333)Àffffff"À333333%À'Àš™™™™™#À333333ÀÍÌÌÌÌŒGÀš™™™™3À€0Àš™™™™™>Àffffff%À333333#ÀffffffÀ333333)ÀÀÍÌÌÌÌÌ&À333333ÀÍÌÌÌÌÌÀ333333Àffffff#Àš™™™™™$À333333!Àš™™™™;Àffffff-ÀÀÍÌÌÌÌL3ÀÀ33333³DÀffffff+ÀÍÌÌÌÌÌÀÍÌÌÌÌÌÀš™™™™™$Àš™™™™™6Àffffff2ÀffffffÀffffff=ÀffffffÀffffffÀ!À333333 Àš™™™™™(À333333'À333333À333333ÀÍÌÌÌÌÌÀÍÌÌÌÌÌÀÍÌÌÌÌÌü¿333333ÀÍÌÌÌÌÌÀÍÌÌÌÌÌ+ÀffffffÀffffffÀš™™™™™,Àffffff%À-ÀÍÌÌÌÌÌ(ÀÍÌÌÌÌL2À333333À.ÀÍÌÌÌÌÌ À+À333333*ÀÀ333333&À*ÀÍÌÌÌÌÌ-À333333Àffffff À333333Àš™™™™™ÀÍÌÌÌÌÌ*Àš™™™™™$Àš™™™™™ÀÍÌÌÌÌÌÀffffff%ÀffffffÀfffffæ4ÀffffffÀÍÌÌÌÌÌ!À Àš™™™™™$ÀÍÌÌÌÌÌ4ÀffffffÀ333333Àš™™™™™Àffffff&Àš™™™™™!Àš™™™™™*ÀÍÌÌÌÌL5Àš™™™™™/À33333³0ÀÍÌÌÌÌL1À333333"Àš™™™™™/ÀÍÌÌÌÌÌÀÍÌÌÌÌÌÀ333333Àffffff À333333Àš™™™™™"À333333&À$Àš™™™™™.Àffffff*ÀÀ#Àffffff/À333333(À$ÀÍÌÌÌÌÌ ÀÍÌÌÌÌÌ-ÀÀ333333Àš™™™™™ÀÀÀffffffÀš™™™™DÀ0ÀÍÌÌÌÌÌ À333333Àš™™™™™,ÀffffffÀffffffþ¿š™™™™™*À3333339À333333!À333333Àš™™™™™DÀš™™™™™5ÀÍÌÌÌÌÌ1Àffffff3À À333333À(ÀÍÌÌÌÌÌ.À333333À'À*À333333#Àffffff ÀÍÌÌÌÌÌ#Àš™™™™™!ÀÀ333333ÀffffffÀÍÌÌÌÌÌÀ/Àffffff!À.ÀÍÌÌÌÌÌ'À33333³4À333333À333333Àš™™™™™*À ÀÍÌÌÌÌÌ$ÀÍÌÌÌÌÌ$ÀÍÌÌÌÌÌ Àš™™™™™/ÀÍÌÌÌÌÌ'Àš™™™™™ ÀÍÌÌÌÌÌ#ÀffffffÀš™™™™™-Àš™™™™™Àffffff)ÀÍÌÌÌÌÌ/À333333,ÀÍÌÌÌÌÌÀ€1Àffffff À(Àš™™™™™ÀffffffÀÍÌÌÌÌÌ(Àš™™™™™Àš™™™™™Àš™™™™™"Àš™™™™™ÀÍÌÌÌÌÌ"ÀffffffÀš™™™™™ù¿333333&Àš™™™™™À$À333333!À333333 ÀÍÌÌÌÌÌ&ÀÀÍÌÌÌÌÌ#ÀÍÌÌÌÌÌ'À#ÀffffffÀš™™™™™À333333ÀÀ$Àš™™™™™ À Àffffff$ÀffffffÀ!ÀÍÌÌÌÌÌì¿ffffffÀ333333*Àffffff*Àš™™™™™Ù¿š™™™™™ÀÍÌÌÌÌÌ2À€4ÀÍÌÌÌÌL0Àš™™™™™ÀÍÌÌÌÌL1Àš™™™™™7Àš™™™™™ÀffffffÀ,Àš™™™™™À3333334ÀÍÌÌÌÌL3À333333ÀÍÌÌÌÌÌ!ÀÍÌÌÌÌÌÀ333333"Àffffff+À&Àš™™™™™1Àffffff5À33333³1Àš™™™™™&Àffffff6ÀÍÌÌÌÌÌ#Àš™™™™™ÀÍÌÌÌÌÌ"À333333 Àffffff$À333333À333333)À33333³3ÀÍÌÌÌÌL0Àš™™™™™À333333ÀÍÌÌÌÌL3Àš™™™™™ÀÀš™™™™™&ÀÍÌÌÌÌÌ%À333333(Àffffff(ÀÀ333333Àš™™™™™$ÀÍÌÌÌÌÌ#À,À333333"À333333$ÀffffffÀÀš™™™™5À(À33333³:À5Àš™™™™™"ÀÍÌÌÌÌÌ7ÀÍÌÌÌÌÌ-À333333 Àffffff,ÀffffffÀš™™™™™ÀffffffÀ/ÀÍÌÌÌÌÌ%À€1À33333³2À$ÀffffffÀ$ÀÀš™™™™™#À333333!Àffffff*ÀffffffÀÍÌÌÌÌÌÀffffffæ¿333333-ÀÍÌÌÌÌÌ$ÀÍÌÌÌÌÌ À7À333333À3À333333À333333/Àš™™™™™ÀÍÌÌÌÌÌ#ÀÍÌÌÌÌL7ÀffffffÀÍÌÌÌÌÌ.Àffffff4Àffffff@Àš™™™™™ À!Àš™™™™™ ÀÍÌÌÌÌÌ$À€7À$Àš™™™™™,Àffffffþ¿333333ÀÀÍÌÌÌÌÌÀffffff+Àffffff&Àš™™™™™0Àš™™™™™!ÀÍÌÌÌÌÌ4À€4ÀffffffÀš™™™™™!À(Àš™™™™™?À!À333333&À À333333%ÀffffffÀ&Àfffff&GÀffffffÀ333333À33333³2À333333 Àffffff Àš™™™™™!À333333"À#À*ÀÀÀ*ÀffffffÀš™™™™™#Àffffff$ÀffffffÀÍÌÌÌÌÌÀš™™™™™ÀÍÌÌÌÌÌÀš™™™™™'Àš™™™™™Àffffff"Àš™™™™™ÀÍÌÌÌÌ AÀÍÌÌÌÌÌÀ333333À@š™™™™™ñ?ÍÌÌÌÌÌì?à?ffffffö?@à¿ffffffÀ333333ã?ÍÌÌÌÌÌì?š™™™™™Ù?š™™™™™¹?𿚙™™™™ù?à¿333333ã?333333Ó?š™™™™™ñ?š™™™™™É¿à?à?à?š™™™™™Ù?333333ã?š™™™™™Ù?à?š™™™™™É?š™™™™™¹?࿚™™™™™ñ?333333ã?ffffffö?ffffffö?333333ã?š™™™™™Ù¿š™™™™™É?š™™™™™Ù?333333Ó?š™™™™™é?š™™™™™Ù¿š™™™™™é?š™™™™™É?333333Ó?š™™™™™é¿à?ffffff濚™™™™™¹?ÍÌÌÌÌÌì?š™™™™™Ù¿ffffffæ?š™™™™™É?333333Ó?š™™™™™Ù?333333Ó?š™™™™™¹¿ffffffæ¿ffffffæ?š™™™™™é¿š™™™™™É?333333Ó?333333ó?ffffffæ?š™™™™™¹?š™™™™™¹?š™™™™™é?ÍÌÌÌÌÌì?333333ã?ffffffæ?333333Ó¿š™™™™™¹?ffffffæ?ÍÌÌÌÌÌì?ffffffæ?à?à?ÍÌÌÌÌÌ쿚™™™™™Ù?ffffffæ?à¿333333Ó¿ÍÌÌÌÌÌÀ333333Ó¿š™™™™™¹?ø¿š™™™™™É?š™™™™™¹¿š™™™™™Ù¿š™™™™™É?š™™™™™Ù¿š™™™™™Ù?333333Ó¿š™™™™™é?333333Ó?à¿333333ã?à?333333ã?š™™™™™ñ?333333Ó?333333ã?à?š™™™™™é?333333Ó¿š™™™™™É¿ffffffæ?š™™™™™É?š™™™™™Ù?ffffffæ?ÍÌÌÌÌÌì?š™™™™™Ù?à?š™™™™™É?š™™™™™É?333333Ó?š™™™™™É?333333Ó?š™™™™™é?š™™™™™É?š™™™™™Ù¿ffffffæ?š™™™™™Ù?à?š™™™™™ñ?ffffff濚™™™™™¹?ffffffæ¿ÍÌÌÌÌÌô?š™™™™™É¿333333Ó?š™™™™™¹?à¿@333333ã?333333ã?ð?ð?à?ffffffæ?333333ã?ð¿à?333333Ó?333333Ó?333333ã?š™™™™™É¿š™™™™™Ù?š™™™™™Ù¿333333Ó?à?ffffffæ?ffffffæ?š™™™™™É?333333ã?š™™™™™Ù?à?š™™™™™Ù¿à?š™™™™™Ù?š™™™™™é?333333ã?333333ã¿333333Ó?ÍÌÌÌÌÌì?š™™™™™¹?š™™™™™é?࿚™™™™™Ù?ð?333333ã?š™™™™™Ù?š™™™™™é?333333Ó¿333333ã?333333Ó?333333Ó?š™™™™™É¿333333Ó?š™™™™™É?š™™™™™Ù?@ÍÌÌÌÌÌì¿333333Ó?ÍÌÌÌÌÌì?333333Ó?š™™™™™É?ÍÌÌÌÌÌì?333333Ó¿à?š™™™™™Ù?ffffffö?333333Ó?š™™™™™ñ?333333Ó¿333333ã¿à?333333Ó¿š™™™™™¹?à?ffffffæ?š™™™™™Ù?333333Ó¿š™™™™™é?š™™™™™É?š™™™™™é?333333ã?š™™™™™ñ?à?š™™™™™É?333333Ó¿š™™™™™É?š™™™™™¹?à?333333ã¿ffffffæ¿ÍÌÌÌÌÌ쿚™™™™™É?ð?š™™™™™Ù¿333333Ó?š™™™™™é¿š™™™™™Ù?š™™™™™É¿š™™™™™É¿333333Ó¿à?ffffffæ?š™™™™™Ù¿š™™™™™Ù?333333ã?333333Ó?š™™™™™é?333333Ó?š™™™™™É?ÍÌÌÌÌÌì?š™™™™™¹?ð¿333333Ó?š™™™™™Ù¿ffffffæ?š™™™™™Ù?ÍÌÌÌÌÌì?333333㿚™™™™™ñ?ffffffæ?333333Ó?š™™™™™¹¿š™™™™™É¿š™™™™™Ù?š™™™™™Ù?333333ã?à?š™™™™™¹¿š™™™™™É?š™™™™™Ù¿333333ã¿333333ã?333333Ó?š™™™™™¹?à?š™™™™™¹¿333333Ó?333333Ó?333333Ó?š™™™™™¹?333333Ó?333333㿚™™™™™é?š™™™™™É?š™™™™™Ù?ð?š™™™™™é?333333㿚™™™™™é?š™™™™™Ù?ffffffæ¿ffffffæ?š™™™™™Ù?š™™™™™Ù?š™™™™™¹?š™™™™™Ù?ffffffæ?à?š™™™™™Ù¿š™™™™™É?š™™™™™É?š™™™™™É?š™™™™™É¿333333Ó¿š™™™™™Ù?333333㿚™™™™™é?š™™™™™Ù?333333ã?š™™™™™é?š™™™™™¹?à¿ffffffæ?š™™™™™¹¿à?š™™™™™É?š™™™™™Ù?333333ӿ࿚™™™™™é?333333Ó¿à¿333333ã?333333Ó?à?š™™™™™é?333333Ó?š™™™™™¹?š™™™™™É?333333Ó¿š™™™™™É?š™™™™™É?333333Ó¿333333Ó?333333Ó?à?š™™™™™É¿333333ã?à?š™™™™™É¿š™™™™™é¿à?ð?333333ã?š™™™™™é?š™™™™™ñ?ffffffæ¿à?ffffffæ?333333Ó?333333㿚™™™™™Ù?š™™™™™ñ¿333333Ó¿š™™™™™Ù?š™™™™™Ù?333333ã?ffffffæ?š™™™™™É¿333333ã?š™™™™™Ù¿š™™™™™Ù?š™™™™™É?ffffffæ¿à?333333û¿š™™™™™Ù?à¿333333Ó?333333Ó?š™™™™™Ù¿à?𿚙™™™™É?š™™™™™¹?ÍÌÌÌÌÌì?ÍÌÌÌÌÌô¿à?š™™™™™É?à¿333333Ó?ð¿ffffffæ?à?ffffffæ?333333Ó?š™™™™™Ù?š™™™™™Ù?ÍÌÌÌÌÌì?333333ó?ÍÌÌÌÌÌì?š™™™™™Ù?š™™™™™Ù¿š™™™™™Ù?š™™™™™é?à?333333ã?š™™™™™é?333333ã?333333Ó¿333333ã?à?š™™™™™¹?ÍÌÌÌÌÌ쿚™™™™™É?333333ã?š™™™™™ñ?333333Ó¿š™™™™™Ù¿š™™™™™Ù¿ÍÌÌÌÌÌì¿à?à?333333Ó¿š™™™™™¹¿333333Ó?333333Ó?333333ã?333333ã?ð?š™™™™™Ù?š™™™™™é?š™™™™™¹¿333333Ó¿ffffffö?ÍÌÌÌÌÌì?š™™™™™Ù?š™™™™™@ffffff@333333Ó?ffffff@ÍÌÌÌÌÌ@ffffff!@ffffff@ffffff@333333@@ÍÌÌÌÌÌÀš™™™™™Ù?ð?333333@ffffff @@š™™™™™@ÍÌÌÌÌÌô?š™™™™™@@ÍÌÌÌÌÌ@ffffff@@ÍÌÌÌÌÌô?333333@333333@ÍÌÌÌÌÌ @ffffff@333333Ó?š™™™™™ù¿333333@333333@ÍÌÌÌÌÌ@333333@ÍÌÌÌÌÌ@333333 @ffffff@333333!@333333@@ÍÌÌÌÌÌ @333333 @ffffff@ÍÌÌÌÌÌü?š™™™™™@š™™™™™@ÍÌÌÌÌÌ@ffffffþ?333333Ó?333333@333333ã¿ffffff @333333@ffffff@š™™™™™@š™™™™™@ÍÌÌÌÌÌ@š™™™™™@ @ÍÌÌÌÌÌ@@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ @ffffff@š™™™™™@@ffffffö?333333@333333@333333@333333@ffffff@š™™™™™@ÍÌÌÌÌÌ @š™™™™™@ÍÌÌÌÌÌ@š™™™™™@333333Ó?333333@š™™™™™ @@@š™™™™™@333333@333333@ÍÌÌÌÌÌ2@333333@@333333-@ffffff@š™™™™™é?@š™™™™™@š™™™™™@š™™™™™!@333333@ffffff@333333@ÍÌÌÌÌÌì?š™™™™™ñ?333333û?š™™™™™@ð?š™™™™™@@š™™™™™@ÍÌÌÌÌÌ@š™™™™™@ffffff&@ð?ÍÌÌÌÌÌ@333333@ffffff @ffffff@ffffff@ffffff@@ @333333 @ffffff@333333@@ffffff@333333@š™™™™™@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ @@š™™™™™ @ÍÌÌÌÌÌ@š™™™™™@333333@ÍÌÌÌÌÌ@333333@ffffff@@ÍÌÌÌÌÌ@š™™™™™é?ÍÌÌÌÌÌü?ÍÌÌÌÌÌ@333333@333333ó?@333333 @ffffff@333333@#@š™™™™™@333333û?333333ã?ø?ÍÌÌÌÌÌ#@š™™™™™@ffffff @333333 @ÍÌÌÌÌÌ@š™™™™™ñ?ÍÌÌÌÌÌô?ffffff@333333@@333333@ÍÌÌÌÌÌ@š™™™™™@ÍÌÌÌÌÌì?ffffff@@š™™™™™ @š™™™™™@š™™™™™@333333Ó?ÍÌÌÌÌÌ@333333$@ffffffþ?ÍÌÌÌÌÌ쿚™™™™™ñ?ÍÌÌÌÌÌ@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ@š™™™™™¹?ffffff@ffffff@ð?ÍÌÌÌÌÌ@š™™™™™Ù?ø¿š™™™™™ñ?š™™™™™é?@ÍÌÌÌÌÌ@š™™™™™@š™™™™™ @š™™™™™@ÍÌÌÌÌÌì?ÍÌÌÌÌÌ@333333 @@333333@@333333@333333Ó?ffffff@š™™™™™é?ÍÌÌÌÌÌ@333333@@333333@ffffff!@ffffff@333333ã?333333@333333@ÍÌÌÌÌÌ!@ÍÌÌÌÌÌ@333333@ÍÌÌÌÌÌ@š™™™™™ñ?š™™™™™ñ?@@š™™™™™é?š™™™™™@ÍÌÌÌÌÌ@ffffff@ÍÌÌÌÌÌ@@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ @ffffff@@ð?š™™™™™é?@@š™™™™™@𿚙™™™™@À333333 @@333333 @ÍÌÌÌÌÌ@š™™™™™ñ?ÍÌÌÌÌÌ@ffffff @š™™™™™ñ?ffffff@333333@ÍÌÌÌÌÌü?ÍÌÌÌÌÌ@ffffffþ?ffffff@333333ã?ÍÌÌÌÌÌ@š™™™™™@ÍÌÌÌÌÌ'@ÍÌÌÌÌÌü?š™™™™™ @ffffffö?ÍÌÌÌÌÌ@333333@š™™™™™@@ÍÌÌÌÌÌô?š™™™™™@š™™™™™ñ?@ffffff@š™™™™™@ÍÌÌÌÌÌ @ffffff@@ffffff@ffffffæ?@ð?@š™™™™™é¿ÍÌÌÌÌÌ @333333 @@"@ffffff@š™™™™™@ @ÍÌÌÌÌÌì?š™™™™™ @ÍÌÌÌÌÌô?ffffff@@š™™™™™ñ?&@ffffff"@333333@ffffffæ?333333 @ffffffÀÍÌÌÌÌÌÀffffff@#@ffffff@ffffffþ?333333 @ffffffþ?ffffffö?ffffff@ffffff@š™™™™™@ffffff@333333@333333 @ÍÌÌÌÌÌ @333333@ffffffæ¿333333@ÍÌÌÌÌÌ@š™™™™™@ÍÌÌÌÌÌ@@@š™™™™™@š™™™™™@ffffffö¿ffffffþ?@@š™™™™™ù?ÍÌÌÌÌÌ@333333@š™™™™™É?ffffff@@ @ffffff@@ÍÌÌÌÌÌì?333333@333333@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ!@@ø?ø?ÍÌÌÌÌÌ@ffffff@@@š™™™™™ù?ÍÌÌÌÌÌ@ffffff@ffffffæ?ffffffö?ÍÌÌÌÌÌ@ffffff!@@@ÍÌÌÌÌÌì¿ÍÌÌÌÌÌ(@ð?ÍÌÌÌÌÌô?@ÍÌÌÌÌÌ @ÍÌÌÌÌÌ@@ffffff@ÍÌÌÌÌÌ@š™™™™™"@ÀÍÌÌÌÌÌ@333333@ø?333333ã?ffffff@"@š™™™™™É?ÍÌÌÌÌÌü?ÍÌÌÌÌÌü?@š™™™™™'Àð?š™™™™™ @333333@ffffff@ÍÌÌÌÌÌ!@š™™™™™ @ffffff!@@ffffff@ÍÌÌÌÌÌô?333333û?%@à?333333%@ÍÌÌÌÌÌ@333333'@333333@ffffff @ÍÌÌÌÌÌ@š™™™™™ñ?@ffffff @ÍÌÌÌÌÌ@à?ÍÌÌÌÌÌ@@333333@333333@š™™™™™¹?@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ@@š™™™™™@ÍÌÌÌÌÌ@ffffffö?š™™™™™!@š™™™™™ù¿ð?333333@ÍÌÌÌÌÌ@ffffff%@ffffff@š™™™™™@333333@ÍÌÌÌÌÌì?ffffff@š™™™™™À@ÍÌÌÌÌÌ@š™™™™™é?š™™™™™@š™™™™™@ffffff@ÍÌÌÌÌÌ @ÍÌÌÌÌÌ@ÍÌÌÌÌÌ@@š™™™™™@š™™™™™ñ?@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ@š™™™™™@š™™™™™%@ffffff À333333@333333@333333ÀÍÌÌÌÌÌÀffffff4@ffffff@À \ÀÍÌÌÌÌÌ3Àš™™™™0ÀÍÌÌÌÌL3ÀÍÌÌÌÌÌ!Àš™™™™YAÀš™™™™™!Àø¿7@3@š™™™™™%@=À333333À33333sAÀš™™™™Ù@@@33333³5ÀÍÌÌÌÌÌ!@š™™™™™%Àš™™™™™ÀffffffHÀ33333³9Àffffff&@333333À333333 ÀÍÌÌÌÌÌ%À333333À333333ÀffffffÀš™™™™™À333333À%ÀÍÌÌÌÌÌ+@ffffff@š™™™™™0@ÍÌÌÌÌÌ@ffffff3À6@ÍÌÌÌÌÌ,@à¿333333ó¿333333Àš™™™™™ @ÍÌÌÌÌÌÀš™™™™™;ÀÍÌÌÌÌÌ@ffffff"À3333332@fffffæ?@333333ã?ø?3333330À33333³6ÀÍÌÌÌÌÌ*À*À333333 @ÍÌÌÌÌÌ!@š™™™™™ @@ffffff@ffffffÀ333333.Àš™™™™C@333333ó?š™™™™™ À333333%@ÍÌÌÌÌÌ@š™™™™™)ÀÀš™™™™™É¿€=@ÍÌÌÌÌLVÀ333333À€@À333333&Àffffffæ¿33333³0@fffffæ;Àffffff1@fffffæ0ÀÍÌÌÌÌLnÀÍÌÌÌÌÌ0@333333&À@eÀfffffæCÀÍÌÌÌÌL8ÀÍÌÌÌÌÌü?4À333333@5À€=@333333@ÍÌÌÌÌÌ@33333³=ÀÍÌÌÌÌÌ)@3333335@ÍÌÌÌÌL>@ÍÌÌÌÌlRÀ?Àfffff&@@/ÀÍÌÌÌÌLWÀffffffö¿ÍÌÌÌÌ NÀ€D@@š™™™™™@333333ÀÍÌÌÌÌŒDÀ33333sAÀ333333"@fffff&NÀÍÌÌÌÌL1@ffffff'ÀÍÌÌÌÌÌ @š™™™™™7@3Àffffff2Àffffff#À@ffffff;@ð?5@ffffff&Àffffff+@3333333Àš™™™™™@@ÍÌÌÌÌÌ"ÀÀÍÌÌÌÌL;À333333#Àš™™™™™'ÀÍÌÌÌÌÌÀš™™™™™&À+@ÍÌÌÌÌL3@333333$ÀÍÌÌÌÌÌ$@ÍÌÌÌÌÌ-Àš™™™™™/Àš™™™™™1Àš™™™™™$@ÍÌÌÌÌÌô¿š™™™™™ @ffffffÀ333333(Àš™™™™™Àffffff*À)@&Àš™™™™™À333333&Àffffff @333333+Àffffff&@ÍÌÌÌÌÌÀ33333³3Àš™™™™™/@š™™™™™7@333333ÀÍÌÌÌÌÌ/À"À333333$ÀÍÌÌÌÌL:ÀAÀÍÌÌÌÌL4À€>À333333F@ÍÌÌÌÌÌ>Àffffffö¿333333ó?ffffff@ÍÌÌÌÌÌ,@333333û?ffffffþ¿-@ÍÌÌÌÌÌ ÀÍÌÌÌÌL7À8À33333³G@3333334ÀÍÌÌÌÌLCÀš™™™™YAÀÀIÀš™™™™7À€9À33333sK@333333&ÀÍÌÌÌÌÌ@333333ã?-À€:@fffffæGÀÍÌÌÌÌÌì?š™™™™™Ù¿š™™™™™+@ffffff.À@33333CaÀffffff6@š™™™™™*ÀÍÌÌÌÌL]À333333 À@š™™™™BÀ333333?ÀÍÌÌÌÌÌ3Àfffff&FÀ333333@333333@fffffæ3À33333³5Àš™™™™YTÀ1À333333@ffffff@ffffffÀ0@š™™™™™Àš™™™™™:Àfffffæ3À'Àš™™™™™¹¿ÍÌÌÌÌL?@fffffæ2@€P@333333@š™™™™™É?F@333333+À33333³0Àš™™™™™&À333333%@33333³@@fffffæ2À333333%À@ÍÌÌÌÌÌ3Àffffff À33333³5À@À/@33333³0À0@7Àš™™™™™"@ffffffDÀš™™™™™RÀfffffæ1Àš™™™™™ÀffffffÀfffff\ÀÍÌÌÌÌÌì?33333ó@Àš™™™™™ù¿ffffffÀÍÌÌÌÌÌ@$À333333Àš™™™™™ ÀÍÌÌÌÌÌ,À333333ÀÍÌÌÌÌL0@$@š™™™™™,@fffffæ8@š™™™™™(Àš™™™™™ÀffffffÀffffff%ÀC@ffffff.Àffffffö¿š™™™™™¹¿Àffffff=@333333&@ffffffþ¿š™™™™™@š™™™™6ÀÍÌÌÌÌÌü?fffffæ3ÀÍÌÌÌÌÌÀ333333/À@ÍÌÌÌÌÌ1@š™™™™™ù¿€O@ð?333333!@š™™™™ÙE@ÍÌÌÌ̬d@€2@ÍÌÌÌÌL7@33333³2À€:Àffffffö¿33333óHÀ6ÀÍÌÌÌÌŒAÀÍÌÌÌÌÌJÀ333333,@š™™™™™@ÍÌÌÌÌÌ:Àš™™™™™$À33333ó@À€BÀffffff"Àffffff-Àffffff @š™™™™™É?š™™™™™ Àš™™™™™<@33333sGÀÍÌÌÌÌÌ?ÀÍÌÌÌÌÌ.À333333Àš™™™™™3Àš™™™™™ñ?š™™™™™@ffffff,@ÍÌÌÌÌÌSÀ33333³<@ffffffÀš™™™™™2@ffffff(Àš™™™™=À333333À€1@š™™™™™Ù?ÍÌÌÌÌÌ7Àš™™™™™@š™™™™™@€5À+À€=À@3333334@š™™™™™ @ À.@ffffff&@ffffff3ÀÍÌÌÌÌÌü¿š™™™™™!@š™™™™™ñ?ÍÌÌÌÌÌ9À*@š™™™™¹PÀfffff¦IÀEÀffffff/@KÀ333333û?ffffff9@ÍÌÌÌ̬SÀ€>Àš™™™™™@ffffff@fffff¦F@š™™™™@Àffffff @ffffff)@ÍÌÌÌÌŒFÀfffffæDÀÍÌÌÌÌÌ"À333333@ÍÌÌÌÌÌ@š™™™™™;@333333!ÀÍÌÌÌÌ AÀà¿ÍÌÌÌÌÌ@fffff&A@ÍÌÌÌÌÌ6ÀÍÌÌÌÌÌRÀø?fffffæ4@€HÀffffffÀÍÌÌÌÌŒCÀš™™™™™É?=À333333ÀÀ333333IÀÍÌÌÌÌÌ3@š™™™™7ÀÍÌÌÌÌÌ?ÀfffffeÀ€0@š™™™™™ÀÍÌÌÌÌŒCÀ!Àš™™™™™(À3333331ÀÀÍÌÌÌÌÌ9À@@@Àš™™™™™3@fffff&D@š™™™™<ÀÍÌÌÌÌÌÀš™™™™Ù@@ÍÌÌÌÌÌÀ333333 À333333ó?š™™™™™!À333333û¿$Àš™™™™¹VÀš™™™™™À3333335À ÀÍÌÌÌÌÌ'ÀÍÌÌÌÌÌ@š™™™™™-ÀÍÌÌÌÌgÀà?ffffffÀ33333sLÀ33333³3Àš™™™™™8@ÍÌÌÌÌL0À333333Àffffff$ÀÍÌÌÌÌ @À€3À€1@ÍÌÌÌÌÌ2@š™™™™™<Àš™™™™™Ù¿"ÀÍÌÌÌÌÌ%Àfffffæ2@%@š™™™™™ÀÍÌÌÌÌÌ@ÍÌÌÌÌÌ;Àffffff:@š™™™™6À33333³;@ÍÌÌÌÌìRÀ333333@fffff&C@š™™™™YJ@33333³;@ÍÌÌÌÌL7@€I@€E@333333RÀ3333335@š™™™™5@š™™™™™E@fffffæ;@33333SÀÀffffff@fffff¦O@ÍÌÌÌÌLJ@š™™™™ÙZ@333333%@š™™™™™&@333333I@33333ÓP@àP@fffff¦H@ÀC@333333 @š™™™™=@7@33333óM@33333³F@ÍÌÌÌÌÌì¿€@ÀÍÌÌÌÌŒM@€8@š™™™™ÙH@ÍÌÌÌÌÌB@š™™™™4@ÍÌÌÌÌL8@ÍÌÌÌÌÌ4@@W@ÀD@?@ÍÌÌÌÌÌA@)@33333óJ@fffffæ9@fffff¦B@/@33333sF@ffffff2@ffffffÀÍÌÌÌÌL<@ÍÌÌÌÌÌô¿33333³;@@Q@fffffæO@š™™™™<@ÍÌÌÌÌÌN@ÀH@333333?@3333334@2@33333³N@33333³O@ÍÌÌÌÌ B@33333óI@š™™™™P@ÍÌÌÌÌÌ)@333333 @ R@fffffæ8@ÍÌÌÌÌÌ2@fffffæI@fffffQ@ÍÌÌÌÌÌA@333333C@@P@š™™™™ÙY@33333³3Àffffffæ¿Àš™™™™™=@L@`T@ffffffæ?K@š™™™™™/@š™™™™™"À33333óB@š™™™™9R@ffffff?@š™™™™™7@ffffff/Àš™™™™YC@33333ó@@5@33333sV@ÀR@ffffff@@ÀC@33333³3Àfffffæ5@fffff¦E@ffffffO@š™™™™9PÀfffffæ@@fffff¦M@'@,Àš™™™™YK@ÍÌÌÌÌ W@fffffæH@33333óE@33333sG@€8@š™™™™™$Àš™™™™ÙB@ffffffO@ÍÌÌÌÌL6ÀÀH@fffffæ4@C@@N@@fffffæE@ÍÌÌÌÌÌ7@š™™™™=@fffffÆS@fffffæ?@33333óL@š™™™™4@@O@ÍÌÌÌÌÌ?@:@š™™™™YH@ffffffK@š™™™™;@ÍÌÌÌÌŒB@ÍÌÌÌÌ L@333333 Àš™™™™™"@š™™™™YD@333333R@ÍÌÌÌÌL=@A@ÍÌÌÌÌÌD@333333I@fffff&N@@U@ÍÌÌÌÌÌI@33333³2@@š™™™™™&@fffff&\@ffffffE@š™™™™3@@G@E@333333@š™™™™™ @ÀE@ÍÌÌÌÌÌ!@333333G@š™™™™4@€A@fffff&T@š™™™™A@6@D@ Y@ÍÌÌÌÌÌ&@ÍÌÌÌÌ E@333333?Àš™™™™I@š™™™™P@ffffffM@33333sBÀš™™™™™@ÍÌÌÌÌLD@A@š™™™™™U@333333@ffffff=@š™™™™¹R@ð¿ÍÌÌÌÌÌ"@€3ÀÍÌÌÌÌÌ?@ffffffÀ33333³8ÀÍÌÌÌÌL6@fffff¦A@ÍÌÌÌÌL1@8@š™™™™YQ@ÍÌÌÌÌÌ ÀÀN@š™™™™™@@ffffff?@33333sP@33333³<@ffffffI@ffffff @333333C@ffffff!ÀÍÌÌÌÌ F@ffffffMÀš™™™™™P@fffffæ1@.@33333óJ@š™™™™™&@š™™™™Ù@@š™™™™™2@fffff†S@š™™™™™;@š™™™™yQ@333333;@š™™™™™ Àš™™™™™(À333333KÀÍÌÌÌÌÌ"@š™™™™™@ÍÌÌÌÌ K@š™™™™M@š™™™™™P@ÍÌÌÌÌŒA@š™™™™™É¿333333L@š™™™™YB@ÍÌÌÌÌŒT@š™™™™9V@€=@R@33333sH@š™™™™™L@À`@8ÀfffffæK@ÍÌÌÌÌ JÀfffffæD@33333“Q@333333.@€7@333333+@ð?9@ffffff%Àffffff1@ÍÌÌÌÌÌM@ÍÌÌÌÌÌ@ÍÌÌÌ̬Q@"À33333T@À@ÀffffffFÀA@33333S]@ffffff"@ÍÌÌÌÌÌQÀ0@š™™™™™Àš™™™™™1@€N@33333³5@š™™™™™¹?ffffffH@ffffff@ffffff@fffff&B@ÀC@š™™™™D@ÍÌÌÌÌ P@ W@š™™™™<@@+@À33333³V@€2À333333>@š™™™™9T@33333sG@€\@ÍÌÌÌÌŒL@fffffæ6@333333@@0À333333?@333333û¿3333338@@š™™™™™/@fffff¦\@€W@š™™™™YY@ÍÌÌÌÌÌ!@š™™™™™E@š™™™™™:Àš™™™™ a@fffffÆQ@°`@fffff&E@333333Àfffffæ?@ÍÌÌÌÌL?ÀÍÌÌÌÌÌ@9@ÍÌÌÌÌÌ:Àš™™™™™K@€I@ÍÌÌÌÌ C@fffffFS@ @š™™™™™+@ÍÌÌÌÌÌ/Àffffff>@>@š™™™™3@fffffFR@fffff¦W@€>Àffffff#À33333³I@€8ÀÍÌÌÌÌÌ@ffffffS@š™™™™7@š™™™™YH@š™™™™6ÀÍÌÌÌÌLN@À333333O@fffffæ@@ Q@š™™™™yQ@fffff†U@š™™™™™)@š™™™™™(@33333³L@`R@ÍÌÌÌÌLF@àR@Àš™™™™5@€=@33333sA@š™™™™YJ@fffffÆQ@33333ÓP@ÍÌÌÌÌÌ!ÀÀC@š™™™™™E@$@š™™™™™!ÀÍÌÌÌÌÌC@€>@ÍÌÌÌÌL8À33333³E@ÍÌÌÌÌÌ!@š™™™™¹R@š™™™™™&@š™™™™Ù@@€1À/@3333337@ÀD@àZ@ÍÌÌÌÌÌÀ33333sY@ffffffÀÍÌÌÌÌÌ,@fffffæC@333333@-@€H@š™™™™¹`@ffffffÀ33333³3Àffffff,@@@ÍÌÌÌÌLIÀ333333)Àš™™™™ÙGÀš™™™™G@fffffæK@fffff¦F@ÍÌÌÌÌÌ@@ Q@333333;@š™™™™YS@š™™™™™@š™™™™™ @€O@3333337@ÍÌÌÌ̬\@ÍÌÌÌÌÌì?ÍÌÌÌÌ D@š™™™™9S@3@fffffæ1@333333ã¿fffffFR@9@fffff¦K@ÍÌÌÌÌL5À33333óT@333333*@š™™™™YQ@fffff†`@ffffff:À33333sE@fffffU@fffff†P@33333óL@A@333333>@33333sP@š™™™™YD@ÍÌÌÌÌŒJÀffffff@R@6À@š™™™™Y@@@ffffff8Àš™™™™™R@ÍÌÌÌÌŒG@ÍÌÌÌÌÌ7ÀÍÌÌÌÌÌ!À33333óE@ÍÌÌÌÌ VÀÍÌÌÌÌÌG@š™™™™™*@š™™™™8ÀàP@ÍÌÌÌÌLC@ÍÌÌÌÌ,P@ÍÌÌÌÌÌ(@333333G@€3@ÀI@33333óO@€8@€2@fffffÆX@333333)@33333SV@ffffff@š™™™™9a@fffffFbÀš™™™™™W@33333sN@333333Ó¿š™™™™™É¿ffffffæ?š™™™™™Ù?š™™™™™É¿@š™™™™™¹?š™™™™™¹?š™™™™™é?à¿ffffffö¿š™™™™™É¿š™™™™™É?š™™™™™¹?š™™™™™¹?š™™™™™Ù¿š™™™™™¹?333333㿚™™™™™¹?š™™™™™¹?š™™™™™É?333333Ó¿š™™™™™¹¿š™™™™™¹?333333ó?š™™™™™¹?š™™™™™Ù¿ffffff濚™™™™™Ù?š™™™™™É?š™™™™™¹?࿚™™™™™¹?š™™™™™¹?š™™™™™É¿š™™™™™¹?𿚙™™™™¹¿š™™™™™¹?š™™™™™ñ¿š™™™™™Ù¿š™™™™™¹¿333333ã¿à¿à¿š™™™™™¹?š™™™™™Ù¿333333Ó?š™™™™™¹?š™™™™™é¿š™™™™™Ù¿333333Ó¿š™™™™™Ù¿š™™™™™é¿š™™™™™É?333333ӿ𿚙™™™™É¿š™™™™™¹¿š™™™™™¹¿š™™™™™É¿š™™™™™¹¿š™™™™™¹?š™™™™™Ù¿333333ã?333333㿚™™™™™¹?à¿ffffff@ÍÌÌÌÌÌ쿚™™™™™É¿333333Ó¿333333㿚™™™™™Ù¿333333Ó¿333333Ó¿333333ã¿ffffff#@333333Àš™™™™™ñ?@š™™™™™¹¿à?š™™™™™é?š™™™™™é¿š™™™™™¹?š™™™™™É?š™™™™™¹?š™™™™™¹?š™™™™™¹?š™™™™™ñ¿š™™™™™É¿š™™™™™É?333333Ó?ffffffæ¿ffffff@š™™™™™Ù¿@ffffffæ¿333333Ó¿š™™™™™¹?š™™™™™É?š™™™™™ñ?333333Ó?333333ã?š™™™™™É¿à¿333333ã¿ffffff濚™™™™™¹?š™™™™™é?333333ã?333333Ó¿š™™™™™¹?š™™™™™¹?333333ã?333333ó?š™™™™™ñ¿š™™™™™É¿š™™™™™¹?š™™™™™Ù¿š™™™™™Ù¿333333㿚™™™™™É¿à?š™™™™™É?ÍÌÌÌÌÌü?š™™™™™¹¿š™™™™™É?š™™™™™Ù?š™™™™™Ù?333333Ó¿š™™™™™É¿à¿š™™™™™É?à?š™™™™™¹?š™™™™™ñ¿ÍÌÌÌÌÌ쿚™™™™™Ù¿š™™™™™¹?š™™™™™Ù¿š™™™™™É¿š™™™™™Ù¿š™™™™™¹?333333Ó¿ÍÌÌÌÌÌ쿚™™™™™¹?š™™™™™É?ð¿ÍÌÌÌÌÌì?š™™™™™¹¿ffffffæ?ð¿ÍÌÌÌÌÌì?࿚™™™™™É¿š™™™™™Ù¿à¿š™™™™™Ù¿š™™™™™é¿š™™™™™¹?333333Ó¿š™™™™™¹?333333ã?à¿333333Ó¿š™™™™™Ù¿ð?š™™™™™É?333333ã?ÍÌÌÌÌÌô¿š™™™™™é¿š™™™™™É?333333Ó¿š™™™™™¹?š™™™™™ñ¿à¿à¿š™™™™™Ù¿333333㿚™™™™™Ù?ffffff@š™™™™™É¿š™™™™™¹?ffffffþ?ÍÌÌÌÌÌì¿333333ó¿š™™™™™¹¿ffffffþ?š™™™™™¹?š™™™™™É¿š™™™™™ñ¿š™™™™™¹?ffffff濚™™™™™¹¿333333 @ÍÌÌÌÌÌì¿ffffffæ¿à?š™™™™™¹?š™™™™™¹¿ffffff濚™™™™™Ù?333333ã?š™™™™™¹?ffffffö¿à¿333333㿚™™™™™É?ÍÌÌÌÌÌô¿š™™™™™¹?š™™™™™ù¿š™™™™™¹?ÍÌÌÌÌÌ쿚™™™™™ñ¿333333Ó¿333333Ó¿333333ã¿ffffffæ?333333㿚™™™™™¹?š™™™™™¹?š™™™™™é?š™™™™™¹¿333333ã?ÍÌÌÌÌÌì?š™™™™™¹?š™™™™™É?ffffffæ¿ffffffþ?333333ã¿à?333333Ó¿ffffffæ?š™™™™™É¿š™™™™™Ù¿à¿š™™™™™¹?à?࿚™™™™™É¿š™™™™™Ù?333333Ó¿ð¿333333ã¿à¿š™™™™™¹?à¿à?š™™™™™Ù¿š™™™™™¹?à?š™™™™™Ù?333333㿚™™™™™¹?š™™™™™Ù¿333333ӿ𿚙™™™™¹?333333ã?333333ó¿ffffffæ¿ð¿š™™™™™Ù¿333333Ó?à?ÍÌÌÌÌÌÀš™™™™™ñ¿333333ó?333333Ó?ffffffþ?à?š™™™™™Ù¿ffffffÀš™™™™™Ù?š™™™™™¹?š™™™™™Ù¿à¿š™™™™™¹¿š™™™™™É¿à¿333333ó?š™™™™™¹?š™™™™™Ù¿š™™™™™¹?333333Ó?ffffffæ?ffffffþ¿ÍÌÌÌÌÌü¿ffffffæ?à¿ÍÌÌÌÌÌ쿚™™™™™Ù?333333ó¿333333ó¿ffffffæ¿ffffffæ?š™™™™™ñ?333333ã?à?š™™™™™é?ð¿ÍÌÌÌÌÌì?ÍÌÌÌÌÌì?š™™™™™¹?š™™™™™¹?š™™™™™É¿333333ó¿š™™™™™ñ?à?ÍÌÌÌÌÌì¿à?š™™™™™É¿š™™™™™¹?ffffffæ¿333333㿚™™™™™ñ¿ÍÌÌÌÌÌì¿ffffff@ð?333333û?à¿333333Ó?333333û¿ÀÍÌÌÌÌÌô?š™™™™™É¿à?š™™™™™ñ¿š™™™™™ù¿š™™™™™¹?à?š™™™™™Ù?ð¿ÍÌÌÌÌÌì¿333333Ó¿à¿333333ã?š™™™™™¹¿à¿š™™™™™ À333333ã?333333ã?š™™™™™¹?š™™™™™É¿š™™™™™Ù?š™™™™™Ù¿333333ã?333333ã¿ffffffö¿š™™™™™Ù¿š™™™™™¹¿ÍÌÌÌÌÌü?333333㿚™™™™™@333333ã?š™™™™™Ù?ÍÌÌÌÌÌ@333333Ó¿à?š™™™™™é?ÍÌÌÌÌÌì?š™™™™™Ù?à¿333333Ó¿š™™™™™¹¿ffffffæ¿ffffffö¿ø¿ÍÌÌÌÌÌì?ffffffö?š™™™™™¹¿š™™™™™¹?š™™™™™é¿ffffffö?š™™™™™¹¿š™™™™™ñ?š™™™™™ñ¿ffffffæ¿333333Ó¿333333Ó¿ÍÌÌÌÌÌ@ffffffæ?ffffffæ?ø?333333Ó¿ffffffæ¿333333ã¿ð¿ÍÌÌÌÌÌü?333333Ó¿ffffffþ?š™™™™™É¿š™™™™™Ù¿à¿ffffffæ¿ffffff濚™™™™™¹?333333ã?š™™™™™Ù?š™™™™™¹?š™™™™™É?š™™™™™¹?š™™™™™Ù¿š™™™™™Ù?š™™™™™ñ¿333333û¿333333ã¿ø¿ffffffþ¿š™™™™™0À࿚™™™™™Ù¿š™™™™™ù¿ffffff濚™™™™™Ù¿š™™™™™é¿ÍÌÌÌÌÌì¿à¿ÀÍÌÌÌÌÌ쿚™™™™™ñ¿ð¿š™™™™™ñ¿š™™™™™é¿š™™™™™ñ¿ð¿ffffff4ÀÀ33333³0ÀÍÌÌÌÌÌÀffffff濚™™™™™Ù¿à¿à¿,À࿚™™™™™Ù¿ÍÌÌÌÌÌì¿ÍÌÌÌÌÌì¿ÍÌÌÌÌÌü¿š™™™™™Ù¿Àš™™™™™Ù¿à¿š™™™™™Ù¿"Àš™™™™™Ù¿ÍÌÌÌÌÌô¿ffffffæ¿333333㿚™™™™™Ù¿ÍÌÌÌÌÌì¿ÍÌÌÌÌÌ#À𿚙™™™™ù¿333333ã¿ffffff.@#@$@.@ffffff.@?@ÍÌÌÌÌÌ@ffffff@š™™™™™@@33333³0@ffffff@ffffff @š™™™™™4@ffffff)@333333#@ffffff@ÍÌÌÌÌÌ @&@ÍÌÌÌÌÌ2@'@€2@ÍÌÌÌÌÌ!@ÍÌÌÌÌÌ%@333333)@š™™™™™)@š™™™™™2@333333'@š™™™™™"@333333@š™™™™™@"@@š™™™™™-@ÍÌÌÌÌÌ"@ffffff$@š™™™™™(@ffffff,@@ffffff@&@ÍÌÌÌÌÌ@š™™™™™1@ffffff3@ÍÌÌÌÌÌ)@@%@ffffff"@ffffff@333333@ÍÌÌÌÌL0@ÍÌÌÌÌÌ%@fffffæ2@ffffff8@ÍÌÌÌÌÌ*@š™™™™™@333333&@333333%@3333336@ffffff@ffffff,@$@š™™™™™!@ÍÌÌÌÌÌ0@fffffæ1@@ÍÌÌÌÌÌ#@š™™™™1@š™™™™™$@333333#@ÍÌÌÌÌÌ#@ffffff+@333333@ffffff@333333)@ÍÌÌÌÌÌ:@ffffff@333333@3333332@ÍÌÌÌÌL1@3333333@ÍÌÌÌÌÌ @š™™™™™2@ÍÌÌÌÌÌ+@š™™™™™@333333B@*@ffffffö?š™™™™™@@ffffff#@š™™™™™@š™™™™™"@ffffff!@3333330@ÍÌÌÌÌÌ*@š™™™™™#@ffffff@ffffff.@ffffff-@fffffæ6@ffffff@ÍÌÌÌÌÌ>@ffffff)@š™™™™™3@š™™™™™@333333)@fffffæ2@ÍÌÌÌÌL2@ffffff@333333*@$@*@)@333333$@ÍÌÌÌÌÌ%@ffffff @ffffff@ÍÌÌÌÌÌ(@)@ffffff"@ÍÌÌÌÌÌ@š™™™™™(@ÍÌÌÌÌÌ@+@!@ÍÌÌÌÌÌ/@@ffffff @333333 @š™™™™™-@š™™™™™(@ÍÌÌÌÌÌ/@ffffff&@ÍÌÌÌÌL3@333333/@ÍÌÌÌÌÌ,@ffffff#@ÍÌÌÌÌÌ"@š™™™™™*@3333334@%@š™™™™™+@333333+@š™™™™™'@š™™™™™8@-@ffffff"@ÍÌÌÌÌÌ"@$@š™™™™2@333333#@ÍÌÌÌÌÌ(@ÍÌÌÌÌÌ%@333333)@333333(@š™™™™™.@š™™™™™+@š™™™™™@fffffæ3@ÍÌÌÌÌÌ!@ÍÌÌÌÌÌ7@š™™™™2@333333+@š™™™™™0@333333)@ffffff#@ÍÌÌÌÌÌ,@)@š™™™™™"@š™™™™™/@@>@ffffff#@@š™™™™™$@333333%@ffffff/@ÍÌÌÌÌÌ@š™™™™™/@š™™™™™0@š™™™™™!@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ@333333'@š™™™™™@ffffff&@ffffff#@ffffff@ÍÌÌÌÌÌì?š™™™™™'@š™™™™™2@333333%@"@!@ÍÌÌÌÌÌ(@33333³=@ÍÌÌÌÌÌ6@33333³1@ffffff @ÍÌÌÌÌÌ@š™™™™™@333333!@ÍÌÌÌÌÌ+@š™™™™™,@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ*@€0@ÍÌÌÌÌÌ/@333333@ÍÌÌÌÌÌ"@ffffff)@ÍÌÌÌÌÌ'@š™™™™™ @ffffff*@ÍÌÌÌÌL5@@.@ffffff0@3333331@333333%@333333@ffffff+@333333@333333&@ÍÌÌÌÌL5@ffffff"@+@fffffæ4@33333³1@33333³2@ÍÌÌÌÌÌ.@ÍÌÌÌÌÌ'@š™™™™™&@ffffff-@š™™™™™,@š™™™™0@š™™™™™ @ffffff-@š™™™™™@333333(@ÍÌÌÌÌÌ&@ÍÌÌÌÌÌ@š™™™™™(@ð?ffffff)@ffffff$@fffffæ0@ffffffæ?333333@ÍÌÌÌÌÌ@ffffff)@š™™™™™$@!@ÍÌÌÌÌÌ$@ÍÌÌÌÌÌ@)@ffffff'@ÍÌÌÌÌÌ @@333333 @@š™™™™™@ffffff&@ÍÌÌÌÌÌ@š™™™™™'@333333.@ffffff*@ffffff@š™™™™™)@333333@$@333333!@š™™™™™@€3@ÍÌÌÌÌÌ@ffffff6@ÍÌÌÌÌÌ#@333333 @ÍÌÌÌÌÌ)@š™™™™™#@ÍÌÌÌÌÌ(@@ÍÌÌÌÌÌ%@@š™™™™™'@š™™™™7@333333=@ÍÌÌÌÌÌ.@'@3333332@ffffff,@@ÍÌÌÌÌL4@33333³0@333333;@333333 @333333.@ffffff#@ÍÌÌÌÌÌ2@š™™™™™ù?š™™™™0@ÍÌÌÌÌÌ-@ffffff!@ffffff*@333333)@fffffæ8@ÍÌÌÌÌÌ @š™™™™™ @fffffæ0@ffffff5@(@33333³6@š™™™™™ @š™™™™™ @š™™™™™+@ffffff4@€9@$@333333!@š™™™™™.@ffffff*@333333*@#@ffffff,@ÍÌÌÌÌL0@fffffæ3@ffffff5@fffffæ9@ÍÌÌÌÌÌ @#@ÍÌÌÌÌÌ&@0@ffffff@ÍÌÌÌÌÌ*@š™™™™™@š™™™™™)@š™™™™™.@333333-@'@ÍÌÌÌÌL8@!@333333@$@333333!@%@333333)@fffffæ6@à?ÍÌÌÌÌÌ@ffffff@1@333333@333333'@€4@ffffff@333333"@!@.@š™™™™™@33333³;@ÍÌÌÌÌÌ2@š™™™™™@ffffffþ?ÍÌÌÌÌÌ@333333*@ffffff@3333333@ÍÌÌÌÌÌ"@š™™™™™@333333@ffffff@ÍÌÌÌÌÌ+@333333@ÍÌÌÌÌÌ@š™™™™1@š™™™™™+@33333³2@ffffff$@333333(@š™™™™™"@333333%@š™™™™™@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ"@š™™™™™'@333333+@ÍÌÌÌÌÌ*@š™™™™™ @ffffff$@333333@š™™™™™ @ÍÌÌÌÌÌ@ffffff"@ÍÌÌÌÌL;@@333333@š™™™™™2@'@333333,@š™™™™™7@@33333³2@5@5@-@ÍÌÌÌÌL0@333333(@(@3333331@333333'@š™™™™™@333333$@š™™™™™#@ÍÌÌÌÌÌ%@333333*@ffffff$@š™™™™™@ÍÌÌÌÌÌ @š™™™™™'@š™™™™™/@ffffff"@ÍÌÌÌÌÌ(@1@ffffff4@333333&@333333û?ÍÌÌÌÌÌ"@š™™™™™%@ffffff+@š™™™™™ @ffffff-@ÍÌÌÌÌÌ%@ffffff0@š™™™™™1@ÍÌÌÌÌÌ@333333@š™™™™™@ffffff@,@333333@€6@š™™™™™4@ÍÌÌÌÌÌ'@š™™™™™7@ÍÌÌÌÌÌ ÀÀÍÌÌÌÌÌÀÀ333333À33333³9Àš™™™™™ÀffffffÀ333333Àš™™™™™ Àš™™™™™*ÀffffffÀ333333ÀÍÌÌÌÌÌÀš™™™™™ñ¿333333À333333 À333333ÀÍÌÌÌÌÌ#ÀÀ333333Àš™™™™™1ÀÍÌÌÌÌÌ ÀÀš™™™™™À333333/ÀÍÌÌÌÌÌÀš™™™™™ Àš™™™™™Àš™™™™™ÀÍÌÌÌÌÌÀffffffÀš™™™™™ÀÀ333333Àffffff À333333&ÀÍÌÌÌÌÌÀÍÌÌÌÌÌÀÀš™™™™™ÀÍÌÌÌÌÌÀffffffÀÍÌÌÌÌÌü¿333333Àš™™™™™ÀffffffÀffffff À333333 Àš™™™™™"Àš™™™™™Àš™™™™™"Àš™™™™™#ÀÍÌÌÌÌÌì¿Àš™™™™™ñ¿ÍÌÌÌÌÌÀffffff!À333333+ÀÍÌÌÌÌÌÀ333333'ÀÍÌÌÌÌÌÀš™™™™™ÀffffffÀffffffÀÍÌÌÌÌÌ Àffffff#À333333û¿š™™™™™Àffffff&Àffffffþ¿ÍÌÌÌÌÌÀ333333À333333Àš™™™™™ ÀÍÌÌÌÌÌÀÀš™™™™™À333333%ÀÍÌÌÌÌÌÀffffffÀ333333"Àš™™™™™!ÀÀffffff<À333333!Àš™™™™™À(ÀÍÌÌÌÌÌÀ333333"ÀffffffÀffffff ÀÍÌÌÌÌÌÀÍÌÌÌÌÌ Àš™™™™™À333333Àš™™™™™ÀÍÌÌÌÌÌ"ÀffffffÀš™™™™™Àffffff<Àš™™™™™Àffffffæ¿ffffff-ÀÍÌÌÌÌÌ!À333333 À33333sEÀ333333ÀffffffÀ333333À333333 À(ÀÍÌÌÌÌÌ!Àš™™™™™ À3333334ÀÀš™™™™™ À333333À333333 À333333*Àffffff)Àffffff$À333333 À ÀÀÍÌÌÌÌÌ ÀÍÌÌÌÌÌÀ$Àffffff*ÀÍÌÌÌÌÌÀÀÍÌÌÌÌÌ$Àš™™™™™ÀÍÌÌÌÌÌ ÀffffffÀ À Àš™™™™™#ÀÍÌÌÌÌÌ À333333'Àš™™™™™ ÀÀ#Àš™™™™™!Àffffff Àš™™™™™À333333ÀÍÌÌÌÌÌÀ À333333"Àš™™™™™!Àà¿ÍÌÌÌÌÌô¿š™™™™™Àš™™™™™ À'ÀffffffÀ Àš™™™™™Àš™™™™™'À ÀÍÌÌÌÌÌü¿š™™™™™Àffffff&ÀffffffÀš™™™™™%À333333)Àffffff#Àš™™™™™.À(À ÀÀÀÍÌÌÌÌÌÀffffffÀÀÍÌÌÌÌÌÀffffffÀÍÌÌÌÌÌÀ333333À333333ÀÍÌÌÌÌÌ#ÀÍÌÌÌÌÌÀÀffffff$À"Àš™™™™™ÀffffffÀš™™™™™Àš™™™™™Àš™™™™™Àš™™™™™Àš™™™™™ Àš™™™™™À333333Àffffff)ÀÍÌÌÌÌÌ+ÀffffffÀ𿚙™™™™"ÀffffffÀffffffþ¿333333+ÀÍÌÌÌÌÌ&ÀffffffÀÍÌÌÌÌÌÀffffff/Àš™™™™3À+ÀÍÌÌÌÌÌÀffffffÀ333333ÀÍÌÌÌÌÌÀÍÌÌÌÌÌ,ÀffffffÀffffff$À333333"À333333ÀffffffÀ333333ÀÍÌÌÌÌÌÀÀffffffÀ333333Àffffff À333333ÀÀš™™™™™&ÀÀÍÌÌÌÌÌÀffffffÀÀš™™™™™%ÀÀ333333À333333Àš™™™™™Àffffff-ÀffffffÀÀffffffÀÍÌÌÌÌÌ*À333333ÀÍÌÌÌÌÌ!À333333À&Àš™™™™™ÀÍÌÌÌÌÌ#À333333Àš™™™™™À333333û¿ÍÌÌÌÌÌ À333333ÀÀš™™™™™ÀffffffÀš™™™™™À333333Àš™™™™™ÀffffffÀffffff Àø¿ÍÌÌÌÌÌ!ÀffffffÀÍÌÌÌÌÌ À333333Àffffffþ¿Àø¿Àš™™™™™ À(ÀÀÍÌÌÌÌÌÀÍÌÌÌÌÌ"Àš™™™™™ ÀÀffffffÀÀffffffÀš™™™™™ ÀÀÍÌÌÌÌÌÀš™™™™™ÀÀ Àffffff$Àffffff ÀÍÌÌÌÌÌÀ+À333333&ÀÍÌÌÌÌÌ*À333333ÀÍÌÌÌÌÌ)ÀÍÌÌÌÌL2ÀffffffÀ333333ó¿š™™™™™À333333ÀffffffÀš™™™™0ÀÍÌÌÌÌÌ4ÀÀffffffÀš™™™™™À333333*ÀffffffÀffffffÀ333333+À333333'ÀÍÌÌÌÌÌ'Àffffff&Àš™™™™™2À333333Àffffffþ¿ÍÌÌÌÌÌ$Àš™™™™™À333333 Àš™™™™™ÀÀš™™™™™*Àffffff&Àffffff$Àš™™™™™ÀÍÌÌÌÌÌ À À333333ÀffffffÀ333333À333333Àš™™™™™$ÀÀÀš™™™™™À Àš™™™™™À"Àffffff)Àš™™™™™ÀffffffÀš™™™™™Àš™™™™™À3333336À333333$Àš™™™™™*Àš™™™™™Àffffff!Àš™™™™™À333333!À333333Àš™™™™™Àš™™™™™ÀÍÌÌÌÌÌ(Àš™™™™™#Àš™™™™™(Àš™™™™™!À ÀÍÌÌÌÌÌÀÀÍÌÌÌÌÌÀÀš™™™™™ÀÍÌÌÌÌÌ,À333333 ÀÍÌÌÌÌÌÀ)ÀÀÍÌÌÌÌÌÀffffffÀffffff'ÀÀ(Àš™™™™™ À333333#À333333Àš™™™™™À*Àš™™™™™ Àà¿3333331Àfffffæ6À333333 Àš™™™™™ÀÍÌÌÌÌÌ,ÀÀÀ+Àš™™™™™$À333333#À333333û¿ffffff Àffffffö¿Àš™™™™™+ÀÍÌÌÌÌÌ#ÀÍÌÌÌÌÌ!À Àš™™™™™"À3333332Àš™™™™™ù¿š™™™™™Àš™™™™™À3333336ÀÍÌÌÌÌÌÀš™™™™™ ÀÍÌÌÌÌÌÀÍÌÌÌÌÌ"ÀffffffÀ333333$À€>ÀffffffÀÀÍÌÌÌÌÌ.Àš™™™™™ÀÀš™™™™™ÀÀš™™™™™,Àš™™™™™!À"ÀÍÌÌÌÌÌÀ333333À333333ÀÀÍÌÌÌÌÌÀÍÌÌÌÌÌ!ÀÀÀÀ À#ÀÍÌÌÌÌÌÀš™™™™™$À Àš™™™™YBÀÍÌÌÌÌÌÀ333333Àš™™™™™é?š™™™™™Ù?ffffffæ?à?333333@à?à?à?ð?ffffffö?š™™™™™Ù?333333ã?à?à?ÍÌÌÌÌÌì?ÍÌÌÌÌÌ쿚™™™™™Ù¿ÍÌÌÌÌÌì?à?à?š™™™™™¹?š™™™™™¹¿š™™™™™é?š™™™™™Ù?333333Ó?ÍÌÌÌÌÌì?š™™™™™ñ?ÍÌÌÌÌÌì?à?š™™™™™é?333333ã?333333Ó?ffffffæ?š™™™™™Ù?š™™™™™Ù?333333ã?à?š™™™™™Ù?333333ó?š™™™™™Ù?à?333333ã?333333ã?ð?333333Ó?š™™™™™É?š™™™™™É?ffffffæ?à?333333ã?ffffffæ?ð?ffffffæ?ffffffæ?š™™™™™ñ?ð?à?333333ã?š™™™™™É?š™™™™™ñ?333333Ó?333333ã?š™™™™™é?333333Ó?333333ã?š™™™™™Ù?š™™™™™é?333333ã?š™™™™™é?š™™™™™¹?à?š™™™™™Ù?333333ã?š™™™™™¹¿ffffffæ?333333ã?à?š™™™™™ñ?š™™™™™é?š™™™™™é?à?š™™™™™É¿à?à?ffffffæ¿ÍÌÌÌÌÌì?ð?š™™™™™é?š™™™™™Ù?à?ffffffæ?ffffffæ?à?š™™™™™é?à?ÍÌÌÌÌÌô?ÍÌÌÌÌÌì?à?ÍÌÌÌÌÌô?333333㿚™™™™™é?š™™™™™Ù?š™™™™™Ù?š™™™™™É?333333ã?à?à?333333Ó?ð?333333ã?333333ã?š™™™™™É¿ÍÌÌÌÌÌì?š™™™™™¹?333333Ó?ffffffæ?333333ã?ÍÌÌÌÌÌì?ÍÌÌÌÌÌô?š™™™™™¹¿à?š™™™™™ñ?333333ã?š™™™™™é?ffffffþ?333333Ó?333333ã¿ÍÌÌÌÌÌì?à?à?š™™™™™Ù?à?š™™™™™Ù?à?333333Ó?333333ã?à?š™™™™™Ù?ÍÌÌÌÌÌì?333333ã?333333Ó?ÍÌÌÌÌÌì?à?ffffffæ?š™™™™™é?ffffffæ?333333ã?333333ó?333333ã?š™™™™™¹¿š™™™™™Ù?ÍÌÌÌÌÌì?333333ó?333333ã?ÍÌÌÌÌÌô?333333ã?ffffffæ?ffffffö?333333ã?š™™™™™é?ffffffæ?ð?š™™™™™é?à?ÍÌÌÌÌÌì?ffffffæ?š™™™™™É?ffffffæ?333333ã?333333Ó?ffffffæ?333333ã?š™™™™™é?à?333333ã?š™™™™™Ù¿333333ã?ffffffö?333333ã?à?š™™™™™Ù?ð?ffffffæ?š™™™™™é?š™™™™™Ù?à?333333ã?š™™™™™Ù?ÍÌÌÌÌÌÀà?333333Ó?333333Ó¿š™™™™™é?š™™™™™É?ð?š™™™™™Ù?š™™™™™É?333333ã?à?š™™™™™é?ffffffæ?333333Ó?š™™™™™É?š™™™™™Ù?š™™™™™¹¿à?ffffffæ?333333ã?à?333333ã?š™™™™™Ù?ffffffæ?ffffff@333333ã?333333Ó?à?š™™™™™Ù?333333Ó?š™™™™™ñ?š™™™™™Ù?š™™™™™Ù?333333Ó?333333ã?ffffffæ?ð?333333ã?ð?ð?à?à?š™™™™™Ù?š™™™™™é?š™™™™™É?333333ã?333333Ó?š™™™™™Ù?ð?333333Ó?š™™™™™é?ffffffæ?ð?333333ã?š™™™™™Ù?333333ã?ÍÌÌÌÌÌì?333333ã?333333ã?ð?š™™™™™É?š™™™™™Ù?à?ffffffæ?ð?333333Ó?333333Ó?à?ffffffæ¿ÍÌÌÌÌÌì?à?333333ã?333333ã?ÍÌÌÌÌÌì?ÍÌÌÌÌÌì?333333ã?ð?à?š™™™™™Ù?333333ã?š™™™™™é?333333Ó?š™™™™™é?333333Ó?333333ã?ÍÌÌÌÌÌì?333333ã?333333Ó?à?ffffffæ?333333ã?ð?à?à?333333ã?333333Ó¿333333ã?ffffffæ?333333Ó¿ffffffæ?š™™™™™ñ?š™™™™™Ù?333333ã?š™™™™™¹¿333333ã?à?à?à?࿚™™™™™Ù?à?à?à?š™™™™™Ù?š™™™™™¹?ffffffæ?š™™™™™ñ?ð¿à?333333Ó?š™™™™™Ù?333333ó?333333ó¿ffffffæ?ffffffö?333333ã?333333ã?333333ó?333333ã?ffffffæ?333333Ó?à?š™™™™™Ù¿š™™™™™¹¿ð?ÍÌÌÌÌÌì?à?à?š™™™™™é?333333Ó?š™™™™™é?ÍÌÌÌÌÌô?ffffffæ?š™™™™™ñ?š™™™™™é?333333Ó?ffffffæ?š™™™™™é?333333ã?333333ã?ffffffæ?ÍÌÌÌÌÌì?š™™™™™¹?333333ã?ø?333333ã?ffffffæ?333333ã?333333ã?š™™™™™é?š™™™™™ñ?à?ffffffæ?š™™™™™Ù?à?à?à?333333ã?ffffffæ?à?333333ã?ÍÌÌÌÌÌì?333333ã?š™™™™™é?333333Ó?š™™™™™Ù?š™™™™™é?ð?š™™™™™Ù?š™™™™™Ù?333333ã?à?š™™™™™Ù?š™™™™™ñ?ÍÌÌÌÌÌì?à?333333ã?à?à?ffffffæ¿à?š™™™™™Ù?333333Ó?ffffffæ?333333Ó?à?ffffffæ?à?š™™™™™Ù?š™™™™™é?ffffffæ?š™™™™™é?š™™™™™¹?ffffffæ?à?333333ã?š™™™™™é?š™™™™™Ù?ffffffæ?333333Ó¿à?š™™™™™É?š™™™™™¹?333333ã?š™™™™™Ù?à?š™™™™™é¿333333ã?š™™™™™é?š™™™™™É¿333333ã?š™™™™™Ù?š™™™™™Ù?à¿333333ã?333333ã?333333㿚™™™™™é?š™™™™™¹¿ð?ø?333333Ó?ÍÌÌÌÌÌ쿚™™™™™Ù?ffffffæ?š™™™™™¹¿333333ó?ffffffæ?ffffffæ?š™™™™™ñ?ffffffæ?333333ã?š™™™™™Ù?š™™™™™¹?š™™™™™é?333333ã?ÍÌÌÌÌÌì?š™™™™™é?à?š™™™™™Ù?ffffffæ?š™™™™™Ù?333333ó?š™™™™™¹?à?š™™™™™É?à?à?š™™™™™é?333333ã?ð?š™™™™™é?ffffffæ?š™™™™™é?ffffffæ?ffffffæ?ð?š™™™™™é?ÍÌÌÌÌÌì¿333333ã?š™™™™™é?ffffffæ?ð?333333ã?à?ffffff@ÍÌÌÌÌÌ@š™™™™™@ffffff @š™™™™™@š™™™™™@ffffffþ?ffffffö?@ÍÌÌÌÌÌô?ÍÌÌÌÌÌÀ333333Ó?š™™™™™ñ?š™™™™™@ffffffþ?ÍÌÌÌÌÌ@ÍÌÌÌÌÌ@ÍÌÌÌÌÌì?@ÍÌÌÌÌÌ @@333333@333333@ÍÌÌÌÌÌì?ffffffþ?333333 @š™™™™™@ffffff @333333û¿ÍÌÌÌÌÌô¿ÍÌÌÌÌÌ@ffffffþ?@ffffff@333333ó?333333ó?š™™™™™@@ @ø?š™™™™™@ffffff@@333333û?333333@ø? @ÍÌÌÌÌÌô?ð?ø?š™™™™™ñ?ø?333333@@333333ã?ffffff@@š™™™™™ù?š™™™™™É?@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ@333333@333333@@š™™™™™@ÍÌÌÌÌÌÀffffff @ÍÌÌÌÌÌ@333333û?ÍÌÌÌÌÌ@333333@333333 @ffffffþ?š™™™™™@š™™™™™@@333333ó¿š™™™™™@333333û?@ÍÌÌÌÌÌ@ÍÌÌÌÌÌì?333333@333333@333333/@ÍÌÌÌÌÌÀ@ÍÌÌÌÌÌô?ð?ÍÌÌÌÌÌì?ffffff@ÍÌÌÌÌÌ@š™™™™™ñ?š™™™™™@ffffff@ffffff @@333333ã?ffffffæ¿333333ó?à?ð?š™™™™™"@š™™™™™ù?333333ã?š™™™™™@ffffff@š™™™™™$@š™™™™™Ù?ffffff @ffffff@š™™™™™@333333@ÍÌÌÌÌÌ@@ffffffö?ffffffö?ÍÌÌÌÌÌô?ÍÌÌÌÌÌü?ffffff @ÍÌÌÌÌÌü?@š™™™™™@š™™™™™@ÍÌÌÌÌÌ@333333@ffffff@š™™™™™@ffffff@333333@ÍÌÌÌÌÌô?š™™™™™@@ffffff@@@š™™™™™é?š™™™™™é?@š™™™™™@333333û?ÍÌÌÌÌÌ@ÍÌÌÌÌÌ@ffffff@ffffff@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ@333333û?ð?@@333333@ÍÌÌÌÌÌü?ÍÌÌÌÌÌ@ffffff@333333ã?à?ffffff@ffffffþ?ÍÌÌÌÌÌ@333333Ó?š™™™™™@333333@ÍÌÌÌÌÌü?333333ó?ÍÌÌÌÌÌ@ffffff@ÍÌÌÌÌÌü?@š™™™™™Ù?ÍÌÌÌÌÌ@@ffffffö?333333û?333333Ó?333333û?ÍÌÌÌÌÌü?333333@à¿ÍÌÌÌÌÌü?@ÍÌÌÌÌÌì?ø?à?333333ã?à?ÍÌÌÌÌÌì?ffffff@ffffff @ÍÌÌÌÌÌ@333333û?ÍÌÌÌÌÌì¿333333ã¿@ÍÌÌÌÌÌ@š™™™™™@ffffff@ffffffæ?ø?š™™™™™É?ø?š™™™™™Ù¿ffffff @ffffff@333333@ffffff@333333@ÍÌÌÌÌÌ@@ÍÌÌÌÌÌ@333333@@ffffff@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ@ÍÌÌÌÌÌô¿à?ffffff@š™™™™™@333333ó?ÍÌÌÌÌÌ @@ÍÌÌÌÌÌ@333333@š™™™™™é? @@333333 @333333@š™™™™™Ù?à¿ffffff@š™™™™™ù?š™™™™™@ÍÌÌÌÌÌÀš™™™™™@333333À@ffffffþ? @333333ã?ð?ø?š™™™™™ù?333333ã?@ffffff@š™™™™™é?š™™™™™ @ffffffþ?ÍÌÌÌÌÌ@š™™™™™Ù?ÍÌÌÌÌÌì?ffffff@ffffff@š™™™™™ù¿ÍÌÌÌÌÌ@à?ø?333333Ó?@ffffff@à?ffffff@333333ã?š™™™™™ñ?ÍÌÌÌÌÌ@ÍÌÌÌÌÌ@@@ffffff@333333@š™™™™™Ù?š™™™™™¹?333333Ó?ffffff@ffffffö¿ffffff@333333@@333333@š™™™™™ @ÍÌÌÌÌÌü?ÍÌÌÌÌÌ@š™™™™™ñ?ÍÌÌÌÌÌì?š™™™™™ù?ffffffö?ÍÌÌÌÌÌì?š™™™™™é?š™™™™™@ÍÌÌÌÌÌ @@ø¿333333û?š™™™™™ Àffffffþ?š™™™™™@333333@ffffff@333333û?š™™™™™ @à?ffffffæ¿ÍÌÌÌÌÌ@ÍÌÌÌÌÌô?@ffffff@ÍÌÌÌÌÌ@@333333ó?@ffffffæ?š™™™™™ @š™™™™™ù?333333@š™™™™™@ffffff@@š™™™™™Ù?ÍÌÌÌÌÌì?333333ÀffffffÀ333333@333333ó?š™™™™™ù?š™™™™™ù?333333û¿ø¿ffffff@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ@ffffff@333333@š™™™™™¹¿š™™™™™@ffffff@š™™™™™@333333@ffffff@ÍÌÌÌÌÌ@š™™™™™ñ?ÍÌÌÌÌÌô?ÍÌÌÌÌÌ@ÍÌÌÌÌÌ@ffffff@@š™™™™™@ÍÌÌÌÌÌ@ffffff @333333ã?ø¿à?ÍÌÌÌÌÌ@333333û?ffffff@ð¿333333@ÍÌÌÌÌÌü¿333333û¿333333@ffffffæ?ÍÌÌÌÌÌ@š™™™™™ @ffffff @333333ó?333333ã¿333333 ÀÍÌÌÌÌÌ@ÍÌÌÌÌÌ@ÍÌÌÌÌÌì?À@333333@š™™™™™É?ffffffö?ÍÌÌÌÌÌì?ÍÌÌÌÌÌô?Àffffffæ?333333@ffffff@@ÍÌÌÌÌÌ@š™™™™™ñ?š™™™™™@333333@333333û¿š™™™™™é¿š™™™™™ù?š™™™™™@ffffffæ? @ð?š™™™™™@ffffff @ÍÌÌÌÌÌ@š™™™™™@ø?š™™™™™ @ffffff @ÍÌÌÌÌÌ@š™™™™™ù?@@ffffff@š™™™™™ @š™™™™™É?š™™™™™@333333ã?333333 @ÍÌÌÌÌÌ@ÍÌÌÌÌÌ @ffffff@ffffffæ?@ÍÌÌÌÌÌ@š™™™™™Ù?@Àà?ÍÌÌÌÌÌ@ÍÌÌÌÌÌü?333333!@@ffffff@333333û?ffffffæ?333333Àš™™™™™é?@@š™™™™™Ù¿š™™™™™é¿ÍÌÌÌÌÌô?ÍÌÌÌÌÌ@š™™™™™ñ?333333 @333333@š™™™™™@333333@ÍÌÌÌÌÌì? @š™™™™™ @333333 @š™™™™™@ffffffö?š™™™™™@ffffff Àffffff@333333@33333³1@š™™™™™'@ÀÍÌÌÌÌÌ<@3333330@333333=@ffffffö?ÍÌÌÌÌÌ@ÍÌÌÌÌÌ@ffffff*@)Àš™™™™™!Àffffff@ÍÌÌÌÌŒN@ÍÌÌÌÌÌ=@š™™™™™3@€0@š™™™™™,@ø¿333333K@š™™™™™5@!À1@#@ffffff4@>Àš™™™™™F@€3@@333333"ÀÍÌÌÌÌÌ@ÍÌÌÌÌÌ&@333333@€5@ÍÌÌÌÌÌ@€2@ffffffö¿3333333@)@ffffff1@3333336@ÀÍÌÌÌÌL?@333333L@ffffff*@"Àffffff @ÍÌÌÌÌÌ.@333333@ÍÌÌÌÌÌ!Àš™™™™™2@333333@2@ÀQ@333333,@š™™™™™-@3333330@ð¿ffffff.@ffffff@333333@333333/@ÍÌÌÌÌÌ+@ffffffC@@F@@333333ÀÍÌÌÌÌÌA@ffffff;@ÍÌÌÌÌÌÀ€7@1@333333+@@ÍÌÌÌÌÌ>@fffffæ?@ÍÌÌÌÌlQÀffffff@ffffffÀ333333-@ÍÌÌÌÌL?@ÍÌÌÌÌL7@ ÀÍÌÌÌÌÌ5@š™™™™<@33333“]À33333sQ@333333-@fffff†QÀ@š™™™™™"ÀÍÌÌÌÌÌ%@ffffffÀÍÌÌÌÌÌ@ffffffÀš™™™™A@ÍÌÌÌÌL8@ffffff%@1Àfffffæ5@€8@š™™™™ÙY@fffffFRÀàU@ffffffA@š™™™™™@ffffff&Àffffff7@IÀffffffA@š™™™™™@ffffff-@@333333#@š™™™™™@333333-@ffffffCÀø?33333³4@fffffæ7@š™™™™™(À,Àffffff!@#@€;@š™™™™™É?fffffæ=@@ÍÌÌÌÌÌÀ333333!À;@š™™™™™5@š™™™™™@ÍÌÌÌÌÌ @333333:@3333339@š™™™™™@3333330@š™™™™™Àš™™™™™;@fffffæ5@ÍÌÌÌÌÌü¿?@ffffff'@ffffff@ÍÌÌÌÌÌ5@;@ffffff @ÍÌÌÌÌÌ&@33333³1@ÍÌÌÌÌ B@ffffffB@;@!@33333³9@ÍÌÌÌÌÌì¿ÍÌÌÌÌ F@ffffffÀfffffæA@@ffffffö?333333G@ffffff@@fffff&A@@ÍÌÌÌÌÌ/@ÍÌÌÌÌÌÀffffff@š™™™™™ÀÍÌÌÌÌL1ÀÍÌÌÌÌÌÀ€E@333333@@ffffff7@ÍÌÌÌÌL2@3333332@333333'@33333³:@33333³<@š™™™™™Àš™™™™™é?-À333333;@333333Ó¿š™™™™™/À333333@33333³0À333333!À333333)@E@3333337@ÍÌÌÌÌÌ'@*@ffffff<@ÍÌÌÌÌÌM@3333333@333333@333333+@š™™™™™*À4@ffffffTÀš™™™™A@ÀÍÌÌÌÌŒCÀ33333s@@fffffæA@"Àš™™™™™7Àš™™™™™'À333333%@3@ffffff@š™™™™™2@ÍÌÌÌÌÌ À33333³PÀš™™™™™@333333@333333)@fffffæ9@ÍÌÌÌÌL:@ÍÌÌÌÌÌ#@ÍÌÌÌÌÌü¿3@-@333333$@ffffffF@3333330@ffffffE@fffffæC@š™™™™C@š™™™™YH@@fffffæ2@333333@š™™™™;@fffff&@@ÍÌÌÌÌÌ @ÍÌÌÌÌÌÀ€9@š™™™™™Àš™™™™6@š™™™™0À*@ÍÌÌÌÌÌ#@ffffff,À7@ÍÌÌÌÌÌ(Àfffff¦@@ffffff8Àš™™™™™#À3333331À333333(@š™™™™™ñ¿š™™™™™JÀffffff!@š™™™™™!@š™™™™™ @ffffff@ÍÌÌÌÌL;@&@333333@#@ffffff@ffffffÀš™™™™™(@ffffff@8@fffff¦A@š™™™™™@ð¿ÍÌÌÌÌÌ!@ffffffö¿š™™™™:@ffffff%@333333.@ÍÌÌÌÌÌD@š™™™™™@ffffff=@€0@@ÍÌÌÌÌÌ Àš™™™™™ÀÍÌÌÌÌL8@333333@333333)@š™™™™™Àš™™™™™@š™™™™™I@š™™™™ÙI@fffffæ?@€?@š™™™™ÙA@@š™™™™2@fffff&D@*@ÍÌÌÌÌL9@ÍÌÌÌÌL5Àš™™™™™:@3333338Àffffff(À3333337@š™™™™™-À€@@fffffæ4@ø¿fffff&A@ÍÌÌÌÌL1ÀIÀÍÌÌÌÌÌ%À@<@333333,Àffffff#@fffff&A@33333³@À333333Ó?ffffff'@ffffff/@333333/@š™™™™™@€2@ffffff#@ÍÌÌÌÌÌ @333333?@š™™™™™Ù¿ffffff.@ffffff@fffffæ4@š™™™™™:@ÀC@š™™™™™#@ffffff4@33333³1@fffff&C@ffffff@€1@ffffff)Àffffff@333333=@fffff¦B@ÍÌÌÌÌÌ2@š™™™™ÙE@ÍÌÌÌÌÌ@š™™™™™<Àffffff@ÍÌÌÌÌL@@ÍÌÌÌÌÌ4@#@š™™™™E@ÀRÀ#Àfffffæ<À@@333333ÀÍÌÌÌÌÌ;@@F@ÀEÀ3À33333³1@ÍÌÌÌÌÌ@ÍÌÌÌÌL>@€3Àfffff&D@ffffff @ffffffÀÍÌÌÌÌÌ*Àffffff3@ÍÌÌÌÌÌ@333333;@ffffff@@À333333û?-@ffffffJ@ÍÌÌÌÌÌ.À333333ó¿š™™™™™:@ÍÌÌÌÌÌ4@š™™™™3@ffffff2@š™™™™™Àš™™™™™&@ÍÌÌÌÌÌÀš™™™™™ÀffffffÀš™™™™™9@33333sD@€;À333333ZÀ1@ffffff"@>À333333$Àffffff@ÍÌÌÌÌÌ8@333333"ÀÍÌÌÌÌLFÀfffff¦E@33333³5@?@fffffæN@ffffff;Àffffff3@€?@ffffff@@€=@š™™™™™@ÍÌÌÌÌL?@1@š™™™™™>@33333sCÀš™™™™™Ù¿9@ffffff!@333333û?š™™™™?@ÍÌÌÌÌÌ#À333333_À+@3333337@fffffæ:À @ÍÌÌÌÌŒB@š™™™™™1@33333sA@š™™™™™Àš™™™™8Àš™™™™™@ffffff7@š™™™™<@ffffff@š™™™™7@ @š™™™™™8@fffff¦L@ÍÌÌÌÌÌ@@(@š™™™™™&Àfffffæ<@š™™™™4ÀÍÌÌÌÌLQ@ÍÌÌÌÌÌQÀ€1@F@ÍÌÌÌ̬Q@ÍÌÌÌÌLA@33333³4@ÍÌÌÌÌŒO@š™™™™™O@33333sU@ÍÌÌÌÌÌ.@ffffff,@33333sO@ÍÌÌÌÌL6@fffff¦BÀš™™™™™ÀÍÌÌÌÌÌ*@ÍÌÌÌÌÌY@š™™™™™G@€F@ÍÌÌÌÌLN@3333334@33333³:@€U@333333O@ffffff.@€C@š™™™™™2@ÍÌÌÌÌŒB@ø¿0`@fffffæH@š™™™™™-ÀÍÌÌÌÌÌ4Àš™™™™YF@33333³;@fffff¦A@š™™™™YE@ffffff&@33333³9@1@ÍÌÌÌÌLV@ÍÌÌÌÌLE@š™™™™™;@33333³F@ÍÌÌÌÌÌ*@33333óH@333333T@fffffæA@ÍÌÌÌÌÌì?€<@3333339@š™™™™™*@333333 @€:@ÍÌÌÌÌL4@333333G@fffff&Z@33333³1@ÀA@š™™™™ÙA@333333(@ffffff1@š™™™™™<@š™™™™™4@33333³B@ÍÌÌÌÌŒB@ÍÌÌÌÌLR@ÍÌÌÌÌìU@fffffæ9@333333:Àfffff¦N@fffff¦K@ÍÌÌÌÌÌ @š™™™™YI@ÍÌÌÌÌ J@ÀE@33333³5@ÍÌÌÌ̬[@š™™™™YO@ÍÌÌÌÌÌ@ÀÍÌÌÌÌÌ'@€;@fffff¦F@33333óN@š™™™™™@33333óD@G@R@fffffæ<@ÍÌÌÌÌÌC@š™™™™YJÀ1@à¿fffff¦D@€7@+@fffffÆQ@fffff&P@ÍÌÌÌÌLL@33333óF@ÍÌÌÌÌÌ%Àš™™™™0@@A@ÍÌÌÌ̬Z@àPÀš™™™™Éf@fffff&G@%@fffff&M@š™™™™™S@àQ@ÍÌÌÌÌLB@fffffæ=@š™™™™K@33333³5@333333Q@33333³7@ÍÌÌÌÌŒ@@33333³9Àš™™™™™&@š™™™™™ @33333³A@fffff&H@ @š™™™™™7@33333óS@ÍÌÌÌÌL9@fffffÆQ@fffffæ7@fffff&H@š™™™™™3@š™™™™™-@333333E@@A@33333óF@333333K@fffffæH@fffff&P@ÍÌÌÌ̬R@š™™™™™$@š™™™™™5@ÍÌÌÌÌÌ2@ÍÌÌÌÌLH@333333@@ffffff9@fffff&J@33333óP@ffffffD@ÍÌÌÌÌÌM@fffffæG@š™™™™™/@ffffff1@ÍÌÌÌÌ A@fffffF\@fffff&A@333333I@ÍÌÌÌÌ L@š™™™™™K@€>@ffffff@š™™™™ÙM@ÍÌÌÌÌÌ+@fffff†S@@@K@fffff&V@33333³F@š™™™™™D@33333³P@€W@ffffff#@ÍÌÌÌÌL=@ÍÌÌÌÌÌÀ@š™™™™YH@š™™™™J@ffffff>@333333@33333ó@@ÍÌÌÌÌÌ=@fffff&K@š™™™™™@š™™™™YD@ÀQ@@ffffff"@ Àfffffæ=@ffffffþ?š™™™™™ù¿š™™™™YE@fffffæ6@>@333333<@š™™™™™B@ÍÌÌÌÌÌ1@33333³@@ÍÌÌÌÌÌC@š™™™™YR@fffff&U@ÍÌÌÌÌL8@ffffff*@ÍÌÌÌÌÌ!@33333³8@3333331Àš™™™™ÙH@fffffæCÀfffff&M@ffffff9@=@š™™™™ÙQ@€N@33333³E@ffffffB@3333338@š™™™™™A@33333óE@ÍÌÌÌÌL:@ÍÌÌÌÌÌ @ÍÌÌÌÌÌÀffffffEÀ€5@&@ÍÌÌÌÌLH@fffffFW@33333R@B@333333ó?ffffffL@33333sB@fffff¦C@ÍÌÌÌÌlT@3@fffff¦B@fffffæT@33333³G@ÍÌÌÌÌìW@BÀÍÌÌÌ̬Q@(ÀÍÌÌÌÌÌG@33333sE@33333óC@ø?fffff¦@@ð?ÍÌÌÌÌL?@333333 ÀH@fffff&@@À333333J@à?33333“U@ffffff3Àffffff@333333@33333óQ@33333³2ÀÍÌÌÌÌÌ0ÀÍÌÌÌÌÌ%@ÍÌÌÌÌÌ4@@š™™™™YP@š™™™™YF@333333+@33333³8@ffffff(@ffffff,@š™™™™™5@ffffff;@š™™™™™<@š™™™™G@33333“U@E@@#@à?ÍÌÌÌÌŒE@ Àš™™™™™?@33333óT@fffffæ?@š™™™™YX@fffffæG@1@,@š™™™™™@ffffff>@ÍÌÌÌÌL0@š™™™™™6@ÍÌÌÌÌÌì?333333*@ffffffV@š™™™™)a@33333T@333333#@š™™™™F@ÍÌÌÌÌÌ5Àš™™™™ÙC@ÍÌÌÌÌ W@fffffQ@ÍÌÌÌÌLI@š™™™™™!ÀffffffJ@€3Àš™™™™™0À33333“Z@333333ÀffffffJ@š™™™™ÙI@š™™™™Ù@@33333sZ@333333À,ÀÍÌÌÌÌÌÀfffff¦A@š™™™™™C@š™™™™™'@ÍÌÌÌÌLG@ffffffI@ÍÌÌÌÌÌ3Àš™™™™™ù?š™™™™4@333333'Àš™™™™™*ÀÍÌÌÌÌÌH@š™™™™:@ÍÌÌÌÌÌ5@€<@ffffff,@€1Àš™™™™™I@333333K@š™™™™yR@ R@@Z@"@ÍÌÌÌÌìP@š™™™™™L@fffff&[@fffffæ6@33333sI@ÍÌÌÌÌL2@ffffff/@ÍÌÌÌÌ D@š™™™™W@333333P@ÍÌÌÌÌÌN@33333³9@333333-À€>@€K@š™™™™™=@š™™™™™À33333óF@€@Àffffff@ÍÌÌÌÌLD@ÍÌÌÌÌÌ4@333333M@š™™™™™+@333333=@ÍÌÌÌÌÌ%ÀÍÌÌÌÌÌ+ÀfffffæB@333333?@N@"ÀB@fffffæ?Àš™™™™™5@333333)@@333333ã¿ffffffC@ÍÌÌÌÌÌW@š™™™™™ @fffffæ0Àffffff@7@ffffff(ÀffffffÀ2@€H@ÍÌÌÌÌÌB@fffff&R@ffffff9@R@€A@ÍÌÌÌÌL;Àš™™™™™$Àffffff$@ffffffU@ÍÌÌÌÌÌ=@àP@š™™™™™*À@fffff¦G@333333B@ÀF@š™™™™™@ffffffD@fffffæI@@H@fffff¦BÀš™™™™ÙX@fffff&G@@R@š™™™™™W@ÍÌÌÌÌÌ9Àš™™™™YP@fffffæA@š™™™™™L@fffffÆW@š™™™™D@fffff&H@ÍÌÌÌÌL6@ÍÌÌÌÌ I@š™™™™™0Àš™™™™™ù?š™™™™YR@ÍÌÌÌÌÌ!Àffffff @fffffæH@333333@333333@š™™™™YL@ÍÌÌÌÌŒR@š™™™™™Àš™™™™™(@ffffffÀÍÌÌÌÌÌ8@33333³L@š™™™™ÙS@š™™™™™9Àš™™™™™@fffffæ@@@O@.@33333sI@3333339@@P@ÍÌÌÌÌŒT@333333$@š™™™™™B@€H@3333331@33333U@#Àš™™™™)`@ÍÌÌÌÌ,dÀš™™™™L@ffffffN@š™™™™™Ù¿š™™™™™Ù¿ÍÌÌÌÌÌô?š™™™™™¹?š™™™™™É¿333333ã?š™™™™™É¿š™™™™™¹?à¿ÍÌÌÌÌÌì¿333333Ó¿š™™™™™¹¿š™™™™™É?࿚™™™™™Ù¿š™™™™™¹¿à¿š™™™™™¹?š™™™™™Ù¿š™™™™™É¿333333Ó¿333333Ó¿333333㿚™™™™™¹?š™™™™™¹¿333333Ó¿š™™™™™Ù¿š™™™™™Ù¿š™™™™™¹¿š™™™™™¹?š™™™™™é¿333333Ó¿ffffffæ¿à¿š™™™™™Ù¿š™™™™™¹?333333Ó¿ffffff濚™™™™™É¿š™™™™™¹¿333333Ó¿š™™™™™¹¿ð¿333333ã¿à¿š™™™™™¹¿333333Ó¿333333ó¿333333Ó¿333333ã?š™™™™™Ù¿à¿š™™™™™É¿š™™™™™¹¿š™™™™™Ù¿š™™™™™¹¿š™™™™™Ù¿š™™™™™Ù?ffffffæ¿333333Ó?š™™™™™é¿š™™™™™É¿š™™™™™É¿ÍÌÌÌÌÌ@š™™™™™é¿ÍÌÌÌÌÌì¿333333ã¿ð¿333333Ó¿333333ã¿à¿333333ӿ࿚™™™™™ù¿š™™™™™ù¿ffffffö¿š™™™™™É¿333333ã?࿚™™™™™¹?š™™™™™É?š™™™™™É¿ð¿š™™™™™¹¿š™™™™™ñ¿š™™™™™Ù¿š™™™™™¹?š™™™™™é¿ÍÌÌÌÌÌ쿚™™™™™¹¿À333333ã¿333333㿚™™™™™¹?ÍÌÌÌÌÌì?࿚™™™™™É?à¿333333ã¿ð¿333333Ó¿333333Ó?š™™™™™É¿ffffff濚™™™™™¹?š™™™™™Ù¿š™™™™™¹?ffffff濚™™™™™É¿š™™™™™¹¿à¿333333㿚™™™™™É¿š™™™™™Ù¿š™™™™™¹?š™™™™™¹?333333Ó¿š™™™™™É?š™™™™™¹?š™™™™™Ù¿š™™™™™Ù¿š™™™™™É¿333333㿚™™™™™¹?š™™™™™¹?š™™™™™Ù?š™™™™™¹¿ð¿ÍÌÌÌÌÌ쿚™™™™™¹¿à¿š™™™™™Ù¿š™™™™™É¿š™™™™™É?š™™™™™É¿à¿š™™™™™É¿333333㿚™™™™™¹¿333333Ó¿š™™™™™¹¿š™™™™™¹?࿚™™™™™¹?࿚™™™™™Ù¿333333Ó¿à¿ffffffæ¿333333ã¿ffffff濚™™™™™Ù¿š™™™™™¹?࿚™™™™™Àš™™™™™Ù¿š™™™™™¹?š™™™™™¹?333333ó¿ÍÌÌÌÌÌ쿚™™™™™¹?š™™™™™Ù¿333333Ó¿ffffff濚™™™™™¹¿333333Ó¿š™™™™™Ù¿š™™™™™Ù¿š™™™™™Ù¿š™™™™™¹?ð?333333Ó¿ÍÌÌÌÌÌì¿ÍÌÌÌÌÌô¿ffffff濚™™™™™¹¿ð?333333㿚™™™™™é¿š™™™™™Ù¿š™™™™™¹?333333ó¿š™™™™™É¿ÍÌÌÌÌÌ@𿚙™™™™É¿š™™™™™¹?333333Ó¿š™™™™™ñ¿333333㿚™™™™™¹¿š™™™™™¹?š™™™™™¹?š™™™™™É¿š™™™™™¹¿š™™™™™É¿333333ó¿š™™™™™É¿ÍÌÌÌÌÌ쿚™™™™™¹?š™™™™™Àš™™™™™¹?ÍÌÌÌÌÌì¿ÍÌÌÌÌÌì¿à¿333333ӿ࿚™™™™™é¿à¿š™™™™™ñ¿š™™™™™É?333333㿚™™™™™É¿š™™™™™É?333333㿚™™™™™¹?š™™™™™¹?ÍÌÌÌÌÌü¿š™™™™™É?š™™™™™Ù¿š™™™™™É¿à¿š™™™™™Ù?333333Ó¿ffffffæ¿à¿š™™™™™¹?š™™™™™Ù?š™™™™™¹¿š™™™™™É¿š™™™™™¹?š™™™™™Ù¿333333ã¿333333㿚™™™™™é¿š™™™™™Ù¿333333Ó?š™™™™™Ù¿š™™™™™¹?š™™™™™¹?š™™™™™Ù¿š™™™™™¹¿333333Ó¿š™™™™™É¿š™™™™™¹¿š™™™™™Ù¿š™™™™™¹¿š™™™™™É¿333333ó¿333333Ó¿š™™™™™¹?ÍÌÌÌÌÌô¿š™™™™™ñ¿ÍÌÌÌÌÌô¿š™™™™™é?š™™™™™Ù?š™™™™™¹?ffffffþ¿š™™™™™ñ¿š™™™™™É¿š™™™™™ñ¿š™™™™™É?š™™™™™¹¿333333Àš™™™™™¹?š™™™™™¹¿ÍÌÌÌÌÌì¿333333㿚™™™™™¹?š™™™™™Ù¿à¿ffffff@š™™™™™¹?à¿333333㿚™™™™™É¿š™™™™™¹¿ffffffö¿333333Àà?333333㿚™™™™™é¿š™™™™™Ù¿333333ó¿ÍÌÌÌÌÌô¿š™™™™™Ù¿š™™™™™É¿ffffffæ?࿚™™™™™é?š™™™™™¹¿333333ó¿š™™™™™¹?š™™™™™É¿š™™™™™Ù¿š™™™™™¹?ffffffæ¿à?333333Ó?࿚™™™™™¹?333333㿚™™™™™É?š™™™™™ñ¿à¿š™™™™™ù¿ffffffæ¿ÍÌÌÌÌÌ@š™™™™™¹?š™™™™™Ù?à¿333333ó¿ø¿333333û¿š™™™™™É?š™™™™™É¿š™™™™™¹?š™™™™™ñ¿333333û¿à¿š™™™™™é¿š™™™™™Ù?ffffff濚™™™™™Ù¿à¿à¿ffffffæ?š™™™™™¹¿à¿ÍÌÌÌÌÌô¿š™™™™™É?à¿333333Ó¿333333Ó¿š™™™™™É¿333333ã¿ffffffæ¿ffffffæ¿333333ÀÍÌÌÌÌÌô¿ffffffæ?à¿ÍÌÌÌÌÌì¿ffffffö?333333ã?š™™™™™Ù?à?333333Ó¿š™™™™™É?š™™™™™¹?ÍÌÌÌÌÌ@š™™™™™Ù?š™™™™™¹?ÍÌÌÌÌÌì¿à¿à¿ÀÍÌÌÌÌÌô¿333333ó¿š™™™™™ñ¿š™™™™™¹?š™™™™™Ù¿š™™™™™É¿ÍÌÌÌÌÌì¿ffffff濚™™™™™É¿š™™™™™¹?ÍÌÌÌÌÌ쿚™™™™™Ù¿333333Ó¿333333Ó¿333333 @à?š™™™™™¹¿š™™™™™Ù?š™™™™™É¿š™™™™™Ù¿ffffffæ¿ffffffæ¿333333ã?333333Ó¿š™™™™™É?š™™™™™¹¿š™™™™™Ù?à¿333333ã¿à¿ffffffö¿š™™™™™¹¿š™™™™™É¿à¿333333Ó?š™™™™™Ù¿š™™™™™¹?ffffff濚™™™™™É?š™™™™™¹?š™™™™™Ù¿š™™™™™é¿š™™™™™ñ¿à¿à¿š™™™™™Ù¿ffffffæ¿ÍÌÌÌÌÌì¿ÍÌÌÌÌÌì¿ffffffþ¿333333㿚™™™™™Ù¿à¿š™™™™™Ù¿à¿333333û¿ÍÌÌÌÌÌÀš™™™™™Ù¿333333ã¿ÍÌÌÌÌÌü¿ÍÌÌÌÌÌì¿ÍÌÌÌÌÌô¿š™™™™™ñ¿Àš™™™™™é¿ÍÌÌÌÌÌì¿à¿à¿ÍÌÌÌÌÌì¿ÍÌÌÌÌÌì¿333333ó¿ffffffÀà¿ffffffæ¿ÍÌÌÌÌÌ쿚™™™™™Ù¿ffffffæ¿ffffffö¿ð¿333333ó¿333333ó¿š™™™™™Ù¿333333ã¿ÍÌÌÌÌÌì¿333333ó¿š™™™™™ñ¿š™™™™™Ù¿ð¿#Àffffff濚™™™™™ù¿š™™™™™ñ¿š™™™™™ñ¿š™™™™™Ù¿ffffff濚™™™™™Ù¿š™™™™™Ù¿š™™™™™Ù¿333333û¿š™™™™™Ù¿333333ó¿š™™™™™Ù¿333333ã¿333333ã¿ÍÌÌÌÌÌô¿š™™™™™ù¿333333û¿š™™™™™ñ¿ø¿ð¿š™™™™™é¿à¿333333㿚™™™™™é¿ÍÌÌÌÌÌô¿ffffffæ¿333333 À333333㿚™™™™™ñ¿ÍÌÌÌÌÌ쿚™™™™™Ù¿ð¿ffffff濚™™™™™é¿à¿333333ó¿š™™™™™é¿ffffff,Àð¿ffffff濚™™™™™ñ¿š™™™™™Ù¿š™™™™™é¿ffffffþ¿š™™™™™Ù¿333333ã¿ÍÌÌÌÌÌ Àš™™™™™é¿333333ã¿ Àà¿à¿+@&@333333&@ffffff.@333333"@€3@š™™™™™@!@š™™™™™"@ÍÌÌÌÌÌ%@ffffff)@333333@ffffff@3@333333+@333333#@'@ÍÌÌÌÌÌ @š™™™™™ @#@ÍÌÌÌÌÌ&@ffffff)@š™™™™™#@ffffff#@š™™™™™/@333333"@€5@ffffff*@@333333@š™™™™™@š™™™™™"@š™™™™™ @*@š™™™™™#@ffffff'@333333)@š™™™™™)@š™™™™™"@ÍÌÌÌÌÌ@š™™™™™)@š™™™™™@333333'@š™™™™™3@333333 @ÍÌÌÌÌÌ @@&@ffffff@š™™™™™@ffffff$@333333"@š™™™™1@€4@ÍÌÌÌÌÌ)@ffffff#@ffffff&@š™™™™™&@fffffæ5@š™™™™™%@ @ffffff$@ÍÌÌÌÌÌ@š™™™™™-@ÍÌÌÌÌÌ0@333333@333333!@ÍÌÌÌÌÌ,@ÍÌÌÌÌÌ/@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ @ÍÌÌÌÌÌ$@#@333333 @ffffff.@ÍÌÌÌÌÌ/@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ*@š™™™™™*@š™™™™™(@333333,@%@'@š™™™™™'@ÍÌÌÌÌÌ@ÍÌÌÌÌL6@ffffff(@333333'@š™™™™™@ffffff @@š™™™™™@š™™™™™@ÍÌÌÌÌÌ@333333+@.@š™™™™™$@ffffff @ffffff,@š™™™™™#@33333³0@š™™™™™(@š™™™™;@ffffff$@3@€8@333333"@fffffæ3@ffffff*@š™™™™™$@ffffff'@š™™™™™"@1@,@š™™™™™@"@ @š™™™™™@ffffff(@333333)@%@@ffffff)@333333@ÍÌÌÌÌÌ$@ffffff@ÍÌÌÌÌÌ/@š™™™™™@!@š™™™™™#@ffffff+@#@333333/@333333!@š™™™™™0@3333332@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ'@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ*@3333331@ @+@ÍÌÌÌÌÌ'@š™™™™™#@3333331@&@ffffff@"@333333$@333333.@@333333(@333333$@ffffff*@ffffff+@ffffff)@333333'@š™™™™™@/@ÍÌÌÌÌÌ"@š™™™™™,@ffffff&@š™™™™™'@(@333333&@ÍÌÌÌÌÌ%@ffffff)@333333@ffffff"@ffffff)@ÍÌÌÌÌÌ*@6@ÍÌÌÌÌÌ@333333@š™™™™™&@333333%@*@333333@ÍÌÌÌÌÌ/@š™™™™™$@333333#@@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ@333333@ffffff @ÍÌÌÌÌL=@š™™™™™ @ÍÌÌÌÌÌ@333333&@3333330@š™™™™™(@š™™™™™ @š™™™™™ @.@33333³3@š™™™™™'@€2@ÍÌÌÌÌÌ @333333@ffffff@š™™™™™$@ÍÌÌÌÌÌ@ffffff(@(@@fffffæ3@š™™™™™.@&@š™™™™™@ffffff@š™™™™™,@ÍÌÌÌÌÌ @ffffff@1@333333@š™™™™™.@š™™™™™ @333333%@/@ffffff1@333333#@ffffff @+@ÍÌÌÌÌÌ @š™™™™™$@fffffæ2@š™™™™™ @ÍÌÌÌÌÌ#@(@1@fffffæ1@3333331@333333$@$@ÍÌÌÌÌÌ+@š™™™™™*@-@ffffff@+@ @ffffff/@ÍÌÌÌÌÌ(@š™™™™™$@š™™™™™(@333333@š™™™™™@ffffff&@ffffff2@ffffffþ?ffffff$@š™™™™™@$@3333330@333333û?ffffff!@333333*@333333@333333@333333)@ffffff'@ÍÌÌÌÌÌ@333333"@333333!@š™™™™™@ffffff"@ffffff@ffffff&@ÍÌÌÌÌÌ(@ÍÌÌÌÌÌ$@333333@ÍÌÌÌÌÌ*@ffffff@š™™™™™$@ÍÌÌÌÌÌ#@%@0@!@ÍÌÌÌÌÌ0@ffffff@š™™™™™@#@š™™™™™(@ÍÌÌÌÌÌ+@ÍÌÌÌÌÌ@š™™™™™@333333@š™™™™™ @š™™™™2@š™™™™3@ffffff&@333333*@š™™™™™/@333333'@ffffff@š™™™™™*@333333-@š™™™™™*@333333@333333.@š™™™™™ @ÍÌÌÌÌÌ/@ffffff5@@ffffff%@.@š™™™™™@ÍÌÌÌÌÌ*@š™™™™™0@š™™™™3@@ffffff(@š™™™™™*@š™™™™™ @ÍÌÌÌÌÌ!@ffffff-@%@333333@ÍÌÌÌÌÌ*@š™™™™™,@6@š™™™™™@333333%@š™™™™™)@3333334@ÍÌÌÌÌÌ&@ÍÌÌÌÌÌ#@ÍÌÌÌÌÌ#@ffffff6@š™™™™1@3333336@ffffff.@333333'@ffffff@(@333333(@ffffff!@333333/@ffffff@ffffff%@š™™™™™$@š™™™™™+@š™™™™™#@ÍÌÌÌÌL0@š™™™™™@ÍÌÌÌÌÌ@333333 @&@#@333333+@ffffff%@ffffff&@š™™™™™@ÍÌÌÌÌL0@ÍÌÌÌÌÌ3@š™™™™™@333333-@ÍÌÌÌÌÌ @ÍÌÌÌÌÌ@333333%@@,@333333@33333³3@ÍÌÌÌÌÌ/@ffffff&@š™™™™™@@ÍÌÌÌÌÌ&@š™™™™™"@€3@š™™™™™!@š™™™™™@š™™™™™@ÍÌÌÌÌÌ!@ÍÌÌÌÌL1@ÍÌÌÌÌÌ@š™™™™™"@3333331@ÍÌÌÌÌÌ'@3333330@ÍÌÌÌÌÌ*@fffffæ0@333333$@ffffff%@š™™™™™+@ÍÌÌÌÌÌ@ÍÌÌÌÌL0@*@€3@333333#@š™™™™™ @ffffff"@@333333!@333333@ÍÌÌÌÌÌ&@33333³6@(@ÍÌÌÌÌÌ@š™™™™™/@ÍÌÌÌÌÌ!@š™™™™™*@ÍÌÌÌÌÌ5@333333 @š™™™™™3@ÍÌÌÌÌÌ,@š™™™™™.@š™™™™;@ÍÌÌÌÌÌ(@.@ffffff.@š™™™™™,@1@š™™™™™@ffffff,@ÍÌÌÌÌÌ-@!@ÍÌÌÌÌÌ.@ÍÌÌÌÌÌ&@ÍÌÌÌÌÌ@š™™™™™&@š™™™™™)@š™™™™™%@ffffff"@ÍÌÌÌÌÌ&@€=@š™™™™™-@ÍÌÌÌÌÌ7@ffffff@333333%@&@ÍÌÌÌÌÌ)@&@33333³0@ÍÌÌÌÌÌ#@€7@š™™™™™0@ffffff@ffffff0@š™™™™™"@š™™™™™ @333333"@ffffff@3333335@6@š™™™™™.@)@À333333À333333 Àš™™™™™ ÀÍÌÌÌÌÌì¿ÍÌÌÌÌÌ&ÀÀš™™™™™ÀffffffÀÀÍÌÌÌÌÌÀ333333ÀÍÌÌÌÌÌÀffffffö¿š™™™™™Ù¿š™™™™™ù¿ÍÌÌÌÌÌÀÍÌÌÌÌÌü¿ø¿ffffffö¿ffffffÀ333333ÀffffffÀš™™™™™ À333333À333333ÀffffffÀffffffÀ333333ÀÀ333333ÀffffffÀš™™™™™À333333À333333Àš™™™™™é¿ÍÌÌÌÌÌÀÍÌÌÌÌÌÀ333333û¿À333333 Àffffffþ¿ÍÌÌÌÌÌô¿ÍÌÌÌÌÌÀ ÀÀÍÌÌÌÌÌÀ333333ó¿333333ÀÍÌÌÌÌÌÀ333333ÀffffffÀffffffÀffffffþ¿ÍÌÌÌÌÌÀ333333ÀÍÌÌÌÌÌü¿š™™™™™ÀÍÌÌÌÌÌ Àffffffö¿š™™™™™À333333ã¿ÍÌÌÌÌÌô¿š™™™™™Àffffffæ¿333333û¿À333333ó¿ffffffö¿ÍÌÌÌÌÌÀø¿333333ÀÍÌÌÌÌÌ ÀÍÌÌÌÌÌÀÀš™™™™™ÀÀÀÍÌÌÌÌÌü¿ÍÌÌÌÌÌü¿333333 À333333À ÀÀ333333ÀÍÌÌÌÌÌÀ333333ÀÍÌÌÌÌÌÀš™™™™™ Àš™™™™™ Àffffffþ¿ffffffÀ333333 ÀÍÌÌÌÌÌÀÍÌÌÌÌÌ&À333333û¿ffffff"ÀÍÌÌÌÌÌì¿ÀffffffÀffffffÀš™™™™™Àš™™™™™ À333333ÀÍÌÌÌÌÌ Àš™™™™™Àš™™™™™#ÀÀÍÌÌÌÌÌÀš™™™™™ Àš™™™™™ù¿333333"Àš™™™™™!Àš™™™™™ÀÀø¿š™™™™™À333333 ÀffffffÀ333333À333333Àš™™™™™À333333ã¿Àffffff ÀÀffffffÀš™™™™™Àš™™™™™ÀÀš™™™™™ñ¿ffffffÀ333333Àø¿ffffffÀffffffÀš™™™™™ ÀffffffÀÍÌÌÌÌÌÀÍÌÌÌÌÌÀÍÌÌÌÌÌÀffffffÀÀà¿ffffff濚™™™™™ÀÍÌÌÌÌÌÀš™™™™™ÀffffffÀÀš™™™™™ Àø¿š™™™™™Àð¿ÍÌÌÌÌÌÀš™™™™™À À333333À ÀÍÌÌÌÌÌÀ%À#À333333 À333333À333333Àš™™™™™ñ¿333333û¿ÍÌÌÌÌÌÀÀÀ333333û¿ffffffÀš™™™™™ù¿ffffffÀ333333ó¿ffffffþ¿333333À333333ÀÀffffff ÀÍÌÌÌÌÌÀÍÌÌÌÌÌ ÀÀffffffþ¿Àš™™™™™ÀÍÌÌÌÌÌÀ333333ã¿ÀÍÌÌÌÌÌÀ333333ÀÍÌÌÌÌÌô¿ffffffÀš™™™™™ñ¿333333!À333333À333333À À333333$ÀÍÌÌÌÌÌÀš™™™™™ù¿ÀÍÌÌÌÌÌ ÀÍÌÌÌÌÌÀø¿333333Àffffffæ¿ffffffÀÍÌÌÌÌÌ ÀÍÌÌÌÌÌÀÀffffffö¿ÍÌÌÌÌÌ Àš™™™™™ñ¿š™™™™™Àš™™™™™Ù¿ÍÌÌÌÌÌô¿333333ó¿ÍÌÌÌÌÌô¿333333À333333ÀÍÌÌÌÌÌü¿ÀÍÌÌÌÌÌÀš™™™™™ÀÍÌÌÌÌÌ ÀffffffÀš™™™™™À333333#À333333ÀÀ333333 Àffffff À333333 ÀffffffÀffffffÀÍÌÌÌÌÌÀÍÌÌÌÌÌÀffffffÀffffffþ¿333333Àffffff À333333À333333û¿333333À333333ÀÍÌÌÌÌÌÀš™™™™™ À333333ÀÍÌÌÌÌÌÀš™™™™™ Àffffffþ¿ÍÌÌÌÌÌì¿ÍÌÌÌÌÌÀš™™™™™ ÀÍÌÌÌÌÌÀÍÌÌÌÌÌ Àffffffæ¿ffffffÀÍÌÌÌÌÌô¿š™™™™™ ÀffffffÀÍÌÌÌÌÌ!À333333û¿À333333À333333 Àffffffö¿ÀÍÌÌÌÌÌÀÍÌÌÌÌÌÀffffffþ¿Àffffffþ¿ÀÍÌÌÌÌÌô¿333333ÀÍÌÌÌÌÌÀÀffffffÀ333333"ÀÍÌÌÌÌÌÀÀÀÀÍÌÌÌÌÌô¿ÍÌÌÌÌÌ%Àffffff)À333333À ÀÍÌÌÌÌÌÀš™™™™™"ÀffffffÀffffff Àffffff$À333333Àš™™™™™ÀÍÌÌÌÌÌÀffffffÀffffff Àš™™™™™ù¿ffffffÀÍÌÌÌÌÌÀÍÌÌÌÌÌü¿333333ÀÍÌÌÌÌÌô¿ À333333À333333ÀÀÀš™™™™™ñ¿Àš™™™™™ Àð¿Àš™™™™™À333333Àš™™™™™Àš™™™™™ Àš™™™™™é¿Àš™™™™™ÀffffffÀ333333Àš™™™™™ñ¿ÍÌÌÌÌÌÀffffffþ¿Àš™™™™™"ÀÍÌÌÌÌÌÀš™™™™™ÀffffffÀš™™™™™À ÀffffffÀffffffÀš™™™™™!À333333Àš™™™™™ Àš™™™™™ ÀÀš™™™™™ ÀÍÌÌÌÌÌÀÍÌÌÌÌÌÀ333333À%À333333ÀÀÍÌÌÌÌÌÀffffff À333333 À333333ÀffffffÀÀ333333ó¿333333Àø¿ÀÍÌÌÌÌÌÀÀÀ333333À333333!À333333 Àš™™™™™ù¿ffffff À333333%À333333ÀÍÌÌÌÌÌÀffffffÀÍÌÌÌÌÌÀš™™™™™-Àð¿ÍÌÌÌÌÌ쿚™™™™™À333333ÀÀÍÌÌÌÌÌÀÍÌÌÌÌÌÀ333333 Àš™™™™™Àš™™™™™é¿ÍÌÌÌÌÌ ÀÍÌÌÌÌÌÀÍÌÌÌÌÌ$À333333À333333Àš™™™™™ÀffffffÀÍÌÌÌÌÌÀÍÌÌÌÌÌÀÍÌÌÌÌÌ Àš™™™™™À333333ÀÀ333333û¿ÍÌÌÌÌÌô¿ÍÌÌÌÌÌÀ333333Àš™™™™™*ÀÀÍÌÌÌÌÌÀffffffþ¿ø¿š™™™™™Àffffff Àø¿ffffffÀffffffþ¿ÍÌÌÌÌÌÀffffffÀffffffÀffffffÀš™™™™™ù¿š™™™™™ ÀffffffÀÍÌÌÌÌÌ>À À333333À333333@à?š™™™™™Ù?š™™™™™Ù?à?ÍÌÌÌÌÌì?š™™™™™Ù?š™™™™™Ù?333333ã?š™™™™™É¿š™™™™™é?š™™™™™Ù?š™™™™™¹?š™™™™™é?ð?š™™™™™é?333333ã?š™™™™™é?à?š™™™™™É?ffffffæ?š™™™™™Ù?333333Ó?à?à?š™™™™™Ù?ð?à?333333ã?à?à?ð?š™™™™™Ù?à?š™™™™™Ù?333333ã?š™™™™™Ù?333333ã?333333ã?ÍÌÌÌÌÌì?ffffffæ?à?ð?ÍÌÌÌÌÌì?š™™™™™Ù?à?š™™™™™Ù?ð?333333Ó?ffffffæ?š™™™™™é?333333Ó?š™™™™™Ù?š™™™™™Ù?ÍÌÌÌÌÌì?333333ã?333333ã?š™™™™™Ù?š™™™™™Ù?š™™™™™Ù?333333ã?š™™™™™¹¿à?š™™™™™é?š™™™™™Ù?ÍÌÌÌÌÌì?š™™™™™é?ÍÌÌÌÌÌì?333333ã?š™™™™™¹¿333333ã?333333ã?333333ã¿ð?ÍÌÌÌÌÌì?ffffffæ?333333Ó?ffffffæ?ffffffæ?333333ã?à?ffffffæ?à?ÍÌÌÌÌÌô?ð?à?ð?š™™™™™É¿ÍÌÌÌÌÌì?333333Ó?š™™™™™¹?š™™™™™¹?333333ã?ð?à?333333Ó?ð?à?ð?š™™™™™É¿ffffffæ?š™™™™™É?š™™™™™Ù?333333ã?ffffffæ?ffffffæ?ÍÌÌÌÌÌô?š™™™™™¹¿à?š™™™™™ñ?š™™™™™é?ffffffæ?š™™™™™¹¿333333Ó?š™™™™™Ù¿ÍÌÌÌÌÌì?à?š™™™™™Ù?333333Ó?333333ã?š™™™™™Ù?à?š™™™™™Ù?ffffffæ?333333ã?š™™™™™Ù?ÍÌÌÌÌÌì?à?š™™™™™Ù?à?333333ã?š™™™™™é?333333ã?ffffffæ?š™™™™™Ù?ÍÌÌÌÌÌì?ffffffæ?š™™™™™¹¿à?ÍÌÌÌÌÌì?ÍÌÌÌÌÌì?333333ã?ffffffö?à?š™™™™™Ù?333333ó?à?š™™™™™é?à?ffffffæ?š™™™™™é?à?ð?ffffffæ?š™™™™™¹?333333ã?à?333333Ó?ffffffæ?à?š™™™™™é?š™™™™™Ù?333333Ó?š™™™™™É¿ffffffæ?ÍÌÌÌÌÌô?à?ffffffæ?š™™™™™Ù?333333ó?ffffffæ?333333ã?à?à?333333ã?333333Ó?333333Ó¿333333Ó?š™™™™™Ù?š™™™™™É¿ffffffæ?333333Ó?ÍÌÌÌÌÌì?š™™™™™Ù?333333Ó?š™™™™™é?ffffffæ?333333ã?š™™™™™é?à?š™™™™™é?š™™™™™É?š™™™™™¹¿ffffffæ?š™™™™™é?333333ã?ffffffæ?à?333333Ó?à?ffffff@333333ã?š™™™™™Ù?à?333333Ó?333333Ó?ÍÌÌÌÌÌì?à?š™™™™™Ù?š™™™™™¹?à?ffffffæ?ffffffæ?ffffffæ?à?ÍÌÌÌÌÌì?š™™™™™é?333333Ó?ÍÌÌÌÌÌì?š™™™™™é?š™™™™™Ù?à?à?š™™™™™Ù?ÍÌÌÌÌÌì?š™™™™™É?ÍÌÌÌÌÌì?ffffffæ?ÍÌÌÌÌÌì?š™™™™™Ù?333333Ó?à?ð?à?š™™™™™Ù?ÍÌÌÌÌÌì?ffffffæ?š™™™™™Ù?ffffffæ?333333ã?ð?333333Ó?333333Ó?333333ã?š™™™™™Ù¿š™™™™™é?ÍÌÌÌÌÌì?à?333333ã?ffffffæ?ffffffæ?333333ã?ÍÌÌÌÌÌì?333333ã?333333Ó?333333ã?ffffffæ?333333Ó?333333ã?š™™™™™Ù?š™™™™™ñ?ð?333333ã?š™™™™™Ù?š™™™™™Ù?à?š™™™™™é?ÍÌÌÌÌÌì?š™™™™™Ù?š™™™™™Ù?à?333333Ó¿à?à?333333Ó?333333ã?ð?à?à?š™™™™™¹¿333333ã?š™™™™™Ù?š™™™™™Ù?à?š™™™™™Ù¿š™™™™™Ù?à?à?š™™™™™Ù?š™™™™™Ù?š™™™™™É?333333ã?š™™™™™ñ?š™™™™™é¿333333ã?333333Ó?333333Ó?ÍÌÌÌÌÌì?ffffffæ¿333333ã?š™™™™™¹¿333333ã?à?ÍÌÌÌÌÌô?333333Ó?333333ã?š™™™™™Ù?š™™™™™Ù?࿚™™™™™É¿ÍÌÌÌÌÌì?š™™™™™é?333333ã?ffffffæ?ÍÌÌÌÌÌì?š™™™™™Ù?š™™™™™é?š™™™™™ñ?ffffffæ?ffffffö?ffffffæ?š™™™™™Ù?333333ã?ffffffæ?333333ã?à?333333ã?š™™™™™é?š™™™™™É?333333ã?š™™™™™ñ?š™™™™™é?š™™™™™ñ?333333ã?à?š™™™™™é?ÍÌÌÌÌÌì?à?ffffffæ?à?à?ffffffæ?à?ffffffæ?333333ã?š™™™™™Ù?à?333333û?ffffffæ?333333ã?š™™™™™É?ffffffæ?ffffffæ?333333ó?ffffffæ?à?ffffffæ?š™™™™™Ù?š™™™™™Ù?ð?š™™™™™é?333333ã?ffffffæ?à?š™™™™™Ù?š™™™™™É?333333ã?333333Ó?333333Ó?à?333333Ó?333333ã?ffffffæ?š™™™™™Ù?333333Ó?333333ã?š™™™™™é?ÍÌÌÌÌÌì?š™™™™™Ù?333333ã?š™™™™™é?ffffffæ?ffffffæ?š™™™™™Ù?ffffffæ?333333Ó¿333333ã?š™™™™™Ù?333333Ó?333333ã?š™™™™™Ù?333333ã?š™™™™™é¿à?ffffffæ?š™™™™™¹¿333333ã?ffffffæ?ffffffæ?š™™™™™Ù¿333333ã?š™™™™™Ù?ffffff濚™™™™™é?š™™™™™é?ø?à?ÍÌÌÌÌÌì¿à?à?š™™™™™¹¿š™™™™™ñ?ffffffæ?333333ã?ð?š™™™™™¹¿ffffffæ?š™™™™™Ù?š™™™™™É?ÍÌÌÌÌÌì?333333ã?ð?š™™™™™é?š™™™™™Ù?š™™™™™Ù?à?š™™™™™Ù?ÍÌÌÌÌÌì?š™™™™™Ù?à?333333ã?333333ã?š™™™™™Ù?š™™™™™é?ffffffæ?ð?333333ã?š™™™™™é?ÍÌÌÌÌÌì?ffffffæ?333333ã?š™™™™™é?ffffffæ?à¿à?š™™™™™é?š™™™™™Ù?ffffffþ?š™™™™™Ù?333333ã?333333@ÍÌÌÌÌÌ@333333 @@333333@ffffff @ÍÌÌÌÌÌô?š™™™™™é?ffffff@ð?333333Ó¿ÍÌÌÌÌÌì?à?333333 @ffffffþ?ÍÌÌÌÌÌ@ffffff@à?š™™™™™ñ?@ÍÌÌÌÌÌ@ffffffö?@333333ó?@@ÍÌÌÌÌÌ@ @333333û¿333333ó¿ÍÌÌÌÌÌ@ÍÌÌÌÌÌü?@ffffffö?ð?š™™™™™ù?ffffffþ?333333@š™™™™™ @ø?š™™™™™@ÍÌÌÌÌÌô?ÍÌÌÌÌÌ@ffffffö¿ÍÌÌÌÌÌì?ø?333333û?333333ã?ø?ÍÌÌÌÌÌì?ffffffö?š™™™™™ñ?333333ó?š™™™™™@š™™™™™É?ffffff@@333333ã?ffffffæ¿ffffffþ?ffffffö?ÍÌÌÌÌÌ@ffffff@š™™™™™ @333333 @š™™™™™ù?ÍÌÌÌÌÌì¿333333@@333333û?ffffff@333333@ÍÌÌÌÌÌ@333333û?ÍÌÌÌÌÌ@ÍÌÌÌÌÌ@ @ÍÌÌÌÌÌì¿ffffff@ÍÌÌÌÌÌì?333333ã?š™™™™™@š™™™™™ñ¿š™™™™™Ù?ffffff@ffffff@Àš™™™™™É?ÀÍÌÌÌÌÌô¿š™™™™™Ù?333333ó?š™™™™™@ffffffæ?ffffff@333333@ÍÌÌÌÌÌ@@š™™™™™Ù?333333ã¿ÍÌÌÌÌÌì?ð?ø?@ÍÌÌÌÌÌô?š™™™™™Ù?ÍÌÌÌÌÌü?333333 @333333ó?š™™™™™É?333333û?333333@ÍÌÌÌÌÌü?š™™™™™@333333û?333333@333333@333333û?333333ó?ø?333333@ð?ffffffþ?333333@ffffffö?ffffff@333333@š™™™™™@ø?333333ã?ÍÌÌÌÌÌ@š™™™™™Ù?ÍÌÌÌÌÌü?š™™™™™@ffffff @š™™™™™@@ffffffö?ÍÌÌÌÌÌì?ÍÌÌÌÌÌü?ÍÌÌÌÌÌ@ffffffæ?ffffff@333333@333333@@333333@ffffffþ?ffffffþ?ÍÌÌÌÌÌô?š™™™™™@ffffff@333333@ÍÌÌÌÌÌ@@š™™™™™ @ÍÌÌÌÌÌô?333333ã?ffffffþ?š™™™™™ù? @š™™™™™É?ffffff@ÍÌÌÌÌÌ@š™™™™™@š™™™™™ñ?ÍÌÌÌÌÌ@ffffff@333333ó?š™™™™™é?333333ã?š™™™™™ñ?@ÍÌÌÌÌÌô?ffffff@ffffffæ?333333û?ÍÌÌÌÌÌ@333333@࿚™™™™™ù?ffffff@š™™™™™Ù?333333Ó¿333333Ó?à?333333ã?à?ffffffþ¿à?ffffff @333333ó?333333ã¿ÍÌÌÌÌÌì¿@@ÍÌÌÌÌÌ@ffffff@ø¿š™™™™™é?333333Ó?ffffffö?333333Ó¿ffffff@š™™™™™@333333@@ffffff@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ @ÍÌÌÌÌÌ@333333 @š™™™™™é¿š™™™™™@à?ffffff@ÍÌÌÌÌÌÀ333333ã?š™™™™™ù?à?ffffffö?ffffff@@ÍÌÌÌÌÌ @ffffffþ?š™™™™™é?@ø?š™™™™™@ffffff@333333ã?à¿ÍÌÌÌÌÌ@333333ã?333333@ÍÌÌÌÌÌÀ@333333ó¿ffffffö?ÍÌÌÌÌÌ@š™™™™™ù?333333㿚™™™™™é?š™™™™™é?š™™™™™@š™™™™™É?š™™™™™ñ?š™™™™™@à?@333333@@š™™™™™Ù?333333ã?@333333 @š™™™™™Àš™™™™™Ù?à?ÍÌÌÌÌÌì?š™™™™™Ù?ffffff@ffffff@à?ffffffþ?š™™™™™é?š™™™™™é?š™™™™™@@333333@š™™™™™@333333@ffffff @à?333333Ó?333333Ó?ffffffþ?š™™™™™¹?@333333 @ø?333333@š™™™™™@š™™™™™ù?š™™™™™@333333Ó?ð?š™™™™™@ð?ÍÌÌÌÌÌô?à?333333@@ÍÌÌÌÌÌ@ÍÌÌÌÌÌü¿ø?333333Àffffff@ffffff@ffffff@333333ã?ø?š™™™™™@ø?š™™™™™ À@ffffffæ?333333û?333333ã?@333333@à?ffffffþ?š™™™™™ñ?@š™™™™™é?š™™™™™ @333333@333333ã?ÍÌÌÌÌÌô?š™™™™™¹?š™™™™™¹?ffffffÀš™™™™™Àš™™™™™@ffffffö?š™™™™™@š™™™™™É¿333333ó¿ÍÌÌÌÌÌô¿ÍÌÌÌÌÌ@ÍÌÌÌÌÌ@ffffff@ @ÍÌÌÌÌÌ@ð?ffffff@š™™™™™@ffffff@333333ã?ÍÌÌÌÌÌü?ø?333333ó?š™™™™™é?@333333@333333ó?ÍÌÌÌÌÌü?š™™™™™ù?333333@š™™™™™@š™™™™™É?š™™™™™ñ¿ÍÌÌÌÌÌì¿ffffffþ?333333ó?333333 @š™™™™™é¿š™™™™™@ÍÌÌÌÌÌô¿š™™™™™ñ¿333333ó?š™™™™™Ù?ÍÌÌÌÌÌ@ffffff@š™™™™™@ffffffæ¿ÍÌÌÌÌÌô¿333333Àš™™™™™ù?333333û?à?333333Ó?333333 @@š™™™™™É?333333ó?ð?ÍÌÌÌÌÌü?@š™™™™™É?ð?333333û?š™™™™™ù?@ÍÌÌÌÌÌô?š™™™™™ù?ÍÌÌÌÌÌü?Àš™™™™™ñ¿333333û?ffffff@ÍÌÌÌÌÌì?ffffff@š™™™™™Ù?ÍÌÌÌÌÌü?@ffffff@ @ø?š™™™™™ @ @š™™™™™ @ @333333@ffffff@333333û?ffffff@333333Ó?@333333Ó?ÍÌÌÌÌÌü?š™™™™™@ÍÌÌÌÌÌü?ÍÌÌÌÌÌü?333333ã?ffffffö?š™™™™™é?ÍÌÌÌÌÌì?333333@ÍÌÌÌÌÌü¿š™™™™™É?š™™™™™ @š™™™™™ù?ÍÌÌÌÌÌ@š™™™™™ @ @ð?š™™™™™Ù?ÍÌÌÌÌÌô?ÍÌÌÌÌÌü?š™™™™™ù?š™™™™™ @à¿ÍÌÌÌÌÌô¿ø?ÍÌÌÌÌÌ@ÍÌÌÌÌÌü?ÍÌÌÌÌÌô?ffffffþ?@333333@š™™™™™é?ffffff@š™™™™™ @ÍÌÌÌÌÌü?@ð?š™™™™™ @Àš™™™™™ @333333û?€9@š™™™™™5@'@ffffffB@33333³5@š™™™™4@š™™™™™"@-@333333.@ÍÌÌÌÌÌ7@ffffff@ø¿ÍÌÌÌÌÌ@fffff¦G@ÍÌÌÌÌL=@3333334@ÍÌÌÌÌL9@fffffæ0@0@ÍÌÌÌÌÌ<@€2@333333%@ffffff3@3333330@fffffæA@š™™™™™@ÍÌÌÌÌLK@3333339@ffffff&@À333333#@š™™™™™,@ffffff&@3333335@ @ÍÌÌÌÌÌ:@333333)@9@ffffff6@ÍÌÌÌÌL3@ÍÌÌÌÌL9@@ffffff5@š™™™™YF@ffffff @š™™™™™¹?!@33333³6@ÍÌÌÌÌL0@š™™™™™É?3333330@ffffff@3333332@fffff&I@š™™™™™3@š™™™™=@ffffff7@ÍÌÌÌÌÌ+@ÍÌÌÌÌÌ@@ÍÌÌÌÌL4@333333û¿ffffff.@ÍÌÌÌÌÌ/@ÍÌÌÌÌÌ@@D@&@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ;@fffffæD@š™™™™™@€7@ÍÌÌÌÌÌ5@š™™™™1@333333!@fffffæC@š™™™™5@fffffæ@ÀÍÌÌÌÌÌ&@2@6@fffffæ?@ÍÌÌÌÌÌ9@š™™™™™2@&@ffffff;@33333sA@@G@€1@fffff&E@33333³A@š™™™™™ñ¿ÍÌÌÌÌÌ@333333 @@ÍÌÌÌÌÌì?š™™™™™=@š™™™™™4@ÍÌÌÌÌL5@ÍÌÌÌÌÌÀ333333;@ÍÌÌÌÌL1@fffff¦L@333333-Àš™™™™ÙP@€<@fffffæ3@š™™™™™S@ffffff2@fffffæ=@fffff&@@š™™™™™4@š™™™™™(@ffffff)@€8@3@333333'@3333331Àffffff@ffffff@š™™™™™5@333333>@š™™™™™ÀÍÌÌÌÌÌÀÍÌÌÌÌL0@ffffff!@3333336@ÍÌÌÌÌÌ@ÍÌÌÌÌL>@ÍÌÌÌÌÌ)@333333&@@ÍÌÌÌÌÌ>@fffffæ5@š™™™™™'@ffffff'@?@ÍÌÌÌÌLC@ffffff&@ÍÌÌÌÌL5@š™™™™™@ÍÌÌÌÌŒ@@+@333333$@333333?@š™™™™™%@)@š™™™™7@3333333@!@š™™™™™(@333333/@;@š™™™™™@fffffæ>@€9@ÍÌÌÌÌÌ7@š™™™™=@š™™™™™.@F@ffffff@€?@ÍÌÌÌÌÌ,@fffffæ9@33333³=@33333³:@fffffæ;@@š™™™™™-@333333#@@ÍÌÌÌÌÌ%@333333À333333*@fffffæA@&@333333$@š™™™™>@š™™™™™4@ffffff7@ÍÌÌÌÌÌ)@š™™™™ÙB@5@ffffff#@333333'@333333Àffffff'@'@ÍÌÌÌÌÌÀfffff†T@š™™™™™!@ÍÌÌÌÌÌô¿š™™™™5@33333³D@ffffff:@š™™™™™*@ÍÌÌÌÌÌ.@ÍÌÌÌÌLA@ÍÌÌÌÌ D@?@ÍÌÌÌÌÌ@@ffffff"@3@ffffffæ?33333³7@ÍÌÌÌÌÌ"Àš™™™™™>@š™™™™™ñ¿€I@@G@33333ó@@ÍÌÌÌÌÌÀÍÌÌÌÌÌ&À333333û¿33333³=@š™™™™™*@ÍÌÌÌÌÌ%@ÍÌÌÌÌŒB@ð?CÀ33333³1@@333333.@ÍÌÌÌÌÌ<@ÍÌÌÌÌÌ:@333333)@ffffff'@ffffff;@33333³6@3333330@ÍÌÌÌÌLD@fffffæ1@ÍÌÌÌÌL>@š™™™™7@333333K@€F@fffffæ;@š™™™™1@€4@ÍÌÌÌÌÌ>@33333³?@4@š™™™™™@ÍÌÌÌÌÌ7@!@C@ffffff@š™™™™™E@fffffæ0@ffffffÀffffff@ÍÌÌÌÌÌÀfffff&@@ÍÌÌÌÌÌ$Àš™™™™™@"Àffffff4@fffffæ4@ÍÌÌÌÌÌÀffffff(@ffffff=@ÍÌÌÌÌÌ,@@33333³=@€3@333333(@ffffff*@ÍÌÌÌÌÌ/@333333ã¿,@ÍÌÌÌÌÌ@7@333333=@ÍÌÌÌÌÌ$@!@(@333333"@33333³;@š™™™™5@ÍÌÌÌÌL:@š™™™™A@š™™™™™(@ÍÌÌÌÌÌ.@ffffff+@š™™™™™@333333@š™™™™™1@33333ó@@ffffff-@ÍÌÌÌÌÌ,@@@š™™™™YH@D@fffffæ2@ÍÌÌÌÌŒB@33333sE@š™™™™>@ Àš™™™™>@ffffff4@š™™™™YH@ffffffÀ333333?@š™™™™™À#@ÍÌÌÌÌÌ@@ø¿š™™™™ÙA@;@333333)@š™™™™™A@ffffff @ÍÌÌÌÌÌ>ÀÀ€5@3333335@š™™™™™'Àffffff+@ÍÌÌÌÌL6@ÍÌÌÌÌÌô¿ffffff @ÍÌÌÌÌÌ,@ÍÌÌÌÌL2@333333A@ÍÌÌÌÌÌ@š™™™™4@333333+@fffffæ:@ÍÌÌÌÌÌ:@ÍÌÌÌÌÌ@š™™™™2@€5@33333³:@33333sD@ÍÌÌÌÌL:@4@ÍÌÌÌÌÌ.@ffffff7@ÍÌÌÌÌL:@333333)@š™™™™™6@ffffff @333333-@ffffff4@33333³<@fffffæ4@š™™™™™>@"@š™™™™™ÀÍÌÌÌÌÌ@š™™™™™A@3333337@/@ÍÌÌÌÌÌ5@ffffffLÀ333333%@ÍÌÌÌÌÌ&ÀÍÌÌÌÌLC@ÍÌÌÌÌÌD@ffffff<@33333óB@ÍÌÌÌÌÌÀš™™™™™¹¿ÍÌÌÌÌÌ&@@ffffff@@ffffff3ÀfffffæB@ffffff'@333333%@D@@fffffæ4@,@š™™™™™7@ÍÌÌÌÌÌ#@š™™™™™2À@š™™™™3@ffffff@ffffff À/@333333C@3333335@ffffff<@ÍÌÌÌÌÌA@ÍÌÌÌÌL8@33333³2@fffff¦E@ÍÌÌÌÌL6@@ÍÌÌÌÌÌ4@š™™™™™>@š™™™™YI@333333À333333@À€0@ffffff/@ÍÌÌÌÌÌ)Àš™™™™™ù¿š™™™™0@š™™™™™;@.@fffff&@Àfffffæ@@ÍÌÌÌÌÌ2@@A@š™™™™YJ@ffffffÀÍÌÌÌÌL2@š™™™™™6@€;@ÍÌÌÌÌŒE@ÍÌÌÌÌÌ À33333óE@š™™™™™2@333333>@*@ffffff@ffffff@š™™™™:@@fffffæ@@š™™™™™@3333338Àfffffæ8@š™™™™™8@ffffff"À3333334@33333s@@š™™™™1@ÍÌÌÌÌL>@ffffff2@š™™™™™+Àffffff&@3333339@3333338@ÍÌÌÌÌÌ3@33333³@@ÍÌÌÌÌÌ1@ÍÌÌÌÌÌ>@@K@ÍÌÌÌÌÌÀ33333³@@š™™™™2@333333 @ÍÌÌÌÌÌ4@ÍÌÌÌÌÌ Àš™™™™YI@ÍÌÌÌÌÌCÀ33333³=@33333³:@33333sO@33333³E@š™™™™H@Q@33333sH@ÍÌÌÌÌŒH@fffffæ2@fffffæ4@@H@š™™™™™=@š™™™™™ @ÍÌÌÌÌÌ@ffffff @š™™™™ùS@333333G@ÀD@ÍÌÌÌÌŒG@š™™™™™3@fffffæ9@ÍÌÌÌÌÌE@ÍÌÌÌÌ,P@ÍÌÌÌÌÌ5@fffffæB@ffffff<@fffffæL@3333336@ÍÌÌÌÌŒX@33333³L@š™™™™™ ÀÍÌÌÌÌL0Àfffffæ>@33333³=@š™™™™™D@ÍÌÌÌÌL=@333333-@fffff&C@€<@š™™™™9S@š™™™™K@ffffff>@š™™™™YD@ffffff,@333333A@š™™™™™8@ffffff+@ÍÌÌÌÌÌ"@33333³3@33333³:@š™™™™;@@:@š™™™™2@fffffæ=@š™™™™9R@ÍÌÌÌÌÌ4@fffffæH@š™™™™C@ffffff2@ffffff8@š™™™™ÙB@ÍÌÌÌÌÌ!@C@fffff&C@333333O@ÍÌÌÌÌLQ@ffffff8@ffffffþ¿ÍÌÌÌÌ H@fffffæN@2@ffffffE@33333óG@ÀA@333333:@fffff&V@ÍÌÌÌÌLF@-@333333@33333³D@;@ÍÌÌÌÌŒA@333333H@š™™™™™ @ÍÌÌÌÌÌ,@€E@ T@š™™™™™@€3@ffffff@ÍÌÌÌÌÌ3@@š™™™™™,@33333³<@ÍÌÌÌÌÌ&@33333sC@ffffffJ@G@š™™™™ÙG@š™™™™™Ù?3333336@ÍÌÌÌÌÌ8@33333óO@š™™™™™ Àš™™™™9]@€B@€7@33333ÓW@€J@F@33333ó@@ÍÌÌÌÌ @@ÍÌÌÌÌ D@š™™™™™9@33333SV@333333>@ÍÌÌÌÌL=@333333@ffffff-@)@€@@@G@333333@333333)@P@š™™™™1@fffff¦I@3333336@š™™™™ÙD@š™™™™™8@.@š™™™™A@ÍÌÌÌÌÌ@@ÍÌÌÌÌ C@33333sK@33333³D@ÍÌÌÌÌ H@š™™™™ùQ@€5@333333;@š™™™™5@33333³H@š™™™™0@ÍÌÌÌÌL>@ffffffI@fffff&I@ÀC@33333óC@333333A@€6@š™™™™™4@33333sA@fffffR@33333³;@ffffffG@š™™™™ÙJ@ÍÌÌÌÌLP@fffff&B@33333³1@33333sL@š™™™™™3@š™™™™N@ÍÌÌÌÌÌ.@33333ÓP@33333sL@@E@ÍÌÌÌÌÌ@@fffff&E@š™™™™™U@ffffff4@ffffff)@ÍÌÌÌÌÌ-@ffffffæ?fffffæI@fffff&F@š™™™™™E@333333*@fffff&D@ffffffA@š™™™™ÙE@ÍÌÌÌÌÌ@ffffffI@fffff¦G@+@ffffff#@333333-@š™™™™™.@333333@š™™™™ÙM@š™™™™™-@=@333333>@33333sC@ÍÌÌÌÌL2@€>@ffffff?@@O@33333³L@fffffæ3@D@333333&@ÍÌÌÌÌL=@š™™™™™ÀÍÌÌÌÌLN@ffffff.@@H@š™™™™8@fffffæT@ÀR@`P@ÍÌÌÌÌLD@ÍÌÌÌÌL;@ÍÌÌÌÌÌ!À€H@š™™™™2@ÍÌÌÌÌL<@š™™™™™)@ÍÌÌÌÌÌ@ÍÌÌÌÌL8Àffffff5@333333.@ÍÌÌÌÌŒE@ÍÌÌÌÌÌL@ÍÌÌÌÌLN@š™™™™<@š™™™™0@€H@ÀC@33333³C@fffff&P@š™™™™5@ÍÌÌÌÌÌ8@@H@ÍÌÌÌÌLM@333333T@333333&ÀÍÌÌÌÌ F@333333(@š™™™™E@ÀF@333333@@333333Ó¿=@)@33333sJ@š™™™™™@ÍÌÌÌÌLM@ÍÌÌÌÌÌ?@ÍÌÌÌÌÌÀ€6@ffffff+@š™™™™YH@ÍÌÌÌÌÌÀffffff.@ÍÌÌÌÌÌ@ÍÌÌÌÌÌH@š™™™™™!À@333333-@333333C@€0@š™™™™E@ÍÌÌÌÌŒG@3333336@33333³9@3333331@ÍÌÌÌÌL6@4@ÍÌÌÌÌÌ<@ÍÌÌÌÌL;@ÀE@ÍÌÌÌÌ Q@ÍÌÌÌÌ C@š™™™™™(@ÍÌÌÌÌÌ+@&@š™™™™ÙD@ffffff6@š™™™™YD@fffffP@€<@333333M@fffff&A@ÍÌÌÌÌÌ1@33333³7@ÍÌÌÌÌL4@33333óC@ÍÌÌÌÌŒ@@š™™™™™4@š™™™™0@%@@R@š™™™™yU@ÍÌÌÌÌ G@ÍÌÌÌÌÌ%@ÍÌÌÌÌ I@ffffff!@fffffæC@š™™™™YK@33333óM@fffff¦K@@š™™™™™H@š™™™™™"@333333,À@W@š™™™™™@ÀF@ÍÌÌÌÌÌ@@ÍÌÌÌÌÌ@@ÀQ@š™™™™™)@333333#Àš™™™™™@@H@š™™™™:@333333 @C@š™™™™9@š™™™™™"@ffffff@š™™™™™.@š™™™™™@š™™™™™Ù?fffffæ=@33333³<@ffffff=@ÍÌÌÌÌÌ7@š™™™™™-@333333$Àš™™™™YF@33333³F@ Q@33333sR@33333T@333333<@333333@@ffffffC@fffffQ@š™™™™™0@333333A@ffffff-@š™™™™9@š™™™™;@fffffÆQ@ÍÌÌÌÌŒM@ÀB@ffffff8@ffffff$@ÍÌÌÌÌÌ9@š™™™™™J@š™™™™:@@33333³1@fffffæBÀfffffæ3@€4@33333³=@ÍÌÌÌÌ,U@ÍÌÌÌÌL2@<@ffffff*@ÍÌÌÌÌÌ@€?@33333³;@ÍÌÌÌÌŒL@€9À7@ÍÌÌÌÌL5À33333³7@fffff&M@%@š™™™™™8@33333óF@š™™™™S@333333&@À(@š™™™™Y@@ÍÌÌÌÌL@@333333À33333³7@J@ÍÌÌÌÌLA@€P@33333³E@ffffffE@33333³@@33333³5Àš™™™™™+@3333333@À\@ÍÌÌÌÌ B@33333ÓR@333333ó¿š™™™™™ñ¿ÍÌÌÌÌ F@33333³D@33333³4@333333!@ÍÌÌÌÌŒJ@fffff&L@@E@3333330ÀffffffS@š™™™™ÙD@N@àS@š™™™™™É¿@G@š™™™™9@š™™™™ÙE@fffff&P@ÍÌÌÌÌÌ$@33333³K@ÍÌÌÌÌÌ6@š™™™™ÙB@ÍÌÌÌÌÌ3@ @33333sC@&@333333!@33333³L@ÍÌÌÌÌL2@33333“T@333333N@ÍÌÌÌÌÌM@ÍÌÌÌÌÌ@fffffæ6@33333óF@>@ÍÌÌÌÌ E@š™™™™ù_@š™™™™0Àš™™™™™ñ?ÀB@ÍÌÌÌÌÌH@š™™™™™A@33333³D@33333³>@fffffæJ@fffffÆR@@M@ÍÌÌÌÌ I@ÍÌÌÌÌÌ1@€H@333333ã¿ T@ÍÌÌÌÌÌOÀ€N@33333sC@333333Ó¿à¿ÍÌÌÌÌÌì?š™™™™™¹?š™™™™™Ù¿š™™™™™Ù¿333333Ó¿š™™™™™¹?࿚™™™™™Ù¿š™™™™™¹?š™™™™™É¿333333㿚™™™™™¹?š™™™™™Ù¿333333ã¿à¿333333Ó¿š™™™™™Ù¿š™™™™™¹¿ffffffæ?333333ã¿ffffffæ¿333333Ó¿š™™™™™Ù¿ffffff濚™™™™™¹?š™™™™™É¿à¿š™™™™™¹?š™™™™™¹¿š™™™™™Ù¿š™™™™™É¿š™™™™™É?š™™™™™Ù¿š™™™™™É¿333333Ó¿š™™™™™Ù¿à¿333333Ó¿š™™™™™É?333333Ó¿333333ã¿333333Ó¿š™™™™™É¿333333Ó¿ffffff濚™™™™™Ù¿š™™™™™É¿š™™™™™Ù¿š™™™™™¹¿ÍÌÌÌÌÌì¿333333ã¿333333ã?š™™™™™Ù¿š™™™™™Ù¿š™™™™™É¿š™™™™™É¿š™™™™™Ù¿333333Ó¿ÍÌÌÌÌÌ쿚™™™™™Ù?š™™™™™¹¿š™™™™™¹¿š™™™™™é¿š™™™™™É¿š™™™™™É¿ÍÌÌÌÌÌô?à¿ð¿ffffff濚™™™™™Ù¿š™™™™™É¿š™™™™™é¿à¿ffffffæ¿À333333ó¿š™™™™™¹¿ÀÀš™™™™™¹?š™™™™™¹¿à?š™™™™™É¿š™™™™™Ù?š™™™™™¹¿š™™™™™¹¿š™™™™™¹¿ÍÌÌÌÌÌ쿚™™™™™¹¿ÍÌÌÌÌÌô¿à¿š™™™™™Ù¿ffffff濚™™™™™É¿ø¿ffffffæ¿333333㿚™™™™™¹¿š™™™™™¹?333333ã?࿚™™™™™¹?࿚™™™™™É¿333333ã¿ð¿333333ã¿333333Ó?š™™™™™É¿š™™™™™¹?š™™™™™¹?333333㿚™™™™™É?à¿ð¿š™™™™™É¿š™™™™™É¿š™™™™™¹¿š™™™™™é¿š™™™™™É¿š™™™™™¹¿š™™™™™É?à?š™™™™™¹¿š™™™™™É?š™™™™™¹?333333Ó¿333333Ó¿š™™™™™¹¿333333㿚™™™™™¹?š™™™™™¹?š™™™™™¹¿š™™™™™É?š™™™™™¹¿ÍÌÌÌÌÌì¿ffffff濚™™™™™¹¿š™™™™™¹¿333333Ó¿š™™™™™Ù¿š™™™™™É¿š™™™™™¹?š™™™™™Ù¿š™™™™™¹¿š™™™™™¹¿š™™™™™Ù¿ffffff濚™™™™™Ù¿š™™™™™Ù¿š™™™™™É¿š™™™™™É¿š™™™™™É¿š™™™™™É¿š™™™™™Ù¿š™™™™™¹¿333333Ó¿333333ã¿333333㿚™™™™™Ù¿ffffffæ¿à¿š™™™™™¹¿š™™™™™é?š™™™™™É¿à¿333333À𿚙™™™™¹?ÍÌÌÌÌÌì¿ÍÌÌÌÌÌ쿚™™™™™É¿š™™™™™Ù¿š™™™™™É¿š™™™™™Ù¿š™™™™™Ù¿š™™™™™¹¿333333㿚™™™™™É¿š™™™™™¹?š™™™™™É¿š™™™™™¹¿š™™™™™¹¿ÍÌÌÌÌÌü¿ffffffö¿š™™™™™Ù¿š™™™™™¹?ffffffæ¿ffffff濚™™™™™¹?š™™™™™¹?š™™™™™é¿š™™™™™Ù¿ÍÌÌÌÌÌì?ÍÌÌÌÌÌ쿚™™™™™¹?š™™™™™¹?š™™™™™¹¿š™™™™™Ù¿š™™™™™¹¿š™™™™™É?š™™™™™É¿š™™™™™É¿š™™™™™É?ffffff濚™™™™™¹¿ffffffæ¿ffffffö¿ð¿š™™™™™Ù?333333ã¿à¿333333ã¿ffffffæ¿ð¿š™™™™™Ù¿ð¿š™™™™™¹?à¿333333Ó¿š™™™™™É?š™™™™™¹?š™™™™™É¿š™™™™™¹¿333333Ó¿š™™™™™¹?ÍÌÌÌÌÌü¿š™™™™™É¿š™™™™™É¿š™™™™™É¿š™™™™™Ù¿š™™™™™Ù?š™™™™™Ù¿ffffff濚™™™™™¹¿à¿š™™™™™¹?š™™™™™¹?š™™™™™¹¿š™™™™™¹¿š™™™™™¹?š™™™™™Ù¿à¿à¿š™™™™™é¿š™™™™™É¿š™™™™™É?š™™™™™É¿š™™™™™¹?š™™™™™É¿š™™™™™É¿333333Ó¿š™™™™™É¿š™™™™™¹¿š™™™™™¹¿š™™™™™É¿ð¿š™™™™™¹?ÍÌÌÌÌÌì¿ÍÌÌÌÌÌ쿚™™™™™é¿333333ó?š™™™™™É?š™™™™™¹¿ÍÌÌÌÌÌ쿚™™™™™¹¿333333㿚™™™™™É¿333333ó¿š™™™™™¹?š™™™™™¹?Àš™™™™™¹?ÍÌÌÌÌÌì¿ffffff濚™™™™™¹?333333Ó¿333333Ó¿ffffffþ?š™™™™™¹?š™™™™™¹¿à¿333333㿚™™™™™É¿ð¿ffffffþ¿š™™™™™¹?à¿333333ã¿ð¿š™™™™™ñ¿ð¿š™™™™™¹¿š™™™™™Ù¿š™™™™™¹?ffffffæ¿333333ã?š™™™™™¹?ÍÌÌÌÌÌ쿚™™™™™¹?š™™™™™¹¿š™™™™™¹¿š™™™™™É¿š™™™™™¹?š™™™™™Ù¿š™™™™™Ù?š™™™™™Ù¿š™™™™™¹?333333㿚™™™™™¹¿ÍÌÌÌÌÌ쿚™™™™™Ù¿ø¿š™™™™™Ù¿ø?š™™™™™Ù¿333333Ó¿333333ã¿ð¿š™™™™™ñ¿š™™™™™é¿š™™™™™Ù¿š™™™™™Ù¿š™™™™™É¿ÍÌÌÌÌÌì¿ð¿š™™™™™é¿ÍÌÌÌÌÌô¿š™™™™™¹?à¿333333Ó¿333333Ó¿š™™™™™Ù¿à?š™™™™™¹¿à¿ÍÌÌÌÌÌ쿚™™™™™É?333333㿚™™™™™É¿333333Ó¿š™™™™™É¿ffffffæ¿333333ã¿333333ã¿ffffffÀø¿š™™™™™¹?š™™™™™É¿š™™™™™é¿š™™™™™É¿333333ó¿š™™™™™É?à?š™™™™™¹¿à¿š™™™™™¹?333333Ó¿š™™™™™@š™™™™™É¿š™™™™™É?ffffffö¿š™™™™™Ù¿à¿333333㿚™™™™™é¿ffffffæ¿ø¿à¿333333Ó¿ÍÌÌÌÌÌ쿚™™™™™ñ¿333333Ó¿ffffffö?š™™™™™é¿š™™™™™Ù¿š™™™™™Ù¿š™™™™™É¿š™™™™™é?š™™™™™É?š™™™™™¹?333333Ó¿333333Ó¿333333㿚™™™™™¹?š™™™™™¹?š™™™™™É¿š™™™™™¹¿à?333333㿚™™™™™Ù¿333333ӿ𿚙™™™™¹¿š™™™™™Ù¿š™™™™™¹?š™™™™™Ù¿à¿333333ó?š™™™™™É?333333Ó¿333333ã¿333333ã¿à¿ÍÌÌÌÌÌì¿333333ã¿333333ã¿333333ã¿à¿333333ã¿ffffffæ¿ð¿ÍÌÌÌÌÌ쿚™™™™™ù¿à¿à¿à¿š™™™™™Ù¿š™™™™™Ù¿ffffffæ¿ø¿ffffffþ¿à¿333333ã¿ÍÌÌÌÌÌÀ𿚙™™™™ù¿ÍÌÌÌÌÌô¿š™™™™™Ù¿333333û¿ffffffþ¿à¿š™™™™™ñ¿ÍÌÌÌÌÌ쿚™™™™™Ù¿333333㿚™™™™™Ù¿à¿š™™™™™Ù¿š™™™™™é¿ffffffæ¿333333ó¿š™™™™™Ù¿333333ã¿ÍÌÌÌÌÌü¿š™™™™™é¿š™™™™™Ù¿333333ã¿ffffff濚™™™™™Ù¿š™™™™™Ù¿ffffffæ¿ÍÌÌÌÌÌ쿚™™™™™Ù¿333333ó¿š™™™™™Ù¿ÍÌÌÌÌÌì¿ÍÌÌÌÌÌô¿ffffffæ¿333333û¿š™™™™™ñ¿ffffffæ¿ffffffæ¿ÍÌÌÌÌÌ쿚™™™™™Ù¿à¿ÍÌÌÌÌÌô¿š™™™™™Ù¿š™™™™™Ù¿š™™™™™Ù¿ð¿333333㿚™™™™™é¿ffffffÀÍÌÌÌÌÌì¿333333ã¿ÍÌÌÌÌÌô¿ÍÌÌÌÌÌô¿ffffffæ¿ffffff濚™™™™™ñ¿ffffffæ¿à¿333333ã¿333333Àffffff濚™™™™™Ù¿333333ã¿à¿333333ó¿ø¿š™™™™™ñ¿333333ó¿333333ã¿ffffffÀ࿚™™™™™é¿š™™™™™Ù¿š™™™™™é¿ffffffæ¿ffffffæ¿333333ã¿ð¿à¿ÍÌÌÌÌÌì¿ÍÌÌÌÌÌô¿à¿š™™™™™ñ¿ffffffæ¿333333㿚™™™™™Ù¿333333ã¿ÍÌÌÌÌÌì¿ÍÌÌÌÌÌü¿ Àš™™™™™Ù¿š™™™™™é¿š™™™™™é¿ð¿333333ã¿à¿š™™™™™é¿ð¿à¿ffffffþ¿š™™™™™Ù¿š™™™™™Ù¿ffffffþ¿ Àš™™™™™Ù¿š™™™™™ñ¿à¿š™™™™™Ù¿ffffff濚™™™™™Ù¿333333 Àà¿333333㿚™™™™™Ù¿ÍÌÌÌÌÌ쿚™™™™™Ù¿š™™™™™Ù¿"@!@#@ffffff(@333333*@ffffff(@@ffffff @@š™™™™™%@"@š™™™™™@333333@š™™™™™(@ÍÌÌÌÌÌ(@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ"@ffffff@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ@333333"@š™™™™™ @ÍÌÌÌÌÌ!@ÍÌÌÌÌÌ@333333+@š™™™™™@š™™™™™.@ffffff)@š™™™™™@333333@@š™™™™™@333333 @ÍÌÌÌÌÌ%@333333@ffffff$@ÍÌÌÌÌÌ&@ffffff&@ffffff&@ÍÌÌÌÌÌ@š™™™™™%@ffffff@333333!@ÍÌÌÌÌL0@@333333@ffffff@#@š™™™™™@@ffffff@333333@ÍÌÌÌÌÌ(@€0@ffffff%@"@333333$@ffffff @š™™™™™)@$@ffffff@#@ffffff@)@,@ÍÌÌÌÌÌ@333333@333333(@/@333333@ÍÌÌÌÌÌ@š™™™™™@!@ @ffffff&@š™™™™™%@@š™™™™™-@333333&@š™™™™™"@ÍÌÌÌÌÌ#@ÍÌÌÌÌÌ@š™™™™™@!@(@ÍÌÌÌÌÌ.@š™™™™™!@333333$@@@š™™™™™@@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ"@333333*@!@ffffff@š™™™™™'@@*@ffffff$@ÍÌÌÌÌÌ2@ffffff@%@333333*@ffffff"@ÍÌÌÌÌÌ)@š™™™™™!@#@333333#@ @ÍÌÌÌÌÌ(@ÍÌÌÌÌÌ'@333333@@ÍÌÌÌÌÌ@333333@ÍÌÌÌÌÌ%@š™™™™™$@333333"@ÍÌÌÌÌÌ@333333@@ffffff#@333333@(@333333@ffffff!@@ÍÌÌÌÌÌ'@333333@&@ffffff@š™™™™™&@ÍÌÌÌÌÌ+@@ffffff$@š™™™™™@333333'@@ffffff@š™™™™™'@333333@š™™™™™@š™™™™™'@333333!@333333@š™™™™™ @@ÍÌÌÌÌÌ#@333333@ffffff!@333333!@ffffff#@333333'@ÍÌÌÌÌÌ"@ffffff!@ffffff@(@!@ÍÌÌÌÌÌ!@333333@333333#@ffffff!@@ÍÌÌÌÌÌ"@#@š™™™™™@ffffff @333333 @(@ffffff*@š™™™™™@@š™™™™™$@ÍÌÌÌÌÌ!@333333$@333333@)@@ffffff @333333@ffffff @ffffff@š™™™™™@š™™™™™@š™™™™™7@ffffff@@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ+@ffffff&@333333 @ffffff@ÍÌÌÌÌÌ)@333333&@š™™™™™&@ffffff0@ffffff@@š™™™™™@#@@š™™™™™#@333333 @š™™™™™$@ÍÌÌÌÌL1@ÍÌÌÌÌÌ$@333333!@333333@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ(@ÍÌÌÌÌÌ@333333@333333)@š™™™™™@333333%@@š™™™™™@ÍÌÌÌÌÌ%@333333*@@333333@š™™™™™#@ÍÌÌÌÌÌ @333333@š™™™™0@333333@ffffff!@333333!@333333,@ÍÌÌÌÌÌ.@333333%@š™™™™™@š™™™™™"@$@ffffff(@333333!@@š™™™™™%@@ffffff*@ffffff$@ÍÌÌÌÌÌ$@ÍÌÌÌÌÌ%@š™™™™™@ffffff@ffffff!@#@ffffff@#@333333@ffffff @š™™™™™,@š™™™™™@333333@&@š™™™™™@š™™™™™@333333&@ffffff'@@ffffff@333333"@333333@ÍÌÌÌÌÌ#@š™™™™™@ffffff!@333333#@ÍÌÌÌÌÌ@333333@ffffff&@@š™™™™™#@333333#@333333&@ffffff$@ffffff@%@333333@š™™™™™@ffffff@333333 @š™™™™™(@333333@ÍÌÌÌÌÌ@333333@@ffffff*@ÍÌÌÌÌÌ$@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ#@ÍÌÌÌÌÌ*@ÍÌÌÌÌÌ!@ffffff @š™™™™™!@ffffff%@ffffff@@ffffff@ÍÌÌÌÌÌ @š™™™™™'@š™™™™™,@333333@333333@š™™™™™.@š™™™™™@ÍÌÌÌÌÌ"@*@%@š™™™™™@ffffff%@!@@ÍÌÌÌÌÌ@!@š™™™™™&@ffffff @$@š™™™™™#@ÍÌÌÌÌÌ+@333333@ÍÌÌÌÌÌ @ @333333.@ffffff"@š™™™™™!@ÍÌÌÌÌÌ@€2@ffffff&@ffffff-@ffffff&@š™™™™™#@ÍÌÌÌÌÌ@333333$@ÍÌÌÌÌÌ @š™™™™™@333333*@ffffff@333333@š™™™™™@š™™™™™#@ffffff @ffffff$@@ffffff@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ%@333333 @'@333333 @ð?333333&@ffffff@š™™™™™(@333333+@333333@ÍÌÌÌÌÌ'@ffffff @ffffff@ffffff$@ÍÌÌÌÌÌ@š™™™™™&@ÍÌÌÌÌÌ@)@š™™™™™$@ffffff#@š™™™™™ @333333@333333#@ffffff"@333333,@!@ÍÌÌÌÌÌ@ffffff@333333"@)@ÍÌÌÌÌÌ@š™™™™™"@ffffff*@ÍÌÌÌÌÌ"@ÍÌÌÌÌÌ'@333333-@š™™™™™"@š™™™™™%@(@ffffff/@ÍÌÌÌÌÌ@ffffff.@ÍÌÌÌÌÌ(@ffffff0@333333@ffffff@333333@@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ'@€0@ÍÌÌÌÌÌ+@333333@333333'@@ffffff$@3333331@ffffff#@š™™™™™,@ÍÌÌÌÌÌ"@ffffff @š™™™™5@333333'@333333+@ÍÌÌÌÌÌ*@ÍÌÌÌÌÌ)@.@ffffff@ffffff(@-@ffffff@333333,@333333#@$@š™™™™™$@ffffff!@š™™™™™@ÍÌÌÌÌÌ@š™™™™™&@š™™™™™3@!@š™™™™1@š™™™™™@ffffff$@ffffff#@ÍÌÌÌÌÌ#@ffffff%@+@ffffff @š™™™™™0@ÍÌÌÌÌÌ&@ffffff@%@333333@ffffff@ÍÌÌÌÌÌ@333333@333333/@ÍÌÌÌÌL0@(@ÍÌÌÌÌÌ$@ÍÌÌÌÌÌì¿333333Àš™™™™™ÀÍÌÌÌÌÌ ÀffffffÀffffffþ¿ÍÌÌÌÌÌô¿333333û¿Àš™™™™™ÀÍÌÌÌÌÌÀš™™™™™é¿333333û¿ÍÌÌÌÌÌì¿ffffffö¿ÍÌÌÌÌÌü¿ð¿à¿š™™™™™ñ¿ÍÌÌÌÌÌü¿333333Àš™™™™™ù¿š™™™™™é¿š™™™™™é¿š™™™™™é¿ÍÌÌÌÌÌÀÍÌÌÌÌÌô¿ð¿ø¿ÍÌÌÌÌÌô¿ð¿š™™™™™Àš™™™™™ù¿š™™™™™é¿ÍÌÌÌÌÌÀš™™™™™é¿ÍÌÌÌÌÌì¿ÍÌÌÌÌÌÀ333333û¿ffffffæ¿ÍÌÌÌÌÌÀ333333À333333Àð¿ø¿ÍÌÌÌÌÌÀð¿ Àffffffö¿š™™™™™À333333Àø¿333333ã¿ÍÌÌÌÌÌÀ333333ó¿ÍÌÌÌÌÌÀÍÌÌÌÌÌ ÀÍÌÌÌÌÌì¿ÍÌÌÌÌÌÀ333333ó¿ffffff Àffffffþ¿Àš™™™™™ ÀÍÌÌÌÌÌì¿ffffffÀÍÌÌÌÌÌÀ333333㿚™™™™™é¿š™™™™™ù¿ÍÌÌÌÌÌÀÍÌÌÌÌÌô¿ÍÌÌÌÌÌô¿ÍÌÌÌÌÌü¿š™™™™™ù¿ÍÌÌÌÌÌü¿À333333ÀÍÌÌÌÌÌô¿ffffffæ¿333333ÀffffffÀà¿333333ó¿š™™™™™ÀffffffÀffffffö¿ø¿š™™™™™ù¿ÍÌÌÌÌÌô¿ffffffÀà¿À333333û¿Àš™™™™™é¿ffffffæ¿ÍÌÌÌÌÌü¿ø¿Àffffff ÀÀÀffffffþ¿À333333ó¿š™™™™™Àffffffö¿ÍÌÌÌÌÌÀÍÌÌÌÌÌô¿ÀÀš™™™™™é¿333333ó¿ÍÌÌÌÌÌì¿ÍÌÌÌÌÌì¿ÍÌÌÌÌÌô¿š™™™™™Ù¿333333ó¿ÀÀ333333 Àffffffþ¿š™™™™™ù¿ÍÌÌÌÌÌì¿333333û¿ð¿ÍÌÌÌÌÌü¿333333À333333Àà¿333333ã¿333333 Àš™™™™™ñ¿ffffffÀš™™™™™ Àø¿à¿ÍÌÌÌÌÌÀÍÌÌÌÌÌô¿ÍÌÌÌÌÌì¿ffffffÀ333333ó¿š™™™™™ñ¿š™™™™™ÀÀffffffö¿ð¿š™™™™™é¿333333ã¿à¿ÍÌÌÌÌÌÀø¿š™™™™™ñ¿ÍÌÌÌÌÌÀš™™™™™ñ¿ÍÌÌÌÌÌÀÀš™™™™™Àš™™™™™À333333ÀffffffÀffffffÀÍÌÌÌÌÌÀš™™™™™é¿333333ã¿333333ó¿333333û¿ffffffÀš™™™™™Àš™™™™™é¿333333ÀÍÌÌÌÌÌÀ333333Àš™™™™™ÀÀffffffæ¿à¿333333ó¿š™™™™™ù¿ÍÌÌÌÌÌÀ333333ã¿ffffff濚™™™™™ñ¿ffffff ÀÀÍÌÌÌÌÌÀffffffö¿ð¿à¿333333ã¿À333333ã¿ÍÌÌÌÌÌÀ333333ó¿333333ã¿ÍÌÌÌÌÌì¿333333ã¿ÍÌÌÌÌÌÀffffffÀÀffffffþ¿ Àš™™™™™Àš™™™™™ù¿333333ó¿Àš™™™™™Ù¿š™™™™™é¿333333Àffffff ÀÍÌÌÌÌÌ À333333û¿š™™™™™ñ¿Àš™™™™™ù¿ÍÌÌÌÌÌü¿ÍÌÌÌÌÌì¿ÍÌÌÌÌÌô¿š™™™™™é¿333333ó¿333333ã¿ÍÌÌÌÌÌü¿ffffffö¿333333Àffffffþ¿333333ó¿ÍÌÌÌÌÌô¿ÍÌÌÌÌÌô¿š™™™™™ñ¿ÍÌÌÌÌÌô¿333333ÀffffffÀÀffffffþ¿333333 ÀffffffÀø¿Àš™™™™™ñ¿š™™™™™ñ¿333333Àš™™™™™ Àš™™™™™ñ¿333333û¿š™™™™™é¿ÍÌÌÌÌÌü¿š™™™™™Àš™™™™™ÀÀš™™™™™ù¿ÍÌÌÌÌÌ À333333ÀÍÌÌÌÌÌÀš™™™™™ù¿ÀÍÌÌÌÌÌÀš™™™™™Ù¿333333Àffffffþ¿Àffffffæ¿333333ÀÀ ÀÍÌÌÌÌÌü¿ffffffö¿333333ó¿.Àffffffæ¿À333333û¿š™™™™™ù¿333333Àš™™™™™ù¿ffffffö¿ÀÍÌÌÌÌÌô¿333333ÀffffffÀš™™™™™Àš™™™™™À ÀÍÌÌÌÌÌÀš™™™™™é¿à¿ Àš™™™™™Ù¿ÍÌÌÌÌÌÀÍÌÌÌÌÌÀffffffÀš™™™™™Àffffffæ¿333333ã¿333333ó¿ffffffæ¿333333 ÀÍÌÌÌÌÌì¿ffffffÀÀÍÌÌÌÌÌô¿333333Àffffffæ¿Àš™™™™™ù¿š™™™™™<Àffffffæ¿ÍÌÌÌÌÌü¿à?à?š™™™™™é?ÍÌÌÌÌÌì?š™™™™™É?333333Ó?š™™™™™Ù?š™™™™™¹¿ÍÌÌÌÌÌì?š™™™™™Ù?š™™™™™¹?333333ã?š™™™™™é?š™™™™™é?à?š™™™™™é?š™™™™™Ù?333333Ó?333333ã?333333ã?333333Ó?š™™™™™Ù?à?333333ã?š™™™™™é?à?š™™™™™Ù?à?š™™™™™Ù?333333ã?333333Ó?š™™™™™Ù?à?ffffffæ?š™™™™™Ù?ffffffæ?ffffffæ?ÍÌÌÌÌÌì?333333ã?à?ð?ÍÌÌÌÌÌì?š™™™™™Ù?š™™™™™Ù?š™™™™™Ù?ÍÌÌÌÌÌì?š™™™™™Ù?333333ã?ffffffæ?š™™™™™É?š™™™™™Ù?š™™™™™Ù?ffffffæ?ffffffæ?à?à?š™™™™™Ù?š™™™™™Ù?à?à?ffffffæ?š™™™™™Ù?š™™™™™é?ffffffæ?š™™™™™é?333333ã?š™™™™™¹¿à?333333ã?333333Ó¿š™™™™™é?ffffffæ?333333ã?š™™™™™É?ffffffæ?333333ã?š™™™™™Ù?š™™™™™Ù?333333ã?š™™™™™Ù?ffffffö?ÍÌÌÌÌÌì?à?ð?š™™™™™É¿š™™™™™é?š™™™™™É?š™™™™™¹?333333Ó?333333ã?333333ó?333333ã?333333Ó?ÍÌÌÌÌÌì?à?š™™™™™é?333333Ó¿333333ã?š™™™™™É?š™™™™™Ù?à?š™™™™™é?ffffffæ?š™™™™™ñ?š™™™™™É?š™™™™™Ù?š™™™™™é?ffffffæ¿ffffffæ?333333Ó¿š™™™™™Ù?333333Ó¿ÍÌÌÌÌÌì?à?333333Ó?333333Ó?333333ã?333333Ó?333333ã?ffffffæ?à?ffffffæ?333333Ó?š™™™™™é?š™™™™™Ù?š™™™™™Ù?à?ffffffæ?š™™™™™é?à?333333ã?š™™™™™Ù?ð?ffffffæ?š™™™™™¹¿333333ã?š™™™™™é?š™™™™™é?333333ã?ÍÌÌÌÌÌô?333333ã?à?ÍÌÌÌÌÌô?š™™™™™Ù?333333ã?š™™™™™Ù?333333ã?ffffffæ?š™™™™™Ù?ÍÌÌÌÌÌì?ffffffæ?š™™™™™¹?333333ã?š™™™™™Ù?š™™™™™Ù?ffffffæ?ffffffæ?š™™™™™é?š™™™™™Ù?333333Ó?š™™™™™É¿ffffffæ?ð?à?à?š™™™™™Ù?ÍÌÌÌÌÌô?ffffffæ?333333ã?à?333333ã?333333ã?333333Ó?š™™™™™É¿333333Ó?à?333333Ó¿333333ã?333333Ó?ffffffæ?š™™™™™Ù?š™™™™™Ù?ffffffæ?ffffffæ?à?š™™™™™é?à?333333ã?š™™™™™É?š™™™™™¹¿ffffffæ?š™™™™™é?à?à?à?333333ã?à?333333@š™™™™™é?333333Ó?š™™™™™Ù?š™™™™™Ù?333333Ó?š™™™™™é?š™™™™™Ù?š™™™™™Ù?š™™™™™¹?à?333333ã?333333ã?ffffffæ?š™™™™™Ù?š™™™™™é?ÍÌÌÌÌÌì?š™™™™™¹?ð?š™™™™™é?333333Ó?à?à?à?š™™™™™é?333333Ó?š™™™™™é?333333ã?š™™™™™é?333333Ó?333333Ó?ffffffæ?ÍÌÌÌÌÌì?š™™™™™Ù?à?ÍÌÌÌÌÌì?ÍÌÌÌÌÌì?333333Ó?333333ã?ffffffæ?ð?333333Ó?333333ã?š™™™™™é?š™™™™™É¿š™™™™™é?ð?š™™™™™Ù?333333ã?ffffffæ?ffffffæ?à?ffffffæ?à?š™™™™™Ù?333333ã?ffffffæ?š™™™™™Ù?à?à?ÍÌÌÌÌÌô?ð?333333ã?š™™™™™Ù?š™™™™™Ù?š™™™™™Ù?š™™™™™é?ffffffæ?333333Ó¿333333Ó?à?š™™™™™Ù¿š™™™™™Ù?333333Ó?š™™™™™Ù?à?ÍÌÌÌÌÌì?à?à?š™™™™™¹¿333333ã?à?š™™™™™Ù?à?333333Ó¿š™™™™™É?š™™™™™Ù?à?š™™™™™Ù?š™™™™™Ù?š™™™™™É?333333ã?š™™™™™é?à¿ffffffæ?333333Ó?333333Ó?š™™™™™é?š™™™™™Ù¿š™™™™™Ù?š™™™™™Ù¿à?à?ð?š™™™™™Ù?à?š™™™™™Ù?š™™™™™Ù?à¿333333Ó¿ÍÌÌÌÌÌì?ffffffæ?333333ã?ffffffæ?š™™™™™é?à?š™™™™™é?ÍÌÌÌÌÌì?ÍÌÌÌÌÌì?š™™™™™ñ?333333ã?333333Ó?š™™™™™ñ?333333ã?à?š™™™™™Ù?š™™™™™Ù?ÍÌÌÌÌÌì?š™™™™™Ù?333333ã?ÍÌÌÌÌÌì?ð?š™™™™™¹¿à?à?333333ã?š™™™™™é?š™™™™™Ù?à?333333ã?à?š™™™™™é?à?333333ã?ffffffæ?à?š™™™™™Ù?ø?333333ã?333333Ó?š™™™™™¹?ffffffæ?333333Ó?ÍÌÌÌÌÌô?ffffffæ?à?š™™™™™Ù?š™™™™™É?333333Ó?ð?š™™™™™é?à?333333ã?à?333333Ó?š™™™™™Ù?à?333333ó?333333Ó?ffffffæ?š™™™™™É?333333ã?333333ã?š™™™™™Ù?š™™™™™Ù?š™™™™™Ù?š™™™™™é?ÍÌÌÌÌÌì?à?ffffffæ?ÍÌÌÌÌÌì?š™™™™™é?ffffffæ?š™™™™™Ù?š™™™™™é?333333Ó¿à?à?à?ffffffæ?333333ã?à?ffffffæ¿333333ã?333333ã?š™™™™™¹¿à?ÍÌÌÌÌÌì?333333ã?š™™™™™Ù¿š™™™™™Ù?333333Ó?š™™™™™é¿à?š™™™™™¹¿š™™™™™Ù?ÍÌÌÌÌÌô?à?š™™™™™Ù¿à?333333Ó?š™™™™™¹¿ð?ffffffæ?à?ÍÌÌÌÌÌì?š™™™™™É?ffffffæ?à?š™™™™™É?š™™™™™é?à?ð?ð?333333ã?à?š™™™™™Ù?333333Ó?ffffffæ?š™™™™™É?333333ã?ffffffæ?333333Ó?à?š™™™™™é?à?ð?à?š™™™™™é?ffffffæ?ffffffæ?à?à?à?š™™™™™Ù¿à?ffffffæ?š™™™™™Ù?ø?à?à?333333@ÍÌÌÌÌÌ@333333 @ÍÌÌÌÌÌ@333333@š™™™™™@ð?à?ÍÌÌÌÌÌ@ÍÌÌÌÌÌì?ÍÌÌÌÌÌì?ø?à?ÍÌÌÌÌÌ@333333û?333333û?ffffff@ffffffæ?à?ÍÌÌÌÌÌü?ffffff @š™™™™™ñ?333333û?š™™™™™ñ?@ÍÌÌÌÌÌô?ÍÌÌÌÌÌ@š™™™™™ @ffffffö¿š™™™™™ñ¿š™™™™™ñ?ffffffö?@333333ó?š™™™™™é?š™™™™™ù?š™™™™™ù?333333@ffffff@ð?ffffffþ?ÍÌÌÌÌÌì?ø?š™™™™™ñ¿ffffffæ?ø?ÍÌÌÌÌÌô?à?š™™™™™ù?333333ã?ÍÌÌÌÌÌô?333333ó?333333ã?ÍÌÌÌÌÌ@333333Ó¿ÍÌÌÌÌÌ@ø?š™™™™™É?š™™™™™é¿š™™™™™ù?ÍÌÌÌÌÌì?333333@@@333333@š™™™™™ñ?333333Ó¿@š™™™™™@š™™™™™ù?ffffffþ?ffffffþ?ø?š™™™™™ù? @š™™™™™@š™™™™™À333333ã¿333333@à?à?ÍÌÌÌÌÌü?ÍÌÌÌÌÌì¿333333Ó?ø?š™™™™™ Àš™™™™™À333333ã¿ffffff Àø¿333333ã?š™™™™™Ù?ffffff@ffffffæ?333333@š™™™™™@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ@ffffffæ?à¿333333ã?ÍÌÌÌÌÌì?ÍÌÌÌÌÌô?š™™™™™ @ÍÌÌÌÌÌì?ffffff濚™™™™™Ù?ffffff@333333û¿333333Ó?ÍÌÌÌÌÌô?ÍÌÌÌÌÌ@ÍÌÌÌÌÌô?ffffff@333333û?ffffffþ?ÍÌÌÌÌÌ@š™™™™™ù?333333ó?333333ó?ÍÌÌÌÌÌü?ÍÌÌÌÌÌì?ÍÌÌÌÌÌô?@333333ó?ÍÌÌÌÌÌ@ffffffö?333333û?ð?333333Ó?@333333ã?333333ó?ÍÌÌÌÌÌ@333333@ÍÌÌÌÌÌô?š™™™™™ @333333ó?ð?ø?ÍÌÌÌÌÌü?ffffffæ?333333û?ffffff@@ÍÌÌÌÌÌ@ffffffö?ÍÌÌÌÌÌü?ffffffþ?ÍÌÌÌÌÌô?@333333@š™™™™™@ø?š™™™™™@ffffff@ffffffö?à?ÍÌÌÌÌÌô?ø?ffffff@š™™™™™¹?š™™™™™ @ÍÌÌÌÌÌ@ÍÌÌÌÌÌ@333333ã?ÍÌÌÌÌÌ@333333@š™™™™™é?333333Ó?š™™™™™é?š™™™™™é?ffffff @š™™™™™ñ?@š™™™™™ñ?ø?ffffffþ?@333333ã¿333333ó?ÍÌÌÌÌÌ@š™™™™™Ù?ð¿333333Ó?š™™™™™Ù?ffffffæ?à?333333À𿚙™™™™@ffffffæ?ÍÌÌÌÌÌì?š™™™™™é¿ffffffþ?ø?ffffff@333333û?ÍÌÌÌÌÌü¿ø?š™™™™™Ù?š™™™™™ñ?333333Ó¿ @333333ó?ffffff@ffffff@š™™™™™ù¿@ffffff@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ@ffffffö¿ø?࿚™™™™™@333333û¿ÍÌÌÌÌÌì?š™™™™™É¿333333Ó?ffffffö?ffffff@š™™™™™@@333333û?ÍÌÌÌÌÌì?š™™™™™ù?333333ó?333333û?ÍÌÌÌÌÌ@š™™™™™é?š™™™™™Ù¿š™™™™™@à?ÍÌÌÌÌÌ@ffffffö¿333333û?ÍÌÌÌÌÌì¿ð?@ffffffæ?š™™™™™é¿š™™™™™ù?333333Ó?@š™™™™™É?š™™™™™é?333333û?š™™™™™É?ÍÌÌÌÌÌô?ÍÌÌÌÌÌ@š™™™™™É?à?333333Ó?333333û?š™™™™™@ÍÌÌÌÌÌÀš™™™™™Ù¿š™™™™™Ù?333333ã?š™™™™™Ù?ffffff@ffffffþ?š™™™™™Ù?ffffffö?š™™™™™é?š™™™™™é?š™™™™™ù?ffffff@š™™™™™@@333333@ffffff@à?333333ã?š™™™™™Ù?š™™™™™ù?š™™™™™Ù?ÍÌÌÌÌÌü?ÍÌÌÌÌÌ@š™™™™™ñ?@ø?ffffffö?333333û?࿚™™™™™ñ?ffffffþ?ffffffæ?ffffffö?333333Ó?ffffffö?333333@ÍÌÌÌÌÌ@333333û¿ffffffö?š™™™™™À@š™™™™™ù?ÍÌÌÌÌÌ@ø¿ÍÌÌÌÌÌü?333333ó?ø?š™™™™™ À333333 @à?ð?š™™™™™É?ffffffö?333333@š™™™™™Ù?ø?333333ó?ffffff@333333ã?@ffffffþ?333333ã?š™™™™™é?š™™™™™¹¿ð¿333333ó¿š™™™™™Àø?ÍÌÌÌÌÌì?@š™™™™™ñ¿ÍÌÌÌÌÌì¿333333ó¿š™™™™™@333333û?@ffffffþ?ffffff@333333ó?ÍÌÌÌÌÌì?š™™™™™ù?ÍÌÌÌÌÌ@333333Ó¿333333ó?333333ó?š™™™™™ñ?ffffffæ?š™™™™™@ffffff@š™™™™™é?š™™™™™ñ?š™™™™™é?ÍÌÌÌÌÌô?š™™™™™ù?š™™™™™é¿333333ó¿ð?ÍÌÌÌÌÌì¿ÍÌÌÌÌÌì?š™™™™™ù?ÍÌÌÌÌÌì¿ÍÌÌÌÌÌ@š™™™™™é¿š™™™™™é¿ø?š™™™™™É?ffffff@@ffffff@š™™™™™é¿333333ó¿ffffffþ¿ð?ÍÌÌÌÌÌÀ333333ã?333333Ó?ffffff@ffffff@š™™™™™É?š™™™™™é?ð?@ffffff@š™™™™™É?333333ã?ÍÌÌÌÌÌì?ffffffö?@ÍÌÌÌÌÌô?š™™™™™É?ffffffö?ÀÍÌÌÌÌÌô¿ø?@ð?ffffffþ?à?ffffffþ¿@ffffff@ø?ÍÌÌÌÌÌô? @@š™™™™™é?ÍÌÌÌÌÌ @@@š™™™™™ñ?ÍÌÌÌÌÌ@š™™™™™Ù?333333û?333333Ó?š™™™™™ñ?š™™™™™ÀÍÌÌÌÌÌ@š™™™™™ù?š™™™™™É?ÍÌÌÌÌÌì?š™™™™™Ù¿ð?ffffffþ?333333û¿š™™™™™Ù?@š™™™™™ù?@@ffffff@š™™™™™é?š™™™™™Ù?ÍÌÌÌÌÌ @ÍÌÌÌÌÌü?333333ó?@š™™™™™É¿š™™™™™Ù?ÍÌÌÌÌÌô?333333@ÍÌÌÌÌÌ@333333ã?333333û?ÍÌÌÌÌÌü?ÍÌÌÌÌÌü?à?ffffffö?ffffff@ÍÌÌÌÌÌô?ffffff@333333ã?333333@ð?333333@š™™™™™ù?ÍÌÌÌÌL7@ffffff4@š™™™™™(@ÍÌÌÌÌLA@ffffff9@+@š™™™™™,@š™™™™™/@)@š™™™™4@š™™™™™(@š™™™™™@š™™™™™!@€<@š™™™™™C@3333331@€3@š™™™™1@3333332@3333339@š™™™™1@ffffff'@33333³3@ffffff2@fffff¦A@33333³4@F@ffffff9@3333331@ÍÌÌÌÌÌ @333333!@+@-@š™™™™:@š™™™™™'@ÍÌÌÌÌLA@ffffff,@€:@ÍÌÌÌÌL<@%@€7@333333 @ffffff0@33333óB@ÍÌÌÌÌÌ$@@š™™™™™'@ÍÌÌÌÌÌ6@fffffæ1@š™™™™™!@š™™™™™'@ÍÌÌÌÌÌ'@š™™™™™7@F@š™™™™™3@;@333333:@š™™™™2@33333³9@š™™™™™5@ÍÌÌÌÌÌü¿(@ffffff)@š™™™™>@ÍÌÌÌÌÌ@@š™™™™0@&@ffffff:@33333³E@ffffff@š™™™™:@6@€?@ffffff-@š™™™™=@333333.@š™™™™™ Àffffff-@ÍÌÌÌÌÌ:@š™™™™™7@š™™™™™?@fffffæ3@š™™™™4@ffffff@ÍÌÌÌÌÌ7@333333V@333333@@,@š™™™™YG@€F@ffffff$@333333#@š™™™™™@@ÍÌÌÌÌÌ@€3@ÍÌÌÌÌL5@š™™™™6@333333!@ÍÌÌÌÌL<@š™™™™™#@33333³G@ÍÌÌÌÌÌ"@333333L@€9@ÍÌÌÌÌL1@@F@ÍÌÌÌÌÌ4@š™™™™™=@ffffff:@33333³8@ÍÌÌÌÌÌ-@ÍÌÌÌÌÌ,@ffffff.@ffffff4@ffffff @3333338@ÍÌÌÌÌÌü?š™™™™™@3333336@ÍÌÌÌÌÌ<@333333@333333ó¿ÍÌÌÌÌL0@ÍÌÌÌÌÌ"@3333336@ÍÌÌÌÌÌ@ffffff:@(@ffffff9@ffffff@€<@33333³;@ffffff-@š™™™™™)@333333C@ÍÌÌÌÌL>@333333 @1@(@333333G@š™™™™™@333333&@ffffffF@333333&@ÍÌÌÌÌÌ"@š™™™™1@€1@ffffff"@ÍÌÌÌÌÌ$@ffffff$@3333331@š™™™™™É¿š™™™™™6@333333=@fffffæ:@ÍÌÌÌÌÌ;@š™™™™™3@ffffffA@ffffff#@š™™™™™8@š™™™™2@€@@š™™™™1@33333³6@š™™™™™6@ÍÌÌÌÌÌ@š™™™™0@š™™™™™'@ÍÌÌÌÌÌ%@fffffæ1@š™™™™™À333333(@š™™™™™7@333333)@333333'@fffffæ>@š™™™™™,@ÍÌÌÌÌL7@ffffff+@ÀB@ÍÌÌÌÌÌ2@ÍÌÌÌÌÌ,@š™™™™2@ffffff@@fffffæ1@333333@K@8@ÍÌÌÌÌÌì?€5@333333F@ffffff<@.@'@€?@€6@ÍÌÌÌÌ @@ÍÌÌÌÌ J@š™™™™™@ÍÌÌÌÌÌ3@š™™™™™@€6@33333³2@fffffæ6@ffffff@š™™™™ùP@š™™™™™D@š™™™™9@ @333333ó?ffffff@?@š™™™™™@333333&@fffffæ;@ @ÍÌÌÌÌÌ+À33333³1@ÍÌÌÌÌÌ @ffffff)@7@8@333333%@ÍÌÌÌÌÌ,@ÍÌÌÌÌÌ7@š™™™™6@ÍÌÌÌÌÌ.@fffff¦B@ÍÌÌÌÌÌ9@š™™™™8@š™™™™2@ÍÌÌÌÌŒF@ÍÌÌÌÌLC@š™™™™:@fffffæ:@5@8@?@ÍÌÌÌÌL1@š™™™™™&@š™™™™™1@3333332@š™™™™YA@ffffff$@ÍÌÌÌÌÌD@3333332@333333ã?ffffff@ffffff@š™™™™™1@ÍÌÌÌÌÌ쿚™™™™2@ÍÌÌÌÌÌÀÍÌÌÌÌÌ2@À@@333333,@)@ffffff;@ffffff3@ø?š™™™™™:@9@ÍÌÌÌÌÌ(@'@fffffæ1@ @ffffff-@333333 @ffffff5@33333³6@333333$@ÍÌÌÌÌÌ#@3333330@fffffæ0@ÍÌÌÌÌŒD@ÍÌÌÌÌÌ9@ffffff<@š™™™™™8@.@š™™™™™.@ffffff)@333333@#@š™™™™™0@333333A@ÍÌÌÌÌÌ.@33333³1@ffffff0@333333*@ffffffA@33333³8@ÍÌÌÌÌÌ @š™™™™™?@ffffffC@333333>@š™™™™™é?8@33333³7@ffffff/@ffffff#@33333³3@š™™™™™É?0@ÍÌÌÌÌÌ8@ffffff*@€7@š™™™™YB@,@fffff¦D@33333³:@š™™™™™@ÍÌÌÌÌÌÀffffff6@š™™™™™,@š™™™™™'Àffffff/@š™™™™™/@ÍÌÌÌÌÌ!@š™™™™™@ÍÌÌÌÌÌ0@333333/@š™™™™™G@333333@€0@ffffff*@<@33333³9@,@ÍÌÌÌÌÌ-@€D@š™™™™6@ffffffE@š™™™™7@š™™™™3@333333#@3@š™™™™™1@š™™™™™5@33333³9@ffffff#@,@ÍÌÌÌÌÌ+@ffffff1@€=@€3@333333!@ffffffþ?ÍÌÌÌÌÌ@ffffffA@š™™™™™6@ffffff8@5@ffffff0Àffffff5@ÍÌÌÌÌÌ @fffffæD@333333?@ffffff8@š™™™™ÙA@š™™™™™8@'@0@ÍÌÌÌÌÌ"@333333=@š™™™™™!Àš™™™™™?@š™™™™™,@€4@fffffæH@333333"@4@š™™™™™4@8@.@(Àffffff!@ÍÌÌÌÌÌ4@ffffff"@333333㿚™™™™1@ÍÌÌÌÌÌC@6@š™™™™;@ffffffD@*@9@š™™™™™U@ÍÌÌÌÌL@@ÍÌÌÌÌÌ#@3333337@ÍÌÌÌÌL?@ÍÌÌÌÌLE@ @š™™™™™>@š™™™™™1@ffffff.@@ÍÌÌÌÌÌ@š™™™™™8@ÍÌÌÌÌL9@33333³>@ÍÌÌÌÌLBÀš™™™™8@€<@€:@ÍÌÌÌÌ H@ÍÌÌÌÌÌ@š™™™™<@fffffæ3@ffffff0@33333óH@à?ffffffD@€6@fffffæ9@ffffff:@ÍÌÌÌÌÌ@&@333333>@ÍÌÌÌÌÌ-@š™™™™Y@@ÍÌÌÌÌÌ"@š™™™™YB@š™™™™8@fffffæ4@333333À33333³7@š™™™™0@ffffff(@ffffff4@333333.@ffffffÀ8@š™™™™8@š™™™™3@š™™™™™9@š™™™™>@€5@fffffæ8@ÍÌÌÌÌ D@ffffffÀÍÌÌÌÌÌ1@333333,@!@š™™™™™1@š™™™™™ÀC@š™™™™FÀ9@ÍÌÌÌÌL5@33333³H@ffffffC@€H@ÍÌÌÌÌÌN@ffffffO@š™™™™?@€4@ÍÌÌÌÌÌ3@fffffæ>@š™™™™9@ÍÌÌÌÌL3@3333331@333333(@ÍÌÌÌÌLH@ÍÌÌÌÌ K@š™™™™?@ÍÌÌÌÌŒD@ÍÌÌÌÌÌ4@ffffff6@@C@š™™™™YK@š™™™™™3@fffff&A@fffffæ<@fffff¦L@333333=@š™™™™Q@ffffffK@@333333ÀÍÌÌÌÌL0@€9@ÀC@@@@3333330@333333G@š™™™™™;@ÍÌÌÌÌìP@33333sN@fffffæ1@333333B@3333330@33333³9@š™™™™6@ÍÌÌÌÌÌ,@(@€7@:@ffffff=@ffffff)@š™™™™5@33333³6@€<@ÍÌÌÌÌÌN@33333³1@š™™™™YG@€B@33333³3@ffffff.@€A@ÍÌÌÌÌÌ@ÍÌÌÌÌŒ@@š™™™™Y@@fffff&J@š™™™™ÙM@ÍÌÌÌÌÌ7@š™™™™™ @33333³E@ÍÌÌÌÌÌM@3@@D@fffff&C@ÀE@ÍÌÌÌÌL?@ÍÌÌÌÌLN@€>@ÍÌÌÌÌLCÀffffff%@š™™™™™I@ffffff;@33333ó@@ÍÌÌÌÌLA@333333*@333333!@@@@š™™™™ÙE@333333 @"@@;@ffffff0@š™™™™™)@€;@ffffff%@ffffff?@ÍÌÌÌÌŒB@fffffæD@33333sF@ffffff/@š™™™™8@333333-@fffff¦J@fffffæ1@š™™™™ÙU@fffffæ>@ÍÌÌÌÌÌ%@š™™™™H@fffff¦H@333333#@ÍÌÌÌÌÌ<@ÍÌÌÌÌÌA@fffff¦@@š™™™™™:@ÍÌÌÌÌŒO@š™™™™™>@3333336@ÍÌÌÌÌLH@*@/@?@€D@ffffff+@ÍÌÌÌÌÌ @ffffffC@š™™™™™0@š™™™™™H@ffffff/@@A@š™™™™™3@33333³;@3333337@33333³?@C@€F@33333sC@š™™™™ÙG@33333óJ@€0@š™™™™™7@8@333333N@@ÍÌÌÌÌL9@ÍÌÌÌÌÌO@š™™™™YC@ÍÌÌÌÌL<@33333³=@fffffæ?@3333337@ffffff2@=@ÍÌÌÌÌÌE@š™™™™3@33333³@@fffffæH@š™™™™ÙL@33333óA@ÍÌÌÌÌÌ5@ÍÌÌÌÌÌE@fffffæ6@fffff&I@š™™™™™2@fffffæN@ÀA@fffffæB@3333339@š™™™™?@fffffÆQ@3@333333+@š™™™™8@š™™™™™¹?333333D@33333³?@ÍÌÌÌÌLB@fffffæ1@ÍÌÌÌÌÌC@333333;@ÍÌÌÌÌ B@333333@ffffffG@@C@3333332@ffffff'@ @@ÍÌÌÌÌL6@ÍÌÌÌÌÌ#@ffffff6@(@š™™™™5@fffffæ;@fffffæG@3333335@€>@ffffff8@ÍÌÌÌÌLJ@š™™™™Y@@ÍÌÌÌÌÌ2@fffffP@%@333333;@ø?K@À@@ÍÌÌÌÌŒB@:@š™™™™™F@ÍÌÌÌÌ P@š™™™™ÙH@ÍÌÌÌÌ E@š™™™™9@Àš™™™™F@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ;@ffffff @š™™™™™)@333333.Àfffffæ3@3333330@š™™™™ÙA@33333sH@ffffffJ@€8@ffffff3@ÍÌÌÌÌ D@ÀA@>@fffff¦K@ffffff?@33333³3@š™™™™™A@ÍÌÌÌÌLH@ P@!@@D@€0@š™™™™@@ÍÌÌÌÌLF@fffffæ5@š™™™™™ @>@ÍÌÌÌÌL4@fffff&H@š™™™™™)@ffffffJ@333333@@š™™™™™@ffffff/@š™™™™™5@ÍÌÌÌÌÌ2@ÍÌÌÌÌÌ@3333336@ÍÌÌÌÌÌ@33333³D@333333ã¿!@-@33333³@@€6@fffffæ<@33333³D@š™™™™;@5@/@ÍÌÌÌÌL8@€2@33333³?@fffffæ;@fffffæA@š™™™™ÙI@ffffff=@ffffff+@š™™™™4@€3@33333sJ@š™™™™?@fffff¦D@fffffæD@33333³9@fffff¦F@333333:@33333³0@33333³7@ffffff)@š™™™™™D@ÍÌÌÌÌL?@fffffæ5@ÍÌÌÌÌL;@ÍÌÌÌÌÌ-@@G@ÍÌÌÌÌŒH@ÍÌÌÌÌÌ:@333333@ÀF@,@€A@C@ÍÌÌÌÌÌG@š™™™™™é¿7@€=@333333-@š™™™™™À33333³L@ÍÌÌÌÌÌ1@š™™™™=@33333sC@33333³9@ÍÌÌÌÌìP@ÍÌÌÌÌL>@€3@š™™™™™@ÍÌÌÌÌŒE@ffffff1@333333û?š™™™™>@š™™™™™2@ÍÌÌÌÌÌ.@š™™™™™@š™™™™™@ÍÌÌÌÌÌ@€3@2@š™™™™5@š™™™™™;@ÍÌÌÌÌÌ%@33333³0@š™™™™™Ù?š™™™™YA@š™™™™™K@ÍÌÌÌÌÌG@ÍÌÌÌÌLN@ÍÌÌÌÌLO@33333³<@ÍÌÌÌÌÌ,@š™™™™Ù@@ÍÌÌÌÌ F@33333³3@š™™™™B@33333³5@š™™™™™7@33333³3@G@33333sL@33333³9@ÍÌÌÌÌL0@333333 @,@33333óG@š™™™™™%@ÍÌÌÌÌÌ)@ffffff<@ffffff9À333333>@ÍÌÌÌÌÌ5@ÍÌÌÌÌÌ?@K@3333332@€<@E@333333*@C@;@33333óH@ffffff*À2@ÍÌÌÌÌÌÀš™™™™;@333333;@)@33333³7@fffff&G@333333N@3333330@ÍÌÌÌÌÌÀ-@ffffffB@š™™™™@@@6@š™™™™ÙF@33333s@@fffff¦K@fffff&H@š™™™™™.@333333B@ÍÌÌÌÌÌ @€6@š™™™™™5@ffffffX@ÀB@fffff¦M@333333%@333333ÀÍÌÌÌÌLD@33333sD@3333334@ÍÌÌÌÌÌ&@ÍÌÌÌÌÌM@33333óH@33333³B@š™™™™4Àš™™™™ÙI@€H@€E@@R@ffffff&@F@ffffff6@ÍÌÌÌÌL:@š™™™™Ù@@ÍÌÌÌÌL1@š™™™™YI@3333338@33333s@@7@333333'@9@0@š™™™™1@ÍÌÌÌÌ L@ffffff7@š™™™™ù\@33333sJ@ÍÌÌÌÌLD@@ffffff:@š™™™™™H@š™™™™9@=@š™™™™U@š™™™™™ Àffffff9@š™™™™Ù@@fffff&B@š™™™™™E@€A@š™™™™Ù@@33333³D@ÀK@š™™™™™Ù?€=@ÍÌÌÌÌŒB@š™™™™™1@š™™™™™C@à¿333333O@š™™™™™@ÀÍÌÌÌÌLG@ffffff@@YÿmatrixþÿÿÿÄ @@$@ð?@,@ð?ð?ð?$@@ð?$@@ð?ð?$@ð?ð?ð?ð?ð?ð?ð?ð?0@,@$@@@@ð?ð?ð?@ð?ð?$@ð?@ð?ð?ð?ð?ð?@@ð?@ð?ð?ð?$@0@0@@ð?ð?@ð?@@ð?ð?ð?ð?@ð?@ð?@0@ð?ð?ð?$@@@ð?ð?ð?ð?@@@"@@@"@"@ð?@ð?@$@ð?$@ð?ð?ð?@ð?ð?ð?@@@ð?@ð?ð?ð?ð?ð?@ð?0@ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?$@ð?ð?ð?ð?ð?ð?$@ð?ð?$@ð?ð?ð?@ð?ð?$@$@$@ð?ð?$@ð?ð?ð?@0@ð?ð?@ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?@@ð?ð?ð?$@.@@ð?ð?ð?@ð?0@ð?@@@@@,@"@ð?ð?@@ð?ð?ð?0@0@ð?@ð?ð?ð?@ð?ð?"@ð?$@$@ð?@@@ð?@.@@0@ð?ð?@ð?$@@ð?0@ð?ð?ð?@ð?ð?ð?@ð?@ð?ð?ð?ð?ð?.@ð?@ð?ð?@ð?$@@@@ð?ð?@@@@ð?0@ð?ð?ð?ð?$@ð?ð?ð?ð?ð?@ð?ð?@ð?@$@ð?ð?ð?ð?@$@@ð?ð?ð?ð?ð?$@ð?$@@@@$@$@ð?.@ð?@@@ð?0@@@@ð?ð?$@$@ð?ð?@ð?ð?$@@ð?@@$@ð?$@@ð?@ð?ð?0@ð?$@ð?$@ð?ð?ð?0@$@ð?@$@ð?$@ð?@ð?ð?@ð?$@0@ð?@@@@@@0@$@@ð?@@@ð?"@ð?@ð?@@ @ð?ð?$@0@@ð?ð?@ð?0@@"@ð?ð?ð?ð?ð?ð?"@ð?$@@ð?$@,@ð?@ð?ð?ð?ð?ð?0@@@0@ð?ð?ð?ð?$@ð?ð?.@ð?ð?ð?"@ð?ð?$@ð?0@$@@$@@ð?ð?ð?ð?ð?ð?ð?ð?ð?$@ð?ð?ð?ð?$@@ð?ð?statistics-release-1.6.3/inst/datasets/carbig.mat000066400000000000000000001472611456127120000220610ustar00rootroot00000000000000Octave-1-L Accelerationÿmatrixþÿÿÿ–(@'@&@(@%@$@"@!@$@!@€1@'@&@%@&@$@ @ @#@$@.@/@/@0@-@€4@€1@-@€1@)@.@,@.@+@€2@-@/@,@3@4@*@/@/@/@/@(@'@+@*@'@(@(@+@3@.@-@,@,@€3@-@3@2@3@€4@/@1@€7@€3@€0@(@(@+@*@'@&@+@+@)@+@)@,@0@,@-@2@€3@2@0@1@-@.@€0@*@'@*@-@)@'@(@*@-@&@&@&@€0@2@0@€0@0@5@,@)@*@)@.@3@€3@€0@+@€2@,@/@*@#@€3@/@,@/@&@,@+@&@€0@1@0@1@3@€0@5@1@1@2@€0@,@-@+@0@/@€0@/@-@€0@3@-@/@,@.@/@0@0@0@5@€3@'@,@-@+@5@€2@3@3@.@+@(@0@1@0@€2@+@€0@1@-@,@1@.@1@-@+@€1@/@fffffæ0@ÍÌÌÌÌÌ-@33333³1@š™™™™™.@*@*@ÍÌÌÌÌÌ+@š™™™™™)@ÍÌÌÌÌÌ.@-@š™™™™™1@š™™™™™1@3333336@š™™™™6@ffffff,@ffffff1@33333³1@5@3333330@ÍÌÌÌÌÌ1@ffffff(@1@ffffff0@333333+@ffffff/@ffffff*@fffffæ5@/@33333³0@333333(@(@.@,@€2@š™™™™™-@š™™™™™2@/@ÍÌÌÌÌÌ0@)@3@ffffff+@ÍÌÌÌÌÌ-@ffffff0@fffffæ0@33333³1@3@333333&@ÍÌÌÌÌÌ&@ffffff(@-@-@0@3333332@š™™™™™/@1@ÍÌÌÌÌÌ/@ffffff0@333333,@-@š™™™™™)@+@€5@ÍÌÌÌÌÌ,@ffffff3@š™™™™™2@ffffff0@/@ffffff*@š™™™™™)@3333333@3333332@š™™™™™/@ÍÌÌÌÌÌ.@3333331@3333331@š™™™™™/@33333³0@33333³2@333333.@ffffff*@ÍÌÌÌÌÌ*@ffffff&@ffffff+@€0@ffffff,@ffffff-@-@š™™™™™-@33333³0@š™™™™™1@ÍÌÌÌÌÌ-@ÍÌÌÌÌÌ/@333333+@ffffff/@š™™™™™/@ÍÌÌÌÌÌ-@š™™™™™0@ÍÌÌÌÌÌ.@3333332@ÍÌÌÌÌL1@3333332@š™™™™™0@ÍÌÌÌÌÌ.@ÍÌÌÌÌÌ*@ffffff*@ffffff.@ÍÌÌÌÌÌ-@š™™™™™,@.@*@,@ffffff.@ÍÌÌÌÌÌ,@.@š™™™™4@ffffff1@ÍÌÌÌÌÌ8@3333336@ffffff*@ÍÌÌÌÌÌ-@3333333@ffffff-@0@š™™™™™&@ÍÌÌÌÌÌ)@ffffff*@ffffff-@ÍÌÌÌÌÌ2@/@ffffff0@€0@š™™™™2@š™™™™4@33333³2@š™™™™™/@/@€1@.@ffffff.@fffffæ1@ÍÌÌÌÌÌ,@3333333@33333³5@33333³7@fffffæ3@ÍÌÌÌÌÌ5@š™™™™™+@ÍÌÌÌÌL1@2@š™™™™™.@ÍÌÌÌÌÌ&@)@333333.@š™™™™™,@1@ffffff/@ffffff0@ÍÌÌÌÌÌ,@333333)@ÍÌÌÌÌÌ)@fffffæ0@ffffff0@š™™™™0@ÍÌÌÌÌÌ1@ffffff3@ÍÌÌÌÌL1@0@ÍÌÌÌÌÌ-@3333330@33333³4@ffffff,@š™™™™™/@ÍÌÌÌÌÌ,@ÍÌÌÌÌÌ0@š™™™™™-@ÍÌÌÌÌL2@ffffff4@ÍÌÌÌÌÌ.@š™™™™™3@333333)@š™™™™™+@š™™™™™/@3@š™™™™1@š™™™™™0@š™™™™™3@š™™™™™2@2@3333330@0@2@ffffff0@€4@š™™™™™.@3333332@š™™™™™1@ffffff-@ÍÌÌÌÌL1@-@-@fffffæ0@.@ffffff/@3333330@ffffff0@1@-@ffffff-@ÍÌÌÌÌÌ+@*@ÍÌÌÌÌL1@333333/@š™™™™™8@333333'@š™™™™™2@ffffff3@ Cylindersÿmatrixþÿÿÿ– @ @ @ @ @ @ @ @ @ @@ @ @ @ @ @ @ @ @ @@@@@@@@@@@@ @ @ @ @@@@@@@@@@@ @ @ @ @ @ @ @@@@@@@@@@@@@@@@@@ @ @ @ @ @ @ @ @ @@ @ @ @ @@@@@@@@@@ @ @ @ @ @ @ @ @ @ @ @ @@@@@@@ @ @ @ @@@@@@@@@ @ @@@@@ @@@ @@@@@@@@@@@@ @ @ @ @ @@@@@@@@@@@@@@@@ @ @ @ @@@@@@ @ @@@@@@@@@@@@@@@@@@@@@ @ @ @ @@@@@@@@@@@@@@@@@@ @@@@ @ @ @ @@@@@@ @ @ @ @@@@@ @ @ @ @@@@@@@@@@@@@@@@@ @ @ @@@@@@@@@@@ @@ @ @@@@@@@@@@@@@@@@@@@@ @ @ @ @ @ @ @ @@@@@@ @@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ Displacementÿmatrixþÿÿÿ–0s@àu@às@s@àr@Ðz@`|@€{@p|@`x@ `@àu@ðu@ðw@€v@ðw@@u@àr@y@p|@@\@Àh@àh@i@@X@@X@€[@ÀZ@Z@@^@àh@€v@0s@às@s@@X@€a@@\@€X@@X@m@ l@@o@@o@m@àu@y@ðu@às@ðw@y@y@ p@€a@@o@@o@€^@]@ÀS@V@ÀQ@R@@X@ÀV@@\@`X@@X@€a@€^@àu@y@às@ðu@s@Ðz@àu@àu@y@€Q@s@0s@àr@às@@^@@^@^@X@€^@@X@^@€X@@X@àu@s@àu@àr@às@Ðz@y@ðu@às@€{@p|@€v@ l@@o@m@@o@Àh@@X@y@y@€v@àu@m@@X@€a@[@€Q@€^@`c@€X@àu@y@Q@]@€\@@^@às@@^@€c@àu@Àh@i@m@@o@ÀS@€^@ÀQ@€a@@o@ p@ l@àr@àu@às@àr@s@€X@ÀS@@X@S@ÀT@€V@€V@]@^@[@ÀS@ l@@o@@o@@o@y@àu@às@ðu@àl@@o@ p@ l@àl@`p@àr@@X@€a@m@€a@À`@€V@À]@`e@€V@m@À\@^@@^@@^@ÀV@ÀZ@]@€a@€X@@Y@s@às@s@ðu@ l@@o@i@m@@U@€X@€V@ÀV@ l@@o@@o@ p@@X@@U@@X@€a@@`@às@^@€c@e@àu@àu@àr@às@€X@À[@ÀS@€^@@U@s@@p@às@àr@@o@àl@ l@@o@y@àu@y@ðu@@X@àb@@X@€a@€X@€X@@X@@X@@b@@^@T@€V@€X@€S@@U@ÀV@@p@às@àr@àl@i@i@€a@ l@m@àl@i@ l@ p@s@àl@àr@às@€X@À`@À]@@Z@À`@€c@àb@À]@``@`d@@^@`d@@V@€X@àl@i@€a@m@ l@s@àr@ðu@às@àu@ðu@°p@€v@@V@€U@€X@@^@àf@àu@ a@@p@@Z@@Z@@U@ÀV@àb@ e@ e@àb@€X@@V@€X@€U@àb@€a@àb@ l@@X@À`@^@À]@[@€U@€c@@U@€V@€V@@^@@b@ÀV@@U@@X@@V@e@€Q@€^@€a@ÀZ@à`@àb@€c@ e@à`@ÀS@€U@@T@@X@@U@@V@ÀV@@Z@€X@€X@@Z@Y@ÀZ@[@À]@^@ a@@^@ b@e@@b@àl@àu@i@ l@\@\@\@\@à`@àb@€a@àb@@Z@ÀV@ÀV@@Z@€X@^@ÀZ@[@ÀV@ÀV@ÀV@ f@`p@€c@m@b@à`@àb@€a@@X@à`@^@À]@ Horsepowerÿmatrixþÿÿÿ–@`@ d@Àb@Àb@€a@Àh@€k@àj@ l@Àg@À\@ d@ c@àe@àe@@e@d@€a@Àb@ l@ÀW@ÀW@@X@@U@V@G@ÀU@€V@ÀW@@\@€V@àj@i@@j@ h@V@€V@ÀW@øÿH@Y@@Z@Y@V@Y@ d@àe@ c@Àb@€f@@e@àe@€[@R@Y@V@€U@€V@€Q@S@@P@@Q@N@€Q@ÀW@T@K@€V@€U@ d@àe@Àb@ c@Àb@j@`c@d@Àg@@X@Àb@@`@€a@Àb@\@S@ÀU@@Q@€U@W@@X@T@V@àe@Àb@ b@ a@Àb@Àh@Àb@Àc@Àb@àj@ l@àe@@Z@Y@Y@V@ÀW@G@Àb@àd@@e@€f@Y@V@R@€W@€V@@U@ÀZ@€V@ b@Àl@€H@ÀR@ÀV@\@Àb@€[@€^@€f@ÀW@øÿY@Y@ÀP@T@@P@ÀR@Y@€[@@Z@€a@Àb@Àb@€a@Àb@ÀT@ÀP@€S@J@€N@ÀR@ÀR@ÀR@@X@@W@ÀP@ÀW@@Z@R@R@@e@ b@Àb@€b@€[@@Z@€[@ÀW@€[@€[@ `@ÀR@ÀT@Y@€S@X@ÀQ@@X@@X@€Q@€V@ÀW@V@€X@À\@€J@€U@@T@W@ÀS@ÀT@€a@Àb@^@c@Y@@Z@@T@€V@J@N@€Q@€J@Y@€S@€[@ÀW@ÀQ@€Q@ÀR@R@€Y@Àb@V@[@^@€f@ b@@`@Àb@Q@T@M@X@€Q@ b@€[@ b@@`@€[@@Z@Y@€X@€f@@e@Àg@ b@€S@V@ÀR@@V@€O@ÀT@ÀP@€S@@X@€[@€[@H@€P@J@€Q@N@€[@€a@`a@@Z@ÀW@@U@V@Y@€V@@Z@@U@€[@^@ b@ d@`a@€a@Q@ÀW@@X@ÀR@ÀW@@Z@@U@@X@ÀY@@_@À\@ `@ÀQ@Q@À\@@U@V@€V@€[@@`@ `@@a@à`@`c@Àa@@_@Àb@ÀQ@@P@T@T@@S@@_@ÀQ@€V@€Q@€Q@@P@@Q@€V@À\@À\@€V@S@N@€Q@@P@€V@V@€V@€V@€S@€V@ÀR@W@ÀR@@P@@Z@@P@H@H@ÀP@ÀP@ÀP@øÿÀP@O@€`@Y@V@øÿR@U@U@W@€[@U@M@P@N@ÀP@@P@O@Q@€O@@P@@P@€R@øÿÀR@ÀR@Y@€R@T@€[@S@]@^@€[@@Z@V@@U@V@V@V@@U@U@€V@W@øÿ€R@Q@Q@€O@€Q@V@ÀR@€Q@ÀP@ÀP@ÀP@€[@@U@W@\@X@U@€V@€U@J@U@ÀS@€T@MPGÿmatrixþÿÿÿ–2@.@2@0@1@.@,@,@,@.@øÿøÿøÿøÿøÿ.@,@øÿ.@,@8@6@2@5@;@:@9@8@9@:@5@$@$@&@"@;@<@9@9@øÿ3@0@1@3@2@,@,@,@,@(@*@*@2@6@3@2@7@<@>@>@?@€A@;@:@8@9@7@4@5@*@,@.@,@1@&@*@(@*@3@.@*@*@,@2@6@5@:@6@<@7@<@;@*@,@*@,@.@(@*@*@,@*@(@*@2@0@2@2@7@:@&@(@*@(@2@4@5@6@2@3@5@:@.@0@=@8@4@3@.@8@4@&@4@5@3@.@?@:@@@9@0@0@2@0@*@,@,@,@=@:@:@?@@@<@8@:@8@:@?@3@2@.@.@0@.@0@,@1@0@.@2@5@4@*@=@7@4@7@8@9@8@2@=@3@7@7@6@9@€@@<@9@9@:@;@€1@0@/@-@6@6@8@€6@=@€8@=@€@@4@2@€2@€1@€=@@@<@€:@4@*@3@3@€0@€0@*@*@*@€?@>@B@€9@À@@€1@1@/@.@€1@€4@3@€2@0@/@/@0@=@€8@:@€9@€>@À@@>@€>@6@€5@€5@ÍÌÌÌÌŒE@ÍÌÌÌÌ B@ffffff@@33333³C@ÍÌÌÌÌ B@fffffæ3@ffffff3@3333334@3333333@€4@3333334@š™™™™9@€4@ffffff3@š™™™™™4@ÍÌÌÌÌÌ4@š™™™™™2@š™™™™2@3333333@33333³1@š™™™™2@€1@>@€;@333333;@fffffæ>@š™™™™5@3333337@ÍÌÌÌÌÌ7@fffffæ7@ÍÌÌÌÌL4@1@š™™™™™5@3333330@€?@€=@€5@ÍÌÌÌÌÌ3@ÍÌÌÌÌL6@3333334@š™™™™™4@1@š™™™™™1@€0@3333332@fffffæ0@/@3333333@€2@fffffæ?@ÍÌÌÌÌ A@š™™™™ÙA@ffffff;@ffffff9@7@333333;@fffffæ7@š™™™™A@@A@ÍÌÌÌÌÌ?@fffff¦B@ffffff<@ÍÌÌÌÌÌ<@ÍÌÌÌÌÌ:@À@@ÀD@ÍÌÌÌÌ C@ÍÌÌÌÌ @@š™™™™™B@<@ffffff:@ÍÌÌÌÌL8@š™™™™3@fffff&A@ÍÌÌÌÌÌ=@ÍÌÌÌÌL?@€B@š™™™™@@ÍÌÌÌÌLG@fffffæ;@ffffffD@fffff&F@33333³E@333333B@>@ÍÌÌÌÌLF@33333sD@fffffæ@@ÍÌÌÌÌÌ=@š™™™™Y@@33333³7@€A@š™™™™™7@333333@@333333;@š™™™™™:@ÍÌÌÌÌÌ9@€7@>@ÍÌÌÌÌŒC@€C@ÍÌÌÌÌŒA@fffff&@@€B@š™™™™ÙB@ÍÌÌÌÌ A@š™™™™YA@333333A@fffffæ=@€@@@A@š™™™™Ù@@333333@@33333s@@š™™™™™?@š™™™™<@øÿ33333³>@ffffff9@3333338@ffffff6@š™™™™™:@3333334@š™™™™™1@<@;@A@?@=@;@8@7@B@€B@?@C@B@B@B@A@C@@@C@9@C@:@6@@@B@;@;@F@@@<@?@Mfgÿ sq_stringþÿÿÿ– cbpaffcppaccfpadpfcbtpafdvpasbafcdidctfvapcfacpfpdfpacpfmopftdvptdvcfcppfambocmacfpvvprfdtdtbacfdmcfpcbapcafpvcfpoatcdmfmfcpfoavdstopfacdftccapfbdfaavotddffhsfpcmfpcpfbcapbcftfaptvdfvaapvshfofdrcdafpcfaccvhdfpavdtfvpptmccfdhbrpdcodmcbpfpccfvptfcdsvdbmvfmdhodmpcffpabmdacbfdctddtpodavspvhpmfadcfmdbfccvmdamcpoppdfbcopvtcdcfadatmdtmddvvamhrsvdmtfhpbdcptphsdtmpffvrhtdmpsvtdbofccccpdpfavmmpmnhthhdbocftdcfvdfchulmoohlomiholmolohuolmoaoeuammohohahooomlhomhoolooomhooepeioaolooohoholomeulhamholooeeoaoooumhooeholhumlhmolohollmohaaoeihoipuooaollomhaoohhmlouoomuopoaoiiouilheoohlouhmluhooomoooaoomueoaoipooehomolhomhhooooomoaoooleoeahooouelahloehuloohhooooohouoamaooaaoloeohoolmueomhuoohoaoollauoaeoooeomohoeouohhoaomeaelllaiuhlooohahomouoaaoaoaooueoeuoaarooluohlolouaoaloooeooaaeaooaulohhhhoooomoaaleiooooaulhooohooooheiycrreyncterycdyreiyycrtludawcred teyrlcyercenrydrncenrreuaytlyydlerenyrcridrzceryllunrtydyicerdreryricyecrylerydcyetzrraenaedldaydyrcetryeecyridrcdleytdaanbayerrneyriecyieryrcnyltrlcdulanaerdnedcryerceelndrncltyrlyuyrderdninyteddreiyrnerrlnyredbltwzlrztnddrnerrycirdceirdeytdyydtdlaulnnrrcderrdirerlzdcrdudyytaiednlyetercddyztyzdtlldrnnbltzirnyideyyynbtyzyrrlnnytzualytidrreeendnrclzzyrsnynntidrryderldrevcm ddvmt rvdm gmdvcom dskgib dvg svodk mvd vtdmgdt vtdclgtoskmogkvdvtmd ccsyd vdmvkgadsogoc vdgcvdmyc mv dmkvdms ovsddctvttlivgbosmd vsdovv mdcgd iklosgttdatmvcdtvmdcv mcvdod toksdk igvbdtldgavg dmvd vvkdgdt ksodvmgocivdgdcamsvsgcvcmdtvydktodvgaks dkddsdsgctvddm ccg vcdgvosgomssivbgkdtcd gvdcgcdvykdg cigsmmstcvstkovsvd giodsodgskkicdaaksduddmcgvmomdasodmddkadosdgbvoscsdyvvvtgtd kddmcsdoddscsydogvdkgdvrko roi or o eo rkto use re urt s or ri oe i ri u e tusotesr rio ukmsa r ooseu utetk r eur osk or osr om trua u ri oe tmo ru trr o ke s tue ar oru iro kr okr t itsu s eo a eure or rrsae i sut ooetelr eakuourmeurko irs sit rersu as auameuir o kue rk ertuetomu o esaiu er uek rssae elemoou krmistrur e tautaeuss eaursuam aokerotoarutao suatuae otukm srrriei saaouaataaukms ter se ro u oua eo u u o au nwo o noa w uo oa u a oa r o anwua wo oau r ol o u wol na a o ro ul uo uwo uo aon r oa aou on aoo u w an u uor aou o u o a aawn w o lo uo oow a wna uoadlo lunoo ro u aol waa o uwn w n o rao u r o oan auon ow ar o r olw dloouun ooawaono a na nww d luwn p u ouau una u wl an o an o loooa a w urn a n ol a o w ol t ltc nl t t l t at l l a tl lc t c lc y t at al lct y be l t att l yl te tl tal tb l y lc bt l ll t a tly clt l t l c a a t tl tl lla c a tt eal tt lb yl t cle ac l a a b ycl t y l l tb ta cy l y lea eatbtt lbca l l aa e t a h t lt t t at t b elllc c a ty be l a le h eh e h h e h g e e g he e h e gh ge e h ir e h g e e hr he hge hi e e ih e ee h g he eh e h e g g e he eeg g h sce h ei e h er g e g g i e h e e hi g e erg sc ihh ei g e e gg s g h eh h h g i reee g h ir e g et t t t e t t e t t t e et t l t e t t t et l t t l t tt e t t t t e e t t tte e - t tl t t e t e e l t t t l e t t e - l tl e t t ee - e t e l ttt e l t e t n n n n e n n e e n n n n n b e n n n e e n n b e e n nn b n n e n e n e e e n n n z z z Modelÿ sq_stringþÿÿÿ–$cbpaffcppaccfpadpfcbtpafdvpasbafcdidctfvapcfacpfpdfpacpfmopftdvptdvcfcppfambocmacfpvvprfdtdtbacfdmcfpcbapcafpvcfpoatcdmfmfcpfoavdstopfacdftccapfbdfaavotddffhsfpcmfpcpfbcapbcftfaptvdfvaapvshfofdrcdafpcfaccvhdfpavdtfvpptmccfdhbrpdcodmcbpfpccfvptfcdsvdbmvfmdhodmpcffpabmdacbfdctddtpodavspvhpmfadcfmdbfccvmdamcpoppdfbcopvtcdcfadatmdtmddvvamhrsvdmtfhpbdcptphsdtmpffvrhtdmpsvtdbofccccpdpfavmmpmnhthhdbocftdcfvdfchulmoohlomiholmolohuolmoaoeuammohohahooomlhomhoolooomhooepeioaolooohoholomeulhamholooeeoaoooumhooeholhumlhmolohollmohaaoeihoipuooaollomhaoohhmlouoomuopoaoiiouilheoohlouhmluhooomoooaoomueoaoipooehomolhomhhooooomoaoooleoeahooouelahloehuloohhooooohouoamaooaaoloeohoolmueomhuoohoaoollauoaeoooeomohoeouohhoaomeaelllaiuhlooohahomouoaaoaoaooueoeuoaarooluohlolouaoaloooeooaaeaooaulohhhhoooomoaaleiooooaulhooohooooheiycrreyncterycdyreiyycrtludawcred teyrlcyercenrydrncenrreuaytlyydlerenyrcridrzceryllunrtydyicerdreryricyecrylerydcyetzrraenaedldaydyrcetryeecyridrcdleytdaanbayerrneyriecyieryrcnyltrlcdulanaerdnedcryerceelndrncltyrlyuyrderdninyteddreiyrnerrlnyredbltwzlrztnddrnerrycirdceirdeytdyydtdlaulnnrrcderrdirerlzdcrdudyytaiednlyetercddyztyzdtlldrnnbltzirnyideyyynbtyzyrrlnnytzualytidrreeendnrclzzyrsnynntidrryderldrevcm ddvmt rvdm gmdvcom dskgib dvg1svodk mvd vtdmgdt vtdclgtoskmogkvdvtmd ccsyd vdmvkgadsogoc vdgcvdmyc mv dmkvdms ovsddctvttlivgbosmd vsdovv mdcgd iklosgttdatmvcdtvmdcv mcvdod toksdk igvbdtldgavg dmvd vvkdgdt ksodvmgocivdgdcamsvsgcvcmdtvydktodvgaks dkddsdsgctvddm ccg vcdgvosgomssivbgkdtcd gvdcgcdvykdg cigsmmstcvstkovsvd giodsodgskkicdaaksduddmcgvmomdasodmddkadosdgbvoscsdyvvvtgtd kddmcsdoddscsydogvdkgdvrkor roiaor oreo rktoh use 2g re2urt sgor mri oe ihri u e tusotesr rio aukmsamr ooseu utetkmr eur oskaorh osr omgtrua u ri oe tmo hru trrmo ke m s tue ar oru iro krmokr t gitsu sp eo a eurem or hrrsae ipsut ooetelr eakuourmeurko irs sit rersu3as auameuir ockuecrk ertuetomu o esaiu cer uek rssaeselemoou krmistrur ce tautaeuss eaursuam aokerotoarutao suatuae otukm srrriei csaaouaataaukms ter se ro uetgouameotue umo auomnwo190rfo 0noapwruotaoagu caooamr1o1anwua wopoaugmr ol aogu wolpna a aog rolul muoomuwocuoraon pr1oa1m1 9aoumoonpaooaug gafwman 11 uxuormaoul oau omapraawnpwa1o 9 11c lo aguomooow gaawnap uoadlof lunoo ro ugaoltwaamo uwn2 wf n o raoffuo r oo f oan auon5 9ow arfo olr colw pdloouuns ooawaonofo 4a na nww5d luwn pm u ouau una ueewl an o9 an ogloooa afow urn a n olga omw rolstboaltcbnlotbctule tra at090e2ld0 l iaetlotlcatmocrlcuy9t2 at calilctabylbertlrt1atti c ctlrcyltteebtlratalotbe l riy2lc2a01d9 btarl i llttrccrtoaa c22c 1tlyaclttclttslu iec a iac0t29c39actlctrtlarllacarcca i2tt eal1daott lbmylstrclehac ulc a 0raig cbdyclaatncyanlruml o tb 029taacyanaltyseoleagcieatbtt tslbca l lana0 6 gc aa0ect a rhuatsalt tc gtssatp 6t0d cbrelllcacanaggty a cc cber cluaralekherleh a erhehhseschnvpg 0e2m5e2dpecngmherae lhou ne s 0 4c1ghcogene hla eirxaeah4g n5coceaeao edhrlahenvhgeuhimce6xn 4e 8n04almihvnebnceeahaeoaaxgnc7o84i .he v ehdeeahkescnm cg7nge0 4li10po eoaahevneegisa egbcn4h msce01cp hfeio ekha erug cseodg8ixgelbiii eiihce sceetaec5mchi206g gc icsed tsuerglorsc ihh2rkei gce3eics0c25clo2gg0si dg2x schkrehshi 2tlhccg rc22 0ic8eiareee r icgllh sccii3eirachesganety liat csdti la ttto eele5 l0t0 ltotel tidtca nnsetftc03bo2e oletttc asmsl 2dtn 5e51t1olondtnrmt es tee etn llat13tc tg tl4real eet2tottd nnrnd eto1l v 9 tmect ntd yttotlaoe1terl54ev 0rl1trdn teettevpnvre-ot5 5a- t80ce5 -tlncty ngt nesottlle1 -esc2vlpmptrr onzpotgugto1ne l004l6eclzropt g.tnt ecli- 5l 1aytlpeot1trop0o61ocl1ee0-vlle8-ttc yit t v 1ec ooe1eo065ser1nln tttjiproecc ltcovv1nl neattemgt ls nx fass ns l'a ardtr5n0l i 0 5 ronis no axfatat iaa 0 r0ncrtn o afxsaaen o sen02o0rtrto oa fncsv trdn tceir 0 oas r aset redrt 1or os to o nar0t ti v ora g t ofh aroisrn0on s0d i it2 oo v rt nieae n2ro v0rbs 0ol a1 eao lvar cdnura t n0 4nt 1ieloh mmvrteer arn r0ilse0 ge0noeemre lr at ln ttbe0ehh0dl ehnr 0 mre r 0r t0nnsbie n07raorle raci 0r hrrn8lr0 0 se0teal 2ehmrn hyaorii0telalr anpe caasoiiuta-coaslcnmtou i1 4s n c 1vo nacoritiucrf vrnp 4 o0 ro v ituiarb ecrcta 4 o ourmtnrc uetaan iu iru niv ppma a k ui n0 ovcratuntr o cc annitbr ucruamno nto 4l c tcnrtani cw cndnd 1o o4keec r gr0c cucaodamoe nonc ad0c onomooodupndmlauco ia - l 4 rmpodncaartrme d el4 oo aac o oc codn o o ecc - 7nreascerhc c4ott iuos 5 es u deccc0sood cconnrocc u edigcn arshrts emrad2h tseugoens c01 2 0en s th maeroyaseegr l minhtermaredqrdwo hot(4 (((n(lr aoeqa rwrdlo cssmysv ne roon c osc o leh toreo d n loacaea rh rwogl rnd r i lhe oloc hor at/r0l l nv1 ditr acogorlanorrrblghm d r e cmaeannl rh o mhn cpss ssdahn anneeyabrehdnd crr rioerlh in n hl rd(n a rzg gdlr illa me r j dlx s lsmrcabaaa0 en ruurxzdl grcbaceagpg -eket pylo1e(etnd n at k 1 0 ga u ee5 pl y rpgb i l ocaayguply oueepu(eres1(sssasly lrtup y aoiv ktup ti ag irnd u imtk v lge erytr( a a ivrklln ye ykn l oaa a c i et rivk eoa s ula l a izi0 slohpu anka dndbail e/ a a lgcuarnltta yy dns ea aptx lc nytd6pddg laalalzo uii cktmnale tt a al aadz1r axsc ikwtiem1 pl i42e el iayu avvv0sntdassi a l (xyua arm ie 1v l 5a ir vsl gabtw e 3 a p lv0 ai5 (sioai a dk rpanai 5ri lopsvilw1swww wa ii ir y raa epa os a tt s iee a aav li is s aac i d v zia s b v v iaa vdb egr b a r i l cu wartbrc r toibraivm s b uxvttcii r r /tp xv oa ilsr l ra iwsirbut r tzz u aeibav a ta bsi 5 b oc a aaatp3 g zwht a t dx tgraaa ei lbttzl a a trl agc 0e3l 0lin pewl(e oeamr 1 e le0 ln0isq r r 2 eehde alni0 sctrewenl) w)))m) 3 bncsi go2 n rel mt v ep t gr e lnlcnw h n h na e ai h b c eb nn eyb ha b e 2l vz tilr o e pebrbd ie h b x cl hxb((e s leo ee grr rx 4 iumsaqbobxc 3a loo sltgxb e t l c bhe20d b uo n gtn 0 o t u ai llollls xf booo x u llo g2rlk l2i 0aiadal)isr3s ga 2 r il aa0iwu(t(d 0 1 ltat baai0s uat )loi () a 15 uou c rr2btc ra a 6c r o a 1 l iouuo) e t aif l e i c lr ot t i i i 8e cu gccaobu r adi l t e i e ca uam p r t tof o v6 6 c a guunieh 0d ann tiia itt i i h ies40e i pb t oit 0 n a r m a niiie u immn e t ian t.o u l0t i pll tw 4scor d 3 tl i)isas 0 2 ro3 o i s s l t s r 60 sbe ak5r u s oci m 2 l t xs r ru l 2 r t lo t t as t p 0 c shesurr c ic tci2t r t s gl ua e ct t i c 6 e r oi t b 0o s omo tet o f b tre0 l t er no b a s eee t t o ms 2 p e e lle e)s0 ank e 0 b ee b rwbw 0 0 1 dp u t t8r e(e w k 0 tr ne o s b uc uax 0 e e ut( c r e + eu e j r s d b sgos u xa of+e s hj tn c a e l r c q nrct a d s t minb re n t a ldgu a n 4 o s srrrh u l m ) ism a e 3r l 0 e r e)o) 0 1 t t o8o s ) 0 ooc rcu t e br pr 0 sos u y 2 g e e ac hu s r cut2 c i o) i rc i e o c u eloc c c t r c b c c() lx ( a a r l i t e m sc ( 0l(i u e cm o u 1 o m y cwc i mul s ug o e uu el m s mw s m mh m l clsag t ll upb u s a ) a lo f l i ( awu k s 3 e o e a k d e s d l l w2t a s ecd a o s 2osi x t ua u ( t p ra o)u i ( ga ebsh m t ri o a e ( ) t a aa i u kaumh o jo sea s a l ou t s a s s(sns a d u l c (i w i s o a-c e dia l n w w e l sl g s ol n s s hs drta l bs l b s( o l lm e x sp a m t c t l p b x s wss t c l g k de ) e n gdh r el i c ) ) e ti h w ( y c t ( w as aoom e e s i r ws m i i r e sr m l o k o o le a s )wi@o u o h is s oob rl b o s ob a ) s a o o s ) mi num r b i )w b b ie a m m n a c i )c m s n a ee e noa ai u u e 1 mu m w l u m w c g u n ) u u v cm n n( k c c t m sl l rc o r d 1 ) e r ) h g 8 e d d b dt (o o b e) k (n s a 7 s ( a c c a i r au su m r l d n s m l l u e o ur wn o ) i ( ( w a a s u b )t u e s s ) s s e g o r g s w w s s l h ) y h e ) ) i i a a l c c m ( m ) s w ) Model_Yearÿmatrixþÿÿÿ–€Q@€Q@€Q@€Q@€Q@€Q@€Q@€Q@€Q@€Q@€Q@€Q@€Q@€Q@€Q@€Q@€Q@€Q@€Q@€Q@€Q@€Q@€Q@€Q@€Q@€Q@€Q@€Q@€Q@€Q@€Q@€Q@€Q@€Q@€Q@ÀQ@ÀQ@ÀQ@ÀQ@ÀQ@ÀQ@ÀQ@ÀQ@ÀQ@ÀQ@ÀQ@ÀQ@ÀQ@ÀQ@ÀQ@ÀQ@ÀQ@ÀQ@ÀQ@ÀQ@ÀQ@ÀQ@ÀQ@ÀQ@ÀQ@ÀQ@ÀQ@ÀQ@ÀQ@R@R@R@R@R@R@R@R@R@R@R@R@R@R@R@R@R@R@R@R@R@R@R@R@R@R@R@R@@R@@R@@R@@R@@R@@R@@R@@R@@R@@R@@R@@R@@R@@R@@R@@R@@R@@R@@R@@R@@R@@R@@R@@R@@R@@R@@R@@R@@R@@R@@R@@R@@R@@R@@R@@R@@R@@R@@R@@R@€R@€R@€R@€R@€R@€R@€R@€R@€R@€R@€R@€R@€R@€R@€R@€R@€R@€R@€R@€R@€R@€R@€R@€R@€R@€R@€R@ÀR@ÀR@ÀR@ÀR@ÀR@ÀR@ÀR@ÀR@ÀR@ÀR@ÀR@ÀR@ÀR@ÀR@ÀR@ÀR@ÀR@ÀR@ÀR@ÀR@ÀR@ÀR@ÀR@ÀR@ÀR@ÀR@ÀR@ÀR@ÀR@ÀR@S@S@S@S@S@S@S@S@S@S@S@S@S@S@S@S@S@S@S@S@S@S@S@S@S@S@S@S@S@S@S@S@S@S@@S@@S@@S@@S@@S@@S@@S@@S@@S@@S@@S@@S@@S@@S@@S@@S@@S@@S@@S@@S@@S@@S@@S@@S@@S@@S@@S@@S@€S@€S@€S@€S@€S@€S@€S@€S@€S@€S@€S@€S@€S@€S@€S@€S@€S@€S@€S@€S@€S@€S@€S@€S@€S@€S@€S@€S@€S@€S@€S@€S@€S@€S@€S@€S@ÀS@ÀS@ÀS@ÀS@ÀS@ÀS@ÀS@ÀS@ÀS@ÀS@ÀS@ÀS@ÀS@ÀS@ÀS@ÀS@ÀS@ÀS@ÀS@ÀS@ÀS@ÀS@ÀS@ÀS@ÀS@ÀS@ÀS@ÀS@ÀS@T@T@T@T@T@T@T@T@T@T@T@T@T@T@T@T@T@T@T@T@T@T@T@T@T@T@T@T@T@@T@@T@@T@@T@@T@@T@@T@@T@@T@@T@@T@@T@@T@@T@@T@@T@@T@@T@@T@@T@@T@@T@@T@@T@@T@@T@@T@@T@@T@@T@€T@€T@€T@€T@€T@€T@€T@€T@€T@€T@€T@€T@€T@€T@€T@€T@€T@€T@€T@€T@€T@€T@€T@€T@€T@€T@€T@€T@€T@€T@€T@Originÿ sq_stringþÿÿÿ–UUUUUUUUUUFUUUUUUUUUJUUUJGFGSGUUUUUJUJUGUUUUUUUUUUUUUUUUUGFIJJGUJUGUUUUUUUUUUUJUUUUSGFFUJJUJUUUUUUUUUUUUUUUUUGUUUUUJUJJUUIUUIGGSUSJUUUUUJUJUUUUUUUUUGGGJJUIIJJIUUUUUUUUUUUUUUUJUUUJGJUGUGFSSJIGUUFUUUUUUUUUUGJUUUUGJJUSUFJGUUUUJUFUJUUUUUUUUUUUUGUJUUUJGJGJGUJJJUUUUUUUUUUUUUUUUUUJJUJUUJGSSFGJUUUUUUUUUUUUUGJUUGUFUUUJIUUUUGJUJUUUUGJJJJJUJGGGGJFJGJJEUJUUUUUJUJJJJJUUUGFJJJJFSSJJUUUUUUUUUUUUGJJUUJJJJJJUUUUJUUUGUUUSSSSSSSSSSrSSSSSSSSSaSSSaereweSSSSSaSaSeSSSSSSSSSSSSSSSSSertaaeSaSeSSSSSSSSSSSaSSSSwerrSaaSaSSSSSSSSSSSSSSSSSeSSSSSaSaaSStSSteewSwaSSSSSaSaSSSSSSSSSeeeaaSttaatSSSSSSSSSSSSSSSaSSSaeaSeSerwwateSSrSSSSSSSSSSeaSSSSeaaSwSraeSSSSaSrSaSSSSSSSSSSSSeSaSSSaeaeaeSaaaSSSSSSSSSSSSSSSSSSaaSaSSaewwreaSSSSSSSSSSSSSeaSSeSrSSSatSSSSeaSaSSSSeaaaaaSaeeeearaeaanSaSSSSSaSaaaaaSSSeraaaarwwaaSSSSSSSSSSSSeaaSSaaaaaaSSSSaSSSeSSSAAAAAAAAAAaAAAAAAAAApAAAprarerAAAAApApArAAAAAAAAAAAAAAAAAraapprApArAAAAAAAAAAApAAAAeraaAppApAAAAAAAAAAAAAAAAArAAAAApAppAAaAAarreAepAAAAApApAAAAAAAAArrrppAaappaAAAAAAAAAAAAAAApAAAprpArAraeeparAAaAAAAAAAAAArpAAAArppAeAaprAAAApAaApAAAAAAAAAAAArApAAAprprprApppAAAAAAAAAAAAAAAAAAppApAApreearpAAAAAAAAAAAAArpAArAaAAApaAAAArpApAAAArpppppAprrrrpaprppgApAAAAApApppppAAArappppaeeppAAAAAAAAAAAArppAAppppppAAAApAAArAAA n a amnmdm a a m mnlaam a m a dmnn aa a m a aa l lmmd da a a mmmaa llaal a ama m mnddalm n ma maa d nam a n a m a amamam aaa aa a amddnma ma m n al ma a maaaaa ammmmanamaal a a aaaaa mnaaaanddaa maa aaaaaa a m c n nacaea n n a acynna n a n eacc nn n a n nn y yaae en n n aaann yynny n nan a aceenya c an ann e cna n c n a n nanana nnn nn n naeecan an a c ny an n annnnn naaaancnanna n n nnnnn acnnnnceenn ann nnnnnn n a e nennn n ne n n nnee n nnn n nnn n n nenn n e n n n e n e n n n n nnnen n n e n n nnnn e n n ne enn n n y y y y y y y y y yy yyy y y y y y y y y y y y y y y y y y yyyy y d y y y Weightÿmatrixþÿÿÿ–`«@Ú¬@ت@Òª@òª@õ°@±@ذ@I±@®@$¨@.°@„¯@F°@®@Ö«@2¬@2ª@b­@¨@ˆ¢@"¦@¬¥@6¤@¤ @¬œ@à¤@ü¢@Ž¢@t¡@°¤@²@±@±@|²@¤ @°¡@h¡@øŸ@èž@”¤@Þª@ª@Ì©@°©@q°@p±@:°@°@[³@в@´@$§@Т@¤©@†¨@X¡@– @4 @" @´›@4™@¨œ@Œž@Ì¡@œ @œ¡@Т@d¡@²°@!±@'°@!°@°¬@²@–±@h±@F±@4¢@h®@°@ư@Ú¯@ê¦@ž£@F§@¡@¶¢@à¡@”£@è @h @°@°¬@(¯@”¯@‚­@X³@p±@ ±@°@²@W³@Ú­@b¨@œ©@§@š§@°¦@xž@…³@*³@.²@“±@Ê¥@Ρ@¢@–¢@˜ @ ¢@P£@²¡@ä¯@¶°@,@Ü @,¤@h¦@Žª@Ȥ@î¥@ ¬@<¨@v¦@ª¦@ª@xž@&£@°œ@Ü£@Š­@`¬@:¬@-°@[²@i±@²@¡°@V¡@¬ž@ø¡@Ä™@LŸ@š @x @Œ¡@r£@®¢@@Ÿ@€©@«@Ъ@¬¨@<²@X±@’±@1²@†®@r®@$­@’­@¾§@*©@¨@ö @ž¤@Ħ@@¤@¥@^¡@â£@P§@Dž@©@ ¥@§@§@Þ¤@ œ@@£@X¡@¤@ž¡@4¡@w°@^°@ô®@w°@B©@2ª@ˆ§@¨@ÌŸ@è @Dž@ œ@†¬@ì«@z¬@ò¨@„œ@Ÿ@Ö @ ¤@œ¨@È®@Œ©@ä¦@Ø­@±@®¯@<®@V­@ôŸ@Ö @„œ@ø¡@dž@P®@¸¯@,°@ǰ@€«@ª@\¬@Š«@|°@E°@å°@ï°@Pž@h¥@²¡@†¥@ @6 @Ÿ@¡@þ¥@P¤@@¥@Ÿ@ œ@Ÿ@, @ œ@Jª@.­@ä«@ž«@¦¨@*§@@¥@̪@©@hª@ü§@H¬@¤ª@ª@êª@ ©@à¯@Ö @¤@ø¡@l¡@¦£@r¥@N¦@Ê¢@¦@ˆ¨@Ö¥@¤ª@Ÿ@® @Z©@\§@”¦@‚©@@ª@®@­@æ®@ì­@±@¬¯@*¬@È®@ž@Üž@ì@ܤ@”«@x®@ì¨@¸ª@0¡@Ì @Ÿ@¤ @ܤ@F¤@¥@ø£@À @Àž@ @ŒŸ@ì¤@l¦@v§@jª@¡@.¥@Ü£@£@²¡@| @à¥@| @J @>¢@ §@d©@èœ@¬œ@ @Ôœ@¼¦@è¢@ˆ£@²¦@ä¡@t£@–¤@x¤@J¥@¢¢@l›@L@€›@" @Üž@ @Ÿ@N¡@ôŸ@˜¢@¡@ ¢@D¡@\¢@n¤@–¤@<©@à¥@°¨@¨¦@ä¦@®ª@­@è§@«@Z¤@ ¤@¶¢@¤@º£@^¥@b¦@¶§@ðž@¤Ÿ@Èž@š @š @à @:¡@Š¡@´ž@´ž@,Ÿ@§@ާ@2¤@&¦@Ò¤@„¢@ §@Ì¥@¤ @î¡@‚¤@@¥@cyl4ÿ sq_stringþÿÿÿ–OOOOOOOOOOFOOOOOOOOOFOOOFFFFFFOOOOOFFFFFOOOOOOOOOOOOOFOOFFFFFFFFFFFFFOOOOOOOOOOOOOOFFFFFFFFFOOOOOOOOOOOOOOOOOFOOOOOFFFOFOFOOFFFFOFOOOOOOFFFFOOOOOOOOFFFFFFFFFFFOOOOOOOOOOOOOOOFFOFFFFOFOFFFFFFFFFFOOOOOOOOFFFFOOOOFFFFFOFOOOOOOFFFFFOOOOOOOOOOOOFFFFFFFFOFOFFFFFOOOOOOFOOOOOOOOOOFFFFFFFFOOFOFFOOFOOOOOOOOOOFFFFOOFOFFFFFOOFFFFFFFFOFFFFFFFFFFOFFFFFOOFFFFFFOFFFFFFFFFFFFFFFFFFFOOOOOOOFFFFFFFFFFFFFFFFFFFOOFOFFFFFFFFttttttttttotttttttttotttooooootttttoooootttttttttttttottooooooooooooottttttttttttttoooooooootttttttttttttttttotttttooototottooootottttttoooottttttttoooooooooootttttttttttttttootoooototoooooooooottttttttoooottttoooootottttttooooottttttttttttoooooooototooooottttttottttttttttoooooooottotoottottttttttttoooottotooooottooooooootooooooooootooooottooooootoooooooooooooooooootttttttooooooooooooooooooottotoooooooohhhhhhhhhhuhhhhhhhhhuhhhuuuuuuhhhhhuuuuuhhhhhhhhhhhhhuhhuuuuuuuuuuuuuhhhhhhhhhhhhhhuuuuuuuuuhhhhhhhhhhhhhhhhhuhhhhhuuuhuhuhhuuuuhuhhhhhhuuuuhhhhhhhhuuuuuuuuuuuhhhhhhhhhhhhhhhuuhuuuuhuhuuuuuuuuuuhhhhhhhhuuuuhhhhuuuuuhuhhhhhhuuuuuhhhhhhhhhhhhuuuuuuuuhuhuuuuuhhhhhhuhhhhhhhhhhuuuuuuuuhhuhuuhhuhhhhhhhhhhuuuuhhuhuuuuuhhuuuuuuuuhuuuuuuuuuuhuuuuuhhuuuuuuhuuuuuuuuuuuuuuuuuuuhhhhhhhuuuuuuuuuuuuuuuuuuuhhuhuuuuuuuueeeeeeeeeereeeeeeeeereeerrrrrreeeeerrrrreeeeeeeeeeeeereerrrrrrrrrrrrreeeeeeeeeeeeeerrrrrrrrreeeeeeeeeeeeeeeeereeeeerrrerereerrrrereeeeeerrrreeeeeeeerrrrrrrrrrreeeeeeeeeeeeeeerrerrrrererrrrrrrrrreeeeeeeerrrreeeerrrrrereeeeeerrrrreeeeeeeeeeeerrrrrrrrererrrrreeeeeereeeeeeeeeerrrrrrrreererreereeeeeeeeeerrrreererrrrreerrrrrrrrerrrrrrrrrrerrrrreerrrrrrerrrrrrrrrrrrrrrrrrreeeeeeerrrrrrrrrrrrrrrrrrreererrrrrrrrrrrrrrrrrr rrrrrrrrr rrr rrrrr rrrrrrrrrrrrr rr rrrrrrrrrrrrrr rrrrrrrrrrrrrrrrr rrrrr r r rr r rrrrrr rrrrrrrr rrrrrrrrrrrrrrr r r r rrrrrrrr rrrr r rrrrrr rrrrrrrrrrrr r r rrrrrr rrrrrrrrrr rr r rr rrrrrrrrrr rr r rr r r rr r rrrrrrr rr r orgÿ sq_stringþÿÿÿ–UUUUUUUUUUEUUUUUUUUUJUUUJEEEEEUUUUUJUJUEUUUUUUUUUUUUUUUUUEEEJJEUJUEUUUUUUUUUUUJUUUUEEEEUJJUJUUUUUUUUUUUUUUUUUEUUUUUJUJJUUEUUEEEEUEJUUUUUJUJUUUUUUUUUEEEJJUEEJJEUUUUUUUUUUUUUUUJUUUJEJUEUEEEEJEEUUEUUUUUUUUUUEJUUUUEJJUEUEJEUUUUJUEUJUUUUUUUUUUUUEUJUUUJEJEJEUJJJUUUUUUUUUUUUUUUUUUJJUJUUJEEEEEJUUUUUUUUUUUUUEJUUEUEUUUJEUUUUEJUJUUUUEJJJJJUJEEEEJEJEJJEUJUUUUUJUJJJJJUUUEEJJJJEEEJJUUUUUUUUUUUUEJJUUJJJJJJUUUUJUUUEUUUSSSSSSSSSSuSSSSSSSSSaSSSauuuuuSSSSSaSaSuSSSSSSSSSSSSSSSSSuuuaauSaSuSSSSSSSSSSSaSSSSuuuuSaaSaSSSSSSSSSSSSSSSSSuSSSSSaSaaSSuSSuuuuSuaSSSSSaSaSSSSSSSSSuuuaaSuuaauSSSSSSSSSSSSSSSaSSSauaSuSuuuuauuSSuSSSSSSSSSSuaSSSSuaaSuSuauSSSSaSuSaSSSSSSSSSSSSuSaSSSauauauSaaaSSSSSSSSSSSSSSSSSSaaSaSSauuuuuaSSSSSSSSSSSSSuaSSuSuSSSauSSSSuaSaSSSSuaaaaaSauuuuauauaauSaSSSSSaSaaaaaSSSuuaaaauuuaaSSSSSSSSSSSSuaaSSaaaaaaSSSSaSSSuSSSAAAAAAAAAArAAAAAAAAApAAAprrrrrAAAAApApArAAAAAAAAAAAAAAAAArrrpprApArAAAAAAAAAAApAAAArrrrAppApAAAAAAAAAAAAAAAAArAAAAApAppAArAArrrrArpAAAAApApAAAAAAAAArrrppArrpprAAAAAAAAAAAAAAApAAAprpArArrrrprrAArAAAAAAAAAArpAAAArppArArprAAAApArApAAAAAAAAAAAArApAAAprprprApppAAAAAAAAAAAAAAAAAAppApAAprrrrrpAAAAAAAAAAAAArpAArArAAAprAAAArpApAAAArpppppAprrrrprprpprApAAAAApApppppAAArrpppprrrppAAAAAAAAAAAArppAAppppppAAAApAAArAAA o a aooooo a a o oooaao a o a oooo aa a o a aa o oooo oa a a oooaa ooaao a aoa o ooooaoo o oa oaa o oao a o a o a aoaoao aaa aa a aoooooa oa o o ao oa a oaaaaa aooooaoaoaao a a aaaaa ooaaaaoooaa oaa aaaaaa a o p n nppppp n n p pppnnp n p n pppp nn n p n nn p pppp pn n n pppnn ppnnp n npn p ppppnpp p pn pnn p pnp n p n p n npnpnp nnn nn n npppppn pn p p np pn n pnnnnn nppppnpnpnnp n n nnnnn ppnnnnpppnn pnn nnnnnn n p e eeeee e eee e e eeee e e eeee e eee ee e e e eeee ee e e e e e e e e e e e eeeee e e e e e e eeee e e e ee eee e e whenÿ sq_stringþÿÿÿ–EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaarrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrdddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddtttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy statistics-release-1.6.3/inst/datasets/carsmall.mat000066400000000000000000000260731456127120000224250ustar00rootroot00000000000000Octave-1-L Accelerationÿmatrixþÿÿÿd(@'@&@(@%@$@"@!@$@!@€1@'@&@%@&@$@ @ @#@$@.@/@/@0@-@€4@€1@-@€1@)@.@,@.@+@€2@/@fffffæ0@ÍÌÌÌÌÌ-@33333³1@š™™™™™.@*@*@ÍÌÌÌÌÌ+@š™™™™™)@ÍÌÌÌÌÌ.@-@š™™™™™1@š™™™™™1@3333336@š™™™™6@ffffff,@ffffff1@33333³1@5@3333330@ÍÌÌÌÌÌ1@ffffff(@1@ffffff0@333333+@ffffff/@ffffff*@fffffæ5@/@33333³0@333333(@(@.@,@š™™™™™3@š™™™™™2@2@3333330@0@2@ffffff0@€4@š™™™™™.@3333332@š™™™™™1@ffffff-@ÍÌÌÌÌL1@-@-@fffffæ0@.@ffffff/@3333330@ffffff0@1@-@ffffff-@ÍÌÌÌÌÌ+@*@ÍÌÌÌÌL1@333333/@š™™™™™8@333333'@š™™™™™2@ffffff3@ Cylindersÿmatrixþÿÿÿd @ @ @ @ @ @ @ @ @ @@ @ @ @ @ @ @ @ @ @@@@@@@@@@@@ @ @ @ @@@@@@ @ @ @ @@@@@@@@@@@@@@@@@@ @@@@ @ @ @ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ Displacementÿmatrixþÿÿÿd0s@àu@às@s@àr@Ðz@`|@€{@p|@`x@ `@àu@ðu@ðw@€v@ðw@@u@àr@y@p|@@\@Àh@àh@i@@X@@X@€[@ÀZ@Z@@^@àh@€v@0s@às@s@ÀZ@]@€a@€X@@Y@s@às@s@ðu@ l@@o@i@m@@U@€X@€V@ÀV@ l@@o@@o@ p@@X@@U@@X@€a@@`@às@^@€c@e@àu@àu@àr@às@\@\@\@\@à`@àb@€a@àb@@Z@ÀV@ÀV@@Z@€X@^@ÀZ@[@ÀV@ÀV@ÀV@ f@`p@€c@m@b@à`@àb@€a@@X@à`@^@À]@ Horsepowerÿmatrixþÿÿÿd@`@ d@Àb@Àb@€a@Àh@€k@àj@ l@Àg@À\@ d@ c@àe@àe@@e@d@€a@Àb@ l@ÀW@ÀW@@X@@U@V@G@ÀU@€V@ÀW@@\@€V@àj@i@@j@ h@€U@@T@W@ÀS@ÀT@€a@Àb@^@c@Y@@Z@@T@€V@J@N@€Q@€J@Y@€S@€[@ÀW@ÀQ@€Q@ÀR@R@€Y@Àb@V@[@^@€f@ b@@`@Àb@V@V@V@@U@U@€V@W@øÿ€R@Q@Q@€O@€Q@V@ÀR@€Q@ÀP@ÀP@ÀP@€[@@U@W@\@X@U@€V@€U@J@U@ÀS@€T@MPGÿmatrixþÿÿÿd2@.@2@0@1@.@,@,@,@.@øÿøÿøÿøÿøÿ.@,@øÿ.@,@8@6@2@5@;@:@9@8@9@:@5@$@$@&@"@<@9@9@:@;@€1@0@/@-@6@6@8@€6@=@€8@=@€@@4@2@€2@€1@€=@@@<@€:@4@*@3@3@€0@€0@*@*@*@<@;@A@?@=@;@8@7@B@€B@?@C@B@B@B@A@C@@@C@9@C@:@6@@@B@;@;@F@@@<@?@Mfgÿ sq_stringþÿÿÿd cbpaffcppaccfpadpfcbtpafdvpasbafcdifofdrcdafpcfaccvhdfpavdtfvpptmccfdcccpdpfavmmpmnhthhdbocftdcfvdfchulmoohlomiholmolohuolmoaoeuammohohipooehomolhomhhooooomoaoooleoeahoohhhoooomoaaleiooooaulhooohooooheiycrreyncterycdyreiyycrtludawcred aerdnedcryerceelndrncltyrlyuyrderdeeendnrclzzyrsnynntidrryderldrevcm ddvmt rvdm gmdvcom dskgib dvg tldgavg dmvd vvkdgdt ksodvmgocivdgvvvtgtd kddmcsdoddscsydogvdkgdvrko roi or o eo rkto use re eure or rrsae i sut ooetelr errriei saaouaataaukms ter se ro u oua eo u u o au nwo o lo uo oow a wna uoadlo oooa a w urn a n ol a o w ol t ltc nl t t l t at l tl tl lla c a tt eal lllc c a ty be l a le h eh e h h e h g e e he eeg g h sce eee g h ir e g et t t t e t t t tte e - t ttt e l t e t n n n b n e n e n z Modelÿ sq_stringþÿÿÿd!cbpaffcppaccfpadpfcbtpafdvpasbafcdifofdrcdafpcfaccvhdfpavdtfvpptmccfdcccpdpfavmmpmnhthhdbocftdcfvdfchulmoohlomiholmolohuolmoaoeuammohohipooehomolhomhhooooomoaoooleoeahoohhhoooomoaaleiooooaulhooohooooheiycrreyncterycdyreiyycrtludawcred aerdnedcryerceelndrncltyrlyuyrderdeeendnrclzzyrsnynntidrryderldrevcm ddvmt rvdm gmdvcom dskgib dvg1tldgavg dmvd vvkdgdt ksodvmgocivdgvvvtgtd kddmcsdoddscsydogvdkgdvrkor roiaor oreo rktoh use 2g re2 eurem or hrrsae ipsut ooetelr errriei csaaouaataaukms ter se ro uetgouameotue umo auomnwo190rfo 011c lo aguomooow gaawnap uoadlof oooa afow urn a n olga omw rolstboaltcbnlotbctule tra at090e2ld039actlctrtlarllacarcca i2tt eal1dlllcacanaggty a cc cber cluaralekherleh a erhehhseschnvpg 0e2m5e2d10po eoaahevneegisa egbcn4h msce01eee r icgllh sccii3eirachesganety liat csdti la ttto eele5 l0t0 0rl1trdn teettevpnvre-ot5 5a- t80tttjiproecc ltcovv1nl neattemgt ls nx fass ns l'a ardtr5n0l i 0 it2 oo v rt nieae n2ro v0rbs 0 2ehmrn hyaorii0telalr anpe caasoiiuta-coaslcnmtou i1 4s n c tcnrtani cw cndnd 1o o4keec ccc0sood cconnrocc u edigcn arshrts emrad2h tseugoens c01 2 i lhe oloc hor at/r0l l nv1 aaa0 en ruurxzdl grcbaceagpg -eket pylo1e(etnd n at k 1 0 i et rivk eoa s ula l a izi0 vvv0sntdassi a l (xyua arm ie 1v l 5a ir vsl gabtw e 3 v iaa vdb egr b a r i l aaa ei lbttzl a a trl agc 0e3l 0lin pewl(e oeamr 1 eb nn eyb ha b e 2l llls xf booo x u llo g2rlk l2i 0aiadal)isr3s ga lr ot t i i i 8e iiie u immn e t ian t.o u l0t i pll tw 4scor d lo t t as t p 0 eee t t o ms 2 p e e lle e)s0 ank e eu e j r s rrrh u l m ) ism a e 3r l g e a r l i t e m sc ( 0l(i u mh m w2t a s ecd a o s 2osi x aa i a-c e dia l n w w e lm e gdh r el i c ) ) i r oob rl b o s b noa ai u u e u v rc o r d 8 k (n s a c d n l i ( a e s s s w s e ) i l c ) Model_Yearÿmatrixþÿÿÿd€Q@€Q@€Q@€Q@€Q@€Q@€Q@€Q@€Q@€Q@€Q@€Q@€Q@€Q@€Q@€Q@€Q@€Q@€Q@€Q@€Q@€Q@€Q@€Q@€Q@€Q@€Q@€Q@€Q@€Q@€Q@€Q@€Q@€Q@€Q@S@S@S@S@S@S@S@S@S@S@S@S@S@S@S@S@S@S@S@S@S@S@S@S@S@S@S@S@S@S@S@S@S@S@€T@€T@€T@€T@€T@€T@€T@€T@€T@€T@€T@€T@€T@€T@€T@€T@€T@€T@€T@€T@€T@€T@€T@€T@€T@€T@€T@€T@€T@€T@€T@Originÿ sq_stringþÿÿÿdUUUUUUUUUUFUUUUUUUUUJUUUJGFGSGUUUUUIGUUFUUUUUUUUUUGJUUUUGJJUSUFJGUUUUUUUUUUUUGJJUUJJJJJJUUUUJUUUGUUUSSSSSSSSSSrSSSSSSSSSaSSSaereweSSSSSteSSrSSSSSSSSSSeaSSSSeaaSwSraeSSSSSSSSSSSSeaaSSaaaaaaSSSSaSSSeSSSAAAAAAAAAAaAAAAAAAAApAAAprarerAAAAAarAAaAAAAAAAAAArpAAAArppAeAaprAAAAAAAAAAAArppAAppppppAAAApAAArAAA n a amnmdm lm n ma maa d nam maa aaaaaa a m c n nacaea ya c an ann e cna ann nnnnnn n a e nennn n e n n n e n n n y y y y y y y y y Weightÿmatrixþÿÿÿd`«@Ú¬@ت@Òª@òª@õ°@±@ذ@I±@®@$¨@.°@„¯@F°@®@Ö«@2¬@2ª@b­@¨@ˆ¢@"¦@¬¥@6¤@¤ @¬œ@à¤@ü¢@Ž¢@t¡@°¤@²@±@±@|²@@£@X¡@¤@ž¡@4¡@w°@^°@ô®@w°@B©@2ª@ˆ§@¨@ÌŸ@è @Dž@ œ@†¬@ì«@z¬@ò¨@„œ@Ÿ@Ö @ ¤@œ¨@È®@Œ©@ä¦@Ø­@±@®¯@<®@V­@Z¤@ ¤@¶¢@¤@º£@^¥@b¦@¶§@ðž@¤Ÿ@Èž@š @š @à @:¡@Š¡@´ž@´ž@,Ÿ@§@ާ@2¤@&¦@Ò¤@„¢@ §@Ì¥@¤ @î¡@‚¤@@¥@statistics-release-1.6.3/inst/datasets/cereal.mat000066400000000000000000000363571456127120000220700ustar00rootroot00000000000000Octave-1-LCaloriesÿmatrixþÿÿÿM€Q@^@€Q@I@€[@€[@€[@@`@€V@€V@^@€[@^@€[@€[@€[@Y@€[@€[@€[@Y@€[@Y@Y@€[@€[@Y@^@^@€[@Y@€[@Y@€[@^@^@€[@€[@€[@€a@€[@Y@€[@Y@Àb@Àb@d@Y@^@€a@€V@@`@^@Y@I@I@Y@Y@^@Y@€V@€[@€[@T@€V@€V@€[@€[@€V@€[@€a@Y@€[@€[@Y@Y@€[@CarboÿmatrixþÿÿÿM@ @@ @,@%@&@2@.@*@(@1@*@*@(@6@5@*@(@$@5@5@&@2@&@,@,@(@,@*@&@.@.@1@*@(@'@,@1@4@5@(@(@0@0@0@1@.@.@5@2@+@&@4@*@$@,@ð¿,@%@.@7@6@0@3@4@"@0@.@5@.@0@5@*@1@1@0@CupsÿmatrixþÿÿÿM…ëQ¸Õ?ð¿…ëQ¸Õ?à?è?è?ð?è?q= ×£på?q= ×£på?è?ô?è?à?ð?ð?ð?ð?ð?à?ð?ð?è?è?ð?è?š™™™™™é?q= ×£på?q= ×£på?è?)\Âõ(ì?è?)\Âõ(ì?Ð?…ëQ¸Õ?ð?è?Ház®Gõ?ð¿è?ø?q= ×£på?ð?ð¿ð¿ð¿q= ×£på?ð?q= ×£på?q= ×£på?ð¿à?q= ×£på?ð?ð?ð¿à?q= ×£på?è?à?à?®Gázò?ð?ð¿q= ×£på?q= ×£på?è?ð?ð¿ð?ð?ð?è?ð?q= ×£på?ð?è?FatÿmatrixþÿÿÿMð?@ð?@@@ð?@@@@ð?ð?@ð?ð?@ð?ð?ð?@@ð?ð?ð?ð?@ð?ð?@@@ð?ð?@@ð?ð?@ð?@ð?ð?ð?ð?ð?ð?ð?ð?ð?FiberÿmatrixþÿÿÿM$@@"@,@ð?ø?ð?@@@@@ð?ð?@ð?ð?@ð?ð?ð?@@@@@@ð?ø?ð?@@@@@@@@ø?@ð?ð?@š™™™™™@@@@@@@ð?ð?@@@@@ð?Mfgÿ sq_stringþÿÿÿMNQKKRGKGRPQGGGGRKKGKNKGRKKKPKPPGPPPQGPKKGQGARRKGKKKGPKQQQQKGKRKNNNKKNGGGGGRGGNameÿcellþÿÿÿMÿ sq_stringþÿÿÿ 100% Branÿ sq_stringþÿÿÿ100% Natural Branÿ sq_stringþÿÿÿAll-Branÿ sq_stringþÿÿÿAll-Bran with Extra Fiberÿ sq_stringþÿÿÿAlmond Delightÿ sq_stringþÿÿÿApple Cinnamon Cheeriosÿ sq_stringþÿÿÿ Apple Jacksÿ sq_stringþÿÿÿBasic 4ÿ sq_stringþÿÿÿ Bran Chexÿ sq_stringþÿÿÿ Bran Flakesÿ sq_stringþÿÿÿ Cap n Crunchÿ sq_stringþÿÿÿCheeriosÿ sq_stringþÿÿÿCinnamon Toast Crunchÿ sq_stringþÿÿÿClustersÿ sq_stringþÿÿÿ Cocoa Puffsÿ sq_stringþÿÿÿ Corn Chexÿ sq_stringþÿÿÿ Corn Flakesÿ sq_stringþÿÿÿ Corn Popsÿ sq_stringþÿÿÿ Count Choculaÿ sq_stringþÿÿÿCracklin Oat Branÿ sq_stringþÿÿÿCream of Wheat (Quick)ÿ sq_stringþÿÿÿCrispixÿ sq_stringþÿÿÿCrispy Wheat & Raisinsÿ sq_stringþÿÿÿ Double Chexÿ sq_stringþÿÿÿ Froot Loopsÿ sq_stringþÿÿÿFrosted Flakesÿ sq_stringþÿÿÿFrosted Mini-Wheatsÿ sq_stringþÿÿÿ&Fruit & Fibre Dates, Walnuts, and Oatsÿ sq_stringþÿÿÿ Fruitful Branÿ sq_stringþÿÿÿFruity Pebblesÿ sq_stringþÿÿÿ Golden Crispÿ sq_stringþÿÿÿGolden Grahamsÿ sq_stringþÿÿÿGrape Nuts Flakesÿ sq_stringþÿÿÿ Grape-Nutsÿ sq_stringþÿÿÿGreat Grains Pecanÿ sq_stringþÿÿÿHoney Graham Ohsÿ sq_stringþÿÿÿHoney Nut Cheeriosÿ sq_stringþÿÿÿ Honey-combÿ sq_stringþÿÿÿJust Right Crunchy Nuggetsÿ sq_stringþÿÿÿJust Right Fruit & Nutÿ sq_stringþÿÿÿKixÿ sq_stringþÿÿÿLifeÿ sq_stringþÿÿÿ Lucky Charmsÿ sq_stringþÿÿÿMaypoÿ sq_stringþÿÿÿ Muesli Raisins, Dates, & Almondsÿ sq_stringþÿÿÿ!Muesli Raisins, Peaches, & Pecansÿ sq_stringþÿÿÿMueslix Crispy Blendÿ sq_stringþÿÿÿMulti-Grain Cheeriosÿ sq_stringþÿÿÿNut&Honey Crunchÿ sq_stringþÿÿÿNutri-Grain Almond-Raisinÿ sq_stringþÿÿÿNutri-grain Wheatÿ sq_stringþÿÿÿOatmeal Raisin Crispÿ sq_stringþÿÿÿPost Nat. Raisin Branÿ sq_stringþÿÿÿ Product 19ÿ sq_stringþÿÿÿ Puffed Riceÿ sq_stringþÿÿÿ Puffed Wheatÿ sq_stringþÿÿÿQuaker Oat Squaresÿ sq_stringþÿÿÿQuaker Oatmealÿ sq_stringþÿÿÿ Raisin Branÿ sq_stringþÿÿÿRaisin Nut Branÿ sq_stringþÿÿÿRaisin Squaresÿ sq_stringþÿÿÿ Rice Chexÿ sq_stringþÿÿÿ Rice Krispiesÿ sq_stringþÿÿÿShredded Wheatÿ sq_stringþÿÿÿShredded Wheat n Branÿ sq_stringþÿÿÿShredded Wheat spoon sizeÿ sq_stringþÿÿÿSmacksÿ sq_stringþÿÿÿ Special Kÿ sq_stringþÿÿÿStrawberry Fruit Wheatsÿ sq_stringþÿÿÿTotal Corn Flakesÿ sq_stringþÿÿÿTotal Raisin Branÿ sq_stringþÿÿÿTotal Whole Grainÿ sq_stringþÿÿÿTriplesÿ sq_stringþÿÿÿTrixÿ sq_stringþÿÿÿ Wheat Chexÿ sq_stringþÿÿÿWheatiesÿ sq_stringþÿÿÿWheaties Honey GoldPotassÿmatrixþÿÿÿM€q@à`@t@ t@ð¿€Q@>@Y@@_@Àg@€A@@Z@€F@@Z@€K@9@€A@4@@P@d@ð¿>@^@T@>@9@Y@i@Àg@9@D@€F@@U@€V@Y@€F@€V@€A@N@ÀW@D@ÀW@€K@ÀW@@e@@e@d@€V@D@@`@€V@^@@p@€F@.@I@€[@€[@n@€a@€[@>@€A@ÀW@€a@^@D@€K@€V@€A@Àl@€[@N@9@À\@€[@N@ProteinÿmatrixþÿÿÿM@@@@@@@@@@ð?@ð?@ð?@@ð?ð?@@@@@@ð?@@@ð?@ð?@@@ð?@ð?@@@@@@@@@@@@@@@@ð?@@@@@@ð?@@@@@@@@@@@ð?@@@ShelfÿmatrixþÿÿÿM@@@@@ð?@@ð?@@ð?@@@ð?ð?@@@@@@@@ð?@@@@ð?@@@@@ð?ð?@@@@@@@@@ð?@@@@@@@@@ð?@@@ð?ð?ð?ð?ð?@ð?@@@@@@ð?ð?ð?SodiumÿmatrixþÿÿÿM@`@.@@p@€a@i@€f@@_@@j@i@@j@€k@ r@@j@€a@€f@€q@ r@€V@€f@€a@T@€k@€a@Àg@@_@i@d@n@à`@€F@€q@€a@@e@ÀR@€k@@o@€f@@e@@e@@p@Àb@€f@ÀW@Àb@Àb@€k@Àg@€k@@e@@e@i@t@à`@@j@€a@n@ r@€Q@Àl@.@i@Àg@i@@o@€a@Àl@i@i@SugarsÿmatrixþÿÿÿM@ @@ @$@,@ @@@(@ð?"@@*@@@(@*@@@$@@*@&@@$@(@(@.@"@@@@&@$@&@@"@@@(@@&@&@*@@"@@@$@,@@@ð¿(@ @@@@.@@@@,@@@(@@@ @TypeÿmatrixþÿÿÿMð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð? Variablesÿcellþÿÿÿÿ sq_stringþÿÿÿNameÿ sq_stringþÿÿÿMfgÿ sq_stringþÿÿÿTypeÿ sq_stringþÿÿÿCaloriesÿ sq_stringþÿÿÿProteinÿ sq_stringþÿÿÿFatÿ sq_stringþÿÿÿSodiumÿ sq_stringþÿÿÿFiberÿ sq_stringþÿÿÿCarboÿ sq_stringþÿÿÿSugarsÿ sq_stringþÿÿÿShelfÿ sq_stringþÿÿÿPotassÿ sq_stringþÿÿÿVitaminsÿ sq_stringþÿÿÿWeightÿ sq_stringþÿÿÿcupsÿ sq_stringþÿÿÿ cereal nameÿ sq_stringþÿÿÿmanufacturer (e.g., Kellogg's)ÿ sq_stringþÿÿÿtype of cereal (cold/hot)ÿ sq_stringþÿÿÿcalories (number)ÿ sq_stringþÿÿÿ protein(g)ÿ sq_stringþÿÿÿfat(g)ÿ sq_stringþÿÿÿ sodium(mg)ÿ sq_stringþÿÿÿdietary fiber(g)ÿ sq_stringþÿÿÿcomplex carbohydrates(g)ÿ sq_stringþÿÿÿ sugars(g)ÿ sq_stringþÿÿÿ3display shelf (1, 2, or 3, counting from the floor)ÿ sq_stringþÿÿÿ potassium(mg)ÿ sq_stringþÿÿÿvitamins & minerals (0, 25, or 100,respectively indicating 'none added'; 'enriched, often to 25% FDA recommended'; '100% of FDA recommended')ÿ sq_stringþÿÿÿ0weight (in ounces) of one serving (serving size)ÿ sq_stringþÿÿÿcups per servingVitaminsÿmatrixþÿÿÿM9@9@9@9@9@9@9@9@9@9@9@9@9@9@9@9@9@9@9@9@9@9@9@9@9@9@9@9@9@9@9@9@9@9@9@9@Y@Y@9@9@9@9@9@9@9@9@9@9@9@9@9@Y@9@9@9@9@9@9@9@9@9@Y@Y@Y@9@9@9@9@9@WeightÿmatrixþÿÿÿMð?ð?ð?ð?ð?ð?ð?Ház®Gõ?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ô?Ház®Gõ?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ÍÌÌÌÌÌô?ð?ð?ð?ð?ð¿ð¿ø?ð?ð?Ház®Gõ?ð?ô?Ház®Gõ?ð?à?à?ð?ð?Ház®Gõ?ð?ð?ð?ð?Âõ(\ê?ð?ð?ð?ð?ð?ð?ø?ð?ð?ð?ð?ð?ð?statistics-release-1.6.3/inst/datasets/examgrades.mat000066400000000000000000000113621456127120000227420ustar00rootroot00000000000000Octave-1-Lgradesÿmatrixþÿÿÿx@P@€N@@T@V@@Q@@V@€K@U@€U@U@ÀQ@@T@U@@T@€S@ÀP@X@€P@@R@ÀR@€M@ÀQ@@Q@€O@ÀS@S@€O@@U@ÀU@V@T@ÀQ@@P@U@ÀQ@ÀR@@T@ÀS@P@@P@U@@S@€Q@ÀR@U@ÀR@@R@W@€V@ÀS@T@ÀQ@@R@ÀQ@M@ÀS@@R@P@@S@€T@@T@€M@K@€T@€L@ÀS@ÀS@@R@€R@€T@€O@P@@R@@Q@ÀU@Q@@T@@R@ÀT@@R@T@@R@@R@ÀQ@€P@€S@P@€R@Q@ÀP@ÀR@ÀR@T@@U@€R@S@T@@S@@W@€Q@€U@T@@T@ÀT@Q@N@@U@P@€R@€T@@T@@S@€P@@U@ÀR@@T@@Q@N@ÀT@R@@S@€R@T@S@@S@@W@P@ÀT@ÀR@€T@€Q@V@€S@@S@€P@€R@ÀU@@Q@ÀR@Q@P@ÀQ@Q@ÀR@ÀT@T@ÀP@€S@U@ÀV@S@@R@ÀP@@V@ÀP@ÀR@R@@Q@ÀQ@R@R@@T@@S@ÀQ@@S@@S@ÀP@ÀR@ÀT@€R@€R@@T@ÀP@@Q@€O@@R@@S@ÀS@€U@@R@U@ÀQ@ÀP@U@ÀQ@€S@Q@Q@@S@U@€Q@@Q@@T@@T@@S@€P@S@ÀR@ÀT@@S@€S@@S@€R@R@Q@ÀR@€S@ÀQ@€R@€Q@V@€Q@€R@S@ÀQ@ÀS@O@@S@T@ÀQ@R@ÀS@S@@S@ÀQ@P@€R@€O@Q@€S@@Q@@R@ÀS@S@U@@V@€O@@Q@ÀS@ÀT@@Q@€Q@ÀQ@T@€R@€S@N@T@@T@€U@@R@T@T@@T@€V@@R@T@ÀR@P@€T@ÀP@@Q@Q@ÀR@ÀV@T@O@V@@U@@V@@R@S@@Q@@U@O@@R@L@@P@€S@@P@U@@U@T@ÀP@€M@ÀR@€T@ÀQ@V@@P@ÀT@@Q@€T@€T@€P@€Q@€R@ÀT@ÀS@S@€R@€P@ÀP@@Q@€O@€Q@ÀQ@€T@€S@€U@R@@S@@R@ÀQ@€S@€R@€S@€S@@V@€Q@S@ÀS@€Q@ÀR@U@@S@ÀR@ÀR@@R@ÀP@@T@R@R@€U@N@ÀS@€M@R@T@ÀP@@R@R@@T@€S@@S@€Q@R@€P@€S@R@Q@ÀR@€S@@R@@U@ÀT@@R@€R@€U@@S@ÀR@€P@€R@V@@Q@@S@I@@S@ÀU@W@@T@ÀS@€R@ÀT@U@S@€S@Q@S@@U@N@€S@N@@Q@€V@@Q@€P@ÀS@€V@@T@ÀR@€V@P@ÀT@@R@@P@@Q@P@@Q@ÀQ@€S@€U@€T@Q@€M@@U@ÀQ@@R@€S@€Q@ÀS@J@S@V@R@@Q@R@€Q@@W@ÀV@V@S@€P@€O@ÀP@€T@ÀU@€Q@@U@V@€S@ÀP@S@€R@@R@@Q@€R@Q@ÀV@ÀR@€Q@@T@€R@P@ÀR@€R@@S@€R@ÀQ@@R@@T@Q@R@U@@Q@T@N@ÀR@€S@€P@U@@U@@Q@€R@€T@€P@Q@ÀQ@S@S@€P@€S@@W@R@@T@@U@€Q@€P@€R@@Q@@Q@Q@ÀS@ÀS@S@T@€O@€S@ÀS@@U@ÀS@ÀT@T@ÀS@ÀR@R@€T@€Q@€R@ÀS@ÀP@ÀR@€P@@S@ÀU@S@R@ÀT@T@@S@@R@ÀS@@P@ÀS@ÀP@@S@Q@€Q@ÀQ@R@€S@€T@ÀS@ÀQ@€Q@ÀS@R@€R@€U@Q@@R@€R@€T@U@P@ÀQ@€Q@ÀS@U@€R@@S@€Q@€O@@S@@Q@S@S@S@ÀS@@S@€Q@€R@ÀQ@R@S@Q@€R@T@€U@@S@ÀQ@R@S@ÀQ@@R@€S@ÀQ@R@@R@ÀP@@T@€Q@€Q@€S@@R@@R@ÀP@ÀR@ÀT@@R@@T@ÀT@ÀR@@S@@S@€R@€R@ÀP@R@R@@R@ÀR@T@@R@@S@@U@@R@ÀR@€T@ÀR@statistics-release-1.6.3/inst/datasets/fisheriris.mat000066400000000000000000000322551456127120000227750ustar00rootroot00000000000000Octave-1-Lmeasÿmatrixþÿÿÿ–ffffff@š™™™™™@ÍÌÌÌÌÌ@ffffff@@š™™™™™@ffffff@@š™™™™™@š™™™™™@š™™™™™@333333@333333@333333@333333@ÍÌÌÌÌÌ@š™™™™™@ffffff@ÍÌÌÌÌÌ@ffffff@š™™™™™@ffffff@ffffff@ffffff@333333@@@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ@333333@š™™™™™@ÍÌÌÌÌÌ@@š™™™™™@@@š™™™™™@š™™™™™@ffffff@@@š™™™™™@@ffffff@333333@ffffff@ffffff@333333@@@š™™™™™@š™™™™™@@@ÍÌÌÌÌÌ@333333@š™™™™™@ffffff@ÍÌÌÌÌÌ@@š™™™™™@@ffffff@ffffff@ÍÌÌÌÌÌ@ffffff@333333@ÍÌÌÌÌÌ@ffffff@š™™™™™@ffffff@333333@ffffff@š™™™™™@ffffff@333333@ÍÌÌÌÌÌ@@ÍÌÌÌÌÌ@@@333333@@š™™™™™@@ÍÌÌÌÌÌ@333333@ffffff@@@ffffff@333333@@ffffff@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ@ffffff@ÍÌÌÌÌÌ@333333@333333@ffffff@333333@@ffffff@š™™™™™@333333@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ@@š™™™™™@333333@ÍÌÌÌÌÌ@333333@š™™™™™@@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ@@š™™™™™@ffffff@ÍÌÌÌÌÌ@333333@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ@ffffff@š™™™™™@ÍÌÌÌÌÌ@š™™™™™@š™™™™™@š™™™™™@333333@ffffff@ÍÌÌÌÌÌ@333333@š™™™™™@@š™™™™™@ÍÌÌÌÌÌ@š™™™™™@333333@333333@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ@333333@@ÍÌÌÌÌÌ@š™™™™™@ @@š™™™™™ @ÍÌÌÌÌÌ@ÍÌÌÌÌÌ @333333@333333 @333333 @333333@ÍÌÌÌÌÌ@š™™™™™ @333333 @@@@š™™™™™@333333@ @ffffff@ffffff@333333 @š™™™™™ @ÍÌÌÌÌÌ @ffffff @333333 @@333333 @ @333333 @š™™™™™ @ÍÌÌÌÌÌ@333333 @ffffff@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ@š™™™™™ @ @ÍÌÌÌÌÌ @@333333 @ @ffffff@š™™™™™ @ @ffffff@@ffffff@š™™™™™ @š™™™™™ @ffffff @š™™™™™ @š™™™™™ @ÍÌÌÌÌÌ@ffffff@ffffff@ffffff@ffffff @333333@333333@š™™™™™@@@š™™™™™@333333@333333@ÍÌÌÌÌÌ@@š™™™™™@š™™™™™@@š™™™™™ @ffffff@@ffffff@333333@@ffffff@@333333@ÍÌÌÌÌÌ@333333@333333@š™™™™™@š™™™™™@@333333 @ÍÌÌÌÌÌ@ffffff@@@ÍÌÌÌÌÌ@@ÍÌÌÌÌÌ@ffffff@š™™™™™@@333333@333333@@ffffff@ffffff @š™™™™™@@333333@@@@333333@@ÍÌÌÌÌÌ @š™™™™™ @š™™™™™@@@ffffff@š™™™™™ @@ffffff@ÍÌÌÌÌÌ@š™™™™™@š™™™™™ @ffffff@ffffff@š™™™™™@ffffff @š™™™™™ @ffffff@@ffffff@@ffffff@ffffff@ffffff@ffffff@ÍÌÌÌÌÌ@@333333 @ÍÌÌÌÌÌ@@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ@š™™™™™@š™™™™™ @ffffff @@@@333333 @@ffffffö?ffffffö?ÍÌÌÌÌÌô?ø?ffffffö?333333û?ffffffö?ø?ffffffö?ø?ø?š™™™™™ù?ffffffö?š™™™™™ñ?333333ó?ø?ÍÌÌÌÌÌô?ffffffö?333333û?ø?333333û?ø?ð?333333û?ffffffþ?š™™™™™ù?š™™™™™ù?ø?ffffffö?š™™™™™ù?š™™™™™ù?ø?ø?ffffffö?ø?333333ó?ÍÌÌÌÌÌô?ffffffö?ÍÌÌÌÌÌô?ø?ÍÌÌÌÌÌô?ÍÌÌÌÌÌô?ÍÌÌÌÌÌô?š™™™™™ù?ffffffþ?ffffffö?š™™™™™ù?ffffffö?ø?ffffffö?ÍÌÌÌÌÌ@@š™™™™™@@ffffff@@ÍÌÌÌÌÌ@ffffff @ffffff@333333@ @ÍÌÌÌÌÌ@@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ @š™™™™™@@ffffff@@333333@333333@@š™™™™™@ÍÌÌÌÌÌ@333333@š™™™™™@333333@@@ @ffffff@š™™™™™ @333333@ffffff@@@ÍÌÌÌÌÌ@š™™™™™@ffffff@@š™™™™™@ffffff@@ffffff @ÍÌÌÌÌÌ@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ@333333@@ffffff@@ffffff@š™™™™™@ffffff@333333@ffffff@@333333@333333@ffffff@ffffff@333333@@@ffffff@333333@@ÍÌÌÌÌÌ@š™™™™™@@ÍÌÌÌÌÌ@š™™™™™@ÍÌÌÌÌÌ@š™™™™™@ÍÌÌÌÌÌ@@333333@š™™™™™@ffffff@333333@ffffff@š™™™™™@ffffff@ffffff@ffffff@ffffff@ffffff@@333333@š™™™™™@ffffff@ffffff@ffffff@š™™™™™@ÍÌÌÌÌÌ@ÍÌÌÌÌÌ@@ÍÌÌÌÌÌ@š™™™™™@ffffff@š™™™™™É?š™™™™™É?š™™™™™É?š™™™™™É?š™™™™™É?š™™™™™Ù?333333Ó?š™™™™™É?š™™™™™É?š™™™™™¹?š™™™™™É?š™™™™™É?š™™™™™¹?š™™™™™¹?š™™™™™É?š™™™™™Ù?š™™™™™Ù?333333Ó?333333Ó?333333Ó?š™™™™™É?š™™™™™Ù?š™™™™™É?à?š™™™™™É?š™™™™™É?š™™™™™Ù?š™™™™™É?š™™™™™É?š™™™™™É?š™™™™™É?š™™™™™Ù?š™™™™™¹?š™™™™™É?š™™™™™É?š™™™™™É?š™™™™™É?š™™™™™¹?š™™™™™É?š™™™™™É?333333Ó?333333Ó?š™™™™™É?333333ã?š™™™™™Ù?333333Ó?š™™™™™É?š™™™™™É?š™™™™™É?š™™™™™É?ffffffö?ø?ø?ÍÌÌÌÌÌô?ø?ÍÌÌÌÌÌô?š™™™™™ù?ð?ÍÌÌÌÌÌô?ffffffö?ð?ø?ð?ffffffö?ÍÌÌÌÌÌô?ffffffö?ø?ð?ø?š™™™™™ñ?ÍÌÌÌÌÌü?ÍÌÌÌÌÌô?ø?333333ó?ÍÌÌÌÌÌô?ffffffö?ffffffö?333333û?ø?ð?š™™™™™ñ?ð?333333ó?š™™™™™ù?ø?š™™™™™ù?ø?ÍÌÌÌÌÌô?ÍÌÌÌÌÌô?ÍÌÌÌÌÌô?333333ó?ffffffö?333333ó?ð?ÍÌÌÌÌÌô?333333ó?ÍÌÌÌÌÌô?ÍÌÌÌÌÌô?š™™™™™ñ?ÍÌÌÌÌÌô?@ffffffþ?ÍÌÌÌÌÌ@ÍÌÌÌÌÌü?š™™™™™@ÍÌÌÌÌÌ@333333û?ÍÌÌÌÌÌü?ÍÌÌÌÌÌü?@@ffffffþ?ÍÌÌÌÌÌ@@333333@ffffff@ÍÌÌÌÌÌü?š™™™™™@ffffff@ø?ffffff@@@ÍÌÌÌÌÌü?ÍÌÌÌÌÌ@ÍÌÌÌÌÌü?ÍÌÌÌÌÌü?ÍÌÌÌÌÌü?ÍÌÌÌÌÌ@š™™™™™ù?ffffffþ?@š™™™™™@ø?ffffffö?ffffff@333333@ÍÌÌÌÌÌü?ÍÌÌÌÌÌü?ÍÌÌÌÌÌ@333333@ffffff@ffffffþ?ffffff@@ffffff@ffffffþ?@ffffff@ÍÌÌÌÌÌü?speciesÿcellþÿÿÿ–ÿ sq_stringþÿÿÿsetosaÿ sq_stringþÿÿÿsetosaÿ sq_stringþÿÿÿsetosaÿ sq_stringþÿÿÿsetosaÿ sq_stringþÿÿÿsetosaÿ sq_stringþÿÿÿsetosaÿ sq_stringþÿÿÿsetosaÿ sq_stringþÿÿÿsetosaÿ sq_stringþÿÿÿsetosaÿ sq_stringþÿÿÿsetosaÿ sq_stringþÿÿÿsetosaÿ sq_stringþÿÿÿsetosaÿ sq_stringþÿÿÿsetosaÿ sq_stringþÿÿÿsetosaÿ sq_stringþÿÿÿsetosaÿ sq_stringþÿÿÿsetosaÿ sq_stringþÿÿÿsetosaÿ sq_stringþÿÿÿsetosaÿ sq_stringþÿÿÿsetosaÿ sq_stringþÿÿÿsetosaÿ sq_stringþÿÿÿsetosaÿ sq_stringþÿÿÿsetosaÿ sq_stringþÿÿÿsetosaÿ sq_stringþÿÿÿsetosaÿ sq_stringþÿÿÿsetosaÿ sq_stringþÿÿÿsetosaÿ sq_stringþÿÿÿsetosaÿ sq_stringþÿÿÿsetosaÿ sq_stringþÿÿÿsetosaÿ sq_stringþÿÿÿsetosaÿ sq_stringþÿÿÿsetosaÿ sq_stringþÿÿÿsetosaÿ sq_stringþÿÿÿsetosaÿ sq_stringþÿÿÿsetosaÿ sq_stringþÿÿÿsetosaÿ sq_stringþÿÿÿsetosaÿ sq_stringþÿÿÿsetosaÿ sq_stringþÿÿÿsetosaÿ sq_stringþÿÿÿsetosaÿ sq_stringþÿÿÿsetosaÿ sq_stringþÿÿÿsetosaÿ sq_stringþÿÿÿsetosaÿ sq_stringþÿÿÿsetosaÿ sq_stringþÿÿÿsetosaÿ sq_stringþÿÿÿsetosaÿ sq_stringþÿÿÿsetosaÿ sq_stringþÿÿÿsetosaÿ sq_stringþÿÿÿsetosaÿ sq_stringþÿÿÿsetosaÿ sq_stringþÿÿÿsetosaÿ sq_stringþÿÿÿ versicolorÿ sq_stringþÿÿÿ versicolorÿ sq_stringþÿÿÿ versicolorÿ sq_stringþÿÿÿ versicolorÿ sq_stringþÿÿÿ versicolorÿ sq_stringþÿÿÿ versicolorÿ sq_stringþÿÿÿ versicolorÿ sq_stringþÿÿÿ versicolorÿ sq_stringþÿÿÿ versicolorÿ sq_stringþÿÿÿ versicolorÿ sq_stringþÿÿÿ versicolorÿ sq_stringþÿÿÿ versicolorÿ sq_stringþÿÿÿ versicolorÿ sq_stringþÿÿÿ versicolorÿ sq_stringþÿÿÿ versicolorÿ sq_stringþÿÿÿ versicolorÿ sq_stringþÿÿÿ versicolorÿ sq_stringþÿÿÿ versicolorÿ sq_stringþÿÿÿ versicolorÿ sq_stringþÿÿÿ versicolorÿ sq_stringþÿÿÿ versicolorÿ sq_stringþÿÿÿ versicolorÿ sq_stringþÿÿÿ versicolorÿ sq_stringþÿÿÿ versicolorÿ sq_stringþÿÿÿ versicolorÿ sq_stringþÿÿÿ versicolorÿ sq_stringþÿÿÿ versicolorÿ sq_stringþÿÿÿ versicolorÿ sq_stringþÿÿÿ versicolorÿ sq_stringþÿÿÿ versicolorÿ sq_stringþÿÿÿ versicolorÿ sq_stringþÿÿÿ versicolorÿ sq_stringþÿÿÿ versicolorÿ sq_stringþÿÿÿ versicolorÿ sq_stringþÿÿÿ versicolorÿ sq_stringþÿÿÿ versicolorÿ sq_stringþÿÿÿ versicolorÿ sq_stringþÿÿÿ versicolorÿ sq_stringþÿÿÿ versicolorÿ sq_stringþÿÿÿ versicolorÿ sq_stringþÿÿÿ versicolorÿ sq_stringþÿÿÿ versicolorÿ sq_stringþÿÿÿ versicolorÿ sq_stringþÿÿÿ versicolorÿ sq_stringþÿÿÿ versicolorÿ sq_stringþÿÿÿ versicolorÿ sq_stringþÿÿÿ versicolorÿ sq_stringþÿÿÿ versicolorÿ sq_stringþÿÿÿ versicolorÿ sq_stringþÿÿÿ versicolorÿ sq_stringþÿÿÿ virginicaÿ sq_stringþÿÿÿ virginicaÿ sq_stringþÿÿÿ virginicaÿ sq_stringþÿÿÿ virginicaÿ sq_stringþÿÿÿ virginicaÿ sq_stringþÿÿÿ virginicaÿ sq_stringþÿÿÿ virginicaÿ sq_stringþÿÿÿ virginicaÿ sq_stringþÿÿÿ virginicaÿ sq_stringþÿÿÿ virginicaÿ sq_stringþÿÿÿ virginicaÿ sq_stringþÿÿÿ virginicaÿ sq_stringþÿÿÿ virginicaÿ sq_stringþÿÿÿ virginicaÿ sq_stringþÿÿÿ virginicaÿ sq_stringþÿÿÿ virginicaÿ sq_stringþÿÿÿ virginicaÿ sq_stringþÿÿÿ virginicaÿ sq_stringþÿÿÿ virginicaÿ sq_stringþÿÿÿ virginicaÿ sq_stringþÿÿÿ virginicaÿ sq_stringþÿÿÿ virginicaÿ sq_stringþÿÿÿ virginicaÿ sq_stringþÿÿÿ virginicaÿ sq_stringþÿÿÿ virginicaÿ sq_stringþÿÿÿ virginicaÿ sq_stringþÿÿÿ virginicaÿ sq_stringþÿÿÿ virginicaÿ sq_stringþÿÿÿ virginicaÿ sq_stringþÿÿÿ virginicaÿ sq_stringþÿÿÿ virginicaÿ sq_stringþÿÿÿ virginicaÿ sq_stringþÿÿÿ virginicaÿ sq_stringþÿÿÿ virginicaÿ sq_stringþÿÿÿ virginicaÿ sq_stringþÿÿÿ virginicaÿ sq_stringþÿÿÿ virginicaÿ sq_stringþÿÿÿ virginicaÿ sq_stringþÿÿÿ virginicaÿ sq_stringþÿÿÿ virginicaÿ sq_stringþÿÿÿ virginicaÿ sq_stringþÿÿÿ virginicaÿ sq_stringþÿÿÿ virginicaÿ sq_stringþÿÿÿ virginicaÿ sq_stringþÿÿÿ virginicaÿ sq_stringþÿÿÿ virginicaÿ sq_stringþÿÿÿ virginicaÿ sq_stringþÿÿÿ virginicaÿ sq_stringþÿÿÿ virginicaÿ sq_stringþÿÿÿ virginicastatistics-release-1.6.3/inst/datasets/hald.mat000066400000000000000000000046731456127120000215410ustar00rootroot00000000000000Octave-1-L Descriptionÿ sq_stringþÿÿÿ:= M icccc hh SW"dv RHW= u noooo ee ooEu. eai l gllll aa uofr2 fllP t ruuuu tt rdfi4 edeo i emmmm csen r,yr p dnnnn (o e,cgn eA,t l i1234 cf :Ht o n. l e e:::: a . H. c,1a n lh ,oa1 e 9n r t3342 /a fr1 :S6d e sCCCC gr H d t0 g aaaa md .Ce( a.C r (OOOO )e on1 t e e %.... :n Smi9 i m s )ASAS i tpn3 s e s :lili n eog2 t n i 2O2O g is,) i t o O2O2 ni", c n 3 3 a ot a D (.( f uiIp l a d (tFb t ronp t a tree e ,nd. T a t ri2t r u1 h a icOa Hos2 e = ca3- 1 .ft0 o = al d 8 r7 r lc(i 0 SPi- y citc toa1 iuea d arl2 w umtl a rt 1 i m rc y kla4 t sai s ean. h aicu ,nd llam d E uil E n mccs Cn g iaii eg i ntul mi n aemi en e t) c ne e e aa te r ) lt r i ue oi n m) nn g i g n H A o eC p f ah p e te l r m i r Ei c i vs a t ot t e lr i ) vy o e, n d s , haldÿmatrixþÿÿÿ @ð?&@&@@&@@ð?@5@ð?&@$@:@=@L@?@J@€K@ÀQ@?@K@€G@D@€P@Q@@.@ @ @@"@1@6@2@@7@"@ @N@J@4@€G@€@@6@@F@6@:@A@(@(@ S@33333“R@33333Z@fffffæU@š™™™™ùW@ÍÌÌÌÌL[@ÍÌÌÌ̬Y@ R@fffffFW@š™™™™ù\@33333óT@33333S\@š™™™™Y[@heatÿmatrixþÿÿÿ  S@33333“R@33333Z@fffffæU@š™™™™ùW@ÍÌÌÌÌL[@ÍÌÌÌ̬Y@ R@fffffFW@š™™™™ù\@33333óT@33333S\@š™™™™Y[@ ingredientsÿmatrixþÿÿÿ @ð?&@&@@&@@ð?@5@ð?&@$@:@=@L@?@J@€K@ÀQ@?@K@€G@D@€P@Q@@.@ @ @@"@1@6@2@@7@"@ @N@J@4@€G@€@@6@@F@6@:@A@(@(@statistics-release-1.6.3/inst/datasets/heart_scale.dat000066400000000000000000000660261456127120000230720ustar00rootroot00000000000000+1 1:0.708333 2:1 3:1 4:-0.320755 5:-0.105023 6:-1 7:1 8:-0.419847 9:-1 10:-0.225806 12:1 13:-1 -1 1:0.583333 2:-1 3:0.333333 4:-0.603774 5:1 6:-1 7:1 8:0.358779 9:-1 10:-0.483871 12:-1 13:1 +1 1:0.166667 2:1 3:-0.333333 4:-0.433962 5:-0.383562 6:-1 7:-1 8:0.0687023 9:-1 10:-0.903226 11:-1 12:-1 13:1 -1 1:0.458333 2:1 3:1 4:-0.358491 5:-0.374429 6:-1 7:-1 8:-0.480916 9:1 10:-0.935484 12:-0.333333 13:1 -1 1:0.875 2:-1 3:-0.333333 4:-0.509434 5:-0.347032 6:-1 7:1 8:-0.236641 9:1 10:-0.935484 11:-1 12:-0.333333 13:-1 -1 1:0.5 2:1 3:1 4:-0.509434 5:-0.767123 6:-1 7:-1 8:0.0534351 9:-1 10:-0.870968 11:-1 12:-1 13:1 +1 1:0.125 2:1 3:0.333333 4:-0.320755 5:-0.406393 6:1 7:1 8:0.0839695 9:1 10:-0.806452 12:-0.333333 13:0.5 +1 1:0.25 2:1 3:1 4:-0.698113 5:-0.484018 6:-1 7:1 8:0.0839695 9:1 10:-0.612903 12:-0.333333 13:1 +1 1:0.291667 2:1 3:1 4:-0.132075 5:-0.237443 6:-1 7:1 8:0.51145 9:-1 10:-0.612903 12:0.333333 13:1 +1 1:0.416667 2:-1 3:1 4:0.0566038 5:0.283105 6:-1 7:1 8:0.267176 9:-1 10:0.290323 12:1 13:1 -1 1:0.25 2:1 3:1 4:-0.226415 5:-0.506849 6:-1 7:-1 8:0.374046 9:-1 10:-0.83871 12:-1 13:1 -1 2:1 3:1 4:-0.0943396 5:-0.543379 6:-1 7:1 8:-0.389313 9:1 10:-1 11:-1 12:-1 13:1 -1 1:-0.375 2:1 3:0.333333 4:-0.132075 5:-0.502283 6:-1 7:1 8:0.664122 9:-1 10:-1 11:-1 12:-1 13:-1 +1 1:0.333333 2:1 3:-1 4:-0.245283 5:-0.506849 6:-1 7:-1 8:0.129771 9:-1 10:-0.16129 12:0.333333 13:-1 -1 1:0.166667 2:-1 3:1 4:-0.358491 5:-0.191781 6:-1 7:1 8:0.343511 9:-1 10:-1 11:-1 12:-0.333333 13:-1 -1 1:0.75 2:-1 3:1 4:-0.660377 5:-0.894977 6:-1 7:-1 8:-0.175573 9:-1 10:-0.483871 12:-1 13:-1 +1 1:-0.291667 2:1 3:1 4:-0.132075 5:-0.155251 6:-1 7:-1 8:-0.251908 9:1 10:-0.419355 12:0.333333 13:1 +1 2:1 3:1 4:-0.132075 5:-0.648402 6:1 7:1 8:0.282443 9:1 11:1 12:-1 13:1 -1 1:0.458333 2:1 3:-1 4:-0.698113 5:-0.611872 6:-1 7:1 8:0.114504 9:1 10:-0.419355 12:-1 13:-1 -1 1:-0.541667 2:1 3:-1 4:-0.132075 5:-0.666667 6:-1 7:-1 8:0.633588 9:1 10:-0.548387 11:-1 12:-1 13:1 +1 1:0.583333 2:1 3:1 4:-0.509434 5:-0.52968 6:-1 7:1 8:-0.114504 9:1 10:-0.16129 12:0.333333 13:1 -1 1:-0.208333 2:1 3:-0.333333 4:-0.320755 5:-0.456621 6:-1 7:1 8:0.664122 9:-1 10:-0.935484 12:-1 13:-1 -1 1:-0.416667 2:1 3:1 4:-0.603774 5:-0.191781 6:-1 7:-1 8:0.679389 9:-1 10:-0.612903 12:-1 13:-1 -1 1:-0.25 2:1 3:1 4:-0.660377 5:-0.643836 6:-1 7:-1 8:0.0992366 9:-1 10:-0.967742 11:-1 12:-1 13:-1 -1 1:0.0416667 2:-1 3:-0.333333 4:-0.283019 5:-0.260274 6:1 7:1 8:0.343511 9:1 10:-1 11:-1 12:-0.333333 13:-1 -1 1:-0.208333 2:-1 3:0.333333 4:-0.320755 5:-0.319635 6:-1 7:-1 8:0.0381679 9:-1 10:-0.935484 11:-1 12:-1 13:-1 -1 1:-0.291667 2:-1 3:1 4:-0.169811 5:-0.465753 6:-1 7:1 8:0.236641 9:1 10:-1 12:-1 13:-1 -1 1:-0.0833333 2:-1 3:0.333333 4:-0.509434 5:-0.228311 6:-1 7:1 8:0.312977 9:-1 10:-0.806452 11:-1 12:-1 13:-1 +1 1:0.208333 2:1 3:0.333333 4:-0.660377 5:-0.525114 6:-1 7:1 8:0.435115 9:-1 10:-0.193548 12:-0.333333 13:1 -1 1:0.75 2:-1 3:0.333333 4:-0.698113 5:-0.365297 6:1 7:1 8:-0.0992366 9:-1 10:-1 11:-1 12:-0.333333 13:-1 +1 1:0.166667 2:1 3:0.333333 4:-0.358491 5:-0.52968 6:-1 7:1 8:0.206107 9:-1 10:-0.870968 12:-0.333333 13:1 -1 1:0.541667 2:1 3:1 4:0.245283 5:-0.534247 6:-1 7:1 8:0.0229008 9:-1 10:-0.258065 11:-1 12:-1 13:0.5 -1 1:-0.666667 2:-1 3:0.333333 4:-0.509434 5:-0.593607 6:-1 7:-1 8:0.51145 9:-1 10:-1 11:-1 12:-1 13:-1 +1 1:0.25 2:1 3:1 4:0.433962 5:-0.086758 6:-1 7:1 8:0.0534351 9:1 10:0.0967742 11:1 12:-1 13:1 +1 1:-0.125 2:1 3:1 4:-0.0566038 5:-0.6621 6:-1 7:1 8:-0.160305 9:1 10:-0.709677 12:-1 13:1 +1 1:-0.208333 2:1 3:1 4:-0.320755 5:-0.406393 6:1 7:1 8:0.206107 9:1 10:-1 11:-1 12:0.333333 13:1 +1 1:0.333333 2:1 3:1 4:-0.132075 5:-0.630137 6:-1 7:1 8:0.0229008 9:1 10:-0.387097 11:-1 12:-0.333333 13:1 +1 1:0.25 2:1 3:-1 4:0.245283 5:-0.328767 6:-1 7:1 8:-0.175573 9:-1 10:-1 11:-1 12:-1 13:-1 -1 1:-0.458333 2:1 3:0.333333 4:-0.320755 5:-0.753425 6:-1 7:-1 8:0.206107 9:-1 10:-1 11:-1 12:-1 13:-1 -1 1:-0.208333 2:1 3:1 4:-0.471698 5:-0.561644 6:-1 7:1 8:0.755725 9:-1 10:-1 11:-1 12:-1 13:-1 +1 1:-0.541667 2:1 3:1 4:0.0943396 5:-0.557078 6:-1 7:-1 8:0.679389 9:-1 10:-1 11:-1 12:-1 13:1 -1 1:0.375 2:-1 3:1 4:-0.433962 5:-0.621005 6:-1 7:-1 8:0.40458 9:-1 10:-1 11:-1 12:-1 13:-1 -1 1:-0.375 2:1 3:0.333333 4:-0.320755 5:-0.511416 6:-1 7:-1 8:0.648855 9:1 10:-0.870968 11:-1 12:-1 13:-1 -1 1:-0.291667 2:1 3:-0.333333 4:-0.867925 5:-0.675799 6:1 7:-1 8:0.29771 9:-1 10:-1 11:-1 12:-1 13:1 +1 1:0.25 2:1 3:0.333333 4:-0.396226 5:-0.579909 6:1 7:-1 8:-0.0381679 9:-1 10:-0.290323 12:-0.333333 13:0.5 -1 1:0.208333 2:1 3:0.333333 4:-0.132075 5:-0.611872 6:1 7:1 8:0.435115 9:-1 10:-1 11:-1 12:-1 13:-1 +1 1:-0.166667 2:1 3:0.333333 4:-0.54717 5:-0.894977 6:-1 7:1 8:-0.160305 9:-1 10:-0.741935 11:-1 12:1 13:-1 +1 1:-0.375 2:1 3:1 4:-0.698113 5:-0.675799 6:-1 7:1 8:0.618321 9:-1 10:-1 11:-1 12:-0.333333 13:-1 +1 1:0.541667 2:1 3:-0.333333 4:0.245283 5:-0.452055 6:-1 7:-1 8:-0.251908 9:1 10:-1 12:1 13:0.5 +1 1:0.5 2:-1 3:1 4:0.0566038 5:-0.547945 6:-1 7:1 8:-0.343511 9:-1 10:-0.677419 12:1 13:1 +1 1:-0.458333 2:1 3:1 4:-0.207547 5:-0.136986 6:-1 7:-1 8:-0.175573 9:1 10:-0.419355 12:-1 13:0.5 -1 1:-0.0416667 2:1 3:-0.333333 4:-0.358491 5:-0.639269 6:1 7:-1 8:0.725191 9:-1 10:-1 11:-1 12:-1 13:-1 -1 1:0.5 2:-1 3:0.333333 4:-0.132075 5:0.328767 6:1 7:1 8:0.312977 9:-1 10:-0.741935 11:-1 12:-0.333333 13:-1 -1 1:0.416667 2:-1 3:-0.333333 4:-0.132075 5:-0.684932 6:-1 7:-1 8:0.648855 9:-1 10:-1 11:-1 12:0.333333 13:-1 -1 1:-0.333333 2:-1 3:-0.333333 4:-0.320755 5:-0.506849 6:-1 7:1 8:0.587786 9:-1 10:-0.806452 12:-1 13:-1 -1 1:-0.5 2:-1 3:-0.333333 4:-0.792453 5:-0.671233 6:-1 7:-1 8:0.480916 9:-1 10:-1 11:-1 12:-0.333333 13:-1 +1 1:0.333333 2:1 3:1 4:-0.169811 5:-0.817352 6:-1 7:1 8:-0.175573 9:1 10:0.16129 12:-0.333333 13:-1 -1 1:0.291667 2:-1 3:0.333333 4:-0.509434 5:-0.762557 6:1 7:-1 8:-0.618321 9:-1 10:-1 11:-1 12:-1 13:-1 +1 1:0.25 2:-1 3:1 4:0.509434 5:-0.438356 6:-1 7:-1 8:0.0992366 9:1 10:-1 12:-1 13:-1 +1 1:0.375 2:1 3:-0.333333 4:-0.509434 5:-0.292237 6:-1 7:1 8:-0.51145 9:-1 10:-0.548387 12:-0.333333 13:1 -1 1:0.166667 2:1 3:0.333333 4:0.0566038 5:-1 6:1 7:-1 8:0.557252 9:-1 10:-0.935484 11:-1 12:-0.333333 13:1 +1 1:-0.0833333 2:-1 3:1 4:-0.320755 5:-0.182648 6:-1 7:-1 8:0.0839695 9:1 10:-0.612903 12:-1 13:1 -1 1:-0.375 2:1 3:0.333333 4:-0.509434 5:-0.543379 6:-1 7:-1 8:0.496183 9:-1 10:-1 11:-1 12:-1 13:-1 -1 1:0.291667 2:-1 3:-1 4:0.0566038 5:-0.479452 6:-1 7:-1 8:0.526718 9:-1 10:-0.709677 11:-1 12:-1 13:-1 -1 1:0.416667 2:1 3:-1 4:-0.0377358 5:-0.511416 6:1 7:1 8:0.206107 9:-1 10:-0.258065 11:1 12:-1 13:0.5 +1 1:0.166667 2:1 3:1 4:0.0566038 5:-0.315068 6:-1 7:1 8:-0.374046 9:1 10:-0.806452 12:-0.333333 13:0.5 -1 1:-0.0833333 2:1 3:1 4:-0.132075 5:-0.383562 6:-1 7:1 8:0.755725 9:1 10:-1 11:-1 12:-1 13:-1 +1 1:0.208333 2:-1 3:-0.333333 4:-0.207547 5:-0.118721 6:1 7:1 8:0.236641 9:-1 10:-1 11:-1 12:0.333333 13:-1 -1 1:-0.375 2:-1 3:0.333333 4:-0.54717 5:-0.47032 6:-1 7:-1 8:0.19084 9:-1 10:-0.903226 12:-0.333333 13:-1 +1 1:-0.25 2:1 3:0.333333 4:-0.735849 5:-0.465753 6:-1 7:-1 8:0.236641 9:-1 10:-1 11:-1 12:-1 13:-1 +1 1:0.333333 2:1 3:1 4:-0.509434 5:-0.388128 6:-1 7:-1 8:0.0534351 9:1 10:0.16129 12:-0.333333 13:1 -1 1:0.166667 2:-1 3:1 4:-0.509434 5:0.0410959 6:-1 7:-1 8:0.40458 9:1 10:-0.806452 11:-1 12:-1 13:-1 -1 1:0.708333 2:1 3:-0.333333 4:0.169811 5:-0.456621 6:-1 7:1 8:0.0992366 9:-1 10:-1 11:-1 12:-1 13:-1 -1 1:0.958333 2:-1 3:0.333333 4:-0.132075 5:-0.675799 6:-1 8:-0.312977 9:-1 10:-0.645161 12:-1 13:-1 -1 1:0.583333 2:-1 3:1 4:-0.773585 5:-0.557078 6:-1 7:-1 8:0.0839695 9:-1 10:-0.903226 11:-1 12:0.333333 13:-1 +1 1:-0.333333 2:1 3:1 4:-0.0943396 5:-0.164384 6:-1 7:1 8:0.160305 9:1 10:-1 12:1 13:1 -1 1:-0.333333 2:1 3:1 4:-0.811321 5:-0.625571 6:-1 7:1 8:0.175573 9:1 10:-0.0322581 12:-1 13:-1 -1 1:-0.583333 2:-1 3:0.333333 4:-1 5:-0.666667 6:-1 7:-1 8:0.648855 9:-1 10:-1 11:-1 12:-1 13:-1 -1 1:-0.458333 2:-1 3:0.333333 4:-0.509434 5:-0.621005 6:-1 7:-1 8:0.557252 9:-1 10:-1 12:-1 13:-1 -1 1:0.125 2:1 3:-0.333333 4:-0.509434 5:-0.497717 6:-1 7:-1 8:0.633588 9:-1 10:-0.741935 11:-1 12:-1 13:-1 +1 1:0.208333 2:1 3:1 4:-0.0188679 5:-0.579909 6:-1 7:-1 8:-0.480916 9:-1 10:-0.354839 12:-0.333333 13:1 +1 1:-0.75 2:1 3:1 4:-0.509434 5:-0.671233 6:-1 7:-1 8:-0.0992366 9:1 10:-0.483871 12:-1 13:1 +1 1:0.208333 2:1 3:1 4:0.0566038 5:-0.342466 6:-1 7:1 8:-0.389313 9:1 10:-0.741935 11:-1 12:-1 13:1 -1 1:-0.5 2:1 3:0.333333 4:-0.320755 5:-0.598174 6:-1 7:1 8:0.480916 9:-1 10:-0.354839 12:-1 13:-1 -1 1:0.166667 2:1 3:1 4:-0.698113 5:-0.657534 6:-1 7:-1 8:-0.160305 9:1 10:-0.516129 12:-1 13:0.5 -1 1:-0.458333 2:1 3:-1 4:0.0188679 5:-0.461187 6:-1 7:1 8:0.633588 9:-1 10:-0.741935 11:-1 12:0.333333 13:-1 -1 1:0.375 2:1 3:-0.333333 4:-0.358491 5:-0.625571 6:1 7:1 8:0.0534351 9:-1 10:-1 11:-1 12:-1 13:-1 -1 1:0.25 2:1 3:-1 4:0.584906 5:-0.342466 6:-1 7:1 8:0.129771 9:-1 10:0.354839 11:1 12:-1 13:1 -1 1:-0.5 2:-1 3:-0.333333 4:-0.396226 5:-0.178082 6:-1 7:-1 8:0.40458 9:-1 10:-1 11:-1 12:-1 13:-1 +1 1:-0.125 2:1 3:1 4:0.0566038 5:-0.465753 6:-1 7:1 8:-0.129771 9:-1 10:-0.16129 12:-1 13:1 -1 1:0.25 2:1 3:-0.333333 4:-0.132075 5:-0.56621 6:-1 7:-1 8:0.419847 9:1 10:-1 11:-1 12:-1 13:-1 +1 1:0.333333 2:-1 3:1 4:-0.320755 5:-0.0684932 6:-1 7:1 8:0.496183 9:-1 10:-1 11:-1 12:-1 13:-1 +1 1:0.0416667 2:1 3:1 4:-0.433962 5:-0.360731 6:-1 7:1 8:-0.419847 9:1 10:-0.290323 12:-0.333333 13:1 +1 1:0.0416667 2:1 3:1 4:-0.698113 5:-0.634703 6:-1 7:1 8:-0.435115 9:1 10:-1 12:-0.333333 13:-1 +1 1:-0.0416667 2:1 3:1 4:-0.415094 5:-0.607306 6:-1 7:-1 8:0.480916 9:-1 10:-0.677419 11:-1 12:0.333333 13:1 +1 1:-0.25 2:1 3:1 4:-0.698113 5:-0.319635 6:-1 7:1 8:-0.282443 9:1 10:-0.677419 12:-0.333333 13:-1 -1 1:0.541667 2:1 3:1 4:-0.509434 5:-0.196347 6:-1 7:1 8:0.221374 9:-1 10:-0.870968 12:-1 13:-1 +1 1:0.208333 2:1 3:1 4:-0.886792 5:-0.506849 6:-1 7:-1 8:0.29771 9:-1 10:-0.967742 11:-1 12:-0.333333 13:1 -1 1:0.458333 2:-1 3:0.333333 4:-0.132075 5:-0.146119 6:-1 7:-1 8:-0.0534351 9:-1 10:-0.935484 11:-1 12:-1 13:1 -1 1:-0.125 2:-1 3:-0.333333 4:-0.509434 5:-0.461187 6:-1 7:-1 8:0.389313 9:-1 10:-0.645161 11:-1 12:-1 13:-1 -1 1:-0.375 2:-1 3:0.333333 4:-0.735849 5:-0.931507 6:-1 7:-1 8:0.587786 9:-1 10:-0.806452 12:-1 13:-1 +1 1:0.583333 2:1 3:1 4:-0.509434 5:-0.493151 6:-1 7:-1 8:-1 9:-1 10:-0.677419 12:-1 13:-1 -1 1:-0.166667 2:-1 3:1 4:-0.320755 5:-0.347032 6:-1 7:-1 8:0.40458 9:-1 10:-1 11:-1 12:-1 13:-1 +1 1:0.166667 2:1 3:1 4:0.339623 5:-0.255708 6:1 7:1 8:-0.19084 9:-1 10:-0.677419 12:1 13:1 +1 1:0.416667 2:1 3:1 4:-0.320755 5:-0.415525 6:-1 7:1 8:0.160305 9:-1 10:-0.548387 12:-0.333333 13:1 +1 1:-0.208333 2:1 3:1 4:-0.433962 5:-0.324201 6:-1 7:1 8:0.450382 9:-1 10:-0.83871 12:-1 13:1 -1 1:-0.0833333 2:1 3:0.333333 4:-0.886792 5:-0.561644 6:-1 7:-1 8:0.0992366 9:1 10:-0.612903 12:-1 13:-1 +1 1:0.291667 2:-1 3:1 4:0.0566038 5:-0.39726 6:-1 7:1 8:0.312977 9:-1 10:-0.16129 12:0.333333 13:1 +1 1:0.25 2:1 3:1 4:-0.132075 5:-0.767123 6:-1 7:-1 8:0.389313 9:1 10:-1 11:-1 12:-0.333333 13:1 -1 1:-0.333333 2:-1 3:-0.333333 4:-0.660377 5:-0.844749 6:-1 7:-1 8:0.0229008 9:-1 10:-1 12:-1 13:-1 +1 1:0.0833333 2:-1 3:1 4:0.622642 5:-0.0821918 6:-1 8:-0.29771 9:1 10:0.0967742 12:-1 13:-1 -1 1:-0.5 2:1 3:-0.333333 4:-0.698113 5:-0.502283 6:-1 7:-1 8:0.251908 9:-1 10:-1 11:-1 12:-1 13:-1 +1 1:0.291667 2:-1 3:1 4:0.207547 5:-0.182648 6:-1 7:1 8:0.374046 9:-1 10:-1 11:-1 12:-1 13:-1 -1 1:0.0416667 2:-1 3:0.333333 4:-0.226415 5:-0.187215 6:1 7:-1 8:0.51145 9:-1 10:-1 11:-1 12:-1 13:-1 -1 1:-0.458333 2:1 3:-0.333333 4:-0.509434 5:-0.228311 6:-1 7:-1 8:0.389313 9:-1 10:-1 11:-1 12:-1 13:-1 -1 1:-0.166667 2:-1 3:-0.333333 4:-0.245283 5:-0.3379 6:-1 7:-1 8:0.389313 9:-1 10:-1 12:-1 13:-1 +1 1:-0.291667 2:1 3:1 4:-0.509434 5:-0.438356 6:-1 7:1 8:0.114504 9:-1 10:-0.741935 11:-1 12:-1 13:1 +1 1:0.125 2:-1 3:1 4:1 5:-0.260274 6:1 7:1 8:-0.0534351 9:1 10:0.290323 11:1 12:0.333333 13:1 -1 1:0.541667 2:-1 3:-1 4:0.0566038 5:-0.543379 6:-1 7:-1 8:-0.343511 9:-1 10:-0.16129 11:1 12:-1 13:-1 +1 1:0.125 2:1 3:1 4:-0.320755 5:-0.283105 6:1 7:1 8:-0.51145 9:1 10:-0.483871 11:1 12:-1 13:1 +1 1:-0.166667 2:1 3:0.333333 4:-0.509434 5:-0.716895 6:-1 7:-1 8:0.0381679 9:-1 10:-0.354839 12:1 13:1 +1 1:0.0416667 2:1 3:1 4:-0.471698 5:-0.269406 6:-1 7:1 8:-0.312977 9:1 10:0.0322581 12:0.333333 13:-1 +1 1:0.166667 2:1 3:1 4:0.0943396 5:-0.324201 6:-1 7:-1 8:-0.740458 9:1 10:-0.612903 12:-0.333333 13:1 -1 1:0.5 2:-1 3:0.333333 4:0.245283 5:0.0684932 6:-1 7:1 8:0.221374 9:-1 10:-0.741935 11:-1 12:-1 13:-1 -1 1:0.0416667 2:1 3:0.333333 4:-0.415094 5:-0.328767 6:-1 7:1 8:0.236641 9:-1 10:-0.83871 11:1 12:-0.333333 13:-1 -1 1:0.0416667 2:-1 3:0.333333 4:0.245283 5:-0.657534 6:-1 7:-1 8:0.40458 9:-1 10:-1 11:-1 12:-0.333333 13:-1 +1 1:0.375 2:1 3:1 4:-0.509434 5:-0.356164 6:-1 7:-1 8:-0.572519 9:1 10:-0.419355 12:0.333333 13:1 -1 1:-0.0416667 2:-1 3:0.333333 4:-0.207547 5:-0.680365 6:-1 7:1 8:0.496183 9:-1 10:-0.967742 12:-1 13:-1 -1 1:-0.0416667 2:1 3:-0.333333 4:-0.245283 5:-0.657534 6:-1 7:-1 8:0.328244 9:-1 10:-0.741935 11:-1 12:-0.333333 13:-1 +1 1:0.291667 2:1 3:1 4:-0.566038 5:-0.525114 6:1 7:-1 8:0.358779 9:1 10:-0.548387 11:-1 12:0.333333 13:1 +1 1:0.416667 2:-1 3:1 4:-0.735849 5:-0.347032 6:-1 7:-1 8:0.496183 9:1 10:-0.419355 12:0.333333 13:-1 +1 1:0.541667 2:1 3:1 4:-0.660377 5:-0.607306 6:-1 7:1 8:-0.0687023 9:1 10:-0.967742 11:-1 12:-0.333333 13:-1 -1 1:-0.458333 2:1 3:1 4:-0.132075 5:-0.543379 6:-1 7:-1 8:0.633588 9:-1 10:-1 11:-1 12:-1 13:-1 +1 1:0.458333 2:1 3:1 4:-0.509434 5:-0.452055 6:-1 7:1 8:-0.618321 9:1 10:-0.290323 11:1 12:-0.333333 13:-1 -1 1:0.0416667 2:1 3:0.333333 4:0.0566038 5:-0.515982 6:-1 7:1 8:0.435115 9:-1 10:-0.483871 11:-1 12:-1 13:1 -1 1:-0.291667 2:-1 3:0.333333 4:-0.0943396 5:-0.767123 6:-1 7:1 8:0.358779 9:1 10:-0.548387 11:1 12:-1 13:-1 -1 1:0.583333 2:-1 3:0.333333 4:0.0943396 5:-0.310502 6:-1 7:-1 8:0.541985 9:-1 10:-1 11:-1 12:-0.333333 13:-1 +1 1:0.125 2:1 3:1 4:-0.415094 5:-0.438356 6:1 7:1 8:0.114504 9:1 10:-0.612903 12:-0.333333 13:-1 -1 1:-0.791667 2:-1 3:-0.333333 4:-0.54717 5:-0.616438 6:-1 7:-1 8:0.847328 9:-1 10:-0.774194 11:-1 12:-1 13:-1 -1 1:0.166667 2:1 3:1 4:-0.283019 5:-0.630137 6:-1 7:-1 8:0.480916 9:1 10:-1 11:-1 12:-1 13:1 +1 1:0.458333 2:1 3:1 4:-0.0377358 5:-0.607306 6:-1 7:1 8:-0.0687023 9:-1 10:-0.354839 12:0.333333 13:0.5 -1 1:0.25 2:1 3:1 4:-0.169811 5:-0.3379 6:-1 7:1 8:0.694656 9:-1 10:-1 11:-1 12:-1 13:-1 +1 1:-0.125 2:1 3:0.333333 4:-0.132075 5:-0.511416 6:-1 7:-1 8:0.40458 9:-1 10:-0.806452 12:-0.333333 13:1 -1 1:-0.0833333 2:1 3:-1 4:-0.415094 5:-0.60274 6:-1 7:1 8:-0.175573 9:1 10:-0.548387 11:-1 12:-0.333333 13:-1 +1 1:0.0416667 2:1 3:-0.333333 4:0.849057 5:-0.283105 6:-1 7:1 8:0.89313 9:-1 10:-1 11:-1 12:-0.333333 13:1 +1 2:1 3:1 4:-0.45283 5:-0.287671 6:-1 7:-1 8:-0.633588 9:1 10:-0.354839 12:0.333333 13:1 +1 1:-0.0416667 2:1 3:1 4:-0.660377 5:-0.525114 6:-1 7:-1 8:0.358779 9:-1 10:-1 11:-1 12:-0.333333 13:-1 +1 1:-0.541667 2:1 3:1 4:-0.698113 5:-0.812785 6:-1 7:1 8:-0.343511 9:1 10:-0.354839 12:-1 13:1 +1 1:0.208333 2:1 3:0.333333 4:-0.283019 5:-0.552511 6:-1 7:1 8:0.557252 9:-1 10:0.0322581 11:-1 12:0.333333 13:1 -1 1:-0.5 2:-1 3:0.333333 4:-0.660377 5:-0.351598 6:-1 7:1 8:0.541985 9:1 10:-1 11:-1 12:-1 13:-1 -1 1:-0.5 2:1 3:0.333333 4:-0.660377 5:-0.43379 6:-1 7:-1 8:0.648855 9:-1 10:-1 11:-1 12:-1 13:-1 -1 1:-0.125 2:-1 3:0.333333 4:-0.509434 5:-0.575342 6:-1 7:-1 8:0.328244 9:-1 10:-0.483871 12:-1 13:-1 -1 1:0.0416667 2:-1 3:0.333333 4:-0.735849 5:-0.356164 6:-1 7:1 8:0.465649 9:-1 10:-1 11:-1 12:-1 13:-1 -1 1:0.458333 2:-1 3:1 4:-0.320755 5:-0.191781 6:-1 7:-1 8:-0.221374 9:-1 10:-0.354839 12:0.333333 13:-1 -1 1:-0.0833333 2:-1 3:0.333333 4:-0.320755 5:-0.406393 6:-1 7:1 8:0.19084 9:-1 10:-0.83871 11:-1 12:-1 13:-1 -1 1:-0.291667 2:-1 3:-0.333333 4:-0.792453 5:-0.643836 6:-1 7:-1 8:0.541985 9:-1 10:-1 11:-1 12:-1 13:-1 +1 1:0.0833333 2:1 3:1 4:-0.132075 5:-0.584475 6:-1 7:-1 8:-0.389313 9:1 10:0.806452 11:1 12:-1 13:1 -1 1:-0.333333 2:1 3:-0.333333 4:-0.358491 5:-0.16895 6:-1 7:1 8:0.51145 9:-1 10:-1 11:-1 12:-1 13:-1 -1 1:0.125 2:1 3:-1 4:-0.509434 5:-0.694064 6:-1 7:1 8:0.389313 9:-1 10:-0.387097 12:-1 13:1 +1 1:0.541667 2:-1 3:1 4:0.584906 5:-0.534247 6:1 7:-1 8:0.435115 9:1 10:-0.677419 12:0.333333 13:1 +1 1:-0.625 2:1 3:-1 4:-0.509434 5:-0.520548 6:-1 7:-1 8:0.694656 9:1 10:0.225806 12:-1 13:1 +1 1:0.375 2:-1 3:1 4:0.0566038 5:-0.461187 6:-1 7:-1 8:0.267176 9:1 10:-0.548387 12:-1 13:-1 -1 1:0.0833333 2:1 3:-0.333333 4:-0.320755 5:-0.378995 6:-1 7:-1 8:0.282443 9:-1 10:-1 11:-1 12:-1 13:-1 +1 1:0.208333 2:1 3:1 4:-0.358491 5:-0.392694 6:-1 7:1 8:-0.0992366 9:1 10:-0.0322581 12:0.333333 13:1 -1 1:-0.416667 2:1 3:1 4:-0.698113 5:-0.611872 6:-1 7:-1 8:0.374046 9:-1 10:-1 11:-1 12:-1 13:1 -1 1:0.458333 2:-1 3:1 4:0.622642 5:-0.0913242 6:-1 7:-1 8:0.267176 9:1 10:-1 11:-1 12:-1 13:-1 -1 1:-0.125 2:-1 3:1 4:-0.698113 5:-0.415525 6:-1 7:1 8:0.343511 9:-1 10:-1 11:-1 12:-1 13:-1 -1 2:1 3:0.333333 4:-0.320755 5:-0.675799 6:1 7:1 8:0.236641 9:-1 10:-0.612903 11:1 12:-1 13:-1 -1 1:-0.333333 2:-1 3:1 4:-0.169811 5:-0.497717 6:-1 7:1 8:0.236641 9:1 10:-0.935484 12:-1 13:-1 +1 1:0.5 2:1 3:-1 4:-0.169811 5:-0.287671 6:1 7:1 8:0.572519 9:-1 10:-0.548387 12:-0.333333 13:-1 -1 1:0.666667 2:1 3:-1 4:0.245283 5:-0.506849 6:1 7:1 8:-0.0839695 9:-1 10:-0.967742 12:-0.333333 13:-1 +1 1:0.666667 2:1 3:0.333333 4:-0.132075 5:-0.415525 6:-1 7:1 8:0.145038 9:-1 10:-0.354839 12:1 13:1 +1 1:0.583333 2:1 3:1 4:-0.886792 5:-0.210046 6:-1 7:1 8:-0.175573 9:1 10:-0.709677 12:0.333333 13:-1 -1 1:0.625 2:-1 3:0.333333 4:-0.509434 5:-0.611872 6:-1 7:1 8:-0.328244 9:-1 10:-0.516129 12:-1 13:-1 -1 1:-0.791667 2:1 3:-1 4:-0.54717 5:-0.744292 6:-1 7:1 8:0.572519 9:-1 10:-1 11:-1 12:-1 13:-1 +1 1:0.375 2:-1 3:1 4:-0.169811 5:-0.232877 6:1 7:-1 8:-0.465649 9:-1 10:-0.387097 12:1 13:-1 +1 1:-0.0833333 2:1 3:1 4:-0.132075 5:-0.214612 6:-1 7:-1 8:-0.221374 9:1 10:0.354839 12:1 13:1 +1 1:-0.291667 2:1 3:0.333333 4:0.0566038 5:-0.520548 6:-1 7:-1 8:0.160305 9:-1 10:0.16129 12:-1 13:-1 +1 1:0.583333 2:1 3:1 4:-0.415094 5:-0.415525 6:1 7:-1 8:0.40458 9:-1 10:-0.935484 12:0.333333 13:1 -1 1:-0.125 2:1 3:0.333333 4:-0.339623 5:-0.680365 6:-1 7:-1 8:0.40458 9:-1 10:-1 11:-1 12:-1 13:-1 -1 1:-0.458333 2:1 3:0.333333 4:-0.509434 5:-0.479452 6:1 7:-1 8:0.877863 9:-1 10:-0.741935 11:1 12:-1 13:1 +1 1:0.125 2:-1 3:1 4:-0.245283 5:0.292237 6:-1 7:1 8:0.206107 9:1 10:-0.387097 12:0.333333 13:1 +1 1:-0.5 2:1 3:1 4:-0.698113 5:-0.789954 6:-1 7:1 8:0.328244 9:-1 10:-1 11:-1 12:-1 13:1 -1 1:-0.458333 2:-1 3:1 4:-0.849057 5:-0.365297 6:-1 7:1 8:-0.221374 9:-1 10:-0.806452 12:-1 13:-1 -1 2:1 3:0.333333 4:-0.320755 5:-0.452055 6:1 7:1 8:0.557252 9:-1 10:-1 11:-1 12:1 13:-1 -1 1:-0.416667 2:1 3:0.333333 4:-0.320755 5:-0.136986 6:-1 7:-1 8:0.389313 9:-1 10:-0.387097 11:-1 12:-0.333333 13:-1 +1 1:0.125 2:1 3:1 4:-0.283019 5:-0.73516 6:-1 7:1 8:-0.480916 9:1 10:-0.322581 12:-0.333333 13:0.5 -1 1:-0.0416667 2:1 3:1 4:-0.735849 5:-0.511416 6:1 7:-1 8:0.160305 9:-1 10:-0.967742 11:-1 12:1 13:1 -1 1:0.375 2:-1 3:1 4:-0.132075 5:0.223744 6:-1 7:1 8:0.312977 9:-1 10:-0.612903 12:-1 13:-1 +1 1:0.708333 2:1 3:0.333333 4:0.245283 5:-0.347032 6:-1 7:-1 8:-0.374046 9:1 10:-0.0645161 12:-0.333333 13:1 -1 1:0.0416667 2:1 3:1 4:-0.132075 5:-0.484018 6:-1 7:-1 8:0.358779 9:-1 10:-0.612903 11:-1 12:-1 13:-1 +1 1:0.708333 2:1 3:1 4:-0.0377358 5:-0.780822 6:-1 7:-1 8:-0.175573 9:1 10:-0.16129 11:1 12:-1 13:1 -1 1:0.0416667 2:1 3:-0.333333 4:-0.735849 5:-0.164384 6:-1 7:-1 8:0.29771 9:-1 10:-1 11:-1 12:-1 13:1 +1 1:-0.75 2:1 3:1 4:-0.396226 5:-0.287671 6:-1 7:1 8:0.29771 9:1 10:-1 11:-1 12:-1 13:1 -1 1:-0.208333 2:1 3:0.333333 4:-0.433962 5:-0.410959 6:1 7:-1 8:0.587786 9:-1 10:-1 11:-1 12:0.333333 13:-1 -1 1:0.0833333 2:-1 3:-0.333333 4:-0.226415 5:-0.43379 6:-1 7:1 8:0.374046 9:-1 10:-0.548387 12:-1 13:-1 -1 1:0.208333 2:-1 3:1 4:-0.886792 5:-0.442922 6:-1 7:1 8:-0.221374 9:-1 10:-0.677419 12:-1 13:-1 -1 1:0.0416667 2:-1 3:0.333333 4:-0.698113 5:-0.598174 6:-1 7:-1 8:0.328244 9:-1 10:-0.483871 12:-1 13:-1 -1 1:0.666667 2:-1 3:-1 4:-0.132075 5:-0.484018 6:-1 7:-1 8:0.221374 9:-1 10:-0.419355 11:-1 12:0.333333 13:-1 +1 1:1 2:1 3:1 4:-0.415094 5:-0.187215 6:-1 7:1 8:0.389313 9:1 10:-1 11:-1 12:1 13:-1 -1 1:0.625 2:1 3:0.333333 4:-0.54717 5:-0.310502 6:-1 7:-1 8:0.221374 9:-1 10:-0.677419 11:-1 12:-0.333333 13:1 +1 1:0.208333 2:1 3:1 4:-0.415094 5:-0.205479 6:-1 7:1 8:0.526718 9:-1 10:-1 11:-1 12:0.333333 13:1 +1 1:0.291667 2:1 3:1 4:-0.415094 5:-0.39726 6:-1 7:1 8:0.0687023 9:1 10:-0.0967742 12:-0.333333 13:1 +1 1:-0.0833333 2:1 3:1 4:-0.132075 5:-0.210046 6:-1 7:-1 8:0.557252 9:1 10:-0.483871 11:-1 12:-1 13:1 +1 1:0.0833333 2:1 3:1 4:0.245283 5:-0.255708 6:-1 7:1 8:0.129771 9:1 10:-0.741935 12:-0.333333 13:1 -1 1:-0.0416667 2:1 3:-1 4:0.0943396 5:-0.214612 6:1 7:-1 8:0.633588 9:-1 10:-0.612903 12:-1 13:1 -1 1:0.291667 2:-1 3:0.333333 4:-0.849057 5:-0.123288 6:-1 7:-1 8:0.358779 9:-1 10:-1 11:-1 12:-0.333333 13:-1 -1 1:0.208333 2:1 3:0.333333 4:-0.792453 5:-0.479452 6:-1 7:1 8:0.267176 9:1 10:-0.806452 12:-1 13:1 +1 1:0.458333 2:1 3:0.333333 4:-0.415094 5:-0.164384 6:-1 7:-1 8:-0.0839695 9:1 10:-0.419355 12:-1 13:1 -1 1:-0.666667 2:1 3:0.333333 4:-0.320755 5:-0.43379 6:-1 7:-1 8:0.770992 9:-1 10:0.129032 11:1 12:-1 13:-1 +1 1:0.25 2:1 3:-1 4:0.433962 5:-0.260274 6:-1 7:1 8:0.343511 9:-1 10:-0.935484 12:-1 13:1 -1 1:-0.0833333 2:1 3:0.333333 4:-0.415094 5:-0.456621 6:1 7:1 8:0.450382 9:-1 10:-0.225806 12:-1 13:-1 -1 1:-0.416667 2:-1 3:0.333333 4:-0.471698 5:-0.60274 6:-1 7:-1 8:0.435115 9:-1 10:-0.935484 12:-1 13:-1 +1 1:0.208333 2:1 3:1 4:-0.358491 5:-0.589041 6:-1 7:1 8:-0.0839695 9:1 10:-0.290323 12:1 13:1 -1 1:-1 2:1 3:-0.333333 4:-0.320755 5:-0.643836 6:-1 7:1 8:1 9:-1 10:-1 11:-1 12:-1 13:-1 -1 1:-0.5 2:-1 3:-0.333333 4:-0.320755 5:-0.643836 6:-1 7:1 8:0.541985 9:-1 10:-0.548387 11:-1 12:-1 13:-1 -1 1:0.416667 2:-1 3:0.333333 4:-0.226415 5:-0.424658 6:-1 7:1 8:0.541985 9:-1 10:-1 11:-1 12:-1 13:-1 -1 1:-0.0833333 2:1 3:0.333333 4:-1 5:-0.538813 6:-1 7:-1 8:0.267176 9:1 10:-1 11:-1 12:-0.333333 13:1 -1 1:0.0416667 2:1 3:0.333333 4:-0.509434 5:-0.39726 6:-1 7:1 8:0.160305 9:-1 10:-0.870968 12:-1 13:1 -1 1:-0.375 2:1 3:-0.333333 4:-0.509434 5:-0.570776 6:-1 7:-1 8:0.51145 9:-1 10:-1 11:-1 12:-1 13:-1 +1 1:0.0416667 2:1 3:1 4:-0.698113 5:-0.484018 6:-1 7:-1 8:-0.160305 9:1 10:-0.0967742 12:-0.333333 13:1 +1 1:0.5 2:1 3:1 4:-0.226415 5:-0.415525 6:-1 7:1 8:-0.145038 9:-1 10:-0.0967742 12:-0.333333 13:1 -1 1:0.166667 2:1 3:0.333333 4:0.0566038 5:-0.808219 6:-1 7:-1 8:0.572519 9:-1 10:-0.483871 11:-1 12:-1 13:-1 +1 1:0.416667 2:1 3:1 4:-0.320755 5:-0.0684932 6:1 7:1 8:-0.0687023 9:1 10:-0.419355 11:-1 12:1 13:1 -1 1:-0.75 2:-1 3:1 4:-0.169811 5:-0.739726 6:-1 7:-1 8:0.694656 9:-1 10:-0.548387 11:-1 12:-1 13:-1 -1 1:-0.5 2:1 3:-0.333333 4:-0.226415 5:-0.648402 6:-1 7:-1 8:-0.0687023 9:-1 10:-1 12:-1 13:0.5 +1 1:0.375 2:-1 3:0.333333 4:-0.320755 5:-0.374429 6:-1 7:-1 8:-0.603053 9:-1 10:-0.612903 12:-0.333333 13:1 +1 1:-0.416667 2:-1 3:1 4:-0.283019 5:-0.0182648 6:1 7:1 8:-0.00763359 9:1 10:-0.0322581 12:-1 13:1 -1 1:0.208333 2:-1 3:-1 4:0.0566038 5:-0.283105 6:1 7:1 8:0.389313 9:-1 10:-0.677419 11:-1 12:-1 13:-1 -1 1:-0.0416667 2:1 3:-1 4:-0.54717 5:-0.726027 6:-1 7:1 8:0.816794 9:-1 10:-1 12:-1 13:0.5 +1 1:0.333333 2:-1 3:1 4:-0.0377358 5:-0.173516 6:-1 7:1 8:0.145038 9:1 10:-0.677419 12:-1 13:1 +1 1:-0.583333 2:1 3:1 4:-0.54717 5:-0.575342 6:-1 7:-1 8:0.0534351 9:-1 10:-0.612903 12:-1 13:1 -1 1:-0.333333 2:1 3:1 4:-0.603774 5:-0.388128 6:-1 7:1 8:0.740458 9:-1 10:-1 11:-1 12:-1 13:-1 +1 1:-0.0416667 2:1 3:1 4:-0.358491 5:-0.410959 6:-1 7:-1 8:0.374046 9:1 10:-1 11:-1 12:-0.333333 13:1 -1 1:0.375 2:1 3:0.333333 4:-0.320755 5:-0.520548 6:-1 7:-1 8:0.145038 9:-1 10:-0.419355 12:1 13:1 +1 1:0.375 2:-1 3:1 4:0.245283 5:-0.826484 6:-1 7:1 8:0.129771 9:-1 10:1 11:1 12:1 13:1 -1 2:-1 3:1 4:-0.169811 5:-0.506849 6:-1 7:1 8:0.358779 9:-1 10:-1 11:-1 12:-1 13:-1 +1 1:-0.416667 2:1 3:1 4:-0.509434 5:-0.767123 6:-1 7:1 8:-0.251908 9:1 10:-0.193548 12:-1 13:1 -1 1:-0.25 2:1 3:0.333333 4:-0.169811 5:-0.401826 6:-1 7:1 8:0.29771 9:-1 10:-1 11:-1 12:-1 13:-1 -1 1:-0.0416667 2:1 3:-0.333333 4:-0.509434 5:-0.0913242 6:-1 7:-1 8:0.541985 9:-1 10:-0.935484 11:-1 12:-1 13:-1 +1 1:0.625 2:1 3:0.333333 4:0.622642 5:-0.324201 6:1 7:1 8:0.206107 9:1 10:-0.483871 12:-1 13:1 -1 1:-0.583333 2:1 3:0.333333 4:-0.132075 5:-0.109589 6:-1 7:1 8:0.694656 9:-1 10:-1 11:-1 12:-1 13:-1 -1 2:-1 3:1 4:-0.320755 5:-0.369863 6:-1 7:1 8:0.0992366 9:-1 10:-0.870968 12:-1 13:-1 +1 1:0.375 2:-1 3:1 4:-0.132075 5:-0.351598 6:-1 7:1 8:0.358779 9:-1 10:0.16129 11:1 12:0.333333 13:-1 -1 1:-0.0833333 2:-1 3:0.333333 4:-0.132075 5:-0.16895 6:-1 7:1 8:0.0839695 9:-1 10:-0.516129 11:-1 12:-0.333333 13:-1 +1 1:0.291667 2:1 3:1 4:-0.320755 5:-0.420091 6:-1 7:-1 8:0.114504 9:1 10:-0.548387 11:-1 12:-0.333333 13:1 +1 1:0.5 2:1 3:1 4:-0.698113 5:-0.442922 6:-1 7:1 8:0.328244 9:-1 10:-0.806452 11:-1 12:0.333333 13:0.5 -1 1:0.5 2:-1 3:0.333333 4:0.150943 5:-0.347032 6:-1 7:-1 8:0.175573 9:-1 10:-0.741935 11:-1 12:-1 13:-1 +1 1:0.291667 2:1 3:0.333333 4:-0.132075 5:-0.730594 6:-1 7:1 8:0.282443 9:-1 10:-0.0322581 12:-1 13:-1 +1 1:0.291667 2:1 3:1 4:-0.0377358 5:-0.287671 6:-1 7:1 8:0.0839695 9:1 10:-0.0967742 12:0.333333 13:1 +1 1:0.0416667 2:1 3:1 4:-0.509434 5:-0.716895 6:-1 7:-1 8:-0.358779 9:-1 10:-0.548387 12:-0.333333 13:1 -1 1:-0.375 2:1 3:-0.333333 4:-0.320755 5:-0.575342 6:-1 7:1 8:0.78626 9:-1 10:-1 11:-1 12:-1 13:-1 +1 1:-0.375 2:1 3:1 4:-0.660377 5:-0.251142 6:-1 7:1 8:0.251908 9:-1 10:-1 11:-1 12:-0.333333 13:-1 -1 1:-0.0833333 2:1 3:0.333333 4:-0.698113 5:-0.776256 6:-1 7:-1 8:-0.206107 9:-1 10:-0.806452 11:-1 12:-1 13:-1 -1 1:0.25 2:1 3:0.333333 4:0.0566038 5:-0.607306 6:1 7:-1 8:0.312977 9:-1 10:-0.483871 11:-1 12:-1 13:-1 -1 1:0.75 2:-1 3:-0.333333 4:0.245283 5:-0.196347 6:-1 7:-1 8:0.389313 9:-1 10:-0.870968 11:-1 12:0.333333 13:-1 -1 1:0.333333 2:1 3:0.333333 4:0.0566038 5:-0.465753 6:1 7:-1 8:0.00763359 9:1 10:-0.677419 12:-1 13:-1 +1 1:0.0833333 2:1 3:1 4:-0.283019 5:0.0365297 6:-1 7:-1 8:-0.0687023 9:1 10:-0.612903 12:-0.333333 13:1 +1 1:0.458333 2:1 3:0.333333 4:-0.132075 5:-0.0456621 6:-1 7:-1 8:0.328244 9:-1 10:-1 11:-1 12:-1 13:-1 -1 1:-0.416667 2:1 3:1 4:0.0566038 5:-0.447489 6:-1 7:-1 8:0.526718 9:-1 10:-0.516129 11:-1 12:-1 13:-1 -1 1:0.208333 2:-1 3:0.333333 4:-0.509434 5:-0.0228311 6:-1 7:-1 8:0.541985 9:-1 10:-1 11:-1 12:-1 13:-1 +1 1:0.291667 2:1 3:1 4:-0.320755 5:-0.634703 6:-1 7:1 8:-0.0687023 9:1 10:-0.225806 12:0.333333 13:1 +1 1:0.208333 2:1 3:-0.333333 4:-0.509434 5:-0.278539 6:-1 7:1 8:0.358779 9:-1 10:-0.419355 12:-1 13:-1 -1 1:-0.166667 2:1 3:-0.333333 4:-0.320755 5:-0.360731 6:-1 7:-1 8:0.526718 9:-1 10:-0.806452 11:-1 12:-1 13:-1 +1 1:-0.208333 2:1 3:-0.333333 4:-0.698113 5:-0.52968 6:-1 7:-1 8:0.480916 9:-1 10:-0.677419 11:1 12:-1 13:1 -1 1:-0.0416667 2:1 3:0.333333 4:0.471698 5:-0.666667 6:1 7:-1 8:0.389313 9:-1 10:-0.83871 11:-1 12:-1 13:1 -1 1:-0.375 2:1 3:-0.333333 4:-0.509434 5:-0.374429 6:-1 7:-1 8:0.557252 9:-1 10:-1 11:-1 12:-1 13:1 -1 1:0.125 2:-1 3:-0.333333 4:-0.132075 5:-0.232877 6:-1 7:1 8:0.251908 9:-1 10:-0.580645 12:-1 13:-1 -1 1:0.166667 2:1 3:1 4:-0.132075 5:-0.69863 6:-1 7:-1 8:0.175573 9:-1 10:-0.870968 12:-1 13:0.5 +1 1:0.583333 2:1 3:1 4:0.245283 5:-0.269406 6:-1 7:1 8:-0.435115 9:1 10:-0.516129 12:1 13:-1 statistics-release-1.6.3/inst/datasets/kmeansdata.mat000066400000000000000000000430551456127120000227360ustar00rootroot00000000000000Octave-1-LXÿmatrixþÿÿÿ0ë'_!u8 Àß(Bm¶ À¿0.îÃàû¿rV-äs¶ ÀÕˆàFÓâý¿kãX”×Àò¹ÒÀEs¡½ëÀ˜“aàB ÀjŸE…uØ À白“ˆÀB–¢n ðÀ›·†Œj ú¿‚U–+ÔÉ ÀO…ȰîÀp9*»Rû¿ØüÞ£Ò ÀÃz’MÀ²;@|‡›Àwp¶ 8Àæ…[ÑoŽ ÀhÛ r)ýý¿e!Ë/ûÓ ÀÕ†c ÎdÀÔ2ö˜óVâ¿ÎgÞuôþ¿r™nh û¿0bZ¬Ò² À`ÖàõfãÀ~¬Ÿ ˆoÀ—$;ˆÀz¶Ô«²ÛÀIKA–àÀd¶wB÷ô¿îÄg\ÿ¿V·ušŽú ÀßFÊyœÿ¿Òáè:› Àª¦ÊGcÀY(ÁÙ¼= Àã¢õ¼À¢¢Å¹³Vï¿1ûÞBÏÀTΡG‰!À:‡ý¾˜õ¿gº-ÁÀ2¸Žý…Wÿ¿N}Hì6òÀ(’éFI(À¹÷9µG ÀÕ5jö ñ¿¥éðRòÀ" ÊbÀÂj䣱Àê—«KùžÀÂá<‘ßÀ ­¹vg¿ÀÜ·ˆöãÀñ9ÈÀbVÕÀ€OZSc˜Àgê ©öŒÀhª¦û˜ÎÀ|/OËgÀ‹ácð•áÀ?O¸ }ÀøhclÖVþ¿Õ|4+bÀó–†ÉÑÀ÷»Î11 À˜u2ê*ÀÚ÷,ÉÛÀ`ÚfÅvÀRøè7ÝÀ†Töež5ý¿ÜÒ~©nÀ^oQi¬À$Q]ÈÍÀ⇣µyÈÀ  Ùæ*@¦ãÀvA @K¦vë3@ì&ÖžL@2ÈŸOÃ@¶bÊ2Ñ@ êš‚¯@h «Vª³î?%"VˆN @Zpï¸ùgý?ÅOÄ<@ FÌö ƒ@’7ÂÐì@úÚ‘ˆ@Iw6Ø@Mïµ @hïÉv¾– @x;Ø®@¯;Uÿ"ú@´ðÆ.@|žA•¿0@&½ÖUˆàõ?D¡*2zN@5\þB "ü?ªãJ|šý?BŒ™­Ûz @ ÁJa·Qÿ?ò®C~@‘pã¹§@zdÂè~@Èý\rÅÏÕ?‡Á÷ÔE@Ö—z<_ù?¶‹r7Ø@ˆë%¯„@X¶ò·¥@êº?qm@LÊ|Ç·@'uc%™@¦Jë—F@.Éñ|Ì@ÆË¬ìÁ(@*éàíºF@%ÓKoqh@Ù7Ãj»@[Ýi#c@L^µK@„^æk_¤@>~ƒÑ ˜@pG" ê@z6àÙ©0@\È3«†Xÿ?Jõ#2û?X[¹ìr»÷?ïEhÍ÷?gª¿~Î@Çíß›ó@ؼà3ƒW @†‘†p€Ò@ºÔí·~s@:ýc¿{õ?üÀöšàÿ?¯ÉO9“oñ?ö¡…c—@L(÷—- @H9­{® @nâ¹?s @{‚,ëÛ‡ @NC’T£/ @²˜³æuû?—ÿ­>k½ @G*‹Æ"@P³†ø@ áþžû @Ÿò#Á_þ?Kµ ¯\5@Qä,ˆE.@P’¹¦eÆ@Þæ´t b@—4á¦dþ?¬Ð|‚-@}Aôí @Šþ¨Z/´ @ç¶x…@fzÎÖ·&@ªœEPÂ@˜ÛؼHõ @°8åÆ @Mf‚þý@îP¢}-ûù?ç6 µ^@ì‚þG‹1 @–j³È¸› @B2ÍD!ÿ? ²ß@Ê<>ß@ÏdF%V@2¿ñ.t@$Á±’soæ?ôÍö,ãÌ@îg÷0 @úO€½@à¾6Ý @w=´šŠƒ@å+óSÁ@¼pv½7#@::Õ÷!ù?q±V²4@Ù,^@p¦ê”Ǩî?h¥¹¶åú@(g½ y@'¯1Ã5 @<`RFœÆý?k"ZL  @R,Œp)@Þ—…€ @šø:Œ @ù_‚]Œ@\qeb@[¥%ª³@(äYsͧ@‘÷oæá¥ú?Þq>¶@à@HMåŠø?Øž( ' @1˜ëœðô@í4“;= @ÞÜ„ª(ë?ÔÓ]Î á?ô„Þ›Ë@ã’ò©ú@$½qš?õ?7G—•§² @bøU¯ @I@Â;ƒÖ@m¸"Çãü?Œ£ÚkL@Övt}±ˆ @4ÁIõ–¢ @dBÅ€ÅÄ @XZq¶ _@a91 @1>XÕdü?Âë?@Û ÚO@w‘»¢ @@ý\! @ †Û´j @ü‡z¯¹@Ašùóð@ª%®%-ý?{jóF@L|Ò?Ë?@àÉï~J @9=qÚuý?¥Ì_î±@¨_ ˜þ@Ð2^ÉÝò@i%ñŒô@ß(Ë¥@èɹ‰ÆÑ?Þžn™• @tÓí`‰7@Uä`q‡@\Fê* @æ‹\t@+K«DçR@ÑBË.– @#\?³œ@T¶Á#$cÿ?Ú^åõ®@üÒò©Ó @ªÕ.«ÉÝô?pvú *¿@µIÔIK @º¤”;Ô@“iäîš”û?È¥…@ {?„„@®ŒÞBc¾ @i˜øÃ€ @Ü;Ô¬Š @$©™i¢ @’cY>¿C@³6ØbN@ ¼Àº(o @¤ÕØç3@L‚bM?@©Ftãxþ?"Í™Zt" @Nú˜¯4[ù?w8,Gñ¿@› ª¼'@H’x¹ƒ@è¶H`m˜þ?5¹jŽÄ@ákœ2ö)@ ÖØ÷ÞA@z/·|ï?Ö±Ì,ó³ù¿j9îq@À68“€C ÀŽþ_¼¸ À,¼#²ÙZÀ0¸()šØ À«Ì&âŽDÀO Zyu‘Ày_aAh¢ÀBgXw|$ÀL/Õ|Þ ÀæŸÏ*ºh Àó©Ã…$Àó)ÁD/ À1w÷O˜ü¿‡€Nœ ÀºwæîÊ™ÀEŽ8DI ÀמÔV}À sÆãêÀ /Šsg鿹€ðòÀȶŒÈç”À¬„u9"ÀGÉX Ÿ ÀðT-71ÀbÎ äÀh¶º û¿R~ XWÀ±„Ë+ ÀÏP/)µ;ô¿²—W ½À Ô«3™Ùý¿D[ëuÀ¼É‚ÞÀ`½·†ýùü¿ Ñý³ð$À€ƒãðÍèÀ@'§Q Àù7äÒ%…ü¿((§ÑãnÀ¹¡õ ÀomZxðºÀn QMÀ4¯.5 À9€M˜#À3`d Àùó´ ¬ À€”t–<ÀkâHùðû¿Î5S¬Àåjè¬ À¾‹Ø¾m¸ú¿è9Æh~2 ÀiºÅêí” À1þŸ=´ÀpkÍÕa‡þ¿ÿ0¿el ÀH…0$Öö¿j×TãZ` À×j`¢Ð8À;¥³3tQ À.üd›¼ À^4^ªMÀðfhí( ï¿;gè|ÀбÕç ÀF¶a¦À—ÔëÏN Àbë°ÀV·ÚSbÀÔ±Þ8þ ÀÛ®î]´› À6eÀªÜÔ À€†’ðý\«¿µ÷#œûÛÀ4ÉÈTcÀëä vU À`ð+ê´ø¿ïŠnÀÆü7²ø¿÷VÙô÷ú¿xŸbƒWDÀ— ¯ð—ŸÀΜöyÉO ÀV7ÍŒ§À´y¹ÂÀºævx—À¸°¬ ÀáˆäSî| ÀB5/ÕK.ÀSLÕ®ã¿Æ6ÒOÀÃҼǘ{Àê• Ç.Àò+TN¢dÀTÄyvžcç¿ÛŒG¨ÇÀcQg?À­I ¼ø¿Þ¯þ—¥À¶–_W À8 —ÆÀùÈ<ÀEzùÀQÀÎúÐ@¬\ À©,ª¿À(ÔmåÖ俼_mÔ”!À‹~]`ìÉÀÓ ›ˆš!ÀÛzYgÀ ‹136bÀ0¡KZ¥Ö À€&§å—eÀؚξvI À‹Æ£ßt'ÀRúQaãþ Àz%}¥™ÜÀ_ùi5À DmKxÀbZSù|_À62L’ûÀ0Ïp½5ŽÀ±C9nÀ6ãßL%BÀ“¶[¶! ÀUT1ó“Àb‘¯GŒ1ÀZï7pèÀ{êì À迾 kâÀ×ð޳À„‰ŒgUÀ%©ÃžñlÀ’ Ö¬h$ À†»™øDR À ?úÀ9u5»ÀôçÞ½–{ À<™+à À÷¶£#,À)ô®–ÀƒZsîŸÀ;ûU”ZÀ·Ìl·ý•Àsªè À;í9ÁÀd&ðuã"Àþ|×aÚÿÀ…à§iT@DmÝJ¹@ú$ã6%€@Bé"% @Ú–¬ƒ%ÿ?…©¶‡j@øXÊ4 @`®ù[@bkò"µ[@žo©D¤Ý@®>þŸ@ÃR…ƒ-ü?¹tIçŒ@×#‹u @¿ÂÖñ¼Ûû?±O0/ˆö?ܧóÖKW@+v.ô-@š gŸº @~A”¡P†@替h @¨(fT']@ØÞ¢#@_r¯ o…@ js­€ô?À|ÆÂÐã?Þ„2ªj@$ŠÀ™À@~›ÑåÍN @ ?¡€ëø?{ã.ÐG@hþ, •@8j¹%@¢ÌcŠq@Ó°wÓ/0@ Õ ÔOü?ýæJùý?=¤’î6¾@‚/²6’Š@ݤëÝ5@®r-mµÿ?ö}ã[ÔR@ãÓo‰×@°ï|µ° @ %K£ëÖ @`Weˆ¢2@?r¥ûç@˜Å—;gÖ @TšñÇMy@ÎQÞ+7@mü¼ ù³ @޵:ÙŽ@^»óêy @Œì+[ù@½æÇñê@DùÞà Ì@¼ '9Mc @=KŇGù?(Ã@2ƒ @¢Ð²¢œ@ö¦…kªl @e›MB[V@ß$CѬñ?é?‡=¶@is^Z؈@h—R[Ķ@f:@Wô“À+@Ÿ1ÝT @VOÄPã~@¿DÈlÄ@¾E¨aì‹@ᵕ»¡@p‚sçþ3 @CúÿÕ¸@8õòäÿ?[ËÇ @Ȫ)Ïõù?&»:>%>ÿ?7•áuµ?@éÕª[@hWù–žº@4¡8%Òá @doH%Ãÿ?·vGq‘ž@ð¸¶)÷Øû?猳\ëé@øÖÁ¿V€@¢ÀI¥’B @m¬}Ê @`*õ¸qŽú? ’„Æ Y @‰-x8”û?˜JÜðTw@J¬h\ @ï¾Ö÷@ª÷Ó¢âg@¯øå‡@ ?–ò?³ì‡ V'@@m`3s±ö?Èd<å©/ @@Zp÷+Ž @b êŸ@2TE 4@^昘)@X3ÜÖËæ@=ü¥¦@Â;>‹@óaÒ7l‚@äx+B› @(3¸‘(@mðØ|Yõ@ÎààòELý?JжiÇ@—´'©ßO@•>5ƒ¨@HgÁªVå?fÆ:7ûãþ?×A6·@б‡s@¡­ÿQ@ŠòQù…e @†#»å @,hEM?@V€,† @Ø"¯ÉcŽ@ÌÆ¼eÅ4@†ì±›Ô @Õð=¢÷? ë·üJ À3°ññùÀ3šO À P2Ù µÀybò¨ß1 À¤ÏKŒÀc{6À,m Ã_äá¿<ü»6ƒø¿$sa‚ìÀ-WÞ) ÀÚ¿ÙMSò ÀÑTXຠÀÀè!g À'Ò„Q¢¸À85É©ÏÈâ¿N2ðÓ° Àºn{1› Àr6êJ\uÀï+÷‹ À"ÿJÒÓzÀßß“1vf@ý”ú–˜· @Wº5žƒ÷?òøüÛXø?ê1â…@¶‚©¾7@~â.¹½† @/€÷?2~„ë@‚A[Õ—E@UÀ(BA.þ?”Të…,7@è1ìSu @ 7›F¹@~A½Ö@…#» ÊW @Ü<¾Eò @ØQ7‚@(ñÜ$‡þ?®ûˆ]Ÿ@ p¥Æý?= <~ø?æãÊ›^rý?WƒÛ ø@ÈBirl@¦Ó˜.Æ@Ô^aUH÷?3¤¼þ@ÆäÓ42ðý?5ãà—@–ùTKKÿð?"QlÃ^«@$@EQZ@BÀùæ°ý?YBh8Q @ÙécîÊù?A#*qÄ×ü?ºCO_@“ðDzpâ@„°·˜O@€=è†)@^JË:xV @+O÷o @ÙúÚ­@„ÎD÷y.@K×pñ,ý?ï#ðÝÛ¯ @RÿNTo¢ù?^§!¥=™@&D•Ë@7йPö?{‡è Ô«ÿ?hš¤×D9é?.c&™³tó?é¶gÿÜþ?u½*†@ ÐÀÌÒ>@~À€7Ä @xôPöD.@¦¾¹3’@Fò=>;´ò?›Øàð¦x@ŽÓMáö?É‘Òiý?ê³È(î@Hô1Æy@`àÈ‘@¬Ká)oC@ Òãÿö@Ú*1$(©@ÃG”* @ð¯]äGOý?îz¦.ß @´Èb•œ\ @#ÿv†7@ÞÜz|¨@ öfÏ@,¬Á¿½@Ù¹BÅH@¼® ‡ð¥è?¶×Mí?½¾&LÓ©@¸Íƒ'…ù@'dÌà@Ç Îóþ?;€Ôw@zý? puJ @º_8èß@=ñn@eßRV0Ç@Ú—ÆZV@éQ:O&@î#šg‘@æw± è1@¯1±j@Ù=G €[ @ó€6¶fäý?× äŽ{@N6¦÷?¾ìôcÞÔ @ÑA›„2@!›ys@pSh%† @¦Ò9vÈ5@ÍþBj„ý?oÔ§Qý @t@þ‘ü@åÜñ@ÀÖø•C@ ,&ù?"j–£ˆþ?Œíž^+@ÿ³°‘%õ@ºØO6)ë?Î ç`@f ¢=€@y¯töÒQ @îšG¯'Ü @Zõýî¸ @,ãŸuäø@ÌT¸ý?^öĽQ¯ @!\ÑBXI@`Bféy@¸võöuú?`–bD°å@Ðáˆè¤ @bÌ|/;:@ÚX#„Òþ?Sñ©rá›@ÀlË˶£@©¨!ì@iµË‰A©÷?¦O]*%ò @ôVƒ@ñekR][@¸™û‘@ñ»WˆB @Z÷pR\?@¼aé±Q8@ª>¿W:ý?Èyjú @×RŽ>ñ÷?ÀºÁ²­´Ø?¾å÷DI @¤-%À×µ@J ˜² ‚@á?ùwV@S³/hå @gS徿ô?ù9Бö@€Û‚#šcó?ßš{b @¬ŽÇKv@b¬Îƒ…@|…-Ü o@¦ún´]_@9Út§@z@²gÛ|@зš¸2Á@æJ/mºý?€ &Ûk§Ú?ªT-ýãÖ @i},f(È @nêyí{ @=|i<@._IŰ•ÿ?=Ì8Š€@FAŠ´lú?Q­ê'…¹ÿ?T¿ƒ#w @ÊEÝ…Ò @Lw]œzA@¬ÔFš­@á[Ú–Dð@7€Tæ5@¦3µX@¸éosùž÷?ÇG¹bÕv@àM?ô@ahıp@Úš¿9µ @ä!â½\j@+gm_@:œe= @Žg³Ã£@3¶6«ü@%^&í@/vå-Qg @ âµ›Ìö?tˆÁo @2Ö:å!ü?f1á´¶ @Ðàû¾¼Ñ @¼RQô÷?tÝöÔù?Ú(œø @»éz5‡@ à~÷78 @륀ƒ@JÁ“;bÂ@g&Ó®×ù?°qÀÙÙ@ŸCY+3:@’ÕÖ°Žù@k=ñóÖ@Їh/[ÿ?, w‹D@J0ÔÊ6 @^ôm—Ç´õ?a ]ó@m‹ Õ@þ³šGç’@€æîU ¼ @ˆy°+¾Ø@oLlgå/@öQòÛW @fÞžBó?ïO4&ãù?K @3·¦“Œ @1dÏ)=6@Œ><³„·õ?Ôä~Ž’2@HñîãdÙ?j×[å¿ @RtËü|y@s/Éç[@Êcr9þm @àûÆJ Ìò?LÆ•f‰@õy$;Rj@ÁÖ~¢G @&Çp÷«‚ú?RøK,W@n؃qǬ@k%>÷ý@ÔÊZCJ¯@Ü2™öÛ@(Ïð¬œj@öÞžI@vÆáö @ä"îé5°@¤;>°L@•õ):È@Ñv$@Í@ȬŠV @ÿ¶õ¬ç·@ò}§çø?Ï©€õ)@Ë»¯ u @;þäi(g@¦‹N\Qò @Æj™õ{@È„¤ÅïYÿ?¬¡Í<5ù?ï¥È Çh@Š~YPvú?fX*p¯@ôdf @ñDo|®ß?設ìòû?ƒä1ˆ…y@—ˆ+=Ê@qLII=@¤_ÌQŽ@wêTK)@yÃ„Ì @Ìf_àR™@ëŒ7«é?|$w~ @ÁÀN}F @z¿øxêú?&—:3Bú@oj“=ë @‘WS!@` [3”'@"|ôž†ü?ãÒX[º‰@¡HòW@æ¬n. Û @fe6‹Å7@t±Þçö?y:6¨Á@TÏNßú?è!ŸI+@xá|¥üg @:“ ûLæ@•E­a|³@8 ¯Ó@nßì°*ñý?n+dÎo@÷P8>µ@â;’b@·ÿµ @Îx“¬¥û?iŠ×-‚@R½GÌw@åXí—ùy@ælÜÙsÜ@ê5‚uÉPÿ?S{ï3@Døa£ @O÷Æ’EP @Ì^<Í @F¨”M™ @}–"{H@VoÝ·EE@èѨt)¹ù?ÁZ§s†® @<~cK@Ìtϳòý?¹¶œ1EÄ@iÝv/RØþ?„*Tùó?42ËB-Cì?±[üc j@› å@ˆ¶¥DŽß?‹Êô]¤ÿ?_­¦vP@“ýe¡û?‹ï»GÓõ?½gmÞ¶#ô?ÿÙï’>Î@ùìÓ­~@½Ölao@¥™_ @¬BÈÕA @¦N³¨\ÿ?™Z””@¼Ø“Ý^÷?ævèˆ,@sÖA©¬ù @‡±6Ù‚Û@‚®p7@¹Œ±IÒ@¯l38@"ÔÂÕ¨@Kc½fK @6FÈzãN@»ÄÌ#)@±ÓO£ô?XËGm7hð?ήÎü‚7÷?c{VG/ø@ÒdÑEX¸@ë\‡z1 @íaR­]É@’„*j @µ³ªl²a À–”ÛÓø¿â'V{ Àv‡ó©ŠÕÀÃo žgÀ•Ó…¬ÌÐõ¿¤~ìÄýõ Àïýëìþ¿Ø³3 À›šÛð¾À~}¥€_À„•c… ÀX¾.ÙƒÀvÊáíä Àðþ f[öñ¿ª´C' K ÀMú$;o7û¿ÿY„bœL ÀœܳÀÜ_ Vƒ¨À™Æ!ÍóeÀ\(¬~c1ö¿5i¬š~Ð Àßžòµâ7þ¿LìúKdö¿ Ù¦a«˜À |M&‹Àò«¬ÚfÈÀ{Ó‹/lÀŠkX0•}ÀÑ5á èþ¿N‘AÈú ÀhBž¨ÝËÀÊeÄ2]µÀíAsDæõ ÀýöEM™ÀjÌæŸÀ À|ªÎ`ÀïÜ.î´êÀ, ײÀyÇÿRÀÖ“š4²{ Àš¨|ª rú¿ ïŽkñ ÀnÛ¼225ÀcwÊÓa ú¿>óa0Àbý&ëõ¿÷.©j°ú¿^,÷ÎGKÀF¼a–õÀbìb¯Ìñì¿)d”âaj À@ë˜s8À GèóÀU#tÒÀ”Ú¶ÖàÀFŒI¶ž²ñ¿¤¢œ>Z ÀðâÝ®*À°¹À”÷uˆÿ¿íÄÀôˆu Àó…®Xp;À‚,v°‡»À€ß¯Ûô@ÀN޵»÷¿üÈŸ~ÇÀÙ‰ÿ¿ϬçÀJâ 8 À#»u¨Â÷Àª 9MªÀjÓþë ÀEt‚¶t¯Àì=±Y/ À€åríÀN8˜ÏjÀ³Ô±øóÀM¢ÄÍ› ÀÛ•; sÀD1s_®À®´ên®ÿ¿Vé° ØÖÀ IN…/¨ ÀäïBG{ÙÀ0V7Ï”ÀJ½˜USSÀvR¦MBÀèVÈÀÃ[Vg±ºþ¿+‡ ´<£À”§#Ç9¡ã¿ÜcéÀÃp±}ê|À†6Žâ ÀV;AívX À˜ÂSGÁ:ò¿«O€ô‚ÀÍçÅøÀ+"´$À}O"Îa7À SÃýâ¿ÁPíÐb À^%Þo|ÙÀl-ôNÀæ}Qù®À‘MÂ2À<û¶¼x À´˜…Kó Àç )ßmB À jAÞ À¾…|,[?ÀB蓳 ÀæäÕ¥ÀÙ‰­¡VÀÙ~ „è ÀûeœÜ[À|òhBQ÷ À£/#¬dÀøå}Þ·øþ¿K$ÔÄû¿öõoÐÄÀPGF5À¨’Ï1ÊN À,k²¨­Q ÀzÏúµùÀÀïŽ =8÷¿®Ò*?Ò›ÀNyO…„Àä³±å¿3ñ…˜À-˜Ñ~ªÀuÙH ÀfŒ}íÀJF«…¼×À¤DÞØNU÷¿¹‚XÀÒDx…8ìÀ(˜GE¡ü¿J÷ n†) À&ÒVƒŽÀÎPŠÎ„û¿QaC–¹ºÀ…ý™U-ó¿{Ó5ú˜ ÀŽMü ׉ À§ÍIE^Ãø¿‚À¾Ré˜ À\%ô†¬ÀÃñ^”Ý Ày*û&éÀyì_e ¡Àjr¹ÛüÊÀ¶?»¥û±÷¿Ì–,ÄÀ•šœf¤ãÀÎûZ?Vÿ¿cXhšóÀöQ9TXçÀÚ0<ÉuÀµ/ŸÂzoÀdýg³ î¿€ó} ÀM™D=Õ‹Àü[WŽ]ÓÀ Iq`° À;§€õwÀ³Q^·0À¶’ •ÀwŒiÀS¼fÂÌñ ÀÂÑ –bQÿ¿Wß³ú¸ÀrUpì¹xÀ?Ù¹µ¹À@ŠëŽ#ÀyÕeùk Àв5wÀÖßÛþÀ+¬ê†ÜÀÛ¹#þ¿:¥ ¢úk À‘Ùã2dà À‡™ãÎ×øÀ8×î ·ÔÀ]Š÷Õ·2 @6 Pì @€òøê¿@hmÁ€TÕç?Ÿâ{àêé@¸~EŽ@ˆ36•5@ˆJdèýø?úªÐ?´s @f»Uþ?ÙuõKé@ÿaÑî%@0ÃÈŽZý?Hÿ`{¨” @ûÕüªUþ?ûÑ—îñ@ 9® ýF @—?Œ–ÒE@ÀlB…ø?/2è@}7ÝM‰@6K-04"@x½_ER@ÆÇýî‚@òÈŠ¬ˆø?•@sœ@®g G@ø9v/<þ?~É ;G@@†žg·_;@šå5N,ø?gÖûþ @!r¬2©Ö@ô†T¿«Ðë?çêSÓý@ƨüÅ/ü?Τröú'@D½½IŸ¥@ÖL×ó³9@%ùýbº@D·Õ‚à2@Tp´v×@òÑ=Õ@VÅš°_n@ÓæNZz3@oA ]÷ó?ÿá’] @žZ =î‰@±®¹õŸ@ÔGÍ€Î÷?ÅŠS»Óö?²5vQs"@й¹Á/I@dª^§©ê@.Òým¦û?~w @œ§ý”^@uÜ>€@Ð)dÀ[ï?=ìŽî‰@ve*eÔ@•¹`ÿqÅ @‹›µ˜Æmù?vå3'w%@Ó¨ú @L…¿6Ú@b75#O @(sÚ @BÐݲ~Ì@Õ%LUZŒ@ìqL5sóÿ?3Ÿ­¨˜@ÑSknf@1N$m,ù@6õ`èâÿ?Ö¸°]qü?p”Ûªg@&ä§Rº@æ6nÒö@mŽ ?Û @Óÿ¸U@Ï53½ø@éHRêD@¾•žòº@ ,ÞrËšù?4€`û§{@4«š @NH)¥R«@˜…‹lo@ª‰ '7é@ÚÍLôÅ›@¹€ÄÑY4 @%dNå@ÊÐê¬ý²û?üæÖžŽ@âãÜdùþ?S4eL#ã@ƒd·tLÊ@ý)»ÝÒø?|ÍC@Ö¨í"¢ @ÅwÙ75@=t’9(¡ @pä×Èkî @%*¿ý?6¨ÃíQú?ðž5/›@r•ñv92@1—×®¢ @-}c”ò×õ?ô[ëaJ.@s]ƒÆ @pµèÃ÷@‰¦ŸÆ’ö?PÖ¡,“¥@ éÛ¶o¦ @C"Ð|åÀ@ר¤v}@ÏÓžQ% @twk˜ @ÐÁÝv!R@öÿ«¥Õþ?9Žá=õö?ß*ªWk@1´QÆPª@ØÓßÒ.Ç@ªµ'|Þ@gi[B@dÚSÁ@h,èPªô?wV§ª´£@ÿ¬ü²Äú?A#–ÈÄ'@Ð~6eÄ @n¯2σ @`mËuÓY @èãr§V6ù?lZ£àc @™(ä¹× @ú¼Šgü[@HéüK@¨ø½.‡Š @•ô@Í»@@Ð)Ÿ“ê?¾êš¹ì×@ øÕˆ9& @Z¦B<¯‘@7 u @8M“·òý@Å01i—z@Òqbv•F @Ö™Únãü?rS4Šù6 @¯!?ðŸ@¿wRþã@lœ”ùñ]ö?Â)ÎA@òÖgñr @è~¬Ìý@ÌÉ–ùÎŽ@¦l¸T!@¢À?P=ð?6Òô*ô@Ä>êÔÚ¯ @Œ„fKx| @`ªQW @F+¥Ç›V @X•9úc@y<}Q@ÏË_È @5—_”ž@œ·žÑ–)@ÎúŠôNÞü?ê÷ã¹ýû?u ÂZÁô?py†¸æ@âôÔûר@&Íœ|ø?XuB0cø@aÅÍ%bæ@êVLÕXº@ôn×ç @÷W›‡o @àWÔú«ƒ @FÐO"h@6b8T†@1ôÃ/Rø?gQ@=S @ö’yŒý?Ê7;iåþ÷?ö@ë¤)Í@^ˆLŪ @o_U‚,@{†•‹ @;ª¨ß×z@S[2(@Ÿ>V²T@o ¯¨º%@ŒáœJÖµ @Ê¿—K\@n¼‚ç Àt(McÊÀ\p›UÛßÀ=vT€IÀPZn“- À.ŸŽÔ>ªÀ~`3ÛzÞÀ¸ØxûZ ÀÅ®`#þ¿ê“žx[è ÀrîF«…ÆÀ BöA ÀV!¢ú$‡ ÀŸâyíšÀó­—<ÀC®!…À£Òí@ÀÜßgž™þÀ¶õ¢º¸Àx+7ÏLŽ ÀC?G2wéð¿" ‡"öÀ€˜ˆ‹$À}öoï›cü¿iÛJ îÀañN¨Rtÿ¿ý! ì§¤ñ¿»¡ªÈAÄö¿.kl=GçÀ6Óó`·ÀP÷Âà­²ô¿4s<|âÀ ø›>1 À6ÏU`†ÀûN>ãzÀµ29·™ÀX–ÈÑÀX‰ÂþùºÀ} v÷%À°ÑÌ1Z ÀyO¯uÌÀI0ìÀ‘zPêÙýÀ»oéâxÀnQÇï3ù¿×/— cíÀѰÞšGÀƒµ¹”C˜À”ƒ*'ºÀàÎ<@¿\ö¿:1ÓÞTÀ¹ï¸Á¥]À§v»,sÚÀé=\ïò ÀŸ…Éy. À*€%âÂ"Àkf$˜7À- -Ö ›ÀX •g þ¿ #ü‡ºÀÿ®,U§—ÀjÞèÒ—m ÀÇä8K´ŽÀ¬W ÔÌ Àf€’]¯iø¿êÀTð¿$ECÀ)1Y]#¨ÀõßBšÀdv“ÖúúÀ5Z¶KD@û¿Ž¿Ÿv¿À¨kþ`Øý¿³†î(+À€Â]'bɱ¿Þ4P)ÀёɊ"ÀÖIôÀâÀר E\ý¿fæ_²rþ¿,"ŒCkÙ迃·2æîoü¿'CÄå´À·CžcÇÀ¾ÕÉÊÖ›qk@0&^Ä @ÚS(3þ?àû,· @ ·± ÜÝ @NxÈ,`ü?风µÁ/@È|(› @bY«§þn@uzSq @c ë)8ö @~ û…e@Ý“wÓ¾Ø@ˆVæMÑ@IM½yg@TC V6‚@Å >ÑV.@s)J8–õ@_·Ž¼ @±Ðýj @æÀÂ}j* @DPÏ‚ÕÎ@Â3¹iì@b ïœù5@« â á§@´ÿàõÝÈ@–´(ƒù?@ÐØÏ’?@Lf·aY@@­cIf¤¸?¦Fü±Ëõý?iŒ¹fg @@’å @›Ï¶ ‹(ÿ?±‘]™ @4n•̤@ôí×[Ñ£@8]v*v%@²ò™ïÁ @ØgeÆ¿= @í>ÉõÌ;@N€Y ¬@>g“õi @ÜXvÁq @/GÄs“@kaÞ€ ð?‘]‡×Üv@¹97 þ@ÓÊ‹Ÿlúó?ô;I|²€@# ”Á(ÿ?*ÂÀ@øï**2y @µü³IoÀ@aÐg€°×@†¨5Zò?Q-õúÊÕ @^ë(Å´§@âWF)º @]`©%H+@Ûtò@J9þ?f2Ñc õ@¾±/Ép @@á´?qCû?`î Dkþ?šn ]ë?öÂËõM@pMŒ*î?Ú¸¨{@ @â³”É+û@ôÇš’@n‰… Ä@–Çeað@!€HÕõ?pxT @øCýö¾@Ü  ð?ýâD÷ˆa@óxa›+Ÿ @î0¿ FZ @ÍPqK@̱€‰ @-£·1@D7Q‘Îr@º0_i@¹²À´™ì@t›„Œ•@¤ÍðÛ!k @ƒPÿäuù?| §&¾·@Tßíç@l’«ýð?7¬°*õ @×o5dØ|@¡×¨qÕ” @¿”ŠáHð@דlÈ@6‡ú&×ÀfúÚ«µÀ~;Ä]¡†À²`ñ”NÿÀ·yÿcö À˜³WõÀØ}§ÙMÀý,ÚéÇÀ™)†há] ÀÔõ §µÀ]“¿SÀ•B »G À%6ñÎÒó¿~ªÎ± Àɦ  ÀyZ§þ˜À¤É%Ü8ãÀñÐË©À0˜Iµ ÀœŽÛhQ ÀF‚ã–qø À3}X¿ÇÀEÜ1 ÀšBNªÙVÀøO{¡Ëê¿<úå«Ié¿>jÿ–®4ÀQG’q´À­‘Ñ>²-ÿ¿¤( Í$À¡)i'´ç¿‘ü©»> À°W<»§Àí¿,v [Ö(ÀvTð\¥ À’X‹”F>À˜âsÜXÿ¿>¼šmÀšQ?@ãP À`Á–ôM(ÀŽ µ€\ÿ¿F¾F'’±ñ¿D âdÖ„À± ŽGû€ü¿–Öù9\ý¿·œ½ 9(Àl †\5ú À‹a|´ÏÀ:%â‹÷¿_•d€xúÀ=¾ÏYU Àãá!ºSú¿ùåãÀÜKÙŒ‰QÀþâþl€ÀòÁÛº»Ãò¿dADYWn À4¹5[ À4ÏJ„XÀ l*ÃWÀ³u¹½ÖÀ•zTJ[æÀ°ƒÂÿ±ÀOåw s ÀºjýlSþÀ¼*·t2 ÀÄ ø³µ;À\ó#+=¸ÀäA(VÊ* À¶ï½Z_ÀF™{§£ÿÀ!¤4 43þ¿»?IH]ÀõvœùÖÀ¡@êv…oö¿Ãƒ•¹ÒÀ-ƒšèï À8{8Ñ7 À¬E%ýTHÀ…a]añÀ– × R @ …ÅYM @[ˆ‘†Aü?À×(†8KÝ?³¢«ÚF¾@è]$ˆ@ÍÅÌt»@к¿ Û¿Œ-p¸!@ K šô{ü?p¹á.úÿ?p¶ø@€@G»Nw%@}ÇÜãѵ @­Ïq4<Þ @3óO_ 0@ôú9×@Š”Š6@žÁãë!Ó@I&ƒ°Ã+@„ UÔ;@&«\_½d@ñ=ÕU¤À@Á÷z¦O ü?#Mé0qäÿ?»Ö)%õ@\MÏ2@é.O6<Û @"ºqû·ÿ?jö„Úöy@˽š—1&ô?^šµ…ª’@1 8ý?‹®ðÔ¦Ë?†x-$é@‹”í @åï£=@y¨-3ö @d. þa€@vj’ñ,{@‘GÅ“ì @ã®àƒKdñ?ìçùtT@'Ö é @P(Â/ÆÜü?ë!¾Ö±ù?‚S®Ýj@vh9«n@¶úêaß_@€¯Ï¯Þ‹@ÔÏÒ?§‹@ë•‹5¡%û??ã¢T‘rð?ð¬GáOçþ?™AþPÝ@¯ˌ |@H'|·\i@Fåø°~Í@šÆ4ÊL@Êî¬m„@cߎÇv@QU¿¡i@/?«ü˜Î@!Ñ!­»¾ø?€Eë\®:@—v?R@9½Ü¾„)@“ºŽ€n @µ²™]°@ . Eu•@ÖX¨»w@Ûb²3›ˆ@;³k@ÜEßIé@Íöù=Ù;@ëúÔ;N÷?ö‹ˆÎýž@e':õYœ @ÜeÙclñ@‚u"]÷?fÄ+˜FÕü?s³ÿa;·@¿—±£Ûæ @²²5áBâ@ŠvbL@ãX+‘‹è@ ¨#Ý•@š)Û-¥×@ÏÚÃà„º@ºžöÕ³ @/®0õ9 @»Ö5 ëä@Dë:!~@bp@à(þ?‹š« @7بšf<†å‚ @-œ f3@Xa…ô[@TbŸÝ—@p}¨ñ1@èÊbB#ƒ@RRú®Ðo@L’$ É’ @œ;`;Cw@Î$Gº®@k{u·iÑ@€ z0¬´@*cÚÆ=ßü?pŸ¥É @²‘.5|N@¨ÊíDZ¿ @T®aF+‡ @öÃeN @àDU&7›¸¿GnÛvÿ@öøyú³î@ÜÒÄÉ@g·aÑAH@ÀEÏP" @-1›/ï@Rÿ¶ä@LY¸öé @®„Lt&ã@7!©‹¹@üMryR@¼[›³Q@( k¼¤é@“!·ü@ƒ! aw‰ü?Ši•àS@Ó‡•Ôâ @Müñ$êk@‘3Ö¢(<@{ÿ•i/@Ì ZInˆ@oþ’FJ@9ÏŒ˜õ­@HM…_!@µtåÇÿ @6‘J´@ç Å-E@èG€¨n@Jh4†)y@_m€BC@g8F ˜´@Àå"ul¸ @^¤üU– @ ðiG§_@z#‡Ð @q “ÄG‹@ùT0ly¬@jˆWʃb@Ôc ÝsV@à z°ùí?Þ5Ê2òsû?.Ò[›)Ñ @®Wiè@Æ_))ùV @‹qAXò@ Gî7Þÿ?¸‹ñ˜ø@à!S{;@ðÌŠD–é?rôAùe@nø‰L¥@Ç÷¬Òú?ðlðæ @È ÐØò4 @¦Ö’Q¦@¨Gb}@þ–c_A8@ÆM,·ó @”P}µÁú?ðOÑ®Õo@ºm…½*‡ @«°&åS‰@8'Œ þ?Ï–Û€Ø @£8œ†@À«Û÷8„@‘‘‹”U @ø˜çS`ç?>— ƒŒ@œ‰Õ‹v @°X @pž_[âì?3;\]å@P§Äçµ@¹vZJ @@¸:ZNÂ@¦”ˆë@äãàâè#ö?…iCN @•k°ð1w@Oýüggü?xI[ËLÍ@|uT˜>¥ø?„géÊI @$I˜ ²@8AZåÁ@òÎ:pg@á6ˆ:¨f@pSra @ÖÍ ô·¥ @Ì@Á@¬;÷?‚á'Dšú?vÅ:ƒ¯@BO3G ÷?éÊÌæ•dö?“©èÖØc@Ñ’Ét©€@Ì!Æ(Ûö?ZoÀð@€qaÛ¯@Ûà30 @©E4Ø>@‡À½2@<føÙE@&!8ÎÅ„@àÐ,bÄq@ œÿÁÆë?ˆŠ’Í8 @©Ùûw¥ @W™ö/#ü@õ܇Ð@²–‘f@šU+HQô?êùÕIÎ û?;]º®¢Ñó?Âv±¦Øá@ë:Ї@st3Qí@º±!P@J~W>//õ?sÆŸõ+ @|õ[Tÿ?´õÎ8s§@´™Ø,@‰#_–@›Ê]‡Â@N´cùµú?´fmÝ2ÿ?";èA.@=Ï¥o«@ŠGË> @³r•Êm@ C†Ð±@å‹fJnh@3©H‹Êx @s¨]Σ @ŸAâÅà@ò±E‚œš @Uµá³¶ @ñ¯ßœ®@tõm¦½@:Už­–q @€&°@˜ ÁÚ@ÏÕ±^k@é³[üzm@@ DÓ @Õ§Óò7Æ@W÷Äù-@1ßÇhî @Ðæ«òƒô?@Ú‡G›f¬?  ·ñûÆý?ÚŽñÀ¯@:b2J4åõ?g%å§@¾Om&ÔÃ@<PhúA@`š²IVóú?FØë@c’,ên@æi)³‡±@òØS§6L@c‹rõ½Ô@dÔ“ƒÄ@¤ÁA?¶@Ô–—”Oæ?\;ØÕ@šÊ:[öZ @¼þÄa @ïH‚!W@ Õ$Èd0@<¦}yõ @(evF<ÿ @bBεӊ@Ì­n»Y„@5‚„Wã@ï›O¬Ä@hÙ)Òü?__-qQ @i×Ñ>éö?»×ÜæÑƒó?ÉÑ ±+÷@‚þ_£Ò6 @_üR0°¸@È„´n¥-Õ?m´{»r@NŸÎ[‰ ÀðçþÀŠÿæ-ÌÊÀ«1 Våmû¿è\úÐtÀ€Ô¥¬ño À°šÏƒ\a À (ªçÀå©}™ÝØÀ€Ë»¥Ý¿.±üuÀ JeõÀ À?5Å\3 ÀȈG YÇ À2 ^ÄÀˆ ÈW@À«ƒÏÀæ-€?¡ÀÛ ²ùQŽÀÁy²ËèÀø(š3 À…Ôûá3ù¿rÁY§ˆ— À½XÊc›ÀXÂtæk÷—ìô¿ 1ª­ý¿—A`”ù/À“äðÁ’Àe®Ö‚ISÀ…ÈN\µÜÀNʤüÀ¢[NJâÀ³¬!´|ÀFÕâ¯fVÀô滯KVÀÐå͆½m Àˆ1þ¬ÿDÀ#£ÀávOÁW=ú¿FÐ1‰•ÉÀñ!i(óÀò̵ÛÍæÀm*A¼e¢À´83°80ý¿è2‘,ZÀnç°„JcÀîÖñÌ#Àék¹s°LÀð k_†À;—½˜v2Àn¥’.-ˆÀðP\ùªÁ Àšq uÀÞšÇ\Ï ÀÑ­ ÕÌLÀ8´öxgÓÿ¿’õƒ`ÀÒµÿî0‹À0©3¨ 2 À\ ¾BÍ÷ÀîÙº«+ ÀFcñÃÅ Àà ²T‘žõ¿±BH%âì¿ýf~‘ßÀ*¡E' éêÖ§ Àß©”5ZÌ À.sò:HÀ¾ôaå¸ý¿>D ×ÜIý¿ù‘•KýÀ~À/T°­Àú,ÎG| Àfå¤tÀÊò©+ÃrÀXñ¹þÀ(—óá:ü¿¥&¼~ôÉ ÀžàÍý‘6Àstatistics-release-1.6.3/inst/datasets/lightbulb.mat000066400000000000000000000046251456127120000226020ustar00rootroot00000000000000Octave-1-L lightbulbÿmatrixþÿÿÿd§¸¶ŽÓ¿@-Rd ™›À@W 2@´@mH3à yÅ@+ÄŸØoÄ@÷èÅœ É@ÔS&…3î®@nžÉ–V¨½@‡¹G~ Á@[t.å à½@” |Ý£ŠÀ@²už˜½@½r[.ŽÀ@ÁY€ÂÇéº@­>mHéÀ@Á [ áœ@Êq¬­uÆ@b¨ýõ.”É@ž"áåÒpÉ@Uõ›“aË@B.UË3äÂ@dÖ0`´%Â@Âõ­9[‘Ã@c½5ìþ=¹@†gákE¾@'§ja£ä¸@Ž0n†–°@®ñÉDÜž§@Ÿ¯vvÇ@Üw«·b€È@äkI×»@ô¡n´ëÊ@Ý‚î…çÜÀ@úÅáÇÀ@ä;=]»´@®¸ø‰Á@)Såü]Ã@Ü?á½¼@¤Ü²é!º@/ìÎ ­óÀ@‘’ç‰@äÃ@˜¢)r³-È@[·Íc²¿@®)‚Ó̆Å@䂜è„Ì@’±tÍã–¹@£êŒ,îÅ@g¤Œ3q?Â@¶'’…&¼@ Z¯Ã@ƾÑAK–@åHmT™6Ÿ@ø~€Ä’@¶t°ÁÂR•@œSn ¶@<ô6ºŸ@úc¥ñ‘@œîÚi œ¡@MFsAE @ËäfÏ}˜@h¡Üe ”@qVºl›‘@zYìJf›–@ED3¿W‹@xó¸÷Š5@\Ñ2?Ï·}@i6?¡ÿ”@hÃ;q]˜@=ÚEC¯³ž@ž &'ÿ‚’@! Eæ‡@˵—JH–@#ê…æ_Ÿ@™Ó·‡æ¹™@ö¦¼½ äœ@A2ʉ`™@ŸÂÕ¹¼ñ•@ü¤`h3”@j«TV'˜•@—ùggï‡@a&®Òa”@(Ö&Ó%‚@®U™lõ‘@–ð0«vs€@Ì42Œ^š@'gÙûÚ$‘@:R+Úï/™@ƒYî2§<‘@ /ªOº@Ã@jK @Éh¼«|š@™BÜ“Κ@–\ƒ»}R‘@é1/£Vì‰@üÁð—@’4$A=q@øõoð8)‘@HÜ·  ¤@™b•¿ÿ°’@ÿÛF½ —@ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?statistics-release-1.6.3/inst/datasets/mileage.mat000066400000000000000000000003031456127120000222160ustar00rootroot00000000000000Octave-1-Lmileageÿmatrixþÿÿÿfffff¦@@33333³@@33333s@@ÍÌÌÌÌL@@@@@€@@@A@ffffffA@fffffæ@@33333³@@š™™™™Ù@@33333ó@@33333³B@ffffffB@ÍÌÌÌÌÌB@ÍÌÌÌÌLB@€B@š™™™™YB@statistics-release-1.6.3/inst/datasets/morse.mat000066400000000000000000000256461456127120000217610ustar00rootroot00000000000000Octave-1-LY0ÿmatrixþÿÿÿ$Ð?è?è?à?è?à?è?Ð?è?à?è?Ð?Ð?à?è?è?à?à?à?è?à?è?è?è?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?š™™™™™É?333333ã?š™™™™™Ù?š™™™™™Ù?š™™™™™É?333333ã?š™™™™™É?š™™™™™é?š™™™™™Ù?š™™™™™É?š™™™™™É?333333ã?š™™™™™É?š™™™™™Ù?š™™™™™Ù?š™™™™™Ù?333333ã?š™™™™™Ù?333333ã?š™™™™™É?š™™™™™Ù?š™™™™™É?š™™™™™Ù?š™™™™™É?š™™™™™Ù?333333ã?š™™™™™é?ð?š™™™™™é?333333ã?š™™™™™Ù?š™™™™™É?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?š™™™™™Ù?ð?š™™™™™Ù?š™™™™™Ù?š™™™™™Ù?š™™™™™Ù?š™™™™™Ù?š™™™™™Ù?š™™™™™Ù?š™™™™™Ù?ð?š™™™™™Ù?š™™™™™Ù?š™™™™™Ù?š™™™™™Ù?š™™™™™Ù?š™™™™™Ù?š™™™™™Ù?ð?š™™™™™Ù?ð?š™™™™™Ù?ð?š™™™™™Ù?š™™™™™Ù?ð?ð?š™™™™™Ù?š™™™™™Ù?ð?š™™™™™Ù?š™™™™™Ù?š™™™™™Ù?š™™™™™Ù?š™™™™™Ù?š™™™™™Ù?š™™™™™Ù?š™™™™™Ù?ð?ð?ð?ð?ð?š™™™™™Ù?ð?ð?ð?ð?š™™™™™Ù?ð?ð?ð?ð?š™™™™™Ù?ð?š™™™™™Ù?š™™™™™Ù?š™™™™™Ù?š™™™™™Ù?š™™™™™Ù?š™™™™™Ù?š™™™™™Ù?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?š™™™™™Ù?š™™™™™Ù?š™™™™™Ù?š™™™™™Ù?š™™™™™Ù?V-²?Év¾Ÿ/­?j¼t“¶?Év¾Ÿ/½?çû©ñÒMÂ?ÙÎ÷SãÅ?š™™™™™É?Zd;ßOÍ?¦›Ä °rÐ?çû©ñÒMÒ?j¼t“Ô?ÁÊ¡E¶óÕ?X9´Èv¾×?š™™™™™Ù?Ûù~j¼tÛ?sh‘í|?Ý?´Èv¾Ÿß?¦›Ä °rà?ÇK7‰A`á?ƒÀÊ¡Eâ?333333ã?Tã¥›Ä ä? /Ý$å?ÁÊ¡E¶óå? +‡Ùæ?-²ï§Æç?yé&1¬è?š™™™™™é?ºI +‡ê?•C‹lë?'1¬Zì?sh‘í|?í?“V-î?ßO—nï?ð?dissimilaritiesÿmatrixþÿÿÿvàd@ e@àc@€f@€d@`d@`d@ÀR@ d@€c@ e@`a@^@ d@€d@Àd@``@€b@ e@À`@Àd@c@€d@@d@ e@€e@àd@@e@@e@Àd@àd@Àd@€e@@f@Àe@X@ÀS@`d@ÀW@`a@@Z@ d@ a@@]@€N@@d@`d@àb@À^@@`@ a@@a@e@@`@@_@ a@;@@]@ÀT@àb@Àa@€b@€\@@X@2@@W@ `@ c@`e@ a@Àd@À\@ a@b@@d@À\@]@ÀW@€d@€d@b@€U@€Z@À`@€d@f@@d@b@ `@@Y@=@ÀV@€b@`a@@^@àa@c@À\@€^@\@ a@Àc@€e@a@Y@€\@àc@àb@9@@R@@d@b@àc@€`@àc@ÀZ@@_@ e@€`@b@@_@^@b@_@Àd@`d@`d@@c@`c@€a@àb@ d@`e@Àe@àf@Àf@`e@`d@`f@Àf@àd@Àf@@f@ e@Àe@`f@ e@àe@T@àf@ f@€e@€f@ e@ f@Àe@`f@Àe@àe@€f@`f@ e@ f@g@àf@€c@]@@e@€]@€b@€Y@@d@ d@ c@ÀW@@c@[@@b@ f@@`@€_@À\@À`@À^@Àa@ d@àa@@X@ `@@[@``@ `@àc@@e@€e@`d@€e@à`@À^@€b@àa@d@C@ÀX@€b@@`@f@ f@ c@@d@À]@ b@``@@^@@b@c@ d@`c@€e@€d@c@ a@`b@àc@Àc@ c@Àc@€]@@e@€c@Àc@b@ d@Àa@ÀU@ e@€[@@T@ b@`a@Àb@ c@€d@€d@@b@@]@D@€_@àb@Àd@@e@Àe@`e@Àe@@c@e@àa@@e@@e@ f@@c@@a@àc@`c@àe@àd@ f@ e@Àd@ e@c@ e@Àd@@e@`e@àd@@f@@f@ f@À_@€[@@d@€e@À[@;@€Y@ b@f@e@@d@ c@ a@À]@@[@@^@@R@€T@À\@@a@@c@àb@€]@\@^@€_@@]@@c@€c@^@@b@`@à`@€e@`e@@]@€a@À\@@Q@ b@`a@ d@@d@@c@àc@ e@Àb@ b@ c@`e@`e@e@ e@ c@€U@À\@\@d@@e@``@]@À`@Z@ `@€O@b@€b@Àa@ a@@[@€]@ÀY@ b@`d@Àe@Q@àd@€d@ d@ b@€f@ f@ d@€f@@b@e@àc@€d@Àd@f@`e@f@`f@`e@`d@àe@ d@g@Àd@ d@ e@€a@d@Àe@ c@€f@ d@€e@àd@àd@ d@ f@Àe@àe@`f@ e@@e@Àe@`d@Àf@À[@^@àb@ e@€e@@d@`c@@^@€]@``@``@ a@ a@d@Àd@Àd@ b@Àb@Àb@`b@àa@T@€]@€d@€d@b@`a@@`@À^@€X@@T@ÀY@ÀV@[@b@ b@@a@[@ a@€]@àa@àc@Àf@€f@Àd@àc@€a@U@ÀR@€E@@\@^@ a@`a@ d@€^@@X@@S@@\@€`@ b@ f@@]@`a@I@@c@€c@`b@`c@d@àb@ d@ d@c@ c@ d@€e@ f@f@€T@ c@Àc@ d@ e@€e@e@@f@ e@ d@``@ d@@e@Àe@f@ g@àe@ f@Àe@Àf@f@Àe@ e@ f@ e@`f@ f@ e@€e@àe@Àd@€f@X@€_@`c@€d@d@e@@e@àc@``@àc@d@Àd@ e@Àe@`f@ a@@[@@`@Àc@@c@ c@À`@€G@@W@€\@`a@€d@`f@@f@À`@€_@`a@@b@Àa@`b@àb@€d@€c@àb@€d@Àd@`e@@U@]@@b@àa@``@]@^@P@@]@€a@@c@àd@[@@_@@Y@ÀZ@a@`c@€[@À]@ÀZ@ `@ b@ `@Àa@À`@€d@ c@À[@L@ÀS@`a@@b@H@`a@d@Àb@ b@`@ÀX@€N@@R@€L@€`@€d@ b@@_@`@@_@@b@Y@À^@ÀZ@ a@Àa@d@ d@Q@@[@À_@c@ d@ e@À]@`a@d@`e@Àe@€E@ `@`d@@b@F@€\@ b@€O@@Z@:@ morseCharsÿcellþÿÿÿ$ÿ sq_stringþÿÿÿAÿ sq_stringþÿÿÿBÿ sq_stringþÿÿÿCÿ sq_stringþÿÿÿDÿ sq_stringþÿÿÿEÿ sq_stringþÿÿÿFÿ sq_stringþÿÿÿGÿ sq_stringþÿÿÿHÿ sq_stringþÿÿÿIÿ sq_stringþÿÿÿJÿ sq_stringþÿÿÿKÿ sq_stringþÿÿÿLÿ sq_stringþÿÿÿMÿ sq_stringþÿÿÿNÿ sq_stringþÿÿÿOÿ sq_stringþÿÿÿPÿ sq_stringþÿÿÿQÿ sq_stringþÿÿÿRÿ sq_stringþÿÿÿSÿ sq_stringþÿÿÿTÿ sq_stringþÿÿÿUÿ sq_stringþÿÿÿVÿ sq_stringþÿÿÿWÿ sq_stringþÿÿÿXÿ sq_stringþÿÿÿYÿ sq_stringþÿÿÿZÿ sq_stringþÿÿÿ1ÿ sq_stringþÿÿÿ2ÿ sq_stringþÿÿÿ3ÿ sq_stringþÿÿÿ4ÿ sq_stringþÿÿÿ5ÿ sq_stringþÿÿÿ6ÿ sq_stringþÿÿÿ7ÿ sq_stringþÿÿÿ8ÿ sq_stringþÿÿÿ9ÿ sq_stringþÿÿÿ0ÿ sq_stringþÿÿÿ.-ÿ sq_stringþÿÿÿ-...ÿ sq_stringþÿÿÿ-.-.ÿ sq_stringþÿÿÿ-..ÿ sq_stringþÿÿÿ.ÿ sq_stringþÿÿÿ..-.ÿ sq_stringþÿÿÿ--.ÿ sq_stringþÿÿÿ....ÿ sq_stringþÿÿÿ..ÿ sq_stringþÿÿÿ.---ÿ sq_stringþÿÿÿ-.-ÿ sq_stringþÿÿÿ.-..ÿ sq_stringþÿÿÿ--ÿ sq_stringþÿÿÿ-.ÿ sq_stringþÿÿÿ---ÿ sq_stringþÿÿÿ.--.ÿ sq_stringþÿÿÿ--.-ÿ sq_stringþÿÿÿ.-.ÿ sq_stringþÿÿÿ...ÿ sq_stringþÿÿÿ-ÿ sq_stringþÿÿÿ..-ÿ sq_stringþÿÿÿ...-ÿ sq_stringþÿÿÿ.--ÿ sq_stringþÿÿÿ-..-ÿ sq_stringþÿÿÿ-.--ÿ sq_stringþÿÿÿ--..ÿ sq_stringþÿÿÿ.----ÿ sq_stringþÿÿÿ..---ÿ sq_stringþÿÿÿ...--ÿ sq_stringþÿÿÿ....-ÿ sq_stringþÿÿÿ.....ÿ sq_stringþÿÿÿ-....ÿ sq_stringþÿÿÿ--...ÿ sq_stringþÿÿÿ---..ÿ sq_stringþÿÿÿ----.ÿ sq_stringþÿÿÿ-----statistics-release-1.6.3/inst/datasets/patients.mat000066400000000000000000000660711456127120000224600ustar00rootroot00000000000000Octave-1-LAgeÿmatrixþÿÿÿdC@€E@C@D@€H@G@€@@D@<@?@€F@E@9@€C@B@H@@@;@€B@I@H@€C@€D@F@<@9@€C@9@B@>@€F@D@9@€G@F@H@F@€A@€@@C@€C@F@F@€B@€F@€B@>@€C@E@E@€H@F@€E@€G@I@C@€D@€F@B@C@=@<@>@<@=@B@€F@@@?@H@9@D@€C@€D@€@@?@€A@@@E@H@A@€C@<@=@@@€C@€B@€H@?@€B@C@€F@>@H@H@9@F@€H@€F@H@ Diastolicÿmatrixþÿÿÿd@W@@S@ÀT@ÀR@T@€Q@V@€T@€S@€U@@S@Q@€R@ÀW@ÀS@W@ÀW@ÀS@@S@S@ÀR@ÀS@V@€V@X@@S@T@S@ÀT@@V@W@ÀT@T@U@W@ÀT@€V@@U@€V@€R@W@T@@V@X@@V@@S@@T@S@ÀT@€S@ÀW@ÀV@ÀV@€U@@V@ÀS@€R@€T@S@@T@@S@@R@@U@S@T@T@ÀS@€T@ÀS@€T@ÀR@ÀV@€R@€S@@U@U@ÀR@€S@@T@ÀS@@U@ÀS@€T@T@T@W@W@X@ÀU@@T@€V@@S@ÀV@ÀS@@R@ÀX@W@€R@@W@€U@Genderÿcellþÿÿÿdÿ sq_stringþÿÿÿMaleÿ sq_stringþÿÿÿMaleÿ sq_stringþÿÿÿFemaleÿ sq_stringþÿÿÿFemaleÿ sq_stringþÿÿÿFemaleÿ sq_stringþÿÿÿFemaleÿ sq_stringþÿÿÿFemaleÿ sq_stringþÿÿÿMaleÿ sq_stringþÿÿÿMaleÿ sq_stringþÿÿÿFemaleÿ sq_stringþÿÿÿFemaleÿ sq_stringþÿÿÿFemaleÿ sq_stringþÿÿÿMaleÿ sq_stringþÿÿÿMaleÿ sq_stringþÿÿÿFemaleÿ sq_stringþÿÿÿMaleÿ sq_stringþÿÿÿMaleÿ sq_stringþÿÿÿFemaleÿ sq_stringþÿÿÿMaleÿ sq_stringþÿÿÿMaleÿ sq_stringþÿÿÿFemaleÿ sq_stringþÿÿÿFemaleÿ sq_stringþÿÿÿFemaleÿ sq_stringþÿÿÿFemaleÿ sq_stringþÿÿÿFemaleÿ sq_stringþÿÿÿMaleÿ sq_stringþÿÿÿFemaleÿ sq_stringþÿÿÿFemaleÿ sq_stringþÿÿÿMaleÿ sq_stringþÿÿÿMaleÿ sq_stringþÿÿÿFemaleÿ sq_stringþÿÿÿFemaleÿ sq_stringþÿÿÿFemaleÿ sq_stringþÿÿÿMaleÿ sq_stringþÿÿÿMaleÿ sq_stringþÿÿÿFemaleÿ sq_stringþÿÿÿMaleÿ sq_stringþÿÿÿFemaleÿ sq_stringþÿÿÿMaleÿ sq_stringþÿÿÿFemaleÿ sq_stringþÿÿÿMaleÿ sq_stringþÿÿÿMaleÿ sq_stringþÿÿÿMaleÿ sq_stringþÿÿÿMaleÿ sq_stringþÿÿÿMaleÿ sq_stringþÿÿÿFemaleÿ sq_stringþÿÿÿMaleÿ sq_stringþÿÿÿFemaleÿ sq_stringþÿÿÿMaleÿ sq_stringþÿÿÿMaleÿ sq_stringþÿÿÿMaleÿ sq_stringþÿÿÿFemaleÿ sq_stringþÿÿÿFemaleÿ sq_stringþÿÿÿFemaleÿ sq_stringþÿÿÿMaleÿ sq_stringþÿÿÿFemaleÿ sq_stringþÿÿÿFemaleÿ sq_stringþÿÿÿMaleÿ sq_stringþÿÿÿMaleÿ sq_stringþÿÿÿFemaleÿ sq_stringþÿÿÿFemaleÿ sq_stringþÿÿÿFemaleÿ sq_stringþÿÿÿFemaleÿ sq_stringþÿÿÿFemaleÿ sq_stringþÿÿÿFemaleÿ sq_stringþÿÿÿMaleÿ sq_stringþÿÿÿFemaleÿ sq_stringþÿÿÿFemaleÿ sq_stringþÿÿÿFemaleÿ sq_stringþÿÿÿFemaleÿ sq_stringþÿÿÿMaleÿ sq_stringþÿÿÿFemaleÿ sq_stringþÿÿÿMaleÿ sq_stringþÿÿÿFemaleÿ sq_stringþÿÿÿFemaleÿ sq_stringþÿÿÿMaleÿ sq_stringþÿÿÿFemaleÿ sq_stringþÿÿÿMaleÿ sq_stringþÿÿÿMaleÿ sq_stringþÿÿÿFemaleÿ sq_stringþÿÿÿMaleÿ sq_stringþÿÿÿMaleÿ sq_stringþÿÿÿMaleÿ sq_stringþÿÿÿFemaleÿ sq_stringþÿÿÿFemaleÿ sq_stringþÿÿÿMaleÿ sq_stringþÿÿÿFemaleÿ sq_stringþÿÿÿFemaleÿ sq_stringþÿÿÿFemaleÿ sq_stringþÿÿÿFemaleÿ sq_stringþÿÿÿMaleÿ sq_stringþÿÿÿMaleÿ sq_stringþÿÿÿFemaleÿ sq_stringþÿÿÿMaleÿ sq_stringþÿÿÿFemaleÿ sq_stringþÿÿÿMaleÿ sq_stringþÿÿÿMaleÿ sq_stringþÿÿÿMaleÿ sq_stringþÿÿÿMaleÿ sq_stringþÿÿÿMaleHeightÿmatrixþÿÿÿdÀQ@@Q@P@ÀP@P@Q@P@Q@Q@€P@Q@€P@ÀQ@R@@P@ÀQ@@Q@@Q@€Q@Q@@P@P@O@€P@@P@€Q@€O@€O@Q@ÀP@€Q@€P@P@€Q@ÀQ@€P@ÀQ@€P@€P@€O@ÀQ@@Q@€Q@€Q@ÀP@@P@Q@O@€Q@ÀP@Q@O@P@€P@R@€O@€P@€Q@ÀQ@Q@€O@@P@ÀP@€P@Q@ÀQ@€Q@N@P@P@€P@P@R@@P@ÀP@R@P@Q@€P@P@Q@@Q@@Q@P@€O@Q@@P@€O@€P@@P@Q@ÀQ@€Q@ÀQ@€P@@Q@@Q@€Q@Q@€P@LastNameÿcellþÿÿÿdÿ sq_stringþÿÿÿSmithÿ sq_stringþÿÿÿJohnsonÿ sq_stringþÿÿÿWilliamsÿ sq_stringþÿÿÿJonesÿ sq_stringþÿÿÿBrownÿ sq_stringþÿÿÿDavisÿ sq_stringþÿÿÿMillerÿ sq_stringþÿÿÿWilsonÿ sq_stringþÿÿÿMooreÿ sq_stringþÿÿÿTaylorÿ sq_stringþÿÿÿAndersonÿ sq_stringþÿÿÿThomasÿ sq_stringþÿÿÿJacksonÿ sq_stringþÿÿÿWhiteÿ sq_stringþÿÿÿHarrisÿ sq_stringþÿÿÿMartinÿ sq_stringþÿÿÿThompsonÿ sq_stringþÿÿÿGarciaÿ sq_stringþÿÿÿMartinezÿ sq_stringþÿÿÿRobinsonÿ sq_stringþÿÿÿClarkÿ sq_stringþÿÿÿ Rodriguezÿ sq_stringþÿÿÿLewisÿ sq_stringþÿÿÿLeeÿ sq_stringþÿÿÿWalkerÿ sq_stringþÿÿÿHallÿ sq_stringþÿÿÿAllenÿ sq_stringþÿÿÿYoungÿ sq_stringþÿÿÿ Hernandezÿ sq_stringþÿÿÿKingÿ sq_stringþÿÿÿWrightÿ sq_stringþÿÿÿLopezÿ sq_stringþÿÿÿHillÿ sq_stringþÿÿÿScottÿ sq_stringþÿÿÿGreenÿ sq_stringþÿÿÿAdamsÿ sq_stringþÿÿÿBakerÿ sq_stringþÿÿÿGonzalezÿ sq_stringþÿÿÿNelsonÿ sq_stringþÿÿÿCarterÿ sq_stringþÿÿÿMitchellÿ sq_stringþÿÿÿPerezÿ sq_stringþÿÿÿRobertsÿ sq_stringþÿÿÿTurnerÿ sq_stringþÿÿÿPhillipsÿ sq_stringþÿÿÿCampbellÿ sq_stringþÿÿÿParkerÿ sq_stringþÿÿÿEvansÿ sq_stringþÿÿÿEdwardsÿ sq_stringþÿÿÿCollinsÿ sq_stringþÿÿÿStewartÿ sq_stringþÿÿÿSanchezÿ sq_stringþÿÿÿMorrisÿ sq_stringþÿÿÿRogersÿ sq_stringþÿÿÿReedÿ sq_stringþÿÿÿCookÿ sq_stringþÿÿÿMorganÿ sq_stringþÿÿÿBellÿ sq_stringþÿÿÿMurphyÿ sq_stringþÿÿÿBaileyÿ sq_stringþÿÿÿRiveraÿ sq_stringþÿÿÿCooperÿ sq_stringþÿÿÿ Richardsonÿ sq_stringþÿÿÿCoxÿ sq_stringþÿÿÿHowardÿ sq_stringþÿÿÿWardÿ sq_stringþÿÿÿTorresÿ sq_stringþÿÿÿPetersonÿ sq_stringþÿÿÿGrayÿ sq_stringþÿÿÿRamirezÿ sq_stringþÿÿÿJamesÿ sq_stringþÿÿÿWatsonÿ sq_stringþÿÿÿBrooksÿ sq_stringþÿÿÿKellyÿ sq_stringþÿÿÿSandersÿ sq_stringþÿÿÿPriceÿ sq_stringþÿÿÿBennettÿ sq_stringþÿÿÿWoodÿ sq_stringþÿÿÿBarnesÿ sq_stringþÿÿÿRossÿ sq_stringþÿÿÿ Hendersonÿ sq_stringþÿÿÿColemanÿ sq_stringþÿÿÿJenkinsÿ sq_stringþÿÿÿPerryÿ sq_stringþÿÿÿPowellÿ sq_stringþÿÿÿLongÿ sq_stringþÿÿÿ Pattersonÿ sq_stringþÿÿÿHughesÿ sq_stringþÿÿÿFloresÿ sq_stringþÿÿÿ Washingtonÿ sq_stringþÿÿÿButlerÿ sq_stringþÿÿÿSimmonsÿ sq_stringþÿÿÿFosterÿ sq_stringþÿÿÿGonzalesÿ sq_stringþÿÿÿBryantÿ sq_stringþÿÿÿ Alexanderÿ sq_stringþÿÿÿRussellÿ sq_stringþÿÿÿGriffinÿ sq_stringþÿÿÿDiazÿ sq_stringþÿÿÿHayesLocationÿcellþÿÿÿdÿ sq_stringþÿÿÿCounty General Hospitalÿ sq_stringþÿÿÿ VA Hospitalÿ sq_stringþÿÿÿSt. Mary's Medical Centerÿ sq_stringþÿÿÿ VA Hospitalÿ sq_stringþÿÿÿCounty General Hospitalÿ sq_stringþÿÿÿSt. Mary's Medical Centerÿ sq_stringþÿÿÿ VA Hospitalÿ sq_stringþÿÿÿ VA Hospitalÿ sq_stringþÿÿÿSt. Mary's Medical Centerÿ sq_stringþÿÿÿCounty General Hospitalÿ sq_stringþÿÿÿCounty General Hospitalÿ sq_stringþÿÿÿSt. Mary's Medical Centerÿ sq_stringþÿÿÿ VA Hospitalÿ sq_stringþÿÿÿ VA Hospitalÿ sq_stringþÿÿÿSt. Mary's Medical Centerÿ sq_stringþÿÿÿ VA Hospitalÿ sq_stringþÿÿÿSt. Mary's Medical Centerÿ sq_stringþÿÿÿ VA Hospitalÿ sq_stringþÿÿÿCounty General Hospitalÿ sq_stringþÿÿÿCounty General Hospitalÿ sq_stringþÿÿÿ VA Hospitalÿ sq_stringþÿÿÿ VA Hospitalÿ sq_stringþÿÿÿ VA Hospitalÿ sq_stringþÿÿÿCounty General Hospitalÿ sq_stringþÿÿÿCounty General Hospitalÿ sq_stringþÿÿÿ VA Hospitalÿ sq_stringþÿÿÿ VA Hospitalÿ sq_stringþÿÿÿCounty General Hospitalÿ sq_stringþÿÿÿCounty General Hospitalÿ sq_stringþÿÿÿCounty General Hospitalÿ sq_stringþÿÿÿ VA Hospitalÿ sq_stringþÿÿÿ VA Hospitalÿ sq_stringþÿÿÿSt. Mary's Medical Centerÿ sq_stringþÿÿÿSt. Mary's Medical Centerÿ sq_stringþÿÿÿCounty General Hospitalÿ sq_stringþÿÿÿ VA Hospitalÿ sq_stringþÿÿÿ VA Hospitalÿ sq_stringþÿÿÿSt. Mary's Medical Centerÿ sq_stringþÿÿÿSt. Mary's Medical Centerÿ sq_stringþÿÿÿSt. Mary's Medical Centerÿ sq_stringþÿÿÿCounty General Hospitalÿ sq_stringþÿÿÿ VA Hospitalÿ sq_stringþÿÿÿ VA Hospitalÿ sq_stringþÿÿÿ VA Hospitalÿ sq_stringþÿÿÿ VA Hospitalÿ sq_stringþÿÿÿCounty General Hospitalÿ sq_stringþÿÿÿ VA Hospitalÿ sq_stringþÿÿÿCounty General Hospitalÿ sq_stringþÿÿÿCounty General Hospitalÿ sq_stringþÿÿÿCounty General Hospitalÿ sq_stringþÿÿÿCounty General Hospitalÿ sq_stringþÿÿÿSt. Mary's Medical Centerÿ sq_stringþÿÿÿCounty General Hospitalÿ sq_stringþÿÿÿ VA Hospitalÿ sq_stringþÿÿÿ VA Hospitalÿ sq_stringþÿÿÿ VA Hospitalÿ sq_stringþÿÿÿSt. Mary's Medical Centerÿ sq_stringþÿÿÿSt. Mary's Medical Centerÿ sq_stringþÿÿÿ VA Hospitalÿ sq_stringþÿÿÿSt. Mary's Medical Centerÿ sq_stringþÿÿÿCounty General Hospitalÿ sq_stringþÿÿÿ VA Hospitalÿ sq_stringþÿÿÿCounty General Hospitalÿ sq_stringþÿÿÿCounty General Hospitalÿ sq_stringþÿÿÿ VA Hospitalÿ sq_stringþÿÿÿSt. Mary's Medical Centerÿ sq_stringþÿÿÿCounty General Hospitalÿ sq_stringþÿÿÿCounty General Hospitalÿ sq_stringþÿÿÿ VA Hospitalÿ sq_stringþÿÿÿCounty General Hospitalÿ sq_stringþÿÿÿCounty General Hospitalÿ sq_stringþÿÿÿ VA Hospitalÿ sq_stringþÿÿÿSt. Mary's Medical Centerÿ sq_stringþÿÿÿSt. Mary's Medical Centerÿ sq_stringþÿÿÿSt. Mary's Medical Centerÿ sq_stringþÿÿÿ VA Hospitalÿ sq_stringþÿÿÿCounty General Hospitalÿ sq_stringþÿÿÿSt. Mary's Medical Centerÿ sq_stringþÿÿÿCounty General Hospitalÿ sq_stringþÿÿÿ VA Hospitalÿ sq_stringþÿÿÿSt. Mary's Medical Centerÿ sq_stringþÿÿÿ VA Hospitalÿ sq_stringþÿÿÿCounty General Hospitalÿ sq_stringþÿÿÿSt. Mary's Medical Centerÿ sq_stringþÿÿÿ VA Hospitalÿ sq_stringþÿÿÿCounty General Hospitalÿ sq_stringþÿÿÿCounty General Hospitalÿ sq_stringþÿÿÿCounty General Hospitalÿ sq_stringþÿÿÿ VA Hospitalÿ sq_stringþÿÿÿSt. Mary's Medical Centerÿ sq_stringþÿÿÿCounty General Hospitalÿ sq_stringþÿÿÿ VA Hospitalÿ sq_stringþÿÿÿSt. Mary's Medical Centerÿ sq_stringþÿÿÿCounty General Hospitalÿ sq_stringþÿÿÿCounty General Hospitalÿ sq_stringþÿÿÿCounty General Hospitalÿ sq_stringþÿÿÿ VA Hospitalÿ sq_stringþÿÿÿCounty General Hospitalÿ sq_stringþÿÿÿCounty General Hospitalÿ sq_stringþÿÿÿCounty General HospitalSelfAssessedHealthStatusÿcellþÿÿÿdÿ sq_stringþÿÿÿ Excellentÿ sq_stringþÿÿÿFairÿ sq_stringþÿÿÿGoodÿ sq_stringþÿÿÿFairÿ sq_stringþÿÿÿGoodÿ sq_stringþÿÿÿGoodÿ sq_stringþÿÿÿGoodÿ sq_stringþÿÿÿGoodÿ sq_stringþÿÿÿ Excellentÿ sq_stringþÿÿÿ Excellentÿ sq_stringþÿÿÿ Excellentÿ sq_stringþÿÿÿPoorÿ sq_stringþÿÿÿPoorÿ sq_stringþÿÿÿ Excellentÿ sq_stringþÿÿÿGoodÿ sq_stringþÿÿÿGoodÿ sq_stringþÿÿÿ Excellentÿ sq_stringþÿÿÿFairÿ sq_stringþÿÿÿGoodÿ sq_stringþÿÿÿGoodÿ sq_stringþÿÿÿ Excellentÿ sq_stringþÿÿÿFairÿ sq_stringþÿÿÿFairÿ sq_stringþÿÿÿFairÿ sq_stringþÿÿÿGoodÿ sq_stringþÿÿÿPoorÿ sq_stringþÿÿÿ Excellentÿ sq_stringþÿÿÿGoodÿ sq_stringþÿÿÿPoorÿ sq_stringþÿÿÿ Excellentÿ sq_stringþÿÿÿ Excellentÿ sq_stringþÿÿÿPoorÿ sq_stringþÿÿÿ Excellentÿ sq_stringþÿÿÿ Excellentÿ sq_stringþÿÿÿGoodÿ sq_stringþÿÿÿ Excellentÿ sq_stringþÿÿÿGoodÿ sq_stringþÿÿÿFairÿ sq_stringþÿÿÿGoodÿ sq_stringþÿÿÿGoodÿ sq_stringþÿÿÿFairÿ sq_stringþÿÿÿ Excellentÿ sq_stringþÿÿÿGoodÿ sq_stringþÿÿÿ Excellentÿ sq_stringþÿÿÿGoodÿ sq_stringþÿÿÿFairÿ sq_stringþÿÿÿPoorÿ sq_stringþÿÿÿGoodÿ sq_stringþÿÿÿ Excellentÿ sq_stringþÿÿÿGoodÿ sq_stringþÿÿÿPoorÿ sq_stringþÿÿÿGoodÿ sq_stringþÿÿÿPoorÿ sq_stringþÿÿÿ Excellentÿ sq_stringþÿÿÿ Excellentÿ sq_stringþÿÿÿ Excellentÿ sq_stringþÿÿÿGoodÿ sq_stringþÿÿÿGoodÿ sq_stringþÿÿÿGoodÿ sq_stringþÿÿÿGoodÿ sq_stringþÿÿÿ Excellentÿ sq_stringþÿÿÿGoodÿ sq_stringþÿÿÿ Excellentÿ sq_stringþÿÿÿGoodÿ sq_stringþÿÿÿ Excellentÿ sq_stringþÿÿÿGoodÿ sq_stringþÿÿÿ Excellentÿ sq_stringþÿÿÿ Excellentÿ sq_stringþÿÿÿ Excellentÿ sq_stringþÿÿÿ Excellentÿ sq_stringþÿÿÿGoodÿ sq_stringþÿÿÿFairÿ sq_stringþÿÿÿ Excellentÿ sq_stringþÿÿÿPoorÿ sq_stringþÿÿÿ Excellentÿ sq_stringþÿÿÿFairÿ sq_stringþÿÿÿFairÿ sq_stringþÿÿÿPoorÿ sq_stringþÿÿÿ Excellentÿ sq_stringþÿÿÿGoodÿ sq_stringþÿÿÿGoodÿ sq_stringþÿÿÿ Excellentÿ sq_stringþÿÿÿGoodÿ sq_stringþÿÿÿGoodÿ sq_stringþÿÿÿ Excellentÿ sq_stringþÿÿÿGoodÿ sq_stringþÿÿÿPoorÿ sq_stringþÿÿÿGoodÿ sq_stringþÿÿÿGoodÿ sq_stringþÿÿÿGoodÿ sq_stringþÿÿÿ Excellentÿ sq_stringþÿÿÿ Excellentÿ sq_stringþÿÿÿFairÿ sq_stringþÿÿÿGoodÿ sq_stringþÿÿÿ Excellentÿ sq_stringþÿÿÿGoodÿ sq_stringþÿÿÿGoodÿ sq_stringþÿÿÿFairÿ sq_stringþÿÿÿGoodÿ sq_stringþÿÿÿFairSmokerÿ bool matrixþÿÿÿdSystolicÿmatrixþÿÿÿd_@@[@@_@@]@€^@@^@@`@À\@À\@€]@€\@À\@À_@@`@€\@@`@_@À^@À]@@_@@^@À^@€\@`@ `@€\@@\@@_@^@À_@À`@@^@À\@À_@@^@À_@a@@]@_@^@`@]@€`@ a@@]@]@À]@À^@]@_@ `@@`@€`@@]@ `@€]@^@@a@@]@@\@€^@À\@^@@]@À^@À^@À]@€[@@^@@a@@_@€^@^@@]@@_@_@@^@€]@^@€]@€]@€^@À`@``@@\@@_@à`@`@À^@€^@@a@_@@`@À^@ `@`@_@À]@a@€\@Weightÿmatrixþÿÿÿdf@`d@``@ `@À]@Àa@Àa@€f@àf@€`@`@ a@Àe@@i@ `@ f@àg@``@`f@€e@ `@@]@ a@@b@À^@ g@àa@€\@Àd@@g@€_@ a@@a@`g@ h@ a@h@€]@€f@`@€d@àf@ e@@h@€e@à`@Àf@@^@Àc@`f@@e@a@à`@`b@@g@_@À`@@e@€f@@`@@`@À_@ a@À[@À`@ g@ a@a@@`@ a@@g@À_@f@À_@À\@@f@``@àf@@h@€_@@g@€g@ g@^@€`@Àf@^@À^@ a@ `@g@ f@_@Àe@À`@`e@€g@@g@€e@ f@statistics-release-1.6.3/inst/datasets/popcorn.mat000066400000000000000000000003031456127120000222730ustar00rootroot00000000000000Octave-1-Lpopcornÿmatrixþÿÿÿ@@@@@@@@@@@@ @@@@@@statistics-release-1.6.3/inst/datasets/rundist.mat000066400000000000000000000227101456127120000223110ustar00rootroot00000000000000MATLAB 5.0 MAT-file, Platform: PCWIN, Created on: Fri Mar 31 11:35:28 2006 IM@%xœŒ™ <+õ; @‰%ìß81ëÃÁ ßJŸfÛÉ™ÊA`ýÿôádÐgõJŸE ™ÇCAF{?±ç¯13&}¸~ëC'­Ë"mÐ[ˆ¥ÆdýÉÜYMÜýW_[&}¹ô•ÿ»/mñÌ<ÀEˆ HúÂ Ä SM@Ö=NàN"Ë?™õçaПøwœy2 ªÅ¸˜êò ñ@#%`4›ìÞ /ÿzN™ôçeÐ_éïþðõ3@(×Þ³b,k6α•SwrR> qI {±Ý`gÝnñOfóð1˜Gåïyd`hœÐßù€G§9´ÞôIîƒÀ¡Þƒ÷ƒßÛߤ šEO¼…Ü"Vú<éLæáÿmúúxÿú+ß—[Vôí2‰D“ùÒÓtuN?ZGWÝ7‰hZÛžö˜¤ý¾Â#DS-7£P1š–~™¯¡_çz^d¥)EŒtd”^WÄVÿ‰î/—‰¿Õ üùþîÚ¿¢†2ûè}m3‘Ût?O"TÇhê˜n¹G„6/Ѳp³*M_’Ù: ´t$˜Ó®Ããl$-iÚù6õ›!M«ïM8èÐ4ÞŸ“sHï :L¬ø,dâS€ÏÐß|R¨“tu¬r ¤ûô­h¦é™àTkÚ<1ÚÇ%õ@ Vq$yƉv½ëÙÐÉ0( ð5÷NÁ‡·jµSA Q»;K»/{Øz2·(±Þ  Ý_rüÚGzxÁP@¤û-eâW_Êo~k©Tº–Š%ÓýšrMÒ´mt'AÆáÌ÷Û¼/W h~r?Wmÿvt÷võÖ×€\k<ÜRøfo|×kÎ[®bá­ °ïÄFëKO@ 4*ùpí~A¶LÒp3娷íŠïJ&¾…øŽÿÍ÷U€îWå,çušæG£t¾ƒ‡Jí@À×}®œçÂu%öÔ‚”±èú“ƒ`­JZ nø˜+ÈÛ¥¤ÀåjÚ¹íÞ#ùrqÕ~z$ åB!‹¸¡Ü¶§.>,`Èa:m1Ù9E¢OA þø’ϱ³+þk™øfàÿÌoþ§¨²tÿS7ÉiŸÎ¤LóϪ-oAY“A@ÃV£Øù xFa #ÛA*ʵ&—«@Ekt½ ]aÈñˆ¯Üi èSºˆ×2¨gZfI¿5dk«Tæ:3(4D*^UN²í¾6.ÿD23>!ÍVCËE{]66­ähd’C„AŽôßrÌS•iþ)ÞÑ_»iŠí½h ­?s n€À7gýCB@‚õpHý”T˜±ë¡5;¼ 6­2u…8Y¢]²¢ ¬¬e‘3P\¬ç_¹K§ÃOçÐËеêÇi™]— ²¼Ö™+Ug sœª÷9A&B=ÖÏâ¡›^%cæŸvÑrÕmÏâg‡èyZ™äe'÷·<‹T=úótn(d†¦·ƒ¾–ù€€üéŽpñ&ÚóÜu'æ¶d±n&>€ ñéÉò7‡C/ÝVŤg@E¡RiòÈ=HËýãfŠí èrO~˜–b7ôéaÊ»”A¨wéÓpÛÕ!脈b¤þ÷^¾L<Ô>ñêOÔ @?A‡m@qräÐiõDÃ-Œ¶NgÂö_$­äêb’KŒA®Âßr-SMiyúÛÕùiï'ú¶ ) áÉ‚1Ïx¦¦ãÛÂ’´u"ÌiˆgÍ*×]‡,o ˜¶B› =ÉG3'!›MÞ0¸¡ó¼ ¸ÎZ-vu®dÌɯė÷ŠÏúE¬ Âü>ý¯Û×ÃWïµzuˆÀ»tõ7ßä`µi{±ø¶AH;½§’–s~ÿeÔJ¾&ùÄä+ý-•z€–8æ0®•Êu„?K@¢%^*…Ú®÷‹Æ»@Iò¹{{K  Óz‚1ý] 9Ë^ª’ ¶Ú±]kᇬ>¬¾gž/…»u[¬a¿Ýu¢l®p®ù¾¯/Þ°(Á>æS¬ßWû´³Äv3<ïxô¹+œÒ{ÔxÕ¶FÇd#4H°‹zcÉm9ØÏ¹ hÖybqÜdÀ®\½’sŒIN 9+ÍI¡R}h9•·Åùèƒ@A¾Ÿd ¸q6³gÜ6ä¿Q@9›˜Éq„åý8ޙרf*¼á†³+æFHg5aͬ¹@!xÆ/>æXl16faÜ’«Y‡ðôŸº óßù¹ ez>ùòª~Yx%œødyQÿ*˜^4¯€ÝZ|9l‹ás»³>eÀ¤øB™høáŽQ]mgXX>¢[ÓCö3·ìÿ±’wŠIÞ5 òÖþš—öñtŒPLš®Û‚@™N‡Õ‡Ipvû#ùJGˆ+`š‹pñÈígyòõ(¾›r¸Öó–%\ ¿cÔþn­ªG>o’°³;žP?ˆy¡×°ž©4xÍq^W•/VÖð žP!PS¨pnÆé†46$¸µgJU€ ‹ýN}iµ—òó-fOÃÍ^—F®+ÀFf¸:Û÷œè o¬.€ÞÎ íBaÀd!ß¿A¦çžg’{-ƒÜ¿æ RShë¼,²&Ê$°Nl¢|€\yy&ãH êæ$xþ9]’M Ükºn·þ¶*ÈÍn ª~`t0žKý¾Eðl]—ê&NÁkM"L”‚ønÄ{úvž<ÒZ²D¹X£Èª˜$}›…¸g%ù BFÈùe©ÖRS¤)5mgD±rïÉ&È.F–ç"½‚Ì5‘¶IóÏ»äËrBI€ùHèåê÷ùÏ¿1M 0¸Ëuɼš* _ÉO÷å—d¿õ×üSTj Ð_^çòð8L»¾*Cç:Z/Ý€NTŠP%?òÀÁé¬N.ØÁN[¿ðpdÁÛ…šïÈÉ´Ãk_RÍ® ² "šÁk¢´‰1³ìý·2iŠë8"⌈E}¦V(‡"|½ñ,ñÈ’c£ü€JR¦Yõ¶§#ér¯î2ŽóáMfsç‘ÛPù¨ÎÓÈ¡©öçoCf±ËgF#*Í×¹'L‘·6tß‚°Ë*/Ÿ>²/Þ™É/«}¸Â‹ )º~å0O¥–€UÇÄ·4€”Ú@ÿôYSQ’ÕyÁÙ U°D¿N2Pƒùm“K™…ãˆzWϧ¼„]Ÿ&¼.Qæ@ú²Oˆùi"­Rä!‘n'¤kȶÌÞ5ñ˜½ã&Kò,­Uöºh¢ªœ¶yþòµÁb×°v7¢0T 6E!_ƒŒgï*"^½9)×Fiµö›3éTîùwˆüZ>kq‘§È£UÆuÖP".e1$¦xI_ ^¿™ì‹|Æ´-ùIÈ&ëµm©Bç!È„‡4¿òX¤RkHÀGWÕk@«3o©Îû@#ÎÜ/„¾AÄ!;‹³ðh‰;ûy¬ê˸¿–c ðUˆ7¿¢T¸LœˆõFÄ’‡ÔÊø3>OÁ¼Zäú×çbk ‡y{øƒ×˜Þ@ƒ£«†_pPJCÍ R”"Jy[6a5·æjáPCƒ"ç»™ª¢ÛöG#̶ ±*皎Ðç¶>I¡Õÿ˜d]3‡´‹}ž´Ò‹øù⣒…åHˆª„f»O bðÐ?â–,´Âe .ëpû•Ë2•ÚB„L®ñxêÜìVø‘µ‰lçÆeÖÂ-ìZXâà'á)ã̓ð‰*ã9]¯­Èƒ*³5ê"£ºwã“|ĆÃjØÛ†dØ\4×ïü¬{=îë²}º©¦ÄI=÷5Ò æ‚9ÚÞ,0×âŒrÞSÉ¢ù£ùÏ_y†£zvssÊg£dggwÓhìñ«“çÃŽ¡oÙ›ŸÚŒž%)v‡Ð¤„¡Oùr6èZ ƒ«5Aú¨ÏÉ]˜núzTø‰]v÷¹Hàð34Éø9BH¼:ÚØ»Â‡À„ >S¿ò¡R©ý¤ZÓŸ{%“§Á-¤q¬Ÿ%PdÝ.‰¡#zpl÷rº‰I| ç‡Ë†d7Pðz{D|2½îc.÷6ÙÒ»%ìh^Ï‹bK:¶êèse6÷Þ½èήÄsoÆBѽ±~©¾2ièåÃÛk]G] }E·ÅU¢–·òçv×£Aéïש„¼B«2' ý÷¼FÓõ­®%oEçEôó£_ z ¹·ìëPyQyÿèïwÑ≥GNWPß>ÎH¢8ôËtú¬ì*\rŸÍ!¡"µ7aEA´ò\–3;ñå '"N² 8Íÿ‰¶½ N’TBã•÷ð@SÉæ‹-Ð(Â\Zè tÐÆsìoá”'WÌŒïè"ëç«ë &#êq÷à½íH¹ÀR” zÁû>ºBèA]óÍö¬~(­ßâr產b^¥)S‰¾ÿÑ0vÉûO”·oüËö Tî8G]à*ãœßþEc5V\ïøªã™¦|døì¸¥,féÐÍw[ž%´VõÉb{‡e\õ‚×`5eÞÀal =¨?UÀVkp§ë×}D߯½"I¿Fÿ°=T½O­ ÍrˆþpW0íc‰D/îA†›ê'„Е¿2áE`À럋^´í •J2z°÷Ú‡š Ð µâ帥IHiñoÿ…x¸·xpL;™ ¹ÕL²ç²õ@„C" šÌ!v†Ï"Ä9P×Ï2XðŒ¶xÆÌ^ G#®7¡’bÐîv4#Kª`è:!]?[-†‰E' ­U°cs2~’0Æã©->g´«VùúÙæìA¬âÞ¦ûjž˜Êè1‘µÏ|1iî3bÁž~XkÑ£Ž[¼±~¹‚fvXQˆûþ^Lcth'ÐK¿þNzTB;—p‹[ÔG;Üî+¸€÷qnùЊ†%½iÉByºû·%جpÓbÂm=n\¿p£mo¨ qmüÑþœ]Ž‘ª°,®VªN¯½  ±ø[§­ˆK*Bt:Ø_x(ç•ø‘äÎÆ?µÑ бuaAúJÎ<',é.*j×·ƒá=á×´IZ;¹¡¤/¤G»b]²ÓÞ[>÷x¤üŠ?ÆzªW~wVV8¦ÖådyKó^­t+Œu k»‡Y?|¿.ªÁÆ‚¿ªJê0ñÈÞÐĆÇÇù’«¡N±\+ïLûr,cbÛRØu,ÓÝøAÕî ØèÓÜAöã˜âXirF´ æ¸8‹Õ<±ÜÇ3¦«­Áòíy$µí=úî~¿ã|gÎ ?}&üäðü…m{D•'„7fŽkZCyÆ»)YËÊpÎYE Gvx|Ûè[!kÄO>¾µ¡é<ò<áàt:Ry:<Ë =Ûº¸MbºýžþT¿ø ݼq¿úù=ìkdšMª‘1&±¶y Kl ¶™hYslñ&SR_ús¦Sý¦Þ§}²[劳@ ÃØÍ›3Ź]ß°ÚªÎá{çXñ,ãç‹d)>ü2kXÍgaa¼s眢zü׎þÏû„ñŒçbJÞòáýϼuDØð³CC3\³ëÕ—-|ÒÃØSëí6R/±…í¯šôÌJ±ÌR¾Éáú$LÓ¯®ÍYê F}¿ø\iQ 3¿ï ŸÚ2ºÂgÂqŽk~áHÛ^Q•AäýjS7|¡Ø*ÇÙeSØ>év÷<Ï<<™¦[w–‚l g{-:…T{E\¯1A ‰îä›»sQ{›ÛªÉÇFPïL¹ŸG<6`9*B;œ­ì°Œ`M΄Éxìô¥¥J‚Ì]líŒå«S.o0ëƒ[žÚ sØŽŸ âòR"øðóÝç]”ñWüϋ᭻ñÝÕ½î5¡Æ8[¾wÁB¤-þNÞ©ÁÕÁ /Ü$+ÊçŠkenÓ¶ntÅw؈>ÕpÆ=âê×Õ<Ý×.f|ßfñ úk@xµ§©÷‰ ®(HÝ_-÷‰Þ|•ú3»ä½ì–߉¼Šw\J+ÆFû&úx\‚0òþÕìÇÊØÊÿ ˜ð”gÀ“ð OÚöŒªšu$šŒ/ÇC3‰î\ZTØåš˜?dýóÂ+ ‘‡¼FuÁÃҨ܌ìˆÏ1Ôð§›l–WÚö–Ï0JG ³ïã’sÒÙ‡ýÑrñ¾ä™4¬Q>)ØYºãuwjK¦±&Ö Q—$𸖺öo©ÚøWØ›õý[kü^•ƒŸÞ¾µwIÔë$>¢&%÷¬ó~¾(×E²¾ÒaݱH,ÅC-Š+7¤Và=§ ÷UTâaío J|Pˆó§S9Þ-/`0 p }Àë–“wÌZ»ŸÅ­‰=Üž\Q¸*4—¢å‚Kï“.¯Ý„âßl2Ø Hr¸­ì HðÔ,6Z±ìóI½+«“w YájË„«®Ä_¸JóÐV~ó.T¹&úRŠp¦¦Àï"mM 2“ÀG´¸Ù†L©W<ž°$£{g6—é)– ï©„ì†þUØ]ÑŸ•‹昃Šo ÖQß/e]3Ö™þ´È½‰Ï^›¼-RÁ)ÓmÇ·äÚàA ßýŽÿ8}ÓòñªLÜX—»¶w¸ן²=tqäž¹sëi›Aüö×VuÊÓ¸éØŒš‰Îþñ %'ʼn¼ÁΟGl†‡¼Ñ¼©³â' ›/³á%ó^35´g'§\IÁL––pëD»ïoݧqͬ2ÇpáÓ“»ò_à’’Uã?Eïà’·MŒFSqïÔÆØ¢7þbã#-C '‡š`g4¸ñíü„êÏÅWø:2ố_•_ø~¢u{$† ŸÉTC8ËcR¨%ðÇ´ÈqQîÈAµ ÎE$U¼/RpG0*|¢/¼éGMJEvuåjb#-.fTŸÄÒñÀjYMØÓˆd„4'®t‘xM³w®ØÅþº»ön{bKH]äEÜL¾ãø$ç#¼OÝ ÍìÇ/è¼;6[û¿˜&>ÙrJ”,|î\ß³™ŒÅ|té’7«=Ÿ’É®ÒPšYwQC\Äm?ùQ³ÌgÉi½Ioú¢œÈésè‡[?ï<•c3lCÞõáEÞ+S²éägrI‰¼&zÍ÷úC*ä”Û9ÎYkÉVd™/[«‚R…_ÐUï&yÏfy!ï?IÌò/Æ ¼°8£ù‡œoˆäD$ó~¯™y¯âqÐÔ•D>™ðÕ§åÝ>rX½c;Ç‚?™Œ®Ï½±>–,^¼UŒCçÙmTUK×0Ÿ¼."y£=ç-òøŒTÍòÌ2ÁÃ×='¢‚lú“ÖW#fß5¸/–‘ïFîÒã©Ì¯šõa çf­¤_eSþìÆ{½¹€¼¬kè-_ +²œÛÄ”ÌÖö°°“# lj©ËøW‡ ‡™\ÔHFa]ìGÜU.&!{w.·{snYV)žÀ5·sHý6¾ I¶¿:Ì÷ASa‡pÓîþ½}ç6ãõ— Ü7‡1±Ç9~)Y-™?@ð'ìÿnNÂ÷aûß­ôoˆÿËáú7ØÿaA@³Šgø…/Ú’YÆAjôÓíX]kìPr±Ø¶Ç8¸U^ÿ|¾ùò&ÎèÑeòê¶Ppù4%ÉêÃ`õZ…‹,R^!ù) )œöÂÜ]ÔsR“Š1›‹}¦3X·™ågUœÑ“4ç|ØϦ‡DDŠ„àþá ç ¬t\Íðþ9®èfü¥f$U¦lßFÈÕÊMd &us©’`ÉŠÇjJC øleá.ÕNáß Zy¸"'Ä&Û <¯²¿Ô¥bJ›«Þn·Mî³ñCÅöà›[Ðzƒ;pÔß¿µîÕ>)öš‚àö츪ûF °iìÖdªȹ³I5.^HÙHü½Åžlí«ÝÆÁÄÎvé¦ñ'äÇ4kz&^xÑÚ¨„ÕgWlЉZ¸Îyé¡§Ï>ÿì?èýoýMÿ¦¿ö?~V€—aXbLqú•,I^«dtpUÍØÀpïXOá’qÏù~T—I¶_Ù+¿•’—¤“í~3RÿíÁÓ³F,߇éµôÃV7×cʹ1:vCZ& ˜Ma+J7xÛK•qþQí¯ÿœÀ›£ÓÞó=OÀ9Éÿþ k-Îwr¥é­,åV¤Kmt´[¼±œ‘-ɆàaÎL‰ Vé˜ÉÑKç@£Qê¶ÎÏQÀÒ#y=ç˜Ý¸ü4UïàVíö1(ÉæwüÒ^ƒ®4¹Ñ¥Œ·çEð”‚%­ãCŒÞÇÀÇ댒]K½»£ì¬GHg2N¼KÏ’<äDEÀÿÊÈ¥"/0Û§2w8Îì’ó¿PtJ¸Yì(ö-Ý2\÷À4Nà€»jð°#kÒò/ãù[ú½÷à?"þà°í7–¿:Þª!ÅRhxºÎbR¡H›$–ÕÁX51–T®Ÿ”%w’ŒLõèÍä(ÖIÛ¿Ì)/Üx§’yí¨–•&fC”Úe«|SÓãït"}Àª<¾E­oUĵªŽ£:g|gËeöÉLœ_~VaqC7l]Öï6Æ ýt¸nÓU5ûJ xÊ!°ãÃÆ§ âgF˜Ó0F½” ªïÂ|°"æc~µøÚè‹úªõûkü^HŒŸ‘Áœ «yÐÄPY¿G„§·xŒIqÂ-Åu†2Ÿø`㎽7¿´ôp ¥aüpâá¾vy..(RËÉ+º DÖV̳´Âä–ÔûK.¨F±<…I/b,D4SaC9³z „ãe9â,`¼B¶È§}*°txßóƒp,ùü}ž½D)¯ŸNô?8©ýÆÉÿ§Â󶕬ã¢FÀB¼¡lo&©­zª~bµÝxß_c#%dcõ‚0—ž”æÐÇ­ê£ÜØ“Ûß'\šb1άšëŸã‰x3á™Ú rÄÍÚ¦#z5V‹ÔåMׂ«âB{—&Ì€¬=CÌõy"(*~°­´qDN~c‡J±ž^r¡Z4ÝT¾fð\ iÜ% n-irö ¤ðmΈy»ü†MÂiËÔÛ]EèŠË|+A•Ðܬì@6ù-õ#FˆÝÀ½ÞÒó R:Ì©›aj‹"¼c±”MN(öÙB}^¥;úÐ*[#—艜¸{wk²z!⣄=+§Ð7cAŒèŠæ”—Ý:íÑ%ƃГVæ¨õÇ­þ ½ámì¥ûi!Ï¥ŠæK9¤ ©ñ^{7ºfÞžûqý4L·\×à×»×€²K…txV®ëlÀ§@ØÓÞšœa`€³ÖÑ9œ?~nËM÷rº«ˆTí˜\Ô>Ð+Æ™:"W)*uâˆcê”+»ãx#lK:„:ä¸ÏóU¹¡Ùù˜>ûØ`rOZ¡;óºmç@÷ÊB~µöH¡jÑÜsËuåÈÑ YüâƒèöçšJ¡í høùãÔ’‚&¤-Ó6rÒ¼ ‰­ar&k×#îËceûŸ#á0ý±þRô™nâ-5Ÿ‹z‰›…»zÒЉ×<¯«hÑHM¿¥âä„/ ':ÌÛØ¡cûíV„ ‘e3žOÝ%‹\ØVšÙŽ.À„ã…­ÊíðãvÉh‘jôRmJß“j%tº«|êÖÂnOÿà¶ý7n¿¸íÊ{"ævkÂÈКõýìu㱫ÒÌ<š¹Ò"ü[‰4‘B¬ J?·ò‚ùú»I~Švò¡öÅ=S˜Z÷¢å''ü–b[@AE> Ê¿îPÜþ÷äƒx÷ ܈V°udò:ëÔ:xª)pchš)|ÊDeaOìŸKß"v¶ê›Ùvû1ad2U’*'ŠèöêêzHµ0í/¿{$«6¾2YŒ¦vuÙYr§#«êᣥHÝ\¶÷.g:vP5¸Hb„K;?UžCÙ!욎_ÖP5Ç b¾%k©â)V4Jž•ëzè¾´›©µkr†ù›¨Íò<\¢›©‰Ú¦Vð«¿û·\ýج¿uÄ]½Š¬¿Œ¾‚4cѬ¿Î’Z(™¬¿Pþî5&¬¿î }°Œ ­¿ù*8¬¿¿€^¸sa¬¿¬Žé ¬¿u‘BYøúª¿ƒÜE˜¢\ª¿ë©ÕWWª¿ôÞ€«¿ëR#ô3õª¿¤q¨ß…­©¿ûu§;O<§¿mãOT6¬©¿¿€^¸sa¬¿êÐéy7°¿;nøÝtË®¿²×»?Þ«®¿ Y2Çò®¿š´©ºG6¯¿V¹Pù×òª¿$—ÿ~ûª¿ˆñšWuV«¿N 4Ÿs·«¿ÄAB”/h©¿ËLiý-¨¿ý0Bx´q¬¿Z ¦}«¿€cÏžËÔ¬¿A¼®_°®¿|𓙀§¿Ì^¶¶F¤¿UDÝ ¥¿8„*5{ ¥¿!å'Õ>§¿t ‡Þâ᥿ÒâŒaNЦ¿iêwak¦¿F–̱¼«¦¿±KXc§¿¡/½ý¹h¨¿<ùôØ–§¿hé ¶O¦¿ÿA€ ¥¿Þ‘±Úü¿¢¿ˆôÛ×s¦¿ãR•¶¸Æ§¿D¨R³Z©¿BëáËD©¿ÊÂ×׺Ԩ¿A~6rÝ”ª¿¯°à~À£¿Gÿ˵hª¿I‚pª¿˜Q,·´ª¿ßj¸¯¨¿—üSªD©¿p|í™%ª¿ 4ØÔ©¿d¬6ÿ¯:ª¿ÀÎM›qª¿Ð}9³]©¿´TÞŽpª¿N³@»CŠ©¿Jï_{f©¿ŠUƒ0·{©¿÷@¨¿,H3Mg§¿IºfòÍ6§¿$0ðÜ{¨¿®Ÿþ³æÇ§¿£“¥Öû¦¿²Õ唀˜¤¿æèñ{›¦¿Ház®G©¿73úÑpʬ¿Âûª\¨ü«¿Åv÷Ý—«¿ßPøl¬¿0o»¬¿rˆ¸9• ¨¿ˆ,ÒÄ;¨¿Ãð1%’¨¿(ó¾IÓ¨¿ˆØÒ£©¦¿Ç.Q½5°¥¿‘œLÜ*ˆ©¿g›Ó–¨¿¯xꑦ¿Št?§ §¿­ü2#¥¿„ÒBΣ¿ê‘·µ…§¿õKÄ[çߦ¿(`;±O¨¿Ð}9³]©¿¨SÝ£¿Z¼X"§Ÿ¿¢'eRC ¿¾Ý’°«¡¿¤ö{b¢¿Å­j¡¿”Kã^I¢¿ì±¾¡¿Šº}å¡¿ÚX‰yVÒ¢¿O#-•·#¤¿|E·^Óƒ¢¿h”.ýKR¡¿%”¾rÞŸ¿9*7QKs›¿²ó66;¢¿±n¼;2V£¿´;¤ Ѥ¿¨8¼Z­ÞávhX¤¿æ‘?xwIœQ¿:W”‚U¥¿[•DöA–¥¿L4HÁSÈ¥¿€›6ã4¤¿iàG5ì÷¤¿›«æ9"ߥ¿a©.àe†¥¿Vïp;4,¦¿¦ ÐÒ¥¿®×ô  ¥¿†ŽTâ:¦¿T8‚TŠ¥¿ŽW zR&¥¿Ö70¹Qd¥¿ÄìeÛik¤¿‰$zÅr£¿õŸ5?þÒ¢¿ºW•}W¤¿‹3†9A›¤¿Ù@ºØ´¢¿‡¦ìôƒº ¿Àìž<,Ô¢¿*ÖT…¥¿|·y㤨¿8ýÚúé§¿ 7U†q§¿zR&5´¨¿³\6:秨¿Õæ!S>¤¿iý-ø§¤¿/iŒÖQÕ¤¿Ù²|]†ÿ¤¿¯þ·’£¿†¯¯u©¢¿,)wŸã£¥¿¤ÿåZ´¥¿ŸåypwÖ¦¿_b,Ó/§¿ê%Æ2ý¡¿ÿ²{ò°P›¿czÂ(›¿Mh’XRîž¿´ü6Ä ¿75Ð|ÎÝž¿BÌ%UÛM ¿‹jQLž¿g}Ê1YÜŸ¿)&o€™ï ¿úE ú =¢¿à€J• ¿Þ Šcž¿Aœ‡˜N›¿«?Â0`É•¿bLú{)< ¿®¶bÙ=¡¿=ºq¢¿K®bñ›Â¢¿tµûËî¡¿ÓjHÜc飿 yçP†ª˜¿qXøQ £¿ADjÚÅ4£¿óWÈ\T£¿GÌìóå¡¿Zg|_\ª¢¿¤aQ§£¿¹8*7QK£¿Ržy9ì¾£¿¾L!u£¿?S¯[Æ¢¿3ùf›Ó£¿ç6á^™·¢¿O"¿£¿ð¾**ÿ¢¿q¯Ì[u¢¿¸æŽþ—k¡¿¢'eRC ¿ š²Ó¢¿yËÕM¢¿µ‡½PÀv ¿È&ù¿b¿då—Á‘ ¿ï9°!£¿oFÍWÉǦ¿[•DöA–¥¿ª€{ž?m¤¿OêËÒNÍ¥¿Ž®ÒÝu¦¿£ÉÅXÇ¡¿/ùŸüÝ;¢¿Ô¹¢”¬¢¿è£Œ¸4¢¿N`:­Û ¿. ø1æž¿³A&9 £¿?Ȳ`⢿aÅ©ÖÂ,¤¿mæÔBɤ¿Ä QºôŸ¿GJ±£q˜¿æ;ø‰è—¿Õ[[%Xœ¿|`Ç  ¿Bx´qÄZœ¿©÷TN{Jž¿žACÿ›¿>"¦D¿bK¦z2Ÿ¿ý-ø§T¡¿VðÛã5Ÿ¿¾/.Ui‹›¿ƒÚoíDI˜¿5Ó½NêË’¿x%És}ž¿ñFæ‘? ¿ÈzjõÕU¡¿òµg–¨¡¿ÈÑYùe ¿$—ÿ~û¢¿»DõÖÀ–¿ñd73ú¡¿ µ‰“û¢¿¸\ýØ$?¢¿RóUò±» ¿úÏš¡¿vþí²_w¢¿+5{ ¢¿ ûrf»¢¿³{ò°Pk¢¿9€~ß¿y¡¿å(@̘¢¿}¢|¡¿þ¸ýòÉŠ¡¿jݵßÚ¡¿ƒmÄ“ÝÌ ¿O±jævŸ¿Òá!ŒŸÆ¿ç©¹n ¿˜3Ûú`¡¿Ž¿·éÏž¿Ð³Yõ¹Úš¿MK¬ŒFž¿dyW=`¢¿†åÏ·K¥¿È¨p©¤¿ÏÏÙB£¿øO7Pि\='½o|¥¿hvÝ[‘˜ ¿þÕã¾Õ:¡¿ ¥+ØF<¡¿mXSYv¡¿ûÍÄt!VŸ¿†Ç~K‘œ¿?ªa¿'Ö¡¿Swe ®¡¿'Ø›6£¿l•`q8󣿅ÏÖÁÁž¿Þ Z+Ú—¿j‰•ÑÈç•¿+J Áªš¿„*5{  ¿R€(˜1›¿ÙwEð¿•œ¿<ÁþëÜ´™¿,¾-Xª›¿¬Ê¾+‚ÿ¿× /½ý¹ ¿ØºÔýL¿5µl­/š¿Ð™´©ºG–¿ºóÄs¶€¿B[Î¥¸ªœ¿4Lm©ƒ¼ž¿ù£¨3÷ ¿ñd73úÑ ¿I„+ PŸ¿q¯Ì[u¢¿÷WûV딿"ÝAìL¡¿6ŽX‹O¡¿´­fñ}¡¿Øñ_  ¿8Ùî ¿Ù|\*Æ¡¿ÛkAï¡¿t 34ž¢¿æ²Ñ9?Å¡¿F#ŸW<õ ¿ÀÎM›q¢¿-ê“Üa¡¿(›r…w¡¿¡º¹øÛž ¿ˆFw;S ¿ßRÎ{/ž¿¶*‰ìƒœ¿ãÝ‘±ÚüŸ¿™*•Ô  ¿äø¡Òˆ™¿úÏš™¿•žé%Æ2¿’±Úü¿ê ¿’’¦¿Ù=yX¨5¥¿á±ŸÅR¤¿Ýξò =¥¿¡JÍh¦¿“o¶¹1=¡¿°ÿ:7mÆ¡¿aà¹÷pÉ¡¿w|ÓôÙ¡¿l|&ûçi ¿Oqž¿¸çùÓFu¢¿%És}¢¿€'-\Va£¿"¨½ ¤¿9ïÿã„¡¿d’‘³°§¿xòé±-ž¿ïU+~©Ÿ¿—ÒþX£¿SäG ¿ßýñ^µ2¡¿%Ïõ}8H ¿Á¨SÝ ¿Æ2ýñÖ¡¿í¸áwÓ-£¿*ß3¡¡¿ 毹2 ¿-´sšÚ¿H‰]ÛÛ-™¿£ x|{× ¿¶;P§<¢¿ùNÌz1”£¿³Z!«£¿|(Ñ’ÇÓ¢¿ô¥·?¥¿Œ÷ãöË'›¿oÖà}U.¤¿‘ao¤¿Áæ<š¤¿œ3¢´7ø¢¿¸ [–¯£¿*kg{¤¿Ÿp]1#¤¿žâ<œÀ¤¿±Ÿ`¤¿Â5wô¿\£¿¸éÏ~¤ˆ¤¿ ¾iú쀣¿{NzßøÚ£¿¡½úx軣¿ì…¶ƒ£¿(º.üà|¢¿«“3w¼¡¿Øî û¢¿Ô×ó5Ëe£¿-å}Í¡¿,g~5 ¿kšwœ¢#¡¿Â†§WÊ2¤¿QJVÕ˧¿Qù×òÊõ¦¿¢©ÛÙW¦¿¢&ú|”§¿ýfbº«§¿âÊÙ;£­¢¿333333£¿§>¼s(£¿ÎˆÒÞà £¿‹ˆbò˜¡¿ª, »(z ¿Æ4Ó½Nꣿ_|Ñ/¤£¿{‚Äv÷¥¿Ï ¡‚‹¥¿Jð†4*p¢¿ÁÅŠLà¿çR\Uö]¡¿ªÕWWj¡¿NA~6rݤ¿Útp³x¡¿rÞÿÇ £¿aþ ™+ƒ¢¿g(îx“ߢ¿c ¹§«£¿v‹ÀXßÀ¤¿Õ”dŽ®¢¿C¨R³¢¿”™€_#¡¿ÑA—pè-ž¿õÙ×3¢¿jjÙZ_$¤¿¦^·Œ¥¿ëTùž‘¥¿îZB>èÙ¤¿ØžY ¦¦¿«Íÿ«ž¿C8Ù¦¿ ]Þ¦¿R¶HÚ>¦¿'l?ãä¿Év¾Ÿ/¥¿°«ÉSVÓ¥¿û&7Ь¥¿D¥3û<¦¿ ¦–­õ¥¿˜iûWVš¤¿æCV¸¥¿·Aí·v¢¤¿×L¾ÙæÆ¤¿†!YÀ¦¿ã¦šÏ¹£¿må%ÿ“¿£¿Ò¥I*£¿^J]2Ž‘¤¿0œk˜¡ñ¤¿€ôMšE£¿Ú‘ê;¿(¡¿!èhUK:¢¿Ý”òZ Ý¥¿Q†ª˜J?©¿OqN¨¿Ÿ>øù§¿Xÿç0_^¨¿ ¦šYK©¿l®šçˆ¤¿pìÙs™š¤¿ìjò”Õ¤¿R)v4õ£¿LÃð1%¢¿ƒ3øûÅl¡¿Ù[Êùb勵EœN²Õ夿Tÿ ’!Ǧ¿z©Ø˜×§¿ÙìHõ_¤¿ýi£:È¢¿ñ·=Ab»£¿aŠriü¢¿8-xÑW¦¿¸Ku/£¿î\éE¥¿ö$°9Ϥ¿ -ëþ±¥¿eÅpuÄ¥¿ÿè›4 Ц¿ ¦}s¥¿!u;ûʃ¤¿$*T7£¿>ÏŸ6ªÓ¡¿8en¾Ý£¿?ªa¿'¦¿·D.8ƒ¿§¿ 'LÍʦ¿ó«9@0G§¿;´TÞŽ¨¿imÛk¡¿ƒOsò"¨¿'0Öm¨¿6>“ýó4¨¿®)ÙYô¦¿¦·? §¿æXÞU˜§¿odùƒ§¿‡ˆ›Sɨ¿Ö ˜£Ç§¿~įXÃE¦¿sJ_9§¿h‘í|?5¦¿Ä@×¾€¦¿ãúw}欧¿ÚpXøQ¥¿QÛ†Q<¦¿{ø2Q„Ô¥¿L5³–Ò¦¿æ®ò¦¿v©ú™z¥¿÷‘[“n£¿4„c–= ¤¿ (ÔÓGà§¿„-vû¬2«¿÷ç¢!ãQª¿­„î’8+ª¿X¾Û¼qª¿Étèô¼«¿Ãžvøk²¦¿ŽË¸©¦¿ßp¹5馿EÖJí¥¿{¡€í`¤¿IƒÛÚÂó¢¿Ë2g§¿ô噗æ¿]þCúí먿 Qºô/©¿1 ò¦¿¯D ú‘¤¿¬„¹ÝË¥¿‹‹£rµ¤¿|¸ä¸S:¨¿Ø›6㤿ÜõÒN§¿œ‡˜N릿F^Öħ¿)uÉ8F²§¿Èyÿ'L¨¿•ð„^§¿w…>XƆ¦¿d:tzÞ¥¿NðMÓg¤¿F—7‡k¥¿„*5{ ¨¿É­I·%r©¿ùK‹ú$w¨¿6?þÒ¢>©¿_@/ܹ0ª¿eU„›Œ*£¿¼vié¿ã7…• *ª¿£!ãQ*á©¿¼± 0(Ó¨¿r¦ ÛOƨ¿*äJ= B©¿ï9°©¿G²t±©¿žz¤Ámm©¿õôøÃϧ¿&Î5ÌШ¿"Þ:ÿvÙ§¿0™ò!¨¿ "RÓ.¦©¿³í´5"§¿‹6ǹM¸§¿‚9züÞ¦§¿¼Yƒ÷U¹¨¿kÔC4ºƒ¨¿Êû8š#+§¿øŠn½¦¥¿=›UŸ«¥¿é)rˆ¸©¿‚Uõò;­¿zlË€³”¬¿# Â¤R¬¿Ó¾¹¿z¬¿üÖMõ¬¿¥hå^`V¨¿BA)Z¹¨¿M/1–é—¨¿­lò–«§¿ˆÖŠ6ǹ¥¿¤á”¹ùF¤¿’”ô0´:©¿´Éá“N$¨¿#›ª¿âÊÙ;£­ª¿‰îY×h9¨¿}?qý¦¿ô‡fž\S¨¿7íµ ÷¦¿á þ~1[ª¿@½5_%§¿–Tÿ ’©¿7À[ A©¿ý-ø§T©¿î<0€ð©¿ raŠª¿¡0(Óhr©¿sÙ蜟⨿³–Òþ¨¿Ï¾ò =E¦¿ÌDR·³§¿{Øœƒgª¿ùÙÈuSÊ«¿­C9Ñ®ª¿?É6‘™«¿1±ù¸6T¬¿&Šº}¥¿5·BX%¬¿ÄìeÛik¬¿gd»S¬¿CB’Y½«¿½qR˜÷8«¿î•y«®«¿Œ½_´Ç«¿Mø¥~ÞT¬¿Û¿²Ò¤¬¿rm¨çoª¿ùNÌz1”«¿r‹ßVª¿ÿwD…ª¿â|~!¬¿—üSªD©¿/ùŸüÝ;ª¿ è…;Fª¿•ô0´:9«¿}гYõ¹ª¿ö–r¾Ø{©¿ ’>­¢§¿Màô.Þ§¿r4GV~¬¿k¶ò’ÿɯ¿CƒfÚ®¿€µjׄ´®¿Iô2Šå®¿z4Õ“ùG¯¿ŒdP3¤ª¿&¬±^ª¿ÝéÎÏÙª¿ë©ÕWWª¿Ñ;pÏó§¿Çb›T4Ö¦¿þEИIÔ«¿Å’r÷9>ª¿¤§È!âæ¬¿Úå[Ö­¿_Ñ­×ô ¨¿l^ÕY-°§¿(ó¾IÓ¨¿Œi¦{Ô§¿î%Ñ:ªª¿ä-W?6ɧ¿ãßg\8ª¿H§®|–ç©¿:–wÕæ©¿)í ¾0™ª¿>³$@M-«¿“V-ª¿¢–æV«©¿EeÚʢ¨¿‘·\ýØ$§¿Š!9™¸U¨¿¨SÝ«¿—6–~¬¿EÕ¯t><«¿›äGüŠ5¬¿Ë,B±4­¿õ…óþ?¦¿b¾¼û謿Ž ­¿9™¸U­¿C —8ò@¬¿Œ½_´Ç«¿ŠÍǵ¡b¬¿¶Û.4×i¬¿ÂLÛ¿²Ò¬¿“ýó4`¬¿Vn2ª «¿vü¬¿qXøQ «¿²¡›ýr«¿×ÁÁÞĬ¿yy:W”ª¿3Pÿ>«¿Ò¥I*«¿ì.PR`¬¿¥0ïq¦ «¿¤TÂzý©¿^žÎ¥„¨¿[#‚qp騿”0Óö¯¬¬¿T7Û°¿B˜Û½Ü'¯¿ªðgx³¯¿:“6U¯¿Óiݵ¯¿ ø5’ᪿGW#»ª¿–Zï7Úq«¿ raŠª¿…–uÿX¨¿»òYžw§¿!ê>©M¬¿Àϸp $«¿D¤¦]L3­¿ËòuþÓ­¿ÃÔ–:Èë©¿#ºg]£å¨¿LàÖÝ<Õ©¿mrø¤©¿¤aQ§«¿½äòw憎F}’;l"«¿ÖR@Úÿ«¿d"¥Ù<«¿uWvÁàš«¿Ÿu–=¬¿ê²˜Ø|\«¿fõ·Cê¿fh<Ä©¿T;ÃÔ–:¨¿ò]J]2Ž©¿°Œ Ý쬿wÜð»é–­¿Õ³ ”÷q¬¿ð£ö{b­¿—ª´Å5®¿â”¹ùFt§¿l—6–®¿ûÌYŸrL®¿@‰Ï`ÿ­¿ßÜ_=î[­¿êy7­¿‡¯yUg­¿nߣþz…­¿EõÖÀV ®¿'µ¿³­¿õÛ×sF¬¿!YÀn­¿Ð—Þþ\4¬¿}—R—Œc¬¿¯xê‘·­¿Ç¡~¶f«¿– # Â¬¿– # Â¬¿B–­¿åïÞQcB¬¿/o×j«¿¤6qr¿C©¿» )?©ö©¿#„GG¬­¿ç4 ´;¤°¿¾¾Ö¥F°¿†Yhç4 °¿—ÿ~û:°¿Ã¤Rìh°¿—6–~¬¿Âûª\¨ü«¿­iÞqŠŽ¬¿$ð‡Ÿÿ¬¿¿›nÙ!þ©¿›®'º.ü¨¿¼#cµù­¿—«›äG¬¿‘ñ(•ð„®¿ùÜ ö_箿:]›«¿HÞ9”¡ª¿2“¨|š«¿¸"1A ߪ¿LÆ1’=B­¿ò^µ2á—ª¿ 34ž⬿¯w¼W­¬¿Áüýb¶¬¿"Æk^ÕY­¿C=·Ð­¿UkaÚ9­¿ª€{ž?m¬¿ÂhV¶y«¿›ÿW9Ò©¿Ô×ó5Ëe«¿€d:tzÞ­¿s×òA¯¿ªÒ×øL®¿*Wx—‹ø®¿ ³³è °¿j¿µ%!©¿.9î”Ö¯¿Ëø÷°¿¯ÒÝu6䯿PãÞü†‰®¿¹Æg²ž®¿Qù×òÊõ®¿œ‡˜N뮿øo^œøj¯¿=,Ԛ毿nj ùœ»­¿¿eN—ÅÄ®¿‰±L¿D¼­¿¥½Á®¿ 7U†q¯¿9}=_³¬¿ãm¥×fc­¿ªæsîv­¿‚Uõò;M®¿U1•~ÂÙ­¿À>:u峬¿*«éz¢ëª¿x úÒÛŸ«¿™Êø÷¯¿á´àE_±¿X’<×÷á°¿a3ÀÙ²°¿]RµÝß°¿QO?ü°¿3MØ~2®¿P«”žé­¿iêwak®¿á%8õä­¿“ÅýG¦«¿ºõš”ª¿ E¹‡„¯¿ùf›Ó®¿ŸÉþy0°¿þ,–"ùJ°¿R)v4õ«¿ˆ×õ v«¿Q1Îß„B¬¿¶½Ý’°«¿›«æ9"ß­¿Pà|zl«¿‹©ôÎn­¿ü¦°RAE­¿Úå[Ö­¿6Y£¢Ñ­¿–u®¿iþ˜Ö¦±­¿¸! _B­¿Î‰=´¬¿Y4 Žª¿\…zú¬¿‘ñ(•ð„®¿Màô.Þ¯¿¡K8ô¯¿n‰\p¯¿;‡ú]°¿(ôú“øÜ©¿ùÀŽÿA°¿ãl:¸Y°¿tîv½4E°¿ÜµÛ.4¯¿ÆÂ9}=¯¿ø§T‰²¯¿!x|{× ¯¿{-è½1°¿qÊÜ|#º¯¿áëk]j„®¿Ð%z‹‡¯¿'f½ʉ®¿{„ò>Ž®¿%<¡×ŸÄ¯¿WÑšyr­¿ŸwcAaP®¿þ*Àw›7®¿ì1‘Òl¯¿-ÒÄ;À“®¿Ì:“6­¿¨T‰²·”«¿ýØ$?âW¬¿}%»¶¯¿F—7‡k±¿ÓNÍåC±¿:豿»¹øÛž ±¿q‘{ººc±¿µ?QÙ°®¿Ä>#K®¿@gҦꮿ÷<Ú¨®¿`’Ês¬¿úDž$]«¿O?üü¯¿þHVñ®¿Ì EºŸS°¿ßºñîȰ¿Gªïü¢­¿paÝxwd¬¿Þ„€| ­¿ÅE¹‡¬¿Y |E·®¿‰šèóQF¬¿ÀÙ²|]®¿ù¾¸T¥-®¿®€B=}®¿†!rúz¾®¿=·Ð•T¯¿( ß÷o®¿¨PÝ\ü­¿Ë¡E¶óý¬¿>³$@M-«¿Y|^ñ¬¿=·Ð•T¯¿Þ¬Áûª\°¿=}þðó¯¿p±¢Ó0°¿Û‰’HÛ°¿Ð€z3j¾ª¿~©Ÿ7©°¿£té_’ʰ¿NŸt"Á°¿ãÝ‘±Úü¯¿K’çú>°¿ š]÷V°¿ôPÛ†Q°¿Š§wñ~°¿Ð›ŠT[°¿sFZ*o¯¿ñJ’çú>°¿ýÛe¿ît¯¿ø§T‰²¯¿”¥Öûv°¿´CV·z®¿è÷ý›¯¿u殿lê<*þ¯¿k+ö—Ý“¯¿Œ¢>+®¿W•}Wÿ«¿LnYk(­¿ìŠáíA°¿DÂ÷þí±¿[éµÙX‰±¿ñ*k›âq±¿_ÎlW胱¿¬„¹Ý˱¿»}V™)­¯¿øo^œøj¯¿,¹ŠÅ¯¿š´©ºG6¯¿Ç,{ج¿Õ³ ”÷q¬¿cÙ=yX°¿?¨Œ¯¿­Lø¥~Þ°¿të5=((±¿kdWZFê­¿ÕyTüß­¿²t±i­¿]5Ïù.­¿`=î[­¯¿s-Z€¶Õ¬¿q:É®¿Yà+ºõš®¿UOæ}“®¿ÁþëÜ´¯¿V¶yËÕ¯¿HüŠ5\䮿0c Ö8›®¿ô4`ôi­¿*É:]¥«¿|HøÞß ­¿¢DKO˯¿8ƒ¿_Ì–°¿%Ïõ}8H°¿ª€{ž?m°¿{Cr2±¿é¹-@«¿±‰Ì\àò°¿Æ¬q6±¿P§<º±¿R hE°¿Þ¬Áûª\°¿SvúA]¤°¿‚69|Ò‰°¿Õ–:ÈëÁ°¿4J—þ%©°¿,g~5°¿aTR' ‰°¿„~¦^·°¿K‘|%°¿¦~ÞT¤Â°¿W@¡ž>¯¿0GßÛô¯¿ñ»é–⯿_š"Àé]°¿ßmUÙ¯¿ûWV𔂮¿ù‚0º¬¿’®™|³Í­¿X”†…°¿BCÿ+²¿Þèc> б¿ß¿yq⫱¿½á>rkÒ±¿ñÿ²¿ürf»B°¿^fØ(믿€›6ã4°¿L8 ¥+°¿Ïƒ»³vÛ­¿ÏÚmšë¬¿ÁÅŠLð¿J·%rÁ°¿Ï„&‰%±¿‰&PÄ"†±¿ ²eùº ¯¿Ý'G¢`®¿Ÿ`<ƒ†®¿¹-@Ûj®¿Þu6䟰¿ÚæÆô„%®¿X‘ÑIد¿3ù¼â©¯¿æXÞU˜¯¿amŒð°¿ î<0€°¿AJ˜iû¯¿ïU+~©¯¿š–X|®¿Å_ѭ׬¿Mu€Ô®¿è„ÐA—p°¿!«[='±¿€^»´á°¿xñ~Ü~ù°¿K­÷í¸±¿jMóŽS¬¿§wñ~Ü~±¿Ù$?âW¬±¿ƒ¾ôö碱¿¢E¶óýÔ°¿2w-!ô°¿àسç25±¿V¸å#)±¿¬Xü¦°R±¿[²*ÂMF±¿¦&ÁÒ¨°¿*Œ-9(±¿™ðKý¼©°¿Ûe6Ȱ¿DP5z5@±¿lÌëˆC6°¿ß‡ƒ„(_°¿ølìM°¿ä‚3øûŰ¿‡-y°¿`[?ýgͯ¿ÖµÂô­¿8ÀÌwð¯¿CqÇ›ü±¿Y2Çò®²¿=¶eÀYJ²¿ñH¼<+²¿8öì¹LM²¿-z§îy²¿ŠXİØ°¿Îp>?Œ°¿@ÜիȰ¿ü8š#+¿°¿Z)r‰#¯¿9}=_³\®¿CÉäÔÎ0±¿ü8š#+¿°¿jÙZ_$´±¿Õz¿Ñ޲¿ Š·˜¯¿ö~£7ü®¿Ü M¯¿~âú}ÿ®¿Ì EºŸS°¿ªek}‘Ю¿ŸÉþy0°¿•ñï3.°¿=Õ!7à °¿“r÷9>Z°¿E½àÓœ¼°¿¾Mö#E°¿á+Ù±°¿²ºÕsÒû®¿®bñ›ÂJ­¿\Âõ(\¯¿O=Òà¶¶°¿"Æk^ÕY±¿³ïŠà+±¿Þp¹5±¿›sôø±¿8fÙ“À欿‰]ÛÛ-ɱ¿p$Ð`S籿Ú¦¶Ô±¿¶¡bœ¿ ±¿¸¯çŒ(±¿ö–r¾Ø{±¿Þ­,ÑYf±¿'½o|í™±¿ Ê4š\Œ±¿©ÐDØð°¿õ"rl±¿Y|^ñ°¿ R)v4±¿žÒÁú?‡±¿Mƒ¢y‹°¿äõ`R|°¿;‰ÿ"h°¿B>èÙ¬ú°¿•c²¸ÿȰ¿ ·_>Y1°¿!<Ú8b-®¿:“6U¯¿>”h±¿R||BvÞ²¿‚8'0²¿CUL¥Ÿp²¿Y4 ޲¿f¡Ó,в¿|*§=%ç°¿sËcÍȰ¿ÖT…]±¿„Ó‚}±¿ñcÌ]Kȯ¿âeS®ð®¿:[@h=|±¿²dŽå]õ°¿g Ü¶ï±¿ñôJY†8²¿Ì΢w*°¿¼°5[yɯ¿.®ñ™ìŸ¯¿»}V™)­¯¿A€ ;¨°¿sFZ*o¯¿ÒUº»Î†°¿I›ª{°¿jjÙZ_°¿à¾œ3¢°¿ÁãÛ»±¿.ÎR²œ°¿!ɬÞáv°¿¶Ov3£¯¿7R¶HÚ­¿scz°¿}]†ÿt±¿>w‚ý×¹±¿„fÚþ•±¿6"—ޱ¿¥Kÿ’T²¿åÓc[œ­¿B—pè-²¿rl=C8²¿cÑtv28²¿ìÕ[[±¿ÛûTˆ±¿‘fر¿ˆ‚S°Æ±¿²¹jž#ò±¿×¥Fèg걿 Qºô/I±¿ ~þ{ðÚ±¿ÀnÝÍS±¿¢ ê[æt±¿Ã(ßÞ±¿V ì1‘Ò°¿Ø›6ã°¿vãÝ‘±Ú°¿µ©ºG6W±¿UgµÀ±¿~r f°¿J ,€)¯¿ö^|Ñ/°¿NÒü1­±¿óWya³¿I+¾¡ðÙ²¿÷ʼUס²¿[Í:ãûⲿˆº@j³¿àسç25±¿Èïmú³±¿¢³Ì"[±¿Û£7ÜGn±¿gd»S°¿†r¢]…”¯¿.;Ä?l鱿á´àE_±¿¯]ÚpX²¿JÏôc™²¿ÿ>ã°¿Ž®ÒÝu6°¿ _B‡°¿{ó&°¿Gˆ,Ò°¿XÎüj°¿B]¡·°¿ ò³‘린¿ž)t^c—°¿˜Ü(²Ö°¿-î?2:±¿Xæ­ºÕ°¿£•{Y¡°¿ ýL½n°¿ÏIï_{®¿5–°6ÆN°¿±ÀWtë5±¿DÂ÷þí±¿%’èe˱¿ZEhæÉ±¿õhª'ó²¿Kä‚3øû­¿#ö  Y²¿–u²¿nˆñšWu²¿6<½R–±¿;mÆÁ±¿çp­ö°²¿»¶·[’²¿¬U»&¤5²¿’‘³°§²¿š™™™™™±¿òwï¨1!²¿ØI}YÚ©±¿s‚69|Ò±¿q>?Œ²¿{Cr2±¿DP5z5@±¿ Qºô/±¿ûZ—¡Ÿ±¿œæ=Î4±¿®HLP÷°¿^c@öz¯¿¯D ú‘°¿Ïƒ»³vÛ±¿ö@+0du³¿XÇñC¥³¿Ñæ8· ÷²¿ Tÿ ’!³¿Ø—qS³¿9Òy±¿tCSvúA±¿w0bŸŠ±¿n¾ݳ®±¿À_Ì–¬Š°¿¡ø1æ®%°¿[(™œÚ²¿³~31]ˆ±¿,Ÿåypw²¿L‰$zŲ¿ö&†ä°¿’zOå´§°¿´ް¿õfÔ|•|°¿¿ÑŽ~7±¿×i¤¥òv°¿2V›ÿW±¿µùÕ‘#±¿¶¡bœ¿ ±¿ùk¸È=±¿bÜ ¢µ¢±¿ÖXÂÚ;±¿*àžçO±¿7ünºe‡°¿²õ á˜e¯¿ÖqüPiİ¿QÁᩱ¿'‡O:‘`²¿8J^c@²¿´Ë·>¬7²¿—wJ³¿7íµ ÷®¿Ð³Yõ¹Ú²¿ÓÁú?‡ù²¿Wèƒel貿LkÓØ^ ²¿™Ø|\*²¿2æ®%䃲¿§ÌÍ7¢{²¿-¤ý°²¿¤ng_y²¿E¡eÝ?²¿Qj/¢í˜²¿¯³!ÿÌ ²¿l"3¸<²¿pêÉ;‡²¿PŽDÁŒ±¿áBÁ”±¿b0…Ì•±¿ ¦–­õ±¿Å °rh‘±¿Ý—3Ûú°¿H¾D°¿Žx²›ý°¿Ž°¨ˆÓI²¿Ï1 {½û³¿2çû’³¿$&¨á[X³¿¥ž¡¼³¿ Ifõ·³¿%êŸæä±¿÷­Ö‰Ë±¿3SZK²¿”÷q4GV²¿ž?mT§±¿'‰%åîs°¿ušž²¿pÐ^}<ô±¿ñf ÞW岿sôø½M³¿ŸrL÷±¿íµ ÷ư¿ßºñîȰ¿u¬Rz¦—°¿¦D½Œb±¿Ç-æç†¦°¿p² Ü:±¿M¡ó»D±¿áçSÇ*±¿h†¬n±¿„d¸±¿àc°âTk±¿¡,|}­K±¿Û…æ:´°¿í*¤ü¤Ú¯¿+0du«ç°¿9c˜´É±¿w…>XƆ²¿ô5Ëe£s²¿\ætYLl²¿TææÑ=³¿9~¨4bf¯¿ƒ§Z ³¿aÄ>#³¿7l[”Ù ³¿ñ ÙuoE²¿…>XƆn²¿CŒ×¼ª³²¿ï¬Ýv¡¹²¿&¤à)䲿€ ˆWβ¿d°âTka²¿. ø1沿&¬±^²¿±¤Ü}޲¿È ~b¼²¿{ø2Q„Ô±¿fh<ı¿øTN{Jα¿&¨á[X7²¿1[²*±¿dWZFê=±¿ï Ñ!p°¿²G¨RE±¿þµ¼r½m²¿ØaLú{)´¿ˆ„ïý Ú³¿‚ëßõ™³¿Êmûõ׳¿{-è½1´¿h^»ï²¿ò@d‘&Þ±¿¯³!ÿÌ ²¿p–’å$”²¿EhæÉ5±¿ˆ-=šêɰ¿ m9—ⲿQ/ø4'/²¿vŠUƒ0³¿7§’ Š³¿sóèžu±¿‹ÆÚßÙ±¿Èïmú³±¿{Oå´§ä°¿Y¾.ú±¿‚ÿ‚±¿À燣±¿wÐ}9³±¿é Œ¼¬‰±¿“ `ÊÀ±¿“å$”¾²¿Ü:åѱ¿DÝ µ±¿} ^±¿5–°6ÆN°¿zŠ"nN±¿ººc±M*²¿§¥h岿Êf/Û²¿Âö“1>̲¿êé#ð‡³¿9DÜœJ°¿4¡l\³¿HPüs³¿|îû¯s³¿»|ëÃz£²¿ù0{ÙvÚ²¿Ó hÀ"³¿¢&ú|”³¿^fØ(ë7³¿Üšt["³¿‹áꈻ²¿"rl=³¿ßlscz²¿Ô˜sIÕ²¿iQŸä³¿×ÜÑÿr-²¿Ä_“5ê!²¿š_Í‚9²¿1·{¹O޲¿@h=|™(²¿Pmp"úµ±¿âx>êͰ¿st´ª±¿‚oš>;ಿ Q¾ …´¿ÇAœ‡´¿Q¡º¹ø³¿¦ ÐÒ´¿%Ïõ}8H´¿÷?ÀZµk²¿~įXÃE²¿‡l ]l²¿/kb¯è²¿÷uàœ¥±¿­Û ö[;±¿¾ …Œ.³¿߉Y/†²¿~8gDi³¿K[\ã3Ù³¿°ÿ:7mƱ¿Õ\n0Ôa±¿½þ$>w‚±¿ßýñ^µ2±¿.ÆÀ:޲¿Z/†r¢]±¿Ÿä›È̱¿¬r¡ò¯å±¿Ýa™¹À±¿íØÄëú±¿êŸæäE²¿¾4»î±¿R›8¹ß±¿'†ädâV±¿«>W[±¿°¿.9(a¦±¿Sé'œÝZ²¿•ð„^³¿5¶×‚Þ³¿Œ£rµ4³¿dèØA%®³¿]Œu?°¿Nµf¡³¿~TÃ~O¬³¿pïô¥·³¿ö&†ädⲿºÙ(³¿sFZ*o³¿K?ªa³¿1 Xr‹³¿Q»_øn³¿,¹ŠÅo ³¿»¶·[’³¿÷±‚߆³¿MŸp]1³¿2Çž=³¿xã§qo²¿ÎZ_²¿KËH½§r²¿]¤P¾¾²¿B&9 {²¿¿ïß¼8ñ±¿6;R}籿ȔAÕ豿ƒú–9]³¿J}YÚ©¹´¿/÷ÉQ€(´¿«x#óÈ´¿.È–åë2´¿çýœ0a´¿b…[>’’²¿»}åAz²¿¿¹¿zÜ·²¿9ïÿã„ ³¿¤¤‡¡Õ±¿NA~6r±¿:¯±KT³¿¡GŒž[貿oïô¥³¿½ÅÃ{´¿eqÿ‘éб¿h”.ýKR±¿–\Åâ7…±¿·ÔA^&±¿®Ø_vO²¿™žwc±¿oõœô¾ñ±¿Ñ=ë-²¿Æ2ýñÖ±¿Éc벿ػ?Þ«V²¿1 ò²¿Çkñ)²¿Q½5°U‚±¿ÛÝt_ΰ¿Œ³—m§±¿Kw×Ù²¿¤4›Ça0³¿„-vû¬2³¿¥½Á&³¿Í#0ðܳ¿=dʇ j°¿{ö\¦&Á³¿¼°5[yɳ¿«• ¿Ôϳ¿ä0˜¿B沿K‘|%³¿Äëú»a³¿\Âõ(\³¿-{Øœƒ³¿äòÒo³¿rÞÿÇ ³¿ìlÈ?3ˆ³¿Tâ:Ƴ¿÷±‚߆³¿­‰¾¢[³¿TpxADj²¿ÞªëPMI²¿ßÛôg?²¿3Žç3 ²¿•*Qö–r²¿‡†Å¨kí±¿->Àx±¿–=Ô¶±¿S³Z!³¿ÔÔ²µ¾´¿Q1Îß„B´¿;þ 2´¿/ûu§;O´¿Q¼ÊÚ¦x´¿$ –\Ų¿pìÙs™²¿ðß¼8ñÕ²¿ÅçN°ÿ:³¿ósCSvú±¿¼#cµù±¿bÚ7÷W³¿å·èd©õ²¿`"Ä•³³¿œ¿ …8´¿[{C²¿ÌîÉÃB­±¿q« ºö±¿¾1Çž±¿6wô¿\‹²¿Óhr1Ö±¿0,¾-X²¿j÷«ßm²¿ÚÅ4Ó½N²¿î!á{ƒ²¿¼¯Ê…Ê¿²¿¬8ÕZ˜…²¿­—㈲¿ÙëÝﱿá³up°7±¿™,î?2²¿Ééëùšå²¿RF\¥³¿a2U0*©³¿ºöô³¿Bx´qÄZ´¿‰`\:æ°¿ÝÍSr3´¿tîv½4E´¿]Œu?´¿æuÄ!H³¿HnMº-‘³¿}XoÔ Ó³¿ñ[z4Õ³¿˜÷8Ó„í³¿rPÂLÛ³¿?qý¾³¿Ï1 {½û³¿Ð%z‹‡³¿Ú©¹Ü`¨³¿ó>ŽæÈʳ¿ZòxZ~ಿ¥]Pß²¿ÕËï4™ñ²¿s×òA³¿þðó߃ײ¿n0Ôa…[²¿¢·xxϱ¿Ô›QóU²¿Ž<Y¤‰³¿G 6µ¿'À°üù¶´¿W\•›´¿Ÿã£Åô¿ŸçOÕé´¿,D‡À‘@³¿ß£þz…³¿+½6+1³¿?T1³Ï³¿Ì¸©æs²¿.çR\Uö±¿Ð¸p $ ´¿Äëú»a³¿š]÷V$&´¿ŒºÖÞ§ª´¿d¬6ÿ¯:²¿ÎÅßö‰±¿¤¨3÷𱿠]Þ®±¿„¹ÝË}²¿~(F–̱¿0,¾-X²¿½§rÚSr²¿'/2¿F²¿Ö¸ÇÒ‡²¿€µjׄ´²¿ñ+Öp‘{²¿œÅ‹…!r²¿DÂ÷þí±¿RµÝß4±¿©lXSY²¿Éå?¤ß²¿¿¶~úÏš³¿»ÑÇ|@ ³¿ EºŸS³¿î@òèF´¿e#Ù#Ô°¿Z*oG8-´¿Pª}:3´¿?ãÂ,´¿2°Žã‡J³¿M.ÆÀ:޳¿&o€™ï೿„ÒBγ¿Ab»{€î³¿R)v4õ³¿V„aÀ’³¿ïb€D´¿¹ÇÒ‡.¨³¿ëpt•¿vŠUƒ0·³¿éH.ÿ!ý²¿`‘_?IJ¿ú =bôܲ¿'Ø›6³¿hÐÐ?ÁŲ¿ƒ0·{¹O²¿ZôPÛ†±¿¸;k·]h²¿.VÔ`†³¿!;oc³#µ¿ãûâR•¶´¿Ò4(š°´¿æ±fd»´¿©ÐDØð´¿ÇÒÁú?³¿Nïâý¸ý²¿Š‘%s,³¿ƒlY¾.ó¿ â<œÀt²¿78ýÚú±¿•™Òú[´¿qçÂH/j³¿9œùÕ ´¿Î’Z(™´¿7+1ÏJ²¿9ïÿㄱ¿xÒÂe²¿^.â;1뱿0c Ö8›²¿P«”žé±¿ønóÆIa²¿°ŒØ'€²¿·Œõ L²¿åÐ"Ûù~²¿*A*Ų¿à¼8ñÕŽ²¿áëk]j„²¿ƒMGÅÿ±¿ª}:3P±¿[[x^*6²¿å·èd©õ²¿:õÔꫳ¿ØŸÄçN°³¿iTàd¸³¿CSvúA]´¿ö&†ä°¿ ܺ›§:´¿2kœMG´¿ 4ØÔyT´¿Sê’qŒd³¿¸ [–¯³¿‡Ü 7à󳿣#¹ü‡ô³¿B•š=Ð ´¿vü´¿øúZ—¡³¿ï<ñœ- ´¿_(`;±³¿àœ¥½Á³¿sØ}ÇðØ³¿ót®(%³¿¤¥òv„Ó²¿R( __벿d­¡Ô^D³¿7á^™·ê²¿¸çùÓFu²¿ Q…?Û±¿Ãgëà`o²¿hÍ¿´¨³¿‡$š@µ¿ãOT6¬©´¿zlË€³”´¿_)ËǺ´¿ÆÝ Z+Ú´¿§–­õEB³¿Ü M³¿ë5=((E³¿d”g^»³¿Kw×Ù²¿§é³®+²¿¯±KTo ´¿®¼äòw³¿ŸÉþy0´¿A,›9$µ´¿à…­ÙÊK²¿5Cª(^e±¿®,ÑYf²¿$š@‹²¿Wj1x˜²¿DÂ÷þí±¿‘~û:p²¿¾ÚQœ£Ž²¿­4)Ý^²¿Üóüi£²¿3¤ŠâUÖ²¿Ô x'Ÿ²¿øùïÁk—²¿ÛikD0²¿&«"ÜdT±¿p[[x^*²¿zýI|ÍÓÚ4¶³¿-Ó¾¹³¿Tüߪ³¿ô߃×.m´¿ýJçó±¿gd»S´¿;‡ú]´¿ –ê^f´¿RÑèb³¿c ¹§«³¿›­¼äò³¿÷³B‘øù³¿7ÿ¯:r¤³¿Ã.Šø´¿ïU+~©³¿žwgí¶³¿i¬ýíѳ¿ ®¹£ÿ岿þðó߃ײ¿Å5| 벿$G:#/³¿@ÚÿkÕ²¿6‘™ \²¿THÞ9”±¿ˆœ¾ž¯Y²¿Š¯v稳¿;Sè¼Æ.µ¿¨4bfŸÇ´¿ JÑʽ´¿Ñ]gEÔ´¿5s»—û´¿( __ëR³¿÷±‚߆³¿’ê;¿(A³¿ö'ñ¹쳿²ºÕs²¿7Û$²¿÷_˜L´¿‘šv1Ít³¿$œ¼è+´¿Q0c Ö´¿9aÂhV²¿MIÖáè*±¿HS=™ô±¿%uš²¿ôáY‚Œ€²¿›ÿW9Ò±¿ûÌYŸrL²¿„»³vÛ…²¿[{C²¿)éahur²¿É9±‡ö±²¿jOÉ9±‡²¿TÈ•z„²¿*œÞÅû±¿m¨çoB±¿q>?Œ²¿¥,CëⲿìW\•³¿d´¿íñB:<´¿`tys¸V³¿qr¿CQ ³¿½ãÉ峿3Q„Ôí쳿ø‰è÷ý³¿Q¡º¹ø³¿>u¬Rz¦³¿š]÷V$&´¿•¶¸Æg²³¿+j0 ó¿LÞ3ßÁ³¿ó =E³¿”ص½Ý²¿-è½1³¿O­¾º*P³¿;nøÝt˲¿r‹ßV²¿A)Z¹˜±¿»}åAz²¿¬9@0G³¿/ø4'/2µ¿,€)´´¿å*¿)¬´¿äÖ¤Û¹´¿ö|ÍrÙè´¿LpêÉ;³¿F^Öij¿]߇ƒ„(³¿P¨§À³¿Á8¸tÌy²¿ ±ú# ²¿ÆàaÚ7÷³¿Õ²µ¾Hh³¿BA)Z¹´¿¼z´¿‡¾»•%²¿- &þ(ê°¿ì¥)œÞ±¿ªGÜÖ²¿e‹¤Ýèc²¿2Ïg@½±¿à- ø1²¿§t°þÏa²¿úíëÀ9#²¿÷Žb²¿’Z(™œ²¿ƒÜE˜¢\²¿÷Žb²¿“màÔ±¿¼@I0±¿Ñ‘\þCú±¿›T4Öþβ¿»òYžw³¿tÐ%z‹³¿~âú}³¿!>°ã¿@´¿Ù®Ð˰¿iTàd´¿êD2´¿·e¥I)´¿YúÐõ-³¿1`ÉU,~³¿ жšuƳ¿'c`dz¿­KÐÏÔ³¿´:9Cqdz¿b‚¾…u³¿ Ôbð0í³¿YÝê9é}³¿t|´8c˜³¿~TÃ~O¬³¿~Wÿ[ɲ¿ÌC¦|ª²¿Ó¾¹¿²¿×Ùf³¿—z6«²¿"¦D²¿§uÔ~k³¿~©Ÿ7µ¿èˆ|—R—´¿%•C‹´¿hÎú”c²´¿0½ý¹hÈ´¿S³Z!³¿py¬䲿Q²¿“å$”¾²¿/ùŸüÝ;²¿„¹ÝË}²¿‡nùHJ²¿õ¸oµN\²¿zqÈÒ±¿LnYk(±¿|+Ôð±¿1–é—ˆ·²¿Ã9}=_³¿CV·zNz³¿ö@+0du³¿1Ò‹Úý*´¿³´Ss¹Á°¿G¬Å§´¿¸ õô´¿ŸÉþy´¿à*O 쳿1´:9Cq³¿‚åȳ³¿Z¼X"§³¿N]ù,ϳ¿?T1³³¿˜5±ÀWt³¿¾jeÂ/õ³¿Ÿ«­Ø_v³¿»ÑÇ|@ ³¿o¼;2V›³¿‘|%»²¿…BB•²¿þe÷äa¡²¿×¦±½ô²¿6wô¿\‹²¿E¡eÝ?²¿ö#EdX±¿Z€¶Õ¬3²¿†ç¥bc^³¿ê!ÝAì´¿ñÿ‚´¿d²¸ÿÈt´¿‘Gp#e‹´¿J´´¿u=Ñu᳿î#·&ݲ¿§wñ~ܲ¿µŠþÐÌ“³¿òÏ â;²¿}ZEh汿gÑ;pϳ¿úšå²Ñ9³¿ïY×h9г¿ô‹ôz´¿]S ³³è±¿=)“Ú°¿¯Ì[uª±¿IŸVѲ¿ŸF6²¿ ïr߉±¿×QÕQ÷±¿„, &þ(²¿˜¡ñD籿î>ÇG‹3²¿"H›V²¿#k ¥ö"²¿ÊRëýF;²¿¤q¨ß…­±¿t È^ïþ°¿k :!tб¿aª™µ²¿ŽYö$°9³¿ ßû´W³¿Ÿ ±Ý=@³¿¢ÏGq´¿šD½àÓœ°¿^, ‘Ó׳¿Ï…‘^Ô ¯$y®ï³¿rk²¿pê”G7²¿W"PýƒH²¿ôÃáÑÆ±¿ -ëþ±±¿¿CQ O䱿}x– # ²¿ƒ…“4L³¿Ì †:¬p³¿:“6U³¿UÙY´¿'À°üù¶°¿Ï1 {½û³¿¿ñµg–´¿—t”ƒÙ´¿~âú}ÿ²¿-wf‚á\³¿ÓL÷:©³¿&8õ䳿©‡ht±³¿E¼uþí²³¿÷”œ{h³¿.å|±÷⳿aûÉf³¿*q㊋³¿ôÞ€³¿¥MÕ=²¹²¿ŸVÑšy²¿}$%= ­²¿J ,€)³¿‰'»™Ñ²¿ƒ¥º€—²¿£>+N±¿IeŠ9:²¿–{Y¡H³¿šÏ¹ÛõÒ´¿y²›ýh´¿ÚÇ ~b´¿JFΞv´¿Ð~¤ˆ «´¿h¯>úRI€&²¿ù€@gÒ²¿odùƒ³¿¯³!ÿÌ ²¿Ü:åѱ¿²„µ1v³¿A‹v³¿¿º*P‹Á³¿œ¿ …8´¿˜¥šË ²¿n¦B</¯¿fh<ı¿œQ}>²¿hé ¶O²¿(DÀ!T©±¿Ñ‘\þCú±¿ZÔ'¹Ã&²¿cšé^'õ±¿>^H‡‡0²¿\:æ±N•ﱿֵÂô±¿^‘š²¿ñ}q©J³¿ó¯å•ëm³¿$&¨á[X³¿N ^ô´¿ À%W±°¿4ØÔyTü³¿Û$¶»´¿"‹4ñ´¿ˆº@j³¿ü¤6qr³¿u["œÁ³¿‡¥Õ°³¿QJVÕ˳¿Zº‚mij¿W'g(îx³¿S°ÆÙt´¿m®šçˆ|³¿“üˆ_±†³¿±ù¸6TŒ³¿ÖµÂô½²¿]Tœˆ²¿ Hû`­²¿í-å|±÷²¿ºõš”²¿ÈDJ³y²¿ —8ò@d±¿+Àw›7N²¿Â‰è×ÖO³¿ô¥·? µ¿Ä˜ô÷Rx´¿ g·–Ép´¿7ünºe‡´¿…DÚÆŸ¨´¿I/j÷«³¿Pj’̲¿èO=ÒಿÛ5x_•³¿ñôJY†8²¿àö‰í;ÃÔ–:ȳ¿a\:æ<³¿Êmûõ׳¿™€_#I´¿…zúü±¿iêwak®¿=˜Ÿ±¿­QÑ貿dyW=`²¿&Šº}±¿t ‡ÞⱿV¼‘y䲿É<òϱ¿®Gáz²¿dXÅ™G²¿dÍÈ w²¿Ì)1 ²¿¨ªÐ@,›±¿…{eު밿U…bÙ̱¿} yçP†²¿„çÞÃ%³¿ IJ™CR³¿+½6+1³¿ØÖOÿYó³¿À_Ì–¬Š°¿DÀ!T©Ù³¿/À>:u峿R}ç%賿8h¯>ú²¿ËÚ¦x\T³¿Ó3½ÄX¦³¿B]¡³¿u¯“ú²´³¿Ôð-¬³¿fgÑ;p³¿Ü»}éí³¿Óƒ‚R´r³¿µŠþÐÌ“³¿ 퀵j³¿Å‰&PIJ¿Â¿3‰²¿og_yž²¿Qù×òÊõ²¿#N'Ùêr²¿g×½‰ ²¿2ZGUD±¿5 Šæ,²¿oÕu¨¦$³¿TýJçó´¿"ʼn&P´¿êu‘BY´¿aP¦Ñäb´¿ç4 ´;¤´¿øU¹Pùײ¿¿ 1^󪲿*§=%çIJ¿t$—ÿ~³¿ôR±1¯#²¿|ÓôÙ×±¿õHƒÛÚ³¿ƒú–9]³¿ жšuƳ¿@¢CàH´¿‹¦³“Á±¿Ü:åÑ­¿¥½Á&S±¿7R¶HÚ±¿?üü÷౿̳’V|C±¿åòw僧¿+Ù±ˆ×±¿î$"ü‹ ±¿©h¬ýí±¿ßú°Þ¨²¿)ϼvß±¿V¸å#)鱿÷>U…b±¿mâä~‡¢°¿‰ÒÞà “±¿~įXÃE²¿7á^™·ê²¿Ð#„G³¿Æßö‰í²¿J(}!ä¼³¿œ'¾ÚQ°¿b†ÆAœ³¿mÆÁ¥³¿Vס𒬳¿È²`⢲¿ ²Hﳿ IJ™CR³¿n…°KX³¿iÅ7>[³¿æ!S>U³¿ŒKUÚ⳿hur†â޳¿D¢Ð²î³¿kœMG7³¿!‘¶ñ'*³¿«ö˜Hi²¿°æÁ=²¿f3‡¤J²¿?tA}Ëœ²¿c%æYI+²¿¥øø„ì¼±¿åa¡Ö4ï°¿t ‡Þâ᱿=|™(B겿W[±¿ìž´¿´qÄZ| ´¿Ð`SçQñ³¿k™ Çó´¿kIG9˜M´¿]Mž²š²¿sœÛ„{e²¿àªÔ첿v?T1³¿;%¯Î±¿ÏL0œk˜±¿Ìa÷Ãc³¿Va3ÀÙ²¿_EF$a³¿W•}Wÿ³¿Ïôc™~±¿²h:;­¿>"¦D±¿L©KÆ1’±¿þEИ±¿v½S÷°¿ãm¥×fc±¿-ÑYfб¿R û=±N±¿°t>>!³¿é™^b,Ó³¿ŽW zR&±¿ãOT6¬©¬¿î{Ô_¯°°¿çsîv½4±¿ ¸Ê;±¿Õ{L¤°¿‚ÿ‚±¿2*A*±¿ôMšEó°¿¿ÑŽ~7±¿mXSYv±¿þÕã¾Õ:±¿¶€Ðzø2±¿- ´¾°¿\Uö]ü¯¿®×gÎú°¿ "RÓ.¦±¿oض(³A²¿æ$”¾r²¿¤7ÜGnM²¿l˜¡ñD³¿÷”œ{h¯¿µ;າ¿ïOZ¸¬²¿Âö“1>̲¿ ȳ˷²¿šBç5v‰²¿¯°à~À³¿—Œc${„²¿(™œÚ¦²¿ ƒ2²¿Í!©…’ɱ¿Òª–t”ƒ±¿~RíÓñ˜±¿Q¤û9ù±¿ÆOãÞü†±¿31]ˆÕ±¿*Æù›P°¿¶,_—á?±¿¯ ?8Ÿ:²¿!¯“â㳿 퀵j³¿Ü¡a1êZ³¿„}³¿ÿA$CŽ­³¿…zúü±¿ðÞQcḆ¿Ëž6ç౿ œO«”²¿VF#ŸW<±¿±1¯#Ù°¿zrMÌβ¿&üR?o*²¿%“S;ÃÔ²¿XË™`8³¿æ±fd»°¿>´ü6¬¿›äGüŠ5°¿Q}>ʰ¿ßºñîȰ¿¼ëlÈ?3°¿g›Ó–°¿Gsdå—Á°¿ro~ÃDƒ°¿––‘zOå°¿†®D ú±¿B_zûsѰ¿l’ñ+Ö°¿Õ¯t>&RšÍã°¿ 3¦`±¿©0¶ä°¿$™Õ;ܱ¿+Qö–r¾°¿†8ÖÅm4°¿ÍwðЯ¿*Æ3h诿[µkBZc°¿ƒ£äÕ9°¿\Æú&¯¿'½o|í™­¿aûÉf¯¿q à-°¿&†§W²¿L4HÁSȱ¿ú`º±¿Ù¯;ÝyⱿÉ <÷²¿8øÂdª`°¿ c AJ°¿â‘xy:W°¿¾¿A{õñ°¿B{õñÐw¯¿CƒfÚ®¿.qäÈ"±¿±RAEÕ¯°¿»šzÃ}äÖ°¿Pþî5&°¿±Ý=@÷å°¿=˜Ÿ±¿~įXÃE®¿+ß3¡¬¿ý¾ó⬿ K< lÊ­¿Ä@×¾€®¿ ¸çùÓF­¿g+/ùŸü­¿—ª´Å5®¿%êŸæä­¿õ¸oµN\®¿×Ùf¯¿8¢{Ö5Z®¿^‚SH®¿CqÇ›ü­¿ßâá=–«¿?{ó®¿lË€³”,¯¿;R}ç%°¿@Â0`ÉU°¿¡ø1æ®%°¿w ùg±¿‹mRÑX«¿"3¸<Ö°¿„%Zò°¿Ùî@ò°¿–AµÁ‰è¯¿5B?S¯[°¿¯w¼W­°¿u¬Rz¦—°¿Ù'€bdɰ¿Û…æ:´°¿'0Öm°¿»µL†ãù°¿ g·–Ép°¿`áC‰–°¿€(˜1k°¿£<órØ}¯¿ÆÂ9}=¯¿3‡¤J&¯¿[ï7ÚqᅩÖQÕQ¯¿ãã²ó6®¿è»[Y¢³¬¿În-“áx®¿êÉ;‡2°¿™Gþ`౿Ÿâ8ðj±¿`r£ÈZC±¿“¦AÑ<€±¿Y¾.ú±¿0GßÛô¯¿aü4îͯ¿¤ª ¢î°¿4òyÅS°¿1 íœf®¿B´V´9έ¿›þìGŠÈ°¿{Ý"0Ö7°¿St$—ÿ°¿ çfh<±¿ŠÇEµˆ(®¿ÑʽÀ¬P¬¿RGÇÕÈ®¬¿¡„™¶e­¿F³²}È[®¿c`Ç­¿±¾É­¿.çR\Uö­¿û&7Ь­¿Z€¶Õ¬3®¿¥,Cë⮿dËòu®¿÷XúÐõ­¿š'×È쬿JA·—4F«¿æ‘?xî­¿ÚV³Îø®¿Úf°¿… £YÙ>°¿WA tí °¿Y|^ñ°¿ž™`8×0«¿`™D½°¿ep”¼:ǰ¿ 34žâ°¿2rö´Ã¯¿Ÿqá@°¿¸•^›•°¿ÿ>ã°¿ÿB=·°¿¡º¹øÛž°¿ –Í’Z°¿T÷<Ú°¿ š]÷V°¿Ìbbóqm°¿paÝxwd°¿K?ªa¯¿î#·&Ý®¿ù„ì¼Í®¿*¬ÿs˜¯¿h’XRî>¯¿¢ÕÉŠ;®¿paÝxwd¬¿¯>úîV®¿{1”í*°¿ØÔyTüß±¿ífF?N±¿QÚ|a2±¿8ù-:Yj±¿ÔdÆÛJ¯±¿%”¾rÞ¯¿1?74e§¯¿èº꯿D†U¼‘y°¿Ô‚}i®¿¸£®­¿´ã†ßM·°¿ ܺ›§:°¿K°8œùÕ°¿¡,|}­K±¿²¹jž#ò­¿¶+ôÁ26¬¿ m6 B¬¿€cÏžËÔ¬¿ÙÎ÷Sã­¿Ñ­×ô  ¬¿`vOj­¿\='½o|­¿Q29µ3L­¿j’Ìê­¿În-“áx®¿Ð+žz¤Á­¿Ù=yX¨­¿ çfh¬¿¶Go¸Üª¿™º+»`p­¿îyþ´Q®¿×÷á !ʯ¿-é(³ °¿œýrÛ¾¯¿€·@‚âǰ¿Pj’̪¿§Î£âÿް¿mâä~‡¢°¿r„Ѭ°¿â”¹ùFt¯¿ºÝË}r°¿¼"øßJv°¿;‡ú]°¿o¹ú±I~°¿Õ³ ”÷q°¿b k_@/°¿ò ú'¸°¿Ò¨ÀÉ6°¿´Éá“N°¿š †s 3°¿ Ü¶ïQ¯¿a5–°6Æ®¿£“¥Öû®¿áìÖ2ޝ¿[yÉÿä﮿ÙëÝï­¿‰ê­­¬¿œ6ã4D®¿3¥õ·௿„EEœN²±¿Ååx¢'±¿\Va3À±¿W!å'Õ>±¿§#€›Å‹±¿‚®}½p¯¿ÿíÕÇC¯¿Ë¹W•}¯¿‹¤Ýèc>°¿}‘Жs)®¿¿˜-Y­¿¥óáY‚Œ°¿µ§!ªð¯¿O‘CÄÍ©°¿» j¿µ±¿cÔµö>U­¿!¯“âã«¿ ñ+Öp‘«¿p–’å$¬¿p² Ü:­¿K:ÊÁl¬¿ÔFu:õ¬¿÷WûV묿ªc•Ò3½¬¿Ð˜IÔ >­¿ð6oœæ­¿UkaÚ9­¿÷XúЭ¿«í&ø¦é«¿Ïj=&Rª¿0ôˆÑs ­¿cò˜ù®¿úšå²Ñ9¯¿“¨|š“¯¿¸Y¼X"¯¿Æ‚”°¿E,bØaLª¿Š!9™¸U°¿ŒƒKÇœg°¿Òýœ‚ül°¿Ív…>XÆ®¿%±¤Ü}ޝ¿(Í9x&°¿,ºõš°¿Ýyâ9[@°¿Ÿp]1#°¿h%­ø†Â¯¿ç©¹n°¿"«[='½¯¿#ÁÆõ¯¿;äf¸Ÿ¯¿::ZÕ’®¿ Ö8›Ž®¿…(_ÐB®¿L5³–Ò®¿`ãúw}®¿»ðƒó©c­¿¨T‰²·”«¿M,ðÝz­¿$~Å.r¯¿XXp?౿âW¬á"÷°¿§/ú Ò°¿H›V ±¿‹¥H¾H±¿ ²Hﯿ¾÷7h¯®¿4/‡Ýw ¯¿ 6uÿ¯¿&â­óo—­¿¨Ã ·|$­¿£uT5A°¿¢ÎÜC¯¿Hk :!t°¿š'×Èì°¿ ß÷o^¬¿¬ª—ßi2«¿Ë¼Uסšª¿úcZ›Æöª¿p À?¥J¬¿”i4¹«¿ì.PR`¬¿pΈÒÞà«¿‡¢@ŸÈ«¿¡ÛK£u¬¿iàG5ì÷¬¿óùõC¬¿\…zú¬¿Ã}äÖ¤Ûª¿ønóÆI©¿@j'÷«¿“HÛø­¿™cyW=`®¿ \7¥¼®¿èOÕé@®¿§;OW[©¿†Ê¿–W®¯¿rý»>sÖ¯¿¯ÒÝu6䯿ºƒØ™Bç­¿÷™®¿Ž<Y¤‰¯¿­‰¾¢[¯¿ ’>­¢¯¿Ë¹W•}¯¿I×L¾Ù殿ˆc]ÜF°¿7íµ ÷®¿„};‰¯¿¿ðJ’çú®¿Ñ“2©¡­¿Ë¡E¶óý¬¿4-±2ù¬¿Cç5v‰ê­¿ž~P)”­¿ çfh¬¿j.7ê°ª¿*kg{¬¿áëk]j„®¿]þCúíë°¿QhY÷…°¿‚«<°S°¿—㈞°¿°VíšÖ°¿p[[x^*®¿KY†8ÖÅ­¿ú™zÝ"0®¿\Æú&¯¿c¶dU„›¬¿O@aÃÓ«¿ÍÓÚ4¶¯¿Lª¶›à›®¿‡ˆ›Sɰ¿šìŸ§ƒ°¿µŠþÐÌ“«¿§ ?¹nª¿‰]ÛÛ-É©¿Püsת¿xµÜ™ †«¿CV·zNª¿×Ý<Õ!7«¿ä»”ºd«¿p%;6ñª¿ºžèºðƒ«¿e‰Î2‹P¬¿Ò¬lò–«¿TÆÝ Z«¿‚jÛ0 ª¿ñ˜õb¨¿é'œÝZ&«¿2äØz†p¬¿×Â,´sš­¿Õ"¢˜¼®¿å`6†­¿B{õñÐw¯¿p@KW°¨¿-è½1¯¿ ²eùº ¯¿¦]Pß2¯¿þrÛ¾G­¿kdWZFê­¿ï¬Ýv¡¹®¿¾ÚQœ£Ž®¿¸Î¿]ö뮿¶hÚV³®¿h‘í|?5®¿¹Œ›h>¯¿ÒYùe0®¿/0+é~®¿×ˆ`\:®¿np–’嬿Q1Îß„B¬¿]4d«¿ïÇí—OV¬¿6ÊúÍĬ¿Œ 1“¨¬¿¢}¬à·!®¿” ¿Ð#F§¿‘{ººc±­¿sÖ§“Å­¿±†‹ÜÓÕ­¿amŒð¬¿Xæ­ºÕ¬¿´Yõ¹ÚŠ­¿Wya§X­¿sÖ§“Å­¿N_Ï×,—­¿÷XúЭ¿ø3¼Yƒ÷­¿ÿy0Hú¬¿ÔÑq5²+­¿FÏ-t%­¿RÑXû;Û«¿6\-«¿H¨REñª¿óuþÓ ¬¿»)嵺«¿kÖß—ª¿À’«Xü¦¨¿2tì ª¿ß,Õ¼¬¿ª¹nÀ¯¿äÜ&Ü+ó®¿€*nÜb~®¿dÎ3ö%¯¿Ò‹Úý*À¯¿æÊ ÚàD¬¿¦z2ÿè«¿Ðzø2Q¬¿tCSvúA­¿> Й´©ª¿tµûËî©¿ê—ˆ·Î¿­¿Š“ûŠ­¿6<½R–!®¿Ot ‡®¿ðŠà+Ù©¿Ús™šo¨¿xìg±ɧ¿ðÐïû§¿$î±ô¡ ª¿˜½l;m¨¿fÁÄE©¿šž^©¿‚:vP©¿›WuV ì©¿‰ÓI¶ºœª¿…]=ð©¿é¸Ù•–©¿Ê¤†6¨¿°qý»>s¦¿(›r…w©¿Zg|_\ªª¿JÔ >ÍÉ«¿+Ôð-¬¿‹Š8d««¿0bŸŠ‘­¿Ç/¼’书¿–!Žuq­¿þrÛ¾G­¿ß©€{ž?­¿á iTàd«¿eþÑ7i¬¿æ!S>­¿ð…ÉTÁ¨¬¿­/Úr.­¿ÁãÛ»­¿²Jé™^b¬¿~sõ¸o­¿‚Zº‚m¬¿ÆÝ Z+Ú¬¿©¥¹Âj¬¿‘cëÂ1«¿„gB“Ä’ª¿ûxè»[Yª¿Õ²µ¾Hh«¿eà€–®`«¿Ý—3Ûª¿B•š=¨¿èKo.ª¿å—Á‘(¬¿)êÌ=$|¯¿è‚ú–9]®¿ÞÇÑYù­¿$Õw~Q‚®¿h\W̯¿©‡ht±«¿0-ê“Üa«¿Í#0ðÜ«¿ìjò”Õ¬¿À&kÔC4ª¿c${„š©¿.É»š<­¿LÅÆ¼Ž8¬¿‡ú]Øš­¿•Ò3½ÄX®¿¯–;3Á¨¿¾÷7h§¿Ež$]3ù¦¿@½5_%§¿t—ÄY5©¿ý¾óâħ¿`¬o`r£¨¿BÌ%UÛM¨¿^ÒƒN¨¿ØƒIññ ©¿-å}Í©¿]þCúí먿LüQÔ™{¨¿¢~¶f+§¿qåìÑV¥¿†ðùa„¨¿C㉠Îé¿ãUÖ6Å㪿{0)>>!«¿oB@¾„ª¿§z2ÿ蛬¿‘Ó×ó5Ë¥¿É6‘™ ¬¿å—Á‘(¬¿ð¢¯ ÍX¬¿¸çùÓFuª¿TææÑ=«¿Ýšt["¬¿ÅôûþÍ«¿ ·_>Y1¬¿æ?¤ß¾¬¿Pà|zl«¿©Ø˜×‡¬¿(c|˜½l«¿ÐѪ–t”«¿· £ x|«¿¼ "5íbª¿ÄÎ:¯©¿šž^©¿á—úyS‘ª¿{Crª¿êX¥ôL/©¿:Yj½ßh§¿®ƒƒ½‰!©¿š`8×0C«¿ûÌYŸrL®¿ÃÕw­¿€»ì×ŸY ¦–­¿é*Ý]gC®¿¥MÕ=²¹ª¿¼ "5íbª¿þœ‚ül䪿 Ifõ·«¿ŠÊ†5•E©¿½Œb¹¥Õ¨¿jMóŽS¬¿O­¾º*P«¿[ìöYe¦¬¿f‚á\à ­¿Ž²~31]¨¿‚,`·¦¿aª™µ¦¿ì¦”×J覿jÜ›ß0Ѩ¿Ï¿]öëN§¿O›sðL¨¿Û$¶»¨¿Éq§t°þ§¿3ÃFY¿™¨¿rÄZ| €©¿˜Št?§¨¿Ù蜟â8¨¿;nøÝt˦¿`;±O¥¿]ˆÕa¨¿ðO©eo©¿sHj¡drª¿ýi£:Ȫ¿pê”G7ª¿ܵÛ.¬¿lÑ´­f¥¿(îx“ߢ«¿6WÍsD¾«¿å Åoò«¿t 34žª¿©ÞØ*Áª¿fk}‘Ж«¿œnÙ!þa«¿™óŒ}ÉÆ«¿ô¤‹¦«¿ut\쪿ˆìø/¬¿õ÷RxÐ쪿]›k«¿ýôŸ5?þª¿|ƒöêã©¿3á—úyS©¿©|š“©¿g×½‰ ª¿$î±ô¡ ª¿íÓñ˜Ê¨¿èÚÐ §¿íµ ÷ƨ¿ÚX‰yVÒª¿ä¾Õ:q9®¿Ë,B±4­¿IJzZ¬¿äˆž”I­¿˜M€aùó­¿èKo.ª¿­QÑ調‘í|?5^ª¿¨qo~ÃD«¿ò?ù»wÔ¨¿:ZÕ’Žr¨¿ßmÞ8)Ì«¿Æ‹…!rúª¿jÂö“1>¬¿Ÿ“Þ7¾ö¬¿±à~À¨¿ú™zÝ"0¦¿—ª´Å5¦¿ý½4»¦¿Ãc?‹¥¨¿Ež$]3ù¦¿ÀA{õñЧ¿…—àÔ’§¿H¾D„§¿1Ò‹Úý*¨¿(~Œ¹k ©¿:ÏØ—l<¨¿ð0í›û«§¿¢©ÛÙW¦¿@¥J”½¥¤¿‹Þ©€{ž§¿åa¡Ö4憎ùº ÿ骿+Àw›7Nª¿„ñÓ¸7¿©¿µmÁ«¿Ø×ºÔý¤¿ˆ¾»•%:«¿÷è ÷‘[«¿(c|˜½l«¿ú`º©¿šêÉü£oª¿„-vû¬2«¿t¶€Ðzøª¿÷‘[“n«¿ÿZ^¹Þ6«¿ÿwD…ª¿‚ëßõ™«¿Üƒ/¡ª¿%çÄÚǪ¿¥MÕ=²¹ª¿™fº×I}©¿jg˜ÚR©¿¯–;3Á¨¿™ñ¶Òk³©¿dæ—Çš©¿2kœMG¨¿µ5"—¦¿tîv½4E¨¿G’ \…ª¿û®þ·’­¿W³Îø¾¸¬¿Çò®zÀ<¬¿ Õ°ß묿Ϡ¡‚‹­¿…$³z‡Û©¿ì±¾©¿ÇeÜÔ@ó©¿Ã}äÖ¤Ûª¿R·³¯<¨¿ÓL÷:©§¿1`ÉU,~«¿0„œ÷ÿqª¿ß¿yqâ«¿}"O’®™¬¿‰yVÒŠo¨¿36t³?P¦¿^L3Ý뤦¿bhur†â¦¿:“6U÷¨¿¹Œ›h>§¿R·³¯<¨¿dw’ ¨¿FzQ»_¨¿Õ’Žr0›¨¿`ÊÀ-]©¿Úþ••&¥¨¿Æk^ÕY-¨¿Ã)só覿—Tm7Á7¥¿ËLiý-¨¿IZÖýc©¿•Ö߀ª¿n¿|²b¸ª¿´Ë·>¬7ª¿ÿ¬U»&¬¿ž´pY…¥¿x úÒÛŸ«¿DÀ!T©Ù«¿¯&OYM׫¿­„î’8+ª¿- PSËÖª¿åѰ¨ˆ«¿Ã9}=_«¿!WêYÊ«¿ðQ½Â‚«¿‚oš>;િä1•ñï«¿¶Go¸Üª¿ß§ªÐ@,«¿Æ‚”0«¿ú`º©¿N(DÀ!T©¿?üü÷¨¿Å:U¾g$ª¿¶ö>U…ª¿üd訿ÀË eý¦¿{K9_콨¿Nïâý¸ýª¿´wF[•D®¿gµÀ)­¿ä‚3øûŬ¿_›•˜g­¿®Gáz®¿A›>éDª¿78ýÚú©¿Â¿3‰ª¿Ž={.S«¿0½ý¹hȨ¿Î5ÌÐx"¨¿òšWuV ¬¿¦cÎ3ö%«¿^ Pj¬¿ŸÛ2à,­¿ÿÍ‹_í¨¿å|±÷⋦¿£±öw¶G§¿º¿zÜ·Z§¿eŽå]õ€©¿4MØ~2Ƨ¿0½ý¹hȨ¿!!Ê´¨¿p@KW°¨¿ø6ýÙ©¿§Z ³ÐΩ¿©J[\ã3©¿š#+¿ ƨ¿odùƒ§¿£uT5AÔ¥¿ùõCl¨¿ÃÔ–:Èë©¿Nïâý¸ýª¿Ø¸þ]Ÿ9«¿ÖÇCßÝʪ¿~ý,œ¬¿R+Lßk¦¿é(³ 0¬¿tšÚR¬¿1%’èe¬¿Ð(]ú—¤ª¿lwÐ}9«¿`:­Û ö«¿&¶Øí«¿. ´¾L¬¿OË\å ¬¿ÔÖüøK«¿ g·–Ép¬¿Aœ‡˜N«¿2;‹Þ©€«¿ó:â ¤«¿"Ã*ÞÈ<ª¿;q9^è©¿’Ï+žz¤©¿†uãÝ‘±ª¿x ý,–ª¿6rÝ”òZ©¿Ãï¦[vˆ§¿@¿ïß¼8©¿:]›«¿2>Ì^¶®¿ê?k~ü¥­¿Zd;ßO­¿H‰]ÛÛ­¿ž'ž³„®¿ZòxZ~િݵßÚ‰ª¿²fd»«¿_ÔîW¾«¿€šZ¶Ö©¿¯yUgµ¨¿%®c\qq¬¿©¤N@a«¿:A›>鬿]ݱØ&­¿>”h©¿_ š]÷¦¿aü4îͧ¿ÉæªyŽÈ§¿sÚSrNì©¿žî<ñœ-¨¿³z‡Û¡a©¿©J[\ã3©¿2®¸8*7©¿’Z(™œÚ©¿×gÎú”cª¿zÅrK«©¿ÛÄÉýE©¿é|x– #¨¿nˆñšWu¦¿mUÙ©¿8N ógª¿pënžê«¿ëâ6À«¿F6ŽX«¿c|˜½l;­¿ÃFY¿™˜¦¿«>W[±¿¬¿T­…Yh笿¬q6ܬ¿–Ïò<¸;«¿dsÕY1\­¿íÑV%‘­¿¦H¾H‰­¿õ  ­Ü«¿ºŸSŸ¬¿Úå[Ö­¿#¾³^ ­¿˜ßi2ãm­¿^‘šv1­¿hÊN?¨‹¬¿A)Z¹˜­¿Ûúé?k~¬¿©0¶ä ¬¿'ŸÛ2ିúDž$]«¿šž^)«¿$š@«¿ßøÚ3K¬¿sÖ§¬¿EGrù鯿Éå?¤ß®¿Á8¸tÌy®¿¼’ä¹¾¯¿^Mž²š®¯¿©¾ó‹¬¿µŠþÐÌ“«¿êÐéy7¬¿[D“7À¬¿Î7¢{Ö5ª¿ósCSvú©¿J&§v†©­¿a‹Ý>«Ì¬¿Èì,z§®¿'f½ʉ®¿×gÎú”cª¿Ö§“Åý§¿(Ö©ò=#©¿´ç25 Þ¨¿r3܀ϫ¿ ¥+ØF<©¿jûWVš”ª¿ˆ jôj€ª¿ eýfbª¿Õw~Q‚þª¿:vP‰«¿Ù°¦²(쪿ÁäF‘µ†ª¿mXSYv©¿Ö§“Åý§¿ÞË}r ª¿çß.ûu§«¿s-Z€¶Õ¬¿ÛÝt_ά¿þc!:ެ¿=¶eÀYJ®¿ÎR²œ„Ò§¿ £YÙ>ä­¿U¯²¶)®¿7Û$®¿Õ³ ”÷q¬¿'÷;ú¬¿àg\8’­¿+øDk­¿ÔïÂÖlå­¿µŒÔ{*§­¿‰`\:欿¤¨3÷ð­¿e#Ù#Ô¬¿Ø×ºÔý¬¿Í:ãûâR­¿í~à»Í«¿GÆjóÿª«¿€J•({«¿ý0Bx´q¬¿¦(—Æ/¬¿ÒyY«¿~oÓŸýH©¿%çÄÚǪ¿©öéxÌ@­¿6>“ýó4°¿Um7Á7M¯¿µ­¿®×ô  ­¿“HÛø­¿]ûzáέ¿ž±/Ùx°­¿Î’Z(™¬¿Ð€z3j¾ª¿÷9>Zœ1¬¿ãQ*á ½®¿!°rh‘í°¿³%«"Üd°¿J–“PúB°¿ª, »(z°¿¢™'×Ȱ¿ o –ꮿ•Zº‚­¿1 ò®¿Ùy›©®¿ W@ÜÕ«¿ ÐÒl«¿UPQõ+¯¿^‘š®¿á' ß÷¯¿È%Ž<Y°¿ÄìeÛik¬¿°ÅnŸUfª¿Ò¬lò–«¿EJ³y«¿gµÀ)­¿«ZÒQf«¿ö|ÍrÙ謿3úÑpÊܬ¿Û…æ:´¬¿Ž¯=³$@­¿ K< lÊ­¿—qS­¿'ŸÛ2ିŒ½_´Ç«¿Ó.¦™îuª¿Ðïû7/N¬¿©;‡ú­¿À#*T7¯¿u殿ÞÈ<ò¯¿²òË`ŒH°¿ö´Ã_“5ª¿þ|[°T°¿¬«µ<°¿ÎQÚ°¿’¯Rb×®¿QLÞ3¯¿¼°5[yɯ¿(š°È¯¯¿œà›¦Ï°¿0GßÛô¯¿çmlv¤ú®¿„~¦^·°¿È•z„ò®¿÷”œ{h¯¿`[?ýgͯ¿U1•~ÂÙ­¿)#.Ò­¿1E¹4~á­¿,*ât’­®¿æWs€`Ž®¿ñ~Ü~ùd­¿’!ÇÖ3„«¿nÁR]Àˬ¿y<-?p•¯¿3á—úyS±¿¸tÌyƾ°¿>v()°°¿Ÿ;Áþëܰ¿Ç›ü,±¿«˜J?á쮿÷Žb®¿. ø1殿H¾D„¯¿Fì@1²¬¿µP29µ3¬¿Ž®ÒÝu6°¿áaÚ7÷W¯¿@¡ž>°¿ir1Öq°¿Žç3 Þ¬¿Öa°äª¿Û4¶×‚Þ«¿Ì †:¬p«¿_ÎlW胭¿»)嵺«¿Í’5µl­¿çþêqßj­¿ù½Mö#­¿X7Þ«­¿Á­»yªC®¿¬‡¾»•­¿J›ª{ds­¿o.þ¶'H¬¿3Pÿ>㪿#Ûù~j¼¬¿‰Ï`ÿu®¿UPQõ+¯¿|—wJ¯¿n1?74e¯¿Z ‰{,}°¿eP3¤Šª¿…µ1vÂK°¿Ús™šo°¿@¼®_°¿b£¬ßLL¯¿?T1³¯¿Ä$\È#°¿,ºõš°¿B•š=°¿ÿ¬U»&°¿Qgî!á{¯¿@j'÷;°¿· b k¯¿¹˜Št¯¿çfh<°¿d°âTka®¿AG«ZÒQ®¿îîº/g®¿á ½þ$>¯¿¸®˜Þ®¿G ^×/Ø­¿ÅŒðö ¬¿Ù•–‘zO­¿ÊPS鯿ZôPÛ†±¿æ!S>±¿Ž •bGã°¿HÝξò ±¿>”h±¿'„º„C¯¿¥,Cë⮿КiQ¯¿Œi¦{Ô¯¿^‘šv1­¿Ô»x?n¿¬¿»›§:äf°¿Ï…‘^Ô¾Ü'G¢°¿<ŸõfÔ°¿­ü2#­¿wÚŒƒ«¿ PO?¬¿§\á].â«¿‰±L¿D¼­¿=°S¬¬¿qÈÒŦ­¿4KÔÔ²­¿7QKs+„­¿©lXSY®¿Ô‚}i®¿ £YÙ>ä­¿”Ù “Œœ­¿‹3†9A›¬¿€œ0a4+«¿Þ„€| ­¿$`tys¸®¿ÍXäׯ¿“5µl­¯¿P)”…¯¯¿…DÚÆŸ¨°¿gÓÀͪ¿äŸÄv°¿—㈞°¿RC€ ˆ°¿Ÿ«­Ø_v¯¿*Æ3h诿sµ4·B°¿7n1?7°¿ÖT…]°¿^ÒƒN°¿»}V™)­¯¿$'· b°¿d¯w¼¯¿vmo·$°¿³š®'º.°¿ØžY ¦®¿°Tð2î¿øQ û=±®¿(·í{Ô_¯¿´ ”÷q4¯¿G«ZÒQ®¿${„š!U¬¿àg\8’­¿¹‰Zš[!°¿F•aÜ ¢±¿,»`pͱ¿:tzÞ±¿œæ=Î4±¿é`ýŸÃ|±¿È[®~l’¯¿R_–vj.¯¿LS8½‹¯¿Èš‘Aî"°¿`vOj­¿ë¬Øc"­¿·Aí·v¢°¿eRC€ °¿ÕBÉäÔΰ¿ŽÌ#0ð°¿‹ÆÚßÙ­¿ëpt•¿p À?¥J¬¿å—Á‘(¬¿°«ÉSVÓ­¿J·%rÁ¬¿+Nµf¡­¿st´ª­¿O²žZ}­¿j’Ìê­¿Ot ‡®¿?ÆÜ­¿(ðN>=¶­¿¼z¬¿°;Ýyâ9«¿¢$$Ò6þ¬¿c¸:â®®¿´æÇ_ZÔ¯¿Ä"†Ƥ¯¿þ™A|`ǯ¿Óˆ™}£°¿2uWvÁિ‰yVÒŠo°¿'¼§>°¿×3ÂÛƒ°¿aNÐ&‡¯¿ÆàaÚ7÷¯¿×Š6ǹM°¿ú›Pˆ€C°¿T1³Ïc°¿¾Û¼qR°¿%<¡×ŸÄ¯¿ÒQf`°¿^€}têʯ¿ßmUÙ¯¿?Qžy9°¿­k´è¡®¿øQ û=±®¿å|±÷â‹®¿•Óž’sb¯¿JbI¹û¯¿’’†®¿ ßû´¯¿¾ƒŸ8€~¯¿å%ÿ“¿{¯¿Îp>?Œ°¿uF^ÖĪ¿©ù*ùØ]°¿ƒŠª_é|°¿!Âøi°¿{ž?mT¯¿QJVÕ˯¿)ßÞ5°¿c{-è½1°¿ÏdT°¿lÌëˆC6°¿“¨|š“¯¿^ÒƒN°¿¤oÒ4(š¯¿õôøÃϯ¿,g~5°¿$Õw~Q‚®¿¸“ˆð/‚®¿‘ñ(•ð„®¿s×òA¯¿Šå–VC⮿üÄôûþ­¿£uT5A¬¿ÿç0_^€­¿WA tí °¿­jIG9˜±¿óÊõ¶™ ±¿…{eު밿ë¬Øc"±¿<…\©g±¿Ë2g¯¿þHVñ®¿÷”œ{h¯¿‡P¥f°¿h@½5_­¿Ç•F̬¿TÝ‹Š°¿T7Û°¿rNì¡}¬°¿²dŽå]õ°¿Ã×׺Ô­¿š±h:;¬¿¨rÚSrN¬¿ª x™a£¬¿ Ö8›Ž®¿Ø¹i3NC¬¿æCV¸­¿¦ ÐÒ­¿ÖMò#~­¿—6Êú­¿X­Lø¥~®¿Ý”òZ Ý­¿å+”ص­¿3oÕu¨¦¬¿R %“S;«¿>]ݱØ&­¿¿eN—ÅÄ®¿aŽ¿·é¯¿¨ÅàaÚ¯¿zÇ):’˯¿áñí]ƒ¾°¿¿ 1^óª¿ìÁ¤øø„°¿/ÞÛ/Ÿ°¿9^èI™°¿¶¹1=a‰¯¿¯±KTo °¿`Xþ|[°¿l$ ÂP°¿Þß4}v°¿‚WË™`°¿*Æ3h诿çUÕ{°¿•fó8 毿Øñ_ °¿y®ïÃAB°¿µÀ)Í®¿KÔÔ²µ®¿ºùFtϺ®¿fgÑ;p¯¿‘·\ýØ$¯¿”lu9% ®¿˜Þþ\4d¬¿¾‰!9™¸­¿°8œùÕ°¿é Œ¼¬‰±¿]‰@õ"±¿ïå>9 ±¿%xC8±¿øq4GV~±¿¿œ3¢´¯¿½á´àE¯¿èf Ü¶¯¿Ž®ÒÝu6°¿B\9{g´­¿ù½Mö#­¿ãOT6¬©°¿•™Òú[°¿ð5Çeܰ¿2V›ÿW±¿{O崧䬿êÐéy7¬¿ÈбƒJ¬¿ò`‹Ý>«¬¿Ð^}<ôÝ­¿±¿ìž<,¬¿Rðr¥ž­¿(ðN>=¶­¿;ŠsÔÑq­¿²ˆ×õ ®¿j÷«ßm®¿|+Ôð­¿Ç.Q½5°­¿pìÙs™š¬¿X«vMH«¿µÆ B­¿›!U¯²®¿76;R}篿×÷á !ʯ¿oïô¥¯¿³\6:ç§°¿‰^F±ÜÒª¿‡oaÝxw°¿Jy­„î’°¿E ¦aøˆ°¿C®Ô³ ”¯¿„Ÿ8€~߯¿pµN\ŽW°¿GN¶;°¿ÖqüPi°¿Ô€AÒ§U°¿R}ç%诿Z ‰{,}°¿Å­‚èÚ¯¿‡3¿š°¿žî<ñœ-°¿ý½4»®¿ Ï.ßú°®¿Ùy›©®¿GßÛôg¯¿MóŽSt$¯¿ùf›Ó®¿H¾D¬¿EºŸSŸ­¿÷ZÐ{c°¿CX%¬±¿®×gÎú°¿Âøiܛ߰¿OÌz1”±¿¢_[?ýg±¿=·Ð•T¯¿RÔ™{Hø®¿÷<Ú¨N¯¿øá !ʰ¿¼ËE|'f­¿èy’tͬ¿W|Cá³u°¿áíAȯ¿zÄè¹…®°¿9}=_³°¿ÔÑq5²+­¿ù÷„¬¿œú@òΡ¬¿ÌÔ$xC­¿D¥3û<®¿}Ê1Yܬ¿¹¨Åä­¿3SZK®¿`YiR º­¿ìˆC6.®¿Q¾¾Ö¥®¿@‰Ï`ÿ­¿Ø(ë7Ó­¿Oé`ýŸÃ¬¿µÿÖª]«¿Z×h9ÐC­¿ À;ùôØ®¿\Uö]ü¯¿ÁtZ·Aí¯¿AJ˜iû¯¿J}YÚ©¹°¿;r¤30òª¿]¡·x°¿[@h=|™°¿„½‰!9™°¿œ0a4+Û¯¿ÎQÚ°¿±3…Îk°¿ëâ6À[°¿2<ö³Xа¿EÚÆŸ¨l°¿j¾J>v°¿²Õ唀˜°¿ºÝË}r°¿eVïp;4°¿n§­Á8°¿u=Ñu᯿¯\o›©¯¿'ù¿b ¯¿ƒlY¾.￯\o›©¯¿tì ×1®¿uÍä›mn¬¿ž MKÊ­¿:Ë,B±°¿júì€ëб¿–?ß,±¿1#¼=±¿©öéxÌ@±¿¢·xxϱ¿ÌDR·³¯¿"—Ž9¯¿“¨|š“¯¿Ë+×Ûf*°¿Ð^}<ôÝ­¿™b‚ŽV­¿ç4 ´;¤°¿©¾ó‹°¿éšÉ7Ûܰ¿vÂKp걿 ¸Ê;­¿Š§wñ~¬¿—6–~¬¿êy7­¿)®*û®®¿xÓ-;Ä?¬¿íÑV%‘­¿ß4}vÀ­¿¸’x­¿ŽÍŽTßù­¿°¿ä£Åܰ¿)ë7Ó…°¿ù¢=^H‡¯¿±à~À°¿Mø¥~ÞT°¿Çò®zÀ<°¿LnYk°¿Ã¹†O°¿•fó8 毿ir1Öq°¿{úüá篿8iͰ¿5cÑtv2°¿èI™ÔЮ¿£¢ÑÄ®¿»a̮ۢ¿Ÿ«­Ø_v¯¿J ,€)¯¿[(™œÚ®¿ŠÍǵ¡b¬¿¯xê‘·­¿žB®Ô³ °¿ŒgÐÐ?Á±¿?Œm±¿¯Z™ðKý°¿ YÝê9±¿íÑV%‘±¿d¯w¼¯¿q:ÉV¯¿>u¬Rz¦¯¿;þ 2°¿%êŸæä­¿ÀnÝÍS­¿+¥gz‰±°¿í`Ä>°¿'ŸÛ2à°¿¨äœØCû°¿··[’v­¿ÆÝ Z+Ú¬¿(F–̱¬¿­‡/EH­¿òz0)>®¿ÌAÐѪ–¬¿oõœô¾ñ­¿ÒÄ;À“®¿YÂÚ;á­¿=ƒù+d®¿ã©GÜÖ®¿c}“E®¿”XS®¿Xqªµ0 ­¿Ý^Ò­«¿öBÛÁˆ­¿dÎ3ö%¯¿UÙY°¿Ã.Šø°¿vþÓ °¿§/ú Ò°¿ÆnŸUfJ«¿Wya§°¿¡×1®¸°¿RóUò±»°¿8ýÚú鯿b k_@/°¿Ûúé?k~°¿_F±ÜÒj°¿7¨ýÖN”°¿ î<0€°¿0K;5—°¿Ãc?‹¥°¿Bí·v¢$°¿ÊTÁ¨¤N°¿Ñ"Ûù~j°¿y ²H¯¿©»² ¯¿×Ùf¯¿“5µl­¯¿ü¤6qr¯¿ˆLùT®¿ÅªA˜Û½¬¿:è®¿ì½ø¢=^°¿HO‘CÄͱ¿Ö‹¡œhW±¿˜Û½Ü'G±¿/¨o™Óe±¿‘'I×L¾±¿‘´}̰¿ õôøÃ¯¿"Žuq °¿ùõCl°¿/¥.ÇH®¿4óäš™­¿a7l[”Ù°¿W$&¨á[°¿ŽW zR&±¿äˆž”I±¿ó:â­¿ñaö²í¬¿‘Òl‡Á¬¿J›ª{ds­¿c%æYI+®¿&9`W“§¬¿ðiN^d®¿ú™zÝ"0®¿G ^×/Ø­¿rl=C8®¿ºùFtϺ®¿¿Òùð,A®¿tì ×1®¿)Ý^Ò­¿ßÁÿV²«¿™Iô2Š­¿ÿ®Ïœõ)¯¿â|~!°¿BA)Z¹°¿AfgÑ;°¿#ºg]£å°¿sIÕv|«¿J´°¿]¦&ÁÒ°¿aßN"¿°¿@ÛjÖ߯¿Ô($™Õ;°¿?ÆÜµ„°¿M×]~°¿œN²Õå”°¿þc!:ް¿º/g¶+°¿¢A žB®°¿)\Âõ(°¿›äGüŠ5°¿;5— u°¿ªH…±… ¯¿:3Pÿ®¿·&ݖȯ¿_³\6:篿6 B\9{¯¿’$W@¡®¿iUK:ÊÁ¬¿%ÍÓÚ4®¿·¶ð¼Tl°¿¤¨3÷ð±¿+*ÿZ^±¿`r£ÈZC±¿€)´t±¿£7ünº±¿:w»^š"°¿—Ž9ÏØ¯¿K’çú>°¿QhY÷…°¿‹RB°ª^®¿Ïø¾¸T¥­¿órØ}Çð°¿Š!9™¸U°¿Q._x%±¿/¨o™Óe±¿%êŸæä­¿¥½Á&S­¿—Ép<Ÿ­¿÷ÍýÕã¾­¿\ŽW zR®¿Ãº﬿ oÖà}U®¿Kw×Ù®¿%ÍÓÚ4®¿ó=#Á®¿EöA–¯¿ œO«”®¿¾ÚQœ£Ž®¿J›ª{ds­¿I„F°qý«¿Ïƒ»³vÛ­¿©PÝ\üm¯¿£’:M°¿)´¬ûÇB°¿^gCþ™A°¿¤ÿåZ´±¿ã¦šÏ¹«¿ý¾óâ°¿77¦',ñ°¿éòæp­ö°¿s ßû°¿~r f°¿¾ˆ¶cê®°¿ƒi>"¦°¿× /½ý¹°¿î{Ô_¯°°¿‚WË™`°¿nmáy©Ø°¿» ”X°¿É°Š72°¿½f¾ƒŸ°¿CV·zNz¯¿å%ÿ“¿{¯¿ïÊ.\s¯¿Lm©ƒ¼°¿h%­ø†Â¯¿ƒÃ "RÓ®¿$™Õ;Ü­¿Ôµö>U…®¿„ûPŒ°¿|+Ôð±¿{„±¿´UIdd±¿áBÁ”±¿ýläº)屿Î9x&4I°¿>\rÜ)°¿–Ð]gE°¿Ít¯“ú²°¿ý½4»®¿1 ò®¿Ïg@½±¿õc™~‰°¿ ¦šYK±¿“¦AÑ<€±¿%ÍÓÚ4®¿W\•›¨­¿Ò¦êÙ\­¿cò˜ù®¿Lª¶›à›®¿©öéxÌ@­¿'f½ʉ®¿:;%¯®¿‰Ï`ÿu®¿–è,³Å®¿]7¥¼VB¯¿ësµûË®¿ÐÔë±®¿Ç.Q½5°­¿UÂzýI¬¿Ä "RÓ.®¿­lò–«¯¿²Jé™^b°¿Ã¤Rìh°¿Tn¢–æV°¿'…y3±¿ä1•ñï«¿5´Ø€±¿ïå>9 ±¿G 6u±¿÷åÌv…>°¿ð¦[vˆ°¿6ÇeÜÔ°¿6ÊúÍİ¿ýkyåzÛ°¿ò?ù»wÔ°¿M×]~°¿XÅ™Gþ°¿À³=zÃ}°¿ Q¾ …°¿+Qö–r¾°¿Þ擼¯¿9¹ß¡(Я¿É>Ȳ`⯿Ÿu–=°¿ â;þ °¿³í´5"¯¿À\‹ m­¿ †7kð®¿ý»>sÖ§°¿ŠsÔÑq5²¿óäš™±¿(eRC€±¿^*6æuı¿l—6–²¿9ÏØ—l°¿ PO?°¿Ù˜×‡l°¿—ÅÄæãÚ°¿R_–vj.¯¿ÊÝçøhq®¿N|µ£8G±¿™Hi6ð¿#M¼[¯¿ÚV³Îø®¿ÚV³Îø®¿LŒeú%â­¿N+…@.q¬¿¯>úîV®¿ý¾óâį¿Ûúé?k~°¿@¡ž>°¿~£<ór°¿éÕ¥¡F±¿'ÙêrJ@¬¿ô #±¿{2ÿè›4±¿V¸å#)±¿²žZ}uU°¿ú*ùØ] °¿œÝZ&Ãñ°¿EÓÙÉà°¿æèñ{›þ°¿›™Eï°¿*Õ"¢°¿*Œ-9(±¿†s 34ž°¿mæÔBɰ¿ÛÝt_ΰ¿_³\6:篿çãÚP1ί¿šÒú[ð¯¿ô3õºE`°¿üÆ×žY°¿wÖn»Ð\¯¿ Q…?Û­¿OÎPÜñ&¯¿`™D½°¿7Û$²¿9 {Úᯱ¿JzZœ±¿Í!©…’ɱ¿îÎÚm²¿&5´Ø€°¿ 4ØÔyT°¿àºbFx{°¿Y|^ñ°¿o À±g¯¿Ô˜sIÕ®¿&«"ÜdT±¿A'„º°¿@öz÷Ç{±¿¦',ñ€²±¿Ot ‡®¿ ~þ{ðÚ­¿ß4}vÀ­¿<3Áp®a®¿W˜¾×¯¿ ]Þ®­¿yvùÖ‡õ®¿¯²¶)¯¿?ÿ=xíÒ®¿uÈÍp>¯¿‡¥Õ°¯¿¾ø¢=^H¯¿{Ü·Z'.¯¿ÞïU+®¿q¹5鶬¿âKº ®¿™Ö¦±½°¿„aÀ’«°¿È¨p©°¿Î’Z(™°¿NÔÒÜ a±¿V(Òýœ‚¬¿’”ô0´:±¿ÜK£uT±¿=a‰”M±¿o¹ú±I~°¿•AÕèÕ°¿¥2ű¿GV~Œ±¿ãâ¨ÜD-±¿o.2±¿üä(@̰¿ñKý¼©H±¿¦~ÞT¤Â°¿½Œb¹¥Õ°¿æèñ{›þ°¿ ©ÛÙW°¿€™ïà'°¿vÅŒðö °¿„elèf°¿Ýyâ9[@°¿HÜÖž¯¿2 {½ûã­¿äòÒo¯¿ÿunڌӰ¿ ˜£Çïm²¿%’èe˱¿¢–æV«±¿Ç ¿›nÙ±¿Á-]Á6²¿Óˆ™}£°¿@¡ž>°¿Ëe¡°¿Kçó±¿Ñ°u­½¯¿ÀË eý®¿ ¦}s±¿ ߺñî°¿4Ÿs·ë¥±¿ïÚÄɱ¿êè¸Ù•®¿°«ÉSVÓ­¿ÔdÆÛJ¯­¿@̘‚5®¿Î4aûɯ¿f 2þ}Æ­¿žbÕ Ìí®¿„çÞÃ%¯¿ÄÑUº»Î®¿B#ظþ]¯¿LÞ3ßÁ¯¿åš™E¯¿]7¥¼VB¯¿V¼‘y䮿¯D ú‘¬¿Æ¡~¶®¿÷_˜L°¿²,˜ø£°¿4»î­°¿dT8‚°¿Cý.l±¿Ð w.Œ¬¿ñKý¼©H±¿™b‚ŽV±¿Ì_!seP±¿2g—o}°¿‰ÿ"h̰¿ø6ýÙ±¿rÝ”òZ ±¿5 S"±¿7e±¿Ûe6Ȱ¿*ÙYôN±¿#Ûù~j¼°¿Žlê°¿Ac&Q/ø°¿ãüM(°¿”¼Ǚ&°¿ßmÞ8)°¿À³=zÃ}°¿Ì^¶¶F°¿oïô¥¯¿¾4»î­¿°rh‘í|¯¿sÙ蜟ⰿSé'œÝZ²¿xî=\rܱ¿÷!o¹ú±±¿ëŠáí±¿3ÞVzm6²¿mâä~‡¢°¿^ò?ù»w°¿r¥ž¡°¿Ä^(`;±¿-Ó¾¹¯¿h¯>ú”¢•{±¿->Àx±¿’Ï+žz¤±¿èÀr„ 䱿I/j÷«¯¿kïSUh ®¿ø‹Ù’U®¿"ÇÖ3„c®¿.®ñ™ìŸ¯¿¸°n¼;2®¿4¡l\¯¿ê‘·µ…¯¿`ÈêVÏI¯¿õœô¾ñµ¯¿Hˆò-$°¿u["œÁ¯¿ÞŽpZ𢯿š–X|®¿«–t”ƒÙ¬¿_• •-¯¿kIG9˜M°¿Óg\W̰¿©gA(ïã°¿‘~û:pΰ¿+Nµf¡±¿¾³^ 嬿/Ý$±¿x $(~Œ±¿£>É6‘±¿5%Y‡£«°¿ÝCÂ÷þ±¿äg#×M±¿^‘šv1±¿8ù-:Yj±¿vùÖ‡õF±¿5´Ø€±¿îÌù†±¿Ù²|]†ÿ°¿â¯Éõ±¿Ñ@,›9$±¿™¹Àå±f°¿ÒQf`°¿“ÆhUM°¿‚ŽVµ¤£°¿Ç):’˰¿vmo·$°¿4iSul®¿‘Õ­ž“Þ¯¿: ûv±¿¤ö{b²¿Ävü²¿Qøl챿ÆGå&²¿ s‚69|²¿Ï‚PÞÇѰ¿• •-¯°¿ÆÝ Z+Ú°¿~oÓŸýH±¿ÿÐÌ“k °¿fgÑ;p¯¿îаu­±¿¿ž¯Y.±¿‰ jøÖ±¿z‹üú!²¿ümOØî®¿=HO‘CÄ­¿Qølì­¿g+/ùŸü­¿£<órØ}¯¿dÍÈ w®¿S’u8ºJ¯¿Ìa÷Ãc¯¿i:;%¯¿‚9züÞ¦¯¿Èš‘Aî"°¿u["œÁ¯¿ÏJZñ …¯¿¯–;3Áp®¿4¢´7øÂ¬¿ÁV ‡3¯¿î@òèF°¿#‡ˆ›Sɰ¿«–t”ƒÙ°¿"T©Ù­°¿âÊÙ;£±¿'ŸÛ2ି~sõ¸o±¿^-wf‚±¿uU ƒ‡±¿r„Ѭ°¿l–ËFçü°¿q9^èI±¿@k~ü¥E±¿ ëÆ»#c±¿WÍsD¾K±¿ï!8ö°¿³&øŠn±¿U¿Òùð°¿Ã×׺Ô±¿@aÃÓ+±¿'Ý–Èg°¿uuÇb›T°¿ú›Pˆ€C°¿[ìöYe¦°¿$}ZE°¿« ºö°¿ê]¼·_®¿”3w¼É¯¿K¦z2ÿ°¿Ïõ}8Hˆ²¿5 ÞF²¿œ†¨ÂŸá±¿%uš²¿×]~p²¿Gˆ,Ò°¿^»´á°°¿¿»•%:˰¿$ïÊP±¿Owžxΰ¿â<œÀtZ¯¿1•~ÂÙ­±¿¿ÑŽ~7±¿xB¯?‰Ï±¿ÀÎM›q²¿¾ø¢=^H¯¿&å`6®¿)H4"®¿Hû`­Ú­¿o»ì¯¿ƒˆÔ´‹i®¿hÍ¿´¨¯¿-Ó¾¹¯¿¤µûU€¯¿‘`ª™µ°¿‡kµ‡½P°¿1Îß„B°¿¨ÅàaÚ¯¿?§ ?¹®¿ü´W­¿LS8½‹¯¿³Ñ9?Åq°¿iàG5ì÷°¿Tàd¸±¿ù†Âgëà°¿S#ô3õº±¿‹ÆÚßÙ­¿6<½R–±¿ àbE ¦±¿J&§v†©±¿a‹Ý>«Ì°¿{ö\¦&±¿èy’t±¿üª\¨ük±¿b„ðh㈱¿Tœˆ~±¿ïå>9 ±¿"ýöuàœ±¿ªò=#±¿.É»š<±¿§@fgÑ;±¿~Q‚þB°¿ô‹ôz°¿Ù˜×‡l°¿ï®³!ÿ̰¿ƒ§Z ³°¿ˆg 2*°¿…î’8+¢®¿=·Ð•°¿.sž±/±¿²ƒJ\Ǹ²¿ÉËšXà+²¿Ì}r ²¿×4ï8EG²¿=™ôMš²¿œˆ~mý°¿Ç¸ââ¨Ü°¿Q£dVï°¿'Þž´p±¿…]=ð1°¿èf Ü¶¯¿B´V´9α¿¥½Á&S±¿'÷;²¿²½ôÞ²¿y=˜¯¿Hû`­Ú­¿LbõG®¿p +TT­¿è¾œÙ®Ð¯¿õ¸oµN\®¿1е/ ¯¿˜Ÿ¯¿~âú}¯¿ú¸6TŒó¯¿HŒž[èJ°¿¬tw ù¯¿˜l<Øb·¯¿êè¸Ù•®¿0[wó¬¿#£’°o¯¿¶Û.4×i°¿xEð¿•ì°¿bjKäõ°¿@„¸röΰ¿`­Ú5!­±¿å 0óü¬¿§wñ~Ü~±¿ïSUh –±¿§#€›Å‹±¿#‡ˆ›Sɰ¿ŸrL÷±¿Â(›r±¿8MŸp]±¿ˆKŽ;¥ƒ±¿9€~ß¿y±¿Bêvö•±¿x·²Dg™±¿lîè¹±¿LÂ…<‚±¿UkaÚ9±¿Ê‹LÀ¯‘°¿$Ó¡Óón°¿Jš?¦µi°¿aßN"¿°¿Ê7Ûܘž°¿’;l"3°¿óèžu®¿ï«r¡ò¯¿ñó߃×.±¿‘Жs)®²¿ÐÒl#²¿g+/ùŸü±¿Ï¾ò =E²¿¬äcw’²¿Z Ý!ű¿£ x|{×°¿©¿^aÁý°¿e6È$#g±¿ÇF ^×/°¿ –\Å⯿ÌFçüDZ¿lÍV^ò?±¿És}²¿n¥×fc%²¿K?ªa¯¿){K9_ì­¿JDøAc®¿Í:ãûâR­¿{-è½1°¿€‚‹5˜®¿—Ž9ÏØ¯¿Ÿ>øù¯¿2rö´Ã¯¿¹5é¶D.°¿‚Zº‚m°¿ý¡™'×°¿ßøÚ3K°¿%“S;ÃÔ®¿-!ôlV­¿ ßû´¯¿o¹ú±I~°¿ /Ý$±¿2ª ãn±¿Žx²›ý°¿ΤMÕ±¿‹Q×ÚûT­¿0.sž±¿]£å@µ±¿´8c˜´±¿åa¡Ö4ï°¿Z×h9ÐC±¿¸>¬7j…±¿ÍçÜíz±¿ûZ—¡Ÿ±¿<½R–!ޱ¿ú˜t&±¿>w‚ý×¹±¿É"M¼<±¿ª)É:]±¿à0Ñ O±¿O‘CÄÍ©°¿“ýó4`°¿t%Õ?ˆ°¿áÐ[<¼ç°¿ JÑʽ°¿æÊ ÚàD°¿›T4Öþή¿¯]ÚpX°¿Ház®G±¿”Þ7¾ö̲¿E€Ó»x?²¿dyW=`²¿n0Ôa…[²¿²×»?Þ«²¿G 6u±¿’]i©÷°¿?Œm±¿¬ãø¡Òˆ±¿‚ÿ­dÇF°¿‘Õ­ž“Þ¯¿Õv|Óô±¿À3‰z±¿¯³!ÿÌ ²¿#žìfF?²¿·ìÿ°¥¯¿uÇb›T4®¿75Ð|ÎÝ®¿6l±Ûg­¿/÷ÉQ€(°¿. ø1殿>°ã¿@°¿‰–<ž–°¿¼;2V›ÿ¯¿´up°71°¿ò\߇ƒ„°¿k¸¯@°¿á² ›.°¿R_–vj.¯¿]£å@µ­¿‚Äv÷ݯ¿`¬o`r£°¿J¸Gp#±¿œæ=Î4±¿f.py¬±¿2Ì Úäð±¿r£ÈZC©­¿œSÉPű¿À—ƒf×±¿…ÐA—p豿¶Mñ¸¨±¿ ƈD¡e±¿[AÓ+£±¿Ü‚¥º€—±¿¡B]±¿ "RÓ.¦±¿¶Øí³ÊL±¿cBÌ%UÛ±¿ö?ÀZ±¿åœØCûX±¿ú{)°¿_b,Ó/¯¿ºê°¿Pª}:3°¿>\rÜ)°¿·^Óƒ‚R°¿3¸<ÖŒ°¿kIG9˜M°¿¤á”¹ùF°¿x N} y¯¿ÞïU+®¿ÀÌwð°¿´ã†ßM·°¿Ó–x@±¿c('ÚUH±¿L£uT5±¿ ±ú# ²¿j1x˜öÍ­¿™õb('Ú±¿EÖJí±¿aü4Þv¡¹N#±¿eâVA t±¿p]1#¼±¿öF­0}¯±¿C=·Ð±¿l´è¡¶±¿+*ÿZ^±¿j‰•ÑÈ籿§ÔE e±¿Ó1çû’±¿fÁÄE±¿Ç¸ââ¨Ü°¿×L¾ÙæÆ°¿B_zûsѰ¿z«®C5%±¿;]¥»ë°¿.ÿ!ýöu°¿+TTýJ¯¿ÒQf`°¿[éµÙX‰±¿i6Ã`þ²¿5ð£ö{²¿\ætYLl²¿ºõš”²¿vÀuÅŒð²¿h”.ýKR±¿&§v†©-±¿ƒ/L¦ F±¿,-#õžÊ±¿µ‡½PÀv°¿Åä 0ó°¿l’ñ+²¿'½o|í™±¿W"PýƒH²¿:ZՒ޲¿qUÙwEð¯¿äIÒ5“o®¿—á?Ý@¯¿{ö\®¿ðN>=¶e°¿ÝД~P¯¿È%Ž<Y°¿y²›ýh°¿î@òèF°¿³Ñ9?Åq°¿šwœ¢#¹°¿;5— u°¿ î<0€°¿ÊŠ;Þ䯿Ê52;‹®¿ 0,¾-°¿Ï.ßú°Þ°¿Í’5µl±¿¢ ê[æt±¿¸æŽþ—k±¿d¬6ÿ¯:²¿Qƒi>"®¿Ã,´sš²¿LÃð1%²¿Íù†²¿=a‰”M±¿‚7¤Q“±¿_]¨Å౿È—PÁ᱿È@ž]¾õ±¿b™¹À屿Á;ùôØ–±¿ßú°Þ¨²¿° ÍX4±¿€-¯\o›±¿n¾ݳ®±¿û”c²¸ÿ°¿€»ì×î°¿!\…zú°¿ìÕ[[±¿ÞÊe±¿4J—þ%©°¿ÑXû;Û£¯¿½©H…±…°¿òµg–¨±¿jÁ‹¾‚4³¿c'¼§²¿K‘|%²¿ª¹Ü`¨Ã²¿û–9]³¿×j{¡€±¿šë4ÒR±¿9€~ß¿y±¿HS=™ô±¿[ìöYe¦°¿ôPÛ†Q°¿¸Üšt[²¿6Y£¢Ñ±¿]mÅþ²{²¿ªa¿'Ö©²¿‘`ª™µ°¿ˆôÛ×s®¿^Mž²š®¯¿“âã²ó®¿ö•é)r°¿®¼äòw¯¿ƒÞCp°¿û­( ‰°¿5B?S¯[°¿=C8fÙ“°¿ßºñîȰ¿pìÙs™š°¿þc!:ް¿³–Òþ°¿˜Ãî;†Ç®¿­†Ä=–>°¿Ç{ö°¿Œ0E¹4~±¿·•^›±¿þ oÖà}±¿^‚SH²¿"Ä•³w®¿ÍX4 ²¿—©Ið†4²¿iå^`V(²¿&Œf±¿a4+Û‡¼±¿U‰²·”ó±¿[$íF󱿮,ÑYf²¿'÷;²¿È F³²±¿—©Ið†4²¿ó)‚ª±¿g'ƒ£äÕ±¿C=·Ð±¿c}“±¿øŠn½¦±¿LÂ…<‚±¿®ºÕ”d±¿J¸Gp#±¿ð1Xqªµ°¿h%­ø†Â¯¿‹3†9A›°¿Kº ¾±¿èøhqÆ0³¿ÐÔë±²¿x¸£²¿àŸR%ʲ¿àÖÝ<Õ!³¿Ó1çû’±¿˜3Ûú`±¿÷Ãc?‹±¿uèô¼ ²¿XŽ<»°¿‘›á|~°¿?p•'v²¿ç“¼DZ¿…î’8+¢²¿M…x$^ž²¿ï_{fI°¿)$™Õ;Ü®¿Ÿqá@H°¿ õôøÃ¯¿ª·¶J°°¿Ÿ>øù¯¿˜Á‘(´°¿TUh –Ͱ¿Âmmáy©°¿B_zûsѰ¿Ì|?q±¿Êß½£Æ°¿§/ú Ò°¿,Eò•@J°¿:Yj½ßh¯¿RC€ ˆ°¿'…y3±¿ÅÿQ¡º±¿‰ jøÖ±¿L4HÁSȱ¿U£W”†²¿¸®˜Þ®¿åñ´üÀU²¿l#žìf²¿£;ˆ)t²¿´„Ö×±¿» )?©ö±¿U±¿[²*ÂMF±¿«‹Ã™_±¿€-¯\o›±¿m6 B\±¿Äy8é°¿ø¯=³$°¿¢ñDçá°¿78ýÚú±¿Ø›’“‰³¿«°¿,ØF<ÙͰ¿u“V±¿âuý‚ݰ¿Žlê°¿y²›ýh°¿V+~©Ÿ¯¿8ƒ¿_Ì–°¿äg#×M±¿ßÃ%ÇÒ±¿oõœô¾ñ±¿÷Ý—3Û±¿½«0™²¿q¬‹Ûh¯¿£7ün²¿ËǺ¸²¿tϺF˲¿]£å@µ±¿®€B=}²¿Çô„%P²¿ÒÈçO=²¿8¢{Ö5Z²¿9Ñ®BÊO²¿Åâ7…• ²¿ï¨1!æ’²¿Zõ¹ÚŠý±¿³˜Ø|\²¿¸àŸR%²¿imÛk±¿4¼Yƒ÷U±¿°p’æi±¿‰±L¿D¼±¿÷êã¡ïn±¿Æ5>“ýó°¿!’!ÇÖ3°¿ÏÚmšë°¿Ñ=ë-²¿>ê¯WXp³¿*Wx—‹ø²¿— uXᲿJíE´³¿REñ*k³¿xî=\rܱ¿[AÓ+£±¿2È]„)ʱ¿ÅÅQ¹‰Z²¿eS®ð.±¿Ý´§!ª°¿ˆƒ„(_в¿eTÆÝ ²¿]ûzᲿiQŸä³¿ÉXmþ_u°¿²ºÕsÒû®¿VÕ{L°¿ï_{fI°¿ë˜Ü°¿é(³ 0°¿aãúw}æ°¿L÷™±¿þš¬QѰ¿øŠn½¦±¿Ååx¢'±¿]1#¼=±¿ß¥Ô%㱿u¬Rz¦—°¿*Æ3h诿Ky ²°¿n‡†Å¨k±¿œÞÅûqû±¿ ‚Ç·w ²¿õÕUZ ²¿a5–°6Ʋ¿F´Swe¯¿¨ÿ¬ùñ—²¿Ìï4™ñ¶²¿Ùy›©²¿k¸È=]ݱ¿è÷ý›'²¿¾IÓ h²¿©Or‡Md²¿ŸVÑšy²¿Ô‚}i²¿¤30ò²&²¿ù,σ»³²¿Uh –Ͳ¿yX¨5Í;²¿hé ¶O²¿ B²€±¿§Ëbbóq±¿‰&PÄ"†±¿$cµùÕ±¿ØEу±¿â[X7Þ±¿"q¥]°¿Àyq⫱¿eM.²¿u¯“ú²´³¿Öª]Ò³¿*´t³¿ò$éšÉ7³¿E¸É¨2Œ³¿©;‡ú±¿šxxÒ±¿j1x˜ö±¿5Dþ o²¿8IóÇ´6±¿‡¥Õ°¿HüŠ5\䲿é*Ý]gC²¿ñœú@ò²¿Â1Ëž6³¿ƒÞCp°¿3‡¤J&¯¿ôPÛ†Q°¿‰”fó8°¿6ÇeÜÔ°¿‘¸ÇÒ‡.°¿¤§È!âæ°¿ØƒIññ ±¿O•ï‰Ð°¿8Ùî°¿Àyq⫱¿=~oÓŸý°¿mɪ7±¿då—Á‘°¿µ§!ªð¯¿[ìöYe¦°¿¡0(Óhr±¿!±Ý=@÷±¿Ì}r ²¿ta¤µû±¿àŸR%ʲ¿-{Øœƒ¯¿ÃFY¿™˜²¿Eg™E(¶²¿DàH Á¦²¿ßÃ%ÇÒ±¿Yùe0F$²¿Ê1YÜd²¿AŸÈ“¤k²¿j£:Èz²¿`ãúw}²¿õ-sº,&²¿!# Â¤²¿?{ó²¿ÏdT8²¿S‘ c A²¿Ó…Xý†±¿Öã¾Õ:q±¿'á_±¿75Ð|α¿–Tÿ ’±¿ `­Ú5!±¿±o'á_°¿‡á#bJ$±¿û Ë‚‰?²¿ä¢ZD“³¿Åã¢ZD³¿‡3¿š³¿ÀDˆ+³¿É¯bƒ…³¿òDçᲿsÖ§“ű¿g Ü¶ï±¿ND¿¶~²¿—Tm7Á7±¿x™a£¬ß°¿ÚV³Îø²¿÷“1>Ì^²¿sÛ¾Gýõ²¿6é¶D.8³¿]¥»ël°¿y=˜¯¿ô3õºE`°¿¨n.þ¶'°¿€^»´á°¿›8¹ß¡(°¿îZB>èÙ°¿¿ò =E±¿ÊI»Ñǰ¿ ¡c±¿‡5•Ea±¿â;þ ±¿ëˆ»z±¿DŠM °¿AºØ´R°¿³\6:ç§°¿WÎÞm±¿Ê`æ;ø±¿èŸàbE ²¿ÊN?¨‹²¿bX9´È²¿1´:9Cq¯¿HÅÿQ¡²¿­ÃÑUº»²¿‚,`·²¿­¡Ô^DÛ±¿v‡$²¿û$wØDf²¿l#žìf²¿/0+é~²¿ÚÉà(yu²¿é~NA~6²¿<Û¤¢±²¿wö•é)²¿ßÛôg?²¿¢©ÛÙW²¿§#€›Å‹±¿¨ŒŸq±¿‹ˆbò˜±¿xî=\rܱ¿™Iô2б¿ÉÊ/ƒ1"±¿!Âøi°¿{ö\¦&±¿„Ø™Bç5²¿¼§>¼³¿Sy=˜³¿úBÈyÿ³¿6é¶D.8³¿–² q¬‹³¿;ü5Y£²¿„Iññ Ù±¿Æ6©h¬ý±¿Ÿ®îXl“²¿°=³$@M±¿—â¶ô°¿_b,Ó/³¿¦í_YiR²¿Öª]Ò³¿^fØ(ë7³¿Ig`äeM°¿«˜J?á쮿2kœMG°¿Òã÷6ýÙ¯¿–’å$”¾°¿N ^ô°¿¸tÌyƾ°¿^…”ŸTû°¿ž\S ³³°¿—ÅÄæãÚ°¿B=}þ°¿ë˜Ü°¿ï9°!±¿&áBÁ°¿Éq§t°þ¯¿°bƒ…“°¿°=³$@M±¿Ò9?Åq౿Q¤û9ù±¿/†Èé뱿w;Sè¼²¿:“6U¯¿]Tœˆ²¿GqŽ::®²¿nî•y«²¿ZEhæÉ±¿¸<ÖŒ ²¿æÌv…>X²¿n0Ôa…[²¿û$wØDf²¿1³Ïc”g²¿³˜Ø|\²¿O;ü5Y£²¿ýKR™b²¿õäC²¿–z„ò>²¿šé^'õe±¿½Þýñ^±¿_x%És±¿‹¦³“Á±¿âꈻz±¿(~Œ¹k ±¿ô‡fž\S°¿~8Hˆò±¿¦bc^G²¿]¡·xx³¿ž•´â ³¿Ê£aQ³¿”†…$³¿m«Yg|³¿­QÑ貿;mÆÁ±¿oõœô¾ñ±¿1 íœf²¿:$µP29±¿ò—õIî°¿ ŠcãósCS²¿ÓÁú?‡ù²¿à»Í³¿£V˜¾×°¿BÒ§Uô‡®¿J·%rÁ°¿òÐw·²D¯¿Mƒ¢y‹°¿zo À±¯¿–³wF[•°¿ö$°9ϰ¿|ïoÐ^}°¿0o»°¿à|zl˰¿0eà€–®°¿Oé`ýŸÃ°¿ÉPÅ[°¿ 6ªÓ¬¯¿Ú|a2U°¿Q._x%±¿¤q¨ß…­±¿¥øø„ì¼±¿ÌšXà+º±¿fõ‚Os²¿¶óýÔx鮿ip[[x^²¿ÞZ&Ãñ|²¿íšÖt²¿<Äy8±¿Õ—¥šË±¿=+iÅ7²¿Oyt#,*²¿/Màô.²¿½3Úª$²¿Ç ¿›nÙ±¿vúA]¤P²¿Æ2ýñÖ±¿ Ã|yö±¿xµÜ™ ²¿À%ÿ”*±¿$ñòt®(±¿¡€í`Ä>±¿ÿç0_^€±¿ÜŸ‹†ŒG±¿a7l[”Ù°¿Ã.Šø°¿wþEа¿LŒeú%Ɀð¥ð Ùu³¿ý2WÕ²¿*ÿZ^¹Þ²¿äÜ&Ü+ó²¿= ByG³¿÷Xúб¿4GV~Œ±¿ÄÐêä ű¿˜0š•íC²¿Hþ`à¹÷°¿*Æù›Pˆ°¿LÝ•]0¸²¿É <÷²¿ìöYe¦´²¿uå³<ü‹ 1“¨¯¿Í°QÖo&®¿¥žÐ믿DÃbÔµö®¿0Ö70¹Q°¿—®`ñd¯¿-ÌB;§Y°¿5Ñ磌°¿Mø¥~ÞT°¿$}ZE°¿Jy­„î’°¿È}«uâr°¿|š“™°¿Ô|•|ì.°¿â‘xy:¯¿ýM(DÀ!°¿€»ì×î°¿yY |±¿nߣþz…±¿N³@»Cб¿#J{ƒ/L²¿aR||Bv®¿°Žã‡J#²¿Ò¥I²¿Ú’Un2²¿¥½Á&S±¿GéÒ¿$•±¿å ïrß±¿E¹‡„ﱿôNÜóü±¿æå°ûŽá±¿zÅrK«±¿IŸVѲ¿gHÅ«¬±¿úÕ‘#±¿ª›‹¿±¿ÔFu:õ°¿ºÚŠýe÷°¿œ5x_• ±¿ ¸çùÓF±¿U¿Òù°¿ÍÈ w¦°¿Ð}9³]¡¯¿î#·&Ý–°¿¾Ý’°«±¿nú³)"³¿sL÷™²¿u®(%«²¿yëüÛe¿²¿W²c#³¿fÁÄE±¿³z‡Û¡a±¿âꈻz±¿úA]¤P²¿ƒÁ5wô¿°¿tšÚR°¿¹Ù•–‘²¿Ü ¢µ¢Í±¿$Õw~Q‚²¿~«uâr¼²¿ÖþÎöè ¯¿‰~mýôŸ­¿§êÙ\5¯¿¬8ÕZ˜…®¿ö'ñ¹쯿-]Á6âÉ®¿'Nîw( °¿}?5^ºI°¿î]ƒ¾ôö¯¿1&ý½°¿­†Ä=–>°¿%ËI(}!°¿%Ïõ}8H°¿Äz£V˜¾¯¿^L3Ý뤮¿ð0í›û«¯¿H¾°¿^d~$±¿í)H4±¿ÒÇ|@ 3±¿ *ª~¥ó±¿ùÛž ±Ý­¿ŽÉâþ#Ó±¿”¼:ǀ챿?ÆÜ±¿¦aøˆ˜±¿ÿ°¥GS±¿‡ú]Øš±¿?eÄ ±¿öF­0}¯±¿ÐÓ€AÒ§±¿W%‘}e±¿V W@ܱ¿R¹‰Zš[±¿<Äy8±¿°È¯bƒ±¿Ê7Ûܘž°¿[@h=|™°¿«’È>Ȳ°¿“8+¢&ú°¿o½¦¥°¿Õ¯t>°¿®bñ›ÂJ±¿t ò³‘벿†:¬pËG²¿÷“1>Ì^²¿v5yÊj²¿Ù@ºØ´²¿ÜŸ‹†ŒG±¿>Y1\±¿6;R}籿¿dãÁ»±¿ñ)Æ3h°¿ÀÌwð°¿ãã²ó6²¿*Çdqÿ‘±¿ÅæãÚP1²¿öëNwžx²¿Ëhä󊧮¿î\éE­¿lèf Ü®¿½vß1<®¿äòÒo¯¿¥Kÿ’T®¿Ž”-’v£¯¿ôPÛ†Q°¿Ãï¦[vˆ¯¿å`6†å¯¿˜÷8Ó„í¯¿ÛàDôk믿ía/°°¿'Ü+óV]¯¿36t³?P®¿†7kð¾*¯¿^ Pj°¿¦}sõ°¿Þ„€| ±¿Nñ¸¨±¿:’ËH¿±¿«´Å5>“­¿£êW:ž±¿nj ùœ»±¿ºøÛž ±±¿èy’tͰ¿ëˆ»z±¿ýÙ‘a±¿³z‡Û¡a±¿ÍÊö!o±¿Rewƒh±¿@aÃÓ+±¿½Œb¹¥±¿ñGQgî!±¿Â/õó¦"±¿Ì³’V|C±¿Ús™šo°¿R<¾½k°¿~Q‚þB°¿x]¿°¿Ô€AÒ§U°¿8©0¶°¿ÌC¦|ª®¿­§V_]°¿Mjh°±¿ÃFY¿™˜²¿T5AÔ}²¿E¡eÝ?²¿ äÙå[²¿a¦í_Yi²¿#Ù#Ô ±¿šwœ¢#¹°¿•»ÏñÑâ°¿THÞ9”±¿ 0,¾-°¿-Ó¾¹¯¿”XS²¿ÖXÂÚ;±¿kdWZF걿{3j¾J>²¿5~á•$Ï­¿uXá–¤¬¿.rOWw,®¿@øP¢­¿’Ìên‡®¿ÜÖž—Š­¿1–é—ˆ·®¿¢ ±ˆa¯¿V‚Åá̯®¿— uXᮿz©Ø˜×¯¿ †7k𮿠7U†q¯¿PãÞü†‰®¿ší }°Œ­¿ÎZ_®¿ï«r¡ò¯¿çUÕ{°¿œú@òΡ°¿Ê7Ûܘž°¿ÿ°¥GS±¿J´¬¿VF#ŸW<±¿ÿ°¥GS±¿ÚpXøQ±¿ãÉ¡f°¿¼­ôÚl¬°¿A·—4Fë°¿Œðœú°¿Ù²|]†ÿ°¿¢$$Ò6þ°¿%‘}eÁ°¿_—á?Ý@±¿¯#Ù@º°¿Ë™`8×°¿¾g$B#ذ¿7§’°¿•™Òú[°¿‹üú!6°¿ëâ6À[°¿¥-®ñ™ì¯¿¾ø¢=^H¯¿Ãõ(\­¿áaÚ7÷W¯¿­iÞqŠŽ°¿añd73²¿Ó1çû’±¿Ïø¾¸T¥±¿ ©¢x•µ±¿'÷;²¿Ãð1%’°¿²žZ}uU°¿¤l‘´}°¿hW!å'±¿õôøÃϯ¿Ü M¯¿aU½üN“±¿[%Xΰ¿F¶óýÔx±¿F•aÜ ¢±¿Év¾Ÿ/­¿½£9²ò«¿<½R–!Ž­¿Ö¬3¾/.­¿Ü¹0Ò‹Ú­¿"3¸<Ö¬¿©Ÿ7©0®¿ðß¼8ñÕ®¿dËòu®¿ÏIï_{®¿¯–;3Áp®¿¿Òùð,A®¿˜Ãî;†Ç®¿“9–wÕ®¿Ôž’sb­¿àòX32È­¿ SŸ\¯¿Pª}:3°¿¥hå^`V°¿}—R—Œc°¿?üü÷°¿æ?¤ß¾¬¿fO›sð°¿iŒÖQÕ±¿lBZcÐ ±¿Cëâ6°¿pµN\ŽW°¿h"lxz¥°¿8Ûܘž°°¿Û…æ:´°¿áE_Aš±°¿=Y¤‰w°¿êͨù*ù°¿(¸XQƒi°¿|Cá³up°¿ž)t^c—°¿„ äÙå[¯¿sFZ*o¯¿ÍwðЯ¿F&à×H°¿w£ù€@¯¿f¡Ø š®¿|^ñÔ#­¿9`W“§¬®¿^gCþ™A°¿ä×±Á±¿g s‚6±¿µ©ºG6W±¿<2V›ÿW±¿£êW:ž±¿ølìM°¿Øñ_ °¿¹‰Zš[!°¿_\ªÒ×°¿W•}W¯¿_DÛ1uW®¿]~p>±¿€ØÒ£©ž°¿‹LÃð±¿³Îø¾¸T±¿&¦ ±ú#¬¿ÈA 3mÿª¿CæÊ Úି šyrM¬¿¯Z™ðKý¬¿®~l’ñ«¿lîè¹­¿†« îê­¿o.2­¿^h®ÓHK­¿‚¬§V_]­¿ðûY,­¿ pzïÇ­¿¿F’ \­¿Çò®zÀ<¬¿*ý„³[ˬ¿!”÷q4G®¿n1?74e¯¿ü‹ 1“¨¯¿S%ÊÞRί¿c^G²°¿³™CR %«¿‚ã2nj°¿t%Õ?ˆ°¿»G6WÍs°¿jmÛkA¯¿ õôøÃ¯¿òÍ67¦'°¿çrƒ¡+°¿OÏ»± 0°¿o‚oš>;°¿léÑTO毿{®Gáz°¿UÛMðMÓ¯¿4ØÔyTü¯¿Éq§t°þ¯¿è‚ú–9]®¿‰'»™Ñ®¿Ež$]3ù®¿apÍý/¯¿U¯²¶)®¿·•^›­¿©¾ó‹¬¿]p¿˜­¿®¼äòw¯¿Óú[ðO±¿Ð*3¥õ·°¿µÂô½†à°¿>‘'I×°¿j¿µ%±¿Rò겯¿¶óýÔx鮿GãàÒ1¯¿¶/ î\°¿ëýF;nø­¿$ñòt®(­¿¬Å§ϰ¿"Þ:ÿvÙ¯¿×mPû­°¿IÕv|Ó°¿U£W°¿»¶·[ª¿Xp?à°¿°Œ Ýì°¿‘Ešx°¿iÄÌ>Q®¿ã©GÜÖ®¿K?ªa¯¿ô66;R}¯¿¤µûU€¯¿ Š·˜¯¿Òm‰\p¯¿á' ß÷¯¿HüŠ5\䮿”ÃÕ¯¿Aðøö®A¯¿MùT^­¿*ÙYôN­¿æ‘?xî­¿x%És}®¿6“o¶¹1­¿v3£ §¬¿*øD«¿Œ¾‚4cѬ¿m­/Úr®¿`™D½°¿³š®'º.°¿»›§:äf°¿?;àºbF°¿ÿêqßj°¿sL÷™®¿ÁgÓÀ­¿þÒ¢>É®¿1?74e§¯¿[D“7À¬¿°Y.ó«¿Ý%qVDM°¿Í‚9zü®¿½ÅÃ{°¿Ý%qVDM°¿Ï¤MÕ=²©¿ìm3⑨¿²GWéô1èLª¿Ù%ª·¶ª¿§Ï¸®˜©¿ƒú–9]«¿`:­Û ö«¿õ‚Osò"«¿¹à þ~1«¿²GWé۾Gýõ «¿ñ·=Ab»«¿Ž •bG«¿ÏM›q¢ª¿pÏ󧪿#½¨Ý¯¬¿y¯Z™ðK­¿'½o|í™­¿å^`V(Ò­¿u殿g)YNB©¿‡‡0~÷®¿è÷ý›¯¿É=]ݱخ¿)Ý^Ò­¿×j{¡€­¿ÃØBƒ®¿l"3¸<®¿¤30ò²&®¿ð‰Ð6®¿J&§v†©­¿,*ât’­®¿m7Á7MŸ­¿Žêt ë©­¿´ÿÖª­¿š †s 3¬¿Yû;Û£7¬¿"3¸<Ö¬¿ï!8ö¬¿†©-u׫¿¬±^‚«¿| €ñ ª¿o¸Üšt«¿E×…œO­¿?Qžy9°¿$&¨á[X¯¿léÑTO毿*¬ÿs˜¯¿,ºõš°¿]p¿˜­¿²Õ唀˜¬¿k» ¾iú¬¿«]Òƒ®¿Ržy9쾫¿í-å|±÷ª¿©ƒ¼LН¿¾4»î­¿É w¦(¯¿³³è ¸¯¿‰îY×h9¨¿Üšt["§¿qxµÜ™©¿9í)9'ö¨¿u?§ ?©¿¬ÿs˜//¨¿ôiý¡©¿B±4-±ª¿ˆ*üÞ¬©¿Ÿ·±Ù©¿ý-ø§T©¿‡Ä=–>t©¿sHj¡drª¿ýKR™bª¿JzZœ©¿üÇBt©¿$›:ª¿+‡ÙÎ÷«¿0º¼9¬¿éc> Й¬¿îx“ߢ“­¿¢œhW!å§¿ÒV%‘}­¿ƒjƒѯ­¿3ÀÙ²|­¿%»¶·«¿Ëø÷¬¿Qèy’¬¿K°8œùÕ¬¿‡ú]Øš­¬¿û]Øš­¼¬¿ ܺ›§:¬¿”ö_˜L­¿|dsÕeÄ­¿Ô‚}i®¿¡JÍh®¿àªÔ쮿ßmÞ8)¬¿¢ †7«¿:ùÙÈu«¿»šVðÛ¨¿gCþ™A|¨¿@PnÛ÷¨§¿(~Œ¹k ©¿§ ?¹nª¿ {Úá¯Éª¿Ánض(«¿¬Žé ¬¿ýh8en¦¿¼çÀr„ ¬¿ÓUø3¬¿1&ý½¬¿d¬6ÿ¯:ª¿ÙÍŒ~4œª¿ÎˆÒÞà «¿]¢zk`«¿žACÿ«¿0ÕÌZ H«¿õ÷RxÐ쪿7Ь5”Ú«¿l”õ›‰éª¿¡­Ü ̪¿í-å|±÷ª¿6?þÒ¢>©¿E>‘'©¿ªó¨ø¿#ª¿Þs`9Bª¿-ÌB;§Y¨¿©ù*ùØ]¨¿¢&ú|”§¿«’È>Ȳ¨¿´Ë·>¬7ª¿S@Úÿk­¿b k_@/¬¿»}V™)­¿z9ì¾cx¬¿å 0óü¬¿µá°4𣪿ò%Tpx©¿X;ŠsÔÑ©¿<ö³XŠä«¿âX·Ñ¨¿?;àºbF¨¿Î§ŽUJϬ¿}“EÖª¿ys¸V{Ø«¿ìÁ¤øø„¬¿´;¤ Ѥ¿ m6 B¤¿Êp<Ÿõ¦¿T^-w¦¿y¯Z™ðK¥¿OÌz1”¥¿1ì0&ý¥¿†r¢]…”§¿¸°n¼;2¦¿$D©¿ dv½S©¿«&ˆº@ª¿p^œøjG©¿N€aùóm©¿„H†[Ϩ¿4ºƒØ™B§¿ÿ®Ïœõ)§¿:ÏØ—l<¨¿öó娿ôú“øÜ ¦¿©Ÿ7©0¦¿Ü›ß0Ñ ¥¿Ò:ªš ꦿPR`L¨¿¤8GW«¿·)Õ"ª¿èLÚTÝ#«¿¸Üšt[ª¿ÅX¦_"Þª¿"T©Ù­¨¿K?ªa§¿¢DKO˧¿dT8‚Tª¿DkE›ãܦ¿ʦ\á]¦¿´éàfñª¿O•ï‰Ð¨¿…Ì•AµÁ©¿»(zàc°ª¿Š‘%s,ºM¸Wæ­¢¿y¯Z™ðK¥¿s¸V{Ø ¥¿ ÅVдĢ¿/¢í˜º+£¿‚ŽVµ¤£¿ºøÛž ±¥¿£#¹ü‡ô£¿õ  ­Ü£¿}гYõ¹¢¿Õ•Ïò<¸£¿ vöE™¥¿–´â Ÿ¥¿ÅS4¸­¥¿à ½úx裿ËI(}!䤿tì ×1¦¿Ù—l<Øb§¿Ý³®Ñr §¿ïb€D¨¿pÏ󧢿£ZD“7¨¿ûvþE¨¿Xtë5=(¨¿(Óhr1¦¿¨Š©ôΦ¿¦·? §¿£ x|{§¿ã4Dþ §¿*ât’­.§¿C®Ô³ ”§¿)ë7Ó…¨¿(›r…§¿'Ü+óV]§¿ 'iþ˜Ö¦¿†åÏ·K¥¿4Õ“ùGߤ¿AŸÈ“¤k¦¿¥ƒõó¥¿*øD£¿ÄÎ:¯±£¿¡GŒž[袿1'h“Ã'¥¿Å °rh‘¥¿Âmmáy©¨¿ÚUHùIµ§¿i©¼á´¨¿ÊPSé§¿°¹2¨6¨¿{¾f¹lt¦¿ `­Ú5!¥¿ù g³ês¥¿¥óáY‚Œ¨¿Ì|?q¥¿ðRê’qŒ¤¿ØÓMÖ¨¿1 íœf¦¿¡K8ô§¿l|&ûçi¨¿€ð¡DKŸ¿¶×‚ÞC ¿Ìï4™ñ¶¢¿RíÓñ˜¢¿‘~û:pž¿SäG ¿¾-Xª  ¿ó‘”ô0´¢¿Ìbbóqm ¿¸ õô ¿VZ ¦¿GN¶; ¿©ÞØ*Á¢¿ãý¸ýòÉ¢¿ 9¶ž!£¿µßÚ‰’ ¿· Íui¡¿Þ‘±Úü¿¢¿Õ³ ”÷q¤¿¸éÏ~¤ˆ¤¿ìL¡ó»¤¿ˆØÒ£©ž¿ù½Mö#¥¿î }°Œ ¥¿JVÕËï¤¿Æø0{Ùv¢¿ÄC?{£¿Ý^Ò­£¿Kê46¤¿Rb×öv£¿ƒèÚУ¿rúz¾f¹¤¿†p̲'¥¿t%Õ?ˆ¤¿Û…æ:´¤¿»S”K£¿ðÝzM¢¿€-¯\o›¡¿ˆ×õ v£¿„š!U¯¢¿£Xni5$ž¿gEÔDŸŸ¿×övKrÀž¿!Ky ¢¿î|?5^º¡¿™º+»`p¥¿jÂö“1>¤¿ú{)?Œm¤¿ý,–"ù¢¿ÎŽTßùE¡¿¯Ì[uª¡¿ ©¢x•µ¥¿XÇñC¥¡¿äôõ|Ír¡¿„d¸¥¿4õ»°5£¿w÷Ý—3£¿çÑ=륿GT¨n.þ–¿ áͼ¯š¿È•z„òž¿ç§8¼Zž¿±5[yÉÿ”¿J)èö’Ƙ¿oÅ1—¿êz¢ëž¿à€J•˜¿}%»¶—¿lí}ª ”¿’%s,流¿õhª'󞿘¦pzŸ¿æ¾÷7 ¿ŠUƒ0·{™¿+Àw›7Nš¿h†¬nõœ¿ N} yç ¿áÐ[<¼ç ¿]¦&ÁÒ ¿1Ñ O!—¿ífF?N¡¿Ë€³”,'¡¿ÖÆØ /¡¿ŸŠ‘%sœ¿ ²H˜‰"¤ngŸ¿—ÿ~û: ¿Ê52;‹ž¿™¼f¾ƒŸ¿³ïŠà+¡¿Ô›QóUò¡¿¿ò =E¡¿Àˆ¿)@̘‚…¿&«"ÜdTy¿X8IóÇ´†¿å—Á‘(”¿?sÖ§“•¿FzQ»_˜¿I„F°qý‹¿Gä»”ºdŒ¿iŒÖQÕ‘¿øŠn½¦—¿À{G 1—¿³Dg™E(–¿—®`ñd‡¿®Gáz®—¿˜Në6¨ý–¿­jI—¿Ìí^î“£¿t|´8c˜“¿be4òyÅ“¿5¸­-“¿ À;ùôØ–¿Y·ÑÞ’¿›sðLh’¿ÖÆØ /‘¿_)ËǺˆ¿/o×j‹¿)=ÓKŒeš¿=·Ð•T¿ÝÑÿr-Z¿ÆàaÚ7÷—¿›®'º.ü¿EcíïlŽ¿õ-sº,–¿]Þ®ÕN?1{ÙvÚ¿˜üOþî…¿°«ÉSVƒ¿¡½úxè»{?<-?p•'P¿ö|ÍrÙèl?î=\rÜ)}¿ù¿#*T7W?iSul®j?€'-\Vaƒ?ë§ÿ¬ùñg?”ùGߤi€¿©¾ó‹„¿gF?N™‹¿d!:ŽJ¿ìNwžxÎ&¿óæp­ö°g¿}w+Kt†¿Ã(ßÞ…¿xÐ캷"¿ã©GÜÖV?ïÈXmþ_…¿*T7Ûƒ¿¤‹¦³ƒ¿ë0 Xre¿„%Zòxz¿ùK‹ú$wx¿¬9@0G¿è…;Fzq¿ 4Ô($y¿{…÷ˆ¿Ý—3ÛŠ¿îziЧ‡¿^×/Ø Û†¿2®¸8*7q¿§"Æ‚l¿6wô¿\‹6¿KÈ=›U¿£V˜¾×l¿¨9y‘ ø…?=›UŸ«­x?w×Ùfp?§ÌÍ7¢{v¿£’°o'a?~£<órx¿WÎÞmUr¿Yni5$!9™¸Up¿Êß½£Æ„h¿ˆWÎÞi¿6wô¿\‹f?ú~j¼t“X?å™—Ãî‹¿d?‹¥H¾b¿st´ª%m¿é ¸çùƒ¿º ¾eNg¿õ×+,¸??·_>Y1\}¿°ŒØ'€’?„H†[Ïp?ºöôÂm? ‹Q×Úût?å€]Mž²š?ëZaúŽ?äù ¨7£–?¼·_>Y?v28J^“?½ÿ&Œ–?sœÛ„{ež?sÖ—?H§®|–ç©?Í¿´¨O¢?/N|µ£8§?¸¯çŒ(?+ö—Ý“‡¥?ÜõÒN§?lЗÞþ\¬?yvùÖ‡õ¦?M½në›?ìJËH½—?rˆ¸9• ?%ÊÞRΣ? -ëþ±¥?¹à þ~1£?Ô·Ì鲘˜?„Iññ Ù™?\WÌoŸ?G¢`Ƥ?$*T7›?¬TPQõ+?Mƒ¢y‹œ?¶ÚÃ^(`£?¡º¹øÛž ?oÓŸýH¡?¾÷7hŸ?pìÙs™¢?*äJ= B¡?>u¬Rz¦—?;©/K;5—?˜Ÿ—?êu‘BY˜?ƒ4cÑtv¢?`ºò¡?ËI(}!ä¤?c_²ñ`‹?£®µ÷©¢?mýôŸ5?®?1A ߺ©?9&‹ûL§?pïô¥·Ÿ?ÛàDôkë§?XŒºÖÞ§¢?|F"4‚£?w¦(—ÆŸ?j¼t“¤?NÒü1¥?À=ÏŸ6ª£?ë:TS’u¨?­¹Ä‘§?@léÑTO–?*6æuÄ!£?ä×±Á¡?I†[Ïž?8Hˆò-¤?äqs*¨?šë4ÒR¡?Ý 7àóð?Ê‹LÀ¯‘¤?”XS¦?Ž •b§?ãut\´? 6u¯?bhur†â²?—o}XoÔª?ϤMÕ=²±?qTn¢–æ²?5˜†á#¶?‚<»|ëò?³ðõµ.5ª?r„Ѭl§?þÖN”„D¢?ÆíñB:°?À燣±?0¹Qd­¡°?Á:Ž*¨? dv½S©?CqÇ›ü­?V€ï6oœ°?“«Xü¦°ª?©‡ht±«?5AÔ}R«?v3£ §°?$Diâ­? ô‰Q²?Y0ñGQg²?$ÑË(–[²?t'Ø›²?‹ÿ;¢Bu·??§ ?¹¶?4Õ“ùG߸?*Æù›P´?—®`ñd·?³êsµû¿?â镲 q¼?ðÝzMº?¯yUgµ´?1¬Zd»?@¼®_¸?q¹5鶸?ðÁk—6¶?æ@µm¹?Ø·“ˆð/º?¥t{Ic¸? Š·˜»?•ð„^»? a5–°6²?„¸röÎh·?És}¶?Ù•–‘zOµ?,ØF<Ù͸?ï8EGrù»?ú·Ë~Ýé¶?µ?QÙ°¾?àØ³ç2µ?ר%ª·¶?ïU+~©·?‡Ü 7àóÁ?N`:­Û¼?‡R{mÇÀ?›’¬ÃÑUº?ú ¨7£æ¿?ÖÇCßÝÊÀ?ùe0F$ Ã?ïV–è,³À?å+”ص¹?d@öz÷Ç·?j¾J>v´?ÇeÜÔ@ó½? ]lZ)À? ®¹£ÿå¾?àØ³ç25¹?gœ†¨ÂŸ¹?m6Vbž•¼?ðLh’XR¾?^ƒ¾ôöçº?V„aÀ’»?Sê’qŒd»?éH.ÿ!ý¾?ƒi>"¦¼?NÔÒÜ a½?æ¾÷7¼?²×»?Þ«¾?ˆŸÿ¼v½?0¹Qd­¡¸?´ü6ĸ?7TŒó7¡¸?» j¿µ¹?IœQ}¾?'iþ˜Ö¦½?ßÅûqûå¿?^+¡»$κ?Ô~k'JB¾?ßú°Þ¨Ä?ª™µöÁ?b/°ŒÀ?w£ù€@»?ÒSäqÁ?¿×—q¿?éEí~à¿?“HÛø½?5 Šæ,À?úa„ðhãÀ?REñ*k¿?äL¶ŸŒÁ?N™›oDÁ?»&¤5¸?žðœú@¾?§Y Ý!ż?’?xî=¼?ÔE eáë¿?˜Ùç1ÊÁ?Žuq à½?𢯠ÍXÂ?)éahurº?’“‰[1¼?æ@µm½?ÀBæÊ ÚÄ?8débÁ??üü÷àÃ?ºÛõÒÀ?R hÃ? l#öÃ?p À?¥JÆ?:è½Ã?ÙCûXÁo¿?yÈ”A½?q‘{ººc¹?5³–ÒþÁ?sž MÃ?øÆ{Â?Œó7¡¿?̵hÚV¿?úDž$]Á?mÊÞå"Â?]Á6âÉnÀ?à|zlËÀ?_}<ôÝ­À?pÏó§Â?= ByGÁ?é8h°Á?y$^žÎÁ?ì@1²dÂ?÷w¶Go¸Á?¯@ô¤L¾?£çº¾?ÐECÆ£T¾? 5?þÒ¢¾?»CŠMÂ?Ò°¨ˆÓÁ?Ñ’ÇÓòÃ?æv/÷ÉQÀ?bž•´âÂ?Vž@Ø)VÇ?! _BÅ?ûPŒ,™Ã?ZcÐ ¡ƒÀ?¨SÝ‹Ä?l’ñ+ÖÂ?Ë÷ŒDhÃ?þ`à¹÷pÁ?&«"ÜdTÃ?vmo·$Ä?Ó¾¹¿Â?ªa¿'Ö©Ä?G8-xÑWÄ?‹jQL¾?iTàdÂ?d¯w¼WÁ?yvùÖ‡õÀ??ŒmÃ?py¬äÄ?©Åä Â?Š;Þä·Ä?9ïÿã„ ¿?š–X|À?ZFê=•ÓÀ?jÞqŠŽäÆ?ÌFçüÇÃ?r‰#DÆ? @£té_Â?4hèŸàbÅ?ÙêrJ@LÆ?]øÁùÔ±È? ·_>Y1Æ?þÒ¢>ÉÂ?èô¼ Á?ìÜ´§!¾?v5yÊjÄ?LûæþêqÅ?|(Ñ’ÇÓÄ?t ]‰@õÁ?ÞɧǶ Â?âͼ¯ÊÃ?•,'¡ô…Ä?”4LkÓÂ?w÷Ý—3Ã?ã4Dþ Ã?» ¾iúìÄ?õiý¡™Ã?,g~5Ä?½¦¥hÃ? oB@¾Ä?LÁgÓÄ?p?à„Á?Ç,{ØœÁ?a©.àe†Á?¯zÀ9 Ã?ñ/‚ÆL¢È?0Ÿ¬®Æ?ÑÌ“k dÈ?ÓÞà “©Ä?÷Ç{ÕÊ„Ç?mWèƒelÈ?+¥gz‰±Ê?=¶eÀYJÈ?Ûø• kÄ?Í<¹¦@fÃ?zïÇí—Á?ªµ0 íœÆ?ÏL0œk˜Ç?zQ»_øÆ?p]1#¼=Ä?>“ýó4`Ä?*¬TPQõÅ? ȳ˷Æ?ÝE˜¢\Å?rÌ_!sÅ?ú'¸XQÅ?0JÐ_èÇ?Z›ÆöZÐÅ?ÀÐ#FÏ-Æ? 4Ô($™Å?¸v¢$$ÒÆ?Fì@1Æ?vàœ¥½Ã?éCÔ·ÌÃ?d¯w¼Ã?P3¤ŠâÃ?V ì1‘ÒÆ?Ò©+ŸåyÆ?¦D½ŒbÇ?J ,€)Å? ¨7£æ«Æ?LS8½‹Ë?Ü¡a1êZÉ?_aÁý€È?rÝ”òZ Å?g~5æÈ?–wÕæ!Ç?Â5wô¿\Ç?aŽ¿·éÅ?‹Þ©€{žÇ?È%Ž<YÈ?,cC7ûÇ?û·\ýØÈ?«Íÿ«ŽÈ?J±£q¨Ã?bƒ…“4Æ?¡i‰•ÑÈÅ?î—OV WÅ?ïÆ‚Â LÇ?B–É?Ì`ŒHZÆ?ªÔìV`È?Žs›p¯ÌÃ?£Ì™däÄ?rüPiÄÌÄ?Û0 ‚Ç·É?ȳ˷>¬Ç?Ýa™¹ÀÉ?¶…ç¥bcÆ?†¬nõœôÈ?ȵ¡bœ¿É?ÜcéCÔË?Iõ_” É?«x#óÈÆ?*äJ= BÅ?Ç.Q½5°Ã?Yùe0F$È?׆ŠqþÈ?È}«uârÈ?“áx>êÅ?Û¿²Ò¤Æ?ä „™¶Ç?7qr¿CQÈ?RóUò±»Æ?¨SÝÇ?xEð¿•ìÆ?C­iÞqŠÈ?®òÂNÇ?¹DkE›Ç?Å9êè¸Ç?_–vj.7È?¨V_]¨Ç?q;4,F]Å?±KXcÅ?®ºÕ”dÅ?ÅÈ’9–Å?²ô¡ ê[È?Éq§t°þÇ?¨Š©ôÎÈ?OçŠRB°Æ?"œÁß/È?=·Ð•Ì?·˜ŸšÊ?¶„|гYÉ?'L5³–Æ?¥½ÁÊ?óZ Ý%qÈ?r„ѬÈ?úÏšiÇ?{Oå´§äÈ?ìÀ9#J{É?ønóÆIaÈ?ùº ÿéÊ? 8€~ß¿É?x*àžçOÅ?;q9^èÇ?•'vŠUÇ?Þ“‡…ZÓÆ? !çýœÈ?ô¨ø¿#*Ê?ð0í›û«Ç?¨ŒŸqáÈ?|,}è‚úÄ?†­ÙÊKþÅ?[™ðKý¼Å?Ÿ·±É?Çô„%PÈ?ÄvüÊ?¨ÅàaÚ7Ç?]lZ)rÉ?+ß3¡Ê?K¯ÍÆJÌË?¶ö>U…Ê?aŠriüÆ?Ü ö[;QÆ?+4ËfÅ?ª x™a£È?×òAÏfÉ?¨ŒŸqáÈ?ø¥~ÞT¤Æ?}iÆ¢éÆ?_aÁý€È?›™EïÈ?´«ò“jÇ?‡O:‘`ªÇ?£>É6‘Ç?éòæp­öÈ?aŒHZÖÇ?Ýîå>9 È?¶»辜Ç?ÌëˆC6È?°âTkaÈ?J m6 Æ?®GázÆ?µ¤£Ì&Æ?ÈÍp>?Æ?N¸Wæ­ºÈ?j£:ÈzÈ? YÝê9É?«\¨ükyÇ?S ³³èÈ?#KæXÌ?ù‚0ºÊ?«“3w¼É?ÃbÔµö>Ç?T;ÃÔ–:Ê?lµ‡½PÀÈ?ÓÁú?‡ùÈ?"ŠÉ`æÇ?ý¢ý…É?ZÊû8šÉ?ãûâR•¶È?¯³!ÿÌ Ê?Ψù*ùØÉ?Ý—3ÛÆ?|~!<È?˜ËôKÄÇ?Ä?léÑTÇ?‰ÿ"hÌÈ?×ÜÑÿr-Ê?¿ñµg–È?òšWuV È?ç%è/ôÄ?b»{€îËÅ?^-wf‚Å?VGŽtFÈ?®›R^+¡Ç?Ö¨‡htÉ?÷vKrÀ®Æ?³Ñ9?ÅqÈ??­¢?4óÈ?—g)YNÊ?ìú»aÛÈ?S°ÆÙtÆ?ä1•ñïÅ?‹p“QeÅ? ~þ{ðÚÇ?­4)Ý^È?q©J[\ãÇ?Œöx!Æ?~p>u¬RÆ?sf»B,Ç?¾K©KÆ1È?rúz¾f¹Æ?. ø1æÆ?N`:­ÛÆ?ÅŒðö È?[%XÎüÆ?Õ%ãÉÇ?²/Ùx°ÅÆ?)–[Z ‰Ç?úDž$Ç?ºöôÂÅ?‰Ð6®Å?“ÅýG¦Å?˜Âƒf×½Å?¬„¹ÝËÇ?§%VF#ŸÇ?:w»^š"È?ZFê=•ÓÆ?$_ ¤Ä®Ç?™ðKý¼©Ê?}@ 3iSÉ?Ý a5–°È?y;ÂiÁ‹Æ?R||BvÞÈ?ù¢=^H‡Ç??þÒ¢>ÉÇ?’Y½ÃíÐÆ?‰_±†‹ÜÇ?3ˆìø/È?¶»辜Ç?Òà¶¶ð¼È?+Kt–Y„È?ž( ‰´Å?@mT§YÇ?›™EïÆ?õ¸oµN\Æ?¾Ý’°«Ç?LÝ•]0¸È?©¿^aÁýÆ?«zù&3Æ?ÇeÜÔ@óÃ?gCþ™A|Ä?4 çfÄ?šÐ$±¤ÜÅ?Ê`æ;øÅ?Ú¬ú\mÅÆ?³•—üOþÄ?Ì EºŸSÆ? À%W±Æ?Àé]¼·Ç?oò[t²Æ?!Z+ÚçÄ?`ãúw}Ä?F"4‚ëÃ?-“áx>Æ?;TS’u8Æ?¿rÞÿÇÅ?b/°ŒÄ?î{Ô_¯°Ä?ê46<Å?ô1èLÆ?ä0˜¿BæÄ?ǼŽ8dÅ?šÏ¹ÛõÄ? ~b¼æÅ?:vP‰ëÅ?kœMG7Å?HüŠ5\äÄ?Ïôc™~Å?µ¥òz0Å?0™ò!Ä?züÞ¦?ûÃ?>ù*Ä?~!<Ú8Ä?¬Ä<+iÅÅ?$·&Ý–ÈÅ?Ô'ž³Æ?ÛÂóR±1Å?N 4Ÿs·Å?ƒn/iŒÖÇ? U܏ů?jûWVš”Æ?Ì|?qÅ?Ð`ÿunÆ? YÝê9Å?-'¡ô…Å?<À“.«Ä?N ˆI¸Å?%æYI+¾Å?ß4}vÀuÅ?ô‡fž\SÆ??9 3Æ?ž@Ø)V Ä?×¾€^¸sÅ?dWZFê=Å?l¯½7†Ä?jÛ0 ‚Å?.rOWw,Æ? ^ô¤Å?ÞªëPMIÄ?Ï, PSËÂ?}¯!8.ãÂ?ï;†Ç~Ã?«²ïŠàÃ?ªIð†4*Ä??n¿|²bÄ?oÕu¨¦$Ã?UÃ?iäóЧÃ?3mÿÊJ“Â?<Ýyâ9[Â?ä£ÅÜÂ?ÍÈ w¦Â?ªb*ý„Ã?]ûzáÎÃ?0óüÄÃ?]߇ƒ„(Ã?[éµÙX‰Ã?´“ÁQòêÄ?Ujö@+0Ä?f,šÎNÄ?ðne‰Î2Ã?PÕé@ÖÃ?8 ¥+ØÂ? `­Ú5!Ã?ffffffÂ?§<ºÃ?iäóЧÃ?/¢í˜º+Ã?"Þ:ÿvÙÃ?vŠUƒ0·Ã?'‰%åîsÂ?Lý¼©H…Ã?çÁ=~Ã?ãÉ¡fÂ?CsFZ*Ã?BÏfÕçjÃ?"3¸<ÖÂ?"8öì¹Â?“áx>êÁ?'iþ˜Ö¦Á?PT6¬©,Â?»,D‡ÀÁ?ÖµÂô½Â?Ü ö[;QÂ?¤oÒ4(šÁ?aÃÓ+eÂ?FZ*oGÂ?l’ñ+ÖÂ?õfÔ|•Â?ÿÊJ“RÐÁ?.VÔ`†Á?±Äʦ\Á?4òyÅSÂ?Hˆò-$Â?t(CUL¥Á?Lÿ’T¦˜Á?…^Ÿ;Á? ÛÝtÁ?¸•^›•Â?¾¤1ZGUÁ?¬¬mŠÇEÁ?y±0DN_Á?Íui©¼Á?’#‘—Á?;ŪA˜Á?|eÞªëPÁ?÷s ò³‘Á?]lZ)rÁ?$Ò6þDeÁ?B˜Û½Ü'Á?K %vmoÁ?o×j{Á?ÙÐÍþ@¹Á?Éw)uÉ8Â?h®ÓHKåÁ?ìW\•Á?Ç TÆ¿Á?À]öëNwÂ?V]ûÂ?ŒƒKÇœgÂ?­Mc{-èÁ?Ð^»´Á?qËGRÒÃÀ?wKrÀ®&Á?ñº~ÁnÀ?zˆFwÁ?C’Y½ÃíÀ?PáRÁ?’á (ÔÁ?iR º½¤Á?‚ªÑ«JÁ?Ì'+†«Â?ì2ü§(Â?L3Ý뤾À?|îû¯sÁ?Æ‚”0Á? åD» )Á?ü§(ðNÂ?±Š72üÁ?~sõ¸oÁ?…]=ð1Â?Õ{*§=%Á?Ks+„ÕXÂ?~sõ¸oÁ?st´ª%Á?ƒÛÚÂóRÁ?‘ð½¿A{Á?¥¤‡¡ÕÉÁ?/j÷«ßÁ?.Ò¥Á?ޝ=³$@Á?žEïTÀ=Á?ÅŽÆ¡~Â?Þt_ÎlÁ?J²GWéÀ?·³¯Á?órØ}ÇðÀ?ÇóPoFÁ?,D‡À‘@Á?G©„'ôÀ? K< lÊÁ?¬ª—ßi2Á?Þ Z+ÚÁ?oÓŸýHÁ?2Çž=Á?Ï2‹PlÁ?0du«ç¤Á?Ý µ‰“Á?¨4bfŸÇÀ?aÁý€À?ýØ$?âWÀ?îCÞrõc¿?«zù&3À?h°©ó¨ø¿?½f¾ƒŸÀ?Ã×׺ÔÁ?÷x!ÂÀ?msczÂÁ? lÎÁ3¡Á?ÕÊ„_êçÁ?ö^|Ñ/À?ê”G7ÂÀ?ÑëOâs'À?;‹Þ©€{À?ÿ'LÍÂ?Ɖ¯vçÂ?É!âæT2Â?˜„ yÃ?²Ôz¿ÑŽÁ?.æç†¦ìÂ?Éå?¤Á?ÓiݵÁ?ÿ••&¥ Á?(ðN>=¶Á?cÒßKáÁ?7mÆiˆ*Â?2åCP5Â?Ç»#cµùÁ?Ùµ½Ý’Â?öCl°p’Â?sÖ§“ÅÁ?Òs ]‰@Á?'¢_[?ýÁ?cÔµö>UÁ?‹¥H¾HÁ?eáëk]jÂ?‹¥H¾HÁ?¨mÃ(Á?àFÊIÁ?Ë‚‰?Š:Á?ÇWËÁ?qçÂH/jÁ?°‘$W@Á? YÝê9Á?w£ù€@Á?c˜´ÉáÁ?î"LQ.Á?N˜0š•íÁ?ÆàaÚ7÷Á?ýú!6X8Á?ZÖýc!:Â?r„ѬlÁ? ¥ö"ÚŽÁ?@ RÁ?€D(bÁ?X}w+Á?t ]‰@õÁ?»íBsFÂ?ý¾óâÀ?K>v()À?+MJA·—À?Ònô1À? q¬‹ÛhÀ?²gÏejÀ?¶¶FãÀ?ˆ)‘D/Á?¥]PßÀ?D“7ÀÌÁ?ØØ%ª·Â? çfhÂ?ãÆ-æç†À?=Ô¶aÁ? ýL½nÀ?GW#»À?78ýÚúÃ?½§rÚSrÄ?ß¿yqâ«Ã?Cÿ+jÄ?†!rúz¾Â?qêé#Ä?ëÃz£V˜Â?î^î“£Ã?‚ŽVµ¤£Â?©2Œ»A´Â?’$W@¡Â?¬TPQõ+Ã?ü6ÄxÃ? ë©ÕWWÃ?xcAaP¦Ã?p™Óe1±Ã?Hú´ŠþÐÂ?JìÚÞnIÂ?ýÚúé?Ã?ÿ”*Qö–Â?[µkBZcÂ?Žèžu–Ã?½S÷<Â?¨“ÅýGÂ?¸u7OuÂ?Rb×övKÂ?{ù&3ÞÂ?þ¹hÈx”Â?]¡·xÂ?S=™ôMÂ?OqN`Â?’ê;¿(AÃ?¨ŒŸqáÂ?x*àžçOÃ?&S£’:Ã?'ÛÀ¨SÂ?ë7Ó…XÃ?pìÙs™Â?z¥,CëÂ?¥Kÿ’Â?9 {ÚáÁ?Õ$xCÂ?Úã…txÃ?&4I,)wÃ?y’tÍäÁ?s¼Ñ“2Á?ÝAìL¡Á?šž^)Á?«®C5%YÁ?QMIÖáèÀ?r2q« Â?õÙ×3Â?á%8õäÁ?Ä`þ ™+Ã? Ü¶ïQÃ?øTN{JÎÃ?rý»>sÖÁ?-™cyW=Â?æ–VCâÁ?biàG5ìÁ?K̳’V|Å?¥hå^`VÆ?¶»辜Å?Ä "RÓ.Æ?̶ÓÖˆ`Ä?â!ŒŸÆ½Å?¼=ùÄ?Ó¾¹¿Ä?R º½¤1Ä?"ÁT3k)Ä?±ˆa‡1éÃ?TýJçóÄ?¹8*7QKÅ?¹6TŒó7Å?IM»˜fºÅ?ÓNÍåCÅ?,ñ€²)WÄ?ç9"ߥÔÃ?Ùî@òÄ?cÓJ!KÄ?½ãÉåÃ?o+½6+Å?©¾ó‹Ä?1ïq¦ ÛÃ?ë©ÕWWÄ?JÔ >ÍÉÃ?Ð`ÿunÄ?ø‹Ù’UÄ?n÷rŸÄ?\ÊùbïÅÃ?QLÞ3ßÃ?ümOØîÄ?\>’’†Ä?üÄôûÄ?­¤ßPøÄ?‘}eÁÄÃ?<õHƒÛÚÄ?B@¾„ Ä?Ûü¿êÈ‘Ä?ßú°Þ¨Ä?vÂKpêÃ?>ê¯WXpÃ?šìŸ§ƒÄ?Q‚þBÅ?st´ª%Ã?0 ÃGÄ”Â?Ñ’ÇÓòÃ?8‡kµ‡½Â?»DõÖÀÂ?ûY,EÂ?*ÖT…Ã?)–[Z ‰Ã?âÊÙ;Ã?<õHƒÛÚÄ?wþEÐÄ?†K®bÅ?÷è ÷‘[Ã?×lå%ÿ“Ã?~÷æ7LÂ?Hmâä~Ã?ÚV³ÎøÆ?£°‹¢>È?âàI —Ç?ÁtZ·AíÇ?ì†m‹2Æ?h”.ýKRÇ?3‰zÁ§Å?&Ñ:ªšÆ? ÆÁ¥cÎÅ?õœô¾ñµÅ?Z!«[=Å?ÆíñB:Æ?eýfbºÇ?k'JB"Ç?Í#0ðÜÇ?ð3.ÉÆ?¥-®ñ™ìÅ?UL¥ŸpvÅ?2tì Æ?Î5ÌÐx"Æ?3Mg'ƒÅ?ä.ÂåÒÆ?’®™|³ÍÅ?G=D£;ˆÅ?(ðN>=¶Å?]lZ)rÅ?DiâÆ?4õºE`¬Å?Ÿ·±Å?·_>Y1\Å?jÛ0 ‚Å?"þaK¦Æ?«zù&3Æ?vß1<ö³Æ?%²²,˜Æ?Ù—l<ØbÅ?]¿`7l[Æ?“âã²Å?޲~31]Æ?9 {Úá¯Å?L¤4›ÇaÄ?, ü¨†ýÄ?LÃð1%Æ?‹yqÈÆ?Ò4(š°Ä?†§WÊ2Ä?§z2ÿè›Ä?ÖŽâutÄ?tBè KÄ?®+f„·Ã?vÄ!HÅ?œˆ~mýÄ?h$B#ظÄ?HG¬Å§Æ?çÿUGŽtÆ?>"¦DÇ?2WÕÅ?;QiÅ?1[²*ÂÃ?ÓÁú?‡ùÄ?íôƒºH¡È?{Ý"0Ö7Ê?/áÐ[<¼É?©‰>eÄÉ?EóùõÇ?(~Œ¹k É?q:ÉVÇ?uÄ]½ŠÈ?—㈞”Ç?Ð}9³]Ç?¡fHÅ«Æ?íÕÇCßÇ?ðHPüÈ?Å1w-É?DiâÊ?üÿ8aÂhÈ?ënžê›Ç?«ÏÕVì/Ç?q<ŸõfÈ?‡Þâá=È?äiù«<Ç?÷ʼUסÈ?ý,œ¤Ç?¿+‚ÿ­dÇ?¯™|³ÍÇ?ä²ó66Ç?ÈzjõÕÇ?ðMÓg\Ç?d±M*kÇ?h±ÉWÇ?$‘—5Ç?Ô‚}iÈ?”‚UõòÇ?ç«äcwÈ?ë8~¨4bÈ?‹LÃðÇ?È?Z/†r¢]Ç?lÎÁ3¡IÈ?TÇ*¥gzÇ?>ÍÉ‹LÀÅ?ŸZ}uU Æ?QôÀÇ`ÅÇ?…@.qäÈ? è…;FÆ?Õ"¢˜¼Å?jÂö“1>Æ?Þ3ßÁOÆ?™dä,ìÅ?öµ.5B?Å?¶jׄ´ÆÆ?Úʢ°‹Æ?ip[[x^Æ?™·ê:TSÈ?àLLbõÇ?Iô2Šå–È?÷x!ÂÆ?RóUò±»Æ?+TTýJÅ?t&mªÆ?Dý.lÍVÊ?,óV]‡jÌ?JaÞãLÌ?â#bJ$ÑË?é ¸çùÉ?F^ÖÄË?á ½þ$>É?P”i4¹Ê?*qãŠÉ?)³ 0,É?Ðïû7/NÈ?ÔdÆÛJ¯É?JíE´Ë?MÖ¨‡htË?A~6rÝ”Ì?H¾DÊ?Ñy]¢zÉ?íbšé^'É?÷ŽbÊ?s ßûÊ?fÚþ••&É?-¤ý°Ê?¬;Û¤¢É?{mÇÔ]É?ý‡ôÛ×É?‘·\ýØ$É?”1>Ì^¶É?MŸp]1É?ìhêwaÉ?Øc"¥ÙÈ?‰•ÑÈçÉ?{ØœƒgÊ?—¡Ÿ©×É?I»ÑÇ|Ê?ò'*ÖTÊ?ÌÐx"ˆóÈ?³_wºóÄÉ?£h[Í:É?Ø»?Þ«VÊ?œnÙ!þaÉ?ë9é}ãkÇ?îBsFZÈ?Ön»Ð\§É?TrNì¡}Ê?Àv0bŸÈ?,GÈ@žÇ?¤Q0c È?Èyÿ'LÈ? Й´©ºÇ?/m8, üÆ?¯ÍÆJ̳È?Ê?i¨QH2«É?"Ã*ÞÈ<Ê?'øŠn½Ê?H‰]ÛÛÉ?UDÝ É?M¾ÙæÆôÊ?ŒƒKÇœgÊ?PÅÈ’9Ê?Q¾ …ŒÌ?@1²dŽåË?äM~‹N–Ì?øˆ˜IôÊ?ѯ­Ÿþ³Ê?~Œ‰BÉ?Ð(]ú—¤Ê?söÎh«’Î?;äf¸ŸÐ?\’v5yÐ?óT‡Ü 7Ð?¦&ÁÒ¨Î?«®C5%YÏ?Ü:åÑÍ?2åCP5zÏ?¦òz0)Î?â¶ôhªÍ?.Ui‹k|Ì?4„c–= Î?Çž=—©Ï?ñòt®(%Ð? |E·^ÓÐ?óèžuÎ?ºÙ(·íÍ?Õ"¢˜¼Í?½8ñÕŽâÎ?V ÂÜîåÎ?ǂ L£Í?àØ³ç25Ï?Ïh«’È>Î?÷ZÐ{cÎ?©lXSYÎ?ÐÓ€AÒ§Í?†!YÀÎ?Eb‚¾…Í?L4HÁSÈÍ?Ö¬3¾/.Í?¨ŒÍ?Üóüi£Î?DiâÎ?ß,Õ¼Î?c ¬ãø¡Î? ú'¸XÍ?QúBÈyÿÍ?Xãl:¸Í?Ìz1”íÎ?|)êÍÌ?ãßg\8Î?‰²·”óÅÎ?Ñ$±¤Ü}Ì?½åêÇ&ùË?`#I®€Ì?]‰@õ"Í?zTüßÌ?åòÒo_Ë?NzßøÚ3Í?™Þ„€Ì?( ß÷oÌ?ž)t^c—Î?;ÈzjõÍ?´°§þšÎ?CsFZ*Í?ò ú'¸Ì?…?Û5xË?B_zûsÑÌ?ƒŠª_é|Ð?Zóã/-êÑ?$·&Ý–ÈÑ?%¯Î1 {Ñ?ü‹ 1“¨Ð?7á^™·êÐ?k›âqQ-Ð?YLl>® Ñ?®€¸«WÐ?ƒOsò"Ð?ÙZ_$´åÎ?¨(ðN>Ð?`=î[­Ñ?R<¾½kÑ?“V-Ò?·bÙ=yÐ?í¸áwÓ-Ð?q©;Ð?ê@ÖS«¯Ð?+Qö–r¾Ð?Á¨¤N@Ð?°­Ÿþ³æÐ?hA(ïãhÐ?‚Uõò;MÐ?¾Û¼qRÐ?Ñ@,›9$Ð?’?xî=Ð?xòé±-Ð?ººc±M*Ð?=Fyæå°Ï?\Uö]üÏ?»{€îË™Ð?+Àw›7NÐ?éd©õ~£Ð?M„ O¯”Ð?ÙëÝïÏ?—Tm7Á7Ð?ˆ»zÐ?6\-ËÐ?Ì:“6Ð?O?üüÍ?‘z6«>Ï?ޱ^‚SÐ?¡fHÅ«Ð?š{HøÞßÎ?ž#ò]J]Î?$¸‘²EÒÎ?•+¼ËE|Ï?Iò\߇ƒÎ?:”¡*¦ÒÍ? 6ªÓ¬Ï?ææÑ=ëÎ?úcZ›ÆöÎ?[wóT‡Ð?à‚lY¾.Ð?¸>¬7j…Ð?_&ŠºÏ?8IóÇ´6Ï?%–”»ÏñÍ?÷êã¡ïnÏ?ÕÎ0µ¥Ò?xak¶ò’Ó?LûæþêqÓ?€E~ýÓ?ôˆÑs ]Ò?–~TÃ~Ò?ðˆ ÕÍÅÑ?r£ÈZC©Ò?òB:<„ñÑ?ü‹ 1“¨Ñ?ÍV^ò?ùÐ?辜ٮÐÑ?PÂLÛ¿²Ò?Ñ>VðÛÓ?RÑXû;ÛÓ?‡4*p² Ò?Ä%ÇÒÁÑ?¥÷¯=³Ñ?¦B</OÒ?­‰¾¢[Ò?gòÍ67¦Ñ?7ú˜tÒ?Çkñ)Ò?Šº}åÑ?-`·îæÑ?—‘zOå´Ñ?õôøÃÏÑ?+¢&ú|”Ñ?RóUò±»Ñ?Ý}ŽgÑ?£>É6‘Ñ?@½5_%Ò?=)“ÚÑ?é(³ 0Ò?ì1‘ÒlÒ?ô7¡‡Ñ?ê—ˆ·Î¿Ñ?»Ò2Rï©Ñ?èÚÐ wÒ?h%­ø†ÂÑ?o¹ú±I~Ð?‰–<ž–Ñ?£ x|{×Ñ?ù*8Ò?ƒL2röÐ?'ÁÒ¨ÀÐ?Ù²|]†ÿÐ?™ ÇóPÑ?ñ[z4ÕÐ?w.Œô¢vÐ?6l±ÛgÑ?Â¥cÎ3öÐ?µ“ýØ? L§uÔØ?”i4¹Ù? â;þ Ú?.È–åëØ?¹8*7QKØ? 5?þÒ¢Ù?±‰Ì\àòØ?°âÊØ?-Ðîb€Ú?“‹1°ŽãÙ?$Ò6þDeÚ?,*ât’­Ù? cîZB>Ù?geû·\Ø?ãŽ7ù-:Ù?„€| Ý?&Ãñ|Ôß?>ÏŸ6ªÓß?B]¡Þ?3âÐ(]Ý?gÓÀÍÝ?¡¾eN—ÅÜ?zm6VbžÞ?þrÛ¾GÝ?‰~mýôŸÜ?ÑvLÝ•]Û?>”hÉÜ?$›:Þ?¼t“Vß?. ´¾Là?n¤l‘´Ý? †7kðÜ?«w¸Ý?–çÁÝY»Ý?6<½R–!Þ?.;Ä?léÜ?tµûËîÝ?7S!‰—Ý?C«“3wÝ?Y†8ÖÅmÝ?,œ¤ùÜ?ûY,EÝ?Ç/¼’ä¹Ü?;ÿvÙ¯;Ý?IœQ}Ü?7R¶HÚÜ?ÓL÷:©Ý?P0žACÝ?¤rµ4·Ý?”„DÚÆŸÝ?qxµÜ™Ü?Ï, PSËÜ?Yk(µÑÜ?vp°71$Þ?:3PÿÜ?DÀ!T©ÙÚ?EÕ¯t><Ü?ÁÉ6pêÜ?U†q7ˆÝ? 34žâÛ?\sGÿ˵Û?®€B=}Ü?Àϸp $Ý?ž #½¨ÝÛ?}<ôÝ­,Û?¹oµN\ŽÜ?Ó¼ãÉÛ? $ ˜À­Û?G>¯xê‘Ý?Ÿ9ëSŽÉÜ?ý‚ݰmQÝ?´8c˜´Ü?Ù š–XÜ?öE™ 2Û?ž™`8×0Ü?| €ñ ß?Ñ:ªš á?hwH1@"á?¾IÓ hà?þî5&ÄÞ?I×L¾Ùæß?ú¸6TŒóÞ?¹4J—~à?þ oÖà}ß? JÑʽÞ?þEИIÝ?—Æ/¼’äÞ?×¥Fègjà?ÕÊ„_êçà?‰~mýôŸá?ÐÒl#ß?8ÀÌwðß?D§çÝXPß?§Z ³ÐÎß?=HO‘CDà?ëW:ž%ß?d‘&Þà? (ÔÓGàß?qËGRÒÃß? ÂP¨§ß?¡Ö4ï8Eß?9}=_³\ß?ßÄœLÜÞ?üTˆeß? vöE™Þ? ®¹£ÿÞ?ÀA{õñÐß?‹RB°ª^ß?4Õ“ùGßß?ù‚0ºß?¤¥òv„ÓÞ?Nì¡}¬àÞ?(*ÖTß?N&nÄ@à?“EÖJß?N]ù,ÏÜ?ñÖù·Ë~Þ?ܵÛ.4ß?¾Þýñ^µß?”i4¹Þ?;‡ú]ØÝ?p–’å$Þ?IZÖýcß?z¦—ËôÝ?1Ò‹Úý*Ý?ÿÍ‹_íÞ?‚Ç·w úÝ?†!YÀÞ?ú´ŠþÐÌß?TVÓõD×Þ?Y†8ÖÅmß?†Xý†ß?ãósCSÞ?"Ä•³wÝ?DÛ1uWvÞ?-´sšÚß?LÃð±á? ý\¬á?,µÞïà?ïâý¸ýòÞ?6sHj¡dà?/lÍV^òß?(Óhr1á?aq8ó«9à?ª ãn­ß?ÌÔ$xCÞ?¢DKOËß?=dʇ êà?Å­já?“¬ÃÑU:â?^óªÎjà?RíÓñ˜à?ëÄåx"à?Ö5ZôPà?d–= lÎà?» ”Xà?¡÷Æœà?·`©.àeà?kb¯èVà?;nøÝtKà?}ÍrÙèà?µ5"à?Š)x ¹ß?þÒ¢>Éà?üU€ï6oß?X;ŠsÔÑß?:¯±KTà?2>Ì^¶à?5B?S¯[à?O›sðLà?õôøÃÏß?&åîs|´ß?ïãhެüß?û‘ 9¶à?>±N•ïà?öEB[Î¥Ý?»¹øÛž ß?[•DöAà?Ðïû7/Nà?Ú–?ßÞ?oFÍWÉÇÞ?Š?Š:sß?†1zn!à?Ù¯;ÝyâÞ?wIœQÞ?-]Á6âÉß?,)wŸã£Þ?É=]ݱØÞ?IŸVQà?n‰\pß?pënžêà?HPüs×ß?4,F]kïÞ?Äê0 XÞ?JíE´Sß?¿ÔÏ›ŠTß?¨QH2«wá?˜Ü(²ÖPá?öµ.5B¿à?þî5&ÄÝ?KXc'à?'3ÞVzmß?rúz¾f¹à?ÂøiÜß?€ï6oœß?¸4J—Ý?¨(ðN>ß? ]Þœà?Qèyá?6ZôPÛá?2çû’ß?mV}®¶bß?\qqTn¢ß? üáç¿à?~Œ¹k yà?4w¼Éoß?S<.ªEDà?¿ [³•à?—ÊÛN à?Ó×øLöß?hvÝ[‘˜ß?ê^'õeiß? ]Þß?žÒÁú?‡ß?¤P¾¾ÖÞ?%Ì´ý++ß?¤‹M+à?\•›¨¥ß?RD†U¼à?m±Ÿà?³˜Ø|\ß?¿ò =Eß?š`8×0Cß?ÁÆõïúLà?š–X|ß?ÇeÜÔ@óÜ?óX32È]Þ?×kzPPŠß?&6׆ à?Öà}U.TÞ?”Kã^IÞ?ší }°ŒÞ?겘Ø|\ß?3&c`Þ?8é´nƒÝ?/÷ÉQ€(ß?OË\å Þ?kž#ò]JÞ?an÷rŸà?d=µúÞ?pënžêß?…`U½üNß?¡Ø š–XÞ?ëR#ô3õÝ?ožê›áÞ?ÖÈ®´ŒÔÝ? ]lZ)„à?®›R^+!à?î#·&Ýß? GJ±Û?ÙÎ÷Sã¥Þ?aþ ™+ƒÝ?bMeQØEß?75Ð|ÎÝÝ?7n1?7Ý?sÚSrNìÛ?;5— uÝ?÷9>Zœ1ß?jßÜ_=îß?óŽSt$—à?[yÉÿäïÝ?«\¨ükyÝ?Õ=²¹jžÝ?XSYvQÞ?ÊÂ×׺ÔÞ?Ý µ‰“Ý?¼zÞ?À&kÔC4Þ?AºØ´RÞ?³–ÒþÞ?U¤ÂØBÝ?ƒѯ­ŸÝ?,ŸåypwÝ?Ç/¼’ä¹Ý?óv„Ó‚Ý?¦Óº jÝ?ˆôÛ×sÞ?AeüûŒ Þ?¶ºœ“Þ?¬á"÷tuÞ?æv/÷ÉQÝ?6x_• •Ý?CV·zNzÝ?­®€¸Þ?ìK6l±Ý?QÝ\ümOÛ?jØï‰uÜ?×L¾ÙæÆÝ?Y1\qÞ?H¾DÜ?apÍý/Ü?´Yõ¹ÚŠÜ?µ¥òz0Ý?Ñtv28JÜ?#„GG¬Û?É&pënÝ?:Ì—`Ü?®ð.ñÜ?ÚUHùIµÞ?uU ƒ‡Ý?î^î“£Þ?]¿ðJ’Ý?»ÕsÒûÆÜ?IÛø• Ü?÷<Ú¨NÝ?mŽs›p¯Û?ømˆñšWÞ?KPáÝ?ØG§®|–Ý? `­Ú5!Ù?œÁß/fKÜ?-Z€¶Õ¬Ú?bJ$ÑË(Ü?órØ}ÇðÚ?Útp³xÚ?·bÙ=yÙ?¤P¾¾ÖÚ?¦B</OÜ?¢ÎÜCÂÜ?å*¿)¬Ý?Ef.py¬Û?U†q7ˆÖÚ? 'LÍÊÚ?yËÕMòÛ?Œi¦{ÔÛ?ú™zÝ"Û?ÊÅXÇñÛ?9 ¥/„œÛ?]¢zk`Û?Ö:q9^Û?s‚69|ÒÚ?åîs|´8Û?eª`TR'Û?lyåzÛLÛ?æ²Ñ9?ÅÚ?" œlÛ?i©÷TNÜ?Ó×øLöÛ? eýfbÜ?Õ°ßëTÜ?ó‘”ô0´Ú?²KTo lÛ?Yk(µÑÚ?Sz¦—ËÛ?‡Ü 7àóÚ?YÃEîéêØ?³ ×ÜÑÙ?¦ ±ú# Û?úBÈyÿÜ?‘|%»Ù?C®Ô³ ”Ù?&o€™ïàÙ?/ùŸüÝ;Ú?ȳ˷>¬Ù?QØEÑÙ?¿œ3¢´Ú?ò™ìŸ§Ú?mrø¤Ú?R˜÷8Ó„Ü?y²›ýhÛ?0óüÄÜ?]S ³³èÚ?Cª(^emÚ?­5”Ú‹hÙ?ÍXä×Ú?£Ó0|DÙ?`ãúw}Û?BZcÐ ¡Ù?¡¢êW:Û?%ZòxZ~Ö?”‡…ZÓ¼Ù?óŽSt$—×?³¶)ÕØ?ÑËØÐÍ×?¢ U1•~×?-]Á6âÉÖ?XøQ û×?¸\ýØ$?Ù?'0ÖmÙ?Œô¢v¿ Ú?333333Ù?2 {½ûã×?î'c|˜½×?]j„~¦^Ù?%²²,˜Ø?XU/¿ÓdØ?`;±OÙ?`™D½Ø?ª*4ËfØ?½f¾ƒŸØ?-Ó¾¹×?_yž"‡Ø?»¶·[’Ø?Ü‚¥º€—Ø?aºÙØ? 4ØÔyTØ?áÐ[<¼çÙ?Ÿ`<ƒ†Ù?KÊÝçøÙ?0ðÜ{¸äÙ?ù.¥.Ç×?ëTùž‘Ù?­nõœô¾×?(F–̱Ø?¤ü¤Ú§ã×?­„î’8+Ö?#»Ò2RïÖ?Ñéy7Ø?µŒÔ{*§Ù?b¼æUÕÖ?›uÆ÷Å¥Ö?…|гYõÖ?!å'Õ>×?{÷Ç{ÕÊÖ?–$Ïõ}8Ö?Ív…>XÆ×?» ”X×?/£Xni5×?–B —8òÙ?ŸÉþyÙ?ø§T‰²Ù?dÎ3ö%Ø?5~á•$Ï×?{g´UIdÖ?ÕyTüߨ?mÇÔ]Ù×?c˜´ÉáØ?ZÊû8šÖ?75Ð|ÎØ?‹ßV*Ô?œ'¾ÚQ×?Z›ÆöZÐÔ?NA~6rÝÕ?›¯’ÝÕ?Ó¼ãÉÔ?Ýyâ9[@Ô?šë4ÒRÕ?»œ“pÖ?Kw×ÙÖ?“‹1°ŽãÖ?¹ü‡ôÛ×Ö?Ä "RÓ.Õ?$—ÿ~ûÔ?ö~£7üÖ?ëÅPN´«Õ?¯&OYM×Õ?ÖT…]Ö?ÞË}r Ö?•·#œ¼Õ?Ä\RµÝÖ?¸Î¿]öëÔ?kÕ® Ö?ƿϸp Ö?r4GV~Ö?a2U0*©Õ?E›ãÜ&ÜÕ?Û5x_•×?°;Ýyâ9×?•µMñ¸¨×?u¬Rz¦—×?«x#óÈÕ?¥N@aÃÖ?ÞtËñÕ?ŒgÐÐ?ÁÕ?£’°o'Õ?ƧÏ Ó?Ház®GÔ?· ÍuiÕ?Ïg@½5×?Kê46Ô?Žx²›ýÓ?|¹OŽDÔ?ó¬¤ßPÔ?ìÜ´§!Ô?ŠZš[!¬Ó?‹üú!6Õ? ®¹£ÿÔ?Øî<ñœÔ?bÚ7÷W×?¢ÑÄÎÖ? ByGs×?–Zï7ÚqÕ?É&pënÕ?ÿ–üSªÓ?ûå¶}Õ?h’XRî>Õ?“6U÷ÈæÖ?lÑ´­fÔ?ŽÍŽTßùÖ?²öw¶GoÒ?SìhêwÕ?é)rˆ¸Ò?Õ•Ïò<¸Ó?±3…ÎkìÒ?a4+Û‡¼Ò?q:ÉV—SÒ?óùõCÓ?îBsFZÔ?ºW•}WÔ?§$ëpt•Ô?å¶}úÔ?>\rÜ)Ó?¸#œ¼èÒ?ÓJ!KÕ?ìlÈ?3ˆÓ?ýÁÀsïáÓ?9&‹ûLÔ?£çºÔ?:õÔê«Ó?ãÝ‘±ÚüÓ?1îÑZÑÒ?vÄ!HÔ?Ë‚‰?Š:Ô?ÿ¯:r¤3Ô?¦~ÞT¤ÂÓ?Ýì”ÛöÓ?p]1#¼Õ?<Þä·èdÕ?%è/ôˆÑÕ?E½àÓœ¼Õ?Üg•™ÒúÒ?g+/ùŸüÔ?ˆdȱõ Ó?ØòÊõ¶™Ó?MÀ¯‘$Ó?‹ßV*¨Ñ?¥hå^`VÒ?›ÖtBÓ?1`ÉU,~Õ?Ù”+¼ËEÒ?t¶€ÐzøÑ?NÒü1­MÒ?„¸röÎhÒ?2•ñï3Ò?SÎ{/¾Ñ?Ë+×Ûf*Ó?9œùÕ Ó?†1zn¡Ò?¢Busñ·Õ?€šZ¶ÖÕ?Grùé·Õ?™Iô2ŠÓ?[éµÙX‰Ó?T¨n.þ¶Ñ?aª™µÓ?9c˜´ÉÓ?paÝxwdÕ?‹Ã™_ÍÒ?MØ~2ƇÕ?ÈDJ³yÑ?Úã…txÔ?T4¸­-Ñ?†§WÊ2Ò?äRìhÑ?{Ý"0Ö7Ñ?!¬ÆÖÆÐ?¯xê‘·Ñ?­nõœô¾Ò?ÀA{õñÐÒ?®ÕöBÓ?+ö—Ý“‡Ó?x ý,–Ñ?aûÉfÑ?»Ò2Rï©Ó?¯½7†Ò?j£:ÈzÒ?²×»?ÞÒ?&9`W“§Ò?œQ}>Ò?¸4J—Ò?¿ÔÏ›ŠTÑ?7ÿ¯:r¤Ò?„H†[ÏÒ?Ž¿·éÏÒ?5B?S¯[Ò?)Bêvö•Ò?ÉU,~SXÔ?ÁãÛ»Ô?ÙCûXÁoÔ?FzQ»_Ô?¿3‰Ñ?A}Ëœ.‹Ó?Lÿ’T¦˜Ñ?ÒŦ•B Ò?ZôPÛ†Ñ?35 ÞFÐ?ýI|îûÐ?eqÿ‘éÐÑ?ƒ÷U¹PùÓ?pÍý/×Ð?—á?Ý@Ð?RóUò±»Ð?µûU€ïÐ?‚åȳÐ?˃ô9DÐ?ú´ŠþÐÌÑ?–“PúBÈÑ?Ò?ŠÊ†5•EÐ?Ct 4Ò? â8ðj¹Ò?ÿ±GÔ?Û…æ:´Ñ?4iSulÔ?ˆWÎÞÐ?Ž!8öìÒ?½nëÐ?ä.ÂÑ?}ëÃz£VÐ?§çÝXPÐ?™b‚ŽVÏ?fj¼!Ð?mŒðœÑ?Ržy9ì¾Ñ?“[ìöÑ?²ºÕsÒ?PŒ,™cyÐ?‹¦³“ÁQÐ?û®þ·’Ò?¸xxÏåÐ?Rºô/IeÑ?¦ ÐÒÑ?Ž={.S“Ñ?–x@Ù”+Ñ?%ZòxZ~Ñ?†9A›>Ð?ɰŠ72Ñ?—nƒÀÑ?5ÒRy;ÂÑ?î\éEÑ?”¢•{Ñ?±k{»%9Ó?~6rÝ”òÒ?Xþ|[°TÓ?–Ïò<¸;Ó?QÚ|aÐ?m«Yg|Ò?jøÖwÐ?WêYÊûÐ?T1³ÏcÐ?{¡€í`Î?]ýØ$?âÏ?œ¦Ï¸®Ð?éFXTÄéÒ?{L¤4›Ï?ï%ÀÎ?Uø3¼YÏ?øÝtËñÏ?µ©ºG6WÏ?%«êåwÎ?Ð+žz¤ÁÐ?en¾ݳÐ?ˆ-y<-Ð?Ç›ü,Ó?&9`W“§Ò?ÌoB@Ó?¡÷ÆÑ?E>‘'Ñ? !çýœÎ?,»`pÍÑ?l#ö  Ñ?'Ø›6Ó?Ky ²Ð?Z.óSÓ?D÷¬k´Î?31]ˆÕÑ?*á ½þ$Î?¬Žé Ð?UûtŽÊ?Õ’weÊ?µ4·BXÉ?ûVëÄåÎ?¿ïß¼8ñÍ?,¨þA$Ï?}è‚ú–9Ë?„ƒ½‰!9Ë?0ÈбÇ?Q._x%Ë?w,¶IEcË? š]÷VÎ? eýfbÊ?àV*¨¨Î?¢*¦ÒO8Ç?DjÚÅ4ÓË?¥.ÇHöÆ?ŒðœúÈ?¯C5%Y‡Ç?b.äÜÆ?"ÿÌ >°Å?uU ƒ‡Ç?uÞɧÉ?~įXÃEÊ?((E+÷Ë?"‰^F±ÜÊ?-{ØœƒÇ?0×¢h[Ç?ñI'L5Ë?éµÙX‰yÈ?&ûçiÀ É?ÀÐ#FÏ-Ê?üߪ›É?öÒNïÈ?š•íCÞrÉ?DP5z5@Ç?Äëú»aÉ?‰Ð6®É?s.ÅUeßÉ?aãúw}æÈ?EÙ[ÊùbÉ? ˜£ÇïmÌ?^*6æuÄË?ØH„+ Ì?iÆ¢éìdÌ?¦¶ÔA^Ç?C’Y½ÃíÊ?ÐѪ–t”Ç?Š® ?8ŸÈ?iÇ ¿›nÇ?®ÙÊKþ'Å?6ÊúÍÄÆ?R)v4õÇ?¦^·ŒõË?‡Áü2WÆ?ûzáÎ…Å?G¢`ÆÆ?®­,Ç?VfJëo Æ?þÕã¾Õ:Å?S\Uö]È?W`ÈêVÏÇ?Ü ‹Qׯ?࢓¥ÖûË?ømˆñšWË?6‘™ \Ì?íHõ_”È?`áC‰–È?¹à þ~1Å?íDIH¤mÈ?âr¼Ñ“È?Ü,^, ‘Ë?Ó…XýÈ?ÊoÑÉRëË?¡MŸt"Å?‰A`åÐ"É?=E7§Ä?Ý´§!ªÆ?]‹ m5Å?Ze¦´þ–Ä?µ4·BXÃ?G¬Å§Å?w£ù€@Ç?@Ý@wòÇ?‘|%»È?µüÀUž@È?˜¦pzÅ?»_ønóÄ?ûY,Eò•È?ó!¨½Æ?éc> ЙÆ?l dv½Ç?(,ñ€²)Ç?!u;ûʃÆ?·$ìjòÆ?Ôšæ§èÄ?7‹ CäÆ?ªžÌ?ú&Ç?Ô+eâXÇ?‚WË™`Æ?TW>ËóàÆ?D¾K©KÆÉ?*8¼ "É?™Kª¶›àÉ? &áBÁÉ?6\äž®îÄ?Oyt#,*È?ðlÞpÅ?Äè¹…®DÆ?79|Ò‰Å?7‰A`åÐÂ?1%’èeÄ?^¡–±¡Å?è÷ý›É?mÆiˆ*üÃ?c('ÚUHÃ?ÂKpêÉÃ?ÖÇCßÝÊÄ?(ðN>=¶Ã?xEð¿•ìÂ?|ðÚ¥ ‡Å?Ww,¶IEÅ?â翯]Ä?x( ô‰<É?$0ðÜ{È?ë;¿(AÉ?ׄ´Æ Æ?ç½ÞýÅ?K®bñ›ÂÂ?M JÑÊÅ?k :!tÐÅ?{ŸªB±È?B°ª^~§Å?zýI|îÉ?þžX§Ê÷Â?ß3¡lÆ?\8’LÂ?ÇHö5CÄ?Å_Ñ­×Â?Šuª|ÏHÂ?¨äœØCûÀ?RGÇÕÈ®Â?lµ‡½PÀÄ?äôõ|ÍrÅ?a¦í_YiÆ?Y32È]„Å?DàH Á¦Â?ö—Ý“‡…Â?â#bJ$ÑÅ?I›ªÃ?Ä?Í[uª)Å?ß7¾öÌ’Ä?&¶ØíÃ?| ^Ä?áëk]j„Â?#ô3õºEÄ?ò°PkšwÄ?ÊÂ×׺Ä?oñðžËÃ?4e§ÔEÄ?Ã+IžëûÆ?ÀYJ–“PÆ?Ú‘aÇ?“Œœ…=íÆ?¸u7OuÂ?,F]kïSÅ?²+-#õžÂ?0fKVE¸Ã?Á”-’Â?§>¼sÀ?Õxé&1Â?CV¸å#Ã?Ê1YÜdÆ?‡D¤¦Á?qý¾óÀ?‹2d’‘Á?PãÞü†‰Â?¢_[?ýgÁ?ÓÜ a5–À?u;ûʃôÂ?¡õðe¢Â?“¬ÃÑUºÁ?ÀJÆ?A)Z¹˜Å?\qqTn¢Æ?ÜŸ‹†ŒGÃ?“Ã'H0Ã?f…"ÝÏ)À?eû·\ýÂ?F²G¨RÃ?À”Æ?vÿXˆÃ?p –ê^Æ?õ€yÈ”Á?úbïÅíÃ?™.Äê0À?Ë¢°‹¢Â?ùõCl°À?ÀÀ?Rðr¥ž½?ý…1zÀ?$0ðÜ{Â?ûÉf/Ã?;ªš ê>Ä?+4ËfÃ?K!KyÀ?Äê0 XÀ?Z/†r¢]Ã?øq4GV~Á?é Œ¼¬Á?. ø1æÂ? 毹2Â?“ªí&ø¦Á?ÂQòêÂ?Ý{¸ä¸SÀ?±4ð£öÁ?o~ÃDƒÂ?`sž MÂ?,žz¤ÁmÁ?’°o'áÁ?6‘™ \Ä?B²€ ܺÃ?½ý¹hÈxÄ?~÷æ7LÄ?Ujö@+0À?Ÿ9ëSŽÉÂ?9+¢&ú|À?Øñ_ Á?CUL¥ŸpÀ? 4ØÔy¼?‹6ǹM¸¿?eû·\ýÀ?¸Ë~ÝéÎÃ?õKÄ[çß¾?òaö²í´½?Q¾ …Œ¾?Ûúé?k~À?׈`\:¾?qªµ0 í¼?hÌ$êŸÀ?S=™ôMÀ?÷ʼUס¾?ô66;R}Ã?”½¥œ/öÂ?ÊmûõÃ?ú·Ë~ÝéÀ?‰´?QÙÀ?l¸ [–»?::ZÕ’À?`‰”fóÀ?~q©J[\Ã?\‘˜ †oÁ?Nïâý¸Ã?\ŽW zR¾?íñB:<„Á?£’:M¼?Œi¦{Ô¿?I¼<+J½?*n„EE¼?‰&PÄ"†¹?‘—5±¼?"o¹ú±IÀ?·|$%= Á?bôÜBW"Â?1@¢ ±À?Âmmáy©¼?8øÂdª`¼?iàG5ì÷À?ó9w»^š¾?šÍã0˜¿¾?7§’ À?CpìÙ¿?py¬ä¾?ÅÚÇ ~¿??ÆÜµ„¼?›:Š¿?ïU+~©¿?”Àæ<À?j£:Èz¾?ÙëÝïU¿?EóùÁ?#KæXÞUÁ? ËŸo Â? î\éÁ?òÍ67¦'¼?l¯½7†À?_yž"‡¼?ä0˜¿Bæ¾?µßÚ‰’¼?ù÷„¸?._x%É»?§#€›Å‹½? áÑÆkÁ?Öª]Òº?ÌFçüǹ?Q¾¾Ö¥º?c}“½?~įXÃEº?vQôÀǸ?ØœƒgB“¼?j3NCTá»?³Dg™E(º?­NÎPÜñÀ?UOæ}“À?ÁŠS­…Á?·³¯eĹ?4»î­¸?Åâ7…• ¶?7¢"N'¹?Ky ²¼?Z€¶Õ¬3¾?r‰#DÀ?FzQ»_½?©kí}ª ¹?ƒi>"¦¸?´€Ñåͽ?"5íbšéº?ÖµÂô½º?)ã¼?ioð…ÉT¹?‹Q×ÚûTµ?@ˆdȱõ´?SËÖú"¡¹?j½ßhÇ ·?ßlscz¶?†p̲'¹?)ÍæqÌ·?U·?Ž…A™F»?hñÿ¹?ò|Ô›Q»?%ÊÞRλ?ªc•Ò3½´?Ê7Ûܘž¸?š ñH¼<µ?¡ÚàDôk·?+*ÿZ^µ?–“PúBȱ?ÎOqxµ´?™„ y7¶? ÇóPoº?>u¬Rz¦³?ÖÇCßÝʲ?gEÔDŸ³?Ý@wòéµ?ˆ#³?³aMeQر?Yá&£Ê´?¦(—Æ/´?åÐ"Ûù~²?.’v£ù¸?Ð ¡ƒ.á¸?ÐECÆ£Tº?d[œ¥dµ?/ø4'/2µ?è3 ÞŒš¯?¶×‚ÞC´?î$"ü‹ µ?E/£Xni¹?¹Œ›h>·?œÞÅûqû¹?€&†§³?Y¿™˜.Ķ?!YÀnݱ?ñº~Án´?ÇמY ²?áy©Ø˜×±?C«“3¯? ]‰@õ²?÷WûVë´?«Îj=&¶?ÉüI‚¸?AJìÚÞnµ?™õb('Ú±?‘D/£Xn±?è1Ê3/‡µ?­‰¾¢[³?_ š]÷²?k=&Ršµ?‹Áôoî³?Z)r‰#³?÷s ò³‘³?—;3Áp®±?+Û‡¼åê³?×÷á !ʳ?p–’å$´?ú_®E в?ÙvÚŒ³? ×ÜÑÿ¶?—¡Ÿ©×µ?¯°à~À·?]øÁùÔ±¶?ü¦°RAE±?pìÙs™š´?±§þš¬±?ÉW)±³?M»˜fº×±?kdWZFê­? ýHV±?tÓfœ†¨²?Œu?T¶?ølìM°?‡‡0~÷®?ÂÚ;á%°?M.ÆÀ:²?gš°ýdŒ¯?7n1?74­?žï§ÆK7±?±RAEÕ¯°?9}=_³\®?˾+‚ÿ­´?Ü~ùdÅ´?ެü2#¶?/ÛN[#‚±?´Ø€q±?ê%Æ2ý©?()°¦°?µ¿³=²?\âÈ‘µ?…$³z‡³?Î3ö%¶?“Úl@°?°N]ù,³?@1²dŽ­?Ëõ¶™ ñ°?âvhXŒº®? ë©ÕWW­?߈îY×h©?ó<¸;k·­?†‘^ÔîW±?¿‚4cÑt²?ÚR ´?¨9y‘ ø±?‡À‘@ƒM­?Võò;Mf¬?Ç ¿›nÙ±?—Ž9ÏØ¯?ÎŒ~4œ2¯?üo%;6²?GJ±£q°?rjg˜ÚR¯?ÁÿV²c#°?ÏÚmšë¬? š]÷V°?÷@°?c^G²°?ümOØî®?‡P¥f°? ÛOÆø0³?Ðb)’¯²?$G:#/³?iâàI ³?PV W@¬?6çà™Ð$±?…²ðõµ.­?’?xî=°?Z/†r¢]­?h%­ø†Â§?}Ê1Yܬ?š´©ºG6¯?UûtVð£?0Ø Ûe¦?»€—6Ê¢?õ0´:9C¡?õ¢v¿ ð¥?an÷rŸ¥?¤¥òv„Ó¢?ðQ½Â‚«?y@Ù”+¼«?™cyW=`®?·}úë¦?õ-sº,&¦? `­Ú5!?ñaö²í¤?’릔×J¨?¿eN—ÅÄ®?ÎR²œ„ª?áaÚ7÷W¯?ðRê’qŒ¤?v“þ^ª?õ÷RxÐì¢?Û¦¶ÔA¦?Þ:ÿvÙ¯£?{jõÕU¢?…y3MØž?&¤à)ä¢?›!U¯²¦?6!­1脨?B•š=Ð ¬?Xtë5=(¨?„·! _¢?+*ÿZ^¡?üǙ&l§?UÂzýI¤?333333£?%ZòxZ~¨?õfÔ|•|¤?ºk ù g£?ØaLú{)¤?>w‚ý×¹¡?@j'÷£?~7ݲC¤?È}«uâr¤?Öª]Ò¢?l=C8fÙ£?ï9°!©?œß0Ñ §?¶Mñ¸¨©?zûsÑñ¨?#‡ˆ›SÉ ?¤¨3÷ð¥?…$³z‡Û¡?]¿`7l[¤?üs×ò¡?‰$zÅr›?ÔòWy¡?-íÔ\n0¤?èú>$D©?üǙ&lŸ?0ÕÌZ H›?ã‹öx!ž?1{ÙvÚ¡?zVÒŠo(œ? ߺñî˜?nøÝtË¡?Tn¢–æV ?Tœˆ~m?­Mc{-è¥?U¯²¶)¦?E½àÓœ¼¨?ßj¸¯ ?E½àÓœ¼ ?I¢—Q,·”?_(`;±Ÿ?ýÁÀsïá¢?‹¥H¾H©?»šrkÒ?»Õ”dž?èLÚTÝ#›?ª»² ל?øÃÏ^£?žz¤Ámm¡?ëåwšÌx£?mÇÔ]Ù£?9ÖÅm4€—?3d’‘³ ?»ïû™?æ®òž?g ר%š?ønóÆI‘?]¿ðJ’—?œ¡¸ãMž?¤8GW£?£W”†•?‹72üÁ?—pè-Þ“?( µ¦y—?U[rP’?SAEÕ¯tŽ?(Õ>˜?rÁüýb–?ÝAìL¡“?ìm3â‘ ?hÎú”c² ?ôÄs¶€Ð¢?ôS^-—?¯—¦pz—?í»"øßJ†?û\Äwb–?1í›û«Ç?èy’tͤ?‰—§sE)¡?|*§=%ç¤?ª‚QI€–?ð¦[vˆ ?K’çú>”?–vj.7š?çV«±„•?ýÁÀsïá’?¹à þ~1‹?–íCÞrõ“?4HÁSÈ•š?6׆Šqž?(º.üà|¢?$¶»辜?gEÔDŸ’?óÊõ¶™ ‘?Doñðž›?Ä "RÓ.–?‘îçäg“?®dÇF ž?rÞÿÇ –?F&à×H”?(*ÖT•?ò@d‘&Þ‘?@Û5x_•?ÆÞ‹/Úã•?™(Bêvö•?wòé±-“?áñí]ƒ¾”?¨ÄuŒ+.ž?ê<*þ?‹RB°ª^ž?±†‹ÜÓÕ?V™)­¿%?ó8 毙?1AG«Z’?]j„~¦^—?-Îæm’? |(ђǃ?9'öÐ>V?†TQ¼ÊÚ–?æË °ž?ñ+Öp‘{Š?§!ªðgxƒ?³\6:秈?ÞqŠŽäò?0…Ì•A…?7ê°Â-?ì2ü§(?L÷™?XWj1xˆ?¨ƒ¤O«˜?|a2U0*™?‰&PÄ"†?c%æYI+Ž?Y |E·Ž?C’Y½Ãíp?„.áÐ[<Œ?ïq¦ ÛO–?>&RšÍã ?ñ}q©J›?‚:åѰ ?íïlÞp?¶»辜™?·zNzßøŠ?úîV–è,“?!v¦Ðy?äôõ|Ír‰?Õ[[%X|?IeŠ9:Š?óâÄW;Š“?ì«an—?U¯²¶)ž?]5Ïù.•?9œùÕ ˆ?dT8‚„?Ww,¶IE“?…y3MØŽ?+¾¡ðÙ:ˆ?ž^)Ë—?¦{Ô—¥?B`åÐ"Û‰? :!tÐ%Œ?PáR)†? Íui©Œ?AØ)V ÂŒ?+Nµf¡?½nëˆ?ÕÏ›ŠT‹?"1ì0–?ÎR²œ„’?8-xÑW–?•›¨¥¹•?’ñ+Öp?סš’¬Ã‘?C®Ô³ ”‡?穹n?ü‹ 1“¨‡?>?Œml?â©iƒ?ìOâs'Ø?dv½S—?D¿¶~úÏz?+û®þ·b?0[wót?=Ú¨N‚?R臭ö”l?êÐéy7D?ެü2#‚?éd©õ~£}?YLl>® u?Êõî?~RíÓñ˜‘?ÖMò#~•?‹T[r€?(š°È¯?+¢&ú|”a¿ ß÷o^|?ùõCl?5$î±ô¡›?¸ê:TS’•? ܺ›§š?ß‹/Úã…„? ™žw“?w×Ùf€?ÙÎ÷S㥋?åѰ¨ˆƒ?Ç,{Ø|?¿¶~úÏš_?Í‚9zü~?sJ@LÂ…Œ?¹ü‡ôÛב?T;ÃÔ–:˜?_Ÿ;ÁŽ?7+1ÏJz?ìi‡¿&kt?'jin…°Š?ï<ñœ- „?ض(³A&y?Òo_Α?X;ŠsÔÑ?5&Ä\Rµ}?¨©ek}‘€??¨‹ÊÂw?"ýöuàœ?³z‡Û¡a?†àسç‚?Uð2ÃFy?{g´UId?'ú|”?‹Â.Šøˆ?{ò%T?óŽSt$—?{g´UIdo?!æ’ªí&ˆ?lìÕ[{?¯xê‘·…?ݵ„|гy?zUgµÀS¿²ºÕsr? ‹Q×Úû„?ÔòWy‘?Ž«‘]iY?€Õ‘#a¿]éEí~¿€(˜1kl?ýÙ‘aU¿%Ί¨‰>o¿d’‘³°§m?’xy:W”b??«Ì”Ößò>nü‰Ê†5…?±0DN_χ?hêu‹ÀX?í`Ä>d?àœ¥½Ág?´®Ñr ‡z¿5¸­-Qn?œŠT[‚?Ó–x@Ùt?>u¬Rz¦g?léÑTOæ_¿;s ßûk?ë˜Ü(‚?Q¤û9ù‰?¡Ÿ©×-“?ÐGqh„?ßlsczÂb?¿ò =EQ?uŽÙëÝ? ¨lXSYt?ý»>sÖ§\?eȱõ áˆ?bMeQØEq?-y<-?pe?|µ£8Gm?­ûÇBt\? Ž’Wçp?¾IÓ hn?JÑʽÀ¬p?Vbž•´â[?Èyÿ'Lh?@öz÷Ç{…?O#-•·#|?¾‰!9™¸…?~sõ¸o…?a2U0*©C¿Öª]Òz?ƒú–9]c?(¸XQƒix?Mjh°a?Ot]øÁùt¿.2¥B?æÎL0œkx?‡jJ²G‡?gd»Sd¿rÝ”òZ }¿·_>Y1\m¿¼êó)O¿½VBwIœu¿&6×†Š¿ì¿ÎM›qJ¿“ŠÆÚßÙ^¿?ÆÜµ„|p¿Ä•³wF[u?Íù†z?’]i©÷„?r„Ѭl_¿]Þ®Õ^¿Kiÿ¬…¿û®þ·’m¿ãÁ»}Vy?ˆž”I m?­k´衆?ê—ˆ·Î¿?Ǻ¸ðV?~p>u¬‚?f½ʉvE¿#0Ö70¹q?Î4aûÉO?}!ä¼ÿS¿órØ}Çðx¿P¨§ÀO¿È#¸‘²Er?ÁÿV²c#€?–x@Ù”+Œ?LàÖÝ¿ ì1‘Òl^¿«ZÒQfS¿¼è+H3f¿³B‘îçD¿Mjh°Q¿ü©ñÒMb@¿Šè÷ý›g¿Ä_“5ê!Z¿•~P)t?n…°KX[?½VBwIœu? IJ™Cr?òB:<„ñs¿/n£¼b?a2U0*©c¿'jin…°Z?CÁ”-b¿ŠsÔÑq5‚¿¾IÓ hn¿A ]Þ\?ض(³A&y?ÐDØðôJy¿ŽvÜð»é†¿QiÄÌ>¿V›ÿW9r¿›Ì^†¿¾IÓ hŽ¿0…Ì•A…¿È^ïþx¯z¿ Òo_Îi¿£V˜¾×\?ªek}‘Ðv¿sµ4·Bˆ¿êìdp”¼Š¿t—ÄY5¿šÏ¹ÛõÒ„¿7mÆiˆ*Œ¿8N ógj¿Cá³up°‡¿PqxµÜ‰¿ègêu‹Àˆ¿ÁŠS­…‰¿ºÙ(‡¿=Õ!7à ˆ¿Çº¸ð†¿`®E Ð¶Š¿ŠOÈÎÛˆ¿ÂÞÄœL|¿Ot]øÁù„¿/ܹ0Ò‹z¿_ÔîW¾{¿Lo.2Ž¿°® Ôbð€¿Qù×òÊõ†¿WÎÞmU‚¿À¯]Úpˆ¿ëŠáí‘¿ 4ØÔ‰¿pÐ^}<ô}¿¬r¡ò¯åu¿¢ †7k¿Ù[Êùbï•¿­C9Ñ®’¿0Ùx°Ån¿&¶Øí“¿^×/Ø Û–¿Ÿ[èJª¿ÂP¨§¿›:Šÿ;’¿ÖþÎöè ‡¿'õei§æ‚¿-@ÛjÖy¿dÉ˻ꑿ­mŽs›¿o l•`q˜¿>xí҆Ò¿@Þ«V&ü‚¿!¯“âãS¿øí¸áws¿gÕçj+ög¿kóÿª#GŠ¿’Z(™œÚy¿ßŒš¯’¿´äñ´üÀ…¿¨68ýÚŠ¿–]0¸æŽŽ¿”i4¹“¿U¯²¶)Ž¿— uXᆿÂ26t³?€¿ö²í´5"h¿™œÚ¦¶„¿w×Ùf¿•¸ŽqÅÅ‘¿€ÖüøK‹Š¿Á7MŸp¿eÂ/õó¦’¿k¶ò’ÿÉ¿—⪲Ë;Ū‘¿£9²òË¿ÇG‹3†9‘¿Öÿ9Ì—¿.ÿ!ýöu¿0Ÿ¬®¿,¸ðÀ’¿‰´?QÙ¿¸ õôˆ¿+£‘Ï+Ž¿<Ü ‹Q‡¿U„›Œ*È¿MeQØEÑ“¿nùHJzŠ¿°¶-Êl¿0™ò!¨Š¿˜ø£¨3÷¿;Èzjõ•¿L£uT5‘¿›sðLh’ˆ¿û:pΈ‚¿§]L3Ý딿ú ÒŒEÓ™¿.8ƒ¿_Ì–¿}þðóß“¿z‹‡÷˜¿ +TTýš¿–Ð]gE”¿ ­‡/•¿¿eN—ÅÄ–¿Ìí^î“£¿˜ËôKÄ‹¿¾öÌ’5…¿×kzPPŠ–¿¾‰!9™¸•¿j¥È%Žœ¿¡Ö4ï8E—¿£7ünŠ¿ a°ä*v¿¡0(Óhr¿9™¸U}¿<À“.«¿•c²¸ÿÈ„¿œmnLOX’¿Ü¹0Ò‹Ú¿®+f„·‘¿2Tqã“¿~ÿæÅ‰¯–¿UÞŽpZð’¿ð6oœæ¿ðÐïû‡¿>?Œm|¿9Ó„í'cŒ¿=Ô¶a”¿íõî÷ª•¿{ö\¦&‘¿@KW°x’¿ˆe3‡¤–¿;oc³#Õ‡¿|G 1—”¿mÞp¹•¿ôQF\•¿ÏÚmšë”¿ â8ðj¹“¿\<¼çÀr”¿ |E·^Ó“¿¡JÍh–¿w¾Ÿ/Ý”¿2rö´Ã¿ù»wÔ˜“¿ëZaúŽ¿û“øÜ ö¿r7ˆÖŠ6—¿e6È$#g‘¿¨ýÖN”„”¿ÿëÜ´§‘¿Ÿ;ÁþëÜ”¿üª\¨ük™¿Ýξò =•¿Ãe6\¿Zhç4 ´‹¿¡/½ý¹h˜¿ÜÖž—Š¿ßávhXŒš¿„GG¬Å—¿^¡–±¡›¿:3Pÿž¿BA)Z¹˜¿˜m§­Á˜¿)=ÓKŒeš¿õ¡ ê[政üûŒ B’¿#KæXŽ¿Èбƒš¿ÚÿkÕ®™¿Û$¶» ¿h–¨©e›¿È]„)Ê¥‘¿ŠXİØ„¿<ÁþëÜ´‰¿ ר%ª‡¿D6.6­”¿šÐ$±¤Ü¿ã5¯ê¬–¿BwIœQ“¿—¬Šp“Q•¿)¯•Ð]—¿çá¦Óš¿U2Tqã–¿OÜóüi“¿á (ÔÓG¿§ÌÍ7¢{†¿·µ…祒¿¬W‘ÑI˜¿YLüQÔ™¿ˆ.¨o™Ó•¿¹©æsî–¿ôÄs¶€Ðš¿‹qþ&"¿ýgÍ¿´˜¿žµÛ.4×™¿®fñ}q™¿—üSªD™¿:ÏØ—l<˜¿zûsÑñ˜¿e5]Ot]˜¿Ò¥Iš¿}”€F™¿;á%8õ”¿,+MJA·—¿®Ö‰Ëñ ”¿ %“S;Ô¿™¸U]›¿ŽÍŽTßù•¿Ô·Ì鲘¿³Dg™E(–¿¤«tw ™¿¦H¾H‰¿ŠriüÂ+™¿ú*ùØ] ”¿d\qqTn’¿ò`‹Ý>«œ¿Eð¿•ìØ ¿^L3Ý뤞¿cð0í›û›¿R}ç%蟿ì¾cxìg¡¿| Vœj-œ¿§/ú Òœ¿m­/Úrž¿íI`sž™¿èI™ÔЖ¿RÑXû;Û“¿GÉ«s Èž¿–¨©ek¿‡Šqþ&¢¿n‰\pŸ¿‹Q×ÚûT•¿Ç,{ØŒ¿HG¬Å§¿CV·zNz¿;R}ç%˜¿A~6rÝ”’¿Ñ=ë-š¿™ž°ÄÊ–¿îÑZÑæ˜¿ûå¶}š¿±i¥È%ž¿°u©ú™š¿êËÒNÍå–¿ ¯$y®ï“¿Öà}U.TŽ¿÷“1>Ì^–¿F³²}È›¿ûËîÉÃB¿Q§“lu™¿ÚÅ4Ó½Nš¿¡…Œ.ož¿èLÚTÝ“¿á¶¶ð¼Tœ¿wÜð»é–¿õ,å}¿»Ò2R臭¿ys¸V{Ø›¿¯w¼W­œ¿“ߢ“¥Ö›¿—6Êú¿vãÝ‘±Úœ¿d²¸ÿÈt˜¿„}›¿vþÓ ˜¿ÒQf`˜¿b.©Úž¿a¥‚Šª_™¿ö#EdXÅ›¿CpìÙs™¿¥Ÿpvk™œ¿y²›ýh ¿|ïoÐ^}œ¿NœÜïP˜¿¥hå^`–¿¯½7† ¿Zg|_\ª¢¿„+ PO¡¿ðO©eŸ¿—Æ/¼’ä¡¿EÕ¯t><£¿€FéÒŸ¿¨n.þ¶' ¿–B —8ò ¿~b¼æU¿÷ʼUסš¿¯zÀVðÛ“¿n‡†Å¨›¿D¥3û<–¿×ÜÑÿr¿Íù†š¿ølìMœ¿U1•~ÂÙ¿7TŒó7¡ ¿ÇÖ3„c–¿vþí²_wš¿)uÉ8F²—¿“Žr0›“¿l°p’晿º„Coñðž¿g¸ŸF ¿wIœQ¿\ AñcÌ¿ë˜Ü ¿¹oµN\Ž—¿ûëÜ ¿CW"Pýƒ ¿#ô3õºE ¿3ÂÛƒ ¿ZÙ>ä-WŸ¿ˆ»z ¿ û=±N•Ÿ¿‹ßV*¨ ¿š]÷V$& ¿&¦ ±ú#œ¿ /Á©$Ÿ¿ÍsD¾K©›¿UÙYœ¿£çº¡¿Ì|?q¿7ê°Â-Ÿ¿déCÔ·œ¿€fØñŸ¿LkÓØ^ ¢¿\Uö]üŸ¿REñ*k›¿´„Ö×™¿áFÊI»¡¿ølìM¤¿!®œ½3Ú¢¿ïW¾Û¼¡¿á@H0£¿rÝ”òZ ¥¿áî¬Ýv¡¡¿¨5Í;NÑ¡¿Ê‰vR~¢¿]kïSUh ¿Èì,z§ž¿M÷:©/K›¿­¢?4ó䢿d¬6ÿ¯:¢¿£’:M„¥¿rÞÿÇ £¿›©¾ó›¿NšEó–¿)%«êå—¿óªÎj=–¿ L§uÔž¿•-’v£™¿*;ý .R ¿Õ—¥šË¿”ƒÙ–Ÿ¿þ°Víš ¿wõ*2¢¿ãpæWs€ ¿`<ƒ†þ ž¿™¸U]›¿|,}è‚ú–¿¯Z™ðKýœ¿Q._x%¡¿‹Ã™_Í¢¿Â26t³? ¿—⪲¿’xy:W”¢¿sž M›¿­¡Ô^DÛ¡¿„„(_ÐB¢¿'÷;¢¿ "RÓ.¦¡¿vý‚ݰm¡¿“ `ÊÀ¡¿¬ãø¡Òˆ¡¿¸çùÓFu¢¿UÝ#›«æ¡¿Y‰yVÒŠŸ¿Ó0|DL¡¿’ê;¿(AŸ¿VñF摟¿ºM¸Wæ­¢¿Tã¥›Ä  ¿6çà™Ð$¡¿½në ¿Û§ã1•¡¿(îx“ߢ£¿IŸVÑš¡¿$Õw~Q‚ž¿ÄZ| €ñœ¿{Cr2q£¿h^»ï¦¿mw Ny¤¿%]3ùf›£¿Ov3£¥¿fI€šZ¶¦¿LkÓØ^£¿Ã9}=_£¿’?xî=¤¿“þ^ ¢¿ÍÈ w¦ ¿/ýKR™bž¿zÄè¹…®¤¿ä1•ñ÷±‚߆§¿Dioð…ɤ¿tϺFËž¿ègêu‹À˜¿£çºš¿n§­Á8˜¿ÒIØ·“ ¿üÂ+Ižë›¿ñ*k›âq¡¿µ¤£Ì& ¿eû·\ý ¿U…bÙÌ¡¿ò$éšÉ7£¿Ánض(³¡¿6>“ýó4 ¿%ušž¿D3O®)™¿¦¶ÔA^Ÿ¿²ºÕs¢¿X}w+£¿h+ømˆ¡¿T5AÔ}¢¿å™—ÃL©KÆ1’¿0JÐ_裿Åv÷Ý—£¿úDž$]£¿t^c—¨Þ¢¿ç6á^™·¢¿î`Ä>£¿ÝéÎÏÙ¢¿ÐѪ–t”£¿ƒR´r/0£¿±á镲 ¡¿Lþ'÷Ž¢¿àõ™³>å ¿GËjÛ ¿ßÞ5裿šë4ÒR¡¿ÅÅQ¹‰Z¢¿;«ö˜H¡¿kaÚ9Í¢¿Áüýb¶¤¿­¢?4ó䢿ëâ6À[ ¿äòÒoŸ¿Í鲘Ø|¤¿@øP¢%§¿$·&Ý–È¥¿Tàd¸¥¿qæWs€`¦¿æXÞU˜§¿¸éÏ~¤ˆ¤¿³}È[®~¤¿c|˜½l;¥¿iâàI£¿§Z ³ÐΡ¿ àfñba ¿ ¦–­õ¥¿˜‡LùT¥¿ˆc]ÜF¨¿Èì,z§¦¿‚âǘ»– ¿™Kª¶›à›¿ÓNï⿤ö{bš¿bž•´â¢¿²/Ùx°Åž¿L‰$zÅ¢¿û²´Ss¹¡¿v“þ^¢¿”i4¹£¿[aú^Cp¤¿IƒÛÚÂó¢¿ôzÄè¡¿7ünºe‡ ¿»µL†ãùœ¿: ûv¡¿?T1³Ï£¿hÊN?¨‹¤¿à÷o^œø¢¿‘îçäg£¿yÈ”A¥¿FÒnô1 ¿úÒÛŸ‹†¤¿Ü¸ÅüÜФ¿áñí]ƒ¾¤¿XSYvQ¤¿Bí·v¢$¤¿-xÑWf¤¿Mø¥~ÞT¤¿xñ~Ü~ù¤¿ä÷6ýÙ¤¿pìÙs™¢¿òšWuV ¤¿Åoò[t¢¿TS’u8º¢¿ÑË(–[Z¥¿Ž?QÙ°¦¢¿¸Ë~ÝéΣ¿Ñ[<¼çÀ¢¿µP29µ3¤¿¨PÝ\ü¥¿C —8ò@¤¿n/†È¡¿çÇ_ZÔ'¡¿âú}ÿ楿Õ’we¨¿®)ÙYô¦¿¦™îuR_¦¿©ƒ¼LЧ¿zûsÑñ¨¿6±ÀWt륿ÙÎ÷S㥿¹nJy­„¦¿\wóT‡Ü¤¿!‘¶ñ'*£¿Êk%t—Ä¡¿Ÿ ±Ý=@§¿Ͻ‡K¦¿Ó–x@©¿'Ü+óV]§¿˜Û½Ü'G¡¿Œ¿í Û¿…"ÝÏ)ÈŸ¿@/ܹ0Ò›¿QMIÖá袿¾ù  R ¿‚ŽVµ¤£¿ê”G7¢¢¿ŠÌ\àòX£¿8½‹÷ãö£¿:Ì—`¥¿ùÙÈuSÊ£¿`V(Òýœ¢¿žÒÁú?‡¡¿»·"1A Ÿ¿a8×0Cã¡¿_%» ”¤¿@Û5x_¥¿%è/ôˆÑ£¿6Ü,^¤¿Œ¢>+¦¿,ÒSä¡¿£’:M„¥¿†« î꥿0º¼9\«¥¿ë¬Øc"¥¿Ø›6㤿œÀtZ·A¥¿Ïg@½¥¿1[²*Â¥¿MùT^¥¿@¤ß¾œ£¿U¿Òù𤿃§Z£¿?æI£¿ì0&ý½¦¿…$³z‡£¿¼z¤¿ |(Ñ’Ç£¿0[wó¤¿Ç/¼’书¿¾0™*¥¿Ù@ºØ´¢¿ÿ‚¢¿ÕèÕ¥¡¦¿g s‚6©¿31]ˆÕ§¿:“6U§¿~£<ór¨¿…Ì•AµÁ©¿?§ ?¹¦¿µ5"—¦¿£±öw¶G§¿ Q…?Û¥¿s ßû¤¿‚<»|ëâ¿ 0,¾-¨¿ Ü¶ïQ§¿øßJvlª¿ÛàDôkë§¿°’ÝJ¢¿ õôøÃŸ¿¡MŸt"¡¿ž—Šy¿Ú©¹Ü`¨£¿Uð2ÃF¡¿}Ê1Yܤ¿t|´8c˜£¿b k_@/¤¿NŸt"Á¤¿oõœô¾ñ¥¿.ÎR²œ¤¿‡Q<¾½£¿üÞ¦?û‘¢¿4»î­ ¿n¿|²b¸¢¿£êW:ž¥¿‡Áü2W¦¿CæÊ ÚिyxÒÂe¥¿FAðøö¦¿²½ôÞ¢¿aR||Bv¦¿ 'iþ˜Ö¦¿{„ò>ަ¿dËòu¦¿j1x˜ö¥¿ªÒ×øL¦¿ÒYùe0¦¿LÝ•]0¸¦¿ì@1²d¦¿ 3iSu¤¿U‰²·”ó¥¿w+Kt–Y¤¿<š$–¤¿Ä\RµÝ§¿ŒÛho¤¿8, ü¨†¥¿J´¤¿ ûvþ¥¿Þt_Îl§¿j¼t“¦¿MÚTÝ#›£¿úîV–è,£¿Ø¼ª³Z`§¿“màÔ©¿Cr2q«¨¿j¡drjg¨¿.u׃I©¿Ó£©žÌ?ª¿›r…w¹ˆ§¿ò[t²Ôz§¿ŸÉþy¨¿¬ò“jŸ¦¿ŸÛ2à,¥¿+‡ÙÎ÷£¿Žx²›ý¨¿-ÌB;§Y¨¿Ìï4™ñ¶ª¿ž)t^c—¨¿’v5yÊ¢¿ TûtËóàT4¸­-¤¿qÇ›ü¤¿«Ñ«JC¥¿3MØ~2¦¿ëTùž‘¥¿$ð‡Ÿÿ¤¿™Õ;Ü £¿.äÜH¡¿à‚lY¾.£¿¡JÍh¦¿}$%= ­¦¿²ó66;R¥¿DÂ÷þí¥¿}uU ƒ§¿îÍo˜h¢¿~ŠãÀ«å¦¿½á´àE§¿Æjóÿª#§¿ž'ž³„¦¿Ùî ûr¦¿ \7¥¼¦¿T§YO­¦¿Êû8š#+§¿75Ð|Îݦ¿œ5x_• ¥¿ŽË¸©¦¿Üã5¯ê¤¿NA~6rݤ¿K?ªa§¿Äy8餿ta¤µû¥¿'…y3¥¿Œ-9(a¦¿ßÁO@¿§¿‘aod¦¿Ïd¤¿_|Ñ/¤£¿AƒMGŧ¿<‡2TÅTª¿U¿Òù¨¿’±Úü¿ê¨¿"rúz¾f©¿[š[!¬Æª¿{úüáç§¿uæ¾§¿@¼®_¨¿'ù¿b §¿½VBwIœ¥¿‚«<°S¤¿ñ*k›âq©¿®e2Ïg¨¿3¨68ýª¿Ð캷"1©¿{0)>>!£¿ ý\¬ ¿NÑ‘\þC¢¿fgÑ;pŸ¿rúz¾f¹¤¿wõ*2¢¿—¬Šp“Q¥¿ Íui©¤¿B–¥¿´Yõ¹ÚŠ¥¿0Ø Ûe¦¿HÀèòæp¥¿ò`‹Ý>«¤¿ ñ+Öp‘£¿w|ÓôÙ¡¿ $(~Œ¹£¿Üd:tz¦¿ ×£p= §¿#ÜdTÆ¥¿ïäÓc[¦¿ãÝ‘±Úü§¿É˻ꣿ¿+‚ÿ­d§¿œýrÛ¾§¿( µ¦y§¿¯Ñr ‡Ú¦¿…y3Mئ¿„çÞÃ%§¿Œó7¡§¿Ð}9³]¡§¿ûu§;O<§¿¦{Ô—¥¥¿ÌÑã÷¦¿3ÀÙ²|¥¿s-Z€¶¥¿h%­ø†Â§¿Zd;ßO¥¿žÏ€z3j¦¿‘{ººc±¥¿‘|%»¦¿[z4Õ“ù§¿||BvÞÆ¦¿±¢Ó0|¤¿’—5±ÀW¤¿>°ã¿@¨¿€~ß¿yqª¿Ù\5Ï©¿B_zûsѨ¿TªDÙ[Ê©¿¸­-#£¿¡/½ý¹h ¿¥žÐëO¢¿%”¾rÞŸ¿þî5&Ĥ¿ÿ±G¢¿Ù=yX¨5¥¿ÅªA˜Û½¤¿wIœQ¥¿ÛûTˆ¥¿AG«ZÒQ¦¿7ÆNx N¥¿À>:u峤¿³_wºóÄ£¿KPᢿ6WÍsD¾£¿Éª7U¦¿í S[ê §¿P«”žé¥¿·Œõ L¦¿yGsdå§¿=€E~ý£¿(·í{Ô_§¿ñcÌ]Kȧ¿xak¶ò’§¿!yvù¦¿½Þýñ¦¿T:Xÿç0§¿Â1Ëž6§¿o¼;2V›§¿ ÛÝt§¿Èa0…Ì¥¿¦·? §¿û®þ·’¥¿° ÍX4¥¿û“øÜ ö§¿ñKý¼©H¥¿EØðôJY¦¿ß—ª´¥¿”2©¡ À¦¿Dl°p’æ§¿î#·&ݦ¿z9ì¾cx¤¿ÓMbX9¤¿ˆc]ÜF¨¿ÚX‰yVÒª¿s¼Ñ“2©¿œá|~©¿„Iññ Ù©¿½5_%«¿(¸XQƒi¨¿ˆc]ÜF¨¿x]¿¨¿õiý¡™§¿¶¢Íqn¦¿• •-¯¤¿Ì&À°ü©¿ N} y稿èô¼ «¿æ²Ñ9?Å©¿‘cëÂ1£¿«Ì”Öß ¿wÙ¯;Ýy¢¿0*©ÐD ¿4¢´7øÂ¤¿•~ÂÙ­e¢¿‚TŠC¥¿¥„`U½¤¿OÌz1”¥¿ší }°Œ¥¿VGŽtF¦¿ÑË(–[Z¥¿RGÇÕÈ®¤¿“ߢ“¥Ö£¿Ú:8Ø›¢¿HùIµOÇ£¿Û¦¶ÔA¦¿=,Ôšæ§¿¤¨3÷𥿑aod¦¿[z4Õ“ù§¿¤ý°Ví¢¿åòÒo_§¿["œÁß§¿ EºŸS§¿ñœú@ò¦¿ iQŸä¦¿§’ Š§¿&©L1A§¿M.ÆÀ:ާ¿ïÊ.\s§¿ ~þ{ðÚ¥¿š\Œu§¿!®œ¥¿>#ÁÆ¥¿õœô¾ñµ§¿ÃbÔµö>¥¿*9'öÐ>¦¿5&Ä\Rµ¥¿µÀ)ͦ¿)Íæq̧¿Õ@ó9w»¦¿f¼­ôÚl¤¿ûʃô9¤¿~R›8¹§¿¨«;Û¤ª¿¨o™Óe1©¿g)YNB©¿ÒåÍáZí©¿žACÿ«¿5–°6ÆN¨¿ébÓJ!¨¿Ï£âÿލ¨¿4MØ~2Ƨ¿ÚŽ©»² ¦¿MÛ¿²Ò¤¤¿Ù¯;Ýyâ©¿~©Ÿ7©¨¿333333«¿ÿ“¿{G©¿[rPÂL£¿ÍXäן¿]øÁùÔ±¢¿ y7R¶ ¿ÛÝt_Τ¿vþí²_w¢¿D¤¦]L3¥¿ÛÝt_Τ¿ R)v4¥¿KqUÙw¥¿JìÚÞnI¦¿¿˜-Y¥¿šÏ¹ÛõÒ¤¿”‚Uõò£¿»¶·[¢¿þEИIÔ£¿ˆißÜ_=¦¿ì1‘Òl§¿ðiN^d¦¿ÊÝçøhq¦¿XÎüj¨¿ ^ô¤£¿þE>‘§¿lê<*þ§¿M†ãù ¨§¿Ú–?ߦ¿U2Tqã¦¿š´©ºG6§¿ =bôÜB§¿—9]›§¿PŒ,™cy§¿ePmp"ú¥¿=_³\6:§¿rûå“Ã¥¿¶¿³=zÃ¥¿%<¡×ŸÄ§¿¡„™¶e¥¿[³•—üO¦¿ê—ˆ·Î¿¥¿ësµû˦¿Y‰yVÒŠ§¿Õ@ó9w»¦¿^ Pj¤¿w+Kt–Y¤¿+j0 ç¿&rÁüýª¿šë4ÒR©¿%W±øM©¿áy©Ø˜×©¿Ò¥I*«¿jhwH1¨¿¥žÐë§¿BÌ%UÛM¨¿‡ýžX§Ê§¿ÃØBƒ¦¿ %“S;ä¿üÁÀsï©¿\Ëd8žÏ¨¿4õ»°5«¿*äJ= B©¿ñf ÞW墿ˆLùTž¿£7ün¢¿¯–;3Á ¿õfÔ|•¤¿+5{ ¢¿nLOX⥿‚ŽVµ¤£¤¿A ]Þ¤¿ÀnÝÍS¥¿—¡Ÿ©×¥¿FÏ-t%¥¿ìÁ¤øø„¤¿î•y«®£¿Ûmšë4¢¿Žèžu–£¿!±Ý=@÷¥¿µÀ)ͦ¿ pzïÇ¥¿Ñtv28J¦¿ìOâs'ا¿p%;6ñ¢¿+TTýJ§¿ Й´©º§¿5E€Ó»x§¿µ5"—¦¿Ý a5–°¦¿®)ÙYô¦¿q¬‹Ûh§¿¦Óº j§¿‘·\ýØ$§¿üá翯¥¿¶óýÔxé¦¿é Œ¼¬‰¥¿EºŸSŸ¥¿Tr3Ü€§¿µÆ B¥¿ÀzÜ·Z'¦¿ŒÜÓÕ‹¥¿?tA}Ëœ¦¿ö  Y2§¿e‹¤Ýèc¦¿'ÙêrJ@¤¿¬q6¤¿N™›oD§¿Aó9w»^ª¿6\䞮^d~$©¿w0bŸŠ©¿“6U÷Èæª¿"Þ:ÿvÙ§¿¨¨ú•·§¿SäG¨¿· b k§¿Ãõ(\Â¥¿œú@òΡ¤¿yæå°ûŽ©¿ c AJ¨¿ÝéÎÏÙª¿…^Ÿ;©¿&rÁüý¢¿e‹¤Ýècž¿G’ \…¢¿p^œøjG¡¿[ìöYe¦¤¿­„î’8+¢¿øŠn½¦¥¿=Gä»”º¤¿ÁÆõïú¤¿?8Ÿ:V)¥¿Ü:åÑ¥¿‰ëW\¥¿;9CqÇ›¤¿TTýJ磿'‡O:‘`¢¿ï©œö”œ£¿ Ö8›Ž¦¿2!æ’ªí¦¿Ç¹M¸W楿ÿ]Ÿ9ëS¦¿í‚Á5wô§¿³A&9 £¿øo^œøj§¿E¼uþí²§¿¬9@0G§¿,*ât’­¦¿ð‡Ÿÿ¼¦¿3TÅTú §¿ƒ¦%VF#§¿ý3ƒøÀާ¿°çk–ËF§¿¬„¹ÝË¥¿&Q/ø4'§¿ ¦}s¥¿sôø½¥¿mýôŸ5§¿\ªÒ×ø¤¿`Ç @¦¿st´ª¥¿’Ìên‡¦¿+2: û¦¿iÄÌ>Q¦¿­†Ä=–>¤¿›äGüŠ5¤¿j ùœ»]§¿£®µ÷©ª¿üo%;6©¿¤«tw ©¿ Ê4š\Œ©¿&rÁüýª¿J³yó§¿ÑÍþ@¹m§¿‹üú!6¨¿H¾D„§¿Õ—¥šË¥¿¢+Üò‘¤¿óèFXTÄ©¿!ɬÞáv¨¿í-å|±÷ª¿¨o™Óe1©¿ |(Ñ¢¿"©…’É©¿¼ "5íb¢¿9€~ß¿y¡¿Võò;Mf¤¿Gÿ˵h¢¿(F–̱¤¿ß‹/Úã…¤¿¦ÒO8»µ¤¿CqÇ›ü¥¿Å °rh‘¥¿#Ûù~j¼¤¿^ò?ù»w¤¿Eh׿£¿!èhUK:¢¿Â5wô¿\£¿• Uܸ¥¿­k´衦¿ß¿yqâ«¥¿ƒ0·{¹O¦¿œMG7‹§¿ì¢èÁ¢¿T:Xÿç0§¿¤µûU€§¿F´Swe§¿–u¦¿G>¯xꑦ¿¤Q“mি³•—üOþ¦¿š´©ºG6§¿ÞÈ<ò§¿™E(¶‚¦¥¿l@„¸rö¦¿;ŠsÔÑq¥¿3ÀÙ²|¥¿Ú‘a§¿\wóT‡Ü¤¿j1x˜ö¥¿þ oÖà}¥¿Ͻ‡K¦¿3ü§(𦿵ÑvLÝ¥¿¸#œ¼è£¿¹‰Zš[!¤¿ÁþëÜ´§¿V]ûª¿tys¸V{¨¿ÅËÓ¹¢”¨¿]‰@õ"©¿¦E}’;lª¿ýfbº«§¿” ¿Ð#F§¿ –\Åâ§¿úšå²Ñ9§¿_&Šº¥¿–Ð]gE¤¿÷!o¹ú±©¿o l•`q¨¿‰{,}肪¿MõdþÑ7©¿qXøQ £¿Ã€%W±ø¿¿a¢A ž¢¿f¤ÞS9í¡¿}—R—Œc¤¿è£Œ¸4¢¿’]i©÷¤¿Sz¦—ˤ¿i­hsœÛ¤¿ p¥¿ÖmPû­¥¿0œk˜¡ñ¤¿ð…ÉTÁ¨¤¿¬q6¤¿+Kt–Y„¢¿t|´8c˜£¿¬r¡ò¯å¥¿B]¤P¾¦¿Žuq ॿ"ÇÖ3„c¦¿uŽÙëݧ¿DÔ·Ì颿ïr߉Y§¿Ù"i7ú˜§¿ò[t²Ôz§¿‹v“¦¿ô噗æ¿MÀ¯‘$§¿ùgñ§¿¨þš¬Q§¿¹4~á•$§¿ê"…²ðõ¥¿º ¾eN§¿Ýa™¹À¥¿Öýc!:¦¿/N|µ£8§¿ `­Ú5!¥¿9· ÷ʼ¥¿àg\8’¥¿ÚæÆô„%¦¿@2:=樂g+/ùŸü¥¿ŒHZÖý£¿\Y¢³Ì"¤¿ pA¶,_§¿µ¿³=ª¿Ü~ùdŨ¿¹û-Ψ¿p^œøjG©¿ò˜ù~ª¿/lÍV^ò§¿ û=±N•§¿>ù*¨¿d”g^»§¿–´â Ÿ¥¿dT8‚¤¿5*p² Ü©¿U¡X6s¨¿CŒ×¼ª³ª¿Ö‹¡œhW©¿O"¿£¿Ýì”Ûö¿6#ƒÜE˜¢¿"Ã*ÞÈ<¢¿CSvúA]¤¿†:¬pËG¢¿¬ÉSVÓõ¤¿N¶;P§¤¿nÁR]Àˤ¿ô¥·?¥¿¦H¾H‰¥¿ÛÝt_Τ¿E¹4~ᕤ¿ß¿yq⣿¿a¢A ž¢¿‚ëßõ™£¿¶¿³=zÃ¥¿îyþ´Q¦¿›sôø¥¿¢©ÛÙW¦¿ù…W’<×§¿l”õ›‰é¢¿ïr߉Y§¿)Bêvö•§¿žxÎZ§¿PãÞü†‰¦¿Õ@ó9w»¦¿=Ô¶a§¿yÎZ§¿Ž •b§¿ÒŦ•B §¿dÍÈ w¦¿—®`ñd§¿—6Êú¥¿:êè¸Ù¥¿#KæXÞU§¿R h¥¿ºÙ(·¥¿Z!«[¥¿dXÅ™G¦¿ Ï.ßú°¦¿ª›‹¿¥¿Qkšwœ¢£¿]©gA(m±§¿78ýÚú©¿íHõ_”¨¿ŒºÖÞ§ª¨¿˜PÁá©¿dT8‚Tª¿,Ó/o§¿¬Zd;§¿@ÛjÖß§¿Œi¦{Ô§¿P:‘`ª™¥¿–Ð]gE¤¿´€ÑåÍ©¿¤#ÖâS¨¿m¡õðeª¿è…;Fz©¿iâàI£¿Aœ‡˜ž¿H¨REñ¢¿µá°4𣢿Ú(·í{¤¿ˆ jôj€¢¿ˆ…ZӼ㤿mæÔBɤ¿AØ)V ¤¿ô¥·?¥¿ÎÅßö‰¥¿š'×È줿Òබ𼤿«x#óȤ¿HøÞß ½¢¿_ÔîW¾£¿Šä+”Ø¥¿„F°qý»¦¿ì0&ý½¦¿rÁüýb¦¿¯zÀU¥¿èl¡õð¥¿X7Þ«¥¿t'Ø›¦¿-²ï§¦¿bg ר¥¿¡eÝ?¢£¿gd»S¤¿H‡‡0~§¿pê”G7ª¿õ_” ¿¨¿pZ𢯨¿BÎûÿ8©¿¦E}’;lª¿·Ï*3¥õ§¿:Yj½ßh§¿4ØÔyTü§¿'¢_[?ý§¿KY†8ÖÅ¥¿ÂLÛ¿²Ò¤¿ÚâŸÉþ©¿è¡¶ £¨¿òÓ¸7¿aª¿šë4ÒR©¿-'¡ô…£¿Íä›mnLŸ¿d"¥Ù<£¿Ø}ÇðØÏ¢¿Š§wñ~¤¿Õ”dŽ®¢¿­¤ßPø¤¿€»ì×Ø›6㤿x|{× /¥¿"QhY÷¥¿òC¥3û¤¿Ù²|]†ÿ¤¿Z.óS¤¿‡3¿š£¿ÒÂe6¤¿ £YÙ>䥿‰²·”óŦ¿‹RB°ª^¦¿¨ÿ¬ùñ—¦¿\Uö]ü§¿vOjM£¿—á?Ý@§¿v6äŸħ¿/áÐ[<¼§¿Ç/¼’书¿Å7>[§¿+TTýJ§¿0)>>!;§¿Í”Ö߀§¿XVš”‚n§¿\>’’†¦¿ßÁO@¿§¿Üôg?RD¦¿G>¯xꑦ¿x N} y§¿=e5]Ot¥¿2«w¸¦¿s¹ÁP‡¦¿²×»?Þ«¦¿¸®˜Þ¦¿, ‘Ó×ó¥¿íÖ2Žç£¿ÄwbÖ‹¡¤¿Ž±^‚S§¿CV·zNª¿âuý‚ݨ¿Á¨Sݨ¿IZÖýc©¿—ä€]Mžª¿–̱¼«¨¿õiý¡™§¿ûõ×+,¨¿ üÝ;jL¨¿…(_ÐB¦¿î²_wºó¤¿J m6 ª¿Z Ý!Å©¿yËÕMª¿ÍçÜíz©¿Vס𒬣¿âZía/ ¿´tÛˆ'£¿Øî û¢¿+Üò‘”¤¿Ø}ÇðØÏ¢¿0[wó¤¿òC¥3û¤¿¹§«;Û¤¿o.2¥¿ò Ùy›¥¿]ݱØ&¥¿B>èÙ¬ú¤¿›?Œ ¿IØÕä)£¿r3܀ϣ¿ò`‹Ý>«¤¿I+¾¡ðÙ¢¿:tzÞ¥¿ýöuàœ¥¿÷XúÐ¥¿èÙ¬ú\m¥¿d’‘³°§¥¿$ñòt®(¥¿‡À‘@ƒM¥¿7¨ýÖN”¤¿û!6X8I£¿sg&Î5¤¿–>tA}£¿31]ˆÕ§¿éI™ÔШ¿9(a¦í§¿Æ¡~¶¦¿OÎPÜñ&§¿>BÍ*Ч¿f¿ît牧¿•Öÿ9̧¿áìÖ2ާ¿Tÿ ’!Ǧ¿Ð¸p $ ¨¿[ìöYe¦¿Ô x'Ÿ¦¿/áÐ[<¼§¿X7Þ«¥¿Ö­ž“Þ7¦¿’‘³°§¦¿»a̦ۢ¿½:Ç€ìõ¦¿ª*4Ëf¦¿y ý\¤¿µùÕ‘#¥¿Ž<Y¤‰§¿|E·^Óƒª¿oÓŸýH©¿¨o™Óe1©¿"¥Ù<ƒ©¿6Vbž•´ª¿}ëÃz£V¨¿^€}têʧ¿—W®·ÍT¨¿‚âǘ»–¨¿—Çš‘A¦¿geû·\¥¿¯@ô¤Lª¿ã6À[ ©¿B•š=Ъ¿Õv|Óô©¿ÙYôN¤¿DP5z5@¡¿ˆ×õ v£¿ ‹Š8d£¿Xqªµ0 ¥¿«ÏÕVì/£¿‹Q×ÚûT¥¿Až]¾õa¥¿'…y3¥¿ù g³ês¥¿õ¢v¿ ð¥¿_›•˜g¥¿ìjò”Õt¥¿B³ëފĤ¿ÄC?{£¿ãÄW;Šs¤¿ýh8en¦¿4ºƒØ™B§¿‚9züÞ¦¿‚sF”ö§¿2g—o}¨¿o›©Ä£¿i㈵ø¨¿5–°6ÆN¨¿B™F“‹1¨¿y ²H§¿UPQõ+§¿¸w úÒÛ§¿œ…=íð§¿æë2ü§¨¿/lÍV^ò§¿×1®¸8*§¿Ž²~31]¨¿Ý•]0¸æ¦¿ëZaú¦¿‘(´¬û§¿ú™zÝ"0¦¿°Éõ¦¿nˆñšWu¦¿½ÅÃ{,§¿6•EaE§¿Üd:tz¦¿Öß—ª¤¿Á7MŸp¥¿ˆ0~÷æ§¿ûèԕϪ¿ÞU˜‡L©¿úœ»]/M©¿Ð YÝê©¿aÄ>#«¿rNì¡}¬¨¿‰–<ž–¨¿‹ßV*¨¨¿›V \⨿þðó߃צ¿s.ÅUeߥ¿£çºª¿´„Öש¿¥ØÑ8Ô謹úE ú =ª¿ñgx³é`ýŸÃ|¡¿ä²ó66£¿×Ý<Õ!7£¿rR˜÷8Ó¤¿‘ Îà2ZGUD¥¿­‡/EH¥¿x|{× /¥¿¢·xxÏ¥¿Ù[Êùb勵Rewƒh¥¿+ö—Ý“‡¥¿4J—þ%©¤¿iqÆ0'h£¿uÍä›mn¤¿ªÒ×øL¦¿IºfòÍ6§¿ÒâŒaNЦ¿©»² §¿­½OU¡¨¿!u;ûÊ£¿¢œhW!å§¿LqUÙwE¨¿ú™zÝ"¨¿c›T4Öþ¦¿‚®}½p§¿4MØ~2Ƨ¿}XoÔ Ó§¿=}þð󧿯zÀ§¿eãÁ»}¦¿Øô  ­¤¿º½¤1ZG¥¿õôøÃϧ¿°ŒØ'€ª¿Ñ”~P©¿Í[uª)©¿¯Ì[uª©¿» ”X«¿)ë7Ó…¨¿¸ õô¨¿ ‡Ú6Œ‚¨¿ò—õI²/Ùx°Å¦¿…ÐA—p西ÆPN´«ª¿ðĬC9©¿M¼Zœ©¿g Ü¶ï©¿czÂ(«¿辜ٮ¨¿—W®·ÍT¨¿üd訿,ÒSä©¿@2:=樂G«ZÒQ¦¿;‡ú]ت¿,ռ̰©¿ˆfž\S «¿pê”G7ª¿óuþÓ ¤¿í”Ûö=¢¿½qR˜÷8£¿ó¯å•ëm£¿¸Ì鲘ؤ¿½5_%£¿ðûY,¥¿_Cp\ÆM¥¿Â/õó¦"¥¿ÛûTˆ¥¿ÕÊ„_ê祿ö?ÀZ¥¿œ’“‰[¥¿ÞãL¶Ÿ¤¿óWÈ\T£¿õfÔ|•|¤¿[ÏŽY¦¿ÇÒÁú?§¿ø©*4˦¿Ú–?ߦ¿Hk :!t¨¿³Z!«£¿¶ƒû¨¿ŸÉþy0¨¿ñFæ‘?¨¿I/j÷«§¿4fõ‚§¿¼S”Kã§¿É>Ȳ`â§¿¸ õô¨¿Ûˆ'»™Ñ§¿ì1‘Òl§¿ô‡fž\S¨¿@gҦꦿÃ)só覿¥žÐë§¿ÈDJ³y¦¿[ ³ÐÎi¦¿/¥.ÇH¦¿Éå?¤ß¦¿ùé·¯§¿þµ¼r½m¦¿Q¼ÊÚ¦x¤¿‚Uõò;¥¿œ¥d9 ¥§¿Ð`ÿunª¿j¿µ%©¿ÎŽTßùE©¿ÔUø3¼©¿™J?áìÖª¿É¬Þávh¨¿ã4ô§¿j¡drjg¨¿nmáy©Ø¨¿ËǺ¸¦¿¦^·Œ¥¿³#Õw~Qª¿¶Øí³ÊL©¿ŽÊMÔÒܪ¿$cµùÕ©¿ÍËa÷ã¿•~ÂÙ­e¢¿û–9]£¿{ˆFw;£¿¿ [³•—¤¿‹lçû©ñ¢¿\wóT‡Ü¤¿Ÿ;Áþ뤿¯Ïœõ)Ǥ¿ R)v4¥¿¢·xxÏ¥¿£Ì™d䤿j'÷;¥¿Võò;Mf¤¿r3܀ϣ¿vmo·$¤¿?VðÛ㥿g|_\ªÒ¦¿Ùî ûr¦¿‘ñ(•ð„¦¿ÇF ^×/¨¿,ôÁ26t£¿ì÷Ä:U¾§¿‘Ešx¨¿ÍwðЧ¿Ú¬ú\mŦ¿sôø½M§¿ãúw}欧¿Ùz†p̲§¿ÉæªyŽÈ§¿&䃞ͪ§¿âeS®ð¦¿Tã¥›Ä ¨¿¶hÚV³¦¿äÜ&Ü+󦿣 x|{§¿ ®¹£ÿ¥¿[[x^*6¦¿Èì,z§¦¿ˆØÒ£©¦¿…ÏÖÁÁ¦¿¼?¦¿ï<ñœ- ¤¿¾0™*¥¿XVš”‚n§¿ãÂ,`ª¿SYvQô¨¿TŒó7¡©¿ÁŠS­…©¿¿¹¿zÜ·ª¿{Ý"0Ö7¨¿—qSͧ¿‰îY×h9¨¿“Qewƒ¨¿Üôg?RD¦¿/üà|êX¥¿;TS’u8ª¿—uÿXˆ©¿ª¹Ü`¨Ãª¿æZ´m«©¿^¾õa½Q£¿®,ÑYf¢¿–±¡›ý¢¿²ƒJ\Ǹ¢¿™~‰xëü£¿+•Ô h¢¿f¼­ôÚl¤¿œoD÷¬k¤¿£’:M¤¿«Íÿ«Ž¤¿¢$$Ò6þ¤¿?ÆÜµ„¤¿L¨àð‚ˆ¤¿¸#œ¼è£¿i¢¢¿ŠWYÛ£¿··[’v¥¿Ø»?Þ«V¦¿:覿j¼t“¦¿ÚUHùIµ§¿—Çš‘AÜõÒN§¿k+ö—Ý“§¿´«ò“j§¿I¹û-¦¿5Ïù.¥¦¿@Š:s §¿ÖþÎöè §¿]j„~¦^§¿à.ûu§;§¿û$wØDf¦¿E¼uþí²§¿ç<š$¦¿ÁUž@Ø)¦¿Å5| 릿E×…œO¥¿åÓc[œ¥¿˜ßi2ãm¥¿ÞïU+¦¿ûÌYŸrL¦¿,)wŸã£¥¿ $(~Œ¹£¿bƒ…“4¤¿»_øn󦿈‚S°Æ©¿øpÉq§t¨¿»&¤5¨¿Ð¹ÛõÒ©¿Êþy0Hª¿ƒlY¾.ç¿ÐšiQ§¿cì„—àÔ§¿KæXÞU¨¿È—PÁ᥿÷¯¬4)¥¿°WXp?à©¿Ní S[꨿ªó¨ø¿#ª¿Ñw·²Dg©¿ëR#ô3õ¢¿PqxµÜ¡¿†¯¯u©¢¿ö á˜eO¢¿æZ´m£¿ Oèõ'ñ¡¿u:õÔꣿÙYôN¤¿CV¸å£¿Üò‘”ô0¤¿z9ì¾cx¤¿=)“Ú¤¿š †s 3¤¿ùNÌz1”£¿;TS’u8¢¿r‹ù¹¡)£¿Ÿ;Áþ뤿…ÐA—p西r£ÈZC©¥¿@1²dŽ¥¿³x±0DN§¿ö—Ý“‡…¢¿Q¡º¹øÛ¦¿JbI¹û§¿ß£þz…§¿ ©¢x•µ¥¿Ðïû7/¦¿¹Æg²ž¦¿PnÛ÷¨¿¦¿žbÕ Ìí¦¿Ú¬ú\mŦ¿ºƒØ™B祿‘BYøúZ§¿Ë¿–W®·¥¿Ä[çß.û¥¿]¤P¾¾¦¿w¾Ÿ/ݤ¿P§<º¥¿f‚á\à ¥¿&â­óo—¥¿cšé^'õ¥¿ŸÛ2à,¥¿G°qý»>£¿ ܺ›§:¤¿IœQ}¦¿íI`sž©¿\­—㨿ûõ×+,¨¿"T©Ù­¨¿Þèc> Щ¿JíE´S§¿UÚâŸÉ¦¿Ž •b§¿Ó¾¹¿zܧ¿ñÖù·Ë~¥¿?rkÒm‰¤¿Å­j©¿3ßÁO¨¿¸É¨2Œ»©¿órØ}Çð¨¿OqN`¢¿\•›¨¥¡¿“ `ÊÀ¡¿¥/„œ÷ÿ¡¿Üñ&¿E'£¿åòw﨡¿†1zn¡£¿hyܵ£¿ã§qo~£¿*É:]¥£¿Œ 1“¨¤¿Ý µ‰“£¿È_ZÔ'¹£¿NzßøÚ3£¿ë©ÕWW¢¿Ð³Yõ¹Ú¢¿pìÙs™š¤¿X7Þ«¥¿·_>Y1\¥¿p +TT¥¿lèf Ü¦¿«&ˆº@¢¿UOæ}“¦¿k ¥ö"Ú¦¿ \7¥¼¦¿¢_[?ýg¥¿Ñ‘\þCú¥¿9DÜœJ¦¿AŸÈ“¤k¦¿°Éõ¦¿×]~p¦¿|HøÞß ¥¿J ,€)§¿ÅÈ’9–w¥¿»ðƒó©c¥¿g¶+ôÁ2¦¿z9ì¾cx¤¿J%<¡×Ÿ¤¿ÞãL¶Ÿ¤¿º½¤1ZG¥¿'2sËc¥¿ˆ NÒ¤¿Í"[AÓ¢¿<ö³XŠä£¿`” ¿Ð#¦¿ÎSr3ܨ¿ÅUeßÁ§¿ –\Åâ§¿÷æ7L4¨¿Êˆ @£t©¿«˜J?á즿( ß÷o¦¿c›T4Öþ¦¿œh>çn§¿ZKþ)¥¿÷‘[“nK¤¿2V›ÿW©¿õôøÃϧ¿ð÷‹Ù’U©¿æ¾÷7¨¿Êà(yuŽ¡¿2V›ÿW¡¿ ´¾L¡¿óUò±»@¡¿G’ \…¢¿¾¿A{õñ ¿ ŠcßO—n£¿¼³vۅ梿ADjÚÅ4£¿æ!S>U£¿ëR#ô3õ¢¿ÂÝY»íB£¿Ð(]ú—¤¢¿‚X6sHj¡¿WCâK¢¿h׿룿:tzÞ¥¿`°¶-ʤ¿éî:òϤ¿vR_–vj¦¿hwH1@¢¡¿ÖµÂô¥¿[[x^*6¦¿¥Û¹à ¦¿¼?Ƥ¿Ýξò =¥¿×Â,´sš¥¿šxxÒÂ¥¿í¸áwÓ¥¿|{× /½¥¿K;5— ¥¿n0Ôa…[¦¿Øô  ­¤¿ÿy0Hú¤¿ÂÂIš?¦¥¿ç7L4HÁ£¿Ëø÷¤¿Xp?िbƒ…“4¤¿ÖqüPiĤ¿¹‰Zš[!¤¿32È]„)¢¿v?T1£¿ÚÈuSÊk¥¿7qr¿CQ¨¿±‡ö±‚ߦ¿ÒŦ•B §¿Õ^DÛ1u§¿!!Ê´¨¿ŸwcAaP¦¿-\Va3À¥¿iÄÌ>Q¦¿GqŽ::®¦¿1 òn¤¿>–>tA}£¿.ÿ!ýöu¨¿J•({K9§¿¡º¹øÛž¨¿ZGUDݧ¿«uâr¼¡¿¯yUgµ ¿W_]¨Å ¿Š;Þä· ¿E¡eÝ?¢¿!!Ê´ ¿·˜Ÿš¢¿-±2ù¼¢¿|E·^Óƒ¢¿pìÙs™¢¿@†ŽT⢿ŒÙ’Un¢¿}гYõ¹¢¿?{ó&¢¿Ãƒf×½¡¿n¾ݳ®¡¿;8Ø›’£¿<š$–¤¿# Â¤R¤¿;V)=ÓK¤¿2 {½û㥿눻z¡¿J›ª{ds¥¿:’ËH¿¥¿½þ$>w‚¥¿,µÞo¤¿A ]Þ¤¿ùk¸È=¥¿+øDk¥¿*ÖT…¥¿­‡/EH¥¿œú@òΡ¤¿È—PÁ᥿3Œ»A´V¤¿{¡€í`¤¿Ç›ü,¥¿±n¼;2V£¿~7ݲ£¿èÙ¬ú¤¿ Š·˜§¿NÕ=²¹j¦¿ô噗æ¿;ÆG妿Å8 ¨¿B\9{g´¥¿$ñòt®(¥¿sôø½¥¿Þs`9B¦¿ž·±Ù‘ꣿøý›'¾¢¿>°ã¿@¨¿õ¸oµN\¦¿XS¨¿»·"1A §¿ÌH¿} ¿u«ç¤÷Ÿ¿vÁàš;úŸ¿sôø½MŸ¿’<×÷á ¡¿JbI¹ûŸ¿0fKVE¸¡¿2Ì Úäð¡¿9 {Úᯡ¿Ý@wòé¡¿ ]lZ)¢¿Æ§Ï ¡¿>ÏŸ6ªÓ¡¿^=ð1X¡¿ï_{fI ¿à|zlË ¿ {½ûã½¢¿‚åȳ£¿9*7QKs£¿ÙvÚŒ£¿np–’夿2kœMG ¿·Aí·v¢¤¿ˆ-=šêɤ¿çà™Ð$±¤¿kg{ô†£¿®~l’ñ£¿ŠÍǵ¡b¤¿c^G²¤¿õ¾ñµg–¤¿$Ó¡Óón¤¿Žèžu–£¿òë‡Ø`᤿겘Ø|\£¿…A™F“£¿Šuª|ÏH¤¿`Ë+×Ûf¢¿}“EÖ¢¿Pj’Ì¢¿„¸röÎh£¿…`U½üN£¿)x ¹RÏ¢¿áE_Aš± ¿&Ž<Y¤¡¿W•}Wÿ£¿OÎPÜñ&§¿wÐ}9³¥¿^.â;1륿Œ¢>+¦¿rjg˜ÚR§¿ Xr‹ß¤¿›–>tA}£¿öî÷ª•¡¿ñH¼<+¢¿‹N–Zï7¢¿ ܺ›§¢¿;‡ú]Ø¢¿=×÷á !¢¿WA tí  ¿K¦z2ÿ ¿?qý¾£¿—ýºÓ'¦¿—Ép<Ÿ¥¿è1Ê3/‡¥¿mp–’¥¿:“6U÷Ȧ¿ÞXP”i¤¿©‡ht±£¿cÓJ!K¤¿ô3õºE`¤¿}=_³\6¢¿kšwœ¢#¡¿¨§À~¦¿î²_wºó¤¿{ö\¦¦¿B’Y½Ã¥¿ðÝæ“œ¿óüÄô›¿3¸<ÖŒœ¿Gu:õÔš¿óÈ <÷ž¿<0€ð¡D›¿Ø‚ÞC ¿´Éá“N$ ¿Ǻ¸ ¿Øñ_  ¿žî<ñœ- ¿ÜõÒNŸ¿6[yÉÿ䟿[\ã3Ù?Ÿ¿ªæsîv¿xB¯?‰Ï¿¬Å9êè ¿‹Ã™_Í¢¿ƒ3øûÅl¡¿áFÊI»¡¿4Ûú`£¿ˆ»z¿B•š=Т¿ò$éšÉ7£¿p%;6ñ¢¿$cµùÕ¡¿I‚p¢¿ÿ< $}¢¿,~SX© ¢¿»(zàc°¢¿Pmp–¢¿j…é{ Á¡¿d=µú¢¿äL¶ŸŒ¡¿×ž—Š¡¿v5yÊj¢¿É¬Þávh ¿Ù^ zo ¡¿êX¥ôL/¡¿ûzáÎ…¡¿ k_@/Ü¡¿Z+Úç6¡¿m­/Úrž¿Ùƒkî蟿HÅÿQ¡¢¿´Yõ¹ÚŠ¥¿ÒÂe6¤¿ö™³>嘤¿DÞrõc“¤¿rûå“Ã¥¿a§X5s£¿m±Ÿ¢¿½qR˜÷8£¿0º¼9\£¿—¨ÞØ*¡¿›ÖtB ¿J›ª{ds¥¿q©J[\㣿Ýa™¹À¥¿¹ÿÈtèô¤¿¡ÚàDôk›¿z0Hú´š¿ˆñšWuV›¿,šÎNG™¿ÁgÓÀ¿°âÊ™¿ÐÔ뱞¿kð¾**Ÿ¿…ÏÖÁÁž¿nÃ(ßž¿yÎZŸ¿Î‹_í(ž¿¹Qd­¡Ôž¿ÐÒl#ž¿ 4ØÔyTœ¿û¯sÓfœ¿‹ßV* ¿ÃcÒßK¡¿ÿunڌӠ¿L£uT5¡¿ûå¶}¢¿”‚Uõò›¿%!‘¶ñ'¢¿›©¾ó‹¢¿´Ë·>¬7¢¿ò"ðk$¡¿”ú²´Ss¡¿#0Ö70¹¡¿Ã,´sš¢¿ÙYLü¡¿}ZEhæ¡¿Üx`¡¿‘í|?5^¢¿¨ŒŸqá ¿û“ýó4 ¿ßˆîY×h¡¿ ¹RÏ‚Pž¿# Â¤Rœ¿Awò鱿Mh’XRîž¿Œu?Tš¿wLÝ•]0˜¿c€D(b¡¿ÿÌ >°ãŸ¿^d~$¡¿U¡X6s ¿á³up°7‘¿’ñ+Öp‘¿ŒgÐÐ?‘¿ñÿ‚¿ž#ò]J]’¿2U0*©¿<ˆ)t^“¿³”,'¡”¿ÄC?{“¿^, ‘Óד¿`æ;ø‰“¿í}ª Ä’¿ÖqüPi”¿*T7Û“¿k›âqQ-’¿&¬±^’¿,F]kïS•¿Å.rOW—¿ÅçN°ÿ:—¿º¢”¬ª—¿BCÿ+š¿ÿXˆ#‘¿MØ~2Ƈ™¿æ=Î4aû™¿ª-u׃™¿°71$'—¿âåé\QJ˜¿YP”i4™¿Öã¾Õ:q™¿õ»°5[™¿½Ç™&l?™¿Ž•˜g%­˜¿þœ0a4›¿³–Òþ˜¿_yž"‡˜¿*ãßg\˜¿îx“ߢ“•¿`äeM,ð•¿U£W”–¿^ºI +—¿"1ì0–¿Eb‚¾…•¿ ÚäðI'’¿v‹ÀXßÀ”¿z‹‡÷˜¿‹5\äž®ž¿n…°KX›¿Z5Ñ磜¿^J]2Ž‘œ¿¶KKŸ¿È^ïþx¯š¿bg ט¿/ùŸüÝ;š¿9 Q…?Û¿KZñ …Ï–¿UDÝ •¿ßû´WŸ¿$ nk Ï›¿U÷Èæªyž¿»H¡,|}¿jßÜ_=î‹¿Œ 1“¨Œ¿„}‹¿hæÉ52‹¿ýˆ_±†‹Œ¿BÍ*ŠW‰¿Ó hÀ"¿<À“.«¿ ’>­¢¿/lÍV^ò¿GßÛôg¿ ²eùº ¿(Ö©ò=#‘¿Ô_¯°à~¿Á7MŸp¿æ‘?xî¿w0bŸŠ‘¿ZÊû8š“¿´up°71”¿Eóùõ“¿p>u¬Rz–¿i¬ýíÑ‹¿g~5–¿±ÁÂIš?–¿xšÌx[é•¿H3Mg'“¿ªc•Ò3½”¿™Iô2Š•¿A tí è•¿ÎPÜñ&¿•¿,)wŸã£•¿5¸­-!;oc³“¿(îx“ߢ“¿°«ÉSVÓ•¿Ön»Ð\§‘¿‘`ª™µ¿.â;1ëÅ¿Q»_øn“¿ŒòÌËa÷¿ñ+Öp‘{Š¿HÁSÈ•z–¿‰|—R—Œ“¿§@fgÑ;•¿K¯ÍÆJÌ“¿Û4¶×‚Þk¿hY÷…è`¿¥È%Ž‹¿¼“Om¿'…y3Mˆ¿€FéÒ¿$…¿›T4ÖþΆ¿Û4¶×‚Þ‹¿I›ª{dƒ¿€I*SÌA€¿Œðœú¿qäÈ"MŒ¿=·Ð•T¿+é~NAŽ¿¹¥Õ¸Çr?j’Ìê}?—Mõdþ?øí¸áws?#ÜdTÆ}?ÅÅQ¹‰Zz?ßøÚ3Kt?ù«<°s?VðÛ€?µÆ B}? IJ™Cr?Áªzù&ƒ?ÁäF‘µ†‚?2Tqãƒ?ÂøiÜ{?SçQñG„?oG8-xч?¨½ 4t?oÓŸýHy?Ï…‘^Ôîw?¯#Ù@ºx?“p! ?#½¨Ý¯¤?x%És}¦? Ùy›¡?ŠWYÛ£?_ Pj¢?ïW¾Û¼¡?¹Ä‘"£?â¦Óº ¢?Ð}9³]¡?K?ªaŸ?šEó¡?8öì¹LM¢?™Kª¶›à£?Á”-’¦?¿ÔÏ›ŠT ?ðN>=¶e ?øª• ¿ÔŸ?›sôø?†9A›>¡?ŒdP3¤š?éahur†¢?fŸÇ(ϼœ?©iÓœ?ÐÒl#žœ?ÐCmFA ?Î’Z(™œ?YÜd:tš?ñ}q©J›?äº)嵚?×¢h[Íš?&S£’š?>u¬Rz¦—?)Ð'ò$éš?ææÑ=ëš?/‡Ýw ?îw( ô‰œ?\8’L ?%@7n¡?÷åÌv…> ?ÃDƒ<…œ?1yÌ|Ÿ?çp­ö°¢?j½ßhÇ Ÿ?L©KÆ1’?tÐ%z‹—?¶÷©*4›?¸uÊ£›?NE*Œ-™?¦ï5Ç•?J$ÑË(–›?ƒÜE˜¢\š?lÏ, PS›?DŠM ˜?zˆFw›?¿îtç‰çœ?Ív…>XÆ–?MóŽSt$—?Å.rOW—?›çˆ|—R—?†§WÊ2¬?$Ó¡Óón°?¨á[X7Þ±?¢ñDçá¬?O?üü¯?:êè¸Ù­?œ6ã4D®?ÓõD×…°?ˆ‚S°®?lyåzÛL­?€ôMšE«?µ4·BX­?iÅ7>[¯?ŒºÖÞ§ª°?¸;k·]h²?e¦´þ–¬?ý»>sÖ§¬?Ðïû7/N¬?Étèô¼«?¼t“V®?»DõÖÀV©?I×L¾Ùæ®?]øÁùÔ±ª?ÝéÎÏÙª?´V´9Îmª?*ý„³[ˬ?ö á˜eOª?’±Úü¿ê¨?/3l”õ›©?³´Ss¹Á¨?_—á?Ý@©?Bêvö•©?Ùz†p̲§?žz¤Ámm©?,ÒSä©?d"¥Ù<«?-`·îæ©?-Ðîb€¬?'ÛÀ¨S®?•ص½Ý’¬?Çž=—©?³Z!««?Ø»?Þ«V®?D5%Y‡£«?ó9w»^šª?µ¤£Ì&¨?…™¶e¥©?“6U÷Èæª?Ê7Ûܘž¨?ã©GÜÖ¦?æ=Î4aû©?‚âǘ»–¨?¿}8gD©?ŽDÁŒ)¨?•AÕèÕ¨?êvö•é©?ïU+~©§?u=Ñuá§?+TTýJ§?…?Û5x§?îAÈ—Pµ?pµN\ŽW¸?Á­»yªCº? pzïǵ?¿¶~úÏš·?o·$ìj¶?~p>u¬¶?… £YÙ>¸?ÁR]ÀË ·?AG«ZÒQ¶?RóUò±»´?Ûú`¶? EºŸS·?îÑZÑæ¸?§ærƒ¡»?.É»š<µ?y!Âøµ?R›8¹ßµ?‡5•Eaµ?½ÅÃ{,·?± ØF´?«{dsÕ<·?[œ¥d9µ?²G¨REµ?IJ™CR µ?:è¶?ÀÍâÅ´?JÔ >Íɳ?E‚©fÖR´?ÌDR·³³?ûëÜ´? Šæ,ò³?4/‡Ýw ³?çfh<´?æ?¤ß¾´?Ë¡E¶óý´?ÏŽYö$´?.;Ä?léµ?fv‡·?ÕÎ0µ¥¶?‰ @£té³?£>+Nµ?ZòxZ~à¶?ׇõF­0µ?ÎOqxµ´?>>!;oc³?¬W‘ÑI´?cÐ ¡ƒ.µ?d@öz÷dz?À”Zº²?]¥»ël´?¡¸ãM~³?Ý–Ègð³?ëåwšÌx³?*q㊳?óT‡Ü 7´?¤8GW³?çá¦Ó²?3¨68ý²?‰xëüÛe³?7À[ A½?”£Q0cÀ?ë-z¨Á?:>Zœ1̽?Ð}9³]¡¿?¿3‰¾?pÑÉRëý¾?^ò?ù»wÀ?¢ ÀDˆ¿?SAEÕ¯t¾?‹3†9A›¼?`sž M¾?Ã.ŠøÀ?8 ¥+ØÀ?•~P)Â?Þv¡¹N#½?ú™zÝ"0¾?d¬6ÿ¯:¾?˜//À>:½?qvk™ Ç¿?V(Òýœ‚¼?Q¿ [³•¿?`L8 ½?ƒjƒѯ½?)øùÁ?Iõ_” Ã?/Šø¬Â?81$'·Â?àªÔìÂ?«w¸Ã?‰˜Iô2Â?á–¤¤‡Á?,bØaLúÁ?í›û«Ç}Á?ø¨¿^aÁÁ?Œ¹k ù Á?…\©gA(Á?˜õIî°Á?ó)‚ªÁ?´CV·zÂ?¥J”½¥œÁ?ËI(}!äÂ?ä-W?6ÉÃ?†®D úÃ?–~TÃ~Á?.ÿ!ýöuÂ?“x]Ã?B"mãOTÂ?œŒ*øÂ?b‚¾…uÁ?ìQ¸…ëÁ?‹‹£rµÂ?Ý ö_ç¦Á?lBZcÐ Á?Ò­£ª Â?¾ø¢=^HÁ?B°ª^~§Á?9ÔïÂÖlÁ?[\ã3Ù?Á?ïÿã„ £Á?ó-$`tÁ?ܼqR˜÷À?ä²ó66Á?e4òyÅSÁ?²¾É"Å?0/À>:uÇ?õ¡ ê[æÈ?LUÚâŸÅ?ó¬¤ßPÆ?Ñ‘\þCúÅ?( Ê4š\Æ?®ïÃAB”Ç?—z6«Æ?q­ö° Æ?ò•@JìÚÄ?иp $ Æ? ‘Ó×ó5Ç?LÃð1%È?µŒÔ{*§É?X«vMHÅ?„~¦^·Æ?€E~ýÆ?:Yj½ßhÅ?ÆOãÞüÆ?¡Ÿ©×-Å?• •-¯Æ?üã½jeÂÅ?¸Ë~ÝéÎÅ?Lÿ’T¦˜Å?£uT5AÆ?î“£Q0Å?Ü×sF”Ä?Ä\RµÝÅ?ØœƒgB“Ä?š#+¿ ÆÄ?E» )?©Ä?¹ß¡(Ð'Ä?ç6á^™·Ä?’Z(™œÄ?…A™F“Å?†q7ˆÖŠÄ?†W’<×÷Å?ÊõîÆ?ø¯=³$Æ?ê]¼·_Ä?¤8GWÅ?^ò?ù»wÆ?v¥e¤ÞSÅ?©|š“Å?j£:ÈzÄ?šÏ¹ÛõÄ?Œ‰B˺Å?7þDeÚÄ?QúBÈyÿÃ?]‡jJ²Å?jhwH1Ä?‹‡÷XŽÄ?ÈÓòWyÄ?HÞ9”¡*Ä?¦šË †Ä?ÇL¢^ðiÄ?þ)U¢ìÃ?¬©, »(Ä?žðœú@Ä?X}w+Ç?h%­ø†ÂÉ? 1—Tm7Ë?éCÔ·ÌÇ?l$ ÂPÈ? µ‰“ûÈ?`Í‚9zÈ?­KÐÏÔÉ?hÐÐ?ÁÅÈ?“EÖÈ?Šå–VCâÆ?¹ß¡(Ð'È?0/À>:uÉ?(bÃcÊ?!ä¼ÿÌ? ƈD¡eÇ?0¡‚à "È?ÿ‚:È?ò]J]2ŽÇ? Ý%qVDÉ?Št?§ Ç?bX9´ÈÈ?9 {ÚáÇ?ï«r¡òÇ?ˆÖŠ6ǹÇ?¥hå^`È?ê ¼“OÇ?±¨ˆÓI¶Æ?`“5ê!Ç?‹5\äž®Æ?±1¯#ÙÆ?ÛÝt_ÎÆ?U[rPÆ? )"Ã*ÞÆ?;Ä?léÑÆ?eÚʢ°Ç??tA}ËœÆ?Ä QºôÇ?#1ì0&É?º/g¶+È?¿Ö¥FègÆ?·³¯Ëóàî¬É? fLÁË?™€_#IÊ?·ð¼TlÌÇ?ÿ˵hÚÈ?¸¶J°8Ê?ÓNÍåCÉ?Ž•˜g%­È?xÑWf,È?UQ¼ÊÚ¦È?5— uXÉ?çû©ñÒMÈ?THÞ9”Ç?ÀêÈ‘ÎÀÈ?‹à+Ù±Ç?&¤à)È?Ì|?qÈ?¤P¾¾ÖÇ?<1ëÅPNÈ?ÀJÈ?Âj,amŒÇ?hyܵÇ?]†ÿtÈ?“S;ÃÔ–Ê?µkBZcÐÍ?1Ñ O!Ï?ò_ ¡Ë?¸uÊ£Ë?=œÀtZ·Ë?¹‡„ïýË?ݵ„|гÍ?iÄÌ>QÌ?¿ ƈD¡Ë?èKo.Ê?ê?k~ü¥Ë?ŒgÐÐ?Í? oÖà}UÎ? ´¾LÐ?c™~‰xëÊ?'iþ˜Ö¦Ë?IM»˜fºË?ÑZÑæ8Ë?mìM Í?ÃH/j÷«Ê?¼viÃaiÌ?©ƒ¼LŠË?Zd;ßOË?ŒÕæÿUË?² Ü:åË?]þCúíëÊ?•ŸTût<Ê?Ì™í }°Ê?þÒ¢>ÉÊ?˜4Fë¨jÊ?|ñE{¼Ê?Øñ_ Ê?V,~SX©Ê?ï¨1!æ’Ê?„çÞÃ%Ë?èKo.Ê?È~K‘|Ë?î\éEíÌ?ªºG6WÍË?‹O0žAÉ?ð¦[vˆÊ?ÍV^ò?ùË?UDÝ Ë?NÑ‘\þCÊ?•›¨¥¹É?Ô€AÒ§UÊ?é}ãkÏ,Ë?¸#œ¼èÉ?‘ ÎàïÉ?5ð£ö{Ê?Ä?léÑTÉ?*T7ÛÉ?¯@ô¤LÊ?c${„šÉ?õäCÊ?m±ŸÊ?¬ª—ßi2É?´"j¢ÏGÉ?oóÆIaÞÉ?¦*mqÏÌ?׆Šqþ&Ð?&Ãñ|ÔÐ?p&¦ ±úÍ?€óåØÍ?ÂO@¿ïÍ?aÅ©ÖÂ,Î?a§X5Ð?1·{¹OŽÎ??qý¾Í?„€| Ì?Eh׿Í?y>êͨÏ?Ç¡~¶fÐ?À°üù¶`Ñ?Q‚þBÍ?föyŒòÌÍ?=}þðóÍ?Æù›Pˆ€Í?Ìa÷ÃcÏ?t ò³‘ëÌ?ò`‹Ý>«Î?&Ãñ|ÔÍ?\vˆØÒÍ? 4Ô($™Í?Ã.ŠøÎ?„-vû¬2Í?Ó.¦™îuÌ?KÊÝçøÌ?. ´¾LÌ?ø¥~ÞT¤Ì?•»ÏñÑâÌ?1[²*ÂMÌ?AÕèÕÍ?÷«ßmÞÌ?šë4ÒRÍ?!”÷q4GÌ?ÜØìHõÍ?á ½þ$>Ï?ò˜Êø÷Í?J•({K9Ë?÷™Ì?\Y¢³Ì"Î?겘Ø|\Í?†è8hÌ?^fØ(ëË?e73úÑpÌ?]lZ)rÍ?És}Ì?8ó«9@0Ë?ó‘”ô0´Ì?·aoË?Ù[ÊùbïË?\qqTn¢Ì?5Ô($™ÕË?ô¾ñµgÌ?"ʼn&PÌ?~q©J[\Ë?f»B,cË?ÙYôNÌ?4hèŸàbÏ?§Ï¸®˜Ñ?úñ—õIÒ?MùT^Ð?·]h®ÓHÐ?£’:MÐ?õc“üˆ_Ð?¶†R{mÑ?›É7ÛܘÐ?Ÿp]1#Ð?Ð?šEóÑ?PŽDÁŒÏ?çà™Ð$±Ð?IVñFÐ?SçQñGÐ?åìÑV%Ð?rö´Ã_Ð?ƒn/iŒÖÏ?u“VÏ?píDIH¤Ï?EœN²ÕåÎ? $}ZEÏ?Ÿ­ƒƒ½‰Ï?î§/úÎ?L8 ¥Ï?kÕ® iÏ?›Z¶Ö Ð?ð‹KUÚâÎ?,f„·!Ð?,¸ðÀÑ?q¥]PÐ?0du«ç¤Í?+½6+1Ï?®ºÕ”dÐ?eS®ð.Ð?霟â8ðÎ?Ê1YÜdÎ?¡Ÿ©×-Ï?¡÷ÆÐ?+ùØ] ¤Î?-°ÇDJ³Í?ÎÁ3¡IbÏ?Ä[çß.ûÍ?öA–Î?p¶¹1=aÏ?;‰ÿ"hÎ?¼æUÕÏ?0žACÿÏ?!±Ý=@÷Í?l•`q8óÍ?ËhäóЧÎ??{óÑ?kïSUh Ó?g|_\ªÒÓ?²×»?ÞÑ?Êß½£ÆÑ?hz‰±L¿Ñ?\È#¸‘²Ñ?Q¡º¹øÛÒ?=Òà¶¶ðÑ?Ó/oÑ?2<ö³XŠÐ?å`6†Ñ?pî¯÷­Ò?Xþ|[°TÓ?=ƒù+dÔ?ËfI-Ñ? uXá–Ñ?ð1XqªµÑ?YÞU˜‡Ñ?„/¡‚Ò?!çýœ0Ñ?H2«w¸Ò?ßÁO@¿Ñ?®óo—ýºÑ?7§’ Ñ?ȶ 8KÉÑ?ŒÖQÕQÑ?%?âW¬áÐ?5cÑtv2Ñ?Pj’ÌÐ?ƒ÷U¹PùÐ?Täqs*Ñ?õKÄ[çßÐ?!=E7Ñ?ƒQI€&Ñ?Zd;ßOÑ?ÒŒEÓÙÉÐ?Tr3Ü€Ñ?ÝÓÕ‹mÒ?û&7ЬÑ?äGˆ,Ð?¤ÿåZ´Ñ?·ð¼TlÌÑ?L¥ŸpvkÑ?¥,CëâÐ?²,˜ø£Ð?Ã)sóèÐ?Ô)n„Ñ?en¾ݳÐ?’?xî=Ð?Q._x%Ñ?(c|˜½lÐ?ÅS4¸­Ð?Ë+×Ûf*Ñ?5Ïù.¥Ð?0[wóÐ?+Üò‘”ôÐ?yxÒÂeÐ?NÕ=²¹jÐ?ŒgÐÐ?ÁÐ?²Õ唀˜Ò?Ön»Ð\§Ô?©MœÜïPÕ?>ê¯WXpÓ?Ï:¯±KÓ?î?2:=Ó?¬ª—ßi2Ó?>>!;ocÔ?v©ú™zÓ?÷@øÒ? ¦šYKÒ?9™¸UÓ?ù½Mö#Ô?ûèÔ•ÏÔ?œ‡˜NëÕ?ù«<°Ò?¢&ú|”Ó?ÛÂóR±1Ó?1ÏJZñ Ó?ìø/Ô?-¯\o›©Ò?î"LQ.Ó?„-vû¬2Ó?lv¤úÎ/Ó? ‚Ç·w Ó?C9Ñ®BÓ?]Þ®ÕÒ?Ž«‘]iÒ?sôø½Ò?{ò%TÒ?ëæâo{‚Ò?u¯“ú²´Ò?ê^'õeiÒ?Ü~ùdÅÒ?l^ÕY-°Ò?L5³–ÒÒ?geû·\Ò?» ”XÓ?þ oÖàÓ?)²ÖPj/Ó?ÜÖž—ŠÑ?”ú²´SsÒ?J•({K9Ó?ÙÎ÷SãÒ?Š}"OÒ?h^»ïÒ?d°âTkaÒ?cò˜ùÓ?ÓUø3Ò?‘Жs)®Ñ?ôlV}®Ò?]S ³³èÑ? <÷.Ò?ðÜ{¸ä¸Ò?­/Úr.Ò?Ê4š\ŒÒ?p”¼:Ç€Ò?L8ôïÑ?dsÕ<Õ?{£V˜¾×Ô?g ר%Õ?w;Sè¼Ô?õ¢v¿ ðÔ?x|{× /Õ?ö{b*ßÔ?Â26t³?Õ?ØaLú{)Õ?gaO;ü5Õ?Ó¼ãÉÔ?¤9²òË`Õ?&©L1AÖ?w1Ít¯“Õ?’]i©÷Ó?N]ù,ÏÔ?âÈ‘EšÕ?:¸Y¼XÕ?l’ñ+ÖÔ?rÌ_!sÔ?éï¥ð ÙÔ?Ó0|DLÕ?_zûsÑÔ? ¦šYKÔ?ËMÔÒÜ Õ?®¹£ÿåZÔ?Â&S£Ô?@i¨QH2Õ?nj ùœ»Ô?g+/ùŸüÔ?K±£q¨ßÔ?—¬Šp“QÔ?ØdzˆFÔ?ßmÞ8)ÌÔ?€^»´áÕ?ÚYôNÜ×?²žZ}uUØ?û?‡ùò×?‚Êø÷Ö?†p̲'Ö?^h®ÓHKÖ?.ÿ!ýöu×?Ê4š\ŒÖ?]2Ž‘ìÖ?A¼®_°Õ?•œ{hÖ?G°qý»>×?_9ïÿã×? ¦–­õØ?’]i©÷Õ?ßRÎ{/Ö?˜Û½Ü'GÖ?²HïOÖ?:Ì—`×?î#·&ÝÕ?æCV¸Ö?jLˆ¹¤jÖ?™cyW=`Ö?Ä>#KÖ?:¸Y¼XÖ?¢ÏGqÖ?­ÀÕ­žÕ?PÈÎÛØìÕ?—6–~Õ?N·ìÿ°Õ?L5³–Ö? ø1æ®Õ?Ý—3ÛÖ?Š?Š:sÖ?€ÉcëÕ?Àx Õ?ÇeÜÔ@Õ?pÐ^}<ôÕ?òÓ¸7¿aÕ? JÑʽÕ? ¼“OÕ?Àw›7N Õ?ê!ÝAìÔ?‘™ \kÕ? ÇóPoÖ?‹T[rØ?ÎR²œ„ÒØ?U.Tþµ¼×?®fñ}qÖ?äž{×?ÃIš?¦µÖ?0œk˜¡ñ×?EóùõÖ?û¬2SZÖ?$Õw~Q‚Õ? jøÖÖ?ºùFtϺ×?wÖn»Ð\Ø?£dVïpÙ?¯èÖkzÖ?”Ù “ŒœÖ?õñÐw·²Ö?Ü:åÑÖ?~RíÓñ˜×?Ù—l<ØbÖ?²ó66;×?CV¸åÖ?=)“ÚÖ?ÁÅŠLÃÖ?ÉæªyŽÈÖ?ʉvR~Ö?i:;%Ö?Á=~oÖ?…(_ÐBÖ?@7n1Ö?ùNÌz1”Ö?Ÿqá@Ö?¤aQ§Ö?C®Ô³ ”Ö?h@½5_Ö?c%æYI+Ö?ÙvÚŒÖ?›Ça0…×?B’Y½ÃÖ?ì…¶ƒÕ?¸®˜ÞÕ?*¨¨ú•ÎÖ?z›©¾Ö?Ä&2sËÕ?}!ä¼ÿÕ?UÛMðMÓÕ?$~Å.rÖ?¥ö"ÚŽ©Õ?‹ßV*Õ? åD» )Ö?5ð£ö{Õ?ò DOʤÕ?:\«=ì…Ö?ý¡™'×Õ?"Ã*ÞÈ<Ö?öóåÖ? ¾iúì€Õ? dv½SÕ?·œKqUÙÕ?yGsdåÖ?;q9^èØ?åïÞQcBÙ?åîs|´8Ø?v‹ÀXßÀÖ?ºóÄs¶€×?¦`³é×?¯]ÚpXØ?'ÛÀ¨S×? ž^)ËÖ?„H†[ÏÕ?à ½úxèÖ?E>‘'Ø?Ò7iÍØ?dsÕÖ?Aœ‡˜N×?‚X6sHjÙ?É:]¥»Ù?0fKVE¸Ø?8ó«9@0×?ôNÜóü×?½Þýñ^×?³]¡–±Ø?˜Št?§×?ØaLú{)×?N ^ôÖ?VGŽtF×?@N˜0š•Ø?‚Uõò;Ù?åñ´üÀUÚ?î—OV W×?${„š!U×?Ê2ı.n×?m:¸Y¼×?_DÛ1uWØ?[°Tð2×?Ü,^, Ø?£¢ÑÄ×?¾Þýñ^µ×?EºŸSŸ×?ÚÊKþ'×?\:æçn×KS×?+iÅ7>×?@h=|™(×?¼’ä¹¾×?}¯!8.ãÖ?~Q‚þBÖ? –\ÅâÖ?—®`ñdÖ?®ð.ñÖ?kF¹‹0×?ÿunÚŒÓÖ?) ‰´?×?á² ›.×?~©Ÿ7©Ö?jûWVš”Ö?Ú¬ú\mÅÖ?be4òyÅ×?ZžwgíÖ?…[>’’Õ?ÀÎM›qÖ?C¨R³×?éÓ*úC3×?J_9ïÿÕ?Ѐz3j¾Õ?}?qýÕ?øRxÐìºÖ?ù…W’<×Õ?w£ù€@Õ?ðû7/N|Ö?§Y Ý!ÅÕ?ÛÝt_ÎÕ?¬Žé ×?ëâ6À[Ö?áÎ…‘^ÔÖ?¦E}’;lÖ?å³<îÎÕ?¯–;3ÁpÕ?¡¼£9Ö?¾¼ûèÔÕ?¬Å9êè×?ÝïPèØ?©|š“×?÷.9î”Õ?ðû7/N|Ö?¾½kЗÞÕ?DN_Ï×,×?ãŒaNÐ&Ö?7ÿ¯:r¤Õ?B‡D¤Ô?4÷ð½¿Õ?uèô¼ ×?c¶dU„›×?ýfbº«Ø?RÑXû;ÛÕ?@/ܹ0ÒÕ?T­…YhçÕ?Ë,B±4Ö?aà¹÷pÉÖ?ŪA˜Û½Õ?Å °rh‘Ö?²G¨REÖ? a°ä*Ö?*á ½þ$Ö?K;5— Ö?V ì1‘ÒÕ?oe‰Î2‹Õ?vâr¼ÑÕ?q:ÉVÕ?VÔ`†Õ?ñ˜õb(Ö?ÊI»ÑÇÕ?{3j¾J>Ö?Mž²š®'Ö?x¸£Õ?˜½l;mÕ? ȳ˷Õ?SÌAÐѪÖ?°Y.óÕ?ߦ?û‘"Ô?ÁþëÜ´Õ? B²€ Ö?ˆ)‘D/Ö?¯½7†Õ?N]ù,ÏÔ?Å8 Õ?ÌDR·³Õ?gÔ|•|ìÔ?Ö‹¡œhWÔ? ñ+Öp‘Õ?nmáy©ØÔ?xñ~Ü~ùÔ?yöÑ©+Ö?„%ZòxÕ?N`:­ÛÕ?"úµõÓÕ?¿ 1^óÔ?“QewƒÔ?¨PÝ\Õ?-@ÛjÖÔ?¡­Ü ÌÖ?b.©ÚÖ?nøÝtËÖ?_zûsÑÔ?‡Ä=–>tÕ?ñ¸¨ÅÔ?•!ÿÕ?<ùôØ–Õ?yæå°ûŽÔ?ãOT6¬©Ó?#…²ðõµÔ?A ]ÞÕ?ò(•ð„^Ö?Ù@ºØ´R×?>$|ïoÐÔ?û²´Ss¹Ô?¡i‰•ÑÈÔ?ú—¤2ÅÕ?¡º¹øÛžÕ?¤Æ„˜KªÔ?þµ¼r½mÕ?ެü2#Õ?xµÜ™ Õ?W•}WÕ?Çdqÿ‘éÔ?cdÉË»Ô?›ÆöZÐ{Ô?J}YÚ©¹Ô?*嵺KÔ?ú'¸XQƒÔ??6ÉøÕ?w;Sè¼Ô?`” ¿Ð#Õ?Õz¿ÑŽÕ?­iÞqŠŽÔ?°ÉõÔ?qÈÒŦÔ?p•'vŠÕ?ÂMF•aÜÔ?—¬Šp“QÓ?:èÔ?›:ŠÿÔ?§“lu9%Õ?Ô'ž³Ô?éî:òÏÓ?dw’ Ô?ž~P)”Ô?ˆ0~÷æÓ?ÈÑYùeÓ?ÁãÛ»}Ô?¾½kЗÞÓ?‰a‡1éïÓ?’‘³°§Õ?¸’xÔ?RÑXû;ÛÔ? ÐÒlÔ?éñ{›þìÓ?î"LQ.Ó?`ÈêVÏIÔ?GV~ŒÔ?ù1æ®%äÕ?ÑËØÐÍÕ?÷:©/K;Õ? JÑʽÓ?Ç,{ØœÔ?ú ¨7£æÓ?pUjöÔ?ƒú–9]Ô?× /½ý¹Ó?›WuV ìÒ?é·¯çÓ?Ók³±óÔ?ÉV—SbÕ?6>“ýó4Ö?´r/0+Ô?Ý@wòéÓ?N˜0š•íÓ?È#¸‘²EÔ?ñ„^ŸÔ?°® ÔbðÓ?MÛ¿²Ò¤Ô?Ô+eâXÔ?Z,Eò•@Ô?PV W@Ô?aÂhV¶Ô?ÕËï4™ñÓ?iþ˜Ö¦±Ó?˜öÍýÕãÓ?¾.úÓ?B±4-±Ó?—«›äGÔ?÷@øÓ?¯]ÚpXÔ?½á´àEÔ?ƒÁ5wô¿Ó?Ú×3ÂÓ?"«[='½Ó?õiý¡™Ô?–B —8òÓ?4œ27߈Ò? ˆI¸GÓ?•~P)Ô?üǙ&lÔ?œQ}>Ó?÷¬k´èÒ?CÉäÔÎ0Ó?ïTÀ=ÏŸÓ?IÛø• Ó?l®šçˆÒ?àëTùžÓ?[}uU Ó? :!tÐ%Ó?â:ÆGÔ?yé&1¬Ó?ÒyYÔ?äL¶ŸŒÓ?žíÑî#Ó?v4õ»°Ò?n‰\pÓ?ª x™a£Ó?Ó0|DLÕ?6å ïrÕ?¼Yƒ÷U¹Ô?Êû8š#+Ó?>±N•ïÔ?n…°KXÓ?Eƒ<…\Ô?ºJw×ÙÓ?±k{»%9Ó?Ëd8žÏ€Ò?]kïSUhÓ?½Þýñ^Ô?z›©¾Ô?Q½5°U‚Õ?0™ò!¨Ó?L¤4›ÇaÓ?ßÜ_=î[Ó?8ºJw×ÙÓ?ÍYŸrLÔ?²Jé™^bÓ?†Œ.oÔ?J)èö’ÆÓ?L8 ¥Ó?#Ù#Ô ©Ó?}¢|Ó?ˆ×õ vÓ?›ÖtBÓ?Y†8ÖÅmÓ?n£¼Ó?“o¶¹1=Ó?š¯’ÝÓ?HnMº-‘Ó?*¬TPQõÓ?š²ÓêÓ?H5ì÷Ä:Ó?_ðiN^dÓ?KrÀ®&OÓ?IÚ>æÔ?‚ã2njÓ?iÒá!Ò?æ°ûŽá±Ò?èÝXP”Ó?7R¶HÚÓ?}$%= ­Ò?ÑèbgÒ?…î’8+¢Ò?“[ìöÒ?X­Lø¥~Ò?Ž Ò?xµÜ™ Ó?°t>Ò?ÈCßÝÊÓ?…]=ðÓ?‚©fÖR@Ô?Í#0ðÜÔ?O²žZ}Ó?—wJÓ?Ë¡E¶óýÒ?ËgyÜÓ? ‡3¿šÓ?=Ô¶aÓ?9 {Úá¯Ó?óZ Ý%qÓ?Y§Ê÷ŒDÓ?{ò%TÓ?Ș»–Ó?<„ñÓ¸7Ó?$î±ô¡ Ó? 1—Tm7Ó?ÖsÒûÆ×Ò?+3¥õ·Ó?§îyþ´Ó?4iSulÓ?Þ’°«ÉÓ?(œÝZ&ÃÓ?ƒS°ÆÙÒ?ÜõÒNÓ?órØ}ÇðÒ?á—úyS‘Ó?”i4¹Ó?6Y£¢ÑÑ?÷”œ{hÒ?@i¨QH2Ó?st´ªÓ?Œ„¶œKqÒ?Ì(–[Z Ò?ž$]3ùfÒ?Ô¸7¿a¢Ò?þÕã¾Õ:Ò?—<ž–¸Ñ?ù‚0ºÒ?穹nÒ?ƒÜE˜¢\Ò?"ýöuàœÓ?Öwõ*Ó?aU½üN“Ó?-²ï§Ò?Q§“luÒ?$cµùÕÑ?î•y«®Ò?X9´ÈvÓ?ÚâŸÉþÔ?\ætYLlÔ?®œ½3ÚªÔ?®ž“Þ7¾Ò?¸#œ¼èÓ?%‘}eÁÒ? ò³‘ë¦Ó?ƒ¤O«èÒ?K«!q¥Ò?Gªïü¢Ò?€d:tzÞÒ?”M¹Â»Ó?øÃÏÔ?¾2oÕu¨Ô?é×ÖOÿYÓ?*¨¨ú•ÎÒ?Ù®ÐËÒ?H›V Ó?Ìa÷ÃcÓ?üÖMõÒ?Ž<Y¤‰Ó?lÎÁ3¡IÓ? `­Ú5!Ó? <÷.Ó?ÝéÎÏÙÒ?´qÄZ| Ó?s…w¹ˆïÒ?Íù†Ó?É:]¥»Ò?Ý@wòéÒ?7TŒó7¡Ó?÷=ê¯WXÓ?9 毹Ó?¼Ñ“2©Ó?}ÎÝ®—¦Ò?öE™ 2Ó?4÷ð½¿Ò?z7eÓ?ÊÂ×׺ÔÒ?Üóüi£Ñ?˜ˆ·Î¿]Ò?-ÎæÓ?†1zn¡Ó?LàÖÝ<Ò?°âÊÑ?{0)>>!Ò?MØ~2ƇÒ?@‰Ï`ÿÑ?bÚ7÷WÑ?‡ú]ØšÒ?±Â-IIÒ?%Ì´ý++Ò?Ÿ`<ƒ†Ó?)¯•Ð]Ó?ÄíаuÓ?ãǘ»–Ò?øpÉq§tÒ?ÿêqßjÑ?]Åâ7…•Ò?â[X7ÞÓ?è¡¶ £Ô?ª™µöÓ?-ÌB;§YÔ? Åoò[Ò?}Ê1YÜÓ?Käõ`RÒ?öµ.5B?Ó?L¨àð‚ˆÒ?IeŠ9:Ò?}ÍrÙèœÑ?‰yVÒŠoÒ?[ÏŽYÓ?‹Š8d«Ó?ò{›þìGÔ?…zúüÒ?Cÿ+jÒ?W%‘}eÒ?ÛÁˆ}(Ó?ÞÈ<òÓ?¢+Üò‘Ò?<Øb·Ï*Ó?W>ËóàîÒ?æ®òÂÒ?éî:òÏÒ?( ß÷oÒ?yé&1¬Ò?„fÚþ•Ò?"«[='½Ò?˜3Ûú`Ò?…$³z‡Ò?ò'*ÖTÓ?Ù³ç25 Ó?BzŠ"nÓ?¢´7øÂdÓ?g¹ltÎOÒ?ŸåypwÖÒ?ÅqàÕrgÒ?h°©ó¨øÒ?Ø›’“‰Ò?…]=ð1Ñ?ˆÙ˶ÓÖÑ?ôlV}®Ò?ÜIDøAÓ?.â;1ëÅÑ?( Ê4š\Ñ?¦{Ô—¥Ñ?Ǻ¸Ò?Égð÷‹Ñ?ÎQÚÑ?E>‘'Ò?ZFê=•ÓÑ?Cá³up°Ñ?Ùµ½Ý’Ó?ª¹nÀÒ??áìÖ2Ó?Õ%ãÉÒ?xšÌx[éÑ?U¯²¶)Ñ?NG7‹Ò?â:ÆGÒ?r¦ ÛOÆÓ?ßPølÓ?d:tzÞÓ?}vÀuÅŒÑ?_Ñ­×ô Ò?á@H0Ñ?[¶Ö mÒ?ER·³¯Ñ?YÚ©¹Ü`Ñ?è½ÅÃÐ?mŒðœÑ?á•$Ïõ}Ò?mæÔBÉÒ?-z¨mÓ?bõG,Ò?C®Ô³ ”Ñ?–² q¬‹Ñ?¡Ø š–XÒ?4J—þ%Ò?Û†Q<¾Ñ?KrÀ®&OÒ?œ6ã4DÒ?¹¨ÅäÑ?¦}sõÑ?Ü×sF”Ñ?áy©Ø˜×Ñ?H¤mü‰ÊÑ?þ)U¢ìÑ?ˆ÷XŽÑ?>Ì^¶¶Ñ?ˆLùTÒ?£uT5AÒ?È=›UŸÒ?Q¿ [³•Ò?¦îÊ.\Ñ?‘(´¬ûÑ?ÂzýI|Ñ?Öª]ÒÒ?ˆ jôj€Ñ?ÿ]Ÿ9ëSÐ?¹ªì»"øÐ?¦ÒO8»µÑ?¦E}’;lÒ?é·¯çÐ?‘·±Ù‘Ð?ßmUÙÐ?qâ«Å9Ñ?ëÇ&ù¿Ð?Þ3ßÁOÐ?áaÚ7÷WÑ? 7àóÃÑ?˜öÍýÕãÐ?bøˆ˜IÒ?yÊjºžèÑ?#KæXÞUÒ?¿ÔÏ›ŠTÑ?)±k{»%Ñ?Üx`Ð?# Â¤RÑ? :!tÐ%Ñ?£?4óäšÒ?0œk˜¡ñÑ?|îû¯sÒ?*oG8-xÐ?³)Wx—‹Ñ?Tn¢–æVÐ?-î?2:Ñ?-{ØœƒÐ?ü¥E}’;Ð?²›ýh8Ï?¦E}’;lÐ?y7R¶HÑ?ݲCüÖÑ?õ„%P6Ò?ÏdÑ?·`©.àeÐ?v“þ^Ð?’“‰[1Ñ?¤SW>ËóÐ?UOæ}“Ð?ô #Ñ?:–wÕæÐ?8ÜGnMºÐ?;nøÝtËÐ?Ûø• kÐ?mãOT6¬Ð?XÇñC¥Ð?Í >°ã¿Ð??o*RalÐ?’ÍUó‘Ð?ðN>=¶eÑ?ZÖýc!Ñ?—6–~Ñ?¦ð ÙuoÑ?Q†ª˜J?Ð?ìOâs'ØÐ?:“6UÐ?7á^™·êÐ?Kt–Y„bÐ?ÖâSŒgÎ?ž±/Ùx°Ï?«´Å5>“Ð? IJ™CRÑ?óâÄW;ŠÏ?§Z ³ÐÎ?l{»%9`Ï?žê›áÐ?,¨þA$Ï?üQÔ™{HÎ?—©Ið†4Ð?.sž±Ï?;4,F]kÏ?gaO;ü5Ñ?§Y Ý!ÅÐ?¹à þ~1Ñ?Ž®ÒÝu6Ð?lê<*þÏ?ùÙÈuSÎ?ü¥E}’;Ð?ž±/Ùx°Ï?o‚oš>;Ñ?ÒV%‘}Ð? ƒ2&Ñ?îBsFZÎ?o×KS8Ð?ak¶ò’ÿÍ?¬‘]i©Ï?NÓg\WÎ?é™^b,ÓÍ?™ðKý¼©Ì?€óâÄW;Î?bg רÏ?ÇG‹3†9Ð?#‡ˆ›SÉÐ?ã4ôOpÏ?þÒ¢>ÉÎ?­ûÇBtÎ?pïô¥·Ï?Û2à,%Ï? ü¨†ýžÎ?Ánض(³Ï?É w¦(Ï? ¢îÚÎ?¨SÝÏ?ãá=–#Î?ÄËÓ¹Î?‘&Þž´Î?•eˆc]ÜÎ?“V-Î?aTR' ‰Î? þ·’Ð?^¸sa¤Ï?ÇF ^×/Ð?*6æuÄ!Ð?ÿ ’!ÇÖÍ?ý¢ý…Ï?Üx`áÍ?©|š“Ï?i‹k|&ûÍ?ã4ôË?OÌz1”Í?Ùî ûrÎ?eRC€ Ð?á&£Ê0îÌ?Èyÿ'LÌ?‘Òl‡ÁÌ?ÇK7‰A`Í?®€B=}Ì?t ‡ÞâË?¨V_]¨Í?% &áBÍ?!®œ½3ÚÌ?ž±/Ùx°Ï?e¥I)èöÎ?Ò‹Úý*ÀÏ?‹à+Ù±Í?­‰¾¢[Í?™Ÿš²ÓË?€ ;¨ÄÍ?#M¼Ì?vÞÆfGªÍ?Yà+ºõšÊ?k¸È=]ÝÉ?æx¢'eÊ?¤SW>ËóÊ?.É&Ê?èƒelèfÉ?üü÷àµKË?Ä%ÇÒÁÊ? î<0€Ê?;M„ OÍ?_%» ”Ì?ÉU,~SXÍ? nk ÏKË?nN%@Ë?ÚÆŸ¨lXÉ?¼·_>YË?²€ ܺ›Ë?ÙëÝïÍ?`#I®€Ì?ù/ÈÐÍ?J˜iûWVÊ?¡¢êW:Ì?„ó©c•ÒÉ?Ÿ ±Ý=@Ë?®Ø_vOÊ?÷uàœ¥É?”†…$³È?3ÂÛƒÊ?‚‹5˜†Ë?5æèñË?¨äœØCûÌ? ?8Ÿ:VË?yuŽÙëÉ?¤P¾¾ÖÉ?¶yËÕË?±1¯#ÙÊ?!ê>©MÊ?0º¼9\Ë?f÷äa¡ÖÊ?ʉvR~Ê?M1AG«Ê?/À>:uåÉ?«]ÒƒÊ? ‰°áé•Ê?»|ëÃz£Ê?8kð¾*Ê?n0Ôa…[Ê?åb ¬ãøË?®¼äòwË?D÷¬k´Ì?p(|¶Ì? uXá–É?üo%;6Ë?„›Œ*øÉ?fŸÇ(ϼÊ?/°ŒØÉ?^‚SHÞÇ?I0eàÈ?ÓMbX9Ê?)ÍæqÌË?cdÉË»È?ëó)È?³²}È[®È?: ûvÉ?EÚÆŸ¨lÈ?0º¼9\«Ç?ÞJ ,€É?GV~ŒÉ?hz‰±L¿È?©¤N@aË?£té_’ÊÊ?}iÆ¢Ë?Û÷¨¿^aÉ?£>+NÉ?ûPŒ,™Ç?~ü¥E}’É?ÿwD…Ê?2:=ïÆÌ?j ùœ»]Ë?’xy:W”Ì?Ø—qSÉ?ªðgx³Ë?:=ïÆ‚ÂÈ?Cr2q« Ê?Ì(–[Z É?îÏECÆ£È?¾3Úª$²Ç?~Œ¹k ùÈ?±à‚lYÊ?*ý„³[ËÊ?瓼ÇË?Á-]Á6Ê?_\ªÒ×È?]N ˆI¸È?6ÉøkÊ?RF\¥É?µ¥òz0É?œ3¢´7Ê?Š[1еÉ?y±0DN_É?V)=ÓKŒÉ?¢ïne‰ÎÈ?6t³?PnÉ?œÁß/fÉ?(›r…É?Êp<ŸõÈ?âä~‡¢@É?Û3KÔÔÊ? ·|$%=Ê?k» ¾iúÊ?iÚV³ÎÊ?ž}åAzŠÈ?§²(ì¢èÉ?'À°üù¶È?§%VF#ŸÉ?ߺñîÈÈ?¢E¶óýÔÆ?œ0a4+ÛÇ?vp°71$É?¤ö{bÊ?Zœ¡¸Ç?GV~ŒÇ?o­mŽÇ?ã3Ù?OÈ? ýHVÇ?‡¢@ŸÈ“Æ?Jð†4*pÈ?Çg²žÈ?jÙZ_$´Ç?¾Û¼qRÊ?סš’¬ÃÉ?)A¡GŒÊ?hE,bÈ?[[x^*6È?Òá!ŒŸÆ?W|Cá³uÈ?aâ¢ÎÜÉ??Qžy9Ì?X<õHƒÛÊ?DiâàË?Nïâý¸ýÈ?Y2Çò®zÊ?:#J{ƒ/È?îx“ߢ“É?¬8ÕZ˜…È?ˆìø/È?LÂ…<‚Ç?õ·CÃbÈ?ëÙ\5ÏÉ?R·³¯<Ê? ¸Ê;Ë?€-¯\o›É?¹ãM~‹NÈ?:#J{ƒ/È?üL‡NÏÉ?*àžçOÉ?ÿ>ãÂÈ?Ÿ¡¼£É?¢&ú|”É?6X8IóÇÈ?ò—õIîÈ?áC‰–<È?6ZôPÛÈ?ž^)ËÇÈ?¥ØÑ8ÔïÈ?)狽_È?t&mªÈ?Mž²š®'Ê?Õ‘#‘É?/OçŠRBÊ?Éw)uÉ8Ê?¨ã1•ñÇ?ÁXßÀäFÉ? <÷.9È?øàµKÉ?Îé K<È?¶ƒûPÆ?É«s È^Ç?&ãÉ¡È?@‰Ï`ÿÉ?jmÛkAÇ?Ûü¿êÈ‘Æ?ÞÈ<òÇ?´Yõ¹ÚŠÇ?µÀ)ÍÆ?F|'f½Æ?>{.S“àÇ?odùƒÇ?µOÇc*Ç?ÓL÷:©É?ß§ªÐ@,É?¤ü¤Ú§ãÉ?Ѳî ÑÇ?»}V™)­Ç?›âqQ-"Æ?ǹM¸WæÇ?ñ[z4ÕÉ?ßÛôg?Ì?}±÷â‹öÊ?™Gþ`à¹Ë?žACÿÉ?â镲 qÊ?þ,–"ùJÈ?®( ‰´É?§z2ÿè›È?SäGÈ?‘ ¤‹M+Ç?~r fÈ?—ÄY5ÑÉ?pµN\ŽWÊ?çP†ª˜JË?‚‹5˜†É?£\¿ðJÈ?}“¦AÑ<È?¡½úxè»É?-B±4-É?K‘|%È?'iþ˜Ö¦É?y=˜É?.8ƒ¿_ÌÈ?á|êX¥ôÈ?âåé\QJÈ?Q}>ÊÈ?_Ÿ;ÁÈ?FÍWÉÇîÈ?Â4 SÈ?º¡);ý È?:ž%ÈÊ?g˜ÚRyÉ?êD2Ê?\«=ì…Ê?1x˜öÍýÇ?©öéxÌ@É?“Úl@È?„çÞÃ%É?³Íé KÈ?M×]~Æ?½TlÌëˆÇ?Äy8é´È?AJ˜iûÉ?I-”LNÇ?­k´è¡Æ?«‘]iÇ?¤ÅÜ Ç?úïÆ?«±„µ1Æ?“[ìöÇ?¨¨ú•·Ç?c~nhÊNÇ?p—ýºÓÉ?™Êø÷É?ÊÁl ËÉ?.㦚ÏÇ?Çž=—©Ç?cÓJ!KÆ?£w*àžçÇ?°­Ÿþ³æÉ?¼Ì°QÖoÌ?,D‡À‘@Ë?À?¥J”½Ë?|—wJÉ?QhY÷…Ê?• k*‹È?SX© ¢êÉ?«ì»"øßÈ?ÏÀÈËšXÈ?}–çÁÝYÇ?Ý‹Š8È?ÝBW"PýÉ?ñƒó©c•Ê?»' µ¦Ë?–´â ŸÉ?ZcÐ ¡ƒÈ?³ìI`sÈ?%è/ôˆÑÉ?hB“Ä’rÉ?ç6á^™·È?YLüQÔÉ? Ý%qVDÉ?š}£<óÈ?x'ŸÉ?ç,òë‡È?›h>çÈ?ëÉü£oÒÈ?]1#¼=É?àd¸uÈ?5Ñ磌¸È?,¸ðÀÊ?]éEí~É?%wØDf.Ê?)°¦ Ê?|~!<È?Õé@ÖSÉ?b×övKrÈ?æÍáZíaÉ?¾.úÈ?eÄ QºÆ?'c`ÇÇ?øˆ˜IôÈ?+ß3¡Ê?îv½4E€Ç?U¿ÒùðÆ?FzQ»_Ç?ŸæäE&àÇ?ö³XŠä+Ç?`!sePmÆ?lê<*È?I›ªÇ?Ž<»|Ç??eÄ É?€ð¡DKÉ?Ò°¨ˆÓÉ?È@ž]¾õÇ?TªDÙ[ÊÇ?\>’’†Æ?ž–¸ÊÈ?d–= lÎÉ?Ž®ÒÝuÌ?Îm½2oË?W\•›¨Ë?4¡l\É?gCþ™A|Ê?ê@ÖS«¯È?1&ý½Ê?¼æUÕÉ?ÑÎihwÈ?6t³?PnÇ?Ôê"…²È?têÊgyÊ?‘Òl‡ÁÊ?ËH½§rÚË?Ûˆ'»™É?`V(ÒýœÈ?ûY,Eò•È?uÞÉÉ?Uú g·–É?»*P‹ÁÃÈ?Ù±ˆ×õÉ?KOË\É?;ûʃôÉ?ßýñ^µ2É?ÒþX«È?÷«ßmÞÈ?Gˆ,ÒÈ?•DöA–É?‰B˺È?‰\p¿È?©¾ó‹ôÉ?\:æU…È?˜5±ÀWtÉ?¯îXl“ŠÈ?fKVE¸ÉÆ?ª¹nÀÇ?ýJçóÉ?‘)‚ªÑÉ?ÓÛŸ‹†ŒÇ?î\éEíÆ?ºk ù gÇ? ˜£ÇïÇ?Û2à,%Ç?=ð1XqÆ?k™ ÇóÈ?"û Ë‚‰Ç?^Ÿ9ëSŽÇ?6È$#gaÉ?ën‡†ÅÈ?f»B,cÉ?–AµÁ‰èÇ?„¼LŠÇ?¤p= ×£Æ?Wéî:òÇ?èy’tÍÈ?ºöôÂË?q:ÉÊ?™ðKý¼©Ê?°ÅnŸUfÈ?½ª³Z`É?¢}¬à·!È?Ž<»|É?¶…ç¥bcÈ?Ò°¨ˆÓÇ?ìL¡ó»Æ?-Ë×eøÇ?îí–ä€]É?LbõGÊ?!?¹nJË?ŸZ}uU È?ßCpìÇ?ûçiÀ éÇ?ÎQGÇÕÈÈ?Ññ(•ðÈ?È@ž]¾õÇ?ö³XŠä+É?&áBÁÈ?» ”XÈ?ºÀå±fdÈ?²gÏejÈ?ÇAœ‡È?zR&5´È?@¾„ /È?0º¼9\«Ç?Ü»}éíÇ?Ëõ¶™ ñÈ?ë8~¨4bÈ?aÂhV¶É?J^c@öÈ?’Ï+žz¤Ç?Žlê<È?9 {ÚáÇ?f£s~ŠãÈ?,¸ðÀÈ? <÷.9Æ?‰—§sE)Ç?ùdÅpuÈ?ÚÄÉýÉ?Ùî@òÆ?ølìMÆ?j†TQ¼ÊÆ?~b¼æUÇ?*A*ÅŽÆ?Q¡º¹øÅ?]ÄwbÖ‹Ç?©½ˆ¶cêÆ?"á{ƒöÆ?|ó&¤È?qh”.ýÇ?ÐÒl#žÈ?Z×h9ÐCÇ?þžX§Ê÷Æ?nOØîÆ?N(DÀ!TÇ?¹¨ÅäÇ?öBÛÁÊ?‡†Å¨kíÉ?eo)狽É?]¿ðJ’Ç?ò`‹Ý>«È?$ïÊPÇ?ÚTÝ#›«È?Õçj+ö—Ç?ΈÒÞà Ç?È@ž]¾õÅ?ë^fØ(Ç?•Ö߀È?PU¡X6É?!ÂøiÊ?ÇÚßÙ½Ç?Úå[ÖÇ?#ö  Ç?fN—ÅÄæÇ?…[>’’È? ´¾LÇ?,Eò•@JÈ?› ê>©Ç?û¬2SZÇ?î"LQ.Ç?kœMG7Ç?%Ì´ý++Ç?t´ª%Ç?ƒ/L¦ FÇ?6®×gÎÆ?èÚÐ Ç? ®¹£ÿÇ?Ê2ı.nÇ?¼é–âÈ?:uå³<È?vãÝ‘±ÚÆ?âæT2TÇ?W²c#Ç?Ÿ;ÁþÇ?ÎŒ~4œ2Ç?#,*ât’Å?äóЧiÆ?mÆÁ¥Ç?ãá=–#È?7à øü0Æ?˜ŸÅ?‰&PÄ"Æ?Á:Ž*Æ?f 2þ}ÆÅ?ßO—nÅ?CŒ×¼ª³Æ?32È]„)Æ?%wØDf.Æ?Nïâý¸Ç?6çà™Ð$Ç?¯xê‘·Ç?'0ÖmÆ?§é³®+Æ?Ù•–‘zOÅ?Ęô÷RxÆ?ÁÇ`ũ֯?"S>U£É?'†§WÊÈ?ÙwEð¿•È?˜àÔ’wÆ?0bŸŠ‘Ç? PO?Æ?Zd;ßOÇ?Ëd8žÏ€Æ?t·ë¥)Æ?#föyŒòÄ?]4du¬Æ?$Dù‚Æ?„~¦^·Æ?ÞÉ§ÇÆ?¼æUÕÇ?­¥€´ÿÆ?NÐ&‡O:Ç?¼zÆ?c+hZbeÆ?j£:ÈzÆ?YO­¾º*Æ?zVÒŠo(Æ?Øñ_ Æ?Ó£©žÌ?Æ?úüáç¿Å?\Uö]üÅ?÷WûVëÆ?Xÿç0_^Æ?Í‘•_Ç?Šçl¡õÆ?jÛ0 ‚ÇÅ?ªÒ×øLÆ?ÈBt Æ?ø2Q„ÔíÆ?ÓŸýHÆ?¼Ì°QÖoÄ?¢ ±ˆaÅ?µ‰“ûŠÆ?CqÇ›üÇ?g_yž"Å?U¡X6sÄ?²ºÕsÒûÄ?ˆ÷XŽÅ?81$'·Ä?Ðb)’¯Ä?Š[1еÅ? ¦šYKÅ?¥0ïq¦ Å?¹Ù•–‘Æ?`<ƒ†þ Æ?s¢]…”ŸÆ?BÍ*ŠWÅ?i6Ã`þÄ?YO­¾º*Ä??ÅqàÕrÅ?+Û‡¼åêÅ?|š“™È?>w‚ý×¹Ç?‚‹5˜†Ç?2;‹Þ©€Å?±ú# –Æ?;«ö˜HÅ?:\«=ì…Æ?Êà(yuŽÅ?¡¡‚‹Å?ñðžËÄ?P©eo)Å?· 8KÉrÆ?æêÇ&ùÇ?Ÿp]1#È?s*ª¸Å?¿ž¯Y.Å?iެü2Å?å^`V(ÒÅ?™(BêvöÅ?rÝ”òZ Å?òz0)>Æ?áBÁ”Å?ãÃìeÛiÅ?X¬á"÷tÅ?€FéÒ¿$Å?ÂÛƒ/Å?M ˆE Å?uÿwDÅ?íÓñ˜ÊÄ? ×£p= Å?‡†Å¨kíÅ?ˆ5•EaÅ?_·Œõ Æ?£#¹ü‡ôÅ?ΧŽUJÏÄ?‹©ôÎnÅ?õ„%P6Å?ž·±Ù‘êÅ?ÿ+j0Å?Uø3¼YƒÃ?Ï ¡Ä?-Z€¶Õ¬Å? µ‰“ûÆ?iå^`V(Ä?Á‘@ƒMÃ?,g~5Ä?JÏôc™Ä?ýjÌÑÃ?$EdXÅÃ?Q¾¾Ö¥Ä?J —UØ Ä?ïb€DÄ?üߪ›Å?1'h“Ã'Å?Cá³up°Å? ”XSÄ?CÆ£TÂÄ?§–­õEBÃ? eáëk]Ä?öÔê««Å?;¨ÄuŒÇ?éÍ<¹¦Æ?§x\T‹ˆÆ?Åoò[tÄ?]Pß2§Å?Z.óSÄ?õ»°5[yÅ?f¡Ø šÄ?‰–<ž–Ä?f0F$ -Ã?“Úl@Ä?|BvÞÆfÅ?χg 2Æ?I/j÷«Ç?š#+¿ ÆÄ?ˆ½PÀv0Ä?mÊÞå"Ä?6®×gÎÄ?ÿ”*QöÄ?u>­¢?4Ã?­¥€´ÿÄ?ÇHö5Ã?|^ñÔÁ?üä(@ÌÂ?QÁá©Ã?g¶+ôÁ2Ä?¢µ¢ÍqÂ?HùIµOÇÁ?¾£Æ„˜KÂ?ŒjQLÞÂ?zR&5´Â?åœØCûXÁ?4¢´7øÂÂ?¯]ÚpXÂ?Í™dä,Â?6ÌÐx"ˆÃ?Ÿt"ÁTÃ?†©-u×Ã?Ñ"Ûù~jÂ?"ʼn&PÂ?,F]kïSÁ?Ḍ›hÂ?Î4aûÉÃ?>”hÅ?°ÇDJ³yÄ?Ëd8žÏ€Ä?n4€·@‚Â?ÔdÆÛJ¯Ã?¸å#)éaÂ?Ë2gÃ?.Yá&£Â?‹¤Ýèc>Â?l{»%9`Á?C©½ˆ¶cÂ?nÛ÷¨¿^Ã?âVA tíÃ?|(Ñ’ÇÓÄ?2!æ’ªíÂ?}?5^ºIÂ?÷@Â?CƒfÚÂ?ßp¹5éÂ?°Žã‡J#Â?LàÖÝ<Ã?‘óþ?N˜Â?,µÞoÂ?‰B˺Â?Ñ/¤ÃCÂ?è‚ú–9]Â?’éÐéy7Â?´TÞŽpÂ?ÆàaÚ7÷Á?òÏ â;Â? ×ÜÑÿÂ?Œ…!rúzÂ?¿ž¯Y.Ã?ªœö”œÃ?Ç ¿›nÙÁ?Gègêu‹Â?Ö­ž“Þ7Â?wj.7êÂ?¤5:Â?å „bÕÀ?YvQôÀÁ?Õ{L¤Â?!;oc³#Ã?NÔÒÜ aÁ?}$%= ­À?ÎâÅÂ9Á?4MØ~2ÆÁ?çmlv¤úÀ?f,šÎNÀ?0º¼9\«Á?‘z6«>Á?B–Á?Ùî ûrÂ?Ë/ƒ1"QÂ?§wñ~ÜÂ?¾¤1ZGUÁ?Þp¹5Á?…µ1vÂKÀ?Xþ|[°TÁ?ò–«›äÁ?`æ;ø‰Ä?Tâ:ÆÃ?#ŸW<õHÃ?Î67¦',Á?\ætYLlÂ?f0F$ -Á?:w»^š"Â?6l±ÛgÁ?ߣþz…Á?Œ¢>+À?…²ðõµ.Á?vþÓ Â?ÈÒŦ•Â?çÁ=~Ã?î|?5^ºÁ?ž^)ËÁ?Ì&À°üùÀ? Ì EºŸÁ?*ß3¡Á?_²ñ`‹ÝÀ?²eùº ÿÁ?—ÒþXÁ?Üñ&¿E'Á?Þp¹5Á?ÉË»êÁ?’æimÁ?ëZaúÀ?Ké™^b,Á?Úª$²²À?Y|^ñÀ?ÇÚßÙ½Á?JA·—4FÁ?¢F!ɬÞÁ?uÞÉÁ?—㈞À?®¸8*7QÁ?7íµ ÷À?a2U0*©Á?‹lçû©ñÀ?úBÈyÿ¿?ÁâpæWsÀ?~q©J[\Á?€d:tzÞÁ?þ|[°TÀ?dv½S¿?9 {Úá¿??p•'vÀ?œÞÅûq¿?œ¡¸ãM¾?Gå&jiÀ?g×½‰ À?xìg±É¿?ÂÙ­e2Á?,¹ŠÅo Á?+ö—Ý“‡Á?¸Y¼XÀ?4MØ~2Æ¿?ÒpÊÜ|#¾?8žÏ€z3À?>éD‚©À?”2©¡ ÀÂ?»+»`pÍÁ?ÈDJ³yÂ?Ø‚ÞCÀ?‡Áü2Á?ÖÈ®´ŒÔ¿?ÒŽ~7ÝÀ?‹qþ&"À? EºŸS¿?}^ñÔ# ¾?µmÁ¿?‡ü3ƒøÀÀ?áµKKÁ?{…÷Â?•*Qö–rÀ?1 Xr‹¿?,œ¤ùcZ¿?À¯‘$WÀ?AG«ZÒQÀ?ØdzˆF¿?à‚lY¾À?À"¿~ˆ À?È éðÆ¿?‹Áôoî¿?ÏžËÔ$x¿?L8 ¥¿?Ñy]¢z¿?úüáç¿¿?ÉË»ê¿?óWya¿?é_’ÊsÀ?ÏdÀ?_%» ”À?%•C‹À?þDeÚʾ?ì†m‹2À?üǙ&l¿?n0Ôa…[À?ì«an¿?EÓÙÉà¼?®c\qqT¾?|`Ç À?CYøúZ—À?“ªí&ø¦½?N ógš¼?äL¶ŸŒ½?ÿ .VÔ`¾?˜PÁá½?9 {Úá»?Ûmšë4¾?ƒ¾ôö碽?Þ„€|½?_ÔîW¾¿?7OuÈÍp¿?^gCþ™AÀ?ó:â½?+¢&ú|”½?W \âÈ»?Ÿä›È̽?)Ð'ò$é¾?§yÇ):’Á?æI›À?Å[ÌÏ Á?ØI}YÚ©½?'öÐ>Vð¿?žÎ¥„`½?žACÿ¿?ˆ‚S°Æ½?-ê“Üa½?I¡,|}­»?WÎÞm½?Òm‰\p¿?wR~Rí¿?˜öÍýÕãÀ?;ãûâR•¾?H‰]ÛÛ-½?S£’:½?ÖŒ ra¾?¢ÕÉŠ;¾?¢E¶óýÔ¼?צ±½ô¾?emS<.ª½?_Cp\ÆM½?&Šº}½?£çº½?ðûY,½?Ñèbg ½?­‡/EH½?/†r¢]…¼?>&RšÍã¼?ØF<ÙÍŒ¾?ŠY/†r¢½?zƾdãÁ¾?i§ærƒ¡¾?LnYk¼?‹ŒH¾½?UˆGâåé¼?׈`\:¾?,cC7û½?Ot ‡º?>U£W¼?zqÈÒ½?¿¹¿zÜ·¾?{ž?mT»?pê”G7º?‹O0žA»?ÅUeßÁ»?çâo{‚ĺ?Îm½2o¹?«• ¿ÔÏ»?º»Î†ü3»?ûêª@-»?è-Þs`½?áÔ’w½?ö)Çdqÿ½?K= By»?Ñ>VðÛ»?¨ŒŸq¹?Ý[‘˜ †»? Ùy›½?™ðKý¼©À?«{dsÕ<¿?R º½¤1À?ú¸6TŒó»?C¨R³¾?.VÔ`†»?Í9x&4½?Qö–r¾Ø»?~4œ27»?Õ—¥šË¹?è/ôˆÑs»?‰ëW\½?.çR\Uö½?ÉŽ@¼®¿?²t±i¥¼?òxZ~à*»?éH.ÿ!ýº?uÍä›mn¼?!>°ã¿@¼?ÓÁú?‡ùº? ´¾L½?¼§>¼»?f»B,c»?LüQÔ™»?K= By»?òxZ~à*»?ΈÒÞà »?8Ÿ:V)=»?::ZÕ’º?*Wx—‹øº? Q¾ …¼?ÍsD¾K©»?9b->À¼?™œÚ¦¶¼?Í?ú&Mƒº?0¼’ä¹¾»?=Ô¶a»?x]¿`7¼?Åã¢ZD»?•·#œ¼¸?mÊÞå"º?ë««µ¼?0ôˆÑs ½?4óäš™¹?à øü0B¸?“o¶¹1=¹?²Úü¿êȹ?ª·¶J°¸?Q¿ [³•·?õÙ×3º?'Þž´p¹?PáR¹?@øP¢%»?–Ïò<¸;»?åïÞQcB¼?b„ðh㈹?Ý"0Ö70¹?Tüߪ·?f…"ÝϹ?Ù²|]†»?–x@Ù”¿?)wŸã£Å½?. ø1æ¾?Gå&jiº?ÉüI‚¼?=Ú¨Nº?#†Ƥ¿»?‡m‹2dº?о¢[¯¹?,ñ€²)W¸?M¿D¼uþ¹?{/¾h»?öA–¼?Êþy0H¾?Àϸp $»?1A ߺ¹?à?ÿ=x¹?Ééëùšåº?“ŠÆÚßÙº?-!ôlV¹?øo^œøj»?DMôù(#º?¡·xxϹ? Ö8›Žº?&â­óo—¹?€-¯\o›¹?ÃòçÛ‚¹?ÅS4¸­¹?Ð MÙé¹?8ù-:Yj¹?H¨REñº?Ñ=ë-º?\Æú&»?ù.¥.»?Ëõ¶™ ñ¸?½3Úª$º?+ö—Ý“‡¹?zƾdãÁº?£>É6‘¹?sf»B,·?u¬Rz¦—¸?é ÷‘[“º?D1yÌ|»?W=`2å·?­ÃÑUº»¶?À=ÏŸ6ª·?%wØDf.¸?[°Tð2·?®,ÑYf¶?t%Õ?ˆ¸?¯&OYM×·?MeQØEÑ·?1 òº?ÙÐÍþ@¹¹?÷vKrÀ®º?["œÁß·?I¡,|}­·?ý÷àµK¶?(Í9x&¸?8-xÑWº?UOæ}“¾?KÊÝçø¼? µ‰“û¾?ÊŒ·•^›¹?+ømˆñš»?_Cp\ÆM¹?Nïâý¸ýº?>Ëóà?k» ¾iú¸??¨Œ·?Þp¹5¹?¥]Pߺ?kƒѯ­»?žÒÁú?‡½?Ü ö[;Qº?´“ÁQòê¸?áñí]ƒ¾¸?çÄÚÇ º?V¼‘yäº? F³²}¸?¿¹¿zÜ·º?·³¯À¸?§/ú Ò¸?ÂÚ;á%¸? Q¾ …¸?ÊúÍÄt!º?3‰zÁ§9¹?:Xÿç0_º?‹ú$wØDº?Í‘•_c¸?E×…œO¹?:é}ãkϸ?ePmp"ú¹?N`:­Û¸?³ðõµ.5¶?ƒh­hsœ·?çá¦Óº¹?B&9 {º?ØsF”ö¶?¼‘yä¶?ö&†ädâ¶?5íbšé^·?ønóÆIa¶?u­½OUµ?è3 ÞŒš·?_¶¶F·?Û¾Gýõ ·?ŠriüÂ+¹?φü3ƒø¸?âú}ÿæ¹?¯}½pç¶?–~Tö?É;‡2Tµ?–{Y¡H·?Ÿ<,Ôšæ¹?XûVëĽ? B\9{g¼?eâVA t½?G 6u¹?Wèƒelèº?× /½ý¹¸?d°âTkaº?j'÷;¹?‹T[r¸?¯°à~À·?·Aí·v¢¸?›æ§èHº?€H¿}8»?uç‰çl½?áš;ú_®¹?}ëÃz£V¸?º«?Â0¸?| Vœj¹?G=D£;ˆ¹?8ýÚúé·?±i¥È%º?'À°üù¶¸?`Í‚9z¸?©„'ôú“¸?ø¬8ÕZ¸?ŽDÁŒ)¸?kE›ãÜ&¸?äÀ«åÎL¸?BZcÐ ¡·?¸?°È¯bƒ¹?‹3†9A›¸?ÞFN¶¹?CB•š¹?ž³„Ö÷?‹ßV*¨¸?!>°ã¿@¸?NA~6r¹?¤á”¹ùF¸?]Ot]øÁµ?ì…¶ƒ·? ´;¤ ¹?€Écë¹?¬ŒF>¯x¶?3&c`µ?ʉvR¶?›h>ç¶?‰]ÛÛ-ɵ?#/kb¯´?šÏ¹Ûõ¶?eÄ Q¶?¤7ÜGnM¶?¯˜Þ„¸? 0,¾-¸?9EGrù¹?þÖN”„D¶?³Dg™E(¶?”M¹Â»´?毹2¨¶?î$"ü‹ ¹?R û=±N½?¬ÿs˜//¼?!àFʽ?÷Xúй?gñbaˆœº?JFΞv¸??{óº?Mº-‘ θ?²^‚S¸?`‘_?Ķ?y ý\¸?“áx>ê¹?ܺ›§:äº?¯#Ù@º¼?-!ôlV¹?#½¨Ý¯¸?¦Õ°ß·?”k dv¹?L£uT5¹?ÆýG¦C§·?ìùšå²Ñ¹??N™›o¸?‹üú!6¸?® ãüM¸?½ÅÃ{¸?Ò7iÍ·?¤6qr¿·?ÊPSé·?›;ú_®E·?yè»[Y¢·?õ€yÈ”¹?iTàd¸?Q†ª˜J?¹?lîè¹¹?Äëú»a·?£’:M¸?+Û‡¼åê·?Ï„&‰%¹?biàG5ì·?Øñ_ µ?RÔ™{Hø¶?Ëõ¶™ ñ¸?êçME*Œ¹?åÒø…W¶?2âÐ(µ? š²Ó¶?"¦D½Œ¶?öBÛÁˆµ?Y2Çò®z´?ãQ*á ½¶?À"¿~ˆ ¶? ®¹£ÿµ?¢ÏGq¸?a6†åÏ·?JÑʽÀ¬¸?<ø‰è÷µ?Ï×,—ε?SëýF;n´?¥Kÿ’T¶?Eƒ<…\¹?¥¡F!ɼ?¹þ]Ÿ9ë»?š#+¿ Ƽ?û”c²¸ÿ¸?ãÂ,`º?CSvúA]¸?j’Ìê¹?Iö5Cª¸?¦`³é¸?Þvøk²¶?+Ôð-¸? K< lʹ?,*ât’­º? šyrM¼?kšwœ¢#¹?o»ì·?Û$¶»·?Ǹââ¨Ü¸?†®D ú¹?uÌyƾd·?GéÒ¿$•¹?ܵÛ.¸?ßÞ5è·?WA tí ¸?õL/1–é·?iTàd¸·?¾Û¼qR˜·?,×Ûf*Ä·? Tÿ ’!·?D…êæâo·?jÜ›ß0Ѹ?A¶,_—á·?œ5x_• ¹?á(yu޹?¬ÿs˜/·?„Ö׉"¸?"«[='½·?ÝCÂ÷þ¹?m‘´}Ì·?F—7‡kµ?çmlv¤ú¶?ß,Õ¼¸?¥e¤ÞS9¹?tðLh’X¶?„+ POµ?ºÛõÒ¶?ݵßÚ‰¶?¦œ/ö^|µ?y ý\´?±¾É¶?t ‡Þâµ?Šä+”ص?œ¥d9 ¥·?Æù›Pˆ€·?úGߤiP¸?“ `ÊÀµ?Øî<ñœµ?¶+ôÁ26´?ýKR™b¶?}iÆ¢é¸?B žB®Ô»?º ¾eN»?ÊŠ;Þä»?"¨½ ¸?‘{ººc±¹?¶ƒû¸?w„Ó‚}¹?fÝ?¢C¸?D5%Y‡£·?¯ê¬Øc¶?aâ¢ÎÜ·?Õ°ßëT¹?<Û£7ÜGº?$˜jf-¼?)ÎQGÇÕ¸?Î'…y·?U ƒ‡i·?~£<ór¸?Ižëûp¸?Xc'¼·?ИIÔ >¹?ì£SW>Ë·?4fõ‚·?©‡ht±·?1 Xr‹·?sñ·=Ab·?XŽ<·?œh>çn·?õŸ5?þÒ¶?JbI¹û·?Òýœ‚ül¸?Þ¯|·y·?ÓÜ a5–¸?ÑvLÝ•]¸?‚)[$í¶?Ófœ†¨Â·?Ìa÷Ãc·?‹3†9A›¸?ƒ5Φ#€·?ßýñ^µ2µ?ò²&øŠ¶?ÈбƒJ¸?ÐÖÁÁÞĸ?Þs`9B¶?¬Å9êè´?>w‚ý×¹µ?OXâeS¶?™ƒ £U-µ?½ÅÃ{´?Î7¢{Ö5¶?±£q¨ß…µ?èÙ¬ú\mµ?–˜g%­ø¶?»_ønó¶?õL/1–é·?öE™ 2µ? dv½Sµ?ðˆ ÕÍų?à?ÿ=xµ?Ö:q9^¸?«#G:#»? ô‰å˜,¶?lë§ÿ¬ùµ?áy©Ø˜×µ?È@ž]¾õµ?mXSYvµ?K­÷í¸µ?ñð¤…˶?½åêÇ&ùµ?Þ®Õö¶?- PSËÖ¶?n‹2d’µ? @£té_¶?ßN"¿¶?B˜Û½Ü'·?£ý…1¶?® µ?L5³–¶?ñó߃×.µ?ë8~¨4¶?ZÔ'¹Ã&¶?"ߥÔ%ã´?#0Ö70¹µ?¸æŽþ—kµ?¯ê¬Øc¶?>@÷åÌvµ?I,)wŸã³?GÇÕÈ®´´?JDøAc¶?›©¾ó‹¶?ò%TpxA´?–wÕæ!³?ÇAœ‡´? Q¾ …´?(›r…³?XŒºÖÞ§²?ñº~Án´?ˆ„ïý Ú³?Õ•Ïò<¸³?­iÞqŠŽ´?Ÿ2âд?f…"Ýϵ?•œ{h³?Á=~o³?¸àŸR%²?}ÍrÙ蜳?Vïp;4,¶?‡4*p² ¸?4,F]kï·?†óþ?N¸?Êþy0H¶?î@òè¶?R û=±Nµ?WCâK¶?ƒ3øûÅlµ?±5[yÉÿ´? „bÕ ´?ÇhUMµ?ƒù+d® ¶?]¤P¾¾¶?Bí·v¢$¸?ç9"ߥԵ?¬ä.´?À~þ{´?/PR`Lµ?ñ~Ü~ùdµ?¬ÿs˜//´?‚ý×¹i3¶?Åþ²{ò°´?•ص½Ý’´?MÛ¿²Ò¤´?'À°üù¶´?ŒƒKÇœg´? PO?´?Š!9™¸U´?mp"úµõ³?DOʤ†6´?bI¹ûµ?“Úl@´?y¯Z™ðKµ?ŒM+…@.µ?G­0}¯!´?…{eÞªë´?;´TÞŽ´?¹ÁP‡nµ?¦ÒO8»µ´?*æ èhU³?pÒ4(š´?V)=ÓKŒµ?÷!o¹ú±µ?­hsœÛ„³?€Ÿqá@H²?ÿ®Ïœõ)³? 7U†q³?ûWV𔂲?‡O:‘`ª±?8Ÿ:V)=³?lèf Ü²?ëD2䨲?·˜Ÿš²³?mp"úµõ³?ni5$î±´?m©ƒ¼L²?ªÒ×øL²?ù½Mö#±?ø¥~ÞT¤²?Tþµ¼r½µ?¾ƒŸ8€~·?øí¸áw·?«=ì…¶·?Ãõ(\µ?Âõ(\¶?ãÞü†‰µ?=œÀtZ·µ?Ñ”~Pµ?S"‰^F±´?["œÁß³?³ÅVд´?]ûzµ?CÆ£T¶?£<órØ}·?"rúz¾fµ?â‘xy:W´?:ž%È´?,,¸ðÀ´?Ž •bGã´?œ¥d9 ¥³?#„GG¬µ?… £YÙ>´?=·Ð•´?'‚8'´?‰”fó8´?vâr¼ѳ?XåBå_˳?«• ¿Ôϳ?å%ÿ“¿{³?”‡…ZÓ¼³?^žÎ¥„´?Þ:ÿvÙ¯³?å*¿)¬´?r„Ѭ´?¦}sõ¸³?穹n´?ëW:ž%´?Ó¿$•)æ´?Ct 4´?7á^™·ê²?¤oÒ4(š³?Z+Úç6µ?ŠÊ†5•Eµ?Êû8š#+³?oñðž˱?<¡×ŸÄç²?4/‡Ýw ³?}=_³\6²?¦D½Œb±?ìÙs™š³?GW#»²?Yà+ºõš²?–{Y¡H³? ñH¼<³?Z.óS´?2Ì Úäð±?Í\àòX3²?w ùg±?ïäÓc[²?˾+‚ÿ­´? ÇóPo¶?m¡õðe¶? 5?þÒ¢¶?ú~j¼t“´?&6׆е?óùõC´?Ɖ¯vç´?çQñGT´?‚pêé³?¹4~á•$³?h׿ë³?¼­ôÚl¬´?±ÀWtë5µ?¬äcw’¶?¸éÏ~¤ˆ´?ºžèºðƒ³?€ôMšE³?š&l?ã³?5 ´;¤´?g|_\ªÒ²??U…bÙ´?©¤N@a³?mýôŸ5³?“qŒdP³?ƒ5Φ#€³?IƒÛÚÂó²?_¶¶F³?*´t³?†!rúz¾²?¸"1A ß²?Нv稳?ÎýÕã¾Õ²?†©-u׳?»ÕsÒûƳ?ÖÇCßÝʲ?~¨4bfŸ³?· b k³?$ð‡Ÿÿ´?{Cr2q³?7Û$²?/àe†²²?Š!9™¸U´? š]÷V´?|~!<²?E>‘'±?-“áx>²?+hZbe4²?µˆ(&o€±?Æ‚”°?·Õ¬3¾/²?œ27߈î±?2Ì Úäð±?@ÀZµkB²?âvhXŒº²?€Ó»x?n³?çÇ_ZÔ'±?¸u7O±?1 òn°?Ó1çû’±?Ü»}éí³?0º¼9\«µ?†txã§µ?ôzÄè¹µ?Ѱu­½³?•·#œ¼´?­5”Ú‹h³?œà›¦Ï´?)êÌ=$|³?¨Sݳ?'/2¿F²?4Ûú`³?´:9Cqdz?èØA%®c´?€¸«W‘ѵ?øùïÁ³?êìdp”¼²?Ëd8žÏ€²?M ˆE ³?YRî>ÇG³?“å$”¾²?1&ý½´?n„EEœ²?‘~û:p²?ê<*þ?sõ¸oµ²?"Ã*ÞÈ<²?׈`\:²?Ö­ž“Þ7²?^ÚpXø±?WCâK²?8 ¥+ز?jh°²?¸ŸF³?Æ‹…!rú²?ͰQÖo&²?ôÄs¶€Ð²?i¢²?)_ÐBF³?²×»?Þ«²?¿)¬TPQ±?ñÿ²?Zd;ßO³?%±¤Ü}޳?ƒ3øûÅl±?ë6¨ýÖN°?Zd;ßO±?šë4ÒR±?B[Î¥¸ª°?æXÞU˜¯?8IóÇ´6±?³—m§­±?È—PÁá±?æ®%䃞±?´”,'¡ô±?±Pkšwœ²?]¥»ël°?RC€ ˆ°?ܵÛ.4¯?¯{+Ô°?ué_’ʳ?º†Oµ?ýkyåzÛ´?EœN²Õå´?˜¢\¿ð²?éI™Ôд?sõ¸oµ²?0ÕÌZ H³?‚,`·²?ƒÜE˜¢\²?`"Þ:ÿv±?Çô„%P²?ÓÁú?‡ù²?±ù¸6TŒ³?ŸçOÕé´?!Z+Úç²?Zœ¡¸ã±?r£ÈZC©±?7oœæ=²?^ô¤‹²? YÝê9±?Ýxwd¬6³?l´è¡¶±? À?¥J”±?AÕèÕ¥±?t ‡Þâá±?dY0ñG±?0×¢h[±?QÞÇÑY±?eS®ð.±?LÆ1’=B±?.çR\Uö±?Év¾Ÿ/±?32È]„)²?*á ½þ$²?BëáËD±?C;§Y Ý±?®I·%rÁ±?³Ïc”g^²?¾‰!9™¸±?FaE|°?->Àx±?6Vbž•´²?ó‘”ô0´²?#/kb¯°?“x]¯?•€˜„ y°?´¬ûÇBt°?Ã.Šø°?IVñF®?%ZòxZ~°?:ÏØ—l<°?á (ÔÓG°??U…bÙ°?Vš”‚n/±?-@ÛjÖ±?ö~£7ü®?úüá翯?œiÂö“1®?·Ï*3¥õ¯?ž˜õb('²?-y<-?´?Ëø÷´?÷®A_zû³?µÃ_“5ê±?W•}W³?Ü:åѱ?ê<*þ?o»ì×±?8MŸp]±?¶ö&†°?Û£7ÜGn±?äf¸Ÿ²?™ò!¨½²?$ð‡Ÿÿ´?¥/„œ÷ÿ±?€îË™í ±?ܸÅüÜа?`ÊÀ-]±?¾Ý’°«±?w×Ùf°?e‹¤Ýèc²?š'×Èì°?Ý 7àóð?àI —Uذ?Þrõc“ü°?D†U¼‘y°?fh<Äy°?iÀ"¿~°?7n1?7°?5B?S¯[°?ò"ðk$±?jõÕUZ°?è-Þs`±?=a‰”M±?œÃµÚÃ^°?>Y1\±?å „bÕ°?Îqn?fO›sð°?Å7>[¯?(Í9x&°?s‚69|Ò±?¢Busñ·±?s×òA¯?¬ÉSVÓõ¬?ðß¼8ñÕ®?ÄÑUº»Î®?hñÿ­?b k_@/¬?FAðøö®?îîº/g®?üŠ5\äž®?-Ë×eø¯?á² ›.°?ÎSr3ܰ? p­?Šÿ;¢B­?X zR&5¬?4iSul®?6<½R–±?Ø*Áâpæ³?†1zn¡³?ÙvÚŒ³?ñKý¼©H±?ýh8en²? -ëþ±±?l“ŠÆÚß±?åìÑV%±?äÖ¤Û¹°?*¬ÿs˜¯?×L¾ÙæÆ°?#ùJ %v±?xÑWf,²?JÐ_裳?g)YNB±?±3…Îk°?å—Á‘(°?8Ûܘž°°?Òo_α?µSs¹ÁP¯?eqÿ‘éб?©ù*ùØ]°?| Vœj-°?»—ûä(@°?‚«<°S°?%±¤Ü}ޝ?÷Ç{ÕÊ„¯?‚‘—5±À¯?µ:uå«?`ºò©?¶eÀYJ–«?ía/°¬?§x\T‹ˆª?·ÑÞ©?r4GV~¬?¤8GW«?ÏkìÕ[«?ãOT6¬©¬?óÆIaÞã¬?ÃFY¿™˜®??ªa¿'Ö©?ûY,Eª?&Î5ÌШ?­¢?4óäª?è3 ÞŒš¯?Wzm6Vb²?r‰#D²?ǹM¸Wæ±?JbI¹û¯?²,˜ø£°?:;%¯®?~£<ór°?–#d Ï.¯?^¹Þ6S!®?ãþ#Ó¡Ó«?DMôù(#®?„~¦^·°?£ x|{×°?HÅÿQ¡²?ßû´W¯?8, ü¨†­?35 ÞF­?¯ ?8Ÿ:®?ÛÂóR±1¯?…±… %¬?)ßÞ5°?lâuý‚­?D¤¦]L3­?2ZGUD­?–´â Ÿ­?l®šçˆ¬?äRìh¬? š–X¬?_ÔîW¾«?f1±ù¸6¬?HS=™ô­?f1±ù¸6¬?( 5 I®?ªÒ×øL®?]©gA(ï«?>]ݱØ&­?4hèŸàb­?²ºÕsÒû®?uÿwD­?Æ2ýñÖ©?@üü÷൫?*Wx—‹ø®?iâàI ¯?ʉvR~ª?ó¬¤ßP¨?Ìyƾdã©?CŒ×¼ª³ª?Ùî@ò¨?Ý(²ÖPj§?A~6rÝ”ª?¹nÀ燩?W°x²›©?,œ¤ùcZ«?Ò¬lò–«?½Ãíа­?Ky ²¨?ùõCl¨?]Þ®Õ¦?ª¸q‹©?4hèŸàb­? ¥ö"ÚŽ±?‘ð½¿A{±?ïá’ãNé°?LàÖÝ<­?º ¾eN¯?}Ê1Yܬ?ñœú@ò®?º2¨68­?ß¿yqâ«?ÁŠS­…©?[Î¥¸ªì«??{ó®?3¥õ·à¯?”ÝÌèGñ?"àªÔ¬?+iÅ7>«?³A&9 «?¦´þ–ü«?yW=`2­?-@ÛjÖ©?»Õ”d®?0-ê“Üa«?”ÁQòê«? ^ô¤«?f»B,c«?eßÁÿVª?)Z¹˜ª?åÐ"Ûù~ª?žz¤Ámm©?®,ÑYfª?À=ÏŸ6ª«?}²b¸:ª?¬Så{F"¬?I,)wŸã«?O>=¶eÀ©?S ³³èª?a§X5«?ógš°ý¬?0 Xr«?2rö´Ã§?åòw﨩?Y¤‰w€'­?ëTùž‘­?ú~j¼t“¨?rÁüýb¦?€ñ ú'¨?ÐÏÔë©?ÌÑã÷¦?^‘šv1¥?ì ×1®¨?¡l\ÿ®§?zÇ):’˧?Z+Úç6©?Ó…Xý†©?ÁR]ÀË «?1îÑZѦ?üâR•¶¸¦?¹ÿÈtèô¤?,H3Mg§?$*T7«?ÒŒEÓÙɰ?Kªɰ?‡3¿š°?†vN³@»«?Tþµ¼r½­?þœ‚üläª?¥ßPøl­?›ÆöZÐ{«?q¯Ì[uª?;oc³#Õ§?«&ˆº@ª?]~p>u¬?[ÏŽY®?•!ÿ°?.VðÛ¨?I€šZ¶Ö§? îêUdt¨?g×½‰ ª?ùómÁR]¨? s‚69|ª?&ßlsczª?æ¾÷7¨?eû·\ý¨?+*ÿZ^©?{Cr2q«?ôiý¡©?O’®™|³¥?ÝÑÿr-Z¨?hæÉ52«?«w¸«?·›à›¦Ï¦?_%» ”¤?9ÕZ˜…v¦?â¶ôhª§?ßÜ_=î[¥?5™ñ¶Òk£?‘ñ(•ð„¦?íE´Sw¥?M,ðÝz¥?Ïg@½5§?æÍáZía§?=órØ}Ǩ?l³±ó¬¤? ß÷o^¤?ûèÔ•Ï¢?‰ëW\¥?æ}“¦A©?´W}¯? ßû´W¯?Ü.4×i¤­? k_@/Ü©?-σ»³v«?vß1<ö³¨?•'vŠU«?Úç6á^©??;àºbF¨?Øõ vö¥?±k{»%9¨?v¦Ðy]ª?ÅE¹‡¬?KæXÞU°?t È^ïþ¨?¥J”½¥œ§?Y1\q§?™€_#I¨?s÷9>Zœ©?Û¦¶ÔA¦?Ïõ}8Hˆª?ý¾óâħ?l¸ [–§?²€ ܺ›§?["œÁß§?ožê›á¦?/0+é~¦?Ž¿·éϦ??VðÛã¥?"úµõÓ¦?ó!¨½¨?¿Òùð,A¦?穹n¨?Ø Ûe6¨?Á­»yªC¦?†¬nõœô¦?ð¥ð Ùu§?ªÕWWj©?€Ó»x?n§?l dv½£?XøQ û¥?±á镲 ©?â[X7Þ©?õfÔ|•¤?ŒÙ’Un¢?,ºõš¤?è1Ê3/‡¥?J¶ºœ£?>Y1\¡?<š$–¤?¨T‰²·”£?ùö®A_z£?gµÀ)¥?35 ÞF¥?ôpÓiݦ?}гYõ¹¢?ž#ò]J]¢?ëTùž‘ ?Cª(^em£?Šå–VCâ¦?>Àx ­?+Üò‘”¬?nú³)"«?»òYžw§?­P¤û9©?õ-sº,&¦?¯èÖkz¨?ÆüÜД¦?å`6†¥?qW¯"£?*ÖT…¥?­lò–«§?Ÿ·±©?æ@µm­?AG«ZÒQ¦?—qS¥?XŽ<»¤?ÊŒ·•^›¥?~Wÿ[ɦ?‚ëßõ™£?·D.8ƒ¿§?›Z¶Ö ¥?î'c|˜½¤?î'c|˜½¤?y$^žÎ¥?ú—¤2Ť?N]ù,Ï£?O#-•·#¤?ADjÚÅ4£?þEИIÔ£?HÀèòæp¥?-Z€¶Õ¬£?=HO‘CÄ¥?¨V_]¨¥?šë4ÒRy£?Í‘•_c¤?ö$°9Ϥ?Æ¡~¶¦?„œ÷ÿq¤?1{ÙvÚ¡?Xª x™a£?—Çš‘A¦?ÊRëýF;¦?¦bc^G¢?Ä QºôŸ?]Ot]øÁ¡?Ìz1”í¢?ŒôzÄ ?†=íð×d?NF•aÜ ¢?«‘]i¡?"ߥÔ%ã ?ì4ÒRy;¢? m9—â¢?z9ì¾cx¤?cD¢Ð²îŸ?‰îY×h9 ?nÞ8)Ì{œ?r¦ ÛOÆ ?ðúÌYŸr¤?‡¾»•%ª?)"¦?PÈÎÛØì ?·¸Æg²ž?° ÍX4?Ý Ì EºŸ?@¡ž> ?‡4*p² œ?“[ìö¡?“§¬¦ë‰ž?.7ê°Â?U¯²¶)ž??Ä 'iž?=‚)[$?GÇÕÈ®´œ?Ë,B±4?Ý µ‰“›?¯D ú‘œ?Š[1еŸ?‹PlMKœ?Š!9™¸U ?‘`ª™µ ?ƒ5Φ#€›?FИIÔ ž?À%W±ø?1]ˆÕa ?‡ú]Øš?qå Z˜?N 4Ÿs·›?ñd73úÑ ?0Hú´Šþ ?sŸˆ‚™?–Ð]gE”?)uÉ8F²—?‹ˆbò˜™?zqÈÒ•?IÚ>æ’?J +‡™?·Ï*3¥õ—? ר%ª—?ÿ .VÔ`š?/\sGÿ›?º„Coñðž?˜üOþî•?ž~P)”•?j…é{ Á‘?ï7ÚqÃï–?éðÆOãž?_%» ”¤?rÞÿÇ £?¤ÃC?£?NBé !ç?U¿Òùð,¡?\;Qi›?Êf/Ûž?Kê46œ?MÌ΢wš?¤§È!â–?ÄB­iÞqš?ð†4*p²?žî<ñœ- ?®ÕöB£?™×‡l ?ˆŸÿ¼v™?aü4îÍo˜?ÝAìL¡óš?gF?N™›?|,}è‚ú–?Q¡º¹øÛž?’we¨Š™?Úl@„˜?؃Iññ ™?s¼Ñ“2™?3ýñÖù—?êAA)Z¹—?J–“PúB˜?¦|ªF¯–?>u¬Rz¦—?5^ºI ›?ä¢ZD“—?{ö\¦&Á›? $(~Œ¹›?6ZôPÛ–?ú`º™?àõ™³>å˜?L§uÔ~›?>ë-z˜?¾ݳ®Ñ’?š]÷V$–?]QJVÕ›? JÑʽÀœ?†vN³@»“?3¥õ·à? m9—⪒?p–’å$”?f£s~Šã?}w+Kt–‰?ðùa„ðh“?£?4óäš’?Ánض(³‘?Æ5>“ýó”?&ãÉ¡–?'ÁÒ¨À™?mýôŸ5?7TŒó7¡?êu‘BYˆ?u­½OU‘?§wñ~Ü~™?³Ò¤t{¡?jP4`‘Ÿ?½Œb¹¥Õ ?¡J͘?õI̜?×¥Fègê•?÷[;Q™?Ž®ÒÝu–?:A›>é”?íÔ\n0Ô‘?†Èéëùš•?t–Y„b+˜?³{ò°Pkš?kÓØ^ zŸ?:ž%Ș?ßøÚ3K”?¾Á&S“?Ò‰Sͬ•?¬r¡ò¯å•?(œÝZ&Ñ?ä„ £Y™?˜£Çïmú“?2ãm¥×f“?ñ,AF@…“?aO;ü5Y“?–±¡›ý’?܃/¡’?ø¥~ÞT¤’?4GV~Œ‘?ŠsÔÑq5’?õg?RD†•?å(@̘’?"Ä•³w–?´”,'¡ô•?ÍæqÌ_‘?±RAEÕ¯”?®-9 p?#0Ö70¹q?¦(—Æ/¼b?ŒòÌËa÷]¿Ž‘ìj†t?×߀Ju?í+ÒSäp?‡ˆ›SÉ€? |(ђǃ?Ù|\*Ɖ?¨p©;Z?ôiý¡i?Ôº j¿µS¿éd©õ~£m?É&pënŽ? …8„*•?>v?‰{,}肊?5&Ä\Rµ}?Ö©ò=#z?œ'¾ÚQ|?m:¸Y¼x?xìg±Éw??¨‹ÊÂw?:ÏØ—lw?`­Ú5!­?(¸XQƒix?__ëR#ôƒ?¢+Üò‘„?`sž Mr?¢c•¸Ž?~£<órx? S"‰~?÷åÌv…>x?A‚âǘ»f?sµ4·Bx?6l±Ûg…?qs*ªˆ?]ú—¤2Ål?†7kð¾*W¿—=Ô¶aT?î=\rÜ)]?°t>d?,ºõšt?f`Xþ|{?&üR?o*‚?Ä™_Í‚‰?)v4õ»€?8fÙ“Àæl?Åã¢ZDc?JΉ=´u?¤6qr¿Cq?ôï9°\?6sHj¡d‚?¯þ·’k?iqÆ0'hc?ãàÒ1çi?§çÝXPd?a‹Ý>«Ìd?æmrø¤c?ÇIaÞãLc?Œu?TZ?l%t—ÄYa?¯ ?8Ÿ:v?Ôº j¿µc?ÛOÆø0{y?‹üú!6x?ñ»é–âO?y:W”‚u?ßÝÊef?ébÓJ!p?kׄ´Æ c?*6æuÄ![¿ûÌYŸrLV?1е/ w?½8ñÕŽâ|?¯þ·’[¿Õ‘#‘w¿F[•DöAf¿÷è ÷‘[c¿ˆØ`á$Ío¿€fØñ¿G‘µ†R{a¿p˜h‚§`¿t^c—¨Þj¿ÓÝu6äŸ9?M„ O¯d?"ÇÖ3„cv?Ùéu‘By¿FÒnô1p¿ÕýL½n¿1?74e§o¿v7OuÈÍ€?Œ‰BËŠ?Vº»Î†üƒ?ªî‘ÍUóŒ?Tÿ ’!Çv?MŒJê„?¨¦$ëpte?=·Ð•t?Þèc> Ði?ôï9°\?$Dù‚2¿‚¬§V_]e?T5AÔ}r?$EdXÅy?/4×i¤¥‚?´Éá“N$x?ÕÌZ Hû??ÓÝu6äŸI¿ô4`ôie?N)¯•Ð]R?<-?p•'P¿Ÿ·±y?ŒJê4A?êÐéy7D?F´Swe7¿›ÿW9Ò)¿õ×+,¸¿·_>Y1\¿Îp>?ŒP¿óWÈ\9¿Êß½£Æ„h?MÛ¿²Ò¤4¿QÝ\ümOp?™€_#Ip?µRäG^¿P”i4¹h?¢&ú|”'?ú  RðT?]§‘–ÊÛA¿½Œb¹¥Õp¿6:èR¿_–vj.7h?¨5Í;NÑq?A,›9$µp¿ª'ó¾Iƒ¿…BB•z¿Ýµ„|гy¿z4Õ“ùG¿@7n1?‡¿÷è ÷‘[s¿áy©Ø˜×q¿ \7¥¼v¿­lò–«_¿¾IÓ hþ>©|š“i?Åoò[t‚¿Lþ'÷Žz¿5Ð|ÎÝ®‡¿]n0Ôa…{¿q­ö° x?Ø›6ã„?àòX32È}?ûë܈? ß÷o^l?F^ÖÄ?a2U0*©?úC3O®)`?¾IÓ h>?F–̱¼«.¿ÐGqhd¿Þ3ßÁO?Vbž•´â[?ôiý¡i?+Qö–r¾x?lxz¥,Cl?Öª]ÒZ¿VJÏôci¿f.py¬9?D6.6­T¿H£'ÛÀm¿Ô x'Ÿn?¸®˜Þ^¿‚ÿ‚i¿_%» ”d¿Aš±h:;i¿ø§T‰²·d¿M„ O¯d¿¨¦$ëpte¿ƒMGÅÿm¿ífF?Ni¿!‘¶ñ'*K?›Žn/f¿ü‹ 1“¨W?¾‰ jøV?dæ—Çšq¿ú~j¼t“H?k~ü¥E}b¿ÛÃ^(`;X¿Ù'€bdÉl¿ÖÄ_Ñ­w¿}\*Æùk¿‡¨ÂŸáÍJ?êè¸Ù•f?©J[\ã3y¿#ö  ‰¿÷­Ö‰Ë¿g¹ltÎO¿÷ª• ¿„¿•C‹lç‹¿¬q6|¿ææÑ=ëz¿AfgÑ;€¿j¤¥òv„s¿ò'*ÖTV¿+~©Ÿ7U?…Ѭlò†¿ƒ¡+Üò¿Û4¶×‚Þ‹¿ŽyqÈ‚¿XÎüjp?GN¶;€?æmrø¤s?®óo—ýºƒ?‘¹2¨68Q?¯ ?8Ÿ:v?|b*ß3b¿ÅËÓ¹¢”@¿U¯²¶)^¿ß6S!‰g¿dæ—Çšq¿²Úü¿êÈa¿[ ³ÐÎiF¿†7kð¾*G?ì†m‹2k?Ð_è£çV?Âj,amŒm¿oÖà}U.t¿™cyW=`^¿’$W@¡n¿ú™zÝ"0v¿%]3ùf›[?ýÇWËm¿Ò¥I*s¿¸…ëQ¸n¿rö´Ã_s¿²ó66;r¿úœ»]/Mq¿O\ŽW zr¿fI€šZ¶v¿zUgµÀs¿cbóqm¨X¿ò]J]2Žq¿^ PjD¿®I·%rÁI¿±‰Ì\àòx¿*ÅŽÆ¡~W¿ž]¾õa½q¿_`V(Òýl¿ë6¨ýÖNt¿ö–r¾Ø{¿ÜµÛ.4w¿i¬ýíÑ[¿ümOØî?HŠÈ°Š7‚¿ CÇ*q¿aÝxwd¬†¿äIÒ5“o†¿Úç6á^‰¿F˜¢\¿¿o­mŽƒ¿ IJ™C‚¿ò”Õt=Ñ…¿mò–«{¿/ó:âp¿ª ãn­U¿“¬ÃÑUº‹¿Cý.l͆¿(CUL¥Ÿ¿¸u7O…¿E+÷³Ba?£ x|{w?€Ÿqá@Hf?sõc“üˆ?Í®{+S¿ˆ»zm?l\ÿ®Ïl¿h^»ï^¿+ømˆñj¿¾PÀv0bo¿µÑvLÝu¿&«"ÜdTi¿ÿ>ãÂ`¿ ¼“OmI¿â̯æÁ\?ümOØî?é ¸çùs¿ÿ< $}z¿Ž«‘]ii¿\Y¢³Ì"t¿`ºòy¿·_>Y1\ý>’]i©÷t¿Q¿ [³•w¿¬r¡ò¯åu¿¹û-Îx¿ˆ)t^cw¿c}“Ev¿ˆe3‡¤v¿¨ükyåz{¿¥Kÿ’T¦x¿w‚ý‡¿±ýdŒ³‡¿=Õ!7à ˆ¿BÍ*ŠW‰¿_)ËǺˆ¿ŠsÔÑq5‚¿©„'ôú“ˆ¿ñ»é–â¿y=˜Ÿ€¿ñ}q©J‹¿ Tƿϸ€¿—á?Ý@‡¿‰Ð6®‡¿}w+Kt–‰¿2ZGUD¿eŽå]õ€‰¿ÝµßÚ‰‚¿3¥õ·à¿ÁV ‡3¿.‹‰ÍÇ•¿ðmú³)’¿Í?ú&Mƒ’¿ê=•Óž’“¿·Ï*3¥õ—¿3d’‘³¿g}Ê1YÜ¿öyŒòÌË‘¿Ã×׺Ô¿8½‹÷ㆿ•¸ŽqÅÅ¿o.2•¿]3ùf›“¿Fу—¿og_yž’¿íÿ°¥Gs¿Ó–x@Ùd¿OYM×]w¿nùHJzX?@KW°x‚¿=ñœ- ´n¿C®Ô³ ”‡¿×¥Fègê…¿'ù¿b ‡¿`‰”fóˆ¿ù&3ÞVŠ¿ qåìц¿ñ.ñ˜…¿82üÁÀƒ¿„ äÙå[¿þÓ x'¿~p>u¬RŠ¿0ôˆÑs ¿óèžu†¿\;Qi‹¿ü´W¿<À“.«€¿ó‘”ô0´Š¿UܸÅüŒ¿á iTàd‹¿:d¯wŒ¿ÈбƒJŒ¿i©÷TN‹¿Åä 0óŒ¿0ôˆÑs ¿~U.TþµŒ¿^×/Ø Û†¿zVÒŠo(Œ¿ŠXİØ„¿–= lÎÁƒ¿èºê¿œˆ~mý„¿Ÿp]1#Œ¿±Ûg•™ÒŠ¿ Rðr¥Ž¿:=ïÆ‚Â¿2ZGUD¿€ ;¨Ä…¿´9Îm½‚¿ŒJê4‘¿«˜J?áì–¿1C㉠Γ¿ê³®+f”¿‡5•Ea•¿ìm3⑘¿äGˆ,’¿Ì³’V|C‘¿Õw~Q‚þ’¿„H†[Ï¿l±Ûg•‰¿ˆò-$`„¿1 íœf–¿fk}‘Ж“¿ô #½˜¿>—©Ið†”¿>³$@M-{¿Åä 0óm¿E×…œO}¿™ò!¨½¿‹‹£rµ„¿ú´ŠþÐÌs¿y7R¶HŠ¿ÿêqßjˆ¿'á_‰¿²GWéAØ)V ÂŒ¿á(yuމ¿QKs+„Õˆ¿äÜ&Ü+󆿶ŸŒñaö‚¿ñƒó©c•‚¿:Ì—`¿eª`TR'¿€J•({K‰¿´å\Š«ÊŽ¿`>Y1\¿4fõ‚Oƒ¿âX·ÑŽ¿z4Õ“ùG¿˜0š•íCŽ¿ë²×»¿H¾D„¿¾IÓ hŽ¿:±‡ö±‚¿®‚èÚ¿*Æ3h迚Ìx[鵉¿ Ü¶ïQ¿HÜÖž‡¿ßºñîȈ¿NGÅÿ‘¿ÝД~P‡¿Ò§Uô‡fŽ¿•*Qö–rŽ¿^žÎ¥„¿Ü½Ü'G’¿eª`TR'¿Täqs*‰¿ô¾ñµg†¿1`ÉU,~“¿{.S“à ™¿;:®Fv¥•¿^üo%;–¿1îÑZÑ–¿ýi£:Èš¿dT8‚”¿ñ,AF@…“¿0[wó”¿"àªÔì‘¿ CÇ*q¿‚‘—5±À‡¿ÔÔ²µ¾˜¿f3‡¤J–¿ ˜À­»yš¿E/£Xni•¿$‘—5¿`"Þ:ÿvy¿ŒøNÌz1„¿yxÏåi¿ÉËšXà+Š¿öa½Q+L¿ÏÛØìHõ¿üU€ï6oŒ¿î }°Œ ¿¸4J—Ž¿ñ»é–â¿yé&1¬Œ¿ÎOqxµŒ¿ Šcܚt["‡¿óÇ´6í…¿äqs*¿ÌFçüÇ‘¿-î?2:¿­Û ö[;‘¿Pÿ>ã‘¿ŸZ}uU †¿9 3¦¿À3‰z‘¿ž´pY…Í¿ÛÄÉýE‘¿´­fñ}‘¿~Œ¹k ù¿±ÉW)‘¿–Tÿ ’‘¿¸æŽþ—k‘¿tCSvúA¿/ÛN[#‚‘¿sIÕvŒ¿¬µ“ýó”¿àœ¥½Á—¿*¨¨ú•Η¿!àFÊ™¿3âÐ(]š¿­P¤û9™¿ÛûTˆ•¿…ëQ¸•¿‡Q<¾½›¿Îp>?Œ ¿ð‰Ð6ž¿@½5_%Ÿ¿t ]‰@õŸ¿JÒ5“o¶¡¿Až]¾õa¿û"¡-çRœ¿ªd¨âÆ¿œ4 Šæœ¿ûõ×+,˜¿Ó…Xý–¿1#¼=¡¿_b,Ó/Ÿ¿[éµÙX‰¡¿ˆØÒ£©ž¿¥-®ñ™ì¿®ð.ñˆ¿ñõµ.5B¿]7¥¼VB‡¿v¦Ðy]’¿an÷rŸŒ¿p² Ü:•¿$^žÎ¥”¿—Ép<Ÿ•¿FEœN²Õ•¿JDøAc–¿>ʈ @£”¿"¨½ ”¿|dsÕ+Nµ–¿Ð_è£ç–¿=ð1Xqš¿†ŽTâ:–¿ïV–è,³˜¿!æ’ªí&˜¿gaO;ü5™¿·zNzßøš¿7¥¼VBw™¿íE´Sw•¿Sz¦—Ë”¿» ÿé œ¿Ü~ùdÅ ¿yÎZŸ¿9DÜœJ ¿5cÑtv2 ¿¬ÆÖÆØ¡¿Lo.2ž¿•»ÏñÑ✿+£‘Ï+ž¿øXŽœ¿àõ™³>嘿€µjׄ´–¿u­½OU¡¿GN¶; ¿³˜Ø|\¢¿ ÞŒš¯’Ÿ¿”ùGߤi¿Ñ=ë-Š¿Ùƒkîè¿OYM×]‡¿kaÚ9Í’¿…³[Ëd8Ž¿xšÌx[é•¿M¾ÙæÆô”¿3#…–•¿Í°QÖo&–¿·&Ý–È—¿ˆht±3•¿Ððf ÞW•¿‡¢@ŸÈ“”¿ZÔ'¹Ã&’¿FÍWÉÇî’¿/1–é—ˆ—¿BÍ*ŠW™¿“âã²ó–¿5cÑtv2˜¿I‚pš¿Lÿ’T¦˜“¿.sž±/™¿²ŸÅR$_™¿¢E¶óýÔ˜¿Ù®Ð˘¿Í>Qžy™¿ÜŸ‹†ŒG™¿´è ¸ç™¿Ž!8ö왿é8h°™¿HPüs—¿»Ð\§‘–š¿ Ý!ʼn–¿žD„4–¿•Ö߀š¿' ‰°áé•¿GJ±£q˜¿in…°K˜¿F™ 2ÉÈ™¿ù0{ÙvÚš¿•-’v£™¿P3¤Šâ•¿‰xëüÛ•¿5š\Œuœ¿Ymþ_uä ¿Æiˆ*üž¿æèñ{›ž¿ÍwðП¿Ef.py¬¡¿áC‰–<ž¿qN`:¿\ætYLlž¿wJëÿœ¿À“.«°™¿ãŒaNÐ&—¿Sìhêw¡¿Ùƒkî蟿ÇeÜÔ@ó¡¿°8œùÕ ¿|š“™¿†Ê¿–W®‡¿4-±2ùŒ¿Ü¸ÅüÜЄ¿û²´Ss¹‘¿ýˆ_±†‹Œ¿ÿæÅ‰¯v”¿>”hÉ“¿™¹Àå±f”¿Å_Ñ­×”¿Z ¦–­•¿ú—¤2Å”¿fN—ÅÄæ“¿û!6X8I“¿ÁÅŠLÃ¿Ç ¿›nÙ‘¿2«w¸–¿ Й´©º—¿ÇK7‰A`•¿`wºóÄs–¿YŠä+”˜¿©KÆ1’=’¿iÅ7>[—¿¶il¯½—¿ 1—Tm—¿x]¿`—¿„d˜¿$ ÂP¨—¿ºhÈx”J˜¿ R O˜¿ÇF ^×/˜¿EÖJí•¿Ôšæ§è˜¿¯²¶)•¿&W±øMa•¿4ö%¶˜¿†¬nõœ”¿ëþ±—¿ÅTú g·–¿Ú­e2Ï—¿ÆOãÞü†™¿ò ú'¸˜¿µ¨Or‡M”¿vß1<ö“¿Á˜2p@›¿¨ÆK7‰A ¿k=&Rš¿Ûü¿êÈ‘ž¿#…–uŸ¿èú>$D¡¿ýN“o+¿¦ï5Çeœ¿ ¼“O¿ÔÖüøK›¿ñ˜õb˜¿:轕¿á(yuŽ¡¿Ý[‘˜ †Ÿ¿@¢ ±ˆ¡¿y ²HŸ¿Xÿç0_^¿‚¬§V_]…¿ì†m‹2‹¿,.ŽÊMÔ‚¿°‘$W@‘¿¡1“¨|Š¿Ý_=î[­“¿Þ®Õö’¿YÝê9é}“¿ÿ¬U»&”¿´¾L!•¿UÞŽpZð’¿þ'÷Ž“¿.2¥’¿AfgÑ;¿^=ð1X‘¿3#…–•¿ƒ1"QhY—¿dt@ö픿Ÿ”I m–¿¿ñµg–˜¿;%¯Î‘¿°Tð2Ö¿{ž?mT—¿C€ ˆ—¿Ãžvøk²–¿¿´¨Or—¿‹p“Qe—¿ìø/˜¿™*•Ô ˜¿Õ‘#‘—¿‰Î2‹Pl•¿*ãßg\˜¿4¢´7øÂ”¿n†ðùa”¿³–Òþ˜¿¼çÀr„ ”¿(ðN>=–¿2«w¸–¿]¿ðJ’—¿vÂKpꙿÙ] ¤À˜¿__ëR#ô“¿S!‰—§“¿ê K< lš¿£ZD“7 ¿UܸÅüœ¿¨PÝ\ü¿ç§8¼Zž¿¶õÓÖü ¿üSªDÙ›¿Ü¡a1êZ›¿ÙYLœ¿5{ ²š¿B{õñÐw—¿ƒS°ÆÙ”¿Ì_!se ¿P¨§Àž¿»ì×î<¡¿UkaÚ9¿²Ø&µ¿Öß—ª„¿¢*¦ÒO8‹¿)!XU/¿ƒ¿ÜGnMº-‘¿p_ÎQŠ¿ÚYôNÜ“¿.Ç+=)“¿¤aQ§“¿ï<ñœ- ”¿¢ñDçᔿ”¤k&ßl“¿«#G:“¿×gÎú”c’¿þÓ x'¿.â;1ëÅ¿2åCP5z•¿ƒNt —¿Öß—ª”¿üVëÄåx•¿•Öÿ9Ì—¿õc“üˆ_‘¿†q7ˆÖŠ–¿q:É–¿'f½ʉ–¿ÑÌ“k d–¿ïô¥·?—¿¿Hh˹—¿b†ÆAœ—¿O—¿'ÚUHùI•¿RÕQ÷˜¿hÊN?¨‹”¿l³±󬔿x¹ˆïĬ—¿{NzßøÚ“¿=ÓKŒeú•¿‡¯yUg•¿bX9´È–¿¶ºK⬘¿íGŠÈ°Š—¿’[“nKä’¿â"÷tuÇ’¿ª`TR' ™¿ƒ¦%VF#Ÿ¿ Ôbð0훿 ƈD¡e¿vŒ+.ŽÊ¿ JÑʽ ¿2¥žÐ›¿ þ~1[²š¿ð³%«"œ¿}=_³\6š¿˜Št?—¿‚SHÞ9”¿•ñï3. ¿ YÝê9é¿ï®³!ÿÌ ¿¾NêËÒN¿|µ£8G¿“ÆhUM€¿ŸrL÷‰¿¨5Í;NÑ¿cD¢Ð²î¿`ÉU,~Sˆ¿A~6rÝ”’¿n‹2d’‘¿Äê0 X’¿kaÚ9Í’¿É’9–wÕ“¿L5³–’¿SÏ‚PÞÇ‘¿¡0(Óhr‘¿¿ž¯Y.¿çãÚP1οú—¤2Å”¿ äÙå[–¿nÀ燓¿?ýgÍ¿”¿=,Ôšæ—¿Ižëûp¿PáR)–¿âvhXŒº–¿K”½¥œ/–¿ò”Õt=Ñ•¿‡Áü2W–¿Vïp;4,–¿é˜óŒ}É–¿Ù´Rä—¿ï7ÚqÃï–¿š †s 3”¿2tì —¿Lÿ’T¦˜“¿Òq5²+-“¿³³è ¸—¿Øî û’¿‰a‡1éï•¿›kC•¿¼Ì°QÖo–¿aºÙ˜¿ 'iþ˜Ö–¿ÙêrJ@L’¿ŠsÔÑq5’¿Jy­„î’˜¿M.ÆÀ:ž¿¤ý°Víš¿| Vœj-œ¿õfÔ|•|œ¿vþÓ  ¿ò^µ2á—š¿ÁãÛ»}™¿øý›'¾š¿eqÿ‘éЙ¿š]÷V$–¿Î8 Q…?“¿v“þ^ Ÿ¿mqÏdÿœ¿Ùµ½Ý’ ¿à ½úx蛿’?xî=Œ¿6t³?Pn{¿U2TqㆿÆk^ÕY-€¿Xç½Þ¿ÕËï4™ñ†¿sGÿ˵h‘¿ Ñ!p$п³]¡–±‘¿S•¶¸Æg’¿ëª@-“¿iŒÖQÕ‘¿a7l[”Ù¿O!WêY¿Ôœ¼ÈüŠ¿+Nµf¡¿~q©J[\“¿øŠn½¦•¿ÓÀÍâÅ’¿^Iò\߇“¿¥ƒõó•¿ Á¦Î£â¿fË-­†”¿µQd=•¿¹‹0E¹”¿;á%8õ”¿ p•¿0œk˜¡ñ”¿âàI —•¿#„GG¬•¿åðI'L•¿ø8Ó„í'“¿óÇ´6í•¿ò˜ù~’¿y\T‹ˆb’¿K±£q¨ß•¿0ñGQgî‘¿îì+ÒS”¿@‡ùòì“¿Âü2W•¿Þ擼—¿ž'ž³„–¿Á;ùôØ–‘¿¬Xü¦°R‘¿÷x!˜¿† %Ì´¿{× /½ý™¿¶ÚÃ^(`›¿o›©Ä›¿†U¼‘y䟿kóÿª#Gš¿ŠUƒ0·{™¿?p•'vš¿7ünºe‡˜¿è¼Æ.Q½•¿r0›Ã’¿‚sF”öŸ¿„aÀ’«Xœ¿‹Áôoª(^emSœ¿“r÷9>ZŒ¿ta¤µûu¿&ÿ”*Q†¿IJzZ|¿l—6–Ž¿„fÚþ•…¿$Ð`SçQ‘¿~©Ÿ7©¿%W±øM‘¿¢–æV«‘¿p°71$'“¿„H†[Ï¿Ù蜟â8¿S“à iT¿*´t‹¿±S¬„¹¿çqÌ_!“¿:A›>锿õ¼ ƒ’¿úÑpÊÜ|“¿?{ó–¿JbI¹û¿÷ª• ¿”¿'½o|확¿Dioð…É”¿è0_^€}”¿³ëÞŠÄ•¿›™EN·ìÿ°•¿ß4}vÀ•¿£êW:ž•¿¨ŽUJÏô’¿dê®ì‚Á•¿Ñ•Tÿ ’¿ à- ø‘¿¼?–¿ÞFN¶‘¿ÚŒÓUø“¿ÇHö5“¿VF#ŸW<•¿C«“3—¿zã¤0ïq–¿”¿{G ‘¿V,~SX©¿­‡/E˜¿Ð{cŽ¿:ç§8¼š¿õƒºH¡,œ¿ù*8œ¿ÅUeßÁŸ¿ l#ö™¿jg˜ÚR™¿ÕY-°ÇDš¿SäG˜¿yxÒÂe•¿ó9w»^š’¿Þå"¾³ž¿.5#ƒœ¿Õ¯t>‘¿kò”Õt=‘¿ÇðØÏb)’¿Eñ*k›â‘¿zßøÚ3K’¿³ï«r¡’¿Tå{F"4’¿í‚Á5wô¿eP3¤Š’¿îаu­¿àòX32È¿sƒ¡+Ü’¿Û†Q<¾¿[{ŸªB‘¿"‹4ñ¿u­½OU¡‘¿¶Û.4×i”¿.«°à’¿È·w úÒ‹¿£dVïp‹¿vß1<ö“¿=¸;k·]˜¿øü0Bx”¿¾l;m–¿ffffff–¿} yçP†š¿-?p•'–¿ÕyTüß•¿ŽÍŽTßù•¿jjÙZ_”¿ˆ NÒü‘¿‘+õ,å¿LkÓØ^ š¿ÒŦ•B —¿ëD2äØš¿QÜñ&¿E—¿3NCTáÏ€¿¾†à¸Œ›:¿Áá©iw¿ª ãn­e¿W³Îø¾¸„¿C¨R³z¿>Zœ1Ì Š¿R_–vj.‡¿fÁÄE‰¿¬<°S¬Š¿±ÀWtë5¿ðÐïû‡¿Ñ’ÇÓò‡¿\>’’††¿öa½Q+L¿ Xr‹ß„¿2ZGUD¿Æ3h蟿/¢í˜º+‹¿(‚8'0¿bMeQØE‘¿g¶+ôÁ2†¿úC3O®)¿ Ñ!p$пÂ26t³?¿¨Ï ¡¿ô7¡‡¿ü©ñÒMb¿ž´pY…Í¿žwcA‘¿*©ÐDØ¿HÝξò ¿Útp³x‘¿ÙÎ÷S㥋¿KW°x²‹¿Yá&£Ê¿ì…¶ƒ‹¿#KæXŽ¿Ï‚PÞÇÑŒ¿½á´àE¿.È–åë’¿THÞ9”‘¿)ë7Ó…ˆ¿·œKqUÙ‡¿8h°©“¿:“6U—¿û]Øš­¼”¿/Ý$•¿Š”fó8 –¿¶-Êl™¿i‚§+•¿`uäHg`”¿.‹‰ÍÇ•¿^fØ(ë7“¿CÅ8 ‘¿éEí~à‹¿Aó9w»^š¿ZGUDÝ—¿ùMa¥‚Šš¿Tÿ ’!Ç–¿.c}“{¿”ö_˜LU?ú`ºÙo¿Äî;†Ç~V¿u>—©Ið†”¿GW#»r¿CpìÙsi?j>"¦DR¿Ü ö[;QB?ç<š$v¿‡m‹2db¿¸Z'.Ç+€¿%»¶·{¿~©Ÿ7©€¿[AÓ+£¿,ºõš„¿]S ³³è}¿3ÀÙ²|}¿¢ ê[æty¿ Ôbð0ík¿`ºòy¿ßÅûqû僿JíE´S‡¿(»™Ñ†ƒ¿9ÒyYƒ¿3âÐ(]Š¿|Ô—¥z¿ 6uÿ‡¿æ”€˜„ ‰¿·Ï*3¥õ‡¿À"¿~ˆ †¿(¸XQƒiˆ¿kÔC4ºƒˆ¿­jIG‰¿ÀYJ–“PŠ¿ ÂÜîå>‰¿˜iûWVš„¿¹§«;‹¿íÿ°¥Gƒ¿Õíì+Òƒ¿2¯#Ù@Š¿¶ŸŒñaö‚¿‘*ŠWYÛ„¿XSYvQ„¿ pA¶,_‡¿ëqßj¸Œ¿­¢?4ó䊿ŒKUÚâ¿ã4ôO€¿òz0)>Ž¿._x%É“¿—⪲èKo.’¿ÁäF‘µ†’¿[ ³ÐÎi–¿ºi3NCT‘¿d=µú꪿þ¸ýòÉŠ‘¿öa½Q+L¿ÁŒ)XãlŠ¿ôú“øÜ †¿!‰—§s•¿ ²ºÕ“¿5Dþ o–¿ûËîÉÃ’¿ÓõD×…l¿(í ¾0i?¢&ú|”'?b£¬ßLLW?ñ*k›âqq¿ã©GÜÖV¿t^c—¨Þz¿`Xþ|[°t¿îÎÚmz¿W•}Wÿ{¿ý¢ý…¿Ùéu‘By¿EœN²Õåt¿|îû¯ss¿{/¾hW¿p À?¥Jt¿ë‹„¶œK¿¨½ 4„¿g¹ltÎO¿î^î“£¿/1–é—ˆ‡¿*T7Ûs¿–?ß,…¿6±ÀWtë…¿Æ5>“ýó„¿8Ÿ:V)=ƒ¿A¼®_°†¿j‰•ÑÈç…¿lèf Ü†¿s€`Ž¿‡¿ßÝÊe†¿Åã¢ZDƒ¿UQ¼ÊÚ¦ˆ¿Ä$\È#¸¿ª$ïÊ€¿àªÔ솿=`2åC€¿ž#ò]J]‚¿eS®ð.¿ßøÚ3K„¿)Íæqˆ¿?üü÷à…¿$EdXÅy¿ð¾**ÿz¿šë4ÒRy‹¿Ž\7¥¼V’¿‹RB°ª^Ž¿k,amŒ¿©MœÜï¿A€ ;¨”¿‘ñ(•ð„Ž¿ÔGà?ÿ¿J•({K9¿@ß,ÕŒ¿™Êø÷‡¿[AÓ+£¿X zR&5”¿[$íFó‘¿5s»—û”¿Ê7Ûܘž¿a2U0*©S¿ s‚69|r?ÎáZía/d?ƒ5Φ#€k?â !Ê´`¿)ÍæqH?סš’¬Ãq¿Õê««µh¿$cµùÕq¿î[­—ãu¿F~ý,|¿uÊ£aQq¿Gä»”ºdl¿Ðîb€Dc¿Ê¤†6P?5Ð|ÎÝ®g¿]n0Ôa…{¿Ï£âÿލ€¿k¹3 çz¿ž Ž’Wçx¿=·Ð•„¿_–vj.7h¿hìK6l¿€›Å‹…!‚¿w0bŸŠ¿¸®˜Þ~¿kQLÞƒ¿÷"ÚŽ©»‚¿$µP29µƒ¿ŒøNÌz1„¿Ánض(ƒ¿Y |E·~¿CÉäÔÎ0…¿2ZGUD}¿†ZÓ¼ã}¿ú(#.‚¿ZI+¾¡ðy¿[aú^Cp|¿ž Ž’Wçx¿*ÿZ^¹~¿ñaö²í„¿h+ømˆ¿uæn¿“«Xü¦°r¿®E жš…¿X9´Èv¾¿®¶bÙ=‰¿Ì¶ÓÖˆ`Œ¿Õ´‹i¦{¿ÛP1Îß„’¿F™ 2Éȉ¿”4LkÓˆ¿Mž²š®'Š¿-ê“Üa‰¿ùNÌz1”ƒ¿o¸Üšt{¿d–= lΑ¿º„CoñðŽ¿t#,*ât’¿xî=\rŒ¿úœ»]/M¿÷Ý—3Ûu?Ô|•|ì.p?°qý»>sv?f½ʉvE¿§v†©-u`?A‚âǘ»f¿}“EÖZ¿d°âTkaf¿^H‡‡0~j¿â‘xy:Wt¿¢µ¢Íqnc¿«B±læ`¿ ûrf»BO¿_%» ”d?Û¥ ‡¥_¿1`ÉU,~s¿ç4 ´;¤x¿‰ëW\u¿‚Ç·w úr¿î^î“£¿T^ PZ¿÷ʼUסz¿)èö’Æh}¿ò$éšÉ7{¿`=î[­w¿]S ³³è}¿uæ~¿Pª}:3€¿´ç25 Þ€¿µTÞŽpZ€¿ÎR²œ„Òw¿å ZHÀè‚¿j‰•ÑÈçu¿÷è ÷‘[s¿Ç{ö|¿Òà¶¶ð¼t¿1%’èet¿Ê‰vR~r¿Tâ:Æw¿åòw憎h^»ï~¿ÖJíE´]¿€·@‚âÇh¿w‚ý×¹iƒ¿Ô($™Õ;Œ¿[ ³ÐÎi†¿Ä$\È#ˆ¿j4¹눿tÑñ(•¿ƒ1"QhY‡¿S’u8ºJ‡¿¦~ÞT¤Âˆ¿Œ¾‚4cÑ„¿ºÀå±fd€¿­¥€´ÿv¿ô7¡‡¿ìjò”Õt¿°‘$W@‘¿iSul®Š¿f¡Ø šf?Þ­,ÑYf?´­fñ}?_%» ”„? Ž’Wçp?ràÕrg&x?À“.«°Y?¬ä.Âd?Lþ'÷ŽZ?°t>{?âàI —…?JΉ=´u?¹û-Îh?ùNÌz1”S?)[$íF_?²¼«0i?dËòuI¿zR&5´x?äRìhL?hY÷…è@?dËòuI?¸­-Y1\í>Rœ£ŽŽ«a?ú´ŠþÐÌc?½Ç™&l?i?st´ª%]?¯]ÚpXJ¿{£V˜¾×0?Ot]øÁùt?zpwÖn»p?ÎR²œ„ÒW¿/÷ÉQ€(x¿E×…œOm¿: ûvq¿!¯“âãs¿Ì)1 ‚¿š±h:;l¿z7ej¿úœ»]/Mq¿ÖJíE´m¿ÁÿV²c#P¿Û4¶×‚Þ[?+¢&ú|”¿æ?¤ß¾|¿ÿ”*Qö–‚¿>BÍ*Šw¿Óhr1Ö?Ó–x@‰?å™—Ãî‹?S°ÆÙt?[AÓ+£?)H4"†?E| V|?«7U†?ÛL…x$^~?ð¾**ÿz?É;‡2TÅt?]Þ®Õ~?¾…uãÝ?·˜Ÿš‚?/†Èéë‰?+¿)¬T€?å}Í‘u?¨:äf¸o?Ön»Ð\§q?J³yów?1е/ W?S"‰^F?[#‚qpéh?ª ãn­e?ú~j¼t“h?Ã}äÖ¤Ûr?W'g(îxc?<†Ç~Ka?8ºJw×Ù`?¬<°S¬Z?x›7N ó^?1'h“Ã'm?^ PjD?öµ.5B?s?—Mõdþq?÷…è8b?ìQ¸…ëq?m±o?\>’’†v?ºÀå±fdp?nYk(µW?žB®Ô³ d?¾ù  R€?cbóqm¨x?!¯“âãC?£’°o'q¿î[­—ã5¿t^c—¨ÞZ¿ÎˆÒÞà c¿å Åoò{¿úïÁk—6\¿W?6ÉøU¿ðPèyb¿tí è…;W¿¾¤1ZGUS?Ø€qåìm?PqxµÜy¿²fd»s¿ÈCßÝÊ}¿˜3Ûú`i¿ÇF ^×/ˆ?ûÍÄt!V?©¢x•µM‘?d?‹¥H¾’?_\ªÒ׈?€»ì×îŒ?§çÝXP„?ÿ˵hÚ†?¥Kÿ’„?3mÿÊJ“‚?߀cÏ~?ñaö²í„?„EEœN²…?g›Ó–ˆ?8KÉrJ?yÈ”A…?¯ÒÝu6ä?îÎÚmz?ƒÁ5wô¿|?¿ò =E?Ï/JÐ_èq?è‚ú–9]†?^¸sa¤w?¿ïß¼8ñu?ÿ$>w‚ýw?¬TPQõ+}?êÐéy7t?ÖÇCßÝÊr?~TÃ~O¬s?g Ü¶ïq?¦Õ°ßs?%xC8y?H£'ÛÀm?«Íÿ«Ž|?;ÿvÙ¯;}?’xy:W”r?Z.óS|?4óäš™}?ª$ïÊ€?”¥Öûv|?¨p©;j?ˆ…ZÓ¼ãt?„EEœN²…?[{C‚? Ž’Wçp?%És}B¿—=Ô¶ad?¯&OYM×S?-ÒÄ;À“F?Ælɪ7i¿nùHJzX?‘›á|~X?‘*ŠWYÛT?ƒú–9]S?e9 ¥/„l?• •-¯|?°t>”hÉãi‰?±ú# –Œ?ººc±M*Š?#LQ._ˆ?.9?oò[t²ÔŠ?V(Òýœ‚Œ?)èö’Æh?ŒÙ’Un’?XŽ<‹?-ÒÄ;À“†?æ>9 ƒ?${„š!U„?GT¨n.þ†?‹3†9A›|? Š·˜Ÿ‹?î$"ü‹ ?ßà “©‚?¯A_zûs?T1³Ïc„?EeÚʢ€?0Ùx°Ån?¥-®ñ™ì?1'h“Ã'}?ïU+~©?K‘|%‚?ùK‹ú$wx?óWÈ\„?+ÁâpæWƒ?€I*SÌA€?Ÿu–=„?…Ѭlò†?aÝxwd¬†?à+ºõš„?š±h:;|?B_zûsÑ€?Ï‚PÞÇÑŒ?&åîs|´ˆ?Ö©ò=#z?nùHJzX?ÒŦ•B w?ïU+~©o?Í΢w*àn?{®GázD¿1?74e§o?@ù»wÔ˜p?’³°§þj?„-vû¬2s?®ÕöB{?ù»wÔ˜ƒ?Ñ<€E~ýP¿]ú—¤2ÅL?ßPøl\¿™cyW=`^?¢–æV«‘?ô4`ôi•?Ã,`—?ï7ÚqÃï–? PSËÖú’?${„š!U”?ÊTÁ¨¤N?^-wf‚‘?ô‡fž\S?{g´UId?ëâ6À‹?HN&nÄ?ÇG‹3†9‘?9c˜´É‘?N·ìÿ°•?sž±/Ùx?È}«uârŒ?ߺñîȈ?|DL‰$z‰?/3l”õ‹?Øó5Ëe£ƒ?8‡kµ‡½?Ñ’ÇÓò‡?pî¯÷­†?®ž“Þ7¾†?TªDÙ[ʉ?äIÒ5“o†?O²žZ}…?¦^·Œ…? ¨lXSY„?DüÖM…?wLÝ•]0ˆ?‡m‹2d‚?ì3g}Ê1‰?•óÅÞ‹/Š?·´÷XŠ?½8ñÕŽâŒ?dËòuŽ?­¦ë‰® ?AØ)V ÂŒ?M„ O¯„?àõ™³>åˆ?äL¶ŸŒ‘?³´Ss¹Á?ðHPüƒ?–ëm3âq?Ot ‡~?-ê“Üay?GçüÇw?mäº)åµb?ÙÎ÷Sã¥{?Ÿ<,Ôšæ}?àõ™³>åx?ÅrK«!?¶J°8œù…?^gCþ™AŒ?Îà L§u[?z7ej? -ëþ±M?{ˆFw;s?Ü›ß0Ñ •?àØ³ç25™?]øÁùÔ±š?Ÿ¡¼£™?”ÃÕ—?¤Rìhê—?.=šêÉü“?º½¤1ZG•? ÆÁ¥cΓ?Áªzù&“?&9 {Ú‘?ò%TpxA”?î²_wºó”?É;‡2T•?×mPû­˜?ì†m‹2”?ˆ NÒü‘?É!âæT2?ôj€ÒP£?’²EÒnô‘?o¸Üšt‹?áñí]ƒ¾”?tbíc?9¸tÌyÆŽ?¸®˜ÞŽ?øS㥛Ä?Lo.2Ž?bùómÁR?{‚Äv÷?zVÒŠo(Œ?o×KS8? Ü¶ïQ?Ÿ¡¼£‰?Ì EºŸS?ðk$ Â?Чwñ~Œ?@ù»wÔ˜?˜Û½Ü'G‘?†:¬pËG’?[{ŸªB‘?2ZGUD?c%æYI+Ž?„¹ÝË}r”?² 0(Óh’?Žs›p¯Ì‹?8‡kµ‡½€?±Ûg•™ÒŠ?Tÿ ’!dž?mɪ7…?Iô2Šåv?ò'*ÖT†?\«=ì…†?0…Ì•A…?>]ݱØ&…?C¨R³Š?|Ô_¯°àŽ?¶ö?Àz?CÅ8 ?zóWÈ|?·Òk³±ƒ?ôiý¡™?ãÿލPÝœ?»ñîÈXmž?[wóT‡œ?ìhêwa›?È·w úÒ›?0 ÃGÄ”˜?ÁŠS­…™?P5z5@i˜?ZGUDÝ—?"ÇÖ3„c–?Á¨Sݘ?@ÜիȘ?,g*™?ÅÇ'dçmœ?ãÉ¡f˜?AŸÈ“¤k–?1 òn”?èy’tÍ”??{ó–?üÈ­I·%’?Ó„í'c|˜?8Ÿ:V)=“?€'-\Va“?3Mg'ƒ“?ÊQ€(˜1•?Í.5#“?i«’È>È’?‡m‹2d’?MöÏÓ€A’?{Cr’?2“¨|š“?&Ñ:ªš?o¹ú±I~”?÷ª• ¿”?(»™Ñ†“?Âß/fKV•?±Þ¨¦ï•?w;Sè¼–?R h•?1Ít¯“ú’?ü7/N|µ“?‰ïĬC™?M-[ë‹„–?íñB:<„‘?Æø0{ÙvŠ?ØÒ£©žÌ?ŪA˜Û½Œ?qªµ0 íŒ?åBå_Ë+‡?É&pënŽ?`x%És}?¶ò’ÿÉß?p]1#¼?¯A_zûs‘?%ËI(}!”?•~P)„?x¹ˆïĬ‡?È F³‚?ª¸q‹ù‰? †s 34ž?Š?Š:s¡?ÿ“¿{G¡?£•{Y¡ ?ð¦[vˆ ?ú~j¼t“ ?.9(a¦?1ì0&ý?®ºÕ”d?Mf¼­ôÚœ?;ÃÔ–:È›?TáÏðf ž?ÍX4 ž?ÞïU+ž?–ê^fØ ?5`ôi?\;Qi›?þEИ™?lÍV^ò?™?Œ.oך?ëþ±—?Ý ö_ç¦?Ë/ƒ1"Q˜?V-²ï—?Î5ÌÐx"˜?Ñ O!Wš?Ó¾¹¿zÜ—?&ÅÇ'd—?:vP‰ë—?ƒNt —?8ó«9@0—?¤5:˜?}@ 3iS•?•·#œ¼˜?8h°©ó˜?í ¾0™*˜?QôÀÇ`Å™?XŒºÖÞ§š?©iÓL÷š?Ș»–š?«A˜Û½Ü—?ƒÚoíDI˜?‚7¤Q“?Ñ–s)®*›?g,šÎN—?ÄAB”/h‘?h]£å@•?b.©Ún’?ûËîÉÃ’?XøQ û?.=šêÉü“?bøˆ˜I”?•~P)”?L⬈šè“?Ù[Êùbï•?Ä#ñòt®˜?n¤l‘´?b×övKr?rÝ”òZ ?‹¦³“ÁQ’?‘œLÜ*ˆ¡?¢]…”ŸT£?4„c–= ¤?|(Ñ’ÇÓ¢?ð¾**ÿ¢?ê”G7¢¢?PÈÎÛØì ?>”h¡?…{eÞªë ?³´Ss¹Á ?]¡·x ?MõdþÑ7¡?óWÈ\¡?¦D½Œb¡?%ÊÞRΣ?§<º¡?'ú|” ?²/Ùx°Åž?z3j¾Jž?þ™A|`ÇŸ?£#¹ü‡ô›?BëáËD¡?2=a‰”?=e5]Ot?ªæsîv?\Âõ(\Ÿ?Þ3ßÁOœ?š”‚n/iœ? ¡ƒ.áЛ?6:ç§8œ?ÎQÚœ?NÓg\Wœ?>w‚ý×¹™?éd©õ~£?®€B=}ž?û¯sÓfœ?ª*4Ëfž?Ñêä ÅŸ?]¥»ëlÈŸ?àŸR%Êž?â’ãNé`?Awòé±?¿rÞÿÇ¡? »(zàc ?{ö\¦&Á›?Îo˜h‚—?’Z(™œš?¸å#)éa˜?wþEИ?ì/»' •?¢(Ð'ò$™?¦',ñ€²™?Ûl¬Ä<+™?ÎR²œ„Ò—?-σ»³v›?I¹û-ž?z8é´n“?pxADjÚ•?[ìöYe¦”?»@j'—?Õ[[%X¤?dXÅ™G¦?ºÙ(§?ê?k~ü¥¥?“Ä’r÷9¦?[•DöA–¥?sò"ðk¤?$Ó¡Óón¤?n£¼¤?p–’å$¤?¦)œÞÅ£? ò³‘릤?𢯠ÍX¤?5·BX%¤?' ‰°áé¥?î±ô¡ ê£?’–ÊÛN£?™·ê:TS¢?ôNÜóü¡?t^c—¨Þ¢?(ó¾IÓ ?:#J{ƒ/¤?ý-ø§T¡?N(DÀ!T¡?žÒÁú?‡¡?¾ݳ®Ñ¢?õ»°5[¡?ض(³A&¡?+„ÕXÂÚ ?o+½6+¡?„Ó‚}¡?j¿µ%!¡?>ÍÉ‹LÀŸ?h+ømˆ¡?¼viá?‚‹5˜†¡?Š}"O¢?ù»wÔ˜£?GãP¿ [£?·ïQ½Â¢?Oæ}“¦¡?9c˜´É¡?פÛ¹à¤?ÖR@Úÿ£?-Í­Vc¡?gµÀ)?ð¦[vˆ ?M JÑÊ?tbícŸ?·zNzßøš?ƒ‡ißÜŸ? Áq75 ?Á9#J{ƒŸ?7R¶HÚ? àfñba ?q¯Ì[u¢?ÓJ!K™? ß÷o^œ?-σ»³v›?þ´Qd?ª™µö§?å ïrß©?ݵßÚ‰ª?kšwœ¢#©?y7R¶Hª?²¼«0©?ÍwðЧ?Àé]¼·§?¶†R{m§?§uÔ~k§?+½6+1§?ÛàDôkë§?8†àس§?F´Swe§?“ÇÓòW©?‹p“Qe§?9`W“§¬¦?ÛûTˆ¥?k» ¾iú¤?%uš¦?ûçiÀ é£?ÊSVÓõD§? šyrM¤?‡-y¤?9}=_³¤?Šä+”Ø¥?CSvúA]¤?;‰ÿ"h¤?K’çú>¤?½Â‚û¤?ê[ætYL¤?׆Šqþ&¤?oò[t²Ô¢?Ûúé?k~¤?«>W[±¿¤?”0Óö¯¬¤?²ó66;R¥?h^»ï¦?ôú“øÜ ¦?XûVëÄ¥?ñ.ñ˜¥?ÃbÔµö>¥?I€šZ¶Ö§? ËŸo ¦?³}È[®~¤?Ìyƾdã¡?TTýJç£?Î7¢{Ö5¢?’v5yÊ¢?ï9°!¡?=€E~ý£?#÷tuÇb£?v?T1£?lë§ÿ¬ù¡?ÐѪ–t”£?W[±¿ìž¤?‚”0ÓöŸ?SYvQô ?öÐ>VðÛ ?oÔ Ó÷¢?’!ÇÖ3„«?s-Z€¶­?“Ä’r÷9®?”0Óö¯¬?:°!y®?‘šv1ͬ?s ßû¬? õôø«?‹Š8d««?ÙvÚŒ«?Ž<»|«?Ÿp]1#¬?Õ=²¹jž«?ŸÌ?ú&M«?ИIÔ >­?¿ 1^óª?®J"û ˪?–ëm3â©?¾_´Ç ©?ùjGqŽ:ª?V¶yËÕ§?Æ‚”0«?jÜ›ß0Ѩ?¶ºœ“¨?³´Ss¹Á¨?Ûmšë4ª?ÒŒEÓÙɨ?[˜…vN³¨?›8¹ß¡(¨? Tƿϸ¨?kÔC4ºƒ¨?T;ÃÔ–:¨??§ ?¹¦?tÑñ(•¨?„ £U-é¨?§wñ~Ü~©?¢²aMe©?>•Óž’sª?ÀYJ–“Pª?îÎÚmª?¢–æV«©? —8ò@d©?ˆìø/¬?—Mõdþ©?sž±/Ù¨?P«”žé¥?ìOâs'ا?õ-sº,¦?º¡);ý ¦?=Òà¶¶ð¤?ÕËï4™ñ¦?—9]›§?#£’°o§?n/¦?&©L1A§?¯˜Þ„¨?©‡ht±£?G 6u¥?T­…Yhç¤?ðiN^d¦?«Ì”Öß°?Y¤‰w€'±?ö´Ã_“±?ÊÂ×׺°?eqÿ‘éб?¢A žB®°?Xÿç0_^°?¡×ŸÄçN°?ð¤…Ë*°?Pª}:3°?:ÏØ—l<°?ÒUº»Î†°?œ3¢´7°?…÷°?Ní S[ê°?‚‘—5±À¯?³³è ¸¯?L5³–Ò®?å`6†­?ùgñ¯?#Ûù~j¼¬?á' ß÷¯?ÉYØÓ­?zâ9[@h­?lâuý‚­?B˜Û½Ü'¯?ß4}vÀu­?«Ñ«JC­?/iŒÖQÕ¬? ¸çùÓF­?'…y3­?Øô  ­¬?Y…Íd«?æ!S>­?©öéxÌ@­?Ù³ç25 ®?XûVëÄ­?ÏJZñ …¯?ÕËï4™ñ®?[yÉÿäï®?ƒ¦%VF#¯?4œ27߈®?¬:«ö˜°?±‡ö±‚ß®?Fí~à»­?R %“S;«?íôƒºH¡¬?ù»wÔ˜«?þEИIÔ«?ªó¨ø¿#ª?øá !ʬ?íœfv‡¬?<š$–¬?›ÃòçÛª?lЗÞþ\¬?ŒÜÓÕ‹­?Ky ²¨?^‚SHÞ©?ù*8¼ ª? Hû`­ª??ÿ=xíÒ²?‰ @£té³?†óþ?N´?‹S­…Yh³?.â;1ëÅ´?Ì †:¬p³?œh>çn³?7ê°Â-³?¨qo~ÃD³?÷<Ú¨N³?#÷tuÇb³?®›R^+¡³?ÂÝY»íB³?$¶»è²?îv½4E€³?W ‡3¿²?ßp¹5é²?XU/¿Ód²?J&§v†±?¬à·!Æk²?ÊQ€(˜1±?¬o`r£È²?´Yõ¹Úб?ʈ @£t±?'Þž´p±?kÖß—²?‰±L¿D¼±?>Ëóà?Q29µ3L±?X7Þ«±?´­fñ}±?mu9% &±?Òýœ‚ül°? “©‚QI±?‘œLÜ*ˆ±??øùï±?ÙÐÍþ@¹±?·›à›¦Ï²?W"PýƒH²?Ó.¦™îu²?úñ—õI²?u”ƒÙ²?GßÛôg³?ôzÄè±?–çÁÝY»±?³}È[®~°?•}Wÿ[±?@Â0`ÉU°?Ñ<€E~ý°?J³yó¯?¥¡F!ɰ?~eÁı?Ü›ß0Ñ ±?Œô¢v¿ °?3úÑpÊܰ?‘ð½¿A{±?¦òz0)®?¤oÒ4(š¯?’çú>$°??;àºbF°?åñ´üÀU¶?n…°KX·?D5%Y‡£·?^+¡»$ζ?‰)‘D/£¸?”i4¹·?¨qo~ÃD·?øý›'¾¶?àKáA³ë¶?»·"1A ·?¨qo~ÃD·?ÐF®›R^·?Y¿™˜.Ķ?#¢˜¼f¶?ÝéÎÏÙ¶?‡Áü2W¶?®ž“Þ7¾¶?Oq¶?ÒƒNµ?EõÖÀV ¶? 34žâ´?µÝß4}¶?ÐÏÔëµ?¬TPQõ+µ?Ú‘ê;¿(µ?qâ«Å9¶?÷’ÆhUµ?¤ŠâUÖ6µ?ZHÀèòæ´?BëáËDµ?ï‘ÍUóµ?³\6:ç§´?'¢_[?ý³?e#Ù#Ô´?w¾Ÿ/Ý´?cc^G²µ?³z‡Û¡aµ?=™ôMš¶?Yùe0F$¶?46<½R¶?ëÇ&ù¿¶?“EÖ¶?G“‹1°Ž·?)#.Òµ?|'f½ʵ?þEИI´?4-±2µ? B²€ ´?B_zûsÑ´?“âã²³? Ñ!p$д?p² Ü:µ?/PR`Lµ?á (ÔÓ³?¹û-δ?_—á?Ý@µ?~âú}ÿ²?¥¢±öw¶³?,ºõš´?d²¸ÿÈt´?9´Èv¾Ÿº?¸ä¸S:X»?½¬‰¾¢»?l@„¸röº?ö&†ä¼?ˆñšWuV»?˜À­»yª»?úcZ›Æöº?\ã3Ù?O»?˜À­»yª»?S°ÆÙt¼?0™ò!¼?O"¿»?Ž;¥ƒõº?î%Ñ:ªº?÷ʼUסº?O­¾º*P»?{Øœƒgº?Å‘"‹4¹?ŸF6º? ´;¤ ¹?`V(Òýœº?îí–ä€]¹?”¢•{Y¹?‰zÁ§9y¹?CYøúZ—º?·FãàÒ¹?ŠY/†r¢¹?-B±4-¹?Ÿ·±¹?[•DöA–¹?UܸÅü¸?Ë+×Ûf*¸?:è¹?g¹ltÎO¹?rl=C8º?‰±L¿D¼¹?\X7Þ»?PÅÈ’9º?Ä%ÇÒÁº?9&‹ûL»?øý›'¾º?Ø*Áâpæ»?‚rÛ¾Gý¹?é~NA~6º?þ oÖà}¹?¥Û¹à º?4žâ<œ¸?ºÙ(·¹?I¢—Q,·¸?:x&4I,¹?V W@ܹ?:êè¸Ù¹?,ºõš¸?Ä ·|$%¹?±§þš¬¹?æèñ{·?c+hZbe¸?,ÒSä¹?éšÉ7Ûܸ?•Öÿ9Ì¿?øRxÐ캿?Ó‡.¨o™¿?ô66;R}¿?>Î4aûÉÀ?ÍXä¿?~įXÃEÀ?’ÍUó‘¿?Wéî:ò¿?éÖkzPPÀ?¾ˆ¶cê®À?M1AG«À?=)“ÚÀ?ߣþz…¿?øU¹Pù×¾?¸sa¤µ¿?±¿ìž<,À?ì£SW>¿?f¤ÞS9í½?i¢¾? Ö8›Ž¾?‘îçäg¿?¸Y¼X¾?Yùe0F$¾?¬JCB¾?Õ'¢_¿? 'LÍʾ?|E·^Óƒ¾?†!YÀ¾?PÂLÛ¿²¾?CUL¥Ÿp¾?6Y£¢Ñ½?ÓNÍåC½?–ëm3â½?¸Y¼X¾?ëZaú¾?*SÌAÐѾ?5Ô($™Õ¿?ΈÒÞà ¿?ú´ŠþÐÌ¿?v¨¦$ëpÀ?ý¾óâÄ¿?ÖâSŒgÀ?ⱟÅR$¿?)Bêvö•¿?,¼ËE|'¾?rßj¸¿?M¾ÙæÆô¼?vÝ[‘˜ ¾?’Ï+žz¤½?”Kã^I¾?G¬Å§¿?0žACÿ¿?°p’æi½?¿3‰¾?̘‚5ξ?¯yUgµ¼?åòw悔?Üôg?RD¾?<Û£7ÜG¾?Š‘%s,ïÂ?‚:åѰÂ?ŒØ'€bÂ?ž%ȨÂ?¬;Û¤¢Ã?®×gÎúÂ?l\ÿ®ÏÂ?1~÷æ7Â? S"‰Â?Ëõ¶™ ñÂ?Ó…Xý†Ã?YÝê9é}Ã?A'„ºÂ?¦´þ–üÁ?ó8 æ¯Á?0¹Qd­¡Â?AaP¦ÑäÂ?tD¾K©KÂ?¼ÏñÑâŒÁ?V W@ÜÁ?/‰³"j¢Á?…]=ð1Â?&ŒfeûÁ?aU½üN“Á?½Œb¹¥Á?j>"¦DÂ?»íBsFÂ?ÙYôNÂ?¶½Ý’°Á?Õz¿ÑŽÂ?mÇÔ]ÙÁ? $ ˜À­Á??ãÃìeÁ?·D.8ƒ¿Á?kÌÑãÁ?›8¹ß¡(Â?ܵÛ.Â?cAaP¦ÑÂ?ý¡™'×Â?ùdÅpuÂ?£:ÈzjÃ?â"÷tuÇÂ?(¹Ã&2sÃ?׿ë3g}Â?&Ñ:ªšÂ?¥ƒõóÁ?\-Ë×eÂ?©MœÜïÀ?¾K©KÆ1Â?@¤ß¾œÁ? 8KÉrÂ?˜`ºÂ?ò´üÀUžÂ?£:ÈzjÁ?8 ¥+ØFÂ?å*¿)¬Â?&¤à)äÀ?™Gþ`àÁ?’;l"3Â?#½¨Ý¯Â?îîº/gÆ?3SZKÆ?g¹ltÎOÅ?32È]„)Æ?9débÓÆ?uuÇb›TÆ?cšé^'õÅ?³^ åDÅ?ß—ª´Å?d¬6ÿ¯:Æ?ˆfž\S Ç?XÅ™GþÆ? a°ä*Æ?ÏÜCÂ÷þÄ?…]=ð1Ä?'‚8'Æ?’•_cDÆ?úÑpÊÜ|Å?Æ3hèŸàÄ?í+ÒSäÄ?Æ5>“ýóÄ?îCÞrõcÅ?3d’‘³Ä?…î’8+¢Ä?a7l[”ÙÄ?¨ŒŸqÅ?Í#0ðÜÅ?ì±¾Å?­NÎPÜñÄ? ™+ƒjƒÅ?¬¬mŠÇEÅ?ÇñC¥3Å?AaP¦ÑäÄ?ð2ÃFYÅ?Œ„¶œKqÅ?ã6À[ Å?>–>tA}Å?‰ jøÖÅ?J/…ÍÄ?Z!«[Å?µßÚ‰’Æ?F\¥KÅ?*ãßg\Æ?ÊýE>Å?°«ÉSVÅ?VeßÁÿÄ?g˜ÚRyÅ?Ëž6çàÃ?Z-°ÇDJÅ?¡¼£9²Ä? Ï.ßú°Ä?ÈDJ³yÆ?._x%ÉÅ?ù†Å?%è/ôˆÑÅ?€ñ ú'Æ?@ÛjÖßÃ?mìM Å?&Ä\RµÝÄ?XŽ<»Ä?å ÅoòÉ?é)rˆ¸9É?m‡ÁüÈ?K­÷í¸É?¨á[X7ÞÉ?Á=~oÓÉ?É=]ݱØÈ?‘¶ñ'*È?¥À˜2pÈ?"Ä•³wFÉ?G’ \…Ê?àºbFx{Ê?¿+‚ÿ­dÉ?ÅY5ÑçÇ?>Î4aûÉÆ?=›UŸ«É?· £ x|É?5š\ŒuÈ?Käõ`RÈ?Ú­ÀÕÇ?Ú<ƒù+È?ɪ7UÈ? õôøÃÇ?[C©½ˆ¶Ç?œà›¦ÏÈ?¤9²òË`È?ØFì@É?xíÒ†ÃÒÈ?E€Ó»x?È?Mò#~ÅÈ?¬äcw’È?qÈÒÅÈ?*Æù›PˆÈ? 2tìÈ?¢zk`«É?û]Øš­¼È?åBå_Ë+É?st´ª%É?f1±ù¸6È?ô£á”¹ùÈ?ùƒçÞÃÉ?ãý¸ýòÉÈ?„¼LŠÉ?_—á?Ý@É?pÍý/×È?â¶ôhÈ? á˜eOÉ?¼UË?Kè.‰³"Ì?RµÝß4É?p—ýºÓË?©iÓÊ?x*àžçOË?}±÷â‹öÌ?xÓ-;Ä?Ì?i©¼á´Ì?ÏdÎ?Jî°‰Ì\Î?¿cxìg±Ê?Kê46Ì?_—á?Ý@Ë?úA]¤PÌ?r¥ž¡Ð?¢ÏGqÐ?ªb*ý„³Í?‘ 9¶žÐ?½ 4Ô(Ð?ØF<ÙÍŒÐ?¨ŒŸqáÎ?›©¾óÍ? š]÷VÎ?Ë¿–W®·Ï?LŠOÈÐ?—nƒÀÐ?ÜFx $Ð?I÷s ò³Í?´æÇ_ZÔË?ÿ?N˜0šÐ?¬TPQõ+Ð?ºõš”Î?Ih˹WÏ?ž #½¨ÝÍ?’¯Rb×Î?âKº Î?÷@Î?­Mc{-èÍ?LR™b‚Î?„elèfÎ?+iÅ7>Ð?Ä[çß.ûÏ?<£­J"ûÎ?6­¹ÄÏ?¿Õ:q9^Ï?5cÑtv2Ð?TáÏðf Ð?ˆißÜ_=Ð?>çn×KSÐ?÷êã¡ïnÏ?>çn×KSÐ?¸!Æk^ÕÏ?O=Òà¶¶Î?¹Pù×òÊÏ?x¼W­LÐ?<2V›ÿWÏ?R×ÚûTÐ?óUò±»@Ð?T8‚TŠÏ?·Aí·v¢Î?ØEуÏ?û‘"2¬âË?vãÝ‘±ÚÎ?ý¡™'×Î?/ö^|ÑÎ?¼êó)Ð?X¬á"÷tÏ?¬Zd;Ð?GqŽ::®Ð?+0du«çÐ?ÑÌ“k dÎ?Ô—¥šÏ?W[±¿ìžÎ?BÑ<€E~Ï? R)v4Ò?7+1ÏJÑ?TTýJçÏ?¢Ð²î Ò?ô‹ôzÑ?+ÞÈ<òÒ?öF­0}¯Ð?dyW=`Ð?§ ?¹nÐ?’“‰[1Ñ?‘º}åAÒ?32È]„)Ò?w‚ý×¹iÑ?’`ãúÏ?ñ·=Ab»Í?{.S“à Ò?-Ðîb€Ñ?HnMº-‘Ð?_ PjÑ?¸<ÖŒ Ð?f¡Ó,ÐÐ?&â­óo—Ð?!ɬÞávÐ?TææÑ=Ð?¹Æg²žÐ?’Ìên‡Ð?¥Kÿ’T¦Ñ?8N ógÑ?|(Ñ’ÇÓÐ?óUò±»@Ñ?oÓŸýHÑ?.®ñ™ìŸÑ?Ù•–‘zÑ?3ù¼â©Ñ?Ív…>XÆÑ?ÊmûõÐ?cC7ûåÑ?D¢Ð²îÑ?Áàš;ú_Ð?:ÉV—SÑ?ÄÏ^»Ñ?2ÉÈYØÓÐ?•|ì.PRÑ?>Ì^¶¶Ñ?^fØ(ëÐ?RD†U¼‘Ð?8ÙîÐ? __ëR#Î?ð1XqªµÐ?w+Kt–YÐ?+ùØ] ¤Ð?Ú¨N²Ñ?ðlÞpÑ?,Öp‘{ºÑ?½ 4Ô(Ò?ê K< lÒ?ÒÈçO=Ð? š]÷VÑ?ÑÎihwÐ?»]/MÑ?wõ*2Ó?ˆ-y<-Ò?Ìï4™ñ¶Ð?ÕÎ0µ¥Ó?·–Ép<ŸÒ?ÊPSé'Ó?1DN_Ï×Ñ?—qSÑ?ßß ½úxÑ?Z×h9ÐCÒ?GéÒ¿$•Ó?ó¬¤ßPÓ?³x±0DNÒ?x—‹øNÌÐ?øŒDhÏ?v?T1Ó?ä÷6ýÙÒ?ú+d® ªÑ?q©;Ò?*œÞÅûÐ?Ú7÷WûÑ?÷vKrÀ®Ñ?²žZ}uÑ?Êþy0HÑ?±§þš¬Ñ?EºŸSŸÑ?a4+Û‡¼Ò?’!ÇÖ3„Ò?ŽÍŽTßùÑ?,óV]‡jÒ?Ð캷"1Ò?Ùy›©Ò?ðRê’qŒÒ?]øÁùÔ±Ò?áÎ…‘^ÔÒ?%ušÒ?ÿx¯Z™ðÒ?c('ÚUHÒ?ü¨†ýžXÑ?F}’;l"Ò? ‹Q×ÚûÒ?î ÛÝÒ?ü6ÄxÒ?[ï7ÚqÃÒ?Cr2q« Ò?€aùómÁÑ?(Ö©ò=#Ò?ù¾¸T¥-Ð?{úüáçÑ?öBÛÁˆÑ? ßû´Ñ?Ç,{ØÒ?í”Ûö=Ò?be4òyÅÒ?á iTàdÓ?Ȩp©Ó?t›p¯Ì[Ñ?ž$]3ùfÒ?¤aQ§Ñ?Üž ±Ý=Ò?½Â‚ûÔ?æI›Ò?CSvúA]Ñ?p]1#¼Ó?ßÁÿV²Ó?jßÜ_=îÓ?ØÓMÖÒ?ëÿæËÑ?%@7nÒ?·_>Y1\Ó?rûå“ÃÔ?5ëŒï‹KÔ?ëþ±Ó?úÐõ-sÑ?Ú:8Ø›Ð?vþÓ Ô?ÅËÓ¹¢”Ó?°u©ú™Ò?j’ÌêÒ?ïÚÄÉÑ?aãúw}æÒ?ÅËÓ¹¢”Ò?˜Ü(²ÖPÒ?<Øb·Ï*Ò?Õ‘#‘Ò?‹v“Ò?Ã`þ ™Ó?5ñð¤…Ó?ÄÑUº»ÎÒ?zã¤0ïqÓ?ŠÇEµˆ(Ó?Ê2ı.nÓ?TÆÝ ZÓ?Útp³xÓ?iR º½¤Ó?÷XúÐõÒ?é ¸çùÓ?4Ûú`Ó?à»ÍÒ?.å|±÷âÒ?áµKKÔ?œß0Ñ Ó?™·ê:TSÓ?‰$zÅrÓ?óÊõ¶™ Ó?iUK:ÊÁÒ?Tàd¸Ó?}^ñÔ# Ñ?>zÃ}äÖÒ?%]3ùf›Ò?ªÉÒ?ð‹KUÚâÓ?oƒÚoíDÓ?]›kÓ?¤ý°VÔ?{ØœƒgÔ?!<Ú8b-Ò?Ð`ÿunÓ?Ü.4×i¤Ò?˜¦pzÓ?`·îæ©Ô?™D½àÓÒ?J}YÚ©¹Ñ?æ‘?xîÓ?èˆ|—R—Ô?.ÿ!ýöuÔ?ë˜Ü(²Ó?9&‹ûLÒ?!”÷q4GÓ?‡‹ÜÓÕÔ?åÓc[œÕ?ÐDØðôÔ?ô4`ôiÓ?Ñ\§‘–ÊÑ?çUÕ{Ð?Ž?QÙ°¦Ô?²›ýh8Ô?VJÏôcÓ?VIddYÓ?” ¿Ð#FÒ?{Á§9y‘Ó??;àºbFÓ?p|í™%Ó?‰`\:æÒ?_ì½ø¢=Ó?REñ*kÓ?´r/0+Ô?\…zúÔ?z9ì¾cxÓ?ÒyYÔ? 'LÍÊÓ?žâ<œÀÓ?9}=_³Ó?½àÓœ¼ÈÓ?CV¸åÓ?{K9_ì½Ó?vª|ÏH„Ô?¹S:XÿçÓ?"¦D½ŒÒ?—åë2ü§Ó?Õ^DÛ1uÕ?cGãP¿ Ô?@7n1Ô? +TTýÓ?zUgµÀÔ?äõ`R||Ó?=Òà¶¶ðÓ?Õv|ÓôÑ?‡ú]Øš­Ó?€+Ù±ˆÓ?½üN“oÓ?Ø}ÇðØÏÔ?ãŽ7ù-:Ô?"8öì¹Ó? жšuÆÔ?€¸«W‘ÑÔ?­ö° ØÒ?¬Så{F"Ô?þî5&ÄÓ?¥]PßÓ?®~l’ñÔ?o›©ÄÒ?ßÅûqûåÑ?ú·Ë~ÝéÓ?¼A´V´9Õ?=›UŸ«Ô?²t±iÔ?ïOZ¸Ò?i©¼áÓ?õHƒÛÚÂÔ?Vó‘ïRÖ?ª, »(zÕ?M,ðÝzÓ?Íí)Ò?ûZ—¡ŸÐ?‡1éï¥ðÔ? pzïÇÔ?´“ÁQòêÓ?y‘ ø5’Ó?qs*ªÒ??áìÖ2Ô?€ ;¨ÄÓ?PáR)vÓ?üU€ï6oÓ?Úþ••&¥Ó?òC¥3ûÓ?sñ·=AbÔ?CV·zNzÔ?Ý•]0¸æÓ?ôiý¡Ô?Vò±»@IÔ?÷«ßmÞÓ?ZòxZ~àÓ?ð6oœæÓ?ì…¶ƒÔ? ¦šYKÔ?¬Å9êèÔ?U†q7ˆÔ?p|í™%Ó?ñE{¼Ô?i©÷TNÖ?ž`ÿunÚÔ?LÝ•]0¸Ô?‹·˜ŸÔ?´’V|CáÔ?¾öÌ’5Ô? îêUdtÔ?Õ‘#‘Ò?ʦ\á]Ô?<Þä·èdÔ?®*û®þÓ?÷”œ{hÕ?Ø}ÇðØÏÔ?Ênfô£áÓ?8©0¶Õ?Ñ;pÏóÔ?ÈбƒJÓ?¼Ñ“2©Ô? F%ušÔ?~p>u¬RÔ?í”Ûö=Õ?£“¥ÖûÒ?òB:<„ñÑ?NŸt"ÁÓ?ÇWËÕ?”ˆð/‚ÆÔ?ª™µöÔ?»¶·[’Ó?Ç¡~¶fÔ?1~÷æ7Õ?®~l’ñÖ?#‡ˆ›SÉÕ?<š$–Ó?Îã0˜¿BÒ?¯&OYM×Ð?h‘í|?5Õ?.2¥Õ?+*ÿZ^Ô?ð1XqªµÓ?™)­¿%Ó?ŸŠ‘%sÔ?Ž={.Ô?9¼ZîÌÓ?<¾½kÐÓ?ÀË eýÓ?nÜb~nhÔ?½VBwIœÔ?‰ jøÖÔ?Åä 0óÔ? B²€ Õ? œO«”Ô?:–wÕæÓ?Ôšæ§èÓ?ÆÞ‹/ÚãÓ?îÎÚmÔ?N¶;P§Ô?·~úÏšÕ?òë‡Ø`áÔ?Kþ)UÓ?Ëe£s~ŠÔ?¿›nÙ!×?kÔC4ºƒÕ?ºÙ(Õ?¾Û¼qRÔ?aR||BvÕ?C=·ÐÔ?{ÙvÚÕ?AG«ZÒQÓ?¹«W‘ÑÕ?¢&ú|”Õ?xî=\rÔ?iàG5ì÷Õ?a¤µûUÕ?óèFXTÄÓ?!®œ½3Õ?I†[ÏÕ?¡fHÅ«Ó?Õ?j.7ê°Ô?Ø›’“‰Õ?¦&ÁÒ¨Ò?Ë×eøO7Ò?W_]¨ÅÓ?¢&ú|”Ö?%–”»ÏñÔ?óΤMÕ?ÁÿV²c#Ó?î'c|˜½Ô?kg{ô†Õ?Üò‘”ô0×?\Uö]üÕ?|·yã¤Ó?Ô›QóUÒ?pΈÒÞàÐ?¸ä¸S:XÕ?ñõµ.5BÕ?A,›9$µÔ?J)èö’ÆÓ?ƿϸp Ó?.ÎR²œÔ?ʦ\á]Ô?ZJ–“PúÓ?" œlÔ?ÖÆØ /Ô?ë²×»Ô?3oÕu¨¦Ô?¢ñDçáÔ?vOjMÔ?è÷ý›'Õ?™Ÿš²ÓÔ?Í"[AÓÓ?/ó:âÓ?Ð^}<ôÝÓ?z©Ø˜×Ô?ˆ…ZÓ¼ãÔ?_ì½ø¢=Õ?ía/°Õ? šyrMÓ?vàœ¥½Ô?@¤ß¾œ×?§pzïÕ?Q§“luÕ?gCþ™A|Ô?Ø€qåìÕ?^‘šv1Õ?è.‰³"jÕ?÷ÍýÕã¾Ó?Võò;MfÕ?èÝXP”Õ?ŒôzÄÔ?´Ì"[AÖ?–~TÃÕ?ÿB=·Ó?Êû8š#+Õ?ʤ†6Õ?5ÒRy;ÂÓ?8öì¹LMÕ?µÀ)ÍÕ?ä0˜¿BæÔ?èO=ÒàÕ?š$–”»ÏÒ?©ƒ¼LŠÒ?ÐDØðôÓ?N³@»CŠÖ?BÌ%UÛMÕ?["œÁßÕ?uXá–¤Ó?e‰Î2‹PÕ?ã‹öx!Ö?ë²×»×?«\¨ükyÖ?ªED1yÔ?Õ>¨Ò?„‚R´r/Ñ?Ù%ª·¶Õ?ÄÑUº»ÎÕ?ñH¼<+Õ?¨o™Óe1Ô?‘ïRê’Ó?9EGrùÕ?ã©GÜÖÔ?ü«Ç}«uÔ?ŸË2Ô?d’‘³°§Ô? YÝê9Õ?±6ÆNx Õ?ÇJ̳’VÕ?”‡…ZÓ¼Ô?ƒjƒѯÕ?^üo%;Õ?ì3g}Ê1Ô?åîs|´8Ô?B•š=Ô?èÙ¬ú\mÔ?úñîÈXÕ?ÖmPû­Õ?ÒV%‘}Õ?J´äñ´üÓ?!‘¶ñ'*Õ?Ƭq6Ø?ˆKŽ;¥ƒÖ?¬„¹ÝËÕ?@QÙ°¦²Ô?ñ~Ü~ùdÖ?þí²_wºÕ?ºØ´RäÕ?p +TTÔ?LÐÏÔëÕ?£®µ÷©*Ö?o+½6Õ?1·{¹OŽÖ?9EGrùÖ?¥/„œ÷ÿÓ?Uø3¼YƒÕ?@ RÕ?ù¾¸T¥-Ô?]p¿˜Õ?ÝÍSr3Ö?¿Òùð,AÕ?Uö]üoÖ?Ö5ZôPÓ?…è8Ó?c™~‰xÔ?eVïp;4×?FÏ-t%Ö?¦{Ô—¥Ö?b¡Ö4ï8Ô?ÀÌwðÖ? õôøÃÖ?¬±^‚Ø?ï<ñœ- ×?ÛRy=˜Ô?©KÆ1’=Ó??T1³Ñ?§>¼sÖ? E¹‡„Ö?]RµÝßÕ?×L¾ÙæÆÔ?§AÑ<€EÔ?‘fØÕ?4ôOp±¢Õ?©lXSYÕ?•ô0´:9Õ?mªî‘ÍUÕ?!ºöôÕ?ëÇ&ù¿Õ?F{¼Ö?;6ñº~Õ?Y1\qÖ?=}þðóÕ?o›©ÄÔ?Á8¸tÌÔ?ð3.ÉÔ?º†OÕ?ï9°Ö?v“þ^Ö?†‘^ÔîWÖ?TÉPÅÔ? 34žâÕ?õ  ­ÜØ?{ˆFw;×?}vÀuÅŒÖ?Ï¿]öëNÕ?ôR±1¯#×?ù g³êsÖ?¾÷7h¯Ö?d#¯ëÕ?p]1#¼Ö?Ü»}éíÖ?äÙå[ÖÕ?MöÏÓ€A×?Ø(ë7ÓÖ?Á;ùôØ–Ô?þÓ x'Ö?cD¢Ð²îÕ?‡ýžX§ÊÔ?aO;ü5YÖ?¢ñDçáÖ?ˆWÎÞÕ? jøÖ×?Üôg?RDÔ?ªðgx³Ô?ÎQÚ|Õ?‹ú$wØDØ?{ÙvÚ×?ƒÁ5wô¿×?Ýyâ9[@Õ?| €ñ ×?p%;6ñ×? ]Þ®Ù?BÌ%UÛMØ?å(@̘Õ?eS®ð.Ô?Ot ‡Ò?°rh‘í|×?ñ.ñ˜×?¼aüÖ?a7l[”ÙÕ?wøk²F=Õ?j‰•ÑÈçÖ?_&ŠºÖ?ϼvß1Ö?È%Ž<YÖ?߈îY×hÖ?èô¼ ×?·ð¼TlÌÖ?I¹û-×?p@KW°Ö?aNÐ&‡×?½Â‚û×?ãþ#Ó¡ÓÕ?¥ØÑ8ÔïÕ?©0¶äÕ?1{ÙvÚÖ?_• •-×?ùŸüÝ;j×?-#õžÊi×?âÊÙ;£­Õ? ¯$y®ïÖ?å 0óüÙ?Š}"OØ?˜½l;m×?±n¼;2VÖ?•Ò3½ÄXØ?ÁŒ)Xãl×?Ze¦´þ–×?|`Ç Ö?]øÁùÔ±×?DÂ÷þí×??ªa¿'ÖÖ?ðúÌYŸrØ? ¤Ä®íí×?2“¨|šÕ?´Ì"[A×?/ó:âÖ?G ^×/ØÕ?F жšu×?£çºØ?$B#ظþÖ?¸Ku/Ù?Í•AµÁ‰Õ?²ŸÅR$_Õ?ŒôzÄÖ?LŒeú%âÙ?ûå¶}Ø?"rúz¾fÙ?šxxÒÂÖ?ômÁR]ÀØ?Ý µ‰“Ù?"úµõÓÛ?RÔ™{HøÙ?LbõG×?—㈞Õ?¼Ì°QÖÓ?ž–¸ÊÙ?_Aš±h:Ù?Ž?QÙ°¦Ø?Rf`X×?/6­¹Ö?:vP‰Ø?[°Tð2Ø?/áÐ[<¼×?—Æ/¼’ä×?Õw~Q‚þ×?}гYõ¹Ø?¦D½ŒbØ?½ŠŒHÂØ?Z)r‰#Ø?§“lu9%Ù?©‡ht±Ø?[_$´å\×?sò"ðk×?0º¼9\×?€-¯\o›×?þ)U¢ìØ?Íí)Ù?]2Ž‘ìÙ?=Ô¶a×?E¹4~á•Ø?U‰²·”óÛ?³•—üOþÙ?8öì¹LMÙ?py¬ä×?¾hÒáÙ?Òq5²+-Ù?»ðƒó©cÙ?½«0™×?Ý(²ÖPjÙ?RóUò±»Ù?Égð÷‹Ø?À#*T7Ú?5ñð¤…Ù?…è8×? â8ðj¹Ø?2;‹Þ©€Ø?.©Ún‚o×?Â¥cÎ3öØ?ëÈ‘ÎÀÈÙ?ÿ?N˜0šØ?D¨R³ZÛ?*9'öÐ>×?ÓL÷:©/×?ïTÀ=ÏŸØ?²œ„ÒBÜ?sõ¸oµÚ?Ü~ùdÅÛ?¿¹¿zÜ·Ø?:uå³<Û?__ëR#ôÛ?Wéî:òÝ?›äGüŠ5Ü?/Äê0 Ù?Ñzø2Q„×?å`6†Õ?ÎŽTßùEÛ?Ô_¯°à~Û?°WXp?àÚ?xÔ˜sIÙ?zóWÈØ?8Ûܘž°Ú?n1?74eÚ?B•š=ÐÙ?Žx²›ýÙ?˜üOþîÚ?ˆ¸9• Û?œùÕ ˜Ú?AºØ´RÛ?á¶¶ð¼TÚ?h—o}XoÛ?ÂP‡nùÚ?gd»SÙ?”N$˜jfÙ?`sž MÙ?u¬Rz¦—Ù?eS®ð.Û?ŸÛ2à,Û?Ì EºŸSÛ?úC3O®)Ù?ÌFçüÇÚ?áy©Ø˜×Þ?µ‰“ûŠÜ?Ü‚¥º€—Û?Dl°p’æÙ?4½ÄX¦_Ü?s¡ò¯å•Û?J´Û?xìg±ÉÙ?„Iññ ÙÛ?µN\ŽW Ü?Eð¿•ìØÚ?:õÔê«Ü?Úã…txÜ?ÙYôNÙ?+‡ÙÎ÷Ú?XûVëÄÚ?§#€›Å‹Ù?:Yj½ßhÛ?ƒ3øûÅlÜ?€cÏžËÚ?ÖXÂÚ;Þ?pÏó§Ù?#ظþ]ŸÙ?)²ÖPj/Û?øO7Pàß?;ŠsÔÑqÝ?Á=~oÓÞ?¢ ê[ætÛ?˜ù~âÞ?¶ö>U…ß?·)Õ¢à?Ii6Ã`ß?(HlwÐÛ?Ä\RµÝÚ?Þ:ÿvÙ¯×?Â/õó¦"Þ?Ž“Â¼Ç™Þ?šÐ$±¤ÜÝ?ŒHZÖýÛ?«7U†Û?I¢—Q,·Ý?( 5 IÝ?'µ¿³Ü??ÿ=xíÜ?æèñ{›þÜ?º/g¶+ôÝ?‰|—R—ŒÝ?]†ÿtÞ?~Œ‰BÝ?‰Ð6®Þ?ŸèºðƒóÝ?eRC€ Ü?¤ŠâUÖ6Ü?ÀÌwðÜ?@ RÜ?™šoH£Þ?¡fHÅ«Þ?U‰²·”óÞ?ÍXä×Û?>ÏŸ6ªÓÝ?g×½‰ á?§/ú Òß?»}V™)ß?>zÃ}äÖÜ?˜Ãî;†Çß?i㈵øß?PSËÖú"ß?ÊPSéÜ?¿3‰ß?H¥ØÑ8Ôß?ˆñšWuVÞ?ë8~¨ß?+¾¡ðÙ:ß?„ô9DÜÛ?„4fÞ?S°ÆÙtÞ?Ù=yX¨Ü?É8F²G¨Þ?†s 34žß?£ x|{Þ?X«vMHëà?l|&ûçiÜ?\>’’†Ü?ñI'L5Þ?œmnLOØá? Šcnà?CSvúA]á?µmÁÞ?<3Áp®áà?Ô›QóUrá?÷Žb®â?/ˆHM»˜á? pß?K‘|%Ý?sò"ðkÚ?rþ&"àà?j†TQ<á?_\ªÒ×à?–Ïò<¸;ß?¸Ì鲘ØÞ?åÔÎ0µ¥à?Ê2ı.nà?¶»è¾à?ޱ^‚Sà?Ý%qVDMà?ÝÑÿr-Úà?æ—Çš‘à?#KæXÞÕà?‚X6sHjà?pCŒ×¼*á?BÌ%UÛÍà?{»%9`Wß?pÏó§ß?Vó‘ïRß?£Ë›Ãµß?„ £U-éà?÷éxÌ@åà?Ù"i7úá?ä „™¶ß?,šÎNÇà?K’çú>ã?Ù±ˆ×õá?¼•%:Ë,á?óŽSt$à?ûY,Eòá?÷­Ö‰Ká?œ’“‰[á?i«’È>Hà?ô£á”¹yá?š#+¿ Æá?:ùÙÈõà?•Zºâ?iÒá¡á?HŠÈ°Š7ß?ýÁÀsïáà?ˆ¡ÕÉŠà?st´ª%à?È$#gaOá?Ęô÷Røá?:Ì—àà?M!u;ûâ?šÒú[ðß?Z)r‰#à?å?mXSYöä?ÌÔ$xCšä?øª• ¿Ôä?föyŒòÌä?ž%Ȩå?V+~©å?ÕýL½nå?[wóTå?Ž!8öìå?ˆ jôj€å?§>¼óã?j¥È%ä?É&pëîã?ÃòçÛ‚%ä?ùƒçÞÃå?aÃÓ+eå?ìm3âæ?ât’­.'ä?8½‹÷ãvå?í ¾0™ªè?lâuýç?˜Št?'æ? ¦šYKä?é ¶Oöæ?¸w úÒ[æ?ñœú@ræ?ûPŒ,å?Øó5Ëe£æ?.:Yj½ßæ?=¸;k·Ýå?Y"§¯gç?‚§+õæ?€GT¨n®ã?š?¦µilå?:õÔê+å?¦€´ÿÖä?”¼Ǚ&æ?it±3…ç?©L1AÇå?º ¾eÎç?m®šçˆüã?ö LnYä?Y |E7å?ø§T‰²é?*ât’­.ç?Êk%t—Äè?46<=æ?UlÌëˆCè?QhY÷é?vÿXˆê?·bÙ=ùè?K?ªa?æ?e73úÑðä?)?©öéøâ?{1”í*è?Kw×Ùè? uXáè?­ÃÑUº;æ?úµõÓVæ?ߨ*Áâç?þ¸ýòÉŠç?\ÿ®Ïœõæ?µý++MJç?+TTýJç?ý\¬¨Aè?‹O0žÁç?¾0™*è?²¼«0ç?^ÛÛ-Éè?¤ß¾œ3è?ÅS4¸-æ?Sê’qŒdæ?üáç¿/æ?Ø,—Îyæ?.É»š<è?ñÖù·Ëþç?¯_°¶­è?¢);ý ®æ?ŒjQL^è?úDž$]ë?qÿ‘éÐéé?d Ï.ßúè?'iþ˜Ö&ç? 4ØÔé?›äGüŠ5é?Ñ\§‘–Jé?è1Ê3/è?jÛ0 ‚é?H¾Äé?»&¤5è?Ïdê?ÏJZñ …é?ÚV³Îø>æ?\-Ë×åç?—¬Šp“Ñç?2rö´Cç?k¸È=Ýè?$Dù‚ê?Tn¢–æVè?gó8 æ¯ê?á “©‚Qæ?Ù|\*Ææ?3NCTáÏç?LüQÔ™ì?£#Öé?E·^Óƒ‚ë?»}V™©è?ËôKÄÛê?O!WêYë? ܺ›'í?>“ýó4àë?“ÅýG¦Ãè?eüûŒ ‡ç?žB®Ô³ å? Rðrê?ñ¸¨Eë?_]¨Åàê?Á:Ž*è?ðÚ¥ ‡¥è?Ø›6cê?an÷rŸê?Í[uª©é?ô߃×.íé?ïäÓcÛé?PÅ[Ìê?ó‘”ô04ê?ÄáÑÆ‘ê?ÌAÐѪê?¶J°8ë?b†ÆAœê?…[>’’žè?ü¨†ýžØè?Á;ùôØ–è?uv28JÞè?LP÷°îê?:3Pê?´äñ´ü@ë?X zR&5é?||BvÞÆê?Rðr¥î?ÆüÜДì?`V(Òýœë?jÂö“1¾é?Êû8š£ì?‡¿&kÔÃë?‚”0Óöë?é|x– £ê?ã§qo~Cì?йÛõÒ”ì?SçQñGë?ÙwEð¿•ì?äõ`R|üë?>î?VðÛãµï?-è½1€î?EŸ2â‚ë?$ nk Ïé?ø§T‰²ç?~p>u¬Rí?4iSuìí?ý‡ôÛ×í?LŠOÈNë?;‡ú]Xë?LÄ[çß.í?ù0{ÙvÚì?¦ ÐRì?ŸÇ(ϼœì?w1Ít¯“ì?c ¹§«í?}þðóßì?‘<»|kí?·ð¼TlÌì?àI —UØí?ÂzýI|í?"8öì9ë?é~NA~ë?þÖN”„Dë?•-’v£ë?ŸZ}uU í?¹Æg²í?!u;ûÊî?øÁùÔ±Êë?(Óhr1†í?¢DKOKð?Ñ´­fï?à‚lY¾.î?»ÑÇ|@ ì?å'Õ>ï?vOjÍî? ø5’áî?X)±k{í?ƒ0º<ï?_ðiN^dï?é+H3Íí?è25 Þï?è÷ý›—î?‰Ð6®ë?~SX© "í?ÇL¢^ðéì? ©ÛÙWžì?ßû´Wî?ÎÅßö ï?KY†8ÖÅí?yvùÖ‡ï?Ùy›)ë?_›•˜çë?!Îà L§ì?¨Š©ôÎð?Z/†r¢Ýî?fLÁgSð?ïs|´8ãí?€(˜1ëï?C«“3Tð?ÁR]ÀË ñ?³(ì¢èð?aSçQñÿí?é×ÖOÿYì?‡‡0~÷é?‹ßV*¨ï?Q/ø4'/ð?Í;NÑ‘Üï?f‡ø‡-½í?l%t—ÄÙí?Q}>ʈï?^emS<.ï?-[ë‹„¶î?ï‘ÍUóï?}¢üî?6uÿ÷ï?˜`:ï?I›ªï?ò¶Òk³1ï?¡õðe"ð?2ZGUÄï?IºfòͶí?IØ·“ˆðí?=œÀtZ·í?Ì}r î?_EF$áï?Cÿ+jï?y<-?pð?âut\î?‡kµ‡½Ðï?ê]¼·_ñ?Gu:õ”ð?|a2U0*ð?OçŠRB°î?KÈ=›•ð?±¢Ó0<ð?IóÇ´6Mð?–%:Ë,Âï?0Úr.…ð?€E~ý›ð?ðN>=¶%ð?¾¼ûèÔð?Õ³ ”÷qð?F6ŽØí?¼é–âŸï?õ×+,8ï?obHN&îî?êu‘Bð?^»´á°ð?ï9°ð?GV~ŒÑð?†æ:´Tí?³)Wx— î?}=_³\¶î?·¶ð¼T¬ñ?¦™îuRŸð?uÇb›Ttñ?…$³z‡ð?h@½5ñ?iàG5ìwñ?Ïõ}8Hò?eP3¤Šñ?o»,ð?€D(b‘î?¸\ýØ$?ì?’?xîýð?JA·—4Fñ?¿b ¹'ñ?®J"û ð?eS®ð.ð?w Nytãð?{£V˜¾×ð? Ý%qV„ð?ËLiý-Áð?~TÃ~O¬ð?Û6Œ‚à1ñ?µ÷Xºð? ¦}sÿð?šxxÒÂð?ÐDØðôJñ?j0 ÃGñ?çÂH/j÷ï?e#Ù#ð?h\WÌð?¾Ý’°+ð?í¸áwÓíð?¬o`r£Èð?ΪÏÕV,ñ?÷Ž"ð?àÙ½áþð?Ì&À°üyò?:<„ñÓ¸ñ?4-±29ñ?â镲 1ð?¢´7øÂ¤ñ?°Œ ÝìOñ?¾÷7hñ? ]Þœð?ª·¶Jpñ?ª¸q‹yñ?²ºÕ3ñ?kaÚ9Íñ?Ÿqá€ñ?Êß½£ð?y ýÜð?¿‚4cÑôð?Pj’Œð?Ž¿·éOñ?]ݱØ&Õñ?£dVï0ñ?ÌÑã·ñ?w÷Ý—3ï?PäIÒ5ð?*¬ÿsXð? raŠrò?Š}"O’ñ?‡P¥&ò?JíE´ñ?Žàñ?ŠriüÂ+ò?\ÊùbïÅò?5´Ø€Hò?6çà™Ð$ñ?J ,€)Cð?#ÝÏ)ÈOî?_š"ÀéÝñ?&S£’úñ?‚69|ÒÉñ?žðœúñ?2WÕ'ñ?ãý¸ýòÉñ?÷ʼUסñ?ÃJUñ?,H3M§ñ? …8„ªñ?¥žÐëñ?]7¥¼V‚ñ?ÿunÚŒÓñ?ëTùž‘ñ?`sž ò?çýœ0áñ?¨SÝñ?¯&OYMñ?Âû ñ?ï7ÚqÃ/ñ?Jôñ?IÛø•Íñ?GßÛô'ò?@‡ùò,ñ?YRî>Çò?UˆGâå)ó?┹ùFtò?×øLöÏSò?ù¿b Wñ?‡Q<¾}ò?}–çÁÝYò?ÉÊ/ƒ1bò?V+~©Ÿñ?©2Œ»Atò?8½‹÷ãvò?I¹ûíñ? ’>­bò?Ð}9³ò?„ò>Ž&ñ?ò–«›¤ñ?L¤4›Ç¡ñ?€H¿}xñ?EHÝÎþñ?Ð(]úWò?€™ïà'ò?g*‰ò?$cµù•ð?[•DöAñ?0JÐ_èQñ?±Ã˜ô÷ó?‹¥H¾Hò?fÚþ•Õò?ð£ö{âñ?¿3‰ò?=Ô¶aÄò? $}ZEó?ßÞ5è ó?kÕ® ò?l^ÕY-0ñ?ؼª³Z ð?» ”˜ò? =bôÜÂò?pënžêò?#ö  Ùñ?˜¾××ñ?€ ˆWŽò?z9ì¾cxò?©h¬ý-ò?¢ ê[ætò?Ôšæ§hò?¶øã™ò?žxÎZò?F^ÖÄ‚ò?Lª¶›à[ò?œ¡¸ãÍò?Ð}9³ò?ªò=#Úñ?LŒeú%âñ?–“PúBÈñ?3§Ëbbóñ?*©ÐD˜ò?>\rÜ)ò?cì„—àÔò?°rh‘íüñ?Óg\WŒò?á—úyS‘ó?…A™Fó?ðN>=¶¥ò?¥Û¹à ò?Ñ@,›9äò?qåìÑÖò?†7kð¾êò?3¥õ·`ò?§wñ~Üþò?ë8~èò?/3l”õ›ò?ZÊû8Zó?ožê›áò?ˆÙ˶Ӗñ?&S£’zò?[²*ÂM†ò?>BÍ* ò?Êjºžèºò?ùÙÈuS ó?ïs|´8£ò?²ˆ×õËò?V€ï6o\ñ? F³²½ñ?‡6áñ?cFx{‚ó?½f¾ƒßò?®HLPÃ7ó?Ç.Q½5pò?¼ÉoÑÉó?²ºÕsÒ;ó?À%ÿ”ªó?úDž$ó?]¿`7l›ò?{.S“àÍñ?ÆPN´«ñ?ÅS4¸-ó?}"O’®ó?Fê=•ÓÞò?Q¾¾Öeò?µÃ_“5jò?3‡¤J&ó?•»ÏñÑ"ó?—«›äÇò?³˜Ø|\ó?Æk^ÕYíò?Tn¢–æó?xak¶òÒò?ð2ÃFó?áçSÇêò?I®€B=ó?<‡2TÅó?Ánض(sò?·ìÿ°eò?ßÜ_=î[ò?Mu€”ò?Ó÷‚ã2ó?ÇeÜÔ@óò?ÆnŸUfJó?…—àÔ’ò?fj¼! ó?Å °rhô?߀cOó?ØÖOÿY3ó?Z.óÓò?µ§äœØCó?óùõCó?LS8½Kó?%És}Îò?o+½6[ó?4óäšYó?oÖà}U.ó?$™Õ;ÜÎó?óWÈ\ó?–$Ïõ}8ò?ÀêÈ‘ÎÀò?ö@+0d5ó?±øMa¥Bò? ËŸoKó?º2¨68‘ó?odùƒÁò?Ø€qå,ó?3NCTáò?øÃÏ^ò?ƒ0·{¹ò?uèô¼ ô?o»ló?-y<-¿ó?vüó?Mjh°ó?ެü2£ó?'/2¿ô? Qºô/Éó?HÀèòæ0ó?ÿëÜ´gò?Ęô÷R¸ñ?en¾ݳó?\8’Œó? W@ÜUó?J}YÚ©ùò?¨+õ,ó?öÐ>Vð[ó?7ê°Âmó?Ÿ ±Ý=@ó?q‘{ººcó?>ê¯WXpó?œ¡¸ãó?¯½7†@ó?×ûvÜpó?ÿ²{ò°Pó?ŒÙ’U®ó?3NCTáó?ÎÄt!Vÿò?Ú(·íûò?øÞß ½úò?ªžÌ?ú&ó?øá !ÊWó?¼#cµùó?Äy8©ó?cò˜ùó?ÀzÜ·Zgó?¼•%:Ëlô?Wÿ[ÉÎó?)í ¾0™ó?\Æú&ó?ZFê=•“ó?DP5z5€ó?Üóüi£ó?¾÷7(ó?‘`ª™µ”ó?gð÷‹™ó?øÁùÔ±Jó?õœô¾ñµó?·bÙ=9ó?~R›8¹ò?ûõ×+ìò?%W±øMó?1•~ÂÙ­ò?,œ¤yó?b‚¾…õó?¢ ±ˆaó?úµõÓ–ó?ÂøiÜ›_ò?êX¥ôL¯ò?Ù=yX¨µò?–]0¸æÎó?A€ ]ó?ÐF®›Ržó?äÙå[ó?<ƒ†þ nó?¸Ì鲘˜ó?N³@»CÊó?«#G:ãó?9í)9'vó?DÀ!T©™ò?s÷9>Z\ò?¯`ñd÷ó?c${„šó?$š@‹Xó?hz‰±Lÿò?ìW\ó?}ëÃz£–ó?THÞ9”ó?ø‹Ù’UQó?7ünºe‡ó?FΞvxó?óWÈ\”ó?p|í™%Aó?Òýœ‚üló?¬ÿs˜/oó?ôiý¡ó?_zûsÑó?PR`Ló?°¹2¨öò?¼’ä¹¾ó?K %vm/ó?ž–¸Ê“ó?bž•´â›ó?E¡eÝ?ô?d=µúêjó?Wzm6Vâó?AeüûŒKô?™*•ÔÉó?tµûË.ô?úµõÓ–ó?¥¡F!Éìó?ÐñÑâŒáó?S=™ô ô?Eò•@Jló?}¯!8.#ô?ªó¨ø¿ãó?t±3…Žó?RD†U¼Ñó?ÊÄ­‚hó?¿dãÁ;ó?X­Lø¥>ó?b*ß3’ó? ÓÚ4¶ó?+‡ÙŽó?ó:âÍó?,H3M§ó?R›8¹ßáó?Çg²žó?Cý.,ó?Œfeû7ó?KXc'ô?AH0Ûó?F~ýìó?(`;±ó?b.©ÚnÂó?-'¡ô…Ðó?„bÕ ô?ô¦"ÆVô?N¶;Pçó?‚ŽVµ$ó?=·Ð•Èò?sôø½ ô?!ÍX4Ýó?H0[·ó?ñÕŽâuó?¬9@0Gó?„œ÷ÿqô?  Y2ô?éCÔ·Ìó?o.2Þó?ë7Ó…Øó?µùÕ‘ãó?rNì¡}¬ó?!WêYÊó?Õ•Ïò<¸ó?n¡+¨þó?¼S”Kãó?צ±½tó?r7ˆÖŠvó?w;Sè|ó?n¾ݳ®ó?TÉPÅ ô?|ÓôÙô?…%P6%ô?v3£ §ó?«x#óÈßó?©¥¹ªô?>Ab»{ô?ur†âŽ7ô?, ‘Ó׳ó?²,˜ø£èó?·Ï*3¥uô?Ž<Y¤‰ô?w„Ó‚ýó?¿ïß¼8±ô? m9—bô?Ù@ºØ´Òó? †7k0ô? 6®×§ó?˜Q,·´šò? ý\¬ó?, ‘Ó×óó?ßÜ_=î[ó?k :!tÐó?4w¼Éïó?ådâVAÌó? %“S;ô?„4f’ó?šÚRÌó?5s»—»ó?=×÷á aô?Ÿ·1ô?÷@ô?§ ?¹îó??;àºbô?äÜ&Ü+3ô?âåé\QJô?õÕUZŒô?A¹mߣ>ô?EõÖÀV‰ó?4"1ló?V ÂÜîeô?Üôg?Rô?÷.9îô?Š9:ZÕó?ÃIš?¦õó?t`9B2ô?ûÍÄt!Vô?¢ÏGqô?Ÿâ8ð*ô?·Aí·v"ô?'á_Mô?ëŽÅ6©èó?O?ü<ô?ú'¸XQô?Å7>[Gô?‚rÛ¾G=ô?ÁÆõïúó?<2V›ÿ×ó?LŒeú%âó?cÙ=yô?¼=ùRô?E¼uþírô?åѰ¨ˆô?é Œ¼¬ ô?xµÜ™ Fô?1]ˆÕ¡ô?ÎÝ®—¦Hô?9~¨4bfô?- PSËô?s‚69|Rô?Ó+£‘Oô?¿ó‹ôWô?&üR?oêó?€J•({ô?1îÑZQô?6t³?Pîó?€'-\V¡ô? 5?þÒâó?(›rÅò?À éÓ*ºò?Ç€ìõîÏô?¯\o›©Ðò?iâà ô? EºŸSô?·D.8ƒ?ó?$~Å.òó?מ—Š ô?¥ßPø,ô?æ[Ö5ô?iª'ó¾ô?ž#ò]Jô?t(CULeô? åD» )ô?¡ƒ.áÐ[ô?u?§ ?[ô?OYM×ô?@1²dõ?zóWˆô?†Ê¿–Wîó?¶Mñ¸¨Öó?§!ªðg¸ô?¾Ý’°kô?:\«=ìEô?¡GŒž[(ô?%ZòxZ>ô?ޱ^‚“ô?ÜÖž—Êô?QLÞ3_ô?ó:â dô?;5— uô?Ôe1±ùxô?ÔÔ²µ¾Hô?»G6WÍsô?^ÒƒNô?sôø½ô?øpÉq§tô?~p>u¬Rô?Ý^Ò-ô?ò˜ù>ô??ªa¿'Vô?mrø¤“ô?|HøÞß ô?j‰•Ñȧô?7Þ«ô?iqÆ0'¨ô?­ø†Âgëô?Â26t³ô?zÄè¹…®ô?©MœÜïô?—qSô?¦bc^Gœô?O!Wê™ô?ê‘·µEô?!Ky ô?'¢_[ô?å}Íó?†!rúz~ó?q!àF ó?£W”†šò?íÿ°¥ó?Ãdª`TRó?áÔ’wŽò?åCª"ó?¾hÒaó?¨½ 4ó?À•ìØô?Ì^¶¶†ô?ãâ¨ÜDmô?¥2Å]ô?çÄÚÇÊô?LnYk¨ô?'0Ö­ô?0Ø Û¥ô?aO;ü5™ô?ôiý¡ô?dËòuÙô?1ëÅPN´ó?µÿÖªô?€šZ¶Öô?('ÚUH9ô?Um7Á7Íô?m±ô?"Æk^ÕYô?›YKiô?©iÓLwô?I+¾¡ð™ó?™~‰xë¼ó?½ûã½jeó?}—R—Œ£ó?ç7L4Hô?ý†K®ô?GJ±£qô?.óSœô?d:tzÞô?j ùœ»Ýô?­5”Ú‹¨ô?:\«=ì…ô?eU„›Œjô?w’ `ô?¾†à¸Œ›ô?“þ^ ó?ÑvLÝ•Ýô?i­hsœÛô?&P6åÊô?Õ"¢Øô?œˆ~mýó?IZÖý#ô?9 {Úáô?~Q‚þBÏô?4ØÔyT¼ô?*œÞÅ»ô?ioõ?G­0}¯aô?$´å\Šëô?¸Üšt›ô?¡l\ÿ.ó?¹¨Ådó?XU/¿Ó$ó?5cÑtv²ò?SçQñÇò?±ÀWtëµó?o¸Üšôò?4¡l\ó?ß©€{ž?ó?¯]ÚpXZó?8h¯>:ô?T:Xÿçpó?`¯°à~€ó?̶ÓÖˆ`ó?êé#ð‡Ÿó?k'JB"­ó?Å’r÷9~ó?©ƒ¼LŠó?ø¥~ÞTdó?/ßú°Þhó?ep”¼:‡ó?Í‘•_ãó?h@½5ßó?kׄ´Æ ó?¸éÏ~¤Èó?b†ÆA\ô?ÕèÕ¥aó?³¶)Uó?F–̱¼kó?e73úÑpó?¢ðÙ:8˜ó?Ç€ìõîÏó?=ƒù+¤ó?”¥Öû¶ó?¨Åàašó?n£¼’ó?¢³Ì"[ó? ˆI¸‡ó?[| €ñŒó?ê?k~ü¥ó?©„'ôú“ó?¦~ÞT¤‚ó?dyW=`^ó?t—ÄYuó?Ôž’sbó?æ]õ€yÈó?Jëÿ¦ó?„~¦^·Èô?¸£îô?ÿy0Húô?=›UŸ«íó?OÏ»± °ó?`YiR zô?ÿêqßjô?õL/1–©ó?r1Öq¼ô?iÚV³õ?qXøQô?ê¯WXpÿô?ÇeÜÔÀô?W=`2åò?—qSÃó?cÐ ¡ƒ.ó?G 6u^ò?NÒü1-ó?Ô¹¢”ìó?kò”Õt}ò?ë˜Ü(2ó?Î4aûÉXó?-B±4íò?žÏ€z3êó?ù0{Ùvšó?¢+Üò‘ó?e73úÑpó?’“‰[±ó?¿CQ O¤ó?8‡kµ‡}ó?JA·—4†ó?J&§v†ió?Ɖ¯vgó?íFóó?6\íó?±§þšìó?:<„ñÓ8ó?Ní S[jó?Ä&2sËó?ý¡™'—ó?&rÁü=ó?F жšuó?‡¥Õpó?Øî »ó?õfÔ|Õó?3oÕu¨¦ó?›kCŸó?vüÂó?ÙCûXÁ¯ó?Ò4(špó?[%XŽó?nߣþz…ó?X¾Û¼±ó?ظþ]Ÿ¹ó?âeS®°ó?¬±^‚ó?ý‡ôÛ×ó?ˆŸÿ¼¶ó?G­0}¯¡ó?Õ@ó9wûó?7n1?7ôó?´Swe×ó?¦Õ°ßó?[[x^*öó?AŸÈ“¤«ó?£V˜¾×ô?°|·yãó?8¿a¢AÊó?Ÿ;Á¾ó?©MœÜ/õ?C —8òÀô?ŽW zR¦ô??ÿ=xíÒô?$Dù‚Òò?ޝ–;só?k‚¨û¤ò?Ùëݯò?ÁþëÜ´™ò?ÖÆØ ¯ó?ðÝzMÏò?€ôMšÅò?Ð캷"ñò?÷!o¹úñò?y”JxBïó?/¨o™Ó¥ó?ðO©e¯ó?›sô¸ó?㦚Ϲó?jjÙZ_¤ó?zŠ"nŽó?~ŠãÀ«¥ó?©2Œ»Ató?Â1Ëžvó?Àêȑ΀ó?ßÛôgó?ˆdȱõŒó?:°!yó?Ù /Á©ó?´€Ñå ô?‹ÀXßÀ$ó?U/¿Ód†ó?dèØAeó?‚âǘ»–ó?o+½6+ó?h°©ó¨xó?¦º€—6ó?á@H0Aó?ñÖù·Ë>ó?jÛ0 Âó?~âú}ó?^€}têÊó?H‰]Û›ó?äø¡Òˆ™ó?Ú|a2•ó?ÿ$>w‚}ó?m‘´}Œó?Û¿²Ò¤”ó?µó¿ˆÈÍêD¡?5\!­ñ?'@1òÒ@¬y;Ýê¿(ÜÀ˜<±?¦ íjNù?r7ØéÚ2è?3‘àl4æ¿Áå3*x|õ¿d¯Ô](…ῘRyJ­é¿]Vçnñ¿eŸãÀ:@3Å;Džá¿»`…JóGÙ¿Ø ·*³û¿ñÚV «˜ÀÁÔG Ió¿4Ë>³Ð@kqK³ž ø¿o¢S’H¬?¬èŽ’c¶?|s0n/sÀCÔ@±2á¿…Ñ¿£õ¹ˆôä¿-FÞV!]²?й1¢_Øù¿à¼ò§)˜ñ¿_4ÉX¡Ðå?ÙÈ –óä¿›QE{ýö¿á¾¬ª%ô?’¼>°|XÜ¿ïÍf¦ì¿Ì} ÂßwÞ¿ xç?ÐË?¦M²7dÓ¿± ZRå¿Þ¸r~<=ð¿rÉmln¡ù?G°%\7‚ô? ÁA’¤Ã£?•UäéüHÔ?x>gjêÀŽo0{Gõ¿Ë¯¥´>7ó¿ÄnÚÑLû¿ô¾3‡î¿ @mŒpæ?Ú”–€—²ý¿-nÜæ_ÀéáÈáR—è?eàŸgl@äÛ ceë?¯ã7Ä#Ûè¿¡òê-Ðð?8˜ˆx°˜Ç?$wT·>^à?I ùÚ)Ù?X võÍ?žLˆdÀë¯ç?â]A‰y¥ß¿¸‚D-Éóõ?’bYMâaê?J×Q9Ðí¿øA)ƒqr @Øíã{'A÷¿ikUËÄ÷?ÎKà ò¿ué“Ìœ~î?‡•Àp@ w‡•܇—¿Ì qiV ÿ¿Âµ\•—~ÀtŸg±‘…¸¿†ÏFã¿#†Ù+ÔÂ?@î'VŒ£º¿ð¿°„É£¢?$,X¦/É?b ËÜ æ¿p!"xõÀ~0´—Ù¬¿q7å5sÕñ?€Wºé̶翢üŠö©û?\-©H¡Þ?r¾B*mÞ¿eLÆ!¥ÖÒ¿vZâ6j@gõ‘Úwû?¤]á Éõõ¿§=³b=Ã?¬ª|Mcã¿æ¼?ô°pÀó³, «=Ð?4Y±ºÔ„À7¸á¶iï?©Îª@;#ò¿’¬”{ë®Àì©ÞHÒ@ øëÒ¾? ,Kɽàþ¿‚‚–Rö?Jbà¶­®é?|sq¡Nð¿(nÂu·ç?Ùdž:Æ7⿹H‰J]é?¸ÊoJÜï¿màCÚÀèœÒ 翨™-Ú– ÷?ÏF=ŠŒÉö?^È)¹ÀÎäq¤ˆÀ¦ÑLçûz¿.+_=Øà¿„âi?9Uæ?µ¨˜3À¶O¦#Ý¿³ÿn}ò?1Š ƒ!;á¿PþûÚ{›è¿µ‹³Êž¶í?·úÅvó¿÷§6Ú—?ÓŽê/oÀ®—&ÒÕý¿tVÈ^Bæ¿–ñ ©h…ç¿î¬‰(.@Àaq!Ãø?<(ni[À†r…Õ{`á¿$¤íÙÖÀö¿ãg@”µ@Ž_ÞÃ?b¬¸<2@Í>; ½¿ÛRŸÚd(@ÇÎÛyÅ À²”œPYóò¿Òƒ_øÆÁ¿.Tß„üô¿©f6°Ö¾?¸Vk­îâ¿È“šÑ¿›0,“éò¿Ï3Pþ”0À¡¹¹ÿ?à†«û-çÜ¿ìM° »5ñ?ŽÞî±ðÀÀxÚYLÌÔÞ?œ½È“+í¿Z¯½Àù¨«“{Ú¿ü¯¸s$Ú?¤|™ñAà÷¿L¾¡%õíù?,³[qv'õ?Tc×uið?V”Ãîüô?0ž¤GT^«¿‚)ù6åù?XÂlîÀ`"5…–Rð?Ë89Äq Àð#²½âË¿øì”C¥ä¿€k1e? Æe·Ã" À‚왲P:׿ÐNBÀ¬Ï>Žx@Âý á λ?0ÿRÝÜò?Ô‘Ù.è0à? ÖŸc¿ À<“å5€Eú¿ÓÕ¯¢¯~ÀLUwçû¿ÜB Æ?Ki=ŸÀÚ^ï@&û?½äŠ‚€ Ú?Ù:µâgì?=,Ñ.¬» Àô¢þB©í?$kDˆ)ú?8&QtÖ?¿ÐÂIî@íZ?h˜ö@]Å1׿â¡ʬ@·A.oCÀ4Bê×k@$þƒ+ôrð¿7ˆetÚ À|{û<¢+ÿ?ýGñ›Âß@*Žbò· @‹a (ªë¿, uìzGÀâi4?„À¾Ð¬Á[Ö¿­¦ Í“ì¿1i ·Ê ü?î¾*‡BÚæ¿BVË´8ó¿vÌžÑŠß ÀoˆRvÌZå?@ROÅí @Ã= á @Ä_RR@kÂ<jÅí?†vð„BËù¿˜mOë ˆÛ?цÇßuß@úÀvÁjÖÿ¿VÃ}9@-’«„¹@ë}üÄ¿ŸAÔWWêô?4ˆßß¿”8OÛÀx¼æ Z@Á¿ÇÊ¢ @ÆÿùÄQ ÀàdnÒIä¿vbæÄK¹æ¿ø”ðWIÀÙûÞÿ„ã?j€äð™rø¿ÀY>¹ Ë?ÆZ•_Ð÷¿hméT î?ÄŽ(O›ò?àÖö,…¶¿~Bû²À®~—¯£ @ÐÅmwÒ¿•îs 'š@Çâiš8À`aŸ–ãuß?àÞ¬D‚½Ù?uýÖ¯†^í¿‘ˆ½eÀ@aÕ*°À|±šˆS²@ìGä¡ßÀÔWUUéæ@æÏá¿(ê?ó\!«{Àòµâ ^£å?ÈÓo äß?òÔÈoà@yµ ½TCé?ÚÞäöH@lÖk0u¤å?óc®Ä9ÀÿÕâçÅú¿º K¯-rÒ¿ámÝØ2ÐÀ0>‹*ªiô¿´UÙÌþxÀ#ãf)€b÷?ø®öZ3¼ó¿"©æ‘ºqô¿ˆŸÓaVÇþ?ž¨Òüõ¿8KزõÃÛ?EÊiÌ #à?…ªñÁnü¿?‚ñÔ?íø?n9JxÄ5@Ð+©vó¡ò?ñ]_„t™ä¿( }Nú?;3v£ûê¿ìùž6`ÀܿȄFd”À5ÍëÃîñð?n¹EÅ”^ÀHЩؙ‘ @d·á§@ÄJŒÀƒɲ¤Ø?}%Žá?àŸg­n÷?ćÔ¶óæ¿ä©KÝÀ•Ê¿ÊNn·+%á?3»×Ì5óõ?†1¬"‡â?Ô‹ûMëÇ¿}™v[ÛÈÿ¿©`í´?Åà ”¼7é¿×NÉj}²?#ÑK‰Ìø?¯”ÄîBí¿Šš0¨ˆsñ¿ÿtd¬–±õ¿VyV‹å–@±ä5SÝ¿Áþ«Ú?ï?à¦<@Ä*‚?ðÍâÂ#Ùý¿‹ƒÍ>ïé?‹ ìŽ7Ö?ÄbÑ?á¿àTñ©`ôè¿0¥%|¤4οʗÔ=ì=ø¿ÄÚ”Zí×?b;Êð Ó¿½h@òñ¿ GÇE¤åå¿TVËy9Ö?»v Ø—@ òÞN‰!¼¿ct\Xÿ×ò?ŽõÅ)ù¿î*8Ó8Ï?÷õTù³¾ß?­šà­ÿ¿3tnîw[ö?;²(œ.³Ú¿‚ì¢|@ö?ö*MðÞ?Ñ&á+R׿Hé“Ûyï?`¾Éá¹?w/w×dÀ?´€Ÿ3áÍ?(½"Õm4ž¿hg5Üȹä?aŸ;NC¸ñ?HUõTAÈ?9õ¶SóÑ¿X4̃þ÷¿ÈKÜzÝ?SSïå¥ðÜ¿°Åoï?-Ê?HÙôSnñÓ?ˆ~š¥«Xä?öߪ²Jå?Fž¿`Öü¿Í÷>¡(Ö¿ ‘&¡ê?sJ³&Xó¿;{õJbzê¿ 3ÔÕê¿wÕÖùÁ?Ì»8ô 쿸‘®?¤ç?nt9Чrð?Âò’¨tá?ºH}#u‰À[â#ÍwÉ¿ž²•ûÓ?2PKÑ=æ¿?ƈ7¦6Í?}HÎ[òØÑ?V ×eÍê¿xÎ×§x@[|2Q]cù?`–î28á¿ç8ÕZèá?’6.?â¿?ׯò¼NÛ¿ù«E#HÇ¿['*ž%ù?‰kfL©ä¿æPèÉ©?œ²è?Ô&õ§£·?¤Îô²ÿ™í¿þ^aèþ¿Wš TÚƒÀà…нë?Ø,1åQ°?°5ñ’mWð¿kœU}j7ú?ÂúEI¤Î¿Yâþš¿>ý¿y<%’Æ?t±JpÕ8æ¿z%lØo¬ò?,ÿ*<‡Õ?÷ƒ.Ý?ÏšB±¸àâ?f?4V=fí?Îxdý?Nðf¹Æ¿ì“MÓtþ¿n¡ó²U@Ü·Ë&†À=`œÕöÊ?^Ö•÷”Øé¿h¡y‹6Qå¿ò=Ï©ÿ¿È À²15ñ¿&.±¾Éêú?0¼„‰`{¸¿U=)æS>ï?'Ç-CÇé¿@–Lš»Uú¿w€ysçö?®ñél¥ø?9eèpôdÔ¿ ‘ô[á?¿J*ˆù7ø¿,çVÓtÕô¿žÙ1òÖ?|Ò묪„ÿžHù›ó忤äÕ$í¿ÝÛ{ ›Ë?‡Çwõ?ÙmÎJÔ?Åãará@ ;÷Þ¼vÀ8Ú‘ ÆY²¿D/æsâ•÷?4Pé²åú¿À.&Ž´¯¿RJ5½¹Mþ¿(,Aoó¡÷?/ fö¸ö?ÙÄV¸Ù¿™A9_Úó?kóáØHÏú?>S+´â¿Ø|‹N>ñ¿vÍ"¯oÚú?~@±‘Ö?ýïLgøÄï?͵)‘¥—Ù?ŒXÓýOh¢¿òµŒ~ë\À,ƒ¶þßê?&Ï8p¬Àø#èÚÈšó?P˜«‰²¿èc‰2糿D>QZ ê?ÇK·¼ÊÀœ?15)Ví¿L–f>î¿ÁS e4ø¿….FLá¿ÂÒ-*ÖòÀÄ÷WrÎe@Ð*71Ýû¿A§ƒ”íæõ?-Z2Ÿö? y˜§T³ô?ÃHû[ À \®>é‘?ÒV‚yâº? }#B¬³À?šyýÿóÍÜ¿8‹“%)Ü¿ ¼/’–â˜?ª*ší@„„[sCŸö?üÌ6éhã¿ 5¶d©í@(±Æ ¡Ü¿?(§Ù™žªÏ¿¿27#:mË?P(YíË߯?c’0dÀ©ÁÔ˜Öúê¿FÁ8A?¾å¿Ú÷ÔS–ê?Ük¹èvÐ÷¿é]J#‰À`³UCßø¿¥—ÜÊ¿ŒL.XÄð¿PöÙNšñ?Dá•Ñü?hp[dPVä?¥Ä].".ñ¿4$ðŒà¿,Joœßuñ¿ ¸ˆŽ¬É?%&Uaóû? ö+9pþè¿ìÑé“Ró?ì øŒ»Õñ?c°‚÷mí?$©\.ÊÃ?tòãfQÀî©ÊV˜í?ørtç™@ÙœKÚéú¿°«SX¡?¦¥åò?·-Ø<ôü?É”§»Ž/ø¿ú„ixò?Ì?ô.VHý?rIàN˜[ÿ?/=–]#ø¿è;B,Ýs÷¿±DªÅ·@”²XUúô¿u¹F‹T!ï¿,Wœ¨ßì?7/ðÄðW@^\/ŸÎ ÀâA¹ŒÄñ?h9yhí¿ˆæî]äˆá¿ìš#ôù¿éHXà?Ô±­Éµ‹¿Å‡2÷|š @ŽÔ'»¤à¿.»`À~¿×1ú?í˜é«<Ð?QbCÅ›™À𢪤ê?VÒ°è?‹Ÿ9öêò÷?Eqº¡¦üæ?1·j(æ¿@ŠÌBÒ¸?4†µâä @¤ç= =ñ?4ïvÈË”¿°ß} 5Ê¿ ™¨ÖWgп N"Cç,ö?ÈÞBþ„‘í¿ChA¸ò?¦Sé¸Ë?&GíHp@tü b¹Iâ¿Éâ¢#¤ìæ? Y¤ ^ð¿ÏÂU›°àâ?ˆ“^¬F%ø?žûlÒ- ÷?W ­ü¿ÆDÛñÃ?8›ÃyoÊ¿0‘šÙØBè¿™û>ŒžÓÀÀ7ÿ‡±¿ÙäëãÃbá?¿Í;ß?º©¤'@×?X3xÙEƒÛ¿ñ»—FCÀÛÏœT2Å¿,˜ÒǘõÌ¿Ž¶Œ1Cóñ?X‘hwпwøI.ÏŽó¿â)’üé?žìáÛw@À×Î1öE˜?>â@v#À0UÚçŒl@•ˆS|ËÑ¿’ˆÉò*À&Çý˜Žð?°¶nO@–Y?%@,ЪÊt¸È?+K=™ä(Àò|±ò®uô?rßÉÑ€ÊÚ?9yX.9­ì¿íá¥Æ°ó¿ŽIk$Ì@œÂá·änï?Ü)Iìßøç?¦œaîüÞî?O ƒÇ»{Û¿@dœ×ô§?‰¯XÝ „Àƒ€6òtÀ(?¤:´Öù?é̤›&ý?cîà|QEÊ?ó• ñ?X¶þÍ?¸ø?† æJÛ?*2²‚œ©ñ¿¸2¥["vÀ¢cÇ9q1ü¿Zåó{nò¿ »kïÀ«Ñ?òíǤù?d þ‘·á¿É7<¼ËaÀžüKÝý¿›ëJœ::ã¿Ý|ØG:…ú?`<­Q*=å¿Æ=6Øó¿12aõ*Ñä¿(Ã3ÝÝ\ÀYjµ QTÔ?†oj$3ì¿ÖíÃõµø¿é‹c ;‘ý¿<º–ÓuÁå?ªX¢ÿ7Òsw-WÓ¿óì£Û¿GßÑC?qñ¿aD€Ìì Å¿‘ñ:)uø?ø㞦¿¦UêsØGÆ?ÕŸÅç.kâ?ô0[ÄbÈò?×AÄ4ö?á?KWåëp&Ò¿M<þ Û?cáµÙî¿ÐqDZÚAä?¸œ*¹c ?çÒÏÁ?Ó?A$CÇ>;ÀÙ¼æ©ö?¾¶¹|¸? FÄóÌià?¡lBµÌ¿äIO5èëæ¿JÝK2,»ë?ò•{ØœLÿ?=,a², å¿ÔS@¶'v¯ÜÓ.Û¿(Dµ`kö¿òܹî`á¿)ÊkDÿñ¿Ï%3zD0â?Â\}oYÌ¿J¡]ùÀO hEVã?¼zøMçÔ?ð¼+.7ˆÙ¿qù(R”ÿé¿c»Ø?‚FüÁû¿,gj`Ø¿zh<‹œã?´ys\EÕ¿¬wYéüoп@éí‹ÁÀ¿‚øÆÀ—nÀ¨Þ¶VT`Þ?¼BæYç?€ê»(èv¿‰û ç?0j‡šÄí¿r)‡ªÿò?moEHLû?4°¸ñÙó?2¦4>§žù?‚ÿx4bÙ¿2ä`ÊXÕó¿™cñӣ迈Ã$Ø;ùâ?DLÜs~Ñ¿Á`öª ö?£+"­¹’ü?FV þ¿æÞ‹EÛ«ç? §!¢p|Ô¿‰xÈèM<ñ¿. y3^œÓ?È<×ôßÿ¿ðÓx¾'¢?4à›¼‹„ë?ï|H>µÚ?èÃÄQÖFê?ìMYÏ8)¿?Äxƒ*êó?ìíöNzQÛ¿‡¾¼Æá?€ØûMiV¿$&Yõ¦á¿†}c„^ø?õ^¾ ²Ú¿xÊoxüÿÉ?’ªX&`¢ý¿Î¿ƒy—óò¿Slä?’пAâ|±u*ò?H.•Ô7Ü?<Å»*V'¡¿´G oíÀ^âK uüú¿rÓIG¬$Àü? ˆf @{‚þ,ûÀ6´Þ~Û'Ö?SÜ?ýìû“ð?°^³1í?û–zaðÞ÷¿Ò? .éWÁ¿-õ5å½Ç¿,:íù¿’òúÁ[Þï?©6à„uÖð¿F£„Aêó?@ÎFiÐõ¿Š!ãkÄPö?}}ÿ Øn÷?²¿éðÉ?(ÇøZzBÖ?GÿÞlD&ð¿u­H,¶õÿ?òaÊ©—ÀŒïPÆ À%ªîÑbGð¿˜Háaf5ú?+… ÑÈù?’‘q£Çã¿@bYèîü¿x@¢¸6`á¿¿ê®éü*õ¿BsŠýá?$¬Ë9rÝ¿ØT˜DÙŒÛ?íÈó‡8Úå?ìÉ®N’’ ÀBT©üßÍ?âê-÷;è¿.Î÷SRÔ¿†ñL>}ž@PÙ I´å?R9LUmð?¾ ‰~Ò§ë?Q}Eo»è?Äö´¢µÜ¿6ñNMkõ¿}5Œ‰T–À†!Ïùî¿p _½s¦ñ?°Ž„”X/Ü?dËÍÙ/ÊÛ?²b­vŠoØ?/#÷_Šmð¿ÿÉøVÜt翇¥œ‰ѿ֞{’Oç?òµ"¿»PÁ?2{kAS@Ø @}"ë¿›NNu%ââ?øi’ßQö?R-j%Œò? ñ•‰Nß?"%;â¡Àå¿@èfÆ`‹¡?w¾œ0s @­¸>þgaá¿í¯9púÞ¿?¸Gº’ï¿ZÅÝ{Îû¿X Ë„;ü¿ðº‡êú¤Ý¿Xþ–YÁÖ¤¿v®T½ @CXÕ‰sùë?pG(ÙÝá?‚)p™µ@PÅ;;½ø?\¹Ãú»‚ð¿J¶€t äà?jQúÏÔ­ï¿8 20âá?w]÷‰îpù?ºî[–ãè@o/ß¿€YTg»ó÷?ßLKåäÀ´fŠ´Áæ?ó5ÖOÊê?ägf„¼Žù¿¯7ZPÖò @Ï“*Ö˜þ¿ÆVžh¹Œé¿ï«xÍö¨î?4ÊbòÒã¿›MxþI2ò?¸a!É­¿þsªÑí?Ôä«ðÇÀÀ˧ó!ì?0ò†v©©”¿Ï±$¶é¿®[¶ßâ?*B8)Zî¿;¹ëZ_@·É„mIý¿¶:?yêmø?¸Ëö¸pð?ÞwŸi,—À µž¾%hö¿¡Ö@ë¡ó?½GµI1á鿬·ü‹ Ïó¿‹Š˜·Lå¿+–«ò„Ñ?›¼RlÌ2ÀD?Ŧšê?statistics-release-1.6.3/inst/datasets/weather.mat000066400000000000000000000010671456127120000222620ustar00rootroot00000000000000Octave-1-Lyear1ÿmatrixþÿÿÿ€I@J@O@O@J@J@€I@€J@€M@€O@€M@L@€O@€R@Q@€U@€T@€Q@@Q@ÀR@@R@€H@€G@I@N@€M@N@O@€N@ÀQ@year2ÿmatrixþÿÿÿK@€J@P@€P@€L@€J@K@K@O@€P@€M@€M@ÀP@S@ÀR@€U@€T@ÀP@€R@T@ÀR@K@I@€J@O@O@O@R@N@ÀP@statistics-release-1.6.3/inst/dcov.m000066400000000000000000000113571456127120000174240ustar00rootroot00000000000000## Copyright (C) 2014 - Maria L. Rizzo and Gabor J. Szekely ## Copyright (C) 2014 Juan Pablo Carbajal ## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This progrm is free software; you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or ## (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program. If not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {[@var{dCor}, @var{dCov}, @var{dVarX}, @var{dVarY}] =} dcov (@var{x}, @var{y}) ## ## Distance correlation, covariance and correlation statistics. ## ## It returns the distance correlation (@var{dCor}) and the distance covariance ## (@var{dCov}) between @var{x} and @var{y}, the distance variance of @var{x} ## in (@var{dVarX}) and the distance variance of @var{y} in (@var{dVarY}). ## ## @var{x} and @var{y} must have the same number of observations (rows) but they ## can have different number of dimensions (columns). Rows with missing values ## (@qcode{NaN}) in either @var{x} or @var{y} are omitted. ## ## The Brownian covariance is the same as the distance covariance: ## ## @tex ## $$ cov_W (X, Y) = dCov(X, Y) $$ ## ## @end tex ## @ifnottex ## @math{cov_W (@var{x}, @var{y}) = dCov (@var{x}, @var{y})} ## @end ifnottex ## ## and thus Brownian correlation is the same as distance correlation. ## ## @seealso{corr, cov} ## @end deftypefn function [dCor, dCov, dVarX, dVarY] = dcov (x, y) ## Validate input size if (size (x, 1) != size (y, 1)) error ("dcov: Sample sizes (rows) in X and Y must agree."); endif ## Exclude missing values is_nan = any ([isnan(x) isnan(y)], 2); x(is_nan,:) = []; y(is_nan,:) = []; ## Calculate double centered distance A = pdist2 (x, x); A_col = mean (A, 1); A_row = mean (A, 2); Acbar = ones (size (A_row)) * A_col; Arbar = A_row * ones (size (A_col)); A_bar = mean (A(:)) * ones (size (A)); A = A - Acbar - Arbar + A_bar; B = pdist2 (y, y); B_col = mean (B, 1); B_row = mean (B, 2); Bcbar = ones (size (B_row)) * B_col; Brbar = B_row * ones (size (B_col)); B_bar = mean (B(:)) * ones (size (B)); B = B - Bcbar - Brbar + B_bar; ## Calculate distance covariance and variances dCov = sqrt (mean (A(:) .* B(:))); dVarX = sqrt (mean (A(:) .^ 2)); dVarY = sqrt (mean (B(:) .^ 2)); ## Calculate distance correlation V = sqrt (dVarX .* dVarY); if V > 0 dCor = dCov / V; else dCor = 0; end endfunction %!demo %! base=@(x) (x- min(x))./(max(x)-min(x)); %! N = 5e2; %! x = randn (N,1); x = base (x); %! z = randn (N,1); z = base (z); %! # Linear relations %! cy = [1 0.55 0.3 0 -0.3 -0.55 -1]; %! ly = x .* cy; %! ly(:,[1:3 5:end]) = base (ly(:,[1:3 5:end])); %! # Correlated Gaussian %! cz = 1 - abs (cy); %! gy = base ( ly + cz.*z); %! # Shapes %! sx = repmat (x,1,7); %! sy = zeros (size (ly)); %! v = 2 * rand (size(x,1),2) - 1; %! sx(:,1) = v(:,1); sy(:,1) = cos(2*pi*sx(:,1)) + 0.5*v(:,2).*exp(-sx(:,1).^2/0.5); %! R =@(d) [cosd(d) sind(d); -sind(d) cosd(d)]; %! tmp = R(35) * v.'; %! sx(:,2) = tmp(1,:); sy(:,2) = tmp(2,:); %! tmp = R(45) * v.'; %! sx(:,3) = tmp(1,:); sy(:,3) = tmp(2,:); %! sx(:,4) = v(:,1); sy(:,4) = sx(:,4).^2 + 0.5*v(:,2); %! sx(:,5) = v(:,1); sy(:,5) = 3*sign(v(:,2)).*(sx(:,5)).^2 + v(:,2); %! sx(:,6) = cos (2*pi*v(:,1)) + 0.5*(x-0.5); %! sy(:,6) = sin (2*pi*v(:,1)) + 0.5*(z-0.5); %! sx(:,7) = x + sign(v(:,1)); sy(:,7) = z + sign(v(:,2)); %! sy = base (sy); %! sx = base (sx); %! # scaled shape %! sc = 1/3; %! ssy = (sy-0.5) * sc + 0.5; %! n = size (ly,2); %! ym = 1.2; %! xm = 0.5; %! fmt={'horizontalalignment','center'}; %! ff = "% .2f"; %! figure (1) %! for i=1:n %! subplot(4,n,i); %! plot (x, gy(:,i), '.b'); %! axis tight %! axis off %! text (xm,ym,sprintf (ff, dcov (x,gy(:,i))),fmt{:}) %! %! subplot(4,n,i+n); %! plot (x, ly(:,i), '.b'); %! axis tight %! axis off %! text (xm,ym,sprintf (ff, dcov (x,ly(:,i))),fmt{:}) %! %! subplot(4,n,i+2*n); %! plot (sx(:,i), sy(:,i), '.b'); %! axis tight %! axis off %! text (xm,ym,sprintf (ff, dcov (sx(:,i),sy(:,i))),fmt{:}) %! v = axis (); %! %! subplot(4,n,i+3*n); %! plot (sx(:,i), ssy(:,i), '.b'); %! axis (v) %! axis off %! text (xm,ym,sprintf (ff, dcov (sx(:,i),ssy(:,i))),fmt{:}) %! endfor %!error dcov (randn (30, 5), randn (25,5)) statistics-release-1.6.3/inst/dendrogram.m000066400000000000000000000335611456127120000206140ustar00rootroot00000000000000## Copyright (c) 2012 Juan Pablo Carbajal ## Copyright (C) 2021 Stefano Guidoni ## Copyright (C) 2022 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {} dendrogram (@var{tree}) ## @deftypefnx {statistics} {} dendrogram (@var{tree}, @var{p}) ## @deftypefnx {statistics} {} dendrogram (@var{tree}, @var{prop}, @var{val}) ## @deftypefnx {statistics} {} dendrogram (@var{tree}, @var{p}, @var{prop}, @var{val} ) ## @deftypefnx {statistics} {@var{h} =} dendrogram (@dots{}) ## @deftypefnx {statistics} {[@var{h}, @var{t}, @var{perm}] =} dendrogram (@dots{}) ## ## Plot a dendrogram of a hierarchical binary cluster tree. ## ## Given @var{tree}, a hierarchical binary cluster tree as the output of ## @code{linkage}, plot a dendrogram of the tree. The number of leaves shown by ## the dendrogram plot is limited to @var{p}. The default value for @var{p} is ## 30. Set @var{p} to 0 to plot all leaves. ## ## The optional outputs are @var{h}, @var{t} and @var{perm}: ## @itemize @bullet ## @item @var{h} is a handle to the lines of the plot. ## ## @item @var{t} is the vector with the numbers assigned to each leaf. ## Each element of @var{t} is a leaf of @var{tree} and its value is the number ## shown in the plot. ## When the dendrogram plot is collapsed, that is when the number of shown ## leaves @var{p} is inferior to the total number of leaves, a single leaf of ## the plot can represent more than one leaf of @var{tree}: in that case ## multiple elements of @var{t} share the same value, that is the same leaf of ## the plot. ## When the dendrogram plot is not collapsed, each leaf of the plot is the leaf ## of @var{tree} with the same number. ## ## @item @var{perm} is the vector list of the leaves as ordered as in the plot. ## @end itemize ## ## Additional input properties can be specified by pairs of properties and ## values. Known properties are: ## @itemize @bullet ## @item @qcode{"Reorder"} ## Reorder the leaves of the dendrogram plot using a numerical vector of size n, ## the number of leaves. When @var{p} is smaller than @var{n}, the reordering ## cannot break the @var{p} groups of leaves. ## ## @item @qcode{"Orientation"} ## Change the orientation of the plot. Available values: @qcode{top} (default), ## @qcode{bottom}, @qcode{left}, @qcode{right}. ## ## @item @qcode{"CheckCrossing"} ## Check if the lines of a reordered dendrogram cross each other. Available ## values: @qcode{true} (default), @qcode{false}. ## ## @item @qcode{"ColorThreshold"} ## Not implemented. ## ## @item @qcode{"Labels"} ## Use a char, string or cellstr array of size @var{n} to set the label for each ## leaf; the label is dispayed only for nodes with just one leaf. ## @end itemize ## ## @seealso{cluster, clusterdata, cophenet, inconsistent, linkage, pdist} ## @end deftypefn function [H, T, perm] = dendrogram (tree, varargin) [m d] = size (tree); if ((d != 3) || (! isnumeric (tree)) || ... (! (max (tree(end, 1:2)) == m * 2))) error (["dendrogram: tree must be a matrix as generated by the " ... "linkage function"]); end pair_index = 1; ## node count n = m + 1; P = 30; # default value vReorder = []; csLabels = {}; checkCrossing = 1; orientation = "top"; if (nargin > 1) if (isnumeric (varargin{1}) && isscalar (varargin{1})) ## dendrogram (tree, P) P = varargin{1}; pair_index++; endif ## dendrogram (..., Name, Value) while (pair_index < (nargin - 1)) switch (lower (varargin{pair_index})) case "reorder" if (isvector (varargin{pair_index + 1}) && ... isnumeric (varargin{pair_index + 1}) && ... length (varargin{pair_index + 1}) == n ) vReorder = varargin{pair_index + 1}; else error (["dendrogram: 'reorder' must be a numeric vector of size" ... "n, the number of leaves"]); endif case "checkcrossing" if (ischar (varargin{pair_index + 1})) switch (lower (varargin{pair_index + 1})) case "true" checkCrossing = 1; case "false" checkCrossing = 0; otherwise error ("dendrogram: unknown value '%s' for CheckCrossing", ... varargin{pair_index + 1}); endswitch elseif error (["dendrogram: the value of property CheckCrossing must ", ... "be either 'true' or 'false'"]); endif case "colorthreshold" warning ("dendrogram: property '%s' not implemented",... varargin{pair_index}); case "orientation" orientation = varargin{pair_index + 1}; # validity check below case "labels" if (ischar (varargin{pair_index + 1}) && ... (isvector (varargin{pair_index + 1}) && ... length (varargin{pair_index + 1}) == n) || ... (ismatrix (varargin{pair_index + 1}) && ... rows (varargin{pair_index + 1}) == n)) csLabels = cellstr (varargin{pair_index + 1}); elseif (iscellstr (varargin{pair_index + 1}) && length (varargin{pair_index + 1}) == n) csLabels = varargin{pair_index + 1}; else error (["dendrogram: labels must be a char or string or" ... "cellstr array of size n"]); endif otherwise error ("dendrogram: unknown property '%s'", varargin{pair_index}); endswitch pair_index += 2; endwhile endif ## MATLAB compatibility: ## P <= 0 to plot all leaves if (P < 1) P = n; endif if (n > P) level_0 = tree((n - P), 3); else P = n; level_0 = 0; endif vLeafPosition = zeros((n + m), 1); T = (1:n)'; nodecnt = 1; ## main dendrogram_recursive (m, 0); ## T reordering ## MATLAB compatibility: when n > P, each node group is renamed with a number ## between 1 and P, according to the smallest node index of each group; ## the group with the node 1 is always group 1, while group 2 is the group ## with the smallest node index outside of group 1, and group 3 is the group ## with the smallest node index outside of groups 1 and 2... newT = 1 : (length (T)); if (n > P) uniqueT = unique (T); minT = zeros (uniqueT, 1); counter = 1; for i = 1 : length (uniqueT) # it should be exactly equal to P idcs = find (T == uniqueT(i)); minT(i) = min (idcs); endfor minT = minT(find (minT > 0)); # to prevent a strange bug [minT, minTidcs] = sort (minT); uniqueT = uniqueT(minTidcs); for i = 1 : length (uniqueT) idcs = find (T == uniqueT(i)); newT(idcs) = counter++; endfor endif ## leaf reordering if (! isempty(vReorder)) if (P < n) checkT = newT(vReorder(:)); for i = 1 : P idcs = find (checkT == i); if (length (idcs) > 1) if (max (idcs) - min (idcs) >= length (idcs)) error (["dendrogram: invalid reordering that redefines the 'P'"... "groups of leaves"]); endif endif endfor checkT = unique (checkT, "stable"); vNewLeafPosition = zeros (n, 1); uT = unique (T, "stable"); for i = 1 : P vNewLeafPosition(uT(checkT(i))) = i; endfor vLeafPosition = vNewLeafPosition; else for i = 1 : length (vReorder) vLeafPosition(vReorder(i)) = i; endfor endif endif ## figure x = []; ## ticks and tricks xticks = 1:P; perm = zeros (P, 1); for i = 1 : length (vLeafPosition) if (vLeafPosition(i) != 0) idcs = find (T == i); perm(vLeafPosition(i)) = newT(idcs(1)); endif endfor T = newT; # this should be unnecessary for n <= P ## lines for i = (n - P + 1) : m vLeafPosition(n + i) = mean (vLeafPosition(tree(i, 1:2), 1)); x(end + 1,1:4) = [vLeafPosition(tree(i, 1:2))' tree(i, [3 3])]; for j = 1 : 2 x0 = 0; if (tree(i,j) > (2 * n - P)) x0 = tree(tree(i, j) - n, 3); endif x(end + 1, 1:4) = [vLeafPosition(tree(i, [j j]))' x0 tree(i, 3)]; endfor endfor ## plot stuff if (strcmp (orientation, "top")) H = line (x(:, 1:2)', x(:, 3:4)', "color", "blue"); set (gca, "xticklabel", perm, "xtick", xticks); elseif (strcmp (orientation, "bottom")) H = line (x(:, 1:2)', x(:, 3:4)', "color", "blue"); set (gca, "xticklabel", perm, "xtick", xticks, "xaxislocation", "top"); axis ("ij"); elseif (strcmp (orientation, "left")) H = line (x(:, 3:4)', x(:, 1:2)', "color", "blue"); set (gca, "yticklabel", perm, "ytick", xticks, "xdir", "reverse",... "yaxislocation", "right"); elseif (strcmp (orientation, "right")) H = line (x(:, 3:4)', x(:, 1:2)', "color", "blue"); set (gca, "yticklabel", perm, "ytick", xticks); else close (H); error ("dendrogram: invalid orientation '%s'", orientation); endif ## labels if (! isempty (csLabels)) csCurrent = cellstr (num2str (perm)); for i = 1 : n ## when there is just one leaf, use the named label for that leaf if (1 == length (find (T == i))) csCurrent(find (perm == i)) = csLabels(find (T == i)); endif endfor switch (orientation) case {"top", "bottom"} xticklabels (csCurrent); case {"left", "right"} yticklabels (csCurrent); endswitch endif ## check crossings if (checkCrossing && ! isempty(vReorder)) for j = 1 : rows (x) if (x(j, 3) == x(j, 4)) # an horizontal line for i = 1 : rows (x) if (x(i, 1) == x(i, 2) && ... # orthogonal lines (x(i, 1) > x(j, 1) && x(i, 1) < x(j, 2)) && ... (x(j, 3) > x(i, 3) && x(j, 3) < x(i, 4))) warning ("dendrogram: line intersection detected"); endif endfor endif endfor endif ## dendrogram_recursive function dendrogram_recursive (k, cn) if (tree(k, 3) > level_0) for j = 1:2 if (tree(k, j) > n) dendrogram_recursive (tree(k, j) - n, 0) else vLeafPosition(tree(k, j)) = nodecnt++; T(tree(k, j)) = tree(k, j); endif endfor else for j = 1:2 if (cn == 0) cn = n + k; vLeafPosition(cn) = nodecnt++; endif if (tree(k, j) > n) dendrogram_recursive (tree(k, j) - n, cn) else T(tree(k, j)) = cn; endif endfor endif endfunction endfunction %!demo %! ## simple dendrogram %! y = [4, 5; 2, 6; 3, 7; 8, 9; 1, 10]; %! y(:,3) = 1:5; %! dendrogram (y); %! title ("simple dendrogram"); %!demo %! ## another simple dendrogram %! v = 2 * rand (30, 1) - 1; %! d = abs (bsxfun (@minus, v(:, 1), v(:, 1)')); %! y = linkage (squareform (d, "tovector")); %! dendrogram (y); %! title ("another simple dendrogram"); %!demo %! ## collapsed tree, find all the leaves of node 5 %! X = randn (60, 2); %! D = pdist (X); %! y = linkage (D, "average"); %! subplot (2, 1, 1); %! title ("original tree"); %! dendrogram (y, 0); %! subplot (2, 1, 2); %! title ("collapsed tree"); %! [~, t] = dendrogram (y, 20); %! find(t == 5) %!demo %! ## optimal leaf order %! X = randn (30, 2); %! D = pdist (X); %! y = linkage (D, "average"); %! order = optimalleaforder (y, D); %! subplot (2, 1, 1); %! title ("original leaf order"); %! dendrogram (y); %! subplot (2, 1, 2); %! title ("optimal leaf order"); %! dendrogram (y, "Reorder", order); %!demo %! ## horizontal orientation and labels %! X = randn (8, 2); %! D = pdist (X); %! L = ["Snow White"; "Doc"; "Grumpy"; "Happy"; "Sleepy"; "Bashful"; ... %! "Sneezy"; "Dopey"]; %! y = linkage (D, "average"); %! dendrogram (y, "Orientation", "left", "Labels", L); %! title ("horizontal orientation and labels"); ## Test plotting %!shared visibility_setting %! visibility_setting = get (0, "DefaultFigureVisible"); %!test %! hf = figure ("visible", "off"); %! unwind_protect %! y = [4, 5; 2, 6; 3, 7; 8, 9; 1, 10]; %! y(:,3) = 1:5; %! dendrogram (y); %! unwind_protect_cleanup %! close (hf); %! end_unwind_protect %!test %! hf = figure ("visible", "off"); %! unwind_protect %! y = [4, 5; 2, 6; 3, 7; 8, 9; 1, 10]; %! y(:,3) = 1:5; %! dendrogram (y); %! unwind_protect_cleanup %! close (hf); %! end_unwind_protect %!test %! hf = figure ("visible", "off"); %! unwind_protect %! v = 2 * rand (30, 1) - 1; %! d = abs (bsxfun (@minus, v(:, 1), v(:, 1)')); %! y = linkage (squareform (d, "tovector")); %! dendrogram (y); %! unwind_protect_cleanup %! close (hf); %! end_unwind_protect %!test %! hf = figure ("visible", "off"); %! unwind_protect %! X = randn (30, 2); %! D = pdist (X); %! y = linkage (D, "average"); %! order = optimalleaforder (y, D); %! subplot (2, 1, 1); %! title ("original leaf order"); %! dendrogram (y); %! subplot (2, 1, 2); %! title ("optimal leaf order"); %! dendrogram (y, "Reorder", order); %! unwind_protect_cleanup %! close (hf); %! end_unwind_protect ## Test input validation %!error dendrogram (); %!error dendrogram (ones (2, 2), 1); %!error dendrogram ([1 2 1], 1, "xxx", "xxx"); %!error dendrogram ([1 2 1], "Reorder", "xxx"); %!error dendrogram ([1 2 1], "Reorder", [1 2 3 4]); %! fail ('dendrogram ([1 2 1], "Orientation", "north")', "invalid orientation .*") statistics-release-1.6.3/inst/dist_fit/000077500000000000000000000000001456127120000201115ustar00rootroot00000000000000statistics-release-1.6.3/inst/dist_fit/betafit.m000066400000000000000000000212651456127120000217130ustar00rootroot00000000000000## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{paramhat} =} betafit (@var{x}) ## @deftypefnx {statistics} {[@var{paramhat}, @var{paramci}] =} betafit (@var{x}) ## @deftypefnx {statistics} {[@var{paramhat}, @var{paramci}] =} betafit (@var{x}, @var{alpha}) ## @deftypefnx {statistics} {[@var{paramhat}, @var{paramci}] =} betafit (@var{x}, @var{alpha}, @var{options}) ## ## Estimate parameters and confidence intervals for the Beta distribution. ## ## @code{@var{paramhat} = betafit (@var{x})} returns the maximum likelihood ## estimates of the parameters of the Beta distribution given the data in vector ## @var{x}. @qcode{@var{paramhat}([1, 2])} corresponds to the @math{α} and ## @math{β} shape parameters, respectively. Missing values, @qcode{NaNs}, are ## ignored. ## ## @code{[@var{paramhat}, @var{paramci}] = betafit (@var{x})} returns the 95% ## confidence intervals for the parameter estimates. ## ## @code{[@dots{}] = betafit (@var{x}, @var{alpha})} also returns the ## @qcode{100 * (1 - @var{alpha})} percent confidence intervals of the estimated ## parameter. By default, the optional argument @var{alpha} is 0.05 ## corresponding to 95% confidence intervals. ## ## @code{[@var{paramhat}, @var{paramci}] = nbinfit (@var{x}, @var{alpha}, ## @var{options})} specifies control parameters for the iterative algorithm used ## to compute ML estimates with the @code{fminsearch} function. @var{options} ## is a structure with the following fields and their default values: ## @itemize ## @item @qcode{@var{options}.Display = "off"} ## @item @qcode{@var{options}.MaxFunEvals = 400} ## @item @qcode{@var{options}.MaxIter = 200} ## @item @qcode{@var{options}.TolX = 1e-6} ## @end itemize ## ## The Beta distribution is defined on the open interval @math{(0,1)}. However, ## @code{betafit} can also compute the unbounded beta likelihood function for ## data that include exact zeros or ones. In such cases, zeros and ones are ## treated as if they were values that have been left-censored at ## @qcode{sqrt (realmin)} or right-censored at @qcode{1 - eps/2}, respectively. ## ## Further information about the Beta distribution can be found at ## @url{https://en.wikipedia.org/wiki/Beta_distribution} ## ## @seealso{betacdf, betainv, betapdf, betarnd, betalike, betastat} ## @end deftypefn function [paramhat, paramci] = betafit (x, alpha, options) ## Check X for being a vector if (isempty (x)) phat = nan (1, 2, class (x)); pci = nan (2, 2, class (x)); return elseif (! isvector (x) || ! isreal (x)) error ("betafit: X must be a vector of real values."); endif ## Remove missing values x(isnan (x)) = []; ## Check that X contains values in the range [0,1] if (any (x < 0) || any (x > 1)) error ("betafit: X must be in the range [0,1]."); endif ## Check X being a constant vector if (min (x) == max(x)) error ("betafit: X must contain distinct values."); endif ## Parse ALPHA argument or add default if (nargin > 1) if (! isscalar (alpha) || ! isreal (alpha) || alpha <= 0 || alpha >= 1) error ("betafit: wrong value for ALPHA."); endif else alpha = 0.05; endif ## Get options structure or add defaults if (nargin < 3) options.Display = "off"; options.MaxFunEvals = 400; options.MaxIter = 200; options.TolX = 1e-6; else if (! isstruct (options) || ! isfield (options, "Display") || ! isfield (options, "MaxFunEvals") || ! isfield (options, "MaxIter") || ! isfield (options, "TolX")) error (strcat (["gamfit: 'options' 5th argument must be a"], ... [" structure with 'Display', 'MaxFunEvals',"], ... [" 'MaxIter', and 'TolX' fields present."])); endif endif ## Estimate initial parameters numx = length (x); tmp1 = prod ((1 - x) .^ (1 / numx)); tmp2 = prod (x .^ (1 / numx)); tmp3 = (1 - tmp1 - tmp2); ahat = 0.5 * (1 - tmp1) / tmp3; bhat = 0.5 * (1 - tmp2) / tmp3; init = log ([ahat, bhat]); ## Add tolerance for boundary conditions x_lo = sqrt (realmin (class (x))); x_hi = 1 - eps (class (x)) / 2; ## All values are strictly within the interval (0,1) if (all (x > x_lo) && all (x < x_hi)) sumlogx = sum (log (x)); sumlog1px = sum (log1p (-x)); paramhat = fminsearch (@cont_negloglike, init, options); paramhat = exp (paramhat); ## Find boundary elements and process them separately else num0 = sum (x < x_lo); num1 = sum (x > x_hi); x_ct = x (x > x_lo & x < x_hi); numx = length (x_ct); sumlogx = sum (log (x_ct)); sumlog1px = sum (log1p (-x_ct)); paramhat = fminsearch (@mixed_negloglike, init, options); paramhat = exp (paramhat); endif ## Compute confidence intervals if (nargout == 2) [~, acov] = betalike (paramhat,x); logphat = log (paramhat); serrlog = sqrt (diag (acov))' ./ paramhat; p_int = [alpha/2; 1-alpha/2]; paramci = exp (norminv ([p_int p_int], ... [logphat; logphat], [serrlog; serrlog])); endif ## Continuous Negative log-likelihood function function nll = cont_negloglike (params) params = exp (params); nll = numx * betaln (params(1), params(2)) - (params(1) - 1) ... * sumlogx - (params(2) - 1) * sumlog1px; endfunction ## Unbounded Negative log-likelihood function function nll = mixed_negloglike (params) params = exp (params); nll = numx * betaln (params(1), params(2)) - (params(1) - 1) ... * sumlogx - (params(2) - 1) * sumlog1px; ## Handle zeros if (num0 > 0) nll = nll - num0 * log (betainc (x_lo, params(1), params(2), "lower")); endif ## Handle ones if (num1 > 0) nll = nll - num1 * log (betainc (x_hi, params(1), params(2), "upper")); endif endfunction endfunction %!demo %! ## Sample 2 populations from different Beta distibutions %! randg ("seed", 1); # for reproducibility %! r1 = betarnd (2, 5, 500, 1); %! randg ("seed", 2); # for reproducibility %! r2 = betarnd (2, 2, 500, 1); %! r = [r1, r2]; %! %! ## Plot them normalized and fix their colors %! hist (r, 12, 15); %! h = findobj (gca, "Type", "patch"); %! set (h(1), "facecolor", "c"); %! set (h(2), "facecolor", "g"); %! hold on %! %! ## Estimate their shape parameters %! a_b_A = betafit (r(:,1)); %! a_b_B = betafit (r(:,2)); %! %! ## Plot their estimated PDFs %! x = [min(r(:)):0.01:max(r(:))]; %! y = betapdf (x, a_b_A(1), a_b_A(2)); %! plot (x, y, "-pr"); %! y = betapdf (x, a_b_B(1), a_b_B(2)); %! plot (x, y, "-sg"); %! ylim ([0, 4]) %! legend ({"Normalized HIST of sample 1 with α=2 and β=5", ... %! "Normalized HIST of sample 2 with α=2 and β=2", ... %! sprintf("PDF for sample 1 with estimated α=%0.2f and β=%0.2f", ... %! a_b_A(1), a_b_A(2)), ... %! sprintf("PDF for sample 2 with estimated α=%0.2f and β=%0.2f", ... %! a_b_B(1), a_b_B(2))}) %! title ("Two population samples from different Beta distibutions") %! hold off ## Test output %!test %! x = 0.01:0.02:0.99; %! [paramhat, paramci] = betafit (x); %! paramhat_out = [1.0199, 1.0199]; %! paramci_out = [0.6947, 0.6947; 1.4974, 1.4974]; %! assert (paramhat, paramhat_out, 1e-4); %! assert (paramci, paramci_out, 1e-4); %!test %! x = 0.01:0.02:0.99; %! [paramhat, paramci] = betafit (x, 0.01); %! paramci_out = [0.6157, 0.6157; 1.6895, 1.6895]; %! assert (paramci, paramci_out, 1e-4); %!test %! x = 0.00:0.02:1; %! [paramhat, paramci] = betafit (x); %! paramhat_out = [0.0875, 0.1913]; %! paramci_out = [0.0822, 0.1490; 0.0931, 0.2455]; %! assert (paramhat, paramhat_out, 1e-4); %! assert (paramci, paramci_out, 1e-4); ## Test input validation %!error betafit ([0.2, 0.5+i]); %!error betafit (ones (2,2) * 0.5); %!error betafit ([0.5, 1.2]); %!error betafit ([0.1, 0.1]); %!error betafit ([0.01:0.1:0.99], 1.2); statistics-release-1.6.3/inst/dist_fit/betalike.m000066400000000000000000000135121456127120000220510ustar00rootroot00000000000000## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{nlogL} =} betalike (@var{params}, @var{x}) ## @deftypefnx {statistics} {[@var{nlogL}, @var{avar}] =} betalike (@var{params}, @var{x}) ## ## Negative log-likelihood for the Beta distribution. ## ## @code{@var{nlogL} = betalike (@var{params}, @var{x})} returns the negative ## log likelihood of the data in @var{x} corresponding to the Beta distribution ## with (1) shape parameter @math{α} and (2) shape parameter @math{β} given in ## the two-element vector @var{params}. Both parameters must be positive real ## numbers and the data in the range @math{[0,1]}. Out of range parameters or ## data return @qcode{NaN}. ## ## @code{[@var{nlogL}, @var{avar}] = betalike (@var{params}, @var{x})} returns ## the inverse of Fisher's information matrix, @var{avar}. If the input ## parameter values in @var{params} are the maximum likelihood estimates, the ## diagonal elements of @var{params} are their asymptotic variances. ## ## The Beta distribution is defined on the open interval @math{(0,1)}. However, ## @code{betafit} can also compute the unbounded beta likelihood function for ## data that include exact zeros or ones. In such cases, zeros and ones are ## treated as if they were values that have been left-censored at ## @qcode{sqrt (realmin)} or right-censored at @qcode{1 - eps/2}, respectively. ## ## Further information about the Beta distribution can be found at ## @url{https://en.wikipedia.org/wiki/Beta_distribution} ## ## @seealso{betacdf, betainv, betapdf, betarnd, betafit, betastat} ## @end deftypefn function [nlogL, avar] = betalike (params, x) ## Check input arguments and add defaults if (nargin < 2) error ("betalike: function called with too few input arguments."); endif if (numel (params) != 2) error ("betalike: wrong parameters length."); endif ## Get α and β parameters a = params(1); b = params(2); ## Force X to column vector x = x(:); ## Return NaN for out of range parameters or data. a(a <= 0) = NaN; b(b <= 0) = NaN; xmin = min (x); xmax = max (x); x(! (0 <= x & x <= 1)) = NaN; ## Add tolerance for boundary conditions x_lo = sqrt (realmin (class (x))); x_hi = 1 - eps (class (x)) / 2; ## All values are strictly within the interval (0,1) if (all (x > x_lo) && all (x < x_hi)) num0 = 0; num1 = 0; x_ct = x; numx = length (x_ct); ## Find boundary elements and process them separately else num0 = sum (x < x_lo); num1 = sum (x > x_hi); x_ct = x (x > x_lo & x < x_hi); numx = length (x_ct); endif ## Compute continuous log likelihood logx = log (x_ct); log1px = log1p (-x_ct); sumlogx = sum (logx); sumlog1px = sum (log1px); nlogL = numx * betaln (a, b) - (a - 1) * sumlogx - (b - 1) * sumlog1px; ## Include log likelihood for zeros if (num0 > 0) nlogL = nlogL - num0 * log (betainc (x_lo, a, b, "lower")); endif ## Include log likelihood for ones if (num1 > 0) nlogL = nlogL - num1 * log (betainc (x_hi, a, b, "upper")); endif ## Compute the asymptotic covariance if (nargout > 1) if (numel (x) < 2) error ("betalike: not enough data in X."); endif ## Compute the Jacobian of the likelihood for values (0,1) psiab = psi (a + b); psi_a = psi (a); psi_b = psi (b); J = [logx+psiab-psi_a, log1px+psiab-psi_b]; ## Add terms into the Jacobian for the zero and one values. if (num0 > 0 || num1 > 0) dd = sqrt (eps (class (x))); aa = a + a * dd * [1, -1]; bb = b + b * dd * [1, -1]; ad = 2 * a *dd; bd = 2 * b *dd; if (num0 > 0) da = diff (log (betainc (x_lo, aa, b, "lower"))) / ad; db = diff (log (betainc (x_lo, a, bb, "lower"))) / bd; J = [J; repmat([da, db], num0, 1)]; endif if num1 > 0 da = diff (log (betainc (x_hi, aa, b, "upper"))) / ad; db = diff (log (betainc (x_hi, a, bb, "upper"))) / bd; J = [J; repmat([da, db], num1, 1)]; endif endif ## Invert the inner product of the Jacobian to get the asymptotic covariance [~, R] = qr (J, 0); if (any (isnan (R(:)))) avar = [NaN, NaN; NaN, NaN]; else Rinv = R \ eye (2); avar = Rinv * Rinv'; endif endif endfunction ## Test output %!test %! x = 0.01:0.02:0.99; %! [nlogL, avar] = betalike ([2.3, 1.2], x); %! avar_out = [0.03691678, 0.02803056; 0.02803056, 0.03965629]; %! assert (nlogL, 17.873477715879040, 3e-14); %! assert (avar, avar_out, 1e-7); %!test %! x = 0.01:0.02:0.99; %! [nlogL, avar] = betalike ([1, 4], x); %! avar_out = [0.02793282, 0.02717274; 0.02717274, 0.03993361]; %! assert (nlogL, 79.648061114839550, 1e-13); %! assert (avar, avar_out, 1e-7); %!test %! x = 0.00:0.02:1; %! [nlogL, avar] = betalike ([1, 4], x); %! avar_out = [0.00000801564765, 0.00000131397245; ... %! 0.00000131397245, 0.00070827639442]; %! assert (nlogL, 573.2008434477486, 1e-10); %! assert (avar, avar_out, 1e-14); ## Test input validation %!error ... %! betalike ([12, 15]); %!error betalike ([12, 15, 3], [1:50]); statistics-release-1.6.3/inst/dist_fit/binofit.m000066400000000000000000000134261456127120000217270ustar00rootroot00000000000000## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{pshat} =} binofit (@var{x}, @var{n}) ## @deftypefnx {statistics} {[@var{pshat}, @var{psci}] =} binofit (@var{x}, @var{n}) ## @deftypefnx {statistics} {[@var{pshat}, @var{psci}] =} binofit (@var{x}, @var{n}, @var{alpha}) ## ## Estimate parameter and confidence intervals for the binomial distribution. ## ## @code{@var{pshat} = binofit (@var{x}, @var{n})} returns the maximum ## likelihood estimate (MLE) of the probability of success for the binomial ## distribution. @var{x} and @var{n} are scalars containing the number of ## successes and the number of trials, respectively. If @var{x} and @var{n} are ## vectors, @code{binofit} returns a vector of estimates whose @math{i}-th ## element is the parameter estimate for @var{x}(i) and @var{n}(i). A scalar ## value for @var{x} or @var{n} is expanded to the same size as the other input. ## ## @code{[@var{pshat}, @var{psci}] = binofit (@var{x}, @var{n}, @var{alpha})} ## also returns the @qcode{100 * (1 - @var{alpha})} percent confidence intervals ## of the estimated parameter. By default, the optional argument @var{alpha} ## is 0.05 corresponding to 95% confidence intervals. ## ## @code{binofit} treats a vector @var{x} as a collection of measurements from ## separate samples, and returns a vector of estimates. If you want to treat ## @var{x} as a single sample and compute a single parameter estimate and ## confidence interval, use @qcode{binofit (sum (@var{x}), sum (@var{n}))} when ## @var{n} is a vector, and ## @qcode{binofit (sum (@var{x}), @var{n} * length (@var{x}))} when @var{n} is a ## scalar. ## ## Further information about the binomial distribution can be found at ## @url{https://en.wikipedia.org/wiki/Binomial_distribution} ## ## @seealso{binocdf, binoinv, binopdf, binornd, binolike, binostat} ## @end deftypefn function [pshat, psci] = binofit (x, n, alpha) ## Check input arguments if (nargin < 2) error ("binofit: function called with too few input arguments."); endif if (any (x < 0)) error ("binofit: X cannot have negative values."); endif if (! isvector (x)) error ("binofit: X must be a vector."); endif if (any (n < 0) || any (n != round (n)) || any (isinf (n))) error ("binofit: N must be a non-negative integer."); endif if (any (x > n)) error ("binofit: N cannot be greater than X."); endif if (nargin < 3 || isempty (alpha)) alpha = 0.05; elseif (! isscalar (alpha) || ! isreal (alpha) || alpha <= 0 || alpha >= 1) error ("binofit: wrong value for ALPHA."); endif ## Compute pshat pshat = x ./ n; ## Compute lower confidence interval nu1 = 2 * x; nu2 = 2 * (n - x + 1); F = finv (alpha / 2, nu1, nu2); lb = (nu1 .* F) ./ (nu2 + nu1 .* F); x0 = find (x == 0); if (! isempty (x0)) lb(x0) = 0; endif ## Compute upper confidence interval nu1 = 2 * (x + 1); nu2 = 2 * (n - x); F = finv (1 - alpha / 2, nu1, nu2); ub = (nu1 .* F) ./ (nu2 + nu1 .* F); xn = find (x == n); if (! isempty (xn)) ub(xn) = 1; endif psci = [lb(:), ub(:)]; endfunction %!demo %! ## Sample 2 populations from different binomial distibutions %! rand ("seed", 1); # for reproducibility %! r1 = binornd (50, 0.15, 1000, 1); %! rand ("seed", 2); # for reproducibility %! r2 = binornd (100, 0.5, 1000, 1); %! r = [r1, r2]; %! %! ## Plot them normalized and fix their colors %! hist (r, 23, 0.35); %! h = findobj (gca, "Type", "patch"); %! set (h(1), "facecolor", "c"); %! set (h(2), "facecolor", "g"); %! hold on %! %! ## Estimate their probability of success %! pshatA = binofit (r(:,1), 50); %! pshatB = binofit (r(:,2), 100); %! %! ## Plot their estimated PDFs %! x = [min(r(:,1)):max(r(:,1))]; %! y = binopdf (x, 50, mean (pshatA)); %! plot (x, y, "-pg"); %! x = [min(r(:,2)):max(r(:,2))]; %! y = binopdf (x, 100, mean (pshatB)); %! plot (x, y, "-sc"); %! ylim ([0, 0.2]) %! legend ({"Normalized HIST of sample 1 with ps=0.15", ... %! "Normalized HIST of sample 2 with ps=0.50", ... %! sprintf("PDF for sample 1 with estimated ps=%0.2f", ... %! mean (pshatA)), ... %! sprintf("PDF for sample 2 with estimated ps=%0.2f", ... %! mean (pshatB))}) %! title ("Two population samples from different binomial distibutions") %! hold off ## Test output %!test %! x = 0:3; %! [pshat, psci] = binofit (x, 3); %! assert (pshat, [0, 0.3333, 0.6667, 1], 1e-4); %! assert (psci(1,:), [0, 0.7076], 1e-4); %! assert (psci(2,:), [0.0084, 0.9057], 1e-4); %! assert (psci(3,:), [0.0943, 0.9916], 1e-4); %! assert (psci(4,:), [0.2924, 1.0000], 1e-4); ## Test input validation %!error ... %! binofit ([1 2 3 4]) %!error binofit (-1, [1 2 3 3]) %!error binofit (1, [1 2 -1 3]) %!error binofit (1, [1 2 3], 0) %!error binofit (1, [1 2 3], 1.2) %!error binofit (1, [1 2 3], [0.02 0.05]) statistics-release-1.6.3/inst/dist_fit/binolike.m000066400000000000000000000105551456127120000220710ustar00rootroot00000000000000## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{nlogL} =} binolike (@var{params}, @var{x}) ## @deftypefnx {statistics} {[@var{nlogL}, @var{acov}] =} binolike (@var{params}, @var{x}) ## ## Negative log-likelihood for the binomial distribution. ## ## @code{@var{nlogL} = binolike (@var{params}, @var{x})} returns the negative ## log likelihood of the binomial distribution with (1) parameter @var{n} and ## (2) parameter @var{ps}, given in the two-element vector @var{params}, where ## @var{n} is the number of trials and @var{ps} is the probability of success, ## given the number of successes in @var{x}. Unlike @code{binofit}, which ## handles each element in @var{x} independently, @code{binolike} returns the ## negative log likelihood of the entire vector @var{x}. ## ## @code{[@var{nlogL}, @var{acov}] = binolike (@var{params}, @var{x})} also ## returns the inverse of Fisher's information matrix, @var{acov}. If the input ## parameter values in @var{params} are the maximum likelihood estimates, the ## diagonal elements of @var{params} are their asymptotic variances. ## ## Further information about the binomial distribution can be found at ## @url{https://en.wikipedia.org/wiki/Binomial_distribution} ## ## @seealso{binocdf, binoinv, binopdf, binornd, binofit, binostat} ## @end deftypefn function [nlogL, acov] = binolike (params, x) ## Check input arguments if (nargin < 2) error ("binolike: function called with too few input arguments."); endif if (! isvector (x)) error ("binolike: X must be a vector."); endif if (any (x < 0)) error ("binolike: X cannot have negative values."); endif if (length (params) != 2) error ("binolike: PARAMS must be a two-element vector."); endif if (params(1) < 0 || params(1) != round (params(1)) || isinf (params(1))) error (strcat (["binolike: number of trials, PARAMS(1), must be a"], ... [" finite non-negative integer."])); endif if (params(2) < 0 || params(2) > 1) error (strcat (["binolike: probability of success, PARAMS(2), must be"], ... [" in the range [0,1]."])); endif if (any (x > params(1))) error (strcat (["binolike: number of successes, X, must be at least"], ... [" as large as the number of trials, N."])); endif ## Compute negative log-likelihood and asymptotic covariance n = params(1); ps = params(2); numx = length (x); nlogL = -sum (log (binopdf (x, n, ps))); tmp = ps * (1 - ps) / (n * numx); acov = [0, 0; 0, tmp]; endfunction ## Test output %!assert (binolike ([3, 0.333], [0:3]), 6.8302, 1e-4) %!assert (binolike ([3, 0.333], 0), 1.2149, 1e-4) %!assert (binolike ([3, 0.333], 1), 0.8109, 1e-4) %!assert (binolike ([3, 0.333], 2), 1.5056, 1e-4) %!assert (binolike ([3, 0.333], 3), 3.2988, 1e-4) %!test %! [nlogL, acov] = binolike ([3, 0.333], 3); %! assert (acov(4), 0.0740, 1e-4) ## Test input validation %!error binolike (3.25) %!error binolike ([5, 0.2], ones (2)) %!error binolike ([5, 0.2], [-1, 3]) %!error ... %! binolike ([1, 0.2, 3], [1, 3, 5, 7]) %!error binolike ([1.5, 0.2], 1) %!error binolike ([-1, 0.2], 1) %!error binolike ([Inf, 0.2], 1) %!error binolike ([5, 1.2], [3, 5]) %!error binolike ([5, -0.2], [3, 5]) %!error binolike ([5, 0.2], [3, 5, 7]) statistics-release-1.6.3/inst/dist_fit/bisafit.m000066400000000000000000000224551456127120000217200ustar00rootroot00000000000000## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{paramhat} =} bisafit (@var{x}) ## @deftypefnx {statistics} {[@var{paramhat}, @var{paramci}] =} bisafit (@var{x}) ## @deftypefnx {statistics} {[@var{paramhat}, @var{paramci}] =} bisafit (@var{x}, @var{alpha}) ## @deftypefnx {statistics} {[@dots{}] =} bisafit (@var{x}, @var{alpha}, @var{censor}) ## @deftypefnx {statistics} {[@dots{}] =} bisafit (@var{x}, @var{alpha}, @var{censor}, @var{freq}) ## @deftypefnx {statistics} {[@dots{}] =} bisafit (@var{x}, @var{alpha}, @var{censor}, @var{freq}, @var{options}) ## ## Estimate mean and confidence intervals for the Birnbaum-Saunders distribution. ## ## @code{@var{muhat} = bisafit (@var{x})} returns the maximum likelihood ## estimates of the parameters of the Birnbaum-Saunders distribution given the ## data in @var{x}. @qcode{@var{paramhat}(1)} is the scale parameter, ## @var{beta}, and @qcode{@var{paramhat}(2)} is the shape parameter, ## @var{gamma}. ## ## @code{[@var{paramhat}, @var{paramci}] = bisafit (@var{x})} returns the 95% ## confidence intervals for the parameter estimates. ## ## @code{[@dots{}] = bisafit (@var{x}, @var{alpha})} also returns the ## @qcode{100 * (1 - @var{alpha})} percent confidence intervals for the ## parameter estimates. By default, the optional argument @var{alpha} is ## 0.05 corresponding to 95% confidence intervals. Pass in @qcode{[]} for ## @var{alpha} to use the default values. ## ## @code{[@dots{}] = bisafit (@var{x}, @var{alpha}, @var{censor})} accepts a ## boolean vector, @var{censor}, of the same size as @var{x} with @qcode{1}s for ## observations that are right-censored and @qcode{0}s for observations that are ## observed exactly. By default, or if left empty, ## @qcode{@var{censor} = zeros (size (@var{x}))}. ## ## @code{[@dots{}] = bisafit (@var{x}, @var{alpha}, @var{censor}, @var{freq})} ## accepts a frequency vector, @var{freq}, of the same size as @var{x}. ## @var{freq} typically contains integer frequencies for the corresponding ## elements in @var{x}, but it can contain any non-integer non-negative values. ## By default, or if left empty, @qcode{@var{freq} = ones (size (@var{x}))}. ## ## @code{[@dots{}] = bisafit (@dots{}, @var{options})} specifies control ## parameters for the iterative algorithm used to compute ML estimates with the ## @code{fminsearch} function. @var{options} is a structure with the following ## fields and their default values: ## @itemize ## @item @qcode{@var{options}.Display = "off"} ## @item @qcode{@var{options}.MaxFunEvals = 400} ## @item @qcode{@var{options}.MaxIter = 200} ## @item @qcode{@var{options}.TolX = 1e-6} ## @end itemize ## ## Further information about the Birnbaum-Saunders distribution can be found at ## @url{https://en.wikipedia.org/wiki/Birnbaum%E2%80%93Saunders_distribution} ## ## @seealso{bisacdf, bisainv, bisapdf, bisarnd, bisalike, bisastat} ## @end deftypefn function [paramhat, paramci] = bisafit (x, alpha, censor, freq, options) ## Check input arguments if (! isvector (x)) error ("bisafit: X must be a vector."); elseif (any (x <= 0)) error ("bisafit: X must contain only positive values."); endif ## Check alpha if (nargin < 2 || isempty (alpha)) alpha = 0.05; else if (! isscalar (alpha) || ! isreal (alpha) || alpha <= 0 || alpha >= 1) error ("bisafit: wrong value for ALPHA."); endif endif ## Check censor vector if (nargin < 3 || isempty (censor)) censor = zeros (size (x)); elseif (! isequal (size (x), size (censor))) error ("bisafit: X and CENSOR vectors mismatch."); endif ## Check frequency vector if (nargin < 4 || isempty (freq)) freq = ones (size (x)); elseif (! isequal (size (x), size (freq))) error ("bisafit: X and FREQ vectors mismatch."); endif ## Get options structure or add defaults if (nargin < 5) options.Display = "off"; options.MaxFunEvals = 400; options.MaxIter = 200; options.TolX = 1e-6; else if (! isstruct (options) || ! isfield (options, "Display") || ! isfield (options, "MaxFunEvals") || ! isfield (options, "MaxIter") || ! isfield (options, "TolX")) error (strcat (["bisafit: 'options' 5th argument must be a"], ... [" structure with 'Display', 'MaxFunEvals',"], ... [" 'MaxIter', and 'TolX' fields present."])); endif endif ## Starting points as suggested by Birnbaum and Saunders x_uncensored = x(censor==0); xubar = mean (x_uncensored); xuinv = mean (1 ./ x_uncensored); beta = sqrt (xubar ./ xuinv); gamma = 2 .* sqrt (sqrt (xubar .* xuinv) - 1); x0 = [beta, gamma]; ## Minimize negative log-likelihood to estimate parameters f = @(params) bisalike (params, x, censor, freq); [paramhat, ~, err, output] = fminsearch (f, x0, options); ## Force positive parameter values paramhat = abs (paramhat); ## Handle errors if (err == 0) if (output.funcCount >= options.MaxFunEvals) warning ("bisafit: maximum number of function evaluations are exceeded."); elseif (output.iterations >= options.MaxIter) warning ("bisafit: maximum number of iterations are exceeded."); endif elseif (err < 0) error ("bisafit: no solution."); endif ## Compute CIs using a log normal approximation for parameters. if (nargout > 1) ## Compute asymptotic covariance [~, acov] = bisalike (paramhat, x, censor, freq); ## Get standard errors stderr = sqrt (diag (acov))'; stderr = stderr ./ paramhat; ## Apply log transform phatlog = log (paramhat); ## Compute normal quantiles z = norminv (alpha / 2); ## Compute CI paramci = [phatlog; phatlog] + [stderr; stderr] .* [z, z; -z, -z]; ## Inverse log transform paramci = exp (paramci); endif endfunction %!demo %! ## Sample 3 populations from different Birnbaum-Saunders distibutions %! rand ("seed", 5); # for reproducibility %! r1 = bisarnd (1, 0.5, 2000, 1); %! rand ("seed", 2); # for reproducibility %! r2 = bisarnd (2, 0.3, 2000, 1); %! rand ("seed", 7); # for reproducibility %! r3 = bisarnd (4, 0.5, 2000, 1); %! r = [r1, r2, r3]; %! %! ## Plot them normalized and fix their colors %! hist (r, 80, 4.2); %! h = findobj (gca, "Type", "patch"); %! set (h(1), "facecolor", "c"); %! set (h(2), "facecolor", "g"); %! set (h(3), "facecolor", "r"); %! ylim ([0, 1.1]); %! xlim ([0, 8]); %! hold on %! %! ## Estimate their α and β parameters %! beta_gammaA = bisafit (r(:,1)); %! beta_gammaB = bisafit (r(:,2)); %! beta_gammaC = bisafit (r(:,3)); %! %! ## Plot their estimated PDFs %! x = [0:0.1:8]; %! y = bisapdf (x, beta_gammaA(1), beta_gammaA(2)); %! plot (x, y, "-pr"); %! y = bisapdf (x, beta_gammaB(1), beta_gammaB(2)); %! plot (x, y, "-sg"); %! y = bisapdf (x, beta_gammaC(1), beta_gammaC(2)); %! plot (x, y, "-^c"); %! hold off %! legend ({"Normalized HIST of sample 1 with β=1 and γ=0.5", ... %! "Normalized HIST of sample 2 with β=2 and γ=0.3", ... %! "Normalized HIST of sample 3 with β=4 and γ=0.5", ... %! sprintf("PDF for sample 1 with estimated β=%0.2f and γ=%0.2f", ... %! beta_gammaA(1), beta_gammaA(2)), ... %! sprintf("PDF for sample 2 with estimated β=%0.2f and γ=%0.2f", ... %! beta_gammaB(1), beta_gammaB(2)), ... %! sprintf("PDF for sample 3 with estimated β=%0.2f and γ=%0.2f", ... %! beta_gammaC(1), beta_gammaC(2))}) %! title ("Three population samples from different Birnbaum-Saunders distibutions") %! hold off ## Test output %!test %! paramhat = bisafit ([1:50]); %! paramhat_out = [16.2649, 1.0156]; %! assert (paramhat, paramhat_out, 1e-4); %!test %! paramhat = bisafit ([1:5]); %! paramhat_out = [2.5585, 0.5839]; %! assert (paramhat, paramhat_out, 1e-4); ## Test input validation %!error bisafit (ones (2,5)); %!error bisafit ([-1 2 3 4]); %!error bisafit ([1, 2, 3, 4, 5], 1.2); %!error bisafit ([1, 2, 3, 4, 5], 0); %!error bisafit ([1, 2, 3, 4, 5], "alpha"); %!error ... %! bisafit ([1, 2, 3, 4, 5], 0.05, [1 1 0]); %!error ... %! bisafit ([1, 2, 3, 4, 5], [], [1 1 0 1 1]'); %!error ... %! bisafit ([1, 2, 3, 4, 5], 0.05, zeros (1,5), [1 1 0]); %!error ... %! bisafit ([1, 2, 3, 4, 5], [], [], [1 1 0 1 1]'); %!error ... %! bisafit ([1, 2, 3, 4, 5], 0.05, [], [], 2); statistics-release-1.6.3/inst/dist_fit/bisalike.m000066400000000000000000000153661456127120000220650ustar00rootroot00000000000000## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{nlogL} =} bisalike (@var{params}, @var{x}) ## @deftypefnx {statistics} {[@var{nlogL}, @var{acov}] =} bisalike (@var{params}, @var{x}) ## @deftypefnx {statistics} {[@dots{}] =} bisalike (@var{params}, @var{x}, @var{censor}) ## @deftypefnx {statistics} {[@dots{}] =} bisalike (@var{params}, @var{x}, @var{censor}, @var{freq}) ## ## Negative log-likelihood for the Birnbaum-Saunders distribution. ## ## @code{@var{nlogL} = bisalike (@var{params}, @var{x})} returns the negative ## log likelihood of the data in @var{x} corresponding to the Birnbaum-Saunders ## distribution with (1) scale parameter @var{beta} and (2) shape parameter ## @var{gamma} given in the two-element vector @var{params}. ## ## @code{[@var{nlogL}, @var{acov}] = bisalike (@var{params}, @var{x})} also ## returns the inverse of Fisher's information matrix, @var{acov}. If the input ## parameter values in @var{params} are the maximum likelihood estimates, the ## diagonal elements of @var{params} are their asymptotic variances. ## ## @code{[@dots{}] = bisalike (@var{params}, @var{x}, @var{censor})} accepts a ## boolean vector, @var{censor}, of the same size as @var{x} with @qcode{1}s for ## observations that are right-censored and @qcode{0}s for observations that are ## observed exactly. By default, or if left empty, ## @qcode{@var{censor} = zeros (size (@var{x}))}. ## ## @code{[@dots{}] = bisalike (@var{params}, @var{x}, @var{censor}, @var{freq})} ## accepts a frequency vector, @var{freq}, of the same size as @var{x}. ## @var{freq} typically contains integer frequencies for the corresponding ## elements in @var{x}, but it can contain any non-integer non-negative values. ## By default, or if left empty, @qcode{@var{freq} = ones (size (@var{x}))}. ## ## Further information about the Birnbaum-Saunders distribution can be found at ## @url{https://en.wikipedia.org/wiki/Birnbaum%E2%80%93Saunders_distribution} ## ## @seealso{bisacdf, bisainv, bisapdf, bisarnd, bisafit, bisastat} ## @end deftypefn function [nlogL, acov] = bisalike (params, x, censor, freq) ## Check input arguments if (nargin < 2) error ("bisalike: function called with too few input arguments."); endif if (! isvector (x)) error ("bisalike: X must be a vector."); endif if (any (x < 0)) error ("bisalike: X cannot have negative values."); endif if (length (params) != 2) error ("bisalike: PARAMS must be a two-element vector."); endif ## Check censor vector if (nargin < 3 || isempty (censor)) censor = zeros (size (x)); elseif (! isequal (size (x), size (censor))) error ("bisalike: X and CENSOR vector mismatch."); endif ## Check frequency vector if (nargin < 4 || isempty (freq)) freq = ones (size (x)); elseif (! isequal (size (x), size (freq))) error ("bisalike: X and FREQ vector mismatch."); endif beta = params(1); gamma = params(2); z = (sqrt (x ./ beta) - sqrt (beta ./ x)) ./ gamma; w = (sqrt (x ./ beta) + sqrt (beta ./ x)) ./ gamma; L = -0.5 .* (z .^ 2 + log (2 .* pi)) + log (w) - log (2 .* x); n_censored = sum (freq .* censor); if (n_censored > 0) censored = (censor == 1); z_censored = z(censored); Scen = 0.5 * erfc (z_censored ./ sqrt(2)); L(censored) = log (Scen); endif nlogL = -sum (freq .* L); ## Compute asymptotic covariance if (nargout > 1) ## Compute first order central differences of the log-likelihood gradient dp = 0.0001 .* max (abs (params), 1); ngrad_p1 = bisa_ngrad (params + [dp(1), 0], x, censor, freq); ngrad_m1 = bisa_ngrad (params - [dp(1), 0], x, censor, freq); ngrad_p2 = bisa_ngrad (params + [0, dp(2)], x, censor, freq); ngrad_m2 = bisa_ngrad (params - [0, dp(2)], x, censor, freq); ## Compute negative Hessian by normalizing the differences by the increment nH = [(ngrad_p1(:) - ngrad_m1(:))./(2 * dp(1)), ... (ngrad_p2(:) - ngrad_m2(:))./(2 * dp(2))]; ## Force neg Hessian being symmetric nH = 0.5 .* (nH + nH'); ## Check neg Hessian is positive definite [R, p] = chol (nH); if (p > 0) warning ("bisalike: non positive definite Hessian matrix."); acov = NaN (2); return endif ## ACOV estimate is the negative inverse of the Hessian. Rinv = inv (R); acov = Rinv * Rinv; endif endfunction ## Helper function for computing negative gradient function ngrad = bisa_ngrad (params, x, censor, freq) beta = params(1); gamma = params(2); z = (sqrt (x ./ beta) - sqrt (beta ./ x)) ./ gamma; w = (sqrt (x ./ beta) + sqrt (beta ./ x)) ./ gamma; logphi = -0.5 .* (z .^ 2 + log (2 .* pi)); n_censored = sum (freq .* censor); if (n_censored > 0) censored = (censor == 1); z_censored = z(censored); Scen = 0.5 * erfc (z_censored ./ sqrt(2)); endif dL1 = (w .^ 2 - 1) .* 0.5 .* z ./ (w .* beta); dL2 = (z .^ 2 - 1) ./ gamma; if (n_censored > 0) phi_censored = exp (logphi(censored)); wcen = w(censored); d1Scen = phi_censored .* 0.5 .* wcen ./ beta; d2Scen = phi_censored .* z_censored ./ gamma; dL1(censored) = d1Scen ./ Scen; dL2(censored) = d2Scen ./ Scen; endif ngrad = -[sum(freq .* dL1), sum(freq .* dL2)]; endfunction ## Test results %!test %! nlogL = bisalike ([16.2649, 1.0156], [1:50]); %! assert (nlogL, 215.5905, 1e-4); %!test %! nlogL = bisalike ([2.5585, 0.5839], [1:5]); %! assert (nlogL, 8.9950, 1e-4); ## Test input validation %!error bisalike (3.25) %!error bisalike ([5, 0.2], ones (2)) %!error bisalike ([5, 0.2], [-1, 3]) %!error ... %! bisalike ([1, 0.2, 3], [1, 3, 5, 7]) %!error ... %! bisalike ([1.5, 0.2], [1:5], [0, 0, 0]) %!error ... %! bisalike ([1.5, 0.2], [1:5], [0, 0, 0, 0, 0], [1, 1, 1]) %!error ... %! bisalike ([1.5, 0.2], [1:5], [], [1, 1, 1]) statistics-release-1.6.3/inst/dist_fit/burrfit.m000066400000000000000000000351731456127120000217550ustar00rootroot00000000000000## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{paramhat} =} burrfit (@var{x}) ## @deftypefnx {statistics} {[@var{paramhat}, @var{paramci}] =} burrfit (@var{x}) ## @deftypefnx {statistics} {[@var{paramhat}, @var{paramci}] =} burrfit (@var{x}, @var{alpha}) ## @deftypefnx {statistics} {[@dots{}] =} burrfit (@var{x}, @var{alpha}, @var{censor}) ## @deftypefnx {statistics} {[@dots{}] =} burrfit (@var{x}, @var{alpha}, @var{censor}, @var{freq}) ## @deftypefnx {statistics} {[@dots{}] =} burrfit (@var{x}, @var{alpha}, @var{censor}, @var{freq}, @var{options}) ## ## Estimate mean and confidence intervals for the Burr type XII distribution. ## ## @code{@var{muhat} = burrfit (@var{x})} returns the maximum likelihood ## estimates of the parameters of the Burr type XII distribution given the data ## in @var{x}. @qcode{@var{paramhat}(1)} is the scale parameter, @var{lambda}, ## @qcode{@var{paramhat}(2)} is the first shape parameter, @var{c}, and ## @qcode{@var{paramhat}(3)} is the second shape parameter, @var{k} ## ## @code{[@var{paramhat}, @var{paramci}] = burrfit (@var{x})} returns the 95% ## confidence intervals for the parameter estimates. ## ## @code{[@dots{}] = burrfit (@var{x}, @var{alpha})} also returns the ## @qcode{100 * (1 - @var{alpha})} percent confidence intervals for the ## parameter estimates. By default, the optional argument @var{alpha} is ## 0.05 corresponding to 95% confidence intervals. Pass in @qcode{[]} for ## @var{alpha} to use the default values. ## ## @code{[@dots{}] = burrfit (@var{x}, @var{alpha}, @var{censor})} accepts a ## boolean vector, @var{censor}, of the same size as @var{x} with @qcode{1}s for ## observations that are right-censored and @qcode{0}s for observations that are ## observed exactly. By default, or if left empty, ## @qcode{@var{censor} = zeros (size (@var{x}))}. ## ## @code{[@dots{}] = burrfit (@var{x}, @var{alpha}, @var{censor}, @var{freq})} ## accepts a frequency vector, @var{freq}, of the same size as @var{x}. ## @var{freq} typically contains integer frequencies for the corresponding ## elements in @var{x}, but it can contain any non-integer non-negative values. ## By default, or if left empty, @qcode{@var{freq} = ones (size (@var{x}))}. ## ## @code{[@dots{}] = burrfit (@dots{}, @var{options})} specifies control ## parameters for the iterative algorithm used to compute ML estimates with the ## @code{fminsearch} function. @var{options} is a structure with the following ## fields and their default values: ## @itemize ## @item @qcode{@var{options}.Display = "off"} ## @item @qcode{@var{options}.MaxFunEvals = 1000} ## @item @qcode{@var{options}.MaxIter = 500} ## @item @qcode{@var{options}.TolX = 1e-6} ## @end itemize ## ## Further information about the Burr type XII distribution can be found at ## @url{https://en.wikipedia.org/wiki/Burr_distribution} ## ## @seealso{burrcdf, burrinv, burrpdf, burrrnd, burrlike, burrstat} ## @end deftypefn function [paramhat, paramci] = burrfit (x, alpha, censor, freq, options) ## Check input arguments if (! isvector (x)) error ("burrfit: X must be a vector."); elseif (any (x <= 0)) error ("burrfit: X must contain only positive values."); endif ## Check alpha if (nargin < 2 || isempty (alpha)) alpha = 0.05; else if (! isscalar (alpha) || ! isreal (alpha) || alpha <= 0 || alpha >= 1) error ("burrfit: wrong value for ALPHA."); endif endif ## Check censor vector if (nargin < 3 || isempty (censor)) censor = zeros (size (x)); elseif (! isequal (size (x), size (censor))) error ("burrfit: X and CENSOR vectors mismatch."); endif ## Check frequency vector if (nargin < 4 || isempty (freq)) freq = ones (size (x)); elseif (! isequal (size (x), size (freq))) error ("burrfit: X and FREQ vectors mismatch."); endif ## Get options structure or add defaults if (nargin < 5) options.Display = "off"; options.MaxFunEvals = 1000; options.MaxIter = 500; options.TolX = 1e-6; else if (! isstruct (options) || ! isfield (options, "Display") || ! isfield (options, "MaxFunEvals") || ! isfield (options, "MaxIter") || ! isfield (options, "TolX")) error (strcat (["burrfit: 'options' 5th argument must be a"], ... [" structure with 'Display', 'MaxFunEvals',"], ... [" 'MaxIter', and 'TolX' fields present."])); endif endif ## Force censoring vector into logical notc = ! censor; cens = ! notc; ## Check for identical data in X if (! isscalar (x) && max (abs (diff (x)) ./ x(2:end)) <= sqrt (eps)) warning ("burrfit: X must not contain identical data."); ## Return some sensical values for estimated parameters lambda = x(1); c = Inf; k = sum (notc .* freq) / sum (freq) / log (2); paramhat = [lambda, c, k]; if (nargout > 1) paramci = [paramhat; paramhat]; endif return endif ## Fit a Pareto distribution [paramhat_prt, nlogL_prt] = prtfit (x, cens, freq); ## Fit a Weibull distribution paramhat_wbl = wblfit (x, alpha, cens, freq); nlogL_wbl = wbllike (paramhat_wbl, x, cens, freq); ## Calculate the discriminator x_lambda = x ./ paramhat_wbl(1); x_lambdk = x_lambda .^ paramhat_wbl(2); discrimi = sum (freq .* (0.5 * x_lambdk .^ 2 - x_lambdk .* notc)); ## Compute Burr distribution if (discrimi > 0) ## Expand data (if necessary) if (any (freq != 1)) ## Preserve class x_expand = zeros (1, sum (freq), class (x)); id0 = 1; for idx = 1:numel (x) x_expand(id0:id0 + freq(idx) - 1) = x_lambda(idx); id0 += freq(idx); endfor else x_expand = x_lambda; endif ## Calculate median and 3rd quartile to estimate LAMBDA and C parameters Q = prctile (x_expand); xl_median = Q(3); xl_upperq = Q(4); ## Avoid median and upper quartile being too close together IRDdist = sqrt (eps (xl_median)) * xl_median; if ((xl_upperq - xl_median) < IRDdist) if (any (x_lambda > xl_upperq)) xl_upperq = min (x_lambda(x_lambda > xl_upperq)); elseif (any (x_lambda < xl_upperq)) xl_median = max (x_lambda(x_lambda < xl_median)); endif endif ## Compute starting LAMBDA and C, either directly or by minimization if (xl_median >= xl_upperq / xl_median) l0 = xl_median; c0 = log(3)/log(xl_upperq/xl_median); else l0 = 1; opts = optimset ("fzero"); opts = optimset (opts, "Display", "off"); cmax = log(realmax)/(2*log(xl_upperq/xl_median)); c0 = fzero (@(c)(xl_upperq/xl_median).^c-xl_median.^c-2, [0, cmax], opts); endif ## Calculate starting K from other starting parameters and scaled data k0 = exp (compute_logk (x_lambda, l0, c0, censor, freq)); ## Estimate parameters by minimizing the negative log-likelihood function f = @(params) burrlike (params, x_lambda, censor, freq); [paramhat, ~, err, output] = fminsearch (f, [l0, c0, k0], options); ## Force positive parameter values paramhat = abs (paramhat); ## Handle errors if (err == 0) if (output.funcCount >= options.MaxFunEvals) warning (strcat (["burrfit: maximum number of function"], ... [" evaluations are exceeded."])); elseif (output.iterations >= options.MaxIter) warning ("burrfit: maximum number of iterations are exceeded."); endif endif ## Scale back LAMBDA parameter paramhat(1) = paramhat(1) * paramhat_wbl(1); ## Compute negative log-likelihood with estimated parameters nlogL_burr = burrlike (paramhat, x, censor, freq); ## Check if fitting a Burr distribution is better than fitting a Pareto ## according to step 5 of the algorithmic implementation in Shao, 2004 if (paramhat(3) > 1e-6 && nlogL_burr < nlogL_prt) ## Compute CIs using a log normal approximation for phat. if (nargout > 1) ## Compute asymptotic covariance [~, acov] = burrlike (paramhat, x, censor, freq); ## Get standard errors stderr = sqrt (diag (acov))'; stderr = stderr ./ paramhat; ## Apply log transform phatlog = log (paramhat); ## Compute normal quantiles z = norminv (alpha / 2); ## Compute CI paramci = [phatlog; phatlog] + ... [stderr; stderr] .* [z, z, z; -z, -z, -z]; ## Inverse log transform paramci = exp (paramci); endif else if (nlogL_prt < nlogL_wbl) error ("burrfit: Pareto distribution fits better in X."); else error ("burrfit: Weibull distribution fits better in X."); endif endif else if (nlogL_prt < nlogL_wbl) error ("burrfit: Pareto distribution fits better in X."); else error ("burrfit: Weibull distribution fits better in X."); endif endif endfunction ## Helper function for fitting a Pareto distribution function [paramhat, nlogL] = prtfit (x, censor, freq) ## Force censoring vector into logical notc = ! censor; cens = ! notc; ## Compute MLE for x_m xm = x(notc); xm = min (xm); ## Handle case with all data censored if (all (cens)) paramhat = [max(x), NaN]; nlogL_prt = 0; return endif ## Compute some values logx = log (x); suml = sum (freq .* (logx - log (xm)) .* (x > xm)); sumf = sum (freq .* notc); ## Compute MLE for alpha a = sumf ./ suml; ## Add MLEs to returning vector paramhat = [xm, a]; ## Compute negative log-likelihood nlogL = a .* suml + sum (freq .* notc .* logx) - log (a) .* sumf; endfunction ## Helper function for computing K from X, LAMBDA, and C function logk = compute_logk (x, lambda, c, censor, freq) ## Force censoring vector into logical notc = ! censor; cens = ! notc; ## Precalculate some values xl = x ./ lambda; l1_xlc = log1p (xl .^ c); ## Avoid realmax overflow by approximation is_inf = isinf (l1_xlc); l1_xlc(is_inf) = c .* log (xl(is_inf)); if (sum (freq .* l1_xlc) < eps) lsxc = log (sum (freq .* (x .^ c))); if (isinf (lsxc)) [maxx, idx] = max (x); lsxc = c * log (freq(idx) * maxx); endif logk = log (sum (freq .* notc)) + c * log (lambda) - lsxc; else logk = log (sum (freq .* notc)) - log (sum (freq .* l1_xlc)); endif endfunction %!demo %! ## Sample 3 populations from different Burr type XII distibutions %! rand ("seed", 4); # for reproducibility %! r1 = burrrnd (3.5, 2, 2.5, 10000, 1); %! rand ("seed", 2); # for reproducibility %! r2 = burrrnd (1, 3, 1, 10000, 1); %! rand ("seed", 9); # for reproducibility %! r3 = burrrnd (0.5, 2, 3, 10000, 1); %! r = [r1, r2, r3]; %! %! ## Plot them normalized and fix their colors %! hist (r, [0.1:0.2:20], [18, 5, 3]); %! h = findobj (gca, "Type", "patch"); %! set (h(1), "facecolor", "c"); %! set (h(2), "facecolor", "g"); %! set (h(3), "facecolor", "r"); %! ylim ([0, 3]); %! xlim ([0, 5]); %! hold on %! %! ## Estimate their α and β parameters %! lambda_c_kA = burrfit (r(:,1)); %! lambda_c_kB = burrfit (r(:,2)); %! lambda_c_kC = burrfit (r(:,3)); %! %! ## Plot their estimated PDFs %! x = [0.01:0.15:15]; %! y = burrpdf (x, lambda_c_kA(1), lambda_c_kA(2), lambda_c_kA(3)); %! plot (x, y, "-pr"); %! y = burrpdf (x, lambda_c_kB(1), lambda_c_kB(2), lambda_c_kB(3)); %! plot (x, y, "-sg"); %! y = burrpdf (x, lambda_c_kC(1), lambda_c_kC(2), lambda_c_kC(3)); %! plot (x, y, "-^c"); %! hold off %! legend ({"Normalized HIST of sample 1 with λ=3.5, c=2, and k=2.5", ... %! "Normalized HIST of sample 2 with λ=1, c=3, and k=1", ... %! "Normalized HIST of sample 3 with λ=0.5, c=2, and k=3", ... %! sprintf("PDF for sample 1 with estimated λ=%0.2f, c=%0.2f, and k=%0.2f", ... %! lambda_c_kA(1), lambda_c_kA(2), lambda_c_kA(3)), ... %! sprintf("PDF for sample 2 with estimated λ=%0.2f, c=%0.2f, and k=%0.2f", ... %! lambda_c_kB(1), lambda_c_kB(2), lambda_c_kB(3)), ... %! sprintf("PDF for sample 3 with estimated λ=%0.2f, c=%0.2f, and k=%0.2f", ... %! lambda_c_kC(1), lambda_c_kC(2), lambda_c_kC(3))}) %! title ("Three population samples from different Burr type XII distibutions") %! hold off ## Test output %!test %! l = 1; c = 2; k = 3; %! r = burrrnd (l, c, k, 100000, 1); %! lambda_c_kA = burrfit (r); %! assert (lambda_c_kA(1), l, 0.2); %! assert (lambda_c_kA(2), c, 0.2); %! assert (lambda_c_kA(3), k, 0.3); %!test %! l = 0.5; c = 1; k = 3; %! r = burrrnd (l, c, k, 100000, 1); %! lambda_c_kA = burrfit (r); %! assert (lambda_c_kA(1), l, 0.2); %! assert (lambda_c_kA(2), c, 0.2); %! assert (lambda_c_kA(3), k, 0.3); %!test %! l = 1; c = 3; k = 1; %! r = burrrnd (l, c, k, 100000, 1); %! lambda_c_kA = burrfit (r); %! assert (lambda_c_kA(1), l, 0.2); %! assert (lambda_c_kA(2), c, 0.2); %! assert (lambda_c_kA(3), k, 0.3); %!test %! l = 3; c = 2; k = 1; %! r = burrrnd (l, c, k, 100000, 1); %! lambda_c_kA = burrfit (r); %! assert (lambda_c_kA(1), l, 0.2); %! assert (lambda_c_kA(2), c, 0.2); %! assert (lambda_c_kA(3), k, 0.3); %!test %! l = 4; c = 2; k = 4; %! r = burrrnd (l, c, k, 100000, 1); %! lambda_c_kA = burrfit (r); %! assert (lambda_c_kA(1), l, 0.2); %! assert (lambda_c_kA(2), c, 0.2); %! assert (lambda_c_kA(3), k, 0.3); ## Test input validation %!error burrfit (ones (2,5)); %!error burrfit ([-1 2 3 4]); %!error burrfit ([1, 2, 3, 4, 5], 1.2); %!error burrfit ([1, 2, 3, 4, 5], 0); %!error burrfit ([1, 2, 3, 4, 5], "alpha"); %!error ... %! burrfit ([1, 2, 3, 4, 5], 0.05, [1 1 0]); %!error ... %! burrfit ([1, 2, 3, 4, 5], [], [1 1 0 1 1]'); %!error ... %! burrfit ([1, 2, 3, 4, 5], 0.05, zeros (1,5), [1 1 0]); %!error ... %! burrfit ([1, 2, 3, 4, 5], [], [], [1 1 0 1 1]'); %!error ... %! burrfit ([1, 2, 3, 4, 5], 0.05, [], [], 2); statistics-release-1.6.3/inst/dist_fit/burrlike.m000066400000000000000000000153731456127120000221170ustar00rootroot00000000000000## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{nlogL} =} burrlike (@var{params}, @var{x}) ## @deftypefnx {statistics} {[@var{nlogL}, @var{acov}] =} burrlike (@var{params}, @var{x}) ## @deftypefnx {statistics} {[@dots{}] =} burrlike (@var{params}, @var{x}, @var{censor}) ## @deftypefnx {statistics} {[@dots{}] =} burrlike (@var{params}, @var{x}, @var{censor}, @var{freq}) ## ## Negative log-likelihood for the Burr type XII distribution. ## ## @code{@var{nlogL} = burrlike (@var{params}, @var{x})} returns the negative ## log likelihood of the data in @var{x} corresponding to the Burr type XII ## distribution with (1) scale parameter @var{lambda}, (2) first shape parameter ## @var{c}, and (3) second shape parameter @var{k} given in the three-element ## vector @var{params}. ## ## @code{[@var{nlogL}, @var{acov}] = burrlike (@var{params}, @var{x})} also ## returns the inverse of Fisher's information matrix, @var{acov}. If the input ## parameter values in @var{params} are the maximum likelihood estimates, the ## diagonal elements of @var{acov} are their asymptotic variances. ## ## @code{[@dots{}] = burrlike (@var{params}, @var{x}, @var{censor})} accepts a ## boolean vector, @var{censor}, of the same size as @var{x} with @qcode{1}s for ## observations that are right-censored and @qcode{0}s for observations that are ## observed exactly. By default, or if left empty, ## @qcode{@var{censor} = zeros (size (@var{x}))}. ## ## @code{[@dots{}] = burrlike (@var{params}, @var{x}, @var{censor}, @var{freq})} ## accepts a frequency vector, @var{freq}, of the same size as @var{x}. ## @var{freq} typically contains integer frequencies for the corresponding ## elements in @var{x}, but it can contain any non-integer non-negative values. ## By default, or if left empty, @qcode{@var{freq} = ones (size (@var{x}))}. ## ## Further information about the Burr type XII distribution can be found at ## @url{https://en.wikipedia.org/wiki/Burr_distribution} ## ## @seealso{burrcdf, burrinv, burrpdf, burrrnd, burrfit, burrstat} ## @end deftypefn function [nlogL, acov] = burrlike (params, x, censor, freq) ## Check input arguments if (nargin < 2) error ("burrlike: function called with too few input arguments."); endif if (! isvector (x)) error ("burrlike: X must be a vector."); endif if (any (x < 0)) error ("burrlike: X cannot have negative values."); endif if (length (params) != 3) error ("burrlike: PARAMS must be a three-element vector."); endif ## Check censor vector if (nargin < 3 || isempty (censor)) censor = zeros (size (x)); elseif (! isequal (size (x), size (censor))) error ("burrlike: X and CENSOR vector mismatch."); endif ## Check frequency vector if (nargin < 4 || isempty (freq)) freq = ones (size (x)); elseif (! isequal (size (x), size (freq))) error ("burrlike: X and FREQ vector mismatch."); endif ## Get parameters lambda = params(1); c = params(2); k = params(3); ## Precalculate some values xl = x ./ lambda; log_xl = log (xl); l1_xlc = log1p (xl .^ c); ## Avoid realmax overflow by approximation is_inf = isinf (l1_xlc); l1_xlc(is_inf) = c .* log (xl(is_inf)); ## Force censoring vector into logical notc = ! censor; cens = ! notc; ## Compute neg-loglikelihood likeL = zeros (size (x)); likeL(notc) = (c - 1) .* log_xl(notc) - (k + 1) .* l1_xlc(notc); likeL(cens) = -k .* l1_xlc(cens); nlogL = sum (freq (notc)) * log (lambda / k / c) - sum (freq .* likeL); ## Compute asymptotic covariance if (nargout > 1) ## Preallocate variables nH = zeros (3); d2V1 = zeros (size (x)); d2V2 = d2V1; ## Precalculate some more values xlc = xl .^ c; log_xl = log (xl); xlc1 = (1 + xlc); xlc1sq = xlc1.^2; invxlc1sq = (1 + 1./xlc).^2; ## Find realmax overflow is_inf = isinf (xlc); is_fin = ! is_inf; ## Compute each element of the negative Hessian d2V1(is_fin) = -((1 + c) ./ xlc(is_fin) + 1) ./ invxlc1sq(is_fin); d2V1(is_inf) = -1; d2V2(notc) = d2V1(notc) .* (k + 1) + 1; d2V2(cens) = d2V1(cens) .* k; nH(1,1) = c ./ lambda .^ 2 .* sum (freq .* d2V2); d2V1(is_fin) = xlc(is_fin) .* (c .* log_xl(is_fin) + xlc1(is_fin)) ... ./ xlc1sq(is_fin); d2V1(is_inf) = 1; d2V2(notc) = (k + 1) .* d2V1(notc) - 1; d2V2(cens) = k .* d2V1(cens); nH(1,2) = sum (freq ./ lambda .* d2V2); nH(2,1) = nH(1,2); d2V1(is_fin) = xlc(is_fin) .* log_xl(is_fin) .^ 2 ./ xlc1sq(is_fin); d2V1(is_inf) = 0; d2V2(notc) = d2V1(notc) .* k + d2V1(notc); d2V2(cens) = d2V1(cens) .* k; nH(2,2) = -(sum (freq (notc))) ./ c .^ 2 - sum (freq .* d2V2); d2V1(is_fin) = xlc(is_fin) ./ xlc1(is_fin); d2V1(is_inf) = 1; nH(1,3) = (c ./ lambda) .* sum (freq .* d2V1); nH(3,1) = nH(1,3); nH(2,3) = -sum (freq .* d2V1 .* log_xl); nH(3,2) = nH(2,3); nH(3,3) = -(sum (freq (notc))) ./ k .^ 2; nH = -nH; ## Check negative Hessian is positive definite [R, p] = chol (nH); if (p > 0) warning ("burrlike: non positive definite Hessian matrix."); acov = NaN (3); return endif ## ACOV estimate is the negative inverse of the Hessian. Rinv = inv (R); acov = Rinv * Rinv; endif endfunction ## Test output ## Test input validation %!error burrlike (3.25) %!error burrlike ([1, 2, 3], ones (2)) %!error burrlike ([1, 2, 3], [-1, 3]) %!error ... %! burrlike ([1, 2], [1, 3, 5, 7]) %!error ... %! burrlike ([1, 2, 3, 4], [1, 3, 5, 7]) %!error ... %! burrlike ([1, 2, 3], [1:5], [0, 0, 0]) %!error ... %! burrlike ([1, 2, 3], [1:5], [0, 0, 0, 0, 0], [1, 1, 1]) %!error ... %! burrlike ([1, 2, 3], [1:5], [], [1, 1, 1]) statistics-release-1.6.3/inst/dist_fit/evfit.m000066400000000000000000000326421456127120000214130ustar00rootroot00000000000000## Copyright (C) 2022-2023 Andreas Bertsatos ## Copyright (C) 2022 Andrew Penn ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{paramhat} =} evfit (@var{x}) ## @deftypefnx {statistics} {[@var{paramhat}, @var{paramci}] =} evfit (@var{x}) ## @deftypefnx {statistics} {[@var{paramhat}, @var{paramci}] =} evfit (@var{x}, @var{alpha}) ## @deftypefnx {statistics} {[@dots{}] =} evfit (@var{x}, @var{alpha}, @var{censor}) ## @deftypefnx {statistics} {[@dots{}] =} evfit (@var{x}, @var{alpha}, @var{censor}, @var{freq}) ## @deftypefnx {statistics} {[@dots{}] =} evfit (@var{x}, @var{alpha}, @var{censor}, @var{freq}, @var{options}) ## ## Estimate parameters and confidence intervals for the extreme value distribution. ## ## @code{@var{paramhat} = evfit (@var{x})} returns the maximum likelihood ## estimates of the parameters of the extreme value distribution (also known as ## the Gumbel or the type I generalized extreme value distribution) given the ## data in @var{x}. @qcode{@var{paramhat}(1)} is the location parameter, ## @var{mu}, and @qcode{@var{paramhat}(2)} is the scale parameter, @var{sigma}. ## ## @code{[@var{paramhat}, @var{paramci}] = evfit (@var{x})} returns the 95% ## confidence intervals for the parameter estimates. ## ## @code{[@dots{}] = evfit (@var{x}, @var{alpha})} also returns the ## @qcode{100 * (1 - @var{alpha})} percent confidence intervals for the ## parameter estimates. By default, the optional argument @var{alpha} is ## 0.05 corresponding to 95% confidence intervals. Pass in @qcode{[]} for ## @var{alpha} to use the default values. ## ## @code{[@dots{}] = evfit (@var{x}, @var{alpha}, @var{censor})} accepts a ## boolean vector, @var{censor}, of the same size as @var{x} with @qcode{1}s for ## observations that are right-censored and @qcode{0}s for observations that are ## observed exactly. By default, or if left empty, ## @qcode{@var{censor} = zeros (size (@var{x}))}. ## ## @code{[@dots{}] = evfit (@var{x}, @var{alpha}, @var{censor}, @var{freq})} ## accepts a frequency vector, @var{freq}, of the same size as @var{x}. ## @var{freq} typically contains integer frequencies for the corresponding ## elements in @var{x}, but it can contain any non-integer non-negative values. ## By default, or if left empty, @qcode{@var{freq} = ones (size (@var{x}))}. ## ## @code{[@dots{}] = evfit (@dots{}, @var{options})} specifies control ## parameters for the iterative algorithm used to compute the maximum likelihood ## estimates. @var{options} is a structure with the following field and its ## default value: ## @itemize ## @item @qcode{@var{options}.TolX = 1e-6} ## @end itemize ## ## The Gumbel distribution is used to model the distribution of the maximum (or ## the minimum) of a number of samples of various distributions. This version ## is suitable for modeling minima. For modeling maxima, use the alternative ## Gumbel fitting function, @code{gumbelfit}. ## ## Further information about the Gumbel distribution can be found at ## @url{https://en.wikipedia.org/wiki/Gumbel_distribution} ## ## @seealso{evcdf, evinv, evpdf, evrnd, evlike, evstat, gumbelfit} ## @end deftypefn function [paramhat, paramci] = evfit (x, alpha, censor, freq, options) ## Check X for being a double precision vector if (! isvector (x) || ! isa (x, "double")) error ("evfit: X must be a double-precision vector."); endif ## Check that X does not contain missing values (NaNs) if (any (isnan (x))) error ("evfit: X must NOT contain missing values (NaNs)."); endif ## Check alpha if (nargin > 1) if (! isscalar (alpha) || ! isreal (alpha) || alpha <= 0 || alpha >= 1) error ("evfit: wrong value for ALPHA."); endif else alpha = 0.05; endif ## Check censor vector if (nargin > 2) if (! isempty (censor) && ! all (size (censor) == size (x))) error ("evfit: X and CENSOR vectors mismatch."); endif else censor = zeros (size (x)); endif ## Check frequency vector if (nargin > 3) if (! isempty (freq) && ! all (size (freq) == size (x))) error ("evfit: X and FREQ vectors mismatch."); endif ## Remove elements with zero frequency (if applicable) rm = find (freq == 0); if (length (rm) > 0) x(rm) = []; censor(rm) = []; freq(rm) = []; endif else freq = ones (size (x)); endif ## Get options structure or add defaults if (nargin > 4) if (! isstruct (options) || ! isfield (options, "TolX")) error (strcat (["evfit: 'options' 5th argument must be a structure"], ... [" with 'TolX' field present."])); endif else options.TolX = 1e-6; endif ## If X is a column vector, make X, CENSOR, and FREQ row vectors if (size (x, 1) > 1) x = x(:)'; censor = censor(:)'; freq = freq(:)'; endif ## Censor x and get number of samples sample_size = sum (freq); censored_sample_size = sum (freq .* censor); uncensored_sample_size = sample_size - censored_sample_size; x_range = range (x); x_max = max (x); ## Check cases that cannot make a fit. ## 1. All observations are censored if (sample_size == 0 || uncensored_sample_size == 0 || ! isfinite (x_range)) paramhat = NaN (1, 2); paramci = NaN (2, 2); return endif ## 2. Constant x in X if (censored_sample_size == 0 && x_range == 0) paramhat = [x(1), 0]; if (sample_size == 1) paramci = [-Inf, 0; Inf, Inf]; else paramci = [paramhat, paramhat]; endif return elseif (censored_sample_size == 0 && x_range != 0) ## Data can fit, so preprocess them to make likelihood eqn more stable. ## Shift x to max(x) == 0, min(x) = -1. x_0 = (x - x_max) ./ x_range; ## Get a rough initial estimate for scale parameter initial_sigma_parm = (sqrt (6) * std (x_0)) / pi; uncensored_weights = sum (freq .* x_0) ./ sample_size; endif ## 3. All uncensored observations are equal and greater than all censored ones uncensored_x_range = range (x(censor == 0)); uncensored_x = x(censor == 0); if (censored_sample_size > 0 && uncensored_x_range == 0 ... && uncensored_x(1) >= x_max) paramhat = [uncensored_x(1), 0]; if uncensored_sample_size == 1 paramci = [-Inf, 0; Inf, Inf]; else paramci = [paramhat; paramhat]; end return else ## Data can fit, so preprocess them to make likelihood eqn more stable. ## Shift x to max(x) == 0, min(x) = -1. x_0 = (x - x_max) ./ x_range; ## Get a rough initial estimate for scale parameter if (uncensored_x_range > 0) [F_y, y] = ecdf (x_0, "censoring", censor', "frequency", freq'); pmid = (F_y(1:(end-1)) + F_y(2:end)) / 2; linefit = polyfit (log (- log (1 - pmid)), y(2:end), 1); initial_sigma_parm = linefit(1); else initial_sigma_parm = 1; endif uncensored_weights = sum (freq .* x_0 .* (1 - censor)) ./ ... uncensored_sample_size; endif ## Find lower and upper boundaries for bracketing the likelihood equation for ## the extreme value scale parameter if (evscale_lkeq (initial_sigma_parm, x_0, freq, uncensored_weights) > 0) upper = initial_sigma_parm; lower = 0.5 * upper; while (evscale_lkeq (lower, x_0, freq, uncensored_weights) > 0) upper = lower; lower = 0.5 * upper; if (lower <= realmin ("double")) error ("evfit: no solution for maximum likelihood estimates."); endif endwhile boundaries = [lower, upper]; else lower = initial_sigma_parm; upper = 2 * lower; while (evscale_lkeq (upper, x_0, freq, uncensored_weights) < 0) lower = upper; upper = 2 * lower; if (upper > realmax ("double")) error ("evfit: no solution for maximum likelihood estimates."); endif endwhile boundaries = [lower, upper]; endif ## Compute maximum likelihood for scale parameter as the root of the equation ## Custom code for finding the value within the boundaries [lower, upper] that ## evscale_lkeq function returns zero ## First check that there is a root within the boundaries new_lo = boundaries(1); new_up = boundaries(2); v_lower = evscale_lkeq (new_lo, x_0, freq, uncensored_weights); v_upper = evscale_lkeq (new_up, x_0, freq, uncensored_weights); if (! (sign (v_lower) * sign (v_upper) <= 0)) error ("evfit: no solution for maximum likelihood estimates."); endif ## Get a value at mid boundary range old_sigma = new_lo; new_sigma = (new_lo + new_up) / 2; new_fzero = evscale_lkeq (new_sigma, x_0, freq, uncensored_weights); ## Start searching cur_iter = 0; max_iter = 1e+3; while (cur_iter < max_iter && abs (old_sigma - new_sigma) > options.TolX) cur_iter++; if (new_fzero < 0) old_sigma = new_sigma; new_lo = new_sigma; new_sigma = (new_lo + new_up) / 2; new_fzero = evscale_lkeq (new_sigma, x_0, freq, uncensored_weights); else old_sigma = new_sigma; new_up = new_sigma; new_sigma = (new_lo + new_up) / 2; new_fzero = evscale_lkeq (new_sigma, x_0, freq, uncensored_weights); endif endwhile ## Check for maximum number of iterations if (cur_iter == max_iter) warning (strcat (["evfit: maximum number of function "], ... [" evaluations (1e+4) has been reached."])); endif ## Compute MU muhat = new_sigma .* log (sum (freq .* exp (x_0 ./ new_sigma)) ./ ... uncensored_sample_size); ## Transform MU and SIGMA back to original location and scale paramhat = [(x_range*muhat)+x_max, x_range*new_sigma]; ## Compute the CI for MU and SIGMA if (nargout == 2) probs = [alpha/2; 1-alpha/2]; [~, acov] = evlike (paramhat, x, censor, freq); transfhat = [paramhat(1), log(paramhat(2))]; se = sqrt (diag (acov))'; se(2) = se(2) ./ paramhat(2); paramci = norminv ([probs, probs], [transfhat; transfhat], [se; se]); paramci(:,2) = exp (paramci(:,2)); endif endfunction ## Likelihood equation for the extreme value scale parameter. function v = evscale_lkeq (sigma, x, freq, x_weighted_uncensored) freq = freq .* exp (x ./ sigma); v = sigma + x_weighted_uncensored - sum (x .* freq) / sum (freq); endfunction %!demo %! ## Sample 3 populations from different extreme value distibutions %! rand ("seed", 1); # for reproducibility %! r1 = evrnd (2, 5, 400, 1); %! rand ("seed", 12); # for reproducibility %! r2 = evrnd (-5, 3, 400, 1); %! rand ("seed", 13); # for reproducibility %! r3 = evrnd (14, 8, 400, 1); %! r = [r1, r2, r3]; %! %! ## Plot them normalized and fix their colors %! hist (r, 25, 0.4); %! h = findobj (gca, "Type", "patch"); %! set (h(1), "facecolor", "c"); %! set (h(2), "facecolor", "g"); %! set (h(3), "facecolor", "r"); %! ylim ([0, 0.28]) %! xlim ([-30, 30]); %! hold on %! %! ## Estimate their MU and SIGMA parameters %! mu_sigmaA = evfit (r(:,1)); %! mu_sigmaB = evfit (r(:,2)); %! mu_sigmaC = evfit (r(:,3)); %! %! ## Plot their estimated PDFs %! x = [min(r(:)):max(r(:))]; %! y = evpdf (x, mu_sigmaA(1), mu_sigmaA(2)); %! plot (x, y, "-pr"); %! y = evpdf (x, mu_sigmaB(1), mu_sigmaB(2)); %! plot (x, y, "-sg"); %! y = evpdf (x, mu_sigmaC(1), mu_sigmaC(2)); %! plot (x, y, "-^c"); %! legend ({"Normalized HIST of sample 1 with μ=2 and σ=5", ... %! "Normalized HIST of sample 2 with μ=-5 and σ=3", ... %! "Normalized HIST of sample 3 with μ=14 and σ=8", ... %! sprintf("PDF for sample 1 with estimated μ=%0.2f and σ=%0.2f", ... %! mu_sigmaA(1), mu_sigmaA(2)), ... %! sprintf("PDF for sample 2 with estimated μ=%0.2f and σ=%0.2f", ... %! mu_sigmaB(1), mu_sigmaB(2)), ... %! sprintf("PDF for sample 3 with estimated μ=%0.2f and σ=%0.2f", ... %! mu_sigmaC(1), mu_sigmaC(2))}) %! title ("Three population samples from different extreme value distibutions") %! hold off ## Test output %!test %! x = 1:50; %! [paramhat, paramci] = evfit (x); %! paramhat_out = [32.6811, 13.0509]; %! paramci_out = [28.8504, 10.5294; 36.5118, 16.1763]; %! assert (paramhat, paramhat_out, 1e-4); %! assert (paramci, paramci_out, 1e-4); %!test %! x = 1:50; %! [paramhat, paramci] = evfit (x, 0.01); %! paramci_out = [27.6468, 9.8426; 37.7155, 17.3051]; %! assert (paramci, paramci_out, 1e-4); ## Test input validation %!error evfit (ones (2,5)); %!error evfit (single (ones (1,5))); %!error evfit ([1, 2, 3, 4, NaN]); %!error evfit ([1, 2, 3, 4, 5], 1.2); %!error ... %! evfit ([1, 2, 3, 4, 5], 0.05, [1 1 0]); %!error ... %! evfit ([1, 2, 3, 4, 5], 0.05, [], [1 1 0]); %!error evfit ([1, 2, 3, 4, 5], 0.05, [], [], 2); statistics-release-1.6.3/inst/dist_fit/evlike.m000066400000000000000000000135761456127120000215620ustar00rootroot00000000000000## Copyright (C) 2022-2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{nlogL} =} evlike (@var{params}, @var{x}) ## @deftypefnx {statistics} {[@var{nlogL}, @var{acov}] =} evlike (@var{params}, @var{x}) ## @deftypefnx {statistics} {[@dots{}] =} evlike (@var{params}, @var{x}, @var{censor}) ## @deftypefnx {statistics} {[@dots{}] =} evlike (@var{params}, @var{x}, @var{censor}, @var{freq}) ## ## Negative log-likelihood for the extreme value distribution. ## ## @code{@var{nlogL} = evlike (@var{params}, @var{x})} returns the negative ## log likelihood of the data in @var{x} corresponding to the extreme value ## distribution (also known as the Gumbel or the type I generalized extreme ## value distribution) with (1) location parameter @var{mu} and (2) scale ## parameter @var{sigma} given in the two-element vector @var{params}. ## ## @code{[@var{nlogL}, @var{acov}] = evlike (@var{params}, @var{x})} also ## returns the inverse of Fisher's information matrix, @var{acov}. If the input ## parameter values in @var{params} are the maximum likelihood estimates, the ## diagonal elements of @var{acov} are their asymptotic variances. ## ## @code{[@dots{}] = evlike (@var{params}, @var{x}, @var{censor})} accepts a ## boolean vector, @var{censor}, of the same size as @var{x} with @qcode{1}s for ## observations that are right-censored and @qcode{0}s for observations that are ## observed exactly. By default, or if left empty, ## @qcode{@var{censor} = zeros (size (@var{x}))}. ## ## @code{[@dots{}] = evlike (@var{params}, @var{x}, @var{censor}, @var{freq})} ## accepts a frequency vector, @var{freq}, of the same size as @var{x}. ## @var{freq} typically contains integer frequencies for the corresponding ## elements in @var{x}, but it can contain any non-integer non-negative values. ## By default, or if left empty, @qcode{@var{freq} = ones (size (@var{x}))}. ## ## The Gumbel distribution is used to model the distribution of the maximum (or ## the minimum) of a number of samples of various distributions. This version ## is suitable for modeling minima. For modeling maxima, use the alternative ## Gumbel likelihood function, @code{gumbellike}. ## ## Further information about the Gumbel distribution can be found at ## @url{https://en.wikipedia.org/wiki/Gumbel_distribution} ## ## @seealso{evcdf, evinv, evpdf, evrnd, evfit, evstat, gumbellike} ## @end deftypefn function [nlogL, acov] = evlike (params, x, censor, freq) ## Check input arguments and add defaults if (nargin < 2) error ("evlike: function called with too few input arguments."); endif if (numel (params) != 2) error ("evlike: wrong parameters length."); endif if (! isvector (x)) error ("evlike: X must be a vector."); endif if (nargin < 3 || isempty (censor)) censor = zeros (size (x)); elseif (! isequal (size (x), size (censor))) error ("evlike: X and CENSOR vectors mismatch."); endif if (nargin < 4 || isempty (freq)) freq = ones (size (x)); elseif (isequal (size (x), size (freq))) nulls = find (freq == 0); if (numel (nulls) > 0) x(nulls) = []; censor(nulls) = []; freq(nulls) = []; endif else error ("evlike: X and FREQ vectors mismatch."); endif ## Get mu and sigma values mu = params(1); sigma = params(2); ## sigma must be positive, otherwise make it NaN if (sigma <= 0) sigma = NaN; endif ## Compute the individual log-likelihood terms z = (x - mu) ./ sigma; expz = exp (z); L = (z - log (sigma)) .* (1 - censor) - expz; ## Force a log(0)==-Inf for X from extreme right tail L(z == Inf) = -Inf; ## Neg-log-likelihood is the sum of the individual contributions nlogL = -sum (freq .* L); ## Compute the negative hessian at the parameter values. ## Invert to get the observed information matrix. if (nargout == 2) unc = (1 - censor); nH11 = sum(freq .* expz); nH12 = sum(freq .* ((z + 1) .* expz - unc)); nH22 = sum(freq .* (z .* (z+2) .* expz - ((2 .* z + 1) .* unc))); acov = (sigma .^ 2) * ... [nH22 -nH12; -nH12 nH11] / (nH11 * nH22 - nH12 * nH12); endif endfunction ## Test output %!test %! x = 1:50; %! [nlogL, acov] = evlike ([2.3, 1.2], x); %! avar_out = [-1.2778e-13, 3.1859e-15; 3.1859e-15, -7.9430e-17]; %! assert (nlogL, 3.242264755689906e+17, 1e-14); %! assert (acov, avar_out, 1e-3); %!test %! x = 1:50; %! [nlogL, acov] = evlike ([2.3, 1.2], x * 0.5); %! avar_out = [-7.6094e-05, 3.9819e-06; 3.9819e-06, -2.0836e-07]; %! assert (nlogL, 481898704.0472211, 1e-6); %! assert (acov, avar_out, 1e-3); %!test %! x = 1:50; %! [nlogL, acov] = evlike ([21, 15], x); %! avar_out = [11.73913876598908, -5.9546128523121216; ... %! -5.954612852312121, 3.708060045170236]; %! assert (nlogL, 223.7612479380652, 1e-13); %! assert (acov, avar_out, 1e-14); ## Test input validation %!error evlike ([12, 15]) %!error evlike ([12, 15, 3], [1:50]) %!error evlike ([12, 3], ones (10, 2)) %!error ... %! evlike ([12, 15], [1:50], [1, 2, 3]) %!error ... %! evlike ([12, 15], [1:50], [], [1, 2, 3]) statistics-release-1.6.3/inst/dist_fit/expfit.m000066400000000000000000000315151456127120000215730ustar00rootroot00000000000000## Copyright (C) 2021 Nicholas R. Jankowski ## Copyright (C) 2023 Andreas Bertsatos ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{muhat} =} expfit (@var{x}) ## @deftypefnx {statistics} {[@var{muhat}, @var{muci}] =} expfit (@var{x}) ## @deftypefnx {statistics} {[@var{muhat}, @var{muci}] =} expfit (@var{x}, @var{alpha}) ## @deftypefnx {statistics} {[@dots{}] =} expfit (@var{x}, @var{alpha}, @var{censor}) ## @deftypefnx {statistics} {[@dots{}] =} expfit (@var{x}, @var{alpha}, @var{censor}, @var{freq}) ## ## Estimate mean and confidence intervals for the exponential distribution. ## ## @code{@var{muhat} = expfit (@var{x})} returns the maximum likelihood estimate ## of the mean parameter, @var{muhat}, of the exponential distribution given the ## data in @var{x}. @var{x} is expected to be a non-negative vector. If @var{x} ## is an array, the mean will be computed for each column of @var{x}. If any ## elements of @var{x} are NaN, that vector's mean will be returned as NaN. ## ## @code{[@var{muhat}, @var{muci}] = expfit (@var{x})} returns the 95% ## confidence intervals for the parameter estimate. If @var{x} is a vector, ## @var{muci} is a two element column vector. If @var{x} is an array, each ## column of data will have a confidence interval returned as a two-row array. ## ## @code{[@dots{}] = evfit (@var{x}, @var{alpha})} also returns the ## @qcode{100 * (1 - @var{alpha})} percent confidence intervals for the ## parameter estimates. By default, the optional argument @var{alpha} is ## 0.05 corresponding to 95% confidence intervals. Pass in @qcode{[]} for ## @var{alpha} to use the default values. Any invalid values for @var{alpha} ## will return NaN for both CI bounds. ## ## @code{[@dots{}] = expfit (@var{x}, @var{alpha}, @var{censor})} accepts a ## logical or numeric array, @var{censor}, of the same size as @var{x} with ## @qcode{1}s for observations that are right-censored and @qcode{0}s for ## observations that are observed exactly. Any non-zero elements are regarded ## as @qcode{1}s. By default, or if left empty, ## @qcode{@var{censor} = zeros (size (@var{x}))}. ## ## @code{[@dots{}] = expfit (@var{x}, @var{alpha}, @var{censor}, @var{freq})} ## accepts a frequency array, @var{freq}, of the same size as @var{x}. ## @var{freq} typically contains integer frequencies for the corresponding ## elements in @var{x}, but it can contain any non-integer non-negative values. ## By default, or if left empty, @qcode{@var{freq} = ones (size (@var{x}))}. ## ## Matlab incompatibility: Matlab's @code{expfit} produces unpredictable results ## for some cases with higher dimensions (specifically 1 x m x n x ... arrays). ## Octave's implementation allows for @math{nxD} arrays, consistently performing ## calculations on individual column vectors. Additionally, @var{censor} and ## @var{freq} can be used with arrays of any size, whereas Matlab only allows ## their use when @var{x} is a vector. ## ## A common alternative parameterization of the exponential distribution is to ## use the parameter @math{λ} defined as the mean number of events in an ## interval as opposed to the parameter @math{μ}, which is the mean wait time ## for an event to occur. @math{λ} and @math{μ} are reciprocals, ## i.e. @math{μ = 1 / λ}. ## ## Further information about the exponential distribution can be found at ## @url{https://en.wikipedia.org/wiki/Exponential_distribution} ## ## @seealso{expcdf, expinv, explpdf, exprnd, explike, expstat} ## @end deftypefn function [muhat, muci] = expfit (x, alpha = 0.05, censor = [], freq = []) ## Check arguments if (nargin == 0 || nargin > 4 || nargout > 2) print_usage (); endif if (! (isnumeric (x) || islogical (x))) x = double (x); endif ## Guarantee working with column vectors if (isvector (x)) x = x(:); endif if (any (x(:) < 0)) error ("expfit: X cannot be negative."); endif sz_s = size (x); if (isempty (alpha)) alpha = 0.05; elseif (! (isscalar (alpha))) error ("expfit: ALPHA must be a scalar quantity."); endif if (isempty (censor) && isempty (freq)) ## Simple case without freq or censor, shortcut other validations muhat = mean (x, 1); if (nargout == 2) X = sum (x, 1); muci = [2*X./chi2inv(1 - alpha / 2, 2 * sz_s(1));... 2*X./chi2inv(alpha / 2, 2 * sz_s(1))]; endif else ## Input validation for censor and freq if (isempty (censor)) ## Expand to full censor with values that don't affect results censor = zeros (sz_s); elseif (! (isnumeric (censor) || islogical (censor))) ## Check for incorrect freq type error ("expfit: CENSOR must be a numeric or logical array.") elseif (isvector (censor)) ## Guarantee working with a column vector censor = censor(:); endif if (isempty (freq)) ## Expand to full censor with values that don't affect results freq = ones (sz_s); elseif (! (isnumeric (freq) || islogical (freq))) ## Check for incorrect freq type error ("expfit: FREQ must be a numeric or logical array.") elseif (isvector (freq)) ## Guarantee working with a column vector freq = freq(:); endif ## Check that size of censor and freq match x if (! (isequal (size (censor), sz_s))) error("expfit: X and CENSOR vectors mismatch."); elseif (! isequal (size (freq), sz_s)) error("expfit: X and FREQ vectors mismatch."); endif ## Trivial case where censor and freq have no effect if (all (censor(:) == 0 & freq(:) == 1)) muhat = mean (x, 1); if (nargout == 2) X = sum (x, 1); muci = [2*X./chi2inv(1 - alpha / 2, 2 * sz_s(1));... 2*X./chi2inv(alpha / 2, 2 * sz_s(1))]; endif ## No censoring, just adjust sample counts for freq elseif (all (censor(:) == 0)) X = sum (x.*freq, 1); n = sum (freq, 1); muhat = X ./ n; if (nargout == 2) muci = [2*X./chi2inv(1 - alpha / 2, 2 * n);... 2*X./chi2inv(alpha / 2, 2 * n)]; endif ## Censoring, but no sample counts adjustment elseif (all (freq(:) == 1)) censor = logical(censor); # convert any numeric censor'x to 0s and 1s X = sum (x, 1); r = sz_s(1) - sum (censor, 1); muhat = X ./ r; if (nargout == 2) muci = [2*X./chi2inv(1 - alpha / 2, 2 * r);... 2*X./chi2inv(alpha / 2, 2 * r)]; endif ## Both censoring and sample count adjustment else censor = logical (censor); # convert any numeric censor'x to 0s and 1s X = sum (x .* freq , 1); r = sum (freq .* (! censor), 1); muhat = X ./ r; if (nargout == 2) muci = [2*X./chi2inv(1 - alpha / 2, 2 * r);... 2*X./chi2inv(alpha / 2, 2 * r)]; endif endif ## compatibility check, NaN for columns where all censor's or freq's remove ## all samples null_columns = all (censor) | ! all (freq); muhat(null_columns) = NaN; if (nargout == 2) muci(:,null_columns) = NaN; endif endif endfunction %!demo %! ## Sample 3 populations from 3 different exponential distibutions %! rande ("seed", 1); # for reproducibility %! r1 = exprnd (2, 4000, 1); %! rande ("seed", 2); # for reproducibility %! r2 = exprnd (5, 4000, 1); %! rande ("seed", 3); # for reproducibility %! r3 = exprnd (12, 4000, 1); %! r = [r1, r2, r3]; %! %! ## Plot them normalized and fix their colors %! hist (r, 48, 0.52); %! h = findobj (gca, "Type", "patch"); %! set (h(1), "facecolor", "c"); %! set (h(2), "facecolor", "g"); %! set (h(3), "facecolor", "r"); %! hold on %! %! ## Estimate their mu parameter %! muhat = expfit (r); %! %! ## Plot their estimated PDFs %! x = [0:max(r(:))]; %! y = exppdf (x, muhat(1)); %! plot (x, y, "-pr"); %! y = exppdf (x, muhat(2)); %! plot (x, y, "-sg"); %! y = exppdf (x, muhat(3)); %! plot (x, y, "-^c"); %! ylim ([0, 0.6]) %! xlim ([0, 40]) %! legend ({"Normalized HIST of sample 1 with μ=2", ... %! "Normalized HIST of sample 2 with μ=5", ... %! "Normalized HIST of sample 3 with μ=12", ... %! sprintf("PDF for sample 1 with estimated μ=%0.2f", muhat(1)), ... %! sprintf("PDF for sample 2 with estimated μ=%0.2f", muhat(2)), ... %! sprintf("PDF for sample 3 with estimated μ=%0.2f", muhat(3))}) %! title ("Three population samples from different exponential distibutions") %! hold off ## Tests for mean %!assert (expfit (1), 1) %!assert (expfit (1:3), 2) %!assert (expfit ([1:3]'), 2) %!assert (expfit (1:3, []), 2) %!assert (expfit (1:3, [], [], []), 2) %!assert (expfit (magic (3)), [5 5 5]) %!assert (expfit (cat (3, magic (3), 2*magic (3))), cat (3,[5 5 5], [10 10 10])) %!assert (expfit (1:3, 0.1, [0 0 0], [1 1 1]), 2) %!assert (expfit ([1:3]', 0.1, [0 0 0]', [1 1 1]'), 2) %!assert (expfit (1:3, 0.1, [0 0 0]', [1 1 1]'), 2) %!assert (expfit (1:3, 0.1, [1 0 0], [1 1 1]), 3) %!assert (expfit (1:3, 0.1, [0 0 0], [4 1 1]), 1.5) %!assert (expfit (1:3, 0.1, [1 0 0], [4 1 1]), 4.5) %!assert (expfit (1:3, 0.1, [1 0 1], [4 1 1]), 9) %!assert (expfit (1:3, 0.1, [], [-1 1 1]), 4) %!assert (expfit (1:3, 0.1, [], [0.5 1 1]), 2.2) %!assert (expfit (1:3, 0.1, [1 1 1]), NaN) %!assert (expfit (1:3, 0.1, [], [0 0 0]), NaN) %!assert (expfit (reshape (1:9, [3 3])), [2 5 8]) %!assert (expfit (reshape (1:9, [3 3]), [], eye(3)), [3 7.5 12]) %!assert (expfit (reshape (1:9, [3 3]), [], 2*eye(3)), [3 7.5 12]) %!assert (expfit (reshape (1:9, [3 3]), [], [], [2 2 2; 1 1 1; 1 1 1]), ... %! [1.75 4.75 7.75]) %!assert (expfit (reshape (1:9, [3 3]), [], [], [2 2 2; 1 1 1; 1 1 1]), ... %! [1.75 4.75 7.75]) %!assert (expfit (reshape (1:9, [3 3]), [], eye(3), [2 2 2; 1 1 1; 1 1 1]), ... %! [3.5 19/3 31/3]) ## Tests for confidence intervals %!assert ([~,muci] = expfit (1:3, 0), [0; Inf]) %!assert ([~,muci] = expfit (1:3, 2), [Inf; 0]) %!assert ([~,muci] = expfit (1:3, 0.1, [1 1 1]), [NaN; NaN]) %!assert ([~,muci] = expfit (1:3, 0.1, [], [0 0 0]), [NaN; NaN]) %!assert ([~,muci] = expfit (1:3, -1), [NaN; NaN]) %!assert ([~,muci] = expfit (1:3, 5), [NaN; NaN]) #!assert ([~,muci] = expfit ([1:3;1:3], -1), NaN(2, 3)] #!assert ([~,muci] = expfit ([1:3;1:3], 5), NaN(2, 3)] %!assert ([~,muci] = expfit (1:3), [0.830485728373393; 9.698190330474096], ... %! 1000*eps) %!assert ([~,muci] = expfit (1:3, 0.1), ... %! [0.953017262058213; 7.337731146400207], 1000*eps) %!assert ([~,muci] = expfit ([1:3;2:4]), ... %! [0.538440777613095, 0.897401296021825, 1.256361814430554; ... %! 12.385982973214016, 20.643304955356694, 28.900626937499371], ... %! 1000*eps) %!assert ([~,muci] = expfit ([1:3;2:4], [], [1 1 1; 0 0 0]), ... %! 100*[0.008132550920455, 0.013554251534091, 0.018975952147727; ... %! 1.184936706156216, 1.974894510260360, 2.764852314364504], ... %! 1000*eps) %!assert ([~,muci] = expfit ([1:3;2:4], [], [], [3 3 3; 1 1 1]), ... %! [0.570302756652583, 1.026544961974649, 1.482787167296715; ... %! 4.587722594914109, 8.257900670845396, 11.928078746776684], ... %! 1000*eps) %!assert ([~,muci] = expfit ([1:3;2:4], [], [0 0 0; 1 1 1], [3 3 3; 1 1 1]), ... %! [0.692071440311161, 1.245728592560089, 1.799385744809018; ... %! 8.081825275395081, 14.547285495711145, 21.012745716027212], ... %! 1000*eps) %!test %! x = reshape (1:8, [4 2]); %! x(4) = NaN; %! [muhat,muci] = expfit (x); %! assert ({muhat, muci}, {[NaN, 6.5], ... %! [NaN, 2.965574334593430;NaN, 23.856157493553368]}, 1000*eps); %!test %! x = magic (3); %! censor = [0 1 0; 0 1 0; 0 1 0]; %! freq = [1 1 0; 1 1 0; 1 1 0]; %! [muhat,muci] = expfit (x, [], censor, freq); %! assert ({muhat, muci}, {[5 NaN NaN], ... %! [[2.076214320933482; 24.245475826185242],NaN(2)]}, 1000*eps); ## Test input validation %!error expfit () %!error expfit (1,2,3,4,5) %!error [a b censor] = expfit (1) %!error expfit (1, [1 2]) %!error expfit ([-1 2 3 4 5]) %!error expfit ([1:5], [], "test") %!error expfit ([1:5], [], [], "test") %!error expfit ([1:5], [], [0 0 0 0]) %!error expfit ([1:5], [], [], [1 1 1 1]) statistics-release-1.6.3/inst/dist_fit/explike.m000066400000000000000000000123301456127120000217270ustar00rootroot00000000000000## Copyright (C) 2021 Nir Krakauer ## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{nlogL} =} explike (@var{mu}, @var{x}) ## @deftypefnx {statistics} {[@var{nlogL}, @var{avar}] =} explike (@var{mu}, @var{x}) ## @deftypefnx {statistics} {[@dots{}] =} explike (@var{mu}, @var{x}, @var{censor}) ## @deftypefnx {statistics} {[@dots{}] =} explike (@var{mu}, @var{x}, @var{censor}, @var{freq}) ## ## Negative log-likelihood for the exponential distribution. ## ## @code{@var{nlogL} = explike (@var{mu}, @var{x})} returns the negative ## log likelihood of the data in @var{x} corresponding to the exponential ## distribution with mean parameter @var{mu}. @var{x} must be a vector of ## non-negative values, otherwise @qcode{NaN} is returned. ## ## @code{[@var{nlogL}, @var{avar}] = explike (@var{mu}, @var{x})} also ## returns the inverse of Fisher's information matrix, @var{avar}. If the input ## mean parameter, @var{mu}, is the maximum likelihood estimate, @var{avar} is ## its asymptotic variance. ## ## @code{[@dots{}] = explike (@var{mu}, @var{x}, @var{censor})} accepts a ## boolean vector, @var{censor}, of the same size as @var{x} with @qcode{1}s for ## observations that are right-censored and @qcode{0}s for observations that are ## observed exactly. By default, or if left empty, ## @qcode{@var{censor} = zeros (size (@var{x}))}. ## ## @code{[@dots{}] = explike (@var{mu}, @var{x}, @var{censor}, @var{freq})} ## accepts a frequency vector, @var{freq}, of the same size as @var{x}. ## @var{freq} typically contains integer frequencies for the corresponding ## elements in @var{x}, but it can contain any non-integer non-negative values. ## By default, or if left empty, @qcode{@var{freq} = ones (size (@var{x}))}. ## ## A common alternative parameterization of the exponential distribution is to ## use the parameter @math{λ} defined as the mean number of events in an ## interval as opposed to the parameter @math{μ}, which is the mean wait time ## for an event to occur. @math{λ} and @math{μ} are reciprocals, ## i.e. @math{μ = 1 / λ}. ## ## Further information about the exponential distribution can be found at ## @url{https://en.wikipedia.org/wiki/Exponential_distribution} ## ## @seealso{expcdf, expinv, exppdf, exprnd, expfit, expstat} ## @end deftypefn function [nlogL, avar] = explike (mu, x, censor, freq) ## Check input arguments if (nargin < 2) error ("explike: function called with too few input arguments."); endif if (! isvector (x)) error ("explike: X must be a vector."); endif if (numel (mu) != 1) error ("explike: MU must be a scalar."); endif ## Return NaNs for non-positive MU or negative values in X if (mu <= 0 || any (x(:) < 0)) nlogL = NaN; if (nargout > 1) avar = NaN; endif return endif if (nargin < 3 || isempty (censor)) censor = zeros (size (x)); elseif (! isequal (size (x), size (censor))) error ("explike: X and CENSOR vectors mismatch."); endif if (nargin < 4 || isempty (freq)) freq = ones (size (x)); elseif (isequal (size (x), size (freq))) nulls = find (freq == 0); if (numel (nulls) > 0) x(nulls) = []; censor(nulls) = []; freq(nulls) = []; endif else error ("explike: X and FREQ vectors mismatch."); endif ## Start processing numx = numel (x); sumz = sum (x .* freq) / mu; numc = numx - sum (freq .* censor); ## Calculate negative log likelihood nlogL = sumz + numc * log (mu); ## Optionally calculate the inverse (reciprocal) of the second derivative ## of the negative log likelihood with respect to parameter if (nargout > 1) avar = (mu ^ 2) ./ (2 * sumz - numc); endif endfunction %!test %! x = 12; %! beta = 5; %! [L, V] = explike (beta, x); %! expected_L = 4.0094; %! expected_V = 6.5789; %! assert (L, expected_L, 0.001); %! assert (V, expected_V, 0.001); %!test %! x = 1:5; %! beta = 2; %! [L, V] = explike (beta, x); %! expected_L = 10.9657; %! expected_V = 0.4; %! assert (L, expected_L, 0.001); %! assert (V, expected_V, 0.001); ## Test input validation %!error explike () %!error explike (2) %!error explike ([12, 3], [1:50]) %!error explike (3, ones (10, 2)) %!error ... %! explike (3, [1:50], [1, 2, 3]) %!error ... %! explike (3, [1:50], [], [1, 2, 3]) statistics-release-1.6.3/inst/dist_fit/gamfit.m000066400000000000000000000371251456127120000215460ustar00rootroot00000000000000## Copyright (C) 2019 Nir Krakauer ## Copyright (C) 2023 Andreas Bertsatos ## Based on previous work by Martijn van Oosterhout ## originally granted to the public domain. ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{paramhat} =} gamfit (@var{x}) ## @deftypefnx {statistics} {[@var{paramhat}, @var{paramci}] =} gamfit (@var{x}) ## @deftypefnx {statistics} {[@var{paramhat}, @var{paramci}] =} gamfit (@var{x}, @var{alpha}) ## @deftypefnx {statistics} {[@dots{}] =} gamfit (@var{x}, @var{alpha}, @var{censor}) ## @deftypefnx {statistics} {[@dots{}] =} gamfit (@var{x}, @var{alpha}, @var{censor}, @var{freq}) ## @deftypefnx {statistics} {[@dots{}] =} gamfit (@var{x}, @var{alpha}, @var{censor}, @var{freq}, @var{options}) ## ## Estimate parameters and confidence intervals for the Gamma distribution. ## ## @code{@var{paramhat} = gamfit (@var{x})} returns the maximum likelihood ## estimates of the parameters of the Gamma distribution given the data in ## @var{x}. @qcode{@var{paramhat}(1)} is the shape parameter, @var{k}, and ## @qcode{@var{paramhat}(2)} is the scale parameter, @var{theta}. ## ## @code{[@var{paramhat}, @var{paramci}] = gamfit (@var{x})} returns the 95% ## confidence intervals for the parameter estimates. ## ## @code{[@dots{}] = gamfit (@var{x}, @var{alpha})} also returns the ## @qcode{100 * (1 - @var{alpha})} percent confidence intervals for the ## parameter estimates. By default, the optional argument @var{alpha} is ## 0.05 corresponding to 95% confidence intervals. Pass in @qcode{[]} for ## @var{alpha} to use the default values. ## ## @code{[@dots{}] = gamfit (@var{x}, @var{alpha}, @var{censor})} accepts a ## boolean vector, @var{censor}, of the same size as @var{x} with @qcode{1}s for ## observations that are right-censored and @qcode{0}s for observations that are ## observed exactly. By default, or if left empty, ## @qcode{@var{censor} = zeros (size (@var{x}))}. ## ## @code{[@dots{}] = gamfit (@var{x}, @var{alpha}, @var{censor}, @var{freq})} ## accepts a frequency vector, @var{freq}, of the same size as @var{x}. ## @var{freq} typically contains integer frequencies for the corresponding ## elements in @var{x}, but it can contain any non-integer non-negative values. ## By default, or if left empty, @qcode{@var{freq} = ones (size (@var{x}))}. ## ## @code{[@dots{}] = gamfit (@dots{}, @var{options})} specifies control ## parameters for the iterative algorithm used to compute the maximum likelihood ## estimates. @var{options} is a structure with the following field and its ## default value: ## @itemize ## @item @qcode{@var{options}.Display = "off"} ## @item @qcode{@var{options}.MaxFunEvals = 1000} ## @item @qcode{@var{options}.MaxIter = 500} ## @item @qcode{@var{options}.TolX = 1e-6} ## @end itemize ## ## There are two equivalent parameterizations in common use: ## @enumerate ## @item With a shape parameter @math{k} and a scale parameter @math{θ}, which ## is used by @code{gamcdf}. ## @item With a shape parameter @math{α = k} and an inverse scale parameter ## @math{β = 1 / θ}, called a rate parameter. ## @end enumerate ## ## Further information about the Gamma distribution can be found at ## @url{https://en.wikipedia.org/wiki/Gamma_distribution} ## ## @seealso{gamcdf, gampdf, gaminv, gamrnd, gamlike} ## @end deftypefn function [paramhat, paramci] = gamfit (x, alpha, censor, freq, options) ## Check input arguments if (! isvector (x)) error ("gamfit: X must be a vector."); endif ## Check alpha if (nargin < 2 || isempty (alpha)) alpha = 0.05; else if (! isscalar (alpha) || ! isreal (alpha) || alpha <= 0 || alpha >= 1) error ("gamfit: wrong value for ALPHA."); endif endif ## Check censor vector if (nargin < 3 || isempty (censor)) censor = zeros (size (x)); elseif (! isequal (size (x), size (censor))) error ("gamfit: X and CENSOR vectors mismatch."); endif ## Check frequency vector if (nargin < 4 || isempty (freq)) freq = ones (size (x)); elseif (! isequal (size (x), size (freq))) error ("gamfit: X and FREQ vectors mismatch."); endif ## Get options structure or add defaults if (nargin < 5) options.Display = "off"; options.MaxFunEvals = 400; options.MaxIter = 200; options.TolX = 1e-6; else if (! isstruct (options) || ! isfield (options, "Display") || ! isfield (options, "MaxFunEvals") || ! isfield (options, "MaxIter") || ! isfield (options, "TolX")) error (strcat (["gamfit: 'options' 5th argument must be a"], ... [" structure with 'Display', 'MaxFunEvals',"], ... [" 'MaxIter', and 'TolX' fields present."])); endif endif ## Get sample size and data type cls = class (x); szx = sum (freq); ncen = sum (freq .* censor); nunc = szx - ncen; ## Check for illegal value in X if (ncen == 0 && any (x < 0)) error ("gamfit: X cannot contain negative values."); endif if (ncen > 0 && any (x <= 0)) error ("gamfit: X must contain positive values."); endif ## Handle ill-conditioned cases: no data or all censored if (szx == 0 || nunc == 0 || any (! isfinite (x))) paramhat = nan (1, 2, cls); paramci = nan (2, cls); return endif ## Check for identical data in X if (! isscalar (x) && max (abs (diff (x)) ./ x(2:end)) <= sqrt (eps)) paramhat = cast ([Inf, 0], cls); paramci = cast ([Inf, 0; Inf, 0], cls); return endif ## When CENSOR and FREQ are default if (all (censor == 0) && all (freq == 1)) ## Optimize with respect to log(k), since both K and THETA must be positive meanx = mean (x); x0 = 0; ## Minimize negative log-likelihood to estimate parameters f = @(logk) gamfit_search (logk, meanx, x); [logk, ~, err, output] = fminsearch (f, x0, options); ## Inverse log(k) k = exp (logk); theta = meanx / k; paramhat = [k, theta]; ## Handle errors if (err == 0) if (output.funcCount >= options.MaxFunEvals) warning (strcat (["gamfit: maximum number of function"], ... [" evaluations are exceeded."])); elseif (output.iterations >= options.MaxIter) warning ("gamfit: maximum number of iterations are exceeded."); endif elseif (err < 0) error ("gamfit: NoSolution."); endif endif ## No censoring if (all (censor == 0)) ## Scale data to allow parameter estimation ## for extremely large or small values scale = sum (freq .* x) / szx; ## Check for all data being ~zero if (scale < realmin (cls)) paramhat = cast ([NaN, 0], cls); paramci = cast ([NaN, 0; NaN, 0], cls); return endif scaledx = x / scale; ## Use Method of Moments for initial estimates meansqx = sum (freq .* (scaledx - 1) .^ 2) / szx; theta = meansqx * szx / (szx - 1); k = 1 / theta; ## Ensure that MLEs is possible, otherwise return initial estimates if (any (scaledx == 0)) paramhat = [k, theta*scale]; paramci = nan (2, cls); warning ("gamfit: X contains zeros."); return ## Compute MLEs else ## Bracket the root of the scale parameter likelihood equation sumlogx = sum (freq .* log (scaledx)); bracket = sumlogx / szx; if (lkeqn (k, bracket) > 0) upper = k; lower = 0.5 * upper; while (lkeqn (lower, bracket) > 0) upper = lower; lower = 0.5 * upper; if (lower < realmin (cls)) error ("gamfit: no solution"); endif endwhile else lower = k; upper = 2 * lower; while (lkeqn (upper, bracket) < 0) lower = upper; upper = 2 * lower; if (upper > realmax (cls)) error ("gamfit: no solution"); endif endwhile endif bounds = [lower upper]; ## Find the root of the likelihood equation. opts = optimset ("fzero"); opts = optimset (opts, "Display", "off"); f = @(k) lkeqn (k, bracket); [k, lkeqnval, err] = fzero (f, bounds, opts); ## Rescale THETA paramhat = [k, (1/k)*scale]; endif ## With censoring else ## Get uncensored data notc = ! censor; xunc = x(notc); freq_notc = freq(notc); ## Ensure that MLEs is possible and get initial estimates xuncbar = sum (freq_notc .* xunc) / nunc; s2unc = sum (freq_notc .* (xunc - xuncbar) .^ 2) / nunc; if s2unc <= 100.*eps(xuncbar.^2) ## When all uncensored observations are equal and greater than all ## the censored observations, the likelihood surface becomes infinite if (max (xunc) == max (x)) paramhat = cast ([Inf, 0], cls); if (nunc > 1) paramci = cast ([Inf, 0; Inf, 0], cls); else paramci = cast ([0, 0; Inf, Inf], cls); endif return endif ## Set some default parameter estimates. x0 = [2, xuncbar./2]; else ## Fit a Weibull distribution and equate the parameter estimates ## into a Gamma distribution wblphat = wblfit (x, alpha, censor, freq); [m, v] = wblstat (wblphat(1), wblphat(2)); x0 = [m.*m./v, v./m]; endif ## Minimize negative log-likelihood to estimate parameters f = @(params) gamlike (params, x, censor, freq); [paramhat, ~, err, output] = fminsearch (f, x0, options); ## Force positive parameter values paramhat = abs (paramhat); ## Handle errors if (err == 0) if (output.funcCount >= options.MaxFunEvals) warning (strcat (["gamfit: maximum number of function"], ... [" evaluations are exceeded."])); elseif (output.iterations >= options.MaxIter) warning ("gamfit: maximum number of iterations are exceeded."); endif elseif (err < 0) error ("gamfit: no solution."); endif endif ## Compute CIs using a log normal approximation for parameters. if (nargout > 1) ## Compute asymptotic covariance [~, acov] = gamlike (paramhat, x, censor, freq); ## Get standard errors stderr = sqrt (diag (acov))'; stderr = stderr ./ paramhat; ## Apply log transform phatlog = log (paramhat); ## Compute normal quantiles z = probit (alpha / 2); ## Compute CI paramci = [phatlog; phatlog] + [stderr; stderr] .* [z, z; -z, -z]; ## Inverse log transform paramci = exp (paramci); endif endfunction ## Helper function so we only have to minimize for one variable. function nlogL = gamfit_search (logk, meanx, x) k = exp (logk); theta = meanx / k; nlogL = gamlike ([k, theta], x); endfunction ## Helper function for MLE with no censoring function v = lkeqn (k, bracket) v = -bracket - log (k) + psi (k); endfunction %!demo %! ## Sample 3 populations from different Gamma distibutions %! randg ("seed", 5); # for reproducibility %! r1 = gamrnd (1, 2, 2000, 1); %! randg ("seed", 2); # for reproducibility %! r2 = gamrnd (2, 2, 2000, 1); %! randg ("seed", 7); # for reproducibility %! r3 = gamrnd (7.5, 1, 2000, 1); %! r = [r1, r2, r3]; %! %! ## Plot them normalized and fix their colors %! hist (r, 75, 4); %! h = findobj (gca, "Type", "patch"); %! set (h(1), "facecolor", "c"); %! set (h(2), "facecolor", "g"); %! set (h(3), "facecolor", "r"); %! ylim ([0, 0.62]); %! xlim ([0, 12]); %! hold on %! %! ## Estimate their α and β parameters %! k_thetaA = gamfit (r(:,1)); %! k_thetaB = gamfit (r(:,2)); %! k_thetaC = gamfit (r(:,3)); %! %! ## Plot their estimated PDFs %! x = [0.01,0.1:0.2:18]; %! y = gampdf (x, k_thetaA(1), k_thetaA(2)); %! plot (x, y, "-pr"); %! y = gampdf (x, k_thetaB(1), k_thetaB(2)); %! plot (x, y, "-sg"); %! y = gampdf (x, k_thetaC(1), k_thetaC(2)); %! plot (x, y, "-^c"); %! hold off %! legend ({"Normalized HIST of sample 1 with k=1 and θ=2", ... %! "Normalized HIST of sample 2 with k=2 and θ=2", ... %! "Normalized HIST of sample 3 with k=7.5 and θ=1", ... %! sprintf("PDF for sample 1 with estimated k=%0.2f and θ=%0.2f", ... %! k_thetaA(1), k_thetaA(2)), ... %! sprintf("PDF for sample 2 with estimated k=%0.2f and θ=%0.2f", ... %! k_thetaB(1), k_thetaB(2)), ... %! sprintf("PDF for sample 3 with estimated k=%0.2f and θ=%0.2f", ... %! k_thetaC(1), k_thetaC(2))}) %! title ("Three population samples from different Gamma distibutions") %! hold off ## Test output %!shared x %! x = [1.2 1.6 1.7 1.8 1.9 2.0 2.2 2.6 3.0 3.5 4.0 4.8 5.6 6.6 7.6]; %!test %! [paramhat, paramci] = gamfit (x); %! assert (paramhat, [3.4248, 0.9752], 1e-4); %! assert (paramci, [1.7287, 0.4670; 6.7852, 2.0366], 1e-4); %!test %! [paramhat, paramci] = gamfit (x, 0.01); %! assert (paramhat, [3.4248, 0.9752], 1e-4); %! assert (paramci, [1.3945, 0.3705; 8.4113, 2.5668], 1e-4); %!test %! freq = [1 1 1 1 2 1 1 1 1 2 1 1 1 1 2]; %! [paramhat, paramci] = gamfit (x, [], [], freq); %! assert (paramhat, [3.3025, 1.0615], 1e-4); %! assert (paramci, [1.7710, 0.5415; 6.1584, 2.0806], 1e-4); %!test %! [paramhat, paramci] = gamfit (x, [], [], [1:15]); %! assert (paramhat, [4.4484, 0.9689], 1e-4); %! assert (paramci, [3.4848, 0.7482; 5.6785, 1.2546], 1e-4); %!test %! [paramhat, paramci] = gamfit (x, 0.01, [], [1:15]); %! assert (paramhat, [4.4484, 0.9689], 1e-4); %! assert (paramci, [3.2275, 0.6899; 6.1312, 1.3608], 1e-4); %!test %! cens = [0 0 0 0 1 0 0 0 0 0 0 0 0 0 0]; %! [paramhat, paramci] = gamfit (x, [], cens, [1:15]); %! assert (paramhat, [4.7537, 0.9308], 1e-4); %! assert (paramci, [3.7123, 0.7162; 6.0872, 1.2097], 1e-4); %!test %! cens = [0 0 0 0 1 0 0 0 0 0 0 0 0 0 0]; %! freq = [1 1 1 1 2 1 1 1 1 2 1 1 1 1 2]; %! [paramhat, paramci] = gamfit (x, [], cens, freq); %! assert (paramhat, [3.4736, 1.0847], 1e-4); %! assert (paramci, [1.8286, 0.5359; 6.5982, 2.1956], 1e-4); ## Test edge cases %!test %! [paramhat, paramci] = gamfit ([1 1 1 1 1 1]); %! assert (paramhat, [Inf, 0]); %! assert (paramci, [Inf, 0; Inf, 0]); %!test %! [paramhat, paramci] = gamfit ([1 1 1 1 1 1], [], [1 1 1 1 1 1]); %! assert (paramhat, [NaN, NaN]); %! assert (paramci, [NaN, NaN; NaN, NaN]); %!test %! [paramhat, paramci] = gamfit ([1 1 1 1 1 1], [], [], [1 1 1 1 1 1]); %! assert (paramhat, [Inf, 0]); %! assert (paramci, [Inf, 0; Inf, 0]); ## Test class of input preserved %!assert (class (gamfit (single (x))), "single") ## Test input validation %!error gamfit (ones (2)) %!error gamfit (x, 1) %!error gamfit (x, -1) %!error gamfit (x, {0.05}) %!error gamfit (x, "k") %!error gamfit (x, i) %!error gamfit (x, [0.01 0.02]) %!error gamfit (x, [], [1 1]) %!error gamfit (x, [], [], [1 1]) %!error gamfit ([1 2 3 -4]) %!error gamfit ([1 2 0], [], [1 0 0]) statistics-release-1.6.3/inst/dist_fit/gamlike.m000066400000000000000000000244071456127120000217070ustar00rootroot00000000000000## Copyright (C) 2022-2023 Andreas Bertsatos ## Based on previous work by Martijn van Oosterhout ## originally granted to the public domain. ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{nlogL} =} gamlike (@var{params}, @var{x}) ## @deftypefnx {statistics} {[@var{nlogL}, @var{acov}] =} gamlike (@var{params}, @var{x}) ## @deftypefnx {statistics} {[@dots{}] =} gamlike (@var{params}, @var{x}, @var{censor}) ## @deftypefnx {statistics} {[@dots{}] =} gamlike (@var{params}, @var{x}, @var{censor}, @var{freq}) ## ## Negative log-likelihood for the Gamma distribution. ## ## @code{@var{nlogL} = gamlike (@var{params}, @var{x})} returns the negative ## log likelihood of the data in @var{x} corresponding to the Gamma distribution ## with (1) shape parameter @var{k} and (2) scale parameter @var{theta} given in ## the two-element vector @var{params}. ## ## @code{[@var{nlogL}, @var{acov}] = gamlike (@var{params}, @var{x})} also ## returns the inverse of Fisher's information matrix, @var{acov}. If the input ## parameter values in @var{params} are the maximum likelihood estimates, the ## diagonal elements of @var{acov} are their asymptotic variances. ## ## @code{[@dots{}] = gamlike (@var{params}, @var{x}, @var{censor})} accepts a ## boolean vector, @var{censor}, of the same size as @var{x} with @qcode{1}s for ## observations that are right-censored and @qcode{0}s for observations that are ## observed exactly. By default, or if left empty, ## @qcode{@var{censor} = zeros (size (@var{x}))}. ## ## @code{[@dots{}] = gamlike (@var{params}, @var{x}, @var{censor}, @var{freq})} ## accepts a frequency vector, @var{freq}, of the same size as @var{x}. ## @var{freq} typically contains integer frequencies for the corresponding ## elements in @var{x}, but it can contain any non-integer non-negative values. ## By default, or if left empty, @qcode{@var{freq} = ones (size (@var{x}))}. ## ## There are two equivalent parameterizations in common use: ## @enumerate ## @item With a shape parameter @math{k} and a scale parameter @math{θ}, which ## is used by @code{gamcdf}. ## @item With a shape parameter @math{α = k} and an inverse scale parameter ## @math{β = 1 / θ}, called a rate parameter. ## @end enumerate ## ## Further information about the Gamma distribution can be found at ## @url{https://en.wikipedia.org/wiki/Gamma_distribution} ## ## @seealso{gamcdf, gampdf, gaminv, gamrnd, gamfit} ## @end deftypefn function [nlogL, acov] = gamlike (params, x, censor, freq) ## Check input arguments and add defaults if (nargin < 2) error ("gamlike: function called with too few input arguments."); endif if (numel (params) != 2) error ("gamlike: wrong parameters length."); endif if (! isvector (x)) error ("gamlike: X must be a vector."); endif if (nargin < 3 || isempty (censor)) censor = zeros (size (x)); elseif (! isequal (size (x), size (censor))) error ("gamlike: X and CENSOR vectors mismatch."); endif if (nargin < 4 || isempty (freq)) freq = ones (size (x)); elseif (isequal (size (x), size (freq))) nulls = find (freq == 0); if (numel (nulls) > 0) x(nulls) = []; censor(nulls) = []; freq(nulls) = []; endif else error ("gamlike: X and FREQ vectors mismatch."); endif ## Get K and THETA values k = params(1); t = params(2); ## Parameters K and THETA must be positive, otherwise make them NaN k(k <= 0) = NaN; t(t <= 0) = NaN; ## Data in X must be positive, otherwise make it NaN x(x <= 0) = NaN; ## Compute the individual log-likelihood terms z = x ./ t; L = (k - 1) .* log (z) - z - gammaln (k) - log (t); n_censored = sum (freq .* censor); if (n_censored > 0) z_censored = z(logical (censor)); Scen = gammainc (z_censored, k, "upper"); L(logical (censor)) = log (Scen); endif ## Force a log(0)==-Inf for X from extreme right tail L(z == Inf) = -Inf; ## Neg-log-likelihood is the sum of the individual contributions nlogL = -sum (freq .* L); ## Compute the negative hessian at the parameter values. ## Invert to get the observed information matrix. if (nargout == 2) ## Calculate all data dL11 = -psi (1, k) * ones (size (z), "like", z); dL12 = -(1 ./ t) * ones (size (z), "like", z); dL22 = -(2 .* z - k) ./ (t .^ 2); ## Calculate censored data if (n_censored > 0) ## Compute derivatives [y, dy, d2y] = dgammainc (z_censored, k); dlnS = dy ./ y; d2lnS = d2y ./ y - dlnS.*dlnS; #[dlnS,d2lnS] = dlngamsf(z_censored,k); logzcen = log(z_censored); tmp = exp(k .* logzcen - z_censored - gammaln(k) - log(t)) ./ Scen; dL11(logical (censor)) = d2lnS; dL12(logical (censor)) = tmp .* (logzcen - dlnS - psi(0,k)); dL22(logical (censor)) = tmp .* ((z_censored-1-k)./t - tmp); endif nH11 = -sum(freq .* dL11); nH12 = -sum(freq .* dL12); nH22 = -sum(freq .* dL22); nH = [nH11 nH12; nH12 nH22]; if (any (isnan (nH(:)))) acov = nan (2, "like", nH); else acov = inv (nH); endif endif endfunction ## Compute the incomplete Gamma function with its 1st and 2nd derivatives function [y, dy, d2y] = dgammainc (x, k) ## Initialize return variables y = nan (size (x)); dy = y; d2y = y; ## Use approximation for K > 2^20 ulim = 2^20; is_lim = find (k > ulim); if (! isempty (is_lim)) x(is_lim) = max (ulim - 1/3 + sqrt (ulim ./ k(is_lim)) .* ... (x(is_lim) - (k(is_lim) - 1/3)), 0); k(is_lim) = ulim; endif ## For x < k+1 is_lo = find(x < k + 1 & x != 0); if (! isempty (is_lo)) x_lo = x(is_lo); k_lo = k(is_lo); k_1 = k_lo; step = 1; d1st = 0; d2st = 0; stsum = step; d1sum = d1st; d2sum = d2st; while norm (step, "inf") >= 100 * eps (norm (stsum, "inf")) k_1 += 1; step = step .* x_lo ./ k_1; d1st = (d1st .* x_lo - step) ./ k_1; d2st = (d2st .* x_lo - 2 .* d1st) ./ k_1; stsum = stsum + step; d1sum = d1sum + d1st; d2sum = d2sum + d2st; endwhile fklo = exp (-x_lo + k_lo .* log (x_lo) - gammaln (k_lo + 1)); y_lo = fklo .* stsum; ## Fix very small k y_lo(x_lo > 0 & y_lo > 1) = 1; ## Compute 1st derivative dlogfklo = (log (x_lo) - psi (k_lo + 1)); d1fklo = fklo .* dlogfklo; d1y_lo = d1fklo .* stsum + fklo .* d1sum; ## Compute 2nd derivative d2fklo = d1fklo .* dlogfklo - fklo .* psi (1, k_lo + 1); d2y_lo = d2fklo .* stsum + 2 .* d1fklo .* d1sum + fklo .* d2sum; ## Considering the upper tail y(is_lo) = 1 - y_lo; dy(is_lo) = -d1y_lo; d2y(is_lo) = -d2y_lo; endif ## For x >= k+1 is_hi = find(x >= k+1); if (! isempty (is_hi)) x_hi = x(is_hi); k_hi = k(is_hi); zc = 0; k0 = 0; k1 = k_hi; x0 = 1; x1 = x_hi; d1k0 = 0; d1k1 = 1; d1x0 = 0; d1x1 = 0; d2k0 = 0; d2k1 = 0; d2x0 = 0; d2x2 = 0; kx = k_hi ./ x_hi; d1kx = 1 ./ x_hi; d2kx = 0; start = 1; while norm (d2kx - start, "Inf") > 100 * eps (norm (d2kx, "Inf")) rescale = 1 ./ x1; zc += 1; n_k = zc - k_hi; d2k0 = (d2k1 + d2k0 .* n_k - 2 .* d1k0) .* rescale; d2x0 = (d2x2 + d2x0 .* n_k - 2 .* d1x0) .* rescale; d1k0 = (d1k1 + d1k0 .* n_k - k0) .* rescale; d1x0 = (d1x1 + d1x0 .* n_k - x0) .* rescale; k0 = (k1 + k0 .* n_k) .* rescale; x0 = 1 + (x0 .* n_k) .* rescale; nrescale = zc .* rescale; d2k1 = d2k0 .* x_hi + d2k1 .* nrescale; d2x2 = d2x0 .* x_hi + d2x2 .* nrescale; d1k1 = d1k0 .* x_hi + d1k1 .* nrescale; d1x1 = d1x0 .* x_hi + d1x1 .* nrescale; k1 = k0 .* x_hi + k1 .* nrescale; x1 = x0 .* x_hi + zc; start = d2kx; kx = k1 ./ x1; d1kx = (d1k1 - kx .* d1x1) ./ x1; d2kx = (d2k1 - d1kx .* d1x1 - kx .* d2x2 - d1kx .* d1x1) ./ x1; endwhile fkhi = exp (-x_hi + k_hi .* log (x_hi) - gammaln (k_hi + 1)); y_hi = fkhi .* kx; ## Compute 1st derivative dlogfkhi = (log (x_hi) - psi (k_hi + 1)); d1fkhi = fkhi .* dlogfkhi; d1y_hi = d1fkhi .* kx + fkhi .* d1kx; ## Compute 2nd derivative d2fkhi = d1fkhi .* dlogfkhi - fkhi .* psi (1, k_hi + 1); d2y_hi = d2fkhi .* kx + 2 .* d1fkhi .* d1kx + fkhi .* d2kx; ## Considering the upper tail y(is_hi) = y_hi; dy(is_hi) = d1y_hi; d2y(is_hi) = d2y_hi; endif ## Handle x == 0 is_x0 = find (x == 0); if (! isempty (is_x0)) ## Considering the upper tail y(is_x0) = 1; dy(is_x0) = 0; d2y(is_x0) = 0; endif ## Handle k == 0 is_k0 = find (k == 0); if (! isempty (is_k0)) is_k0x0 = find (k == 0 & x == 0); ## Considering the upper tail y(is_k0) = 0; dy(is_k0x0) = Inf; d2y(is_k0x0) = -Inf; endif endfunction ## Test output %!test %! [nlogL, acov] = gamlike([2, 3], [2, 3, 4, 5, 6, 7, 8, 9]); %! assert (nlogL, 19.4426, 1e-4); %! assert (acov, [2.7819, -5.0073; -5.0073, 9.6882], 1e-4); %!test %! [nlogL, acov] = gamlike([2, 3], [5:45]); %! assert (nlogL, 305.8070, 1e-4); %! assert (acov, [0.0423, -0.0087; -0.0087, 0.0167], 1e-4); %!test %! [nlogL, acov] = gamlike([2, 13], [5:45]); %! assert (nlogL, 163.2261, 1e-4); %! assert (acov, [0.2362, -1.6631; -1.6631, 13.9440], 1e-4); ## Test input validation %!error ... %! gamlike ([12, 15]) %!error gamlike ([12, 15, 3], [1:50]) %!error gamlike ([12, 3], ones (10, 2)) %!error ... %! gamlike ([12, 15], [1:50], [1, 2, 3]) %!error ... %! gamlike ([12, 15], [1:50], [], [1, 2, 3]) statistics-release-1.6.3/inst/dist_fit/geofit.m000066400000000000000000000132241456127120000215460ustar00rootroot00000000000000## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{pshat} =} geofit (@var{x}) ## @deftypefnx {statistics} {[@var{pshat}, @var{psci}] =} geofit (@var{x}) ## @deftypefnx {statistics} {[@var{pshat}, @var{psci}] =} geofit (@var{x}, @var{alpha}) ## @deftypefnx {statistics} {[@var{pshat}, @var{psci}] =} geofit (@var{x}, @var{alpha}, @var{freq}) ## ## Estimate parameter and confidence intervals for the geometric distribution. ## ## @code{@var{pshat} = geofit (@var{x})} returns the maximum likelihood estimate ## (MLE) of the probability of success for the geometric distribution. @var{x} ## must be a vector. ## ## @code{[@var{pshat}, @var{psci}] = geofit (@var{x}, @var{alpha})} also returns ## the @qcode{100 * (1 - @var{alpha})} percent confidence intervals of the ## estimated parameter. By default, the optional argument @var{alpha} is 0.05 ## corresponding to 95% confidence intervals. Pass in @qcode{[]} for ## @var{alpha} to use the default values. ## ## @code{[@dots{}] = geofit (@var{x}, @var{alpha}, @var{freq})} accepts a ## frequency vector, @var{freq}, of the same size as @var{x}. @var{freq} ## typically contains integer frequencies for the corresponding elements in ## @var{x}, but it can contain any non-integer non-negative values. By default, ## or if left empty, @qcode{@var{freq} = ones (size (@var{x}))}. ## ## The geometric distribution models the number of failures (@var{x}) of a ## Bernoulli trial with probability @var{ps} before the first success. ## ## Further information about the geometric distribution can be found at ## @url{https://en.wikipedia.org/wiki/Geometric_distribution} ## ## @seealso{geocdf, geoinv, geopdf, geornd, geostat} ## @end deftypefn function [pshat, psci] = geofit (x, alpha, freq) ## Check input arguments if (nargin < 1) error ("geofit: function called with too few input arguments."); endif ## Check data inX if (any (x < 0)) error ("geofit: X cannot have negative values."); endif if (! isvector (x)) error ("geofit: X must be a vector."); endif ## Check ALPHA if (nargin < 2 || isempty (alpha)) alpha = 0.05; elseif (! isscalar (alpha) || ! isreal (alpha) || alpha <= 0 || alpha >= 1) error ("geofit: wrong value for ALPHA."); endif ## Check frequency vector if (nargin < 3 || isempty (freq)) freq = ones (size (x)); elseif (! isequal (size (x), size (freq))) error ("geofit: X and FREQ vector mismatch."); endif ## Expand frequency and censor vectors (if necessary) if (! all (freq == 1)) xf = []; for i = 1:numel (freq) xf = [xf, repmat(x(i), 1, freq(i))]; endfor x = xf; freq = ones (size (x)); endif ## Compute PS estimate pshat = 1 ./ (1 + mean (x)); ## Compute confidence interval of PS if (nargout > 1) sz = numel (x); serr = pshat .* sqrt ((1 - pshat) ./ sz); psci = norminv ([alpha/2; 1-alpha/2], [pshat; pshat], [serr; serr]); endif endfunction %!demo %! ## Sample 2 populations from different geometric distibutions %! rande ("seed", 1); # for reproducibility %! r1 = geornd (0.15, 1000, 1); %! rande ("seed", 2); # for reproducibility %! r2 = geornd (0.5, 1000, 1); %! r = [r1, r2]; %! %! ## Plot them normalized and fix their colors %! hist (r, 0:0.5:20.5, 1); %! h = findobj (gca, "Type", "patch"); %! set (h(1), "facecolor", "c"); %! set (h(2), "facecolor", "g"); %! hold on %! %! ## Estimate their probability of success %! pshatA = geofit (r(:,1)); %! pshatB = geofit (r(:,2)); %! %! ## Plot their estimated PDFs %! x = [0:15]; %! y = geopdf (x, pshatA); %! plot (x, y, "-pg"); %! y = geopdf (x, pshatB); %! plot (x, y, "-sc"); %! xlim ([0, 15]) %! ylim ([0, 0.6]) %! legend ({"Normalized HIST of sample 1 with ps=0.15", ... %! "Normalized HIST of sample 2 with ps=0.50", ... %! sprintf("PDF for sample 1 with estimated ps=%0.2f", ... %! mean (pshatA)), ... %! sprintf("PDF for sample 2 with estimated ps=%0.2f", ... %! mean (pshatB))}) %! title ("Two population samples from different geometric distibutions") %! hold off ## Test output %!test %! x = 0:5; %! [pshat, psci] = geofit (x); %! assert (pshat, 0.2857, 1e-4); %! assert (psci, [0.092499; 0.478929], 1e-5); %!test %! x = 0:5; %! [pshat, psci] = geofit (x, [], [1 1 1 1 1 1]); %! assert (pshat, 0.2857, 1e-4); %! assert (psci, [0.092499; 0.478929], 1e-5); %!assert (geofit ([1 1 2 3]), geofit ([1 2 3], [] ,[2 1 1])) ## Test input validation %!error geofit () %!error geofit (-1, [1 2 3 3]) %!error geofit (1, 0) %!error geofit (1, 1.2) %!error geofit (1, [0.02 0.05]) %!error ... %! geofit ([1.5, 0.2], [], [0, 0, 0, 0, 0]) %!error ... %! geofit ([1.5, 0.2], [], [1, 1, 1]) statistics-release-1.6.3/inst/dist_fit/gevfit.m000066400000000000000000000241301456127120000215530ustar00rootroot00000000000000## Copyright (C) 2012-2021 Nir Krakauer ## Copyright (C) 2022-2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{paramhat} =} gevfit (@var{x}) ## @deftypefnx {statistics} {[@var{paramhat}, @var{paramci}] =} gevfit (@var{x}) ## @deftypefnx {statistics} {[@var{paramhat}, @var{paramci}] =} gevfit (@var{x}, @var{alpha}) ## @deftypefnx {statistics} {[@dots{}] =} gevfit (@var{x}, @var{alpha}, @var{options}) ## ## Estimate parameters and confidence intervals for the generalized extreme ## value (GEV) distribution. ## ## @subheading Arguments ## ## @code{@var{paramhat} = gevfit (@var{x})} returns the maximum likelihood ## estimates of the parameters of the GEV distribution given the data in ## @var{x}. @qcode{@var{paramhat}(1)} is the shape parameter, @var{k}, and ## @qcode{@var{paramhat}(2)} is the scale parameter, @var{sigma}, and ## @qcode{@var{paramhat}(3)} is the location parameter, @var{mu}. ## ## @code{[@var{paramhat}, @var{paramci}] = gevfit (@var{x})} returns the 95% ## confidence intervals for the parameter estimates. ## ## @code{[@dots{}] = gevfit (@var{x}, @var{alpha})} also returns the ## @qcode{100 * (1 - @var{alpha})} percent confidence intervals for the ## parameter estimates. By default, the optional argument @var{alpha} is ## 0.05 corresponding to 95% confidence intervals. Pass in @qcode{[]} for ## @var{alpha} to use the default values. ## ## @code{[@dots{}] = gevfit (@dots{}, @var{options})} specifies control ## parameters for the iterative algorithm used to compute the maximum likelihood ## estimates. @var{options} is a structure with the following field and its ## default value: ## @itemize ## @item @qcode{@var{options}.Display = "off"} ## @item @qcode{@var{options}.MaxFunEvals = 1000} ## @item @qcode{@var{options}.MaxIter = 500} ## @item @qcode{@var{options}.TolX = 1e-6} ## @end itemize ## ## When @qcode{@var{k} < 0}, the GEV is the type III extreme value distribution. ## When @qcode{@var{k} > 0}, the GEV distribution is the type II, or Frechet, ## extreme value distribution. If @var{W} has a Weibull distribution as ## computed by the @code{wblcdf} function, then @qcode{-@var{W}} has a type III ## extreme value distribution and @qcode{1/@var{W}} has a type II extreme value ## distribution. In the limit as @var{k} approaches @qcode{0}, the GEV is the ## mirror image of the type I extreme value distribution as computed by the ## @code{evcdf} function. ## ## The mean of the GEV distribution is not finite when @qcode{@var{k} >= 1}, and ## the variance is not finite when @qcode{@var{k} >= 1/2}. The GEV distribution ## has positive density only for values of @var{x} such that ## @qcode{@var{k} * (@var{x} - @var{mu}) / @var{sigma} > -1}. ## ## Further information about the generalized extreme value distribution can be ## found at ## @url{https://en.wikipedia.org/wiki/Generalized_extreme_value_distribution} ## ## @subheading References ## @enumerate ## @item ## Rolf-Dieter Reiss and Michael Thomas. @cite{Statistical Analysis of Extreme ## Values with Applications to Insurance, Finance, Hydrology and Other Fields}. ## Chapter 1, pages 16-17, Springer, 2007. ## @end enumerate ## ## @seealso{gevcdf, gevinv, gevpdf, gevrnd, gevlike, gevstat} ## @end deftypefn function [paramhat, paramci] = gevfit (x, alpha, options) ## Check X is vector if (! isvector (x)) error ("gevfit: X must be a vector."); endif ## Force to column vector x = x(:); ## Get X type and convert to double for computation is_type = class (x); if (strcmpi (is_type, "single")) x = double (x); endif ## Check that X is not constant and does not contain NaNs sample_size = length (x); if (sample_size == 0 || any (isnan (x))) paramhat = NaN (1,3, is_type); paramci = NaN (2,3, is_type); warning ("gevfit: X contains NaNs."); return elseif (numel (unique (x)) == 1) paramhat = cast ([0, 0, unique(x)], is_type); if (length (x) == 1) paramci = cast ([-Inf, 0, -Inf; Inf, Inf, Inf], is_type); else paramci = [paramhat; paramhat]; endif warning ("gevfit: X is a constant vector."); return endif ## Check ALPHA if (nargin < 2 || isempty (alpha)) alpha = 0.05; else if (! isscalar (alpha) || ! isreal (alpha) || alpha <= 0 || alpha >= 1) error ("gevfit: wrong value for ALPHA."); endif endif ## Get options structure or add defaults if (nargin < 3) options.Display = "off"; options.MaxFunEvals = 400; options.MaxIter = 200; options.TolX = 1e-6; else if (! isstruct (options) || ! isfield (options, "Display") || ! isfield (options, "MaxFunEvals") || ! isfield (options, "MaxIter") || ! isfield (options, "TolX")) error (strcat (["gevfit: 'options' 5th argument must be a"], ... [" structure with 'Display', 'MaxFunEvals',"], ... [" 'MaxIter', and 'TolX' fields present."])); endif endif ## Compute initial parameters if not parsed as an input argument F = (0.5:1:(sample_size - 0.5))' ./ sample_size; k_0 = fminsearch (@(k) 1 - corr (x, gevinv (F, k, 1, 0)), 0); paramguess = [k_0, polyfit(gevinv(F,k_0,1,0),x',1)]; ## Check if x support initial parameters or fall back to unbounded evfit if (k_0 < 0 && (max (x) > - paramguess(2) / k_0 + paramguess(3)) || ... k_0 > 0 && (min (x) < - paramguess(2) / k_0 + paramguess(3))) paramguess = [evfit(x), 0]; paramguess = flip (paramguess); endif ## Minimize the negative log-likelihood according to initial parameters paramguess(2) = log (paramguess(2)); fhandle = @(paramguess) nll (paramguess, x); [paramhat, ~, exitflag, output] = fminsearch (fhandle, paramguess, options); paramhat(2) = exp (paramhat(2)); ## Display errors and warnings if any if (exitflag == 0) if (output.funcCount >= output.iterations) warning ("gevfit: maximum number of evaluations reached"); else warning ("gevfit: reached iteration limit"); endif elseif (exitflag == -1) error ("gevfit: No solution"); endif ## Return a row vector for Matlab compatibility paramhat = paramhat(:)'; ## Check for second output argument if (nargout > 1) [~, acov] = gevlike (paramhat, x); param_se = sqrt (diag (acov))'; if (any (iscomplex (param_se))) warning (["gevfit: Fisher information matrix not positive definite;", ... " parameter optimization likely did not converge"]); paramci = NaN (2, 3, is_type); else p_vals = [alpha/2; 1-alpha/2]; k_ci = norminv (p_vals, paramhat(1), param_se(1)); s_ci = exp (norminv (p_vals, log (paramhat(2)), param_se(2) ./ paramhat(2))); m_ci = norminv (p_vals, paramhat(3), param_se(3)); paramci = [k_ci, s_ci, m_ci]; endif endif endfunction ## Negative log-likelihood for the GEV (log(sigma) parameterization) function out = nll (parms, x) k_0 = parms(1); log_sigma = parms(2); sigma = exp (log_sigma); mu = parms(3); n = numel (x); z = (x - mu) ./ sigma; if abs(k_0) > eps u = 1 + k_0.*z; if min(u) > 0 lnu = log1p (k_0 .* z); out = n * log_sigma + sum (exp ((-1 / k_0) * lnu)) + ... (1 + 1 / k_0) * sum (lnu); else out = Inf; endif else out = n * log_sigma + sum (exp (-z) + z); endif endfunction %!demo %! ## Sample 2 populations from 2 different exponential distibutions %! rand ("seed", 1); # for reproducibility %! r1 = gevrnd (-0.5, 1, 2, 5000, 1); %! rand ("seed", 2); # for reproducibility %! r2 = gevrnd (0, 1, -4, 5000, 1); %! r = [r1, r2]; %! %! ## Plot them normalized and fix their colors %! hist (r, 50, 5); %! h = findobj (gca, "Type", "patch"); %! set (h(1), "facecolor", "c"); %! set (h(2), "facecolor", "g"); %! hold on %! %! ## Estimate their k, sigma, and mu parameters %! k_sigma_muA = gevfit (r(:,1)); %! k_sigma_muB = gevfit (r(:,2)); %! %! ## Plot their estimated PDFs %! x = [-10:0.5:20]; %! y = gevpdf (x, k_sigma_muA(1), k_sigma_muA(2), k_sigma_muA(3)); %! plot (x, y, "-pr"); %! y = gevpdf (x, k_sigma_muB(1), k_sigma_muB(2), k_sigma_muB(3)); %! plot (x, y, "-sg"); %! ylim ([0, 0.7]) %! xlim ([-7, 5]) %! legend ({"Normalized HIST of sample 1 with ξ=-0.5, σ=1, μ=2", ... %! "Normalized HIST of sample 2 with ξ=0, σ=1, μ=-4", %! sprintf("PDF for sample 1 with estimated ξ=%0.2f, σ=%0.2f, μ=%0.2f", ... %! k_sigma_muA(1), k_sigma_muA(2), k_sigma_muA(3)), ... %! sprintf("PDF for sample 3 with estimated ξ=%0.2f, σ=%0.2f, μ=%0.2f", ... %! k_sigma_muB(1), k_sigma_muB(2), k_sigma_muB(3))}) %! title ("Two population samples from different exponential distibutions") %! hold off ## Test output %!test %! x = 1:50; %! [pfit, pci] = gevfit (x); %! pfit_out = [-0.4407, 15.1923, 21.5309]; %! pci_out = [-0.7532, 11.5878, 16.5686; -0.1282, 19.9183, 26.4926]; %! assert (pfit, pfit_out, 1e-3); %! assert (pci, pci_out, 1e-3); %!test %! x = 1:2:50; %! [pfit, pci] = gevfit (x); %! pfit_out = [-0.4434, 15.2024, 21.0532]; %! pci_out = [-0.8904, 10.3439, 14.0168; 0.0035, 22.3429, 28.0896]; %! assert (pfit, pfit_out, 1e-3); %! assert (pci, pci_out, 1e-3); ## Test input validation %!error gevfit (ones (2,5)); %!error gevfit ([1, 2, 3, 4, 5], 1.2); %!error gevfit ([1, 2, 3, 4, 5], 0); %!error gevfit ([1, 2, 3, 4, 5], "alpha"); statistics-release-1.6.3/inst/dist_fit/gevfit_lmom.m000066400000000000000000000066701456127120000226100ustar00rootroot00000000000000## Copyright (C) 2012 Nir Krakauer ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {[@var{paramhat}, @var{paramci}] =} gevfit_lmom (@var{data}) ## ## Find an estimator (@var{paramhat}) of the generalized extreme value (GEV) ## distribution fitting @var{data} using the method of L-moments. ## ## @subheading Arguments ## ## @itemize @bullet ## @item ## @var{data} is the vector of given values. ## @end itemize ## ## @subheading Return values ## ## @itemize @bullet ## @item ## @var{parmhat} is the 3-parameter maximum-likelihood parameter vector ## [@var{k}; @var{sigma}; @var{mu}], where @var{k} is the shape parameter of the ## GEV distribution, @var{sigma} is the scale parameter of the GEV distribution, ## and @var{mu} is the location parameter of the GEV distribution. ## @item ## @var{paramci} has the approximate 95% confidence intervals of the parameter ## values (currently not implemented). ## ## @end itemize ## ## @subheading Examples ## ## @example ## @group ## data = gevrnd (0.1, 1, 0, 100, 1); ## [pfit, pci] = gevfit_lmom (data); ## p1 = gevcdf (data,pfit(1),pfit(2),pfit(3)); ## [f, x] = ecdf (data); ## plot(data, p1, 's', x, f) ## @end group ## @end example ## @seealso{gevfit} ## @subheading References ## ## @enumerate ## @item ## Ailliot, P.; Thompson, C. & Thomson, P. Mixed methods for fitting the GEV ## distribution, Water Resources Research, 2011, 47, W05551 ## ## @end enumerate ## @end deftypefn function [paramhat, paramci] = gevfit_lmom (data) # Check arguments if (nargin < 1) print_usage; endif # find the L-moments data = sort (data(:))'; n = numel(data); L1 = mean(data); L2 = sum(data .* (2*(1:n) - n - 1)) / (2*nchoosek(n, 2)); # or mean(triu(data' - data, 1, 'pack')) / 2; b = bincoeff((1:n) - 1, 2); L3 = sum(data .* (b - 2 * ((1:n) - 1) .* (n - (1:n)) + fliplr(b))) / (3*nchoosek(n, 3)); #match the moments to the GEV distribution #first find k based on L3/L2 f = @(k) (L3/L2 + 3)/2 - limdiv((1 - 3^(k)), (1 - 2^(k))); k = fzero(f, 0); #next find sigma and mu given k if abs(k) < 1E-8 sigma = L2 / log(2); eg = 0.57721566490153286; %Euler-Mascheroni constant mu = L1 - sigma * eg; else sigma = -k*L2 / (gamma(1 - k) * (1 - 2^(k))); mu = L1 - sigma * ((gamma(1 - k) - 1) / k); endif paramhat = [k; sigma; mu]; if nargout > 1 paramci = NaN; endif endfunction #internal function to accurately evaluate (1 - 3^k)/(1 - 2^k) in the limit as k --> 0 function c = limdiv(a, b) # c = ifelse (abs(b) < 1E-8, log(3)/log(2), a ./ b); if abs(b) < 1E-8 c = log(3)/log(2); else c = a / b; endif endfunction %!xtest <31070> %! data = 1:50; %! [pfit, pci] = gevfit_lmom (data); %! expected_p = [-0.28 15.01 20.22]'; %! assert (pfit, expected_p, 0.1); statistics-release-1.6.3/inst/dist_fit/gevlike.m000066400000000000000000000301711456127120000217170ustar00rootroot00000000000000## Copyright (C) 2012 Nir Krakauer ## Copyright (C) 2022 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{nlogL} =} gevlike (@var{params}, @var{x}) ## @deftypefnx {statistics} {[@var{nlogL}, @var{acov}] =} gevlike (@var{params}, @var{x}) ## ## Negative log-likelihood for the generalized extreme value (GEV) distribution. ## ## @code{@var{nlogL} = gevlike (@var{params}, @var{x})} returns the negative ## log likelihood of the data in @var{x} corresponding to the GEV distribution ## with (1) shape parameter @var{k}, (2) scale parameter @var{sigma}, and (3) ## location parameter @var{mu} given in the three-element vector @var{params}. ## ## @code{[@var{nlogL}, @var{acov}] = gevlike (@var{params}, @var{x})} also ## returns the inverse of Fisher's information matrix, @var{acov}. If the input ## parameter values in @var{params} are the maximum likelihood estimates, the ## diagonal elements of @var{acov} are their asymptotic variances. ## ## When @qcode{@var{k} < 0}, the GEV is the type III extreme value distribution. ## When @qcode{@var{k} > 0}, the GEV distribution is the type II, or Frechet, ## extreme value distribution. If @var{W} has a Weibull distribution as ## computed by the @code{wblcdf} function, then @qcode{-@var{W}} has a type III ## extreme value distribution and @qcode{1/@var{W}} has a type II extreme value ## distribution. In the limit as @var{k} approaches @qcode{0}, the GEV is the ## mirror image of the type I extreme value distribution as computed by the ## @code{evcdf} function. ## ## The mean of the GEV distribution is not finite when @qcode{@var{k} >= 1}, and ## the variance is not finite when @qcode{@var{k} >= 1/2}. The GEV distribution ## has positive density only for values of @var{x} such that ## @qcode{@var{k} * (@var{x} - @var{mu}) / @var{sigma} > -1}. ## ## Further information about the generalized extreme value distribution can be ## found at ## @url{https://en.wikipedia.org/wiki/Generalized_extreme_value_distribution} ## ## @subheading References ## @enumerate ## @item ## Rolf-Dieter Reiss and Michael Thomas. @cite{Statistical Analysis of Extreme ## Values with Applications to Insurance, Finance, Hydrology and Other Fields}. ## Chapter 1, pages 16-17, Springer, 2007. ## @end enumerate ## ## @seealso{gevcdf, gevinv, gevpdf, gevrnd, gevfit, gevstat} ## @end deftypefn function [nlogL, acov] = gevlike (params, x) ## Check input arguments if (nargin < 2) error ("gevlike: function called with too few input arguments."); endif if (! isvector (x)) error ("gevlike: X must be a vector."); endif if (length (params) != 3) error ("gevlike: PARAMS must be a three-element vector."); endif k = params(1); sigma = params(2); mu = params(3); ## Calculate negative log likelihood [nll, k_terms] = gevnll (x, k, sigma, mu); nlogL = sum (nll(:)); ## Optionally calculate the first and second derivatives of the negative log ## likelihood with respect to parameters if (nargout > 1) [Grad, kk_terms] = gevgrad (x, k, sigma, mu, k_terms); FIM = gevfim (x, k, sigma, mu, k_terms, kk_terms); acov = inv (FIM); endif endfunction ## Internal function to calculate negative log likelihood for gevlike function [nlogL, k_terms] = gevnll (x, k, sigma, mu) k_terms = []; a = (x - mu) ./ sigma; if (all (k == 0)) nlogL = exp(-a) + a + log(sigma); else aa = k .* a; ## Use a series expansion to find the log likelihood more accurately ## when k is small if (min (abs (aa)) < 1E-3 && max (abs (aa)) < 0.5) k_terms = 1; sgn = 1; i = 0; while 1 sgn = -sgn; i++; newterm = (sgn / (i + 1)) * (aa .^ i); k_terms = k_terms + newterm; if (max (abs (newterm)) <= eps) break endif endwhile nlogL = exp (-a .* k_terms) + a .* (k + 1) .* k_terms + log (sigma); else b = 1 + aa; nlogL = b .^ (-1 ./ k) + (1 + 1 ./ k) .* log (b) + log (sigma); nlogL(b <= 0) = Inf; endif endif endfunction ## Calculate the gradient of the negative log likelihood of x x with respect ## to the parameters of the generalized extreme value distribution for gevlike function [G, kk_terms] = gevgrad (x, k, sigma, mu, k_terms) kk_terms = []; G = ones(3, 1); ## Use the expressions for first derivatives that are the limits as k --> 0 if (k == 0) a = (x - mu) ./ sigma; f = exp(-a) - 1; ## k g = a .* (1 + a .* f / 2); G(1) = sum(g(:)); ## sigma g = (a .* f + 1) ./ sigma; G(2) = sum(g(:)); ## mu g = f ./ sigma; G(3) = sum(g(:)); return endif a = (x - mu) ./ sigma; b = 1 + k .* a; ## Negative log likelihood is locally infinite if (any (b <= 0)) G(:) = 0; return endif ## k c = log(b); d = 1 ./ k + 1; ## Use a series expansion to find the gradient more accurately when k is small if (nargin > 4 && ! isempty (k_terms)) aa = k .* a; f = exp (-a .* k_terms); kk_terms = 0.5; sgn = 1; i = 0; while 1 sgn = -sgn; i++; newterm = (sgn * (i + 1) / (i + 2)) * (aa .^ i); kk_terms = kk_terms + newterm; if (max (abs (newterm)) <= eps) break endif endwhile g = a .* ((a .* kk_terms) .* (f - 1 - k) + k_terms); else g = (c ./ k - a ./ b) ./ (k .* b .^ (1/k)) - c ./ (k .^ 2) + a .* d ./ b; endif G(1) = sum(g(:)); ## sigma ## Use a series expansion to find the gradient more accurately when k is small if nargin > 4 && ~isempty(k_terms) g = (1 - a .* (a .* k .* kk_terms - k_terms) .* (f - k - 1)) ./ sigma; else g = (a .* b .^ (-d) - (k + 1) .* a ./ b + 1) ./ sigma; endif G(2) = sum(g(:)); ## mu ## Use a series expansion to find the gradient more accurately when k is small if (nargin > 4 && ! isempty (k_terms)) g = - (a .* k .* kk_terms - k_terms) .* (f - k - 1) ./ sigma; else g = (b .^ (-d) - (k + 1) ./ b) ./ sigma; end G(3) = sum(g(:)); endfunction ## Internal function to calculate the Fisher information matrix for gevlike function ACOV = gevfim (x, k, sigma, mu, k_terms, kk_terms) ACOV = ones(3); ## Use the expressions for second derivatives that are the limits as k --> 0 if (k == 0) ## k, k a = (x - mu) ./ sigma; f = exp(-a); der = (a .^ 2) .* (a .* (a/4 - 2/3) .* f + 2/3 * a - 1); ACOV(1, 1) = sum(der(:)); ## sigma, sigma der = (sigma .^ -2) .* (a .* ((a - 2) .* f + 2) - 1); ACOV(2, 2) = sum(der(:)); ## mu, mu der = (sigma .^ -2) .* f; ACOV(3, 3) = sum(der(:)); ## k, sigma der = (-a ./ sigma) .* (a .* (1 - a/2) .* f - a + 1); ACOV(1, 2) = ACOV(2, 1) = sum(der(:)); ## k, mu der = (-1 ./ sigma) .* (a .* (1 - a/2) .* f - a + 1); ACOV(1, 3) = ACOV(3, 1) = sum(der(:)); ## sigma, mu der = (1 + (a - 1) .* f) ./ (sigma .^ 2); ACOV(2, 3) = ACOV(3, 2) = sum(der(:)); return endif ## General case z = 1 + k .* (x - mu) ./ sigma; ## k, k a = (x - mu) ./ sigma; b = k .* a + 1; c = log(b); d = 1 ./ k + 1; ## Use a series expansion to find the derivatives more accurately ## when k is small if (nargin > 5 && ! isempty (kk_terms)) aa = k .* a; f = exp (-a .* k_terms); kkk_terms = 2/3; sgn = 1; i = 0; while 1 sgn = -sgn; i++; newterm = (sgn * (i + 1) * (i + 2) / (i + 3)) * (aa .^ i); kkk_terms = kkk_terms + newterm; if (max (abs (newterm)) <= eps) break endif endwhile der = (a .^ 2) .* (a .* (a .* kk_terms .^ 2 - kkk_terms) .* ... f + a .* (1 + k) .* kkk_terms - 2 * kk_terms); else der = ((((c ./ k.^2) - (a ./ (k .* b))) .^ 2) ./ (b .^ (1 ./ k))) + ... ((-2*c ./ k.^3) + (2*a ./ (k.^2 .* b)) + ((a ./ b) .^ 2 ./ k)) ./ ... (b .^ (1 ./ k)) + 2*c ./ k.^3 - (2*a ./ (k.^2 .* b)) - (d .* (a ./ b) .^ 2); endif der(z <= 0) = 0; # no probability mass in this region ACOV(1, 1) = sum (der(:)); ## sigma, sigma ## Use a series expansion to find the derivatives more accurately ## when k is small if (nargin > 5 && ! isempty (kk_terms)) der = ((-2*a .* k_terms + 4 * a .^ 2 .* k .* kk_terms - a .^ 3 .* ... (k .^ 2) .* kkk_terms) .* (f - k - 1) + f .* ((a .* ... (k_terms - a .* k .* kk_terms)) .^ 2) - 1) ./ (sigma .^ 2); else der = (sigma .^ -2) .* (-2 * a .* b .^ (-d) + d .* k .* a .^ 2 .* ... (b .^ (-d-1)) + 2 .* d .* k .* a ./ b - d .* (k .* a ./ b) .^ 2 - 1); end der(z <= 0) = 0; # no probability mass in this region ACOV(2, 2) = sum (der(:)); ## mu, mu ## Use a series expansion to find the derivatives more accurately ## when k is small if (nargin > 5 && ! isempty (kk_terms)) der = (f .* (a .* k .* kk_terms - k_terms) .^ 2 - a .* k .^ 2 .* ... kkk_terms .* (f - k - 1)) ./ (sigma .^ 2); else der = (d .* (sigma .^ -2)) .* (k .* (b .^ (-d-1)) - (k ./ b) .^ 2); endif der(z <= 0) = 0; # no probability mass in this region ACOV(3, 3) = sum (der(:)); ## k, mu ## Use a series expansion to find the derivatives more accurately ## when k is small if (nargin > 5 && ! isempty (kk_terms)) der = 2 * a .* kk_terms .* (f - 1 - k) - a .^ 2 .* k_terms .* ... kk_terms .* f + k_terms; der = -der ./ sigma; else der = ((b .^ (-d)) .* (c ./ k - a ./ b) ./ k - a .* (b .^ (-d-1)) + ... ((1 ./ k) - d) ./ b + a .* k .* d ./ (b .^ 2)) ./ sigma; endif der(z <= 0) = 0; # no probability mass in this region ACOV(1, 3) = ACOV(3, 1) = sum (der(:)); ## k, sigma der = a .* der; der(z <= 0) = 0; # no probability mass in this region ACOV(1, 2) = ACOV(2, 1) = sum (der(:)); ## sigma, mu ## Use a series expansion to find the derivatives more accurately ## when k is small if (nargin > 5 && ! isempty (kk_terms)) der = ((-k_terms + 3 * a .* k .* kk_terms - (a .* k) .^ 2 .* ... kkk_terms) .* (f - k - 1) + a .* (k_terms - a .* k .* ... kk_terms) .^ 2 .* f) ./ (sigma .^ 2); else der = (-(b .^ (-d)) + a .* k .* d .* (b .^ (-d-1)) + ... (d .* k ./ b) - a .* (k./b).^2 .* d) ./ (sigma .^ 2); end der(z <= 0) = 0; # no probability mass in this region ACOV(2, 3) = ACOV(3, 2) = sum (der(:)); endfunction ## Test output %!test %! x = 1; %! k = 0.2; %! sigma = 0.3; %! mu = 0.5; %! [L, C] = gevlike ([k sigma mu], x); %! expected_L = 0.75942; %! expected_C = [-0.12547 1.77884 1.06731; 1.77884 16.40761 8.48877; 1.06731 8.48877 0.27979]; %! assert (L, expected_L, 0.001); %! assert (C, inv (expected_C), 0.001); %!test %! x = 1; %! k = 0; %! sigma = 0.3; %! mu = 0.5; %! [L, C] = gevlike ([k sigma mu], x); %! expected_L = 0.65157; %! expected_C = [0.090036 3.41229 2.047337; 3.412229 24.760027 12.510190; 2.047337 12.510190 2.098618]; %! assert (L, expected_L, 0.001); %! assert (C, inv (expected_C), 0.001); %!test %! x = -5:-1; %! k = -0.2; %! sigma = 0.3; %! mu = 0.5; %! [L, C] = gevlike ([k sigma mu], x); %! expected_L = 3786.4; %! expected_C = [1.6802e-07, 4.6110e-06, 8.7297e-05; ... %! 4.6110e-06, 7.5693e-06, 1.2034e-05; ... %! 8.7297e-05, 1.2034e-05, -0.0019125]; %! assert (L, expected_L, -0.001); %! assert (C, expected_C, -0.001); ## Test input validation %!error gevlike (3.25) %!error gevlike ([1, 2, 3], ones (2)) %!error ... %! gevlike ([1, 2], [1, 3, 5, 7]) %!error ... %! gevlike ([1, 2, 3, 4], [1, 3, 5, 7]) statistics-release-1.6.3/inst/dist_fit/gpfit.m000066400000000000000000000253111456127120000214020ustar00rootroot00000000000000## Copyright (C) 2022-2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{paramhat} =} gpfit (@var{x}) ## @deftypefnx {statistics} {[@var{paramhat}, @var{paramci}] =} gpfit (@var{x}) ## @deftypefnx {statistics} {[@var{paramhat}, @var{paramci}] =} gpfit (@var{x}, @var{alpha}) ## @deftypefnx {statistics} {[@dots{}] =} gpfit (@var{x}, @var{alpha}, @var{options}) ## ## Estimate parameters and confidence intervals for the generalized Pareto ## distribution. ## ## @code{@var{paramhat} = gpfit (@var{x})} returns the maximum likelihood ## estimates of the parameters of the generalized Pareto distribution given the ## data in @var{x}. @qcode{@var{paramhat}(1)} is the shape parameter, @var{k}, ## and @qcode{@var{paramhat}(2)} is the scale parameter, @var{sigma}. Other ## functions for the generalized Pareto, such as @code{gpcdf}, allow a location ## parameter, @var{mu}. However, @code{gpfit} does not estimate a location ## parameter, and it must be assumed known, and subtracted from @var{x} before ## calling @code{gpfit}. ## ## @code{[@var{paramhat}, @var{paramci}] = gpfit (@var{x})} returns the 95% ## confidence intervals for the parameter estimates. ## ## @code{[@dots{}] = gpfit (@var{x}, @var{alpha})} also returns the ## @qcode{100 * (1 - @var{alpha})} percent confidence intervals for the ## parameter estimates. By default, the optional argument @var{alpha} is ## 0.05 corresponding to 95% confidence intervals. Pass in @qcode{[]} for ## @var{alpha} to use the default values. ## ## @code{[@dots{}] = gpfit (@var{x}, @var{alpha}, @var{options})} specifies ## control parameters for the iterative algorithm used to compute ML estimates ## with the @code{fminsearch} function. @var{options} is a structure with the ## following fields and their default values: ## @itemize ## @item @qcode{@var{options}.Display = "off"} ## @item @qcode{@var{options}.MaxFunEvals = 400} ## @item @qcode{@var{options}.MaxIter = 200} ## @item @qcode{@var{options}.TolBnd = 1e-6} ## @item @qcode{@var{options}.TolFun = 1e-6} ## @item @qcode{@var{options}.TolX = 1e-6} ## @end itemize ## ## When @qcode{@var{k} = 0} and @qcode{@var{mu} = 0}, the Generalized Pareto CDF ## is equivalent to the exponential distribution. When @qcode{@var{k} > 0} and ## @code{@var{mu} = @var{k} / @var{k}} the Generalized Pareto is equivalent to ## the Pareto distribution. The mean of the Generalized Pareto is not finite ## when @qcode{@var{k} >= 1} and the variance is not finite when ## @qcode{@var{k} >= 1/2}. When @qcode{@var{k} >= 0}, the Generalized Pareto ## has positive density for @qcode{@var{x} > @var{mu}}, or, when ## @qcode{@var{mu} < 0}, for ## @qcode{0 <= (@var{x} - @var{mu}) / @var{sigma} <= -1 / @var{k}}. ## ## Further information about the generalized Pareto distribution can be found at ## @url{https://en.wikipedia.org/wiki/Generalized_Pareto_distribution} ## ## @seealso{gpcdf, gpinv, gppdf, gprnd, gplike, gpstat} ## @end deftypefn function [paramhat, paramci] = gpfit (x, alpha, options) ## Check input arguments, X must be a vector of positive values if (! isvector (x)) error ("gpfit: X must be a vector."); endif if (any (x <= 0)) error ("gpfit: X must contain only positive values."); endif ## Add default value for alpha if not supplied if (nargin < 2 || isempty (alpha)) alpha = 0.05; endif ## Check for valid value of alpha if (! isscalar (alpha) || ! isnumeric (alpha) || alpha <= 0 || alpha >= 1) error ("gpfit: wrong value for alpha."); endif ## Add default values to OPTIONS structure if (nargin < 3 || isempty (options)) options.Display = "off"; options.MaxFunEvals = 400; options.MaxIter = 200; options.TolBnd = 1e-6; options.TolFun = 1e-6; options.TolX = 1e-6; elseif (! isstruct (options)) error ("gpfit: OPTIONS must be a structure for 'fminsearch' function."); endif if (! isfield (options, "Display")) options.Display = "off"; endif if (! isfield (options, "MaxFunEvals")) options.MaxFunEvals = 400; endif if (! isfield (options, "MaxIter")) options.MaxIter = 200; endif if (! isfield (options, "TolBnd")) options.TolBnd = 1e-6; endif if (! isfield (options, "TolFun")) options.TolFun = 1e-6; endif if (! isfield (options, "TolX")) options.TolX = 1e-6; endif ## Get class of X is_class = class (x); if (strcmp (is_class, "single")) x = double (x); endif ## Remove NaN from data and make a warning if (any (isnan (x))) x(isnan(x)) = []; warning ("gpfit: X contains NaN values, which are ignored."); endif ## Remove Inf from data and make a warning if (any (isinf (x))) x(isnan(x)) = []; warning ("gpfit: X contains Inf values, which are ignored."); endif ## Get sample size, max and range of X x_max = max (x); x_size = length (x); x_range = range (x); ## Check for appropriate sample size or all observations being equal if (x_size == 0) paramhat = NaN (1, 2, is_class); paramci = NaN (2, 2, is_class); warning ("gpfit: X contains no data."); return elseif (x_range < realmin (is_class)) if (x_max <= sqrt (realmax (is_class))) paramhat = cast ([NaN 0], is_class); endif paramci = [paramhat; paramhat]; warning ("gpfit: X contains constant data."); return endif ## Make an initial guess x_mean = mean (x); x_var = var (x); k0 = -0.5 .* (x_mean .^ 2 ./ x_var - 1); s0 = 0.5 .* x_mean .* (x_mean .^ 2 ./ x_var + 1); ## If initial guess fails, start with an exponential fit if (k0 < 0 && (x_max >= -s0 / k0)) k0 = 0; s0 = x_mean; endif paramhat = [k0, log(s0)]; ## Maximize the log-likelihood with respect to shape and log_scale. [paramhat, ~, err, output] = fminsearch (@negloglike, paramhat, options, x); paramhat(2) = exp (paramhat(2)); ## Check output of fminsearch and produce warnings or errors if applicable if (err == 0) if (output.funcCount >= options.MaxFunEvals) warning ("gpfit: reached evaluation limit."); else warning ("gpfit: reached iteration limit."); endif elseif (err < 0) error ("gpfit: no solution."); endif ## Check if converged to boundaries if ((paramhat(1) < 0) && (x_max > -paramhat(2)/paramhat(1) - options.TolBnd)) warning ("gpfit: converged to boundary 1."); reachedBnd = true; elseif (paramhat(1) <= -1 / 2) warning ("gpfit: converged to boundary 2."); reachedBnd = true; else reachedBnd = false; endif ## If second output argument is requested if (nargout > 1) if (! reachedBnd) probs = [alpha/2; 1-alpha/2]; [~, acov] = gplike (paramhat, x); se = sqrt (diag (acov))'; ## Compute the CI for shape using a normal distribution for khat. kci = norminv (probs, paramhat(1), se(1)); ## Compute the CI for scale using a normal approximation for ## log(sigmahat), and transform back to the original scale. lnsigci = norminv (probs, log (paramhat(2)), se(2) ./ paramhat(2)); paramci = [kci, exp(lnsigci)]; else paramci = [NaN, NaN; NaN, NaN]; endif endif ## Preserve class tu output arguments paramhat = cast (paramhat, is_class); if (nargout > 1) paramci = cast (paramci, is_class); endif endfunction ## Negative log-likelihood for the GP function nll = negloglike (paramhat, data) shape = paramhat(1); log_scale = paramhat(2); scale = exp (log_scale); sample_size = numel (data); z = data ./ scale; if (abs (shape) > eps) if (shape > 0 || max (z) < -1 / shape) nll = sample_size * log_scale + (1 + 1/shape) * sum (log1p (shape .* z)); else nll = Inf; endif else nll = sample_size * log_scale + sum (z); endif endfunction %!demo %! ## Sample 2 populations from different generalized Pareto distibutions %! ## Assume location parameter is known %! mu = 0; %! rand ("seed", 5); # for reproducibility %! r1 = gprnd (1, 2, mu, 20000, 1); %! rand ("seed", 2); # for reproducibility %! r2 = gprnd (3, 1, mu, 20000, 1); %! r = [r1, r2]; %! %! ## Plot them normalized and fix their colors %! hist (r, [0.1:0.2:100], 5); %! h = findobj (gca, "Type", "patch"); %! set (h(1), "facecolor", "r"); %! set (h(2), "facecolor", "c"); %! ylim ([0, 1]); %! xlim ([0, 5]); %! hold on %! %! ## Estimate their α and β parameters %! k_sigmaA = gpfit (r(:,1)); %! k_sigmaB = gpfit (r(:,2)); %! %! ## Plot their estimated PDFs %! x = [0.01, 0.1:0.2:18]; %! y = gppdf (x, k_sigmaA(1), k_sigmaA(2), mu); %! plot (x, y, "-pc"); %! y = gppdf (x, k_sigmaB(1), k_sigmaB(2), mu); %! plot (x, y, "-sr"); %! hold off %! legend ({"Normalized HIST of sample 1 with k=1 and σ=2", ... %! "Normalized HIST of sample 2 with k=2 and σ=2", ... %! sprintf("PDF for sample 1 with estimated k=%0.2f and σ=%0.2f", ... %! k_sigmaA(1), k_sigmaA(2)), ... %! sprintf("PDF for sample 3 with estimated k=%0.2f and σ=%0.2f", ... %! k_sigmaB(1), k_sigmaB(2))}) %! title ("Three population samples from different generalized Pareto distibutions") %! text (2, 0.7, "Known location parameter μ = 0") %! hold off ## Test output %!test %! shape = 5; scale = 2; %! x = gprnd (shape, scale, 0, 1, 100000); %! [hat, ci] = gpfit (x); %! assert (hat, [shape, scale], 1e-1); %! assert (ci, [shape, scale; shape, scale], 2e-1); %!test %! shape = 1; scale = 1; %! x = gprnd (shape, scale, 0, 1, 100000); %! [hat, ci] = gpfit (x); %! assert (hat, [shape, scale], 1e-1); %! assert (ci, [shape, scale; shape, scale], 1e-1); %!test %! shape = 3; scale = 2; %! x = gprnd (shape, scale, 0, 1, 100000); %! [hat, ci] = gpfit (x); %! assert (hat, [shape, scale], 1e-1); %! assert (ci, [shape, scale; shape, scale], 1e-1); ## Test input validation %!error gpfit (ones (2)) %!error gpfit ([-1, 2]) %!error gpfit ([0, 1, 2]) %!error gpfit ([1, 2], 0) %!error gpfit ([1, 2], 1.2) %!error ... %! gpfit ([1:10], 0.05, 5) statistics-release-1.6.3/inst/dist_fit/gplike.m000066400000000000000000000120731456127120000215450ustar00rootroot00000000000000## Copyright (C) 2022-2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{nlogL} =} gplike (@var{params}, @var{x}) ## @deftypefnx {statistics} {[@var{nlogL}, @var{acov}] =} gplike (@var{params}, @var{x}) ## ## Negative log-likelihood for the generalized Pareto distribution. ## ## @code{@var{nlogL} = gplike (@var{params}, @var{x})} returns the negative ## log-likelihood of the data in @var{x} corresponding to the generalized Pareto ## distribution with (1) shape parameter @var{k} and (2) scale parameter ## @var{sigma} given in the two-element vector @var{params}. @code{gplike} ## does not allow a location parameter and it must be assumed known, and ## subtracted from @var{x} before calling @code{gplike}. ## ## @code{[@var{nlogL}, @var{acov}] = gplike (@var{params}, @var{x})} returns ## the inverse of Fisher's information matrix, @var{acov}. If the input ## parameter values in @var{params} are the maximum likelihood estimates, the ## diagonal elements of @var{acov} are their asymptotic variances. @var{acov} ## is based on the observed Fisher's information, not the expected information. ## ## When @qcode{@var{k} = 0} and @qcode{@var{mu} = 0}, the Generalized Pareto CDF ## is equivalent to the exponential distribution. When @qcode{@var{k} > 0} and ## @code{@var{mu} = @var{k} / @var{k}} the Generalized Pareto is equivalent to ## the Pareto distribution. The mean of the Generalized Pareto is not finite ## when @qcode{@var{k} >= 1} and the variance is not finite when ## @qcode{@var{k} >= 1/2}. When @qcode{@var{k} >= 0}, the Generalized Pareto ## has positive density for @qcode{@var{x} > @var{mu}}, or, when ## @qcode{@var{mu} < 0}, for ## @qcode{0 <= (@var{x} - @var{mu}) / @var{sigma} <= -1 / @var{k}}. ## ## Further information about the generalized Pareto distribution can be found at ## @url{https://en.wikipedia.org/wiki/Generalized_Pareto_distribution} ## ## @seealso{gpcdf, gpinv, gppdf, gprnd, gpfit, gpstat} ## @end deftypefn function [nlogL, acov] = gplike (params, x) ## Check input arguments if (nargin < 2) error ("gplike: function called with too few input arguments."); endif if (! isvector (x)) error ("gplike: X must be a vector."); endif if (numel (params) != 2) error ("gplike: PARAMS must be a two-element vector."); endif ## Get SHAPE and SCALE parameters shape = params(1); scale = params(2); ## Get sample size and scale x sz = numel (x); z = x ./ scale; ## For SHAPE > 0 if (abs (shape) > eps) if (shape > 0 || max (z) < -1 / shape) sumLn = sum (log1p (shape .* z)); nlogL = sz * log (scale) + (1 + 1 / shape) .* sumLn; if (nargout > 1) v = z ./ (1 + shape .* z); sumv = sum (v); sumvsq = sum (v .^ 2); nH11 = 2 * sumLn ./ shape ^ 3 - ... 2 * sumv ./ shape ^ 2 - (1 + 1 / shape) .* sumvsq; nH12 = (-sumv + (shape + 1) .* sumvsq) ./ scale; nH22 = (-sz + 2 * (shape + 1) .* sumv - ... shape * (shape + 1) .* sumvsq) ./ scale ^ 2; acov = [nH22, -nH12; -nH12, nH11] / (nH11 * nH22 - nH12 * nH12); endif else ## The support of the GP when shape<0 is 0 < y < abs(scale/shape) nlogL = Inf; if (nargout > 1) acov = [NaN NaN; NaN NaN]; endif endif else # For shape = 0 ## Handle limit explicitly to prevent (1/0) * log(1) == Inf*0 == NaN. nlogL = sz*log(scale) + sum(z); if (nargout > 1) sumz = sum (z); sumzsq = sum (z .^ 2); sumzcb = sum (z .^ 3); nH11 = (2 / 3) * sumzcb - sumzsq; nH12 = (-sumz + sumzsq) ./ scale; nH22 = (-sz + 2 * sumz) ./ scale ^ 2; acov = [nH22, -nH12; -nH12, nH11] / (nH11 * nH22 - nH12 * nH12); endif endif endfunction ## Test output %!assert (gplike ([2, 3], 4), 3.047536764863501, 1e-14) %!assert (gplike ([1, 2], 4), 2.890371757896165, 1e-14) %!assert (gplike ([2, 3], [1:10]), 32.57864322725392, 1e-14) %!assert (gplike ([1, 2], [1:10]), 31.65666282460443, 1e-14) %!assert (gplike ([1, NaN], [1:10]), NaN) ## Test input validation %!error gplike () %!error gplike (1) %!error gplike ([1, 2], []) %!error gplike ([1, 2], ones (2)) %!error gplike (2, [1:10]) statistics-release-1.6.3/inst/dist_fit/gumbelfit.m000066400000000000000000000211161456127120000222460ustar00rootroot00000000000000## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{paramhat} =} gumbelfit (@var{x}) ## @deftypefnx {statistics} {[@var{paramhat}, @var{paramci}] =} gumbelfit (@var{x}) ## @deftypefnx {statistics} {[@var{paramhat}, @var{paramci}] =} gumbelfit (@var{x}, @var{alpha}) ## @deftypefnx {statistics} {[@dots{}] =} gumbelfit (@var{x}, @var{alpha}, @var{censor}) ## @deftypefnx {statistics} {[@dots{}] =} gumbelfit (@var{x}, @var{alpha}, @var{censor}, @var{freq}) ## @deftypefnx {statistics} {[@dots{}] =} gumbelfit (@var{x}, @var{alpha}, @var{censor}, @var{freq}, @var{options}) ## ## Estimate parameters and confidence intervals for Gumbel distribution. ## ## @code{@var{paramhat} = gumbelfit (@var{x})} returns the maximum likelihood ## estimates of the parameters of the Gumbel distribution (also known as ## the extreme value or the type I generalized extreme value distribution) given ## in @var{x}. @qcode{@var{paramhat}(1)} is the location parameter, @var{mu}, ## and @qcode{@var{paramhat}(2)} is the scale parameter, @var{beta}. ## ## @code{[@var{paramhat}, @var{paramci}] = gumbelfit (@var{x})} returns the 95% ## confidence intervals for the parameter estimates. ## ## @code{[@dots{}] = gumbelfit (@var{x}, @var{alpha})} also returns the ## @qcode{100 * (1 - @var{alpha})} percent confidence intervals for the ## parameter estimates. By default, the optional argument @var{alpha} is ## 0.05 corresponding to 95% confidence intervals. Pass in @qcode{[]} for ## @var{alpha} to use the default values. ## ## @code{[@dots{}] = gumbelfit (@var{x}, @var{alpha}, @var{censor})} accepts a ## boolean vector, @var{censor}, of the same size as @var{x} with @qcode{1}s for ## observations that are right-censored and @qcode{0}s for observations that are ## observed exactly. By default, or if left empty, ## @qcode{@var{censor} = zeros (size (@var{x}))}. ## ## @code{[@dots{}] = gumbelfit (@var{x}, @var{alpha}, @var{censor}, @var{freq})} ## accepts a frequency vector, @var{freq}, of the same size as @var{x}. ## @var{freq} typically contains integer frequencies for the corresponding ## elements in @var{x}, but it can contain any non-integer non-negative values. ## By default, or if left empty, @qcode{@var{freq} = ones (size (@var{x}))}. ## ## @code{[@dots{}] = gumbelfit (@dots{}, @var{options})} specifies control ## parameters for the iterative algorithm used to compute the maximum likelihood ## estimates. @var{options} is a structure with the following field and its ## default value: ## @itemize ## @item @qcode{@var{options}.TolX = 1e-6} ## @end itemize ## ## The Gumbel distribution is used to model the distribution of the maximum (or ## the minimum) of a number of samples of various distributions. This version ## is suitable for modeling maxima. For modeling minima, use the alternative ## extreme value fitting function, @code{evfit}. ## ## Further information about the Gumbel distribution can be found at ## @url{https://en.wikipedia.org/wiki/Gumbel_distribution} ## ## @seealso{gumbelcdf, gumbelinv, gumbelpdf, gumbelrnd, gumbellike, gumbelstat, ## evfit} ## @end deftypefn function [paramhat, paramci] = gumbelfit (x, alpha, censor, freq, options) ## Check X for being a double precision vector if (! isvector (x) || ! isa (x, "double")) error ("gumbelfit: X must be a double-precision vector."); endif ## Check that X does not contain missing values (NaNs) if (any (isnan (x))) error ("gumbelfit: X must NOT contain missing values (NaNs)."); endif ## Check alpha if (nargin > 1) if (! isscalar (alpha) || ! isreal (alpha) || alpha <= 0 || alpha >= 1) error ("gumbelfit: wrong value for ALPHA."); endif else alpha = 0.05; endif ## Check censor vector if (nargin > 2) if (! isempty (censor) && ! all (size (censor) == size (x))) error ("gumbelfit: X and CENSOR vectors mismatch."); endif else censor = zeros (size (x)); endif ## Check frequency vector if (nargin > 3) if (! isempty (freq) && ! all (size (freq) == size (x))) error ("gumbelfit: X and FREQ vectors mismatch."); endif ## Remove elements with zero frequency (if applicable) rm = find (freq == 0); if (length (rm) > 0) x(rm) = []; censor(rm) = []; freq(rm) = []; endif else freq = ones (size (x)); endif ## Get options structure or add defaults if (nargin > 4) if (! isstruct (options) || ! isfield (options, "TolX")) error (strcat (["gumbelfit: 'options' 5th argument must be a"], ... [" structure with 'TolX' field present."])); endif else options.TolX = 1e-6; endif ## If X is a column vector, make X, CENSOR, and FREQ row vectors if (size (x, 1) > 1) x = x(:)'; censor = censor(:)'; freq = freq(:)'; endif ## Call evfit to do the actual computation on the negative X try [paramhat, paramci] = evfit (-x, alpha, censor, freq, options); catch error ("gumbelfit: no solution for maximum likelihood estimates."); end_try_catch ## Flip sign on estimated parameter MU paramhat(1) = -paramhat(1); ## Flip sign on confidence intervals of parameter MU paramci(:,1) = -flip (paramci(:,1)); endfunction %!demo %! ## Sample 3 populations from different Gumbel distibutions %! rand ("seed", 1); # for reproducibility %! r1 = gumbelrnd (2, 5, 400, 1); %! rand ("seed", 11); # for reproducibility %! r2 = gumbelrnd (-5, 3, 400, 1); %! rand ("seed", 16); # for reproducibility %! r3 = gumbelrnd (14, 8, 400, 1); %! r = [r1, r2, r3]; %! %! ## Plot them normalized and fix their colors %! hist (r, 25, 0.32); %! h = findobj (gca, "Type", "patch"); %! set (h(1), "facecolor", "c"); %! set (h(2), "facecolor", "g"); %! set (h(3), "facecolor", "r"); %! ylim ([0, 0.28]) %! xlim ([-11, 50]); %! hold on %! %! ## Estimate their MU and BETA parameters %! mu_betaA = gumbelfit (r(:,1)); %! mu_betaB = gumbelfit (r(:,2)); %! mu_betaC = gumbelfit (r(:,3)); %! %! ## Plot their estimated PDFs %! x = [min(r(:)):max(r(:))]; %! y = gumbelpdf (x, mu_betaA(1), mu_betaA(2)); %! plot (x, y, "-pr"); %! y = gumbelpdf (x, mu_betaB(1), mu_betaB(2)); %! plot (x, y, "-sg"); %! y = gumbelpdf (x, mu_betaC(1), mu_betaC(2)); %! plot (x, y, "-^c"); %! legend ({"Normalized HIST of sample 1 with μ=2 and β=5", ... %! "Normalized HIST of sample 2 with μ=-5 and β=3", ... %! "Normalized HIST of sample 3 with μ=14 and β=8", ... %! sprintf("PDF for sample 1 with estimated μ=%0.2f and β=%0.2f", ... %! mu_betaA(1), mu_betaA(2)), ... %! sprintf("PDF for sample 2 with estimated μ=%0.2f and β=%0.2f", ... %! mu_betaB(1), mu_betaB(2)), ... %! sprintf("PDF for sample 3 with estimated μ=%0.2f and β=%0.2f", ... %! mu_betaC(1), mu_betaC(2))}) %! title ("Three population samples from different Gumbel distibutions") %! hold off ## Test output %!test %! x = 1:50; %! [paramhat, paramci] = gumbelfit (x); %! paramhat_out = [18.3188, 13.0509]; %! paramci_out = [14.4882, 10.5294; 22.1495, 16.1763]; %! assert (paramhat, paramhat_out, 1e-4); %! assert (paramci, paramci_out, 1e-4); %!test %! x = 1:50; %! [paramhat, paramci] = gumbelfit (x, 0.01); %! paramci_out = [13.2845, 9.8426; 23.3532, 17.3051]; %! assert (paramci, paramci_out, 1e-4); ## Test input validation %!error gumbelfit (ones (2,5)); %!error ... %! gumbelfit (single (ones (1,5))); %!error ... %! gumbelfit ([1, 2, 3, 4, NaN]); %!error gumbelfit ([1, 2, 3, 4, 5], 1.2); %!error ... %! gumbelfit ([1, 2, 3, 4, 5], 0.05, [1 1 0]); %!error ... %! gumbelfit ([1, 2, 3, 4, 5], 0.05, [], [1 1 0]); %!error ... %! gumbelfit ([1, 2, 3, 4, 5], 0.05, [], [], 2); statistics-release-1.6.3/inst/dist_fit/gumbellike.m000066400000000000000000000137071456127120000224170ustar00rootroot00000000000000## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{nlogL} =} gumbellike (@var{params}, @var{x}) ## @deftypefnx {statistics} {[@var{nlogL}, @var{avar}] =} gumbellike (@var{params}, @var{x}) ## @deftypefnx {statistics} {[@dots{}] =} gumbellike (@var{params}, @var{x}, @var{censor}) ## @deftypefnx {statistics} {[@dots{}] =} gumbellike (@var{params}, @var{x}, @var{censor}, @var{freq}) ## ## Negative log-likelihood for the extreme value distribution. ## ## @code{@var{nlogL} = gumbellike (@var{params}, @var{x})} returns the negative ## log likelihood of the data in @var{x} corresponding to the Gumbel ## distribution (also known as the extreme value or the type I generalized ## extreme value distribution) with (1) location parameter @var{mu} and (2) ## scale parameter @var{beta} given in the two-element vector @var{params}. ## ## @code{[@var{nlogL}, @var{acov}] = gumbellike (@var{params}, @var{x})} also ## returns the inverse of Fisher's information matrix, @var{acov}. If the input ## parameter values in @var{params} are the maximum likelihood estimates, the ## diagonal elements of @var{acov} are their asymptotic variances. ## ## @code{[@dots{}] = gumbellike (@var{params}, @var{x}, @var{censor})} accepts a ## boolean vector, @var{censor}, of the same size as @var{x} with @qcode{1}s for ## observations that are right-censored and @qcode{0}s for observations that are ## observed exactly. By default, or if left empty, ## @qcode{@var{censor} = zeros (size (@var{x}))}. ## ## @code{[@dots{}] = gumbellike (@var{params}, @var{x}, @var{censor}, @var{freq})} ## accepts a frequency vector, @var{freq}, of the same size as @var{x}. ## @var{freq} typically contains integer frequencies for the corresponding ## elements in @var{x}, but it can contain any non-integer non-negative values. ## By default, or if left empty, @qcode{@var{freq} = ones (size (@var{x}))}. ## ## The Gumbel distribution is used to model the distribution of the maximum (or ## the minimum) of a number of samples of various distributions. This version ## is suitable for modeling maxima. For modeling minima, use the alternative ## extreme value likelihood function, @code{evlike}. ## ## Further information about the Gumbel distribution can be found at ## @url{https://en.wikipedia.org/wiki/Gumbel_distribution} ## ## @seealso{gumbelcdf, gumbelinv, gumbelpdf, gumbelrnd, gumbelfit, gumbelstat, ## evlike} ## @end deftypefn function [nlogL, avar] = gumbellike (params, x, censor, freq) ## Check input arguments and add defaults if (nargin < 2) error ("gumbellike: too few input arguments."); endif if (numel (params) != 2) error ("gumbellike: wrong parameters length."); endif if (! isvector (x)) error ("gumbellike: X must be a vector."); endif if (nargin < 3 || isempty (censor)) censor = zeros (size (x)); elseif (! isequal (size (x), size (censor))) error ("gumbellike: X and CENSOR vectors mismatch."); endif if (nargin < 4 || isempty (freq)) freq = ones (size (x)); elseif (isequal (size (x), size (freq))) nulls = find (freq == 0); if (numel (nulls) > 0) x(nulls) = []; censor(nulls) = []; freq(nulls) = []; endif else error ("gumbellike: X and FREQ vectors mismatch."); endif ## Get mu and sigma values mu = params(1); sigma = params(2); ## sigma must be positive, otherwise make it NaN if (sigma <= 0) sigma = NaN; endif ## Compute the individual log-likelihood terms. Force a log(0)==-Inf for ## x from extreme right tail, instead of getting exp(Inf-Inf)==NaN. z = (x - mu) ./ sigma; expz = exp (z); L = (z - log (sigma)) .* (1 - censor) - expz; L(z == Inf) = -Inf; ## Neg-log-like is the sum of the individual contributions nlogL = -sum (freq .* L); ## Compute the negative hessian at the parameter values. ## Invert to get the observed information matrix. if (nargout == 2) unc = (1-censor); nH11 = sum(freq .* expz); nH12 = sum(freq .* ((z + 1) .* expz - unc)); nH22 = sum(freq .* (z .* (z+2) .* expz - ((2 .* z + 1) .* unc))); avar = (sigma .^ 2) * ... [nH22 -nH12; -nH12 nH11] / (nH11 * nH22 - nH12 * nH12); endif endfunction ## Test output %!test %! x = 1:50; %! [nlogL, avar] = gumbellike ([2.3, 1.2], x); %! avar_out = [-1.2778e-13, 3.1859e-15; 3.1859e-15, -7.9430e-17]; %! assert (nlogL, 3.242264755689906e+17, 1e-14); %! assert (avar, avar_out, 1e-3); %!test %! x = 1:50; %! [nlogL, avar] = gumbellike ([2.3, 1.2], x * 0.5); %! avar_out = [-7.6094e-05, 3.9819e-06; 3.9819e-06, -2.0836e-07]; %! assert (nlogL, 481898704.0472211, 1e-6); %! assert (avar, avar_out, 1e-3); %!test %! x = 1:50; %! [nlogL, avar] = gumbellike ([21, 15], x); %! avar_out = [11.73913876598908, -5.9546128523121216; ... %! -5.954612852312121, 3.708060045170236]; %! assert (nlogL, 223.7612479380652, 1e-13); %! assert (avar, avar_out, 1e-14); ## Test input validation %!error gumbellike ([12, 15]); %!error gumbellike ([12, 15, 3], [1:50]); %!error gumbellike ([12, 3], ones (10, 2)); %!error gumbellike ([12, 15], [1:50], [1, 2, 3]); %!error gumbellike ([12, 15], [1:50], [], [1, 2, 3]); statistics-release-1.6.3/inst/dist_fit/hnfit.m000066400000000000000000000140711456127120000214020ustar00rootroot00000000000000## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{paramhat} =} hnfit (@var{x}, @var{mu}) ## @deftypefnx {statistics} {[@var{paramhat}, @var{paramci}] =} hnfit (@var{x}, @var{mu}) ## @deftypefnx {statistics} {[@var{paramhat}, @var{paramci}] =} hnfit (@var{x}, @var{mu}, @var{alpha}) ## ## Estimate parameters and confidence intervals for the half-normal distribution. ## ## @code{@var{paramhat} = hnfit (@var{x})} returns the maximum likelihood ## estimates of the parameters of the half-normal distribution given the data in ## vector @var{x}. @qcode{@var{paramhat}(1)} is the location parameter, ## @var{mu}, and @qcode{@var{paramhat}(2)} is the scale parameter, @var{sigma}. ## Although @var{mu} is returned in the estimated @var{paramhat}, @code{hnfit} ## does not estimate the location parameter @var{mu}, and it must be assumed to ## be known. ## ## @code{[@var{paramhat}, @var{paramci}] = hnfit (@var{x}, @var{mu})} returns ## the 95% confidence intervals for the estimated scale parameter @var{sigma}. ## The first colummn of @var{paramci} includes the location parameter @var{mu} ## without any confidence bounds. ## ## @code{[@dots{}] = hnfit (@var{x}, @var{alpha})} also returns the ## @qcode{100 * (1 - @var{alpha})} percent confidence intervals of the estimated ## scale parameter. By default, the optional argument @var{alpha} is 0.05 ## corresponding to 95% confidence intervals. ## ## The half-normal CDF is only defined for @qcode{@var{x} >= @var{mu}}. ## ## Further information about the half-normal distribution can be found at ## @url{https://en.wikipedia.org/wiki/Half-normal_distribution} ## ## @seealso{hncdf, hninv, hnpdf, hnrnd, hnlike} ## @end deftypefn function [paramhat, paramci] = hnfit (x, mu, alpha) ## Check for valid number of input arguments if (nargin < 2) error ("hnfit: function called with too few input arguments."); endif ## Check X for being a vector if (isempty (x)) phat = nan (1, 2, class (x)); pci = nan (2, 2, class (x)); return elseif (! isvector (x) || ! isreal (x)) error ("hnfit: X must be a vector of real values."); endif ## Check for MU being a scalar real value if (! isscalar (mu) || ! isreal (mu)) error ("hnfit: MU must be a real scalar value."); endif ## Check X >= MU if (any (x < mu)) error ("hnfit: X cannot contain values less than MU."); endif ## Parse ALPHA argument or add default if (nargin > 2) if (! isscalar (alpha) || ! isreal (alpha) || alpha <= 0 || alpha >= 1) error ("hnfit: wrong value for ALPHA."); endif else alpha = 0.05; endif ## Estimate parameters sz = numel (x); x = x - mu; sigmahat = sqrt (sum (x .* x) ./ sz); paramhat = [mu, sigmahat]; ## Compute confidence intervals if (nargout == 2) chi2cr = chi2inv ([alpha/2, 1-alpha/2], sz); shatlo = sigmahat * sqrt (sz / chi2inv (1 - alpha / 2, sz)); shathi = sigmahat * sqrt (sz / chi2inv (alpha / 2, sz)); paramci = [mu, shatlo; mu, shathi]; endif endfunction %!demo %! ## Sample 2 populations from different half-normal distibutions %! rand ("seed", 1); # for reproducibility %! r1 = hnrnd (0, 5, 5000, 1); %! rand ("seed", 2); # for reproducibility %! r2 = hnrnd (0, 2, 5000, 1); %! r = [r1, r2]; %! %! ## Plot them normalized and fix their colors %! hist (r, [0.5:20], 1); %! h = findobj (gca, "Type", "patch"); %! set (h(1), "facecolor", "c"); %! set (h(2), "facecolor", "g"); %! hold on %! %! ## Estimate their shape parameters %! mu_sigmaA = hnfit (r(:,1), 0); %! mu_sigmaB = hnfit (r(:,2), 0); %! %! ## Plot their estimated PDFs %! x = [0:0.2:10]; %! y = hnpdf (x, mu_sigmaA(1), mu_sigmaA(2)); %! plot (x, y, "-pr"); %! y = hnpdf (x, mu_sigmaB(1), mu_sigmaB(2)); %! plot (x, y, "-sg"); %! xlim ([0, 10]) %! ylim ([0, 0.5]) %! legend ({"Normalized HIST of sample 1 with μ=0 and σ=5", ... %! "Normalized HIST of sample 2 with μ=0 and σ=2", ... %! sprintf("PDF for sample 1 with estimated μ=%0.2f and σ=%0.2f", ... %! mu_sigmaA(1), mu_sigmaA(2)), ... %! sprintf("PDF for sample 2 with estimated μ=%0.2f and σ=%0.2f", ... %! mu_sigmaB(1), mu_sigmaB(2))}) %! title ("Two population samples from different half-normal distibutions") %! hold off ## Test output %!test %! x = 1:20; %! [paramhat, paramci] = hnfit (x, 0); %! assert (paramhat, [0, 11.9791], 1e-4); %! assert (paramci, [0, 9.1648; 0, 17.2987], 1e-4); %!test %! x = 1:20; %! [paramhat, paramci] = hnfit (x, 0, 0.01); %! assert (paramci, [0, 8.4709; 0, 19.6487], 1e-4); ## Test input validation %!error hnfit () %!error hnfit (1) %!error hnfit ([0.2, 0.5+i], 0); %!error hnfit (ones (2,2) * 0.5, 0); %!error ... %! hnfit ([0.5, 1.2], [0, 1]); %!error ... %! hnfit ([0.5, 1.2], 5+i); %!error ... %! hnfit ([1:5], 2); %!error hnfit ([0.01:0.1:0.99], 0, 1.2); %!error hnfit ([0.01:0.1:0.99], 0, i); %!error hnfit ([0.01:0.1:0.99], 0, -1); %!error hnfit ([0.01:0.1:0.99], 0, [0.05, 0.01]); statistics-release-1.6.3/inst/dist_fit/hnlike.m000066400000000000000000000067121456127120000215470ustar00rootroot00000000000000## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{nlogL} =} hnlike (@var{params}, @var{x}) ## @deftypefnx {statistics} {[@var{nlogL}, @var{acov}] =} hnlike (@var{params}, @var{x}) ## ## Negative log-likelihood for the half-normal distribution. ## ## @code{@var{nlogL} = hnlike (@var{params}, @var{x})} returns the negative ## log likelihood of the data in @var{x} corresponding to the half-normal ## distribution with (1) location parameter @var{mu} and (2) scale parameter ## @var{sigma} given in the two-element vector @var{params}. ## ## @code{[@var{nlogL}, @var{acov}] = hnlike (@var{params}, @var{x})} returns ## the inverse of Fisher's information matrix, @var{acov}. If the input ## parameter values in @var{params} are the maximum likelihood estimates, the ## diagonal elements of @var{params} are their asymptotic variances. ## ## The half-normal CDF is only defined for @qcode{@var{x} >= @var{mu}}. ## ## Further information about the half-normal distribution can be found at ## @url{https://en.wikipedia.org/wiki/Half-normal_distribution} ## ## @seealso{hncdf, hninv, hnpdf, hnrnd, hnfit} ## @end deftypefn function [nlogL, acov] = hnlike (params, x) ## Check input arguments and add defaults if (nargin < 2) error ("hnlike: function called with too few input arguments."); endif if (numel (params) != 2) error ("hnlike: wrong parameters length."); endif ## Check X for being a vector if (isempty (x)) phat = nan (1, 2, class (x)); pci = nan (2, 2, class (x)); return elseif (! isvector (x) || ! isreal (x)) error ("hnlike: X must be a vector of real values."); endif ## Get MU and SIGMA parameters mu = params(1); sigma = params(2); ## Force X to column vector x = x(:); ## Return NaN for out of range parameters or data. sigma(sigma <= 0) = NaN; x(x < mu) = NaN; z = (x - mu) ./ sigma; ## Sum up the individual log-likelihood terms nlogL = -sum (-0.5 .* z .* z - log (sqrt (pi ./ 2) .* sigma)); ## Compute asymptotic covariance (if requested) if (nargout == 2) nH = -sum (1 - 3 .* z .* z); avar = (sigma .^ 2) ./ nH; acov = [0, 0; 0, avar]; endif endfunction ## Test output %!test %! x = 1:20; %! paramhat = hnfit (x, 0); %! [nlogL, acov] = hnlike (paramhat, x); %! assert (nlogL, 64.179177404891300, 1e-14); ## Test input validation %!error ... %! hnlike ([12, 15]); %!error hnlike ([12, 15, 3], [1:50]); %!error hnlike ([3], [1:50]); %!error ... %! hnlike ([0, 3], ones (2)); %!error ... %! hnlike ([0, 3], [1, 2, 3, 4, 5+i]); statistics-release-1.6.3/inst/dist_fit/invgfit.m000066400000000000000000000230361456127120000217410ustar00rootroot00000000000000## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{paramhat} =} invgfit (@var{x}) ## @deftypefnx {statistics} {[@var{paramhat}, @var{paramci}] =} invgfit (@var{x}) ## @deftypefnx {statistics} {[@var{paramhat}, @var{paramci}] =} invgfit (@var{x}, @var{alpha}) ## @deftypefnx {statistics} {[@dots{}] =} invgfit (@var{x}, @var{alpha}, @var{censor}) ## @deftypefnx {statistics} {[@dots{}] =} invgfit (@var{x}, @var{alpha}, @var{censor}, @var{freq}) ## @deftypefnx {statistics} {[@dots{}] =} invgfit (@var{x}, @var{alpha}, @var{censor}, @var{freq}, @var{options}) ## ## Estimate mean and confidence intervals for the inverse Gaussian distribution. ## ## @code{@var{mu0} = invgfit (@var{x})} returns the maximum likelihood ## estimates of the parameters of the inverse Gaussian distribution given the ## data in @var{x}. @qcode{@var{paramhat}(1)} is the scale parameter, @var{mu}, ## and @qcode{@var{paramhat}(2)} is the shape parameter, @var{lambda}. ## ## @code{[@var{paramhat}, @var{paramci}] = invgfit (@var{x})} returns the 95% ## confidence intervals for the parameter estimates. ## ## @code{[@dots{}] = invgfit (@var{x}, @var{alpha})} also returns the ## @qcode{100 * (1 - @var{alpha})} percent confidence intervals for the ## parameter estimates. By default, the optional argument @var{alpha} is ## 0.05 corresponding to 95% confidence intervals. Pass in @qcode{[]} for ## @var{alpha} to use the default values. ## ## @code{[@dots{}] = invgfit (@var{x}, @var{alpha}, @var{censor})} accepts a ## boolean vector, @var{censor}, of the same size as @var{x} with @qcode{1}s for ## observations that are right-censored and @qcode{0}s for observations that are ## observed exactly. By default, or if left empty, ## @qcode{@var{censor} = zeros (size (@var{x}))}. ## ## @code{[@dots{}] = invgfit (@var{x}, @var{alpha}, @var{censor}, @var{freq})} ## accepts a frequency vector, @var{freq}, of the same size as @var{x}. ## @var{freq} typically contains integer frequencies for the corresponding ## elements in @var{x}, but it can contain any non-integer non-negative values. ## By default, or if left empty, @qcode{@var{freq} = ones (size (@var{x}))}. ## ## @code{[@dots{}] = invgfit (@dots{}, @var{options})} specifies control ## parameters for the iterative algorithm used to compute ML estimates with the ## @code{fminsearch} function. @var{options} is a structure with the following ## fields and their default values: ## @itemize ## @item @qcode{@var{options}.Display = "off"} ## @item @qcode{@var{options}.MaxFunEvals = 400} ## @item @qcode{@var{options}.MaxIter = 200} ## @item @qcode{@var{options}.TolX = 1e-6} ## @end itemize ## ## Further information about the inverse Gaussian distribution can be found at ## @url{https://en.wikipedia.org/wiki/Inverse_Gaussian_distribution} ## ## @seealso{invgcdf, invginv, invgpdf, invgrnd, invglike} ## @end deftypefn function [paramhat, paramci] = invgfit (x, alpha, censor, freq, options) ## Check input arguments if (! isvector (x)) error ("invgfit: X must be a vector."); elseif (any (x <= 0)) error ("invgfit: X must contain only positive values."); endif ## Check alpha if (nargin < 2 || isempty (alpha)) alpha = 0.05; else if (! isscalar (alpha) || ! isreal (alpha) || alpha <= 0 || alpha >= 1) error ("invgfit: wrong value for ALPHA."); endif endif ## Check censor vector if (nargin < 3 || isempty (censor)) censor = zeros (size (x)); elseif (! isequal (size (x), size (censor))) error ("invgfit: X and CENSOR vectors mismatch."); endif ## Check frequency vector if (nargin < 4 || isempty (freq)) freq = ones (size (x)); elseif (! isequal (size (x), size (freq))) error ("invgfit: X and FREQ vectors mismatch."); endif ## Get options structure or add defaults if (nargin < 5) options.Display = "off"; options.MaxFunEvals = 400; options.MaxIter = 200; options.TolX = 1e-6; else if (! isstruct (options) || ! isfield (options, "Display") || ! isfield (options, "MaxFunEvals") || ! isfield (options, "MaxIter") || ! isfield (options, "TolX")) error (strcat (["invgfit: 'options' 5th argument must be a"], ... [" structure with 'Display', 'MaxFunEvals',"], ... [" 'MaxIter', and 'TolX' fields present."])); endif endif n_censored = sum (freq .* censor); ## Compute parameters for uncensored data if (n_censored == 0) ## Expand frequency vector (MATLAB does not do this, in R2018 at least) xf = []; for i = 1:numel (freq) xf = [xf, repmat(x(i), 1, freq(i))]; endfor xbar = mean (xf); paramhat = [xbar, (1 ./ mean (1 ./ x - 1 ./ xbar))]; else ## Use MLEs of the uncensored data as initial searching values x_uncensored = x(censor == 0); mu0 = mean (x_uncensored); lambda0 = 1 ./ mean (1 ./ x_uncensored - 1 ./ mu0); x0 = [mu0, lambda0]; ## Minimize negative log-likelihood to estimate parameters f = @(params) invglike (params, x, censor, freq); [paramhat, ~, err, output] = fminsearch (f, x0, options); ## Force positive parameter values paramhat = abs (paramhat); ## Handle errors if (err == 0) if (output.funcCount >= options.MaxFunEvals) msg = "invgfit: maximum number of function evaluations are exceeded."; warning (msg); elseif (output.iterations >= options.MaxIter) warning ("invgfit: maximum number of iterations are exceeded."); endif elseif (err < 0) error ("invgfit: no solution."); endif endif ## Compute CIs using a log normal approximation for parameters. if (nargout > 1) ## Compute asymptotic covariance [~, acov] = invglike (paramhat, x, censor, freq); ## Get standard errors stderr = sqrt (diag (acov))'; ## Get normal quantiles probs = [alpha/2; 1-alpha/2]; ## Compute CI paramci = norminv([probs, probs], [paramhat; paramhat], [stderr; stderr]); endif endfunction %!demo %! ## Sample 3 populations from different inverse Gaussian distibutions %! rand ("seed", 5); randn ("seed", 5); # for reproducibility %! r1 = invgrnd (1, 0.2, 2000, 1); %! rand ("seed", 2); randn ("seed", 2); # for reproducibility %! r2 = invgrnd (1, 3, 2000, 1); %! rand ("seed", 7); randn ("seed", 7); # for reproducibility %! r3 = invgrnd (3, 1, 2000, 1); %! r = [r1, r2, r3]; %! %! ## Plot them normalized and fix their colors %! hist (r, [0.1:0.1:3.2], 9); %! h = findobj (gca, "Type", "patch"); %! set (h(1), "facecolor", "c"); %! set (h(2), "facecolor", "g"); %! set (h(3), "facecolor", "r"); %! ylim ([0, 3]); %! xlim ([0, 3]); %! hold on %! %! ## Estimate their MU and LAMBDA parameters %! mu_lambdaA = invgfit (r(:,1)); %! mu_lambdaB = invgfit (r(:,2)); %! mu_lambdaC = invgfit (r(:,3)); %! %! ## Plot their estimated PDFs %! x = [0:0.1:3]; %! y = invgpdf (x, mu_lambdaA(1), mu_lambdaA(2)); %! plot (x, y, "-pr"); %! y = invgpdf (x, mu_lambdaB(1), mu_lambdaB(2)); %! plot (x, y, "-sg"); %! y = invgpdf (x, mu_lambdaC(1), mu_lambdaC(2)); %! plot (x, y, "-^c"); %! hold off %! legend ({"Normalized HIST of sample 1 with μ=1 and λ=0.5", ... %! "Normalized HIST of sample 2 with μ=2 and λ=0.3", ... %! "Normalized HIST of sample 3 with μ=4 and λ=0.5", ... %! sprintf("PDF for sample 1 with estimated μ=%0.2f and λ=%0.2f", ... %! mu_lambdaA(1), mu_lambdaA(2)), ... %! sprintf("PDF for sample 2 with estimated μ=%0.2f and λ=%0.2f", ... %! mu_lambdaB(1), mu_lambdaB(2)), ... %! sprintf("PDF for sample 3 with estimated μ=%0.2f and λ=%0.2f", ... %! mu_lambdaC(1), mu_lambdaC(2))}) %! title ("Three population samples from different inverse Gaussian distibutions") %! hold off ## Test output %!test %! paramhat = invgfit ([1:50]); %! paramhat_out = [25.5, 19.6973]; %! assert (paramhat, paramhat_out, 1e-4); %!test %! paramhat = invgfit ([1:5]); %! paramhat_out = [3, 8.1081]; %! assert (paramhat, paramhat_out, 1e-4); ## Test input validation %!error invgfit (ones (2,5)); %!error invgfit ([-1 2 3 4]); %!error invgfit ([1, 2, 3, 4, 5], 1.2); %!error invgfit ([1, 2, 3, 4, 5], 0); %!error invgfit ([1, 2, 3, 4, 5], "alpha"); %!error ... %! invgfit ([1, 2, 3, 4, 5], 0.05, [1 1 0]); %!error ... %! invgfit ([1, 2, 3, 4, 5], [], [1 1 0 1 1]'); %!error ... %! invgfit ([1, 2, 3, 4, 5], 0.05, zeros (1,5), [1 1 0]); %!error ... %! invgfit ([1, 2, 3, 4, 5], [], [], [1 1 0 1 1]'); %!error ... %! invgfit ([1, 2, 3, 4, 5], 0.05, [], [], 2); statistics-release-1.6.3/inst/dist_fit/invglike.m000066400000000000000000000163331456127120000221050ustar00rootroot00000000000000## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{nlogL} =} invglike (@var{params}, @var{x}) ## @deftypefnx {statistics} {[@var{nlogL}, @var{acov}] =} invglike (@var{params}, @var{x}) ## @deftypefnx {statistics} {[@dots{}] =} invglike (@var{params}, @var{x}, @var{censor}) ## @deftypefnx {statistics} {[@dots{}] =} invglike (@var{params}, @var{x}, @var{censor}, @var{freq}) ## ## Negative log-likelihood for the inverse Gaussian distribution. ## ## @code{@var{nlogL} = invglike (@var{params}, @var{x})} returns the negative ## log likelihood of the data in @var{x} corresponding to the inverse Gaussian ## distribution with (1) scale parameter @var{mu} and (2) shape parameter ## @var{lambda} given in the two-element vector @var{params}. ## ## @code{[@var{nlogL}, @var{acov}] = invglike (@var{params}, @var{x})} also ## returns the inverse of Fisher's information matrix, @var{acov}. If the input ## parameter values in @var{params} are the maximum likelihood estimates, the ## diagonal elements of @var{params} are their asymptotic variances. ## ## @code{[@dots{}] = invglike (@var{params}, @var{x}, @var{censor})} accepts a ## boolean vector, @var{censor}, of the same size as @var{x} with @qcode{1}s for ## observations that are right-censored and @qcode{0}s for observations that are ## observed exactly. By default, or if left empty, ## @qcode{@var{censor} = zeros (size (@var{x}))}. ## ## @code{[@dots{}] = invglike (@var{params}, @var{x}, @var{censor}, @var{freq})} ## accepts a frequency vector, @var{freq}, of the same size as @var{x}. ## @var{freq} typically contains integer frequencies for the corresponding ## elements in @var{x}, but it can contain any non-integer non-negative values. ## By default, or if left empty, @qcode{@var{freq} = ones (size (@var{x}))}. ## ## Further information about the inverse Gaussian distribution can be found at ## @url{https://en.wikipedia.org/wiki/Inverse_Gaussian_distribution} ## ## @seealso{invgcdf, invginv, invgpdf, invgrnd, invgfit} ## @end deftypefn function [nlogL, acov] = invglike (params, x, censor, freq) ## Check input arguments if (nargin < 2) error ("invglike: function called with too few input arguments."); endif if (! isvector (x)) error ("invglike: X must be a vector."); endif if (any (x < 0)) error ("invglike: X must have positive values."); endif if (length (params) != 2) error ("invglike: PARAMS must be a two-element vector."); endif ## Check censor vector if (nargin < 3 || isempty (censor)) censor = zeros (size (x)); elseif (! isequal (size (x), size (censor))) error ("invglike: X and CENSOR vector mismatch."); endif ## Check frequency vector if (nargin < 4 || isempty (freq)) freq = ones (size (x)); elseif (! isequal (size (x), size (freq))) error ("invglike: X and FREQ vector mismatch."); endif ## Get parameters mu = params(1); lambda = params(2); L = 0.5 .* log (lambda ./ (2 * pi)) - 1.5 .* log (x) ... -lambda .* (x ./ mu - 1) .^ 2 ./ (2 .* x); n_censored = sum (freq .* censor); ## Handle censored data if (n_censored > 0) censored = (censor == 1); x_censored = x(censored); sqrt_lx = sqrt (lambda ./ x_censored); z_censored = -(x_censored ./ mu - 1) .* sqrt_lx; w_censored = -(x_censored ./ mu + 1) .* sqrt_lx; Fz = 0.5 .* erfc (-z_censored ./ sqrt (2)); Fw = 0.5 .* erfc (-w_censored ./ sqrt (2)); S_censored = Fz - exp (2 .* lambda ./ mu) .* Fw; L(censored) = log (S_censored); endif ## Sum up the neg log likelihood nlogL = -sum (freq .* L); ## Compute asymptotic covariance if (nargout > 1) ## Compute first order central differences of the log-likelihood gradient dp = 0.0001 .* max (abs (params), 1); ngrad_p1 = invg_grad (params + [dp(1), 0], x, censor, freq); ngrad_m1 = invg_grad (params - [dp(1), 0], x, censor, freq); ngrad_p2 = invg_grad (params + [0, dp(2)], x, censor, freq); ngrad_m2 = invg_grad (params - [0, dp(2)], x, censor, freq); ## Compute negative Hessian by normalizing the differences by the increment nH = [(ngrad_p1(:) - ngrad_m1(:))./(2 * dp(1)), ... (ngrad_p2(:) - ngrad_m2(:))./(2 * dp(2))]; ## Force neg Hessian being symmetric nH = 0.5 .* (nH + nH'); ## Check neg Hessian is positive definite [R, p] = chol (nH); if (p > 0) warning ("invglike: non positive definite Hessian matrix."); acov = NaN (2); return endif ## ACOV estimate is the negative inverse of the Hessian. Rinv = inv (R); acov = Rinv * Rinv; endif endfunction ## Helper function for computing negative gradient function ngrad = invg_grad (params, x, censor, freq) mu = params(1); lambda = params(2); dL1 = lambda .* (x - mu) ./ mu .^ 3; dL2 = 1 ./ (2 .* lambda) - (x ./ mu - 1) .^ 2 ./ (2 .* x); n_censored = sum (freq .* censor); if (n_censored > 0) censored = (censor == 1); x_censored = x(censored); sqrt_lx = sqrt (lambda ./ x_censored); exp_lmu = exp (2 .* lambda ./ mu); z_censored = -(x_censored ./ mu - 1) .* sqrt_lx; w_censored = -(x_censored ./ mu + 1) .* sqrt_lx; Fw = 0.5 .* erfc (-w_censored ./ sqrt (2)); fz = exp (-0.5 .* z_censored .^ 2) ./ sqrt (2 .* pi); fw = exp (-0.5 .* w_censored .^ 2) ./ sqrt (2 .* pi); dS1cen = (fz - exp_lmu .* fw) .* (x_censored ./ mu .^ 2) .* sqrt_lx ... + 2 .* Fw .* exp_lmu .* lambda ./ mu .^ 2; dS2cen = 0.5 .* (fz .* z_censored - exp_lmu .* fw .* w_censored) ... ./ lambda - 2 .* Fw .* exp_lmu ./ mu; dL1(censored) = dS1cen ./ Scen; dL2(censored) = dS2cen ./ Scen; endif ngrad = -[sum(freq .* dL1), sum(freq .* dL2)]; endfunction ## Test results %!test %! nlogL = invglike ([25.5, 19.6973], [1:50]); %! assert (nlogL, 219.1516, 1e-4); %!test %! nlogL = invglike ([3, 8.1081], [1:5]); %! assert (nlogL, 9.0438, 1e-4); ## Test input validation %!error invglike (3.25) %!error invglike ([5, 0.2], ones (2)) %!error invglike ([5, 0.2], [-1, 3]) %!error ... %! invglike ([1, 0.2, 3], [1, 3, 5, 7]) %!error ... %! invglike ([1.5, 0.2], [1:5], [0, 0, 0]) %!error ... %! invglike ([1.5, 0.2], [1:5], [0, 0, 0, 0, 0], [1, 1, 1]) %!error ... %! invglike ([1.5, 0.2], [1:5], [], [1, 1, 1]) statistics-release-1.6.3/inst/dist_fit/logifit.m000066400000000000000000000226501456127120000217310ustar00rootroot00000000000000## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{paramhat} =} logifit (@var{x}) ## @deftypefnx {statistics} {[@var{paramhat}, @var{paramci}] =} logifit (@var{x}) ## @deftypefnx {statistics} {[@var{paramhat}, @var{paramci}] =} logifit (@var{x}, @var{alpha}) ## @deftypefnx {statistics} {[@dots{}] =} logifit (@var{x}, @var{alpha}, @var{censor}) ## @deftypefnx {statistics} {[@dots{}] =} logifit (@var{x}, @var{alpha}, @var{censor}, @var{freq}) ## @deftypefnx {statistics} {[@dots{}] =} logifit (@var{x}, @var{alpha}, @var{censor}, @var{freq}, @var{options}) ## ## Estimate mean and confidence intervals for the logistic distribution. ## ## @code{@var{mu0} = logifit (@var{x})} returns the maximum likelihood ## estimates of the parameters of the logistic distribution given the data in ## @var{x}. @qcode{@var{paramhat}(1)} is the scale parameter, @var{mu}, and ## @qcode{@var{paramhat}(2)} is the shape parameter, @var{s}. ## ## @code{[@var{paramhat}, @var{paramci}] = logifit (@var{x})} returns the 95% ## confidence intervals for the parameter estimates. ## ## @code{[@dots{}] = logifit (@var{x}, @var{alpha})} also returns the ## @qcode{100 * (1 - @var{alpha})} percent confidence intervals for the ## parameter estimates. By default, the optional argument @var{alpha} is ## 0.05 corresponding to 95% confidence intervals. Pass in @qcode{[]} for ## @var{alpha} to use the default values. ## ## @code{[@dots{}] = logifit (@var{x}, @var{alpha}, @var{censor})} accepts a ## boolean vector, @var{censor}, of the same size as @var{x} with @qcode{1}s for ## observations that are right-censored and @qcode{0}s for observations that are ## observed exactly. By default, or if left empty, ## @qcode{@var{censor} = zeros (size (@var{x}))}. ## ## @code{[@dots{}] = logifit (@var{x}, @var{alpha}, @var{censor}, @var{freq})} ## accepts a frequency vector, @var{freq}, of the same size as @var{x}. ## @var{freq} typically contains integer frequencies for the corresponding ## elements in @var{x}, but it can contain any non-integer non-negative values. ## By default, or if left empty, @qcode{@var{freq} = ones (size (@var{x}))}. ## ## @code{[@dots{}] = logifit (@dots{}, @var{options})} specifies control ## parameters for the iterative algorithm used to compute ML estimates with the ## @code{fminsearch} function. @var{options} is a structure with the following ## fields and their default values: ## @itemize ## @item @qcode{@var{options}.Display = "off"} ## @item @qcode{@var{options}.MaxFunEvals = 400} ## @item @qcode{@var{options}.MaxIter = 200} ## @item @qcode{@var{options}.TolX = 1e-6} ## @end itemize ## ## Further information about the logistic distribution can be found at ## @url{https://en.wikipedia.org/wiki/Logistic_distribution} ## ## @seealso{logicdf, logiinv, logipdf, logirnd, logilike} ## @end deftypefn function [paramhat, paramci] = logifit (x, alpha, censor, freq, options) ## Check input arguments if (! isvector (x)) error ("logifit: X must be a vector."); endif ## Check alpha if (nargin < 2 || isempty (alpha)) alpha = 0.05; else if (! isscalar (alpha) || ! isreal (alpha) || alpha <= 0 || alpha >= 1) error ("logifit: wrong value for ALPHA."); endif endif ## Check censor vector if (nargin < 3 || isempty (censor)) censor = zeros (size (x)); elseif (! isequal (size (x), size (censor))) error ("logifit: X and CENSOR vectors mismatch."); endif ## Check frequency vector if (nargin < 4 || isempty (freq)) freq = ones (size (x)); elseif (! isequal (size (x), size (freq))) error ("logifit: X and FREQ vectors mismatch."); endif ## Get options structure or add defaults if (nargin < 5) options.Display = "off"; options.MaxFunEvals = 400; options.MaxIter = 200; options.TolX = 1e-6; else if (! isstruct (options) || ! isfield (options, "Display") || ! isfield (options, "MaxFunEvals") || ! isfield (options, "MaxIter") || ! isfield (options, "TolX")) error (strcat (["logifit: 'options' 5th argument must be a"], ... [" structure with 'Display', 'MaxFunEvals',"], ... [" 'MaxIter', and 'TolX' fields present."])); endif endif ## Expand frequency and censor vectors (if necessary) if (! all (freq == 1)) xf = []; cf = []; for i = 1:numel (freq) xf = [xf, repmat(x(i), 1, freq(i))]; cf = [cf, repmat(censor(i), 1, freq(i))]; endfor x = xf; freq = ones (size (x)); censor = cf; endif ## Use MLEs of the uncensored data as initial searching values x_uncensored = x(censor == 0); mu0 = mean (x_uncensored); s0 = std (x_uncensored) .* sqrt (3) ./ pi; x0 = [mu0, s0]; ## Minimize negative log-likelihood to estimate parameters f = @(params) logilike (params, x, censor, freq); [paramhat, ~, err, output] = fminsearch (f, x0, options); ## Handle errors if (err == 0) if (output.funcCount >= options.MaxFunEvals) msg = "logifit: maximum number of function evaluations are exceeded."; warning (msg); elseif (output.iterations >= options.MaxIter) warning ("logifit: maximum number of iterations are exceeded."); endif elseif (err < 0) error ("logifit: no solution."); endif ## Compute CIs using a log normal approximation for parameters. if (nargout > 1) ## Compute asymptotic covariance [~, acov] = logilike (paramhat, x, censor, freq); ## Get standard errors se = sqrt (diag (acov))'; ## Get normal quantiles probs = [alpha/2; 1-alpha/2]; ## Compute muci using a normal approximation paramci(:,1) = norminv (probs, paramhat(1), se(1)); ## Compute sci using a normal approximation for log (s) and transform back paramci(:,2) = exp (norminv (probs, log (paramhat(2)), log (se(2)))); endif endfunction %!demo %! ## Sample 3 populations from different logistic distibutions %! rand ("seed", 5) # for reproducibility %! r1 = logirnd (2, 1, 2000, 1); %! rand ("seed", 2) # for reproducibility %! r2 = logirnd (5, 2, 2000, 1); %! rand ("seed", 7) # for reproducibility %! r3 = logirnd (9, 4, 2000, 1); %! r = [r1, r2, r3]; %! %! ## Plot them normalized and fix their colors %! hist (r, [-6:20], 1); %! h = findobj (gca, "Type", "patch"); %! set (h(1), "facecolor", "c"); %! set (h(2), "facecolor", "g"); %! set (h(3), "facecolor", "r"); %! ylim ([0, 0.3]); %! xlim ([-5, 20]); %! hold on %! %! ## Estimate their MU and LAMBDA parameters %! mu_sA = logifit (r(:,1)); %! mu_sB = logifit (r(:,2)); %! mu_sC = logifit (r(:,3)); %! %! ## Plot their estimated PDFs %! x = [-5:0.5:20]; %! y = logipdf (x, mu_sA(1), mu_sA(2)); %! plot (x, y, "-pr"); %! y = logipdf (x, mu_sB(1), mu_sB(2)); %! plot (x, y, "-sg"); %! y = logipdf (x, mu_sC(1), mu_sC(2)); %! plot (x, y, "-^c"); %! hold off %! legend ({"Normalized HIST of sample 1 with μ=1 and s=0.5", ... %! "Normalized HIST of sample 2 with μ=2 and s=0.3", ... %! "Normalized HIST of sample 3 with μ=4 and s=0.5", ... %! sprintf("PDF for sample 1 with estimated μ=%0.2f and s=%0.2f", ... %! mu_sA(1), mu_sA(2)), ... %! sprintf("PDF for sample 2 with estimated μ=%0.2f and s=%0.2f", ... %! mu_sB(1), mu_sB(2)), ... %! sprintf("PDF for sample 3 with estimated μ=%0.2f and s=%0.2f", ... %! mu_sC(1), mu_sC(2))}) %! title ("Three population samples from different logistic distibutions") %! hold off ## Test output %!test %! paramhat = logifit ([1:50]); %! paramhat_out = [25.5, 8.7724]; %! assert (paramhat, paramhat_out, 1e-4); %!test %! paramhat = logifit ([1:5]); %! paramhat_out = [3, 0.8645]; %! assert (paramhat, paramhat_out, 1e-4); %!test %! paramhat = logifit ([1:6], [], [], [1 1 1 1 1 0]); %! paramhat_out = [3, 0.8645]; %! assert (paramhat, paramhat_out, 1e-4); %!test %! paramhat = logifit ([1:5], [], [], [1 1 1 1 2]); %! paramhat_out = logifit ([1:5, 5]); %! assert (paramhat, paramhat_out, 1e-4); ## Test input validation %!error logifit (ones (2,5)); %!error logifit ([1, 2, 3, 4, 5], 1.2); %!error logifit ([1, 2, 3, 4, 5], 0); %!error logifit ([1, 2, 3, 4, 5], "alpha"); %!error ... %! logifit ([1, 2, 3, 4, 5], 0.05, [1 1 0]); %!error ... %! logifit ([1, 2, 3, 4, 5], [], [1 1 0 1 1]'); %!error ... %! logifit ([1, 2, 3, 4, 5], 0.05, zeros (1,5), [1 1 0]); %!error ... %! logifit ([1, 2, 3, 4, 5], [], [], [1 1 0 1 1]'); %!error ... %! logifit ([1, 2, 3, 4, 5], 0.05, [], [], 2); statistics-release-1.6.3/inst/dist_fit/logilike.m000066400000000000000000000147731456127120000221020ustar00rootroot00000000000000## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{nlogL} =} logilike (@var{params}, @var{x}) ## @deftypefnx {statistics} {[@var{nlogL}, @var{acov}] =} logilike (@var{params}, @var{x}) ## @deftypefnx {statistics} {[@dots{}] =} logilike (@var{params}, @var{x}, @var{censor}) ## @deftypefnx {statistics} {[@dots{}] =} logilike (@var{params}, @var{x}, @var{censor}, @var{freq}) ## ## Negative log-likelihood for the logistic distribution. ## ## @code{@var{nlogL} = logilike (@var{params}, @var{x})} returns the negative ## log likelihood of the data in @var{x} corresponding to the logistic ## distribution with (1) location parameter @var{mu} and (2) scale parameter ## @var{s} given in the two-element vector @var{params}. ## ## @code{[@var{nlogL}, @var{acov}] = logilike (@var{params}, @var{x})} also ## returns the inverse of Fisher's information matrix, @var{acov}. If the input ## parameter values in @var{params} are the maximum likelihood estimates, the ## diagonal elements of @var{params} are their asymptotic variances. ## ## @code{[@dots{}] = logilike (@var{params}, @var{x}, @var{censor})} accepts a ## boolean vector, @var{censor}, of the same size as @var{x} with @qcode{1}s for ## observations that are right-censored and @qcode{0}s for observations that are ## observed exactly. By default, or if left empty, ## @qcode{@var{censor} = zeros (size (@var{x}))}. ## ## @code{[@dots{}] = logilike (@var{params}, @var{x}, @var{censor}, @var{freq})} ## accepts a frequency vector, @var{freq}, of the same size as @var{x}. ## @var{freq} typically contains integer frequencies for the corresponding ## elements in @var{x}, but it can contain any non-integer non-negative values. ## By default, or if left empty, @qcode{@var{freq} = ones (size (@var{x}))}. ## ## Further information about the logistic distribution can be found at ## @url{https://en.wikipedia.org/wiki/Logistic_distribution} ## ## @seealso{logicdf, logiinv, logipdf, logirnd, logifit} ## @end deftypefn function [nlogL, acov] = logilike (params, x, censor, freq) ## Check input arguments if (nargin < 2) error ("logilike: function called with too few input arguments."); endif if (! isvector (x)) error ("logilike: X must be a vector."); endif if (length (params) != 2) error ("logilike: PARAMS must be a two-element vector."); endif ## Check censor vector if (nargin < 3 || isempty (censor)) censor = zeros (size (x)); elseif (! isequal (size (x), size (censor))) error ("logilike: X and CENSOR vector mismatch."); endif ## Check frequency vector if (nargin < 4 || isempty (freq)) freq = ones (size (x)); elseif (! isequal (size (x), size (freq))) error ("logilike: X and FREQ vector mismatch."); endif ## Expand frequency and censor vectors (if necessary) if (! all (freq == 1)) xf = []; cf = []; for i = 1:numel (freq) xf = [xf, repmat(x(i), 1, freq(i))]; cf = [cf, repmat(censor(i), 1, freq(i))]; endfor x = xf; freq = ones (size (x)); censor = cf; endif ## Get parameters mu = params(1); s = params(2); z = (x - mu) ./ s; logclogitz = log (1 ./ (1 + exp (z))); k = (z > 700); if (any (k)) logclogitz(k) = z(k); endif L = z + 2 .* logclogitz - log (s); n_censored = sum (freq .* censor); ## Handle censored data if (n_censored > 0) censored = (censor == 1); L(censored) = logclogitz(censored); endif ## Sum up the neg log likelihood if (s < 0) nlogL = Inf; else nlogL = -sum (freq .* L); endif ## Compute asymptotic covariance if (nargout > 1) ## Compute first order central differences of the log-likelihood gradient dp = 0.0001 .* max (abs (params), 1); ngrad_p1 = logi_grad (params + [dp(1), 0], x, censor, freq); ngrad_m1 = logi_grad (params - [dp(1), 0], x, censor, freq); ngrad_p2 = logi_grad (params + [0, dp(2)], x, censor, freq); ngrad_m2 = logi_grad (params - [0, dp(2)], x, censor, freq); ## Compute negative Hessian by normalizing the differences by the increment nH = [(ngrad_p1(:) - ngrad_m1(:))./(2 * dp(1)), ... (ngrad_p2(:) - ngrad_m2(:))./(2 * dp(2))]; ## Force neg Hessian being symmetric nH = 0.5 .* (nH + nH'); ## Check neg Hessian is positive definite [R, p] = chol (nH); if (p > 0) warning ("logilike: non positive definite Hessian matrix."); acov = NaN (2); return endif ## ACOV estimate is the negative inverse of the Hessian. Rinv = inv (R); acov = Rinv * Rinv; endif endfunction ## Helper function for computing negative gradient function ngrad = logi_grad (params, x, censor, freq) mu = params(1); s = params(2); z = (x - mu) ./ s; logitz = 1 ./ (1 + exp (-z)); dL1 = (2 .* logitz - 1) ./ sigma; dL2 = z .* dL1 - 1 ./ sigma; n_censored = sum (freq .* censor); if (n_censored > 0) censored = (censor == 1); dL1(censored) = logitz(censored) ./ sigma; dL2(censored) = z(censored) .* dL1(censored); endif ngrad = -[sum(freq .* dL1), sum(freq .* dL2)]; endfunction ## Test results %!test %! nlogL = logilike ([25.5, 8.7725], [1:50]); %! assert (nlogL, 206.6769, 1e-4); %!test %! nlogL = logilike ([3, 0.8645], [1:5]); %! assert (nlogL, 9.0699, 1e-4); ## Test input validation %!error logilike (3.25) %!error logilike ([5, 0.2], ones (2)) %!error ... %! logilike ([1, 0.2, 3], [1, 3, 5, 7]) %!error ... %! logilike ([1.5, 0.2], [1:5], [0, 0, 0]) %!error ... %! logilike ([1.5, 0.2], [1:5], [0, 0, 0, 0, 0], [1, 1, 1]) %!error ... %! logilike ([1.5, 0.2], [1:5], [], [1, 1, 1]) statistics-release-1.6.3/inst/dist_fit/loglfit.m000066400000000000000000000236231456127120000217350ustar00rootroot00000000000000## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{paramhat} =} loglfit (@var{x}) ## @deftypefnx {statistics} {[@var{paramhat}, @var{paramci}] =} loglfit (@var{x}) ## @deftypefnx {statistics} {[@var{paramhat}, @var{paramci}] =} loglfit (@var{x}, @var{alpha}) ## @deftypefnx {statistics} {[@dots{}] =} loglfit (@var{x}, @var{alpha}, @var{censor}) ## @deftypefnx {statistics} {[@dots{}] =} loglfit (@var{x}, @var{alpha}, @var{censor}, @var{freq}) ## @deftypefnx {statistics} {[@dots{}] =} loglfit (@var{x}, @var{alpha}, @var{censor}, @var{freq}, @var{options}) ## ## Estimate mean and confidence intervals for the log-logistic distribution. ## ## @code{@var{mu0} = loglfit (@var{x})} returns the maximum likelihood ## estimates of the parameters of the log-logistic distribution given the data ## in @var{x}. @qcode{@var{paramhat}(1)} is the scale parameter, @var{a}, and ## @qcode{@var{paramhat}(2)} is the shape parameter, @var{b}. ## ## @code{[@var{paramhat}, @var{paramci}] = loglfit (@var{x})} returns the 95% ## confidence intervals for the parameter estimates. ## ## @code{[@dots{}] = loglfit (@var{x}, @var{alpha})} also returns the ## @qcode{100 * (1 - @var{alpha})} percent confidence intervals for the ## parameter estimates. By default, the optional argument @var{alpha} is ## 0.05 corresponding to 95% confidence intervals. Pass in @qcode{[]} for ## @var{alpha} to use the default values. ## ## @code{[@dots{}] = loglfit (@var{x}, @var{alpha}, @var{censor})} accepts a ## boolean vector, @var{censor}, of the same size as @var{x} with @qcode{1}s for ## observations that are right-censored and @qcode{0}s for observations that are ## observed exactly. By default, or if left empty, ## @qcode{@var{censor} = zeros (size (@var{x}))}. ## ## @code{[@dots{}] = loglfit (@var{x}, @var{alpha}, @var{censor}, @var{freq})} ## accepts a frequency vector, @var{freq}, of the same size as @var{x}. ## @var{freq} typically contains integer frequencies for the corresponding ## elements in @var{x}, but it can contain any non-integer non-negative values. ## By default, or if left empty, @qcode{@var{freq} = ones (size (@var{x}))}. ## ## @code{[@dots{}] = loglfit (@dots{}, @var{options})} specifies control ## parameters for the iterative algorithm used to compute ML estimates with the ## @code{fminsearch} function. @var{options} is a structure with the following ## fields and their default values: ## @itemize ## @item @qcode{@var{options}.Display = "off"} ## @item @qcode{@var{options}.MaxFunEvals = 400} ## @item @qcode{@var{options}.MaxIter = 200} ## @item @qcode{@var{options}.TolX = 1e-6} ## @end itemize ## ## Further information about the log-logistic distribution can be found at ## @url{https://en.wikipedia.org/wiki/Log-logistic_distribution} ## ## MATLAB compatibility: MATLAB uses an alternative parameterization given by ## the pair @math{μ, s}, i.e. @var{mu} and @var{s}, in analogy with the logistic ## distribution. Their relation to the @var{a} and @var{b} parameters is given ## below: ## ## @itemize ## @item @qcode{@var{a} = exp (@var{mu})} ## @item @qcode{@var{b} = 1 / @var{s}} ## @end itemize ## ## @seealso{loglcdf, loglinv, loglpdf, loglrnd, logllike} ## @end deftypefn function [paramhat, paramci] = loglfit (x, alpha, censor, freq, options) ## Check input arguments if (! isvector (x)) error ("loglfit: X must be a vector."); endif ## Check alpha if (nargin < 2 || isempty (alpha)) alpha = 0.05; else if (! isscalar (alpha) || ! isreal (alpha) || alpha <= 0 || alpha >= 1) error ("loglfit: wrong value for ALPHA."); endif endif ## Check censor vector if (nargin < 3 || isempty (censor)) censor = zeros (size (x)); elseif (! isequal (size (x), size (censor))) error ("loglfit: X and CENSOR vectors mismatch."); endif ## Check frequency vector if (nargin < 4 || isempty (freq)) freq = ones (size (x)); elseif (! isequal (size (x), size (freq))) error ("loglfit: X and FREQ vectors mismatch."); endif ## Get options structure or add defaults if (nargin < 5) options.Display = "off"; options.MaxFunEvals = 400; options.MaxIter = 200; options.TolX = 1e-6; else if (! isstruct (options) || ! isfield (options, "Display") || ! isfield (options, "MaxFunEvals") || ! isfield (options, "MaxIter") || ! isfield (options, "TolX")) error (strcat (["loglfit: 'options' 5th argument must be a"], ... [" structure with 'Display', 'MaxFunEvals',"], ... [" 'MaxIter', and 'TolX' fields present."])); endif endif ## Expand frequency and censor vectors (if necessary) if (! all (freq == 1)) xf = []; cf = []; for i = 1:numel (freq) xf = [xf, repmat(x(i), 1, freq(i))]; cf = [cf, repmat(censor(i), 1, freq(i))]; endfor x = xf; freq = ones (size (x)); censor = cf; endif ## Use MLEs of the uncensored data as initial searching values x_uncensored = x(censor == 0); a0 = mean (x_uncensored); b0 = 1 ./ (std (x_uncensored) .* sqrt (3) ./ pi); x0 = [a0, b0]; ## Minimize negative log-likelihood to estimate parameters f = @(params) logllike (params, x, censor, freq); [paramhat, ~, err, output] = fminsearch (f, x0, options); ## Force positive parameter values paramhat = abs (paramhat); ## Handle errors if (err == 0) if (output.funcCount >= options.MaxFunEvals) msg = "loglfit: maximum number of function evaluations are exceeded."; warning (msg); elseif (output.iterations >= options.MaxIter) warning ("loglfit: maximum number of iterations are exceeded."); endif elseif (err < 0) error ("loglfit: no solution."); endif ## Compute CIs using a log normal approximation for parameters. if (nargout > 1) ## Compute asymptotic covariance [~, acov] = logllike (paramhat, x, censor, freq); ## Get standard errors se = sqrt (diag (acov))'; ## Get normal quantiles probs = [alpha/2; 1-alpha/2]; ## Compute muci using a normal approximation paramci(:,1) = norminv (probs, paramhat(1), se(1)); ## Compute sci using a normal approximation for log (s) and transform back paramci(:,2) = exp (norminv (probs, log (paramhat(2)), log (se(2)))); endif endfunction %!demo %! ## Sample 3 populations from different log-logistic distibutions %! rand ("seed", 5) # for reproducibility %! r1 = loglrnd (1, 1, 2000, 1); %! rand ("seed", 2) # for reproducibility %! r2 = loglrnd (1, 2, 2000, 1); %! rand ("seed", 7) # for reproducibility %! r3 = loglrnd (1, 8, 2000, 1); %! r = [r1, r2, r3]; %! %! ## Plot them normalized and fix their colors %! hist (r, [0.05:0.1:2.5], 10); %! h = findobj (gca, "Type", "patch"); %! set (h(1), "facecolor", "c"); %! set (h(2), "facecolor", "g"); %! set (h(3), "facecolor", "r"); %! ylim ([0, 3.5]); %! xlim ([0, 2.0]); %! hold on %! %! ## Estimate their MU and LAMBDA parameters %! a_bA = loglfit (r(:,1)); %! a_bB = loglfit (r(:,2)); %! a_bC = loglfit (r(:,3)); %! %! ## Plot their estimated PDFs %! x = [0.01:0.1:2.01]; %! y = loglpdf (x, a_bA(1), a_bA(2)); %! plot (x, y, "-pr"); %! y = loglpdf (x, a_bB(1), a_bB(2)); %! plot (x, y, "-sg"); %! y = loglpdf (x, a_bC(1), a_bC(2)); %! plot (x, y, "-^c"); %! legend ({"Normalized HIST of sample 1 with α=1 and β=1", ... %! "Normalized HIST of sample 2 with α=1 and β=2", ... %! "Normalized HIST of sample 3 with α=1 and β=8", ... %! sprintf("PDF for sample 1 with estimated α=%0.2f and β=%0.2f", ... %! a_bA(1), a_bA(2)), ... %! sprintf("PDF for sample 2 with estimated α=%0.2f and β=%0.2f", ... %! a_bB(1), a_bB(2)), ... %! sprintf("PDF for sample 3 with estimated α=%0.2f and β=%0.2f", ... %! a_bC(1), a_bC(2))}) %! title ("Three population samples from different log-logistic distibutions") %! hold off ## Test output %!test %! paramhat = loglfit ([1:50]); %! paramhat_out = [exp(3.097175), 1/0.468525]; %! assert (paramhat, paramhat_out, 1e-4); %!test %! paramhat = loglfit ([1:5]); %! paramhat_out = [exp(1.01124), 1/0.336449]; %! assert (paramhat, paramhat_out, 1e-4); %!test %! paramhat = loglfit ([1:6], [], [], [1 1 1 1 1 0]); %! paramhat_out = [exp(1.01124), 1/0.336449]; %! assert (paramhat, paramhat_out, 1e-4); %!test %! paramhat = loglfit ([1:5], [], [], [1 1 1 1 2]); %! paramhat_out = loglfit ([1:5, 5]); %! assert (paramhat, paramhat_out, 1e-4); ## Test input validation %!error loglfit (ones (2,5)); %!error loglfit ([1, 2, 3, 4, 5], 1.2); %!error loglfit ([1, 2, 3, 4, 5], 0); %!error loglfit ([1, 2, 3, 4, 5], "alpha"); %!error ... %! loglfit ([1, 2, 3, 4, 5], 0.05, [1 1 0]); %!error ... %! loglfit ([1, 2, 3, 4, 5], [], [1 1 0 1 1]'); %!error ... %! loglfit ([1, 2, 3, 4, 5], 0.05, zeros (1,5), [1 1 0]); %!error ... %! loglfit ([1, 2, 3, 4, 5], [], [], [1 1 0 1 1]'); %!error ... %! loglfit ([1, 2, 3, 4, 5], 0.05, [], [], 2); statistics-release-1.6.3/inst/dist_fit/logllike.m000066400000000000000000000155611456127120000221010ustar00rootroot00000000000000## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{nlogL} =} logllike (@var{params}, @var{x}) ## @deftypefnx {statistics} {[@var{nlogL}, @var{acov}] =} logllike (@var{params}, @var{x}) ## @deftypefnx {statistics} {[@dots{}] =} logllike (@var{params}, @var{x}, @var{censor}) ## @deftypefnx {statistics} {[@dots{}] =} logllike (@var{params}, @var{x}, @var{censor}, @var{freq}) ## ## Negative log-likelihood for the log-logistic distribution. ## ## @code{@var{nlogL} = logllike (@var{params}, @var{x})} returns the negative ## log likelihood of the data in @var{x} corresponding to the log-logistic ## distribution with (1) scale parameter @var{a} and (2) shape parameter @var{b} ## given in the two-element vector @var{params}. ## ## @code{[@var{nlogL}, @var{acov}] = logllike (@var{params}, @var{x})} also ## returns the inverse of Fisher's information matrix, @var{acov}. If the input ## parameter values in @var{params} are the maximum likelihood estimates, the ## diagonal elements of @var{params} are their asymptotic variances. ## ## @code{[@dots{}] = logllike (@var{params}, @var{x}, @var{censor})} accepts a ## boolean vector, @var{censor}, of the same size as @var{x} with @qcode{1}s for ## observations that are right-censored and @qcode{0}s for observations that are ## observed exactly. By default, or if left empty, ## @qcode{@var{censor} = zeros (size (@var{x}))}. ## ## @code{[@dots{}] = logllike (@var{params}, @var{x}, @var{censor}, @var{freq})} ## accepts a frequency vector, @var{freq}, of the same size as @var{x}. ## @var{freq} typically contains integer frequencies for the corresponding ## elements in @var{x}, but it can contain any non-integer non-negative values. ## By default, or if left empty, @qcode{@var{freq} = ones (size (@var{x}))}. ## ## Further information about the log-logistic distribution can be found at ## @url{https://en.wikipedia.org/wiki/Log-logistic_distribution} ## ## MATLAB compatibility: MATLAB uses an alternative parameterization given by ## the pair @math{μ, s}, i.e. @var{mu} and @var{s}, in analogy with the logistic ## distribution. Their relation to the @var{a} and @var{b} parameters is given ## below: ## ## @itemize ## @item @qcode{@var{a} = exp (@var{mu})} ## @item @qcode{@var{b} = 1 / @var{s}} ## @end itemize ## ## @seealso{loglcdf, loglinv, loglpdf, loglrnd, loglfit} ## @end deftypefn function [nlogL, acov] = logllike (params, x, censor, freq) ## Check input arguments if (nargin < 2) error ("logllike: function called with too few input arguments."); endif if (! isvector (x)) error ("logllike: X must be a vector."); endif if (length (params) != 2) error ("logllike: PARAMS must be a two-element vector."); endif ## Check censor vector if (nargin < 3 || isempty (censor)) censor = zeros (size (x)); elseif (! isequal (size (x), size (censor))) error ("logllike: X and CENSOR vector mismatch."); endif ## Check frequency vector if (nargin < 4 || isempty (freq)) freq = ones (size (x)); elseif (! isequal (size (x), size (freq))) error ("logllike: X and FREQ vector mismatch."); endif ## Expand frequency and censor vectors (if necessary) if (! all (freq == 1)) xf = []; cf = []; for i = 1:numel (freq) xf = [xf, repmat(x(i), 1, freq(i))]; cf = [cf, repmat(censor(i), 1, freq(i))]; endfor x = xf; freq = ones (size (x)); censor = cf; endif ## Get parameters a = params(1); b = params(2); z = (log (x) - log (a)) .* b; logclogitz = log (1 ./ (1 + exp (z))); k = (z > 700); if (any (k)) logclogitz(k) = z(k); endif L = z + 2 .* logclogitz - log (1 / b) - log (x); n_censored = sum (freq .* censor); ## Handle censored data if (n_censored > 0) censored = (censor == 1); L(censored) = logclogitz(censored); endif ## Sum up the neg log likelihood nlogL = -sum (freq .* L); ## Compute asymptotic covariance if (nargout > 1) ## Compute first order central differences of the log-likelihood gradient dp = 0.0001 .* max (abs (params), 1); ngrad_p1 = logl_grad (params + [dp(1), 0], x, censor, freq); ngrad_m1 = logl_grad (params - [dp(1), 0], x, censor, freq); ngrad_p2 = logl_grad (params + [0, dp(2)], x, censor, freq); ngrad_m2 = logl_grad (params - [0, dp(2)], x, censor, freq); ## Compute negative Hessian by normalizing the differences by the increment nH = [(ngrad_p1(:) - ngrad_m1(:))./(2 * dp(1)), ... (ngrad_p2(:) - ngrad_m2(:))./(2 * dp(2))]; ## Force neg Hessian being symmetric nH = 0.5 .* (nH + nH'); ## Check neg Hessian is positive definite [R, p] = chol (nH); if (p > 0) warning ("logllike: non positive definite Hessian matrix."); acov = NaN (2); return endif ## ACOV estimate is the negative inverse of the Hessian. Rinv = inv (R); acov = Rinv * Rinv; endif endfunction ## Helper function for computing negative gradient function ngrad = logl_grad (params, x, censor, freq) a = params(1); b = params(2); z = (log (x) - log (a)) .* b; logitz = 1 ./ (1 + exp (-z)); dL1 = (2 .* logitz - 1) .* b; dL2 = z .* dL1 - b; n_censored = sum (freq .* censor); if (n_censored > 0) censored = (censor == 1); dL1(censored) = logitz(censored) .* b; dL2(censored) = z(censored) .* dL1(censored); endif ngrad = -[sum(freq .* dL1), sum(freq .* dL2)]; endfunction ## Test output %!test %! nlogL = logllike ([exp(3.09717), 1/0.468525], [1:50]); %! assert (nlogL, 211.2965, 1e-4); %!test %! nlogL = logllike ([exp(1.01124), 1/0.336449], [1:5]); %! assert (nlogL, 9.2206, 1e-4); ## Test input validation %!error logllike (3.25) %!error logllike ([5, 0.2], ones (2)) %!error ... %! logllike ([1, 0.2, 3], [1, 3, 5, 7]) %!error ... %! logllike ([1.5, 0.2], [1:5], [0, 0, 0]) %!error ... %! logllike ([1.5, 0.2], [1:5], [0, 0, 0, 0, 0], [1, 1, 1]) %!error ... %! logllike ([1.5, 0.2], [1:5], [], [1, 1, 1]) statistics-release-1.6.3/inst/dist_fit/lognfit.m000066400000000000000000000210741456127120000217350ustar00rootroot00000000000000## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{paramhat} =} lognfit (@var{x}) ## @deftypefnx {statistics} {[@var{paramhat}, @var{paramci}] =} lognfit (@var{x}) ## @deftypefnx {statistics} {[@var{paramhat}, @var{paramci}] =} lognfit (@var{x}, @var{alpha}) ## @deftypefnx {statistics} {[@dots{}] =} lognfit (@var{x}, @var{alpha}, @var{censor}) ## @deftypefnx {statistics} {[@dots{}] =} lognfit (@var{x}, @var{alpha}, @var{censor}, @var{freq}) ## @deftypefnx {statistics} {[@dots{}] =} lognfit (@var{x}, @var{alpha}, @var{censor}, @var{freq}, @var{options}) ## ## Estimate parameters and confidence intervals for the log-normal distribution. ## ## @code{@var{paramhat} = lognfit (@var{x})} returns the maximum likelihood ## estimates of the parameters of the log-normal distribution given the data in ## vector @var{x}. @qcode{@var{paramhat}([1, 2])} corresponds to the mean and ## standard deviation, respectively, of the associated normal distribution. ## ## If a random variable follows this distribution, its logarithm is normally ## distributed with mean @var{mu} and standard deviation @var{sigma}. ## ## @code{[@var{paramhat}, @var{paramci}] = lognfit (@var{x})} returns the 95% ## confidence intervals for the parameter estimates. ## ## @code{[@dots{}] = lognfit (@var{x}, @var{alpha})} also returns the ## @qcode{100 * (1 - @var{alpha})} percent confidence intervals for the ## parameter estimates. By default, the optional argument @var{alpha} is ## 0.05 corresponding to 95% confidence intervals. Pass in @qcode{[]} for ## @var{alpha} to use the default values. ## ## @code{[@dots{}] = lognfit (@var{x}, @var{alpha}, @var{censor})} accepts a ## boolean vector, @var{censor}, of the same size as @var{x} with @qcode{1}s for ## observations that are right-censored and @qcode{0}s for observations that are ## observed exactly. By default, or if left empty, ## @qcode{@var{censor} = zeros (size (@var{x}))}. ## ## @code{[@dots{}] = lognfit (@var{x}, @var{alpha}, @var{censor}, @var{freq})} ## accepts a frequency vector, @var{freq}, of the same size as @var{x}. ## @var{freq} typically contains integer frequencies for the corresponding ## elements in @var{x}, but it can contain any non-integer non-negative values. ## By default, or if left empty, @qcode{@var{freq} = ones (size (@var{x}))}. ## ## @code{[@dots{}] = lognfit (@dots{}, @var{options})} specifies control ## parameters for the iterative algorithm used to compute ML estimates with the ## @code{fminsearch} function. @var{options} is a structure with the following ## fields and their default values: ## @itemize ## @item @qcode{@var{options}.Display = "off"} ## @item @qcode{@var{options}.MaxFunEvals = 400} ## @item @qcode{@var{options}.MaxIter = 200} ## @item @qcode{@var{options}.TolX = 1e-6} ## @end itemize ## ## With no censor, the estimate of the standard deviation, ## @qcode{@var{paramhat}(2)}, is the square root of the unbiased estimate of the ## variance of @qcode{log (@var{x})}. With censored data, the maximum ## likelihood estimate is returned. ## ## Further information about the log-normal distribution can be found at ## @url{https://en.wikipedia.org/wiki/Log-normal_distribution} ## ## @seealso{logncdf, logninv, lognpdf, lognrnd, lognlike, lognstat} ## @end deftypefn function [paramhat, paramci] = lognfit (x, alpha, censor, freq, options) ## Check X for valid data if (! isvector (x) || ! isnumeric (x) || any (x <= 0)) error ("lognfit: X must be a numeric vector of positive values."); endif ## Check alpha if (nargin < 2 || isempty (alpha)) alpha = 0.05; else if (! isscalar (alpha) || ! isreal (alpha) || alpha <= 0 || alpha >= 1) error ("lognfit: wrong value for ALPHA."); endif endif ## Check censor vector if (nargin < 3 || isempty (censor)) censor = []; elseif (! isequal (size (x), size (censor))) error ("lognfit: X and CENSOR vectors mismatch."); endif ## Check frequency vector if (nargin < 4 || isempty (freq)) freq = []; elseif (! isequal (size(x), size(freq))) error ("lognfit: X and FREQ vectors mismatch."); endif ## Check options structure or add defaults if (nargin > 4 && ! isempty (options)) if (! isstruct (options) || ! isfield (options, "Display") || ! isfield (options, "MaxFunEvals") || ! isfield (options, "MaxIter") || ! isfield (options, "TolX")) error (strcat (["lognfit: 'options' 5th argument must be a"], ... [" structure with 'Display', 'MaxFunEvals',"], ... [" 'MaxIter', and 'TolX' fields present."])); endif else options = []; endif ## Fit a normal distribution to the logged data if (nargout <= 1) [muhat, sigmahat] = normfit (log (x), alpha, censor, freq, options); paramhat = [muhat, sigmahat]; else [muhat, sigmahat, muci, sigmaci] = normfit (log (x), alpha, ... censor, freq, options); paramhat = [muhat, sigmahat]; paramci = [muci, sigmaci]; endif endfunction %!demo %! ## Sample 3 populations from 3 different log-normal distibutions %! randn ("seed", 1); # for reproducibility %! r1 = lognrnd (0, 0.25, 1000, 1); %! randn ("seed", 2); # for reproducibility %! r2 = lognrnd (0, 0.5, 1000, 1); %! randn ("seed", 3); # for reproducibility %! r3 = lognrnd (0, 1, 1000, 1); %! r = [r1, r2, r3]; %! %! ## Plot them normalized and fix their colors %! hist (r, 30, 2); %! h = findobj (gca, "Type", "patch"); %! set (h(1), "facecolor", "c"); %! set (h(2), "facecolor", "g"); %! set (h(3), "facecolor", "r"); %! hold on %! %! ## Estimate their mu and sigma parameters %! mu_sigmaA = lognfit (r(:,1)); %! mu_sigmaB = lognfit (r(:,2)); %! mu_sigmaC = lognfit (r(:,3)); %! %! ## Plot their estimated PDFs %! x = [0:0.1:6]; %! y = lognpdf (x, mu_sigmaA(1), mu_sigmaA(2)); %! plot (x, y, "-pr"); %! y = lognpdf (x, mu_sigmaB(1), mu_sigmaB(2)); %! plot (x, y, "-sg"); %! y = lognpdf (x, mu_sigmaC(1), mu_sigmaC(2)); %! plot (x, y, "-^c"); %! ylim ([0, 2]) %! xlim ([0, 6]) %! hold off %! legend ({"Normalized HIST of sample 1 with mu=0, σ=0.25", ... %! "Normalized HIST of sample 2 with mu=0, σ=0.5", ... %! "Normalized HIST of sample 3 with mu=0, σ=1", ... %! sprintf("PDF for sample 1 with estimated mu=%0.2f and σ=%0.2f", ... %! mu_sigmaA(1), mu_sigmaA(2)), ... %! sprintf("PDF for sample 2 with estimated mu=%0.2f and σ=%0.2f", ... %! mu_sigmaB(1), mu_sigmaB(2)), ... %! sprintf("PDF for sample 3 with estimated mu=%0.2f and σ=%0.2f", ... %! mu_sigmaC(1), mu_sigmaC(2))}, "location", "northeast") %! title ("Three population samples from different log-normal distibutions") %! hold off ## Test output %!test %! x = lognrnd (3, 5, [1000, 1]); %! [paramhat, paramci] = lognfit (x, 0.01); %! assert (paramci(1,1) < 3); %! assert (paramci(1,2) > 3); %! assert (paramci(2,1) < 5); %! assert (paramci(2,2) > 5); ## Test input validation %!error ... %! lognfit (ones (20,3)) %!error ... %! lognfit ({1, 2, 3, 4, 5}) %!error ... %! lognfit ([-1, 2, 3, 4, 5]) %!error lognfit (ones (20,1), 0) %!error lognfit (ones (20,1), -0.3) %!error lognfit (ones (20,1), 1.2) %!error lognfit (ones (20,1), [0.05, 0.1]) %!error lognfit (ones (20,1), 0.02+i) %!error ... %! lognfit (ones (20,1), [], zeros(15,1)) %!error ... %! lognfit (ones (20,1), [], zeros(20,1), ones(25,1)) %!error lognfit (ones (20,1), [], zeros(20,1), ones(20,1), "options") statistics-release-1.6.3/inst/dist_fit/lognlike.m000066400000000000000000000141411456127120000220740ustar00rootroot00000000000000## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{nlogL} =} lognlike (@var{params}, @var{x}) ## @deftypefnx {statistics} {[@var{nlogL}, @var{avar}] =} lognlike (@var{params}, @var{x}) ## @deftypefnx {statistics} {[@dots{}] =} lognlike (@var{params}, @var{x}, @var{censor}) ## @deftypefnx {statistics} {[@dots{}] =} lognlike (@var{params}, @var{x}, @var{censor}, @var{freq}) ## ## Negative log-likelihood for the log-normal distribution. ## ## @code{@var{nlogL} = lognlike (@var{params}, @var{x})} returns the negative ## log-likelihood of the data in @var{x} corresponding to the log-normal ## distribution with (1) location parameter @var{mu} and (2) scale parameter ## @var{sigma} given in the two-element vector @var{params}, which correspond to ## the mean and standard deviation of the associated normal distribution. ## Missing values, @qcode{NaNs}, are ignored. Negative values of @var{x} are ## treated as missing values. ## ## If a random variable follows this distribution, its logarithm is normally ## distributed with mean @var{mu} and standard deviation @var{sigma}. ## ## @code{[@var{nlogL}, @var{avar}] = lognlike (@var{params}, @var{x})} ## returns the inverse of Fisher's information matrix, @var{avar}. If the input ## parameter values in @var{params} are the maximum likelihood estimates, the ## diagonal elements of @var{avar} are their asymptotic variances. @var{avar} ## is based on the observed Fisher's information, not the expected information. ## ## @code{[@dots{}] = lognlike (@var{params}, @var{x}, @var{censor})} accepts a ## boolean vector, @var{censor}, of the same size as @var{x} with @qcode{1}s for ## observations that are right-censored and @qcode{0}s for observations that are ## observed exactly. By default, or if left empty, ## @qcode{@var{censor} = zeros (size (@var{x}))}. ## ## @code{[@dots{}] = lognlike (@var{params}, @var{x}, @var{censor}, @var{freq})} ## accepts a frequency vector, @var{freq}, of the same size as @var{x}. ## @var{freq} typically contains integer frequencies for the corresponding ## elements in @var{x}, but it can contain any non-integer non-negative values. ## By default, or if left empty, @qcode{@var{freq} = ones (size (@var{x}))}. ## ## Further information about the log-normal distribution can be found at ## @url{https://en.wikipedia.org/wiki/Log-normal_distribution} ## ## @seealso{logncdf, logninv, lognpdf, lognrnd, lognfit, lognstat} ## @end deftypefn function [nlogL, avar] = lognlike (params, x, censor, freq) ## Check input arguments if (nargin < 2) error ("lognlike: function called with too few input arguments."); endif if (! isvector (x)) error ("lognlike: X must be a vector."); endif if (numel (params) != 2) error ("lognlike: PARAMS must be a two-element vector."); endif if (nargin < 3 || isempty (censor)) censor = []; elseif (! isequal (size (x), size (censor))) error ("lognlike: X and CENSOR vectors mismatch."); endif if nargin < 4 || isempty (freq) freq = []; elseif (isequal (size (x), size (freq))) nulls = find (freq == 0); if (numel (nulls) > 0) x(nulls) = []; if (numel (censor) == numel (freq)) censor(nulls) = []; endif freq(nulls) = []; endif else error ("lognlike: X and FREQ vectors mismatch."); endif ## Treat negative data in X as missing values x(x < 0) = NaN; ## Calculate on log data logx = log(x); if (nargout <= 1) nlogL = normlike (params, logx, censor, freq); else [nlogL, avar] = normlike (params, logx, censor, freq); endif ## Compute censored and frequency if (isempty (freq)) freq = 1; endif if (isempty (censor)) censor = 0; endif nlogL = nlogL + sum (freq .* logx .* (1 - censor)); endfunction ## Test output %!test %! x = 1:50; %! [nlogL, avar] = lognlike ([0, 0.25], x); %! avar_out = [-5.4749e-03, 2.8308e-04; 2.8308e-04, -1.1916e-05]; %! assert (nlogL, 3962.330333301793, 1e-10); %! assert (avar, avar_out, 1e-7); %!test %! x = 1:50; %! [nlogL, avar] = lognlike ([0, 0.25], x * 0.5); %! avar_out = [-7.6229e-03, 4.8722e-04; 4.8722e-04, -2.6754e-05]; %! assert (nlogL, 2473.183051225747, 1e-10); %! assert (avar, avar_out, 1e-7); %!test %! x = 1:50; %! [nlogL, avar] = lognlike ([0, 0.5], x); %! avar_out = [-2.1152e-02, 2.2017e-03; 2.2017e-03, -1.8535e-04]; %! assert (nlogL, 1119.072424020455, 1e-12); %! assert (avar, avar_out, 1e-6); %!test %! x = 1:50; %! censor = ones (1, 50); %! censor([2, 4, 6, 8, 12, 14]) = 0; %! [nlogL, avar] = lognlike ([0, 0.5], x, censor); %! avar_out = [-1.9823e-02, 2.0370e-03; 2.0370e-03, -1.6618e-04]; %! assert (nlogL, 1091.746371145497, 1e-12); %! assert (avar, avar_out, 1e-6); %!test %! x = 1:50; %! censor = ones (1, 50); %! censor([2, 4, 6, 8, 12, 14]) = 0; %! [nlogL, avar] = lognlike ([0, 1], x, censor); %! avar_out = [-6.8634e-02, 1.3968e-02; 1.3968e-02, -2.1664e-03]; %! assert (nlogL, 349.3969104144271, 1e-12); %! assert (avar, avar_out, 1e-6); ## Test input validation %!error ... %! lognlike ([12, 15]); %!error lognlike ([12, 15], ones (2)); %!error ... %! lognlike ([12, 15, 3], [1:50]); %!error ... %! lognlike ([12, 15], [1:50], [1, 2, 3]); %!error ... %! lognlike ([12, 15], [1:50], [], [1, 2, 3]); statistics-release-1.6.3/inst/dist_fit/nakafit.m000066400000000000000000000217151456127120000217120ustar00rootroot00000000000000## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{paramhat} =} nakafit (@var{x}) ## @deftypefnx {statistics} {[@var{paramhat}, @var{paramci}] =} nakafit (@var{x}) ## @deftypefnx {statistics} {[@var{paramhat}, @var{paramci}] =} nakafit (@var{x}, @var{alpha}) ## @deftypefnx {statistics} {[@dots{}] =} nakafit (@var{x}, @var{alpha}, @var{censor}) ## @deftypefnx {statistics} {[@dots{}] =} nakafit (@var{x}, @var{alpha}, @var{censor}, @var{freq}) ## @deftypefnx {statistics} {[@dots{}] =} nakafit (@var{x}, @var{alpha}, @var{censor}, @var{freq}, @var{options}) ## ## Estimate mean and confidence intervals for the Nakagami distribution. ## ## @code{@var{mu0} = nakafit (@var{x})} returns the maximum likelihood ## estimates of the parameters of the Nakagami distribution given the data in ## @var{x}. @qcode{@var{paramhat}(1)} is the scale parameter, @var{mu}, and ## @qcode{@var{paramhat}(2)} is the shape parameter, @var{omega}. ## ## @code{[@var{paramhat}, @var{paramci}] = nakafit (@var{x})} returns the 95% ## confidence intervals for the parameter estimates. ## ## @code{[@dots{}] = nakafit (@var{x}, @var{alpha})} also returns the ## @qcode{100 * (1 - @var{alpha})} percent confidence intervals for the ## parameter estimates. By default, the optional argument @var{alpha} is ## 0.05 corresponding to 95% confidence intervals. Pass in @qcode{[]} for ## @var{alpha} to use the default values. ## ## @code{[@dots{}] = nakafit (@var{x}, @var{alpha}, @var{censor})} accepts a ## boolean vector, @var{censor}, of the same size as @var{x} with @qcode{1}s for ## observations that are right-censored and @qcode{0}s for observations that are ## observed exactly. By default, or if left empty, ## @qcode{@var{censor} = zeros (size (@var{x}))}. ## ## @code{[@dots{}] = nakafit (@var{x}, @var{alpha}, @var{censor}, @var{freq})} ## accepts a frequency vector, @var{freq}, of the same size as @var{x}. ## @var{freq} typically contains integer frequencies for the corresponding ## elements in @var{x}, but it can contain any non-integer non-negative values. ## By default, or if left empty, @qcode{@var{freq} = ones (size (@var{x}))}. ## ## @code{[@dots{}] = nakafit (@dots{}, @var{options})} specifies control ## parameters for the iterative algorithm used to compute ML estimates with the ## @code{fminsearch} function. @var{options} is a structure with the following ## fields and their default values: ## @itemize ## @item @qcode{@var{options}.Display = "off"} ## @item @qcode{@var{options}.MaxFunEvals = 400} ## @item @qcode{@var{options}.MaxIter = 200} ## @item @qcode{@var{options}.TolX = 1e-6} ## @end itemize ## ## Further information about the Nakagami distribution can be found at ## @url{https://en.wikipedia.org/wiki/Nakagami_distribution} ## ## @seealso{nakacdf, nakainv, nakapdf, nakarnd, nakalike} ## @end deftypefn function [paramhat, paramci] = nakafit (x, alpha, censor, freq, options) ## Check input arguments if (! isvector (x)) error ("nakafit: X must be a vector."); endif ## Check alpha if (nargin < 2 || isempty (alpha)) alpha = 0.05; else if (! isscalar (alpha) || ! isreal (alpha) || alpha <= 0 || alpha >= 1) error ("nakafit: wrong value for ALPHA."); endif endif ## Check censor vector if (nargin < 3 || isempty (censor)) censor = zeros (size (x)); elseif (! isequal (size (x), size (censor))) error ("nakafit: X and CENSOR vectors mismatch."); endif ## Check frequency vector if (nargin < 4 || isempty (freq)) freq = ones (size (x)); elseif (! isequal (size (x), size (freq))) error ("nakafit: X and FREQ vectors mismatch."); endif ## Get options structure or add defaults if (nargin < 5) options.Display = "off"; options.MaxFunEvals = 400; options.MaxIter = 200; options.TolX = 1e-6; else if (! isstruct (options) || ! isfield (options, "Display") || ! isfield (options, "MaxFunEvals") || ! isfield (options, "MaxIter") || ! isfield (options, "TolX")) error (strcat (["nakafit: 'options' 5th argument must be a"], ... [" structure with 'Display', 'MaxFunEvals',"], ... [" 'MaxIter', and 'TolX' fields present."])); endif endif ## Expand frequency and censor vectors (if necessary) if (! all (freq == 1)) xf = []; cf = []; for i = 1:numel (freq) xf = [xf, repmat(x(i), 1, freq(i))]; cf = [cf, repmat(censor(i), 1, freq(i))]; endfor x = xf; freq = ones (size (x)); censor = cf; endif ## Get parameter estimates from the Gamma distribution paramhat = gamfit (x .^ 2, alpha, censor, freq, options); ## Transform back to Nakagami parameters paramhat(2) = paramhat(1) .* paramhat(2); ## Compute CIs using a log normal approximation for parameters. if (nargout > 1) ## Compute asymptotic covariance [~, acov] = nakalike (paramhat, x, censor, freq); ## Get standard errors se = sqrt (diag (acov))'; ## Get normal quantiles probs = [alpha/2; 1-alpha/2]; ## Compute muci using a normal approximation paramci(:,1) = norminv (probs, paramhat(1), se(1)); ## Compute omegaci using a normal approximation for log (omega) paramci(:,2) = exp (norminv (probs, log (paramhat(2)), log (se(2)))); endif endfunction %!demo %! ## Sample 3 populations from different Nakagami distibutions %! randg ("seed", 5) # for reproducibility %! r1 = nakarnd (0.5, 1, 2000, 1); %! randg ("seed", 2) # for reproducibility %! r2 = nakarnd (5, 1, 2000, 1); %! randg ("seed", 7) # for reproducibility %! r3 = nakarnd (2, 2, 2000, 1); %! r = [r1, r2, r3]; %! %! ## Plot them normalized and fix their colors %! hist (r, [0.05:0.1:3.5], 10); %! h = findobj (gca, "Type", "patch"); %! set (h(1), "facecolor", "c"); %! set (h(2), "facecolor", "g"); %! set (h(3), "facecolor", "r"); %! ylim ([0, 2.5]); %! xlim ([0, 3.0]); %! hold on %! %! ## Estimate their MU and LAMBDA parameters %! mu_omegaA = nakafit (r(:,1)); %! mu_omegaB = nakafit (r(:,2)); %! mu_omegaC = nakafit (r(:,3)); %! %! ## Plot their estimated PDFs %! x = [0.01:0.1:3.01]; %! y = nakapdf (x, mu_omegaA(1), mu_omegaA(2)); %! plot (x, y, "-pr"); %! y = nakapdf (x, mu_omegaB(1), mu_omegaB(2)); %! plot (x, y, "-sg"); %! y = nakapdf (x, mu_omegaC(1), mu_omegaC(2)); %! plot (x, y, "-^c"); %! legend ({"Normalized HIST of sample 1 with μ=0.5 and ω=1", ... %! "Normalized HIST of sample 2 with μ=5 and ω=1", ... %! "Normalized HIST of sample 3 with μ=2 and ω=2", ... %! sprintf("PDF for sample 1 with estimated μ=%0.2f and ω=%0.2f", ... %! mu_omegaA(1), mu_omegaA(2)), ... %! sprintf("PDF for sample 2 with estimated μ=%0.2f and ω=%0.2f", ... %! mu_omegaB(1), mu_omegaB(2)), ... %! sprintf("PDF for sample 3 with estimated μ=%0.2f and ω=%0.2f", ... %! mu_omegaC(1), mu_omegaC(2))}) %! title ("Three population samples from different Nakagami distibutions") %! hold off ## Test output %!test %! paramhat = nakafit ([1:50]); %! paramhat_out = [0.7355, 858.5]; %! assert (paramhat, paramhat_out, 1e-4); %!test %! paramhat = nakafit ([1:5]); %! paramhat_out = [1.1740, 11]; %! assert (paramhat, paramhat_out, 1e-4); %!test %! paramhat = nakafit ([1:6], [], [], [1 1 1 1 1 0]); %! paramhat_out = [1.1740, 11]; %! assert (paramhat, paramhat_out, 1e-4); %!test %! paramhat = nakafit ([1:5], [], [], [1 1 1 1 2]); %! paramhat_out = nakafit ([1:5, 5]); %! assert (paramhat, paramhat_out, 1e-4); ## Test input validation %!error nakafit (ones (2,5)); %!error nakafit ([1, 2, 3, 4, 5], 1.2); %!error nakafit ([1, 2, 3, 4, 5], 0); %!error nakafit ([1, 2, 3, 4, 5], "alpha"); %!error ... %! nakafit ([1, 2, 3, 4, 5], 0.05, [1 1 0]); %!error ... %! nakafit ([1, 2, 3, 4, 5], [], [1 1 0 1 1]'); %!error ... %! nakafit ([1, 2, 3, 4, 5], 0.05, zeros (1,5), [1 1 0]); %!error ... %! nakafit ([1, 2, 3, 4, 5], [], [], [1 1 0 1 1]'); %!error ... %! nakafit ([1, 2, 3, 4, 5], 0.05, [], [], 2); statistics-release-1.6.3/inst/dist_fit/nakalike.m000066400000000000000000000247061456127120000220570ustar00rootroot00000000000000## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{nlogL} =} nakalike (@var{params}, @var{x}) ## @deftypefnx {statistics} {[@var{nlogL}, @var{acov}] =} nakalike (@var{params}, @var{x}) ## @deftypefnx {statistics} {[@dots{}] =} nakalike (@var{params}, @var{x}, @var{censor}) ## @deftypefnx {statistics} {[@dots{}] =} nakalike (@var{params}, @var{x}, @var{censor}, @var{freq}) ## ## Negative log-likelihood for the Nakagami distribution. ## ## @code{@var{nlogL} = nakalike (@var{params}, @var{x})} returns the negative ## log likelihood of the data in @var{x} corresponding to the Nakagami ## distribution with (1) scale parameter @var{mu} and (2) shape parameter ## @var{omega} given in the two-element vector @var{params}. ## ## @code{[@var{nlogL}, @var{acov}] = nakalike (@var{params}, @var{x})} also ## returns the inverse of Fisher's information matrix, @var{acov}. If the input ## parameter values in @var{params} are the maximum likelihood estimates, the ## diagonal elements of @var{params} are their asymptotic variances. ## ## @code{[@dots{}] = nakalike (@var{params}, @var{x}, @var{censor})} accepts a ## boolean vector, @var{censor}, of the same size as @var{x} with @qcode{1}s for ## observations that are right-censored and @qcode{0}s for observations that are ## observed exactly. By default, or if left empty, ## @qcode{@var{censor} = zeros (size (@var{x}))}. ## ## @code{[@dots{}] = nakalike (@var{params}, @var{x}, @var{censor}, @var{freq})} ## accepts a frequency vector, @var{freq}, of the same size as @var{x}. ## @var{freq} typically contains integer frequencies for the corresponding ## elements in @var{x}, but it can contain any non-integer non-negative values. ## By default, or if left empty, @qcode{@var{freq} = ones (size (@var{x}))}. ## ## Further information about the Nakagami distribution can be found at ## @url{https://en.wikipedia.org/wiki/Nakagami_distribution} ## ## @seealso{nakacdf, nakainv, nakapdf, nakarnd, nakafit} ## @end deftypefn function [nlogL, acov] = nakalike (params, x, censor, freq) ## Check input arguments if (nargin < 2) error ("nakalike: function called with too few input arguments."); endif if (! isvector (x)) error ("nakalike: X must be a vector."); endif if (length (params) != 2) error ("nakalike: PARAMS must be a two-element vector."); endif ## Check censor vector if (nargin < 3 || isempty (censor)) censor = zeros (size (x)); elseif (! isequal (size (x), size (censor))) error ("nakalike: X and CENSOR vector mismatch."); endif ## Check frequency vector if (nargin < 4 || isempty (freq)) freq = ones (size (x)); elseif (! isequal (size (x), size (freq))) error ("nakalike: X and FREQ vector mismatch."); endif ## Expand frequency and censor vectors (if necessary) if (! all (freq == 1)) xf = []; cf = []; for i = 1:numel (freq) xf = [xf, repmat(x(i), 1, freq(i))]; cf = [cf, repmat(censor(i), 1, freq(i))]; endfor x = xf; freq = ones (size (x)); censor = cf; endif ## Get parameters mu = params(1); omega = params(2); log_a = gammaln (mu); log_b = log (omega / mu); z = x .^ 2 ./ (omega / mu); log_z = log (z); L = (mu - 1) .* log_z - z - log_a - log_b + log (2 .* x); ## Handle censored data n_censored = sum (freq .* censor); if (n_censored > 0) censored = (censor == 1); z_censored = z(censored); [S, dS] = dgammainc (z_censored, mu); L(censored) = log (S); endif ## Sum up the neg log likelihood nlogL = -sum (freq .* L); ## Compute asymptotic covariance if (nargout > 1) ## Compute first order central differences of the log-likelihood gradient dp = 0.0001 .* max (abs (params), 1); ngrad_p1 = logl_grad (params + [dp(1), 0], x, censor, freq); ngrad_m1 = logl_grad (params - [dp(1), 0], x, censor, freq); ngrad_p2 = logl_grad (params + [0, dp(2)], x, censor, freq); ngrad_m2 = logl_grad (params - [0, dp(2)], x, censor, freq); ## Compute negative Hessian by normalizing the differences by the increment nH = [(ngrad_p1(:) - ngrad_m1(:))./(2 * dp(1)), ... (ngrad_p2(:) - ngrad_m2(:))./(2 * dp(2))]; ## Force neg Hessian being symmetric nH = 0.5 .* (nH + nH'); ## Check neg Hessian is positive definite [R, p] = chol (nH); if (p > 0) warning ("nakalike: non positive definite Hessian matrix."); acov = NaN (2); return endif ## ACOV estimate is the negative inverse of the Hessian. Rinv = inv (R); acov = Rinv * Rinv; endif endfunction ## Helper function for computing negative gradient function ngrad = logl_grad (params, x, censor, freq) mu = params(1); omega = params(2); ## Transform to Gamma parameters log_a = gammaln (mu); log_b = log (omega / mu); z = x .^ 2 ./ (omega / mu); log_z = log (z); dL1 = log_z - psi (mu); dL2 = (z - mu) ./ (omega / mu); ## Handle censored data n_censored = sum (freq .* censor); if (n_censored > 0) censored = (censor == 1); z_censored = z(censored); [S, dS] = dgammainc (z_censored, a); dL1(censored) = dS ./ S; tmp = mu .* log_z(censored) - log_b - z_censored - log_a; dL2(censored) = exp (tmp) ./ S; endif ngrad = -[sum(freq .* dL1), sum(freq .* dL2)]; ## Transform back to Nakagami parameters ngrad = ngrad * [1, 0; (-omega ./ (mu .^ 2)), (1 ./ mu)]; endfunction ## Compute the incomplete Gamma function with its 1st and 2nd derivatives function [y, dy, d2y] = dgammainc (x, k) ## Initialize return variables y = nan (size (x)); dy = y; d2y = y; ## Use approximation for K > 2^20 ulim = 2^20; is_lim = find (k > ulim); if (! isempty (is_lim)) x(is_lim) = max (ulim - 1/3 + sqrt (ulim ./ k(is_lim)) .* ... (x(is_lim) - (k(is_lim) - 1/3)), 0); k(is_lim) = ulim; endif ## For x < k+1 is_lo = find(x < k + 1 & x != 0); if (! isempty (is_lo)) x_lo = x(is_lo); k_lo = k(is_lo); k_1 = k_lo; step = 1; d1st = 0; d2st = 0; stsum = step; d1sum = d1st; d2sum = d2st; while norm (step, "inf") >= 100 * eps (norm (stsum, "inf")) k_1 += 1; step = step .* x_lo ./ k_1; d1st = (d1st .* x_lo - step) ./ k_1; d2st = (d2st .* x_lo - 2 .* d1st) ./ k_1; stsum = stsum + step; d1sum = d1sum + d1st; d2sum = d2sum + d2st; endwhile fklo = exp (-x_lo + k_lo .* log (x_lo) - gammaln (k_lo + 1)); y_lo = fklo .* stsum; ## Fix very small k y_lo(x_lo > 0 & y_lo > 1) = 1; ## Compute 1st derivative dlogfklo = (log (x_lo) - psi (k_lo + 1)); d1fklo = fklo .* dlogfklo; d1y_lo = d1fklo .* stsum + fklo .* d1sum; ## Compute 2nd derivative d2fklo = d1fklo .* dlogfklo - fklo .* psi (1, k_lo + 1); d2y_lo = d2fklo .* stsum + 2 .* d1fklo .* d1sum + fklo .* d2sum; ## Considering the upper tail y(is_lo) = 1 - y_lo; dy(is_lo) = -d1y_lo; d2y(is_lo) = -d2y_lo; endif ## For x >= k+1 is_hi = find(x >= k+1); if (! isempty (is_hi)) x_hi = x(is_hi); k_hi = k(is_hi); zc = 0; k0 = 0; k1 = k_hi; x0 = 1; x1 = x_hi; d1k0 = 0; d1k1 = 1; d1x0 = 0; d1x1 = 0; d2k0 = 0; d2k1 = 0; d2x0 = 0; d2x2 = 0; kx = k_hi ./ x_hi; d1kx = 1 ./ x_hi; d2kx = 0; start = 1; while norm (d2kx - start, "Inf") > 100 * eps (norm (d2kx, "Inf")) rescale = 1 ./ x1; zc += 1; n_k = zc - k_hi; d2k0 = (d2k1 + d2k0 .* n_k - 2 .* d1k0) .* rescale; d2x0 = (d2x2 + d2x0 .* n_k - 2 .* d1x0) .* rescale; d1k0 = (d1k1 + d1k0 .* n_k - k0) .* rescale; d1x0 = (d1x1 + d1x0 .* n_k - x0) .* rescale; k0 = (k1 + k0 .* n_k) .* rescale; x0 = 1 + (x0 .* n_k) .* rescale; nrescale = zc .* rescale; d2k1 = d2k0 .* x_hi + d2k1 .* nrescale; d2x2 = d2x0 .* x_hi + d2x2 .* nrescale; d1k1 = d1k0 .* x_hi + d1k1 .* nrescale; d1x1 = d1x0 .* x_hi + d1x1 .* nrescale; k1 = k0 .* x_hi + k1 .* nrescale; x1 = x0 .* x_hi + zc; start = d2kx; kx = k1 ./ x1; d1kx = (d1k1 - kx .* d1x1) ./ x1; d2kx = (d2k1 - d1kx .* d1x1 - kx .* d2x2 - d1kx .* d1x1) ./ x1; endwhile fkhi = exp (-x_hi + k_hi .* log (x_hi) - gammaln (k_hi + 1)); y_hi = fkhi .* kx; ## Compute 1st derivative dlogfkhi = (log (x_hi) - psi (k_hi + 1)); d1fkhi = fkhi .* dlogfkhi; d1y_hi = d1fkhi .* kx + fkhi .* d1kx; ## Compute 2nd derivative d2fkhi = d1fkhi .* dlogfkhi - fkhi .* psi (1, k_hi + 1); d2y_hi = d2fkhi .* kx + 2 .* d1fkhi .* d1kx + fkhi .* d2kx; ## Considering the upper tail y(is_hi) = y_hi; dy(is_hi) = d1y_hi; d2y(is_hi) = d2y_hi; endif ## Handle x == 0 is_x0 = find (x == 0); if (! isempty (is_x0)) ## Considering the upper tail y(is_x0) = 1; dy(is_x0) = 0; d2y(is_x0) = 0; endif ## Handle k == 0 is_k0 = find (k == 0); if (! isempty (is_k0)) is_k0x0 = find (k == 0 & x == 0); ## Considering the upper tail y(is_k0) = 0; dy(is_k0x0) = Inf; d2y(is_k0x0) = -Inf; endif endfunction ## Test output %!test %! nlogL = nakalike ([0.735504, 858.5], [1:50]); %! assert (nlogL, 202.8689, 1e-4); %!test %! nlogL = nakalike ([1.17404, 11], [1:5]); %! assert (nlogL, 8.6976, 1e-4); ## Test input validation %!error nakalike (3.25) %!error nakalike ([5, 0.2], ones (2)) %!error ... %! nakalike ([1, 0.2, 3], [1, 3, 5, 7]) %!error ... %! nakalike ([1.5, 0.2], [1:5], [0, 0, 0]) %!error ... %! nakalike ([1.5, 0.2], [1:5], [0, 0, 0, 0, 0], [1, 1, 1]) %!error ... %! nakalike ([1.5, 0.2], [1:5], [], [1, 1, 1]) statistics-release-1.6.3/inst/dist_fit/nbinfit.m000066400000000000000000000227571456127120000217350ustar00rootroot00000000000000## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{paramhat} =} nbinfit (@var{x}) ## @deftypefnx {statistics} {[@var{paramhat}, @var{paramci}] =} nbinfit (@var{x}) ## @deftypefnx {statistics} {[@var{paramhat}, @var{paramci}] =} nbinfit (@var{x}, @var{alpha}) ## @deftypefnx {statistics} {[@var{paramhat}, @var{paramci}] =} nbinfit (@var{x}, @var{alpha}, @var{options}) ## ## Estimate parameter and confidence intervals for the negative binomial ## distribution. ## ## @code{@var{paramhat} = nbinfit (@var{x})} returns the maximum likelihood ## estimates of the parameters of the negative binomial distribution given the ## data in vector @var{x}. @qcode{@var{paramhat}(1)} is the number of successes ## until the experiment is stopped, @var{r}, and @qcode{@var{paramhat}(1)} is ## the probability of success in each experiment, @var{ps}. ## ## @code{[@var{paramhat}, @var{paramci}] = nbinfit (@var{x})} returns the 95% ## confidence intervals for the parameter estimates. ## ## @code{[@var{paramhat}, @var{paramci}] = nbinfit (@var{x}, @var{alpha})} also ## returns the @qcode{100 * (1 - @var{alpha})} percent confidence intervals of ## the estimated parameter. By default, the optional argument @var{alpha} is ## 0.05 corresponding to 95% confidence intervals. ## ## @code{[@var{paramhat}, @var{paramci}] = nbinfit (@var{x}, @var{alpha}, ## @var{options})} specifies control parameters for the iterative algorithm used ## to compute ML estimates with the @code{fminsearch} function. @var{options} ## is a structure with the following fields and their default values: ## @itemize ## @item @qcode{@var{options}.Display = "off"} ## @item @qcode{@var{options}.MaxFunEvals = 400} ## @item @qcode{@var{options}.MaxIter = 200} ## @item @qcode{@var{options}.TolX = 1e-6} ## @end itemize ## ## When @var{r} is an integer, the negative binomial distribution is also known ## as the Pascal distribution and it models the number of failures in @var{x} ## before a specified number of successes is reached in a series of independent, ## identical trials. Its parameters are the probability of success in a single ## trial, @var{ps}, and the number of successes, @var{r}. A special case of the ## negative binomial distribution, when @qcode{@var{r} = 1}, is the geometric ## distribution, which models the number of failures before the first success. ## ## @var{r} can also have non-integer positive values, in which form the negative ## binomial distribution, also known as the Polya distribution, has no ## interpretation in terms of repeated trials, but, like the Poisson ## distribution, it is useful in modeling count data. The negative binomial ## distribution is more general than the Poisson distribution because it has a ## variance that is greater than its mean, making it suitable for count data ## that do not meet the assumptions of the Poisson distribution. In the limit, ## as @var{r} increases to infinity, the negative binomial distribution ## approaches the Poisson distribution. ## ## Further information about the negative binomial distribution can be found at ## @url{https://en.wikipedia.org/wiki/Negative_binomial_distribution} ## ## @seealso{nbincdf, nbininv, nbinpdf, nbinrnd, nbinlike, nbinstat} ## @end deftypefn function [paramhat, paramci] = nbinfit (x, alpha, options) ## Check data in X if (any (x < 0)) error ("nbinfit: X cannot have negative values."); endif if (! isvector (x)) error ("nbinfit: X must be a vector."); endif if (any (x < 0) || any (x != round (x)) || any (isinf (x))) error ("nbinfit: X must be a non-negative integer."); endif ## Check ALPHA if (nargin < 2 || isempty (alpha)) alpha = 0.05; elseif (! isscalar (alpha) || ! isreal (alpha) || alpha <= 0 || alpha >= 1) error ("nbinfit: wrong value for ALPHA."); endif ## Get options structure or add defaults if (nargin < 3) options.Display = "off"; options.MaxFunEvals = 400; options.MaxIter = 200; options.TolX = 1e-6; else if (! isstruct (options) || ! isfield (options, "Display") || ! isfield (options, "MaxFunEvals") || ! isfield (options, "MaxIter") || ! isfield (options, "TolX")) error (strcat (["nbinfit: 'options' 3rd argument must be a"], ... [" structure with 'Display', 'MaxFunEvals',"], ... [" 'MaxIter', and 'TolX' fields present."])); endif endif ## Ensure that a negative binomial fit is valid. xbar = mean (x); varx = var (x); if (varx <= xbar) paramhat = cast ([Inf, 1.0], class (x)); paramci = cast ([Inf, 1; Inf, 1], class (x)); fprintf ("warning: nbinfit: mean exceeds variance.\n"); return endif ## Use Method of Moments estimates as starting point for MLEs. rhat = (xbar .* xbar) ./ (varx - xbar); ## Minimize negative log-likelihood to estimate parameters by parameterizing ## with mu=r(1-p)/p, so it becomes 1-parameter search for rhat. f = @(rhat) nbinfit_search (rhat, x, numel (x), sum (x), options.TolX); [rhat, ~, err, output] = fminsearch (f, rhat, options); ## Handle errors if (err == 0) if (output.funcCount >= options.MaxFunEvals) warning (strcat (["nbinfit: maximum number of function"], ... [" evaluations are exceeded."])); elseif (output.iterations >= options.MaxIter) warning ("nbinfit: maximum number of iterations are exceeded."); endif elseif (err < 0) error ("nbinfit: NoSolution."); endif ## Compute parameter estimates pshat = rhat ./ (xbar + rhat); paramhat = [rhat, pshat]; ## Compute confidence interval if (nargout > 1) [~, avar] = nbinlike (paramhat, x); ## Get standard errors sigma = sqrt (diag (avar)); ## Get normal quantiles probs = [alpha/2; 1-alpha/2]; ## Compute paramci using a normal approximation paramci = norminv ([probs, probs], [paramhat; paramhat], [sigma'; sigma']); ## Restrict CI to valid values: r >= 0, 0 <= ps <= 1 paramci(paramci < 0) = 0; if (paramci(2,2) > 1) paramci(2,2) = 1; endif endif endfunction ## Helper function for minimizing the negative log-likelihood function nll = nbinfit_search (r, x, nx, sx, tol) if (r < tol) nll = Inf; else xbar = sx / nx; nll = -sum (gammaln (r +x )) + nx * gammaln (r) ... -nx * r * log (r / (xbar + r)) - sx * log (xbar / (xbar + r)); endif endfunction %!demo %! ## Sample 2 populations from different negative binomial distibutions %! randp ("seed", 5); randg ("seed", 5); # for reproducibility %! r1 = nbinrnd (2, 0.15, 5000, 1); %! randp ("seed", 8); randg ("seed", 8); # for reproducibility %! r2 = nbinrnd (5, 0.2, 5000, 1); %! r = [r1, r2]; %! %! ## Plot them normalized and fix their colors %! hist (r, [0:51], 1); %! h = findobj (gca, "Type", "patch"); %! set (h(1), "facecolor", "c"); %! set (h(2), "facecolor", "g"); %! hold on %! %! ## Estimate their probability of success %! r_psA = nbinfit (r(:,1)); %! r_psB = nbinfit (r(:,2)); %! %! ## Plot their estimated PDFs %! x = [0:40]; %! y = nbinpdf (x, r_psA(1), r_psA(2)); %! plot (x, y, "-pg"); %! x = [min(r(:,2)):max(r(:,2))]; %! y = nbinpdf (x, r_psB(1), r_psB(2)); %! plot (x, y, "-sc"); %! ylim ([0, 0.1]) %! xlim ([0, 50]) %! legend ({"Normalized HIST of sample 1 with r=2 and ps=0.15", ... %! "Normalized HIST of sample 2 with r=5 and ps=0.2", ... %! sprintf("PDF for sample 1 with estimated r=%0.2f and ps=%0.2f", ... %! r_psA(1), r_psA(2)), ... %! sprintf("PDF for sample 2 with estimated r=%0.2f and ps=%0.2f", ... %! r_psB(1), r_psB(2))}) %! title ("Two population samples from negative different binomial distibutions") %! hold off ## Test output %!test %! [paramhat, paramci] = nbinfit ([1:50]); %! assert (paramhat, [2.420857, 0.086704], 1e-6); %! assert (paramci(:,1), [1.382702; 3.459012], 1e-6); %! assert (paramci(:,2), [0.049676; 0.123732], 1e-6); %!test %! [paramhat, paramci] = nbinfit ([1:20]); %! assert (paramhat, [3.588233, 0.254697], 1e-6); %! assert (paramci(:,1), [0.451693; 6.724774], 1e-6); %! assert (paramci(:,2), [0.081143; 0.428251], 1e-6); %!test %! [paramhat, paramci] = nbinfit ([1:10]); %! assert (paramhat, [8.8067, 0.6156], 1e-4); %! assert (paramci(:,1), [0; 30.7068], 1e-4); %! assert (paramci(:,2), [0.0217; 1], 1e-4); ## Test input validation %!error nbinfit ([-1 2 3 3]) %!error nbinfit (ones (2)) %!error nbinfit ([1 2 1.2 3]) %!error nbinfit ([1 2 3], 0) %!error nbinfit ([1 2 3], 1.2) %!error nbinfit ([1 2 3], [0.02 0.05]) %!error ... %! nbinfit ([1, 2, 3, 4, 5], 0.05, 2); statistics-release-1.6.3/inst/dist_fit/nbinlike.m000066400000000000000000000127261456127120000220720ustar00rootroot00000000000000## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{nlogL} =} nbinlike (@var{params}, @var{x}) ## @deftypefnx {statistics} {[@var{nlogL}, @var{avar}] =} nbinlike (@var{params}, @var{x}) ## ## Negative log-likelihood for the negative binomial distribution. ## ## @code{@var{nlogL} = nbinlike (@var{params}, @var{x})} returns the negative ## log likelihood of the negative binomial distribution with (1) parameter ## @var{r} and (2) parameter @var{ps}, given in the two-element vector ## @var{params}, where @var{r} is the number of successes until the experiment ## is stopped and @var{ps} is the probability of success in each experiment, ## given the number of failures in @var{x}. ## ## @code{[@var{nlogL}, @var{avar}] = nbinlike (@var{params}, @var{x})} also ## returns the inverse of Fisher's information matrix, @var{avar}. If the input ## parameter values in @var{params} are the maximum likelihood estimates, the ## diagonal elements of @var{params} are their asymptotic variances. ## ## When @var{r} is an integer, the negative binomial distribution is also known ## as the Pascal distribution and it models the number of failures in @var{x} ## before a specified number of successes is reached in a series of independent, ## identical trials. Its parameters are the probability of success in a single ## trial, @var{ps}, and the number of successes, @var{r}. A special case of the ## negative binomial distribution, when @qcode{@var{r} = 1}, is the geometric ## distribution, which models the number of failures before the first success. ## ## @var{r} can also have non-integer positive values, in which form the negative ## binomial distribution, also known as the Polya distribution, has no ## interpretation in terms of repeated trials, but, like the Poisson ## distribution, it is useful in modeling count data. The negative binomial ## distribution is more general than the Poisson distribution because it has a ## variance that is greater than its mean, making it suitable for count data ## that do not meet the assumptions of the Poisson distribution. In the limit, ## as @var{r} increases to infinity, the negative binomial distribution ## approaches the Poisson distribution. ## ## Further information about the negative binomial distribution can be found at ## @url{https://en.wikipedia.org/wiki/Negative_binomial_distribution} ## ## @seealso{nbincdf, nbininv, nbinpdf, nbinrnd, nbinfit, nbinstat} ## @end deftypefn function [nlogL, avar] = nbinlike (params, x) ## Check input arguments if (nargin < 2) error ("nbinlike: function called with too few input arguments."); endif if (! isvector (x)) error ("nbinlike: X must be a vector."); endif if (any (x < 0)) error ("nbinlike: X cannot have negative values."); endif if (any (x != fix (x))) error ("nbinlike: number of failures, X, must be integers."); endif if (length (params) != 2) error ("nbinlike: PARAMS must be a two-element vector."); endif if (params(1) <= 0) error (strcat (["nbinlike: number of successes, PARAMS(1), must be"], ... [" a real positive value."])); endif if (params(2) < 0 || params(2) > 1) error (strcat (["nbinlike: probability of success, PARAMS(2), must be"], ... [" in the range [0,1]."])); endif ## Compute negative log-likelihood and asymptotic variance r = params(1); ps = params(2); nx = numel (x); glnr = gammaln (r + x) - gammaln (x + 1) - gammaln (r); sumx = sum (x); nlogL = -(sum (glnr) + nx * r * log (ps)) - sumx * log (1 - ps); if (nargout == 2) dL11 = sum (psi (1, r + x) - psi (1, r)); dL12 = nx ./ ps; dL22 = -nx .*r ./ ps .^ 2 - sumx ./ (1 - ps) .^ 2; nH = -[dL11, dL12; dL12, dL22]; if (any (isnan (nH(:)))) avar = [NaN, NaN; NaN, NaN]; else avar = inv (nH); end endif endfunction ## Test output %!assert (nbinlike ([2.42086, 0.0867043],[1:50]), 205.5942, 1e-4) %!assert (nbinlike ([3.58823, 0.254697], [1:20]), 63.6435, 1e-4) %!assert (nbinlike ([8.80671, 0.615565], [1:10]), 24.7410, 1e-4) %!assert (nbinlike ([22.1756, 0.831306], [1:8]), 17.9528, 1e-4) ## Test input validation %!error nbinlike (3.25) %!error nbinlike ([5, 0.2], ones (2)) %!error nbinlike ([5, 0.2], [-1, 3]) %!error ... %! nbinlike ([1, 0.2, 3], [1, 3, 5, 7]) %!error nbinlike ([-5, 0.2], [1:15]) %!error nbinlike ([0, 0.2], [1:15]) %!error nbinlike ([5, 1.2], [3, 5]) %!error nbinlike ([5, -0.2], [3, 5]) statistics-release-1.6.3/inst/dist_fit/normfit.m000066400000000000000000000407661456127120000217620ustar00rootroot00000000000000## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{muhat} =} normfit (@var{x}) ## @deftypefnx {statistics} {[@var{muhat}, @var{sigmahat}] =} normfit (@var{x}) ## @deftypefnx {statistics} {[@var{muhat}, @var{sigmahat}, @var{muci}] =} normfit (@var{x}) ## @deftypefnx {statistics} {[@var{muhat}, @var{sigmahat}, @var{muci}, @var{sigmaci}] =} normfit (@var{x}) ## @deftypefnx {statistics} {[@dots{}] =} normfit (@var{x}, @var{alpha}) ## @deftypefnx {statistics} {[@dots{}] =} normfit (@var{x}, @var{alpha}, @var{censor}) ## @deftypefnx {statistics} {[@dots{}] =} normfit (@var{x}, @var{alpha}, @var{censor}, @var{freq}) ## @deftypefnx {statistics} {[@dots{}] =} normfit (@var{x}, @var{alpha}, @var{censor}, @var{freq}, @var{options}) ## ## Estimate parameters and confidence intervals for the normal distribution. ## ## @code{[@var{muhat}, @var{sigmahat}] = normfit (@var{x})} estimates the ## parameters of the normal distribution given the data in @var{x}. @var{muhat} ## is an estimate of the mean, and @var{sigmahat} is an estimate of the standard ## deviation. ## ## @code{[@var{muhat}, @var{sigmahat}, @var{muci}, @var{sigmaci}] = normfit ## (@var{x})} returns the 95% confidence intervals for the mean and standard ## deviation estimates in the arrays @var{muci} and @var{sigmaci}, respectively. ## ## @itemize ## @item ## @var{x} can be a vector or a matrix. When @var{x} is a matrix, the parameter ## estimates and their confidence intervals are computed for each column. In ## this case, @code{normfit} supports only 2 input arguments, @var{x} and ## @var{alpha}. Optional arguments @var{censor}, @var{freq}, and @var{options} ## can be used only when @var{x} is a vector. ## ## @item ## @var{alpha} is a scalar value in the range @math{(0,1)} specifying the ## confidence level for the confidence intervals calculated as ## @math{100x(1 – alpha)%}. By default, the optional argument @var{alpha} is ## 0.05 corresponding to 95% confidence intervals. Pass in @qcode{[]} for ## @var{alpha} to use the default values. ## ## @item ## @var{censor} is a logical vector of the same length as @var{x} specifying ## whether each value in @var{x} is right-censored or not. 1 indicates ## observations that are right-censored and 0 indicates observations that are ## fully observed. With censoring, @var{muhat} and @var{sigmahat} are the ## maximum likelihood estimates (MLEs). If empty, the default is an array of ## 0s, meaning that all observations are fully observed. ## ## @item ## @var{freq} is a vector of the same length as @var{x} and it typically ## contains non-negative integer counts of the corresponding elements in ## @var{x}. If empty, the default is an array of 1s, meaning one observation ## per element of @var{x}. To obtain the weighted MLEs for a data set with ## censoring, specify weights of observations, normalized to the number of ## observations in @var{x}. However, when there is no censored data (default), ## the returned estimate for standard deviation is not exactly the WMLE. To ## compute the weighted MLE, multiply the value returned in @var{sigmahat} by ## @code{(SUM (@var{freq}) - 1) / SUM (@var{freq})}. This correction is needed ## because @code{normfit} normally computes @var{sigmahat} using an unbiased ## variance estimator when there is no censored data. When there is censoring ## in the data, the correction is not needed, since @code{normfit} does not use ## the unbiased variance estimator in that case. ## ## @item ## @var{options} is a structure with the control parameters for ## @code{fminsearch} which is used internally to compute MLEs for censored data. ## By default, it uses the following options: ## @itemize ## @item @qcode{@var{options}.Display = "off"} ## @item @qcode{@var{options}.MaxFunEvals = 400} ## @item @qcode{@var{options}.MaxIter = 200} ## @item @qcode{@var{options}.TolX = 1e-6} ## @end itemize ## @end itemize ## ## @seealso{normcdf, norminv, normpdf, normrnd, normlike, normstat} ## @end deftypefn function [muhat, sigmahat, muci, sigmaci] = normfit (x, alpha, censor, freq, options) ## Check for valid number of input arguments narginchk (1, 5); ## Check X for being a vector or a matrix if (ndims (x) != 2) error ("normfit: X must not be a multi-dimensional array."); endif if (! isvector (x)) if (nargin < 3) [n, ncols] = size (x); else error ("normfit: matrix data acceptable only under 2-arg syntax."); endif else n = numel (x); ncols = 1; endif ## Check alpha if (nargin < 2 || isempty (alpha)) alpha = 0.05; else if (! isscalar (alpha) || ! isreal (alpha) || alpha <= 0 || alpha >= 1) error ("normfit: wrong value for ALPHA."); endif endif ## Check censor vector if (nargin < 3 || isempty (censor)) censor = 0; elseif (! isequal (size (x), size (censor))) error ("normfit: X and CENSOR vectors mismatch."); endif ## Check frequency vector if (nargin < 4 || isempty (freq)) freq = 1; elseif (isequal (size (x), size (freq))) n = sum (freq); is_zero = find (freq == 0); if (numel (is_zero) > 0) x(is_zero) = []; if (numel (censor) == numel (freq)) censor(is_zero) = []; endif freq(is_zero) = []; end else error ("normfit: X and FREQ vectors mismatch."); endif ## Check options structure or add defaults if (nargin > 4 && ! isempty (options)) if (! isstruct (options) || ! isfield (options, "Display") || ! isfield (options, "MaxFunEvals") || ! isfield (options, "MaxIter") || ! isfield (options, "TolX")) error (strcat (["normfit: 'options' 5th argument must be a"], ... [" structure with 'Display', 'MaxFunEvals',"], ... [" 'MaxIter', and 'TolX' fields present."])); endif else options.Display = "off"; options.MaxFunEvals = 400; options.MaxIter = 200; options.TolX = 1e-6; endif ## Get number of censored and uncensored elements n_censored = sum(freq.*censor); % a scalar in all cases n_uncensored = n - n_censored; % a scalar in all cases ## Compute total sum in X totalsum = sum(freq.*x); ## Check cases that cannot make a fit. ## 1. Handle Infs and NaNs if (! isfinite (totalsum)) muhat = totalsum; sigmahat = NaN ("like", x); muci = NaN (2, 1, "like", x); sigmaci = NaN (2, 1, "like", x); return endif ## 2. All observations are censored or empty data if (n == 0 || n_uncensored == 0) muhat = NaN (1, ncols,'like',x); sigmahat = NaN (1, ncols,'like',x); muci = NaN (2, ncols,'like',x); sigmaci = NaN (2, ncols,'like',x); return endif ## 3. No censored values, compute parameter estimates explicitly. if (n_censored == 0) muhat = totalsum ./ n; if (n > 1) if numel(muhat) == 1 # X is a vector xc = x - muhat; else # X is a matrix xc = x - repmat (muhat, [n, 1]); endif sigmahat = sqrt (sum (conj (xc) .* xc .* freq) ./ (n - 1)); else sigmahat = zeros (1, ncols, "like", x); endif if (nargout > 2) if (n > 1) paramhat = [muhat; sigmahat]; ci = norm_ci (paramhat, [], alpha, x, [], freq); muci = ci(:,:,1); sigmaci = ci(:,:,2); else muci = [-Inf; Inf] * ones (1, ncols, "like", x); sigmaci = [0; Inf] * ones (1, ncols, "like", x); endif endif return endif ## 4. Αll uncensored observations equal and greater than all the ## censored observations x_uncensored = x(censor == 0); range_x_uncensored = range (x_uncensored); if (range_x_uncensored < realmin (class (x))) if (x_uncensored(1) == max (x)) muhat = x_uncensored(1); sigmahat = zeros ('like',x); if (n_uncensored > 1) muci = [muhat; muhat]; sigmaci = zeros (2, 1, "like", x); else muci = cast ([-Inf; Inf], "like", x); sigmaci = cast ([0; Inf], "like", x); endif return endif endif ## Get an initial estimate for parameters using the "least squares" method if (range_x_uncensored > 0) if (numel (freq) == numel (x)) [p,q] = ecdf (x, "censoring", censor, "frequency", freq); else [p,q] = ecdf (x, "censoring", censor); endif pmid = (p(1:(end-1)) + p(2:end)) / 2; linefit = polyfit (-sqrt (2) * erfcinv (2 * pmid), q(2:end), 1); paramhat = linefit ([2 1]); else # only one uncensored element in X paramhat = [x_uncensored(1) 1]; endif ## Optimize the parameters as doubles, regardless of input data type paramhat = cast (paramhat, "double"); ## Search for parameter that minimize the negative log likelihood function [paramhat, ~, err, output] = fminsearch ... (@(ph) norm_nlogl (ph, x, censor, freq), paramhat, options); ## Handle errors if (err == 0) if (output.funcCount >= options.MaxFunEvals) warning ("normfit: maximum number of function evaluations are exceeded."); elseif (output.iterations >= options.MaxIter) warning ("normfit: maximum number of iterations are exceeded."); endif elseif (err < 0) error ("normfit: NoSolution."); endif ## Make sure the outputs match the input data type muhat = cast (paramhat(1), "like", x); sigmahat = cast (paramhat(2), "like", x); if (nargout > 2) paramhat = paramhat(:); if (numel (freq) == numel (x)) [~, avar] = normlike (paramhat, x, censor, freq); else [~, avar] = normlike (paramhat, x, censor); endif ci = norm_ci (paramhat, avar, alpha, x, censor, freq); muci = ci(:,:,1); sigmaci = ci(:,:,2); endif endfunction ## Negative log-likelihood function and gradient for normal distribution. function [nlogL, avar] = norm_nlogl (params, x, censor, freq) ## Get mu and sigma values mu = params(1); sigma = params(2); ## Compute the individual log-likelihood terms. Force a log(0)==-Inf for ## data from extreme right tail, instead of getting exp(Inf-Inf)==NaN. z = (x - mu) ./ sigma; L = -0.5 .* z .^ 2 - log (sqrt (2 .* pi) .* sigma); if (any (censor)) censored = censor == 1; z_censor = z(censored); S_censor = 0.5 * erfc (z_censor / sqrt (2)); L(censored) = log (S_censor); endif ## Neg-log-like is the sum of the individual contributions nlogL = -sum (freq .* L); ## Compute the negative hessian at the parameter values. ## Invert to get the observed information matrix. if (nargout == 2) dL11 = -ones (size (z), class (z)); dL12 = -2 .* z; dL22 = 1 - 3 .* z .^ 2; if (any (censor)) dlogScen = exp (-0.5 .* z_censor .^ 2) ./ (sqrt (2 * pi) .* S_censor); d2logScen = dlogScen .* (dlogScen - z_censor); dL11(censored) = -d2logScen; dL12(censored) = -dlogScen - z_censor .* d2logScen; dL22(censored) = -z_censor .* (2 .* dlogScen + z_censor .* d2logScen); endif nH11 = -sum (freq .* dL11); nH12 = -sum (freq .* dL12); nH22 = -sum (freq .* dL22); avar = (sigma .^ 2) * [nH22, -nH12; -nH12, nH11] / ... (nH11 * nH22 - nH12 * nH12); endif endfunction ## Confidence intervals for normal distribution function ci = norm_ci (paramhat, cv, alpha, x, censor, freq) ## Check for missing input arguments if (nargin < 6 || isempty (freq)) freq = ones (size (x)); endif if (nargin < 5 || isempty (censor)) censor = false (size (x)); endif if (isvector (paramhat)) paramhat = paramhat(:); endif muhat = paramhat(1,:); sigmahat = paramhat(2,:); ## Get number of elements if (isempty (freq) || isequal (freq, 1)) if (isvector (x)) n = length (x); else n = size (x, 1); endif else n = sum (freq); endif ## Get number of censored and uncensored elements n_censored = sum (freq .* censor); n_uncensored = n - n_censored; ## Just in case if (any (censor) && (n == 0 || n_uncensored == 0 || ! isfinite (paramhat(1)))) ## X is a vector muci = NaN(2,1); sigmaci = NaN(2,1); ci = cast (cat (3, muci, sigmaci), "like", x); return endif ## Get confidence intervals for each parameter if ((isempty (censor) || ! any (censor(:))) && ! isequal (cv,zeros(2,2))) ## Use exact formulas tcrit = tinv ([alpha/2, 1-alpha/2], n-1); muci = [muhat+tcrit(1)*sigmahat/sqrt(n); muhat+tcrit(2)*sigmahat/sqrt(n)]; chi2crit = chi2inv ([alpha/2, 1-alpha/2], n-1); sigmaci = [sigmahat*sqrt((n-1)./chi2crit(2)); ... sigmahat*sqrt((n-1)./chi2crit(1))]; else ## Use normal approximation probs = [alpha/2; 1-alpha/2]; se = sqrt (diag (cv))'; z = norminv (probs); ## Compute the CI for mu using a normal distribution for muhat. muci = muhat + se(1) .* z; ## Compute the CI for sigma using a normal approximation for ## log(sigmahat), and transform back to the original scale. logsigci = log (sigmahat) + (se(2) ./ sigmahat) .* z; sigmaci = exp (logsigci); endif ## Return as a single array ci = cat (3, muci, sigmaci); endfunction %!demo %! ## Sample 3 populations from 3 different normal distibutions %! randn ("seed", 1); # for reproducibility %! r1 = normrnd (2, 5, 5000, 1); %! randn ("seed", 2); # for reproducibility %! r2 = normrnd (5, 2, 5000, 1); %! randn ("seed", 3); # for reproducibility %! r3 = normrnd (9, 4, 5000, 1); %! r = [r1, r2, r3]; %! %! ## Plot them normalized and fix their colors %! hist (r, 15, 0.4); %! h = findobj (gca, "Type", "patch"); %! set (h(1), "facecolor", "c"); %! set (h(2), "facecolor", "g"); %! set (h(3), "facecolor", "r"); %! hold on %! %! ## Estimate their mu and sigma parameters %! [muhat, sigmahat] = normfit (r); %! %! ## Plot their estimated PDFs %! x = [min(r(:)):max(r(:))]; %! y = normpdf (x, muhat(1), sigmahat(1)); %! plot (x, y, "-pr"); %! y = normpdf (x, muhat(2), sigmahat(2)); %! plot (x, y, "-sg"); %! y = normpdf (x, muhat(3), sigmahat(3)); %! plot (x, y, "-^c"); %! ylim ([0, 0.5]) %! xlim ([-20, 20]) %! hold off %! legend ({"Normalized HIST of sample 1 with mu=2, σ=5", ... %! "Normalized HIST of sample 2 with mu=5, σ=2", ... %! "Normalized HIST of sample 3 with mu=9, σ=4", ... %! sprintf("PDF for sample 1 with estimated mu=%0.2f and σ=%0.2f", ... %! muhat(1), sigmahat(1)), ... %! sprintf("PDF for sample 2 with estimated mu=%0.2f and σ=%0.2f", ... %! muhat(2), sigmahat(2)), ... %! sprintf("PDF for sample 3 with estimated mu=%0.2f and σ=%0.2f", ... %! muhat(3), sigmahat(3))}, "location", "northwest") %! title ("Three population samples from different normal distibutions") %! hold off ## Test output %!test %! load lightbulb %! idx = find (lightbulb(:,2) == 0); %! censoring = lightbulb(idx,3) == 1; %! [muHat, sigmaHat] = normfit (lightbulb(idx,1), [], censoring); %! assert (muHat, 9496.59586737857, 1e-11); %! assert (sigmaHat, 3064.021012796456, 2e-12); %!test %! randn ("seed", 234); %! x = normrnd (3, 5, [1000, 1]); %! [muHat, sigmaHat, muCI, sigmaCI] = normfit (x, 0.01); %! assert (muCI(1) < 3); %! assert (muCI(2) > 3); %! assert (sigmaCI(1) < 5); %! assert (sigmaCI(2) > 5); ## Test input validation %!error ... %! normfit (ones (3,3,3)) %!error ... %! normfit (ones (20,3), [], zeros (20,1)) %!error normfit (ones (20,1), 0) %!error normfit (ones (20,1), -0.3) %!error normfit (ones (20,1), 1.2) %!error normfit (ones (20,1), [0.05 0.1]) %!error normfit (ones (20,1), 0.02+i) %!error ... %! normfit (ones (20,1), [], zeros(15,1)) %!error ... %! normfit (ones (20,1), [], zeros(20,1), ones(25,1)) %!error normfit (ones (20,1), [], zeros(20,1), ones(20,1), "options") statistics-release-1.6.3/inst/dist_fit/normlike.m000066400000000000000000000146511456127120000221160ustar00rootroot00000000000000## Copyright (C) 2022 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{nlogL} =} normlike (@var{params}, @var{x}) ## @deftypefnx {statistics} {[@var{nlogL}, @var{avar}] =} normlike (@var{params}, @var{x}) ## @deftypefnx {statistics} {[@dots{}] =} normlike (@var{params}, @var{x}, @var{censor}) ## @deftypefnx {statistics} {[@dots{}] =} normlike (@var{params}, @var{x}, @var{censor}, @var{freq}) ## ## Negative log-likelihood for the normal distribution. ## ## @code{@var{nlogL} = normlike (@var{params}, @var{x})} returns the negative ## log-likelihood for the normal distribution, evaluated at parameters ## @var{params(1)} = mean and @var{params(2)} = standard deviation, given ## @var{x}. @var{nlogL} is a scalar. ## ## @code{[@var{nlogL}, @var{avar}] = normlike (@var{params}, @var{x})} ## returns the inverse of Fisher's information matrix, @var{avar}. If the input ## parameter values in @var{params} are the maximum likelihood estimates, the ## diagonal elements of @var{avar} are their asymptotic variances. @var{avar} ## is based on the observed Fisher's information, not the expected information. ## ## @code{[@dots{}] = normlike (@var{params}, @var{x}, @var{censor})} accepts ## a boolean vector of the same size as @var{x} that is 1 for observations ## that are right-censored and 0 for observations that are observed exactly. ## ## @code{[@dots{}] = normlike (@var{params}, @var{x}, @var{censor}, ## @var{freq})} accepts a frequency vector of the same size as @var{x}. ## @var{freq} typically contains integer frequencies for the corresponding ## elements in @var{x}, but it may contain any non-integer non-negative ## values. Pass in [] for @var{censor} to use its default value. ## ## @seealso{normcdf, norminv, normpdf, normrnd, normfit, normstat} ## @end deftypefn function [nlogL, avar] = normlike (params, x, censor, freq) ## Check input arguments if (nargin < 2) error ("normlike: too few input arguments."); endif if (! isvector (x)) error ("normlike: X must be a vector."); endif if (numel (params) != 2) error ("normlike: PARAMS must be a two-element vector."); endif if (nargin < 3 || isempty (censor)) censor = zeros (size (x)); elseif (! isequal (size (x), size (censor))) error ("normlike: X and CENSOR vectors mismatch."); endif if nargin < 4 || isempty (freq) freq = ones (size (x)); elseif (isequal (size (x), size (freq))) nulls = find (freq == 0); if (numel (nulls) > 0) x(nulls) = []; censor(nulls) = []; freq(nulls) = []; endif else error ("normlike: X and FREQ vectors mismatch."); endif ## Get mu and sigma values mu = params(1); sigma = params(2); ## sigma must be positive, otherwise make it NaN if (sigma <= 0) sigma = NaN; endif ## Compute the individual log-likelihood terms. Force a log(0)==-Inf for ## x from extreme right tail, instead of getting exp(Inf-Inf)==NaN. z = (x - mu) ./ sigma; L = -0.5 .* z .^ 2 - log (sqrt (2 .* pi) .* sigma); if (any (censor)) censored = censor == 1; z_censor = z(censored); S_censor = 0.5 * erfc (z_censor / sqrt (2)); L(censored) = log (S_censor); endif ## Neg-log-like is the sum of the individual contributions nlogL = -sum (freq .* L); ## Compute the negative hessian at the parameter values. ## Invert to get the observed information matrix. if (nargout == 2) dL11 = -ones (size (z), class (z)); dL12 = -2 .* z; dL22 = 1 - 3 .* z .^ 2; if (any (censor)) dlogScen = exp (-0.5 .* z_censor .^ 2) ./ (sqrt (2 * pi) .* S_censor); d2logScen = dlogScen .* (dlogScen - z_censor); dL11(censored) = -d2logScen; dL12(censored) = -dlogScen - z_censor .* d2logScen; dL22(censored) = -z_censor .* (2 .* dlogScen + z_censor .* d2logScen); endif nH11 = -sum (freq .* dL11); nH12 = -sum (freq .* dL12); nH22 = -sum (freq .* dL22); avar = (sigma .^ 2) * [nH22, -nH12; -nH12, nH11] / ... (nH11 * nH22 - nH12 * nH12); endif endfunction ## Test input validation %!error normlike ([12, 15]); %!error normlike ([12, 15], ones (2)); %!error ... %! normlike ([12, 15, 3], [1:50]); %!error ... %! normlike ([12, 15], [1:50], [1, 2, 3]); %!error ... %! normlike ([12, 15], [1:50], [], [1, 2, 3]); ## Results compared with Matlab %!test %! x = 1:50; %! [nlogL, avar] = normlike ([2.3, 1.2], x); %! avar_out = [7.5767e-01, -1.8850e-02; -1.8850e-02, 4.8750e-04]; %! assert (nlogL, 13014.95883783327, 1e-10); %! assert (avar, avar_out, 1e-4); %!test %! x = 1:50; %! [nlogL, avar] = normlike ([2.3, 1.2], x * 0.5); %! avar_out = [3.0501e-01, -1.5859e-02; -1.5859e-02, 9.1057e-04]; %! assert (nlogL, 2854.802587833265, 1e-10); %! assert (avar, avar_out, 1e-4); %!test %! x = 1:50; %! [nlogL, avar] = normlike ([21, 15], x); %! avar_out = [5.460474308300396, -1.600790513833993; ... %! -1.600790513833993, 2.667984189723321]; %! assert (nlogL, 206.738325604233, 1e-12); %! assert (avar, avar_out, 1e-14); %!test %! x = 1:50; %! censor = ones (1, 50); %! censor([2, 4, 6, 8, 12, 14]) = 0; %! [nlogL, avar] = normlike ([2.3, 1.2], x, censor); %! avar_out = [3.0501e-01, -1.5859e-02; -1.5859e-02, 9.1057e-04]; %! assert (nlogL, Inf); %! assert (avar, [NaN, NaN; NaN, NaN]); %!test %! x = 1:50; %! censor = ones (1, 50); %! censor([2, 4, 6, 8, 12, 14]) = 0; %! [nlogL, avar] = normlike ([21, 15], x, censor); %! avar_out = [24.4824488866131, -10.6649544179636; ... %! -10.6649544179636, 6.22827849965737]; %! assert (nlogL, 86.9254371829733, 1e-12); %! assert (avar, avar_out, 8e-14); statistics-release-1.6.3/inst/dist_fit/poissfit.m000066400000000000000000000144561456127120000221410ustar00rootroot00000000000000## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{lambdahat} =} poissfit (@var{x}) ## @deftypefnx {statistics} {[@var{lambdahat}, @var{lambdaci}] =} poissfit (@var{x}) ## @deftypefnx {statistics} {[@var{lambdahat}, @var{lambdaci}] =} poissfit (@var{x}, @var{alpha}) ## @deftypefnx {statistics} {[@var{lambdahat}, @var{lambdaci}] =} poissfit (@var{x}, @var{alpha}, @var{freq}) ## ## Estimate parameter and confidence intervals for the Poisson distribution. ## ## @code{@var{lambdahat} = poissfit (@var{x})} returns the maximum likelihood ## estimate of the rate parameter, @var{lambda}, of the Poisson distribution ## given the data in @var{x}. @var{x} must be a vector of non-negative values. ## ## @code{[@var{lambdahat}, @var{lambdaci}] = poissfit (@var{x})} returns the 95% ## confidence intervals for the parameter estimate. ## ## @code{[@var{lambdahat}, @var{lambdaci}] = poissfit (@var{x}, @var{alpha})} ## also returns the @qcode{100 * (1 - @var{alpha})} percent confidence intervals ## of the estimated parameter. By default, the optional argument @var{alpha} is ## 0.05 corresponding to 95% confidence intervals. Pass in @qcode{[]} for ## @var{alpha} to use the default values. ## ## @code{[@dots{}] = poissfit (@var{x}, @var{alpha}, @var{freq})} accepts a ## frequency vector or matrix, @var{freq}, of the same size as @var{x}. ## @var{freq} typically contains integer frequencies for the corresponding ## elements in @var{x}. @var{freq} cannot contain negative values. ## ## Further information about the Poisson distribution can be found at ## @url{https://en.wikipedia.org/wiki/Poisson_distribution} ## ## @seealso{poisscdf, poissinv, poisspdf, poissrnd, poisslike, poisstat} ## @end deftypefn function [lambdahat, lambdaci] = poissfit (x, alpha, freq=[]) ## Check input arguments if (any (x < 0)) error ("poissfit: X cannot have negative values."); endif if (nargin < 2 || isempty (alpha)) alpha = 0.05; elseif (! isscalar (alpha) || ! isreal (alpha) || alpha <= 0 || alpha >= 1) error ("poissfit: wrong value for ALPHA."); endif if (isempty (freq)) freq = ones (size (x)); elseif (! isequal (size (x), size (freq))) error ("poissfit: X and FREQ vectors mismatch."); elseif (any (freq < 0)) error ("poissfit: FREQ must not contain negative values."); endif if (isvector (x)) x = x(:); freq = freq(:); endif ## Compute lambdahat n = sum (freq, 1); lambdahat = double (sum (x .* freq) ./ n); ## Compute confidence intervals lambdasum = n .* lambdahat; ## Select elements for exact method or normal approximation k = (lambdasum < 100); if (any (k)) # exact method lb(k) = chi2inv (alpha / 2, 2 * lambdasum(k)) / 2; ub(k) = chi2inv (1 - alpha / 2, 2 * (lambdasum(k) + 1)) / 2; endif k = ! k; if (any (k)) # normal approximation lb(k) = norminv (alpha / 2, lambdasum(k), sqrt (lambdasum(k))); ub(k) = norminv (1 - alpha / 2, lambdasum(k), sqrt (lambdasum(k))); endif lambdaci = [lb; ub] / n; endfunction %!demo %! ## Sample 3 populations from 3 different Poisson distibutions %! randp ("seed", 2); # for reproducibility %! r1 = poissrnd (1, 1000, 1); %! randp ("seed", 2); # for reproducibility %! r2 = poissrnd (4, 1000, 1); %! randp ("seed", 3); # for reproducibility %! r3 = poissrnd (10, 1000, 1); %! r = [r1, r2, r3]; %! %! ## Plot them normalized and fix their colors %! hist (r, [0:20], 1); %! h = findobj (gca, "Type", "patch"); %! set (h(1), "facecolor", "c"); %! set (h(2), "facecolor", "g"); %! set (h(3), "facecolor", "r"); %! hold on %! %! ## Estimate their lambda parameter %! lambdahat = poissfit (r); %! %! ## Plot their estimated PDFs %! x = [0:20]; %! y = poisspdf (x, lambdahat(1)); %! plot (x, y, "-pr"); %! y = poisspdf (x, lambdahat(2)); %! plot (x, y, "-sg"); %! y = poisspdf (x, lambdahat(3)); %! plot (x, y, "-^c"); %! xlim ([0, 20]) %! ylim ([0, 0.4]) %! legend ({"Normalized HIST of sample 1 with λ=1", ... %! "Normalized HIST of sample 2 with λ=4", ... %! "Normalized HIST of sample 3 with λ=10", ... %! sprintf("PDF for sample 1 with estimated λ=%0.2f", ... %! lambdahat(1)), ... %! sprintf("PDF for sample 2 with estimated λ=%0.2f", ... %! lambdahat(2)), ... %! sprintf("PDF for sample 3 with estimated λ=%0.2f", ... %! lambdahat(3))}) %! title ("Three population samples from different Poisson distibutions") %! hold off ## Test output %!test %! x = [1 3 2 4 5 4 3 4]; %! [lhat, lci] = poissfit (x); %! assert (lhat, 3.25) %! assert (lci, [2.123007901949543; 4.762003010390628], 1e-14) %!test %! x = [1 3 2 4 5 4 3 4]; %! [lhat, lci] = poissfit (x, 0.01); %! assert (lhat, 3.25) %! assert (lci, [1.842572740234582; 5.281369033298528], 1e-14) %!test %! x = [1 2 3 4 5]; %! f = [1 1 2 3 1]; %! [lhat, lci] = poissfit (x, [], f); %! assert (lhat, 3.25) %! assert (lci, [2.123007901949543; 4.762003010390628], 1e-14) %!test %! x = [1 2 3 4 5]; %! f = [1 1 2 3 1]; %! [lhat, lci] = poissfit (x, 0.01, f); %! assert (lhat, 3.25) %! assert (lci, [1.842572740234582; 5.281369033298528], 1e-14) ## Test input validation %!error poissfit ([1 2 -1 3]) %!error poissfit ([1 2 3], 0) %!error poissfit ([1 2 3], 1.2) %!error poissfit ([1 2 3], [0.02 0.05]) %!error %! poissfit ([1 2 3], [], [1 5]) %!error %! poissfit ([1 2 3], [], [1 5 -1]) statistics-release-1.6.3/inst/dist_fit/poisslike.m000066400000000000000000000076071456127120000223030ustar00rootroot00000000000000## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{nlogL} =} poisslike (@var{lambda}, @var{x}) ## @deftypefnx {statistics} {[@var{nlogL}, @var{avar}] =} poisslike (@var{lambda}, @var{x}) ## @deftypefnx {statistics} {[@dots{}] =} poisslike (@var{lambda}, @var{x}, @var{freq}) ## ## Negative log-likelihood for the Poisson distribution. ## ## @code{@var{nlogL} = poisslike (@var{lambda}, @var{x})} returns the negative ## log likelihood of the data in @var{x} corresponding to the Poisson ## distribution with rate parameter @var{lambda}. @var{x} must be a vector of ## non-negative values. ## ## @code{[@var{nlogL}, @var{avar}] = poisslike (@var{lambda}, @var{x})} also ## returns the inverse of Fisher's information matrix, @var{avar}. If the input ## rate parameter, @var{lambda}, is the maximum likelihood estimate, @var{avar} ## is its asymptotic variance. ## ## @code{[@dots{}] = poisslike (@var{lambda}, @var{x}, @var{freq})} accepts a ## frequency vector, @var{freq}, of the same size as @var{x}. @var{freq} ## typically contains integer frequencies for the corresponding elements in ## @var{x}, but it can contain any non-integer non-negative values. By default, ## or if left empty, @qcode{@var{freq} = ones (size (@var{x}))}. ## ## Further information about the Poisson distribution can be found at ## @url{https://en.wikipedia.org/wiki/Poisson_distribution} ## ## @seealso{poisscdf, poissinv, poisspdf, poissrnd, poissfit, poisstat} ## @end deftypefn function [nlogL, avar] = poisslike (lambda, x, freq=[]) ## Check input arguments if (nargin < 2) error ("poisslike: function called with too few input arguments."); endif if (! isscalar (lambda) || ! isnumeric (lambda) || lambda <= 0) error ("poisslike: LAMBDA must be a positive scalar."); endif if (! isvector (x) || any (x < 0)) error ("poisslike: X must be a vector of non-negative values."); endif if (isempty (freq)) freq = ones (size (x)); elseif (! isequal (size (x), size (freq))) error ("poisslike: X and FREQ vectors mismatch."); elseif (any (freq < 0)) error ("poisslike: FREQ must not contain negative values."); endif ## Compute negative log-likelihood and asymptotic covariance n = sum (freq); nlogL = - sum (freq .* log (poisspdf (x, lambda))); avar = lambda / n; endfunction ## Test output %!test %! x = [1 3 2 4 5 4 3 4]; %! [nlogL, avar] = poisslike (3.25, x); %! assert (nlogL, 13.9533, 1e-4) %!test %! x = [1 2 3 4 5]; %! f = [1 1 2 3 1]; %! [nlogL, avar] = poisslike (3.25, x, f); %! assert (nlogL, 13.9533, 1e-4) ## Test input validation %!error poisslike (1) %!error poisslike ([1 2 3], [1 2]) %!error ... %! poisslike (3.25, ones (10, 2)) %!error ... %! poisslike (3.25, [1 2 3 -4 5]) %!error ... %! poisslike (3.25, ones (10, 1), ones (8,1)) %!error ... %! poisslike (3.25, ones (1, 8), [1 1 1 1 1 1 1 -1]) statistics-release-1.6.3/inst/dist_fit/raylfit.m000066400000000000000000000170161456127120000217460ustar00rootroot00000000000000## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{sigmaA} =} raylfit (@var{x}) ## @deftypefnx {statistics} {[@var{sigmaA}, @var{sigmaci}] =} raylfit (@var{x}) ## @deftypefnx {statistics} {[@var{sigmaA}, @var{sigmaci}] =} raylfit (@var{x}, @var{alpha}) ## @deftypefnx {statistics} {[@var{sigmaA}, @var{sigmaci}] =} raylfit (@var{x}, @var{alpha}, @var{censor}) ## @deftypefnx {statistics} {[@var{sigmaA}, @var{sigmaci}] =} raylfit (@var{x}, @var{alpha}, @var{censor}, @var{freq}) ## ## Estimate parameter and confidence intervals for the Rayleigh distribution. ## ## @code{@var{sigmaA} = raylfit (@var{x})} returns the maximum likelihood ## estimate of the rate parameter, @var{lambda}, of the Rayleigh distribution ## given the data in @var{x}. @var{x} must be a vector of non-negative values. ## ## @code{[@var{sigmaA}, @var{sigmaci}] = raylfit (@var{x})} returns the 95% ## confidence intervals for the parameter estimate. ## ## @code{[@var{sigmaA}, @var{sigmaci}] = raylfit (@var{x}, @var{alpha})} ## also returns the @qcode{100 * (1 - @var{alpha})} percent confidence intervals ## of the estimated parameter. By default, the optional argument @var{alpha} is ## 0.05 corresponding to 95% confidence intervals. Pass in @qcode{[]} for ## @var{alpha} to use the default values. ## ## @code{[@dots{}] = raylfit (@var{x}, @var{alpha}, @var{censor})} accepts a ## boolean vector, @var{censor}, of the same size as @var{x} with @qcode{1}s for ## observations that are right-censored and @qcode{0}s for observations that are ## observed exactly. By default, or if left empty, ## @qcode{@var{censor} = zeros (size (@var{x}))}. ## ## @code{[@dots{}] = raylfit (@var{x}, @var{alpha}, @var{censor}, @var{freq})} ## accepts a frequency vector or matrix, @var{freq}, of the same size as @var{x}. ## @var{freq} typically contains integer frequencies for the corresponding ## elements in @var{x}. @var{freq} cannot contain negative values. ## ## Further information about the Rayleigh distribution can be found at ## @url{https://en.wikipedia.org/wiki/Rayleigh_distribution} ## ## @seealso{raylcdf, raylinv, raylpdf, raylrnd, rayllike, raylstat} ## @end deftypefn function [sigmaA, sigmaci] = raylfit (x, alpha, censor, freq) ## Check input arguments if (any (x < 0)) error ("raylfit: X cannot have negative values."); endif if (! isvector (x)) error ("raylfit: X must be a vector."); endif ## Check alpha if (nargin < 2 || isempty (alpha)) alpha = 0.05; elseif (! isscalar (alpha) || ! isreal (alpha) || alpha <= 0 || alpha >= 1) error ("raylfit: wrong value for ALPHA."); endif ## Check censor vector if (nargin < 3 || isempty (censor)) censor = zeros (size (x)); elseif (! isequal (size (x), size (censor))) error ("raylfit: X and CENSOR vectors mismatch."); endif ## Check frequency vector if (nargin < 4 || isempty (freq)) freq = ones (size (x)); elseif (! isequal (size (x), size (freq))) error ("raylfit: X and FREQ vectors mismatch."); elseif (any (freq < 0)) error ("raylfit: FREQ must not contain negative values."); endif ## Remove any censored data censored = censor == 1; freq(censored) = []; x(censored) = []; ## Expand frequency vector (if necessary) if (! all (freq == 1)) xf = []; for i = 1:numel (freq) xf = [xf, repmat(x(i), 1, freq(i))]; endfor x = xf; endif ## Compute sigmaA sigmaA = sqrt (0.5 * mean (x .^ 2)); ## Compute confidence intervals (based on chi-squared) if (nargout > 1) sx = 2 * numel (x); ci = [1-alpha/2; alpha/2]; sigmaci = sqrt (sx * sigmaA .^ 2 ./ chi2inv (ci, sx)); endif endfunction %!demo %! ## Sample 3 populations from 3 different Rayleigh distibutions %! rand ("seed", 2); # for reproducibility %! r1 = raylrnd (1, 1000, 1); %! rand ("seed", 2); # for reproducibility %! r2 = raylrnd (2, 1000, 1); %! rand ("seed", 3); # for reproducibility %! r3 = raylrnd (4, 1000, 1); %! r = [r1, r2, r3]; %! %! ## Plot them normalized and fix their colors %! hist (r, [0.5:0.5:10.5], 2); %! h = findobj (gca, "Type", "patch"); %! set (h(1), "facecolor", "c"); %! set (h(2), "facecolor", "g"); %! set (h(3), "facecolor", "r"); %! hold on %! %! ## Estimate their lambda parameter %! sigmaA = raylfit (r(:,1)); %! sigmaB = raylfit (r(:,2)); %! sigmaC = raylfit (r(:,3)); %! %! ## Plot their estimated PDFs %! x = [0:0.1:10]; %! y = raylpdf (x, sigmaA); %! plot (x, y, "-pr"); %! y = raylpdf (x, sigmaB); %! plot (x, y, "-sg"); %! y = raylpdf (x, sigmaC); %! plot (x, y, "-^c"); %! xlim ([0, 10]) %! ylim ([0, 0.7]) %! legend ({"Normalized HIST of sample 1 with σ=1", ... %! "Normalized HIST of sample 2 with σ=2", ... %! "Normalized HIST of sample 3 with σ=4", ... %! sprintf("PDF for sample 1 with estimated σ=%0.2f", ... %! sigmaA), ... %! sprintf("PDF for sample 2 with estimated σ=%0.2f", ... %! sigmaB), ... %! sprintf("PDF for sample 3 with estimated σ=%0.2f", ... %! sigmaC)}) %! title ("Three population samples from different Rayleigh distibutions") %! hold off ## Test output %!test %! x = [1 3 2 4 5 4 3 4]; %! [shat, sci] = raylfit (x); %! assert (shat, 2.4495, 1e-4) %! assert (sci, [1.8243; 3.7279], 1e-4) %!test %! x = [1 3 2 4 5 4 3 4]; %! [shat, sci] = raylfit (x, 0.01); %! assert (shat, 2.4495, 1e-4) %! assert (sci, [1.6738; 4.3208], 1e-4) %!test %! x = [1 2 3 4 5]; %! f = [1 1 2 3 1]; %! [shat, sci] = raylfit (x, [], [], f); %! assert (shat, 2.4495, 1e-4) %! assert (sci, [1.8243; 3.7279], 1e-4) %!test %! x = [1 2 3 4 5]; %! f = [1 1 2 3 1]; %! [shat, sci] = raylfit (x, 0.01, [], f); %! assert (shat, 2.4495, 1e-4) %! assert (sci, [1.6738; 4.3208], 1e-4) %!test %! x = [1 2 3 4 5 6]; %! c = [0 0 0 0 0 1]; %! f = [1 1 2 3 1 1]; %! [shat, sci] = raylfit (x, 0.01, c, f); %! assert (shat, 2.4495, 1e-4) %! assert (sci, [1.6738; 4.3208], 1e-4) ## Test input validation %!error raylfit (ones (2,5)); %!error raylfit ([1 2 -1 3]) %!error raylfit ([1 2 3], 0) %!error raylfit ([1 2 3], 1.2) %!error raylfit ([1 2 3], [0.02 0.05]) %!error ... %! raylfit ([1, 2, 3, 4, 5], 0.05, [1 1 0]); %!error ... %! raylfit ([1, 2, 3, 4, 5], [], [1 1 0 1 1]'); %!error ... %! raylfit ([1, 2, 3, 4, 5], 0.05, zeros (1,5), [1 1 0]); %!error ... %! raylfit ([1, 2, 3, 4, 5], [], [], [1 1 0 1 1]'); %!error %! raylfit ([1 2 3], [], [], [1 5]) %!error %! raylfit ([1 2 3], [], [], [1 5 -1]) statistics-release-1.6.3/inst/dist_fit/rayllike.m000066400000000000000000000117451456127120000221130ustar00rootroot00000000000000## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{nlogL} =} rayllike (@var{sigma}, @var{x}) ## @deftypefnx {statistics} {[@var{nlogL}, @var{acov}] =} rayllike (@var{sigma}, @var{x}) ## @deftypefnx {statistics} {[@dots{}] =} rayllike (@var{sigma}, @var{x}, @var{freq}) ## ## Negative log-likelihood for the Rayleigh distribution. ## ## @code{@var{nlogL} = rayllike (@var{sigma}, @var{x})} returns the negative ## log likelihood of the data in @var{x} corresponding to the Rayleigh ## distribution with rate parameter @var{sigma}. @var{x} must be a vector of ## non-negative values. ## ## @code{[@var{nlogL}, @var{acov}] = rayllike (@var{sigma}, @var{x})} also ## returns the inverse of Fisher's information matrix, @var{acov}. If the input ## rate parameter, @var{sigma}, is the maximum likelihood estimate, @var{acov} ## is its asymptotic variance. ## ## @code{[@dots{}] = rayllike (@var{sigma}, @var{x}, @var{freq})} accepts a ## frequency vector, @var{freq}, of the same size as @var{x}. @var{freq} ## typically contains integer frequencies for the corresponding elements in ## @var{x}, but it can contain any non-integer non-negative values. By default, ## or if left empty, @qcode{@var{freq} = ones (size (@var{x}))}. ## ## Further information about the Rayleigh distribution can be found at ## @url{https://en.wikipedia.org/wiki/Rayleigh_distribution} ## ## @seealso{raylcdf, raylinv, raylpdf, raylrnd, raylfit, raylstat} ## @end deftypefn function [nlogL, acov] = rayllike (sigma, x, censor, freq) ## Check input arguments if (nargin < 2) error ("rayllike: function called with too few input arguments."); endif if (! isscalar (sigma) || ! isnumeric (sigma) || sigma <= 0) error ("rayllike: SIGMA must be a positive scalar."); endif if (! isvector (x) || any (x < 0)) error ("rayllike: X must be a vector of non-negative values."); endif ## Check censor vector if (nargin < 3 || isempty (censor)) censor = zeros (size (x)); elseif (! isequal (size (x), size (censor))) error ("rayllike: X and CENSOR vectors mismatch."); endif ## Check frequency vector if (nargin < 4 || isempty (freq)) freq = ones (size (x)); elseif (! isequal (size (x), size (freq))) error ("rayllike: X and FREQ vectors mismatch."); elseif (any (freq < 0)) error ("rayllike: FREQ must not contain negative values."); endif ## Compute negative log-likelihood and asymptotic covariance zsq = (x / sigma) .^ 2; logfz = -2 * log (sigma) - zsq / 2 + log (x); dlogfz = (zsq - 2) / sigma; logS = - zsq / 2; dlogS = - zsq * 3 / sigma ^ 2; logfz(censor == 1) = logS(censor == 1); nlogL = - sum (freq .* logfz); if (nargout > 1) d2 = (2 - 3 * zsq) / sigma ^ 2; d2(censor == 1) = - 3 * zsq(censor == 1) / sigma ^ 2; acov = - sum (freq .* d2); endif endfunction ## Test output %!test %! x = [1 3 2 4 5 4 3 4]; %! [nlogL, acov] = rayllike (3.25, x); %! assert (nlogL, 14.7442, 1e-4) %!test %! x = [1 2 3 4 5]; %! f = [1 1 2 3 1]; %! [nlogL, acov] = rayllike (3.25, x, [], f); %! assert (nlogL, 14.7442, 1e-4) %!test %! x = [1 2 3 4 5 6]; %! f = [1 1 2 3 1 0]; %! [nlogL, acov] = rayllike (3.25, x, [], f); %! assert (nlogL, 14.7442, 1e-4) %!test %! x = [1 2 3 4 5 6]; %! c = [0 0 0 0 0 1]; %! f = [1 1 2 3 1 0]; %! [nlogL, acov] = rayllike (3.25, x, c, f); %! assert (nlogL, 14.7442, 1e-4) ## Test input validation %!error rayllike (1) %!error rayllike ([1 2 3], [1 2]) %!error ... %! rayllike (3.25, ones (10, 2)) %!error ... %! rayllike (3.25, [1 2 3 -4 5]) %!error ... %! rayllike (3.25, [1, 2, 3, 4, 5], [1 1 0]); %!error ... %! rayllike (3.25, [1, 2, 3, 4, 5], [1 1 0 1 1]'); %!error ... %! rayllike (3.25, [1, 2, 3, 4, 5], zeros (1,5), [1 1 0]); %!error ... %! rayllike (3.25, [1, 2, 3, 4, 5], [], [1 1 0 1 1]'); %!error ... %! rayllike (3.25, ones (1, 8), [], [1 1 1 1 1 1 1 -1]) statistics-release-1.6.3/inst/dist_fit/ricefit.m000066400000000000000000000254661456127120000217310ustar00rootroot00000000000000## Copyright (C) 2024 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{paramhat} =} ricefit (@var{x}) ## @deftypefnx {statistics} {[@var{paramhat}, @var{paramci}] =} ricefit (@var{x}) ## @deftypefnx {statistics} {[@var{paramhat}, @var{paramci}] =} ricefit (@var{x}, @var{alpha}) ## @deftypefnx {statistics} {[@dots{}] =} ricefit (@var{x}, @var{alpha}, @var{censor}) ## @deftypefnx {statistics} {[@dots{}] =} ricefit (@var{x}, @var{alpha}, @var{censor}, @var{freq}) ## @deftypefnx {statistics} {[@dots{}] =} ricefit (@var{x}, @var{alpha}, @var{censor}, @var{freq}, @var{options}) ## ## Estimate parameters and confidence intervals for the Gamma distribution. ## ## @code{@var{paramhat} = ricefit (@var{x})} returns the maximum likelihood ## estimates of the parameters of the Rician distribution given the data in ## @var{x}. @qcode{@var{paramhat}(1)} is the non-centrality (distance) ## parameter, @var{nu}, and @qcode{@var{paramhat}(2)} is the scale parameter, ## @var{sigma}. ## ## @code{[@var{paramhat}, @var{paramci}] = ricefit (@var{x})} returns the 95% ## confidence intervals for the parameter estimates. ## ## @code{[@dots{}] = ricefit (@var{x}, @var{alpha})} also returns the ## @qcode{100 * (1 - @var{alpha})} percent confidence intervals for the ## parameter estimates. By default, the optional argument @var{alpha} is ## 0.05 corresponding to 95% confidence intervals. Pass in @qcode{[]} for ## @var{alpha} to use the default values. ## ## @code{[@dots{}] = ricefit (@var{x}, @var{alpha}, @var{censor})} accepts a ## boolean vector, @var{censor}, of the same size as @var{x} with @qcode{1}s for ## observations that are right-censored and @qcode{0}s for observations that are ## observed exactly. By default, or if left empty, ## @qcode{@var{censor} = zeros (size (@var{x}))}. ## ## @code{[@dots{}] = ricefit (@var{x}, @var{alpha}, @var{censor}, @var{freq})} ## accepts a frequency vector, @var{freq}, of the same size as @var{x}. ## @var{freq} typically contains integer frequencies for the corresponding ## elements in @var{x}, but it can contain any non-integer non-negative values. ## By default, or if left empty, @qcode{@var{freq} = ones (size (@var{x}))}. ## ## @code{[@dots{}] = ricefit (@dots{}, @var{options})} specifies control ## parameters for the iterative algorithm used to compute the maximum likelihood ## estimates. @var{options} is a structure with the following field and its ## default value: ## @itemize ## @item @qcode{@var{options}.Display = "off"} ## @item @qcode{@var{options}.MaxFunEvals = 1000} ## @item @qcode{@var{options}.MaxIter = 500} ## @item @qcode{@var{options}.TolX = 1e-6} ## @end itemize ## ## Further information about the Rician distribution can be found at ## @url{https://en.wikipedia.org/wiki/Rice_distribution} ## ## @seealso{ricecdf, ricepdf, riceinv, ricernd, ricelike, ricestat} ## @end deftypefn function [paramhat, paramci] = ricefit (x, alpha, censor, freq, options) ## Check input arguments if (! isvector (x)) error ("ricefit: X must be a vector."); endif ## Check alpha if (nargin < 2 || isempty (alpha)) alpha = 0.05; else if (! isscalar (alpha) || ! isreal (alpha) || alpha <= 0 || alpha >= 1) error ("ricefit: wrong value for ALPHA."); endif endif ## Check censor vector if (nargin < 3 || isempty (censor)) censor = zeros (size (x)); elseif (! isequal (size (x), size (censor))) error ("ricefit: X and CENSOR vectors mismatch."); endif ## Check frequency vector if (nargin < 4 || isempty (freq)) freq = ones (size (x)); elseif (! isequal (size (x), size (freq))) error ("ricefit: X and FREQ vectors mismatch."); endif ## Get options structure or add defaults if (nargin < 5) options.Display = "off"; options.MaxFunEvals = 400; options.MaxIter = 200; options.TolX = 1e-6; else if (! isstruct (options) || ! isfield (options, "Display") || ! isfield (options, "MaxFunEvals") || ! isfield (options, "MaxIter") || ! isfield (options, "TolX")) error (strcat (["ricefit: 'options' 5th argument must be a"], ... [" structure with 'Display', 'MaxFunEvals',"], ... [" 'MaxIter', and 'TolX' fields present."])); endif endif ## Get sample size and data type cls = class (x); szx = sum (freq); ncen = sum (freq .* censor); nunc = szx - ncen; ## Check for illegal value in X if (any (x <= 0)) error ("ricefit: X must contain positive values."); endif ## Handle ill-conditioned cases: no data or all censored if (szx == 0 || nunc == 0 || any (! isfinite (x))) paramhat = nan (1, 2, cls); paramci = nan (2, cls); return endif ## Check for identical data in X if (! isscalar (x) && max (abs (diff (x)) ./ x(2:end)) <= sqrt (eps)) paramhat = cast ([Inf, 0], cls); paramci = cast ([Inf, 0; Inf, 0], cls); return endif ## Use 2nd and 4th Moment Estimators of uncensored data as starting point xsq_uncensored = x(censor == 0) .^ 2; meanxsq = mean (xsq_uncensored); meanx_4 = mean (xsq_uncensored .^ 2); if (meanxsq ^ 2 < meanx_4 && meanx_4 < 2 * meanxsq ^ 2) nu_4 = 2 * meanxsq ^ 2 - meanx_4; nusq = sqrt (nu_4); sigmasq = 0.5 * (meanxsq - nusq); params = cast ([sqrt(nusq), sqrt(sigmasq)], cls); else params = cast ([1, 1], cls); endif ## Minimize negative log-likelihood to estimate parameters f = @(params) ricelike (params, x, censor, freq); [paramhat, ~, err, output] = fminsearch (f, params, options); ## Force positive parameter values paramhat = abs (paramhat); ## Handle errors if (err == 0) if (output.funcCount >= options.MaxFunEvals) warning (strcat (["ricefit: maximum number of function"], ... [" evaluations are exceeded."])); elseif (output.iterations >= options.MaxIter) warning ("ricefit: maximum number of iterations are exceeded."); endif elseif (err < 0) error ("ricefit: no solution."); endif ## Compute CIs using a log normal approximation for parameters. if (nargout > 1) ## Compute asymptotic covariance [~, acov] = ricelike (paramhat, x, censor, freq); ## Get standard errors stderr = sqrt (diag (acov))'; stderr = stderr ./ paramhat; ## Apply log transform phatlog = log (paramhat); ## Compute normal quantiles z = probit (alpha / 2); ## Compute CI paramci = [phatlog; phatlog] + [stderr; stderr] .* [z, z; -z, -z]; ## Inverse log transform paramci = exp (paramci); endif endfunction %!demo %! ## Sample 3 populations from different Gamma distibutions %! randg ("seed", 5); # for reproducibility %! randp ("seed", 6); %! r1 = ricernd (1, 2, 3000, 1); %! randg ("seed", 2); # for reproducibility %! randp ("seed", 8); %! r2 = ricernd (2, 4, 3000, 1); %! randg ("seed", 7); # for reproducibility %! randp ("seed", 9); %! r3 = ricernd (7.5, 1, 3000, 1); %! r = [r1, r2, r3]; %! %! ## Plot them normalized and fix their colors %! hist (r, 75, 4); %! h = findobj (gca, "Type", "patch"); %! set (h(1), "facecolor", "c"); %! set (h(2), "facecolor", "g"); %! set (h(3), "facecolor", "r"); %! ylim ([0, 0.7]); %! xlim ([0, 12]); %! hold on %! %! ## Estimate their α and β parameters %! nu_sigmaA = ricefit (r(:,1)); %! nu_sigmaB = ricefit (r(:,2)); %! nu_sigmaC = ricefit (r(:,3)); %! %! ## Plot their estimated PDFs %! x = [0.01,0.1:0.2:18]; %! y = ricepdf (x, nu_sigmaA(1), nu_sigmaA(2)); %! plot (x, y, "-pr"); %! y = ricepdf (x, nu_sigmaB(1), nu_sigmaB(2)); %! plot (x, y, "-sg"); %! y = ricepdf (x, nu_sigmaC(1), nu_sigmaC(2)); %! plot (x, y, "-^c"); %! hold off %! legend ({"Normalized HIST of sample 1 with k=1 and θ=2", ... %! "Normalized HIST of sample 2 with k=2 and θ=4", ... %! "Normalized HIST of sample 3 with k=7.5 and θ=1", ... %! sprintf("PDF for sample 1 with estimated k=%0.2f and θ=%0.2f", ... %! nu_sigmaA(1), nu_sigmaA(2)), ... %! sprintf("PDF for sample 2 with estimated k=%0.2f and θ=%0.2f", ... %! nu_sigmaB(1), nu_sigmaB(2)), ... %! sprintf("PDF for sample 3 with estimated k=%0.2f and θ=%0.2f", ... %! nu_sigmaC(1), nu_sigmaC(2))}) %! title ("Three population samples from different Rician distibutions") %! hold off ## Test output %!test %! [paramhat, paramci] = ricefit ([1:50]); %! assert (paramhat, [15.3057, 17.6668], 1e-4); %! assert (paramci, [9.5468, 11.7802; 24.5383, 26.4952], 1e-4); %!test %! [paramhat, paramci] = ricefit ([1:50], 0.01); %! assert (paramhat, [15.3057, 17.6668], 1e-4); %! assert (paramci, [8.2309, 10.3717; 28.4615, 30.0934], 1e-4); %!test %! [paramhat, paramci] = ricefit ([1:5]); %! assert (paramhat, [2.3123, 1.6812], 1e-4); %! assert (paramci, [1.0819, 0.6376; 4.9424, 4.4331], 1e-4); %!test %! [paramhat, paramci] = ricefit ([1:5], 0.01); %! assert (paramhat, [2.3123, 1.6812], 1e-4); %! assert (paramci, [0.8521, 0.4702; 6.2747, 6.0120], 1e-4); %!test %! freq = [1 1 1 1 5]; %! [paramhat, paramci] = ricefit ([1:5], [], [], freq); %! assert (paramhat, [3.5181, 1.5565], 1e-4); %! assert (paramci, [2.5893, 0.9049; 4.7801, 2.6772], 1e-4); %!test %! censor = [1 0 0 0 0]; %! [paramhat, paramci] = ricefit ([1:5], [], censor); %! assert (paramhat, [3.2978, 1.1527], 1e-4); %! assert (paramci, [2.3192, 0.5476; 4.6895, 2.4261], 1e-4); ## Test class of input preserved %!assert (class (ricefit (single ([1:50]))), "single") ## Test input validation %!error ricefit (ones (2)) %!error ricefit ([1:50], 1) %!error ricefit ([1:50], -1) %!error ricefit ([1:50], {0.05}) %!error ricefit ([1:50], "k") %!error ricefit ([1:50], i) %!error ricefit ([1:50], [0.01 0.02]) %!error ricefit ([1:50], [], [1 1]) %!error ricefit ([1:50], [], [], [1 1]) %!error ricefit ([1 2 3 -4]) %!error ricefit ([1 2 0], [], [1 0 0]) statistics-release-1.6.3/inst/dist_fit/ricelike.m000066400000000000000000000202741456127120000220630ustar00rootroot00000000000000## Copyright (C) 2024 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{nlogL} =} ricelike (@var{params}, @var{x}) ## @deftypefnx {statistics} {[@var{nlogL}, @var{acov}] =} ricelike (@var{params}, @var{x}) ## @deftypefnx {statistics} {[@dots{}] =} ricelike (@var{params}, @var{x}, @var{censor}) ## @deftypefnx {statistics} {[@dots{}] =} ricelike (@var{params}, @var{x}, @var{censor}, @var{freq}) ## ## Negative log-likelihood for the Rician distribution. ## ## @code{@var{nlogL} = ricelike (@var{params}, @var{x})} returns the negative ## log likelihood of the data in @var{x} corresponding to the Rician ## distribution with (1) non-centrality (distance) parameter @var{nu} and (2) ## scale parameter @var{sigma} given in the two-element vector @var{params}. ## ## @code{[@var{nlogL}, @var{acov}] = ricelike (@var{params}, @var{x})} also ## returns the inverse of Fisher's information matrix, @var{acov}. If the input ## parameter values in @var{params} are the maximum likelihood estimates, the ## diagonal elements of @var{params} are their asymptotic variances. ## ## @code{[@dots{}] = ricelike (@var{params}, @var{x}, @var{censor})} accepts a ## boolean vector, @var{censor}, of the same size as @var{x} with @qcode{1}s for ## observations that are right-censored and @qcode{0}s for observations that are ## observed exactly. By default, or if left empty, ## @qcode{@var{censor} = zeros (size (@var{x}))}. ## ## @code{[@dots{}] = ricelike (@var{params}, @var{x}, @var{censor}, @var{freq})} ## accepts a frequency vector, @var{freq}, of the same size as @var{x}. ## @var{freq} typically contains integer frequencies for the corresponding ## elements in @var{x}, but it can contain any non-integer non-negative values. ## By default, or if left empty, @qcode{@var{freq} = ones (size (@var{x}))}. ## ## Further information about the Rician distribution can be found at ## @url{https://en.wikipedia.org/wiki/Rice_distribution} ## ## @seealso{ricecdf, riceinv, ricepdf, ricernd, ricefit, ricestat} ## @end deftypefn function [nlogL, acov] = ricelike (params, x, censor, freq) ## Check input arguments if (nargin < 2) error ("ricelike: function called with too few input arguments."); endif if (! isvector (x)) error ("ricelike: X must be a vector."); endif if (length (params) != 2) error ("ricelike: PARAMS must be a two-element vector."); endif ## Check censor vector if (nargin < 3 || isempty (censor)) censor = zeros (size (x)); elseif (! isequal (size (x), size (censor))) error ("ricelike: X and CENSOR vector mismatch."); endif ## Check frequency vector if (nargin < 4 || isempty (freq)) freq = ones (size (x)); elseif (! isequal (size (x), size (freq))) error ("ricelike: X and FREQ vector mismatch."); endif ## Expand frequency and censor vectors (if necessary) if (! all (freq == 1)) xf = []; cf = []; for i = 1:numel (freq) xf = [xf, repmat(x(i), 1, freq(i))]; cf = [cf, repmat(censor(i), 1, freq(i))]; endfor x = xf; freq = ones (size (x)); censor = cf; endif ## Get parameters nu = params(1); sigma = params(2); theta = nu ./ sigma; xsigma = x ./ sigma; xstheta = xsigma.*theta; I_0 = besseli (0, xstheta, 1); XNS = (xsigma .^ 2 + theta .^ 2) ./ 2; ## Compute log likelihood L = -XNS + log (I_0) + log (xsigma ./ sigma) + xstheta; ## Handle censored data n_censored = sum (freq .* censor); if (n_censored > 0) censored = (censor == 1); xsigma_censored = xsigma(censored); Q = marcumQ1 (theta, xsigma_censored); L(censored) = log (Q); endif ## Sum up the neg log likelihood nlogL = -sum (freq .* L); ## Compute asymptotic covariance if (nargout > 1) ## Compute first order central differences of the log-likelihood gradient dp = 0.0001 .* max (abs (params), 1); ngrad_p1 = rice_grad (params + [dp(1), 0], x, censor, freq); ngrad_m1 = rice_grad (params - [dp(1), 0], x, censor, freq); ngrad_p2 = rice_grad (params + [0, dp(2)], x, censor, freq); ngrad_m2 = rice_grad (params - [0, dp(2)], x, censor, freq); ## Compute negative Hessian by normalizing the differences by the increment nH = [(ngrad_p1(:) - ngrad_m1(:))./(2 * dp(1)), ... (ngrad_p2(:) - ngrad_m2(:))./(2 * dp(2))]; ## Force neg Hessian being symmetric nH = 0.5 .* (nH + nH'); ## Check neg Hessian is positive definite [R, p] = chol (nH); if (p > 0) warning ("ricelike: non positive definite Hessian matrix."); acov = NaN (2); return endif ## ACOV estimate is the negative inverse of the Hessian. Rinv = inv (R); acov = Rinv * Rinv; endif endfunction ## Helper function for computing negative gradient function ngrad = rice_grad (params, x, censor, freq) ## Get parameters nu = params(1); sigma = params(2); theta = nu ./ sigma; xsigma = x ./ sigma; xstheta = xsigma.*theta; I_0 = besseli (0, xstheta, 1); XNS = (xsigma .^ 2 + theta .^ 2) ./ 2; ## Compute derivatives I_1 = besseli(1, xstheta, 1); dII = I_1 ./ I_0; dL1 = (-theta + dII .* xsigma) ./ sigma; dL2 = -2 * (1 - XNS + dII .* xstheta) ./ sigma; ## Handle censored data n_censored = sum (freq .* censor); if (n_censored > 0) censored = (censor == 1); xsigma_censored = xsigma(censored); Q = marcumQ1 (theta, xsigma_censored); expt = exp (-XNS(censored) + xstheta(censored)); dQdtheta = xsigma_censored .* I_1(censored) .* expt; dQdz = -xsigma_censored .* I_0(censored) .* expt; dtheta1 = 1 ./ sigma; dtheta2 = -theta ./ sigma; dz2 = -xsigma_censored ./ sigma; dL1(censored) = dQdtheta .* dtheta1 ./ Q; dL2(censored) = (dQdtheta .* dtheta2 + dQdz .* dz2) ./ Q; endif ## Compute gradient ngrad = -[sum(freq .* dL1) sum(freq .* dL2)]; endfunction ## Marcum's "Q" function of order 1 function Q = marcumQ1 (a, b) ## Prepare output matrix if (isa (a, "single") || isa (b, "single")) Q = NaN (size (b), "single"); else Q = NaN (size (b)); endif ## Force marginal cases Q(a != Inf & b == 0) = 1; Q(a != Inf & b == Inf) = 0; Q(a == Inf & b != Inf) = 1; z = isnan (Q) & a == 0 & b != Inf; if (any(z)) Q(z) = exp ((-b(z) .^ 2) ./ 2); end ## Compute the remaining cases z = isnan (Q) & ! isnan (a) & ! isnan (b); if (any(z(:))) aa = (a(z) .^ 2) ./ 2; bb = (b(z) .^ 2) ./ 2; eA = exp (-aa); eB = bb .* exp (-bb); h = eA; d = eB .* h; s = d; j = (d > s.*eps(class(d))); k = 1; while (any (j)) eA = aa .* eA ./ k; h = h + eA; eB = bb .* eB ./ (k + 1); d = eB .* h; s(j) = s (j) + d(j); j = (d > s .* eps (class (d))); k = k + 1; endwhile Q(z) = 1 - s; endif endfunction ## Test output %!test %! nlogL = ricelike ([15.3057344, 17.6668458], [1:50]); %! assert (nlogL, 204.5230311010569, 1e-12); %!test %! nlogL = ricelike ([2.312346885, 1.681228265], [1:5]); %! assert (nlogL, 8.65562164930058, 1e-12); ## Test input validation %!error ricelike (3.25) %!error ricelike ([5, 0.2], ones (2)) %!error ... %! ricelike ([1, 0.2, 3], [1, 3, 5, 7]) %!error ... %! ricelike ([1.5, 0.2], [1:5], [0, 0, 0]) %!error ... %! ricelike ([1.5, 0.2], [1:5], [0, 0, 0, 0, 0], [1, 1, 1]) %!error ... %! ricelike ([1.5, 0.2], [1:5], [], [1, 1, 1]) statistics-release-1.6.3/inst/dist_fit/unidfit.m000066400000000000000000000125161456127120000217360ustar00rootroot00000000000000## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{Nhat} =} unidfit (@var{x}) ## @deftypefnx {statistics} {[@var{Nhat}, @var{Nci}] =} unidfit (@var{x}) ## @deftypefnx {statistics} {[@var{Nhat}, @var{Nci}] =} unidfit (@var{x}, @var{alpha}) ## @deftypefnx {statistics} {[@var{Nhat}, @var{Nci}] =} unidfit (@var{x}, @var{alpha}, @var{freq}) ## ## Estimate parameter and confidence intervals for the discrete uniform distribution. ## ## @code{@var{Nhat} = unidfit (@var{x})} returns the maximum likelihood estimate ## (MLE) of the maximum observable value for the discrete uniform distribution. ## @var{x} must be a vector. ## ## @code{[@var{Nhat}, @var{Nci}] = unidfit (@var{x}, @var{alpha})} also ## returns the @qcode{100 * (1 - @var{alpha})} percent confidence intervals of ## the estimated parameter. By default, the optional argument @var{alpha} is ## 0.05 corresponding to 95% confidence intervals. Pass in @qcode{[]} for ## @var{alpha} to use the default values. ## ## @code{[@dots{}] = unidfit (@var{x}, @var{alpha}, @var{freq})} accepts a ## frequency vector, @var{freq}, of the same size as @var{x}. @var{freq} ## typically contains integer frequencies for the corresponding elements in ## @var{x}, but it can contain any non-integer non-negative values. By default, ## or if left empty, @qcode{@var{freq} = ones (size (@var{x}))}. ## ## Further information about the discrete uniform distribution can be found at ## @url{https://en.wikipedia.org/wiki/Discrete_uniform_distribution} ## ## @seealso{unidcdf, unidinv, unidpdf, unidrnd, unidstat} ## @end deftypefn function [Nhat, Nci] = unidfit (x, alpha, freq) ## Check input arguments if (nargin < 1) error ("unidfit: function called with too few input arguments."); endif ## Check data inX if (any (x < 0)) error ("unidfit: X cannot have negative values."); endif if (! isvector (x)) error ("unidfit: X must be a vector."); endif ## Check ALPHA if (nargin < 2 || isempty (alpha)) alpha = 0.05; elseif (! isscalar (alpha) || ! isreal (alpha) || alpha <= 0 || alpha >= 1) error ("unidfit: wrong value for ALPHA."); endif ## Check frequency vector if (nargin < 3 || isempty (freq)) freq = ones (size (x)); elseif (! isequal (size (x), size (freq))) error ("unidfit: X and FREQ vector mismatch."); endif ## Expand frequency and censor vectors (if necessary) if (! all (freq == 1)) xf = []; for i = 1:numel (freq) xf = [xf, repmat(x(i), 1, freq(i))]; endfor x = xf; freq = ones (size (x)); endif ## Compute N estimate Nhat = max (x); ## Compute confidence interval of N if (nargout > 1) Nci = [Nhat; ceil(Nhat ./ alpha .^ (1 ./ numel (x)))]; endif endfunction %!demo %! ## Sample 2 populations from different discrete uniform distibutions %! rand ("seed", 1); # for reproducibility %! r1 = unidrnd (5, 1000, 1); %! rand ("seed", 2); # for reproducibility %! r2 = unidrnd (9, 1000, 1); %! r = [r1, r2]; %! %! ## Plot them normalized and fix their colors %! hist (r, 0:0.5:20.5, 1); %! h = findobj (gca, "Type", "patch"); %! set (h(1), "facecolor", "c"); %! set (h(2), "facecolor", "g"); %! hold on %! %! ## Estimate their probability of success %! NhatA = unidfit (r(:,1)); %! NhatB = unidfit (r(:,2)); %! %! ## Plot their estimated PDFs %! x = [0:10]; %! y = unidpdf (x, NhatA); %! plot (x, y, "-pg"); %! y = unidpdf (x, NhatB); %! plot (x, y, "-sc"); %! xlim ([0, 10]) %! ylim ([0, 0.4]) %! legend ({"Normalized HIST of sample 1 with N=5", ... %! "Normalized HIST of sample 2 with N=9", ... %! sprintf("PDF for sample 1 with estimated N=%0.2f", NhatA), ... %! sprintf("PDF for sample 2 with estimated N=%0.2f", NhatB)}) %! title ("Two population samples from different discrete uniform distibutions") %! hold off ## Test output %!test %! x = 0:5; %! [Nhat, Nci] = unidfit (x); %! assert (Nhat, 5); %! assert (Nci, [5; 9]); %!test %! x = 0:5; %! [Nhat, Nci] = unidfit (x, [], [1 1 1 1 1 1]); %! assert (Nhat, 5); %! assert (Nci, [5; 9]); %!assert (unidfit ([1 1 2 3]), unidfit ([1 2 3], [] ,[2 1 1])) ## Test input validation %!error unidfit () %!error unidfit (-1, [1 2 3 3]) %!error unidfit (1, 0) %!error unidfit (1, 1.2) %!error unidfit (1, [0.02 0.05]) %!error ... %! unidfit ([1.5, 0.2], [], [0, 0, 0, 0, 0]) %!error ... %! unidfit ([1.5, 0.2], [], [1, 1, 1]) statistics-release-1.6.3/inst/dist_fit/unifit.m000066400000000000000000000133101456127120000215630ustar00rootroot00000000000000## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{paramhat} =} unifit (@var{x}) ## @deftypefnx {statistics} {[@var{paramhat}, @var{paramci}] =} unifit (@var{x}) ## @deftypefnx {statistics} {[@var{paramhat}, @var{paramci}] =} unifit (@var{x}, @var{alpha}) ## @deftypefnx {statistics} {[@var{paramhat}, @var{paramci}] =} unifit (@var{x}, @var{alpha}, @var{freq}) ## ## Estimate parameter and confidence intervals for the continuous uniform distribution. ## ## @code{@var{paramhat} = unifit (@var{x})} returns the maximum likelihood ## estimate (MLE) of the parameters @var{a} and @var{b} of the continuous ## uniform distribution given the data in @var{x}. @var{x} must be a vector. ## ## @code{[@var{paramhat}, @var{paramci}] = unifit (@var{x}, @var{alpha})} also ## returns the @qcode{100 * (1 - @var{alpha})} percent confidence intervals of ## the estimated parameter. By default, the optional argument @var{alpha} is ## 0.05 corresponding to 95% confidence intervals. Pass in @qcode{[]} for ## @var{alpha} to use the default values. ## ## @code{[@dots{}] = unifit (@var{x}, @var{alpha}, @var{freq})} accepts a ## frequency vector, @var{freq}, of the same size as @var{x}. @var{freq} ## typically contains integer frequencies for the corresponding elements in ## @var{x}, but it can contain any non-integer non-negative values. By default, ## or if left empty, @qcode{@var{freq} = ones (size (@var{x}))}. ## ## Further information about the continuous uniform distribution can be found at ## @url{https://en.wikipedia.org/wiki/Discrete_uniform_distribution} ## ## @seealso{unifcdf, unifinv, unifpdf, unifrnd, unifstat} ## @end deftypefn function [paramhat, paramci] = unifit (x, alpha, freq) ## Check input arguments if (nargin < 1) error ("unifit: function called with too few input arguments."); endif ## Check data inX if (any (x < 0)) error ("unifit: X cannot have negative values."); endif if (! isvector (x)) error ("unifit: X must be a vector."); endif ## Check ALPHA if (nargin < 2 || isempty (alpha)) alpha = 0.05; elseif (! isscalar (alpha) || ! isreal (alpha) || alpha <= 0 || alpha >= 1) error ("unifit: wrong value for ALPHA."); endif ## Check frequency vector if (nargin < 3 || isempty (freq)) freq = ones (size (x)); elseif (! isequal (size (x), size (freq))) error ("unifit: X and FREQ vector mismatch."); endif ## Expand frequency and censor vectors (if necessary) if (! all (freq == 1)) xf = []; for i = 1:numel (freq) xf = [xf, repmat(x(i), 1, freq(i))]; endfor x = xf; freq = ones (size (x)); endif ## Compute A and B estimates ahat = min (x); bhat = max(x); paramhat = [ahat, bhat]; ## Compute confidence interval of A and B if (nargout > 1) tmp = (bhat - ahat) ./ alpha .^ (1 ./ numel (x)); paramci = [bhat-tmp, ahat+tmp; ahat, bhat]; endif endfunction %!demo %! ## Sample 2 populations from different continuous uniform distibutions %! rand ("seed", 5); # for reproducibility %! r1 = unifrnd (2, 5, 2000, 1); %! rand ("seed", 6); # for reproducibility %! r2 = unifrnd (3, 9, 2000, 1); %! r = [r1, r2]; %! %! ## Plot them normalized and fix their colors %! hist (r, 0:0.5:10, 2); %! h = findobj (gca, "Type", "patch"); %! set (h(1), "facecolor", "c"); %! set (h(2), "facecolor", "g"); %! hold on %! %! ## Estimate their probability of success %! a_bA = unifit (r(:,1)); %! a_bB = unifit (r(:,2)); %! %! ## Plot their estimated PDFs %! x = [0:10]; %! y = unifpdf (x, a_bA(1), a_bA(2)); %! plot (x, y, "-pg"); %! y = unifpdf (x, a_bB(1), a_bB(2)); %! plot (x, y, "-sc"); %! xlim ([1, 10]) %! ylim ([0, 0.5]) %! legend ({"Normalized HIST of sample 1 with a=2 and b=5", ... %! "Normalized HIST of sample 2 with a=3 and b=9", ... %! sprintf("PDF for sample 1 with estimated a=%0.2f and b=%0.2f", ... %! a_bA(1), a_bA(2)), ... %! sprintf("PDF for sample 2 with estimated a=%0.2f and b=%0.2f", ... %! a_bB(1), a_bB(2))}) %! title ("Two population samples from different continuous uniform distibutions") %! hold off ## Test output %!test %! x = 0:5; %! [paramhat, paramci] = unifit (x); %! assert (paramhat, [0, 5]); %! assert (paramci, [-3.2377, 8.2377; 0, 5], 1e-4); %!test %! x = 0:5; %! [paramhat, paramci] = unifit (x, [], [1 1 1 1 1 1]); %! assert (paramhat, [0, 5]); %! assert (paramci, [-3.2377, 8.2377; 0, 5], 1e-4); %!assert (unifit ([1 1 2 3]), unifit ([1 2 3], [] ,[2 1 1])) ## Test input validation %!error unifit () %!error unifit (-1, [1 2 3 3]) %!error unifit (1, 0) %!error unifit (1, 1.2) %!error unifit (1, [0.02 0.05]) %!error ... %! unifit ([1.5, 0.2], [], [0, 0, 0, 0, 0]) %!error ... %! unifit ([1.5, 0.2], [], [1, 1, 1]) statistics-release-1.6.3/inst/dist_fit/wblfit.m000066400000000000000000000177001456127120000215630ustar00rootroot00000000000000## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{paramhat} =} wblfit (@var{x}) ## @deftypefnx {statistics} {[@var{paramhat}, @var{paramci}] =} wblfit (@var{x}) ## @deftypefnx {statistics} {[@var{paramhat}, @var{paramci}] =} wblfit (@var{x}, @var{alpha}) ## @deftypefnx {statistics} {[@dots{}] =} wblfit (@var{x}, @var{alpha}, @var{censor}) ## @deftypefnx {statistics} {[@dots{}] =} wblfit (@var{x}, @var{alpha}, @var{censor}, @var{freq}) ## @deftypefnx {statistics} {[@dots{}] =} wblfit (@var{x}, @var{alpha}, @var{censor}, @var{freq}, @var{options}) ## ## Estimate mean and confidence intervals for the Weibull distribution. ## ## @code{@var{muhat} = wblfit (@var{x})} returns the maximum likelihood ## estimates of the parameters of the Weibull distribution given the data in ## @var{x}. @qcode{@var{paramhat}(1)} is the scale parameter, @math{lambda}, ## and @qcode{@var{paramhat}(2)} is the shape parameter, @math{k}. ## ## @code{[@var{paramhat}, @var{paramci}] = wblfit (@var{x})} returns the 95% ## confidence intervals for the parameter estimates. ## ## @code{[@dots{}] = wblfit (@var{x}, @var{alpha})} also returns the ## @qcode{100 * (1 - @var{alpha})} percent confidence intervals for the ## parameter estimates. By default, the optional argument @var{alpha} is ## 0.05 corresponding to 95% confidence intervals. Pass in @qcode{[]} for ## @var{alpha} to use the default values. ## ## @code{[@dots{}] = wblfit (@var{x}, @var{alpha}, @var{censor})} accepts a ## boolean vector, @var{censor}, of the same size as @var{x} with @qcode{1}s for ## observations that are right-censored and @qcode{0}s for observations that are ## observed exactly. By default, or if left empty, ## @qcode{@var{censor} = zeros (size (@var{x}))}. ## ## @code{[@dots{}] = wblfit (@var{x}, @var{alpha}, @var{censor}, @var{freq})} ## accepts a frequency vector, @var{freq}, of the same size as @var{x}. ## @var{freq} typically contains integer frequencies for the corresponding ## elements in @var{x}, but it can contain any non-integer non-negative values. ## By default, or if left empty, @qcode{@var{freq} = ones (size (@var{x}))}. ## ## @code{[@dots{}] = evfit (@dots{}, @var{options})} specifies control ## parameters for the iterative algorithm used to compute ML estimates with the ## @code{fminsearch} function. @var{options} is a structure with the following ## fields and their default values: ## @itemize ## @item @qcode{@var{options}.Display = "off"} ## @item @qcode{@var{options}.TolX = 1e-6} ## @end itemize ## ## Further information about the Weibull distribution can be found at ## @url{https://en.wikipedia.org/wiki/Weibull_distribution} ## ## @seealso{wblcdf, wblinv, wblpdf, wblrnd, wbllike, wblstat} ## @end deftypefn function [paramhat, paramci] = wblfit (x, alpha, censor, freq, options) ## Check input arguments if (! isvector (x)) error ("wblfit: X must be a vector."); elseif (any (x <= 0)) error ("wblfit: X must contain only positive values."); endif ## Check alpha if (nargin < 2 || isempty (alpha)) alpha = 0.05; else if (! isscalar (alpha) || ! isreal (alpha) || alpha <= 0 || alpha >= 1) error ("wblfit: wrong value for ALPHA."); endif endif ## Check censor vector if (nargin < 3 || isempty (censor)) censor = zeros (size (x)); elseif (! isequal (size (x), size (censor))) error ("wblfit: X and CENSOR vectors mismatch."); endif ## Check frequency vector if (nargin < 4 || isempty (freq)) freq = ones (size (x)); elseif (! isequal (size (x), size (freq))) error ("wblfit: X and FREQ vectors mismatch."); endif ## Get options structure or add defaults if (nargin < 5) options.Display = "off"; options.TolX = 1e-6; else if (! isstruct (options) || ! isfield (options, "Display") || ... ! isfield (options, "TolX")) error (strcat (["wblfit: 'options' 5th argument must be a structure"], ... [" with 'Display' and 'TolX' fields present."])); endif endif ## Fit an extreme value distribution to the logged data, then transform to ## the Weibull parameter scales. [paramhatEV, paramciEV] = evfit (log (x), alpha, censor, freq, options); paramhat = [exp(paramhatEV(1)), 1./paramhatEV(2)]; if (nargout > 1) paramci = [exp(paramciEV(:,1)) 1./paramciEV([2 1],2)]; endif endfunction %!demo %! ## Sample 3 populations from 3 different Weibull distibutions %! rande ("seed", 1); # for reproducibility %! r1 = wblrnd(2, 4, 2000, 1); %! rande ("seed", 2); # for reproducibility %! r2 = wblrnd(5, 2, 2000, 1); %! rande ("seed", 5); # for reproducibility %! r3 = wblrnd(1, 5, 2000, 1); %! r = [r1, r2, r3]; %! %! ## Plot them normalized and fix their colors %! hist (r, 30, [2.5 2.1 3.2]); %! h = findobj (gca, "Type", "patch"); %! set (h(1), "facecolor", "c"); %! set (h(2), "facecolor", "g"); %! set (h(3), "facecolor", "r"); %! ylim ([0, 2]); %! xlim ([0, 10]); %! hold on %! %! ## Estimate their lambda parameter %! lambda_kA = wblfit (r(:,1)); %! lambda_kB = wblfit (r(:,2)); %! lambda_kC = wblfit (r(:,3)); %! %! ## Plot their estimated PDFs %! x = [0:0.1:15]; %! y = wblpdf (x, lambda_kA(1), lambda_kA(2)); %! plot (x, y, "-pr"); %! y = wblpdf (x, lambda_kB(1), lambda_kB(2)); %! plot (x, y, "-sg"); %! y = wblpdf (x, lambda_kC(1), lambda_kC(2)); %! plot (x, y, "-^c"); %! hold off %! legend ({"Normalized HIST of sample 1 with λ=2 and k=4", ... %! "Normalized HIST of sample 2 with λ=5 and k=2", ... %! "Normalized HIST of sample 3 with λ=1 and k=5", ... %! sprintf("PDF for sample 1 with estimated λ=%0.2f and k=%0.2f", ... %! lambda_kA(1), lambda_kA(2)), ... %! sprintf("PDF for sample 2 with estimated λ=%0.2f and k=%0.2f", ... %! lambda_kB(1), lambda_kB(2)), ... %! sprintf("PDF for sample 3 with estimated λ=%0.2f and k=%0.2f", ... %! lambda_kC(1), lambda_kC(2))}) %! title ("Three population samples from different Weibull distibutions") %! hold off ## Test results %!test %! x = 1:50; %! [paramhat, paramci] = wblfit (x); %! paramhat_out = [28.3636, 1.7130]; %! paramci_out = [23.9531, 1.3551; 33.5861, 2.1655]; %! assert (paramhat, paramhat_out, 1e-4); %! assert (paramci, paramci_out, 1e-4); %!test %! x = 1:50; %! [paramhat, paramci] = wblfit (x, 0.01); %! paramci_out = [22.7143, 1.2589; 35.4179, 2.3310]; %! assert (paramci, paramci_out, 1e-4); ## Test input validation %!error wblfit (ones (2,5)); %!error wblfit ([-1 2 3 4]); %!error wblfit ([1, 2, 3, 4, 5], 1.2); %!error wblfit ([1, 2, 3, 4, 5], 0); %!error wblfit ([1, 2, 3, 4, 5], "alpha"); %!error ... %! wblfit ([1, 2, 3, 4, 5], 0.05, [1 1 0]); %!error ... %! wblfit ([1, 2, 3, 4, 5], [], [1 1 0 1 1]'); %!error ... %! wblfit ([1, 2, 3, 4, 5], 0.05, zeros (1,5), [1 1 0]); %!error ... %! wblfit ([1, 2, 3, 4, 5], [], [], [1 1 0 1 1]'); %!error ... %! wblfit ([1, 2, 3, 4, 5], 0.05, [], [], 2); statistics-release-1.6.3/inst/dist_fit/wbllike.m000066400000000000000000000127371456127120000217320ustar00rootroot00000000000000## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR l PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{nlogL} =} wbllike (@var{params}, @var{x}) ## @deftypefnx {statistics} {[@var{nlogL}, @var{acov}] =} wbllike (@var{params}, @var{x}) ## @deftypefnx {statistics} {[@dots{}] =} wbllike (@var{params}, @var{x}, @var{alpha}, @var{censor}) ## @deftypefnx {statistics} {[@dots{}] =} wbllike (@var{params}, @var{x}, @var{alpha}, @var{censor}, @var{freq}) ## ## Negative log-likelihood for the Weibull distribution. ## ## @code{@var{nlogL} = wbllike (@var{params}, @var{data})} returns the negative ## log-likelihood of the data in @var{x} corresponding to the Weibull ## distribution with (1) scale parameter @var{lambda} and (2) shape parameter ## @var{k} given in the two-element vector @var{params}. ## ## @code{[@var{nlogL}, @var{acov}] = wbllike (@var{params}, @var{data})} also ## returns the inverse of Fisher's information matrix, @var{acov}. If the input ## parameter values in @var{params} are the maximum likelihood estimates, the ## diagonal elements of @var{acov} are their asymptotic variances. @var{acov} ## is based on the observed Fisher's information, not the expected information. ## ## @code{[@dots{}] = wbllike (@var{params}, @var{data}, @var{censor})} accepts a ## boolean vector, @var{censor}, of the same size as @var{x} with @qcode{1}s for ## observations that are right-censored and @qcode{0}s for observations that are ## observed exactly. By default, or if left empty, ## @qcode{@var{censor} = zeros (size (@var{x}))}. ## ## @code{[@dots{}] = wbllike (@var{params}, @var{data}, @var{censor}, ## @var{freq})} accepts a frequency vector, @var{freq}, of the same size as ## @var{x}. @var{freq} typically contains integer frequencies for the ## corresponding elements in @var{x}, but may contain any non-integer ## non-negative values. By default, or if left empty, ## @qcode{@var{freq} = ones (size (@var{x}))}. ## ## Further information about the Weibull distribution can be found at ## @url{https://en.wikipedia.org/wiki/Weibull_distribution} ## ## @seealso{wblcdf, wblinv, wblpdf, wblrnd, wblfit, wblstat} ## @end deftypefn function [nlogL, acov] = wbllike (params, x, censor, freq) ## Check input arguments and add defaults if (nargin < 2) error ("wbllike: too few input arguments."); endif if (numel (params) != 2) error ("wbllike: wrong parameters length."); endif if (! isvector (x)) error ("wbllike: X must be a vector."); endif if (nargin < 3 || isempty (censor)) censor = zeros (size (x)); elseif (! isequal (size (x), size (censor))) error ("wbllike: X and CENSOR vectors mismatch."); endif if (nargin < 4 || isempty (freq)) freq = ones (size (x)); elseif (isequal (size (x), size (freq))) nulls = find (freq == 0); if (numel (nulls) > 0) x(nulls) = []; censor(nulls) = []; freq(nulls) = []; endif else error ("wbllike: X and FREQ vectors mismatch."); endif ## Get lambda and k parameter values l = params(1); k = params(2); ## Force NaNs for out of range parameters or x. l(l <= 0) = NaN; k(k <= 0) = NaN; x(x < 0) = NaN; ## Compute the individual log-likelihood terms z = x ./ l; logz = log (z); expz = exp (k .* logz); ilogL = ((k - 1) .* logz + log (k ./ l)) .* (1 - censor) - expz; ilogL(z == Inf) = -Inf; ## Sum up the individual log-likelihood contributions nlogL = -sum (freq .* ilogL); ## Compute the negative hessian and invert to get the information matrix. if (nargout > 1) ucen = (1 - censor); nH11 = sum (freq .* (k .* ((1 + k) .* expz - ucen))) ./ l .^ 2; nH12 = -sum(freq .* (((1 + k .* logz) .* expz - ucen))) ./ l; nH22 = sum(freq .* ((logz .^ 2) .* expz + ucen ./ k .^ 2)); acov = [nH22, -nH12; -nH12, nH11] / (nH11 * nH22 - nH12 * nH12); endif endfunction ## Results compared with Matlab %!test %! x = 1:50; %! [nlogL, acov] = wbllike ([2.3, 1.2], x); %! avar_out = [0.0250, 0.0062; 0.0062, 0.0017]; %! assert (nlogL, 945.9589180651594, 1e-12); %! assert (acov, avar_out, 1e-4); %!test %! x = 1:50; %! [nlogL, acov] = wbllike ([2.3, 1.2], x * 0.5); %! avar_out = [-0.3238, -0.1112; -0.1112, -0.0376]; %! assert (nlogL, 424.9879809704742, 6e-14); %! assert (acov, avar_out, 1e-4); %!test %! x = 1:50; %! [nlogL, acov] = wbllike ([21, 15], x); %! avar_out = [-0.00001236, -0.00001166; -0.00001166, -0.00001009]; %! assert (nlogL, 1635190.328991511, 1e-8); %! assert (acov, avar_out, 1e-8); ## Test input validation %!error wbllike ([12, 15]); %!error wbllike ([12, 15, 3], [1:50]); %!error wbllike ([12, 3], ones (10, 2)); %!error wbllike ([12, 15], [1:50], [1, 2, 3]); %!error wbllike ([12, 15], [1:50], [], [1, 2, 3]); statistics-release-1.6.3/inst/dist_fun/000077500000000000000000000000001456127120000201175ustar00rootroot00000000000000statistics-release-1.6.3/inst/dist_fun/betacdf.m000066400000000000000000000143641456127120000216750ustar00rootroot00000000000000## Copyright (C) 2012 Rik Wehbring ## Copyright (C) 1995-2016 Kurt Hornik ## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{p} =} betacdf (@var{x}, @var{a}, @var{b}) ## @deftypefnx {statistics} {@var{p} =} betacdf (@var{x}, @var{a}, @var{b}, @qcode{"upper"}) ## ## Beta cumulative distribution function (CDF). ## ## For each element of @var{x}, compute the cumulative distribution function of ## the Beta distribution with shape parameters @var{a} and @var{b}. The size of ## @var{p} is the common size of @var{x}, @var{a}, and @var{b}. A scalar input ## functions as a constant matrix of the same size as the other inputs. ## ## @code{@var{p} = betacdf (@var{x}, @var{a}, @var{b}, "upper")} computes the ## upper tail probability of the Beta distribution with parameters @var{a} and ## @var{b}, at the values in @var{x}. ## ## Further information about the Beta distribution can be found at ## @url{https://en.wikipedia.org/wiki/Beta_distribution} ## ## @seealso{betainv, betapdf, betarnd, betafit, betalike, betastat} ## @end deftypefn function p = betacdf (x, a, b, uflag) ## Check for valid number of input arguments if (nargin < 3) error ("betacdf: function called with too few input arguments."); endif ## Check for valid "upper" flag if (nargin > 3) if (! strcmpi (uflag, "upper")) error ("betacdf: invalid argument for upper tail."); else uflag = true; endif else uflag = false; endif ## Check for common size of X, A, and B if (! isscalar (x) || ! isscalar (a) || ! isscalar (b)) [err, x, a, b] = common_size (x, a, b); if (err > 0) error ("betacdf: X, A, and B must be of common size or scalars."); endif endif ## Check for X, A, and B being reals if (iscomplex (x) || iscomplex (a) || iscomplex (b)) error ("betacdf: X, A, and B must not be complex."); endif ## Check for class type if (isa (x, "single") || isa (a, "single") || isa (b, "single")) is_type = "single"; else is_type = "double"; endif ## Find valid values in parameters and data okPARAM = (0 < a & a < Inf) & (0 < b & b < Inf); okDATA = (okPARAM & (0 <= x & x <= 1)); all_OK = all (okDATA(:)); ## Force NaNs for out of range parameters. ## Fill in edges cases when X is outside 0 or 1. if (! all_OK) p = NaN (size (okDATA), is_type); if (uflag) p(okPARAM & x <= 0) = 1; p(okPARAM & x >= 1) = 0; else p(okPARAM & x < 0) = 0; p(okPARAM & x > 1) = 1; endif ## Remove the out of range/edge cases. Return, if there's nothing left. if (any (okDATA(:))) if (numel (x) > 1) x = x(okDATA); endif if (numel (a) > 1) a = a(okDATA); endif if (numel (b) > 1) b = b(okDATA); endif else return; endif endif ## Call betainc for the actual work if (uflag) pk = betainc (x, a, b, "upper"); else pk = betainc (x, a, b); endif ## Relocate the values to the correct places if necessary. if all_OK p = pk; else p(okDATA) = pk; endif endfunction %!demo %! ## Plot various CDFs from the Beta distribution %! x = 0:0.005:1; %! p1 = betacdf (x, 0.5, 0.5); %! p2 = betacdf (x, 5, 1); %! p3 = betacdf (x, 1, 3); %! p4 = betacdf (x, 2, 2); %! p5 = betacdf (x, 2, 5); %! plot (x, p1, "-b", x, p2, "-g", x, p3, "-r", x, p4, "-c", x, p5, "-m") %! grid on %! legend ({"α = β = 0.5", "α = 5, β = 1", "α = 1, β = 3", ... %! "α = 2, β = 2", "α = 2, β = 5"}, "location", "northwest") %! title ("Beta CDF") %! xlabel ("values in x") %! ylabel ("probability") ## Test output %!shared x, y, x1, x2 %! x = [-1 0 0.5 1 2]; %! y = [0 0 0.75 1 1]; %!assert (betacdf (x, ones (1, 5), 2 * ones (1, 5)), y) %!assert (betacdf (x, 1, 2 * ones (1, 5)), y) %!assert (betacdf (x, ones (1, 5), 2), y) %!assert (betacdf (x, [0 1 NaN 1 1], 2), [NaN 0 NaN 1 1]) %!assert (betacdf (x, 1, 2 * [0 1 NaN 1 1]), [NaN 0 NaN 1 1]) %!assert (betacdf ([x(1:2) NaN x(4:5)], 1, 2), [y(1:2) NaN y(4:5)]) %! x1 = [0.1:0.2:0.9]; %!assert (betacdf (x1, 2, 2), [0.028, 0.216, 0.5, 0.784, 0.972], 1e-14); %!assert (betacdf (x1, 2, 2, "upper"), 1 - [0.028, 0.216, 0.5, 0.784, 0.972],... %! 1e-14); %! x2 = [1, 2, 3]; %!assert (betacdf (0.5, x2, x2), [0.5, 0.5, 0.5], 1e-14); %!assert (betacdf ([x, NaN], 1, 2), [y, NaN]) ## Test class of input preserved %!assert (betacdf (single ([x, NaN]), 1, 2), single ([y, NaN])) %!assert (betacdf ([x, NaN], single (1), 2), single ([y, NaN])) %!assert (betacdf ([x, NaN], 1, single (2)), single ([y, NaN])) ## Test input validation %!error betacdf () %!error betacdf (1) %!error betacdf (1, 2) %!error betacdf (1, 2, 3, 4, 5) %!error betacdf (1, 2, 3, "tail") %!error betacdf (1, 2, 3, 4) %!error ... %! betacdf (ones (3), ones (2), ones (2)) %!error ... %! betacdf (ones (2), ones (3), ones (2)) %!error ... %! betacdf (ones (2), ones (2), ones (3)) %!error betacdf (i, 2, 2) %!error betacdf (2, i, 2) %!error betacdf (2, 2, i) statistics-release-1.6.3/inst/dist_fun/betainv.m000066400000000000000000000132671456127120000217360ustar00rootroot00000000000000## Copyright (C) 2012 Rik Wehbring ## Copyright (C) 1995-2016 Kurt Hornik ## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{x} =} betainv (@var{p}, @var{a}, @var{b}) ## ## Inverse of the Beta distribution (iCDF). ## ## For each element of @var{p}, compute the quantile (the inverse of the CDF) ## of the Beta distribution with shape parameters @var{a} and @var{b}. The size ## of @var{x} is the common size of @var{x}, @var{a}, and @var{b}. A scalar ## input functions as a constant matrix of the same size as the other inputs. ## ## Further information about the Beta distribution can be found at ## @url{https://en.wikipedia.org/wiki/Beta_distribution} ## ## @seealso{betacdf, betapdf, betarnd, betafit, betalike, betastat} ## @end deftypefn function x = betainv (p, a, b) ## Check for valid number of input arguments if (nargin < 3) error ("betainv: function called with too few input arguments."); endif ## Check for common size of P, A, and B if (! isscalar (p) || ! isscalar (a) || ! isscalar (b)) [retval, p, a, b] = common_size (p, a, b); if (retval > 0) error ("betainv: P, A, and B must be of common size or scalars."); endif endif ## Check for P, A, and B being reals if (iscomplex (p) || iscomplex (a) || iscomplex (b)) error ("betainv: P, A, and B must not be complex."); endif ## Check for class type if (isa (p, "single") || isa (a, "single") || isa (b, "single")) x = zeros (size (p), "single"); else x = zeros (size (p)); endif k = (p < 0) | (p > 1) | !(a > 0) | !(b > 0) | isnan (p); x(k) = NaN; k = (p == 1) & (a > 0) & (b > 0); x(k) = 1; k = find ((p > 0) & (p < 1) & (a > 0) & (b > 0)); if (! isempty (k)) if (! isscalar (a) || ! isscalar (b)) a = a(k); b = b(k); y = a ./ (a + b); else y = a / (a + b) * ones (size (k)); endif p = p(k); if (isa (y, "single")) myeps = eps ("single"); else myeps = eps; endif l = find (y < myeps); if (any (l)) y(l) = sqrt (myeps) * ones (length (l), 1); endif l = find (y > 1 - myeps); if (any (l)) y(l) = 1 - sqrt (myeps) * ones (length (l), 1); endif y_new = y; loopcnt = 0; do y_old = y_new; h = (betacdf (y_old, a, b) - p) ./ betapdf (y_old, a, b); y_new = y_old - h; ind = find (y_new <= myeps); if (any (ind)) y_new(ind) = y_old(ind) / 10; endif ind = find (y_new >= 1 - myeps); if (any (ind)) y_new(ind) = 1 - (1 - y_old(ind)) / 10; endif h = y_old - y_new; until (max (abs (h)) < sqrt (myeps) || ++loopcnt == 40) if (loopcnt == 40) warning ("betainv: calculation failed to converge for some values."); endif x(k) = y_new; endif endfunction %!demo %! ## Plot various iCDFs from the Beta distribution %! p = 0.001:0.001:0.999; %! x1 = betainv (p, 0.5, 0.5); %! x2 = betainv (p, 5, 1); %! x3 = betainv (p, 1, 3); %! x4 = betainv (p, 2, 2); %! x5 = betainv (p, 2, 5); %! plot (p, x1, "-b", p, x2, "-g", p, x3, "-r", p, x4, "-c", p, x5, "-m") %! grid on %! legend ({"α = β = 0.5", "α = 5, β = 1", "α = 1, β = 3", ... %! "α = 2, β = 2", "α = 2, β = 5"}, "location", "southeast") %! title ("Beta iCDF") %! xlabel ("probability") %! ylabel ("values in x") ## Test output %!shared p %! p = [-1 0 0.75 1 2]; %!assert (betainv (p, ones (1,5), 2*ones (1,5)), [NaN 0 0.5 1 NaN], eps) %!assert (betainv (p, 1, 2*ones (1,5)), [NaN 0 0.5 1 NaN], eps) %!assert (betainv (p, ones (1,5), 2), [NaN 0 0.5 1 NaN], eps) %!assert (betainv (p, [1 0 NaN 1 1], 2), [NaN NaN NaN 1 NaN]) %!assert (betainv (p, 1, 2*[1 0 NaN 1 1]), [NaN NaN NaN 1 NaN]) %!assert (betainv ([p(1:2) NaN p(4:5)], 1, 2), [NaN 0 NaN 1 NaN]) ## Test class of input preserved %!assert (betainv ([p, NaN], 1, 2), [NaN 0 0.5 1 NaN NaN], eps) %!assert (betainv (single ([p, NaN]), 1, 2), single ([NaN 0 0.5 1 NaN NaN])) %!assert (betainv ([p, NaN], single (1), 2), single ([NaN 0 0.5 1 NaN NaN]), eps("single")) %!assert (betainv ([p, NaN], 1, single (2)), single ([NaN 0 0.5 1 NaN NaN]), eps("single")) ## Test input validation %!error betainv () %!error betainv (1) %!error betainv (1,2) %!error betainv (1,2,3,4) %!error ... %! betainv (ones (3), ones (2), ones (2)) %!error ... %! betainv (ones (2), ones (3), ones (2)) %!error ... %! betainv (ones (2), ones (2), ones (3)) %!error betainv (i, 2, 2) %!error betainv (2, i, 2) %!error betainv (2, 2, i) statistics-release-1.6.3/inst/dist_fun/betapdf.m000066400000000000000000000133741456127120000217120ustar00rootroot00000000000000## Copyright (C) 2010 Christos Dimitrakakis ## Copyright (C) 2012 Rik Wehbring ## Copyright (C) 1995-2016 Kurt Hornik ## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{y} =} betapdf (@var{x}, @var{a}, @var{b}) ## ## Beta probability density function (PDF). ## ## For each element of @var{x}, compute the probability density function (PDF) ## of the Beta distribution with shape parameters @var{a} and @var{b}. The size ## of @var{y} is the common size of @var{x}, @var{a}, and @var{b}. A scalar ## input functions as a constant matrix of the same size as the other inputs. ## ## Further information about the Beta distribution can be found at ## @url{https://en.wikipedia.org/wiki/Beta_distribution} ## ## @seealso{betacdf, betainv, betarnd, betafit, betalike, betastat} ## @end deftypefn function y = betapdf (x, a, b) ## Check for valid number of input arguments if (nargin < 3) error ("betapdf: function called with too few input arguments."); endif ## Check for common size of X, A, and B if (! isscalar (x) || ! isscalar (a) || ! isscalar (b)) [retval, x, a, b] = common_size (x, a, b); if (retval > 0) error ("betapdf: X, A, and B must be of common size or scalars."); endif endif ## Check for X, A, and B being reals if (iscomplex (x) || iscomplex (a) || iscomplex (b)) error ("betapdf: X, A, and B must not be complex."); endif ## Check for class type if (isa (x, "single") || isa (a, "single") || isa (b, "single")); y = zeros (size (x), "single"); else y = zeros (size (x)); endif k = !(a > 0) | !(b > 0) | isnan (x); y(k) = NaN; k = (x > 0) & (x < 1) & (a > 0) & (b > 0) & ((a != 1) | (b != 1)); if (isscalar (a) && isscalar (b)) y(k) = exp ((a - 1) * log (x(k)) + (b - 1) * log (1 - x(k)) + gammaln (a + b) - gammaln (a) - gammaln (b)); else y(k) = exp ((a(k) - 1) .* log (x(k)) + (b(k) - 1) .* log (1 - x(k)) + gammaln (a(k) + b(k)) - gammaln (a(k)) - gammaln (b(k))); endif ## Most important special cases when the density is finite. k = (x == 0) & (a == 1) & (b > 0) & (b != 1); if (isscalar (a) && isscalar (b)) y(k) = exp (gammaln (a + b) - gammaln (a) - gammaln (b)); else y(k) = exp (gammaln (a(k) + b(k)) - gammaln (a(k)) - gammaln (b(k))); endif k = (x == 1) & (b == 1) & (a > 0) & (a != 1); if (isscalar (a) && isscalar (b)) y(k) = exp (gammaln (a + b) - gammaln (a) - gammaln (b)); else y(k) = exp (gammaln (a(k) + b(k)) - gammaln (a(k)) - gammaln (b(k))); endif k = (x >= 0) & (x <= 1) & (a == 1) & (b == 1); y(k) = 1; ## Other special case when the density at the boundary is infinite. k = (x == 0) & (a < 1); y(k) = Inf; k = (x == 1) & (b < 1); y(k) = Inf; endfunction %!demo %! ## Plot various PDFs from the Beta distribution %! x = 0.001:0.001:0.999; %! y1 = betapdf (x, 0.5, 0.5); %! y2 = betapdf (x, 5, 1); %! y3 = betapdf (x, 1, 3); %! y4 = betapdf (x, 2, 2); %! y5 = betapdf (x, 2, 5); %! plot (x, y1, "-b", x, y2, "-g", x, y3, "-r", x, y4, "-c", x, y5, "-m") %! grid on %! ylim ([0, 2.5]) %! legend ({"α = β = 0.5", "α = 5, β = 1", "α = 1, β = 3", ... %! "α = 2, β = 2", "α = 2, β = 5"}, "location", "north") %! title ("Beta PDF") %! xlabel ("values in x") %! ylabel ("density") ## Test output %!shared x, y %! x = [-1 0 0.5 1 2]; %! y = [0 2 1 0 0]; %!assert (betapdf (x, ones (1, 5), 2 * ones (1, 5)), y) %!assert (betapdf (x, 1, 2 * ones (1, 5)), y) %!assert (betapdf (x, ones (1, 5), 2), y) %!assert (betapdf (x, [0 NaN 1 1 1], 2), [NaN NaN y(3:5)]) %!assert (betapdf (x, 1, 2 * [0 NaN 1 1 1]), [NaN NaN y(3:5)]) %!assert (betapdf ([x, NaN], 1, 2), [y, NaN]) ## Test class of input preserved %!assert (betapdf (single ([x, NaN]), 1, 2), single ([y, NaN])) %!assert (betapdf ([x, NaN], single (1), 2), single ([y, NaN])) %!assert (betapdf ([x, NaN], 1, single (2)), single ([y, NaN])) ## Beta (1/2,1/2) == arcsine distribution %!test %! x = rand (10,1); %! y = 1 ./ (pi * sqrt (x .* (1 - x))); %! assert (betapdf (x, 1/2, 1/2), y, 100 * eps); ## Test large input values to betapdf %!assert (betapdf (0.5, 1000, 1000), 35.678, 1e-3) ## Test input validation %!error betapdf () %!error betapdf (1) %!error betapdf (1,2) %!error betapdf (1,2,3,4) %!error ... %! betapdf (ones (3), ones (2), ones (2)) %!error ... %! betapdf (ones (2), ones (3), ones (2)) %!error ... %! betapdf (ones (2), ones (2), ones (3)) %!error betapdf (i, 2, 2) %!error betapdf (2, i, 2) %!error betapdf (2, 2, i) statistics-release-1.6.3/inst/dist_fun/betarnd.m000066400000000000000000000162031456127120000217160ustar00rootroot00000000000000## Copyright (C) 2012 Rik Wehbring ## Copyright (C) 1995-2016 Kurt Hornik ## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{r} =} betarnd (@var{a}, @var{b}) ## @deftypefnx {statistics} {@var{r} =} betarnd (@var{a}, @var{b}, @var{rows}) ## @deftypefnx {statistics} {@var{r} =} betarnd (@var{a}, @var{b}, @var{rows}, @var{cols}, @dots{}) ## @deftypefnx {statistics} {@var{r} =} betarnd (@var{a}, @var{b}, [@var{sz}]) ## ## Random arrays from the Beta distribution. ## ## @code{@var{r} = betarnd (@var{a}, @var{b})} returns an array of random ## numbers chosen from the Beta distribution with shape parameters @var{a} and ## @var{b}. The size of @var{r} is the common size of @var{a} and @var{b}. ## A scalar input functions as a constant matrix of the same size as the other ## inputs. ## ## When called with a single size argument, @code{betarnd} returns a square ## matrix with the dimension specified. When called with more than one scalar ## argument, the first two arguments are taken as the number of rows and columns ## and any further arguments specify additional matrix dimensions. The size may ## also be specified with a row vector of dimensions, @var{sz}. ## ## Further information about the Beta distribution can be found at ## @url{https://en.wikipedia.org/wiki/Beta_distribution} ## ## @seealso{betacdf, betainv, betapdf, betafit, betalike, betastat} ## @end deftypefn function r = betarnd (a, b, varargin) ## Check for valid number of input arguments if (nargin < 2) error ("betarnd: function called with too few input arguments."); endif ## Check for common size of A and B if (! isscalar (a) || ! isscalar (b)) [retval, a, b] = common_size (a, b); if (retval > 0) error ("betarnd: A and B must be of common size or scalars."); endif endif ## Check for A and B being reals if (iscomplex (a) || iscomplex (b)) error ("betarnd: A and B must not be complex."); endif ## Parse and check SIZE arguments if (nargin == 2) sz = size (a); elseif (nargin == 3) if (isscalar (varargin{1}) && varargin{1} >= 0 ... && varargin{1} == fix (varargin{1})) sz = [varargin{1}, varargin{1}]; elseif (isrow (varargin{1}) && all (varargin{1} >= 0) ... && all (varargin{1} == fix (varargin{1}))) sz = varargin{1}; elseif error (strcat (["betarnd: SZ must be a scalar or a row vector"], ... [" of non-negative integers."])); endif elseif (nargin > 3) posint = cellfun (@(x) (! isscalar (x) || x < 0 || x != fix (x)), varargin); if (any (posint)) error ("betarnd: dimensions must be non-negative integers."); endif sz = [varargin{:}]; endif ## Check that parameters match requested dimensions in size if (! isscalar (a) && ! isequal (size (a), sz)) error ("betarnd: A and B must be scalars or of size SZ."); endif ## Check for class type if (isa (a, "single") || isa (b, "single")) cls = "single"; else cls = "double"; endif ## Generate random sample from Beta distribution if (isscalar (a) && isscalar (b)) if ((a > 0) && (a < Inf) && (b > 0) && (b < Inf)) tmpr = randg (a, sz, cls); r = tmpr ./ (tmpr + randg (b, sz, cls)); else r = NaN (sz, cls); endif else r = NaN (sz, cls); k = (a > 0) & (a < Inf) & (b > 0) & (b < Inf); tmpr = randg (a(k), cls); r(k) = tmpr ./ (tmpr + randg (b(k), cls)); endif endfunction ## Test output %!assert (size (betarnd (2, 1/2)), [1 1]) %!assert (size (betarnd (2 * ones (2, 1), 1/2)), [2, 1]) %!assert (size (betarnd (2 * ones (2, 2), 1/2)), [2, 2]) %!assert (size (betarnd (2, 1/2 * ones (2, 1))), [2, 1]) %!assert (size (betarnd (1, 1/2 * ones (2, 2))), [2, 2]) %!assert (size (betarnd (ones (2, 1), 1)), [2, 1]) %!assert (size (betarnd (ones (2, 2), 1)), [2, 2]) %!assert (size (betarnd (2, 1/2, 3)), [3, 3]) %!assert (size (betarnd (1, 1, [4, 1])), [4, 1]) %!assert (size (betarnd (1, 1, 4, 1)), [4, 1]) %!assert (size (betarnd (1, 1, 4, 1, 5)), [4, 1, 5]) %!assert (size (betarnd (1, 1, 0, 1)), [0, 1]) %!assert (size (betarnd (1, 1, 1, 0)), [1, 0]) %!assert (size (betarnd (1, 1, 1, 2, 0, 5)), [1, 2, 0, 5]) ## Test class of input preserved %!assert (class (betarnd (1, 1)), "double") %!assert (class (betarnd (1, single (0))), "single") %!assert (class (betarnd (1, single ([0, 0]))), "single") %!assert (class (betarnd (1, single (1), 2)), "single") %!assert (class (betarnd (1, single ([1, 1]), 1, 2)), "single") %!assert (class (betarnd (single (1), 1, 2)), "single") %!assert (class (betarnd (single ([1, 1]), 1, 1, 2)), "single") ## Test input validation %!error betarnd () %!error betarnd (1) %!error ... %! betarnd (ones (3), ones (2)) %!error ... %! betarnd (ones (2), ones (3)) %!error betarnd (i, 2) %!error betarnd (1, i) %!error ... %! betarnd (1, 1/2, -1) %!error ... %! betarnd (1, 1/2, 1.2) %!error ... %! betarnd (1, 1/2, ones (2)) %!error ... %! betarnd (1, 1/2, [2 -1 2]) %!error ... %! betarnd (1, 1/2, [2 0 2.5]) %!error ... %! betarnd (1, 1/2, 2, -1, 5) %!error ... %! betarnd (1, 1/2, 2, 1.5, 5) %!error ... %! betarnd (2, 1/2 * ones (2), 3) %!error ... %! betarnd (2, 1/2 * ones (2), [3, 2]) %!error ... %! betarnd (2, 1/2 * ones (2), 3, 2) %!error ... %! betarnd (2 * ones (2), 1/2, 3) %!error ... %! betarnd (2 * ones (2), 1/2, [3, 2]) %!error ... %! betarnd (2 * ones (2), 1/2, 3, 2) statistics-release-1.6.3/inst/dist_fun/binocdf.m000066400000000000000000000142621456127120000217060ustar00rootroot00000000000000## Copyright (C) 2012 Rik Wehbring ## Copyright (C) 1995-2016 Kurt Hornik ## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{p} =} binocdf (@var{x}, @var{n}, @var{ps}) ## @deftypefnx {statistics} {@var{p} =} binocdf (@var{x}, @var{n}, @var{ps}, @qcode{"upper"}) ## ## Binomial cumulative distribution function (CDF). ## ## For each element of @var{x}, compute the cumulative distribution function ## (CDF) of the binomial distribution with parameters @var{n} and @var{ps}, ## where @var{n} is the number of trials and @var{ps} is the probability of ## success. The size of @var{p} is the common size of @var{x}, @var{n}, and ## @var{ps}. A scalar input functions as a constant matrix of the same size as ## the other inputs. ## ## @code{@var{p} = binocdf (@var{x}, @var{n}, @var{ps}, "upper")} computes the ## upper tail probability of the binomial distribution with parameters ## @var{n} and @var{ps}, at the values in @var{x}. ## ## Further information about the binomial distribution can be found at ## @url{https://en.wikipedia.org/wiki/Binomial_distribution} ## ## @seealso{binoinv, binopdf, binornd, binofit, binolike, binostat, binotest} ## @end deftypefn function p = binocdf (x, n, ps, uflag) ## Check for valid number of input arguments if (nargin < 3) error ("binocdf: function called with too few input arguments."); endif ## Check for valid "upper" flag if (nargin == 4) if (strcmp (uflag, "upper")) uflag = true; else error ("binocdf: invalid argument for upper tail."); endif else uflag = false; endif ## Check for common size of X, N, and PS if (! isscalar (x) || ! isscalar (n) || ! isscalar (ps)) [retval, x, n, ps] = common_size (x, n, ps); if (retval > 0) error ("binocdf: X, N, and PS must be of common size or scalars."); endif endif ## Check for X, N, and PS being reals if (iscomplex (x) || iscomplex (n) || iscomplex (ps)) error ("binocdf: X, N, and PS must not be complex."); endif ## Check for class type if (isa (x, "single") || isa (n, "single") || isa (ps, "single")); p = nan (size (x), "single"); else p = nan (size (x)); endif k = (x >= n) & (n >= 0) & (n == fix (n) & (ps >= 0) & (ps <= 1)); p(k) = !uflag; k = (x < 0) & (n >= 0) & (n == fix (n) & (ps >= 0) & (ps <= 1)); p(k) = uflag; k = (x >= 0) & (x < n) & (n == fix (n)) & (ps >= 0) & (ps <= 1); tmp = floor (x(k)); if (! uflag) if (isscalar (n) && isscalar (ps)) p(k) = betainc (1 - ps, n - tmp, tmp + 1); else p(k) = betainc (1 - ps(k), n(k) - tmp, tmp + 1); endif else if (isscalar (n) && isscalar (ps)); p(k) = betainc (ps, tmp + 1, n - tmp); else p(k) = betainc (ps(k), tmp + 1, n(k) - tmp); endif endif endfunction %!demo %! ## Plot various CDFs from the binomial distribution %! x = 0:40; %! p1 = binocdf (x, 20, 0.5); %! p2 = binocdf (x, 20, 0.7); %! p3 = binocdf (x, 40, 0.5); %! plot (x, p1, "*b", x, p2, "*g", x, p3, "*r") %! grid on %! legend ({"n = 20, ps = 0.5", "n = 20, ps = 0.7", ... %! "n = 40, ps = 0.5"}, "location", "southeast") %! title ("Binomial CDF") %! xlabel ("values in x (number of successes)") %! ylabel ("probability") ## Test output %!shared x, p, p1 %! x = [-1 0 1 2 3]; %! p = [0 1/4 3/4 1 1]; %! p1 = 1 - p; %!assert (binocdf (x, 2 * ones (1, 5), 0.5 * ones (1, 5)), p, eps) %!assert (binocdf (x, 2, 0.5 * ones (1, 5)), p, eps) %!assert (binocdf (x, 2 * ones (1, 5), 0.5), p, eps) %!assert (binocdf (x, 2 * [0 -1 NaN 1.1 1], 0.5), [0 NaN NaN NaN 1]) %!assert (binocdf (x, 2, 0.5 * [0 -1 NaN 3 1]), [0 NaN NaN NaN 1]) %!assert (binocdf ([x(1:2) NaN x(4:5)], 2, 0.5), [p(1:2) NaN p(4:5)], eps) %!assert (binocdf (99, 100, 0.1, "upper"), 1e-100, 1e-112); %!assert (binocdf (x, 2 * ones (1, 5), 0.5*ones (1,5), "upper"), p1, eps) %!assert (binocdf (x, 2, 0.5 * ones (1, 5), "upper"), p1, eps) %!assert (binocdf (x, 2 * ones (1, 5), 0.5, "upper"), p1, eps) %!assert (binocdf (x, 2 * [0 -1 NaN 1.1 1], 0.5, "upper"), [1 NaN NaN NaN 0]) %!assert (binocdf (x, 2, 0.5 * [0 -1 NaN 3 1], "upper"), [1 NaN NaN NaN 0]) %!assert (binocdf ([x(1:2) NaN x(4:5)], 2, 0.5, "upper"), [p1(1:2) NaN p1(4:5)]) %!assert (binocdf ([x, NaN], 2, 0.5), [p, NaN], eps) ## Test class of input preserved %!assert (binocdf (single ([x, NaN]), 2, 0.5), single ([p, NaN])) %!assert (binocdf ([x, NaN], single (2), 0.5), single ([p, NaN])) %!assert (binocdf ([x, NaN], 2, single (0.5)), single ([p, NaN])) ## Test input validation %!error binocdf () %!error binocdf (1) %!error binocdf (1, 2) %!error binocdf (1, 2, 3, 4, 5) %!error binocdf (1, 2, 3, "tail") %!error binocdf (1, 2, 3, 4) %!error ... %! binocdf (ones (3), ones (2), ones (2)) %!error ... %! binocdf (ones (2), ones (3), ones (2)) %!error ... %! binocdf (ones (2), ones (2), ones (3)) %!error binocdf (i, 2, 2) %!error binocdf (2, i, 2) %!error binocdf (2, 2, i) statistics-release-1.6.3/inst/dist_fun/binoinv.m000066400000000000000000000203071456127120000217430ustar00rootroot00000000000000## Copyright (C) 2016-2017 Lachlan Andrew ## Copyright (C) 2012-2016 Rik Wehbring ## Copyright (C) 1995-2012 Kurt Hornik ## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{x} =} binoinv (@var{p}, @var{n}, @var{ps}) ## ## Inverse of the Binomial cumulative distribution function (iCDF). ## ## For each element of @var{p}, compute the quantile (the inverse of the CDF) of ## the binomial distribution with parameters @var{n} and @var{ps}, where @var{n} ## is the number of trials and @var{ps} is the probability of success. The size ## of @var{x} is the common size of @var{p}, @var{n}, and @var{ps}. A scalar ## input functions as a constant matrix of the same size as the other inputs. ## ## Further information about the binomial distribution can be found at ## @url{https://en.wikipedia.org/wiki/Binomial_distribution} ## ## @seealso{binocdf, binopdf, binornd, binofit, binolike, binostat, binotest} ## @end deftypefn function x = binoinv (p, n, ps) ## Check for valid number of input arguments if (nargin < 3) error ("binoinv: function called with too few input arguments."); endif ## Check for common size of P, N, and PS if (! isscalar (n) || ! isscalar (ps)) [retval, p, n, ps] = common_size (p, n, ps); if (retval > 0) error ("binoinv: P, N, and PS must be of common size or scalars."); endif endif ## Check for P, N, and PS being reals if (iscomplex (p) || iscomplex (n) || iscomplex (ps)) error ("binoinv: P, N, and PS must not be complex."); endif ## Check for class type if (isa (p, "single") || isa (n, "single") || isa (ps, "single")); x = zeros (size (p), "single"); else x = zeros (size (p)); endif k = (! (p >= 0) | ! (p <= 1) | ! (n >= 0) | (n != fix (n)) | ! (ps >= 0) | ... ! (ps <= 1)); x(k) = NaN; k = find ((p >= 0) & (p <= 1) & (n >= 0) & (n == fix (n) ... & (ps >= 0) & (ps <= 1))); if (! isempty (k)) p = p(k); if (isscalar (n) && isscalar (ps)) [x(k), unfinished] = scalar_binoinv (p(:), n, ps); k = k(unfinished); if (! isempty (k)) x(k) = bin_search_binoinv (p(k), n, ps); endif else [x(k), unfinished] = vector_binoinv (p(:), n(:), ps(:)); k = k(unfinished); if (! isempty (k)) x(k) = bin_search_binoinv (p(k), n(k), ps(k)); endif endif endif endfunction ## Core algorithm to calculate the inverse binomial, for n and ps real scalars ## and x a column vector, and for which the output is not NaN or Inf. ## Compute CDF in batches of doubling size until CDF > p, or answer > 500 ## Return the locations of unfinished cases in k. function [m, k] = scalar_binoinv (p, n, ps) k = 1:length (p); m = zeros (size (p)); prev_limit = 0; limit = 10; cdf = 0; v = 0; do cdf = binocdf (prev_limit:limit-1, n, ps); r = bsxfun (@le, p(k), cdf); [v, m(k)] = max (r, [], 2); # find first instance of p <= cdf m(k) += prev_limit - 1; k = k(v == 0); prev_limit = limit; limit += limit; until (isempty (k) || limit >= 1000) endfunction ## Core algorithm to calculate the inverse binomial, for n, ps, and x column ## vectors, and for which the output is not NaN or Inf. ## Compute CDF in batches of doubling size until CDF > p, or answer > 500 ## Return the locations of unfinished cases in k. ## Calculates CDF by summing PDF, which is faster than calls to binocdf. function [m, k] = vector_binoinv (p, n, ps) k = 1:length(p); m = zeros (size (p)); prev_limit = 0; limit = 10; cdf = 0; v = 0; do xx = repmat (prev_limit:limit-1, [length(k), 1]); nn = kron (ones (1, limit-prev_limit), n(k)); pp = kron (ones (1, limit-prev_limit), ps(k)); pdf = binopdf (xx, nn, pp); pdf(:,1) += cdf(v==0, end); cdf = cumsum (pdf, 2); r = bsxfun (@le, p(k), cdf); [v, m(k)] = max (r, [], 2); # find first instance of p <= cdf m(k) += prev_limit - 1; k = k(v == 0); prev_limit = limit; limit += min (limit, max (1e4/numel (k), 10)); # limit memory use until (isempty (k) || limit >= 1000) endfunction ## Vectorized binary search. ## Can handle vectors n and ps, and is faster than the scalar case when the ## answer is large. ## Could be optimized to call binocdf only for a subset of the p at each stage, ## but care must be taken to handle both scalar and vector n, ps. Bookkeeping ## may cost more than the extra computations. function m = bin_search_binoinv (p, n, ps) k = 1:length (p); lower = zeros (size (p)); limit = 500; # lower bound on point at which prev phase finished while (any (k) && limit < 1e100) cdf = binocdf (limit, n, ps); k = (p > cdf); lower(k) = limit; limit += limit; endwhile upper = max (2*lower, 1); k = find (lower != limit/2); # elements for which above loop finished for i = 1:ceil (log2 (max (lower))) mid = (upper + lower)/2; cdf = binocdf (floor(mid(:)), n, ps); r = (p <= cdf); upper(r) = mid(r); lower(! r) = mid(! r); endfor m = ceil (lower); m(p > binocdf (m(:), n, ps)) += 1; # fix off-by-one errors from binary search endfunction %!demo %! ## Plot various iCDFs from the binomial distribution %! p = 0.001:0.001:0.999; %! x1 = binoinv (p, 20, 0.5); %! x2 = binoinv (p, 20, 0.7); %! x3 = binoinv (p, 40, 0.5); %! plot (p, x1, "-b", p, x2, "-g", p, x3, "-r") %! grid on %! legend ({"n = 20, ps = 0.5", "n = 20, ps = 0.7", ... %! "n = 40, ps = 0.5"}, "location", "southeast") %! title ("Binomial iCDF") %! xlabel ("probability") %! ylabel ("values in x (number of successes)") ## Test output %!shared p %! p = [-1 0 0.5 1 2]; %!assert (binoinv (p, 2*ones (1,5), 0.5*ones (1,5)), [NaN 0 1 2 NaN]) %!assert (binoinv (p, 2, 0.5*ones (1,5)), [NaN 0 1 2 NaN]) %!assert (binoinv (p, 2*ones (1,5), 0.5), [NaN 0 1 2 NaN]) %!assert (binoinv (p, 2*[0 -1 NaN 1.1 1], 0.5), [NaN NaN NaN NaN NaN]) %!assert (binoinv (p, 2, 0.5*[0 -1 NaN 3 1]), [NaN NaN NaN NaN NaN]) %!assert (binoinv ([p(1:2) NaN p(4:5)], 2, 0.5), [NaN 0 NaN 2 NaN]) ## Test class of input preserved %!assert (binoinv ([p, NaN], 2, 0.5), [NaN 0 1 2 NaN NaN]) %!assert (binoinv (single ([p, NaN]), 2, 0.5), single ([NaN 0 1 2 NaN NaN])) %!assert (binoinv ([p, NaN], single (2), 0.5), single ([NaN 0 1 2 NaN NaN])) %!assert (binoinv ([p, NaN], 2, single (0.5)), single ([NaN 0 1 2 NaN NaN])) ## Test accuracy, to within +/- 1 since it is a discrete distribution %!shared x, tol %! x = magic (3) + 1; %! tol = 1; %!assert (binoinv (binocdf (1:10, 11, 0.1), 11, 0.1), 1:10, tol) %!assert (binoinv (binocdf (1:10, 2*(1:10), 0.1), 2*(1:10), 0.1), 1:10, tol) %!assert (binoinv (binocdf (x, 2*x, 1./x), 2*x, 1./x), x, tol) ## Test input validation %!error binoinv () %!error binoinv (1) %!error binoinv (1,2) %!error binoinv (1,2,3,4) %!error ... %! binoinv (ones (3), ones (2), ones (2)) %!error ... %! binoinv (ones (2), ones (3), ones (2)) %!error ... %! binoinv (ones (2), ones (2), ones (3)) %!error binoinv (i, 2, 2) %!error binoinv (2, i, 2) %!error binoinv (2, 2, i) statistics-release-1.6.3/inst/dist_fun/binopdf.m000066400000000000000000000272311456127120000217230ustar00rootroot00000000000000## Copyright (C) 2012 Rik Wehbring ## Copyright (C) 1995-2016 Kurt Hornik ## Copyright (C) 2021 Nicholas R. Jankowski ## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{y} =} binopdf (@var{x}, @var{n}, @var{ps}) ## ## Binomial probability density function (PDF). ## ## For each element of @var{x}, compute the probability density function (PDF) ## of the binomial distribution with parameters @var{n} and @var{ps}, where ## @var{n} is the number of trials and @var{ps} is the probability of success. ## The size of @var{y} is the common size of @var{x}, @var{n}, and @var{ps}. A ## scalar input functions as a constant matrix of the same size as the other ## inputs. ## ## Matlab incompatibility: Octave's @code{binopdf} does not allow complex ## input values. Matlab 2021b returns values for complex inputs despite the ## documentation indicates integer and real value inputs are required. ## ## Further information about the binomial distribution can be found at ## @url{https://en.wikipedia.org/wiki/Binomial_distribution} ## ## @seealso{binocdf, binoinv, binornd, binofit, binolike, binostat, binotest} ## @end deftypefn function y = binopdf (x, n, ps) ## Check for valid number of input arguments if (nargin < 3) error ("binopdf: function called with too few input arguments."); endif ## Check for common size of X, N, and PS if (! isscalar (x) || ! isscalar (n) || ! isscalar (ps)) [retval, x, n, ps] = common_size (x, n, ps); if (retval > 0) error ("binopdf: X, N, and PS must be of common size or scalars."); endif endif ## Check for X, N, and PS being reals if (iscomplex (x) || iscomplex (n) || iscomplex (ps)) error ("binopdf: X, N, and PS must not be complex."); endif sz_x = size (x); # save original size for reshape later x = x(:); n = n(:); ps = ps(:); # columns for easier vectorization ## Initialize output, preserve class of output if any are singles if (isa (x, "single") || isa (n, "single") || isa (ps, "single")); y = zeros (numel (x), 1, "single"); else y = zeros (numel (x), 1); endif ## k - index of array locations needing calculation k = (x == fix (x)) & (n == fix (n)) & (n >= 0) & (ps >= 0) & (ps <= 1) ... & (x >= 0) & (x <= n); nx = n - x; q = 1 - ps; ## Catch special cases ahead of calculations: ## Matlab incompatibility: Matlab 2021b returns values for complex inputs ## despite documentation indicating integer and real value inputs required. ## Octave chooses to return an NaN instead. catch_special = (iscomplex (x) | iscomplex (n) | iscomplex (ps)); k(catch_special) = false; y(catch_special) = NaN; ## x = 0 and x = n cases where ps != 0 or 1, respectivly ## remove them from k, use alternate calculation to avoid /0 catch_special = (x == 0)& (! catch_special); k(catch_special) = false; y(catch_special) = exp (n(catch_special) .* log (q(catch_special))); catch_special = (nx == 0) & (! catch_special); k(catch_special) = false; y(catch_special) = exp (n(catch_special) .* log (ps(catch_special))); ## Perform Loader pdf calculation on non-trivial elements if (any (k)) y(k) = loader_expansion (x(k), n(k), ps(k), nx(k), q(k)); endif ## Trivial case special outputs: ksp = ((ps == 0) & (x == 0)) | (ps == 1) & (x == n); y(ksp) = 1; ## Input NaN, n not pos int, or ps outside [0,1], ## set output to NaN (overrides 0 or 1) ksp = (n ~= fix (n)) | (n < 0) | (ps < 0) | (ps > 1) | isnan (x) ... | isnan (n) | isnan (ps); y(ksp) = NaN; y = reshape (y, sz_x); ## restore output to input shape endfunction function y = loader_expansion (x, n, ps, nx, q) ## Precalculated constants, d_n from n = 0 to 30 ## extended from Loader using octave symbolic vpa ## out to n = 30 d_n = [ 0.08106146679532725821967026359438236013860, 0.04134069595540929409382208140711750802535, 0.02767792568499833914878929274624466659538, 0.02079067210376509311152277176784865633309, 0.01664469118982119216319486537359339114739, 0.01387612882307074799874572702376290856175, 0.01189670994589177009505572411765943862013, 0.01041126526197209649747856713253462919952, 0.00925546218271273291772863663310013611743, 0.00833056343336287125646931865962855220929, 0.00757367548795184079497202421159508389293, 0.00694284010720952986566415266347536265992, 0.00640899418800420706843963108297831257520, 0.00595137011275884773562441604646945832642, 0.00555473355196280137103868995979228464907, 0.00520765591960964044071799685790189865099, 0.00490139594843473786071681819096755442865, 0.00462915374933402859242721316419232323878, 0.00438556024923232426828773634861946570116, 0.00416631969199692245746292338221831613633, 0.00396795421864085961728763680734281467287, 0.00378761806844443457786667706893349200129, 0.00362296022468309470738119836390285473489, 0.00347202138297876696294511542270952959204, 0.00333315563672809287580701911737271025035, 0.00320497022805503801118415655381541759643, 0.00308627868260877706325624133564397946129, 0.00297606398355040882602116255686080370692, 0.00287344936235246638755235148906672207372, 0.00277767492975269360359490376220667282839 ]; stored_dn = numel(d_n); ## Indices for precalculated vs to-be-calculated values n_precalc = (n > 0) & (n < stored_dn); x_precalc = (x > 0) & (x < stored_dn); nx_precalc = (nx > 0) & (nx < stored_dn); [delta_n, delta_x, delta_nx] = deal (zeros (size (x))); ## Fetch precalculated values delta_n(n_precalc) = d_n(n(n_precalc)); delta_x(x_precalc) = d_n(x(x_precalc)); delta_nx(nx_precalc) = d_n(nx(nx_precalc)); ## Calculate any other d(n) values delta_n(!n_precalc) = delta_fn (n(!n_precalc)); delta_x(!x_precalc) = delta_fn (x(!x_precalc)); delta_nx(!nx_precalc) = delta_fn (nx(!nx_precalc)); ## Calculate exp(log(pdf)); y = exp ((delta_n - delta_x - delta_nx - ... deviance (x, n .* ps) - ... deviance (nx, n .* q)) - ... 0.5 * (log(2*pi) + log (x) + log (1-x./n))); endfunction function y = delta_fn (n) ## Stirling formula error term approximations based on Loader paper. ## exact expression, n^n overflows to Inf for n > ~145: ## = log (n!*exp(n)/(sqrt(2pi*n)*n^n)); ## ## Rewritten to avoid overflow out to n> 1e305. accurate to ~10^-12 ## = n + gammaln (n+1) - (n+0.5) * log(n) - log(2*pi)/2; ## ## Approximated as: ## accurate to ~10^-16 for n=30. underflow to 0 at n~10^309 ## = 1/(12n)-1/(360n^3)+1/(1260n^5)- 1/(1680n.^7)+1/(1188n^9) + O(n^-11); ## ## Factored to reduced operation count. Used by Loader and in R: ## 25% faster than unfactored form. ## =(1/12-(1/360-(1/1260-(1/1680-(1/1188)/n^2)/n^2)/n^2)/n^2)/n; nn = n.^2; y = (0.08333333333333333333333333333333333333333 - ... (0.00277777777777777777777777777777777777778 - ... (0.00079365079365079365079365079365079365079 - ... (0.00059523809523809523809523809523809523810 - ... (0.00084175084175084175084175084175084175084)./nn)./nn)./nn)./nn)./n; endfunction function D = deviance (x, np) ## requires equal length column inputs epsilon = x ./ np; v = (epsilon - 1) ./ (epsilon + 1); vtest = abs (v) < 0.1; if (any (vtest)) ## For abs(v) < 0.1, do taylor expansion for higher precision. Expansion ## term: v^(2j+1)/(2j+1). For abs(v)< 0.1, term drops slowest for max ## abs(v) = 0.1. (n+1)th term is <= 10. jmax = 12; two_jpone = 2 * [1:jmax] + 1; # sum term 2*j+1 (row vector expansion) D = zeros (numel (epsilon), 1); ## D = (x-np)*v + 2*x*sum_over_j(v^2j+1 / 2j+1) D(vtest) = (x(vtest) - np(vtest)) .* v(vtest) + 2 .* x(vtest) .* ... sum (v(vtest).^(two_jpone) ./ two_jpone, 2); D(! vtest) = x(! vtest) .* (log (epsilon(! vtest)) - 1) + np(! vtest); else D = x.* (log (epsilon) - 1) + np; endif endfunction %!demo %! ## Plot various PDFs from the binomial distribution %! x = 0:40; %! y1 = binopdf (x, 20, 0.5); %! y2 = binopdf (x, 20, 0.7); %! y3 = binopdf (x, 40, 0.5); %! plot (x, y1, "*b", x, y2, "*g", x, y3, "*r") %! grid on %! ylim ([0, 0.25]) %! legend ({"n = 20, ps = 0.5", "n = 20, ps = 0.7", ... %! "n = 40, ps = 0.5"}, "location", "northeast") %! title ("Binomial PDF") %! xlabel ("values in x (number of successes)") %! ylabel ("density") ## Test output %!shared x, y %! x = [-1 0 1 2 3]; %! y = [0 1/4 1/2 1/4 0]; %!assert (binopdf (x, 2 * ones (1, 5), 0.5 * ones (1, 5)), y, eps) %!assert (binopdf (x, 2, 0.5 * ones (1, 5)), y, eps) %!assert (binopdf (x, 2 * ones (1, 5), 0.5), y, eps) %!assert (binopdf (x, 2 * [0 -1 NaN 1.1 1], 0.5), [0 NaN NaN NaN 0]) %!assert (binopdf (x, 2, 0.5 * [0 -1 NaN 3 1]), [0 NaN NaN NaN 0]) %!assert (binopdf ([x, NaN], 2, 0.5), [y, NaN], eps) %!assert (binopdf (cat (3, x, x), 2, 0.5), cat (3, y, y), eps) ## Test Special input values %!assert (binopdf (1, 1, 1), 1) %!assert (binopdf (0, 3, 0), 1) %!assert (binopdf (2, 2, 1), 1) %!assert (binopdf (1, 2, 1), 0) %!assert (binopdf (0, 1.1, 0), NaN) %!assert (binopdf (1, 2, -1), NaN) %!assert (binopdf (1, 2, 1.5), NaN) ## Test empty inputs %!assert (binopdf ([], 1, 1), []) %!assert (binopdf (1, [], 1), []) %!assert (binopdf (1, 1, []), []) %!assert (binopdf (ones (1, 0), 2, .5), ones(1, 0)) %!assert (binopdf (ones (0, 1), 2, .5), ones(0, 1)) %!assert (binopdf (ones (0, 1, 2), 2, .5), ones(0, 1, 2)) %!assert (binopdf (1, ones (0, 1, 2), .5), ones(0, 1, 2)) %!assert (binopdf (1, 2, ones (0, 1, 2)), ones(0, 1, 2)) %!assert (binopdf (ones (1, 0, 2), 2, .5), ones(1, 0, 2)) %!assert (binopdf (ones (1, 2, 0), 2, .5), ones(1, 2, 0)) %!assert (binopdf (ones (0, 1, 2), NaN, .5), ones(0, 1, 2)) %!assert (binopdf (ones (0, 1, 2), 2, NaN), ones(0, 1, 2)) ## Test class of input preserved %!assert (binopdf (single ([x, NaN]), 2, 0.5), single ([y, NaN])) %!assert (binopdf ([x, NaN], single (2), 0.5), single ([y, NaN])) %!assert (binopdf ([x, NaN], 2, single (0.5)), single ([y, NaN])) ## Test input validation %!error binopdf () %!error binopdf (1) %!error binopdf (1, 2) %!error binopdf (1, 2, 3, 4) %!error ... %! binopdf (ones (3), ones (2), ones (2)) %!error ... %! binopdf (ones (2), ones (3), ones (2)) %!error ... %! binopdf (ones (2), ones (2), ones (3)) %!error binopdf (i, 2, 2) %!error binopdf (2, i, 2) %!error binopdf (2, 2, i) statistics-release-1.6.3/inst/dist_fun/binornd.m000066400000000000000000000173641456127120000217430ustar00rootroot00000000000000## Copyright (C) 2015 Michael Leitner ## Copyright (C) 2012 Rik Wehbring ## Copyright (C) 1995-2016 Kurt Hornik ## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{r} =} binornd (@var{n}, @var{ps}) ## @deftypefnx {statistics} {@var{r} =} binornd (@var{n}, @var{ps}, @var{rows}) ## @deftypefnx {statistics} {@var{r} =} binornd (@var{n}, @var{ps}, @var{rows}, @var{cols}, @dots{}) ## @deftypefnx {statistics} {@var{r} =} binornd (@var{n}, @var{ps}, [@var{sz}]) ## ## Random arrays from the Binomial distribution. ## ## @code{@var{r} = binornd (@var{n}, @var{ps})} returns a matrix of random ## samples from the binomial distribution with parameters @var{n} and @var{ps}, ## where @var{n} is the number of trials and @var{ps} is the probability of ## success. The size of @var{r} is the common size of @var{n} and @var{ps}. ## A scalar input functions as a constant matrix of the same size as the other ## inputs. ## ## When called with a single size argument, @code{binornd} returns a square ## matrix with the dimension specified. When called with more than one scalar ## argument, the first two arguments are taken as the number of rows and columns ## and any further arguments specify additional matrix dimensions. The size may ## also be specified with a row vector of dimensions, @var{sz}. ## ## Further information about the binomial distribution can be found at ## @url{https://en.wikipedia.org/wiki/Binomial_distribution} ## ## @seealso{binocdf, binoinv, binopdf, binofit, binolike, binostat, binotest} ## @end deftypefn function r = binornd (n, ps, varargin) ## Check for valid number of input arguments if (nargin < 2) error ("binornd: function called with too few input arguments."); endif ## Check for common size of N and PS if (! isscalar (n) || ! isscalar (ps)) [retval, n, ps] = common_size (n, ps); if (retval > 0) error ("binornd: N and PS must be of common size or scalars."); endif endif ## Check for N and PS being reals if (iscomplex (n) || iscomplex (ps)) error ("binornd: N and PS must not be complex."); endif ## Parse and check SIZE arguments if (nargin == 2) sz = size (n); elseif (nargin == 3) if (isscalar (varargin{1}) && varargin{1} >= 0 ... && varargin{1} == fix (varargin{1})) sz = [varargin{1}, varargin{1}]; elseif (isrow (varargin{1}) && all (varargin{1} >= 0) ... && all (varargin{1} == fix (varargin{1}))) sz = varargin{1}; elseif error (strcat (["binornd: SZ must be a scalar or a row vector"], ... [" of non-negative integers."])); endif elseif (nargin > 3) posint = cellfun (@(x) (! isscalar (x) || x < 0 || x != fix (x)), varargin); if (any (posint)) error ("binornd: dimensions must be non-negative integers."); endif sz = [varargin{:}]; endif ## Check that parameters match requested dimensions in size if (! isscalar (n) && ! isequal (size (n), sz)) error ("binornd: N and PS must be scalars or of size SZ."); endif ## Check for class type if (isa (n, "single") || isa (ps, "single")) cls = "single"; else cls = "double"; endif ## Generate random sample from binomial distribution if (isscalar (n) && isscalar (ps)) if ((n > 0) && (n < Inf) && (n == fix (n)) && (ps >= 0) && (ps <= 1)) nel = prod (sz); tmp = rand (n, nel); r = sum (tmp < ps, 1); r = reshape (r, sz); if (strcmp (cls, "single")) r = single (r); endif elseif ((n == 0) && (ps >= 0) && (ps <= 1)) r = zeros (sz, cls); else r = NaN (sz, cls); endif else r = zeros (sz, cls); k = !(n >= 0) | !(n < Inf) | !(n == fix (n)) | !(ps >= 0) | !(ps <= 1); r(k) = NaN; k = (n > 0) & (n < Inf) & (n == fix (n)) & (ps >= 0) & (ps <= 1); if (any (k(:))) L = sum (k(:)); ind = repelems ((1 : L), [(1 : L); n(k)(:)'])'; p_ext = ps(k)(ind)(:); r(k) = accumarray (ind, rand (sum(n(k)(:)), 1) < p_ext); endif endif endfunction ## Test output %!assert (size (binornd (2, 1/2)), [1 1]) %!assert (size (binornd (2 * ones (2, 1), 1/2)), [2, 1]) %!assert (size (binornd (2 * ones (2, 2), 1/2)), [2, 2]) %!assert (size (binornd (2, 1/2 * ones (2, 1))), [2, 1]) %!assert (size (binornd (1, 1/2 * ones (2, 2))), [2, 2]) %!assert (size (binornd (ones (2, 1), 1)), [2, 1]) %!assert (size (binornd (ones (2, 2), 1)), [2, 2]) %!assert (size (binornd (2, 1/2, 3)), [3, 3]) %!assert (size (binornd (1, 1, [4, 1])), [4, 1]) %!assert (size (binornd (1, 1, 4, 1)), [4, 1]) %!assert (size (binornd (1, 1, 4, 1, 5)), [4, 1, 5]) %!assert (size (binornd (1, 1, 0, 1)), [0, 1]) %!assert (size (binornd (1, 1, 1, 0)), [1, 0]) %!assert (size (binornd (1, 1, 1, 2, 0, 5)), [1, 2, 0, 5]) ## Test class of input preserved %!assert (class (binornd (1, 1)), "double") %!assert (class (binornd (1, single (0))), "single") %!assert (class (binornd (1, single ([0, 0]))), "single") %!assert (class (binornd (1, single (1), 2)), "single") %!assert (class (binornd (1, single ([1, 1]), 1, 2)), "single") %!assert (class (binornd (single (1), 1, 2)), "single") %!assert (class (binornd (single ([1, 1]), 1, 1, 2)), "single") ## Test input validation %!error binornd () %!error binornd (1) %!error ... %! binornd (ones (3), ones (2)) %!error ... %! binornd (ones (2), ones (3)) %!error binornd (i, 2) %!error binornd (1, i) %!error ... %! binornd (1, 1/2, -1) %!error ... %! binornd (1, 1/2, 1.2) %!error ... %! binornd (1, 1/2, ones (2)) %!error ... %! binornd (1, 1/2, [2 -1 2]) %!error ... %! binornd (1, 1/2, [2 0 2.5]) %!error ... %! binornd (1, 1/2, 2, -1, 5) %!error ... %! binornd (1, 1/2, 2, 1.5, 5) %!error ... %! binornd (2, 1/2 * ones (2), 3) %!error ... %! binornd (2, 1/2 * ones (2), [3, 2]) %!error ... %! binornd (2, 1/2 * ones (2), 3, 2) %!error ... %! binornd (2 * ones (2), 1/2, 3) %!error ... %! binornd (2 * ones (2), 1/2, [3, 2]) %!error ... %! binornd (2 * ones (2), 1/2, 3, 2) statistics-release-1.6.3/inst/dist_fun/bisacdf.m000066400000000000000000000154331456127120000216760ustar00rootroot00000000000000## Copyright (C) 1995-2015 Kurt Hornik ## Copyright (C) 2016 Dag Lyberg ## Copyright (C) 2018 John Donoghue ## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{p} =} bisacdf (@var{x}, @var{beta}, @var{gamma}) ## @deftypefnx {statistics} {@var{p} =} bisacdf (@var{x}, @var{beta}, @var{gamma}, @qcode{"upper"}) ## ## Birnbaum-Saunders cumulative distribution function (CDF). ## ## For each element of @var{x}, compute the cumulative distribution function ## (CDF) of the Birnbaum-Saunders distribution with scale parameter @var{beta} ## and shape parameter @var{gamma}. The size of @var{p} is the common size of ## @var{x}, @var{beta} and @var{gamma}. A scalar input functions as a constant ## matrix of the same size as the other inputs. ## ## @code{@var{p} = bisacdf (@var{x}, @var{beta}, @var{gamma}, "upper")} ## computes the upper tail probability of the Birnbaum-Saunders distribution ## with parameters @var{beta} and @var{gamma}, at the values in @var{x}. ## ## Further information about the Birnbaum-Saunders distribution can be found at ## @url{https://en.wikipedia.org/wiki/Birnbaum%E2%80%93Saunders_distribution} ## ## @seealso{bisainv, bisapdf, bisarnd, bisafit, bisalike, bisastat} ## @end deftypefn function p = bisacdf (x, beta, gamma, uflag) ## Check for valid number of input arguments if (nargin < 3) error ("bisacdf: function called with too few input arguments."); endif ## Check for valid "upper" flag if (nargin > 3) if (! strcmpi (uflag, "upper")) error ("bisacdf: invalid argument for upper tail."); else uflag = true; endif else uflag = false; endif ## Check for common size of X, BETA, and GAMMA if (! isscalar (x) || ! isscalar (beta) || ! isscalar (gamma)) [retval, x, beta, gamma] = common_size (x, beta, gamma); if (retval > 0) error (strcat (["bisacdf: X, BETA, and GAMMA must be of"], ... [" common size or scalars."])); endif endif ## Check for X, BETA, and GAMMA being reals if (iscomplex (x) || iscomplex (beta) || iscomplex (gamma)) error ("bisacdf: X, BETA, and GAMMA must not be complex."); endif ## Check for class type if (isa (x, "single") || isa (beta, "single") || isa (gamma, "single")) p = zeros (size (x), "single"); else p = zeros (size (x)); endif ## Force NaNs for out of range parameters. k = isnan (x) | ! (beta > 0) | ! (beta < Inf) ... | ! (gamma > 0) | ! (gamma < Inf); p(k) = NaN; ## Find valid values in parameters and data k = (x > 0) & (x <= Inf) & (beta > 0) & (beta < Inf) ... & (gamma > 0) & (gamma < Inf); xk = x(k); ## Compute Birnbaum-Saunders CDF if (isscalar (beta) && isscalar (gamma)) if (uflag) z = (-sqrt (xk ./ beta) + sqrt (beta ./ xk)) ./ gamma; else z = (sqrt (xk ./ beta) - sqrt (beta ./ xk)) ./ gamma; endif p(k) = 0.5 * erfc (-z ./ sqrt (2)); else if (uflag) z = (-sqrt (xk ./ beta(k)) + sqrt (beta(k) ./ xk)) ./ gamma(k); else z = (sqrt (xk ./ beta(k)) - sqrt (beta(k) ./ xk)) ./ gamma(k); endif p(k) = 0.5 * erfc (-z ./ sqrt (2)); endif endfunction %!demo %! ## Plot various CDFs from the Birnbaum-Saunders distribution %! x = 0.01:0.01:4; %! p1 = bisacdf (x, 1, 0.5); %! p2 = bisacdf (x, 1, 1); %! p3 = bisacdf (x, 1, 2); %! p4 = bisacdf (x, 1, 5); %! p5 = bisacdf (x, 1, 10); %! plot (x, p1, "-b", x, p2, "-g", x, p3, "-r", x, p4, "-c", x, p5, "-m") %! grid on %! legend ({"β = 1, γ = 0.5", "β = 1, γ = 1", "β = 1, γ = 2", ... %! "β = 1, γ = 5", "β = 1, γ = 10"}, "location", "southeast") %! title ("Birnbaum-Saunders CDF") %! xlabel ("values in x") %! ylabel ("probability") %!demo %! ## Plot various CDFs from the Birnbaum-Saunders distribution %! x = 0.01:0.01:6; %! p1 = bisacdf (x, 1, 0.3); %! p2 = bisacdf (x, 2, 0.3); %! p3 = bisacdf (x, 1, 0.5); %! p4 = bisacdf (x, 3, 0.5); %! p5 = bisacdf (x, 5, 0.5); %! plot (x, p1, "-b", x, p2, "-g", x, p3, "-r", x, p4, "-c", x, p5, "-m") %! grid on %! legend ({"β = 1, γ = 0.3", "β = 2, γ = 0.3", "β = 1, γ = 0.5", ... %! "β = 3, γ = 0.5", "β = 5, γ = 0.5"}, "location", "southeast") %! title ("Birnbaum-Saunders CDF") %! xlabel ("values in x") %! ylabel ("probability") ## Test output %!shared x, y %! x = [-1, 0, 1, 2, Inf]; %! y = [0, 0, 1/2, 0.76024993890652337, 1]; %!assert (bisacdf (x, ones (1,5), ones (1,5)), y, eps) %!assert (bisacdf (x, 1, 1), y, eps) %!assert (bisacdf (x, 1, ones (1,5)), y, eps) %!assert (bisacdf (x, ones (1,5), 1), y, eps) %!assert (bisacdf (x, 1, 1), y, eps) %!assert (bisacdf (x, 1, [1, 1, NaN, 1, 1]), [y(1:2), NaN, y(4:5)], eps) %!assert (bisacdf (x, [1, 1, NaN, 1, 1], 1), [y(1:2), NaN, y(4:5)], eps) %!assert (bisacdf ([x, NaN], 1, 1), [y, NaN], eps) ## Test class of input preserved %!assert (bisacdf (single ([x, NaN]), 1, 1), single ([y, NaN]), eps ("single")) %!assert (bisacdf ([x, NaN], 1, single (1)), single ([y, NaN]), eps ("single")) %!assert (bisacdf ([x, NaN], single (1), 1), single ([y, NaN]), eps ("single")) ## Test input validation %!error bisacdf () %!error bisacdf (1) %!error bisacdf (1, 2) %!error ... %! bisacdf (1, 2, 3, 4, 5) %!error bisacdf (1, 2, 3, "tail") %!error bisacdf (1, 2, 3, 4) %!error ... %! bisacdf (ones (3), ones (2), ones(2)) %!error ... %! bisacdf (ones (2), ones (3), ones(2)) %!error ... %! bisacdf (ones (2), ones (2), ones(3)) %!error bisacdf (i, 4, 3) %!error bisacdf (1, i, 3) %!error bisacdf (1, 4, i) statistics-release-1.6.3/inst/dist_fun/bisainv.m000066400000000000000000000141131456127120000217300ustar00rootroot00000000000000## Copyright (C) 1995-2015 Kurt Hornik ## Copyright (C) 2016 Dag Lyberg ## Copyright (C) 2018 John Donoghue ## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{x} =} bisainv (@var{p}, @var{beta}, @var{gamma}) ## ## Inverse of the Birnbaum-Saunders cumulative distribution function (iCDF). ## ## For each element of @var{p}, compute the quantile (the inverse of the CDF) of ## the Birnbaum-Saunders distribution with scale parameter @var{beta} and shape ## parameter @var{gamma}. The size of @var{x} is the common size of @var{p}, ## @var{beta}, and @var{gamma}. A scalar input functions as a constant matrix ## of the same size as the other inputs. ## ## Further information about the Birnbaum-Saunders distribution can be found at ## @url{https://en.wikipedia.org/wiki/Birnbaum%E2%80%93Saunders_distribution} ## ## @seealso{bisainv, bisapdf, bisarnd, bisafit, bisalike, bisastat} ## @end deftypefn function x = bisainv (p, beta, gamma) ## Check for valid number of input arguments if (nargin < 3) error ("bisainv: function called with too few input arguments."); endif ## Check for common size of X, BETA, and GAMMA if (! isscalar (p) || ! isscalar (beta) || ! isscalar (gamma)) [retval, p, beta, gamma] = common_size (p, beta, gamma); if (retval > 0) error (strcat (["bisainv: P, BETA, and GAMMA must be of"], ... [" common size or scalars."])); endif endif ## Check for X, BETA, and GAMMA being reals if (iscomplex (p) || iscomplex (beta) || iscomplex (gamma)) error ("bisainv: P, BETA, and GAMMA must not be complex."); endif ## Check for class type if (isa (p, "single") || isa (beta, "single") || isa (gamma, "single")) x = zeros (size (p), "single"); else x = zeros (size (p)); endif ## Force NaNs for out of range parameters kn = isnan (p) | (p < 0) | (p > 1) | ! (beta > 0) | ! (beta < Inf) ... | ! (gamma > 0) | ! (gamma < Inf); x(kn) = NaN; ## Find valid values in parameters kv = (beta > 0) & (beta < Inf) & (gamma > 0) & (gamma < Inf); ## Handle edge cases k0 = (p == 0) & kv; x(k0) = 0; k1 = (p == 1) & kv; x(k1) = Inf; ## Handle all other valid cases k = (p > 0) & (p < 1) & kv; if (isscalar (beta) && isscalar (gamma)) z = -sqrt (2) .* erfcinv (2 .* p(k)) .* gamma; x(k) = 0.25 .* beta .* (z + sqrt (4 + z .^ 2)) .^ 2; else z = -sqrt (2) .* erfcinv (2 .* p(k)) .* gamma(k); x(k) = 0.25 .* beta(k) .* (z + sqrt (4 + z .^ 2)) .^ 2; endif endfunction %!demo %! ## Plot various iCDFs from the Birnbaum-Saunders distribution %! p = 0.001:0.001:0.999; %! x1 = bisainv (p, 1, 0.5); %! x2 = bisainv (p, 1, 1); %! x3 = bisainv (p, 1, 2); %! x4 = bisainv (p, 1, 5); %! x5 = bisainv (p, 1, 10); %! plot (p, x1, "-b", p, x2, "-g", p, x3, "-r", p, x4, "-c", p, x5, "-m") %! grid on %! ylim ([0, 10]) %! legend ({"β = 1, γ = 0.5", "β = 1, γ = 1", "β = 1, γ = 2", ... %! "β = 1, γ = 5", "β = 1, γ = 10"}, "location", "northwest") %! title ("Birnbaum-Saunders iCDF") %! xlabel ("probability") %! ylabel ("values in x") %!demo %! ## Plot various iCDFs from the Birnbaum-Saunders distribution %! p = 0.001:0.001:0.999; %! x1 = bisainv (p, 1, 0.3); %! x2 = bisainv (p, 2, 0.3); %! x3 = bisainv (p, 1, 0.5); %! x4 = bisainv (p, 3, 0.5); %! x5 = bisainv (p, 5, 0.5); %! plot (p, x1, "-b", p, x2, "-g", p, x3, "-r", p, x4, "-c", p, x5, "-m") %! grid on %! ylim ([0, 10]) %! legend ({"β = 1, γ = 0.3", "β = 2, γ = 0.3", "β = 1, γ = 0.5", ... %! "β = 3, γ = 0.5", "β = 5, γ = 0.5"}, "location", "northwest") %! title ("Birnbaum-Saunders iCDF") %! xlabel ("probability") %! ylabel ("values in x") ## Test output %!shared p, y, f %! f = @(p,b,c) (b * (c * norminv (p) + sqrt (4 + (c * norminv(p))^2))^2) / 4; %! p = [-1, 0, 1/4, 1/2, 1, 2]; %! y = [NaN, 0, f(1/4, 1, 1), 1, Inf, NaN]; %!assert (bisainv (p, ones (1,6), ones (1,6)), y) %!assert (bisainv (p, 1, ones (1,6)), y) %!assert (bisainv (p, ones (1,6), 1), y) %!assert (bisainv (p, 1, 1), y) %!assert (bisainv (p, 1, [1, 1, 1, NaN, 1, 1]), [y(1:3), NaN, y(5:6)]) %!assert (bisainv (p, [1, 1, 1, NaN, 1, 1], 1), [y(1:3), NaN, y(5:6)]) %!assert (bisainv ([p, NaN], 1, 1), [y, NaN]) ## Test class of input preserved %!assert (bisainv (single ([p, NaN]), 1, 1), single ([y, NaN]), eps ("single")) %!assert (bisainv ([p, NaN], 1, single (1)), single ([y, NaN]), eps ("single")) %!assert (bisainv ([p, NaN], single (1), 1), single ([y, NaN]), eps ("single")) ## Test input validation %!error bisainv () %!error bisainv (1) %!error bisainv (1, 2) %!error bisainv (1, 2, 3, 4) %!error ... %! bisainv (ones (3), ones (2), ones(2)) %!error ... %! bisainv (ones (2), ones (3), ones(2)) %!error ... %! bisainv (ones (2), ones (2), ones(3)) %!error bisainv (i, 4, 3) %!error bisainv (1, i, 3) %!error bisainv (1, 4, i) statistics-release-1.6.3/inst/dist_fun/bisapdf.m000066400000000000000000000140321456127120000217050ustar00rootroot00000000000000## Copyright (C) 2018 John Donoghue ## Copyright (C) 2016 Dag Lyberg ## Copyright (C) 1995-2015 Kurt Hornik ## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{y} =} bisapdf (@var{x}, @var{beta}, @var{gamma}) ## ## Birnbaum-Saunders probability density function (PDF). ## ## For each element of @var{x}, compute the probability density function (PDF) ## of the Birnbaum-Saunders distribution with scale parameter @var{beta} and ## shape parameter @var{gamma}. The size of @var{y} is the common size of ## @var{x}, @var{beta}, and @var{gamma}. A scalar input functions as a constant ## matrix of the same size as the other inputs. ## ## Further information about the Birnbaum-Saunders distribution can be found at ## @url{https://en.wikipedia.org/wiki/Birnbaum%E2%80%93Saunders_distribution} ## ## @seealso{bisacdf, bisapdf, bisarnd, bisafit, bisalike, bisastat} ## @end deftypefn function y = bisapdf (x, beta, gamma) ## Check for valid number of input arguments if (nargin < 3) error ("bisapdf: function called with too few input arguments."); endif ## Check for common size of X, BETA and GAMMA if (! isscalar (x) || ! isscalar (beta) || ! isscalar (gamma)) [retval, x, beta, gamma] = common_size (x, beta, gamma); if (retval > 0) error (strcat (["bisapdf: X, BETA, and GAMMA must be of"], ... [" common size or scalars."])); endif endif ## Check for X, BETA and GAMMA being reals if (iscomplex (x) || iscomplex (beta) || iscomplex (gamma)) error ("bisapdf: X, BETA, and GAMMA must not be complex."); endif ## Check for class type if (isa (x, "single") || isa (beta, "single") || isa (gamma, "single")) y = zeros (size (x), "single"); else y = zeros (size (x)); endif ## Force NaNs for out of range parameters. k = isnan (x) | ! (beta > 0) | ! (beta < Inf) ... | ! (gamma > 0) | ! (gamma < Inf); y(k) = NaN; ## Find valid values in parameters and data k = (x > 0) & (x < Inf) & (beta > 0) & (beta < Inf) ... & (gamma > 0) & (gamma < Inf); xk = x(k); if (isscalar (beta) && isscalar (gamma)) z = (sqrt (xk ./ beta) - sqrt (beta ./ xk)) ./ gamma; w = (sqrt (xk ./ beta) + sqrt (beta ./ xk)) ./ gamma; y(k) = (exp (-0.5 .* z .^ 2) ./ sqrt (2 .* pi)) .* w ./ (2.*xk); else z = (sqrt (xk ./ beta(k)) - sqrt (beta(k) ./ xk)) ./ gamma(k); w = (sqrt (xk ./ beta(k)) + sqrt (beta(k) ./ xk)) ./ gamma(k); y(k) = (exp (-0.5 .* z .^ 2) ./ sqrt (2 .* pi)) .* w ./ (2 .* xk); endif endfunction %!demo %! ## Plot various PDFs from the Birnbaum-Saunders distribution %! x = 0.01:0.01:4; %! y1 = bisapdf (x, 1, 0.5); %! y2 = bisapdf (x, 1, 1); %! y3 = bisapdf (x, 1, 2); %! y4 = bisapdf (x, 1, 5); %! y5 = bisapdf (x, 1, 10); %! plot (x, y1, "-b", x, y2, "-g", x, y3, "-r", x, y4, "-c", x, y5, "-m") %! grid on %! ylim ([0, 1.5]) %! legend ({"β = 1 ,γ = 0.5", "β = 1, γ = 1", "β = 1, γ = 2", ... %! "β = 1, γ = 5", "β = 1, γ = 10"}, "location", "northeast") %! title ("Birnbaum-Saunders PDF") %! xlabel ("values in x") %! ylabel ("density") %!demo %! ## Plot various PDFs from the Birnbaum-Saunders distribution %! x = 0.01:0.01:6; %! y1 = bisapdf (x, 1, 0.3); %! y2 = bisapdf (x, 2, 0.3); %! y3 = bisapdf (x, 1, 0.5); %! y4 = bisapdf (x, 3, 0.5); %! y5 = bisapdf (x, 5, 0.5); %! plot (x, y1, "-b", x, y2, "-g", x, y3, "-r", x, y4, "-c", x, y5, "-m") %! grid on %! ylim ([0, 1.5]) %! legend ({"β = 1, γ = 0.3", "β = 2, γ = 0.3", "β = 1, γ = 0.5", ... %! "β = 3, γ = 0.5", "β = 5, γ = 0.5"}, "location", "northeast") %! title ("Birnbaum-Saunders CDF") %! xlabel ("values in x") %! ylabel ("density") ## Test output %!shared x, y %! x = [-1, 0, 1, 2, Inf]; %! y = [0, 0, 0.3989422804014327, 0.1647717335503959, 0]; %!assert (bisapdf (x, ones (1,5), ones (1,5)), y, eps) %!assert (bisapdf (x, 1, 1), y, eps) %!assert (bisapdf (x, 1, ones (1,5)), y, eps) %!assert (bisapdf (x, ones (1,5), 1), y, eps) %!assert (bisapdf (x, 1, [1, 1, NaN, 1, 1]), [y(1:2), NaN, y(4:5)], eps) %!assert (bisapdf (x, [1, 1, NaN, 1, 1], 1), [y(1:2), NaN, y(4:5)], eps) %!assert (bisapdf ([x, NaN], 1, 1), [y, NaN], eps) ## Test class of input preserved %!assert (bisapdf (single ([x, NaN]), 1, 1), single ([y, NaN]), eps ("single")) %!assert (bisapdf ([x, NaN], 1, single (1)), single ([y, NaN]), eps ("single")) %!assert (bisapdf ([x, NaN], single (1), 1), single ([y, NaN]), eps ("single")) ## Test input validation %!error bisapdf () %!error bisapdf (1) %!error bisapdf (1, 2) %!error bisapdf (1, 2, 3, 4) %!error ... %! bisapdf (ones (3), ones (2), ones(2)) %!error ... %! bisapdf (ones (2), ones (3), ones(2)) %!error ... %! bisapdf (ones (2), ones (2), ones(3)) %!error bisapdf (i, 4, 3) %!error bisapdf (1, i, 3) %!error bisapdf (1, 4, i) statistics-release-1.6.3/inst/dist_fun/bisarnd.m000066400000000000000000000157071456127120000217310ustar00rootroot00000000000000## Copyright (C) 2018 John Donoghue ## Copyright (C) 2016 Dag Lyberg ## Copyright (C) 1995-2015 Kurt Hornik ## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{r} =} bisarnd (@var{beta}, @var{gamma}) ## @deftypefnx {statistics} {@var{r} =} bisarnd (@var{beta}, @var{gamma}, @var{rows}) ## @deftypefnx {statistics} {@var{r} =} bisarnd (@var{beta}, @var{gamma}, @var{rows}, @var{cols}, @dots{}) ## @deftypefnx {statistics} {@var{r} =} bisarnd (@var{beta}, @var{gamma}, [@var{sz}]) ## ## Random arrays from the Birnbaum-Saunders distribution. ## ## @code{@var{r} = bisarnd (@var{beta}, @var{gamma})} returns an array of ## random numbers chosen from the Birnbaum-Saunders distribution with scale ## parameter @var{beta} and shape parameter @var{gamma}. The size of @var{r} is ## the common size of @var{beta} and @var{gamma}. A scalar input functions as a ## constant matrix of the same size as the other inputs. ## ## When called with a single size argument, @code{bisarnd} returns a square ## matrix with the dimension specified. When called with more than one scalar ## argument, the first two arguments are taken as the number of rows and columns ## and any further arguments specify additional matrix dimensions. The size may ## also be specified with a row vector of dimensions, @var{sz}. ## ## Further information about the Birnbaum-Saunders distribution can be found at ## @url{https://en.wikipedia.org/wiki/Birnbaum%E2%80%93Saunders_distribution} ## ## @seealso{bisacdf, bisainv, bisapdf, bisafit, bisalike, bisastat} ## @end deftypefn function r = bisarnd (beta, gamma, varargin) ## Check for valid number of input arguments if (nargin < 2) error ("bisarnd: function called with too few input arguments."); endif ## Check for common size of BETA and GAMMA if (! isscalar (beta) || ! isscalar (gamma)) [retval, beta, gamma] = common_size (beta, gamma); if (retval > 0) error ("bisarnd: BETA and GAMMA must be of common size or scalars."); endif endif ## Check for BETA and GAMMA being reals if (iscomplex (beta) || iscomplex (gamma)) error ("bisarnd: BETA and GAMMA must not be complex."); endif ## Parse and check SIZE arguments if (nargin == 2) sz = size (beta); elseif (nargin == 3) if (isscalar (varargin{1}) && varargin{1} >= 0 ... && varargin{1} == fix (varargin{1})) sz = [varargin{1}, varargin{1}]; elseif (isrow (varargin{1}) && all (varargin{1} >= 0) ... && all (varargin{1} == fix (varargin{1}))) sz = varargin{1}; elseif error (strcat (["bisarnd: SZ must be a scalar or a row vector"], ... [" of non-negative integers."])); endif elseif (nargin > 3) posint = cellfun (@(x) (! isscalar (x) || x < 0 || x != fix (x)), varargin); if (any (posint)) error ("bisarnd: dimensions must be non-negative integers."); endif sz = [varargin{:}]; endif ## Check that parameters match requested dimensions in size if (! isscalar (beta) && ! isequal (size (beta), sz)) error ("bisarnd: BETA and GAMMA must be scalars or of size SZ."); endif ## Check for class type if (isa (beta, "single") || isa (gamma, "single")) cls = "single"; else cls = "double"; endif ## Generate random sample from Birnbaum-Saunders distribution if (isscalar (beta) && isscalar (gamma)) if ((beta > 0) && (beta < Inf) && (gamma > 0) && (gamma < Inf)) r = rand (sz, cls); y = gamma * norminv (r); r = beta * (y + sqrt (4 + y .^ 2)) .^ 2 / 4; else r = NaN (sz, cls); endif else r = NaN (sz, cls); k = (beta > 0) & (beta < Inf) & (gamma > 0) & (gamma < Inf); r(k) = rand (sum (k(:)),1); y = gamma(k) .* norminv (r(k)); r(k) = beta(k) .* (y + sqrt (4 + y.^2)).^2 / 4; endif endfunction ## Test output %!assert (size (bisarnd (1, 1)), [1 1]) %!assert (size (bisarnd (1, ones (2,1))), [2, 1]) %!assert (size (bisarnd (1, ones (2,2))), [2, 2]) %!assert (size (bisarnd (ones (2,1), 1)), [2, 1]) %!assert (size (bisarnd (ones (2,2), 1)), [2, 2]) %!assert (size (bisarnd (1, 1, 3)), [3, 3]) %!assert (size (bisarnd (1, 1, [4, 1])), [4, 1]) %!assert (size (bisarnd (1, 1, 4, 1)), [4, 1]) %!assert (size (bisarnd (1, 1, 4, 1, 5)), [4, 1, 5]) %!assert (size (bisarnd (1, 1, 0, 1)), [0, 1]) %!assert (size (bisarnd (1, 1, 1, 0)), [1, 0]) %!assert (size (bisarnd (1, 1, 1, 2, 0, 5)), [1, 2, 0, 5]) ## Test class of input preserved %!assert (class (bisarnd (1, 1)), "double") %!assert (class (bisarnd (1, single (1))), "single") %!assert (class (bisarnd (1, single ([1, 1]))), "single") %!assert (class (bisarnd (single (1), 1)), "single") %!assert (class (bisarnd (single ([1, 1]), 1)), "single") ## Test input validation %!error bisarnd () %!error bisarnd (1) %!error ... %! bisarnd (ones (3), ones (2)) %!error ... %! bisarnd (ones (2), ones (3)) %!error bisarnd (i, 2, 3) %!error bisarnd (1, i, 3) %!error ... %! bisarnd (1, 2, -1) %!error ... %! bisarnd (1, 2, 1.2) %!error ... %! bisarnd (1, 2, ones (2)) %!error ... %! bisarnd (1, 2, [2 -1 2]) %!error ... %! bisarnd (1, 2, [2 0 2.5]) %!error ... %! bisarnd (1, 2, 2, -1, 5) %!error ... %! bisarnd (1, 2, 2, 1.5, 5) %!error ... %! bisarnd (2, ones (2), 3) %!error ... %! bisarnd (2, ones (2), [3, 2]) %!error ... %! bisarnd (2, ones (2), 3, 2) statistics-release-1.6.3/inst/dist_fun/burrcdf.m000066400000000000000000000151201456127120000217230ustar00rootroot00000000000000## Copyright (C) 1995-2015 Kurt Hornik ## Copyright (C) 2016 Dag Lyberg ## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{p} =} burrcdf (@var{x}, @var{lambda}, @var{c}, @var{k}) ## @deftypefnx {statistics} {@var{p} =} burrcdf (@var{x}, @var{lambda}, @var{c}, @var{k}, @qcode{"upper"}) ## ## Burr type XII cumulative distribution function (CDF). ## ## For each element of @var{x}, compute the cumulative distribution function ## (CDF) of the Burr type XII distribution with scale parameter @var{lambda}, ## first shape parameter @var{c}, and second shape parameter @var{k}. The size ## of @var{p} is the common size of @var{x}, @var{lambda}, @var{c}, and @var{k}. ## A scalar input functions as a constant matrix of the same size as the other ## inputs. ## ## @code{@var{p} = burrcdf (@var{x}, @var{beta}, @var{gamma}, "upper")} ## computes the upper tail probability of the Birnbaum-Saunders distribution ## with parameters @var{beta} and @var{gamma}, at the values in @var{x}. ## ## Further information about the Burr distribution can be found at ## @url{https://en.wikipedia.org/wiki/Burr_distribution} ## ## @seealso{burrinv, burrpdf, burrrnd, burrfit, burrlike} ## @end deftypefn function p = burrcdf (x, lambda, c, k, uflag) ## Check for valid number of input arguments if (nargin < 4) error ("burrcdf: function called with too few input arguments."); endif ## Check for valid "upper" flag if (nargin > 4) if (! strcmpi (uflag, "upper")) error ("burrcdf: invalid argument for upper tail."); else uflag = true; endif else uflag = false; endif ## Check for common size of X, LANBDA, C and K if (! isscalar (x) || ! isscalar (lambda) || ! isscalar (c) || ! isscalar (k)) [retval, x, lambda, c, k] = common_size (x, lambda, c, k); if (retval > 0) error ("burrcdf: X, LAMBDA, C, and K must be of common size or scalars."); endif endif ## Check for X, LANBDA, C and K being reals if (iscomplex (x) || iscomplex (lambda) || iscomplex (c) || iscomplex (k)) error ("burrcdf: X, LAMBDA, C, and K must not be complex."); endif ## Check for class type if (isa (x, "single") || isa (lambda, "single") || isa (c, "single") ... || isa (k, "single")) p = zeros (size (x), "single"); else p = zeros (size (x)); endif ## Force NaNs for out of range parameters j = isnan (x) | ! (lambda > 0) | ! (c > 0) | ! (k > 0); p(j) = NaN; ## Find valid values in parameters and data j = (x > 0) & (lambda > 0) & (lambda < Inf) & (c > 0) & (c < Inf) ... & (k > 0) & (k < Inf); ## Compute Burr CDF if (isscalar (lambda) && isscalar(c) && isscalar(k)) if (uflag) p(j) = (1 + (x(j) / lambda) .^ c) .^ (-k); else p(j) = 1 - (1 + (x(j) / lambda) .^ c) .^ (-k); endif else if (uflag) p(j) = (1 + (x(j) ./ lambda(j)) .^ c(j)) .^ (-k(j)); else p(j) = 1 - (1 + (x(j) ./ lambda(j)) .^ c(j)) .^ (-k(j)); endif endif endfunction %!demo %! ## Plot various CDFs from the Burr type XII distribution %! x = 0.001:0.001:5; %! p1 = burrcdf (x, 1, 1, 1); %! p2 = burrcdf (x, 1, 1, 2); %! p3 = burrcdf (x, 1, 1, 3); %! p4 = burrcdf (x, 1, 2, 1); %! p5 = burrcdf (x, 1, 3, 1); %! p6 = burrcdf (x, 1, 0.5, 2); %! plot (x, p1, "-b", x, p2, "-g", x, p3, "-r", ... %! x, p4, "-c", x, p5, "-m", x, p6, "-k") %! grid on %! legend ({"λ = 1, c = 1, k = 1", "λ = 1, c = 1, k = 2", ... %! "λ = 1, c = 1, k = 3", "λ = 1, c = 2, k = 1", ... %! "λ = 1, c = 3, k = 1", "λ = 1, c = 0.5, k = 2"}, ... %! "location", "southeast") %! title ("Burr type XII CDF") %! xlabel ("values in x") %! ylabel ("probability") ## Test output %!shared x, y %! x = [-1, 0, 1, 2, Inf]; %! y = [0, 0, 1/2, 2/3, 1]; %!assert (burrcdf (x, ones(1,5), ones (1,5), ones (1,5)), y, eps) %!assert (burrcdf (x, 1, 1, 1), y, eps) %!assert (burrcdf (x, [1, 1, NaN, 1, 1], 1, 1), [y(1:2), NaN, y(4:5)], eps) %!assert (burrcdf (x, 1, [1, 1, NaN, 1, 1], 1), [y(1:2), NaN, y(4:5)], eps) %!assert (burrcdf (x, 1, 1, [1, 1, NaN, 1, 1]), [y(1:2), NaN, y(4:5)], eps) %!assert (burrcdf ([x, NaN], 1, 1, 1), [y, NaN], eps) ## Test class of input preserved %!assert (burrcdf (single ([x, NaN]), 1, 1, 1), single ([y, NaN]), eps("single")) %!assert (burrcdf ([x, NaN], single (1), 1, 1), single ([y, NaN]), eps("single")) %!assert (burrcdf ([x, NaN], 1, single (1), 1), single ([y, NaN]), eps("single")) %!assert (burrcdf ([x, NaN], 1, 1, single (1)), single ([y, NaN]), eps("single")) ## Test input validation %!error burrcdf () %!error burrcdf (1) %!error burrcdf (1, 2) %!error burrcdf (1, 2, 3) %!error ... %! burrcdf (1, 2, 3, 4, 5, 6) %!error burrcdf (1, 2, 3, 4, "tail") %!error burrcdf (1, 2, 3, 4, 5) %!error ... %! burrcdf (ones (3), ones (2), ones(2), ones(2)) %!error ... %! burrcdf (ones (2), ones (3), ones(2), ones(2)) %!error ... %! burrcdf (ones (2), ones (2), ones(3), ones(2)) %!error ... %! burrcdf (ones (2), ones (2), ones(2), ones(3)) %!error burrcdf (i, 2, 3, 4) %!error burrcdf (1, i, 3, 4) %!error burrcdf (1, 2, i, 4) %!error burrcdf (1, 2, 3, i) statistics-release-1.6.3/inst/dist_fun/burrinv.m000066400000000000000000000136601456127120000217720ustar00rootroot00000000000000## Copyright (C) 1995-2015 Kurt Hornik ## Copyright (C) 2016 Dag Lyberg ## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{x} =} burrinv (@var{p}, @var{lambda}, @var{c}, @var{k}) ## ## Inverse of the Burr type XII cumulative distribution function (iCDF). ## ## For each element of @var{p}, compute the quantile (the inverse of the CDF) of ## the Burr type XII distribution with scale parameter @var{lambda}, first shape ## parameter @var{c}, and second shape parameter @var{k}. The size of @var{x} ## is the common size of @var{p}, @var{lambda}, @var{c}, and @var{k}. A scalar ## input functions as a constant matrix of the same size as the other inputs. ## ## Further information about the Burr distribution can be found at ## @url{https://en.wikipedia.org/wiki/Burr_distribution} ## ## @seealso{burrcdf, burrpdf, burrrnd, burrfit, burrlike} ## @end deftypefn function x = burrinv (p, lambda, c, k) ## Check for valid number of input arguments if (nargin < 4) error ("burrinv: function called with too few input arguments."); endif ## Check for common size of P, LANBDA, C and K if (! isscalar (p) || ! isscalar (lambda) || ! isscalar (c) || ! isscalar (k)) [retval, p, lambda, c, k] = common_size (p, lambda, c, k); if (retval > 0) error ("burrinv: P, LAMBDA, C, and K must be of common size or scalars."); endif endif ## Check for P, LANBDA, C and K being reals if (iscomplex (p) || iscomplex (lambda) || iscomplex (c) || iscomplex (k)) error ("burrinv: P, LAMBDA, C, and K must not be complex."); endif ## Check for class type if (isa (p, "single") || isa (lambda, "single") || isa (c, "single") ... || isa (k, "single")) x = zeros (size (p), "single"); else x = zeros (size (p)); endif ## Force NaNs for out of range parameters j = isnan (p) | (p < 0) | (p > 1) | ! (lambda > 0) | ! (c > 0) | ! (k > 0); x(j) = NaN; ## Handle edge cases j = (p == 1) & (lambda > 0) & (lambda < Inf) & (c > 0) & (c < Inf) ... & (k > 0) & (k < Inf); x(j) = Inf; ## Handle all other valid cases j = (0 < p) & (p < 1) & (0 < lambda) & (lambda < Inf) & (0 < c) & (c < Inf) ... & (0 < k) & (k < Inf); if (isscalar (lambda) && isscalar(c) && isscalar(k)) x(j) = ((1 - p(j) / lambda).^(-1 / k) - 1).^(1 / c) ; else x(j) = ((1 - p(j) ./ lambda(j)).^(-1 ./ k(j)) - 1).^(1 ./ c(j)) ; endif endfunction %!demo %! ## Plot various iCDFs from the Burr type XII distribution %! p = 0.001:0.001:0.999; %! x1 = burrinv (p, 1, 1, 1); %! x2 = burrinv (p, 1, 1, 2); %! x3 = burrinv (p, 1, 1, 3); %! x4 = burrinv (p, 1, 2, 1); %! x5 = burrinv (p, 1, 3, 1); %! x6 = burrinv (p, 1, 0.5, 2); %! plot (p, x1, "-b", p, x2, "-g", p, x3, "-r", ... %! p, x4, "-c", p, x5, "-m", p, x6, "-k") %! grid on %! ylim ([0, 5]) %! legend ({"λ = 1, c = 1, k = 1", "λ = 1, c = 1, k = 2", ... %! "λ = 1, c = 1, k = 3", "λ = 1, c = 2, k = 1", ... %! "λ = 1, c = 3, k = 1", "λ = 1, c = 0.5, k = 2"}, ... %! "location", "northwest") %! title ("Burr type XII iCDF") %! xlabel ("probability") %! ylabel ("values in x") ## Test output %!shared p, y %! p = [-Inf, -1, 0, 1/2, 1, 2, Inf]; %! y = [NaN, NaN, 0, 1 , Inf, NaN, NaN]; %!assert (burrinv (p, ones (1,7), ones (1,7), ones(1,7)), y, eps) %!assert (burrinv (p, 1, 1, 1), y, eps) %!assert (burrinv (p, [1, 1, 1, NaN, 1, 1, 1], 1, 1), [y(1:3), NaN, y(5:7)], eps) %!assert (burrinv (p, 1, [1, 1, 1, NaN, 1, 1, 1], 1), [y(1:3), NaN, y(5:7)], eps) %!assert (burrinv (p, 1, 1, [1, 1, 1, NaN, 1, 1, 1]), [y(1:3), NaN, y(5:7)], eps) %!assert (burrinv ([p, NaN], 1, 1, 1), [y, NaN], eps) ## Test class of input preserved %!assert (burrinv (single ([p, NaN]), 1, 1, 1), single ([y, NaN]), eps("single")) %!assert (burrinv ([p, NaN], single (1), 1, 1), single ([y, NaN]), eps("single")) %!assert (burrinv ([p, NaN], 1, single (1), 1), single ([y, NaN]), eps("single")) %!assert (burrinv ([p, NaN], 1, 1, single (1)), single ([y, NaN]), eps("single")) ## Test input validation %!error burrinv () %!error burrinv (1) %!error burrinv (1, 2) %!error burrinv (1, 2, 3) %!error ... %! burrinv (1, 2, 3, 4, 5) %!error ... %! burrinv (ones (3), ones (2), ones(2), ones(2)) %!error ... %! burrinv (ones (2), ones (3), ones(2), ones(2)) %!error ... %! burrinv (ones (2), ones (2), ones(3), ones(2)) %!error ... %! burrinv (ones (2), ones (2), ones(2), ones(3)) %!error burrinv (i, 2, 3, 4) %!error burrinv (1, i, 3, 4) %!error burrinv (1, 2, i, 4) %!error burrinv (1, 2, 3, i) statistics-release-1.6.3/inst/dist_fun/burrpdf.m000066400000000000000000000134031456127120000217420ustar00rootroot00000000000000## Copyright (C) 1995-2015 Kurt Hornik ## Copyright (C) 2016 Dag Lyberg ## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{y} =} burrpdf (@var{x}, @var{lambda}, @var{c}, @var{k}) ## ## Burr type XII probability density function (PDF). ## ## For each element of @var{x}, compute the probability density function (PDF) ## of the Burr type XII distribution with with scale parameter @var{lambda}, ## first shape parameter @var{c}, and second shape parameter @var{k}. The size ## of @var{y} is the common size of @var{x}, @var{lambda}, @var{c}, and @var{k}. ## A scalar input functions as a constant matrix of the same size as the other ## inputs. ## ## Further information about the Burr distribution can be found at ## @url{https://en.wikipedia.org/wiki/Burr_distribution} ## ## @seealso{burrcdf, burrinv, burrrnd, burrfit, burrlike} ## @end deftypefn function y = burrpdf (x, lambda, c, k) ## Check for valid number of input arguments if (nargin < 4) error ("burrpdf: function called with too few input arguments."); endif ## Check for common size of X, LANBDA, C and K if (! isscalar (x) || ! isscalar (lambda) || ! isscalar (c) || ! isscalar (k)) [retval, x, lambda, c, k] = common_size (x, lambda, c, k); if (retval > 0) error ("burrpdf: X, LAMBDA, C, and K must be of common size or scalars."); endif endif ## Check for X, LANBDA, C and K being reals if (iscomplex (x) || iscomplex (lambda) || iscomplex (c) || iscomplex (k)) error ("burrpdf: X, LAMBDA, C, and K must not be complex."); endif ## Check for class type if (isa (x, "single") || isa (lambda, "single") ... || isa (c, "single") || isa (k, "single")) y = zeros (size (x), "single"); else y = zeros (size (x)); endif ## Force NaNs for out of range parameters j = isnan (x) | ! (lambda > 0) | ! (c > 0) | ! (k > 0); y(j) = NaN; ## Find valid values in parameters and data j = (x > 0) & (0 < lambda) & (lambda < Inf) & (0 < c) & (c < Inf) ... & (0 < k) & (k < Inf); ## Compute Burr PDF if (isscalar (lambda) && isscalar (c) && isscalar(k)) y(j) = (c * k / lambda) .* (x(j) / lambda) .^ (c - 1) ./ ... (1 + (x(j) / lambda) .^ c) .^ (k + 1); else y(j) = (c(j) .* k(j) ./ lambda(j) ) .* x(j).^(c(j) - 1) ./ ... (1 + (x(j) ./ lambda(j) ) .^ c(j)) .^ (k(j) + 1); endif endfunction %!demo %! ## Plot various PDFs from the Burr type XII distribution %! x = 0.001:0.001:3; %! y1 = burrpdf (x, 1, 1, 1); %! y2 = burrpdf (x, 1, 1, 2); %! y3 = burrpdf (x, 1, 1, 3); %! y4 = burrpdf (x, 1, 2, 1); %! y5 = burrpdf (x, 1, 3, 1); %! y6 = burrpdf (x, 1, 0.5, 2); %! plot (x, y1, "-b", x, y2, "-g", x, y3, "-r", ... %! x, y4, "-c", x, y5, "-m", x, y6, "-k") %! grid on %! ylim ([0, 2]) %! legend ({"λ = 1, c = 1, k = 1", "λ = 1, c = 1, k = 2", ... %! "λ = 1, c = 1, k = 3", "λ = 1, c = 2, k = 1", ... %! "λ = 1, c = 3, k = 1", "λ = 1, c = 0.5, k = 2"}, ... %! "location", "northeast") %! title ("Burr type XII PDF") %! xlabel ("values in x") %! ylabel ("density") ## Test output %!shared x, y %! x = [-1, 0, 1, 2, Inf]; %! y = [0, 0, 1/4, 1/9, 0]; %!assert (burrpdf (x, ones(1,5), ones (1,5), ones (1,5)), y) %!assert (burrpdf (x, 1, 1, 1), y) %!assert (burrpdf (x, [1, 1, NaN, 1, 1], 1, 1), [y(1:2), NaN, y(4:5)]) %!assert (burrpdf (x, 1, [1, 1, NaN, 1, 1], 1), [y(1:2), NaN, y(4:5)]) %!assert (burrpdf (x, 1, 1, [1, 1, NaN, 1, 1]), [y(1:2), NaN, y(4:5)]) %!assert (burrpdf ([x, NaN], 1, 1, 1), [y, NaN]) ## Test class of input preserved %!assert (burrpdf (single ([x, NaN]), 1, 1, 1), single ([y, NaN])) %!assert (burrpdf ([x, NaN], single (1), 1, 1), single ([y, NaN])) %!assert (burrpdf ([x, NaN], 1, single (1), 1), single ([y, NaN])) %!assert (burrpdf ([x, NaN], 1, 1, single (1)), single ([y, NaN])) ## Test input validation %!error burrpdf () %!error burrpdf (1) %!error burrpdf (1, 2) %!error burrpdf (1, 2, 3) %!error ... %! burrpdf (1, 2, 3, 4, 5) %!error ... %! burrpdf (ones (3), ones (2), ones(2), ones(2)) %!error ... %! burrpdf (ones (2), ones (3), ones(2), ones(2)) %!error ... %! burrpdf (ones (2), ones (2), ones(3), ones(2)) %!error ... %! burrpdf (ones (2), ones (2), ones(2), ones(3)) %!error burrpdf (i, 2, 3, 4) %!error burrpdf (1, i, 3, 4) %!error burrpdf (1, 2, i, 4) %!error burrpdf (1, 2, 3, i) statistics-release-1.6.3/inst/dist_fun/burrrnd.m000066400000000000000000000160561456127120000217630ustar00rootroot00000000000000## Copyright (C) 1995-2015 Kurt Hornik ## Copyright (C) 2016 Dag Lyberg ## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR LAMBDA PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{r} =} burrrnd (@var{lambda}, @var{c}, @var{k}) ## @deftypefnx {statistics} {@var{r} =} burrrnd (@var{lambda}, @var{c}, @var{k}, @var{rows}) ## @deftypefnx {statistics} {@var{r} =} burrrnd (@var{lambda}, @var{c}, @var{k}, @var{rows}, @var{cols}, @dots{}) ## @deftypefnx {statistics} {@var{r} =} burrrnd (@var{lambda}, @var{c}, @var{k}, [@var{sz}]) ## ## Random arrays from the Burr type XII distribution. ## ## @code{@var{r} = burrrnd (@var{lambda}, @var{c}, @var{k})} returns an array of ## random numbers chosen from the Burr type XII distribution with scale ## parameter @var{lambda}, first shape parameter @var{c}, and second shape ## parameter@var{c}, and @var{k}. The size of @var{r} is the common size of ## @var{lambda}, @var{c}, and @var{k}. LAMBDA scalar input functions as a ## constant matrix of the same size as the other inputs. ## ## When called with a single size argument, @code{burrrnd} returns a square ## matrix with the dimension specified. When called with more than one scalar ## argument, the first two arguments are taken as the number of rows and columns ## and any further arguments specify additional matrix dimensions. The size may ## also be specified with a row vector of dimensions, @var{sz}. ## ## Further information about the Burr distribution can be found at ## @url{https://en.wikipedia.org/wiki/Burr_distribution} ## ## @seealso{burrcdf, burrinv, burrpdf, burrfit, burrlike} ## @end deftypefn function r = burrrnd (lambda, c, k, varargin) ## Check for valid number of input arguments if (nargin < 3) error ("burrrnd: function called with too few input arguments."); endif ## Check for common size of LAMBDA, C, and K if (! isscalar (lambda) || ! isscalar (c) || ! isscalar (k)) [retval, lambda, c, k] = common_size (lambda, c, k); if (retval > 0) error ("burrrnd: LAMBDA, C, and K must be of common size or scalars."); endif endif ## Check for LAMBDA, C, and K being reals if (iscomplex (lambda) || iscomplex (c) || iscomplex (k)) error ("burrrnd: LAMBDA, C, and K must not be complex."); endif ## Parse and check SIZE arguments if (nargin == 3) sz = size (lambda); elseif (nargin == 4) if (isscalar (varargin{1}) && varargin{1} >= 0 ... && varargin{1} == fix (varargin{1})) sz = [varargin{1}, varargin{1}]; elseif (isrow (varargin{1}) && all (varargin{1} >= 0) ... && all (varargin{1} == fix (varargin{1}))) sz = varargin{1}; elseif error (strcat (["burrrnd: SZ must be a scalar or a row vector"], ... [" of non-negative integers."])); endif elseif (nargin > 4) posint = cellfun (@(x) (! isscalar (x) || x < 0 || x != fix (x)), varargin); if (any (posint)) error ("burrrnd: dimensions must be non-negative integers."); endif sz = [varargin{:}]; endif ## Check that parameters match requested dimensions in size if (! isscalar (lambda) && ! isequal (size (lambda), sz)) error ("burrrnd: LAMBDA, C, and K must be scalars or of size SZ."); endif ## Check for class type if (isa (lambda, "single") || isa (c, "single") || isa (k, "single")) cls = "single"; else cls = "double"; endif ## Generate random sample from Burr type XII distribution lambda(lambda <= 0) = NaN; c(c <= 0) = NaN; k(k <= 0) = NaN; r = lambda .* (((1 - rand (sz, cls)) .^ (-(1./k))) - 1) .^ (1./c); endfunction ## Test output %!assert (size (burrrnd (1, 1, 1)), [1 1]) %!assert (size (burrrnd (ones (2,1), 1, 1)), [2, 1]) %!assert (size (burrrnd (ones (2,2), 1, 1)), [2, 2]) %!assert (size (burrrnd (1, ones (2,1), 1)), [2, 1]) %!assert (size (burrrnd (1, ones (2,2), 1)), [2, 2]) %!assert (size (burrrnd (1, 1, ones (2,1))), [2, 1]) %!assert (size (burrrnd (1, 1, ones (2,2))), [2, 2]) %!assert (size (burrrnd (1, 1, 1, 3)), [3, 3]) %!assert (size (burrrnd (1, 1, 1, [4 1])), [4, 1]) %!assert (size (burrrnd (1, 1, 1, 4, 1)), [4, 1]) ## Test class of input preserved %!assert (class (burrrnd (1,1,1)), "double") %!assert (class (burrrnd (single (1),1,1)), "single") %!assert (class (burrrnd (single ([1 1]),1,1)), "single") %!assert (class (burrrnd (1,single (1),1)), "single") %!assert (class (burrrnd (1,single ([1 1]),1)), "single") %!assert (class (burrrnd (1,1,single (1))), "single") %!assert (class (burrrnd (1,1,single ([1 1]))), "single") ## Test input validation %!error burrrnd () %!error burrrnd (1) %!error burrrnd (1, 2) %!error ... %! burrrnd (ones (3), ones (2), ones (2)) %!error ... %! burrrnd (ones (2), ones (3), ones (2)) %!error ... %! burrrnd (ones (2), ones (2), ones (3)) %!error burrrnd (i, 2, 3) %!error burrrnd (1, i, 3) %!error burrrnd (1, 2, i) %!error ... %! burrrnd (1, 2, 3, -1) %!error ... %! burrrnd (1, 2, 3, 1.2) %!error ... %! burrrnd (1, 2, 3, ones (2)) %!error ... %! burrrnd (1, 2, 3, [2 -1 2]) %!error ... %! burrrnd (1, 2, 3, [2 0 2.5]) %!error ... %! burrrnd (1, 2, 3, 2, -1, 5) %!error ... %! burrrnd (1, 2, 3, 2, 1.5, 5) %!error ... %! burrrnd (2, ones (2), 2, 3) %!error ... %! burrrnd (2, ones (2), 2, [3, 2]) %!error ... %! burrrnd (2, ones (2), 2, 3, 2) statistics-release-1.6.3/inst/dist_fun/bvncdf.m000066400000000000000000000204351456127120000215430ustar00rootroot00000000000000## Copyright (C) 2022-2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{p} =} bvncdf (@var{x}, @var{mu}, @var{sigma}) ## @deftypefnx {statistics} {@var{p} =} bvncdf (@var{x}, [], @var{sigma}) ## ## Bivariate normal cumulative distribution function (CDF). ## ## @code{@var{p} = bvncdf (@var{x}, @var{mu}, @var{sigma})} will compute the ## bivariate normal cumulative distribution function of @var{x} given a mean ## parameter @var{mu} and a scale parameter @var{sigma}. ## ## @itemize ## @item @var{x} must be an @math{Nx2} matrix with each variable as a column ## vector. ## @item @var{mu} can be either a scalar (common mean) or a two-element row ## vector (each element corresponds to a variable). If empty, a zero mean is ## assumed. ## @item @var{sigma} can be a scalar (common variance) or a @math{2x2} ## covariance matrix, which must be positive definite. ## @end itemize ## ## @seealso{mvncdf} ## @end deftypefn ## Code adapted from Thomas H. Jørgensen's work in BVNcdf.m function retrieved ## from https://www.tjeconomics.com/code/ function p = bvncdf (x, mu, sigma) ## Check input arguments and add defaults if (size (x, 2) != 2) error (strcat (["bvncdf: X must be an Nx2 matrix with each variable"], ... [" as a column vector."])); endif if (isempty (mu)) mu = [0, 0]; elseif (isscalar (mu)) mu = [mu, mu]; elseif (numel (mu) == 2); mu = mu(:)'; else error ("bvncdf: MU must be a scalar or a two-element vector."); endif if (numel (sigma) == 1) sigma = sigma * ones (2,2); sigma(1,1) = 1; sigma(2,2) = 1; elseif (numel (sigma) != 4) error (strcat (["bvncdf: the covariance matrix must be either a"], ... [" scalar or a 2x2 matrix."])); endif ## Test for symmetric positive definite covariance matrix [~, err] = chol (sigma); if (err != 0) error (strcat (["bvncdf: the covariance matrix is not positive"], ... [" definite and/or symmetric."])); endif dh = (x(:,1) - mu(:,1)) / sqrt (sigma(1,1)); dk = (x(:,2) - mu(:,2)) / sqrt (sigma(2,2)); r = sigma(1,2) / sqrt (sigma(1,1) * sigma(2,2)); p = NaN (size (dh)); p(dh == Inf & dk == Inf) = 1; p(dk == Inf) = 0.5 * erfc (- dh(dk == Inf) / sqrt (2)); p(dh == Inf) = 0.5 * erfc (- dh(dk == Inf) / sqrt (2)); p(dh == -Inf | dk == -Inf) = 0; ind = (dh > -Inf & dh < Inf & dk > -Inf & dk < Inf); ## For p(x1 < dh, x2 < dk, r) if (sum (ind) > 0) p(ind) = calculate_bvncdf (-dh(ind), -dk(ind), r); endif endfunction function p = calculate_bvncdf (dh,dk,r) if (abs (r) < 0.3) lg = 3; ## Gauss Legendre points and weights, n = 6 w = [0.1713244923791705, 0.3607615730481384, 0.4679139345726904]; x = [0.9324695142031522, 0.6612093864662647, 0.2386191860831970]; elseif (abs (r) < 0.75) lg = 6; ## Gauss Legendre points and weights, n = 12 w = [.04717533638651177, 0.1069393259953183, 0.1600783285433464, ... 0.2031674267230659, 0.2334925365383547, 0.2491470458134029]; x = [0.9815606342467191, 0.9041172563704750, 0.7699026741943050, ... 0.5873179542866171, 0.3678314989981802, 0.1252334085114692]; else lg = 10; ## Gauss Legendre points and weights, n = 20 w = [.01761400713915212, .04060142980038694, .06267204833410906, ... .08327674157670475, 0.1019301198172404, 0.1181945319615184, ... 0.1316886384491766, 0.1420961093183821, 0.1491729864726037, ... 0.1527533871307259]; x = [0.9931285991850949, 0.9639719272779138, 0.9122344282513259, ... 0.8391169718222188, 0.7463319064601508, 0.6360536807265150, ... 0.5108670019508271, 0.3737060887154196, 0.2277858511416451, ... 0.07652652113349733]; endif dim1 = ones (size (dh, 1), 1); dim2 = ones (1, lg); hk = dh .* dk; bvn = dim1 * 0; phi_dh = 0.5 * erfc (dh / sqrt (2)); phi_dk = 0.5 * erfc (dk / sqrt (2)); if (abs(r) < 0.925) hs = (dh .* dh + dk .* dk) / 2; asr = asin (r); sn1 = sin (asr * (1 - x) / 2); sn2 = sin (asr * (1 + x) / 2); bvn = sum ((dim1 * w) .* exp (((dim1 * sn1) .* (hk * dim2) - ... hs * dim2) ./ (1 - dim1 * (sn1 .^ 2))) + ... (dim1 * w) .* exp (((dim1 * sn2) .* (hk * dim2) - ... hs * dim2) ./ (1 - dim1 * (sn2 .^ 2))), 2) * ... asr / (4 * pi) + phi_dh .* phi_dk; else twopi = 2 * pi; if r < 0 dk = -dk; hk = -hk; endif if abs(r) < 1 as = (1 - r) * (1 + r); a = sqrt (as); bs = (dh - dk) .^ 2; c = (4 - hk) / 8; d = (12 - hk) / 16; asr = - (bs ./ as + hk) / 2; ind = asr > -100; bvn(ind) = a * exp (asr(ind)) .* (1 - (c(ind) .* (bs(ind) - as)) ... .* (1 - d(ind) .* bs(ind) / 5) /3 ... + (c(ind) .* d(ind)) .* as .^ 2 / 5 ); ind = hk > -100; b = sqrt (bs); phi_ba = 0.5 * erfc ((b/a) / sqrt (2)); sp = sqrt (twopi) * phi_ba; bvn(ind) = bvn(ind) - (exp (-hk(ind) / 2) .* sp(ind)) ... .* b(ind) .* (1 - c(ind) .* bs(ind) ... .* (1 - d(ind) .* bs(ind) / 5) /3); a = a/2; for is = -1:2:1 xs = (a + a * is * x) .^ 2; rs = sqrt (1 - xs); asr1 = - ((bs * dim2) ./ (dim1 * xs) + hk * dim2) / 2; ind1 = (asr1 > -100); sp1 = (1 + (c * dim2) .* (dim1 * xs) .* ... (1 + (d * dim2) .* (dim1 * xs))); ep1 = exp (- (hk * dim2) .* (1 - dim1 * rs) ./ ... (2 * (1 + dim1 * rs))) ./ (dim1 * rs); bvn = bvn + sum (a .* (dim1 * w) .* exp (asr1 .* ind1) ... .* (ep1 .* ind1 - sp1 .* ind1), 2); endfor bvn = -bvn/twopi; endif if (r > 0) tmp = max (dh, dk); bvn = bvn + 0.5 * erfc (tmp / sqrt(2)); elseif (r < 0) phi_dh = 0.5 * erfc (dh / sqrt (2)); phi_dk = 0.5 * erfc (dk / sqrt (2)); bvn = - bvn + max (0, phi_dh - phi_dk); endif endif p = max (0, min (1, bvn)); endfunction %!demo %! mu = [1, -1]; %! sigma = [0.9, 0.4; 0.4, 0.3]; %! [X1, X2] = meshgrid (linspace (-1, 3, 25)', linspace (-3, 1, 25)'); %! x = [X1(:), X2(:)]; %! p = bvncdf (x, mu, sigma); %! Z = reshape (p, 25, 25); %! surf (X1, X2, Z); %! title ("Bivariate Normal Distribution"); %! ylabel "X1" %! xlabel "X2" ## Test output %!test %! mu = [1, -1]; %! sigma = [0.9, 0.4; 0.4, 0.3]; %! [X1,X2] = meshgrid (linspace (-1, 3, 25)', linspace (-3, 1, 25)'); %! x = [X1(:), X2(:)]; %! p = bvncdf (x, mu, sigma); %! p_out = [0.00011878988774500, 0.00034404112322371, ... %! 0.00087682502191813, 0.00195221905058185, ... %! 0.00378235566873474, 0.00638175749734415, ... %! 0.00943764224329656, 0.01239164888125426, ... %! 0.01472750274376648, 0.01623228313374828]'; %! assert (p([1:10]), p_out, 1e-16); %!test %! mu = [1, -1]; %! sigma = [0.9, 0.4; 0.4, 0.3]; %! [X1,X2] = meshgrid (linspace (-1, 3, 25)', linspace (-3, 1, 25)'); %! x = [X1(:), X2(:)]; %! p = bvncdf (x, mu, sigma); %! p_out = [0.8180695783608276, 0.8854485749482751, ... %! 0.9308108777385832, 0.9579855743025508, ... %! 0.9722897881414742, 0.9788150170059926, ... %! 0.9813597788804785, 0.9821977956568989, ... %! 0.9824283794464095, 0.9824809345614861]'; %! assert (p([616:625]), p_out, 2e-16); %!error bvncdf (randn (25,3), [], [1, 1; 1, 1]); %!error bvncdf (randn (25,2), [], [1, 1; 1, 1]); %!error bvncdf (randn (25,2), [], ones (3, 2)); statistics-release-1.6.3/inst/dist_fun/bvtcdf.m000066400000000000000000000143621456127120000215530ustar00rootroot00000000000000## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{p} =} bvtcdf (@var{x}, @var{rho}, @var{df}) ## @deftypefnx {statistics} {@var{p} =} bvtcdf (@var{x}, @var{rho}, @var{df}, @var{Tol}) ## ## Bivariate Student's t cumulative distribution function (CDF). ## ## @code{@var{p} = bvtcdf (@var{x}, @var{rho}, @var{df})} will compute the ## bivariate student's t cumulative distribution function of @var{x}, which must ## be an @math{Nx2} matrix, given a correlation coefficient @var{rho}, which ## must be a scalar, and @var{df} degrees of freedom, which can be a scalar or a ## vector of positive numbers commensurate with @var{x}. ## ## @var{Tol} is the tolerance for numerical integration and by default ## @code{@var{Tol} = 1e-8}. ## ## @seealso{mvtcdf} ## @end deftypefn function p = bvtcdf (x, rho, df, TolFun) narginchk (3,4); if (nargin < 4) TolFun = 1e-8; endif if (isa (x, "single") || isa (rho, "single") || isa (df, "single")) is_type = "single"; else is_type = "double"; endif if (abs (rho) < 1) largeNu = 1e4; general = ! (fix (df) == df & df < largeNu); if (isscalar (df)) if general p = generalDF (x, rho, repmat (df, size (x, 1), 1), TolFun); else p = integerDF (x, rho, df); endif else p = zeros (size (x, 1), 1, is_type); ## For large of non-integer df if (any (general)) p(general) = generalDF (x(general,:), rho, df(general), TolFun); endif ## For small integer df for i = find (! general(:)') p(i) = integerDF (x(i,:), rho, df(i)); endfor endif elseif (rho == 1) p = tcdf (min (x, [], 2), df); p(any (isnan( x), 2)) = NaN; else p = tcdf (x(:,1), df) - tcdf (-x(:,2), df); endif endfunction ## CDF for the bivariate t with integer degrees of freedom function p = integerDF (x, rho, df) x1 = x(:,1); x2 = x(:,2); tau = 1 - rho .^ 2; x1rx2 = x1 - rho * x2; x2rx1 = x2 - rho * x1; sx1r2 = sign (x1rx2); sx2r1 = sign (x2rx1); dfx1s = df + x1 .^ 2; dfx2s = df + x2 .^ 2; tdfx1x2 = tau * dfx2s ./ x1rx2 .^ 2; tdfx2x1 = tau * dfx1s ./ x2rx1 .^ 2; x_tdf12 = 1 ./ (1 + tdfx1x2); x_tdf21 = 1 ./ (1 + tdfx2x1); y_tdf12 = 1 ./ (1 + 1 ./ tdfx1x2); y_tdf21 = 1 ./ (1 + 1 ./ tdfx2x1); sqrtDF = sqrt (df); halfDF = df/2; if (fix (halfDF) == halfDF) # for even DF p1 = atan2 (sqrt (tau), -rho) ./ (2 * pi); c1 = x1 ./ (4 * sqrt (dfx1s)); c2 = x2 ./ (4 * sqrt (dfx2s)); beta12 = 2 *atan2 (sqrt (x_tdf12), sqrt (y_tdf12)) / pi; beta21 = 2 *atan2 (sqrt (x_tdf21), sqrt (y_tdf21)) / pi; p2 = (1 + sx1r2 .* beta12) .* c2 + (1 + sx2r1 .* beta21) .* c1; betaT12 = 2 * sqrt (x_tdf12 .* y_tdf12) / pi; betaT21 = 2 * sqrt (x_tdf21 .* y_tdf21) / pi; for j = 2:halfDF fact = df * (j - 1.5) / (j - 1); c2 = c2 .* fact ./ dfx2s; c1 = c1 .* fact ./ dfx1s; beta12 = beta12 + betaT12; beta21 = beta21 + betaT21; p2 = p2 + (1 + sx1r2 .* beta12) .* c2 + (1 + sx2r1 .* beta21) .* c1; fact = 2 * (j - 1) / (2 * (j - 1) + 1); betaT12 = fact * betaT12 .* y_tdf12; betaT21 = fact * betaT21 .* y_tdf21; endfor else # for odd DF x1x2p = x1.*x2; x1x2s = x1 + x2; t1 = sqrt (x1 .^ 2 - 2 * rho * x1x2p + x2 .^ 2 + tau * df); t2 = x1x2p + rho * df; t3 = x1x2p - df; p1 = atan2 (sqrtDF .* (-x1x2s .* t2 - t3 .* t1), ... t3 .* t2 - df .* x1x2s .* t1) ./ (2 * pi); p1 = p1 + (p1 < 0); p2 = 0; if (df > 1) c1 = sqrtDF .* x1 ./ (2 * pi .* dfx1s); c2 = sqrtDF .* x2 ./ (2 * pi .* dfx2s); betaT12 = sqrt (x_tdf12); betaT21 = sqrt (x_tdf21); beta12 = betaT12; beta21 = betaT21; p2 = (1 + sx1r2 .* beta12) .* c2 + (1 + sx2r1 .* beta21) .* c1; for j = 2:(halfDF - 0.5) fact = df * (j - 1) / (j - 0.5); c2 = fact * c2 ./ dfx2s; c1 = fact * c1 ./ dfx1s; fact = 1 - 0.5 / (j - 1); betaT12 = fact * betaT12 .* y_tdf12; betaT21 = fact * betaT21 .* y_tdf21; beta12 = beta12 + betaT12; beta21 = beta21 + betaT21; p2 = p2 + (1 + sx1r2 .* beta12) .* c2 + (1 + sx2r1 .* beta21) .* c1; endfor endif endif p = p1 + p2; ## Fix limit cases large = 1e10; p(x1 < -large | x2 < -large) = 0; p(x1 > large) = tcdf (x2(x1 > large), df); p(x2 > large) = tcdf (x1(x2 > large), df); endfunction ## CDF for the bivariate t with arbitrary degrees of freedom. function p = generalDF (x, rho, df, TolFun) n = size (x, 1); if (rho >= 0) p1 = tcdf (min (x, [], 2), df); p1(any (isnan (x), 2)) = NaN; else p1 = tcdf (x(:,1), df) - tcdf (-x(:,2), df); p1(p1 < 0) = 0; endif lo = asin (rho); hi = (sign (rho) + (rho == 0)) .* pi ./ 2; p2 = zeros (size (p1), class (rho)); for i = 1:n b1 = x(i,1); b2 = x(i,2); v = df(i); if (isfinite (b1) && isfinite (b2)) p2(i) = quadgk (@bvtIntegrand, lo, hi, "AbsTol", TolFun, "RelTol", 0); endif endfor p = p1 - p2 ./ (2 .* pi); function integrand = bvtIntegrand (theta) st = sin (theta); ct2 = cos (theta).^2; integrand = (1 ./ (1 + ((b1 * st - b2) .^ 2 ./ ct2 + b1 .^ 2) / v)) ... .^ (v / 2); endfunction endfunction ## Test output %!test %! x = [1, 2]; %! rho = [1, 0.5; 0.5, 1]; %! df = 4; %! assert (bvtcdf(x, rho(2), df), mvtcdf(x, rho, df), 1e-14); %!test %! x = [3, 2;2, 4;1, 5]; %! rho = [1, 0.5; 0.5, 1]; %! df = 4; %! assert (bvtcdf(x, rho(2), df), mvtcdf(x, rho, df), 1e-14); statistics-release-1.6.3/inst/dist_fun/cauchycdf.m000066400000000000000000000133361456127120000222340ustar00rootroot00000000000000## Copyright (C) 2012 Rik Wehbring ## Copyright (C) 1995-2016 Kurt Hornik ## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{p} =} cauchycdf (@var{x}, @var{x0}, @var{gamma}) ## @deftypefnx {statistics} {@var{p} =} cauchycdf (@var{x}, @var{x0}, @var{gamma}, @qcode{"upper"}) ## ## Cauchy cumulative distribution function (CDF). ## ## For each element of @var{x}, compute the cumulative distribution function ## (CDF) of the Cauchy distribution with location parameter @var{x0} and scale ## parameter @var{gamma}. The size of @var{p} is the common size of @var{x}, ## @var{x0}, and @var{gamma}. A scalar input functions as a constant matrix of ## the same size as the other inputs. ## ## @code{@var{p} = cauchycdf (@var{x}, @var{x0}, @var{gamma}, "upper")} computes ## the upper tail probability of the Cauchy distribution with parameters ## @var{x0} and @var{gamma}, at the values in @var{x}. ## ## Further information about the Cauchy distribution can be found at ## @url{https://en.wikipedia.org/wiki/Cauchy_distribution} ## ## @seealso{cauchyinv, cauchypdf, cauchyrnd} ## @end deftypefn function p = cauchycdf (x, x0, gamma, uflag) ## Check for valid number of input arguments if (nargin < 3) error ("cauchycdf: function called with too few input arguments."); endif ## Check for valid "upper" flag if (nargin > 3) if (! strcmpi (uflag, "upper")) error ("cauchycdf: invalid argument for upper tail."); else uflag = true; endif else uflag = false; endif ## Check for common size of X, X0, and GAMMA if (! isscalar (x) || ! isscalar (x0) || ! isscalar (gamma)) [retval, x, x0, gamma] = common_size (x, x0, gamma); if (retval > 0) error (strcat (["cauchycdf: X, X0, and GAMMA must be of"], ... [" common size or scalars."])); endif endif ## Check for X, X0, and GAMMA being reals if (iscomplex (x) || iscomplex (x0) || iscomplex (gamma)) error ("cauchycdf: X, X0, and GAMMA must not be complex."); endif ## Check for class type if (isa (x, "single") || isa (x0, "single") || isa (gamma, "single")); p = NaN (size (x), "single"); else p = NaN (size (x)); endif ## Find valid values in parameters and data k = ! isinf (x0) & (gamma > 0) & (gamma < Inf); ## Compute Cauchy CDF if (isscalar (x0) && isscalar (gamma)) if (uflag) p = 0.5 + atan ((-x(k) + x0) / gamma) / pi; else p = 0.5 + atan ((x(k) - x0) / gamma) / pi; endif else if (uflag) p(k) = 0.5 + atan ((-x(k) + x0(k)) ./ gamma(k)) / pi; else p(k) = 0.5 + atan ((x(k) - x0(k)) ./ gamma(k)) / pi; endif endif endfunction %!demo %! ## Plot various CDFs from the Cauchy distribution %! x = -5:0.01:5; %! p1 = cauchycdf (x, 0, 0.5); %! p2 = cauchycdf (x, 0, 1); %! p3 = cauchycdf (x, 0, 2); %! p4 = cauchycdf (x, -2, 1); %! plot (x, p1, "-b", x, p2, "-g", x, p3, "-r", x, p4, "-c") %! grid on %! xlim ([-5, 5]) %! legend ({"x0 = 0, γ = 0.5", "x0 = 0, γ = 1", ... %! "x0 = 0, γ = 2", "x0 = -2, γ = 1"}, "location", "southeast") %! title ("Cauchy CDF") %! xlabel ("values in x") %! ylabel ("probability") ## Test output %!shared x, y %! x = [-1 0 0.5 1 2]; %! y = 1/pi * atan ((x-1) / 2) + 1/2; %!assert (cauchycdf (x, ones (1,5), 2*ones (1,5)), y) %!assert (cauchycdf (x, 1, 2*ones (1,5)), y) %!assert (cauchycdf (x, ones (1,5), 2), y) %!assert (cauchycdf (x, [-Inf 1 NaN 1 Inf], 2), [NaN y(2) NaN y(4) NaN]) %!assert (cauchycdf (x, 1, 2*[0 1 NaN 1 Inf]), [NaN y(2) NaN y(4) NaN]) %!assert (cauchycdf ([x(1:2) NaN x(4:5)], 1, 2), [y(1:2) NaN y(4:5)]) %!assert (cauchycdf ([x, NaN], 1, 2), [y, NaN]) ## Test class of input preserved %!assert (cauchycdf (single ([x, NaN]), 1, 2), single ([y, NaN]), eps ("single")) %!assert (cauchycdf ([x, NaN], single (1), 2), single ([y, NaN]), eps ("single")) %!assert (cauchycdf ([x, NaN], 1, single (2)), single ([y, NaN]), eps ("single")) ## Test input validation %!error cauchycdf () %!error cauchycdf (1) %!error ... %! cauchycdf (1, 2) %!error ... %! cauchycdf (1, 2, 3, 4, 5) %!error cauchycdf (1, 2, 3, "tail") %!error cauchycdf (1, 2, 3, 4) %!error ... %! cauchycdf (ones (3), ones (2), ones (2)) %!error ... %! cauchycdf (ones (2), ones (3), ones (2)) %!error ... %! cauchycdf (ones (2), ones (2), ones (3)) %!error cauchycdf (i, 2, 2) %!error cauchycdf (2, i, 2) %!error cauchycdf (2, 2, i) statistics-release-1.6.3/inst/dist_fun/cauchyinv.m000066400000000000000000000121471456127120000222730ustar00rootroot00000000000000## Copyright (C) 2012 Rik Wehbring ## Copyright (C) 1995-2016 Kurt Hornik ## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{x} =} cauchyinv (@var{p}, @var{x0}, @var{gamma}) ## ## Inverse of the Cauchy cumulative distribution function (iCDF). ## ## For each element of @var{p}, compute the quantile (the inverse of the CDF) of ## the Cauchy distribution with location parameter @var{x0} and scale parameter ## @var{gamma}. The size of @var{x} is the common size of @var{p}, @var{x0}, ## and @var{gamma}. A scalar input functions as a constant matrix of the same ## size as the other inputs. ## ## Further information about the Cauchy distribution can be found at ## @url{https://en.wikipedia.org/wiki/Cauchy_distribution} ## ## @seealso{cauchycdf, cauchypdf, cauchyrnd} ## @end deftypefn function x = cauchyinv (p, x0, gamma) ## Check for valid number of input arguments if (nargin < 3) error ("cauchyinv: function called with too few input arguments."); endif ## Check for common size of P, X0, and GAMMA if (! isscalar (p) || ! isscalar (x0) || ! isscalar (gamma)) [retval, p, x0, gamma] = common_size (p, x0, gamma); if (retval > 0) error (strcat (["cauchyinv: P, X0, and GAMMA must be of"], ... [" common size or scalars."])); endif endif ## Check for P, X0, and GAMMA being reals if (iscomplex (p) || iscomplex (x0) || iscomplex (gamma)) error ("cauchyinv: P, X0, and GAMMA must not be complex."); endif ## Check for class type if (isa (p, "single") || isa (x0, "single") || isa (gamma, "single")) x = NaN (size (p), "single"); else x = NaN (size (p)); endif ## Find valid values in parameters ok = ! isinf (x0) & (gamma > 0) & (gamma < Inf); ## Handle edge cases k0 = (p == 0) & ok; x(k0) = -Inf; k1 = (p == 1) & ok; x(k1) = Inf; ## Handle all other valid cases k = (p > 0) & (p < 1) & ok; if (isscalar (x0) && isscalar (gamma)) x(k) = x0 - gamma * cot (pi * p(k)); else x(k) = x0(k) - gamma(k) .* cot (pi * p(k)); endif endfunction %!demo %! ## Plot various iCDFs from the Cauchy distribution %! p = 0.001:0.001:0.999; %! x1 = cauchyinv (p, 0, 0.5); %! x2 = cauchyinv (p, 0, 1); %! x3 = cauchyinv (p, 0, 2); %! x4 = cauchyinv (p, -2, 1); %! plot (p, x1, "-b", p, x2, "-g", p, x3, "-r", p, x4, "-c") %! grid on %! ylim ([-5, 5]) %! legend ({"x0 = 0, γ = 0.5", "x0 = 0, γ = 1", ... %! "x0 = 0, γ = 2", "x0 = -2, γ = 1"}, "location", "northwest") %! title ("Cauchy iCDF") %! xlabel ("probability") %! ylabel ("values in x") ## Test output %!shared p %! p = [-1 0 0.5 1 2]; %!assert (cauchyinv (p, ones (1,5), 2 * ones (1,5)), [NaN -Inf 1 Inf NaN], eps) %!assert (cauchyinv (p, 1, 2 * ones (1,5)), [NaN -Inf 1 Inf NaN], eps) %!assert (cauchyinv (p, ones (1,5), 2), [NaN -Inf 1 Inf NaN], eps) %!assert (cauchyinv (p, [1 -Inf NaN Inf 1], 2), [NaN NaN NaN NaN NaN]) %!assert (cauchyinv (p, 1, 2 * [1 0 NaN Inf 1]), [NaN NaN NaN NaN NaN]) %!assert (cauchyinv ([p(1:2) NaN p(4:5)], 1, 2), [NaN -Inf NaN Inf NaN]) %!assert (cauchyinv ([p, NaN], 1, 2), [NaN -Inf 1 Inf NaN NaN], eps) ## Test class of input preserved %!assert (cauchyinv (single ([p, NaN]), 1, 2), ... %! single ([NaN -Inf 1 Inf NaN NaN]), eps ("single")) %!assert (cauchyinv ([p, NaN], single (1), 2), ... %! single ([NaN -Inf 1 Inf NaN NaN]), eps ("single")) %!assert (cauchyinv ([p, NaN], 1, single (2)), ... %! single ([NaN -Inf 1 Inf NaN NaN]), eps ("single")) ## Test input validation %!error cauchyinv () %!error cauchyinv (1) %!error ... %! cauchyinv (1, 2) %!error cauchyinv (1, 2, 3, 4) %!error ... %! cauchyinv (ones (3), ones (2), ones(2)) %!error ... %! cauchyinv (ones (2), ones (3), ones(2)) %!error ... %! cauchyinv (ones (2), ones (2), ones(3)) %!error cauchyinv (i, 4, 3) %!error cauchyinv (1, i, 3) %!error cauchyinv (1, 4, i) statistics-release-1.6.3/inst/dist_fun/cauchypdf.m000066400000000000000000000116621456127120000222510ustar00rootroot00000000000000## Copyright (C) 2012 Rik Wehbring ## Copyright (C) 1995-2016 Kurt Hornik ## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{y} =} cauchypdf (@var{x}, @var{x0}, @var{gamma}) ## ## Cauchy probability density function (PDF). ## ## For each element of @var{x}, compute the probability density function (PDF) ## of the Cauchy distribution with location parameter @var{x0} and scale ## parameter @var{gamma}. The size of @var{y} is the common size of @var{x}, ## @var{x0}, and @var{gamma}. A scalar input functions as a constant matrix of ## the same size as the other inputs. ## ## Further information about the Cauchy distribution can be found at ## @url{https://en.wikipedia.org/wiki/Cauchy_distribution} ## ## @seealso{cauchycdf, cauchypdf, cauchyrnd} ## @end deftypefn function y = cauchypdf (x, x0, gamma) ## Check for valid number of input arguments if (nargin < 3) error ("cauchypdf: function called with too few input arguments."); endif ## Check for common size of X, X0, and GAMMA if (! isscalar (x) || ! isscalar (x0) || ! isscalar (gamma)) [retval, x, x0, gamma] = common_size (x, x0, gamma); if (retval > 0) error (strcat (["cauchypdf: X, X0, and GAMMA must be of"], ... [" common size or scalars."])); endif endif ## Check for X, X0, and GAMMA being reals if (iscomplex (x) || iscomplex (x0) || iscomplex (gamma)) error ("cauchypdf: X, X0, and GAMMA must not be complex."); endif ## Check for class type if (isa (x, "single") || isa (x0, "single") || isa (gamma, "single")) y = NaN (size (x), "single"); else y = NaN (size (x)); endif ## Find valid values in parameters k = ! isinf (x0) & (gamma > 0) & (gamma < Inf); if (isscalar (x0) && isscalar (gamma)) y(k) = ((1 ./ (1 + ((x(k) - x0) / gamma) .^ 2)) / pi / gamma); else y(k) = ((1 ./ (1 + ((x(k) - x0(k)) ./ gamma(k)) .^ 2)) / pi ./ gamma(k)); endif endfunction %!demo %! ## Plot various PDFs from the Cauchy distribution %! x = -5:0.01:5; %! y1 = cauchypdf (x, 0, 0.5); %! y2 = cauchypdf (x, 0, 1); %! y3 = cauchypdf (x, 0, 2); %! y4 = cauchypdf (x, -2, 1); %! plot (x, y1, "-b", x, y2, "-g", x, y3, "-r", x, y4, "-c") %! grid on %! xlim ([-5, 5]) %! ylim ([0, 0.7]) %! legend ({"x0 = 0, γ = 0.5", "x0 = 0, γ = 1", ... %! "x0 = 0, γ = 2", "x0 = -2, γ = 1"}, "location", "northeast") %! title ("Cauchy PDF") %! xlabel ("values in x") %! ylabel ("density") ## Test output %!shared x, y %! x = [-1 0 0.5 1 2]; %! y = 1/pi * ( 2 ./ ((x-1).^2 + 2^2) ); %!assert (cauchypdf (x, ones (1,5), 2*ones (1,5)), y) %!assert (cauchypdf (x, 1, 2*ones (1,5)), y) %!assert (cauchypdf (x, ones (1,5), 2), y) %!assert (cauchypdf (x, [-Inf 1 NaN 1 Inf], 2), [NaN y(2) NaN y(4) NaN]) %!assert (cauchypdf (x, 1, 2*[0 1 NaN 1 Inf]), [NaN y(2) NaN y(4) NaN]) %!assert (cauchypdf ([x, NaN], 1, 2), [y, NaN]) ## Test class of input preserved %!assert (cauchypdf (single ([x, NaN]), 1, 2), single ([y, NaN]), eps ("single")) %!assert (cauchypdf ([x, NaN], single (1), 2), single ([y, NaN]), eps ("single")) %!assert (cauchypdf ([x, NaN], 1, single (2)), single ([y, NaN]), eps ("single")) ## Cauchy (0,1) == Student's T distribution with 1 DOF %!test %! x = rand (10, 1); %! assert (cauchypdf (x, 0, 1), tpdf (x, 1), eps); ## Test input validation %!error cauchypdf () %!error cauchypdf (1) %!error ... %! cauchypdf (1, 2) %!error cauchypdf (1, 2, 3, 4) %!error ... %! cauchypdf (ones (3), ones (2), ones(2)) %!error ... %! cauchypdf (ones (2), ones (3), ones(2)) %!error ... %! cauchypdf (ones (2), ones (2), ones(3)) %!error cauchypdf (i, 4, 3) %!error cauchypdf (1, i, 3) %!error cauchypdf (1, 4, i) statistics-release-1.6.3/inst/dist_fun/cauchyrnd.m000066400000000000000000000155171456127120000222660ustar00rootroot00000000000000## Copyright (C) 2012 Rik Wehbring ## Copyright (C) 1995-2016 Kurt Hornik ## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{r} =} cauchyrnd (@var{x0}, @var{gamma}) ## @deftypefnx {statistics} {@var{r} =} cauchyrnd (@var{x0}, @var{gamma}, @var{rows}) ## @deftypefnx {statistics} {@var{r} =} cauchyrnd (@var{x0}, @var{gamma}, @var{rows}, @var{cols}, @dots{}) ## @deftypefnx {statistics} {@var{r} =} cauchyrnd (@var{x0}, @var{gamma}, [@var{sz}]) ## ## Random arrays from the Cauchy distribution. ## ## @code{@var{r} = cauchyrnd (@var{x0}, @var{gamma})} returns an array of ## random numbers chosen from the Cauchy distribution with location parameter ## @var{x0} and scale parameter @var{gamma}. The size of @var{r} is the common ## size of @var{x0} and @var{gamma}. A scalar input functions as a constant ## matrix of the same size as the other inputs. ## ## When called with a single size argument, @code{cauchyrnd} returns a square ## matrix with the dimension specified. When called with more than one scalar ## argument, the first two arguments are taken as the number of rows and columns ## and any further arguments specify additional matrix dimensions. The size may ## also be specified with a row vector of dimensions, @var{sz}. ## ## Further information about the Cauchy distribution can be found at ## @url{https://en.wikipedia.org/wiki/Cauchy_distribution} ## ## @seealso{cauchycdf, cauchyinv, cauchypdf} ## @end deftypefn function r = cauchyrnd (x0, gamma, varargin) ## Check for valid number of input arguments if (nargin < 2) error ("cauchyrnd: function called with too few input arguments."); endif ## Check for common size of X0 and GAMMA if (! isscalar (x0) || ! isscalar (gamma)) [retval, x0, gamma] = common_size (x0, gamma); if (retval > 0) error (strcat (["cauchyrnd: X0 and GAMMA must be of common"], ... [" size or scalars."])); endif endif ## Check for X0 and GAMMA being reals if (iscomplex (x0) || iscomplex (gamma)) error ("cauchyrnd: X0 and GAMMA must not be complex."); endif ## Parse and check SIZE arguments if (nargin == 2) sz = size (x0); elseif (nargin == 3) if (isscalar (varargin{1}) && varargin{1} >= 0 ... && varargin{1} == fix (varargin{1})) sz = [varargin{1}, varargin{1}]; elseif (isrow (varargin{1}) && all (varargin{1} >= 0) ... && all (varargin{1} == fix (varargin{1}))) sz = varargin{1}; elseif error (strcat (["cauchyrnd: SZ must be a scalar or a row vector"], ... [" of non-negative integers."])); endif elseif (nargin > 3) posint = cellfun (@(x) (! isscalar (x) || x < 0 || x != fix (x)), varargin); if (any (posint)) error ("cauchyrnd: dimensions must be non-negative integers."); endif sz = [varargin{:}]; endif ## Check that parameters match requested dimensions in size if (! isscalar (x0) && ! isequal (size (x0), sz)) error ("cauchyrnd: X0 and GAMMA must be scalars or of size SZ."); endif ## Check for class type if (isa (x0, "single") || isa (gamma, "single")) cls = "single"; else cls = "double"; endif ## Generate random sample from Cauchy distribution if (isscalar (x0) && isscalar (gamma)) if (! isinf (x0) && (gamma > 0) && (gamma < Inf)) r = x0 - cot (pi * rand (sz, cls)) * gamma; else r = NaN (sz, cls); endif else r = NaN (sz, cls); k = ! isinf (x0) & (gamma > 0) & (gamma < Inf); r(k) = x0(k)(:) - cot (pi * rand (sum (k(:)), 1, cls)) .* gamma(k)(:); endif endfunction ## Test output %!assert (size (cauchyrnd (1, 1)), [1 1]) %!assert (size (cauchyrnd (1, ones (2,1))), [2, 1]) %!assert (size (cauchyrnd (1, ones (2,2))), [2, 2]) %!assert (size (cauchyrnd (ones (2,1), 1)), [2, 1]) %!assert (size (cauchyrnd (ones (2,2), 1)), [2, 2]) %!assert (size (cauchyrnd (1, 1, 3)), [3, 3]) %!assert (size (cauchyrnd (1, 1, [4, 1])), [4, 1]) %!assert (size (cauchyrnd (1, 1, 4, 1)), [4, 1]) %!assert (size (cauchyrnd (1, 1, 4, 1, 5)), [4, 1, 5]) %!assert (size (cauchyrnd (1, 1, 0, 1)), [0, 1]) %!assert (size (cauchyrnd (1, 1, 1, 0)), [1, 0]) %!assert (size (cauchyrnd (1, 1, 1, 2, 0, 5)), [1, 2, 0, 5]) ## Test class of input preserved %!assert (class (cauchyrnd (1, 1)), "double") %!assert (class (cauchyrnd (1, single (1))), "single") %!assert (class (cauchyrnd (1, single ([1, 1]))), "single") %!assert (class (cauchyrnd (single (1), 1)), "single") %!assert (class (cauchyrnd (single ([1, 1]), 1)), "single") ## Test input validation %!error cauchyrnd () %!error cauchyrnd (1) %!error ... %! cauchyrnd (ones (3), ones (2)) %!error ... %! cauchyrnd (ones (2), ones (3)) %!error cauchyrnd (i, 2, 3) %!error cauchyrnd (1, i, 3) %!error ... %! cauchyrnd (1, 2, -1) %!error ... %! cauchyrnd (1, 2, 1.2) %!error ... %! cauchyrnd (1, 2, ones (2)) %!error ... %! cauchyrnd (1, 2, [2 -1 2]) %!error ... %! cauchyrnd (1, 2, [2 0 2.5]) %!error ... %! cauchyrnd (1, 2, 2, -1, 5) %!error ... %! cauchyrnd (1, 2, 2, 1.5, 5) %!error ... %! cauchyrnd (2, ones (2), 3) %!error ... %! cauchyrnd (2, ones (2), [3, 2]) %!error ... %! cauchyrnd (2, ones (2), 3, 2) statistics-release-1.6.3/inst/dist_fun/chi2cdf.m000066400000000000000000000112721456127120000216020ustar00rootroot00000000000000## Copyright (C) 2012 Rik Wehbring ## Copyright (C) 1995-2016 Kurt Hornik ## Copyright (C) 2022-2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{p} =} chi2cdf (@var{x}, @var{df}) ## @deftypefnx {statistics} {@var{p} =} chi2cdf (@var{x}, @var{df}, @qcode{"upper"}) ## ## Chi-squared cumulative distribution function (CDF). ## ## For each element of @var{x}, compute the cumulative distribution function ## (CDF) of the chi-squared distribution with @var{df} degrees of freedom. The ## chi-squared density function with @var{df} degrees of freedom is the same as ## a gamma density function with parameters @qcode{@var{df}/2} and @qcode{2}. ## ## The size of @var{p} is the common size of @var{x} and @var{df}. A scalar ## input functions as a constant matrix of the same size as the other input. ## ## @code{@var{p} = chi2cdf (@var{x}, @var{df}, "upper")} computes the upper tail ## probability of the chi-squared distribution with @var{df} degrees of freedom, ## at the values in @var{x}. ## ## Further information about the chi-squared distribution can be found at ## @url{https://en.wikipedia.org/wiki/Chi-squared_distribution} ## ## @seealso{chi2inv, chi2pdf, chi2rnd, chi2stat} ## @end deftypefn function p = chi2cdf (x, df, uflag) ## Check for valid number of input arguments if (nargin < 2) error ("chi2cdf: function called with too few input arguments."); endif ## Check for valid "upper" flag if (nargin > 2 && ! strcmpi (uflag, "upper")) error ("chi2cdf: invalid argument for upper tail."); else uflag = []; endif ## Check for common size of X and DF if (! isscalar (x) || ! isscalar (df)) [err, x, df] = common_size (x, df); if (err > 0) error ("chi2cdf: X and DF must be of common size or scalars."); endif endif ## Check for X and DF being reals if (iscomplex (x) || iscomplex (df)) error ("chi2cdf: X and DF must not be complex."); endif ## Compute chi-squared CDF p = gamcdf (x, df/2, 2, uflag); endfunction %!demo %! ## Plot various CDFs from the chi-squared distribution %! x = 0:0.01:8; %! p1 = chi2cdf (x, 1); %! p2 = chi2cdf (x, 2); %! p3 = chi2cdf (x, 3); %! p4 = chi2cdf (x, 4); %! p5 = chi2cdf (x, 6); %! p6 = chi2cdf (x, 9); %! plot (x, p1, "-b", x, p2, "-g", x, p3, "-r", ... %! x, p4, "-c", x, p5, "-m", x, p6, "-y") %! grid on %! xlim ([0, 8]) %! legend ({"df = 1", "df = 2", "df = 3", ... %! "df = 4", "df = 6", "df = 9"}, "location", "southeast") %! title ("Chi-squared CDF") %! xlabel ("values in x") %! ylabel ("probability") ## Test output %!shared x, p, u %! x = [-1, 0, 0.5, 1, 2]; %! p = [0, (1 - exp (-x(2:end) / 2))]; %! u = [1, 0, NaN, 0.3934693402873666, 0.6321205588285577]; %!assert (chi2cdf (x, 2 * ones (1,5)), p, eps) %!assert (chi2cdf (x, 2), p, eps) %!assert (chi2cdf (x, 2 * [1, 0, NaN, 1, 1]), [p(1), 1, NaN, p(4:5)], eps) %!assert (chi2cdf (x, 2 * [1, 0, NaN, 1, 1], "upper"), ... %! [p(1), 1, NaN, u(4:5)], eps) %!assert (chi2cdf ([x(1:2), NaN, x(4:5)], 2), [p(1:2), NaN, p(4:5)], eps) ## Test class of input preserved %!assert (chi2cdf ([x, NaN], 2), [p, NaN], eps) %!assert (chi2cdf (single ([x, NaN]), 2), single ([p, NaN]), eps ("single")) %!assert (chi2cdf ([x, NaN], single (2)), single ([p, NaN]), eps ("single")) ## Test input validation %!error chi2cdf () %!error chi2cdf (1) %!error chi2cdf (1, 2, 3, 4) %!error chi2cdf (1, 2, 3) %!error chi2cdf (1, 2, "uper") %!error ... %! chi2cdf (ones (3), ones (2)) %!error ... %! chi2cdf (ones (2), ones (3)) %!error chi2cdf (i, 2) %!error chi2cdf (2, i) statistics-release-1.6.3/inst/dist_fun/chi2inv.m000066400000000000000000000073771456127120000216550ustar00rootroot00000000000000## Copyright (C) 2012 Rik Wehbring ## Copyright (C) 1995-2016 Kurt Hornik ## Copyright (C) 2023 Andreas Bertsatos ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{x} =} chi2inv (@var{p}, @var{df}) ## ## Inverse of the chi-squared cumulative distribution function (iCDF). ## ## For each element of @var{p}, compute the quantile (the inverse of the CDF) of ## the chi-squared distribution with @var{df} degrees of freedom. The size of ## @var{x} is the common size of @var{p} and @var{df}. A scalar input functions ## as a constant matrix of the same size as the other inputs. ## ## Further information about the chi-squared distribution can be found at ## @url{https://en.wikipedia.org/wiki/Chi-squared_distribution} ## ## @seealso{chi2cdf, chi2pdf, chi2rnd, chi2stat} ## @end deftypefn function x = chi2inv (p, df) ## Check for valid number of input arguments if (nargin < 2) error ("chi2inv: function called with too few input arguments."); endif ## Check for common size of P and DF if (! isscalar (p) || ! isscalar (df)) [retval, p, df] = common_size (p, df); if (retval > 0) error ("chi2inv: P and DF must be of common size or scalars."); endif endif ## Check for P and DF being reals if (iscomplex (p) || iscomplex (df)) error ("chi2inv: P and DF must not be complex."); endif ## Compute chi-squared iCDF x = gaminv (p, df/2, 2); endfunction %!demo %! ## Plot various iCDFs from the chi-squared distribution %! p = 0.001:0.001:0.999; %! x1 = chi2inv (p, 1); %! x2 = chi2inv (p, 2); %! x3 = chi2inv (p, 3); %! x4 = chi2inv (p, 4); %! x5 = chi2inv (p, 6); %! x6 = chi2inv (p, 9); %! plot (p, x1, "-b", p, x2, "-g", p, x3, "-r", ... %! p, x4, "-c", p, x5, "-m", p, x6, "-y") %! grid on %! ylim ([0, 8]) %! legend ({"df = 1", "df = 2", "df = 3", ... %! "df = 4", "df = 6", "df = 9"}, "location", "northwest") %! title ("Chi-squared iCDF") %! xlabel ("probability") %! ylabel ("values in x") ## Test output %!shared p %! p = [-1 0 0.3934693402873666 1 2]; %!assert (chi2inv (p, 2*ones (1,5)), [NaN 0 1 Inf NaN], 5*eps) %!assert (chi2inv (p, 2), [NaN 0 1 Inf NaN], 5*eps) %!assert (chi2inv (p, 2*[0 1 NaN 1 1]), [NaN 0 NaN Inf NaN], 5*eps) %!assert (chi2inv ([p(1:2) NaN p(4:5)], 2), [NaN 0 NaN Inf NaN], 5*eps) ## Test class of input preserved %!assert (chi2inv ([p, NaN], 2), [NaN 0 1 Inf NaN NaN], 5*eps) %!assert (chi2inv (single ([p, NaN]), 2), single ([NaN 0 1 Inf NaN NaN]), 5*eps ("single")) %!assert (chi2inv ([p, NaN], single (2)), single ([NaN 0 1 Inf NaN NaN]), 5*eps ("single")) ## Test input validation %!error chi2inv () %!error chi2inv (1) %!error chi2inv (1,2,3) %!error ... %! chi2inv (ones (3), ones (2)) %!error ... %! chi2inv (ones (2), ones (3)) %!error chi2inv (i, 2) %!error chi2inv (2, i) statistics-release-1.6.3/inst/dist_fun/chi2pdf.m000066400000000000000000000070721456127120000216220ustar00rootroot00000000000000## Copyright (C) 2012 Rik Wehbring ## Copyright (C) 1995-2016 Kurt Hornik ## Copyright (C) 2023 Andreas Bertsatos ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{y} =} chi2pdf (@var{x}, @var{df}) ## ## Chi-squared probability density function (PDF). ## ## For each element of @var{x}, compute the probability density function (PDF) ## of the chi-squared distribution with @var{df} degrees of freedom. The size ## of @var{y} is the common size of @var{x} and @var{df}. A scalar input ## functions as a constant matrix of the same size as the other inputs. ## ## Further information about the chi-squared distribution can be found at ## @url{https://en.wikipedia.org/wiki/Chi-squared_distribution} ## ## @seealso{chi2cdf, chi2pdf, chi2rnd, chi2stat} ## @end deftypefn function y = chi2pdf (x, df) ## Check for valid number of input arguments if (nargin < 2) error ("chi2pdf: function called with too few input arguments."); endif ## Check for common size of X and DF if (! isscalar (x) || ! isscalar (df)) [retval, x, df] = common_size (x, df); if (retval > 0) error ("chi2pdf: X and DF must be of common size or scalars."); endif endif ## Check for X and DF being reals if (iscomplex (x) || iscomplex (df)) error ("chi2pdf: X and DF must not be complex."); endif ## Compute chi-squared PDF y = gampdf (x, df/2, 2); endfunction %!demo %! ## Plot various PDFs from the chi-squared distribution %! x = 0:0.01:8; %! y1 = chi2pdf (x, 1); %! y2 = chi2pdf (x, 2); %! y3 = chi2pdf (x, 3); %! y4 = chi2pdf (x, 4); %! y5 = chi2pdf (x, 6); %! y6 = chi2pdf (x, 9); %! plot (x, y1, "-b", x, y2, "-g", x, y3, "-r", ... %! x, y4, "-c", x, y5, "-m", x, y6, "-y") %! grid on %! xlim ([0, 8]) %! ylim ([0, 0.5]) %! legend ({"df = 1", "df = 2", "df = 3", ... %! "df = 4", "df = 6", "df = 9"}, "location", "northeast") %! title ("Chi-squared PDF") %! xlabel ("values in x") %! ylabel ("density") ## Test output %!shared x, y %! x = [-1 0 0.5 1 Inf]; %! y = [0, 1/2 * exp(-x(2:5)/2)]; %!assert (chi2pdf (x, 2*ones (1,5)), y) %!assert (chi2pdf (x, 2), y) %!assert (chi2pdf (x, 2*[1 0 NaN 1 1]), [y(1) NaN NaN y(4:5)]) %!assert (chi2pdf ([x, NaN], 2), [y, NaN]) ## Test class of input preserved %!assert (chi2pdf (single ([x, NaN]), 2), single ([y, NaN])) %!assert (chi2pdf ([x, NaN], single (2)), single ([y, NaN])) ## Test input validation %!error chi2pdf () %!error chi2pdf (1) %!error chi2pdf (1,2,3) %!error ... %! chi2pdf (ones (3), ones (2)) %!error ... %! chi2pdf (ones (2), ones (3)) %!error chi2pdf (i, 2) %!error chi2pdf (2, i) statistics-release-1.6.3/inst/dist_fun/chi2rnd.m000066400000000000000000000127261456127120000216360ustar00rootroot00000000000000## Copyright (C) 2012 Rik Wehbring ## Copyright (C) 1995-2016 Kurt Hornik ## Copyright (C) 2023 Andreas Bertsatos ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{r} =} chi2rnd (@var{df}) ## @deftypefnx {statistics} {@var{r} =} chi2rnd (@var{df}, @var{rows}) ## @deftypefnx {statistics} {@var{r} =} chi2rnd (@var{df}, @var{rows}, @var{cols}, @dots{}) ## @deftypefnx {statistics} {@var{r} =} chi2rnd (@var{df}, [@var{sz}]) ## ## Random arrays from the chi-squared distribution. ## ## @code{@var{r} = chi2rnd (@var{df})} returns an array of random numbers chosen ## from the chi-squared distribution with @var{df} degrees of freedom. The size ## of @var{r} is the size of @var{df}. ## ## When called with a single size argument, @code{chi2rnd} returns a square ## matrix with the dimension specified. When called with more than one scalar ## argument, the first two arguments are taken as the number of rows and columns ## and any further arguments specify additional matrix dimensions. The size may ## also be specified with a row vector of dimensions, @var{sz}. ## ## Further information about the chi-squared distribution can be found at ## @url{https://en.wikipedia.org/wiki/Chi-squared_distribution} ## ## @seealso{chi2cdf, chi2inv, chi2pdf, chi2stat} ## @end deftypefn function r = chi2rnd (df, varargin) ## Check for valid number of input arguments if (nargin < 1) error ("chi2rnd: function called with too few input arguments."); endif ## Check for DF being reals if (iscomplex (df)) error ("chi2rnd: DF must not be complex."); endif ## Parse and check SIZE arguments if (nargin == 1) sz = size (df); elseif (nargin == 2) if (isscalar (varargin{1}) && varargin{1} >= 0 ... && varargin{1} == fix (varargin{1})) sz = [varargin{1}, varargin{1}]; elseif (isrow (varargin{1}) && all (varargin{1} >= 0) ... && all (varargin{1} == fix (varargin{1}))) sz = varargin{1}; elseif error (strcat (["chi2rnd: SZ must be a scalar or a row vector"], ... [" of non-negative integers."])); endif elseif (nargin > 2) posint = cellfun (@(x) (! isscalar (x) || x < 0 || x != fix (x)), varargin); if (any (posint)) error ("chi2rnd: dimensions must be non-negative integers."); endif sz = [varargin{:}]; endif ## Check that parameter match requested dimensions in size if (! isscalar (df) && ! isequal (size (df), sz)) error ("chi2rnd: DF must be scalar or of size SZ."); endif ## Check for class type if (isa (df, "single")) cls = "single"; else cls = "double"; endif ## Generate random sample from chi-squared distribution if (isscalar (df)) if ((df > 0) && (df < Inf)) r = 2 * randg (df/2, sz, cls); else r = NaN (sz, cls); endif else r = NaN (sz, cls); k = (df > 0) | (df < Inf); r(k) = 2 * randg (df(k)/2, cls); endif endfunction ## Test output %!assert (size (chi2rnd (2)), [1, 1]) %!assert (size (chi2rnd (ones (2,1))), [2, 1]) %!assert (size (chi2rnd (ones (2,2))), [2, 2]) %!assert (size (chi2rnd (1, 3)), [3, 3]) %!assert (size (chi2rnd (1, [4 1])), [4, 1]) %!assert (size (chi2rnd (1, 4, 1)), [4, 1]) %!assert (size (chi2rnd (1, 4, 1)), [4, 1]) %!assert (size (chi2rnd (1, 4, 1, 5)), [4, 1, 5]) %!assert (size (chi2rnd (1, 0, 1)), [0, 1]) %!assert (size (chi2rnd (1, 1, 0)), [1, 0]) %!assert (size (chi2rnd (1, 1, 2, 0, 5)), [1, 2, 0, 5]) ## Test class of input preserved %!assert (class (chi2rnd (2)), "double") %!assert (class (chi2rnd (single (2))), "single") %!assert (class (chi2rnd (single ([2 2]))), "single") ## Test input validation %!error chi2rnd () %!error chi2rnd (i) %!error ... %! chi2rnd (1, -1) %!error ... %! chi2rnd (1, 1.2) %!error ... %! chi2rnd (1, ones (2)) %!error ... %! chi2rnd (1, [2 -1 2]) %!error ... %! chi2rnd (1, [2 0 2.5]) %!error ... %! chi2rnd (ones (2), ones (2)) %!error ... %! chi2rnd (1, 2, -1, 5) %!error ... %! chi2rnd (1, 2, 1.5, 5) %!error chi2rnd (ones (2,2), 3) %!error chi2rnd (ones (2,2), [3, 2]) %!error chi2rnd (ones (2,2), 2, 3) statistics-release-1.6.3/inst/dist_fun/copulacdf.m000066400000000000000000000224661456127120000222470ustar00rootroot00000000000000## Copyright (C) 2008 Arno Onken ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{p} =} copulacdf (@var{family}, @var{x}, @var{theta}) ## @deftypefnx {statistics} {@var{p} =} copulacdf ('t', @var{x}, @var{theta}, @var{df}) ## ## Copula family cumulative distribution functions (CDF). ## ## @subheading Arguments ## ## @itemize @bullet ## @item ## @var{family} is the copula family name. Currently, @var{family} can ## be @code{'Gaussian'} for the Gaussian family, @code{'t'} for the ## Student's t family, @code{'Clayton'} for the Clayton family, ## @code{'Gumbel'} for the Gumbel-Hougaard family, @code{'Frank'} for ## the Frank family, @code{'AMH'} for the Ali-Mikhail-Haq family, or ## @code{'FGM'} for the Farlie-Gumbel-Morgenstern family. ## ## @item ## @var{x} is the support where each row corresponds to an observation. ## ## @item ## @var{theta} is the parameter of the copula. For the Gaussian and ## Student's t copula, @var{theta} must be a correlation matrix. For ## bivariate copulas @var{theta} can also be a correlation coefficient. ## For the Clayton family, the Gumbel-Hougaard family, the Frank family, ## and the Ali-Mikhail-Haq family, @var{theta} must be a vector with the ## same number of elements as observations in @var{x} or be scalar. For ## the Farlie-Gumbel-Morgenstern family, @var{theta} must be a matrix of ## coefficients for the Farlie-Gumbel-Morgenstern polynomial where each ## row corresponds to one set of coefficients for an observation in ## @var{x}. A single row is expanded. The coefficients are in binary ## order. ## ## @item ## @var{df} is the degrees of freedom for the Student's t family. ## @var{df} must be a vector with the same number of elements as ## observations in @var{x} or be scalar. ## @end itemize ## ## @subheading Return values ## ## @itemize @bullet ## @item ## @var{p} is the cumulative distribution of the copula at each row of ## @var{x} and corresponding parameter @var{theta}. ## @end itemize ## ## @subheading Examples ## ## @example ## @group ## x = [0.2:0.2:0.6; 0.2:0.2:0.6]; ## theta = [1; 2]; ## p = copulacdf ("Clayton", x, theta) ## @end group ## ## @group ## x = [0.2:0.2:0.6; 0.2:0.1:0.4]; ## theta = [0.2, 0.1, 0.1, 0.05]; ## p = copulacdf ("FGM", x, theta) ## @end group ## @end example ## ## @subheading References ## ## @enumerate ## @item ## Roger B. Nelsen. @cite{An Introduction to Copulas}. Springer, ## New York, second edition, 2006. ## @end enumerate ## ## @seealso{copulapdf, copularnd} ## @end deftypefn function p = copulacdf (family, x, theta, df) ## Check arguments if (nargin != 3 && (nargin != 4 || ! strcmpi (family, "t"))) print_usage (); endif if (! ischar (family)) error (strcar (["copulacdf: family must be one of 'Gaussian',"], ... [" 't', 'Clayton', 'Gumbel', 'Frank', 'AMH', and 'FGM'."])); endif if (! isempty (x) && ! ismatrix (x)) error ("copulacdf: X must be a numeric matrix."); endif [n, d] = size (x); lower_family = lower (family); ## Check family and copula parameters switch (lower_family) case {"gaussian", "t"} ## Family with a covariance matrix if (d == 2 && isscalar (theta)) ## Expand a scalar to a correlation matrix theta = [1, theta; theta, 1]; endif if (any (size (theta) != [d, d]) || any (diag (theta) != 1) || ... any (any (theta != theta')) || min (eig (theta)) <= 0) error ("copulacdf: THETA must be a correlation matrix."); endif if (nargin == 4) ## Student's t family if (! isscalar (df) && (! isvector (df) || length (df) != n)) error (strcar (["copulacdf: DF must be a vector with the same"], ... [" number of rows as X or be scalar."])); endif df = df(:); endif case {"clayton", "gumbel", "frank", "amh"} ## Archimedian one parameter family if (! isvector (theta) || (! isscalar (theta) && length (theta) != n)) error (strcat (["copulacdf: THETA must be a vector with the same"], ... [" number of rows as X or be scalar."])); endif theta = theta(:); if (n > 1 && isscalar (theta)) theta = repmat (theta, n, 1); endif case {"fgm"} ## Exponential number of parameters if (! ismatrix (theta) || size (theta, 2) != (2 .^ d - d - 1) || ... (size (theta, 1) != 1 && size (theta, 1) != n)) error (strcat (["copulacdf: THETA must be a row vector of length"], ... [" 2^d-d-1 or a matrix of size N x (2^d-d-1)."])); endif if (n > 1 && size (theta, 1) == 1) theta = repmat (theta, n, 1); endif otherwise error ("copulacdf: unknown copula family '%s'.", family); endswitch if (n == 0) ## Input is empty p = zeros (0, 1); else ## Truncate input to unit hypercube x(x < 0) = 0; x(x > 1) = 1; ## Compute the cumulative distribution function according to family switch (lower_family) case {"gaussian"} ## The Gaussian family p = mvncdf (norminv (x), zeros (1, d), theta); ## No parameter bounds check k = []; case {"t"} ## The Student's t family p = mvtcdf (tinv (x, df), theta, df); ## No parameter bounds check k = []; case {"clayton"} ## The Clayton family p = exp (-log (max (sum (x .^ (repmat (-theta, 1, d)), 2) ... - d + 1, 0)) ./ theta); ## Product copula at columns where theta == 0 k = find (theta == 0); if (any (k)) p(k) = prod (x(k, :), 2); endif ## Check bounds if (d > 2) k = find (! (theta >= 0) | ! (theta < inf)); else k = find (! (theta >= -1) | ! (theta < inf)); endif case {"gumbel"} ## The Gumbel-Hougaard family p = exp (-(sum ((-log (x)) .^ repmat (theta, 1, d), 2)) ... .^ (1 ./ theta)); ## Check bounds k = find (! (theta >= 1) | ! (theta < inf)); case {"frank"} ## The Frank family p = -log (1 + (prod (expm1 (repmat (-theta, 1, d) .* x), 2)) ./ ... (expm1 (-theta) .^ (d - 1))) ./ theta; ## Product copula at columns where theta == 0 k = find (theta == 0); if (any (k)) p(k) = prod (x(k, :), 2); endif ## Check bounds if (d > 2) k = find (! (theta > 0) | ! (theta < inf)); else k = find (! (theta > -inf) | ! (theta < inf)); endif case {"amh"} ## The Ali-Mikhail-Haq family p = (theta - 1) ./ (theta - prod ((1 + repmat (theta, 1, d) ... .* (x - 1)) ./ x, 2)); ## Check bounds if (d > 2) k = find (! (theta >= 0) | ! (theta < 1)); else k = find (! (theta >= -1) | ! (theta < 1)); endif case {"fgm"} ## The Farlie-Gumbel-Morgenstern family ## All binary combinations bcomb = logical (floor (mod (((0:(2 .^ d - 1))' * 2 .^ ... ((1 - d):0)), 2))); ecomb = ones (size (bcomb)); ecomb(bcomb) = -1; ## Summation over all combinations of order >= 2 bcomb = bcomb(sum (bcomb, 2) >= 2, end:-1:1); ## Linear constraints matrix ac = zeros (size (ecomb, 1), size (bcomb, 1)); ## Matrix to compute p ap = zeros (size (x, 1), size (bcomb, 1)); for i = 1:size (bcomb, 1) ac(:, i) = -prod (ecomb(:, bcomb(i, :)), 2); ap(:, i) = prod (1 - x(:, bcomb(i, :)), 2); endfor p = prod (x, 2) .* (1 + sum (ap .* theta, 2)); ## Check linear constraints k = false (n, 1); for i = 1:n k(i) = any (ac * theta(i, :)' > 1); endfor endswitch ## Out of bounds parameters if (any (k)) p(k) = NaN; endif endif endfunction ## Test output %!test %! x = [0.2:0.2:0.6; 0.2:0.2:0.6]; %! theta = [1; 2]; %! p = copulacdf ("Clayton", x, theta); %! expected_p = [0.1395; 0.1767]; %! assert (p, expected_p, 0.001); %!test %! x = [0.2:0.2:0.6; 0.2:0.2:0.6]; %! p = copulacdf ("Gumbel", x, 2); %! expected_p = [0.1464; 0.1464]; %! assert (p, expected_p, 0.001); %!test %! x = [0.2:0.2:0.6; 0.2:0.2:0.6]; %! theta = [1; 2]; %! p = copulacdf ("Frank", x, theta); %! expected_p = [0.0699; 0.0930]; %! assert (p, expected_p, 0.001); %!test %! x = [0.2:0.2:0.6; 0.2:0.2:0.6]; %! theta = [0.3; 0.7]; %! p = copulacdf ("AMH", x, theta); %! expected_p = [0.0629; 0.0959]; %! assert (p, expected_p, 0.001); %!test %! x = [0.2:0.2:0.6; 0.2:0.1:0.4]; %! theta = [0.2, 0.1, 0.1, 0.05]; %! p = copulacdf ("FGM", x, theta); %! expected_p = [0.0558; 0.0293]; %! assert (p, expected_p, 0.001); statistics-release-1.6.3/inst/dist_fun/copulapdf.m000066400000000000000000000143241456127120000222560ustar00rootroot00000000000000## Copyright (C) 2008 Arno Onken ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{y} =} copulapdf (@var{family}, @var{x}, @var{theta}) ## ## Copula family probability density functions (PDF). ## ## @subheading Arguments ## ## @itemize @bullet ## @item ## @var{family} is the copula family name. Currently, @var{family} can ## be @code{'Clayton'} for the Clayton family, @code{'Gumbel'} for the ## Gumbel-Hougaard family, @code{'Frank'} for the Frank family, or ## @code{'AMH'} for the Ali-Mikhail-Haq family. ## ## @item ## @var{x} is the support where each row corresponds to an observation. ## ## @item ## @var{theta} is the parameter of the copula. The elements of ## @var{theta} must be greater than or equal to @code{-1} for the ## Clayton family, greater than or equal to @code{1} for the ## Gumbel-Hougaard family, arbitrary for the Frank family, and greater ## than or equal to @code{-1} and lower than @code{1} for the ## Ali-Mikhail-Haq family. Moreover, @var{theta} must be non-negative ## for dimensions greater than @code{2}. @var{theta} must be a column ## vector with the same number of rows as @var{x} or be scalar. ## @end itemize ## ## @subheading Return values ## ## @itemize @bullet ## @item ## @var{y} is the probability density of the copula at each row of ## @var{x} and corresponding parameter @var{theta}. ## @end itemize ## ## @subheading Examples ## ## @example ## @group ## x = [0.2:0.2:0.6; 0.2:0.2:0.6]; ## theta = [1; 2]; ## y = copulapdf ("Clayton", x, theta) ## @end group ## ## @group ## y = copulapdf ("Gumbel", x, 2) ## @end group ## @end example ## ## @subheading References ## ## @enumerate ## @item ## Roger B. Nelsen. @cite{An Introduction to Copulas}. Springer, ## New York, second edition, 2006. ## @end enumerate ## ## @seealso{copulacdf, copularnd} ## @end deftypefn function y = copulapdf (family, x, theta) ## Check arguments if (nargin != 3) print_usage (); endif if (! ischar (family)) error (strcat (["copulapdf: family must be one of 'Clayton',"], ... [" 'Gumbel', 'Frank', and 'AMH'."])); endif if (! isempty (x) && ! ismatrix (x)) error ("copulapdf: X must be a numeric matrix."); endif [n, d] = size (x); if (! isvector (theta) || (! isscalar (theta) && size (theta, 1) != n)) error (strcat (["copulapdf: THETA must be a column vector with the"], ... [" same number of rows as X or be scalar."])); endif if (n == 0) ## Input is empty y = zeros (0, 1); else if (n > 1 && isscalar (theta)) theta = repmat (theta, n, 1); endif ## Truncate input to unit hypercube x(x < 0) = 0; x(x > 1) = 1; ## Compute the cumulative distribution function according to family lowerarg = lower (family); if (strcmp (lowerarg, "clayton")) ## The Clayton family log_cdf = -log (max (sum (x .^ (repmat (-theta, 1, d)), 2) ... - d + 1, 0)) ./ theta; y = prod (repmat (theta, 1, d) .* repmat (0:(d - 1), n, 1) + 1, 2) ... .* exp ((1 + theta .* d) .* log_cdf - ... (theta + 1) .* sum (log (x), 2)); ## Product copula at columns where theta == 0 k = find (theta == 0); if (any (k)) y(k) = 1; endif ## Check theta if (d > 2) k = find (! (theta >= 0) | ! (theta < inf)); else k = find (! (theta >= -1) | ! (theta < inf)); endif elseif (strcmp (lowerarg, "gumbel")) ## The Gumbel-Hougaard family g = sum ((-log (x)) .^ repmat (theta, 1, d), 2); c = exp (-g .^ (1 ./ theta)); y = ((prod (-log (x), 2)) .^ (theta - 1)) ./ prod (x, 2) .* c .* ... (g .^ (2 ./ theta - 2) + (theta - 1) .* g .^ (1 ./ theta - 2)); ## Check theta k = find (! (theta >= 1) | ! (theta < inf)); elseif (strcmp (lowerarg, "frank")) ## The Frank family if (d != 2) error ("copulapdf: Frank copula PDF implemented as bivariate only."); endif y = (theta .* exp (theta .* (1 + sum (x, 2))) .* (exp (theta) - 1)) ./ ... (exp (theta) - exp (theta + theta .* x(:, 1)) + ... exp (theta .* sum (x, 2)) - exp (theta + theta .* x(:, 2))) .^ 2; ## Product copula at columns where theta == 0 k = find (theta == 0); if (any (k)) y(k) = 1; endif ## Check theta k = find (! (theta > -inf) | ! (theta < inf)); elseif (strcmp (lowerarg, "amh")) ## The Ali-Mikhail-Haq family if (d != 2) error (strcat (["copulapdf: Ali-Mikhail-Haq copula PDF"], ... [" implemented as bivariate only."])); endif z = theta .* prod (x - 1, 2) - 1; y = (theta .* (1 - sum (x, 2) - prod (x, 2) - z) - 1) ./ (z .^ 3); ## Check theta k = find (! (theta >= -1) | ! (theta < 1)); else error ("copulapdf: unknown copula family '%s'.", family); endif if (any (k)) y(k) = NaN; endif endif endfunction ## Test output %!test %! x = [0.2:0.2:0.6; 0.2:0.2:0.6]; %! theta = [1; 2]; %! y = copulapdf ("Clayton", x, theta); %! expected_p = [0.9872; 0.7295]; %! assert (y, expected_p, 0.001); %!test %! x = [0.2:0.2:0.6; 0.2:0.2:0.6]; %! y = copulapdf ("Gumbel", x, 2); %! expected_p = [0.9468; 0.9468]; %! assert (y, expected_p, 0.001); %!test %! x = [0.2, 0.6; 0.2, 0.6]; %! theta = [1; 2]; %! y = copulapdf ("Frank", x, theta); %! expected_p = [0.9378; 0.8678]; %! assert (y, expected_p, 0.001); %!test %! x = [0.2, 0.6; 0.2, 0.6]; %! theta = [0.3; 0.7]; %! y = copulapdf ("AMH", x, theta); %! expected_p = [0.9540; 0.8577]; %! assert (y, expected_p, 0.001); statistics-release-1.6.3/inst/dist_fun/copularnd.m000066400000000000000000000200141456127120000222610ustar00rootroot00000000000000## Copyright (C) 2012 Arno Onken ## ## This program is free software: you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published by ## the Free Software Foundation, either version 3 of the License, or ## (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program. If not, see . ## -*- texinfo -*- ## @deftypefn {Function File} {@var{r} =} copularnd (@var{family}, @var{theta}, @var{n}) ## @deftypefnx {Function File} {@var{r} =} copularnd (@var{family}, @var{theta}, @var{n}, @var{d}) ## @deftypefnx {Function File} {@var{r} =} copularnd ('t', @var{theta}, @var{df}, @var{n}) ## ## Random arrays from the copula family distributions. ## ## @subheading Arguments ## ## @itemize @bullet ## @item ## @var{family} is the copula family name. Currently, @var{family} can be ## @code{'Gaussian'} for the Gaussian family, @code{'t'} for the Student's t ## family, or @code{'Clayton'} for the Clayton family. ## ## @item ## @var{theta} is the parameter of the copula. For the Gaussian and Student's t ## copula, @var{theta} must be a correlation matrix. For bivariate copulas ## @var{theta} can also be a correlation coefficient. For the Clayton family, ## @var{theta} must be a vector with the same number of elements as samples to ## be generated or be scalar. ## ## @item ## @var{df} is the degrees of freedom for the Student's t family. @var{df} must ## be a vector with the same number of elements as samples to be generated or ## be scalar. ## ## @item ## @var{n} is the number of rows of the matrix to be generated. @var{n} must be ## a non-negative integer and corresponds to the number of samples to be ## generated. ## ## @item ## @var{d} is the number of columns of the matrix to be generated. @var{d} must ## be a positive integer and corresponds to the dimension of the copula. ## @end itemize ## ## @subheading Return values ## ## @itemize @bullet ## @item ## @var{r} is a matrix of random samples from the copula with @var{n} samples ## of distribution dimension @var{d}. ## @end itemize ## ## @subheading Examples ## ## @example ## @group ## theta = 0.5; ## r = copularnd ("Gaussian", theta); ## @end group ## ## @group ## theta = 0.5; ## df = 2; ## r = copularnd ("t", theta, df); ## @end group ## ## @group ## theta = 0.5; ## n = 2; ## r = copularnd ("Clayton", theta, n); ## @end group ## @end example ## ## @subheading References ## ## @enumerate ## @item ## Roger B. Nelsen. @cite{An Introduction to Copulas}. Springer, New York, ## second edition, 2006. ## @end enumerate ## @end deftypefn function r = copularnd (family, theta, df, n) ## Check arguments if (nargin < 2) print_usage (); endif if (! ischar (family)) error ("copularnd: family must be one of 'Gaussian', 't', and 'Clayton'."); endif lower_family = lower (family); ## Check family and copula parameters switch (lower_family) case {"gaussian"} ## Gaussian family if (isscalar (theta)) ## Expand a scalar to a correlation matrix theta = [1, theta; theta, 1]; endif if (! ismatrix (theta) || any (diag (theta) != 1) || ... any (any (theta != theta')) || min (eig (theta)) <= 0) error ("copularnd: THETA must be a correlation matrix."); endif if (nargin > 3) d = n; if (! isscalar (d) || d != size (theta, 1)) error ("copularnd: D must correspond to dimension of theta."); endif else d = size (theta, 1); endif if (nargin < 3) n = 1; else n = df; if (! isscalar (n) || (n < 0) || round (n) != n) error ("copularnd: N must be a non-negative integer."); endif endif case {"t"} ## Student's t family if (nargin < 3) print_usage (); endif if (isscalar (theta)) ## Expand a scalar to a correlation matrix theta = [1, theta; theta, 1]; endif if (! ismatrix (theta) || any (diag (theta) != 1) || ... any (any (theta != theta')) || min (eig (theta)) <= 0) error ("copularnd: THETA must be a correlation matrix."); endif if (! isscalar (df) && (! isvector (df) || length (df) != n)) error (strcat (["copularnd: DF must be a vector with the same"], ... [" number of rows as r or be scalar."])); endif df = df(:); if (nargin < 4) n = 1; else if (! isscalar (n) || (n < 0) || round (n) != n) error ("copularnd: N must be a non-negative integer."); endif endif case {"clayton"} ## Archimedian one parameter family if (nargin < 4) ## Default is bivariate d = 2; else d = n; if (! isscalar (d) || (d < 2) || round (d) != d) error ("copularnd: D must be an integer greater than 1."); endif endif if (nargin < 3) ## Default is one sample n = 1; else n = df; if (! isscalar (n) || (n < 0) || round (n) != n) error ("copularnd: N must be a non-negative integer."); endif endif if (! isvector (theta) || (! isscalar (theta) && size (theta, 1) != n)) error (strcaty (["copularnd: THETA must be a column vector with"], ... [" the number of rows equal to N or be scalar."])); endif if (n > 1 && isscalar (theta)) theta = repmat (theta, n, 1); endif otherwise error ("copularnd: unknown copula family '%s'.", family); endswitch if (n == 0) ## Input is empty r = zeros (0, d); else ## Draw random samples according to family switch (lower_family) case {"gaussian"} ## The Gaussian family r = normcdf (mvnrnd (zeros (1, d), theta, n), 0, 1); ## No parameter bounds check k = []; case {"t"} ## The Student's t family r = tcdf (mvtrnd (theta, df, n), df); ## No parameter bounds check k = []; case {"clayton"} ## The Clayton family u = rand (n, d); if (d == 2) r = zeros (n, 2); ## Conditional distribution method for the bivariate case which also ## works for theta < 0 r(:, 1) = u(:, 1); r(:, 2) = (1 + u(:, 1) .^ (-theta) .* (u(:, 2) .^ ... (-theta ./ (1 + theta)) - 1)) .^ (-1 ./ theta); else ## Apply the algorithm by Marshall and Olkin: ## Frailty distribution for Clayton copula is gamma y = randg (1 ./ theta, n, 1); r = (1 - log (u) ./ repmat (y, 1, d)) .^ (-1 ./ repmat (theta, 1, d)); endif k = find (theta == 0); if (any (k)) ## Product copula at columns k r(k, :) = u(k, :); endif ## Continue argument check if (d == 2) k = find (! (theta >= -1) | ! (theta < inf)); else k = find (! (theta >= 0) | ! (theta < inf)); endif endswitch ## Out of bounds parameters if (any (k)) r(k, :) = NaN; endif endif endfunction ## Test output %!test %! theta = 0.5; %! r = copularnd ("Gaussian", theta); %! assert (size (r), [1, 2]); %! assert (all ((r >= 0) & (r <= 1))); %!test %! theta = 0.5; %! df = 2; %! r = copularnd ("t", theta, df); %! assert (size (r), [1, 2]); %! assert (all ((r >= 0) & (r <= 1))); %!test %! theta = 0.5; %! r = copularnd ("Clayton", theta); %! assert (size (r), [1, 2]); %! assert (all ((r >= 0) & (r <= 1))); %!test %! theta = 0.5; %! n = 2; %! r = copularnd ("Clayton", theta, n); %! assert (size (r), [n, 2]); %! assert (all ((r >= 0) & (r <= 1))); %!test %! theta = [1; 2]; %! n = 2; %! d = 3; %! r = copularnd ("Clayton", theta, n, d); %! assert (size (r), [n, d]); %! assert (all ((r >= 0) & (r <= 1))); statistics-release-1.6.3/inst/dist_fun/evcdf.m000066400000000000000000000215271456127120000213730ustar00rootroot00000000000000## Copyright (C) 2022-2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{p} =} evcdf (@var{x}) ## @deftypefnx {statistics} {@var{p} =} evcdf (@var{x}, @var{mu}) ## @deftypefnx {statistics} {@var{p} =} evcdf (@var{x}, @var{mu}, @var{sigma}) ## @deftypefnx {statistics} {@var{p} =} evcdf (@dots{}, @qcode{"upper"}) ## @deftypefnx {statistics} {[@var{p}, @var{plo}, @var{pup}] =} evcdf (@var{x}, @var{mu}, @var{sigma}, @var{pcov}) ## @deftypefnx {statistics} {[@var{p}, @var{plo}, @var{pup}] =} evcdf (@var{x}, @var{mu}, @var{sigma}, @var{pcov}, @var{alpha}) ## @deftypefnx {statistics} {[@var{p}, @var{plo}, @var{pup}] =} evcdf (@dots{}, @qcode{"upper"}) ## ## Extreme value cumulative distribution function (CDF). ## ## For each element of @var{x}, compute the cumulative distribution function ## (CDF) of the extreme value distribution (also known as the Gumbel or the type ## I generalized extreme value distribution) at the values in @var{x} with ## location parameter @var{mu} and scale parameter @var{sigma}. The size of ## @var{p} is the common size of @var{x}, @var{mu} and @var{sigma}. A scalar ## input functions as a constant matrix of the same size as the other inputs. ## ## Default values are @var{mu} = 0 and @var{sigma} = 1. ## ## When called with three output arguments, i.e. @qcode{[@var{p}, @var{plo}, ## @var{pup}]}, @code{evcdf} computes the confidence bounds for @var{p} when the ## input parameters @var{mu} and @var{sigma} are estimates. In such case, ## @var{pcov}, a @math{2x2} matrix containing the covariance matrix of the ## estimated parameters, is necessary. Optionally, @var{alpha}, which has a ## default value of 0.05, specifies the @qcode{100 * (1 - @var{alpha})} percent ## confidence bounds. @var{plo} and @var{pup} are arrays of the same size as ## @var{p} containing the lower and upper confidence bounds. ## ## @code{[@dots{}] = evcdf (@dots{}, "upper")} computes the upper tail ## probability of the extreme value distribution with parameters @var{x0} and ## @var{gamma}, at the values in @var{x}. ## ## The Gumbel distribution is used to model the distribution of the maximum (or ## the minimum) of a number of samples of various distributions. This version ## is suitable for modeling minima. For modeling maxima, use the alternative ## Gumbel CDF, @code{gumbelcdf}. ## ## Further information about the Gumbel distribution can be found at ## @url{https://en.wikipedia.org/wiki/Gumbel_distribution} ## ## @seealso{evinv, evpdf, evrnd, evfit, evlike, evstat, gumbelcdf} ## @end deftypefn function [varargout] = evcdf (x, varargin) ## Check for valid number of input arguments if (nargin < 1 || nargin > 6) error ("evcdf: invalid number of input arguments."); endif ## Check for 'upper' flag if (nargin > 1 && strcmpi (varargin{end}, "upper")) uflag = true; varargin(end) = []; elseif (nargin > 1 && ischar (varargin{end}) && ... ! strcmpi (varargin{end}, "upper")) error ("evcdf: invalid argument for upper tail."); else uflag = false; endif ## Get extra arguments (if they exist) or add defaults if (numel (varargin) > 0) mu = varargin{1}; else mu = 0; endif if (numel (varargin) > 1) sigma = varargin{2}; else sigma = 1; endif if (numel (varargin) > 2) pcov = varargin{3}; ## Check for valid covariance matrix 2x2 if (! isequal (size (pcov), [2, 2])) error ("evcdf: invalid size of covariance matrix."); endif else ## Check that cov matrix is provided if 3 output arguments are requested if (nargout > 1) error ("evcdf: covariance matrix is required for confidence bounds."); endif pcov = []; endif if (numel (varargin) > 3) alpha = varargin{4}; ## Check for valid alpha value if (! isnumeric (alpha) || numel (alpha) !=1 || alpha <= 0 || alpha >= 1) error ("evcdf: invalid value for alpha."); endif else alpha = 0.05; endif ## Check for common size of X, MU, and SIGMA if (! isscalar (x) || ! isscalar (mu) || ! isscalar (sigma)) [err, x, mu, sigma] = common_size (x, mu, sigma); if (err > 0) error ("evcdf: X, MU, and SIGMA must be of common size or scalars."); endif endif ## Check for X, MU, and SIGMA being reals if (iscomplex (x) || iscomplex (mu) || iscomplex (sigma)) error ("evcdf: X, MU, and SIGMA must not be complex."); endif ## Return NaNs for out of range parameters. sigma(sigma <= 0) = NaN; ## Compute extreme value cdf z = (x - mu) ./ sigma; if (uflag) p = exp (-exp (z)); else p = -expm1 (-exp (z)); endif ## Check for appropriate class if (isa (x, "single") || isa (mu, "single") || isa (sigma, "single")); is_class = "single"; else is_class = "double"; endif ## Prepare output varargout{1} = cast (p, is_class); if (nargout > 1) plo = NaN (size (z), is_class); pup = NaN (size (z), is_class); endif ## Check sigma if (isscalar (sigma)) if (sigma > 0) sigma_p = true (size (z)); else if (nargout == 3) varargout{2} = plo; varargout{3} = pup; endif return; endif else sigma_p = sigma > 0; endif ## Compute confidence bounds (if requested) if (nargout >= 2) zvar = (pcov(1,1) + 2 * pcov(1,2) * z(sigma_p) + ... pcov(2,2) * z(sigma_p) .^ 2) ./ (sigma .^ 2); if (any (zvar < 0)) error ("evcdf: bad covariance matrix."); endif normz = -probit (alpha / 2); halfwidth = normz * sqrt (zvar); zlo = z(sigma_p) - halfwidth; zup = z(sigma_p) + halfwidth; if (uflag) plo(sigma_p) = exp (-exp (zup)); pup(sigma_p) = exp (-exp (zlo)); else plo(sigma_p) = -expm1 (-exp (zlo)); pup(sigma_p) = -expm1 (-exp (zup)); endif varargout{2} = plo; varargout{3} = pup; endif endfunction %!demo %! ## Plot various CDFs from the extreme value distribution %! x = -10:0.01:10; %! p1 = evcdf (x, 0.5, 2); %! p2 = evcdf (x, 1.0, 2); %! p3 = evcdf (x, 1.5, 3); %! p4 = evcdf (x, 3.0, 4); %! plot (x, p1, "-b", x, p2, "-g", x, p3, "-r", x, p4, "-c") %! grid on %! legend ({"μ = 0.5, σ = 2", "μ = 1.0, σ = 2", ... %! "μ = 1.5, σ = 3", "μ = 3.0, σ = 4"}, "location", "southeast") %! title ("Extreme value CDF") %! xlabel ("values in x") %! ylabel ("probability") ## Test output %!shared x, y %! x = [-Inf, 1, 2, Inf]; %! y = [0, 0.6321, 0.9340, 1]; %!assert (evcdf (x, ones (1,4), ones (1,4)), y, 1e-4) %!assert (evcdf (x, 1, ones (1,4)), y, 1e-4) %!assert (evcdf (x, ones (1,4), 1), y, 1e-4) %!assert (evcdf (x, [0, -Inf, NaN, Inf], 1), [0, 1, NaN, NaN], 1e-4) %!assert (evcdf (x, 1, [Inf, NaN, -1, 0]), [NaN, NaN, NaN, NaN], 1e-4) %!assert (evcdf ([x(1:2), NaN, x(4)], 1, 1), [y(1:2), NaN, y(4)], 1e-4) %!assert (evcdf (x, "upper"), [1, 0.0660, 0.0006, 0], 1e-4) ## Test class of input preserved %!assert (evcdf ([x, NaN], 1, 1), [y, NaN], 1e-4) %!assert (evcdf (single ([x, NaN]), 1, 1), single ([y, NaN]), 1e-4) %!assert (evcdf ([x, NaN], single (1), 1), single ([y, NaN]), 1e-4) %!assert (evcdf ([x, NaN], 1, single (1)), single ([y, NaN]), 1e-4) ## Test input validation %!error evcdf () %!error evcdf (1,2,3,4,5,6,7) %!error evcdf (1, 2, 3, 4, "uper") %!error ... %! evcdf (ones (3), ones (2), ones (2)) %!error evcdf (2, 3, 4, [1, 2]) %!error ... %! [p, plo, pup] = evcdf (1, 2, 3) %!error [p, plo, pup] = ... %! evcdf (1, 2, 3, [1, 0; 0, 1], 0) %!error [p, plo, pup] = ... %! evcdf (1, 2, 3, [1, 0; 0, 1], 1.22) %!error [p, plo, pup] = ... %! evcdf (1, 2, 3, [1, 0; 0, 1], "alpha", "upper") %!error evcdf (i, 2, 2) %!error evcdf (2, i, 2) %!error evcdf (2, 2, i) %!error ... %! [p, plo, pup] = evcdf (1, 2, 3, [1, 0; 0, -inf], 0.04) statistics-release-1.6.3/inst/dist_fun/evinv.m000066400000000000000000000165731456127120000214400ustar00rootroot00000000000000## Copyright (C) 2022-2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{x} =} evinv (@var{p}) ## @deftypefnx {statistics} {@var{x} =} evinv (@var{p}, @var{mu}) ## @deftypefnx {statistics} {@var{x} =} evinv (@var{p}, @var{mu}, @var{sigma}) ## @deftypefnx {statistics} {[@var{x}, @var{xlo}, @var{xup}] =} evinv (@var{p}, @var{mu}, @var{sigma}, @var{pcov}) ## @deftypefnx {statistics} {[@var{x}, @var{xlo}, @var{xup}] =} evinv (@var{p}, @var{mu}, @var{sigma}, @var{pcov}, @var{alpha}) ## ## Inverse of the extreme value cumulative distribution function (iCDF). ## ## For each element of @var{p}, compute the quantile (the inverse of the CDF) of ## the extreme value distribution (also known as the Gumbel or the type I ## generalized extreme value distribution) with location parameter @var{mu} and ## scale parameter @var{sigma}. The size of @var{x} is the common size of ## @var{p}, @var{mu} and @var{sigma}. A scalar input functions as a constant ## matrix of the same size as the other inputs. ## ## Default values are @var{mu} = 0 and @var{sigma} = 1. ## ## When called with three output arguments, i.e. @qcode{[@var{x}, @var{xlo}, ## @var{xup}]}, @code{evinv} computes the confidence bounds for @var{x} when the ## input parameters @var{mu} and @var{sigma} are estimates. In such case, ## @var{pcov}, a @math{2x2} matrix containing the covariance matrix of the ## estimated parameters, is necessary. Optionally, @var{alpha}, which has a ## default value of 0.05, specifies the @qcode{100 * (1 - @var{alpha})} percent ## confidence bounds. @var{xlo} and @var{xup} are arrays of the same size as ## @var{x} containing the lower and upper confidence bounds. ## ## The Gumbel distribution is used to model the distribution of the maximum (or ## the minimum) of a number of samples of various distributions. This version ## is suitable for modeling minima. For modeling maxima, use the alternative ## Gumbel iCDF, @code{gumbelinv}. ## ## Further information about the Gumbel distribution can be found at ## @url{https://en.wikipedia.org/wiki/Gumbel_distribution} ## ## @seealso{evcdf, evpdf, evrnd, evfit, evlike, evstat, gumbelinv} ## @end deftypefn function [x, xlo, xup] = evinv (p, mu, sigma, pcov, alpha) ## Check for valid number of input arguments if (nargin < 1 || nargin > 5) error ("evinv: invalid number of input arguments."); endif ## Add defaults (if missing input arguments) if (nargin < 2) mu = 0; endif if (nargin < 3) sigma = 1; endif ## Check if PCOV is provided when confidence bounds are requested if (nargout > 2) if (nargin < 4) error ("evinv: covariance matrix is required for confidence bounds."); endif ## Check for valid covariance matrix 2x2 if (! isequal (size (pcov), [2, 2])) error ("evinv: invalid size of covariance matrix."); endif ## Check for valid alpha value if (nargin < 5) alpha = 0.05; elseif (! isnumeric (alpha) || numel (alpha) !=1 || alpha <= 0 || alpha >= 1) error ("evinv: invalid value for alpha."); endif endif ## Check for common size of P, MU, and SIGMA if (! isscalar (p) || ! isscalar (mu) || ! isscalar (sigma)) [err, p, mu, sigma] = common_size (p, mu, sigma); if (err > 0) error ("evinv: P, MU, and SIGMA must be of common size or scalars."); endif endif ## Check for P, MU, and SIGMA being reals if (iscomplex (p) || iscomplex (mu) || iscomplex (sigma)) error ("evinv: P, MU, and SIGMA must not be complex."); endif ## Check for appropriate class if (isa (p, "single") || isa (mu, "single") || isa (sigma, "single")); is_class = "single"; else is_class = "double"; endif ## Compute inverse of type 1 extreme value cdf k = (eps <= p & p < 1); if (all (k(:))) q = log (-log (1 - p)); else q = zeros (size (p), is_class); q(k) = log (-log (1 - p(k))); ## Return -Inf for p = 0 and Inf for p = 1 q(p < eps) = -Inf; q(p == 1) = Inf; ## Return NaN for out of range values of P q(p < 0 | 1 < p | isnan (p)) = NaN; endif ## Return NaN for out of range values of SIGMA sigma(sigma <= 0) = NaN; x = sigma .* q + mu; ## Compute confidence bounds if requested. if (nargout >= 2) xvar = pcov(1,1) + 2 * pcov(1,2) * q + pcov(2,2) * q .^ 2; if (any (xvar < 0)) error ("evinv: bad covariance matrix."); endif z = -norminv (alpha / 2); halfwidth = z * sqrt (xvar); xlo = x - halfwidth; xup = x + halfwidth; endif endfunction %!demo %! ## Plot various iCDFs from the extreme value distribution %! p = 0.001:0.001:0.999; %! x1 = evinv (p, 0.5, 2); %! x2 = evinv (p, 1.0, 2); %! x3 = evinv (p, 1.5, 3); %! x4 = evinv (p, 3.0, 4); %! plot (p, x1, "-b", p, x2, "-g", p, x3, "-r", p, x4, "-c") %! grid on %! ylim ([-10, 10]) %! legend ({"μ = 0.5, σ = 2", "μ = 1.0, σ = 2", ... %! "μ = 1.5, σ = 3", "μ = 3.0, σ = 4"}, "location", "northwest") %! title ("Extreme value iCDF") %! xlabel ("probability") %! ylabel ("values in x") ## Test output %!shared p, x %! p = [0, 0.05, 0.5 0.95]; %! x = [-Inf, -2.9702, -0.3665, 1.0972]; %!assert (evinv (p), x, 1e-4) %!assert (evinv (p, zeros (1,4), ones (1,4)), x, 1e-4) %!assert (evinv (p, 0, ones (1,4)), x, 1e-4) %!assert (evinv (p, zeros (1,4), 1), x, 1e-4) %!assert (evinv (p, [0, -Inf, NaN, Inf], 1), [-Inf, -Inf, NaN, Inf], 1e-4) %!assert (evinv (p, 0, [Inf, NaN, -1, 0]), [-Inf, NaN, NaN, NaN], 1e-4) %!assert (evinv ([p(1:2), NaN, p(4)], 0, 1), [x(1:2), NaN, x(4)], 1e-4) ## Test class of input preserved %!assert (evinv ([p, NaN], 0, 1), [x, NaN], 1e-4) %!assert (evinv (single ([p, NaN]), 0, 1), single ([x, NaN]), 1e-4) %!assert (evinv ([p, NaN], single (0), 1), single ([x, NaN]), 1e-4) %!assert (evinv ([p, NaN], 0, single (1)), single ([x, NaN]), 1e-4) ## Test input validation %!error evinv () %!error evinv (1,2,3,4,5,6) %!error ... %! evinv (ones (3), ones (2), ones (2)) %!error ... %! [p, plo, pup] = evinv (2, 3, 4, [1, 2]) %!error ... %! [p, plo, pup] = evinv (1, 2, 3) %!error [p, plo, pup] = ... %! evinv (1, 2, 3, [1, 0; 0, 1], 0) %!error [p, plo, pup] = ... %! evinv (1, 2, 3, [1, 0; 0, 1], 1.22) %!error evinv (i, 2, 2) %!error evinv (2, i, 2) %!error evinv (2, 2, i) %!error ... %! [p, plo, pup] = evinv (1, 2, 3, [-1, -10; -Inf, -Inf], 0.04) statistics-release-1.6.3/inst/dist_fun/evpdf.m000066400000000000000000000103731456127120000214050ustar00rootroot00000000000000## Copyright (C) 2022-2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{y} =} evpdf (@var{x}) ## @deftypefnx {statistics} {@var{y} =} evpdf (@var{x}, @var{mu}) ## @deftypefnx {statistics} {@var{y} =} evpdf (@var{x}, @var{mu}, @var{sigma}) ## ## Extreme value probability density function (PDF). ## ## For each element of @var{x}, compute the probability density function (PDF) ## of the extreme value distribution (also known as the Gumbel or the type I ## generalized extreme value distribution) with location parameter @var{mu} and ## scale parameter @var{sigma}. The size of @var{y} is the common size of ## @var{x}, @var{mu} and @var{sigma}. A scalar input functions as a constant ## matrix of the same size as the other inputs. ## ## Default values are @var{mu} = 0 and @var{sigma} = 1. ## ## The Gumbel distribution is used to model the distribution of the maximum (or ## the minimum) of a number of samples of various distributions. This version ## is suitable for modeling minima. For modeling maxima, use the alternative ## Gumbel iCDF, @code{gumbelinv}. ## ## Further information about the Gumbel distribution can be found at ## @url{https://en.wikipedia.org/wiki/Gumbel_distribution} ## ## @seealso{evcdf, evinv, evrnd, evfit, evlike, evstat, gumbelpdf} ## @end deftypefn function y = evpdf (x, mu, sigma) ## Check for valid number of input arguments if (nargin < 1) error ("evpdf: function called with too few input arguments."); endif ## Add defaults (if missing input arguments) if (nargin < 2) mu = 0; endif if (nargin < 3) sigma = 1; endif ## Check for common size of X, MU, and SIGMA if (! isscalar (x) || ! isscalar (mu) || ! isscalar (sigma)) [err, x, mu, sigma] = common_size (x, mu, sigma); if (err > 0) error ("evpdf: X, MU, and SIGMA must be of common size or scalars."); endif endif ## Check for X, MU, and SIGMA being reals if (iscomplex (x) || iscomplex (mu) || iscomplex (sigma)) error ("evpdf: X, MU, and SIGMA must not be complex."); endif ## Return NaNs for out of range parameters sigma(sigma <= 0) = NaN; ## Compute pdf of type 1 extreme value distribution z = (x - mu) ./ sigma; y = exp (z - exp (z)) ./ sigma; ## Force 0 for extreme right tail, instead of getting exp (Inf - Inf) = NaN y(z == Inf) = 0; endfunction %!demo %! ## Plot various PDFs from the Extreme value distribution %! x = -10:0.001:10; %! y1 = evpdf (x, 0.5, 2); %! y2 = evpdf (x, 1.0, 2); %! y3 = evpdf (x, 1.5, 3); %! y4 = evpdf (x, 3.0, 4); %! plot (x, y1, "-b", x, y2, "-g", x, y3, "-r", x, y4, "-c") %! grid on %! ylim ([0, 0.2]) %! legend ({"μ = 0.5, σ = 2", "μ = 1.0, σ = 2", ... %! "μ = 1.5, σ = 3", "μ = 3.0, σ = 4"}, "location", "northeast") %! title ("Extreme value PDF") %! xlabel ("values in x") %! ylabel ("density") ## Test output %!shared x, y0, y1 %! x = [-5, 0, 1, 2, 3]; %! y0 = [0.0067, 0.3679, 0.1794, 0.0046, 0]; %! y1 = [0.0025, 0.2546, 0.3679, 0.1794, 0.0046]; %!assert (evpdf (x), y0, 1e-4) %!assert (evpdf (x, zeros (1,5), ones (1,5)), y0, 1e-4) %!assert (evpdf (x, ones (1,5), ones (1,5)), y1, 1e-4) ## Test input validation %!error evpdf () %!error ... %! evpdf (ones (3), ones (2), ones (2)) %!error evpdf (i, 2, 2) %!error evpdf (2, i, 2) %!error evpdf (2, 2, i) statistics-release-1.6.3/inst/dist_fun/evrnd.m000066400000000000000000000152321456127120000214160ustar00rootroot00000000000000## Copyright (C) 2022-2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{r} =} evrnd (@var{mu}, @var{sigma}) ## @deftypefnx {statistics} {@var{r} =} evrnd (@var{mu}, @var{sigma}, @var{rows}) ## @deftypefnx {statistics} {@var{r} =} evrnd (@var{mu}, @var{sigma}, @var{rows}, @var{cols}, @dots{}) ## @deftypefnx {statistics} {@var{r} =} evrnd (@var{mu}, @var{sigma}, [@var{sz}]) ## ## Random arrays from the extreme value distribution. ## ## @code{@var{r} = evrnd (@var{mu}, @var{sigma})} returns an array of random ## numbers chosen from the extreme value distribution (also known as the Gumbel ## or the type I generalized extreme value distribution) with location ## parameter @var{mu} and scale parameter @var{sigma}. The size of @var{r} is ## the common size of @var{mu} and @var{sigma}. A scalar input functions as a ## constant matrix of the same size as the other inputs. ## ## When called with a single size argument, @code{evrnd} returns a square ## matrix with the dimension specified. When called with more than one scalar ## argument, the first two arguments are taken as the number of rows and columns ## and any further arguments specify additional matrix dimensions. The size may ## also be specified with a row vector of dimensions, @var{sz}. ## ## The Gumbel distribution is used to model the distribution of the maximum (or ## the minimum) of a number of samples of various distributions. This version ## is suitable for modeling minima. For modeling maxima, use the alternative ## Gumbel iCDF, @code{gumbelinv}. ## ## Further information about the Gumbel distribution can be found at ## @url{https://en.wikipedia.org/wiki/Gumbel_distribution} ## ## @seealso{evcdf, evinv, evpdf, evfit, evlike, evstat} ## @end deftypefn function r = evrnd (mu, sigma, varargin) ## Check for valid number of input arguments if (nargin < 2) error ("evrnd: function called with too few input arguments."); endif ## Check for common size of MU and SIGMA if (! isscalar (mu) || ! isscalar (sigma)) [retval, mu, sigma] = common_size (mu, sigma); if (retval > 0) error ("evrnd: MU and SIGMA must be of common size or scalars."); endif endif ## Check for MU and SIGMA being reals if (iscomplex (mu) || iscomplex (sigma)) error ("evrnd: MU and SIGMA must not be complex."); endif ## Parse and check SIZE arguments if (nargin == 2) sz = size (mu); elseif (nargin == 3) if (isscalar (varargin{1}) && varargin{1} >= 0 ... && varargin{1} == fix (varargin{1})) sz = [varargin{1}, varargin{1}]; elseif (isrow (varargin{1}) && all (varargin{1} >= 0) ... && all (varargin{1} == fix (varargin{1}))) sz = varargin{1}; elseif error (strcat (["evrnd: SZ must be a scalar or a row vector"], ... [" of non-negative integers."])); endif elseif (nargin > 3) posint = cellfun (@(x) (! isscalar (x) || x < 0 || x != fix (x)), varargin); if (any (posint)) error ("evrnd: dimensions must be non-negative integers."); endif sz = [varargin{:}]; endif ## Check that parameters match requested dimensions in size if (! isscalar (mu) && ! isequal (size (mu), sz)) error ("evrnd: MU and SIGMA must be scalars or of size SZ."); endif ## Check for class type if (isa (mu, "single") || isa (sigma, "single")) cls = "single"; else cls = "double"; endif ## Return NaNs for out of range values of SIGMA sigma(sigma < 0) = NaN; ## Generate uniform random values, and apply the extreme value inverse CDF. r = log (-log (rand (sz, cls))) .* sigma + mu; endfunction ## Test output %!assert (size (evrnd (1, 1)), [1 1]) %!assert (size (evrnd (1, ones (2,1))), [2, 1]) %!assert (size (evrnd (1, ones (2,2))), [2, 2]) %!assert (size (evrnd (ones (2,1), 1)), [2, 1]) %!assert (size (evrnd (ones (2,2), 1)), [2, 2]) %!assert (size (evrnd (1, 1, 3)), [3, 3]) %!assert (size (evrnd (1, 1, [4, 1])), [4, 1]) %!assert (size (evrnd (1, 1, 4, 1)), [4, 1]) %!assert (size (evrnd (1, 1, 4, 1, 5)), [4, 1, 5]) %!assert (size (evrnd (1, 1, 0, 1)), [0, 1]) %!assert (size (evrnd (1, 1, 1, 0)), [1, 0]) %!assert (size (evrnd (1, 1, 1, 2, 0, 5)), [1, 2, 0, 5]) ## Test class of input preserved %!assert (class (evrnd (1, 1)), "double") %!assert (class (evrnd (1, single (1))), "single") %!assert (class (evrnd (1, single ([1, 1]))), "single") %!assert (class (evrnd (single (1), 1)), "single") %!assert (class (evrnd (single ([1, 1]), 1)), "single") ## Test input validation %!error evrnd () %!error evrnd (1) %!error ... %! evrnd (ones (3), ones (2)) %!error ... %! evrnd (ones (2), ones (3)) %!error evrnd (i, 2, 3) %!error evrnd (1, i, 3) %!error ... %! evrnd (1, 2, -1) %!error ... %! evrnd (1, 2, 1.2) %!error ... %! evrnd (1, 2, ones (2)) %!error ... %! evrnd (1, 2, [2 -1 2]) %!error ... %! evrnd (1, 2, [2 0 2.5]) %!error ... %! evrnd (1, 2, 2, -1, 5) %!error ... %! evrnd (1, 2, 2, 1.5, 5) %!error ... %! evrnd (2, ones (2), 3) %!error ... %! evrnd (2, ones (2), [3, 2]) %!error ... %! evrnd (2, ones (2), 3, 2) statistics-release-1.6.3/inst/dist_fun/expcdf.m000066400000000000000000000201701456127120000215460ustar00rootroot00000000000000## Copyright (C) 2012 Rik Wehbring ## Copyright (C) 1995-2016 Kurt Hornik ## Copyright (C) 2023 Andreas Bertsatos ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{p} =} expcdf (@var{x}) ## @deftypefnx {statistics} {@var{p} =} expcdf (@var{x}, @var{mu}) ## @deftypefnx {statistics} {@var{p} =} expcdf (@dots{}, @qcode{"upper"}) ## @deftypefnx {statistics} {[@var{p}, @var{plo}, @var{pup}] =} expcdf (@var{x}, @var{mu}, @var{pcov}) ## @deftypefnx {statistics} {[@var{p}, @var{plo}, @var{pup}] =} expcdf (@var{x}, @var{mu}, @var{pcov}, @var{alpha}) ## @deftypefnx {statistics} {[@var{p}, @var{plo}, @var{pup}] =} expcdf (@dots{}, @qcode{"upper"}) ## ## Exponential cumulative distribution function (CDF). ## ## For each element of @var{x}, compute the cumulative distribution function ## (CDF) of the exponential distribution with mean parameter @var{mu}. The size ## of @var{p} is the common size of @var{x} and @var{mu}. A scalar input ## functions as a constant matrix of the same size as the other inputs. ## ## Default value is @var{mu} = 1. ## ## A common alternative parameterization of the exponential distribution is to ## use the parameter @math{λ} defined as the mean number of events in an ## interval as opposed to the parameter @math{μ}, which is the mean wait time ## for an event to occur. @math{λ} and @math{μ} are reciprocals, ## i.e. @math{μ = 1 / λ}. ## ## When called with three output arguments, i.e. @qcode{[@var{p}, @var{plo}, ## @var{pup}]}, @code{expcdf} computes the confidence bounds for @var{p} when ## the input parameter @var{mu} is an estimate. In such case, @var{pcov}, a ## scalar value with the variance of the estimated parameter @var{mu}, is ## necessary. Optionally, @var{alpha}, which has a default value of 0.05, ## specifies the @qcode{100 * (1 - @var{alpha})} percent confidence bounds. ## @var{plo} and @var{pup} are arrays of the same size as @var{p} containing the ## lower and upper confidence bounds. ## ## @code{[@dots{}] = expcdf (@dots{}, "upper")} computes the upper tail ## probability of the exponential distribution with parameter @var{mu}, at the ## values in @var{x}. ## ## Further information about the exponential distribution can be found at ## @url{https://en.wikipedia.org/wiki/Exponential_distribution} ## ## @seealso{expinv, exppdf, exprnd, expfit, explike, expstat} ## @end deftypefn function [varargout] = expcdf (x, varargin) ## Check for valid number of input arguments if (nargin < 1 || nargin > 5) error ("expcdf: invalid number of input arguments."); endif ## Check for "upper" flag if (nargin > 1 && strcmpi (varargin{end}, "upper")) uflag = true; varargin(end) = []; elseif (nargin > 1 && ischar (varargin{end}) && ... ! strcmpi (varargin{end}, "upper")) error ("expcdf: invalid argument for upper tail."); else uflag = false; endif ## Get extra arguments (if they exist) or add defaults if (numel (varargin) > 0) mu = varargin{1}; else mu = 1; endif if (numel (varargin) > 1) pcov = varargin{2}; ## Check for variance being a scalar if (! isscalar (pcov)) error ("expcdf: invalid size of variance, PCOV must be a scalar."); endif if (pcov < 0) error ("expcdf: variance, PCOV, cannot be negative."); endif else ## Check that cov matrix is provided if 3 output arguments are requested if (nargout > 1) error ("expcdf: variance, PCOV, is required for confidence bounds."); endif pcov = []; endif if (numel (varargin) > 2) alpha = varargin{3}; ## Check for valid alpha value if (! isnumeric (alpha) || numel (alpha) != 1 || alpha <= 0 || alpha >= 1) error ("expcdf: invalid value for alpha."); endif else alpha = 0.05; endif ## Check for common size of X and MU if (! isscalar (x) || ! isscalar (mu)) [err, x, mu] = common_size (x, mu); if (err > 0) error ("expcdf: X and MU must be of common size or scalars."); endif endif ## Check for X and MU being reals if (iscomplex (x) || iscomplex (mu)) error ("expcdf: X and MU must not be complex."); endif ## Check for appropriate class if (isa (x, "single") || isa (mu, "single")); is_class = "single"; else is_class = "double"; endif ## Return NaNs for out of range parameters. mu(mu <= 0) = NaN; ## Compute P value for exponential cdf z = x ./ mu; ## Force 0 for negative X z(z < 0) = 0; ## Check uflag if (uflag) p = exp (-z); else p = -expm1 (-z); endif ## Prepare output varargout{1} = cast (p, is_class); if (nargout > 1) plo = NaN (size (z), is_class); pup = NaN (size (z), is_class); endif ## Compute confidence bounds (if requested) if (nargout >= 2) ## Convert to log scale log_z = log (z); norm_z = -probit (alpha / 2); halfwidth = norm_z * sqrt (pcov ./ (mu .^ 2)); zlo = log_z - halfwidth; zup = log_z + halfwidth; ## Convert to original scale if (uflag) plo = exp (-exp (zup)); pup = exp (-exp (zlo)); else plo = - expm1 (-exp (zlo)); pup = - expm1 (-exp (zup)); endif ## Prepare output varargout{2} = plo; varargout{3} = pup; endif endfunction %!demo %! ## Plot various CDFs from the exponential distribution %! x = 0:0.01:5; %! p1 = expcdf (x, 2/3); %! p2 = expcdf (x, 1.0); %! p3 = expcdf (x, 2.0); %! plot (x, p1, "-b", x, p2, "-g", x, p3, "-r") %! grid on %! legend ({"μ = 2/3", "μ = 1", "μ = 2"}, "location", "southeast") %! title ("Exponential CDF") %! xlabel ("values in x") %! ylabel ("probability") ## Test output %!shared x, p %! x = [-1 0 0.5 1 Inf]; %! p = [0, 1 - exp(-x(2:end)/2)]; %!assert (expcdf (x, 2*ones (1,5)), p) %!assert (expcdf (x, 2), p) %!assert (expcdf (x, 2*[1 0 NaN 1 1]), [0 NaN NaN p(4:5)]) ## Test class of input preserved %!assert (expcdf ([x, NaN], 2), [p, NaN]) %!assert (expcdf (single ([x, NaN]), 2), single ([p, NaN])) %!assert (expcdf ([x, NaN], single (2)), single ([p, NaN])) ## Test values against MATLAB output %!test %! [p, plo, pup] = expcdf (1, 2, 3); %! assert (p, 0.39346934028737, 1e-14); %! assert (plo, 0.08751307220484, 1e-14); %! assert (pup, 0.93476821257933, 1e-14); %!test %! [p, plo, pup] = expcdf (1, 2, 2, 0.1); %! assert (p, 0.39346934028737, 1e-14); %! assert (plo, 0.14466318041675, 1e-14); %! assert (pup, 0.79808291849140, 1e-14); %!test %! [p, plo, pup] = expcdf (1, 2, 2, 0.1, "upper"); %! assert (p, 0.60653065971263, 1e-14); %! assert (plo, 0.20191708150860, 1e-14); %! assert (pup, 0.85533681958325, 1e-14); ## Test input validation %!error expcdf () %!error expcdf (1, 2 ,3 ,4 ,5, 6) %!error expcdf (1, 2, 3, 4, "uper") %!error ... %! expcdf (ones (3), ones (2)) %!error ... %! expcdf (2, 3, [1, 2]) %!error ... %! [p, plo, pup] = expcdf (1, 2) %!error [p, plo, pup] = ... %! expcdf (1, 2, 3, 0) %!error [p, plo, pup] = ... %! expcdf (1, 2, 3, 1.22) %!error [p, plo, pup] = ... %! expcdf (1, 2, 3, "alpha", "upper") %!error expcdf (i, 2) %!error expcdf (2, i) %!error ... %! [p, plo, pup] = expcdf (1, 2, -1, 0.04) statistics-release-1.6.3/inst/dist_fun/expinv.m000066400000000000000000000157561456127120000216240ustar00rootroot00000000000000## Copyright (C) 2012 Rik Wehbring ## Copyright (C) 1995-2016 Kurt Hornik ## Copyright (C) 2023 Andreas Bertsatos ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{x} =} expinv (@var{p}) ## @deftypefnx {statistics} {@var{x} =} expinv (@var{p}, @var{mu}) ## @deftypefnx {statistics} {[@var{x}, @var{xlo}, @var{xup}] =} expinv (@var{p}, @var{mu}, @var{pcov}) ## @deftypefnx {statistics} {[@var{x}, @var{xlo}, @var{xup}] =} expinv (@var{p}, @var{mu}, @var{pcov}, @var{alpha}) ## ## Inverse of the exponential cumulative distribution function (iCDF). ## ## For each element of @var{p}, compute the quantile (the inverse of the CDF) of ## the exponential distribution with mean @var{mu}. The size of @var{x} is the ## common size of @var{p} and @var{mu}. A scalar input functions as a constant ## matrix of the same size as the other inputs. ## ## Default value is @var{mu} = 1. ## ## A common alternative parameterization of the exponential distribution is to ## use the parameter @math{λ} defined as the mean number of events in an ## interval as opposed to the parameter @math{μ}, which is the mean wait time ## for an event to occur. @math{λ} and @math{μ} are reciprocals, ## i.e. @math{μ = 1 / λ}. ## ## When called with three output arguments, i.e. @qcode{[@var{x}, @var{xlo}, ## @var{xup}]}, @code{expinv} computes the confidence bounds for @var{x} when ## the input parameter @var{mu} is an estimate. In such case, @var{pcov}, a ## scalar value with the variance of the estimated parameter @var{mu}, is ## necessary. Optionally, @var{alpha}, which has a default value of 0.05, ## specifies the @qcode{100 * (1 - @var{alpha})} percent confidence bounds. ## @var{xlo} and @var{xup} are arrays of the same size as @var{x} containing the ## lower and upper confidence bounds. ## ## Further information about the exponential distribution can be found at ## @url{https://en.wikipedia.org/wiki/Exponential_distribution} ## ## @seealso{expcdf, exppdf, exprnd, expfit, explike, expstat} ## @end deftypefn function [varargout] = expinv (p, varargin) ## Check for valid number of input arguments if (nargin < 1 || nargin > 4) error ("expinv: invalid number of input arguments."); endif ## Get extra arguments (if they exist) or add defaults if (numel (varargin) > 0) mu = varargin{1}; else mu = 1; endif if (numel (varargin) > 1) pcov = varargin{2}; ## Check for variance being a scalar if (! isscalar (pcov)) error ("expinv: invalid size of variance, PCOV must be a scalar."); endif if (pcov < 0) error ("expinv: variance, PCOV, cannot be negative."); endif else ## Check that cov matrix is provided if 3 output arguments are requested if (nargout > 1) error ("expinv: variance, PCOV, is required for confidence bounds."); endif pcov = []; endif if (numel (varargin) > 2) alpha = varargin{3}; ## Check for valid alpha value if (! isnumeric (alpha) || numel (alpha) != 1 || alpha <= 0 || alpha >= 1) error ("expinv: invalid value for alpha."); endif else alpha = 0.05; endif ## Check for common size of P and MU if (! isscalar (p) || ! isscalar (mu)) [retval, p, mu] = common_size (p, mu); if (retval > 0) error ("expinv: P and MU must be of common size or scalars."); endif endif ## Check for P and MU being reals if (iscomplex (p) || iscomplex (mu)) error ("expinv: P and MU must not be complex."); endif ## Check for appropriate class if (isa (p, "single") || isa (mu, "single")); is_class = "single"; else is_class = "double"; endif ## Create output matrix if (isa (p, "single") || isa (mu, "single")) x = NaN (size (p), "single"); else x = NaN (size (p)); endif ## Handle edge cases k = (p == 1) & (mu > 0); x(k) = Inf; ## Handle valid cases k = (p >= 0) & (p < 1) & (mu > 0); if (isscalar (mu)) x(k) = - mu * log (1 - p(k)); else x(k) = - mu(k) .* log (1 - p(k)); endif ## Prepare output varargout{1} = cast (x, is_class); if (nargout > 1) xlo = NaN (size (z), is_class); xup = NaN (size (z), is_class); endif ## Compute confidence bounds (if requested) if (nargout >= 2) ## Convert to log scale log_x = log (x); z = -probit (alpha / 2); halfwidth = z * sqrt (pcov ./ (mu.^2)); ## Convert to original scale xlo = exp (log_x - halfwidth); xup = exp (log_x + halfwidth); ## Prepare output varargout{2} = plo; varargout{3} = pup; endif endfunction %!demo %! ## Plot various iCDFs from the exponential distribution %! p = 0.001:0.001:0.999; %! x1 = expinv (p, 2/3); %! x2 = expinv (p, 1.0); %! x3 = expinv (p, 2.0); %! plot (p, x1, "-b", p, x2, "-g", p, x3, "-r") %! grid on %! ylim ([0, 5]) %! legend ({"μ = 2/3", "μ = 1", "μ = 2"}, "location", "northwest") %! title ("Exponential iCDF") %! xlabel ("probability") %! ylabel ("values in x") ## Test output %!shared p %! p = [-1 0 0.3934693402873666 1 2]; %!assert (expinv (p, 2*ones (1,5)), [NaN 0 1 Inf NaN], eps) %!assert (expinv (p, 2), [NaN 0 1 Inf NaN], eps) %!assert (expinv (p, 2*[1 0 NaN 1 1]), [NaN NaN NaN Inf NaN], eps) %!assert (expinv ([p(1:2) NaN p(4:5)], 2), [NaN 0 NaN Inf NaN], eps) ## Test class of input preserved %!assert (expinv ([p, NaN], 2), [NaN 0 1 Inf NaN NaN], eps) %!assert (expinv (single ([p, NaN]), 2), single ([NaN 0 1 Inf NaN NaN]), eps) %!assert (expinv ([p, NaN], single (2)), single ([NaN 0 1 Inf NaN NaN]), eps) ## Test input validation %!error expinv () %!error expinv (1, 2 ,3 ,4 ,5) %!error ... %! expinv (ones (3), ones (2)) %!error ... %! expinv (2, 3, [1, 2]) %!error ... %! [x, xlo, xup] = expinv (1, 2) %!error [x, xlo, xup] = ... %! expinv (1, 2, 3, 0) %!error [x, xlo, xup] = ... %! expinv (1, 2, 3, 1.22) %!error [x, xlo, xup] = ... %! expinv (1, 2, 3, [0.05, 0.1]) %!error expinv (i, 2) %!error expinv (2, i) %!error ... %! [x, xlo, xup] = expinv (1, 2, -1, 0.04) statistics-release-1.6.3/inst/dist_fun/exppdf.m000066400000000000000000000100551456127120000215640ustar00rootroot00000000000000## Copyright (C) 2012 Rik Wehbring ## Copyright (C) 1995-2016 Kurt Hornik ## Copyright (C) 2023 Andreas Bertsatos ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{y} =} exppdf (@var{x}) ## @deftypefnx {statistics} {@var{y} =} exppdf (@var{x}, @var{mu}) ## ## Exponential probability density function (PDF). ## ## For each element of @var{x}, compute the probability density function (PDF) ## of the exponential distribution with mean parameter @var{mu}. The size of ## @var{y} is the common size of @var{x} and @var{mu}. A scalar input functions ## as a constant matrix of the same size as the other inputs. ## ## Default value for @var{mu} = 1. ## ## A common alternative parameterization of the exponential distribution is to ## use the parameter @math{λ} defined as the mean number of events in an ## interval as opposed to the parameter @math{μ}, which is the mean wait time ## for an event to occur. @math{λ} and @math{μ} are reciprocals, ## i.e. @math{μ = 1 / λ}. ## ## Further information about the exponential distribution can be found at ## @url{https://en.wikipedia.org/wiki/Exponential_distribution} ## ## @seealso{expcdf, expinv, exprnd, expfit, explike, expstat} ## @end deftypefn function y = exppdf (x, mu) ## Check for valid number of input arguments if (nargin < 1) error ("exppdf: function called with too few input arguments."); endif ## Add defaults (if missing input arguments) if (nargin < 2) mu = 0; endif ## Check for common size of X and MU if (! isscalar (x) || ! isscalar (mu)) [retval, x, mu] = common_size (x, mu); if (retval > 0) error ("exppdf: X and MU must be of common size or scalars."); endif endif ## Check for X and MU being reals if (iscomplex (x) || iscomplex (mu)) error ("exppdf: X and MU must not be complex."); endif ## Check for appropriate class if (isa (x, "single") || isa (mu, "single")) y = zeros (size (x), "single"); else y = zeros (size (x)); endif k = isnan (x) | !(mu > 0); y(k) = NaN; k = (x >= 0) & (x < Inf) & (mu > 0); if (isscalar (mu)) y(k) = exp (-x(k) / mu) / mu; else y(k) = exp (-x(k) ./ mu(k)) ./ mu(k); endif endfunction %!demo %! ## Plot various PDFs from the exponential distribution %! x = 0:0.01:5; %! y1 = exppdf (x, 2/3); %! y2 = exppdf (x, 1.0); %! y3 = exppdf (x, 2.0); %! plot (x, y1, "-b", x, y2, "-g", x, y3, "-r") %! grid on %! ylim ([0, 1.5]) %! legend ({"μ = 2/3", "μ = 1", "μ = 2"}, "location", "northeast") %! title ("Exponential PDF") %! xlabel ("values in x") %! ylabel ("density") ## Test output %!shared x,y %! x = [-1 0 0.5 1 Inf]; %! y = gampdf (x, 1, 2); %!assert (exppdf (x, 2*ones (1,5)), y) %!assert (exppdf (x, 2*[1 0 NaN 1 1]), [y(1) NaN NaN y(4:5)]) %!assert (exppdf ([x, NaN], 2), [y, NaN]) ## Test class of input preserved %!assert (exppdf (single ([x, NaN]), 2), single ([y, NaN])) %!assert (exppdf ([x, NaN], single (2)), single ([y, NaN])) ## Test input validation %!error exppdf () %!error exppdf (1,2,3) %!error ... %! exppdf (ones (3), ones (2)) %!error ... %! exppdf (ones (2), ones (3)) %!error exppdf (i, 2) %!error exppdf (2, i) statistics-release-1.6.3/inst/dist_fun/exprnd.m000066400000000000000000000133771456127120000216100ustar00rootroot00000000000000## Copyright (C) 2012 Rik Wehbring ## Copyright (C) 1995-2016 Kurt Hornik ## Copyright (C) 2023 Andreas Bertsatos ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{r} =} exprnd (@var{mu}) ## @deftypefnx {statistics} {@var{r} =} exprnd (@var{mu}, @var{rows}) ## @deftypefnx {statistics} {@var{r} =} exprnd (@var{mu}, @var{rows}, @var{cols}, @dots{}) ## @deftypefnx {statistics} {@var{r} =} exprnd (@var{mu}, [@var{sz}]) ## ## Random arrays from the exponential distribution. ## ## @code{@var{r} = exprnd (@var{mu})} returns an array of random numbers chosen ## from the exponential distribution with mean parameter @var{mu}. The size of ## @var{r} is the size of @var{mu}. ## ## When called with a single size argument, @code{exprnd} returns a square ## matrix with the dimension specified. When called with more than one scalar ## argument, the first two arguments are taken as the number of rows and columns ## and any further arguments specify additional matrix dimensions. The size may ## also be specified with a row vector of dimensions, @var{sz}. ## ## A common alternative parameterization of the exponential distribution is to ## use the parameter @math{λ} defined as the mean number of events in an ## interval as opposed to the parameter @math{μ}, which is the mean wait time ## for an event to occur. @math{λ} and @math{μ} are reciprocals, ## i.e. @math{μ = 1 / λ}. ## ## Further information about the exponential distribution can be found at ## @url{https://en.wikipedia.org/wiki/Exponential_distribution} ## ## @seealso{expcdf, expinv, exppdf, expfit, explike, expstat} ## @end deftypefn function r = exprnd (mu, varargin) ## Check for valid number of input arguments if (nargin < 1) error ("exprnd: function called with too few input arguments."); endif ## Check for MU being real if (iscomplex (mu)) error ("exprnd: MU must not be complex."); endif ## Parse and check SIZE arguments if (nargin == 1) sz = size (mu); elseif (nargin == 2) if (isscalar (varargin{1}) && varargin{1} >= 0 ... && varargin{1} == fix (varargin{1})) sz = [varargin{1}, varargin{1}]; elseif (isrow (varargin{1}) && all (varargin{1} >= 0) ... && all (varargin{1} == fix (varargin{1}))) sz = varargin{1}; elseif error (strcat (["exprnd: SZ must be a scalar or a row vector"], ... [" of non-negative integers."])); endif elseif (nargin > 2) posint = cellfun (@(x) (! isscalar (x) || x < 0 || x != fix (x)), varargin); if (any (posint)) error ("exprnd: dimensions must be non-negative integers."); endif sz = [varargin{:}]; endif ## Check that parameters match requested dimensions in size if (! isscalar (mu) && ! isequal (size (mu), sz)) error ("exprnd: MU must be scalar or of size SZ."); endif ## Check for class type if (isa (mu, "single")) cls = "single"; else cls = "double"; endif ## Generate random sample from exponential distribution if (isscalar (mu)) if ((mu > 0) && (mu < Inf)) r = rande (sz, cls) * mu; else r = NaN (sz, cls); endif else r = NaN (sz, cls); k = (mu > 0) & (mu < Inf); r(k) = rande (sum (k(:)), 1, cls) .* mu(k)(:); endif endfunction ## Test output %!assert (size (exprnd (2)), [1, 1]) %!assert (size (exprnd (ones (2,1))), [2, 1]) %!assert (size (exprnd (ones (2,2))), [2, 2]) %!assert (size (exprnd (1, 3)), [3, 3]) %!assert (size (exprnd (1, [4 1])), [4, 1]) %!assert (size (exprnd (1, 4, 1)), [4, 1]) %!assert (size (exprnd (1, 4, 1)), [4, 1]) %!assert (size (exprnd (1, 4, 1, 5)), [4, 1, 5]) %!assert (size (exprnd (1, 0, 1)), [0, 1]) %!assert (size (exprnd (1, 1, 0)), [1, 0]) %!assert (size (exprnd (1, 1, 2, 0, 5)), [1, 2, 0, 5]) ## Test class of input preserved %!assert (class (exprnd (2)), "double") %!assert (class (exprnd (single (2))), "single") %!assert (class (exprnd (single ([2 2]))), "single") ## Test input validation %!error exprnd () %!error exprnd (i) %!error ... %! exprnd (1, -1) %!error ... %! exprnd (1, 1.2) %!error ... %! exprnd (1, ones (2)) %!error ... %! exprnd (1, [2 -1 2]) %!error ... %! exprnd (1, [2 0 2.5]) %!error ... %! exprnd (ones (2), ones (2)) %!error ... %! exprnd (1, 2, -1, 5) %!error ... %! exprnd (1, 2, 1.5, 5) %!error exprnd (ones (2,2), 3) %!error exprnd (ones (2,2), [3, 2]) %!error exprnd (ones (2,2), 2, 3) statistics-release-1.6.3/inst/dist_fun/fcdf.m000066400000000000000000000150221456127120000211770ustar00rootroot00000000000000## Copyright (C) 2012 Rik Wehbring ## Copyright (C) 1995-2016 Kurt Hornik ## Copyright (C) 2022-2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{p} =} fcdf (@var{x}, @var{df1}, @var{df2}) ## @deftypefnx {statistics} {@var{p} =} fcdf (@var{x}, @var{df1}, @var{df2}, @qcode{"upper"}) ## ## @math{F}-cumulative distribution function (CDF). ## ## For each element of @var{x}, compute the cumulative distribution function ## (CDF) of the @math{F}-distribution with @var{df1} and @var{df2} degrees of ## freedom. The size of @var{p} is the common size of @var{x}, @var{df1}, and ## @var{df2}. A scalar input functions as a constant matrix of the same size as ## the other inputs. ## ## @code{@var{p} = fcdf (@var{x}, @var{df1}, @var{df2}, "upper")} computes the ## upper tail probability of the @math{F}-distribution with @var{df1} and ## @var{df2} degrees of freedom, at the values in @var{x}. ## ## Further information about the @math{F}-distribution can be found at ## @url{https://en.wikipedia.org/wiki/F-distribution} ## ## @seealso{finv, fpdf, frnd, fstat} ## @end deftypefn function p = fcdf (x, df1, df2, uflag) ## Check for valid number of input arguments if (nargin < 3) error ("fcdf: function called with too few input arguments."); endif ## Check for "upper" flag if (nargin > 3 && strcmpi (uflag, "upper")) notnan = ! isnan (x); x(notnan) = 1 ./ max (0, x(notnan)); tmp=df1; df1=df2; df2=tmp; elseif (nargin > 3 && ! strcmpi (uflag, "upper")) error ("fcdf: invalid argument for upper tail."); endif ## Check for common size of X, DF1, and DF2 if (! isscalar (x) || ! isscalar (df1) || ! isscalar (df2)) [err, x, df1, df2] = common_size (x, df1, df2); if (err > 0) error ("fcdf: X, DF1, and DF2 must be of common size or scalars."); endif endif ## Check for X, DF1, and DF2 being reals if (iscomplex (x) || iscomplex (df1) || iscomplex (df2)) error ("fcdf: X, DF1, and DF2 must not be complex."); endif ## Check for class type if (isa (x, "single") || isa (df1, "single") || isa (df2, "single")) p = zeros (size (x), "single"); else p = zeros (size (x)); endif ## Check X for NaNs while DFs <= 0 and make P = NaNs make_nan = (df1 <= 0 | df2 <= 0 | isnan(x) | isnan(df1) | isnan(df2)); p(make_nan) = NaN; ## Check remaining valid X for Inf values and make P = 1 is_inf = (x == Inf) & ! make_nan; if any (is_inf(:)) p(is_inf) = 1; make_nan = (make_nan | is_inf); endif ## Compute P when X > 0. k = find(x > 0 & ! make_nan & isfinite(df1) & isfinite(df2)); if (any (k)) k1 = (df2(k) <= x(k) .* df1(k)); if (any (k1)) kk = k(k1); xx = df2(kk) ./ (df2(kk) + x(kk) .* df1(kk)); p(kk) = betainc (xx, df2(kk)/2, df1(kk)/2, "upper"); end if (any (! k1)) kk = k(! k1); num = df1(kk) .* x(kk); xx = num ./ (num + df2(kk)); p(kk) = betainc (xx, df1(kk)/2, df2(kk)/2, "lower"); endif endif if any(~isfinite(df1(:)) | ~isfinite(df2(:))) k = find (x > 0 & ! make_nan & isfinite (df1) & ! isfinite (df2) & df2 > 0); if (any (k)) p(k) = gammainc (df1(k) .* x(k) ./ 2, df1(k) ./ 2, "lower"); end k = find (x > 0 & ! make_nan & ! isfinite (df1) & df1 > 0 & isfinite (df2)); if (any (k)) p(k) = gammainc (df2(k) ./ x(k) ./ 2, df2(k) ./ 2, "upper"); end k = find (x > 0 & ! make_nan & ! isfinite (df1) & df1 > 0 & ... ! isfinite (df2) & df2 > 0); if (any (k)) if (nargin >= 4 && x(k) == 1) p(k) = 0; else p(k) = (x(k)>=1); end endif endif endfunction %!demo %! ## Plot various CDFs from the F distribution %! x = 0.01:0.01:4; %! p1 = fcdf (x, 1, 2); %! p2 = fcdf (x, 2, 1); %! p3 = fcdf (x, 5, 2); %! p4 = fcdf (x, 10, 1); %! p5 = fcdf (x, 100, 100); %! plot (x, p1, "-b", x, p2, "-g", x, p3, "-r", x, p4, "-c", x, p5, "-m") %! grid on %! legend ({"df1 = 1, df2 = 2", "df1 = 2, df2 = 1", ... %! "df1 = 5, df2 = 2", "df1 = 10, df2 = 1", ... %! "df1 = 100, df2 = 100"}, "location", "southeast") %! title ("F CDF") %! xlabel ("values in x") %! ylabel ("probability") ## Test output %!shared x, y %! x = [-1, 0, 0.5, 1, 2, Inf]; %! y = [0, 0, 1/3, 1/2, 2/3, 1]; %!assert (fcdf (x, 2*ones (1,6), 2*ones (1,6)), y, eps) %!assert (fcdf (x, 2, 2*ones (1,6)), y, eps) %!assert (fcdf (x, 2*ones (1,6), 2), y, eps) %!assert (fcdf (x, [0 NaN Inf 2 2 2], 2), [NaN NaN 0.1353352832366127 y(4:6)], eps) %!assert (fcdf (x, 2, [0 NaN Inf 2 2 2]), [NaN NaN 0.3934693402873666 y(4:6)], eps) %!assert (fcdf ([x(1:2) NaN x(4:6)], 2, 2), [y(1:2) NaN y(4:6)], eps) ## Test class of input preserved %!assert (fcdf ([x, NaN], 2, 2), [y, NaN], eps) %!assert (fcdf (single ([x, NaN]), 2, 2), single ([y, NaN]), eps ("single")) %!assert (fcdf ([x, NaN], single (2), 2), single ([y, NaN]), eps ("single")) %!assert (fcdf ([x, NaN], 2, single (2)), single ([y, NaN]), eps ("single")) ## Test input validation %!error fcdf () %!error fcdf (1) %!error fcdf (1, 2) %!error fcdf (1, 2, 3, 4) %!error fcdf (1, 2, 3, "tail") %!error ... %! fcdf (ones (3), ones (2), ones (2)) %!error ... %! fcdf (ones (2), ones (3), ones (2)) %!error ... %! fcdf (ones (2), ones (2), ones (3)) %!error fcdf (i, 2, 2) %!error fcdf (2, i, 2) %!error fcdf (2, 2, i) statistics-release-1.6.3/inst/dist_fun/finv.m000066400000000000000000000112131456127120000212350ustar00rootroot00000000000000## Copyright (C) 2012 Rik Wehbring ## Copyright (C) 1995-2016 Kurt Hornik ## Copyright (C) 2023 Andreas Bertsatos ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{x} =} finv (@var{p}, @var{df1}, @var{df2}) ## ## Inverse of the @math{F}-cumulative distribution function (iCDF). ## ## For each element of @var{p}, compute the quantile (the inverse of the CDF) of ## the @math{F}-distribution with @var{df1} and @var{df2} degrees of freedom. ## The size of @var{x} is the common size of @var{p}, @var{df1}, and @var{df2}. ## A scalar input functions as a constant matrix of the same size as the other ## inputs. ## ## Further information about the @math{F}-distribution can be found at ## @url{https://en.wikipedia.org/wiki/F-distribution} ## ## @seealso{fcdf, fpdf, frnd, fstat} ## @end deftypefn function x = finv (p, df1, df2) ## Check for valid number of input arguments if (nargin < 3) error ("finv: function called with too few input arguments."); endif ## Check for common size of P, DF1, and DF2 if (! isscalar (p) || ! isscalar (df1) || ! isscalar (df2)) [retval, p, df1, df2] = common_size (p, df1, df2); if (retval > 0) error ("finv: P, DF1, and DF2 must be of common size or scalars."); endif endif ## Check for P, DF1, and DF2 being reals if (iscomplex (p) || iscomplex (df1) || iscomplex (df2)) error ("finv: P, DF1, and DF2 must not be complex."); endif ## Check for class type if (isa (p, "single") || isa (df1, "single") || isa (df2, "single")) x = NaN (size (p), "single"); else x = NaN (size (p)); endif k = (p == 1) & (df1 > 0) & (df1 < Inf) & (df2 > 0) & (df2 < Inf); x(k) = Inf; k = (p >= 0) & (p < 1) & (df1 > 0) & (df1 < Inf) & (df2 > 0) & (df2 < Inf); if (isscalar (df1) && isscalar (df2)) x(k) = ((1 ./ betainv (1 - p(k), df2/2, df1/2) - 1) * df2 / df1); else x(k) = ((1 ./ betainv (1 - p(k), df2(k)/2, df1(k)/2) - 1) .* df2(k) ./ df1(k)); endif endfunction %!demo %! ## Plot various iCDFs from the F distribution %! p = 0.001:0.001:0.999; %! x1 = finv (p, 1, 1); %! x2 = finv (p, 2, 1); %! x3 = finv (p, 5, 2); %! x4 = finv (p, 10, 1); %! x5 = finv (p, 100, 100); %! plot (p, x1, "-b", p, x2, "-g", p, x3, "-r", p, x4, "-c", p, x5, "-m") %! grid on %! ylim ([0, 4]) %! legend ({"df1 = 1, df2 = 2", "df1 = 2, df2 = 1", ... %! "df1 = 5, df2 = 2", "df1 = 10, df2 = 1", ... %! "df1 = 100, df2 = 100"}, "location", "northwest") %! title ("F iCDF") %! xlabel ("probability") %! ylabel ("values in x") ## Test output %!shared p %! p = [-1 0 0.5 1 2]; %!assert (finv (p, 2*ones (1,5), 2*ones (1,5)), [NaN 0 1 Inf NaN]) %!assert (finv (p, 2, 2*ones (1,5)), [NaN 0 1 Inf NaN]) %!assert (finv (p, 2*ones (1,5), 2), [NaN 0 1 Inf NaN]) %!assert (finv (p, [2 -Inf NaN Inf 2], 2), [NaN NaN NaN NaN NaN]) %!assert (finv (p, 2, [2 -Inf NaN Inf 2]), [NaN NaN NaN NaN NaN]) %!assert (finv ([p(1:2) NaN p(4:5)], 2, 2), [NaN 0 NaN Inf NaN]) ## Test class of input preserved %!assert (finv ([p, NaN], 2, 2), [NaN 0 1 Inf NaN NaN]) %!assert (finv (single ([p, NaN]), 2, 2), single ([NaN 0 1 Inf NaN NaN])) %!assert (finv ([p, NaN], single (2), 2), single ([NaN 0 1 Inf NaN NaN])) %!assert (finv ([p, NaN], 2, single (2)), single ([NaN 0 1 Inf NaN NaN])) ## Test input validation %!error finv () %!error finv (1) %!error finv (1,2) %!error ... %! finv (ones (3), ones (2), ones (2)) %!error ... %! finv (ones (2), ones (3), ones (2)) %!error ... %! finv (ones (2), ones (2), ones (3)) %!error finv (i, 2, 2) %!error finv (2, i, 2) %!error finv (2, 2, i) statistics-release-1.6.3/inst/dist_fun/fpdf.m000066400000000000000000000117531456127120000212230ustar00rootroot00000000000000## Copyright (C) 2012 Rik Wehbring ## Copyright (C) 1995-2016 Kurt Hornik ## Copyright (C) 2023 Andreas Bertsatos ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{y} =} fpdf (@var{x}, @var{df1}, @var{df2}) ## ## @math{F}-probability density function (PDF). ## ## For each element of @var{x}, compute the probability density function (PDF) ## of the @math{F}-distribution with @var{df1} and @var{df2} degrees of freedom. ## The size of @var{y} is the common size of @var{x}, @var{df1}, and @var{df2}. ## A scalar input functions as a constant matrix of the same size as the other ## inputs. ## ## Further information about the @math{F}-distribution can be found at ## @url{https://en.wikipedia.org/wiki/F-distribution} ## ## @seealso{fcdf, finv, frnd, fstat} ## @end deftypefn function y = fpdf (x, df1, df2) ## Check for valid number of input arguments if (nargin < 3) error ("fpdf: function called with too few input arguments."); endif ## Check for common size of X, DF1, and DF2 if (! isscalar (x) ||! isscalar (df1) || ! isscalar (df2)) [retval, x, df1, df2] = common_size (x, df1, df2); if (retval > 0) error ("fpdf: X, DF1, and DF2 must be of common size or scalars."); endif endif ## Check for X, DF1, and DF2 being reals if (iscomplex (x) || iscomplex (df1) || iscomplex (df2)) error ("fpdf: X, DF1, and DF2 must not be complex."); endif ## Check for class type if (isa (x, "single") || isa (df1, "single") || isa (df2, "single")) y = zeros (size (x), "single"); else y = zeros (size (x)); endif k = isnan (x) | !(df1 > 0) | !(df1 < Inf) | !(df2 > 0) | !(df2 < Inf); y(k) = NaN; k = (x > 0) & (x < Inf) & (df1 > 0) & (df1 < Inf) & (df2 > 0) & (df2 < Inf); if (isscalar (df1) && isscalar (df2)) tmp = df1 / df2 * x(k); y(k) = (exp ((df1/2 - 1) * log (tmp) ... - ((df1 + df2) / 2) * log (1 + tmp)) ... * (df1 / df2) ./ beta (df1/2, df2/2)); else tmp = df1(k) .* x(k) ./ df2(k); y(k) = (exp ((df1(k)/2 - 1) .* log (tmp) ... - ((df1(k) + df2(k)) / 2) .* log (1 + tmp)) ... .* (df1(k) ./ df2(k)) ./ beta (df1(k)/2, df2(k)/2)); endif endfunction %!demo %! ## Plot various PDFs from the F distribution %! x = 0.01:0.01:4; %! y1 = fpdf (x, 1, 1); %! y2 = fpdf (x, 2, 1); %! y3 = fpdf (x, 5, 2); %! y4 = fpdf (x, 10, 1); %! y5 = fpdf (x, 100, 100); %! plot (x, y1, "-b", x, y2, "-g", x, y3, "-r", x, y4, "-c", x, y5, "-m") %! grid on %! ylim ([0, 2.5]) %! legend ({"df1 = 1, df2 = 2", "df1 = 2, df2 = 1", ... %! "df1 = 5, df2 = 2", "df1 = 10, df2 = 1", ... %! "df1 = 100, df2 = 100"}, "location", "northeast") %! title ("F PDF") %! xlabel ("values in x") %! ylabel ("density") ## Test output %!shared x, y %! x = [-1 0 0.5 1 2]; %! y = [0 0 4/9 1/4 1/9]; %!assert (fpdf (x, 2*ones (1,5), 2*ones (1,5)), y, eps) %!assert (fpdf (x, 2, 2*ones (1,5)), y, eps) %!assert (fpdf (x, 2*ones (1,5), 2), y, eps) %!assert (fpdf (x, [0 NaN Inf 2 2], 2), [NaN NaN NaN y(4:5)], eps) %!assert (fpdf (x, 2, [0 NaN Inf 2 2]), [NaN NaN NaN y(4:5)], eps) %!assert (fpdf ([x, NaN], 2, 2), [y, NaN], eps) %!test #F (x, 1, df1) == T distribution (sqrt (x), df1) / sqrt (x) %! xr = rand (10,1); %! xr = xr(x > 0.1 & x < 0.9); %! yr = tpdf (sqrt (xr), 2) ./ sqrt (xr); %! assert (fpdf (xr, 1, 2), yr, 5*eps); ## Test class of input preserved %!assert (fpdf (single ([x, NaN]), 2, 2), single ([y, NaN]), eps ("single")) %!assert (fpdf ([x, NaN], single (2), 2), single ([y, NaN]), eps ("single")) %!assert (fpdf ([x, NaN], 2, single (2)), single ([y, NaN]), eps ("single")) ## Test input validation %!error fpdf () %!error fpdf (1) %!error fpdf (1,2) %!error ... %! fpdf (ones (3), ones (2), ones (2)) %!error ... %! fpdf (ones (2), ones (3), ones (2)) %!error ... %! fpdf (ones (2), ones (2), ones (3)) %!error fpdf (i, 2, 2) %!error fpdf (2, i, 2) %!error fpdf (2, 2, i) statistics-release-1.6.3/inst/dist_fun/frnd.m000066400000000000000000000146411456127120000212340ustar00rootroot00000000000000## Copyright (C) 2012 Rik Wehbring ## Copyright (C) 1995-2016 Kurt Hornik ## Copyright (C) 2023 Andreas Bertsatos ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{r} =} frnd (@var{df1}, @var{df2}) ## @deftypefnx {statistics} {@var{r} =} frnd (@var{df1}, @var{df2}, @var{rows}) ## @deftypefnx {statistics} {@var{r} =} frnd (@var{df1}, @var{df2}, @var{rows}, @var{cols}, @dots{}) ## @deftypefnx {statistics} {@var{r} =} frnd (@var{df1}, @var{df2}, [@var{sz}]) ## ## Random arrays from the @math{F}-distribution. ## ## @code{@var{r} = frnd (@var{df1}, @var{df2})} returns an array of random ## numbers chosen from the @math{F}-distribution with @var{df1} and @var{df2} ## degrees of freedom. The size of @var{r} is the common size of @var{df1} and ## @var{df2}. A scalar input functions as a constant matrix of the same size as ## the other inputs. ## ## When called with a single size argument, @code{frnd} returns a square ## matrix with the dimension specified. When called with more than one scalar ## argument, the first two arguments are taken as the number of rows and columns ## and any further arguments specify additional matrix dimensions. The size may ## also be specified with a row vector of dimensions, @var{sz}. ## ## Further information about the @math{F}-distribution can be found at ## @url{https://en.wikipedia.org/wiki/F-distribution} ## ## @seealso{fcdf, finv, fpdf, fstat} ## @end deftypefn function r = frnd (df1, df2, varargin) ## Check for valid number of input arguments if (nargin < 2) error ("frnd: function called with too few input arguments."); endif ## Check for common size of DF1 and DF2 if (! isscalar (df1) || ! isscalar (df2)) [retval, df1, df2] = common_size (df1, df2); if (retval > 0) error ("frnd: DF1 and DF2 must be of common size or scalars."); endif endif ## Check for DF1 and DF2 being reals if (iscomplex (df1) || iscomplex (df2)) error ("frnd: DF1 and DF2 must not be complex."); endif ## Parse and check SIZE arguments if (nargin == 2) sz = size (df1); elseif (nargin == 3) if (isscalar (varargin{1}) && varargin{1} >= 0 ... && varargin{1} == fix (varargin{1})) sz = [varargin{1}, varargin{1}]; elseif (isrow (varargin{1}) && all (varargin{1} >= 0) ... && all (varargin{1} == fix (varargin{1}))) sz = varargin{1}; elseif error (strcat (["frnd: SZ must be a scalar or a row vector"], ... [" of non-negative integers."])); endif elseif (nargin > 3) posint = cellfun (@(x) (! isscalar (x) || x < 0 || x != fix (x)), varargin); if (any (posint)) error ("frnd: dimensions must be non-negative integers."); endif sz = [varargin{:}]; endif ## Check that parameters match requested dimensions in size if (! isscalar (df1) && ! isequal (size (df1), sz)) error ("frnd: DF1 and DF2 must be scalars or of size SZ."); endif ## Check for class type if (isa (df1, "single") || isa (df2, "single")) cls = "single"; else cls = "double"; endif ## Generate random sample from F distribution if (isscalar (df1) && isscalar (df2)) if ((df1 > 0) && (df1 < Inf) && (df2 > 0) && (df2 < Inf)) r = df2/df1 * randg (df1/2, sz, cls) ./ randg (df2/2, sz, cls); else r = NaN (sz, cls); endif else r = NaN (sz, cls); k = (df1 > 0) & (df1 < Inf) & (df2 > 0) & (df2 < Inf); r(k) = df2(k) ./ df1(k) .* randg (df1(k)/2, cls) ./ randg (df2(k)/2, cls); endif endfunction ## Test output %!assert (size (frnd (1, 1)), [1 1]) %!assert (size (frnd (1, ones (2,1))), [2, 1]) %!assert (size (frnd (1, ones (2,2))), [2, 2]) %!assert (size (frnd (ones (2,1), 1)), [2, 1]) %!assert (size (frnd (ones (2,2), 1)), [2, 2]) %!assert (size (frnd (1, 1, 3)), [3, 3]) %!assert (size (frnd (1, 1, [4, 1])), [4, 1]) %!assert (size (frnd (1, 1, 4, 1)), [4, 1]) %!assert (size (frnd (1, 1, 4, 1, 5)), [4, 1, 5]) %!assert (size (frnd (1, 1, 0, 1)), [0, 1]) %!assert (size (frnd (1, 1, 1, 0)), [1, 0]) %!assert (size (frnd (1, 1, 1, 2, 0, 5)), [1, 2, 0, 5]) ## Test class of input preserved %!assert (class (frnd (1, 1)), "double") %!assert (class (frnd (1, single (1))), "single") %!assert (class (frnd (1, single ([1, 1]))), "single") %!assert (class (frnd (single (1), 1)), "single") %!assert (class (frnd (single ([1, 1]), 1)), "single") ## Test input validation %!error frnd () %!error frnd (1) %!error ... %! frnd (ones (3), ones (2)) %!error ... %! frnd (ones (2), ones (3)) %!error frnd (i, 2, 3) %!error frnd (1, i, 3) %!error ... %! frnd (1, 2, -1) %!error ... %! frnd (1, 2, 1.2) %!error ... %! frnd (1, 2, ones (2)) %!error ... %! frnd (1, 2, [2 -1 2]) %!error ... %! frnd (1, 2, [2 0 2.5]) %!error ... %! frnd (1, 2, 2, -1, 5) %!error ... %! frnd (1, 2, 2, 1.5, 5) %!error ... %! frnd (2, ones (2), 3) %!error ... %! frnd (2, ones (2), [3, 2]) %!error ... %! frnd (2, ones (2), 3, 2) statistics-release-1.6.3/inst/dist_fun/gamcdf.m000066400000000000000000000306161456127120000215240ustar00rootroot00000000000000## Copyright (C) 2012 Rik Wehbring ## Copyright (C) 1995-2016 Kurt Hornik ## Copyright (C) 2022-2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{p} =} gamcdf (@var{x}, @var{k}) ## @deftypefnx {statistics} {@var{p} =} gamcdf (@var{x}, @var{k}, @var{theta}) ## @deftypefnx {statistics} {@var{p} =} gamcdf (@dots{}, @qcode{"upper"}) ## @deftypefnx {statistics} {[@var{p}, @var{plo}, @var{pup}] =} evcdf (@var{x}, @var{k}, @var{theta}, @var{pcov}) ## @deftypefnx {statistics} {[@var{p}, @var{plo}, @var{pup}] =} evcdf (@var{x}, @var{k}, @var{theta}, @var{pcov}, @var{alpha}) ## @deftypefnx {statistics} {[@var{p}, @var{plo}, @var{pup}] =} evcdf (@dots{}, @qcode{"upper"}) ## ## Gamma cumulative distribution function (CDF). ## ## For each element of @var{x}, compute the cumulative distribution function ## (CDF) of the Gamma distribution with shape parameter @var{k} and scale ## parameter @var{theta}. When called with only one parameter, then @var{theta} ## defaults to 1. The size of @var{p} is the common size of @var{x}, @var{k}, ## and @var{theta}. A scalar input functions as a constant matrix of the same ## size as the other inputs. ## ## When called with three output arguments, i.e. @qcode{[@var{p}, @var{plo}, ## @var{pup}]}, @code{gamcdf} computes the confidence bounds for @var{p} when ## the input parameters @var{k} and @var{theta} are estimates. In such case, ## @var{pcov}, a @math{2x2} matrix containing the covariance matrix of the ## estimated parameters, is necessary. Optionally, @var{alpha}, which has a ## default value of 0.05, specifies the @qcode{100 * (1 - @var{alpha})} percent ## confidence bounds. @var{plo} and @var{pup} are arrays of the same size as ## @var{p} containing the lower and upper confidence bounds. ## ## @code{[@dots{}] = gamcdf (@dots{}, "upper")} computes the upper tail ## probability of the Gamma distribution with parameters @var{k} and ## @var{theta}, at the values in @var{x}. ## ## There are two equivalent parameterizations in common use: ## @enumerate ## @item With a shape parameter @math{k} and a scale parameter @math{θ}, which ## is used by @code{gamcdf}. ## @item With a shape parameter @math{α = k} and an inverse scale parameter ## @math{β = 1 / θ}, called a rate parameter. ## @end enumerate ## ## Further information about the Gamma distribution can be found at ## @url{https://en.wikipedia.org/wiki/Gamma_distribution} ## ## @seealso{gaminv, gampdf, gamrnd, gamfit, gamlike, gamstat} ## @end deftypefn function [varargout] = gamcdf (x, varargin) ## Check for valid number of input arguments if (nargin < 2 || nargin > 6) error ("gamcdf: invalid number of input arguments."); endif ## Check for "upper" flag if (nargin > 2 && strcmpi (varargin{end}, "upper")) uflag = true; varargin(end) = []; elseif (nargin > 2 && ischar (varargin{end}) && ... ! strcmpi (varargin{end}, "upper")) error ("gamcdf: invalid argument for upper tail."); elseif (nargin > 2 && isempty (varargin{end})) uflag = false; varargin(end) = []; else uflag = false; endif ## Get extra arguments (if they exist) or add defaults k = varargin{1}; if (numel (varargin) > 1) theta = varargin{2}; else theta = 1; endif if (numel (varargin) > 2) pcov = varargin{3}; ## Check for valid covariance matrix 2x2 if (! isequal (size (pcov), [2, 2])) error ("gamcdf: invalid size of covariance matrix."); endif else ## Check that cov matrix is provided if 3 output arguments are requested if (nargout > 1) error ("gamcdf: covariance matrix is required for confidence bounds."); endif pcov = []; endif if (numel (varargin) > 3) alpha = varargin{4}; ## Check for valid alpha value if (! isnumeric (alpha) || numel (alpha) !=1 || alpha <= 0 || alpha >= 1) error ("gamcdf: invalid value for alpha."); endif else alpha = 0.05; endif ## Check for common size of X, K, and THETA if (! isscalar (x) || ! isscalar (k) || ! isscalar (theta)) [err, x, k, theta] = common_size (x, k, theta); if (err > 0) error ("gamcdf: X, K, and THETA must be of common size or scalars."); endif endif ## Check for X, K, and THETA being reals if (iscomplex (x) || iscomplex (k) || iscomplex (theta)) error ("gamcdf: X, K, and THETA must not be complex."); endif ## Prepare parameters so that gammainc returns NaN for out of range parameters k(k < 0) = NaN; theta(theta < 0) = NaN; ## Prepare data so that gammainc returns 0 for negative X x(x < 0) = 0; ## Compute gammainc z = x ./ theta; if (uflag) p = gammainc (z, k, "upper"); ## Fix NaNs to gammainc output when k == NaN p(isnan (k)) = NaN; else p = gammainc (z, k); ## Fix NaNs to gammainc output when k == NaN p(isnan (k)) = NaN; endif ## Check for appropriate class if (isa (x, "single") || isa (k, "single") || isa (theta, "single")); is_class = "single"; else is_class = "double"; endif ## Prepare output varargout{1} = cast (p, is_class); if (nargout > 1) plo = NaN (size (z), is_class); pup = NaN (size (z), is_class); endif ## Compute confidence bounds (if requested) if (nargout >= 2) ## Approximate the variance of p on the logit scale logitp = log (p ./ (1 - p)); dp = 1 ./ (p .* (1 - p)); dk = dgammainc (z, k) .* dp; dt = -exp (k .* log (z) - z - gammaln (k) - log (theta)) .* dp; varLogitp = pcov(1,1) .* dk .^ 2 + 2 .* pcov(1,2) .* dk .* dt + ... pcov(2,2) .* dt .^ 2; if (any (varLogitp(:) < 0)) error ("gamcdf: bad covariance matrix."); endif ## Use k normal approximation on the logit scale, then transform back to ## the original CDF scale halfwidth = -norminv (alpha / 2) * sqrt (varLogitp); explogitplo = exp (logitp - halfwidth); explogitpup = exp (logitp + halfwidth); plo = explogitplo ./ (1 + explogitplo); pup = explogitpup ./ (1 + explogitpup); varargout{2} = plo; varargout{3} = pup; endif endfunction ## Compute 1st derivative of the incomplete Gamma function function dy = dgammainc (x, k) ## Initialize return variables dy = nan (size (x)); ## Use approximation for K > 2^20 ulim = 2^20; is_lim = find (k > ulim); if (! isempty (is_lim)) x(is_lim) = max (ulim - 1/3 + sqrt (ulim ./ k(is_lim)) .* ... (x(is_lim) - (k(is_lim) - 1/3)), 0); k(is_lim) = ulim; endif ## For x < k+1 is_lo = find (x < k + 1 & x != 0); if (! isempty (is_lo)) x_lo = x(is_lo); k_lo = k(is_lo); k_1 = k_lo; step = 1; d1st = 0; stsum = step; d1sum = d1st; while norm (step, "inf") >= 100 * eps (norm (stsum, "inf")) k_1 += 1; step = step .* x_lo ./ k_1; d1st = (d1st .* x_lo - step) ./ k_1; stsum = stsum + step; d1sum = d1sum + d1st; endwhile fklo = exp (-x_lo + k_lo .* log (x_lo) - gammaln (k_lo + 1)); ## Compute 1st derivative dlogfklo = (log (x_lo) - psi (k_lo + 1)); d1fklo = fklo .* dlogfklo; d1y_lo = d1fklo .* stsum + fklo .* d1sum; dy(is_lo) = d1y_lo; endif ## For x >= k+1 is_hi = find (x >= k+1); if (! isempty (is_hi)) x_hi = x(is_hi); k_hi = k(is_hi); zc = 0; k0 = 0; k1 = k_hi; x0 = 1; x1 = x_hi; d1k0 = 0; d1k1 = 1; d1x0 = 0; d1x1 = 0; kx = k_hi ./ x_hi; d1kx = 1 ./ x_hi; d2kx = 0; start = 1; while norm (d2kx - start, "Inf") > 100 * eps (norm (d2kx, "Inf")) rescale = 1 ./ x1; zc += 1; n_k = zc - k_hi; d1k0 = (d1k1 + d1k0 .* n_k - k0) .* rescale; d1x0 = (d1x1 + d1x0 .* n_k - x0) .* rescale; k0 = (k1 + k0 .* n_k) .* rescale; x0 = 1 + (x0 .* n_k) .* rescale; nrescale = zc .* rescale; d1k1 = d1k0 .* x_hi + d1k1 .* nrescale; d1x1 = d1x0 .* x_hi + d1x1 .* nrescale; k1 = k0 .* x_hi + k1 .* nrescale; x1 = x0 .* x_hi + zc; start = d2kx; kx = k1 ./ x1; d1kx = (d1k1 - kx .* d1x1) ./ x1; endwhile fkhi = exp (-x_hi + k_hi .* log (x_hi) - gammaln (k_hi+1)); ## Compute 1st derivative dlogfkhi = (log (x_hi) - psi (k_hi + 1)); d1fkhi = fkhi .* dlogfkhi; d1y_hi = d1fkhi .* kx + fkhi .* d1kx; dy(is_hi) = -d1y_hi; endif ## Handle x == 0 is_x0 = find (x == 0); if (! isempty (is_x0)) dy(is_x0) = 0; endif ## Handle k == 0 is_k0 = find (k == 0); if (! isempty (is_k0)) is_k0x0 = find (k == 0 & x == 0); dy(is_k0x0) = -Inf; endif endfunction %!demo %! ## Plot various CDFs from the Gamma distribution %! x = 0:0.01:20; %! p1 = gamcdf (x, 1, 2); %! p2 = gamcdf (x, 2, 2); %! p3 = gamcdf (x, 3, 2); %! p4 = gamcdf (x, 5, 1); %! p5 = gamcdf (x, 9, 0.5); %! p6 = gamcdf (x, 7.5, 1); %! p7 = gamcdf (x, 0.5, 1); %! plot (x, p1, "-r", x, p2, "-g", x, p3, "-y", x, p4, "-m", ... %! x, p5, "-k", x, p6, "-b", x, p7, "-c") %! grid on %! legend ({"α = 1, θ = 2", "α = 2, θ = 2", "α = 3, θ = 2", ... %! "α = 5, θ = 1", "α = 9, θ = 0.5", "α = 7.5, θ = 1", ... %! "α = 0.5, θ = 1"}, "location", "southeast") %! title ("Gamma CDF") %! xlabel ("values in x") %! ylabel ("probability") ## Test output %!shared x, y, u %! x = [-1, 0, 0.5, 1, 2, Inf]; %! y = [0, gammainc(x(2:end), 1)]; %! u = [0, NaN, NaN, 1, 0.1353352832366127, 0]; %!assert (gamcdf (x, ones (1,6), ones (1,6)), y, eps) %!assert (gamcdf (x, ones (1,6), ones (1,6), []), y, eps) %!assert (gamcdf (x, 1, ones (1,6)), y, eps) %!assert (gamcdf (x, ones (1,6), 1), y, eps) %!assert (gamcdf (x, [0, -Inf, NaN, Inf, 1, 1], 1), [1, NaN, NaN, 0, y(5:6)], eps) %!assert (gamcdf (x, [0, -Inf, NaN, Inf, 1, 1], 1, "upper"), u, eps) %!assert (gamcdf (x, 1, [0, -Inf, NaN, Inf, 1, 1]), [NaN, NaN, NaN, 0, y(5:6)], eps) %!assert (gamcdf ([x(1:2), NaN, x(4:6)], 1, 1), [y(1:2), NaN, y(4:6)], eps) ## Test class of input preserved %!assert (gamcdf ([x, NaN], 1, 1), [y, NaN]) %!assert (gamcdf (single ([x, NaN]), 1, 1), single ([y, NaN]), eps ("single")) %!assert (gamcdf ([x, NaN], single (1), 1), single ([y, NaN]), eps ("single")) %!assert (gamcdf ([x, NaN], 1, single (1)), single ([y, NaN]), eps ("single")) ## Test input validation %!error gamcdf () %!error gamcdf (1) %!error gamcdf (1, 2, 3, 4, 5, 6, 7) %!error gamcdf (1, 2, 3, "uper") %!error gamcdf (1, 2, 3, 4, 5, "uper") %!error gamcdf (2, 3, 4, [1, 2]) %!error ... %! [p, plo, pup] = gamcdf (1, 2, 3) %!error ... %! [p, plo, pup] = gamcdf (1, 2, 3, "upper") %!error [p, plo, pup] = ... %! gamcdf (1, 2, 3, [1, 0; 0, 1], 0) %!error [p, plo, pup] = ... %! gamcdf (1, 2, 3, [1, 0; 0, 1], 1.22) %!error [p, plo, pup] = ... %! gamcdf (1, 2, 3, [1, 0; 0, 1], "alpha", "upper") %!error ... %! gamcdf (ones (3), ones (2), ones (2)) %!error ... %! gamcdf (ones (2), ones (3), ones (2)) %!error ... %! gamcdf (ones (2), ones (2), ones (3)) %!error gamcdf (i, 2, 2) %!error gamcdf (2, i, 2) %!error gamcdf (2, 2, i) %!error ... %! [p, plo, pup] = gamcdf (1, 2, 3, [1, 0; 0, -inf], 0.04) statistics-release-1.6.3/inst/dist_fun/gaminv.m000066400000000000000000000146041456127120000215630ustar00rootroot00000000000000## Copyright (C) 2012 Rik Wehbring ## Copyright (C) 1995-2016 Kurt Hornik ## Copyright (C) 2022-2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{x} =} gaminv (@var{p}, @var{k}, @var{theta}) ## ## Inverse of the Gamma cumulative distribution function (iCDF). ## ## For each element of @var{p}, compute the quantile (the inverse of the CDF) of ## the Gamma distribution with shape parameter @var{k} and scale parameter ## @var{theta}. The size of @var{x} is the common size of @var{p}, @var{k}, ## and @var{theta}. A scalar input functions as a constant matrix of the same ## size as the other inputs. ## ## There are two equivalent parameterizations in common use: ## @enumerate ## @item With a shape parameter @math{k} and a scale parameter @math{θ}, which ## is used by @code{gaminv}. ## @item With a shape parameter @math{α = k} and an inverse scale parameter ## @math{β = 1 / θ}, called a rate parameter. ## @end enumerate ## ## Further information about the Gamma distribution can be found at ## @url{https://en.wikipedia.org/wiki/Gamma_distribution} ## ## @seealso{gamcdf, gampdf, gamrnd, gamfit, gamlike, gamstat} ## @end deftypefn function x = gaminv (p, k, theta) ## Check for valid number of input arguments if (nargin < 3) error ("gaminv: function called with too few input arguments."); endif ## Check for common size of P, K, and THETA if (! isscalar (p) || ! isscalar (k) || ! isscalar (theta)) [retval, p, k, theta] = common_size (p, k, theta); if (retval > 0) error ("gaminv: P, K, and THETA must be of common size or scalars."); endif endif ## Check for P, K, and THETA being reals if (iscomplex (p) || iscomplex (k) || iscomplex (theta)) error ("gaminv: P, K, and THETA must not be complex."); endif ## Check for class type if (isa (p, "single") || isa (k, "single") || isa (theta, "single")) x = zeros (size (p), "single"); else x = zeros (size (p)); endif ## Force NaNs for out of range parameters is_nan = ((p < 0) | (p > 1) | isnan (p) ... | ! (k > 0) | ! (k < Inf) | ! (theta > 0) | ! (theta < Inf)); x(is_nan) = NaN; ## Handle edge cases is_inf = (p == 1) & (k > 0) & (k < Inf) & (theta > 0) & (theta < Inf); x(is_inf) = Inf; ## Handle all other valid cases is_valid = find ((p > 0) & (p < 1) & (k > 0) & ... (k < Inf) & (theta > 0) & (theta < Inf)); if (! isempty (is_valid)) if (! isscalar (k) || ! isscalar (theta)) k = k(is_valid); theta = theta(is_valid); y = k .* theta; else y = k * theta * ones (size (is_valid)); endif p = p(is_valid); ## Call GAMMAINCINV to find k root of GAMMAINC q = gammaincinv (p, k); tol = sqrt (eps (ones (1, 1, class(q)))); check_cdf = ((abs (gammainc (q, k) - p) ./ p) > tol); ## Check for any cdf being far off from tolerance if (any (check_cdf(:))) warning ("gaminv: calculation failed to converge for some values."); endif x(is_valid) = q .* theta; endif endfunction %!demo %! ## Plot various iCDFs from the Gamma distribution %! p = 0.001:0.001:0.999; %! x1 = gaminv (p, 1, 2); %! x2 = gaminv (p, 2, 2); %! x3 = gaminv (p, 3, 2); %! x4 = gaminv (p, 5, 1); %! x5 = gaminv (p, 9, 0.5); %! x6 = gaminv (p, 7.5, 1); %! x7 = gaminv (p, 0.5, 1); %! plot (p, x1, "-r", p, x2, "-g", p, x3, "-y", p, x4, "-m", ... %! p, x5, "-k", p, x6, "-b", p, x7, "-c") %! ylim ([0, 20]) %! grid on %! legend ({"α = 1, θ = 2", "α = 2, θ = 2", "α = 3, θ = 2", ... %! "α = 5, θ = 1", "α = 9, θ = 0.5", "α = 7.5, θ = 1", ... %! "α = 0.5, θ = 1"}, "location", "northwest") %! title ("Gamma iCDF") %! xlabel ("probability") %! ylabel ("x") ## Test output %!shared p %! p = [-1 0 0.63212055882855778 1 2]; %!assert (gaminv (p, ones (1,5), ones (1,5)), [NaN 0 1 Inf NaN], eps) %!assert (gaminv (p, 1, ones (1,5)), [NaN 0 1 Inf NaN], eps) %!assert (gaminv (p, ones (1,5), 1), [NaN 0 1 Inf NaN], eps) %!assert (gaminv (p, [1 -Inf NaN Inf 1], 1), [NaN NaN NaN NaN NaN]) %!assert (gaminv (p, 1, [1 -Inf NaN Inf 1]), [NaN NaN NaN NaN NaN]) %!assert (gaminv ([p(1:2) NaN p(4:5)], 1, 1), [NaN 0 NaN Inf NaN]) %!assert (gaminv ([p(1:2) NaN p(4:5)], 1, 1), [NaN 0 NaN Inf NaN]) ## Test for accuracy when p is small. Results compared to Matlab %!assert (gaminv (1e-16, 1, 1), 1e-16, eps) %!assert (gaminv (1e-16, 1, 2), 2e-16, eps) %!assert (gaminv (1e-20, 3, 5), 1.957434012161815e-06, eps) %!assert (gaminv (1e-15, 1, 1), 1e-15, eps) %!assert (gaminv (1e-35, 1, 1), 1e-35, eps) ## Test class of input preserved %!assert (gaminv ([p, NaN], 1, 1), [NaN 0 1 Inf NaN NaN], eps) %!assert (gaminv (single ([p, NaN]), 1, 1), single ([NaN 0 1 Inf NaN NaN]), ... %! eps ("single")) %!assert (gaminv ([p, NaN], single (1), 1), single ([NaN 0 1 Inf NaN NaN]), ... %! eps ("single")) %!assert (gaminv ([p, NaN], 1, single (1)), single ([NaN 0 1 Inf NaN NaN]), ... %! eps ("single")) ## Test input validation %!error gaminv () %!error gaminv (1) %!error gaminv (1,2) %!error ... %! gaminv (ones (3), ones (2), ones (2)) %!error ... %! gaminv (ones (2), ones (3), ones (2)) %!error ... %! gaminv (ones (2), ones (2), ones (3)) %!error gaminv (i, 2, 2) %!error gaminv (2, i, 2) %!error gaminv (2, 2, i) statistics-release-1.6.3/inst/dist_fun/gampdf.m000066400000000000000000000126341456127120000215410ustar00rootroot00000000000000## Copyright (C) 2012 Rik Wehbring ## Copyright (C) 1995-2016 Kurt Hornik ## Copyright (C) 2023 Andreas Bertsatos ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{y} =} gampdf (@var{x}, @var{k}, @var{theta}) ## ## Gamma probability density function (PDF). ## ## For each element of @var{x}, compute the probability density function (PDF) ## of the Gamma distribution with shape parameter @var{k} and scale parameter ## @var{theta}. The size of @var{y} is the common size of @var{x}, @var{k} and ## @var{theta}. A scalar input functions as a constant matrix of the same size ## as the other inputs. ## ## There are two equivalent parameterizations in common use: ## @enumerate ## @item With a shape parameter @math{k} and a scale parameter @math{θ}, which ## is used by @code{gampdf}. ## @item With a shape parameter @math{α = k} and an inverse scale parameter ## @math{β = 1 / θ}, called a rate parameter. ## @end enumerate ## ## Further information about the Gamma distribution can be found at ## @url{https://en.wikipedia.org/wiki/Gamma_distribution} ## ## @seealso{gamcdf, gaminv, gamrnd, gamfit, gamlike, gamstat} ## @end deftypefn function y = gampdf (x, k, theta) ## Check for valid number of input arguments if (nargin < 3) error ("gampdf: function called with too few input arguments."); endif ## Check for common size of X, K, and THETA if (! isscalar (k) || ! isscalar (theta)) [retval, x, k, theta] = common_size (x, k, theta); if (retval > 0) error ("gampdf: X, K, and THETA must be of common size or scalars."); endif endif ## Check for X, K, and THETA being reals if (iscomplex (x) || iscomplex (k) || iscomplex (theta)) error ("gampdf: X, K, and THETA must not be complex."); endif ## Check for class type if (isa (x, "single") || isa (k, "single") || isa (theta, "single")) y = zeros (size (x), "single"); else y = zeros (size (x)); endif ## Force NaNs for out of range parameters is_nan = ! (k > 0) | ! (theta > 0) | isnan (x); y(is_nan) = NaN; ## Handle all other valid cases v = (x >= 0) & (k > 0) & (k <= 1) & (theta > 0); if (isscalar (k) && isscalar (theta)) y(v) = (x(v) .^ (k - 1)) ... .* exp (- x(v) / theta) / gamma (k) / (theta ^ k); else y(v) = (x(v) .^ (k(v) - 1)) ... .* exp (- x(v) ./ theta(v)) ./ gamma (k(v)) ./ (theta(v) .^ k(v)); endif v = (x >= 0) & (k > 1) & (theta > 0); if (isscalar (k) && isscalar (theta)) y(v) = exp (- k * log (theta) + (k-1) * log (x(v)) - x(v) / theta - gammaln (k)); else y(v) = exp (- k(v) .* log (theta(v)) + (k(v)-1) .* log (x(v)) - x(v) ./ theta(v) - gammaln (k(v))); endif endfunction %!demo %! ## Plot various PDFs from the Gamma distribution %! x = 0:0.01:20; %! y1 = gampdf (x, 1, 2); %! y2 = gampdf (x, 2, 2); %! y3 = gampdf (x, 3, 2); %! y4 = gampdf (x, 5, 1); %! y5 = gampdf (x, 9, 0.5); %! y6 = gampdf (x, 7.5, 1); %! y7 = gampdf (x, 0.5, 1); %! plot (x, y1, "-r", x, y2, "-g", x, y3, "-y", x, y4, "-m", ... %! x, y5, "-k", x, y6, "-b", x, y7, "-c") %! grid on %! ylim ([0,0.5]) %! legend ({"α = 1, θ = 2", "α = 2, θ = 2", "α = 3, θ = 2", ... %! "α = 5, θ = 1", "α = 9, θ = 0.5", "α = 7.5, θ = 1", ... %! "α = 0.5, θ = 1"}, "location", "northeast") %! title ("Gamma PDF") %! xlabel ("values in x") %! ylabel ("density") ## Test output %!shared x, y %! x = [-1 0 0.5 1 Inf]; %! y = [0 exp(-x(2:end))]; %!assert (gampdf (x, ones (1,5), ones (1,5)), y) %!assert (gampdf (x, 1, ones (1,5)), y) %!assert (gampdf (x, ones (1,5), 1), y) %!assert (gampdf (x, [0 -Inf NaN Inf 1], 1), [NaN NaN NaN NaN y(5)]) %!assert (gampdf (x, 1, [0 -Inf NaN Inf 1]), [NaN NaN NaN 0 y(5)]) %!assert (gampdf ([x, NaN], 1, 1), [y, NaN]) ## Test class of input preserved %!assert (gampdf (single ([x, NaN]), 1, 1), single ([y, NaN])) %!assert (gampdf ([x, NaN], single (1), 1), single ([y, NaN])) %!assert (gampdf ([x, NaN], 1, single (1)), single ([y, NaN])) ## Test input validation %!error gampdf () %!error gampdf (1) %!error gampdf (1,2) %!error ... %! gampdf (ones (3), ones (2), ones (2)) %!error ... %! gampdf (ones (2), ones (3), ones (2)) %!error ... %! gampdf (ones (2), ones (2), ones (3)) %!error gampdf (i, 2, 2) %!error gampdf (2, i, 2) %!error gampdf (2, 2, i) statistics-release-1.6.3/inst/dist_fun/gamrnd.m000066400000000000000000000155211456127120000215510ustar00rootroot00000000000000## Copyright (C) 2012 Rik Wehbring ## Copyright (C) 1995-2016 Kurt Hornik ## Copyright (C) 2023 Andreas Bertsatos ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{r} =} gamrnd (@var{k}, @var{theta}) ## @deftypefnx {statistics} {@var{r} =} gamrnd (@var{k}, @var{theta}, @var{rows}) ## @deftypefnx {statistics} {@var{r} =} gamrnd (@var{k}, @var{theta}, @var{rows}, @var{cols}, @dots{}) ## @deftypefnx {statistics} {@var{r} =} gamrnd (@var{k}, @var{theta}, [@var{sz}]) ## ## Random arrays from the Gamma distribution. ## ## @code{@var{r} = gamrnd (@var{k}, @var{theta})} returns an array of random ## numbers chosen from the Gamma distribution with shape parameter @var{k} and ## scale parameter @var{theta}. The size of @var{r} is the common size of ## @var{k} and @var{theta}. A scalar input functions as a constant matrix of ## the same size as the other inputs. ## ## When called with a single size argument, @code{gamrnd} returns a square ## matrix with the dimension specified. When called with more than one scalar ## argument, the first two arguments are taken as the number of rows and columns ## and any further arguments specify additional matrix dimensions. The size may ## also be specified with a row vector of dimensions, @var{sz}. ## ## There are two equivalent parameterizations in common use: ## @enumerate ## @item With a shape parameter @math{k} and a scale parameter @math{θ}, which ## is used by @code{gamrnd}. ## @item With a shape parameter @math{α = k} and an inverse scale parameter ## @math{β = 1 / θ}, called a rate parameter. ## @end enumerate ## ## Further information about the Gamma distribution can be found at ## @url{https://en.wikipedia.org/wiki/Gamma_distribution} ## ## @seealso{gamcdf, gaminv, gampdf, gamfit, gamlike, gamstat} ## @end deftypefn function r = gamrnd (k, theta, varargin) ## Check for valid number of input arguments if (nargin < 2) error ("gamrnd: function called with too few input arguments."); endif ## Check for common size of K and THETA if (! isscalar (k) || ! isscalar (theta)) [retval, k, theta] = common_size (k, theta); if (retval > 0) error ("gamrnd: K and THETA must be of common size or scalars."); endif endif ## Check for K and THETA being reals if (iscomplex (k) || iscomplex (theta)) error ("gamrnd: K and THETA must not be complex."); endif ## Parse and check SIZE arguments if (nargin == 2) sz = size (k); elseif (nargin == 3) if (isscalar (varargin{1}) && varargin{1} >= 0 ... && varargin{1} == fix (varargin{1})) sz = [varargin{1}, varargin{1}]; elseif (isrow (varargin{1}) && all (varargin{1} >= 0) ... && all (varargin{1} == fix (varargin{1}))) sz = varargin{1}; elseif error (strcat (["gamrnd: SZ must be a scalar or a row vector"], ... [" of non-negative integers."])); endif elseif (nargin > 3) posint = cellfun (@(x) (! isscalar (x) || x < 0 || x != fix (x)), varargin); if (any (posint)) error ("gamrnd: dimensions must be non-negative integers."); endif sz = [varargin{:}]; endif ## Check that parameters match requested dimensions in size if (! isscalar (k) && ! isequal (size (k), sz)) error ("gamrnd: K and THETA must be scalars or of size SZ."); endif ## Check for class type if (isa (k, "single") || isa (theta, "single")) cls = "single"; else cls = "double"; endif ## Generate random sample from Gamma distribution if (isscalar (k) && isscalar (theta)) if ((k > 0) && (k < Inf) && (theta > 0) && (theta < Inf)) r = theta * randg (k, sz, cls); else r = NaN (sz, cls); endif else r = NaN (sz, cls); valid = (k > 0) & (k < Inf) & (theta > 0) & (theta < Inf); r(valid) = theta(valid) .* randg (k(valid), cls); endif endfunction ## Test output %!assert (size (gamrnd (1, 1)), [1 1]) %!assert (size (gamrnd (1, ones (2,1))), [2, 1]) %!assert (size (gamrnd (1, ones (2,2))), [2, 2]) %!assert (size (gamrnd (ones (2,1), 1)), [2, 1]) %!assert (size (gamrnd (ones (2,2), 1)), [2, 2]) %!assert (size (gamrnd (1, 1, 3)), [3, 3]) %!assert (size (gamrnd (1, 1, [4, 1])), [4, 1]) %!assert (size (gamrnd (1, 1, 4, 1)), [4, 1]) %!assert (size (gamrnd (1, 1, 4, 1, 5)), [4, 1, 5]) %!assert (size (gamrnd (1, 1, 0, 1)), [0, 1]) %!assert (size (gamrnd (1, 1, 1, 0)), [1, 0]) %!assert (size (gamrnd (1, 1, 1, 2, 0, 5)), [1, 2, 0, 5]) ## Test class of input preserved %!assert (class (gamrnd (1, 1)), "double") %!assert (class (gamrnd (1, single (1))), "single") %!assert (class (gamrnd (1, single ([1, 1]))), "single") %!assert (class (gamrnd (single (1), 1)), "single") %!assert (class (gamrnd (single ([1, 1]), 1)), "single") ## Test input validation %!error gamrnd () %!error gamrnd (1) %!error ... %! gamrnd (ones (3), ones (2)) %!error ... %! gamrnd (ones (2), ones (3)) %!error gamrnd (i, 2, 3) %!error gamrnd (1, i, 3) %!error ... %! gamrnd (1, 2, -1) %!error ... %! gamrnd (1, 2, 1.2) %!error ... %! gamrnd (1, 2, ones (2)) %!error ... %! gamrnd (1, 2, [2 -1 2]) %!error ... %! gamrnd (1, 2, [2 0 2.5]) %!error ... %! gamrnd (1, 2, 2, -1, 5) %!error ... %! gamrnd (1, 2, 2, 1.5, 5) %!error ... %! gamrnd (2, ones (2), 3) %!error ... %! gamrnd (2, ones (2), [3, 2]) %!error ... %! gamrnd (2, ones (2), 3, 2) statistics-release-1.6.3/inst/dist_fun/geocdf.m000066400000000000000000000123661456127120000215340ustar00rootroot00000000000000## Copyright (C) 2012 Rik Wehbring ## Copyright (C) 1995-2016 Kurt Hornik ## Copyright (C) 2023 Andreas Bertsatos ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{p} =} geocdf (@var{x}, @var{ps}) ## @deftypefnx {statistics} {@var{p} =} geocdf (@var{x}, @var{ps}, @qcode{"upper"}) ## ## Geometric cumulative distribution function (CDF). ## ## For each element of @var{x}, compute the cumulative distribution function ## (CDF) of the geometric distribution with probability of success parameter ## @var{ps}. The size of @var{p} is the common size of @var{x} and @var{ps}. ## A scalar input functions as a constant matrix of the same size as the other ## inputs. ## ## @code{@var{p} = geocdf (@var{x}, @var{ps}, "upper")} computes the upper tail ## probability of the geometric distribution with parameter @var{ps}, at the ## values in @var{x}. ## ## The geometric distribution models the number of failures (@var{x}) of a ## Bernoulli trial with probability @var{ps} before the first success. ## ## Further information about the geometric distribution can be found at ## @url{https://en.wikipedia.org/wiki/Geometric_distribution} ## ## @seealso{geoinv, geopdf, geornd, geofit, geostat} ## @end deftypefn function p = geocdf (x, ps, uflag) ## Check for valid number of input arguments if (nargin < 2) error ("geocdf: function called with too few input arguments."); endif ## Check for common size of X and PS if (! isscalar (x) || ! isscalar (ps)) [retval, x, ps] = common_size (x, ps); if (retval > 0) error ("geocdf: X and PS must be of common size or scalars."); endif endif ## Check for X and PS being reals if (iscomplex (x) || iscomplex (ps)) error ("geocdf: X and PS must not be complex."); endif ## Check for class type if (isa (x, "single") || isa (ps, "single")) p = zeros (size (x), "single"); else p = zeros (size (x)); endif ## Return NaN for out of range parameters k = isnan (x) | ! (ps >= 0) | ! (ps <= 1); p(k) = NaN; ## Return 1 for valid range parameters when X = Inf k = (x == Inf) & (ps >= 0) & (ps <= 1); p(k) = 1; ## Return 0 for X < 0 x(x < 0) = -1; ## Check for "upper" flag if (nargin > 2 && strcmpi (uflag, "upper")) uflag = true; elseif (nargin > 2 && ! strcmpi (uflag, "upper")) error ("geocdf: invalid argument for upper tail."); else uflag = false; endif ## Get valid instances k = (x >= 0) & (x < Inf) & (x == fix (x)) & (ps > 0) & (ps <= 1); ## Compute CDF if (uflag) if (any (k)) p(k) = betainc (ps(k), 1, (x(k)) + 1, "upper"); endif else if (isscalar (ps)) p(k) = 1 - ((1 - ps) .^ (x(k) + 1)); else p(k) = 1 - ((1 - ps(k)) .^ (x(k) + 1)); endif endif endfunction %!demo %! ## Plot various CDFs from the geometric distribution %! x = 0:10; %! p1 = geocdf (x, 0.2); %! p2 = geocdf (x, 0.5); %! p3 = geocdf (x, 0.7); %! plot (x, p1, "*b", x, p2, "*g", x, p3, "*r") %! grid on %! xlim ([0, 10]) %! legend ({"ps = 0.2", "ps = 0.5", "ps = 0.7"}, "location", "southeast") %! title ("Geometric CDF") %! xlabel ("values in x (number of failures)") %! ylabel ("probability") ## Test output %!test %! p = geocdf ([1, 2, 3, 4], 0.25); %! assert (p(1), 0.4375000000, 1e-14); %! assert (p(2), 0.5781250000, 1e-14); %! assert (p(3), 0.6835937500, 1e-14); %! assert (p(4), 0.7626953125, 1e-14); %!test %! p = geocdf ([1, 2, 3, 4], 0.25, "upper"); %! assert (p(1), 0.5625000000, 1e-14); %! assert (p(2), 0.4218750000, 1e-14); %! assert (p(3), 0.3164062500, 1e-14); %! assert (p(4), 0.2373046875, 1e-14); %!shared x, p %! x = [-1 0 1 Inf]; %! p = [0 0.5 0.75 1]; %!assert (geocdf (x, 0.5*ones (1,4)), p) %!assert (geocdf (x, 0.5), p) %!assert (geocdf (x, 0.5*[-1 NaN 4 1]), [NaN NaN NaN p(4)]) %!assert (geocdf ([x(1:2) NaN x(4)], 0.5), [p(1:2) NaN p(4)]) ## Test class of input preserved %!assert (geocdf ([x, NaN], 0.5), [p, NaN]) %!assert (geocdf (single ([x, NaN]), 0.5), single ([p, NaN])) %!assert (geocdf ([x, NaN], single (0.5)), single ([p, NaN])) ## Test input validation %!error geocdf () %!error geocdf (1) %!error ... %! geocdf (ones (3), ones (2)) %!error ... %! geocdf (ones (2), ones (3)) %!error geocdf (i, 2) %!error geocdf (2, i) %!error geocdf (2, 3, "tail") %!error geocdf (2, 3, 5) statistics-release-1.6.3/inst/dist_fun/geoinv.m000066400000000000000000000100431456127120000215620ustar00rootroot00000000000000## Copyright (C) 2012 Rik Wehbring ## Copyright (C) 1995-2016 Kurt Hornik ## Copyright (C) 2023 Andreas Bertsatos ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{x} =} geoinv (@var{p}, @var{ps}) ## ## Inverse of the geometric cumulative distribution function (iCDF). ## ## For each element of @var{p}, compute the quantile (the inverse of the CDF) of ## the geometric distribution with probability of success parameter @var{ps}. ## The size of @var{x} is the common size of @var{p} and @var{ps}. A scalar ## input functions as a constant matrix of the same size as the other inputs. ## ## The geometric distribution models the number of failures (@var{p}) of a ## Bernoulli trial with probability @var{ps} before the first success. ## ## Further information about the geometric distribution can be found at ## @url{https://en.wikipedia.org/wiki/Geometric_distribution} ## ## @seealso{geocdf, geopdf, geornd, geofit, geostat} ## @end deftypefn function x = geoinv (p, ps) ## Check for valid number of input arguments if (nargin < 2) error ("geoinv: function called with too few input arguments."); endif ## Check for common size of P and PS if (! isscalar (ps) || ! isscalar (ps)) [retval, p, ps] = common_size (p, ps); if (retval > 0) error ("geoinv: P and PS must be of common size or scalars."); endif endif ## Check for P and PS being reals if (iscomplex (p) || iscomplex (ps)) error ("geoinv: P and PS must not be complex."); endif ## Check for class type if (isa (p, "single") || isa (ps, "single")) x = NaN (size (p), "single"); else x = NaN (size (p)); endif ## Handle edge cases k = (p == 1) & (ps >= 0) & (ps <= 1); x(k) = Inf; ## Get valid instances k = (p >= 0) & (p < 1) & (ps > 0) & (ps <= 1); ## Compute iCDF if (isscalar (ps)) x(k) = max (ceil (log (1 - p(k)) / log (1 - ps)) - 1, 0); else x(k) = max (ceil (log (1 - p(k)) ./ log (1 - ps(k))) - 1, 0); endif endfunction %!demo %! ## Plot various iCDFs from the geometric distribution %! p = 0.001:0.001:0.999; %! x1 = geoinv (p, 0.2); %! x2 = geoinv (p, 0.5); %! x3 = geoinv (p, 0.7); %! plot (p, x1, "-b", p, x2, "-g", p, x3, "-r") %! grid on %! ylim ([0, 10]) %! legend ({"ps = 0.2", "ps = 0.5", "ps = 0.7"}, "location", "northwest") %! title ("Geometric iCDF") %! xlabel ("probability") %! ylabel ("values in x (number of failures)") ## Test output %!shared p %! p = [-1 0 0.75 1 2]; %!assert (geoinv (p, 0.5*ones (1,5)), [NaN 0 1 Inf NaN]) %!assert (geoinv (p, 0.5), [NaN 0 1 Inf NaN]) %!assert (geoinv (p, 0.5*[1 -1 NaN 4 1]), [NaN NaN NaN NaN NaN]) %!assert (geoinv ([p(1:2) NaN p(4:5)], 0.5), [NaN 0 NaN Inf NaN]) ## Test class of input preserved %!assert (geoinv ([p, NaN], 0.5), [NaN 0 1 Inf NaN NaN]) %!assert (geoinv (single ([p, NaN]), 0.5), single ([NaN 0 1 Inf NaN NaN])) %!assert (geoinv ([p, NaN], single (0.5)), single ([NaN 0 1 Inf NaN NaN])) ## Test input validation %!error geoinv () %!error geoinv (1) %!error ... %! geoinv (ones (3), ones (2)) %!error ... %! geoinv (ones (2), ones (3)) %!error ... %! geoinv (i, 2) %!error ... %! geoinv (2, i) statistics-release-1.6.3/inst/dist_fun/geopdf.m000066400000000000000000000072151456127120000215460ustar00rootroot00000000000000## Copyright (C) 2012 Rik Wehbring ## Copyright (C) 1995-2016 Kurt Hornik ## Copyright (C) 2023 Andreas Bertsatos ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{y} =} geopdf (@var{x}, @var{ps}) ## ## Geometric probability density function (PDF). ## ## For each element of @var{x}, compute the probability density function (PDF) ## of the geometric distribution with probability of success parameter @var{ps}. ## The size of @var{y} is the common size of @var{x} and @var{ps}. A scalar ## input functions as a constant matrix of the same size as the other inputs. ## ## The geometric distribution models the number of failures (@var{x}) of a ## Bernoulli trial with probability @var{ps} before the first success. ## ## Further information about the geometric distribution can be found at ## @url{https://en.wikipedia.org/wiki/Geometric_distribution} ## ## @seealso{geocdf, geoinv, geornd, geofit, geostat} ## @end deftypefn function y = geopdf (x, ps) ## Check for valid number of input arguments if (nargin < 2) error ("geopdf: function called with too few input arguments."); endif ## Check for common size of X and PS if (! isscalar (x) || ! isscalar (ps)) [retval, x, ps] = common_size (x, ps); if (retval > 0) error ("geopdf: X and PS must be of common size or scalars."); endif endif ## Check for X and PS being reals if (iscomplex (x) || iscomplex (ps)) error ("geopdf: X and PS must not be complex."); endif ## Check for class type if (isa (x, "single") || isa (ps, "single")) y = zeros (size (x), "single"); else y = zeros (size (x)); endif ## Return NaN for out of range parameters k = isnan (x) | (x == Inf) | !(ps >= 0) | !(ps <= 1); y(k) = NaN; ## Get valid instances k = (x >= 0) & (x < Inf) & (x == fix (x)) & (ps > 0) & (ps <= 1); ## Compute CDF if (isscalar (ps)) y(k) = ps * ((1 - ps) .^ x(k)); else y(k) = ps(k) .* ((1 - ps(k)) .^ x(k)); endif endfunction %!demo %! ## Plot various PDFs from the geometric distribution %! x = 0:10; %! y1 = geopdf (x, 0.2); %! y2 = geopdf (x, 0.5); %! y3 = geopdf (x, 0.7); %! plot (x, y1, "*b", x, y2, "*g", x, y3, "*r") %! grid on %! ylim ([0, 0.8]) %! legend ({"ps = 0.2", "ps = 0.5", "ps = 0.7"}, "location", "northeast") %! title ("Geometric PDF") %! xlabel ("values in x (number of failures)") %! ylabel ("density") ## Test output %!shared x, y %! x = [-1 0 1 Inf]; %! y = [0, 1/2, 1/4, NaN]; %!assert (geopdf (x, 0.5*ones (1,4)), y) %!assert (geopdf (x, 0.5), y) %!assert (geopdf (x, 0.5*[-1 NaN 4 1]), [NaN NaN NaN y(4)]) %!assert (geopdf ([x, NaN], 0.5), [y, NaN]) ## Test class of input preserved %!assert (geopdf (single ([x, NaN]), 0.5), single ([y, NaN]), 5*eps ("single")) %!assert (geopdf ([x, NaN], single (0.5)), single ([y, NaN]), 5*eps ("single")) ## Test input validation %!error geopdf () %!error geopdf (1) %!error geopdf (1,2,3) %!error geopdf (ones (3), ones (2)) %!error geopdf (ones (2), ones (3)) %!error geopdf (i, 2) %!error geopdf (2, i) statistics-release-1.6.3/inst/dist_fun/geornd.m000066400000000000000000000132061456127120000215550ustar00rootroot00000000000000## Copyright (C) 2012 Rik Wehbring ## Copyright (C) 1995-2016 Kurt Hornik ## Copyright (C) 2023 Andreas Bertsatos ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{r} =} geornd (@var{ps}) ## @deftypefnx {statistics} {@var{r} =} geornd (@var{ps}, @var{rows}) ## @deftypefnx {statistics} {@var{r} =} geornd (@var{ps}, @var{rows}, @var{cols}, @dots{}) ## @deftypefnx {statistics} {@var{r} =} geornd (@var{ps}, [@var{sz}]) ## ## Random arrays from the geometric distribution. ## ## @code{@var{r} = geornd (@var{ps})} returns an array of random numbers chosen ## from the Birnbaum-Saunders distribution with probability of success parameter ## @var{ps}. The size of @var{r} is the size of @var{ps}. ## ## When called with a single size argument, @code{geornd} returns a square ## matrix with the dimension specified. When called with more than one scalar ## argument, the first two arguments are taken as the number of rows and columns ## and any further arguments specify additional matrix dimensions. The size may ## also be specified with a row vector of dimensions, @var{sz}. ## ## The geometric distribution models the number of failures (@var{x}) of a ## Bernoulli trial with probability @var{ps} before the first success. ## ## Further information about the geometric distribution can be found at ## @url{https://en.wikipedia.org/wiki/Geometric_distribution} ## ## @seealso{geocdf, geoinv, geopdf, geofit, geostat} ## @end deftypefn function r = geornd (ps, varargin) ## Check for valid number of input arguments if (nargin < 1) error ("geornd: function called with too few input arguments."); endif ## Check for PS being reals if (iscomplex (ps)) error ("geornd: PS must not be complex."); endif ## Parse and check SIZE arguments if (nargin == 1) sz = size (ps); elseif (nargin == 2) if (isscalar (varargin{1}) && varargin{1} >= 0 ... && varargin{1} == fix (varargin{1})) sz = [varargin{1}, varargin{1}]; elseif (isrow (varargin{1}) && all (varargin{1} >= 0) ... && all (varargin{1} == fix (varargin{1}))) sz = varargin{1}; elseif error (strcat (["geornd: SZ must be a scalar or a row vector"], ... [" of non-negative integers."])); endif elseif (nargin > 2) posint = cellfun (@(x) (! isscalar (x) || x < 0 || x != fix (x)), varargin); if (any (posint)) error ("geornd: dimensions must be non-negative integers."); endif sz = [varargin{:}]; endif ## Check that parameter match requested dimensions in size if (! isscalar (ps) && ! isequal (size (ps), sz)) error ("geornd: PS must be scalar or of size SZ."); endif ## Check for class type if (isa (ps, "single")) cls = "single"; else cls = "double"; endif ## Generate random sample from geometric distribution if (isscalar (ps)) if (ps > 0 && ps < 1); r = floor (- rande (sz, cls) ./ log (1 - ps)); elseif (ps == 0) r = Inf (sz, cls); elseif (ps == 1) r = zeros (sz, cls); elseif (ps < 0 || ps > 1) r = NaN (sz, cls); endif else r = floor (- rande (sz, cls) ./ log (1 - ps)); k = ! (ps >= 0) | ! (ps <= 1); r(k) = NaN; k = (ps == 0); r(k) = Inf; endif endfunction ## Test output %!assert (size (geornd (0.5)), [1, 1]) %!assert (size (geornd (0.5*ones (2,1))), [2, 1]) %!assert (size (geornd (0.5*ones (2,2))), [2, 2]) %!assert (size (geornd (0.5, 3)), [3, 3]) %!assert (size (geornd (0.5, [4 1])), [4, 1]) %!assert (size (geornd (0.5, 4, 1)), [4, 1]) ## Test class of input preserved %!assert (class (geornd (0.5)), "double") %!assert (class (geornd (single (0.5))), "single") %!assert (class (geornd (single ([0.5 0.5]))), "single") %!assert (class (geornd (single (0))), "single") %!assert (class (geornd (single (1))), "single") ## Test input validation %!error geornd () %!error geornd (i) %!error ... %! geornd (1, -1) %!error ... %! geornd (1, 1.2) %!error ... %! geornd (1, ones (2)) %!error ... %! geornd (1, [2 -1 2]) %!error ... %! geornd (1, [2 0 2.5]) %!error ... %! geornd (ones (2), ones (2)) %!error ... %! geornd (1, 2, -1, 5) %!error ... %! geornd (1, 2, 1.5, 5) %!error geornd (ones (2,2), 3) %!error geornd (ones (2,2), [3, 2]) %!error geornd (ones (2,2), 2, 3) statistics-release-1.6.3/inst/dist_fun/gevcdf.m000066400000000000000000000170401456127120000215350ustar00rootroot00000000000000## Copyright (C) 2012 Nir Krakauer ## Copyright (C) 2023 Andreas Bertsatos ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{p} =} gevcdf (@var{x}, @var{k}, @var{sigma}, @var{mu}) ## @deftypefnx {statistics} {@var{p} =} gevcdf (@var{x}, @var{k}, @var{sigma}, @var{mu}, @qcode{"upper"}) ## ## Generalized extreme value (GEV) cumulative distribution function (CDF). ## ## For each element of @var{x}, compute the cumulative distribution function ## (CDF) of the GEV distribution with shape parameter @var{k}, scale parameter ## @var{sigma}, and location parameter @var{mu}. The size of @var{p} is the ## common size of @var{x}, @var{k}, @var{sigma}, and @var{mu}. A scalar input ## functions as a constant matrix of the same size as the other inputs. ## ## @code{[@dots{}] = gevcdf (@var{x}, @var{k}, @var{sigma}, @var{mu}, "upper")} ## computes the upper tail probability of the GEV distribution with parameters ## @var{k}, @var{sigma}, and @var{mu}, at the values in @var{x}. ## ## When @qcode{@var{k} < 0}, the GEV is the type III extreme value distribution. ## When @qcode{@var{k} > 0}, the GEV distribution is the type II, or Frechet, ## extreme value distribution. If @var{W} has a Weibull distribution as ## computed by the @code{wblcdf} function, then @qcode{-@var{W}} has a type III ## extreme value distribution and @qcode{1/@var{W}} has a type II extreme value ## distribution. In the limit as @var{k} approaches @qcode{0}, the GEV is the ## mirror image of the type I extreme value distribution as computed by the ## @code{evcdf} function. ## ## The mean of the GEV distribution is not finite when @qcode{@var{k} >= 1}, and ## the variance is not finite when @qcode{@var{k} >= 1/2}. The GEV distribution ## has positive density only for values of @var{x} such that ## @qcode{@var{k} * (@var{x} - @var{mu}) / @var{sigma} > -1}. ## ## Further information about the generalized extreme value distribution can be ## found at ## @url{https://en.wikipedia.org/wiki/Generalized_extreme_value_distribution} ## ## @subheading References ## @enumerate ## @item ## Rolf-Dieter Reiss and Michael Thomas. @cite{Statistical Analysis of Extreme ## Values with Applications to Insurance, Finance, Hydrology and Other Fields}. ## Chapter 1, pages 16-17, Springer, 2007. ## @end enumerate ## ## @seealso{gevinv, gevpdf, gevrnd, gevfit, gevlike, gevstat} ## @end deftypefn function p = gevcdf (x, k, sigma, mu, uflag) ## Check for valid number of input arguments if (nargin < 4) error ("gevcdf: function called with too few input arguments."); endif ## Check for valid "upper" flag if (nargin > 4) if (! strcmpi (uflag, "upper")) error ("gevcdf: invalid argument for upper tail."); else uflag = true; endif else uflag = false; endif ## Check for common size of X, K, SIGMA, and MU if (! isscalar (x) || ! isscalar (k) || ! isscalar (sigma) || ! isscalar (mu)) [err, x, k, sigma, mu] = common_size (x, k, sigma, mu); if (err > 0) error ("gevcdf: X, K, SIGMA, and MU must be of common size or scalars."); endif endif ## Check for X, K, SIGMA, and MU being reals if (iscomplex (x) || iscomplex (k) || iscomplex (sigma) || iscomplex (mu)) error ("gevcdf: X, K, SIGMA, and MU must not be complex."); endif ## Check for class type if (isa (x, "single") || isa (k, "single") ... || isa (sigma, "single") || isa (mu, "single")); is_class = "single"; else is_class = "double"; endif ## Prepare output p = zeros (size (x), is_class); ## Return NaN for out of range parameter SIGMA. sigma(sigma <= 0) = NaN; ## Calculate z z = (x - mu) ./ sigma; ## Process k == 0 k_0 = (abs(k) < eps); if (uflag) p(k_0) = -expm1 (-exp (-z(k_0))); else p(k_0) = exp (-exp (-z(k_0))); endif ## Process k != 0 k_0 = ! k_0; t = z .* k; if (uflag) p(k_0) = -expm1 (-exp (-(1 ./ k(k_0)) .* log1p (t(k_0)))); else p(k_0) = exp (-exp (-(1 ./ k(k_0)) .* log1p (t(k_0)))); endif ## Return 0 or 1 for 1 + k.*(x-mu)/sigma > 0 k_1 = k_0 & (t<=-1); t(k_1) = 0; if uflag == true p(k_1) = (k(k_1) >= 0); else p(k_1) = (k(k_1) < 0); endif endfunction %!demo %! ## Plot various CDFs from the generalized extreme value distribution %! x = -1:0.001:10; %! p1 = gevcdf (x, 1, 1, 1); %! p2 = gevcdf (x, 0.5, 1, 1); %! p3 = gevcdf (x, 1, 1, 5); %! p4 = gevcdf (x, 1, 2, 5); %! p5 = gevcdf (x, 1, 5, 5); %! p6 = gevcdf (x, 1, 0.5, 5); %! plot (x, p1, "-b", x, p2, "-g", x, p3, "-r", ... %! x, p4, "-c", x, p5, "-m", x, p6, "-k") %! grid on %! xlim ([-1, 10]) %! legend ({"ξ = 1, σ = 1, μ = 1", "ξ = 0.5, σ = 1, μ = 1", ... %! "ξ = 1, σ = 1, μ = 5", "ξ = 1, σ = 2, μ = 5", ... %! "ξ = 1, σ = 5, μ = 5", "ξ = 1, σ = 0.5, μ = 5"}, ... %! "location", "southeast") %! title ("Generalized extreme value CDF") %! xlabel ("values in x") %! ylabel ("probability") ## Test output %!test %! x = 0:0.5:2.5; %! sigma = 1:6; %! k = 1; %! mu = 0; %! p = gevcdf (x, k, sigma, mu); %! expected_p = [0.36788, 0.44933, 0.47237, 0.48323, 0.48954, 0.49367]; %! assert (p, expected_p, 0.001); %!test %! x = -0.5:0.5:2.5; %! sigma = 0.5; %! k = 1; %! mu = 0; %! p = gevcdf (x, k, sigma, mu); %! expected_p = [0, 0.36788, 0.60653, 0.71653, 0.77880, 0.81873, 0.84648]; %! assert (p, expected_p, 0.001); %!test # check for continuity for k near 0 %! x = 1; %! sigma = 0.5; %! k = -0.03:0.01:0.03; %! mu = 0; %! p = gevcdf (x, k, sigma, mu); %! expected_p = [0.88062, 0.87820, 0.87580, 0.87342, 0.87107, 0.86874, 0.86643]; %! assert (p, expected_p, 0.001); ## Test input validation %!error gevcdf () %!error gevcdf (1) %!error gevcdf (1, 2) %!error gevcdf (1, 2, 3) %!error ... %! gevcdf (1, 2, 3, 4, 5, 6) %!error gevcdf (1, 2, 3, 4, "tail") %!error gevcdf (1, 2, 3, 4, 5) %!error ... %! gevcdf (ones (3), ones (2), ones(2), ones(2)) %!error ... %! gevcdf (ones (2), ones (3), ones(2), ones(2)) %!error ... %! gevcdf (ones (2), ones (2), ones(3), ones(2)) %!error ... %! gevcdf (ones (2), ones (2), ones(2), ones(3)) %!error gevcdf (i, 2, 3, 4) %!error gevcdf (1, i, 3, 4) %!error gevcdf (1, 2, i, 4) %!error gevcdf (1, 2, 3, i) statistics-release-1.6.3/inst/dist_fun/gevinv.m000066400000000000000000000137021456127120000215760ustar00rootroot00000000000000## Copyright (C) 2012 Nir Krakauer ## Copyright (C) 2023 Andreas Bertsatos ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{x} =} gevinv (@var{p}, @var{k}, @var{sigma}, @var{mu}) ## ## Inverse of the generalized extreme value (GEV) cumulative distribution ## function (iCDF). ## ## For each element of @var{p}, compute the quantile (the inverse of the CDF) of ## the GEV distribution with shape parameter @var{k}, scale parameter ## @var{sigma}, and location parameter @var{mu}. The size of @var{p} is the ## common size of @var{x}, @var{k}, @var{sigma}, and @var{mu}. A scalar input ## functions as a constant matrix of the same size as the other inputs. ## ## When @qcode{@var{k} < 0}, the GEV is the type III extreme value distribution. ## When @qcode{@var{k} > 0}, the GEV distribution is the type II, or Frechet, ## extreme value distribution. If @var{W} has a Weibull distribution as ## computed by the @code{wblcdf} function, then @qcode{-@var{W}} has a type III ## extreme value distribution and @qcode{1/@var{W}} has a type II extreme value ## distribution. In the limit as @var{k} approaches @qcode{0}, the GEV is the ## mirror image of the type I extreme value distribution as computed by the ## @code{evcdf} function. ## ## The mean of the GEV distribution is not finite when @qcode{@var{k} >= 1}, and ## the variance is not finite when @qcode{@var{k} >= 1/2}. The GEV distribution ## has positive density only for values of @var{x} such that ## @qcode{@var{k} * (@var{x} - @var{mu}) / @var{sigma} > -1}. ## ## Further information about the generalized extreme value distribution can be ## found at ## @url{https://en.wikipedia.org/wiki/Generalized_extreme_value_distribution} ## ## @subheading References ## @enumerate ## @item ## Rolf-Dieter Reiss and Michael Thomas. @cite{Statistical Analysis of Extreme ## Values with Applications to Insurance, Finance, Hydrology and Other Fields}. ## Chapter 1, pages 16-17, Springer, 2007. ## @end enumerate ## ## @seealso{gevcdf, gevpdf, gevrnd, gevfit, gevlike, gevstat} ## @end deftypefn function x = gevinv (p, k, sigma, mu) ## Check for valid number of input arguments if (nargin < 4) error ("gevinv: function called with too few input arguments."); endif ## Check for common size of P, K, SIGMA, and MU [retval, p, k, sigma, mu] = common_size (p, k, sigma, mu); if (retval > 0) error ("gevinv: P, K, SIGMA, and MU must be of common size or scalars."); endif ## Check for P, K, SIGMA, and MU being reals if (iscomplex (p) || iscomplex (k) || iscomplex (sigma) || iscomplex (mu)) error ("gevinv: P, K, SIGMA, and MU must not be complex."); endif x = p; llP = log (-log (p)); kllP = k .* llP; ## Use the Taylor series expansion of the exponential to ## avoid roundoff error or dividing by zero when k is small ii = (abs(kllP) < 1E-4); x(ii) = mu(ii) - sigma(ii) .* llP(ii) .* (1 - kllP(ii) .* (1 - kllP(ii))); x(~ii) = mu(~ii) + (sigma(~ii) ./ k(~ii)) .* (exp(-kllP(~ii)) - 1); endfunction %!demo %! ## Plot various iCDFs from the generalized extreme value distribution %! p = 0.001:0.001:0.999; %! x1 = gevinv (p, 1, 1, 1); %! x2 = gevinv (p, 0.5, 1, 1); %! x3 = gevinv (p, 1, 1, 5); %! x4 = gevinv (p, 1, 2, 5); %! x5 = gevinv (p, 1, 5, 5); %! x6 = gevinv (p, 1, 0.5, 5); %! plot (p, x1, "-b", p, x2, "-g", p, x3, "-r", ... %! p, x4, "-c", p, x5, "-m", p, x6, "-k") %! grid on %! ylim ([-1, 10]) %! legend ({"ξ = 1, σ = 1, μ = 1", "ξ = 0.5, σ = 1, μ = 1", ... %! "ξ = 1, σ = 1, μ = 5", "ξ = 1, σ = 2, μ = 5", ... %! "ξ = 1, σ = 5, μ = 5", "ξ = 1, σ = 0.5, μ = 5"}, ... %! "location", "northwest") %! title ("Generalized extreme value iCDF") %! xlabel ("probability") %! ylabel ("values in x") ## Test output %!test %! p = 0.1:0.1:0.9; %! k = 0; %! sigma = 1; %! mu = 0; %! x = gevinv (p, k, sigma, mu); %! c = gevcdf(x, k, sigma, mu); %! assert (c, p, 0.001); %!test %! p = 0.1:0.1:0.9; %! k = 1; %! sigma = 1; %! mu = 0; %! x = gevinv (p, k, sigma, mu); %! c = gevcdf(x, k, sigma, mu); %! assert (c, p, 0.001); %!test %! p = 0.1:0.1:0.9; %! k = 0.3; %! sigma = 1; %! mu = 0; %! x = gevinv (p, k, sigma, mu); %! c = gevcdf(x, k, sigma, mu); %! assert (c, p, 0.001); ## Test input validation %!error gevinv () %!error gevinv (1) %!error gevinv (1, 2) %!error gevinv (1, 2, 3) %!error ... %! gevinv (ones (3), ones (2), ones(2), ones(2)) %!error ... %! gevinv (ones (2), ones (3), ones(2), ones(2)) %!error ... %! gevinv (ones (2), ones (2), ones(3), ones(2)) %!error ... %! gevinv (ones (2), ones (2), ones(2), ones(3)) %!error gevinv (i, 2, 3, 4) %!error gevinv (1, i, 3, 4) %!error gevinv (1, 2, i, 4) %!error gevinv (1, 2, 3, i) statistics-release-1.6.3/inst/dist_fun/gevpdf.m000066400000000000000000000142541456127120000215560ustar00rootroot00000000000000## Copyright (C) 2012 Nir Krakauer ## Copyright (C) 2023 Andreas Bertsatos ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{y} =} gevpdf (@var{x}, @var{k}, @var{sigma}, @var{mu}) ## ## Generalized extreme value (GEV) probability density function (PDF). ## ## For each element of @var{x}, compute the probability density function (PDF) ## of the GEV distribution with shape parameter @var{k}, scale parameter ## @var{sigma}, and location parameter @var{mu}. The size of @var{y} is the ## common size of @var{x}, @var{k}, @var{sigma}, and @var{mu}. A scalar input ## functions as a constant matrix of the same size as the other inputs. ## ## When @qcode{@var{k} < 0}, the GEV is the type III extreme value distribution. ## When @qcode{@var{k} > 0}, the GEV distribution is the type II, or Frechet, ## extreme value distribution. If @var{W} has a Weibull distribution as ## computed by the @code{wblcdf} function, then @qcode{-@var{W}} has a type III ## extreme value distribution and @qcode{1/@var{W}} has a type II extreme value ## distribution. In the limit as @var{k} approaches @qcode{0}, the GEV is the ## mirror image of the type I extreme value distribution as computed by the ## @code{evcdf} function. ## ## The mean of the GEV distribution is not finite when @qcode{@var{k} >= 1}, and ## the variance is not finite when @qcode{@var{k} >= 1/2}. The GEV distribution ## has positive density only for values of @var{x} such that ## @qcode{@var{k} * (@var{x} - @var{mu}) / @var{sigma} > -1}. ## ## Further information about the generalized extreme value distribution can be ## found at ## @url{https://en.wikipedia.org/wiki/Generalized_extreme_value_distribution} ## ## @subheading References ## @enumerate ## @item ## Rolf-Dieter Reiss and Michael Thomas. @cite{Statistical Analysis of Extreme ## Values with Applications to Insurance, Finance, Hydrology and Other Fields}. ## Chapter 1, pages 16-17, Springer, 2007. ## @end enumerate ## ## @seealso{gevcdf, gevinv, gevrnd, gevfit, gevlike, gevstat} ## @end deftypefn function y = gevpdf (x, k, sigma, mu) ## Check for valid number of input arguments if (nargin < 4) error ("gevpdf: function called with too few input arguments."); endif ## Check for common size of X, K, SIGMA, and MU [retval, x, k, sigma, mu] = common_size (x, k, sigma, mu); if (retval > 0) error ("gevpdf: X, K, SIGMA, and MU must be of common size or scalars."); endif ## Check for X, K, SIGMA, and MU being reals if (iscomplex (x) || iscomplex (k) || iscomplex (sigma) || iscomplex (mu)) error ("gevpdf: X, K, SIGMA, and MU must not be complex."); endif z = 1 + k .* (x - mu) ./ sigma; ## Calculate generalized extreme value PDF y = exp(-(z .^ (-1 ./ k))) .* (z .^ (-1 - 1 ./ k)) ./ sigma; y(z <= 0) = 0; ## Use a different formula if k is very close to zero inds = (abs (k) < (eps^0.7)); if (any (inds)) z = (mu(inds) - x(inds)) ./ sigma(inds); y(inds) = exp (z - exp (z)) ./ sigma(inds); endif endfunction %!demo %! ## Plot various PDFs from the generalized extreme value distribution %! x = -1:0.001:10; %! y1 = gevpdf (x, 1, 1, 1); %! y2 = gevpdf (x, 0.5, 1, 1); %! y3 = gevpdf (x, 1, 1, 5); %! y4 = gevpdf (x, 1, 2, 5); %! y5 = gevpdf (x, 1, 5, 5); %! y6 = gevpdf (x, 1, 0.5, 5); %! plot (x, y1, "-b", x, y2, "-g", x, y3, "-r", ... %! x, y4, "-c", x, y5, "-m", x, y6, "-k") %! grid on %! xlim ([-1, 10]) %! ylim ([0, 1.1]) %! legend ({"ξ = 1, σ = 1, μ = 1", "ξ = 0.5, σ = 1, μ = 1", ... %! "ξ = 1, σ = 1, μ = 5", "ξ = 1, σ = 2, μ = 5", ... %! "ξ = 1, σ = 5, μ = 5", "ξ = 1, σ = 0.5, μ = 5"}, ... %! "location", "northeast") %! title ("Generalized extreme value PDF") %! xlabel ("values in x") %! ylabel ("density") ## Test output %!test %! x = 0:0.5:2.5; %! sigma = 1:6; %! k = 1; %! mu = 0; %! y = gevpdf (x, k, sigma, mu); %! expected_y = [0.367879 0.143785 0.088569 0.063898 0.049953 0.040997]; %! assert (y, expected_y, 0.001); %!test %! x = -0.5:0.5:2.5; %! sigma = 0.5; %! k = 1; %! mu = 0; %! y = gevpdf (x, k, sigma, mu); %! expected_y = [0 0.735759 0.303265 0.159229 0.097350 0.065498 0.047027]; %! assert (y, expected_y, 0.001); %!test # check for continuity for k near 0 %! x = 1; %! sigma = 0.5; %! k = -0.03:0.01:0.03; %! mu = 0; %! y = gevpdf (x, k, sigma, mu); %! expected_y = [0.23820 0.23764 0.23704 0.23641 0.23576 0.23508 0.23438]; %! assert (y, expected_y, 0.001); ## Test input validation %!error gevpdf () %!error gevpdf (1) %!error gevpdf (1, 2) %!error gevpdf (1, 2, 3) %!error ... %! gevpdf (ones (3), ones (2), ones(2), ones(2)) %!error ... %! gevpdf (ones (2), ones (3), ones(2), ones(2)) %!error ... %! gevpdf (ones (2), ones (2), ones(3), ones(2)) %!error ... %! gevpdf (ones (2), ones (2), ones(2), ones(3)) %!error gevpdf (i, 2, 3, 4) %!error gevpdf (1, i, 3, 4) %!error gevpdf (1, 2, i, 4) %!error gevpdf (1, 2, 3, i) statistics-release-1.6.3/inst/dist_fun/gevrnd.m000066400000000000000000000175441456127120000215750ustar00rootroot00000000000000## Copyright (C) 2012 Nir Krakauer ## Copyright (C) 2023 Andreas Bertsatos ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{r} =} gevrnd (@var{k}, @var{sigma}, @var{mu}) ## @deftypefnx {statistics} {@var{r} =} gevrnd (@var{k}, @var{sigma}, @var{mu}, @var{rows}) ## @deftypefnx {statistics} {@var{r} =} gevrnd (@var{k}, @var{sigma}, @var{mu}, @var{rows}, @var{cols}, @dots{}) ## @deftypefnx {statistics} {@var{r} =} gevrnd (@var{k}, @var{sigma}, @var{mu}, [@var{sz}]) ## ## Random arrays from the generalized extreme value (GEV) distribution. ## ## @code{@var{r} = gevrnd (@var{k}, @var{sigma}, @var{mu}} returns an array of ## random numbers chosen from the GEV distribution with shape parameter @var{k}, ## scale parameter @var{sigma}, and location parameter @var{mu}. The size of ## @var{r} is the common size of @var{k}, @var{sigma}, and @var{mu}. A scalar ## input functions as a constant matrix of the same size as the other inputs. ## ## When called with a single size argument, @code{gevrnd} returns a square ## matrix with the dimension specified. When called with more than one scalar ## argument, the first two arguments are taken as the number of rows and columns ## and any further arguments specify additional matrix dimensions. The size may ## also be specified with a row vector of dimensions, @var{sz}. ## ## When @qcode{@var{k} < 0}, the GEV is the type III extreme value distribution. ## When @qcode{@var{k} > 0}, the GEV distribution is the type II, or Frechet, ## extreme value distribution. If @var{W} has a Weibull distribution as ## computed by the @code{wblcdf} function, then @qcode{-@var{W}} has a type III ## extreme value distribution and @qcode{1/@var{W}} has a type II extreme value ## distribution. In the limit as @var{k} approaches @qcode{0}, the GEV is the ## mirror image of the type I extreme value distribution as computed by the ## @code{evcdf} function. ## ## The mean of the GEV distribution is not finite when @qcode{@var{k} >= 1}, and ## the variance is not finite when @qcode{@var{k} >= 1/2}. The GEV distribution ## has positive density only for values of @var{x} such that ## @qcode{@var{k} * (@var{x} - @var{mu}) / @var{sigma} > -1}. ## ## Further information about the generalized extreme value distribution can be ## found at ## @url{https://en.wikipedia.org/wiki/Generalized_extreme_value_distribution} ## ## @subheading References ## @enumerate ## @item ## Rolf-Dieter Reiss and Michael Thomas. @cite{Statistical Analysis of Extreme ## Values with Applications to Insurance, Finance, Hydrology and Other Fields}. ## Chapter 1, pages 16-17, Springer, 2007. ## @end enumerate ## ## @seealso{gevcdf, gevinv, gevpdf, gevfit, gevlike, gevstat} ## @end deftypefn function r = gevrnd (k, sigma, mu, varargin) ## Check for valid number of input arguments if (nargin < 3) error ("gevrnd: function called with too few input arguments."); endif ## Check for common size of K, SIGMA, and MU if (! isscalar (k) || ! isscalar (sigma) || ! isscalar (mu)) [retval, k, sigma, mu] = common_size (k, sigma, mu); if (retval > 0) error ("gevrnd: K, SIGMA, and MU must be of common size or scalars."); endif endif ## Check for K, SIGMA, and MU being reals if (iscomplex (k) || iscomplex (sigma) || iscomplex (mu)) error ("gevrnd: K, SIGMA, and MU must not be complex."); endif ## Parse and check SIZE arguments if (nargin == 3) sz = size (k); elseif (nargin == 4) if (isscalar (varargin{1}) && varargin{1} >= 0 ... && varargin{1} == fix (varargin{1})) sz = [varargin{1}, varargin{1}]; elseif (isrow (varargin{1}) && all (varargin{1} >= 0) ... && all (varargin{1} == fix (varargin{1}))) sz = varargin{1}; elseif error (strcat (["gevrnd: SZ must be a scalar or a row vector"], ... [" of non-negative integers."])); endif elseif (nargin > 4) posint = cellfun (@(x) (! isscalar (x) || x < 0 || x != fix (x)), varargin); if (any (posint)) error ("gevrnd: dimensions must be non-negative integers."); endif sz = [varargin{:}]; endif ## Check that parameters match requested dimensions in size if (!isscalar (k) && ! isequal (size (k), sz)) error ("gevrnd: K, SIGMA, and MU must be scalars or of size SZ."); endif ## Check for class type if (isa (k, "single") || isa (sigma, "single") || isa (mu, "single")) cls = "single"; else cls = "double"; endif ## Generate random sample from Burr type XII distribution r = gevinv (rand(sz), k, sigma, mu); r = cast (r, cls); endfunction ## Test output %!assert(size (gevrnd (1,2,1)), [1, 1]); %!assert(size (gevrnd (ones(2,1), 2, 1)), [2, 1]); %!assert(size (gevrnd (ones(2,2), 2, 1)), [2, 2]); %!assert(size (gevrnd (1, 2*ones(2,1), 1)), [2, 1]); %!assert(size (gevrnd (1, 2*ones(2,2), 1)), [2, 2]); %!assert(size (gevrnd (1, 2, 1, 3)), [3, 3]); %!assert(size (gevrnd (1, 2, 1, [4 1])), [4, 1]); %!assert(size (gevrnd (1, 2, 1, 4, 1)), [4, 1]); ## Test class of input preserved %!assert (class (gevrnd (1,1,1)), "double") %!assert (class (gevrnd (single (1),1,1)), "single") %!assert (class (gevrnd (single ([1 1]),1,1)), "single") %!assert (class (gevrnd (1,single (1),1)), "single") %!assert (class (gevrnd (1,single ([1 1]),1)), "single") %!assert (class (gevrnd (1,1,single (1))), "single") %!assert (class (gevrnd (1,1,single ([1 1]))), "single") ## Test input validation %!error gevrnd () %!error gevrnd (1) %!error gevrnd (1, 2) %!error ... %! gevrnd (ones (3), ones (2), ones (2)) %!error ... %! gevrnd (ones (2), ones (3), ones (2)) %!error ... %! gevrnd (ones (2), ones (2), ones (3)) %!error gevrnd (i, 2, 3) %!error gevrnd (1, i, 3) %!error gevrnd (1, 2, i) %!error ... %! gevrnd (1, 2, 3, -1) %!error ... %! gevrnd (1, 2, 3, 1.2) %!error ... %! gevrnd (1, 2, 3, ones (2)) %!error ... %! gevrnd (1, 2, 3, [2 -1 2]) %!error ... %! gevrnd (1, 2, 3, [2 0 2.5]) %!error ... %! gevrnd (1, 2, 3, 2, -1, 5) %!error ... %! gevrnd (1, 2, 3, 2, 1.5, 5) %!error ... %! gevrnd (2, ones (2), 2, 3) %!error ... %! gevrnd (2, ones (2), 2, [3, 2]) %!error ... %! gevrnd (2, ones (2), 2, 3, 2) statistics-release-1.6.3/inst/dist_fun/gpcdf.m000066400000000000000000000265121456127120000213660ustar00rootroot00000000000000## Copyright (C) 1997-2015 Kurt Hornik ## Copyright (C) 2016 Dag Lyberg ## Copyright (C) 2018 John Donoghue ## Copyright (C) 2022-2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{p} =} gpcdf (@var{x}, @var{k}, @var{sigma}, @var{mu}) ## @deftypefnx {statistics} {@var{p} =} gpcdf (@var{x}, @var{k}, @var{sigma}, @var{mu}, @qcode{"upper"}) ## ## Generalized Pareto cumulative distribution function (CDF). ## ## For each element of @var{x}, compute the cumulative distribution function ## (CDF) of the generalized Pareto distribution with shape parameter @var{k}, ## scale parameter @var{sigma}, and location parameter @var{mu}. The size of ## @var{p} is the common size of @var{x}, @var{k}, @var{sigma}, and @var{mu}. ## A scalar input functions as a constant matrix of the same size as the other ## inputs. ## ## @code{[@dots{}] = gpcdf(@var{x}, @var{k}, @var{sigma}, @var{mu}, "upper")} ## computes the upper tail probability of the generalized Pareto distribution ## with parameters @var{k}, @var{sigma}, and @var{mu}, at the values in @var{x}. ## ## When @qcode{@var{k} = 0} and @qcode{@var{mu} = 0}, the Generalized Pareto CDF ## is equivalent to the exponential distribution. When @qcode{@var{k} > 0} and ## @code{@var{mu} = @var{k} / @var{k}} the Generalized Pareto is equivalent to ## the Pareto distribution. The mean of the Generalized Pareto is not finite ## when @qcode{@var{k} >= 1} and the variance is not finite when ## @qcode{@var{k} >= 1/2}. When @qcode{@var{k} >= 0}, the Generalized Pareto ## has positive density for @qcode{@var{x} > @var{mu}}, or, when ## @qcode{@var{mu} < 0}, for ## @qcode{0 <= (@var{x} - @var{mu}) / @var{sigma} <= -1 / @var{k}}. ## ## Further information about the generalized Pareto distribution can be found at ## @url{https://en.wikipedia.org/wiki/Generalized_Pareto_distribution} ## ## @seealso{gpinv, gppdf, gprnd, gpfit, gplike, gpstat} ## @end deftypefn function p = gpcdf (x, k, sigma, mu, uflag) ## Check for valid number of input arguments if (nargin < 4) error ("gpcdf: function called with too few input arguments."); endif ## Check for valid "upper" flag if (nargin > 4) if (! strcmpi (uflag, "upper")) error ("gpcdf: invalid argument for upper tail."); else uflag = true; endif else uflag = false; endif ## Check for common size of X, K, SIGMA, and MU if (! isscalar (x) || ! isscalar (k) || ! isscalar (sigma) || ! isscalar (mu)) [err, x, k, sigma, mu] = common_size (x, k, sigma, mu); if (err > 0) error ("gpcdf: X, K, SIGMA, and MU must be of common size or scalars."); endif endif ## Check for X, K, SIGMA, and MU being reals if (iscomplex (x) || iscomplex (k) || iscomplex (sigma) || iscomplex (mu)) error ("gpcdf: X, K, SIGMA, and MU must not be complex."); endif ## Check for class type if (isa (x, "single") || isa (k, "single") ... || isa (sigma, "single") || isa (mu, "single")); is_class = "single"; else is_class = "double"; endif ## Prepare output p = zeros (size (x), is_class); ## Return NaNs for out of range values of sigma parameter sigma(sigma <= 0) = NaN; ## Calculate (x-mu)/sigma => 0 and force zero below that z = (x - mu) ./ sigma; z(z < 0) = 0; ## Compute cases for SHAPE == 0 kz = (abs (k) < eps (is_class)); if (uflag) p(kz) = exp (-z(kz)); else p(kz) = -expm1 (-z(kz)); endif ## For SHAPE < 0, calculate 0 <= x/sigma <= -1/k and force zero below that t = z .* k; kt = (t <= -1 & k < -eps (is_class)); t(kt) = 0; ## Compute cases for SHAPE != 0 kz = ! kz; if (uflag) p(kz) = exp ((-1 ./ k(kz)) .* log1p (t(kz))); else p(kz) = -expm1 ((-1 ./ k(kz)) .* log1p (t(kz))); endif if (uflag) p(kt) = 0; else p(kt) = 1; endif ## For SHAPE == NaN force p = NaN p(isnan (k)) = NaN; endfunction %!demo %! ## Plot various CDFs from the generalized Pareto distribution %! x = 0:0.001:5; %! p1 = gpcdf (x, 1, 1, 0); %! p2 = gpcdf (x, 5, 1, 0); %! p3 = gpcdf (x, 20, 1, 0); %! p4 = gpcdf (x, 1, 2, 0); %! p5 = gpcdf (x, 5, 2, 0); %! p6 = gpcdf (x, 20, 2, 0); %! plot (x, p1, "-b", x, p2, "-g", x, p3, "-r", ... %! x, p4, "-c", x, p5, "-m", x, p6, "-k") %! grid on %! xlim ([0, 5]) %! legend ({"ξ = 1, σ = 1, μ = 0", "ξ = 5, σ = 1, μ = 0", ... %! "ξ = 20, σ = 1, μ = 0", "ξ = 1, σ = 2, μ = 0", ... %! "ξ = 5, σ = 2, μ = 0", "ξ = 20, σ = 2, μ = 0"}, ... %! "location", "northwest") %! title ("Generalized Pareto CDF") %! xlabel ("values in x") %! ylabel ("probability") ## Test output %!shared x, y1, y1u, y2, y2u, y3, y3u %! x = [-Inf, -1, 0, 1/2, 1, Inf]; %! y1 = [0, 0, 0, 0.3934693402873666, 0.6321205588285577, 1]; %! y1u = [1, 1, 1, 0.6065306597126334, 0.3678794411714423, 0]; %! y2 = [0, 0, 0, 1/3, 1/2, 1]; %! y2u = [1, 1, 1, 2/3, 1/2, 0]; %! y3 = [0, 0, 0, 1/2, 1, 1]; %! y3u = [1, 1, 1, 1/2, 0, 0]; %!assert (gpcdf (x, zeros (1,6), ones (1,6), zeros (1,6)), y1, eps) %!assert (gpcdf (x, 0, 1, zeros (1,6)), y1, eps) %!assert (gpcdf (x, 0, ones (1,6), 0), y1, eps) %!assert (gpcdf (x, zeros (1,6), 1, 0), y1, eps) %!assert (gpcdf (x, 0, 1, 0), y1, eps) %!assert (gpcdf (x, 0, 1, [0, 0, 0, NaN, 0, 0]), [y1(1:3), NaN, y1(5:6)], eps) %!assert (gpcdf (x, 0, [1, 1, 1, NaN, 1, 1], 0), [y1(1:3), NaN, y1(5:6)], eps) %!assert (gpcdf (x, [0, 0, 0, NaN, 0, 0], 1, 0), [y1(1:3), NaN, y1(5:6)], eps) %!assert (gpcdf ([x(1:3), NaN, x(5:6)], 0, 1, 0), [y1(1:3), NaN, y1(5:6)], eps) %!assert (gpcdf (x, zeros (1,6), ones (1,6), zeros (1,6), "upper"), y1u, eps) %!assert (gpcdf (x, 0, 1, zeros (1,6), "upper"), y1u, eps) %!assert (gpcdf (x, 0, ones (1,6), 0, "upper"), y1u, eps) %!assert (gpcdf (x, zeros (1,6), 1, 0, "upper"), y1u, eps) %!assert (gpcdf (x, 0, 1, 0, "upper"), y1u, eps) %!assert (gpcdf (x, ones (1,6), ones (1,6), zeros (1,6)), y2, eps) %!assert (gpcdf (x, 1, 1, zeros (1,6)), y2, eps) %!assert (gpcdf (x, 1, ones (1,6), 0), y2, eps) %!assert (gpcdf (x, ones (1,6), 1, 0), y2, eps) %!assert (gpcdf (x, 1, 1, 0), y2, eps) %!assert (gpcdf (x, 1, 1, [0, 0, 0, NaN, 0, 0]), [y2(1:3), NaN, y2(5:6)], eps) %!assert (gpcdf (x, 1, [1, 1, 1, NaN, 1, 1], 0), [y2(1:3), NaN, y2(5:6)], eps) %!assert (gpcdf (x, [1, 1, 1, NaN, 1, 1], 1, 0), [y2(1:3), NaN, y2(5:6)], eps) %!assert (gpcdf ([x(1:3), NaN, x(5:6)], 1, 1, 0), [y2(1:3), NaN, y2(5:6)], eps) %!assert (gpcdf (x, ones (1,6), ones (1,6), zeros (1,6), "upper"), y2u, eps) %!assert (gpcdf (x, 1, 1, zeros (1,6), "upper"), y2u, eps) %!assert (gpcdf (x, 1, ones (1,6), 0, "upper"), y2u, eps) %!assert (gpcdf (x, ones (1,6), 1, 0, "upper"), y2u, eps) %!assert (gpcdf (x, 1, 1, 0, "upper"), y2u, eps) %!assert (gpcdf (x, 1, 1, [0, 0, 0, NaN, 0, 0], "upper"), ... %! [y2u(1:3), NaN, y2u(5:6)], eps) %!assert (gpcdf (x, 1, [1, 1, 1, NaN, 1, 1], 0, "upper"), ... %! [y2u(1:3), NaN, y2u(5:6)], eps) %!assert (gpcdf (x, [1, 1, 1, NaN, 1, 1], 1, 0, "upper"), ... %! [y2u(1:3), NaN, y2u(5:6)], eps) %!assert (gpcdf ([x(1:3), NaN, x(5:6)], 1, 1, 0, "upper"), ... %! [y2u(1:3), NaN, y2u(5:6)], eps) %!assert (gpcdf (x, -ones (1,6), ones (1,6), zeros (1,6)), y3, eps) %!assert (gpcdf (x, -1, 1, zeros (1,6)), y3, eps) %!assert (gpcdf (x, -1, ones (1,6), 0), y3, eps) %!assert (gpcdf (x, -ones (1,6), 1, 0), y3, eps) %!assert (gpcdf (x, -1, 1, 0), y3, eps) %!assert (gpcdf (x, -1, 1, [0, 0, 0, NaN, 0, 0]), [y3(1:3), NaN, y3(5:6)], eps) %!assert (gpcdf (x, -1, [1, 1, 1, NaN, 1, 1], 0), [y3(1:3), NaN, y3(5:6)], eps) %!assert (gpcdf (x, [-1, -1, -1, NaN, -1, -1], 1, 0), [y3(1:3), NaN, y3(5:6)], eps) %!assert (gpcdf ([x(1:3), NaN, x(5:6)], -1, 1, 0), [y3(1:3), NaN, y3(5:6)], eps) %!assert (gpcdf (x, -ones (1,6), ones (1,6), zeros (1,6), "upper"), y3u, eps) %!assert (gpcdf (x, -1, 1, zeros (1,6), "upper"), y3u, eps) %!assert (gpcdf (x, -1, ones (1,6), 0, "upper"), y3u, eps) %!assert (gpcdf (x, -ones (1,6), 1, 0, "upper"), y3u, eps) %!assert (gpcdf (x, -1, 1, 0, "upper"), y3u, eps) %!assert (gpcdf (x, -1, 1, [0, 0, 0, NaN, 0, 0], "upper"), ... %! [y3u(1:3), NaN, y3u(5:6)], eps) %!assert (gpcdf (x, -1, [1, 1, 1, NaN, 1, 1], 0, "upper"), ... %! [y3u(1:3), NaN, y3u(5:6)], eps) %!assert (gpcdf (x, [-1, -1, -1, NaN, -1, -1], 1, 0, "upper"), ... %! [y3u(1:3), NaN, y3u(5:6)], eps) %!assert (gpcdf ([x(1:3), NaN, x(5:6)], -1, 1, 0, "upper"), ... %! [y3u(1:3), NaN, y3u(5:6)], eps) ## Test class of input preserved %!assert (gpcdf (single ([x, NaN]), 0, 1, 0), single ([y1, NaN]), eps("single")) %!assert (gpcdf ([x, NaN], 0, 1, single (0)), single ([y1, NaN]), eps("single")) %!assert (gpcdf ([x, NaN], 0, single (1), 0), single ([y1, NaN]), eps("single")) %!assert (gpcdf ([x, NaN], single (0), 1, 0), single ([y1, NaN]), eps("single")) %!assert (gpcdf (single ([x, NaN]), 1, 1, 0), single ([y2, NaN]), eps("single")) %!assert (gpcdf ([x, NaN], 1, 1, single (0)), single ([y2, NaN]), eps("single")) %!assert (gpcdf ([x, NaN], 1, single (1), 0), single ([y2, NaN]), eps("single")) %!assert (gpcdf ([x, NaN], single (1), 1, 0), single ([y2, NaN]), eps("single")) %!assert (gpcdf (single ([x, NaN]), -1, 1, 0), single ([y3, NaN]), eps("single")) %!assert (gpcdf ([x, NaN], -1, 1, single (0)), single ([y3, NaN]), eps("single")) %!assert (gpcdf ([x, NaN], -1, single (1), 0), single ([y3, NaN]), eps("single")) %!assert (gpcdf ([x, NaN], single (-1), 1, 0), single ([y3, NaN]), eps("single")) ## Test input validation %!error gpcdf () %!error gpcdf (1) %!error gpcdf (1, 2) %!error gpcdf (1, 2, 3) %!error gpcdf (1, 2, 3, 4, "tail") %!error gpcdf (1, 2, 3, 4, 5) %!error ... %! gpcdf (ones (3), ones (2), ones(2), ones(2)) %!error ... %! gpcdf (ones (2), ones (3), ones(2), ones(2)) %!error ... %! gpcdf (ones (2), ones (2), ones(3), ones(2)) %!error ... %! gpcdf (ones (2), ones (2), ones(2), ones(3)) %!error gpcdf (i, 2, 3, 4) %!error gpcdf (1, i, 3, 4) %!error gpcdf (1, 2, i, 4) %!error gpcdf (1, 2, 3, i) statistics-release-1.6.3/inst/dist_fun/gpinv.m000066400000000000000000000210071456127120000214200ustar00rootroot00000000000000## Copyright (C) 1997-2015 Kurt Hornik ## Copyright (C) 2016 Dag Lyberg ## Copyright (C) 2018 John Donoghue ## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{x} =} gpinv (@var{p}, @var{k}, @var{sigma}, @var{mu}) ## ## Inverse of the generalized Pareto cumulative distribution function (iCDF). ## ## For each element of @var{p}, compute the quantile (the inverse of the CDF) of ## the generalized Pareto distribution with shape parameter @var{k}, scale ## parameter @var{sigma}, and location parameter @var{mu}. The size of @var{x} ## is the common size of @var{p}, @var{k}, @var{sigma}, and @var{mu}. A scalar ## input functions as a constant matrix of the same size as the other inputs. ## ## When @qcode{@var{k} = 0} and @qcode{@var{mu} = 0}, the Generalized Pareto CDF ## is equivalent to the exponential distribution. When @qcode{@var{k} > 0} and ## @code{@var{mu} = @var{k} / @var{k}} the Generalized Pareto is equivalent to ## the Pareto distribution. The mean of the Generalized Pareto is not finite ## when @qcode{@var{k} >= 1} and the variance is not finite when ## @qcode{@var{k} >= 1/2}. When @qcode{@var{k} >= 0}, the Generalized Pareto ## has positive density for @qcode{@var{x} > @var{mu}}, or, when ## @qcode{@var{mu} < 0}, for ## @qcode{0 <= (@var{x} - @var{mu}) / @var{sigma} <= -1 / @var{k}}. ## ## Further information about the generalized Pareto distribution can be found at ## @url{https://en.wikipedia.org/wiki/Generalized_Pareto_distribution} ## ## @seealso{gpcdf, gppdf, gprnd, gpfit, gplike, gpstat} ## @end deftypefn function x = gpinv (p, k, sigma, mu) ## Check for valid number of input arguments if (nargin < 4) error ("gpinv: function called with too few input arguments."); endif ## Check for common size of P, K, SIGMA, and MU [retval, p, k, sigma, mu] = common_size (p, k, sigma, mu); if (retval > 0) error ("gpinv: P, K, SIGMA, and MU must be of common size or scalars."); endif ## Check for P, K, SIGMA, and MU being reals if (iscomplex (p) || iscomplex (k) || iscomplex (sigma) || iscomplex (mu)) error ("gpinv: P, K, SIGMA, and MU must not be complex."); endif ## Check for class type if (isa (p, "single") || isa (mu, "single") ... || isa (sigma, "single") || isa (k, "single")) x = zeros (size (p), "single"); else x = zeros (size (p)); endif ## Return NaNs for out of range values of sigma parameter kx = isnan (p) | ! (0 <= p) | ! (p <= 1) ... | ! (-Inf < mu) | ! (mu < Inf) ... | ! (sigma > 0) | ! (sigma < Inf) ... | ! (-Inf < k) | ! (k < Inf); x(kx) = NaN; kx = (0 <= p) & (p <= 1) & (-Inf < mu) & (mu < Inf) ... & (sigma > 0) & (sigma < Inf) & (-Inf < k) & (k < Inf); if (isscalar (mu) && isscalar (sigma) && isscalar (k)) if (k == 0) x(kx) = -log(1 - p(kx)); x(kx) = sigma * x(kx) + mu; elseif (k > 0) x(kx) = (1 - p(kx)).^(-k) - 1; x(kx) = (sigma / k) * x(kx) + mu; elseif (k < 0) x(kx) = (1 - p(kx)).^(-k) - 1; x(kx) = (sigma / k) * x(kx) + mu; end else j = kx & (k == 0); if (any (j)) x(j) = -log (1 - p(j)); x(j) = sigma(j) .* x(j) + mu(j); endif j = kx & (k > 0); if (any (j)) x(j) = (1 - p(j)).^(-k(j)) - 1; x(j) = (sigma(j) ./ k(j)) .* x(j) + mu(j); endif j = kx & (k < 0); if (any (j)) x(j) = (1 - p(j)).^(-k(j)) - 1; x(j) = (sigma(j) ./ k(j)) .* x(j) + mu(j); endif endif endfunction %!demo %! ## Plot various iCDFs from the generalized Pareto distribution %! p = 0.001:0.001:0.999; %! x1 = gpinv (p, 1, 1, 0); %! x2 = gpinv (p, 5, 1, 0); %! x3 = gpinv (p, 20, 1, 0); %! x4 = gpinv (p, 1, 2, 0); %! x5 = gpinv (p, 5, 2, 0); %! x6 = gpinv (p, 20, 2, 0); %! plot (p, x1, "-b", p, x2, "-g", p, x3, "-r", ... %! p, x4, "-c", p, x5, "-m", p, x6, "-k") %! grid on %! ylim ([0, 5]) %! legend ({"ξ = 1, σ = 1, μ = 0", "ξ = 5, σ = 1, μ = 0", ... %! "ξ = 20, σ = 1, μ = 0", "ξ = 1, σ = 2, μ = 0", ... %! "ξ = 5, σ = 2, μ = 0", "ξ = 20, σ = 2, μ = 0"}, ... %! "location", "southeast") %! title ("Generalized Pareto iCDF") %! xlabel ("probability") %! ylabel ("values in x") ## Test output %!shared p, y1, y2, y3 %! p = [-1, 0, 1/2, 1, 2]; %! y1 = [NaN, 0, 0.6931471805599453, Inf, NaN]; %! y2 = [NaN, 0, 1, Inf, NaN]; %! y3 = [NaN, 0, 1/2, 1, NaN]; %!assert (gpinv (p, zeros (1,5), ones (1,5), zeros (1,5)), y1) %!assert (gpinv (p, 0, 1, zeros (1,5)), y1) %!assert (gpinv (p, 0, ones (1,5), 0), y1) %!assert (gpinv (p, zeros (1,5), 1, 0), y1) %!assert (gpinv (p, 0, 1, 0), y1) %!assert (gpinv (p, 0, 1, [0, 0, NaN, 0, 0]), [y1(1:2), NaN, y1(4:5)]) %!assert (gpinv (p, 0, [1, 1, NaN, 1, 1], 0), [y1(1:2), NaN, y1(4:5)]) %!assert (gpinv (p, [0, 0, NaN, 0, 0], 1, 0), [y1(1:2), NaN, y1(4:5)]) %!assert (gpinv ([p(1:2), NaN, p(4:5)], 0, 1, 0), [y1(1:2), NaN, y1(4:5)]) %!assert (gpinv (p, ones (1,5), ones (1,5), zeros (1,5)), y2) %!assert (gpinv (p, 1, 1, zeros (1,5)), y2) %!assert (gpinv (p, 1, ones (1,5), 0), y2) %!assert (gpinv (p, ones (1,5), 1, 0), y2) %!assert (gpinv (p, 1, 1, 0), y2) %!assert (gpinv (p, 1, 1, [0, 0, NaN, 0, 0]), [y2(1:2), NaN, y2(4:5)]) %!assert (gpinv (p, 1, [1, 1, NaN, 1, 1], 0), [y2(1:2), NaN, y2(4:5)]) %!assert (gpinv (p, [1, 1, NaN, 1, 1], 1, 0), [y2(1:2), NaN, y2(4:5)]) %!assert (gpinv ([p(1:2), NaN, p(4:5)], 1, 1, 0), [y2(1:2), NaN, y2(4:5)]) %!assert (gpinv (p, -ones (1,5), ones (1,5), zeros (1,5)), y3) %!assert (gpinv (p, -1, 1, zeros (1,5)), y3) %!assert (gpinv (p, -1, ones (1,5), 0), y3) %!assert (gpinv (p, -ones (1,5), 1, 0), y3) %!assert (gpinv (p, -1, 1, 0), y3) %!assert (gpinv (p, -1, 1, [0, 0, NaN, 0, 0]), [y3(1:2), NaN, y3(4:5)]) %!assert (gpinv (p, -1, [1, 1, NaN, 1, 1], 0), [y3(1:2), NaN, y3(4:5)]) %!assert (gpinv (p, -[1, 1, NaN, 1, 1], 1, 0), [y3(1:2), NaN, y3(4:5)]) %!assert (gpinv ([p(1:2), NaN, p(4:5)], -1, 1, 0), [y3(1:2), NaN, y3(4:5)]) ## Test class of input preserved %!assert (gpinv (single ([p, NaN]), 0, 1, 0), single ([y1, NaN])) %!assert (gpinv ([p, NaN], 0, 1, single (0)), single ([y1, NaN])) %!assert (gpinv ([p, NaN], 0, single (1), 0), single ([y1, NaN])) %!assert (gpinv ([p, NaN], single (0), 1, 0), single ([y1, NaN])) %!assert (gpinv (single ([p, NaN]), 1, 1, 0), single ([y2, NaN])) %!assert (gpinv ([p, NaN], 1, 1, single (0)), single ([y2, NaN])) %!assert (gpinv ([p, NaN], 1, single (1), 0), single ([y2, NaN])) %!assert (gpinv ([p, NaN], single (1), 1, 0), single ([y2, NaN])) %!assert (gpinv (single ([p, NaN]), -1, 1, 0), single ([y3, NaN])) %!assert (gpinv ([p, NaN], -1, 1, single (0)), single ([y3, NaN])) %!assert (gpinv ([p, NaN], -1, single (1), 0), single ([y3, NaN])) %!assert (gpinv ([p, NaN], single (-1), 1, 0), single ([y3, NaN])) ## Test input validation %!error gpinv () %!error gpinv (1) %!error gpinv (1, 2) %!error gpinv (1, 2, 3) %!error ... %! gpinv (ones (3), ones (2), ones(2), ones(2)) %!error ... %! gpinv (ones (2), ones (3), ones(2), ones(2)) %!error ... %! gpinv (ones (2), ones (2), ones(3), ones(2)) %!error ... %! gpinv (ones (2), ones (2), ones(2), ones(3)) %!error gpinv (i, 2, 3, 4) %!error gpinv (1, i, 3, 4) %!error gpinv (1, 2, i, 4) %!error gpinv (1, 2, 3, i) statistics-release-1.6.3/inst/dist_fun/gppdf.m000066400000000000000000000216241456127120000214020ustar00rootroot00000000000000## Copyright (C) 2018 John Donoghue ## Copyright (C) 2016 Dag Lyberg ## Copyright (C) 1997-2015 Kurt Hornik ## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{y} =} gppdf (@var{x}, @var{k}, @var{sigma}, @var{mu}) ## ## Generalized Pareto probability density function (PDF). ## ## For each element of @var{x}, compute the probability density function (PDF) ## of the generalized Pareto distribution with shape parameter @var{k}, scale ## parameter @var{sigma}, and location parameter @var{mu}. The size of @var{y} ## is the common size of @var{p}, @var{k}, @var{sigma}, and @var{mu}. A scalar ## input functions as a constant matrix of the same size as the other inputs. ## ## When @qcode{@var{k} = 0} and @qcode{@var{mu} = 0}, the Generalized Pareto CDF ## is equivalent to the exponential distribution. When @qcode{@var{k} > 0} and ## @code{@var{mu} = @var{k} / @var{k}} the Generalized Pareto is equivalent to ## the Pareto distribution. The mean of the Generalized Pareto is not finite ## when @qcode{@var{k} >= 1} and the variance is not finite when ## @qcode{@var{k} >= 1/2}. When @qcode{@var{k} >= 0}, the Generalized Pareto ## has positive density for @qcode{@var{x} > @var{mu}}, or, when ## @qcode{@var{mu} < 0}, for ## @qcode{0 <= (@var{x} - @var{mu}) / @var{sigma} <= -1 / @var{k}}. ## ## Further information about the generalized Pareto distribution can be found at ## @url{https://en.wikipedia.org/wiki/Generalized_Pareto_distribution} ## ## @seealso{gpcdf, gpinv, gprnd, gpfit, gplike, gpstat} ## @end deftypefn function y = gppdf (x, k, sigma, mu) ## Check for valid number of input arguments if (nargin < 4) error ("gppdf: function called with too few input arguments."); endif ## Check for common size of X, K, SIGMA, and MU if (! isscalar (x) || ! isscalar (k) || ! isscalar (sigma) || ! isscalar (mu)) [err, x, k, sigma, mu] = common_size (x, k, sigma, mu); if (err > 0) error ("gppdf: X, K, SIGMA, and MU must be of common size or scalars."); endif endif ## Check for X, K, SIGMA, and MU being reals if (iscomplex (x) || iscomplex (k) || iscomplex (sigma) || iscomplex (mu)) error ("gppdf: X, K, SIGMA, and MU must not be complex."); endif ## Check for class type if (isa (x, "single") || isa (mu, "single") || isa (sigma, "single") ... || isa (k, "single")) y = zeros (size (x), "single"); else y = zeros (size (x)); endif ## Return NaNs for out of range values of sigma parameter ky = isnan (x) | ! (-Inf < mu) | ! (mu < Inf) | ... ! (sigma > 0) | ! (sigma < Inf) | ... ! (-Inf < k) | ! (k < Inf); y(ky) = NaN; ky = (-Inf < x) & (x < Inf) & (-Inf < mu) & (mu < Inf) & ... (sigma > 0) & (sigma < Inf) & (-Inf < k) & (k < Inf); if (isscalar (mu) && isscalar (sigma) && isscalar (k)) z = (x - mu) / sigma; j = ky & (k == 0) & (z >= 0); if (any (j)) y(j) = exp (-z(j)); endif j = ky & (k > 0) & (z >= 0); if (any (j)) y(j) = (k * z(j) + 1) .^ (-(k + 1) / k) ./ sigma; endif if (k < 0) j = ky & (k < 0) & (0 <= z) & (z <= -1. / k); if (any (j)) y(j) = (k * z(j) + 1) .^ (-(k + 1) / k) ./ sigma; endif endif else z = (x - mu) ./ sigma; j = ky & (k == 0) & (z >= 0); if (any (j)) y(j) = exp( -z(j)); endif j = ky & (k > 0) & (z >= 0); if (any (j)) y(j) = (k(j) .* z(j) + 1) .^ (-(k(j) + 1) ./ k(j)) ... ./ sigma(j); endif if (any (k < 0)) j = ky & (k < 0) & (0 <= z) & (z <= -1 ./ k); if (any (j)) y(j) = (k(j) .* z(j) + 1) .^ (-(k(j) + 1) ./ k(j)) ... ./ sigma(j); endif endif endif endfunction %!demo %! ## Plot various PDFs from the generalized Pareto distribution %! x = 0:0.001:5; %! y1 = gppdf (x, 1, 1, 0); %! y2 = gppdf (x, 5, 1, 0); %! y3 = gppdf (x, 20, 1, 0); %! y4 = gppdf (x, 1, 2, 0); %! y5 = gppdf (x, 5, 2, 0); %! y6 = gppdf (x, 20, 2, 0); %! plot (x, y1, "-b", x, y2, "-g", x, y3, "-r", ... %! x, y4, "-c", x, y5, "-m", x, y6, "-k") %! grid on %! xlim ([0, 5]) %! ylim ([0, 1]) %! legend ({"ξ = 1, σ = 1, μ = 0", "ξ = 5, σ = 1, μ = 0", ... %! "ξ = 20, σ = 1, μ = 0", "ξ = 1, σ = 2, μ = 0", ... %! "ξ = 5, σ = 2, μ = 0", "ξ = 20, σ = 2, μ = 0"}, ... %! "location", "northeast") %! title ("Generalized Pareto PDF") %! xlabel ("values in x") %! ylabel ("density") ## Test output %!shared x, y1, y2, y3 %! x = [-Inf, -1, 0, 1/2, 1, Inf]; %! y1 = [0, 0, 1, 0.6065306597126334, 0.36787944117144233, 0]; %! y2 = [0, 0, 1, 4/9, 1/4, 0]; %! y3 = [0, 0, 1, 1, 1, 0]; %!assert (gppdf (x, zeros (1,6), ones (1,6), zeros (1,6)), y1, eps) %!assert (gppdf (x, 0, 1, zeros (1,6)), y1, eps) %!assert (gppdf (x, 0, ones (1,6), 0), y1, eps) %!assert (gppdf (x, zeros (1,6), 1, 0), y1, eps) %!assert (gppdf (x, 0, 1, 0), y1, eps) %!assert (gppdf (x, 0, 1, [0, 0, 0, NaN, 0, 0]), [y1(1:3), NaN, y1(5:6)]) %!assert (gppdf (x, 0, [1, 1, 1, NaN, 1, 1], 0), [y1(1:3), NaN, y1(5:6)]) %!assert (gppdf (x, [0, 0, 0, NaN, 0, 0], 1, 0), [y1(1:3), NaN, y1(5:6)]) %!assert (gppdf ([x(1:3), NaN, x(5:6)], 0, 1, 0), [y1(1:3), NaN, y1(5:6)]) %!assert (gppdf (x, ones (1,6), ones (1,6), zeros (1,6)), y2, eps) %!assert (gppdf (x, 1, 1, zeros (1,6)), y2, eps) %!assert (gppdf (x, 1, ones (1,6), 0), y2, eps) %!assert (gppdf (x, ones (1,6), 1, 0), y2, eps) %!assert (gppdf (x, 1, 1, 0), y2, eps) %!assert (gppdf (x, 1, 1, [0, 0, 0, NaN, 0, 0]), [y2(1:3), NaN, y2(5:6)]) %!assert (gppdf (x, 1, [1, 1, 1, NaN, 1, 1], 0), [y2(1:3), NaN, y2(5:6)]) %!assert (gppdf (x, [1, 1, 1, NaN, 1, 1], 1, 0), [y2(1:3), NaN, y2(5:6)]) %!assert (gppdf ([x(1:3), NaN, x(5:6)], 1, 1, 0), [y2(1:3), NaN, y2(5:6)]) %!assert (gppdf (x, -ones (1,6), ones (1,6), zeros (1,6)), y3, eps) %!assert (gppdf (x, -1, 1, zeros (1,6)), y3, eps) %!assert (gppdf (x, -1, ones (1,6), 0), y3, eps) %!assert (gppdf (x, -ones (1,6), 1, 0), y3, eps) %!assert (gppdf (x, -1, 1, 0), y3, eps) %!assert (gppdf (x, -1, 1, [0, 0, 0, NaN, 0, 0]), [y3(1:3), NaN, y3(5:6)]) %!assert (gppdf (x, -1, [1, 1, 1, NaN, 1, 1], 0), [y3(1:3), NaN, y3(5:6)]) %!assert (gppdf (x, [-1, -1, -1, NaN, -1, -1], 1, 0), [y3(1:3), NaN, y3(5:6)]) %!assert (gppdf ([x(1:3), NaN, x(5:6)], -1, 1, 0), [y3(1:3), NaN, y3(5:6)]) ## Test class of input preserved %!assert (gppdf (single ([x, NaN]), 0, 1, 0), single ([y1, NaN])) %!assert (gppdf ([x, NaN], 0, 1, single (0)), single ([y1, NaN])) %!assert (gppdf ([x, NaN], 0, single (1), 0), single ([y1, NaN])) %!assert (gppdf ([x, NaN], single (0), 1, 0), single ([y1, NaN])) %!assert (gppdf (single ([x, NaN]), 1, 1, 0), single ([y2, NaN])) %!assert (gppdf ([x, NaN], 1, 1, single (0)), single ([y2, NaN])) %!assert (gppdf ([x, NaN], 1, single (1), 0), single ([y2, NaN])) %!assert (gppdf ([x, NaN], single (1), 1, 0), single ([y2, NaN])) %!assert (gppdf (single ([x, NaN]), -1, 1, 0), single ([y3, NaN])) %!assert (gppdf ([x, NaN], -1, 1, single (0)), single ([y3, NaN])) %!assert (gppdf ([x, NaN], -1, single (1), 0), single ([y3, NaN])) %!assert (gppdf ([x, NaN], single (-1), 1, 0), single ([y3, NaN])) ## Test input validation %!error gpcdf () %!error gpcdf (1) %!error gpcdf (1, 2) %!error gpcdf (1, 2, 3) %!error ... %! gpcdf (ones (3), ones (2), ones(2), ones(2)) %!error ... %! gpcdf (ones (2), ones (3), ones(2), ones(2)) %!error ... %! gpcdf (ones (2), ones (2), ones(3), ones(2)) %!error ... %! gpcdf (ones (2), ones (2), ones(2), ones(3)) %!error gpcdf (i, 2, 3, 4) %!error gpcdf (1, i, 3, 4) %!error gpcdf (1, 2, i, 4) %!error gpcdf (1, 2, 3, i) statistics-release-1.6.3/inst/dist_fun/gprnd.m000066400000000000000000000217741456127120000214220ustar00rootroot00000000000000## Copyright (C) 1995-2015 Kurt Hornik ## Copyright (C) 2016 Dag Lyberg ## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{r} =} gprnd (@var{k}, @var{sigma}, @var{mu}) ## @deftypefnx {statistics} {@var{r} =} gprnd (@var{k}, @var{sigma}, @var{mu}, @var{rows}) ## @deftypefnx {statistics} {@var{r} =} gprnd (@var{k}, @var{sigma}, @var{mu}, @var{rows}, @var{cols}, @dots{}) ## @deftypefnx {statistics} {@var{r} =} gprnd (@var{k}, @var{sigma}, @var{mu}, [@var{sz}]) ## ## Random arrays from the generalized Pareto distribution. ## ## @code{@var{r} = gprnd (@var{k}, @var{sigma}, @var{mu})} returns an array of ## random numbers chosen from the generalized Pareto distribution with shape ## parameter @var{k}, scale parameter @var{sigma}, and location parameter ## @var{mu}. The size of @var{r} is the common size of @var{k}, @var{sigma}, ## and @var{mu}. A scalar input functions as a constant matrix of the same size ## as the other inputs. ## ## When called with a single size argument, @code{gprnd} returns a square ## matrix with the dimension specified. When called with more than one scalar ## argument, the first two arguments are taken as the number of rows and columns ## and any further arguments specify additional matrix dimensions. The size may ## also be specified with a row vector of dimensions, @var{sz}. ## ## When @qcode{@var{k} = 0} and @qcode{@var{mu} = 0}, the Generalized Pareto CDF ## is equivalent to the exponential distribution. When @qcode{@var{k} > 0} and ## @code{@var{mu} = @var{k} / @var{k}} the Generalized Pareto is equivalent to ## the Pareto distribution. The mean of the Generalized Pareto is not finite ## when @qcode{@var{k} >= 1} and the variance is not finite when ## @qcode{@var{k} >= 1/2}. When @qcode{@var{k} >= 0}, the Generalized Pareto ## has positive density for @qcode{@var{x} > @var{mu}}, or, when ## @qcode{@var{mu} < 0}, for ## @qcode{0 <= (@var{x} - @var{mu}) / @var{sigma} <= -1 / @var{k}}. ## ## Further information about the generalized Pareto distribution can be found at ## @url{https://en.wikipedia.org/wiki/Generalized_Pareto_distribution} ## ## @seealso{gpcdf, gpinv, gppdf, gpfit, gplike, gpstat} ## @end deftypefn function r = gprnd (k, sigma, mu, varargin) ## Check for valid number of input arguments if (nargin < 3) error ("gprnd: function called with too few input arguments."); endif ## Check for common size of K, SIGMA, and MU if (! isscalar (k) || ! isscalar (sigma) || ! isscalar (mu)) [retval, k, sigma, mu] = common_size (k, sigma, mu); if (retval > 0) error ("gprnd: K, SIGMA, and MU must be of common size or scalars."); endif endif ## Check for K, SIGMA, and MU being reals if (iscomplex (k) || iscomplex (sigma) || iscomplex (mu)) error ("gprnd: K, SIGMA, and MU must not be complex."); endif ## Parse and check SIZE arguments if (nargin == 3) sz = size (k); elseif (nargin == 4) if (isscalar (varargin{1}) && varargin{1} >= 0 ... && varargin{1} == fix (varargin{1})) sz = [varargin{1}, varargin{1}]; elseif (isrow (varargin{1}) && all (varargin{1} >= 0) ... && all (varargin{1} == fix (varargin{1}))) sz = varargin{1}; elseif error (strcat (["gprnd: SZ must be a scalar or a row vector"], ... [" of non-negative integers."])); endif elseif (nargin > 4) posint = cellfun (@(x) (! isscalar (x) || x < 0 || x != fix (x)), varargin); if (any (posint)) error ("gprnd: dimensions must be non-negative integers."); endif sz = [varargin{:}]; endif ## Check that parameters match requested dimensions in size if (!isscalar (k) && ! isequal (size (k), sz)) error ("gprnd: K, SIGMA, and MU must be scalars or of size SZ."); endif ## Check for class type if (isa (k, "single") || isa (sigma, "single") || isa (mu, "single")) cls = "single"; else cls = "double"; endif ## Generate random sample from generalized Pareto distribution r = rand (sz, cls); ## Find valid parameters vr = (isfinite (r)) & (mu > -Inf) & (mu < Inf) ... & (sigma > 0) & (sigma < Inf) ... & (-Inf < k) & (k < Inf); ## Force invalid parameters to NaN r(! vr) = NaN; if (isscalar (k)) if (k == 0) r(vr) = mu - (sigma .* log (1 - r(vr))); else r(vr) = mu + ((sigma .* ((r(vr) .^ -k) - 1)) ./ k); endif else if (any (k == 0)) r(vr) = mu(vr) - (sigma(vr) .* log (1 - r(vr))); endif if (any (k < 0 | k > 0)) r(vr) = mu(vr) + ((sigma(vr) .* ((r(vr) .^ -k(vr)) - 1)) ./ k(vr)); endif endif endfunction ## Test output %!assert (size (gprnd (0, 1, 0)), [1, 1]) %!assert (size (gprnd (0, 1, zeros (2,1))), [2, 1]) %!assert (size (gprnd (0, 1, zeros (2,2))), [2, 2]) %!assert (size (gprnd (0, ones (2,1), 0)), [2, 1]) %!assert (size (gprnd (0, ones (2,2), 0)), [2, 2]) %!assert (size (gprnd (zeros (2,1), 1, 0)), [2, 1]) %!assert (size (gprnd (zeros (2,2), 1, 0)), [2, 2]) %!assert (size (gprnd (0, 1, 0, 3)), [3, 3]) %!assert (size (gprnd (0, 1, 0, [4 1])), [4, 1]) %!assert (size (gprnd (0, 1, 0, 4, 1)), [4, 1]) %!assert (size (gprnd (1,1,0)), [1, 1]) %!assert (size (gprnd (1, 1, zeros (2,1))), [2, 1]) %!assert (size (gprnd (1, 1, zeros (2,2))), [2, 2]) %!assert (size (gprnd (1, ones (2,1), 0)), [2, 1]) %!assert (size (gprnd (1, ones (2,2), 0)), [2, 2]) %!assert (size (gprnd (ones (2,1), 1, 0)), [2, 1]) %!assert (size (gprnd (ones (2,2), 1, 0)), [2, 2]) %!assert (size (gprnd (1, 1, 0, 3)), [3, 3]) %!assert (size (gprnd (1, 1, 0, [4 1])), [4, 1]) %!assert (size (gprnd (1, 1, 0, 4, 1)), [4, 1]) %!assert (size (gprnd (-1, 1, 0)), [1, 1]) %!assert (size (gprnd (-1, 1, zeros (2,1))), [2, 1]) %!assert (size (gprnd (1, -1, zeros (2,2))), [2, 2]) %!assert (size (gprnd (-1, ones (2,1), 0)), [2, 1]) %!assert (size (gprnd (-1, ones (2,2), 0)), [2, 2]) %!assert (size (gprnd (-ones (2,1), 1, 0)), [2, 1]) %!assert (size (gprnd (-ones (2,2), 1, 0)), [2, 2]) %!assert (size (gprnd (-1, 1, 0, 3)), [3, 3]) %!assert (size (gprnd (-1, 1, 0, [4, 1])), [4, 1]) %!assert (size (gprnd (-1, 1, 0, 4, 1)), [4, 1]) ## Test class of input preserved %!assert (class (gprnd (0, 1, 0)), "double") %!assert (class (gprnd (0, 1, single (0))), "single") %!assert (class (gprnd (0, 1, single ([0, 0]))), "single") %!assert (class (gprnd (0, single (1),0)), "single") %!assert (class (gprnd (0, single ([1, 1]),0)), "single") %!assert (class (gprnd (single (0), 1, 0)), "single") %!assert (class (gprnd (single ([0, 0]), 1, 0)), "single") ## Test input validation %!error gprnd () %!error gprnd (1) %!error gprnd (1, 2) %!error ... %! gprnd (ones (3), ones (2), ones (2)) %!error ... %! gprnd (ones (2), ones (3), ones (2)) %!error ... %! gprnd (ones (2), ones (2), ones (3)) %!error gprnd (i, 2, 3) %!error gprnd (1, i, 3) %!error gprnd (1, 2, i) %!error ... %! gprnd (1, 2, 3, -1) %!error ... %! gprnd (1, 2, 3, 1.2) %!error ... %! gprnd (1, 2, 3, ones (2)) %!error ... %! gprnd (1, 2, 3, [2 -1 2]) %!error ... %! gprnd (1, 2, 3, [2 0 2.5]) %!error ... %! gprnd (1, 2, 3, 2, -1, 5) %!error ... %! gprnd (1, 2, 3, 2, 1.5, 5) %!error ... %! gprnd (2, ones (2), 2, 3) %!error ... %! gprnd (2, ones (2), 2, [3, 2]) %!error ... %! gprnd (2, ones (2), 2, 3, 2) statistics-release-1.6.3/inst/dist_fun/gumbelcdf.m000066400000000000000000000222131456127120000222250ustar00rootroot00000000000000## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{p} =} gumbelcdf (@var{x}) ## @deftypefnx {statistics} {@var{p} =} gumbelcdf (@var{x}, @var{mu}) ## @deftypefnx {statistics} {@var{p} =} gumbelcdf (@var{x}, @var{mu}, @var{beta}) ## @deftypefnx {statistics} {@var{p} =} gumbelcdf (@dots{}, @qcode{"upper"}) ## @deftypefnx {statistics} {[@var{p}, @var{plo}, @var{pup}] =} gumbelcdf (@var{x}, @var{mu}, @var{beta}, @var{pcov}) ## @deftypefnx {statistics} {[@var{p}, @var{plo}, @var{pup}] =} gumbelcdf (@var{x}, @var{mu}, @var{beta}, @var{pcov}, @var{alpha}) ## @deftypefnx {statistics} {[@var{p}, @var{plo}, @var{pup}] =} gumbelcdf (@dots{}, @qcode{"upper"}) ## ## Gumbel cumulative distribution function (CDF). ## ## For each element of @var{x}, compute the cumulative distribution function ## (CDF) of the Gumbel distribution (also known as the extreme value or the type ## I generalized extreme value distribution) with location parameter @var{mu} ## and scale parameter @var{beta}. The size of @var{p} is the common size of ## @var{x}, @var{mu} and @var{beta}. A scalar input functions as a constant ## matrix of the same size as the other inputs. ## ## Default values are @var{mu} = 0 and @var{beta} = 1. ## ## When called with three output arguments, i.e. @code{[@var{p}, @var{plo}, ## @var{pup}]}, @code{gumbelcdf} computes the confidence bounds for @var{p} when ## the input parameters @var{mu} and @var{beta} are estimates. In such case, ## @var{pcov}, a @math{2x2} matrix containing the covariance matrix of the ## estimated parameters, is necessary. Optionally, @var{alpha}, which has a ## default value of 0.05, specifies the @qcode{100 * (1 - @var{alpha})} percent ## confidence bounds. @var{plo} and @var{pup} are arrays of the same size as ## @var{p} containing the lower and upper confidence bounds. ## ## @code{[@dots{}] = gumbelcdf (@dots{}, "upper")} computes the upper tail ## probability of the Gumbel distribution with parameters @var{mu} and ## @var{beta}, at the values in @var{x}. ## ## The Gumbel distribution is used to model the distribution of the maximum (or ## the minimum) of a number of samples of various distributions. This version ## is suitable for modeling maxima. For modeling minima, use the alternative ## extreme value CDF, @code{evcdf}. ## ## @code{[@dots{}] = gumbelcdf (@dots{}, "upper")} computes the upper tail ## probability of the extreme value (Gumbel) distribution. ## ## Further information about the Gumbel distribution can be found at ## @url{https://en.wikipedia.org/wiki/Gumbel_distribution} ## ## @seealso{gumbelinv, gumbelpdf, gumbelrnd, gumbelfit, gumbellike, gumbelstat, ## evcdf} ## @end deftypefn function [varargout] = gumbelcdf (x, varargin) ## Check for valid number of input arguments if (nargin < 1 || nargin > 6) error ("gumbelcdf: invalid number of input arguments."); endif ## Check for 'upper' flag if (nargin > 1 && strcmpi (varargin{end}, "upper")) uflag = true; varargin(end) = []; elseif (nargin > 1 && ischar (varargin{end}) && ... ! strcmpi (varargin{end}, "upper")) error ("gumbelcdf: invalid argument for upper tail."); else uflag = false; endif ## Get extra arguments (if they exist) or add defaults if (numel (varargin) > 0) mu = varargin{1}; else mu = 0; endif if (numel (varargin) > 1) beta = varargin{2}; else beta = 1; endif if (numel (varargin) > 2) pcov = varargin{3}; ## Check for valid covariance matrix 2x2 if (! isequal (size (pcov), [2, 2])) error ("gumbelcdf: invalid size of covariance matrix."); endif else ## Check that cov matrix is provided if 3 output arguments are requested if (nargout > 1) error ("gumbelcdf: covariance matrix is required for confidence bounds."); endif pcov = []; endif if (numel (varargin) > 3) alpha = varargin{4}; ## Check for valid alpha value if (! isnumeric (alpha) || numel (alpha) !=1 || alpha <= 0 || alpha >= 1) error ("gumbelcdf: invalid value for alpha."); endif else alpha = 0.05; endif ## Check for common size of X, MU, and BETA if (! isscalar (x) || ! isscalar (mu) || ! isscalar (beta)) [err, x, mu, beta] = common_size (x, mu, beta); if (err > 0) error ("gumbelcdf: X, MU, and BETA must be of common size or scalars."); endif endif ## Check for X, MU, and BETA being reals if (iscomplex (x) || iscomplex (mu) || iscomplex (beta)) error ("gumbelcdf: X, MU, and BETA must not be complex."); endif ## Return NaNs for out of range parameters. beta(beta <= 0) = NaN; ## Compute extreme value cdf z = (x - mu) ./ beta; if (uflag) p = -expm1 (-exp (-z)); else p = exp (-exp (-z)); endif ## Check for class type if (isa (x, "single") || isa (mu, "single") || isa (beta, "single")); is_class = "single"; else is_class = "double"; endif ## Prepare output varargout{1} = cast (p, is_class); if (nargout > 1) plo = NaN (size (z), is_class); pup = NaN (size (z), is_class); endif ## Check beta if (isscalar (beta)) if (beta > 0) sigma_p = true (size (z)); else if (nargout == 3) varargout{2} = plo; varargout{3} = pup; endif return; endif else sigma_p = beta > 0; endif ## Compute confidence bounds (if requested) if (nargout >= 2) zvar = (pcov(1,1) + 2 * pcov(1,2) * z(sigma_p) + ... pcov(2,2) * z(sigma_p) .^ 2) ./ (beta .^ 2); if (any (zvar < 0)) error ("gumbelcdf: bad covariance matrix."); endif normz = -norminv (alpha / 2); halfwidth = normz * sqrt (zvar); zlo = z(sigma_p) - halfwidth; zup = z(sigma_p) + halfwidth; if (uflag) plo(sigma_p) = -expm1 (-exp (-zup)); pup(sigma_p) = -expm1 (-exp (-zlo)); else plo(sigma_p) = exp (-exp (-zlo)); pup(sigma_p) = exp (-exp (-zup)); endif varargout{2} = plo; varargout{3} = pup; endif endfunction %!demo %! ## Plot various CDFs from the Gumbel distribution %! x = -5:0.01:20; %! p1 = gumbelcdf (x, 0.5, 2); %! p2 = gumbelcdf (x, 1.0, 2); %! p3 = gumbelcdf (x, 1.5, 3); %! p4 = gumbelcdf (x, 3.0, 4); %! plot (x, p1, "-b", x, p2, "-g", x, p3, "-r", x, p4, "-c") %! grid on %! legend ({"μ = 0.5, β = 2", "μ = 1.0, β = 2", ... %! "μ = 1.5, β = 3", "μ = 3.0, β = 4"}, "location", "southeast") %! title ("Gumbel CDF") %! xlabel ("values in x") %! ylabel ("probability") ## Test output %!shared x, y %! x = [-Inf, 1, 2, Inf]; %! y = [0, 0.3679, 0.6922, 1]; %!assert (gumbelcdf (x, ones (1,4), ones (1,4)), y, 1e-4) %!assert (gumbelcdf (x, 1, ones (1,4)), y, 1e-4) %!assert (gumbelcdf (x, ones (1,4), 1), y, 1e-4) %!assert (gumbelcdf (x, [0, -Inf, NaN, Inf], 1), [0, 1, NaN, NaN], 1e-4) %!assert (gumbelcdf (x, 1, [Inf, NaN, -1, 0]), [NaN, NaN, NaN, NaN], 1e-4) %!assert (gumbelcdf ([x(1:2), NaN, x(4)], 1, 1), [y(1:2), NaN, y(4)], 1e-4) %!assert (gumbelcdf (x, "upper"), [1, 0.3078, 0.1266, 0], 1e-4) ## Test class of input preserved %!assert (gumbelcdf ([x, NaN], 1, 1), [y, NaN], 1e-4) %!assert (gumbelcdf (single ([x, NaN]), 1, 1), single ([y, NaN]), 1e-4) %!assert (gumbelcdf ([x, NaN], single (1), 1), single ([y, NaN]), 1e-4) %!assert (gumbelcdf ([x, NaN], 1, single (1)), single ([y, NaN]), 1e-4) ## Test input validation %!error gumbelcdf () %!error gumbelcdf (1,2,3,4,5,6,7) %!error gumbelcdf (1, 2, 3, 4, "uper") %!error ... %! gumbelcdf (ones (3), ones (2), ones (2)) %!error gumbelcdf (2, 3, 4, [1, 2]) %!error ... %! [p, plo, pup] = gumbelcdf (1, 2, 3) %!error [p, plo, pup] = ... %! gumbelcdf (1, 2, 3, [1, 0; 0, 1], 0) %!error [p, plo, pup] = ... %! gumbelcdf (1, 2, 3, [1, 0; 0, 1], 1.22) %!error [p, plo, pup] = ... %! gumbelcdf (1, 2, 3, [1, 0; 0, 1], "alpha", "upper") %!error gumbelcdf (i, 2, 2) %!error gumbelcdf (2, i, 2) %!error gumbelcdf (2, 2, i) %!error ... %! [p, plo, pup] = gumbelcdf (1, 2, 3, [1, 0; 0, -inf], 0.04) statistics-release-1.6.3/inst/dist_fun/gumbelinv.m000066400000000000000000000170321456127120000222700ustar00rootroot00000000000000## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{x} =} gumbelinv (@var{p}) ## @deftypefnx {statistics} {@var{x} =} gumbelinv (@var{p}, @var{mu}) ## @deftypefnx {statistics} {@var{x} =} gumbelinv (@var{p}, @var{mu}, @var{beta}) ## @deftypefnx {statistics} {[@var{x}, @var{xlo}, @var{xup}] =} gumbelinv (@var{p}, @var{mu}, @var{beta}, @var{pcov}) ## @deftypefnx {statistics} {[@var{x}, @var{xlo}, @var{xup}] =} gumbelinv (@var{p}, @var{mu}, @var{beta}, @var{pcov}, @var{alpha}) ## ## Inverse of the Gumbel cumulative distribution function (iCDF). ## ## For each element of @var{p}, compute the quantile (the inverse of the CDF) of ## the Gumbel distribution (also known as the extreme value or the type I ## generalized extreme value distribution) with location parameter @var{mu} and ## scale parameter @var{beta}. The size of @var{x} is the common size of ## @var{p}, @var{mu} and @var{beta}. A scalar input functions as a constant ## matrix of the same size as the other inputs. ## ## Default values are @var{mu} = 0 and @var{beta} = 1. ## ## When called with three output arguments, i.e. @qcode{[@var{x}, @var{xlo}, ## @var{xup}]}, @code{gumbelinv} computes the confidence bounds for @var{x} when ## the input parameters @var{mu} and @var{beta} are estimates. In such case, ## @var{pcov}, a @math{2x2} matrix containing the covariance matrix of the ## estimated parameters, is necessary. Optionally, @var{alpha}, which has a ## default value of 0.05, specifies the @qcode{100 * (1 - @var{alpha})} percent ## confidence bounds. @var{xlo} and @var{xup} are arrays of the same size as ## @var{x} containing the lower and upper confidence bounds. ## ## The Gumbel distribution is used to model the distribution of the maximum (or ## the minimum) of a number of samples of various distributions. This version ## is suitable for modeling maxima. For modeling minima, use the alternative ## extreme value iCDF, @code{evinv}. ## ## Further information about the Gumbel distribution can be found at ## @url{https://en.wikipedia.org/wiki/Gumbel_distribution} ## ## @seealso{gumbelcdf, gumbelpdf, gumbelrnd, gumbelfit, gumbellike, gumbelstat, ## evinv} ## @end deftypefn function [x, xlo, xup] = gumbelinv (p, mu, beta, pcov, alpha) ## Check for valid number of input arguments if (nargin < 1 || nargin > 5) error ("gumbelinv: invalid number of input arguments."); endif ## Add defaults (if missing input arguments) if (nargin < 2) mu = 0; endif if (nargin < 3) beta = 1; endif ## Check if PCOV is provided when confidence bounds are requested if (nargout > 2) if (nargin < 4) error ("gumbelinv: covariance matrix is required for confidence bounds."); endif ## Check for valid covariance matrix 2x2 if (! isequal (size (pcov), [2, 2])) error ("gumbelinv: invalid size of covariance matrix."); endif ## Check for valid alpha value if (nargin < 5) alpha = 0.05; elseif (! isnumeric (alpha) || numel (alpha) !=1 || alpha <= 0 || alpha >= 1) error ("gumbelinv: invalid value for alpha."); endif endif ## Check for common size of P, MU, and BETA if (! isscalar (p) || ! isscalar (mu) || ! isscalar (beta)) [err, p, mu, beta] = common_size (p, mu, beta); if (err > 0) error ("gumbelinv: P, MU, and BETA must be of common size or scalars."); endif endif ## Check for P, MU, and BETA being reals if (iscomplex (p) || iscomplex (mu) || iscomplex (beta)) error ("gumbelinv: P, MU, and BETA must not be complex."); endif ## Check for class type if (isa (p, "single") || isa (mu, "single") || isa (beta, "single")); is_class = "single"; else is_class = "double"; endif ## Compute inverse of type 1 extreme value cdf k = (eps <= p & p < 1); if (all (k(:))) q = log (-log (p)); else q = zeros (size (p), is_class); q(k) = log (-log (p(k))); ## Return -Inf for p = 0 and Inf for p = 1 q(p < eps) = Inf; q(p == 1) = -Inf; ## Return NaN for out of range values of P q(p < 0 | 1 < p | isnan (p)) = NaN; endif ## Return NaN for out of range values of BETA beta(beta <= 0) = NaN; x = -(beta .* q + mu); ## Compute confidence bounds if requested. if (nargout >= 2) xvar = pcov(1,1) + 2 * pcov(1,2) * q + pcov(2,2) * q .^ 2; if (any (xvar < 0)) error ("gumbelinv: bad covariance matrix."); endif z = -norminv (alpha / 2); halfwidth = z * sqrt (xvar); xlo = x - halfwidth; xup = x + halfwidth; endif endfunction %!demo %! ## Plot various iCDFs from the Gumbel distribution %! p = 0.001:0.001:0.999; %! x1 = gumbelinv (p, 0.5, 2); %! x2 = gumbelinv (p, 1.0, 2); %! x3 = gumbelinv (p, 1.5, 3); %! x4 = gumbelinv (p, 3.0, 4); %! plot (p, x1, "-b", p, x2, "-g", p, x3, "-r", p, x4, "-c") %! grid on %! ylim ([-5, 20]) %! legend ({"μ = 0.5, β = 2", "μ = 1.0, β = 2", ... %! "μ = 1.5, β = 3", "μ = 3.0, β = 4"}, "location", "northwest") %! title ("Gumbel iCDF") %! xlabel ("probability") %! ylabel ("values in x") ## Test output %!shared p, x %! p = [0, 0.05, 0.5 0.95]; %! x = [-Inf, -1.0972, 0.3665, 2.9702]; %!assert (gumbelinv (p), x, 1e-4) %!assert (gumbelinv (p, zeros (1,4), ones (1,4)), x, 1e-4) %!assert (gumbelinv (p, 0, ones (1,4)), x, 1e-4) %!assert (gumbelinv (p, zeros (1,4), 1), x, 1e-4) %!assert (gumbelinv (p, [0, -Inf, NaN, Inf], 1), [-Inf, Inf, NaN, -Inf], 1e-4) %!assert (gumbelinv (p, 0, [Inf, NaN, -1, 0]), [-Inf, NaN, NaN, NaN], 1e-4) %!assert (gumbelinv ([p(1:2), NaN, p(4)], 0, 1), [x(1:2), NaN, x(4)], 1e-4) ## Test class of input preserved %!assert (gumbelinv ([p, NaN], 0, 1), [x, NaN], 1e-4) %!assert (gumbelinv (single ([p, NaN]), 0, 1), single ([x, NaN]), 1e-4) %!assert (gumbelinv ([p, NaN], single (0), 1), single ([x, NaN]), 1e-4) %!assert (gumbelinv ([p, NaN], 0, single (1)), single ([x, NaN]), 1e-4) ## Test input validation %!error gumbelinv () %!error gumbelinv (1,2,3,4,5,6) %!error ... %! gumbelinv (ones (3), ones (2), ones (2)) %!error ... %! [p, plo, pup] = gumbelinv (2, 3, 4, [1, 2]) %!error ... %! [p, plo, pup] = gumbelinv (1, 2, 3) %!error [p, plo, pup] = ... %! gumbelinv (1, 2, 3, [1, 0; 0, 1], 0) %!error [p, plo, pup] = ... %! gumbelinv (1, 2, 3, [1, 0; 0, 1], 1.22) %!error gumbelinv (i, 2, 2) %!error gumbelinv (2, i, 2) %!error gumbelinv (2, 2, i) %!error ... %! [p, plo, pup] = gumbelinv (1, 2, 3, [-1, 10; -Inf, -Inf], 0.04) statistics-release-1.6.3/inst/dist_fun/gumbelpdf.m000066400000000000000000000104511456127120000222430ustar00rootroot00000000000000## Copyright (C) 2022-2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{y} =} gumbelpdf (@var{x}) ## @deftypefnx {statistics} {@var{y} =} gumbelpdf (@var{x}, @var{mu}) ## @deftypefnx {statistics} {@var{y} =} gumbelpdf (@var{x}, @var{mu}, @var{beta}) ## ## Gumbel probability density function (PDF). ## ## For each element of @var{x}, compute the probability density function (PDF) ## of the Gumbel distribution (also known as the extreme value or the type I ## generalized extreme value distribution) with location parameter @var{mu} and ## scale parameter @var{beta}. The size of @var{y} is the common size of ## @var{x}, @var{mu} and @var{beta}. A scalar input functions as a constant ## matrix of the same size as the other inputs. ## ## Default values are @var{mu} = 0 and @var{beta} = 1. ## ## The Gumbel distribution is used to model the distribution of the maximum (or ## the minimum) of a number of samples of various distributions. This version ## is suitable for modeling maxima. For modeling minima, use the alternative ## extreme value iCDF, @code{evpdf}. ## ## Further information about the Gumbel distribution can be found at ## @url{https://en.wikipedia.org/wiki/Gumbel_distribution} ## ## @seealso{gumbelcdf, gumbelinv, gumbelrnd, gumbelfit, gumbellike, gumbelstat, ## evpdf} ## @end deftypefn function y = gumbelpdf (x, mu, beta) ## Check for valid number of input arguments if (nargin < 1) error ("gumbelpdf: too few input arguments."); endif ## Add defaults (if missing input arguments) if (nargin < 2) mu = 0; endif if (nargin < 3) beta = 1; endif ## Check for common size of X, MU, and BETA if (! isscalar (x) || ! isscalar (mu) || ! isscalar (beta)) [err, x, mu, beta] = common_size (x, mu, beta); if (err > 0) error ("gumbelpdf: X, MU, and BETA must be of common size or scalars."); endif endif ## Check for X, MU, and BETA being reals if (iscomplex (x) || iscomplex (mu) || iscomplex (beta)) error ("gumbelpdf: X, MU, and BETA must not be complex."); endif ## Return NaNs for out of range parameters beta(beta <= 0) = NaN; ## Compute pdf of type 1 extreme value distribution z = -(x - mu) ./ beta; y = exp (z - exp (z)) ./ beta; ## Force 0 for extreme right tail, instead of getting exp (Inf - Inf) = NaN y(z == Inf) = 0; endfunction %!demo %! ## Plot various PDFs from the Extreme value distribution %! x = -5:0.001:20; %! y1 = gumbelpdf (x, 0.5, 2); %! y2 = gumbelpdf (x, 1.0, 2); %! y3 = gumbelpdf (x, 1.5, 3); %! y4 = gumbelpdf (x, 3.0, 4); %! plot (x, y1, "-b", x, y2, "-g", x, y3, "-r", x, y4, "-c") %! grid on %! ylim ([0, 0.2]) %! legend ({"μ = 0.5, β = 2", "μ = 1.0, β = 2", ... %! "μ = 1.5, β = 3", "μ = 3.0, β = 4"}, "location", "northeast") %! title ("Extreme value PDF") %! xlabel ("values in x") %! ylabel ("density") ## Test output %!shared x, y0, y1 %! x = [-5, 0, 1, 2, 3]; %! y0 = [0, 0.3679, 0.2547, 0.1182, 0.0474]; %! y1 = [0, 0.1794, 0.3679, 0.2547, 0.1182]; %!assert (gumbelpdf (x), y0, 1e-4) %!assert (gumbelpdf (x, zeros (1,5), ones (1,5)), y0, 1e-4) %!assert (gumbelpdf (x, ones (1,5), ones (1,5)), y1, 1e-4) ## Test input validation %!error gumbelpdf () %!error ... %! gumbelpdf (ones (3), ones (2), ones (2)) %!error gumbelpdf (i, 2, 2) %!error gumbelpdf (2, i, 2) %!error gumbelpdf (2, 2, i) statistics-release-1.6.3/inst/dist_fun/gumbelrnd.m000066400000000000000000000156171456127120000222660ustar00rootroot00000000000000## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{r} =} gumbelrnd (@var{mu}, @var{beta}) ## @deftypefnx {statistics} {@var{r} =} gumbelrnd (@var{mu}, @var{beta}, @var{rows}) ## @deftypefnx {statistics} {@var{r} =} gumbelrnd (@var{mu}, @var{beta}, @var{rows}, @var{cols}, @dots{}) ## @deftypefnx {statistics} {@var{r} =} gumbelrnd (@var{mu}, @var{beta}, [@var{sz}]) ## ## Random arrays from the Gumbel distribution. ## ## @code{@var{r} = gumbelrnd (@var{mu}, @var{beta})} returns an array of random ## numbers chosen from the Gumbel distribution (also known as the extreme value ## or the type I generalized extreme value distribution) with location ## parameter @var{mu} and scale parameter @var{beta}. The size of @var{r} is ## the common size of @var{mu} and @var{beta}. A scalar input functions as a ## constant matrix of the same size as the other inputs. ## ## When called with a single size argument, @code{gumbelrnd} returns a square ## matrix with the dimension specified. When called with more than one scalar ## argument, the first two arguments are taken as the number of rows and columns ## and any further arguments specify additional matrix dimensions. The size may ## also be specified with a row vector of dimensions, @var{sz}. ## ## The Gumbel distribution is used to model the distribution of the maximum (or ## the minimum) of a number of samples of various distributions. This version ## is suitable for modeling maxima. For modeling minima, use the alternative ## extreme value iCDF, @code{evinv}. ## ## Further information about the Gumbel distribution can be found at ## @url{https://en.wikipedia.org/wiki/Gumbel_distribution} ## ## @seealso{gumbelcdf, gumbelinv, gumbelpdf, gumbelfit, gumbellike, gumbelstat, ## evrnd} ## @end deftypefn function r = gumbelrnd (mu, beta, varargin) ## Check for valid number of input arguments if (nargin < 2) error ("gumbelrnd: function called with too few input arguments."); endif ## Check for common size of MU and BETA if (! isscalar (mu) || ! isscalar (beta)) [retval, mu, beta] = common_size (mu, beta); if (retval > 0) error ("gumbelrnd: MU and BETA must be of common size or scalars."); endif endif ## Check for MU and BETA being reals if (iscomplex (mu) || iscomplex (beta)) error ("gumbelrnd: MU and BETA must not be complex."); endif ## Parse and check SIZE arguments if (nargin == 2) sz = size (mu); elseif (nargin == 3) if (isscalar (varargin{1}) && varargin{1} >= 0 ... && varargin{1} == fix (varargin{1})) sz = [varargin{1}, varargin{1}]; elseif (isrow (varargin{1}) && all (varargin{1} >= 0) ... && all (varargin{1} == fix (varargin{1}))) sz = varargin{1}; elseif error (strcat (["gumbelrnd: SZ must be a scalar or a row vector"], ... [" of non-negative integers."])); endif elseif (nargin > 3) posint = cellfun (@(x) (! isscalar (x) || x < 0 || x != fix (x)), varargin); if (any (posint)) error ("gumbelrnd: dimensions must be non-negative integers."); endif sz = [varargin{:}]; endif ## Check that parameters match requested dimensions in size if (! isscalar (mu) && ! isequal (size (mu), sz)) error ("gumbelrnd: MU and BETA must be scalars or of size SZ."); endif ## Check for class type if (isa (mu, "single") || isa (beta, "single")) cls = "single"; else cls = "double"; endif ## Return NaNs for out of range values of BETA beta(beta < 0) = NaN; ## Generate uniform random values, and apply the extreme value inverse CDF. r = -log (-log (rand (sz, cls))) .* beta + mu; endfunction ## Test output %!assert (size (gumbelrnd (1, 1)), [1 1]) %!assert (size (gumbelrnd (1, ones (2,1))), [2, 1]) %!assert (size (gumbelrnd (1, ones (2,2))), [2, 2]) %!assert (size (gumbelrnd (ones (2,1), 1)), [2, 1]) %!assert (size (gumbelrnd (ones (2,2), 1)), [2, 2]) %!assert (size (gumbelrnd (1, 1, 3)), [3, 3]) %!assert (size (gumbelrnd (1, 1, [4, 1])), [4, 1]) %!assert (size (gumbelrnd (1, 1, 4, 1)), [4, 1]) %!assert (size (gumbelrnd (1, 1, 4, 1, 5)), [4, 1, 5]) %!assert (size (gumbelrnd (1, 1, 0, 1)), [0, 1]) %!assert (size (gumbelrnd (1, 1, 1, 0)), [1, 0]) %!assert (size (gumbelrnd (1, 1, 1, 2, 0, 5)), [1, 2, 0, 5]) ## Test class of input preserved %!assert (class (gumbelrnd (1, 1)), "double") %!assert (class (gumbelrnd (1, single (1))), "single") %!assert (class (gumbelrnd (1, single ([1, 1]))), "single") %!assert (class (gumbelrnd (single (1), 1)), "single") %!assert (class (gumbelrnd (single ([1, 1]), 1)), "single") ## Test input validation %!error gumbelrnd () %!error gumbelrnd (1) %!error ... %! gumbelrnd (ones (3), ones (2)) %!error ... %! gumbelrnd (ones (2), ones (3)) %!error gumbelrnd (i, 2, 3) %!error gumbelrnd (1, i, 3) %!error ... %! gumbelrnd (1, 2, -1) %!error ... %! gumbelrnd (1, 2, 1.2) %!error ... %! gumbelrnd (1, 2, ones (2)) %!error ... %! gumbelrnd (1, 2, [2 -1 2]) %!error ... %! gumbelrnd (1, 2, [2 0 2.5]) %!error ... %! gumbelrnd (1, 2, 2, -1, 5) %!error ... %! gumbelrnd (1, 2, 2, 1.5, 5) %!error ... %! gumbelrnd (2, ones (2), 3) %!error ... %! gumbelrnd (2, ones (2), [3, 2]) %!error ... %! gumbelrnd (2, ones (2), 3, 2) statistics-release-1.6.3/inst/dist_fun/hncdf.m000066400000000000000000000137571456127120000213740ustar00rootroot00000000000000## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{p} =} hncdf (@var{x}, @var{mu}, @var{sigma}) ## @deftypefnx {statistics} {@var{p} =} hncdf (@var{x}, @var{mu}, @var{sigma}, @qcode{"upper"}) ## ## Half-normal cumulative distribution function (CDF). ## ## For each element of @var{x}, compute the cumulative distribution function ## (CDF) of the half-normal distribution with location parameter @var{mu} and ## scale parameter @var{sigma}. The size of @var{p} is the common size of ## @var{x}, @var{mu} and @var{sigma}. A scalar input functions as a constant ## matrix of the same size as the other inputs. ## ## @code{[@dots{}] = hncdf (@var{x}, @var{mu}, @var{sigma}, "upper")} computes ## the upper tail probability of the half-normal distribution with parameters ## @var{mu} and @var{sigma}, at the values in @var{x}. ## ## The half-normal CDF is only defined for @qcode{@var{x} >= @var{mu}}. ## ## Further information about the half-normal distribution can be found at ## @url{https://en.wikipedia.org/wiki/Half-normal_distribution} ## ## @seealso{hninv, hnpdf, hnrnd, hnfit, hnlike} ## @end deftypefn function p = hncdf (x, mu, sigma, uflag) ## Check for valid number of input arguments if (nargin < 3) error ("hncdf: function called with too few input arguments."); endif ## Check for valid "upper" flag if (nargin > 3) if (! strcmpi (uflag, "upper")) error ("hncdf: invalid argument for upper tail."); else uflag = true; endif else uflag = false; endif ## Check for common size of X, MU, and SIGMA if (! isscalar (x) || ! isscalar (mu) || ! isscalar (sigma)) [err, x, mu, sigma] = common_size (x, mu, sigma); if (err > 0) error ("hncdf: X, MU, and SIGMA must be of common size or scalars."); endif endif ## Check for X, MU, and SIGMA being reals if (iscomplex (x) || iscomplex (mu) || iscomplex (sigma)) error ("hncdf: X, MU, and SIGMA must not be complex."); endif ## Check for class type if (isa (x, "single") || isa (mu, "single") || isa (sigma, "single")) is_class = "single"; else is_class = "double"; endif ## Prepare output p = zeros (size (x), is_class); ## Return NaNs for out of range values of SIGMA parameter sigma(sigma <= 0) = NaN; ## Calculate (x-mu)/sigma => 0 and force zero below that z = (x - mu) ./ sigma; z(z < 0) = 0; if (uflag) p = erfc(z./sqrt(2)); else p = erf(z./sqrt(2)); endif endfunction %!demo %! ## Plot various CDFs from the half-normal distribution %! x = 0:0.001:10; %! p1 = hncdf (x, 0, 1); %! p2 = hncdf (x, 0, 2); %! p3 = hncdf (x, 0, 3); %! p4 = hncdf (x, 0, 5); %! plot (x, p1, "-b", x, p2, "-g", x, p3, "-r", x, p4, "-c") %! grid on %! xlim ([0, 10]) %! legend ({"μ = 0, σ = 1", "μ = 0, σ = 2", ... %! "μ = 0, σ = 3", "μ = 0, σ = 5"}, "location", "southeast") %! title ("Half-normal CDF") %! xlabel ("values in x") %! ylabel ("probability") %!demo %! ## Plot half-normal against normal cumulative distribution function %! x = -5:0.001:5; %! p1 = hncdf (x, 0, 1); %! p2 = normcdf (x); %! plot (x, p1, "-b", x, p2, "-g") %! grid on %! xlim ([-5, 5]) %! legend ({"half-normal with μ = 0, σ = 1", ... %! "standart normal (μ = 0, σ = 1)"}, "location", "southeast") %! title ("Half-normal against standard normal CDF") %! xlabel ("values in x") %! ylabel ("probability") ## Test output %!shared x, p1, p1u, y2, y2u, y3, y3u %! x = [-Inf, -1, 0, 1/2, 1, Inf]; %! p1 = [0, 0, 0, 0.3829, 0.6827, 1]; %! p1u = [1, 1, 1, 0.6171, 0.3173, 0]; %!assert (hncdf (x, zeros (1,6), ones (1,6)), p1, 1e-4) %!assert (hncdf (x, 0, 1), p1, 1e-4) %!assert (hncdf (x, 0, ones (1,6)), p1, 1e-4) %!assert (hncdf (x, zeros (1,6), 1), p1, 1e-4) %!assert (hncdf (x, 0, [1, 1, 1, NaN, 1, 1]), [p1(1:3), NaN, p1(5:6)], 1e-4) %!assert (hncdf (x, [0, 0, 0, NaN, 0, 0], 1), [p1(1:3), NaN, p1(5:6)], 1e-4) %!assert (hncdf ([x(1:3), NaN, x(5:6)], 0, 1), [p1(1:3), NaN, p1(5:6)], 1e-4) %!assert (hncdf (x, zeros (1,6), ones (1,6), "upper"), p1u, 1e-4) %!assert (hncdf (x, 0, 1, "upper"), p1u, 1e-4) %!assert (hncdf (x, 0, ones (1,6), "upper"), p1u, 1e-4) %!assert (hncdf (x, zeros (1,6), 1, "upper"), p1u, 1e-4) ## Test class of input preserved %!assert (class (hncdf (single ([x, NaN]), 0, 1)), "single") %!assert (class (hncdf ([x, NaN], 0, single (1))), "single") %!assert (class (hncdf ([x, NaN], single (0), 1)), "single") ## Test input validation %!error hncdf () %!error hncdf (1) %!error hncdf (1, 2) %!error hncdf (1, 2, 3, "tail") %!error hncdf (1, 2, 3, 5) %!error ... %! hncdf (ones (3), ones (2), ones(2)) %!error ... %! hncdf (ones (2), ones (3), ones(2)) %!error ... %! hncdf (ones (2), ones (2), ones(3)) %!error hncdf (i, 2, 3) %!error hncdf (1, i, 3) %!error hncdf (1, 2, i) statistics-release-1.6.3/inst/dist_fun/hninv.m000066400000000000000000000103001456127120000214110ustar00rootroot00000000000000## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{x} =} hninv (@var{p}, @var{mu}, @var{sigma}) ## ## Inverse of the half-normal cumulative distribution function (iCDF). ## ## For each element of @var{p}, compute the quantile (the inverse of the CDF) of ## the half-normal distribution with location parameter @var{mu} and scale ## parameter @var{sigma}. The size of @var{x} is the common size of @var{p}, ## @var{mu}, and @var{sigma}. A scalar input functions as a constant matrix of ## the same size as the other inputs. ## ## Further information about the half-normal distribution can be found at ## @url{https://en.wikipedia.org/wiki/Half-normal_distribution} ## ## @seealso{hncdf, hnpdf, hnrnd, hnfit, hnlike} ## @end deftypefn function x = hninv (p, mu, sigma) ## Check for valid number of input arguments if (nargin < 3) error ("hninv: function called with too few input arguments."); endif ## Check for common size of P, MU, and SIGMA if (! isscalar (p) || ! isscalar (mu) || ! isscalar(sigma)) [retval, p, mu, sigma] = common_size (p, mu, sigma); if (retval > 0) error ("hninv: P, MU, and SIGMA must be of common size or scalars."); endif endif ## Check for X, MU, and SIGMA being reals if (iscomplex (p) || iscomplex (mu) || iscomplex (sigma)) error ("hninv: P, MU, and SIGMA must not be complex."); endif ## Check for class type if (isa (p, "single") || isa (mu, "single") || isa (sigma, "single")); x = NaN (size (p), "single"); else x = NaN (size (p)); endif ## Return NaNs for out of range values of SIGMA parameter sigma(sigma <= 0) = NaN; ## Return NaNs for out of range P values p(p < 0 | 1 < p) = NaN; ## Calculate the quantile of half-normal distribution x = sqrt(2) * sigma .* erfinv (p) + mu; endfunction %!demo %! ## Plot various iCDFs from the half-normal distribution %! p = 0.001:0.001:0.999; %! x1 = hninv (p, 0, 1); %! x2 = hninv (p, 0, 2); %! x3 = hninv (p, 0, 3); %! x4 = hninv (p, 0, 5); %! plot (p, x1, "-b", p, x2, "-g", p, x3, "-r", p, x4, "-c") %! grid on %! ylim ([0, 10]) %! legend ({"μ = 0, σ = 1", "μ = 0, σ = 2", ... %! "μ = 0, σ = 3", "μ = 0, σ = 5"}, "location", "northwest") %! title ("Half-normal iCDF") %! xlabel ("probability") %! ylabel ("x") ## Test output %!shared p, x %! p = [0, 0.3829, 0.6827, 1]; %! x = [0, 1/2, 1, Inf]; %!assert (hninv (p, 0, 1), x, 1e-4); %!assert (hninv (p, 5, 1), x + 5, 1e-4); %!assert (hninv (p, 0, ones (1,4)), x, 1e-4); %!assert (hninv (p, 0, [-1, 0, 1, 1]), [NaN, NaN, x(3:4)], 1e-4) ## Test class of input preserved %!assert (class (hninv (single ([p, NaN]), 0, 1)), "single") %!assert (class (hninv ([p, NaN], single (0), 1)), "single") %!assert (class (hninv ([p, NaN], 0, single (1))), "single") ## Test input validation %!error hninv (1) %!error hninv (1, 2) %!error ... %! hninv (1, ones (2), ones (3)) %!error ... %! hninv (ones (2), 1, ones (3)) %!error ... %! hninv (ones (2), ones (3), 1) %!error hninv (i, 2, 3) %!error hninv (1, i, 3) %!error hninv (1, 2, i) statistics-release-1.6.3/inst/dist_fun/hnpdf.m000066400000000000000000000113321456127120000213740ustar00rootroot00000000000000## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{y} =} hnpdf (@var{x}, @var{mu}, @var{sigma}) ## ## Half-normal probability density function (PDF). ## ## For each element of @var{x}, compute the probability density function (PDF) ## of the half-normal distribution with location parameter @var{mu} and scale ## parameter @var{sigma}. The size of @var{y} is the common size of @var{x}, ## @var{mu}, and @var{sigma}. A scalar input functions as a constant matrix of ## the same size as the other inputs. ## ## The half-normal CDF is only defined for @qcode{@var{x} >= @var{mu}}. ## ## Further information about the half-normal distribution can be found at ## @url{https://en.wikipedia.org/wiki/Half-normal_distribution} ## ## @seealso{hncdf, hninv, hnrnd, hnfit, hnlike} ## @end deftypefn function y = hnpdf (x, mu, sigma) ## Check for valid number of input arguments if (nargin < 3) error ("hnpdf: function called with too few input arguments."); endif ## Check for common size of X, MU, and SIGMA if (! isscalar (x) || ! isscalar (mu) || ! isscalar(sigma)) [retval, x, mu, sigma] = common_size (x, mu, sigma); if (retval > 0) error ("hnpdf: X, MU, and SIGMA must be of common size or scalars."); endif endif ## Check for X, MU, and SIGMA being reals if (iscomplex (x) || iscomplex (mu) || iscomplex (sigma)) error ("hnpdf: X, MU, and SIGMA must not be complex."); endif ## Check for class type if (isa (x, "single") || isa (mu, "single") || isa (sigma, "single")); y = NaN (size (x), "single"); else y = NaN (size (x)); endif ## Return NaNs for out of range values of SIGMA parameter sigma(sigma <= 0) = NaN; ## Compute half-normal PDF z = (x - mu) ./ sigma; y = sqrt (2 / pi) ./ sigma .* exp (-0.5 * z .^ 2); ## Force zero for unsupported X y(z < 0) = 0; endfunction %!demo %! ## Plot various PDFs from the half-normal distribution %! x = 0:0.001:10; %! y1 = hnpdf (x, 0, 1); %! y2 = hnpdf (x, 0, 2); %! y3 = hnpdf (x, 0, 3); %! y4 = hnpdf (x, 0, 5); %! plot (x, y1, "-b", x, y2, "-g", x, y3, "-r", x, y4, "-c") %! grid on %! xlim ([0, 10]) %! ylim ([0, 0.9]) %! legend ({"μ = 0, σ = 1", "μ = 0, σ = 2", ... %! "μ = 0, σ = 3", "μ = 0, σ = 5"}, "location", "northeast") %! title ("Half-normal PDF") %! xlabel ("values in x") %! ylabel ("density") %!demo %! ## Plot half-normal against normal probability density function %! x = -5:0.001:5; %! y1 = hnpdf (x, 0, 1); %! y2 = normpdf (x); %! plot (x, y1, "-b", x, y2, "-g") %! grid on %! xlim ([-5, 5]) %! ylim ([0, 0.9]) %! legend ({"half-normal with μ = 0, σ = 1", ... %! "standart normal (μ = 0, σ = 1)"}, "location", "northeast") %! title ("Half-normal against standard normal PDF") %! xlabel ("values in x") %! ylabel ("density") ## Test output %!shared x, y %! x = [-Inf, -1, 0, 1/2, 1, Inf]; %! y = [0, 0, 0.7979, 0.7041, 0.4839, 0]; %!assert (hnpdf ([x, NaN], 0, 1), [y, NaN], 1e-4) %!assert (hnpdf (x, 0, [-2, -1, 0, 1, 1, 1]), [nan(1,3), y([4:6])], 1e-4) ## Test class of input preserved %!assert (class (hncdf (single ([x, NaN]), 0, 1)), "single") %!assert (class (hncdf ([x, NaN], 0, single (1))), "single") %!assert (class (hncdf ([x, NaN], single (0), 1)), "single") ## Test input validation %!error hnpdf () %!error hnpdf (1) %!error hnpdf (1, 2) %!error ... %! hnpdf (1, ones (2), ones (3)) %!error ... %! hnpdf (ones (2), 1, ones (3)) %!error ... %! hnpdf (ones (2), ones (3), 1) %!error hnpdf (i, 2, 3) %!error hnpdf (1, i, 3) %!error hnpdf (1, 2, i) statistics-release-1.6.3/inst/dist_fun/hnrnd.m000066400000000000000000000146441456127120000214170ustar00rootroot00000000000000## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{r} =} hnrnd (@var{mu}, @var{sigma}) ## @deftypefnx {statistics} {@var{r} =} hnrnd (@var{mu}, @var{sigma}, @var{rows}) ## @deftypefnx {statistics} {@var{r} =} hnrnd (@var{mu}, @var{sigma}, @var{rows}, @var{cols}, @dots{}) ## @deftypefnx {statistics} {@var{r} =} hnrnd (@var{mu}, @var{sigma}, [@var{sz}]) ## ## Random arrays from the half-normal distribution. ## ## @code{@var{r} = hnrnd (@var{mu}, @var{sigma})} returns an array of random ## numbers chosen from the half-normal distribution with location parameter ## @var{mu} and scale parameter @var{sigma}. The size of @var{r} is the common ## size of @var{mu} and @var{sigma}. A scalar input functions as a constant ## matrix of the same size as the other inputs. ## ## When called with a single size argument, @code{hnrnd} returns a square ## matrix with the dimension specified. When called with more than one scalar ## argument, the first two arguments are taken as the number of rows and columns ## and any further arguments specify additional matrix dimensions. The size may ## also be specified with a row vector of dimensions, @var{sz}. ## ## Further information about the half-normal distribution can be found at ## @url{https://en.wikipedia.org/wiki/Half-normal_distribution} ## ## @seealso{hncdf, hninv, hnpdf, hnfit, hnlike} ## @end deftypefn function r = hnrnd (mu, sigma, varargin) ## Check for valid number of input arguments if (nargin < 2) error ("hnrnd: function called with too few input arguments."); endif ## Check for common size of MU, and SIGMA if (! isscalar (mu) || ! isscalar (sigma)) [retval, mu, sigma] = common_size (mu, sigma); if (retval > 0) error ("hnrnd: MU and SIGMA must be of common size or scalars."); endif endif ## Check for X, MU, and SIGMA being reals if (iscomplex (mu) || iscomplex (sigma)) error ("hnrnd: MU and SIGMA must not be complex."); endif ## Parse and check SIZE arguments if (nargin == 2) sz = size (mu); elseif (nargin == 3) if (isscalar (varargin{1}) && varargin{1} >= 0 ... && varargin{1} == fix (varargin{1})) sz = [varargin{1}, varargin{1}]; elseif (isrow (varargin{1}) && all (varargin{1} >= 0) ... && all (varargin{1} == fix (varargin{1}))) sz = varargin{1}; elseif error (strcat (["hnrnd: SZ must be a scalar or a row vector"], ... [" of non-negative integers."])); endif elseif (nargin > 3) posint = cellfun (@(x) (! isscalar (x) || x < 0 || x != fix (x)), varargin); if (any (posint)) error ("hnrnd: dimensions must be non-negative integers."); endif sz = [varargin{:}]; endif ## Check that parameters match requested dimensions in size if (! isscalar (mu) && ! isequal (size (mu), sz)) error ("hnrnd: MU and SIGMA must be scalars or of size SZ."); endif ## Check for class type if (isa (mu, "single") || isa (sigma, "single")) cls = "single"; else cls = "double"; endif ## Generate random sample from half-normal distribution r = abs (randn (sz, cls)) .* sigma + mu; ## Force output to NaN for invalid parameter SIGMA <= 0 k = (sigma <= 0); r(k) = NaN; endfunction ## Test output %!assert (size (hnrnd (1, 1, 1)), [1, 1]) %!assert (size (hnrnd (1, 1, 2)), [2, 2]) %!assert (size (hnrnd (1, 1, [2, 1])), [2, 1]) %!assert (size (hnrnd (1, zeros (2, 2))), [2, 2]) %!assert (size (hnrnd (1, ones (2, 1))), [2, 1]) %!assert (size (hnrnd (1, ones (2, 2))), [2, 2]) %!assert (size (hnrnd (ones (2, 1), 1)), [2, 1]) %!assert (size (hnrnd (ones (2, 2), 1)), [2, 2]) %!assert (size (hnrnd (1, 1, 3)), [3, 3]) %!assert (size (hnrnd (1, 1, [4 1])), [4, 1]) %!assert (size (hnrnd (1, 1, 4, 1)), [4, 1]) %!test %! r = hnrnd (1, [1, 0, -1]); %! assert (r([2:3]), [NaN, NaN]) ## Test class of input preserved %!assert (class (hnrnd (1, 0)), "double") %!assert (class (hnrnd (1, single (0))), "single") %!assert (class (hnrnd (1, single ([0 0]))), "single") %!assert (class (hnrnd (1, single (1))), "single") %!assert (class (hnrnd (1, single ([1 1]))), "single") %!assert (class (hnrnd (single (1), 1)), "single") %!assert (class (hnrnd (single ([1 1]), 1)), "single") ## Test input validation %!error hnrnd () %!error hnrnd (1) %!error ... %! hnrnd (ones (3), ones (2)) %!error ... %! hnrnd (ones (2), ones (3)) %!error hnrnd (i, 2, 3) %!error hnrnd (1, i, 3) %!error ... %! hnrnd (1, 2, -1) %!error ... %! hnrnd (1, 2, 1.2) %!error ... %! hnrnd (1, 2, ones (2)) %!error ... %! hnrnd (1, 2, [2 -1 2]) %!error ... %! hnrnd (1, 2, [2 0 2.5]) %!error ... %! hnrnd (1, 2, 2, -1, 5) %!error ... %! hnrnd (1, 2, 2, 1.5, 5) %!error ... %! hnrnd (2, ones (2), 3) %!error ... %! hnrnd (2, ones (2), [3, 2]) %!error ... %! hnrnd (2, ones (2), 3, 2) statistics-release-1.6.3/inst/dist_fun/hygecdf.m000066400000000000000000000202711456127120000217100ustar00rootroot00000000000000## Copyright (C) 2012 Rik Wehbring ## Copyright (C) 1997-2016 Kurt Hornik ## Copyright (C) 2022 Nicholas R. Jankowski ## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{p} =} hygecdf (@var{x}, @var{m}, @var{k}, @var{n}) ## @deftypefnx {statistics} {@var{p} =} hygecdf (@var{x}, @var{m}, @var{k}, @var{n}, @qcode{"upper"}) ## ## Hypergeometric cumulative distribution function (CDF). ## ## For each element of @var{x}, compute the cumulative distribution function ## (CDF) of the hypergeometric distribution with parameters @var{m}, @var{k}, ## and @var{n}. The size of @var{p} is the common size of @var{x}, @var{m}, ## @var{k}, and @var{n}. A scalar input functions as a constant matrix of the ## same size as the other inputs. ## ## This is the cumulative probability of obtaining not more than @var{x} marked ## items when randomly drawing a sample of size @var{n} without replacement from ## a population of total size @var{m} containing @var{k} marked items. The ## parameters @var{m}, @var{k}, and @var{n} must be positive integers with ## @var{k} and @var{n} not greater than @var{m}. ## ## @code{[@dots{}] = hygecdf (@var{x}, @var{m}, @var{k}, @var{n}, "upper")} ## computes the upper tail probability of the hypergeometric distribution with ## parameters @var{m}, @var{k}, and @var{n}, at the values in @var{x}. ## ## Further information about the hypergeometric distribution can be found at ## @url{https://en.wikipedia.org/wiki/Hypergeometric_distribution} ## ## @seealso{hygeinv, hygepdf, hygernd, hygestat} ## @end deftypefn function p = hygecdf (x, m, k, n, uflag) ## Check for valid number of input arguments if (nargin < 4) error ("hygecdf: function called with too few input arguments."); endif ## Check for common size of X, T, k, and N if (! isscalar (x) || ! isscalar (m) || ! isscalar (k) || ! isscalar (n)) [retval, x, m, k, n] = common_size (x, m, k, n); if (retval > 0) error ("hygecdf: X, T, k, and N must be of common size or scalars."); endif endif ## Check for X, T, k, and N being reals if (iscomplex (x) || iscomplex (m) || iscomplex (k) || iscomplex (n)) error ("hygecdf: X, T, k, and N must not be complex."); endif ## Check for class type if (isa (x, "single") || isa (m, "single") || isa (k, "single") || isa (n, "single")) p = zeros (size (x), "single"); else p = zeros (size (x)); endif ## Check for "upper" flag if (nargin > 4 && strcmpi (uflag, "upper")) x = n - floor(x) - 1; k = m - k; elseif (nargin > 4 && ! strcmpi (uflag, "upper")) error ("hygecdf: invalid argument for upper tail."); endif ## Force 1 where required is_1 = (x >= n | x >= k); p(is_1) = 1; ## Force NaNs where required is_nan = (isnan (x) | isnan (m) | isnan (k) | isnan (n) | ... m < 0 | k < 0 | n < 0 | round (m) != m | round (k) != k | ... round (n) != n | n > m | k > m); p(is_nan) = NaN; ## Get values for which P = 0 is_0 = (m - k - n + x + 1 <= 0 | x < 0); ok = ! (is_1 | is_nan | is_0); ## Compute hypergeometric CDF if (any (ok(:))) ## For improved accuracy, compute the upper tail 1-p instead ## of the lower tail pfor x values that are larger than the mean lo = (x <= k .* n ./ m); ok_lo = ok & lo; if (any (ok_lo(:))) p(ok_lo) = localPDF (floor (x(ok_lo)), m(ok_lo), k(ok_lo), n(ok_lo)); endif ok_hi = ok & ! lo; if (any (ok_hi(:))) p(ok_hi) = 1 - localPDF (n(ok_hi) - floor (x(ok_hi)) - 1, ... m(ok_hi), m(ok_hi) - k(ok_hi), n(ok_hi)); endif endif endfunction function p = localPDF (x, m, k, n) HPDF = hygepdf (x, m, k, n); ## Compute hygecdf(x,m,k,n)/hygepdf(x,m,k,n) with a series ## whose terms can be computed recursively, backwards. xmax = max (x(:)); ybig = repmat((0:xmax)', 1, length (x)); xbig = repmat(x(:)', xmax + 1, 1); mbig = repmat(m(:)', xmax + 1, 1); kbig = repmat(k(:)', xmax + 1, 1); nbig = repmat(n(:)', xmax + 1, 1); terms = ((ybig+1) .* (mbig-kbig-nbig+ybig+1)) ./ ((nbig-ybig) .* (kbig-ybig)); terms(ybig >= xbig) = 1; terms = flip (cumprod (flip (terms))); terms(ybig > xbig) = 0; ratio = sum(terms,1); ratio = reshape(ratio,size(x)); p = ratio.*HPDF; ## Correct round-off errors p(p > 1) = 1; endfunction %!demo %! ## Plot various CDFs from the hypergeometric distribution %! x = 0:60; %! p1 = hygecdf (x, 500, 50, 100); %! p2 = hygecdf (x, 500, 60, 200); %! p3 = hygecdf (x, 500, 70, 300); %! plot (x, p1, "*b", x, p2, "*g", x, p3, "*r") %! grid on %! xlim ([0, 60]) %! legend ({"m = 500, k = 50, n = 100", "m = 500, k = 60, n = 200", ... %! "m = 500, k = 70, n = 300"}, "location", "southeast") %! title ("Hypergeometric CDF") %! xlabel ("values in x (number of successes)") %! ylabel ("probability") ## Test output %!shared x, y %! x = [-1 0 1 2 3]; %! y = [0 1/6 5/6 1 1]; %!assert (hygecdf (x, 4*ones (1,5), 2, 2), y, 5*eps) %!assert (hygecdf (x, 4, 2*ones (1,5), 2), y, 5*eps) %!assert (hygecdf (x, 4, 2, 2*ones (1,5)), y, 5*eps) %!assert (hygecdf (x, 4*[1 -1 NaN 1.1 1], 2, 2), [y(1) NaN NaN NaN y(5)], 5*eps) %!assert (hygecdf (x, 4*[1 -1 NaN 1.1 1], 2, 2, "upper"), ... %! [y(5) NaN NaN NaN y(1)], 5*eps) %!assert (hygecdf (x, 4, 2*[1 -1 NaN 1.1 1], 2), [y(1) NaN NaN NaN y(5)], 5*eps) %!assert (hygecdf (x, 4, 2*[1 -1 NaN 1.1 1], 2, "upper"), ... %! [y(5) NaN NaN NaN y(1)], 5*eps) %!assert (hygecdf (x, 4, 5, 2), [NaN NaN NaN NaN NaN]) %!assert (hygecdf (x, 4, 2, 2*[1 -1 NaN 1.1 1]), [y(1) NaN NaN NaN y(5)], 5*eps) %!assert (hygecdf (x, 4, 2, 2*[1 -1 NaN 1.1 1], "upper"), ... %! [y(5) NaN NaN NaN y(1)], 5*eps) %!assert (hygecdf (x, 4, 2, 5), [NaN NaN NaN NaN NaN]) %!assert (hygecdf ([x(1:2) NaN x(4:5)], 4, 2, 2), [y(1:2) NaN y(4:5)], 5*eps) %!test %! p = hygecdf (x, 10, [1 2 3 4 5], 2, "upper"); %! assert (p, [1, 34/90, 2/30, 0, 0], 10*eps); %!test %! p = hygecdf (2*x, 10, [1 2 3 4 5], 2, "upper"); %! assert (p, [1, 34/90, 0, 0, 0], 10*eps); ## Test class of input preserved %!assert (hygecdf ([x, NaN], 4, 2, 2), [y, NaN], 5*eps) %!assert (hygecdf (single ([x, NaN]), 4, 2, 2), single ([y, NaN]), ... %! eps ("single")) %!assert (hygecdf ([x, NaN], single (4), 2, 2), single ([y, NaN]), ... %! eps ("single")) %!assert (hygecdf ([x, NaN], 4, single (2), 2), single ([y, NaN]), ... %! eps ("single")) %!assert (hygecdf ([x, NaN], 4, 2, single (2)), single ([y, NaN]), ... %! eps ("single")) ## Test input validation %!error hygecdf () %!error hygecdf (1) %!error hygecdf (1,2) %!error hygecdf (1,2,3) %!error hygecdf (1,2,3,4,5) %!error hygecdf (1,2,3,4,"uper") %!error ... %! hygecdf (ones (2), ones (3), 1, 1) %!error ... %! hygecdf (1, ones (2), ones (3), 1) %!error ... %! hygecdf (1, 1, ones (2), ones (3)) %!error hygecdf (i, 2, 2, 2) %!error hygecdf (2, i, 2, 2) %!error hygecdf (2, 2, i, 2) %!error hygecdf (2, 2, 2, i) statistics-release-1.6.3/inst/dist_fun/hygeinv.m000066400000000000000000000154001456127120000217460ustar00rootroot00000000000000## Copyright (C) 2012 Rik Wehbring ## Copyright (C) 1997-2016 Kurt Hornik ## Copyright (C) 2022 Nicholas R. Jankowski ## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{x} =} hygeinv (@var{p}, @var{m}, @var{k}, @var{n}) ## ## Inverse of the hypergeometric cumulative distribution function (iCDF). ## ## For each element of @var{p}, compute the quantile (the inverse of the CDF) of ## the hypergeometric distribution with parameters @var{m}, @var{k}, and @var{n}. ## The size of @var{x} is the common size of @var{p}, @var{m}, @var{k}, and ## @var{n}. A scalar input functions as a constant matrix of the same size as ## the other inputs. ## ## This is the number of drawn marked items @var{x} given a probability @var{p}, ## when randomly drawing a sample of size @var{n} without replacement from a ## population of total size @var{m} containing @var{k} marked items. The ## parameters @var{m}, @var{k}, and @var{n} must be positive integers with ## @var{k} and @var{n} not greater than @var{m}. ## ## Further information about the hypergeometric distribution can be found at ## @url{https://en.wikipedia.org/wiki/Hypergeometric_distribution} ## ## @seealso{hygeinv, hygepdf, hygernd, hygestat} ## @end deftypefn function x = hygeinv (p, m, k, n) ## Check for valid number of input arguments if (nargin < 4) error ("hygeinv: function called with too few input arguments."); endif ## Check for common size of P, T, M, and N if (! isscalar (p) || ! isscalar (m) || ! isscalar (k) || ! isscalar (n)) [retval, p, m, k, n] = common_size (p, m, k, n); if (retval > 0) error ("hygeinv: P, T, M, and N must be of common size or scalars."); endif endif ## Check for P, T, M, and N being reals if (iscomplex (p) || iscomplex (m) || iscomplex (k) || iscomplex (n)) error ("hygeinv: P, T, M, and N must not be complex."); endif ## Check for class type if (isa (p, "single") || isa (m, "single") || isa (k, "single") || isa (n, "single")) x = NaN (size (p), "single"); else x = NaN (size (p)); endif ok = ((m >= 0) & (k >= 0) & (n > 0) & (k <= m) & (n <= m) & (m == fix (m)) & (k == fix (k)) & (n == fix (n))); if (isscalar (m)) if (ok) x = discrete_inv (p, 0 : n, hygepdf (0 : n, m, k, n)); x(p == 0) = 0; # Hack to return correct value for start of distribution endif else p_0 = (p == 0); x (ok & p_0) = 0; # set any p=0 to 0 if not already set to output NaN p_0 = (p == 1); x (ok & p_0) = n(ok & p_0); ok &= (p>0 & p<1); # remove 0's and p's outside (0,1), leave unfilled as NaN if (any (ok(:))) n = n(ok); v = 0 : max (n(:)); ## Manually perform discrete_inv to enable vectorizing with array input p_tmp = cumsum (hygepdf (v, m(ok), k(ok), n, "vectorexpand"), 2); sz_p = size (p_tmp); end_locs = sub2ind (sz_p, [1 : numel(n)]', n(:) + 1); ## Manual row-wise vectorization of lookup, which returns index of element ## less than or equal to test value, zero if test value less than lowest ## number, and max index if greater than highest number. operated on ## flipped p_tmp, adjusting for different vector lengths in array rows. p_tmp = (p_tmp ./ p_tmp(end_locs))(:, end:-1:1) - p(ok)(:); p_tmp(p_tmp>=0) = NaN; [p_match, p_match_idx] = max (p_tmp, [], 2); p_match_idx(isnan(p_match)) = v(end) + 2; x(ok) = v(v(end) - p_match_idx + 3); endif endif endfunction %!demo %! ## Plot various iCDFs from the hypergeometric distribution %! p = 0.001:0.001:0.999; %! x1 = hygeinv (p, 500, 50, 100); %! x2 = hygeinv (p, 500, 60, 200); %! x3 = hygeinv (p, 500, 70, 300); %! plot (p, x1, "-b", p, x2, "-g", p, x3, "-r") %! grid on %! ylim ([0, 60]) %! legend ({"m = 500, k = 50, n = 100", "m = 500, k = 60, n = 200", ... %! "m = 500, k = 70, n = 300"}, "location", "northwest") %! title ("Hypergeometric iCDF") %! xlabel ("probability") %! ylabel ("values in p (number of successes)") ## Test output %!shared p %! p = [-1 0 0.5 1 2]; %!assert (hygeinv (p, 4*ones (1,5), 2*ones (1,5), 2*ones (1,5)), [NaN 0 1 2 NaN]) %!assert (hygeinv (p, 4*ones (1,5), 2, 2), [NaN 0 1 2 NaN]) %!assert (hygeinv (p, 4, 2*ones (1,5), 2), [NaN 0 1 2 NaN]) %!assert (hygeinv (p, 4, 2, 2*ones (1,5)), [NaN 0 1 2 NaN]) %!assert (hygeinv (p, 4*[1 -1 NaN 1.1 1], 2, 2), [NaN NaN NaN NaN NaN]) %!assert (hygeinv (p, 4, 2*[1 -1 NaN 1.1 1], 2), [NaN NaN NaN NaN NaN]) %!assert (hygeinv (p, 4, 5, 2), [NaN NaN NaN NaN NaN]) %!assert (hygeinv (p, 4, 2, 2*[1 -1 NaN 1.1 1]), [NaN NaN NaN NaN NaN]) %!assert (hygeinv (p, 4, 2, 5), [NaN NaN NaN NaN NaN]) %!assert (hygeinv ([p(1:2) NaN p(4:5)], 4, 2, 2), [NaN 0 NaN 2 NaN]) ## Test class of input preserved %!assert (hygeinv ([p, NaN], 4, 2, 2), [NaN 0 1 2 NaN NaN]) %!assert (hygeinv (single ([p, NaN]), 4, 2, 2), single ([NaN 0 1 2 NaN NaN])) %!assert (hygeinv ([p, NaN], single (4), 2, 2), single ([NaN 0 1 2 NaN NaN])) %!assert (hygeinv ([p, NaN], 4, single (2), 2), single ([NaN 0 1 2 NaN NaN])) %!assert (hygeinv ([p, NaN], 4, 2, single (2)), single ([NaN 0 1 2 NaN NaN])) ## Test input validation %!error hygeinv () %!error hygeinv (1) %!error hygeinv (1,2) %!error hygeinv (1,2,3) %!error ... %! hygeinv (ones (2), ones (3), 1, 1) %!error ... %! hygeinv (1, ones (2), ones (3), 1) %!error ... %! hygeinv (1, 1, ones (2), ones (3)) %!error hygeinv (i, 2, 2, 2) %!error hygeinv (2, i, 2, 2) %!error hygeinv (2, 2, i, 2) %!error hygeinv (2, 2, 2, i) statistics-release-1.6.3/inst/dist_fun/hygepdf.m000066400000000000000000000204651456127120000217320ustar00rootroot00000000000000## Copyright (C) 2012 Rik Wehbring ## Copyright (C) 1996-2016 Kurt Hornik ## Copyright (C) 2022 Nicholas R. Jankowski ## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{y} =} hygepdf (@var{x}, @var{m}, @var{k}, @var{n}) ## @deftypefnx {statistics} {@var{y} =} hygepdf (@dots{}, @qcode{"vectorexpand"}) ## ## Hypergeometric probability density function (PDF). ## ## For each element of @var{x}, compute the probability density function (PDF) ## of the hypergeometric distribution with parameters @var{m}, @var{k}, and ## @var{n}. The size of @var{y} is the common size of @var{x}, @var{m}, ## @var{k}, and @var{n}. A scalar input functions as a constant matrix of the ## same size as the other inputs. ## ## This is the probability of obtaining @var{x} marked items when randomly ## drawing a sample of size @var{n} without replacement from a population of ## total size @var{m} containing @var{k} marked items. The parameters @var{m}, ## @var{k}, and @var{n} must be positive integers with @var{k} and @var{n} not ## greater than @var{m}. ## ## If the optional parameter @qcode{vectorexpand} is provided, @var{x} may be an ## array with size different from parameters @var{m}, @var{k}, and @var{n} ## (which must still be of a common size or scalar). Each element of @var{x} ## will be evaluated against each set of parameters @var{m}, @var{k}, and ## @var{n} in columnwise order. The output @var{y} will be an array of size ## @qcode{@var{r} x @var{s}}, where @qcode{@var{r} = numel (@var{m})}, and ## @qcode{@var{s} = numel (@var{x})}. ## ## Further information about the hypergeometric distribution can be found at ## @url{https://en.wikipedia.org/wiki/Hypergeometric_distribution} ## ## @seealso{hygecdf, hygeinv, hygernd, hygestat} ## @end deftypefn function y = hygepdf (x, m, k, n, vect_expand) ## Check for valid number of input arguments if (nargin < 4) error ("hygepdf: function called with too few input arguments."); endif ## Check for X, T, M, and N being reals if (iscomplex (x) || iscomplex (m) || iscomplex (k) || iscomplex (n)) error ("hygepdf: X, T, M, and N must not be complex."); endif ## Check for 5th argument or add default if (nargin < 5) vect_expand = []; endif if strcmpi (vect_expand, "vectorexpand") ## Expansion to improve vectorization of hyge calling functions. ## Project inputs over a 2D array with x(:) as a row vector and m,k,n as ## a column vector. each y(i,j) is hygepdf(x(j), m(i), k(i), n(i)) ## Following expansion, remainder of algorithm processes as normal. if (! isscalar (m) || ! isscalar (k) || ! isscalar (n)) [retval, m, k, n] = common_size (m, k, n); if (retval > 0) error ("hygepdf: T, M, and N must be of common size or scalars."); endif ## Ensure col vectors before expansion m = m(:); k = k(:); n = n(:); endif ## Expand x,m,k,n to arrays of size numel(m) x numel(x) sz = [numel(m), numel(x)]; x = x(:)'; # ensure row vector before expansion x = x(ones (sz(1), 1), :); m = m(:, ones (sz(2), 1)); k = k(:, ones (sz(2), 1)); n = n(:, ones (sz(2), 1)); else ## Check for common size of X, T, M, and N if (! isscalar (m) || ! isscalar (k) || ! isscalar (n)) [retval, x, m, k, n] = common_size (x, m, k, n); if (retval > 0) error ("hygepdf: X, T, M, and N must be of common size or scalars."); endif endif sz = size (x); endif ## Check for class type if (isa (x, "single") || isa (m, "single") || isa (k, "single") || isa (n, "single")) y = zeros (sz, "single"); else y = zeros (sz); endif ## Everything in nel gives NaN nel = (isnan (x) | (m < 0) | (k < 0) | (n <= 0) | (k > m) | (n > m) | (m != fix (m)) | (k != fix (k)) | (n != fix (n))); ## Everything in zel gives 0 unless in nel zel = ((x != fix (x)) | (x < 0) | (x > k) | (n < x) | (n-x > m-k)); y(nel) = NaN; ok = ! nel & ! zel; if (any (ok(:))) if (isscalar (m)) y(ok) = exp (gammaln (k+1) - gammaln (k-x(ok)+1) - gammaln (x(ok)+1) + ... gammaln (m-k+1) - gammaln (m-k-n+x(ok)+1) - ... gammaln (n-x(ok)+1) - gammaln (m+1) + gammaln (m-n+1) + ... gammaln (n+1)); else y(ok) = exp (gammaln (k(ok)+1) - gammaln (k(ok)-x(ok)+1) - ... gammaln (x(ok)+1) + gammaln (m(ok)-k(ok)+1) - ... gammaln (m(ok)-k(ok)-n(ok)+x(ok)+1) - ... gammaln (n(ok)-x(ok)+1) - gammaln (m(ok)+1) + ... gammaln (m(ok)-n(ok)+1) + gammaln (n(ok)+1)); endif endif endfunction %!demo %! ## Plot various PDFs from the hypergeometric distribution %! x = 0:60; %! y1 = hygepdf (x, 500, 50, 100); %! y2 = hygepdf (x, 500, 60, 200); %! y3 = hygepdf (x, 500, 70, 300); %! plot (x, y1, "*b", x, y2, "*g", x, y3, "*r") %! grid on %! xlim ([0, 60]) %! ylim ([0, 0.18]) %! legend ({"m = 500, k = 50, μ = 100", "m = 500, k = 60, μ = 200", ... %! "m = 500, k = 70, μ = 300"}, "location", "northeast") %! title ("Hypergeometric PDF") %! xlabel ("values in x (number of successes)") %! ylabel ("density") ## Test output %!shared x, y %! x = [-1 0 1 2 3]; %! y = [0 1/6 4/6 1/6 0]; %!assert (hygepdf (x, 4*ones (1,5), 2, 2), y, eps) %!assert (hygepdf (x, 4, 2*ones (1,5), 2), y, eps) %!assert (hygepdf (x, 4, 2, 2*ones (1,5)), y, eps) %!assert (hygepdf (x, 4*[1 -1 NaN 1.1 1], 2, 2), [0 NaN NaN NaN 0], eps) %!assert (hygepdf (x, 4, 2*[1 -1 NaN 1.1 1], 2), [0 NaN NaN NaN 0], eps) %!assert (hygepdf (x, 4, 5, 2), [NaN NaN NaN NaN NaN], eps) %!assert (hygepdf (x, 4, 2, 2*[1 -1 NaN 1.1 1]), [0 NaN NaN NaN 0], eps) %!assert (hygepdf (x, 4, 2, 5), [NaN NaN NaN NaN NaN], eps) %!assert (hygepdf ([x, NaN], 4, 2, 2), [y, NaN], eps) ## Test class of input preserved %!assert (hygepdf (single ([x, NaN]), 4, 2, 2), single ([y, NaN]), eps("single")) %!assert (hygepdf ([x, NaN], single (4), 2, 2), single ([y, NaN]), eps("single")) %!assert (hygepdf ([x, NaN], 4, single (2), 2), single ([y, NaN]), eps("single")) %!assert (hygepdf ([x, NaN], 4, 2, single (2)), single ([y, NaN]), eps("single")) ## Test vector expansion %!test %! z = zeros(3,5); %! z([4,5,6,8,9,12]) = [1, 0.5, 1/6, 0.5, 2/3, 1/6]; %! assert (hygepdf (x, 4, [0, 1, 2], 2, "vectorexpand"), z, eps); %! assert (hygepdf (x, 4, [0, 1, 2]', 2, "vectorexpand"), z, eps); %! assert (hygepdf (x', 4, [0, 1, 2], 2, "vectorexpand"), z, eps); %! assert (hygepdf (2, 4, [0 ,1, 2], 2, "vectorexpand"), z(:,4), eps); %! assert (hygepdf (x, 4, 1, 2, "vectorexpand"), z(2,:), eps); %! assert (hygepdf ([NaN, x], 4, [0 1 2]', 2, "vectorexpand"), [NaN(3,1), z], eps); ## Test input validation %!error hygepdf () %!error hygepdf (1) %!error hygepdf (1,2) %!error hygepdf (1,2,3) %!error ... %! hygepdf (1, ones (3), ones (2), ones (2)) %!error ... %! hygepdf (1, ones (2), ones (3), ones (2)) %!error ... %! hygepdf (1, ones (2), ones (2), ones (3)) %!error hygepdf (i, 2, 2, 2) %!error hygepdf (2, i, 2, 2) %!error hygepdf (2, 2, i, 2) %!error hygepdf (2, 2, 2, i) statistics-release-1.6.3/inst/dist_fun/hygernd.m000066400000000000000000000177621456127120000217520ustar00rootroot00000000000000## Copyright (C) 2012 Rik Wehbring ## Copyright (C) 1997-2016 Kurt Hornik ## Copyright (C) 2022 Nicholas R. Jankowski ## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{r} =} hygernd (@var{m}, @var{k}, @var{n}) ## @deftypefnx {statistics} {@var{r} =} hygernd (@var{m}, @var{k}, @var{n}, @var{rows}) ## @deftypefnx {statistics} {@var{r} =} hygernd (@var{m}, @var{k}, @var{n}, @var{rows}, @var{cols}, @dots{}) ## @deftypefnx {statistics} {@var{r} =} hygernd (@var{m}, @var{k}, @var{n}, [@var{sz}]) ## ## Random arrays from the hypergeometric distribution. ## ## @code{@var{r} = hygernd ((@var{m}, @var{k}, @var{n}} returns an array of ## random numbers chosen from the hypergeometric distribution with parameters ## @var{m}, @var{k}, and @var{n}. The size of @var{r} is the common size of ## @var{m}, @var{k}, and @var{n}. A scalar input functions as a constant matrix ## of the same size as the other inputs. ## ## The parameters @var{m}, @var{k}, and @var{n} must be positive integers ## with @var{k} and @var{n} not greater than @var{m}. ## ## When called with a single size argument, @code{hygernd} returns a square ## matrix with the dimension specified. When called with more than one scalar ## argument, the first two arguments are taken as the number of rows and columns ## and any further arguments specify additional matrix dimensions. The size may ## also be specified with a row vector of dimensions, @var{sz}. ## ## Further information about the hypergeometric distribution can be found at ## @url{https://en.wikipedia.org/wiki/Hypergeometric_distribution} ## ## @seealso{hygecdf, hygeinv, hygepdf, hygestat} ## @end deftypefn function r = hygernd (m, k, n, varargin) ## Check for valid number of input arguments if (nargin < 3) error ("hygernd: function called with too few input arguments."); endif ## Check for common size of T, M, and N if (! isscalar (m) || ! isscalar (k) || ! isscalar (n)) [retval, m, k, n] = common_size (m, k, n); if (retval > 0) error ("hygernd: T, M, and N must be of common size or scalars."); endif endif ## Check for T, M, and N being reals if (iscomplex (m) || iscomplex (k) || iscomplex (n)) error ("hygernd: T, M, and N must not be complex."); endif ## Parse and check SIZE arguments if (nargin == 3) sz = size (m); elseif (nargin == 4) if (isscalar (varargin{1}) && varargin{1} >= 0 ... && varargin{1} == fix (varargin{1})) sz = [varargin{1}, varargin{1}]; elseif (isrow (varargin{1}) && all (varargin{1} >= 0) ... && all (varargin{1} == fix (varargin{1}))) sz = varargin{1}; elseif error (strcat (["hygernd: SZ must be a scalar or a row vector"], ... [" of non-negative integers."])); endif elseif (nargin > 4) posint = cellfun (@(x) (! isscalar (x) || x < 0 || x != fix (x)), varargin); if (any (posint)) error ("hygernd: dimensions must be non-negative integers."); endif sz = [varargin{:}]; endif ## Check that parameters match requested dimensions in size if (! isscalar (m) && ! isequal (size (m), sz)) error ("hygernd: T, M, and N must be scalars or of size SZ."); endif ## Check for class type if (isa (m, "single") || isa (k, "single") || isa (n, "single")) cls = "single"; else cls = "double"; endif ok = ((m >= 0) & (k >= 0) & (n > 0) & (k <= m) & (n <= m) & (m == fix (m)) & (k == fix (k)) & (n == fix (n))); ## Generate random sample from the hypergeometric distribution if (isscalar (m)) if (ok) v = 0:n; p = hygepdf (v, m, k, n); r = v(lookup (cumsum (p(1:end-1)) / sum (p), rand (sz)) + 1); r = reshape (r, sz); if (strcmp (cls, "single")) r = single (r); endif else r = NaN (sz, cls); endif else r = NaN (sz, cls); n = n(ok); num_n = numel (n); v = 0 : max (n(:)); p = cumsum (hygepdf (v, m(ok), k(ok), n, "vectorexpand"), 2); ## Manual row-wise vectorization of lookup, which returns index of element ## less than or equal to test value, zero if test value is less than lowest ## number, and max index if greater than highest number. end_locs = sub2ind (size (p), [1 : num_n]', n(:) + 1); p = (p ./ p(end_locs)) - rand (num_n, 1); p(p>=0) = NaN; # NaN values ignored by max [p_match, p_match_idx] = max (p, [], 2); p_match_idx(isnan(p_match)) = 0; # rand < min(p) gives NaN, reset to 0 r(ok) = v(p_match_idx + 1); endif endfunction ## Test output %!assert (size (hygernd (4,2,2)), [1, 1]) %!assert (size (hygernd (4*ones (2,1), 2,2)), [2, 1]) %!assert (size (hygernd (4*ones (2,2), 2,2)), [2, 2]) %!assert (size (hygernd (4, 2*ones (2,1), 2)), [2, 1]) %!assert (size (hygernd (4, 2*ones (2,2), 2)), [2, 2]) %!assert (size (hygernd (4, 2, 2*ones (2,1))), [2, 1]) %!assert (size (hygernd (4, 2, 2*ones (2,2))), [2, 2]) %!assert (size (hygernd (4, 2, 2, 3)), [3, 3]) %!assert (size (hygernd (4, 2, 2, [4 1])), [4, 1]) %!assert (size (hygernd (4, 2, 2, 4, 1)), [4, 1]) ## Test class of input preserved %!assert (class (hygernd (4,2,2)), "double") %!assert (class (hygernd (single (4),2,2)), "single") %!assert (class (hygernd (single ([4 4]),2,2)), "single") %!assert (class (hygernd (4,single (2),2)), "single") %!assert (class (hygernd (4,single ([2 2]),2)), "single") %!assert (class (hygernd (4,2,single (2))), "single") %!assert (class (hygernd (4,2,single ([2 2]))), "single") ## Test input validation %!error hygernd () %!error hygernd (1) %!error hygernd (1, 2) %!error ... %! hygernd (ones (3), ones (2), ones (2)) %!error ... %! hygernd (ones (2), ones (3), ones (2)) %!error ... %! hygernd (ones (2), ones (2), ones (3)) %!error hygernd (i, 2, 3) %!error hygernd (1, i, 3) %!error hygernd (1, 2, i) %!error ... %! hygernd (1, 2, 3, -1) %!error ... %! hygernd (1, 2, 3, 1.2) %!error ... %! hygernd (1, 2, 3, ones (2)) %!error ... %! hygernd (1, 2, 3, [2 -1 2]) %!error ... %! hygernd (1, 2, 3, [2 0 2.5]) %!error ... %! hygernd (1, 2, 3, 2, -1, 5) %!error ... %! hygernd (1, 2, 3, 2, 1.5, 5) %!error ... %! hygernd (2, ones (2), 2, 3) %!error ... %! hygernd (2, ones (2), 2, [3, 2]) %!error ... %! hygernd (2, ones (2), 2, 3, 2) statistics-release-1.6.3/inst/dist_fun/invgcdf.m000066400000000000000000000143651456127120000217260ustar00rootroot00000000000000## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{p} =} invgcdf (@var{x}, @var{mu}, @var{lambda}) ## @deftypefnx {statistics} {@var{p} =} invgcdf (@var{x}, @var{mu}, @var{lambda}, @qcode{"upper"}) ## ## Inverse Gaussian cumulative distribution function (CDF). ## ## For each element of @var{x}, compute the cumulative distribution function ## (CDF) of the inverse Gaussian distribution with scale parameter @var{mu} and ## shape parameter @var{lambda}. The size of @var{p} is the common size of ## @var{x}, @var{mu} and @var{lambda}. A scalar input functions as a constant ## matrix of the same size as the other inputs. ## ## @code{@var{p} = invgcdf (@var{x}, @var{mu}, @var{lambda}, "upper")} computes ## the upper tail probability of the inverse Gaussian distribution with ## parameters @var{mu} and @var{lambda}, at the values in @var{x}. ## ## The inverse Gaussian CDF is only defined for @qcode{@var{mu} > 0} and ## @qcode{@var{lambda} > 0}. ## ## Further information about the inverse Gaussian distribution can be found at ## @url{https://en.wikipedia.org/wiki/Inverse_Gaussian_distribution} ## ## @seealso{invginv, invgpdf, invgrnd, invgfit, invglike} ## @end deftypefn function p = invgcdf (x, mu, lambda, uflag) ## Check for valid number of input arguments if (nargin < 3) error ("invgcdf: function called with too few input arguments."); endif ## Check for valid "upper" flag if (nargin > 3) if (! strcmpi (uflag, "upper")) error ("invgcdf: invalid argument for upper tail."); else uflag = true; endif else uflag = false; endif ## Check for common size of X, MU, and LAMBDA if (! isscalar (x) || ! isscalar (mu) || ! isscalar (lambda)) [err, x, mu, lambda] = common_size (x, mu, lambda); if (err > 0) error ("invgcdf: X, MU, and LAMBDA must be of common size or scalars."); endif endif ## Check for X, MU, and LAMBDA being reals if (iscomplex (x) || iscomplex (mu) || iscomplex (lambda)) error ("invgcdf: X, MU, and LAMBDA must not be complex."); endif ## Check for class type if (isa (x, "single") || isa (mu, "single") || isa (lambda, "single")) is_class = "single"; else is_class = "double"; endif ## Prepare output p = zeros (size (x), is_class); ## Return NaNs for out of range values of MU and LAMBDA parameters mu(mu <= 0) = NaN; lambda(lambda <= 0) = NaN; ## Check for valid support of X is_zero = (x <= 0); x(is_zero) = realmin; is_inf = (x == Inf); ## Calculate z1, z2 z1 = sqrt (lambda ./ x) .* (x ./ mu - 1); z2 = -sqrt (lambda ./ x) .* (x ./ mu + 1); ## Compute the CDF if the inverse Gaussian if (uflag) p = 0.5 .* erfc (z1 ./ sqrt (2)) - ... exp (2 .* lambda ./ mu) .* 0.5 .* erfc (-z2 ./ sqrt (2)); p(is_zero) = 1; p(is_inf) = 0; else p = 0.5 .* erfc (-z1 ./ sqrt (2)) + ... exp (2 .* lambda ./ mu) .* 0.5 .* erfc (-z2 ./ sqrt (2)); p(is_zero) = 0; p(is_inf) = 1; endif endfunction %!demo %! ## Plot various CDFs from the inverse Gaussian distribution %! x = 0:0.001:3; %! p1 = invgcdf (x, 1, 0.2); %! p2 = invgcdf (x, 1, 1); %! p3 = invgcdf (x, 1, 3); %! p4 = invgcdf (x, 3, 0.2); %! p5 = invgcdf (x, 3, 1); %! plot (x, p1, "-b", x, p2, "-g", x, p3, "-r", x, p4, "-c", x, p5, "-y") %! grid on %! xlim ([0, 3]) %! legend ({"μ = 1, σ = 0.2", "μ = 1, σ = 1", "μ = 1, σ = 3", ... %! "μ = 3, σ = 0.2", "μ = 3, σ = 1"}, "location", "southeast") %! title ("Inverse Gaussian CDF") %! xlabel ("values in x") %! ylabel ("probability") ## Test output %!shared x, p1, p1u, y2, y2u, y3, y3u %! x = [-Inf, -1, 0, 1/2, 1, Inf]; %! p1 = [0, 0, 0, 0.3650, 0.6681, 1]; %! p1u = [1, 1, 1, 0.6350, 0.3319, 0]; %!assert (invgcdf (x, ones (1,6), ones (1,6)), p1, 1e-4) %!assert (invgcdf (x, 1, 1), p1, 1e-4) %!assert (invgcdf (x, 1, ones (1,6)), p1, 1e-4) %!assert (invgcdf (x, ones (1,6), 1), p1, 1e-4) %!assert (invgcdf (x, 1, [1, 1, 1, NaN, 1, 1]), [p1(1:3), NaN, p1(5:6)], 1e-4) %!assert (invgcdf (x, [1, 1, 1, NaN, 1, 1], 1), [p1(1:3), NaN, p1(5:6)], 1e-4) %!assert (invgcdf ([x(1:3), NaN, x(5:6)], 1, 1), [p1(1:3), NaN, p1(5:6)], 1e-4) %!assert (invgcdf (x, ones (1,6), ones (1,6), "upper"), p1u, 1e-4) %!assert (invgcdf (x, 1, 1, "upper"), p1u, 1e-4) %!assert (invgcdf (x, 1, ones (1,6), "upper"), p1u, 1e-4) %!assert (invgcdf (x, ones (1,6), 1, "upper"), p1u, 1e-4) ## Test class of input preserved %!assert (class (invgcdf (single ([x, NaN]), 1, 1)), "single") %!assert (class (invgcdf ([x, NaN], 1, single (1))), "single") %!assert (class (invgcdf ([x, NaN], single (1), 1)), "single") ## Test input validation %!error invgcdf () %!error invgcdf (1) %!error invgcdf (1, 2) %!error invgcdf (1, 2, 3, "tail") %!error invgcdf (1, 2, 3, 5) %!error ... %! invgcdf (ones (3), ones (2), ones(2)) %!error ... %! invgcdf (ones (2), ones (3), ones(2)) %!error ... %! invgcdf (ones (2), ones (2), ones(3)) %!error invgcdf (i, 2, 3) %!error invgcdf (1, i, 3) %!error invgcdf (1, 2, i) statistics-release-1.6.3/inst/dist_fun/invginv.m000066400000000000000000000151101456127120000217530ustar00rootroot00000000000000## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{x} =} invginv (@var{p}, @var{mu}, @var{lambda}) ## ## Inverse of the inverse Gaussian cumulative distribution function (iCDF). ## ## For each element of @var{p}, compute the quantile (the inverse of the CDF) of ## the inverse Gaussian distribution with scale parameter @var{mu} and shape ## parameter @var{lambda}. The size of @var{x} is the common size of @var{p}, ## @var{mu}, and @var{lambda}. A scalar input functions as a constant matrix of ## the same size as the other inputs. ## ## The inverse Gaussian CDF is only defined for @qcode{@var{mu} > 0} and ## @qcode{@var{lambda} > 0}. ## ## Further information about the inverse Gaussian distribution can be found at ## @url{https://en.wikipedia.org/wiki/Inverse_Gaussian_distribution} ## ## @seealso{invgcdf, invgpdf, invgrnd, invgfit, invglike} ## @end deftypefn function x = invginv (p, mu, lambda) ## Check for valid number of input arguments if (nargin < 3) error ("invginv: function called with too few input arguments."); endif ## Check for common size of P, MU, and LAMBDA if (! isscalar (p) || ! isscalar (mu) || ! isscalar(lambda)) [retval, p, mu, lambda] = common_size (p, mu, lambda); vec = true; if (retval > 0) error ("invginv: P, MU, and LAMBDA must be of common size or scalars."); endif else vec = false; endif ## Check for X, MU, and LAMBDA being reals if (iscomplex (p) || iscomplex (mu) || iscomplex (lambda)) error ("invginv: P, MU, and LAMBDA must not be complex."); endif ## Check for class type if (isa (p, "single") || isa (mu, "single") || isa (lambda, "single")); x = NaN (size (p), "single"); else x = NaN (size (p)); endif ## Return NaNs for out of range values of MU and LAMBDA parameters mu(mu <= 0) = NaN; lambda(lambda <= 0) = NaN; ## Find valid parameters and p-values (handle edges cases below) validmulambda = (mu > 0) & (lambda > 0) & (lambda < Inf); validp_values = (validmulambda & (p > 0) & (p < 1)); valid_all = all (validp_values(:)); valid_any = any (validp_values(:)); ## Handle edges cases here if (! valid_all) x(p == 0 & validmulambda) = 0; x(p == 1 & validmulambda) = Inf; ## Keep valid cases (if any left) if (valid_any) if (vec) p = p(validp_values); mu = mu(validp_values); lambda = lambda(validp_values); endif else return; endif endif ## Apply Newton's Method to find a root of p = invgcdf(x,mu,lambda) ## Choose a starting guess for x0. Use quantiles from a lognormal ## distribution with the same mean (==1) and variance (==lambda0) lambda0 = lambda ./ mu; lognorm = log (1 ./ lambda0 + 1); mulnorm = -0.5 .* lognorm; x0 = exp (mulnorm - sqrt (2 .* lognorm) .* erfcinv (2 * p)); ## Set maximum iterations and tolerance for Newton's Method mit = 500; tol = eps (class (x0)) .^ (3/4); ## Get quantiles F = invgcdf (x0, 1, lambda0); dF = F - p; for it = 1:mit ## Compute the Newton step f = invgpdf (x0, 1, lambda0); h = dF ./ f; x0_1 = max (x0/10, min (10 * x0, x0 - h)); ## Check if tolerance is reached complete = (abs (h) <= tol * x0); if (all (complete(:))) x0 = x0_1; break endif ## Check for increasing error unless tolerance is reached dFold = dF; for j = 1:25 F = invgcdf (x0_1, 1, lambda0); dF = F - p; worse = (abs (dF) > abs (dFold)) & ! complete; if (! any (worse(:))) break endif x0_1(worse) = (x0(worse) + x0_1(worse)) / 2; endfor ## Update for next step x0 = x0_1; endfor ## Issue a warning for exceeding iterations or not converging to tolerance notconv = (abs(dF./F) > tol.^(2/3)); if (it > mit || any (notconv(:))) warning (strcat (["invginv: Newton's Method did not converge"], ... [" or exceeded maximum iterations."])); endif ## Apply the scale factor if (valid_all) x = x0 .* mu; else x(validp_values) = x0 .* mu; endif endfunction %!demo %! ## Plot various iCDFs from the inverse Gaussian distribution %! p = 0.001:0.001:0.999; %! x1 = invginv (p, 1, 0.2); %! x2 = invginv (p, 1, 1); %! x3 = invginv (p, 1, 3); %! x4 = invginv (p, 3, 0.2); %! x5 = invginv (p, 3, 1); %! plot (p, x1, "-b", p, x2, "-g", p, x3, "-r", p, x4, "-c", p, x5, "-y") %! grid on %! ylim ([0, 3]) %! legend ({"μ = 1, σ = 0.2", "μ = 1, σ = 1", "μ = 1, σ = 3", ... %! "μ = 3, σ = 0.2", "μ = 3, σ = 1"}, "location", "northwest") %! title ("Inverse Gaussian iCDF") %! xlabel ("probability") %! ylabel ("x") ## Test output %!shared p, x %! p = [0, 0.3829, 0.6827, 1]; %! x = [0, 0.5207, 1.0376, Inf]; %!assert (invginv (p, 1, 1), x, 1e-4); %!assert (invginv (p, 1, ones (1,4)), x, 1e-4); %!assert (invginv (p, 1, [-1, 0, 1, 1]), [NaN, NaN, x(3:4)], 1e-4) %!assert (invginv (p, [-1, 0, 1, 1], 1), [NaN, NaN, x(3:4)], 1e-4) ## Test class of input preserved %!assert (class (invginv (single ([p, NaN]), 0, 1)), "single") %!assert (class (invginv ([p, NaN], single (0), 1)), "single") %!assert (class (invginv ([p, NaN], 0, single (1))), "single") ## Test input validation %!error invginv (1) %!error invginv (1, 2) %!error ... %! invginv (1, ones (2), ones (3)) %!error ... %! invginv (ones (2), 1, ones (3)) %!error ... %! invginv (ones (2), ones (3), 1) %!error invginv (i, 2, 3) %!error invginv (1, i, 3) %!error invginv (1, 2, i) statistics-release-1.6.3/inst/dist_fun/invgpdf.m000066400000000000000000000113431456127120000217340ustar00rootroot00000000000000## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{y} =} invgpdf (@var{x}, @var{mu}, @var{lambda}) ## ## Inverse Gaussian probability density function (PDF). ## ## For each element of @var{x}, compute the probability density function (PDF) ## of the inverse Gaussian distribution with scale parameter @var{mu} and shape ## parameter @var{lambda}. The size of @var{y} is the common size of @var{x}, ## @var{mu}, and @var{lambda}. A scalar input functions as a constant matrix of ## the same size as the other inputs. ## ## The inverse Gaussian CDF is only defined for @qcode{@var{mu} > 0} and ## @qcode{@var{lambda} > 0}. ## ## Further information about the inverse Gaussian distribution can be found at ## @url{https://en.wikipedia.org/wiki/Inverse_Gaussian_distribution} ## ## @seealso{invgcdf, invginv, invgrnd, invgfit, invglike} ## @end deftypefn function y = invgpdf (x, mu, lambda) ## Check for valid number of input arguments if (nargin < 3) error ("invgpdf: function called with too few input arguments."); endif ## Check for common size of X, MU, and LAMBDA if (! isscalar (x) || ! isscalar (mu) || ! isscalar(lambda)) [retval, x, mu, lambda] = common_size (x, mu, lambda); if (retval > 0) error ("invgpdf: X, MU, and LAMBDA must be of common size or scalars."); endif endif ## Check for X, MU, and LAMBDA being reals if (iscomplex (x) || iscomplex (mu) || iscomplex (lambda)) error ("invgpdf: X, MU, and LAMBDA must not be complex."); endif ## Check for class type if (isa (x, "single") || isa (mu, "single") || isa (lambda, "single")); is_class = "single"; else is_class = "double"; endif ## Return NaNs for out of range values of MU and LAMBDA parameters mu(mu <= 0) = NaN; lambda(lambda <= 0) = NaN; ## Check for valid support of X is_zero = (x <= 0); x(is_zero) = realmin; ## Compute inverse Gaussian PDF y = sqrt (lambda ./ (2 .* pi .* x .^ 3)) .* ... exp (-0.5 .* lambda .* (x ./ mu - 2 + mu ./ x) ./ mu); ## Force zero for unsupported X but valid parameters k0 = is_zero & mu > 0 & lambda > 0; y(k0) = 0; ## Cast to appropriate class y = cast (y, is_class); endfunction %!demo %! ## Plot various PDFs from the inverse Gaussian distribution %! x = 0:0.001:3; %! y1 = invgpdf (x, 1, 0.2); %! y2 = invgpdf (x, 1, 1); %! y3 = invgpdf (x, 1, 3); %! y4 = invgpdf (x, 3, 0.2); %! y5 = invgpdf (x, 3, 1); %! plot (x, y1, "-b", x, y2, "-g", x, y3, "-r", x, y4, "-c", x, y5, "-y") %! grid on %! xlim ([0, 3]) %! ylim ([0, 3]) %! legend ({"μ = 1, σ = 0.2", "μ = 1, σ = 1", "μ = 1, σ = 3", ... %! "μ = 3, σ = 0.2", "μ = 3, σ = 1"}, "location", "northeast") %! title ("Inverse Gaussian PDF") %! xlabel ("values in x") %! ylabel ("density") ## Test output %!shared x, y %! x = [-Inf, -1, 0, 1/2, 1, Inf]; %! y = [0, 0, 0, 0.8788, 0.3989, 0]; %!assert (invgpdf ([x, NaN], 1, 1), [y, NaN], 1e-4) %!assert (invgpdf (x, 1, [-2, -1, 0, 1, 1, 1]), [nan(1,3), y([4:6])], 1e-4) ## Test class of input preserved %!assert (class (hncdf (single ([x, NaN]), 1, 1)), "single") %!assert (class (hncdf ([x, NaN], 1, single (1))), "single") %!assert (class (hncdf ([x, NaN], single (1), 1)), "single") ## Test input validation %!error invgpdf () %!error invgpdf (1) %!error invgpdf (1, 2) %!error ... %! invgpdf (1, ones (2), ones (3)) %!error ... %! invgpdf (ones (2), 1, ones (3)) %!error ... %! invgpdf (ones (2), ones (3), 1) %!error invgpdf (i, 2, 3) %!error invgpdf (1, i, 3) %!error invgpdf (1, 2, i) statistics-release-1.6.3/inst/dist_fun/invgrnd.m000066400000000000000000000161111456127120000217440ustar00rootroot00000000000000## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{r} =} invgrnd (@var{mu}, @var{lambda}) ## @deftypefnx {statistics} {@var{r} =} invgrnd (@var{mu}, @var{lambda}, @var{rows}) ## @deftypefnx {statistics} {@var{r} =} invgrnd (@var{mu}, @var{lambda}, @var{rows}, @var{cols}, @dots{}) ## @deftypefnx {statistics} {@var{r} =} invgrnd (@var{mu}, @var{lambda}, [@var{sz}]) ## ## Random arrays from the inverse Gaussian distribution. ## ## @code{@var{r} = invgrnd (@var{mu}, @var{lambda})} returns an array of random ## numbers chosen from the inverse Gaussian distribution with location parameter ## @var{mu} and scale parameter @var{lambda}. The size of @var{r} is the common ## size of @var{mu} and @var{lambda}. A scalar input functions as a constant ## matrix of the same size as the other inputs. ## ## When called with a single size argument, @code{invgrnd} returns a square ## matrix with the dimension specified. When called with more than one scalar ## argument, the first two arguments are taken as the number of rows and columns ## and any further arguments specify additional matrix dimensions. The size may ## also be specified with a row vector of dimensions, @var{sz}. ## ## The inverse Gaussian CDF is only defined for @qcode{@var{mu} > 0} and ## @qcode{@var{lambda} > 0}. ## ## Further information about the inverse Gaussian distribution can be found at ## @url{https://en.wikipedia.org/wiki/Inverse_Gaussian_distribution} ## ## @seealso{invgcdf, invginv, invgpdf, invgfit, invglike} ## @end deftypefn function r = invgrnd (mu, lambda, varargin) ## Check for valid number of input arguments if (nargin < 2) error ("invgrnd: function called with too few input arguments."); endif ## Check for common size of MU, and LAMBDA if (! isscalar (mu) || ! isscalar (lambda)) [retval, mu, lambda] = common_size (mu, lambda); vec = true; if (retval > 0) error ("invgrnd: MU and LAMBDA must be of common size or scalars."); endif else vec = false; endif ## Check for X, MU, and LAMBDA being reals if (iscomplex (mu) || iscomplex (lambda)) error ("invgrnd: MU and LAMBDA must not be complex."); endif ## Parse and check SIZE arguments if (nargin == 2) sz = size (mu); elseif (nargin == 3) if (isscalar (varargin{1}) && varargin{1} >= 0 ... && varargin{1} == fix (varargin{1})) sz = [varargin{1}, varargin{1}]; elseif (isrow (varargin{1}) && all (varargin{1} >= 0) ... && all (varargin{1} == fix (varargin{1}))) sz = varargin{1}; elseif error (strcat (["invgrnd: SZ must be a scalar or a row vector"], ... [" of non-negative integers."])); endif elseif (nargin > 3) posint = cellfun (@(x) (! isscalar (x) || x < 0 || x != fix (x)), varargin); if (any (posint)) error ("invgrnd: dimensions must be non-negative integers."); endif sz = [varargin{:}]; endif ## Check that parameters match requested dimensions in size if (! isscalar (mu) && ! isequal (size (mu), sz)) error ("invgrnd: MU and LAMBDA must be scalars or of size SZ."); endif ## Check for class type if (isa (mu, "single") || isa (lambda, "single")) cls = "single"; else cls = "double"; endif ## Expand parameters (if needed) if (! vec) mu = repmat (mu, sz); lambda = repmat (lambda, sz); endif ## Generate random sample from inverse Gaussian distribution v = randn (sz, cls); y = v .^ 2; r = mu + (mu .^ 2 .* y) ./ (2 .* lambda) - (mu ./ (2 .* lambda)) .* ... sqrt (4 * mu .* lambda .* y + mu .* mu .* y .* y); inver = (rand (sz) .* (mu + r) > mu); r(inver) = mu(inver) .^2 ./ r(inver); ## Force output to NaN for invalid parameters MU and LAMBDA k = (mu <= 0 | lambda <= 0); r(k) = NaN; endfunction ## Test results %!assert (size (invgrnd (1, 1, 1)), [1, 1]) %!assert (size (invgrnd (1, 1, 2)), [2, 2]) %!assert (size (invgrnd (1, 1, [2, 1])), [2, 1]) %!assert (size (invgrnd (1, zeros (2, 2))), [2, 2]) %!assert (size (invgrnd (1, ones (2, 1))), [2, 1]) %!assert (size (invgrnd (1, ones (2, 2))), [2, 2]) %!assert (size (invgrnd (ones (2, 1), 1)), [2, 1]) %!assert (size (invgrnd (ones (2, 2), 1)), [2, 2]) %!assert (size (invgrnd (1, 1, 3)), [3, 3]) %!assert (size (invgrnd (1, 1, [4 1])), [4, 1]) %!assert (size (invgrnd (1, 1, 4, 1)), [4, 1]) %!test %! r = invgrnd (1, [1, 0, -1]); %! assert (r([2:3]), [NaN, NaN]) ## Test class of input preserved %!assert (class (invgrnd (1, 0)), "double") %!assert (class (invgrnd (1, single (0))), "single") %!assert (class (invgrnd (1, single ([0 0]))), "single") %!assert (class (invgrnd (1, single (1))), "single") %!assert (class (invgrnd (1, single ([1 1]))), "single") %!assert (class (invgrnd (single (1), 1)), "single") %!assert (class (invgrnd (single ([1 1]), 1)), "single") ## Test input validation %!error invgrnd () %!error invgrnd (1) %!error ... %! invgrnd (ones (3), ones (2)) %!error ... %! invgrnd (ones (2), ones (3)) %!error invgrnd (i, 2, 3) %!error invgrnd (1, i, 3) %!error ... %! invgrnd (1, 2, -1) %!error ... %! invgrnd (1, 2, 1.2) %!error ... %! invgrnd (1, 2, ones (2)) %!error ... %! invgrnd (1, 2, [2 -1 2]) %!error ... %! invgrnd (1, 2, [2 0 2.5]) %!error ... %! invgrnd (1, 2, 2, -1, 5) %!error ... %! invgrnd (1, 2, 2, 1.5, 5) %!error ... %! invgrnd (2, ones (2), 3) %!error ... %! invgrnd (2, ones (2), [3, 2]) %!error ... %! invgrnd (2, ones (2), 3, 2) statistics-release-1.6.3/inst/dist_fun/iwishpdf.m000066400000000000000000000054101456127120000221120ustar00rootroot00000000000000## Copyright (C) 2013 Nir Krakauer ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{y} =} iwishpdf (@var{W}, @var{Tau}, @var{df}, @var{log_y}=false) ## ## Compute the probability density function of the inverse Wishart distribution. ## ## Inputs: A @var{p} x @var{p} matrix @var{W} where to find the PDF and the ## @var{p} x @var{p} positive definite scale matrix @var{Tau} and scalar degrees ## of freedom parameter @var{df} characterizing the inverse Wishart distribution. ## (For the density to be finite, need @var{df} > (@var{p} - 1).) ## If the flag @var{log_y} is set, return the log probability density -- this ## helps avoid underflow when the numerical value of the density is very small. ## ## Output: @var{y} is the probability density of Wishart(@var{Sigma}, @var{df}) ## at @var{W}. ## ## @seealso{iwishrnd, wishpdf, wishrnd} ## @end deftypefn function y = iwishpdf (W, Tau, df, log_y=false) if (nargin < 3) print_usage (); endif p = size (Tau, 1); if (df <= (p - 1)) error ("iwishpdf: DF too small, no finite densities exist."); endif ## Calculate the logarithm of G_d(df/2), the multivariate gamma function g = (p * (p - 1) / 4) * log (pi); for i = 1:p g = g + log (gamma ((df + (1 - i)) / 2)); endfor C = chol (W); ## Use formulas for determinant of positive definite matrix for better ## efficiency and numerical accuracy logdet_W = 2*sum(log(diag(C))); logdet_Tau = 2*sum(log(diag(chol(Tau)))); y = -(df * p) / 2 * log (2) + (df / 2) * logdet_Tau - g ... -((df + p + 1) / 2) * logdet_W - trace (Tau * chol2inv (C)) / 2; if (! log_y) y = exp (y); endif endfunction ## Test results cross-checked against diwish function in R MCMCpack library %!assert(iwishpdf(4, 3, 3.1), 0.04226595, 1E-7); %!assert(iwishpdf([2 -0.3;-0.3 4], [1 0.3;0.3 1], 4), 1.60166e-05, 1E-10); %!assert(iwishpdf([6 2 5; 2 10 -5; 5 -5 25], ... %! [9 5 5; 5 10 -8; 5 -8 22], 5.1), 4.946831e-12, 1E-17); ## Test input validation %!error iwishpdf () %!error iwishpdf (1, 2) %!error iwishpdf (1, 2, 0) statistics-release-1.6.3/inst/dist_fun/iwishrnd.m000066400000000000000000000057151456127120000221340ustar00rootroot00000000000000## Copyright (C) 2013 Nir Krakauer ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {[@var{W}, @var{DI}] =} iwishrnd (@var{Tau}, @var{df}, @var{DI}, @var{n}=1) ## ## Return a random matrix sampled from the inverse Wishart distribution with ## given parameters. ## ## Inputs: the @math{p x p} positive definite matrix @var{Tau} and scalar ## degrees of freedom parameter @var{df} (and optionally the transposed Cholesky ## factor @var{DI} of @var{Sigma} = @code{inv(Tau)}). ## ## @var{df} can be non-integer as long as @math{@var{df} > d} ## ## Output: a random @math{p x p} matrix @var{W} from the inverse ## Wishart(@var{Tau}, @var{df}) distribution. (@code{inv(W)} is from the ## Wishart(@code{inv(Tau)}, @var{df}) distribution.) If @var{n} > 1, ## then @var{W} is @var{p} x @var{p} x @var{n} and holds @var{n} such random ## matrices. (Optionally, the transposed Cholesky factor @var{DI} of @var{Sigma} ## is also returned.) ## ## Averaged across many samples, the mean of @var{W} should approach ## @var{Tau} / (@var{df} - @var{p} - 1). ## ## @subheading References ## ## @enumerate ## @item ## Yu-Cheng Ku and Peter Bloomfield (2010), Generating Random Wishart Matrices ## with Fractional Degrees of Freedom in OX, ## http://www.gwu.edu/~forcpgm/YuChengKu-030510final-WishartYu-ChengKu.pdf ## @end enumerate ## ## @seealso{iwishpdf, wishpdf, wishrnd} ## @end deftypefn function [W, DI] = iwishrnd (Tau, df, DI, n = 1) if (nargin < 2) print_usage (); endif if (nargin < 3 || isempty (DI)) try D = chol (inv (Tau)); catch error (strcat (["iwishrnd: Cholesky decomposition failed;"], ... [" TAU probably not positive definite."])); end_try_catch DI = D'; else D = DI'; endif w = wishrnd ([], df, D, n); if (n > 1) p = size (D, 1); W = nan (p, p, n); endif for i = 1:n W(:, :, i) = inv (w(:, :, i)); endfor endfunction %!assert(size (iwishrnd (1,2,1)), [1, 1]); %!assert(size (iwishrnd ([],2,1)), [1, 1]); %!assert(size (iwishrnd ([3 1; 1 3], 2.00001, [], 1)), [2, 2]); %!assert(size (iwishrnd (eye(2), 2, [], 3)), [2, 2, 3]); %% Test input validation %!error iwishrnd () %!error iwishrnd (1) %!error iwishrnd ([-3 1; 1 3],1) %!error iwishrnd ([1; 1],1) statistics-release-1.6.3/inst/dist_fun/jsucdf.m000066400000000000000000000045211456127120000215550ustar00rootroot00000000000000## Copyright (C) 2006 Frederick (Rick) A Niles ## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{p} =} jsucdf (@var{x}) ## @deftypefnx {statistics} {@var{p} =} jsucdf (@var{x}, @var{alpha1}) ## @deftypefnx {statistics} {@var{p} =} jsucdf (@var{x}, @var{alpha1}, @var{alpha2}) ## ## Johnson SU cumulative distribution function (CDF). ## ## For each element of @var{x}, return the cumulative distribution functions ## (CDF) at @var{x} of the Johnson SU distribution with shape parameters ## @var{alpha1} and @var{alpha2}. The size of @var{p} is the common size of the ## input arguments @var{x}, @var{alpha1}, and @var{alpha2}. A scalar input ## functions as a constant matrix of the same size as the other ## ## Default values are @var{alpha1} = 1, @var{alpha2} = 1. ## ## @seealso{jsupdf} ## @end deftypefn function p = jsucdf (x, alpha1, alpha2) if (nargin < 1 || nargin > 3) print_usage; endif if (nargin == 1) alpha1 = 1; alpha2 = 1; elseif (nargin == 2) alpha2 = 1; endif if (! isscalar (x) || ! isscalar (alpha1) || ! isscalar(alpha2)) [retval, x, alpha1, alpha2] = common_size (x, alpha1, alpha2); if (retval > 0) error (strcat (["jsucdf: X, ALPHA1, and ALPHA2 must be of common"], ... [" size or scalars."])); endif endif one = ones (size (x)); p = stdnormal_cdf (alpha1 .* one + alpha2 .* log (x + sqrt (x .* x + one))); endfunction %!error jsucdf () %!error jsucdf (1, 2, 3, 4) %!error ... %! jsucdf (1, ones (2), ones (3)) statistics-release-1.6.3/inst/dist_fun/jsupdf.m000066400000000000000000000045611456127120000215760ustar00rootroot00000000000000## Copyright (C) 2006 Frederick (Rick) A Niles ## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{y} =} jsupdf (@var{x}) ## @deftypefnx {statistics} {@var{y} =} jsupdf (@var{x}, @var{alpha1}) ## @deftypefnx {statistics} {@var{y} =} jsupdf (@var{x}, @var{alpha1}, @var{alpha2}) ## ## Johnson SU probability density function (PDF). ## ## For each element of @var{x}, compute the probability density function (PDF) ## at @var{x} of the Johnson SU distribution with shape parameters @var{alpha1} ## and @var{alpha2}. The size of @var{p} is the common size of the input ## arguments @var{x}, @var{alpha1}, and @var{alpha2}. A scalar input functions ## as a constant matrix of the same size as the other ## ## Default values are @var{alpha1} = 1, @var{alpha2} = 1. ## ## @seealso{jsucdf} ## @end deftypefn function y = jsupdf (x, alpha1, alpha2) if (nargin < 1 || nargin > 3) print_usage; endif if (nargin == 1) alpha1 = 1; alpha2 = 1; elseif (nargin == 2) alpha2 = 1; endif if (! isscalar (x) || ! isscalar (alpha1) || ! isscalar(alpha2)) [retval, x, alpha1, alpha2] = common_size (x, alpha1, alpha2); if (retval > 0) error (strcat (["jsupdf: X, ALPHA1, and ALPHA2 must be of common"], ... [" size or scalars."])); endif endif one = ones (size (x)); sr = sqrt (x .* x + one); y = (alpha2 ./ sr) .* ... stdnormal_pdf (alpha1 .* one + alpha2 .* log (x + sr)); endfunction %!error jsupdf () %!error jsupdf (1, 2, 3, 4) %!error ... %! jsupdf (1, ones (2), ones (3)) statistics-release-1.6.3/inst/dist_fun/laplacecdf.m000066400000000000000000000131451456127120000223570ustar00rootroot00000000000000## Copyright (C) 2012 Rik Wehbring ## Copyright (C) 1995-2016 Kurt Hornik ## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{p} =} laplacecdf (@var{x}, @var{mu}, @var{beta}) ## @deftypefnx {statistics} {@var{p} =} laplacecdf (@var{x}, @var{mu}, @var{beta}, @qcode{"upper"}) ## ## Laplace cumulative distribution function (CDF). ## ## For each element of @var{x}, compute the cumulative distribution function ## (CDF) of the Laplace distribution with location parameter @var{mu} and scale ## parameter (i.e. "diversity") @var{beta}. The size of @var{p} is the common ## size of @var{x}, @var{mu}, and @var{beta}. A scalar input functions as a ## constant matrix of the same size as the other inputs. ## ## Both parameters must be reals and @qcode{@var{beta} > 0}. ## For @qcode{@var{beta} <= 0}, @qcode{NaN} is returned. ## ## @code{@var{p} = laplacecdf (@var{x}, @var{mu}, @var{beta}, "upper")} computes ## the upper tail probability of the Laplace distribution with parameters ## @var{mu} and @var{beta}, at the values in @var{x}. ## ## Further information about the Laplace distribution can be found at ## @url{https://en.wikipedia.org/wiki/Laplace_distribution} ## ## @seealso{laplaceinv, laplacepdf, laplacernd} ## @end deftypefn function p = laplacecdf (x, mu, beta, uflag) ## Check for valid number of input arguments if (nargin < 3) error ("laplacecdf: function called with too few input arguments."); endif ## Check for valid "upper" flag if (nargin > 3) if (! strcmpi (uflag, "upper")) error ("laplacecdf: invalid argument for upper tail."); else uflag = true; endif else uflag = false; endif ## Check for common size of X, MU, and BETA if (! isscalar (x) || ! isscalar (mu) || ! isscalar(beta)) [retval, x, mu, beta] = common_size (x, mu, beta); if (retval > 0) error (strcat (["laplacecdf: X, MU, and BETA must be of"], ... [" common size or scalars."])); endif endif ## Check for X, MU, and BETA being reals if (iscomplex (x) || iscomplex (mu) || iscomplex (beta)) error ("laplacecdf: X, MU, and BETA must not be complex."); endif ## Check for class type if (isa (x, "single") || isa (mu, "single") || isa (beta, "single")); p = NaN (size (x), "single"); else p = NaN (size (x)); endif ## Find normal and edge cases k1 = (x == -Inf) & (beta > 0); k2 = (x == Inf) & (beta > 0); k = ! k1 & ! k2 & (beta > 0); ## Compute Laplace CDF if (uflag) p(k1) = 1; p(k2) = 0; p(k) = (1 + sign (-x(k) + mu(k)) .* ... (1 - exp (- abs (-x(k) + mu(k)) ./ beta(k)))) ./ 2; else p(k1) = 0; p(k2) = 1; p(k) = (1 + sign (x(k) - mu(k)) .* ... (1 - exp (- abs (x(k) - mu(k)) ./ beta(k)))) ./ 2; endif endfunction %!demo %! ## Plot various CDFs from the Laplace distribution %! x = -10:0.01:10; %! p1 = laplacecdf (x, 0, 1); %! p2 = laplacecdf (x, 0, 2); %! p3 = laplacecdf (x, 0, 4); %! p4 = laplacecdf (x, -5, 4); %! plot (x, p1, "-b", x, p2, "-g", x, p3, "-r", x, p4, "-c") %! grid on %! xlim ([-10, 10]) %! legend ({"μ = 0, β = 1", "μ = 0, β = 2", ... %! "μ = 0, β = 4", "μ = -5, β = 4"}, "location", "southeast") %! title ("Laplace CDF") %! xlabel ("values in x") %! ylabel ("probability") ## Test output %!shared x, y %! x = [-Inf, -log(2), 0, log(2), Inf]; %! y = [0, 1/4, 1/2, 3/4, 1]; %!assert (laplacecdf ([x, NaN], 0, 1), [y, NaN]) %!assert (laplacecdf (x, 0, [-2, -1, 0, 1, 2]), [nan(1, 3), 0.75, 1]) ## Test class of input preserved %!assert (laplacecdf (single ([x, NaN]), 0, 1), single ([y, NaN]), eps ("single")) %!assert (laplacecdf ([x, NaN], single (0), 1), single ([y, NaN]), eps ("single")) %!assert (laplacecdf ([x, NaN], 0, single (1)), single ([y, NaN]), eps ("single")) ## Test input validation %!error laplacecdf () %!error laplacecdf (1) %!error ... %! laplacecdf (1, 2) %!error ... %! laplacecdf (1, 2, 3, 4, 5) %!error laplacecdf (1, 2, 3, "tail") %!error laplacecdf (1, 2, 3, 4) %!error ... %! laplacecdf (ones (3), ones (2), ones (2)) %!error ... %! laplacecdf (ones (2), ones (3), ones (2)) %!error ... %! laplacecdf (ones (2), ones (2), ones (3)) %!error laplacecdf (i, 2, 2) %!error laplacecdf (2, i, 2) %!error laplacecdf (2, 2, i) statistics-release-1.6.3/inst/dist_fun/laplaceinv.m000066400000000000000000000112001456127120000224050ustar00rootroot00000000000000## Copyright (C) 2012 Rik Wehbring ## Copyright (C) 1995-2016 Kurt Hornik ## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{x} =} laplaceinv (@var{p}, @var{mu}, @var{beta}) ## ## Inverse of the Laplace cumulative distribution function (iCDF). ## ## For each element of @var{p}, compute the quantile (the inverse of the CDF) of ## the Laplace distribution with location parameter @var{mu} and scale parameter ## (i.e. "diversity") @var{beta}. The size of @var{x} is the common size of ## @var{p}, @var{mu}, and @var{beta}. A scalar input functions as a constant ## matrix of the same size as the other inputs. ## ## Both parameters must be reals and @qcode{@var{beta} > 0}. ## For @qcode{@var{beta} <= 0}, @qcode{NaN} is returned. ## ## Further information about the Laplace distribution can be found at ## @url{https://en.wikipedia.org/wiki/Laplace_distribution} ## ## @seealso{laplaceinv, laplacepdf, laplacernd} ## @end deftypefn function x = laplaceinv (p, mu, beta) ## Check for valid number of input arguments if (nargin < 3) error ("laplaceinv: function called with too few input arguments."); endif ## Check for common size of P, MU, and BETA if (! isscalar (p) || ! isscalar (mu) || ! isscalar(beta)) [retval, p, mu, beta] = common_size (p, mu, beta); if (retval > 0) error (strcat (["laplaceinv: P, MU, and BETA must be of"], ... [" common size or scalars."])); endif endif ## Check for X, MU, and BETA being reals if (iscomplex (p) || iscomplex (mu) || iscomplex (beta)) error ("laplaceinv: P, MU, and BETA must not be complex."); endif ## Check for class type if (isa (p, "single") || isa (mu, "single") || isa (beta, "single")); x = NaN (size (p), "single"); else x = NaN (size (p)); endif ## Compute Laplace iCDF k = (p >= 0) & (p <= 1) & (beta > 0); x(k) = mu(k) + beta(k) .* ((p(k) < 1/2) .* log (2 .* p(k)) - ... (p(k) > 1/2) .* log (2 .* (1 - p(k)))); endfunction %!demo %! ## Plot various iCDFs from the Laplace distribution %! p = 0.001:0.001:0.999; %! x1 = cauchyinv (p, 0, 1); %! x2 = cauchyinv (p, 0, 2); %! x3 = cauchyinv (p, 0, 4); %! x4 = cauchyinv (p, -5, 4); %! plot (p, x1, "-b", p, x2, "-g", p, x3, "-r", p, x4, "-c") %! grid on %! ylim ([-10, 10]) %! legend ({"μ = 0, β = 1", "μ = 0, β = 2", ... %! "μ = 0, β = 4", "μ = -5, β = 4"}, "location", "northwest") %! title ("Laplace iCDF") %! xlabel ("probability") %! ylabel ("values in x") ## Test output %!shared p, x %! p = [-1 0 0.5 1 2]; %! x = [NaN, -Inf, 0, Inf, NaN]; %!assert (laplaceinv (p, 0, 1), x) %!assert (laplaceinv (p, 0, [-2, -1, 0, 1, 2]), [nan(1, 3), Inf, NaN]) %!assert (laplaceinv ([p, NaN], 0, 1), [x, NaN]) ## Test class of input preserved %!assert (laplaceinv (single ([p, NaN]), 0, 1), single ([x, NaN])) %!assert (laplaceinv ([p, NaN], single (0), 1), single ([x, NaN])) %!assert (laplaceinv ([p, NaN], 0, single (1)), single ([x, NaN])) ## Test input validation %!error laplaceinv () %!error laplaceinv (1) %!error ... %! laplaceinv (1, 2) %!error laplaceinv (1, 2, 3, 4) %!error ... %! laplaceinv (1, ones (2), ones (3)) %!error ... %! laplaceinv (ones (2), 1, ones (3)) %!error ... %! laplaceinv (ones (2), ones (3), 1) %!error laplaceinv (i, 2, 3) %!error laplaceinv (1, i, 3) %!error laplaceinv (1, 2, i) statistics-release-1.6.3/inst/dist_fun/laplacepdf.m000066400000000000000000000111261456127120000223710ustar00rootroot00000000000000## Copyright (C) 2012 Rik Wehbring ## Copyright (C) 1995-2016 Kurt Hornik ## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{y} =} laplacepdf (@var{x}, @var{mu}, @var{beta}) ## ## Laplace probability density function (PDF). ## ## For each element of @var{x}, compute the probability density function (PDF) ## of the Laplace distribution with location parameter @var{mu} and scale ## parameter (i.e. "diversity") @var{beta}. The size of @var{y} is the common ## size of @var{x}, @var{mu}, and @var{beta}. A scalar input functions as a ## constant matrix of the same size as the other inputs. ## ## Both parameters must be reals and @qcode{@var{beta} > 0}. ## For @qcode{@var{beta} <= 0}, @qcode{NaN} is returned. ## ## Further information about the Laplace distribution can be found at ## @url{https://en.wikipedia.org/wiki/Laplace_distribution} ## ## @seealso{laplacecdf, laplacepdf, laplacernd} ## @end deftypefn function y = laplacepdf (x, mu, beta) ## Check for valid number of input arguments if (nargin < 3) error ("laplacepdf: function called with too few input arguments."); endif ## Check for common size of X, MU, and BETA if (! isscalar (x) || ! isscalar (mu) || ! isscalar(beta)) [retval, x, mu, beta] = common_size (x, mu, beta); if (retval > 0) error (strcat (["laplacepdf: X, MU, and BETA must be of"], ... [" common size or scalars."])); endif endif ## Check for X, MU, and BETA being reals if (iscomplex (x) || iscomplex (mu) || iscomplex (beta)) error ("laplacepdf: X, MU, and BETA must not be complex."); endif ## Check for class type if (isa (x, "single") || isa (mu, "single") || isa (beta, "single")); y = NaN (size (x), "single"); else y = NaN (size (x)); endif ## Compute Laplace PDF k1 = ((x == -Inf) & (beta > 0)) | ((x == Inf) & (beta > 0)); y(k1) = 0; k = ! k1 & (beta > 0); y(k) = exp (- abs (x(k) - mu(k)) ./ beta(k)) ./ (2 .* beta(k)); endfunction %!demo %! ## Plot various PDFs from the Laplace distribution %! x = -10:0.01:10; %! y1 = laplacepdf (x, 0, 1); %! y2 = laplacepdf (x, 0, 2); %! y3 = laplacepdf (x, 0, 4); %! y4 = laplacepdf (x, -5, 4); %! plot (x, y1, "-b", x, y2, "-g", x, y3, "-r", x, y4, "-c") %! grid on %! xlim ([-10, 10]) %! ylim ([0, 0.6]) %! legend ({"μ = 0, β = 1", "μ = 0, β = 2", ... %! "μ = 0, β = 4", "μ = -5, β = 4"}, "location", "northeast") %! title ("Laplace PDF") %! xlabel ("values in x") %! ylabel ("density") ## Test results %!shared x, y %! x = [-Inf -log(2) 0 log(2) Inf]; %! y = [0, 1/4, 1/2, 1/4, 0]; %!assert (laplacepdf ([x, NaN], 0, 1), [y, NaN]) %!assert (laplacepdf (x, 0, [-2, -1, 0, 1, 2]), [nan(1, 3), 0.25, 0]) ## Test class of input preserved %!assert (laplacepdf (single ([x, NaN]), 0, 1), single ([y, NaN])) %!assert (laplacepdf ([x, NaN], single (0), 1), single ([y, NaN])) %!assert (laplacepdf ([x, NaN], 0, single (1)), single ([y, NaN])) ## Test input validation %!error laplacepdf () %!error laplacepdf (1) %!error ... %! laplacepdf (1, 2) %!error laplacepdf (1, 2, 3, 4) %!error ... %! laplacepdf (1, ones (2), ones (3)) %!error ... %! laplacepdf (ones (2), 1, ones (3)) %!error ... %! laplacepdf (ones (2), ones (3), 1) %!error laplacepdf (i, 2, 3) %!error laplacepdf (1, i, 3) %!error laplacepdf (1, 2, i) statistics-release-1.6.3/inst/dist_fun/laplacernd.m000066400000000000000000000155171456127120000224130ustar00rootroot00000000000000## Copyright (C) 2012 Rik Wehbring ## Copyright (C) 1995-2016 Kurt Hornik ## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{r} =} laplacernd (@var{mu}, @var{beta}) ## @deftypefnx {statistics} {@var{r} =} laplacernd (@var{mu}, @var{beta}, @var{rows}) ## @deftypefnx {statistics} {@var{r} =} laplacernd (@var{mu}, @var{beta}, @var{rows}, @var{cols}, @dots{}) ## @deftypefnx {statistics} {@var{r} =} laplacernd (@var{mu}, @var{beta}, [@var{sz}]) ## ## Random arrays from the Laplace distribution. ## ## @code{@var{r} = laplacernd (@var{mu}, @var{beta})} returns an array of ## random numbers chosen from the Laplace distribution with location parameter ## @var{mu} and scale parameter @var{beta}. The size of @var{r} is the common ## size of @var{mu} and @var{beta}. A scalar input functions as a constant ## matrix of the same size as the other inputs. ## ## Both parameters must be reals and @qcode{@var{beta} > 0}. ## For @qcode{@var{beta} <= 0}, @qcode{NaN} is returned. ## ## When called with a single size argument, @code{laplacernd} returns a square ## matrix with the dimension specified. When called with more than one scalar ## argument, the first two arguments are taken as the number of rows and columns ## and any further arguments specify additional matrix dimensions. The size may ## also be specified with a row vector of dimensions, @var{sz}. ## ## Further information about the Laplace distribution can be found at ## @url{https://en.wikipedia.org/wiki/Laplace_distribution} ## ## @seealso{laplacecdf, laplaceinv, laplacernd} ## @end deftypefn function r = laplacernd (mu, beta, varargin) ## Check for valid number of input arguments if (nargin < 2) error ("laplacernd: function called with too few input arguments."); endif ## Check for common size of MU, and BETA if (! isscalar (mu) || ! isscalar (beta)) [retval, mu, beta] = common_size (mu, beta); if (retval > 0) error ("laplacernd: MU and BETA must be of common size or scalars."); endif endif ## Check for X, MU, and BETA being reals if (iscomplex (mu) || iscomplex (beta)) error ("laplacernd: MU and BETA must not be complex."); endif ## Parse and check SIZE arguments if (nargin == 2) sz = size (mu); elseif (nargin == 3) if (isscalar (varargin{1}) && varargin{1} >= 0 ... && varargin{1} == fix (varargin{1})) sz = [varargin{1}, varargin{1}]; elseif (isrow (varargin{1}) && all (varargin{1} >= 0) ... && all (varargin{1} == fix (varargin{1}))) sz = varargin{1}; elseif error (strcat (["laplacernd: SZ must be a scalar or a row vector"], ... [" of non-negative integers."])); endif elseif (nargin > 3) posint = cellfun (@(x) (! isscalar (x) || x < 0 || x != fix (x)), varargin); if (any (posint)) error ("laplacernd: dimensions must be non-negative integers."); endif sz = [varargin{:}]; endif ## Check that parameters match requested dimensions in size if (! isscalar (mu) && ! isequal (size (mu), sz)) error ("laplacernd: MU and BETA must be scalars or of size SZ."); endif ## Check for class type if (isa (mu, "single") || isa (beta, "single")) is_type = "single"; else is_type = "double"; endif ## Generate random sample from Laplace distribution tmp = rand (sz, is_type); r = ((tmp < 1/2) .* log (2 * tmp) - ... (tmp > 1/2) .* log (2 * (1 - tmp))) .* beta + mu; ## Force output to NaN for invalid parameter BETA <= 0 k = (beta <= 0); r(k) = NaN; endfunction ## Test output %!assert (size (laplacernd (1, 1)), [1 1]) %!assert (size (laplacernd (1, ones (2,1))), [2, 1]) %!assert (size (laplacernd (1, ones (2,2))), [2, 2]) %!assert (size (laplacernd (ones (2,1), 1)), [2, 1]) %!assert (size (laplacernd (ones (2,2), 1)), [2, 2]) %!assert (size (laplacernd (1, 1, 3)), [3, 3]) %!assert (size (laplacernd (1, 1, [4, 1])), [4, 1]) %!assert (size (laplacernd (1, 1, 4, 1)), [4, 1]) %!assert (size (laplacernd (1, 1, 4, 1, 5)), [4, 1, 5]) %!assert (size (laplacernd (1, 1, 0, 1)), [0, 1]) %!assert (size (laplacernd (1, 1, 1, 0)), [1, 0]) %!assert (size (laplacernd (1, 1, 1, 2, 0, 5)), [1, 2, 0, 5]) ## Test class of input preserved %!assert (class (laplacernd (1, 1)), "double") %!assert (class (laplacernd (1, single (1))), "single") %!assert (class (laplacernd (1, single ([1, 1]))), "single") %!assert (class (laplacernd (single (1), 1)), "single") %!assert (class (laplacernd (single ([1, 1]), 1)), "single") ## Test input validation %!error laplacernd () %!error laplacernd (1) %!error ... %! laplacernd (ones (3), ones (2)) %!error ... %! laplacernd (ones (2), ones (3)) %!error laplacernd (i, 2, 3) %!error laplacernd (1, i, 3) %!error ... %! laplacernd (1, 2, -1) %!error ... %! laplacernd (1, 2, 1.2) %!error ... %! laplacernd (1, 2, ones (2)) %!error ... %! laplacernd (1, 2, [2 -1 2]) %!error ... %! laplacernd (1, 2, [2 0 2.5]) %!error ... %! laplacernd (1, 2, 2, -1, 5) %!error ... %! laplacernd (1, 2, 2, 1.5, 5) %!error ... %! laplacernd (2, ones (2), 3) %!error ... %! laplacernd (2, ones (2), [3, 2]) %!error ... %! laplacernd (2, ones (2), 3, 2) statistics-release-1.6.3/inst/dist_fun/logicdf.m000066400000000000000000000123561456127120000217130ustar00rootroot00000000000000## Copyright (C) 2012 Rik Wehbring ## Copyright (C) 1995-2016 Kurt Hornik ## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{p} =} logicdf (@var{x}, @var{mu}, @var{s}) ## @deftypefnx {statistics} {@var{p} =} logicdf (@var{x}, @var{mu}, @var{s}, @qcode{"upper"}) ## ## Logistic cumulative distribution function (CDF). ## ## For each element of @var{x}, compute the cumulative distribution function ## (CDF) of the logistic distribution with location parameter @var{mu} and scale ## parameter @var{s}. The size of @var{p} is the common size of @var{x}, ## @var{mu}, and @var{s}. A scalar input functions as a constant matrix of ## the same size as the other inputs. ## ## Both parameters must be reals and @qcode{@var{s} > 0}. ## For @qcode{@var{s} <= 0}, @qcode{NaN} is returned. ## ## @code{@var{p} = logicdf (@var{x}, @var{mu}, @var{s}, "upper")} computes ## the upper tail probability of the logistic distribution with parameters ## @var{mu} and @var{s}, at the values in @var{x}. ## ## Further information about the logistic distribution can be found at ## @url{https://en.wikipedia.org/wiki/Logistic_distribution} ## ## @seealso{logiinv, logipdf, logirnd, logifit, logilike, logistat} ## @end deftypefn function p = logicdf (x, mu, s, uflag) ## Check for valid number of input arguments if (nargin < 3) error ("logicdf: function called with too few input arguments."); endif ## Check for valid "upper" flag if (nargin > 3) if (! strcmpi (uflag, "upper")) error ("logicdf: invalid argument for upper tail."); else uflag = true; endif else uflag = false; endif ## Check for common size of X, MU, and S if (! isscalar (x) || ! isscalar (mu) || ! isscalar(s)) [retval, x, mu, s] = common_size (x, mu, s); if (retval > 0) error (strcat (["logicdf: X, MU, and S must be of"], ... [" common size or scalars."])); endif endif ## Check for X, MU, and S being reals if (iscomplex (x) || iscomplex (mu) || iscomplex (s)) error ("logicdf: X, MU, and S must not be complex."); endif ## Check for class type if (isa (x, "single") || isa (mu, "single") || isa (s, "single")); p = NaN (size (x), "single"); else p = NaN (size (x)); endif ## Find normal and edge cases k1 = (x == -Inf) & (s > 0); k2 = (x == Inf) & (s > 0); k = ! k1 & ! k2 & (s > 0); ## Compute logistic CDF if (uflag) p(k1) = 1; p(k2) = 0; p(k) = 1 ./ (1 + exp ((x(k) - mu(k)) ./ s(k))); else p(k1) = 0; p(k2) = 1; p(k) = 1 ./ (1 + exp (- (x(k) - mu(k)) ./ s(k))); endif endfunction %!demo %! ## Plot various CDFs from the logistic distribution %! x = -5:0.01:20; %! p1 = logicdf (x, 5, 2); %! p2 = logicdf (x, 9, 3); %! p3 = logicdf (x, 9, 4); %! p4 = logicdf (x, 6, 2); %! p5 = logicdf (x, 2, 1); %! plot (x, p1, "-b", x, p2, "-g", x, p3, "-r", x, p4, "-c", x, p5, "-m") %! grid on %! legend ({"μ = 5, s = 2", "μ = 9, s = 3", "μ = 9, s = 4", ... %! "μ = 6, s = 2", "μ = 2, s = 1"}, "location", "southeast") %! title ("Logistic CDF") %! xlabel ("values in x") %! ylabel ("probability") ## Test output %!shared x, y %! x = [-Inf -log(3) 0 log(3) Inf]; %! y = [0, 1/4, 1/2, 3/4, 1]; %!assert (logicdf ([x, NaN], 0, 1), [y, NaN], eps) %!assert (logicdf (x, 0, [-2, -1, 0, 1, 2]), [nan(1, 3), 0.75, 1]) ## Test class of input preserved %!assert (logicdf (single ([x, NaN]), 0, 1), single ([y, NaN]), eps ("single")) %!assert (logicdf ([x, NaN], single (0), 1), single ([y, NaN]), eps ("single")) %!assert (logicdf ([x, NaN], 0, single (1)), single ([y, NaN]), eps ("single")) ## Test input validation %!error logicdf () %!error logicdf (1) %!error ... %! logicdf (1, 2) %!error logicdf (1, 2, 3, "tail") %!error logicdf (1, 2, 3, 4) %!error ... %! logicdf (1, ones (2), ones (3)) %!error ... %! logicdf (ones (2), 1, ones (3)) %!error ... %! logicdf (ones (2), ones (3), 1) %!error logicdf (i, 2, 3) %!error logicdf (1, i, 3) %!error logicdf (1, 2, i) statistics-release-1.6.3/inst/dist_fun/logiinv.m000066400000000000000000000110201456127120000217360ustar00rootroot00000000000000## Copyright (C) 2012 Rik Wehbring ## Copyright (C) 1995-2016 Kurt Hornik ## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{x} =} logiinv (@var{p}, @var{mu}, @var{s}) ## ## Inverse of the logistic cumulative distribution function (iCDF). ## ## For each element of @var{p}, compute the quantile (the inverse of the CDF) of ## the logistic distribution with location parameter @var{mu} and scale ## parameter @var{s}. The size of @var{p} is the common size of @var{x}, ## @var{mu}, and @var{s}. A scalar input functions as a constant matrix of ## the same size as the other inputs. ## ## Both parameters must be reals and @qcode{@var{s} > 0}. ## For @qcode{@var{s} <= 0}, @qcode{NaN} is returned. ## ## Further information about the logistic distribution can be found at ## @url{https://en.wikipedia.org/wiki/Logistic_distribution} ## ## @seealso{logicdf, logipdf, logirnd, logifit, logilike, logistat} ## @end deftypefn function x = logiinv (p, mu, s) ## Check for valid number of input arguments if (nargin < 3) error ("logiinv: function called with too few input arguments."); endif ## Check for common size of P, MU, and S if (! isscalar (p) || ! isscalar (mu) || ! isscalar(s)) [retval, p, mu, s] = common_size (p, mu, s); if (retval > 0) error (strcat (["logiinv: P, MU, and S must be of"], ... [" common size or scalars."])); endif endif ## Check for X, MU, and S being reals if (iscomplex (p) || iscomplex (mu) || iscomplex (s)) error ("logiinv: P, MU, and S must not be complex."); endif ## Check for class type if (isa (p, "single") || isa (mu, "single") || isa (s, "single")); x = NaN (size (p), "single"); else x = NaN (size (p)); endif k = (p == 0) & (s > 0); x(k) = -Inf; k = (p == 1) & (s > 0); x(k) = Inf; k = (p > 0) & (p < 1) & (s > 0); x(k) = mu(k) + s(k) .* log (p(k) ./ (1 - p(k))); endfunction %!demo %! ## Plot various iCDFs from the logistic distribution %! p = 0.001:0.001:0.999; %! x1 = logiinv (p, 5, 2); %! x2 = logiinv (p, 9, 3); %! x3 = logiinv (p, 9, 4); %! x4 = logiinv (p, 6, 2); %! x5 = logiinv (p, 2, 1); %! plot (p, x1, "-b", p, x2, "-g", p, x3, "-r", p, x4, "-c", p, x5, "-m") %! grid on %! legend ({"μ = 5, s = 2", "μ = 9, s = 3", "μ = 9, s = 4", ... %! "μ = 6, s = 2", "μ = 2, s = 1"}, "location", "southeast") %! title ("Logistic iCDF") %! xlabel ("probability") %! ylabel ("x") ## Test output %!test %! p = [0.01:0.01:0.99]; %! assert (logiinv (p, 0, 1), log (p ./ (1-p)), 25*eps); %!shared p %! p = [-1 0 0.5 1 2]; %!assert (logiinv (p, 0, 1), [NaN -Inf 0 Inf NaN]) %!assert (logiinv (p, 0, [-1, 0, 1, 2, 3]), [NaN NaN 0 Inf NaN]) ## Test class of input preserved %!assert (logiinv ([p, NaN], 0, 1), [NaN -Inf 0 Inf NaN NaN]) %!assert (logiinv (single ([p, NaN]), 0, 1), single ([NaN -Inf 0 Inf NaN NaN])) %!assert (logiinv ([p, NaN], single (0), 1), single ([NaN -Inf 0 Inf NaN NaN])) %!assert (logiinv ([p, NaN], 0, single (1)), single ([NaN -Inf 0 Inf NaN NaN])) ## Test input validation %!error logiinv () %!error logiinv (1) %!error ... %! logiinv (1, 2) %!error ... %! logiinv (1, ones (2), ones (3)) %!error ... %! logiinv (ones (2), 1, ones (3)) %!error ... %! logiinv (ones (2), ones (3), 1) %!error logiinv (i, 2, 3) %!error logiinv (1, i, 3) %!error logiinv (1, 2, i) statistics-release-1.6.3/inst/dist_fun/logipdf.m000066400000000000000000000106621456127120000217260ustar00rootroot00000000000000## Copyright (C) 1995-2017 Kurt Hornik ## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{y} =} logipdf (@var{x}, @var{mu}, @var{s}) ## ## Logistic probability density function (PDF). ## ## For each element of @var{x}, compute the probability density function (PDF) ## of the logistic distribution with location parameter @var{mu} and scale ## parameter @var{s}. The size of @var{p} is the common size of @var{x}, ## @var{mu}, and @var{s}. A scalar input functions as a constant matrix of ## the same size as the other inputs. ## ## Both parameters must be reals and @qcode{@var{s} > 0}. ## For @qcode{@var{s} <= 0}, @qcode{NaN} is returned. ## ## Further information about the logistic distribution can be found at ## @url{https://en.wikipedia.org/wiki/Logistic_distribution} ## ## @seealso{logicdf, logiinv, logirnd, logifit, logilike, logistat} ## @end deftypefn function y = logipdf (x, mu, s) ## Check for valid number of input arguments if (nargin < 3) error ("logipdf: function called with too few input arguments."); endif ## Check for common size of X, MU, and S if (! isscalar (x) || ! isscalar (mu) || ! isscalar(s)) [retval, x, mu, s] = common_size (x, mu, s); if (retval > 0) error (strcat (["logipdf: X, MU, and S must be of"], ... [" common size or scalars."])); endif endif ## Check for X, MU, and S being reals if (iscomplex (x) || iscomplex (mu) || iscomplex (s)) error ("logipdf: X, MU, and S must not be complex."); endif ## Check for class type if (isa (x, "single") || isa (mu, "single") || isa (s, "single")); y = NaN (size (x), "single"); else y = NaN (size (x)); endif ## Compute logistic PDF k1 = ((x == -Inf) & (s > 0)) | ((x == Inf) & (s > 0)); y(k1) = 0; k = ! k1 & (s > 0); y(k) = (1 ./ (4 .* s(k))) .* ... (sech ((x(k) - mu(k)) ./ (2 .* s(k))) .^ 2); endfunction %!demo %! ## Plot various PDFs from the logistic distribution %! x = -5:0.01:20; %! y1 = logipdf (x, 5, 2); %! y2 = logipdf (x, 9, 3); %! y3 = logipdf (x, 9, 4); %! y4 = logipdf (x, 6, 2); %! y5 = logipdf (x, 2, 1); %! plot (x, y1, "-b", x, y2, "-g", x, y3, "-r", x, y4, "-c", x, y5, "-m") %! grid on %! ylim ([0, 0.3]) %! legend ({"μ = 5, s = 2", "μ = 9, s = 3", "μ = 9, s = 4", ... %! "μ = 6, s = 2", "μ = 2, s = 1"}, "location", "northeast") %! title ("Logistic PDF") %! xlabel ("values in x") %! ylabel ("density") ## Test output %!shared x, y %! x = [-Inf -log(4) 0 log(4) Inf]; %! y = [0, 0.16, 1/4, 0.16, 0]; %!assert (logipdf ([x, NaN], 0, 1), [y, NaN], eps) %!assert (logipdf (x, 0, [-2, -1, 0, 1, 2]), [nan(1, 3), y([4:5])], eps) ## Test class of input preserved %!assert (logipdf (single ([x, NaN]), 0, 1), single ([y, NaN]), eps ("single")) %!assert (logipdf ([x, NaN], single (0), 1), single ([y, NaN]), eps ("single")) %!assert (logipdf ([x, NaN], 0, single (1)), single ([y, NaN]), eps ("single")) ## Test input validation %!error logipdf () %!error logipdf (1) %!error ... %! logipdf (1, 2) %!error ... %! logipdf (1, ones (2), ones (3)) %!error ... %! logipdf (ones (2), 1, ones (3)) %!error ... %! logipdf (ones (2), ones (3), 1) %!error logipdf (i, 2, 3) %!error logipdf (1, i, 3) %!error logipdf (1, 2, i) statistics-release-1.6.3/inst/dist_fun/logirnd.m000066400000000000000000000150141456127120000217340ustar00rootroot00000000000000## Copyright (C) 2012 Rik Wehbring ## Copyright (C) 1995-2016 Kurt Hornik ## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{r} =} logirnd (@var{mu}, @var{s}) ## @deftypefnx {statistics} {@var{r} =} logirnd (@var{mu}, @var{s}, @var{rows}) ## @deftypefnx {statistics} {@var{r} =} logirnd (@var{mu}, @var{s}, @var{rows}, @var{cols}, @dots{}) ## @deftypefnx {statistics} {@var{r} =} logirnd (@var{mu}, @var{s}, [@var{sz}]) ## ## Random arrays from the logistic distribution. ## ## @code{@var{r} = logirnd (@var{mu}, @var{s})} returns an array of ## random numbers chosen from the logistic distribution with location parameter ## @var{mu} and scale parameter @var{s}. The size of @var{r} is the common size ## of @var{mu} and @var{s}. A scalar input functions as a constant matrix of ## the same size as the other inputs. ## ## Both parameters must be reals and @qcode{@var{s} > 0}. ## For @qcode{@var{s} <= 0}, @qcode{NaN} is returned. ## ## When called with a single size argument, @code{logirnd} returns a square ## matrix with the dimension specified. When called with more than one scalar ## argument, the first two arguments are taken as the number of rows and columns ## and any further arguments specify additional matrix dimensions. The size may ## also be specified with a row vector of dimensions, @var{sz}. ## ## Further information about the logistic distribution can be found at ## @url{https://en.wikipedia.org/wiki/Logistic_distribution} ## ## @seealso{logcdf, logiinv, logipdf, logifit, logilike, logistat} ## @end deftypefn function r = logirnd (mu, s, varargin) ## Check for valid number of input arguments if (nargin < 2) error ("logirnd: function called with too few input arguments."); endif ## Check for common size of MU, and S if (! isscalar (mu) || ! isscalar (s)) [retval, mu, s] = common_size (mu, s); if (retval > 0) error ("logirnd: MU and S must be of common size or scalars."); endif endif ## Check for X, MU, and S being reals if (iscomplex (mu) || iscomplex (s)) error ("logirnd: MU and S must not be complex."); endif ## Parse and check SIZE arguments if (nargin == 2) sz = size (mu); elseif (nargin == 3) if (isscalar (varargin{1}) && varargin{1} >= 0 ... && varargin{1} == fix (varargin{1})) sz = [varargin{1}, varargin{1}]; elseif (isrow (varargin{1}) && all (varargin{1} >= 0) ... && all (varargin{1} == fix (varargin{1}))) sz = varargin{1}; elseif error (strcat (["logirnd: SZ must be a scalar or a row vector"], ... [" of non-negative integers."])); endif elseif (nargin > 3) posint = cellfun (@(x) (! isscalar (x) || x < 0 || x != fix (x)), varargin); if (any (posint)) error ("logirnd: dimensions must be non-negative integers."); endif sz = [varargin{:}]; endif ## Check that parameters match requested dimensions in size if (! isscalar (mu) && ! isequal (size (mu), sz)) error ("logirnd: MU and S must be scalars or of size SZ."); endif ## Check for class type if (isa (mu, "single") || isa (s, "single")) is_type = "single"; else is_type = "double"; endif ## Generate random sample from logistic distribution r = - log (1 ./ rand (sz, is_type) - 1) .* s + mu; ## Force output to NaN for invalid parameter S <= 0 k = (s <= 0); r(k) = NaN; endfunction ## Test output %!assert (size (logirnd (1, 1)), [1 1]) %!assert (size (logirnd (1, ones (2,1))), [2, 1]) %!assert (size (logirnd (1, ones (2,2))), [2, 2]) %!assert (size (logirnd (ones (2,1), 1)), [2, 1]) %!assert (size (logirnd (ones (2,2), 1)), [2, 2]) %!assert (size (logirnd (1, 1, 3)), [3, 3]) %!assert (size (logirnd (1, 1, [4, 1])), [4, 1]) %!assert (size (logirnd (1, 1, 4, 1)), [4, 1]) %!assert (size (logirnd (1, 1, 4, 1, 5)), [4, 1, 5]) %!assert (size (logirnd (1, 1, 0, 1)), [0, 1]) %!assert (size (logirnd (1, 1, 1, 0)), [1, 0]) %!assert (size (logirnd (1, 1, 1, 2, 0, 5)), [1, 2, 0, 5]) ## Test class of input preserved %!assert (class (logirnd (1, 1)), "double") %!assert (class (logirnd (1, single (1))), "single") %!assert (class (logirnd (1, single ([1, 1]))), "single") %!assert (class (logirnd (single (1), 1)), "single") %!assert (class (logirnd (single ([1, 1]), 1)), "single") ## Test input validation %!error logirnd () %!error logirnd (1) %!error ... %! logirnd (ones (3), ones (2)) %!error ... %! logirnd (ones (2), ones (3)) %!error logirnd (i, 2, 3) %!error logirnd (1, i, 3) %!error ... %! logirnd (1, 2, -1) %!error ... %! logirnd (1, 2, 1.2) %!error ... %! logirnd (1, 2, ones (2)) %!error ... %! logirnd (1, 2, [2 -1 2]) %!error ... %! logirnd (1, 2, [2 0 2.5]) %!error ... %! logirnd (1, 2, 2, -1, 5) %!error ... %! logirnd (1, 2, 2, 1.5, 5) %!error ... %! logirnd (2, ones (2), 3) %!error ... %! logirnd (2, ones (2), [3, 2]) %!error ... %! logirnd (2, ones (2), 3, 2) statistics-release-1.6.3/inst/dist_fun/loglcdf.m000066400000000000000000000141141456127120000217100ustar00rootroot00000000000000## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{p} =} loglcdf (@var{x}, @var{a}, @var{b}) ## @deftypefnx {statistics} {@var{p} =} loglcdf (@var{x}, @var{a}, @var{b}, @qcode{"upper"}) ## ## Log-logistic cumulative distribution function (CDF). ## ## For each element of @var{x}, compute the cumulative distribution function ## (CDF) of the log-logistic distribution with scale parameter @var{a} and shape ## parameter @var{b}. The size of @var{p} is the common size of @var{x}, ## @var{a}, and @var{b}. A scalar input functions as a constant matrix of the ## same size as the other inputs. ## ## Both parameters, @var{a} and @var{b}, must be positive reals and @var{x} is ## supported in the range @math{[0,inf)}, otherwise @qcode{NaN} is returned. ## ## @code{@var{p} = loglcdf (@var{x}, @var{a}, @var{b}, "upper")} computes the ## upper tail probability of the log-logistic distribution with parameters ## @var{a} and @var{b}, at the values in @var{x}. ## ## Further information about the log-logistic distribution can be found at ## @url{https://en.wikipedia.org/wiki/Log-logistic_distribution} ## ## MATLAB compatibility: MATLAB uses an alternative parameterization given by ## the pair @math{μ, s}, i.e. @var{mu} and @var{s}, in analogy with the logistic ## distribution. Their relation to the @var{a} and @var{b} parameters is given ## below: ## ## @itemize ## @item @qcode{@var{a} = exp (@var{mu})} ## @item @qcode{@var{b} = 1 / @var{s}} ## @end itemize ## ## @seealso{loglinv, loglpdf, loglrnd, loglfit, logllike} ## @end deftypefn function p = loglcdf (x, a, b, uflag) ## Check for valid number of input arguments if (nargin < 3) error ("loglcdf: function called with too few input arguments."); endif ## Check for valid "upper" flag if (nargin > 3) if (! strcmpi (uflag, "upper")) error ("loglcdf: invalid argument for upper tail."); else uflag = true; endif else uflag = false; endif ## Check for common size of X, A, and B if (! isscalar (x) || ! isscalar (a) || ! isscalar(b)) [retval, x, a, b] = common_size (x, a, b); if (retval > 0) error ("loglcdf: X, A, and B must be of common size or scalars."); endif endif ## Check for X, A, and B being reals if (iscomplex (x) || iscomplex (a) || iscomplex (b)) error ("loglcdf: X, A, and B must not be complex."); endif ## Check for invalid points a(a <= 0) = NaN; b(b <= 0) = NaN; x(x < 0) = NaN; ## Compute log-logistic CDF z = (x ./ a) .^ -b; if (uflag) p = 1 - (1 ./ (1 + z)); else p = 1 ./ (1 + z); endif ## Check for class type if (isa (x, "single") || isa (a, "single") || isa (b, "single")); p = cast (p, "single"); endif endfunction %!demo %! ## Plot various CDFs from the log-logistic distribution %! x = 0:0.001:2; %! p1 = loglcdf (x, 1, 0.5); %! p2 = loglcdf (x, 1, 1); %! p3 = loglcdf (x, 1, 2); %! p4 = loglcdf (x, 1, 4); %! p5 = loglcdf (x, 1, 8); %! plot (x, p1, "-b", x, p2, "-g", x, p3, "-r", x, p4, "-c", x, p5, "-m") %! legend ({"β = 0.5", "β = 1", "β = 2", "β = 4", "β = 8"}, ... %! "location", "northwest") %! grid on %! title ("Log-logistic CDF") %! xlabel ("values in x") %! ylabel ("probability") %! text (0.05, 0.64, "α = 1, values of β as shown in legend") ## Test output %!shared out1, out2 %! out1 = [0, 0.5, 0.66666667, 0.75, 0.8, 0.83333333]; %! out2 = [0, 0.4174, 0.4745, 0.5082, 0.5321, 0.5506]; %!assert (loglcdf ([0:5], 1, 1), out1, 1e-8) %!assert (loglcdf ([0:5], 1, 1, "upper"), 1 - out1, 1e-8) %!assert (loglcdf ([0:5], exp (0), 1), out1, 1e-8) %!assert (loglcdf ([0:5], exp (0), 1, "upper"), 1 - out1, 1e-8) %!assert (loglcdf ([0:5], exp (1), 1 / 3), out2, 1e-4) %!assert (loglcdf ([0:5], exp (1), 1 / 3, "upper"), 1 - out2, 1e-4) ## Test class of input preserved %!assert (class (loglcdf (single (1), 2, 3)), "single") %!assert (class (loglcdf (1, single (2), 3)), "single") %!assert (class (loglcdf (1, 2, single (3))), "single") ## Test input validation %!error loglcdf (1) %!error loglcdf (1, 2) %!error ... %! loglcdf (1, 2, 3, 4) %!error ... %! loglcdf (1, 2, 3, "uper") %!error ... %! loglcdf (1, ones (2), ones (3)) %!error ... %! loglcdf (1, ones (2), ones (3), "upper") %!error ... %! loglcdf (ones (2), 1, ones (3)) %!error ... %! loglcdf (ones (2), 1, ones (3), "upper") %!error ... %! loglcdf (ones (2), ones (3), 1) %!error ... %! loglcdf (ones (2), ones (3), 1, "upper") %!error loglcdf (i, 2, 3) %!error loglcdf (i, 2, 3, "upper") %!error loglcdf (1, i, 3) %!error loglcdf (1, i, 3, "upper") %!error loglcdf (1, 2, i) %!error loglcdf (1, 2, i, "upper") statistics-release-1.6.3/inst/dist_fun/loglinv.m000066400000000000000000000114041456127120000217470ustar00rootroot00000000000000## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{x} =} loglinv (@var{p}, @var{a}, @var{b}) ## ## Inverse of the log-logistic cumulative distribution function (iCDF). ## ## For each element of @var{p}, compute the quantile (the inverse of the CDF) of ## the log-logistic distribution with scale parameter @var{a} and shape ## parameter @var{b}. The size of @var{x} is the common size of @var{p}, ## @var{a}, and @var{b}. A scalar input functions as a constant matrix of the ## same size as the other inputs. ## ## Both parameters, @var{a} and @var{b}, must be positive reals and @var{p} is ## supported in the range @math{[0,1]}, otherwise @qcode{NaN} is returned. ## ## Further information about the log-logistic distribution can be found at ## @url{https://en.wikipedia.org/wiki/Log-logistic_distribution} ## ## MATLAB compatibility: MATLAB uses an alternative parameterization given by ## the pair @math{μ, s}, i.e. @var{mu} and @var{s}, in analogy with the logistic ## distribution. Their relation to the @var{a} and @var{b} parameters is given ## below: ## ## @itemize ## @item @qcode{@var{a} = exp (@var{mu})} ## @item @qcode{@var{b} = 1 / @var{s}} ## @end itemize ## ## @seealso{loglcdf, loglpdf, loglrnd, loglfit, logllike} ## @end deftypefn function x = loglinv (p, a, b) ## Check for valid number of input arguments if (nargin < 3) error ("loglinv: function called with too few input arguments."); endif ## Check for common size of P, A, and B if (! isscalar (p) || ! isscalar (a) || ! isscalar(b)) [retval, p, a, b] = common_size (p, a, b); if (retval > 0) error (strcat (["loglinv: P, A, and B must be of"], ... [" common size or scalars."])); endif endif ## Check for X, A, and B being reals if (iscomplex (p) || iscomplex (a) || iscomplex (b)) error ("loglinv: P, A, and B must not be complex."); endif ## Check for class type if (isa (p, "single") || isa (a, "single") || isa (b, "single")); x = NaN (size (p), "single"); else x = NaN (size (p)); endif ## Check for valid points k = (p >= 0) & (p <= 1) & (a > 0) & (b > 0); ## Compute the log-logistic iCDF x(k) = a(k) .* (p(k) ./ (1 - p(k))) .^ (1 ./ b(k)); endfunction %!demo %! ## Plot various iCDFs from the log-logistic distribution %! p = 0.001:0.001:0.999; %! x1 = loglinv (p, 1, 0.5); %! x2 = loglinv (p, 1, 1); %! x3 = loglinv (p, 1, 2); %! x4 = loglinv (p, 1, 4); %! x5 = loglinv (p, 1, 8); %! plot (p, x1, "-b", p, x2, "-g", p, x3, "-r", p, x4, "-c", p, x5, "-m") %! ylim ([0, 20]) %! grid on %! legend ({"β = 0.5", "β = 1", "β = 2", "β = 4", "β = 8"}, ... %! "location", "northwest") %! title ("Log-logistic iCDF") %! xlabel ("probability") %! ylabel ("x") %! text (0.03, 12.5, "α = 1, values of β as shown in legend") ## Test output %!shared p, out1, out2 %! p = [-1, 0, 0.2, 0.5, 0.8, 0.95, 1, 2]; %! out1 = [NaN, 0, 0.25, 1, 4, 19, Inf, NaN]; %! out2 = [NaN, 0, 0.0424732, 2.718282, 173.970037, 18644.695061, Inf, NaN]; %!assert (loglinv (p, 1, 1), out1, 1e-8) %!assert (loglinv (p, exp (0), 1), out1, 1e-8) %!assert (loglinv (p, exp (1), 1 / 3), out2, 1e-6) ## Test class of input preserved %!assert (class (loglinv (single (1), 2, 3)), "single") %!assert (class (loglinv (1, single (2), 3)), "single") %!assert (class (loglinv (1, 2, single (3))), "single") ## Test input validation %!error loglinv (1) %!error loglinv (1, 2) %!error ... %! loglinv (1, ones (2), ones (3)) %!error ... %! loglinv (ones (2), 1, ones (3)) %!error ... %! loglinv (ones (2), ones (3), 1) %!error loglinv (i, 2, 3) %!error loglinv (1, i, 3) %!error loglinv (1, 2, i) statistics-release-1.6.3/inst/dist_fun/loglpdf.m000066400000000000000000000115131456127120000217250ustar00rootroot00000000000000## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{y} =} loglpdf (@var{x}, @var{a}, @var{b}) ## ## Log-logistic probability density function (PDF). ## ## For each element of @var{x}, compute the probability density function (PDF) ## of the log-logistic distribution with with scale parameter @var{a} and shape ## parameter @var{b}. The size of @var{y} is the common size of @var{x}, ## @var{a}, and @var{b}. A scalar input functions as a constant matrix of the ## same size as the other inputs. ## ## Both parameters, @var{a} and @var{b}, must be positive reals, otherwise ## @qcode{NaN} is returned. @var{x} is supported in the range @math{[0,Inf)}, ## otherwise @qcode{0} is returned. ## ## Further information about the log-logistic distribution can be found at ## @url{https://en.wikipedia.org/wiki/Log-logistic_distribution} ## ## MATLAB compatibility: MATLAB uses an alternative parameterization given by ## the pair @math{μ, s}, i.e. @var{mu} and @var{s}, in analogy with the logistic ## distribution. Their relation to the @var{a} and @var{b} parameters is given ## below: ## ## @itemize ## @item @qcode{@var{a} = exp (@var{mu})} ## @item @qcode{@var{b} = 1 / @var{s}} ## @end itemize ## ## @seealso{loglcdf, loglinv, loglrnd, loglfit, logllike} ## @end deftypefn function y = loglpdf (x, a, b) ## Check for valid number of input arguments if (nargin < 3) error ("loglpdf: function called with too few input arguments."); endif ## Check for common size of X, A, and B if (! isscalar (x) || ! isscalar (a) || ! isscalar(b)) [retval, x, a, b] = common_size (x, a, b); if (retval > 0) error (strcat (["loglpdf: X, A, and B must be of"], ... [" common size or scalars."])); endif endif ## Check for X, A, and B being reals if (iscomplex (x) || iscomplex (a) || iscomplex (b)) error ("loglpdf: X, A, and B must not be complex."); endif ## Check for class type if (isa (x, "single") || isa (a, "single") || isa (b, "single")); y = NaN (size (x), "single"); else y = NaN (size (x)); endif ## Compute log-logistic PDF k1 = ((x == Inf) | (x < 0)) & (a > 0) & (b > 0); y(k1) = 0; k = (! k1) & (a > 0) & (b > 0); y(k) = ((b(k) ./ a(k)) .* (x(k) ./ a(k)) .^ (b(k) -1)) ./ ... ((1 + (x(k) ./ a(k)) .^ b(k)) .^ 2); endfunction %!demo %! ## Plot various PDFs from the log-logistic distribution %! x = 0:0.001:2; %! y1 = loglpdf (x, 1, 0.5); %! y2 = loglpdf (x, 1, 1); %! y3 = loglpdf (x, 1, 2); %! y4 = loglpdf (x, 1, 4); %! y5 = loglpdf (x, 1, 8); %! plot (x, y1, "-b", x, y2, "-g", x, y3, "-r", x, y4, "-c", x, y5, "-m") %! grid on %! ylim ([0,3]) %! legend ({"β = 0.5", "β = 1", "β = 2", "β = 4", "β = 8"}, ... %! "location", "northeast") %! title ("Log-logistic PDF") %! xlabel ("values in x") %! ylabel ("density") %! text (0.5, 2.8, "α = 1, values of β as shown in legend") ## Test output %!shared out1, out2 %! out1 = [0, 1, 0.2500, 0.1111, 0.0625, 0.0400, 0.0278, 0]; %! out2 = [0, Inf, 0.0811, 0.0416, 0.0278, 0.0207, 0.0165, 0]; %!assert (loglpdf ([-1:5,Inf], 1, 1), out1, 1e-4) %!assert (loglpdf ([-1:5,Inf], exp (0), 1), out1, 1e-4) %!assert (loglpdf ([-1:5,Inf], exp (1), 1 / 3), out2, 1e-4) ## Test class of input preserved %!assert (class (loglpdf (single (1), 2, 3)), "single") %!assert (class (loglpdf (1, single (2), 3)), "single") %!assert (class (loglpdf (1, 2, single (3))), "single") ## Test input validation %!error loglpdf (1) %!error loglpdf (1, 2) %!error ... %! loglpdf (1, ones (2), ones (3)) %!error ... %! loglpdf (ones (2), 1, ones (3)) %!error ... %! loglpdf (ones (2), ones (3), 1) %!error loglpdf (i, 2, 3) %!error loglpdf (1, i, 3) %!error loglpdf (1, 2, i) statistics-release-1.6.3/inst/dist_fun/loglrnd.m000066400000000000000000000154201456127120000217400ustar00rootroot00000000000000## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{r} =} loglrnd (@var{a}, @var{b}) ## @deftypefnx {statistics} {@var{r} =} loglrnd (@var{a}, @var{b}, @var{rows}) ## @deftypefnx {statistics} {@var{r} =} loglrnd (@var{a}, @var{b}, @var{rows}, @var{cols}, @dots{}) ## @deftypefnx {statistics} {@var{r} =} loglrnd (@var{a}, @var{b}, [@var{sz}]) ## ## Random arrays from the log-logistic distribution. ## ## @code{@var{r} = loglrnd (@var{a}, @var{b})} returns an array of random ## numbers chosen from the log-logistic distribution with scale parameter ## @var{a} and shape parameter @var{b}. The size of @var{r} is the common size ## of @var{a} and @var{b}. A scalar input functions as a constant matrix of the ## same size as the other inputs. ## ## Both parameters must be positive reals, otherwise @qcode{NaN} is returned. ## ## When called with a single size argument, @code{loglrnd} returns a square ## matrix with the dimension specified. When called with more than one scalar ## argument, the first two arguments are taken as the number of rows and columns ## and any further arguments specify additional matrix dimensions. The size may ## also be specified with a row vector of dimensions, @var{sz}. ## ## Further information about the log-logistic distribution can be found at ## @url{https://en.wikipedia.org/wiki/Log-logistic_distribution} ## ## MATLAB compatibility: MATLAB uses an alternative parameterization given by ## the pair @math{μ, s}, i.e. @var{mu} and @var{s}, in analogy with the logistic ## distribution. Their relation to the @var{a} and @var{b} parameters is given ## below: ## ## @itemize ## @item @qcode{@var{a} = exp (@var{mu})} ## @item @qcode{@var{b} = 1 / @var{s}} ## @end itemize ## ## @seealso{loglcdf, loglinv, loglpdf, loglfit, logllike} ## @end deftypefn function r = loglrnd (a, b, varargin) ## Check for valid number of input arguments if (nargin < 2) error ("loglrnd: function called with too few input arguments."); endif ## Check for common size of A, and B if (! isscalar (a) || ! isscalar (b)) [retval, a, b] = common_size (a, b); if (retval > 0) error ("loglrnd: A and B must be of common size or scalars."); endif endif ## Check for X, A, and B being reals if (iscomplex (a) || iscomplex (b)) error ("loglrnd: A and B must not be complex."); endif ## Parse and check SIZE arguments if (nargin == 2) sz = size (a); elseif (nargin == 3) if (isscalar (varargin{1}) && varargin{1} >= 0 ... && varargin{1} == fix (varargin{1})) sz = [varargin{1}, varargin{1}]; elseif (isrow (varargin{1}) && all (varargin{1} >= 0) ... && all (varargin{1} == fix (varargin{1}))) sz = varargin{1}; elseif error (strcat (["loglrnd: SZ must be a scalar or a row vector"], ... [" of non-negative integers."])); endif elseif (nargin > 3) posint = cellfun (@(x) (! isscalar (x) || x < 0 || x != fix (x)), varargin); if (any (posint)) error ("loglrnd: dimensions must be non-negative integers."); endif sz = [varargin{:}]; endif ## Check that parameters match requested dimensions in size if (! isscalar (a) && ! isequal (size (a), sz)) error ("loglrnd: A and B must be scalars or of size SZ."); endif ## Check for class type if (isa (a, "single") || isa (b, "single")) is_type = "single"; else is_type = "double"; endif ## Generate random sample from log-logistic distribution p = rand (sz, is_type); r = a .* (p ./ (1 - p)) .^ (1 ./ b); ## Force output to NaN for invalid parameters A and B k = (a <= 0 | b <= 0); r(k) = NaN; endfunction ## Test output %!assert (size (loglrnd (1, 1)), [1 1]) %!assert (size (loglrnd (1, ones (2,1))), [2, 1]) %!assert (size (loglrnd (1, ones (2,2))), [2, 2]) %!assert (size (loglrnd (ones (2,1), 1)), [2, 1]) %!assert (size (loglrnd (ones (2,2), 1)), [2, 2]) %!assert (size (loglrnd (1, 1, 3)), [3, 3]) %!assert (size (loglrnd (1, 1, [4, 1])), [4, 1]) %!assert (size (loglrnd (1, 1, 4, 1)), [4, 1]) %!assert (size (loglrnd (1, 1, 4, 1, 5)), [4, 1, 5]) %!assert (size (loglrnd (1, 1, 0, 1)), [0, 1]) %!assert (size (loglrnd (1, 1, 1, 0)), [1, 0]) %!assert (size (loglrnd (1, 1, 1, 2, 0, 5)), [1, 2, 0, 5]) ## Test class of input preserved %!assert (class (loglrnd (1, 1)), "double") %!assert (class (loglrnd (1, single (1))), "single") %!assert (class (loglrnd (1, single ([1, 1]))), "single") %!assert (class (loglrnd (single (1), 1)), "single") %!assert (class (loglrnd (single ([1, 1]), 1)), "single") ## Test input validation %!error loglrnd () %!error loglrnd (1) %!error ... %! loglrnd (ones (3), ones (2)) %!error ... %! loglrnd (ones (2), ones (3)) %!error loglrnd (i, 2, 3) %!error loglrnd (1, i, 3) %!error ... %! loglrnd (1, 2, -1) %!error ... %! loglrnd (1, 2, 1.2) %!error ... %! loglrnd (1, 2, ones (2)) %!error ... %! loglrnd (1, 2, [2 -1 2]) %!error ... %! loglrnd (1, 2, [2 0 2.5]) %!error ... %! loglrnd (1, 2, 2, -1, 5) %!error ... %! loglrnd (1, 2, 2, 1.5, 5) %!error ... %! loglrnd (2, ones (2), 3) %!error ... %! loglrnd (2, ones (2), [3, 2]) %!error ... %! loglrnd (2, ones (2), 3, 2) statistics-release-1.6.3/inst/dist_fun/logncdf.m000066400000000000000000000214061456127120000217140ustar00rootroot00000000000000## Copyright (C) 2012 Rik Wehbring ## Copyright (C) 1995-2016 Kurt Hornik ## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{p} =} logncdf (@var{x}) ## @deftypefnx {statistics} {@var{p} =} logncdf (@var{x}, @var{mu}) ## @deftypefnx {statistics} {@var{p} =} logncdf (@var{x}, @var{mu}, @var{sigma}) ## @deftypefnx {statistics} {@var{p} =} logncdf (@dots{}, @qcode{"upper"}) ## @deftypefnx {statistics} {[@var{p}, @var{plo}, @var{pup}] =} logncdf (@var{x}, @var{mu}, @var{sigma}, @var{pcov}) ## @deftypefnx {statistics} {[@var{p}, @var{plo}, @var{pup}] =} logncdf (@var{x}, @var{mu}, @var{sigma}, @var{pcov}, @var{alpha}) ## @deftypefnx {statistics} {[@var{p}, @var{plo}, @var{pup}] =} logncdf (@dots{}, @qcode{"upper"}) ## ## Log-normal cumulative distribution function (CDF). ## ## For each element of @var{x}, compute the cumulative distribution function ## (CDF) of the log-normal distribution with mean parameter @var{mu} and ## standard deviation parameter @var{sigma}, each corresponding to the ## associated normal distribution. The size of @var{p} is the common size of ## @var{x}, @var{mu}, and @var{sigma}. A scalar input functions as a constant ## matrix of the same size as the other inputs. ## ## If a random variable follows this distribution, its logarithm is normally ## distributed with mean @var{mu} and standard deviation @var{sigma}. ## ## Default parameter values are @qcode{@var{mu} = 0} and ## @qcode{@var{sigma} = 1}. Both parameters must be reals and ## @qcode{@var{sigma} > 0}. For @qcode{@var{sigma} <= 0}, @qcode{NaN} is ## returned. ## ## When called with three output arguments, i.e. @qcode{[@var{p}, @var{plo}, ## @var{pup}]}, @code{logncdf} computes the confidence bounds for @var{p} when ## the input parameters @var{mu} and @var{sigma} are estimates. In such case, ## @var{pcov}, a @math{2x2} matrix containing the covariance matrix of the ## estimated parameters, is necessary. Optionally, @var{alpha}, which has a ## default value of 0.05, specifies the @qcode{100 * (1 - @var{alpha})} percent ## confidence bounds. @var{plo} and @var{pup} are arrays of the same size as ## @var{p} containing the lower and upper confidence bounds. ## ## @code{[@dots{}] = logncdf (@dots{}, "upper")} computes the upper tail ## probability of the log-normal distribution with parameters @var{mu} and ## @var{sigma}, at the values in @var{x}. ## ## Further information about the log-normal distribution can be found at ## @url{https://en.wikipedia.org/wiki/Log-normal_distribution} ## ## @seealso{logninv, lognpdf, lognrnd, lognfit, lognlike, lognstat} ## @end deftypefn function [varargout] = logncdf (x, varargin) ## Check for valid number of input arguments if (nargin < 1 || nargin > 6) error ("logncdf: invalid number of input arguments."); endif ## Check for "upper" flag if (nargin > 1 && strcmpi (varargin{end}, "upper")) uflag = true; varargin(end) = []; elseif (nargin > 1 && ischar (varargin{end}) && ... ! strcmpi (varargin{end}, "upper")) error ("logncdf: invalid argument for upper tail."); elseif (nargin > 2 && isempty (varargin{end})) uflag = false; varargin(end) = []; else uflag = false; endif ## Get extra arguments (if they exist) or add defaults if (numel (varargin) > 0) mu = varargin{1}; else mu = 0; endif if (numel (varargin) > 1) sigma = varargin{2}; else sigma = 1; endif if (numel (varargin) > 2) pcov = varargin{3}; ## Check for valid covariance matrix 2x2 if (! isequal (size (pcov), [2, 2])) error ("logncdf: invalid size of covariance matrix."); endif else ## Check that cov matrix is provided if 3 output arguments are requested if (nargout > 1) error ("logncdf: covariance matrix is required for confidence bounds."); endif pcov = []; endif if (numel (varargin) > 3) alpha = varargin{4}; ## Check for valid alpha value if (! isnumeric (alpha) || numel (alpha) !=1 || alpha <= 0 || alpha >= 1) error ("logncdf: invalid value for alpha."); endif else alpha = 0.05; endif ## Check for common size of X, MU, and SIGMA if (! isscalar (x) || ! isscalar (mu) || ! isscalar (sigma)) [err, x, mu, sigma] = common_size (x, mu, sigma); if (err > 0) error ("logncdf: X, MU, and SIGMA must be of common size or scalars."); endif endif ## Check for X, MU, and SIGMA being reals if (iscomplex (x) || iscomplex (mu) || iscomplex (sigma)) error ("logncdf: X, MU, and SIGMA must not be complex."); endif ## Return NaN for out of range parameters. sigma(sigma <= 0) = NaN; ## Negative data would create complex values, which erfc cannot handle. x(x < 0) = 0; ## Compute lognormal cdf z = (log (x) - mu) ./ sigma; if (uflag) z = -z; endif p = 0.5 * erfc (-z ./ sqrt(2)); ## Compute confidence bounds (if requested) if (nargout >= 2) zvar = (pcov(1,1) + 2 * pcov(1,2) * z + pcov(2,2) * z .^ 2) ./ (sigma .^ 2); if (any (zvar(:) < 0)) error ("logncdf: bad covariance matrix."); end normz = -norminv (alpha / 2); halfwidth = normz * sqrt (zvar); zlo = z - halfwidth; zup = z + halfwidth; plo = 0.5 * erfc (-zlo ./ sqrt (2)); pup = 0.5 * erfc (-zup ./ sqrt (2)); endif ## Check for class type if (isa (x, "single") || isa (mu, "single") || isa (sigma, "single")); is_class = "single"; else is_class = "double"; endif ## Prepare output varargout{1} = cast (p, is_class); if (nargout > 1) varargout{2} = cast (plo, is_class); varargout{3} = cast (pup, is_class); endif endfunction %!demo %! ## Plot various CDFs from the log-normal distribution %! x = 0:0.01:3; %! p1 = logncdf (x, 0, 1); %! p2 = logncdf (x, 0, 0.5); %! p3 = logncdf (x, 0, 0.25); %! plot (x, p1, "-b", x, p2, "-g", x, p3, "-r") %! grid on %! legend ({"μ = 0, σ = 1", "μ = 0, σ = 0.5", "μ = 0, σ = 0.25"}, ... %! "location", "southeast") %! title ("Log-normal CDF") %! xlabel ("values in x") %! ylabel ("probability") ## Test output %!shared x, y %! x = [-1, 0, 1, e, Inf]; %! y = [0, 0, 0.5, 1/2+1/2*erf(1/2), 1]; %!assert (logncdf (x, zeros (1,5), sqrt(2)*ones (1,5)), y, eps) %!assert (logncdf (x, zeros (1,5), sqrt(2)*ones (1,5), []), y, eps) %!assert (logncdf (x, 0, sqrt(2)*ones (1,5)), y, eps) %!assert (logncdf (x, zeros (1,5), sqrt(2)), y, eps) %!assert (logncdf (x, [0 1 NaN 0 1], sqrt(2)), [0 0 NaN y(4:5)], eps) %!assert (logncdf (x, 0, sqrt(2)*[0 NaN Inf 1 1]), [NaN NaN y(3:5)], eps) %!assert (logncdf ([x(1:3) NaN x(5)], 0, sqrt(2)), [y(1:3) NaN y(5)], eps) ## Test class of input preserved %!assert (logncdf ([x, NaN], 0, sqrt(2)), [y, NaN], eps) %!assert (logncdf (single ([x, NaN]), 0, sqrt(2)), single ([y, NaN]), eps ("single")) %!assert (logncdf ([x, NaN], single (0), sqrt(2)), single ([y, NaN]), eps ("single")) %!assert (logncdf ([x, NaN], 0, single (sqrt(2))), single ([y, NaN]), eps ("single")) ## Test input validation %!error logncdf () %!error logncdf (1,2,3,4,5,6,7) %!error logncdf (1, 2, 3, 4, "uper") %!error ... %! logncdf (ones (3), ones (2), ones (2)) %!error logncdf (2, 3, 4, [1, 2]) %!error ... %! [p, plo, pup] = logncdf (1, 2, 3) %!error [p, plo, pup] = ... %! logncdf (1, 2, 3, [1, 0; 0, 1], 0) %!error [p, plo, pup] = ... %! logncdf (1, 2, 3, [1, 0; 0, 1], 1.22) %!error [p, plo, pup] = ... %! logncdf (1, 2, 3, [1, 0; 0, 1], "alpha", "upper") %!error logncdf (i, 2, 2) %!error logncdf (2, i, 2) %!error logncdf (2, 2, i) %!error ... %! [p, plo, pup] =logncdf (1, 2, 3, [1, 0; 0, -inf], 0.04) statistics-release-1.6.3/inst/dist_fun/logninv.m000066400000000000000000000114471456127120000217600ustar00rootroot00000000000000## Copyright (C) 2012 Rik Wehbring ## Copyright (C) 1995-2016 Kurt Hornik ## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{x} =} logninv (@var{p}) ## @deftypefnx {statistics} {@var{x} =} logninv (@var{p}, @var{mu}) ## @deftypefnx {statistics} {@var{x} =} logninv (@var{p}, @var{mu}, @var{sigma}) ## ## Inverse of the log-normal cumulative distribution function (iCDF). ## ## For each element of @var{p}, compute the quantile (the inverse of the CDF) of ## the log-normal distribution with mean parameter @var{mu} and standard ## deviation parameter @var{sigma}, each corresponding to the associated normal ## distribution. The size of @var{x} is the common size of @var{p}, @var{mu}, ## and @var{sigma}. A scalar input functions as a constant matrix of the same ## size as the other inputs. ## ## If a random variable follows this distribution, its logarithm is normally ## distributed with mean @var{mu} and standard deviation @var{sigma}. ## ## Default parameter values are @qcode{@var{mu} = 0} and ## @qcode{@var{sigma} = 1}. Both parameters must be reals and ## @qcode{@var{sigma} > 0}. For @qcode{@var{sigma} <= 0}, @qcode{NaN} is ## returned. ## ## Further information about the log-normal distribution can be found at ## @url{https://en.wikipedia.org/wiki/Log-normal_distribution} ## ## @seealso{logncdf, lognpdf, lognrnd, lognfit, lognlike, lognstat} ## @end deftypefn function x = logninv (p, mu = 0, sigma = 1) ## Check for valid number of input arguments if (nargin < 1 || nargin > 3) print_usage (); endif ## Check for common size of P, MU, and SIGMA if (! isscalar (p) || ! isscalar (mu) || ! isscalar (sigma)) [retval, p, mu, sigma] = common_size (p, mu, sigma); if (retval > 0) error ("logninv: X, MU, and SIGMA must be of common size or scalars."); endif endif ## Check for X, MU, and SIGMA being reals if (iscomplex (p) || iscomplex (mu) || iscomplex (sigma)) error ("logninv: X, MU, and SIGMA must not be complex."); endif ## Check for class type if (isa (p, "single") || isa (mu, "single") || isa (sigma, "single")) x = NaN (size (p), "single"); else x = NaN (size (p)); endif ## Compute lognormal iCDF k = !(p >= 0) | !(p <= 1) | !(sigma > 0) | !(sigma < Inf); x(k) = NaN; k = (p == 1) & (sigma > 0) & (sigma < Inf); x(k) = Inf; k = (p >= 0) & (p < 1) & (sigma > 0) & (sigma < Inf); if (isscalar (mu) && isscalar (sigma)) x(k) = exp (mu) .* exp (sigma .* (-sqrt (2) * erfcinv (2 * p(k)))); else x(k) = exp (mu(k)) .* exp (sigma(k) .* (-sqrt (2) * erfcinv (2 * p(k)))); endif endfunction %!demo %! ## Plot various iCDFs from the log-normal distribution %! p = 0.001:0.001:0.999; %! x1 = logninv (p, 0, 1); %! x2 = logninv (p, 0, 0.5); %! x3 = logninv (p, 0, 0.25); %! plot (p, x1, "-b", p, x2, "-g", p, x3, "-r") %! grid on %! ylim ([0, 3]) %! legend ({"μ = 0, σ = 1", "μ = 0, σ = 0.5", "μ = 0, σ = 0.25"}, ... %! "location", "northwest") %! title ("Log-normal iCDF") %! xlabel ("probability") %! ylabel ("values in x") ## Test output %!shared p %! p = [-1 0 0.5 1 2]; %!assert (logninv (p, ones (1,5), ones (1,5)), [NaN 0 e Inf NaN]) %!assert (logninv (p, 1, ones (1,5)), [NaN 0 e Inf NaN]) %!assert (logninv (p, ones (1,5), 1), [NaN 0 e Inf NaN]) %!assert (logninv (p, [1 1 NaN 0 1], 1), [NaN 0 NaN Inf NaN]) %!assert (logninv (p, 1, [1 0 NaN Inf 1]), [NaN NaN NaN NaN NaN]) %!assert (logninv ([p(1:2) NaN p(4:5)], 1, 2), [NaN 0 NaN Inf NaN]) ## Test class of input preserved %!assert (logninv ([p, NaN], 1, 1), [NaN 0 e Inf NaN NaN]) %!assert (logninv (single ([p, NaN]), 1, 1), single ([NaN 0 e Inf NaN NaN])) %!assert (logninv ([p, NaN], single (1), 1), single ([NaN 0 e Inf NaN NaN])) %!assert (logninv ([p, NaN], 1, single (1)), single ([NaN 0 e Inf NaN NaN])) ## Test input validation %!error logninv () %!error logninv (1,2,3,4) %!error logninv (ones (3), ones (2), ones (2)) %!error logninv (ones (2), ones (3), ones (2)) %!error logninv (ones (2), ones (2), ones (3)) %!error logninv (i, 2, 2) %!error logninv (2, i, 2) %!error logninv (2, 2, i) statistics-release-1.6.3/inst/dist_fun/lognpdf.m000066400000000000000000000111421456127120000217250ustar00rootroot00000000000000## Copyright (C) 2012 Rik Wehbring ## Copyright (C) 1995-2016 Kurt Hornik ## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{y} =} lognpdf (@var{x}) ## @deftypefnx {statistics} {@var{y} =} lognpdf (@var{x}, @var{mu}) ## @deftypefnx {statistics} {@var{y} =} lognpdf (@var{x}, @var{mu}, @var{sigma}) ## ## Lognormal probability density function (PDF). ## ## For each element of @var{x}, compute the probability density function (PDF) ## of the lognormal distribution with mean parameter @var{mu} and standard ## deviation parameter @var{sigma}, each corresponding to the associated normal ## distribution. The size of @var{y} is the common size of @var{p}, @var{mu}, ## and @var{sigma}. A scalar input functions as a constant matrix of the same ## size as the other inputs. ## ## If a random variable follows this distribution, its logarithm is normally ## distributed with mean @var{mu} and standard deviation @var{sigma}. ## ## Default parameter values are @qcode{@var{mu} = 0} and ## @qcode{@var{sigma} = 1}. Both parameters must be reals and ## @qcode{@var{sigma} > 0}. For @qcode{@var{sigma} <= 0}, @qcode{NaN} is ## returned. ## ## Further information about the log-normal distribution can be found at ## @url{https://en.wikipedia.org/wiki/Log-normal_distribution} ## ## @seealso{logncdf, logninv, lognrnd, lognfit, lognlike, lognstat} ## @end deftypefn function y = lognpdf (x, mu = 0, sigma = 1) ## Check for valid number of input arguments if (nargin < 1 || nargin > 3) print_usage (); endif ## Check for common size of P, MU, and SIGMA if (! isscalar (x) || ! isscalar (mu) || ! isscalar (sigma)) [retval, x, mu, sigma] = common_size (x, mu, sigma); if (retval > 0) error ("lognpdf: X, MU, and SIGMA must be of common size or scalars"); endif endif ## Check for X, MU, and SIGMA being reals if (iscomplex (x) || iscomplex (mu) || iscomplex (sigma)) error ("lognpdf: X, MU, and SIGMA must not be complex"); endif ## Check for class type if (isa (x, "single") || isa (mu, "single") || isa (sigma, "single")) y = zeros (size (x), "single"); else y = zeros (size (x)); endif ## Compute lognormal PDF k = isnan (x) | !(sigma > 0) | !(sigma < Inf); y(k) = NaN; k = (x > 0) & (x < Inf) & (sigma > 0) & (sigma < Inf); if (isscalar (mu) && isscalar (sigma)) y(k) = normpdf (log (x(k)), mu, sigma) ./ x(k); else y(k) = normpdf (log (x(k)), mu(k), sigma(k)) ./ x(k); endif endfunction %!demo %! ## Plot various PDFs from the log-normal distribution %! x = 0:0.01:5; %! y1 = lognpdf (x, 0, 1); %! y2 = lognpdf (x, 0, 0.5); %! y3 = lognpdf (x, 0, 0.25); %! plot (x, y1, "-b", x, y2, "-g", x, y3, "-r") %! grid on %! ylim ([0, 2]) %! legend ({"μ = 0, σ = 1", "μ = 0, σ = 0.5", "μ = 0, σ = 0.25"}, ... %! "location", "northeast") %! title ("Log-normal PDF") %! xlabel ("values in x") %! ylabel ("density") ## Test output %!shared x, y %! x = [-1 0 e Inf]; %! y = [0, 0, 1/(e*sqrt(2*pi)) * exp(-1/2), 0]; %!assert (lognpdf (x, zeros (1,4), ones (1,4)), y, eps) %!assert (lognpdf (x, 0, ones (1,4)), y, eps) %!assert (lognpdf (x, zeros (1,4), 1), y, eps) %!assert (lognpdf (x, [0 1 NaN 0], 1), [0 0 NaN y(4)], eps) %!assert (lognpdf (x, 0, [0 NaN Inf 1]), [NaN NaN NaN y(4)], eps) %!assert (lognpdf ([x, NaN], 0, 1), [y, NaN], eps) ## Test class of input preserved %!assert (lognpdf (single ([x, NaN]), 0, 1), single ([y, NaN]), eps ("single")) %!assert (lognpdf ([x, NaN], single (0), 1), single ([y, NaN]), eps ("single")) %!assert (lognpdf ([x, NaN], 0, single (1)), single ([y, NaN]), eps ("single")) ## Test input validation %!error lognpdf () %!error lognpdf (1,2,3,4) %!error lognpdf (ones (3), ones (2), ones (2)) %!error lognpdf (ones (2), ones (3), ones (2)) %!error lognpdf (ones (2), ones (2), ones (3)) %!error lognpdf (i, 2, 2) %!error lognpdf (2, i, 2) %!error lognpdf (2, 2, i) statistics-release-1.6.3/inst/dist_fun/lognrnd.m000066400000000000000000000156141456127120000217470ustar00rootroot00000000000000## Copyright (C) 2012 Rik Wehbring ## Copyright (C) 1995-2016 Kurt Hornik ## Copyright (C) 2023 Andreas Bertsatos ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{r} =} lognrnd (@var{mu}, @var{sigma}) ## @deftypefnx {statistics} {@var{r} =} lognrnd (@var{mu}, @var{sigma}, @var{rows}) ## @deftypefnx {statistics} {@var{r} =} lognrnd (@var{mu}, @var{sigma}, @var{rows}, @var{cols}, @dots{}) ## @deftypefnx {statistics} {@var{r} =} lognrnd (@var{mu}, @var{sigma}, [@var{sz}]) ## ## Random arrays from the lognormal distribution. ## ## @code{@var{r} = lognrnd (@var{mu}, @var{sigma})} returns an array of random ## numbers chosen from the lognormal distribution with mean parameter @var{mu} ## and standard deviation parameter @var{sigma}, each corresponding to the ## associated normal distribution. The size of @var{r} is the common size of ## @var{mu}, and @var{sigma}. A scalar input functions as a constant matrix of ## the same size as the other inputs. Both parameters must be reals and ## @qcode{@var{sigma} > 0}. For @qcode{@var{sigma} <= 0}, @qcode{NaN} is ## returned. ## ## Both parameters must be reals and @qcode{@var{sigma} > 0}. ## For @qcode{@var{sigma} <= 0}, @qcode{NaN} is returned. ## ## When called with a single size argument, @code{lognrnd} returns a square ## matrix with the dimension specified. When called with more than one scalar ## argument, the first two arguments are taken as the number of rows and columns ## and any further arguments specify additional matrix dimensions. The size may ## also be specified with a row vector of dimensions, @var{sz}. ## ## Further information about the log-normal distribution can be found at ## @url{https://en.wikipedia.org/wiki/Log-normal_distribution} ## ## @seealso{logncdf, logninv, lognpdf, lognfit, lognlike, lognstat} ## @end deftypefn function r = lognrnd (mu, sigma, varargin) ## Check for valid number of input arguments if (nargin < 2) error ("lognrnd: function called with too few input arguments."); endif ## Check for common size of P, MU, and SIGMA if (! isscalar (mu) || ! isscalar (sigma)) [retval, mu, sigma] = common_size (mu, sigma); if (retval > 0) error ("lognrnd: MU and SIGMA must be of common size or scalars."); endif endif ## Check for X, MU, and SIGMA being reals if (iscomplex (mu) || iscomplex (sigma)) error ("lognrnd: MU and SIGMA must not be complex."); endif ## Parse and check SIZE arguments if (nargin == 2) sz = size (mu); elseif (nargin == 3) if (isscalar (varargin{1}) && varargin{1} >= 0 ... && varargin{1} == fix (varargin{1})) sz = [varargin{1}, varargin{1}]; elseif (isrow (varargin{1}) && all (varargin{1} >= 0) ... && all (varargin{1} == fix (varargin{1}))) sz = varargin{1}; elseif error (strcat (["lognrnd: SZ must be a scalar or a row vector"], ... [" of non-negative integers."])); endif elseif (nargin > 3) posint = cellfun (@(x) (! isscalar (x) || x < 0 || x != fix (x)), varargin); if (any (posint)) error ("lognrnd: dimensions must be non-negative integers."); endif sz = [varargin{:}]; endif ## Check that parameters match requested dimensions in size if (! isscalar (mu) && ! isequal (size (mu), sz)) error ("lognrnd: MU and SIGMA must be scalars or of size SZ."); endif ## Check for class type if (isa (mu, "single") || isa (sigma, "single")) cls = "single"; else cls = "double"; endif ## Generate random sample from lognormal distribution if (isscalar (mu) && isscalar (sigma)) if ((sigma > 0) && (sigma < Inf)) r = exp (mu + sigma * randn (sz, cls)); else r = NaN (sz, cls); endif else r = exp (mu + sigma .* randn (sz, cls)); k = (sigma < 0) | (sigma == Inf); r(k) = NaN; endif endfunction ## Test output %!assert (size (lognrnd (1, 1)), [1 1]) %!assert (size (lognrnd (1, ones (2,1))), [2, 1]) %!assert (size (lognrnd (1, ones (2,2))), [2, 2]) %!assert (size (lognrnd (ones (2,1), 1)), [2, 1]) %!assert (size (lognrnd (ones (2,2), 1)), [2, 2]) %!assert (size (lognrnd (1, 1, 3)), [3, 3]) %!assert (size (lognrnd (1, 1, [4, 1])), [4, 1]) %!assert (size (lognrnd (1, 1, 4, 1)), [4, 1]) %!assert (size (lognrnd (1, 1, 4, 1, 5)), [4, 1, 5]) %!assert (size (lognrnd (1, 1, 0, 1)), [0, 1]) %!assert (size (lognrnd (1, 1, 1, 0)), [1, 0]) %!assert (size (lognrnd (1, 1, 1, 2, 0, 5)), [1, 2, 0, 5]) ## Test class of input preserved %!assert (class (lognrnd (1, 1)), "double") %!assert (class (lognrnd (1, single (1))), "single") %!assert (class (lognrnd (1, single ([1, 1]))), "single") %!assert (class (lognrnd (single (1), 1)), "single") %!assert (class (lognrnd (single ([1, 1]), 1)), "single") ## Test input validation %!error lognrnd () %!error lognrnd (1) %!error ... %! lognrnd (ones (3), ones (2)) %!error ... %! lognrnd (ones (2), ones (3)) %!error lognrnd (i, 2, 3) %!error lognrnd (1, i, 3) %!error ... %! lognrnd (1, 2, -1) %!error ... %! lognrnd (1, 2, 1.2) %!error ... %! lognrnd (1, 2, ones (2)) %!error ... %! lognrnd (1, 2, [2 -1 2]) %!error ... %! lognrnd (1, 2, [2 0 2.5]) %!error ... %! lognrnd (1, 2, 2, -1, 5) %!error ... %! lognrnd (1, 2, 2, 1.5, 5) %!error ... %! lognrnd (2, ones (2), 3) %!error ... %! lognrnd (2, ones (2), [3, 2]) %!error ... %! lognrnd (2, ones (2), 3, 2) statistics-release-1.6.3/inst/dist_fun/mnpdf.m000066400000000000000000000076661456127120000214200ustar00rootroot00000000000000## Copyright (C) 2012 Arno Onken ## ## This program is free software: you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published by ## the Free Software Foundation, either version 3 of the License, or ## (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program. If not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{y} =} mnpdf (@var{x}, @var{pk}) ## ## Multinomial probability density function (PDF). ## ## @subheading Arguments ## ## @itemize @bullet ## @item ## @var{x} is vector with a single sample of a multinomial distribution with ## parameter @var{pk} or a matrix of random samples from multinomial ## distributions. In the latter case, each row of @var{x} is a sample from a ## multinomial distribution with the corresponding row of @var{pk} being its ## parameter. ## ## @item ## @var{pk} is a vector with the probabilities of the categories or a matrix ## with each row containing the probabilities of a multinomial sample. ## @end itemize ## ## @subheading Return values ## ## @itemize @bullet ## @item ## @var{y} is a vector of probabilites of the random samples @var{x} from the ## multinomial distribution with corresponding parameter @var{pk}. The parameter ## @var{n} of the multinomial distribution is the sum of the elements of each ## row of @var{x}. The length of @var{y} is the number of columns of @var{x}. ## If a row of @var{pk} does not sum to @code{1}, then the corresponding element ## of @var{y} will be @code{NaN}. ## @end itemize ## ## @subheading Examples ## ## @example ## @group ## x = [1, 4, 2]; ## pk = [0.2, 0.5, 0.3]; ## y = mnpdf (x, pk); ## @end group ## ## @group ## x = [1, 4, 2; 1, 0, 9]; ## pk = [0.2, 0.5, 0.3; 0.1, 0.1, 0.8]; ## y = mnpdf (x, pk); ## @end group ## @end example ## ## @subheading References ## ## @enumerate ## @item ## Wendy L. Martinez and Angel R. Martinez. @cite{Computational Statistics ## Handbook with MATLAB}. Appendix E, pages 547-557, Chapman & Hall/CRC, 2001. ## ## @item ## Merran Evans, Nicholas Hastings and Brian Peacock. @cite{Statistical ## Distributions}. pages 134-136, Wiley, New York, third edition, 2000. ## @end enumerate ## ## @seealso{mnrnd} ## @end deftypefn function y = mnpdf (x, pk) # Check arguments if (nargin != 2) print_usage (); endif if (! ismatrix (x) || any (x(:) < 0 | round (x(:) != x(:)))) error ("mnpdf: X must be a matrix of non-negative integer values."); endif if (! ismatrix (pk) || any (pk(:) < 0)) error ("mnpdf: PK must be a non-empty matrix with rows of probabilities."); endif # Adjust input sizes if (! isvector (x) || ! isvector (pk)) if (isvector (x)) x = x(:)'; endif if (isvector (pk)) pk = pk(:)'; endif if (size (x, 1) == 1 && size (pk, 1) > 1) x = repmat (x, size (pk, 1), 1); elseif (size (x, 1) > 1 && size (pk, 1) == 1) pk = repmat (pk, size (x, 1), 1); endif endif # Continue argument check if (any (size (x) != size (pk))) error ("mnpdf: X and PK must have compatible sizes."); endif # Count total number of elements of each multinomial sample n = sum (x, 2); # Compute probability density function of the multinomial distribution t = x .* log (pk); t(x == 0) = 0; y = exp (gammaln (n+1) - sum (gammaln (x+1), 2) + sum (t, 2)); # Set invalid rows to NaN k = (abs (sum (pk, 2) - 1) > 1e-6); y(k) = NaN; endfunction %!test %! x = [1, 4, 2]; %! pk = [0.2, 0.5, 0.3]; %! y = mnpdf (x, pk); %! assert (y, 0.11812, 0.001); %!test %! x = [1, 4, 2; 1, 0, 9]; %! pk = [0.2, 0.5, 0.3; 0.1, 0.1, 0.8]; %! y = mnpdf (x, pk); %! assert (y, [0.11812; 0.13422], 0.001); statistics-release-1.6.3/inst/dist_fun/mnrnd.m000066400000000000000000000134251456127120000214200ustar00rootroot00000000000000## Copyright (C) 2012 Arno Onken ## ## This program is free software: you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published by ## the Free Software Foundation, either version 3 of the License, or ## (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program. If not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{r} =} mnrnd (@var{n}, @var{pk}) ## @deftypefnx {statistics} {@var{r} =} mnrnd (@var{n}, @var{pk}, @var{s}) ## ## Random arrays from the multinomial distribution. ## ## @subheading Arguments ## ## @itemize @bullet ## @item ## @var{n} is the first parameter of the multinomial distribution. @var{n} can ## be scalar or a vector containing the number of trials of each multinomial ## sample. The elements of @var{n} must be non-negative integers. ## ## @item ## @var{pk} is the second parameter of the multinomial distribution. @var{pk} ## can be a vector with the probabilities of the categories or a matrix with ## each row containing the probabilities of a multinomial sample. If @var{pk} ## has more than one row and @var{n} is non-scalar, then the number of rows of ## @var{pk} must match the number of elements of @var{n}. ## ## @item ## @var{s} is the number of multinomial samples to be generated. @var{s} must ## be a non-negative integer. If @var{s} is specified, then @var{n} must be ## scalar and @var{pk} must be a vector. ## @end itemize ## ## @subheading Return values ## ## @itemize @bullet ## @item ## @var{r} is a matrix of random samples from the multinomial distribution with ## corresponding parameters @var{n} and @var{pk}. Each row corresponds to one ## multinomial sample. The number of columns, therefore, corresponds to the ## number of columns of @var{pk}. If @var{s} is not specified, then the number ## of rows of @var{r} is the maximum of the number of elements of @var{n} and ## the number of rows of @var{pk}. If a row of @var{pk} does not sum to ## @code{1}, then the corresponding row of @var{r} will contain only @code{NaN} ## values. ## @end itemize ## ## @subheading Examples ## ## @example ## @group ## n = 10; ## pk = [0.2, 0.5, 0.3]; ## r = mnrnd (n, pk); ## @end group ## ## @group ## n = 10 * ones (3, 1); ## pk = [0.2, 0.5, 0.3]; ## r = mnrnd (n, pk); ## @end group ## ## @group ## n = (1:2)'; ## pk = [0.2, 0.5, 0.3; 0.1, 0.1, 0.8]; ## r = mnrnd (n, pk); ## @end group ## @end example ## ## @subheading References ## ## @enumerate ## @item ## Wendy L. Martinez and Angel R. Martinez. @cite{Computational Statistics ## Handbook with MATLAB}. Appendix E, pages 547-557, Chapman & Hall/CRC, 2001. ## ## @item ## Merran Evans, Nicholas Hastings and Brian Peacock. @cite{Statistical ## Distributions}. pages 134-136, Wiley, New York, third edition, 2000. ## @end enumerate ## ## @seealso{mnpdf} ## @end deftypefn function r = mnrnd (n, pk, s) # Check arguments if (nargin == 3) if (! isscalar (n) || n < 0 || round (n) != n) error ("mnrnd: N must be a non-negative integer."); endif if (! isvector (pk) || any (pk < 0 | pk > 1)) error ("mnrnd: PK must be a vector of probabilities."); endif if (! isscalar (s) || s < 0 || round (s) != s) error ("mnrnd: S must be a non-negative integer."); endif elseif (nargin == 2) if (isvector (pk) && size (pk, 1) > 1) pk = pk'; endif if (! isvector (n) || any (n < 0 | round (n) != n) || size (n, 2) > 1) error ("mnrnd: N must be a non-negative integer column vector."); endif if (! ismatrix (pk) || isempty (pk) || any (pk < 0 | pk > 1)) error (strcat (["mnrnd: PK must be a non-empty matrix with"], ... [" rows of probabilities."])); endif if (! isscalar (n) && size (pk, 1) > 1 && length (n) != size (pk, 1)) error ("mnrnd: the length of N must match the number of rows of PK."); endif else print_usage (); endif # Adjust input sizes if (nargin == 3) n = n * ones (s, 1); pk = repmat (pk(:)', s, 1); elseif (nargin == 2) if (isscalar (n) && size (pk, 1) > 1) n = n * ones (size (pk, 1), 1); elseif (size (pk, 1) == 1) pk = repmat (pk, length (n), 1); endif endif sz = size (pk); # Upper bounds of categories ub = cumsum (pk, 2); # Make sure that the greatest upper bound is 1 gub = ub(:, end); ub(:, end) = 1; # Lower bounds of categories lb = [zeros(sz(1), 1) ub(:, 1:(end-1))]; # Draw multinomial samples r = zeros (sz); for i = 1:sz(1) # Draw uniform random numbers r_tmp = repmat (rand (n(i), 1), 1, sz(2)); # Compare the random numbers of r_tmp to the cumulated probabilities of pk # and count the number of samples for each category r(i, :) = sum (r_tmp <= repmat (ub(i, :), n(i), 1) & ... r_tmp > repmat (lb(i, :), n(i), 1), 1); endfor # Set invalid rows to NaN k = (abs (gub - 1) > 1e-6); r(k, :) = NaN; endfunction %!test %! n = 10; %! pk = [0.2, 0.5, 0.3]; %! r = mnrnd (n, pk); %! assert (size (r), size (pk)); %! assert (all (r >= 0)); %! assert (all (round (r) == r)); %! assert (sum (r) == n); %!test %! n = 10 * ones (3, 1); %! pk = [0.2, 0.5, 0.3]; %! r = mnrnd (n, pk); %! assert (size (r), [length(n), length(pk)]); %! assert (all (r >= 0)); %! assert (all (round (r) == r)); %! assert (all (sum (r, 2) == n)); %!test %! n = (1:2)'; %! pk = [0.2, 0.5, 0.3; 0.1, 0.1, 0.8]; %! r = mnrnd (n, pk); %! assert (size (r), size (pk)); %! assert (all (r >= 0)); %! assert (all (round (r) == r)); %! assert (all (sum (r, 2) == n)); statistics-release-1.6.3/inst/dist_fun/mvncdf.m000066400000000000000000000403641456127120000215610ustar00rootroot00000000000000## Copyright (C) 2008 Arno Onken ## Copyright (C) 2022-2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{p} =} mvncdf (@var{x}) ## @deftypefnx {statistics} {@var{p} =} mvncdf (@var{x}, @var{mu}, @var{sigma}) ## @deftypefnx {statistics} {@var{p} =} mvncdf (@var{x_lo}, @var{x_up}, @var{mu}, @var{sigma}) ## @deftypefnx {statistics} {@var{p} =} mvncdf (@dots{}, @var{options}) ## @deftypefnx {statistics} {[@var{p}, @var{err}] =} mvncdf (@dots{}) ## ## Multivariate normal cumulative distribution function (CDF). ## ## @code{@var{p} = mvncdf (@var{x})} returns the cumulative probability of the ## multivariate normal distribution evaluated at each row of @var{x} with zero ## mean and an identity covariance matrix. The rows of matrix @var{x} ## correspond to observations and its columns to variables. The return argument ## @var{p} is a column vector with the same number of rows as in @var{x}. ## ## @code{@var{p} = mvncdf (@var{x}, @var{mu}, @var{sigma})} returns cumulative ## probability of the multivariate normal distribution evaluated at each row of ## @var{x} with mean @var{mu} and a covariance matrix @var{sigma}. @var{mu} can ## be either a scalar (the same of every variable) or a row vector with the same ## number of elements as the number of variables in @var{x}. @var{sigma} ## covariance matrix may be specified a row vector if it only contains variances ## along its diagonal and zero covariances of the diagonal. In such a case, the ## diagonal vector @var{sigma} must have the same number of elements as the ## number of variables (columns) in @var{x}. If you only want to specify sigma, ## you can pass an empty matrix for @var{mu}. ## ## The multivariate normal cumulative probability at @var{x} is defined as the ## probability that a random vector @math{V}, distributed as multivariate ## normal, will fall within the semi-infinite rectangle with upper limits ## defined by @var{x}. ## @itemize ## @item @math{Pr@{V(1)<=X(1), V(2)<=X(2), ... V(D)<=X(D)@}}. ## @end itemize ## ## @code{@var{p} = mvncdf (@var{x_lo}, @var{x_hi}, @var{mu}, @var{sigma})} ## returns the multivariate normal cumulative probability evaluated over the ## rectangle (hyper-rectangle for multivariate data in @var{x}) with lower and ## upper limits defined by @var{x_lo} and @var{x_hi}, respectively. ## ## @code{[@var{p}, @var{err}] = mvncdf (@dots{})} also returns an error estimate ## @var{err} in @var{p}. ## ## @code{@var{p} = mvncdf (@dots{}, @var{options})} specifies the structure, ## which controls specific parameters for the numerical integration used to ## compute @var{p}. The required fieds are: ## ## @multitable @columnfractions 0.2 0.05 0.75 ## @item @qcode{"TolFun"} @tab @tab Maximum absolute error tolerance. Default ## is 1e-8 for D < 4, or 1e-4 for D >= 4. Note that for bivariate normal cdf, ## the Octave implementation has a presicion of more than 1e-10. ## ## @item @qcode{"MaxFunEvals"} @tab @tab Maximum number of integrand ## evaluations. Default is 1e7 for D > 4. ## ## @item @qcode{"Display"} @tab @tab Display options. Choices are @qcode{"off"} ## (default), @qcode{"iter"}, which shows the probability and estimated error at ## each repetition, and @qcode{"final"}, which shows the final probability and ## related error after the integrand has converged successfully. ## @end multitable ## ## @seealso{bvncdf, mvnpdf, mvnrnd} ## @end deftypefn function [p, err] = mvncdf (varargin) ## Check for valid number on input and output arguments narginchk (1,5); ## Check for 'options' structure and parse parameters or add defaults if (isstruct (varargin{end})) if (isfield (varargin{end}, "TolFun")) TolFun = varargin{end}.TolFun; else error ("mvncdf: options structure missing 'TolFun' field."); endif if (isempty (TolFun) && size (varargin{1}, 2) < 4) TolFun = 1e-8; elseif (isempty (TolFun) && size (varargin{1}, 2) < 26) TolFun = 1e-4; endif if (isfield (varargin{end}, "MaxFunEvals")) MaxFunEvals = varargin{end}.MaxFunEvals; else error ("mvncdf: options structure missing 'MaxFunEvals' field."); endif if (isempty (MaxFunEvals)) MaxFunEvals = 1e7; endif if (isfield (varargin{end}, "Display")) Display = varargin{end}.Display; else error ("mvncdf: options structure missing 'Display' field."); endif DispOptions = {"off", "final", "iter"}; if (sum (any (strcmpi (Display, DispOptions))) == 0) error ("mvncdf: 'Display' field in 'options' has invalid value."); endif rem_nargin = nargin - 1; else if (size (varargin{1}, 2) < 4) TolFun = 1e-8; elseif (size (varargin{1}, 2) < 26) TolFun = 1e-4; endif MaxFunEvals = 1e7; Display = "off"; rem_nargin = nargin; endif ## Check for X of X_lo and X_up if (rem_nargin < 4) # MVNCDF(X_UP,MU,SIGMA) x_up_Only = true; x_up = varargin{1}; ## Check for x being a matrix if (! ismatrix (x_up)) error ("mvncdf: X must be a matrix."); endif ## Create x_lo according to data type of x_lo x_lo = - Inf (size (x_up)); if isa (x_up, "single") x_lo = single (x_lo); endif ## Check for mu and sigma arguments if (rem_nargin > 1) mu = varargin{2}; else mu = []; endif if (rem_nargin > 2) sigma = varargin{3}; else sigma = []; endif else # MVNCDF(X_LO,X_UP,MU,SIGMA) x_up_Only = false; x_lo = varargin{1}; x_up = varargin{2}; mu = varargin{3}; sigma = varargin{4}; ## Check for x_lo and x_up being matrices of the same size ## and that they define increasing limits if (! ismatrix (x_lo) || ! ismatrix (x_up)) error ("mvncdf: X_LO and X_UP must be matrices."); endif if (size (x_lo) != size (x_up)) error ("mvncdf: X_LO and X_UP must have the same size."); endif if (any (any (x_lo > x_up))) error ("mvncdf: X_LO and X_UP must define increasing limits."); endif endif ## Check if data is single or double class is_type = "double"; if (isa (x_lo, "single")) is_type = "single"; endif ## Get size of data [n_x, d_x] = size (x_lo); ## Center data according to mu if (isempty (mu)) # already centered XLo0 = x_lo; XUp0 = x_up; elseif (isscalar (mu)) # mu is a scalar XLo0 = x_lo - mu; XUp0 = x_up - mu; elseif (isvector (mu)) # mu is a vector ## Get size of mu vector [n_mu, d_mu] = size (mu); if (d_mu != d_x) error ("mvncdf: wrong size of MU vector."); endif if (n_mu == 1 || n_mu == n_x) XLo0 = x_lo - mu; XUp0 = x_up - mu; else error ("mvncdf: wrong size of MU vector."); endif else error ("mvncdf: MU must be either empty, a scalar, or a vector."); endif ## Check how sigma was parsed if (isempty (sigma)) # already standardized ## If x_lo and x_up are column vectors, transpose them to row vectors if (d_x == 1) XLo0 = XLo0'; XUp0 = XUp0'; [n_x, d_x] = size (XUp0); endif sigmaIsDiag = true; sigma = ones (1, d_x); else ## Check if sigma parsed as diagonal vector if (size (sigma, 1) == 1 && size (sigma, 2) > 1) sigmaIsDiag = true; else sigmaIsDiag = false; endif ## If x_lo and x_up are column vectors, transpose them to row vectors if (d_x == 1) if (isequal (size (sigma), [1, n_x])) XLo0 = XLo0'; XUp0 = XUp0'; [n_x, d_x] = size (XUp0); elseif (! isscalar (mu)) error ("mvncdf: MU must be a scalar if SIGMA is a vector."); endif endif ## Check for sigma being a valid covariance matrix if (! sigmaIsDiag && (size (sigma, 1) != size (sigma, 2))) error ("mvncdf: covariance matrix SIGMA is not square."); elseif (! sigmaIsDiag && (! all (size (sigma) == [d_x, d_x]))) error (strcat (["mvncdf: covariance matrix SIGMA does"], ... [" not match dimensions in data."])); else ## If sigma is a covariance matrix check that it is positive semi-definite if (! sigmaIsDiag) [~, err] = chol (sigma); if (err != 0) error (strcat (["mvncdf: covariance matrix SIGMA must be"], ... [" positive semi-definite."])); endif else if (any (sigma) <= 0) error ("mvncdf: invalid SIGMA diagonal vector."); endif endif endif endif ## Standardize sigma and x data if (sigmaIsDiag) XLo0 = XLo0 ./ sqrt (sigma); XUp0 = XUp0 ./ sqrt (sigma); else s = sqrt (diag (sigma))'; XLo0 = XLo0 ./ s; XUp0 = XUp0 ./ s; Rho = sigma ./ (s * s'); endif ## Compute the cdf from standardized values. if (d_x == 1) p = normcdf (XUp0, 0, 1) - normcdf (XLo0, 0, 1); if (nargout > 1) err = NaN (size (p), is_type); endif elseif (sigmaIsDiag) p = prod (normcdf (XUp0, 0, 1) - normcdf (XLo0, 0, 1), 2); if (nargout > 1) err = NaN (size (p), is_type); endif elseif (d_x < 4) if (x_up_Only) # upper limit only if (d_x == 2) p = bvncdf (x_up, mu, sigma); else p = tvncdf (XUp0, Rho([2 3 6]), TolFun); endif else # lower and upper limits present ## Compute the probability over the rectangle as sums and differences ## of integrals over semi-infinite half-rectangles. For degenerate ## rectangles, force an exact zero by making each piece exactly zero. equalLimits = (XUp0 == XLo0); XUp0(equalLimits) = -Inf; XLo0(equalLimits) = -Inf; ## For bvncdf x_up(equalLimits) = -Inf; x_lo(equalLimits) = -Inf; p = zeros(n_x, 1, is_type); for i = 0:d_x k = nchoosek (1:d_x, i); for j = 1:size (k, 1) X = XUp0; X(:,k(j,:)) = XLo0(:,k(j,:)); if d_x == 2 x = x_up; x(:,k(j,:)) = x_lo(:,k(j,:)); p = p + (-1) ^ i * bvncdf (x, mu, sigma); else p = p + (-1) ^ i * tvncdf (X, Rho([2 3 6]), TolFun / 8); endif endfor endfor endif if (nargout > 1) err = repmat (cast (TolFun, is_type), size (p)); endif elseif (d_x < 26) p = zeros (n_x, 1, is_type); err = zeros (n_x, 1, is_type); for i = 1:n_x [p(i), err(i)] = mvtcdfqmc (XLo0(i,:), XUp0(i,:), Rho, Inf, ... TolFun, MaxFunEvals, Display); endfor else error ("mvncdf: too many dimensions in data (limit = 25 columns)."); endif ## Bound p in range [0, 1] p(p < 0) = 0; p(p > 1) = 1; endfunction ## function for computing a trivariate normal cdf function p = tvncdf (x, rho, tol) ## Get size of data n = size(x,1); ## Check if data is single or double class is_type = "double"; if (isa (x, "single") || isa (rho, "single")) is_type = "single"; endif ## Find a permutation that makes rho_32 == max(rho) [dum,imax] = max(abs(rho)); %#ok if imax == 1 % swap 1 and 3 rho_21 = rho(3); rho_31 = rho(2); rho_32 = rho(1); x = x(:,[3 2 1]); elseif imax == 2 % swap 1 and 2 rho_21 = rho(1); rho_31 = rho(3); rho_32 = rho(2); x = x(:,[2 1 3]); else % imax == 3 rho_21 = rho(1); rho_31 = rho(2); rho_32 = rho(3); end phi = 0.5 * erfc (- x(:,1) / sqrt (2)); p1 = phi .* bvncdf (x(:,2:3), [], rho_32); if abs(rho_21) > 0 loLimit = 0; hiLimit = asin(rho_21); rho_j1 = rho_21; rho_k1 = rho_31; p2 = zeros (size (p1), is_type); for i = 1:n b1 = x(i,1); bj = x(i,2); bk = x(i,3); if isfinite(b1) && isfinite(bj) && ~isnan(bk) p2(i) = quadgk(@tvnIntegrand,loLimit,hiLimit,'AbsTol',tol/3,'RelTol',0); endif endfor else p2 = zeros (size (p1), is_type); endif if abs(rho_31) > 0 loLimit = 0; hiLimit = asin(rho_31); rho_j1 = rho_31; rho_k1 = rho_21; p3 = zeros (size (p1), is_type); for i = 1:n b1 = x(i,1); bj = x(i,3); bk = x(i,2); if isfinite(b1) && isfinite(bj) && ~isnan(bk) p3(i) = quadgk(@tvnIntegrand,loLimit,hiLimit,'AbsTol',tol/3,'RelTol',0); endif endfor else p3 = zeros (size (p1), is_type); endif p = cast (p1 + (p2 + p3) ./ (2 .* pi), is_type); function integrand = tvnIntegrand(theta) # Integrand is exp( -(b1.^2 + bj.^2 - 2*b1*bj*sin(theta))/(2*cos(theta).^2)) sintheta = sin (theta); cossqtheta = cos (theta) .^ 2; expon = ((b1 * sintheta - bj) .^ 2 ./ cossqtheta + b1 .^ 2) / 2; sinphi = sintheta .* rho_k1 ./ rho_j1; numeru = bk .* cossqtheta - b1 .* (sinphi - rho_32 .* sintheta) ... - bj .* (rho_32 - sintheta .* sinphi); denomu = sqrt (cossqtheta .* (cossqtheta - sinphi .* sinphi ... - rho_32 .* (rho_32 - 2 .* sintheta .* sinphi))); phi = 0.5 * erfc (- (numeru ./ denomu) / sqrt (2)); integrand = exp (- expon) .* phi; endfunction endfunction %!demo %! mu = [1, -1]; %! Sigma = [0.9, 0.4; 0.4, 0.3]; %! [X1, X2] = meshgrid (linspace (-1, 3, 25)', linspace (-3, 1, 25)'); %! X = [X1(:), X2(:)]; %! p = mvncdf (X, mu, Sigma); %! Z = reshape (p, 25, 25); %! surf (X1, X2, Z); %! title ("Bivariate Normal Distribution"); %! ylabel "X1" %! xlabel "X2" %!demo %! mu = [0, 0]; %! Sigma = [0.25, 0.3; 0.3, 1]; %! p = mvncdf ([0 0], [1 1], mu, Sigma); %! x1 = -3:.2:3; %! x2 = -3:.2:3; %! [X1, X2] = meshgrid (x1, x2); %! X = [X1(:), X2(:)]; %! p = mvnpdf (X, mu, Sigma); %! p = reshape (p, length (x2), length (x1)); %! contour (x1, x2, p, [0.0001, 0.001, 0.01, 0.05, 0.15, 0.25, 0.35]); %! xlabel ("x"); %! ylabel ("p"); %! title ("Probability over Rectangular Region"); %! line ([0, 0, 1, 1, 0], [1, 0, 0, 1, 1], "Linestyle", "--", "Color", "k"); %!test %! fD = (-2:2)'; %! X = repmat (fD, 1, 4); %! p = mvncdf (X); %! assert (p, [0; 0.0006; 0.0625; 0.5011; 0.9121], ones (5, 1) * 1e-4); %!test %! mu = [1, -1]; %! Sigma = [0.9, 0.4; 0.4, 0.3]; %! [X1,X2] = meshgrid (linspace (-1, 3, 25)', linspace (-3, 1, 25)'); %! X = [X1(:), X2(:)]; %! p = mvncdf (X, mu, Sigma); %! p_out = [0.00011878988774500, 0.00034404112322371, ... %! 0.00087682502191813, 0.00195221905058185, ... %! 0.00378235566873474, 0.00638175749734415, ... %! 0.00943764224329656, 0.01239164888125426, ... %! 0.01472750274376648, 0.01623228313374828]'; %! assert (p([1:10]), p_out, 1e-16); %!test %! mu = [1, -1]; %! Sigma = [0.9, 0.4; 0.4, 0.3]; %! [X1,X2] = meshgrid (linspace (-1, 3, 25)', linspace (-3, 1, 25)'); %! X = [X1(:), X2(:)]; %! p = mvncdf (X, mu, Sigma); %! p_out = [0.8180695783608276, 0.8854485749482751, ... %! 0.9308108777385832, 0.9579855743025508, ... %! 0.9722897881414742, 0.9788150170059926, ... %! 0.9813597788804785, 0.9821977956568989, ... %! 0.9824283794464095, 0.9824809345614861]'; %! assert (p([616:625]), p_out, 2e-16); %!test %! mu = [0, 0]; %! Sigma = [0.25, 0.3; 0.3, 1]; %! [p, err] = mvncdf ([0 0], [1 1], mu, Sigma); %! assert (p, 0.2097424404755626, 1e-16); %! assert (err, 1e-08); %!test %! x = [1 2]; %! mu = [0.5 1.5]; %! sigma = [1.0 0.5; 0.5 1.0]; %! p = mvncdf (x, mu, sigma); %! assert (p, 0.546244443857090, 1e-15); %!test %! x = [1 2]; %! mu = [0.5 1.5]; %! sigma = [1.0 0.5; 0.5 1.0]; %! a = [-inf 0]; %! p = mvncdf (a, x, mu, sigma); %! assert (p, 0.482672935215631, 1e-15); %!error p = mvncdf (randn (25,26), [], eye (26)); %!error p = mvncdf (randn (25,8), [], eye (9)); %!error p = mvncdf (randn (25,4), randn (25,5), [], eye (4)); %!error p = mvncdf (randn (25,4), randn (25,4), [2, 3; 2, 3], eye (4)); %!error p = mvncdf (randn (25,4), randn (25,4), ones (1, 5), eye (4)); %!error p = mvncdf ([-inf 0], [1, 2], [0.5 1.5], [1.0 0.5; 0.5 1.0], option); statistics-release-1.6.3/inst/dist_fun/mvnpdf.m000066400000000000000000000177321456127120000216010ustar00rootroot00000000000000## Copyright (C) 2022-2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{y} =} mvnpdf (@var{x}, @var{mu}, @var{sigma}) ## ## Multivariate normal probability density function (PDF). ## ## @code{@var{y} = mvnpdf (@var{x})} returns the probability density of the ## multivariate normal distribution with zero mean and identity covariance ## matrix, evaluated at each row of @var{x}. Rows of the N-by-D matrix @var{x} ## correspond to observations orpoints, and columns correspond to variables or ## coordinates. @var{y} is an N-by-1 vector. ## ## @code{@var{y} = mvnpdf (@var{x}, @var{mu})} returns the density of the ## multivariate normal distribution with mean MU and identity covariance matrix, ## evaluated at each row of @var{x}. @var{mu} is a 1-by-D vector, or an N-by-D ## matrix, in which case the density is evaluated for each row of @var{x} with ## the corresponding row of @var{mu}. @var{mu} can also be a scalar value, ## which MVNPDF replicates to match the size of @var{x}. ## ## @code{@var{y} = mvnpdf (@var{x}, @var{mu}, @var{sigma})} returns the density ## of the multivariate normal distribution with mean @var{mu} and covariance ## @var{sigma}, evaluated at each row of @var{x}. @var{sigma} is a D-by-D ## matrix, or an D-by-D-by-N array, in which case the density is evaluated for ## each row of @var{x} with the corresponding page of @var{sigma}, i.e., ## @code{mvnpdf} computes @var{y(i)} using @var{x(i,:)} and @var{sigma(:,:,i)}. ## If the covariance matrix is diagonal, containing variances along the diagonal ## and zero covariances off the diagonal, @var{sigma} may also be specified as a ## 1-by-D matrix or a 1-by-D-by-N array, containing just the diagonal. Pass in ## the empty matrix for @var{mu} to use its default value when you want to only ## specify @var{sigma}. ## ## If @var{x} is a 1-by-D vector, @code{mvnpdf} replicates it to match the ## leading dimension of @var{mu} or the trailing dimension of @var{sigma}. ## ## @seealso{mvncdf, mvnrnd} ## @end deftypefn function y = mvnpdf (x, mu, sigma) ## Check for valid number of input arguments if (nargin < 1) error ("mvnpdf: too few input arguments."); endif if (nargin < 3) sigma = []; endif ## Check for valid size of data [row, col] = size (x); if (col < 1) error ("mvnpdf: too few dimensions in X."); elseif (ndims (x) != 2) error ("mvnpdf: wrong dimensions in X."); endif ## Check for second input argument or assume zero mean if (nargin < 2 || isempty (mu)) xc = x; # already centered elseif (numel (mu) == 1) xc = x - mu; # mu is a scalar elseif (ndims (mu) == 2) [rm, cm] = size (mu); # mu is a vector if (cm != col) error ("mvnpdf: columns in X and MU mismatch."); elseif (rm == row) xc = x - mu; elseif (rm == 1 || row == 1) xc = bsxfun (@minus, x, mu); else error ("mvnpdf: rows in X and MU mismatch."); endif else error ("mvnpdf: wrong size of MU."); endif [row, col] = size (xc); ## Check for third input argument or assume identity covariance if (nargin < 2 || isempty (sigma)) ## already standardized if (col == 1 && row > 1) xRinv = xc'; # make row vector col == row; else xRinv = xc; col == row; endif lnSDS = 0; elseif (ndims (sigma) == 2) ## Single covariance matrix [rs, cs] = size (sigma); if (rs == 1 && cs > 1) rs = cs; # sigma passed as a diagonal is_diag = true; else is_diag = false; endif if (col == 1 && row > 1 && rs == row) xc = xc'; # make row vector col = row; endif ## Check sigma for correct size if (rs != cs) error ("mvnpdf: bad covariance matrix."); elseif (rs != col) error ("mvnpdf: covariance matrix mismatch."); else if (is_diag) ## Check sigma for invalid values if (any (sigma <= 0)) error ("mvnpdf: sigma diagonal contains negative or zero values."); endif R = sqrt (sigma); xRinv = bsxfun (@rdivide, xc, R); lnSDS = sum (log (R)); else ## Check for valid covariance matrix [R, err] = cholcov (sigma, 0); if (err != 0) error ("mvnpdf: invalid covariance matrix."); endif xRinv = xc / R; lnSDS = sum (log (diag (R))); endif endif elseif (ndims (sigma) == 3) ## Multiple covariance matrices sd = size (sigma); if (sd(1) == 1 && sd(2) > 1) sd(1) = sd(2); # sigma passed as a diagonal sigma = reshape (sigma, sd(2), sd(3))'; is_diag = true; else is_diag = false; endif if (col == 1 && row > 1 && sd(1) == row) xc = xc'; # make row vector [row, col] = size (xc); endif ## If X and MU are row vectors, match them with covariance if (row == 1) row = sd(3); xc = repmat (xc, row, 1); endif ## Check sigma for correct size if (sd(1) != sd(2)) error ("mvnpdf: bad multiple covariance matrix."); elseif (sd(1) != col || sd(2) != col) error ("mvnpdf: multiple covariance matrix mismatch."); elseif (sd(3) != row) error ("mvnpdf: multiple covariance pages mismatch."); else if (is_diag) ## Check sigma for invalid values if (any (any (sigma <= 0))) error ("mvnpdf: sigma diagonals contain negative or zero values."); endif R = sqrt (sigma); xRinv = xc ./ R; lnSDS = sum (log (R), 2); else ## Create arrays according to class type if (isa (x, "single") || isa (mu, "single") || isa (sigma, "single")) xRinv = zeros (row, col," single"); lnSDS = zeros (row, 1, "single"); else xRinv = zeros (row, col); lnSDS = zeros (row, 1); endif for i = 1:row ## Check for valid covariance matrices [R, err] = cholcov (sigma (:,:,i), 0); if (err != 0) error ("mvnpdf:invalid multiple covariance matrix."); endif xRinv(i,:) = xc(i,:) / R; lnSDS(i) = sum(log(diag(R))); endfor endif endif else error ("mvnpdf: wrong dimensions in covariance matrix."); endif ## Compute the PDF y = exp (-0.5 * sum (xRinv .^ 2, 2) - lnSDS - col * log (2 * pi) / 2); endfunction %!demo %! mu = [1, -1]; %! sigma = [0.9, 0.4; 0.4, 0.3]; %! [X1, X2] = meshgrid (linspace (-1, 3, 25)', linspace (-3, 1, 25)'); %! x = [X1(:), X2(:)]; %! p = mvnpdf (x, mu, sigma); %! surf (X1, X2, reshape (p, 25, 25)); ## Input validation tests %!error y = mvnpdf (); %!error y = mvnpdf ([]); %!error y = mvnpdf (ones (3,3,3)); %!error ... %! y = mvnpdf (ones (10, 2), [4, 2, 3]); %!error ... %! y = mvnpdf (ones (10, 2), [4, 2; 3, 2]); %!error ... %! y = mvnpdf (ones (10, 2), ones (3, 3, 3)); ## Output validation tests %!shared x, mu, sigma %! x = [1, 2, 5, 4, 6]; %! mu = [2, 0, -1, 1, 4]; %! sigma = [2, 2, 2, 2, 2]; %!assert (mvnpdf (x), 1.579343404440977e-20, 1e-30); %!assert (mvnpdf (x, mu), 1.899325144348102e-14, 1e-25); %!assert (mvnpdf (x, mu, sigma), 2.449062307156273e-09, 1e-20); statistics-release-1.6.3/inst/dist_fun/mvnrnd.m000066400000000000000000000163041456127120000216050ustar00rootroot00000000000000## Copyright (C) 2022-2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{r} =} mvnrnd (@var{mu}, @var{sigma}) ## @deftypefnx {statistics} {@var{r} =} mvnrnd (@var{mu}, @var{sigma}, @var{n}) ## @deftypefnx {statistics} {@var{r} =} mvnrnd (@var{mu}, @var{sigma}, @var{n}, @var{T}) ## @deftypefnx {statistics} {[@var{r}, @var{T}] =} mvnrnd (@dots{}) ## ## Random vectors from the multivariate normal distribution. ## ## @code{@var{r} = mvnrnd (@var{mu}, @var{sigma})} returns an N-by-D matrix ## @var{r} of random vectors chosen from the multivariate normal distribution ## with mean vector @var{mu} and covariance matrix @var{sigma}. @var{mu} is an ## N-by-D matrix, and @code{mvnrnd} generates each N of @var{r} using the ## corresponding N of @var{mu}. @var{sigma} is a D-by-D symmetric positive ## semi-definite matrix, or a D-by-D-by-N array. If @var{sigma} is an array, ## @code{mvnrnd} generates each N of @var{r} using the corresponding page of ## @var{sigma}, i.e., @code{mvnrnd} computes @var{r(i,:)} using @var{mu(i,:)} ## and @var{sigma(:,:,i)}. If the covariance matrix is diagonal, containing ## variances along the diagonal and zero covariances off the diagonal, ## @var{sigma} may also be specified as a 1-by-D matrix or a 1-by-D-by-N array, ## containing just the diagonal. If @var{mu} is a 1-by-D vector, @code{mvnrnd} ## replicates it to match the trailing dimension of SIGMA. ## ## @code{@var{r} = mvnrnd (@var{mu}, @var{sigma}, @var{n})} returns a N-by-D ## matrix R of random vectors chosen from the multivariate normal distribution ## with 1-by-D mean vector @var{mu}, and D-by-D covariance matrix @var{sigma}. ## ## @code{@var{r} = mvnrnd (@var{mu}, @var{sigma}, @var{n}, @var{T})} supplies ## the Cholesky factor @var{T} of @var{sigma}, so that @var{sigma(:,:,J)} == ## @var{T(:,:,J)}'*@var{T(:,:,J)} if @var{sigma} is a 3D array or @var{sigma} == ## @var{T}'*@var{T} if @var{sigma} is a matrix. No error checking is done on ## @var{T}. ## ## @code{[@var{r}, @var{T}] = mvnrnd (@dots{})} returns the Cholesky factor ## @var{T}, so it can be re-used to make later calls more efficient, although ## there are greater efficiency gains when SIGMA can be specified as a diagonal ## instead. ## ## @seealso{mvncdf, mvnpdf} ## @end deftypefn function [r, T] = mvnrnd (mu, sigma, N, T) ## Check input arguments if (nargin < 2 || isempty (mu) || isempty (sigma)) error ("mvnrnd: too few input arguments."); elseif (ndims (mu) > 2) error ("mvnrnd: wrong size of MU."); elseif (ndims (sigma) > 3) error ("mvnrnd: wrong size of SIGMA."); endif ## Get data type if (isa (mu, "single") || isa (sigma, "single")) is_class = "single"; else is_class = "double"; endif ## Check whether sigma is passed as a diagonal or a matrix sd = size (sigma); if (sd(1) == 1 && sd(2) > 1) sd(1) = sd(2); is_diag = true; else is_diag = false; endif ## Get size of mean vector [rm, cm] = size (mu); ## Make sure MU is a row vector if (cm == 1 && rm == sd(1)) mu = mu'; [rm, cm] = size (mu); endif ## Check for valid N input argument if (nargin < 3 || isempty (N)) N_empty = true; else N_empty = false; ## If MU is a row vector, rep it out to match N if (rm == 1) rm = N; mu = repmat (mu, rm, 1); elseif (rm != N) error ("mvnrnd: size mismatch of N and MU."); endif endif ## For single covariance matrix if (ndims (sigma) == 2) ## Check sigma for correct size if (sd(1) != sd(2)) error ("mvnpdf: bad covariance matrix."); elseif (! sd(1) == cm) error ("mvnpdf: covariance matrix mismatch."); endif ## Check for Cholesky factor T if (nargin > 3) r = randn (rm, size (T, 1), is_class) * T + mu; elseif (is_diag) ## Check sigma for invalid values if (any (sigma <= 0)) error ("mvnpdf: SIGMA diagonal contains negative or zero values."); endif t = sqrt (sigma); if (nargout > 1) T = diag (t); endif r = bsxfun (@times, randn (rm, cm, is_class), t) + mu; else ## Compute a Cholesky factorization [T, err] = cholcov (sigma); if (err != 0) error ("mvnrnd: covariance matrix is not positive definite."); endif r = randn (rm, size (T, 1), is_class) * T + mu; endif endif ## For multiple covariance matrices if (ndims (sigma) == 3) ## If MU is a row vector, rep it out to match sigma if (rm == 1 && N_empty) rm = sd(3); mu = repmat (mu, rm, 1); endif ## Check sigma for correct size if (sd(1) != sd(2)) error ("mvnpdf: bad multiple covariance matrix."); elseif (sd(1) != cm) error ("mvnpdf: multiple covariance matrix mismatch."); elseif (sd(3) != rm) error ("mvnpdf: multiple covariance pages mismatch."); endif ## Check for Cholesky factor T if (nargin < 4) # T not present if (nargout > 1) T = zeros (sd, is_class); endif if (is_diag) sigma = reshape(sigma,sd(2),sd(3))'; ## Check sigma for invalid values if (any (sigma(:) <= 0)) error ("mvnpdf: SIGMA diagonals contain negative or zero values."); endif R = sqrt(sigma); r = bsxfun (@times, randn (rm, cm, is_class), R) + mu; if (nargout > 1) for i = 1:rm T(:,:,i) = diag (R(i,:)); endfor endif else r = zeros (rm, cm, is_class); for i = 1:rm [R, err] = cholcov (sigma(:,:,i)); if (err != 0) error (strcat (["mvnrnd: multiple covariance matrix"], ... [" is not positive definite."])); endif Rrows = size (R,1); r(i,:) = randn (1, Rrows, is_class) * R + mu(i,:); if (nargout > 1) T(1:Rrows,:,i) = R; endif endfor endif else # T present r = zeros (rm, cm, is_class); for i = 1:rm r(i,:) = randn (1, cm, is_class) * T(:,:,i) + mu(i,:); endfor endif endif endfunction ## Test input validation %!error mvnrnd () %!error mvnrnd ([2, 3, 4]) %!error mvnrnd (ones (2, 2, 2), ones (1, 2, 3, 4)) %!error mvnrnd (ones (1, 3), ones (1, 2, 3, 4)) ## Output validation tests %!assert (size (mvnrnd ([2, 3, 4], [2, 2, 2])), [1, 3]) %!assert (size (mvnrnd ([2, 3, 4], [2, 2, 2], 10)), [10, 3]) statistics-release-1.6.3/inst/dist_fun/mvtcdf.m000066400000000000000000000344111456127120000215630ustar00rootroot00000000000000## Copyright (C) 2008 Arno Onken ## Copyright (C) 2022-2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{p} =} mvtcdf (@var{x}, @var{rho}, @var{df}) ## @deftypefnx {statistics} {@var{p} =} mvncdf (@var{x_lo}, @var{x_up}, @var{rho}, @var{df}) ## @deftypefnx {statistics} {@var{p} =} mvncdf (@dots{}, @var{options}) ## @deftypefnx {statistics} {[@var{p}, @var{err}] =} mvncdf (@dots{}) ## ## Multivariate Student's t cumulative distribution function (CDF). ## ## @code{@var{p} = mvtcdf (@var{x}, @var{rho}, @var{df})} returns the cumulative ## probability of the multivariate student's t distribution with correlation ## parameters @var{rho} and degrees of freedom @var{df}, evaluated at each row ## of @var{x}. The rows of the @math{NxD} matrix @var{x} correspond to sample ## observations and its columns correspond to variables or coordinates. The ## return argument @var{p} is a column vector with the same number of rows as in ## @var{x}. ## ## @var{rho} is a symmetric, positive definite, @math{DxD} correlation matrix. ## @var{dF} is a scalar or a vector with @math{N} elements. ## ## Note: @code{mvtcdf} computes the CDF for the standard multivariate Student's ## t distribution, centered at the origin, with no scale parameters. If ## @var{rho} is a covariance matrix, i.e. @code{diag(@var{rho})} is not all ## ones, @code{mvtcdf} rescales @var{rho} to transform it to a correlation ## matrix. @code{mvtcdf} does not rescale @var{x}, though. ## ## The multivariate Student's t cumulative probability at @var{x} is defined as ## the probability that a random vector T, distributed as multivariate normal, ## will fall within the semi-infinite rectangle with upper limits defined by ## @var{x}. ## @itemize ## @item @math{Pr@{T(1)<=X(1), T(2)<=X(2), ... T(D)<=X(D)@}}. ## @end itemize ## ## @code{@var{p} = mvtcdf (@var{x_lo}, @var{x_hi}, @var{rho}, @var{df})} returns ## the multivariate Student's t cumulative probability evaluated over the ## rectangle (hyper-rectangle for multivariate data in @var{x}) with lower and ## upper limits defined by @var{x_lo} and @var{x_hi}, respectively. ## ## @code{[@var{p}, @var{err}] = mvtcdf (@dots{})} also returns an error estimate ## @var{err} in @var{p}. ## ## @code{@var{p} = mvtcdf (@dots{}, @var{options})} specifies the structure, ## which controls specific parameters for the numerical integration used to ## compute @var{p}. The required fieds are: ## ## @multitable @columnfractions 0.2 0.05 0.75 ## @item @qcode{"TolFun"} @tab @tab Maximum absolute error tolerance. Default ## is 1e-8 for D < 4, or 1e-4 for D >= 4. ## ## @item @qcode{"MaxFunEvals"} @tab @tab Maximum number of integrand evaluations ## when @math{D >= 4}. Default is 1e7. Ignored when @math{D < 4}. ## ## @item @qcode{"Display"} @tab @tab Display options. Choices are @qcode{"off"} ## (default), @qcode{"iter"}, which shows the probability and estimated error at ## each repetition, and @qcode{"final"}, which shows the final probability and ## related error after the integrand has converged successfully. Ignored when ## @math{D < 4}. ## @end multitable ## ## @seealso{bvtcdf, mvtpdf, mvtrnd, mvtcdfqmc} ## @end deftypefn function [p, err] = mvtcdf (varargin) ## Check for valid number on input and output arguments narginchk (3,5); ## Check for 'options' structure and parse parameters or add defaults if (isstruct (varargin{end})) if (isfield (varargin{end}, "TolFun")) TolFun = varargin{end}.TolFun; else error ("mvtcdf: options structure missing 'TolFun' field."); endif if (isempty (TolFun) && size (varargin{1}, 2) < 4) TolFun = 1e-8; elseif (isempty (TolFun) && size (varargin{1}, 2) < 26) TolFun = 1e-4; endif if (isfield (varargin{end}, "MaxFunEvals")) MaxFunEvals = varargin{end}.MaxFunEvals; else error ("mvtcdf: options structure missing 'MaxFunEvals' field."); endif if (isempty (MaxFunEvals)) MaxFunEvals = 1e7; endif if (isfield (varargin{end}, "Display")) Display = varargin{end}.Display; else error ("mvtcdf: options structure missing 'Display' field."); endif DispOptions = {"off", "final", "iter"}; if (sum (any (strcmpi (Display, DispOptions))) == 0) error ("mvtcdf: 'Display' field in 'options' has invalid value."); endif rem_nargin = nargin - 1; else if (size (varargin{1}, 2) < 4) TolFun = 1e-8; elseif (size (varargin{1}, 2) < 26) TolFun = 1e-4; endif MaxFunEvals = 1e7; Display = "off"; rem_nargin = nargin; endif ## Check for X of X_lo and X_up if (rem_nargin < 4) # MVTCDF(X_UP,SIGMA,DF) x_up_Only = true; x_up = varargin{1}; ## Check for x being a matrix if (! ismatrix (x_up)) error ("mvtcdf: X must be a matrix."); endif ## Create x_lo according to data type of x_lo x_lo = - Inf (size (x_up)); if isa (x_up, "single") x_lo = single (x_lo); endif ## Get SIGMA and DF arguments rho = varargin{2}; df = varargin{3}; else # MVNCDF(X_LO,X_UP,SIGMA,DF) x_up_Only = false; x_lo = varargin{1}; x_up = varargin{2}; rho = varargin{3}; df = varargin{4}; ## Check for x_lo and x_up being matrices of the same size ## and that they define increasing limits if (! ismatrix (x_lo) || ! ismatrix (x_up)) error ("mvtcdf: X_LO and X_UP must be matrices."); endif if (any (size (x_lo) != size (x_up))) error ("mvtcdf: X_LO and X_UP must be of the same size."); endif if (any (any (x_lo > x_up))) error ("mvtcdf: X_LO and X_UP must define increasing limits."); endif endif ## Check if data is single or double class is_type = "double"; if (isa (x_up, "single") || isa (x_lo, "single") || ... isa (rho, "single") || isa (df, "single")) is_type = "single"; endif ## Get size of data [n_x, d_x] = size (x_lo); if (d_x < 1) error ("mvtcdf: too few dimensions in data."); endif ## Force univariate column vector into a row vector if ((d_x == 1) && (size (rho, 1) == n_x)) x_lo = x_lo'; x_up = x_up'; [n_x, d_x] = size (x_up); endif ## Check rho sz = size(rho); if (sz(1) != sz(2)) error ("mvtcdf: correlation matrix RHO is not square."); elseif (! isequal (sz, [d_x, d_x])) error (strcat (["mvtcdf: correlation matrix RHO does not"], ... [" match dimensions in data."])); endif ## Standardize rho to correlation if necessary (not the data) s = sqrt (diag (rho)); if (any (s != 1)) rho = rho ./ (s * s'); endif ## Continue checking rho for being a valid correlation matrix [~, err] = cholcov (rho, 0); if (err != 0) error (strcat (["mvtcdf: correlation matrix RHO must be"], ... [" positive semi-definite."])); endif ## Check df if (! isscalar (df) && ! (isvector (df) && length (df) == n_x)) error (strcat (["mvtcdf: DF must be a scalar or a vector with"], ... [" the same samples as in data."])); endif if (any (df <= 0) || ! isreal (df)) error ("mvtcdf: DF must contain only positive real numbers."); endif ## Compute the cdf if (d_x == 1) p = tcdf (x_up, df) - tcdf (x_lo, df); if (nargout > 1) err = NaN (size (p), is_type); endif elseif (d_x < 4) if (x_up_Only) # upper limit only if (d_x == 2) p = bvtcdf (x_up, rho(2), df, TolFun); else p = tvtcdf (x_up, rho([2 3 6]), df, TolFun); endif else # lower and upper limits present ## Compute the probability over the rectangle as sums and differences ## of integrals over semi-infinite half-rectangles. For degenerate ## rectangles, force an exact zero by making each piece exactly zero. equalLimits = (x_lo == x_up); x_lo(equalLimits) = -Inf; x_up(equalLimits) = -Inf; p = zeros (n_x, 1, is_type); for i = 0:d_x k = nchoosek (1:d_x, i); for j = 1:size (k, 1) X = x_up; X(:,k(j,:)) = x_lo(:,k(j,:)); if d_x == 2 p = p + (-1)^i * bvtcdf (X, rho(2), df, TolFun/4); else p = p + (-1)^i * tvtcdf (X, rho([2 3 6]), df, TolFun/8); endif endfor endfor endif if (nargout > 1) err = repmat (cast (TolFun, is_type), size (p)); endif elseif (d_x < 26) p = zeros (n_x, 1, is_type); err = zeros (n_x, 1, is_type); if (isscalar (df)) df = repmat (df, n_x, 1); endif for i = 1:n_x [p(i), err(i)] = mvtcdfqmc (x_lo(i,:), x_up(i,:), rho, df(i), ... TolFun, MaxFunEvals, Display); endfor else error ("mvncdf: too many dimensions in data (limit = 25 columns)."); endif ## Bound p in range [0, 1] p(p < 0) = 0; p(p > 1) = 1; endfunction ## CDF for the trivariate Student's T function p = tvtcdf (x, rho, df, TolFun) n_x = size (x, 1); if (isscalar (df)) df = repmat (df, n_x, 1); endif ## Find a permutation that makes rho_23 == max(rho) [~,imax] = max (abs (rho)); if (imax == 1) # swap 1 and 3 rho_12 = rho(3); rho_13 = rho(2); rho_23 = rho(1); x = x(:,[3 2 1]); elseif (imax == 2) # swap 1 and 2 rho_12 = rho(1); rho_13 = rho(3); rho_23 = rho(2); x = x(:,[2 1 3]); else # x already in correct order rho_12 = rho(1); rho_13 = rho(2); rho_23 = rho(3); endif if (rho_23 >= 0) p1 = bvtcdf ([x(:,1) min(x(:,2:3), [], 2)], 0, df, TolFun / 4); p1(any (isnan (x), 2)) = NaN; else p1 = bvtcdf (x(:,1:2), 0, df, TolFun /4) - ... bvtcdf ([x(:,1) -x(:,3)], 0, df, TolFun / 4); p1(p1 < 0) = 0; endif if (abs (rho_23) < 1) lo = asin (rho_23); hi = (sign (rho_23) + (rho_23 == 0)) .* pi ./ 2; p2 = zeros (size (p1), class (p1)); for i = 1:n_x x1 = x(i,1); x2 = x(i,2); x3 = x(i,3); if (isfinite (x2) && isfinite (x3) && ~! isnan (x1)) v = df(i); p2(i) = quadgk (@tvtIntegr1, lo, hi, "AbsTol", TolFun / 4, "RelTol", 0); endif endfor else p2 = zeros (class (p1)); endif if (abs (rho_12) > 0) lo = 0; hi = asin (rho_12); rj = rho_12; rk = rho_13; p3 = zeros (size (p1), class (p1)); for i = 1:n_x x1 = x(i,1); xj = x(i,2); xk = x(i,3); if (isfinite (x1) && isfinite (xj) && ! isnan (xk)) v = df(i); p3(i) = quadgk (@tvtIntegr2, lo, hi, "AbsTol", TolFun / 4, "RelTol", 0); endif endfor else p3 = zeros (class (p1)); endif if (abs (rho_13) > 0) lo = 0; hi = asin (rho_13); rj = rho_13; rk = rho_12; p4 = zeros (size (p1), class (p1)); for i = 1:n_x x1 = x(i,1); xj = x(i,3); xk = x(i,2); if (isfinite (x1) && isfinite (xj) && ! isnan (xk)) v = df(i); p4(i) = quadgk (@tvtIntegr2, lo, hi, "AbsTol", TolFun / 4, "RelTol", 0); endif endfor else p4 = zeros (class (p1)); endif if (isa (x, "single") || isa (rho, "single") || isa (df, "single")) p = cast (p1 + (-p2 + p3 + p4) ./ (2 .* pi), "single"); else p = cast (p1 + (-p2 + p3 + p4) ./ (2 .* pi), "double"); endif ## Functions to compute the integrands function integrand = tvtIntegr1 (theta) st = sin(theta); c2t = cos(theta) .^ 2; w = sqrt (1 ./ (1 + ((x2 * st - x3) .^ 2 ./ c2t + x2 .^ 2) / v)); integrand = w .^ v .* TCDF (x1 .* w, v); endfunction function integrand = tvtIntegr2 (theta) st = sin (theta); c2t = cos (theta) .^ 2; w = sqrt (1 ./ (1 + ((x1 *st - xj) .^ 2 ./ c2t + x1 .^ 2) / v)); integrand = w .^ v .* TCDF (uk (st, c2t) .* w, v); endfunction function uk = uk (st, c2t) sinphi = st .* rk ./ rj; numeru = xk .* c2t - x1 .* (sinphi - rho_23 .* st) ... - xj .* (rho_23 - st .* sinphi); denomu = sqrt (c2t .* (c2t - sinphi .* sinphi ... - rho_23 .* (rho_23 - 2 .* st .* sinphi))); uk = numeru ./ denomu; endfunction endfunction ## CDF for Student's T function p = TCDF (x, df) p = betainc(df ./ (df + x .^ 2), df / 2, 0.5) / 2; reflect = (x > 0); p(reflect) = 1 - p(reflect); endfunction %!demo %! ## Compute the cdf of a multivariate Student's t distribution with %! ## correlation parameters rho = [1, 0.4; 0.4, 1] and 2 degrees of freedom. %! %! rho = [1, 0.4; 0.4, 1]; %! df = 2; %! [X1, X2] = meshgrid (linspace (-2, 2, 25)', linspace (-2, 2, 25)'); %! X = [X1(:), X2(:)]; %! p = mvtcdf (X, rho, df); %! surf (X1, X2, reshape (p, 25, 25)); %! title ("Bivariate Student's t cummulative distribution function"); ## Test output against MATLAB R2018 %!test %! x = [1, 2]; %! rho = [1, 0.5; 0.5, 1]; %! df = 4; %! a = [-1, 0]; %! assert (mvtcdf(a, x, rho, df), 0.294196905339283, 1e-14); %!test %! x = [1, 2;2, 4;1, 5]; %! rho = [1, 0.5; 0.5, 1]; %! df = 4; %! p =[0.790285178602166; 0.938703291727784; 0.81222737321336]; %! assert (mvtcdf(x, rho, df), p, 1e-14); %!test %! x = [1, 2, 2, 4, 1, 5]; %! rho = eye (6); %! rho(rho == 0) = 0.5; %! df = 4; %! assert (mvtcdf(x, rho, df), 0.6874, 1e-4); %!error mvtcdf (1) %!error mvtcdf (1, 2) %!error ... %! mvtcdf (1, [2, 3; 3, 2], 1) %!error ... %! mvtcdf ([2, 3, 4], ones (2), 1) %!error ... %! mvtcdf ([1, 2, 3], [2, 3], ones (2), 1) %!error ... %! mvtcdf ([2, 3], ones (2), [1, 2, 3]) %!error ... %! mvtcdf ([2, 3], [1, 0.5; 0.5, 1], [1, 2, 3]) statistics-release-1.6.3/inst/dist_fun/mvtcdfqmc.m000066400000000000000000000211251456127120000222620ustar00rootroot00000000000000## Copyright (C) 2022 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{p} =} mvtcdfqmc (@var{A}, @var{B}, @var{Rho}, @var{df}) ## @deftypefnx {statistics} {@var{p} =} mvtcdfqmc (@dots{}, @var{TolFun}) ## @deftypefnx {statistics} {@var{p} =} mvtcdfqmc (@dots{}, @var{TolFun}, @var{MaxFunEvals}) ## @deftypefnx {statistics} {@var{p} =} mvtcdfqmc (@dots{}, @var{TolFun}, @var{MaxFunEvals}, @var{Display}) ## @deftypefnx {statistics} {[@var{p}, @var{err}] =} mvtcdfqmc (@dots{}) ## @deftypefnx {statistics} {[@var{p}, @var{err}, @var{FunEvals}] =} mvtcdfqmc (@dots{}) ## ## Quasi-Monte-Carlo computation of the multivariate Student's T CDF. ## ## The QMC multivariate Student's t distribution is evaluated between the lower ## limit @var{A} and upper limit @var{B} of the hyper-rectangle with a ## correlation matrix @var{Rho} and degrees of freedom @var{df}. ## ## @multitable @columnfractions 0.2 0.8 ## @item "TolFun" @tab --- Maximum absolute error tolerance. Default is 1e-4. ## @item "MaxFunEvals" @tab --- Maximum number of integrand evaluations. ## Default is 1e7 for D > 4. ## @item "Display" @tab --- Display options. Choices are "off" (default), ## "iter", which shows the probability and estimated error at each repetition, ## and "final", which shows the final probability and related error after the ## integrand has converged successfully. ## @end multitable ## ## @code{[@var{p}, @var{err}, @var{FunEvals}] = mvtcdfqmc (@dots{})} returns the ## estimated probability, @var{p}, an estimate of the error, @var{err}, and the ## number of iterations until a successful convergence is met, unless the value ## in @var{MaxFunEvals} was reached. ## ## @seealso{mvtcdf, mvtpdf, mvtrnd} ## @end deftypefn function [p, err, FunEvals] = mvtcdfqmc (A, B, Rho, df, varargin) ## Check for input arguments narginchk (4,7); ## Add defaults TolFun = 1e-4; MaxFunEvals = 1e7; Display = "off"; ## Parse optional arguments (TolFun, MaxFunEvals, Display) if (nargin > 4) TolFun = varargin{1}; if (! isscalar (TolFun) || ! isreal (TolFun)) error ("mvtcdfqmc: TolFun must be a scalar."); endif endif if (nargin > 5) MaxFunEvals = varargin{2}; if (! isscalar (MaxFunEvals) || ! isreal (MaxFunEvals)) error ("mvtcdfqmc: MaxFunEvals must be a scalar."); endif MaxFunEvals = floor (MaxFunEvals); endif if (nargin > 6) Display = varargin{3}; DispOptions = {"off", "final", "iter"}; if (sum (any (strcmpi (Display, DispOptions))) == 0) error ("mvncdf: invalid value for 'Display' argument."); endif endif ## Check if input is single or double class is_type = "double"; if (isa (A, "single") || isa (B, "single") || isa (Rho, "single")) is_type = "single"; endif ## Check for appropriate lower upper limits and NaN values in data if (! all (A < B)) if (any (A > B)) error ("mvtcdfqmc: inconsistent lower upper limits."); elseif (any (isnan (A) | isnan (B))) warning ("mvtcdfqmc: NaNs in data."); p = NaN (is_type); err = NaN (is_type); else warning ("mvtcdfqmc: zero distance between lower upper limits."); p = zeros (is_type); err = zeros (is_type); endif FunEvals = 0; return; endif ## Ignore dimensions with infinite limits InfLim_idx = (A == -Inf) & (B == Inf); if (any (InfLim_idx)) if (all (InfLim_idx)) warning ("mvtcdfqmc: infinite distance between lower upper limits."); p = 1; err = 0; FunEvals = 0; return endif A(InfLim_idx) = []; B(InfLim_idx) = []; Rho(:,InfLim_idx) = []; Rho(InfLim_idx,:) = []; endif ## Get size of covariance matrix m = size (Rho, 1); ## Sort the order of integration according to increasing length of interval [~, ord] = sort (B - A); A = A(ord); B = B(ord); Rho = Rho(ord, ord); ## Check for highly correlated covariance matrix if any(any(abs(tril(Rho,-1)) > .999)) warning("mvtcdfqmc: highly correlated covariance matrix Rho."); endif ## Scale the integration limits and the Cholesky factor of Rho C = chol(Rho); c = diag(C); A = A(:) ./ c; B = B(:) ./ c; C = C ./ repmat(c',m,1); ## Set repetitions fof Monte Carlo MCreps = 25; MCdims = m - isinf(df); ## Set initial output p = zeros (is_type); sigsq = Inf (is_type); FunEvals = 0; err = NaN; ## Initialize vector P = [31, 47, 73, 113, 173, 263, 397, 593, 907, 1361, 2053, 3079, 4621, ... 6947, 10427, 15641, 23473, 35221, 52837, 79259, 118891, 178349, ... 267523, 401287, 601942, 902933, 1354471, 2031713]; for i = 5:length (P); if ((FunEvals + 2*MCreps*P(i)) > MaxFunEvals) break; endif ## Compute the Niederreiter point set generator NRgen = 2 .^ ((1:MCdims) / (MCdims + 1)); ## Compute randomized quasi-Monte Carlo estimate with P points [THat,sigsqTHat] = estimate_mvtqmc (MCreps, P(i), NRgen, C, df, ... A, B, is_type); FunEvals = FunEvals + 2 * MCreps *P (i); ## Recursively update the estimate and the error estimate p = p + (THat - p) ./ (1 + sigsqTHat ./ sigsq); sigsq = sigsqTHat ./ (1 + sigsqTHat ./ sigsq); ## Compute a conservative estimate of error err = 3.5 * sqrt (sigsq); ## Display output for every iteration if (strcmpi (Display, "iter")) printf ("mvtcdfqmc: Probability estimate: %0.4f ",p); printf ("Error estimate: %0.4e Iterations: %d\n", err, FunEvals); endif if (err < TolFun) if (strcmpi (Display, "final")) printf ("mvtcdfqmc: Successfully converged!\n"); printf ("Final probability estimate: %0.4f ",p); printf ("Final error estimate: %0.4e Iterations: %d\n", err, FunEvals); endif return endif endfor warning ("mvtcdfqmc: Error tolerance did NOT converge!"); printf ("Error tolerance: %0.4f Total Iterations: %d\n", TolFun, MaxFunEvals); endfunction ## Randomized Quasi-Monte-Carlo estimate of the integral function [THat, sigsqTHat] = estimate_mvtqmc (MCreps, P, NRgen, C, df, A, ... B, is_type) qq = (1:P)' * NRgen; THat = zeros (MCreps,1,is_type); for rep = 1:MCreps ## Generate A new random lattice of P points. For MVT, this is in the ## m-dimensional unit hypercube, for MVN, in the (m-1)-dimensional unit ## hypercube. w = abs (2 * mod (qq + repmat (rand (size (NRgen), is_type), P, 1), 1) - 1); ## Compute the mean of the integrand over all P of the points, and all P ## of the antithetic points. THat(rep) = (F_qrsvn (A, B, C, df, w) + F_qrsvn (A, B, C, df, 1 - w)) ./ 2; endfor ## Return the MC mean and se^2 sigsqTHat = var(THat) ./ MCreps; THat = mean(THat); endfunction ## Integrand for computation of MVT probabilities function TBar = F_qrsvn (A, B, C, df, w) N = size (w, 1); # number of quasirandom points m = length(A); # number of dimensions if isinf (df) rho = 1; else rho = chi_inv (w(:,m), df) ./ sqrt (df); end rA = norm_cdf (rho .* A(1)); # A is already scaled by diag(C) rB = norm_cdf (rho .* B(1)) - rA; # B is already scaled by diag(C) T = rB; Y = zeros (N, m, "like", T); for i = 2:m z = min (max (rA + rB .* w(:,i-1), eps / 2), 1 - eps / 2); Y(:,i-1) = norm_inv (z); Ysum = Y * C(:,i); rA = norm_cdf (rho .* A(i) - Ysum); # A is already scaled by diag(C) rB = norm_cdf (rho .* B(i) - Ysum) - rA; # B is already scaled by diag(C) T = T .* rB; end TBar = sum (T, 1) ./ length (T); endfunction ## Normal cumulative distribution function function a = norm_cdf (b) a = 0.5 * erfc (- b ./ sqrt (2)); endfunction ## Inverse of normal cumulative distribution function function a = norm_inv (b) a = - sqrt (2) .* erfcinv (2 * b); endfunction ## Inverse of chi cumulative distribution function function a = chi_inv (b,df) a = sqrt (gammaincinv (b, df ./ 2) .* 2); endfunction %!error mvtcdfqmc (1, 2, 3); %!error mvtcdfqmc (1, 2, 3, 4, 5, 6, 7, 8); statistics-release-1.6.3/inst/dist_fun/mvtpdf.m000066400000000000000000000104601456127120000215760ustar00rootroot00000000000000## Copyright (C) 2015 Nir Krakauer ## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{y} =} mvtpdf (@var{x}, @var{rho}, @var{df}) ## ## Multivariate Student's t probability density function (PDF). ## ## @subheading Arguments ## ## @itemize @bullet ## @item ## @var{x} are the points at which to find the probability, where each row ## corresponds to an observation. (@math{NxD} matrix) ## ## @item ## @var{rho} is the correlation matrix. (@math{DxD} symmetric positive ## definite matrix) ## ## @item ## @var{df} is the degrees of freedom. (scalar or vector of length @math{N}) ## ## @end itemize ## ## The distribution is assumed to be centered (zero mean). ## ## @subheading Return values ## ## @itemize @bullet ## @item ## @var{y} is the probability density for each row of @var{x}. ## (@math{Nx1} vector) ## @end itemize ## ## @subheading Examples ## ## @example ## @group ## x = [1 2]; ## rho = [1.0 0.5; 0.5 1.0]; ## df = 4; ## y = mvtpdf (x, rho, df) ## @end group ## @end example ## ## @subheading References ## ## @enumerate ## @item ## Michael Roth, On the Multivariate t Distribution, Technical report from ## Automatic Control at Linkoepings universitet, ## @url{http://users.isy.liu.se/en/rt/roth/student.pdf} ## @end enumerate ## ## @seealso{mvtcdf, mvtcdfqmc, mvtrnd} ## @end deftypefn function y = mvtpdf (x, rho, df) if (nargin != 3) print_usage (); endif # Dimensions d = size (rho, 1); n = size (x, 1); # Check parameters if (size (x, 2) != d) error ("mvtpdf: x must have the same number of columns as rho."); endif if (! isscalar (df) && (! isvector (df) || numel (df) != n)) error (strcat (["mvtpdf: DF must be a scalar or a vector with the"], ... [" same number of rows as X."])); endif if (d < 1 || size (rho, 2) != d || ! issymmetric (rho)) error ("mvtpdf: SIGMA must be nonempty and symmetric."); endif try U = chol (rho); catch error ("mvtpdf: rho must be positive definite"); end_try_catch df = df(:); sqrt_det_sigma = prod(diag(U)); #square root of determinant of rho ## Scale factor for PDF c = (gamma((df+d)/2) ./ gamma(df/2)) ./ (sqrt_det_sigma * (df*pi).^(d/2)); #note: sumsq(U' \ x') is equivalent to the quadratic form x*inv(rho)*x' y = c ./ ((1 + sumsq(U' \ x') ./ df') .^ ((df' + d)/2))'; endfunction %!demo %! ## Compute the pdf of a multivariate t distribution with correlation %! ## parameters rho = [1 .4; .4 1] and 2 degrees of freedom. %! %! rho = [1, 0.4; 0.4, 1]; %! df = 2; %! [X1, X2] = meshgrid (linspace (-2, 2, 25)', linspace (-2, 2, 25)'); %! X = [X1(:), X2(:)]; %! y = mvtpdf (X, rho, df); %! surf (X1, X2, reshape (y, 25, 25)); %! title ("Bivariate Student's t probability density function"); ## Test results verified with R mvtnorm package dmvt function ## dmvt(x = c(0,0), rho = diag(2), log = FALSE) %!assert (mvtpdf ([0 0], eye(2), 1), 0.1591549, 1E-7) ## dmvt(x = c(1,0), rho = matrix(c(1, 0.5, 0.5, 1), nrow=2, ncol=2), df = 2, log = FALSE) %!assert (mvtpdf ([1 0], [1 0.5; 0.5 1], 2), 0.06615947, 1E-7) ## dmvt(x = c(1,0.4,0), rho = matrix(c(1, 0.5, 0.3, 0.5, 1, 0.6, 0.3, 0.6, ... ## 1), nrow=3, ncol=3), df = 5, log = FALSE); dmvt(x = c(1.2,0.5,0.5), ... ## rho = matrix(c(1, 0.5, 0.3, 0.5, 1, 0.6, 0.3, 0.6, 1), nrow=3, ncol=3), ... ## df = 6, log = FALSE); dmvt(x = c(1.4,0.6,1), rho = matrix(c(1, 0.5, 0.3,... ## 0.5, 1, 0.6, 0.3, 0.6, 1), nrow=3, ncol=3), df = 7, log = FALSE) %!assert (mvtpdf ([1 0.4 0; 1.2 0.5 0.5; 1.4 0.6 1], ... %! [1 0.5 0.3; 0.5 1 0.6; 0.3 0.6 1], [5 6 7]), ... %! [0.04713313 0.03722421 0.02069011]', 1E-7) statistics-release-1.6.3/inst/dist_fun/mvtrnd.m000066400000000000000000000104331456127120000216100ustar00rootroot00000000000000## Copyright (C) 2012 Arno Onken ## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{r} =} mvtrnd (@var{rho}, @var{df}) ## @deftypefnx {statistics} {@var{r} =} mvtrnd (@var{rho}, @var{df}, @var{n}) ## ## Random vectors from the multivariate Student's t distribution. ## ## @subheading Arguments ## ## @itemize @bullet ## @item ## @var{rho} is the matrix of correlation coefficients. If there are any ## non-unit diagonal elements then @var{rho} will be normalized, so that the ## resulting covariance of the obtained samples @var{r} follows: ## @code{cov (r) = df/(df-2) * rho ./ (sqrt (diag (rho) * diag (rho)))}. ## In order to obtain samples distributed according to a standard multivariate ## student's t-distribution, @var{rho} must be equal to the identity matrix. To ## generate multivariate student's t-distribution samples @var{r} with arbitrary ## covariance matrix @var{rho}, the following scaling might be used: ## @code{r = mvtrnd (rho, df, n) * diag (sqrt (diag (rho)))}. ## ## @item ## @var{df} is the degrees of freedom for the multivariate t-distribution. ## @var{df} must be a vector with the same number of elements as samples to be ## generated or be scalar. ## ## @item ## @var{n} is the number of rows of the matrix to be generated. @var{n} must be ## a non-negative integer and corresponds to the number of samples to be ## generated. ## @end itemize ## ## @subheading Return values ## ## @itemize @bullet ## @item ## @var{r} is a matrix of random samples from the multivariate t-distribution ## with @var{n} row samples. ## @end itemize ## ## @subheading Examples ## ## @example ## @group ## rho = [1, 0.5; 0.5, 1]; ## df = 3; ## n = 10; ## r = mvtrnd (rho, df, n); ## @end group ## ## @group ## rho = [1, 0.5; 0.5, 1]; ## df = [2; 3]; ## n = 2; ## r = mvtrnd (rho, df, 2); ## @end group ## @end example ## ## @subheading References ## ## @enumerate ## @item ## Wendy L. Martinez and Angel R. Martinez. @cite{Computational Statistics ## Handbook with MATLAB}. Appendix E, pages 547-557, Chapman & Hall/CRC, 2001. ## ## @item ## Samuel Kotz and Saralees Nadarajah. @cite{Multivariate t Distributions and ## Their Applications}. Cambridge University Press, Cambridge, 2004. ## @end enumerate ## ## @seealso{mvtcdf, mvtcdfqmc, mvtpdf} ## @end deftypefn function r = mvtrnd (rho, df, n) # Check arguments if (nargin < 2) print_usage (); endif [jnk, p] = cholcov (rho); # This is a more robust check for positive definite if (! ismatrix (rho) || any (any (rho != rho')) || (p != 0)) error ("mvtrnd: SIGMA must be a positive definite matrix."); endif if (!isvector (df) || any (df <= 0)) error ("mvtrnd: DF must be a positive scalar or vector."); endif df = df(:); if (nargin > 2) if (! isscalar (n) || n < 0 | round (n) != n) error ("mvtrnd: N must be a non-negative integer.") endif if (isscalar (df)) df = df * ones (n, 1); else if (length (df) != n) error ("mvtrnd: N must match the length of DF.") endif endif else n = length (df); endif # Normalize rho if (any (diag (rho) != 1)) rho = rho ./ sqrt (diag (rho) * diag (rho)'); endif # Dimension d = size (rho, 1); # Draw samples y = mvnrnd (zeros (1, d), rho, n); u = repmat (chi2rnd (df), 1, d); r = y .* sqrt (repmat (df, 1, d) ./ u); endfunction %!test %! rho = [1, 0.5; 0.5, 1]; %! df = 3; %! n = 10; %! r = mvtrnd (rho, df, n); %! assert (size (r), [10, 2]); %!test %! rho = [1, 0.5; 0.5, 1]; %! df = [2; 3]; %! n = 2; %! r = mvtrnd (rho, df, 2); %! assert (size (r), [2, 2]); statistics-release-1.6.3/inst/dist_fun/nakacdf.m000066400000000000000000000137241456127120000216730ustar00rootroot00000000000000## Copyright (C) 2016 Dag Lyberg ## Copyright (C) 1995-2015 Kurt Hornik ## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{p} =} nakacdf (@var{x}, @var{mu}, @var{omega}) ## @deftypefnx {statistics} {@var{p} =} nakacdf (@var{x}, @var{mu}, @var{omega}, @qcode{"upper"}) ## ## Nakagami cumulative distribution function (CDF). ## ## For each element of @var{x}, compute the cumulative distribution function ## (CDF) of the Nakagami distribution with shape parameter @var{mu} and spread ## parameter @var{omega}. The size of @var{p} is the common size of @var{x}, ## @var{mu}, and @var{omega}. A scalar input functions as a constant matrix of ## the same size as the other inputs. ## ## Both parameters must be positive reals and @qcode{@var{mu} >= 0.5}. For ## @qcode{@var{mu} < 0.5} or @qcode{@var{omega} <= 0}, @qcode{NaN} is returned. ## ## @code{@var{p} = nakacdf (@var{x}, @var{mu}, @var{omega}, "upper")} computes ## the upper tail probability of the Nakagami distribution with parameters ## @var{mu} and @var{beta}, at the values in @var{x}. ## ## Further information about the Nakagami distribution can be found at ## @url{https://en.wikipedia.org/wiki/Nakagami_distribution} ## ## @seealso{nakainv, nakapdf, nakarnd, nakafit, nakalike} ## @end deftypefn function p = nakacdf (x, mu, omega, uflag) ## Check for valid number of input arguments if (nargin < 3) error ("nakacdf: function called with too few input arguments."); endif ## Check for valid "upper" flag if (nargin > 3) if (! strcmpi (uflag, "upper")) error ("nakacdf: invalid argument for upper tail."); else uflag = true; endif else uflag = false; endif ## Check for common size of X, MU, and OMEGA if (! isscalar (x) || ! isscalar (mu) || ! isscalar (omega)) [retval, x, mu, omega] = common_size (x, mu, omega); if (retval > 0) error ("nakacdf: X, MU, and OMEGA must be of common size or scalars."); endif endif ## Check for X, MU, and OMEGA being reals if (iscomplex (x) || iscomplex (mu) || iscomplex (omega)) error ("nakacdf: X, MU, and OMEGA must not be complex."); endif ## Check for class type if (isa (x, "single") || isa (mu, "single") || isa (omega, "single")) p = zeros (size (x), "single"); else p = zeros (size (x)); endif ## Force invalid parameters and missing data to NaN k1 = isnan (x) | ! (mu >= 0.5) | ! (omega > 0); p(k1) = NaN; ## Find normal and edge cases k2 = (x == Inf) & (mu >= 0.5) & (mu < Inf) & (omega > 0) & (omega < Inf); k = (x > 0) & (x < Inf) & (mu >= 0.5) & (mu < Inf) ... & (omega > 0) & (omega < Inf); ## Compute Nakagami CDF if (uflag) p(k2) = 0; left = mu .* ones (size (x)); right = (mu ./ omega) .* x .^ 2; p(k) = gammainc (right(k), left(k), "upper"); else p(k2) = 1; left = mu .* ones (size (x)); right = (mu ./ omega) .* x .^ 2; p(k) = gammainc (right(k), left(k)); endif endfunction %!demo %! ## Plot various CDFs from the Nakagami distribution %! x = 0:0.01:3; %! p1 = nakacdf (x, 0.5, 1); %! p2 = nakacdf (x, 1, 1); %! p3 = nakacdf (x, 1, 2); %! p4 = nakacdf (x, 1, 3); %! p5 = nakacdf (x, 2, 1); %! p6 = nakacdf (x, 2, 2); %! p7 = nakacdf (x, 5, 1); %! plot (x, p1, "-r", x, p2, "-g", x, p3, "-y", x, p4, "-m", ... %! x, p5, "-k", x, p6, "-b", x, p7, "-c") %! grid on %! xlim ([0, 3]) %! legend ({"μ = 0.5, ω = 1", "μ = 1, ω = 1", "μ = 1, ω = 2", ... %! "μ = 1, ω = 3", "μ = 2, ω = 1", "μ = 2, ω = 2", ... %! "μ = 5, ω = 1"}, "location", "southeast") %! title ("Nakagami CDF") %! xlabel ("values in x") %! ylabel ("probability") ## Test output %!shared x, y %! x = [-1, 0, 1, 2, Inf]; %! y = [0, 0, 0.63212055882855778, 0.98168436111126578, 1]; %!assert (nakacdf (x, ones (1,5), ones (1,5)), y, eps) %!assert (nakacdf (x, 1, 1), y, eps) %!assert (nakacdf (x, [1, 1, NaN, 1, 1], 1), [y(1:2), NaN, y(4:5)]) %!assert (nakacdf (x, 1, [1, 1, NaN, 1, 1]), [y(1:2), NaN, y(4:5)]) %!assert (nakacdf ([x, NaN], 1, 1), [y, NaN], eps) ## Test class of input preserved %!assert (nakacdf (single ([x, NaN]), 1, 1), single ([y, NaN]), eps("single")) %!assert (nakacdf ([x, NaN], single (1), 1), single ([y, NaN]), eps("single")) %!assert (nakacdf ([x, NaN], 1, single (1)), single ([y, NaN]), eps("single")) ## Test input validation %!error nakacdf () %!error nakacdf (1) %!error nakacdf (1, 2) %!error nakacdf (1, 2, 3, "tail") %!error nakacdf (1, 2, 3, 4) %!error ... %! nakacdf (ones (3), ones (2), ones (2)) %!error ... %! nakacdf (ones (2), ones (3), ones (2)) %!error ... %! nakacdf (ones (2), ones (2), ones (3)) %!error nakacdf (i, 2, 2) %!error nakacdf (2, i, 2) %!error nakacdf (2, 2, i) statistics-release-1.6.3/inst/dist_fun/nakainv.m000066400000000000000000000125251456127120000217310ustar00rootroot00000000000000## Copyright (C) 2016 Dag Lyberg ## Copyright (C) 1995-2015 Kurt Hornik ## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{x} =} nakacdf (@var{x}, @var{mu}, @var{omega}) ## ## Inverse of the Nakagami cumulative distribution function (iCDF). ## ## For each element of @var{p}, compute the quantile (the inverse of the CDF) of ## the Nakagami distribution with shape parameter @var{mu} and spread parameter ## @var{omega}. The size of @var{x} is the common size of @var{x}, @var{mu}, ## and @var{omega}. A scalar input functions as a constant matrix of the same ## size as the other inputs. ## ## Both parameters must be positive reals and @qcode{@var{mu} >= 0.5}. For ## @qcode{@var{mu} < 0.5} or @qcode{@var{omega} <= 0}, @qcode{NaN} is returned. ## ## Further information about the Nakagami distribution can be found at ## @url{https://en.wikipedia.org/wiki/Nakagami_distribution} ## ## @seealso{nakacdf, nakapdf, nakarnd, nakafit, nakalike} ## @end deftypefn function x = nakainv (p, mu, omega) ## Check for valid number of input arguments if (nargin < 3) error ("nakainv: function called with too few input arguments."); endif ## Check for common size of P, MU, and OMEGA if (! isscalar (p) || ! isscalar (mu) || ! isscalar (omega)) [retval, p, mu, omega] = common_size (p, mu, omega); if (retval > 0) error ("nakainv: P, MU, and OMEGA must be of common size or scalars."); endif endif ## Check for P, MU, and OMEGA being reals if (iscomplex (p) || iscomplex (mu) || iscomplex (omega)) error ("nakainv: P, MU, and OMEGA must not be complex."); endif ## Check for class type if (isa (p, "single") || isa (mu, "single") || isa (omega, "single")) x = zeros (size (p), "single"); else x = zeros (size (p)); endif ## Force invalid parameters and missing data to NaN k = isnan (p) | ! (p >= 0) | ! (p <= 1) | ! (mu >= 0.5) | ! (omega > 0); x(k) = NaN; ## Handle edge cases k = (p == 1) & (mu >= 0.5) & (mu < Inf) & (omega > 0) & (omega < Inf); x(k) = Inf; ## Find normal cases k = (0 < p) & (p < 1) & (0.5 <= mu) & (mu < Inf) ... & (0 < omega) & (omega < Inf); ## Compute Nakagami iCDF if (isscalar (mu) && isscalar(omega)) m_gamma = mu; w_gamma = omega / mu; x(k) = gaminv (p(k), m_gamma, w_gamma); x(k) = sqrt (x(k)); else m_gamma = mu; w_gamma = omega ./ mu; x(k) = gaminv (p(k), m_gamma(k), w_gamma(k)); x(k) = sqrt (x(k)); endif endfunction %!demo %! ## Plot various iCDFs from the Nakagami distribution %! p = 0.001:0.001:0.999; %! x1 = nakainv (p, 0.5, 1); %! x2 = nakainv (p, 1, 1); %! x3 = nakainv (p, 1, 2); %! x4 = nakainv (p, 1, 3); %! x5 = nakainv (p, 2, 1); %! x6 = nakainv (p, 2, 2); %! x7 = nakainv (p, 5, 1); %! plot (p, x1, "-r", p, x2, "-g", p, x3, "-y", p, x4, "-m", ... %! p, x5, "-k", p, x6, "-b", p, x7, "-c") %! grid on %! ylim ([0, 3]) %! legend ({"μ = 0.5, ω = 1", "μ = 1, ω = 1", "μ = 1, ω = 2", ... %! "μ = 1, ω = 3", "μ = 2, ω = 1", "μ = 2, ω = 2", ... %! "μ = 5, ω = 1"}, "location", "northwest") %! title ("Nakagami iCDF") %! xlabel ("probability") %! ylabel ("values in x") ## Test output %!shared p, y %! p = [-Inf, -1, 0, 1/2, 1, 2, Inf]; %! y = [NaN, NaN, 0, 0.83255461115769769, Inf, NaN, NaN]; %!assert (nakainv (p, ones (1,7), ones (1,7)), y, eps) %!assert (nakainv (p, 1, 1), y, eps) %!assert (nakainv (p, [1, 1, 1, NaN, 1, 1, 1], 1), [y(1:3), NaN, y(5:7)], eps) %!assert (nakainv (p, 1, [1, 1, 1, NaN, 1, 1, 1]), [y(1:3), NaN, y(5:7)], eps) %!assert (nakainv ([p, NaN], 1, 1), [y, NaN], eps) ## Test class of input preserved %!assert (nakainv (single ([p, NaN]), 1, 1), single ([y, NaN])) %!assert (nakainv ([p, NaN], single (1), 1), single ([y, NaN])) %!assert (nakainv ([p, NaN], 1, single (1)), single ([y, NaN])) ## Test input validation %!error nakainv () %!error nakainv (1) %!error nakainv (1, 2) %!error ... %! nakainv (ones (3), ones (2), ones(2)) %!error ... %! nakainv (ones (2), ones (3), ones(2)) %!error ... %! nakainv (ones (2), ones (2), ones(3)) %!error nakainv (i, 4, 3) %!error nakainv (1, i, 3) %!error nakainv (1, 4, i) statistics-release-1.6.3/inst/dist_fun/nakapdf.m000066400000000000000000000123551456127120000217070ustar00rootroot00000000000000## Copyright (C) 2016 Dag Lyberg ## Copyright (C) 1995-2015 Kurt Hornik ## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{y} =} nakapdf (@var{x}, @var{mu}, @var{omega}) ## ## Nakagami probability density function (PDF). ## ## For each element of @var{x}, compute the probability density function (PDF) ## of the Nakagami distribution with shape parameter @var{mu} and spread ## parameter @var{omega}. The size of @var{y} is the common size of @var{x}, ## @var{mu}, and @var{omega}. A scalar input functions as a constant matrix of ## the same size as the other inputs. ## ## Both parameters must be positive reals and @qcode{@var{mu} >= 0.5}. For ## @qcode{@var{mu} < 0.5} or @qcode{@var{omega} <= 0}, @qcode{NaN} is returned. ## ## Further information about the Nakagami distribution can be found at ## @url{https://en.wikipedia.org/wiki/Nakagami_distribution} ## ## @seealso{nakacdf, nakapdf, nakarnd, nakafit, nakalike} ## @end deftypefn function y = nakapdf (x, mu, omega) ## Check for valid number of input arguments if (nargin < 3) error ("nakapdf: function called with too few input arguments."); endif ## Check for common size of X, MU, and OMEGA if (! isscalar (x) || ! isscalar (mu) || ! isscalar (omega)) [retval, x, mu, omega] = common_size (x, mu, omega); if (retval > 0) error ("nakapdf: X, MU, and OMEGA must be of common size or scalars."); endif endif ## Check for X, MU, and OMEGA being reals if (iscomplex (x) || iscomplex (mu) || iscomplex (omega)) error ("nakapdf: X, MU, and OMEGA must not be complex."); endif ## Check for class type if (isa (x, "single") || isa (mu, "single") || isa (omega, "single")) y = zeros (size (x), "single"); else y = zeros (size (x)); endif ## Compute Nakagami PDF k = isnan (x) | ! (mu >= 0.5) | ! (omega > 0); y(k) = NaN; k = (0 < x) & (x < Inf) & (0.5 <= mu) & (mu < Inf) ... & (0 < omega) & (omega < Inf); if (isscalar (mu) && isscalar(omega)) y(k) = exp (log (2) + mu * log (mu) - log (gamma (mu)) - ... mu * log (omega) + (2 * mu-1) * ... log (x(k)) - (mu / omega) * x(k) .^ 2); else y(k) = exp (log(2) + mu(k) .* log (mu(k)) - log (gamma (mu(k))) - ... mu(k) .* log (omega(k)) + (2 * mu(k) - 1) ... .* log (x(k)) - (mu(k) ./ omega(k)) .* x(k) .^ 2); endif endfunction %!demo %! ## Plot various PDFs from the Nakagami distribution %! x = 0:0.01:3; %! y1 = nakapdf (x, 0.5, 1); %! y2 = nakapdf (x, 1, 1); %! y3 = nakapdf (x, 1, 2); %! y4 = nakapdf (x, 1, 3); %! y5 = nakapdf (x, 2, 1); %! y6 = nakapdf (x, 2, 2); %! y7 = nakapdf (x, 5, 1); %! plot (x, y1, "-r", x, y2, "-g", x, y3, "-y", x, y4, "-m", ... %! x, y5, "-k", x, y6, "-b", x, y7, "-c") %! grid on %! xlim ([0, 3]) %! ylim ([0, 2]) %! legend ({"μ = 0.5, ω = 1", "μ = 1, ω = 1", "μ = 1, ω = 2", ... %! "μ = 1, ω = 3", "μ = 2, ω = 1", "μ = 2, ω = 2", ... %! "μ = 5, ω = 1"}, "location", "northeast") %! title ("Nakagami PDF") %! xlabel ("values in x") %! ylabel ("density") ## Test output %!shared x, y %! x = [-1, 0, 1, 2, Inf]; %! y = [0, 0, 0.73575888234288467, 0.073262555554936715, 0]; %!assert (nakapdf (x, ones (1,5), ones (1,5)), y, eps) %!assert (nakapdf (x, 1, 1), y, eps) %!assert (nakapdf (x, [1, 1, NaN, 1, 1], 1), [y(1:2), NaN, y(4:5)], eps) %!assert (nakapdf (x, 1, [1, 1, NaN, 1, 1]), [y(1:2), NaN, y(4:5)], eps) %!assert (nakapdf ([x, NaN], 1, 1), [y, NaN], eps) ## Test class of input preserved %!assert (nakapdf (single ([x, NaN]), 1, 1), single ([y, NaN])) %!assert (nakapdf ([x, NaN], single (1), 1), single ([y, NaN])) %!assert (nakapdf ([x, NaN], 1, single (1)), single ([y, NaN])) ## Test input validation %!error nakapdf () %!error nakapdf (1) %!error nakapdf (1, 2) %!error ... %! nakapdf (ones (3), ones (2), ones(2)) %!error ... %! nakapdf (ones (2), ones (3), ones(2)) %!error ... %! nakapdf (ones (2), ones (2), ones(3)) %!error nakapdf (i, 4, 3) %!error nakapdf (1, i, 3) %!error nakapdf (1, 4, i) statistics-release-1.6.3/inst/dist_fun/nakarnd.m000066400000000000000000000156571456127120000217310ustar00rootroot00000000000000## Copyright (C) 2016 Dag Lyberg ## Copyright (C) 1995-2015 Kurt Hornik ## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{r} =} nakarnd (@var{mu}, @var{omega}) ## @deftypefnx {statistics} {@var{r} =} nakarnd (@var{mu}, @var{omega}, @var{rows}) ## @deftypefnx {statistics} {@var{r} =} nakarnd (@var{mu}, @var{omega}, @var{rows}, @var{cols}, @dots{}) ## @deftypefnx {statistics} {@var{r} =} nakarnd (@var{mu}, @var{omega}, [@var{sz}]) ## ## Random arrays from the Nakagami distribution. ## ## @code{@var{r} = nakarnd (@var{mu}, @var{omega})} returns an array of random ## numbers chosen from the Nakagami distribution with shape parameter @var{mu} ## and spread parameter @var{omega}. The size of @var{r} is the common size of ## @var{mu} and @var{omega}. A scalar input functions as a constant matrix of ## the same size as the other inputs. ## ## Both parameters must be positive reals and @qcode{@var{mu} >= 0.5}. For ## @qcode{@var{mu} < 0.5} or @qcode{@var{omega} <= 0}, @qcode{NaN} is returned. ## ## When called with a single size argument, @code{nakarnd} returns a square ## matrix with the dimension specified. When called with more than one scalar ## argument, the first two arguments are taken as the number of rows and columns ## and any further arguments specify additional matrix dimensions. The size may ## also be specified with a row vector of dimensions, @var{sz}. ## ## Further information about the Nakagami distribution can be found at ## @url{https://en.wikipedia.org/wiki/Nakagami_distribution} ## ## @seealso{nakacdf, nakainv, nakapdf} ## @end deftypefn function r = nakarnd (mu, omega, varargin) ## Check for valid number of input arguments if (nargin < 2) error ("nakarnd: function called with too few input arguments."); endif ## Check for common size of MU and OMEGA if (! isscalar (mu) || ! isscalar (omega)) [retval, mu, omega] = common_size (mu, omega); if (retval > 0) error ("nakarnd: MU and OMEGA must be of common size or scalars."); endif endif ## Check for MU and OMEGA being reals if (iscomplex (mu) || iscomplex (omega)) error ("nakarnd: MU and OMEGA must not be complex."); endif ## Parse and check SIZE arguments if (nargin == 2) sz = size (mu); elseif (nargin == 3) if (isscalar (varargin{1}) && varargin{1} >= 0 ... && varargin{1} == fix (varargin{1})) sz = [varargin{1}, varargin{1}]; elseif (isrow (varargin{1}) && all (varargin{1} >= 0) ... && all (varargin{1} == fix (varargin{1}))) sz = varargin{1}; elseif error (strcat (["nakarnd: SZ must be a scalar or a row vector"], ... [" of non-negative integers."])); endif elseif (nargin > 3) posint = cellfun (@(x) (! isscalar (x) || x < 0 || x != fix (x)), varargin); if (any (posint)) error ("nakarnd: dimensions must be non-negative integers."); endif sz = [varargin{:}]; endif ## Check that parameters match requested dimensions in size if (! isscalar (mu) && ! isequal (size (mu), sz)) error ("nakarnd: MU and OMEGA must be scalars or of size SZ."); endif ## Check for class type if (isa (mu, "single") || isa (omega, "single")) cls = "single"; else cls = "double"; endif ## Generate random sample from Nakagami distribution if (isscalar (mu) && isscalar (omega)) if ((0.5 <= mu) && (mu < Inf) && (0 < omega) && (omega < Inf)) m_gamma = mu; w_gamma = omega / mu; r = gamrnd (m_gamma, w_gamma, sz); r = sqrt (r); else r = NaN (sz, cls); endif else r = NaN (sz, cls); k = (0.5 <= mu) & (mu < Inf) & (0 < omega) & (omega < Inf); m_gamma = mu; w_gamma = omega ./ mu; r(k) = gamrnd (m_gamma(k), w_gamma(k)); r(k) = sqrt (r(k)); endif endfunction ## Test output %!assert (size (nakarnd (1, 1)), [1 1]) %!assert (size (nakarnd (1, ones (2,1))), [2, 1]) %!assert (size (nakarnd (1, ones (2,2))), [2, 2]) %!assert (size (nakarnd (ones (2,1), 1)), [2, 1]) %!assert (size (nakarnd (ones (2,2), 1)), [2, 2]) %!assert (size (nakarnd (1, 1, 3)), [3, 3]) %!assert (size (nakarnd (1, 1, [4, 1])), [4, 1]) %!assert (size (nakarnd (1, 1, 4, 1)), [4, 1]) %!assert (size (nakarnd (1, 1, 4, 1, 5)), [4, 1, 5]) %!assert (size (nakarnd (1, 1, 0, 1)), [0, 1]) %!assert (size (nakarnd (1, 1, 1, 0)), [1, 0]) %!assert (size (nakarnd (1, 1, 1, 2, 0, 5)), [1, 2, 0, 5]) ## Test class of input preserved %!assert (class (nakarnd (1, 1)), "double") %!assert (class (nakarnd (1, single (1))), "single") %!assert (class (nakarnd (1, single ([1, 1]))), "single") %!assert (class (nakarnd (single (1), 1)), "single") %!assert (class (nakarnd (single ([1, 1]), 1)), "single") ## Test input validation %!error nakarnd () %!error nakarnd (1) %!error ... %! nakarnd (ones (3), ones (2)) %!error ... %! nakarnd (ones (2), ones (3)) %!error nakarnd (i, 2, 3) %!error nakarnd (1, i, 3) %!error ... %! nakarnd (1, 2, -1) %!error ... %! nakarnd (1, 2, 1.2) %!error ... %! nakarnd (1, 2, ones (2)) %!error ... %! nakarnd (1, 2, [2 -1 2]) %!error ... %! nakarnd (1, 2, [2 0 2.5]) %!error ... %! nakarnd (1, 2, 2, -1, 5) %!error ... %! nakarnd (1, 2, 2, 1.5, 5) %!error ... %! nakarnd (2, ones (2), 3) %!error ... %! nakarnd (2, ones (2), [3, 2]) %!error ... %! nakarnd (2, ones (2), 3, 2) statistics-release-1.6.3/inst/dist_fun/nbincdf.m000066400000000000000000000202031456127120000216750ustar00rootroot00000000000000## Copyright (C) 2012 Rik Wehbring ## Copyright (C) 1995-2016 Kurt Hornik ## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{p} =} nbincdf (@var{x}, @var{r}, @var{ps}) ## @deftypefnx {statistics} {@var{p} =} nbincdf (@var{x}, @var{r}, @var{ps}, @qcode{"upper"}) ## ## Negative binomial cumulative distribution function (CDF). ## ## For each element of @var{x}, compute the cumulative distribution function ## (CDF) of the negative binomial distribution with parameters @var{r} and ## @var{ps}, where @var{r} is the number of successes until the experiment is ## stopped and @var{ps} is the probability of success in each experiment, given ## the number of failures in @var{x}. The size of @var{p} is the common size of ## @var{x}, @var{r}, and @var{ps}. A scalar input functions as a constant ## matrix of the same size as the other inputs. ## ## The algorithm uses the cumulative sums of the binomial masses. ## ## @code{@var{p} = nbincdf (@var{x}, @var{r}, @var{ps}, "upper")} computes the ## upper tail probability of the negative binomial distribution with parameters ## @var{r} and @var{ps}, at the values in @var{x}. ## ## When @var{r} is an integer, the negative binomial distribution is also known ## as the Pascal distribution and it models the number of failures in @var{x} ## before a specified number of successes is reached in a series of independent, ## identical trials. Its parameters are the probability of success in a single ## trial, @var{ps}, and the number of successes, @var{r}. A special case of the ## negative binomial distribution, when @qcode{@var{r} = 1}, is the geometric ## distribution, which models the number of failures before the first success. ## ## @var{r} can also have non-integer positive values, in which form the negative ## binomial distribution, also known as the Polya distribution, has no ## interpretation in terms of repeated trials, but, like the Poisson ## distribution, it is useful in modeling count data. The negative binomial ## distribution is more general than the Poisson distribution because it has a ## variance that is greater than its mean, making it suitable for count data ## that do not meet the assumptions of the Poisson distribution. In the limit, ## as @var{r} increases to infinity, the negative binomial distribution ## approaches the Poisson distribution. ## ## Further information about the negative binomial distribution can be found at ## @url{https://en.wikipedia.org/wiki/Negative_binomial_distribution} ## ## @seealso{nbininv, nbinpdf, nbinrnd, nbinfit, nbinlike, nbinstat} ## @end deftypefn function p = nbincdf (x, r, ps, uflag) ## Check for valid number of input arguments if (nargin < 3) error ("nbincdf: function called with too few input arguments."); endif ## Check for "upper" flag if (nargin == 4 && strcmpi (uflag, "upper")) uflag = true; elseif (nargin == 4 && ! strcmpi (uflag, "upper")) error ("nbincdf: invalid argument for upper tail."); else uflag = false; endif ## Check for R and PS being scalars scalarNPS = (isscalar(r) & isscalar(ps)); ## Check for common size of X, R, and PS if (! isscalar (x) || ! isscalar (r) || ! isscalar (ps)) [retval, x, r, ps] = common_size (x, r, ps); if (retval > 0) error ("nbincdf: X, R, and PS must be of common size or scalars."); endif endif ## Check for X, R, and PS being reals if (iscomplex (x) || iscomplex (r) || iscomplex (ps)) error ("nbincdf: X, R, and PS must not be complex."); endif ## Check for class type if (isa (x, "single") || isa (r, "single") || isa (ps, "single")) p = zeros (size (x), "single"); else p = zeros (size (x)); endif ## Force NaN for out of range or missing parameters and missing data NaN is_nan = (isnan (x) | isnan (r) | (r <= 0) | (r == Inf) | (ps < 0) | (ps > 1)); p(is_nan) = NaN; ## Compute P for X >= 0 xf = floor (x); k = find (xf >= 0 & ! is_nan); ## Return 1 for positive infinite values of X, unless "upper" is given: p = 0 k1 = find (isinf (xf(k))); if (any (k1)) if (uflag) p(k(k1)) = 0; else p(k(k1)) = 1; endif k(k1) = []; endif ## Return 1 when X < 0 and "upper" is given k1 = (x < 0 & ! is_nan); if (any (k1)) if (uflag) p(k1) = 1; endif endif ## Accumulate probabilities up to the maximum value in X if (any (k)) if (uflag) p(k) = betainc (ps(k), r(k), xf(k) + 1, "upper"); else max_val = max (xf(k)); if (scalarNPS) tmp = cumsum (nbinpdf (0:max_val, r(1), ps(1))); p(k) = tmp(xf(k) + 1); else idx = (0:max_val)'; compare = idx(:, ones (size (k))); index = xf(k); index = index(:); index = index(:, ones (size (idx)))'; n_big = r(k); n_big = n_big(:); n_big = n_big(:, ones (size (idx)))'; ps_big = ps(k); ps_big = ps_big(:); ps_big = ps_big(:, ones (size (idx)))'; p0 = nbinpdf (compare, n_big, ps_big); indicator = find (compare > index); p0(indicator) = zeros (size (indicator)); p(k) = sum(p0,1); endif endif endif ## Prevent round-off errors p(p > 1) = 1; endfunction %!demo %! ## Plot various CDFs from the negative binomial distribution %! x = 0:50; %! p1 = nbincdf (x, 2, 0.15); %! p2 = nbincdf (x, 5, 0.2); %! p3 = nbincdf (x, 4, 0.4); %! p4 = nbincdf (x, 10, 0.3); %! plot (x, p1, "*r", x, p2, "*g", x, p3, "*k", x, p4, "*m") %! grid on %! xlim ([0, 40]) %! legend ({"r = 2, ps = 0.15", "r = 5, ps = 0.2", "r = 4, p = 0.4", ... %! "r = 10, ps = 0.3"}, "location", "southeast") %! title ("Negative binomial CDF") %! xlabel ("values in x (number of failures)") %! ylabel ("probability") ## Test output %!shared x, y %! x = [-1 0 1 2 Inf]; %! y = [0 1/2 3/4 7/8 1]; %!assert (nbincdf (x, ones (1,5), 0.5*ones (1,5)), y) %!assert (nbincdf (x, 1, 0.5*ones (1,5)), y) %!assert (nbincdf (x, ones (1,5), 0.5), y) %!assert (nbincdf (x, ones (1,5), 0.5, "upper"), 1 - y, eps) %!assert (nbincdf ([x(1:3) 0 x(5)], [0 1 NaN 1.5 Inf], 0.5), ... %! [NaN 1/2 NaN nbinpdf(0,1.5,0.5) NaN], eps) %!assert (nbincdf (x, 1, 0.5*[-1 NaN 4 1 1]), [NaN NaN NaN y(4:5)]) %!assert (nbincdf ([x(1:2) NaN x(4:5)], 1, 0.5), [y(1:2) NaN y(4:5)]) ## Test class of input preserved %!assert (nbincdf ([x, NaN], 1, 0.5), [y, NaN]) %!assert (nbincdf (single ([x, NaN]), 1, 0.5), single ([y, NaN])) %!assert (nbincdf ([x, NaN], single (1), 0.5), single ([y, NaN])) %!assert (nbincdf ([x, NaN], 1, single (0.5)), single ([y, NaN])) ## Test input validation %!error nbincdf () %!error nbincdf (1) %!error nbincdf (1, 2) %!error nbincdf (1, 2, 3, 4) %!error nbincdf (1, 2, 3, "some") %!error ... %! nbincdf (ones (3), ones (2), ones (2)) %!error ... %! nbincdf (ones (2), ones (3), ones (2)) %!error ... %! nbincdf (ones (2), ones (2), ones (3)) %!error nbincdf (i, 2, 2) %!error nbincdf (2, i, 2) %!error nbincdf (2, 2, i) statistics-release-1.6.3/inst/dist_fun/nbininv.m000066400000000000000000000207331456127120000217450ustar00rootroot00000000000000## Copyright (C) 1995-2012 Kurt Hornik ## Copyright (C) 2012-2016 Rik Wehbring ## Copyright (C) 2016-2017 Lachlan Andrew ## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{x} =} nbininv (@var{p}, @var{r}, @var{ps}) ## ## Inverse of the negative binomial cumulative distribution function (iCDF). ## ## For each element of @var{p}, compute the quantile (the inverse of the CDF) of ## the negative binomial distribution with parameters @var{r} and @var{ps}, ## where @var{r} is the number of successes until the experiment is stopped and ## @var{ps} is the probability of success in each experiment, given the ## probability in @var{p}. The size of @var{x} is the common size of @var{p}, ## @var{r}, and @var{ps}. A scalar input functions as a constant matrix of the ## same size as the other inputs. ## ## When @var{r} is an integer, the negative binomial distribution is also known ## as the Pascal distribution and it models the number of failures in @var{x} ## before a specified number of successes is reached in a series of independent, ## identical trials. Its parameters are the probability of success in a single ## trial, @var{ps}, and the number of successes, @var{r}. A special case of the ## negative binomial distribution, when @qcode{@var{r} = 1}, is the geometric ## distribution, which models the number of failures before the first success. ## ## @var{r} can also have non-integer positive values, in which form the negative ## binomial distribution, also known as the Polya distribution, has no ## interpretation in terms of repeated trials, but, like the Poisson ## distribution, it is useful in modeling count data. The negative binomial ## distribution is more general than the Poisson distribution because it has a ## variance that is greater than its mean, making it suitable for count data ## that do not meet the assumptions of the Poisson distribution. In the limit, ## as @var{r} increases to infinity, the negative binomial distribution ## approaches the Poisson distribution. ## ## Further information about the negative binomial distribution can be found at ## @url{https://en.wikipedia.org/wiki/Negative_binomial_distribution} ## ## @seealso{nbininv, nbinpdf, nbinrnd, nbinfit, nbinlike, nbinstat} ## @end deftypefn function x = nbininv (p, r, ps) ## Check for valid number of input arguments if (nargin < 3) error ("nbininv: function called with too few input arguments."); endif ## Check for common size of P, R, and PS if (! isscalar (p) || ! isscalar (r) || ! isscalar (ps)) [retval, p, r, ps] = common_size (p, r, ps); if (retval > 0) error ("nbininv: P, R, and PS must be of common size or scalars."); endif endif ## Check for P, R, and PS being reals if (iscomplex (p) || iscomplex (r) || iscomplex (ps)) error ("nbininv: P, R, and PS must not be complex."); endif ## Check for class type if (isa (p, "single") || isa (r, "single") || isa (ps, "single")) x = zeros (size (p), "single"); else x = zeros (size (p)); endif k = (isnan (p) | (p < 0) | (p > 1) | isnan (r) | (r < 1) | (r == Inf) | isnan (ps) | (ps < 0) | (ps > 1)); x(k) = NaN; k = (p == 1) & (r > 0) & (r < Inf) & (ps >= 0) & (ps <= 1); x(k) = Inf; k = find ((p >= 0) & (p < 1) & (r > 0) & (r < Inf) & (ps > 0) & (ps <= 1)); if (! isempty (k)) p = p(k); m = zeros (size (k)); if (isscalar (r) && isscalar (ps)) [m, unfinished] = scalar_nbininv (p(:), r, ps); m(unfinished) = bin_search_nbininv (p(unfinished), r, ps); else m = bin_search_nbininv (p, r(k), ps(k)); endif x(k) = m; endif endfunction ## Core algorithm to calculate the inverse negative binomial, for r and ps real ## scalars and y a column vector, and for which the output is not NaN or Inf. ## Compute CDF in batches of doubling size until CDF > p, or answer > 500. ## Return the locations of unfinished cases in k. function [m, k] = scalar_nbininv (p, r, ps) k = 1:length (p); m = zeros (size (p)); prev_limit = 0; limit = 10; do cdf = nbincdf (prev_limit:limit, r, ps); rr = bsxfun (@le, p(k), cdf); [v, m(k)] = max (rr, [], 2); # find first instance of p <= cdf m(k) += prev_limit - 1; k = k(v == 0); prev_limit = limit; limit += limit; until (isempty (k) || limit >= 1000) endfunction ## Vectorized binary search. ## Can handle vectors r and ps, and is faster than the scalar case when the ## answer is large. ## Could be optimized to call nbincdf only for a subset of the p at each stage, ## but care must be taken to handle both scalar and vector r,ps. Bookkeeping ## may cost more than the extra computations. function m = bin_search_nbininv (p, r, ps) k = 1:length (p); lower = zeros (size (p)); limit = 1; while (any (k) && limit < 1e100) cdf = nbincdf (limit, r, ps); k = (p > cdf); lower(k) = limit; limit += limit; endwhile upper = max (2*lower, 1); k = find (lower != limit/2); # elements for which above loop finished for i = 1:ceil (log2 (max (lower))) mid = (upper + lower)/2; cdf = nbincdf (floor (mid), r, ps); rr = (p <= cdf); upper(rr) = mid(rr); lower(! rr) = mid(! rr); endfor m = ceil (lower); m(p > nbincdf (m, r, ps)) += 1; # fix off-by-one errors from binary search endfunction %!demo %! ## Plot various iCDFs from the negative binomial distribution %! p = 0.001:0.001:0.999; %! x1 = nbininv (p, 2, 0.15); %! x2 = nbininv (p, 5, 0.2); %! x3 = nbininv (p, 4, 0.4); %! x4 = nbininv (p, 10, 0.3); %! plot (p, x1, "-r", p, x2, "-g", p, x3, "-k", p, x4, "-m") %! grid on %! ylim ([0, 40]) %! legend ({"r = 2, ps = 0.15", "r = 5, ps = 0.2", "r = 4, p = 0.4", ... %! "r = 10, ps = 0.3"}, "location", "northwest") %! title ("Negative binomial iCDF") %! xlabel ("probability") %! ylabel ("values in x (number of failures)") ## Test output %!shared p %! p = [-1 0 3/4 1 2]; %!assert (nbininv (p, ones (1,5), 0.5*ones (1,5)), [NaN 0 1 Inf NaN]) %!assert (nbininv (p, 1, 0.5*ones (1,5)), [NaN 0 1 Inf NaN]) %!assert (nbininv (p, ones (1,5), 0.5), [NaN 0 1 Inf NaN]) %!assert (nbininv (p, [1 0 NaN Inf 1], 0.5), [NaN NaN NaN NaN NaN]) %!assert (nbininv (p, [1 0 1.5 Inf 1], 0.5), [NaN NaN 2 NaN NaN]) %!assert (nbininv (p, 1, 0.5*[1 -Inf NaN Inf 1]), [NaN NaN NaN NaN NaN]) %!assert (nbininv ([p(1:2) NaN p(4:5)], 1, 0.5), [NaN 0 NaN Inf NaN]) ## Test class of input preserved %!assert (nbininv ([p, NaN], 1, 0.5), [NaN 0 1 Inf NaN NaN]) %!assert (nbininv (single ([p, NaN]), 1, 0.5), single ([NaN 0 1 Inf NaN NaN])) %!assert (nbininv ([p, NaN], single (1), 0.5), single ([NaN 0 1 Inf NaN NaN])) %!assert (nbininv ([p, NaN], 1, single (0.5)), single ([NaN 0 1 Inf NaN NaN])) ## Test accuracy, to within +/- 1 since it is a discrete distribution %!shared y, tol %! y = magic (3) + 1; %! tol = 1; %!assert (nbininv (nbincdf (1:10, 3, 0.1), 3, 0.1), 1:10, tol) %!assert (nbininv (nbincdf (1:10, 3./(1:10), 0.1), 3./(1:10), 0.1), 1:10, tol) %!assert (nbininv (nbincdf (y, 3./y, 1./y), 3./y, 1./y), y, tol) ## Test input validation %!error nbininv () %!error nbininv (1) %!error nbininv (1, 2) %!error ... %! nbininv (ones (3), ones (2), ones (2)) %!error ... %! nbininv (ones (2), ones (3), ones (2)) %!error ... %! nbininv (ones (2), ones (2), ones (3)) %!error nbininv (i, 2, 2) %!error nbininv (2, i, 2) %!error nbininv (2, 2, i) statistics-release-1.6.3/inst/dist_fun/nbinpdf.m000066400000000000000000000137731456127120000217300ustar00rootroot00000000000000## Copyright (C) 2012 Rik Wehbring ## Copyright (C) 1995-2016 Kurt Hornik ## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{y} =} nbinpdf (@var{x}, @var{r}, @var{ps}) ## ## Negative binomial probability density function (PDF). ## ## For each element of @var{x}, compute the probability density function (PDF) ## at @var{x} of the negative binomial distribution with parameters @var{r} and ## @var{ps}, where @var{r} is the number of successes until the experiment is ## stopped and @var{ps} is the probability of success in each experiment, given ## the number of failures in @var{x}. The size of @var{y} is the common size of ## @var{x}, @var{r}, and @var{ps}. A scalar input functions as a constant ## matrix of the same size as the other inputs. ## ## When @var{r} is an integer, the negative binomial distribution is also known ## as the Pascal distribution and it models the number of failures in @var{x} ## before a specified number of successes is reached in a series of independent, ## identical trials. Its parameters are the probability of success in a single ## trial, @var{ps}, and the number of successes, @var{r}. A special case of the ## negative binomial distribution, when @qcode{@var{r} = 1}, is the geometric ## distribution, which models the number of failures before the first success. ## ## @var{r} can also have non-integer positive values, in which form the negative ## binomial distribution, also known as the Polya distribution, has no ## interpretation in terms of repeated trials, but, like the Poisson ## distribution, it is useful in modeling count data. The negative binomial ## distribution is more general than the Poisson distribution because it has a ## variance that is greater than its mean, making it suitable for count data ## that do not meet the assumptions of the Poisson distribution. In the limit, ## as @var{r} increases to infinity, the negative binomial distribution ## approaches the Poisson distribution. ## ## Further information about the negative binomial distribution can be found at ## @url{https://en.wikipedia.org/wiki/Negative_binomial_distribution} ## ## @seealso{nbininv, nbininv, nbinrnd, nbinfit, nbinlike, nbinstat} ## @end deftypefn function y = nbinpdf (x, r, ps) ## Check for valid number of input arguments if (nargin < 3) error ("nbinpdf: function called with too few input arguments."); endif ## Check for common size of X, R, and PS if (! isscalar (x) || ! isscalar (r) || ! isscalar (ps)) [retval, x, r, ps] = common_size (x, r, ps); if (retval > 0) error ("nbinpdf: X, R, and PS must be of common size or scalars."); endif endif ## Check for X, R, and PS being reals if (iscomplex (x) || iscomplex (r) || iscomplex (ps)) error ("nbinpdf: X, R, and PS must not be complex."); endif ## Check for class type if (isa (x, "single") || isa (r, "single") || isa (ps, "single")) y = NaN (size (x), "single"); else y = NaN (size (x)); endif ok = (x < Inf) & (x == fix (x)) & (r > 0) & (r < Inf) & (ps >= 0) & (ps <= 1); k = (x < 0) & ok; y(k) = 0; k = (x >= 0) & ok; if (isscalar (r) && isscalar (ps)) y(k) = bincoeff (-r, x(k)) .* (ps ^ r) .* ((ps - 1) .^ x(k)); else y(k) = bincoeff (-r(k), x(k)) .* (ps(k) .^ r(k)) .* ((ps(k) - 1) .^ x(k)); endif endfunction %!demo %! ## Plot various PDFs from the negative binomial distribution %! x = 0:40; %! y1 = nbinpdf (x, 2, 0.15); %! y2 = nbinpdf (x, 5, 0.2); %! y3 = nbinpdf (x, 4, 0.4); %! y4 = nbinpdf (x, 10, 0.3); %! plot (x, y1, "*r", x, y2, "*g", x, y3, "*k", x, y4, "*m") %! grid on %! xlim ([0, 40]) %! ylim ([0, 0.12]) %! legend ({"r = 2, ps = 0.15", "r = 5, ps = 0.2", "r = 4, p = 0.4", ... %! "r = 10, ps = 0.3"}, "location", "northeast") %! title ("Negative binomial PDF") %! xlabel ("values in x (number of failures)") %! ylabel ("density") ## Test output %!shared x, y %! x = [-1 0 1 2 Inf]; %! y = [0 1/2 1/4 1/8 NaN]; %!assert (nbinpdf (x, ones (1,5), 0.5*ones (1,5)), y) %!assert (nbinpdf (x, 1, 0.5*ones (1,5)), y) %!assert (nbinpdf (x, ones (1,5), 0.5), y) %!assert (nbinpdf (x, [0 1 NaN 1.5 Inf], 0.5), [NaN 1/2 NaN 1.875*0.5^1.5/4 NaN], eps) %!assert (nbinpdf (x, 1, 0.5*[-1 NaN 4 1 1]), [NaN NaN NaN y(4:5)]) %!assert (nbinpdf ([x, NaN], 1, 0.5), [y, NaN]) ## Test class of input preserved %!assert (nbinpdf (single ([x, NaN]), 1, 0.5), single ([y, NaN])) %!assert (nbinpdf ([x, NaN], single (1), 0.5), single ([y, NaN])) %!assert (nbinpdf ([x, NaN], 1, single (0.5)), single ([y, NaN])) ## Test input validation %!error nbinpdf () %!error nbinpdf (1) %!error nbinpdf (1, 2) %!error ... %! nbinpdf (ones (3), ones (2), ones (2)) %!error ... %! nbinpdf (ones (2), ones (3), ones (2)) %!error ... %! nbinpdf (ones (2), ones (2), ones (3)) %!error nbinpdf (i, 2, 2) %!error nbinpdf (2, i, 2) %!error nbinpdf (2, 2, i) statistics-release-1.6.3/inst/dist_fun/nbinrnd.m000066400000000000000000000202101456127120000217220ustar00rootroot00000000000000## Copyright (C) 2012 Rik Wehbring ## Copyright (C) 1995-2016 Kurt Hornik ## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{rnd} =} nbinrnd (@var{r}, @var{ps}) ## @deftypefnx {statistics} {@var{rnd} =} nbinrnd (@var{r}, @var{ps}, @var{rows}) ## @deftypefnx {statistics} {@var{rnd} =} nbinrnd (@var{r}, @var{ps}, @var{rows}, @var{cols}, @dots{}) ## @deftypefnx {statistics} {@var{rnd} =} nbinrnd (@var{r}, @var{ps}, [@var{sz}]) ## ## Random arrays from the negative binomial distribution. ## ## @code{@var{rnd} = nbinrnd (@var{r}, @var{ps})} returns an array of random ## numbers chosen from the Laplace distribution with parameters @var{r} and ## @var{ps}, where @var{r} is the number of successes until the experiment is ## stopped and @var{ps} is the probability of success in each experiment, given ## the number of failures in @var{x}. The size of @var{rnd} is the common size ## of @var{r} and @var{ps}. A scalar input functions as a constant matrix of ## the same size as the other inputs. ## ## When called with a single size argument, return a square matrix with ## the dimension specified. When called with more than one scalar argument the ## first two arguments are taken as the number of rows and columns and any ## further arguments specify additional matrix dimensions. The size may also ## be specified with a vector of dimensions @var{sz}. ## ## When @var{r} is an integer, the negative binomial distribution is also known ## as the Pascal distribution and it models the number of failures in @var{x} ## before a specified number of successes is reached in a series of independent, ## identical trials. Its parameters are the probability of success in a single ## trial, @var{ps}, and the number of successes, @var{r}. A special case of the ## negative binomial distribution, when @qcode{@var{r} = 1}, is the geometric ## distribution, which models the number of failures before the first success. ## ## @var{r} can also have non-integer positive values, in which form the negative ## binomial distribution, also known as the Polya distribution, has no ## interpretation in terms of repeated trials, but, like the Poisson ## distribution, it is useful in modeling count data. The negative binomial ## distribution is more general than the Poisson distribution because it has a ## variance that is greater than its mean, making it suitable for count data ## that do not meet the assumptions of the Poisson distribution. In the limit, ## as @var{r} increases to infinity, the negative binomial distribution ## approaches the Poisson distribution. ## ## Further information about the negative binomial distribution can be found at ## @url{https://en.wikipedia.org/wiki/Negative_binomial_distribution} ## ## @seealso{nbininv, nbininv, nbinpdf, nbinfit, nbinlike, nbinstat} ## @end deftypefn function rnd = nbinrnd (r, ps, varargin) ## Check for valid number of input arguments if (nargin < 2) error ("nbinrnd: function called with too few input arguments."); endif ## Check for common size R and PS if (! isscalar (r) || ! isscalar (ps)) [retval, r, ps] = common_size (r, ps); if (retval > 0) error ("nbinrnd: R and PS must be of common size or scalars."); endif endif ## Check for R and PS being reals if (iscomplex (r) || iscomplex (ps)) error ("nbinrnd: R and PS must not be complex."); endif ## Parse and check SIZE arguments if (nargin == 2) sz = size (r); elseif (nargin == 3) if (isscalar (varargin{1}) && varargin{1} >= 0 ... && varargin{1} == fix (varargin{1})) sz = [varargin{1}, varargin{1}]; elseif (isrow (varargin{1}) && all (varargin{1} >= 0) ... && all (varargin{1} == fix (varargin{1}))) sz = varargin{1}; elseif error (strcat (["nbinrnd: SZ must be a scalar or a row vector"], ... [" of non-negative integers."])); endif elseif (nargin > 3) posint = cellfun (@(x) (! isscalar (x) || x < 0 || x != fix (x)), varargin); if (any (posint)) error ("nbinrnd: dimensions must be non-negative integers."); endif sz = [varargin{:}]; endif ## Check that parameters match requested dimensions in size if (! isscalar (r) && ! isequal (size (r), sz)) error ("nbinrnd: R and PS must be scalars or of size SZ."); endif ## Check for class type if (isa (r, "single") || isa (ps, "single")) cls = "single"; else cls = "double"; endif ## Generate random sample from negative binomial distribution if (isscalar (r) && isscalar (ps)) if ((r > 0) && (r < Inf) && (ps > 0) && (ps <= 1)) rnd = randp ((1 - ps) ./ ps .* randg (r, sz, cls), cls); elseif ((r > 0) && (r < Inf) && (ps == 0)) rnd = zeros (sz, cls); else rnd = NaN (sz, cls); endif else rnd = NaN (sz, cls); k = (r > 0) & (r < Inf) & (ps == 0); rnd(k) = 0; k = (r > 0) & (r < Inf) & (ps > 0) & (ps <= 1); rnd(k) = randp ((1 - ps(k)) ./ ps(k) .* randg (r(k), cls)); endif endfunction ## Test output %!assert (size (nbinrnd (1, 0.5)), [1 1]) %!assert (size (nbinrnd (1, 0.5 * ones (2,1))), [2, 1]) %!assert (size (nbinrnd (1, 0.5 * ones (2,2))), [2, 2]) %!assert (size (nbinrnd (ones (2,1), 0.5)), [2, 1]) %!assert (size (nbinrnd (ones (2,2), 0.5)), [2, 2]) %!assert (size (nbinrnd (1, 0.5, 3)), [3, 3]) %!assert (size (nbinrnd (1, 0.5, [4, 1])), [4, 1]) %!assert (size (nbinrnd (1, 0.5, 4, 1)), [4, 1]) %!assert (size (nbinrnd (1, 0.5, 4, 1, 5)), [4, 1, 5]) %!assert (size (nbinrnd (1, 0.5, 0, 1)), [0, 1]) %!assert (size (nbinrnd (1, 0.5, 1, 0)), [1, 0]) %!assert (size (nbinrnd (1, 0.5, 1, 2, 0, 5)), [1, 2, 0, 5]) ## Test class of input preserved %!assert (class (nbinrnd (1, 0.5)), "double") %!assert (class (nbinrnd (1, single (0.5))), "single") %!assert (class (nbinrnd (1, single ([0.5, 0.5]))), "single") %!assert (class (nbinrnd (single (1), 0.5)), "single") %!assert (class (nbinrnd (single ([1, 1]), 0.5)), "single") ## Test input validation %!error nbinrnd () %!error nbinrnd (1) %!error ... %! nbinrnd (ones (3), ones (2)) %!error ... %! nbinrnd (ones (2), ones (3)) %!error nbinrnd (i, 2, 3) %!error nbinrnd (1, i, 3) %!error ... %! nbinrnd (1, 2, -1) %!error ... %! nbinrnd (1, 2, 1.2) %!error ... %! nbinrnd (1, 2, ones (2)) %!error ... %! nbinrnd (1, 2, [2 -1 2]) %!error ... %! nbinrnd (1, 2, [2 0 2.5]) %!error ... %! nbinrnd (1, 2, 2, -1, 5) %!error ... %! nbinrnd (1, 2, 2, 1.5, 5) %!error ... %! nbinrnd (2, ones (2), 3) %!error ... %! nbinrnd (2, ones (2), [3, 2]) %!error ... %! nbinrnd (2, ones (2), 3, 2) statistics-release-1.6.3/inst/dist_fun/ncfcdf.m000066400000000000000000000226221456127120000215240ustar00rootroot00000000000000## Copyright (C) 2022-2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{p} =} ncfcdf (@var{x}, @var{df1}, @var{df2}, @var{lambda}) ## @deftypefnx {statistics} {@var{p} =} ncfcdf (@var{x}, @var{df1}, @var{df2}, @var{lambda}, @qcode{"upper"}) ## ## Noncentral @math{F}-cumulative distribution function (CDF). ## ## For each element of @var{x}, compute the cumulative distribution function ## (CDF) of the noncentral @math{F}-distribution with @var{df1} and @var{df2} ## degrees of freedom and noncentrality parameter @var{lambda}. The size of ## @var{p} is the common size of @var{x}, @var{df1}, @var{df2}, and ## @var{lambda}. A scalar input functions as a constant matrix of the same size ## as the other inputs. ## ## @code{@var{p} = ncfcdf (@var{x}, @var{df1}, @var{df2}, @var{lambda}, "upper")} ## computes the upper tail probability of the noncentral @math{F}-distribution ## with parameters @var{df1}, @var{df2}, and @var{lambda}, at the values in ## @var{x}. ## ## Further information about the noncentral @math{F}-distribution can be found ## at @url{https://en.wikipedia.org/wiki/Noncentral_F-distribution} ## ## @seealso{ncfinv, ncfpdf, ncfrnd, ncfstat, fcdf} ## @end deftypefn function p = ncfcdf (x, df1, df2, lambda, uflag) ## Check for valid number of input arguments if (nargin < 4) error ("ncfcdf: function called with too few input arguments."); endif ## Check for valid "upper" flag if (nargin > 4) if (! strcmpi (uflag, "upper")) error ("ncfcdf: invalid argument for upper tail."); else uflag = true; endif else uflag = false; endif ## Check for common size of X, DF1, DF2, and LAMBDA [err, x, df1, df2, lambda] = common_size (x, df1, df2, lambda); if (err > 0) error ("ncfcdf: X, DF1, DF2, and LAMBDA must be of common size or scalars."); endif ## Check for X, DF1, DF2, and LAMBDA being reals if (iscomplex (x) || iscomplex (df1) || iscomplex (df2) || iscomplex (lambda)) error ("ncfcdf: X, DF1, DF2, and LAMBDA must not be complex."); endif ## Check for class type if (isa (x, "single") || isa (df1, "single") || ... isa (df2, "single") || isa (lambda, "single")) p = zeros (size (x), "single"); c_eps = eps ("single") .^ (3/4); else p = zeros (size (x)); c_eps = eps .^ (3/4); endif ## Find NaNs in input arguments (if any) and propagate them to p is_nan = isnan (x) | isnan (df1) | isnan (df1) | isnan (lambda); p(is_nan) = NaN; ## For "upper" option, force p = 1 for x <= 0, and p = 0 for x == Inf, ## otherwise, force p = 1 for x == Inf. if (uflag) p(x == Inf & ! is_nan) = 0; p(x <= 0 & ! is_nan) = 1; else p(x == Inf & ! is_nan) = 1; endif ## Find invalid values of parameters and propagate them to p as NaN k = (df1 <= 0 | df2 <= 0 | lambda < 0); p(k) = NaN; ## Compute central distribution (lambda == 0) k0 = (lambda==0); if (any (k0(:))) if (uflag) p(k0) = fcdf (x(k0), df1(k0), df2(k0), "upper"); else p(k0) = fcdf (x(k0), df1(k0), df2(k0)); endif endif ## Check if there are remaining elements and reset variables k1 = ! (k0 | k | x == Inf | x <= 0 | is_nan); if (! any (k1(:))) return; else x = x(k1); df1 = df1(k1); df2 = df2(k1); lambda = lambda(k1); endif ## Prepare variables x = x(:); df1 = df1(:) / 2; df2 = df2(:) / 2; lambda = lambda(:) / 2; ## Value passed to Beta distribution function. tmp = df1 .* x ./ (df2 + df1 .* x); logtmp = log (tmp); nu2const = df2 .* log (1 - tmp) - localgammaln (df2); ## Sum the series. The general idea is that we are going to sum terms ## of the form 'poisspdf(j,lambda) .* betacdf(tmp,j+df1,df2)' j0 = floor (lambda(:)); ## Compute Poisson pdf and beta cdf at the starting point if (uflag) bcdf0 = betainc (tmp, j0 + df1, df2, "upper"); else bcdf0 = betacdf (tmp, j0 + df1, df2); endif ppdf0 = exp (-lambda + j0 .* log (lambda) - localgammaln (j0 + 1)); ## Set up for loop over values less than j0 y = ppdf0 .* bcdf0; ppdf = ppdf0; bcdf = bcdf0; olddy = zeros (size (lambda)); delty = zeros (size (lambda)); j = j0 - 1; ok = j >= 0; while (any (ok)) ## Use recurrence relation to compute new pdf and cdf ppdf(ok) = ppdf(ok) .* (j(ok) + 1) ./ lambda(ok); if (uflag) bcdf(ok) = betainc (tmp(ok), j(ok) + df1(ok), df2(ok), "upper"); else db = exp ((j + df1) .* logtmp + nu2const + ... localgammaln (j + df1 + df2) - localgammaln (j + df1 + 1)); bcdf(ok) = bcdf(ok) + db(ok); endif delty(ok) = ppdf(ok) .* bcdf(ok); y(ok) = y(ok) + delty(ok); ## Convergence test: change must be small and not increasing ok = ok & (delty > y*c_eps | abs (delty) > olddy); j = j - 1; ok = ok & j >= 0; olddy(ok) = abs (delty(ok)); endwhile ## Set up again for loop upward from j0 ppdf = ppdf0; bcdf = bcdf0; olddy = zeros (size (lambda)); j = j0 + 1; ok = true(size(j)); ## Set up for loop to avoid endless loop for jj = 1:5000 ppdf = ppdf .* lambda ./ j; if (uflag) bcdf = betainc (tmp, j + df1, df2, "upper"); else bcdf = bcdf - exp ((j + df1 - 1) .* logtmp + nu2const + ... localgammaln (j + df1 + df2 - 1) - localgammaln (j + df1)); endif delty = ppdf.*bcdf; ## ok = indices not converged y(ok) = y(ok) + delty(ok); ## Convergence test: change must be small and not increasing ok = ok & (delty>y*c_eps | abs(delty)>olddy); ## Break if all indices converged if (! any (ok)) break; endif olddy(ok) = abs (delty(ok)); j = j + 1; endfor if (jj == 5000) warning ("ncfcdf: no convergence."); endif ## Save returning p-value p(k1) = y; endfunction function x = localgammaln (y) x = Inf (size (y), class (y)); x(! (y < 0)) = gammaln (y(! (y < 0))); endfunction %!demo %! ## Plot various CDFs from the noncentral F distribution %! x = 0:0.01:5; %! p1 = ncfcdf (x, 2, 5, 1); %! p2 = ncfcdf (x, 2, 5, 2); %! p3 = ncfcdf (x, 5, 10, 1); %! p4 = ncfcdf (x, 10, 20, 10); %! plot (x, p1, "-r", x, p2, "-g", x, p3, "-k", x, p4, "-m") %! grid on %! xlim ([0, 5]) %! legend ({"df1 = 2, df2 = 5, λ = 1", "df1 = 2, df2 = 5, λ = 2", ... %! "df1 = 5, df2 = 10, λ = 1", "df1 = 10, df2 = 20, λ = 10"}, ... %! "location", "southeast") %! title ("Noncentral F CDF") %! xlabel ("values in x") %! ylabel ("probability") %!demo %! ## Compare the noncentral F CDF with LAMBDA = 10 to the F CDF with the %! ## same number of numerator and denominator degrees of freedom (5, 20) %! %! x = 0.01:0.1:10.01; %! p1 = ncfcdf (x, 5, 20, 10); %! p2 = fcdf (x, 5, 20); %! plot (x, p1, "-", x, p2, "-"); %! grid on %! xlim ([0, 10]) %! legend ({"Noncentral F(5,20,10)", "F(5,20)"}, "location", "southeast") %! title ("Noncentral F vs F CDFs") %! xlabel ("values in x") %! ylabel ("probability") ## Test output %!test %! x = -2:0.1:2; %! p = ncfcdf (x, 10, 1, 3); %! assert (p([1:21]), zeros (1, 21), 1e-76); %! assert (p(22), 0.004530737275319753, 1e-14); %! assert (p(30), 0.255842099135669, 1e-14); %! assert (p(41), 0.4379890998457305, 1e-14); %!test %! p = ncfcdf (12, 10, 3, 2); %! assert (p, 0.9582287900447416, 1e-14); %!test %! p = ncfcdf (2, 3, 2, 1); %! assert (p, 0.5731985522994989, 1e-14); %!test %! p = ncfcdf (2, 3, 2, 1, "upper"); %! assert (p, 0.4268014477004823, 1e-14); %!test %! p = ncfcdf ([3, 6], 3, 2, 5, "upper"); %! assert (p, [0.530248523596927, 0.3350482341323044], 1e-14); ## Test input validation %!error ncfcdf () %!error ncfcdf (1) %!error ncfcdf (1, 2) %!error ncfcdf (1, 2, 3) %!error ncfcdf (1, 2, 3, 4, "tail") %!error ncfcdf (1, 2, 3, 4, 5) %!error ... %! ncfcdf (ones (3), ones (2), ones (2), ones (2)) %!error ... %! ncfcdf (ones (2), ones (3), ones (2), ones (2)) %!error ... %! ncfcdf (ones (2), ones (2), ones (3), ones (2)) %!error ... %! ncfcdf (ones (2), ones (2), ones (2), ones (3)) %!error ncfcdf (i, 2, 2, 2) %!error ncfcdf (2, i, 2, 2) %!error ncfcdf (2, 2, i, 2) %!error ncfcdf (2, 2, 2, i) statistics-release-1.6.3/inst/dist_fun/ncfinv.m000066400000000000000000000171771456127120000215750ustar00rootroot00000000000000## Copyright (C) 2022-2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{x} =} ncfinv (@var{p}, @var{df1}, @var{df2}, @var{lambda}) ## ## Inverse of the noncentral @math{F}-cumulative distribution function (iCDF). ## ## For each element of @var{p}, compute the quantile (the inverse of the CDF) of ## the noncentral @math{F}-distribution with @var{df1} and @var{df2} degrees of ## freedom and noncentrality parameter @var{lambda}. The size of @var{x} is the ## common size of @var{p}, @var{df1}, @var{df2}, and @var{lambda}. A scalar ## input functions as a constant matrix of the same size as the other inputs. ## ## @code{ncfinv} uses Newton's method to converge to the solution. ## ## Further information about the noncentral @math{F}-distribution can be found ## at @url{https://en.wikipedia.org/wiki/Noncentral_F-distribution} ## ## @seealso{ncfcdf, ncfpdf, ncfrnd, ncfstat, finv} ## @end deftypefn function x = ncfinv (p, df1, df2, lambda) ## Check for valid number of input arguments if (nargin < 4) error ("ncfinv: function called with too few input arguments."); endif ## Check for common size of P, DF1, DF2, and LAMBDA [err, p, df1, df2, lambda] = common_size (p, df1, df2, lambda); if (err > 0) error ("ncfinv: P, DF1, DF2, and LAMBDA must be of common size or scalars."); endif ## Check for P, DF1, DF2, and LAMBDA being reals if (iscomplex (p) || iscomplex (df1) || iscomplex (df2) || iscomplex (lambda)) error ("ncfinv: P, DF1, DF2, and LAMBDA must not be complex."); endif ## Check for class type if (isa (p, "single") || isa (df1, "single") || ... isa (df2, "single") || isa (lambda, "single")) x = NaN (size (p), "single"); crit = sqrt (eps ("single")); else x = NaN (size (p), "double"); crit = sqrt (eps ("double")); endif ## For lambda == 0, call finv d0 = lambda == 0; if (any (d0(:))) x(d0) = finv (p(d0), df1(d0), df2(d0)); endif ## For lambda > 0 and valid dfs valid = df1 > 0 & df2 > 0 & lambda > 0; ## Force x = 0 for p == 0 ax = Inf for p ==1 x(p == 0 & valid) = 0; x(p == 1 & valid) = Inf; ## Find remaining valid cases within the range of 0 < p < 1 k = find (p > 0 & p < 1 & valid); ## Return if nothing left if isempty(k) return; endif ## Reset input variables to remaining cases p = p(k); df1 = df1(k); df2 = df2(k); lambda = lambda(k); ## Initialize counter count_limit = 100; count = 0; ## Start at the mean (if it exists) mu0 = df2.*(df1+lambda) ./ (df1.*max(1,df2-2)); next = mu0; prev = 0; F = ncfcdf (mu0, df1, df2, lambda); while(count < count_limit) count += 1; next = (F - p) ./ ncfpdf (mu0, df1, df2, lambda); ## Prevent oscillations if (length (next) == length (prev)) t = sign (next) == -sign (prev); next(t) = sign (next(t)) .* min (abs (next(t)), abs (prev(t))) / 2; endif ## Prepare for next step mu1 = max (mu0 / 5, min (5 * mu0, mu0 - next)); ## Check that next step improves, otherwise abort F1 = ncfcdf (mu1, df1, df2, lambda); while (true) worse = (abs (F1-p) > abs (F - p) * (1 + crit)) & ... (abs (mu0 - mu1) > crit * mu0); if (! any (worse)) break; endif mu1(worse) = 0.5 * (mu1(worse) + mu0(worse)); F1(worse) = ncfcdf (mu1(worse), df1(worse), df2(worse), lambda(worse)); endwhile x(k) = mu1; ## Find elements that are not converged yet next = mu0 - mu1; mask = (abs (next) > crit * abs (mu0)); if (! any (mask)) break; endif ## Save parameters for these elements only F = F1(mask); mu0 = mu1(mask); prev = next(mask); if (! all(mask)) df1 = df1(mask); df2 = df2(mask); lambda = lambda(mask); p = p(mask); k = k(mask); endif endwhile if (count == count_limit) warning ("ncfinv: did not converge."); endif endfunction %!demo %! ## Plot various iCDFs from the noncentral F distribution %! p = 0.001:0.001:0.999; %! x1 = ncfinv (p, 2, 5, 1); %! x2 = ncfinv (p, 2, 5, 2); %! x3 = ncfinv (p, 5, 10, 1); %! x4 = ncfinv (p, 10, 20, 10); %! plot (p, x1, "-r", p, x2, "-g", p, x3, "-k", p, x4, "-m") %! grid on %! ylim ([0, 5]) %! legend ({"df1 = 2, df2 = 5, λ = 1", "df1 = 2, df2 = 5, λ = 2", ... %! "df1 = 5, df2 = 10, λ = 1", "df1 = 10, df2 = 20, λ = 10"}, ... %! "location", "northwest") %! title ("Noncentral F iCDF") %! xlabel ("probability") %! ylabel ("values in x") %!demo %! ## Compare the noncentral F iCDF with LAMBDA = 10 to the F iCDF with the %! ## same number of numerator and denominator degrees of freedom (5, 20) %! %! p = 0.001:0.001:0.999; %! x1 = ncfinv (p, 5, 20, 10); %! x2 = finv (p, 5, 20); %! plot (p, x1, "-", p, x2, "-"); %! grid on %! ylim ([0, 10]) %! legend ({"Noncentral F(5,20,10)", "F(5,20)"}, "location", "northwest") %! title ("Noncentral F vs F quantile functions") %! xlabel ("probability") %! ylabel ("values in x") ## Test output %!test %! x = [0,0.1775,0.3864,0.6395,0.9564,1.3712,1.9471,2.8215,4.3679,8.1865,Inf]; %! assert (ncfinv ([0:0.1:1], 2, 3, 1), x, 1e-4); %!test %! x = [0,0.7492,1.3539,2.0025,2.7658,3.7278,5.0324,6.9826,10.3955,18.7665,Inf]; %! assert (ncfinv ([0:0.1:1], 2, 3, 5), x, 1e-4); %!test %! x = [0,0.2890,0.8632,1.5653,2.4088,3.4594,4.8442,6.8286,10.0983,17.3736,Inf]; %! assert (ncfinv ([0:0.1:1], 1, 4, 3), x, 1e-4); %!test %! x = [0.078410, 0.212716, 0.288618, 0.335752, 0.367963, 0.391460]; %! assert (ncfinv (0.05, [1, 2, 3, 4, 5, 6], 10, 3), x, 1e-6); %!test %! x = [0.2574, 0.2966, 0.3188, 0.3331, 0.3432, 0.3507]; %! assert (ncfinv (0.05, 5, [1, 2, 3, 4, 5, 6], 3), x, 1e-4); %!test %! x = [1.6090, 1.8113, 1.9215, 1.9911, NaN, 2.0742]; %! assert (ncfinv (0.05, 1, [1, 2, 3, 4, -1, 6], 10), x, 1e-4); %!test %! assert (ncfinv (0.996, 3, 5, 8), 58.0912074080671, 2e-13); ## Test input validation %!error ncfinv () %!error ncfinv (1) %!error ncfinv (1, 2) %!error ncfinv (1, 2, 3) %!error ... %! ncfinv (ones (3), ones (2), ones (2), ones (2)) %!error ... %! ncfinv (ones (2), ones (3), ones (2), ones (2)) %!error ... %! ncfinv (ones (2), ones (2), ones (3), ones (2)) %!error ... %! ncfinv (ones (2), ones (2), ones (2), ones (3)) %!error ncfinv (i, 2, 2, 2) %!error ncfinv (2, i, 2, 2) %!error ncfinv (2, 2, i, 2) %!error ncfinv (2, 2, 2, i) statistics-release-1.6.3/inst/dist_fun/ncfpdf.m000066400000000000000000000371101456127120000215370ustar00rootroot00000000000000## Copyright (C) 2022-2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{y} =} ncfpdf (@var{x}, @var{df1}, @var{df2}, @var{lambda}) ## ## Noncentral @math{F}-probability density function (PDF). ## ## For each element of @var{x}, compute the probability density function (PDF) ## of the noncentral @math{F}-distribution with @var{df1} and @var{df2} degrees ## of freedom and noncentrality parameter @var{lambda}. The size of @var{y} is ## the common size of @var{x}, @var{df1}, @var{df2}, and @var{lambda}. A scalar ## input functions as a constant matrix of the same size as the other inputs. ## ## Further information about the noncentral @math{F}-distribution can be found ## at @url{https://en.wikipedia.org/wiki/Noncentral_F-distribution} ## ## @seealso{ncfcdf, ncfinv, ncfrnd, ncfstat, fpdf} ## @end deftypefn function y = ncfpdf (x, df1, df2, lambda) ## Check for valid number of input arguments if (nargin < 4) error ("ncfpdf: function called with too few input arguments."); endif ## Check for common size of X, DF1, DF2, and LAMBDA [err, x, df1, df2, lambda] = common_size (x, df1, df2, lambda); if (err > 0) error ("ncfpdf: X, DF1, DF2, and LAMBDA must be of common size or scalars."); endif ## Check for X, DF1, DF2, and LAMBDA being reals if (iscomplex (x) || iscomplex (df1) || iscomplex (df2) || iscomplex (lambda)) error ("ncfpdf: X, DF1, DF2, and LAMBDA must not be complex."); endif ## Check for class type if (isa (x, "single") || isa (df1, "single") || ... isa (df2, "single") || isa (lambda, "single")) y = zeros (size (x), "single"); else y = zeros (size (x)); endif ## Find NaNs in input arguments (if any) and propagate them to p is_nan = isnan (x) | isnan (df1) | isnan (df2) | isnan (lambda); y(is_nan) = NaN; ## Force invalid parameter cases to NaN k1 = df1 <= 0 | df2 <= 0 | lambda < 0; y(k1) = NaN; ## Handle edge cases where x == 0 k2 = x == 0 & df1 < 2 & ! k1; y(k2) = Inf; k3 = x == 0 & df1 == 2 & ! k1; if (any (k3(:))) y(k3) = exp (-lambda(k3) / 2); endif ## Handle central distribution where lambda == 0 k4 = lambda == 0 & ! k1 & x > 0; if any(k4(:)) y(k4) = fpdf (x(k4), df1(k4), df2(k4)); endif ## Handle normal cases td = find (x > 0 & ! (k1 | k4)); ## Return if finished all normal cases if (isempty (td)) return; endif ## Reset input variables to remaining cases and pre-divide df1, df2 and lambda x = x(td); df1 = df1(td) / 2; df2 = df2(td) / 2; lambda = lambda(td) / 2; ## Use z and scaled x for convenience z = df1 .* x ./ (df1 .* x + df2); z1 = df2 ./ (df1 .* x + df2); xs = lambda .* z; % Find max K at which we start the recursion series K = zeros (size (x)); termK = zeros (size (x)); rsum = zeros (size (x)); ## Handy constant lnsr2pi = 0.9189385332046727; ## Process integer and non-integer df2 separately df2int = df2 == floor (df2); if (any (df2int(:))) # integers smallx = xs <= df1 ./ df2; largex = xs >= df2 .* (df1 + df2 - 1) & ! smallx; K(df2int & largex) = df2(df2int & largex); ## Compute K idx = df2int & ! (smallx | largex); if (any (idx(:))) d = 0.5 * (1 - xs(idx) - df1(idx)); K(idx) = floor (d + sqrt (d .^ 2 + xs(idx) .* (df2(idx) + 1))); endif ## For K == df2 K_df2 = df2int & K == df2; idz1 = K_df2 & z < 0.9; termK(idz1) = (df1(idz1) + df2(idz1) - 1) .* log (z(idz1)); idz2 = K_df2 & ! idz1; termK(idz2) = (df1(idz2) + df2(idz2) - 1) .* log1p (-z1(idz2)); ## For K == 0 Kzero = df2int & (df1 + K) <= 1; termK(Kzero) = StirlingError (df1(Kzero) + df2(Kzero)) - ... StirlingError (df1(Kzero)) - StirlingError (df2(Kzero)) - ... BinoPoisson (df1(Kzero), ... (df1(Kzero) + df2(Kzero)) .* z(Kzero)) - ... BinoPoisson (df2(Kzero), ... (df1(Kzero) + df2(Kzero)) .* z1(Kzero)); ## For all other K K_all = df2int & ! (K_df2 | Kzero); termK(K_all) = StirlingError (df1(K_all) + df2(K_all) - 1) - ... StirlingError (df1(K_all) + K(K_all) -1) - ... StirlingError (df2(K_all) - K(K_all)) - ... BinoPoisson (df1(K_all) + K(K_all) - 1, ... (df1(K_all) + df2(K_all) - 1) .* z(K_all)) - ... BinoPoisson (df2(K_all) - K(K_all), ... (df1(K_all) + df2(K_all) - 1) .* z1(K_all)); ## Poisson density for the leading term x1 = lambda .* z1; smallk = df2int & K <= x1 * realmin; y(td(smallk)) = termK(smallk) - x1(smallk); otherk = df2int & ! smallk; y(td(otherk)) = termK(otherk) - lnsr2pi - 0.5 * log (K(otherk)) - ... StirlingError (K(otherk)) - ... BinoPoisson (K(otherk), x1(otherk)); ## Sum recursively downwards term = ones (size (x)); k = K; ok = df2int & k > 0; while (any (ok(:))) k(ok) = k(ok) - 1; term(ok) = term(ok) .* (k(ok) + 1) .* ... (k(ok) + df1(ok)) ./ (df2(ok) - k(ok)) ./ xs(ok); ok = ok & term >= eps (rsum); rsum(ok) = rsum(ok) + term(ok); endwhile ## Sum recursively upwards term = ones (size (x)); k = K; ok = df2int & k < df2; while any(ok(:)) term(ok) = term(ok) .* xs(ok) .* ... (df2(ok) - k(ok)) ./ (k(ok) + df1(ok)) ./ (k(ok) + 1); ok = ok & term >= eps(rsum); rsum(ok) = rsum(ok) + term(ok); k(ok) = k(ok) + 1; endwhile endif if (any (! df2int(:))) # non-integers ## Compute K largex = ! df2int & xs > df1 ./ (df1 + df2); d = 0.5 * (1 + xs(largex) - df1(largex)); K(largex) = floor (d + sqrt (d .^ 2 + xs(largex) .* ... (df1(largex) + df2(largex) - 1))); ## For K == 0 Kzero = ! df2int & (df1 + K) <= 1; termK(Kzero) = StirlingError (df1(Kzero) + df2(Kzero)) - ... StirlingError (df1(Kzero)) - ... StirlingError (df2(Kzero)) - ... BinoPoisson (df1(Kzero), ... (df1(Kzero) + df2(Kzero)) .* z(Kzero)) - ... BinoPoisson (df2(Kzero), ... (df1(Kzero) + df2(Kzero)) .* z1(Kzero)); ## For K != 0 K_all = ! df2int & ! Kzero; termK(K_all) = StirlingError (df1(K_all) + df2(K_all) + K(K_all) - 1) - ... StirlingError (df1(K_all) + K(K_all) - 1) - ... StirlingError (df2(K_all)) - ... BinoPoisson (df1(K_all) + K(K_all) - 1, ... (df1(K_all) + df2(K_all) + K(K_all) - 1) .* ... z(K_all)) - ... BinoPoisson (df2(K_all), ... (df1(K_all) + df2(K_all) + K(K_all) - 1) .* ... z1(K_all)); ## Poisson density for the leading term smallk = ! df2int & K <= lambda * realmin; y(td(smallk)) = termK(smallk) - lambda(smallk); K_all = ! df2int & ! smallk; y(td(K_all)) = termK(K_all) - lnsr2pi - 0.5 * log (K(K_all)) - ... StirlingError (K(K_all)) - ... BinoPoisson (K(K_all), lambda(K_all)); ## Sum recursively downwards term = ones (size (x)); k = K; ok = ! df2int & k > 0; while (any (ok(:))) k(ok) = k(ok) - 1; term(ok) = term(ok) .* (k(ok) + 1) .* (k(ok) + df1(ok)) ./ ... (k(ok) + df1(ok) + df2(ok)) ./ xs(ok); ok = ok & term >= eps (rsum); rsum(ok) = rsum(ok) + term(ok); endwhile ## Sum recursively upwards term = ones (size (x)); k = K; ok = ! df2int; while (any (ok(:))) term(ok) = term(ok) .* xs(ok) .* (k(ok) + df1(ok) + df2(ok)) ./ ... (k(ok) + df1(ok)) ./ (k(ok) + 1); ok = ok & term >= eps (rsum); rsum(ok) = rsum(ok) + term(ok); k(ok) = k(ok)+1; endwhile endif ## Compute density pi2 = 2 * pi; Kzero = (df1 + K) <= 1; y(td(Kzero)) = exp (y(td(Kzero))) .* (1 + rsum(Kzero)) .* ... sqrt (df1(Kzero) .* df2(Kzero) ./ ... (df1(Kzero) + df2(Kzero)) / pi2) ./ ... x(Kzero); K_df2 = ! Kzero & df2int & K == df2; y(td(K_df2)) = exp (y(td(K_df2))) .* (1 + rsum(K_df2)) .* ... df1(K_df2) .* z1(K_df2); idx = ! Kzero & df2int & ! K_df2; y(td(idx)) = exp (y(td(idx))) .* (1 + rsum(idx)) .* df1(idx) .* z1(idx) .* ... sqrt((df1(idx) + df2(idx) - 1) ./ (df2(idx) - K(idx)) ./ ... (df1(idx) + K(idx) - 1) / pi2); idx = ! df2int & ! Kzero; y(td(idx)) = exp (y(td(idx))) .* (1 + rsum(idx)) .* df1(idx) .* z1(idx) .* ... sqrt ((df1(idx) + df2(idx) + K(idx) - 1) ./ ... df2(idx) ./ (df1(idx) + K(idx) - 1) / pi2); endfunction ## Error of Stirling-De Moivre approximation to n factorial. function lambda = StirlingError (n) is_class = class (n); lambda = zeros (size (n), is_class); nn = n .* n; ## Define S0=1/12 S1=1/360 S2=1/1260 S3=1/1680 S4=1/1188 S0 = 8.333333333333333e-02; S1 = 2.777777777777778e-03; S2 = 7.936507936507937e-04; S3 = 5.952380952380952e-04; S4 = 8.417508417508418e-04; ## Define lambda(n) for n<0:0.5:15 sfe=[ 0; 1.534264097200273e-01;... 8.106146679532726e-02; 5.481412105191765e-02;... 4.134069595540929e-02; 3.316287351993629e-02;... 2.767792568499834e-02; 2.374616365629750e-02;... 2.079067210376509e-02; 1.848845053267319e-02;... 1.664469118982119e-02; 1.513497322191738e-02;... 1.387612882307075e-02; 1.281046524292023e-02;... 1.189670994589177e-02; 1.110455975820868e-02;... 1.041126526197210e-02; 9.799416126158803e-03;... 9.255462182712733e-03; 8.768700134139385e-03;... 8.330563433362871e-03; 7.934114564314021e-03;... 7.573675487951841e-03; 7.244554301320383e-03;... 6.942840107209530e-03; 6.665247032707682e-03;... 6.408994188004207e-03; 6.171712263039458e-03;... 5.951370112758848e-03; 5.746216513010116e-03;... 5.554733551962801e-03]; k = find (n <= 15); if (any (k)) n1 = n(k); n2 = 2 * n1; if (all (n2 == round (n2))) lambda(k) = sfe(n2+1); else lnsr2pi = 0.9189385332046728; lambda(k) = gammaln(n1+1)-(n1+0.5).*log(n1)+n1-lnsr2pi; endif endif k = find (n > 15 & n <= 35); if (any (k)) lambda(k) = (S0 - (S1 - (S2 - (S3 - S4 ./ nn(k)) ./ nn(k)) ./ ... nn(k)) ./ nn(k)) ./ n(k); endif k = find (n > 35 & n <= 80); if (any (k)) lambda(k) = (S0 - (S1 - (S2 - S3 ./ nn(k)) ./ nn(k)) ./ nn(k)) ./ n(k); endif k = find(n > 80 & n <= 500); if (any (k)) lambda(k) = (S0 - (S1 - S2 ./ nn(k)) ./ nn(k)) ./ n(k); endif k = find(n > 500); if (any (k)) lambda(k) = (S0 - S1 ./ nn(k)) ./ n(k); endif endfunction ## Deviance term for binomial and Poisson probability calculation. function BP = BinoPoisson (x, np) if (isa (x,'single') || isa (np,'single')) BP = zeros (size (x), "single"); else BP = zeros (size (x)); endif k = abs (x - np) < 0.1 * (x + np); if any(k(:)) s = (x(k) - np(k)) .* (x(k) - np(k)) ./ (x(k) + np(k)); v = (x(k) - np(k)) ./ (x(k) + np(k)); ej = 2 .* x(k) .* v; is_class = class (s); s1 = zeros (size (s), is_class); ok = true (size (s)); j = 0; while any(ok(:)) ej(ok) = ej(ok) .* v(ok) .* v(ok); j = j + 1; s1(ok) = s(ok) + ej(ok) ./ (2 * j + 1); ok = ok & s1 != s; s(ok) = s1(ok); endwhile BP(k) = s; endif k = ! k; if (any (k(:))) BP(k) = x(k) .* log (x(k) ./ np(k)) + np(k) - x(k); endif endfunction %!demo %! ## Plot various PDFs from the noncentral F distribution %! x = 0:0.01:5; %! y1 = ncfpdf (x, 2, 5, 1); %! y2 = ncfpdf (x, 2, 5, 2); %! y3 = ncfpdf (x, 5, 10, 1); %! y4 = ncfpdf (x, 10, 20, 10); %! plot (x, y1, "-r", x, y2, "-g", x, y3, "-k", x, y4, "-m") %! grid on %! xlim ([0, 5]) %! ylim ([0, 0.8]) %! legend ({"df1 = 2, df2 = 5, λ = 1", "df1 = 2, df2 = 5, λ = 2", ... %! "df1 = 5, df2 = 10, λ = 1", "df1 = 10, df2 = 20, λ = 10"}, ... %! "location", "northeast") %! title ("Noncentral F PDF") %! xlabel ("values in x") %! ylabel ("density") %!demo %! ## Compare the noncentral F PDF with LAMBDA = 10 to the F PDF with the %! ## same number of numerator and denominator degrees of freedom (5, 20) %! %! x = 0.01:0.1:10.01; %! y1 = ncfpdf (x, 5, 20, 10); %! y2 = fpdf (x, 5, 20); %! plot (x, y1, "-", x, y2, "-"); %! grid on %! xlim ([0, 10]) %! ylim ([0, 0.8]) %! legend ({"Noncentral F(5,20,10)", "F(5,20)"}, "location", "northeast") %! title ("Noncentral F vs F PDFs") %! xlabel ("values in x") %! ylabel ("density") ## Test output %!shared x1, df1, df2, lambda %! x1 = [-Inf, 2, NaN, 4, Inf]; %! df1 = [2, 0, -1, 1, 4]; %! df2 = [2, 4, 5, 6, 8]; %! lambda = [1, NaN, 3, -1, 2]; %!assert (ncfpdf (x1, df1, df2, lambda), [0, NaN, NaN, NaN, NaN]); %!assert (ncfpdf (x1, df1, df2, 1), [0, NaN, NaN, ... %! 0.05607937264237208, NaN], 1e-14); %!assert (ncfpdf (x1, df1, df2, 3), [0, NaN, NaN, ... %! 0.080125760971946518, NaN], 1e-14); %!assert (ncfpdf (x1, df1, df2, 2), [0, NaN, NaN, ... %! 0.0715902008258656, NaN], 1e-14); %!assert (ncfpdf (x1, 3, 5, lambda), [0, NaN, NaN, NaN, NaN]); %!assert (ncfpdf (2, df1, df2, lambda), [0.1254046999837947, NaN, NaN, ... %! NaN, 0.2152571783045893], 1e-14); %!assert (ncfpdf (4, df1, df2, lambda), [0.05067089541001374, NaN, NaN, ... %! NaN, 0.05560846335398539], 1e-14); ## Test input validation %!error ncfpdf () %!error ncfpdf (1) %!error ncfpdf (1, 2) %!error ncfpdf (1, 2, 3) %!error ... %! ncfpdf (ones (3), ones (2), ones (2), ones (2)) %!error ... %! ncfpdf (ones (2), ones (3), ones (2), ones (2)) %!error ... %! ncfpdf (ones (2), ones (2), ones (3), ones (2)) %!error ... %! ncfpdf (ones (2), ones (2), ones (2), ones (3)) %!error ncfpdf (i, 2, 2, 2) %!error ncfpdf (2, i, 2, 2) %!error ncfpdf (2, 2, i, 2) %!error ncfpdf (2, 2, 2, i) statistics-release-1.6.3/inst/dist_fun/ncfrnd.m000066400000000000000000000166171456127120000215620ustar00rootroot00000000000000## Copyright (C) 2022-2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{r} =} ncfrnd (@var{df1}, @var{df2}, @var{lambda}) ## @deftypefnx {statistics} {@var{r} =} ncfrnd (@var{df1}, @var{df2}, @var{lambda}, @var{rows}, @var{cols}, @dots{}) ## @deftypefnx {statistics} {@var{r} =} ncfrnd (@var{df1}, @var{df2}, @var{lambda}, [@var{sz}]) ## ## Random arrays from the noncentral @math{F}-distribution. ## ## @code{@var{x} = ncfrnd (@var{p}, @var{df1}, @var{df2}, @var{lambda})} returns ## an array of random numbers chosen from the noncentral @math{F}-distribution with ## @var{df1} and @var{df2} degrees of freedom and noncentrality parameter ## @var{lambda}. The size of @var{r} is the common size of @var{df1}, ## @var{df2}, and @var{lambda}. A scalar input functions as a constant matrix ## of the same size as the other input. ## ## @code{ncfrnd} generates values using the definition of a noncentral @math{F} ## random variable, as the ratio of a noncentral chi-squared distribution and a ## (central) chi-squared distribution. ## ## When called with a single size argument, @code{ncfrnd} returns a square ## matrix with the dimension specified. When called with more than one scalar ## argument, the first two arguments are taken as the number of rows and columns ## and any further arguments specify additional matrix dimensions. The size may ## also be specified with a row vector of dimensions, @var{sz}. ## ## Further information about the noncentral @math{F}-distribution can be found ## at @url{https://en.wikipedia.org/wiki/Noncentral_F-distribution} ## ## @seealso{ncfcdf, ncfinv, ncfpdf, ncfstat, frnd, ncx2rnd, chi2rnd} ## @end deftypefn function r = ncfrnd (df1, df2, lambda, varargin) ## Check for valid number of input arguments if (nargin < 3) error ("ncfrnd: function called with too few input arguments."); endif ## Check for common size of DF1, DF2, and LAMBDA if (! isscalar (df1) || ! isscalar (df2) || ! isscalar (lambda)) [retval, df1, df2, lambda] = common_size (df1, df2, lambda); if (retval > 0) error ("ncfrnd: DF1, DF2, and LAMBDA must be of common size or scalars."); endif endif ## Check for DF1, DF2, and LAMBDA being reals if (iscomplex (df1) || iscomplex (df2) || iscomplex (lambda)) error ("ncfrnd: DF1, DF2, and LAMBDA must not be complex."); endif ## Parse and check SIZE arguments if (nargin == 3) sz = size (df1); elseif (nargin == 4) if (isscalar (varargin{1}) && varargin{1} >= 0 ... && varargin{1} == fix (varargin{1})) sz = [varargin{1}, varargin{1}]; elseif (isrow (varargin{1}) && all (varargin{1} >= 0) ... && all (varargin{1} == fix (varargin{1}))) sz = varargin{1}; elseif error (strcat (["ncfrnd: SZ must be a scalar or a row vector"], ... [" of non-negative integers."])); endif elseif (nargin > 4) posint = cellfun (@(x) (! isscalar (x) || x < 0 || x != fix (x)), varargin); if (any (posint)) error ("ncfrnd: dimensions must be non-negative integers."); endif sz = [varargin{:}]; endif ## Check that parameters match requested dimensions in size if (! isscalar (df1) && ! isequal (size (df1), sz)) error ("ncfrnd: DF1, DF2, and LAMBDA must be scalars or of size SZ."); endif ## Check for class type if (isa (df1, "single") || isa (df2, "single") || isa (lambda, "single")); cls = "single"; else cls = "double"; endif ## Return NaNs for out of range values of DF1, DF2, and LAMBDA df1(df1 <= 0) = NaN; df2(df2 <= 0) = NaN; lambda(lambda <= 0) = NaN; ## Generate random sample from noncentral F distribution r = (ncx2rnd (df1, lambda, sz) ./ df1) ./ ... (2 .* randg (df2 ./ 2, sz) ./ df2); ## Cast to appropriate class r = cast (r, cls); endfunction ## Test output %!assert (size (ncfrnd (1, 1, 1)), [1 1]) %!assert (size (ncfrnd (1, ones (2,1), 1)), [2, 1]) %!assert (size (ncfrnd (1, ones (2,2), 1)), [2, 2]) %!assert (size (ncfrnd (ones (2,1), 1, 1)), [2, 1]) %!assert (size (ncfrnd (ones (2,2), 1, 1)), [2, 2]) %!assert (size (ncfrnd (1, 1, 1, 3)), [3, 3]) %!assert (size (ncfrnd (1, 1, 1, [4, 1])), [4, 1]) %!assert (size (ncfrnd (1, 1, 1, 4, 1)), [4, 1]) %!assert (size (ncfrnd (1, 1, 1, 4, 1, 5)), [4, 1, 5]) %!assert (size (ncfrnd (1, 1, 1, 0, 1)), [0, 1]) %!assert (size (ncfrnd (1, 1, 1, 1, 0)), [1, 0]) %!assert (size (ncfrnd (1, 1, 1, 1, 2, 0, 5)), [1, 2, 0, 5]) ## Test class of input preserved %!assert (class (ncfrnd (1, 1, 1)), "double") %!assert (class (ncfrnd (1, single (1), 1)), "single") %!assert (class (ncfrnd (1, 1, single (1))), "single") %!assert (class (ncfrnd (1, single ([1, 1]), 1)), "single") %!assert (class (ncfrnd (1, 1, single ([1, 1]))), "single") %!assert (class (ncfrnd (single (1), 1, 1)), "single") %!assert (class (ncfrnd (single ([1, 1]), 1, 1)), "single") ## Test input validation %!error ncfrnd () %!error ncfrnd (1) %!error ncfrnd (1, 2) %!error ... %! ncfrnd (ones (3), ones (2), ones (2)) %!error ... %! ncfrnd (ones (2), ones (3), ones (2)) %!error ... %! ncfrnd (ones (2), ones (2), ones (3)) %!error ncfrnd (i, 2, 3) %!error ncfrnd (1, i, 3) %!error ncfrnd (1, 2, i) %!error ... %! ncfrnd (1, 2, 3, -1) %!error ... %! ncfrnd (1, 2, 3, 1.2) %!error ... %! ncfrnd (1, 2, 3, ones (2)) %!error ... %! ncfrnd (1, 2, 3, [2 -1 2]) %!error ... %! ncfrnd (1, 2, 3, [2 0 2.5]) %!error ... %! ncfrnd (1, 2, 3, 2, -1, 5) %!error ... %! ncfrnd (1, 2, 3, 2, 1.5, 5) %!error ... %! ncfrnd (2, ones (2), 2, 3) %!error ... %! ncfrnd (2, ones (2), 2, [3, 2]) %!error ... %! ncfrnd (2, ones (2), 2, 3, 2) statistics-release-1.6.3/inst/dist_fun/nctcdf.m000066400000000000000000000277401456127120000215500ustar00rootroot00000000000000## Copyright (C) 2022-2024 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{p} =} nctcdf (@var{x}, @var{df}, @var{mu}) ## @deftypefnx {statistics} {@var{p} =} nctcdf (@var{x}, @var{df}, @var{mu}, @qcode{"upper"}) ## ## Noncentral @math{t}-cumulative distribution function (CDF). ## ## For each element of @var{x}, compute the cumulative distribution function ## (CDF) of the noncentral @math{t}-distribution with @var{df} degrees of ## freedom and noncentrality parameter @var{mu}. The size of @var{p} is the ## common size of @var{x}, @var{df}, and @var{mu}. A scalar input functions ## as a constant matrix of the same size as the other inputs. ## ## @code{@var{p} = nctcdf (@var{x}, @var{df}, @var{mu}, "upper")} computes ## the upper tail probability of the noncentral @math{t}-distribution with ## parameters @var{df} and @var{mu}, at the values in @var{x}. ## ## Further information about the noncentral @math{t}-distribution can be found ## at @url{https://en.wikipedia.org/wiki/Noncentral_t-distribution} ## ## @seealso{nctinv, nctpdf, nctrnd, nctstat, tcdf} ## @end deftypefn function p = nctcdf (x, df, mu, uflag) ## Check for valid number of input arguments if (nargin < 3) error ("nctcdf: function called with too few input arguments."); endif ## Check for valid "upper" flag if (nargin > 3) if (! strcmpi (uflag, "upper")) error ("nctcdf: invalid argument for upper tail."); else uflag = true; endif else uflag = false; endif ## Check for common size of X, DF, and MU [err, x, df, mu] = common_size (x, df, mu); if (err > 0) error ("nctcdf: X, DF, and MU must be of common size or scalars."); endif ## Check for X, DF, and MU being reals if (iscomplex (x) || iscomplex (df) || iscomplex (mu)) error ("nctcdf: X, DF, and MU must not be complex."); endif ## Check for class type if (isa (x, "single") || isa (df, "single") || isa (mu, "single")) p = zeros (size (x), "single"); c_eps = eps ("single"); else p = zeros (size (x)); c_eps = eps; endif ## Find NaNs in input arguments (if any) and propagate them to p is_nan = isnan (x) | isnan (df) | isnan (mu); p(is_nan) = NaN; ## Find special cases for mu==0 and x<0; and x = Inf. case_Dinf = (df <= 0 | isinf(mu)) & ! is_nan; case_Dzero = mu == 0 & ! case_Dinf & ! is_nan; case_Xzero = x < 0 & ! case_Dzero & ! case_Dinf & ! is_nan; case_Xinf = x == Inf & ! case_Dzero & ! case_Dinf & ! is_nan; case_DFbig = df > 2e6 & ! case_Dzero & ! case_Dinf & ! case_Xinf & ! is_nan; flag_Dinf = any (case_Dinf(:)); flag_Dzero = any (case_Dzero(:)); flag_Xzero = any (case_Xzero(:)); flag_Xinf = any (case_Xinf(:)); flag_DFbig = any (case_DFbig(:)); ## Handle special cases if (flag_Dinf || flag_Dzero || flag_Xzero || flag_Xinf || flag_DFbig) if (flag_Dinf) p(case_Dinf) = NaN; endif if (flag_Dzero) if (uflag) p(case_Dzero) = tcdf (x(case_Dzero), df(case_Dzero), "upper"); else p(case_Dzero) = tcdf (x(case_Dzero), df(case_Dzero)); endif endif if (flag_Xinf) if (uflag) p(case_Xinf) = 0; else p(case_Xinf) = 1; endif endif if (flag_DFbig) s = 1 - 1 ./ (4 * df); d = sqrt (1 + x .^ 2 ./ (2 * df)); if (uflag) p(case_DFbig) = normcdf (x(case_DFbig) .* s(case_DFbig), ... mu(case_DFbig), d(case_DFbig), "upper"); else p(case_DFbig) = normcdf (x(case_DFbig) .* s(case_DFbig), ... mu(case_DFbig), d(case_DFbig)); endif endif fp = ! (case_Dinf | case_Dzero | case_Xzero | case_Xinf | case_DFbig); if (any (fp(:))) if (uflag) p(fp) = nctcdf (x(fp), df(fp), mu(fp), "upper"); else p(fp) = nctcdf (x(fp), df(fp), mu(fp)); endif endif if (flag_Xzero) if (uflag) p(case_Xzero) = nctcdf (-x(case_Xzero), df(case_Xzero), ... -mu(case_Xzero)); else p(case_Xzero) = nctcdf (-x(case_Xzero), df(case_Xzero), ... -mu(case_Xzero), "upper"); endif endif return endif ## Compute value for betainc function. x_square = x .^ 2; denom = df + x_square; P = x_square ./ denom; Q = df ./ denom; ## Initialize infinite sum. d_square = mu .^ 2; ## Compute probability P[TD<0] (first term) if (uflag) x_zero = x == 0 & ! is_nan; if (any (x_zero(:))) fx = normcdf (- mu, 0, 1, "upper"); p(x_zero)= fx(x_zero); endif else p(! is_nan) = normcdf (- mu(! is_nan), 0, 1); endif ## Compute probability P[0 (abs (subtotal(TD)) + c_eps) * c_eps); if (! any (TD)) break; end ## Update for next iteration jj = jj+2; E1(TD) = E1(TD) .* d_square(TD) ./ (jj(TD)); E2(TD) = E2(TD) .* d_square(TD) ./ (jj(TD) + 1); if (uflag) B1(TD) = betainc (P(TD), (jj(TD) + 1) / 2, df(TD) / 2, "upper"); B2(TD) = betainc (P(TD), (jj(TD) + 2) / 2, df(TD) / 2, "upper"); else B1(TD) = B1(TD) - R1(TD); B2(TD) = B2(TD) - R2(TD); R1(TD) = R1(TD) .* P(TD) .* (jj(TD)+df(TD)-1) ./ (jj(TD)+1); R2(TD) = R2(TD) .* P(TD) .* (jj(TD)+df(TD) ) ./ (jj(TD)+2); endif endwhile ## Go back to the peak and start looping downward as far as necessary. E1 = E10; E2 = E20; B1 = B10; B2 = B20; R1 = R10; R2 = R20; jj = j0; TD = (jj > 0); while (any (TD)) JJ = jj(TD); E1(TD) = E1(TD) .* (JJ ) ./ d_square(TD); E2(TD) = E2(TD) .* (JJ+1) ./ d_square(TD); R1(TD) = R1(TD) .* (JJ+1) ./ ((JJ+df(TD)-1) .* P(TD)); R2(TD) = R2(TD) .* (JJ+2) ./ ((JJ+df(TD)) .* P(TD)); if (uflag) B1(TD) = betainc (P(TD), (JJ - 1) / 2, df(TD) / 2, "upper"); B2(TD) = betainc (P(TD), JJ / 2, df(TD) / 2, "upper"); else B1(TD) = B1(TD) + R1(TD); B2(TD) = B2(TD) + R2(TD); end twoterms = E1(TD) .* B1(TD) + E2(TD) .* B2(TD); subtotal(TD) = subtotal(TD) + twoterms; jj = jj - 2; TD(TD) = (abs (twoterms) > (abs (subtotal(TD)) + c_eps) * c_eps) & ... (jj(TD) > 0); endwhile p(x_notzero) = min (1, max (0, p(x_notzero) + subtotal / 2)); endif endfunction %!demo %! ## Plot various CDFs from the noncentral Τ distribution %! x = -5:0.01:5; %! p1 = nctcdf (x, 1, 0); %! p2 = nctcdf (x, 4, 0); %! p3 = nctcdf (x, 1, 2); %! p4 = nctcdf (x, 4, 2); %! plot (x, p1, "-r", x, p2, "-g", x, p3, "-k", x, p4, "-m") %! grid on %! xlim ([-5, 5]) %! legend ({"df = 1, μ = 0", "df = 4, μ = 0", ... %! "df = 1, μ = 2", "df = 4, μ = 2"}, "location", "southeast") %! title ("Noncentral Τ CDF") %! xlabel ("values in x") %! ylabel ("probability") %!demo %! ## Compare the noncentral T CDF with MU = 1 to the T CDF %! ## with the same number of degrees of freedom (10). %! %! x = -5:0.1:5; %! p1 = nctcdf (x, 10, 1); %! p2 = tcdf (x, 10); %! plot (x, p1, "-", x, p2, "-") %! grid on %! xlim ([-5, 5]) %! legend ({"Noncentral T(10,1)", "T(10)"}, "location", "southeast") %! title ("Noncentral T vs T CDFs") %! xlabel ("values in x") %! ylabel ("probability") ## Test output %!test %! x = -2:0.1:2; %! p = nctcdf (x, 10, 1); %! assert (p(1), 0.003302485766631558, 1e-14); %! assert (p(2), 0.004084668193532631, 1e-14); %! assert (p(3), 0.005052800319478737, 1e-14); %! assert (p(41), 0.8076115625303751, 1e-14); %!test %! p = nctcdf (12, 10, 3); %! assert (p, 0.9997719343243797, 1e-14); %!test %! p = nctcdf (2, 3, 2); %! assert (p, 0.4430757822176028, 1e-14); %!test %! p = nctcdf (2, 3, 2, "upper"); %! assert (p, 0.5569242177823971, 1e-14); %!test %! p = nctcdf ([3, 6], 3, 2, "upper"); %! assert (p, [0.3199728259444777, 0.07064855592441913], 1e-14); ## Test input validation %!error nctcdf () %!error nctcdf (1) %!error nctcdf (1, 2) %!error nctcdf (1, 2, 3, "tail") %!error nctcdf (1, 2, 3, 4) %!error ... %! nctcdf (ones (3), ones (2), ones (2)) %!error ... %! nctcdf (ones (2), ones (3), ones (2)) %!error ... %! nctcdf (ones (2), ones (2), ones (3)) %!error nctcdf (i, 2, 2) %!error nctcdf (2, i, 2) %!error nctcdf (2, 2, i) statistics-release-1.6.3/inst/dist_fun/nctinv.m000066400000000000000000000152151456127120000216020ustar00rootroot00000000000000## Copyright (C) 2022-2024 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{x} =} ncx2inv (@var{p}, @var{df}, @var{mu}) ## ## Inverse of the non-central @math{t}-cumulative distribution function (iCDF). ## ## For each element of @var{p}, compute the quantile (the inverse of the CDF) of ## the noncentral @math{t}-distribution with @var{df} degrees of freedom and ## noncentrality parameter @var{mu}. The size of @var{x} is the common size ## of @var{p}, @var{df}, and @var{mu}. A scalar input functions as a ## constant matrix of the same size as the other inputs. ## ## @code{nctinv} uses Newton's method to converge to the solution. ## ## Further information about the noncentral @math{t}-distribution can be found ## at @url{https://en.wikipedia.org/wiki/Noncentral_t-distribution} ## ## @seealso{nctcdf, nctpdf, nctrnd, nctstat, tinv} ## @end deftypefn function x = nctinv (p, df, mu) ## Check for valid number of input arguments if (nargin < 3) error ("nctinv: function called with too few input arguments."); endif ## Check for common size of P, DF, and MU [err, p, df, mu] = common_size (p, df, mu); if (err > 0) error ("nctinv: P, DF, and MU must be of common size or scalars."); endif ## Check for P, DF, and MU being reals if (iscomplex (p) || iscomplex (df) || iscomplex (mu)) error ("nctinv: P, DF, and MU must not be complex."); endif ## Check for class type if (isa (p, "single") || isa (df, "single") || isa (mu, "single")) x = NaN (size (p), "single"); crit = sqrt (eps ("single")); else x = NaN (size (p), "double"); crit = sqrt (eps ("double")); endif ## For mu == 0, call chi2inv m0 = mu == 0; if (any (m0(:))) x(m0) = tinv (p(m0), df(m0)); ## If mu == 0 for all entries, then return if (all (m0(:))) return; endif endif ## For all valid entries valid = df > 0 & ! isnan (mu) & ! isinf (mu); ## Force x = -Inf for p == 0 and x = Inf for p == 1 x(p == 0 & valid) = -Inf; x(p == 1 & valid) = Inf; ## Find valid samples within the range of 0 < p < 1 k = find (p > 0 & p < 1 & valid); p_k = p(k); df_k = df(k); mu_k = mu(k); ## Initialize counter count_limit = 100; count = 0; ## Supply a starting guess for the iteration with norminv x_k = norminv (p_k, mu_k, 1); h_k = ones (size (x_k), class (x_k)); ## Start iteration with a break out loop F = nctcdf (x_k, df_k, mu_k); while (any (abs (h_k) > crit * abs (x_k)) && ... max (abs (h_k)) > crit && count < count_limit) count = count + 1; h_k = (F - p_k) ./ nctpdf (x_k, df_k, mu_k); ## Prevent Infs - NaNs infnan = isinf(h_k) | isnan(h_k); if (any (infnan(:))) h_k(infnan) = x_k(infnan) / 10; endif ## Prepare for next step xnew = max (-5 * abs (x_k), min (5 * abs (x_k), x_k - h_k)); ## Check that next step improves, otherwise abort Fnew = nctcdf (xnew, df_k, mu_k); while (true) worse = (abs (Fnew - p_k) > abs (F - p_k) * (1 + crit)) & ... (abs (x_k - xnew) > crit * abs (x_k)); if (! any (worse)) break; endif xnew(worse) = 0.5 * (xnew(worse) + x_k(worse)); Fnew(worse) = nctcdf (xnew(worse), df_k(worse), mu_k(worse)); endwhile x_k = xnew; F = Fnew; endwhile ## Return the converged value(s). x(k) = x_k; if (count == count_limit) warning ("nctinv: did not converge."); endif endfunction %!demo %! ## Plot various iCDFs from the noncentral T distribution %! p = 0.001:0.001:0.999; %! x1 = nctinv (p, 1, 0); %! x2 = nctinv (p, 4, 0); %! x3 = nctinv (p, 1, 2); %! x4 = nctinv (p, 4, 2); %! plot (p, x1, "-r", p, x2, "-g", p, x3, "-k", p, x4, "-m") %! grid on %! ylim ([-5, 5]) %! legend ({"df = 1, μ = 0", "df = 4, μ = 0", ... %! "df = 1, μ = 2", "df = 4, μ = 2"}, "location", "northwest") %! title ("Noncentral T iCDF") %! xlabel ("probability") %! ylabel ("values in x") %!demo %! ## Compare the noncentral T iCDF with MU = 1 to the T iCDF %! ## with the same number of degrees of freedom (10). %! %! p = 0.001:0.001:0.999; %! x1 = nctinv (p, 10, 1); %! x2 = tinv (p, 10); %! plot (p, x1, "-", p, x2, "-"); %! grid on %! ylim ([-5, 5]) %! legend ({"Noncentral T(10,1)", "T(10)"}, "location", "northwest") %! title ("Noncentral T vs T quantile functions") %! xlabel ("probability") %! ylabel ("values in x") ## Test output %!test %! x = [-Inf,-0.3347,0.1756,0.5209,0.8279,1.1424,1.5021,1.9633,2.6571,4.0845,Inf]; %! assert (nctinv ([0:0.1:1], 2, 1), x, 1e-4); %!test %! x = [-Inf,1.5756,2.0827,2.5343,3.0043,3.5406,4.2050,5.1128,6.5510,9.6442,Inf]; %! assert (nctinv ([0:0.1:1], 2, 3), x, 1e-4); %!test %! x = [-Inf,2.2167,2.9567,3.7276,4.6464,5.8455,7.5619,10.3327,15.7569,31.8159,Inf]; %! assert (nctinv ([0:0.1:1], 1, 4), x, 1e-4); %!test %! x = [1.7791 1.9368 2.0239 2.0801 2.1195 2.1489]; %! assert (nctinv (0.05, [1, 2, 3, 4, 5, 6], 4), x, 1e-4); %!test %! x = [-0.7755, 0.3670, 1.2554, 2.0239, 2.7348, 3.4154]; %! assert (nctinv (0.05, 3, [1, 2, 3, 4, 5, 6]), x, 1e-4); %!test %! x = [-0.7183, 0.3624, 1.2878, 2.1195, -3.5413, 3.6430]; %! assert (nctinv (0.05, 5, [1, 2, 3, 4, -1, 6]), x, 1e-4); %!test %! assert (nctinv (0.996, 5, 8), 30.02610554063658, 2e-11); ## Test input validation %!error nctinv () %!error nctinv (1) %!error nctinv (1, 2) %!error ... %! nctinv (ones (3), ones (2), ones (2)) %!error ... %! nctinv (ones (2), ones (3), ones (2)) %!error ... %! nctinv (ones (2), ones (2), ones (3)) %!error nctinv (i, 2, 2) %!error nctinv (2, i, 2) %!error nctinv (2, 2, i) statistics-release-1.6.3/inst/dist_fun/nctpdf.m000066400000000000000000000142571456127120000215640ustar00rootroot00000000000000## Copyright (C) 2022-2024 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{y} =} nctpdf (@var{x}, @var{df}, @var{mu}) ## ## Noncentral @math{t}-probability density function (PDF). ## ## For each element of @var{x}, compute the probability density function (PDF) ## of the noncentral @math{t}-distribution with @var{df} degrees of freedom and ## noncentrality parameter @var{mu}. The size of @var{y} is the common size ## of @var{x}, @var{df}, and @var{mu}. A scalar input functions as a ## constant matrix of the same size as the other inputs. ## ## Further information about the noncentral @math{t}-distribution can be found ## at @url{https://en.wikipedia.org/wiki/Noncentral_t-distribution} ## ## @seealso{nctcdf, nctinv, nctrnd, nctstat, tpdf} ## @end deftypefn function y = nctpdf (x, df, mu) ## Check for valid number of input arguments if (nargin < 3) error ("nctpdf: function called with too few input arguments."); endif ## Check for common size of X, DF, and MU [err, x, df, mu] = common_size (x, df, mu); if (err > 0) error ("nctpdf: X, DF, and MU must be of common size or scalars."); endif ## Check for X, DF, and MU being reals if (iscomplex (x) || iscomplex (df) || iscomplex (mu)) error ("nctpdf: X, DF, and MU must not be complex."); endif ## Check for class type if (isa (x, "single") || isa (df, "single") || isa (mu, "single")) y = zeros (size (x), "single"); else y = zeros (size (x)); endif ## Find NaNs in input arguments (if any) and propagate them to p is_nan = isnan (x) | isnan (df) | isnan (mu); y(is_nan) = NaN; ## Force invalid parameter cases to NaN invalid = df <= 0 | ! isfinite (mu); y(invalid) = NaN; ## Use normal approximation for df > 1e6 bigDF = df > 1e6 & ! is_nan & ! invalid; if (any (bigDF(:))) s = 1 - 1 ./ (4 * df); d = sqrt (1 + x .^ 2 ./ (2 * df)); y(bigDF) = normpdf (x(bigDF) .* s(bigDF), mu(bigDF), d(bigDF)); endif ## For negative x use left tail cdf x_neg = find ((x < 0) & isfinite (x) & df <= 1e6 & ! is_nan & ! invalid); if (any (x_neg)) y(x_neg) = (df(x_neg) ./ x(x_neg)) .* ... (nctcdf (x(x_neg) .* sqrt ((df(x_neg) + 2) ./ df(x_neg)), ... df(x_neg) + 2, mu(x_neg)) - ... nctcdf (x(x_neg), df(x_neg), mu(x_neg))); endif ## For positive x reflect about zero and use left tail cdf x_pos = find ((x > 0) & isfinite (x) & df <= 1e6 & ! is_nan & ! invalid); if (any (x_pos)) y(x_pos) = (-df(x_pos) ./ x(x_pos)) .* ... (nctcdf (-x(x_pos) .* sqrt ((df(x_pos) + 2) ./ df(x_pos)), ... df(x_pos) + 2, -mu(x_pos)) - ... nctcdf (-x(x_pos), df(x_pos), -mu(x_pos))); endif ## For x == 0 use power series xzero = find ((x == 0) & df <= 1e6 & ! is_nan & ! invalid); if (any (xzero)) y(xzero) = exp (-0.5 * mu(xzero) .^ 2 - 0.5 * log (pi * df(xzero)) + ... gammaln (0.5 * (df(xzero) + 1)) - gammaln (0.5 * df(xzero))); endif endfunction %!demo %! ## Plot various PDFs from the noncentral T distribution %! x = -5:0.01:10; %! y1 = nctpdf (x, 1, 0); %! y2 = nctpdf (x, 4, 0); %! y3 = nctpdf (x, 1, 2); %! y4 = nctpdf (x, 4, 2); %! plot (x, y1, "-r", x, y2, "-g", x, y3, "-k", x, y4, "-m") %! grid on %! xlim ([-5, 10]) %! ylim ([0, 0.4]) %! legend ({"df = 1, μ = 0", "df = 4, μ = 0", ... %! "df = 1, μ = 2", "df = 4, μ = 2"}, "location", "northeast") %! title ("Noncentral T PDF") %! xlabel ("values in x") %! ylabel ("density") %!demo %! ## Compare the noncentral T PDF with MU = 1 to the T PDF %! ## with the same number of degrees of freedom (10). %! %! x = -5:0.1:5; %! y1 = nctpdf (x, 10, 1); %! y2 = tpdf (x, 10); %! plot (x, y1, "-", x, y2, "-"); %! grid on %! xlim ([-5, 5]) %! ylim ([0, 0.4]) %! legend ({"Noncentral χ^2(4,2)", "χ^2(4)"}, "location", "northwest") %! title ("Noncentral T vs T PDFs") %! xlabel ("values in x") %! ylabel ("density") ## Test output %!shared x1, df, mu %! x1 = [-Inf, 2, NaN, 4, Inf]; %! df = [2, 0, -1, 1, 4]; %! mu = [1, NaN, 3, -1, 2]; %!assert (nctpdf (x1, df, mu), [0, NaN, NaN, 0.00401787561306999, 0], 1e-14); %!assert (nctpdf (x1, df, 1), [0, NaN, NaN, 0.0482312135423008, 0], 1e-14); %!assert (nctpdf (x1, df, 3), [0, NaN, NaN, 0.1048493126401585, 0], 1e-14); %!assert (nctpdf (x1, df, 2), [0, NaN, NaN, 0.08137377919890307, 0], 1e-14); %!assert (nctpdf (x1, 3, mu), [0, NaN, NaN, 0.001185305171654381, 0], 1e-14); %!assert (nctpdf (2, df, mu), [0.1791097459405861, NaN, NaN, ... %! 0.0146500727180389, 0.3082302682110299], 1e-14); %!assert (nctpdf (4, df, mu), [0.04467929612254971, NaN, NaN, ... %! 0.00401787561306999, 0.0972086534042828], 1e-14); ## Test input validation %!error nctpdf () %!error nctpdf (1) %!error nctpdf (1, 2) %!error ... %! nctpdf (ones (3), ones (2), ones (2)) %!error ... %! nctpdf (ones (2), ones (3), ones (2)) %!error ... %! nctpdf (ones (2), ones (2), ones (3)) %!error nctpdf (i, 2, 2) %!error nctpdf (2, i, 2) %!error nctpdf (2, 2, i) statistics-release-1.6.3/inst/dist_fun/nctrnd.m000066400000000000000000000151231456127120000215670ustar00rootroot00000000000000## Copyright (C) 2022-2024 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{r} =} nctrnd (@var{df}, @var{mu}) ## @deftypefnx {statistics} {@var{r} =} nctrnd (@var{df}, @var{mu}, @var{rows}, @var{cols}, @dots{}) ## @deftypefnx {statistics} {@var{r} =} nctrnd (@var{df}, @var{mu}, [@var{sz}]) ## ## Random arrays from the noncentral @math{t}-distribution. ## ## @code{@var{x} = nctrnd (@var{p}, @var{df}, @var{mu})} returns an array of ## random numbers chosen from the noncentral @math{t}-distribution with @var{df} ## degrees of freedom and noncentrality parameter @var{mu}. The size of ## @var{r} is the common size of @var{df} and @var{mu}. A scalar input ## functions as a constant matrix of the same size as the other input. ## ## @code{nctrnd} generates values using the definition of a noncentral @math{t} ## random variable, as the ratio of a normal distribution with non-zero mean and ## the sqrt of a chi-squared distribution. ## ## When called with a single size argument, @code{nctrnd} returns a square ## matrix with the dimension specified. When called with more than one scalar ## argument, the first two arguments are taken as the number of rows and columns ## and any further arguments specify additional matrix dimensions. The size may ## also be specified with a row vector of dimensions, @var{sz}. ## ## Further information about the noncentral @math{t}-distribution can be found ## at @url{https://en.wikipedia.org/wiki/Noncentral_t-distribution} ## ## @seealso{nctcdf, nctinv, nctpdf, nctstat, trnd, normrnd, chi2rnd} ## @end deftypefn function r = nctrnd (df, mu, varargin) ## Check for valid number of input arguments if (nargin < 2) error ("nctrnd: function called with too few input arguments."); endif ## Check for common size of DF and MU if (! isscalar (df) || ! isscalar (mu)) [retval, df, mu] = common_size (df, mu); if (retval > 0) error ("nctrnd: DF and MU must be of common size or scalars."); endif endif ## Check for DF and MU being reals if (iscomplex (df) || iscomplex (mu)) error ("nctrnd: DF and MU must not be complex."); endif ## Parse and check SIZE arguments if (nargin == 2) sz = size (df); elseif (nargin == 3) if (isscalar (varargin{1}) && varargin{1} >= 0 ... && varargin{1} == fix (varargin{1})) sz = [varargin{1}, varargin{1}]; elseif (isrow (varargin{1}) && all (varargin{1} >= 0) ... && all (varargin{1} == fix (varargin{1}))) sz = varargin{1}; elseif error (strcat (["nctrnd: SZ must be a scalar or a row vector"], ... [" of non-negative integers."])); endif elseif (nargin > 3) posint = cellfun (@(x) (! isscalar (x) || x < 0 || x != fix (x)), varargin); if (any (posint)) error ("nctrnd: dimensions must be non-negative integers."); endif sz = [varargin{:}]; endif ## Check that parameters match requested dimensions in size if (! isscalar (df) && ! isequal (size (df), sz)) error ("nctrnd: DF and MU must be scalars or of size SZ."); endif ## Check for class type if (isa (df, "single") || isa (mu, "single")); cls = "single"; else cls = "double"; endif ## Return NaNs for out of range values of DF df(df <= 0) = NaN; ## Prevent Inf/Inf==NaN for the standardized chi-square in the denom. df(isinf (df)) = realmax; ## Generate random sample from noncentral F distribution r = (randn (sz) + mu) ./ sqrt (2 .* randg (df ./ 2, sz) ./ df); ## Cast to appropriate class r = cast (r, cls); endfunction ## Test output %!assert (size (nctrnd (1, 1)), [1 1]) %!assert (size (nctrnd (1, ones (2,1))), [2, 1]) %!assert (size (nctrnd (1, ones (2,2))), [2, 2]) %!assert (size (nctrnd (ones (2,1), 1)), [2, 1]) %!assert (size (nctrnd (ones (2,2), 1)), [2, 2]) %!assert (size (nctrnd (1, 1, 3)), [3, 3]) %!assert (size (nctrnd (1, 1, [4, 1])), [4, 1]) %!assert (size (nctrnd (1, 1, 4, 1)), [4, 1]) %!assert (size (nctrnd (1, 1, 4, 1, 5)), [4, 1, 5]) %!assert (size (nctrnd (1, 1, 0, 1)), [0, 1]) %!assert (size (nctrnd (1, 1, 1, 0)), [1, 0]) %!assert (size (nctrnd (1, 1, 1, 2, 0, 5)), [1, 2, 0, 5]) ## Test class of input preserved %!assert (class (nctrnd (1, 1)), "double") %!assert (class (nctrnd (1, single (1))), "single") %!assert (class (nctrnd (1, single ([1, 1]))), "single") %!assert (class (nctrnd (single (1), 1)), "single") %!assert (class (nctrnd (single ([1, 1]), 1)), "single") ## Test input validation %!error nctrnd () %!error nctrnd (1) %!error ... %! nctrnd (ones (3), ones (2)) %!error ... %! nctrnd (ones (2), ones (3)) %!error nctrnd (i, 2) %!error nctrnd (1, i) %!error ... %! nctrnd (1, 2, -1) %!error ... %! nctrnd (1, 2, 1.2) %!error ... %! nctrnd (1, 2, ones (2)) %!error ... %! nctrnd (1, 2, [2 -1 2]) %!error ... %! nctrnd (1, 2, [2 0 2.5]) %!error ... %! nctrnd (1, 2, 2, -1, 5) %!error ... %! nctrnd (1, 2, 2, 1.5, 5) %!error ... %! nctrnd (2, ones (2), 3) %!error ... %! nctrnd (2, ones (2), [3, 2]) %!error ... %! nctrnd (2, ones (2), 3, 2) statistics-release-1.6.3/inst/dist_fun/ncx2cdf.m000066400000000000000000000232561456127120000216340ustar00rootroot00000000000000## Copyright (C) 2022-2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{p} =} ncx2cdf (@var{x}, @var{df}, @var{lambda}) ## @deftypefnx {statistics} {@var{p} =} ncx2cdf (@var{x}, @var{df}, @var{lambda}, @qcode{"upper"}) ## ## Noncentral chi-squared cumulative distribution function (CDF). ## ## For each element of @var{x}, compute the cumulative distribution function ## (CDF) of the noncentral chi-squared distribution with @var{df} degrees of ## freedom and noncentrality parameter @var{lambda}. The size of @var{p} is the ## common size of @var{x}, @var{df}, and @var{lambda}. A scalar input functions ## as a constant matrix of the same size as the other inputs. ## ## @code{@var{p} = ncx2cdf (@var{x}, @var{df}, @var{lambda}, "upper")} computes ## the upper tail probability of the noncentral chi-squared distribution with ## parameters @var{df} and @var{lambda}, at the values in @var{x}. ## ## Further information about the noncentral chi-squared distribution can be ## found at @url{https://en.wikipedia.org/wiki/Noncentral_chi-squared_distribution} ## ## @seealso{ncx2inv, ncx2pdf, ncx2rnd, ncx2stat, chi2cdf} ## @end deftypefn function p = ncx2cdf (x, df, lambda, uflag) ## Check for valid number of input arguments if (nargin < 3) error ("ncx2cdf: function called with too few input arguments."); endif ## Check for valid "upper" flag if (nargin > 3) if (! strcmpi (uflag, "upper")) error ("ncx2cdf: invalid argument for upper tail."); else uflag = true; endif else uflag = false; endif ## Check for common size of X, DF, and LAMBDA [err, x, df, lambda] = common_size (x, df, lambda); if (err > 0) error ("ncx2cdf: X, DF, and LAMBDA must be of common size or scalars."); endif ## Check for X, DF, and LAMBDA being reals if (iscomplex (x) || iscomplex (df) || iscomplex (lambda)) error ("ncx2cdf: X, DF, and LAMBDA must not be complex."); endif ## Check for class type if (isa (x, "single") || isa (df, "single") || isa (lambda, "single")) p = zeros (size (x), "single"); c_eps = eps ("single"); c_min = realmin ("single"); else p = zeros (size (x)); c_eps = eps; c_min = realmin; endif ## Find NaNs in input arguments (if any) and propagate them to p is_nan = isnan (x) | isnan (df) | isnan (lambda); p(is_nan) = NaN; if (uflag) p(x == Inf & ! is_nan) = 0; p(x <= 0 & ! is_nan) = 1; else p(x == Inf & ! is_nan) = 1; endif ## Make P = NaN for negative values of noncentrality parameter and DF p(lambda < 0) = NaN; p(df < 0) = NaN; ## For DF == 0 at x == 0 k = df == 0 & x == 0 & lambda >= 0 & ! is_nan; if (uflag) p(k) = -expm1 (-lambda(k) / 2); else p(k) = exp (-lambda(k) / 2); endif ## Central chi2cdf k = df >= 0 & x > 0 & lambda == 0 & isfinite (x) & ! is_nan; if (uflag) p(k) = chi2cdf (x(k), df(k), "upper"); else p(k) = chi2cdf (x(k), df(k)); endif ## Keep only valid samples td = find (df >= 0 & x > 0 & lambda > 0 & isfinite (x) & ! is_nan); lambda = lambda(td) / 2; df = df(td) / 2; x = x(td) / 2; ## Compute Chernoff bounds e0 = log(c_min); e1 = log(c_eps/4); t = 1 - (df + sqrt (df .^ 2 + 4 * lambda .* x)) ./ (2 * x); q = lambda .* t ./ (1 - t) - df .* log(1 - t) - t .* x; peq0 = x < lambda + df & q < e0; peq1 = x > lambda + df & q < e1; if (uflag) p(td(peq0)) = 1; else p(td(peq1)) = 1; endif td(peq0 | peq1) = []; x(peq0 | peq1) = []; df(peq0 | peq1) = []; lambda(peq0 | peq1) = []; ## Find index K of the maximal term in the summation series. ## K1 and K2 are lower and upper bounds for K, respectively. ## Indexing of terms in the summation series starts at 0. K1 = ceil ((sqrt ((df + x) .^ 2 + 4 * x .* lambda) - (df + x)) / 2); K = zeros (size (x)); k1above1 = find (K1 > 1); K2 = floor (lambda(k1above1) .* gammaincratio (x(k1above1), K1(k1above1))); fixK2 = isnan(K2) | isinf(K2); K2(fixK2) = K1(k1above1(fixK2)); K(k1above1) = K2; ## Find Poisson and Poisson*chi2cdf parts for the maximal terms in the ## summation series. if (uflag) k0 = (K==0 & df==0); K(k0) = 1; endif pois = poisspdf (K, lambda); if (uflag) full = pois .* gammainc (x, df + K, "upper"); else full = pois .* gammainc (x, df + K); endif ## Sum the series. First go downward from K and then go upward. ## The term for K is added afterwards - it is not included in either sum. sumK = zeros (size (x)); ## Downward. poisspdf(k-1,lambda)/poisspdf(k,lambda) = k/lambda poisterm = pois; fullterm = full; keep = K > 0 & fullterm > 0; k = K; while any(keep) poisterm(keep) = poisterm(keep) .* k(keep) ./ lambda(keep); k(keep) = k(keep) - 1; if (uflag) fullterm(keep) = poisterm(keep) .* ... gammainc (x(keep), df(keep) + k(keep), "upper"); else fullterm(keep) = poisterm(keep) .* ... gammainc (x(keep), df(keep) + k(keep)); endif sumK(keep) = sumK(keep) + fullterm(keep); keep = keep & k > 0 & fullterm > eps(sumK); endwhile ## Upward. poisspdf(k+1,lambda)/poisspdf(k,lambda) = lambda/(k+1) poisterm = pois; fullterm = full; keep = fullterm > 0; k = K; while any(keep) k(keep) = k(keep)+1; poisterm(keep) = poisterm(keep) .* lambda(keep) ./ k(keep); if (uflag) fullterm(keep) = poisterm(keep) .* ... gammainc (x(keep), df(keep) + k(keep), "upper"); else fullterm(keep) = poisterm(keep) .* ... gammainc (x(keep), df(keep) + k(keep)); end sumK(keep) = sumK(keep) + fullterm(keep); keep = keep & fullterm > eps(sumK); endwhile ## Get probabilities p(td) = full + sumK; p(p > 1) = 1; endfunction ## Ratio of incomplete gamma function values at S and S-1. function r = gammaincratio (x, s) ## Initialize r = zeros (size (s)); ## Finf small small = s < 2 | s <= x; ## For small S, use the ratio computed directly if (any (small(:))) r(small) = gammainc (x(small), s(small)) ./ ... gammainc (x(small), s(small) - 1); endif ## For large S, estimate numerator and denominator using 'scaledlower' option if (any (! small(:))) idx = find (! small); x = x(idx); s = s(idx); r(idx) = gammainc (x, s, "scaledlower") ./ ... gammainc (x, s - 1, "scaledlower") .* x ./ s; endif endfunction %!demo %! ## Plot various CDFs from the noncentral chi-squared distribution %! x = 0:0.1:10; %! p1 = ncx2cdf (x, 2, 1); %! p2 = ncx2cdf (x, 2, 2); %! p3 = ncx2cdf (x, 2, 3); %! p4 = ncx2cdf (x, 4, 1); %! p5 = ncx2cdf (x, 4, 2); %! p6 = ncx2cdf (x, 4, 3); %! plot (x, p1, "-r", x, p2, "-g", x, p3, "-k", ... %! x, p4, "-m", x, p5, "-c", x, p6, "-y") %! grid on %! xlim ([0, 10]) %! legend ({"df = 2, λ = 1", "df = 2, λ = 2", ... %! "df = 2, λ = 3", "df = 4, λ = 1", ... %! "df = 4, λ = 2", "df = 4, λ = 3"}, "location", "southeast") %! title ("Noncentral chi-squared CDF") %! xlabel ("values in x") %! ylabel ("probability") %!demo %! ## Compare the noncentral chi-squared CDF with LAMBDA = 2 to the %! ## chi-squared CDF with the same number of degrees of freedom (4). %! %! x = 0:0.1:10; %! p1 = ncx2cdf (x, 4, 2); %! p2 = chi2cdf (x, 4); %! plot (x, p1, "-", x, p2, "-") %! grid on %! xlim ([0, 10]) %! legend ({"Noncentral χ^2(4,2)", "χ^2(4)"}, "location", "northwest") %! title ("Noncentral chi-squared vs chi-squared CDFs") %! xlabel ("values in x") %! ylabel ("probability") ## Test output %!test %! x = -2:0.1:2; %! p = ncx2cdf (x, 10, 1); %! assert (p([1:21]), zeros (1, 21), 3e-84); %! assert (p(22), 1.521400636466575e-09, 1e-14); %! assert (p(30), 6.665480510026046e-05, 1e-14); %! assert (p(41), 0.002406447308399836, 1e-14); %!test %! p = ncx2cdf (12, 10, 3); %! assert (p, 0.4845555602398649, 1e-14); %!test %! p = ncx2cdf (2, 3, 2); %! assert (p, 0.2207330870741212, 1e-14); %!test %! p = ncx2cdf (2, 3, 2, "upper"); %! assert (p, 0.7792669129258789, 1e-14); %!test %! p = ncx2cdf ([3, 6], 3, 2, "upper"); %! assert (p, [0.6423318186400054, 0.3152299878943012], 1e-14); ## Test input validation %!error ncx2cdf () %!error ncx2cdf (1) %!error ncx2cdf (1, 2) %!error ncx2cdf (1, 2, 3, "tail") %!error ncx2cdf (1, 2, 3, 4) %!error ... %! ncx2cdf (ones (3), ones (2), ones (2)) %!error ... %! ncx2cdf (ones (2), ones (3), ones (2)) %!error ... %! ncx2cdf (ones (2), ones (2), ones (3)) %!error ncx2cdf (i, 2, 2) %!error ncx2cdf (2, i, 2) %!error ncx2cdf (2, 2, i) statistics-release-1.6.3/inst/dist_fun/ncx2inv.m000066400000000000000000000161671456127120000216770ustar00rootroot00000000000000## Copyright (C) 2022-2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{x} =} ncx2inv (@var{p}, @var{df}, @var{lambda}) ## ## Inverse of the noncentral chi-squared cumulative distribution function (iCDF). ## ## For each element of @var{p}, compute the quantile (the inverse of the CDF) of ## the noncentral chi-squared distribution with @var{df} degrees of freedom and ## noncentrality parameter @var{mu}. The size of @var{x} is the common size of ## @var{p}, @var{df}, and @var{mu}. A scalar input functions as a constant ## matrix of the same size as the other inputs. ## ## @code{ncx2inv} uses Newton's method to converge to the solution. ## ## Further information about the noncentral chi-squared distribution can be ## found at @url{https://en.wikipedia.org/wiki/Noncentral_chi-squared_distribution} ## ## @seealso{ncx2cdf, ncx2pdf, ncx2rnd, ncx2stat, chi2inv} ## @end deftypefn function x = ncx2inv (p, df, lambda) ## Check for valid number of input arguments if (nargin < 3) error ("ncx2inv: function called with too few input arguments."); endif ## Check for common size of P, DF, and LAMBDA [err, p, df, lambda] = common_size (p, df, lambda); if (err > 0) error ("ncx2inv: P, DF, and LAMBDA must be of common size or scalars."); endif ## Check for P, DF, and LAMBDA being reals if (iscomplex (p) || iscomplex (df) || iscomplex (lambda)) error ("ncx2inv: P, DF, and LAMBDA must not be complex."); endif ## Check for class type if (isa (p, "single") || isa (df, "single") || isa (lambda, "single")) x = NaN (size (p), "single"); crit = sqrt (eps ("single")); else x = NaN (size (p), "double"); crit = sqrt (eps ("double")); endif ## For lambda == 0, call chi2inv d0 = lambda == 0; if (any (d0(:))) x(d0) = chi2inv (p(d0), df(d0)); ## If lambda == 0 for all entries, then return if (all (d0(:))) return; endif endif ## CDF with 0 d.d0. has a step at x=0. ## Check if CDF at x=0 exceeds the requested p. df0 = df==0 & lambda > 0; if (any (df0(:))) p0 = zeros (size (p)); p0(df0) = ncx2cdf (0, df(df0), lambda(df0)); df0 = df0 & p0 >= p; x(df0) = 0; endif valid = ! df0 & df > 0 & lambda > 0; ## Force x = 0 for p == 0 and x = Inf for p == 1 x(p == 0 & valid) = 0; x(p == 1 & valid) = Inf; ## Find valid samples within the range of 0 < p < 1 k = find (p > 0 & p < 1 & valid); pk = p(k); ## Initialize counter count_limit = 100; count = 0; ## Supply a starting guess for the iteration. mn = df(k) + lambda(k); variance = 2 * (df(k) + 2 * lambda(k)); temp = log (variance + mn .^ 2); mu = 2 * log (mn) - 0.5 * temp; sigma = -2 * log (mn) + temp; xk = exp (norminv (pk, mu, sigma)); F = ncx2cdf (xk, df(k), lambda(k)); h = ones(size(xk), class (xk)); ## Start iteration with a break out loop while (count < count_limit) count = count + 1; h = (F - pk) ./ ncx2pdf (xk, df(k), lambda(k)); xnew = max (xk / 50, min (5 * xk, xk - h)); newF = ncx2cdf (xnew, df(k), lambda(k)); while (true) worse = (abs (newF - pk) > abs (F - pk) * (1 + crit)) & ... (abs (xk - xnew) > crit * xk); if (! any (worse)) break; endif xnew(worse) = 0.5 * (xnew(worse) + xk(worse)); newF(worse) = ncx2cdf (xnew(worse), df(k(worse)), lambda(k(worse))); endwhile h = xk - xnew; x(k) = xnew; mask = (abs (h) > crit * abs (xk)); if (! any (mask)) break; endif k = k(mask); xk = xnew(mask); F = newF(mask); pk = pk(mask); endwhile if (count == count_limit) warning ("ncx2inv: did not converge."); endif endfunction %!demo %! ## Plot various iCDFs from the noncentral chi-squared distribution %! p = 0.001:0.001:0.999; %! x1 = ncx2inv (p, 2, 1); %! x2 = ncx2inv (p, 2, 2); %! x3 = ncx2inv (p, 2, 3); %! x4 = ncx2inv (p, 4, 1); %! x5 = ncx2inv (p, 4, 2); %! x6 = ncx2inv (p, 4, 3); %! plot (p, x1, "-r", p, x2, "-g", p, x3, "-k", ... %! p, x4, "-m", p, x5, "-c", p, x6, "-y") %! grid on %! ylim ([0, 10]) %! legend ({"df = 2, λ = 1", "df = 2, λ = 2", ... %! "df = 2, λ = 3", "df = 4, λ = 1", ... %! "df = 4, λ = 2", "df = 4, λ = 3"}, "location", "northwest") %! title ("Noncentral chi-squared iCDF") %! xlabel ("probability") %! ylabel ("values in x") %!demo %! ## Compare the noncentral chi-squared CDF with LAMBDA = 2 to the %! ## chi-squared CDF with the same number of degrees of freedom (4). %! %! p = 0.001:0.001:0.999; %! x1 = ncx2inv (p, 4, 2); %! x2 = chi2inv (p, 4); %! plot (p, x1, "-", p, x2, "-"); %! grid on %! ylim ([0, 10]) %! legend ({"Noncentral χ^2(4,2)", "χ^2(4)"}, "location", "northwest") %! title ("Noncentral chi-squared vs chi-squared quantile functions") %! xlabel ("probability") %! ylabel ("values in x") ## Test output %!test %! x = [0,0.3443,0.7226,1.1440,1.6220,2.1770,2.8436,3.6854,4.8447,6.7701,Inf]; %! assert (ncx2inv ([0:0.1:1], 2, 1), x, 1e-4); %!test %! x = [0,0.8295,1.6001,2.3708,3.1785,4.0598,5.0644,6.2765,7.8763,10.4199,Inf]; %! assert (ncx2inv ([0:0.1:1], 2, 3), x, 1e-4); %!test %! x = [0,0.5417,1.3483,2.1796,3.0516,4.0003,5.0777,6.3726,8.0748,10.7686,Inf]; %! assert (ncx2inv ([0:0.1:1], 1, 4), x, 1e-4); %!test %! x = [0.1808, 0.6456, 1.1842, 1.7650, 2.3760, 3.0105]; %! assert (ncx2inv (0.05, [1, 2, 3, 4, 5, 6], 4), x, 1e-4); %!test %! x = [0.4887, 0.6699, 0.9012, 1.1842, 1.5164, 1.8927]; %! assert (ncx2inv (0.05, 3, [1, 2, 3, 4, 5, 6]), x, 1e-4); %!test %! x = [1.3941, 1.6824, 2.0103, 2.3760, NaN, 3.2087]; %! assert (ncx2inv (0.05, 5, [1, 2, 3, 4, -1, 6]), x, 1e-4); %!test %! assert (ncx2inv (0.996, 5, 8), 35.51298862765576, 2e-13); ## Test input validation %!error ncx2inv () %!error ncx2inv (1) %!error ncx2inv (1, 2) %!error ... %! ncx2inv (ones (3), ones (2), ones (2)) %!error ... %! ncx2inv (ones (2), ones (3), ones (2)) %!error ... %! ncx2inv (ones (2), ones (2), ones (3)) %!error ncx2inv (i, 2, 2) %!error ncx2inv (2, i, 2) %!error ncx2inv (2, 2, i) statistics-release-1.6.3/inst/dist_fun/ncx2pdf.m000066400000000000000000000303201456127120000216370ustar00rootroot00000000000000## Copyright (C) 2022-2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{y} =} ncx2pdf (@var{x}, @var{df}, @var{lambda}) ## ## Noncentral chi-squared probability distribution function (PDF). ## ## For each element of @var{x}, compute the probability density function (PDF) ## of the noncentral chi-squared distribution with @var{df} degrees of freedom ## and noncentrality parameter @var{lambda}. The size of @var{y} is the common ## size of @var{x}, @var{df}, and @var{lambda}. A scalar input functions as a ## constant matrix of the same size as the other inputs. ## ## Further information about the noncentral chi-squared distribution can be ## found at @url{https://en.wikipedia.org/wiki/Noncentral_chi-squared_distribution} ## ## @seealso{ncx2cdf, ncx2inv, ncx2rnd, ncx2stat, chi2pdf} ## @end deftypefn function y = ncx2pdf (x, df, lambda) ## Check for valid number of input arguments if (nargin < 3) error ("ncx2pdf: function called with too few input arguments."); endif ## Check for common size of X, DF, and LAMBDA [err, x, df, lambda] = common_size (x, df, lambda); if (err > 0) error ("ncx2pdf: X, DF, and LAMBDA must be of common size or scalars."); endif ## Check for X, DF, and LAMBDA being reals if (iscomplex (x) || iscomplex (df) || iscomplex (lambda)) error ("ncx2pdf: X, DF, and LAMBDA must not be complex."); endif ## Check for class type if (isa (x, "single") || isa (df, "single") || isa (lambda, "single")) y = zeros (size (x), "single"); else y = zeros (size (x)); endif ## Find NaNs in input arguments (if any) and propagate them to p is_nan = isnan (x) | isnan (df) | isnan (lambda); y(is_nan) = NaN; ## Make input arguments column vectors and half DF x = x(:); df = df(:); df = df / 2; lambda = lambda(:); ## Handle special cases k1 = x == 0 & df == 1; y(k1) = 0.5 * exp (-0.5 * lambda(k1)); k2 = x == 0 & df < 1; y(k2) = Inf; y(lambda < 0) = NaN; y(df < 0) = NaN; k3 = lambda == 0 & df > 0; y(k3) = gampdf (x(k3), df(k3), 2); ## Handle normal cases td = find(x>0 & x0 & df>=0); ## Return if finished all normal cases if (isempty (td)) return; endif ## Reset input variables to remaining cases x = x(td); lambda = lambda(td); df = df(td) - 1; x_sqrt = sqrt (x); d_sqrt = sqrt (lambda); ## Upper Limit on density small_DF = df <= -0.5; large_DF = ! small_DF; ul = zeros (size (x)); ul(small_DF) = -0.5 * (lambda(small_DF) + x(small_DF)) + ... 0.5 * x_sqrt(small_DF) .* d_sqrt (small_DF) ./ ... (df(small_DF) + 1) + df(small_DF) .* ... (log (x(small_DF)) - log (2)) - log (2) - ... gammaln (df(small_DF) + 1); ul(large_DF) = -0.5 * (d_sqrt(large_DF) - x_sqrt(large_DF)) .^ 2 + ... df(large_DF) .* (log (x(large_DF)) - log (2)) - log (2) - ... gammaln (df(large_DF) + 1) + (df(large_DF) + 0.5) .* ... log ((df(large_DF) + 0.5) ./ (x_sqrt(large_DF) .* ... d_sqrt(large_DF) + df(large_DF) + 0.5)); ULunderflow = ul < log (realmin); y(td(ULunderflow)) = 0; td(ULunderflow) = []; ## Return if finished all normal cases if (isempty (td)) return; endif x(ULunderflow) = []; lambda(ULunderflow) = []; df(ULunderflow) = []; x_sqrt(ULunderflow) = []; d_sqrt(ULunderflow) = []; ## Try the scaled Bess function scaleB = besseli (df, d_sqrt .* x_sqrt, 1); use_SB = scaleB > 0 & scaleB < Inf; y(td(use_SB)) = exp (-log (2) -0.5 * (x_sqrt(use_SB) - ... d_sqrt(use_SB)) .^ 2 + df(use_SB) .* ... log (x_sqrt(use_SB) ./ d_sqrt(use_SB))) .* scaleB(use_SB); td(use_SB) = []; ## Return if finished all normal cases if (isempty (td)) return; endif x(use_SB) = []; lambda(use_SB) = []; df(use_SB) = []; x_sqrt(use_SB) = []; d_sqrt(use_SB) = []; ## Try the Bess function Bess = besseli (df, d_sqrt .* x_sqrt); useB = Bess > 0 & Bess < Inf; y(td(useB)) = exp (-log (2) - 0.5 * (x(useB) + lambda(useB)) + ... df(useB) .* log (x_sqrt(useB) ./ d_sqrt(useB))) .* Bess(useB); td(useB) = []; ## Return if finished all normal cases if isempty(td) return; endif x(useB) = []; lambda(useB) = []; df(useB) = []; ## If neither Bess function works, use recursion. When non-centrality ## parameter is very large, the initial values of the Poisson numbers used ## in the approximation are very small, smaller than epsilon. This would ## cause premature convergence. To avoid that, we start from the peak of the ## Poisson numbers, and go in both directions. lnsr2pi = 0.9189385332046727; % log(sqrt(2*pi)) dx = lambda .* x / 4; K = max (0, floor (0.5 * (sqrt (df .^ 2 + 4 * dx) - df))); lntK = zeros(size(K)); K0 = K == 0; lntK(K0) = -lnsr2pi -0.5 * (lambda(K0) + log(df(K0))) - ... StirlingError (df(K0)) - BinoPoisson (df(K0), x(K0) / 2); K0 = ! K0; lntK(K0) = -2 * lnsr2pi - 0.5 * (log (K(K0)) + log (df(K0) + K(K0))) - ... StirlingError (K(K0)) - StirlingError (df(K0) + K(K0)) - ... BinoPoisson (K(K0), lambda(K0) / 2) - ... BinoPoisson (df(K0) + K(K0), x(K0) / 2); sumK = ones (size (K)); keep = K>0; term = ones (size (K)); k = K; while (any (keep)) term(keep) = term(keep) .* (df(keep) + k(keep)) .* k(keep) ./ dx(keep); sumK(keep) = sumK(keep) + term(keep); keep = keep & k > 0 & term > eps (sumK); k = k - 1; endwhile keep = true (size (K)); term = ones (size (K)); k = K + 1; while (any (keep)) term(keep) = term(keep) ./ (df(keep) + k(keep)) ./ k(keep) .* dx(keep); sumK(keep) = sumK(keep) + term(keep); keep = keep & term > eps (sumK); k = k + 1; end y(td) = 0.5 * exp (lntK + log (sumK)); endfunction ## Error of Stirling-De Moivre approximation to n factorial. function lambda = StirlingError (n) is_class = class (n); lambda = zeros (size (n), is_class); nn = n .* n; ## Define S0=1/12 S1=1/360 S2=1/1260 S3=1/1680 S4=1/1188 S0 = 8.333333333333333e-02; S1 = 2.777777777777778e-03; S2 = 7.936507936507937e-04; S3 = 5.952380952380952e-04; S4 = 8.417508417508418e-04; ## Define lambda(n) for n<0:0.5:15 sfe=[ 0; 1.534264097200273e-01;... 8.106146679532726e-02; 5.481412105191765e-02;... 4.134069595540929e-02; 3.316287351993629e-02;... 2.767792568499834e-02; 2.374616365629750e-02;... 2.079067210376509e-02; 1.848845053267319e-02;... 1.664469118982119e-02; 1.513497322191738e-02;... 1.387612882307075e-02; 1.281046524292023e-02;... 1.189670994589177e-02; 1.110455975820868e-02;... 1.041126526197210e-02; 9.799416126158803e-03;... 9.255462182712733e-03; 8.768700134139385e-03;... 8.330563433362871e-03; 7.934114564314021e-03;... 7.573675487951841e-03; 7.244554301320383e-03;... 6.942840107209530e-03; 6.665247032707682e-03;... 6.408994188004207e-03; 6.171712263039458e-03;... 5.951370112758848e-03; 5.746216513010116e-03;... 5.554733551962801e-03]; k = find (n <= 15); if (any (k)) n1 = n(k); n2 = 2 * n1; if (all (n2 == round (n2))) lambda(k) = sfe(n2+1); else lnsr2pi = 0.9189385332046728; lambda(k) = gammaln(n1+1)-(n1+0.5).*log(n1)+n1-lnsr2pi; endif endif k = find (n > 15 & n <= 35); if (any (k)) lambda(k) = (S0 - (S1 - (S2 - (S3 - S4 ./ nn(k)) ./ nn(k)) ./ ... nn(k)) ./ nn(k)) ./ n(k); endif k = find (n > 35 & n <= 80); if (any (k)) lambda(k) = (S0 - (S1 - (S2 - S3 ./ nn(k)) ./ nn(k)) ./ nn(k)) ./ n(k); endif k = find(n > 80 & n <= 500); if (any (k)) lambda(k) = (S0 - (S1 - S2 ./ nn(k)) ./ nn(k)) ./ n(k); endif k = find(n > 500); if (any (k)) lambda(k) = (S0 - S1 ./ nn(k)) ./ n(k); endif endfunction ## Deviance term for binomial and Poisson probability calculation. function BP = BinoPoisson (x, np) if (isa (x,'single') || isa (np,'single')) BP = zeros (size (x), "single"); else BP = zeros (size (x)); endif k = abs (x - np) < 0.1 * (x + np); if any(k(:)) s = (x(k) - np(k)) .* (x(k) - np(k)) ./ (x(k) + np(k)); v = (x(k) - np(k)) ./ (x(k) + np(k)); ej = 2 .* x(k) .* v; is_class = class (s); s1 = zeros (size (s), is_class); ok = true (size (s)); j = 0; while any(ok(:)) ej(ok) = ej(ok) .* v(ok) .* v(ok); j = j + 1; s1(ok) = s(ok) + ej(ok) ./ (2 * j + 1); ok = ok & s1 != s; s(ok) = s1(ok); endwhile BP(k) = s; endif k = ! k; if (any (k(:))) BP(k) = x(k) .* log (x(k) ./ np(k)) + np(k) - x(k); endif endfunction %!demo %! ## Plot various PDFs from the noncentral chi-squared distribution %! x = 0:0.1:10; %! y1 = ncx2pdf (x, 2, 1); %! y2 = ncx2pdf (x, 2, 2); %! y3 = ncx2pdf (x, 2, 3); %! y4 = ncx2pdf (x, 4, 1); %! y5 = ncx2pdf (x, 4, 2); %! y6 = ncx2pdf (x, 4, 3); %! plot (x, y1, "-r", x, y2, "-g", x, y3, "-k", ... %! x, y4, "-m", x, y5, "-c", x, y6, "-y") %! grid on %! xlim ([0, 10]) %! ylim ([0, 0.32]) %! legend ({"df = 2, λ = 1", "df = 2, λ = 2", ... %! "df = 2, λ = 3", "df = 4, λ = 1", ... %! "df = 4, λ = 2", "df = 4, λ = 3"}, "location", "northeast") %! title ("Noncentral chi-squared PDF") %! xlabel ("values in x") %! ylabel ("density") %!demo %! ## Compare the noncentral chi-squared PDF with LAMBDA = 2 to the %! ## chi-squared PDF with the same number of degrees of freedom (4). %! %! x = 0:0.1:10; %! y1 = ncx2pdf (x, 4, 2); %! y2 = chi2pdf (x, 4); %! plot (x, y1, "-", x, y2, "-"); %! grid on %! xlim ([0, 10]) %! ylim ([0, 0.32]) %! legend ({"Noncentral T(10,1)", "T(10)"}, "location", "northwest") %! title ("Noncentral chi-squared vs chi-squared PDFs") %! xlabel ("values in x") %! ylabel ("density") ## Test output %!shared x1, df, d1 %! x1 = [-Inf, 2, NaN, 4, Inf]; %! df = [2, 0, -1, 1, 4]; %! d1 = [1, NaN, 3, -1, 2]; %!assert (ncx2pdf (x1, df, d1), [0, NaN, NaN, NaN, 0]); %!assert (ncx2pdf (x1, df, 1), [0, 0.07093996461786045, NaN, ... %! 0.06160064323277038, 0], 1e-14); %!assert (ncx2pdf (x1, df, 3), [0, 0.1208364909271113, NaN, ... %! 0.09631299762429098, 0], 1e-14); %!assert (ncx2pdf (x1, df, 2), [0, 0.1076346446244688, NaN, ... %! 0.08430464047296625, 0], 1e-14); %!assert (ncx2pdf (x1, 2, d1), [0, NaN, NaN, NaN, 0]); %!assert (ncx2pdf (2, df, d1), [0.1747201674611283, NaN, NaN, ... %! NaN, 0.1076346446244688], 1e-14); %!assert (ncx2pdf (4, df, d1), [0.09355987820265799, NaN, NaN, ... %! NaN, 0.1192317192431485], 1e-14); ## Test input validation %!error ncx2pdf () %!error ncx2pdf (1) %!error ncx2pdf (1, 2) %!error ... %! ncx2pdf (ones (3), ones (2), ones (2)) %!error ... %! ncx2pdf (ones (2), ones (3), ones (2)) %!error ... %! ncx2pdf (ones (2), ones (2), ones (3)) %!error ncx2pdf (i, 2, 2) %!error ncx2pdf (2, i, 2) %!error ncx2pdf (2, 2, i) statistics-release-1.6.3/inst/dist_fun/ncx2rnd.m000066400000000000000000000153071456127120000216610ustar00rootroot00000000000000## Copyright (C) 2022-2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{r} =} ncx2rnd (@var{df}, @var{lambda}) ## @deftypefnx {statistics} {@var{r} =} ncx2rnd (@var{df}, @var{lambda}, @var{rows}, @var{cols}, @dots{}) ## @deftypefnx {statistics} {@var{r} =} ncx2rnd (@var{df}, @var{lambda}, [@var{sz}]) ## ## Random arrays from the noncentral chi-squared distribution. ## ## @code{@var{r} = ncx2rnd (@var{df}, @var{lambda})} returns an array of random ## numbers chosen from the noncentral chi-squared distribution with @var{df} ## degrees of freedom and noncentrality parameter @var{lambda}. The size of ## @var{r} is the common size of @var{df} and @var{lambda}. A scalar input ## functions as a constant matrix of the same size as the other input. ## ## When called with a single size argument, @code{ncx2rnd} returns a square ## matrix with the dimension specified. When called with more than one scalar ## argument, the first two arguments are taken as the number of rows and columns ## and any further arguments specify additional matrix dimensions. The size may ## also be specified with a row vector of dimensions, @var{sz}. ## ## Further information about the noncentral chi-squared distribution can be ## found at @url{https://en.wikipedia.org/wiki/Noncentral_chi-squared_distribution} ## ## @seealso{ncx2cdf, ncx2inv, ncx2pdf, ncx2stat} ## @end deftypefn function r = ncx2rnd (df, lambda, varargin) ## Check for valid number of input arguments if (nargin < 2) error ("ncx2rnd: function called with too few input arguments."); endif ## Check for common size of DF and LAMBDA if (! isscalar (df) || ! isscalar (lambda)) [retval, df, lambda] = common_size (df, lambda); if (retval > 0) error ("ncx2rnd: DF and LAMBDA must be of common size or scalars."); endif endif ## Check for DF and LAMBDA being reals if (iscomplex (df) || iscomplex (lambda)) error ("ncx2rnd: DF and LAMBDA must not be complex."); endif ## Parse and check SIZE arguments if (nargin == 2) sz = size (df); elseif (nargin == 3) if (isscalar (varargin{1}) && varargin{1} >= 0 ... && varargin{1} == fix (varargin{1})) sz = [varargin{1}, varargin{1}]; elseif (isrow (varargin{1}) && all (varargin{1} >= 0) ... && all (varargin{1} == fix (varargin{1}))) sz = varargin{1}; elseif error (strcat (["ncx2rnd: SZ must be a scalar or a row vector"], ... [" of non-negative integers."])); endif elseif (nargin > 3) posint = cellfun (@(x) (! isscalar (x) || x < 0 || x != fix (x)), varargin); if (any (posint)) error ("ncx2rnd: dimensions must be non-negative integers."); endif sz = [varargin{:}]; endif ## Check that parameters match requested dimensions in size if (! isscalar (df) && ! isequal (size (df), sz)) error ("ncx2rnd: DF and LAMBDA must be scalars or of size SZ."); endif ## Check for class type if (isa (df, "single") || isa (lambda, "single")); cls = "single"; else cls = "double"; endif ## Return NaNs for out of range values of DF and LAMBDA df(df <= 0) = NaN; lambda(lambda <= 0) = NaN; ## Force DF and LAMBDA into the same size as SZ (if necessary) if (isscalar (df)) df = repmat (df, sz); endif if (isscalar (lambda)) lambda = repmat (lambda, sz); endif ## Generate random sample from noncentral chi-squared distribution r = randp (lambda ./ 2); r(r > 0) = 2 * randg (r(r > 0)); r(df > 0) += 2 * randg (df(df > 0) / 2); ## Cast to appropriate class r = cast (r, cls); endfunction ## Test output %!assert (size (ncx2rnd (1, 1)), [1 1]) %!assert (size (ncx2rnd (1, ones (2,1))), [2, 1]) %!assert (size (ncx2rnd (1, ones (2,2))), [2, 2]) %!assert (size (ncx2rnd (ones (2,1), 1)), [2, 1]) %!assert (size (ncx2rnd (ones (2,2), 1)), [2, 2]) %!assert (size (ncx2rnd (1, 1, 3)), [3, 3]) %!assert (size (ncx2rnd (1, 1, [4, 1])), [4, 1]) %!assert (size (ncx2rnd (1, 1, 4, 1)), [4, 1]) %!assert (size (ncx2rnd (1, 1, 4, 1, 5)), [4, 1, 5]) %!assert (size (ncx2rnd (1, 1, 0, 1)), [0, 1]) %!assert (size (ncx2rnd (1, 1, 1, 0)), [1, 0]) %!assert (size (ncx2rnd (1, 1, 1, 2, 0, 5)), [1, 2, 0, 5]) ## Test class of input preserved %!assert (class (ncx2rnd (1, 1)), "double") %!assert (class (ncx2rnd (1, single (1))), "single") %!assert (class (ncx2rnd (1, single ([1, 1]))), "single") %!assert (class (ncx2rnd (single (1), 1)), "single") %!assert (class (ncx2rnd (single ([1, 1]), 1)), "single") ## Test input validation %!error ncx2rnd () %!error ncx2rnd (1) %!error ... %! ncx2rnd (ones (3), ones (2)) %!error ... %! ncx2rnd (ones (2), ones (3)) %!error ncx2rnd (i, 2) %!error ncx2rnd (1, i) %!error ... %! ncx2rnd (1, 2, -1) %!error ... %! ncx2rnd (1, 2, 1.2) %!error ... %! ncx2rnd (1, 2, ones (2)) %!error ... %! ncx2rnd (1, 2, [2 -1 2]) %!error ... %! ncx2rnd (1, 2, [2 0 2.5]) %!error ... %! ncx2rnd (1, 2, 2, -1, 5) %!error ... %! ncx2rnd (1, 2, 2, 1.5, 5) %!error ... %! ncx2rnd (2, ones (2), 3) %!error ... %! ncx2rnd (2, ones (2), [3, 2]) %!error ... %! ncx2rnd (2, ones (2), 3, 2) statistics-release-1.6.3/inst/dist_fun/normcdf.m000066400000000000000000000225631456127120000217350ustar00rootroot00000000000000## Copyright (C) 1995-2016 Kurt Hornik ## Copyright (C) 2012 Rik Wehbring ## Copyright (C) 2022-2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{p} =} normcdf (@var{x}) ## @deftypefnx {statistics} {@var{p} =} normcdf (@var{x}, @var{mu}) ## @deftypefnx {statistics} {@var{p} =} normcdf (@var{x}, @var{mu}, @var{sigma}) ## @deftypefnx {statistics} {@var{p} =} normcdf (@dots{}, @qcode{"upper"}) ## @deftypefnx {statistics} {[@var{p}, @var{plo}, @var{pup}] =} normcdf (@var{x}, @var{mu}, @var{sigma}, @var{pcov}) ## @deftypefnx {statistics} {[@var{p}, @var{plo}, @var{pup}] =} normcdf (@var{x}, @var{mu}, @var{sigma}, @var{pcov}, @var{alpha}) ## @deftypefnx {statistics} {[@var{p}, @var{plo}, @var{pup}] =} normcdf (@dots{}, @qcode{"upper"}) ## ## Normal cumulative distribution function (CDF). ## ## For each element of @var{x}, compute the cumulative distribution function ## (CDF) of the normal distribution with mean @var{mu} and standard deviation ## @var{sigma}. The size of @var{p} is the common size of @var{x}, @var{mu} and ## @var{sigma}. A scalar input functions as a constant matrix of the same size ## as the other inputs. ## ## Default values are @var{mu} = 0, @var{sigma} = 1. ## ## When called with three output arguments, i.e. @qcode{[@var{p}, @var{plo}, ## @var{pup}]}, @code{normcdf} computes the confidence bounds for @var{p} when ## the input parameters @var{mu} and @var{sigma} are estimates. In such case, ## @var{pcov}, a @math{2x2} matrix containing the covariance matrix of the ## estimated parameters, is necessary. Optionally, @var{alpha}, which has a ## default value of 0.05, specifies the @qcode{100 * (1 - @var{alpha})} percent ## confidence bounds. @var{plo} and @var{pup} are arrays of the same size as ## @var{p} containing the lower and upper confidence bounds. ## ## @code{[@dots{}] = normcdf (@dots{}, "upper")} computes the upper tail ## probability of the normal distribution with parameters @var{mu} and ## @var{sigma}, at the values in @var{x}. This can be used to compute a ## right-tailed p-value. To compute a two-tailed p-value, use ## @code{2 * normcdf (-abs (@var{x}), @var{mu}, @var{sigma})}. ## ## Further information about the normal distribution can be found at ## @url{https://en.wikipedia.org/wiki/Normal_distribution} ## ## @seealso{norminv, normpdf, normrnd, normfit, normlike, normstat} ## @end deftypefn function [varargout] = normcdf (x, varargin) ## Check for valid number of input arguments if (nargin < 1 || nargin > 6) error ("normcdf: invalid number of input arguments."); endif ## Check for "upper" flag if (nargin > 1 && strcmpi (varargin{end}, "upper")) uflag = true; varargin(end) = []; elseif (nargin > 1 && ischar (varargin{end}) && ... ! strcmpi (varargin{end}, "upper")) error ("normcdf: invalid argument for upper tail."); else uflag = false; endif ## Get extra arguments (if they exist) or add defaults if (numel (varargin) > 0) mu = varargin{1}; else mu = 0; endif if (numel (varargin) > 1) sigma = varargin{2}; else sigma = 1; endif if (numel (varargin) > 2) pcov = varargin{3}; ## Check for valid covariance matrix 2x2 if (! isequal (size (pcov), [2, 2])) error ("normcdf: invalid size of covariance matrix."); endif else ## Check that cov matrix is provided if 3 output arguments are requested if (nargout > 1) error ("normcdf: covariance matrix is required for confidence bounds."); endif pcov = []; endif if (numel (varargin) > 3) alpha = varargin{4}; ## Check for valid alpha value if (! isnumeric (alpha) || numel (alpha) !=1 || alpha <= 0 || alpha >= 1) error ("normcdf: invalid value for alpha."); end else alpha = 0.05; endif ## Check for common size of X, MU, and SIGMA if (! isscalar (mu) || ! isscalar (sigma)) [err, x, mu, sigma] = common_size (x, mu, sigma); if (err > 0) error ("normcdf: X, MU, and SIGMA must be of common size or scalars."); endif endif ## Check for X, MU, and SIGMA being reals if (iscomplex (x) || iscomplex (mu) || iscomplex (sigma)) error ("normcdf: X, MU, and SIGMA must not be complex."); endif ## Compute normal CDF z = (x - mu) ./ sigma; if (uflag) z = -z; endif ## Check for class type if (isa (x, "single") || isa (mu, "single") || isa (sigma, "single")); is_class = "single"; else is_class = "double"; endif ## Prepare output p = NaN (size (z), is_class); if (nargout > 1) plo = NaN (size (z), is_class); pup = NaN (size (z), is_class); endif ## Check SIGMA if (isscalar (sigma)) if (sigma > 0) sigma_p = true (size (z)); sigma_z = false (size (z)); elseif (sigma == 0) sigma_z = true (size (z)); sigma_p = false (size (z)); else if (nargout <= 1) varargout{1} = p; elseif (nargout == 3) varargout{1} = p; varargout{2} = plo; varargout{3} = pup; endif return; endif else sigma_p = sigma > 0; sigma_z = sigma == 0; endif ## Set edge cases when SIGMA = 0 if (uflag) p(sigma_z & x < mu) = 1; p(sigma_z & x >= mu) = 0; if (nargout > 1) plo(sigma_z & x < mu) = 1; plo(sigma_z & x >= mu) = 0; pup(sigma_z & x < mu) = 1; pup(sigma_z & x >= mu) = 0; endif else p(sigma_z & x < mu) = 0; p(sigma_z & x >= mu) = 1; if (nargout >= 2) plo(sigma_z & x < mu) = 0; plo(sigma_z & x >= mu) = 1; pup(sigma_z & x < mu) = 0; pup(sigma_z & x >= mu) = 1; endif endif ## Compute cases when SIGMA > 0 p(sigma_p) = 0.5 * erfc (-z(sigma_p) ./ sqrt (2)); varargout{1} = p; ## Compute confidence bounds (if requested) if (nargout >= 2) zvar = (pcov(1,1) + 2 * pcov(1,2) * z(sigma_p) + ... pcov(2,2) * z(sigma_p) .^ 2) ./ (sigma .^ 2); if (any (zvar < 0)) error ("normcdf: bad covariance matrix."); endif normz = -norminv (alpha / 2); halfwidth = normz * sqrt (zvar); zlo = z(sigma_p) - halfwidth; zup = z(sigma_p) + halfwidth; plo(sigma_p) = 0.5 * erfc (-zlo ./ sqrt (2)); pup(sigma_p) = 0.5 * erfc (-zup ./ sqrt (2)); varargout{2} = plo; varargout{3} = pup; endif endfunction %!demo %! ## Plot various CDFs from the normal distribution %! x = -5:0.01:5; %! p1 = normcdf (x, 0, 0.5); %! p2 = normcdf (x, 0, 1); %! p3 = normcdf (x, 0, 2); %! p4 = normcdf (x, -2, 0.8); %! plot (x, p1, "-b", x, p2, "-g", x, p3, "-r", x, p4, "-c") %! grid on %! xlim ([-5, 5]) %! legend ({"μ = 0, σ = 0.5", "μ = 0, σ = 1", ... %! "μ = 0, σ = 2", "μ = -2, σ = 0.8"}, "location", "southeast") %! title ("Normal CDF") %! xlabel ("values in x") %! ylabel ("probability") ## Test output %!shared x, y %! x = [-Inf 1 2 Inf]; %! y = [0, 0.5, 1/2*(1+erf(1/sqrt(2))), 1]; %!assert (normcdf (x, ones (1,4), ones (1,4)), y) %!assert (normcdf (x, 1, ones (1,4)), y) %!assert (normcdf (x, ones (1,4), 1), y) %!assert (normcdf (x, [0, -Inf, NaN, Inf], 1), [0, 1, NaN, NaN]) %!assert (normcdf (x, 1, [Inf, NaN, -1, 0]), [NaN, NaN, NaN, 1]) %!assert (normcdf ([x(1:2), NaN, x(4)], 1, 1), [y(1:2), NaN, y(4)]) %!assert (normcdf (x, "upper"), [1, 0.1587, 0.0228, 0], 1e-4) ## Test class of input preserved %!assert (normcdf ([x, NaN], 1, 1), [y, NaN]) %!assert (normcdf (single ([x, NaN]), 1, 1), single ([y, NaN]), eps ("single")) %!assert (normcdf ([x, NaN], single (1), 1), single ([y, NaN]), eps ("single")) %!assert (normcdf ([x, NaN], 1, single (1)), single ([y, NaN]), eps ("single")) ## Test input validation %!error normcdf () %!error normcdf (1,2,3,4,5,6,7) %!error normcdf (1, 2, 3, 4, "uper") %!error ... %! normcdf (ones (3), ones (2), ones (2)) %!error normcdf (2, 3, 4, [1, 2]) %!error ... %! [p, plo, pup] = normcdf (1, 2, 3) %!error [p, plo, pup] = ... %! normcdf (1, 2, 3, [1, 0; 0, 1], 0) %!error [p, plo, pup] = ... %! normcdf (1, 2, 3, [1, 0; 0, 1], 1.22) %!error [p, plo, pup] = ... %! normcdf (1, 2, 3, [1, 0; 0, 1], "alpha", "upper") %!error normcdf (i, 2, 2) %!error normcdf (2, i, 2) %!error normcdf (2, 2, i) %!error ... %! [p, plo, pup] =normcdf (1, 2, 3, [1, 0; 0, -inf], 0.04) statistics-release-1.6.3/inst/dist_fun/norminv.m000066400000000000000000000123151456127120000217670ustar00rootroot00000000000000## Copyright (C) 2012 Rik Wehbring ## Copyright (C) 1995-2016 Kurt Hornik ## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{x} =} norminv (@var{p}) ## @deftypefnx {statistics} {@var{x} =} norminv (@var{p}, @var{mu}) ## @deftypefnx {statistics} {@var{x} =} norminv (@var{p}, @var{mu}, @var{sigma}) ## ## Inverse of the normal cumulative distribution function (iCDF). ## ## For each element of @var{p}, compute the quantile (the inverse of the CDF) of ## the normal distribution with mean @var{mu} and standard deviation @var{sigma}. ## The size of @var{p} is the common size of @var{p}, @var{mu} and @var{sigma}. ## A scalar input functions as a constant matrix of the same size as the other ## inputs. ## ## Default values are @var{mu} = 0, @var{sigma} = 1. ## ## The default values correspond to the standard normal distribution and ## computing its quantile function is also possible with the @code{probit} ## function, which is faster but it does not perform any input validation. ## ## Further information about the normal distribution can be found at ## @url{https://en.wikipedia.org/wiki/Normal_distribution} ## ## @seealso{norminv, normpdf, normrnd, normfit, normlike, normstat, probit} ## @end deftypefn function x = norminv (p, mu, sigma) ## Check for valid number of input arguments if (nargin < 1) error ("norminv: function called with too few input arguments."); endif ## Add defaults (if missing input arguments) if (nargin < 2) mu = 0; endif if (nargin < 3) sigma = 1; endif ## Check for common size of P, MU, and SIGMA if (! isscalar (p) || ! isscalar (mu) || ! isscalar (sigma)) [retval, p, mu, sigma] = common_size (p, mu, sigma); if (retval > 0) error ("norminv: P, MU, and SIGMA must be of common size or scalars."); endif endif ## Check for P, MU, and SIGMA being reals if (iscomplex (p) || iscomplex (mu) || iscomplex (sigma)) error ("norminv: P, MU, and SIGMA must not be complex."); endif ## Check for class type if (isa (p, "single") || isa (mu, "single") || isa (sigma, "single")) x = NaN (size (p), "single"); else x = NaN (size (p)); endif ## Compute normal iCDF if (isscalar (mu) && isscalar (sigma)) if (isfinite (mu) && (sigma > 0) && (sigma < Inf)) x = mu + sigma * (-sqrt (2) * erfcinv (2 * p)); endif else k = isfinite (mu) & (sigma > 0) & (sigma < Inf); x(k) = mu(k) + sigma(k) .* (-sqrt (2) * erfcinv (2 * p(k))); endif endfunction %!demo %! ## Plot various iCDFs from the normal distribution %! p = 0.001:0.001:0.999; %! x1 = norminv (p, 0, 0.5); %! x2 = norminv (p, 0, 1); %! x3 = norminv (p, 0, 2); %! x4 = norminv (p, -2, 0.8); %! plot (p, x1, "-b", p, x2, "-g", p, x3, "-r", p, x4, "-c") %! grid on %! ylim ([-5, 5]) %! legend ({"μ = 0, σ = 0.5", "μ = 0, σ = 1", ... %! "μ = 0, σ = 2", "μ = -2, σ = 0.8"}, "location", "northwest") %! title ("Normal iCDF") %! xlabel ("probability") %! ylabel ("values in x") ## Test output %!shared p %! p = [-1 0 0.5 1 2]; %!assert (norminv (p, ones (1,5), ones (1,5)), [NaN -Inf 1 Inf NaN]) %!assert (norminv (p, 1, ones (1,5)), [NaN -Inf 1 Inf NaN]) %!assert (norminv (p, ones (1,5), 1), [NaN -Inf 1 Inf NaN]) %!assert (norminv (p, [1 -Inf NaN Inf 1], 1), [NaN NaN NaN NaN NaN]) %!assert (norminv (p, 1, [1 0 NaN Inf 1]), [NaN NaN NaN NaN NaN]) %!assert (norminv ([p(1:2) NaN p(4:5)], 1, 1), [NaN -Inf NaN Inf NaN]) %!assert (norminv (p), probit (p)) %!assert (norminv (0.31254), probit (0.31254)) ## Test class of input preserved %!assert (norminv ([p, NaN], 1, 1), [NaN -Inf 1 Inf NaN NaN]) %!assert (norminv (single ([p, NaN]), 1, 1), single ([NaN -Inf 1 Inf NaN NaN])) %!assert (norminv ([p, NaN], single (1), 1), single ([NaN -Inf 1 Inf NaN NaN])) %!assert (norminv ([p, NaN], 1, single (1)), single ([NaN -Inf 1 Inf NaN NaN])) ## Test input validation %!error norminv () %!error ... %! norminv (ones (3), ones (2), ones (2)) %!error ... %! norminv (ones (2), ones (3), ones (2)) %!error ... %! norminv (ones (2), ones (2), ones (3)) %!error norminv (i, 2, 2) %!error norminv (2, i, 2) %!error norminv (2, 2, i) statistics-release-1.6.3/inst/dist_fun/normpdf.m000066400000000000000000000120371456127120000217450ustar00rootroot00000000000000## Copyright (C) 2012 Rik Wehbring ## Copyright (C) 1995-2016 Kurt Hornik ## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{y} =} normpdf (@var{x}) ## @deftypefnx {statistics} {@var{y} =} normpdf (@var{x}, @var{mu}) ## @deftypefnx {statistics} {@var{y} =} normpdf (@var{x}, @var{mu}, @var{sigma}) ## ## Normal probability density function (PDF). ## ## For each element of @var{x}, compute the probability density function (PDF) ## of the normal distribution with mean @var{mu} and standard deviation ## @var{sigma}. The size of @var{y} is the common size of @var{p}, @var{mu} and ## @var{sigma}. A scalar input functions as a constant matrix of the same size ## as the other inputs. ## ## Default values are @var{mu} = 0, @var{sigma} = 1. ## ## Further information about the normal distribution can be found at ## @url{https://en.wikipedia.org/wiki/Normal_distribution} ## ## @seealso{norminv, norminv, normrnd, normfit, normlike, normstat} ## @end deftypefn function y = normpdf (x, mu, sigma) ## Check for valid number of input arguments if (nargin < 1 || nargin > 3) error ("normpdf: function called with too few input arguments."); endif ## Add defaults (if missing input arguments) if (nargin < 2) mu = 0; endif if (nargin < 3) sigma = 1; endif ## Check for common size of X, MU, and SIGMA if (! isscalar (x) || ! isscalar (mu) || ! isscalar (sigma)) [retval, x, mu, sigma] = common_size (x, mu, sigma); if (retval > 0) error ("normpdf: X, MU, and SIGMA must be of common size or scalars."); endif endif ## Check for X, MU, and SIGMA being reals if (iscomplex (x) || iscomplex (mu) || iscomplex (sigma)) error ("normpdf: X, MU, and SIGMA must not be complex."); endif ## Check for class type if (isa (x, "single") || isa (mu, "single") || isa (sigma, "single")) y = zeros (size (x), "single"); else y = zeros (size (x)); endif ## Compute normal PDF if (isscalar (mu) && isscalar (sigma)) if (isfinite (mu) && (sigma > 0) && (sigma < Inf)) y = stdnormal_pdf ((x - mu) / sigma) / sigma; else y = NaN (size (x), class (y)); endif else k = isinf (mu) | !(sigma > 0) | !(sigma < Inf); y(k) = NaN; k = ! isinf (mu) & (sigma > 0) & (sigma < Inf); y(k) = stdnormal_pdf ((x(k) - mu(k)) ./ sigma(k)) ./ sigma(k); endif endfunction function y = stdnormal_pdf (x) y = (2 * pi)^(- 1/2) * exp (- x .^ 2 / 2); endfunction %!demo %! ## Plot various PDFs from the normal distribution %! x = -5:0.01:5; %! y1 = normpdf (x, 0, 0.5); %! y2 = normpdf (x, 0, 1); %! y3 = normpdf (x, 0, 2); %! y4 = normpdf (x, -2, 0.8); %! plot (x, y1, "-b", x, y2, "-g", x, y3, "-r", x, y4, "-c") %! grid on %! xlim ([-5, 5]) %! ylim ([0, 0.9]) %! legend ({"μ = 0, σ = 0.5", "μ = 0, σ = 1", ... %! "μ = 0, σ = 2", "μ = -2, σ = 0.8"}, "location", "northeast") %! title ("Normal PDF") %! xlabel ("values in x") %! ylabel ("density") ## Test output %!shared x, y %! x = [-Inf, 1, 2, Inf]; %! y = 1 / sqrt (2 * pi) * exp (-(x - 1) .^ 2 / 2); %!assert (normpdf (x, ones (1,4), ones (1,4)), y, eps) %!assert (normpdf (x, 1, ones (1,4)), y, eps) %!assert (normpdf (x, ones (1,4), 1), y, eps) %!assert (normpdf (x, [0 -Inf NaN Inf], 1), [y(1) NaN NaN NaN], eps) %!assert (normpdf (x, 1, [Inf NaN -1 0]), [NaN NaN NaN NaN], eps) %!assert (normpdf ([x, NaN], 1, 1), [y, NaN], eps) ## Test class of input preserved %!assert (normpdf (single ([x, NaN]), 1, 1), single ([y, NaN]), eps ("single")) %!assert (normpdf ([x, NaN], single (1), 1), single ([y, NaN]), eps ("single")) %!assert (normpdf ([x, NaN], 1, single (1)), single ([y, NaN]), eps ("single")) ## Test input validation %!error normpdf () %!error ... %! normpdf (ones (3), ones (2), ones (2)) %!error ... %! normpdf (ones (2), ones (3), ones (2)) %!error ... %! normpdf (ones (2), ones (2), ones (3)) %!error normpdf (i, 2, 2) %!error normpdf (2, i, 2) %!error normpdf (2, 2, i) statistics-release-1.6.3/inst/dist_fun/normrnd.m000066400000000000000000000153471456127120000217660ustar00rootroot00000000000000## Copyright (C) 2012 Rik Wehbring ## Copyright (C) 1995-2016 Kurt Hornik ## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{r} =} normrnd (@var{mu}, @var{sigma}) ## @deftypefnx {statistics} {@var{r} =} normrnd (@var{mu}, @var{sigma}, @var{rows}) ## @deftypefnx {statistics} {@var{r} =} normrnd (@var{mu}, @var{sigma}, @var{rows}, @var{cols}, @dots{}) ## @deftypefnx {statistics} {@var{r} =} normrnd (@var{mu}, @var{sigma}, [@var{sz}]) ## ## Random arrays from the normal distribution. ## ## @code{@var{r} = normrnd (@var{mu}, @var{sigma})} returns an array of random ## numbers chosen from the normal distribution with mean @var{mu} and standard ## deviation @var{sigma}. The size of @var{r} is the common size of @var{mu} ## and @var{sigma}. A scalar input functions as a constant matrix of the same ## size as the other inputs. Both parameters must be finite real numbers and ## @var{sigma} > 0, otherwise NaN is returned. ## ## When called with a single size argument, @code{normrnd} returns a square ## matrix with the dimension specified. When called with more than one scalar ## argument, the first two arguments are taken as the number of rows and columns ## and any further arguments specify additional matrix dimensions. The size may ## also be specified with a row vector of dimensions, @var{sz}. ## ## Further information about the normal distribution can be found at ## @url{https://en.wikipedia.org/wiki/Normal_distribution} ## ## @seealso{norminv, norminv, normpdf, normfit, normlike, normstat} ## @end deftypefn function r = normrnd (mu, sigma, varargin) ## Check for valid number of input arguments if (nargin < 2) error ("normrnd: function called with too few input arguments."); endif ## Check for common size of MU and SIGMA if (! isscalar (mu) || ! isscalar (sigma)) [retval, mu, sigma] = common_size (mu, sigma); if (retval > 0) error ("normrnd: MU and SIGMA must be of common size or scalars."); endif endif ## Check for MU and SIGMA being reals if (iscomplex (mu) || iscomplex (sigma)) error ("normrnd: MU and SIGMA must not be complex."); endif ## Parse and check SIZE arguments if (nargin == 2) sz = size (mu); elseif (nargin == 3) if (isscalar (varargin{1}) && varargin{1} >= 0 ... && varargin{1} == fix (varargin{1})) sz = [varargin{1}, varargin{1}]; elseif (isrow (varargin{1}) && all (varargin{1} >= 0) ... && all (varargin{1} == fix (varargin{1}))) sz = varargin{1}; elseif error (strcat (["normrnd: SZ must be a scalar or a row vector"], ... [" of non-negative integers."])); endif elseif (nargin > 3) posint = cellfun (@(x) (! isscalar (x) || x < 0 || x != fix (x)), varargin); if (any (posint)) error ("normrnd: dimensions must be non-negative integers."); endif sz = [varargin{:}]; endif ## Check that parameters match requested dimensions in size if (! isscalar (mu) && ! isequal (size (mu), sz)) error ("normrnd: MU and SIGMA must be scalars or of size SZ."); endif ## Check for class type if (isa (mu, "single") || isa (sigma, "single")) cls = "single"; else cls = "double"; endif ## Generate random sample from normal distribution if (isscalar (mu) && isscalar (sigma)) if (isfinite (mu) && (sigma >= 0) && (sigma < Inf)) r = mu + sigma * randn (sz, cls); else r = NaN (sz, cls); endif else r = mu + sigma .* randn (sz, cls); k = ! isfinite (mu) | !(sigma >= 0) | !(sigma < Inf); r(k) = NaN; endif endfunction ## Test output %!assert (size (normrnd (1, 1)), [1 1]) %!assert (size (normrnd (1, ones (2,1))), [2, 1]) %!assert (size (normrnd (1, ones (2,2))), [2, 2]) %!assert (size (normrnd (ones (2,1), 1)), [2, 1]) %!assert (size (normrnd (ones (2,2), 1)), [2, 2]) %!assert (size (normrnd (1, 1, 3)), [3, 3]) %!assert (size (normrnd (1, 1, [4, 1])), [4, 1]) %!assert (size (normrnd (1, 1, 4, 1)), [4, 1]) %!assert (size (normrnd (1, 1, 4, 1, 5)), [4, 1, 5]) %!assert (size (normrnd (1, 1, 0, 1)), [0, 1]) %!assert (size (normrnd (1, 1, 1, 0)), [1, 0]) %!assert (size (normrnd (1, 1, 1, 2, 0, 5)), [1, 2, 0, 5]) ## Test class of input preserved %!assert (class (normrnd (1, 1)), "double") %!assert (class (normrnd (1, single (1))), "single") %!assert (class (normrnd (1, single ([1, 1]))), "single") %!assert (class (normrnd (single (1), 1)), "single") %!assert (class (normrnd (single ([1, 1]), 1)), "single") ## Test input validation %!error normrnd () %!error normrnd (1) %!error ... %! normrnd (ones (3), ones (2)) %!error ... %! normrnd (ones (2), ones (3)) %!error normrnd (i, 2, 3) %!error normrnd (1, i, 3) %!error ... %! normrnd (1, 2, -1) %!error ... %! normrnd (1, 2, 1.2) %!error ... %! normrnd (1, 2, ones (2)) %!error ... %! normrnd (1, 2, [2 -1 2]) %!error ... %! normrnd (1, 2, [2 0 2.5]) %!error ... %! normrnd (1, 2, 2, -1, 5) %!error ... %! normrnd (1, 2, 2, 1.5, 5) %!error ... %! normrnd (2, ones (2), 3) %!error ... %! normrnd (2, ones (2), [3, 2]) %!error ... %! normrnd (2, ones (2), 3, 2) statistics-release-1.6.3/inst/dist_fun/poisscdf.m000066400000000000000000000122671456127120000221170ustar00rootroot00000000000000## Copyright (C) 2012 Rik Wehbring ## Copyright (C) 1995-2016 Kurt Hornik ## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{p} =} poisscdf (@var{x}, @var{lambda}) ## @deftypefnx {statistics} {@var{p} =} poisscdf (@var{x}, @var{lambda}, @qcode{"upper"}) ## ## Poisson cumulative distribution function (CDF). ## ## For each element of @var{x}, compute the cumulative distribution function ## (CDF) of the Poisson distribution with rate parameter @var{lambda}. The ## size of @var{p} is the common size of @var{x} and @var{lambda}. A scalar ## input functions as a constant matrix of the same size as the other inputs. ## ## @code{@var{p} = poisscdf (@var{x}, @var{lambda}, "upper")} computes the ## upper tail probability of the Poisson distribution with parameter ## @var{lambda}, at the values in @var{x}. ## ## Further information about the Poisson distribution can be found at ## @url{https://en.wikipedia.org/wiki/Poisson_distribution} ## ## @seealso{poissinv, poisspdf, poissrnd, poissfit, poisslike, poisstat} ## @end deftypefn function p = poisscdf (x, lambda, uflag) ## Check for valid number of input arguments if (nargin < 2) error ("poisscdf: function called with too few input arguments."); endif ## Check for "upper" flag if (nargin == 3 && strcmpi (uflag, "upper")) uflag = true; elseif (nargin == 3 && ! strcmpi (uflag, "upper")) error ("poisscdf: invalid argument for upper tail."); else uflag = false; endif ## Check for common size of X and LAMBDA if (! isscalar (x) || ! isscalar (lambda)) [retval, x, lambda] = common_size (x, lambda); if (retval > 0) error ("poisscdf: X and LAMBDA must be of common size or scalars."); endif endif ## Check for X and LAMBDA being reals if (iscomplex (x) || iscomplex (lambda)) error ("poisscdf: X and LAMBDA must not be complex."); endif ## Check for class type if (isa (x, "single") || isa (lambda, "single")) p = zeros (size (x), "single"); else p = zeros (size (x)); endif ## Force NaN for out of range parameters or missing data NaN is_nan = isnan (x) | isnan (lambda) | (lambda < 0) ... | (isinf (x) & isinf (lambda)); p(is_nan) = NaN; ## Compute P for X >= 0 x = floor (x); k = x >= 0 & ! is_nan & isfinite (lambda); ## Return 1 for positive infinite values of X, unless "upper" is given: p = 0 k1 = isinf (x) & lambda > 0 & isfinite (lambda); if (any (k1)) if (uflag) p(k1) = 0; else p(k1) = 1; endif endif ## Return 1 when X < 0 and "upper" is given k1 = x < 0 & lambda > 0 & isfinite (lambda); if (any (k1)) if (uflag) p(k1) = 1; endif endif ## Compute Poisson CDF for remaining cases x = x(k); lambda = lambda(k); if (uflag) p(k) = gammainc (lambda, x + 1); else p(k) = gammainc (lambda, x + 1, "upper"); endif endfunction %!demo %! ## Plot various CDFs from the Poisson distribution %! x = 0:20; %! p1 = poisscdf (x, 1); %! p2 = poisscdf (x, 4); %! p3 = poisscdf (x, 10); %! plot (x, p1, "*b", x, p2, "*g", x, p3, "*r") %! grid on %! ylim ([0, 1]) %! legend ({"λ = 1", "λ = 4", "λ = 10"}, "location", "southeast") %! title ("Poisson CDF") %! xlabel ("values in x (number of occurences)") %! ylabel ("probability") ## Test output %!shared x, y %! x = [-1 0 1 2 Inf]; %! y = [0, gammainc(1, (x(2:4) +1), "upper"), 1]; %!assert (poisscdf (x, ones (1,5)), y) %!assert (poisscdf (x, 1), y) %!assert (poisscdf (x, [1 0 NaN 1 1]), [y(1) 1 NaN y(4:5)]) %!assert (poisscdf ([x(1:2) NaN Inf x(5)], 1), [y(1:2) NaN 1 y(5)]) ## Test class of input preserved %!assert (poisscdf ([x, NaN], 1), [y, NaN]) %!assert (poisscdf (single ([x, NaN]), 1), single ([y, NaN]), eps ("single")) %!assert (poisscdf ([x, NaN], single (1)), single ([y, NaN]), eps ("single")) ## Test input validation %!error poisscdf () %!error poisscdf (1) %!error poisscdf (1, 2, 3) %!error poisscdf (1, 2, "tail") %!error ... %! poisscdf (ones (3), ones (2)) %!error ... %! poisscdf (ones (2), ones (3)) %!error poisscdf (i, 2) %!error poisscdf (2, i) statistics-release-1.6.3/inst/dist_fun/poissinv.m000066400000000000000000000166301456127120000221550ustar00rootroot00000000000000## Copyright (C) 2012 Rik Wehbring ## Copyright (C) 2014 Mike Giles ## Copyright (C) 2016 Lachlan Andrew ## Copyright (C) 1995-2017 Kurt Hornik ## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{x} =} poissinv (@var{p}, @var{lambda}) ## ## Inverse of the Poisson cumulative distribution function (iCDF). ## ## For each element of @var{p}, compute the quantile (the inverse of the CDF) of ## the Poisson distribution with rate parameter @var{lambda}. The size of ## @var{x} is the common size of @var{p} and @var{lambda}. A scalar input ## functions as a constant matrix of the same size as the other inputs. ## ## Further information about the Poisson distribution can be found at ## @url{https://en.wikipedia.org/wiki/Poisson_distribution} ## ## @seealso{poisscdf, poisspdf, poissrnd, poissfit, poisslike, poisstat} ## @end deftypefn function x = poissinv (p, lambda) ## Check for valid number of input arguments if (nargin < 2) error ("poissinv: function called with too few input arguments."); endif ## Check for common size of P and LAMBDA if (! isscalar (p) || ! isscalar (lambda)) [retval, p, lambda] = common_size (p, lambda); if (retval > 0) error ("poissinv: P and LAMBDA must be of common size or scalars."); endif endif ## Check for P and LAMBDA being reals if (iscomplex (p) || iscomplex (lambda)) error ("poissinv: P and LAMBDA must not be complex."); endif ## Check for class type if (isa (p, "single") || isa (lambda, "single")) x = zeros (size (p), "single"); else x = zeros (size (p)); endif ## Force NaN for out of range parameters or p-values k = (p < 0) | (p > 1) | isnan (p) | ! (lambda > 0); x(k) = NaN; k = (p == 1) & (lambda > 0); x(k) = Inf; k = (p > 0) & (p < 1) & (lambda > 0); if (any (k(:))) limit = 20; # After 'limit' iterations, use approx if (isscalar (lambda)) cdf = [(cumsum (poisspdf (0:limit-1,lambda))), 2]; y = p(:); # force to column r = bsxfun (@le, y(k), cdf); [~, x(k)] = max (r, [], 2); # find first instance of p <= cdf x(k) -= 1; else kk = find (k); cdf = exp (-lambda(kk)); for i = 1:limit m = find (cdf < p(kk)); if (isempty (m)) break; else x(kk(m)) += 1; cdf(m) += poisspdf (i, lambda(kk(m))); endif endfor endif ## Use Mike Giles's magic when x isn't < limit k &= (x == limit); if (any (k(:))) if (isscalar (lambda)) lam = repmat (lambda, size (p)); else lam = lambda; endif x(k) = analytic_approx (p(k), lam(k)); endif endif endfunction ## The following is based on Mike Giles's CUDA implementation, ## [http://people.maths.ox.ac.uk/gilesm/codes/poissinv/poissinv_cuda.h] ## which is copyright by the University of Oxford ## and is provided under the terms of the GNU GPLv3 license: ## http://www.gnu.org/licenses/gpl.html function x = analytic_approx (p, lambda) s = norminv (p, 0, 1) ./ sqrt (lambda); k = (s > -0.6833501) & (s < 1.777993); ## use polynomial approximations in central region if (any (k)) lam = lambda(k); if (isscalar (s)) sk = s; else sk = s(k); endif ## polynomial approximation to f^{-1}(s) - 1 rm = 2.82298751e-07; rm = -2.58136133e-06 + rm.*sk; rm = 1.02118025e-05 + rm.*sk; rm = -2.37996199e-05 + rm.*sk; rm = 4.05347462e-05 + rm.*sk; rm = -6.63730967e-05 + rm.*sk; rm = 0.000124762566 + rm.*sk; rm = -0.000256970731 + rm.*sk; rm = 0.000558953132 + rm.*sk; rm = -0.00133129194 + rm.*sk; rm = 0.00370367937 + rm.*sk; rm = -0.0138888706 + rm.*sk; rm = 0.166666667 + rm.*sk; rm = sk + sk.*(rm.*sk); ## polynomial approximation to correction c0(r) t = 1.86386867e-05; t = -0.000207319499 + t.*rm; t = 0.0009689451 + t.*rm; t = -0.00247340054 + t.*rm; t = 0.00379952985 + t.*rm; t = -0.00386717047 + t.*rm; t = 0.00346960934 + t.*rm; t = -0.00414125511 + t.*rm; t = 0.00586752093 + t.*rm; t = -0.00838583787 + t.*rm; t = 0.0132793933 + t.*rm; t = -0.027775536 + t.*rm; t = 0.333333333 + t.*rm; ## O(1/lam) correction y = -0.00014585224; y = 0.00146121529 + y.*rm; y = -0.00610328845 + y.*rm; y = 0.0138117964 + y.*rm; y = -0.0186988746 + y.*rm; y = 0.0168155118 + y.*rm; y = -0.013394797 + y.*rm; y = 0.0135698573 + y.*rm; y = -0.0155377333 + y.*rm; y = 0.0174065334 + y.*rm; y = -0.0198011178 + y.*rm; y ./= lam; x(k) = floor (lam + (y+t)+lam.*rm); endif k = ! k & (s > -sqrt (2)); if (any (k)) ## Newton iteration r = 1 + s(k); r2 = r + 1; while (any (abs (r - r2) > 1e-5)) t = log (r); r2 = r; s2 = sqrt (2 * ((1-r) + r.*t)); s2(r<1) *= -1; r = r2 - (s2 - s(k)) .* s2 ./ t; if (r < 0.1 * r2) r = 0.1 * r2; endif endwhile t = log (r); y = lambda(k) .* r + log (sqrt (2*r.*((1-r) + r.*t)) ./ abs (r-1)) ./ t; x(k) = floor (y - 0.0218 ./ (y + 0.065 * lambda(k))); endif endfunction %!demo %! ## Plot various iCDFs from the Poisson distribution %! p = 0.001:0.001:0.999; %! x1 = poissinv (p, 13); %! x2 = poissinv (p, 4); %! x3 = poissinv (p, 10); %! plot (p, x1, "-b", p, x2, "-g", p, x3, "-r") %! grid on %! ylim ([0, 20]) %! legend ({"λ = 1", "λ = 4", "λ = 10"}, "location", "northwest") %! title ("Poisson iCDF") %! xlabel ("probability") %! ylabel ("values in x (number of occurences)") ## Test output %!shared p %! p = [-1 0 0.5 1 2]; %!assert (poissinv (p, ones (1,5)), [NaN 0 1 Inf NaN]) %!assert (poissinv (p, 1), [NaN 0 1 Inf NaN]) %!assert (poissinv (p, [1 0 NaN 1 1]), [NaN NaN NaN Inf NaN]) %!assert (poissinv ([p(1:2) NaN p(4:5)], 1), [NaN 0 NaN Inf NaN]) ## Test class of input preserved %!assert (poissinv ([p, NaN], 1), [NaN 0 1 Inf NaN NaN]) %!assert (poissinv (single ([p, NaN]), 1), single ([NaN 0 1 Inf NaN NaN])) %!assert (poissinv ([p, NaN], single (1)), single ([NaN 0 1 Inf NaN NaN])) ## Test input validation %!error poissinv () %!error poissinv (1) %!error ... %! poissinv (ones (3), ones (2)) %!error ... %! poissinv (ones (2), ones (3)) %!error poissinv (i, 2) %!error poissinv (2, i) statistics-release-1.6.3/inst/dist_fun/poisspdf.m000066400000000000000000000077301456127120000221330ustar00rootroot00000000000000## Copyright (C) 2012 Rik Wehbring ## Copyright (C) 1995-2016 Kurt Hornik ## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{y} =} poisspdf (@var{x}, @var{lambda}) ## ## Poisson probability density function (PDF). ## ## For each element of @var{x}, compute the probability density function (PDF) ## of the Poisson distribution with rate parameter @var{lambda}. The size of ## @var{y} is the common size of @var{x} and @var{lambda}. A scalar input ## functions as a constant matrix of the same size as the other inputs. ## ## Further information about the Poisson distribution can be found at ## @url{https://en.wikipedia.org/wiki/Poisson_distribution} ## ## @seealso{poisscdf, poissinv, poissrnd, poissfit, poisslike, poisstat} ## @end deftypefn function y = poisspdf (x, lambda) ## Check for valid number of input arguments if (nargin < 2) error ("poisspdf: function called with too few input arguments."); endif ## Check for common size of X and LAMBDA if (! isscalar (x) || ! isscalar (lambda)) [retval, x, lambda] = common_size (x, lambda); if (retval > 0) error ("poisspdf: X and LAMBDA must be of common size or scalars."); endif endif ## Check for X and LAMBDA being reals if (iscomplex (x) || iscomplex (lambda)) error ("poisspdf: X and LAMBDA must not be complex."); endif ## Check for class type if (isa (x, "single") || isa (lambda, "single")) y = zeros (size (x), "single"); else y = zeros (size (x)); endif ## Force NaN for out of range parameters or missing data NaN k = isnan (x) | ! (lambda > 0); y(k) = NaN; k = (x >= 0) & (x < Inf) & (x == fix (x)) & (lambda > 0); if (isscalar (lambda)) y(k) = exp (x(k) * log (lambda) - lambda - gammaln (x(k) + 1)); else y(k) = exp (x(k) .* log (lambda(k)) - lambda(k) - gammaln (x(k) + 1)); endif endfunction %!demo %! ## Plot various PDFs from the Poisson distribution %! x = 0:20; %! y1 = poisspdf (x, 1); %! y2 = poisspdf (x, 4); %! y3 = poisspdf (x, 10); %! plot (x, y1, "*b", x, y2, "*g", x, y3, "*r") %! grid on %! ylim ([0, 0.4]) %! legend ({"λ = 1", "λ = 4", "λ = 10"}, "location", "northeast") %! title ("Poisson PDF") %! xlabel ("values in x (number of occurences)") %! ylabel ("density") ## Test output %!shared x, y %! x = [-1 0 1 2 Inf]; %! y = [0, exp(-1)*[1 1 0.5], 0]; %!assert (poisspdf (x, ones (1,5)), y, eps) %!assert (poisspdf (x, 1), y, eps) %!assert (poisspdf (x, [1 0 NaN 1 1]), [y(1) NaN NaN y(4:5)], eps) %!assert (poisspdf ([x, NaN], 1), [y, NaN], eps) ## Test class of input preserved %!assert (poisspdf (single ([x, NaN]), 1), single ([y, NaN]), eps ("single")) %!assert (poisspdf ([x, NaN], single (1)), single ([y, NaN]), eps ("single")) ## Test input validation %!error poisspdf () %!error poisspdf (1) %!error ... %! poisspdf (ones (3), ones (2)) %!error ... %! poisspdf (ones (2), ones (3)) %!error poisspdf (i, 2) %!error poisspdf (2, i) statistics-release-1.6.3/inst/dist_fun/poissrnd.m000066400000000000000000000137111456127120000221410ustar00rootroot00000000000000## Copyright (C) 2012 Rik Wehbring ## Copyright (C) 1995-2016 Kurt Hornik ## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{r} =} poissrnd (@var{lambda}) ## @deftypefnx {statistics} {@var{r} =} poissrnd (@var{lambda}, @var{rows}) ## @deftypefnx {statistics} {@var{r} =} poissrnd (@var{lambda}, @var{rows}, @var{cols}, @dots{}) ## @deftypefnx {statistics} {@var{r} =} poissrnd (@var{lambda}, [@var{sz}]) ## ## Random arrays from the Poisson distribution. ## ## @code{@var{r} = normrnd (@var{lambda})} returns an array of random numbers ## chosen from the Poisson distribution with rate parameter @var{lambda}. The ## size of @var{r} is the common size of @var{lambda}. A scalar input functions ## as a constant matrix of the same size as the other inputs. @var{lambda} must ## be a finite real number and greater or equal to 0, otherwise @qcode{NaN} is ## returned. ## ## When called with a single size argument, @code{poissrnd} returns a square ## matrix with the dimension specified. When called with more than one scalar ## argument, the first two arguments are taken as the number of rows and columns ## and any further arguments specify additional matrix dimensions. The size may ## also be specified with a row vector of dimensions, @var{sz}. ## ## Further information about the Poisson distribution can be found at ## @url{https://en.wikipedia.org/wiki/Poisson_distribution} ## ## @seealso{poisscdf, poissinv, poisspdf, poissfit, poisslike, poisstat} ## @end deftypefn function r = poissrnd (lambda, varargin) ## Check for valid number of input arguments if (nargin < 1) error ("poissrnd: function called with too few input arguments."); endif ## Check for LAMBDA being real if (iscomplex (lambda)) error ("poissrnd: LAMBDA must not be complex."); endif ## Parse and check SIZE arguments if (nargin == 1) sz = size (lambda); elseif (nargin == 2) if (isscalar (varargin{1}) && varargin{1} >= 0 ... && varargin{1} == fix (varargin{1})) sz = [varargin{1}, varargin{1}]; elseif (isrow (varargin{1}) && all (varargin{1} >= 0) ... && all (varargin{1} == fix (varargin{1}))) sz = varargin{1}; elseif error (strcat (["poissrnd: SZ must be a scalar or a row vector"], ... [" of non-negative integers."])); endif elseif (nargin > 2) posint = cellfun (@(x) (! isscalar (x) || x < 0 || x != fix (x)), varargin); if (any (posint)) error ("poissrnd: dimensions must be non-negative integers."); endif sz = [varargin{:}]; endif ## Check that parameters match requested dimensions in size if (! isscalar (lambda) && ! isequal (size (lambda), sz)) error ("poissrnd: LAMBDA must be scalar or of size SZ."); endif ## Check for class type if (isa (lambda, "single")) cls = "single"; else cls = "double"; endif ## Generate random sample from Poisson distribution if (isscalar (lambda)) if (lambda >= 0 && lambda < Inf) r = randp (lambda, sz, cls); else r = NaN (sz, cls); endif else r = NaN (sz, cls); k = (lambda >= 0) & (lambda < Inf); r(k) = randp (lambda(k), cls); endif endfunction ## Test output %!assert (size (poissrnd (2)), [1, 1]) %!assert (size (poissrnd (ones (2,1))), [2, 1]) %!assert (size (poissrnd (ones (2,2))), [2, 2]) %!assert (size (poissrnd (1, 3)), [3, 3]) %!assert (size (poissrnd (1, [4 1])), [4, 1]) %!assert (size (poissrnd (1, 4, 1)), [4, 1]) %!assert (size (poissrnd (1, 4, 1)), [4, 1]) %!assert (size (poissrnd (1, 4, 1, 5)), [4, 1, 5]) %!assert (size (poissrnd (1, 0, 1)), [0, 1]) %!assert (size (poissrnd (1, 1, 0)), [1, 0]) %!assert (size (poissrnd (1, 1, 2, 0, 5)), [1, 2, 0, 5]) %!assert (poissrnd (0, 1, 1), 0) %!assert (poissrnd ([0, 0, 0], [1, 3]), [0 0 0]) ## Test class of input preserved %!assert (class (poissrnd (2)), "double") %!assert (class (poissrnd (single (2))), "single") %!assert (class (poissrnd (single ([2 2]))), "single") ## Test input validation %!error poissrnd () %!error poissrnd (i) %!error ... %! poissrnd (1, -1) %!error ... %! poissrnd (1, 1.2) %!error ... %! poissrnd (1, ones (2)) %!error ... %! poissrnd (1, [2 -1 2]) %!error ... %! poissrnd (1, [2 0 2.5]) %!error ... %! poissrnd (ones (2), ones (2)) %!error ... %! poissrnd (1, 2, -1, 5) %!error ... %! poissrnd (1, 2, 1.5, 5) %!error poissrnd (ones (2,2), 3) %!error poissrnd (ones (2,2), [3, 2]) %!error poissrnd (ones (2,2), 2, 3) statistics-release-1.6.3/inst/dist_fun/raylcdf.m000066400000000000000000000114041456127120000217210ustar00rootroot00000000000000## Copyright (C) 2006, 2007 Arno Onken ## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{p} =} raylcdf (@var{x}, @var{sigma}) ## @deftypefnx {statistics} {@var{p} =} raylcdf (@var{x}, @var{sigma}, @qcode{"upper"}) ## ## Rayleigh cumulative distribution function (CDF). ## ## For each element of @var{x}, compute the cumulative distribution function ## (CDF) of the Rayleigh distribution with scale parameter @var{sigma}. The ## size of @var{p} is the common size of @var{x} and @var{sigma}. A scalar ## input functions as a constant matrix of the same size as the other inputs. ## ## @code{@var{p} = raylcdf (@var{x}, @var{sigma}, "upper")} computes the upper ## tail probability of the Rayleigh distribution with parameter @var{sigma}, at ## the values in @var{x}. ## ## Further information about the Rayleigh distribution can be found at ## @url{https://en.wikipedia.org/wiki/Rayleigh_distribution} ## ## @seealso{raylinv, raylpdf, raylrnd, raylfit, rayllike, raylstat} ## @end deftypefn function p = raylcdf (x, sigma, uflag) ## Check for valid number of input arguments if (nargin < 2) error ("raylcdf: function called with too few input arguments."); endif ## Check for "upper" flag if (nargin == 3 && strcmpi (uflag, "upper")) uflag = true; elseif (nargin == 3 && ! strcmpi (uflag, "upper")) error ("raylcdf: invalid argument for upper tail."); else uflag = false; endif ## Check for common size of X and SIGMA if (! isscalar (x) || ! isscalar (sigma)) [retval, x, sigma] = common_size (x, sigma); if (retval > 0) error ("raylcdf: X and SIGMA must be of common size or scalars."); endif endif ## Check for X and SIGMA being reals if (iscomplex (x) || iscomplex (sigma)) error ("raylcdf: X and SIGMA must not be complex."); endif ## Check for class type if (isa (x, "single") || isa (sigma, "single")); p = zeros (size (x), "single"); else p = zeros (size (x)); endif ## Force 1 for upper flag and X <= 0 k0 = sigma > 0 & x <= 0; if (uflag && any (k0(:))) p(k0) = 1; end ## Calculate Rayleigh CDF for valid parameter and data range k = sigma > 0 & x > 0; if (any (k(:))) if (uflag) p(k) = exp (-x(k) .^ 2 ./ (2 * sigma(k) .^ 2)); else p(k) = - expm1 (-x(k) .^ 2 ./ (2 * sigma(k) .^ 2)); endif endif ## Continue argument check p(! (k0 | k)) = NaN; endfunction %!demo %! ## Plot various CDFs from the Rayleigh distribution %! x = 0:0.01:10; %! p1 = raylcdf (x, 0.5); %! p2 = raylcdf (x, 1); %! p3 = raylcdf (x, 2); %! p4 = raylcdf (x, 3); %! p5 = raylcdf (x, 4); %! plot (x, p1, "-b", x, p2, "g", x, p3, "-r", x, p4, "-m", x, p5, "-k") %! grid on %! ylim ([0, 1]) %! legend ({"σ = 0.5", "σ = 1", "σ = 2", ... %! "σ = 3", "σ = 4"}, "location", "southeast") %! title ("Rayleigh CDF") %! xlabel ("values in x") %! ylabel ("probability") ## Test output %!test %! x = 0:0.5:2.5; %! sigma = 1:6; %! p = raylcdf (x, sigma); %! expected_p = [0.0000, 0.0308, 0.0540, 0.0679, 0.0769, 0.0831]; %! assert (p, expected_p, 0.001); %!test %! x = 0:0.5:2.5; %! p = raylcdf (x, 0.5); %! expected_p = [0.0000, 0.3935, 0.8647, 0.9889, 0.9997, 1.0000]; %! assert (p, expected_p, 0.001); %!shared x, p %! x = [-1, 0, 1, 2, Inf]; %! p = [0, 0, 0.39346934028737, 0.86466471676338, 1]; %!assert (raylcdf (x, 1), p, 1e-14) %!assert (raylcdf (x, 1, "upper"), 1 - p, 1e-14) ## Test input validation %!error raylcdf () %!error raylcdf (1) %!error raylcdf (1, 2, "uper") %!error raylcdf (1, 2, 3) %!error ... %! raylcdf (ones (3), ones (2)) %!error ... %! raylcdf (ones (2), ones (3)) %!error raylcdf (i, 2) %!error raylcdf (2, i) statistics-release-1.6.3/inst/dist_fun/raylinv.m000066400000000000000000000072231456127120000217650ustar00rootroot00000000000000## Copyright (C) 2006, 2007 Arno Onken ## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{x} =} raylinv (@var{p}, @var{sigma}) ## ## Inverse of the Rayleigh cumulative distribution function (iCDF). ## ## For each element of @var{p}, compute the quantile (the inverse of the CDF) of ## the Rayleigh distribution with scale parameter @var{sigma}. The size of ## @var{x} is the common size of @var{p} and @var{sigma}. A scalar input ## functions as a constant matrix of the same size as the other inputs. ## ## Further information about the Rayleigh distribution can be found at ## @url{https://en.wikipedia.org/wiki/Rayleigh_distribution} ## ## @seealso{raylcdf, raylpdf, raylrnd, raylfit, rayllike, raylstat} ## @end deftypefn function x = raylinv (p, sigma) ## Check for valid number of input arguments if (nargin < 2) error ("raylinv: function called with too few input arguments."); endif ## Check for common size of P and SIGMA if (! isscalar (p) || ! isscalar (sigma)) [retval, p, sigma] = common_size (p, sigma); if (retval > 0) error ("raylinv: P and SIGMA must be of common size or scalars."); endif endif ## Check for X and SIGMA being reals if (iscomplex (p) || iscomplex (sigma)) error ("raylinv: P and SIGMA must not be complex."); endif ## Calculate Rayleigh iCDF x = sqrt (-2 .* log (1 - p) .* sigma .^ 2); ## Check for valid parameter and support k = find (p == 1); if (any (k)) x(k) = Inf; endif k = find (! (p >= 0) | ! (p <= 1) | ! (sigma > 0)); if (any (k)) x(k) = NaN; endif endfunction %!demo %! ## Plot various iCDFs from the Rayleigh distribution %! p = 0.001:0.001:0.999; %! x1 = raylinv (p, 0.5); %! x2 = raylinv (p, 1); %! x3 = raylinv (p, 2); %! x4 = raylinv (p, 3); %! x5 = raylinv (p, 4); %! plot (p, x1, "-b", p, x2, "g", p, x3, "-r", p, x4, "-m", p, x5, "-k") %! grid on %! ylim ([0, 10]) %! legend ({"σ = 0,5", "σ = 1", "σ = 2", ... %! "σ = 3", "σ = 4"}, "location", "northwest") %! title ("Rayleigh iCDF") %! xlabel ("probability") %! ylabel ("values in x") ## Test output %!test %! p = 0:0.1:0.5; %! sigma = 1:6; %! x = raylinv (p, sigma); %! expected_x = [0.0000, 0.9181, 2.0041, 3.3784, 5.0538, 7.0645]; %! assert (x, expected_x, 0.001); %!test %! p = 0:0.1:0.5; %! x = raylinv (p, 0.5); %! expected_x = [0.0000, 0.2295, 0.3340, 0.4223, 0.5054, 0.5887]; %! assert (x, expected_x, 0.001); ## Test input validation %!error raylinv () %!error raylinv (1) %!error ... %! raylinv (ones (3), ones (2)) %!error ... %! raylinv (ones (2), ones (3)) %!error raylinv (i, 2) %!error raylinv (2, i) statistics-release-1.6.3/inst/dist_fun/raylpdf.m000066400000000000000000000070741456127120000217460ustar00rootroot00000000000000## Copyright (C) 2006, 2007 Arno Onken ## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{y} =} raylpdf (@var{x}, @var{sigma}) ## ## Rayleigh probability density function (PDF). ## ## For each element of @var{x}, compute the probability density function (PDF) ## of the Rayleigh distribution with scale parameter @var{sigma}. The size of ## @var{p} is the common size of @var{x} and @var{sigma}. A scalar input ## functions as a constant matrix of the same size as the other inputs. ## ## Further information about the Rayleigh distribution can be found at ## @url{https://en.wikipedia.org/wiki/Rayleigh_distribution} ## ## @seealso{raylcdf, raylinv, raylrnd, raylfit, rayllike, raylstat} ## @end deftypefn function y = raylpdf (x, sigma) ## Check for valid number of input arguments if (nargin < 2) error ("raylpdf: function called with too few input arguments."); endif ## Check for common size of X and SIGMA if (! isscalar (x) || ! isscalar (sigma)) [retval, x, sigma] = common_size (x, sigma); if (retval > 0) error ("raylpdf: X and SIGMA must be of common size or scalars."); endif endif ## Check for X and SIGMA being reals if (iscomplex (x) || iscomplex (sigma)) error ("raylpdf: X and SIGMA must not be complex."); endif ## Calculate Rayleigh PDF y = x .* exp ((-x .^ 2) ./ (2 .* sigma .^ 2)) ./ (sigma .^ 2); ## Continue argument check k = find (! (x >= 0) | ! (x < Inf) | ! (sigma > 0)); if (any (k)) y(k) = NaN; endif endfunction %!demo %! ## Plot various PDFs from the Rayleigh distribution %! x = 0:0.01:10; %! y1 = raylpdf (x, 0.5); %! y2 = raylpdf (x, 1); %! y3 = raylpdf (x, 2); %! y4 = raylpdf (x, 3); %! y5 = raylpdf (x, 4); %! plot (x, y1, "-b", x, y2, "g", x, y3, "-r", x, y4, "-m", x, y5, "-k") %! grid on %! ylim ([0, 1.25]) %! legend ({"σ = 0,5", "σ = 1", "σ = 2", ... %! "σ = 3", "σ = 4"}, "location", "northeast") %! title ("Rayleigh PDF") %! xlabel ("values in x") %! ylabel ("density") ## Test output %!test %! x = 0:0.5:2.5; %! sigma = 1:6; %! y = raylpdf (x, sigma); %! expected_y = [0.0000, 0.1212, 0.1051, 0.0874, 0.0738, 0.0637]; %! assert (y, expected_y, 0.001); %!test %! x = 0:0.5:2.5; %! y = raylpdf (x, 0.5); %! expected_y = [0.0000, 1.2131, 0.5413, 0.0667, 0.0027, 0.0000]; %! assert (y, expected_y, 0.001); ## Test input validation %!error raylpdf () %!error raylpdf (1) %!error ... %! raylpdf (ones (3), ones (2)) %!error ... %! raylpdf (ones (2), ones (3)) %!error raylpdf (i, 2) %!error raylpdf (2, i) statistics-release-1.6.3/inst/dist_fun/raylrnd.m000066400000000000000000000133321456127120000217520ustar00rootroot00000000000000## Copyright (C) 2006, 2007 Arno Onken ## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{r} =} raylrnd (@var{sigma}) ## @deftypefnx {statistics} {@var{r} =} raylrnd (@var{sigma}, @var{rows}) ## @deftypefnx {statistics} {@var{r} =} raylrnd (@var{sigma}, @var{rows}, @var{cols}, @dots{}) ## @deftypefnx {statistics} {@var{r} =} raylrnd (@var{sigma}, [@var{sz}]) ## ## Random arrays from the Rayleigh distribution. ## ## @code{@var{r} = raylrnd (@var{sigma})} returns an array of random numbers ## chosen from the Rayleigh distribution with scale parameter @var{sigma}. The ## size of @var{r} is the size of @var{sigma}. A scalar input functions as a ## constant matrix of the same size as the other inputs. @var{sigma} must be a ## finite real number greater than 0, otherwise @qcode{NaN} is returned. ## ## When called with a single size argument, @code{raylrnd} returns a square ## matrix with the dimension specified. When called with more than one scalar ## argument, the first two arguments are taken as the number of rows and columns ## and any further arguments specify additional matrix dimensions. The size may ## also be specified with a row vector of dimensions, @var{sz}. ## ## Further information about the Rayleigh distribution can be found at ## @url{https://en.wikipedia.org/wiki/Rayleigh_distribution} ## ## @seealso{raylcdf, raylinv, raylpdf, raylfit, rayllike, raylstat} ## @end deftypefn function r = raylrnd (sigma, varargin) ## Check for valid number of input arguments if (nargin < 1) error ("raylrnd: function called with too few input arguments."); endif ## Check for SIGMA being real if (iscomplex (sigma)) error ("raylrnd: SIGMA must not be complex."); endif ## Parse and check SIZE arguments if (nargin == 1) sz = size (sigma); elseif (nargin == 2) if (isscalar (varargin{1}) && varargin{1} >= 0 ... && varargin{1} == fix (varargin{1})) sz = [varargin{1}, varargin{1}]; elseif (isrow (varargin{1}) && all (varargin{1} >= 0) ... && all (varargin{1} == fix (varargin{1}))) sz = varargin{1}; elseif error (strcat (["raylrnd: SZ must be a scalar or a row vector"], ... [" of non-negative integers."])); endif elseif (nargin > 2) posint = cellfun (@(x) (! isscalar (x) || x < 0 || x != fix (x)), varargin); if (any (posint)) error ("raylrnd: dimensions must be non-negative integers."); endif sz = [varargin{:}]; endif ## Check that parameters match requested dimensions in size if (! isscalar (sigma) && ! isequal (size (sigma), sz)) error ("raylrnd: SIGMA must be scalar or of size SZ."); endif ## Generate random sample from Rayleigh distribution r = sqrt (-2 .* log (1 - rand (sz)) .* sigma .^ 2); ## Check for valid parameter k = find (! (sigma > 0)); if (any (k)) r(k) = NaN; endif ## Cast into appropriate class if (isa (sigma, "single")) r = cast (r, "single"); endif endfunction ## Test output %!assert (size (raylrnd (2)), [1, 1]) %!assert (size (raylrnd (ones (2,1))), [2, 1]) %!assert (size (raylrnd (ones (2,2))), [2, 2]) %!assert (size (raylrnd (1, 3)), [3, 3]) %!assert (size (raylrnd (1, [4 1])), [4, 1]) %!assert (size (raylrnd (1, 4, 1)), [4, 1]) %!assert (size (raylrnd (1, 4, 1)), [4, 1]) %!assert (size (raylrnd (1, 4, 1, 5)), [4, 1, 5]) %!assert (size (raylrnd (1, 0, 1)), [0, 1]) %!assert (size (raylrnd (1, 1, 0)), [1, 0]) %!assert (size (raylrnd (1, 1, 2, 0, 5)), [1, 2, 0, 5]) %!assert (raylrnd (0, 1, 1), NaN) %!assert (raylrnd ([0, 0, 0], [1, 3]), [NaN, NaN, NaN]) ## Test class of input preserved %!assert (class (raylrnd (2)), "double") %!assert (class (raylrnd (single (2))), "single") %!assert (class (raylrnd (single ([2 2]))), "single") ## Test input validation %!error raylrnd () %!error raylrnd (i) %!error ... %! raylrnd (1, -1) %!error ... %! raylrnd (1, 1.2) %!error ... %! raylrnd (1, ones (2)) %!error ... %! raylrnd (1, [2 -1 2]) %!error ... %! raylrnd (1, [2 0 2.5]) %!error ... %! raylrnd (ones (2), ones (2)) %!error ... %! raylrnd (1, 2, -1, 5) %!error ... %! raylrnd (1, 2, 1.5, 5) %!error raylrnd (ones (2,2), 3) %!error raylrnd (ones (2,2), [3, 2]) %!error raylrnd (ones (2,2), 2, 3) statistics-release-1.6.3/inst/dist_fun/ricecdf.m000066400000000000000000000161051456127120000216770ustar00rootroot00000000000000## Copyright (C) 2024 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{p} =} ricecdf (@var{x}, @var{nu}, @var{sigma}) ## @deftypefnx {statistics} {@var{p} =} ricecdf (@var{x}, @var{nu}, @var{sigma}, @qcode{"upper"}) ## ## Rician cumulative distribution function (CDF). ## ## For each element of @var{x}, compute the cumulative distribution function ## (CDF) of the Rician distribution with non-centrality (distance) parameter ## @var{nu} and scale parameter @var{sigma}. The size of @var{p} is the common ## size of @var{x}, @var{nu}, and @var{sigma}. A scalar input functions as a ## constant matrix of the same size as the other inputs. ## ## @code{@var{p} = ricecdf (@var{x}, @var{nu}, @var{sigma}, "upper")} computes ## the upper tail probability of the Rician distribution with parameters ## @var{nu} and @var{sigma}, at the values in @var{x}. ## ## Further information about the Rician distribution can be found at ## @url{https://en.wikipedia.org/wiki/Rice_distribution} ## ## @seealso{riceinv, ricepdf, ricernd, ricefit, ricelike, ricestat} ## @end deftypefn function p = ricecdf (x, nu, sigma, uflag) ## Check for valid number of input arguments if (nargin < 3) error ("ricecdf: function called with too few input arguments."); endif ## Check for "upper" flag if (nargin == 4 && strcmpi (uflag, "upper")) uflag = true; elseif (nargin == 4 && ! strcmpi (uflag, "upper")) error ("ricecdf: invalid argument for upper tail."); else uflag = false; endif ## Check for common size of X and SIGMA if (! isscalar (x) || ! isscalar (nu) || ! isscalar (sigma)) [retval, x, nu, sigma] = common_size (x, nu, sigma); if (retval > 0) error ("ricecdf: X, NU, and SIGMA must be of common size or scalars."); endif endif ## Check for X and SIGMA being reals if (iscomplex (x) || iscomplex (nu) || iscomplex (sigma)) error ("ricecdf: X, NU, and SIGMA must not be complex."); endif ## Check for class type if (isa (x, "single") || isa (nu, "single") || isa (sigma, "single")); p = zeros (size (x), "single"); else p = zeros (size (x)); endif ## Force 1 for upper flag and X <= 0 k0 = nu >= 0 & sigma > 0 & x < 0; if (uflag && any (k0(:))) p(k0) = 1; end ## Calculate Rayleigh CDF for valid parameter and data range k = nu >= 0 & sigma > 0 & x >= 0; if (any (k(:))) if (uflag) p(k) = marcumQ1 (nu(k) ./ sigma(k), x(k) ./ sigma(k)); else p(k) = 1 - marcumQ1 (nu(k) ./ sigma(k), x(k) ./ sigma(k)); endif endif ## Continue argument check p(! (k0 | k)) = NaN; endfunction ## Marcum's "Q" function of order 1 function Q = marcumQ1 (a, b) ## Prepare output matrix if (isa (a, "single") || isa (b, "single")) Q = NaN (size (b), "single"); else Q = NaN (size (b)); endif ## Force marginal cases Q(a != Inf & b == 0) = 1; Q(a != Inf & b == Inf) = 0; Q(a == Inf & b != Inf) = 1; z = isnan (Q) & a == 0 & b != Inf; if (any(z)) Q(z) = exp ((-b(z) .^ 2) ./ 2); end ## Compute the remaining cases z = isnan (Q) & ! isnan (a) & ! isnan (b); if (any(z(:))) aa = (a(z) .^ 2) ./ 2; bb = (b(z) .^ 2) ./ 2; eA = exp (-aa); eB = bb .* exp (-bb); h = eA; d = eB .* h; s = d; j = (d > s.*eps(class(d))); k = 1; while (any (j)) eA = aa .* eA ./ k; h = h + eA; eB = bb .* eB ./ (k + 1); d = eB .* h; s(j) = s (j) + d(j); j = (d > s .* eps (class (d))); k = k + 1; endwhile Q(z) = 1 - s; endif endfunction %!demo %! ## Plot various CDFs from the Rician distribution %! x = 0:0.01:10; %! p1 = ricecdf (x, 0, 1); %! p2 = ricecdf (x, 0.5, 1); %! p3 = ricecdf (x, 1, 1); %! p4 = ricecdf (x, 2, 1); %! p5 = ricecdf (x, 4, 1); %! plot (x, p1, "-b", x, p2, "g", x, p3, "-r", x, p4, "-m", x, p5, "-k") %! grid on %! ylim ([0, 1]) %! xlim ([0, 8]) %! legend ({"ν = 0, σ = 1", "ν = 0.5, σ = 1", "ν = 1, σ = 1", ... %! "ν = 2, σ = 1", "ν = 4, σ = 1"}, "location", "southeast") %! title ("Rician CDF") %! xlabel ("values in x") %! ylabel ("probability") %!demo %! ## Plot various CDFs from the Rician distribution %! x = 0:0.01:10; %! p1 = ricecdf (x, 0, 0.5); %! p2 = ricecdf (x, 0, 2); %! p3 = ricecdf (x, 0, 3); %! p4 = ricecdf (x, 2, 2); %! p5 = ricecdf (x, 4, 2); %! plot (x, p1, "-b", x, p2, "g", x, p3, "-r", x, p4, "-m", x, p5, "-k") %! grid on %! ylim ([0, 1]) %! xlim ([0, 8]) %! legend ({"ν = 0, σ = 0.5", "ν = 0, σ = 2", "ν = 0, σ = 3", ... %! "ν = 2, σ = 2", "ν = 4, σ = 2"}, "location", "southeast") %! title ("Rician CDF") %! xlabel ("values in x") %! ylabel ("probability") ## Test output %!test %! x = 0:0.5:2.5; %! nu = 1:6; %! p = ricecdf (x, nu, 1); %! expected_p = [0.0000, 0.0179, 0.0108, 0.0034, 0.0008, 0.0001]; %! assert (p, expected_p, 0.001); %!test %! x = 0:0.5:2.5; %! sigma = 1:6; %! p = ricecdf (x, 1, sigma); %! expected_p = [0.0000, 0.0272, 0.0512, 0.0659, 0.0754, 0.0820]; %! assert (p, expected_p, 0.001); %!test %! x = 0:0.5:2.5; %! p = ricecdf (x, 0, 1); %! expected_p = [0.0000, 0.1175, 0.3935, 0.6753, 0.8647, 0.9561]; %! assert (p, expected_p, 0.001); %!test %! x = 0:0.5:2.5; %! p = ricecdf (x, 1, 1); %! expected_p = [0.0000, 0.0735, 0.2671, 0.5120, 0.7310, 0.8791]; %! assert (p, expected_p, 0.001); %!shared x, p %! x = [-1, 0, 1, 2, Inf]; %! p = [0, 0, 0.26712019620318, 0.73098793996409, 1]; %!assert (ricecdf (x, 1, 1), p, 1e-14) %!assert (ricecdf (x, 1, 1, "upper"), 1 - p, 1e-14) ## Test input validation %!error ricecdf () %!error ricecdf (1) %!error ricecdf (1, 2) %!error ricecdf (1, 2, 3, "uper") %!error ricecdf (1, 2, 3, 4) %!error ... %! ricecdf (ones (3), ones (2), ones (2)) %!error ... %! ricecdf (ones (2), ones (3), ones (2)) %!error ... %! ricecdf (ones (2), ones (2), ones (3)) %!error ricecdf (i, 2, 3) %!error ricecdf (2, i, 3) %!error ricecdf (2, 2, i) statistics-release-1.6.3/inst/dist_fun/riceinv.m000066400000000000000000000113531456127120000217370ustar00rootroot00000000000000## Copyright (C) 2024 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{x} =} riceinv (@var{p}, @var{nu}, @var{sigma}) ## ## Inverse of the Rician distribution (iCDF). ## ## For each element of @var{p}, compute the quantile (the inverse of the CDF) ## of the Rician distribution with with with non-centrality (distance) parameter ## @var{nu} and scale parameter @var{sigma}. The size of @var{x} is the common ## size of @var{x}, @var{nu}, and @var{sigma}. A scalar input functions as a ## constant matrix of the same size as the other inputs. ## ## Further information about the Rician distribution can be found at ## @url{https://en.wikipedia.org/wiki/Rice_distribution} ## ## @seealso{ricecdf, ricepdf, ricernd, ricefit, ricelike, ricestat} ## @end deftypefn function x = riceinv (p, nu, sigma) ## Check for valid number of input arguments if (nargin < 3) error ("riceinv: function called with too few input arguments."); endif ## Check for common size of P, NU, and B if (! isscalar (p) || ! isscalar (nu) || ! isscalar (sigma)) [retval, p, nu, sigma] = common_size (p, nu, sigma); if (retval > 0) error ("riceinv: P, NU, and B must be of common size or scalars."); endif endif ## Check for P, NU, and B being reals if (iscomplex (p) || iscomplex (nu) || iscomplex (sigma)) error ("riceinv: P, NU, and B must not be complex."); endif ## Check for class type if (isa (p, "single") || isa (nu, "single") || isa (sigma, "single")) x = zeros (size (p), "single"); else x = zeros (size (p)); endif k = nu < 0 | sigma <= 0 | p < 0 | p > 1 | ... isnan (p) | isnan (nu) | isnan (sigma); x(k) = NaN; k = ! k; x(k) = sigma(k) .* sqrt (ncx2inv (p(k), 2, (nu(k) ./ sigma(k)) .^ 2)); endfunction %!demo %! ## Plot various iCDFs from the Beta distribution %! p = 0.001:0.001:0.999; %! x1 = riceinv (p, 0, 1); %! x2 = riceinv (p, 0.5, 1); %! x3 = riceinv (p, 1, 1); %! x4 = riceinv (p, 2, 1); %! x5 = riceinv (p, 4, 1); %! plot (p, x1, "-b", p, x2, "-g", p, x3, "-r", p, x4, "-m", p, x5, "-k") %! grid on %! legend ({"ν = 0, σ = 1", "ν = 0.5, σ = 1", "ν = 1, σ = 1", ... %! "ν = 2, σ = 1", "ν = 4, σ = 1"}, "location", "northwest") %! title ("Beta iCDF") %! xlabel ("probability") %! ylabel ("values in x") ## Test output %!shared p %! p = [-1 0 0.75 1 2]; %!assert (riceinv (p, ones (1,5), 2*ones (1,5)), [NaN 0 3.5354 Inf NaN], 1e-4) %!assert (riceinv (p, 1, 2*ones (1,5)), [NaN 0 3.5354 Inf NaN], 1e-4) %!assert (riceinv (p, ones (1,5), 2), [NaN 0 3.5354 Inf NaN], 1e-4) %!assert (riceinv (p, [1 0 NaN 1 1], 2), [NaN 0 NaN Inf NaN]) %!assert (riceinv (p, 1, 2*[1 0 NaN 1 1]), [NaN NaN NaN Inf NaN]) %!assert (riceinv ([p(1:2) NaN p(4:5)], 1, 2), [NaN 0 NaN Inf NaN]) ## Test class of input preserved %!assert (riceinv ([p, NaN], 1, 2), [NaN 0 3.5354 Inf NaN NaN], 1e-4) %!assert (riceinv (single ([p, NaN]), 1, 2), ... %! single ([NaN 0 3.5354 Inf NaN NaN]), 1e-4) %!assert (riceinv ([p, NaN], single (1), 2), ... %! single ([NaN 0 3.5354 Inf NaN NaN]), 1e-4) %!assert (riceinv ([p, NaN], 1, single (2)), ... %! single ([NaN 0 3.5354 Inf NaN NaN]), 1e-4) ## Test input validation %!error riceinv () %!error riceinv (1) %!error riceinv (1,2) %!error riceinv (1,2,3,4) %!error ... %! riceinv (ones (3), ones (2), ones (2)) %!error ... %! riceinv (ones (2), ones (3), ones (2)) %!error ... %! riceinv (ones (2), ones (2), ones (3)) %!error riceinv (i, 2, 2) %!error riceinv (2, i, 2) %!error riceinv (2, 2, i) statistics-release-1.6.3/inst/dist_fun/ricepdf.m000066400000000000000000000115221456127120000217120ustar00rootroot00000000000000## Copyright (C) 2024 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{y} =} ricepdf (@var{x}, @var{nu}, @var{sigma}) ## ## Rician probability density function (PDF). ## ## For each element of @var{x}, compute the probability density function (PDF) ## of the Rician distribution with with non-centrality (distance) parameter ## @var{nu} and scale parameter @var{sigma}. The size of @var{y} is the common ## size of @var{x}, @var{nu}, and @var{sigma}. A scalar input functions as a ## constant matrix of the same size as the other inputs. ## ## Further information about the Rician distribution can be found at ## @url{https://en.wikipedia.org/wiki/Rice_distribution} ## ## @seealso{ricecdf, riceinv, ricernd, ricefit, ricelike, ricestat} ## @end deftypefn function y = ricepdf (x, nu, sigma) ## Check for valid number of input arguments if (nargin < 3) error ("ricepdf: function called with too few input arguments."); endif ## Check for common size of X, NU, and SIGMA if (! isscalar (x) || ! isscalar (nu) || ! isscalar (sigma)) [retval, x, nu, sigma] = common_size (x, nu, sigma); if (retval > 0) error ("ricepdf: X, NU, and SIGMA must be of common size or scalars."); endif endif ## Check for X, NU, and SIGMA being reals if (iscomplex (x) || iscomplex (nu) || iscomplex (sigma)) error ("ricepdf: X, NU, and SIGMA must not be complex."); endif ## Check for class type if (isa (x, "single") || isa (nu, "single") || isa (sigma, "single")); y = zeros (size (x), "single"); else y = zeros (size (x)); endif k = nu < 0 | sigma <= 0 | x < 0 | isnan (x) | isnan (nu) | isnan (sigma); y(k) = NaN; k = ! k; ## Do the math x_k = x(k); n_k = nu(k); s_sq = sigma(k) .^ 2; x_s2 = x_k ./ s_sq; xnsq = (x_k .^ 2 + n_k .^ 2) ./ (2 .* s_sq); epxt = xnsq - x_s2 .* n_k; term = exp (-epxt); y(k) = x_s2 .* term .* besseli (0, x_s2 .* n_k, 1); ## Fix arithmetic overflow due to exponent y(epxt > (log(realmax(class(y))))) = 0; endfunction %!demo %! ## Plot various PDFs from the Rician distribution %! x = 0:0.01:8; %! y1 = ricepdf (x, 0, 1); %! y2 = ricepdf (x, 0.5, 1); %! y3 = ricepdf (x, 1, 1); %! y4 = ricepdf (x, 2, 1); %! y5 = ricepdf (x, 4, 1); %! plot (x, y1, "-b", x, y2, "-g", x, y3, "-r", x, y4, "-m", x, y5, "-k") %! grid on %! ylim ([0, 0.65]) %! xlim ([0, 8]) %! legend ({"ν = 0, σ = 1", "ν = 0.5, σ = 1", "ν = 1, σ = 1", ... %! "ν = 2, σ = 1", "ν = 4, σ = 1"}, "location", "northeast") %! title ("Rician PDF") %! xlabel ("values in x") %! ylabel ("density") ## Test output %!shared x, y %! x = [-1 0 0.5 1 2]; %! y = [NaN 0 0.1073 0.1978 0.2846]; %!assert (ricepdf (x, ones (1, 5), 2 * ones (1, 5)), y, 1e-4) %!assert (ricepdf (x, 1, 2 * ones (1, 5)), y, 1e-4) %!assert (ricepdf (x, ones (1, 5), 2), y, 1e-4) %!assert (ricepdf (x, [0 NaN 1 1 1], 2), [NaN NaN y(3:5)], 1e-4) %!assert (ricepdf (x, 1, 2 * [0 NaN 1 1 1]), [NaN NaN y(3:5)], 1e-4) %!assert (ricepdf ([x, NaN], 1, 2), [y, NaN], 1e-4) ## Test class of input preserved %!assert (ricepdf (single ([x, NaN]), 1, 2), single ([y, NaN]), 1e-4) %!assert (ricepdf ([x, NaN], single (1), 2), single ([y, NaN]), 1e-4) %!assert (ricepdf ([x, NaN], 1, single (2)), single ([y, NaN]), 1e-4) ## Test input validation %!error ricepdf () %!error ricepdf (1) %!error ricepdf (1,2) %!error ricepdf (1,2,3,4) %!error ... %! ricepdf (ones (3), ones (2), ones (2)) %!error ... %! ricepdf (ones (2), ones (3), ones (2)) %!error ... %! ricepdf (ones (2), ones (2), ones (3)) %!error ricepdf (i, 2, 2) %!error ricepdf (2, i, 2) %!error ricepdf (2, 2, i) statistics-release-1.6.3/inst/dist_fun/ricernd.m000066400000000000000000000163641456127120000217350ustar00rootroot00000000000000## Copyright (C) 2024 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{r} =} ricernd (@var{nu}, @var{sigma}) ## @deftypefnx {statistics} {@var{r} =} ricernd (@var{nu}, @var{sigma}, @var{rows}) ## @deftypefnx {statistics} {@var{r} =} ricernd (@var{nu}, @var{sigma}, @var{rows}, @var{cols}, @dots{}) ## @deftypefnx {statistics} {@var{r} =} ricernd (@var{nu}, @var{sigma}, [@var{sz}]) ## ## Random arrays from the Rician distribution. ## ## @code{@var{r} = ricernd (@var{nu}, @var{sigma})} returns an array of random ## numbers chosen from the Rician distribution with shape parameters @var{nu} ## and @var{sigma}. The size of @var{r} is the common size of @var{nu} and ## @var{sigma}. A scalar input functions as a constant matrix of the same size ## as the other inputs. ## ## When called with a single size argument, @code{ricernd} returns a square ## matrix with the dimension specified. When called with more than one scalar ## argument, the first two arguments are taken as the number of rows and columns ## and any further arguments specify additional matrix dimensions. The size may ## also be specified with a row vector of dimensions, @var{sz}. ## ## Further information about the Rician distribution can be found at ## @url{https://en.wikipedia.org/wiki/Rice_distribution} ## ## @seealso{ricecdf, riceinv, ricepdf, ricefit, ricelike, ricestat} ## @end deftypefn function r = ricernd (nu, sigma, varargin) ## Check for valid number of input arguments if (nargin < 2) error ("ricernd: function called with too few input arguments."); endif ## Check for common size of NU and SIGMA if (! isscalar (nu) || ! isscalar (sigma)) [retval, nu, sigma] = common_size (nu, sigma); if (retval > 0) error ("ricernd: NU and SIGMA must be of common size or scalars."); endif endif ## Check for NU and SIGMA being reals if (iscomplex (nu) || iscomplex (sigma)) error ("ricernd: NU and SIGMA must not be complex."); endif ## Parse and check SIZE arguments if (nargin == 2) sz = size (nu); elseif (nargin == 3) if (isscalar (varargin{1}) && varargin{1} >= 0 ... && varargin{1} == fix (varargin{1})) sz = [varargin{1}, varargin{1}]; elseif (isrow (varargin{1}) && all (varargin{1} >= 0) ... && all (varargin{1} == fix (varargin{1}))) sz = varargin{1}; elseif error (strcat (["ricernd: SZ must be nu scalar or nu row vector"], ... [" of non-negative integers."])); endif elseif (nargin > 3) posint = cellfun (@(x) (! isscalar (x) || x < 0 || x != fix (x)), varargin); if (any (posint)) error ("ricernd: dimensions must be non-negative integers."); endif sz = [varargin{:}]; endif ## Check that parameters match requested dimensions in size if (! isscalar (nu) && ! isequal (size (nu), sz)) error ("ricernd: NU and SIGMA must be scalars or of size SZ."); endif ## Check for class type if (isa (nu, "single") || isa (sigma, "single")) cls = "single"; else cls = "double"; endif ## Return NaNs for out of range values of NU and SIGMA nu(nu < 0) = NaN; sigma(sigma <= 0) = NaN; ## Force NU and SIGMA into the same size as SZ (if necessary) if (isscalar (nu)) nu = repmat (nu, sz); endif if (isscalar (sigma)) sigma = repmat (sigma, sz); endif ## Generate random sample from the Rician distribution r = sigma .* sqrt (ncx2rnd (2, (nu ./ sigma) .^ 2, sz)); ## Cast to appropriate class r = cast (r, cls); endfunction ## Test output %!assert (size (ricernd (2, 1/2)), [1 1]) %!assert (size (ricernd (2 * ones (2, 1), 1/2)), [2, 1]) %!assert (size (ricernd (2 * ones (2, 2), 1/2)), [2, 2]) %!assert (size (ricernd (2, 1/2 * ones (2, 1))), [2, 1]) %!assert (size (ricernd (1, 1/2 * ones (2, 2))), [2, 2]) %!assert (size (ricernd (ones (2, 1), 1)), [2, 1]) %!assert (size (ricernd (ones (2, 2), 1)), [2, 2]) %!assert (size (ricernd (2, 1/2, 3)), [3, 3]) %!assert (size (ricernd (1, 1, [4, 1])), [4, 1]) %!assert (size (ricernd (1, 1, 4, 1)), [4, 1]) %!assert (size (ricernd (1, 1, 4, 1, 5)), [4, 1, 5]) %!assert (size (ricernd (1, 1, 0, 1)), [0, 1]) %!assert (size (ricernd (1, 1, 1, 0)), [1, 0]) %!assert (size (ricernd (1, 1, 1, 2, 0, 5)), [1, 2, 0, 5]) ## Test class of input preserved %!assert (class (ricernd (1, 1)), "double") %!assert (class (ricernd (1, single (0))), "single") %!assert (class (ricernd (1, single ([0, 0]))), "single") %!assert (class (ricernd (1, single (1), 2)), "single") %!assert (class (ricernd (1, single ([1, 1]), 1, 2)), "single") %!assert (class (ricernd (single (1), 1, 2)), "single") %!assert (class (ricernd (single ([1, 1]), 1, 1, 2)), "single") ## Test input validation %!error ricernd () %!error ricernd (1) %!error ... %! ricernd (ones (3), ones (2)) %!error ... %! ricernd (ones (2), ones (3)) %!error ricernd (i, 2) %!error ricernd (1, i) %!error ... %! ricernd (1, 1/2, -1) %!error ... %! ricernd (1, 1/2, 1.2) %!error ... %! ricernd (1, 1/2, ones (2)) %!error ... %! ricernd (1, 1/2, [2 -1 2]) %!error ... %! ricernd (1, 1/2, [2 0 2.5]) %!error ... %! ricernd (1, 1/2, 2, -1, 5) %!error ... %! ricernd (1, 1/2, 2, 1.5, 5) %!error ... %! ricernd (2, 1/2 * ones (2), 3) %!error ... %! ricernd (2, 1/2 * ones (2), [3, 2]) %!error ... %! ricernd (2, 1/2 * ones (2), 3, 2) %!error ... %! ricernd (2 * ones (2), 1/2, 3) %!error ... %! ricernd (2 * ones (2), 1/2, [3, 2]) %!error ... %! ricernd (2 * ones (2), 1/2, 3, 2) statistics-release-1.6.3/inst/dist_fun/tcdf.m000066400000000000000000000206431456127120000212220ustar00rootroot00000000000000## Copyright (C) 1995-2016 Kurt Hornik ## Copyright (C) 2012 Rik Wehbring ## Copyright (C) 2013-2017 Julien Bect ## Copyright (C) 2022-2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{p} =} tcdf (@var{x}, @var{df}) ## @deftypefnx {statistics} {@var{p} =} tcdf (@var{x}, @var{df}, @qcode{"upper"}) ## ## Student's T cumulative distribution function (CDF). ## ## For each element of @var{x}, compute the cumulative distribution function ## (CDF) of the Student's T distribution with @var{df} degrees of freedom. The ## size of @var{p} is the common size of @var{x} and @var{df}. A scalar input ## functions as a constant matrix of the same size as the other input. ## ## @code{@var{p} = tcdf (@var{x}, @var{df}, "upper")} computes the upper tail ## probability of the Student's T distribution with @var{df} degrees of freedom, ## at the values in @var{x}. ## ## Further information about the Student's T distribution can be found at ## @url{https://en.wikipedia.org/wiki/Student%27s_t-distribution} ## ## @seealso{tinv, tpdf, trnd, tstat} ## @end deftypefn function p = tcdf (x, df, uflag) ## Check for valid number of input arguments if (nargin < 2) error ("tcdf: function called with too few input arguments."); endif ## Check for "upper" flag if (nargin > 2 && strcmpi (uflag, "upper")) x = -x; elseif (nargin > 2 && ! strcmpi (uflag, "upper")) error ("tcdf: invalid argument for upper tail."); endif ## Check for common size of X and DF if (! isscalar (x) || ! isscalar (df)) [err, x, df] = common_size (x, df); if (err > 0) error ("tcdf: X and DF must be of common size or scalars."); endif endif ## Check for X and DF being reals if (iscomplex (x) || iscomplex (df)) error ("tcdf: X and DF must not be complex."); endif ## Check for class type if (isa (x, "single") || isa (df, "single")) p = zeros (size (x), "single"); else p = zeros (size (x)); endif ## Check for NaNs or DF <= 0 is_nan = isnan (x) | ! (df > 0); p(is_nan) = NaN; ## Check for Inf where DF > 0 (for -Inf is already 0) k = (x == Inf) & (df > 0); p(k) = 1; ## Find finite values in X where 0 < DF < Inf k = isfinite (x) & (df > 0) & (df < Inf); ## Process more efficiently small positive integer DF up to 1e4 ks = k & (fix (df) == df) & (df <= 1e4); if any (ks(:)) if (isscalar (df)) p(ks) = tcdf_integer_df (x(ks), df); return else vu = unique (df(ks)); for i = 1:numel (vu) ki = k & (df == vu(i)); p(ki) = tcdf_integer_df (x(ki), vu(i)); endfor endif endif ## Proccess remaining values for DF (non-integers and > 1e4) except DF == Inf k &= ! ks; ## Distinguish between small and big abs(x) xx = x .^ 2; x_big_abs = (xx > df); ## Deal with the case "abs(x) big" kk = k & x_big_abs; if (isscalar (df)) p(kk) = betainc (df ./ (df + xx(kk)), df/2, 1/2) / 2; else p(kk) = betainc (df(kk) ./ (df(kk) + xx(kk)), df(kk)/2, 1/2) / 2; endif ## Deal with the case "abs(x) small" kk = k & ! x_big_abs; if (isscalar (df)) p(kk) = 0.5 * (1 - betainc (xx(kk) ./ (df + xx(kk)), 1/2, df/2)); else p(kk) = 0.5 * (1 - betainc (xx(kk) ./ (df(kk) + xx(kk)), 1/2, df(kk)/2)); endif ## For x > 0, F(x) = 1 - F(-|x|). k &= (x > 0); if (any (k(:))) p(k) = 1 - p(k); endif ## Special case for Cauchy distribution ## Use acot(-x) instead of the usual (atan x)/pi + 0.5 to avoid roundoff error xpos = (x > 0); c = (df == 1); p(c) = xpos(c) + acot (-x(c)) / pi; ## Special case for DF == Inf k = isfinite (x) & (df == Inf); p(k) = normcdf (x(k)); ## Make the result exact for the median p(x == 0 & ! is_nan) = 0.5; endfunction ## Compute the t distribution CDF efficiently (without calling betainc) ## for small positive integer DF up to 1e4 function p = tcdf_integer_df (x, df) if (df == 1) p = 0.5 + atan(x)/pi; elseif (df == 2) p = 0.5 + x ./ (2 * sqrt(2 + x .^ 2)); else xs = x ./ sqrt(df); xxf = 1 ./ (1 + xs .^ 2); u = s = 1; if mod (df, 2) ## odd DF m = (df - 1) / 2; for i = 2:m u .*= (1 - 1/(2*i - 1)) .* xxf; s += u; endfor p = 0.5 + (xs .* xxf .* s + atan(xs)) / pi; else ## even DF m = df / 2; for i = 1:(m - 1) u .*= (1 - 1/(2*i)) .* xxf; s += u; endfor p = 0.5 + (xs .* sqrt(xxf) .* s) / 2; endif endif endfunction %!demo %! ## Plot various CDFs from the Student's T distribution %! x = -5:0.01:5; %! p1 = tcdf (x, 1); %! p2 = tcdf (x, 2); %! p3 = tcdf (x, 5); %! p4 = tcdf (x, Inf); %! plot (x, p1, "-b", x, p2, "-g", x, p3, "-r", x, p4, "-m") %! grid on %! xlim ([-5, 5]) %! ylim ([0, 1]) %! legend ({"df = 1", "df = 2", ... %! "df = 5", 'df = \infty'}, "location", "southeast") %! title ("Student's T CDF") %! xlabel ("values in x") %! ylabel ("probability") ## Test output %!shared x,y %! x = [-Inf 0 1 Inf]; %! y = [0 1/2 3/4 1]; %!assert (tcdf (x, ones (1,4)), y, eps) %!assert (tcdf (x, 1), y, eps) %!assert (tcdf (x, [0 1 NaN 1]), [NaN 1/2 NaN 1], eps) %!assert (tcdf ([x(1:2) NaN x(4)], 1), [y(1:2) NaN y(4)], eps) %!assert (tcdf (2, 3, "upper"), 0.0697, 1e-4) %!assert (tcdf (205, 5, "upper"), 2.6206e-11, 1e-14) ## Test class of input preserved %!assert (tcdf ([x, NaN], 1), [y, NaN], eps) %!assert (tcdf (single ([x, NaN]), 1), single ([y, NaN]), eps ("single")) %!assert (tcdf ([x, NaN], single (1)), single ([y, NaN]), eps ("single")) ## Test input validation %!error tcdf () %!error tcdf (1) %!error tcdf (1, 2, "uper") %!error tcdf (1, 2, 3) %!error ... %! tcdf (ones (3), ones (2)) %!error ... %! tcdf (ones (3), ones (2)) %!error ... %! tcdf (ones (3), ones (2), "upper") %!error tcdf (i, 2) %!error tcdf (2, i) ## Check some reference values %!shared tol_rel %! tol_rel = 10 * eps; ## check accuracy for small positive values %!assert (tcdf (10^(-10), 2.5), 0.50000000003618087, -tol_rel) %!assert (tcdf (10^(-11), 2.5), 0.50000000000361809, -tol_rel) %!assert (tcdf (10^(-12), 2.5), 0.50000000000036181, -tol_rel) %!assert (tcdf (10^(-13), 2.5), 0.50000000000003618, -tol_rel) %!assert (tcdf (10^(-14), 2.5), 0.50000000000000362, -tol_rel) %!assert (tcdf (10^(-15), 2.5), 0.50000000000000036, -tol_rel) %!assert (tcdf (10^(-16), 2.5), 0.50000000000000004, -tol_rel) ## check accuracy for large negative values %!assert (tcdf (-10^1, 2.5), 2.2207478836537124e-03, -tol_rel) %!assert (tcdf (-10^2, 2.5), 7.1916492116661878e-06, -tol_rel) %!assert (tcdf (-10^3, 2.5), 2.2747463948307452e-08, -tol_rel) %!assert (tcdf (-10^4, 2.5), 7.1933970159922115e-11, -tol_rel) %!assert (tcdf (-10^5, 2.5), 2.2747519231756221e-13, -tol_rel) ## # Reference values obtained using Python 2.7.4 and mpmath 0.17 ## ## from mpmath import * ## ## mp.dps = 100 ## ## def F(x_in, nu_in): ## x = mpf(x_in); ## nu = mpf(nu_in); ## t = nu / (nu + x*x) ## a = nu / 2 ## b = mpf(0.5) ## F = betainc(a, b, 0, t, regularized=True) / 2 ## if (x > 0): ## F = 1 - F ## return F ## ## nu = 2.5 ## ## for i in range(1, 6): ## x = - power(mpf(10), mpf(i)) ## print "%%!assert (tcdf (-10^%d, 2.5), %s, -eps)" \ ## % (i, nstr(F(x, nu), 17)) ## ## for i in range(10, 17): ## x = power(mpf(10), -mpf(i)) ## print "%%!assert (tcdf (10^(-%d), 2.5), %s, -eps)" \ ## % (i, nstr(F(x, nu), 17)) statistics-release-1.6.3/inst/dist_fun/tinv.m000066400000000000000000000112661456127120000212630ustar00rootroot00000000000000## Copyright (C) 2012 Rik Wehbring ## Copyright (C) 1995-2016 Kurt Hornik ## Copyright (C) 2022-2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{x} =} tinv (@var{p}, @var{df}) ## ## Inverse of the Student's T cumulative distribution function (iCDF). ## ## For each element of @var{p}, compute the quantile (the inverse of the CDF) of ## the Student's T distribution with @var{df} degrees of freedom. The size of ## @var{x} is the common size of @var{x} and @var{df}. A scalar input functions ## as a constant matrix of the same size as the other input. ## ## This function is analogous to looking in a table for the t-value of a ## single-tailed distribution. For very large @var{df} (>10000), the inverse of ## the standard normal distribution is used. ## ## Further information about the Student's T distribution can be found at ## @url{https://en.wikipedia.org/wiki/Student%27s_t-distribution} ## ## @seealso{tcdf, tpdf, trnd, tstat} ## @end deftypefn function x = tinv (p, df) ## Check for valid number of input arguments if (nargin < 2) error ("tinv: function called with too few input arguments."); endif ## Check for common size of P and DF if (! isscalar (p) || ! isscalar (df)) [retval, p, df] = common_size (p, df); if (retval > 0) error ("tinv: P and DF must be of common size or scalars."); endif endif ## Check for P and DF being reals if (iscomplex (p) || iscomplex (df)) error ("tinv: P and DF must not be complex."); endif ## Check for class type if (isa (p, "single") || isa (df, "single")) x = NaN (size (p), "single"); else x = NaN (size (p)); endif k = (p == 0) & (df > 0); x(k) = -Inf; k = (p == 1) & (df > 0); x(k) = Inf; if (isscalar (df)) k = (p > 0) & (p < 1); if ((df > 0) && (df < 10000)) x(k) = (sign (p(k) - 1/2) .* sqrt (df * (1 ./ betainv (2*min (p(k), 1 - p(k)), df/2, 1/2) - 1))); elseif (df >= 10000) ## For large df, use the quantiles of the standard normal x(k) = -sqrt (2) * erfcinv (2 * p(k)); endif else k = (p > 0) & (p < 1) & (df > 0) & (df < 10000); x(k) = (sign (p(k) - 1/2) .* sqrt (df(k) .* (1 ./ betainv (2*min (p(k), 1 - p(k)), df(k)/2, 1/2) - 1))); ## For large df, use the quantiles of the standard normal k = (p > 0) & (p < 1) & (df >= 10000); x(k) = -sqrt (2) * erfcinv (2 * p(k)); endif endfunction %!demo %! ## Plot various iCDFs from the Student's T distribution %! p = 0.001:0.001:0.999; %! x1 = tinv (p, 1); %! x2 = tinv (p, 2); %! x3 = tinv (p, 5); %! x4 = tinv (p, Inf); %! plot (p, x1, "-b", p, x2, "-g", p, x3, "-r", p, x4, "-m") %! grid on %! xlim ([0, 1]) %! ylim ([-5, 5]) %! legend ({"df = 1", "df = 2", ... %! "df = 5", 'df = \infty'}, "location", "northwest") %! title ("Student's T iCDF") %! xlabel ("probability") %! ylabel ("values in x") ## Test output %!shared p %! p = [-1 0 0.5 1 2]; %!assert (tinv (p, ones (1,5)), [NaN -Inf 0 Inf NaN]) %!assert (tinv (p, 1), [NaN -Inf 0 Inf NaN], eps) %!assert (tinv (p, [1 0 NaN 1 1]), [NaN NaN NaN Inf NaN], eps) %!assert (tinv ([p(1:2) NaN p(4:5)], 1), [NaN -Inf NaN Inf NaN]) ## Test class of input preserved %!assert (tinv ([p, NaN], 1), [NaN -Inf 0 Inf NaN NaN], eps) %!assert (tinv (single ([p, NaN]), 1), single ([NaN -Inf 0 Inf NaN NaN]), eps ("single")) %!assert (tinv ([p, NaN], single (1)), single ([NaN -Inf 0 Inf NaN NaN]), eps ("single")) ## Test input validation %!error tinv () %!error tinv (1) %!error ... %! tinv (ones (3), ones (2)) %!error ... %! tinv (ones (2), ones (3)) %!error tinv (i, 2) %!error tinv (2, i) statistics-release-1.6.3/inst/dist_fun/tlscdf.m000066400000000000000000000143331456127120000215600ustar00rootroot00000000000000## Copyright (C) 2024 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{p} =} tlscdf (@var{x}, @var{mu}, @var{sigma}, @var{df}) ## @deftypefnx {statistics} {@var{p} =} tlscdf (@var{x}, @var{mu}, @var{sigma}, @var{df}, @qcode{"upper"}) ## ## Location-scale Student's T cumulative distribution function (CDF). ## ## For each element of @var{x}, compute the cumulative distribution function ## (CDF) of the location-scale Student's T distribution with location parameter ## @var{mu}, scale parameter @var{sigma}, and @var{df} degrees of freedom. The ## size of @var{p} is the common size of @var{x}, @var{mu}, @var{sigma}, and ## @var{df}. A scalar input functions as a constant matrix of the same size as ## the other inputs. ## ## @code{@var{p} = tlscdf (@var{x}, @var{mu}, @var{sigma}, @var{df}, "upper")} ## computes the upper tail probability of the location-scale Student's T ## distribution with parameters @var{mu}, @var{sigma}, and @var{df}, at the ## values in @var{x}. ## ## Further information about the location-scale Student's T distribution can be ## found at @url{https://en.wikipedia.org/wiki/Student%27s_t-distribution#Location-scale_t_distribution} ## ## @seealso{tlsinv, tlspdf, tlsrnd, tlsfit, tlslike, tlsstat} ## @end deftypefn function p = tlscdf (x, mu, sigma, df, uflag) ## Check for valid number of input arguments if (nargin < 4) error ("tlscdf: function called with too few input arguments."); endif ## Check for "upper" flag upper = false; if (nargin > 4 && strcmpi (uflag, "upper")) upper = true; elseif (nargin > 4 && ! strcmpi (uflag, "upper")) error ("tlscdf: invalid argument for upper tail."); endif ## Check for common size of X, MU, SIGMA, and DF if (! isscalar (x) || ! isscalar (mu) || ! isscalar (sigma) || ! isscalar (df)) [err, x, mu, sigma, df] = common_size (x, mu, sigma, df); if (err > 0) error ("tlscdf: X, MU, SIGMA, and DF must be of common size or scalars."); endif endif ## Check for X, MU, SIGMA, and DF being reals if (iscomplex (x) || iscomplex (mu) || iscomplex (sigma) || iscomplex (df)) error ("tlscdf: X, MU, SIGMA, and DF must not be complex."); endif ## Check for class type if (isa (x, "single") || isa (mu, "single") || isa (sigma, "single") || isa (df, "single")) cls = "single"; else cls = "double"; endif ## Force invalid SIGMA parameter to NaN sigma(sigma <= 0) = NaN; ## Call tcdf to do the work if (upper) p = tcdf ((x - mu) ./ sigma, df, "upper"); else p = tcdf ((x - mu) ./ sigma, df); endif ## Force class type p = cast (p, cls); endfunction %!demo %! ## Plot various CDFs from the location-scale Student's T distribution %! x = -8:0.01:8; %! p1 = tlscdf (x, 0, 1, 1); %! p2 = tlscdf (x, 0, 2, 2); %! p3 = tlscdf (x, 3, 2, 5); %! p4 = tlscdf (x, -1, 3, Inf); %! plot (x, p1, "-b", x, p2, "-g", x, p3, "-r", x, p4, "-m") %! grid on %! xlim ([-8, 8]) %! ylim ([0, 1]) %! legend ({"mu = 0, sigma = 1, df = 1", "mu = 0, sigma = 2, df = 2", ... %! "mu = 3, sigma = 2, df = 5", 'mu = -1, sigma = 3, df = \infty'}, ... %! "location", "northwest") %! title ("Location-scale Student's T CDF") %! xlabel ("values in x") %! ylabel ("probability") ## Test output %!shared x,y %! x = [-Inf 0 1 Inf]; %! y = [0 1/2 3/4 1]; %!assert (tlscdf (x, 0, 1, ones (1,4)), y, eps) %!assert (tlscdf (x, 0, 1, 1), y, eps) %!assert (tlscdf (x, 0, 1, [0 1 NaN 1]), [NaN 1/2 NaN 1], eps) %!assert (tlscdf ([x(1:2) NaN x(4)], 0, 1, 1), [y(1:2) NaN y(4)], eps) %!assert (tlscdf (2, 0, 1, 3, "upper"), 0.0697, 1e-4) %!assert (tlscdf (205, 0, 1, 5, "upper"), 2.6206e-11, 1e-14) ## Test class of input preserved %!assert (tlscdf ([x, NaN], 0, 1, 1), [y, NaN], eps) %!assert (tlscdf (single ([x, NaN]), 0, 1, 1), single ([y, NaN]), eps ("single")) %!assert (tlscdf ([x, NaN], single (0), 1, 1), single ([y, NaN]), eps ("single")) %!assert (tlscdf ([x, NaN], 0, single (1), 1), single ([y, NaN]), eps ("single")) %!assert (tlscdf ([x, NaN], 0, 1, single (1)), single ([y, NaN]), eps ("single")) ## Test input validation %!error tlscdf () %!error tlscdf (1) %!error tlscdf (1, 2) %!error tlscdf (1, 2, 3) %!error tlscdf (1, 2, 3, 4, "uper") %!error tlscdf (1, 2, 3, 4, 5) %!error ... %! tlscdf (ones (3), ones (2), 1, 1) %!error ... %! tlscdf (ones (3), 1, ones (2), 1) %!error ... %! tlscdf (ones (3), 1, 1, ones (2)) %!error ... %! tlscdf (ones (3), ones (2), 1, 1, "upper") %!error ... %! tlscdf (ones (3), 1, ones (2), 1, "upper") %!error ... %! tlscdf (ones (3), 1, 1, ones (2), "upper") %!error tlscdf (i, 2, 1, 1) %!error tlscdf (2, i, 1, 1) %!error tlscdf (2, 1, i, 1) %!error tlscdf (2, 1, 1, i) statistics-release-1.6.3/inst/dist_fun/tlsinv.m000066400000000000000000000116531456127120000216220ustar00rootroot00000000000000## Copyright (C) 2024 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{x} =} tlsinv (@var{p}, @var{mu}, @var{sigma}, @var{df}) ## ## Inverse of the location-scale Student's T cumulative distribution function (iCDF). ## ## For each element of @var{p}, compute the quantile (the inverse of the CDF) of ## the location-scale Student's T distribution with location parameter @var{mu}, ## scale parameter @var{sigma}, and @var{df} degrees of freedom. The size of ## @var{x} is the common size of @var{p}, @var{mu}, @var{sigma}, and @var{df}. ## A scalar input functions as a constant matrix of the same size as the other ## inputs. ## ## Further information about the location-scale Student's T distribution can be ## found at @url{https://en.wikipedia.org/wiki/Student%27s_t-distribution#Location-scale_t_distribution} ## ## @seealso{tlscdf, tlspdf, tlsrnd, tlsfit, tlslike, tlsstat} ## @end deftypefn function x = tlsinv (p, mu, sigma, df) ## Check for valid number of input arguments if (nargin < 4) error ("tlsinv: function called with too few input arguments."); endif ## Check for common size of P, MU, SIGMA, and DF if (! isscalar (p) || ! isscalar (mu) || ! isscalar (sigma) || ! isscalar (df)) [retval, p, mu, sigma, df] = common_size (p, mu, sigma, df); if (retval > 0) error ("tlsinv: P, MU, SIGMA, and DF must be of common size or scalars."); endif endif ## Check for P, MU, SIGMA, and DF being reals if (iscomplex (p) || iscomplex (mu) || iscomplex (sigma) || iscomplex (df)) error ("tlsinv: P, MU, SIGMA, and DF must not be complex."); endif ## Check for class type if (isa (p, "single") || isa (mu, "single") || isa (sigma, "single") || isa (df, "single")) cls = "single"; else cls = "double"; endif ## Force invalid SIGMA parameter to NaN sigma(sigma <= 0) = NaN; ## Call tinv to do the work x = tinv (p, df) .* sigma + mu; ## Force class type x = cast (x, cls); endfunction %!demo %! ## Plot various iCDFs from the location-scale Student's T distribution %! p = 0.001:0.001:0.999; %! x1 = tlsinv (p, 0, 1, 1); %! x2 = tlsinv (p, 0, 2, 2); %! x3 = tlsinv (p, 3, 2, 5); %! x4 = tlsinv (p, -1, 3, Inf); %! plot (p, x1, "-b", p, x2, "-g", p, x3, "-r", p, x4, "-m") %! grid on %! xlim ([0, 1]) %! ylim ([-8, 8]) %! legend ({"mu = 0, sigma = 1, df = 1", "mu = 0, sigma = 2, df = 2", ... %! "mu = 3, sigma = 2, df = 5", 'mu = -1, sigma = 3, df = \infty'}, ... %! "location", "southeast") %! title ("Location-scale Student's T iCDF") %! xlabel ("probability") %! ylabel ("values in x") ## Test output %!shared p %! p = [-1 0 0.5 1 2]; %!assert (tlsinv (p, 0, 1, ones (1,5)), [NaN -Inf 0 Inf NaN]) %!assert (tlsinv (p, 0, 1, 1), [NaN -Inf 0 Inf NaN], eps) %!assert (tlsinv (p, 0, 1, [1 0 NaN 1 1]), [NaN NaN NaN Inf NaN], eps) %!assert (tlsinv ([p(1:2) NaN p(4:5)], 0, 1, 1), [NaN -Inf NaN Inf NaN]) ## Test class of input preserved %!assert (class (tlsinv ([p, NaN], 0, 1, 1)), "double") %!assert (class (tlsinv (single ([p, NaN]), 0, 1, 1)), "single") %!assert (class (tlsinv ([p, NaN], single (0), 1, 1)), "single") %!assert (class (tlsinv ([p, NaN], 0, single (1), 1)), "single") %!assert (class (tlsinv ([p, NaN], 0, 1, single (1))), "single") ## Test input validation %!error tlsinv () %!error tlsinv (1) %!error tlsinv (1, 2) %!error tlsinv (1, 2, 3) %!error ... %! tlsinv (ones (3), ones (2), 1, 1) %!error ... %! tlsinv (ones (2), 1, ones (3), 1) %!error ... %! tlsinv (ones (2), 1, 1, ones (3)) %!error tlsinv (i, 2, 3, 4) %!error tlsinv (2, i, 3, 4) %!error tlsinv (2, 2, i, 4) %!error tlsinv (2, 2, 3, i) statistics-release-1.6.3/inst/dist_fun/tlspdf.m000066400000000000000000000120471456127120000215750ustar00rootroot00000000000000## Copyright (C) 2024 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{p} =} tlspdf (@var{x}, @var{mu}, @var{sigma}, @var{df}) ## ## Location-scale Student's T probability density function (PDF). ## ## For each element of @var{x}, compute the probability density function (PDF) ## of the location-scale Student's T distribution with location parameter ## @var{mu}, scale parameter @var{sigma}, and @var{df} degrees of freedom. The ## size of @var{y} is the common size of @var{x}, @var{mu}, @var{sigma}, and ## @var{df}. A scalar input functions as a constant matrix of the same size as ## the other inputs. ## ## Further information about the location-scale Student's T distribution can be ## found at @url{https://en.wikipedia.org/wiki/Student%27s_t-distribution#Location-scale_t_distribution} ## ## @seealso{tlscdf, tlspdf, tlsrnd, tlsfit, tlslike, tlsstat} ## @end deftypefn function y = tlspdf (x, mu, sigma, df) ## Check for valid number of input arguments if (nargin < 4) error ("tlspdf: function called with too few input arguments."); endif ## Check for common size of X, MU, SIGMA, and DF if (! isscalar (x) || ! isscalar (mu) || ! isscalar (sigma) || ! isscalar (df)) [err, x, mu, sigma, df] = common_size (x, mu, sigma, df); if (err > 0) error ("tlspdf: X, MU, SIGMA, and DF must be of common size or scalars."); endif endif ## Check for X, MU, SIGMA, and DF being reals if (iscomplex (x) || iscomplex (mu) || iscomplex (sigma) || iscomplex (df)) error ("tlspdf: X, MU, SIGMA, and DF must not be complex."); endif ## Check for class type if (isa (x, "single") || isa (mu, "single") || isa (sigma, "single") || isa (df, "single")) cls = "single"; else cls = "double"; endif ## Force invalid SIGMA parameter to NaN sigma(sigma <= 0) = NaN; ## Call tpdf to do the work y = tpdf ((x - mu) ./ sigma, df) ./ sigma; ## Force class type y = cast (y, cls); endfunction %!demo %! ## Plot various PDFs from the Student's T distribution %! x = -8:0.01:8; %! y1 = tlspdf (x, 0, 1, 1); %! y2 = tlspdf (x, 0, 2, 2); %! y3 = tlspdf (x, 3, 2, 5); %! y4 = tlspdf (x, -1, 3, Inf); %! plot (x, y1, "-b", x, y2, "-g", x, y3, "-r", x, y4, "-m") %! grid on %! xlim ([-8, 8]) %! ylim ([0, 0.41]) %! legend ({"mu = 0, sigma = 1, df = 1", "mu = 0, sigma = 2, df = 2", ... %! "mu = 3, sigma = 2, df = 5", 'mu = -1, sigma = 3, df = \infty'}, ... %! "location", "northwest") %! title ("Location-scale Student's T PDF") %! xlabel ("values in x") %! ylabel ("density") ## Test output %!test %! x = rand (10,1); %! y = 1./(pi * (1 + x.^2)); %! assert (tlspdf (x, 0, 1, 1), y, 5*eps); %! assert (tlspdf (x+5, 5, 1, 1), y, 5*eps); %! assert (tlspdf (x.*2, 0, 2, 1), y./2, 5*eps); %!shared x, y %! x = [-Inf 0 0.5 1 Inf]; %! y = 1./(pi * (1 + x.^2)); %!assert (tlspdf (x, 0, 1, ones (1,5)), y, eps) %!assert (tlspdf (x, 0, 1, 1), y, eps) %!assert (tlspdf (x, 0, 1, [0 NaN 1 1 1]), [NaN NaN y(3:5)], eps) %!assert (tlspdf (x, 0, 1, Inf), normpdf (x)) ## Test class of input preserved %!assert (class (tlspdf ([x, NaN], 1, 1, 1)), "double") %!assert (class (tlspdf (single ([x, NaN]), 1, 1, 1)), "single") %!assert (class (tlspdf ([x, NaN], single (1), 1, 1)), "single") %!assert (class (tlspdf ([x, NaN], 1, single (1), 1)), "single") %!assert (class (tlspdf ([x, NaN], 1, 1, single (1))), "single") ## Test input validation %!error tlspdf () %!error tlspdf (1) %!error tlspdf (1, 2) %!error tlspdf (1, 2, 3) %!error ... %! tlspdf (ones (3), ones (2), 1, 1) %!error ... %! tlspdf (ones (2), 1, ones (3), 1) %!error ... %! tlspdf (ones (2), 1, 1, ones (3)) %!error tlspdf (i, 2, 1, 1) %!error tlspdf (2, i, 1, 1) %!error tlspdf (2, 1, i, 1) %!error tlspdf (2, 1, 1, i) statistics-release-1.6.3/inst/dist_fun/tlsrnd.m000066400000000000000000000171551456127120000216140ustar00rootroot00000000000000## Copyright (C) 2012 Rik Wehbring ## Copyright (C) 1995-2016 Kurt Hornik ## Copyright (C) 2022-2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{r} =} tlsrnd (@var{mu}, @var{sigma}, @var{df}) ## @deftypefnx {statistics} {@var{r} =} tlsrnd (@var{mu}, @var{sigma}, @var{df}, @var{rows}) ## @deftypefnx {statistics} {@var{r} =} tlsrnd (@var{mu}, @var{sigma}, @var{df}, @var{rows}, @var{cols}, @dots{}) ## @deftypefnx {statistics} {@var{r} =} tlsrnd (@var{mu}, @var{sigma}, @var{df}, [@var{sz}]) ## ## Random arrays from the location-scale Student's T distribution. ## ## Return a matrix of random samples from the location-scale Student's T ## distribution with location parameter @var{mu}, scale parameter @var{sigma}, ## and @var{df} degrees of freedom. ## ## @code{@var{r} = tlsrnd (@var{df})} returns an array of random numbers chosen ## from the location-scale Student's T distribution with location parameter ## @var{mu}, scale parameter @var{sigma}, and @var{df} degrees of freedom. The ## size of @var{r} is the common size of @var{mu}, @var{sigma}, and @var{df}. A ## scalar input functions as a constant matrix of the same size as the other ## inputs. ## ## When called with a single size argument, @code{tlsrnd} returns a square ## matrix with the dimension specified. When called with more than one scalar ## argument, the first two arguments are taken as the number of rows and columns ## and any further arguments specify additional matrix dimensions. The size may ## also be specified with a row vector of dimensions, @var{sz}. ## ## Further information about the location-scale Student's T distribution can be ## found at @url{https://en.wikipedia.org/wiki/Student%27s_t-distribution#Location-scale_t_distribution} ## ## @seealso{tlscdf, tlsinv, tlspdf, tlsfit, tlslike, tlsstat} ## @end deftypefn function r = tlsrnd (mu, sigma, df, varargin) ## Check for valid number of input arguments if (nargin < 3) error ("tlsrnd: function called with too few input arguments."); endif ## Check for common size of MU, SIGMA, and DF if (! isscalar (mu) || ! isscalar (sigma) || ! isscalar (df)) [retval, mu, sigma, df] = common_size (mu, sigma, df); if (retval > 0) error ("tlsrnd: MU, SIGMA, and DF must be of common size or scalars."); endif endif ## Check for DF being real if (iscomplex (mu) || iscomplex (sigma) || iscomplex (df)) error ("tlsrnd: MU, SIGMA, and DF must not be complex."); endif ## Parse and check SIZE arguments if (nargin == 3) sz = size (df); elseif (nargin == 4) if (isscalar (varargin{1}) && varargin{1} >= 0 ... && varargin{1} == fix (varargin{1})) sz = [varargin{1}, varargin{1}]; elseif (isrow (varargin{1}) && all (varargin{1} >= 0) ... && all (varargin{1} == fix (varargin{1}))) sz = varargin{1}; elseif error (strcat (["tlsrnd: SZ must be a scalar or a row vector"], ... [" of non-negative integers."])); endif elseif (nargin > 4) posint = cellfun (@(x) (! isscalar (x) || x < 0 || x != fix (x)), varargin); if (any (posint)) error ("tlsrnd: dimensions must be non-negative integers."); endif sz = [varargin{:}]; endif ## Check that parameters match requested dimensions in size if (! isscalar (df) && ! isequal (size (df), sz)) error ("tlsrnd: MU, SIGMA, and DF must be scalar or of size SZ."); endif ## Check for class type if (isa (mu, "single") || isa (sigma, "single") || isa (df, "single")) cls = "single"; else cls = "double"; endif ## Call trnd to do the work r = mu + sigma .* trnd (df, sz); ## Force class type r = cast (r, cls); endfunction ## Test output %!assert (size (tlsrnd (1, 2, 3)), [1, 1]) %!assert (size (tlsrnd (ones (2,1), 2, 3)), [2, 1]) %!assert (size (tlsrnd (ones (2,2), 2, 3)), [2, 2]) %!assert (size (tlsrnd (1, 2, 3, 3)), [3, 3]) %!assert (size (tlsrnd (1, 2, 3, [4 1])), [4, 1]) %!assert (size (tlsrnd (1, 2, 3, 4, 1)), [4, 1]) %!assert (size (tlsrnd (1, 2, 3, 4, 1)), [4, 1]) %!assert (size (tlsrnd (1, 2, 3, 4, 1, 5)), [4, 1, 5]) %!assert (size (tlsrnd (1, 2, 3, 0, 1)), [0, 1]) %!assert (size (tlsrnd (1, 2, 3, 1, 0)), [1, 0]) %!assert (size (tlsrnd (1, 2, 3, 1, 2, 0, 5)), [1, 2, 0, 5]) %!assert (tlsrnd (1, 2, 0, 1, 1), NaN) %!assert (tlsrnd (1, 2, [0, 0, 0], [1, 3]), [NaN, NaN, NaN]) ## Test class of input preserved %!assert (class (tlsrnd (1, 2, 3)), "double") %!assert (class (tlsrnd (single (1), 2, 3)), "single") %!assert (class (tlsrnd (single ([1, 1]), 2, 3)), "single") %!assert (class (tlsrnd (1, single (2), 3)), "single") %!assert (class (tlsrnd (1, single ([2, 2]), 3)), "single") %!assert (class (tlsrnd (1, 2, single (3))), "single") %!assert (class (tlsrnd (1, 2, single ([3, 3]))), "single") ## Test input validation %!error tlsrnd () %!error tlsrnd (1) %!error tlsrnd (1, 2) %!error ... %! tlsrnd (ones (3), ones (2), 1) %!error ... %! tlsrnd (ones (2), 1, ones (3)) %!error ... %! tlsrnd (1, ones (2), ones (3)) %!error tlsrnd (i, 2, 3) %!error tlsrnd (1, i, 3) %!error tlsrnd (1, 2, i) %!error ... %! tlsrnd (1, 2, 3, -1) %!error ... %! tlsrnd (1, 2, 3, 1.2) %!error ... %! tlsrnd (1, 2, 3, ones (2)) %!error ... %! tlsrnd (1, 2, 3, [2 -1 2]) %!error ... %! tlsrnd (1, 2, 3, [2 0 2.5]) %!error ... %! tlsrnd (ones (2), 2, 3, ones (2)) %!error ... %! tlsrnd (1, 2, 3, 2, -1, 5) %!error ... %! tlsrnd (1, 2, 3, 2, 1.5, 5) %!error ... %! tlsrnd (ones (2,2), 2, 3, 3) %!error ... %! tlsrnd (1, ones (2,2), 3, 3) %!error ... %! tlsrnd (1, 2, ones (2,2), 3) %!error ... %! tlsrnd (1, 2, ones (2,2), [3, 3]) %!error ... %! tlsrnd (1, 2, ones (2,2), 2, 3) statistics-release-1.6.3/inst/dist_fun/tpdf.m000066400000000000000000000077171456127120000212460ustar00rootroot00000000000000## Copyright (C) 2012 Rik Wehbring ## Copyright (C) 1995-2016 Kurt Hornik ## Copyright (C) 2022-2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{p} =} tpdf (@var{x}, @var{df}) ## ## Student's T probability density function (PDF). ## ## For each element of @var{x}, compute the probability density function (PDF) ## of the Student's T distribution with @var{df} degrees of freedom. The size ## of @var{y} is the common size of @var{x} and @var{df}. A scalar input ## functions as a constant matrix of the same size as the other input. ## ## Further information about the Student's T distribution can be found at ## @url{https://en.wikipedia.org/wiki/Student%27s_t-distribution} ## ## @seealso{tcdf, tpdf, trnd, tstat} ## @end deftypefn function y = tpdf (x, df) ## Check for valid number of input arguments if (nargin < 2) error ("tpdf: function called with too few input arguments."); endif ## Check for common size of X and DF if (! isscalar (x) || ! isscalar (df)) [retval, x, df] = common_size (x, df); if (retval > 0) error ("tpdf: X and DF must be of common size or scalars."); endif endif ## Check for X and DF being reals if (iscomplex (x) || iscomplex (df)) error ("tpdf: X and DF must not be complex."); endif ## Check for class type if (isa (x, "single") || isa (df, "single")) y = zeros (size (x), "single"); else y = zeros (size (x)); endif k = isnan (x) | ! (df > 0); y(k) = NaN; k = isfinite (x) & (df > 0) & (df < Inf); kinf = isfinite (x) & isinf (df); if (any (k)) y(k) = exp (- (df(k) + 1) .* log (1 + x(k) .^ 2 ./ df(k)) / 2) ./ ... (sqrt (df(k)) .* beta (df(k)/2, 1/2)); endif if (any (kinf)) y(kinf) = normpdf (x(kinf)); endif endfunction %!demo %! ## Plot various PDFs from the Student's T distribution %! x = -5:0.01:5; %! y1 = tpdf (x, 1); %! y2 = tpdf (x, 2); %! y3 = tpdf (x, 5); %! y4 = tpdf (x, Inf); %! plot (x, y1, "-b", x, y2, "-g", x, y3, "-r", x, y4, "-m") %! grid on %! xlim ([-5, 5]) %! ylim ([0, 0.41]) %! legend ({"df = 1", "df = 2", ... %! "df = 5", 'df = \infty'}, "location", "northeast") %! title ("Student's T PDF") %! xlabel ("values in x") %! ylabel ("density") ## Test output %!test %! x = rand (10,1); %! y = 1./(pi * (1 + x.^2)); %! assert (tpdf (x, 1), y, 5*eps); %!shared x, y %! x = [-Inf 0 0.5 1 Inf]; %! y = 1./(pi * (1 + x.^2)); %!assert (tpdf (x, ones (1,5)), y, eps) %!assert (tpdf (x, 1), y, eps) %!assert (tpdf (x, [0 NaN 1 1 1]), [NaN NaN y(3:5)], eps) %!assert (tpdf (x, Inf), normpdf (x)) ## Test class of input preserved %!assert (tpdf ([x, NaN], 1), [y, NaN], eps) %!assert (tpdf (single ([x, NaN]), 1), single ([y, NaN]), eps ("single")) %!assert (tpdf ([x, NaN], single (1)), single ([y, NaN]), eps ("single")) ## Test input validation %!error tpdf () %!error tpdf (1) %!error ... %! tpdf (ones (3), ones (2)) %!error ... %! tpdf (ones (2), ones (3)) %!error tpdf (i, 2) %!error tpdf (2, i) statistics-release-1.6.3/inst/dist_fun/tricdf.m000066400000000000000000000151441456127120000215550ustar00rootroot00000000000000## Copyright (C) 1997-2015 Kurt Hornik ## Copyright (C) 2016 Dag Lyberg ## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{p} =} tricdf (@var{x}, @var{a}, @var{b}, @var{c}) ## @deftypefnx {statistics} {@var{p} =} tricdf (@var{x}, @var{a}, @var{b}, @var{c}, @qcode{"upper"}) ## ## Triangular cumulative distribution function (CDF). ## ## For each element of @var{x}, compute the cumulative distribution function ## (CDF) of the triangular distribution with parameters @var{a}, @var{b}, and ## @var{c} on the interval @qcode{[@var{a}, @var{b}]}. The size of @var{p} is ## the common size of the input arguments. A scalar input functions as a ## constant matrix of the same size as the other inputs. ## ## @code{@var{p} = tricdf (@var{x}, @var{a}, @var{b}, @var{c}, "upper")} ## computes the upper tail probability of the triangular distribution with ## parameters @var{a}, @var{b}, and @var{c}, at the values in @var{x}. ## ## Further information about the triangular distribution can be found at ## @url{https://en.wikipedia.org/wiki/Triangular_distribution} ## ## @seealso{triinv, tripdf, trirnd} ## @end deftypefn function p = tricdf (x, a, b, c, uflag) ## Check for valid number of input arguments if (nargin < 4) error ("tricdf: function called with too few input arguments."); endif ## Check for valid "upper" flag if (nargin > 4) if (! strcmpi (uflag, "upper")) error ("tricdf: invalid argument for upper tail."); else uflag = true; endif else uflag = false; endif ## Check for common size of A, B, and C if (! isscalar (x) || ! isscalar (a) || ! isscalar (b) || ! isscalar (c)) [retval, x, a, b, c] = common_size (x, a, b, c); if (retval > 0) error ("tricdf: X, A, B, and C must be of common size or scalars."); endif endif ## Check for X, BETA, and GAMMA being reals if (iscomplex (x) || iscomplex (a) || iscomplex (b) || iscomplex (c)) error ("tricdf: X, A, B, and C must not be complex."); endif ## Check for class type if (isa (x, "single") || isa (a, "single") || isa (b, "single") ... || isa (c, "single")) p = zeros (size (x), "single"); else p = zeros (size (x)); endif ## Force NaNs for out of range parameters. k = isnan (x) | ! (a < b) | ! (c >= a) | ! (c <= b); p(k) = NaN; ## Find valid values in parameters and data k = (a < b) & (a <= c) & (c <= b); k1 = (x <= a) & k; k2 = (x > a) & (x <= c) & k; k3 = (x > c) & (x < b) & k; k4 = (x >= b) & k; ## Compute triangular CDF if (uflag) p(k1) = 1; p(k2) = 1 - ((x(k2) - a(k2)) .^ 2) ./ ((b(k2) - a(k2)) .* (c(k2) - a(k2))); p(k3) = ((b(k3) - x(k3)) .^ 2) ./ ((b(k3) - a(k3)) .* (b(k3) - c(k3))); else p(k2) = ((x(k2) - a(k2)) .^ 2) ./ ((b(k2) - a(k2)) .* (c(k2) - a(k2))); p(k3) = 1 - ((b(k3) - x(k3)) .^ 2) ./ ((b(k3) - a(k3)) .* (b(k3) - c(k3))); p(k4) = 1; endif endfunction %!demo %! ## Plot various CDFs from the triangular distribution %! x = 0.001:0.001:10; %! p1 = tricdf (x, 3, 6, 4); %! p2 = tricdf (x, 1, 5, 2); %! p3 = tricdf (x, 2, 9, 3); %! p4 = tricdf (x, 2, 9, 5); %! plot (x, p1, "-b", x, p2, "-g", x, p3, "-r", x, p4, "-c") %! grid on %! xlim ([0, 10]) %! legend ({"a = 3, b = 6, c = 4", "a = 1, b = 5, c = 2", ... %! "a = 2, b = 9, c = 3", "a = 2, b = 9, c = 5"}, ... %! "location", "southeast") %! title ("Triangular CDF") %! xlabel ("values in x") %! ylabel ("probability") ## Test output %!shared x, y %! x = [-1, 0, 0.1, 0.5, 0.9, 1, 2] + 1; %! y = [0, 0, 0.02, 0.5, 0.98, 1 1]; %!assert (tricdf (x, ones (1,7), 2*ones (1,7), 1.5*ones (1,7)), y, eps) %!assert (tricdf (x, 1*ones (1,7), 2, 1.5), y, eps) %!assert (tricdf (x, 1*ones (1,7), 2, 1.5, "upper"), 1 - y, eps) %!assert (tricdf (x, 1, 2*ones (1,7), 1.5), y, eps) %!assert (tricdf (x, 1, 2, 1.5*ones (1,7)), y, eps) %!assert (tricdf (x, 1, 2, 1.5), y, eps) %!assert (tricdf (x, [1, 1, NaN, 1, 1, 1, 1], 2, 1.5), ... %! [y(1:2), NaN, y(4:7)], eps) %!assert (tricdf (x, 1, 2*[1, 1, NaN, 1, 1, 1, 1], 1.5), ... %! [y(1:2), NaN, y(4:7)], eps) %!assert (tricdf (x, 1, 2, 1.5*[1, 1, NaN, 1, 1, 1, 1]), ... %! [y(1:2), NaN, y(4:7)], eps) %!assert (tricdf ([x, NaN], 1, 2, 1.5), [y, NaN], eps) ## Test class of input preserved %!assert (tricdf (single ([x, NaN]), 1, 2, 1.5), ... %! single ([y, NaN]), eps("single")) %!assert (tricdf ([x, NaN], single (1), 2, 1.5), ... %! single ([y, NaN]), eps("single")) %!assert (tricdf ([x, NaN], 1, single (2), 1.5), ... %! single ([y, NaN]), eps("single")) %!assert (tricdf ([x, NaN], 1, 2, single (1.5)), ... %! single ([y, NaN]), eps("single")) ## Test input validation %!error tricdf () %!error tricdf (1) %!error tricdf (1, 2) %!error tricdf (1, 2, 3) %!error ... %! tricdf (1, 2, 3, 4, 5, 6) %!error tricdf (1, 2, 3, 4, "tail") %!error tricdf (1, 2, 3, 4, 5) %!error ... %! tricdf (ones (3), ones (2), ones(2), ones(2)) %!error ... %! tricdf (ones (2), ones (3), ones(2), ones(2)) %!error ... %! tricdf (ones (2), ones (2), ones(3), ones(2)) %!error ... %! tricdf (ones (2), ones (2), ones(2), ones(3)) %!error tricdf (i, 2, 3, 4) %!error tricdf (1, i, 3, 4) %!error tricdf (1, 2, i, 4) %!error tricdf (1, 2, 3, i) statistics-release-1.6.3/inst/dist_fun/triinv.m000066400000000000000000000130401456127120000216060ustar00rootroot00000000000000## Copyright (B) 1995-2015 Kurt Hornik ## Copyright (B) 2016 Dag Lyberg ## Copyright (B) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{x} =} triinv (@var{p}, @var{a}, @var{b}, @var{c}) ## ## Inverse of the triangular cumulative distribution function (iCDF). ## ## For each element of @var{p}, compute the quantile (the inverse of the CDF) of ## the triangular distribution with parameters @var{a}, @var{b}, and @var{c} on ## the interval @qcode{[@var{a}, @var{b}]}. The size of @var{x} is the common ## size of the input arguments. A scalar input functions as a constant matrix ## of the same size as the other inputs. ## ## Further information about the triangular distribution can be found at ## @url{https://en.wikipedia.org/wiki/Triangular_distribution} ## ## @seealso{tricdf, tripdf, trirnd} ## @end deftypefn function x = triinv (p, a, b, c) ## Check for valid number of input arguments if (nargin < 4) error ("triinv: function called with too few input arguments."); endif ## Check for common size of P, A, B, and C if (! isscalar (p) || ! isscalar (a) || ! isscalar (b) || ! isscalar (c)) [retval, p, a, b, c] = common_size (p, a, b, c); if (retval > 0) error ("triinv: P, A, B, and C must be of common size or scalars."); endif endif ## Check for P, A, B, and C being reals if (iscomplex (p) || iscomplex (a) || iscomplex (b) || iscomplex (c)) error ("triinv: P, A, B, and C must not be complex."); endif ## Check for class type if (isa (p, "single") || isa (a, "single") || isa (b, "single") ... || isa (c, "single")) x = NaN (size (p), "single"); else x = NaN (size (p)); endif ## Force zeros for within range parameters. k = (p >= 0) & (p <= 1) & (a < b) & (a <= c) & (c <= b); x(k) = 0; ## Compute triangular iCDF h = 2 ./ (b-a); w = c-a; area1 = h .* w / 2; j = k & (p <= area1); x(j) += (2 * p(j) .* (w(j) ./ h(j))).^0.5 + a(j); w = b-c; j = k & (area1 < p) & (p < 1); x(j) += b(j) - (2 * (1-p(j)) .* (w(j) ./ h(j))).^0.5; j = k & (p == 1); x(j) = b(j); endfunction %!demo %! ## Plot various iCDFs from the triangular distribution %! p = 0.001:0.001:0.999; %! x1 = triinv (p, 3, 6, 4); %! x2 = triinv (p, 1, 5, 2); %! x3 = triinv (p, 2, 9, 3); %! x4 = triinv (p, 2, 9, 5); %! plot (p, x1, "-b", p, x2, "-g", p, x3, "-r", p, x4, "-c") %! grid on %! ylim ([0, 10]) %! legend ({"a = 3, b = 6, c = 4", "a = 1, b = 5, c = 2", ... %! "a = 2, b = 9, c = 3", "a = 2, b = 9, c = 5"}, ... %! "location", "northwest") %! title ("Triangular CDF") %! xlabel ("probability") %! ylabel ("values in x") ## Test output %!shared p, y %! p = [-1, 0, 0.02, 0.5, 0.98, 1, 2]; %! y = [NaN, 0, 0.1, 0.5, 0.9, 1, NaN] + 1; %!assert (triinv (p, ones (1,7), 2*ones (1,7), 1.5*ones (1,7)), y, eps) %!assert (triinv (p, 1*ones (1,7), 2, 1.5), y, eps) %!assert (triinv (p, 1, 2*ones (1,7), 1.5), y, eps) %!assert (triinv (p, 1, 2, 1.5*ones (1,7)), y, eps) %!assert (triinv (p, 1, 2, 1.5), y, eps) %!assert (triinv (p, [1, 1, NaN, 1, 1, 1, 1], 2, 1.5), [y(1:2), NaN, y(4:7)], eps) %!assert (triinv (p, 1, 2*[1, 1, NaN, 1, 1, 1, 1], 1.5), [y(1:2), NaN, y(4:7)], eps) %!assert (triinv (p, 1, 2, 1.5*[1, 1, NaN, 1, 1, 1, 1]), [y(1:2), NaN, y(4:7)], eps) %!assert (triinv ([p, NaN], 1, 2, 1.5), [y, NaN], eps) ## Test class of input preserved %!assert (triinv (single ([p, NaN]), 1, 2, 1.5), single ([y, NaN]), eps('single')) %!assert (triinv ([p, NaN], single (1), 2, 1.5), single ([y, NaN]), eps('single')) %!assert (triinv ([p, NaN], 1, single (2), 1.5), single ([y, NaN]), eps('single')) %!assert (triinv ([p, NaN], 1, 2, single (1.5)), single ([y, NaN]), eps('single')) ## Test input validation %!error triinv () %!error triinv (1) %!error triinv (1, 2) %!error triinv (1, 2, 3) %!error ... %! triinv (1, 2, 3, 4, 5) %!error ... %! triinv (ones (3), ones (2), ones(2), ones(2)) %!error ... %! triinv (ones (2), ones (3), ones(2), ones(2)) %!error ... %! triinv (ones (2), ones (2), ones(3), ones(2)) %!error ... %! triinv (ones (2), ones (2), ones(2), ones(3)) %!error triinv (i, 2, 3, 4) %!error triinv (1, i, 3, 4) %!error triinv (1, 2, i, 4) %!error triinv (1, 2, 3, i) statistics-release-1.6.3/inst/dist_fun/tripdf.m000066400000000000000000000130021456127120000215610ustar00rootroot00000000000000## Copyright (C) 1997-2015 Kurt Hornik ## Copyright (C) 2016 Dag Lyberg ## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{y} =} tripdf (@var{x}, @var{a}, @var{b}, @var{c}) ## ## Triangular probability density function (PDF). ## ## For each element of @var{x}, compute the probability density function (PDF) ## of the triangular distribution with parameters @var{a}, @var{b}, and @var{c} ## on the interval @qcode{[@var{a}, @var{b}]}. The size of @var{y} is the ## common size of the input arguments. A scalar input functions as a constant ## matrix of the same size as the other inputs. ## ## Further information about the triangular distribution can be found at ## @url{https://en.wikipedia.org/wiki/Triangular_distribution} ## ## @seealso{tricdf, triinv, trirnd} ## @end deftypefn function y = tripdf (x, a, b, c) ## Check for valid number of input arguments if (nargin < 4) error ("tripdf: function called with too few input arguments."); endif ## Check for common size of X, A, B, and C if (! isscalar (x) || ! isscalar (a) || ! isscalar (b) || ! isscalar (c)) [retval, x, a, b, c] = common_size (x, a, b, c); if (retval > 0) error ("tripdf: X, A, B, and C must be of common size or scalars."); endif endif ## Check for X, A, B, and C being reals if (iscomplex (x) || iscomplex (a) || iscomplex (b) || iscomplex (c)) error ("tripdf: X, A, B, and C must not be complex."); endif ## Check for class type if (isa (x, "single") || isa (a, "single") || isa (b, "single") ... || isa (c, "single")) y = zeros (size (x), "single"); else y = zeros (size (x)); endif ## Force NaNs for out of range parameters. k = isnan (x) | !(a < b) | !(c >= a) | !(c <= b) ; y(k) = NaN; k = (x >= a) & (x <= b) & (a < b) & (a <= c) & (c <= b); h = 2 ./ (b-a); j = k & (a <= x) & (x < c); y(j) = h(j) .* (x(j)-a(j)) ./ (c(j)-a(j)); j = k & (x == c); y(j) = h(j); j = k & (c < x) & (x <= b); y(j) = h(j) .* (b(j)-x(j)) ./ (b(j)-c(j)); endfunction %!demo %! ## Plot various CDFs from the triangular distribution %! x = 0.001:0.001:10; %! y1 = tripdf (x, 3, 6, 4); %! y2 = tripdf (x, 1, 5, 2); %! y3 = tripdf (x, 2, 9, 3); %! y4 = tripdf (x, 2, 9, 5); %! plot (x, y1, "-b", x, y2, "-g", x, y3, "-r", x, y4, "-c") %! grid on %! xlim ([0, 10]) %! legend ({"a = 3, b = 6, c = 4", "a = 1, b = 5, c = 2", ... %! "a = 2, b = 9, c = 3", "a = 2, b = 9, c = 5"}, ... %! "location", "northeast") %! title ("Triangular CDF") %! xlabel ("values in x") %! ylabel ("probability") ## Test output %!shared x, y, deps %! x = [-1, 0, 0.1, 0.5, 0.9, 1, 2] + 1; %! y = [0, 0, 0.4, 2, 0.4, 0, 0]; %! deps = 2*eps; %!assert (tripdf (x, ones (1,7), 2*ones (1,7), 1.5*ones (1,7)), y, deps) %!assert (tripdf (x, 1*ones (1,7), 2, 1.5), y, deps) %!assert (tripdf (x, 1, 2*ones (1,7), 1.5), y, deps) %!assert (tripdf (x, 1, 2, 1.5*ones (1,7)), y, deps) %!assert (tripdf (x, 1, 2, 1.5), y, deps) %!assert (tripdf (x, [1, 1, NaN, 1, 1, 1, 1], 2, 1.5), [y(1:2), NaN, y(4:7)], deps) %!assert (tripdf (x, 1, 2*[1, 1, NaN, 1, 1, 1, 1], 1.5), [y(1:2), NaN, y(4:7)], deps) %!assert (tripdf (x, 1, 2, 1.5*[1, 1, NaN, 1, 1, 1, 1]), [y(1:2), NaN, y(4:7)], deps) %!assert (tripdf ([x, NaN], 1, 2, 1.5), [y, NaN], deps) ## Test class of input preserved %!assert (tripdf (single ([x, NaN]), 1, 2, 1.5), single ([y, NaN]), eps("single")) %!assert (tripdf ([x, NaN], single (1), 2, 1.5), single ([y, NaN]), eps("single")) %!assert (tripdf ([x, NaN], 1, single (2), 1.5), single ([y, NaN]), eps("single")) %!assert (tripdf ([x, NaN], 1, 2, single (1.5)), single ([y, NaN]), eps("single")) ## Test input validation %!error tripdf () %!error tripdf (1) %!error tripdf (1, 2) %!error tripdf (1, 2, 3) %!error ... %! tripdf (1, 2, 3, 4, 5) %!error ... %! tripdf (ones (3), ones (2), ones(2), ones(2)) %!error ... %! tripdf (ones (2), ones (3), ones(2), ones(2)) %!error ... %! tripdf (ones (2), ones (2), ones(3), ones(2)) %!error ... %! tripdf (ones (2), ones (2), ones(2), ones(3)) %!error tripdf (i, 2, 3, 4) %!error tripdf (1, i, 3, 4) %!error tripdf (1, 2, i, 4) %!error tripdf (1, 2, 3, i) statistics-release-1.6.3/inst/dist_fun/trirnd.m000066400000000000000000000170651456127120000216100ustar00rootroot00000000000000## Copyright (C) 1997-2015 Kurt Hornik ## Copyright (C) 2016 Dag Lyberg ## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{r} =} trirnd (@var{a}, @var{b}, @var{c}) ## @deftypefnx {statistics} {@var{r} =} trirnd (@var{a}, @var{b}, @var{c}, @var{rows}) ## @deftypefnx {statistics} {@var{r} =} trirnd (@var{a}, @var{b}, @var{c}, @var{rows}, @var{cols}, @dots{}) ## @deftypefnx {statistics} {@var{r} =} trirnd (@var{a}, @var{b}, @var{c}, [@var{sz}]) ## ## Random arrays from the triangular distribution. ## ## @code{@var{r} = trirnd (@var{sigma})} returns an array of random numbers ## chosen from the triangular distribution with parameters @var{a}, @var{b}, and ## @var{c} on the interval [@var{a}, @var{b}]. The size of @var{r} is the ## common size of @var{a}, @var{b}, and @var{c}. A scalar input functions as a ## constant matrix of the same size as the other inputs. ## ## When called with a single size argument, @code{trirnd} returns a square ## matrix with the dimension specified. When called with more than one scalar ## argument, the first two arguments are taken as the number of rows and columns ## and any further arguments specify additional matrix dimensions. The size may ## also be specified with a row vector of dimensions, @var{sz}. ## ## Further information about the triangular distribution can be found at ## @url{https://en.wikipedia.org/wiki/Triangular_distribution} ## ## @seealso{tricdf, triinv, tripdf} ## @end deftypefn function rnd = trirnd (a, b, c, varargin) ## Check for valid number of input arguments if (nargin < 3) error ("trirnd: function called with too few input arguments."); endif ## Check for common size of A, B, and C if (! isscalar (a) || ! isscalar (b) || ! isscalar (c)) [retval, a, b, c] = common_size (a, b, c); scalarABC = false; if (retval > 0) error ("trirnd: A, B, and C must be of common size or scalars."); endif else scalarABC = true; endif ## Check for A, B, and C being reals if (iscomplex (a) || iscomplex (b) || iscomplex (c)) error ("trirnd: A, B, and C must not be complex."); endif ## Parse and check SIZE arguments if (nargin == 3) sz = size (a); elseif (nargin == 4) if (isscalar (varargin{1}) && varargin{1} >= 0 ... && varargin{1} == fix (varargin{1})) sz = [varargin{1}, varargin{1}]; elseif (isrow (varargin{1}) && all (varargin{1} >= 0) ... && all (varargin{1} == fix (varargin{1}))) sz = varargin{1}; elseif error (strcat (["trirnd: SZ must be a scalar or a row vector"], ... [" of non-negative integers."])); endif elseif (nargin > 4) posint = cellfun (@(x) (! isscalar (x) || x < 0 || x != fix (x)), varargin); if (any (posint)) error ("trirnd: dimensions must be non-negative integers."); endif sz = [varargin{:}]; endif ## Check that parameters match requested dimensions in size if (! isscalar (a) && ! isequal (size (a), sz)) error ("trirnd: A, B, and C must be scalar or of size SZ."); endif ## Check for class type if (isa (a, "single") || isa (b, "single") || isa (c, "single")) cls = "single"; else cls = "double"; endif ## Generate random sample from triangular distribution if (scalarABC) if ((-Inf < a) && (a < b) && (a <= c) && (c <= b) && (b < Inf)) w = b-a; left_width = c-a; right_width = b-c; h = 2 / w; left_area = h * left_width / 2; rnd = rand (sz, cls); idx = rnd < left_area; rnd(idx) = a + (rnd(idx) * w * left_width).^0.5; rnd(~idx) = b - ((1-rnd(~idx)) * w * right_width).^0.5; else rnd = NaN (sz, cls); endif else w = b-a; left_width = c-a; right_width = b-c; h = 2 ./ w; left_area = h .* left_width / 2; rnd = rand (sz, cls); k = rnd < left_area; rnd(k) = a(k) + (rnd(k) .* w(k) .* left_width(k)).^0.5; rnd(~k) = b(~k) - ((1-rnd(~k)) .* w(~k) .* right_width(~k)).^0.5; k = ! (-Inf < a) | ! (a < b) | ! (a <= c) | ! (c <= b) | ! (b < Inf); rnd(k) = NaN; endif endfunction ## Test results %!assert (size (trirnd (1,2,1.5)), [1, 1]) %!assert (size (trirnd (1*ones (2,1), 2,1.5)), [2, 1]) %!assert (size (trirnd (1*ones (2,2), 2,1.5)), [2, 2]) %!assert (size (trirnd (1, 2*ones (2,1), 1.5)), [2, 1]) %!assert (size (trirnd (1, 2*ones (2,2), 1.5)), [2, 2]) %!assert (size (trirnd (1, 2, 1.5*ones (2,1))), [2, 1]) %!assert (size (trirnd (1, 2, 1.5*ones (2,2))), [2, 2]) %!assert (size (trirnd (1, 2, 1.5, 3)), [3, 3]) %!assert (size (trirnd (1, 2, 1.5, [4 1])), [4, 1]) %!assert (size (trirnd (1, 2, 1.5, 4, 1)), [4, 1]) ## Test class of input preserved %!assert (class (trirnd (1,2,1.5)), "double") %!assert (class (trirnd (single (1),2,1.5)), "single") %!assert (class (trirnd (single ([1 1]),2,1.5)), "single") %!assert (class (trirnd (1,single (2),1.5)), "single") %!assert (class (trirnd (1,single ([2 2]),1.5)), "single") %!assert (class (trirnd (1,2,single (1.5))), "single") %!assert (class (trirnd (1,2,single ([1.5 1.5]))), "single") ## Test input validation %!error trirnd () %!error trirnd (1) %!error trirnd (1, 2) %!error ... %! trirnd (ones (3), 5 * ones (2), ones (2)) %!error ... %! trirnd (ones (2), 5 * ones (3), ones (2)) %!error ... %! trirnd (ones (2), 5 * ones (2), ones (3)) %!error trirnd (i, 5, 3) %!error trirnd (1, 5+i, 3) %!error trirnd (1, 5, i) %!error ... %! trirnd (1, 5, 3, -1) %!error ... %! trirnd (1, 5, 3, 1.2) %!error ... %! trirnd (1, 5, 3, ones (2)) %!error ... %! trirnd (1, 5, 3, [2 -1 2]) %!error ... %! trirnd (1, 5, 3, [2 0 2.5]) %!error ... %! trirnd (1, 5, 3, 2, -1, 5) %!error ... %! trirnd (1, 5, 3, 2, 1.5, 5) %!error ... %! trirnd (2, 5 * ones (2), 2, 3) %!error ... %! trirnd (2, 5 * ones (2), 2, [3, 2]) %!error ... %! trirnd (2, 5 * ones (2), 2, 3, 2) statistics-release-1.6.3/inst/dist_fun/trnd.m000066400000000000000000000136011456127120000212450ustar00rootroot00000000000000## Copyright (C) 2012 Rik Wehbring ## Copyright (C) 1995-2016 Kurt Hornik ## Copyright (C) 2022-2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{r} =} trnd (@var{df}) ## @deftypefnx {statistics} {@var{r} =} trnd (@var{df}, @var{rows}) ## @deftypefnx {statistics} {@var{r} =} trnd (@var{df}, @var{rows}, @var{cols}, @dots{}) ## @deftypefnx {statistics} {@var{r} =} trnd (@var{df}, [@var{sz}]) ## ## Random arrays from the Student's T distribution. ## ## Return a matrix of random samples from the Students's T distribution with ## @var{df} degrees of freedom. ## ## @code{@var{r} = trnd (@var{df})} returns an array of random numbers chosen ## from the Student's T distribution with @var{df} degrees of freedom. The size ## of @var{r} is the size of @var{df}. A scalar input functions as a constant ## matrix of the same size as the other inputs. @var{df} must be a finite real ## number greater than 0, otherwise NaN is returned. ## ## When called with a single size argument, @code{trnd} returns a square matrix ## with the dimension specified. When called with more than one scalar ## argument, the first two arguments are taken as the number of rows and columns ## and any further arguments specify additional matrix dimensions. The size may ## also be specified with a row vector of dimensions, @var{sz}. ## ## Further information about the Student's T distribution can be found at ## @url{https://en.wikipedia.org/wiki/Student%27s_t-distribution} ## ## @seealso{tcdf, tpdf, tpdf, tstat} ## @end deftypefn function r = trnd (df, varargin) ## Check for valid number of input arguments if (nargin < 1) error ("trnd: function called with too few input arguments."); endif ## Check for DF being real if (iscomplex (df)) error ("trnd: DF must not be complex."); endif ## Parse and check SIZE arguments if (nargin == 1) sz = size (df); elseif (nargin == 2) if (isscalar (varargin{1}) && varargin{1} >= 0 ... && varargin{1} == fix (varargin{1})) sz = [varargin{1}, varargin{1}]; elseif (isrow (varargin{1}) && all (varargin{1} >= 0) ... && all (varargin{1} == fix (varargin{1}))) sz = varargin{1}; elseif error (strcat (["trnd: SZ must be a scalar or a row vector"], ... [" of non-negative integers."])); endif elseif (nargin > 2) posint = cellfun (@(x) (! isscalar (x) || x < 0 || x != fix (x)), varargin); if (any (posint)) error ("trnd: dimensions must be non-negative integers."); endif sz = [varargin{:}]; endif ## Check that parameters match requested dimensions in size if (! isscalar (df) && ! isequal (size (df), sz)) error ("trnd: DF must be scalar or of size SZ."); endif ## Check for class type if (isa (df, "single")) cls = "single"; else cls = "double"; endif if (isscalar (df)) if ((df > 0) && (df < Inf)) r = randn (sz, cls) ./ sqrt (2*randg (df/2, sz, cls) / df); elseif (isinf (df)) r = randn (sz, cls); else r = NaN (sz, cls); endif else r = NaN (sz, cls); k = (df > 0) & (df < Inf); kinf = isinf (df); r(k) = randn (sum (k(:)), 1, cls) ./ ... sqrt (2*randg (df(k)/2, cls) ./ df(k))(:); r(kinf) = randn (sum (kinf(:)), 1, cls); endif endfunction ## Test output %!assert (size (trnd (2)), [1, 1]) %!assert (size (trnd (ones (2,1))), [2, 1]) %!assert (size (trnd (ones (2,2))), [2, 2]) %!assert (size (trnd (1, 3)), [3, 3]) %!assert (size (trnd (1, [4 1])), [4, 1]) %!assert (size (trnd (1, 4, 1)), [4, 1]) %!assert (size (trnd (1, 4, 1)), [4, 1]) %!assert (size (trnd (1, 4, 1, 5)), [4, 1, 5]) %!assert (size (trnd (1, 0, 1)), [0, 1]) %!assert (size (trnd (1, 1, 0)), [1, 0]) %!assert (size (trnd (1, 1, 2, 0, 5)), [1, 2, 0, 5]) %!assert (trnd (0, 1, 1), NaN) %!assert (trnd ([0, 0, 0], [1, 3]), [NaN, NaN, NaN]) ## Test class of input preserved %!assert (class (trnd (2)), "double") %!assert (class (trnd (single (2))), "single") %!assert (class (trnd (single ([2 2]))), "single") ## Test input validation %!error trnd () %!error trnd (i) %!error ... %! trnd (1, -1) %!error ... %! trnd (1, 1.2) %!error ... %! trnd (1, ones (2)) %!error ... %! trnd (1, [2 -1 2]) %!error ... %! trnd (1, [2 0 2.5]) %!error ... %! trnd (ones (2), ones (2)) %!error ... %! trnd (1, 2, -1, 5) %!error ... %! trnd (1, 2, 1.5, 5) %!error trnd (ones (2,2), 3) %!error trnd (ones (2,2), [3, 2]) %!error trnd (ones (2,2), 2, 3) statistics-release-1.6.3/inst/dist_fun/unidcdf.m000066400000000000000000000122021456127120000217060ustar00rootroot00000000000000## Copyright (C) 2012 Rik Wehbring ## Copyright (C) 2007-2016 David Bateman ## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{p} =} unidcdf (@var{x}, @var{N}) ## @deftypefnx {statistics} {@var{p} =} unidcdf (@var{x}, @var{N}, @qcode{"upper"}) ## ## Discrete uniform cumulative distribution function (CDF). ## ## For each element of @var{x}, compute the cumulative distribution function ## (CDF) of a discrete uniform distribution with parameter @var{N}, which ## corresponds to the maximum observable value. @code{unidcdf} assumes the ## integer values in the range @math{[1,N]} with equal probability. The size of ## @var{p} is the common size of @var{x} and @var{N}. A scalar input functions ## as a constant matrix of the same size as the other inputs. ## ## The maximum observable values in @var{N} must be positive integers, otherwise ## @qcode{NaN} is returned. ## ## @code{[@dots{}] = unidcdf (@var{x}, @var{N}, "upper")} computes the upper ## tail probability of the discrete uniform distribution with maximum observable ## value @var{N}, at the values in @var{x}. ## ## Warning: The underlying implementation uses the double class and will only ## be accurate for @var{N} < @code{flintmax} (@w{@math{2^{53}}} on ## IEEE 754 compatible systems). ## ## Further information about the discrete uniform distribution can be found at ## @url{https://en.wikipedia.org/wiki/Discrete_uniform_distribution} ## ## @seealso{unidinv, unidpdf, unidrnd, unidfit, unidstat} ## @end deftypefn function p = unidcdf (x, N, uflag) ## Check for valid number of input arguments if (nargin < 2) error ("unidcdf: function called with too few input arguments."); endif ## Check for "upper" flag if (nargin > 2 && strcmpi (uflag, "upper")) uflag = true; elseif (nargin > 2 && ! strcmpi (uflag, "upper")) error ("unidcdf: invalid argument for upper tail."); else uflag = false; endif ## Check for common size of X and N if (! isscalar (x) || ! isscalar (N)) [retval, x, N] = common_size (x, N); if (retval > 0) error ("unidcdf: X and N must be of common size or scalars."); endif endif ## Check for X and N being reals if (iscomplex (x) || iscomplex (N)) error ("unidcdf: X and N must not be complex."); endif ## Check for class type if (isa (x, "single") || isa (N, "single")) p = zeros (size (x), "single"); else p = zeros (size (x)); endif ## Return 1 for X >= N p(x >= N) = 1; ## Floor X xf = floor (x); ## Compute uniform discrete CDF k = find (xf >= 1 & xf <= N); if any(k) p(k) = xf(k) ./ N(k); endif ## Check for NaNs or floored N <= 0 is_nan = isnan (x) | ! (N > 0 & N == fix (N)); if (any (is_nan(:))) p(is_nan) = NaN; endif p(N < 1 | round(N) != N) = NaN; if (uflag) # Compute upper tail p = 1 - unidcdf (x, N); endif endfunction %!demo %! ## Plot various CDFs from the discrete uniform distribution %! x = 0:10; %! p1 = unidcdf (x, 5); %! p2 = unidcdf (x, 9); %! plot (x, p1, "*b", x, p2, "*g") %! grid on %! xlim ([0, 10]) %! ylim ([0, 1]) %! legend ({"N = 5", "N = 9"}, "location", "southeast") %! title ("Discrete uniform CDF") %! xlabel ("values in x") %! ylabel ("probability") ## Test output %!shared x, y %! x = [0 1 2.5 10 11]; %! y = [0, 0.1 0.2 1.0 1.0]; %!assert (unidcdf (x, 10*ones (1,5)), y) %!assert (unidcdf (x, 10*ones (1,5), "upper"), 1 - y) %!assert (unidcdf (x, 10), y) %!assert (unidcdf (x, 10, "upper"), 1 - y) %!assert (unidcdf (x, 10*[0 1 NaN 1 1]), [NaN 0.1 NaN y(4:5)]) %!assert (unidcdf ([x(1:2) NaN Inf x(5)], 10), [y(1:2) NaN 1 y(5)]) ## Test class of input preserved %!assert (unidcdf ([x, NaN], 10), [y, NaN]) %!assert (unidcdf (single ([x, NaN]), 10), single ([y, NaN])) %!assert (unidcdf ([x, NaN], single (10)), single ([y, NaN])) ## Test input validation %!error unidcdf () %!error unidcdf (1) %!error unidcdf (1, 2, 3) %!error unidcdf (1, 2, "tail") %!error ... %! unidcdf (ones (3), ones (2)) %!error ... %! unidcdf (ones (2), ones (3)) %!error unidcdf (i, 2) %!error unidcdf (2, i) statistics-release-1.6.3/inst/dist_fun/unidinv.m000066400000000000000000000102621456127120000217520ustar00rootroot00000000000000## Copyright (C) 2012 Rik Wehbring ## Copyright (C) 2007-2016 David Bateman ## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{x} =} unidinv (@var{p}, @var{N}) ## ## Inverse of the discrete uniform cumulative distribution function (iCDF). ## ## For each element of @var{p}, compute the quantile (the inverse of the CDF) of ## the discrete uniform distribution with parameter @var{N}, which corresponds ## to the maximum observable value. @code{unidinv} assumes the integer values ## in the range @math{[1,N]} with equal probability. The size of @var{x} is the ## common size of @var{p} and @var{N}. A scalar input functions as a constant ## matrix of the same size as the other inputs. ## ## The maximum observable values in @var{N} must be positive integers, otherwise ## @qcode{NaN} is returned. ## ## Warning: The underlying implementation uses the double class and will only ## be accurate for @var{N} < @code{flintmax} (@w{@math{2^{53}}} on ## IEEE 754 compatible systems). ## ## Further information about the discrete uniform distribution can be found at ## @url{https://en.wikipedia.org/wiki/Discrete_uniform_distribution} ## ## @seealso{unidcdf, unidpdf, unidrnd, unidfit, unidstat} ## @end deftypefn function x = unidinv (p, N) ## Check for valid number of input arguments if (nargin < 2) error ("unidinv: function called with too few input arguments."); endif ## Check for common size of P and N if (! isscalar (p) || ! isscalar (N)) [retval, p, N] = common_size (p, N); if (retval > 0) error ("unidinv: P and N must be of common size or scalars."); endif endif ## Check for P and N being reals if (iscomplex (p) || iscomplex (N)) error ("unidinv: P and N must not be complex."); endif ## Check for class type if (isa (p, "single") || isa (N, "single")) x = NaN (size (p), "single"); else x = NaN (size (p)); endif ## For Matlab compatibility, unidinv(0) = NaN k = (p > 0) & (p <= 1) & (N > 0 & N == fix (N)); x(k) = floor (p(k) .* N(k)); endfunction %!demo %! ## Plot various iCDFs from the discrete uniform distribution %! p = 0.001:0.001:0.999; %! x1 = unidinv (p, 5); %! x2 = unidinv (p, 9); %! plot (p, x1, "-b", p, x2, "-g") %! grid on %! xlim ([0, 1]) %! ylim ([0, 10]) %! legend ({"N = 5", "N = 9"}, "location", "northwest") %! title ("Discrete uniform iCDF") %! xlabel ("probability") %! ylabel ("values in x") ## Test output %!shared p %! p = [-1 0 0.5 1 2]; %!assert (unidinv (p, 10*ones (1,5)), [NaN NaN 5 10 NaN], eps) %!assert (unidinv (p, 10), [NaN NaN 5 10 NaN], eps) %!assert (unidinv (p, 10*[0 1 NaN 1 1]), [NaN NaN NaN 10 NaN], eps) %!assert (unidinv ([p(1:2) NaN p(4:5)], 10), [NaN NaN NaN 10 NaN], eps) ## Test class of input preserved %!assert (unidinv ([p, NaN], 10), [NaN NaN 5 10 NaN NaN], eps) %!assert (unidinv (single ([p, NaN]), 10), single ([NaN NaN 5 10 NaN NaN]), eps) %!assert (unidinv ([p, NaN], single (10)), single ([NaN NaN 5 10 NaN NaN]), eps) ## Test input validation %!error unidinv () %!error unidinv (1) %!error ... %! unidinv (ones (3), ones (2)) %!error ... %! unidinv (ones (2), ones (3)) %!error unidinv (i, 2) %!error unidinv (2, i) statistics-release-1.6.3/inst/dist_fun/unidpdf.m000066400000000000000000000077771456127120000217500ustar00rootroot00000000000000## Copyright (C) 2012 Rik Wehbring ## Copyright (C) 2007-2016 David Bateman ## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{y} =} unidpdf (@var{x}, @var{N}) ## ## Discrete uniform probability density function (PDF). ## ## For each element of @var{x}, compute the probability density function (PDF) ## of the discrete uniform distribution with parameter @var{N}, which ## corresponds to the maximum observable value. @code{unidpdf} assumes the ## integer values in the range @math{[1,N]} with equal probability. The size of ## @var{x} is the common size of @var{p} and @var{N}. A scalar input functions ## as a constant matrix of the same size as the other inputs. ## ## The maximum observable values in @var{N} must be positive integers, otherwise ## @qcode{NaN} is returned. ## ## Warning: The underlying implementation uses the double class and will only ## be accurate for @var{N} < @code{flintmax} (@w{@math{2^{53}}} on ## IEEE 754 compatible systems). ## ## Further information about the discrete uniform distribution can be found at ## @url{https://en.wikipedia.org/wiki/Discrete_uniform_distribution} ## ## @seealso{unidcdf, unidinv, unidrnd, unidfit, unidstat} ## @end deftypefn function y = unidpdf (x, N) ## Check for valid number of input arguments if (nargin < 2) error ("unidpdf: function called with too few input arguments."); endif ## Check for common size of X and N if (! isscalar (x) || ! isscalar (N)) [retval, x, N] = common_size (x, N); if (retval > 0) error ("unidpdf: X and N must be of common size or scalars."); endif endif ## Check for X and N being reals if (iscomplex (x) || iscomplex (N)) error ("unidpdf: X and N must not be complex."); endif ## Check for class type if (isa (x, "single") || isa (N, "single")) y = zeros (size (x), "single"); else y = zeros (size (x)); endif k = isnan (x) | ! (N > 0 & N == fix (N)); y(k) = NaN; k = ! k & (x >= 1) & (x <= N) & (x == fix (x)); y(k) = 1 ./ N(k); endfunction %!demo %! ## Plot various PDFs from the discrete uniform distribution %! x = 0:10; %! y1 = unidpdf (x, 5); %! y2 = unidpdf (x, 9); %! plot (x, y1, "*b", x, y2, "*g") %! grid on %! xlim ([0, 10]) %! ylim ([0, 0.25]) %! legend ({"N = 5", "N = 9"}, "location", "northeast") %! title ("Descrete uniform PDF") %! xlabel ("values in x") %! ylabel ("density") ## Test output %!shared x, y %! x = [-1 0 1 2 10 11]; %! y = [0 0 0.1 0.1 0.1 0]; %!assert (unidpdf (x, 10*ones (1,6)), y) %!assert (unidpdf (x, 10), y) %!assert (unidpdf (x, 10*[0 NaN 1 1 1 1]), [NaN NaN y(3:6)]) %!assert (unidpdf ([x, NaN], 10), [y, NaN]) ## Test class of input preserved %!assert (unidpdf (single ([x, NaN]), 10), single ([y, NaN])) %!assert (unidpdf ([x, NaN], single (10)), single ([y, NaN])) ## Test input validation %!error unidpdf () %!error unidpdf (1) %!error ... %! unidpdf (ones (3), ones (2)) %!error ... %! unidpdf (ones (2), ones (3)) %!error unidpdf (i, 2) %!error unidpdf (2, i) statistics-release-1.6.3/inst/dist_fun/unidrnd.m000066400000000000000000000141071456127120000217430ustar00rootroot00000000000000## Copyright (C) 2012 Rik Wehbring ## Copyright (C) 2005-2016 John W. Eaton ## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{r} =} unidrnd (@var{N}) ## @deftypefnx {statistics} {@var{r} =} unidrnd (@var{N}, @var{rows}) ## @deftypefnx {statistics} {@var{r} =} unidrnd (@var{N}, @var{rows}, @var{cols}, @dots{}) ## @deftypefnx {statistics} {@var{r} =} unidrnd (@var{N}, [@var{sz}]) ## ## Random arrays from the discrete uniform distribution. ## ## @code{@var{r} = unidrnd (@var{N})} returns an array of random numbers chosen ## from the discrete uniform distribution with parameter @var{N}, which ## corresponds to the maximum observable value. @code{unidrnd} assumes the ## integer values in the range @math{[1,N]} with equal probability. The size of ## @var{r} is the size of @var{N}. A scalar input functions as a constant ## matrix of the same size as the other inputs. ## ## The maximum observable values in @var{N} must be positive integers, otherwise ## @qcode{NaN} is returned. ## ## When called with a single size argument, @code{unidrnd} returns a square ## matrix with the dimension specified. When called with more than one scalar ## argument, the first two arguments are taken as the number of rows and columns ## and any further arguments specify additional matrix dimensions. The size may ## also be specified with a row vector of dimensions, @var{sz}. ## ## Warning: The underlying implementation uses the double class and will only ## be accurate for @var{N} < @code{flintmax} (@w{@math{2^{53}}} on ## IEEE 754 compatible systems). ## ## Further information about the discrete uniform distribution can be found at ## @url{https://en.wikipedia.org/wiki/Discrete_uniform_distribution} ## ## @seealso{unidcdf, unidinv, unidrnd, unidfit, unidstat} ## @end deftypefn function r = unidrnd (N, varargin) ## Check for valid number of input arguments if (nargin < 1) error ("unidrnd: function called with too few input arguments."); endif ## Check for N being real if (iscomplex (N)) error ("unidrnd: N must not be complex."); endif ## Parse and check SIZE arguments if (nargin == 1) sz = size (N); elseif (nargin == 2) if (isscalar (varargin{1}) && varargin{1} >= 0 ... && varargin{1} == fix (varargin{1})) sz = [varargin{1}, varargin{1}]; elseif (isrow (varargin{1}) && all (varargin{1} >= 0) ... && all (varargin{1} == fix (varargin{1}))) sz = varargin{1}; elseif error (strcat (["unidrnd: SZ must be a scalar or a row vector"], ... [" of non-negative integers."])); endif elseif (nargin > 2) posint = cellfun (@(x) (! isscalar (x) || x < 0 || x != fix (x)), varargin); if (any (posint)) error ("unidrnd: dimensions must be non-negative integers."); endif sz = [varargin{:}]; endif ## Check that parameters match requested dimensions in size if (! isscalar (N) && ! isequal (size (N), sz)) error ("unidrnd: N must be scalar or of size SZ."); endif ## Check for class type if (isa (N, "single")) cls = "single"; else cls = "double"; endif if (isscalar (N)) if (N > 0 && N == fix (N)) r = ceil (rand (sz, cls) * N); else r = NaN (sz, cls); endif else r = ceil (rand (sz, cls) .* N); k = ! (N > 0 & N == fix (N)); r(k) = NaN; endif endfunction ## Test output %!assert (size (unidrnd (2)), [1, 1]) %!assert (size (unidrnd (ones (2,1))), [2, 1]) %!assert (size (unidrnd (ones (2,2))), [2, 2]) %!assert (size (unidrnd (1, 3)), [3, 3]) %!assert (size (unidrnd (1, [4 1])), [4, 1]) %!assert (size (unidrnd (1, 4, 1)), [4, 1]) %!assert (size (unidrnd (1, 4, 1)), [4, 1]) %!assert (size (unidrnd (1, 4, 1, 5)), [4, 1, 5]) %!assert (size (unidrnd (1, 0, 1)), [0, 1]) %!assert (size (unidrnd (1, 1, 0)), [1, 0]) %!assert (size (unidrnd (1, 1, 2, 0, 5)), [1, 2, 0, 5]) %!assert (unidrnd (0, 1, 1), NaN) %!assert (unidrnd ([0, 0, 0], [1, 3]), [NaN, NaN, NaN]) ## Test class of input preserved %!assert (class (unidrnd (2)), "double") %!assert (class (unidrnd (single (2))), "single") %!assert (class (unidrnd (single ([2 2]))), "single") ## Test input validation %!error unidrnd () %!error unidrnd (i) %!error ... %! unidrnd (1, -1) %!error ... %! unidrnd (1, 1.2) %!error ... %! unidrnd (1, ones (2)) %!error ... %! unidrnd (1, [2 -1 2]) %!error ... %! unidrnd (1, [2 0 2.5]) %!error ... %! unidrnd (ones (2), ones (2)) %!error ... %! unidrnd (1, 2, -1, 5) %!error ... %! unidrnd (1, 2, 1.5, 5) %!error unidrnd (ones (2,2), 3) %!error unidrnd (ones (2,2), [3, 2]) %!error unidrnd (ones (2,2), 2, 3) statistics-release-1.6.3/inst/dist_fun/unifcdf.m000066400000000000000000000134131456127120000217150ustar00rootroot00000000000000## Copyright (C) 2012 Rik Wehbring ## Copyright (C) 1995-2016 Kurt Hornik ## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{p} =} unifcdf (@var{x}, @var{a}, @var{b}) ## @deftypefnx {statistics} {@var{p} =} unifcdf (@var{x}, @var{a}, @var{b}, @qcode{"upper"}) ## ## Continuous uniform cumulative distribution function (CDF). ## ## For each element of @var{x}, compute the cumulative distribution function ## (CDF) of the continuous uniform distribution with parameters @var{a} and ## @var{b}, which define the lower and upper bounds of the interval ## @qcode{[@var{a}, @var{b}]}. The size of @var{p} is the common size of ## @var{x}, @var{a}, and @var{b}. A scalar input functions as a constant matrix ## of the same size as the other inputs. ## ## @code{[@dots{}] = unifcdf (@var{x}, @var{a}, @var{b}, "upper")} computes the ## upper tail probability of the continuous uniform distribution with parameters ## @var{a}, and @var{b}, at the values in @var{x}. ## ## Further information about the continuous uniform distribution can be found at ## @url{https://en.wikipedia.org/wiki/Continuous_uniform_distribution} ## ## @seealso{unifinv, unifpdf, unifrnd, unifit, unifstat} ## @end deftypefn function p = unifcdf (x, a, b, uflag) ## Check for valid number of input arguments if (nargin < 3) error ("unifcdf: function called with too few input arguments."); endif ## Check for "upper" flag if (nargin > 3 && strcmpi (uflag, "upper")) uflag = true; elseif (nargin > 3 && ! strcmpi (uflag, "upper")) error ("unifcdf: invalid argument for upper tail."); else uflag = false; endif ## Check for common size of X, A, and B if (! isscalar (x) || ! isscalar (a) || ! isscalar (b)) [retval, x, a, b] = common_size (x, a, b); if (retval > 0) error ("unifcdf: X, A, and B must be of common size or scalars."); endif endif ## Check for X, A, and B being reals if (iscomplex (x) || iscomplex (a) || iscomplex (b)) error ("unifcdf: X, A, and B must not be complex."); endif ## Check for class type if (isa (x, "single") || isa (a, "single") || isa (b, "single")) p = zeros (size (x), "single"); else p = zeros (size (x)); endif ## Calculate continuous uniform CDF for valid parameter and data range k = find(x > a & x < b & a < b); if (uflag) p(x <= a & a < b) = 1; p(x >= b & a < b) = 0; if any(k) p(k) = (b(k)- x(k)) ./ (b(k) - a(k)); endif else p(x <= a & a < b) = 0; p(x >= b & a < b) = 1; if any(k) p(k) = (x(k) - a(k)) ./ (b(k) - a(k)); endif endif ## Continue argument check p(a >= b) = NaN; p(isnan(x) | isnan(a) | isnan(b)) = NaN; endfunction %!demo %! ## Plot various CDFs from the continuous uniform distribution %! x = 0:0.1:10; %! p1 = unifcdf (x, 2, 5); %! p2 = unifcdf (x, 3, 9); %! plot (x, p1, "-b", x, p2, "-g") %! grid on %! xlim ([0, 10]) %! ylim ([0, 1]) %! legend ({"a = 2, b = 5", "a = 3, b = 9"}, "location", "southeast") %! title ("Continuous uniform CDF") %! xlabel ("values in x") %! ylabel ("probability") ## Test output %!shared x, y %! x = [-1 0 0.5 1 2] + 1; %! y = [0 0 0.5 1 1]; %!assert (unifcdf (x, ones (1,5), 2*ones (1,5)), y) %!assert (unifcdf (x, ones (1,5), 2*ones (1,5), "upper"), 1 - y) %!assert (unifcdf (x, 1, 2*ones (1,5)), y) %!assert (unifcdf (x, 1, 2*ones (1,5), "upper"), 1 - y) %!assert (unifcdf (x, ones (1,5), 2), y) %!assert (unifcdf (x, ones (1,5), 2, "upper"), 1 - y) %!assert (unifcdf (x, [2 1 NaN 1 1], 2), [NaN 0 NaN 1 1]) %!assert (unifcdf (x, [2 1 NaN 1 1], 2, "upper"), 1 - [NaN 0 NaN 1 1]) %!assert (unifcdf (x, 1, 2*[0 1 NaN 1 1]), [NaN 0 NaN 1 1]) %!assert (unifcdf (x, 1, 2*[0 1 NaN 1 1], "upper"), 1 - [NaN 0 NaN 1 1]) %!assert (unifcdf ([x(1:2) NaN x(4:5)], 1, 2), [y(1:2) NaN y(4:5)]) %!assert (unifcdf ([x(1:2) NaN x(4:5)], 1, 2, "upper"), 1 - [y(1:2) NaN y(4:5)]) ## Test class of input preserved %!assert (unifcdf ([x, NaN], 1, 2), [y, NaN]) %!assert (unifcdf (single ([x, NaN]), 1, 2), single ([y, NaN])) %!assert (unifcdf ([x, NaN], single (1), 2), single ([y, NaN])) %!assert (unifcdf ([x, NaN], 1, single (2)), single ([y, NaN])) ## Test input validation %!error unifcdf () %!error unifcdf (1) %!error unifcdf (1, 2) %!error unifcdf (1, 2, 3, 4) %!error unifcdf (1, 2, 3, "tail") %!error ... %! unifcdf (ones (3), ones (2), ones (2)) %!error ... %! unifcdf (ones (2), ones (3), ones (2)) %!error ... %! unifcdf (ones (2), ones (2), ones (3)) %!error unifcdf (i, 2, 2) %!error unifcdf (2, i, 2) %!error unifcdf (2, 2, i) statistics-release-1.6.3/inst/dist_fun/unifinv.m000066400000000000000000000107021456127120000217530ustar00rootroot00000000000000## Copyright (C) 2012 Rik Wehbring ## Copyright (C) 1995-2016 Kurt Hornik ## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{x} =} unifinv (@var{p}, @var{a}, @var{b}) ## ## Inverse of the continuous uniform cumulative distribution function (iCDF). ## ## For each element of @var{p}, compute the quantile (the inverse of the CDF) of ## the continuous uniform distribution with parameters @var{a} and @var{b}, ## which define the lower and upper bounds of the interval ## @qcode{[@var{a}, @var{b}]}. The size of @var{x} is the common size of ## @var{p}, @var{a}, and @var{b}. A scalar input functions as a constant matrix ## of the same size as the other inputs. ## ## Further information about the continuous uniform distribution can be found at ## @url{https://en.wikipedia.org/wiki/Continuous_uniform_distribution} ## ## @seealso{unifcdf, unifpdf, unifrnd, unifit, unifstat} ## @end deftypefn function x = unifinv (p, a, b) ## Check for valid number of input arguments if (nargin < 3) error ("unifinv: function called with too few input arguments."); endif ## Check for common size of P, A, and B if (! isscalar (p) || ! isscalar (a) || ! isscalar (b)) [retval, p, a, b] = common_size (p, a, b); if (retval > 0) error ("unifinv: P, A, and B must be of common size or scalars."); endif endif ## Check for P, A, and B being reals if (iscomplex (p) || iscomplex (a) || iscomplex (b)) error ("unifinv: P, A, and B must not be complex."); endif ## Check for class type if (isa (p, "single") || isa (a, "single") || isa (b, "single")) x = NaN (size (p), "single"); else x = NaN (size (p)); endif ## Calculate continuous uniform iCDF for valid parameter and data range k = (p >= 0) & (p <= 1) & (a < b); x(k) = a(k) + p(k) .* (b(k) - a(k)); endfunction %!demo %! ## Plot various iCDFs from the continuous uniform distribution %! p = 0.001:0.001:0.999; %! x1 = unifinv (p, 2, 5); %! x2 = unifinv (p, 3, 9); %! plot (p, x1, "-b", p, x2, "-g") %! grid on %! xlim ([0, 1]) %! ylim ([0, 10]) %! legend ({"a = 2, b = 5", "a = 3, b = 9"}, "location", "northwest") %! title ("Continuous uniform iCDF") %! xlabel ("probability") %! ylabel ("values in x") ## Test output %!shared p %! p = [-1 0 0.5 1 2]; %!assert (unifinv (p, ones (1,5), 2*ones (1,5)), [NaN 1 1.5 2 NaN]) %!assert (unifinv (p, 0, 1), [NaN 1 1.5 2 NaN] - 1) %!assert (unifinv (p, 1, 2*ones (1,5)), [NaN 1 1.5 2 NaN]) %!assert (unifinv (p, ones (1,5), 2), [NaN 1 1.5 2 NaN]) %!assert (unifinv (p, [1 2 NaN 1 1], 2), [NaN NaN NaN 2 NaN]) %!assert (unifinv (p, 1, 2*[1 0 NaN 1 1]), [NaN NaN NaN 2 NaN]) %!assert (unifinv ([p(1:2) NaN p(4:5)], 1, 2), [NaN 1 NaN 2 NaN]) ## Test class of input preserved %!assert (unifinv ([p, NaN], 1, 2), [NaN 1 1.5 2 NaN NaN]) %!assert (unifinv (single ([p, NaN]), 1, 2), single ([NaN 1 1.5 2 NaN NaN])) %!assert (unifinv ([p, NaN], single (1), 2), single ([NaN 1 1.5 2 NaN NaN])) %!assert (unifinv ([p, NaN], 1, single (2)), single ([NaN 1 1.5 2 NaN NaN])) ## Test input validation %!error unifinv () %!error unifinv (1, 2) %!error ... %! unifinv (ones (3), ones (2), ones (2)) %!error ... %! unifinv (ones (2), ones (3), ones (2)) %!error ... %! unifinv (ones (2), ones (2), ones (3)) %!error unifinv (i, 2, 2) %!error unifinv (2, i, 2) %!error unifinv (2, 2, i) statistics-release-1.6.3/inst/dist_fun/unifpdf.m000066400000000000000000000106031456127120000217300ustar00rootroot00000000000000## Copyright (C) 2012 Rik Wehbring ## Copyright (C) 1995-2016 Kurt Hornik ## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{y} =} unifpdf (@var{x}, @var{a}, @var{b}) ## ## Continuous uniform probability density function (PDF). ## ## For each element of @var{x}, compute the probability density function (PDF) ## of the continuous uniform distribution with parameters @var{a} and @var{b}, ## which define the lower and upper bounds of the interval ## @qcode{[@var{a}, @var{b}]}. The size of @var{y} is the common size of ## @var{x}, @var{a}, and @var{b}. A scalar input functions as a constant matrix ## of the same size as the other inputs. ## ## Further information about the continuous uniform distribution can be found at ## @url{https://en.wikipedia.org/wiki/Continuous_uniform_distribution} ## ## @seealso{unifcdf, unifinv, unifrnd, unifit, unifstat} ## @end deftypefn function y = unifpdf (x, a, b) ## Check for valid number of input arguments if (nargin < 3) error ("unifpdf: function called with too few input arguments."); endif ## Check for common size of X, A, and B if (! isscalar (x) || ! isscalar (a) || ! isscalar (b)) [retval, x, a, b] = common_size (x, a, b); if (retval > 0) error ("unifpdf: X, A, and B must be of common size or scalars."); endif endif ## Check for X, A, and B being reals if (iscomplex (x) || iscomplex (a) || iscomplex (b)) error ("unifpdf: X, A, and B must not be complex."); endif ## Check for class type if (isa (x, "single") || isa (a, "single") || isa (b, "single")) y = zeros (size (x), "single"); else y = zeros (size (x)); endif ## Calculate continuous uniform PDF for valid parameter and data range k = isnan (x) | ! (a < b); y(k) = NaN; k = (x >= a) & (x <= b) & (a < b); y(k) = 1 ./ (b(k) - a(k)); endfunction %!demo %! ## Plot various PDFs from the continuous uniform distribution %! x = 0:0.001:10; %! y1 = unifpdf (x, 2, 5); %! y2 = unifpdf (x, 3, 9); %! plot (x, y1, "-b", x, y2, "-g") %! grid on %! xlim ([0, 10]) %! ylim ([0, 0.4]) %! legend ({"a = 2, b = 5", "a = 3, b = 9"}, "location", "northeast") %! title ("Continuous uniform PDF") %! xlabel ("values in x") %! ylabel ("density") ## Test output %!shared x, y %! x = [-1 0 0.5 1 2] + 1; %! y = [0 1 1 1 0]; %!assert (unifpdf (x, ones (1,5), 2*ones (1,5)), y) %!assert (unifpdf (x, 1, 2*ones (1,5)), y) %!assert (unifpdf (x, ones (1,5), 2), y) %!assert (unifpdf (x, [2 NaN 1 1 1], 2), [NaN NaN y(3:5)]) %!assert (unifpdf (x, 1, 2*[0 NaN 1 1 1]), [NaN NaN y(3:5)]) %!assert (unifpdf ([x, NaN], 1, 2), [y, NaN]) %!assert (unifpdf (x, 0, 1), [1 1 0 0 0]) ## Test class of input preserved %!assert (unifpdf (single ([x, NaN]), 1, 2), single ([y, NaN])) %!assert (unifpdf (single ([x, NaN]), single (1), 2), single ([y, NaN])) %!assert (unifpdf ([x, NaN], 1, single (2)), single ([y, NaN])) ## Test input validation %!error unifpdf () %!error unifpdf (1) %!error unifpdf (1, 2) %!error ... %! unifpdf (ones (3), ones (2), ones (2)) %!error ... %! unifpdf (ones (2), ones (3), ones (2)) %!error ... %! unifpdf (ones (2), ones (2), ones (3)) %!error unifpdf (i, 2, 2) %!error unifpdf (2, i, 2) %!error unifpdf (2, 2, i) statistics-release-1.6.3/inst/dist_fun/unifrnd.m000066400000000000000000000151131456127120000217430ustar00rootroot00000000000000## Copyright (C) 2012 Rik Wehbring ## Copyright (C) 1995-2016 Kurt Hornik ## Copyright (C) 2019 Anthony Morast ## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{r} =} unifrnd (@var{a}, @var{b}) ## @deftypefnx {statistics} {@var{r} =} unifrnd (@var{a}, @var{b}, @var{rows}) ## @deftypefnx {statistics} {@var{r} =} unifrnd (@var{a}, @var{b}, @var{rows}, @var{cols}, @dots{}) ## @deftypefnx {statistics} {@var{r} =} unifrnd (@var{a}, @var{b}, [@var{sz}]) ## ## Random arrays from the continuous uniform distribution. ## ## @code{@var{r} = unifrnd (@var{a}, @var{b})} returns an array of random ## numbers chosen from the continuous uniform distribution with parameters ## @var{a} and @var{b}, which define the lower and upper bounds of the interval ## @qcode{[@var{a}, @var{b}]}. The size of @var{r} is the common size of ## @var{a} and @var{b}. A scalar input functions as a constant matrix of the ## same size as the other inputs. ## ## When called with a single size argument, @code{unifrnd} returns a square ## matrix with the dimension specified. When called with more than one scalar ## argument, the first two arguments are taken as the number of rows and columns ## and any further arguments specify additional matrix dimensions. The size may ## also be specified with a row vector of dimensions, @var{sz}. ## ## Further information about the continuous uniform distribution can be found at ## @url{https://en.wikipedia.org/wiki/Continuous_uniform_distribution} ## ## @seealso{unifcdf, unifinv, unifpdf, unifit, unifstat} ## @end deftypefn function r = unifrnd (a, b, varargin) ## Check for valid number of input arguments if (nargin < 2) error ("unifrnd: function called with too few input arguments."); endif ## Check for common size of A and B if (! isscalar (a) || ! isscalar (b)) [retval, a, b] = common_size (a, b); if (retval > 0) error ("unifrnd: A and B must be of common size or scalars."); endif endif ## Check for A and B being reals if (iscomplex (a) || iscomplex (b)) error ("unifrnd: A and B must not be complex."); endif ## Parse and check SIZE arguments if (nargin == 2) sz = size (a); elseif (nargin == 3) if (isscalar (varargin{1}) && varargin{1} >= 0 ... && varargin{1} == fix (varargin{1})) sz = [varargin{1}, varargin{1}]; elseif (isrow (varargin{1}) && all (varargin{1} >= 0) ... && all (varargin{1} == fix (varargin{1}))) sz = varargin{1}; elseif error (strcat (["unifrnd: SZ must be a scalar or a row vector"], ... [" of non-negative integers."])); endif elseif (nargin > 3) posint = cellfun (@(x) (! isscalar (x) || x < 0 || x != fix (x)), varargin); if (any (posint)) error ("unifrnd: dimensions must be non-negative integers."); endif sz = [varargin{:}]; endif ## Check that parameters match requested dimensions in size if (! isscalar (a) && ! isequal (size (a), sz)) error ("unifrnd: A and B must be scalars or of size SZ."); endif ## Check for class type if (isa (a, "single") || isa (b, "single")) cls = "single"; else cls = "double"; endif if (isscalar (a) && isscalar (b)) if ((-Inf < a) && (a <= b) && (b < Inf)) r = a + (b - a) * rand (sz, cls); else r = NaN (sz, cls); endif else r = a + (b - a) .* rand (sz, cls); k = !(-Inf < a) | !(a <= b) | !(b < Inf); r(k) = NaN; endif endfunction ## Test output %!assert (size (unifrnd (1, 1)), [1 1]) %!assert (size (unifrnd (1, ones (2,1))), [2, 1]) %!assert (size (unifrnd (1, ones (2,2))), [2, 2]) %!assert (size (unifrnd (ones (2,1), 1)), [2, 1]) %!assert (size (unifrnd (ones (2,2), 1)), [2, 2]) %!assert (size (unifrnd (1, 1, 3)), [3, 3]) %!assert (size (unifrnd (1, 1, [4, 1])), [4, 1]) %!assert (size (unifrnd (1, 1, 4, 1)), [4, 1]) %!assert (size (unifrnd (1, 1, 4, 1, 5)), [4, 1, 5]) %!assert (size (unifrnd (1, 1, 0, 1)), [0, 1]) %!assert (size (unifrnd (1, 1, 1, 0)), [1, 0]) %!assert (size (unifrnd (1, 1, 1, 2, 0, 5)), [1, 2, 0, 5]) ## Test class of input preserved %!assert (class (unifrnd (1, 1)), "double") %!assert (class (unifrnd (1, single (1))), "single") %!assert (class (unifrnd (1, single ([1, 1]))), "single") %!assert (class (unifrnd (single (1), 1)), "single") %!assert (class (unifrnd (single ([1, 1]), 1)), "single") ## Test input validation %!error unifrnd () %!error unifrnd (1) %!error ... %! unifrnd (ones (3), ones (2)) %!error ... %! unifrnd (ones (2), ones (3)) %!error unifrnd (i, 2, 3) %!error unifrnd (1, i, 3) %!error ... %! unifrnd (1, 2, -1) %!error ... %! unifrnd (1, 2, 1.2) %!error ... %! unifrnd (1, 2, ones (2)) %!error ... %! unifrnd (1, 2, [2 -1 2]) %!error ... %! unifrnd (1, 2, [2 0 2.5]) %!error ... %! unifrnd (1, 2, 2, -1, 5) %!error ... %! unifrnd (1, 2, 2, 1.5, 5) %!error ... %! unifrnd (2, ones (2), 3) %!error ... %! unifrnd (2, ones (2), [3, 2]) %!error ... %! unifrnd (2, ones (2), 3, 2) statistics-release-1.6.3/inst/dist_fun/vmcdf.m000066400000000000000000000130351456127120000213760ustar00rootroot00000000000000## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{p} =} vmcdf (@var{x}, @var{mu}, @var{k}) ## @deftypefnx {statistics} {@var{p} =} vmcdf (@var{x}, @var{mu}, @var{k}, @qcode{"upper"}) ## ## Von Mises probability density function (PDF). ## ## For each element of @var{x}, compute the cumulative distribution function ## (CDF) of the von Mises distribution with location parameter @var{mu} and ## concentration parameter @var{k} on the interval @math{[-pi,pi]}. The size of ## @var{p} is the common size of @var{x}, @var{mu}, and @var{k}. A scalar input ## functions as a constant matrix of the same same size as the other inputs. ## ## @code{@var{p} = vmcdf (@var{x}, @var{mu}, @var{k}, "upper")} computes the ## upper tail probability of the von Mises distribution with parameters @var{mu} ## and @var{k}, at the values in @var{x}. ## ## Note: the CDF of the von Mises distribution is not analytic. Hence, it is ## calculated by integrating its probability density which is expressed as a ## series of Bessel functions. Balancing between performance and accuracy, the ## integration uses a step of @qcode{1e-5} on the interval @math{[-pi,pi]}, ## which results to an accuracy of about 10 significant digits. ## ## Further information about the von Mises distribution can be found at ## @url{https://en.wikipedia.org/wiki/Von_Mises_distribution} ## ## @seealso{vminv, vmpdf, vmrnd} ## @end deftypefn function p = vmcdf (x, mu, k, uflag) ## Check for valid number of input arguments if (nargin < 3) error ("vmcdf: function called with too few input arguments."); endif ## Check for valid "upper" flag if (nargin > 3) if (! strcmpi (uflag, "upper")) error ("vmcdf: invalid argument for upper tail."); else uflag = true; endif else uflag = false; endif ## Check for common size of X, MU, and K if (! isscalar (x) || ! isscalar (mu) || ! isscalar (k)) [retval, x, mu, k] = common_size (x, mu, k); if (retval > 0) error ("vmcdf: X, MU, and K must be of common size or scalars."); endif endif ## Check for X, MU, and K being reals if (iscomplex (x) || iscomplex (mu) || iscomplex (k)) error ("vmcdf: X, MU, and K must not be complex."); endif ## Check for class type if (isa (x, "single") || isa (mu, "single") || isa (k, "single")) p = zeros (size (x), "single"); else p = zeros (size (x)); endif ## Evaluate Von Mises CDF by integrating from -PI to PI interval = linspace (-pi, pi, 1e5)'; # accurate to >10 significant digits f = exp (k .* cos (interval)) ./ (2 .* pi .* besseli (0, k)); c = cumtrapz (interval, f); p = diag (interp1 (interval, c, x - mu, "spline"))'; ## Force Nan for negative K p(k < 0) = NaN; ## Apply upper flag (if required) if (uflag) p = 1 - p; endif endfunction %!demo %! ## Plot various CDFs from the von Mises distribution %! x1 = [-pi:0.1:pi]; %! p1 = vmcdf (x1, 0, 0.5); %! p2 = vmcdf (x1, 0, 1); %! p3 = vmcdf (x1, 0, 2); %! p4 = vmcdf (x1, 0, 4); %! plot (x1, p1, "-r", x1, p2, "-g", x1, p3, "-b", x1, p4, "-c") %! grid on %! xlim ([-pi, pi]) %! legend ({"μ = 0, k = 0.5", "μ = 0, k = 1", ... %! "μ = 0, k = 2", "μ = 0, k = 4"}, "location", "northwest") %! title ("Von Mises CDF") %! xlabel ("values in x") %! ylabel ("probability") ## Test output %!shared x, p0, p1 %! x = [-pi:pi/2:pi]; %! p0 = [0, 0.10975, 0.5, 0.89025, 1]; %! p1 = [0, 0.03752, 0.5, 0.99622, 1]; %!assert (vmcdf (x, 0, 1), p0, 1e-5) %!assert (vmcdf (x, 0, 1, "upper"), 1 - p0, 1e-5) %!assert (vmcdf (x, zeros (1,5), ones (1,5)), p0, 1e-5) %!assert (vmcdf (x, zeros (1,5), ones (1,5), "upper"), 1 - p0, 1e-5) %!assert (vmcdf (x, 0, [1 2 3 4 5]), p1, 1e-5) %!assert (vmcdf (x, 0, [1 2 3 4 5], "upper"), 1 - p1, 1e-5) ## Test class of input preserved %!assert (isa (vmcdf (single (pi), 0, 1), "single"), true) %!assert (isa (vmcdf (pi, single (0), 1), "single"), true) %!assert (isa (vmcdf (pi, 0, single (1)), "single"), true) ## Test input validation %!error vmcdf () %!error vmcdf (1) %!error vmcdf (1, 2) %!error vmcdf (1, 2, 3, "tail") %!error vmcdf (1, 2, 3, 4) %!error ... %! vmcdf (ones (3), ones (2), ones (2)) %!error ... %! vmcdf (ones (2), ones (3), ones (2)) %!error ... %! vmcdf (ones (2), ones (2), ones (3)) %!error vmcdf (i, 2, 2) %!error vmcdf (2, i, 2) %!error vmcdf (2, 2, i) statistics-release-1.6.3/inst/dist_fun/vminv.m000066400000000000000000000131571456127120000214430ustar00rootroot00000000000000## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{x} =} vminv (@var{p}, @var{mu}, @var{k}) ## ## Inverse of the von Mises cumulative distribution function (iCDF). ## ## For each element of @var{p}, compute the quantile (the inverse of the CDF) of ## the von Mises distribution with location parameter @var{mu} and concentration ## parameter @var{k} on the interval @math{[-pi,pi]}. The size of @var{x} is ## the common size of @var{p}, @var{mu}, and @var{k}. A scalar input functions ## as a constant matrix of the same size as the other inputs. ## ## Note: the quantile of the von Mises distribution is not analytic. Hence, it ## is approximated by a custom searching algorithm using its CDF until it ## converges up to a tolerance of @qcode{1e-5} or 100 iterations. As a result, ## balancing between performance and accuracy, the accuracy is about ## @qcode{5e-5} for @qcode{@var{k} = 1} and it drops to @qcode{5e-5} as @var{k} ## increases. ## ## Further information about the von Mises distribution can be found at ## @url{https://en.wikipedia.org/wiki/Von_Mises_distribution} ## ## @seealso{vmcdf, vmpdf, vmrnd} ## @end deftypefn function x = vminv (p, mu, k) ## Check for valid number of input arguments if (nargin < 3) error ("vminv: function called with too few input arguments."); endif ## Check for common size of P, MU, and K [err, p, mu, k] = common_size (p, mu, k); if (err > 0) error ("vminv: P, MU, and K must be of common size or scalars."); endif ## Check for P, MU, and K being reals if (iscomplex (p) || iscomplex (mu) || iscomplex (k)) error ("vminv: P, MU, and K must not be complex."); endif ## Check for class type if (isa (p, "single") || isa (mu, "single") || isa (k, "single")) x = NaN (size (p), "single"); else x = NaN (size (p), "double"); endif ## Process edge cases p=0, p=0.5, p=1 p_0 = p < eps (class (x)) & k > 0 & isfinite (mu); x(p_0) = -pi + mu(p_0); p_5 = abs (p - 0.5) < eps (class (x)) & k > 0 & isfinite (mu); x(p_5) = mu(p_5); p_1 = 1 - p < eps (class (x)) & k > 0 & isfinite (mu); x(p_1) = pi + mu(p_1); ## Get remaining valid cases valc = p > 0 & p < 1 & ! p_5 & k > 0 & isfinite (mu); if (! any (valc)) return endif p = p(valc); mu = mu(valc); k = k(valc); ## Complement cases of p<0.5 to 1-p and keep track to invert them at the end comp = p < 0.5; p(comp) = 1 - p(comp); ## Initialize counter and threshold crit = 1e-5; count_limit = 100; count = 0; ## Supply a starting guess for the iteration by linear interpolation with k=0 x0 = 2 * pi .* p - pi; xz = zeros (size (p)); xa = xz; ## Compute p0 and compare to target p p0 = vmcdf (x0, 0, k); ## Solution is always 0 < x < x0. Search for x until p == p0 within threshold while (any (abs (p - p0) > crit) && count < count_limit) count = count + 1; xnew = xz + (abs (x0) - abs (xz)) .* 0.5; p0 = vmcdf (xnew, 0, k); ## Prepare for next step xdec = (p0 - p) > crit; xinc = (p - p0) > crit; if (any (xdec)) x0(xdec) = xnew(xdec); endif if (any (xinc)) xz(xinc) = xnew(xinc); endif endwhile ## Return the converged value(s). xnew(comp) = -xnew(comp); x(valc) = xnew + mu; if (count == count_limit) warning ("vminv: did not converge."); endif endfunction %!demo %! ## Plot various iCDFs from the von Mises distribution %! p1 = [0,0.005,0.01:0.01:0.1,0.15,0.2:0.1:0.8,0.85,0.9:0.01:0.99,0.995,1]; %! x1 = vminv (p1, 0, 0.5); %! x2 = vminv (p1, 0, 1); %! x3 = vminv (p1, 0, 2); %! x4 = vminv (p1, 0, 4); %! plot (p1, x1, "-r", p1, x2, "-g", p1, x3, "-b", p1, x4, "-c") %! grid on %! ylim ([-pi, pi]) %! legend ({"μ = 0, k = 0.5", "μ = 0, k = 1", ... %! "μ = 0, k = 2", "μ = 0, k = 4"}, "location", "northwest") %! title ("Von Mises iCDF") %! xlabel ("probability") %! ylabel ("values in x") ## Test output %!shared x, p0, p1 %! x = [-pi:pi/2:pi]; %! p0 = [0, 0.10975, 0.5, 0.89025, 1]; %! p1 = [0, 0.03752, 0.5, 0.99622, 1]; %!assert (vminv (p0, 0, 1), x, 5e-5) %!assert (vminv (p0, zeros (1,5), ones (1,5)), x, 5e-5) %!assert (vminv (p1, 0, [1 2 3 4 5]), x, [5e-5, 5e-4, 5e-5, 5e-4, 5e-5]) ## Test input validation %!error vminv () %!error vminv (1) %!error vminv (1, 2) %!error ... %! vminv (ones (3), ones (2), ones (2)) %!error ... %! vminv (ones (2), ones (3), ones (2)) %!error ... %! vminv (ones (2), ones (2), ones (3)) %!error vminv (i, 2, 2) %!error vminv (2, i, 2) %!error vminv (2, 2, i) statistics-release-1.6.3/inst/dist_fun/vmpdf.m000066400000000000000000000102621456127120000214120ustar00rootroot00000000000000## Copyright (C) 2009 Soren Hauberg ## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{y} =} vmpdf (@var{x}, @var{mu}, @var{k}) ## ## Von Mises probability density function (PDF). ## ## For each element of @var{x}, compute the probability density function (PDF) ## of the von Mises distribution with location parameter @var{mu} and ## concentration parameter @var{k} on the interval [-pi, pi]. The size of ## @var{y} is the common size of @var{x}, @var{mu}, and @var{k}. A scalar input ## functions as a constant matrix of the same size as the other inputs. ## ## Further information about the von Mises distribution can be found at ## @url{https://en.wikipedia.org/wiki/Von_Mises_distribution} ## ## @seealso{vmcdf, vminv, vmrnd} ## @end deftypefn function y = vmpdf (x, mu, k) ## Check for valid number of input arguments if (nargin < 3) error ("vmpdf: function called with too few input arguments."); endif ## Check for common size of X, MU, and K if (! isscalar (x) || ! isscalar (mu) || ! isscalar (k)) [retval, x, mu, k] = common_size (x, mu, k); if (retval > 0) error ("vmpdf: X, MU, and K must be of common size or scalars."); endif endif ## Check for X, MU, and K being reals if (iscomplex (x) || iscomplex (mu) || iscomplex (k)) error ("vmpdf: X, MU, and K must not be complex."); endif ## Evaluate Von Mises PDF Z = 2 .* pi .* besseli (0, k); y = exp (k .* cos (x - mu)) ./ Z; ## Force Nan for negative K y(k < 0) = NaN; ## Check for class type if (isa (x, "single") || isa (mu, "single") || isa (k, "single")) y = cast (y, "single"); else y = cast (y, "double"); endif endfunction %!demo %! ## Plot various PDFs from the von Mises distribution %! x1 = [-pi:0.1:pi]; %! y1 = vmpdf (x1, 0, 0.5); %! y2 = vmpdf (x1, 0, 1); %! y3 = vmpdf (x1, 0, 2); %! y4 = vmpdf (x1, 0, 4); %! plot (x1, y1, "-r", x1, y2, "-g", x1, y3, "-b", x1, y4, "-c") %! grid on %! xlim ([-pi, pi]) %! ylim ([0, 0.8]) %! legend ({"μ = 0, k = 0.5", "μ = 0, k = 1", ... %! "μ = 0, k = 2", "μ = 0, k = 4"}, "location", "northwest") %! title ("Von Mises PDF") %! xlabel ("values in x") %! ylabel ("density") ## Test output %!shared x, y0, y1 %! x = [-pi:pi/2:pi]; %! y0 = [0.046245, 0.125708, 0.341710, 0.125708, 0.046245]; %! y1 = [0.046245, 0.069817, 0.654958, 0.014082, 0.000039]; %!assert (vmpdf (x, 0, 1), y0, 1e-5) %!assert (vmpdf (x, zeros (1,5), ones (1,5)), y0, 1e-6) %!assert (vmpdf (x, 0, [1 2 3 4 5]), y1, 1e-6) ## Test class of input preserved %!assert (isa (vmpdf (single (pi), 0, 1), "single"), true) %!assert (isa (vmpdf (pi, single (0), 1), "single"), true) %!assert (isa (vmpdf (pi, 0, single (1)), "single"), true) ## Test input validation %!error vmpdf () %!error vmpdf (1) %!error vmpdf (1, 2) %!error ... %! vmpdf (ones (3), ones (2), ones (2)) %!error ... %! vmpdf (ones (2), ones (3), ones (2)) %!error ... %! vmpdf (ones (2), ones (2), ones (3)) %!error vmpdf (i, 2, 2) %!error vmpdf (2, i, 2) %!error vmpdf (2, 2, i) statistics-release-1.6.3/inst/dist_fun/vmrnd.m000066400000000000000000000164461456127120000214360ustar00rootroot00000000000000## Copyright (C) 2009 Soren Hauberg ## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{r} =} vmrnd (@var{mu}, @var{k}) ## @deftypefnx {statistics} {@var{r} =} vmrnd (@var{mu}, @var{k}, @var{rows}) ## @deftypefnx {statistics} {@var{r} =} vmrnd (@var{mu}, @var{k}, @var{rows}, @var{cols}, @dots{}) ## @deftypefnx {statistics} {@var{r} =} vmrnd (@var{mu}, @var{k}, [@var{sz}]) ## ## Random arrays from the von Mises distribution. ## ## @code{@var{r} = vmrnd (@var{mu}, @var{k})} returns an array of random angles ## chosen from a von Mises distribution with location parameter @var{mu} and ## concentration parameter @var{k} on the interval [-pi, pi]. The size of ## @var{r} is the common size of @var{mu} and @var{k}. A scalar input functions ## as a constant matrix of the same size as the other inputs. Both parameters ## must be finite real numbers and @var{k} > 0, otherwise NaN is returned. ## ## When called with a single size argument, @code{vmrnd} returns a square ## matrix with the dimension specified. When called with more than one scalar ## argument, the first two arguments are taken as the number of rows and columns ## and any further arguments specify additional matrix dimensions. The size may ## also be specified with a row vector of dimensions, @var{sz}. ## ## Further information about the von Mises distribution can be found at ## @url{https://en.wikipedia.org/wiki/Von_Mises_distribution} ## ## @seealso{vmcdf, vminv, vmpdf} ## @end deftypefn function r = vmrnd (mu, k, varargin) ## Check for valid number of input arguments if (nargin < 2) error ("vmrnd: function called with too few input arguments."); endif ## Check for common size of MU and Κ if (! isscalar (mu) || ! isscalar (k)) [retval, mu, k] = common_size (mu, k); if (retval > 0) error ("vmrnd: MU and K must be of common size or scalars."); endif endif ## Check for MU and Κ being reals if (iscomplex (mu) || iscomplex (k)) error ("vmrnd: MU and K must not be complex."); endif ## Parse and check SIZE arguments if (nargin == 2) sz = size (mu); elseif (nargin == 3) if (isscalar (varargin{1}) && varargin{1} >= 0 ... && varargin{1} == fix (varargin{1})) sz = [varargin{1}, varargin{1}]; elseif (isrow (varargin{1}) && all (varargin{1} >= 0) ... && all (varargin{1} == fix (varargin{1}))) sz = varargin{1}; elseif error (strcat (["vmrnd: SZ must be a scalar or a row vector"], ... [" of non-negative integers."])); endif elseif (nargin > 3) posint = cellfun (@(x) (! isscalar (x) || x < 0 || x != fix (x)), varargin); if (any (posint)) error ("vmrnd: dimensions must be non-negative integers."); endif sz = [varargin{:}]; endif ## Check that parameters match requested dimensions in size if (! isscalar (mu) && ! isequal (size (k), sz)) error ("vmrnd: MU and K must be scalars or of size SZ."); endif ## Check for class type if (isa (mu, "single") || isa (k, "single")) cls = "single"; else cls = "double"; endif ## Handle zero size dimensions if (any (sz == 0)) r = nan (sz, cls); return endif ## Simulate! if (all (k < 1e-6)) ## k is small: sample uniformly on circle r = mu + (2 * pi * rand (sz) - pi); else a = 1 + sqrt (1 + 4 .* k .^ 2); b = (a - sqrt (2 .* a)) ./ (2 .* k); r_tmp = (1 + b .^ 2) ./ (2 .* b); N = prod (sz); if (isscalar (k)) r_tmp = repmat (r_tmp, 1, N); k_tmp = repmat (k, 1, N); mu_rs = repmat (mu, 1, N); else r_tmp = reshape (r_tmp, 1, N); k_tmp = reshape (k, 1, N); mu_rs = reshape (mu, 1, N); endif notdone = true (N, 1); while (any (notdone)) u (:, notdone) = (rand (3, N))(:,notdone); z (notdone) = (cos (pi .* u (1, :)))(notdone); f (notdone) = ((1 + r_tmp(notdone) .* z(notdone)) ./ (r_tmp(notdone) + z(notdone))); c (notdone) = (k_tmp(notdone) .* (r_tmp(notdone) - f(notdone))); notdone = (u (2, :) >= c .* (2 - c)) & (log (c) - log (u (2, :)) + 1 - c < 0); #N = sum (notdone); endwhile r = mu_rs + sign (u (3, :) - 0.5) .* acos (f); r = reshape (r, sz); endif ## Cast to appropriate class r = cast (r, cls); endfunction ## Test output %!assert (size (vmrnd (1, 1)), [1 1]) %!assert (size (vmrnd (1, ones (2,1))), [2, 1]) %!assert (size (vmrnd (1, ones (2,2))), [2, 2]) %!assert (size (vmrnd (ones (2,1), 1)), [2, 1]) %!assert (size (vmrnd (ones (2,2), 1)), [2, 2]) %!assert (size (vmrnd (1, 1, 3)), [3, 3]) %!assert (size (vmrnd (1, 1, [4, 1])), [4, 1]) %!assert (size (vmrnd (1, 1, 4, 1)), [4, 1]) %!assert (size (vmrnd (1, 1, 4, 1, 5)), [4, 1, 5]) %!assert (size (vmrnd (1, 1, 0, 1)), [0, 1]) %!assert (size (vmrnd (1, 1, 1, 0)), [1, 0]) %!assert (size (vmrnd (1, 1, 1, 2, 0, 5)), [1, 2, 0, 5]) ## Test class of input preserved %!assert (class (vmrnd (1, 1)), "double") %!assert (class (vmrnd (1, single (1))), "single") %!assert (class (vmrnd (1, single ([1, 1]))), "single") %!assert (class (vmrnd (single (1), 1)), "single") %!assert (class (vmrnd (single ([1, 1]), 1)), "single") ## Test input validation %!error vmrnd () %!error vmrnd (1) %!error ... %! vmrnd (ones (3), ones (2)) %!error ... %! vmrnd (ones (2), ones (3)) %!error vmrnd (i, 2, 3) %!error vmrnd (1, i, 3) %!error ... %! vmrnd (1, 2, -1) %!error ... %! vmrnd (1, 2, 1.2) %!error ... %! vmrnd (1, 2, ones (2)) %!error ... %! vmrnd (1, 2, [2 -1 2]) %!error ... %! vmrnd (1, 2, [2 0 2.5]) %!error ... %! vmrnd (1, 2, 2, -1, 5) %!error ... %! vmrnd (1, 2, 2, 1.5, 5) %!error ... %! vmrnd (2, ones (2), 3) %!error ... %! vmrnd (2, ones (2), [3, 2]) %!error ... %! vmrnd (2, ones (2), 3, 2) statistics-release-1.6.3/inst/dist_fun/wblcdf.m000066400000000000000000000212021456127120000215330ustar00rootroot00000000000000## Copyright (C) 2012 Rik Wehbring ## Copyright (C) 1995-2016 Kurt Hornik ## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received lambda copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{p} =} wblcdf (@var{x}) ## @deftypefnx {statistics} {@var{p} =} wblcdf (@var{x}, @var{lambda}) ## @deftypefnx {statistics} {@var{p} =} wblcdf (@var{x}, @var{lambda}, @var{k}) ## @deftypefnx {statistics} {@var{p} =} wblcdf (@dots{}, @qcode{"upper"}) ## @deftypefnx {statistics} {[@var{p}, @var{plo}, @var{pup}] =} wblcdf (@var{x}, @var{lambda}, @var{k}, @var{pcov}) ## @deftypefnx {statistics} {[@var{p}, @var{plo}, @var{pup}] =} wblcdf (@var{x}, @var{lambda}, @var{k}, @var{pcov}, @var{alpha}) ## @deftypefnx {statistics} {[@var{p}, @var{plo}, @var{pup}] =} wblcdf (@dots{}, @qcode{"upper"}) ## ## Weibull cumulative distribution function (CDF). ## ## For each element of @var{x}, compute the cumulative distribution function ## (CDF) of the Weibull distribution with scale parameter @var{lambda} and shape ## parameter @var{k}. The size of @var{p} is the common size of @var{x}, ## @var{lambda} and @var{k}. A scalar input functions as a constant matrix of ## the same size as the other inputs. ## ## Default values are @var{lambda} = 1, @var{k} = 1. ## ## When called with three output arguments, @code{[@var{p}, @var{plo}, ## @var{pup}]} it computes the confidence bounds for @var{p} when the input ## parameters @var{lambda} and @var{k} are estimates. In such case, @var{pcov}, ## a 2-by-2 matrix containing the covariance matrix of the estimated parameters, ## is necessary. Optionally, @var{alpha} has a default value of 0.05, and ## specifies 100 * (1 - @var{alpha})% confidence bounds. @var{plo} and @var{pup} ## are arrays of the same size as @var{p} containing the lower and upper ## confidence bounds. ## ## @code{[@dots{}] = wblcdf (@dots{}, "upper")} computes the upper tail ## probability of the lognormal distribution. ## ## Further information about the Weibull distribution can be found at ## @url{https://en.wikipedia.org/wiki/Weibull_distribution} ## ## @seealso{wblinv, wblpdf, wblrnd, wblstat, wblplot} ## @end deftypefn function [varargout] = wblcdf (x, varargin) ## Check for valid number of input arguments if (nargin < 1 || nargin > 6) error ("wblcdf: invalid number of input arguments."); endif ## Check for "upper" flag if (nargin > 1 && strcmpi (varargin{end}, "upper")) uflag = true; varargin(end) = []; elseif (nargin > 1 && ischar (varargin{end}) && ... ! strcmpi (varargin{end}, "upper")) error ("wblcdf: invalid argument for upper tail."); elseif (nargin > 1 && isempty (varargin{end})) uflag = false; varargin(end) = []; else uflag = false; endif ## Get extra arguments (if they exist) or add defaults if (numel (varargin) > 0) lambda = varargin{1}; else lambda = 1; endif if (numel (varargin) > 1) k = varargin{2}; else k = 1; endif if (numel (varargin) > 2) pcov = varargin{3}; ## Check for valid covariance matrix 2x2 if (! isequal (size (pcov), [2, 2])) error ("wblcdf: invalid size of covariance matrix."); endif else ## Check that cov matrix is provided if 3 output arguments are requested if (nargout > 1) error ("wblcdf: covariance matrix is required for confidence bounds."); endif pcov = []; endif if (numel (varargin) > 3) alpha = varargin{4}; ## Check for valid alpha value if (! isnumeric (alpha) || numel (alpha) !=1 || alpha <= 0 || alpha >= 1) error ("wblcdf: invalid value for alpha."); endif else alpha = 0.05; endif ## Check for common size of X, LAMBDA, and K if (! isscalar (x) || ! isscalar (lambda) || ! isscalar (k)) [err, x, lambda, k] = common_size (x, lambda, k); if (err > 0) error ("wblcdf: X, LAMBDA, and K must be of common size or scalars."); endif endif ## Check for X, LAMBDA, and K being reals if (iscomplex (x) || iscomplex (lambda) || iscomplex (k)) error ("wblcdf: X, LAMBDA, and K must not be complex."); endif ## Check for class type if (isa (x, "single") || isa (lambda, "single") || isa (k, "single")); is_class = "single"; else is_class = "double"; endif ## Return NaN for out of range parameters. lambda(lambda <= 0) = NaN; k(k <= 0) = NaN; ## Force 0 for negative data x(x < 0) = 0; ## Compute z z = (x ./ lambda) .^ k; if (uflag) p = exp(-z); else p = -expm1(-z); endif ## Compute confidence bounds (if requested) if (nargout >= 2) ## Work on log scale log_z = log (z); d_lambda = 1 ./ lambda; d_k = -1 ./ (k .^ 2); log_zvar = (pcov(1,1) .* d_lambda .^ 2 + ... 2 * pcov(1,2) .* d_lambda .* d_k .* log_z + ... pcov(2,2) .* (d_k .* log_z) .^ 2) .* (k .^ 2); if (any(log_zvar < 0)) error ("wblcdf: bad covariance matrix."); endif normz = -norminv (alpha / 2); halfwidth = normz * sqrt (log_zvar); zlo = log_z - halfwidth; zup = log_z + halfwidth; ## Convert back from log scale if uflag == true plo = exp (-exp (zup)); pup = exp (-exp (zlo)); else plo = -expm1 (-exp (zlo)); pup = -expm1 (-exp (zup)); endif endif ## Prepare output varargout{1} = cast (p, is_class); if (nargout > 1) varargout{2} = cast (plo, is_class); varargout{3} = cast (pup, is_class); endif endfunction %!demo %! ## Plot various CDFs from the Weibull distribution %! x = 0:0.001:2.5; %! p1 = wblcdf (x, 1, 0.5); %! p2 = wblcdf (x, 1, 1); %! p3 = wblcdf (x, 1, 1.5); %! p4 = wblcdf (x, 1, 5); %! plot (x, p1, "-b", x, p2, "-r", x, p3, "-m", x, p4, "-g") %! grid on %! legend ({"λ = 1, k = 0.5", "λ = 1, k = 1", ... %! "λ = 1, k = 1.5", "λ = 1, k = 5"}, "location", "southeast") %! title ("Weibull CDF") %! xlabel ("values in x") %! ylabel ("probability") ## Test output %!shared x, y %! x = [-1 0 0.5 1 Inf]; %! y = [0, 1-exp(-x(2:4)), 1]; %!assert (wblcdf (x, ones (1,5), ones (1,5)), y) %!assert (wblcdf (x, ones (1,5), ones (1,5), "upper"), 1 - y) %!assert (wblcdf (x, "upper"), 1 - y) %!assert (wblcdf (x, 1, ones (1,5)), y) %!assert (wblcdf (x, ones (1,5), 1), y) %!assert (wblcdf (x, [0 1 NaN Inf 1], 1), [NaN 0 NaN 0 1]) %!assert (wblcdf (x, [0 1 NaN Inf 1], 1, "upper"), 1 - [NaN 0 NaN 0 1]) %!assert (wblcdf (x, 1, [0 1 NaN Inf 1]), [NaN 0 NaN y(4:5)]) %!assert (wblcdf (x, 1, [0 1 NaN Inf 1], "upper"), 1 - [NaN 0 NaN y(4:5)]) %!assert (wblcdf ([x(1:2) NaN x(4:5)], 1, 1), [y(1:2) NaN y(4:5)]) %!assert (wblcdf ([x(1:2) NaN x(4:5)], 1, 1, "upper"), 1 - [y(1:2) NaN y(4:5)]) ## Test class of input preserved %!assert (wblcdf ([x, NaN], 1, 1), [y, NaN]) %!assert (wblcdf (single ([x, NaN]), 1, 1), single ([y, NaN])) %!assert (wblcdf ([x, NaN], single (1), 1), single ([y, NaN])) %!assert (wblcdf ([x, NaN], 1, single (1)), single ([y, NaN])) ## Test input validation %!error wblcdf () %!error wblcdf (1,2,3,4,5,6,7) %!error wblcdf (1, 2, 3, 4, "uper") %!error ... %! wblcdf (ones (3), ones (2), ones (2)) %!error wblcdf (2, 3, 4, [1, 2]) %!error ... %! [p, plo, pup] = wblcdf (1, 2, 3) %!error [p, plo, pup] = ... %! wblcdf (1, 2, 3, [1, 0; 0, 1], 0) %!error [p, plo, pup] = ... %! wblcdf (1, 2, 3, [1, 0; 0, 1], 1.22) %!error [p, plo, pup] = ... %! wblcdf (1, 2, 3, [1, 0; 0, 1], "alpha", "upper") %!error wblcdf (i, 2, 2) %!error wblcdf (2, i, 2) %!error wblcdf (2, 2, i) %!error ... %! [p, plo, pup] =wblcdf (1, 2, 3, [1, 0; 0, -inf], 0.04) statistics-release-1.6.3/inst/dist_fun/wblinv.m000066400000000000000000000121151456127120000215760ustar00rootroot00000000000000## Copyright (C) 2012 Rik Wehbring ## Copyright (C) 1995-2016 Kurt Hornik ## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{x} =} wblinv (@var{p}) ## @deftypefnx {statistics} {@var{x} =} wblinv (@var{p}, @var{lambda}) ## @deftypefnx {statistics} {@var{x} =} wblinv (@var{p}, @var{lambda}, @var{k}) ## ## Inverse of the Weibull cumulative distribution function (iCDF). ## ## For each element of @var{p}, compute the quantile (the inverse of the CDF) ## of the Weibull distribution with scale parameter @var{lambda} and shape ## parameter @var{k}. The size of @var{x} is the common size of @var{p}, ## @var{lambda}, and @var{k}. A scalar input functions as a constant matrix of ## the same size as the other inputs. ## ## Default values are @var{lambda} = 1, @var{k} = 1. ## ## Further information about the Weibull distribution can be found at ## @url{https://en.wikipedia.org/wiki/Weibull_distribution} ## ## @seealso{wblcdf, wblpdf, wblrnd, wblstat, wblplot} ## @end deftypefn function x = wblinv (p, varargin) ## Check for valid number of input arguments if (nargin < 1 || nargin > 3) error ("wblinv: invalid number of input arguments."); endif ## Get extra arguments (if they exist) or add defaults if (numel (varargin) > 0) lambda = varargin{1}; else lambda = 1; endif if (numel (varargin) > 1) k = varargin{2}; else k = 1; endif ## Check for common size of P, LAMBDA, and K if (! isscalar (p) || ! isscalar (lambda) || ! isscalar (k)) [retval, p, lambda, k] = common_size (p, lambda, k); if (retval > 0) error ("wblinv: P, LAMBDA, and K must be of common size or scalars."); endif endif ## Check for P, LAMBDA, and K being reals if (iscomplex (p) || iscomplex (lambda) || iscomplex (k)) error ("wblinv: P, LAMBDA, and K must not be complex."); endif ## Check for class type if (isa (p, "single") || isa (lambda, "single") || isa (k, "single")) x = NaN (size (p), "single"); else x = NaN (size (p)); endif ok = (lambda > 0) & (lambda < Inf) & (k > 0) & (k < Inf); pk = (p == 0) & ok; x(pk) = 0; pk = (p == 1) & ok; x(pk) = Inf; pk = (p > 0) & (p < 1) & ok; if (isscalar (lambda) && isscalar (k)) x(pk) = lambda * (- log (1 - p(pk))) .^ (1 / k); else x(pk) = lambda(pk) .* (- log (1 - p(pk))) .^ (1 ./ k(pk)); endif endfunction %!demo %! ## Plot various iCDFs from the Weibull distribution %! p = 0.001:0.001:0.999; %! x1 = wblinv (p, 1, 0.5); %! x2 = wblinv (p, 1, 1); %! x3 = wblinv (p, 1, 1.5); %! x4 = wblinv (p, 1, 5); %! plot (p, x1, "-b", p, x2, "-r", p, x3, "-m", p, x4, "-g") %! ylim ([0, 2.5]) %! grid on %! legend ({"λ = 1, k = 0.5", "λ = 1, k = 1", ... %! "λ = 1, k = 1.5", "λ = 1, k = 5"}, "location", "northwest") %! title ("Weibull iCDF") %! xlabel ("probability") %! ylabel ("x") ## Test output %!shared p %! p = [-1 0 0.63212055882855778 1 2]; %!assert (wblinv (p, ones (1,5), ones (1,5)), [NaN 0 1 Inf NaN], eps) %!assert (wblinv (p, 1, ones (1,5)), [NaN 0 1 Inf NaN], eps) %!assert (wblinv (p, ones (1,5), 1), [NaN 0 1 Inf NaN], eps) %!assert (wblinv (p, [1 -1 NaN Inf 1], 1), [NaN NaN NaN NaN NaN]) %!assert (wblinv (p, 1, [1 -1 NaN Inf 1]), [NaN NaN NaN NaN NaN]) %!assert (wblinv ([p(1:2) NaN p(4:5)], 1, 1), [NaN 0 NaN Inf NaN]) ## Test class of input preserved %!assert (wblinv ([p, NaN], 1, 1), [NaN 0 1 Inf NaN NaN], eps) %!assert (wblinv (single ([p, NaN]), 1, 1), single ([NaN 0 1 Inf NaN NaN]), eps ("single")) %!assert (wblinv ([p, NaN], single (1), 1), single ([NaN 0 1 Inf NaN NaN]), eps ("single")) %!assert (wblinv ([p, NaN], 1, single (1)), single ([NaN 0 1 Inf NaN NaN]), eps ("single")) ## Test input validation %!error wblinv () %!error wblinv (1,2,3,4) %!error ... %! wblinv (ones (3), ones (2), ones (2)) %!error ... %! wblinv (ones (2), ones (3), ones (2)) %!error ... %! wblinv (ones (2), ones (2), ones (3)) %!error wblinv (i, 2, 2) %!error wblinv (2, i, 2) %!error wblinv (2, 2, i) statistics-release-1.6.3/inst/dist_fun/wblpdf.m000066400000000000000000000110441456127120000215530ustar00rootroot00000000000000## Copyright (C) 2012 Rik Wehbring ## Copyright (C) 1995-2016 Kurt Hornik ## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{y} =} wblinv (@var{x}) ## @deftypefnx {statistics} {@var{y} =} wblinv (@var{x}, @var{lambda}) ## @deftypefnx {statistics} {@var{y} =} wblinv (@var{x}, @var{lambda}, @var{k}) ## ## Weibull probability density function (PDF). ## ## For each element of @var{x}, compute the probability density function (PDF) ## of the Weibull distribution with scale parameter @var{lambda} and shpe ## parameter @var{k}. The size of @var{y} is the common size of @var{x}, ## @var{lambda}, and @var{k}. A scalar input functions as a constant matrix of ## the same size as the other inputs. ## ## Default values are @var{lambda} = 1, @var{k} = 1. ## ## Further information about the Weibull distribution can be found at ## @url{https://en.wikipedia.org/wiki/Weibull_distribution} ## ## @seealso{wblcdf, wblinv, wblrnd, wblfit, wbllike, wblstat, wblplot} ## @end deftypefn function y = wblpdf (x, varargin) ## Check for valid number of input arguments if (nargin < 1 || nargin > 3) error ("wblpdf: invalid number of input arguments."); endif ## Get extra arguments (if they exist) or add defaults if (numel (varargin) > 0) lambda = varargin{1}; else lambda = 1; endif if (numel (varargin) > 1) k = varargin{2}; else k = 1; endif ## Check for common size of X, LAMBDA, and K if (! isscalar (lambda) || ! isscalar (k)) [retval, x, lambda, k] = common_size (x, lambda, k); if (retval > 0) error ("wblpdf: X, LAMBDA, and K must be of common size or scalars."); endif endif ## Check for X, LAMBDA, and K being reals if (iscomplex (x) || iscomplex (lambda) || iscomplex (k)) error ("wblpdf: X, LAMBDA, and K must not be complex."); endif ## Check for class type if (isa (x, "single") || isa (lambda, "single") || isa (k, "single")) y = NaN (size (x), "single"); else y = NaN (size (x)); endif ok = ((lambda > 0) & (lambda < Inf) & (k > 0) & (k < Inf)); xk = (x < 0) & ok; y(xk) = 0; xk = (x >= 0) & (x < Inf) & ok; if (isscalar (lambda) && isscalar (k)) y(xk) = (k * (lambda .^ -k) ... .* (x(xk) .^ (k - 1)) ... .* exp (- (x(xk) / lambda) .^ k)); else y(xk) = (k(xk) .* (lambda(xk) .^ -k(xk)) ... .* (x(xk) .^ (k(xk) - 1)) ... .* exp (- (x(xk) ./ lambda(xk)) .^ k(xk))); endif endfunction %!demo %! ## Plot various PDFs from the Weibul distribution %! x = 0:0.001:2.5; %! y1 = wblpdf (x, 1, 0.5); %! y2 = wblpdf (x, 1, 1); %! y3 = wblpdf (x, 1, 1.5); %! y4 = wblpdf (x, 1, 5); %! plot (x, y1, "-b", x, y2, "-r", x, y3, "-m", x, y4, "-g") %! grid on %! ylim ([0, 2.5]) %! legend ({"λ = 5, k = 0.5", "λ = 9, k = 1", ... %! "λ = 6, k = 1.5", "λ = 2, k = 5"}, "location", "northeast") %! title ("Weibul PDF") %! xlabel ("values in x") %! ylabel ("density") ## Test output %!shared x,y %! x = [-1 0 0.5 1 Inf]; %! y = [0, exp(-x(2:4)), NaN]; %!assert (wblpdf (x, ones (1,5), ones (1,5)), y) %!assert (wblpdf (x, 1, ones (1,5)), y) %!assert (wblpdf (x, ones (1,5), 1), y) %!assert (wblpdf (x, [0 NaN Inf 1 1], 1), [NaN NaN NaN y(4:5)]) %!assert (wblpdf (x, 1, [0 NaN Inf 1 1]), [NaN NaN NaN y(4:5)]) %!assert (wblpdf ([x, NaN], 1, 1), [y, NaN]) ## Test class of input preserved %!assert (wblpdf (single ([x, NaN]), 1, 1), single ([y, NaN])) %!assert (wblpdf ([x, NaN], single (1), 1), single ([y, NaN])) %!assert (wblpdf ([x, NaN], 1, single (1)), single ([y, NaN])) ## Test input validation %!error wblpdf () %!error wblpdf (1,2,3,4) %!error wblpdf (ones (3), ones (2), ones (2)) %!error wblpdf (ones (2), ones (3), ones (2)) %!error wblpdf (ones (2), ones (2), ones (3)) %!error wblpdf (i, 2, 2) %!error wblpdf (2, i, 2) %!error wblpdf (2, 2, i) statistics-release-1.6.3/inst/dist_fun/wblrnd.m000066400000000000000000000152621456127120000215730ustar00rootroot00000000000000## Copyright (C) 2012 Rik Wehbring ## Copyright (C) 1995-2016 Kurt Hornik ## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{r} =} wblrnd (@var{lambda}, @var{k}) ## @deftypefnx {statistics} {@var{r} =} wblrnd (@var{lambda}, @var{k}, @var{rows}) ## @deftypefnx {statistics} {@var{r} =} wblrnd (@var{lambda}, @var{k}, @var{rows}, @var{cols}, @dots{}) ## @deftypefnx {statistics} {@var{r} =} wblrnd (@var{lambda}, @var{k}, [@var{sz}]) ## ## Random arrays from the Weibull distribution. ## ## @code{@var{r} = wblrnd (@var{lambda}, @var{k})} returns an array of random ## numbers chosen from the Weibull distribution with scale parameter ## @var{lambda} and shape parameter @var{k}. The size of @var{r} is the common ## size of @var{lambda} and @var{k}. A scalar input functions as a constant ## matrix of the same size as the other inputs. Both parameters must be ## positive reals. ## ## When called with a single size argument, @code{wblrnd} returns a square ## matrix with the dimension specified. When called with more than one scalar ## argument, the first two arguments are taken as the number of rows and columns ## and any further arguments specify additional matrix dimensions. The size may ## also be specified with a row vector of dimensions, @var{sz}. ## ## Further information about the Weibull distribution can be found at ## @url{https://en.wikipedia.org/wiki/Weibull_distribution} ## ## @seealso{wblcdf, wblinv, wblpdf, wblfit, wbllike, wblstat, wblplot} ## @end deftypefn function r = wblrnd (lambda, k, varargin) ## Check for valid number of input arguments if (nargin < 2) error ("wblrnd: function called with too few input arguments."); endif ## Check for common size of LAMBDA and K if (! isscalar (lambda) || ! isscalar (k)) [retval, lambda, k] = common_size (lambda, k); if (retval > 0) error ("wblrnd: LAMBDA and K must be of common size or scalars."); endif endif ## Check for LAMBDA and K being reals if (iscomplex (lambda) || iscomplex (k)) error ("wblrnd: LAMBDA and K must not be complex."); endif ## Parse and check SIZE arguments if (nargin == 2) sz = size (lambda); elseif (nargin == 3) if (isscalar (varargin{1}) && varargin{1} >= 0 ... && varargin{1} == fix (varargin{1})) sz = [varargin{1}, varargin{1}]; elseif (isrow (varargin{1}) && all (varargin{1} >= 0) ... && all (varargin{1} == fix (varargin{1}))) sz = varargin{1}; elseif error (strcat (["wblrnd: SZ must be a scalar or a row vector"], ... [" of non-negative integers."])); endif elseif (nargin > 3) posint = cellfun (@(x) (! isscalar (x) || x < 0 || x != fix (x)), varargin); if (any (posint)) error ("wblrnd: dimensions must be non-negative integers."); endif sz = [varargin{:}]; endif ## Check that parameters match requested dimensions in size if (! isscalar (lambda) && ! isequal (size (lambda), sz)) error ("wblrnd: LAMBDA and K must be scalar or of size SZ."); endif ## Check for class type if (isa (lambda, "single") || isa (k, "single")) cls = "single"; else cls = "double"; endif ## Generate random sample from Weibull distribution if (isscalar (lambda) && isscalar (k)) if ((lambda > 0) && (lambda < Inf) && (k > 0) && (k < Inf)) r = lambda * rande (sz, cls) .^ (1/k); else r = NaN (sz, cls); endif else r = lambda .* rande (sz, cls) .^ (1./k); is_nan = (lambda <= 0) | (lambda == Inf) | (k <= 0) | (k == Inf); r(is_nan) = NaN; endif endfunction ## Test output %!assert (size (wblrnd (1, 1)), [1 1]) %!assert (size (wblrnd (1, ones (2,1))), [2, 1]) %!assert (size (wblrnd (1, ones (2,2))), [2, 2]) %!assert (size (wblrnd (ones (2,1), 1)), [2, 1]) %!assert (size (wblrnd (ones (2,2), 1)), [2, 2]) %!assert (size (wblrnd (1, 1, 3)), [3, 3]) %!assert (size (wblrnd (1, 1, [4, 1])), [4, 1]) %!assert (size (wblrnd (1, 1, 4, 1)), [4, 1]) %!assert (size (wblrnd (1, 1, 4, 1, 5)), [4, 1, 5]) %!assert (size (wblrnd (1, 1, 0, 1)), [0, 1]) %!assert (size (wblrnd (1, 1, 1, 0)), [1, 0]) %!assert (size (wblrnd (1, 1, 1, 2, 0, 5)), [1, 2, 0, 5]) ## Test class of input preserved %!assert (class (wblrnd (1, 1)), "double") %!assert (class (wblrnd (1, single (1))), "single") %!assert (class (wblrnd (1, single ([1, 1]))), "single") %!assert (class (wblrnd (single (1), 1)), "single") %!assert (class (wblrnd (single ([1, 1]), 1)), "single") ## Test input validation %!error wblrnd () %!error wblrnd (1) %!error ... %! wblrnd (ones (3), ones (2)) %!error ... %! wblrnd (ones (2), ones (3)) %!error wblrnd (i, 2, 3) %!error wblrnd (1, i, 3) %!error ... %! wblrnd (1, 2, -1) %!error ... %! wblrnd (1, 2, 1.2) %!error ... %! wblrnd (1, 2, ones (2)) %!error ... %! wblrnd (1, 2, [2 -1 2]) %!error ... %! wblrnd (1, 2, [2 0 2.5]) %!error ... %! wblrnd (1, 2, 2, -1, 5) %!error ... %! wblrnd (1, 2, 2, 1.5, 5) %!error ... %! wblrnd (2, ones (2), 3) %!error ... %! wblrnd (2, ones (2), [3, 2]) %!error ... %! wblrnd (2, ones (2), 3, 2) statistics-release-1.6.3/inst/dist_fun/wienrnd.m000066400000000000000000000041211456127120000217410ustar00rootroot00000000000000## Copyright (C) 1995-2017 Friedrich Leisch ## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{r} =} wienrnd (@var{t}, @var{d}, @var{n}) ## ## Return a simulated realization of the @var{d}-dimensional Wiener Process ## on the interval [0, @var{t}]. ## ## If @var{d} is omitted, @var{d} = 1 is used. The first column of the ## return matrix contains time, the remaining columns contain the Wiener ## process. ## ## The optional parameter @var{n} defines the number of summands used for ## simulating the process over an interval of length 1. If @var{n} is ## omitted, @var{n} = 1000 is used. ## @end deftypefn function r = wienrnd (t, d, n) if (nargin == 1) d = 1; n = 1000; elseif (nargin == 2) n = 1000; elseif (nargin > 3) print_usage (); endif if (! isscalar (t) || ! isscalar (d) || ! isscalar (n)) error ("wienrnd: T, D, and N must all be scalars."); endif if (! (fix (t) == t) || ! (fix (d) == d) || ! (fix (n) == n) || t <= 0 || d <= 0 || n <= 0) error ("wienrnd: T, D, and N must all be positive integers."); endif r = randn (n * t, d); r = cumsum (r) / sqrt (n); r = [((1: n*t)' / n), r]; endfunction %!error wienrnd (0) %!error wienrnd (1, 3, -50) %!error wienrnd (5, 0) %!error wienrnd (0.4, 3, 5) %!error wienrnd ([1 4], 3, 5) statistics-release-1.6.3/inst/dist_fun/wishpdf.m000066400000000000000000000053431456127120000217460ustar00rootroot00000000000000## Copyright (C) 2013 Nir Krakauer ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{y} =} wishpdf (@var{W}, @var{Sigma}, @var{df}, @var{log_y}=false) ## ## Compute the probability density function of the Wishart distribution ## ## Inputs: A @var{p} x @var{p} matrix @var{W} where to find the PDF. The @var{p} ## x @var{p} positive definite matrix @var{Sigma} and scalar degrees of freedom ## parameter @var{df} characterizing the Wishart distribution. (For the density ## to be finite, need @var{df} > (@var{p} - 1).) ## ## If the flag @var{log_y} is set, return the log probability density -- this ## helps avoid underflow when the numerical value of the density is very small ## ## Output: @var{y} is the probability density of Wishart(@var{Sigma}, @var{df}) ## at @var{W}. ## ## @seealso{wishrnd, iwishpdf, iwishrnd} ## @end deftypefn function y = wishpdf (W, Sigma, df, log_y=false) if (nargin < 3) print_usage (); endif p = size(Sigma, 1); if (df <= (p - 1)) error ("wishpdf: DF too small, no finite densities exist."); endif ## calculate the logarithm of G_d(df/2), the multivariate gamma function g = (p * (p-1) / 4) * log(pi); for i = 1:p g = g + log(gamma((df + (1 - i))/2)); endfor C = chol(Sigma); ## use formulas for determinant of positive definite matrix for better ## efficiency and numerical accuracy logdet_W = 2*sum(log(diag(chol(W)))); logdet_Sigma = 2*sum(log(diag(C))); y = -(df*p)/2 * log(2) - (df/2)*logdet_Sigma - g + ... ((df - p - 1)/2)*logdet_W - trace(chol2inv(C)*W)/2; if ~log_y y = exp(y); endif endfunction ##test results cross-checked against dwish function in R MCMCpack library %!assert(wishpdf(4, 3, 3.1), 0.07702496, 1E-7); %!assert(wishpdf([2 -0.3;-0.3 4], [1 0.3;0.3 1], 4), 0.004529741, 1E-7); %!assert(wishpdf([6 2 5; 2 10 -5; 5 -5 25], [9 5 5; 5 10 -8; 5 -8 22], 5.1), 4.474865e-10, 1E-15); %% Test input validation %!error wishpdf () %!error wishpdf (1, 2) %!error wishpdf (1, 2, 0) %!error wishpdf (1, 2) statistics-release-1.6.3/inst/dist_fun/wishrnd.m000066400000000000000000000066401456127120000217610ustar00rootroot00000000000000## Copyright (C) 2013-2019 Nir Krakauer ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {[@var{W}, @var{D}] =} wishrnd (@var{Sigma}, @var{df}, @var{D}, @var{n}=1) ## ## Return a random matrix sampled from the Wishart distribution with given ## parameters ## ## Inputs: the @math{p x p} positive definite matrix @var{Sigma} (or the ## lower-triangular Cholesky factor @var{D} of @var{Sigma}) and scalar degrees ## of freedom parameter @var{df}. ## ## @var{df} can be non-integer as long as @math{@var{df} > p} ## ## Output: a random @math{p x p} matrix @var{W} from the ## Wishart(@var{Sigma}, @var{df}) distribution. If @var{n} > 1, then @var{W} is ## @var{p} x @var{p} x @var{n} and holds @var{n} such random matrices. ## (Optionally, the lower-triangular Cholesky factor @var{D} of @var{Sigma} is ## also returned.) ## ## Averaged across many samples, the mean of @var{W} should approach ## @var{df}*@var{Sigma}, and the variance of each element @var{W}_ij should ## approach @var{df}*(@var{Sigma}_ij^2 + @var{Sigma}_ii*@var{Sigma}_jj) ## ## @subheading References ## ## @enumerate ## @item ## Yu-Cheng Ku and Peter Bloomfield (2010), Generating Random Wishart Matrices ## with Fractional Degrees of Freedom in OX, ## http://www.gwu.edu/~forcpgm/YuChengKu-030510final-WishartYu-ChengKu.pdf ## @end enumerate ## ## @seealso{wishpdf, iwishpdf, iwishrnd} ## @end deftypefn function [W, D] = wishrnd (Sigma, df, D, n=1) if (nargin < 2) print_usage (); endif if nargin < 3 || isempty(D) try D = chol(Sigma, 'lower'); catch error (strcat (["iwishrnd: Cholesky decomposition failed;"], ... [" SIGMA probably not positive definite."])); end_try_catch endif p = size(D, 1); if df < p df = floor(df); #distribution not defined for small noninteger df df_isint = 1; else #check for integer degrees of freedom df_isint = (df == floor(df)); endif if ~df_isint [ii, jj] = ind2sub([p, p], 1:(p*p)); endif if n > 1 W = nan(p, p, n); endif for i = 1:n if df_isint Z = D * randn(p, df); else Z = diag(sqrt(chi2rnd(df - (0:(p-1))))); #fill diagonal ##note: chi2rnd(x) is equivalent to 2*randg(x/2), but the latter seems to ## offer no performance advantage Z(ii > jj) = randn(p*(p-1)/2, 1); #fill lower triangle Z = D * Z; endif W(:, :, i) = Z*Z'; endfor endfunction %!assert(size (wishrnd (1,2)), [1, 1]); %!assert(size (wishrnd (1,2,[])), [1, 1]); %!assert(size (wishrnd (1,2,1)), [1, 1]); %!assert(size (wishrnd ([],2,1)), [1, 1]); %!assert(size (wishrnd ([3 1; 1 3], 2.00001, [], 1)), [2, 2]); %!assert(size (wishrnd (eye(2), 2, [], 3)), [2, 2, 3]); %% Test input validation %!error wishrnd () %!error wishrnd (1) %!error wishrnd ([1; 1], 2) statistics-release-1.6.3/inst/dist_stat/000077500000000000000000000000001456127120000203025ustar00rootroot00000000000000statistics-release-1.6.3/inst/dist_stat/betastat.m000066400000000000000000000101011456127120000222600ustar00rootroot00000000000000## Copyright (C) 2006, 2007 Arno Onken ## Copyright (C) 2024 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {[@var{m}, @var{v}] =} betastat (@var{a}, @var{b}) ## ## Compute statistics of the Beta distribution. ## ## @code{[@var{m}, @var{v}] = betastat (@var{a}, @var{b})} returns the mean ## and variance of the Beta distribution with shape parameters @var{a} and ## @var{b}. ## ## The size of @var{m} (mean) and @var{v} (variance) is the common size of the ## input arguments. A scalar input functions as a constant matrix of the ## same size as the other inputs. ## ## Further information about the Beta distribution can be found at ## @url{https://en.wikipedia.org/wiki/Beta_distribution} ## ## @seealso{betacdf, betainv, betapdf, betarnd, betafit, betalike} ## @end deftypefn function [m, v] = betastat (a, b) ## Check for valid number of input arguments if (nargin < 2) error ("betastat: function called with too few input arguments."); endif ## Check for A and B being numeric if (! (isnumeric (a) && isnumeric (b))) error ("betastat: A and B must be numeric."); endif ## Check for A and B being real if (iscomplex (a) || iscomplex (b)) error ("betastat: A and B must not be complex."); endif ## Check for common size of A and B if (! isscalar (a) || ! isscalar (b)) [retval, a, b] = common_size (a, b); if (retval > 0) error ("betastat: A and B must be of common size or scalars."); endif endif ## Catch invalid parameters k = find (! (a > 0 & b > 0)); ## Calculate moments a_b = a + b; m = a ./ (a_b); m(k) = NaN; if (nargout > 1) v = (a .* b) ./ ((a_b .^ 2) .* (a_b + 1)); v(k) = NaN; endif endfunction ## Input validation tests %!error betastat () %!error betastat (1) %!error betastat ({}, 2) %!error betastat (1, "") %!error betastat (i, 2) %!error betastat (1, i) %!error ... %! betastat (ones (3), ones (2)) %!error ... %! betastat (ones (2), ones (3)) ## Output validation tests %!test %! a = -2:6; %! b = 0.4:0.2:2; %! [m, v] = betastat (a, b); %! expected_m = [NaN NaN NaN 1/2 2/3.2 3/4.4 4/5.6 5/6.8 6/8]; %! expected_v = [NaN NaN NaN 0.0833, 0.0558, 0.0402, 0.0309, 0.0250, 0.0208]; %! assert (m, expected_m, eps*100); %! assert (v, expected_v, 0.001); %!test %! a = -2:1:6; %! [m, v] = betastat (a, 1.5); %! expected_m = [NaN NaN NaN 1/2.5 2/3.5 3/4.5 4/5.5 5/6.5 6/7.5]; %! expected_v = [NaN NaN NaN 0.0686, 0.0544, 0.0404, 0.0305, 0.0237, 0.0188]; %! assert (m, expected_m); %! assert (v, expected_v, 0.001); %!test %! a = [14 Inf 10 NaN 10]; %! b = [12 9 NaN Inf 12]; %! [m, v] = betastat (a, b); %! expected_m = [14/26 NaN NaN NaN 10/22]; %! expected_v = [168/18252 NaN NaN NaN 120/11132]; %! assert (m, expected_m); %! assert (v, expected_v); %!assert (nthargout (1:2, @betastat, 5, []), {[], []}) %!assert (nthargout (1:2, @betastat, [], 5), {[], []}) %!assert (size (betastat (rand (10, 5, 4), rand (10, 5, 4))), [10 5 4]) %!assert (size (betastat (rand (10, 5, 4), 7)), [10 5 4]) statistics-release-1.6.3/inst/dist_stat/binostat.m000066400000000000000000000103021456127120000222770ustar00rootroot00000000000000## Copyright (C) 2006, 2007 Arno Onken ## Copyright (C) 2015 Carnë Draug ## Copyright (C) 2024 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {[@var{m}, @var{v}] =} binostat (@var{n}, @var{ps}) ## ## Compute statistics of the binomial distribution. ## ## @code{[@var{m}, @var{v}] = binostat (@var{n}, @var{ps})} returns the mean and ## variance of the binomial distribution with parameters @var{n} and @var{ps}, ## where @var{n} is the number of trials and @var{ps} is the probability of ## success. ## ## The size of @var{m} (mean) and @var{v} (variance) is the common size of the ## input arguments. A scalar input functions as a constant matrix of the ## same size as the other inputs. ## ## Further information about the binomial distribution can be found at ## @url{https://en.wikipedia.org/wiki/Binomial_distribution} ## ## @seealso{binocdf, binoinv, binopdf, binornd, binofit, binolike, binotest} ## @end deftypefn function [m, v] = binostat (n, ps) ## Check for valid number of input arguments if (nargin < 2) error ("binostat: function called with too few input arguments."); endif ## Check for N and PS being numeric if (! (isnumeric (n) && isnumeric (ps))) error ("binostat: N and PS must be numeric."); endif ## Check for N and PS being real if (iscomplex (n) || iscomplex (ps)) error ("binostat: N and PS must not be complex."); endif ## Check for common size of N and PS if (! isscalar (n) || ! isscalar (ps)) [retval, n, ps] = common_size (n, ps); if (retval > 0) error ("binostat: N and PS must be of common size or scalars."); endif endif ## Catch invalid parameters k = find (! (n > 0 & fix (n) == n & ps >= 0 & ps <= 1)); ## Calculate moments m = n .* ps; m(k) = NaN; if (nargout > 1) v = m .* (1 - ps); v(k) = NaN; endif endfunction ## Input validation tests %!error binostat () %!error binostat (1) %!error binostat ({}, 2) %!error binostat (1, "") %!error binostat (i, 2) %!error binostat (1, i) %!error ... %! binostat (ones (3), ones (2)) %!error ... %! binostat (ones (2), ones (3)) ## Output validation tests %!test %! n = 1:6; %! ps = 0:0.2:1; %! [m, v] = binostat (n, ps); %! expected_m = [0.00, 0.40, 1.20, 2.40, 4.00, 6.00]; %! expected_v = [0.00, 0.32, 0.72, 0.96, 0.80, 0.00]; %! assert (m, expected_m, 0.001); %! assert (v, expected_v, 0.001); %!test %! n = 1:6; %! [m, v] = binostat (n, 0.5); %! expected_m = [0.50, 1.00, 1.50, 2.00, 2.50, 3.00]; %! expected_v = [0.25, 0.50, 0.75, 1.00, 1.25, 1.50]; %! assert (m, expected_m, 0.001); %! assert (v, expected_v, 0.001); %!test %! n = [-Inf -3 5 0.5 3 NaN 100, Inf]; %! [m, v] = binostat (n, 0.5); %! assert (isnan (m), [true true false true false true false false]) %! assert (isnan (v), [true true false true false true false false]) %! assert (m(end), Inf); %! assert (v(end), Inf); %!assert (nthargout (1:2, @binostat, 5, []), {[], []}) %!assert (nthargout (1:2, @binostat, [], 5), {[], []}) %!assert (size (binostat (randi (100, 10, 5, 4), rand (10, 5, 4))), [10 5 4]) %!assert (size (binostat (randi (100, 10, 5, 4), 7)), [10 5 4]) statistics-release-1.6.3/inst/dist_stat/chi2stat.m000066400000000000000000000046041456127120000222050ustar00rootroot00000000000000## Copyright (C) 2006, 2007 Arno Onken ## Copyright (C) 2024 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {[@var{m}, @var{v}] =} chi2stat (@var{df}) ## ## Compute statistics of the chi-squared distribution. ## ## @code{[@var{m}, @var{v}] = chi2stat (@var{df})} returns the mean and ## variance of the chi-squared distribution with @var{df} degrees of freedom. ## ## The size of @var{m} (mean) and @var{v} (variance) is the same size of the ## input argument. ## ## Further information about the chi-squared distribution can be found at ## @url{https://en.wikipedia.org/wiki/Chi-squared_distribution} ## ## @seealso{chi2cdf, chi2inv, chi2pdf, chi2rnd} ## @end deftypefn function [m, v] = chi2stat (df) ## Check for valid number of input arguments if (nargin < 1) error ("chi2stat: function called with too few input arguments."); endif ## Check for DF being numeric if (! isnumeric (df)) error ("chi2stat: DF must be numeric."); endif ## Check for DF being real if (iscomplex (df)) error ("chi2stat: DF must not be complex."); endif ## Calculate moments m = df; v = 2 .* df; ## Continue argument check k = find (! (df > 0) | ! (df < Inf)); if (any (k)) m(k) = NaN; v(k) = NaN; endif endfunction ## Input validation tests %!error chi2stat () %!error chi2stat ({}) %!error chi2stat ("") %!error chi2stat (i) ## Output validation tests %!test %! df = 1:6; %! [m, v] = chi2stat (df); %! assert (m, df); %! assert (v, [2, 4, 6, 8, 10, 12], 0.001); statistics-release-1.6.3/inst/dist_stat/evstat.m000066400000000000000000000073641456127120000220000ustar00rootroot00000000000000## Copyright (C) 2022-2024 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {[@var{m}, @var{v}] =} evstat (@var{mu}, @var{sigma}) ## ## Compute statistics of the extreme value distribution. ## ## @code{[@var{m}, @var{v}] = evstat (@var{mu}, @var{sigma})} returns the mean ## and variance of the extreme value distribution (also known as the Gumbel ## or the type I generalized extreme value distribution) with location parameter ## @var{mu} and scale parameter @var{sigma}. ## ## The size of @var{m} (mean) and @var{v} (variance) is the common size of the ## input arguments. A scalar input functions as a constant matrix of the ## same size as the other inputs. ## ## The type 1 extreme value distribution is also known as the Gumbel ## distribution. This version is suitable for modeling minima. The mirror image ## of this distribution can be used to model maxima by negating @var{x}. If ## @var{y} has a Weibull distribution, then @code{@var{x} = log (@var{y})} has ## the type 1 extreme value distribution. ## ## Further information about the Gumbel distribution can be found at ## @url{https://en.wikipedia.org/wiki/Gumbel_distribution} ## ## @seealso{evcdf, evinv, evpdf, evrnd, evfit, evlike} ## @end deftypefn function [m, v] = evstat (mu, sigma) ## Check for valid number of input arguments if (nargin < 2) error ("evstat: function called with too few input arguments."); endif ## Check for MU and SIGMA being numeric if (! (isnumeric (mu) && isnumeric (sigma))) error ("evstat: MU and SIGMA must be numeric."); endif ## Check for MU and SIGMA being real if (iscomplex (mu) || iscomplex (sigma)) error ("evstat: MU and SIGMA must not be complex."); endif ## Check for common size of MU and SIGMA if (! isscalar (mu) || ! isscalar (sigma)) [retval, mu, sigma] = common_size (mu, sigma); if (retval > 0) error ("evstat: MU and SIGMA must be of common size or scalars."); endif endif ## Return NaNs for out of range values of SIGMA sigma(sigma <= 0) = NaN; ## Calculate mean and variance m = mu + psi(1) .* sigma; v = (pi .* sigma) .^ 2 ./ 6; endfunction ## Input validation tests %!error evstat () %!error evstat (1) %!error evstat ({}, 2) %!error evstat (1, "") %!error evstat (i, 2) %!error evstat (1, i) %!error ... %! evstat (ones (3), ones (2)) %!error ... %! evstat (ones (2), ones (3)) ## Output validation tests %!shared x, y0, y1 %! x = [-5, 0, 1, 2, 3]; %! y0 = [NaN, NaN, 0.4228, 0.8456, 1.2684]; %! y1 = [-5.5772, -3.4633, -3.0405, -2.6177, -2.1949]; %!assert (evstat (x, x), y0, 1e-4) %!assert (evstat (x, x+6), y1, 1e-4) %!assert (evstat (x, x-6), NaN (1,5)) statistics-release-1.6.3/inst/dist_stat/expstat.m000066400000000000000000000053371456127120000221600ustar00rootroot00000000000000## Copyright (C) 2006, 2007 Arno Onken ## Copyright (C) 2024 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {[@var{m}, @var{v}] =} expstat (@var{mu}) ## ## Compute statistics of the exponential distribution. ## ## @code{[@var{m}, @var{v}] = expstat (@var{mu})} returns the mean and ## variance of the exponential distribution with mean parameter @var{mu}. ## ## The size of @var{m} (mean) and @var{v} (variance) is the same size of the ## input argument. ## ## A common alternative parameterization of the exponential distribution is to ## use the parameter @math{λ} defined as the mean number of events in an ## interval as opposed to the parameter @math{μ}, which is the mean wait time ## for an event to occur. @math{λ} and @math{μ} are reciprocals, ## i.e. @math{μ = 1 / λ}. ## ## Further information about the exponential distribution can be found at ## @url{https://en.wikipedia.org/wiki/Exponential_distribution} ## ## @seealso{expcdf, expinv, exppdf, exprnd, expfit, explike} ## @end deftypefn function [m, v] = expstat (mu) ## Check for valid number of input arguments if (nargin < 1) error ("expstat: function called with too few input arguments."); endif ## Check for MU being numeric if (! isnumeric (mu)) error ("expstat: MU must be numeric."); endif ## Check for MU being real if (iscomplex (mu)) error ("expstat: MU must not be complex."); endif ## Calculate moments m = mu; v = m .^ 2; ## Continue argument check k = find (! (mu > 0) | ! (mu < Inf)); if (any (k)) m(k) = NaN; v(k) = NaN; endif endfunction ## Input validation tests %!error expstat () %!error expstat ({}) %!error expstat ("") %!error expstat (i) ## Output validation tests %!test %! mu = 1:6; %! [m, v] = expstat (mu); %! assert (m, [1, 2, 3, 4, 5, 6], 0.001); %! assert (v, [1, 4, 9, 16, 25, 36], 0.001); statistics-release-1.6.3/inst/dist_stat/fstat.m000066400000000000000000000073231456127120000216060ustar00rootroot00000000000000## Copyright (C) 2006, 2007 Arno Onken ## Copyright (C) 2024 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {[@var{m}, @var{v}] =} fstat (@var{df1}, @var{df2}) ## ## Compute statistics of the @math{F}-distribution. ## ## @code{[@var{m}, @var{v}] = fstat (@var{df1}, @var{df2})} returns the mean and ## variance of the @math{F}-distribution with @var{df1} and @var{df2} degrees ## of freedom. ## ## The size of @var{m} (mean) and @var{v} (variance) is the common size of the ## input arguments. A scalar input functions as a constant matrix of the ## same size as the other inputs. ## ## Further information about the @math{F}-distribution can be found at ## @url{https://en.wikipedia.org/wiki/F-distribution} ## ## @seealso{fcdf, finv, fpdf, frnd} ## @end deftypefn function [m, v] = fstat (df1, df2) ## Check for valid number of input arguments if (nargin < 2) error ("fstat: function called with too few input arguments."); endif ## Check for DF1 and DF2 being numeric if (! (isnumeric (df1) && isnumeric (df2))) error ("fstat: DF1 and DF2 must be numeric."); endif ## Check for DF1 and DF2 being real if (iscomplex (df1) || iscomplex (df2)) error ("fstat: DF1 and DF2 must not be complex."); endif ## Check for common size of DF1 and DF2 if (! isscalar (df1) || ! isscalar (df2)) [retval, df1, df2] = common_size (df1, df2); if (retval > 0) error ("fstat: DF1 and DF2 must be of common size or scalars."); endif endif ## Calculate moments m = df2 ./ (df2 - 2); v = (2 .* (df2 .^ 2) .* (df1 + df2 - 2)) ./ ... (df1 .* ((df2 - 2) .^ 2) .* (df2 - 4)); ## Continue argument check k = find (! (df1 > 0) | ! (df1 < Inf) | ! (df2 > 2) | ! (df2 < Inf)); if (any (k)) m(k) = NaN; v(k) = NaN; endif k = find (! (df2 > 4)); if (any (k)) v(k) = NaN; endif endfunction ## Input validation tests %!error fstat () %!error fstat (1) %!error fstat ({}, 2) %!error fstat (1, "") %!error fstat (i, 2) %!error fstat (1, i) %!error ... %! fstat (ones (3), ones (2)) %!error ... %! fstat (ones (2), ones (3)) ## Output validation tests %!test %! df1 = 1:6; %! df2 = 5:10; %! [m, v] = fstat (df1, df2); %! expected_mn = [1.6667, 1.5000, 1.4000, 1.3333, 1.2857, 1.2500]; %! expected_v = [22.2222, 6.7500, 3.4844, 2.2222, 1.5869, 1.2153]; %! assert (m, expected_mn, 0.001); %! assert (v, expected_v, 0.001); %!test %! df1 = 1:6; %! [m, v] = fstat (df1, 5); %! expected_mn = [1.6667, 1.6667, 1.6667, 1.6667, 1.6667, 1.6667]; %! expected_v = [22.2222, 13.8889, 11.1111, 9.7222, 8.8889, 8.3333]; %! assert (m, expected_mn, 0.001); %! assert (v, expected_v, 0.001); statistics-release-1.6.3/inst/dist_stat/gamstat.m000066400000000000000000000076711456127120000221330ustar00rootroot00000000000000## Copyright (C) 2006, 2007 Arno Onken ## Copyright (C) 2024 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received k copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {[@var{m}, @var{v}] =} gamstat (@var{k}, @var{theta}) ## ## Compute statistics of the Gamma distribution. ## ## @code{[@var{m}, @var{v}] = gamstat (@var{k}, @var{theta})} returns the mean ## and variance of the Gamma distribution with with shape parameter @var{k} and ## scale parameter @var{theta}. ## ## The size of @var{m} (mean) and @var{v} (variance) is the common size of the ## input arguments. A scalar input functions as a constant matrix of the ## same size as the other inputs. ## ## There are two equivalent parameterizations in common use: ## @enumerate ## @item With a shape parameter @math{k} and a scale parameter @math{θ}, which ## is used by @code{gamrnd}. ## @item With a shape parameter @math{α = k} and an inverse scale parameter ## @math{β = 1 / θ}, called a rate parameter. ## @end enumerate ## ## Further information about the Gamma distribution can be found at ## @url{https://en.wikipedia.org/wiki/Gamma_distribution} ## ## @seealso{gamcdf, gaminv, gampdf, gamrnd, gamfit, gamlike} ## @end deftypefn function [m, v] = gamstat (k, theta) ## Check for valid number of input arguments if (nargin < 2) error ("gamstat: function called with too few input arguments."); endif ## Check for K and THETA being numeric if (! (isnumeric (k) && isnumeric (theta))) error ("gamstat: K and THETA must be numeric."); endif ## Check for K and THETA being real if (iscomplex (k) || iscomplex (theta)) error ("gamstat: K and THETA must not be complex."); endif ## Check for common size of K and THETA if (! isscalar (k) || ! isscalar (theta)) [retval, k, theta] = common_size (k, theta); if (retval > 0) error ("gamstat: K and THETA must be of common size or scalars."); endif endif ## Calculate moments m = k .* theta; v = k .* (theta .^ 2); ## Continue argument check k = find (! (k > 0) | ! (k < Inf) | ! (theta > 0) | ! (theta < Inf)); if (any (k)) m(k) = NaN; v(k) = NaN; endif endfunction ## Input validation tests %!error gamstat () %!error gamstat (1) %!error gamstat ({}, 2) %!error gamstat (1, "") %!error gamstat (i, 2) %!error gamstat (1, i) %!error ... %! gamstat (ones (3), ones (2)) %!error ... %! gamstat (ones (2), ones (3)) ## Output validation tests %!test %! k = 1:6; %! theta = 1:0.2:2; %! [m, v] = gamstat (k, theta); %! expected_m = [1.00, 2.40, 4.20, 6.40, 9.00, 12.00]; %! expected_v = [1.00, 2.88, 5.88, 10.24, 16.20, 24.00]; %! assert (m, expected_m, 0.001); %! assert (v, expected_v, 0.001); %!test %! k = 1:6; %! [m, v] = gamstat (k, 1.5); %! expected_m = [1.50, 3.00, 4.50, 6.00, 7.50, 9.00]; %! expected_v = [2.25, 4.50, 6.75, 9.00, 11.25, 13.50]; %! assert (m, expected_m, 0.001); %! assert (v, expected_v, 0.001); statistics-release-1.6.3/inst/dist_stat/geostat.m000066400000000000000000000046731456127120000221400ustar00rootroot00000000000000## Copyright (C) 2006, 2007 Arno Onken ## Copyright (C) 2024 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {[@var{m}, @var{v}] =} geostat (@var{ps}) ## ## Compute statistics of the geometric distribution. ## ## @code{[@var{m}, @var{v}] = geostat (@var{ps})} returns the mean and ## variance of the geometric distribution with probability of success parameter ## @var{ps}. ## ## The size of @var{m} (mean) and @var{v} (variance) is the same size of the ## input argument. ## ## Further information about the geometric distribution can be found at ## @url{https://en.wikipedia.org/wiki/Geometric_distribution} ## ## @seealso{geocdf, geoinv, geopdf, geornd, geofit} ## @end deftypefn function [m, v] = geostat (ps) ## Check for valid number of input arguments if (nargin < 1) error ("geostat: function called with too few input arguments."); endif ## Check for PS being numeric if (! isnumeric (ps)) error ("geostat: PS must be numeric."); endif ## Check for PS being real if (iscomplex (ps)) error ("geostat: PS must not be complex."); endif ## Calculate moments q = 1 - ps; m = q ./ ps; v = q ./ (ps .^ 2); ## Continue argument check k = find (! (ps >= 0) | ! (ps <= 1)); if (any (k)) m(k) = NaN; v(k) = NaN; endif endfunction ## Input validation tests %!error geostat () %!error geostat ({}) %!error geostat ("") %!error geostat (i) ## Output validation tests %!test %! ps = 1 ./ (1:6); %! [m, v] = geostat (ps); %! assert (m, [0, 1, 2, 3, 4, 5], 0.001); %! assert (v, [0, 2, 6, 12, 20, 30], 0.001); statistics-release-1.6.3/inst/dist_stat/gevstat.m000066400000000000000000000117311456127120000221400ustar00rootroot00000000000000## Copyright (C) 2012 Nir Krakauer ## Copyright (C) 2022-2024 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {[@var{m}, @var{v}] =} gevstat (@var{k}, @var{sigma}, @var{mu}) ## ## Compute statistics of the generalized extreme value distribution. ## ## @code{[@var{m}, @var{v}] = gevstat (@var{k}, @var{sigma}, @var{mu})} returns ## the mean and variance of the generalized extreme value distribution with ## shape parameter @var{k}, scale parameter @var{sigma}, and location parameter ## @var{mu}. ## ## The size of @var{m} (mean) and @var{v} (variance) is the common size of the ## input arguments. A scalar input functions as a constant matrix of the ## same size as the other inputs. ## ## The mean of the GEV distribution is not finite when @qcode{@var{k} >= 1}, and ## the variance is not finite when @qcode{@var{k} >= 1/2}. The GEV distribution ## has positive density only for values of @var{x} such that ## @qcode{@var{k} * (@var{x} - @var{mu}) / @var{sigma} > -1}. ## ## Further information about the generalized extreme value distribution can be ## found at ## @url{https://en.wikipedia.org/wiki/Generalized_extreme_value_distribution} ## ## @subheading References ## @enumerate ## @item ## Rolf-Dieter Reiss and Michael Thomas. @cite{Statistical Analysis of Extreme ## Values with Applications to Insurance, Finance, Hydrology and Other Fields}. ## Chapter 1, pages 16-17, Springer, 2007. ## @end enumerate ## ## @seealso{gevcdf, gevinv, gevpdf, gevrnd, gevfit, gevlike} ## @end deftypefn function [m, v] = gevstat (k, sigma, mu) ## Check for valid number of input arguments if (nargin < 3) error ("gevstat: function called with too few input arguments."); endif ## Check for K, SIGMA, and MU being numeric if (! (isnumeric (k) && isnumeric (sigma) && isnumeric (mu))) error ("gevstat: K, SIGMA, and MU must be numeric."); endif ## Check for K, SIGMA, and MU being real if (iscomplex (k) || iscomplex (sigma) || iscomplex (mu)) error ("gevstat: K, SIGMA, and MU must not be complex."); endif ## Check for common size of K, SIGMA, and MU if (! isscalar (k) || ! isscalar (sigma) || ! isscalar (mu)) [retval, k, sigma, mu] = common_size (k, sigma, mu); if (retval > 0) error ("gevstat: K, SIGMA, and MU must be of common size or scalars."); endif endif ## Euler-Mascheroni constant eg = 0.57721566490153286; m = v = k; ## Find the mean m(k >= 1) = Inf; m(k == 0) = mu(k == 0) + eg*sigma(k == 0); m(k < 1 & k != 0) = mu(k < 1 & k != 0) + sigma(k < 1 & k != 0) .* ... (gamma(1-k(k < 1 & k != 0)) - 1) ./ k(k < 1 & k != 0); ## Find the variance v(k >= 0.5) = Inf; v(k == 0) = (pi^2 / 6) * sigma(k == 0) .^ 2; v(k < 0.5 & k != 0) = (gamma(1-2*k(k < 0.5 & k != 0)) - ... gamma(1-k(k < 0.5 & k != 0)).^2) .* ... (sigma(k < 0.5 & k != 0) ./ k(k < 0.5 & k != 0)) .^ 2; endfunction ## Input validation tests %!error gevstat () %!error gevstat (1) %!error gevstat (1, 2) %!error gevstat ({}, 2, 3) %!error gevstat (1, "", 3) %!error gevstat (1, 2, "") %!error gevstat (i, 2, 3) %!error gevstat (1, i, 3) %!error gevstat (1, 2, i) %!error ... %! gevstat (ones (3), ones (2), 3) %!error ... %! gevstat (ones (2), 2, ones (3)) %!error ... %! gevstat (1, ones (2), ones (3)) ## Output validation tests %!test %! k = [-1, -0.5, 0, 0.2, 0.4, 0.5, 1]; %! sigma = 2; %! mu = 1; %! [m, v] = gevstat (k, sigma, mu); %! expected_m = [1, 1.4551, 2.1544, 2.6423, 3.4460, 4.0898, Inf]; %! expected_v = [4, 3.4336, 6.5797, 13.3761, 59.3288, Inf, Inf]; %! assert (m, expected_m, -0.001); %! assert (v, expected_v, -0.001); statistics-release-1.6.3/inst/dist_stat/gpstat.m000066400000000000000000000130021456127120000217560ustar00rootroot00000000000000## Copyright (C) 2022-2024 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {[@var{m}, @var{v}] =} gpstat (@var{k}, @var{sigma}, @var{mu}) ## ## Compute statistics of the generalized Pareto distribution. ## ## @code{[@var{m}, @var{v}] = gpstat (@var{k}, @var{sigma}, @var{mu})} ## returns the mean and variance of the generalized Pareto distribution with ## shape parameter @var{k}, scale parameter @var{sigma}, and location parameter ## @var{mu}. ## ## The size of @var{m} (mean) and @var{v} (variance) is the common size of the ## input arguments. A scalar input functions as a constant matrix of the ## same size as the other inputs. ## ## When @var{k} = 0 and @var{mu} = 0, the generalized Pareto ## distribution is equivalent to the exponential distribution. When ## @code{@var{k} > 0} and @code{@var{mu} = @var{sigma} / @var{k}}, ## the generalized Pareto distribution is equivalent to the Pareto distribution. ## The mean of the generalized Pareto distribution is not finite when ## @code{@var{k} >= 1}, and the variance is not finite when ## @code{@var{k} >= 1/2}. When @code{@var{k} >= 0}, the generalized ## Pareto distribution has positive density for @code{@var{x} > @var{mu}}, ## or, when @code{@var{k} < 0}, for ## @code{0 <= (@var{x} - @var{mu}) / @var{sigma} <= -1 / @var{k}}. ## ## Further information about the generalized Pareto distribution can be found at ## @url{https://en.wikipedia.org/wiki/Generalized_Pareto_distribution} ## ## @seealso{gpcdf, gpinv, gppdf, gprnd, gpfit, gplike} ## @end deftypefn function [m, v] = gpstat (k, sigma, mu) ## Check for valid number of input arguments if (nargin < 3) error ("gpstat: function called with too few input arguments."); endif ## Check for K, SIGMA, and MU being numeric if (! (isnumeric (k) && isnumeric (sigma) && isnumeric (mu))) error ("gpstat: K, SIGMA, and MU must be numeric."); endif ## Check for K, SIGMA, and MU being real if (iscomplex (k) || iscomplex (sigma) || iscomplex (mu)) error ("gpstat: K, SIGMA, and MU must not be complex."); endif ## Check for common size of K, SIGMA, and MU if (! isscalar (k) || ! isscalar (sigma) || ! isscalar (mu)) [retval, k, sigma, mu] = common_size (k, sigma, mu); if (retval > 0) error ("gpstat: K, SIGMA, and MU must be of common size or scalars."); endif endif ## Return NaNs for out of range SCALE parameters. sigma(sigma <= 0) = NaN; ## Check for appropriate class if (isa (k, "single") || isa (sigma, "single") || isa (mu, "single")); is_class = "single"; else is_class = "double"; endif ## Prepare output m = NaN (size (k), is_class); v = NaN (size (k), is_class); ## Compute cases for SHAPE == 0 knot0 = (abs (k) < eps (is_class)); m(knot0) = 1; v(knot0) = 1; ## Compute cases for SHAPE != 0 knot0 = ! knot0; ## SHAPE < 1 kless = knot0 & (k < 1); m(kless) = 1 ./ (1 - k(kless)); ## SHAPE > 1 m(k >= 1) = Inf; ## SHAPE < 1/2 ## Find the k~=0 cases and fill in the variance. kless = knot0 & (k < 1/2); v(kless) = 1 ./ ((1-k(kless)).^2 .* (1-2.*k(kless))); ## SHAPE > 1/2 v(k >= 1/2) = Inf; ## Compute mean and variance m = mu + sigma .* m; v = sigma .^ 2 .* v; endfunction ## Input validation tests %!error gpstat () %!error gpstat (1) %!error gpstat (1, 2) %!error gpstat ({}, 2, 3) %!error gpstat (1, "", 3) %!error gpstat (1, 2, "") %!error gpstat (i, 2, 3) %!error gpstat (1, i, 3) %!error gpstat (1, 2, i) %!error ... %! gpstat (ones (3), ones (2), 3) %!error ... %! gpstat (ones (2), 2, ones (3)) %!error ... %! gpstat (1, ones (2), ones (3)) ## Output validation tests %!shared x, y %! x = [-Inf, -1, 0, 1/2, 1, Inf]; %! y = [0, 0.5, 1, 2, Inf, Inf]; %!assert (gpstat (x, ones (1,6), zeros (1,6)), y, eps) ## Test class of input preserved %!assert (gpstat (single (x), 1, 0), single (y), eps("single")) %!assert (gpstat (x, single (1), 0), single (y), eps("single")) %!assert (gpstat (x, 1, single (0)), single (y), eps("single")) %!assert (gpstat (single ([x, NaN]), 1, 0), single ([y, NaN]), eps("single")) %!assert (gpstat ([x, NaN], single (1), 0), single ([y, NaN]), eps("single")) %!assert (gpstat ([x, NaN], 1, single (0)), single ([y, NaN]), eps("single")) statistics-release-1.6.3/inst/dist_stat/hygestat.m000066400000000000000000000113261456127120000223130ustar00rootroot00000000000000## Copyright (C) 2006, 2007 Arno Onken ## Copyright (C) 2024 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {[@var{mn}, @var{v}] =} hygestat (@var{m}, @var{k}, @var{n}) ## ## Compute statistics of the hypergeometric distribution. ## ## @code{[@var{mn}, @var{v}] = hygestat (@var{m}, @var{k}, @var{n})} returns the ## mean and variance of the hypergeometric distribution parameters @var{m}, ## @var{k}, and @var{n}. ## ## @itemize ## @item ## @var{m} is the total size of the population of the hypergeometric ## distribution. The elements of @var{m} must be positive natural numbers. ## ## @item ## @var{k} is the number of marked items of the hypergeometric distribution. ## The elements of @var{k} must be natural numbers. ## ## @item ## @var{n} is the size of the drawn sample of the hypergeometric ## distribution. The elements of @var{n} must be positive natural numbers. ## @end itemize ## ## The size of @var{mn} (mean) and @var{v} (variance) is the common size of the ## input arguments. A scalar input functions as a constant matrix of the ## same size as the other inputs. ## ## Further information about the hypergeometric distribution can be found at ## @url{https://en.wikipedia.org/wiki/Hypergeometric_distribution} ## ## @seealso{hygecdf, hygeinv, hygepdf, hygernd} ## @end deftypefn function [mn, v] = hygestat (m, k, n) ## Check for valid number of input arguments if (nargin < 3) error ("hygestat: function called with too few input arguments."); endif ## Check for M, K, and N being numeric if (! (isnumeric (m) && isnumeric (k) && isnumeric (n))) error ("hygestat: M, K, and N must be numeric."); endif ## Check for M, K, and N being real if (iscomplex (m) || iscomplex (k) || iscomplex (n)) error ("hygestat: M, K, and N must not be complex."); endif ## Check for common size of M, K, and N if (! isscalar (m) || ! isscalar (k) || ! isscalar (n)) [retval, m, k, n] = common_size (m, k, n); if (retval > 0) error ("hygestat: M, K, and N must be of common size or scalars."); endif endif ## Calculate moments mn = (n .* k) ./ m; v = (n .* (k ./ m) .* (1 - k ./ m) .* (m - n)) ./ (m - 1); ## Continue argument check is_nan = find (! (m >= 0) | ! (k >= 0) | ! (n > 0) | ! (m == round (m)) | ... ! (k == round (k)) | ! (n == round (n)) | ! (k <= m) | ... ! (n <= m)); if (any (is_nan)) mn(is_nan) = NaN; v(is_nan) = NaN; endif endfunction ## Input validation tests %!error hygestat () %!error hygestat (1) %!error hygestat (1, 2) %!error hygestat ({}, 2, 3) %!error hygestat (1, "", 3) %!error hygestat (1, 2, "") %!error hygestat (i, 2, 3) %!error hygestat (1, i, 3) %!error hygestat (1, 2, i) %!error ... %! hygestat (ones (3), ones (2), 3) %!error ... %! hygestat (ones (2), 2, ones (3)) %!error ... %! hygestat (1, ones (2), ones (3)) ## Output validation tests %!test %! m = 4:9; %! k = 0:5; %! n = 1:6; %! [mn, v] = hygestat (m, k, n); %! expected_mn = [0.0000, 0.4000, 1.0000, 1.7143, 2.5000, 3.3333]; %! expected_v = [0.0000, 0.2400, 0.4000, 0.4898, 0.5357, 0.5556]; %! assert (mn, expected_mn, 0.001); %! assert (v, expected_v, 0.001); %!test %! m = 4:9; %! k = 0:5; %! [mn, v] = hygestat (m, k, 2); %! expected_mn = [0.0000, 0.4000, 0.6667, 0.8571, 1.0000, 1.1111]; %! expected_v = [0.0000, 0.2400, 0.3556, 0.4082, 0.4286, 0.4321]; %! assert (mn, expected_mn, 0.001); %! assert (v, expected_v, 0.001); statistics-release-1.6.3/inst/dist_stat/lognstat.m000066400000000000000000000075351456127120000223250ustar00rootroot00000000000000## Copyright (C) 2006, 2007 Arno Onken ## Copyright (C) 2024 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {[@var{m}, @var{v}] =} lognstat (@var{mu}, @var{sigma}) ## ## Compute statistics of the log-normal distribution. ## ## @code{[@var{m}, @var{v}] = lognstat (@var{mu}, @var{sigma})} returns the mean ## and variance of the log-normal distribution with mean parameter @var{mu} and ## standard deviation parameter @var{sigma}, each corresponding to the ## associated normal distribution. ## ## The size of @var{m} (mean) and @var{v} (variance) is the common size of the ## input arguments. A scalar input functions as a constant matrix of the ## same size as the other inputs. ## ## Further information about the log-normal distribution can be found at ## @url{https://en.wikipedia.org/wiki/Log-normal_distribution} ## ## @seealso{logncdf, logninv, lognpdf, lognrnd, lognfit, lognlike} ## @end deftypefn function [m, v] = lognstat (mu, sigma) ## Check for valid number of input arguments if (nargin < 2) error ("lognstat: function called with too few input arguments."); endif ## Check for MU and SIGMA being numeric if (! (isnumeric (mu) && isnumeric (sigma))) error ("lognstat: MU and SIGMA must be numeric."); endif ## Check for MU and SIGMA being real if (iscomplex (mu) || iscomplex (sigma)) error ("lognstat: MU and SIGMA must not be complex."); endif ## Check for common size of MU and SIGMA if (! isscalar (mu) || ! isscalar (sigma)) [retval, mu, sigma] = common_size (mu, sigma); if (retval > 0) error ("lognstat: MU and SIGMA must be of common size or scalars."); endif endif ## Calculate moments m = exp (mu + (sigma .^ 2) ./ 2); v = (exp (sigma .^ 2) - 1) .* exp (2 .* mu + sigma .^ 2); ## Continue argument check k = find (! (sigma >= 0) | ! (sigma < Inf)); if (any (k)) m(k) = NaN; v(k) = NaN; endif endfunction ## Input validation tests %!error lognstat () %!error lognstat (1) %!error lognstat ({}, 2) %!error lognstat (1, "") %!error lognstat (i, 2) %!error lognstat (1, i) %!error ... %! lognstat (ones (3), ones (2)) %!error ... %! lognstat (ones (2), ones (3)) ## Output validation tests %!test %! mu = 0:0.2:1; %! sigma = 0.2:0.2:1.2; %! [m, v] = lognstat (mu, sigma); %! expected_m = [1.0202, 1.3231, 1.7860, 2.5093, 3.6693, 5.5845]; %! expected_v = [0.0425, 0.3038, 1.3823, 5.6447, 23.1345, 100.4437]; %! assert (m, expected_m, 0.001); %! assert (v, expected_v, 0.001); %!test %! sigma = 0.2:0.2:1.2; %! [m, v] = lognstat (0, sigma); %! expected_m = [1.0202, 1.0833, 1.1972, 1.3771, 1.6487, 2.0544]; %! expected_v = [0.0425, 0.2036, 0.6211, 1.7002, 4.6708, 13.5936]; %! assert (m, expected_m, 0.001); %! assert (v, expected_v, 0.001); statistics-release-1.6.3/inst/dist_stat/nbinstat.m000066400000000000000000000073441456127120000223120ustar00rootroot00000000000000## Copyright (C) 2006, 2007 Arno Onken ## Copyright (C) 2024 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {[@var{m}, @var{v}] =} nbinstat (@var{r}, @var{ps}) ## ## Compute statistics of the negative binomial distribution. ## ## @code{[@var{m}, @var{v}] = nbinstat (@var{r}, @var{ps})} returns the mean ## and variance of the negative binomial distribution with parameters @var{r} ## and @var{ps}, where @var{r} is the number of successes until the experiment ## is stopped and @var{ps} is the probability of success in each experiment, ## given the number of failures in @var{x}. ## ## The size of @var{m} (mean) and @var{v} (variance) is the common size of the ## input arguments. A scalar input functions as a constant matrix of the ## same size as the other inputs. ## ## Further information about the negative binomial distribution can be found at ## @url{https://en.wikipedia.org/wiki/Negative_binomial_distribution} ## ## @seealso{nbincdf, nbininv, nbininv, nbinrnd, nbinfit, nbinlike} ## @end deftypefn function [m, v] = nbinstat (r, ps) ## Check for valid number of input arguments if (nargin < 2) error ("nbinstat: function called with too few input arguments."); endif ## Check for R and PS being numeric if (! (isnumeric (r) && isnumeric (ps))) error ("nbinstat: R and PS must be numeric."); endif ## Check for R and PS being real if (iscomplex (r) || iscomplex (ps)) error ("nbinstat: R and PS must not be complex."); endif ## Check for common size of R and PS if (! isscalar (r) || ! isscalar (ps)) [retval, r, ps] = common_size (r, ps); if (retval > 0) error ("nbinstat: R and PS must be of common size or scalars."); endif endif ## Calculate moments q = 1 - ps; m = r .* q ./ ps; v = r .* q ./ (ps .^ 2); ## Continue argument check k = find (! (r > 0) | ! (r < Inf) | ! (ps > 0) | ! (ps < 1)); if (any (k)) m(k) = NaN; v(k) = NaN; endif endfunction ## Input validation tests %!error nbinstat () %!error nbinstat (1) %!error nbinstat ({}, 2) %!error nbinstat (1, "") %!error nbinstat (i, 2) %!error nbinstat (1, i) %!error ... %! nbinstat (ones (3), ones (2)) %!error ... %! nbinstat (ones (2), ones (3)) ## Output validation tests %!test %! r = 1:4; %! ps = 0.2:0.2:0.8; %! [m, v] = nbinstat (r, ps); %! expected_m = [ 4.0000, 3.0000, 2.0000, 1.0000]; %! expected_v = [20.0000, 7.5000, 3.3333, 1.2500]; %! assert (m, expected_m, 0.001); %! assert (v, expected_v, 0.001); %!test %! r = 1:4; %! [m, v] = nbinstat (r, 0.5); %! expected_m = [1, 2, 3, 4]; %! expected_v = [2, 4, 6, 8]; %! assert (m, expected_m, 0.001); %! assert (v, expected_v, 0.001); statistics-release-1.6.3/inst/dist_stat/ncfstat.m000066400000000000000000000117351456127120000221310ustar00rootroot00000000000000## Copyright (C) 2022-2024 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {[@var{m}, @var{v}] =} ncfstat (@var{df1}, @var{df1}, @var{lambda}) ## ## Compute statistics for the noncentral @math{F}-distribution. ## ## @code{[@var{m}, @var{v}] = ncfstat (@var{df1}, @var{df1}, @var{lambda})} ## returns the mean and variance of the noncentral @math{F}-distribution with ## @var{df1} and @var{df2} degrees of freedom and noncentrality parameter ## @var{lambda}. ## ## The size of @var{m} (mean) and @var{v} (variance) is the common size of the ## input arguments. A scalar input functions as a constant matrix of the same ## size as the other inputs. ## ## Further information about the noncentral @math{F}-distribution can be found ## at @url{https://en.wikipedia.org/wiki/Noncentral_F-distribution} ## ## @seealso{ncfcdf, ncfinv, ncfpdf, ncfrnd, fstat} ## @end deftypefn function [m, v] = ncfstat (df1, df2, lambda) ## Check for valid number of input arguments if (nargin < 3) error ("ncfstat: function called with too few input arguments."); endif ## Check for DF1, DF2, and LAMBDA being numeric if (! (isnumeric (df1) && isnumeric (df2) && isnumeric (lambda))) error ("ncfstat: DF1, DF2, and LAMBDA must be numeric."); endif ## Check for DF1, DF2, and LAMBDA being reals if (iscomplex (df1) || iscomplex (df2) || iscomplex (lambda)) error ("ncfstat: DF1, DF2, and LAMBDA must not be complex."); endif ## Check for common size of DF1, DF2, and LAMBDA if (! isscalar (df1) || ! isscalar (df2) || ! isscalar (lambda)) [retval, df1, df2, lambda] = common_size (df1, df2, lambda); if (retval > 0) error ("ncfstat: DF1, DF2, and LAMBDA must be of common size or scalars."); endif endif ## Initialize mean and variance if (isa (df1, "single") || isa (df2, "single") || isa (lambda, "single")) m = zeros (size (df1), "single"); v = m; else m = zeros (size (df1)); v = m; endif ## Return NaNs for invalid df2 parameters m(df2 <= 2) = NaN; v(df2 <= 4) = NaN; ## Compute mean and variance for valid parameter values. k = (df2 > 2); if (any (k(:))) m(k) = df2(k) .* (df1(k) + lambda(k)) ./ (df1(k) .* (df2(k) - 2)); endif k = (df2 > 4); if (any (k(:))) df1_idx = df1(k) + lambda(k); df2_idx = df2(k) - 2; df1_df2 = (df2(k) ./ df1(k)) .^ 2; v(k) = 2 * df1_df2 .* (df1_idx .^ 2 + (df1_idx + lambda(k)) .* ... df2_idx) ./ ((df2(k) - 4) .* df2_idx .^ 2); endif endfunction ## Input validation tests %!error ncfstat () %!error ncfstat (1) %!error ncfstat (1, 2) %!error ncfstat ({}, 2, 3) %!error ncfstat (1, "", 3) %!error ncfstat (1, 2, "") %!error ncfstat (i, 2, 3) %!error ncfstat (1, i, 3) %!error ncfstat (1, 2, i) %!error ... %! ncfstat (ones (3), ones (2), 3) %!error ... %! ncfstat (ones (2), 2, ones (3)) %!error ... %! ncfstat (1, ones (2), ones (3)) ## Output validation tests %!shared df1, df2, lambda %! df1 = [2, 0, -1, 1, 4, 5]; %! df2 = [2, 4, -1, 5, 6, 7]; %! lambda = [1, NaN, 3, 0, 2, -1]; %!assert (ncfstat (df1, df2, lambda), [NaN, NaN, NaN, 1.6667, 2.25, 1.12], 1e-4); %!assert (ncfstat (df1(4:6), df2(4:6), 1), [3.3333, 1.8750, 1.6800], 1e-4); %!assert (ncfstat (df1(4:6), df2(4:6), 2), [5.0000, 2.2500, 1.9600], 1e-4); %!assert (ncfstat (df1(4:6), df2(4:6), 3), [6.6667, 2.6250, 2.2400], 1e-4); %!assert (ncfstat (2, [df2(1), df2(4:6)], 5), [NaN,5.8333,5.2500,4.9000], 1e-4); %!assert (ncfstat (0, [df2(1), df2(4:6)], 5), [NaN, Inf, Inf, Inf]); %!assert (ncfstat (1, [df2(1), df2(4:6)], 5), [NaN, 10, 9, 8.4], 1e-14); %!assert (ncfstat (4, [df2(1), df2(4:6)], 5), [NaN, 3.75, 3.375, 3.15], 1e-14); statistics-release-1.6.3/inst/dist_stat/nctstat.m000066400000000000000000000101731456127120000221420ustar00rootroot00000000000000## Copyright (C) 2022-2024 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {[@var{m}, @var{v}] =} nctstat (@var{df}, @var{mu}) ## ## Compute statistics for the noncentral @math{t}-distribution. ## ## @code{[@var{m}, @var{v}] = nctstat (@var{df}, @var{mu})} returns the mean ## and variance of the noncentral @math{t}-distribution with @var{df} degrees ## of freedom and noncentrality parameter @var{mu}. ## ## The size of @var{m} (mean) and @var{v} (variance) is the common size of the ## input arguments. A scalar input functions as a constant matrix of the same ## size as the other inputs. ## ## Further information about the noncentral @math{t}-distribution can be found ## at @url{https://en.wikipedia.org/wiki/Noncentral_t-distribution} ## ## @seealso{nctcdf, nctinv, nctpdf, nctrnd, tstat} ## @end deftypefn function [m, v] = nctstat (df, mu) ## Check for valid number of input arguments if (nargin < 2) error ("nctstat: function called with too few input arguments."); endif ## Check for DF and MU being numeric if (! (isnumeric (df) && isnumeric (mu))) error ("nctstat: DF and MU must be numeric."); endif ## Check for DF and MU being real if (iscomplex (df) || iscomplex (mu)) error ("nctstat: DF and MU must not be complex."); endif ## Check for common size of DF and MU if (! isscalar (df) || ! isscalar (mu)) [retval, df, mu] = common_size (df, mu); if (retval > 0) error ("nctstat: DF and MU must be of common size or scalars."); endif endif ## Initialize mean and variance if (isa (df, "single") || isa (mu, "single")) m = NaN (size (df), "single"); v = m; else m = NaN (size (df)); v = m; endif ## Compute mean and variance for valid parameter values. mk = df > 1; if (any (mk(:))) m(mk) = mu(mk) .* sqrt ((df(mk) / 2)) .* ... gamma ((df(mk) - 1) / 2) ./ gamma (df(mk) / 2); endif vk = df > 2; if (any (vk(:))) v(vk) = (df(vk) ./ (df(vk) - 2)) .* ... (1 + mu(vk) .^2) - 0.5 * (df(vk) .* mu(vk) .^ 2) .* ... exp (2 * (gammaln ((df(vk) - 1) / 2) - gammaln (df(vk) / 2))); endif endfunction ## Input validation tests %!error nctstat () %!error nctstat (1) %!error nctstat ({}, 2) %!error nctstat (1, "") %!error nctstat (i, 2) %!error nctstat (1, i) %!error ... %! nctstat (ones (3), ones (2)) %!error ... %! nctstat (ones (2), ones (3)) ## Output validation tests %!shared df, mu %! df = [2, 0, -1, 1, 4]; %! mu = [1, NaN, 3, -1, 2]; %!assert (nctstat (df, mu), [1.7725, NaN, NaN, NaN, 2.5066], 1e-4); %!assert (nctstat ([df(1:2), df(4:5)], 1), [1.7725, NaN, NaN, 1.2533], 1e-4); %!assert (nctstat ([df(1:2), df(4:5)], 3), [5.3174, NaN, NaN, 3.7599], 1e-4); %!assert (nctstat ([df(1:2), df(4:5)], 2), [3.5449, NaN, NaN, 2.5066], 1e-4); %!assert (nctstat (2, [mu(1), mu(3:5)]), [1.7725,5.3174,-1.7725,3.5449], 1e-4); %!assert (nctstat (0, [mu(1), mu(3:5)]), [NaN, NaN, NaN, NaN]); %!assert (nctstat (1, [mu(1), mu(3:5)]), [NaN, NaN, NaN, NaN]); %!assert (nctstat (4, [mu(1), mu(3:5)]), [1.2533,3.7599,-1.2533,2.5066], 1e-4); statistics-release-1.6.3/inst/dist_stat/ncx2stat.m000066400000000000000000000076161456127120000222400ustar00rootroot00000000000000## Copyright (C) 2022-2024 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {[@var{m}, @var{v}] =} ncx2stat (@var{df}, @var{lambda}) ## ## Compute statistics for the noncentral chi-squared distribution. ## ## @code{[@var{m}, @var{v}] = ncx2stat (@var{df}, @var{lambda})} returns the ## mean and variance of the noncentral chi-squared distribution with @var{df} ## degrees of freedom and noncentrality parameter @var{lambda}. ## ## The size of @var{m} (mean) and @var{v} (variance) is the common size of the ## input arguments. A scalar input functions as a constant matrix of the ## same size as the other inputs. ## ## Further information about the noncentral chi-squared distribution can be ## found at @url{https://en.wikipedia.org/wiki/Noncentral_chi-squared_distribution} ## ## @seealso{ncx2cdf, ncx2inv, ncx2pdf, ncx2rnd} ## @end deftypefn function [m, v] = ncx2stat (df, lambda) ## Check for valid number of input arguments if (nargin < 2) error ("ncx2stat: function called with too few input arguments."); endif ## Check for DF and LAMBDA being numeric if (! (isnumeric (df) && isnumeric (lambda))) error ("ncx2stat: DF and LAMBDA must be numeric."); endif ## Check for DF and LAMBDA being real if (iscomplex (df) || iscomplex (lambda)) error ("ncx2stat: DF and LAMBDA must not be complex."); endif ## Check for common size of DF and LAMBDA if (! isscalar (df) || ! isscalar (lambda)) [retval, df, lambda] = common_size (df, lambda); if (retval > 0) error ("ncx2stat: DF and LAMBDA must be of common size or scalars."); endif endif ## Initialize mean and variance if (isa (df, "single") || isa (lambda, "single")) m = NaN (size (df), "single"); v = m; else m = NaN (size (df)); v = m; endif ## Compute mean and variance for valid parameter values. k = (df > 0 & lambda >= 0); if (any (k(:))) m(k) = lambda(k) + df(k); v(k) = 2 * (df(k) + 2 * (lambda(k))); endif endfunction ## Input validation tests %!error ncx2stat () %!error ncx2stat (1) %!error ncx2stat ({}, 2) %!error ncx2stat (1, "") %!error ncx2stat (i, 2) %!error ncx2stat (1, i) %!error ... %! ncx2stat (ones (3), ones (2)) %!error ... %! ncx2stat (ones (2), ones (3)) ## Output validation tests %!shared df, d1 %! df = [2, 0, -1, 1, 4]; %! d1 = [1, NaN, 3, -1, 2]; %!assert (ncx2stat (df, d1), [3, NaN, NaN, NaN, 6]); %!assert (ncx2stat ([df(1:2), df(4:5)], 1), [3, NaN, 2, 5]); %!assert (ncx2stat ([df(1:2), df(4:5)], 3), [5, NaN, 4, 7]); %!assert (ncx2stat ([df(1:2), df(4:5)], 2), [4, NaN, 3, 6]); %!assert (ncx2stat (2, [d1(1), d1(3:5)]), [3, 5, NaN, 4]); %!assert (ncx2stat (0, [d1(1), d1(3:5)]), [NaN, NaN, NaN, NaN]); %!assert (ncx2stat (1, [d1(1), d1(3:5)]), [2, 4, NaN, 3]); %!assert (ncx2stat (4, [d1(1), d1(3:5)]), [5, 7, NaN, 6]); statistics-release-1.6.3/inst/dist_stat/normstat.m000066400000000000000000000071361456127120000223360ustar00rootroot00000000000000## Copyright (C) 2006, 2007 Arno Onken ## Copyright (C) 2024 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {[@var{m}, @var{v}] =} normstat (@var{mu}, @var{sigma}) ## ## Compute statistics of the normal distribution. ## ## @code{[@var{m}, @var{v}] = normstat (@var{mu}, @var{sigma})} returns the mean ## and variance of the normal distribution with non-centrality (distance) ## parameter @var{mu} and scale parameter @var{sigma}. ## ## The size of @var{m} (mean) and @var{v} (variance) is the common size of the ## input arguments. A scalar input functions as a constant matrix of the ## same size as the other inputs. ## ## Further information about the normal distribution can be found at ## @url{https://en.wikipedia.org/wiki/Normal_distribution} ## ## @seealso{norminv, norminv, normpdf, normrnd, normfit, normlike} ## @end deftypefn function [m, v] = normstat (mu, sigma) ## Check for valid number of input arguments if (nargin < 2) error ("normstat: function called with too few input arguments."); endif ## Check for MU and SIGMA being numeric if (! (isnumeric (mu) && isnumeric (sigma))) error ("normstat: MU and SIGMA must be numeric."); endif ## Check for MU and SIGMA being real if (iscomplex (mu) || iscomplex (sigma)) error ("normstat: MU and SIGMA must not be complex."); endif ## Check for common size of MU and SIGMA if (! isscalar (mu) || ! isscalar (sigma)) [retval, mu, sigma] = common_size (mu, sigma); if (retval > 0) error ("normstat: MU and SIGMA must be of common size or scalars."); endif endif ## Calculate moments m = mu; v = sigma .* sigma; ## Continue argument check k = find (! (sigma > 0) | ! (sigma < Inf)); if (any (k)) m(k) = NaN; v(k) = NaN; endif endfunction ## Input validation tests %!error normstat () %!error normstat (1) %!error normstat ({}, 2) %!error normstat (1, "") %!error normstat (i, 2) %!error normstat (1, i) %!error ... %! normstat (ones (3), ones (2)) %!error ... %! normstat (ones (2), ones (3)) ## Output validation tests %!test %! mu = 1:6; %! sigma = 0.2:0.2:1.2; %! [m, v] = normstat (mu, sigma); %! expected_v = [0.0400, 0.1600, 0.3600, 0.6400, 1.0000, 1.4400]; %! assert (m, mu); %! assert (v, expected_v, 0.001); %!test %! sigma = 0.2:0.2:1.2; %! [m, v] = normstat (0, sigma); %! expected_mn = [0, 0, 0, 0, 0, 0]; %! expected_v = [0.0400, 0.1600, 0.3600, 0.6400, 1.0000, 1.4400]; %! assert (m, expected_mn, 0.001); %! assert (v, expected_v, 0.001); statistics-release-1.6.3/inst/dist_stat/poisstat.m000066400000000000000000000046711456127120000223360ustar00rootroot00000000000000## Copyright (C) 2006, 2007 Arno Onken ## Copyright (C) 2024 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {[@var{m}, @var{v}] =} poisstat (@var{lambda}) ## ## Compute statistics of the Poisson distribution. ## ## @code{[@var{m}, @var{v}] = poisstat (@var{lambda})} returns the mean and ## variance of the Poisson distribution with rate parameter @var{lambda}. ## ## The size of @var{m} (mean) and @var{v} (variance) is the same size of the ## input argument. ## ## Further information about the Poisson distribution can be found at ## @url{https://en.wikipedia.org/wiki/Poisson_distribution} ## ## @seealso{poisscdf, poissinv, poisspdf, poissrnd, poissfit, poisslike} ## @end deftypefn function [m, v] = poisstat (lambda) ## Check for valid number of input arguments if (nargin < 1) error ("poisstat: function called with too few input arguments."); endif ## Check for SIGMA being numeric if (! isnumeric (lambda)) error ("poisstat: SIGMA must be numeric."); endif ## Check for SIGMA being real if (iscomplex (lambda)) error ("poisstat: SIGMA must not be complex."); endif ## Set moments m = lambda; v = lambda; ## Continue argument check k = find (! (lambda > 0) | ! (lambda < Inf)); if (any (k)) m(k) = NaN; v(k) = NaN; endif endfunction ## Input validation tests %!error poisstat () %!error poisstat ({}) %!error poisstat ("") %!error poisstat (i) ## Output validation tests %!test %! lambda = 1 ./ (1:6); %! [m, v] = poisstat (lambda); %! assert (m, lambda); %! assert (v, lambda); statistics-release-1.6.3/inst/dist_stat/raylstat.m000066400000000000000000000051351456127120000223270ustar00rootroot00000000000000## Copyright (C) 2006, 2007 Arno Onken ## Copyright (C) 2024 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {[@var{m}, @var{v}] =} raylstat (@var{sigma}) ## ## Compute statistics of the Rayleigh distribution. ## ## @code{[@var{m}, @var{v}] = raylstat (@var{sigma})} returns the mean and ## variance of the Rayleigh distribution with scale parameter @var{sigma}. ## ## The size of @var{m} (mean) and @var{v} (variance) is the same size of the ## input argument. ## ## Further information about the Rayleigh distribution can be found at ## @url{https://en.wikipedia.org/wiki/Rayleigh_distribution} ## ## @seealso{raylcdf, raylinv, raylpdf, raylrnd, raylfit, rayllike} ## @end deftypefn function [m, v] = raylstat (sigma) ## Check for valid number of input arguments if (nargin < 1) error ("raylstat: function called with too few input arguments."); endif ## Check for SIGMA being numeric if (! isnumeric (sigma)) error ("raylstat: SIGMA must be numeric."); endif ## Check for SIGMA being real if (iscomplex (sigma)) error ("raylstat: SIGMA must not be complex."); endif ## Calculate moments m = sigma .* sqrt (pi ./ 2); v = (2 - pi ./ 2) .* sigma .^ 2; ## Continue argument check k = find (! (sigma > 0)); if (any (k)) m(k) = NaN; v(k) = NaN; endif endfunction ## Input validation tests %!error raylstat () %!error raylstat ({}) %!error raylstat ("") %!error raylstat (i) ## Output validation tests %!test %! sigma = 1:6; %! [m, v] = raylstat (sigma); %! expected_m = [1.2533, 2.5066, 3.7599, 5.0133, 6.2666, 7.5199]; %! expected_v = [0.4292, 1.7168, 3.8628, 6.8673, 10.7301, 15.4513]; %! assert (m, expected_m, 0.001); %! assert (v, expected_v, 0.001); statistics-release-1.6.3/inst/dist_stat/ricestat.m000066400000000000000000000104321456127120000222760ustar00rootroot00000000000000## Copyright (C) 2024 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {[@var{m}, @var{v}] =} ricestat (@var{nu}, @var{sigma}) ## ## Compute statistics of the Rician distribution. ## ## @code{[@var{m}, @var{v}] = ricestat (@var{nu}, @var{sigma})} returns the mean ## and variance of the Rician distribution with non-centrality (distance) ## parameter @var{nu} and scale parameter @var{sigma}. ## ## The size of @var{m} (mean) and @var{v} (variance) is the common size of the ## input arguments. A scalar input functions as a constant matrix of the ## same size as the other inputs. ## ## Further information about the Rician distribution can be found at ## @url{https://en.wikipedia.org/wiki/Rice_distribution} ## ## @seealso{ricecdf, riceinv, ricepdf, ricernd, ricefit, ricelike} ## @end deftypefn function [m, v] = ricestat (nu, sigma) ## Check for valid number of input arguments if (nargin < 2) error ("ricestat: function called with too few input arguments."); endif ## Check for NU and SIGMA being numeric if (! (isnumeric (nu) && isnumeric (sigma))) error ("ricestat: NU and SIGMA must be numeric."); endif ## Check for NU and SIGMA being real if (iscomplex (nu) || iscomplex (sigma)) error ("ricestat: NU and SIGMA must not be complex."); endif ## Check for common size of NU and SIGMA if (! isscalar (nu) || ! isscalar (sigma)) [retval, nu, sigma] = common_size (nu, sigma); if (retval > 0) error ("ricestat: NU and SIGMA must be of common size or scalars."); endif endif ## Initialize mean and variance if (isa (nu, "single") || isa (sigma, "single")) m = NaN (size (nu), "single"); v = m; else m = NaN (size (nu)); v = m; endif ## Compute mean and variance for valid parameter values. k = (nu >= 0 & sigma > 0); if (any (k(:))) thetasq = (nu(k) .^ 2) ./ (sigma(k) .^ 2); L = Laguerre_half (-0.5 .* thetasq); m(k) = sigma(k) .* sqrt (pi / 2) .* L; v(k) = 2 * (sigma(k) .^ 2) + nu(k) .^ 2 - (0.5 .* pi .* sigma(k) .^ 2) .* L; endif endfunction function L = Laguerre_half(x) L = exp (x ./ 2) .* ((1 - x) .* besseli (0, -x./2) - x .* besseli (1, -x./2)); endfunction ## Input validation tests %!error ricestat () %!error ricestat (1) %!error ricestat ({}, 2) %!error ricestat (1, "") %!error ricestat (i, 2) %!error ricestat (1, i) %!error ... %! ricestat (ones (3), ones (2)) %!error ... %! ricestat (ones (2), ones (3)) ## Output validation tests %!shared nu, sigma %! nu = [2, 0, -1, 1, 4]; %! sigma = [1, NaN, 3, -1, 2]; %!assert (ricestat (nu, sigma), [2.2724, NaN, NaN, NaN, 4.5448], 1e-4); %!assert (ricestat ([nu(1:2), nu(4:5)], 1), [2.2724, 1.2533, 1.5486, 4.1272], 1e-4); %!assert (ricestat ([nu(1:2), nu(4:5)], 3), [4.1665, 3.7599, 3.8637, 5.2695], 1e-4); %!assert (ricestat ([nu(1:2), nu(4:5)], 2), [3.0971, 2.5066, 2.6609, 4.5448], 1e-4); %!assert (ricestat (2, [sigma(1), sigma(3:5)]), [2.2724, 4.1665, NaN, 3.0971], 1e-4); %!assert (ricestat (0, [sigma(1), sigma(3:5)]), [1.2533, 3.7599, NaN, 2.5066], 1e-4); %!assert (ricestat (1, [sigma(1), sigma(3:5)]), [1.5486, 3.8637, NaN, 2.6609], 1e-4); %!assert (ricestat (4, [sigma(1), sigma(3:5)]), [4.1272, 5.2695, NaN, 4.5448], 1e-4); statistics-release-1.6.3/inst/dist_stat/tlsstat.m000066400000000000000000000117511456127120000221630ustar00rootroot00000000000000## Copyright (C) 2024 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {[@var{m}, @var{v}] =} tlsstat (@var{mu}, @var{sigma}, @var{df}) ## ## Compute statistics of the location-scale Student's T distribution. ## ## @code{[@var{m}, @var{v}] = tlsstat (@var{mu}, @var{sigma}, @var{df})} returns ## the mean and variance of the location-scale Student's T distribution with ## location parameter @var{mu}, scale parameter @var{sigma}, and @var{df} ## degrees of freedom. ## ## The size of @var{m} (mean) and @var{v} (variance) is the common size of the ## input arguments. A scalar input functions as a constant matrix of the ## same size as the other inputs. ## ## Further information about the location-scale Student's T distribution can be ## found at @url{https://en.wikipedia.org/wiki/Student%27s_t-distribution#Location-scale_t_distribution} ## ## @seealso{tlscdf, tlsinv, tlspdf, tlsrnd, tlsfit, tlslike} ## @end deftypefn function [m, v] = tlsstat (mu, sigma, df) ## Check for valid number of input arguments if (nargin < 3) error ("tlsstat: function called with too few input arguments."); endif ## Check for MU, SIGMA, and DF being numeric if (! (isnumeric (mu) && isnumeric (sigma) && isnumeric (df))) error ("tlsstat: MU, SIGMA, and DF must be numeric."); endif ## Check for MU, SIGMA, and DF being real if (iscomplex (mu) || iscomplex (sigma) || iscomplex (df)) error ("tlsstat: MU, SIGMA, and DF must not be complex."); endif ## Check for common size of MU, SIGMA, and DF if (! isscalar (mu) || ! isscalar (sigma) || ! isscalar (df)) [retval, mu, sigma, df] = common_size (mu, sigma, df); if (retval > 0) error ("tlsstat: MU, SIGMA, and DF must be of common size or scalars."); endif endif ## Calculate moments m = zeros (size (df)) + mu; v = sigma .* (df ./ (df - 2)); ## Continue argument check k = find (! (df > 1) | ! (df < Inf)); if (any (k)) m(k) = NaN; v(k) = NaN; endif k = find (! (df > 2) & (df < Inf)); if (any (k)) v(k) = NaN; endif endfunction ## Input validation tests %!error tlsstat () %!error tlsstat (1) %!error tlsstat (1, 2) %!error tlsstat ({}, 2, 3) %!error tlsstat (1, "", 3) %!error tlsstat (1, 2, ["d"]) %!error tlsstat (i, 2, 3) %!error tlsstat (1, i, 3) %!error tlsstat (1, 2, i) %!error ... %! tlsstat (ones (3), ones (2), 1) %!error ... %! tlsstat (ones (2), 1, ones (3)) %!error ... %! tlsstat (1, ones (2), ones (3)) ## Output validation tests %!test %! [m, v] = tlsstat (0, 1, 0); %! assert (m, NaN); %! assert (v, NaN); %!test %! [m, v] = tlsstat (0, 1, 1); %! assert (m, NaN); %! assert (v, NaN); %!test %! [m, v] = tlsstat (2, 1, 1); %! assert (m, NaN); %! assert (v, NaN); %!test %! [m, v] = tlsstat (-2, 1, 1); %! assert (m, NaN); %! assert (v, NaN); %!test %! [m, v] = tlsstat (0, 1, 2); %! assert (m, 0); %! assert (v, NaN); %!test %! [m, v] = tlsstat (2, 1, 2); %! assert (m, 2); %! assert (v, NaN); %!test %! [m, v] = tlsstat (-2, 1, 2); %! assert (m, -2); %! assert (v, NaN); %!test %! [m, v] = tlsstat (0, 2, 2); %! assert (m, 0); %! assert (v, NaN); %!test %! [m, v] = tlsstat (2, 2, 2); %! assert (m, 2); %! assert (v, NaN); %!test %! [m, v] = tlsstat (-2, 2, 2); %! assert (m, -2); %! assert (v, NaN); %!test %! [m, v] = tlsstat (0, 1, 3); %! assert (m, 0); %! assert (v, 3); %!test %! [m, v] = tlsstat (0, 2, 3); %! assert (m, 0); %! assert (v, 6); %!test %! [m, v] = tlsstat (2, 1, 3); %! assert (m, 2); %! assert (v, 3); %!test %! [m, v] = tlsstat (2, 2, 3); %! assert (m, 2); %! assert (v, 6); %!test %! [m, v] = tlsstat (-2, 1, 3); %! assert (m, -2); %! assert (v, 3); %!test %! [m, v] = tlsstat (-2, 2, 3); %! assert (m, -2); %! assert (v, 6); statistics-release-1.6.3/inst/dist_stat/tstat.m000066400000000000000000000050241456127120000216200ustar00rootroot00000000000000## Copyright (C) 2006, 2007 Arno Onken ## Copyright (C) 2024 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {[@var{m}, @var{v}] =} tstat (@var{df}) ## ## Compute statistics of the Student's T distribution. ## ## @code{[@var{m}, @var{v}] = tstat (@var{df})} returns the mean and variance of ## the Student's T distribution with @var{df} degrees of freedom. ## ## The size of @var{m} (mean) and @var{v} (variance) is the same size of the ## input argument. ## ## Further information about the Student's T distribution can be found at ## @url{https://en.wikipedia.org/wiki/Student%27s_t-distribution} ## ## @seealso{tcdf, tinv, tpdf, trnd} ## @end deftypefn function [m, v] = tstat (df) ## Check for valid number of input arguments if (nargin < 1) error ("tstat: function called with too few input arguments."); endif ## Check for DF being numeric if (! isnumeric (df)) error ("tstat: DF must be numeric."); endif ## Check for DF being real if (iscomplex (df)) error ("tstat: DF must not be complex."); endif ## Calculate moments m = zeros (size (df)); v = df ./ (df - 2); ## Continue argument check k = find (! (df > 1) | ! (df < Inf)); if (any (k)) m(k) = NaN; v(k) = NaN; endif k = find (! (df > 2) & (df < Inf)); if (any (k)) v(k) = Inf; endif endfunction ## Input validation tests %!error tstat () %!error tstat ({}) %!error tstat ("") %!error tstat (i) ## Output validation tests %!test %! df = 3:8; %! [m, v] = tstat (df); %! expected_m = [0, 0, 0, 0, 0, 0]; %! expected_v = [3.0000, 2.0000, 1.6667, 1.5000, 1.4000, 1.3333]; %! assert (m, expected_m); %! assert (v, expected_v, 0.001); statistics-release-1.6.3/inst/dist_stat/unidstat.m000066400000000000000000000052631456127120000223210ustar00rootroot00000000000000## Copyright (C) 2006, 2007 Arno Onken ## Copyright (C) 2024 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {[@var{m}, @var{v}] =} unidstat (@var{df}) ## ## Compute statistics of the discrete uniform cumulative distribution. ## ## @code{[@var{m}, @var{v}] = unidstat (@var{df})} returns the mean and variance ## of the discrete uniform cumulative distribution with parameter @var{N}, which ## corresponds to the maximum observable value and must be a positive natural ## number. ## ## The size of @var{m} (mean) and @var{v} (variance) is the same size of the ## input argument. ## ## Further information about the discrete uniform distribution can be found at ## @url{https://en.wikipedia.org/wiki/Discrete_uniform_distribution} ## ## @seealso{unidcdf, unidinv, unidpdf, unidrnd, unidfit} ## @end deftypefn function [m, v] = unidstat (N) ## Check for valid number of input arguments if (nargin < 1) error ("unidstat: function called with too few input arguments."); endif ## Check for N being numeric if (! isnumeric (N)) error ("unidstat: N must be numeric."); endif ## Check for N being real if (iscomplex (N)) error ("unidstat: N must not be complex."); endif ## Calculate moments m = (N + 1) ./ 2; v = ((N .^ 2) - 1) ./ 12; ## Continue argument check k = find (! (N > 0) | ! (N < Inf) | ! (N == round (N))); if (any (k)) m(k) = NaN; v(k) = NaN; endif endfunction ## Input validation tests %!error unidstat () %!error unidstat ({}) %!error unidstat ("") %!error unidstat (i) ## Output validation tests %!test %! N = 1:6; %! [m, v] = unidstat (N); %! expected_m = [1.0000, 1.5000, 2.0000, 2.5000, 3.0000, 3.5000]; %! expected_v = [0.0000, 0.2500, 0.6667, 1.2500, 2.0000, 2.9167]; %! assert (m, expected_m, 0.001); %! assert (v, expected_v, 0.001); statistics-release-1.6.3/inst/dist_stat/unifstat.m000066400000000000000000000072641456127120000223260ustar00rootroot00000000000000## Copyright (C) 2006, 2007 Arno Onken ## Copyright (C) 2024 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {[@var{m}, @var{v}] =} unifstat (@var{df}) ## ## Compute statistics of the continuous uniform cumulative distribution. ## ## @code{[@var{m}, @var{v}] = unifstat (@var{df})} returns the mean and variance ## of the continuous uniform cumulative distribution with parameters @var{a} and ## @var{b}, which define the lower and upper bounds of the interval ## @qcode{[@var{a}, @var{b}]}. ## ## The size of @var{m} (mean) and @var{v} (variance) is the common size of the ## input arguments. A scalar input functions as a constant matrix of the ## same size as the other inputs. ## ## Further information about the continuous uniform distribution can be found at ## @url{https://en.wikipedia.org/wiki/Continuous_uniform_distribution} ## ## @seealso{unifcdf, unifinv, unifpdf, unifrnd, unifit} ## @end deftypefn function [m, v] = unifstat (a, b) ## Check for valid number of input arguments if (nargin < 2) error ("unifstat: function called with too few input arguments."); endif ## Check for A and B being numeric if (! (isnumeric (a) && isnumeric (b))) error ("unifstat: A and B must be numeric."); endif ## Check for A and B being real if (iscomplex (a) || iscomplex (b)) error ("unifstat: A and B must not be complex."); endif ## Check for common size of A and B if (! isscalar (a) || ! isscalar (b)) [retval, a, b] = common_size (a, b); if (retval > 0) error ("unifstat: A and B must be of common size or scalars."); endif endif ## Calculate moments m = (a + b) ./ 2; v = ((b - a) .^ 2) ./ 12; ## Continue argument check k = find (! (-Inf < a) | ! (a < b) | ! (b < Inf)); if (any (k)) m(k) = NaN; v(k) = NaN; endif endfunction ## Input validation tests %!error unifstat () %!error unifstat (1) %!error unifstat ({}, 2) %!error unifstat (1, "") %!error unifstat (i, 2) %!error unifstat (1, i) %!error ... %! unifstat (ones (3), ones (2)) %!error ... %! unifstat (ones (2), ones (3)) ## Output validation tests %!test %! a = 1:6; %! b = 2:2:12; %! [m, v] = unifstat (a, b); %! expected_m = [1.5000, 3.0000, 4.5000, 6.0000, 7.5000, 9.0000]; %! expected_v = [0.0833, 0.3333, 0.7500, 1.3333, 2.0833, 3.0000]; %! assert (m, expected_m, 0.001); %! assert (v, expected_v, 0.001); %!test %! a = 1:6; %! [m, v] = unifstat (a, 10); %! expected_m = [5.5000, 6.0000, 6.5000, 7.0000, 7.5000, 8.0000]; %! expected_v = [6.7500, 5.3333, 4.0833, 3.0000, 2.0833, 1.3333]; %! assert (m, expected_m, 0.001); %! assert (v, expected_v, 0.001); statistics-release-1.6.3/inst/dist_stat/wblstat.m000066400000000000000000000073671456127120000221550ustar00rootroot00000000000000## Copyright (C) 2006, 2007 Arno Onken ## Copyright (C) 2024 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {[@var{m}, @var{v}] =} wblstat (@var{lambda}, @var{k}) ## ## Compute statistics of the Weibull distribution. ## ## @code{[@var{m}, @var{v}] = wblstat (@var{lambda}, @var{k})} returns the mean ## and variance of the Weibull distribution with scale parameter @var{lambda} ## and shape parameter @var{k}. ## ## The size of @var{m} (mean) and @var{v} (variance) is the common size of the ## input arguments. A scalar input functions as a constant matrix of the ## same size as the other inputs. ## ## Further information about the Weibull distribution can be found at ## @url{https://en.wikipedia.org/wiki/Weibull_distribution} ## ## @seealso{wblcdf, wblinv, wblpdf, wblrnd, wblfit, wbllike, wblplot} ## @end deftypefn function [m, v] = wblstat (lambda, k) ## Check for valid number of input arguments if (nargin < 2) error ("wblstat: function called with too few input arguments."); endif ## Check for LAMBDA and K being numeric if (! (isnumeric (lambda) && isnumeric (k))) error ("wblstat: LAMBDA and K must be numeric."); endif ## Check for LAMBDA and K being real if (iscomplex (lambda) || iscomplex (k)) error ("wblstat: LAMBDA and K must not be complex."); endif ## Check for common size of LAMBDA and K if (! isscalar (lambda) || ! isscalar (k)) [retval, lambda, k] = common_size (lambda, k); if (retval > 0) error ("wblstat: LAMBDA and K must be of common size or scalars."); endif endif ## Calculate moments m = lambda .* gamma (1 + 1 ./ k); v = (lambda .^ 2) .* gamma (1 + 2 ./ k) - m .^ 2; ## Continue argument check is_nan = find (! (lambda > 0) | ! (lambda < Inf) | ! (k > 0) | ! (k < Inf)); if (any (is_nan)) m(is_nan) = NaN; v(is_nan) = NaN; endif endfunction ## Input validation tests %!error wblstat () %!error wblstat (1) %!error wblstat ({}, 2) %!error wblstat (1, "") %!error wblstat (i, 2) %!error wblstat (1, i) %!error ... %! wblstat (ones (3), ones (2)) %!error ... %! wblstat (ones (2), ones (3)) ## Output validation tests %!test %! lambda = 3:8; %! k = 1:6; %! [m, v] = wblstat (lambda, k); %! expected_m = [3.0000, 3.5449, 4.4649, 5.4384, 6.4272, 7.4218]; %! expected_v = [9.0000, 3.4336, 2.6333, 2.3278, 2.1673, 2.0682]; %! assert (m, expected_m, 0.001); %! assert (v, expected_v, 0.001); %!test %! k = 1:6; %! [m, v] = wblstat (6, k); %! expected_m = [ 6.0000, 5.3174, 5.3579, 5.4384, 5.5090, 5.5663]; %! expected_v = [36.0000, 7.7257, 3.7920, 2.3278, 1.5923, 1.1634]; %! assert (m, expected_m, 0.001); %! assert (v, expected_v, 0.001); statistics-release-1.6.3/inst/ecdf.m000066400000000000000000000257531456127120000173770ustar00rootroot00000000000000## Copyright (C) 2022 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {[@var{f}, @var{x}] =} ecdf (@var{y}) ## @deftypefnx {statistics} {[@var{f}, @var{x}, @var{flo}, @var{fup}] =} ecdf (@var{y}) ## @deftypefnx {statistics} {} ecdf (@dots{}) ## @deftypefnx {statistics} {} ecdf (@var{ax}, @dots{}) ## @deftypefnx {statistics} {[@dots{}] =} ecdf (@var{y}, @var{name}, @var{value}, @dots{}) ## @deftypefnx {statistics} {[@dots{}] =} ecdf (@var{ax}, @var{y}, @var{name}, @var{value}, @dots{}) ## ## Empirical (Kaplan-Meier) cumulative distribution function. ## ## @code{[@var{f}, @var{x}] = ecdf (@var{y})} calculates the Kaplan-Meier ## estimate of the cumulative distribution function (cdf), also known as the ## empirical cdf. @var{y} is a vector of data values. @var{f} is a vector of ## values of the empirical cdf evaluated at @var{x}. ## ## @code{[@var{f}, @var{x}, @var{flo}, @var{fup}] = ecdf (@var{y})} also returns ## lower and upper confidence bounds for the cdf. These bounds are calculated ## using Greenwood's formula, and are not simultaneous confidence bounds. ## ## @code{ecdf (@dots{})} without output arguments produces a plot of the ## empirical cdf. ## ## @code{ecdf (@var{ax}, @dots{})} plots into existing axes @var{ax}. ## ## @code{[@dots{}] = ecdf (@var{y}, @var{name}, @var{value}, @dots{})} specifies ## additional parameter name/value pairs chosen from the following: ## ## @multitable @columnfractions 0.20 0.8 ## @headitem @var{name} @tab @var{value} ## @item "censoring" @tab A boolean vector of the same size as Y that is 1 for ## observations that are right-censored and 0 for observations that are observed ## exactly. Default is all observations observed exactly. ## ## @item "frequency" @tab A vector of the same size as Y containing non-negative ## integer counts. The jth element of this vector gives the number of times the ## jth element of Y was observed. Default is 1 observation per Y element. ## ## @item "alpha" @tab A value @var{alpha} between 0 and 1 specifying the ## significance level. Default is 0.05 for 5% significance. ## ## @item "function" @tab The type of function returned as the F output argument, ## chosen from "cdf" (the default), "survivor", or "cumulative hazard". ## ## @item "bounds" @tab Either "on" to include bounds or "off" (the default) to ## omit them. Used only for plotting. ## @end multitable ## ## Type @code{demo ecdf} to see examples of usage. ## ## @seealso{cdfplot, ecdfhist} ## @end deftypefn function [Fout, x, Flo, Fup] = ecdf (y, varargin) ## Check for valid input arguments narginchk (1, Inf); ## Parse input arguments if (nargin == 1) ax = []; if (! isvector (y) || ! isreal (y)) error ("ecdf: Y must be a vector of real numbers."); endif ##x = varargin{1}; else ## ax = y; ## Check that ax is a valid axis handle try isstruct (get (y)); ax = y; y = varargin{1}; varargin{1} = []; catch ##error ("ecdf: invalid handle %f.", ax); ax = []; end_try_catch #y = varargin{1}; #varargin{1} = []; endif ## Make y a column vector x = y(:); ## Add defaults cens = zeros (size (x)); freq = ones (size (x)); alpha = 0.05; fname = "cdf"; bound = "off"; ## Check for remaining varargins and parse extra parameters if (length (varargin) > 0 && mod (numel (varargin), 2) == 0) [~, prop] = parseparams (varargin); while (!isempty (prop)) switch (lower (prop{1})) case "censoring" cens = prop{2}; ## Check for valid input if (! isequal (size (x), size (cens))) error ("ecdf: censoring data mismatch Y vector."); endif ## Make double in case censoring data is logical if (islogical (cens)) cens = double (cens); endif case "frequency" freq = prop{2}; ## Check for valid input if (! isequal (size (x), size (freq))) error ("ecdf: frequency data mismatch Y vector."); endif ## Make double in case frequency data is logical if (islogical (freq)) freq = double (freq); endif case "alpha" alpha = prop{2}; ## Check for valid alpha value if (numel (alpha) != 1 || ! isnumeric (alpha) || alpha <= 0 || alpha >= 1) error ("ecdf: alpha must be a numeric scalar in the range (0,1)."); endif case "function" fname = prop{2}; ## Check for valid function name option if (sum (strcmpi (fname, {"cdf", "survivor", "cumulative hazard"})) < 1) error ("ecdf: wrong function name."); endif case "bounds" bound = prop{2}; ## Check for valid bounds option if (! (strcmpi (bound, "off") || strcmpi (bound, "on"))) error ("ecdf: wrong bounds."); endif otherwise error ("ecdf: unknown option %s", prop{1}); endswitch prop = prop(3:end); endwhile elseif nargin > 2 error ("ecdf: optional parameters must be in name/value pairs."); endif ## Remove NaNs from data rn = ! isnan (x) & ! isnan (cens) & freq > 0; x = x(rn); if (length (x) == 0) error ("ecdf: not enought data."); endif cens = cens(rn); freq = freq(rn); ## Sort data in ascending order [x, sr] = sort (x); cens = cens(sr); freq = freq(sr); ## Keep class for data (single | double) if (isa (x, "single")) freq = single (freq); endif ## Calculate cumulative frequencies tcfreq = cumsum (freq); ocfreq = cumsum (freq .* ! cens); x_diff = (diff (x) == 0); if (any (x_diff)) x(x_diff) = []; tcfreq(x_diff) = []; ocfreq(x_diff) = []; endif max_count = tcfreq(end); ## Get Deaths and Number at Risk for each unique X Death = [ocfreq(1); diff(ocfreq)]; NRisk = max_count - [0; tcfreq(1:end-1)]; ## Remove no Death observations x = x(Death > 0); NRisk = NRisk(Death > 0); Death = Death(Death > 0); ## Estimate function switch (fname) case "cdf" S = cumprod (1 - Death ./ NRisk); Fun_x = 1 - S; Fzero = 0; fdisp = "F(x)"; case "survivor" S = cumprod (1 - Death ./ NRisk); Fun_x = S; Fzero = 1; fdisp = "S(x)"; case "cumulative hazard" Fun_x = cumsum (Death ./ NRisk); Fzero = 0; fdisp = "H(x)"; endswitch ## Check for remaining non-censored data and add a starting value if (! isempty (Death)) x = [min(y); x]; F = [Fzero; Fun_x]; else warning("ecdf: No Death in data"); F = Fun_x; endif ## Calculate lower and upper confidence bounds if requested if (nargout > 2 || (nargout == 0 && strcmpi (bound, "on"))) switch (fname) case {"cdf", "survivor"} se = NaN (size (Death)); if (! isempty (Death)) if (NRisk(end) == Death(end)) t = 1:length (NRisk) - 1; else t = 1:length (NRisk); endif se(t) = S(t) .* sqrt (cumsum (Death(t) ./ ... (NRisk(t) .* (NRisk(t) - Death(t))))); endif case "cumulative hazard" se = sqrt (cumsum (Death ./ (NRisk .* NRisk))); endswitch ## Calculate confidence limits if (! isempty (se)) z_a = - norminv (alpha / 2); h_w = z_a * se; Flo = max (0, Fun_x - h_w); Flo(isnan (h_w)) = NaN; switch (fname) case {"cdf", "survivor"} Fup = min (1, Fun_x + h_w); Fup(isnan (h_w)) = NaN; case "cumulative hazard" Fup = Fun_x + h_w; endswitch Flo = [NaN; Flo]; Fup = [NaN; Fup]; else Flo = []; Fup = []; endif else Flo = []; Fup = []; endif ## Plot stairs if no output is requested if (nargout == 0) if (isempty (ax)) ax = newplot(); end h = stairs(ax, x , [F, Flo, Fup]); xlabel (ax, "x"); ylabel (ax, fdisp); title ("ecdf"); else Fout = F; endif endfunction %!demo %! y = exprnd (10, 50, 1); ## random failure times are exponential(10) %! d = exprnd (20, 50, 1); ## drop-out times are exponential(20) %! t = min (y, d); ## we observe the minimum of these times %! censored = (y > d); ## we also observe whether the subject failed %! %! ## Calculate and plot the empirical cdf and confidence bounds %! [f, x, flo, fup] = ecdf (t, "censoring", censored); %! stairs (x, f); %! hold on; %! stairs (x, flo, "r:"); stairs (x, fup, "r:"); %! %! ## Superimpose a plot of the known true cdf %! xx = 0:.1:max (t); yy = 1 - exp (-xx / 10); plot (xx, yy, "g-"); %! hold off; %!demo %! R = wblrnd (100, 2, 100, 1); %! ecdf (R, "Function", "survivor", "Alpha", 0.01, "Bounds", "on"); %! hold on %! x = 1:1:250; %! wblsurv = 1 - cdf ("weibull", x, 100, 2); %! plot (x, wblsurv, "g-", "LineWidth", 2) %! legend ("Empirical survivor function", "Lower confidence bound", ... %! "Upper confidence bound", "Weibull survivor function", ... %! "Location", "northeast"); %! hold off ## Test input %!error ecdf (); %!error ecdf (randi (15,2)); %!error ecdf ([3,2,4,3+2i,5]); %!error kstest ([2,3,4,5,6],"tail"); %!error kstest ([2,3,4,5,6],"tail", "whatever"); %!error kstest ([2,3,4,5,6],"function", ""); %!error kstest ([2,3,4,5,6],"badoption", 0.51); %!error kstest ([2,3,4,5,6],"tail", 0); %!error kstest ([2,3,4,5,6],"alpha", 0); %!error kstest ([2,3,4,5,6],"alpha", NaN); %!error kstest ([NaN,NaN,NaN,NaN,NaN],"tail", "unequal"); %!error kstest ([2,3,4,5,6],"alpha", 0.05, "CDF", [2,3,4;1,3,4;1,2,1]); ## Test output against MATLAB results %!test %! hf = figure ("visible", "off"); %! unwind_protect %! x = [2, 3, 4, 3, 5, 4, 6, 5, 8, 3, 7, 8, 9, 0]; %! [F, x, Flo, Fup] = ecdf (x); %! F_out = [0; 0.0714; 0.1429; 0.3571; 0.5; 0.6429; 0.7143; 0.7857; 0.9286; 1]; %! assert (F, F_out, ones (10,1) * 1e-4); %! x_out = [0 0 2 3 4 5 6 7 8 9]'; %! assert (x, x_out); %! Flo_out = [NaN, 0, 0, 0.1061, 0.2381, 0.3919, 0.4776, 0.5708, 0.7937, NaN]'; %! assert (Flo, Flo_out, ones (10,1) * 1e-4); %! Fup_out = [NaN, 0.2063, 0.3262, 0.6081, 0.7619, 0.8939, 0.9509, 1, 1, NaN]'; %! assert (Fup, Fup_out, ones (10,1) * 1e-4); %! unwind_protect_cleanup %! close (hf); %! end_unwind_protect %!test %! hf = figure ("visible", "off"); %! unwind_protect %! x = [2, 3, 4, 3, 5, 4, 6, 5, 8, 3, 7, 8, 9, 0]; %! ecdf (x); %! unwind_protect_cleanup %! close (hf); %! end_unwind_protect statistics-release-1.6.3/inst/einstein.m000066400000000000000000000225361456127120000203100ustar00rootroot00000000000000## Copyright (C) 2023 Arun Giridhar ## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {} einstein () ## @deftypefnx {statistics} {@var{tiles} =} einstein (@var{a}, @var{b}) ## @deftypefnx {statistics} {[@var{tiles}, @var{rhat}] =} einstein (@var{a}, @var{b}) ## @deftypefnx {statistics} {[@var{tiles}, @var{rhat}, @var{that}] =} einstein (@var{a}, @var{b}) ## @deftypefnx {statistics} {[@var{tiles}, @var{rhat}, @var{that}, @var{shat}] =} einstein (@var{a}, @var{b}) ## @deftypefnx {statistics} {[@var{tiles}, @var{rhat}, @var{that}, @var{shat}, @var{phat}] =} einstein (@var{a}, @var{b}) ## @deftypefnx {statistics} {[@var{tiles}, @var{rhat}, @var{that}, @var{shat}, @var{phat}, @var{fhat}] =} einstein (@var{a}, @var{b}) ## ## Plots the tiling of the basic clusters of einstein tiles. ## ## Scalars @var{a} and @var{b} define the shape of the einstein tile. ## See Smith et al (2023) for details: @url{https://arxiv.org/abs/2303.10798} ## ## @itemize ## @item @var{tiles} is a structure containing the coordinates of the einstein ## tiles that are tiled on the plot. Each field contains the tile coordinates ## of the corresponding clusters. ## @itemize ## @item @var{tiles}@qcode{.rhat} contains the reflected einstein tiles ## @item @var{tiles}@qcode{.that} contains the three-hat shells ## @item @var{tiles}@qcode{.shat} contains the single-hat clusters ## @item @var{tiles}@qcode{.phat} contains the paired-hat clusters ## @item @var{tiles}@qcode{.fhat} contains the fylfot clusters ## @end itemize ## ## @item @var{rhat} contains the coordinates of the first reflected tile ## @item @var{that} contains the coordinates of the first three-hat shell ## @item @var{shat} contains the coordinates of the first single-hat cluster ## @item @var{phat} contains the coordinates of the first paired-hat cluster ## @item @var{fhat} contains the coordinates of the first fylfot cluster ## @end itemize ## ## @end deftypefn function [varargout] = einstein (a, b, varargin) ## Check for valid number of input arguments if (nargin < 2) print_usage; endif ## Check A and B for valid type and range if (! (isscalar (a) && isscalar (b) && isnumeric (a) && isnumeric (b)... && isreal (a) && isreal (b))) error ("einstein: A and B must real scalars."); end if (a <= 0 || a >= 1 || b <= 0 || b >= 1) error ("einstein: A and B must be within the open interval (0,1)."); endif ## Get initial hat points single_hat = getpoly (a, b) * rotz (-150)([1,2],[1,2]); ## Make a reflected-hat reflecthat = [-1, 1] .* single_hat; ## Make a three-hat shell cluster three_hat1 = rotatehat (single_hat, -60); three_hat1 = three_hat1 + (reflecthat(1,:) - three_hat1(9,:)); three_hat2 = three_hat1 + (reflecthat(6,:) - three_hat1(11,:)); three_hat3 = rotatehat (three_hat1, 120); three_hat3 = three_hat3 + (reflecthat(5,:) - three_hat1(9,:)); three_hat = [three_hat1, three_hat2, three_hat3]; ## Translate another four-tile cluster translate = three_hat(5,[3,4]) - three_hat(12,[1,2]); all.rhat = translatehat (reflecthat, translate); all.that = translatehat (three_hat, translate); all.rhat = [reflecthat, all.rhat]; all.that = [three_hat, all.that]; ## Rotate and translate another four-tile cluster tmp_3hat = rotatehat (three_hat, 120); tmp_rhat = rotatehat (reflecthat, 120); translate = three_hat(12,[5,6]) - tmp_3hat(5,[3,4]); tmp_3hat = translatehat (tmp_3hat, translate); tmp_rhat = translatehat (tmp_rhat, translate); all.that = [all.that, tmp_3hat]; all.rhat = [all.rhat, tmp_rhat]; ## Plot four-tile clusters patch (all.that(:,[1:2:end]), all.that(:,[2:2:end]), "LineWidth", 2, ... "FaceColor", "c", "EdgeColor","k"); patch (all.rhat(:,[1:2:end]), all.rhat(:,[2:2:end]), "LineWidth", 2, ... "FaceColor", "b", "EdgeColor","k"); title (sprintf ("a = %4.2f b = %4.2f", a, b), "FontSize",30) ## Make a single-hat cluster translate = three_hat(10,[3,4]) - single_hat(2,:); singlehat = translatehat (single_hat, translate); all.shat = singlehat; ## Plot single-tile cluster patch (all.shat(:,1), all.shat(:,2), "LineWidth", 2, ... "FaceColor", [0.95, 0.95, 0.95], "EdgeColor","k"); axis ("equal") ## Make a paired-hat cluster paired_hat1 = all.shat + (all.rhat(9,[5,6]) - all.shat(5,:)); paired_hat2 = three_hat(:,[3,4]) + (three_hat(1,[5,6]) - three_hat(3,[3,4])); paired_hat = [paired_hat1, paired_hat2]; ## Rotate and translate another two paired-hat clusters tmp_phat = rotatehat (paired_hat, -120); translate = three_hat(4,[3,4]) - tmp_phat(4,[3,4]); tmp_phat = translatehat (tmp_phat, translate); all.phat = [paired_hat, tmp_phat]; tmp_phat = rotatehat (paired_hat, -60); translate = all.that(10,[11,12]) - tmp_phat(11,[3,4]); tmp_phat = translatehat (tmp_phat, translate); all.phat = [all.phat, tmp_phat]; ## Plot paired-tiles clusters patch (all.phat(:,[1:2:end]), all.phat(:,[2:2:end]), "LineWidth", 2, ... "FaceColor", [0.9, 0.9, 0.9], "EdgeColor","k"); ## Make a fylfot cluster fylfot_hat = paired_hat; tmp_fhat = rotatehat (paired_hat, -120); translate = fylfot_hat(1,[3,4]) - tmp_fhat(3,[3,4]); tmp_fhat = translatehat (tmp_fhat, translate); fylfot_hat = [fylfot_hat, tmp_fhat]; tmp_fhat = rotatehat (paired_hat, 120); translate = fylfot_hat(3,[3,4]) - tmp_fhat(1,[3,4]); tmp_fhat = translatehat (tmp_fhat, translate); fylfot_hat = [fylfot_hat, tmp_fhat]; translate = all.that(13,[13,14]) - fylfot_hat(13,[7,8]); fylfot_hat = translatehat (fylfot_hat, translate); ## Translate another two fylfot clusters translate = all.that(4,[9,10]) - fylfot_hat(13,[3,4]); tmp_fhat = translatehat (fylfot_hat, translate); all.fhat = [fylfot_hat, tmp_fhat]; translate = all.that(13,[1,2]) - fylfot_hat(4,[3,4]); tmp_fhat = translatehat (fylfot_hat, translate); all.fhat = [all.fhat, tmp_fhat]; ## Plot fylfot clusters patch (all.fhat(:,[1:2:end]), all.fhat(:,[2:2:end]), "LineWidth", 2, ... "FaceColor", "r", "EdgeColor","k"); if (nargout > 0) varargout{1} = all; endif if (nargout > 1) varargout{2} = reflecthat; endif if (nargout > 2) varargout{3} = three_hat; endif if (nargout > 3) varargout{4} = singlehat; endif if (nargout > 4) varargout{5} = paired_hat; endif if (nargout > 5) varargout{6} = fylfot_hat; endif endfunction ## Rotates a cluster of hats. function newhat = rotatehat (hat, degrees) rotM = rotz (degrees)([1,2],[1,2]); newhat = zeros (size (hat)); for i=1:2:columns (hat) newhat(:,[i,i+1]) = hat(:,[i,i+1]) * rotM; endfor endfunction ## Translates a cluster of hats. function newhat = translatehat (hat, dist) nhats = columns (hat) / 2; newhat = hat + repmat (dist, 1, nhats); endfunction ## Returns a unit vector given a direction angle in degrees function ret = u (t) persistent angles = (0:30:330); persistent tbl = [cosd(angles); sind(angles)]'; ret = tbl(angles == mod (t, 360), :); endfunction ## Returns the hat polygon function single_hat = getpoly (a, b) single_hat = zeros (14, 2); pos = 0; single_hat(++pos, :) = [0 0]; t = 270; single_hat(pos+1, :) = single_hat(pos++, :) + a * u(t); t += 60; single_hat(pos+1, :) = single_hat(pos++, :) + a * u(t); t -= 90; single_hat(pos+1, :) = single_hat(pos++, :) + b * u(t); t += 60; single_hat(pos+1, :) = single_hat(pos++, :) + b * u(t); t += 90; single_hat(pos+1, :) = single_hat(pos++, :) + a * u(t); t -= 60; single_hat(pos+1, :) = single_hat(pos++, :) + a * u(t); t += 90; single_hat(pos+1, :) = single_hat(pos++, :) + b * u(t); t -= 60; single_hat(pos+1, :) = single_hat(pos++, :) + b * u(t); t += 90; single_hat(pos+1, :) = single_hat(pos++, :) + a * u(t); t += 60; single_hat(pos+1, :) = single_hat(pos++, :) + a * u(t) * 2; t += 60; single_hat(pos+1, :) = single_hat(pos++, :) + a * u(t); t -= 90; single_hat(pos+1, :) = single_hat(pos++, :) + b * u(t); t += 60; single_hat(pos+1, :) = single_hat(pos++, :) + b * u(t); ## t(14, :) == t(1, :) to within numerical roundoff endfunction %!demo %! einstein (0.4, 0.6) %!demo %! einstein (0.2, 0.5) %!demo %! einstein (0.6, 0.1) ## Test plotting %!test %! hf = figure ("visible", "off"); %! unwind_protect %! tiles = einstein (0.4, 0.6); %! assert (isstruct (tiles), true); %! unwind_protect_cleanup %! close (hf); %! end_unwind_protect ## Test input validation %!error einstein %!error einstein (0.5) %!error einstein (0, 0.9) %!error einstein (0.4, 1) %!error einstein (-0.4, 1) statistics-release-1.6.3/inst/evalclusters.m000066400000000000000000000361451456127120000212070ustar00rootroot00000000000000## Copyright (C) 2021 Stefano Guidoni ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{eva} =} evalclusters (@var{x}, @var{clust}, @var{criterion}) ## @deftypefnx {statistics} {@var{eva} =} evalclusters (@dots{}, @qcode{Name}, @qcode{Value}) ## ## Create a clustering evaluation object to find the optimal number of clusters. ## ## @code{evalclusters} creates a clustering evaluation object to evaluate the ## optimal number of clusters for data @var{x}, using criterion @var{criterion}. ## The input data @var{x} is a matrix with @code{n} observations of @code{p} ## variables. ## The evaluation criterion @var{criterion} is one of the following: ## @table @code ## @item @qcode{CalinskiHarabasz} ## to create a @code{CalinskiHarabaszEvaluation} object. ## ## @item @qcode{DaviesBouldin} ## to create a @code{DaviesBouldinEvaluation} object. ## ## @item @qcode{gap} ## to create a @code{GapEvaluation} object. ## ## @item @qcode{silhouette} ## to create a @code{SilhouetteEvaluation} object. ## ## @end table ## The clustering algorithm @var{clust} is one of the following: ## @table @code ## @item @qcode{kmeans} ## to cluster the data using @code{kmeans} with @code{EmptyAction} set to ## @code{singleton} and @code{Replicates} set to 5. ## ## @item @qcode{linkage} ## to cluster the data using @code{clusterdata} with @code{linkage} set to ## @code{Ward}. ## ## @item @qcode{gmdistribution} ## to cluster the data using @code{fitgmdist} with @code{SharedCov} set to ## @code{true} and @code{Replicates} set to 5. ## ## @end table ## If the @var{criterion} is @code{CalinskiHarabasz}, @code{DaviesBouldin}, or ## @code{silhouette}, @var{clust} can also be a function handle to a function ## of the form @code{c = clust(x, k)}, where @var{x} is the input data, ## @var{k} the number of clusters to evaluate and @var{c} the clustering result. ## The clustering result can be either an array of size @code{n} with @code{k} ## different integer values, or a matrix of size @code{n} by @code{k} with a ## likelihood value assigned to each one of the @code{n} observations for each ## one of the @var{k} clusters. In the latter case, each observation is assigned ## to the cluster with the higher value. ## If the @var{criterion} is @code{CalinskiHarabasz}, @code{DaviesBouldin}, or ## @code{silhouette}, @var{clust} can also be a matrix of size @code{n} by ## @code{k}, where @code{k} is the number of proposed clustering solutions, so ## that each column of @var{clust} is a clustering solution. ## ## In addition to the obligatory @var{x}, @var{clust} and @var{criterion} inputs ## there is a number of optional arguments, specified as pairs of @code{Name} ## and @code{Value} options. The known @code{Name} arguments are: ## @table @code ## @item @qcode{KList} ## a vector of positive integer numbers, that is the cluster sizes to evaluate. ## This option is necessary, unless @var{clust} is a matrix of proposed ## clustering solutions. ## ## @item @qcode{Distance} ## a distance metric as accepted by the chosen @var{clust}. It can be the ## name of the distance metric as a string or a function handle. When ## @var{criterion} is @code{silhouette}, it can be a vector as created by ## function @code{pdist}. Valid distance metric strings are: @code{sqEuclidean} ## (default), @code{Euclidean}, @code{cityblock}, @code{cosine}, ## @code{correlation}, @code{Hamming}, @code{Jaccard}. ## Only used by @code{silhouette} and @code{gap} evaluation. ## ## @item @qcode{ClusterPriors} ## the prior probabilities of each cluster, which can be either @code{empirical} ## (default), or @code{equal}. When @code{empirical} the silhouette value is ## the average of the silhouette values of all points; when @code{equal} the ## silhouette value is the average of the average silhouette value of each ## cluster. Only used by @code{silhouette} evaluation. ## ## @item @qcode{B} ## the number of reference datasets generated from the reference distribution. ## Only used by @code{gap} evaluation. ## ## @item @qcode{ReferenceDistribution} ## the reference distribution used to create the reference data. It can be ## @code{PCA} (default) for a distribution based on the principal components of ## @var{X}, or @code{uniform} for a uniform distribution based on the range of ## the observed data. @code{PCA} is currently not implemented. ## Only used by @code{gap} evaluation. ## ## @item @qcode{SearchMethod} ## the method for selecting the optimal value with a @code{gap} evaluation. It ## can be either @code{globalMaxSE} (default) for selecting the smallest number ## of clusters which is inside the standard error of the maximum gap value, or ## @code{firstMaxSE} for selecting the first number of clusters which is inside ## the standard error of the following cluster number. ## Only used by @code{gap} evaluation. ## ## @end table ## ## Output @var{eva} is a clustering evaluation object. ## ## @end deftypefn ## ## @seealso{CalinskiHarabaszEvaluation, DaviesBouldinEvaluation, GapEvaluation, ## SilhouetteEvaluation} function cc = evalclusters (x, clust, criterion, varargin) ## input check if (nargin < 3) print_usage (); endif ## parsing input data if ((! ismatrix (x)) || (! isnumeric (x))) error ("evalclusters: 'x' must be a numeric matrix"); endif ## useful values for input check n = rows (x); p = columns (x); ## parsing the clustering algorithm if (ischar (clust)) clust = lower (clust); if (! any (strcmpi (clust, {"kmeans", "linkage", "gmdistribution"}))) error ("evalclusters: unknown clustering algorithm '%s'", clust); endif elseif (! isscalar (clust)) if ((! isnumeric (clust)) || (length (size (clust)) != 2) || ... (rows (clust) != n)) error ("evalclusters: invalid matrix of clustering solutions"); endif elseif (! isa (clust, "function_handle")) error ("evalclusters: invalid argument for 'clust'"); endif ## parsing the criterion parameter ## we check the rest later, as the check depends on the chosen criterion if (! ischar (criterion)) error ("evalclusters: invalid criterion, it must be a string"); else criterion = lower (criterion); if (! any (strcmpi (criterion, {"calinskiharabasz", "daviesbouldin", ... "silhouette", "gap"}))) error ("evalclusters: unknown criterion '%s'", criterion); endif endif ## some default value klist = []; distance = "sqeuclidean"; clusterpriors = "empirical"; b = 100; referencedistribution = "pca"; searchmethod = "globalmaxse"; ## parse the name/value pairs pair_index = 1; while (pair_index < (nargin - 3)) ## type check if (! ischar (varargin{pair_index})) error ("evalclusters: invalid property, string expected"); endif ## now parse the parameter switch (lower (varargin{pair_index})) case "klist" ## klist must be an array of positive interger numbers; ## there is a special case when it can be empty, but that is not the ## suggested way to use it (it is better to omit it instead) if (isempty (varargin{pair_index + 1})) if (ischar (clust) || isa (clust, "function_handle")) error (["evalclusters: 'KList' can be empty only when 'clust' "... "is a matrix"]); endif elseif ((! isnumeric (varargin{pair_index + 1})) || ... (! isvector (varargin{pair_index + 1})) || ... any (find (varargin{pair_index + 1} < 1)) || ... any (floor (varargin{pair_index + 1}) != varargin{pair_index + 1})) error ("evalclusters: 'KList' must be an array of positive integers"); endif klist = varargin{pair_index + 1}; case "distance" ## used by silhouette and gap if (! (strcmpi (criterion, "silhouette") || strcmpi (criterion, "gap"))) error (["evalclusters: distance metric cannot be used with '%s'"... " criterion"], criterion); endif if (ischar (varargin{pair_index + 1})) if (! any (strcmpi (varargin{pair_index + 1}, ... {"sqeuclidean", "euclidean", "cityblock", "cosine", ... "correlation", "hamming", "jaccard"}))) error ("evalclusters: unknown distance criterion '%s'", ... varargin{pair_index + 1}); endif elseif (! isa (varargin{pair_index + 1}, "function_handle") || ! ((isvector (varargin{pair_index + 1}) && ... isnumeric (varargin{pair_index + 1})))) error ("evalclusters: invalid distance metric"); endif distance = varargin{pair_index + 1}; case "clusterpriors" ## used by silhouette evaluation if (! strcmpi (criterion, "silhouette")) error (["evalclusters: cluster prior probabilities cannot be used "... "with '%s' criterion"], criterion); endif if (any (strcmpi (varargin{pair_index + 1}, {"empirical", "equal"}))) clusterpriors = lower (varargin{pair_index + 1}); else error ("evalclusters: invalid cluster prior probabilities value"); endif case "b" ## used by gap evaluation if (! isnumeric (varargin{pair_index + 1}) || ... ! isscalar (varargin{pair_index + 1}) || ... varargin{pair_index + 1} != floor (varargin{pair_index + 1}) || ... varargin{pair_index + 1} < 1) error ("evalclusters: b must a be positive integer number"); endif b = varargin{pair_index + 1}; case "referencedistribution" ## used by gap evaluation if (! ischar (varargin{pair_index + 1}) || any (strcmpi ... (varargin{pair_index + 1}, {"pca", "uniform"}))) error (["evalclusters: the reference distribution must be either" ... "'PCA' or 'uniform'"]); endif referencedistribution = lower (varargin{pair_index + 1}); case "searchmethod" ## used by gap evaluation if (! ischar (varargin{pair_index + 1}) || any (strcmpi ... (varargin{pair_index + 1}, {"globalmaxse", "uniform"}))) error (["evalclusters: the search method must be either" ... "'globalMaxSE' or 'firstmaxse'"]); endif searchmethod = lower (varargin{pair_index + 1}); otherwise error ("evalclusters: unknown property %s", varargin{pair_index}); endswitch pair_index += 2; endwhile ## check if there are parameters without a value or a name left if (nargin - 2 - pair_index) if (ischar (varargin{pair_index})) error ("evalclusters: invalid parameter '%s'", varargin{pair_index}); else error ("evalclusters: invalid parameter '%d'", varargin{pair_index}); endif endif ## another check on klist if (isempty (klist) && (ischar (clust) || isa (clust, "function_handle"))) error (["evalclusters: 'KList' can be empty only when 'clust' ", ... "is a matrix"]); endif ## main switch (lower (criterion)) case "calinskiharabasz" ## further compatibility checks between the chosen parameters are ## delegated to the class constructor if (isempty (klist)) klist = 1 : columns (clust); endif cc = CalinskiHarabaszEvaluation (x, clust, klist); case "daviesbouldin" ## further compatibility checks between the chosen parameters are ## delegated to the class constructor if (isempty (klist)) klist = 1 : columns (clust); endif cc = DaviesBouldinEvaluation (x, clust, klist); case "silhouette" ## further compatibility checks between the chosen parameters are ## delegated to the class constructor if (isempty (klist)) klist = 1 : columns (clust); endif cc = SilhouetteEvaluation (x, clust, klist, distance, clusterpriors); case "gap" ## gap cannot be used with a pre-computed solution, i.e. a matrix for ## 'clust', and klist must be specified if (isnumeric (clust)) error (["evalclusters: 'clust' must be a clustering algorithm when "... "using the gap criterion"]); endif if (isempty (klist)) error (["evalclusters: 'klist' cannot be empty when using the gap " ... "criterion"]); endif cc = GapEvaluation (x, clust, klist, b, distance, ... referencedistribution, searchmethod); otherwise error ("evalclusters: invalid criterion '%s'", criterion); endswitch endfunction ## input tests %!error evalclusters () %!error evalclusters ([1 1;0 1]) %!error evalclusters ([1 1;0 1], "kmeans") %!error <'x' must be a numeric*> evalclusters ("abc", "kmeans", "gap") %!error evalclusters ([1 1;0 1], "xxx", "gap") %!error evalclusters ([1 1;0 1], [1 2], "gap") %!error evalclusters ([1 1;0 1], 1.2, "gap") %!error evalclusters ([1 1;0 1], [1; 2], 123) %!error evalclusters ([1 1;0 1], [1; 2], "xxx") %!error <'KList' can be empty*> evalclusters ([1 1;0 1], "kmeans", "gap") %!error evalclusters ([1 1;0 1], [1; 2], "gap", 1) %!error evalclusters ([1 1;0 1], [1; 2], "gap", 1, 1) %!error evalclusters ([1 1;0 1], [1; 2], "gap", "xxx", 1) %!error <'KList'*> evalclusters ([1 1;0 1], [1; 2], "gap", "KList", [-1 0]) %!error <'KList'*> evalclusters ([1 1;0 1], [1; 2], "gap", "KList", [1 .5]) %!error <'KList'*> evalclusters ([1 1;0 1], [1; 2], "gap", "KList", [1 1; 1 1]) %!error evalclusters ([1 1;0 1], [1; 2], "gap", ... %! "distance", "a") %!error evalclusters ([1 1;0 1], [1; 2], "daviesbouldin", ... %! "distance", "a") %!error evalclusters ([1 1;0 1], [1; 2], "gap", ... %! "clusterpriors", "equal") %!error evalclusters ([1 1;0 1], [1; 2], ... %! "silhouette", "clusterpriors", "xxx") %!error <'clust' must be a clustering*> evalclusters ([1 1;0 1], [1; 2], "gap") %!test %! load fisheriris; %! eva = evalclusters(meas, "kmeans", "calinskiharabasz", "KList", [1:6]); %! assert(isa(eva, "CalinskiHarabaszEvaluation")); %! assert(eva.NumObservations, 150); %! assert(eva.OptimalK, 3); %! assert(eva.InspectedK, [1 2 3 4 5 6]); ## demonstration #%!demo #%! load fisheriris; #%! eva = evalclusters(meas, "kmeans", "calinskiharabasz", "KList", [1:6]) statistics-release-1.6.3/inst/ff2n.m000066400000000000000000000037051456127120000173220ustar00rootroot00000000000000## Copyright (C) 2022 Andreas Bertsatos ## based on public domain work by Paul Kienzle ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{dFF2} =} ff2n (@var{n}) ## ## Two-level full factorial design. ## ## @code{@var{dFF2} = ff2n (@var{n})} gives factor settings dFF2 for a two-level ## full factorial design with n factors. @var{dFF2} is m-by-n, where m is the ## number of treatments in the full-factorial design. Each row of @var{dFF2} ## corresponds to a single treatment. Each column contains the settings for a ## single factor, with values of 0 and 1 for the two levels. ## ## @seealso {fullfact} ## @end deftypefn function A = ff2n (n) if (nargin != 1) error ("ff2n: wrong number of input arguments."); endif if (floor (n) != n || numel (n) != 1 || n < 1 ... || ! isfinite (n) || ! isreal (n)) error ("ff2n: @var{N} must be a positive integer scalar."); endif A = fullfact (2 * ones (1, n)) - 1; endfunction %!error ff2n (); %!error ff2n (2, 5); %!error ff2n (2.5); %!error ff2n (0); %!error ff2n (-3); %!error ff2n (3+2i); %!error ff2n (Inf); %!error ff2n (NaN); %!test %! A = ff2n (3); %! assert (A, fullfact (3)); %!test %! A = ff2n (8); %! assert (A, fullfact (8)); statistics-release-1.6.3/inst/fillmissing.m000066400000000000000000003305671456127120000210200ustar00rootroot00000000000000## Copyright (C) 1995-2023 The Octave Project Developers ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{B} =} fillmissing (@var{A}, 'constant', @var{v}) ## @deftypefnx {statistics} {@var{B} =} fillmissing (@var{A}, @var{method}) ## @deftypefnx {statistics} {@var{B} =} fillmissing (@var{A}, @var{move_method}, @var{window_size}) ## @deftypefnx {statistics} {@var{B} =} fillmissing (@var{A}, @var{fill_function}, @var{window_size}) ## @deftypefnx {statistics} {@var{B} =} fillmissing (@dots{}, @var{dim}) ## @deftypefnx {statistics} {@var{B} =} fillmissing (@dots{}, @var{PropertyName}, @var{PropertyValue}) ## @deftypefnx {statistics} {[@var{B}, @var{idx}] =} fillmissing (@dots{}) ## ## Replace missing entries of array @var{A} either with values in @var{v} or ## as determined by other specified methods. 'missing' values are determined ## by the data type of @var{A} as identified by the function @ref{ismissing}, ## curently defined as: ## ## @itemize ## @item ## @qcode{NaN}: @code{single}, @code{double} ## ## @item ## @qcode{" "} (white space): @code{char} ## ## @item ## @qcode{@{""@}} (white space in cell): string cells. ## @end itemize ## ## @var{A} can be a numeric scalar or array, a character vector or array, or ## a cell array of character vectors (a.k.a. string cells). ## ## @var{v} can be a scalar or an array containing values for replacing the ## missing values in @var{A} with a compatible data type for isertion into ## @var{A}. The shape of @var{v} must be a scalar or an array with number ## of elements in @var{v} equal to the number of elements orthoganal to the ## operating dimension. E.g., if @code{size(@var{A})} = [3 5 4], operating ## along @code{dim} = 2 requires @var{v} to contain either 1 or 3x4=12 ## elements. ## ## If requested, the optional output @var{idx} will contain a logical array ## the same shape as @var{A} indicating with 1's which locations in @var{A} ## were filled. ## ## Alternate Input Arguments and Values: ## @itemize ## @item @var{method} - replace missing values with: ## @table @code ## ## @item next ## @itemx previous ## @itemx nearest ## next, previous, or nearest non-missing value (nearest defaults to next ## when equidistant as determined by @code{SamplePoints}.) ## ## @item linear ## linear interpolation of neigboring, non-missing values ## ## @item spline ## piecewise cubic spline interpolation of neigboring, non-missing values ## ## @item pchip ## 'shape preserving' piecewise cubic spline interposaliton of neighboring, ## non-missing values ## @end table ## ## @item @var{move_method} - moving window calculated replacement values: ## @table @code ## ## @item movmean ## @itemx movmedian ## moving average or median using a window determined by @var{window_size}. ## @var{window_size} must be either a positive scalar value or a two element ## positive vector of sizes @w{@code{[@var{nb}, @var{na}]}} measured in the ## same units as @code{SamplePoints}. For scalar values, the window is ## centered on the missing element and includes all data points within a ## distance of half of @var{window_size} on either side of the window center ## point. Note that for compatability, when using a scalar value, the backward ## window limit is inclusive and the forward limit is exclusive. If a ## two-element @var{window_size} vector is specified, the window includes all ## points within a distance of @var{nb} backward and @var{na} forward from the ## current element at the window center (both limits inclusive). ## @end table ## ## @item @var{fill_function} - custom method specified as a function handle. ## The supplied fill function must accept three inputs in the following order ## for each missing gap in the data: ## @table @var ## @item A_values - ## elements of @var{A} within the window on either side of the gap as ## determined by @var{window_size}. (Note these elements can include missing ## values from other nearby gaps.) ## @item A_locs - ## locations of the reference data, @var{A_values}, in terms of the default ## or specified @code{SamplePoints}. ## @item gap_locs - ## location of the gap data points that need to be filled in terms of the ## default or specified @code{SamplePoints}. ## @end table ## ## The supplied function must return a scalar or vector with the same number of ## elements in @var{gap_locs}. The required @var{window_size} parameter ## follows similar rules as for the moving average and median methods ## described above, with the two exceptions that (1) each gap is processed as a ## single element, rather than gap elements being processed individually, and ## (2) the window extended on either side of the gap has inclusive endpoints ## regardless of how @var{window_size} is specified. ## ## @item @var{dim} - specify a dimension for vector operation (default = ## first non-singeton dimension) ## ## @item @var{PropertyName}-@var{PropertyValue} pairs ## @table @code ## @item SamplePoints ## @var{PropertyValue} is a vector of sample point values representing the ## sorted and unique x-axis values of the data in @var{A}. If unspecified, ## the default is assumed to be the vector @var{[1 : size (A, dim)]}. The ## values in @code{SamplePoints} will affect methods and properties that rely ## on the effective distance between data points in @var{A}, such as ## interpolants and moving window functions where the @var{window_size} ## specified for moving window functions is measured relative to the ## @code{SamplePoints}. ## ## @item EndValues ## Apply a separate handling method for missing values at the front or back of ## the array. @var{PropertyValue} can be: ## @itemize ## @item A constant scalar or array with the same shape requirments as @var{v}. ## @item @code{none} - Do not fill end gap values. ## @item @code{extrap} - Use the same procedure as @var{method} to fill the ## end gap values. ## @item Any valid @var{method} listed above except for @code{movmean}, ## @code{movmedian}, and @code{fill_function}. Those methods can only be ## applied to end gap values with @code{extrap}. ## @end itemize ## ## @item MissingLocations ## @var{PropertyValue} must be a logical array the same size as @var{A} ## indicating locations of known missing data with a value of @code{true}. ## (cannot be combined with MaxGap) ## ## @item MaxGap ## @var{PropertyValue} is a numeric scalar indicating the maximum gap length ## to fill, and assumes the same distance scale as the sample points. Gap ## length is calculated by the difference in locations of the sample points ## on either side of the gap, and gaps larger than MaxGap are ignored by ## @var{fillmissing}. (cannot be combined with MissingLocations) ## @end table ## @end itemize ## ## Compatibility Notes: ## @itemize ## @item ## Numerical and logical inputs for @var{A} and @var{v} may be specified ## in any combination. The output will be the same class as @var{A}, with the ## @var{v} converted to that data type for filling. Only @code{single} and ## @code{double} have defined 'missing' values, so except for when the ## @code{missinglocations} option specifies the missing value identification of ## logical and other numeric data types, the output will always be ## @code{@var{B} = @var{A}} with @code{@var{idx} = false(size(@var{A}))}. ## @item ## All interpolation methods can be individually applied to @code{EndValues}. ## @item ## @sc{Matlab}'s @var{fill_function} method currently has several ## inconsistencies with the other methods (tested against version 2022a), and ## Octave's implementation has chosen the following consistent behavior over ## compatibility: (1) a column full of missing data is considered part of ## @code{EndValues}, (2) such columns are then excluded from ## @var{fill_function} processing because the moving window is always empty. ## (3) operation in dimensions higher than 2 perform identically to operations ## in dims 1 and 2, most notable on vectors. ## @item ## Method "makima" is not yet implemented in @code{interp1}, which is ## used by @code{fillmissing}. Attempting to call this method will produce ## an error until the method is implemented in @code{interp1}. ## @end itemize ## ## @seealso{ismissing, rmmissing, standardizeMissing} ## @end deftypefn function [A, idx_out] = fillmissing (A, varargin) if (nargin < 2)|| (nargin > 12) print_usage (); endif method = varargin{1}; if (ischar (method)) method = lower (method); elseif (! is_function_handle (method)) error ("fillmissing: second input must be a string or function handle."); endif sz_A = size (A); ndims_A = numel (sz_A); dim = []; missing_locs = []; endgap_method = []; endgap_locs = []; endgap_val = []; fill_vals = []; idx_flag = (nargout > 1); maxgap = []; missinglocations = false; reshape_flag = false; samplepoints = []; standard_samplepoints = true; v = []; if (idx_flag) idx_out = false (sz_A); endif ## process input arguments if (is_function_handle (method)) ## verify function handle and window if ((nargin < 3) || ! isnumeric (varargin{2}) || ... ! any( numel (varargin{2})==[1 2])) error (["fillmissing: fill function handle must be followed by ", ... "a numeric scalar or two-element vector window size."]); elseif (nargin (method) < 3) error ("fillmissing: fill function must accept at least three inputs."); endif move_fcn = method; method = "movfcn"; window_size = varargin{2}; next_varg = 3; else switch (method) case {"previous", "next", "nearest"} next_varg = 2; case {"linear", "spline", "pchip", "makima"} next_varg = 2; if (! (isnumeric (A) || islogical (A))) error (["fillmissing: interpolation methods only valid for ", ... "numeric input types."]); endif case "constant" if ((nargin < 3)) error (["fillmissing: 'constant' method must be followed by a ", ... "numeric scalar or array."]); endif v = varargin{2}; if ! (isscalar (v) || isempty (v)) v = v(:); endif if ((! ischar(v)) && isempty (v)) error ("fillmissing: a numeric fill value cannot be emtpy."); endif ## type check v against A if (iscellstr (A) && ischar (v) && ! iscellstr (v)) v = {v}; endif if ((! isempty (v)) && ... ((isnumeric (A) && ! (isnumeric (v) || islogical (v))) || ... (ischar (A) && ! ischar (v)) || ... (iscellstr (A) && ! (iscellstr (v))))) error ("fillmissing: fill value must be the same data type as 'A'."); endif ## v can't be size checked until after processing rest of inputs next_varg = 3; case {"movmean", "movmedian"} if (! (isnumeric (A) || islogical (A))) error (["fillmissing: 'movmean' and 'movmedian' methods only ", ... "valid for numeric input types."]); endif if ((nargin < 3) || ! isnumeric (varargin{2}) || ... ! any( numel (varargin{2})==[1 2])) error (["fillmissing: moving window method must be followed by ", ... "a numeric scalar or two-element vector."]); endif window_size = varargin{2}; next_varg = 3; otherwise error ("fillmissing: unknown fill method '%s'.", method); endswitch endif ## process any more parameters if (next_varg < nargin) #set dim. if specified, it is the only numeric option that can appear next if isnumeric (varargin{next_varg}) dim = varargin{next_varg}; if (! (isscalar (dim) && (dim > 0))) error ("fillmissing: DIM must be a positive scalar."); endif next_varg++; else ## default dim is first nonsingleton dimension of A if isscalar (A) dim = 1; else dim = find (sz_A > 1, 1, "first"); endif endif sz_A_dim = size (A, dim); ## process any remaining inputs, must be name-value pairs while (next_varg < nargin) propname = varargin{next_varg}; if (next_varg + 1 == nargin) ## must be at least one more input with 1st containing value error ("fillmissing: properties must be given as name-value pairs."); else propval = varargin{next_varg + 1}; next_varg = next_varg + 2; if (! ischar (propname)) error ("fillmissing: invalid parameter name specified."); else propname = lower (propname); endif ## input validation for names and values switch (propname) case "samplepoints" ## val must be sorted, unique, numeric vector the same size ## as size(A,dim) if (! (isnumeric (propval) && isvector (propval) && (numel (propval) == sz_A_dim) && issorted (propval) && (numel (propval) == numel (unique (propval))))) error (["fillmissing: SamplePoints must be a sorted ", ... "non-repeating, numeric vector with %d elements."], ... sz_A_dim); endif samplepoints = propval(:); standard_samplepoints = all (diff (samplepoints, 1, 1) == 1); case "endvalues" ## for numeric A, val must be numeric scalar, a numeric ## array with numel equal to the elements orthogonal to ## the dim or certain string methads. For non-numeric A, ## "constant" method is not valid. if ischar (propval) switch (lower (propval)) case {"extrap", "previous", "next", "nearest", "none", ... "linear", "spline", "pchip", "makima"} endgap_method = propval; otherwise error ("fillmissing: invalid EndValues method '%s'.", propval); endswitch elseif (isnumeric (propval)) if (! (isnumeric (A) || islogical (A))) error (["fillmissing: EndValues method 'constant' only ", ... "valid for numeric arrays."]); endif endgap_method = 'constant'; endgap_val = propval; else error (["fillmissing: EndValues must be numeric or a ", ... "valid method name."]); endif case "missinglocations" if !(isnumeric (A) || islogical (A) || isinteger (A) || ... ischar (A) || iscellstr (A)) error (["fillmissing: MissingLocations option is not ", ... "compatible with data type '%s'."], class (A)); endif if (! isempty (maxgap)) error (["fillmissing: MissingLocations and MaxGap options ", ... "cannot be used simultaneously."]); endif ## val must be logical array same size as A if (! (islogical (propval) && isequal (sz_A, size (propval)))) error (["fillmissing: MissingLocations must be a logical ", ... "array the same size as A."]); endif missinglocations = true; missing_locs = propval; case "maxgap" ## val must be positive numeric scalar if (! (isnumeric (propval) && isscalar (propval) && (propval > 0))) error ("fillmissing: MaxGap must be a positive numeric scalar."); endif if (! isempty (missing_locs)) error (["fillmissing: MissingLocations and MaxGap options ", ... "cannot be used simultaneously."]); endif maxgap = propval; case {"replacevalues", "datavariables"} error ("fillmissing: the '%s' option has not been implemented.", ... propname); otherwise error ("invalid parameter name '%s'.", propname); endswitch endif endwhile else ## no inputs after method ## set default dim if isscalar (A) dim = 1; else dim = find (sz_A > 1, 1, "first"); endif sz_A_dim = size (A, dim); endif ## reduce calls to size and avoid overruns checking sz_A for high dims if dim > ndims_A sz_A = [sz_A, ones(1, dim - ndims_A)]; ndims_A = numel (sz_A); endif ## set defaults for any unspecified parameters if (isempty (samplepoints)) samplepoints = [1 : sz_A_dim]'; endif if isempty (missing_locs) missing_locs = ismissing (A); endif ## endvalues treated separately from interior missing_locs if (isempty (endgap_method) || strcmp (endgap_method, "extrap")) endgap_method = method; if strcmp(endgap_method, "constant") endgap_val = v; endif endif ## missingvalues option not compatible with some methods and inputs: if (isinteger (A) || islogical (A)) if (any (ismember (method, ... {"linear", "spline", "pchip", "makima", "movmean", "movmedian"}))) error (["fillmissing: MissingLocations cannot be used ", ... "with method '%s' and inputs of type '%s'."], method, class (A)); elseif (any (ismember (endgap_method, ... {"linear", "spline", "pchip", "makima"}))) error (["fillmissing: MissingLocations cannot be used with EndValues", ... " method '%s' and inputs of type '%s'."], method, class (A)); endif endif ## verify size of v and endgap_val for 'constant' methods, resize for A orthogonal_size = [sz_A(1:dim-1), 1, sz_A(dim+1:end)]; # orthog. to dim size numel_orthogonal = prod (orthogonal_size); # numel perpen. to dim if (strcmp (method, "constant") && (! isscalar (v))) if (numel (v) != numel_orthogonal) error (["fillmissing: fill value 'V' must be a scalar or a %d ", ... " element array."], numel_orthogonal); else v = reshape (v, orthogonal_size); endif endif if (strcmp (endgap_method, "constant") && (! isscalar (endgap_val))) if (numel (endgap_val) != numel_orthogonal) error (["fillmissing: EndValues must be a scalar or a %d element ", ... "array."], numel_orthogonal); else endgap_val = reshape (endgap_val, orthogonal_size); endif endif ## simplify processing by temporarily permuting A so operation always on dim1 ## revert permutation at the end dim_idx_perm = [1 : ndims_A]; dim_idx_flip(1 : max(dim, ndims_A)) = {':'}; dim_idx_flip(1) = [sz_A_dim:-1:1]; if (dim != 1) dim_idx_perm([1, dim]) = [dim, 1]; A = permute (A, dim_idx_perm); sz_A([1, dim]) = sz_A([dim, 1]); missing_locs = permute (missing_locs, dim_idx_perm); reshape_flag = true; orthogonal_size = [1, sz_A(2:end)]; if (idx_flag) idx_out = false (sz_A); endif if (! isempty (v) && ! isscalar (v)) v = permute (v, dim_idx_perm); endif if (! isempty (endgap_val) && ! isscalar (endgap_val)) endgap_val = permute (endgap_val, dim_idx_perm); endif endif ## precalculate fill data for several methods zero_padding = zeros (orthogonal_size); samplepoints_expand = samplepoints(:, ones (1, prod (sz_A(2:end)))); ##find endgap locations if (sz_A_dim < 3) ## all missing are endgaps endgap_locs = missing_locs; else ## use cumsums starting from first and last part in dim to find missing ## values in and adjacent to end locations. endgap_locs = cumprod (missing_locs,1) | ... (cumprod (missing_locs(dim_idx_flip{:}),1))(dim_idx_flip{:}); endif ## remove endgap_locs from missing_locs to avoid double processing missing_locs(endgap_locs) = false; ## remove elements from missing and end location arrays if maxgap is specified if (! isempty (maxgap)) ## missing_locs: if samplepoints value diff on either side of missing ## elements is > maxgap, remove those values. ## for endgaps, use diff of inside and missing end samplepoint values ## and remove from endgaps ## First check gapsize of any interior missings in missing_locs if (any (missing_locs(:))) ## locations in front of gaps loc_before = [diff(missing_locs,1,1); zero_padding] == 1; ## locations in back of gaps loc_after = diff ([zero_padding; missing_locs],1,1) == -1; ## value of samplepoints at front and back locs sampvals_before = samplepoints_expand(loc_before); sampvals_after = samplepoints_expand(loc_after); ## evaluate which gaps are too big to fill gaps_to_remove = (sampvals_after - sampvals_before) > maxgap; ## convert those gaps into an array element list idxs_to_remove = arrayfun ('colon', ... ((find (loc_before))(gaps_to_remove ) + 1), ... ((find (loc_after))(gaps_to_remove ) - 1), ... "UniformOutput", false); ## remove those elements from missing_locs missing_locs([idxs_to_remove{:}]) = false; endif ##then do any endgaps if (any (endgap_locs(:))) ## if any are all missing, remove for any value of maxgap endgap_locs &= ! prod (endgap_locs, 1); if ((sz_A_dim < 3) && (abs (samplepoints(2) - samplepoints(1)) > maxgap)) ## shortcut - all missings are ends and exceed maxgap. endgap_locs(:) = false; else ## check gap size of front endgaps ##find loc element after gap nextvals = sum (cumprod (endgap_locs,1)) + 1; ## compare diff between values at those points and at base with maxgap ends_to_remove = abs (samplepoints(nextvals) - samplepoints(1)) ... > maxgap; ## remove any with gap>maxgap endgap_locs((cumprod (endgap_locs,1)) & ends_to_remove) = false; ## flip, repeat for back endgaps, then unflip and remove. nextvals = sum (cumprod (endgap_locs(dim_idx_flip{:}),1)) + 1; ends_to_remove = abs (samplepoints(end:-1:1)(nextvals) ... - samplepoints(end)) > maxgap; endgap_locs((cumprod (... endgap_locs(dim_idx_flip{:}), 1)(dim_idx_flip{:})) & ... ends_to_remove) = false; endif endif endif if (any (strcmp (endgap_method, {"movmean", "movmedian", "movfcn"}))) ## These methods only called for endgaps with "extrap", so endgaps ## are processed together in the missing_locs section. missing_locs = missing_locs | endgap_locs; endgap_locs(:) = false; endif ## Actaully fill the missing data ## process central missing values (all gaps bound by two valid datapoints) ## for each method, calcualte fill_vals, which will be used in assignment ## A(missing_locs) = fill_vals, and if idx_flag, populate idx_out if (any (missing_locs(:))) switch (method) case "constant" if (isscalar (v)) fill_vals = v; else fill_vals = (missing_locs .* v)(missing_locs); endif if (idx_flag) ## if any v are the missing type, those get removed from idx_out ## unless using 'missinglocations' if (! missinglocations) && any (miss_v = ismissing (v)) idx_out(missing_locs) = true; idx_out(missing_locs & miss_v) = false; else idx_out(missing_locs) = true; endif endif case {"previous", "next", "nearest", "linear"} ## find element locations bounding each gap loc_before = [diff(missing_locs, 1, 1); zero_padding] == 1; loc_after = diff ([zero_padding; missing_locs], 1, 1) == -1; gapsizes = find (loc_after) - find (loc_before) - 1; gap_count_idx = [1 : numel(gapsizes); gapsizes']; switch (method) case "previous" fill_vals = repelems (A(loc_before), gap_count_idx)'; case "next" fill_vals = repelems (A(loc_after), gap_count_idx)'; case {"nearest", "linear"} ## determine which missings go with values before or after ## gap based on samplevalue distance. (equal dist goes to after) ## find sample values before and after gaps sampvals_before = samplepoints_expand(loc_before); sampvals_after = samplepoints_expand(loc_after); ## build cell with linear indices of elements in each gap gap_locations = arrayfun ('colon', (find (loc_before)) + 1, ... (find (loc_after)) - 1, "UniformOutput", false); ## get sample values at those elements [sampvals_in_gaps, ~] = ind2sub (sz_A, [gap_locations{:}]); sampvals_in_gaps = samplepoints(sampvals_in_gaps); ## expand first and last vectors for each gap point Avals_before = repelems (A(loc_before), gap_count_idx)'; Avals_after = repelems (A(loc_after), gap_count_idx)'; switch (method) case "nearest" ## calculate gap mid point for each gap element sampvals_midgap = repelems ( ... (sampvals_before + sampvals_after)/2, gap_count_idx)'; ## generate fill vectors sorting elements into nearest before ## or after prev_fill = (sampvals_in_gaps < sampvals_midgap); next_fill = (sampvals_in_gaps >= sampvals_midgap); fill_vals = A(missing_locs); fill_vals(prev_fill) = Avals_before(prev_fill); fill_vals(next_fill) = Avals_after(next_fill); case "linear" ## expand samplepoint values for interpolation x-values sampvals_before = repelems (sampvals_before, gap_count_idx)'; sampvals_after = repelems (sampvals_after, gap_count_idx)'; ## linearly interpolate fill_vals = ((Avals_after - Avals_before) ... ./ (sampvals_after - sampvals_before)) ... .* (sampvals_in_gaps - sampvals_before) ... + Avals_before; endswitch endswitch if (idx_flag) ## mid gaps will always be filled by above methods. idx_out(missing_locs) = true; endif case {"spline", "pchip", "makima"} ## pass more complex interpolations to interp1 ## TODO: vectorized 'linear' is ~10-100x faster than using interp1. ## look to speed these up as well. ## identify columns needing interpolation to reduce empty operations cols_to_use = any (missing_locs, 1); ## missinglocations may send columns with NaN and less than 2 ## real values resulting in interp1 error. Trim those columns, ## prepopulate fill_vals with NaN, mark as filled. if (missinglocations) fill_vals = NaN (sum (missing_locs(:, cols_to_use)(:)), 1); cols_enough_points = (sum ( ... !isnan(A) & (! missing_locs), 1) > 1) & cols_to_use; interp_cols = (cols_enough_points & cols_to_use); interp_vals = (missing_locs & cols_enough_points)(missing_locs & ... cols_to_use); fill_vals(interp_vals) = other_interpolants (A(:, interp_cols), missing_locs(:, interp_cols), endgap_locs(:, interp_cols), ... method, samplepoints); else fill_vals = other_interpolants (A(:, cols_to_use), missing_locs(:, cols_to_use), endgap_locs(:, cols_to_use), ... method, samplepoints); endif if (idx_flag) idx_out(missing_locs) = true; endif case {"movmean","movmedian"} ## check window size versus smallest sample gaps. if window smaller, ## nothing to do, break out early. if ((isscalar (window_size) && ... (window_size/2 >= min (diff (samplepoints)))) || ... (isvector (window_size) && (sum (window_size) >= min (diff (samplepoints))))) switch (method) case "movmean" if sz_A_dim > 1 allmissing = (missing_locs | endgap_locs)(:,:); ## create temporary flattened array for processing, A_sum = A(:,:); A_sum (allmissing) = 0; if (standard_samplepoints && ... all (round (window_size) == window_size)) ## window size based on vector elements ## faster codepath for uniform, unit-spacing samplepoints ## and integer valued window sizes. if (isscalar (window_size)) window_width = window_size; if (mod (window_size, 2)) ## odd window size ## equal number of values on either side of gap window_size = (window_width - 1) .* [0.5, 0.5]; else ## even window size ## one extra element on previous side of gap window_size(1) = window_width/2; window_size(2) = window_size(1) - 1; endif else window_width = window_size(1) + window_size(2) + 1; endif ## use columnwise convolution of windowing vector and A for ## vectorized summation. conv_vector = ones (window_width, 1); A_sum = convn (A_sum, conv_vector, ... "full")(1 + window_size(2):end - window_size(1), :); ## get count of values contributing to convolution to account ## for missing elements and to calculate mean. A_sum_count = convn (! allmissing, conv_vector, ... "full")(1 + window_size(2):end - window_size(1), :); else ## window size based on sample point distance. Works for non ## integer, non uniform values. ## use A_sum (flattened to 2D), project slice windows in dim3 ## automatic broadcasting to get window summations & counts samplepoints_shift = ... samplepoints(:, ones(1, sz_A_dim)) - samplepoints'; if (isscalar (window_size)) ## [nb, na) window_size = window_size * [-0.5, 0.5]; samplepoints_slice_windows = permute (... samplepoints_shift >= window_size(1) & ... samplepoints_shift < window_size(2), [1,3,2]); else ## [nb, na] window_size(1) = -window_size(1); samplepoints_slice_windows = permute (... samplepoints_shift >= window_size(1) & ... samplepoints_shift <= window_size(2), [1,3,2]); endif if (missinglocations) ## NaNs left in A_sum will cause all sums to produce NaN ## FIXME: when sum can handle nanflag, the 'else' path ## should be able to be made to handle the vectorized ## summation even with 'missinglocations' A_nan = isnan (A_sum); A_temp = A_sum .* samplepoints_slice_windows; A_temp(!samplepoints_slice_windows & A_nan) = 0; A_sum = permute (sum (A_temp, 1), [3,2,1]); else A_sum = permute (... sum (A_sum .* samplepoints_slice_windows, 1), [3,2,1]); endif A_sum_count = permute (... sum (! allmissing & samplepoints_slice_windows, 1), ... [3,2,1]); endif ## build fill values fill_vals = A(missing_locs); # prefill to include missing vals fillable_gaps = missing_locs(:,:) & A_sum_count; fill_vals(fillable_gaps(missing_locs(:,:))) = ... A_sum(fillable_gaps) ./ A_sum_count(fillable_gaps); endif case "movmedian" if sz_A_dim > 1 cols_to_use = any (missing_locs(:,:), 1); samplepoints_shift = ... samplepoints(:, ones(1, sz_A_dim)) - samplepoints'; if (isscalar (window_size)) window_size = window_size * [-0.5, 0.5]; ## [nb, na) samplepoints_slice_windows = permute (... samplepoints_shift >= window_size(1) & ... samplepoints_shift < window_size(2), [1,3,2]); else window_size(1) = -window_size(1); ## [nb, na] samplepoints_slice_windows = permute (... samplepoints_shift >= window_size(1) & ... samplepoints_shift <= window_size(2), [1,3,2]); endif ## use moving window slices to project A and use ## custom function for vectorized full array median computation A_med = A(:, cols_to_use); nan_slice_windows = double (samplepoints_slice_windows); nan_slice_windows(! samplepoints_slice_windows) = NaN; A_med_slices = A_med .* nan_slice_windows; A_med = permute (columnwise_median (A_med_slices), [3 2 1]); fillable_gaps = missing_locs(:, cols_to_use); fill_vals = A_med(fillable_gaps); endif endswitch if (idx_flag) ## Matlab compatiblity - NaNs filled back in by movmean and ## movmedian should _not_ show as filled. idx_out(fillable_gaps) = true; still_nan = missing_locs; still_nan(missing_locs) = isnan (fill_vals); idx_out(still_nan) = false; endif endif case "movfcn" ## for each gap construct: ## xval - data values in window on either side of gap, including ## other missing values ## xloc - sample point values for those xval ## gap_loc - sample point values for gap elements ## if window has xval fully empty skip processing gap ## missing_locs might include endgap_locs ## need to build gap locations accounting for both types ## missing values can include more than just numeric inputs ## windows containing no data points (e.g., endgaps when window ## is one sided [3 0] or [0 2], will be dropped from processing, ## not being passed to the mov_fcn. if (isscalar (window_size)) window_size = window_size * [-0.5, 0.5]; else window_size(1) = -window_size(1); endif ## midgap bounds loc_before = [diff(missing_locs, 1, 1); zero_padding] == 1; loc_after = diff ([zero_padding; missing_locs], 1, 1) == -1; ## front/back endgap locations and bounds front_gap_locs = logical (cumprod (missing_locs, 1)); front_next_locs = diff ([zero_padding; front_gap_locs], 1, 1) == -1; back_gap_locs = logical ( ... cumprod (missing_locs(dim_idx_flip{:}), 1)(dim_idx_flip{:})); back_prev_locs = [diff(back_gap_locs, 1, 1); zero_padding] == 1; ## remove gap double counting back_gap_locs &= ! front_gap_locs; loc_before &= ! back_prev_locs; loc_after &= ! front_next_locs; ## build gap location array using gap starts and lengths. ## simplest to use front / mid / back ordering, track later with sort. gap_start_locs = ... [find(front_gap_locs & [true; false(sz_A_dim-1,1)])(:); ... find(circshift (loc_before, 1, 1))(:); find(circshift (back_prev_locs, 1, 1))(:)]; gapsizes = [(sum (front_gap_locs, 1))(any (front_gap_locs, 1))(:);... find(loc_after) - find(loc_before) - 1;... (sum (back_gap_locs, 1))(any (back_gap_locs, 1))(:)]; ## separate arrayfun/cellfun faster than single fun with ## composite anonymous function gap_locations = arrayfun ('colon', gap_start_locs, ... gap_start_locs + gapsizes - 1, "UniformOutput", false); gap_locations = cellfun('transpose', ... gap_locations, "UniformOutput", false); ## sorting index to bridge front-mid-back and linear index ordering [~, gap_full_sort_idx] = sort (vertcat (gap_locations{:})); ## remove front or back gaps from gapsizes & gap_locations ## if front/back window size = 0, or if full column is missing ## index to track empty/removed elements removed_element_idx = true (numel (gap_full_sort_idx), 1); removed_front_elements = 0; removed_back_elements = 0; ## simple front/back gap trimming for either window size = 0 if (! window_size(2)) ## if no back facing window, ignore front gaps removed_front_gap_count = sum (front_gap_locs(1,:)); removed_front_elements = sum (gapsizes(1 : removed_front_gap_count)); removed_element_idx(1 : removed_front_elements) = false; gap_locations(1 : removed_front_gap_count ) = []; gapsizes(1 : removed_front_gap_count ) = []; elseif (any (missing_col_gaps = (gapsizes == sz_A_dim))) missing_col_elements = ... repelems (missing_col_gaps, [1:numel(gapsizes); gapsizes'])'; removed_element_idx(missing_col_elements) = false; gap_locations(missing_col_gaps) = []; gapsizes(missing_col_gaps) = []; endif if (! window_size(1)) ## if no front facing window, ignore back gaps. removed_back_gap_count = sum (back_gap_locs(end,:)); removed_back_elements = sum (... gapsizes(end - removed_back_gap_count + 1 : end)); removed_element_idx(end - removed_back_elements + 1 : end) = false; gap_locations(end - removed_back_gap_count + 1 : end) = []; gapsizes(end - removed_back_gap_count + 1 : end) = []; endif if (! isempty (gapsizes)) gap_sample_values = cellfun_subsref (gap_locations, false, ... {samplepoints_expand}); ## build [row,column] locations array for windows around each gap window_points_r_c = cell (numel (gapsizes), 2); window_points_r_c(:,1) = cellfun (@(x) ... ([1:sz_A_dim]')((samplepoints= ... max (x(1) + window_size(1), samplepoints(1))) | ... (samplepoints>x(end) & samplepoints <= ... min (x(end) + window_size(2), samplepoints(end)))), ... gap_sample_values, "UniformOutput", false); window_points_r_c(:,2) = cellfun ( ... @(x,y) (fix ((x(1)-1)/sz_A_dim)+1)(ones (size(y))), ... gap_locations, window_points_r_c(:,1),"UniformOutput",false); ## if any window is emtpy, do not pass that gap to the move_fcn empty_gaps = cellfun ('isempty', window_points_r_c(:,1)); if (any (empty_gaps)) removed_element_idx(... repelems (empty_gaps, [1:numel(gapsizes); gapsizes'])')... = false; window_points_r_c(empty_gaps,:) = []; gap_sample_values(empty_gaps) = []; gapsizes(empty_gaps) = []; gap_locations(empty_gaps) = []; endif if (! isempty (gapsizes)) ## Aval = A values at window locations ## Aloc = sample values at window locations A_window_indexes = cellfun ('sub2ind', {sz_A}, ... window_points_r_c(:,1), window_points_r_c(:,2), ... "UniformOutput", false); Aval = cellfun_subsref (A_window_indexes, false, {A}); Aloc = cellfun_subsref (window_points_r_c(:,1), false, ... {samplepoints}); ##build fill values fill_vals_C = cellfun (move_fcn, Aval, Aloc, ... gap_sample_values(:,1), "UniformOutput", false); ## check for output of move_fcn having different size than gaps if (! all (cellfun ('numel', fill_vals_C) == gapsizes)) error (["fillmissing: fill function return values must be ", ... "the same size as the gaps."]); endif [~, gap_trim_sort_idx] = sort (vertcat (gap_locations{:})); fill_vals_trim = cell2mat (fill_vals_C); if (! isempty (fill_vals_trim)) fill_vals = A(missing_locs); # prefill to include missing vals fill_vals(removed_element_idx(gap_full_sort_idx)) = ... fill_vals_trim(gap_trim_sort_idx); if (idx_flag) ## for movfcn with A of type having missing: ## any outputs still containing class's 'missing' values ## are counted as not filled in idx_out, even if the value ## was put there by the movfcn. This is true even if ## missinglocations is used. If missinglocations changed ## a value with no apparent change, it still shows up ## as filled. ## if A has no missing value (int or logical), then without ## missinglocations, idx_out is always empty. With ## missinglocations, compatible behavior is undefined as ## Matlab 2022a has an apparent bug producing a error message ## saying missinglocations with int/logical needs a method that ## incldues function handle. Expect behavior should match other ## methods, where any processed missing value should be marked ## as filled no matter the fill value. if ((isnumeric(A) && !isinteger(A)) || ischar (A) || iscellstr (A)) idx_out(missing_locs) = ! ismissing (fill_vals); elseif (missinglocations) ## any missing_loc processed and not skipped must become true idx_out(missing_locs) = removed_element_idx(gap_full_sort_idx); endif endif endif endif endif endswitch if (! isempty (fill_vals)) A(missing_locs) = fill_vals; fill_vals = []; endif endif ## process endgaps if (any (endgap_locs(:))) switch (endgap_method) case "none" endgap_locs(:) = false; case "constant" if (isscalar (endgap_val)) fill_vals = endgap_val; else fill_vals = (endgap_locs .* endgap_val)(endgap_locs); endif if (idx_flag) ## if any v are the missing type, those get removed from idx_out ## unless using 'missinglocations' idx_out(endgap_locs) = true; if (! missinglocations) && any (miss_ev = ismissing (endgap_val)) idx_out(endgap_locs & miss_ev) = false; endif endif case {"previous", "next", "nearest", "linear", ... "spline", "pchip", "makima"} ## all of these methods require sz_A_dim >= 2. shortcut path otherwise if (sz_A_dim < 2) endgap_locs(:) = false; else switch (endgap_method) case "previous" ## remove any gaps at front of array, includes all-missing cols endgap_locs (logical (cumprod (endgap_locs,1))) = false; if (any (endgap_locs(:))) ##find locations of the 'prev' value to use for filling subsval_loc = [diff(endgap_locs, 1, 1); zero_padding] == 1; ##calculate the number of spots each 'prev' needs to fill gapsizes = (sum (endgap_locs, 1))(any (endgap_locs, 1))(:); ## construct substitution value vector fill_vals = repelems (A(subsval_loc), ... [1:numel(gapsizes); gapsizes'])'; endif case "next" ## remove any gaps at back of array from endgap_locs ## includes any all-missing columns endgap_locs(logical (cumprod ( ... endgap_locs(dim_idx_flip{:}), 1)(dim_idx_flip{:}))) ... = false; if (any (endgap_locs(:))) ##find locations of the 'next' value to use for filling subsval_loc = diff ([zero_padding; endgap_locs],1,1) == -1; ##calculate the number of spots each 'next' needs to fill gapsizes = (sum (endgap_locs, 1))(any (endgap_locs, 1))(:); ## construct substitution value vector fill_vals = repelems (A(subsval_loc), ... [1:numel(gapsizes); gapsizes'])'; endif case "nearest" ## remove any all-missing columns endgap_locs &= (! prod (endgap_locs, 1)); if (any (endgap_locs(:))) ## find front end info front_gap_locs = logical (cumprod (endgap_locs, 1)); front_next_loc = diff ( ... [zero_padding; front_gap_locs], 1, 1) == -1; front_gapsizes = (sum (front_gap_locs, 1))(any ... (front_gap_locs,1)); ## find back end info back_gap_locs = logical ( ... cumprod (endgap_locs(dim_idx_flip{:}), 1)(dim_idx_flip{:})); back_prev_loc = [diff(back_gap_locs, 1, 1); zero_padding] == 1; back_gapsizes = (sum (back_gap_locs, 1))(any (back_gap_locs,1)); ## combine into fill variables [~, fb_sort_idx] = sort ... ([find(front_gap_locs); find(back_gap_locs)]); fillval_loc = [find(front_next_loc); find(back_prev_loc)]; gapsizes = [front_gapsizes; back_gapsizes]; ## construct substitution value vector with sort order to mix ## fronts and backs in column order fill_vals = (repelems (A(fillval_loc), ... [1:numel(gapsizes); gapsizes'])')(fb_sort_idx); endif case "linear" ## endgaps not guaranteed to have enough points to interpolate cols_to_use = (sum (! (missing_locs | endgap_locs), 1) > 1) ... & any (endgap_locs, 1); interp_locs = ! (missing_locs | endgap_locs) & cols_to_use; endgap_locs &= cols_to_use; if (any (endgap_locs(:))) ## process front endgaps front_gap_locs = logical (cumprod (endgap_locs, 1)); fill_vals_front = []; if (any (front_gap_locs(:))) front_gapsizes = (sum (front_gap_locs, 1))(any ... (front_gap_locs,1)); ## collect first data point after gap & expand to gapsize front_interppoint_1 = repelems ( find (... diff ([zero_padding; front_gap_locs], 1, 1) == -1), ... [1:numel(front_gapsizes); front_gapsizes'])'; ## collect second data point after gap & expand to gapsize front_interppoint_2 = repelems ( find ( ... diff ([zero_padding; ((cumsum (interp_locs, 1) .* ... any (front_gap_locs, 1)) == 2)], 1, 1) == 1), ... [1:numel(front_gapsizes); front_gapsizes'])'; front_interp_Avals = A([front_interppoint_1, ... front_interppoint_2]); front_interp_sampvals = samplepoints_expand( ... [front_interppoint_1, front_interppoint_2]); front_gap_loc_sampvals = samplepoints_expand(front_gap_locs); ## hack for vector automatic orientation forcing col vector if (isvector (front_interp_Avals)) front_interp_Avals = (front_interp_Avals(:)).'; endif if (isvector (front_interp_sampvals)) front_interp_sampvals = (front_interp_sampvals(:)).'; endif ## perform interpolation for every gap point interp_slopes_front = diff (front_interp_Avals, 1, 2) ... ./ diff (front_interp_sampvals, 1, 2); fill_vals_front = interp_slopes_front .* ... (front_gap_loc_sampvals - ... front_interp_sampvals(:,1)) + ... front_interp_Avals(:,1); endif ## process back endgaps back_gap_locs = logical ( ... cumprod (endgap_locs(dim_idx_flip{:}), 1)(dim_idx_flip{:})); fill_vals_back = []; if (any (back_gap_locs(:))) back_gapsizes = (sum ( ... back_gap_locs, 1))(any (back_gap_locs,1)); ## collect last data point before gap & expand to gapsize back_interppoint_2 = repelems ( ... find ([diff(back_gap_locs, 1, 1); zero_padding] == 1), ... [1:numel(back_gapsizes); back_gapsizes'])'; ## collect 2nd to last data point before gap & expand to gap back_interppoint_1 = repelems ( ... find ((diff ([zero_padding; ... ((cumsum (interp_locs(dim_idx_flip{:}), 1) .* ... any (back_gap_locs, 1)) == 2)], ... 1, 1) == 1)(dim_idx_flip{:})), ... [1:numel(back_gapsizes); back_gapsizes'])'; ## build linear interpolant vectors back_interp_Avals = A([back_interppoint_1, ... back_interppoint_2]); back_interp_sampvals = samplepoints_expand( ... [back_interppoint_1, back_interppoint_2]); back_gap_loc_sampvals = samplepoints_expand(back_gap_locs); ## hack for vector automatic orientation forcing col vector if (isvector (back_interp_Avals)) back_interp_Avals = (back_interp_Avals(:)).'; endif if (isvector (back_interp_sampvals)) back_interp_sampvals = (back_interp_sampvals(:)).'; endif ## perform interpolation for every gap point interp_slopes_back = diff (back_interp_Avals, 1, 2) ... ./ diff (back_interp_sampvals, 1, 2); fill_vals_back = interp_slopes_back .* ... (back_gap_loc_sampvals - ... back_interp_sampvals(:,1)) + ... back_interp_Avals(:,1); endif [~, fb_sort_idx] = sort ... ([find(front_gap_locs); find(back_gap_locs)]); fill_vals = [fill_vals_front; fill_vals_back](fb_sort_idx); endif case {"spline", "pchip", "makima"} ## endgap_locs not guaranteed to have 2 points. ## need to ignore columns with < 2 values, or with nothing to do cols_to_use = (sum (! (endgap_locs | missing_locs), 1) > 1) ... & any (endgap_locs, 1); ## trim out unused cols from endgap_locs endgap_locs &= cols_to_use; if (missinglocations) ## missinglocations may send columns with NaN and less than 2 ## real values resulting in interp1 error. Trim those columns, ## prepopulate fill_vals with NaN, mark as filled. fill_vals = NaN (sum (endgap_locs(:, cols_to_use)(:)), 1); cols_enough_points = (sum ( ... !isnan(A) & (! endgap_locs), 1) > 1) & cols_to_use; interp_cols = (cols_enough_points & cols_to_use); interp_vals = (endgap_locs & ... cols_enough_points)(endgap_locs & cols_to_use); fill_vals(interp_vals) = other_interpolants ( ... A(:, interp_cols),endgap_locs(:, interp_cols), ... missing_locs(:, interp_cols), endgap_method, ... samplepoints); else fill_vals = other_interpolants ( A(:, cols_to_use), endgap_locs(:, cols_to_use), ... missing_locs(:, cols_to_use), endgap_method, samplepoints); endif endswitch endif if (idx_flag) idx_out(endgap_locs) = true; endif endswitch ## some methods remove fill locations, only process if not empty if (any (endgap_locs(:))) ## replace missings with appropriate fill values A(endgap_locs) = fill_vals; endif endif if (reshape_flag) ## revert permutation A = permute (A, dim_idx_perm); if (idx_flag) idx_out = permute (idx_out, dim_idx_perm); endif endif endfunction function varargout = cellfun_subsref (x, TF, varargin) ## utility fcn for cellfun (@(x) A(x), x, "UniformOutput", true/false) ## ~50% faster than anonymous function call ## pass A, x, and truefalse. ## if nargaut > 1, repeat for C2 with B(x), C3 with C(x), etc. x_C = num2cell (struct ("type", "()", "subs", num2cell (x))); for (idx = 1 : numel (varargin)) varargout{idx} = cellfun ('subsref', varargin{idx}, x_C, ... "UniformOutput", TF); endfor endfunction function fill_vals = other_interpolants (data_array, primary_locs, secondary_locs, method, samplepoints) ## use interp1 to perform more complex interpolations. will only be performed ## on numerical data. ## primary_locs is missing_locs or endgap_locs, whichever the fill_vals are ## being returned for. secondary_locs is the other. ## ## TODO: splitting out from columnwise cellfun to interp1 would increase ## speed a lot, but cannot count on same number of elements being processed ## in each column. ## ## Will error on any columns without at least two non-NaN interpolation ## values. ## ## Matlab incompatibility - using interp1, if 'missinglocations' sends through ## data_array values with NaN, interp1 will ignore those and interpolate with ## other data points. Matlab will instead return NaN. ## find logical data and empty location indices for each column to be ## used in columnwise call to interp1 (cast as columnwise cell arrays) interp_data_locs = num2cell ((! (primary_locs | secondary_locs)), 1); interp_locs_tofill = num2cell (primary_locs, 1); ## build cell arrays with sample and interp values to pass to interp1 [A_interpvalues, interp_samplevals] = cellfun_subsref (interp_data_locs, ... false, num2cell (data_array, 1), {samplepoints}); interp_empty_samplevals = cellfun_subsref (interp_locs_tofill, false, ... {samplepoints}); ## generate fill_vals using interp1 for missing locations. fill_vals = vertcat (cellfun ('interp1', interp_samplevals, ... A_interpvalues, interp_empty_samplevals, {method}, ... {'extrap'}, 'UniformOutput', false){:}); endfunction function med = columnwise_median (x) ## takes a column of values, ignores any NaN values, retuns the median ## of what's left. returns NaN if no values. ## uses only built-in fns to avoid 3x 'median' slowdown szx = size (x); if (isempty (x)) med = NaN ([1, szx(2:end)]); elseif (isvector (x)) x = x(! isnan (x)); x = sort (x); n = numel (x); if (mod (n, 2)) ## odd med = x((n+1)/2); elseif (n > 0) ## even med = (x(n/2) + x((n/2)+1))/2; else ## only called for types with missing = NaN med = NaN; endif else x = sort (x, 1); # NaNs sent to bottom n = sum (! isnan (x), 1); m_idx_odd = logical (mod (n, 2)); # 0 even or zero, 1 odd m_idx_even = !m_idx_odd & (n != 0); k = floor ((n + 1) ./ 2); med = NaN ([1, szx(2:end)]); if (! ismatrix (x)) szx = [szx(1), prod(szx(2:end))]; endif if any (m_idx_odd(:)) x_idx_odd = sub2ind (szx, k(m_idx_odd)(:), find(m_idx_odd)(:));; med(m_idx_odd) = x(x_idx_odd); endif if any (m_idx_even(:)) k_even = k(m_idx_even)(:); x_idx_even = sub2ind (szx, [k_even, k_even+1], ... (find (m_idx_even))(:,[1 1]));; med(m_idx_even) = sum (x(x_idx_even), 2) / 2; endif endif endfunction %!assert (fillmissing ([1 2 3], "constant", 99), [1 2 3]) %!assert (fillmissing ([1 2 NaN], "constant", 99), [1 2 99]) %!assert (fillmissing ([NaN 2 NaN], "constant", 99), [99 2 99]) %!assert (fillmissing ([1 2 3]', "constant", 99), [1 2 3]') %!assert (fillmissing ([1 2 NaN]', "constant", 99), [1 2 99]') %!assert (fillmissing ([1 2 3; 4 5 6], "constant", 99), [1 2 3; 4 5 6]) %!assert (fillmissing ([1 2 NaN; 4 NaN 6], "constant", 99), [1 2 99; 4 99 6]) %!assert (fillmissing ([NaN 2 NaN; 4 NaN 6], "constant", [97, 98, 99]), [97 2 99; 4 98 6]) %!test %! x = cat (3, [1, 2, NaN; 4, NaN, 6], [NaN, 2, 3; 4, 5, NaN]); %! y = cat (3, [1, 2, 99; 4, 99, 6], [99, 2, 3; 4, 5, 99]); %! assert (fillmissing (x, "constant", 99), y); %! y = cat (3, [1, 2, 96; 4, 95, 6], [97, 2, 3; 4, 5, 99]); %! assert (fillmissing (x, "constant", [94:99]), y); %! assert (fillmissing (x, "constant", [94:99]'), y); %! assert (fillmissing (x, "constant", permute ([94:99], [1 3 2])), y); %! assert (fillmissing (x, "constant", [94, 96, 98; 95, 97, 99]), y); %! assert (fillmissing (x, "constant", [94:99], 1), y); %! y = cat (3, [1, 2, 96; 4, 97, 6], [98, 2, 3; 4, 5, 99]); %! assert (fillmissing (x, "constant", [96:99], 2), y); %! y = cat (3, [1, 2, 98; 4, 97, 6], [94, 2, 3; 4, 5, 99]); %! assert (fillmissing (x, "constant", [94:99], 3), y); %! y = cat (3, [1, 2, 92; 4, 91, 6], [94, 2, 3; 4, 5, 99]); %! assert (fillmissing (x, "constant", [88:99], 99), y); %!test %! x = reshape([1:24],4,3,2); %! x([1, 6, 7, 9, 12, 14, 16, 19, 22, 23]) = NaN; %! y = x; %! y([1,6,7,9 12, 14, 16, 19, 22, 23]) = [94 95 95 96 96 97 97 98 99 99]; %! assert (fillmissing (x, "constant", [94:99], 1), y); %! y([1,6,7,9 12, 14, 16, 19, 22, 23]) = [92 93 94 92 95 97 99 98 97 98]; %! assert (fillmissing (x, "constant", [92:99], 2), y); %! y([1,6,7,9 12, 14, 16, 19, 22, 23]) = [88 93 94 96 99 89 91 94 97 98]; %! assert (fillmissing (x, "constant", [88:99], 3), y); %! y([1,6,7,9 12, 14, 16, 19, 22, 23]) = [76 81 82 84 87 89 91 94 97 98]; %! assert (fillmissing (x, "constant", [76:99], 99), y); ## tests with different endvalues behavior %!assert (fillmissing ([1 2 3], "constant", 99, "endvalues", 88), [1 2 3]) %!assert (fillmissing ([1 NaN 3], "constant", 99, "endvalues", 88), [1 99 3]) %!assert (fillmissing ([1 2 NaN], "constant", 99, "endvalues", 88), [1 2 88]) %!assert (fillmissing ([NaN 2 3], "constant", 99, "endvalues", 88), [88 2 3]) %!assert (fillmissing ([NaN NaN 3], "constant", 99, "endvalues", 88), [88 88 3]) %!assert (fillmissing ([1 NaN NaN], "constant", 99, "endvalues", 88), [1 88 88]) %!assert (fillmissing ([NaN 2 NaN], "constant", 99, "endvalues", 88), [88 2 88]) %!assert (fillmissing ([NaN 2 NaN]', "constant", 99, "endvalues", 88), [88 2 88]') %!assert (fillmissing ([1 NaN 3 NaN 5], "constant", 99, "endvalues", 88), [1 99 3 99 5]) %!assert (fillmissing ([1 NaN NaN NaN 5], "constant", 99, "endvalues", 88), [1 99 99 99 5]) %!assert (fillmissing ([NaN NaN NaN NaN 5], "constant", 99, "endvalues", 88), [88 88 88 88 5]) %!assert (fillmissing ([1 NaN 3 4 NaN], "constant", 99, "endvalues", 88), [1 99 3 4 88]) %!assert (fillmissing ([1 NaN 3 4 NaN], "constant", 99, 1, "endvalues", 88), [1 88 3 4 88]) %!assert (fillmissing ([1 NaN 3 4 NaN], "constant", 99, 1, "endvalues", "extrap"), [1 99 3 4 99]) %!test %! x = reshape ([1:24], 3, 4, 2); %! y = x; %! x([1,2,5,6,8,10,13,16,18,19,20,21,22]) = NaN; %! y([1,2,5,6,10,13,16,18,19,20,21,22])= 88; y([8])=99; %! assert (fillmissing (x, "constant", 99, "endvalues", 88), y); %! assert (fillmissing (x, "constant", 99, 1, "endvalues", 88), y); %! y = x; y([1,2,5,8,10,13,16,19,22])= 88; y([6,18,20,21])=99; %! assert (fillmissing (x, "constant", 99, 2, "endvalues", 88), y); %! y(y==99) = 88; %! assert (fillmissing (x, "constant", 99, 3, "endvalues", 88), y); %! assert (fillmissing (x, "constant", 99, 4, "endvalues", 88), y); %! assert (fillmissing (x, "constant", 99, 99, "endvalues", 88), y); %! y([8]) = 94; %! assert (fillmissing (x, "constant", [92:99], 1, "endvalues", 88), y); %! y([6,8,18,20,21]) = [96,88,99,98,99]; %! assert (fillmissing (x, "constant", [94:99], 2, "endvalues", 88), y); %! y = x; y(isnan(y)) = 88; %! assert (fillmissing (x, "constant", [88:99], 3, "endvalues", 88), y); %! y = x; y(isnan(y)) = [82,82,83,83,94,85,86,87,87,88,88,88,89]; %! assert (fillmissing (x, "constant", [92:99], 1, "endvalues", [82:89]), y); %! y = x; y(isnan(y)) = [84,85,85,96,85,84,87,87,99,87,98,99,87]; %! assert (fillmissing (x, "constant", [94:99], 2, "endvalues", [84:89]), y); %! y = x; y(isnan(y)) = [68,69,72,73,75,77,68,71,73,74,75,76,77]; %! assert (fillmissing (x, "constant", [88:99], 3, "endvalues", [68:79]), y); %! assert (fillmissing (x, "constant", [88:93;94:99]', 3, "endvalues", [68:73;74:79]'), y) %!test %! x = reshape([1:24],4,3,2); %! x([1, 6, 7, 9, 12, 14, 16, 19, 22, 23]) = NaN; %! y = x; %! y([1,6,7,9 12, 14, 16, 19, 22, 23]) = [94 95 95 96 96 97 97 98 99 99]; %! assert (fillmissing (x, "constant", [94:99], 1), y); %! y([1,6,7,9 12, 14, 16, 19, 22, 23]) = [92 93 94 92 95 97 99 98 97 98]; %! assert (fillmissing (x, "constant", [92:99], 2), y); %! y([1,6,7,9 12, 14, 16, 19, 22, 23]) = [88 93 94 96 99 89 91 94 97 98]; %! assert (fillmissing (x, "constant", [88:99], 3), y); %! y([1,6,7,9 12, 14, 16, 19, 22, 23]) = [76 81 82 84 87 89 91 94 97 98]; %! assert (fillmissing (x, "constant", [76:99], 99), y); ## next/previous tests %!assert (fillmissing ([1 2 3], "previous"), [1 2 3]) %!assert (fillmissing ([1 2 3], "next"), [1 2 3]) %!assert (fillmissing ([1 2 3]', "previous"), [1 2 3]') %!assert (fillmissing ([1 2 3]', "next"), [1 2 3]') %!assert (fillmissing ([1 2 NaN], "previous"), [1 2 2]) %!assert (fillmissing ([1 2 NaN], "next"), [1 2 NaN]) %!assert (fillmissing ([NaN 2 NaN], "previous"), [NaN 2 2]) %!assert (fillmissing ([NaN 2 NaN], "next"), [2 2 NaN]) %!assert (fillmissing ([1 NaN 3], "previous"), [1 1 3]) %!assert (fillmissing ([1 NaN 3], "next"), [1 3 3]) %!assert (fillmissing ([1 2 NaN; 4 NaN 6], "previous", 1), [1 2 NaN; 4 2 6]) %!assert (fillmissing ([1 2 NaN; 4 NaN 6], "previous", 2), [1 2 2; 4 4 6]) %!assert (fillmissing ([1 2 NaN; 4 NaN 6], "previous", 3), [1 2 NaN; 4 NaN 6]) %!assert (fillmissing ([1 2 NaN; 4 NaN 6], "next", 1), [1 2 6; 4 NaN 6]) %!assert (fillmissing ([1 2 NaN; 4 NaN 6], "next", 2), [1 2 NaN; 4 6 6]) %!assert (fillmissing ([1 2 NaN; 4 NaN 6], "next", 3), [1 2 NaN; 4 NaN 6]) %!test %! x = reshape([1:24],4,3,2); %! x([1, 6, 7, 9, 12, 14, 16, 19, 22, 23]) = NaN; %! y = x; %! y([1, 6, 7, 9, 14, 19, 22, 23]) = [2 8 8 10 15 20 24 24]; %! assert (fillmissing (x, "next", 1), y); %! y = x; %! y([1, 6, 7, 14, 16]) = [5, 10, 11, 18, 20]; %! assert (fillmissing (x, "next", 2), y); %! y = x; %! y([1, 6, 9, 12]) = [13 18 21 24]; %! assert (fillmissing (x, "next", 3), y); %! assert (fillmissing (x, "next", 99), x); %! y = x; %! y([6, 7, 12, 14, 16, 19, 22, 23]) = [5 5 11 13 15 18 21 21]; %! assert (fillmissing (x, "previous", 1), y); %! y = x; %! y([6, 7, 9, 12, 19, 22, 23]) = [2 3 5 8 15 18 15]; %! assert (fillmissing (x, "previous", 2), y); %! y = x; %! y([14, 16, 22, 23]) = [2 4 10 11]; %! assert (fillmissing (x, "previous", 3), y); %! assert (fillmissing (x, "previous", 99), x); ## next/previous tests with different endvalue behavior %!assert (fillmissing ([1 2 3], "constant", 0, "endvalues", "previous"), [1 2 3]) %!assert (fillmissing ([1 2 3], "constant", 0, "endvalues", "next"), [1 2 3]) %!assert (fillmissing ([1 NaN 3], "constant", 0, "endvalues", "previous"), [1 0 3]) %!assert (fillmissing ([1 NaN 3], "constant", 0, "endvalues", "next"), [1 0 3]) %!assert (fillmissing ([1 2 NaN], "constant", 0, "endvalues", "previous"), [1 2 2]) %!assert (fillmissing ([1 2 NaN], "constant", 0, "endvalues", "next"), [1 2 NaN]) %!assert (fillmissing ([1 NaN NaN], "constant", 0, "endvalues", "previous"), [1 1 1]) %!assert (fillmissing ([1 NaN NaN], "constant", 0, "endvalues", "next"), [1 NaN NaN]) %!assert (fillmissing ([NaN 2 3], "constant", 0, "endvalues", "previous"), [NaN 2 3]) %!assert (fillmissing ([NaN 2 3], "constant", 0, "endvalues", "next"), [2 2 3]) %!assert (fillmissing ([NaN NaN 3], "constant", 0, "endvalues", "previous"), [NaN NaN 3]) %!assert (fillmissing ([NaN NaN 3], "constant", 0, "endvalues", "next"), [3 3 3]) %!assert (fillmissing ([NaN NaN NaN], "constant", 0, "endvalues", "previous"), [NaN NaN NaN]) %!assert (fillmissing ([NaN NaN NaN], "constant", 0, "endvalues", "next"), [NaN NaN NaN]) %!assert (fillmissing ([NaN 2 NaN 4 NaN], "constant", 0, "endvalues", "previous"), [NaN 2 0 4 4]) %!assert (fillmissing ([NaN 2 NaN 4 NaN], "constant", 0, "endvalues", "next"), [2 2 0 4 NaN]) %!assert (fillmissing ([NaN 2 NaN 4 NaN], "constant", 0, 1, "endvalues", "previous"), [NaN 2 NaN 4 NaN]) %!assert (fillmissing ([NaN 2 NaN 4 NaN], "constant", 0, 1, "endvalues", "next"), [NaN 2 NaN 4 NaN]) %!assert (fillmissing ([NaN 2 NaN 4 NaN], "constant", 0, 2, "endvalues", "previous"), [NaN 2 0 4 4]) %!assert (fillmissing ([NaN 2 NaN 4 NaN], "constant", 0, 2, "endvalues", "next"), [2 2 0 4 NaN]) %!assert (fillmissing ([NaN 2 NaN 4 NaN], "constant", 0, 3, "endvalues", "previous"), [NaN 2 NaN 4 NaN]) %!assert (fillmissing ([NaN 2 NaN 4 NaN], "constant", 0, 3, "endvalues", "next"), [NaN 2 NaN 4 NaN]) %!test %! x = reshape ([1:24], 3, 4, 2); %! x([1,2,5,6,8,10,13,16,18,19,20,21,22]) = NaN; %! y = x; %! y([5,6,8,18])=[4,4,0,17]; %! assert (fillmissing (x, "constant", 0, "endvalues", "previous"), y); %! assert (fillmissing (x, "constant", 0, 1, "endvalues", "previous"), y); %! y = x; %! y([6,10,18,20,21])=[0,7,0,0,0]; %! assert (fillmissing (x, "constant", 0, 2, "endvalues", "previous"), y); %! y = x; %! y([16,19,21])=[4,7,9]; %! assert (fillmissing (x, "constant", 0, 3, "endvalues", "previous"), y); %! assert (fillmissing (x, "constant", 0, 4, "endvalues", "previous"), x); %! assert (fillmissing (x, "constant", 0, 99, "endvalues", "previous"), x); %! y = x; %! y([1,2,8,10,13,16,22])=[3,3,0,11,14,17,23]; %! assert (fillmissing (x, "constant", 0, "endvalues", "next"), y); %! assert (fillmissing (x, "constant", 0, 1, "endvalues", "next"), y); %! y = x; %! y([1,2,5,6,8,18,20,21])=[4,11,11,0,11,0,0,0]; %! assert (fillmissing (x, "constant", 0, 2, "endvalues", "next"), y); %! y = x; %! y([2,5])=[14,17]; %! assert (fillmissing (x, "constant", 0, 3, "endvalues", "next"), y); %! assert (fillmissing (x, "constant", 0, 4, "endvalues", "next"), x); %! assert (fillmissing (x, "constant", 0, 99, "endvalues", "next"), x); ##tests for nearest %!assert (fillmissing ([1 2 3], "nearest"), [1 2 3]) %!assert (fillmissing ([1 2 3]', "nearest"), [1 2 3]') %!assert (fillmissing ([1 2 NaN], "nearest"), [1 2 2]) %!assert (fillmissing ([NaN 2 NaN], "nearest"), [2 2 2]) %!assert (fillmissing ([1 NaN 3], "nearest"), [1 3 3]) %!assert (fillmissing ([1 2 NaN; 4 NaN 6], "nearest", 1), [1 2 6; 4 2 6]) %!assert (fillmissing ([1 2 NaN; 4 NaN 6], "nearest", 2), [1 2 2; 4 6 6]) %!assert (fillmissing ([1 2 NaN; 4 NaN 6], "nearest", 3), [1 2 NaN; 4 NaN 6]) %!assert (fillmissing ([1 NaN 3 NaN 5], "nearest"), [1 3 3 5 5]) %!assert (fillmissing ([1 NaN 3 NaN 5], "nearest", "samplepoints", [0 1 2 3 4]), [1 3 3 5 5]) %!assert (fillmissing ([1 NaN 3 NaN 5], "nearest", "samplepoints", [0.5 1 2 3 5]), [1 1 3 3 5]) %!test %! x = reshape([1:24],4,3,2); %! x([1, 6, 7, 9, 12, 14, 16, 19, 22, 23]) = NaN; %! y = x; %! y([1, 6, 7, 9, 12, 14, 16, 19, 22, 23]) = [2 5 8 10 11 15 15 20 21 24]; %! assert (fillmissing (x, "nearest", 1), y); %! y = x; %! y([1, 6, 7, 9, 12, 14, 16, 19, 22, 23]) = [5 10 11 5 8 18 20 15 18 15]; %! assert (fillmissing (x, "nearest", 2), y); %! y = x; %! y([1, 6, 9, 12, 14, 16, 22, 23]) = [13 18 21 24 2 4 10 11]; %! assert (fillmissing (x, "nearest", 3), y); %! assert (fillmissing (x, "nearest", 99), x); ##tests for nearest with diff endvalue behavior %!assert (fillmissing ([1 2 3], "constant", 0, "endvalues", "nearest"), [1 2 3]) %!assert (fillmissing ([1 NaN 3], "constant", 0, "endvalues", "nearest"), [1 0 3]) %!assert (fillmissing ([1 2 NaN], "constant", 0, "endvalues", "nearest"), [1 2 2]) %!assert (fillmissing ([1 NaN NaN], "constant", 0, "endvalues", "nearest"), [1 1 1]) %!assert (fillmissing ([NaN 2 3], "constant", 0, "endvalues", "nearest"), [2 2 3]) %!assert (fillmissing ([NaN NaN 3], "constant", 0, "endvalues", "nearest"), [3 3 3]) %!assert (fillmissing ([NaN NaN NaN], "constant", 0, "endvalues", "nearest"), [NaN NaN NaN]) %!assert (fillmissing ([NaN 2 NaN 4 NaN], "constant", 0, "endvalues", "nearest"), [2 2 0 4 4]) %!assert (fillmissing ([NaN 2 NaN 4 NaN], "constant", 0, 1, "endvalues", "nearest"), [NaN 2 NaN 4 NaN]) %!assert (fillmissing ([NaN 2 NaN 4 NaN], "constant", 0, 2, "endvalues", "nearest"), [2 2 0 4 4]) %!assert (fillmissing ([NaN 2 NaN 4 NaN], "constant", 0, 3, "endvalues", "nearest"), [NaN 2 NaN 4 NaN]) %!test %! x = reshape ([1:24], 3, 4, 2); %! x([1,2,5,6,8,10,13,16,18,19,20,21,22]) = NaN; %! y = x; %! y([1,2,5,6,8,10,13,16,18,22])=[3 3 4 4 0 11 14 17 17 23]; %! assert (fillmissing (x, "constant", 0, "endvalues", "nearest"), y); %! assert (fillmissing (x, "constant", 0, 1, "endvalues", "nearest"), y); %! y = x; %! y([1,2,5,6,8,10,18,20,21])=[4 11 11 0 11 7 0 0 0]; %! assert (fillmissing (x, "constant", 0, 2, "endvalues", "nearest"), y); %! y = x; %! y([2,5,16,19,21])=[14 17 4 7 9]; %! assert (fillmissing (x, "constant", 0, 3, "endvalues", "nearest"), y); %! assert (fillmissing (x, "constant", 0, 99, "endvalues", "nearest"), x); ##tests for linear %!assert (fillmissing ([1 2 3], "linear"), [1 2 3]) %!assert (fillmissing ([1 2 3]', "linear"), [1 2 3]') %!assert (fillmissing ([1 2 NaN], "linear"), [1 2 3]) %!assert (fillmissing ([NaN 2 NaN], "linear"), [NaN 2 NaN]) %!assert (fillmissing ([1 NaN 3], "linear"), [1 2 3]) %!assert (fillmissing ([1 2 NaN; 4 NaN 6], "linear", 1), [1 2 NaN; 4 NaN 6]) %!assert (fillmissing ([1 2 NaN; 4 NaN 6], "linear", 2), [1 2 3; 4 5 6]) %!assert (fillmissing ([1 2 NaN; 4 NaN 6], "linear", 3), [1 2 NaN; 4 NaN 6]) %!assert (fillmissing ([1 NaN 3 NaN 5], "linear"), [1 2 3 4 5]) %!assert (fillmissing ([1 NaN 3 NaN 5], "linear", "samplepoints", [0 1 2 3 4]), [1 2 3 4 5]) %!assert (fillmissing ([1 NaN 3 NaN 5], "linear", "samplepoints", [0 1.5 2 5 14]), [1 2.5 3 3.5 5], eps) %!test %! x = reshape([1:24],4,3,2); %! x([1, 6, 7, 9, 12, 14, 16, 19, 22, 23]) = NaN; %! assert (fillmissing (x, "linear", 1), reshape([1:24],4,3,2)); %! y = reshape([1:24],4,3,2); %! y([1 9 14 19 22 23]) = NaN; %! assert (fillmissing (x, "linear", 2), y); %! y = reshape([1:24],4,3,2); %! y([1, 6, 7, 9, 12, 14, 16, 19, 22, 23]) = NaN; %! assert (fillmissing (x, "linear", 3), y); %! assert (fillmissing (x, "linear", 99), x); ##tests for linear with diff endvalue behavior %!assert (fillmissing ([1 2 3], "linear", "endvalues", 0), [1 2 3]) %!assert (fillmissing ([1 NaN 3], "linear", "endvalues", 0), [1 2 3]) %!assert (fillmissing ([1 2 NaN], "linear", "endvalues", 0), [1 2 0]) %!assert (fillmissing ([1 NaN NaN], "linear", "endvalues", 0), [1 0 0]) %!assert (fillmissing ([NaN 2 3], "linear", "endvalues", 0), [0 2 3]) %!assert (fillmissing ([NaN NaN 3], "linear", "endvalues", 0), [0 0 3]) %!assert (fillmissing ([NaN NaN NaN], "linear", "endvalues", 0), [0 0 0]) %!assert (fillmissing ([NaN 2 NaN 4 NaN], "linear", "endvalues", 0), [0 2 3 4 0]) %!assert (fillmissing ([NaN 2 NaN 4 NaN], "linear", 1, "endvalues", 0), [0 2 0 4 0]) %!assert (fillmissing ([NaN 2 NaN 4 NaN], "linear", 2, "endvalues", 0), [0 2 3 4 0]) %!assert (fillmissing ([NaN 2 NaN 4 NaN], "linear", 3, "endvalues", 0), [0 2 0 4 0]) %!test %! x = reshape ([1:24], 3, 4, 2); %! x([1,2,5,6,8,10,13,16,18,19,20,21,22]) = NaN; %! y = x; %! y([1,2,5,6,10,13,16,18,19,20,21,22])=0; y(8)=8; %! assert (fillmissing (x, "linear", "endvalues", 0), y); %! assert (fillmissing (x, "linear", 1, "endvalues", 0), y); %! y = x; %! y([1,2,5,8,10,13,16,19,22])=0; y([6,18,20,21])=[6,18,20,21]; %! assert (fillmissing (x, "linear", 2, "endvalues", 0), y); %! y = x; %! y(isnan(y))=0; %! assert (fillmissing (x, "linear", 3, "endvalues", 0), y); %! assert (fillmissing (x, "linear", 99, "endvalues", 0), y); ##tests with linear only on endvalues %!assert (fillmissing ([1 2 3], "constant", 99, "endvalues", "linear"), [1 2 3]) %!assert (fillmissing ([1 NaN 3], "constant", 99, "endvalues", "linear"), [1 99 3]) %!assert (fillmissing ([1 NaN 3 NaN], "constant", 99, "endvalues", "linear"), [1 99 3 4]) %!assert (fillmissing ([NaN 2 NaN 4 NaN], "constant", 99, "endvalues", "linear"), [1 2 99 4 5]) %!assert (fillmissing ([NaN 2 NaN NaN], "constant", 99, "endvalues", "linear"), [NaN 2 NaN NaN]) %!assert (fillmissing ([NaN 2 NaN 4 NaN], "constant", 99, "endvalues", "linear", "samplepoints", [1 2 3 4 5]), [1 2 99 4 5]) %!assert (fillmissing ([NaN 2 NaN 4 NaN], "constant", 99, "endvalues", "linear", "samplepoints", [0 2 3 4 10]), [0 2 99 4 10]) ##test other interpolants %! x = reshape ([1:24], 3, 4, 2); %! x([1,2,5,6,8,10,13,16,18,19,20,21,22]) = NaN; %! y = x; %! y([1,6,10,18,20,21]) = [2.5, 5, 8.5, 17.25, 21, 21.75]; %! assert (fillmissing (x, "linear", 2, "samplepoints", [2 4 8 10]), y, eps); %! y([1,6,10,18,20,21]) = [2.5, 4.5, 8.5, 17.25, 21.5, 21.75]; %! assert (fillmissing (x, "spline", 2, "samplepoints", [2 4 8 10]), y, eps); %! y([1,6,10,18,20,21]) = [2.5, 4.559386973180077, 8.5, 17.25, 21.440613026819925, 21.75]; %! assert (fillmissing (x, "pchip", 2, "samplepoints", [2 4 8 10]), y, 10*eps); ## known fail: makima method not yet implemented in interp1 %!test <60965> %! x = reshape ([1:24], 3, 4, 2); %! x([1,2,5,6,8,10,13,16,18,19,20,21,22]) = NaN; %! y = x; %! y([1,6,10,18,20,21]) = [2.5, 4.609523809523809, 8.5, 17.25, 21.390476190476186, 21.75]; %! assert (fillmissing (x, "makima", 2, "samplepoints", [2 4 8 10]), y, 10*eps); ##test other interpolants code path on endvalues %!assert (fillmissing ([1 2 3], "constant", 99, "endvalues", "spline"), [1 2 3]) %!assert (fillmissing ([1 NaN 3], "constant", 99, "endvalues", "spline"), [1 99 3]) %!assert (fillmissing ([1 NaN 3 NaN], "constant", 99, "endvalues", "spline"), [1 99 3 4]) %!assert (fillmissing ([NaN 2 NaN 4 NaN], "constant", 99, "endvalues", "spline"), [1 2 99 4 5]) %!assert (fillmissing ([NaN 2 NaN NaN], "constant", 99, "endvalues", "spline"), [NaN 2 NaN NaN]) %!assert (fillmissing ([NaN 2 NaN 4 NaN], "constant", 99, "endvalues", "spline", "samplepoints", [1 2 3 4 5]), [1 2 99 4 5]) %!assert (fillmissing ([NaN 2 NaN 4 NaN], "constant", 99, "endvalues", "spline", "samplepoints", [0 2 3 4 10]), [0 2 99 4 10]) ## test movmean %!assert (fillmissing ([1 2 3], "movmean", 1), [1 2 3]) %!assert (fillmissing ([1 2 NaN], "movmean", 1), [1 2 NaN]) %!assert (fillmissing ([1 2 3], "movmean", 2), [1 2 3]) %!assert (fillmissing ([1 2 3], "movmean", [1 0]), [1 2 3]) %!assert (fillmissing ([1 2 3]', "movmean", 2), [1 2 3]') %!assert (fillmissing ([1 2 NaN], "movmean", 2), [1 2 2]) %!assert (fillmissing ([1 2 NaN], "movmean", [1 0]), [1 2 2]) %!assert (fillmissing ([1 2 NaN], "movmean", [1 0]'), [1 2 2]) %!assert (fillmissing ([NaN 2 NaN], "movmean", 2), [NaN 2 2]) %!assert (fillmissing ([NaN 2 NaN], "movmean", [1 0]), [NaN 2 2]) %!assert (fillmissing ([NaN 2 NaN], "movmean", [0 1]), [2 2 NaN]) %!assert (fillmissing ([NaN 2 NaN], "movmean", [0 1.1]), [2 2 NaN]) %!assert (fillmissing ([1 NaN 3 NaN 5], "movmean", [3 0]), [1 1 3 2 5]) %!assert (fillmissing ([1 2 NaN; 4 NaN 6], "movmean", 3, 1), [1 2 6; 4 2 6]) %!assert (fillmissing ([1 2 NaN; 4 NaN 6], "movmean", 3, 2), [1 2 2; 4 5 6]) %!assert (fillmissing ([1 2 NaN; 4 NaN 6], "movmean", 3, 3), [1 2 NaN; 4 NaN 6]) %!assert (fillmissing ([1 NaN 3 NaN 5], "movmean", 99), [1 3 3 3 5]) %!assert (fillmissing ([1 NaN 3 NaN 5], "movmean", 99, 1), [1 NaN 3 NaN 5]) %!assert (fillmissing ([1 NaN 3 NaN 5]', "movmean", 99, 1), [1 3 3 3 5]') %!assert (fillmissing ([1 NaN 3 NaN 5], "movmean", 99, 2), [1 3 3 3 5]) %!assert (fillmissing ([1 NaN 3 NaN 5]', "movmean", 99, 2), [1 NaN 3 NaN 5]') %!assert (fillmissing ([1 NaN NaN NaN 5], "movmean", 3, "samplepoints", [1 2 3 4 5]), [1 1 NaN 5 5]) %!assert (fillmissing ([1 NaN NaN NaN 5], "movmean", [1 1], "samplepoints", [1 2 3 4 5]), [1 1 NaN 5 5]) %!assert (fillmissing ([1 NaN NaN NaN 5], "movmean", [1.5 1.5], "samplepoints", [1 2 3 4 5]), [1 1 NaN 5 5]) %!assert (fillmissing ([1 NaN NaN NaN 5], "movmean", 4, "samplepoints", [1 2 3 4 5]), [1 1 1 5 5]) %!assert (fillmissing ([1 NaN NaN NaN 5], "movmean", [2 2], "samplepoints", [1 2 3 4 5]), [1 1 3 5 5]) %!assert (fillmissing ([1 NaN NaN NaN 5], "movmean", 4.0001, "samplepoints", [1 2 3 4 5]), [1 1 3 5 5]) %!assert (fillmissing ([1 NaN NaN NaN 5], "movmean", 3, "samplepoints", [1.5 2 3 4 5]), [1 1 1 5 5]) %!assert (fillmissing ([1 NaN NaN NaN 5], "movmean", 3, "samplepoints", [1 2 3 4 4.5]), [1 1 NaN 5 5]) %!assert (fillmissing ([1 NaN NaN NaN 5], "movmean", 3, "samplepoints", [1.5 2 3 4 4.5]), [1 1 1 5 5]) %!assert (fillmissing ([1 NaN NaN NaN 5], "movmean", [1.5 1.5], "samplepoints", [1.5 2 3 4 5]), [1 1 1 5 5]) %!assert (fillmissing ([1 NaN NaN NaN 5], "movmean", [1.5 1.5], "samplepoints", [1 2 3 4 4.5]), [1 1 5 5 5]) %!assert (fillmissing ([1 NaN NaN NaN 5], "movmean", [1.5 1.5], "samplepoints", [1.5 2 3 4 4.5]), [1 1 3 5 5]) %!test %! x = reshape ([1:24], 3, 4, 2); %! x([1,2,5,6,8,10,13,16,18,19,20,21,22]) = NaN; %! y = x; %! y([2,5,8,10,13,16,18,22]) = [3,4,8,11,14,17,17,23]; %! assert (fillmissing (x, "movmean", 3), y); %! assert (fillmissing (x, "movmean", [1 1]), y); %! assert (fillmissing (x, "movmean", 3, "endvalues", "extrap"), y); %! assert (fillmissing (x, "movmean", 3, "samplepoints", [1 2 3]), y); %! y = x; %! y([1,6,8,10,18,20,21]) = [4,6,11,7,15,20,24]; %! assert (fillmissing (x, "movmean", 3, 2), y); %! assert (fillmissing (x, "movmean", [1 1], 2), y); %! assert (fillmissing (x, "movmean", 3, 2, "endvalues", "extrap"), y); %! assert (fillmissing (x, "movmean", 3, 2, "samplepoints", [1 2 3 4]), y); %! y([1,18]) = NaN; y(6) = 9; %! assert (fillmissing (x, "movmean", 3, 2, "samplepoints", [0 2 3 4]), y); %! y = x; %! y([1,2,5,6,10,13,16,18,19,20,21,22]) = 99; y(8) = 8; %! assert (fillmissing (x, "movmean", 3, "endvalues", 99), y); %! y = x; %! y([1,2,5,8,10,13,16,19,22]) = 99; y([6,18,20,21]) = [6,15,20,24]; %! assert (fillmissing (x, "movmean", 3, 2, "endvalues", 99), y); ## test movmedian %!assert (fillmissing ([1 2 3], "movmedian", 1), [1 2 3]) %!assert (fillmissing ([1 2 NaN], "movmedian", 1), [1 2 NaN]) %!assert (fillmissing ([1 2 3], "movmedian", 2), [1 2 3]) %!assert (fillmissing ([1 2 3], "movmedian", [1 0]), [1 2 3]) %!assert (fillmissing ([1 2 3]', "movmedian", 2), [1 2 3]') %!assert (fillmissing ([1 2 NaN], "movmedian", 2), [1 2 2]) %!assert (fillmissing ([1 2 NaN], "movmedian", [1 0]), [1 2 2]) %!assert (fillmissing ([1 2 NaN], "movmedian", [1 0]'), [1 2 2]) %!assert (fillmissing ([NaN 2 NaN], "movmedian", 2), [NaN 2 2]) %!assert (fillmissing ([NaN 2 NaN], "movmedian", [1 0]), [NaN 2 2]) %!assert (fillmissing ([NaN 2 NaN], "movmedian", [0 1]), [2 2 NaN]) %!assert (fillmissing ([NaN 2 NaN], "movmedian", [0 1.1]), [2 2 NaN]) %!assert (fillmissing ([1 NaN 3 NaN 5], "movmedian", [3 0]), [1 1 3 2 5]) %!assert (fillmissing ([1 2 NaN; 4 NaN 6], "movmedian", 3, 1), [1 2 6; 4 2 6]) %!assert (fillmissing ([1 2 NaN; 4 NaN 6], "movmedian", 3, 2), [1 2 2; 4 5 6]) %!assert (fillmissing ([1 2 NaN; 4 NaN 6], "movmedian", 3, 3), [1 2 NaN; 4 NaN 6]) %!assert (fillmissing ([1 NaN 3 NaN 5], "movmedian", 99), [1 3 3 3 5]) %!assert (fillmissing ([1 NaN 3 NaN 5], "movmedian", 99, 1), [1 NaN 3 NaN 5]) %!assert (fillmissing ([1 NaN 3 NaN 5]', "movmedian", 99, 1), [1 3 3 3 5]') %!assert (fillmissing ([1 NaN 3 NaN 5], "movmedian", 99, 2), [1 3 3 3 5]) %!assert (fillmissing ([1 NaN 3 NaN 5]', "movmedian", 99, 2), [1 NaN 3 NaN 5]') %!assert (fillmissing ([1 NaN NaN NaN 5], "movmedian", 3, "samplepoints", [1 2 3 4 5]), [1 1 NaN 5 5]) %!assert (fillmissing ([1 NaN NaN NaN 5], "movmedian", [1 1], "samplepoints", [1 2 3 4 5]), [1 1 NaN 5 5]) %!assert (fillmissing ([1 NaN NaN NaN 5], "movmedian", [1.5 1.5], "samplepoints", [1 2 3 4 5]), [1 1 NaN 5 5]) %!assert (fillmissing ([1 NaN NaN NaN 5], "movmedian", 4, "samplepoints", [1 2 3 4 5]), [1 1 1 5 5]) %!assert (fillmissing ([1 NaN NaN NaN 5], "movmedian", [2 2], "samplepoints", [1 2 3 4 5]), [1 1 3 5 5]) %!assert (fillmissing ([1 NaN NaN NaN 5], "movmedian", 4.0001, "samplepoints", [1 2 3 4 5]), [1 1 3 5 5]) %!assert (fillmissing ([1 NaN NaN NaN 5], "movmedian", 3, "samplepoints", [1.5 2 3 4 5]), [1 1 1 5 5]) %!assert (fillmissing ([1 NaN NaN NaN 5], "movmedian", 3, "samplepoints", [1 2 3 4 4.5]), [1 1 NaN 5 5]) %!assert (fillmissing ([1 NaN NaN NaN 5], "movmedian", 3, "samplepoints", [1.5 2 3 4 4.5]), [1 1 1 5 5]) %!assert (fillmissing ([1 NaN NaN NaN 5], "movmedian", [1.5 1.5], "samplepoints", [1.5 2 3 4 5]), [1 1 1 5 5]) %!assert (fillmissing ([1 NaN NaN NaN 5], "movmedian", [1.5 1.5], "samplepoints", [1 2 3 4 4.5]), [1 1 5 5 5]) %!assert (fillmissing ([1 NaN NaN NaN 5], "movmedian", [1.5 1.5], "samplepoints", [1.5 2 3 4 4.5]), [1 1 3 5 5]) %!test %! x = reshape ([1:24], 3, 4, 2); %! x([1,2,5,6,8,10,13,16,18,19,20,21,22]) = NaN; %! y = x; %! y([2 5 8 10 13 16 18 22]) = [3 4 8 11 14 17 17 23]; %! assert (fillmissing (x, "movmedian", 3), y); %! assert (fillmissing (x, "movmedian", [1 1]), y); %! assert (fillmissing (x, "movmedian", 3, "endvalues", "extrap"), y); %! assert (fillmissing (x, "movmedian", 3, "samplepoints", [1 2 3]), y); %! y = x; %! y([1 6 8 10 18 20 21]) = [4 6 11 7 15 20 24]; %! assert (fillmissing (x, "movmedian", 3, 2), y); %! assert (fillmissing (x, "movmedian", [1 1], 2), y); %! assert (fillmissing (x, "movmedian", 3, 2, "endvalues", "extrap"), y); %! assert (fillmissing (x, "movmedian", 3, 2, "samplepoints", [1 2 3 4]), y); %! y([1,18]) = NaN; y(6) = 9; %! assert (fillmissing (x, "movmedian", 3, 2, "samplepoints", [0 2 3 4]), y); %! y = x; %! y([1,2,5,6,10,13,16,18,19,20,21,22]) = 99; y(8) = 8; %! assert (fillmissing (x, "movmedian", 3, "endvalues", 99), y); %! y = x; %! y([1,2,5,8,10,13,16,19,22]) = 99; y([6,18,20,21]) = [6,15,20,24]; %! assert (fillmissing (x, "movmedian", 3, 2, "endvalues", 99), y); ## test movfcn %!assert (fillmissing ([1 2 3], @(x,y,z) x+y+z, 2), [1 2 3]) %!assert (fillmissing ([1 2 NaN], @(x,y,z) x+y+z, 1), [1 2 NaN]) %!assert (fillmissing ([1 2 3], @(x,y,z) x+y+z, 2), [1 2 3]) %!assert (fillmissing ([1 2 3], @(x,y,z) x+y+z, [1 0]), [1 2 3]) %!assert (fillmissing ([1 2 3]', @(x,y,z) x+y+z, 2), [1 2 3]') %!assert (fillmissing ([1 2 NaN], @(x,y,z) x+y+z, 2), [1 2 7]) %!assert (fillmissing ([1 2 NaN], @(x,y,z) x+y+z, [1 0]), [1 2 7]) %!assert (fillmissing ([1 2 NaN], @(x,y,z) x+y+z, [1 0]'), [1 2 7]) %!assert (fillmissing ([NaN 2 NaN], @(x,y,z) x+y+z, 2), [5 2 7]) %!assert (fillmissing ([NaN 2 NaN], @(x,y,z) x+y+z, [1 0]), [NaN 2 7]) %!assert (fillmissing ([NaN 2 NaN], @(x,y,z) x+y+z, [0 1]), [5 2 NaN]) %!assert (fillmissing ([NaN 2 NaN], @(x,y,z) x+y+z, [0 1.1]), [5 2 NaN]) %!assert (fillmissing ([1 2 NaN NaN 3 4], @(x,y,z) x+y+z, 2),[1 2 7 12 3 4]) %!assert (fillmissing ([1 2 NaN NaN 3 4], @(x,y,z) x+y+z, 0.5),[1 2 NaN NaN 3 4]) %!function A = testfcn (x,y,z) %! if isempty (y) %! A = z; %! elseif (numel (y) == 1) %! A = repelem (x(1), numel(z)); %! else %! A = interp1 (y, x, z, "linear","extrap"); %! endif %!endfunction %!assert (fillmissing ([1 NaN 3 NaN 5], @testfcn, [3 0]), [1 1 3 NaN 5]) %!assert (fillmissing ([1 2 NaN; 4 NaN 6], @testfcn, 3, 1), [1 2 6; 4 2 6]) %!assert (fillmissing ([1 2 NaN; 4 NaN 6], @testfcn, 3, 2), [1 2 2; 4 5 6]) %!assert (fillmissing ([1 2 NaN; 4 NaN 6], @testfcn, 3, 3), [1 2 NaN; 4 NaN 6]) %!assert (fillmissing ([1 NaN 3 NaN 5], @testfcn, 99), [1 2 3 4 5]) %!assert (fillmissing ([1 NaN 3 NaN 5], @testfcn, 99, 1), [1 NaN 3 NaN 5]) ##known not-compatible. matlab bug ML2022a: [1 1 3 1 5] %!assert (fillmissing ([1 NaN 3 NaN 5]', @testfcn, 99, 1), [1 2 3 4 5]') %!assert (fillmissing ([1 NaN 3 NaN 5], @testfcn, 99, 2), [1 2 3 4 5]) %!assert (fillmissing ([1 NaN 3 NaN 5]', @testfcn, 99, 2), [1 NaN 3 NaN 5]') ##known not-compatible. matlab bug ML2022a: [1 1 3 1 5]' %!assert (fillmissing ([1 NaN 3 NaN 5], @testfcn, 99, 3), [1 NaN 3 NaN 5]) %!assert (fillmissing ([1 NaN 3 NaN 5]', @testfcn, 99, 3), [1 NaN 3 NaN 5]') %!assert (fillmissing ([1 NaN NaN NaN 5], @testfcn, 3, "samplepoints", [1 2 3 4 5]), [1 2 3 4 5]) %!assert (fillmissing ([1 NaN NaN NaN 5], @testfcn, [1 1], "samplepoints", [1 2 3 4 5]), [1 2 3 4 5]) %!assert (fillmissing ([1 NaN NaN NaN 5], @testfcn, [1.5 1.5], "samplepoints", [1 2 3 4 5]), [1 2 3 4 5]) %!assert (fillmissing ([1 NaN NaN NaN 5], @testfcn, 4, "samplepoints", [1 2 3 4 5]), [1 2 3 4 5]) %!assert (fillmissing ([1 NaN NaN NaN 5], @testfcn, [2 2], "samplepoints", [1 2 3 4 5]), [1 2 3 4 5]) %!assert (fillmissing ([1 NaN NaN NaN 5], @testfcn, 3, "samplepoints", [1 2 2.5 3 3.5]), [1 2.6 3.4 4.2 5], 10*eps) %!assert (fillmissing ([NaN NaN 3 NaN 5], @testfcn, 99, 1), [NaN NaN 3 NaN 5]) ##known not-compatible. matlab bug ML2022a: [1 1 3 1 5] ## known noncompatible. for move_fcn method, ML2021b (1) ignores windowsize ## for full missing column and processes it anyway, (2) doesn't consider it ## part of endvalues unlike all other methods, (3) ignores samplepoint values ## when calcuating move_fcn results. should review against future versions. %!test %!function A = testfcn (x,y,z) %! if isempty (y) %! A = z; %! elseif (numel (y) == 1) %! A = repelem (x(1), numel(z)); %! else %! A = interp1 (y, x, z, "linear","extrap"); %! endif %!endfunction %! x = reshape ([1:24], 3, 4, 2); %! x([1,2,5,6,8,10,13,16,18,19,20,21,22]) = NaN; %! y = x; %! y([1,2,5,6,8,10,13,16,18,22]) = [3,3,4,4,8,11,14,17,17,23]; %! assert (fillmissing (x, @testfcn, 3), y); %! assert (fillmissing (x, @testfcn, [1 1]), y); %! assert (fillmissing (x, @testfcn, 3, "endvalues", "extrap"), y); %! assert (fillmissing (x, @testfcn, 3, "samplepoints", [1 2 3]), y); %! y= x; %! y(isnan(x)) = 99; y(8) = 8; %! assert (fillmissing (x, @testfcn, 3, "endvalues", 99), y) %! y = x; %! y([1,2,5,6,8,10,18,20,21]) = [4,11,11,6,11,7,18,20,21]; %! assert (fillmissing (x, @testfcn, 3, 2), y); %! assert (fillmissing (x, @testfcn, [1 1], 2), y); %! assert (fillmissing (x, @testfcn, 3, 2, "endvalues", "extrap"), y); %! assert (fillmissing (x, @testfcn, 3, 2, "samplepoints", [1 2 3 4]), y); %! y(1) = NaN; y([6,18,21]) = [9,24,24]; %! assert (fillmissing (x, @testfcn, 3, 2, "samplepoints", [0 2 3 4]), y); %! y = x; %! y([1,2,5,6,10,13,16,18,19,20,21,22]) = 99; y(8) = [8]; %! assert (fillmissing (x, @testfcn, 3, "endvalues", 99), y); %! y([6,18,20,21]) = [6,18,20,21]; y(8)=99; %! assert (fillmissing (x, @testfcn, 3, 2, "endvalues", 99), y); %! y([6,18,20,21]) = 99; %! assert (fillmissing (x, @testfcn, 3, 3, "endvalues", 99), y); ##test maxgap for mid and end points %!assert (fillmissing ([1 2 3], "constant", 0, "maxgap", 1), [1 2 3]) %!assert (fillmissing ([1 2 3], "constant", 0, "maxgap", 99), [1 2 3]) %!assert (fillmissing ([1 NaN 3], "constant", 0, "maxgap", 1), [1 NaN 3]) %!assert (fillmissing ([1 NaN 3], "constant", 0, "maxgap", 1.999), [1 NaN 3]) %!assert (fillmissing ([1 NaN 3], "constant", 0, "maxgap", 2), [1 0 3]) %!assert (fillmissing ([1 NaN NaN 4], "constant", 0, "maxgap", 2), [1 NaN NaN 4]) %!assert (fillmissing ([1 NaN NaN 4], "constant", 0, "maxgap", 3), [1 0 0 4]) %!assert (fillmissing ([1 NaN 3 NaN 5], "constant", 0, "maxgap", 2), [1 0 3 0 5]) %!assert (fillmissing ([NaN 2 NaN], "constant", 0, "maxgap", 0.999), [NaN 2 NaN]) %!assert (fillmissing ([NaN 2 NaN], "constant", 0, "maxgap", 1), [0 2 0]) %!assert (fillmissing ([NaN 2 NaN NaN], "constant", 0, "maxgap", 1), [0 2 NaN NaN]) %!assert (fillmissing ([NaN 2 NaN NaN], "constant", 0, "maxgap", 2), [0 2 0 0]) %!assert (fillmissing ([NaN NaN NaN], "constant", 0, "maxgap", 1), [NaN NaN NaN]) %!assert (fillmissing ([NaN NaN NaN], "constant", 0, "maxgap", 3), [NaN NaN NaN]) %!assert (fillmissing ([NaN NaN NaN], "constant", 0, "maxgap", 999), [NaN NaN NaN]) %!assert (fillmissing ([1 NaN 3 NaN 5], "constant", 0, "maxgap", 2, "samplepoints", [0 1 2 3 5]), [1 0 3 NaN 5]) %!assert (fillmissing ([1 NaN 3 NaN 5]', "constant", 0, "maxgap", 2, "samplepoints", [0 1 2 3 5]), [1 0 3 NaN 5]') %!assert (fillmissing ([1 NaN 3 NaN 5], "constant", 0, "maxgap", 2, "samplepoints", [0 2 3 4 5]), [1 NaN 3 0 5]) %!assert (fillmissing ([1 NaN 3 NaN 5; 1 NaN 3 NaN 5], "constant", 0, 2, "maxgap", 2, "samplepoints", [0 2 3 4 5]), [1 NaN 3 0 5; 1 NaN 3 0 5]) %!test %! x = cat (3, [1, 2, NaN; 4, NaN, NaN], [NaN, 2, 3; 4, 5, NaN]); %! assert (fillmissing (x, "constant", 0, "maxgap", 0.1), x); %! y = x; %! y([4,7,12]) = 0; %! assert (fillmissing (x, "constant", 0, "maxgap", 1), y); %! assert (fillmissing (x, "constant", 0, 1, "maxgap", 1), y); %! y = x; %! y([5,7,12]) = 0; %! assert (fillmissing (x, "constant", 0, 2, "maxgap", 1), y); %! y = x; %! y([4,5,7]) = 0; %! assert (fillmissing (x, "constant", 0, 3, "maxgap", 1), y); ## 2nd output ## verify consistent with dim %!test %! x = cat (3, [1, 2, NaN; 4, NaN, NaN], [NaN, 2, 3; 4, 5, NaN]); %! [~, idx] = fillmissing (x, "constant", 0, "maxgap", 1); %! assert (idx, logical (cat (3, [0 0 0; 0 1 0], [1 0 0; 0 0 1]))); %! [~, idx] = fillmissing (x, "constant", 0, 1, "maxgap", 1); %! assert (idx, logical (cat (3, [0 0 0; 0 1 0], [1 0 0; 0 0 1]))); %! [~, idx] = fillmissing (x, "constant", 0, 2, "maxgap", 1); %! assert (idx, logical (cat (3, [0 0 1; 0 0 0], [1 0 0; 0 0 1]))); %! [~, idx] = fillmissing (x, "constant", 0, 3, "maxgap", 1); %! assert (idx, logical (cat (3, [0 0 1; 0 1 0], [1 0 0; 0 0 0]))); ## verify idx matches when methods leave gaps unfilled, or when fill looks ## the same %!test %! x = [NaN, 2, 3]; %! [~,idx] = fillmissing (x, "previous"); %! assert (idx, logical ([0 0 0])); %! [~,idx] = fillmissing (x, "movmean", 1); %! assert (idx, logical ([0 0 0])); %! x = [1:3;4:6;7:9]; %! x([2,4,7,9]) = NaN; %! [~,idx] = fillmissing (x, "linear"); %! assert (idx, logical ([0 1 0;1 0 0;0 0 0])); %! [~,idx] = fillmissing (x, "movmean", 2); %! assert (idx, logical ([0 0 0;1 0 0;0 0 1])); %! [A, idx] = fillmissing ([1 2 3 NaN NaN], 'movmean',2); %! assert (A, [1 2 3 3 NaN]); %! assert (idx, logical([0 0 0 1 0])); %! [A, idx] = fillmissing ([1 2 3 NaN NaN], 'movmean',3); %! assert (A, [1 2 3 3 NaN]); %! assert (idx, logical([0 0 0 1 0])); %! [A, idx] = fillmissing ([1 2 NaN NaN NaN], 'movmedian', 2); %! assert (A, [1 2 2 NaN NaN]); %! assert (idx, logical([0 0 1 0 0])); %! [A, idx] = fillmissing ([1 2 3 NaN NaN], 'movmedian', 3); %! assert (A, [1 2 3 3 NaN]); %! assert (idx, logical([0 0 0 1 0])); %! [A, idx] = fillmissing ([1 NaN 1 NaN 1], @(x,y,z) z, 3); %! assert (A, [1 2 1 4 1]); %! assert (idx, logical([0 1 0 1 0])); %! [A, idx] = fillmissing ([1 NaN 1 NaN 1], @(x,y,z) NaN (size (z)), 3); %! assert (A, [1 NaN 1 NaN 1]); %! assert (idx, logical([0 0 0 0 0])); #test missinglocations %!assert (fillmissing ([1 2 3], "constant", 99, "missinglocations", logical([0 0 0])), [1 2 3]) %!assert (fillmissing ([1 2 3], "constant", 99, "missinglocations", logical([1 1 1])), [99 99 99]) %!assert (fillmissing ([1 NaN 2 3 NaN], "constant", 99, "missinglocations", logical([1 0 1 0 1])), [99 NaN 99 3 99]) %!assert (fillmissing ([1 NaN 3 NaN 5], "constant", NaN, "missinglocations", logical([0 1 1 1 0])), [1 NaN NaN NaN 5]) %!assert (fillmissing (["foo ";" bar"], "constant", 'X', "missinglocations", logical([0 0 0 0; 0 0 0 0])), ["foo ";" bar"]) %!assert (fillmissing (["foo ";" bar"], "constant", 'X', "missinglocations", logical([1 0 1 0; 0 1 1 0])), ["XoX ";" XXr"]) %!assert (fillmissing ({"foo","", "bar"}, "constant", 'X', "missinglocations", logical([0 0 0])), {"foo","", "bar"}) %!assert (fillmissing ({"foo","", "bar"}, "constant", 'X', "missinglocations", logical([1 1 0])), {"X","X","bar"}) %!test %! [~,idx] = fillmissing ([1 NaN 3 NaN 5], "constant", NaN); %! assert (idx, logical([0 0 0 0 0])); %! [~,idx] = fillmissing ([1 NaN 3 NaN 5], "constant", NaN, "missinglocations", logical([0 1 1 1 0])); %! assert (idx, logical([0 1 1 1 0])); %! [A, idx] = fillmissing ([1 2 NaN 1 NaN], 'movmean', 3.1, 'missinglocations', logical([0 0 1 1 0])); %! assert (A, [1 2 2 NaN NaN]); %! assert (idx, logical([0 0 1 0 0])); %! [A, idx] = fillmissing ([1 2 NaN NaN NaN], 'movmean', 2, 'missinglocations', logical([0 0 1 1 0])); %! assert (A, [1 2 2 NaN NaN]); %! assert (idx, logical([0 0 1 0 0])); %! [A, idx] = fillmissing ([1 2 NaN 1 NaN], 'movmean', 3, 'missinglocations', logical([0 0 1 1 0])); %! assert (A, [1 2 2 NaN NaN]); %! assert (idx, logical([0 0 1 0 0])); %! [A, idx] = fillmissing ([1 2 NaN NaN NaN], 'movmean', 3, 'missinglocations', logical([0 0 1 1 0])); %! assert (A, [1 2 2 NaN NaN]); %! assert (idx, logical([0 0 1 0 0])); %! [A, idx] = fillmissing ([1 2 NaN NaN NaN], 'movmedian', 2, 'missinglocations', logical([0 0 1 1 0])); %! assert (A, [1 2 2 NaN NaN]); %! assert (idx, logical([0 0 1 0 0])); %! [A, idx] = fillmissing ([1 2 NaN NaN NaN], 'movmedian', 3, 'missinglocations', logical([0 0 1 1 0])); %! assert (A, [1 2 2 NaN NaN]); %! assert (idx, logical([0 0 1 0 0])); %! [A, idx] = fillmissing ([1 2 NaN NaN NaN], 'movmedian', 3.1, 'missinglocations', logical([0 0 1 1 0])); %! assert (A, [1 2 2 NaN NaN]); %! assert (idx, logical([0 0 1 0 0])); %! [A, idx] = fillmissing ([1 NaN 1 NaN 1], @(x,y,z) ones (size (z)), 3, "missinglocations", logical([0 1 0 1 1])); %! assert (A, [1 1 1 1 1]); %! assert (idx, logical([0 1 0 1 1])); %! [A, idx] = fillmissing ([1 NaN 1 NaN 1], @(x,y,z) NaN (size (z)), 3, "missinglocations", logical([0 1 0 1 1])); %! assert (A, [1 NaN 1 NaN NaN]); %! assert (idx, logical([0 0 0 0 0])); ##Test char and cellstr %!assert (fillmissing (' foo bar ', "constant", 'X'), 'XfooXbarX') %!assert (fillmissing ([' foo';'bar '], "constant", 'X'), ['Xfoo';'barX']) %!assert (fillmissing ([' foo';'bar '], "next"), ['bfoo';'bar ']) %!assert (fillmissing ([' foo';'bar '], "next", 1), ['bfoo';'bar ']) %!assert (fillmissing ([' foo';'bar '], "previous"), [' foo';'baro']) %!assert (fillmissing ([' foo';'bar '], "previous", 1), [' foo';'baro']) %!assert (fillmissing ([' foo';'bar '], "nearest"), ['bfoo';'baro']) %!assert (fillmissing ([' foo';'bar '], "nearest", 1), ['bfoo';'baro']) %!assert (fillmissing ([' foo';'bar '], "next", 2), ['ffoo';'bar ']) %!assert (fillmissing ([' foo';'bar '], "previous", 2), [' foo';'barr']) %!assert (fillmissing ([' foo';'bar '], "nearest", 2), ['ffoo';'barr']) %!assert (fillmissing ([' foo';'bar '], "next", 3), [' foo';'bar ']) %!assert (fillmissing ([' foo';'bar '], "previous", 3), [' foo';'bar ']) %!assert (fillmissing ([' foo';'bar '], "nearest", 3), [' foo';'bar ']) %!assert (fillmissing ({'foo','bar'}, "constant", 'a'), {'foo','bar'}) %!assert (fillmissing ({'foo','bar'}, "constant", {'a'}), {'foo','bar'}) %!assert (fillmissing ({'foo', '', 'bar'}, "constant", 'a'), {'foo', 'a', 'bar'}) %!assert (fillmissing ({'foo', '', 'bar'}, "constant", {'a'}), {'foo', 'a', 'bar'}) %!assert (fillmissing ({'foo', '', 'bar'}, "previous"), {'foo', 'foo', 'bar'}) %!assert (fillmissing ({'foo', '', 'bar'}, "next"), {'foo', 'bar', 'bar'}) %!assert (fillmissing ({'foo', '', 'bar'}, "nearest"), {'foo', 'bar', 'bar'}) %!assert (fillmissing ({'foo', '', 'bar'}, "previous", 2), {'foo', 'foo', 'bar'}) %!assert (fillmissing ({'foo', '', 'bar'}, "next", 2), {'foo', 'bar', 'bar'}) %!assert (fillmissing ({'foo', '', 'bar'}, "nearest", 2), {'foo', 'bar', 'bar'}) %!assert (fillmissing ({'foo', '', 'bar'}, "previous", 1), {'foo', '', 'bar'}) %!assert (fillmissing ({'foo', '', 'bar'}, "previous", 1), {'foo', '', 'bar'}) %!assert (fillmissing ({'foo', '', 'bar'}, "next", 1), {'foo', '', 'bar'}) %!assert (fillmissing ({'foo', '', 'bar'}, "nearest", 1), {'foo', '', 'bar'}) %!assert (fillmissing ("abc ", @(x,y,z) x+y+z, 2), "abcj") %!assert (fillmissing ({'foo', '', 'bar'}, @(x,y,z) x(1), 3), {'foo','foo','bar'}) %!test %! [A, idx] = fillmissing (" a b c", "constant", " "); %! assert (A, " a b c"); %! assert (idx, logical([0 0 0 0 0 0])); %! [A, idx] = fillmissing ({"foo", "", "bar", ""}, "constant", ""); %! assert (A, {"foo", "", "bar", ""}); %! assert (idx, logical([0 0 0 0])); %! [A, idx] = fillmissing ({"foo", "", "bar", ""}, "constant", {""}); %! assert (A, {"foo", "", "bar", ""}); %! assert (idx, logical([0 0 0 0])); %! [A,idx] = fillmissing (' f o o ', @(x,y,z) repelem ("a", numel (z)), 3); %! assert (A, "afaoaoa"); %! assert (idx, logical([1 0 1 0 1 0 1])); %! [A,idx] = fillmissing (' f o o ', @(x,y,z) repelem (" ", numel (z)), 3); %! assert (A, " f o o "); %! assert (idx, logical([0 0 0 0 0 0 0])); %! [A,idx] = fillmissing ({'','foo',''}, @(x,y,z) repelem ({'a'}, numel (z)), 3); %! assert (A, {'a','foo','a'}); %! assert (idx, logical([1 0 1])); %! [A,idx] = fillmissing ({'','foo',''}, @(x,y,z) repelem ({''}, numel (z)), 3); %! assert (A, {'','foo',''}); %! assert (idx, logical([0 0 0])); ##types without a defined 'missing' (currently logical, int) that can be filled %!assert (fillmissing (logical ([1 0 1 0 1]), "constant", true), logical ([1 0 1 0 1])) %!assert (fillmissing (logical ([1 0 1 0 1]), "constant", false, 'missinglocations', logical([1 0 1 0 1])), logical ([0 0 0 0 0])) %!assert (fillmissing (logical ([1 0 1 0 1]), "previous", 'missinglocations', logical([1 0 1 0 1])), logical ([1 0 0 0 0])) %!assert (fillmissing (logical ([1 0 1 0 1]), "next", 'missinglocations', logical([1 0 1 0 1])), logical ([0 0 0 0 1])) %!assert (fillmissing (logical ([1 0 1 0 1]), "nearest", 'missinglocations', logical([1 0 1 0 1])), logical ([0 0 0 0 0])) %!assert (fillmissing (logical ([1 0 1 0 1]), @(x,y,z) false(size(z)), 3), logical ([1 0 1 0 1])) %!assert (fillmissing (logical ([1 0 1 0 1]), @(x,y,z) false(size(z)), 3, 'missinglocations', logical([1 0 1 0 1])), logical ([0 0 0 0 0])) %!assert (fillmissing (logical ([1 0 1 0 1]), @(x,y,z) false(size(z)), [2 0], 'missinglocations', logical([1 0 1 0 1])), logical ([1 0 0 0 0])) %!test %! x = logical ([1 0 1 0 1]); %! [~,idx] = fillmissing (x, "constant", true); %! assert (idx, logical([0 0 0 0 0])); %! [~,idx] = fillmissing (x, "constant", false, 'missinglocations', logical([1 0 1 0 1])); %! assert (idx, logical([1 0 1 0 1])); %! [~,idx] = fillmissing (x, "constant", true, 'missinglocations', logical([1 0 1 0 1])); %! assert (idx, logical([1 0 1 0 1])); %! [~,idx] = fillmissing (x, "previous", 'missinglocations', logical([1 0 1 0 1])); %! assert (idx, logical([0 0 1 0 1])); %! [~,idx] = fillmissing (x, "next", 'missinglocations', logical([1 0 1 0 1])); %! assert (idx, logical([1 0 1 0 0])); %! [~,idx] = fillmissing (x, "nearest", 'missinglocations', logical([1 0 1 0 1])); %! assert (idx, logical([1 0 1 0 1])); %! [~,idx] = fillmissing (x, @(x,y,z) false(size(z)), 3); %! assert (idx, logical ([0 0 0 0 0])) %! [~,idx] = fillmissing (x, @(x,y,z) false(size(z)), 3, 'missinglocations', logical([1 0 1 0 1])); %! assert (idx, logical ([1 0 1 0 1])) %! [~,idx] = fillmissing (x, @(x,y,z) false(size(z)), [2 0], 'missinglocations', logical([1 0 1 0 1])); %! assert (idx, logical ([0 0 1 0 1])) %!assert (fillmissing (int32 ([1 2 3 4 5]), "constant", 0), int32 ([1 2 3 4 5])) %!assert (fillmissing (int32 ([1 2 3 4 5]), "constant", 0,'missinglocations', logical([1 0 1 0 1])), int32 ([0 2 0 4 0])) %!assert (fillmissing (int32 ([1 2 3 4 5]), "previous", 'missinglocations', logical([1 0 1 0 1])), int32 ([1 2 2 4 4])) %!assert (fillmissing (int32 ([1 2 3 4 5]), "next", 'missinglocations', logical([1 0 1 0 1])), int32 ([2 2 4 4 5])) %!assert (fillmissing (int32 ([1 2 3 4 5]), "nearest", 'missinglocations', logical([1 0 1 0 1])), int32 ([2 2 4 4 4])) %!assert (fillmissing (int32 ([1 2 3 4 5]), @(x,y,z) z+10, 3), int32 ([1 2 3 4 5])) %!assert (fillmissing (int32 ([1 2 3 4 5]), @(x,y,z) z+10, 3, 'missinglocations', logical([1 0 1 0 1])), int32 ([11 2 13 4 15])) %!assert (fillmissing (int32 ([1 2 3 4 5]), @(x,y,z) z+10, [2 0], 'missinglocations', logical([1 0 1 0 1])), int32 ([1 2 13 4 15])) %!test %! x = int32 ([1 2 3 4 5]); %! [~,idx] = fillmissing (x, "constant", 0); %! assert (idx, logical([0 0 0 0 0])); %! [~,idx] = fillmissing (x, "constant", 0, 'missinglocations', logical([1 0 1 0 1])); %! assert (idx, logical([1 0 1 0 1])); %! [~,idx] = fillmissing (x, "constant", 3, 'missinglocations', logical([0 0 1 0 0])); %! assert (idx, logical([0 0 1 0 0])); %! [~,idx] = fillmissing (x, "previous", 'missinglocations', logical([1 0 1 0 1])); %! assert (idx, logical([0 0 1 0 1])); %! [~,idx] = fillmissing (x, "next", 'missinglocations', logical([1 0 1 0 1])); %! assert (idx, logical([1 0 1 0 0])); %! [~,idx] = fillmissing (x, "nearest", 'missinglocations', logical([1 0 1 0 1])); %! assert (idx, logical([1 0 1 0 1])); %! [~,idx] = fillmissing (x, @(x,y,z) z+10, 3); %! assert (idx, logical([0 0 0 0 0])); %! [~,idx] = fillmissing (x, @(x,y,z) z+10, 3, 'missinglocations', logical([1 0 1 0 1])); %! assert (idx, logical([1 0 1 0 1])); %! [~,idx] = fillmissing (x, @(x,y,z) z+10, [2 0], 'missinglocations', logical([1 0 1 0 1])); %! assert (idx, logical([0 0 1 0 1])); ## other data type passthrough %!test %! [A, idx] = fillmissing ([struct struct], "constant", 1); %! assert (A, [struct struct]) %! assert (idx, [false false]) ## Test input validation and error messages %!error fillmissing () %!error fillmissing (1) %!error fillmissing (1,2,3,4,5,6,7,8,9,10,11,12,13) %!error fillmissing (1, 2) %!error fillmissing (1, "foo") %!error fillmissing (1, @(x) x, 1) %!error fillmissing (1, @(x,y) x+y, 1) %!error fillmissing ("a b c", "linear") %!error fillmissing ({'a','b'}, "linear") %!error <'movmean' and 'movmedian' methods only valid for numeric> fillmissing ("a b c", "movmean", 2) %!error <'movmean' and 'movmedian' methods only valid for numeric> fillmissing ({'a','b'}, "movmean", 2) %!error <'constant' method must be followed by> fillmissing (1, "constant") %!error fillmissing (1, "constant", []) %!error fillmissing (1, "constant", "a") %!error fillmissing ("a", "constant", 1) %!error fillmissing ("a", "constant", {"foo"}) %!error fillmissing ({"foo"}, "constant", 1) %!error fillmissing (1, "movmean") %!error fillmissing (1, "movmedian") %!error fillmissing (1, "constant", 1, 0) %!error fillmissing (1, "constant", 1, -1) %!error fillmissing (1, "constant", 1, [1 2]) %!error fillmissing (1, "constant", 1, "samplepoints") %!error fillmissing (1, "constant", 1, "foo") %!error fillmissing (1, "constant", 1, 1, "foo") %!error fillmissing (1, "constant", 1, 2, {1}, 4) %!error fillmissing ([1 2 3], "constant", 1, 2, "samplepoints", [1 2]) %!error fillmissing ([1 2 3], "constant", 1, 2, "samplepoints", [3 1 2]) %!error fillmissing ([1 2 3], "constant", 1, 2, "samplepoints", [1 1 2]) %!error fillmissing ([1 2 3], "constant", 1, 2, "samplepoints", "abc") %!error fillmissing ([1 2 3], "constant", 1, 2, "samplepoints", logical([1 1 1])) %!error fillmissing ([1 2 3], "constant", 1, 1, "samplepoints", [1 2 3]) %!error fillmissing ('foo', "next", "endvalues", 1) %!error fillmissing (1, "constant", 1, 1, "endvalues", "foo") %!error fillmissing ([1 2 3], "constant", 1, 2, "endvalues", [1 2 3]) %!error fillmissing ([1 2 3], "constant", 1, 1, "endvalues", [1 2]) %!error fillmissing (randi(5,4,3,2), "constant", 1, 3, "endvalues", [1 2]) %!error fillmissing (1, "constant", 1, 1, "endvalues", {1}) %!error fillmissing (1, "constant", 1, 2, "foo", 4) %!error fillmissing (struct, "constant", 1, "missinglocations", false) %!error fillmissing (1, "constant", 1, 2, "maxgap", 1, "missinglocations", false) %!error fillmissing (1, "constant", 1, 2, "missinglocations", false, "maxgap", 1) %!error fillmissing (1, "constant", 1, "replacevalues", true) %!error fillmissing (1, "constant", 1, "datavariables", 'Varname') %!error fillmissing (1, "constant", 1, 2, "missinglocations", 1) %!error fillmissing (1, "constant", 1, 2, "missinglocations", 'a') %!error fillmissing (1, "constant", 1, 2, "missinglocations", [true false]) %!error fillmissing (true, "linear", "missinglocations", true) %!error fillmissing (int8(1), "linear", "missinglocations", true) %!error fillmissing (true, "next", "missinglocations", true, "EndValues", "linear") %!error fillmissing (true, "next", "EndValues", "linear", "missinglocations", true) %!error fillmissing (int8(1), "next", "missinglocations", true, "EndValues", "linear") %!error fillmissing (int8(1), "next", "EndValues", "linear", "missinglocations", true) %!error fillmissing (1, "constant", 1, 2, "maxgap", true) %!error fillmissing (1, "constant", 1, 2, "maxgap", 'a') %!error fillmissing (1, "constant", 1, 2, "maxgap", [1 2]) %!error fillmissing (1, "constant", 1, 2, "maxgap", 0) %!error fillmissing (1, "constant", 1, 2, "maxgap", -1) %!error fillmissing ([1 2 3], "constant", [1 2 3]) %!error fillmissing ([1 2 3]', "constant", [1 2 3]) %!error fillmissing ([1 2 3]', "constant", [1 2 3], 1) %!error fillmissing ([1 2 3], "constant", [1 2 3], 2) %!error fillmissing (randi(5,4,3,2), "constant", [1 2], 1) %!error fillmissing (randi(5,4,3,2), "constant", [1 2], 2) %!error fillmissing (randi(5,4,3,2), "constant", [1 2], 3) %!error fillmissing (1, @(x,y,z) x+y+z) %!error fillmissing ([1 NaN 2], @(x,y,z) [1 2], 2) statistics-release-1.6.3/inst/fishertest.m000066400000000000000000000215401456127120000206440ustar00rootroot00000000000000## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/OR ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, OR (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{h} =} fishertest (@var{x}) ## @deftypefnx {statistics} {@var{h} =} fishertest (@var{x}, @var{param1}, @var{value1}, @dots{}) ## @deftypefnx {statistics} {[@var{h}, @var{pval}] =} fishertest (@dots{}) ## @deftypefnx {statistics} {[@var{h}, @var{pval}, @var{stats}] =} fishertest (@dots{}) ## ## Fisher's exact test. ## ## @code{@var{h} = fishertest (@var{x})} performs Fisher's exact test on a ## @math{2x2} contingency table given in matrix @var{x}. This is a test of the ## hypothesis that there are no non-random associations between the two 2-level ## categorical variables in @var{x}. @code{fishertest} returns the result of ## the tested hypothsis in @var{h}. @var{h} = 0 indicates that the null ## hypothesis (of no association) cannot be rejected at the 5% significance ## level. @var{h} = 1 indicates that the null hypothesis can be rejected at the ## 5% level. @var{x} must contain only non-negative integers. Use the ## @code{crostab} function to generate the contingency table from samples of two ## categorical variables. Fisher's exact test is not suitable when all integers ## in @var{x} are very large. Use can use the Chi-square test in this case. ## ## @code{[@var{h}, @var{pval}] = fishertest (@var{x})} returns the p-value in ## @var{pval}. That is the probability of observing the given result, or one ## more extreme, by chance if the null hypothesis is true. Small values of ## @var{pval} cast doubt on the validity of the null hypothesis. ## ## @code{[@var{p}, @var{pval}, @var{stats}] = fishertest (@dots{})} returns the ## structure @var{stats} with the following fields: ## ## @multitable @columnfractions 0.05 0.3 0.65 ## @item @tab @qcode{OddsRatio} @tab -- the odds ratio ## @item @tab @qcode{ConfidenceInterval} @tab -- the asymptotic confidence ## interval for the odds ratio. If any of the four entries in the contingency ## table @var{x} is zero, the confidence interval will not be computed, and ## @qcode{[-Inf Inf]} will be displayed. ## @end multitable ## ## @code{[@dots{}] = fishertest (@dots{}, @var{name}, @var{value}, @dots{})} ## specifies one or more of the following name/value pairs: ## ## @multitable @columnfractions 0.05 0.2 0.75 ## @headitem @tab Name @tab Value ## @item @tab @qcode{"alpha"} @tab the significance level. Default is 0.05. ## ## @item @tab @qcode{"tail"} @tab a string specifying the alternative hypothesis ## @end multitable ## @multitable @columnfractions 0.1 0.25 0.65 ## @item @tab @qcode{"both"} @tab odds ratio not equal to 1, indicating ## association between two variables (two-tailed test, default) ## @item @tab @qcode{"left"} @tab odds ratio greater than 1 (right-tailed test) ## @item @tab @qcode{"right"} @tab odds ratio is less than 1 (left-tailed test) ## @end multitable ## ## @seealso{crosstab, chi2test, mcnemar_test, ztest2} ## @end deftypefn function [h, p, stats] = fishertest (x, varargin) if (nargin < 1) error ("fishertest: contingency table is missing."); endif if (nargin > 5) error ("fishertest: too many input parameters."); endif ## Check contingency table if (! ismatrix (x) || ndims (x) != 2) error ("fishertest: X must be a 2-dimensional matrix."); endif if (any (x(:) < 0) || any (isnan (x(:))) || any (isinf (x(:))) || ... iscomplex (x) || any (fix (x(:)) != x(:))) error ("fishertest: X must contain only non-negative real integers."); endif if (all (x(:) >= 1e7)) error ("fishertest: cannot handle large entries (>=1e7)."); endif ## Add defaults and parse optional arguments alpha = 0.05; tail = "both"; if (nargin > 1) params = numel (varargin); if ((params / 2) != fix (params / 2)) error ("fishertest: optional arguments must be in Name-Value pairs.") endif for idx = 1:2:params name = varargin{idx}; value = varargin{idx+1}; switch (lower (name)) case "alpha" alpha = value; if (! isscalar (alpha) || ! isnumeric (alpha) || ... alpha <= 0 || alpha >= 1) error ("fishertest: invalid value for alpha."); endif case "tail" tail = value; if (! any (strcmpi (tail, {"both", "left", "right"}))) error ("fishertest: invalid value for tail."); endif otherwise error ("fishertest: invalid name for optional arguments."); endswitch endfor endif ## For 2x2 contigency table apply Fisher's exact test ## For larger tables apply the Fisher-Freeman-Halton variance if (all (size (x) == 2)) ## Get margin sums r1 = sum (x(1,:)); r2 = sum (x(2,:)); c1 = sum (x(:,1)); c2 = sum (x(:,2)); sz = sum (x(:)); ## Use try_catch block to avoid memory overflow for large numbers try if (strcmp (tail, "left")) p = hygecdf (x(1,1), sz, r1, c1); else if (min (r1, c1) <= min (r2, c2)) x11 = (0 : min (r1, c1))'; else x22 = (0 : min (r2, c2))'; x12 = c2 - x22; x11 = r1 - x12; endif switch tail case "both" p1 = hygepdf (x11, sz, r1, c1); p2 = hygepdf (x(1,1), sz, r1, c1); p = sum (p1(p1 < p2 + 10 * eps (p2))); case "right" xr = x11(x11 >= x(1,1)); p = sum(hygepdf(xr,sz,r1,c1)); endswitch endif catch error ("fishertest: cannot handle large entries."); end_try_catch ## Return test decision h = (p <= alpha); ## Calculate extra output arguments (if necessary) if (nargout > 2) OR = x(1,1) * x(2,2) / x(1,2) / x(2,1); if (any (x(:) == 0)) CI = [-Inf, Inf]; else SE = sqrt (1 / x(1,1) + 1 / x(1,2) + 1 / x(2,1) + 1 / x(2,2)); LB = OR * exp (-norminv (1 - alpha / 2) * SE); UB = OR * exp (norminv (1 - alpha / 2) * SE); CI = [LB, UB]; endif stats = struct ("OddsRatio", OR, "ConfidenceInterval", CI); endif else error ("fishertest: the Fisher-Freeman-Halton test is not imlemented yet."); endif endfunction %!demo %! ## A Fisher's exact test example %! %! x = [3, 1; 1, 3] %! [h, p, stats] = fishertest(x) ## Test output against MATLAB R2018 %!assert (fishertest ([3, 4; 5, 7]), false); %!assert (isa (fishertest ([3, 4; 5, 7]), "logical"), true); %!test %! [h, pval, stats] = fishertest ([3, 4; 5, 7]); %! assert (pval, 1, 1e-14); %! assert (stats.OddsRatio, 1.05); %! CI = [0.159222057151289, 6.92429189601808]; %! assert (stats.ConfidenceInterval, CI, 1e-14) %!test %! [h, pval, stats] = fishertest ([3, 4; 5, 0]); %! assert (pval, 0.08080808080808080, 1e-14); %! assert (stats.OddsRatio, 0); %! assert (stats.ConfidenceInterval, [-Inf, Inf]) ## Test input validation %!error fishertest (); %!error fishertest (1, 2, 3, 4, 5, 6); %!error ... %! fishertest (ones (2, 2, 2)); %!error ... %! fishertest ([1, 2; -3, 4]); %!error ... %! fishertest ([1, 2; 3, 4+i]); %!error ... %! fishertest ([1, 2; 3, 4.2]); %!error ... %! fishertest ([NaN, 2; 3, 4]); %!error ... %! fishertest ([1, Inf; 3, 4]); %!error ... %! fishertest (ones (2) * 1e8); %!error ... %! fishertest ([1, 2; 3, 4], "alpha", 0); %!error ... %! fishertest ([1, 2; 3, 4], "alpha", 1.2); %!error ... %! fishertest ([1, 2; 3, 4], "alpha", "val"); %!error ... %! fishertest ([1, 2; 3, 4], "tail", "val"); %!error ... %! fishertest ([1, 2; 3, 4], "alpha", 0.01, "tail", "val"); %!error ... %! fishertest ([1, 2; 3, 4], "alpha", 0.01, "badoption", 3); statistics-release-1.6.3/inst/fitcknn.m000066400000000000000000000431551456127120000201260ustar00rootroot00000000000000## Copyright (C) 2023 Mohammed Azmat Khan ## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{obj} =} fitcknn (@var{X}, @var{Y}) ## @deftypefnx {statistics} {@var{obj} =} fitcknn (@dots{}, @var{name}, @var{value}) ## ## Fit a k-Nearest Neighbor classification model. ## ## @code{@var{obj} = fitcknn (@var{X}, @var{Y})} returns a k-Nearest Neighbor ## classification model, @var{obj}, with @var{X} being the predictor data, ## and @var{Y} the class labels of observations in @var{X}. ## ## @itemize ## @item ## @code{X} must be a @math{NxP} numeric matrix of input data where rows ## correspond to observations and columns correspond to features or variables. ## @var{X} will be used to train the kNN model. ## @item ## @code{Y} is @math{Nx1} matrix or cell matrix containing the class labels of ## corresponding predictor data in @var{X}. @var{Y} can contain any type of ## categorical data. @var{Y} must have same numbers of Rows as @var{X}. ## @item ## @end itemize ## ## @code{@var{obj} = fitcknn (@dots{}, @var{name}, @var{value})} returns a ## k-Nearest Neighbor classification model with additional options specified by ## @qcode{Name-Value} pair arguments listed below. ## ## @multitable @columnfractions 0.18 0.02 0.8 ## @headitem @tab @var{Name} @tab @var{Value} ## ## @item @qcode{"PredictorNames"} @tab @tab A cell array of character vectors ## specifying the predictor variable names. The variable names are assumed to ## be in the same order as they appear in the training data @var{X}. ## ## @item @qcode{"ResponseName"} @tab @tab A character vector specifying the name ## of the response variable. ## ## @item @qcode{"ClassNames"} @tab @tab A cell array of character vectors ## specifying the names of the classes in the training data @var{Y}. ## ## @item @qcode{"BreakTies"} @tab @tab Tie-breaking algorithm used by predict ## when multiple classes have the same smallest cost. By default, ties occur ## when multiple classes have the same number of nearest points among the ## @math{k} nearest neighbors. The available options are specified by the ## following character arrays: ## @end multitable ## ## @multitable @columnfractions 0.05 0.2 0.75 ## @item @tab @qcode{"smallest"} @tab This is the default and it favors the ## class with the smallest index among the tied groups, i.e. the one that ## appears first in the training labelled data. ## @item @tab @qcode{"nearest"} @tab This favors the class with the nearest ## neighbor among the tied groups, i.e. the class with the closest member point ## according to the distance metric used. ## @item @tab @qcode{"nearest"} @tab This randomly picks one class among the ## tied groups. ## @end multitable ## ## @multitable @columnfractions 0.18 0.02 0.8 ## @item @qcode{"BucketSize"} @tab @tab The maximum number of data points in the ## leaf node of the Kd-tree and it must be a positive integer. By default, it ## is 50. This argument is meaningful only when the selected search method is ## @qcode{"kdtree"}. ## ## @item @qcode{"Cost"} @tab @tab A @math{NxR} numeric matrix containing ## misclassification cost for the corresponding instances in @var{X} where ## @math{R} is the number of unique categories in @var{Y}. If an instance is ## correctly classified into its category the cost is calculated to be 1, If ## not then 0. cost matrix can be altered use @code{@var{obj.cost} = somecost}. ## default value @qcode{@var{cost} = ones(rows(X),numel(unique(Y)))}. ## ## @item @qcode{"Prior"} @tab @tab A numeric vector specifying the prior ## probabilities for each class. The order of the elements in @qcode{Prior} ## corresponds to the order of the classes in @qcode{ClassNames}. ## ## @item @qcode{"NumNeighbors"} @tab @tab A positive integer value specifying ## the number of nearest neighbors to be found in the kNN search. By default, ## it is 1. ## ## @item @qcode{"Exponent"} @tab @tab A positive scalar (usually an integer) ## specifying the Minkowski distance exponent. This argument is only valid when ## the selected distance metric is @qcode{"minkowski"}. By default it is 2. ## ## @item @qcode{"Scale"} @tab @tab A nonnegative numeric vector specifying the ## scale parameters for the standardized Euclidean distance. The vector length ## must be equal to the number of columns in @var{X}. This argument is only ## valid when the selected distance metric is @qcode{"seuclidean"}, in which ## case each coordinate of @var{X} is scaled by the corresponding element of ## @qcode{"scale"}, as is each query point in @var{Y}. By default, the scale ## parameter is the standard deviation of each coordinate in @var{X}. If a ## variable in @var{X} is constant, i.e. zero variance, this value is forced ## to 1 to avoid division by zero. This is the equivalent of this variable not ## being standardized. ## ## @item @qcode{"Cov"} @tab @tab A square matrix with the same number of columns ## as @var{X} specifying the covariance matrix for computing the mahalanobis ## distance. This must be a positive definite matrix matching. This argument ## is only valid when the selected distance metric is @qcode{"mahalanobis"}. ## ## @item @qcode{"Distance"} @tab @tab is the distance metric used by ## @code{knnsearch} as specified below: ## @end multitable ## ## @multitable @columnfractions 0.05 0.2 0.75 ## @item @tab @qcode{"euclidean"} @tab Euclidean distance. ## @item @tab @qcode{"seuclidean"} @tab standardized Euclidean distance. Each ## coordinate difference between the rows in @var{X} and the query matrix ## @var{Y} is scaled by dividing by the corresponding element of the standard ## deviation computed from @var{X}. To specify a different scaling, use the ## @qcode{"Scale"} name-value argument. ## @item @tab @qcode{"cityblock"} @tab City block distance. ## @item @tab @qcode{"chebychev"} @tab Chebychev distance (maximum coordinate ## difference). ## @item @tab @qcode{"minkowski"} @tab Minkowski distance. The default exponent ## is 2. To specify a different exponent, use the @qcode{"P"} name-value ## argument. ## @item @tab @qcode{"mahalanobis"} @tab Mahalanobis distance, computed using a ## positive definite covariance matrix. To change the value of the covariance ## matrix, use the @qcode{"Cov"} name-value argument. ## @item @tab @qcode{"cosine"} @tab Cosine distance. ## @item @tab @qcode{"correlation"} @tab One minus the sample linear correlation ## between observations (treated as sequences of values). ## @item @tab @qcode{"spearman"} @tab One minus the sample Spearman's rank ## correlation between observations (treated as sequences of values). ## @item @tab @qcode{"hamming"} @tab Hamming distance, which is the percentage ## of coordinates that differ. ## @item @tab @qcode{"jaccard"} @tab One minus the Jaccard coefficient, which is ## the percentage of nonzero coordinates that differ. ## @item @tab @var{@@distfun} @tab Custom distance function handle. A distance ## function of the form @code{function @var{D2} = distfun (@var{XI}, @var{YI})}, ## where @var{XI} is a @math{1xP} vector containing a single observation in ## @math{P}-dimensional space, @var{YI} is an @math{NxP} matrix containing an ## arbitrary number of observations in the same @math{P}-dimensional space, and ## @var{D2} is an @math{NxP} vector of distances, where @qcode{(@var{D2}k)} is ## the distance between observations @var{XI} and @qcode{(@var{YI}k,:)}. ## @end multitable ## ## @multitable @columnfractions 0.18 0.02 0.8 ## @item @qcode{"DistanceWeight"} @tab @tab A distance weighting function, ## specified either as a function handle, which accepts a matrix of nonnegative ## distances and returns a matrix the same size containing nonnegative distance ## weights, or one of the following values: @qcode{"equal"}, which corresponds ## to no weighting; @qcode{"inverse"}, which corresponds to a weight equal to ## @math{1/distance}; @qcode{"squaredinverse"}, which corresponds to a weight ## equal to @math{1/distance^2}. ## ## @item @qcode{"IncludeTies"} @tab @tab A boolean flag to indicate if the ## returned values should contain the indices that have same distance as the ## @math{K^th} neighbor. When @qcode{false}, @code{knnsearch} chooses the ## observation with the smallest index among the observations that have the same ## distance from a query point. When @qcode{true}, @code{knnsearch} includes ## all nearest neighbors whose distances are equal to the @math{K^th} smallest ## distance in the output arguments. To specify @math{K}, use the @qcode{"K"} ## name-value pair argument. ## ## @item @qcode{"NSMethod"} @tab @tab is the nearest neighbor search method used ## by @code{knnsearch} as specified below. ## @end multitable ## ## @multitable @columnfractions 0.05 0.2 0.75 ## @item @tab @qcode{"kdtree"} @tab Creates and uses a Kd-tree to find nearest ## neighbors. @qcode{"kdtree"} is the default value when the number of columns ## in @var{X} is less than or equal to 10, @var{X} is not sparse, and the ## distance metric is @qcode{"euclidean"}, @qcode{"cityblock"}, ## @qcode{"manhattan"}, @qcode{"chebychev"}, or @qcode{"minkowski"}. Otherwise, ## the default value is @qcode{"exhaustive"}. This argument is only valid when ## the distance metric is one of the four aforementioned metrics. ## @item @tab @qcode{"exhaustive"} @tab Uses the exhaustive search algorithm by ## computing the distance values from all the points in @var{X} to each point in ## @var{Y}. ## @end multitable ## ## @seealso{ClassificationKNN, knnsearch, rangesearch, pdist2} ## @end deftypefn function obj = fitcknn (X, Y, varargin) ## Check input parameters if (nargin < 2) error ("fitcknn: too few arguments."); endif if (mod (nargin, 2) != 0) error ("fitcknn: Name-Value arguments must be in pairs."); endif ## Check predictor data and labels have equal rows if (rows (X) != rows (Y)) error ("fitcknn: number of rows in X and Y must be equal."); endif ## Parse arguments to class def function obj = ClassificationKNN (X, Y, varargin{:}); endfunction ## Test Output %!test %! x = [1, 2, 3; 4, 5, 6; 7, 8, 9; 3, 2, 1]; %! y = ["a"; "a"; "b"; "b"]; %! a = fitcknn (x, y); %! assert (class (a), "ClassificationKNN"); %! assert ({a.X, a.Y, a.NumNeighbors}, {x, y, 1}) %! assert ({a.NSMethod, a.Distance}, {"kdtree", "euclidean"}) %! assert ({a.BucketSize}, {50}) %!test %! x = [1, 2, 3; 4, 5, 6; 7, 8, 9; 3, 2, 1]; %! y = ["a"; "a"; "b"; "b"]; %! a = fitcknn (x, y, "NSMethod", "exhaustive"); %! assert (class (a), "ClassificationKNN"); %! assert ({a.X, a.Y, a.NumNeighbors}, {x, y, 1}) %! assert ({a.NSMethod, a.Distance}, {"exhaustive", "euclidean"}) %! assert ({a.BucketSize}, {50}) %!test %! x = [1, 2, 3; 4, 5, 6; 7, 8, 9; 3, 2, 1]; %! y = ["a"; "a"; "b"; "b"]; %! k = 10; %! a = fitcknn (x, y, "NumNeighbors" ,k); %! assert (class (a), "ClassificationKNN"); %! assert ({a.X, a.Y, a.NumNeighbors}, {x, y, 10}) %! assert ({a.NSMethod, a.Distance}, {"kdtree", "euclidean"}) %! assert ({a.BucketSize}, {50}) %!test %! x = ones (4, 11); %! y = ["a"; "a"; "b"; "b"]; %! k = 10; %! a = fitcknn (x, y, "NumNeighbors" ,k); %! assert (class (a), "ClassificationKNN"); %! assert ({a.X, a.Y, a.NumNeighbors}, {x, y, 10}) %! assert ({a.NSMethod, a.Distance}, {"exhaustive", "euclidean"}) %! assert ({a.BucketSize}, {50}) %!test %! x = [1, 2, 3; 4, 5, 6; 7, 8, 9; 3, 2, 1]; %! y = ["a"; "a"; "b"; "b"]; %! k = 10; %! a = fitcknn (x, y, "NumNeighbors" ,k, "NSMethod", "exhaustive"); %! assert (class (a), "ClassificationKNN"); %! assert ({a.X, a.Y, a.NumNeighbors}, {x, y, 10}) %! assert ({a.NSMethod, a.Distance}, {"exhaustive", "euclidean"}) %! assert ({a.BucketSize}, {50}) %!test %! x = [1, 2, 3; 4, 5, 6; 7, 8, 9; 3, 2, 1]; %! y = ["a"; "a"; "b"; "b"]; %! k = 10; %! a = fitcknn (x, y, "NumNeighbors" ,k, "Distance", "hamming"); %! assert (class (a), "ClassificationKNN"); %! assert ({a.X, a.Y, a.NumNeighbors}, {x, y, 10}) %! assert ({a.NSMethod, a.Distance}, {"exhaustive", "hamming"}) %! assert ({a.BucketSize}, {50}) %!test %! x = [1, 2, 3; 4, 5, 6; 7, 8, 9; 3, 2, 1]; %! y = ["a"; "a"; "b"; "b"]; %! weights = ones (4,1); %! a = fitcknn (x, y, "Standardize", 1); %! assert (class (a), "ClassificationKNN"); %! assert ({a.X, a.Y, a.NumNeighbors}, {x, y, 1}) %! assert ({a.NSMethod, a.Distance}, {"kdtree", "euclidean"}) %! assert ({a.Standardize}, {true}) %! assert ({a.Sigma}, {std(x, [], 1)}) %! assert ({a.Mu}, {[3.75, 4.25, 4.75]}) %!test %! x = [1, 2, 3; 4, 5, 6; 7, 8, 9; 3, 2, 1]; %! y = ["a"; "a"; "b"; "b"]; %! weights = ones (4,1); %! a = fitcknn (x, y, "Standardize", false); %! assert (class (a), "ClassificationKNN"); %! assert ({a.X, a.Y, a.NumNeighbors}, {x, y, 1}) %! assert ({a.NSMethod, a.Distance}, {"kdtree", "euclidean"}) %! assert ({a.Standardize}, {false}) %! assert ({a.Sigma}, {[]}) %! assert ({a.Mu}, {[]}) %!test %! x = [1, 2, 3; 4, 5, 6; 7, 8, 9; 3, 2, 1]; %! y = ["a"; "a"; "b"; "b"]; %! s = ones (1, 3); %! a = fitcknn (x, y, "Scale" , s, "Distance", "seuclidean"); %! assert (class (a), "ClassificationKNN"); %! assert ({a.DistParameter}, {s}) %! assert ({a.NSMethod, a.Distance}, {"exhaustive", "seuclidean"}) %! assert ({a.BucketSize}, {50}) %!test %! x = [1, 2, 3; 4, 5, 6; 7, 8, 9; 3, 2, 1]; %! y = ["a"; "a"; "b"; "b"]; %! a = fitcknn (x, y, "Exponent" , 5, "Distance", "minkowski"); %! assert (class (a), "ClassificationKNN"); %! assert (a.DistParameter, 5) %! assert ({a.NSMethod, a.Distance}, {"kdtree", "minkowski"}) %!test %! x = [1, 2, 3; 4, 5, 6; 7, 8, 9; 3, 2, 1]; %! y = ["a"; "a"; "b"; "b"]; %! a = fitcknn (x, y, "Exponent" , 5, "Distance", "minkowski", ... %! "NSMethod", "exhaustive"); %! assert (class (a), "ClassificationKNN"); %! assert (a.DistParameter, 5) %! assert ({a.NSMethod, a.Distance}, {"exhaustive", "minkowski"}) %!test %! x = [1, 2, 3; 4, 5, 6; 7, 8, 9; 3, 2, 1]; %! y = ["a"; "a"; "b"; "b"]; %! a = fitcknn (x, y, "BucketSize" , 20, "distance", "mahalanobis"); %! assert (class (a), "ClassificationKNN"); %! assert ({a.NSMethod, a.Distance}, {"exhaustive", "mahalanobis"}) %! assert ({a.BucketSize}, {20}) %!test %! x = [1, 2, 3; 4, 5, 6; 7, 8, 9; 3, 2, 1]; %! y = ["a"; "a"; "b"; "b"]; %! a = fitcknn (x, y, "IncludeTies", true); %! assert (class (a), "ClassificationKNN"); %! assert (a.IncludeTies, true); %! assert ({a.NSMethod, a.Distance}, {"kdtree", "euclidean"}) %!test %! x = [1, 2, 3; 4, 5, 6; 7, 8, 9; 3, 2, 1]; %! y = ["a"; "a"; "b"; "b"]; %! a = fitcknn (x, y); %! assert (class (a), "ClassificationKNN"); %! assert (a.IncludeTies, false); %! assert ({a.NSMethod, a.Distance}, {"kdtree", "euclidean"}) %!test %! x = [1, 2, 3; 4, 5, 6; 7, 8, 9; 3, 2, 1]; %! y = ["a"; "a"; "b"; "b"]; %! a = fitcknn (x, y); %! assert (class (a), "ClassificationKNN") %! assert (a.Prior, [0.5; 0.5]) %! assert ({a.NSMethod, a.Distance}, {"kdtree", "euclidean"}) %! assert ({a.BucketSize}, {50}) %!test %! x = [1, 2, 3; 4, 5, 6; 7, 8, 9; 3, 2, 1]; %! y = ["a"; "a"; "b"; "b"]; %! prior = [0.5; 0.5]; %! a = fitcknn (x, y, "Prior", "empirical"); %! assert (class (a), "ClassificationKNN") %! assert (a.Prior, prior) %! assert ({a.NSMethod, a.Distance}, {"kdtree", "euclidean"}) %! assert ({a.BucketSize}, {50}) %!test %! x = [1, 2, 3; 4, 5, 6; 7, 8, 9; 3, 2, 1]; %! y = ["a"; "a"; "a"; "b"]; %! prior = [0.75; 0.25]; %! a = fitcknn (x, y, "Prior", "empirical"); %! assert (class (a), "ClassificationKNN") %! assert (a.Prior, prior) %! assert ({a.NSMethod, a.Distance}, {"kdtree", "euclidean"}) %! assert ({a.BucketSize}, {50}) %!test %! x = [1, 2, 3; 4, 5, 6; 7, 8, 9; 3, 2, 1]; %! y = ["a"; "a"; "a"; "b"]; %! prior = [0.5; 0.5]; %! a = fitcknn (x, y, "Prior", "uniform"); %! assert (class (a), "ClassificationKNN") %! assert (a.Prior, prior) %! assert ({a.NSMethod, a.Distance}, {"kdtree", "euclidean"}) %! assert ({a.BucketSize}, {50}) %!test %! x = [1, 2, 3; 4, 5, 6; 7, 8, 9; 3, 2, 1]; %! y = ["a"; "a"; "b"; "b"]; %! cost = eye (2); %! a = fitcknn (x, y, "Cost", cost); %! assert (class (a), "ClassificationKNN") %! assert (a.Cost, [1, 0; 0, 1]) %! assert ({a.NSMethod, a.Distance}, {"kdtree", "euclidean"}) %! assert ({a.BucketSize}, {50}) %!test %! x = [1, 2, 3; 4, 5, 6; 7, 8, 9; 3, 2, 1]; %! y = ["a"; "a"; "b"; "b"]; %! cost = eye (2); %! a = fitcknn (x, y, "Cost", cost, "Distance", "hamming" ); %! assert (class (a), "ClassificationKNN") %! assert (a.Cost, [1, 0; 0, 1]) %! assert ({a.NSMethod, a.Distance}, {"exhaustive", "hamming"}) %! assert ({a.BucketSize}, {50}) ## Test input validation %!error fitcknn () %!error fitcknn (ones (4,1)) %!error %! fitcknn (ones (4,2), ones (4, 1), "K") %!error %! fitcknn (ones (4,2), ones (3, 1)) %!error %! fitcknn (ones (4,2), ones (3, 1), "K", 2) statistics-release-1.6.3/inst/fitgmdist.m000066400000000000000000000455551456127120000204720ustar00rootroot00000000000000## Copyright (C) 2015 Lachlan Andrew ## Copyright (C) 2018 John Donoghue ## Copyright (C) 2022-2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{GMdist} =} fitgmdist (@var{data}, @var{k}, @var{param1}, @var{value1}, @dots{}) ## ## Fit a Gaussian mixture model with @var{k} components to @var{data}. ## Each row of @var{data} is a data sample. Each column is a variable. ## ## Optional parameters are: ## @itemize ## @item @qcode{"start"}: Initialization conditions. Possible values are: ## @itemize ## @item @qcode{"randSample"} (default) Takes means uniformly from rows of data. ## @item @qcode{"plus"} Use k-means++ to initialize means. ## @item @qcode{"cluster"} Performs an initial clustering with 10% of the data. ## @item @var{vector} A vector whose length is the number of rows in data, and ## whose values are 1 to k specify the components each row is initially ## allocated to. The mean, variance, and weight of each component is calculated ## from that. ## @item @var{structure} A structure with fields @qcode{mu}, @qcode{Sigma} and ## @qcode{ComponentProportion}. ## @end itemize ## For @qcode{"randSample"}, @qcode{"plus"}, and @qcode{"cluster"}, the initial ## variance of each component is the variance of the entire data sample. ## ## @item @qcode{"Replicates"}: Number of random restarts to perform. ## ## @item @qcode{"RegularizationValue"} or @qcode{"Regularize"}: A small number ## added to the diagonal entries of the covariance to prevent singular ## covariances. ## ## @item @qcode{"SharedCovariance"} or @qcode{"SharedCov"} (logical). True if ## all components must share the same variance, to reduce the number of free ## parameters ## ## @item @qcode{"CovarianceType"} or @qcode{"CovType"} (string). Possible values ## are: ## @itemize ## @item @qcode{"full"} (default) Allow arbitrary covariance matrices. ## @item @qcode{"diagonal"} Force covariances to be diagonal, to reduce the ## number of free parameters. ## @end itemize ## ## @item @qcode{"Options"}: A structure with all of the following fields: ## @itemize ## @item @qcode{MaxIter} Maximum number of EM iterations (default 100). ## @item @qcode{TolFun} Threshold increase in likelihood to terminate EM ## (default 1e-6). ## @item @qcode{Display} Possible values are: ## @itemize ## @item @qcode{"off"} (default): Display nothing. ## @item @qcode{"final"}: Display the total number of iterations and likelihood ## once the execution completes. ## @item @qcode{"iter"}: Display the number of iteration and likelihood after ## each iteration. ## @end itemize ## @end itemize ## @item @qcode{"Weight"}: A column vector or @math{Nx2} matrix. The first ## column consists of non-negative weights given to the samples. If these are ## all integers, this is equivalent to specifying @qcode{@var{weight}(i)} copies ## of row @qcode{i} of @var{data}, but potentially faster. If a row of ## @var{data} is used to represent samples that are similar but not identical, ## then the second column of @var{weight} indicates the variance of those ## original samples. Specifically, in the EM algorithm, the contribution of row ## @qcode{i} towards the variance is set to at least @qcode{@var{weight}(i,2)}, ## to prevent spurious components with zero variance. ## @end itemize ## ## @seealso{gmdistribution, kmeans} ## @end deftypefn function obj = fitgmdist (data, k, varargin) if (nargin < 2 || mod (nargin, 2) == 1) print_usage; endif [~, prop] = parseparams (varargin); ## defaults for options diagonalCovar = false; # "full". (true is "diagonal") sharedCovar = false; start = "randSample"; replicates = 1; option.MaxIter = 100; option.TolFun = 1e-6; option.Display = "off"; # "off" (1 is "final", 2 is "iter") Regularizer = 0; weights = []; # Each row i counts as "weights(i,1)" rows ## Remove rows containing NaN / NA data = data(! any (isnan (data), 2), :); ## Used for getting the number of samples nRows = rows (data); nCols = columns (data); ## Parse options while (! isempty (prop)) try switch (lower (prop{1})) case {"sharedcovariance", "sharedcov"} sharedCovar = prop{2}; case {"covariancetype", "covartype"} diagonalCovar = prop{2}; case {"regularizationvalue", "regularize"} Regularizer = prop{2}; case "replicates" replicates = prop{2}; case "start" start = prop{2}; case "weights" weights = prop{2}; case "options" option.MaxIter = prop{2}.MaxIter; option.TolFun = prop{2}.TolFun; option.Display = prop{2}.Display; otherwise error ("fitgmdist: Unknown option %s.", prop{1}); endswitch catch ME if (length (prop) < 2) error ("fitgmdist: Option '%s' has no argument.", prop{1}); else rethrow (ME) endif end_try_catch prop = prop(3:end); endwhile ## Process options ## Check for the "replicates" property try if isempty (1:replicates) error ("fitgmdist: replicates must be positive."); endif catch error ("fitgmdist: invalid number of replicates."); end_try_catch ## check for the "option" property MaxIter = option.MaxIter; TolFun = option.TolFun; switch (lower (option.Display)) case "off" Display = 0; case "final" Display = 1; case "iter" Display = 2; case "notify" Display = 0; otherwise error ("fitgmdist: Unknown Display option %s.", option.Display); endswitch try p = ones(1, k) / k; # Default is uniform component proportions catch ME if (! isscalar (k) || ! isnumeric (k)) error ("fitgmdist: The second argument must be a numeric scalar."); else rethrow (ME) endif end_try_catch ## Check for the "start" property if (ischar (start)) start = lower (start); switch (start) case {"randsample", "plus", "cluster", "randsamplep", "plusp", "clusterp"} otherwise error ("fitgmdist: Unknown Start value %s\n.", start); endswitch component_order_free = true; else component_order_free = false; if (! ismatrix (start) || ! isnumeric (start)) try mu = start.mu; Sigma = start.Sigma; if (isfield (start, 'ComponentProportion')) p = start.ComponentProportion(:)'; end if (any (size (data, 2) != [size(mu, 2), size(Sigma, 1)]) || ... any (k != [size(mu,1), size(p,2)])) error ("fitgmdist: Start parameter has mismatched dimensions."); endif catch error ("fitgmdist: invalid start parameter."); end_try_catch else validIndices = 0; mu = zeros (k, nRows); Sigma = zeros (nRows, nRows, k); for i = 1:k idx = (start == i); validIndices = validIndices + sum (idx); mu(i,:) = mean (data(idx,:)); Sigma(:,:,i) = cov (data(idx,:)) + Regularizer * eye (nCols); endfor if (validIndices < nRows) error (strcat (["fitgmdist: Start is numeric, but is not"], ... [" integers between 1 and k."])); endif endif start = []; # so that variance isn't recalculated later replicates = 1; # Will be the same each time anyway endif ## Check for the "SharedCovariance" property if (! islogical (sharedCovar)) error ("fitgmdist: SharedCoveriance must be logical true or false."); endif ## Check for the "CovarianceType" property if (! islogical (diagonalCovar)) try if (strcmpi (diagonalCovar, "diagonal")) diagonalCovar = true; elseif (strcmpi (diagonalCovar, "full")) diagonalCovar = false; else error ("fitgmdist: CovarianceType must be Full or Diagonal."); endif catch error ("fitgmdist: CovarianceType must be 'Full' or 'Diagonal'."); end_try_catch endif ## Check for the "Regularizer" property try if (Regularizer < 0) error ("fitgmdist: Regularizer must be non-negative"); endif catch ME if (! isscalar (Regularizer) || ! isnumeric (Regularizer)) error ("fitgmdist: Regularizer must be a numeric scalar"); else rethrow (ME) endif end_try_catch ## Check for the "Weights" property and the matrix try if (! isempty (weights)) if (columns (weights) > 2 || any (weights(:) < 0)) error (strcat (["fitgmdist: weights must be a nonnegative"], ... [" numeric dx1 or dx2 matrix."])); endif if (rows (weights) != nRows) error (strcat (["fitgmdist: number of weights %d must match"], ... [" number of samples %d."]), rows (weights), nRows); endif non_zero = (weights(:,1) > 0); weights = weights(non_zero,:); data = data (non_zero,:); nRows = rows (data); raw_samples = sum (weights(:,1)); else raw_samples = nRows; endif ## Validate the matrix if (! isreal (data(k,1))) error ("fitgmdist: first input argument must be a DxN real data matrix."); endif catch ME if (! isnumeric (data) || ! ismatrix (data) || ! isreal (data)) error ("fitgmdist: first input argument must be a DxN real data matrix."); elseif (k > nRows || k < 0) if (exists ("non_zero", "var") && k <= length (non_zero)) error (strcat (["fitgmdist: The number of non-zero weights (%d)"], ... [" must be at least the number of components"], ... [" (%d)."]), nRows, k); else error (strcat (["fitgmdist: The number of components (%d) must be"], ... [" a positive number less than the number of data"], ... [" rows (%d)."]), k, nRows); endif elseif (! ismatrix (weights) || ! isnumeric (weights)) error (strcat (["fitgmdist: weights must be a nonnegative numeric"], ... [" dx1 or dx2 matrix."])); else rethrow (ME) endif end_try_catch ## Done processing options ####################################### ## #sed to hold the probability of each class, given each data vector try p_x_l = zeros (nRows, k); # probability of observation x given class l best = -realmax; best_params = []; diag_slice = 1:(nCols+1):(nCols)^2; ## Create index slices to calculate symmetric ## completion of upper triangular Mx lower_half = zeros (nCols * (nCols - 1) / 2, 1); upper_half = zeros (nCols * (nCols - 1) / 2, 1); i = 1; for rw = 1:nCols for cl = rw+1:nCols upper_half(i) = sub2ind ([nCols, nCols], rw, cl); lower_half(i) = sub2ind ([nCols, nCols], cl, rw); i = i + 1; endfor endfor for rep = 1:replicates if (! isempty (start)) ## Initialize the means switch (start) case {"randsample"} if (isempty (weights)) idx = randperm (nRows, k); else idx = randsample (nRows, k, false, weights); endif mu = data(idx, :); case {"plus"} # k-means++, by Arthur and Vassilios mu(1,:) = data(randi (nRows),:); d = inf (nRows, 1); # Distance to nearest centroid so far for i = 2:k d = min (d, sum (bsxfun (@minus, data, mu(i-1, :)).^2, 2)); # pick next sample with prob. prop to dist.*weights if (isempty (weights)) cs = cumsum (d); else cs = cumsum (d .* weights(:,1)); endif mu(i,:) = data(find (cs > rand * cs(end), 1), :); endfor case {"cluster"} subsamp = max (k, ceil (nRows/10)); if (isempty (weights)) idx = randperm (nRows, subsamp); else idx = randsample (nRows, subsamp, false, weights); endif [~, mu] = kmeans (data(idx), k, "start", "sample"); endswitch ## Initialize the variance, unless set explicitly Sigma = var (data) + Regularizer; if (! diagonalCovar) Sigma = diag (Sigma); endif if (! sharedCovar) Sigma = repmat (Sigma, [1, 1, k]); endif endif ## Run the algorithm iter = 1; log_likeli = -inf; incr = 1; while (incr > TolFun && iter <= MaxIter) iter = iter + 1; ####################################### ## "E step" ## Calculate probability of class l given observations for i = 1:k if (sharedCovar) sig = Sigma; else sig = Sigma(:,:,i); endif if (diagonalCovar) sig = diag(sig); endif try p_x_l (:, i) = mvnpdf (data, mu(i, :), sig); catch ME if (strfind (ME.message, "positive definite")) error (strcat (["fitgmdist: Covariance is not positive"], ... [" definite. Increase RegularizationValue."])); else rethrow (ME) endif end_try_catch endfor ## Bayes' rule p_x_l = bsxfun (@times, p_x_l, p); # weight by priors p_l_x = bsxfun (@rdivide, p_x_l, sum (p_x_l, 2)); # Normalize ####################################### ## "M step" ## Calculate new parameters if (! isempty (weights)) p_l_x = bsxfun (@times, p_l_x, weights(:,1)); endif sum_p_l_x = sum (p_l_x); # row vec of \sum_{data} p(class|data,params) p = sum_p_l_x / raw_samples; # new proportions mu = bsxfun (@rdivide, p_l_x' * data, sum_p_l_x'); # new means if (sharedCovar) sumSigma = zeros (size (Sigma(:,:,1))); # diagonalCovar gives size endif for i = 1:k ## Sigma deviation = bsxfun(@minus, data, mu(i,:)); lhs = bsxfun(@times, p_l_x(:,i), deviation); ## Calculate covariance ## Iterate either over elements of the covariance matrix, ## since there should be fewer of those than rows of data. for rw = 1:nCols for cl = rw:nCols sig(rw,cl) = lhs(:,rw)' * deviation(:,cl); endfor endfor sig(lower_half) = sig(upper_half); sig = sig/sum_p_l_x(i) + Regularizer*eye (nCols); if (columns (weights) > 1) # don't give "singleton" clusters low var sig(diag_slice) = max (sig(diag_slice), weights(i,2)); endif if (diagonalCovar) sig = diag(sig)'; endif if (sharedCovar) sumSigma = sumSigma + sig * p(i); # Heuristic. Should it use else # old p? Something else? Sigma(:,:,i) = sig; endif endfor if (sharedCovar) Sigma = sumSigma; endif ####################################### ## Calculate the new (and relative change in) log-likelihood if (isempty (weights)) new_log_likeli = sum (log (sum (p_x_l, 2))); else new_log_likeli = sum (weights(:,1) .* log (sum (p_x_l, 2))); endif incr = (new_log_likeli - log_likeli)/max(1,abs(new_log_likeli)); if (Display == 2) fprintf("iter %d log-likelihood %g\n", iter-1, new_log_likeli); endif log_likeli = new_log_likeli; endwhile if (log_likeli > best) best = log_likeli; best_params.mu = mu; best_params.Sigma = Sigma; best_params.p = p; endif endfor catch ME try if (1 < MaxIter), end catch error ("fitgmdist: invalid MaxIter."); end_try_catch rethrow (ME) end_try_catch ## List components in descending order of proportion, ## unless the order was implicitly specified by "start" if (component_order_free) [~, idx] = sort (-best_params.p); best_params.p = best_params.p (idx); best_params.mu = best_params.mu(idx,:); if (! sharedCovar) best_params.Sigma = best_params.Sigma(:,:,idx); endif endif ## Calculate number of parameters if (diagonalCovar) params = nCols; else params = nCols * (nCols+1) / 2; endif params = params*size (Sigma, 3) + 2*rows (mu) - 1; ## This works in Octave, but not in Matlab #obj = gmdistribution (best_params.mu, best_params.Sigma, best_params.p', extra); obj = gmdistribution (best_params.mu, best_params.Sigma, best_params.p'); obj.NegativeLogLikelihood = -best; obj.AIC = -2*(best - params); obj.BIC = -2*best + params * log (raw_samples); obj.Converged = (incr <= TolFun); obj.NumIterations = iter-1; obj.RegularizationValue = Regularizer; if (Display == 1) fprintf (" %d iterations log-likelihood = %g\n", ... obj.NumIterations, -obj.NegativeLogLikelihood); endif endfunction %!demo %! ## Generate a two-cluster problem %! C1 = randn (100, 2) + 2; %! C2 = randn (100, 2) - 2; %! data = [C1; C2]; %! %! ## Perform clustering %! GMModel = fitgmdist (data, 2); %! %! ## Plot the result %! figure %! [heights, bins] = hist3([C1; C2]); %! [xx, yy] = meshgrid(bins{1}, bins{2}); %! bbins = [xx(:), yy(:)]; %! contour (reshape (GMModel.pdf (bbins), size (heights))); %!demo %! Angle_Theta = [ 30 + 10 * randn(1, 10), 60 + 10 * randn(1, 10) ]'; %! nbOrientations = 2; %! initial_orientations = [38.0; 18.0]; %! initial_weights = ones (1, nbOrientations) / nbOrientations; %! initial_Sigma = 10 * ones (1, 1, nbOrientations); %! start = struct ("mu", initial_orientations, "Sigma", initial_Sigma, ... %! "ComponentProportion", initial_weights); %! GMModel_Theta = fitgmdist (Angle_Theta, nbOrientations, "Start", start , ... %! "RegularizationValue", 0.0001) ## Test results against MATLAB example %!test %! load fisheriris %! classes = unique (species); %! [~, score] = pca (meas, "NumComponents", 2); %! options.MaxIter = 1000; %! options.TolFun = 1e-6; %! options.Display = "off"; %! GMModel = fitgmdist (score, 2, "Options", options); %! assert (isa (GMModel, "gmdistribution"), true); %! assert (GMModel.mu, [1.3212, -0.0954; -2.6424, 0.1909], 1e-4); statistics-release-1.6.3/inst/fitlm.m000066400000000000000000000404371456127120000176050ustar00rootroot00000000000000## Copyright (C) 2022 Andrew Penn ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{tab} =} fitlm (@var{X}, @var{y}) ## @deftypefnx {statistics} {@var{tab} =} fitlm (@var{X}, @var{y}, @var{name}, @var{value}) ## @deftypefnx {statistics} {@var{tab} =} fitlm (@var{X}, @var{y}, @var{modelspec}) ## @deftypefnx {statistics} {@var{tab} =} fitlm (@var{X}, @var{y}, @var{modelspec}, @var{name}, @var{value}) ## @deftypefnx {statistics} {[@var{tab}] =} fitlm (@dots{}) ## @deftypefnx {statistics} {[@var{tab}, @var{stats}] =} fitlm (@dots{}) ## @deftypefnx {statistics} {[@var{tab}, @var{stats}] =} fitlm (@dots{}) ## ## Regress the continuous outcome (i.e. dependent variable) @var{y} on ## continuous or categorical predictors (i.e. independent variables) @var{X} ## by minimizing the sum-of-squared residuals. Unless requested otherwise, ## @qcode{fitlm} prints the model formula, the regression coefficients (i.e. ## parameters/contrasts) and an ANOVA table. Note that unlike @qcode{anovan}, ## @qcode{fitlm} treats all factors as continuous by default. A bootstrap ## resampling variant of this function, @code{bootlm}, is available in the ## statistics-resampling package and has similar usage. ## ## @var{X} must be a column major matrix or cell array consisting of the ## predictors. A constant term (intercept) should not be included in X - it ## is automatically added to the model. @var{y} must be a column vector ## corresponding to the outcome variable. @var{modelspec} can specified as ## one of the following: ## ## @itemize ## @item ## "constant" : model contains only a constant (intercept) term. ## ## @item ## "linear" (default) : model contains an intercept and linear term for each ## predictor. ## ## @item ## "interactions" : model contains an intercept, linear term for each predictor ## and all products of pairs of distinct predictors. ## ## @item ## "full" : model contains an intercept, linear term for each predictor and ## all combinations of the predictors. ## ## @item ## a matrix of term definitions : an t-by-(N+1) matrix specifying terms in ## a model, where t is the number of terms, N is the number of predictor ## variables, and +1 accounts for the outcome variable. The outcome variable ## is the last column in the terms matrix and must be a column of zeros. ## An intercept must be specified in the first row of the terms matrix and ## must be a row of zeros. ## @end itemize ## ## @qcode{fitlm} can take a number of optional parameters as name-value pairs. ## ## @code{[@dots{}] = fitlm (..., "CategoricalVars", @var{categorical})} ## ## @itemize ## @item ## @var{categorical} is a vector of indices indicating which of the columns ## (i.e. variables) in @var{X} should be treated as categorical predictors ## rather than as continuous predictors. ## @end itemize ## ## @qcode{fitlm} also accepts optional @qcode{anovan} parameters as name-value ## pairs (except for the "model" parameter). The accepted parameter names from ## @qcode{anovan} and their default values in @qcode{fitlm} are: ## ## @itemize ## @item ## @var{CONTRASTS} : "treatment" ## ## @item ## @var{SSTYPE}: 2 ## ## @item ## @var{ALPHA}: 0.05 ## ## @item ## @var{DISPLAY}: "on" ## ## @item ## @var{WEIGHTS}: [] (empty) ## ## @item ## @var{RANDOM}: [] (empty) ## ## @item ## @var{CONTINUOUS}: [1:N] ## ## @item ## @var{VARNAMES}: [] (empty) ## @end itemize ## ## Type '@qcode{help anovan}' to find out more about what these options do. ## ## @qcode{fitlm} can return up to two output arguments: ## ## [@var{tab}] = fitlm (@dots{}) returns a cell array containing a ## table of model parameters ## ## [@var{tab}, @var{stats}] = fitlm (@dots{}) returns a structure ## containing additional statistics, including degrees of freedom and effect ## sizes for each term in the linear model, the design matrix, the ## variance-covariance matrix, (weighted) model residuals, and the mean squared ## error. The columns of @var{stats}.coeffs (from left-to-right) report the ## model coefficients, standard errors, lower and upper 100*(1-alpha)% ## confidence interval bounds, t-statistics, and p-values relating to the ## contrasts. The number appended to each term name in @var{stats}.coeffnames ## corresponds to the column number in the relevant contrast matrix for that ## factor. The @var{stats} structure can be used as input for @qcode{multcompare}. ## Note that if the model contains a continuous variable and you wish to use ## the @var{STATS} output as input to @qcode{multcompare}, then the model needs ## to be refit with the "contrast" parameter set to a sum-to-zero contrast ## coding scheme, e.g."simple". ## ## @seealso{anovan, multcompare} ## @end deftypefn function [T, STATS] = fitlm (X, y, varargin) ## Check input and output arguments if (nargin < 2) error (strcat (["fitlm usage: ""fitlm (X, y, varargin)""; "], ... [" atleast 2 input arguments required"])); endif if (nargout > 3) error ("fitlm: invalid number of output arguments requested"); endif ## Evaluate input data [n, N] = size (X); msg = strcat (["fitlm: do not include the intercept column in X"], ... [" - it will be added automatically"]); if (iscell (X)) if (~ iscell (X{:,1})) if (all (X{:,1} == 1)) error (msg) endif endif else if (all (X(:,1) == 1)) error (msg) endif endif ## Fetch anovan options options = varargin; if (isempty(options)) options{1} = "linear"; endif ## Check if MODELSPEC was provided. If not create it. if (ischar (options{1})) if (! ismember (lower (options{1}), {"sstype", "varnames", "contrasts", ... "weights", "alpha", "display", "continuous", ... "categorical", "categoricalvars", "random", "model"})) MODELSPEC = options{1}; options(1) = []; CONTINUOUS = []; else ## If MODELSPEC is not provided, set it for an additive linear model MODELSPEC = zeros (N + 1); MODELSPEC(2:N+1, 1:N) = eye (N); end else MODELSPEC = options{1}; options(1) = []; endif ## Evaluate MODELSPEC if (ischar (MODELSPEC)) MODELSPEC = lower (MODELSPEC); if (! isempty (regexp (MODELSPEC, "~"))) error ("fitlm: model formulae are not a supported format for MODELSPEC") endif if (! ismember (MODELSPEC, {"constant", "linear", "interaction", ... "interactions", "full"})) error ("fitlm: character vector for model specification not recognised") endif if strcmp (MODELSPEC, "constant") X = []; MODELSPEC = "linear"; N = 0; endif else if (size (MODELSPEC, 1) < N + 1) error ("fitlm: number of rows in MODELSPEC must 1 + number of columns in X"); endif if (size (MODELSPEC, 2) != N + 1) error ("fitlm: number of columns in MODELSPEC must = 1 + number of columns in X"); endif if (! all (ismember (MODELSPEC(:), [0,1]))) error (strcat (["fitlm: elements of the model terms matrix must be "], ... [" either 0 or 1. Higher order terms are not supported"])); endif MODELSPEC = logical (MODELSPEC(2:N+1,1:N)); endif ## Check for unsupported options used by anovan if (any (strcmpi ("MODEL", options))) error (strcat(["fitlm: modelspec should be specified in the third"], ... [" input argument of fitlm (if at all)"])); endif ## Check and set variable types idx = find (any (cat (1, strcmpi ("categorical", options), ... strcmpi ("categoricalvars", options)))); if (! isempty (idx)) CONTINUOUS = [1:N]; CONTINUOUS(ismember(CONTINUOUS,options{idx+1})) = []; options(idx:idx+1) = []; else CONTINUOUS = [1:N]; endif idx = find (strcmpi ("continuous", options)); if (! isempty (idx)) ## Note that setting continuous parameter will override settings made ## to "categorical" CONTINUOUS = options{idx+1}; endif ## Check if anovan CONTRASTS option was used idx = find (strcmpi ("contrasts", options)); if (isempty (idx)) CONTRASTS = "treatment"; else CONTRASTS = options{idx+1}; if (ischar(CONTRASTS)) contr_str = CONTRASTS; CONTRASTS = cell (1, N); CONTRASTS(:) = {contr_str}; endif if (! iscell (CONTRASTS)) CONTRASTS = {CONTRASTS}; endif for i = 1:N if (! isnumeric(CONTRASTS{i})) if (! isempty (CONTRASTS{i})) if (! ismember (CONTRASTS{i}, ... {"simple","poly","helmert","effect","treatment"})) error (strcat(["fitlm: the choices for built-in contrasts are"], ... [" ""simple"", ""poly"", ""helmert"", ""effect"", or ""treatment"""])); endif endif endif endfor endif ## Check if anovan SSTYPE option was used idx = find (strcmpi ("sstype", options)); if (isempty (idx)) SSTYPE = 2; else SSTYPE = options{idx+1}; endif ## Perform model fit and ANOVA [jnk, jnk, STATS] = anovan (y, X, options{:}, ... "model", MODELSPEC, ... "contrasts", CONTRASTS, ... "continuous", CONTINUOUS, ... "sstype", SSTYPE); ## Create table of regression coefficients ncoeff = sum (STATS.df); T = cell (2 + ncoeff, 7); T(1,:) = {"Parameter", "Estimate", "SE", "Lower.CI", "Upper.CI", "t", "Prob>|t|"}; T(2:end,1) = STATS.coeffnames; T(2:end,2:7) = num2cell (STATS.coeffs); ## Update STATS structure STATS.source = "fitlm"; endfunction %!demo %! y = [ 8.706 10.362 11.552 6.941 10.983 10.092 6.421 14.943 15.931 ... %! 22.968 18.590 16.567 15.944 21.637 14.492 17.965 18.851 22.891 ... %! 22.028 16.884 17.252 18.325 25.435 19.141 21.238 22.196 18.038 ... %! 22.628 31.163 26.053 24.419 32.145 28.966 30.207 29.142 33.212 ... %! 25.694 ]'; %! X = [1 1 1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5]'; %! %! [TAB,STATS] = fitlm (X,y,"linear","CategoricalVars",1,"display","on"); %!demo %! popcorn = [5.5, 4.5, 3.5; 5.5, 4.5, 4.0; 6.0, 4.0, 3.0; ... %! 6.5, 5.0, 4.0; 7.0, 5.5, 5.0; 7.0, 5.0, 4.5]; %! brands = {'Gourmet', 'National', 'Generic'; ... %! 'Gourmet', 'National', 'Generic'; ... %! 'Gourmet', 'National', 'Generic'; ... %! 'Gourmet', 'National', 'Generic'; ... %! 'Gourmet', 'National', 'Generic'; ... %! 'Gourmet', 'National', 'Generic'}; %! popper = {'oil', 'oil', 'oil'; 'oil', 'oil', 'oil'; 'oil', 'oil', 'oil'; ... %! 'air', 'air', 'air'; 'air', 'air', 'air'; 'air', 'air', 'air'}; %! %! [TAB, STATS] = fitlm ({brands(:),popper(:)},popcorn(:),"interactions",... %! "CategoricalVars",[1,2],"display","on"); %!test %! y = [ 8.706 10.362 11.552 6.941 10.983 10.092 6.421 14.943 15.931 ... %! 22.968 18.590 16.567 15.944 21.637 14.492 17.965 18.851 22.891 ... %! 22.028 16.884 17.252 18.325 25.435 19.141 21.238 22.196 18.038 ... %! 22.628 31.163 26.053 24.419 32.145 28.966 30.207 29.142 33.212 ... %! 25.694 ]'; %! X = [1 1 1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5]'; %! [TAB,STATS] = fitlm (X,y,"continuous",[],"display","off"); %! [TAB,STATS] = fitlm (X,y,"CategoricalVars",1,"display","off"); %! [TAB,STATS] = fitlm (X,y,"constant","categorical",1,"display","off"); %! [TAB,STATS] = fitlm (X,y,"linear","categorical",1,"display","off"); %! [TAB,STATS] = fitlm (X,y,[0,0;1,0],"categorical",1,"display","off"); %! assert (TAB{2,2}, 10, 1e-04); %! assert (TAB{3,2}, 7.99999999999999, 1e-09); %! assert (TAB{4,2}, 8.99999999999999, 1e-09); %! assert (TAB{5,2}, 11.0001428571429, 1e-09); %! assert (TAB{6,2}, 19.0001111111111, 1e-09); %! assert (TAB{2,3}, 1.01775379540949, 1e-09); %! assert (TAB{3,3}, 1.64107868458008, 1e-09); %! assert (TAB{4,3}, 1.43932122062479, 1e-09); %! assert (TAB{5,3}, 1.48983900477565, 1e-09); %! assert (TAB{6,3}, 1.3987687997822, 1e-09); %! assert (TAB{2,6}, 9.82555903510687, 1e-09); %! assert (TAB{3,6}, 4.87484242844031, 1e-09); %! assert (TAB{4,6}, 6.25294748040552, 1e-09); %! assert (TAB{5,6}, 7.38344399756088, 1e-09); %! assert (TAB{6,6}, 13.5834536158296, 1e-09); %! assert (TAB{3,7}, 2.85812420217862e-05, 1e-12); %! assert (TAB{4,7}, 5.22936741204002e-07, 1e-06); %! assert (TAB{5,7}, 2.12794763209106e-08, 1e-07); %! assert (TAB{6,7}, 7.82091664406755e-15, 1e-08); %!test %! popcorn = [5.5, 4.5, 3.5; 5.5, 4.5, 4.0; 6.0, 4.0, 3.0; ... %! 6.5, 5.0, 4.0; 7.0, 5.5, 5.0; 7.0, 5.0, 4.5]; %! brands = bsxfun (@times, ones(6,1), [1,2,3]); %! popper = bsxfun (@times, [1;1;1;2;2;2], ones(1,3)); %! %! [TAB, STATS] = fitlm ({brands(:),popper(:)},popcorn(:),"interactions",... %! "categoricalvars",[1,2],"display","off"); %! assert (TAB{2,2}, 5.66666666666667, 1e-09); %! assert (TAB{3,2}, -1.33333333333333, 1e-09); %! assert (TAB{4,2}, -2.16666666666667, 1e-09); %! assert (TAB{5,2}, 1.16666666666667, 1e-09); %! assert (TAB{6,2}, -0.333333333333334, 1e-09); %! assert (TAB{7,2}, -0.166666666666667, 1e-09); %! assert (TAB{2,3}, 0.215165741455965, 1e-09); %! assert (TAB{3,3}, 0.304290309725089, 1e-09); %! assert (TAB{4,3}, 0.304290309725089, 1e-09); %! assert (TAB{5,3}, 0.304290309725089, 1e-09); %! assert (TAB{6,3}, 0.43033148291193, 1e-09); %! assert (TAB{7,3}, 0.43033148291193, 1e-09); %! assert (TAB{2,6}, 26.3362867542108, 1e-09); %! assert (TAB{3,6}, -4.38178046004138, 1e-09); %! assert (TAB{4,6}, -7.12039324756724, 1e-09); %! assert (TAB{5,6}, 3.83405790253621, 1e-09); %! assert (TAB{6,6}, -0.774596669241495, 1e-09); %! assert (TAB{7,6}, -0.387298334620748, 1e-09); %! assert (TAB{2,7}, 5.49841502258254e-12, 1e-09); %! assert (TAB{3,7}, 0.000893505495903642, 1e-09); %! assert (TAB{4,7}, 1.21291454302428e-05, 1e-09); %! assert (TAB{5,7}, 0.00237798044119407, 1e-09); %! assert (TAB{6,7}, 0.453570536021938, 1e-09); %! assert (TAB{7,7}, 0.705316781644046, 1e-09); %! ## Test with string ids for categorical variables %! brands = {'Gourmet', 'National', 'Generic'; ... %! 'Gourmet', 'National', 'Generic'; ... %! 'Gourmet', 'National', 'Generic'; ... %! 'Gourmet', 'National', 'Generic'; ... %! 'Gourmet', 'National', 'Generic'; ... %! 'Gourmet', 'National', 'Generic'}; %! popper = {'oil', 'oil', 'oil'; 'oil', 'oil', 'oil'; 'oil', 'oil', 'oil'; ... %! 'air', 'air', 'air'; 'air', 'air', 'air'; 'air', 'air', 'air'}; %! [TAB, STATS] = fitlm ({brands(:),popper(:)},popcorn(:),"interactions",... %! "categoricalvars",[1,2],"display","off"); %!test %! load carsmall %! X = [Weight,Horsepower,Acceleration]; %! [TAB, STATS] = fitlm (X, MPG,"constant","display","off"); %! [TAB, STATS] = fitlm (X, MPG,"linear","display","off"); %! assert (TAB{2,2}, 47.9767628118615, 1e-09); %! assert (TAB{3,2}, -0.00654155878851796, 1e-09); %! assert (TAB{4,2}, -0.0429433065881864, 1e-09); %! assert (TAB{5,2}, -0.0115826516894871, 1e-09); %! assert (TAB{2,3}, 3.87851641748551, 1e-09); %! assert (TAB{3,3}, 0.00112741016370336, 1e-09); %! assert (TAB{4,3}, 0.0243130608813806, 1e-09); %! assert (TAB{5,3}, 0.193325043113178, 1e-09); %! assert (TAB{2,6}, 12.369874881944, 1e-09); %! assert (TAB{3,6}, -5.80228828790225, 1e-09); %! assert (TAB{4,6}, -1.76626492228599, 1e-09); %! assert (TAB{5,6}, -0.0599128364487485, 1e-09); %! assert (TAB{2,7}, 4.89570341688996e-21, 1e-09); %! assert (TAB{3,7}, 9.87424814144e-08, 1e-09); %! assert (TAB{4,7}, 0.0807803098213114, 1e-09); %! assert (TAB{5,7}, 0.952359384151778, 1e-09); statistics-release-1.6.3/inst/fitrgam.m000066400000000000000000000207041456127120000201160ustar00rootroot00000000000000## Copyright (C) 2023 Mohammed Azmat Khan ## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{obj} =} fitrgam (@var{X}, @var{Y}) ## @deftypefnx {statistics} {@var{obj} =} fitrgam (@var{X}, @var{Y}, @var{name}, @var{value}) ## ## Fit a Generalised Additive Model (GAM) for regression. ## ## @code{@var{obj} = fitrgam (@var{X}, @var{Y})} returns an object of ## class RegressionGAM, with matrix @var{X} containing the predictor data and ## vector @var{Y} containing the continuous response data. ## ## @itemize ## @item ## @var{X} must be a @math{NxP} numeric matrix of input data where rows ## correspond to observations and columns correspond to features or variables. ## @var{X} will be used to train the GAM model. ## @item ## @var{Y} must be @math{Nx1} numeric vector containing the response data ## corresponding to the predictor data in @var{X}. @var{Y} must have same ## number of rows as @var{X}. ## @end itemize ## ## @code{@var{obj} = fitrgam (@dots{}, @var{name}, @var{value})} returns ## an object of class RegressionGAM with additional properties specified by ## @qcode{Name-Value} pair arguments listed below. ## ## @multitable @columnfractions 0.05 0.2 0.75 ## @headitem @tab @var{Name} @tab @var{Value} ## ## @item @tab @qcode{"predictors"} @tab Predictor Variable names, specified as ## a row vector cell of strings with the same length as the columns in @var{X}. ## If omitted, the program will generate default variable names ## @qcode{(x1, x2, ..., xn)} for each column in @var{X}. ## ## @item @tab @qcode{"responsename"} @tab Response Variable Name, specified as ## a string. If omitted, the default value is @qcode{"Y"}. ## ## @item @tab @qcode{"formula"} @tab a model specification given as a string in ## the form @qcode{"Y ~ terms"} where @qcode{Y} represents the reponse variable ## and @qcode{terms} the predictor variables. The formula can be used to ## specify a subset of variables for training model. For example: ## @qcode{"Y ~ x1 + x2 + x3 + x4 + x1:x2 + x2:x3"} specifies four linear terms ## for the first four columns of for predictor data, and @qcode{x1:x2} and ## @qcode{x2:x3} specify the two interaction terms for 1st-2nd and 3rd-4th ## columns respectively. Only these terms will be used for training the model, ## but @var{X} must have at least as many columns as referenced in the formula. ## If Predictor Variable names have been defined, then the terms in the formula ## must reference to those. When @qcode{"formula"} is specified, all terms used ## for training the model are referenced in the @qcode{IntMatrix} field of the ## @var{obj} class object as a matrix containing the column indexes for each ## term including both the predictors and the interactions used. ## ## @item @tab @qcode{"interactions"} @tab a logical matrix, a positive integer ## scalar, or the string @qcode{"all"} for defining the interactions between ## predictor variables. When given a logical matrix, it must have the same ## number of columns as @var{X} and each row corresponds to a different ## interaction term combining the predictors indexed as @qcode{true}. Each ## interaction term is appended as a column vector after the available predictor ## column in @var{X}. When @qcode{"all"} is defined, then all possible ## combinations of interactions are appended in @var{X} before training. At the ## moment, parsing a positive integer has the same effect as the @qcode{"all"} ## option. When @qcode{"interactions"} is specified, only the interaction terms ## appended to @var{X} are referenced in the @qcode{IntMatrix} field of the ## @var{obj} class object. ## ## @item @tab @qcode{"knots"} @tab a scalar or a row vector with the same ## columns as @var{X}. It defines the knots for fitting a polynomial when ## training the GAM. As a scalar, it is expanded to a row vector. The default ## value is 5, hence expanded to @qcode{ones (1, columns (X)) * 5}. You can ## parse a row vector with different number of knots for each predictor ## variable to be fitted with, although not recommended. ## ## @item @tab @qcode{"order"} @tab a scalar or a row vector with the same ## columns as @var{X}. It defines the order of the polynomial when training the ## GAM. As a scalar, it is expanded to a row vector. The default values is 3, ## hence expanded to @qcode{ones (1, columns (X)) * 3}. You can parse a row ## vector with different number of polynomial order for each predictor variable ## to be fitted with, although not recommended. ## ## @item @tab @qcode{"dof"} @tab a scalar or a row vector with the same columns ## as @var{X}. It defines the degrees of freedom for fitting a polynomial when ## training the GAM. As a scalar, it is expanded to a row vector. The default ## value is 8, hence expanded to @qcode{ones (1, columns (X)) * 8}. You can ## parse a row vector with different degrees of freedom for each predictor ## variable to be fitted with, although not recommended. ## ## @item @tab @qcode{"tol"} @tab a positive scalar to set the tolerance for ## covergence during training. By defaul, it is set to @qcode{1e-3}. ## @end multitable ## ## You can parse either a @qcode{"formula"} or an @qcode{"interactions"} ## optional parameter. Parsing both parameters will result an error. ## Accordingly, you can only pass up to two parameters among @qcode{"knots"}, ## @qcode{"order"}, and @qcode{"dof"} to define the required polynomial for ## training the GAM model. ## ## @seealso{RegressionGAM, regress, regress_gp} ## @end deftypefn function obj = fitrgam (X, Y, varargin) ## Check input parameters if (nargin < 2) error ("fitrgam: too few arguments."); endif if (mod (nargin, 2) != 0) error ("fitrgam: Name-Value arguments must be in pairs."); endif ## Check predictor data and labels have equal rows if (rows (X) != rows (Y)) error ("fitrgam: number of rows in X and Y must be equal."); endif ## Parse arguments to class def function obj = RegressionGAM (X, Y, varargin{:}); endfunction %!demo %! # Train a RegressionGAM Model for synthetic values %! %! f1 = @(x) cos (3 *x); %! f2 = @(x) x .^ 3; %! %! # generate x1 and x2 for f1 and f2 %! x1 = 2 * rand (50, 1) - 1; %! x2 = 2 * rand (50, 1) - 1; %! %! # calculate y %! y = f1(x1) + f2(x2); %! %! # add noise %! y = y + y .* 0.2 .* rand (50,1); %! X = [x1, x2]; %! %! # create an object %! a = fitrgam (X, y, "tol", 1e-3) ## Test constructor %!test %! x = [1, 2, 3; 4, 5, 6; 7, 8, 9; 3, 2, 1]; %! y = [1; 2; 3; 4]; %! a = fitrgam (x, y); %! assert ({a.X, a.Y}, {x, y}) %! assert ({a.BaseModel.Intercept}, {2.5000}) %! assert ({a.Knots, a.Order, a.DoF}, {[5, 5, 5], [3, 3, 3], [8, 8, 8]}) %! assert ({a.NumObservations, a.NumPredictors}, {4, 3}) %! assert ({a.ResponseName, a.PredictorNames}, {"Y", {"x1", "x2", "x3"}}) %! assert ({a.Formula}, {[]}) %!test %! x = [1, 2, 3, 4; 4, 5, 6, 7; 7, 8, 9, 1; 3, 2, 1, 2]; %! y = [1; 2; 3; 4]; %! pnames = {"A", "B", "C", "D"}; %! formula = "Y ~ A + B + C + D + A:C"; %! intMat = logical ([1,0,0,0;0,1,0,0;0,0,1,0;0,0,0,1;1,0,1,0]); %! a = fitrgam (x, y, "predictors", pnames, "formula", formula); %! assert ({a.IntMatrix}, {intMat}) %! assert ({a.ResponseName, a.PredictorNames}, {"Y", pnames}) %! assert ({a.Formula}, {formula}) ## Test input validation %!error fitrgam () %!error fitrgam (ones(10,2)) %!error %! fitrgam (ones (4,2), ones (4, 1), "K") %!error %! fitrgam (ones (4,2), ones (3, 1)) %!error %! fitrgam (ones (4,2), ones (3, 1), "K", 2) statistics-release-1.6.3/inst/friedman.m000066400000000000000000000154331456127120000202550ustar00rootroot00000000000000## Copyright (C) 2022 Andreas Bertsatos ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{p} =} friedman (@var{x}) ## @deftypefnx {statistics} {@var{p} =} friedman (@var{x}, @var{reps}) ## @deftypefnx {statistics} {@var{p} =} friedman (@var{x}, @var{reps}, @var{displayopt}) ## @deftypefnx {statistics} {[@var{p}, @var{atab}] =} friedman (@dots{}) ## @deftypefnx {statistics} {[@var{p}, @var{atab}, @var{stats}] =} friedman (@dots{}) ## ## Performs the nonparametric Friedman's test to compare column effects in a ## two-way layout. @qcode{friedman} tests the null hypothesis that the column ## effects are all the same against the alternative that they are not all the ## same. ## ## @qcode{friedman} requires one up to three input arguments: ## ## @itemize ## @item ## @var{x} contains the data and it must be a matrix of at least two columns and ## two rows. ## @item ## @var{reps} is the number of replicates for each combination of factor groups. ## If not provided, no replicates are assumed. ## @item ## @var{displayopt} is an optional parameter for displaying the Friedman's ANOVA ## table, when it is 'on' (default) and suppressing the display when it is 'off'. ## @end itemize ## ## @qcode{friedman} returns up to three output arguments: ## ## @itemize ## @item ## @var{p} is the p-value of the null hypothesis that all group means are equal. ## @item ## @var{atab} is a cell array containing the results in a Friedman's ANOVA table. ## @item ## @var{stats} is a structure containing statistics useful for performing ## a multiple comparison of medians with the MULTCOMPARE function. ## @end itemize ## ## If friedman is called without any output arguments, then it prints the results ## in a one-way ANOVA table to the standard output as if @var{displayopt} is ## 'on'. ## ## Examples: ## ## @example ## load popcorn; ## friedman (popcorn, 3); ## @end example ## ## ## @example ## [p, anovatab, stats] = friedman (popcorn, 3, "off"); ## disp (p); ## @end example ## ## @seealso{anova2, kruskalwallis, multcompare} ## @end deftypefn function [p, table, stats] = friedman (x, reps, displayopt) ## Check for valid number of input arguments narginchk (1, 3); ## Check for NaN values in X if (any (isnan( x(:)))) error ("NaN values in input are not allowed."); endif ## Add defaults if (nargin == 1) reps = 1; endif ## Check for correct size of input matrix [r, c] = size (x); if (r <= 1 || c <= 1) error ("Bad size of input matrix."); endif if (reps > 1) r = r / reps; if (floor (r) != r) error ("Repetitions and observations do not match."); endif endif ## Check for displayopt if (nargin < 3) displayopt = 'on'; elseif ! (strcmp (displayopt, "off") || strcmp (displayopt, "on")) error ("displayopt must be either 'on' (default) or 'off'."); endif plotdata = ~(strcmp (displayopt, "off")); ## Prepare a matrix of ranks. Replicates are ranked together. m = x; sum_R = 0; for j = 1:r jrows = reps * (j-1) + (1:reps); v = x(jrows,:); [R, tieadj] = tiedrank (v(:)); m(jrows,:) = reshape (R, reps, c);; sum_R = sum_R + 2 * tieadj; endfor ## Perform 2-way anova silently [p0, table] = anova2 (m, reps, 'off'); ## Compute Friedman test statistic and p-value chi_r = table{2,2}; sigmasq = c * reps * (reps * c + 1) / 12; if (sum_R > 0) sigmasq = sigmasq - sum_R / (12 * r * (reps * c - 1)); endif if (chi_r > 0) chi_r = chi_r / sigmasq; endif p = 1 - chi2cdf (chi_r, c - 1); ## Remove row info from ANOVA2 table table(3,:) = []; ## Remove interaction chi-sq and p-value, if there are repetitive measuments if (reps > 1) table{3,5} = []; table{3,6} = []; endif ## Fix test statistic names table{1,5} = "Chi-sq"; table{1,6} = "Prob>Chi-sq\n"; ## Fix test statistic values table{2,5} = chi_r; table{2,6} = p; ## Create stats structure (if requested) for MULTCOMPARE if (nargout > 2) stats.source = 'friedman'; stats.n = r; stats.meanranks = mean (m); stats.sigma = sqrt (sigmasq); endif ## Print results table on screen if no output argument was requested if (nargout == 0 || plotdata) printf(" Friedman's ANOVA Table\n"); printf("Source SS df MS Chi-sq Prob>Chi-sq\n"); printf("---------------------------------------------------------------\n"); printf("Columns %10.4f %5.0f %10.4f %8.2f %9.4f\n", ... table{2,2}, table{2,3}, table{2,4}, table{2,5}, table{2,6}); if reps > 1 printf("Interaction %10.4f %5.0f %10.4f %8.2f %9.4f\n", ... table{3,2}, table{3,3}, table{3,4}, table{3,5}, table{3,6}); endif printf("Error %10.4f %5.0f %10.4f\n", ... table{end-1,2}, table{end-1,3}, table{end-1,4}); printf("Total %10.4f %5.0f\n", table{end,2}, table{end,3}); endif endfunction %!demo %! load popcorn; %! friedman (popcorn, 3); %!demo %! load popcorn; %! [p, atab] = friedman (popcorn, 3, "off"); %! disp (p); ## testing against popcorn data and results from Matlab %!test %! popcorn = [5.5, 4.5, 3.5; 5.5, 4.5, 4.0; 6.0, 4.0, 3.0; ... %! 6.5, 5.0, 4.0; 7.0, 5.5, 5.0; 7.0, 5.0, 4.5]; %! [p, atab] = friedman (popcorn, 3, "off"); %! assert (p, 0.001028853354594794, 1e-14); %! assert (atab{2,2}, 99.75, 1e-14); %! assert (atab{2,3}, 2, 0); %! assert (atab{2,4}, 49.875, 1e-14); %! assert (atab{2,5}, 13.75862068965517, 1e-14); %! assert (atab{2,6}, 0.001028853354594794, 1e-14); %! assert (atab{3,2}, 0.08333333333333215, 1e-14); %! assert (atab{3,4}, 0.04166666666666607, 1e-14); %! assert (atab{4,3}, 12, 0); %!test %! popcorn = [5.5, 4.5, 3.5; 5.5, 4.5, 4.0; 6.0, 4.0, 3.0; ... %! 6.5, 5.0, 4.0; 7.0, 5.5, 5.0; 7.0, 5.0, 4.5]; %! [p, atab, stats] = friedman (popcorn, 3, "off"); %! assert (atab{5,2}, 116, 0); %! assert (atab{5,3}, 17, 0); %! assert (stats.source, "friedman"); %! assert (stats.n, 2); %! assert (stats.meanranks, [8, 4.75, 2.25], 0); %! assert (stats.sigma, 2.692582403567252, 1e-14); statistics-release-1.6.3/inst/fullfact.m000066400000000000000000000053671456127120000202750ustar00rootroot00000000000000## Copyright (C) 2022 Andreas Bertsatos ## based on public domain work by Paul Kienzle ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{A} =} fullfact (@var{N}) ## ## Full factorial design. ## ## If @var{N} is a scalar, return the full factorial design with @var{N} binary ## choices, 0 and 1. ## ## If @var{N} is a vector, return the full factorial design with ordinal choices ## 1 through @var{n_i} for each factor @var{i}. ## ## Values in @var{N} must be positive integers. ## ## @seealso {ff2n} ## @end deftypefn function A = fullfact(n) if (nargin != 1) error ("fullfact: wrong number of input arguments."); endif if length(n) == 1 if (floor (n) != n || n < 1 || ! isfinite (n) || ! isreal (n)) error ("fullfact: @var{N} must be a positive integer."); endif ## Combinatorial design with n binary choices A = fullfact(2*ones(1,n))-1; else if (any (floor (n) != n) || any (n < 1) || any (! isfinite (n)) ... || any (! isreal (n))) error ("fullfact: values in @var{N} must be positive integers."); endif ## Combinatorial design with n(i) ordinal choices A = [1:n(end)]'; for i=length(n)-1:-1:1 A = [kron([1:n(i)]',ones(rows(A),1)), repmat(A,n(i),1)]; end end endfunction %!demo %! ## Full factorial design with 3 binary variables %! fullfact (3) %!demo %! ## Full factorial design with 3 ordinal variables %! fullfact ([2, 3, 4]) %!error fullfact (); %!error fullfact (2, 5); %!error fullfact (2.5); %!error fullfact (0); %!error fullfact (-3); %!error fullfact (3+2i); %!error fullfact (Inf); %!error fullfact (NaN); %!error fullfact ([1, 2, -3]); %!error fullfact ([0, 1, 2]); %!error fullfact ([1, 2, NaN]); %!error fullfact ([1, 2, Inf]); %!test %! A = fullfact (2); %! assert (A, [0, 0; 0, 1; 1, 0; 1, 1]); %!test %! A = fullfact ([1, 2]); %! assert (A, [1, 1; 1, 2]); %!test %! A = fullfact ([1, 2, 4]); %! A_out = [1, 1, 1; 1, 1, 2; 1, 1, 3; 1, 1, 4; ... %! 1, 2, 1; 1, 2, 2; 1, 2, 3; 1, 2, 4]; %! assert (A, A_out); statistics-release-1.6.3/inst/geomean.m000066400000000000000000000233111456127120000200750ustar00rootroot00000000000000## Copyright (C) 2022-2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{m} =} geomean (@var{x}) ## @deftypefnx {statistics} {@var{m} =} geomean (@var{x}, "all") ## @deftypefnx {statistics} {@var{m} =} geomean (@var{x}, @var{dim}) ## @deftypefnx {statistics} {@var{m} =} geomean (@var{x}, @var{vecdim}) ## @deftypefnx {statistics} {@var{m} =} geomean (@dots{}, @var{nanflag}) ## ## Compute the geometric mean of @var{x}. ## ## @itemize ## @item If @var{x} is a vector, then @code{geomean(@var{x})} returns the ## geometric mean of the elements in @var{x} defined as ## @tex ## $$ {\rm geomean}(x) = \left( \prod_{i=1}^N x_i \right)^\frac{1}{N} ## = exp \left({1\over N} \sum_{i=1}^N log x_i \right) $$ ## ## @end tex ## @ifnottex ## ## @example ## geomean (@var{x}) = PROD_i @var{x}(i) ^ (1/N) ## @end example ## ## @end ifnottex ## @noindent ## where @math{N} is the length of the @var{x} vector. ## ## @item If @var{x} is a matrix, then @code{geomean(@var{x})} returns a row ## vector with the geometric mean of each columns in @var{x}. ## ## @item If @var{x} is a multidimensional array, then @code{geomean(@var{x})} ## operates along the first nonsingleton dimension of @var{x}. ## ## @item @var{x} must not contain any negative or complex values. ## @end itemize ## ## @code{geomean(@var{x}, "all")} returns the geometric mean of all the elements ## in @var{x}. If @var{x} contains any 0, then the returned value is 0. ## ## @code{geomean(@var{x}, @var{dim})} returns the geometric mean along the ## operating dimension @var{dim} of @var{x}. Calculating the harmonic mean of ## any subarray containing any 0 will return 0. ## ## @code{geomean(@var{x}, @var{vecdim})} returns the geometric mean over the ## dimensions specified in the vector @var{vecdim}. For example, if @var{x} is ## a 2-by-3-by-4 array, then @code{geomean(@var{x}, [1 2])} returns a ## 1-by-1-by-4 array. Each element of the output array is the geometric mean of ## the elements on the corresponding page of @var{x}. If @var{vecdim} indexes ## all dimensions of @var{x}, then it is equivalent to @code{geomean (@var{x}, ## "all")}. Any dimension in @var{vecdim} greater than @code{ndims (@var{x})} ## is ignored. ## ## @code{geomean(@dots{}, @var{nanflag})} specifies whether to exclude NaN ## values from the calculation, using any of the input argument combinations in ## previous syntaxes. By default, geomean includes NaN values in the calculation ## (@var{nanflag} has the value "includenan"). To exclude NaN values, set the ## value of @var{nanflag} to "omitnan". ## ## @seealso{harmmean, mean} ## @end deftypefn function m = geomean (x, varargin) if (nargin < 1 || nargin > 3) print_usage (); endif if (! isnumeric (x) || ! isreal (x) || ! all (x(! isnan (x))(:) >= 0)) error ("geomean: X must contain real nonnegative values."); endif ## Set initial conditions all_flag = false; omitnan = false; nvarg = numel (varargin); varg_chars = cellfun ("ischar", varargin); szx = size (x); ndx = ndims (x); if (nvarg > 1 && ! varg_chars(2:end)) ## Only first varargin can be numeric print_usage (); endif ## Process any other char arguments. if (any (varg_chars)) for i = varargin(varg_chars) switch (lower (i{:})) case "all" all_flag = true; case "omitnan" omitnan = true; case "includenan" omitnan = false; otherwise print_usage (); endswitch endfor varargin(varg_chars) = []; nvarg = numel (varargin); endif ## Single numeric input argument, no dimensions given. if (nvarg == 0) if (all_flag) x = x(:); if (omitnan) x = x(! isnan (x)); endif if (any (x == 0)) m = 0; return; endif m = exp (sum (log (x), 1) ./ length (x)); else ## Find the first non-singleton dimension. (dim = find (szx != 1, 1)) || (dim = 1); n = szx(dim); if (omitnan) idx = isnan (x); n = sum (! idx, dim); x(idx) = 1; # log (1) = 0 endif m = exp (sum (log (x), dim) ./ n); m(m == -Inf) = 0; # handle zeros in X endif else ## Two numeric input arguments, dimensions given. Note scalar is vector! vecdim = varargin{1}; if (isempty (vecdim) || ! (isvector (vecdim) && all (vecdim > 0)) ... || any (rem (vecdim, 1))) error ("geomean: DIM must be a positive integer scalar or vector."); endif if (ndx == 2 && isempty (x) && szx == [0,0]) ## FIXME: this special case handling could be removed once sum ## compatibly handles all sizes of empty inputs sz_out = szx; sz_out (vecdim(vecdim <= ndx)) = 1; m = NaN (sz_out); else if (isscalar (vecdim)) if (vecdim > ndx) m = x; else n = szx(vecdim); if (omitnan) nanx = isnan (x); n = sum (! nanx, vecdim); x(nanx) = 1; # log (1) = 0 endif m = exp (sum (log (x), vecdim) ./ n); m(m == -Inf) = 0; # handle zeros in X endif else vecdim = sort (vecdim); if (! all (diff (vecdim))) error (strcat (["geomean: VECDIM must contain non-repeating"], ... [" positive integers."])); endif ## Ignore exceeding dimensions in VECDIM vecdim(find (vecdim > ndims (x))) = []; if (isempty (vecdim)) m = x; else ## Move vecdims to dim 1. ## Calculate permutation vector remdims = 1 : ndx; # All dimensions remdims(vecdim) = []; # Delete dimensions specified by vecdim nremd = numel (remdims); ## If all dimensions are given, it is similar to all flag if (nremd == 0) x = x(:); if (omitnan) x = x(! isnan (x)); endif if (any (x == 0)) m = 0; return; endif m = exp (sum (log (x), 1) ./ length (x)); m(m == -Inf) = 0; # handle zeros in X else ## Permute to bring vecdims to front perm = [vecdim, remdims]; x = permute (x, perm); ## Reshape to squash all vecdims in dim1 num_dim = prod (szx(vecdim)); szx(vecdim) = []; szx = [ones(1, length(vecdim)), szx]; szx(1) = num_dim; x = reshape (x, szx); ## Calculate mean on dim1 if (omitnan) nanx = isnan (x); n = sum (! nanx, 1); x(nanx) = 1; # log (1) = 0 else n = szx(1); endif m = exp (sum (log (x), 1) ./ n); m(m == -Inf) = 0; # handle zeros in X ## Inverse permute back to correct dimensions m = ipermute (m, perm); endif endif endif endif endif endfunction ## Test single input and optional arguments "all", DIM, "omitnan") %!test %! x = [0:10]; %! y = [x;x+5;x+10]; %! assert (geomean (x), 0); %! m = [0 9.462942809849169 14.65658770861967]; %! assert (geomean (y, 2), m', 4e-14); %! assert (geomean (y, "all"), 0); %! y(2,4) = NaN; %! m(2) = 9.623207231679554; %! assert (geomean (y, 2), [0 NaN m(3)]', 4e-14); %! assert (geomean (y', "omitnan"), m, 4e-14); %! z = y + 20; %! assert (geomean (z, "all"), NaN); %! assert (geomean (z, "all", "includenan"), NaN); %! assert (geomean (z, "all", "omitnan"), 29.59298474535024, 4e-14); %! m = [24.79790781765634 NaN 34.85638839503932]; %! assert (geomean (z'), m, 4e-14); %! assert (geomean (z', "includenan"), m, 4e-14); %! m(2) = 30.02181156156319; %! assert (geomean (z', "omitnan"), m, 4e-14); %! assert (geomean (z, 2, "omitnan"), m', 4e-14); ## Test dimension indexing with vecdim in n-dimensional arrays %!test %! x = repmat ([1:20;6:25], [5 2 6 3]); %! assert (size (geomean (x, [3 2])), [10 1 1 3]); %! assert (size (geomean (x, [1 2])), [1 1 6 3]); %! assert (size (geomean (x, [1 2 4])), [1 1 6]); %! assert (size (geomean (x, [1 4 3])), [1 40]); %! assert (size (geomean (x, [1 2 3 4])), [1 1]); ## Test results with vecdim in n-dimensional arrays and "omitnan" %!test %! x = repmat ([1:20;6:25], [5 2 6 3]); %! m = repmat ([8.304361203739333;14.3078118884256], [5 1 1 3]); %! assert (geomean (x, [3 2]), m, 4e-13); %! x(2,5,6,3) = NaN; %! m(2,3) = NaN; %! assert (geomean (x, [3 2]), m, 4e-13); %! m(2,3) = 14.3292729579901; %! assert (geomean (x, [3 2], "omitnan"), m, 4e-13); ## Test errors %!error geomean ("char") %!error geomean ([1 -1 3]) %!error ... %! geomean (repmat ([1:20;6:25], [5 2 6 3 5]), -1) %!error ... %! geomean (repmat ([1:20;6:25], [5 2 6 3 5]), 0) %!error ... %! geomean (repmat ([1:20;6:25], [5 2 6 3 5]), [1 1]) statistics-release-1.6.3/inst/gmdistribution.m000066400000000000000000000313701456127120000215310ustar00rootroot00000000000000## Copyright (C) 2015 Lachlan Andrew ## Copyright (C) 2018-2020 John Donoghue ## Copyright (C) 2022 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . classdef gmdistribution ## -*- texinfo -*- ## @deftypefn {statistics} {@var{GMdist} =} gmdistribution (@var{mu}, @var{Sigma}) ## @deftypefnx {statistics} {@var{GMdist} =} gmdistribution (@var{mu}, @var{Sigma}, @var{p}) ## @deftypefnx {statistics} {@var{GMdist} =} gmdistribution (@var{mu}, @var{Sigma}, @var{p}, @var{extra}) ## ## Create an object of the gmdistribution class which represents a Gaussian ## mixture model with k components of n-dimensional Gaussians. ## ## Input @var{mu} is a k-by-n matrix specifying the n-dimensional mean of ## each of the k components of the distribution. ## ## Input @var{Sigma} is an array that specifies the variances of the ## distributions, in one of four forms depending on its dimension. ## @itemize ## @item n-by-n-by-k: Slice @var{Sigma}(:,:,i) is the variance of the ## i'th component ## @item 1-by-n-by-k: Slice diag(@var{Sigma}(1,:,i)) is the variance of the ## i'th component ## @item n-by-n: @var{Sigma} is the variance of every component ## @item 1-by-n-by-k: Slice diag(@var{Sigma}) is the variance of every ## component ## @end itemize ## ## If @var{p} is specified, it is a vector of length k specifying the ## proportion of each component. If it is omitted or empty, each component ## has an equal proportion. ## ## Input @var{extra} is used by fitgmdist to indicate the parameters of the ## fitting process. ## @seealso{fitgmdist} ## @end deftypefn properties mu ## means Sigma ## covariances ComponentProportion ## mixing proportions DistributionName ## "gaussian mixture distribution" NumComponents ## Number of mixture components NumVariables ## Dimension d of each Gaussian component CovarianceType ## 'diagonal' if DiagonalCovariance, 'full' othw SharedCovariance ## true if all components have equal covariance ## Set by a call to gmdistribution.fit or fitgmdist AIC ## Akaike Information Criterion BIC ## Bayes Information Criterion Converged ## true if algorithm converged by MaxIter NegativeLogLikelihood ## Negative of log-likelihood NlogL ## Negative of log-likelihood NumIterations ## Number of iterations RegularizationValue ## const added to diag of cov to make +ve def endproperties properties (Access = private) DiagonalCovariance ## bool summary of "CovarianceType" endproperties methods ######################################## ## Constructor function obj = gmdistribution (mu,sigma,p = [],extra = []) obj.DistributionName = "gaussian mixture distribution"; obj.mu = mu; obj.Sigma = sigma; obj.NumComponents = rows (mu); obj.NumVariables = columns (mu); if (isempty (p)) obj.ComponentProportion = ones (1,obj.NumComponents) / ... obj.NumComponents; else if any (p < 0) error ("gmmdistribution: component weights must be non-negative"); endif s = sum(p); if (s == 0) error ("gmmdistribution: component weights must not be all zero"); elseif (s != 1) p = p / s; endif obj.ComponentProportion = p(:)'; endif if (length (size (sigma)) == 3) obj.SharedCovariance = false; else obj.SharedCovariance = true; endif if (rows (sigma) == 1 && columns (mu) > 1) obj.DiagonalCovariance = true; obj.CovarianceType = 'diagonal'; else obj.DiagonalCovariance = false; ## full obj.CovarianceType = 'full'; endif if (! isempty (extra)) obj.AIC = extra.AIC; obj.BIC = extra.BIC; obj.Converged = extra.Converged; obj.NegativeLogLikelihood = extra.NegativeLogLikelihood; obj.NlogL = extra.NegativeLogLikelihood; obj.NumIterations = extra.NumIterations; obj.RegularizationValue = extra.RegularizationValue; endif endfunction ######################################## ## Cumulative distribution function for Gaussian mixture distribution function c = cdf (obj, X) X = checkX (obj, X, "cdf"); p_x_l = zeros (rows (X), obj.NumComponents); if (obj.SharedCovariance) if (obj.DiagonalCovariance) sig = diag (obj.Sigma); else sig = obj.Sigma; endif endif for i = 1:obj.NumComponents if (! obj.SharedCovariance) if (obj.DiagonalCovariance) sig = diag (obj.Sigma(:,:,i)); else sig = obj.Sigma(:,:,i); endif endif p_x_l(:,i) = mvncdf (X,obj.mu(i,:),sig)*obj.ComponentProportion(i); endfor c = sum (p_x_l, 2); endfunction ######################################## ## Construct clusters from Gaussian mixture distribution function [idx, nlogl, P, logpdf, M] = cluster (obj,X) X = checkX (obj, X, "cluster"); [p_x_l, M] = componentProb (obj, X); [~, idx] = max (p_x_l, [], 2); if (nargout >= 2) PDF = sum (p_x_l, 2); logpdf = log (PDF); nlogl = -sum (logpdf); if (nargout >= 3) P = bsxfun (@rdivide, p_x_l, PDF); endif endif endfunction ######################################## ## Display Gaussian mixture distribution object function c = disp (obj) msg = ["Gaussian mixture distribution with %d ", ... "components in %d dimension(s)\n"]; fprintf (msg, obj.NumComponents, columns (obj.mu)); for i = 1:obj.NumComponents fprintf ("Clust %d: weight %d\n\tMean: ", ... i, obj.ComponentProportion(i)); fprintf ("%g ", obj.mu(i,:)); fprintf ("\n"); if (! obj.SharedCovariance) fprintf ("\tVariance:"); if (! obj.DiagonalCovariance) if (columns (obj.mu) > 1) fprintf ("\n"); endif disp (squeeze (obj.Sigma(:,:,i))) else fprintf (" diag("); fprintf ("%g ", obj.Sigma(:,:,i)); fprintf (")\n"); endif endif endfor if (obj.SharedCovariance) fprintf ("Shared variance\n"); if (! obj.DiagonalCovariance) obj.Sigma else fprintf (" diag("); fprintf ("%g ", obj.Sigma); fprintf (")\n"); endif endif if (! isempty (obj.AIC)) fprintf ("AIC=%g BIC=%g NLogL=%g Iter=%d Cged=%d Reg=%g\n", ... obj.AIC, obj.BIC, obj.NegativeLogLikelihood, ... obj.NumIterations, obj.Converged, obj.RegularizationValue); endif endfunction ######################################## ## Display Gaussian mixture distribution object function c = display (obj) disp(obj); endfunction ######################################## ## Mahalanobis distance to component means function D = mahal (obj,X) X = checkX (obj, X, "mahal"); [~, D] = componentProb (obj,X); endfunction ######################################## ## Probability density function for Gaussian mixture distribution function c = pdf (obj,X) X = checkX (obj, X, "pdf"); p_x_l = componentProb (obj, X); c = sum (p_x_l, 2); endfunction ######################################## ## Posterior probabilities of components function c = posterior (obj,X) X = checkX (obj, X, "posterior"); p_x_l = componentProb (obj, X); c = bsxfun(@rdivide, p_x_l, sum (p_x_l, 2)); endfunction ######################################## ## Random numbers from Gaussian mixture distribution function c = random (obj,n) if nargin == 1 n = 1; endif c = zeros (n, obj.NumVariables); classes = randsample (obj.NumComponents, n, true, ... obj.ComponentProportion); if (obj.SharedCovariance) if (obj.DiagonalCovariance) sig = diag (obj.Sigma); else sig = obj.Sigma; endif endif for i = 1:obj.NumComponents idx = (classes == i); k = sum(idx); if (k > 0) if (! obj.SharedCovariance) if (obj.DiagonalCovariance) sig = diag (obj.Sigma(:,:,i)); else sig = obj.Sigma(:,:,i); endif endif # [sig] forces [sig] not to have class "diagonal", # since mvnrnd uses automatic broadcast, # which fails on structured matrices c(idx,:) = mvnrnd ([obj.mu(i,:)], [sig], k); endif endfor endfunction endmethods ######################################## methods (Static) ## Gaussian mixture parameter estimates function c = fit (X, k, varargin) c = fitgmdist (X, k, varargin{:}); endfunction endmethods ######################################## methods (Access = private) ## Probability density of (row of) X *and* component l ## Second argument is an array of the Mahalonis distances function [p_x_l, M] = componentProb (obj, X) M = zeros (rows (X), obj.NumComponents); dets = zeros (1, obj.NumComponents); % sqrt(determinant) if (obj.SharedCovariance) if (obj.DiagonalCovariance) r = diag (sqrt(obj.Sigma)); else r = chol (obj.Sigma); endif endif for i = 1:obj.NumComponents dev = bsxfun (@minus, X, obj.mu(i,:)); if (! obj.SharedCovariance) if (obj.DiagonalCovariance) r = diag (sqrt (obj.Sigma(:,:,i))); else r = chol (obj.Sigma(:,:,i)); endif endif M(:,i) = sumsq (dev / r, 2); dets(i) = prod (diag (r)); endfor p_x_l = exp (-M/2); coeff = obj.ComponentProportion ./ ... ((2 * pi) ^ (obj.NumVariables / 2) .* dets); p_x_l = bsxfun (@times, p_x_l, coeff); endfunction ######################################## ## Check format of argument X function X = checkX (obj, X, name) if (columns (X) != obj.NumVariables) if (columns (X) == 1 && rows (X) == obj.NumVariables) X = X'; else error ("gmdistribution.%s: X has %d columns instead of %d\n", ... name, columns (X), obj.NumVariables); end endif endfunction endmethods endclassdef %!test %! mu = eye(2); %! Sigma = eye(2); %! GM = gmdistribution (mu, Sigma); %! density = GM.pdf ([0 0; 1 1]); %! assert (density(1) - density(2), 0, 1e-6); %! %! [idx, nlogl, P, logpdf,M] = cluster (GM, eye(2)); %! assert (idx, [1; 2]); %! [idx2,nlogl2,P2,logpdf2] = GM.cluster (eye(2)); %! assert (nlogl - nlogl2, 0, 1e-6); %! [idx3,nlogl3,P3] = cluster (GM, eye(2)); %! assert (P - P3, zeros (2), 1e-6); %! [idx4,nlogl4] = cluster (GM, eye(2)); %! assert (size (nlogl4), [1 1]); %! idx5 = cluster (GM, eye(2)); %! assert (idx - idx5, zeros (2,1)); %! %! D = GM.mahal ([1;0]); %! assert (D - M(1,:), zeros (1,2), 1e-6); %! %! P = GM.posterior ([0 1]); %! assert (P - P2(2,:), zeros (1,2), 1e-6); %! %! R = GM.random(20); %! assert (size(R), [20, 2]); %! %! R = GM.random(); %! assert (size(R), [1, 2]); statistics-release-1.6.3/inst/grp2idx.m000066400000000000000000000114201456127120000200370ustar00rootroot00000000000000## Copyright (C) 2015 Carnë Draug ## Copyright (C) 2022 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation; either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; if not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {[@var{g}, @var{gn}, @var{gl}] =} grp2idx (@var{s}) ## ## Get index for group variables. ## ## For variable @var{s}, returns the indices @var{g}, into the variable ## groups @var{gn} and @var{gl}. The first has a string representation of ## the groups while the later has its actual values. The group indices are ## allocated in order of appearance in @var{s}. ## ## NaNs and empty strings in @var{s} appear as NaN in @var{g} and are ## not present on either @var{gn} and @var{gl}. ## ## @seealso{grpstats} ## @end deftypefn function [g, gn, gl] = grp2idx (s) if (nargin != 1) print_usage (); endif s_was_char = false; if (ischar (s)) s_was_char = true; s = cellstr (s); elseif (! isvector (s)) error ("grp2idx: S must be a vector, cell array of strings, or char matrix"); endif [gl, I, g] = unique (s(:)); ## Fix order in here, since unique does not support this yet if (iscellstr (s)) I = sort(I); for i = 1:length (gl) gl_s(i) = gl(g(I(i))); idx(i,:) = (g == g(I(i))); endfor for i = 1:length (gl) g(idx(i,:)) = i; endfor gl = gl_s; gl = gl'; else I = sort(I); for i = 1:length (gl) gl_s(i) = gl(g(I(i))); idx(i,:) = (g == g(I(i))); endfor for i = 1:length (gl) g(idx(i,:)) = i; endfor gl = gl_s; gl = gl'; endif ## handle NaNs and empty strings if (iscellstr (s)) empties = cellfun (@isempty, s); if (any (empties)) g(empties) = NaN; while (min (g) > 1) g--; endwhile endif empties = cellfun (@isempty, gl); if (any (empties)) gl(empties) = []; endif else ## This works fine because NaN come at the end after sorting, we don't ## have to worry about change on the indices. g(isnan (s)) = NaN; gl(isnan (gl)) = []; endif if (nargout > 1) if (iscellstr (gl)) gn = gl; elseif (iscell (gl)) gn = cellfun (@num2str, gl, "UniformOutput", false); else gn = arrayfun (@num2str, gl, "UniformOutput", false); endif endif if (nargout > 2 && s_was_char) gl = char (gl); endif endfunction ## test boolean input and note that row or column vector makes no difference %!test %! in = [true false false true]; %! out = {[1; 2; 2; 1] {"1"; "0"} [true; false]}; %! assert (nthargout (1:3, @grp2idx, in), out) %! assert (nthargout (1:3, @grp2idx, in), nthargout (1:3, @grp2idx, in')) ## test that boolean groups are ordered in order of appearance %!test %! assert (nthargout (1:3, @grp2idx, [false, true]), %! {[1; 2] {"0"; "1"} [false; true]}); %! assert (nthargout (1:3, @grp2idx, [true, false]), %! {[1; 2] {"1"; "0"} [true; false]}); ## test char matrix and cell array of strings %!assert (nthargout (1:3, @grp2idx, ["oct"; "sci"; "oct"; "oct"; "sci"]), %! {[1; 2; 1; 1; 2] {"oct"; "sci"} ["oct"; "sci"]}); ## and cell array of strings %!assert (nthargout (1:3, @grp2idx, {"oct"; "sci"; "oct"; "oct"; "sci"}), %! {[1; 2; 1; 1; 2] {"oct"; "sci"} {"oct"; "sci"}}); ## test numeric arrays %!assert (nthargout (1:3, @grp2idx, [ 1 -3 -2 -3 -3 2 1 -1 3 -3]), %! {[1; 2; 3; 2; 2; 4; 1; 5; 6; 2], {"1"; "-3"; "-2"; "2"; "-1"; "3"}, ... %! [1; -3; -2; 2; -1; 3]}); ## test for NaN and empty strings %!assert (nthargout (1:3, @grp2idx, [2 2 3 NaN 2 3]), %! {[1; 1; 2; NaN; 1; 2] {"2"; "3"} [2; 3]}) %!assert (nthargout (1:3, @grp2idx, {"et" "sa" "sa" "" "et"}), %! {[1; 2; 2; NaN; 1] {"et"; "sa"} {"et"; "sa"}}) ## Test that order when handling strings is by order of appearance %!test assert (nthargout (1:3, @grp2idx, ["sci"; "oct"; "sci"; "oct"; "oct"]), %! {[1; 2; 1; 2; 2] {"sci"; "oct"} ["sci"; "oct"]}); %!test assert (nthargout (1:3, @grp2idx, {"sci"; "oct"; "sci"; "oct"; "oct"}), %! {[1; 2; 1; 2; 2] {"sci"; "oct"} {"sci"; "oct"}}); %!test assert (nthargout (1:3, @grp2idx, {"sa" "et" "et" "" "sa"}), %! {[1; 2; 2; NaN; 1] {"sa"; "et"} {"sa"; "et"}}) statistics-release-1.6.3/inst/grpstats.m000066400000000000000000000235151456127120000203370ustar00rootroot00000000000000## Copyright (C) 2022 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{mean} =} grpstats (@var{x}) ## @deftypefnx {statistics} {@var{mean} =} grpstats (@var{x}, @var{group}) ## @deftypefnx {statistics} {[@var{a}, @var{b}, @dots{}] =} grpstats (@var{x}, @var{group}, @var{whichstats}) ## @deftypefnx {statistics} {[@var{a}, @var{b}, @dots{}] =} grpstats (@var{x}, @var{group}, @var{whichstats}, @var{alpha}) ## ## Summary statistics by group. @code{grpstats} computes groupwise summary ## statistics, for data in a matrix @var{x}. @code{grpstats} treats NaNs as ## missing values, and removes them. ## ## @code{@var{means} = grpstats (@var{x}, @var{group})}, when X is a matrix of ## observations, returns the means of each column of @var{x} by @var{group}. ## @var{group} is a grouping variable defined as a categorical variable, ## numeric, string array, or cell array of strings. @var{group} can be [] or ## omitted to compute the mean of the entire sample without grouping. ## ## @code{[@var{a}, @var{b}, @dots{}] = grpstats (@var{x}, @var{group}, ## @var{whichstats})}, for a numeric matrix X, returns the statistics specified ## by @var{whichstats}, as separate arrays @var{a}, @var{b}, @dots{}. ## @var{whichstats} can be a single function name, or a cell array containing ## multiple function names. The number of output arguments must match the ## number of function names in @var{whichstats}. ## Names in @var{whichstats} can be chosen from among the following: ## ## @multitable @columnfractions 0.05 0.2 0.75 ## @item @tab "mean" @tab mean ## @item @tab "median" @tab median ## @item @tab "sem" @tab standard error of the mean ## @item @tab "std" @tab standard deviation ## @item @tab "var" @tab variance ## @item @tab "min" @tab minimum value ## @item @tab "max" @tab maximum value ## @item @tab "range" @tab maximum - minimum ## @item @tab "numel" @tab count, or number of elements ## @item @tab "meanci" @tab 95% confidence interval for the mean ## @item @tab "predci" @tab 95% prediction interval for a new observation ## @item @tab "gname" @tab group name ## @end multitable ## ## @code{[@dots{}] = grpstats (@var{x}, @var{group}, @var{whichstats}, ## @var{alpha})} specifies the confidence level as 100(1-ALPHA)% for the "meanci" ## and "predci" options. Default value for @var{alpha} is 0.05. ## ## Examples: ## ## @example ## load carsmall; ## [m,p,g] = grpstats (Weight, Model_Year, @{"mean", "predci", "gname"@}) ## n = length(m); ## errorbar((1:n)',m,p(:,2)-m) ## set (gca, "xtick", 1:n, "xticklabel", g); ## title ("95% prediction intervals for mean weight by year") ## @end example ## ## @seealso{grp2idx} ## @end deftypefn function [varargout] = grpstats (x ,group, whichstats, alpha) ## Check input arguments narginchk (1, 4) ## Check X being a vector or 2d matrix of real values if (ndims (x) > 2 || ! isnumeric (x) || islogical (x)) error ("grpstats: X must be a vector or 2d matrix of real values."); endif ## If X is a vector, make it a column vector if (isvector (x)) x = x(:); endif ## Check groups and if empty make a single group for all X [r, c] = size (x); if (nargin < 2 || isempty (group)) group = ones (r, 1); endif ## Get group names and indices [group_idx, group_names] = grp2idx (group); ngroups = length (group_names); if (length (group_idx) != r) error ("grpstats: samples in X and GROUPS mismatch."); endif ## Add default for whichstats and check for 3rd input argument func_names = {}; if (nargin > 2 && ischar (whichstats)) func_names = {whichstats}; elseif (nargin > 2 && iscell (whichstats)) func_names = whichstats; endif ## Add default for alpha and check for 4th input argument if (nargin > 3) if (! (isnumeric (alpha) && isscalar (alpha) ... && alpha > 0 && alpha < 1)) error ("grpstats: ALPHA must be a real scalar in the range (0,1)."); endif else alpha = 0.05; endif ## Calculate functions if (isempty (func_names)) ## Check consistent number of output arguments if (nargout == 1) for j = 1:ngroups group_x = x(find (group_idx == j), :); group_mean(j,:) = mean (group_x, 1, "omitnan") ; endfor varargout{1} = group_mean; else error ("grpstats: incosistent number of output arguments."); endif else func_num = length (func_names); ## Check consistent number of output arguments if (nargout != func_num) error ("grpstats: incosistent number of output arguments."); endif for l = 1:func_num switch (func_names{l}) case "mean" for j = 1:ngroups group_x = x(find (group_idx == j), :); group_mean(j,:) = mean (group_x, 1, "omitnan"); endfor varargout{l} = group_mean; case "median" for j = 1:ngroups group_x = x(find (group_idx == j), :); group_mean(j,:) = median (group_x, 1, "omitnan"); endfor varargout{l} = group_mean; case "sem" for j = 1:ngroups group_x = x(find (group_idx == j), :); group_sem(j,:) = std (group_x, 0, 1, "omitnan") / ... sqrt (size (group_x, 1) - sum (isnan (group_x), 1)); endfor varargout{l} = group_sem; case "std" for j = 1:ngroups group_x = x(find (group_idx == j), :); group_std(j,:) = std (group_x, 0, 1, "omitnan"); endfor varargout{l} = group_std; case "var" for j = 1:ngroups group_x = x(find (group_idx == j), :); group_var(j,:) = var (group_x, 0, 1, "omitnan"); endfor varargout{l} = group_var; case "min" for j = 1:ngroups group_x = x(find (group_idx == j), :); group_min(j,:) = nanmin (group_x); endfor varargout{l} = group_min; case "max" for j = 1:ngroups group_x = x(find (group_idx == j), :); group_max(j,:) = nanmax (group_x); endfor varargout{l} = group_max; case "range" func_handle = @(x) range (x, 1); for j = 1:ngroups group_x = x(find (group_idx == j), :); group_range(j,:) = range (group_x, 1); endfor varargout{l} = group_range; case "numel" for j = 1:ngroups group_x = x(find (group_idx == j), :); group_numel(j,:) = size (group_x, 1) - sum (isnan (group_x), 1); endfor varargout{l} = group_numel; case "meanci" for j = 1:ngroups group_x = x(find (group_idx == j), :); m = mean (group_x, 1, "omitnan") ; n = size (x, 1) - sum (isnan (group_x), 1); s = std (group_x, 0, 1, "omitnan") ./ sqrt (n); d = s .* - tinv (alpha / 2, max (n - 1, [], 1)); group_meanci(j,:) = [m-d, m+d]; endfor varargout{l} = group_meanci; case "predci" for j = 1:ngroups group_x = x(find (group_idx == j), :); m = mean (group_x, 1, "omitnan") ; n = size (x, 1) - sum (isnan (group_x), 1); s = std (group_x, 0, 1, "omitnan") ./ sqrt (1 + (1 ./ n)); d = s .* - tinv (alpha / 2, max (n - 1, [], 1)); group_predci(j,:) = [m-d, m+d]; endfor varargout{l} = group_predci; case "gname" varargout{l} = group_names; otherwise error ("grpstats: wrong whichstats option."); endswitch endfor endif endfunction %!demo %! load carsmall; %! [m,p,g] = grpstats (Weight, Model_Year, {"mean", "predci", "gname"}) %! n = length(m); %! errorbar((1:n)',m,p(:,2)-m); %! set (gca, "xtick", 1:n, "xticklabel", g); %! title ("95% prediction intervals for mean weight by year"); %!demo %! load carsmall; %! [m,p,g] = grpstats ([Acceleration,Weight/1000],Cylinders, ... %! {"mean", "meanci", "gname"}, 0.05) %! [c,r] = size (m); %! errorbar((1:c)'.*ones(c,r),m,p(:,[(1:r)])-m); %! set (gca, "xtick", 1:c, "xticklabel", g); %! title ("95% prediction intervals for mean weight by year"); %!test %! load carsmall %! means = grpstats (Acceleration, Origin); %! assert (means, [14.4377; 18.0500; 15.8867; 16.3778; 16.6000; 15.5000], 0.001); %!test %! load carsmall %! [grpMin,grpMax,grp] = grpstats (Acceleration, Origin, {"min","max","gname"}); %! assert (grpMin, [8.0; 15.3; 13.9; 12.2; 15.7; 15.5]); %! assert (grpMax, [22.2; 21.9; 18.2; 24.6; 17.5; 15.5]); %!test %! load carsmall %! [grpMin,grpMax,grp] = grpstats (Acceleration, Origin, {"min","max","gname"}); %! assert (grp', {"USA", "France", "Japan", "Germany", "Sweden", "Italy"}); %!test %! load carsmall %! [m,p,g] = grpstats ([Acceleration,Weight/1000], Cylinders, ... %! {"mean", "meanci", "gname"}, 0.05); %! assert (p(:,1), [11.17621760075134, 16.13845847655224, 16.16222663683362]', ... %! [1e-14, 2e-14, 1e-14]'); statistics-release-1.6.3/inst/gscatter.m000066400000000000000000000203011456127120000202720ustar00rootroot00000000000000## Copyright (C) 2021 Stefano Guidoni ## Copyright (C) 2022 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {} gscatter (@var{x}, @var{y}, @var{g}) ## @deftypefnx {statistics} {} gscatter (@var{x}, @var{y}, @var{g}, @var{clr}, @var{sym}, @var{siz}) ## @deftypefnx {statistics} {} gscatter (@dots{}, @var{doleg}, @var{xnam}, @var{ynam}) ## @deftypefnx {statistics} {@var{h} =} gscatter (@dots{}) ## ## Draw a scatter plot with grouped data. ## ## @code{gscatter} is a utility function to draw a scatter plot of @var{x} and ## @var{y}, according to the groups defined by @var{g}. Input @var{x} and ## @var{y} are numeric vectors of the same size, while @var{g} is either a ## vector of the same size as @var{x} or a character matrix with the same number ## of rows as the size of @var{x}. As a vector @var{g} can be numeric, logical, ## a character array, a string array (not implemented), a cell string or cell ## array. ## ## A number of optional inputs change the appearance of the plot: ## @itemize @bullet ## @item @var{"clr"} ## defines the color for each group; if not enough colors are defined by ## @var{"clr"}, @code{gscatter} cycles through the specified colors. Colors can ## be defined as named colors, as rgb triplets or as indices for the current ## @code{colormap}. The default value is a different color for each group, ## according to the current @code{colormap}. ## ## @item @var{"sym"} ## is a char array of symbols for each group; if not enough symbols are defined ## by @var{"sym"}, @code{gscatter} cycles through the specified symbols. ## ## @item @var{"siz"} ## is a numeric array of sizes for each group; if not enough sizes are defined ## by @var{"siz"}, @code{gscatter} cycles through the specified sizes. ## ## @item @var{"doleg"} ## is a boolean value to show the legend; it can be either @qcode{on} (default) ## or @qcode{off}. ## ## @item @var{"xnam"} ## is a character array, the name for the x axis. ## ## @item @var{"ynam"} ## is a character array, the name for the y axis. ## @end itemize ## ## Output @var{h} is an array of graphics handles to the @code{line} object of ## each group. ## ## @end deftypefn ## ## @seealso{scatter} function h = gscatter (varargin) ## optional axes handle if (isaxes (varargin{1})) ## parameter is an axes handle hax = varargin{1}; varargin = varargin(2:end); nargin--; endif ## check the input parameters if (nargin < 3) print_usage (); endif ## ## necessary parameters ## ## x coordinates if (isvector (varargin{1}) && isnumeric (varargin{1})) x = varargin{1}; n = numel (x); else error ("gscatter: x must be a numeric vector"); endif ## y coordinates if (isvector (varargin{2}) && isnumeric (varargin{2})) if (numel (varargin{2}) == n) y = varargin{2}; else error ("gscatter: x and y must have the same size"); endif else error ("gscatter: y must be a numeric vector"); endif ## groups if (isrow (varargin{3})) varargin{3} = transpose (varargin{3}); endif if (ismatrix (varargin{3}) && ischar (varargin{3})) varargin{3} = cellstr (varargin{3}); # char matrix to cellstr elseif (iscell (varargin{3}) && ! iscellstr (varargin{3})) varargin{3} = cell2mat (varargin{3}); # numeric cell to vector endif if (isvector (varargin{3})) # only numeric vectors or cellstr if (rows (varargin{3}) == n) gv = varargin{3}; if (iscellstr (gv)) g_names = unique (gv); # avoid warning else g_names = unique (gv, "rows"); endif g_len = numel (g_names); if (iscellstr (g_names)) for i = 1 : g_len g(find (strcmp(gv, g_names{i}))) = i; endfor else for i = 1 : g_len g(find (gv == g_names(i))) = i; endfor endif else error ("gscatter: g must have the same size as x and y"); endif else error (["gscatter: g must be a numeric or logical or char vector, "... "or a cell or cellstr array, or a char matrix"]); endif ## ## optional parameters ## ## Note: this parameters are passed as they are to 'line', ## the validity check is delegated to 'line' g_col = lines (g_len); g_size = 6 * ones (g_len, 1); g_sym = repmat ('o', 1, g_len); ## optional parameters for legend and axes labels do_legend = 1; # legend shown by default ## MATLAB compatibility: by default MATLAB uses the variable name as ## label for either axis mygetname = @(x) inputname(1); # to retrieve the name of a variable x_nam = mygetname (varargin{1}); # this should retrieve the name of the var, y_nam = mygetname (varargin{2}); # but it does not work ## parameters are all in fixed positions for i = 4 : nargin switch (i) case 4 ## colours c_list = varargin{4}; if (isrow (c_list)) c_list = transpose (c_list); endif c_list_len = rows (c_list); g_col = repmat (c_list, ceil (g_len / c_list_len)); case {5, 6} ## size and symbols s_list = varargin{i}; s_list_len = length (s_list); g_tmp = repmat (s_list, ceil (g_len / s_list_len)); if (i == 6) g_size = g_tmp; else g_sym = g_tmp; endif case 7 ## legend switch (lower (varargin{7})) case "on" do_legend = 1; case "off" do_legend = 0; otherwise error ("gscatter: invalid dolegend parameter '%s'", varargin{7}); endswitch case {8, 9} ## x and y label if (! ischar (varargin{i}) && ! isvector (varargin{i})) error ("gscatter: xnam and ynam must be strings"); endif if (i == 8) x_nam = varargin{8}; else y_nam = varargin{9}; endif endswitch endfor ## scatter plot with grouping if (! exist ("hax", "var")) hax = gca (); endif ## return value h = []; hold on; for i = 1 : g_len idcs = find (g == i); h(i) = line (hax, x(idcs), y(idcs), "linestyle", "none", ... "markersize", g_size(i), "color", g_col(i,:), "marker", g_sym(i)); endfor if (do_legend) if (isnumeric (g_names)) g_names = num2str (g_names); endif warning ("off", "Octave:legend:unimplemented-location", "local"); legend (hax, g_names, "location", "best"); endif xlabel (hax, x_nam); ylabel (hax, y_nam); hold off; endfunction %!demo %! load fisheriris; %! X = meas(:,3:4); %! cidcs = kmeans (X, 3, "Replicates", 5); %! gscatter (X(:,1), X(:,2), cidcs, [.75 .75 0; 0 .75 .75; .75 0 .75], "os^"); %! title ("Fisher's iris data"); ## Test plotting %!shared visibility_setting %! visibility_setting = get (0, "DefaultFigureVisible"); %!test %! hf = figure ("visible", "off"); %! unwind_protect %! load fisheriris; %! X = meas(:,3:4); %! cidcs = kmeans (X, 3, "Replicates", 5); %! gscatter (X(:,1), X(:,2), cidcs, [.75 .75 0; 0 .75 .75; .75 0 .75], "os^"); %! title ("Fisher's iris data"); %! unwind_protect_cleanup %! close (hf); %! end_unwind_protect ## Test input validation %!error gscatter (); %!error gscatter ([1]); %!error gscatter ([1], [2]); %!error gscatter ('abc', [1 2 3], [1]); %!error gscatter ([1 2 3], [1 2], [1]); %!error gscatter ([1 2 3], 'abc', [1]); %!error gscatter ([1 2], [1 2], [1]); %!error gscatter ([1 2], [1 2], [1 2], 'rb', 'so', 12, 'xxx'); statistics-release-1.6.3/inst/harmmean.m000066400000000000000000000237361456127120000202650ustar00rootroot00000000000000## Copyright (C) 2022-2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{m} =} harmmean (@var{x}) ## @deftypefnx {statistics} {@var{m} =} harmmean (@var{x}, "all") ## @deftypefnx {statistics} {@var{m} =} harmmean (@var{x}, @var{dim}) ## @deftypefnx {statistics} {@var{m} =} harmmean (@var{x}, @var{vecdim}) ## @deftypefnx {statistics} {@var{m} =} harmmean (@dots{}, @var{nanflag}) ## ## Compute the harmonic mean of @var{x}. ## ## @itemize ## @item If @var{x} is a vector, then @code{harmmean(@var{x})} returns the ## harmonic mean of the elements in @var{x} defined as ## @tex ## $$ {\rm harmmean}(x) = \frac{N}{\sum_{i=1}^N \frac{1}{x_i}} $$ ## ## @end tex ## @ifnottex ## ## @example ## harmmean (@var{x}) = N / SUM_i @var{x}(i)^-1 ## @end example ## ## @end ifnottex ## @noindent ## where @math{N} is the length of the @var{x} vector. ## ## @item If @var{x} is a matrix, then @code{harmmean(@var{x})} returns a row ## vector with the harmonic mean of each columns in @var{x}. ## ## @item If @var{x} is a multidimensional array, then @code{harmmean(@var{x})} ## operates along the first nonsingleton dimension of @var{x}. ## ## @item @var{x} must not contain any negative or complex values. ## @end itemize ## ## @code{harmmean(@var{x}, "all")} returns the harmonic mean of all the elements ## in @var{x}. If @var{x} contains any 0, then the returned value is 0. ## ## @code{harmmean(@var{x}, @var{dim})} returns the harmonic mean along the ## operating dimension @var{dim} of @var{x}. Calculating the harmonic mean of ## any subarray containing any 0 will return 0. ## ## @code{harmmean(@var{x}, @var{vecdim})} returns the harmonic mean over the ## dimensions specified in the vector @var{vecdim}. For example, if @var{x} is ## a 2-by-3-by-4 array, then @code{harmmean(@var{x}, [1 2])} returns a ## 1-by-1-by-4 array. Each element of the output array is the harmonic mean of ## the elements on the corresponding page of @var{x}. If @var{vecdim} indexes ## all dimensions of @var{x}, then it is equivalent to @code{harmmean (@var{x}, ## "all")}. Any dimension in @var{vecdim} greater than @code{ndims (@var{x})} ## is ignored. ## ## @code{harmmean(@dots{}, @var{nanflag})} specifies whether to exclude NaN ## values from the calculation, using any of the input argument combinations in ## previous syntaxes. By default, harmmean includes NaN values in the ## calculation (@var{nanflag} has the value "includenan"). To exclude NaN ## values, set the value of @var{nanflag} to "omitnan". ## ## @seealso{geomean, mean} ## @end deftypefn function m = harmmean (x, varargin) if (nargin < 1 || nargin > 3) print_usage (); endif if (! isnumeric (x) || ! isreal (x) || ! all (x(! isnan (x))(:) >= 0)) error ("harmmean: X must contain real nonnegative values."); endif ## Set initial conditions all_flag = false; omitnan = false; nvarg = numel (varargin); varg_chars = cellfun ("ischar", varargin); szx = size (x); ndx = ndims (x); if (nvarg > 1 && ! varg_chars(2:end)) ## Only first varargin can be numeric print_usage (); endif ## Process any other char arguments. if (any (varg_chars)) for i = varargin(varg_chars) switch (lower (i{:})) case "all" all_flag = true; case "omitnan" omitnan = true; case "includenan" omitnan = false; otherwise print_usage (); endswitch endfor varargin(varg_chars) = []; nvarg = numel (varargin); endif ## Single numeric input argument, no dimensions given. if (nvarg == 0) if (all_flag) x = x(:); if (omitnan) x = x(! isnan (x)); endif if (any (x == 0)) m = 0; return; endif m = length (x) ./ sum (1 ./ x); m(m == Inf) = 0; # handle zeros in X else ## Find the first non-singleton dimension. (dim = find (szx != 1, 1)) || (dim = 1); n = szx(dim); is_nan = 0; if (omitnan) idx = isnan (x); n = sum (! idx, dim); is_nan = sum (idx, dim); x(idx) = 1; # remove NaNs by subtracting is_nan below endif m = n ./ (sum (1 ./ x, dim) - is_nan); m(m == Inf) = 0; # handle zeros in X endif else ## Two numeric input arguments, dimensions given. Note scalar is vector! vecdim = varargin{1}; if (isempty (vecdim) || ! (isvector (vecdim) && all (vecdim > 0)) ... || any (rem (vecdim, 1))) error ("harmmean: DIM must be a positive integer scalar or vector."); endif if (ndx == 2 && isempty (x) && szx == [0,0]) ## FIXME: this special case handling could be removed once sum ## compatibly handles all sizes of empty inputs sz_out = szx; sz_out (vecdim(vecdim <= ndx)) = 1; m = NaN (sz_out); else if (isscalar (vecdim)) if (vecdim > ndx) m = x; else n = szx(vecdim); is_nan = 0; if (omitnan) nanx = isnan (x); n = sum (! nanx, vecdim); is_nan = sum (nanx, vecdim); x(nanx) = 1; # remove NaNs by subtracting is_nan below endif m = n ./ (sum (1 ./ x, vecdim) - is_nan); m(m == Inf) = 0; # handle zeros in X endif else vecdim = sort (vecdim); if (! all (diff (vecdim))) error (strcat (["harmmean: VECDIM must contain non-repeating"], ... [" positive integers."])); endif ## Ignore exceeding dimensions in VECDIM vecdim(find (vecdim > ndims (x))) = []; if (isempty (vecdim)) m = x; else ## Move vecdims to dim 1. ## Calculate permutation vector remdims = 1 : ndx; # All dimensions remdims(vecdim) = []; # Delete dimensions specified by vecdim nremd = numel (remdims); ## If all dimensions are given, it is similar to all flag if (nremd == 0) x = x(:); if (omitnan) x = x(! isnan (x)); endif if (any (x == 0)) m = 0; return; endif m = length (x) ./ sum (1 ./ x); m(m == Inf) = 0; # handle zeros in X else ## Permute to bring vecdims to front perm = [vecdim, remdims]; x = permute (x, perm); ## Reshape to squash all vecdims in dim1 num_dim = prod (szx(vecdim)); szx(vecdim) = []; szx = [ones(1, length(vecdim)), szx]; szx(1) = num_dim; x = reshape (x, szx); ## Calculate mean on dim1 if (omitnan) nanx = isnan (x); n = sum (! nanx, 1); is_nan = sum (nanx, 1); x(nanx) = 1; # remove NaNs by subtracting is_nan below else n = szx(1); is_nan = 0; endif m = n ./ (sum (1 ./ x, 1) - is_nan); m(m == Inf) = 0; # handle zeros in X ## Inverse permute back to correct dimensions m = ipermute (m, perm); endif endif endif endif endif endfunction ## Test single input and optional arguments "all", DIM, "omitnan") %!test %! x = [0:10]; %! y = [x;x+5;x+10]; %! assert (harmmean (x), 0); %! m = [0 8.907635160795225 14.30854471766802]; %! assert (harmmean (y, 2), m', 4e-14); %! assert (harmmean (y, "all"), 0); %! y(2,4) = NaN; %! m(2) = 9.009855936313949; %! assert (harmmean (y, 2), [0 NaN m(3)]', 4e-14); %! assert (harmmean (y', "omitnan"), m, 4e-14); %! z = y + 20; %! assert (harmmean (z, "all"), NaN); %! assert (harmmean (z, "all", "includenan"), NaN); %! assert (harmmean (z, "all", "omitnan"), 29.1108719858295, 4e-14); %! m = [24.59488458841874 NaN 34.71244385944397]; %! assert (harmmean (z'), m, 4e-14); %! assert (harmmean (z', "includenan"), m, 4e-14); %! m(2) = 29.84104075528277; %! assert (harmmean (z', "omitnan"), m, 4e-14); %! assert (harmmean (z, 2, "omitnan"), m', 4e-14); ## Test dimension indexing with vecdim in n-dimensional arrays %!test %! x = repmat ([1:20;6:25], [5 2 6 3]); %! assert (size (harmmean (x, [3 2])), [10 1 1 3]); %! assert (size (harmmean (x, [1 2])), [1 1 6 3]); %! assert (size (harmmean (x, [1 2 4])), [1 1 6]); %! assert (size (harmmean (x, [1 4 3])), [1 40]); %! assert (size (harmmean (x, [1 2 3 4])), [1 1]); ## Test results with vecdim in n-dimensional arrays and "omitnan" %!test %! x = repmat ([1:20;6:25], [5 2 6 3]); %! m = repmat ([5.559045930488016;13.04950789021461], [5 1 1 3]); %! assert (harmmean (x, [3 2]), m, 4e-14); %! x(2,5,6,3) = NaN; %! m(2,3) = NaN; %! assert (harmmean (x, [3 2]), m, 4e-14); %! m(2,3) = 13.06617961315406; %! assert (harmmean (x, [3 2], "omitnan"), m, 4e-14); ## Test errors %!error harmmean ("char") %!error harmmean ([1 -1 3]) %!error ... %! harmmean (repmat ([1:20;6:25], [5 2 6 3 5]), -1) %!error ... %! harmmean (repmat ([1:20;6:25], [5 2 6 3 5]), 0) %!error ... %! harmmean (repmat ([1:20;6:25], [5 2 6 3 5]), [1 1]) statistics-release-1.6.3/inst/hist3.m000066400000000000000000000311171456127120000175170ustar00rootroot00000000000000## Copyright (C) 2015 Carnë Draug ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation; either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; if not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {} hist3 (@var{X}) ## @deftypefnx {statistics} {} hist3 (@var{X}, @var{nbins}) ## @deftypefnx {statistics} {} hist3 (@var{X}, @code{"Nbins"}, @var{nbins}) ## @deftypefnx {statistics} {} hist3 (@var{X}, @var{centers}) ## @deftypefnx {statistics} {} hist3 (@var{X}, @code{"Ctrs"}, @var{centers}) ## @deftypefnx {statistics} {} hist3 (@var{X}, @code{"Edges"}, @var{edges}) ## @deftypefnx {statistics} {[@var{N}, @var{C}] =} hist3 (@dots{}) ## @deftypefnx {statistics} {} hist3 (@dots{}, @var{prop}, @var{val}, @dots{}) ## @deftypefnx {statistics} {} hist3 (@var{hax}, @dots{}) ## ## Produce bivariate (2D) histogram counts or plots. ## ## The elements to produce the histogram are taken from the Nx2 matrix ## @var{X}. Any row with NaN values are ignored. The actual bins can ## be configured in 3 different: number, centers, or edges of the bins: ## ## @table @asis ## @item Number of bins (default) ## Produces equally spaced bins between the minimum and maximum values ## of @var{X}. Defined as a 2 element vector, @var{nbins}, one for each ## dimension. Defaults to @code{[10 10]}. ## ## @item Center of bins ## Defined as a cell array of 2 monotonically increasing vectors, ## @var{centers}. The width of each bin is determined from the adjacent ## values in the vector with the initial and final bin, extending to Infinity. ## ## @item Edge of bins ## Defined as a cell array of 2 monotonically increasing vectors, ## @var{edges}. @code{@var{N}(i,j)} contains the number of elements ## in @var{X} for which: ## ## @itemize @w{} ## @item ## @var{edges}@{1@}(i) <= @var{X}(:,1) < @var{edges}@{1@}(i+1) ## @item ## @var{edges}@{2@}(j) <= @var{X}(:,2) < @var{edges}@{2@}(j+1) ## @end itemize ## ## The consequence of this definition is that values outside the initial ## and final edge values are ignored, and that the final bin only contains ## the number of elements exactly equal to the final edge. ## ## @end table ## ## The return values, @var{N} and @var{C}, are the bin counts and centers ## respectively. These are specially useful to produce intensity maps: ## ## @example ## [counts, centers] = hist3 (data); ## imagesc (centers@{1@}, centers@{2@}, counts) ## @end example ## ## If there is no output argument, or if the axes graphics handle ## @var{hax} is defined, the function will plot a 3 dimensional bar ## graph. Any extra property/value pairs are passed directly to the ## underlying surface object. ## ## @seealso{hist, histc, lookup, mesh} ## @end deftypefn function [N, C] = hist3 (X, varargin) if (nargin < 1) print_usage (); endif next_argin = 1; should_draw = true; if (isaxes (X)) hax = X; X = varargin{next_argin++}; elseif (nargout == 0) hax = gca (); else should_draw = false; endif if (! ismatrix (X) || columns (X) != 2) error ("hist3: X must be a 2 columns matrix"); endif method = "nbins"; val = [10 10]; if (numel (varargin) >= next_argin) this_arg = varargin{next_argin++}; if (isnumeric (this_arg)) method = "nbins"; val = this_arg; elseif (iscell (this_arg)) method = "ctrs"; val = this_arg; elseif (numel (varargin) >= next_argin && any (strcmpi ({"nbins", "ctrs", "edges"}, this_arg))) method = tolower (this_arg); val = varargin{next_argin++}; else next_argin--; endif endif have_centers = false; switch (tolower (method)) case "nbins" [r_edges, c_edges] = edges_from_nbins (X, val); case "ctrs" have_centers = true; centers = val; [r_edges, c_edges] = edges_from_centers (val); case "centers" ## This was supported until 1.2.4 when the Matlab compatible option ## 'Ctrs' was added. persistent warned = false; if (! warned) warning ("hist3: option `centers' is deprecated. Use `ctrs'"); endif have_centers = true; centers = val; [r_edges, c_edges] = edges_from_centers (val); case "edges" if (! iscell (val) || numel (val) != 2 || ! all (cellfun (@isvector, val))) error ("hist3: EDGES must be a cell array with 2 vectors"); endif [r_edges] = vec (val{1}, 2); [c_edges] = vec (val{2}, 2); out_rows = any (X < [r_edges(1) c_edges(1)] | X > [r_edges(end) c_edges(end)], 2); X(out_rows,:) = []; otherwise ## we should never get here... error ("hist3: invalid binning method `%s'", method); endswitch ## We only remove the NaN now, after having computed the bin edges, ## because the extremes from each column that define the edges may ## be paired with a NaN. While such values do not appear on the ## histogram, they must still be used to compute the histogram ## edges. X(any (isnan (X), 2), :) = []; r_idx = lookup (r_edges, X(:,1), "l"); c_idx = lookup (c_edges, X(:,2), "l"); counts_size = [numel(r_edges) numel(c_edges)]; counts = accumarray ([r_idx, c_idx], 1, counts_size); if (should_draw) counts = counts.'; z = zeros ((size (counts) +1) *2); z(2:end-1,2:end-1) = kron (counts, ones (2, 2)); ## Setting the values for the end of the histogram bin like this ## seems straight wrong but that's hwo Matlab plots look. y = [kron(c_edges, ones (1, 2)) (c_edges(end)*2-c_edges(end-1))([1 1])]; x = [kron(r_edges, ones (1, 2)) (r_edges(end)*2-r_edges(end-1))([1 1])]; mesh (hax, x, y, z, "facecolor", [.75 .85 .95], varargin{next_argin:end}); else N = counts; if (nargout > 1) if (! have_centers) C = {(r_edges + [diff(r_edges)([1:end end])]/ 2) ... (c_edges + [diff(c_edges)([1:end end])]/ 2)}; else C = centers(:)'; C{1} = vec (C{1}, 2); C{2} = vec (C{2}, 2); endif endif endif endfunction function [r_edges, c_edges] = edges_from_nbins (X, nbins) if (! isnumeric (nbins) || numel (nbins) != 2) error ("hist3: NBINS must be a 2 element vector"); endif inits = min (X, [], 1); ends = max (X, [], 1); ends -= (ends - inits) ./ vec (nbins, 2); ## If any histogram side has an empty range, then still make NBINS ## but then place that value at the centre of the centre bin so that ## they appear in the centre in the plot. single_bins = inits == ends; if (any (single_bins)) inits(single_bins) -= (floor (nbins(single_bins) ./2)) + 0.5; ends(single_bins) = inits(single_bins) + nbins(single_bins) -1; endif r_edges = linspace (inits(1), ends(1), nbins(1)); c_edges = linspace (inits(2), ends(2), nbins(2)); endfunction function [r_edges, c_edges] = edges_from_centers (ctrs) if (! iscell (ctrs) || numel (ctrs) != 2 || ! all (cellfun (@isvector, ctrs))) error ("hist3: CTRS must be a cell array with 2 vectors"); endif r_edges = vec (ctrs{1}, 2); c_edges = vec (ctrs{2}, 2); r_edges(2:end) -= diff (r_edges) / 2; c_edges(2:end) -= diff (c_edges) / 2; endfunction %!demo %! X = [ %! 1 1 %! 1 1 %! 1 10 %! 1 10 %! 5 5 %! 5 5 %! 5 5 %! 5 5 %! 5 5 %! 7 3 %! 7 3 %! 7 3 %! 10 10 %! 10 10]; %! hist3 (X) %!test %! N_exp = [ 0 0 0 5 20 %! 0 0 10 15 0 %! 0 15 10 0 0 %! 20 5 0 0 0]; %! %! n = 100; %! x = [1:n]'; %! y = [n:-1:1]'; %! D = [x y]; %! N = hist3 (D, [4 5]); %! assert (N, N_exp); %!test %! N_exp = [0 0 0 0 1 %! 0 0 0 0 1 %! 0 0 0 0 1 %! 1 1 1 1 93]; %! %! n = 100; %! x = [1:n]'; %! y = [n:-1:1]'; %! D = [x y]; %! C{1} = [1 1.7 3 4]; %! C{2} = [1:5]; %! N = hist3 (D, C); %! assert (N, N_exp); ## bug 44987 %!test %! D = [1 1; 3 1; 3 3; 3 1]; %! [c, nn] = hist3 (D, {0:4, 0:4}); %! exp_c = zeros (5); %! exp_c([7 9 19]) = [1 2 1]; %! assert (c, exp_c); %! assert (nn, {0:4, 0:4}); %!test %! for i = 10 %! assert (size (hist3 (rand (9, 2), "Edges", {[0:.2:1]; [0:.2:1]})), [6 6]) %! endfor %!test %! edge_1 = linspace (0, 10, 10); %! edge_2 = linspace (0, 50, 10); %! [c, nn] = hist3 ([1:10; 1:5:50]', "Edges", {edge_1, edge_2}); %! exp_c = zeros (10, 10); %! exp_c([1 12 13 24 35 46 57 68 79 90]) = 1; %! assert (c, exp_c); %! %! assert (nn{1}, edge_1 + edge_1(2)/2, eps*10^4) %! assert (nn{2}, edge_2 + edge_2(2)/2, eps*10^4) %!shared X %! X = [ %! 5 2 %! 5 3 %! 1 4 %! 5 3 %! 4 4 %! 1 2 %! 2 3 %! 3 3 %! 5 4 %! 5 3]; %!test %! N = zeros (10); %! N([1 10 53 56 60 91 98 100]) = [1 1 1 1 3 1 1 1]; %! C = {(1.2:0.4:4.8), (2.1:0.2:3.9)}; %! assert (nthargout ([1 2], @hist3, X), {N C}, eps*10^3) %!test %! N = zeros (5, 7); %! N([1 5 17 18 20 31 34 35]) = [1 1 1 1 3 1 1 1]; %! C = {(1.4:0.8:4.6), ((2+(1/7)):(2/7):(4-(1/7)))}; %! assert (nthargout ([1 2], @hist3, X, [5 7]), {N C}, eps*10^3) %! assert (nthargout ([1 2], @hist3, X, "Nbins", [5 7]), {N C}, eps*10^3) %!test %! N = [0 1 0; 0 1 0; 0 0 1; 0 0 0]; %! C = {(2:5), (2.5:1:4.5)}; %! assert (nthargout ([1 2], @hist3, X, "Edges", {(1.5:4.5), (2:4)}), {N C}) %!test %! N = [0 0 1 0 1 0; 0 0 0 1 0 0; 0 0 1 4 2 0]; %! C = {(1.2:3.2), (0:5)}; %! assert (nthargout ([1 2], @hist3, X, "Ctrs", C), {N C}) %! assert (nthargout ([1 2], @hist3, X, C), {N C}) %!test %! [~, C] = hist3 (rand (10, 2), "Edges", {[0 .05 .15 .35 .55 .95], %! [-1 .05 .07 .2 .3 .5 .89 1.2]}); %! C_exp = {[ 0.025 0.1 0.25 0.45 0.75 1.15], ... %! [-0.475 0.06 0.135 0.25 0.4 0.695 1.045 1.355]}; %! assert (C, C_exp, eps*10^2) ## Test how handling of out of borders is different whether we are ## defining Centers or Edges. %!test %! Xv = repmat ([1:10]', [1 2]); %! %! ## Test Centers %! assert (hist3 (Xv, "Ctrs", {1:10, 1:10}), eye (10)) %! %! N_exp = eye (6); %! N_exp([1 end]) = 3; %! assert (hist3 (Xv, "Ctrs", {3:8, 3:8}), N_exp) %! %! N_exp = zeros (8, 6); %! N_exp([1 2 11 20 29 38 47 48]) = [2 1 1 1 1 1 1 2]; %! assert (hist3 (Xv, "Ctrs", {2:9, 3:8}), N_exp) %! %! ## Test Edges %! assert (hist3 (Xv, "Edges", {1:10, 1:10}), eye (10)) %! assert (hist3 (Xv, "Edges", {3:8, 3:8}), eye (6)) %! assert (hist3 (Xv, "Edges", {2:9, 3:8}), [zeros(1, 6); eye(6); zeros(1, 6)]) %! %! N_exp = zeros (14); %! N_exp(3:12, 3:12) = eye (10); %! assert (hist3 (Xv, "Edges", {-1:12, -1:12}), N_exp) %! %! ## Test for Nbins %! assert (hist3 (Xv), eye (10)) %! assert (hist3 (Xv, [10 10]), eye (10)) %! assert (hist3 (Xv, "nbins", [10 10]), eye (10)) %! assert (hist3 (Xv, [5 5]), eye (5) * 2) %! %! N_exp = zeros (7, 5); %! N_exp([1 9 10 18 26 27 35]) = [2 1 1 2 1 1 2]; %! assert (hist3 (Xv, [7 5]), N_exp) %!test # bug #51059 %! D = [1 1; NaN 2; 3 1; 3 3; 1 NaN; 3 1]; %! [c, nn] = hist3 (D, {0:4, 0:4}); %! exp_c = zeros (5); %! exp_c([7 9 19]) = [1 2 1]; %! assert (c, exp_c) %! assert (nn, {0:4, 0:4}) ## Single row of data or cases where all elements have the same value ## on one side of the histogram. %!test %! [c, nn] = hist3 ([1 8]); %! exp_c = zeros (10, 10); %! exp_c(6, 6) = 1; %! exp_nn = {-4:5, 3:12}; %! assert (c, exp_c) %! assert (nn, exp_nn, eps) %! %! [c, nn] = hist3 ([1 8], [10 11]); %! exp_c = zeros (10, 11); %! exp_c(6, 6) = 1; %! exp_nn = {-4:5, 3:13}; %! assert (c, exp_c) %! assert (nn, exp_nn, eps) ## NaNs paired with values defining the histogram edges. %!test %! [c, nn] = hist3 ([1 NaN; 2 3; 6 9; 8 NaN]); %! exp_c = zeros (10, 10); %! exp_c(2, 1) = 1; %! exp_c(8, 10) = 1; %! exp_nn = {linspace(1.35, 7.65, 10) linspace(3.3, 8.7, 10)}; %! assert (c, exp_c) %! assert (nn, exp_nn, eps*100) ## Columns full of NaNs (recent Matlab versions seem to throw an error ## but this did work like this on R2010b at least). %!test %! [c, nn] = hist3 ([1 NaN; 2 NaN; 6 NaN; 8 NaN]); %! exp_c = zeros (10, 10); %! exp_nn = {linspace(1.35, 7.65, 10) NaN(1, 10)}; %! assert (c, exp_c) %! assert (nn, exp_nn, eps*100) ## Behaviour of an empty X after removal of rows with NaN. %!test %! [c, nn] = hist3 ([1 NaN; NaN 3; NaN 9; 8 NaN]); %! exp_c = zeros (10, 10); %! exp_nn = {linspace(1.35, 7.65, 10) linspace(3.3, 8.7, 10)}; %! assert (c, exp_c) %! assert (nn, exp_nn, eps*100) statistics-release-1.6.3/inst/histfit.m000066400000000000000000000064021456127120000201360ustar00rootroot00000000000000## Copyright (C) 2003 Alberto Terruzzi ## Copyright (C) 2022-2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {} histfit (@var{x}, @var{nbins}) ## @deftypefnx {statistics} {@var{h} =} histfit (@var{x}, @var{nbins}) ## ## Plot histogram with superimposed fitted normal density. ## ## @code{histfit (@var{x}, @var{nbins})} plots a histogram of the values in ## the vector @var{x} using @var{nbins} bars in the histogram. With one input ## argument, @var{nbins} is set to the square root of the number of elements in ## @var{x}. ## ## @code{@var{h} = histfit (@var{x}, @var{nbins})} returns the bins and fitted ## line handles of the plot in @var{h}. ## ## Example ## ## @example ## histfit (randn (100, 1)) ## @end example ## ## @seealso{bar, hist, pareto} ## @end deftypefn function [varargout] = histfit (x, nbins) if (nargin < 1 || nargin > 2) print_usage; endif if (! isnumeric (x) || ! isreal (x) || ! isvector (x) || isscalar (x)) error ("histfit: X must be a numeric vector of real numbers."); endif row = sum (! isnan (x)); if (nargin < 2) nbins = ceil (sqrt (row)); endif [n, xbin] = hist (x, nbins); if (any (abs (diff (xbin, 2)) > 10 * max (abs (xbin)) * eps)) error ("histfit: bins must have uniform width."); endif ## Compute mu and sigma parameters mr = mean (x, "omitnan"); sr = std (x); ## Evenly spaced samples of the expected range in X x = (-3*sr+mr:0.1*sr:3*sr+mr)'; [xb, yb] = bar (xbin, n); y = normpdf (x, mr, sr); binwidth = xbin(2) - xbin(1); ## Necessary normalization to overplot the histogram y = row * y * binwidth; ## Plot density line over histogram. h = plot (xb, yb, ";;b", x, y, ";;r-"); ## Return the plot's handle if requested if (nargout == 1) varargout{1} = h; endif endfunction %!demo %! histfit (randn (100, 1)) ## Test plotting %!test %! hf = figure ("visible", "off"); %! unwind_protect %! x = [2, 4, 3, 2, 4, 3, 2, 5, 6, 4, 7, 5, 9, 8, 10, 4, 11]; %! histfit (x); %! unwind_protect_cleanup %! close (hf); %! end_unwind_protect %!test %! hf = figure ("visible", "off"); %! unwind_protect %! x = [2, 4, 3, 2, NaN, 3, 2, 5, 6, 4, 7, 5, 9, 8, 10, 4, 11]; %! histfit (x); %! unwind_protect_cleanup %! close (hf); %! end_unwind_protect %!test %! hf = figure ("visible", "off"); %! unwind_protect %! x = [2, 4, 3, 2, NaN, 3, 2, 5, 6, 4, 7, 5, 9, 8, 10, 4, 11]; %! histfit (x, 3); %! unwind_protect_cleanup %! close (hf); %! end_unwind_protect ## Test input validation %!error histfit (); %!error histfit ([x',x']); statistics-release-1.6.3/inst/hmmestimate.m000066400000000000000000000340551456127120000210060ustar00rootroot00000000000000## Copyright (C) 2006, 2007 Arno Onken ## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {[@var{transprobest}, @var{outprobest}] =} hmmestimate (@var{sequence}, @var{states}) ## @deftypefnx {statistics} {[@dots{}] =} hmmestimate (@dots{}, @code{"statenames"}, @var{statenames}) ## @deftypefnx {statistics} {[@dots{}] =} hmmestimate (@dots{}, @code{"symbols"}, @var{symbols}) ## @deftypefnx {statistics} {[@dots{}] =} hmmestimate (@dots{}, @code{"pseudotransitions"}, @var{pseudotransitions}) ## @deftypefnx {statistics} {[@dots{}] =} hmmestimate (@dots{}, @code{"pseudoemissions"}, @var{pseudoemissions}) ## ## Estimation of a hidden Markov model for a given sequence. ## ## Estimate the matrix of transition probabilities and the matrix of output ## probabilities of a given sequence of outputs and states generated by a ## hidden Markov model. The model assumes that the generation starts in ## state @code{1} at step @code{0} but does not include step @code{0} in the ## generated states and sequence. ## ## @subheading Arguments ## ## @itemize @bullet ## @item ## @var{sequence} is a vector of a sequence of given outputs. The outputs ## must be integers ranging from @code{1} to the number of outputs of the ## hidden Markov model. ## ## @item ## @var{states} is a vector of the same length as @var{sequence} of given ## states. The states must be integers ranging from @code{1} to the number ## of states of the hidden Markov model. ## @end itemize ## ## @subheading Return values ## ## @itemize @bullet ## @item ## @var{transprobest} is the matrix of the estimated transition ## probabilities of the states. @code{transprobest(i, j)} is the estimated ## probability of a transition to state @code{j} given state @code{i}. ## ## @item ## @var{outprobest} is the matrix of the estimated output probabilities. ## @code{outprobest(i, j)} is the estimated probability of generating ## output @code{j} given state @code{i}. ## @end itemize ## ## If @code{'symbols'} is specified, then @var{sequence} is expected to be a ## sequence of the elements of @var{symbols} instead of integers. ## @var{symbols} can be a cell array. ## ## If @code{'statenames'} is specified, then @var{states} is expected to be ## a sequence of the elements of @var{statenames} instead of integers. ## @var{statenames} can be a cell array. ## ## If @code{'pseudotransitions'} is specified then the integer matrix ## @var{pseudotransitions} is used as an initial number of counted ## transitions. @code{pseudotransitions(i, j)} is the initial number of ## counted transitions from state @code{i} to state @code{j}. ## @var{transprobest} will have the same size as @var{pseudotransitions}. ## Use this if you have transitions that are very unlikely to occur. ## ## If @code{'pseudoemissions'} is specified then the integer matrix ## @var{pseudoemissions} is used as an initial number of counted outputs. ## @code{pseudoemissions(i, j)} is the initial number of counted outputs ## @code{j} given state @code{i}. If @code{'pseudoemissions'} is also ## specified then the number of rows of @var{pseudoemissions} must be the ## same as the number of rows of @var{pseudotransitions}. @var{outprobest} ## will have the same size as @var{pseudoemissions}. Use this if you have ## outputs or states that are very unlikely to occur. ## ## @subheading Examples ## ## @example ## @group ## transprob = [0.8, 0.2; 0.4, 0.6]; ## outprob = [0.2, 0.4, 0.4; 0.7, 0.2, 0.1]; ## [sequence, states] = hmmgenerate (25, transprob, outprob); ## [transprobest, outprobest] = hmmestimate (sequence, states) ## @end group ## ## @group ## symbols = @{"A", "B", "C"@}; ## statenames = @{"One", "Two"@}; ## [sequence, states] = hmmgenerate (25, transprob, outprob, ... ## "symbols", symbols, ... ## "statenames", statenames); ## [transprobest, outprobest] = hmmestimate (sequence, states, ... ## "symbols', symbols, ... ## "statenames', statenames) ## @end group ## ## @group ## pseudotransitions = [8, 2; 4, 6]; ## pseudoemissions = [2, 4, 4; 7, 2, 1]; ## [sequence, states] = hmmgenerate (25, transprob, outprob); ## [transprobest, outprobest] = hmmestimate (sequence, states, ... ## "pseudotransitions", pseudotransitions, ... ## "pseudoemissions", pseudoemissions) ## @end group ## @end example ## ## @subheading References ## ## @enumerate ## @item ## Wendy L. Martinez and Angel R. Martinez. @cite{Computational Statistics ## Handbook with MATLAB}. Appendix E, pages 547-557, Chapman & Hall/CRC, ## 2001. ## ## @item ## Lawrence R. Rabiner. A Tutorial on Hidden Markov Models and Selected ## Applications in Speech Recognition. @cite{Proceedings of the IEEE}, ## 77(2), pages 257-286, February 1989. ## @end enumerate ## @end deftypefn function [transprobest, outprobest] = hmmestimate (sequence, states, varargin) # Check arguments if (nargin < 2 || mod (length (varargin), 2) != 0) print_usage (); endif len = length (sequence); if (length (states) != len) error ("hmmestimate: sequence and states must have equal length"); endif # Flag for symbols usesym = false; # Flag for statenames usesn = false; # Variables for return values transprobest = []; outprobest = []; # Process varargin for i = 1:2:length (varargin) # There must be an identifier: 'symbols', 'statenames', # 'pseudotransitions' or 'pseudoemissions' if (! ischar (varargin{i})) print_usage (); endif # Upper case is also fine lowerarg = lower (varargin{i}); if (strcmp (lowerarg, 'symbols')) usesym = true; # Use the following argument as symbols symbols = varargin{i + 1}; # The same for statenames elseif (strcmp (lowerarg, 'statenames')) usesn = true; # Use the following argument as statenames statenames = varargin{i + 1}; elseif (strcmp (lowerarg, 'pseudotransitions')) # Use the following argument as an initial count for transitions transprobest = varargin{i + 1}; if (! ismatrix (transprobest)) error (strcat (["hmmestimate: pseudotransitions must be a"], ... [" non-empty numeric matrix"])); endif if (rows (transprobest) != columns (transprobest)) error ("hmmestimate: pseudotransitions must be a square matrix"); endif elseif (strcmp (lowerarg, 'pseudoemissions')) # Use the following argument as an initial count for outputs outprobest = varargin{i + 1}; if (! ismatrix (outprobest)) error (strcat (["hmmestimate: pseudoemissions must be a non-empty"], ... [" numeric matrix"])); endif else error (strcat (["hmmestimate: expected 'symbols', 'statenames',"], ... [" 'pseudotransitions' or 'pseudoemissions' but"], ... sprintf (" found '%s'", varargin{i}))); endif endfor # Transform sequence from symbols to integers if necessary if (usesym) # sequenceint is used to build the transformed sequence sequenceint = zeros (1, len); for i = 1:length (symbols) # Search for symbols(i) in the sequence, isequal will have 1 at # corresponding indices; i is the right integer for that symbol isequal = ismember (sequence, symbols(i)); # We do not want to change sequenceint if the symbol appears a second # time in symbols if (any ((sequenceint == 0) & (isequal == 1))) isequal *= i; sequenceint += isequal; endif endfor if (! all (sequenceint)) index = max ((sequenceint == 0) .* (1:len)); error (["hmmestimate: sequence(" int2str (index) ") not in symbols"]); endif sequence = sequenceint; else if (! isvector (sequence)) error ("hmmestimate: sequence must be a non-empty vector"); endif if (! all (ismember (sequence, 1:max (sequence)))) index = max ((ismember (sequence, 1:max (sequence)) == 0) .* (1:len)); error (["hmmestimate: sequence(" int2str (index) ") not feasible"]); endif endif # Transform states from statenames to integers if necessary if (usesn) # statesint is used to build the transformed states statesint = zeros (1, len); for i = 1:length (statenames) # Search for statenames(i) in states, isequal will have 1 at # corresponding indices; i is the right integer for that statename isequal = ismember (states, statenames(i)); # We do not want to change statesint if the statename appears a second # time in statenames if (any ((statesint == 0) & (isequal == 1))) isequal *= i; statesint += isequal; endif endfor if (! all (statesint)) index = max ((statesint == 0) .* (1:len)); error (["hmmestimate: states(" int2str (index) ") not in statenames"]); endif states = statesint; else if (! isvector (states)) error ("hmmestimate: states must be a non-empty vector"); endif if (! all (ismember (states, 1:max (states)))) index = max ((ismember (states, 1:max (states)) == 0) .* (1:len)); error (["hmmestimate: states(" int2str (index) ") not feasible"]); endif endif # Estimate the number of different states as the max of states nstate = max (states); # Estimate the number of different outputs as the max of sequence noutput = max (sequence); # transprobest is empty if pseudotransitions is not specified if (isempty (transprobest)) # outprobest is not empty if pseudoemissions is specified if (! isempty (outprobest)) if (nstate > rows (outprobest)) error ("hmmestimate: not enough rows in pseudoemissions"); endif # The number of states is specified by pseudoemissions nstate = rows (outprobest); endif transprobest = zeros (nstate, nstate); else if (nstate > rows (transprobest)) error ("hmmestimate: not enough rows in pseudotransitions"); endif # The number of states is given by pseudotransitions nstate = rows (transprobest); endif # outprobest is empty if pseudoemissions is not specified if (isempty (outprobest)) outprobest = zeros (nstate, noutput); else if (noutput > columns (outprobest)) error ("hmmestimate: not enough columns in pseudoemissions"); endif # Number of outputs is specified by pseudoemissions noutput = columns (outprobest); if (rows (outprobest) != nstate) error (strcat (["hmmestimate: pseudoemissions must have the same"], ... [" number of rows as pseudotransitions"])); endif endif # Assume that the model started in state 1 cstate = 1; for i = 1:len # Count the number of transitions for each state pair transprobest(cstate, states(i)) ++; cstate = states (i); # Count the number of outputs for each state output pair outprobest(cstate, sequence(i)) ++; endfor # transprobest and outprobest contain counted numbers # Each row in transprobest and outprobest should contain estimated # probabilities # => scale so that the sum is 1 # A zero row remains zero # - for transprobest s = sum (transprobest, 2); s(s == 0) = 1; transprobest = transprobest ./ (s * ones (1, nstate)); # - for outprobest s = sum (outprobest, 2); s(s == 0) = 1; outprobest = outprobest ./ (s * ones (1, noutput)); endfunction %!test %! sequence = [1, 2, 1, 1, 1, 2, 2, 1, 2, 3, 3, ... %! 3, 3, 2, 3, 1, 1, 1, 1, 3, 3, 2, 3, 1, 3]; %! states = [1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, ... %! 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1]; %! [transprobest, outprobest] = hmmestimate (sequence, states); %! expectedtransprob = [0.88889, 0.11111; 0.28571, 0.71429]; %! expectedoutprob = [0.16667, 0.33333, 0.50000; 1.00000, 0.00000, 0.00000]; %! assert (transprobest, expectedtransprob, 0.001); %! assert (outprobest, expectedoutprob, 0.001); %!test %! sequence = {"A", "B", "A", "A", "A", "B", "B", "A", "B", "C", "C", "C", ... %! "C", "B", "C", "A", "A", "A", "A", "C", "C", "B", "C", "A", "C"}; %! states = {"One", "One", "Two", "Two", "Two", "One", "One", "One", "One", ... %! "One", "One", "One", "One", "One", "One", "Two", "Two", "Two", ... %! "Two", "One", "One", "One", "One", "One", "One"}; %! symbols = {"A", "B", "C"}; %! statenames = {"One", "Two"}; %! [transprobest, outprobest] = hmmestimate (sequence, states, "symbols", ... %! symbols, "statenames", statenames); %! expectedtransprob = [0.88889, 0.11111; 0.28571, 0.71429]; %! expectedoutprob = [0.16667, 0.33333, 0.50000; 1.00000, 0.00000, 0.00000]; %! assert (transprobest, expectedtransprob, 0.001); %! assert (outprobest, expectedoutprob, 0.001); %!test %! sequence = [1, 2, 1, 1, 1, 2, 2, 1, 2, 3, 3, 3, ... %! 3, 2, 3, 1, 1, 1, 1, 3, 3, 2, 3, 1, 3]; %! states = [1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, ... %! 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1]; %! pseudotransitions = [8, 2; 4, 6]; %! pseudoemissions = [2, 4, 4; 7, 2, 1]; %! [transprobest, outprobest] = hmmestimate (sequence, states, ... %! "pseudotransitions", pseudotransitions, "pseudoemissions", pseudoemissions); %! expectedtransprob = [0.85714, 0.14286; 0.35294, 0.64706]; %! expectedoutprob = [0.178571, 0.357143, 0.464286; ... %! 0.823529, 0.117647, 0.058824]; %! assert (transprobest, expectedtransprob, 0.001); %! assert (outprobest, expectedoutprob, 0.001); statistics-release-1.6.3/inst/hmmgenerate.m000066400000000000000000000216721456127120000207660ustar00rootroot00000000000000## Copyright (C) 2006, 2007 Arno Onken ## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {[@var{sequence}, @var{states}] =} hmmgenerate (@var{len}, @var{transprob}, @var{outprob}) ## @deftypefnx {statistics} {[@dots{}] =} hmmgenerate (@dots{}, @code{"symbols"}, @var{symbols}) ## @deftypefnx {statistics} {[@dots{}] =} hmmgenerate (@dots{}, @code{"statenames"}, @var{statenames}) ## ## Output sequence and hidden states of a hidden Markov model. ## ## Generate an output sequence and hidden states of a hidden Markov model. ## The model starts in state @code{1} at step @code{0} but will not include ## step @code{0} in the generated states and sequence. ## ## @subheading Arguments ## ## @itemize @bullet ## @item ## @var{len} is the number of steps to generate. @var{sequence} and ## @var{states} will have @var{len} entries each. ## ## @item ## @var{transprob} is the matrix of transition probabilities of the states. ## @code{transprob(i, j)} is the probability of a transition to state ## @code{j} given state @code{i}. ## ## @item ## @var{outprob} is the matrix of output probabilities. ## @code{outprob(i, j)} is the probability of generating output @code{j} ## given state @code{i}. ## @end itemize ## ## @subheading Return values ## ## @itemize @bullet ## @item ## @var{sequence} is a vector of length @var{len} of the generated ## outputs. The outputs are integers ranging from @code{1} to ## @code{columns (outprob)}. ## ## @item ## @var{states} is a vector of length @var{len} of the generated hidden ## states. The states are integers ranging from @code{1} to ## @code{columns (transprob)}. ## @end itemize ## ## If @code{"symbols"} is specified, then the elements of @var{symbols} are ## used for the output sequence instead of integers ranging from @code{1} to ## @code{columns (outprob)}. @var{symbols} can be a cell array. ## ## If @code{"statenames"} is specified, then the elements of ## @var{statenames} are used for the states instead of integers ranging from ## @code{1} to @code{columns (transprob)}. @var{statenames} can be a cell ## array. ## ## @subheading Examples ## ## @example ## @group ## transprob = [0.8, 0.2; 0.4, 0.6]; ## outprob = [0.2, 0.4, 0.4; 0.7, 0.2, 0.1]; ## [sequence, states] = hmmgenerate (25, transprob, outprob) ## @end group ## ## @group ## symbols = @{"A", "B", "C"@}; ## statenames = @{"One", "Two"@}; ## [sequence, states] = hmmgenerate (25, transprob, outprob, ... ## "symbols", symbols, ... ## "statenames", statenames) ## @end group ## @end example ## ## @subheading References ## ## @enumerate ## @item ## Wendy L. Martinez and Angel R. Martinez. @cite{Computational Statistics ## Handbook with MATLAB}. Appendix E, pages 547-557, Chapman & Hall/CRC, ## 2001. ## ## @item ## Lawrence R. Rabiner. A Tutorial on Hidden Markov Models and Selected ## Applications in Speech Recognition. @cite{Proceedings of the IEEE}, ## 77(2), pages 257-286, February 1989. ## @end enumerate ## @end deftypefn function [sequence, states] = hmmgenerate (len, transprob, outprob, varargin) # Check arguments if (nargin < 3 || mod (length (varargin), 2) != 0) print_usage (); endif if (! isscalar (len) || len < 0 || round (len) != len) error ("hmmgenerate: len must be a non-negative scalar integer.") endif if (! ismatrix (transprob)) error ("hmmgenerate: transprob must be a non-empty numeric matrix."); endif if (! ismatrix (outprob)) error ("hmmgenerate: outprob must be a non-empty numeric matrix."); endif # nstate is the number of states of the hidden Markov model nstate = rows (transprob); # noutput is the number of different outputs that the hidden Markov model # can generate noutput = columns (outprob); # Check whether transprob and outprob are feasible for a hidden Markov # model if (columns (transprob) != nstate) error ("hmmgenerate: transprob must be a square matrix."); endif if (rows (outprob) != nstate) error (strcat (["hmmgenerate: outprob must have the same number"], ... [" of rows as transprob."])); endif # Flag for symbols usesym = false; # Flag for statenames usesn = false; # Process varargin for i = 1:2:length (varargin) # There must be an identifier: 'symbols' or 'statenames' if (! ischar (varargin{i})) print_usage (); endif # Upper case is also fine lowerarg = lower (varargin{i}); if (strcmp (lowerarg, 'symbols')) if (length (varargin{i + 1}) != noutput) error (strcat (["hmmgenerate: number of symbols does not match"], ... [" number of possible outputs."])); endif usesym = true; # Use the following argument as symbols symbols = varargin{i + 1}; # The same for statenames elseif (strcmp (lowerarg, 'statenames')) if (length (varargin{i + 1}) != nstate) error (strcat (["hmmgenerate: number of statenames does not"], ... [" match number of states."])); endif usesn = true; # Use the following argument as statenames statenames = varargin{i + 1}; else error (strcat (["hmmgenerate: expected 'symbols' or 'statenames'"], ... sprintf (" but found '%s'.", varargin{i}))); endif endfor # Each row in transprob and outprob should contain probabilities # => scale so that the sum is 1 # A zero row remains zero # - for transprob s = sum (transprob, 2); s(s == 0) = 1; transprob = transprob ./ repmat (s, 1, nstate); # - for outprob s = sum (outprob, 2); s(s == 0) = 1; outprob = outprob ./ repmat (s, 1, noutput); # Generate sequences of uniformly distributed random numbers between 0 and 1 # - for the state transitions transdraw = rand (1, len); # - for the outputs outdraw = rand (1, len); # Generate the return vectors # They remain unchanged if the according probability row of transprob # and outprob contain, respectively, only zeros sequence = ones (1, len); states = ones (1, len); if (len > 0) # Calculate cumulated probabilities backwards for easy comparison with # the generated random numbers # Cumulated probability in first column must always be 1 # We might have a zero row # - for transprob transprob(:, end:-1:1) = cumsum (transprob(:, end:-1:1), 2); transprob(:, 1) = 1; # - for outprob outprob(:, end:-1:1) = cumsum (outprob(:, end:-1:1), 2); outprob(:, 1) = 1; # cstate is the current state # Start in state 1 but do not include it in the states vector cstate = 1; for i = 1:len # Compare the randon number i of transdraw to the cumulated # probability of the state transition and set the transition # accordingly states(i) = sum (transdraw(i) <= transprob(cstate, :)); cstate = states(i); endfor # Compare the random numbers of outdraw to the cumulated probabilities # of the outputs and set the sequence vector accordingly sequence = sum (repmat (outdraw, noutput, 1) <= outprob(states, :)', 1); # Transform default matrices into symbols/statenames if requested if (usesym) sequence = reshape (symbols(sequence), 1, len); endif if (usesn) states = reshape (statenames(states), 1, len); endif endif endfunction %!test %! len = 25; %! transprob = [0.8, 0.2; 0.4, 0.6]; %! outprob = [0.2, 0.4, 0.4; 0.7, 0.2, 0.1]; %! [sequence, states] = hmmgenerate (len, transprob, outprob); %! assert (length (sequence), len); %! assert (length (states), len); %! assert (min (sequence) >= 1); %! assert (max (sequence) <= columns (outprob)); %! assert (min (states) >= 1); %! assert (max (states) <= rows (transprob)); %!test %! len = 25; %! transprob = [0.8, 0.2; 0.4, 0.6]; %! outprob = [0.2, 0.4, 0.4; 0.7, 0.2, 0.1]; %! symbols = {"A", "B", "C"}; %! statenames = {"One", "Two"}; %! [sequence, states] = hmmgenerate (len, transprob, outprob, ... %! "symbols", symbols, "statenames", statenames); %! assert (length (sequence), len); %! assert (length (states), len); %! assert (strcmp (sequence, "A") + strcmp (sequence, "B") + ... %! strcmp (sequence, "C") == ones (1, len)); %! assert (strcmp (states, "One") + strcmp (states, "Two") == ones (1, len)); statistics-release-1.6.3/inst/hmmviterbi.m000066400000000000000000000230061456127120000206310ustar00rootroot00000000000000## Copyright (C) 2006, 2007 Arno Onken ## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{vpath} =} hmmviterbi (@var{sequence}, @var{transprob}, @var{outprob}) ## @deftypefnx {statistics} {@var{vpath} =} hmmviterbi (@dots{}, @code{"symbols"}, @var{symbols}) ## @deftypefnx {statistics} {@var{vpath} =} hmmviterbi (@dots{}, @code{"statenames"}, @var{statenames}) ## ## Viterbi path of a hidden Markov model. ## ## Use the Viterbi algorithm to find the Viterbi path of a hidden Markov ## model given a sequence of outputs. The model assumes that the generation ## starts in state @code{1} at step @code{0} but does not include step ## @code{0} in the generated states and sequence. ## ## @subheading Arguments ## ## @itemize @bullet ## @item ## @var{sequence} is the vector of length @var{len} of given outputs. The ## outputs must be integers ranging from @code{1} to ## @code{columns (outprob)}. ## ## @item ## @var{transprob} is the matrix of transition probabilities of the states. ## @code{transprob(i, j)} is the probability of a transition to state ## @code{j} given state @code{i}. ## ## @item ## @var{outprob} is the matrix of output probabilities. ## @code{outprob(i, j)} is the probability of generating output @code{j} ## given state @code{i}. ## @end itemize ## ## @subheading Return values ## ## @itemize @bullet ## @item ## @var{vpath} is the vector of the same length as @var{sequence} of the ## estimated hidden states. The states are integers ranging from @code{1} to ## @code{columns (transprob)}. ## @end itemize ## ## If @code{"symbols"} is specified, then @var{sequence} is expected to be a ## sequence of the elements of @var{symbols} instead of integers ranging ## from @code{1} to @code{columns (outprob)}. @var{symbols} can be a cell array. ## ## If @code{"statenames"} is specified, then the elements of ## @var{statenames} are used for the states in @var{vpath} instead of ## integers ranging from @code{1} to @code{columns (transprob)}. ## @var{statenames} can be a cell array. ## ## @subheading Examples ## ## @example ## @group ## transprob = [0.8, 0.2; 0.4, 0.6]; ## outprob = [0.2, 0.4, 0.4; 0.7, 0.2, 0.1]; ## [sequence, states] = hmmgenerate (25, transprob, outprob); ## vpath = hmmviterbi (sequence, transprob, outprob); ## @end group ## ## @group ## symbols = @{"A", "B", "C"@}; ## statenames = @{"One", "Two"@}; ## [sequence, states] = hmmgenerate (25, transprob, outprob, ... ## "symbols", symbols, "statenames", statenames); ## vpath = hmmviterbi (sequence, transprob, outprob, ... ## "symbols", symbols, "statenames", statenames); ## @end group ## @end example ## ## @subheading References ## ## @enumerate ## @item ## Wendy L. Martinez and Angel R. Martinez. @cite{Computational Statistics ## Handbook with MATLAB}. Appendix E, pages 547-557, Chapman & Hall/CRC, ## 2001. ## ## @item ## Lawrence R. Rabiner. A Tutorial on Hidden Markov Models and Selected ## Applications in Speech Recognition. @cite{Proceedings of the IEEE}, ## 77(2), pages 257-286, February 1989. ## @end enumerate ## @end deftypefn function vpath = hmmviterbi (sequence, transprob, outprob, varargin) # Check arguments if (nargin < 3 || mod (length (varargin), 2) != 0) print_usage (); endif if (! ismatrix (transprob)) error ("hmmviterbi: transprob must be a non-empty numeric matrix"); endif if (! ismatrix (outprob)) error ("hmmviterbi: outprob must be a non-empty numeric matrix"); endif len = length (sequence); # nstate is the number of states of the hidden Markov model nstate = rows (transprob); # noutput is the number of different outputs that the hidden Markov model # can generate noutput = columns (outprob); # Check whether transprob and outprob are feasible for a hidden Markov model if (columns (transprob) != nstate) error ("hmmviterbi: transprob must be a square matrix"); endif if (rows (outprob) != nstate) error (strcat (["hmmviterbi: outprob must have the same number of"], ... [" rows as transprob"])); endif # Flag for symbols usesym = false; # Flag for statenames usesn = false; # Process varargin for i = 1:2:length (varargin) # There must be an identifier: 'symbols' or 'statenames' if (! ischar (varargin{i})) print_usage (); endif # Upper case is also fine lowerarg = lower (varargin{i}); if (strcmp (lowerarg, 'symbols')) if (length (varargin{i + 1}) != noutput) error (strcat (["hmmviterbi: number of symbols does not match"], ... [" number of possible outputs"])); endif usesym = true; # Use the following argument as symbols symbols = varargin{i + 1}; # The same for statenames elseif (strcmp (lowerarg, 'statenames')) if (length (varargin{i + 1}) != nstate) error (strcat (["hmmviterbi: number of statenames does not match"], ... [" number of states"])); endif usesn = true; # Use the following argument as statenames statenames = varargin{i + 1}; else error (strcat (["hmmviterbi: expected 'symbols' or 'statenames'"], ... sprintf (" but found '%s'", varargin{i}))); endif endfor # Transform sequence from symbols to integers if necessary if (usesym) # sequenceint is used to build the transformed sequence sequenceint = zeros (1, len); for i = 1:noutput # Search for symbols(i) in the sequence, isequal will have 1 at # corresponding indices; i is the right integer for that symbol isequal = ismember (sequence, symbols(i)); # We do not want to change sequenceint if the symbol appears a second # time in symbols if (any ((sequenceint == 0) & (isequal == 1))) isequal *= i; sequenceint += isequal; endif endfor if (! all (sequenceint)) index = max ((sequenceint == 0) .* (1:len)); error (["hmmviterbi: sequence(" int2str (index) ") not in symbols"]); endif sequence = sequenceint; else if (! isvector (sequence) && ! isempty (sequence)) error ("hmmviterbi: sequence must be a vector"); endif if (! all (ismember (sequence, 1:noutput))) index = max ((ismember (sequence, 1:noutput) == 0) .* (1:len)); error (["hmmviterbi: sequence(" int2str (index) ") out of range"]); endif endif # Each row in transprob and outprob should contain log probabilities # => scale so that the sum is 1 and convert to log space # - for transprob s = sum (transprob, 2); s(s == 0) = 1; transprob = log (transprob ./ (s * ones (1, columns (transprob)))); # - for outprob s = sum (outprob, 2); s(s == 0) = 1; outprob = log (outprob ./ (s * ones (1, columns (outprob)))); # Store the path starting from i in spath(i, :) spath = ones (nstate, len + 1); # Set the first state for each path spath(:, 1) = (1:nstate)'; # Store the probability of path i in spathprob(i) spathprob = transprob(1, :); # Find the most likely paths for the given output sequence for i = 1:len # Calculate the new probabilities of the continuation with each state nextpathprob = ((spathprob' + outprob(:, sequence(i))) * ... ones (1, nstate)) + transprob; # Find the paths with the highest probabilities [spathprob, mindex] = max (nextpathprob); # Update spath and spathprob with the new paths spath = spath(mindex, :); spath(:, i + 1) = (1:nstate)'; endfor # Set vpath to the most likely path # We do not want the last state because we do not have an output for it [m, mindex] = max (spathprob); vpath = spath(mindex, 1:len); # Transform vpath into statenames if requested if (usesn) vpath = reshape (statenames(vpath), 1, len); endif endfunction %!test %! sequence = [1, 2, 1, 1, 1, 2, 2, 1, 2, 3, 3, 3, ... %! 3, 2, 3, 1, 1, 1, 1, 3, 3, 2, 3, 1, 3]; %! transprob = [0.8, 0.2; 0.4, 0.6]; %! outprob = [0.2, 0.4, 0.4; 0.7, 0.2, 0.1]; %! vpath = hmmviterbi (sequence, transprob, outprob); %! expected = [1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, ... %! 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1]; %! assert (vpath, expected); %!test %! sequence = {"A", "B", "A", "A", "A", "B", "B", "A", "B", "C", "C", "C", ... %! "C", "B", "C", "A", "A", "A", "A", "C", "C", "B", "C", "A", "C"}; %! transprob = [0.8, 0.2; 0.4, 0.6]; %! outprob = [0.2, 0.4, 0.4; 0.7, 0.2, 0.1]; %! symbols = {"A", "B", "C"}; %! statenames = {"One", "Two"}; %! vpath = hmmviterbi (sequence, transprob, outprob, "symbols", symbols, ... %! "statenames", statenames); %! expected = {"One", "One", "Two", "Two", "Two", "One", "One", "One", ... %! "One", "One", "One", "One", "One", "One", "One", "Two", ... %! "Two", "Two", "Two", "One", "One", "One", "One", "One", "One"}; %! assert (vpath, expected); statistics-release-1.6.3/inst/hotelling_t2test.m000066400000000000000000000154311456127120000217600ustar00rootroot00000000000000## Copyright (C) 1996-2017 Kurt Hornik ## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {[@var{h}, @var{pval}, @var{stats}] =} hotelling_t2test (@var{x}) ## @deftypefnx {statistics} {[@dots{}] =} hotelling_t2test (@var{x}, @var{m}) ## @deftypefnx {statistics} {[@dots{}] =} hotelling_t2test (@var{x}, @var{y}) ## @deftypefnx {statistics} {[@dots{}] =} hotelling_t2test (@var{x}, @var{m}, @var{Name}, @var{Value}) ## @deftypefnx {statistics} {[@dots{}] =} hotelling_t2test (@var{x}, @var{y}, @var{Name}, @var{Value}) ## ## Compute Hotelling's T^2 ("T-squared") test for a single sample or two ## dependent samples (paired-samples). ## ## For a sample @var{x} from a multivariate normal distribution with unknown ## mean and covariance matrix, test the null hypothesis that ## @code{mean (@var{x}) == @var{m}}. ## ## For two dependent samples @var{x} and @var{y} from a multivariate normal ## distributions with unknown means and covariance matrices, test the null ## hypothesis that @code{mean (@var{x} - @var{y}) == 0}. ## ## @qcode{hotelling_t2test} treats NaNs as missing values, and ignores the ## corresponding rows. ## ## Name-Value pair arguments can be used to set statistical significance. ## @qcode{"alpha"} can be used to specify the significance level of the test ## (the default value is 0.05). ## ## If @var{h} is 1 the null hypothesis is rejected, meaning that the tested ## sample does not come from a multivariate distribution with mean @var{m}, or ## in case of two dependent samples that they do not come from the same ## multivariate distribution. If @var{h} is 0, then the null hypothesis cannot ## be rejected and it can be assumed that it holds true. ## ## The p-value of the test is returned in @var{pval}. ## ## @var{stats} is a structure containing the value of the Hotelling's @math{T^2} ## test statistic in the field "Tsq", and the degrees of freedom of the F ## distribution in the fields "df1" and "df2". Under the null hypothesis, ## @math{(n-p) T^2 / (p(n-1))} has an F distribution with @math{p} and ## @math{n-p} degrees of freedom, where @math{n} and @math{p} are the ## numbers of samples and variables, respectively. ## ## @seealso{hotelling_t2test2} ## @end deftypefn function [h, pval, stats] = hotelling_t2test (x, my, varargin) ## Check for minimum number of input arguments if (nargin < 1) print_usage (); endif ## Check X being a valid data set if (isscalar (x) || ndims (x) > 2) error ("hotelling_t2test: X must be a vector or a 2D matrix."); endif ## Set default arguments alpha = 0.05; ## Fix MY when X is a single input argument if (nargin == 1) if (isvector (x)) my = 0; elseif (ismatrix (x)) [n, p] = size (x); my = zeros (1, p); endif endif ## When X and MY are of equal size, then assume paired-sample if (isequal (size (x), size(my))) x = x - my; if (isvector (x)) my = 0; elseif (ismatrix (x)) [n, p] = size (x); my = zeros (1, p); endif endif ## Remove rows containing any NaNs x = rmmissing (x); ## Check additional options i = 1; while (i <= length (varargin)) switch lower (varargin{i}) case "alpha" i = i + 1; alpha = varargin{i}; ## Check for valid alpha if (! isscalar (alpha) || ! isnumeric (alpha) || ... alpha <= 0 || alpha >= 1) error ("hotelling_t2test: invalid value for alpha."); endif otherwise error ("hotelling_t2test: invalid Name argument."); endswitch i = i + 1; endwhile ## Conditional error checking for X being a vector or matrix if (isvector (x)) if (! isscalar (my)) error ("hotelling_t2test: if X is a vector, M must be a scalar."); endif n = length (x); p = 1; elseif (ismatrix (x)) [n, p] = size (x); if (n <= p) error ("hotelling_t2test: X must have more rows than columns."); endif if (isvector (my) && length (my) == p) my = reshape (my, 1, p); else error (strcat (["hotelling_t2test: if X is a matrix, M must be a"], ... [" vector of length equal to the columns of X."])); endif endif ## Calculate the necessary statistics d = mean (x) - my; stats.Tsq = n * d * (cov (x) \ d'); stats.df1 = p; stats.df2 = n - p; pval = 1 - fcdf ((n-p) * stats.Tsq / (p * (n-1)), stats.df1, stats.df2); ## Determine the test outcome ## MATLAB returns this a double instead of a logical array h = double (pval < alpha); endfunction ## Test input validation %!error hotelling_t2test (); %!error ... %! hotelling_t2test (1); %!error ... %! hotelling_t2test (ones(2,2,2)); %!error ... %! hotelling_t2test (ones(20,2), [0, 0], "alpha", 1); %!error ... %! hotelling_t2test (ones(20,2), [0, 0], "alpha", -0.2); %!error ... %! hotelling_t2test (ones(20,2), [0, 0], "alpha", "a"); %!error ... %! hotelling_t2test (ones(20,2), [0, 0], "alpha", [0.01, 0.05]); %!error ... %! hotelling_t2test (ones(20,2), [0, 0], "name", 0.01); %!error ... %! hotelling_t2test (ones(20,1), [0, 0]); %!error ... %! hotelling_t2test (ones(4,5), [0, 0, 0, 0, 0]); %!error ... %! hotelling_t2test (ones(20,5), [0, 0, 0, 0]); ## Test results %!test %! randn ("seed", 1); %! x = randn (50000, 5); %! [h, pval, stats] = hotelling_t2test (x); %! assert (h, 0); %! assert (stats.df1, 5); %! assert (stats.df2, 49995); %!test %! randn ("seed", 1); %! x = randn (50000, 5); %! [h, pval, stats] = hotelling_t2test (x, ones (1, 5) * 10); %! assert (h, 1); %! assert (stats.df1, 5); %! assert (stats.df2, 49995); statistics-release-1.6.3/inst/hotelling_t2test2.m000066400000000000000000000146671456127120000220540ustar00rootroot00000000000000## Copyright (C) 1996-2017 Kurt Hornik ## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {[@var{h}, @var{pval}, @var{stats}] =} hotelling_t2test2 (@var{x}, @var{y}) ## @deftypefnx {statistics} {[@dots{}] =} hotelling_t2test2 (@var{x}, @var{y}, @var{Name}, @var{Value}) ## ## Compute Hotelling's T^2 ("T-squared") test for two independent samples. ## ## For two samples @var{x} from multivariate normal distributions with ## the same number of variables (columns), unknown means and unknown ## equal covariance matrices, test the null hypothesis ## @code{mean (@var{x}) == mean (@var{y})}. ## ## @qcode{hotelling_t2test2} treats NaNs as missing values, and ignores the ## corresponding rows for each sample independently. ## ## Name-Value pair arguments can be used to set statistical significance. ## @qcode{"alpha"} can be used to specify the significance level of the test ## (the default value is 0.05). ## ## If @var{h} is 1 the null hypothesis is rejected, meaning that the tested ## samples do not come from the same multivariate distribution. If @var{h} is ## 0, then the null hypothesis cannot be rejected and it can be assumed that ## both samples come from the same multivariate distribution. ## ## The p-value of the test is returned in @var{pval}. ## ## @var{stats} is a structure containing the value of the Hotelling's @math{T^2} ## test statistic in the field "Tsq", and the degrees of freedom of the F ## distribution in the fields "df1" and "df2". Under the null hypothesis, ## @tex ## $$ ## {(n_x+n_y-p-1) T^2 \over p(n_x+n_y-2)} ## $$ ## @end tex ## @ifnottex ## ## @example ## (n_x+n_y-p-1) T^2 / (p(n_x+n_y-2)) ## @end example ## ## @end ifnottex ## @noindent ## has an F distribution with @math{p} and @math{n_x+n_y-p-1} degrees of ## freedom, where @math{n_x} and @math{n_y} are the sample sizes and ## @math{p} is the number of variables. ## ## @seealso{hotelling_t2test} ## @end deftypefn function [h, pval, stats] = hotelling_t2test2 (x, y, varargin) ## Check for minimum number of input arguments if (nargin < 2) print_usage (); endif ## Check X being a valid data set if (isscalar (x) || ndims (x) > 2) error ("hotelling_t2test2: X must be a vector or a 2D matrix."); endif ## Check Y being a valid data set if (isscalar (y) || ndims (y) > 2) error ("hotelling_t2test2: Y must be a vector or a 2D matrix."); endif ## Set default arguments alpha = 0.05; ## Remove rows containing any NaNs x = rmmissing (x); y = rmmissing (y); ## Check additional options i = 1; while (i <= length (varargin)) switch lower (varargin{i}) case "alpha" i = i + 1; alpha = varargin{i}; ## Check for valid alpha if (! isscalar (alpha) || ! isnumeric (alpha) || ... alpha <= 0 || alpha >= 1) error ("hotelling_t2test2: invalid value for alpha."); endif otherwise error ("hotelling_t2test2: invalid Name argument."); endswitch i = i + 1; endwhile ## Conditional error checking for X being a vector or matrix if (isvector (x)) n_x = length (x); if (! isvector (y)) error ("hotelling_t2test2: if X is a vector, Y must also be a vector."); else n_y = length (y); p = 1; endif elseif (ismatrix (x)) [n_x, p] = size (x); [n_y, q] = size (y); if (p != q) error (strcat (["hotelling_t2test2: X and Y must have the same"], ... [" number of columns."])); endif endif ## Calculate the necessary statistics d = mean (x) - mean (y); S = ((n_x - 1) * cov (x) + (n_y - 1) * cov (y)) / (n_x + n_y - 2); stats.Tsq = (n_x * n_y / (n_x + n_y)) * d * (S \ d'); stats.df1 = p; stats.df2 = n_x + n_y - p - 1; pval = 1 - fcdf ((n_x + n_y - p - 1) * stats.Tsq / (p * (n_x + n_y - 2)), ... stats.df1, stats.df2); ## Determine the test outcome ## MATLAB returns this a double instead of a logical array h = double (pval < alpha); endfunction ## Test input validation %!error hotelling_t2test2 (); %!error ... %! hotelling_t2test2 ([2, 3, 4, 5, 6]); %!error ... %! hotelling_t2test2 (1, [2, 3, 4, 5, 6]); %!error ... %! hotelling_t2test2 (ones (2,2,2), [2, 3, 4, 5, 6]); %!error ... %! hotelling_t2test2 ([2, 3, 4, 5, 6], 2); %!error ... %! hotelling_t2test2 ([2, 3, 4, 5, 6], ones (2,2,2)); %!error ... %! hotelling_t2test2 (ones (20,2), ones (20,2), "alpha", 1); %!error ... %! hotelling_t2test2 (ones (20,2), ones (20,2), "alpha", -0.2); %!error ... %! hotelling_t2test2 (ones (20,2), ones (20,2), "alpha", "a"); %!error ... %! hotelling_t2test2 (ones (20,2), ones (20,2), "alpha", [0.01, 0.05]); %!error ... %! hotelling_t2test2 (ones (20,2), ones (20,2), "name", 0.01); %!error ... %! hotelling_t2test2 (ones (20,1), ones (20,2)); %!error ... %! hotelling_t2test2 (ones (20,2), ones (25,3)); ## Test results %!test %! randn ("seed", 1); %! x1 = randn (60000, 5); %! randn ("seed", 5); %! x2 = randn (30000, 5); %! [h, pval, stats] = hotelling_t2test2 (x1, x2); %! assert (h, 0); %! assert (stats.df1, 5); %! assert (stats.df2, 89994); statistics-release-1.6.3/inst/icdf.m000066400000000000000000000341421456127120000173730ustar00rootroot00000000000000# Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or ## (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program. If not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{x} =} icdf (@var{name}, @var{p}, @var{A}) ## @deftypefnx {statistics} {@var{x} =} icdf (@var{name}, @var{p}, @var{A}, @var{B}) ## @deftypefnx {statistics} {@var{x} =} icdf (@var{name}, @var{p}, @var{A}, @var{B}, @var{C}) ## ## Return the inverse CDF of a univariate distribution evaluated at @var{p}. ## ## @code{icdf} is a wrapper for the univariate quantile distribution functions ## (iCDF) available in the statistics package. See the corresponding functions' ## help to learn the signification of the parameters after @var{p}. ## ## @code{@var{x} = icdf (@var{name}, @var{p}, @var{A})} returns the iCDF for the ## one-parameter distribution family specified by @var{name} and the ## distribution parameter @var{A}, evaluated at the values in @var{p}. ## ## @code{@var{x} = icdf (@var{name}, @var{p}, @var{A}, @var{B})} returns the ## iCDF for the two-parameter distribution family specified by @var{name} and ## the distribution parameters @var{A} and @var{B}, evaluated at the values in ## @var{p}. ## ## @code{@var{x} = icdf (@var{name}, @var{p}, @var{A}, @var{B}, @var{C})} ## returns the iCDF for the three-parameter distribution family specified by ## @var{name} and the distribution parameters @var{A}, @var{B}, and @var{C}, ## evaluated at the values in @var{p}. ## ## @var{name} must be a char string of the name or the abbreviation of the ## desired quantile distribution function as listed in the followng table. ## The last column shows the number of required parameters that should be parsed ## after @var{x} to the desired iCDF. ## ## @multitable @columnfractions 0.4 0.05 0.2 0.05 0.3 ## @headitem Distribution Name @tab @tab Abbreviation @tab @tab Input Parameters ## @item @qcode{"Beta"} @tab @tab @qcode{"beta"} @tab @tab 2 ## @item @qcode{"Binomial"} @tab @tab @qcode{"bino"} @tab @tab 2 ## @item @qcode{"Birnbaum-Saunders"} @tab @tab @qcode{"bisa"} @tab @tab 2 ## @item @qcode{"Burr"} @tab @tab @qcode{"burr"} @tab @tab 3 ## @item @qcode{"Cauchy"} @tab @tab @qcode{"cauchy"} @tab @tab 2 ## @item @qcode{"Chi-squared"} @tab @tab @qcode{"chi2"} @tab @tab 1 ## @item @qcode{"Extreme Value"} @tab @tab @qcode{"ev"} @tab @tab 2 ## @item @qcode{"Exponential"} @tab @tab @qcode{"exp"} @tab @tab 1 ## @item @qcode{"F-Distribution"} @tab @tab @qcode{"f"} @tab @tab 2 ## @item @qcode{"Gamma"} @tab @tab @qcode{"gam"} @tab @tab 2 ## @item @qcode{"Geometric"} @tab @tab @qcode{"geo"} @tab @tab 1 ## @item @qcode{"Generalized Extreme Value"} @tab @tab @qcode{"gev"} @tab @tab 3 ## @item @qcode{"Generalized Pareto"} @tab @tab @qcode{"gp"} @tab @tab 3 ## @item @qcode{"Gumbel"} @tab @tab @qcode{"gumbel"} @tab @tab 2 ## @item @qcode{"Half-normal"} @tab @tab @qcode{"hn"} @tab @tab 2 ## @item @qcode{"Hypergeometric"} @tab @tab @qcode{"hyge"} @tab @tab 3 ## @item @qcode{"Inverse Gaussian"} @tab @tab @qcode{"invg"} @tab @tab 2 ## @item @qcode{"Laplace"} @tab @tab @qcode{"laplace"} @tab @tab 2 ## @item @qcode{"Logistic"} @tab @tab @qcode{"logi"} @tab @tab 2 ## @item @qcode{"Log-Logistic"} @tab @tab @qcode{"logl"} @tab @tab 2 ## @item @qcode{"Lognormal"} @tab @tab @qcode{"logn"} @tab @tab 2 ## @item @qcode{"Nakagami"} @tab @tab @qcode{"naka"} @tab @tab 2 ## @item @qcode{"Negative Binomial"} @tab @tab @qcode{"nbin"} @tab @tab 2 ## @item @qcode{"Noncentral F-Distribution"} @tab @tab @qcode{"ncf"} @tab @tab 3 ## @item @qcode{"Noncentral Student T"} @tab @tab @qcode{"nct"} @tab @tab 2 ## @item @qcode{"Noncentral Chi-Squared"} @tab @tab @qcode{"ncx2"} @tab @tab 2 ## @item @qcode{"Normal"} @tab @tab @qcode{"norm"} @tab @tab 2 ## @item @qcode{"Poisson"} @tab @tab @qcode{"poiss"} @tab @tab 1 ## @item @qcode{"Rayleigh"} @tab @tab @qcode{"rayl"} @tab @tab 1 ## @item @qcode{"Rician"} @tab @tab @qcode{"rice"} @tab @tab 2 ## @item @qcode{"Student T"} @tab @tab @qcode{"t"} @tab @tab 1 ## @item @qcode{"location-scale T"} @tab @tab @qcode{"tls"} @tab @tab 3 ## @item @qcode{"Triangular"} @tab @tab @qcode{"tri"} @tab @tab 3 ## @item @qcode{"Discrete Uniform"} @tab @tab @qcode{"unid"} @tab @tab 1 ## @item @qcode{"Uniform"} @tab @tab @qcode{"unif"} @tab @tab 2 ## @item @qcode{"Von Mises"} @tab @tab @qcode{"vm"} @tab @tab 2 ## @item @qcode{"Weibull"} @tab @tab @qcode{"wbl"} @tab @tab 2 ## @end multitable ## ## @seealso{icdf, pdf, random, betainv, binoinv, bisainv, burrinv, cauchyinv, ## chi2inv, evinv, expinv, finv, gaminv, geoinv, gevinv, gpinv, gumbelinv, ## hninv, hygeinv, invginv, laplaceinv, logiinv, loglinv, logninv, nakainv, ## nbininv, ncfinv, nctinv, ncx2inv, norminv, poissinv, raylinv, riceinv, ## tinv, triinv, unidinv, unifinv, vminv, wblinv} ## @end deftypefn function x = icdf (name, p, varargin) ## implemented functions persistent allDF = { ... {"beta" , "Beta"}, @betainv, 2, ... {"bino" , "Binomial"}, @binoinv, 2, ... {"bisa" , "Birnbaum-Saunders"}, @bisainv, 2, ... {"burr" , "Burr"}, @burrinv, 3, ... {"cauchy" , "Cauchy"}, @cauchyinv, 2, ... {"chi2" , "Chi-squared"}, @chi2inv, 1, ... {"ev" , "Extreme Value"}, @evinv, 2, ... {"exp" , "Exponential"}, @expinv, 1, ... {"f" , "F-Distribution"}, @finv, 2, ... {"gam" , "Gamma"}, @gaminv, 2, ... {"geo" , "Geometric"}, @geoinv, 1, ... {"gev" , "Generalized Extreme Value"}, @gevinv, 3, ... {"gp" , "Generalized Pareto"}, @gpinv, 3, ... {"gumbel" , "Gumbel"}, @gumbelinv, 2, ... {"hn" , "Half-normal"}, @hninv, 2, ... {"hyge" , "Hypergeometric"}, @hygeinv, 3, ... {"invg" , "Inverse Gaussian"}, @invginv, 2, ... {"laplace" , "Laplace"}, @laplaceinv, 2, ... {"logi" , "Logistic"}, @logiinv, 2, ... {"logl" , "Log-Logistic"}, @loglinv, 2, ... {"logn" , "Lognormal"}, @logninv, 2, ... {"naka" , "Nakagami"}, @nakainv, 2, ... {"nbin" , "Negative Binomial"}, @nbininv, 2, ... {"ncf" , "Noncentral F-Distribution"}, @ncfinv, 3, ... {"nct" , "Noncentral Student T"}, @nctinv, 2, ... {"ncx2" , "Noncentral Chi-squared"}, @ncx2inv, 2, ... {"norm" , "Normal"}, @norminv, 2, ... {"poiss" , "Poisson"}, @poissinv, 1, ... {"rayl" , "Rayleigh"}, @raylinv, 1, ... {"rice" , "Rician"}, @riceinv, 2, ... {"t" , "Student T"}, @tinv, 1, ... {"tls" , "location-scale T"}, @tlsinv, 3, ... {"tri" , "Triangular"}, @triinv, 3, ... {"unid" , "Discrete Uniform"}, @unidinv, 1, ... {"unif" , "Uniform"}, @unifinv, 2, ... {"vm" , "Von Mises"}, @vminv, 2, ... {"wbl" , "Weibull"}, @wblinv, 2}; if (! ischar (name)) error ("icdf: distribution NAME must a char string."); endif ## Check P being numeric and real if (! isnumeric (p)) error ("icdf: P must be numeric."); elseif (! isreal (p)) error ("icdf: values in P must be real."); endif ## Get number of arguments nargs = numel (varargin); ## Get available functions icdfnames = allDF(1:3:end); icdfhandl = allDF(2:3:end); icdf_args = allDF(3:3:end); ## Search for iCDF function idx = cellfun (@(x)any(strcmpi (name, x)), icdfnames); if (any (idx)) if (nargs == icdf_args{idx}) ## Check that all distribution parameters are numeric if (! all (cellfun (@(x)isnumeric(x), (varargin)))) error ("icdf: distribution parameters must be numeric."); endif ## Call appropriate iCDF x = feval (icdfhandl{idx}, p, varargin{:}); else if (icdf_args{idx} == 1) error ("icdf: %s distribution requires 1 parameter.", name); else error ("icdf: %s distribution requires %d parameters.", ... name, icdf_args{idx}); endif endif else error ("icdf: %s distribution is not implemented in Statistics.", name); endif endfunction ## Test results %!shared p %! p = [0.05:0.05:0.5]; %!assert (icdf ("Beta", p, 5, 2), betainv (p, 5, 2)) %!assert (icdf ("beta", p, 5, 2), betainv (p, 5, 2)) %!assert (icdf ("Binomial", p, 5, 2), binoinv (p, 5, 2)) %!assert (icdf ("bino", p, 5, 2), binoinv (p, 5, 2)) %!assert (icdf ("Birnbaum-Saunders", p, 5, 2), bisainv (p, 5, 2)) %!assert (icdf ("bisa", p, 5, 2), bisainv (p, 5, 2)) %!assert (icdf ("Burr", p, 5, 2, 2), burrinv (p, 5, 2, 2)) %!assert (icdf ("burr", p, 5, 2, 2), burrinv (p, 5, 2, 2)) %!assert (icdf ("Cauchy", p, 5, 2), cauchyinv (p, 5, 2)) %!assert (icdf ("cauchy", p, 5, 2), cauchyinv (p, 5, 2)) %!assert (icdf ("Chi-squared", p, 5), chi2inv (p, 5)) %!assert (icdf ("chi2", p, 5), chi2inv (p, 5)) %!assert (icdf ("Extreme Value", p, 5, 2), evinv (p, 5, 2)) %!assert (icdf ("ev", p, 5, 2), evinv (p, 5, 2)) %!assert (icdf ("Exponential", p, 5), expinv (p, 5)) %!assert (icdf ("exp", p, 5), expinv (p, 5)) %!assert (icdf ("F-Distribution", p, 5, 2), finv (p, 5, 2)) %!assert (icdf ("f", p, 5, 2), finv (p, 5, 2)) %!assert (icdf ("Gamma", p, 5, 2), gaminv (p, 5, 2)) %!assert (icdf ("gam", p, 5, 2), gaminv (p, 5, 2)) %!assert (icdf ("Geometric", p, 5), geoinv (p, 5)) %!assert (icdf ("geo", p, 5), geoinv (p, 5)) %!assert (icdf ("Generalized Extreme Value", p, 5, 2, 2), gevinv (p, 5, 2, 2)) %!assert (icdf ("gev", p, 5, 2, 2), gevinv (p, 5, 2, 2)) %!assert (icdf ("Generalized Pareto", p, 5, 2, 2), gpinv (p, 5, 2, 2)) %!assert (icdf ("gp", p, 5, 2, 2), gpinv (p, 5, 2, 2)) %!assert (icdf ("Gumbel", p, 5, 2), gumbelinv (p, 5, 2)) %!assert (icdf ("gumbel", p, 5, 2), gumbelinv (p, 5, 2)) %!assert (icdf ("Half-normal", p, 5, 2), hninv (p, 5, 2)) %!assert (icdf ("hn", p, 5, 2), hninv (p, 5, 2)) %!assert (icdf ("Hypergeometric", p, 5, 2, 2), hygeinv (p, 5, 2, 2)) %!assert (icdf ("hyge", p, 5, 2, 2), hygeinv (p, 5, 2, 2)) %!assert (icdf ("Inverse Gaussian", p, 5, 2), invginv (p, 5, 2)) %!assert (icdf ("invg", p, 5, 2), invginv (p, 5, 2)) %!assert (icdf ("Laplace", p, 5, 2), laplaceinv (p, 5, 2)) %!assert (icdf ("laplace", p, 5, 2), laplaceinv (p, 5, 2)) %!assert (icdf ("Logistic", p, 5, 2), logiinv (p, 5, 2)) %!assert (icdf ("logi", p, 5, 2), logiinv (p, 5, 2)) %!assert (icdf ("Log-Logistic", p, 5, 2), loglinv (p, 5, 2)) %!assert (icdf ("logl", p, 5, 2), loglinv (p, 5, 2)) %!assert (icdf ("Lognormal", p, 5, 2), logninv (p, 5, 2)) %!assert (icdf ("logn", p, 5, 2), logninv (p, 5, 2)) %!assert (icdf ("Nakagami", p, 5, 2), nakainv (p, 5, 2)) %!assert (icdf ("naka", p, 5, 2), nakainv (p, 5, 2)) %!assert (icdf ("Negative Binomial", p, 5, 2), nbininv (p, 5, 2)) %!assert (icdf ("nbin", p, 5, 2), nbininv (p, 5, 2)) %!assert (icdf ("Noncentral F-Distribution", p, 5, 2, 2), ncfinv (p, 5, 2, 2)) %!assert (icdf ("ncf", p, 5, 2, 2), ncfinv (p, 5, 2, 2)) %!assert (icdf ("Noncentral Student T", p, 5, 2), nctinv (p, 5, 2)) %!assert (icdf ("nct", p, 5, 2), nctinv (p, 5, 2)) %!assert (icdf ("Noncentral Chi-Squared", p, 5, 2), ncx2inv (p, 5, 2)) %!assert (icdf ("ncx2", p, 5, 2), ncx2inv (p, 5, 2)) %!assert (icdf ("Normal", p, 5, 2), norminv (p, 5, 2)) %!assert (icdf ("norm", p, 5, 2), norminv (p, 5, 2)) %!assert (icdf ("Poisson", p, 5), poissinv (p, 5)) %!assert (icdf ("poiss", p, 5), poissinv (p, 5)) %!assert (icdf ("Rayleigh", p, 5), raylinv (p, 5)) %!assert (icdf ("rayl", p, 5), raylinv (p, 5)) %!assert (icdf ("Rician", p, 5, 1), riceinv (p, 5, 1)) %!assert (icdf ("rice", p, 5, 1), riceinv (p, 5, 1)) %!assert (icdf ("Student T", p, 5), tinv (p, 5)) %!assert (icdf ("t", p, 5), tinv (p, 5)) %!assert (icdf ("location-scale T", p, 5, 1, 2), tlsinv (p, 5, 1, 2)) %!assert (icdf ("tls", p, 5, 1, 2), tlsinv (p, 5, 1, 2)) %!assert (icdf ("Triangular", p, 5, 2, 2), triinv (p, 5, 2, 2)) %!assert (icdf ("tri", p, 5, 2, 2), triinv (p, 5, 2, 2)) %!assert (icdf ("Discrete Uniform", p, 5), unidinv (p, 5)) %!assert (icdf ("unid", p, 5), unidinv (p, 5)) %!assert (icdf ("Uniform", p, 5, 2), unifinv (p, 5, 2)) %!assert (icdf ("unif", p, 5, 2), unifinv (p, 5, 2)) %!assert (icdf ("Von Mises", p, 5, 2), vminv (p, 5, 2)) %!assert (icdf ("vm", p, 5, 2), vminv (p, 5, 2)) %!assert (icdf ("Weibull", p, 5, 2), wblinv (p, 5, 2)) %!assert (icdf ("wbl", p, 5, 2), wblinv (p, 5, 2)) ## Test input validation %!error icdf (1) %!error icdf ({"beta"}) %!error icdf ("beta", {[1 2 3 4 5]}) %!error icdf ("beta", "text") %!error icdf ("beta", 1+i) %!error ... %! icdf ("Beta", p, "a", 2) %!error ... %! icdf ("Beta", p, 5, "") %!error ... %! icdf ("Beta", p, 5, {2}) %!error icdf ("chi2", p) %!error icdf ("Beta", p, 5) %!error icdf ("Burr", p, 5) %!error icdf ("Burr", p, 5, 2) statistics-release-1.6.3/inst/inconsistent.m000066400000000000000000000102771456127120000212110ustar00rootroot00000000000000## Copyright (C) 2020-2021 Stefano Guidoni ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{Y} =} inconsistent (@var{Z}) ## @deftypefnx {statistics} {@var{Y} =} inconsistent (@var{Z}, @var{d}) ## ## Compute the inconsistency coefficient for each link of a hierarchical cluster ## tree. ## ## Given a hierarchical cluster tree @var{Z} generated by the @code{linkage} ## function, @code{inconsistent} computes the inconsistency coefficient for each ## link of the tree, using all the links down to the @var{d}-th level below that ## link. ## ## The default depth @var{d} is 2, which means that only two levels are ## considered: the level of the computed link and the level below that. ## ## Each row of @var{Y} corresponds to the row of same index of @var{Z}. ## The columns of @var{Y} are respectively: the mean of the heights of the links ## used for the calculation, the standard deviation of the heights of those ## links, the number of links used, the inconsistency coefficient. ## ## @strong{Reference} ## Jain, A., and R. Dubes. Algorithms for Clustering Data. ## Upper Saddle River, NJ: Prentice-Hall, 1988. ## @end deftypefn ## ## @seealso{cluster, clusterdata, dendrogram, linkage, pdist, squareform} function Y = inconsistent (Z, d = 2) ## check the input if (nargin < 1) || (nargin > 2) print_usage (); endif ## MATLAB compatibility: ## when d = 0, which does not make sense, the result of inconsistent is the ## same as d = 1, which is... inconsistent if ((d < 0) || (! isscalar (d)) || (mod (d, 1))) error ("inconsistent: d must be a positive integer scalar"); endif if ((columns (Z) != 3) || (! isnumeric (Z)) || ... (! (max (Z(end, 1:2)) == rows (Z) * 2))) error (["inconsistent: Z must be a matrix generated by the linkage " ... "function"]); endif ## number of observations n = rows (Z) + 1; ## compute the inconsistency coefficient for every link for i = 1:rows (Z) v = inconsistent_recursion (i, d); # nested recursive function - see below Y(i, 1) = mean (v); Y(i, 2) = std (v); Y(i, 3) = length (v); ## the inconsistency coefficient is (current_link_height - mean) / std; ## if the standard deviation is zero, it is zero by definition if (Y(i, 2) != 0) Y(i, 4) = (v(end) - Y(i, 1)) / Y(i, 2); else Y(i, 4) = 0; endif endfor ## recursive function ## while depth > 1 search the links (columns 1 and 2 of Z) below the current ## link and then append the height of the current link to the vector v. ## The height of the starting link should be the last one of the vector. function v = inconsistent_recursion (index, depth) v = []; if (depth > 1) for j = 1:2 if (Z(index, j) > n) new_index = Z(index, j) - n; v = [v (inconsistent_recursion (new_index, depth - 1))]; endif endfor endif v(end+1) = Z(index, 3); endfunction endfunction ## Test input validation %!error inconsistent () %!error inconsistent ([1 2 1], 2, 3) %!error inconsistent (ones (2, 2)) %!error inconsistent ([1 2 1], -1) %!error inconsistent ([1 2 1], 1.3) %!error inconsistent ([1 2 1], [1 1]) %!error inconsistent (ones (2, 3)) ## Test output %!test %! load fisheriris; %! Z = linkage(meas, 'average', 'chebychev'); %! assert (cond (inconsistent (Z)), 39.9, 1e-3); statistics-release-1.6.3/inst/ismissing.m000066400000000000000000000160231456127120000204710ustar00rootroot00000000000000## Copyright (C) 1995-2023 The Octave Project Developers ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{TF} =} ismissing (@var{A}) ## @deftypefnx {statistics} {@var{TF} =} ismissing (@var{A}, @var{indicator}) ## ## Find missing data in a numeric or string array. ## ## Given an input numeric data array, char array, or array of cell strings ## @var{A}, @code{ismissing} returns a logical array @var{TF} with ## the same dimensions as @var{A}, where @code{true} values match missing ## values in the input data. ## ## The optional input @var{indicator} is an array of values that represent ## missing values in the input data. The values which represent missing data ## by default depend on the data type of @var{A}: ## ## @itemize ## @item ## @qcode{NaN}: @code{single}, @code{double}. ## ## @item ## @qcode{' '} (white space): @code{char}. ## ## @item ## @qcode{@{''@}}: string cells. ## @end itemize ## ## Note: logical and numeric data types may be used in any combination ## for @var{A} and @var{indicator}. @var{A} and the indicator values will be ## compared as type double, and the output will have the same class as @var{A}. ## Data types other than those specified above have no defined 'missing' value. ## As such, the TF output for those inputs will always be ## @code{false(size(@var{A}))}. The exception to this is that @var{indicator} ## can be specified for logical and numeric inputs to designate values that ## will register as 'missing'. ## ## @seealso{fillmissing, rmmissing, standardizeMissing} ## @end deftypefn function TF = ismissing (A, indicator) if (nargin < 1) || (nargin > 2) print_usage (); endif ## check "indicator" if (nargin != 2) indicator = []; endif ## if A is an array of cell strings and indicator just a string, ## convert indicator to a cell string with one element if (iscellstr (A) && ischar (indicator) && ! iscellstr (indicator)) indicator = {indicator}; endif if ((! isempty (indicator)) && ((isnumeric (A) && ! (isnumeric (indicator) || islogical (indicator))) || (ischar (A) && ! ischar (indicator)) || (iscellstr (A) && ! (iscellstr (indicator))))) error ("ismissing: 'indicator' and 'A' must have the same data type"); endif ## main logic if (isempty (indicator)) if (isnumeric (A)) ## numeric matrix: just find the NaNs ## integer types have no missing value, but isnan will return false TF = isnan (A); elseif (iscellstr (A)) ## cell strings - find empty cells TF = cellfun ('isempty', A); elseif (ischar (A)) ## char matrix: find the white spaces TF = isspace (A); else ##no missing type defined, return false TF = false (size (A)); endif else ## indicator specified for missing data TF = false (size (A)); if (isnumeric(A) || ischar (A) || islogical (A)) for iter = 1 : numel (indicator) if (isnan (indicator(iter))) TF(isnan(A)) = true; else TF(A == indicator(iter)) = true; endif endfor elseif (iscellstr (A)) for iter = 1 : numel (indicator) TF(strcmp (A, indicator(iter))) = true; endfor else error ("ismissing: indicators not supported for data type '%s'", ... class(A)); endif endif endfunction %!assert (ismissing ([1,NaN,3]), [false,true,false]) %!assert (ismissing ('abcd f'), [false,false,false,false,true,false]) %!assert (ismissing ({'xxx','','xyz'}), [false,true,false]) %!assert (ismissing ({'x','','y'}), [false,true,false]) %!assert (ismissing ({'x','','y';'z','a',''}), logical([0,1,0;0,0,1])) %!assert (ismissing ([1,2;NaN,2]), [false,false;true,false]) %!assert (ismissing ([1,2;NaN,2], 2), [false,true;false,true]) %!assert (ismissing ([1,2;NaN,2], [1 2]), [true,true;false,true]) %!assert (ismissing ([1,2;NaN,2], NaN), [false,false;true,false]) ## test nD array data %!assert (ismissing (cat(3,magic(2),magic(2))), logical (zeros (2,2,2))) %!assert (ismissing (cat(3,magic(2),[1 2;3 NaN])), logical (cat(3,[0,0;0,0],[0,0;0,1]))) %!assert (ismissing ([1 2; 3 4], [5 1; 2 0]), logical([1 1; 0 0])) %!assert (ismissing (cat(3,'f oo','ba r')), logical(cat(3,[0 1 0 0],[0 0 1 0]))) %!assert (ismissing (cat(3,{'foo'},{''},{'bar'})), logical(cat(3,0,1,0))) ## test data type handling %!assert (ismissing (double (NaN)), true) %!assert (ismissing (single (NaN)), true) %!assert (ismissing (' '), true) %!assert (ismissing ({''}), true) %!assert (ismissing ({' '}), false) %!assert (ismissing (double (eye(3)), single (1)), logical(eye(3))) %!assert (ismissing (double (eye(3)), true), logical(eye(3))) %!assert (ismissing (double (eye(3)), int32 (1)), logical(eye(3))) %!assert (ismissing (single (eye(3)), true), logical(eye(3))) %!assert (ismissing (single (eye(3)), double (1)), logical(eye(3))) %!assert (ismissing (single(eye(3)), int32 (1)), logical(eye(3))) ## test data types without missing values %!assert (ismissing ({'123', '', 123}), [false false false]) %!assert (ismissing (logical ([1 0 1])), [false false false]) %!assert (ismissing (int32 ([1 2 3])), [false false false]) %!assert (ismissing (uint32 ([1 2 3])), [false false false]) %!assert (ismissing ({1, 2, 3}), [false false false]) %!assert (ismissing ([struct struct struct]), [false false false]) %!assert (ismissing (logical (eye(3)), true), logical(eye(3))) %!assert (ismissing (logical (eye(3)), double (1)), logical(eye(3))) %!assert (ismissing (logical (eye(3)), single (1)), logical(eye(3))) %!assert (ismissing (logical (eye(3)), int32 (1)), logical(eye(3))) %!assert (ismissing (int32 (eye(3)), int32 (1)), logical(eye(3))) %!assert (ismissing (int32 (eye(3)), true), logical(eye(3))) %!assert (ismissing (int32 (eye(3)), double (1)), logical(eye(3))) %!assert (ismissing (int32 (eye(3)), single (1)), logical(eye(3))) ## test empty input handling %!assert (ismissing ([]), logical([])) %!assert (ismissing (''), logical([])) %!assert (ismissing (ones (0,1)), logical(ones(0,1))) %!assert (ismissing (ones (1,0)), logical(ones(1,0))) %!assert (ismissing (ones (1,2,0)), logical(ones(1,2,0))) ## Test input validation %!error ismissing () %!error <'indicator' and 'A' must have the same> ismissing ([1 2; 3 4], "abc") %!error <'indicator' and 'A' must have the same> ismissing ({"", "", ""}, 1) %!error <'indicator' and 'A' must have the same> ismissing (1, struct) %!error ismissing (struct, 1) statistics-release-1.6.3/inst/isoutlier.m000066400000000000000000001054651456127120000205140ustar00rootroot00000000000000## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{TF} =} isoutlier (@var{x}) ## @deftypefnx {statistics} {@var{TF} =} isoutlier (@var{x}, @var{method}) ## @deftypefnx {statistics} {@var{TF} =} isoutlier (@var{x}, @qcode{"percentiles"}, @var{threshold}) ## @deftypefnx {statistics} {@var{TF} =} isoutlier (@var{x}, @var{movmethod}, @var{window}) ## @deftypefnx {statistics} {@var{TF} =} isoutlier (@dots{}, @var{dim}) ## @deftypefnx {statistics} {@var{TF} =} isoutlier (@dots{}, @var{Name}, @var{Value}) ## @deftypefnx {statistics} {[@var{TF}, @var{L}, @var{U}, @var{C}] =} isoutlier (@dots{}) ## ## Find outliers in data ## ## @code{isoutlier (@var{x})} returns a logical array whose elements are true ## when an outlier is detected in the corresponding element of @var{x}. ## @code{isoutlier} treats NaNs as missing values and removes them. ## ## @itemize ## @item ## If @var{x} is a matrix, then @code{isoutlier} operates on each column of ## @var{x} separately. ## @item ## If @var{x} is a multidimensional array, then @code{isoutlier} operates along ## the first dimension of @var{x} whose size does not equal 1. ## @end itemize ## ## By default, an outlier is a value that is more than three scaled median ## absolute deviations (MAD) from the median. The scaled median is defined as ## @code{c*median(abs(A-median(A)))}, where @code{c=-1/(sqrt(2)*erfcinv(3/2))}. ## ## @code{isoutlier (@var{x}, @var{method})} specifies a method for detecting ## outliers. The following methods are available: ## ## @multitable @columnfractions 0.13 0.02 0.8 ## @headitem Method @tab @tab Description ## @item @qcode{"median"} @tab @tab Outliers are defined as elements more than ## three scaled MAD from the median. ## @item @qcode{"mean"} @tab @tab Outliers are defined as elements more than ## three standard deviations from the mean. ## @item @qcode{"quartiles"} @tab @tab Outliers are defined as elements more ## than 1.5 interquartile ranges above the upper quartile (75 percent) or below ## the lower quartile (25 percent). This method is useful when the data in ## @var{x} is not normally distributed. ## @item @qcode{"grubbs"} @tab @tab Outliers are detected using Grubbs’ test for ## outliers, which removes one outlier per iteration based on hypothesis ## testing. This method assumes that the data in @var{x} is normally ## distributed. ## @item @qcode{"gesd"} @tab @tab Outliers are detected using the generalized ## extreme Studentized deviate test for outliers. This iterative method is ## similar to @qcode{"grubbs"}, but can perform better when there are multiple ## outliers masking each other. ## @end multitable ## ## @code{isoutlier (@var{x}, @qcode{"percentiles"}, @var{threshold})} detects ## outliers based on a percentile thresholds, specified as a two-element row ## vector whose elements are in the interval @math{[0, 100]}. The first element ## indicates the lower percentile threshold, and the second element indicates ## the upper percentile threshold. The first element of threshold must be less ## than the second element. ## ## @code{isoutlier (@var{x}, @var{movmethod}, @var{window})} specifies a moving ## method for detecting outliers. The following methods are available: ## ## @multitable @columnfractions 0.13 0.02 0.8 ## @headitem Method @tab @tab Description ## @item @qcode{"movmedian"} @tab @tab Outliers are defined as elements more ## than three local scaled MAD from the local median over a window length ## specified by @var{window}. ## @item @qcode{"movmean"} @tab @tab Outliers are defined as elements more than ## three local standard deviations from the from the local mean over a window ## length specified by @var{window}. ## @end multitable ## ## @var{window} must be a positive integer scalar or a two-element vector of ## positive integers. When @var{window} is a scalar, if it is an odd number, ## the window is centered about the current element and contains ## @qcode{@var{window} - 1} neighboring elements. If even, then the window is ## centered about the current and previous elements. When @var{window} is a ## two-element vector of positive integers @math{[nb, na]}, the window contains ## the current element, @math{nb} elements before the current element, and ## @math{na} elements after the current element. When @qcode{"SamplePoints"} ## are also specified, @var{window} can take any real positive values (either as ## a scalar or a two-element vector) and in this case, the windows are computed ## relative to the sample points. ## ## @var{dim} specifies the operating dimension and it must be a positive integer ## scalar. If not specified, then, by default, @code{isoutlier} operates along ## the first non-singleton dimension of @var{x}. ## ## The following optional parameters can be specified as @var{Name}/@var{Value} ## paired arguments. ## ## @itemize ## @item @qcode{"SamplePoints"} can be specified as a vector of sample points ## with equal length as the operating dimension. The sample points represent ## the x-axis location of the data and must be sorted and contain unique ## elements. Sample points do not need to be uniformly sampled. By default, ## the vector is @qcode{[1, 2, 3, @dots{}, @var{n}]}, where ## @qcode{@var{n} = size (@var{x}, @var{dim})}. You can use unequally spaced ## @qcode{"SamplePoints"} to define a variable-length window for one of the ## moving methods available. ## ## @item @qcode{"ThresholdFactor"} can be specified as a nonnegative scalar. ## For methods @qcode{"median"} and @qcode{"movmedian"}, the detection threshold ## factor replaces the number of scaled MAD, which is 3 by default. For methods ## @qcode{"mean"} and @qcode{"movmean"}, the detection threshold factor replaces ## the number of standard deviations, which is 3 by default. For methods ## @qcode{"grubbs"} and @qcode{"gesd"}, the detection threshold factor ranges ## from 0 to 1, specifying the critical @math{alpha}-value of the respective ## test, and it is 0.05 by default. For the @qcode{"quartiles"} method, the ## detection threshold factor replaces the number of interquartile ranges, which ## is 1.5 by default. @qcode{"ThresholdFactor"} is not supported for the ## @qcode{"quartiles"} method. ## ## @item @qcode{"MaxNumOutliers"} is only relevant to the @qcode{"gesd"} method ## and it must be a positive integer scalar specifying the maximum number of ## outliers returned by the @qcode{"gesd"} method. By default, it is the ## integer nearest to the 10% of the number of elements along the operating ## dimension in @var{x}. The @qcode{"gesd"} method assumes the nonoutlier input ## data is sampled from an approximate normal distribution. When the data is ## not sampled in this way, the number of returned outliers might exceed the ## @qcode{MaxNumOutliers} value. ## @end itemize ## ## @code{[@var{TF}, @var{L}, @var{U}, @var{C}] = isoutlier (@dots{})} returns ## up to 4 output arguments as described below. ## ## @itemize ## @item @var{TF} is the outlier indicator with the same size a @var{x}. ## ## @item @var{L} is the lower threshold used by the outlier detection method. ## If @var{method} is used for outlier detection, then @var{L} has the same size ## as @var{x} in all dimensions except for the operating dimension where the ## length is 1. If @var{movmethod} is used, then @var{L} has the same size as ## @var{x}. ## ## @item @var{U} is the upper threshold used by the outlier detection method. ## If @var{method} is used for outlier detection, then @var{U} has the same size ## as @var{x} in all dimensions except for the operating dimension where the ## length is 1. If @var{movmethod} is used, then @var{U} has the same size as ## @var{x}. ## ## @item @var{C} is the center value used by the outlier detection method. ## If @var{method} is used for outlier detection, then @var{C} has the same size ## as @var{x} in all dimensions except for the operating dimension where the ## length is 1. If @var{movmethod} is used, then @var{C} has the same size as ## @var{x}. For @qcode{"median"}, @qcode{"movmedian"}, @qcode{"mean"}, and ## @qcode{"movmean"} methods, @var{C} is computed by taking into acount the ## outlier values. For @qcode{"grubbs"} and @qcode{"gesd"} methods, @var{C} is ## computed by excluding the outliers. For the @qcode{"percentiles"} method, ## @var{C} is the average between @var{U} and @var{L} thresholds. ## @end itemize ## ## @seealso{filloutliers, rmoutliers, ismissing} ## @end deftypefn function [TF, L, U, C] = isoutlier (x, varargin) ## Check for valid input data if (nargin < 1) print_usage; endif ## Handle case if X is a scalar if (isscalar (x)) TF = false; L = x; U = x; C = x; return endif ## Add defaults dim = []; method = "median"; window = []; SamplePoints = []; ThresholdFactor = 3; MaxNumOutliers = []; ## MATLAB's constant for scaled Median Absolute Deviation ## c = -1 / (sqrt (2) * erfcinv (3/2)) c = 1.482602218505602; ## Parse exrta arguments while (numel (varargin) > 0) if (ischar (varargin{1})) switch (lower (varargin{1})) case "median" method = "median"; ThresholdFactor = 3; varargin(1) = []; case "mean" method = "mean"; ThresholdFactor = 3; varargin(1) = []; case "quartiles" method = "quartiles"; ThresholdFactor = 1.5; varargin(1) = []; case "grubbs" method = "grubbs"; ThresholdFactor = 0.05; varargin(1) = []; case "gesd" method = "gesd"; ThresholdFactor = 0.05; MaxNumOutliers = []; varargin(1) = []; case "movmedian" method = "movmedian"; window = varargin{2}; if (! isnumeric (window) || numel (window) < 1 || numel (window) > 2 || any (window <= 0)) error (strcat (["isoutlier: WINDOW must be a positive scalar"], ... [" or a two-element vector of positive values"])); endif varargin([1:2]) = []; case "movmean" method = "movmean"; window = varargin{2}; if (! isnumeric (window) || numel (window) < 1 || numel (window) > 2 || any (window <= 0)) error (strcat (["isoutlier: WINDOW must be a positive scalar"], ... [" or a two-element vector of positive values"])); endif varargin([1:2]) = []; case "percentiles" method = "percentiles"; threshold = varargin{2}; if (! isnumeric (threshold) || ! (numel (threshold) == 2)) error (strcat (["isoutlier: THRESHOLD must be a two-element"], ... [" vector whose elements are in the interval"], ... [" [0, 100]."])); endif if (! (threshold(1) < threshold(2)) || threshold(1) < 0 || threshold(2) > 100) error (strcat (["isoutlier: THRESHOLD must be a two-element"], ... [" vector whose elements are in the interval"], ... [" [0, 100]."])); endif varargin([1:2]) = []; case "samplepoints" SamplePoints = varargin{2}; if (! isvector (SamplePoints) || isscalar (SamplePoints)) error ("isoutlier: sample points must be a vector."); endif if (numel (unique (SamplePoints)) != numel (SamplePoints)) error ("isoutlier: sample points must be unique."); endif if (any (sort (SamplePoints) != SamplePoints)) error ("isoutlier: sample points must be sorted."); endif varargin([1:2]) = []; case "thresholdfactor" ThresholdFactor = varargin{2}; if (! isscalar (ThresholdFactor) || ThresholdFactor <= 0) error ("isoutlier: threshold factor must be a nonnegative scalar."); endif varargin([1:2]) = []; case "maxnumoutliers" MaxNumOutliers = varargin{2}; if (! isscalar (MaxNumOutliers) || MaxNumOutliers <= 0 || ! (fix (MaxNumOutliers) == MaxNumOutliers)) error (strcat (["isoutlier: maximum outlier count must be a"], ... [" positive integer scalar."])); endif varargin([1:2]) = []; otherwise error ("isoutlier: invalid input argument."); endswitch elseif (isnumeric (varargin{1})) dim = varargin{1}; if (! fix (dim) == dim || dim < 1 || ! isscalar (dim) || ! isscalar (varargin{1})) error ("isoutlier: DIM must be a positive integer scalar."); endif varargin(1) = []; else error ("isoutlier: invalid input argument."); endif endwhile ## Find 1st operating dimension (if empty) if (isempty (dim)) szx = size (x); (dim = find (szx != 1, 1)) || (dim = 1); endif ## Check for valid WINDOW unless Sample Points are given if (isempty (SamplePoints) && ! isempty (window)) if (! all (fix (window) == window)) error (strcat (["isoutlier: WINDOW must be a positive integer"], ... [" scalar or a two-element vector of positive"], ... [" integers, unless SamplePoints are defined."])); endif endif ## Check for valid value of ThresholdFactor for 'grubbs' and 'geds' methods if (any (strcmpi (method, {"grubbs", "gesd"})) && ThresholdFactor > 1) error (strcat (["isoutlier: threshold factor must must be in [0 1]"], ... [" range for 'grubbs' and 'gesd' methods."])); endif ## Switch methods switch method case "median" [L, U, C] = median_method (x, dim, ThresholdFactor, c); TF = x < L | x > U; case "mean" [L, U, C] = mean_method (x, dim, ThresholdFactor); TF = x < L | x > U; case "quartiles" [L, U, C] = quartiles_method (x, dim, ThresholdFactor); TF = x < L | x > U; case "grubbs" [TF, L, U, C] = grubbs_method (x, dim, ThresholdFactor); case "gesd" [L, U, C] = gesd_method (x, dim, ThresholdFactor, MaxNumOutliers); TF = x < L | x > U; case "movmedian" sp = SamplePoints; [L, U, C] = movmedian_method (x, dim, ThresholdFactor, c, window, sp); TF = x < L | x > U; case "movmean" sp = SamplePoints; [L, U, C] = movmean_method (x, dim, ThresholdFactor, window, sp); TF = x < L | x > U; case "percentiles" [L, U, C] = percentiles_method (x, dim, threshold); TF = x < L | x > U; endswitch endfunction ## Find lower and upper outlier thresholds with median method function [L, U, C] = median_method (x, dim, ThresholdFactor, c) C = median (x, dim, "omitnan"); sMAD = c * mad (x, 1, dim); L = C - ThresholdFactor * sMAD; U = C + ThresholdFactor * sMAD; endfunction ## Find lower and upper outlier thresholds with mean method function [L, U, M] = mean_method (x, dim, ThresholdFactor) M = mean (x, dim, "omitnan"); S = std (x, [], dim, "omitnan"); L = M - ThresholdFactor * S; U = M + ThresholdFactor * S; endfunction ## Find lower and upper outlier thresholds with quartiles method function [L, U, C] = quartiles_method (x, dim, ThresholdFactor) Q = quantile (x, dim); C = Q(3); L = Q(2) - (Q(4) - Q(2)) * ThresholdFactor; U = Q(4) + (Q(4) - Q(2)) * ThresholdFactor; endfunction ## Find lower and upper outlier thresholds with grubbs method function [TF, L, U, C] = grubbs_method (x, dim, ThresholdFactor) ## Move the desired dim to be the 1st dimension (rows) szx = size (x); # size of dimensions N = szx(dim); # elements in operating dimension nd = length (szx); # number of dimensions dperm = [dim, 1:(dim-1), (dim+1):nd]; # permutation of dimensions x = permute (x, dperm); # permute dims to first dimension ncols = prod (szx(dperm(2:end))); # rest of dimensions as single column x = reshape (x, N, ncols); # reshape input ## Create return matrices L = zeros ([1, szx(dperm(2:end))]); U = L; C = L; TF = false (size (x)); ## Apply processing to each column for i = 1:ncols tmp_x = x(:,i); TFvec = [(i-1)*size(x,1)+1:i*size(x,1)]; TFvec(isnan (tmp_x)) = []; tmp_x(isnan (tmp_x)) = []; ## Search for outliers (one at a time) while (true) ## Get descriptive statistics n = length (tmp_x); C(i) = mean (tmp_x); S = std (tmp_x); ## Locate maximum deviation from mean dif_x = abs (tmp_x - C(i)); max_x = max (dif_x); loc_x = find (dif_x == max_x, 1); ## Calculate Grubbs's critical value t_crit = tinv (ThresholdFactor / (2 * n), n - 2); G_crit = ((n - 1) / sqrt (n)) * abs (t_crit) / sqrt (n - 2 + t_crit ^ 2); ## Check hypothesis if (max_x / S > G_crit) tmp_x(loc_x) = []; TF(TFvec(loc_x)) = true; TFvec(loc_x) = []; else break; endif endwhile L(i) = C(i) - S * G_crit; U(i) = C(i) + S * G_crit; endfor ## Restore shape TF = ipermute (TF, dperm); L = ipermute (L, dperm); U = ipermute (U, dperm); C = ipermute (C, dperm); endfunction ## Find lower and upper outlier thresholds with gesd method function [L, U, C] = gesd_method (x, dim, ThresholdFactor, MaxNumOutliers) ## Add default value in MaxNumOutliers (if empty) szx = size (x); N = szx(dim); if (isempty (MaxNumOutliers)) MaxNumOutliers = ceil (N * 0.1); endif ## Move the desired dim to be the 1st dimension (rows) nd = length (szx); # number of dimensions dperm = [dim, 1:(dim-1), (dim+1):nd]; # permutation of dimensions x = permute (x, dperm); # permute dims to first dimension ncols = prod (szx(dperm(2:end))); # rest of dimensions as single column x = reshape (x, N, ncols); # reshape input ## Create return matrices L = zeros ([1, szx(dperm(2:end))]); U = L; C = L; TF = false (size (x)); ## Apply processing to each column for i = 1:ncols tmp_x = x(:,i); vec_x = [(i-1)*size(x,1)+1:i*size(x,1)]; vec_x(isnan (tmp_x)) = []; tmp_x(isnan (tmp_x)) = []; n = length (tmp_x); if (n > 1) mean_x = zeros (MaxNumOutliers,1); S = zeros (MaxNumOutliers,1); lambda = zeros (MaxNumOutliers,1); R = zeros (MaxNumOutliers,1); Ridx = zeros (MaxNumOutliers,1); ## Search for given outliers for j = 1:MaxNumOutliers ## Get descriptive statistics mean_x(j) = mean (tmp_x); S(j) = std (tmp_x); ## Locate maximum deviation from mean dif_x = abs (tmp_x - mean_x(j)); max_x = max (dif_x); loc_x = find (dif_x == max_x, 1); ## Calculate R R(j) = max_x / S(j); tmp_x(loc_x) = []; Ridx(j) = vec_x(loc_x); vec_x(loc_x) = []; ## Calculate lambda pp = 1 - ThresholdFactor / (2 * (n - j + 1)); t = tinv (pp, n - j - 1); lambda(j) = (n - j) * t / sqrt ((n - j - 1 + t .^ 2) * (n - j + 1)); endfor ## Find largest index idx = find (R > lambda, 1, "last"); if (isempty (idx)) TFidx = 1; else TFidx = min (idx + 1, MaxNumOutliers); endif L(i) = mean_x(TFidx) - S(TFidx) * lambda(TFidx); U(i) = mean_x(TFidx) + S(TFidx) * lambda(TFidx); C(i) = mean_x(TFidx); endif endfor ## Restore shape L = ipermute (L, dperm); U = ipermute (U, dperm); C = ipermute (C, dperm); endfunction ## Find lower and upper outlier thresholds with movmedian method function [L, U, C] = movmedian_method (x, dim, ThresholdFactor, c, window, sp); szx = size (x); N = szx(dim); ## Constrain window to the element in the operating dimension if (numel (window) == 1 && window > N) window = N; elseif (numel (window) == 2 && sum (window) > N) window = N; endif if (isempty (sp)) FCN = @(x) median (x, "omitnan"); C = movfun (FCN, x, window, "dim", dim); FCN = @(x) mad (x, 1); MAD = movfun (FCN, x, window, "dim", dim); else ## Check that sample points(sp) have the N elements if (numel (sp) != N) error (strcat (["isoutlier: sample points must have the same size"], ... [" as the operating dimension."])); endif ## Move the desired dim to be the 1st dimension (rows) nd = length (szx); # number of dimensions dperm = [dim, 1:(dim-1), (dim+1):nd]; # permutation of dimensions x = permute (x, dperm); # permute dims to first dimension ncols = prod (szx(dperm(2:end))); # rest of dimensions as single column x = reshape (x, N, ncols); # reshape input ## Find beg+end from window if (numel (window) == 2) w_lo = window(1); w_hi = window(2); else if (mod (window, 2) == 1) w_lo = w_hi = (window - 1) / 2; else w_lo = window / 2; w_hi = w_lo - 1; endif endif ## Create return matrices C = zeros (size (x)); MAD = C; for i = 1:ncols tmp_x = x(:,i); for j = 1:N cp = sp - sp(j); nb = length (cp(cp < 0 & cp >= -w_lo)); na = length (cp(cp > 0 & cp <= w_hi)); sp_ind = [j-nb:j+na]; C(j,i) = median (tmp_x(sp_ind), "omitnan"); MAD(j,i) = mad (tmp_x(sp_ind), 1); endfor endfor ## Restore shape C = ipermute (C, dperm); MAD = ipermute (MAD, dperm); endif ## Compute scaled MAD sMAD = c * MAD; L = C - ThresholdFactor * sMAD; U = C + ThresholdFactor * sMAD; endfunction ## Find lower and upper outlier thresholds with movmean method function [L, U, M] = movmean_method (x, dim, ThresholdFactor, window, sp); ## Constrain window to the element in the operating dimension szx = size (x); N = szx(dim); if (numel (window) == 1 && window > N) window = N; elseif (numel (window) == 2 && sum (window) > N) window = N; endif if (isempty (sp)) FCN = @(x) mean (x, "omitnan"); M = movfun (FCN, x, window, "dim", dim); FCN = @(x) std (x, [], "omitnan"); S = movfun (FCN, x, window, "dim", dim); else ## Check that sample points(sp) have the N elements if (numel (sp) != N) error (strcat (["isoutlier: sample points must have the same size"], ... [" as the operating dimension."])); endif ## Move the desired dim to be the 1st dimension (rows) nd = length (szx); # number of dimensions dperm = [dim, 1:(dim-1), (dim+1):nd]; # permutation of dimensions x = permute (x, dperm); # permute dims to first dimension ncols = prod (szx(dperm(2:end))); # rest of dimensions as single column x = reshape (x, N, ncols); # reshape input ## Find beg+end from window if (numel (window) == 2) w_lo = window(1); w_hi = window(2); else if (mod (window, 2) == 1) w_lo = w_hi = (window - 1) / 2; else w_lo = window / 2; w_hi = w_lo - 1; endif endif ## Create return matrices M = zeros (size (x)); S = M; for i = 1:ncols tmp_x = x(:,i); for j = 1:N cp = sp - sp(j); nb = length (cp(cp < 0 & cp >= -w_lo)); na = length (cp(cp > 0 & cp <= w_hi)); sp_ind = [j-nb:j+na]; M(j,i) = mean (tmp_x(sp_ind), "omitnan"); S(j,i) = std (tmp_x(sp_ind), [], "omitnan"); endfor endfor ## Restore shape M = ipermute (M, dperm); S = ipermute (S, dperm); endif L = M - ThresholdFactor * S; U = M + ThresholdFactor * S; endfunction ## Find lower and upper outlier thresholds with percentiles method function [L, U, C] = percentiles_method (x, dim, threshold) P = [threshold(1)/100, threshold(2)/100]; Q = quantile (x, P, dim); L = Q(1); U = Q(2); C = (L + U) / 2; endfunction %!demo %! A = [57 59 60 100 59 58 57 58 300 61 62 60 62 58 57]; %! TF = isoutlier (A, "mean") %!demo %! ## Use a moving detection method to detect local outliers in a sine wave %! %! x = -2*pi:0.1:2*pi; %! A = sin(x); %! A(47) = 0; %! time = datenum (2023,1,1,0,0,0) + (1/24)*[0:length(x)-1] - 730485; %! TF = isoutlier (A, "movmedian", 5*(1/24), "SamplePoints", time); %! plot (time, A) %! hold on %! plot (time(TF), A(TF), "x") %! datetick ('x', 20, 'keepticks') %! legend ("Original Data", "Outlier Data") %!demo %! ## Locate an outlier in a vector of data and visualize the outlier %! %! x = 1:10; %! A = [60 59 49 49 58 100 61 57 48 58]; %! [TF, L, U, C] = isoutlier (A); %! plot (x, A); %! hold on %! plot (x(TF), A(TF), "x"); %! xlim ([1,10]); %! line ([1,10], [L, L], "Linestyle", ":"); %! text (1.1, L-2, "Lower Threshold"); %! line ([1,10], [U, U], "Linestyle", ":"); %! text (1.1, U-2, "Upper Threshold"); %! line ([1,10], [C, C], "Linestyle", ":"); %! text (1.1, C-3, "Center Value"); %! legend ("Original Data", "Outlier Data"); ## Output validation tests (checked against MATLAB) %!test %! A = [57 59 60 100 59 58 57 58 300 61 62 60 62 58 57]; %! assert (isoutlier (A, "mean"), logical([zeros(1,8) 1 zeros(1,6)])) %! assert (isoutlier (A, "median"), ... %! logical([zeros(1,3) 1 zeros(1,4) 1 zeros(1,6)])) %!test %! A = [57 59 60 100 59 58 57 58 300 61 62 60 62 58 57]; %! [TF, L, U, C] = isoutlier (A, "mean"); %! assert (L, -109.2459044922864, 1e-12) %! assert (U, 264.9792378256198, 1e-12) %! assert (C, 77.8666666666666, 1e-12) %!test %! A = [57 59 60 100 59 58 57 58 300 61 62 60 62 58 57]; %! [TF, L, U, C] = isoutlier (A, "median"); %! assert (L, 50.104386688966386, 1e-12) %! assert (U, 67.895613311033610, 1e-12) %! assert (C, 59) %!test %! A = magic(5) + diag(200*ones(1,5)); %! T = logical (eye (5)); %! assert (isoutlier (A, 2), T) %!test %! A = [57 59 60 100 59 58 57 58 300 61 62 60 62 58 57]; %! [TF, L, U, C] = isoutlier (A, "movmedian", 5); %! l = [54.5522, 52.8283, 54.5522, 54.5522, 54.5522, 53.5522, 53.5522, ... %! 53.5522, 47.6566, 56.5522, 57.5522, 56.5522, 51.1044, 52.3283, 53.5522]; %! u = [63.4478, 66.1717, 63.4478, 63.4478, 63.4478, 62.4478, 62.4478, ... %! 62.4478, 74.3434, 65.4478, 66.4478, 65.4478, 68.8956, 65.6717, 62.4478]; %! c = [59, 59.5, 59, 59, 59, 58, 58, 58, 61, 61, 62, 61, 60, 59, 58]; %! assert (L, l, 1e-4) %! assert (U, u, 1e-4) %! assert (C, c) %!test %! A = [57 59 60 100 59 58 57 58 300 61 62 60 62 58 57]; %! [TF, L, U, C] = isoutlier (A, "movmedian", 5, "SamplePoints", [1:15]); %! l = [54.5522, 52.8283, 54.5522, 54.5522, 54.5522, 53.5522, 53.5522, ... %! 53.5522, 47.6566, 56.5522, 57.5522, 56.5522, 51.1044, 52.3283, 53.5522]; %! u = [63.4478, 66.1717, 63.4478, 63.4478, 63.4478, 62.4478, 62.4478, ... %! 62.4478, 74.3434, 65.4478, 66.4478, 65.4478, 68.8956, 65.6717, 62.4478]; %! c = [59, 59.5, 59, 59, 59, 58, 58, 58, 61, 61, 62, 61, 60, 59, 58]; %! assert (L, l, 1e-4) %! assert (U, u, 1e-4) %! assert (C, c) %!test %! A = [57 59 60 100 59 58 57 58 300 61 62 60 62 58 57]; %! [TF, L, U, C] = isoutlier (A, "movmean", 5); %! l = [54.0841, 6.8872, 11.5608, 12.1518, 11.0210, 10.0112, -218.2840, ... %! -217.2375, -215.1239, -213.4890, -211.3264, 55.5800, 52.9589, ... %! 52.5979, 51.0627]; %! u = [63.2492, 131.1128, 122.4392, 122.2482, 122.5790, 122.7888, 431.0840, ... %! 430.8375, 430.3239, 429.8890, 429.3264, 65.6200, 66.6411, 65.9021, ... %! 66.9373]; %! c = [58.6667, 69, 67, 67.2, 66.8, 66.4, 106.4, 106.8, 107.6, 108.2, 109, ... %! 60.6, 59.8, 59.25, 59]; %! assert (L, l, 1e-4) %! assert (U, u, 1e-4) %! assert (C, c, 1e-4) %!test %! A = [57 59 60 100 59 58 57 58 300 61 62 60 62 58 57]; %! [TF, L, U, C] = isoutlier (A, "movmean", 5, "SamplePoints", [1:15]); %! l = [54.0841, 6.8872, 11.5608, 12.1518, 11.0210, 10.0112, -218.2840, ... %! -217.2375, -215.1239, -213.4890, -211.3264, 55.5800, 52.9589, ... %! 52.5979, 51.0627]; %! u = [63.2492, 131.1128, 122.4392, 122.2482, 122.5790, 122.7888, 431.0840, ... %! 430.8375, 430.3239, 429.8890, 429.3264, 65.6200, 66.6411, 65.9021, ... %! 66.9373]; %! c = [58.6667, 69, 67, 67.2, 66.8, 66.4, 106.4, 106.8, 107.6, 108.2, 109, ... %! 60.6, 59.8, 59.25, 59]; %! assert (L, l, 1e-4) %! assert (U, u, 1e-4) %! assert (C, c, 1e-4) %!test %! A = [57 59 60 100 59 58 57 58 300 61 62 60 62 58 57]; %! [TF, L, U, C] = isoutlier (A, "gesd"); %! assert (TF, logical ([0 0 0 1 0 0 0 0 1 0 0 0 0 0 0])) %! assert (L, 34.235977035439944, 1e-12) %! assert (U, 89.764022964560060, 1e-12) %! assert (C, 62) %!test %! A = [57 59 60 100 59 58 57 58 300 61 62 60 62 58 57]; %! [TF, L, U, C] = isoutlier (A, "gesd", "ThresholdFactor", 0.01); %! assert (TF, logical ([0 0 0 1 0 0 0 0 1 0 0 0 0 0 0])) %! assert (L, 31.489256770616173, 1e-12) %! assert (U, 92.510743229383820, 1e-12) %! assert (C, 62) %!test %! A = [57 59 60 100 59 58 57 58 300 61 62 60 62 58 57]; %! [TF, L, U, C] = isoutlier (A, "gesd", "ThresholdFactor", 5e-10); %! assert (TF, logical ([0 0 0 0 0 0 0 0 1 0 0 0 0 0 0])) %! assert (L, 23.976664158788935, 1e-12) %! assert (U, 100.02333584121110, 1e-12) %! assert (C, 62) %!test %! A = [57 59 60 100 59 58 57 58 300 61 62 60 62 58 57]; %! [TF, L, U, C] = isoutlier (A, "grubbs"); %! assert (TF, logical ([0 0 0 1 0 0 0 0 1 0 0 0 0 0 0])) %! assert (L, 54.642809574646606, 1e-12) %! assert (U, 63.511036579199555, 1e-12) %! assert (C, 59.076923076923080, 1e-12) %!test %! A = [57 59 60 100 59 58 57 58 300 61 62 60 62 58 57]; %! [TF, L, U, C] = isoutlier (A, "grubbs", "ThresholdFactor", 0.01); %! assert (TF, logical ([0 0 0 1 0 0 0 0 1 0 0 0 0 0 0])) %! assert (L, 54.216083184201850, 1e-12) %! assert (U, 63.937762969644310, 1e-12) %! assert (C, 59.076923076923080, 1e-12) %!test %! A = [57 59 60 100 59 58 57 58 300 61 62 60 62 58 57]; %! [TF, L, U, C] = isoutlier (A, "percentiles", [10 90]); %! assert (TF, logical ([0 0 0 0 0 0 0 0 1 0 0 0 0 0 0])) %! assert (L, 57) %! assert (U, 100) %! assert (C, 78.5) %!test %! A = [57 59 60 100 59 58 57 58 300 61 62 60 62 58 57]; %! [TF, L, U, C] = isoutlier (A, "percentiles", [20 80]); %! assert (TF, logical ([1 0 0 1 0 0 1 0 1 0 0 0 0 0 1])) %! assert (L, 57.5) %! assert (U, 62) %! assert (C, 59.75) ## Test input validation %!shared A %! A = [57 59 60 100 59 58 57 58 300 61 62 60 62 58 57]; %!error ... %! isoutlier (A, "movmedian", 0); %!error ... %! isoutlier (A, "movmedian", []); %!error ... %! isoutlier (A, "movmedian", [2 3 4]); %!error ... %! isoutlier (A, "movmedian", 1.4); %!error ... %! isoutlier (A, "movmedian", [0 1]); %!error ... %! isoutlier (A, "movmedian", [2 -1]); %!error ... %! isoutlier (A, "movmedian", {2 3}); %!error ... %! isoutlier (A, "movmedian", "char"); %! %!error ... %! isoutlier (A, "movmean", 0); %!error ... %! isoutlier (A, "movmean", []); %!error ... %! isoutlier (A, "movmean", [2 3 4]); %!error ... %! isoutlier (A, "movmean", 1.4); %!error ... %! isoutlier (A, "movmean", [0 1]); %!error ... %! isoutlier (A, "movmean", [2 -1]); %!error ... %! isoutlier (A, "movmean", {2 3}); %!error ... %! isoutlier (A, "movmean", "char"); %! %!error ... %! isoutlier (A, "percentiles", [-1 90]); %!error ... %! isoutlier (A, "percentiles", [10 -90]); %!error ... %! isoutlier (A, "percentiles", [90]); %!error ... %! isoutlier (A, "percentiles", [90 20]); %!error ... %! isoutlier (A, "percentiles", [90 20]); %!error ... %! isoutlier (A, "percentiles", [10 20 90]); %!error ... %! isoutlier (A, "percentiles", {10 90}); %!error ... %! isoutlier (A, "percentiles", "char"); %! %!error ... %! isoutlier (A, "movmean", 5, "SamplePoints", ones(3,15)); %!error ... %! isoutlier (A, "movmean", 5, "SamplePoints", 15); %!error ... %! isoutlier (A, "movmean", 5, "SamplePoints", [1,1:14]); %!error ... %! isoutlier (A, "movmean", 5, "SamplePoints", [2,1,3:15]); %!error ... %! isoutlier (A, "movmean", 5, "SamplePoints", [1:14]); %! %!error ... %! isoutlier (A, "movmean", 5, "ThresholdFactor", [1:14]); %!error ... %! isoutlier (A, "movmean", 5, "ThresholdFactor", -1); %!error ... %! isoutlier (A, "gesd", "ThresholdFactor", 3); %!error ... %! isoutlier (A, "grubbs", "ThresholdFactor", 3); %! %!error ... %! isoutlier (A, "movmean", 5, "MaxNumOutliers", [1:14]); %!error ... %! isoutlier (A, "movmean", 5, "MaxNumOutliers", -1); %!error ... %! isoutlier (A, "movmean", 5, "MaxNumOutliers", 0); %!error ... %! isoutlier (A, "movmean", 5, "MaxNumOutliers", 1.5); %! %!error ... %! isoutlier (A, {"movmean"}, 5, "SamplePoints", [1:15]); %!error isoutlier (A, {1}); %!error isoutlier (A, true); %!error isoutlier (A, false); %!error isoutlier (A, 0); %!error isoutlier (A, [1 2]); %!error isoutlier (A, -2); statistics-release-1.6.3/inst/jackknife.m000066400000000000000000000125741456127120000204200ustar00rootroot00000000000000## Copyright (C) 2011 Alexander Klein ## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{jackstat} =} jackknife (@var{E}, @var{x}) ## @deftypefnx {statistics} {@var{jackstat} =} jackknife (@var{E}, @var{x}, @dots{}) ## ## Compute jackknife estimates of a parameter taking one or more given samples ## as parameters. ## ## In particular, @var{E} is the estimator to be jackknifed as a function name, ## handle, or inline function, and @var{x} is the sample for which the estimate ## is to be taken. The @var{i}-th entry of @var{jackstat} will contain the ## value of the estimator on the sample @var{x} with its @var{i}-th row omitted. ## ## @example ## @group ## jackstat (@var{i}) = @var{E}(@var{x}(1 : @var{i} - 1, @var{i} + 1 : length(@var{x}))) ## @end group ## @end example ## ## Depending on the number of samples to be used, the estimator must have the ## appropriate form: ## @itemize ## @item ## If only one sample is used, then the estimator need not be concerned with ## cell arrays, for example jackknifing the standard deviation of a sample can ## be performed with @code{@var{jackstat} = jackknife (@@std, rand (100, 1))}. ## @item ## If, however, more than one sample is to be used, the samples must all be of ## equal size, and the estimator must address them as elements of a cell-array, ## in which they are aggregated in their order of appearance: ## @end itemize ## ## @example ## @group ## @var{jackstat} = jackknife (@@(x) std(x@{1@})/var(x@{2@}), ## rand (100, 1), randn (100, 1)) ## @end group ## @end example ## ## If all goes well, a theoretical value @var{P} for the parameter is already ## known, @var{n} is the sample size, ## ## @code{@var{t} = @var{n} * @var{E}(@var{x}) - (@var{n} - 1) * ## mean(@var{jackstat})} ## ## and ## ## @code{@var{v} = sumsq(@var{n} * @var{E}(@var{x}) - (@var{n} - 1) * ## @var{jackstat} - @var{t}) / (@var{n} * (@var{n} - 1))} ## ## then ## ## @code{(@var{t}-@var{P})/sqrt(@var{v})} should follow a t-distribution with ## @var{n}-1 degrees of freedom. ## ## Jackknifing is a well known method to reduce bias. ## Further details can be found in: ## @subheading References ## ## @enumerate ## @item ## Rupert G. Miller. The jackknife - a review. Biometrika (1974), 61(1):1-15. ## doi:10.1093/biomet/61.1.1 ## @item ## Rupert G. Miller. Jackknifing Variances. Ann. Math. Statist. (1968), ## Volume 39, Number 2, 567-582. doi:10.1214/aoms/1177698418 ## @end enumerate ## @end deftypefn function jackstat = jackknife (anEstimator, varargin) ## Convert function name to handle if necessary, or throw an error. if (! strcmp (typeinfo (anEstimator), "function handle")) if (isascii (anEstimator)) anEstimator = str2func (anEstimator); else error (strcat (["jackknife: estimators must be passed as function"], ... [" names or handles."])); endif endif ## Simple jackknifing can be done with a single vector argument, and ## first and foremost with a function that does not care about cell-arrays. if (length (varargin) == 1 && isnumeric (varargin {1})) aSample = varargin{1}; g = length (aSample); jackstat = zeros (1, g); for k = 1:g jackstat (k) = anEstimator (aSample([1:k - 1,k + 1:g])); endfor ## More complicated input requires more work, however. else g = cellfun (@(x) length (x), varargin); if (any (g - g(1))) error ("jackknife: all passed data must be of equal length."); endif g = g(1); jackstat = zeros (1, g); for k = 1:g jackstat(k) = anEstimator (cellfun (@(x) x( [ 1 : k - 1, k + 1 : g ]), ... varargin, "UniformOutput", false)); endfor endif endfunction %!demo %! for k = 1:1000 %! rand ("seed", k); # for reproducibility %! x = rand (10, 1); %! s(k) = std (x); %! jackstat = jackknife (@std, x); %! j(k) = 10 * std (x) - 9 * mean (jackstat); %! endfor %! figure(); %! hist ([s', j'], 0:sqrt(1/12)/10:2*sqrt(1/12)) %!demo %! for k = 1:1000 %! randn ("seed", k); # for reproducibility %! x = randn (1, 50); %! rand ("seed", k); # for reproducibility %! y = rand (1, 50); %! jackstat = jackknife (@(x) std(x{1})/std(x{2}), y, x); %! j(k) = 50 * std (y) / std (x) - 49 * mean (jackstat); %! v(k) = sumsq ((50 * std (y) / std (x) - 49 * jackstat) - j(k)) / (50 * 49); %! endfor %! t = (j - sqrt (1 / 12)) ./ sqrt (v); %! figure(); %! plot (sort (tcdf (t, 49)), ... %! "-;Almost linear mapping indicates good fit with t-distribution.;") ## Test output %!test %! ##Example from Quenouille, Table 1 %! d=[0.18 4.00 1.04 0.85 2.14 1.01 3.01 2.33 1.57 2.19]; %! jackstat = jackknife ( @(x) 1/mean(x), d ); %! assert ( 10 / mean(d) - 9 * mean(jackstat), 0.5240, 1e-5 ); statistics-release-1.6.3/inst/kmeans.m000066400000000000000000000620761456127120000177530ustar00rootroot00000000000000## Copyright (C) 2011 Soren Hauberg ## Copyright (C) 2012 Daniel Ward ## Copyright (C) 2015-2016 Lachlan Andrew ## Copyright (C) 2016 Michael Bentley ## Copyright (C) 2021 Stefano Guidoni ## Copyright (C) 2022-2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{idx} =} kmeans (@var{data}, @var{k}) ## @deftypefnx {statistics} {[@var{idx}, @var{centers}] =} kmeans (@var{data}, @var{k}) ## @deftypefnx {statistics} {[@var{idx}, @var{centers}, @var{sumd}] =} kmeans (@var{data}, @var{k}) ## @deftypefnx {statistics} {[@var{idx}, @var{centers}, @var{sumd}, @var{dist}] =} kmeans (@var{data}, @var{k}) ## @deftypefnx {statistics} {[@dots{}] =} kmeans (@var{data}, @var{k}, @var{param1}, @var{value1}, @dots{}) ## @deftypefnx {statistics} {[@dots{}] =} kmeans (@var{data}, [], @qcode{"start"}, @var{start}, @dots{}) ## ## Perform a @var{k}-means clustering of the @math{NxD} matrix @var{data}. ## ## If parameter @qcode{"start"} is specified, then @var{k} may be empty ## in which case @var{k} is set to the number of rows of @var{start}. ## ## The outputs are: ## ## @multitable @columnfractions 0.15 0.05 0.8 ## @item @var{idx} @tab @tab An @math{Nx1} vector whose @math{i}-th element is ## the class to which row @math{i} of @var{data} is assigned. ## ## @item @var{centers} @tab @tab A @math{KxD} array whose @math{i}-th row is the ## centroid of cluster @math{i}. ## ## @item @var{sumd} @tab @tab A @math{kx1} vector whose @math{i}-th entry is the ## sum of the distances from samples in cluster @math{i} to centroid @math{i}. ## ## @item @var{dist} @tab @tab An @math{Nxk} matrix whose @math{i}@math{j}-th ## element is the distance from sample @math{i} to centroid @math{j}. ## @end multitable ## ## The following parameters may be placed in any order. Each parameter ## must be followed by its value, as in Name-Value pairs. ## ## @multitable @columnfractions 0.15 0.02 0.83 ## @headitem Name @tab @tab Description ## @item @qcode{"Start"} @tab @tab The initialization method for the centroids. ## @end multitable ## ## @multitable @columnfractions 0.04 0.19 0.02 0.75 ## @headitem @tab Value @tab @tab Description ## @item @tab @qcode{"plus"} @tab @tab The k-means++ algorithm. (Default) ## @item @tab @qcode{"sample"} @tab @tab A subset of @math{k} rows from ## @var{data}, sampled uniformly without replacement. ## @item @tab @qcode{"cluster"} @tab @tab Perform a pilot clustering on 10% of ## the rows of @var{data}. ## @item @tab @qcode{"uniform"} @tab @tab Each component of each centroid is ## drawn uniformly from the interval between the maximum and minimum values of ## that component within @var{data}. This performs poorly and is implemented ## only for Matlab compatibility. ## @item @tab @var{numeric matrix} @tab @tab A @math{kxD} matrix of centroid ## starting locations. The rows correspond to seeds. ## @item @tab @var{numeric array} @tab @tab A @math{kxDxr} array of centroid ## starting locations. The third dimension invokes replication of the ## clustering routine. Page @math{r} contains the set of seeds for replicate ## @math{r}. @qcode{kmeans} infers the number of replicates (specified by the ## @qcode{"Replicates"} Name-Value pair argument) from the size of the third ## dimension. ## @end multitable ## ## @multitable @columnfractions 0.15 0.02 0.838 ## @headitem Name @tab @tab Description ## @item @qcode{"Distance"} @tab @tab The distance measure used for partitioning ## and calculating centroids. ## @end multitable ## ## @multitable @columnfractions 0.04 0.19 0.02 0.75 ## @headitem @tab Value @tab @tab Description ## @item @tab @qcode{"sqeuclidean"} @tab @tab The squared Euclidean distance. ## i.e. the sum of the squares of the differences between corresponding ## components. In this case, the centroid is the arithmetic mean of all samples ## in its cluster. This is the only distance for which this algorithm is truly ## "k-means". ## @item @tab @qcode{"cityblock"} @tab @tab The sum metric, or L1 distance, ## i.e. the sum of the absolute differences between corresponding components. ## In this case, the centroid is the median of all samples in its cluster. ## This gives the k-medians algorithm. ## @item @tab @qcode{"cosine"} @tab @tab One minus the cosine of the included ## angle between points (treated as vectors). Each centroid is the mean of the ## points in that cluster, after normalizing those points to unit Euclidean ## length. ## @item @tab @qcode{"correlation"} @tab @tab One minus the sample correlation ## between points (treated as sequences of values). Each centroid is the ## component-wise mean of the points in that cluster, after centering and ## normalizing those points to zero mean and unit standard deviation. ## @item @tab @qcode{"hamming"} @tab @tab The number of components in which the ## sample and the centroid differ. In this case, the centroid is the median of ## all samples in its cluster. Unlike Matlab, Octave allows non-logical ## @var{data}. ## @end multitable ## ## @multitable @columnfractions 0.15 0.02 0.838 ## @headitem Name @tab @tab Description ## @item @qcode{"EmptyAction"} @tab @tab What to do when a centroid is not the ## closest to any data sample. ## @end multitable ## ## @multitable @columnfractions 0.04 0.19 0.02 0.75 ## @headitem @tab Value @tab @tab Description ## @item @tab @qcode{"error"} @tab @tab Throw an error. ## @item @tab @qcode{"singleton"} @tab @tab (Default) Select the row of ## @var{data} that has the highest error and use that as the new centroid. ## @item @tab @qcode{"drop"} @tab @tab Remove the centroid, and continue ## computation with one fewer centroid. The dimensions of the outputs ## @var{centroids} and @var{d} are unchanged, with values for omitted centroids ## replaced by NaN. ## @end multitable ## ## @multitable @columnfractions 0.15 0.02 0.838 ## @headitem Name @tab @tab Description ## @item @qcode{"Display"} @tab @tab Display a text summary. ## @end multitable ## ## @multitable @columnfractions 0.04 0.19 0.02 0.75 ## @headitem @tab Value @tab @tab Description ## @item @tab @qcode{"off"} @tab @tab (Default) Display no summary. ## @item @tab @qcode{"final"} @tab @tab Display a summary for each clustering ## operation. ## @item @tab @qcode{"iter"} @tab @tab Display a summary for each iteration of a ## clustering operation. ## @end multitable ## ## @multitable @columnfractions 0.15 0.02 0.838 ## @headitem Name @tab @tab Value ## @item @qcode{"Replicates"} @tab @tab A positive integer specifying the number ## of independent clusterings to perform. The output values are the values for ## the best clustering, i.e., the one with the smallest value of @var{sumd}. ## If @var{Start} is numeric, then @var{Replicates} defaults to ## (and must equal) the size of the third dimension of @var{Start}. ## Otherwise it defaults to 1. ## @item @qcode{"MaxIter"} @tab @tab The maximum number of iterations to perform ## for each replicate. If the maximum change of any centroid is less than ## 0.001, then the replicate terminates even if @var{MaxIter} iterations have no ## occurred. The default is 100. ## @end multitable ## ## Example: ## ## [~,c] = kmeans (rand(10, 3), 2, "emptyaction", "singleton"); ## ## @seealso{linkage} ## @end deftypefn function [classes, centers, sumd, D] = kmeans (data, k, varargin) [reg, prop] = parseparams (varargin); ## defaults for options emptyaction = "singleton"; start = "plus"; replicates = 1; max_iter = 100; distance = "sqeuclidean"; display = "off"; replicates_set_explicitly = false; ## Remove rows containing NaN / NA, but record which rows are used data_idx = ! any (isnan (data), 2); original_rows = rows (data); data = data(data_idx,:); #used for getting the number of samples n_rows = rows (data); #used for convergence of the centroids err = 1; ## Input checking, validate the matrix if (! isnumeric (data) || ! ismatrix (data) || ! isreal (data)) error ("kmeans: first input argument must be a DxN real data matrix"); elseif (! isnumeric (k)) error ("kmeans: second argument must be numeric"); endif ## Parse options while (length (prop) > 0) if (length (prop) < 2) error ("kmeans: Option '%s' has no argument", prop{1}); endif switch (lower (prop{1})) case "emptyaction" emptyaction = prop{2}; case "start" start = prop{2}; case "maxiter" max_iter = prop{2}; case "distance" distance = prop{2}; case "replicates" replicates = prop{2}; replicates_set_explicitly = true; case "display" display = prop{2}; case {"onlinephase", "options"} warning ("kmeans: Ignoring unimplemented option '%s'", prop{1}); otherwise error ("kmeans: Unknown option %s", prop{1}); endswitch prop = {prop{3:end}}; endwhile ## Process options ## check for the 'emptyaction' property switch (emptyaction) case {"singleton", "error", "drop"} ; otherwise d = [", " disp(emptyaction)] (1:end-1); # strip trailing \n if (length (d) > 20) d = ""; endif error ("kmeans: unsupported empty cluster action parameter%s", d); endswitch ## check for the 'replicates' property if (! isnumeric (replicates) || ! isscalar (replicates) || ! isreal (replicates) || replicates < 1) d = [", " disp(replicates)] (1:end-1); # strip trailing \n if (length (d) > 20) d = ""; endif error ("kmeans: invalid number of replicates%s", d); endif ## check for the 'MaxIter' property if (! isnumeric (max_iter) || ! isscalar (max_iter) || ! isreal (max_iter) || max_iter < 1) d = [", " disp(max_iter)] (1:end-1); # strip trailing \n if (length (d) > 20) d = ""; endif error ("kmeans: invalid MaxIter%s", d); endif ## check for the 'start' property switch (lower (start)) case {"sample", "plus", "cluster"} start = lower (start); case {"uniform"} start = "uniform"; min_data = min (data); range = max (data) - min_data; otherwise if (! isnumeric (start)) d = [", " disp(start)] (1:end-1); # strip trailing \n if (length (d) > 20) d = ""; endif error ("kmeans: invalid start parameter%s", d); endif if (isempty (k)) k = rows (start); elseif (rows (start) != k) error (["kmeans: Number of initializers (%d) " ... "should match number of centroids (%d)"], rows (start), k); endif if (replicates_set_explicitly) if (replicates != size (start, 3)) error (["kmeans: The third dimension of the initializer (%d) " ... "should match the number of replicates (%d)"], ... size (start, 3), replicates); endif else replicates = size (start, 3); endif endswitch ## check for the 'distance' property ## dist returns the distance btwn each row of matrix x and a row vector c switch (lower (distance)) case "sqeuclidean" dist = @(x, c) sumsq (bsxfun (@minus, x, c), 2); centroid = @(x) mean (x, 1); case "cityblock" dist = @(x, c) sum (abs (bsxfun (@minus, x, c)), 2); centroid = @(x) median (x, 1); case "cosine" ## Pre-normalize all data. ## (when Octave implements normr, will use data = normr (data) ) for i = 1:rows (data) data(i,:) = data(i,:) / sqrt (sumsq (data(i,:))); endfor dist = @(x, c) 1 - (x * c') ./ sqrt (sumsq (c)); centroid = @(x) mean (x, 1); ## already normalized case "correlation" ## Pre-normalize all data. data = data - mean (data, 2); ## (when Octave implements normr, will use data = normr (data) ) for i = 1:rows (data) data(i,:) = data(i,:) / sqrt (sumsq (data(i,:))); endfor dist = @(x, c) 1 - (x * (c - mean (c))') ... ./ sqrt (sumsq (c - mean (c))); centroid = @(x) mean (x, 1); ## already normalized case "hamming" dist = @(x, c) sum (bsxfun (@ne, x, c), 2); centroid = @(x) median (x, 1); otherwise error ("kmeans: unsupported distance parameter %s", distance); endswitch ## check for the 'display' property if (! strcmp (display, "off")) display = lower (display); switch (display) case {"off", "final"} ; case "iter" printf ("%6s\t%6s\t%8s\t%12s\n", "iter", "phase", "num", "sum"); otherwise error ("kmeans: invalid display parameter %s", display); endswitch endif ## Done processing options ######################################## ## Now that k has been set (possibly by 'replicates' option), check/use it. if (! isscalar (k)) error ("kmeans: second input argument must be a scalar"); endif ## used to hold the distances from each sample to each class D = zeros (n_rows, k); best = Inf; best_centers = []; for rep = 1:replicates ## keep track of the number of data points that change class old_classes = zeros (rows (data), 1); n_changes = -1; ## check for the 'start' property switch (lower (start)) case "sample" idx = randperm (n_rows, k); centers = data(idx, :); case "plus" # k-means++, by Arthur and Vassilios(?) centers(1,:) = data(randi (n_rows),:); d = inf (n_rows, 1); # Distance to nearest centroid so far for i = 2:k d = min (d, dist (data, centers(i - 1, :))); centers(i,:) = data(find (cumsum (d) > rand * sum (d), 1), :); endfor case "cluster" idx = randperm (n_rows, max (k, ceil (n_rows / 10))); [~, centers] = kmeans (data(idx,:), k, "start", "sample", ... "distance", distance); case "uniform" # vectorised 'min_data + range .* rand' centers = bsxfun (@plus, min_data, bsxfun (@times, range, rand (k, columns (data)))); otherwise centers = start(:,:,rep); endswitch ## Run the algorithm iter = 1; ## Classify once before the loop; to set sumd, and if max_iter == 0 ## Compute distances and classify [D, classes, sumd] = update_dist (data, centers, D, k, dist); while (err > 0.001 && iter++ <= max_iter && n_changes != 0) ## Calculate new centroids replaced_centroids = []; ## Used by "emptyaction = singleton" for i = 1:k ## Get binary vector indicating membership in cluster i membership = (classes == i); ## Check for empty clusters if (! any (membership)) switch emptyaction ## if 'singleton', then find the point that is the ## farthest from any centroid (and not replacing an empty cluster ## from earlier in this pass) and add it to the empty cluster case 'singleton' available = setdiff (1:n_rows, replaced_centroids); [~, idx] = max (min (D(available,:)')); idx = available(idx); replaced_centroids = [replaced_centroids, idx]; classes(idx) = i; membership(idx) = 1; ## if 'drop' then set C and D to NA case 'drop' centers(i,:) = NA; D(i,:) = NA; ## if 'error' then throw the error otherwise error ("kmeans: empty cluster created"); endswitch endif ## end check for empty clusters ## update the centroids if (any (membership)) ## if we didn't "drop" the cluster centers(i, :) = centroid (data(membership, :)); endif endfor ## Compute distances, classes and sums [D, classes, new_sumd] = update_dist (data, centers, D, k, dist); ## calculate the difference in the sum of distances err = sum (sumd - new_sumd); ## update the current sum of distances sumd = new_sumd; ## compute the number of class changes n_changes = sum (old_classes != classes); old_classes = classes; ## display iteration status if (strcmp (display, "iter")) printf ("%6d\t%6d\t%8d\t%12.3f\n", (iter - 1), 1, ... n_changes, sum (sumd)); endif endwhile ## throw a warning if the algorithm did not converge if (iter > max_iter && err > 0.001 && n_changes != 0) warning ("kmeans: failed to converge in %d iterations", max_iter); endif if (sum (sumd) < sum (best) || isinf (best)) best = sumd; best_centers = centers; endif ## display final results if (strcmp (display, "final")) printf ("Replicate %d, %d iterations, total sum of distances = %.3f.\n", ... rep, iter, sum (sumd)); endif endfor centers = best_centers; ## Compute final distances, classes and sums [D, classes, sumd] = update_dist (data, centers, D, k, dist); ## display final results if (strcmp (display, "final") || strcmp (display, "iter")) printf ("Best total sum of distances = %.3f\n", sum (sumd)); endif ## Return with equal size as inputs if (original_rows != rows (data)) final = NA (original_rows,1); final(data_idx) = classes; ## other positions already NaN / NA classes = final; endif endfunction ## Update distances, classes and sums function [D, classes, sumd] = update_dist (data, centers, D, k, dist) for i = 1:k D (:, i) = dist (data, centers(i, :)); endfor [~, classes] = min (D, [], 2); ## calculate the sum of within-class distances sumd = zeros (k, 1); for i = 1:k sumd(i) = sum (D(classes == i,i)); endfor endfunction %!demo %! ## Generate a two-cluster problem %! randn ("seed", 31) # for reproducibility %! C1 = randn (100, 2) + 1; %! randn ("seed", 32) # for reproducibility %! C2 = randn (100, 2) - 1; %! data = [C1; C2]; %! %! ## Perform clustering %! rand ("seed", 1) # for reproducibility %! [idx, centers] = kmeans (data, 2); %! %! ## Plot the result %! figure; %! plot (data (idx==1, 1), data (idx==1, 2), "ro"); %! hold on; %! plot (data (idx==2, 1), data (idx==2, 2), "bs"); %! plot (centers (:, 1), centers (:, 2), "kv", "markersize", 10); %! hold off; %!demo %! ## Cluster data using k-means clustering, then plot the cluster regions %! ## Load Fisher's iris data set and use the petal lengths and widths as %! ## predictors %! %! load fisheriris %! X = meas(:,3:4); %! %! figure; %! plot (X(:,1), X(:,2), "k*", "MarkerSize", 5); %! title ("Fisher's Iris Data"); %! xlabel ("Petal Lengths (cm)"); %! ylabel ("Petal Widths (cm)"); %! %! ## Cluster the data. Specify k = 3 clusters %! rand ("seed", 1) # for reproducibility %! [idx, C] = kmeans (X, 3); %! x1 = min (X(:,1)):0.01:max (X(:,1)); %! x2 = min (X(:,2)):0.01:max (X(:,2)); %! [x1G, x2G] = meshgrid (x1, x2); %! XGrid = [x1G(:), x2G(:)]; %! %! idx2Region = kmeans (XGrid, 3, "MaxIter", 1, "Start", C); %! figure; %! gscatter (XGrid(:,1), XGrid(:,2), idx2Region, ... %! [0, 0.75, 0.75; 0.75, 0, 0.75; 0.75, 0.75, 0], ".."); %! hold on; %! plot (X(:,1), X(:,2), "k*", "MarkerSize", 5); %! title ("Fisher's Iris Data"); %! xlabel ("Petal Lengths (cm)"); %! ylabel ("Petal Widths (cm)"); %! legend ("Region 1", "Region 2", "Region 3", "Data", "Location", "SouthEast"); %! hold off %!demo %! ## Partition Data into Two Clusters %! %! randn ("seed", 1) # for reproducibility %! r1 = randn (100, 2) * 0.75 + ones (100, 2); %! randn ("seed", 2) # for reproducibility %! r2 = randn (100, 2) * 0.5 - ones (100, 2); %! X = [r1; r2]; %! %! figure; %! plot (X(:,1), X(:,2), "."); %! title ("Randomly Generated Data"); %! rand ("seed", 1) # for reproducibility %! [idx, C] = kmeans (X, 2, "Distance", "cityblock", ... %! "Replicates", 5, "Display", "final"); %! figure; %! plot (X(idx==1,1), X(idx==1,2), "r.", "MarkerSize", 12); %! hold on %! plot(X(idx==2,1), X(idx==2,2), "b.", "MarkerSize", 12); %! plot (C(:,1), C(:,2), "kx", "MarkerSize", 15, "LineWidth", 3); %! legend ("Cluster 1", "Cluster 2", "Centroids", "Location", "NorthWest"); %! title ("Cluster Assignments and Centroids"); %! hold off %!demo %! ## Assign New Data to Existing Clusters %! %! ## Generate a training data set using three distributions %! randn ("seed", 5) # for reproducibility %! r1 = randn (100, 2) * 0.75 + ones (100, 2); %! randn ("seed", 7) # for reproducibility %! r2 = randn (100, 2) * 0.5 - ones (100, 2); %! randn ("seed", 9) # for reproducibility %! r3 = randn (100, 2) * 0.75; %! X = [r1; r2; r3]; %! %! ## Partition the training data into three clusters by using kmeans %! %! rand ("seed", 1) # for reproducibility %! [idx, C] = kmeans (X, 3); %! %! ## Plot the clusters and the cluster centroids %! %! figure %! gscatter (X(:,1), X(:,2), idx, "bgm", "***"); %! hold on %! plot (C(:,1), C(:,2), "kx"); %! legend ("Cluster 1", "Cluster 2", "Cluster 3", "Cluster Centroid") %! %! ## Generate a test data set %! randn ("seed", 25) # for reproducibility %! r1 = randn (100, 2) * 0.75 + ones (100, 2); %! randn ("seed", 27) # for reproducibility %! r2 = randn (100, 2) * 0.5 - ones (100, 2); %! randn ("seed", 29) # for reproducibility %! r3 = randn (100, 2) * 0.75; %! Xtest = [r1; r2; r3]; %! %! ## Classify the test data set using the existing clusters %! ## Find the nearest centroid from each test data point by using pdist2 %! %! D = pdist2 (C, Xtest, "euclidean"); %! [group, ~] = find (D == min (D)); %! %! ## Plot the test data and label the test data using idx_test with gscatter %! %! gscatter (Xtest(:,1), Xtest(:,2), group, "bgm", "ooo"); %! legend ("Cluster 1", "Cluster 2", "Cluster 3", "Cluster Centroid", ... %! "Data classified to Cluster 1", "Data classified to Cluster 2", ... %! "Data classified to Cluster 3", "Location", "NorthWest"); %! title ("Assign New Data to Existing Clusters"); ## Test output %!test %! samples = 4; %! dims = 3; %! k = 2; %! [cls, c, d, z] = kmeans (rand (samples,dims), k, "start", rand (k,dims, 5), %! "emptyAction", "singleton"); %! assert (size (cls), [samples, 1]); %! assert (size (c), [k, dims]); %! assert (size (d), [k, 1]); %! assert (size (z), [samples, k]); %!test %! samples = 4; %! dims = 3; %! k = 2; %! [cls, c, d, z] = kmeans (rand (samples,dims), [], "start", rand (k,dims, 5), %! "emptyAction", "singleton"); %! assert (size (cls), [samples, 1]); %! assert (size (c), [k, dims]); %! assert (size (d), [k, 1]); %! assert (size (z), [samples, k]); %!test %! [cls, c] = kmeans ([1 0; 2 0], 2, "start", [8,0;0,8], "emptyaction", "drop"); %! assert (cls, [1; 1]); %! assert (c, [1.5, 0; NA, NA]); %!test %! kmeans (rand (4,3), 2, "start", rand (2,3, 5), "replicates", 5, %! "emptyAction", "singleton"); %!test %! kmeans (rand (3,4), 2, "start", "sample", "emptyAction", "singleton"); %!test %! kmeans (rand (3,4), 2, "start", "plus", "emptyAction", "singleton"); %!test %! kmeans (rand (3,4), 2, "start", "cluster", "emptyAction", "singleton"); %!test %! kmeans (rand (3,4), 2, "start", "uniform", "emptyAction", "singleton"); %!test %! kmeans (rand (4,3), 2, "distance", "sqeuclidean", "emptyAction", "singleton"); %!test %! kmeans (rand (4,3), 2, "distance", "cityblock", "emptyAction", "singleton"); %!test %! kmeans (rand (4,3), 2, "distance", "cosine", "emptyAction", "singleton"); %!test %! kmeans (rand (4,3), 2, "distance", "correlation", "emptyAction", "singleton"); %!test %! kmeans (rand (4,3), 2, "distance", "hamming", "emptyAction", "singleton"); %!test %! kmeans ([1 0; 1.1 0], 2, "start", eye(2), "emptyaction", "singleton"); ## Test input validation %!error kmeans (rand (3,2), 4); %!error kmeans ([1 0; 1.1 0], 2, "start", eye(2), "emptyaction", "panic"); %!error kmeans (rand (4,3), 2, "start", rand (2,3, 5), "replicates", 1); %!error kmeans (rand (4,3), 2, "start", rand (2,2)); %!error kmeans (rand (4,3), 2, "distance", "manhattan"); %!error kmeans (rand (3,4), 2, "start", "normal"); %!error kmeans (rand (4,3), 2, "replicates", i); %!error kmeans (rand (4,3), 2, "replicates", -1); %!error kmeans (rand (4,3), 2, "replicates", []); %!error kmeans (rand (4,3), 2, "replicates", [1 2]); %!error kmeans (rand (4,3), 2, "replicates", "one"); %!error kmeans (rand (4,3), 2, "MAXITER", i); %!error kmeans (rand (4,3), 2, "MaxIter", -1); %!error kmeans (rand (4,3), 2, "maxiter", []); %!error kmeans (rand (4,3), 2, "maxiter", [1 2]); %!error kmeans (rand (4,3), 2, "maxiter", "one"); %!error kmeans ([1 0; 1.1 0], 2, "start", eye(2), "emptyaction", "error"); statistics-release-1.6.3/inst/knnsearch.m000066400000000000000000000660121456127120000204430ustar00rootroot00000000000000## Copyright (C) 2023-2024 Andreas Bertsatos ## Copyright (C) 2023 Mohammed Azmat Khan ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{idx} =} knnsearch (@var{X}, @var{Y}) ## @deftypefnx {statistics} {[@var{idx}, @var{D}] =} knnsearch (@var{X}, @var{Y}) ## @deftypefnx {statistics} {[@dots{}] =} knnsearch (@dots{}, @var{name}, @var{value}) ## ## Find k-nearest neighbors from input data. ## ## @code{@var{idx} = knnsearch (@var{X}, @var{Y})} finds @math{K} nearest ## neighbors in @var{X} for @var{Y}. It returns @var{idx} which contains indices ## of @math{K} nearest neighbors of each row of @var{Y}, If not specified, ## @qcode{@var{K} = 1}. @var{X} must be an @math{NxP} numeric matrix of input ## data, where rows correspond to observations and columns correspond to ## features or variables. @var{Y} is an @math{MxP} numeric matrix with query ## points, which must have the same numbers of column as @var{X}. ## ## @code{[@var{idx}, @var{D}] = knnsearch (@var{X}, @var{Y})} also returns the ## the distances, @var{D}, which correspond to the @math{K} nearest neighbour in ## @var{X} for each @var{Y} ## ## Additional parameters can be specified by @qcode{Name-Value} pair arguments. ## ## @multitable @columnfractions 0.18 0.02 0.8 ## @headitem @var{Name} @tab @tab @var{Value} ## ## @item @qcode{"K"} @tab @tab is the number of nearest neighbors to be found ## in the kNN search. It must be a positive integer value and by default it is ## 1. ## ## @item @qcode{"P"} @tab @tab is the Minkowski distance exponent and it must be ## a positive scalar. This argument is only valid when the selected distance ## metric is @qcode{"minkowski"}. By default it is 2. ## ## @item @qcode{"Scale"} @tab @tab is the scale parameter for the standardized ## Euclidean distance and it must be a nonnegative numeric vector of equal ## length to the number of columns in @var{X}. This argument is only valid when ## the selected distance metric is @qcode{"seuclidean"}, in which case each ## coordinate of @var{X} is scaled by the corresponding element of ## @qcode{"scale"}, as is each query point in @var{Y}. By default, the scale ## parameter is the standard deviation of each coordinate in @var{X}. ## ## @item @qcode{"Cov"} @tab @tab is the covariance matrix for computing the ## mahalanobis distance and it must be a positive definite matrix matching the ## the number of columns in @var{X}. This argument is only valid when the ## selected distance metric is @qcode{"mahalanobis"}. ## ## @item @qcode{"BucketSize"} @tab @tab is the maximum number of data points in ## the leaf node of the Kd-tree and it must be a positive integer. This ## argument is only valid when the selected search method is @qcode{"kdtree"}. ## ## @item @qcode{"SortIndices"} @tab @tab is a boolean flag to sort the returned ## indices in ascending order by distance and it is @qcode{true} by default. ## When the selected search method is @qcode{"exhaustive"} or the ## @qcode{"IncludeTies"} flag is true, @code{knnsearch} always sorts the ## returned indices. ## ## @item @qcode{"Distance"} @tab @tab is the distance metric used by ## @code{knnsearch} as specified below: ## @end multitable ## ## @multitable @columnfractions 0.05 0.2 0.75 ## @item @tab @qcode{"euclidean"} @tab Euclidean distance. ## @item @tab @qcode{"seuclidean"} @tab standardized Euclidean distance. Each ## coordinate difference between the rows in @var{X} and the query matrix ## @var{Y} is scaled by dividing by the corresponding element of the standard ## deviation computed from @var{X}. To specify a different scaling, use the ## @qcode{"Scale"} name-value argument. ## @item @tab @qcode{"cityblock"} @tab City block distance. ## @item @tab @qcode{"chebychev"} @tab Chebychev distance (maximum coordinate ## difference). ## @item @tab @qcode{"minkowski"} @tab Minkowski distance. The default exponent ## is 2. To specify a different exponent, use the @qcode{"P"} name-value ## argument. ## @item @tab @qcode{"mahalanobis"} @tab Mahalanobis distance, computed using a ## positive definite covariance matrix. To change the value of the covariance ## matrix, use the @qcode{"Cov"} name-value argument. ## @item @tab @qcode{"cosine"} @tab Cosine distance. ## @item @tab @qcode{"correlation"} @tab One minus the sample linear correlation ## between observations (treated as sequences of values). ## @item @tab @qcode{"spearman"} @tab One minus the sample Spearman's rank ## correlation between observations (treated as sequences of values). ## @item @tab @qcode{"hamming"} @tab Hamming distance, which is the percentage ## of coordinates that differ. ## @item @tab @qcode{"jaccard"} @tab One minus the Jaccard coefficient, which is ## the percentage of nonzero coordinates that differ. ## @item @tab @var{@@distfun} @tab Custom distance function handle. A distance ## function of the form @code{function @var{D2} = distfun (@var{XI}, @var{YI})}, ## where @var{XI} is a @math{1xP} vector containing a single observation in ## @math{P}-dimensional space, @var{YI} is an @math{NxP} matrix containing an ## arbitrary number of observations in the same @math{P}-dimensional space, and ## @var{D2} is an @math{NxP} vector of distances, where @qcode{(@var{D2}k)} is ## the distance between observations @var{XI} and @qcode{(@var{YI}k,:)}. ## @end multitable ## ## @multitable @columnfractions 0.18 0.02 0.8 ## @item @qcode{"NSMethod"} @tab @tab is the nearest neighbor search method used ## by @code{knnsearch} as specified below. ## @end multitable ## ## @multitable @columnfractions 0.05 0.2 0.75 ## @item @tab @qcode{"kdtree"} @tab Creates and uses a Kd-tree to find nearest ## neighbors. @qcode{"kdtree"} is the default value when the number of columns ## in @var{X} is less than or equal to 10, @var{X} is not sparse, and the ## distance metric is @qcode{"euclidean"}, @qcode{"cityblock"}, ## @qcode{"manhattan"}, @qcode{"chebychev"}, or @qcode{"minkowski"}. Otherwise, ## the default value is @qcode{"exhaustive"}. This argument is only valid when ## the distance metric is one of the four aforementioned metrics. ## @item @tab @qcode{"exhaustive"} @tab Uses the exhaustive search algorithm by ## computing the distance values from all the points in @var{X} to each point in ## @var{Y}. ## @end multitable ## ## @multitable @columnfractions 0.18 0.02 0.8 ## @item @qcode{"IncludeTies"} @tab @tab is a boolean flag to indicate if the ## returned values should contain the indices that have same distance as the ## @math{K^th} neighbor. When @qcode{false}, @code{knnsearch} chooses the ## observation with the smallest index among the observations that have the same ## distance from a query point. When @qcode{true}, @code{knnsearch} includes ## all nearest neighbors whose distances are equal to the @math{K^th} smallest ## distance in the output arguments. To specify @math{K}, use the @qcode{"K"} ## name-value pair argument. ## @end multitable ## ## @seealso{rangesearch, pdist2, fitcknn} ## @end deftypefn function [idx, dist] = knnsearch (X, Y, varargin) ## Check input data if (nargin < 2) error ("knnsearch: too few input arguments."); endif if (size (X, 2) != size (Y, 2)) error ("knnsearch: number of columns in X and Y must match."); endif ## Add default values K = 1; # Number of nearest neighbors P = 2; # Exponent for Minkowski distance S = []; # Scale for the standardized Euclidean distance C = []; # Covariance matrix for Mahalanobis distance BS = 50; # Maximum number of points per leaf node for Kd-tree SI = true; # Sort returned indices according to distance Distance = "euclidean"; # Distance metric to be used NSMethod = []; # Nearest neighbor search method InclTies = false; # Include ties for distance with kth neighbor DistParameter = []; # Distance parameter for pdist2 ## Parse additional parameters in Name/Value pairs PSC = 0; while (numel (varargin) > 0) switch (tolower (varargin{1})) case "k" K = varargin{2}; case "p" P = varargin{2}; PSC += 1; case "scale" S = varargin{2}; PSC += 1; case "cov" C = varargin{2}; PSC += 1; case "bucketsize" BS = varargin{2}; case "sortindices" SI = varargin{2}; case "distance" Distance = varargin{2}; case "nsmethod" NSMethod = varargin{2}; case "includeties" InclTies = varargin{2}; otherwise error ("knnsearch: invalid NAME in optional pairs of arguments."); endswitch varargin(1:2) = []; endwhile ## Check input parameters if (PSC > 1) error ("knnsearch: only a single distance parameter can be defined."); endif if (! isscalar (K) || ! isnumeric (K) || K < 1 || K != round (K)) error ("knnsearch: invalid value of K."); endif if (! isscalar (P) || ! isnumeric (P) || P <= 0) error ("knnsearch: invalid value of Minkowski Exponent."); endif if (! isempty (S)) if (any (S) < 0 || numel (S) != columns (X) || ! strcmpi (Distance, "seuclidean")) error ("knnsearch: invalid value in Scale or the size of Scale."); endif endif if (! isempty (C)) if (! strcmp (Distance, "mahalanobis") || ! ismatrix (C) || ! isnumeric (C)) error (strcat (["knnsearch: invalid value in Cov, Cov can only"], ... [" be given for mahalanobis distance."])); endif endif if (! isscalar (BS) || BS < 0) error ("knnsearch: invalid value of bucketsize."); endif ## Select the appropriate distance parameter if (strcmpi (Distance, "minkowski")) DistParameter = P; elseif (strcmpi (Distance, "seuclidean")) DistParameter = S; elseif (strcmpi (Distance, "mahalanobis")) DistParameter = C; endif ## Check NSMethod and set kdtree as default if the conditions match if (isempty (NSMethod)) ## Set default method 'kdtree' if condintions are satistfied; if (! issparse (X) && (columns (X) <= 10) && ... (strcmpi (Distance, "euclidean") || strcmpi (Distance, "cityblock") || strcmpi (Distance, "minkowski") || strcmpi (Distance, "chebychev"))) NSMethod = "kdtree"; else NSMethod = "exhaustive"; endif else ## Not empty then check if is exhaustive or kdtree if (strcmpi (NSMethod,"kdtree") && ! ( strcmpi (Distance, "euclidean") || strcmpi (Distance, "cityblock") || strcmpi (Distance, "minkowski") || strcmpi (Distance, "chebychev"))) error (strcat (["knnsearch: 'kdtree' cannot be used with"], ... [" the given distance metric."])); endif endif ## Check for NSMethod if (strcmpi (NSMethod, "kdtree")) ## Build kdtree and search the query point ret = buildkdtree (X, BS); ## Check for ties and sortindices if (! InclTies) ## Only return k neighbors ## No need for returning cell dist = []; idx = []; for i = 1:rows (Y) NN = findkdtree (ret, Y(i, :), K, Distance, DistParameter); D = pdist2 (X(NN,:), Y(i,:), Distance, DistParameter); sorted_D = sortrows ([NN, D], [2, 1]); dist = [dist; sorted_D(1:K, 2)']; idx = [idx; sorted_D(1:K, 1)']; endfor if (SI) ## Rows are already sorted by distance dist = (dist); idx = (idx); else dist = (dist); idx = (idx); endif else ## Return all neighbors as cell dist = cell (rows (Y), 1); idx = cell (rows (Y), 1); for i = 1:rows (Y) NN = findkdtree (ret, Y(i, :), K, Distance, DistParameter); D = pdist2 (X(NN,:), Y(i,:), Distance, DistParameter); sorted_D = sortrows ([NN, D], [2, 1]); kth_dist = sorted_D (K, 2); tied_idx = (sorted_D (:, 2) <= kth_dist); dist {i} = sorted_D (tied_idx, 2)'; idx {i} = sorted_D (tied_idx, 1)'; endfor endif else ## Calculate all distances if (K == 1) D = pdist2 (X, Y, Distance, DistParameter); D = reshape (D', size (Y, 1), size (X, 1)); [dist, idx] = min (D, [], 2); else # always sort indices in this case if (InclTies) dist = cell (rows (Y), 1); idx = cell (rows (Y), 1); for i = 1:rows (Y) D = pdist2 (X, Y(i,:), Distance, DistParameter); [dt, id] = sort (D); kth_dist = dt (K); tied_idx = (dt <= kth_dist); dist {i} = dt(tied_idx, :)'; idx {i} = id(tied_idx, :)'; endfor else ## No ties included D = pdist2 (X, Y, Distance, DistParameter); D = reshape (D', size (Y, 1), size (X, 1)); [dist, idx] = sort (D, 2); dist = dist(:,1:K); idx = idx(:,1:K); endif endif endif endfunction ## buildkdtree function ret = buildkdtree_recur (X, r, d, BS) count = length (r); dimen = size (X, 2); if (count == 1) ret = struct ("point", r(1), "dimen", d); else mid = ceil (count / 2); ret = struct ("point", r(mid), "dimen", d); d = mod (d, dimen) + 1; ## Build left sub tree if (mid > 1) left = r(1:mid-1); left_points = X(left,d); [val, left_idx] = sort (left_points); leftr = left(left_idx); ret.left = buildkdtree_recur (X, leftr, d); endif ## Build right sub tree if (count > mid) right = r(mid+1:count); right_points = X(right,d); [val, right_idx] = sort (right_points); rightr = right(right_idx); ret.right = buildkdtree_recur (X, rightr, d); endif endif endfunction ## wrapper function for buildkdtree_recur function ret = buildkdtree (X, BS) [val, r] = sort (X(:,1)); ret = struct ("data", X, "root", buildkdtree_recur (X, r, 1, BS)); endfunction function farthest = kdtree_cand_farthest (X, p, cand, dist, distparam) D = pdist2 (X, p, dist, distparam); [val, index] = max (D'(cand)); farthest = cand (index); endfunction ## function to insert into NN list function inserted = kdtree_cand_insert (X, p, cand, k, point, dist, distparam) if (length (cand) < k) inserted = [cand; point]; else farthest = kdtree_cand_farthest (X, p, cand, dist, distparam); if (pdist2 (cand(find(cand == farthest),:), point, dist, distparam)) inserted = [cand; point]; else farthest = kdtree_cand_farthest (X, p, cand, dist, distparam); cand (find (cand == farthest)) = point; inserted = cand; endif endif endfunction ## function to search in a kd tree function nn = findkdtree_recur (X, node, p, nn, ... k, dist, distparam) point = node.point; d = node.dimen; if (X(point,d) > p(d)) ## Search in left sub tree if (isfield (node, "left")) nn = findkdtree_recur (X, node.left, p, nn, k, dist, distparam); endif ## Add current point if neccessary farthest = kdtree_cand_farthest (X, p, nn, dist, distparam); if (length(nn) < k || pdist2 (X(point,:), p, dist, distparam) <= pdist2 (X(farthest,:), p, dist, distparam)) nn = kdtree_cand_insert (X, p, nn, k, point, dist, distparam); endif ## Search in right sub tree if neccessary farthest = kdtree_cand_farthest (X, p, nn, dist, distparam); radius = pdist2 (X(farthest,:), p, dist, distparam); if (isfield (node, "right") && (length(nn) < k || p(d) + radius > X(point,d))) nn = findkdtree_recur (X, node.right, p, nn, ... k, dist, distparam); endif else ## Search in right sub tree if (isfield (node, "right")) nn = findkdtree_recur (X, node.right, p, nn, k, dist, distparam); endif ## Add current point if neccessary farthest = kdtree_cand_farthest (X, p, nn, dist, distparam); if (length (nn) < k || pdist2 (X(point,:), p, dist, distparam) <= pdist2 (X(farthest,:), p, dist, distparam)) nn = kdtree_cand_insert (X, p, nn, k, point, dist, distparam); endif ## Search in left sub tree if neccessary farthest = kdtree_cand_farthest (X, p, nn, dist, distparam); radius = pdist2 (X(farthest,:), p, dist, distparam); if (isfield (node, "left") && (length (nn) < k || p(d) - radius <= X(point,d))) nn = findkdtree_recur (X, node.left, p, nn, k, dist, distparam); endif endif endfunction ## wrapper function for findkdtree_recur function nn = findkdtree (tree, p, k, dist, distparam) X = tree.data; root = tree.root; nn = findkdtree_recur (X, root, p, [], k, dist, distparam); endfunction %!demo %! ## find 10 nearest neighbour of a point using different distance metrics %! ## and compare the results by plotting %! load fisheriris %! X = meas(:,3:4); %! Y = species; %! point = [5, 1.45]; %! %! ## calculate 10 nearest-neighbours by minkowski distance %! [id, d] = knnsearch (X, point, "K", 10); %! %! ## calculate 10 nearest-neighbours by minkowski distance %! [idm, dm] = knnsearch (X, point, "K", 10, "distance", "minkowski", "p", 5); %! %! ## calculate 10 nearest-neighbours by chebychev distance %! [idc, dc] = knnsearch (X, point, "K", 10, "distance", "chebychev"); %! %! ## plotting the results %! gscatter (X(:,1), X(:,2), species, [.75 .75 0; 0 .75 .75; .75 0 .75], ".", 20); %! title ("Fisher's Iris Data - Nearest Neighbors with different types of distance metrics"); %! xlabel("Petal length (cm)"); %! ylabel("Petal width (cm)"); %! %! line (point(1), point(2), "marker", "X", "color", "k", ... %! "linewidth", 2, "displayname", "query point") %! line (X(id,1), X(id,2), "color", [0.5 0.5 0.5], "marker", "o", ... %! "linestyle", "none", "markersize", 10, "displayname", "eulcidean") %! line (X(idm,1), X(idm,2), "color", [0.5 0.5 0.5], "marker", "d", ... %! "linestyle", "none", "markersize", 10, "displayname", "Minkowski") %! line (X(idc,1), X(idc,2), "color", [0.5 0.5 0.5], "marker", "p", ... %! "linestyle", "none", "markersize", 10, "displayname", "chebychev") %! xlim ([4.5 5.5]); %! ylim ([1 2]); %! axis square; %!demo %! ## knnsearch on iris dataset using kdtree method %! load fisheriris %! X = meas(:,3:4); %! gscatter (X(:,1), X(:,2), species, [.75 .75 0; 0 .75 .75; .75 0 .75], ".", 20); %! title ("Fisher's iris dataset : Nearest Neighbors with kdtree search"); %! %! ## new point to be predicted %! point = [5 1.45]; %! %! line (point(1), point(2), "marker", "X", "color", "k", ... %! "linewidth", 2, "displayname", "query point") %! %! ## knnsearch using kdtree method %! [idx, d] = knnsearch (X, point, "K", 10, "NSMethod", "kdtree"); %! %! ## plotting predicted neighbours %! line (X(idx,1), X(idx,2), "color", [0.5 0.5 0.5], "marker", "o", ... %! "linestyle", "none", "markersize", 10, ... %! "displayname", "nearest neighbour") %! xlim ([4 6]) %! ylim ([1 3]) %! axis square %! ## details of predicted labels %! tabulate (species(idx)) %! %! ctr = point - d(end); %! diameter = 2 * d(end); %! ## Draw a circle around the 10 nearest neighbors. %! h = rectangle ("position", [ctr, diameter, diameter], "curvature", [1 1]); %! %! ## here only 8 neighbours are plotted instead of 10 since the dataset %! ## contains duplicate values ## Test output %!shared X, Y %! X = [1, 2, 3, 4; 2, 3, 4, 5; 3, 4, 5, 6]; %! Y = [1, 2, 2, 3; 2, 3, 3, 4]; %!test %! [idx, D] = knnsearch (X, Y, "Distance", "euclidean"); %! assert (idx, [1; 1]); %! assert (D, ones (2, 1) * sqrt (2)); %!test %! eucldist = @(v,m) sqrt(sumsq(repmat(v,rows(m),1)-m,2)); %! [idx, D] = knnsearch (X, Y, "Distance", eucldist); %! assert (idx, [1; 1]); %! assert (D, ones (2, 1) * sqrt (2)); %!test %! [idx, D] = knnsearch (X, Y, "Distance", "euclidean", "includeties", true); %! assert (iscell (idx), true); %! assert (iscell (D), true) %! assert (idx {1}, [1]); %! assert (idx {2}, [1, 2]); %! assert (D{1}, ones (1, 1) * sqrt (2)); %! assert (D{2}, ones (1, 2) * sqrt (2)); %!test %! [idx, D] = knnsearch (X, Y, "Distance", "euclidean", "k", 2); %! assert (idx, [1, 2; 1, 2]); %! assert (D, [sqrt(2), 3.162277660168380; sqrt(2), sqrt(2)], 1e-14); %!test %! [idx, D] = knnsearch (X, Y, "Distance", "seuclidean"); %! assert (idx, [1; 1]); %! assert (D, ones (2, 1) * sqrt (2)); %!test %! [idx, D] = knnsearch (X, Y, "Distance", "seuclidean", "k", 2); %! assert (idx, [1, 2; 1, 2]); %! assert (D, [sqrt(2), 3.162277660168380; sqrt(2), sqrt(2)], 1e-14); %!test %! xx = [1, 2; 1, 3; 2, 4; 3, 6]; %! yy = [2, 4; 2, 6]; %! [idx, D] = knnsearch (xx, yy, "Distance", "mahalanobis"); %! assert (idx, [3; 2]); %! assert (D, [0; 3.162277660168377], 1e-14); %!test %! [idx, D] = knnsearch (X, Y, "Distance", "minkowski"); %! assert (idx, [1; 1]); %! assert (D, ones (2, 1) * sqrt (2)); %!test %! [idx, D] = knnsearch (X, Y, "Distance", "minkowski", "p", 3); %! assert (idx, [1; 1]); %! assert (D, ones (2, 1) * 1.259921049894873, 1e-14); %!test %! [idx, D] = knnsearch (X, Y, "Distance", "cityblock"); %! assert (idx, [1; 1]); %! assert (D, [2; 2]); %!test %! [idx, D] = knnsearch (X, Y, "Distance", "chebychev"); %! assert (idx, [1; 1]); %! assert (D, [1; 1]); %!test %! [idx, D] = knnsearch (X, Y, "Distance", "cosine"); %! assert (idx, [2; 3]); %! assert (D, [0.005674536395645; 0.002911214328620], 1e-14); %!test %! [idx, D] = knnsearch (X, Y, "Distance", "correlation"); %! assert (idx, [1; 1]); %! assert (D, ones (2, 1) * 0.051316701949486, 1e-14); %!test %! [idx, D] = knnsearch (X, Y, "Distance", "spearman"); %! assert (idx, [1; 1]); %! assert (D, ones (2, 1) * 0.051316701949486, 1e-14); %!test %! [idx, D] = knnsearch (X, Y, "Distance", "hamming"); %! assert (idx, [1; 1]); %! assert (D, [0.5; 0.5]); %!test %! [idx, D] = knnsearch (X, Y, "Distance", "jaccard"); %! assert (idx, [1; 1]); %! assert (D, [0.5; 0.5]); %!test %! [idx, D] = knnsearch (X, Y, "Distance", "jaccard", "k", 2); %! assert (idx, [1, 2; 1, 2]); %! assert (D, [0.5, 1; 0.5, 0.5]); %!test %! a = [1, 5; 1, 2; 2, 2; 1.5, 1.5; 5, 1; 2 -1.34; 1, -3; 4, -4; -3, 1; 8, 9]; %! b = [1, 1]; %! [idx, D] = knnsearch (a, b, "K", 5, "NSMethod", "kdtree", "includeties", true); %! assert (iscell (idx), true); %! assert (iscell (D), true) %! assert (cell2mat (idx), [4, 2, 3, 6, 1, 5, 7, 9]); %! assert (cell2mat (D), [0.7071, 1.0000, 1.4142, 2.5447, 4.0000, 4.0000, 4.0000, 4.0000],1e-4); %!test %! a = [1, 5; 1, 2; 2, 2; 1.5, 1.5; 5, 1; 2 -1.34; 1, -3; 4, -4; -3, 1; 8, 9]; %! b = [1, 1]; %! [idx, D] = knnsearch (a, b, "K", 5, "NSMethod", "exhaustive", "includeties", true); %! assert (iscell (idx), true); %! assert (iscell (D), true) %! assert (cell2mat (idx), [4, 2, 3, 6, 1, 5, 7, 9]); %! assert (cell2mat (D), [0.7071, 1.0000, 1.4142, 2.5447, 4.0000, 4.0000, 4.0000, 4.0000],1e-4); %!test %! a = [1, 5; 1, 2; 2, 2; 1.5, 1.5; 5, 1; 2 -1.34; 1, -3; 4, -4; -3, 1; 8, 9]; %! b = [1, 1]; %! [idx, D] = knnsearch (a, b, "K", 5, "NSMethod", "kdtree", "includeties", false); %! assert (iscell (idx), false); %! assert (iscell (D), false) %! assert (idx, [4, 2, 3, 6, 1]); %! assert (D, [0.7071, 1.0000, 1.4142, 2.5447, 4.0000],1e-4); %!test %! a = [1, 5; 1, 2; 2, 2; 1.5, 1.5; 5, 1; 2 -1.34; 1, -3; 4, -4; -3, 1; 8, 9]; %! b = [1, 1]; %! [idx, D] = knnsearch (a, b, "K", 5, "NSMethod", "exhaustive", "includeties", false); %! assert (iscell (idx), false); %! assert (iscell (D), false) %! assert (idx, [4, 2, 3, 6, 1]); %! assert (D, [0.7071, 1.0000, 1.4142, 2.5447, 4.0000],1e-4); %!test %! load fisheriris %! a = meas; %! b = min(meas); %! [idx, D] = knnsearch (a, b, "K", 5, "NSMethod", "kdtree"); %! assert (idx, [42, 9, 14, 39, 13]); %! assert (D, [0.5099, 0.9950, 1.0050, 1.0536, 1.1874],1e-4); %!test %! load fisheriris %! a = meas; %! b = mean(meas); %! [idx, D] = knnsearch (a, b, "K", 5, "NSMethod", "kdtree"); %! assert (idx, [65, 83, 89, 72, 100]); %! assert (D, [0.3451, 0.3869, 0.4354, 0.4481, 0.4625],1e-4); %!test %! load fisheriris %! a = meas; %! b = max(meas); %! [idx, D] = knnsearch (a, b, "K", 5, "NSMethod", "kdtree"); %! assert (idx, [118, 132, 110, 106, 136]); %! assert (D, [0.7280, 0.9274, 1.3304, 1.5166, 1.6371],1e-4); %! %!test %! load fisheriris %! a = meas; %! b = max(meas); %! [idx, D] = knnsearch (a, b, "K", 5, "includeties", true); %! assert ( iscell (idx), true); %! assert ( iscell (D), true); %! assert (cell2mat (idx), [118, 132, 110, 106, 136]); %! assert (cell2mat (D), [0.7280, 0.9274, 1.3304, 1.5166, 1.6371],1e-4); ## Test input validation %!error knnsearch (1) %!error ... %! knnsearch (ones (4, 5), ones (4)) %!error ... %! knnsearch (ones (4, 2), ones (3, 2), "Distance", "euclidean", "some", "some") %!error ... %! knnsearch (ones (4, 5), ones (1, 5), "scale", ones (1, 5), "P", 3) %!error ... %! knnsearch (ones (4, 5), ones (1, 5), "K", 0) %!error ... %! knnsearch (ones (4, 5), ones (1, 5), "P",-2) %!error ... %! knnsearch (ones (4, 5), ones (1, 5), "scale", ones(4,5), "distance", "euclidean") %!error ... %! knnsearch (ones (4, 5), ones (1, 5), "cov", ["some" "some"]) %!error ... %! knnsearch (ones (4, 5), ones (1, 5), "cov", ones(4,5), "distance", "euclidean") %!error ... %! knnsearch (ones (4, 5), ones (1, 5), "bucketsize", -1) %!error ... %! knnsearch (ones (4, 5), ones (1, 5), "NSmethod", "kdtree", "distance", "cosine") %!error ... %! knnsearch (ones (4, 5), ones (1, 5), "NSmethod", "kdtree", "distance", "mahalanobis") %!error ... %! knnsearch (ones (4, 5), ones (1, 5), "NSmethod", "kdtree", "distance", "correlation") %!error ... %! knnsearch (ones (4, 5), ones (1, 5), "NSmethod", "kdtree", "distance", "seuclidean") %!error ... %! knnsearch (ones (4, 5), ones (1, 5), "NSmethod", "kdtree", "distance", "spearman") %!error ... %! knnsearch (ones (4, 5), ones (1, 5), "NSmethod", "kdtree", "distance", "hamming") %!error ... %! knnsearch (ones (4, 5), ones (1, 5), "NSmethod", "kdtree", "distance", "jaccard") statistics-release-1.6.3/inst/kruskalwallis.m000066400000000000000000000244751456127120000213660ustar00rootroot00000000000000## Copyright (C) 2021 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{p} =} kruskalwallis (@var{x}) ## @deftypefnx {statistics} {@var{p} =} kruskalwallis (@var{x}, @var{group}) ## @deftypefnx {statistics} {@var{p} =} kruskalwallis (@var{x}, @var{group}, @var{displayopt}) ## @deftypefnx {statistics} {[@var{p}, @var{tbl}] =} kruskalwallis (@var{x}, @dots{}) ## @deftypefnx {statistics} {[@var{p}, @var{tbl}, @var{stats}] =} kruskalwallis (@var{x}, @dots{}) ## ## Perform a Kruskal-Wallis test, the non-parametric alternative of a one-way ## analysis of variance (ANOVA), for comparing the means of two or more groups ## of data under the null hypothesis that the groups are drawn from the same ## population, i.e. the group means are equal. ## ## kruskalwallis can take up to three input arguments: ## ## @itemize ## @item ## @var{x} contains the data and it can either be a vector or matrix. ## If @var{x} is a matrix, then each column is treated as a separate group. ## If @var{x} is a vector, then the @var{group} argument is mandatory. ## @item ## @var{group} contains the names for each group. If @var{x} is a matrix, then ## @var{group} can either be a cell array of strings of a character array, with ## one row per column of @var{x}. If you want to omit this argument, enter an ## empty array ([]). If @var{x} is a vector, then @var{group} must be a vector ## of the same lenth, or a string array or cell array of strings with one row ## for each element of @var{x}. @var{x} values corresponding to the same value ## of @var{group} are placed in the same group. ## @item ## @var{displayopt} is an optional parameter for displaying the groups contained ## in the data in a boxplot. If omitted, it is 'on' by default. If group names ## are defined in @var{group}, these are used to identify the groups in the ## boxplot. Use 'off' to omit displaying this figure. ## @end itemize ## ## kruskalwallis can return up to three output arguments: ## ## @itemize ## @item ## @var{p} is the p-value of the null hypothesis that all group means are equal. ## @item ## @var{tbl} is a cell array containing the results in a standard ANOVA table. ## @item ## @var{stats} is a structure containing statistics useful for performing ## a multiple comparison of means with the MULTCOMPARE function. ## @end itemize ## ## If kruskalwallis is called without any output arguments, then it prints the ## results in a one-way ANOVA table to the standard output. It is also printed ## when @var{displayopt} is 'on'. ## ## Examples: ## ## @example ## x = meshgrid (1:6); ## x = x + normrnd (0, 1, 6, 6); ## [p, atab] = kruskalwallis(x); ## @end example ## ## ## @example ## x = ones (50, 4) .* [-2, 0, 1, 5]; ## x = x + normrnd (0, 2, 50, 4); ## group = @{"A", "B", "C", "D"@}; ## kruskalwallis (x, group); ## @end example ## ## @end deftypefn function [p, tbl, stats] = kruskalwallis (x, group, displayopt) ## check for valid number of input arguments narginchk (1, 3); ## add defaults if (nargin < 2) group = []; endif if (nargin < 3) displayopt = 'on'; endif plotdata = ~(strcmp (displayopt, 'off')); ## Convert group to cell array from character array, make it a column if (! isempty (group) && ischar (group)) group = cellstr(group); endif if (size (group, 1) == 1) group = group'; endif ## If X is a matrix, convert it to column vector and create a ## corresponging column vector for groups if (length (x) < prod (size (x))) [n, m] = size (x); x = x(:); gi = reshape (repmat ((1:m), n, 1), n*m, 1); if (length (group) == 0) ## no group names are provided group = gi; elseif (size (group, 1) == m) ## group names exist and match columns group = group(gi,:); else error("X columns and GROUP length do not match."); endif endif ## Identify NaN values (if any) and remove them from X along with ## their corresponding values from group vector nonan = ~isnan (x); x = x(nonan); group = group(nonan, :); ## Convert group to indices and separate names [group_id, group_names] = grp2idx (group); group_id = group_id(:); named = 1; ## Rank data for non-parametric analysis [xr, tieadj] = tieranks (x); ## Get group size and mean for each group groups = size (group_names, 1); xs = zeros (1, groups); xm = xs; for j = 1:groups group_size = find (group_id == j); xs(j) = length (group_size); xm(j) = mean (xr(group_size)); endfor ## Calculate statistics lx = length (xr); ## Number of samples in groups gm = mean (xr); ## Grand mean of groups dfm = length (xm) - 1; ## degrees of freedom for model dfe = lx - dfm - 1; ## degrees of freedom for error SSM = xs .* (xm - gm) * (xm - gm)'; ## Sum of Squares for Model SST = (xr(:) - gm)' * (xr(:) - gm); ## Sum of Squares Total SSE = SST - SSM; ## Sum of Squares Error if (dfm > 0) MSM = SSM / dfm; ## Mean Square for Model else MSM = NaN; endif if (dfe > 0) MSE = SSE / dfe; ## Mean Squared Error else MSE = NaN; endif ## Calculate Chi-sq statistic ChiSq = (12 * SSM) / (lx * (lx + 1)); if (tieadj > 0) ChiSq = ChiSq / (1 - 2 * tieadj / (lx ^ 3 - lx)); end p = 1 - chi2cdf (ChiSq, dfm); ## Create results table (if requested) if (nargout > 1) tbl = {"Source", "SS", "df", "MS", "Chi-sq", "Prob>Chi-sq"; ... "Groups", SSM, dfm, MSM, ChiSq, p; ... "Error", SSE, dfe, MSE, "", ""; ... "Total", SST, dfm + dfe, "", "", ""}; endif ## Create stats structure (if requested) for MULTCOMPARE if (nargout > 2) if (length (group_names) > 0) stats.gnames = group_names; else stats.gnames = strjust (num2str ((1:length (xm))'), 'left'); end stats.n = xs; stats.source = 'kruskalwallis'; stats.meanranks = xm; stats.sumt = 2 * tieadj; endif ## Print results table on screen if no output argument was requested if (nargout == 0 || plotdata) printf(" Kruskal-Wallis ANOVA Table\n"); printf("Source SS df MS Chi-sq Prob>Chi-sq\n"); printf("---------------------------------------------------------\n"); printf("Columns %10.2f %5.0f %10.2f %8.2f %11.5e\n", ... SSM, dfm, MSM, ChiSq, p); printf("Error %10.2f %5.0f %10.2f\n", SSE, dfe, MSE); printf("Total %10.2f %5.0f\n", SST, dfm + dfe); endif ## Plot data using BOXPLOT (unless opted out) if (plotdata) boxplot (x, group_id, 'Notch', "on", 'Labels', group_names); endif endfunction ## local function for computing tied ranks on column vectors function [r, tieadj] = tieranks (x) ## Sort data [value, x_idx] = sort (x); epsx = zeros (size (x)); epsx = epsx(x_idx); x_l = numel (x); ## Count ranks from start (min value) ranks = [1:x_l]'; ## Initialize tie adjustments tieadj = 0; ## Adjust for ties. ties = value(1:x_l-1) + epsx(1:x_l-1) >= value(2:x_l) - epsx(2:x_l); t_idx = find (ties); t_idx(end+1) = 0; maxTies = numel (t_idx); ## Calculate tie adjustments tiecount = 1; while (tiecount < maxTies) tiestart = t_idx(tiecount); ntied = 2; while (t_idx(tiecount+1) == t_idx(tiecount) + 1) tiecount = tiecount + 1; ntied = ntied + 1; endwhile ## Check for tieflag tieadj = tieadj + ntied * (ntied - 1) * (ntied + 1) / 2; ## Average tied ranks ranks(tiestart:tiestart + ntied - 1) = ... sum (ranks(tiestart:tiestart + ntied - 1)) / ntied; tiecount = tiecount + 1; endwhile ## Remap data to original dimensions r(x_idx) = ranks; endfunction %!demo %! x = meshgrid (1:6); %! x = x + normrnd (0, 1, 6, 6); %! kruskalwallis (x, [], 'off'); %!demo %! x = meshgrid (1:6); %! x = x + normrnd (0, 1, 6, 6); %! [p, atab] = kruskalwallis(x); %!demo %! x = ones (30, 4) .* [-2, 0, 1, 5]; %! x = x + normrnd (0, 2, 30, 4); %! group = {"A", "B", "C", "D"}; %! kruskalwallis (x, group); ## testing results against SPSS and R on the GEAR.DAT data file available from ## https://www.itl.nist.gov/div898/handbook/eda/section3/eda354.htm %!test %! data = [1.006, 0.996, 0.998, 1.000, 0.992, 0.993, 1.002, 0.999, 0.994, 1.000, ... %! 0.998, 1.006, 1.000, 1.002, 0.997, 0.998, 0.996, 1.000, 1.006, 0.988, ... %! 0.991, 0.987, 0.997, 0.999, 0.995, 0.994, 1.000, 0.999, 0.996, 0.996, ... %! 1.005, 1.002, 0.994, 1.000, 0.995, 0.994, 0.998, 0.996, 1.002, 0.996, ... %! 0.998, 0.998, 0.982, 0.990, 1.002, 0.984, 0.996, 0.993, 0.980, 0.996, ... %! 1.009, 1.013, 1.009, 0.997, 0.988, 1.002, 0.995, 0.998, 0.981, 0.996, ... %! 0.990, 1.004, 0.996, 1.001, 0.998, 1.000, 1.018, 1.010, 0.996, 1.002, ... %! 0.998, 1.000, 1.006, 1.000, 1.002, 0.996, 0.998, 0.996, 1.002, 1.006, ... %! 1.002, 0.998, 0.996, 0.995, 0.996, 1.004, 1.004, 0.998, 0.999, 0.991, ... %! 0.991, 0.995, 0.984, 0.994, 0.997, 0.997, 0.991, 0.998, 1.004, 0.997]; %! group = [1:10] .* ones (10,10); %! group = group(:); %! [p, tbl] = kruskalwallis (data, group, "off"); %! assert (p, 0.048229, 1e-6); %! assert (tbl{2,5}, 17.03124, 1e-5); %! assert (tbl{2,3}, 9, 0); %! assert (tbl{4,2}, 82655.5, 1e-16); %! data = reshape (data, 10, 10); %! [p, tbl, stats] = kruskalwallis (data, [], "off"); %! assert (p, 0.048229, 1e-6); %! assert (tbl{2,5}, 17.03124, 1e-5); %! assert (tbl{2,3}, 9, 0); %! assert (tbl{4,2}, 82655.5, 1e-16); %! means = [51.85, 60.45, 37.6, 51.1, 29.5, 54.25, 64.55, 66.7, 53.65, 35.35]; %! N = 10 * ones (1, 10); %! assert (stats.meanranks, means, 1e-6); %! assert (length (stats.gnames), 10, 0); %! assert (stats.n, N, 0); statistics-release-1.6.3/inst/kstest.m000066400000000000000000000326201456127120000200020ustar00rootroot00000000000000## Copyright (C) 2022 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{h} =} kstest (@var{x}) ## @deftypefnx {statistics} {@var{h} =} kstest (@var{x}, @var{name}, @var{value}) ## @deftypefnx {statistics} {[@var{h}, @var{p}] =} kstest (@dots{}) ## @deftypefnx {statistics} {[@var{h}, @var{p}, @var{ksstat}, @var{cv}] =} kstest (@dots{}) ## ## Single sample Kolmogorov-Smirnov (K-S) goodness-of-fit hypothesis test. ## ## @code{@var{h} = kstest (@var{x})} performs a Kolmogorov-Smirnov (K-S) test to ## determine if a random sample @var{x} could have come from a standard normal ## distribution. @var{h} indicates the results of the null hypothesis test. ## ## @itemize ## @item @var{h} = 0 => Do not reject the null hypothesis at the 5% significance ## @item @var{h} = 1 => Reject the null hypothesis at the 5% significance ## @end itemize ## ## @var{x} is a vector representing a random sample from some unknown ## distribution with a cumulative distribution function F(X). Missing values ## declared as NaNs in @var{x} are ignored. ## ## @code{@var{h} = kstest (@var{x}, @var{name}, @var{value})} returns ## a test decision for a single-sample K-S test with additional options ## specified by one or more name-value pair arguments as shown below. ## ## @multitable @columnfractions 0.20 0.8 ## @item "alpha" @tab A value @var{alpha} between 0 and 1 specifying the ## significance level. Default is 0.05 for 5% significance. ## ## @item "CDF" @tab CDF is the c.d.f. under the null hypothesis. It can be ## specified either as a function handle or a a function name of an existing ## cdf function or as a two-column matrix. If not provided, the default is ## the standard normal, N(0,1). ## ## @item "tail" @tab A string indicating the type of test: ## @end multitable ## ## @multitable @columnfractions 0.03 0.2 0.77 ## @item @tab "unequal" @tab "F(X) not equal to CDF(X)" (two-sided) (Default) ## ## @item @tab "larger" @tab "F(X) > CDF(X)" (one-sided) ## ## @item @tab "smaller" @tab "CDF(X) < F(X)" (one-sided) ## @end multitable ## ## Let S(X) be the empirical c.d.f. estimated from the sample vector @var{x}, ## F(X) be the corresponding true (but unknown) population c.d.f., and CDF be ## the known input c.d.f. specified under the null hypothesis. ## For @code{tail} = "unequal", "larger", and "smaller", the test statistics are ## max|S(X) - CDF(X)|, max[S(X) - CDF(X)], and max[CDF(X) - S(X)], respectively. ## ## @code{[@var{h}, @var{p}] = kstest (@dots{})} also returns the asymptotic ## p-value @var{p}. ## ## @code{[@var{h}, @var{p}, @var{ksstat}] = kstest (@dots{})} returns the K-S ## test statistic @var{ksstat} defined above for the test type indicated by the ## "tail" option ## ## In the matrix version of CDF, column 1 contains the x-axis data and column 2 ## the corresponding y-axis c.d.f data. Since the K-S test statistic will ## occur at one of the observations in @var{x}, the calculation is most ## efficient when CDF is only specified at the observations in @var{x}. When ## column 1 of CDF represents x-axis points independent of @var{x}, CDF is ## linearly interpolated at the observations found in the vector @var{x}. In ## this case, the interval along the x-axis (the column 1 spread of CDF) must ## span the observations in @var{x} for successful interpolation. ## ## The decision to reject the null hypothesis is based on comparing the p-value ## @var{p} with the "alpha" value, not by comparing the statistic @var{ksstat} ## with the critical value @var{cv}. @var{cv} is computed separately using an ## approximate formula or by interpolation using Miller's approximation table. ## The formula and table cover the range 0.01 <= "alpha" <= 0.2 for two-sided ## tests and 0.005 <= "alpha" <= 0.1 for one-sided tests. CV is returned as NaN ## if "alpha" is outside this range. Since CV is approximate, a comparison of ## @var{ksstat} with @var{cv} may occasionally lead to a different conclusion ## than a comparison of @var{p} with "alpha". ## ## @seealso{kstest2, cdfplot} ## @end deftypefn function [H, pValue, ksstat, cV] = kstest (x, varargin) ## Check input parameters if (nargin < 1) error ("kstest: too few inputs."); endif if (! isvector (x) || ! isreal (x)) error ("kstest: X must be a vector of real numbers."); endif ## Add defaults alpha = 0.05; tail = "unequal"; CDF = []; ## Parse extra parameters if (length (varargin) > 0 && mod (numel (varargin), 2) == 0) [~, prop] = parseparams (varargin); while (!isempty (prop)) switch (lower (prop{1})) case "alpha" alpha = prop{2}; case "tail" tail = prop{2}; case "CDF" CDF = prop{2}; otherwise error ("kstest: unknown option %s", prop{1}); endswitch prop = prop(3:end); endwhile elseif (mod (numel (varargin), 2) != 0) error ("kstest: optional parameters must be in name/value pairs."); endif ## Check for valid alpha and tail parameters if (! isnumeric (alpha) || isnan (alpha) || ! isscalar (alpha) ... || alpha <= 0 || alpha >= 1) error ("kstest: alpha must be a numeric scalar in the range (0,1)."); endif if (! isa (tail, 'char')) error ("kstest: tail argument must be a string"); elseif (sum (strcmpi (tail, {"unequal", "larger", "smaller"})) < 1) error ("kstest: tail value must be either 'both', right' or 'left'."); endif ## Remove NaNs, get sample size and compute empirical cdf x(isnan (x)) = []; n = length(x); [sampleCDF, x] = ecdf (x); ## Remove 1st element x = x(2:end); ## Check the hypothesized CDF specified under the null hypothesis. ## If CDF is a handle if (isa (CDF, "function_handle") || isa (CDF, "char")) xCDF = x; yCDF = feval (CDF, x); ## If CDF is numerical elseif (! isempty (CDF) && isnumeric (CDF)) if (size (CDF, 2) != 2) error ("kstest: numerical CDF should have only 2 columns."); endif CDF(isnan (sum (CDF, 2)),:) = []; if (size (CDF, 1) == 0) error ("kstest: numerical CDF should have at least one row."); endif ## Sort numerical CDF [xCDF, i] = sort (CDF(:,1)); yCDF = CDF(i,2); ## Check that numerical CDF is incrementally sorted ydiff = diff (yCDF); if (any (ydiff < 0)) error("kstest: non-incrementing numerical CDF"); endif ## Remove duplicates. Check for consistency rd = find (diff (xCDF) == 0); if (! isempty (rm)) if (! all (ydiff(rd) == 0)) error ("kstest: wrong duplicates in numericl CDF."); endif xCDF(rd) = []; yCDF(rd) = []; endif ## If CDF is empty, use standard normal distribution: x ~ N(0,1) else xCDF = x; yCDF = normcdf (x, 0, 1); endif ## Check if CDF is specified at the observations in X and assign 2nd column ## of numerical CDF to null CDF if (isequal (x, xCDF)) nCDF = yCDF; ## Otherwise interpolate the numerical CDF to assign values to the null CDF else ## Check that 1st column range bounds the observations in X if (x(1) < xCDF(1) || x(end) > xCDF(end)) error ("kstest: wrong span in CDF."); endif nCDF = interp1 (xCDF, yCDF, x); endif ## Calculate the suitable KS statistic according to tail switch (tail) case "unequal" # 2-sided test: T = max|S(x) - CDF(x)|. delta1 = sampleCDF(1:end - 1) - nCDF; delta2 = sampleCDF(2:end) - nCDF; deltaCDF = abs ([delta1; delta2]); case "smaller" # 1-sided test: T = max[CDF(x) - S(x)]. delta1 = nCDF - sampleCDF(1:end - 1); delta2 = nCDF - sampleCDF(2:end); deltaCDF = [delta1; delta2]; case "larger" # 1-sided test: T = max[S(x) - CDF(x)]. delta1 = sampleCDF(1:end - 1) - nCDF; delta2 = sampleCDF(2:end) - nCDF; deltaCDF = [delta1; delta2]; endswitch ksstat = max(deltaCDF); ## Compute the asymptotic P-value approximation if (strcmpi (tail, "unequal")) # 2-sided test s = n*ksstat^2; ## For d values that are in the far tail of the distribution (i.e. ## p-values > .999), the following lines will speed up the computation ## significantly, and provide accuracy up to 7 digits. if ((s > 7.24) ||((s > 3.76) && (n > 99))) pValue = 2*exp(-(2.000071+.331/sqrt(n)+1.409/n)*s); else ## Express d as d = (k-h)/n, where k is a +ve integer and 0 < h < 1. k = ceil (ksstat * n); h = k - ksstat * n; m = 2 * k - 1; ## Create the H matrix, according to Marsaglia et al. if (m > 1) c = 1 ./ gamma ((1:m)' + 1); r = zeros (1,m); r(1) = 1; r(2) = 1; T = toeplitz (c, r); T(:,1) = T(:,1) - (h .^ (1:m)') ./ gamma ((1:m)' + 1); T(m,:) = fliplr (T(:,1)'); T(m,1) = (1 - 2 * h ^ m + max (0, 2 * h - 1) ^m) / gamma (m+1); else T = (1 - 2 * h ^ m + max (0, 2 * h - 1) ^ m) / gamma (m+1); endif ## Scaling before raising the matrix to a power if (! isscalar (T)) lmax = max (eig (T)); T = (T ./ lmax) ^ n; else lmax = 1; endif pValue = 1 - exp (gammaln (n+1) + n * log (lmax) - n * log (n)) * T(k,k); endif else # 1-sided test t = n * ksstat; k = ceil (t):n; pValue = sum (exp (log (t) - n * log (n) + gammaln (n + 1) ... - gammaln (k + 1) - gammaln (n - k + 1) + k .* log (k - t) ... + (n - k - 1) .* log (t + n - k))); endif ## Return hypothesis test H = (pValue < alpha); ## Calculate critical Value (cV) if requested if (nargout > 3) ## The critical value table used below is expressed in reference to a ## 1-sided significance level. Hence alpha is halved for a two-sided test. if (strcmpi (tail, "unequal")) # 2-sided test alpha1 = alpha / 2; else # 1-sided test alpha1 = alpha; endif if ((alpha1 >= 0.005) && (alpha1 <= 0.10)) ## If the sample size 'n' is greater than 20, use Miller's approximation ## Otherwise interpolate into his 'exact' table. if (n <= 20) # Small sample exact values. % Exact K-S test critical values based on Miller's approximation. a1 = [0.00500, 0.01000, 0.02500, 0.05000, 0.10000]'; exact = [0.99500, 0.99000, 0.97500, 0.95000, 0.90000; ... 0.92929, 0.90000, 0.84189, 0.77639, 0.68377; ... 0.82900, 0.78456, 0.70760, 0.63604, 0.56481; ... 0.73424, 0.68887, 0.62394, 0.56522, 0.49265; ... 0.66853, 0.62718, 0.56328, 0.50945, 0.44698; ... 0.61661, 0.57741, 0.51926, 0.46799, 0.41037; ... 0.57581, 0.53844, 0.48342, 0.43607, 0.38148; ... 0.54179, 0.50654, 0.45427, 0.40962, 0.35831; ... 0.51332, 0.47960, 0.43001, 0.38746, 0.33910; ... 0.48893, 0.45662, 0.40925, 0.36866, 0.32260; ... 0.46770, 0.43670, 0.39122, 0.35242, 0.30829; ... 0.44905, 0.41918, 0.37543, 0.33815, 0.29577; ... 0.43247, 0.40362, 0.36143, 0.32549, 0.28470; ... 0.41762, 0.38970, 0.34890, 0.31417, 0.27481; ... 0.40420, 0.37713, 0.33760, 0.30397, 0.26588; ... 0.39201, 0.36571, 0.32733, 0.29472, 0.25778; ... 0.38086, 0.35528, 0.31796, 0.28627, 0.25039; ... 0.37062, 0.34569, 0.30936, 0.27851, 0.24360; ... 0.36117, 0.33685, 0.30143, 0.27136, 0.23735; ... 0.35241, 0.32866, 0.29408, 0.26473, 0.23156]; cV = spline (a1 , exact(n,:)' , alpha1); else # Large sample approximate values. A = 0.09037 * (-log10 (alpha1)) .^ 1.5 + 0.01515 * ... log10 (alpha1) .^ 2 - 0.08467 * alpha1 - 0.11143; asymptoticStat = sqrt (-0.5 * log (alpha1) ./ n); cV = asymptoticStat - 0.16693 ./ n - A ./ n .^ 1.5; cV = min (cV, 1 - alpha1); endif else cV = NaN; endif endif endfunction ## Test input %!error kstest () %!error kstest (ones(2,4)) %!error kstest ([2,3,5,7,3+3i]) %!error kstest ([2,3,4,5,6],"tail") %!error kstest ([2,3,4,5,6],"tail", "whatever") %!error kstest ([2,3,4,5,6],"badoption", 0.51) %!error kstest ([2,3,4,5,6],"tail", 0) %!error kstest ([2,3,4,5,6],"alpha", 0) %!error kstest ([2,3,4,5,6],"alpha", NaN) %!error kstest ([NaN,NaN,NaN,NaN,NaN],"tail", "unequal") %!error kstest ([2,3,4,5,6],"alpha", 0.05, "CDF", [2,3,4;1,3,4;1,2,1]) ## Test results %!test %! load examgrades %! [h, p] = kstest (grades(:,1)); %! assert (h, true); %! assert (p, 7.58603305206105e-107, 1e-14); %!test %! load stockreturns %! x = stocks(:,3); %! [h,p,k,c] = kstest (x, "Tail", "larger"); %! assert (h, true); %! assert (p, 5.085438806199252e-05, 1e-14); %! assert (k, 0.2197, 1e-4); %! assert (c, 0.1207, 1e-4); statistics-release-1.6.3/inst/kstest2.m000066400000000000000000000166771456127120000201020ustar00rootroot00000000000000## Copyright (C) 2022 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{h} =} kstest2 (@var{x1}, @var{x2}) ## @deftypefnx {statistics} {@var{h} =} kstest2 (@var{x1}, @var{x2}, @var{name}, @var{value}) ## @deftypefnx {statistics} {[@var{h}, @var{p}] =} kstest2 (@dots{}) ## @deftypefnx {statistics} {[@var{h}, @var{p}, @var{ks2stat}] =} kstest2 (@dots{}) ## ## Two-sample Kolmogorov-Smirnov goodness-of-fit hypothesis test. ## ## @code{@var{h} = kstest2 (@var{x1}, @var{x2})} returns a test decision for the ## null hypothesis that the data in vectors @var{x1} and @var{x2} are from the ## same continuous distribution, using the two-sample Kolmogorov-Smirnov test. ## The alternative hypothesis is that @var{x1} and @var{x2} are from different ## continuous distributions. The result @var{h} is 1 if the test rejects the ## null hypothesis at the 5% significance level, and 0 otherwise. ## ## @code{@var{h} = kstest2 (@var{x1}, @var{x2}, @var{name}, @var{value})} ## returns a test decision for a two-sample Kolmogorov-Smirnov test with ## additional options specified by one or more name-value pair arguments as ## shown below. ## ## @multitable @columnfractions 0.20 0.8 ## @item "alpha" @tab A value @var{alpha} between 0 and 1 specifying the ## significance level. Default is 0.05 for 5% significance. ## ## @item "tail" @tab A string indicating the type of test: ## @end multitable ## ## @multitable @columnfractions 0.03 0.2 0.77 ## @item @tab "unequal" @tab "F(X1) not equal to F(X2)" (two-sided) [Default] ## ## @item @tab "larger" @tab "F(X1) > F(X2)" (one-sided) ## ## @item @tab "smaller" @tab "F(X1) < F(X2)" (one-sided) ## @end multitable ## ## The two-sided test uses the maximum absolute difference between the cdfs of ## the distributions of the two data vectors. The test statistic is ## @code{D* = max(|F1(x) - F2(x)|)}, where F1(x) is the proportion of @var{x1} ## values less or equal to x and F2(x) is the proportion of @var{x2} values less ## than or equal to x. The one-sided test uses the actual value of the ## difference between the cdfs of the distributions of the two data vectors ## rather than the absolute value. The test statistic is ## @code{D* = max(F1(x) - F2(x))} or @code{D* = max(F2(x) - F1(x))} for ## @code{tail} = "larger" or "smaller", respectively. ## ## @code{[@var{h}, @var{p}] = kstest2 (@dots{})} also returns the ## asymptotic p-value @var{p}. ## ## @code{[@var{h}, @var{p}, @var{ks2stat}] = kstest2 (@dots{})} also returns ## the Kolmogorov-Smirnov test statistic @var{ks2stat} defined above for the ## test type indicated by @code{tail}. ## ## @seealso{kstest, cdfplot} ## @end deftypefn function [H, pValue, ks2stat] = kstest2 (x1, x2, varargin) ## Check input parameters if nargin < 2 error ("kstest2: Too few inputs."); endif if ! isvector (x1) || ! isreal (x1) || ! isvector (x2) || ! isreal (x2) error ("kstest2: X1 and X2 must be vectors of real numbers."); endif ## Add defaults alpha = 0.05; tail = "unequal"; ## Parse extra parameters if nargin > 2 && mod (numel (varargin), 2) == 0 [~, prop] = parseparams (varargin); while (!isempty (prop)) switch (lower (prop{1})) case "alpha" alpha = prop{2}; case "tail" tail = prop{2}; otherwise error ("kstest2: Unknown option %s", prop{1}); endswitch prop = prop(3:end); endwhile elseif nargin > 2 error ("kstest2: optional parameters must be in name/value pairs."); endif ## Check for valid alpha and tail parameters if (! isnumeric (alpha) || isnan (alpha) || ! isscalar (alpha) ... || alpha <= 0 || alpha >= 1) error ("kstest2: alpha must be a numeric scalar in the range (0,1)."); endif if ! isa (tail, 'char') error ("kstest2: tail argument must be a string"); elseif sum (strcmpi (tail, {"unequal", "larger", "smaller"})) < 1 error ("kstest2: tail value must be either 'both', right' or 'left'."); endif ## Make x1 and x2 column vectors x1 = x1(:); x2 = x2(:); ## Remove missing values (NaN) x1(isnan (x1)) = []; x2(isnan (x2)) = []; ## Check for remaining data in both vectors if isempty (x1) error ("kstest2: Not enough data in X1"); elseif isempty (x2) error ("kstest2: Not enough data in X2"); endif ## Calculate F1(x) and F2(x) binEdges = [-inf; sort([x1;x2]); inf]; binCounts1 = histc (x1 , binEdges, 1); binCounts2 = histc (x2 , binEdges, 1); sumCounts1 = cumsum (binCounts1) ./ sum (binCounts1); sumCounts2 = cumsum (binCounts2) ./ sum (binCounts2); sampleCDF1 = sumCounts1(1:end - 1); sampleCDF2 = sumCounts2(1:end - 1); ## Calculate the suitable KS statistic according to tail switch tail case "unequal" # 2-sided test: T = max|F1(x) - F2(x)|. deltaCDF = abs (sampleCDF1 - sampleCDF2); case "smaller" # 1-sided test: T = max[F2(x) - F1(x)]. deltaCDF = sampleCDF2 - sampleCDF1; case "larger" # 1-sided test: T = max[F1(x) - F2(x)]. deltaCDF = sampleCDF1 - sampleCDF2; endswitch ks2stat = max (deltaCDF); ## Compute the asymptotic P-value approximation n_x1 = length(x1); n_x2 = length(x2); n = n_x1 * n_x2 /(n_x1 + n_x2); lambda = max ((sqrt (n) + 0.12 + 0.11 / sqrt (n)) * ks2stat, 0); if strcmpi (tail, "unequal") # 2-sided test v = [1:101]; pValue = 2 * sum ((-1) .^ (v-1) .* exp (-2 * lambda * lambda * v .^ 2)); pValue = min (max (pValue, 0), 1); else # 1-sided test pValue = exp(-2 * lambda * lambda); endif ## Return hypothesis test H = (alpha >= pValue); endfunction ## Test input %!error kstest2 ([1,2,3,4,5,5]) %!error kstest2 (ones(2,4), [1,2,3,4,5,5]) %!error kstest2 ([2,3,5,7,3+3i], [1,2,3,4,5,5]) %!error kstest2 ([2,3,4,5,6],[3;5;7;8;7;6;5],"tail") %!error kstest2 ([2,3,4,5,6],[3;5;7;8;7;6;5],"tail", "whatever") %!error kstest2 ([2,3,4,5,6],[3;5;7;8;7;6;5],"badoption", 0.51) %!error kstest2 ([2,3,4,5,6],[3;5;7;8;7;6;5],"tail", 0) %!error kstest2 ([2,3,4,5,6],[3;5;7;8;7;6;5],"alpha", 0) %!error kstest2 ([2,3,4,5,6],[3;5;7;8;7;6;5],"alpha", NaN) %!error kstest2 ([NaN,NaN,NaN,NaN,NaN],[3;5;7;8;7;6;5],"tail", "unequal") ## Test results %!test %! load examgrades %! [h, p] = kstest2 (grades(:,1), grades(:,2)); %! assert (h, false); %! assert (p, 0.1222791870137312, 1e-14); %!test %! load examgrades %! [h, p] = kstest2 (grades(:,1), grades(:,2), "tail", "larger"); %! assert (h, false); %! assert (p, 0.1844421391011258, 1e-14); %!test %! load examgrades %! [h, p] = kstest2 (grades(:,1), grades(:,2), "tail", "smaller"); %! assert (h, false); %! assert (p, 0.06115357930171663, 1e-14); %!test %! load examgrades %! [h, p] = kstest2 (grades(:,1), grades(:,2), "tail", "smaller", "alpha", 0.1); %! assert (h, true); %! assert (p, 0.06115357930171663, 1e-14); statistics-release-1.6.3/inst/levene_test.m000066400000000000000000000271731456127120000210110ustar00rootroot00000000000000## Copyright (C) 2022 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{h} =} levene_test (@var{x}) ## @deftypefnx {statistics} {@var{h} =} levene_test (@var{x}, @var{group}) ## @deftypefnx {statistics} {@var{h} =} levene_test (@var{x}, @var{alpha}) ## @deftypefnx {statistics} {@var{h} =} levene_test (@var{x}, @var{testtype}) ## @deftypefnx {statistics} {@var{h} =} levene_test (@var{x}, @var{group}, @var{alpha}) ## @deftypefnx {statistics} {@var{h} =} levene_test (@var{x}, @var{group}, @var{testtype}) ## @deftypefnx {statistics} {@var{h} =} levene_test (@var{x}, @var{group}, @var{alpha}, @var{testtype}) ## @deftypefnx {statistics} {[@var{h}, @var{pval}] =} levene_test (@dots{}) ## @deftypefnx {statistics} {[@var{h}, @var{pval}, @var{W}] =} levene_test (@dots{}) ## @deftypefnx {statistics} {[@var{h}, @var{pval}, @var{W}, @var{df}] =} levene_test (@dots{}) ## ## Perform a Levene's test for the homogeneity of variances. ## ## Under the null hypothesis of equal variances, the test statistic @var{W} ## approximately follows an F distribution with @var{df} degrees of ## freedom being a vector ([k-1, N-k]). ## ## The p-value (1 minus the CDF of this distribution at @var{W}) is returned in ## @var{pval}. @var{h} = 1 if the null hypothesis is rejected at the ## significance level of @var{alpha}. Otherwise @var{h} = 0. ## ## Input Arguments: ## ## @itemize ## @item ## @var{x} contains the data and it can either be a vector or matrix. ## If @var{x} is a matrix, then each column is treated as a separate group. ## If @var{x} is a vector, then the @var{group} argument is mandatory. ## NaN values are omitted. ## ## @item ## @var{group} contains the names for each group. If @var{x} is a vector, then ## @var{group} must be a vector of the same length, or a string array or cell ## array of strings with one row for each element of @var{x}. @var{x} values ## corresponding to the same value of @var{group} are placed in the same group. ## If @var{x} is a matrix, then @var{group} can either be a cell array of ## strings of a character array, with one row per column of @var{x} in the same ## way it is used in @code{anova1} function. If @var{x} is a matrix, then ## @var{group} can be omitted either by entering an empty array ([]) or by ## parsing only @var{alpha} as a second argument (if required to change its ## default value). ## ## @item ## @var{alpha} is the statistical significance value at which the null ## hypothesis is rejected. Its default value is 0.05 and it can be parsed ## either as a second argument (when @var{group} is omitted) or as a third ## argument. ## ## @item ## @var{testtype} is a string determining the type of Levene's test. By default ## it is set to "absolute", but the user can also parse "quadratic" in order to ## perform Levene's Quadratic test for equal variances or "median" in order to ## to perform the Brown-Forsythe's test. These options determine how the Z_ij ## values are computed. If an invalid name is parsed for @var{testtype}, then ## the Levene's Absolute test is performed. ## @end itemize ## ## @seealso{bartlett_test, vartest2, vartestn} ## @end deftypefn function [h, pval, W, df] = levene_test (x, varargin) ## Check for valid number of input arguments if (nargin < 1 || nargin > 4) error ("levene_test: invalid number of input arguments."); endif ## Add defaults group = []; alpha = 0.05; ttype = "absolute"; ## Check for 2nd argument being ALPHA, GROUP, or TESTTYPE if (nargin > 1) if (isscalar (varargin{1}) && isnumeric (varargin{1}) ... && numel (varargin{1}) == 1) alpha = varargin{1}; ## Check for valid alpha value if (alpha <= 0 || alpha >= 1) error ("levene_test: wrong value for alpha."); endif elseif (any (strcmpi (varargin{1}, {"absolute", "quadratic", "median"}))) ttype = varargin{1}; elseif (isvector (varargin{1}) && numel (varargin{1} > 1)) if ((size (x, 2) == 1 && size (x, 1) == numel (varargin{1})) || ... (size (x, 2) > 1 && size (x, 2) == numel (varargin{1}))) group = varargin{1}; else error ("levene_test: GROUP and X mismatch."); endif elseif (isempty (varargin{1})) ## Do nothing else error ("levene_test: invalid second input argument."); endif endif ## Check for 3rd argument if (nargin > 2) if (isscalar (varargin{2}) && isnumeric (varargin{2}) ... && numel (varargin{2} == 1)) alpha = varargin{2}; ## Check for valid alpha value if (alpha <= 0 || alpha >= 1) error ("levene_test: wrong value for alpha."); endif elseif (any (strcmpi (varargin{2}, {"absolute", "quadratic", "median"}))) ttype = varargin{2}; else error ("levene_test: invalid third input argument."); endif endif ## Check for 3rd argument if (nargin > 3) if (any (strcmpi (varargin{3}, {"absolute", "quadratic", "median"}))) ttype = varargin{3}; else error ("levene_test: invalid option for TESTTYPE as 4th argument."); endif endif ## Convert group to cell array from character array, make it a column if (! isempty (group) && ischar (group)) group = cellstr (group); endif if (size (group, 1) == 1) group = group'; endif ## If x is a matrix, convert it to column vector and create a ## corresponging column vector for groups if (length (x) < prod (size (x))) [n, m] = size (x); x = x(:); gi = reshape (repmat ((1:m), n, 1), n*m, 1); if (length (group) == 0) ## no group names are provided group = gi; elseif (size (group, 1) == m) ## group names exist and match columns group = group(gi,:); else error ("levene_test: columns in X and GROUP length do not match."); endif endif ## Check that x and group are the same size if (! all (numel (x) == numel (group))) error (srtcat (["levene_test: GROUP must be a vector with the same"], ... [" number of rows as x."])); endif ## Identify NaN values (if any) and remove them from X along with ## their corresponding values from group vector nonan = ! isnan (x); x = x(nonan); group = group(nonan, :); ## Convert group to indices and separate names [group_id, group_names] = grp2idx (group); group_id = group_id(:); ## Get sample size (N_i), mean (Y_i), median (Y_I) and sample values (Y_ij) ## for groups with more than one sample groups = size (group_names, 1); rgroup = []; N_i = zeros (1, groups); Y_i = N_i; Y_I = N_i; for k = 1:groups group_size = find (group_id == k); if (length (group_size) > 1) N_i(k) = length (group_size); Y_i(k) = mean (x(group_size)); Y_I(k) = median (x(group_size)); Y_ij{k} = x(group_size); else warning (strcat (sprintf ("levene_test: GROUP %s has a single", ... group_names{k}), [" sample and is not included in the test.\n"])); rgroup = [rgroup, k]; N_i(k) = 1; Y_i(k) = x(group_size); Y_I(k) = x(group_size); Y_ij{k} = x(group_size); endif endfor ## Remove groups with a single sample if (! isempty (rgroup)) N_i(rgroup) = []; Y_i(rgroup) = []; Y_I(rgroup) = []; Y_ij(rgroup) = []; k = k - numel (rgroup); endif ## Compute Z_ij for "absolute" or "quadratic" Levene's test switch (lower (ttype)) case "absolute" for i = 1:k Z_ij{i} = abs (Y_ij{i} - Y_i(i)); endfor case "quadratic" for i = 1:k Z_ij{i} = sqrt ((Y_ij{i} - Y_i(i)) .^ 2); endfor case "median" for i = 1:k Z_ij{i} = abs (Y_ij{i} - Y_I(i)); endfor endswitch ## Compute Z_i and Z_ Z_ = []; for i = 1:k Z_i(i) = mean (Z_ij{i}); Z_ = [Z_; Z_ij{i}(:)]; endfor Z_ = mean (Z_); ## Compute total sample size (N) N = sum (N_i); ## Calculate W statistic. termA = (N - k) / (k - 1); termB = sum (N_i .* ((Z_i - Z_) .^ 2)); termC = 0; for i = 1:k termC += sum ((Z_ij{i} - Z_i(i)) .^ 2); endfor W = termA * (termB / termC); ## Calculate p-value from the chi-square distribution pval = 1 - fcdf (W, k - 1, N - k); ## Save dfs df = [k-1, N-k]; ## Determine the test outcome h = double (pval < alpha); endfunction ## Test input validation %!error levene_test () %!error ... %! levene_test (1, 2, 3, 4, 5); %!error levene_test (randn (50, 2), 0); %!error ... %! levene_test (randn (50, 2), [1, 2, 3]); %!error ... %! levene_test (randn (50, 1), ones (55, 1)); %!error ... %! levene_test (randn (50, 1), ones (50, 2)); %!error ... %! levene_test (randn (50, 2), [], 1.2); %!error ... %! levene_test (randn (50, 2), "some_string"); %!error ... %! levene_test (randn (50, 2), [], "alpha"); %!error ... %! levene_test (randn (50, 1), [ones(25, 1); 2*ones(25, 1)], 1.2); %!error ... %! levene_test (randn (50, 1), [ones(25, 1); 2*ones(25, 1)], "err"); %!error ... %! levene_test (randn (50, 1), [ones(25, 1); 2*ones(25, 1)], 0.05, "type"); %!warning ... %! levene_test (randn (50, 1), [ones(24, 1); 2*ones(25, 1); 3]); ## Test results %!test %! load examgrades %! [h, pval, W, df] = levene_test (grades); %! assert (h, 1); %! assert (pval, 9.523239714592791e-07, 1e-14); %! assert (W, 8.59529, 1e-5); %! assert (df, [4, 595]); %!test %! load examgrades %! [h, pval, W, df] = levene_test (grades, [], "quadratic"); %! assert (h, 1); %! assert (pval, 9.523239714592791e-07, 1e-14); %! assert (W, 8.59529, 1e-5); %! assert (df, [4, 595]); %!test %! load examgrades %! [h, pval, W, df] = levene_test (grades, [], "median"); %! assert (h, 1); %! assert (pval, 1.312093241723211e-06, 1e-14); %! assert (W, 8.415969, 1e-6); %! assert (df, [4, 595]); %!test %! load examgrades %! [h, pval, W, df] = levene_test (grades(:,[1:3])); %! assert (h, 1); %! assert (pval, 0.004349390980463497, 1e-14); %! assert (W, 5.52139, 1e-5); %! assert (df, [2, 357]); %!test %! load examgrades %! [h, pval, W, df] = levene_test (grades(:,[1:3]), "median"); %! assert (h, 1); %! assert (pval, 0.004355216763951453, 1e-14); %! assert (W, 5.52001, 1e-5); %! assert (df, [2, 357]); %!test %! load examgrades %! [h, pval, W, df] = levene_test (grades(:,[3,4]), "quadratic"); %! assert (h, 0); %! assert (pval, 0.1807494957440653, 2e-14); %! assert (W, 1.80200, 1e-5); %! assert (df, [1, 238]); %!test %! load examgrades %! [h, pval, W, df] = levene_test (grades(:,[3,4]), "median"); %! assert (h, 0); %! assert (pval, 0.1978225622063785, 2e-14); %! assert (W, 1.66768, 1e-5); %! assert (df, [1, 238]); statistics-release-1.6.3/inst/linkage.m000066400000000000000000000253101456127120000200750ustar00rootroot00000000000000## Copyright (C) 2008 Francesco Potortì ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{y} =} linkage (@var{d}) ## @deftypefnx {statistics} {@var{y} =} linkage (@var{d}, @var{method}) ## @deftypefnx {statistics} {@var{y} =} linkage (@var{x}) ## @deftypefnx {statistics} {@var{y} =} linkage (@var{x}, @var{method}) ## @deftypefnx {statistics} {@var{y} =} linkage (@var{x}, @var{method}, @var{metric}) ## @deftypefnx {statistics} {@var{y} =} linkage (@var{x}, @var{method}, @var{arglist}) ## ## Produce a hierarchical clustering dendrogram. ## ## @var{d} is the dissimilarity matrix relative to n observations, ## formatted as a @math{(n-1)*n/2}x1 vector as produced by @code{pdist}. ## Alternatively, @var{x} contains data formatted for input to ## @code{pdist}, @var{metric} is a metric for @code{pdist} and ## @var{arglist} is a cell array containing arguments that are passed to ## @code{pdist}. ## ## @code{linkage} starts by putting each observation into a singleton ## cluster and numbering those from 1 to n. Then it merges two ## clusters, chosen according to @var{method}, to create a new cluster ## numbered n+1, and so on until all observations are grouped into ## a single cluster numbered 2(n-1). Row k of the ## (m-1)x3 output matrix relates to cluster n+k: the first ## two columns are the numbers of the two component clusters and column ## 3 contains their distance. ## ## @var{method} defines the way the distance between two clusters is ## computed and how they are recomputed when two clusters are merged: ## ## @table @samp ## @item "single" (default) ## Distance between two clusters is the minimum distance between two ## elements belonging each to one cluster. Produces a cluster tree ## known as minimum spanning tree. ## ## @item "complete" ## Furthest distance between two elements belonging each to one cluster. ## ## @item "average" ## Unweighted pair group method with averaging (UPGMA). ## The mean distance between all pair of elements each belonging to one ## cluster. ## ## @item "weighted" ## Weighted pair group method with averaging (WPGMA). ## When two clusters A and B are joined together, the new distance to a ## cluster C is the mean between distances A-C and B-C. ## ## @item "centroid" ## Unweighted Pair-Group Method using Centroids (UPGMC). ## Assumes Euclidean metric. The distance between cluster centroids, ## each centroid being the center of mass of a cluster. ## ## @item "median" ## Weighted pair-group method using centroids (WPGMC). ## Assumes Euclidean metric. Distance between cluster centroids. When ## two clusters are joined together, the new centroid is the midpoint ## between the joined centroids. ## ## @item "ward" ## Ward's sum of squared deviations about the group mean (ESS). ## Also known as minimum variance or inner squared distance. ## Assumes Euclidean metric. How much the moment of inertia of the ## merged cluster exceeds the sum of those of the individual clusters. ## @end table ## ## @strong{Reference} ## Ward, J. H. Hierarchical Grouping to Optimize an Objective Function ## J. Am. Statist. Assoc. 1963, 58, 236-244, ## @url{http://iv.slis.indiana.edu/sw/data/ward.pdf}. ## ## @seealso{pdist,squareform} ## @end deftypefn function dgram = linkage (d, method = "single", distarg, savememory) ## check the input if (nargin == 4) && (strcmpi (savememory, "savememory")) warning ("Octave:linkage_savemem", ... "linkage: option 'savememory' not implemented"); elseif (nargin < 1) || (nargin > 3) print_usage (); endif if (isempty (d)) error ("linkage: d cannot be empty"); endif methods = struct ... ("name", { "single"; "complete"; "average"; "weighted"; "centroid"; "median"; "ward" }, "distfunc", {(@(x) min(x)) # single (@(x) max(x)) # complete (@(x,i,j,w) sum(diag(w([i,j]))*x)/sum(w([i,j]))) # average (@(x) mean(x)) # weighted (@massdist) # centroid (@(x,i) massdist(x,i)) # median (@inertialdist) # ward }); mask = strcmp (lower (method), {methods.name}); if (! any (mask)) error ("linkage: %s: unknown method", method); endif dist = {methods.distfunc}{mask}; if (nargin >= 3 && ! isvector (d)) if (ischar (distarg)) d = pdist (d, distarg); elseif (iscell (distarg)) d = pdist (d, distarg{:}); else print_usage (); endif elseif (nargin < 3) if (! isvector (d)) d = pdist (d); endif else print_usage (); endif d = squareform (d, "tomatrix"); # dissimilarity NxN matrix n = rows (d); # the number of observations diagidx = sub2ind ([n,n], 1:n, 1:n); # indices of diagonal elements d(diagidx) = Inf; # consider a cluster as far from itself ## For equal-distance nodes, the order in which clusters are ## merged is arbitrary. Rotating the initial matrix produces an ## ordering similar to Matlab's. cname = n:-1:1; # cluster names in d d = rot90 (d, 2); # exchange low and high cluster numbers weight = ones (1, n); # cluster weights dgram = zeros (n-1, 3); # clusters from n+1 to 2*n-1 for cluster = n+1 : 2*n-1 ## Find the two nearest clusters [m midx] = min (d(:)); [r, c] = ind2sub (size (d), midx); ## Here is the new cluster dgram(cluster-n, :) = [cname(r) cname(c) d(r, c)]; ## Put it in place of the first one and remove the second cname(r) = cluster; cname(c) = []; ## Compute the new distances. ## (Octave-7+ needs switch stmt to avoid 'called with too many inputs' err.) switch find (mask) case {1, 2, 4} # 1 arg newd = dist (d([r c], :)); case {3, 5, 7} # 4 args newd = dist (d([r c], :), r, c, weight); case 6 # 2 args newd = dist (d([r c], :), r); otherwise endswitch newd(r) = Inf; # Take care of the diagonal element ## Put distances in place of the first ones, remove the second ones d(r,:) = newd; d(:,r) = newd'; d(c,:) = []; d(:,c) = []; ## The new weight is the sum of the components' weights weight(r) += weight(c); weight(c) = []; endfor ## Sort the cluster numbers, as Matlab does dgram(:,1:2) = sort (dgram(:,1:2), 2); ## Check that distances are monotonically increasing if (any (diff (dgram(:,3)) < 0)) warning ("Octave:clustering", "linkage: cluster distances do not monotonically increase\n\ you should probably use a method different from \"%s\"", method); endif endfunction ## Take two row vectors, which are the Euclidean distances of clusters I ## and J from the others. Column I of second row contains the distance ## between clusters I and J. The centre of gravity of the new cluster ## is on the segment joining the old ones. W are the weights of all ## clusters. Use the law of cosines to find the distances of the new ## cluster from all the others. function y = massdist (x, i, j, w) x .^= 2; # Squared Euclidean distances if (nargin == 2) # Median distance qi = 0.5; # Equal weights ("weighted") else # Centroid distance qi = 1 / (1 + w(j) / w(i)); # Proportional weights ("unweighted") endif y = sqrt (qi * x(1, :) + (1 - qi) * (x(2, :) - qi * x(2, i))); endfunction ## Take two row vectors, which are the inertial distances of clusters I ## and J from the others. Column I of second row contains the inertial ## distance between clusters I and J. The centre of gravity of the new ## cluster K is on the segment joining I and J. W are the weights of ## all clusters. Convert inertial to Euclidean distances, then use the ## law of cosines to find the Euclidean distances of K from all the ## other clusters, convert them back to inertial distances and return ## them. function y = inertialdist (x, i, j, w) wi = w(i); # The cluster wj = w(j); # weights. s = [wi + w; # Sum of weights for wj + w]; # all cluster pairs. p = [wi * w; # Product of weights for wj * w]; # all cluster pairs. x = x.^2 .* s ./ p; # Convert inertial dist. to squared Eucl. sij = wi + wj; # Sum of weights of I and J qi = wi / sij; # Normalise the weight of I ## Squared Euclidean distances between all clusters and new cluster K x = qi * x(1, :) + (1 - qi) * (x(2, :) - qi * x(2, i)); y = sqrt (x * sij .* w ./ (sij + w)); # convert Eucl. dist. to inertial endfunction %!shared x, t %! x = reshape (mod (magic (6),5), [], 3); %! t = 1e-6; %!assert (cond (linkage (pdist (x))), 34.119045, t); %!assert (cond (linkage (pdist (x), "complete")), 21.793345, t); %!assert (cond (linkage (pdist (x), "average")), 27.045012, t); %!assert (cond (linkage (pdist (x), "weighted")), 27.412889, t); %! lastwarn(); # Clear last warning before the test %!warning linkage (pdist (x), "centroid"); %!test %! warning off Octave:clustering %! assert (cond (linkage (pdist (x), "centroid")), 27.457477, t); %! warning on Octave:clustering %!warning linkage (pdist (x), "median"); %!test %! warning off Octave:clustering %! assert (cond (linkage (pdist (x), "median")), 27.683325, t); %! warning on Octave:clustering %!assert (cond (linkage (pdist (x), "ward")), 17.195198, t); %!assert (cond (linkage (x, "ward", "euclidean")), 17.195198, t); %!assert (cond (linkage (x, "ward", {"euclidean"})), 17.195198, t); %!assert (cond (linkage (x, "ward", {"minkowski", 2})), 17.195198, t); statistics-release-1.6.3/inst/logistic_regression.m000066400000000000000000000257021456127120000225450ustar00rootroot00000000000000## Copyright (C) 1995-2017 Kurt Hornik ## Copyright (C) 2022 Andrew Penn ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {[@var{intercept}, @var{slope}, @var{dev}, @var{dl}, @var{d2l}, @var{P}, @var{stats}] =} logistic_regression (@var{y}, @var{x}, @var{print}, @var{intercept}, @var{slope}) ## ## Perform ordinal logistic regression. ## ## Suppose @var{y} takes values in k ordered categories, and let ## @code{P_i (@var{x})} be the cumulative probability that @var{y} ## falls in one of the first i categories given the covariate ## @var{x}. Then ## ## @example ## [@var{intercept}, @var{slope}] = logistic_regression (@var{y}, @var{x}) ## @end example ## ## @noindent ## fits the model ## ## @example ## logit (P_i (@var{x})) = @var{x} * @var{slope} + @var{intercept}_i, i = 1 @dots{} k-1 ## @end example ## ## The number of ordinal categories, k, is taken to be the number ## of distinct values of @code{round (@var{y})}. If k equals 2, ## @var{y} is binary and the model is ordinary logistic regression. The ## matrix @var{x} is assumed to have full column rank. ## ## Given @var{y} only, @code{@var{intercept} = logistic_regression (@var{y})} ## fits the model with baseline logit odds only. ## ## The full form is ## ## @example ## @group ## [@var{intercept}, @var{slope}, @var{dev}, @var{dl}, @var{d2l}, @var{P}, @var{stats}] ## = logistic_regression (@var{y}, @var{x}, @var{print}, @var{intercept}, @var{slope}) ## @end group ## @end example ## ## @noindent ## in which all output arguments and all input arguments except @var{y} ## are optional. ## ## Setting @var{print} to 1 requests summary information about the fitted ## model to be displayed. Setting @var{print} to 2 requests information ## about convergence at each iteration. Other values request no ## information to be displayed. The input arguments @var{intercept} and ## @var{slope} give initial estimates for @var{intercept} and @var{slope}. ## ## The returned value @var{dev} holds minus twice the log-likelihood. ## ## The returned values @var{dl} and @var{d2l} are the vector of first ## and the matrix of second derivatives of the log-likelihood with ## respect to @var{intercept} and @var{slope}. ## ## @var{P} holds estimates for the conditional distribution of @var{y} ## given @var{x}. ## ## @var{stats} returns a structure that contains the following fields: ## @itemize ## @item ## "intercept": intercept coefficients ## @item ## "slope": slope coefficients ## @item ## "coeff": regression coefficients (intercepts and slops) ## @item ## "covb": estimated covariance matrix for coefficients (coeff) ## @item ## "coeffcorr": correlation matrix for coeff ## @item ## "se": standard errors of the coeff ## @item ## "z": z statistics for coeff ## @item ## "pval": p-values for coeff ## @end itemize ## @end deftypefn function [intercept, slope, dev, dl, d2l, P, stats] = logistic_regression (y, x, print, intercept, slope) ## check input y = round (y(:)); if (nargin < 2) x = zeros (length (y), 0); endif; xymissing = (isnan (y) | any (isnan (x), 2)); y(xymissing) = []; x(xymissing,:) = []; [my, ny] = size (y); [mx, nx] = size (x); if (mx != my) error ("logistic_regression: X and Y must have the same number of observations"); endif ## initial calculations tol = 1e-12; incr = 10; decr = 2; ymin = min (y); ymax = max (y); yrange = ymax - ymin; z = (y * ones (1, yrange)) == ((y * 0 + 1) * (ymin : (ymax - 1))); z1 = (y * ones (1, yrange)) == ((y * 0 + 1) * ((ymin + 1) : ymax)); z = z(:, any (z)); z1 = z1(:, any(z1)); [mz, nz] = size (z); ## starting values if (nargin < 3) print = 0; endif; if (nargin < 4) g = cumsum (sum (z))' ./ my; intercept = log (g ./ (1 - g)); endif; if (nargin < 5) slope = zeros (nx, 1); endif; tb = [intercept; slope]; ## likelihood and derivatives at starting values [g, g1, p, dev] = logistic_regression_likelihood (y, x, tb, z, z1); [dl, d2l] = logistic_regression_derivatives (x, z, z1, g, g1, p); epsilon = std (vec (d2l)) / 1000; ## maximize likelihood using Levenberg modified Newton's method iter = 0; while (abs (dl' * (d2l \ dl) / length (dl)) > tol) iter += 1; tbold = tb; devold = dev; tb = tbold - d2l \ dl; [g, g1, p, dev] = logistic_regression_likelihood (y, x, tb, z, z1); if ((dev - devold) / (dl' * (tb - tbold)) < 0) epsilon /= decr; else while ((dev - devold) / (dl' * (tb - tbold)) > 0) epsilon *= incr; if (epsilon > 1e+15) error ("logistic_regression: epsilon too large"); endif tb = tbold - (d2l - epsilon * eye (size (d2l))) \ dl; [g, g1, p, dev] = logistic_regression_likelihood (y, x, tb, z, z1); disp ("epsilon"); disp (epsilon); endwhile endif [dl, d2l] = logistic_regression_derivatives (x, z, z1, g, g1, p); if (print == 2) disp ("Iteration"); disp (iter); disp ("Deviance"); disp (dev); disp ("First derivative"); disp (dl'); disp ("Eigenvalues of second derivative"); disp (eig (d2l)'); endif endwhile ## tidy up output intercept = tb(1 : nz, 1); slope = tb((nz + 1) : (nz + nx), 1); cov = inv (-d2l); se = sqrt (diag (cov)); if (nargout > 5) ## Compute predicted probabilities (P) if (nx > 0) e = ((x * slope) * ones (1, nz)) + ((y * 0 + 1) * intercept'); else e = (y * 0 + 1) * intercept'; endif P = diff ([(y * 0), (exp (e) ./ (1 + exp (e))), (y * 0 + 1)]')'; endif if (nargout > 6) ## Create stats structure dfe = mx - nx - 1; zstat = tb ./ se; coeffcorr = cov2corr (cov); resid = y - P(:,2); stats = struct ("intercept", intercept, ... "slope", slope, ... "coeff", tb, ... "cov", cov, ... "coeffcorr", coeffcorr, ... "se", se, ... "z", zstat, ... "pval", 2 * normcdf (-abs (zstat))); endif if (print >= 1) printf ("\n"); printf ("Logistic Regression Results:\n"); printf ("\n"); printf ("Number of Iterations: %d\n", iter); printf ("Deviance: %f\n", dev); printf ("Parameter Estimates:\n"); printf (" Intercept S.E.\n"); for i = 1 : nz printf (" %8.4f %8.4f\n", tb (i), se (i)); endfor if (nx > 0) printf (" Slope S.E.\n"); for i = (nz + 1) : (nz + nx) printf (" %8.4f %8.4f\n", tb (i), se (i)); endfor endif endif endfunction function [g, g1, p, dev] = logistic_regression_likelihood (y, x, slope, z, z1) ## Calculate the likelihood for the ordinal logistic regression model. e = exp ([z, x] * slope); e1 = exp ([z1, x] * slope); g = e ./ (1 + e); g1 = e1 ./ (1 + e1); g = max (y == max (y), g); g1 = min (y > min (y), g1); p = g - g1; dev = -2 * sum (log (p)); endfunction function [dl, d2l] = logistic_regression_derivatives (x, z, z1, g, g1, p) ## Calculate derivatives of the log-likelihood for ordinal logistic regression ## first derivative v = g .* (1 - g) ./ p; v1 = g1 .* (1 - g1) ./ p; dlogp = [(diag (v) * z - diag (v1) * z1), (diag (v - v1) * x)]; dl = sum (dlogp)'; ## second derivative w = v .* (1 - 2 * g); w1 = v1 .* (1 - 2 * g1); d2l = [z, x]' * diag (w) * [z, x] - [z1, x]' * diag (w1) * [z1, x] ... - dlogp' * dlogp; endfunction function R = cov2corr (vcov) ## Convert covariance matrix to correlation matrix sed = sqrt (diag (vcov)); R = vcov ./ (sed * sed'); R = (R + R') / 2; # This step ensures that the matrix is positive definite endfunction %!test %! # Output compared to following MATLAB commands %! # [B, DEV, STATS] = mnrfit(X,Y+1,'model','ordinal'); %! # P = mnrval(B,X) %! X = [1.489381332449196, 1.1534152241851305; ... %! 1.8110085304863965, 0.9449666896938425; ... %! -0.04453299665130296, 0.34278203449678646; ... %! -0.36616019468850347, 1.130254275908322; ... %! 0.15339143291005095, -0.7921044310668951; ... %! -1.6031878794469698, -1.8343471035233376; ... %! -0.14349521143198166, -0.6762996896828459; ... %! -0.4403818557740143, -0.7921044310668951; ... %! -0.7372685001160434, -0.027793137932169563; ... %! -0.11875465773681024, 0.5512305689880763]; %! Y = [1,1,1,1,1,0,0,0,0,0]'; %! [INTERCEPT, SLOPE, DEV, DL, D2L, P] = logistic_regression (Y, X, false); #%! assert (DEV, 5.680728861124, 1e-05); #%! assert (INTERCEPT(1), -1.10999599948243, 1e-05); #%! assert (SLOPE(1), -9.12480634225699, 1e-05); #%! assert (SLOPE(2), -2.18746124517476, 1e-05); #%! assert (corr(P(:,1),Y), -0.786673288976468, 1e-05); %!test %! # Output compared to following MATLAB commands %! # [B, DEV, STATS] = mnrfit(X,Y+1,'model','ordinal'); %! load carbig %! X = [Acceleration Displacement Horsepower Weight]; %! miles = [1,1,1,1,1,1,1,1,1,1,NaN,NaN,NaN,NaN,NaN,1,1,NaN,1,1,2,2,1,2,2,2, ... %! 2,2,2,2,2,1,1,1,1,2,2,2,2,NaN,2,1,1,2,1,1,1,1,1,1,1,1,1,2,2,1,2, ... %! 2,3,3,3,3,2,2,2,2,2,2,2,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,2,2,2,2,2, ... %! 2,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,1,1,1,1,1,2,2,2,1,2,2, ... %! 2,1,1,3,2,2,2,1,2,2,1,2,2,2,1,3,2,3,2,1,1,1,1,1,1,1,1,3,2,2,3,3, ... %! 2,2,2,2,2,3,2,1,1,1,1,1,1,1,1,1,1,1,2,2,1,3,2,2,2,2,2,2,1,3,2,2, ... %! 2,2,2,3,2,2,2,2,2,1,1,1,1,2,2,2,2,3,2,3,3,2,1,1,1,3,3,2,2,2,1,2, ... %! 2,1,1,1,1,1,3,3,3,2,3,1,1,1,1,1,2,2,1,1,1,1,1,3,2,2,2,3,3,3,3,2, ... %! 2,2,4,3,3,4,3,2,2,2,2,2,2,2,2,2,2,2,1,1,2,1,1,1,3,2,2,3,2,2,2,2, ... %! 2,1,2,1,3,3,2,2,2,2,2,1,1,1,1,1,1,2,1,3,3,3,2,2,2,2,2,3,3,3,3,2, ... %! 2,2,3,4,3,3,3,2,2,2,2,3,3,3,3,3,4,2,4,4,4,3,3,4,4,3,3,3,2,3,2,3, ... %! 2,2,2,2,3,4,4,3,3,3,3,3,3,3,3,3,3,3,3,3,3,2,NaN,3,2,2,2,2,2,1,2, ... %! 2,3,3,3,2,2,2,3,3,3,3,3,3,3,3,3,3,3,2,3,2,2,3,3,2,2,4,3,2,3]'; %! [INTERCEPT, SLOPE, DEV, DL, D2L, P] = logistic_regression (miles, X, false); %! assert (DEV, 433.197174495549, 1e-05); %! assert (INTERCEPT(1), -16.6895155618903, 1e-05); %! assert (INTERCEPT(2), -11.7207818178493, 1e-05); %! assert (INTERCEPT(3), -8.0605768506075, 1e-05); %! assert (SLOPE(1), 0.104762463756714, 1e-05); %! assert (SLOPE(2), 0.0103357623191891, 1e-05); %! assert (SLOPE(3), 0.0645199313242276, 1e-05); %! assert (SLOPE(4), 0.00166377028388103, 1e-05); statistics-release-1.6.3/inst/logit.m000066400000000000000000000027251456127120000176060ustar00rootroot00000000000000## Copyright (C) 1995-2017 Kurt Hornik ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{x} =} logit (@var{p}) ## ## Compute the logit for each value of @var{p} ## ## The logit is defined as ## @tex ## $$ {\rm logit}(p) = \log\Big({p \over 1-p}\Big) $$ ## @end tex ## @ifnottex ## ## @example ## logit (@var{p}) = log (@var{p} / (1-@var{p})) ## @end example ## ## @end ifnottex ## @seealso{probit, logicdf} ## @end deftypefn function x = logit (p) if (nargin != 1) print_usage (); endif x = logiinv (p, 0, 1); endfunction %!test %! p = [0.01:0.01:0.99]; %! assert (logit (p), log (p ./ (1-p)), 25*eps); %!assert (logit ([-1, 0, 0.5, 1, 2]), [NaN, -Inf, 0, +Inf, NaN]) ## Test input validation %!error logit () %!error logit (1, 2) statistics-release-1.6.3/inst/mahal.m000066400000000000000000000051701456127120000175470ustar00rootroot00000000000000## Copyright (C) 2015 Lachlan Andrew ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## This program, is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{d} =} mahal (@var{y}, @var{x}) ## ## Mahalanobis' D-square distance. ## ## Return the Mahalanobis' D-square distance of the points in ## @var{y} from the distribution implied by points @var{x}. ## ## Specifically, it uses a Cholesky decomposition to set ## ## @example ## answer(i) = (@var{y}(i,:) - mean (@var{x})) * inv (A) * (@var{y}(i,:)-mean (@var{x}))' ## @end example ## ## where A is the covariance of @var{x}. ## ## The data @var{x} and @var{y} must have the same number of components ## (columns), but may have a different number of observations (rows). ## ## @end deftypefn function retval = mahal (y, x) if (nargin != 2) print_usage (); endif if (! (isnumeric (x) || islogical (x)) || ! (isnumeric (y) || islogical (y))) error ("mahal: X and Y must be numeric matrices or vectors"); endif if (! ismatrix (x) || ! ismatrix (y)) error ("mahal: X and Y must be 2-D matrices or vectors"); endif [xr, xc] = size (x); [yr, yc] = size (y); if (xc != yc) error ("mahal: X and Y must have the same number of columns"); endif if (isinteger (x)) x = double (x); endif xm = mean (x, 1); ## Center data by subtracting mean of x x = bsxfun (@minus, x, xm); y = bsxfun (@minus, y, xm); w = (x' * x) / (xr - 1); retval = sumsq (y / chol (w), 2); endfunction ## Test input validation %!error mahal () %!error mahal (1, 2, 3) %!error mahal ("A", "B") %!error mahal ([1, 2], ["A", "B"]) %!error mahal (ones (2, 2, 2)) %!error mahal (ones (2, 2), ones (2, 2, 2)) %!error mahal (ones (2, 2), ones (2, 3)) %!test %! X = [1 0; 0 1; 1 1; 0 0]; %! assert (mahal (X, X), [1.5; 1.5; 1.5; 1.5], 10*eps) %! assert (mahal (X, X+1), [7.5; 7.5; 1.5; 13.5], 10*eps) %!assert (mahal ([true; true], [false; true]), [0.5; 0.5], eps) statistics-release-1.6.3/inst/manova1.m000066400000000000000000000215461456127120000200340ustar00rootroot00000000000000## Copyright (C) 2022 Andreas Bertsatos ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{d} =} manova1 (@var{x}, @var{group}) ## @deftypefnx {statistics} {@var{d} =} manova1 (@var{x}, @var{group}, @var{alpha}) ## @deftypefnx {statistics} {[@var{d}, @var{p}] =} manova1 (@dots{}) ## @deftypefnx {statistics} {[@var{d}, @var{p}, @var{stats}] =} manova1 (@dots{}) ## ## One-way multivariate analysis of variance (MANOVA). ## ## @code{@var{d} = manova1 (@var{x}, @var{group}, @var{alpha})} performs a ## one-way MANOVA for comparing the mean vectors of two or more groups of ## multivariate data. ## ## @var{x} is a matrix with each row representing a multivariate observation, ## and each column representing a variable. ## ## @var{group} is a numeric vector, string array, or cell array of strings with ## the same number of rows as @var{x}. @var{x} values are in the same group if ## they correspond to the same value of GROUP. ## ## @var{alpha} is the scalar significance level and is 0.05 by default. ## ## @var{d} is an estimate of the dimension of the group means. It is the ## smallest dimension such that a test of the hypothesis that the means lie on ## a space of that dimension is not rejected. If @var{d} = 0 for example, we ## cannot reject the hypothesis that the means are the same. If @var{d} = 1, we ## reject the hypothesis that the means are the same but we cannot reject the ## hypothesis that they lie on a line. ## ## @code{[@var{d}, @var{p}] = manova1 (@dots{})} returns P, a vector of p-values ## for testing the null hypothesis that the mean vectors of the groups lie on ## various dimensions. P(1) is the p-value for a test of dimension 0, P(2) for ## dimension 1, etc. ## ## @code{[@var{d}, @var{p}, @var{stats}] = manova1 (@dots{})} returns a STATS ## structure with the following fields: ## ## @multitable @columnfractions 0.05 0.2 0.75 ## @item @tab "W" @tab within-group sum of squares and products matrix ## @item @tab "B" @tab between-group sum of squares and products matrix ## @item @tab "T" @tab total sum of squares and products matrix ## @item @tab "dfW" @tab degrees of freedom for WSSP matrix ## @item @tab "dfB" @tab degrees of freedom for BSSP matrix ## @item @tab "dfT" @tab degrees of freedom for TSSP matrix ## @item @tab "lambda" @tab value of Wilk's lambda (the test statistic) ## @item @tab "chisq" @tab transformation of lambda to a chi-square distribution ## @item @tab "chisqdf" @tab degrees of freedom for chisq ## @item @tab "eigenval" @tab eigenvalues of (WSSP^-1) * BSSP ## @item @tab "eigenvec" @tab eigenvectors of (WSSP^-1) * BSSP; these are the ## coefficients for canonical variables, and they are scaled so the within-group ## variance of C is 1 ## @item @tab "canon" @tab canonical variables, equal to XC*eigenvec, where XC ## is X with columns centered by subtracting their means ## @item @tab "mdist" @tab Mahalanobis distance from each point to its group mean ## @item @tab "gmdist" @tab Mahalanobis distances between each pair of group means ## @item @tab "gnames" @tab Group names ## @end multitable ## ## The canonical variables C have the property that C(:,1) is the linear ## combination of the @var{x} columns that has the maximum separation between ## groups, C(:,2) has the maximum separation subject to it being orthogonal to ## C(:,1), and so on. ## ## @end deftypefn function [d, p, stats] = manova1 (x, group, alpha) ## Check input arguments narginchk(2,3) nargoutchk(1,3) ## Validate alpha value if parsed or add default if (nargin > 2) if (length (alpha) > 1 || ! isreal (alpha)) error ("manova1: Alpha must be a real scalar."); elseif (alpha <= 0 || alpha >= 1) error ("manova1: Alpha must be in the range (0,1)."); endif else alpha = 0.05; endif ## Convert group to cell array from character array if (ischar (group)) group = cellstr (group); endif ## Make group a column if (size (group, 1) == 1) group = group'; endif ## Check for equal size in samples between groups and data if (size (group, 1) != size (x, 1)) error("manova1: Samples in X and groups mismatch."); endif ## Remove samples (rows) in X and GROUP if there are missing values in X no_nan = (sum (isnan (x), 2) == 0); x = x(no_nan, :); group = group(no_nan, :); is_nan = ! no_nan; ## Get group names and indices [group_idx, group_names] = grp2idx (group); ngroups = length (group_names); ## Remove NaN values from updated GROUP no_nan = ! isnan (group_idx); if (! all (no_nan)) group_idx = group_idx(no_nan); x = x(no_nan,: ); is_nan(! is_nan) = ! no_nan; endif ## Get number of samples and variables [nsample, nvar] = size(x); realgroups = ismember(1:ngroups, group_idx); nrgroups = sum(realgroups); ## Calculate Total Sum of Squares and Products matrix xm = mean (x); x = x - xm; TSSP = x' * x; ## Calculate Within-samples Sum of Squares and Products matrix WSSP = zeros (size (TSSP)); for j = 1:ngroups row = find (group_idx == j); ## Only meaningful for groups with more than one samples if (length (row) > 1) group_x = x(row, :); group_x = group_x - mean (group_x); WSSP = WSSP + group_x' * group_x; endif endfor ## Calculate Between-samples Sum of Squares and Products matrix BSSP = TSSP - WSSP; ## Instead of simply computing `eig (BSSP / WSSP)` we use Matlab's technique ## with chol to insure v' * WSSP * v = I is met [R, p] = chol (WSSP); if (p > 0) error("manova1: Cannot factorize WSSP."); endif S = R' \ BSSP / R; ## Remove asymmetry caused by roundoff S = (S + S') / 2; [vv, ed] = eig (S); v = R \ vv; ## Sort in descending order [e,ei] = sort (diag (ed)); ## Check for valid eigevalues if (min(e) <= -1) error ("manova1: wrong value in eigenvector: singular sum of squares."); endif ## Compute Barlett's statistic for each dimension dims = 0:(min (nrgroups - 1, nvar) - 1); lambda = flipud (1 ./ cumprod (e + 1)); lambda = lambda(1 + dims); chistat = -(nsample - 1 - (nrgroups + nvar) / 2) .* log (lambda); chisqdf = ((nvar - dims) .* (nrgroups - 1 - dims))'; pp = 1 - chi2cdf (chistat, chisqdf); ## Get dimension where we can reject the null hypothesis d = dims(pp>alpha); if (length(d) > 0) d = d(1); else d = max(dims) + 1; end ## Create extra outputs as necessary if (nargout > 1) p = pp; endif if (nargout > 2) stats.W = WSSP; stats.B = BSSP; stats.T = TSSP; stats.dfW = nsample - nrgroups; stats.dfB = nrgroups - 1; stats.dfT = nsample - 1; stats.lambda = lambda; stats.chisq = chistat; stats.chisqdf = chisqdf; ## Reorder to increasing stats.eigenval = flipud(e); ## Flip so that it is in order of increasing eigenvalues v = v(:, flipud (ei)); ## Re-scale eigenvectors so the within-group variance is 1 vs = diag((v' * WSSP * v))' ./ (nsample - nrgroups); vs(vs<=0) = 1; v = v ./ repmat(sqrt(vs), size(v,1), 1); ## Flip sign so that the average element is positive j = (sum(v) < 0); v(:,j) = -v(:,j); stats.eigenvec = v; canon = x*v; if (any(is_nan)) tmp(~is_nan,:) = canon; tmp(is_nan,:) = NaN; stats.canon = tmp; else stats.canon = canon; endif ## Compute Mahalanobis distances from points to group means gmean = nan (ngroups, size (canon, 2)); gmean(realgroups,:) = grpstats (canon, group_idx); mdist = sum ((canon - gmean(group_idx,:)) .^ 2, 2); if (any (is_nan)) stats.mdist(! is_nan) = mdist; stats.mdist(is_nan) = NaN; else stats.mdist = mdist; endif ## Compute Mahalanobis distances between group means stats.gmdist = squareform (pdist (gmean)) .^ 2; stats.gnames = group_names; endif endfunction %!demo %! load carbig %! [d,p] = manova1([MPG, Acceleration, Weight, Displacement], Origin) %!test %! load carbig %! [d,p] = manova1([MPG, Acceleration, Weight, Displacement], Origin); %! assert (d, 3); %! assert (p, [0, 3.140583347827075e-07, 0.007510999577743149, ... %! 0.1934100745898493]', [1e-12, 1e-12, 1e-12, 1e-12]'); %!test %! load carbig %! [d,p] = manova1([MPG, Acceleration, Weight], Origin); %! assert (d, 2); %! assert (p, [0, 0.00516082975137544, 0.1206528056514453]', ... %! [1e-12, 1e-12, 1e-12]'); statistics-release-1.6.3/inst/manovacluster.m000066400000000000000000000067001456127120000213500ustar00rootroot00000000000000## Copyright (C) 2022 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {} manovacluster (@var{stats}) ## @deftypefnx {statistics} {} manovacluster (@var{stats}, @var{method}) ## @deftypefnx {statistics} {@var{h} =} manovacluster (@var{stats}) ## @deftypefnx {statistics} {@var{h} =} manovacluster (@var{stats}, @var{method}) ## ## Cluster group means using manova1 output. ## ## @code{manovacluster (@var{stats})} draws a dendrogram showing the clustering ## of group means, calculated using the output STATS structure from ## @code{manova1} and applying the single linkage algorithm. See the ## @code{dendrogram} function for more information about the figure. ## ## @code{manovacluster (@var{stats}, @var{method})} uses the @var{method} ## algorithm in place of single linkage. The available methods are: ## ## @multitable @columnfractions 0.05 0.2 0.75 ## @item @tab "single" @tab --- nearest distance ## @item @tab "complete" @tab --- furthest distance ## @item @tab "average" @tab --- average distance ## @item @tab "centroid" @tab --- center of mass distance ## @item @tab "ward" @tab --- inner squared distance ## @end multitable ## ## @code{@var{h} = manovacluster (@dots{})} returns a vector of line handles. ## ## @seealso{manova1} ## @end deftypefn function h = manovacluster (stats, method) ## Check for valid input arguments narginchk (1, 2); if nargin > 1 valid_methods = {"single", "complete", "average", "centroid", "ward"}; if ! any (strcmpi (method, valid_methods)) error ("manovacluster: invalid method."); endif else method = "single"; end ## Get stats fields and create dendrogram dist = stats.gmdist; group_names = stats.gnames; [a, b] = meshgrid (1:length (dist)); hh = dendrogram (linkage (dist(a < b)', method), 0); ## Fix tick labels on x-axis oldlab = get (gca, "XTickLabel"); maxlen = max (cellfun ("length", group_names)); newlab = repmat(" ", size (oldlab, 1), maxlen); ng = size (group_names, 1); for j = 1:size (oldlab, 1) k = str2num (oldlab(j,:)); if (! isempty (k) & k > 0 & k <= ng) x = group_names{k,:}; newlab(j,1:length(x)) = x; endif endfor set(gca, "XtickLabel", newlab); ## Return plot handles if requested if nargout > 0 h = hh; endif endfunction %!demo %! load carbig %! X = [MPG Acceleration Weight Displacement]; %! [d, p, stats] = manova1 (X, Origin); %! manovacluster (stats) ## Test plotting %!test %! hf = figure ("visible", "off"); %! unwind_protect %! load carbig %! X = [MPG Acceleration Weight Displacement]; %! [d, p, stats] = manova1 (X, Origin); %! manovacluster (stats); %! unwind_protect_cleanup %! close (hf); %! end_unwind_protect ## Test input validation %!error manovacluster (stats, "some"); statistics-release-1.6.3/inst/mcnemar_test.m000066400000000000000000000152551456127120000211530ustar00rootroot00000000000000## Copyright (C) 1996-2017 Kurt Hornik ## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {[@var{h}, @var{pval}, @var{chisq}] =} mcnemar_test (@var{x}) ## @deftypefnx {statistics} {[@var{h}, @var{pval}, @var{chisq}] =} mcnemar_test (@var{x}, @var{alpha}) ## @deftypefnx {statistics} {[@var{h}, @var{pval}, @var{chisq}] =} mcnemar_test (@var{x}, @var{testtype}) ## @deftypefnx {statistics} {[@var{h}, @var{pval}, @var{chisq}] =} mcnemar_test (@var{x}, @var{alpha}, @var{testtype}) ## ## Perform a McNemar's test on paired nominal data. ## ## @nospell{McNemar's} test is applied to a @math{2x2} contingency table @var{x} ## with a dichotomous trait, with matched pairs of subjects, of data ## cross-classified on the row and column variables to testing the null ## hypothesis of symmetry of the classification probabilities. More formally, ## the null hypothesis of marginal homogeneity states that the two marginal ## probabilities for each outcome are the same. ## ## Under the null, with a sufficiently large number of discordants ## (@qcode{@var{x}(1,2) + @var{x}(2,1) >= 25}), the test statistic, @var{chisq}, ## follows a chi-squared distribution with 1 degree of freedom. When the number ## of discordants is less than 25, then the mid-P exact McNemar test is used. ## ## @var{testtype} will force @code{mcnemar_test} to apply a particular method ## for testing the null hypothesis independently of the number of discordants. ## Valid options for @var{testtype}: ## @itemize ## @item @qcode{"asymptotic"} Original McNemar test statistic ## @item @qcode{"corrected"} Edwards' version with continuity correction ## @item @qcode{"exact"} An exact binomial test ## @item @qcode{"mid-p"} The mid-P McNemar test (mid-p binomial test) ## @end itemize ## ## The test decision is returned in @var{h}, which is 1 when the null hypothesis ## is rejected (@qcode{@var{pval} < @var{alpha}}) or 0 otherwise. @var{alpha} ## defines the critical value of statistical significance for the test. ## ## Further information about the McNemar's test can be found at ## @url{https://en.wikipedia.org/wiki/McNemar%27s_test} ## ## @seealso{crosstab, chi2test, fishertest} ## @end deftypefn function [h, pval, chisq] = mcnemar_test (x, varargin) ## Check for valid number of input arguments if (nargin > 3) error ("mcnemar_test: too many input arguments."); endif ## Check contigency table if (! isequal (size (x), [2, 2])) error ("mcnemar_test: X must be a 2x2 matrix."); elseif (! (all ((x(:) >= 0)) && all (x(:) == fix (x(:))))) error ("mcnemar_test: all entries of X must be non-negative integers."); endif ## Add defaults alpha = 0.05; b = x(1,2); c = x(2,1); if (b + c < 25) testtype = "mid-p"; else testtype = "asymptotic"; endif ## Parse optional arguments if (nargin == 2) if (isnumeric (varargin{1})) alpha = varargin{1}; elseif (ischar (varargin{1})) testtype = varargin{1}; else error ("mcnemar_test: invalid 2nd input argument."); endif elseif (nargin == 3) alpha = varargin{1}; testtype = varargin{2}; endif ## Check optional arguments if (! isscalar (alpha) || alpha <= 0 || alpha >= 1) error ("mcnemar_test: invalid value for ALPHA."); endif types = {"exact", "asymptotic", "mid-p", "corrected"}; if (! any (strcmpi (testtype, types))) error ("mcnemar_test: invalid value for TESTTYPE."); endif ## Calculate test switch (lower (testtype)) case "asymptotic" chisq = (b - c) .^2 / (b + c); pval = 1 - chi2cdf (chisq, 1); case "corrected" chisq = (abs (b - c) - 1) .^2 / (b + c); pval = 1 - chi2cdf (chisq, 1); case "exact" chisq = []; pval = 2 * (binocdf (b, b + c, 0.5)); case "mid-p" chisq = []; pval = 2 * (binocdf (b, b + c, 0.5)) - binopdf (b, b + c, 0.5); endswitch ## Get null hypothesis test result if (pval < alpha) h = 1; else h = 0; endif endfunction %!test %! [h, pval, chisq] = mcnemar_test ([101,121;59,33]); %! assert (h, 1); %! assert (pval, 3.8151e-06, 1e-10); %! assert (chisq, 21.356, 1e-3); %!test %! [h, pval, chisq] = mcnemar_test ([59,6;16,80]); %! assert (h, 1); %! assert (pval, 0.034690, 1e-6); %! assert (isempty (chisq), true); %!test %! [h, pval, chisq] = mcnemar_test ([59,6;16,80], 0.01); %! assert (h, 0); %! assert (pval, 0.034690, 1e-6); %! assert (isempty (chisq), true); %!test %! [h, pval, chisq] = mcnemar_test ([59,6;16,80], "mid-p"); %! assert (h, 1); %! assert (pval, 0.034690, 1e-6); %! assert (isempty (chisq), true); %!test %! [h, pval, chisq] = mcnemar_test ([59,6;16,80], "asymptotic"); %! assert (h, 1); %! assert (pval, 0.033006, 1e-6); %! assert (chisq, 4.5455, 1e-4); %!test %! [h, pval, chisq] = mcnemar_test ([59,6;16,80], "exact"); %! assert (h, 0); %! assert (pval, 0.052479, 1e-6); %! assert (isempty (chisq), true); %!test %! [h, pval, chisq] = mcnemar_test ([59,6;16,80], "corrected"); %! assert (h, 0); %! assert (pval, 0.055009, 1e-6); %! assert (chisq, 3.6818, 1e-4); %!test %! [h, pval, chisq] = mcnemar_test ([59,6;16,80], 0.1, "corrected"); %! assert (h, 1); %! assert (pval, 0.055009, 1e-6); %! assert (chisq, 3.6818, 1e-4); %!error mcnemar_test (59, 6, 16, 80) %!error mcnemar_test (ones (3, 3)) %!error ... %! mcnemar_test ([59,6;16,-80]) %!error ... %! mcnemar_test ([59,6;16,4.5]) %!error ... %! mcnemar_test ([59,6;16,80], {""}) %!error ... %! mcnemar_test ([59,6;16,80], -0.2) %!error ... %! mcnemar_test ([59,6;16,80], [0.05, 0.1]) %!error ... %! mcnemar_test ([59,6;16,80], 1) %!error ... %! mcnemar_test ([59,6;16,80], "") statistics-release-1.6.3/inst/mhsample.m000066400000000000000000000270021456127120000202710ustar00rootroot00000000000000## Copyright (C) 1995-2022 The Octave Project Developers ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {[@var{smpl}, @var{accept}] =} mhsample (@var{start}, @var{nsamples}, @var{property}, @var{value}, @dots{}) ## ## Draws @var{nsamples} samples from a target stationary distribution @var{pdf} ## using Metropolis-Hastings algorithm. ## ## Inputs: ## ## @itemize ## @item ## @var{start} is a @var{nchain} by @var{dim} matrix of starting points for each ## Markov chain. Each row is the starting point of a different chain and each ## column corresponds to a different dimension. ## ## @item ## @var{nsamples} is the number of samples, the length of each Markov chain. ## @end itemize ## ## Some property-value pairs can or must be specified, they are: ## ## (Required) One of: ## ## @itemize ## @item ## "pdf" @var{pdf}: a function handle of the target stationary distribution to ## be sampled. The function should accept different locations in each row and ## each column corresponds to a different dimension. ## ## or ## ## @item ## "logpdf" @var{logpdf}: a function handle of the log of the target stationary ## distribution to be sampled. The function should accept different locations ## in each row and each column corresponds to a different dimension. ## @end itemize ## ## In case optional argument @var{symmetric} is set to false (the default), one ## of: ## ## @itemize ## @item ## "proppdf" @var{proppdf}: a function handle of the proposal distribution that ## is sampled from with @var{proprnd} to give the next point in the chain. The ## function should accept two inputs, the random variable and the current ## location each input should accept different locations in each row and each ## column corresponds to a different dimension. ## ## or ## ## @item ## "logproppdf" @var{logproppdf}: the log of "proppdf". ## @end itemize ## ## The following input property/pair values may be needed depending on the ## desired outut: ## ## @itemize ## @item ## "proprnd" @var{proprnd}: (Required) a function handle which generates random ## numbers from @var{proppdf}. The function should accept different locations ## in each row and each column corresponds to a different dimension ## corresponding with the current location. ## ## @item ## "symmetric" @var{symmetric}: true or false based on whether @var{proppdf} is ## a symmetric distribution. If true, @var{proppdf} (or @var{logproppdf}) need ## not be specified. The default is false. ## ## @item ## "burnin" @var{burnin} the number of points to discard at the beginning, the ## default is 0. ## ## @item ## "thin" @var{thin}: omits @var{thin}-1 of every @var{thin} points in the ## generated Markov chain. The default is 1. ## ## @item ## "nchain" @var{nchain}: the number of Markov chains to generate. The default ## is 1. ## @end itemize ## ## Outputs: ## ## @itemize ## @item ## @var{smpl}: a @var{nsamples} x @var{dim} x @var{nchain} tensor of random ## values drawn from @var{pdf}, where the rows are different random values, the ## columns correspond to the dimensions of @var{pdf}, and the third dimension ## corresponds to different Markov chains. ## ## @item ## @var{accept} is a vector of the acceptance rate for each chain. ## @end itemize ## ## Example : Sampling from a normal distribution ## ## @example ## @group ## start = 1; ## nsamples = 1e3; ## pdf = @@(x) exp (-.5 * x .^ 2) / (pi ^ .5 * 2 ^ .5); ## proppdf = @@(x,y) 1 / 6; ## proprnd = @@(x) 6 * (rand (size (x)) - .5) + x; ## [smpl, accept] = mhsample (start, nsamples, "pdf", pdf, "proppdf", ... ## proppdf, "proprnd", proprnd, "thin", 4); ## histfit (smpl); ## @end group ## @end example ## ## @seealso{rand, slicesample} ## @end deftypefn function [smpl, accept] = mhsample (start, nsamples, varargin) if (nargin < 6) print_usage (); endif sizestart = size (start); pdf = []; proppdf = []; logpdf = []; logproppdf = []; proprnd = []; sym = false; K = 0; # burnin m = 1; # thin nchain = 1; for k = 1:2:length (varargin) if (ischar (varargin{k})) switch lower(varargin{k}) case "pdf" if (isa (varargin{k+1}, "function_handle")) pdf = varargin{k+1}; else error ("mhsample: pdf must be a function handle"); endif case "proppdf" if (isa (varargin{k+1}, "function_handle")) proppdf = varargin{k+1}; else error ("mhsample: proppdf must be a function handle"); endif case "logpdf" if (isa (varargin{k+1}, "function_handle")) pdf = varargin{k+1}; else error ("mhsample: logpdf must be a function handle"); endif case "logproppdf" if (isa (varargin{k+1}, "function_handle")) proppdf = varargin{k+1}; else error ("mhsample: logproppdf must be a function handle"); endif case "proprnd" if (isa (varargin{k+1}, "function_handle")) proprnd = varargin{k+1}; else error ("mhsample: proprnd must be a function handle"); endif case "symmetric" if (isa (varargin{k+1}, "logical")) sym = varargin{k+1}; else error ("mhsample: sym must be true or false"); endif case "burnin" if (varargin{k+1}>=0) K = varargin{k+1}; else error ("mhsample: K must be greater than or equal to 0"); endif case "thin" if (varargin{k+1} >= 1) m = varargin{k+1}; else error ("mhsample: m must be greater than or equal to 1"); endif case "nchain" if (varargin{k+1} >= 1) nchain = varargin{k+1}; else error ("mhsample: nchain must be greater than or equal to 1"); endif otherwise warning (["mhsample: Ignoring unknown option " varargin{k}]); endswitch else error (["mhsample: " varargin{k} " is not a valid property."]); endif endfor if (! isempty (pdf) && isempty (logpdf)) logpdf=@(x) rloge (pdf (x)); elseif (isempty (pdf) && isempty (logpdf)) error ("mhsample: pdf or logpdf must be input."); endif if (! isempty (proppdf) && isempty (logproppdf)) logproppdf = @(x, y) rloge (proppdf (x, y)); elseif (isempty (proppdf) && isempty (logproppdf) && ! sym) error ("mhsample: proppdf or logproppdf must be input unless 'symetrical' is true."); endif if (! isa (proprnd, "function_handle")) error ("mhsample: proprnd must be a function handle."); endif if (length (sizestart) == 2) sizestart = [sizestart 0]; end smpl = zeros (nsamples, sizestart(2), nchain); if (all (sizestart([1 3]) == [1 nchain])) ## Could remove, not Matlab compatable but allows continuing chains smpl(1, :, :) = start; elseif (all (sizestart([1 3]) == [nchain 0])) smpl(1, :, :) = permute (start, [3, 2, 1]); elseif (all (sizestart([1 3]) == [1 0])) ## Could remove, not Matlab compatable but allows all chains to start ## at the same location smpl(1, :, :) = repmat (start,[1, 1, nchain]); else error ("mhsample: start must be a nchain by dim matrix."); endif cx = permute (smpl(1, :, :),[3, 2, 1]); accept = zeros (nchain, 1); i = 1; rnd = log (rand (nchain, nsamples*m+K)); for k = 1:nsamples*m+K canacc = rem (k-K, m) == 0; px = proprnd (cx); if (sym) A = logpdf (px) - logpdf(cx); else A = (logpdf (px) + logproppdf (cx, px)) - (logpdf (cx) + logproppdf (px, cx)); endif ac = rnd(:, k) < min (A, 0); cx(ac, :) = px(ac, :); accept(ac)++; if (canacc) smpl(i, :, :) = permute (cx, [3, 2, 1]); end if (k > K && canacc) i++; endif endfor accept ./= (nsamples * m + K); endfunction function y = rloge (x) y = -inf (size (x)); xg0 = x > 0; y(xg0) = log (x(xg0)); endfunction %!demo %! ## Define function to sample %! d = 2; %! mu = [-1; 2]; %! rand ("seed", 5) # for reproducibility %! Sigma = rand (d); %! Sigma = (Sigma + Sigma'); %! Sigma += eye (d) * abs (eigs (Sigma, 1, "sa")) * 1.1; %! pdf = @(x)(2*pi)^(-d/2)*det(Sigma)^-.5*exp(-.5*sum((x.'-mu).*(Sigma\(x.'-mu)),1)); %! ## Inputs %! start = ones (1, 2); %! nsamples = 500; %! sym = true; %! K = 500; %! m = 10; %! rand ("seed", 8) # for reproducibility %! proprnd = @(x) (rand (size (x)) - .5) * 3 + x; %! [smpl, accept] = mhsample (start, nsamples, "pdf", pdf, "proprnd", proprnd, ... %! "symmetric", sym, "burnin", K, "thin", m); %! figure; %! hold on; %! plot (smpl(:, 1), smpl(:, 2), 'x'); %! [x, y] = meshgrid (linspace (-6, 4), linspace(-3, 7)); %! z = reshape (pdf ([x(:), y(:)]), size(x)); %! mesh (x, y, z, "facecolor", "None"); %! ## Using sample points to find the volume of half a sphere with radius of .5 %! f = @(x) ((.25-(x(:,1)+1).^2-(x(:,2)-2).^2).^.5.*(((x(:,1)+1).^2+(x(:,2)-2).^2)<.25)).'; %! int = mean (f (smpl) ./ pdf (smpl)); %! errest = std (f (smpl) ./ pdf (smpl)) / nsamples ^ .5; %! trueerr = abs (2 / 3 * pi * .25 ^ (3 / 2) - int); %! printf ("Monte Carlo integral estimate int f(x) dx = %f\n", int); %! printf ("Monte Carlo integral error estimate %f\n", errest); %! printf ("The actual error %f\n", trueerr); %! mesh (x, y, reshape (f([x(:), y(:)]), size(x)), "facecolor", "None"); %!demo %! ## Integrate truncated normal distribution to find normilization constant %! pdf = @(x) exp (-.5*x.^2)/(pi^.5*2^.5); %! nsamples = 1e3; %! rand ("seed", 5) # for reproducibility %! proprnd = @(x) (rand (size (x)) - .5) * 3 + x; %! [smpl, accept] = mhsample (1, nsamples, "pdf", pdf, "proprnd", proprnd, ... %! "symmetric", true, "thin", 4); %! f = @(x) exp(-.5 * x .^ 2) .* (x >= -2 & x <= 2); %! x = linspace (-3, 3, 1000); %! area(x, f(x)); %! xlabel ('x'); %! ylabel ('f(x)'); %! int = mean (f (smpl) ./ pdf (smpl)); %! errest = std (f (smpl) ./ pdf (smpl)) / nsamples^ .5; %! trueerr = abs (erf (2 ^ .5) * 2 ^ .5 * pi ^ .5 - int); %! printf ("Monte Carlo integral estimate int f(x) dx = %f\n", int); %! printf ("Monte Carlo integral error estimate %f\n", errest); %! printf ("The actual error %f\n", trueerr); ## Test output %!test %! nchain = 1e4; %! start = rand (nchain, 1); %! nsamples = 1e3; %! pdf = @(x) exp (-.5*(x-1).^2)/(2*pi)^.5; %! proppdf = @(x, y) 1/3; %! proprnd = @(x) 3 * (rand (size (x)) - .5) + x; %! [smpl, accept] = mhsample (start, nsamples, "pdf", pdf, "proppdf", proppdf, ... %! "proprnd", proprnd, "thin", 2, "nchain", nchain, ... %! "burnin", 0); %! assert (mean (mean (smpl, 1), 3), 1, .01); %! assert (mean (var (smpl, 1), 3), 1, .01) ## Test input validation %!error mhsample (); %!error mhsample (1); %!error mhsample (1, 1); %!error mhsample (1, 1, "pdf", @(x)x); %!error mhsample (1, 1, "pdf", @(x)x, "proprnd", @(x)x+rand(size(x))); statistics-release-1.6.3/inst/mnrfit.m000066400000000000000000000233711456127120000177670ustar00rootroot00000000000000## Copyright (C) 2024 Andrew C Penn ## Copyright (C) 2024 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{B} =} mnrfit (@var{X}, @var{Y}) ## @deftypefnx {statistics} {@var{B} =} mnrfit (@var{X}, @var{Y}, @var{name}, @var{value}) ## @deftypefnx {statistics} {[@var{B}, @var{dev}] =} mnrrfit (@dots{}) ## @deftypefnx {statistics} {[@var{B}, @var{dev}, @var{stats}] =} mnrfit (@dots{}) ## ## Perform logistic regression for binomial responses or multiple ordinal ## responses. ## ## Note: This function is currently a wrapper for the @code{logistic_regression} ## function. It can only be used for fitting an ordinal logistic model and a ## nominal model with 2 categories (which is an ordinal case). Hierarchical ## models as well as nominal model with more than two classes are not currently ## supported. This function is a work in progress. ## ## @code{@var{B} = mnrfit (@var{X}, @var{Y})} returns a matrix, @var{B}, of ## coefficient estimates for a multinomial logistic regression of the nominal ## responses in @var{Y} on the predictors in @var{X}. @var{X} is an @math{NxP} ## numeric matrix the observations on predictor variables, where @math{N} ## corresponds to the number of observations and @math{P} corresponds to ## predictor variables. @var{Y} contains the response category labels and it ## either be an @math{NxP} categorical or numerical matrix (containing only 1s ## and 0s) or an @math{Nx1} numeric vector with positive integer values, a cell ## array of character vectors and a logical vector. @var{Y} can also be defined ## as a character matrix with each row corresponding to an observation of ## @var{X}. ## ## @code{@var{B} = mnrfit (@var{X}, @var{Y}, @var{name}, @var{value})} returns a ## matrix, @var{B}, of coefficient estimates for a multinomial model fit with ## additional parameterss specified @qcode{Name-Value} pair arguments. ## ## @multitable @columnfractions 0.18 0.02 0.8 ## @headitem @var{Name} @tab @tab @var{Value} ## ## @item @qcode{"model"} @tab @tab Specifies the type of model to fit. ## Currently, only @qcode{"ordinal"} is fully supported. @qcode{"nominal"} is ## only supported for 2 classes in @var{Y}. ## ## @item @qcode{"display"} @tab @tab A flag to enable/disable displaying ## information about the fitted model. Default is @qcode{"off"}. ## @end multitable ## ## @code{[@var{B}, @var{dev}, @var{stats}] = mnrfit (@dots{}} also returns the ## deviance of the fit, @var{dev}, and the structure @var{stats} for any of the ## previous input arguments. @var{stats} currently only returns values for the ## fields @qcode{"beta"}, same as @var{B}, @qcode{"coeffcorr"}, the estimated ## correlation matrix for @var{B}, @qcode{"covd"}, the estimated covariance ## matrix for @var{B}, and @qcode{"se"}, the standard errors of the coefficient ## estimates @var{B}. ## ## @seealso{logistic_regression} ## @end deftypefn function [B, DEV, STATS] = mnrfit (X, Y, varargin) ## Check input arguments X and Y if (nargin < 2) error ("mnrfit: too few input arguments."); endif if (! isnumeric (X)) error ("mnrfit: Predictors must be numeric.") endif if (isscalar (X) || (ndims (X) > 2)) error ("mnrfit: Predictors must be a vector or a 2D matrix.") endif if (isscalar (Y) || (ndims (Y) > 2)) error ("mnrfit: Response must be a vector or a 2D matrix.") endif [N, P] = size (X); [n, K] = size (Y); if (N == 1) ## if X is a row vector, make it a column vector X = X(:); N = P; P = 1; endif if (n != N) error ("mnrfit: Y must have the same number of rows as X.") endif if (! (isnumeric (Y) || islogical (Y) || ischar (Y) || iscellstr (Y))) error (strcat (["mnrfit: Response labels must be a character array,"], ... [" a cell vector of strings, \nor a vector or"], ... [" matrix of doubles, singles or logical values."])); endif ## Check supplied parameters if (mod (numel (varargin), 2) != 0) error ("mnrfit: optional arguments must be in pairs.") endif MODELTYPE = "nominal"; DISPLAY = "off"; while (numel (varargin) > 0) name = varargin{1}; value = varargin{2}; switch (lower (name)) case "model" MODELTYPE = value; case "display" DISPLAY = value; otherwise warning (sprintf ("mnrfit: parameter %s will be ignored", name)); endswitch varargin (1:2) = []; endwhile ## Evaluate display input argument switch (lower (DISPLAY)) case "on" dispopt = true; case "off" dispopt = false; endswitch ## Categorize Y if it is a cellstring array if (iscellstr (Y)) if (K > 1) error ("mnrfit: Y must be a column vector when given as cellstr."); endif ## Get groups in Y [YN, ~, UY] = grp2idx (Y); # this will also catch "" as missing values ## Remove missing values from X and Y RowsUsed = ! logical (sum (isnan ([X, YN]), 2)); Y = Y (RowsUsed); X = X (RowsUsed, :); ## Renew groups in Y [YN, ~, UY] = grp2idx (Y); # in case a category is removed due to NaNs in X n = numel (UY); endif ## Categorize Y if it is a character array if (ischar (Y)) ## Get groups in Y [YN, ~, UY] = grp2idx (Y); # this will also catch "" as missing values ## Remove missing values from X and Y RowsUsed = ! logical (sum (isnan ([X, YN]), 2)); Y = Y (RowsUsed); X = X (RowsUsed, :); ## Renew groups in Y [YN, ~, UY] = grp2idx (Y); # in case a category is removed due to NaNs in X n = numel (UY); endif if (K > 1) ## So far, if K > 1, Y must be a matrix of logical, singles or doubles if (! all (all (Y == 0 | Y == 1))) error ("mnrfit: Y must contain only 1 and 0 when given as a 2D matrix."); endif ## Convert Y to a vector of positive integer categories Y = sum (bsxfun (@times, (1:K), Y), 2); endif ## Categorize Y in all other cases if (! iscellstr (Y)) RowsUsed = ! logical (sum (isnan ([X, Y]), 2)); Y = Y (RowsUsed); X = X (RowsUsed, :); [UY, ~, YN] = unique (Y); ## find unique categories in the response n = numel (UY); ## number of unique response categories endif if (isnumeric (Y)) if (! (all (Y > 0) && all (fix (Y) == Y))) error ("mnrfit: Y must contain positive integer category numbers.") endif endif ## Evaluate model type input argument switch (lower (MODELTYPE)) case "nominal" if (n > 2) error ("mnrfit: fitting more than 2 nominal responses not supported."); else ## Y has two responses. Ordinal logistic regression can be used to fit ## models with binary nominal responses endif case "ordinal" ## Do nothing, ordinal responses are fully supported case "hierarchical" error ("mnrfit: fitting hierarchical responses not supported."); otherwise error ("mnrfit: model type not recognised."); endswitch ## Perform fit and reformat output [INTERCEPT, SLOPE, DEV, ~, ~, ~, S] = logistic_regression (YN - 1, X, dispopt); B = cat (1, INTERCEPT, SLOPE); STATS = struct ("beta", B, ... "dfe", [], ... ## Not used "s", [], ... ## Not used "sfit", [], ... ## Not used "estdisp", [], ... ## Not used "coeffcorr", S.coeffcorr, ... "covb", S.cov, ... "se", S.se, ... "t", [], ... ## Not used "p", [], ... ## Not used "resid", [], ... ## Not used "residp", [], ... ## Not used "residd", []); ## Not used endfunction ## Test input validation %!error mnrfit (ones (50,1)) %!error ... %! mnrfit ({1 ;2 ;3 ;4 ;5}, ones (5,1)) %!error ... %! mnrfit (ones (50, 4, 2), ones (50, 1)) %!error ... %! mnrfit (ones (50, 4), ones (50, 1, 3)) %!error ... %! mnrfit (ones (50, 4), ones (45,1)) %!error ... %! mnrfit (ones (5, 4), {1 ;2 ;3 ;4 ;5}) %!error ... %! mnrfit (ones (5, 4), ones (5, 1), "model") %!error ... %! mnrfit (ones (5, 4), {"q","q";"w","w";"q","q";"w","w";"q","q"}) %!error ... %! mnrfit (ones (5, 4), [1, 2; 1, 2; 1, 2; 1, 2; 1, 2]) %!error ... %! mnrfit (ones (5, 4), [1; -1; 1; 2; 1]) %!error ... %! mnrfit (ones (5, 4), [1; 2; 3; 2; 1], "model", "nominal") %!error ... %! mnrfit (ones (5, 4), [1; 2; 3; 2; 1], "model", "hierarchical") %!error ... %! mnrfit (ones (5, 4), [1; 2; 3; 2; 1], "model", "whatever") statistics-release-1.6.3/inst/monotone_smooth.m000066400000000000000000000146201456127120000217140ustar00rootroot00000000000000## Copyright (C) 2011 Nir Krakauer ## Copyright (C) 2011 Carnë Draug ## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{yy} =} monotone_smooth (@var{x}, @var{y}, @var{h}) ## ## Produce a smooth monotone increasing approximation to a sampled functional ## dependence. ## ## A kernel method is used (an Epanechnikov smoothing kernel is applied to y(x); ## this is integrated to yield the monotone increasing form. See Reference 1 ## for details.) ## ## @subheading Arguments ## ## @itemize @bullet ## @item ## @var{x} is a vector of values of the independent variable. ## ## @item ## @var{y} is a vector of values of the dependent variable, of the same size as ## @var{x}. For best performance, it is recommended that the @var{y} already be ## fairly smooth, e.g. by applying a kernel smoothing to the original values if ## they are noisy. ## ## @item ## @var{h} is the kernel bandwidth to use. If @var{h} is not given, ## a "reasonable" value is computed. ## ## @end itemize ## ## @subheading Return values ## ## @itemize @bullet ## @item ## @var{yy} is the vector of smooth monotone increasing function values at ## @var{x}. ## ## @end itemize ## ## @subheading Examples ## ## @example ## @group ## x = 0:0.1:10; ## y = (x .^ 2) + 3 * randn(size(x)); # typically non-monotonic from the added ## noise ## ys = ([y(1) y(1:(end-1))] + y + [y(2:end) y(end)])/3; # crudely smoothed via ## moving average, but still typically non-monotonic ## yy = monotone_smooth(x, ys); # yy is monotone increasing in x ## plot(x, y, '+', x, ys, x, yy) ## @end group ## @end example ## ## @subheading References ## ## @enumerate ## @item ## Holger Dette, Natalie Neumeyer and Kay F. Pilz (2006), A simple nonparametric ## estimator of a strictly monotone regression function, @cite{Bernoulli}, ## 12:469-490 ## @item ## Regine Scheder (2007), R Package 'monoProc', Version 1.0-6, ## @url{http://cran.r-project.org/web/packages/monoProc/monoProc.pdf} (The ## implementation here is based on the monoProc function mono.1d) ## @end enumerate ## @end deftypefn function yy = monotone_smooth (x, y, h) if (nargin < 2 || nargin > 3) print_usage (); elseif (! isnumeric (x) || ! isvector (x)) error ("monotone_smooth: X must be a numeric vector."); elseif (! isnumeric (y) || ! isvector (y)) error ("monotone_smooth: Y must be a numeric vector."); elseif (numel (x) != numel (y)) error ("monotone_smooth: X and Y must have the same number of elements."); elseif (nargin == 3 && (! isscalar (h) || ! isnumeric (h))) error ("monotone_smooth: H (kernel bandwith) must a numeric scalar."); endif n = numel (x); ## Set filter bandwidth at a reasonable default value, if not specified if (nargin != 3) s = std (x); h = s / (n ^ 0.2); end x_min = min(x); x_max = max(x); y_min = min(y); y_max = max(y); ## Transform range of X to [0, 1] xl = (x - x_min) / (x_max - x_min); yy = ones(size(y)); ## Epanechnikov smoothing kernel (with finite support) ## K_epanech_kernel = @(z) (3/4) * ((1 - z).^2) .* (abs(z) < 1); K_epanech_int = @(z) mean(((abs(z) < 1)/2) - (3/4) * (z .* (abs(z) < 1) ... - (1/3) * (z.^3) .* (abs(z) < 1)) + (z < -1)); ## Integral of kernels up to t monotone_inverse = @(t) K_epanech_int((y - t) / h); ## Find the value of the monotone smooth function at each point in X niter_max = 150; # maxIter for estimating each value (adequate for most cases) for l = 1:n tmax = y_max; tmin = y_min; wmin = monotone_inverse(tmin); wmax = monotone_inverse(tmax); if (wmax == wmin) yy(l) = tmin; else wt = xl(l); iter_max_reached = 1; for i = 1:niter_max wt_scaled = (wt - wmin) / (wmax - wmin); tn = tmin + wt_scaled * (tmax - tmin) ; wn = monotone_inverse(tn); wn_scaled = (wn - wmin) / (wmax - wmin); ## if (abs(wt-wn) < 1E-4) || (tn < (y_min-0.1)) || (tn > (y_max+0.1)) ## criterion for break in the R code -- replaced by the following line ## to hopefully be less dependent on the scale of y if ((abs(wt_scaled-wn_scaled) < 1E-4) || (wt_scaled < -0.1) || (wt_scaled > 1.1)) iter_max_reached = 0; break endif if (wn > wt) tmax = tn; wmax = wn; else tmin = tn; wmin = wn; endif endfor if (iter_max_reached) msg = sprintf (strcat (["at x = %%g, maximum number of iterations"], ... [" %%d reached without convergence;"], ... [" approximation may not be optimal"])); warning (msg, x(l), niter_max) endif yy(l) = tmin + (wt - wmin) * (tmax - tmin) / (wmax - wmin); endif endfor endfunction ## Test input validation %!error ... %! monotone_smooth (1) %!error ... %! monotone_smooth ("char", 1) %!error ... %! monotone_smooth ({1,2,3}, 1) %!error ... %! monotone_smooth (ones(20,3), 1) %!error ... %! monotone_smooth (1, "char") %!error ... %! monotone_smooth (1, {1,2,3}) %!error ... %! monotone_smooth (1, ones(20,3)) %!error monotone_smooth (ones (10,1), ones(10,1), [1, 2]) %!error monotone_smooth (ones (10,1), ones(10,1), {2}) %!error monotone_smooth (ones (10,1), ones(10,1), "char") statistics-release-1.6.3/inst/multcompare.m000066400000000000000000001467131456127120000210260ustar00rootroot00000000000000## Copyright (C) 2022 Andrew Penn ## Copyright (C) 2022 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{C} =} multcompare (@var{STATS}) ## @deftypefnx {statistics} {@var{C} =} multcompare (@var{STATS}, "name", @var{value}) ## @deftypefnx {statistics} {[@var{C}, @var{M}] =} multcompare (...) ## @deftypefnx {statistics} {[@var{C}, @var{M}, @var{H}] =} multcompare (...) ## @deftypefnx {statistics} {[@var{C}, @var{M}, @var{H}, @var{GNAMES}] =} multcompare (...) ## @deftypefnx {statistics} {@var{padj} =} multcompare (@var{p}) ## @deftypefnx {statistics} {@var{padj} =} multcompare (@var{p}, "ctype", @var{CTYPE}) ## ## Perform posthoc multiple comparison tests or p-value adjustments to control ## the family-wise error rate (FWER) or false discovery rate (FDR). ## ## @code{@var{C} = multcompare (@var{STATS})} performs a multiple comparison ## using a @var{STATS} structure that is obtained as output from any of ## the following functions: anova1, anova2, anovan, kruskalwallis, and friedman. ## The return value @var{C} is a matrix with one row per comparison and six ## columns. Columns 1-2 are the indices of the two samples being compared. ## Columns 3-5 are a lower bound, estimate, and upper bound for their ## difference, where the bounds are for 95% confidence intervals. Column 6-8 are ## the multiplicity adjusted p-values for each individual comparison, the test ## statistic and the degrees of freedom. ## All tests by multcompare are two-tailed. ## ## @qcode{multcompare} can take a number of optional parameters as name-value ## pairs. ## ## @code{[@dots{}] = multcompare (@var{STATS}, "alpha", @var{ALPHA})} ## ## @itemize ## @item ## @var{ALPHA} sets the significance level of null hypothesis significance ## tests to ALPHA, and the central coverage of two-sided confidence intervals to ## 100*(1-@var{ALPHA})%. (Default ALPHA is 0.05). ## @end itemize ## ## @code{[@dots{}] = multcompare (@var{STATS}, "ControlGroup", @var{REF})} ## ## @itemize ## @item ## @var{REF} is the index of the control group to limit comparisons to. The ## index must be a positive integer scalar value. For each dimension (d) listed ## in @var{DIM}, multcompare uses STATS.grpnames@{d@}(idx) as the control group. ## (Default is empty, i.e. [], for full pairwise comparisons) ## @end itemize ## ## @code{[@dots{}] = multcompare (@var{STATS}, "ctype", @var{CTYPE})} ## ## @itemize ## @item ## @var{CTYPE} is the type of comparison test to use. In order of increasing ## power, the choices are: "bonferroni", "scheffe", "mvt", "holm" (default), ## "hochberg", "fdr", or "lsd". The first five methods control the family-wise ## error rate. The "fdr" method controls false discovery rate (by the original ## Benjamini-Hochberg step-up procedure). The final method, "lsd" (or "none"), ## makes no attempt to control the Type 1 error rate of multiple comparisons. ## The coverage of confidence intervals are only corrected for multiple ## comparisons in the cases where @var{CTYPE} is "bonferroni", "scheffe" or ## "mvt", which control the Type 1 error rate for simultaneous inference. ## ## The "mvt" method uses the multivariate t distribution to assess the ## probability or critical value of the maximum statistic across the tests, ## thereby accounting for correlations among comparisons in the control of the ## family-wise error rate with simultaneous inference. In the case of pairwise ## comparisons, it simulates Tukey's (or the Games-Howell) test, in the case of ## comparisons with a single control group, it simulates Dunnett's test. ## @var{CTYPE} values "tukey-kramer" and "hsd" are recognised but set the value ## of @var{CTYPE} and @var{REF} to "mvt" and empty respectively. A @var{CTYPE} ## value "dunnett" is recognised but sets the value of @var{CTYPE} to "mvt", and ## if @var{REF} is empty, sets @var{REF} to 1. Since the algorithm uses a Monte ## Carlo method (of 1e+06 random samples), you can expect the results to ## fluctuate slightly with each call to multcompare and the calculations may be ## slow to complete for a large number of comparisons. If the parallel package ## is installed and loaded, @qcode{multcompare} will automatically accelerate ## computations by parallel processing. Note that p-values calculated by the ## "mvt" are truncated at 1e-06. ## @end itemize ## ## @code{[@dots{}] = multcompare (@var{STATS}, "df", @var{DF})} ## ## @itemize ## @item ## @var{DF} is an optional scalar value to set the number of degrees of freedom ## in the calculation of p-values for the multiple comparison tests. By default, ## this value is extracted from the @var{STATS} structure of the ANOVA test, but ## setting @var{DF} maybe necessary to approximate Satterthwaite correction if ## @qcode{anovan} was performed using weights. ## @end itemize ## ## @code{[@dots{}] = multcompare (@var{STATS}, "dim", @var{DIM})} ## ## @itemize ## @item ## @var{DIM} is a vector specifying the dimension or dimensions over which the ## estimated marginal means are to be calculated. Used only if STATS comes from ## anovan. The value [1 3], for example, computes the estimated marginal mean ## for each combination of the first and third predictor values. The default is ## to compute over the first dimension (i.e. 1). If the specified dimension is, ## or includes, a continuous factor then @qcode{multcompare} will return an ## error. ## @end itemize ## ## @code{[@dots{}] = multcompare (@var{STATS}, "estimate", @var{ESTIMATE})} ## ## @itemize ## @item ## @var{ESTIMATE} is a string specifying the estimates to be compared when ## computing multiple comparisons after anova2; this argument is ignored by ## anovan and anova1. Accepted values for @var{ESTIMATE} are either "column" ## (default) to compare column means, or "row" to compare row means. If the ## model type in anova2 was "linear" or "nested" then only "column" is accepted ## for @var{ESTIMATE} since the row factor is assumed to be a random effect. ## @end itemize ## ## @code{[@dots{}] = multcompare (@var{STATS}, "display", @var{DISPLAY})} ## ## @itemize ## @item ## @var{DISPLAY} is either "on" (the default): to display a table and graph of ## the comparisons (e.g. difference between means), their 100*(1-@var{ALPHA})% ## intervals and multiplicity adjusted p-values in APA style; or "off": to omit ## the table and graph. On the graph, markers and error bars colored red have ## multiplicity adjusted p-values < ALPHA, otherwise the markers and error bars ## are blue. ## @end itemize ## ## @code{[@dots{}] = multcompare (@var{STATS}, "seed", @var{SEED})} ## ## @itemize ## @item ## @var{SEED} is a scalar value used to initialize the random number generator ## so that @var{CTYPE} "mvt" produces reproducible results. ## @end itemize ## ## @code{[@var{C}, @var{M}, @var{H}, @var{GNAMES}] = multcompare (@dots{})} ## returns additional outputs. @var{M} is a matrix where columns 1-2 are the ## estimated marginal means and their standard errors, and columns 3-4 are lower ## and upper bounds of the confidence intervals for the means; the critical ## value of the test statistic is scaled by a factor of 2^(-0.5) before ## multiplying by the standard errors of the group means so that the intervals ## overlap when the difference in means becomes significant at approximately ## the level @var{ALPHA}. When @var{ALPHA} is 0.05, this corresponds to ## confidence intervals with 83.4% central coverage. @var{H} is a handle to the ## figure containing the graph. @var{GNAMES} is a cell array with one row for ## each group, containing the names of the groups. ## ## @code{@var{padj} = multcompare (@var{p})} calculates and returns adjusted ## p-values (@var{padj}) using the Holm-step down Bonferroni procedure to ## control the family-wise error rate. ## ## @code{@var{padj} = multcompare (@var{p}, "ctype", @var{CTYPE})} calculates ## and returns adjusted p-values (@var{padj}) computed using the method ## @var{CTYPE}. In order of increasing power, @var{CTYPE} for p-value adjustment ## can be either "bonferroni", "holm" (default), "hochberg", or "fdr". See ## above for further information about the @var{CTYPE} methods. ## ## @seealso{anova1, anova2, anovan, kruskalwallis, friedman, fitlm} ## @end deftypefn function [C, M, H, GNAMES] = multcompare (STATS, varargin) if (nargin < 1) error (strcat (["multcompare usage: ""multcompare (ARG)""; "], ... [" atleast 1 input argument required"])); endif ## Check supplied parameters if ((numel (varargin) / 2) != fix (numel (varargin) / 2)) error ("multcompare: wrong number of arguments.") endif ALPHA = 0.05; REF = []; CTYPE = "holm"; DISPLAY = "on"; DIM = 1; ESTIMATE = "column"; DFE = []; for idx = 3:2:nargin name = varargin{idx-2}; value = varargin{idx-1}; switch (lower (name)) case "alpha" ALPHA = value; case {"controlgroup","ref"} REF = value; case {"ctype","criticalvaluetype"} CTYPE = lower (value); case {"display","displayopt"} DISPLAY = lower (value); case {"dim","dimension"} DIM = value; case "estimate" ESTIMATE = lower (value); case {"df","dfe"} DFE = value; case {"seed"} SEED = value; ## Set random seed for mvtrnd and mvnrnd randn ('seed', SEED); randg ('seed', SEED); otherwise error (sprintf ("multcompare: parameter %s is not supported", name)); endswitch endfor ## Evaluate ALPHA input argument if (! isa (ALPHA,"numeric") || numel (ALPHA) != 1) error("anovan:alpha must be a numeric scalar value"); endif if ((ALPHA <= 0) || (ALPHA >= 1)) error("anovan: alpha must be a value between 0 and 1"); endif ## Evaluate CTYPE input argument if (ismember (CTYPE, {"tukey-kramer", "hsd"})) CTYPE = "mvt"; REF = []; elseif (strcmp (CTYPE, "dunnett")) CTYPE = "mvt"; if (isempty (REF)) REF = 1; endif elseif (strcmp (CTYPE, "none")) CTYPE = "lsd"; endif if (! ismember (CTYPE, ... {"bonferroni","scheffe","mvt","holm","hochberg","fdr","lsd"})) error ("multcompare: '%s' is not a supported value for CTYPE", CTYPE) endif ## Evaluate DFE input argument if (! isempty (DFE)) if (! isscalar (DFE)) error ("multcompare: df must be a scalar value."); endif if (!(DFE > 0) || isinf (DFE)) error ("multcompare: df must be a positive finite value."); endif endif ## If STATS is numeric, assume it is a vector of p-values if (isnumeric (STATS)) if (nargout > 1) error (strcat (["multcompare: invalid number of output arguments"], ... [" if only used to adjust p-values"])) endif if (!isempty (varargin)) if (!any (strcmpi (varargin{1}, {"ctype","criticalvaluetype"})) ... || (nargin > 3) ) error (strcat(["multcompare: invalid input arguments if only"], ... [" used to adjust p-values"])) endif endif if (! ismember (CTYPE, {"bonferroni","holm","hochberg","fdr"})) error ("multcompare: '%s' is not a supported p-adjustment method", CTYPE) endif p = STATS; if (all (size (p) > 1)) error ("multcompare: p-values must be a vector") endif padj = feval (CTYPE, p); if (size (p, 1) > 1) C = padj; else C = padj'; endif return endif ## Perform test specific calculations switch (STATS.source) case "anova1" ## Make matrix of requested comparisons (pairs) ## Also return the corresponding hypothesis matrix (L) n = STATS.n(:); Ng = numel (n); if (isempty (REF)) ## Pairwise comparisons [pairs, L] = pairwise (Ng); else ## Treatment vs. Control comparisons [pairs, L] = trt_vs_ctrl (Ng, REF); endif Np = size (pairs, 1); switch (STATS.vartype) case "equal" ## Calculate estimated marginal means and their standard errors gmeans = STATS.means(:); gvar = (STATS.s^2) ./ n; # Sampling variance gcov = diag (gvar); Ng = numel (gmeans); M = zeros (Ng, 4); M(:,1:2) = cat (2, gmeans, sqrt(gvar)); ## Get the error degrees of freedom from anova1 output if (isempty (DFE)) DFE = STATS.df; endif case "unequal" ## Error checking if (strcmp (CTYPE, "scheffe")) error (strcat (["multcompare: the CTYPE value 'scheffe'"], ... [" does not support tests with varying degrees of freedom "])); endif ## Calculate estimated marginal means and their standard errors gmeans = STATS.means(:); gvar = STATS.vars(:) ./ n; # Sampling variance gcov = diag (gvar); Ng = numel (gmeans); M = zeros (Ng, 4); M(:,1:2) = cat (2, gmeans, sqrt (gvar)); ## Calculate Welch's corrected degrees of freedom if (isempty (DFE)) DFE = sum (gvar(pairs), 2).^2 ./ ... sum ((gvar(pairs).^2 ./ (n(pairs) - 1)), 2); endif endswitch ## Calculate t statistics corresponding to the comparisons defined in L [mean_diff, sed, t] = tValue (gmeans, gcov, L); ## Calculate correlation matrix vcov = L * gcov * L'; R = cov2corr (vcov); ## Create cell array of group names corresponding to each row of m GNAMES = STATS.gnames; case "anova2" ## Fetch estimate specific information from the STATS structure switch (ESTIMATE) case {"column","columns","col","cols"} gmeans = STATS.colmeans(:); Ng = numel (gmeans); n = STATS.coln; case {"row","rows"} if (ismember (STATS.model, {"linear","nested"})) error (strcat (["multcompare: no support for the row factor"],... [" (random effect) in a 'nested' or 'linear' anova2 model"])); endif gmeans = STATS.rowmeans(:); Ng = numel (gmeans); n = STATS.rown; endswitch ## Make matrix of requested comparisons (pairs) ## Also return the corresponding hypothesis matrix (L) if (isempty (REF)) ## Pairwise comparisons [pairs, L, R] = pairwise (Ng); else ## Treatment vs. Control comparisons [pairs, L, R] = trt_vs_ctrl (Ng, REF); endif Np = size (pairs, 1); ## Calculate estimated marginal means and their standard errors gvar = ((STATS.sigmasq) / n) * ones (Ng, 1); # Sampling variance gcov = diag (gvar); M = zeros (Ng, 4); M(:,1:2) = cat (2, gmeans, sqrt (gvar)); ## Get the error degrees of freedom from anova2 output if (isempty (DFE)) DFE = STATS.df; endif ## Calculate t statistics corresponding to the comparisons defined in L [mean_diff, sed, t] = tValue (gmeans, gcov, L); ## Create character array of group names corresponding to each row of m GNAMES = cellstr (num2str ([1:Ng]')); case {"anovan","fitlm"} ## Our calculations treat all effects as fixed if (ismember (STATS.random, DIM)) warning (strcat (["multcompare: ignoring random effects"], ... [" (all effects treated as fixed)"])); endif ## Check what type of factor is requested in DIM if (any (STATS.nlevels(DIM) < 2)) error (strcat (["multcompare: DIM must specify only categorical"], ... [" factors with 2 or more degrees of freedom."])); endif ## Check that all continuous variables were centered msg = strcat (["multcompare: use a STATS structure from a model"], ... [" refit with a sum-to-zero contrast coding"]); if (any (STATS.continuous - STATS.center_continuous)) error (msg) endif ## Check that the columns sum to 0 N = numel (STATS.contrasts); for j = 1:N if (isnumeric (STATS.contrasts{j})) if (any (abs (sum (STATS.contrasts{j})) > eps("single"))) error (msg); endif endif endfor ## Calculate estimated marginal means and their standard errors Nd = numel (DIM); n = numel (STATS.resid); df = STATS.df; if (isempty (DFE)) DFE = STATS.dfe; endif i = 1 + cumsum(df); k = find (sum (STATS.terms(:,DIM), 2) == sum (STATS.terms, 2)); Nb = 1 + sum(df(k)); Nt = numel (k); L = zeros (n, sum (df) + 1); for j = 1:Nt L(:, i(k(j)) - df(k(j)) + 1 : i(k(j))) = STATS.X(:,i(k(j)) - ... df(k(j)) + 1 : i(k(j))); endfor L(:,1) = 1; U = unique (L, "rows", "stable"); Ng = size (U, 1); idx = zeros (Ng, 1); for k = 1:Ng idx(k) = find (all (L == U(k, :), 2),1); endfor gmeans = U * STATS.coeffs(:,1); # Estimated marginal means gcov = U * STATS.vcov * U'; gvar = diag (gcov); # Sampling variance M = zeros (Ng, 4); M(:,1:2) = cat (2, gmeans, sqrt(gvar)); ## Create cell array of group names corresponding to each row of m GNAMES = cell (Ng, 1); for i = 1:Ng str = ""; for j = 1:Nd str = sprintf("%s%s=%s, ", str, ... num2str(STATS.varnames{DIM(j)}), ... num2str(STATS.grpnames{DIM(j)}{STATS.grps(idx(i),DIM(j))})); endfor GNAMES{i} = str(1:end-2); str = ""; endfor ## Make matrix of requested comparisons (pairs) ## Also return the corresponding hypothesis matrix (L) if (isempty (REF)) ## Pairwise comparisons [pairs, L] = pairwise (Ng); else ## Treatment vs. Control comparisons [pairs, L] = trt_vs_ctrl (Ng, REF); endif Np = size (pairs, 1); ## Calculate t statistics corresponding to the comparisons defined in L [mean_diff, sed, t] = tValue (gmeans, gcov, L); ## Calculate correlation matrix. vcov = L * gcov * L'; R = cov2corr (vcov); case "friedman" ## Get stats from structure gmeans = STATS.meanranks(:); Ng = length (gmeans); sigma = STATS.sigma; ## Make group names GNAMES = strjust (num2str ((1:Ng)'), "left"); ## Make matrix of requested comparisons (pairs) ## Also return the corresponding hypothesis matrix (L) if (isempty (REF)) ## Pairwise comparisons [pairs, L, R] = pairwise (Ng); else ## Treatment vs. Control comparisons [pairs, L, R] = trt_vs_ctrl (Ng, REF); endif Np = size (pairs, 1); ## Calculate covariance matrix gcov = ((sigma ^ 2) / STATS.n) * eye (Ng); ## Create matrix with group means and standard errors M = cat (2, gmeans, sqrt (diag (gcov))); ## Calculate t statistics corresponding to the comparisons defined in L [mean_diff, sed, t] = tValue (gmeans, gcov, L); # z-statistic (not t) ## Calculate degrees of freedom from number of groups if (isempty (DFE)) DFE = inf; # this is a z-statistic so infinite degrees of freedom endif case "kruskalwallis" ## Get stats from structure gmeans = STATS.meanranks(:); sumt = STATS.sumt; Ng = length (gmeans); n = STATS.n(:); N = sum (n); ## Make group names GNAMES = STATS.gnames; ## Make matrix of requested comparisons (pairs) ## Also return the corresponding hypothesis matrix (L) if (isempty (REF)) ## Pairwise comparisons [pairs, L] = pairwise (Ng); else ## Treatment vs. Control comparisons [pairs, L] = trt_vs_ctrl (Ng, REF); endif Np = size (pairs, 1); ## Calculate covariance matrix gcov = diag (((N * (N + 1) / 12) - (sumt / (12 * (N - 1)))) ./ n); ## Create matrix with group means and standard errors M = cat (2, gmeans, sqrt (diag (gcov))); ## Calculate t statistics corresponding to the comparisons defined in L [mean_diff, sed, t] = tValue (gmeans, gcov, L); # z-statistic (not t) ## Calculate correlation matrix vcov = L * gcov * L'; R = cov2corr (vcov); ## Calculate degrees of freedom from number of groups if (isempty (DFE)) DFE = inf; # this is a z-statistic so infinite degrees of freedom endif otherwise error (strcat (sprintf ("multcompare: the STATS structure from %s", ... STATS.source), [" is not currently supported"])) endswitch ## The test specific code above needs to create the following variables in ## order to proceed with the remainder of the function tasks ## - Ng: number of groups involved in comparisons ## - M: Ng-by-2 matrix of group means (col 1) and standard errors (col 2) ## - Np: number of comparisons (pairs of groups being compaired) ## - pairs: Np-by-2 matrix of numeric group IDs - each row is a comparison ## - R: correlation matrix for the requested comparisons ## - sed: vector containing SE of the difference for each comparisons ## - t: vector containing t for the difference relating to each comparisons ## - DFE: residual/error degrees of freedom ## - GNAMES: a cell array containing the names of the groups being compared ## Create matrix of comparisons and calculate confidence intervals and ## multiplicity adjusted p-values for the comparisons. C = zeros (Np, 8); C(:,1:2) = pairs; C(:,4) = (M(pairs(:, 1),1) - M(pairs(:, 2),1)); C(:,7) = t; # Unlike Matlab, we include the t statistic C(:,8) = DFE; # Unlike Matlab, we include the degrees of freedom if (any (isinf (DFE))) p = 2 * (1 - normcdf (abs (t))); else p = 2 * (1 - tcdf (abs (t), DFE)); endif [C(:,6), critval, C(:,8)] = feval (CTYPE, p, t, Ng, DFE, R, ALPHA); C(:,3) = C(:,4) - sed .* critval; C(:,5) = C(:,4) + sed .* critval; ## Calculate confidence intervals of the estimated marginal means with ## central coverage such that the intervals start to overlap where the ## difference reaches a two-tailed p-value of ALPHA. When ALPHA is 0.05, ## central coverage is approximately 83.4% if (! isscalar(DFE)) # Upper bound critval (corresponding to lower bound DFE) critval = max (critval); endif M(:,3) = M(:,1) - M(:,2) .* critval / sqrt(2); M(:,4) = M(:,1) + M(:,2) .* critval / sqrt(2); ## If requested, plot graph of the difference means for each comparison ## with central coverage of confidence intervals at 100*(1-alpha)% switch (lower (DISPLAY)) case {'on',true} H = figure; plot ([0; 0], [0; Np + 1]',"k:"); # Plot vertical dashed line at 0 effect set (gca, "Ydir", "reverse") # Flip y-axis direction ylim ([0.5, Np + 0.5]); # Set y-axis limits hold on # Plot on the same axis for j = 1:Np if (C(j,6) < ALPHA) ## Plot marker for the difference in means plot (C(j,4), j,"or","MarkerFaceColor", "r"); ## Plot line for each confidence interval plot ([C(j,3), C(j,5)], j * ones(2,1), "r-"); else ## Plot marker for the difference in means plot (C(j,4), j,"ob","MarkerFaceColor", "b"); ## Plot line for each confidence interval plot ([C(j,3), C(j,5)], j * ones(2,1), "b-"); endif endfor hold off xlabel (sprintf ("%g%% confidence interval for the difference",... 100 * (1 - ALPHA))); ylabel ("Row number in matrix of comparisons (C)"); case {'off',false} H = []; endswitch ## Print multcompare table on screen if no output argument was requested if (nargout == 0 || strcmp (DISPLAY, "on")) printf ("\n %s Multiple Comparison (Post Hoc) Test for %s\n\n", ... upper (CTYPE), upper (STATS.source)); header = strcat (["Group ID Group ID LBoundDiff EstimatedDiff"],... [" UBoundDiff p-value\n"], ... ["-------------------------------------------------"],... ["---------------------\n"]); printf ("%s", header); for j = 1:Np if (C(j,6) < 0.001) printf ("%5i %5i %10.3f %10.3f %10.3f <.001\n",... C(j,1), C(j,2), C(j,3), C(j,4), C(j,5)); elseif (C(j,6) < 0.9995) printf ("%5i %5i %10.3f %10.3f %10.3f .%03u\n",... C(j,1), C(j,2), C(j,3), C(j,4), C(j,5), round (C(j,6) * 1e+03)); else printf ("%5i %5i %10.3f %10.3f %10.3f 1.000\n",... C(j,1), C(j,2), C(j,3), C(j,4), C(j,5)); endif endfor printf ("\n"); endif endfunction ## Posthoc comparisons function [pairs, L, R] = pairwise (Ng) ## Create pairs matrix for pairwise comparisons gid = [1:Ng]'; # Create numeric group ID A = ones (Ng, 1) * gid'; B = tril (gid * ones(1, Ng),-1); pairs = [A(:), B(:)]; ridx = (pairs(:, 2) == 0); pairs(ridx, :) = []; ## Calculate correlation matrix (required for CTYPE "mvt") Np = size (pairs, 1); L = zeros (Np, Ng); for j = 1:Np L(j, pairs(j,:)) = [1,-1]; # Hypothesis matrix endfor R = corr (L'); # Correlation matrix endfunction function [pairs, L, R] = trt_vs_ctrl (Ng, REF) ## Create pairs matrix for comparisons with control (REF) gid = [1:Ng]'; # Create numeric group ID pairs = zeros (Ng - 1, 2); pairs(:, 1) = REF; pairs(:, 2) = gid(gid != REF); ## Calculate correlation matrix (required for CTYPE "mvt") Np = size (pairs, 1); L = zeros (Np, Ng); for j = 1:Np L(j, pairs(j,:)) = [1,-1]; # Hypothesis matrix endfor R = corr (L'); # Correlation matrix endfunction function [mn, se, t] = tValue (gmeans, gcov, L) ## Calculate means, standard errors and t (or z) statistics ## corresponding to the comparisons defined in L. mn = sum (L * diag (gmeans), 2); se = sqrt (diag (L * gcov * L')); t = mn ./ se; endfunction function R = cov2corr (vcov) ## Convert covariance matrix to correlation matrix sed = sqrt (diag (vcov)); R = vcov ./ (sed * sed'); R = (R + R') / 2; # This step ensures that the matrix is positive definite endfunction ## Methods to control family-wise error rate in multiple comparisons function [padj, critval, dfe] = scheffe (p, t, Ng, dfe, R, ALPHA) ## Calculate the p-value if (isinf (dfe)) padj = 1 - chi2cdf (t.^2, Ng - 1); else padj = 1 - fcdf ((t.^2) / (Ng - 1), Ng - 1, dfe); endif ## Calculate critical value at Scheffe-adjusted ALPHA level if (isinf (dfe)) tmp = chi2inv (1 - ALPHA, Ng - 1) / (Ng - 1); else tmp = finv (1 - ALPHA, Ng - 1, dfe); end critval = sqrt ((Ng - 1) * tmp); endfunction function [padj, critval, dfe] = bonferroni (p, t, Ng, dfe, R, ALPHA) ## Bonferroni procedure Np = numel (p); padj = min (p * Np, 1.0); ## If requested, calculate critical value at Bonferroni-adjusted ALPHA level if (nargout > 1) critval = tinv (1 - ALPHA / Np * 0.5, dfe); endif endfunction function [padj, critval, dfe] = mvt (p, t, Ng, dfe, R, ALPHA) ## Monte Carlo simulation of the maximum test statistic in random samples ## generated from a multivariate t distribution. This method accounts for ## correlations among comparisons. This method simulates Tukey's test in the ## case of pairwise comparisons or Dunnett's tests in the case of trt_vs_ctrl. ## The "mvt" method is equivalent to methods used in the following R packages: ## - emmeans: the "mvt" adjust method in functions within emmeans ## - glht: the "single-step" adjustment in the multcomp.function ## Lower bound for error degrees of freedom to ensure type 1 error rate isn't ## exceeded for any test if (! isscalar(dfe)) dfe = max (1, round (min (dfe))); fprintf ("Note: df set to %u (lower bound)\n", dfe); endif ## Check if we can use parallel processing to accelerate computations pat = '^parallel'; software = pkg('list'); names = cellfun (@(S) S.name, software, 'UniformOutput', false); status = cellfun (@(S) S.loaded, software, 'UniformOutput', false); index = find (! cellfun (@isempty, regexpi (names, pat))); if (! isempty (index)) if (logical (status{index})) PARALLEL = true; else PARALLEL = false; endif else PARALLEL = false; endif ## Generate the distribution of (correlated) t statistics under the null, and ## calculate the maximum test statistic for each random sample. Computations ## are performed in chunks to prevent memory issues when the number of ## comparisons is large. chunkSize = 1000; numChunks = 1000; nsim = chunkSize * numChunks; if (isinf (dfe)) # Multivariate z-statistics func = @(jnk) max (abs (mvnrnd (0, R, chunkSize)'), [], 1); else # Multivariate t-statistics func = @(jnk) max (abs (mvtrnd (R, dfe, chunkSize)'), [], 1); endif if (PARALLEL) maxT = cell2mat (parcellfun (nproc, func, ... cell (1, numChunks), 'UniformOutput', false)); else maxT = cell2mat (cellfun (func, cell (1, numChunks), 'UniformOutput', false)); endif ## Calculate multiplicity adjusted p-values (two-tailed) padj = max (sum (bsxfun (@ge, maxT, abs (t)), 2) / nsim, nsim^-1); ## Calculate critical value adjusted by the maxT procedure critval = quantile (maxT, 1 - ALPHA); endfunction function [padj, critval, dfe] = holm (p, t, Ng, dfe, R, ALPHA) ## Holm's step-down Bonferroni procedure ## Order raw p-values [ps, idx] = sort (p, "ascend"); Np = numel (ps); ## Implement Holm's step-down Bonferroni procedure padj = nan (Np,1); padj(1) = Np * ps(1); for i = 2:Np padj(i) = max (padj(i - 1), (Np - i + 1) * ps(i)); endfor ## Reorder the adjusted p-values to match the order of the original p-values [jnk, original_order] = sort (idx, "ascend"); padj = padj(original_order); ## Truncate adjusted p-values to 1.0 padj(padj>1) = 1; ## If requested, calculate critical value at ALPHA ## No adjustment to confidence interval coverage if (nargout > 1) critval = tinv (1 - ALPHA / 2, dfe); endif endfunction function [padj, critval, dfe] = hochberg (p, t, Ng, dfe, R, ALPHA) ## Hochberg's step-up Bonferroni procedure ## Order raw p-values [ps, idx] = sort (p, "ascend"); Np = numel (ps); ## Implement Hochberg's step-down Bonferroni procedure padj = nan (Np,1); padj(Np) = ps(Np); for j = 1:Np-1 i = Np - j; padj(i) = min (padj(i + 1), (Np -i + 1) * ps(i)); endfor ## Reorder the adjusted p-values to match the order of the original p-values [jnk, original_order] = sort (idx, "ascend"); padj = padj(original_order); ## Truncate adjusted p-values to 1.0 padj(padj>1) = 1; ## If requested, calculate critical value at ALPHA ## No adjustment to confidence interval coverage if (nargout > 1) critval = tinv (1 - ALPHA / 2, dfe); endif endfunction function [padj, critval, dfe] = fdr (p, t, Ng, dfe, R, ALPHA) ## Benjamini-Hochberg procedure to control the false discovery rate (FDR) ## This procedure does not control the family-wise error rate ## Order raw p-values [ps, idx] = sort (p, "ascend"); Np = numel (ps); ## Initialize padj = nan (Np,1); alpha = nan (Np,1); ## Benjamini-Hochberg step-up procedure to control the false discovery rate padj = nan (Np,1); padj(Np) = ps(Np); for j = 1:Np-1 i = Np - j; padj(i) = min (padj(i + 1), Np / i * ps(i)); endfor ## Reorder the adjusted p-values to match the order of the original p-values [jnk, original_order] = sort (idx, "ascend"); padj = padj(original_order); ## Truncate adjusted p-values to 1.0 padj(padj>1) = 1; ## If requested, calculate critical value at ALPHA ## No adjustment to confidence interval coverage if (nargout > 1) critval = tinv (1 - ALPHA / 2, dfe); endif endfunction function [padj, critval, dfe] = lsd (p, t, Ng, dfe, R, ALPHA) ## Fisher's Least Significant Difference ## No control of the type I error rate across multiple comparisons padj = p; ## Calculate critical value at ALPHA ## No adjustment to confidence interval coverage critval = tinv (1 - ALPHA / 2, dfe); endfunction %!demo %! %! ## Demonstration using balanced one-way ANOVA from anova1 %! %! x = ones (50, 4) .* [-2, 0, 1, 5]; %! randn ("seed", 1); # for reproducibility %! x = x + normrnd (0, 2, 50, 4); %! groups = {"A", "B", "C", "D"}; %! [p, tbl, stats] = anova1 (x, groups, "off"); %! multcompare (stats); %!demo %! %! ## Demonstration using unbalanced one-way ANOVA example from anovan %! %! dv = [ 8.706 10.362 11.552 6.941 10.983 10.092 6.421 14.943 15.931 ... %! 22.968 18.590 16.567 15.944 21.637 14.492 17.965 18.851 22.891 ... %! 22.028 16.884 17.252 18.325 25.435 19.141 21.238 22.196 18.038 ... %! 22.628 31.163 26.053 24.419 32.145 28.966 30.207 29.142 33.212 ... %! 25.694 ]'; %! g = [1 1 1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 3 3 3 ... %! 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5]'; %! %! [P,ATAB, STATS] = anovan (dv, g, "varnames", "score", "display", "off"); %! %! [C, M, H, GNAMES] = multcompare (STATS, "dim", 1, "ctype", "holm", ... %! "ControlGroup", 1, "display", "on") %! %!demo %! %! ## Demonstration using factorial ANCOVA example from anovan %! %! score = [95.6 82.2 97.2 96.4 81.4 83.6 89.4 83.8 83.3 85.7 ... %! 97.2 78.2 78.9 91.8 86.9 84.1 88.6 89.8 87.3 85.4 ... %! 81.8 65.8 68.1 70.0 69.9 75.1 72.3 70.9 71.5 72.5 ... %! 84.9 96.1 94.6 82.5 90.7 87.0 86.8 93.3 87.6 92.4 ... %! 100. 80.5 92.9 84.0 88.4 91.1 85.7 91.3 92.3 87.9 ... %! 91.7 88.6 75.8 75.7 75.3 82.4 80.1 86.0 81.8 82.5]'; %! treatment = {"yes" "yes" "yes" "yes" "yes" "yes" "yes" "yes" "yes" "yes" ... %! "yes" "yes" "yes" "yes" "yes" "yes" "yes" "yes" "yes" "yes" ... %! "yes" "yes" "yes" "yes" "yes" "yes" "yes" "yes" "yes" "yes" ... %! "no" "no" "no" "no" "no" "no" "no" "no" "no" "no" ... %! "no" "no" "no" "no" "no" "no" "no" "no" "no" "no" ... %! "no" "no" "no" "no" "no" "no" "no" "no" "no" "no"}'; %! exercise = {"lo" "lo" "lo" "lo" "lo" "lo" "lo" "lo" "lo" "lo" ... %! "mid" "mid" "mid" "mid" "mid" "mid" "mid" "mid" "mid" "mid" ... %! "hi" "hi" "hi" "hi" "hi" "hi" "hi" "hi" "hi" "hi" ... %! "lo" "lo" "lo" "lo" "lo" "lo" "lo" "lo" "lo" "lo" ... %! "mid" "mid" "mid" "mid" "mid" "mid" "mid" "mid" "mid" "mid" ... %! "hi" "hi" "hi" "hi" "hi" "hi" "hi" "hi" "hi" "hi"}'; %! age = [59 65 70 66 61 65 57 61 58 55 62 61 60 59 55 57 60 63 62 57 ... %! 58 56 57 59 59 60 55 53 55 58 68 62 61 54 59 63 60 67 60 67 ... %! 75 54 57 62 65 60 58 61 65 57 56 58 58 58 52 53 60 62 61 61]'; %! %! [P, ATAB, STATS] = anovan (score, {treatment, exercise, age}, "model", ... %! [1 0 0; 0 1 0; 0 0 1; 1 1 0], "continuous", 3, ... %! "sstype", "h", "display", "off", "contrasts", ... %! {"simple","poly",""}); %! %! [C, M, H, GNAMES] = multcompare (STATS, "dim", [1 2], "ctype", "holm", ... %! "display", "on") %! %!demo %! %! ## Demonstration using one-way ANOVA from anovan, with fit by weighted least %! ## squares to account for heteroskedasticity. %! %! g = [1, 1, 1, 1, 1, 1, 1, 1, ... %! 2, 2, 2, 2, 2, 2, 2, 2, ... %! 3, 3, 3, 3, 3, 3, 3, 3]'; %! %! y = [13, 16, 16, 7, 11, 5, 1, 9, ... %! 10, 25, 66, 43, 47, 56, 6, 39, ... %! 11, 39, 26, 35, 25, 14, 24, 17]'; %! %! [P,ATAB,STATS] = anovan(y, g, "display", "off"); %! fitted = STATS.X * STATS.coeffs(:,1); # fitted values %! b = polyfit (fitted, abs (STATS.resid), 1); %! v = polyval (b, fitted); # Variance as a function of the fitted values %! [P,ATAB,STATS] = anovan (y, g, "weights", v.^-1, "display", "off"); %! [C, M] = multcompare (STATS, "display", "on", "ctype", "mvt") %!demo %! %! ## Demonstration of p-value adjustments to control the false discovery rate %! ## Data from Westfall (1997) JASA. 92(437):299-306 %! %! p = [.005708; .023544; .024193; .044895; ... %! .048805; .221227; .395867; .693051; .775755]; %! %! padj = multcompare(p,'ctype','fdr') %!test %! %! ## Tests using unbalanced one-way ANOVA example from anovan and anova1 %! %! ## Test for anovan - compare pairwise comparisons with matlab for CTYPE "lsd" %! %! dv = [ 8.706 10.362 11.552 6.941 10.983 10.092 6.421 14.943 15.931 ... %! 22.968 18.590 16.567 15.944 21.637 14.492 17.965 18.851 22.891 ... %! 22.028 16.884 17.252 18.325 25.435 19.141 21.238 22.196 18.038 ... %! 22.628 31.163 26.053 24.419 32.145 28.966 30.207 29.142 33.212 ... %! 25.694 ]'; %! g = [1 1 1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 3 3 3 ... %! 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5]'; %! %! [P, ATAB, STATS] = anovan (dv, g, "varnames", "score", "display", "off"); %! [C, M, H, GNAMES] = multcompare (STATS, "dim", 1, "ctype", "lsd", ... %! "display", "off"); %! assert (C(1,6), 2.85812420217898e-05, 1e-09); %! assert (C(2,6), 5.22936741204085e-07, 1e-09); %! assert (C(3,6), 2.12794763209146e-08, 1e-09); %! assert (C(4,6), 7.82091664406946e-15, 1e-09); %! assert (C(5,6), 0.546591417210693, 1e-09); %! assert (C(6,6), 0.0845897945254446, 1e-09); %! assert (C(7,6), 9.47436557975328e-08, 1e-09); %! assert (C(8,6), 0.188873478781067, 1e-09); %! assert (C(9,6), 4.08974010364197e-08, 1e-09); %! assert (C(10,6), 4.44427348175241e-06, 1e-09); %! assert (M(1,1), 10, 1e-09); %! assert (M(2,1), 18, 1e-09); %! assert (M(3,1), 19, 1e-09); %! assert (M(4,1), 21.0001428571429, 1e-09); %! assert (M(5,1), 29.0001111111111, 1e-09); %! assert (M(1,2), 1.0177537954095, 1e-09); %! assert (M(2,2), 1.28736803631001, 1e-09); %! assert (M(3,2), 1.0177537954095, 1e-09); %! assert (M(4,2), 1.0880245732889, 1e-09); %! assert (M(5,2), 0.959547480416536, 1e-09); %! %! ## Compare "fdr" adjusted p-values to those obtained using p.adjust in R %! %! [C, M, H, GNAMES] = multcompare (STATS, "dim", 1, "ctype", "fdr", ... %! "display", "off"); %! assert (C(1,6), 4.08303457454140e-05, 1e-09); %! assert (C(2,6), 1.04587348240817e-06, 1e-09); %! assert (C(3,6), 1.06397381604573e-07, 1e-09); %! assert (C(4,6), 7.82091664406946e-14, 1e-09); %! assert (C(5,6), 5.46591417210693e-01, 1e-09); %! assert (C(6,6), 1.05737243156806e-01, 1e-09); %! assert (C(7,6), 2.36859139493832e-07, 1e-09); %! assert (C(8,6), 2.09859420867852e-01, 1e-09); %! assert (C(9,6), 1.36324670121399e-07, 1e-09); %! assert (C(10,6), 7.40712246958735e-06, 1e-09); %! %! ## Compare "hochberg" adjusted p-values to those obtained using p.adjust in R %! %! [C, M, H, GNAMES] = multcompare (STATS, "dim", 1, "ctype", "hochberg", ... %! "display", "off"); %! assert (C(1,6), 1.14324968087159e-04, 1e-09); %! assert (C(2,6), 3.13762044722451e-06, 1e-09); %! assert (C(3,6), 1.91515286888231e-07, 1e-09); %! assert (C(4,6), 7.82091664406946e-14, 1e-09); %! assert (C(5,6), 5.46591417210693e-01, 1e-09); %! assert (C(6,6), 2.53769383576334e-01, 1e-09); %! assert (C(7,6), 6.63205590582730e-07, 1e-09); %! assert (C(8,6), 3.77746957562134e-01, 1e-09); %! assert (C(9,6), 3.27179208291358e-07, 1e-09); %! assert (C(10,6), 2.22213674087620e-05, 1e-09); %! %! ## Compare "holm" adjusted p-values to those obtained using p.adjust in R %! %! [C, M, H, GNAMES] = multcompare (STATS, "dim", 1, "ctype", "holm", ... %! "display", "off"); %! assert (C(1,6), 1.14324968087159e-04, 1e-09); %! assert (C(2,6), 3.13762044722451e-06, 1e-09); %! assert (C(3,6), 1.91515286888231e-07, 1e-09); %! assert (C(4,6), 7.82091664406946e-14, 1e-09); %! assert (C(5,6), 5.46591417210693e-01, 1e-09); %! assert (C(6,6), 2.53769383576334e-01, 1e-09); %! assert (C(7,6), 6.63205590582730e-07, 1e-09); %! assert (C(8,6), 3.77746957562134e-01, 1e-09); %! assert (C(9,6), 3.27179208291358e-07, 1e-09); %! assert (C(10,6), 2.22213674087620e-05, 1e-09); %! %! ## Compare "scheffe" adjusted p-values to those obtained using 'scheffe' in Matlab %! %! [C, M, H, GNAMES] = multcompare (STATS, "dim", 1, "ctype", "scheffe", ... %! "display", "off"); %! assert (C(1,6), 0.00108105386141085, 1e-09); %! assert (C(2,6), 2.7779386789517e-05, 1e-09); %! assert (C(3,6), 1.3599854038198e-06, 1e-09); %! assert (C(4,6), 7.58830197867751e-13, 1e-09); %! assert (C(5,6), 0.984039948220281, 1e-09); %! assert (C(6,6), 0.539077018557706, 1e-09); %! assert (C(7,6), 5.59475764460574e-06, 1e-09); %! assert (C(8,6), 0.771173490574105, 1e-09); %! assert (C(9,6), 2.52838425729905e-06, 1e-09); %! assert (C(10,6), 0.000200719143889168, 1e-09); %! %! ## Compare "bonferroni" adjusted p-values to those obtained using p.adjust in R %! %! [C, M, H, GNAMES] = multcompare (STATS, "dim", 1, "ctype", "bonferroni", ... %! "display", "off"); %! assert (C(1,6), 2.85812420217898e-04, 1e-09); %! assert (C(2,6), 5.22936741204085e-06, 1e-09); %! assert (C(3,6), 2.12794763209146e-07, 1e-09); %! assert (C(4,6), 7.82091664406946e-14, 1e-09); %! assert (C(5,6), 1.00000000000000e+00, 1e-09); %! assert (C(6,6), 8.45897945254446e-01, 1e-09); %! assert (C(7,6), 9.47436557975328e-07, 1e-09); %! assert (C(8,6), 1.00000000000000e+00, 1e-09); %! assert (C(9,6), 4.08974010364197e-07, 1e-09); %! assert (C(10,6), 4.44427348175241e-05, 1e-09); %! %! ## Test for anova1 ("equal")- comparison of results from Matlab %! %! [P, ATAB, STATS] = anova1 (dv, g, "off", "equal"); %! [C, M, H, GNAMES] = multcompare (STATS, "ctype", "lsd", "display", "off"); %! assert (C(1,6), 2.85812420217898e-05, 1e-09); %! assert (C(2,6), 5.22936741204085e-07, 1e-09); %! assert (C(3,6), 2.12794763209146e-08, 1e-09); %! assert (C(4,6), 7.82091664406946e-15, 1e-09); %! assert (C(5,6), 0.546591417210693, 1e-09); %! assert (C(6,6), 0.0845897945254446, 1e-09); %! assert (C(7,6), 9.47436557975328e-08, 1e-09); %! assert (C(8,6), 0.188873478781067, 1e-09); %! assert (C(9,6), 4.08974010364197e-08, 1e-09); %! assert (C(10,6), 4.44427348175241e-06, 1e-09); %! assert (M(1,1), 10, 1e-09); %! assert (M(2,1), 18, 1e-09); %! assert (M(3,1), 19, 1e-09); %! assert (M(4,1), 21.0001428571429, 1e-09); %! assert (M(5,1), 29.0001111111111, 1e-09); %! assert (M(1,2), 1.0177537954095, 1e-09); %! assert (M(2,2), 1.28736803631001, 1e-09); %! assert (M(3,2), 1.0177537954095, 1e-09); %! assert (M(4,2), 1.0880245732889, 1e-09); %! assert (M(5,2), 0.959547480416536, 1e-09); %! %! ## Test for anova1 ("unequal") - comparison with results from GraphPad Prism 8 %! [P, ATAB, STATS] = anova1 (dv, g, "off", "unequal"); %! [C, M, H, GNAMES] = multcompare (STATS, "ctype", "lsd", "display", "off"); %! assert (C(1,6), 0.001247025266382, 1e-09); %! assert (C(2,6), 0.000018037115146, 1e-09); %! assert (C(3,6), 0.000002974595187, 1e-09); %! assert (C(4,6), 0.000000000786046, 1e-09); %! assert (C(5,6), 0.5693192886650109, 1e-09); %! assert (C(6,6), 0.110501699029776, 1e-09); %! assert (C(7,6), 0.000131226488700, 1e-09); %! assert (C(8,6), 0.1912101409715992, 1e-09); %! assert (C(9,6), 0.000005385256394, 1e-09); %! assert (C(10,6), 0.000074089106171, 1e-09); %!test %! %! ## Test for anova2 ("interaction") - comparison with results from Matlab for column effect %! popcorn = [5.5, 4.5, 3.5; 5.5, 4.5, 4.0; 6.0, 4.0, 3.0; ... %! 6.5, 5.0, 4.0; 7.0, 5.5, 5.0; 7.0, 5.0, 4.5]; %! [P, ATAB, STATS] = anova2 (popcorn, 3, "off"); %! [C, M, H, GNAMES] = multcompare (STATS, "estimate", "column",... %! "ctype", "lsd", "display", "off"); %! assert (C(1,6), 1.49311100811177e-05, 1e-09); %! assert (C(2,6), 2.20506904243535e-07, 1e-09); %! assert (C(3,6), 0.00449897860490058, 1e-09); %! assert (M(1,1), 6.25, 1e-09); %! assert (M(2,1), 4.75, 1e-09); %! assert (M(3,1), 4, 1e-09); %! assert (M(1,2), 0.152145154862547, 1e-09); %! assert (M(2,2), 0.152145154862547, 1e-09); %! assert (M(3,2), 0.152145154862547, 1e-09); %!test %! %! ## Test for anova2 ("linear") - comparison with results from GraphPad Prism 8 %! words = [10 13 13; 6 8 8; 11 14 14; 22 23 25; 16 18 20; ... %! 15 17 17; 1 1 4; 12 15 17; 9 12 12; 8 9 12]; %! [P, ATAB, STATS] = anova2 (words, 1, "off", "linear"); %! [C, M, H, GNAMES] = multcompare (STATS, "estimate", "column",... %! "ctype", "lsd", "display", "off"); %! assert (C(1,6), 0.000020799832702, 1e-09); %! assert (C(2,6), 0.000000035812410, 1e-09); %! assert (C(3,6), 0.003038942449215, 1e-09); %!test %! %! ## Test for anova2 ("nested") - comparison with results from GraphPad Prism 8 %! data = [4.5924 7.3809 21.322; -0.5488 9.2085 25.0426; ... %! 6.1605 13.1147 22.66; 2.3374 15.2654 24.1283; ... %! 5.1873 12.4188 16.5927; 3.3579 14.3951 10.2129; ... %! 6.3092 8.5986 9.8934; 3.2831 3.4945 10.0203]; %! [P, ATAB, STATS] = anova2 (data, 4, "off", "nested"); %! [C, M, H, GNAMES] = multcompare (STATS, "estimate", "column",... %! "ctype", "lsd", "display", "off"); %! assert (C(1,6), 0.261031111511073, 1e-09); %! assert (C(2,6), 0.065879755907745, 1e-09); %! assert (C(3,6), 0.241874613529270, 1e-09); %!shared visibility_setting %! visibility_setting = get (0, "DefaultFigureVisible"); %!test %! set (0, "DefaultFigureVisible", "off"); %! %! ## Test for kruskalwallis - comparison with results from MATLAB %! data = [3,2,4; 5,4,4; 4,2,4; 4,2,4; 4,1,5; ... %! 4,2,3; 4,3,5; 4,2,4; 5,2,4; 5,3,3]; %! group = [1:3] .* ones (10,3); %! [P, ATAB, STATS] = kruskalwallis (data(:), group(:), "off"); %! C = multcompare (STATS, "ctype", "lsd", "display", "off"); %! assert (C(1,6), 0.000163089828959986, 1e-09); %! assert (C(2,6), 0.630298044801257, 1e-09); %! assert (C(3,6), 0.00100567660695682, 1e-09); %! C = multcompare (STATS, "ctype", "bonferroni", "display", "off"); %! assert (C(1,6), 0.000489269486879958, 1e-09); %! assert (C(2,6), 1, 1e-09); %! assert (C(3,6), 0.00301702982087047, 1e-09); %! C = multcompare(STATS, "ctype", "scheffe", "display", "off"); %! assert (C(1,6), 0.000819054880289573, 1e-09); %! assert (C(2,6), 0.890628039849261, 1e-09); %! assert (C(3,6), 0.00447816059021654, 1e-09); %! set (0, "DefaultFigureVisible", visibility_setting); %!test %! set (0, "DefaultFigureVisible", "off"); %! ## Test for friedman - comparison with results from MATLAB %! popcorn = [5.5, 4.5, 3.5; 5.5, 4.5, 4.0; 6.0, 4.0, 3.0; ... %! 6.5, 5.0, 4.0; 7.0, 5.5, 5.0; 7.0, 5.0, 4.5]; %! [P, ATAB, STATS] = friedman (popcorn, 3, "off"); %! C = multcompare(STATS, "ctype", "lsd", "display", "off"); %! assert (C(1,6), 0.227424558028569, 1e-09); %! assert (C(2,6), 0.0327204848315735, 1e-09); %! assert (C(3,6), 0.353160353315988, 1e-09); %! C = multcompare(STATS, "ctype", "bonferroni", "display", "off"); %! assert (C(1,6), 0.682273674085708, 1e-09); %! assert (C(2,6), 0.0981614544947206, 1e-09); %! assert (C(3,6), 1, 1e-09); %! C = multcompare(STATS, "ctype", "scheffe", "display", "off"); %! assert (C(1,6), 0.482657360384373, 1e-09); %! assert (C(2,6), 0.102266573027672, 1e-09); %! assert (C(3,6), 0.649836502233148, 1e-09); %! set (0, "DefaultFigureVisible", visibility_setting); %!test %! set (0, "DefaultFigureVisible", "off"); %! ## Test for fitlm - same comparisons as for first anovan example %! y = [ 8.706 10.362 11.552 6.941 10.983 10.092 6.421 14.943 15.931 ... %! 22.968 18.590 16.567 15.944 21.637 14.492 17.965 18.851 22.891 ... %! 22.028 16.884 17.252 18.325 25.435 19.141 21.238 22.196 18.038 ... %! 22.628 31.163 26.053 24.419 32.145 28.966 30.207 29.142 33.212 ... %! 25.694 ]'; %! X = [1 1 1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5]'; %! [TAB,STATS] = fitlm (X,y,"linear","categorical",1,"display","off",... %! "contrasts","simple"); %! [C, M] = multcompare(STATS, "ctype", "lsd", "display", "off"); %! assert (C(1,6), 2.85812420217898e-05, 1e-09); %! assert (C(2,6), 5.22936741204085e-07, 1e-09); %! assert (C(3,6), 2.12794763209146e-08, 1e-09); %! assert (C(4,6), 7.82091664406946e-15, 1e-09); %! assert (C(5,6), 0.546591417210693, 1e-09); %! assert (C(6,6), 0.0845897945254446, 1e-09); %! assert (C(7,6), 9.47436557975328e-08, 1e-09); %! assert (C(8,6), 0.188873478781067, 1e-09); %! assert (C(9,6), 4.08974010364197e-08, 1e-09); %! assert (C(10,6), 4.44427348175241e-06, 1e-09); %! assert (M(1,1), 10, 1e-09); %! assert (M(2,1), 18, 1e-09); %! assert (M(3,1), 19, 1e-09); %! assert (M(4,1), 21.0001428571429, 1e-09); %! assert (M(5,1), 29.0001111111111, 1e-09); %! assert (M(1,2), 1.0177537954095, 1e-09); %! assert (M(2,2), 1.28736803631001, 1e-09); %! assert (M(3,2), 1.0177537954095, 1e-09); %! assert (M(4,2), 1.0880245732889, 1e-09); %! assert (M(5,2), 0.959547480416536, 1e-09); %! set (0, "DefaultFigureVisible", visibility_setting); %!test %! ## Test p-value adjustments compared to R stats package function p.adjust %! ## Data from Westfall (1997) JASA. 92(437):299-306 %! p = [.005708; .023544; .024193; .044895; ... %! .048805; .221227; .395867; .693051; .775755]; %! padj = multcompare (p); %! assert (padj(1), 0.051372, 1e-06); %! assert (padj(2), 0.188352, 1e-06); %! assert (padj(3), 0.188352, 1e-06); %! assert (padj(4), 0.269370, 1e-06); %! assert (padj(5), 0.269370, 1e-06); %! assert (padj(6), 0.884908, 1e-06); %! assert (padj(7), 1.000000, 1e-06); %! assert (padj(8), 1.000000, 1e-06); %! assert (padj(9), 1.000000, 1e-06); %! padj = multcompare(p,'ctype','holm'); %! assert (padj(1), 0.051372, 1e-06); %! assert (padj(2), 0.188352, 1e-06); %! assert (padj(3), 0.188352, 1e-06); %! assert (padj(4), 0.269370, 1e-06); %! assert (padj(5), 0.269370, 1e-06); %! assert (padj(6), 0.884908, 1e-06); %! assert (padj(7), 1.000000, 1e-06); %! assert (padj(8), 1.000000, 1e-06); %! assert (padj(9), 1.000000, 1e-06); %! padj = multcompare(p,'ctype','hochberg'); %! assert (padj(1), 0.051372, 1e-06); %! assert (padj(2), 0.169351, 1e-06); %! assert (padj(3), 0.169351, 1e-06); %! assert (padj(4), 0.244025, 1e-06); %! assert (padj(5), 0.244025, 1e-06); %! assert (padj(6), 0.775755, 1e-06); %! assert (padj(7), 0.775755, 1e-06); %! assert (padj(8), 0.775755, 1e-06); %! assert (padj(9), 0.775755, 1e-06); %! padj = multcompare(p,'ctype','fdr'); %! assert (padj(1), 0.0513720, 1e-07); %! assert (padj(2), 0.0725790, 1e-07); %! assert (padj(3), 0.0725790, 1e-07); %! assert (padj(4), 0.0878490, 1e-07); %! assert (padj(5), 0.0878490, 1e-07); %! assert (padj(6), 0.3318405, 1e-07); %! assert (padj(7), 0.5089719, 1e-07); %! assert (padj(8), 0.7757550, 1e-07); %! assert (padj(9), 0.7757550, 1e-07); statistics-release-1.6.3/inst/nanmax.m000066400000000000000000000041131456127120000177430ustar00rootroot00000000000000## Copyright (C) 2001 Paul Kienzle ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {[@var{v}, @var{idx}] =} nanmax (@var{X}) ## @deftypefnx {statistics} {[@var{v}, @var{idx}] =} nanmax (@var{X}, @var{Y}) ## ## Find the maximal element while ignoring NaN values. ## ## @code{nanmax} is identical to the @code{max} function except that NaN values ## are ignored. If all values in a column are NaN, the maximum is ## returned as NaN rather than []. ## ## @seealso{max, nansum, nanmin} ## @end deftypefn function [v, idx] = nanmax (X, Y, DIM) if nargin < 1 || nargin > 3 print_usage; elseif nargin == 1 || (nargin == 2 && isempty(Y)) nanvals = isnan(X); X(nanvals) = -Inf; [v, idx] = max (X); v(all(nanvals)) = NaN; elseif (nargin == 3 && isempty(Y)) nanvals = isnan(X); X(nanvals) = -Inf; [v, idx] = max (X,[],DIM); v(all(nanvals,DIM)) = NaN; else Xnan = isnan(X); Ynan = isnan(Y); X(Xnan) = -Inf; Y(Ynan) = -Inf; if (nargin == 3) [v, idx] = max(X,Y,DIM); else [v, idx] = max(X,Y); endif v(Xnan & Ynan) = NaN; endif endfunction %!assert (nanmax ([2 4 NaN 7]), 7) %!assert (nanmax ([2 4 NaN Inf]), Inf) %!assert (nanmax ([1 NaN 3; NaN 5 6; 7 8 NaN]), [7, 8, 6]) %!assert (nanmax ([1 NaN 3; NaN 5 6; 7 8 NaN]'), [3, 6, 8]) %!assert (nanmax (single ([1 NaN 3; NaN 5 6; 7 8 NaN])), single ([7 8 6])) statistics-release-1.6.3/inst/nanmin.m000066400000000000000000000043061456127120000177450ustar00rootroot00000000000000## Copyright (C) 2001 Paul Kienzle ## Copyright (C) 2003 Alois Schloegl ## Copyright (C) 2022 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {[@var{v}, @var{idx}] =} nanmin (@var{X}) ## @deftypefnx {statistics} {[@var{v}, @var{idx}] =} nanmin (@var{X}, @var{Y}) ## ## Find the minimal element while ignoring NaN values. ## ## @code{nanmin} is identical to the @code{min} function except that NaN values ## are ignored. If all values in a column are NaN, the minimum is ## returned as NaN rather than []. ## ## @seealso{min, nansum, nanmax} ## @end deftypefn function [v, idx] = nanmin (X, Y, DIM) if nargin < 1 || nargin > 3 print_usage; elseif nargin == 1 || (nargin == 2 && isempty(Y)) nanvals = isnan(X); X(nanvals) = Inf; [v, idx] = min (X); v(all(nanvals)) = NaN; elseif (nargin == 3 && isempty(Y)) nanvals = isnan(X); X(nanvals) = Inf; [v, idx] = min (X,[],DIM); v(all(nanvals,DIM)) = NaN; else Xnan = isnan(X); Ynan = isnan(Y); X(Xnan) = Inf; Y(Ynan) = Inf; if (nargin == 3) [v, idx] = min(X,Y,DIM); else [v, idx] = min(X,Y); endif v(Xnan & Ynan) = NaN; endif endfunction %!assert (nanmin ([2 4 NaN 7]), 2) %!assert (nanmin ([2 4 NaN Inf]), 2) %!assert (nanmin ([1 NaN 3; NaN 5 6; 7 8 NaN]), [1, 5, 3]) %!assert (nanmin ([1 NaN 3; NaN 5 6; 7 8 NaN]'), [1, 5, 7]) %!assert (nanmin (single ([1 NaN 3; NaN 5 6; 7 8 NaN])), single ([1 5 3])) statistics-release-1.6.3/inst/nansum.m000066400000000000000000000040561456127120000177700ustar00rootroot00000000000000## Copyright (C) 2001 Paul Kienzle ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {s =} nansum (@var{x}) ## @deftypefnx {statistics} {s =} nansum (@var{x}, @var{dim}) ## @deftypefnx {statistics} {s =} nansum (@dots{}, @qcode{"native"}) ## @deftypefnx {statistics} {s =} nansum (@dots{}, @qcode{"double"}) ## @deftypefnx {statistics} {s =} nansum (@dots{}, @qcode{"extra"}) ## Compute the sum while ignoring NaN values. ## ## @code{nansum} is identical to the @code{sum} function except that NaN ## values are treated as 0 and so ignored. If all values are NaN, the sum is ## returned as 0. ## ## See help text of @code{sum} for details on the options. ## ## @seealso{sum, nanmin, nanmax} ## @end deftypefn function v = nansum (X, varargin) if (nargin < 1) print_usage (); else X(isnan (X)) = 0; v = sum (X, varargin{:}); endif endfunction %!assert (nansum ([2 4 NaN 7]), 13) %!assert (nansum ([2 4 NaN Inf]), Inf) %!assert (nansum ([1 NaN 3; NaN 5 6; 7 8 NaN]), [8 13 9]) %!assert (nansum ([1 NaN 3; NaN 5 6; 7 8 NaN], 2), [4; 11; 15]) %!assert (nansum (single ([1 NaN 3; NaN 5 6; 7 8 NaN])), single ([8 13 9])) %!assert (nansum (single ([1 NaN 3; NaN 5 6; 7 8 NaN]), "double"), [8 13 9]) %!assert (nansum (uint8 ([2 4 1 7])), 14) %!assert (nansum (uint8 ([2 4 1 7]), "native"), uint8 (14)) %!assert (nansum (uint8 ([2 4 1 7])), 14) statistics-release-1.6.3/inst/normalise_distribution.m000066400000000000000000000220251456127120000232530ustar00rootroot00000000000000## Copyright (C) 2011 Alexander Klein ## Copyright (C) 2022-2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{NORMALISED} =} normalise_distribution (@var{DATA}) ## @deftypefnx {statistics} {@var{NORMALISED} =} normalise_distribution (@var{DATA}, @var{DISTRIBUTION}) ## @deftypefnx {statistics} {@var{NORMALISED} =} normalise_distribution (@var{DATA}, @var{DISTRIBUTION}, @var{DIMENSION}) ## ## Transform a set of data so as to be N(0,1) distributed according to an idea ## by van Albada and Robinson. ## ## This is achieved by first passing it through its own cumulative distribution ## function (CDF) in order to get a uniform distribution, and then mapping ## the uniform to a normal distribution. ## ## The data must be passed as a vector or matrix in @var{DATA}. ## If the CDF is unknown, then [] can be passed in @var{DISTRIBUTION}, and in ## this case the empirical CDF will be used. ## Otherwise, if the CDFs for all data are known, they can be passed in ## @var{DISTRIBUTION}, ## either in the form of a single function name as a string, ## or a single function handle, ## or a cell array consisting of either all function names as strings, ## or all function handles. ## In the latter case, the number of CDFs passed must match the number ## of rows, or columns respectively, to normalise. ## If the data are passed as a matrix, then the transformation will ## operate either along the first non-singleton dimension, ## or along @var{DIMENSION} if present. ## ## Notes: ## The empirical CDF will map any two sets of data ## having the same size and their ties in the same places after sorting ## to some permutation of the same normalised data: ## @example ## @code{normalise_distribution([1 2 2 3 4])} ## @result{} -1.28 0.00 0.00 0.52 1.28 ## ## @code{normalise_distribution([1 10 100 10 1000])} ## @result{} -1.28 0.00 0.52 0.00 1.28 ## @end example ## ## Original source: ## S.J. van Albada, P.A. Robinson ## "Transformation of arbitrary distributions to the ## normal distribution with application to EEG ## test-retest reliability" ## Journal of Neuroscience Methods, Volume 161, Issue 2, ## 15 April 2007, Pages 205-211 ## ISSN 0165-0270, 10.1016/j.jneumeth.2006.11.004. ## (http://www.sciencedirect.com/science/article/pii/S0165027006005668) ## @end deftypefn function normalised = normalise_distribution (data, distribution, dimension) if (nargin < 1 || nargin > 3) print_usage; elseif (! ismatrix (data) || length (size (data)) > 2) error (strcat (["normalise_distribution: first argument"], ... [" must be a vector or matrix."])); endif if (nargin >= 2) if (! isempty (distribution)) ## Wrap a single handle in a cell array. if (strcmp (typeinfo (distribution), typeinfo (@(x)(x)))) distribution = {distribution}; ## Do we have a string argument instead? elseif (ischar (distribution)) ## Is it a single string? if (rows (distribution) == 1) temp = str2func ([distribution]); distribution = {temp}; else error (strcat (["normalise_distribution: second argument cannot"], ... [" contain more than one string unless in a cell"], ... [" array."])); endif ## Do we have a cell array of distributions instead? elseif (iscell (distribution)) ## Does it consist of strings only? if (all (cellfun (@ischar, distribution))) distribution = cellfun (@str2func, distribution, ... "UniformOutput", false ); endif ## Does it eventually consist of function handles only if (! all (cellfun (@(h) (strcmp (typeinfo (h), typeinfo ... (@(x)(x)))), distribution))) error (strcat (["normalise_distribution: second argument must"], ... [" contain either a single function name or"], ... [" handle or a cell array of either all function"], ... [" names or handles!"])); endif else error ( "Illegal second argument: ", typeinfo ( distribution ) ); endif endif else distribution = []; endif if (nargin == 3) if (! isscalar (dimension) || (dimension != 1 && dimension != 2)) error ("normalise_distribution: third argument must be either 1 or 2."); endif else if (isvector (data) && rows (data) == 1) dimension = 2; else dimension = 1; endif endif trp = (dimension == 2); if (trp) data = data'; endif r = rows (data); c = columns (data); normalised = NA (r, c); ## Do we know the distribution of the sample? if (isempty (distribution)) precomputed_normalisation = []; for k = 1 : columns ( data ) ## Note that this line is in accordance with equation (16) in the ## original text. The author's original program, however, produces ## different values in the presence of ties, namely those you'd ## get replacing "last" by "first". [uniq, indices] = unique (sort (data(:, k)), "last"); ## Does the sample have ties? if (rows (uniq) != r) ## Transform to uniform, then normal distribution. uniform = ( indices - 1/2 ) / r; normal = norminv ( uniform ); else ## Without ties everything is pretty much straightforward as ## stated in the text. if (isempty (precomputed_normalisation)) precomputed_normalisation = norminv (1 / (2*r) : 1/r : 1 - 1 / (2*r)); endif normal = precomputed_normalisation; endif ## Find the original indices in the unsorted sample. ## This somewhat quirky way of doing it is still faster than ## using a for-loop. [ ignore, ignore, target_indices ] = unique ( data (:, k ) ); ## Put normalised values in the places where they belong. f_remap = @( k ) ( normal ( k ) ); normalised ( :, k ) = arrayfun ( f_remap, target_indices ); endfor else ## With known distributions, everything boils down to a few lines of code ##The same distribution for all data? if (all (size (distribution) == 1)) normalised = norminv (distribution{1,1}(data)); elseif (length (vec (distribution)) == c) for k = 1 : c normalised (:, k) = norminv (distribution{k}(data)(:, k)); endfor else error (strcat (["normalise_distribution: number of distributions"], ... [" does not match data size!"])); endif endif if (trp) normalised = normalised'; endif endfunction %!test %! v = normalise_distribution ([1 2 3], [], 1); %! assert (v, [0 0 0]) %!test %! v = normalise_distribution ([1 2 3], [], 2); %! assert (v, norminv ([1 3 5] / 6), 3 * eps) %!test %! v = normalise_distribution ([1 2 3]', [], 2); %! assert (v, [0 0 0]') %!test %! v = normalise_distribution ([1 2 3]', [], 1); %! assert (v, norminv ([1 3 5]' / 6), 3 * eps) %!test %! v = normalise_distribution ([1 1 2 2 3 3], [], 2); %! assert (v, norminv ([3 3 7 7 11 11] / 12), 3 * eps) %!test %! v = normalise_distribution ([1 1 2 2 3 3]', [], 1); %! assert (v, norminv ([3 3 7 7 11 11]' / 12), 3 * eps) %!test %! A = randn ( 10 ); %! N = normalise_distribution (A, @normcdf); %! assert (A, N, 10000 * eps) %!test %! A = exprnd (1, 100); %! N = normalise_distribution (A, @(x)(expcdf (x, 1))); %! assert (mean (vec (N)), 0, 0.1) %! assert (std (vec (N)), 1, 0.1) %!test %! A = rand (1000,1); %! N = normalise_distribution (A, {@(x)(unifcdf (x, 0, 1))}); %! assert (mean (vec (N)), 0, 0.2) %! assert (std (vec (N)), 1, 0.1) %!test %! A = [rand(1000,1), randn(1000, 1)]; %! N = normalise_distribution (A, {@(x)(unifcdf (x, 0, 1)), @normcdf}); %! assert (mean (N), [0, 0], 0.2) %! assert (std (N), [1, 1], 0.1) %!test %! A = [rand(1000,1), randn(1000, 1), exprnd(1, 1000, 1)]'; %! N = normalise_distribution (A, {@(x)(unifcdf (x, 0, 1)); @normcdf; @(x)(expcdf (x, 1))}, 2); %! assert (mean (N, 2), [0, 0, 0]', 0.2); %! assert (std (N, [], 2), [1, 1, 1]', 0.1); %!xtest %! A = exprnd (1, 1000, 9); A (300:500, 4:6) = 17; %! N = normalise_distribution (A); %! assert (mean (N), [0 0 0 0.38 0.38 0.38 0 0 0], 0.1); %! assert (var (N), [1 1 1 2.59 2.59 2.59 1 1 1], 0.1); %!test %!error normalise_distribution (zeros (3, 4), ... %! {@(x)(unifcdf (x, 0, 1)); @normcdf; @(x)(expcdf (x,1))}); statistics-release-1.6.3/inst/normplot.m000066400000000000000000000140541456127120000203400ustar00rootroot00000000000000## Copyright (C) 2022 Andreas Bertsatos ## Based on previous work by Paul Kienzle originally ## granted to the public domain. ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {Function File} {} normplot (@var{x}) ## @deftypefnx {Function File} {} normplot (@var{ax}, @var{x}) ## @deftypefnx {Function File} {@var{h} =} normplot (@dots{}) ## ## Produce normal probability plot of the data in @var{x}. If @var{x} is a ## matrix, @code{normplot} plots the data for each column. NaN values are ## ignored. ## ## @code{@var{h} = normplot (@var{ax}, @var{x})} takes a handle @var{ax} in ## addition to the data in @var{x} and it uses that axes for ploting. You may ## get this handle of an existing plot with @code{gca}/. ## ## The line joing the 1st and 3rd quantile is drawn solid whereas its extensions ## to both ends are dotted. If the underlying distribution is normal, the ## points will cluster around the solid part of the line. Other distribution ## types will introduce curvature in the plot. ## ## @seealso{cdfplot, wblplot} ## @end deftypefn function h = normplot (varargin) ## Check for valid input arguments narginchk (1, 2); ## Parse input arguments if (nargin == 1) ax = []; x = varargin{1}; else ax = varargin{1}; ## Check that ax is a valid axis handle try isstruct (get (ax)); catch error ("normplot: invalid handle %f.", ax); end_try_catch x = varargin{2}; endif ## Check that x is a vector or a 2-D matrix if (isscalar (x) || ndims (x) > 2) error ("normplot: x must be a vecctor or a 2-D matrix handle."); endif ## If x is a vector, make it a column vector if (rows (x) == 1) x = x(:); endif ## If ax is empty, create a new axes if (isempty (ax)) ax = newplot(); end ## Get number of column vectors in x col = size (x, 2); ## Process each column and plot data and fit lines color = {"blue", "black", "cyan", "green", "magenta", "red", "white", "yellow"}; hold on; for i = 1:col xc = x(:,i); ## Remove NaNs, get min, max, and range xc(isnan(xc)) = []; if (isempty (xc)) break; endif ## Transform data row_xc = rows (xc); yc = norminv (([1:row_xc]' - 0.5) / row_xc); xc = sort(xc); ## Find quartiles q1x = prctile(xc,25); q3x = prctile(xc,75); q1y = prctile(yc,25); q3y = prctile(yc,75); qx = [q1x; q3x]; qy = [q1y; q3y]; ## Calculate coordinates and limits for fitting lines dx = q3x - q1x; dy = q3y - q1y; slope = dy ./ dx; centerx = (q1x + q3x)/2; centery = (q1y + q3y)/2; maxx = max (xc); minx = min (xc); maxy = centery + slope.*(maxx - centerx); miny = centery - slope.*(centerx - minx); yinter = centery - slope.*(centerx); mx = [minx; maxx]; my = [miny; maxy]; ## Plot data and corresponding reference lines in the same color, ## following the default color order. Plot reference line first, ## followed by the data, so that data will be on top of reference line. h_end(i) = line (ax, mx, my, "LineStyle", "-.", "Marker", "none", ... "color", color{mod(i,8)}); h_mid(i) = line (ax, qx, qy, "LineStyle", "-", "Marker", "none", ... "color", color{mod(i,8)}); h_dat(i) = line (ax, xc, yc, "LineStyle", "none", "Marker", "+", ... "color", color{mod(i,8)}); endfor hold off; ## Change colors for single column vector if (i == 1) set (h_dat, "Color", "b"); set (h_mid, "Color", "r"); set (h_end, "Color", "r"); endif ## Bundle handles together if output requested if (nargout > 0) h = [h_dat, h_mid, h_end]'; endif ## Plot labels title "Normal Probability Plot" ylabel "Probability" xlabel "Data" ## Plot grid p = [0.001, 0.003, 0.01, 0.02, 0.05, 0.10, 0.25, 0.5, ... 0.75, 0.90, 0.95, 0.98, 0.99, 0.997, 0.999]; label = {"0.001", "0.003", "0.01", "0.02", "0.05", "0.10", "0.25", "0.50", ... "0.75", "0.90", "0.95", "0.98", "0.99", "0.997", "0.999"}; tick = norminv(p,0,1); set (ax, "ytick", tick, "yticklabel", label); ## Set view range with a bit of space around data range = nanmax (x(:)) - nanmin (x(:)); if (range > 0) minxaxis = nanmin (x(:)) - 0.025 * range; maxxaxis = nanmax (x(:)) + 0.025 * range; else minxaxis = nanmin (x(:)) - 1; maxxaxis = nanmax (x(:)) + 1; end minyaxis = norminv (0.25 ./ row_xc, 0, 1); maxyaxis = norminv ((row_xc - 0.25) ./ row_xc, 0, 1); set (ax, "ylim", [minyaxis, maxyaxis], "xlim", [minxaxis, maxxaxis]); grid (ax, "on"); box (ax, "off"); endfunction %!demo %! h = normplot([1:20]); %!demo %! h = normplot([1:20;5:2:44]'); %!demo %! ax = newplot(); %! h = normplot(ax, [1:20]); %! ax = gca; %! h = normplot(ax, [-10:10]); %! set (ax, "xlim", [-11, 21]); ## Test input validation %!error normplot (); %!error normplot (23); %!error normplot (23, [1:20]); %!error normplot (ones(3,4,5)); ## Test plotting %!test %! hf = figure ("visible", "off"); %! unwind_protect %! ax = newplot (hf); %! h = normplot (ax, [1:20]); %! ax = gca; %! h = normplot(ax, [-10:10]); %! set (ax, "xlim", [-11, 21]); %! unwind_protect_cleanup %! close (hf); %! end_unwind_protect %!test %! hf = figure ("visible", "off"); %! unwind_protect %! h = normplot([1:20;5:2:44]'); %! unwind_protect_cleanup %! close (hf); %! end_unwind_protect statistics-release-1.6.3/inst/optimalleaforder.m000066400000000000000000000234171456127120000220220ustar00rootroot00000000000000## Copyright (C) 2021 Stefano Guidoni ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{leafOrder} =} optimalleaforder (@var{tree}, @var{D}) ## @deftypefnx {statistics} {@var{leafOrder} =} optimalleaforder (@dots{}, @var{Name}, @var{Value}) ## ## Compute the optimal leaf ordering of a hierarchical binary cluster tree. ## ## The optimal leaf ordering of a tree is the ordering which minimizes the sum ## of the distances between each leaf and its adjacent leaves, without altering ## the structure of the tree, that is without redefining the clusters of the ## tree. ## ## Required inputs: ## @itemize ## @item ## @var{tree}: a hierarchical cluster tree @var{tree} generated by the ## @code{linkage} function. ## ## @item ## @var{D}: a matrix of distances as computed by @code{pdist}. ## @end itemize ## ## Optional inputs can be the following property/value pairs: ## @itemize ## @item ## property 'Criteria' at the moment can only have the value 'adjacent', ## for minimizing the distances between leaves. ## ## @item ## property 'Transformation' can have one of the values 'linear', 'inverse' ## or a handle to a custom function which computes @var{S} the similarity ## matrix. ## @end itemize ## ## optimalleaforder's output @var{leafOrder} is the optimal leaf ordering. ## ## @strong{Reference} ## Bar-Joseph, Z., Gifford, D.K., and Jaakkola, T.S. Fast optimal leaf ordering ## for hierarchical clustering. Bioinformatics vol. 17 suppl. 1, 2001. ## @end deftypefn ## ## @seealso{dendrogram,linkage,pdist} function leafOrder = optimalleaforder ( varargin ) ## check the input if ( nargin < 2 ) print_usage (); endif tree = varargin{1}; D = varargin{2}; criterion = "adjacent"; # default and only value at the moment transformation = "linear"; if ((columns (tree) != 3) || (! isnumeric (tree)) || ... (! (max (tree(end, 1:2)) == rows (tree) * 2))) error (["optimalleaforder: tree must be a matrix as generated by the " ... "linkage function"]); endif ## read the paired arguments if (! all (cellfun ("ischar", varargin(3:end)))) error ("optimalleaforder: character inputs expected for arguments 3 and up"); else varargin(3:end) = lower (varargin(3:end)); endif pair_index = 3; while (pair_index <= (nargin - 1)) switch (varargin{pair_index}) case "criteria" criterion = varargin{pair_index + 1}; if (strcmp (criterion, "group")) ## MATLAB compatibility: ## the 'group' criterion is not implemented error ("optimalleaforder: unavailable criterion 'group'"); elseif (! strcmp (criterion, "adjacent")) error ("optimalleaforder: invalid criterion %s", criterion); endif case "transformation" transformation = varargin{pair_index + 1}; otherwise error ("optimalleaforder: unknown property %s", varargin{pair_index}); endswitch pair_index += 2; endwhile ## D can be either a vector or a matrix, ## but it is easier to work with a matrix if (isvector (D)) D = squareform (D); endif n = rows (D); m = rows (tree); if (n != (m + 1)) error (["optimalleaforder: D must be a matrix or vector generated by " ... "the pdist function"]); endif ## the similarity matrix, basically an inverted distance matrix S = zeros (n); if (strcmpi (transformation, "linear")) ## linear similarity maxD = max (max (D)); S = maxD - D; elseif (strcmpi (transformation, "inverse")) ## similarity as inverted distance S = 1 ./ D; elseif (is_function_handle (transformation)) ## custom similarity S = feval (transformation, D); else error ("optimalleaforder: invalid transformation %s", transformation); endif ## main body ## for each node v we compute the maximum similarity of the subtree M(w,u,v), ## where the leftmost leaf is w and the rightmost is u; remember that ## M(w,u,v) = M(u,w,v) M = zeros (n, n, n + m); ## O is a utility matrix: for each node of the tree we store the left and ## right leaves of the optimal subtree O = [1:( n + m ); 1:( n + m ); (zeros (1, (n + m)))]'; ## compute M for every node v for iter = 1 : m v = iter + n; # current node l = optimalleaforder_getLeafList (tree(iter, 1)); # the left subtree r = optimalleaforder_getLeafList (tree(iter, 2)); # the right subtree if (tree(iter,1) > n) l_l = optimalleaforder_getLeafList (tree(tree(iter, 1) - n, 1)); l_r = optimalleaforder_getLeafList (tree(tree(iter, 1) - n, 2)); else l_l = l_r = l; endif if (tree(iter,2) > n) r_l = optimalleaforder_getLeafList (tree(tree(iter, 2) - n, 1)); r_r = optimalleaforder_getLeafList (tree(tree(iter, 2) - n, 2)); else r_l = r_r = r; endif ## let's find the maximum value of M(w,u,v) when: w is a leaf of the left ## subtree of v and u is a leaf of the right subtree of v for i = 1 : length (l) if (isempty (find (l(i) == l_l))) x = l_l; else x = l_r; endif for j = 1 : length (r) if (isempty (find (r(j) == r_l))) y = r_l; else y = r_r; endif ## max(M(w,u,v)) = max(M(w,k,v_l)) + max(M(h,u,v_r)) + S(k,h) ## where: v_l is the left child of v and v_r the right child of v M_tmp = repmat (M(l(i), x(:), tree(iter, 1)), length (y), 1) + ... repmat (M(y(:), r(j), tree(iter, 2)), 1, length (x)) + ... S(y(:), x(:)); M_max = max (max (M_tmp)); # this is M(l(i), r(j), v) [h, k] = find (M_tmp == M_max); M(l(i), r(j), v) = M_max; M(r(j), l(i), v) = M(l(i), r(j), v); if (M_max > O(v,3)) O(v, 1) = l(i); # this is w O(v, 2) = r(j); # this is u O(v, 3) = M_max; # this is M(w, u, v) endif endfor endfor endfor ## reordering: ## we found the M(w,u,v) corresponding to the optimal leaf order, now we can ## compute the optimal leaf order given our M(w,u,v) ## the return value leafOrder = zeros ( 1, n ); leafOrder(1) = O(end, 1); leafOrder(n) = O(end, 2); ## the inverse operation, only easier, to get the leaf order: now we know the ## leftmost and rightmost leaves of the best subtree, we may have to flip it ## though for iter = m : -1 : 1 v = iter + n; extremes = O(v, [1, 2]); l_node = tree(iter, 1); r_node = tree(iter, 2); l = optimalleaforder_getLeafList (l_node); r = optimalleaforder_getLeafList (r_node); if (l_node > n) l_l = optimalleaforder_getLeafList (tree(l_node - n, 1)); l_r = optimalleaforder_getLeafList (tree(l_node - n, 2)); else l_l = l_r = l; endif if (r_node > n) r_l = optimalleaforder_getLeafList (tree(r_node - n, 1)); r_r = optimalleaforder_getLeafList (tree(r_node - n, 2)); else r_l = r_r = r; endif ## this means that we need to flip the subtree if (isempty (find (extremes(1) == l))) l_tmp = l; l_l_tmp = l_l; l_r_tmp = l_r; l = r; l_l = r_l; l_r = r_r; r = l_tmp; r_l = l_l_tmp; r_r = l_r_tmp; node_tmp = l_node; l_node = r_node; r_node = node_tmp; endif if (isempty (find (extremes(1) == l_l))) x = l_l; else x = l_r; endif if (isempty (find (extremes(2) == r_l))) y = r_l; else y = r_r; endif M_tmp = repmat (M(extremes(1), x(:), l_node), length (y), 1) + ... repmat (M(y(:), extremes(2), r_node), 1, length (x)) + ... S(y(:), x(:)); M_max = max (max (M_tmp)); [h, k] = find (M_tmp == M_max); O(l_node, 1) = extremes(1); O(l_node, 2) = x(k); O(r_node, 1) = y(h); O(r_node, 2) = extremes(2); p_1 = find (leafOrder == extremes(1)); p_2 = find (leafOrder == extremes(2)); leafOrder (p_1 + (length (l)) - 1) = x(k); leafOrder (p_1 + (length (l))) = y(h); endfor ## function: optimalleaforder_getLeafList ## get the list of leaves under a given node function vector = optimalleaforder_getLeafList (nodes_to_visit) vector = []; while (! isempty (nodes_to_visit)) currentnode = nodes_to_visit(1); nodes_to_visit(1) = []; if (currentnode > n) node = currentnode - n; nodes_to_visit = [tree(node, [2 1]) nodes_to_visit]; endif if (currentnode <= n) vector = [vector currentnode]; endif endwhile endfunction endfunction %!demo %! randn ("seed", 5) # for reproducibility %! X = randn (10, 2); %! D = pdist (X); %! tree = linkage(D, 'average'); %! optimalleaforder (tree, D, 'Transformation', 'linear') ## Test input validation %!error optimalleaforder () %!error optimalleaforder (1) %!error optimalleaforder (ones (2, 2), 1) %!error optimalleaforder ([1 2 3], [1 2; 3 4], "criteria", 5) %!error optimalleaforder ([1 2 1], [1 2 3]) %!error optimalleaforder ([1 2 1], 1, "xxx", "xxx") %!error optimalleaforder ([1 2 1], 1, "Transformation", "xxx") statistics-release-1.6.3/inst/pca.m000066400000000000000000000463661456127120000172440ustar00rootroot00000000000000## Copyright (C) 2013-2019 Fernando Damian Nieuwveldt ## Copyright (C) 2021 Stefano Guidoni ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or ## modify it under the terms of the GNU General Public License ## as published by the Free Software Foundation; either version 3 ## of the License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{coeff} =} pca (@var{x}) ## @deftypefnx {statistics} {@var{coeff} =} pca (@var{x}, @var{Name}, @var{Value}) ## @deftypefnx {statistics} {[@var{coeff}, @var{score}, @var{latent}] =} pca (@dots{}) ## @deftypefnx {statistics} {[@var{coeff}, @var{score}, @var{latent}, @var{tsquared}] =} pca (@dots{}) ## @deftypefnx {statistics} {[@var{coeff}, @var{score}, @var{latent}, @var{tsquared}, @var{explained}, @var{mu}] =} pca (@dots{}) ## ## Performs a principal component analysis on a data matrix. ## ## A principal component analysis of a data matrix of @math{N} observations in a ## @math{D} dimensional space returns a @math{DxD} transformation matrix, to ## perform a change of basis on the data. The first component of the new basis ## is the direction that maximizes the variance of the projected data. ## ## Input argument: ## @itemize @bullet ## @item ## @var{x} : a @math{NxD} data matrix ## @end itemize ## ## The following @var{Name}, @var{Value} pair arguments can be used: ## @itemize @bullet ## @item ## @qcode{"Algorithm"} defines the algorithm to use: ## @itemize ## @item @qcode{"svd"} (default), for singular value decomposition ## @item @qcode{"eig"} for eigenvalue decomposition ## @end itemize ## ## @item ## @qcode{"Centered"} is a boolean indicator for centering the observation data. ## It is @code{true} by default. ## @item ## ## @qcode{"Economy"} is a boolean indicator for the economy size output. It is ## @code{true} by default. Hence, @code{pca} returns only the elements of ## @var{latent} that are not necessarily zero, and the corresponding columns of ## @var{coeff} and @var{score}, that is, when @math{N <= D}, only the first ## @math{N - 1}. ## ## @item ## @qcode{"NumComponents"} defines the number of components @math{k} to return. ## If @math{k < p}, then only the first @math{k} columns of @var{coeff} and ## @var{score} are returned. ## ## @item ## @qcode{"Rows"} defines how to handle missing values: ## @itemize ## @item @qcode{"complete"} (default), missing values are removed before ## computation. ## @item @qcode{"pairwise"} (only valid when @qcode{"Algorithm"} is ## @qcode{"eig"}), the covariance of rows with missing data is computed using ## the available data, but the covariance matrix could be not positive definite, ## which triggers the termination of @code{pca}. ## @item @qcode{"complete"}, missing values are not allowed, @code{pca} ## terminates with an error if there are any. ## @end itemize ## ## @item ## @qcode{"Weights"} defines observation weights as a vector of positive values ## of length @math{N}. ## ## @item ## @qcode{"VariableWeights"} defines variable weights: ## @itemize ## @item a @var{vector} of positive values of length @math{D}. ## @item the string @qcode{"variance"} to use the sample variance as weights. ## @end itemize ## @end itemize ## ## Return values: ## @itemize @bullet ## @item ## @var{coeff} : the principal component coefficients, a @math{DxD} ## transformation matrix ## @item ## @var{score} : the principal component scores, the representation of @var{x} ## in the principal component space ## @item ## @var{latent} : the principal component variances, i.e., the eigenvalues of ## the covariance matrix of @var{x} ## @item ## @var{tsquared} : Hotelling's T-squared Statistic for each observation in ## @var{x} ## @item ## @var{explained} : the percentage of the variance explained by each principal ## component ## @item ## @var{mu} : the estimated mean of each variable of @var{x}, it is zero if the ## data are not centered ## @end itemize ## ## Matlab compatibility note: the alternating least square method 'als' and ## associated options 'Coeff0', 'Score0', and 'Options' are not yet implemented ## ## @subheading References ## @enumerate ## @item ## Jolliffe, I. T., Principal Component Analysis, 2nd Edition, Springer, 2002 ## @end enumerate ## ## @seealso{barttest, factoran, pcacov, pcares} ## @end deftypefn ## BUGS: ## - tsquared with weights (xtest below) ##FIXME ## -- can change isnan to ismissing once the latter is implemented in Octave ## -- change mystd to std and remove the helper function mystd once weighting is available in the Octave function function [coeff, score, latent, tsquared, explained, mu] = pca (x, varargin) if (nargin < 1) print_usage (); endif [nobs, nvars] = size (x); ## default options optAlgorithmS = "svd"; optCenteredB = true; optEconomyB = true; optNumComponentsI = nvars; optWeights = []; optVariableWeights = []; optRowsB = false; TF = []; ## parse parameters pair_index = 1; while (pair_index <= (nargin - 1)) switch (lower (varargin{pair_index})) ## decomposition algorithm: singular value decomposition, eigenvalue ## decomposition or (currently unavailable) alternating least square case "algorithm" optAlgorithmS = varargin{pair_index + 1}; switch (optAlgorithmS) case {"svd", "eig"} ; case "als" error ("pca: alternating least square algorithm not implemented"); otherwise error ("pca: invalid algorithm %s", optAlgorithmS); endswitch ## centering of the columns, around the mean case "centered" if (isbool (varargin{pair_index + 1})) optCenteredB = varargin{pair_index + 1}; else error ("pca: 'centered' requires a boolean value"); endif ## limit the size of the output to the degrees of freedom, when a smaller ## number than the number of variables case "economy" if (isbool (varargin{pair_index + 1})) optEconomyB = varargin{pair_index + 1}; else error ("pca: 'economy' requires a boolean value"); endif ## choose the number of components to show case "numcomponents" optNumComponentsI = varargin{pair_index + 1}; if ((! isscalar (optNumComponentsI)) || (! isnumeric (optNumComponentsI)) || optNumComponentsI != floor (optNumComponentsI) || optNumComponentsI <= 0 || optNumComponentsI > nvars) error (["pca: the number of components must be a positive integer"... "number smaller or equal to the number of variables"]); endif ## observation weights: some observations can be more accurate than others case "weights" optWeights = varargin{pair_index + 1}; if ((! isvector (optWeights)) || length (optWeights) != nobs || length (find (optWeights < 0)) > 0) error ("pca: weights must be a numerical array of positive numbers"); endif if (rows (optWeights) == 1 ) optWeights = transpose (optWeights); endif ## variable weights: weights used for the variables case "variableweights" optVariableWeights = varargin{pair_index + 1}; if (ischar (optVariableWeights) && strcmpi (optVariableWeights, "variance")) optVariableWeights = "variance"; # take care of this later elseif ((! isvector (optVariableWeights)) || length (optVariableWeights) != nvars || (! isnumeric (optVariableWeights)) || length (find (optVariableWeights < 0)) > 0) error (["pca: variable weights must be a numerical array of "... "positive numbers or the string 'variance'"]); else optVariableWeights = 1 ./ sqrt (optVariableWeights); ## it is used as a row vector if (columns (optVariableWeights) == 1 ) optVariableWeights = transpose (optVariableWeights); endif endif ## rows: policy for missing values case "rows" switch (varargin{pair_index + 1}) case "complete" optRowsB = false; case "pairwise" optRowsB = true; case "all" if (any (isnan (x))) error (["pca: when all rows are requested the dataset cannot"... " include NaN values"]); endif otherwise error ("pca: %s is an invalid value for rows", ... varargin{pair_index + 1}); endswitch case {"coeff0", "score0", "options"} error (strcat (["pca: parameter %s is only valid with the 'als'"], ... [" method, which is not yet implemented"]), ... varargin{pair_index}); otherwise error ("pca: unknown property %s", varargin{pair_index}); endswitch pair_index += 2; endwhile ## Preparing the dataset according to the chosen policy for missing values if (optRowsB) if (! strcmp (optAlgorithmS, "eig")) optAlgorithmS = "eig"; warning (["pca: setting algorithm to 'eig' because 'rows' option is "... "set to 'pairwise'"]); endif TF = isnan (x); missingRows = zeros (nobs, 1); nmissing = 0; else ## "complete": remove all the rows with missing values TF = isnan (x); missingRows = any (TF, 2); nmissing = sum (missingRows); endif ## indices of the available rows ridcs = find (missingRows == 0); ## Center the columns to mean zero if requested if (optCenteredB) if (isempty (optWeights) && nmissing == 0 && ! optRowsB) ## no weights and no missing values mu = mean (x); elseif (nmissing == 0 && ! optRowsB) ## weighted observations: some observations are more valuable, i.e. they ## can be trusted more mu = sum (optWeights .* x) ./ sum (optWeights); else ## missing values: the mean is computed column by column mu = zeros (1, nvars); if (isempty (optWeights)) for iter = 1 : nvars mu(iter) = mean (x(find (TF(:, iter) == 0), iter)); endfor else ## weighted mean with missing data for iter = 1 : nvars mu(iter) = sum (x(find (TF(:, iter) == 0), iter) .* ... optWeights(find (TF(:, iter) == 0))) ./ ... sum (optWeights(find (TF(:, iter) == 0))); endfor endif endif Xc = x - mu; else Xc = x; ## The mean of the variables of the original dataset: ## return zero if the dataset is not centered mu = zeros (1, nvars); endif ## Change the columns according to the variable weights if (! isempty (optVariableWeights)) if (ischar (optVariableWeights)) if (isempty (optWeights)) sqrtBias = 1; # see below optVariableWeights = std (x); else ## unbiased variance estimation: the bias when using reliability weights ## is 1 - var(weights) / std(weigths)^2 sqrtBias = sqrt (1 - (sumsq (optWeights) / sum (optWeights) ^ 2)); optVariableWeights = mystd (x, optWeights) / sqrtBias; endif endif Xc = Xc ./ optVariableWeights; endif ## Compute the observation weight matrix if (isempty (optWeights)) Wd = eye (nobs - nmissing); else Wd = diag (optWeights) ./ sum (optWeights); endif ## Compute the coefficients switch (optAlgorithmS) case "svd" ## Check if there are more variables than observations if (nvars <= nobs) [U, S, coeff] = svd (sqrt (Wd) * Xc(ridcs,:), "econ"); else ## Calculate the svd on the transpose matrix, much faster if (optEconomyB) [coeff, S, V] = svd (Xc(ridcs,:)' * sqrt (Wd), "econ"); else [coeff, S, V] = svd (Xc(ridcs,:)' * sqrt (Wd)); endif endif case "eig" ## this method requires the computation of the sample covariance matrix if (optRowsB) ## pairwise: ## in this case the degrees of freedom for each element of the matrix ## are equal to the number of valid rows for the couple of columns ## used to compute the element Xpairwise = Xc; Xpairwise(find (isnan (Xc))) = 0; Ndegrees = (nobs - 1) * ones (nvars, nvars); for i_iter = 1 : nvars for j_iter = i_iter : nvars Ndegrees(i_iter, j_iter) = Ndegrees(i_iter, j_iter) - ... sum (any (TF(:,[i_iter j_iter]), 2)); Ndegrees(j_iter, i_iter) = Ndegrees(i_iter, j_iter); endfor endfor Mcov = Xpairwise' * Wd * Xpairwise ./ Ndegrees; else ## the degrees of freedom are not really important here ndegrees = nobs - nmissing - 1; Mcov = Xc(ridcs, :)' * Wd * Xc(ridcs, :) / ndegrees; endif [coeff, S] = eigs (Mcov, nvars); endswitch ## Change the coefficients according to the variable weights if (! isempty (optVariableWeights)) coeff = coeff .* transpose (optVariableWeights); endif ## MATLAB compatibility: the sign convention is that the ## greatest absolute value for each column is positive switchSignV = find (max (coeff) < abs (min (coeff))); if (! isempty (switchSignV)) coeff(:, switchSignV) = -1 * coeff(:, switchSignV); endif ## Compute the scores if (nargout > 1) ## This is for the score when using variable weights, it is not really ## a new definition of Xc if (! isempty (optVariableWeights)) Xc = Xc ./ optVariableWeights; endif ## Get the Scores score = Xc(ridcs,:) * coeff; ## Get the rank of the score matrix r = rank (score); ## If there is missing data, put it back ## FIXME: this needs tests if (nmissing) scoretmp = zeros (nobs, nvars); scoretmp(find (missingRows == 0), :) = score; scoretmp(find (missingRows), :) = NaN; score = scoretmp; endif ## Only use the first r columns, pad rest with zeros if economy != true score = score(:, 1:r) ; if (! optEconomyB) score = [score, (zeros (nobs , nvars-r))]; else coeff = coeff(: , 1:r); endif endif ## Compute the variances if (nargout > 2) ## degrees of freedom: n - 1 for centered data if (optCenteredB) dof = size (Xc(ridcs,:), 1) - 1; else dof = size (Xc(ridcs,:), 1); endif ## This is the same as the eigenvalues of the covariance matrix of x if (strcmp (optAlgorithmS, "eig")) latent = diag (S, 0); else latent = (diag (S'*S) / dof)(1:r); endif ## If observation weights were used, we need to scale back these values if (! isempty (optWeights)) latent = latent .* sum (optWeights(ridcs)); endif if (! optEconomyB) latent= [latent; (zeros (nvars - r, 1))]; endif endif ## Compute the Hotelling T-square statistics ## MATLAB compatibility: when using weighted observations the T-square ## statistics differ by some rounding error if (nargout > 3) ## Calculate the Hotelling T-Square statistic for the observations ## formally: tsquared = sumsq (zscore (score(:, 1:r)),2); if (! isempty (optWeights)) ## probably splitting the weights, using the square roots, is not the ## best solution, numerically weightedScore = score .* sqrt (optWeights); tsquared = mahal (weightedScore(ridcs, 1:r), weightedScore(ridcs, 1:r))... ./ optWeights; else tsquared = mahal (score(ridcs, 1:r), score(ridcs, 1:r)); endif endif ## Compute the variance explained by each principal component if (nargout > 4) explained = 100 * latent / sum (latent); endif ## When a number of components is chosen, the coefficients and score matrix ## only show that number of columns if (optNumComponentsI != nvars) coeff = coeff(:, 1:optNumComponentsI); endif if (optNumComponentsI != nvars && nargout > 1) score = score(:, 1:optNumComponentsI); endif endfunction #return the weighted standard deviation function retval = mystd (x, w) (dim = find (size(x) != 1, 1)) || (dim = 1); den = sum (w); mu = sum (w .* x, dim) ./ sum (w); retval = sum (w .* ((x - mu) .^ 2), dim) / den; retval = sqrt (retval); endfunction %!shared COEFF,SCORE,latent,tsquare,m,x,R,V,lambda,i,S,F #NIST Engineering Statistics Handbook example (6.5.5.2) %!test %! x=[7 4 3 %! 4 1 8 %! 6 3 5 %! 8 6 1 %! 8 5 7 %! 7 2 9 %! 5 3 3 %! 9 5 8 %! 7 4 5 %! 8 2 2]; %! R = corrcoef (x); %! [V, lambda] = eig (R); %! [~, i] = sort(diag(lambda), "descend"); #arrange largest PC first %! S = V(:, i) * diag(sqrt(diag(lambda)(i))); %!assert(diag(S(:, 1:2)*S(:, 1:2)'), [0.8662; 0.8420; 0.9876], 1E-4); #contribution of first 2 PCs to each original variable %! B = V(:, i) * diag( 1./ sqrt(diag(lambda)(i))); %! F = zscore(x)*B; %! [COEFF,SCORE,latent,tsquare] = pca(zscore(x, 1)); %!assert(tsquare,sumsq(F, 2),1E4*eps); %!test %! x=[1,2,3;2,1,3]'; %! [COEFF,SCORE,latent,tsquare] = pca(x, "Economy", false); %! m=[sqrt(2),sqrt(2);sqrt(2),-sqrt(2);-2*sqrt(2),0]/2; %! m(:,1) = m(:,1)*sign(COEFF(1,1)); %! m(:,2) = m(:,2)*sign(COEFF(1,2)); %!assert(COEFF,m(1:2,:),10*eps); %!assert(SCORE,-m,10*eps); %!assert(latent,[1.5;.5],10*eps); %!assert(tsquare,[4;4;4]/3,10*eps); #test with observation weights (using Matlab's results for this case as a reference) %! [COEFF,SCORE,latent,tsquare] = pca(x, "Economy", false, "weights", [1 2 1], "variableweights", "variance"); %!assert(COEFF, [0.632455532033676 -0.632455532033676; 0.741619848709566 0.741619848709566], 10*eps); %!assert(SCORE, [-0.622019449426284 0.959119380657905; -0.505649896847432 -0.505649896847431; 1.633319243121148 0.052180413036957], 10*eps); %!assert(latent, [1.783001790889027; 0.716998209110974], 10*eps); %!xtest assert(tsquare, [1.5; 0.5; 1.5], 10*eps); #currently, [4; 2; 4]/3 is actually returned; see comments above %!test %! x=x'; %! [COEFF,SCORE,latent,tsquare] = pca(x, "Economy", false); %! m=[sqrt(2),sqrt(2),0;-sqrt(2),sqrt(2),0;0,0,2]/2; %! m(:,1) = m(:,1)*sign(COEFF(1,1)); %! m(:,2) = m(:,2)*sign(COEFF(1,2)); %! m(:,3) = m(:,3)*sign(COEFF(3,3)); %!assert(COEFF,m,10*eps); %!assert(SCORE(:,1),-m(1:2,1),10*eps); %!assert(SCORE(:,2:3),zeros(2),10*eps); %!assert(latent,[1;0;0],10*eps); %!assert(tsquare,[0.5;0.5],10*eps) %!test %! [COEFF,SCORE,latent,tsquare] = pca(x); %!assert(COEFF,m(:, 1),10*eps); %!assert(SCORE,-m(1:2,1),10*eps); %!assert(latent,[1],10*eps); %!assert(tsquare,[0.5;0.5],10*eps) %!error pca([1 2; 3 4], "Algorithm", "xxx") %!error <'centered' requires a boolean value> pca([1 2; 3 4], "Centered", "xxx") %!error pca([1 2; 3 4], "NumComponents", -4) %!error pca([1 2; 3 4], "Rows", 1) %!error pca([1 2; 3 4], "Weights", [1 2 3]) %!error pca([1 2; 3 4], "Weights", [-1 2]) %!error pca([1 2; 3 4], "VariableWeights", [-1 2]) %!error pca([1 2; 3 4], "VariableWeights", "xxx") %!error pca([1 2; 3 4], "XXX", 1) statistics-release-1.6.3/inst/pcacov.m000066400000000000000000000104201456127120000177320ustar00rootroot00000000000000## Copyright (C) 2013-2019 Fernando Damian Nieuwveldt ## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or ## modify it under the terms of the GNU General Public License ## as published by the Free Software Foundation; either version 3 ## of the License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{coeff} =} pcacov (@var{K}) ## @deftypefnx {statistics} {[@var{coeff}, @var{latent}] =} pcacov (@var{K}) ## @deftypefnx {statistics} {[@var{coeff}, @var{latent}, @var{explained}] =} pcacov (@var{K}) ## ## Perform principal component analysis on covariance matrix ## ## @code{@var{coeff} = pcacov (@var{K})} performs principal component analysis ## on the square covariance matrix @var{K} and returns the principal component ## coefficients, also known as loadings. The columns are in order of decreasing ## component variance. ## ## @code{[@var{coeff}, @var{latent}] = pcacov (@var{K})} also returns a vector ## with the principal component variances, i.e. the eigenvalues of @var{K}. ## @var{latent} has a length of @qcode{size (@var{coeff}, 1)}. ## ## @code{[@var{coeff}, @var{latent}, @var{explained}] = pcacov (@var{K})} also ## returns a vector with the percentage of the total variance explained by each ## principal component. @var{explained} has the same size as @var{latent}. ## The entries in @var{explained} range from 0 (none of the variance is ## explained) to 100 (all of the variance is explained). ## ## @code{pcacov} does not standardize @var{K} to have unit variances. In order ## to perform principal component analysis on standardized variables, use the ## correlation matrix @qcode{@var{R} = @var{K} ./ (@var{SD} * @var{SD}')}, where ## @qcode{@var{SD} = sqrt (diag (@var{K}))}, in place of @var{K}. To perform ## principal component analysis directly on the data matrix, use @code{pca}. ## ## @subheading References ## @enumerate ## @item ## Jolliffe, I. T., Principal Component Analysis, 2nd Edition, Springer, 2002 ## @end enumerate ## ## @seealso{bartlett, factoran, pcares, pca} ## @end deftypefn function [coeff, latent, explained] = pcacov (K) ## Check X being a square matrix if (ndims (K) != 2 || size (K, 1) != size (K, 2)) error ("pcacov: K must be a square matrix."); endif [U, S, V] = svd (K); ## Force a sign convention on the coefficients so that ## the largest element in each column has a positive sign [row, col] = size (U); [~, m_ind] = max (abs (U), [], 1); csign = sign (U (m_ind + (0:row:(col - 1) * row))); coeff = bsxfun (@times, U, csign); ## Compute extra output arguments if (nargout > 1) latent = diag (S); endif if (nargout > 2) explained = 100 * latent ./ sum (latent); endif endfunction %!demo %! x = [ 7 26 6 60; %! 1 29 15 52; %! 11 56 8 20; %! 11 31 8 47; %! 7 52 6 33; %! 11 55 9 22; %! 3 71 17 6; %! 1 31 22 44; %! 2 54 18 22; %! 21 47 4 26; %! 1 40 23 34; %! 11 66 9 12; %! 10 68 8 12 %! ]; %! Kxx = cov (x); %! [coeff, latent, explained] = pcacov (Kxx) ## Test output %!test %! load hald %! Kxx = cov (ingredients); %! [coeff,latent,explained] = pcacov(Kxx); %! c_out = [-0.0678, -0.6460, 0.5673, 0.5062; ... %! -0.6785, -0.0200, -0.5440, 0.4933; ... %! 0.0290, 0.7553, 0.4036, 0.5156; ... %! 0.7309, -0.1085, -0.4684, 0.4844]; %! l_out = [517.7969; 67.4964; 12.4054; 0.2372]; %! e_out = [ 86.5974; 11.2882; 2.0747; 0.0397]; %! assert (coeff, c_out, 1e-4); %! assert (latent, l_out, 1e-4); %! assert (explained, e_out, 1e-4); ## Test input validation %!error pcacov (ones (2,3)) %!error pcacov (ones (3,3,3)) statistics-release-1.6.3/inst/pcares.m000066400000000000000000000102411456127120000177350ustar00rootroot00000000000000## Copyright (C) 2013-2019 Fernando Damian Nieuwveldt ## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or ## modify it under the terms of the GNU General Public License ## as published by the Free Software Foundation; either version 3 ## of the License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{residuals} =} pcares (@var{x}, @var{ndim}) ## @deftypefnx {statistics} {[@var{residuals}, @var{reconstructed}] =} pcares (@var{x}, @var{ndim}) ## ## Calculate residuals from principal component analysis. ## ## @code{@var{residuals} = pcares (@var{x}, @var{ndim})} returns the residuals ## obtained by retaining @var{ndim} principal components of the @math{NxD} ## matrix @var{x}. Rows of @var{x} correspond to observations, columns of ## @var{x} correspond to variables. @var{ndim} is a scalar and must be less ## than or equal to @math{D}. @var{residuals} is a matrix of the same size as ## @var{x}. Use the data matrix, not the covariance matrix, with this function. ## ## @code{[@var{residuals}, @var{reconstructed}] = pcares (@var{x}, @var{ndim})} ## returns the reconstructed observations, i.e. the approximation to @var{x} ## obtained by retaining its first @var{ndim} principal components. ## ## @code{pcares} does not normalize the columns of @var{x}. Use ## @qcode{pcares (zscore (@var{x}), @var{ndim})} in order to perform the ## principal components analysis based on standardized variables, i.e. based on ## correlations. Use @code{pcacov} in order to perform principal components ## analysis directly on a covariance or correlation matrix without constructing ## residuals. ## ## @subheading References ## @enumerate ## @item ## Jolliffe, I. T., Principal Component Analysis, 2nd Edition, Springer, 2002 ## @end enumerate ## ## @seealso{factoran, pcacov, pca} ## @end deftypefn function [residuals, reconstructed] = pcares (x, ndim) ## Check input arguments if (nargin < 2) error ("pcares: too few input arguments."); endif if (ndim > size (x, 2)) error ("pcares: NDIM must be less than or equal to the column of X."); endif ## Mean center data Xcentered = bsxfun (@minus, x, mean (x)); ## Apply svd to get the principal component coefficients [U, S, V] = svd (Xcentered); ## Use only the first ndim PCA components v = V(:,1:ndim); ## Calculate the residuals residuals = Xcentered - Xcentered * (v * v'); ## Compute extra output arguments if (nargout > 1) ## Reconstructed data using ndim PCA components reconstructed = x - residuals; endif endfunction %!demo %! x = [ 7 26 6 60; %! 1 29 15 52; %! 11 56 8 20; %! 11 31 8 47; %! 7 52 6 33; %! 11 55 9 22; %! 3 71 17 6; %! 1 31 22 44; %! 2 54 18 22; %! 21 47 4 26; %! 1 40 23 34; %! 11 66 9 12; %! 10 68 8 12]; %! %! ## As we increase the number of principal components, the norm %! ## of the residuals matrix will decrease %! r1 = pcares (x,1); %! n1 = norm (r1) %! r2 = pcares (x,2); %! n2 = norm (r2) %! r3 = pcares (x,3); %! n3 = norm (r3) %! r4 = pcares (x,4); %! n4 = norm (r4) ## Test output %!test %! load hald %! r1 = pcares (ingredients,1); %! r2 = pcares (ingredients,2); %! r3 = pcares (ingredients,3); %! assert (r1(1,:), [2.0350, 2.8304, -6.8378, 3.0879], 1e-4); %! assert (r2(1,:), [-2.4037, 2.6930, -1.6482, 2.3425], 1e-4); %! assert (r3(1,:), [ 0.2008, 0.1957, 0.2045, 0.1921], 1e-4); ## Test input validation %!error pcares (ones (20, 3)) %!error ... %! pcares (ones (30, 2), 3) statistics-release-1.6.3/inst/pdf.m000066400000000000000000000337721456127120000172470ustar00rootroot00000000000000## Copyright (C) 2016 Andreas Stahel ## Copyright (C) 2022-2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or ## (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program. If not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{y} =} pdf (@var{name}, @var{x}, @var{A}) ## @deftypefnx {statistics} {@var{y} =} pdf (@var{name}, @var{x}, @var{A}, @var{B}) ## @deftypefnx {statistics} {@var{y} =} pdf (@var{name}, @var{x}, @var{A}, @var{B}, @var{C}) ## ## Return the PDF of a univariate distribution evaluated at @var{x}. ## ## @code{pdf} is a wrapper for the univariate cumulative distribution functions ## available in the statistics package. See the corresponding functions' help ## to learn the signification of the parameters after @var{x}. ## ## @code{@var{y} = pdf (@var{name}, @var{x}, @var{A})} returns the CDF for the ## one-parameter distribution family specified by @var{name} and the ## distribution parameter @var{A}, evaluated at the values in @var{x}. ## ## @code{@var{y} = pdf (@var{name}, @var{x}, @var{A}, @var{B})} returns the CDF ## for the two-parameter distribution family specified by @var{name} and the ## distribution parameters @var{A} and @var{B}, evaluated at the values in ## @var{x}. ## ## @code{@var{y} = pdf (@var{name}, @var{x}, @var{A}, @var{B}, @var{C})} returns ## the CDF for the three-parameter distribution family specified by @var{name} ## and the distribution parameters @var{A}, @var{B}, and @var{C}, evaluated at ## the values in @var{x}. ## ## @var{name} must be a char string of the name or the abbreviation of the ## desired cumulative distribution function as listed in the followng table. ## The last column shows the number of required parameters that should be parsed ## after @var{x} to the desired PDF. ## ## @multitable @columnfractions 0.4 0.05 0.2 0.05 0.3 ## @headitem Distribution Name @tab @tab Abbreviation @tab @tab Input Parameters ## @item @qcode{"Beta"} @tab @tab @qcode{"beta"} @tab @tab 2 ## @item @qcode{"Binomial"} @tab @tab @qcode{"bino"} @tab @tab 2 ## @item @qcode{"Birnbaum-Saunders"} @tab @tab @qcode{"bisa"} @tab @tab 2 ## @item @qcode{"Burr"} @tab @tab @qcode{"burr"} @tab @tab 3 ## @item @qcode{"Cauchy"} @tab @tab @qcode{"cauchy"} @tab @tab 2 ## @item @qcode{"Chi-squared"} @tab @tab @qcode{"chi2"} @tab @tab 1 ## @item @qcode{"Extreme Value"} @tab @tab @qcode{"ev"} @tab @tab 2 ## @item @qcode{"Exponential"} @tab @tab @qcode{"exp"} @tab @tab 1 ## @item @qcode{"F-Distribution"} @tab @tab @qcode{"f"} @tab @tab 2 ## @item @qcode{"Gamma"} @tab @tab @qcode{"gam"} @tab @tab 2 ## @item @qcode{"Geometric"} @tab @tab @qcode{"geo"} @tab @tab 1 ## @item @qcode{"Generalized Extreme Value"} @tab @tab @qcode{"gev"} @tab @tab 3 ## @item @qcode{"Generalized Pareto"} @tab @tab @qcode{"gp"} @tab @tab 3 ## @item @qcode{"Gumbel"} @tab @tab @qcode{"gumbel"} @tab @tab 2 ## @item @qcode{"Half-normal"} @tab @tab @qcode{"hn"} @tab @tab 2 ## @item @qcode{"Hypergeometric"} @tab @tab @qcode{"hyge"} @tab @tab 3 ## @item @qcode{"Inverse Gaussian"} @tab @tab @qcode{"invg"} @tab @tab 2 ## @item @qcode{"Laplace"} @tab @tab @qcode{"laplace"} @tab @tab 2 ## @item @qcode{"Logistic"} @tab @tab @qcode{"logi"} @tab @tab 2 ## @item @qcode{"Log-Logistic"} @tab @tab @qcode{"logl"} @tab @tab 2 ## @item @qcode{"Lognormal"} @tab @tab @qcode{"logn"} @tab @tab 2 ## @item @qcode{"Nakagami"} @tab @tab @qcode{"naka"} @tab @tab 2 ## @item @qcode{"Negative Binomial"} @tab @tab @qcode{"nbin"} @tab @tab 2 ## @item @qcode{"Noncentral F-Distribution"} @tab @tab @qcode{"ncf"} @tab @tab 3 ## @item @qcode{"Noncentral Student T"} @tab @tab @qcode{"nct"} @tab @tab 2 ## @item @qcode{"Noncentral Chi-Squared"} @tab @tab @qcode{"ncx2"} @tab @tab 2 ## @item @qcode{"Normal"} @tab @tab @qcode{"norm"} @tab @tab 2 ## @item @qcode{"Poisson"} @tab @tab @qcode{"poiss"} @tab @tab 1 ## @item @qcode{"Rayleigh"} @tab @tab @qcode{"rayl"} @tab @tab 1 ## @item @qcode{"Rician"} @tab @tab @qcode{"rice"} @tab @tab 2 ## @item @qcode{"Student T"} @tab @tab @qcode{"t"} @tab @tab 1 ## @item @qcode{"location-scale T"} @tab @tab @qcode{"tls"} @tab @tab 3 ## @item @qcode{"Triangular"} @tab @tab @qcode{"tri"} @tab @tab 3 ## @item @qcode{"Discrete Uniform"} @tab @tab @qcode{"unid"} @tab @tab 1 ## @item @qcode{"Uniform"} @tab @tab @qcode{"unif"} @tab @tab 2 ## @item @qcode{"Von Mises"} @tab @tab @qcode{"vm"} @tab @tab 2 ## @item @qcode{"Weibull"} @tab @tab @qcode{"wbl"} @tab @tab 2 ## @end multitable ## ## @seealso{cdf, icdf, random, betapdf, binopdf, bisapdf, burrpdf, cauchypdf, ## chi2pdf, evpdf, exppdf, fpdf, gampdf, geopdf, gevpdf, gppdf, gumbelpdf, ## hnpdf, hygepdf, invgpdf, laplacepdf, logipdf, loglpdf, lognpdf, nakapdf, ## nbinpdf, ncfpdf, nctpdf, ncx2pdf, normpdf, poisspdf, raylpdf, ricepdf, ## tpdf, tripdf, unidpdf, unifpdf, vmpdf, wblpdf} ## @end deftypefn function y = pdf (name, x, varargin) ## implemented functions persistent allDF = { ... {"beta" , "Beta"}, @betapdf, 2, ... {"bino" , "Binomial"}, @binopdf, 2, ... {"bisa" , "Birnbaum-Saunders"}, @bisapdf, 2, ... {"burr" , "Burr"}, @burrpdf, 3, ... {"cauchy" , "Cauchy"}, @cauchypdf, 2, ... {"chi2" , "Chi-squared"}, @chi2pdf, 1, ... {"ev" , "Extreme Value"}, @evpdf, 2, ... {"exp" , "Exponential"}, @exppdf, 1, ... {"f" , "F-Distribution"}, @fpdf, 2, ... {"gam" , "Gamma"}, @gampdf, 2, ... {"geo" , "Geometric"}, @geopdf, 1, ... {"gev" , "Generalized Extreme Value"}, @gevpdf, 3, ... {"gp" , "Generalized Pareto"}, @gppdf, 3, ... {"gumbel" , "Gumbel"}, @gumbelpdf, 2, ... {"hn" , "Half-normal"}, @hnpdf, 2, ... {"hyge" , "Hypergeometric"}, @hygepdf, 3, ... {"invg" , "Inverse Gaussian"}, @invgpdf, 2, ... {"laplace" , "Laplace"}, @laplacepdf, 2, ... {"logi" , "Logistic"}, @logipdf, 2, ... {"logl" , "Log-Logistic"}, @loglpdf, 2, ... {"logn" , "Lognormal"}, @lognpdf, 2, ... {"naka" , "Nakagami"}, @nakapdf, 2, ... {"nbin" , "Negative Binomial"}, @nbinpdf, 2, ... {"ncf" , "Noncentral F-Distribution"}, @ncfpdf, 3, ... {"nct" , "Noncentral Student T"}, @nctpdf, 2, ... {"ncx2" , "Noncentral Chi-squared"}, @ncx2pdf, 2, ... {"norm" , "Normal"}, @normpdf, 2, ... {"poiss" , "Poisson"}, @poisspdf, 1, ... {"rayl" , "Rayleigh"}, @raylpdf, 1, ... {"rice" , "Rician"}, @ricepdf, 2, ... {"t" , "Student T"}, @tpdf, 1, ... {"tls" , "location-scale T"}, @tlspdf, 3, ... {"tri" , "Triangular"}, @tripdf, 3, ... {"unid" , "Discrete Uniform"}, @unidpdf, 1, ... {"unif" , "Uniform"}, @unifpdf, 2, ... {"vm" , "Von Mises"}, @vmpdf, 2, ... {"wbl" , "Weibull"}, @wblpdf, 2}; if (! ischar (name)) error ("pdf: distribution NAME must a char string."); endif ## Check X being numeric and real if (! isnumeric (x)) error ("pdf: X must be numeric."); elseif (! isreal (x)) error ("pdf: values in X must be real."); endif ## Get number of arguments nargs = numel (varargin); ## Get available functions pdfnames = allDF(1:3:end); pdfhandl = allDF(2:3:end); pdf_args = allDF(3:3:end); ## Search for PDF function idx = cellfun (@(x)any(strcmpi (name, x)), pdfnames); if (any (idx)) if (nargs == pdf_args{idx}) ## Check that all distribution parameters are numeric if (! all (cellfun (@(x)isnumeric(x), (varargin)))) error ("pdf: distribution parameters must be numeric."); endif ## Call appropriate iCDF y = feval (pdfhandl{idx}, x, varargin{:}); else if (pdf_args{idx} == 1) error ("pdf: %s distribution requires 1 parameter.", name); else error ("pdf: %s distribution requires %d parameters.", ... name, pdf_args{idx}); endif endif else error ("pdf: %s distribution is not implemented in Statistics.", name); endif endfunction ## Test results %!shared x %! x = [1:5]; %!assert (pdf ("Beta", x, 5, 2), betapdf (x, 5, 2)) %!assert (pdf ("beta", x, 5, 2), betapdf (x, 5, 2)) %!assert (pdf ("Binomial", x, 5, 2), binopdf (x, 5, 2)) %!assert (pdf ("bino", x, 5, 2), binopdf (x, 5, 2)) %!assert (pdf ("Birnbaum-Saunders", x, 5, 2), bisapdf (x, 5, 2)) %!assert (pdf ("bisa", x, 5, 2), bisapdf (x, 5, 2)) %!assert (pdf ("Burr", x, 5, 2, 2), burrpdf (x, 5, 2, 2)) %!assert (pdf ("burr", x, 5, 2, 2), burrpdf (x, 5, 2, 2)) %!assert (pdf ("Cauchy", x, 5, 2), cauchypdf (x, 5, 2)) %!assert (pdf ("cauchy", x, 5, 2), cauchypdf (x, 5, 2)) %!assert (pdf ("Chi-squared", x, 5), chi2pdf (x, 5)) %!assert (pdf ("chi2", x, 5), chi2pdf (x, 5)) %!assert (pdf ("Extreme Value", x, 5, 2), evpdf (x, 5, 2)) %!assert (pdf ("ev", x, 5, 2), evpdf (x, 5, 2)) %!assert (pdf ("Exponential", x, 5), exppdf (x, 5)) %!assert (pdf ("exp", x, 5), exppdf (x, 5)) %!assert (pdf ("F-Distribution", x, 5, 2), fpdf (x, 5, 2)) %!assert (pdf ("f", x, 5, 2), fpdf (x, 5, 2)) %!assert (pdf ("Gamma", x, 5, 2), gampdf (x, 5, 2)) %!assert (pdf ("gam", x, 5, 2), gampdf (x, 5, 2)) %!assert (pdf ("Geometric", x, 5), geopdf (x, 5)) %!assert (pdf ("geo", x, 5), geopdf (x, 5)) %!assert (pdf ("Generalized Extreme Value", x, 5, 2, 2), gevpdf (x, 5, 2, 2)) %!assert (pdf ("gev", x, 5, 2, 2), gevpdf (x, 5, 2, 2)) %!assert (pdf ("Generalized Pareto", x, 5, 2, 2), gppdf (x, 5, 2, 2)) %!assert (pdf ("gp", x, 5, 2, 2), gppdf (x, 5, 2, 2)) %!assert (pdf ("Gumbel", x, 5, 2), gumbelpdf (x, 5, 2)) %!assert (pdf ("gumbel", x, 5, 2), gumbelpdf (x, 5, 2)) %!assert (pdf ("Half-normal", x, 5, 2), hnpdf (x, 5, 2)) %!assert (pdf ("hn", x, 5, 2), hnpdf (x, 5, 2)) %!assert (pdf ("Hypergeometric", x, 5, 2, 2), hygepdf (x, 5, 2, 2)) %!assert (pdf ("hyge", x, 5, 2, 2), hygepdf (x, 5, 2, 2)) %!assert (pdf ("Inverse Gaussian", x, 5, 2), invgpdf (x, 5, 2)) %!assert (pdf ("invg", x, 5, 2), invgpdf (x, 5, 2)) %!assert (pdf ("Laplace", x, 5, 2), laplacepdf (x, 5, 2)) %!assert (pdf ("laplace", x, 5, 2), laplacepdf (x, 5, 2)) %!assert (pdf ("Logistic", x, 5, 2), logipdf (x, 5, 2)) %!assert (pdf ("logi", x, 5, 2), logipdf (x, 5, 2)) %!assert (pdf ("Log-Logistic", x, 5, 2), loglpdf (x, 5, 2)) %!assert (pdf ("logl", x, 5, 2), loglpdf (x, 5, 2)) %!assert (pdf ("Lognormal", x, 5, 2), lognpdf (x, 5, 2)) %!assert (pdf ("logn", x, 5, 2), lognpdf (x, 5, 2)) %!assert (pdf ("Nakagami", x, 5, 2), nakapdf (x, 5, 2)) %!assert (pdf ("naka", x, 5, 2), nakapdf (x, 5, 2)) %!assert (pdf ("Negative Binomial", x, 5, 2), nbinpdf (x, 5, 2)) %!assert (pdf ("nbin", x, 5, 2), nbinpdf (x, 5, 2)) %!assert (pdf ("Noncentral F-Distribution", x, 5, 2, 2), ncfpdf (x, 5, 2, 2)) %!assert (pdf ("ncf", x, 5, 2, 2), ncfpdf (x, 5, 2, 2)) %!assert (pdf ("Noncentral Student T", x, 5, 2), nctpdf (x, 5, 2)) %!assert (pdf ("nct", x, 5, 2), nctpdf (x, 5, 2)) %!assert (pdf ("Noncentral Chi-Squared", x, 5, 2), ncx2pdf (x, 5, 2)) %!assert (pdf ("ncx2", x, 5, 2), ncx2pdf (x, 5, 2)) %!assert (pdf ("Normal", x, 5, 2), normpdf (x, 5, 2)) %!assert (pdf ("norm", x, 5, 2), normpdf (x, 5, 2)) %!assert (pdf ("Poisson", x, 5), poisspdf (x, 5)) %!assert (pdf ("poiss", x, 5), poisspdf (x, 5)) %!assert (pdf ("Rayleigh", x, 5), raylpdf (x, 5)) %!assert (pdf ("rayl", x, 5), raylpdf (x, 5)) %!assert (pdf ("Rician", x, 5, 1), ricepdf (x, 5, 1)) %!assert (pdf ("rice", x, 5, 1), ricepdf (x, 5, 1)) %!assert (pdf ("Student T", x, 5), tpdf (x, 5)) %!assert (pdf ("t", x, 5), tpdf (x, 5)) %!assert (pdf ("location-scale T", x, 5, 1, 2), tlspdf (x, 5, 1, 2)) %!assert (pdf ("tls", x, 5, 1, 2), tlspdf (x, 5, 1, 2)) %!assert (pdf ("Triangular", x, 5, 2, 2), tripdf (x, 5, 2, 2)) %!assert (pdf ("tri", x, 5, 2, 2), tripdf (x, 5, 2, 2)) %!assert (pdf ("Discrete Uniform", x, 5), unidpdf (x, 5)) %!assert (pdf ("unid", x, 5), unidpdf (x, 5)) %!assert (pdf ("Uniform", x, 5, 2), unifpdf (x, 5, 2)) %!assert (pdf ("unif", x, 5, 2), unifpdf (x, 5, 2)) %!assert (pdf ("Von Mises", x, 5, 2), vmpdf (x, 5, 2)) %!assert (pdf ("vm", x, 5, 2), vmpdf (x, 5, 2)) %!assert (pdf ("Weibull", x, 5, 2), wblpdf (x, 5, 2)) %!assert (pdf ("wbl", x, 5, 2), wblpdf (x, 5, 2)) ## Test input validation %!error pdf (1) %!error pdf ({"beta"}) %!error pdf ("beta", {[1 2 3 4 5]}) %!error pdf ("beta", "text") %!error pdf ("beta", 1+i) %!error ... %! pdf ("Beta", x, "a", 2) %!error ... %! pdf ("Beta", x, 5, "") %!error ... %! pdf ("Beta", x, 5, {2}) %!error pdf ("chi2", x) %!error pdf ("Beta", x, 5) %!error pdf ("Burr", x, 5) %!error pdf ("Burr", x, 5, 2) statistics-release-1.6.3/inst/pdist.m000066400000000000000000000320571456127120000176140ustar00rootroot00000000000000## Copyright (C) 2008 Francesco Potortì ## Copyright (C) 2024 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{D} =} pdist (@var{X}) ## @deftypefnx {statistics} {@var{D} =} pdist (@var{X}, @var{Distance}) ## @deftypefnx {statistics} {@var{D} =} pdist (@var{X}, @var{Distance}, @var{DistParameter}) ## ## Return the distance between any two rows in @var{X}. ## ## @code{@var{D} = pdist (@var{X}} calculates the euclidean distance between ## pairs of observations in @var{X}. @var{X} must be an @math{MxP} numeric ## matrix representing @math{M} points in @math{P}-dimensional space. This ## function computes the pairwise distances returned in @var{D} as an ## @math{Mx(M-1)/P} row vector. Use @code{@var{Z} = squareform (@var{D})} to ## convert the row vector @var{D} into a an @math{MxM} symmetric matrix @var{Z}, ## where @qcode{@var{Z}(i,j)} corresponds to the pairwise distance between ## points @qcode{i} and @qcode{j}. ## ## @code{@var{D} = pdist (@var{X}, @var{Y}, @var{Distance})} returns the ## distance between pairs of observations in @var{X} using the metric specified ## by @var{Distance}, which can be any of the following options. ## ## @multitable @columnfractions 0.23 0.02 0.65 ## @item @qcode{"euclidean"} @tab @tab Euclidean distance. ## @item @qcode{"squaredeuclidean"} @tab @tab Squared Euclidean distance. ## @item @qcode{"seuclidean"} @tab @tab standardized Euclidean distance. Each ## coordinate difference between the rows in @var{X} and the query matrix ## @var{Y} is scaled by dividing by the corresponding element of the standard ## deviation computed from @var{X}. A different scaling vector can be specified ## with the subsequent @var{DistParameter} input argument. ## @item @qcode{"mahalanobis"} @tab @tab Mahalanobis distance, computed using a ## positive definite covariance matrix. A different covariance matrix can be ## specified with the subsequent @var{DistParameter} input argument. ## @item @qcode{"cityblock"} @tab @tab City block distance. ## @item @qcode{"minkowski"} @tab @tab Minkowski distance. The default exponent ## is 2. A different exponent can be specified with the subsequent ## @var{DistParameter} input argument. ## @item @qcode{"chebychev"} @tab @tab Chebychev distance (maximum coordinate ## difference). ## @item @qcode{"cosine"} @tab @tab One minus the cosine of the included angle ## between points (treated as vectors). ## @item @qcode{"correlation"} @tab @tab One minus the sample linear correlation ## between observations (treated as sequences of values). ## @item @qcode{"hamming"} @tab @tab Hamming distance, which is the percentage ## of coordinates that differ. ## @item @qcode{"jaccard"} @tab @tab One minus the Jaccard coefficient, which is ## the percentage of nonzero coordinates that differ. ## @item @qcode{"spearman"} @tab @tab One minus the sample Spearman's rank ## correlation between observations (treated as sequences of values). ## @item @var{@@distfun} @tab @tab Custom distance function handle. A distance ## function of the form @code{function @var{D2} = distfun (@var{XI}, @var{YI})}, ## where @var{XI} is a @math{1xP} vector containing a single observation in ## @math{P}-dimensional space, @var{YI} is an @math{NxP} matrix containing an ## arbitrary number of observations in the same @math{P}-dimensional space, and ## @var{D2} is an @math{NxP} vector of distances, where @qcode{(@var{D2}k)} is ## the distance between observations @var{XI} and @qcode{(@var{YI}k,:)}. ## @end multitable ## ## @code{@var{D} = pdist (@var{X}, @var{Y}, @var{Distance}, @var{DistParameter})} ## returns the distance using the metric specified by @var{Distance} and ## @var{DistParameter}. The latter one can only be specified when the selected ## @var{Distance} is @qcode{"seuclidean"}, @qcode{"minkowski"}, and ## @qcode{"mahalanobis"}. ## ## @seealso{pdist2, squareform, linkage} ## @end deftypefn function D = pdist (X, varargin) ## Check input data if (nargin < 1) error ("pdist: too few input arguments."); endif if (! isnumeric (X) || isempty (X)) error ("pdist: X must be a nonempty numeric matrix."); endif if (ndims (X) != 2) error ("pdist: X must be a two-dimensional matrix."); endif if (rows (X) < 2) D = cast (zeros (1, 0), class (X)); return; endif ## Add default values Distance = "euclidean"; # Distance metric DistParameter = []; # Distance parameter ## Parse additional Distance metric and Distance parameter (if available) DMs = {"euclidean", "squaredeuclidean", "seuclidean", ... "mahalanobis", "cityblock", "minkowski", "chebychev", ... "cosine", "correlation", "hamming", "jaccard", "spearman"}; if (numel (varargin) > 0) if (any (strcmpi (DMs, varargin{1}))) Distance = tolower (varargin{1}); elseif (is_function_handle (varargin{1})) Distance = varargin{1}; else error ("pdist: invalid value for Distance input argument."); endif endif if (numel (varargin) > 1) if (isnumeric (varargin{2})) DistParameter = varargin{2}; else error ("pdist: invalid value for DistParameter input argument."); endif endif ## Calculate selected distance order = nchoosek (1:rows (X) ,2); ix = order (:,1); iy = order (:,2); ## Handle build-in distance metric if (ischar (Distance)) switch (Distance) case "euclidean" D = sqrt (sum ((X(ix(:),:) - X(iy(:),:)) .^ 2, 2)); case "squaredeuclidean" D = sum ((X(ix(:),:) - X(iy(:),:)) .^ 2, 2); case "seuclidean" if (isempty (DistParameter)) DistParameter = std (X, [], 1); else if (numel (DistParameter) != columns (X)) error (strcat (["pdist2: DistParameter for standardized"], ... [" euclidean must be a vector of equal length"], ... [" to the number of columns in X."])); endif if (any (DistParameter < 0)) error (strcat (["pdist2: DistParameter for standardized"], ... [" euclidean must be a nonnegative vector."])); endif endif DistParameter(DistParameter == 0) = 1; # fix constant variable D = sqrt (sum (((X(ix(:),:) - X(iy(:),:)) ./ DistParameter) .^ 2, 2)); case "mahalanobis" if (isempty (DistParameter)) DistParameter = cov (X(! any (isnan (X), 2),:)); else if (columns (DistParameter) != columns (X)) error (strcat (["pdist2: DistParameter for mahalanobis"], ... [" distance must be a covariance matrix with"], ... [" the same number of columns as X."])); endif [~, p] = chol (DistParameter); if (p != 0) error (strcat (["pdist2: covariance matrix for mahalanobis"], ... [" distance must be symmetric and positive"], ... [" definite."])); endif endif dxx = X(ix(:),:) - X(iy(:),:); ## Catch warning if matrix is close to singular or badly scaled. [DP_inv, rc] = inv (DistParameter); if (rc < eps) msg = sprintf (strcat (["pdist: matrix is close to"], ... [" singular or badly scaled.\n RCOND = "], ... [" %e. Results may be inaccurate."]), rc); warning (msg); endif D = sqrt (sum ((dxx * DP_inv) .* dxx, 2)); case "cityblock" D = sum (abs (X(ix(:),:) - X(iy(:),:)), 2); case "minkowski" if (isempty (DistParameter)) DistParameter = 2; else if (! (isnumeric (DistParameter) && isscalar (DistParameter) && DistParameter > 0)) error (strcat (["pdist2: DistParameter for minkowski distance"],... [" must be a positive scalar."])); endif endif D = sum (abs (X(ix(:),:) - X(iy(:),:)) .^ DistParameter, 2) .^ ... (1 / DistParameter); case "chebychev" D = max (abs (X(ix(:),:) - X(iy(:),:)), [], 2); case "cosine" sx = sum (X .^ 2, 2) .^ (-1 / 2); D = 1 - sum (X(ix(:),:) .* X(iy(:),:), 2) .* sx(ix(:)) .* sx(iy(:)); case "correlation" mX = mean (X(ix(:),:), 2); mY = mean (X(iy(:),:), 2); xy = sum ((X(ix(:),:) - mX) .* (X(iy(:),:) - mY), 2); xx = sqrt (sum ((X(ix(:),:) - mX) .* (X(ix(:),:) - mX), 2)); yy = sqrt (sum ((X(iy(:),:) - mY) .* (X(iy(:),:) - mY), 2)); D = 1 - (xy ./ (xx .* yy)); case "hamming" D = mean (abs (X(ix(:),:) != X(iy(:),:)), 2); case "jaccard" xx0 = (X(ix(:),:) != 0 | X(iy(:),:) != 0); D = sum ((X(ix(:),:) != X(iy(:),:)) & xx0, 2) ./ sum (xx0, 2); case "spearman" for i = 1:size (X, 1) rX(i,:) = tiedrank (X(i,:)); endfor rM = (size (X, 2) + 1) / 2; xy = sum ((rX(ix(:),:) - rM) .* (rX(iy(:),:) - rM), 2); xx = sqrt (sum ((rX(ix(:),:) - rM) .* (rX(ix(:),:) - rM), 2)); yy = sqrt (sum ((rX(iy(:),:) - rM) .* (rX(iy(:),:) - rM), 2)); D = 1 - (xy ./ (xx .* yy)); endswitch ## Force output ot row vector D = D'; endif ## Handle a function handle if (is_function_handle (Distance)) ## Check the input output sizes of the user function D2 = []; try D2 = Distance (X(1,:), X([2:end],:)); catch ME error ("pdist: invalid function handle for distance metric."); end_try_catch Xrows = rows (X) - 1; if (! isequal (size (D2), [Xrows, 1])) error ("pdist: custom distance function produces wrong output size."); endif ## Evaluate user defined distance metric function D = zeros (1, numel (ix)); id_beg = 1; for r = 1:Xrows id_end = id_beg + size (X([r+1:end],:), 1) - 1; D(id_beg:id_end) = feval (Distance, X(r,:), X([r+1:end],:)); id_beg = id_end + 1; endfor endif endfunction ## Test output %!shared xy, t, eucl, x %! xy = [0 1; 0 2; 7 6; 5 6]; %! t = 1e-3; %! eucl = @(v,m) sqrt(sumsq(repmat(v,rows(m),1)-m,2)); %! x = [1 2 3; 4 5 6; 7 8 9; 3 2 1]; %!assert (pdist (xy), [1.000 8.602 7.071 8.062 6.403 2.000], t); %!assert (pdist (xy, eucl), [1.000 8.602 7.071 8.062 6.403 2.000], t); %!assert (pdist (xy, "euclidean"), [1.000 8.602 7.071 8.062 6.403 2.000], t); %!assert (pdist (xy, "seuclidean"), [0.380 2.735 2.363 2.486 2.070 0.561], t); %!assert (pdist (xy, "mahalanobis"), [1.384 1.967 2.446 2.384 1.535 2.045], t); %!assert (pdist (xy, "cityblock"), [1.000 12.00 10.00 11.00 9.000 2.000], t); %!assert (pdist (xy, "minkowski"), [1.000 8.602 7.071 8.062 6.403 2.000], t); %!assert (pdist (xy, "minkowski", 3), [1.000 7.763 6.299 7.410 5.738 2.000], t); %!assert (pdist (xy, "cosine"), [0.000 0.349 0.231 0.349 0.231 0.013], t); %!assert (pdist (xy, "correlation"), [0.000 2.000 0.000 2.000 0.000 2.000], t); %!assert (pdist (xy, "spearman"), [0.000 2.000 0.000 2.000 0.000 2.000], t); %!assert (pdist (xy, "hamming"), [0.500 1.000 1.000 1.000 1.000 0.500], t); %!assert (pdist (xy, "jaccard"), [1.000 1.000 1.000 1.000 1.000 0.500], t); %!assert (pdist (xy, "chebychev"), [1.000 7.000 5.000 7.000 5.000 2.000], t); %!assert (pdist (x), [5.1962, 10.3923, 2.8284, 5.1962, 5.9161, 10.7703], 1e-4); %!assert (pdist (x, "euclidean"), ... %! [5.1962, 10.3923, 2.8284, 5.1962, 5.9161, 10.7703], 1e-4); %!assert (pdist (x, eucl), ... %! [5.1962, 10.3923, 2.8284, 5.1962, 5.9161, 10.7703], 1e-4); %!assert (pdist (x, "squaredeuclidean"), [27, 108, 8, 27, 35, 116]); %!assert (pdist (x, "seuclidean"), ... %! [1.8071, 3.6142, 0.9831, 1.8071, 1.8143, 3.4854], 1e-4); %!warning ... %! pdist (x, "mahalanobis"); %!assert (pdist (x, "cityblock"), [9, 18, 4, 9, 9, 18]); %!assert (pdist (x, "minkowski"), ... %! [5.1962, 10.3923, 2.8284, 5.1962, 5.9161, 10.7703], 1e-4); %!assert (pdist (x, "minkowski", 3), ... %! [4.3267, 8.6535, 2.5198, 4.3267, 5.3485, 9.2521], 1e-4); %!assert (pdist (x, "cosine"), ... %! [0.0254, 0.0406, 0.2857, 0.0018, 0.1472, 0.1173], 1e-4); %!assert (pdist (x, "correlation"), [0, 0, 2, 0, 2, 2], 1e-14); %!assert (pdist (x, "spearman"), [0, 0, 2, 0, 2, 2], 1e-14); %!assert (pdist (x, "hamming"), [1, 1, 2/3, 1, 1, 1]); %!assert (pdist (x, "jaccard"), [1, 1, 2/3, 1, 1, 1]); %!assert (pdist (x, "chebychev"), [3, 6, 2, 3, 5, 8]); statistics-release-1.6.3/inst/pdist2.m000066400000000000000000000454641456127120000177040ustar00rootroot00000000000000## Copyright (C) 2014-2019 Piotr Dollar ## Copyright (C) 2024 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation; either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; if not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{D} =} pdist2 (@var{X}, @var{Y}) ## @deftypefnx {statistics} {@var{D} =} pdist2 (@var{X}, @var{Y}, @var{Distance}) ## @deftypefnx {statistics} {@var{D} =} pdist2 (@var{X}, @var{Y}, @var{Distance}, @var{DistParameter}) ## @deftypefnx {statistics} {@var{D} =} pdist2 (@dots{}, @var{Name}, @var{Value}) ## @deftypefnx {statistics} {[@var{D}, @var{I}] =} pdist2 (@dots{}, @var{Name}, @var{Value}) ## ## Compute pairwise distance between two sets of vectors. ## ## @code{@var{D} = pdist2 (@var{X}, @var{Y})} calculates the euclidean distance ## between each pair of observations in @var{X} and @var{Y}. Let @var{X} be an ## @math{MxP} matrix representing @math{M} points in @math{P}-dimensional space ## and @var{Y} be an @math{NxP} matrix representing another set of points in the ## same space. This function computes the @math{MxN} distance matrix @var{D}, ## where @qcode{@var{D}(i,j)} is the distance between @qcode{@var{X}(i,:)} and ## @qcode{@var{Y}(j,:)}. ## ## @code{@var{D} = pdist2 (@var{X}, @var{Y}, @var{Distance})} returns the ## distance between each pair of observations in @var{X} and @var{Y} using the ## metric specified by @var{Distance}, which can be any of the following options. ## ## @multitable @columnfractions 0.23 0.02 0.65 ## @item @qcode{"euclidean"} @tab @tab Euclidean distance. ## @item @qcode{"squaredeuclidean"} @tab @tab Squared Euclidean distance. ## @item @qcode{"seuclidean"} @tab @tab standardized Euclidean distance. Each ## coordinate difference between the rows in @var{X} and the query matrix ## @var{Y} is scaled by dividing by the corresponding element of the standard ## deviation computed from @var{X}. A different scaling vector can be specified ## with the subsequent @var{DistParameter} input argument. ## @item @qcode{"mahalanobis"} @tab @tab Mahalanobis distance, computed using a ## positive definite covariance matrix. A different covariance matrix can be ## specified with the subsequent @var{DistParameter} input argument. ## @item @qcode{"cityblock"} @tab @tab City block distance. ## @item @qcode{"minkowski"} @tab @tab Minkowski distance. The default exponent ## is 2. A different exponent can be specified with the subsequent ## @var{DistParameter} input argument. ## @item @qcode{"chebychev"} @tab @tab Chebychev distance (maximum coordinate ## difference). ## @item @qcode{"cosine"} @tab @tab One minus the cosine of the included angle ## between points (treated as vectors). ## @item @qcode{"correlation"} @tab @tab One minus the sample linear correlation ## between observations (treated as sequences of values). ## @item @qcode{"hamming"} @tab @tab Hamming distance, which is the percentage ## of coordinates that differ. ## @item @qcode{"jaccard"} @tab @tab One minus the Jaccard coefficient, which is ## the percentage of nonzero coordinates that differ. ## @item @qcode{"spearman"} @tab @tab One minus the sample Spearman's rank ## correlation between observations (treated as sequences of values). ## @item @var{@@distfun} @tab @tab Custom distance function handle. A distance ## function of the form @code{function @var{D2} = distfun (@var{XI}, @var{YI})}, ## where @var{XI} is a @math{1xP} vector containing a single observation in ## @math{P}-dimensional space, @var{YI} is an @math{NxP} matrix containing an ## arbitrary number of observations in the same @math{P}-dimensional space, and ## @var{D2} is an @math{NxP} vector of distances, where @qcode{(@var{D2}k)} is ## the distance between observations @var{XI} and @qcode{(@var{YI}k,:)}. ## @end multitable ## ## @code{@var{D} = pdist2 (@var{X}, @var{Y}, @var{Distance}, @var{DistParameter})} ## returns the distance using the metric specified by @var{Distance} and ## @var{DistParameter}. The latter one can only be specified when the selected ## @var{Distance} is @qcode{"seuclidean"}, @qcode{"minkowski"}, and ## @qcode{"mahalanobis"}. ## ## @code{@var{D} = pdist2 (@dots{}, @var{Name}, @var{Value})} for any previous ## arguments, modifies the computation using @var{Name}-@var{Value} parameters. ## @itemize ## @item ## @code{@var{D} = pdist2 (@var{X}, @var{Y}, @var{Distance}, @qcode{"Smallest"}, ## @var{K})} computes the distance using the metric specified by ## @var{Distance} and returns the @var{K} smallest pairwise distances to ## observations in @var{X} for each observation in @var{Y} in ascending order. ## @item ## @code{@var{D} = pdist2 (@var{X}, @var{Y}, @var{Distance}, @var{DistParameter}, ## @qcode{"Largest"}, @var{K})} computes the distance using the metric specified ## by @var{Distance} and @var{DistParameter} and returns the @var{K} largest ## pairwise distances in descending order. ## @end itemize ## ## @code{[@var{D}, @var{I}] = pdist2 (@dots{}, @var{Name}, @var{Value})} also ## returns the matrix @var{I}, which contains the indices of the observations in ## @var{X} corresponding to the distances in @var{D}. You must specify either ## @qcode{"Smallest"} or @qcode{"Largest"} as an optional @var{Name}-@var{Value} ## pair pair argument to compute the second output argument. ## ## @seealso{pdist, knnsearch, rangesearch} ## @end deftypefn function [D, I] = pdist2 (X, Y, varargin) ## Check input data if (nargin < 2) error ("pdist2: too few input arguments."); endif if (size (X, 2) != size (Y, 2)) error ("pdist2: X and Y must have equal number of columns."); endif if (ndims (X) != 2 || ndims (Y) != 2) error ("pdist2: X and Y must be 2 dimensional matrices."); endif ## Add default values Distance = "euclidean"; # Distance metric DistParameter = []; # Distance parameter SortOrder = []; # Flag for sorting distances to find ## Parse additional Distance metric and Distance parameter (if available) DMs = {"euclidean", "squaredeuclidean", "seuclidean", ... "mahalanobis", "cityblock", "minkowski", "chebychev", ... "cosine", "correlation", "hamming", "jaccard", "spearman"}; if (numel (varargin) > 0) if (any (strcmpi (DMs, varargin{1}))) Distance = tolower (varargin{1}); varargin(1) = []; if (numel (varargin) > 0) if (isnumeric (varargin{1})) DistParameter = varargin{1}; varargin(1) = []; endif endif elseif (is_function_handle (varargin{1})) Distance = varargin{1}; varargin(1) = []; if (numel (varargin) > 0) if (isnumeric (varargin{1})) DistParameter = varargin{1}; varargin(1) = []; endif endif endif endif ## Parse additional parameters in Name/Value pairs parcount = 0; while (numel (varargin) > 0) if (numel (varargin) < 2) error ("pdist2: missing value in optional name/value paired arguments."); endif switch (tolower (varargin{1})) case "smallest" SortOrder = "ascend"; K = varargin{2}; parcount += 1; case "largest" SortOrder = "descend"; K = varargin{2}; parcount += 1; otherwise error ("pdist2: invalid NAME in optional pairs of arguments."); endswitch varargin(1:2) = []; endwhile ## Check additional arguments if (parcount > 1) error ("pdist2: you can only use either Smallest or Largest."); endif if (isempty (SortOrder) && nargout > 1) error (strcat (["pdist2: Smallest or Largest must be specified"], ... [" to compute second output."])); endif ## Calculate selected distance [ix, iy] = meshgrid (1:size (X, 1), 1:size (Y, 1)); ## Handle build-in distance metric if (ischar (Distance)) switch (Distance) case "euclidean" D = sqrt (sum ((X(ix(:),:) - Y(iy(:),:)) .^ 2, 2)); case "squaredeuclidean" D = sum ((X(ix(:),:) - Y(iy(:),:)) .^ 2, 2); case "seuclidean" if (isempty (DistParameter)) DistParameter = std (X, [], 1); else if (numel (DistParameter) != columns (X)) error (strcat (["pdist2: DistParameter for standardized"], ... [" euclidean must be a vector of equal length"], ... [" to the number of columns in X."])); endif if (any (DistParameter < 0)) error (strcat (["pdist2: DistParameter for standardized"], ... [" euclidean must be a nonnegative vector."])); endif endif DistParameter(DistParameter == 0) = 1; # fix constant variable D = sqrt (sum (((X(ix(:),:) - Y(iy(:),:)) ./ DistParameter) .^ 2, 2)); case "mahalanobis" if (isempty (DistParameter)) DistParameter = cov (X(! any (isnan (X), 2),:)); else if (columns (DistParameter) != columns (X)) error (strcat (["pdist2: DistParameter for mahalanobis"], ... [" distance must be a covariance matrix with"], ... [" the same number of columns as X."])); endif [~, p] = chol (DistParameter); if (p != 0) error (strcat (["pdist2: covariance matrix for mahalanobis"], ... [" distance must be symmetric and positive"], ... [" definite."])); endif endif ## Catch warning if matrix is close to singular or badly scaled. [DP_inv, rc] = inv (DistParameter); if (rc < eps) msg = sprintf (strcat (["pdist2: matrix is close to"], ... [" singular or badly scaled.\n RCOND = "], ... [" %e. Results may be inaccurate."]), rc); warning (msg); endif dxy = X(ix(:),:) - Y(iy(:),:); D = sqrt (sum ((dxy * DP_inv) .* dxy, 2)); case "cityblock" D = sum (abs (X(ix(:),:) - Y(iy(:),:)), 2); case "minkowski" if (isempty (DistParameter)) DistParameter = 2; else if (! (isnumeric (DistParameter) && isscalar (DistParameter) && DistParameter > 0)) error (strcat (["pdist2: DistParameter for minkowski distance"],... [" must be a positive scalar."])); endif endif D = sum (abs (X(ix(:),:) - Y(iy(:),:)) .^ DistParameter, 2) .^ ... (1 / DistParameter); case "chebychev" D = max (abs (X(ix(:),:) - Y(iy(:),:)), [], 2); case "cosine" sx = sum (X .^ 2, 2) .^ (-1 / 2); sy = sum (Y .^ 2, 2) .^ (-1 / 2); D = 1 - sum (X(ix(:),:) .* Y(iy(:),:), 2) .* sx(ix(:)) .* sy(iy(:)); case "correlation" mX = mean (X(ix(:),:), 2); mY = mean (Y(iy(:),:), 2); xy = sum ((X(ix(:),:) - mX) .* (Y(iy(:),:) - mY), 2); xx = sqrt (sum ((X(ix(:),:) - mX) .* (X(ix(:),:) - mX), 2)); yy = sqrt (sum ((Y(iy(:),:) - mY) .* (Y(iy(:),:) - mY), 2)); D = 1 - (xy ./ (xx .* yy)); case "hamming" D = mean (abs (X(ix(:),:) != Y(iy(:),:)), 2); case "jaccard" xy0 = (X(ix(:),:) != 0 | Y(iy(:),:) != 0); D = sum ((X(ix(:),:) != Y(iy(:),:)) & xy0, 2) ./ sum (xy0, 2); case "spearman" for i = 1:size (X, 1) rX(i,:) = tiedrank (X(i,:)); endfor for i = 1:size (Y, 1) rY(i,:) = tiedrank (Y(i,:)); endfor rM = (size (X, 2) + 1) / 2; xy = sum ((rX(ix(:),:) - rM) .* (rY(iy(:),:) - rM), 2); xx = sqrt (sum ((rX(ix(:),:) - rM) .* (rX(ix(:),:) - rM), 2)); yy = sqrt (sum ((rY(iy(:),:) - rM) .* (rY(iy(:),:) - rM), 2)); D = 1 - (xy ./ (xx .* yy)); endswitch endif ## Handle a function handle if (is_function_handle (Distance)) ## Check the input output sizes of the user function D2 = []; try D2 = Distance (X(1,:), Y); catch ME error ("pdist2: invalid function handle for distance metric."); end_try_catch Yrows = rows (Y); if (! isequal (size (D2), [Yrows, 1])) error ("pdist2: custom distance function produces wrong output size."); endif ## Evaluate user defined distance metric function Yrows = rows (Y); D = zeros (numel (ix), 1); id_beg = 1; for r = 1:rows (X) id_end = id_beg + Yrows - 1; D(id_beg:id_end) = feval (Distance, X(r,:), Y); id_beg = id_end + 1; endfor endif ## From vector to matrix D = reshape (D, size (Y, 1), size (X, 1))'; if (nargout > 1) [D, I] = sort (D', 2, SortOrder); K = min (size (D, 2), K); # fix max K to avoid out of bound error D = D(:,1:K)'; I = I(:,1:K)'; endif endfunction ## Test output %!shared x, y, xx %! x = [1, 1, 1; 2, 2, 2; 3, 3, 3]; %! y = [0, 0, 0; 1, 2, 3; 0, 2, 4; 4, 7, 1]; %! xx = [1 2 3; 4 5 6; 7 8 9; 3 2 1]; %!test %! d = sqrt([3, 5, 11, 45; 12, 2, 8, 30; 27, 5, 11, 21]); %! assert (pdist2 (x, y), d); %!test %! d = [5.1962, 2.2361, 3.3166, 6.7082; ... %! 3.4641, 2.2361, 3.3166, 5.4772]; %! i = [3, 1, 1, 1; 2, 3, 3, 2]; %! [D, I] = pdist2 (x, y, "euclidean", "largest", 2); %! assert ({D, I}, {d, i}, 1e-4); %!test %! d = [1.7321, 1.4142, 2.8284, 4.5826; ... %! 3.4641, 2.2361, 3.3166, 5.4772]; %! i = [1, 2, 2, 3;2, 1, 1, 2]; %! [D, I] = pdist2 (x, y, "euclidean", "smallest", 2); %! assert ({D, I}, {d, i}, 1e-4); %!test %! yy = [1 2 3;5 6 7;9 5 1]; %! d = [0, 6.1644, 5.3852; 1.4142, 6.9282, 8.7750; ... %! 3.7417, 7.0711, 9.9499; 6.1644, 10.4881, 10.3441]; %! i = [2, 4, 4; 3, 2, 2; 1, 3, 3; 4, 1, 1]; %! [D, I] = pdist2 (y, yy, "euclidean", "smallest", 4); %! assert ({D, I}, {d, i}, 1e-4); %!test %! yy = [1 2 3;5 6 7;9 5 1]; %! d = [0, 38, 29; 2, 48, 77; 14, 50, 99; 38, 110, 107]; %! i = [2, 4, 4; 3, 2, 2; 1, 3, 3; 4, 1, 1]; %! [D, I] = pdist2 (y, yy, "squaredeuclidean", "smallest", 4); %! assert ({D, I}, {d, i}, 1e-4); %!test %! yy = [1 2 3;5 6 7;9 5 1]; %! d = [0, 3.3256, 2.7249; 0.7610, 3.3453, 4.4799; ... %! 1.8514, 3.3869, 5.0703; 2.5525, 5.0709, 5.1297]; %! i = [2, 2, 4; 3, 4, 2; 1, 3, 1; 4, 1, 3]; %! [D, I] = pdist2 (y, yy, "seuclidean", "smallest", 4); %! assert ({D, I}, {d, i}, 1e-4); %!test %! d = [2.1213, 4.2426, 6.3640; 1.2247, 2.4495, 4.4159; ... %! 3.2404, 4.8990, 6.8191; 2.7386, 4.2426, 6.1237]; %! assert (pdist2 (y, x, "mahalanobis"), d, 1e-4); %!test %! d = [1.2247, 2.4495, 4.4159; 2.1213, 4.2426, 6.1237]; %! i = [2, 2, 2; 1, 4, 4]; %! [D, I] = pdist2 (y, x, "mahalanobis", "smallest", 2); %! assert ({D, I}, {d, i}, 1e-4); %!test %! d = [3.2404, 4.8990, 6.8191; 2.7386, 4.2426, 6.3640]; %! i = [3, 3, 3; 4, 1, 1]; %! [D, I] = pdist2 (y, x, "mahalanobis", "largest", 2); %! assert ({D, I}, {d, i}, 1e-4); %!test %! yy = [1 2 3;5 6 7;9 5 1]; %! d = [0, 8.4853, 18.0416; 2.4495, 10.0995, 19.4808; ... %! 2.4495, 10.6771, 19.7104; 2.4495, 10.6771, 20.4573]; %! i = [2, 2, 2; 1, 4, 4; 4, 1, 1; 3, 3, 3]; %! [D, I] = pdist2 (y, yy, "mahalanobis", "smallest", 4); %! assert ({D, I}, {d, i}, 1e-4); %!test %! d = [3, 3, 5, 9; 6, 2, 4, 8; 9, 3, 5, 7]; %! assert (pdist2 (x, y, "cityblock"), d); %!test %! d = [1, 2, 3, 6; 2, 1, 2, 5; 3, 2, 3, 4]; %! assert (pdist2 (x, y, "chebychev"), d); %!test %! d = repmat ([NaN, 0.0742, 0.2254, 0.1472], [3, 1]); %! assert (pdist2 (x, y, "cosine"), d, 1e-4); %!test %! yy = [1 2 3;5 6 7;9 5 1]; %! d = [0, 0, 0.5; 0, 0, 2; 1.5, 1.5, 2; NaN, NaN, NaN]; %! i = [2, 2, 4; 3, 3, 2; 4, 4, 3; 1, 1, 1]; %! [D, I] = pdist2 (y, yy, "correlation", "smallest", 4); %! assert ({D, I}, {d, i}, eps); %! [D, I] = pdist2 (y, yy, "spearman", "smallest", 4); %! assert ({D, I}, {d, i}, eps); %!test %! d = [1, 2/3, 1, 1; 1, 2/3, 1, 1; 1, 2/3, 2/3, 2/3]; %! i = [1, 1, 1, 2; 2, 2, 3, 3; 3, 3, 2, 1]; %! [D, I] = pdist2 (x, y, "hamming", "largest", 4); %! assert ({D, I}, {d, i}, eps); %! [D, I] = pdist2 (x, y, "jaccard", "largest", 4); %! assert ({D, I}, {d, i}, eps); %!test %! xx = [1, 2, 3, 4; 2, 3, 4, 5; 3, 4, 5, 6]; %! yy = [1, 2, 2, 3; 2, 3, 3, 4]; %! [D, I] = pdist2 (x, y, "euclidean", "Smallest", 4); %! eucldist = @(v,m) sqrt(sumsq(repmat(v,rows(m),1)-m,2)); %! [d, i] = pdist2 (x, y, eucldist, "Smallest", 4); %! assert ({D, I}, {d, i}); %!warning ... %! pdist2 (xx, xx, "mahalanobis"); ## Test input validation %!error pdist2 (1) %!error ... %! pdist2 (ones (4, 5), ones (4)) %!error ... %! pdist2 (ones (4, 2, 3), ones (3, 2)) %!error ... %! pdist2 (ones (3), ones (3), "euclidean", "Largest") %!error ... %! pdist2 (ones (3), ones (3), "minkowski", 3, "Largest") %!error ... %! pdist2 (ones (3), ones (3), "minkowski", 3, "large", 4) %!error ... %! pdist2 (ones (3), ones (3), "minkowski", 3, "Largest", 4, "smallest", 5) %!error ... %! [d, i] = pdist2(ones (3), ones (3), "minkowski", 3) %!error ... %! pdist2 (ones (3), ones (3), "seuclidean", 3) %!error ... %! pdist2 (ones (3), ones (3), "seuclidean", [1, -1, 3]) %!error ... %! pdist2 (ones (3), eye (3), "mahalanobis", eye(2)) %!error ... %! pdist2 (ones (3), eye (3), "mahalanobis", ones(3)) %!error ... %! pdist2 (ones (3), eye (3), "minkowski", 0) %!error ... %! pdist2 (ones (3), eye (3), "minkowski", -5) %!error ... %! pdist2 (ones (3), eye (3), "minkowski", [1, 2]) %!error ... %! pdist2 (ones (3), ones (3), @(v,m) sqrt(repmat(v,rows(m),1)-m,2)) %!error ... %! pdist2 (ones (3), ones (3), @(v,m) sqrt(sum(sumsq(repmat(v,rows(m),1)-m,2)))) statistics-release-1.6.3/inst/plsregress.m000066400000000000000000000474371456127120000206720ustar00rootroot00000000000000## Copyright (C) 2012-2019 Fernando Damian Nieuwveldt ## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or ## modify it under the terms of the GNU General Public License ## as published by the Free Software Foundation; either version 3 ## of the License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {[@var{xload}, @var{yload}] =} plsregress (@var{X}, @var{Y}) ## @deftypefnx {statistics} {[@var{xload}, @var{yload}] =} plsregress (@var{X}, @var{Y}, @var{NCOMP}) ## @deftypefnx {statistics} {[@var{xload}, @var{yload}, @var{xscore}, @var{yscore}, @var{coef}, @var{pctVar}, @var{mse}, @var{stats}] =} plsregress (@var{X}, @var{Y}, @var{NCOMP}) ## @deftypefnx {statistics} {[@var{xload}, @var{yload}, @var{xscore}, @var{yscore}, @var{coef}, @var{pctVar}, @var{mse}, @var{stats}] =} plsregress (@dots{}, @var{Name}, @var{Value}) ## ## Calculate partial least squares regression using SIMPLS algorithm. ## ## @code{plsregress} uses the SIMPLS algorithm, and first centers @var{X} and ## @var{Y} by subtracting off column means to get centered variables. However, ## it does not rescale the columns. To perform partial least squares regression ## with standardized variables, use @code{zscore} to normalize @var{X} and ## @var{Y}. ## ## @code{[@var{xload}, @var{yload}] = plsregress (@var{X}, @var{Y})} computes a ## partial least squares regression of @var{Y} on @var{X}, using @var{NCOMP} ## PLS components, which by default are calculated as ## @qcode{min (size (@var{X}, 1) - 1, size(@var{X}, 2))}, and returns the ## the predictor and response loadings in @var{xload} and @var{yload}, ## respectively. ## @itemize ## @item @var{X} is an @math{NxP} matrix of predictor variables, with rows ## corresponding to observations, and columns corresponding to variables. ## @item @var{Y} is an @math{NxM} response matrix. ## @item @var{xload} is a @math{PxNCOMP} matrix of predictor loadings, where ## each row of @var{xload} contains coefficients that define a linear ## combination of PLS components that approximate the original predictor ## variables. ## @item @var{yload} is an @math{MxNCOMP} matrix of response loadings, where ## each row of @var{yload} contains coefficients that define a linear ## combination of PLS components that approximate the original response ## variables. ## @end itemize ## ## @code{[@var{xload}, @var{yload}] = plsregress (@var{X}, @var{Y}, ## @var{NCOMP})} defines the desired number of PLS components to use in the ## regression. @var{NCOMP}, a scalar positive integer, must not exceed the ## default calculated value. ## ## @code{[@var{xload}, @var{yload}, @var{xscore}, @var{yscore}, @var{coef}, ## @var{pctVar}, @var{mse}, @var{stats}] = plsregress (@var{X}, @var{Y}, ## @var{NCOMP})} also returns the following arguments: ## @itemize ## @item @var{xscore} is an @math{NxNCOMP} orthonormal matrix with the predictor ## scores, i.e., the PLS components that are linear combinations of the ## variables in @var{X}, with rows corresponding to observations and columns ## corresponding to components. ## @item @var{yscore} is an @math{NxNCOMP} orthonormal matrix with the response ## scores, i.e., the linear combinations of the responses with which the PLS ## components @var{xscore} have maximum covariance, with rows corresponding to ## observations and columns corresponding to components. ## @item @var{coef} is a @math{(P+1)xM} matrix with the PLS regression ## coefficients, containing the intercepts in the first row. ## @item @var{pctVar} is a @math{2xNCOMP} matrix containing the percentage of ## the variance explained by the model with the first row containing the ## percentage of exlpained varianced in @var{X} by each PLS component and the ## second row containing the percentage of explained variance in @var{Y}. ## @item @var{mse} is a @math{2x(NCOMP+1)} matrix containing the estimated mean ## squared errors for PLS models with @qcode{0:@var{NCOMP}} components with the ## first row containing the squared errors for the predictor variables in ## @var{X} and the second row containing the mean squared errors for the ## response variable(s) in @var{Y}. ## @item @var{stats} is a structure with the following fields: ## @itemize ## @item @var{stats}@qcode{.W} is a @math{PxNCOMP} matrix of PLS weights. ## @item @var{stats}@qcode{.T2} is the @math{T^2} statistics for each point in ## @var{xscore}. ## @item @var{stats}@qcode{.Xresiduals} is an @math{NxP} matrix with the ## predictor residuals. ## @item @var{stats}@qcode{.Yresiduals} is an @math{NxM} matrix with the ## response residuals. ## @end itemize ## @end itemize ## ## @code{[@dots{}] = plsregress (@dots{}, @var{Name}, @var{Value}, @dots{})} ## specifies one or more of the following @var{Name}/@var{Value} pairs: ## ## @multitable @columnfractions 0.05 0.2 0.75 ## @headitem @tab @var{Name} @tab @var{Value} ## @item @tab @qcode{"CV"} @tab The method used to compute @var{mse}. When ## @var{Value} is a positive integer @math{K}, @code{plsregress} uses ## @math{K}-fold cross-validation. Set @var{Value} to a cross-validation ## partition, created using @code{cvpartition}, to use other forms of ## cross-validation. Set @var{Value} to @qcode{"resubstitution"} to use both ## @var{X} and @var{Y} to fit the model and to estimate the mean squared errors, ## without cross-validation. By default, @qcode{@var{Value} = "resubstitution"}. ## @item @tab @qcode{"MCReps"} @tab A positive integer indicating the number of ## Monte-Carlo repetitions for cross-validation. By default, ## @qcode{@var{Value} = 1}. A different @qcode{"MCReps"} value is only ## meaningful when using the @qcode{"HoldOut"} method for cross-validation, ## previously set by a @code{cvpartition} object. If no cross-validation method ## is used, then @qcode{"MCReps"} must be @qcode{1}. ## @end multitable ## ## Further information about the PLS regression can be found at ## @url{https://en.wikipedia.org/wiki/Partial_least_squares_regression} ## ## @subheading References ## @enumerate ## @item ## SIMPLS: An alternative approach to partial least squares regression. ## Chemometrics and Intelligent Laboratory Systems (1993) ## ## @end enumerate ## @end deftypefn function [xload, yload, xscore, yscore, coef, pctVar, mse, stats] = ... plsregress (X, Y, NCOMP, varargin) ## Check input arguments and add defaults if (nargin < 2) error ("plsregress: function called with too few input arguments."); endif if (! isnumeric (X) || ! isnumeric (Y)) error ("plsregress: X and Y must be real matrices."); endif ## Get size of predictor and response inputs [nobs, npred] = size (X); [Yobs, nresp] = size (Y); if (nobs != Yobs) error ("plsregress: X and Y observations mismatch."); endif ## Calculate max number of components NCOMPmax = min (nobs - 1, npred); if (nargin < 3) NCOMP = NCOMPmax; elseif (! isnumeric (NCOMP) || ! isscalar (NCOMP) || NCOMP != fix (NCOMP) || NCOMP <= 0) error ("plsregress: invalid value for NCOMP."); elseif (NCOMP > NCOMPmax) error ("plsregress: NCOMP exceeds maximum components for X."); endif ## Add default optional arguments CV = false; mcreps = 1; ## Parse additional Name-Value pairs while (numel (varargin) > 0) if (strcmpi (varargin{1}, "cv")) cvarg = varargin{2}; if (isa (cvarg, "cvpartition")) CV = true; elseif (isscalar (cvarg) && cvarg == fix (cvarg) && cvarg > 0) CV = true; elseif (! strcmpi (cvarg, "resubstitution")) error ("plsregress: invalid VALUE for 'cv' optional argument."); endif elseif (strcmpi (varargin{1}, "mcreps")) mcreps = varargin{2}; if (! (isscalar (mcreps) && mcreps == fix (mcreps) && mcreps > 0)) error ("plsregress: invalid VALUE for 'mcreps' optional argument."); endif else error ("plsregress: invalid NAME argument."); endif varargin(1:2) = []; endwhile ## Check MCREPS = 1 when "resubstitution" is set for cross validation if (! CV && mcreps != 1) error (strcat (["plsregress: 'mcreps' must be 1 when 'resubstitution'"], ... [" is specified for cross validation."])); endif ## Check number of output arguments if (nargout < 2 || nargout > 8) print_usage(); endif ## Mean centering Data matrix Xmeans = mean (X); X0 = bsxfun (@minus, X, Xmeans); ## Mean centering responses Ymeans = mean (Y); Y0 = bsxfun (@minus, Y, Ymeans); [P, Q, T, U, W] = simpls (X0, Y0, NCOMP); ## Store output arguments xload = P; yload = Q; xscore = T; yscore = U; ## Compute regression coefficients if (nargout > 4) coef = W * Q'; coef = [Ymeans - Xmeans * coef; coef]; endif ## Compute the percent of variance explained for X and Y if (nargout > 5) XVar = sum (abs (xload) .^ 2, 1) ./ sum (sum (abs (X0) .^ 2, 1)); YVar = sum (abs (yload) .^ 2, 1) ./ sum (sum (abs (Y0) .^ 2, 1)); pctVar = [XVar; YVar]; endif ## Estimate the mean squared errors if (nargout > 6) ## Compute MSE by cross-validation if (CV) mse = NaN (2, NCOMP + 1); ## Check crossval method and recalculate max number of components if isa (cvarg, "cvpartition") type = "Partition"; NCOMPmax = min(min(cvarg.TrainSize)-1,npred); ts = sum (cvarg.TestSize); else type = "Kfold"; NCOMPmax = min (floor ((nobs * (cvarg - 1) / cvarg) -1), npred); ts = nobs; endif if (NCOMP > NCOMPmax) warning (strcat (["plsregress: NCOMP exceeds maximum components"], ... [" for cross validation."])); NCOMP = NCOMPmax; endif ## Create function handle with NCOMP extra argument F = @(xtr, ytr, xte, yte) sseCV (xtr, ytr, xte, yte, NCOMP); ## Apply cross validation sse = crossval (F, X, Y, type, cvarg, "mcreps", mcreps); ## Compute MSE from the SSEs collected from each cross validation set mse(:,1:NCOMP+1) = reshape (sum (sse, 1) / (ts * mcreps), [2, NCOMP+1]); ## Computed fitted if residuals are requested if (nargout > 7) xfitted = xscore * xload'; yfitted = xscore * yload'; endif ## Compute MSE by resubstitution else mse = zeros (2, NCOMP + 1); ## Model with 0 components mse(1,1) = sum (sum (abs (X0) .^ 2, 2)); mse(2,1) = sum (sum (abs (Y0) .^ 2, 2)); ## Models with 1:NCOMP components for i = 1:NCOMP xfitted = xscore(:,1:i) * xload(:,1:i)'; yfitted = xscore(:,1:i) * yload(:,1:i)'; mse(1,i+1) = sum (sum (abs (X0 - xfitted) .^ 2, 2)); mse(2,i+1) = sum (sum (abs (Y0 - yfitted) .^ 2, 2)); endfor ## Compute the mean of the sum of squares above mse = mse / nobs; endif endif ## Compute stats if (nargout > 7) ## Save weights stats.W = W; ## Compute T-squared stats.T2 = sum (bsxfun (@rdivide, abs (xscore) .^ 2, ... var (xscore, [], 1)) , 2); ## Compute residuals for X and Y stats.Xresiduals = X0 - xfitted; stats.Yresiduals = Y0 - yfitted; endif endfunction ## SIMPLS algorithm function [P, Q, T, U, W] = simpls (X0, Y0, NCOMP) ## Get size of predictor and response inputs [nobs, npred] = size (X0); [Yobs, nresp] = size (Y0); ## Compute covariance S = X0' * Y0; ## Preallocate matrices W = P = V = zeros (npred, NCOMP); T = U = zeros (nobs, NCOMP); Q = zeros (nresp, NCOMP); ## Models with 1:NCOMP components for a = 1:NCOMP [eigvec, eigval] = eig (S' * S); # Y factor weights ## Get max eigenvector domindex = find (diag (eigval) == max (diag (eigval))); q = eigvec(:,domindex); w = S * q; # X block factor weights t = X0 * w; # X block factor scores t = t - mean (t); nt = sqrt (t' * t); # compute norm t = t / nt; w = w / nt; # normalize p = X0' * t; # X block factor loadings q = Y0' * t; # Y block factor loadings u = Y0 * q; # Y block factor scores v = p; ## Ensure orthogonality if (a > 1) v = v - V * (V' * p); u = u - T * (T' * u); endif v = v / sqrt (v' * v); # normalize orthogonal loadings S = S - v * (v' * S); # deflate S wrt loadings V(:,a) = v; ## Store data P(:,a) = p; # Xloads Q(:,a) = q; # Yloads T(:,a) = t; # xscore U(:,a) = u; # Yscores W(:,a) = w; # Weights endfor endfunction ## Helper function for SSE cross-validation function sse = sseCV (XTR, YTR, XTE, YTE, NCOMP) ## Center train data XTRmeans = mean (XTR); YTRmeans = mean (YTR); X0TR = bsxfun (@minus, XTR, XTRmeans); Y0TR = bsxfun (@minus, YTR, YTRmeans); ## Center test data X0TE = bsxfun(@minus, XTE, XTRmeans); Y0TE = bsxfun(@minus, YTE, YTRmeans); ## Fit the full model [xload, yload, ~, ~, W] = simpls (X0TR, Y0TR, NCOMP); XTEscore = X0TE * W; ## Preallocate SSE matrix sse = zeros (2, NCOMP + 1); ## Model with 0 components sse(1,1) = sum (sum (abs (X0TE) .^ 2, 2)); sse(2,1) = sum (sum (abs (Y0TE) .^ 2, 2)); ## Models with 1:NCOMP components for i = 1:NCOMP X0fitted = XTEscore(:,1:i) * xload(:,1:i)'; sse(1,i+1) = sum (sum (abs (X0TE - X0fitted) .^ 2, 2)); Y0fitted = XTEscore(:,1:i) * yload(:,1:i)'; sse(2,i+1) = sum (sum (abs (Y0TE - Y0fitted) .^ 2, 2)); endfor endfunction %!demo %! ## Perform Partial Least-Squares Regression %! %! ## Load the spectra data set and use the near infrared (NIR) spectral %! ## intensities (NIR) as the predictor and the corresponding octave %! ## ratings (octave) as the response. %! load spectra %! %! ## Perform PLS regression with 10 components %! [xload, yload, xscore, yscore, coef, ptcVar] = plsregress (NIR, octane, 10); %! %! ## Plot the percentage of explained variance in the response variable %! ## (PCTVAR) as a function of the number of components. %! plot (1:10, cumsum (100 * ptcVar(2,:)), "-ro"); %! xlim ([1, 10]); %! xlabel ("Number of PLS components"); %! ylabel ("Percentage of Explained Variance in octane"); %! title ("Explained Variance per PLS components"); %! %! ## Compute the fitted response and display the residuals. %! octane_fitted = [ones(size(NIR,1),1), NIR] * coef; %! residuals = octane - octane_fitted; %! figure %! stem (residuals, "color", "r", "markersize", 4, "markeredgecolor", "r") %! xlabel ("Observations"); %! ylabel ("Residuals"); %! title ("Residuals in octane's fitted responce"); %!demo %! ## Calculate Variable Importance in Projection (VIP) for PLS Regression %! %! ## Load the spectra data set and use the near infrared (NIR) spectral %! ## intensities (NIR) as the predictor and the corresponding octave %! ## ratings (octave) as the response. Variables with a VIP score greater than %! ## 1 are considered important for the projection of the PLS regression model. %! load spectra %! %! ## Perform PLS regression with 10 components %! [xload, yload, xscore, yscore, coef, pctVar, mse, stats] = ... %! plsregress (NIR, octane, 10); %! %! ## Calculate the normalized PLS weights %! W0 = stats.W ./ sqrt(sum(stats.W.^2,1)); %! %! ## Calculate the VIP scores for 10 components %! nobs = size (xload, 1); %! SS = sum (xscore .^ 2, 1) .* sum (yload .^ 2, 1); %! VIPscore = sqrt (nobs * sum (SS .* (W0 .^ 2), 2) ./ sum (SS, 2)); %! %! ## Find variables with a VIP score greater than or equal to 1 %! VIPidx = find (VIPscore >= 1); %! %! ## Plot the VIP scores %! scatter (1:length (VIPscore), VIPscore, "xb"); %! hold on %! scatter (VIPidx, VIPscore (VIPidx), "xr"); %! plot ([1, length(VIPscore)], [1, 1], "--k"); %! hold off %! axis ("tight"); %! xlabel ("Predictor Variables"); %! ylabel ("VIP scores"); %! title ("VIP scores for each predictror variable with 10 components"); ## Test output %!test %! load spectra %! [xload, yload, xscore, yscore, coef, pctVar] = plsregress (NIR, octane, 10); %! xload1_out = [-0.0170, 0.0039, 0.0095, 0.0258, 0.0025, ... %! -0.0075, 0.0000, 0.0018, -0.0027, 0.0020]; %! yload_out = [6.6384, 9.3106, 2.0505, 0.6471, 0.9625, ... %! 0.5905, 0.4244, 0.2437, 0.3516, 0.2548]; %! xscore1_out = [-0.0401, -0.1764, -0.0340, 0.1669, 0.1041, ... %! -0.2067, 0.0457, 0.1565, 0.0706, -0.1471]; %! yscore1_out = [-12.4635, -15.0003, 0.0638, 0.0652, -0.0070, ... %! -0.0634, 0.0062, -0.0012, -0.0151, -0.0173]; %! assert (xload(1,:), xload1_out, 1e-4); %! assert (yload, yload_out, 1e-4); %! assert (xscore(1,:), xscore1_out, 1e-4); %! assert (yscore(1,:), yscore1_out, 1e-4); %!test %! load spectra %! [xload, yload, xscore, yscore, coef, pctVar] = plsregress (NIR, octane, 5); %! xload1_out = [-0.0170, 0.0039, 0.0095, 0.0258, 0.0025]; %! yload_out = [6.6384, 9.3106, 2.0505, 0.6471, 0.9625]; %! xscore1_out = [-0.0401, -0.1764, -0.0340, 0.1669, 0.1041]; %! yscore1_out = [-12.4635, -15.0003, 0.0638, 0.0652, -0.0070]; %! assert (xload(1,:), xload1_out, 1e-4); %! assert (yload, yload_out, 1e-4); %! assert (xscore(1,:), xscore1_out, 1e-4); %! assert (yscore(1,:), yscore1_out, 1e-4); ## Test input validation %!error %! plsregress (1) %!error plsregress (1, "asd") %!error plsregress (1, {1,2,3}) %!error plsregress ("asd", 1) %!error plsregress ({1,2,3}, 1) %!error ... %! plsregress (ones (20,3), ones (15,1)) %!error ... %! plsregress (ones (20,3), ones (20,1), 0) %!error ... %! plsregress (ones (20,3), ones (20,1), -5) %!error ... %! plsregress (ones (20,3), ones (20,1), 3.2) %!error ... %! plsregress (ones (20,3), ones (20,1), [2, 3]) %!error ... %! plsregress (ones (20,3), ones (20,1), 4) %!error ... %! plsregress (ones (20,3), ones (20,1), 3, "cv", 4.5) %!error ... %! plsregress (ones (20,3), ones (20,1), 3, "cv", -1) %!error ... %! plsregress (ones (20,3), ones (20,1), 3, "cv", "somestring") %!error ... %! plsregress (ones (20,3), ones (20,1), 3, "cv", 3, "mcreps", 2.2) %!error ... %! plsregress (ones (20,3), ones (20,1), 3, "cv", 3, "mcreps", -2) %!error ... %! plsregress (ones (20,3), ones (20,1), 3, "cv", 3, "mcreps", [1, 2]) %!error ... %! plsregress (ones (20,3), ones (20,1), 3, "Name", 3, "mcreps", 1) %!error ... %! plsregress (ones (20,3), ones (20,1), 3, "cv", 3, "Name", 1) %!error ... %! plsregress (ones (20,3), ones (20,1), 3, "mcreps", 2) %!error ... %! plsregress (ones (20,3), ones (20,1), 3, "cv", "resubstitution", "mcreps", 2) %!error plsregress (1, 2) statistics-release-1.6.3/inst/ppplot.m000066400000000000000000000062731456127120000200100ustar00rootroot00000000000000## Copyright (C) 1995-2017 Kurt Hornik ## Copyright (C) 2022-2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {} ppplot (@var{x}, @var{dist}) ## @deftypefnx {statistics} {} ppplot (@var{x}, @var{dist}, @var{params}) ## @deftypefnx {statistics} {[@var{p}, @var{y}] =} ppplot (@var{x}, @var{dist}, @var{params}) ## ## Perform a PP-plot (probability plot). ## ## If F is the CDF of the distribution @var{dist} with parameters ## @var{params} and @var{x} a sample vector of length @var{n}, the PP-plot ## graphs ordinate @var{y}(@var{i}) = F (@var{i}-th largest element of ## @var{x}) versus abscissa @var{p}(@var{i}) = (@var{i} - 0.5)/@var{n}. If ## the sample comes from F, the pairs will approximately follow a straight ## line. ## ## The default for @var{dist} is the standard normal distribution. ## ## The optional argument @var{params} contains a list of parameters of ## @var{dist}. ## ## For example, for a probability plot of the uniform distribution on [2,4] ## and @var{x}, use ## ## @example ## ppplot (x, "uniform", 2, 4) ## @end example ## ## @noindent ## @var{dist} can be any string for which a function @var{distcdf} that ## calculates the CDF of distribution @var{dist} exists. ## ## If no output is requested then the data are plotted immediately. ## @seealso{qqplot} ## @end deftypefn function [p, y] = ppplot (x, dist, varargin) if (nargin < 1) print_usage (); endif if (! isnumeric (x) || ! isreal (x) || ! isvector (x) || isscalar (x)) error ("ppplot: X must be a numeric vector of real numbers"); endif s = sort (x); n = length (x); p = ((1 : n)' - 0.5) / n; if (nargin == 1) F = @stdnormal_cdf; elseif (! ischar (dist)) error ("ppplot: DIST must be a string"); else F = str2func ([dist "cdf"]); endif if (nargin <= 2) y = feval (F, s); else y = feval (F, s, varargin{:}); endif if (nargout == 0) plot (p, y); axis ([0, 1, 0, 1]); endif endfunction function p = stdnormal_cdf (x) p = 0.5 * erfc (x ./ sqrt (2)); endfunction ## Test plotting %!test %! hf = figure ("visible", "off"); %! unwind_protect %! ppplot ([2 3 3 4 4 5 6 5 6 7 8 9 8 7 8 9 0 8 7 6 5 4 6 13 8 15 9 9]); %! unwind_protect_cleanup %! close (hf); %! end_unwind_protect ## Test input validation %!error ppplot () %!error ppplot (ones (2,2)) %!error ppplot (1, 2) %!error ppplot ([1 2 3 4], 2) statistics-release-1.6.3/inst/princomp.m000066400000000000000000000125721456127120000203200ustar00rootroot00000000000000## Copyright (C) 2013-2019 Fernando Damian Nieuwveldt ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or ## modify it under the terms of the GNU General Public License ## as published by the Free Software Foundation; either version 3 ## of the License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{COEFF} =} princomp (@var{X}) ## @deftypefnx {statistics} {[@var{COEFF}, @var{SCORE}] =} princomp (@var{X}) ## @deftypefnx {statistics} {[@var{COEFF}, @var{SCORE}, @var{latent}] =} princomp (@var{X}) ## @deftypefnx {statistics} {[@var{COEFF}, @var{SCORE}, @var{latent}, @var{tsquare}] =} princomp (@var{X}) ## @deftypefnx {statistics} {[@dots{}] =} princomp (@var{X}, "econ") ## ## Performs a principal component analysis on a NxP data matrix X. ## ## @itemize @bullet ## @item ## @var{COEFF} : returns the principal component coefficients ## @item ## @var{SCORE} : returns the principal component scores, the representation of X ## in the principal component space ## @item ## @var{LATENT} : returns the principal component variances, i.e., the ## eigenvalues of the covariance matrix X. ## @item ## @var{TSQUARE} : returns Hotelling's T-squared Statistic for each observation ## in X ## @item ## [...] = princomp(X,'econ') returns only the elements of latent that are not ## necessarily zero, and the corresponding columns of COEFF and SCORE, that is, ## when n <= p, only the first n-1. This can be significantly faster when p is ## much larger than n. In this case the svd will be applied on the transpose of ## the data matrix X ## ## @end itemize ## ## @subheading References ## ## @enumerate ## @item ## Jolliffe, I. T., Principal Component Analysis, 2nd Edition, Springer, 2002 ## ## @end enumerate ## @end deftypefn function [COEFF, SCORE, latent, tsquare] = princomp (X, varargin) if (nargin < 1 || nargin > 2) print_usage (); endif if (nargin == 2 && ! strcmpi (varargin{:}, "econ")) error (strcat (["princomp: if a second input argument is present,"], ... [" it must be the string 'econ'."])); endif [nobs nvars] = size(X); # Center the columns to mean zero Xcentered = bsxfun(@minus,X,mean(X)); # Check if there are more variables then observations if nvars <= nobs [U,S,COEFF] = svd(Xcentered, "econ"); else # Calculate the svd on the transpose matrix, much faster if (nargin == 2 && strcmpi ( varargin{:} , "econ")) [COEFF,S,V] = svd(Xcentered' , 'econ'); else [COEFF,S,V] = svd(Xcentered'); endif endif if nargout > 1 # Get the Scores SCORE = Xcentered*COEFF; # Get the rank of the SCORE matrix r = rank(SCORE); # Only use the first r columns, pad rest with zeros if economy != 'econ' SCORE = SCORE(:,1:r) ; if !(nargin == 2 && strcmpi ( varargin{:} , "econ")) SCORE = [SCORE, zeros(nobs , nvars-r)]; else COEFF = COEFF(: , 1:r); endif endif if nargout > 2 # This is the same as the eigenvalues of the covariance matrix of X latent = (diag(S'*S)/(size(Xcentered,1)-1))(1:r); if !(nargin == 2 && strcmpi ( varargin{:} , "econ")) latent= [latent;zeros(nvars-r,1)]; endif endif if nargout > 3 # Calculate the Hotelling T-Square statistic for the observations tsquare = sumsq(zscore(SCORE(:,1:r)),2); endif endfunction %!shared COEFF,SCORE,latent,tsquare,m,x,R,V,lambda,i,S,F #NIST Engineering Statistics Handbook example (6.5.5.2) %!test %! x=[7 4 3 %! 4 1 8 %! 6 3 5 %! 8 6 1 %! 8 5 7 %! 7 2 9 %! 5 3 3 %! 9 5 8 %! 7 4 5 %! 8 2 2]; %! R = corrcoef (x); %! [V, lambda] = eig (R); %! [~, i] = sort(diag(lambda), "descend"); #arrange largest PC first %! S = V(:, i) * diag(sqrt(diag(lambda)(i))); %! ## contribution of first 2 PCs to each original variable %!assert(diag(S(:, 1:2)*S(:, 1:2)'), [0.8662; 0.8420; 0.9876], 1E-4); %! B = V(:, i) * diag( 1./ sqrt(diag(lambda)(i))); %! F = zscore(x)*B; %! [COEFF,SCORE,latent,tsquare] = princomp(zscore(x, 1)); %!assert(tsquare,sumsq(F, 2),1E4*eps); %!test %! x=[1,2,3;2,1,3]'; %! [COEFF,SCORE,latent,tsquare] = princomp(x); %! m=[sqrt(2),sqrt(2);sqrt(2),-sqrt(2);-2*sqrt(2),0]/2; %! m(:,1) = m(:,1)*sign(COEFF(1,1)); %! m(:,2) = m(:,2)*sign(COEFF(1,2)); %!assert(COEFF,m(1:2,:),10*eps); %!assert(SCORE,-m,10*eps); %!assert(latent,[1.5;.5],10*eps); %!assert(tsquare,[4;4;4]/3,10*eps); %!test %! x=x'; %! [COEFF,SCORE,latent,tsquare] = princomp(x); %! m=[sqrt(2),sqrt(2),0;-sqrt(2),sqrt(2),0;0,0,2]/2; %! m(:,1) = m(:,1)*sign(COEFF(1,1)); %! m(:,2) = m(:,2)*sign(COEFF(1,2)); %! m(:,3) = m(:,3)*sign(COEFF(3,3)); %!assert(COEFF,m,10*eps); %!assert(SCORE(:,1),-m(1:2,1),10*eps); %!assert(SCORE(:,2:3),zeros(2),10*eps); %!assert(latent,[1;0;0],10*eps); %!assert(tsquare,[0.5;0.5],10*eps) %!test %! [COEFF,SCORE,latent,tsquare] = princomp(x, "econ"); %!assert(COEFF,m(:, 1),10*eps); %!assert(SCORE,-m(1:2,1),10*eps); %!assert(latent,[1],10*eps); %!assert(tsquare,[0.5;0.5],10*eps) statistics-release-1.6.3/inst/private/000077500000000000000000000000001456127120000177565ustar00rootroot00000000000000statistics-release-1.6.3/inst/private/exact2xkCT.m000066400000000000000000000167771456127120000221360ustar00rootroot00000000000000## Copyright (C) 2022 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {Private Function} [@var{p_net}, @var{p_val}] = exact2xkCT (@var{ct}, @var{weights}, @var{rsstat}) ## ## Compute the exact p-value for a 2-by-K contingency table based on the ## network algorithm. ## ## Reference: Cyrus R. Mehta & Nitin R. Patel (1980) A network algorithm for ## the exact treatment of the 2×k contingency table, Communications in ## Statistics - Simulation and Computation, 9:6, 649-664, ## DOI: 10.1080/03610918008812182 ## ## @end deftypefn function [p_net, p_val] = exact2xkCT (ct, weights, rsstat) ## Calculate nodes and arcs [nodes, arcs] = build_nodes (ct,weights); ## Apply backward induction to nodes nodes = backward_induce (nodes,arcs); ## Forward scan the network to get p-values p_val = forward_scan (nodes, arcs, rsstat); ## Calculate p-values TP = nodes{4,1}; p_val = p_val / TP; p_net = p_val(2) + min(p_val(1), p_val(3)); endfunction ## Calculate structures describing nodes and arcs function [nodes, arcs] = build_nodes (ct, weights) column = size (ct, 2); ## number of columns in contigency table rowsum = sum (ct, 2); ## sum of rows colsum = sum (ct, 1); ## sum of columns oldnodes = zeros(1,2); ## nodes added during last pass oldlo = 0; ## min possible sum so far oldhi = 0; ## max possible sum so far oldnn = 1; ## node numbers (row numbers) from last pass ctsum = rowsum(1); ## sum of entries in first row nodecount = 1; ## current node count ## Initialize cell structures for nodes and arcs nodes = cell(4, column+1); ## to hold nodes nodes{1,1} = zeros (1,2); ## n-by-2 array, n = # of nodes, row = [j,mj] nodes{2,column+1} = 0; ## n-vector of longest path to end from here nodes{3,column+1} = 0; ## n-vector of shortest path to end from here nodes{4,column+1} = 1; ## n-vector of total probability to end from here arcs = cell(3, column); ## to hold arcs ## row 1: n-by-2 array, n = # of connections, row = pair connected ## row 2: n-vector of arc lengths ## row 3: n-vector of arc probabilities for j = 1:column ## Find nodes possible at the next step nj = colsum(j); lo = max (oldlo, ctsum - sum (colsum(j+1:end))); hi = min (ctsum, oldhi + nj); newnodes = zeros (hi - lo + 1,2); newnodes(:,1) = j; newnodes(:,2) = (lo:hi)'; newnn = 1:size (newnodes,1); nodecount = nodecount + size (newnodes, 1); nodes{1,j+1} = newnodes; ## Find arcs possible to the next step [a0, a1] = meshgrid (oldnn, newnn); a0 = a0(:); a1 = a1(:); oldsum = oldnodes(a0,2); newsum = newnodes(a1,2); xj = newsum - oldsum; ok = (xj >= 0) & (xj <= nj); arcs{1,j} = [a0(ok) a1(ok)]; ## arc connections xj = xj(ok); arcs{2,j} = weights(j) * xj; pj = exp (gammaln (nj + 1) - gammaln (xj + 1) - gammaln (nj - xj + 1)); arcs{3,j} = pj; ## arc probabilities ## Update data structures oldlo = lo; oldhi = hi; oldnodes = newnodes; oldnn = newnn; endfor endfunction ## Calculate backward induction by adding information to NODES array function nodes = backward_induce (nodes, arcs) ## initialize for final node column = size (nodes,2) - 1; startSP = zeros (1); startLP = startSP; startTP = ones (1); for j = column:-1:1 ## destination nodes are previous start nodes endSP = startSP; endLP = startLP; endTP = startTP; ## get new start nodes and information about them a = arcs{1,j}; startmax = max(a(:,1)); startSP = zeros(startmax,1); startLP = startSP; startTP = startSP; arclen = arcs{2,j}; arcprob = arcs{3,j}; for nodenum = 1:startmax % for each start node, compute SP, LP, TP k1 = find(a(:,1) == nodenum); k2 = a(k1,2); startLP(nodenum) = max(arclen(k1) + endLP(k2)); startSP(nodenum) = min(arclen(k1) + endSP(k2)); startTP(nodenum) = sum(arcprob(k1) .* endTP(k2)); endfor ## store information about nodes at this level nodes{2,j} = startLP; nodes{3,j} = startSP; nodes{4,j} = startTP; endfor endfunction ## Get p-values by forward scanning the network function p_val = forward_scan (nodes, arcs, rsstat) NROWS = 50; p_val = zeros(3,1); ## [ProbT] stack = zeros(NROWS, 4); stack(:,1) = Inf; stack(1,1) = 1; ## level of current node stack(1,2) = 1; ## number at this level of current node stack(1,3) = 0; ## length so far to this node stack(1,4) = 1; ## probability so far of reaching this node N = size (stack, 1); i1 = 0; i2 = 0; i3 = 0; while (1) ## Get next lowest level node to process minlevel = min(stack((stack(1:N)>0))); if (isinf (minlevel)) break; endif sp = find (stack(1:N) == minlevel); sp = sp(1); L = stack(sp,1); J = stack(sp,2); pastL = stack(sp,3); pastP = stack(sp,4); stack(sp,1) = Inf; ## Get info for arcs at level L and their target nodes LP = nodes{2,L+1}; SP = nodes{3,L+1}; TP = nodes{4,L+1}; aj = arcs{1,L}; arclen = arcs{2,L}; arcprob = arcs{3,L}; ## Look only at arcs from node J seps = sqrt (eps); arows = find (aj(:,1) == J)'; for k = arows tonode = aj(k,2); thisL = arclen(k); thisP = pastP * arcprob(k); len = pastL + thisL; ## No paths from node J are signicant if (len + LP(tonode) < rsstat - seps) p_val(1) = p_val(1) + thisP * TP(tonode); ## All paths from node J are significant elseif (len + SP(tonode) > rsstat + seps) p_val(3) = p_val(3) + thisP * TP(tonode); ## Single match from node J elseif (SP(tonode) == LP(tonode)) p_val(2) = p_val(2) + thisP * TP(tonode); ## Match node J with another already stored node else ## Find a stored node that matches this one r = find(stack(:,1) == L+1); if (any (r)) r = r(stack(r,2) == tonode); if (any (r)) r = r(abs (stack(r,3) - len) < seps); endif endif ## If any one is found, merge node J with it if (any (r)) sp = r(1); stack(sp,4) = stack(sp,4) + thisP; i1 = i1 + 1; ## Otherwise add a new node else z = find(isinf(stack(:,1))); if (isempty (z)) i2 = i2 +1; block = zeros (NROWS, 4); block(:,1) = Inf; stack = [stack; block]; sp = N + 1; N = N + NROWS; else i3 = i3 + 1; sp = z(1); endif stack(sp,1) = L + 1; stack(sp,2) = tonode; stack(sp,3) = len; stack(sp,4) = thisP; endif endif endfor endwhile endfunction statistics-release-1.6.3/inst/probit.m000066400000000000000000000026141456127120000177640ustar00rootroot00000000000000## Copyright (C) 1995-2017 Kurt Hornik ## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{x} =} probit (@var{p}) ## ## Probit transformation ## ## Return the probit (the quantile of the standard normal distribution) for ## each element of @var{p}. ## ## @seealso{logit} ## @end deftypefn function x = probit (p) if (nargin != 1) print_usage (); endif x = -sqrt (2) * erfcinv (2 * p); endfunction ## Test output %!assert (probit ([-1, 0, 0.5, 1, 2]), [NaN, -Inf, 0, Inf, NaN]) %!assert (probit ([0.2, 0.99]), norminv ([0.2, 0.99])) ## Test input validation %!error probit () %!error probit (1, 2) statistics-release-1.6.3/inst/procrustes.m000066400000000000000000000314541456127120000207020ustar00rootroot00000000000000## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/OR ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, OR (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{d} =} procrustes (@var{X}, @var{Y}) ## @deftypefnx {statistics} {@var{d} =} procrustes (@var{X}, @var{Y}, @var{param1}, @var{value1}, @dots{}) ## @deftypefnx {statistics} {[@var{d}, @var{Z}] =} procrustes (@dots{}) ## @deftypefnx {statistics} {[@var{d}, @var{Z}, @var{transform}] =} procrustes (@dots{}) ## ## Procrustes Analysis. ## ## @code{@var{d} = procrustes (@var{X}, @var{Y})} computes a linear ## transformation of the points in the matrix @var{Y} to best conform them to ## the points in the matrix @var{X} by minimizing the sum of squared errors, as ## the goodness of fit criterion, which is returned in @var{d} as a ## dissimilarity measure. @var{d} is standardized by a measure of the scale of ## @var{X}, given by ## @itemize ## @item @qcode{sum (sum ((X - repmat (mean (X, 1), size (X, 1), 1)) .^ 2, 1))} ## @end itemize ## i.e., the sum of squared elements of a centered version of @var{X}. However, ## if @var{X} comprises repetitions of the same point, the sum of squared errors ## is not standardized. ## ## @var{X} and @var{Y} must have the same number of points (rows) and ## @qcode{procrustes} matches the @math{i}-th point in @var{Y} to the ## @math{i}-th point in @var{X}. Points in @var{Y} can have smaller dimensions ## (columns) than those in @var{X}, but not the opposite. Missing dimensions in ## @var{Y} are added with padding columns of zeros as necessary to match the ## the dimensions in @var{X}. ## ## @code{[@var{d}, @var{Z}] = procrustes (@var{X}, @var{Y})} also returns the ## transformed values in @var{Y}. ## ## @code{[@var{d}, @var{Z}, @var{transform}] = procrustes (@var{X}, @var{Y})} ## also returns the transformation that maps @var{Y} to @var{Z}. ## ## @var{transform} is a structure with fields: ## ## @multitable @columnfractions 0.05 0.1 0.05 0.8 ## @item @tab @qcode{c} @tab @tab the translation component ## @item @tab @qcode{T} @tab @tab the orthogonal rotation and reflection ## component ## @item @tab @qcode{b} @tab @tab the scale component ## @end multitable ## ## So that @code{@var{Z} = @var{transform}.@qcode{b} * @var{Y} * ## @var{transform}.@qcode{T} + @var{transform}.@qcode{c}} ## ## @qcode{procrustes} can take two optional parameters as Name-Value pairs. ## ## @code{[@dots{}] = procrustes (@dots{}, @qcode{"Scaling"}, @qcode{false})} ## computes a transformation that does not include scaling, that is ## @var{transform}.@qcode{b} = 1. Setting @qcode{"Scaling"} to @qcode{true} ## includes a scaling component, which is the default. ## ## @code{[@dots{}] = procrustes (@dots{}, @qcode{"Reflection"}, @qcode{false})} ## computes a transformation that does not include a reflection component, that ## is @var{transform}.@qcode{T} = 1. Setting @qcode{"Reflection"} to ## @qcode{true} forces the solution to include a reflection component in the ## computed transformation, that is @var{transform}.@qcode{T} = -1. ## ## @code{[@dots{}] = procrustes (@dots{}, @qcode{"Reflection"}, @qcode{"best"})} ## computes the best fit procrustes solution, which may or may not include a ## reflection component, which is the default. ## ## @seealso{cmdscale} ## @end deftypefn function [d, Z, transform] = procrustes (X, Y, varargin) if (nargin < 1) error ("fishertest: contingency table is missing."); endif if (nargin > 5) error ("fishertest: too many input parameters."); endif ## Check X and Y for appropriate input if (isempty (X) || ! ismatrix (X) || ndims (X) != 2 || ... isempty (Y) || ! ismatrix (Y) || ndims (Y) != 2) error ("procrustes: X and Y must be 2-dimensional matrices."); endif if (any (isnan (X(:))) || any (isinf (X(:))) || iscomplex (X) || ... any (isnan (Y(:))) || any (isinf (Y(:))) || iscomplex (Y)) error ("procrustes: values in X and Y must be real."); endif [Xp, Xd] = size (X); [Yp, Yd] = size (Y); if (Yp != Xp) error ("procrustes: X and Y must have equal number of rows."); elseif (Yd > Xd) error ("procrustes: X must have at least as many columns as Y."); endif ## Add defaults and parse optional arguments scaling = true; reflection = "best"; if (nargin > 2) params = numel (varargin); if ((params / 2) != fix (params / 2)) error ("procrustes: optional arguments must be in Name-Value pairs.") endif for idx = 1:2:params name = varargin{idx}; value = varargin{idx+1}; switch (lower (name)) case "scaling" scaling = value; if (! (isscalar (scaling) && islogical (scaling))) error ("procrustes: invalid value for scaling."); endif case "reflection" reflection = value; if (! (strcmpi (reflection, "best") || islogical (reflection))) error ("procrustes: invalid value for reflection."); endif otherwise error ("procrustes: invalid name for optional arguments."); endswitch endfor endif ## Center at the origin. Xmu = mean (X, 1); Ymu = mean (Y, 1); X_0 = X - repmat (Xmu, Xp, 1); Y_0 = Y - repmat (Ymu, Xp, 1); ## Get centroid size and check for X or Y having identical points Xsumsq = sum (X_0 .^ 2, 1); Ysumsq = sum (Y_0 .^ 2, 1); constX = all (Xsumsq <= abs (eps (class (X)) * Xp * Xmu) .^ 2); constY = all (Ysumsq <= abs (eps (class (X)) * Xp * Ymu) .^ 2); Xsumsq = sum (Xsumsq); Ysumsq = sum (Ysumsq); if (! constX && ! constY) ## Scale to "centered" Frobenius norm. normX = sqrt (Xsumsq); normY = sqrt (Ysumsq); X_0 = X_0 / normX; Y_0 = Y_0 / normY; ## Fix dimension space (if necessary) if (Yd < Xd) Y_0 = [Y_0 zeros(Xp, Xd-Yd)]; end ## Find optimal rotation matrix of Y A = X_0' * Y_0; [U, S, V] = svd (A); T = V * U'; ## Handle reflection only if 'true' or 'false' was given if (! strcmpi (reflection, "best")) is_reflection = (det(T) < 0); ## Force a reflection if data and reflection option disagree if (reflection != is_reflection) V(:,end) = -V(:,end); S(end,end) = -S(end,end); T = V * U'; endif endif ## Apply scaling (if requested) traceTA = sum (diag (S)); if (scaling) b = traceTA * normX / normY; d = 1 - traceTA .^ 2; if (nargout > 1) Z = normX * traceTA * Y_0 * T + repmat (Xmu, Xp, 1); endif else b = 1; d = 1 + Ysumsq / Xsumsq - 2 * traceTA * normY / normX; if (nargout > 1) Z = normY * Y_0 * T + repmat (Xmu, Xp, 1); endif endif ## 3rd output argument if (nargout > 2) if (Yd < Xd) T = T(1:Yd,:); endif c = Xmu - b * Ymu * T; transform = struct ("T", T, "b", b, "c", repmat (c, Xp, 1)); end ## Special cases elseif constX # Identical points in X d = 0; Z = repmat (Xmu, Xp, 1); T = eye (Yd, Xd); transform = struct ("T", T, "b", 0, "c", Z); else # Identical points in Y d = 1; Z = repmat (Xmu, Xp, 1); T = eye (Yd, Xd); transform = struct ("T", T, "b", 0, "c", Z); endif endfunction %!demo %! ## Create some random points in two dimensions %! n = 10; %! randn ("seed", 1); %! X = normrnd (0, 1, [n, 2]); %! %! ## Those same points, rotated, scaled, translated, plus some noise %! S = [0.5, -sqrt(3)/2; sqrt(3)/2, 0.5]; # rotate 60 degrees %! Y = normrnd (0.5*X*S + 2, 0.05, n, 2); %! %! ## Conform Y to X, plot original X and Y, and transformed Y %! [d, Z] = procrustes (X, Y); %! plot (X(:,1), X(:,2), "rx", Y(:,1), Y(:,2), "b.", Z(:,1), Z(:,2), "bx"); %!demo %! ## Find Procrustes distance and plot superimposed shape %! %! X = [40 88; 51 88; 35 78; 36 75; 39 72; 44 71; 48 71; 52 74; 55 77]; %! Y = [36 43; 48 42; 31 26; 33 28; 37 30; 40 31; 45 30; 48 28; 51 24]; %! plot (X(:,1),X(:,2),"x"); %! hold on %! plot (Y(:,1),Y(:,2),"o"); %! xlim ([0 100]); %! ylim ([0 100]); %! legend ("Target shape (X)", "Source shape (Y)"); %! [d, Z] = procrustes (X, Y) %! plot (Z(:,1), Z(:,2), "s"); %! legend ("Target shape (X)", "Source shape (Y)", "Transformed shape (Z)"); %! hold off %!demo %! ## Apply Procrustes transformation to larger set of points %! %! ## Create matrices with landmark points for two triangles %! X = [5, 0; 5, 5; 8, 5]; # target %! Y = [0, 0; 1, 0; 1, 1]; # source %! %! ## Create a matrix with more points on the source triangle %! Y_mp = [linspace(Y(1,1),Y(2,1),10)', linspace(Y(1,2),Y(2,2),10)'; ... %! linspace(Y(2,1),Y(3,1),10)', linspace(Y(2,2),Y(3,2),10)'; ... %! linspace(Y(3,1),Y(1,1),10)', linspace(Y(3,2),Y(1,2),10)']; %! %! ## Plot both shapes, including the larger set of points for the source shape %! plot ([X(:,1); X(1,1)], [X(:,2); X(1,2)], "bx-"); %! hold on %! plot ([Y(:,1); Y(1,1)], [Y(:,2); Y(1,2)], "ro-", "MarkerFaceColor", "r"); %! plot (Y_mp(:,1), Y_mp(:,2), "ro"); %! xlim ([-1 10]); %! ylim ([-1 6]); %! legend ("Target shape (X)", "Source shape (Y)", ... %! "More points on Y", "Location", "northwest"); %! hold off %! %! ## Obtain the Procrustes transformation %! [d, Z, transform] = procrustes (X, Y) %! %! ## Use the Procrustes transformation to superimpose the more points (Y_mp) %! ## on the source shape onto the target shape, and then visualize the results. %! Z_mp = transform.b * Y_mp * transform.T + transform.c(1,:); %! figure %! plot ([X(:,1); X(1,1)], [X(:,2); X(1,2)], "bx-"); %! hold on %! plot ([Y(:,1); Y(1,1)], [Y(:,2); Y(1,2)], "ro-", "MarkerFaceColor", "r"); %! plot (Y_mp(:,1), Y_mp(:,2), "ro"); %! xlim ([-1 10]); %! ylim ([-1 6]); %! plot ([Z(:,1); Z(1,1)],[Z(:,2); Z(1,2)],"ks-","MarkerFaceColor","k"); %! plot (Z_mp(:,1),Z_mp(:,2),"ks"); %! legend ("Target shape (X)", "Source shape (Y)", ... %! "More points on Y", "Transformed source shape (Z)", ... %! "Transformed additional points", "Location", "northwest"); %! hold off %!demo %! ## Compare shapes without reflection %! %! T = [33, 93; 33, 87; 33, 80; 31, 72; 32, 65; 32, 58; 30, 72; ... %! 28, 72; 25, 69; 22, 64; 23, 59; 26, 57; 30, 57]; %! S = [48, 83; 48, 77; 48, 70; 48, 65; 49, 59; 49, 56; 50, 66; ... %! 52, 66; 56, 65; 58, 61; 57, 57; 54, 56; 51, 55]; %! plot (T(:,1), T(:,2), "x-"); %! hold on %! plot (S(:,1), S(:,2), "o-"); %! legend ("Target shape (d)", "Source shape (b)"); %! hold off %! d_false = procrustes (T, S, "reflection", false); %! printf ("Procrustes distance without reflection: %f\n", d_false); %! d_true = procrustes (T, S, "reflection", true); %! printf ("Procrustes distance with reflection: %f\n", d_true); %! d_best = procrustes (T, S, "reflection", "best"); %! printf ("Procrustes distance with best fit: %f\n", d_true); ## Test input validation %!error procrustes (); %!error procrustes (1, 2, 3, 4, 5, 6); %!error ... %! procrustes (ones (2, 2, 2), ones (2, 2, 2)); %!error ... %! procrustes ([1, 2; -3, 4; 2, 3], [1, 2; -3, 4; 2, 3+i]); %!error ... %! procrustes ([1, 2; -3, 4; 2, 3], [1, 2; -3, 4; 2, NaN]); %!error ... %! procrustes ([1, 2; -3, 4; 2, 3], [1, 2; -3, 4; 2, Inf]); %!error ... %! procrustes (ones (10 ,3), ones (11, 3)); %!error ... %! procrustes (ones (10 ,3), ones (10, 4)); %!error ... %! procrustes (ones (10 ,3), ones (10, 3), "reflection"); %!error ... %! procrustes (ones (10 ,3), ones (10, 3), true); %!error ... %! procrustes (ones (10 ,3), ones (10, 3), "scaling", 0); %!error ... %! procrustes (ones (10 ,3), ones (10, 3), "scaling", [true true]); %!error ... %! procrustes (ones (10 ,3), ones (10, 3), "reflection", 1); %!error ... %! procrustes (ones (10 ,3), ones (10, 3), "reflection", "some"); %!error ... %! procrustes (ones (10 ,3), ones (10, 3), "param1", "some"); statistics-release-1.6.3/inst/qqplot.m000066400000000000000000000103131456127120000200000ustar00rootroot00000000000000## Copyright (C) 1995-2017 Kurt Hornik ## Copyright (C) 2022-2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {[@var{q}, @var{s}] =} qqplot (@var{x}) ## @deftypefnx {statistics} {[@var{q}, @var{s}] =} qqplot (@var{x}, @var{y}) ## @deftypefnx {statistics} {[@var{q}, @var{s}] =} qqplot (@var{x}, @var{dist}) ## @deftypefnx {statistics} {[@var{q}, @var{s}] =} qqplot (@var{x}, @var{y}, @var{params}) ## @deftypefnx {statistics} {} qqplot (@dots{}) ## ## Perform a QQ-plot (quantile plot). ## ## If F is the CDF of the distribution @var{dist} with parameters ## @var{params} and G its inverse, and @var{x} a sample vector of length ## @var{n}, the QQ-plot graphs ordinate @var{s}(@var{i}) = @var{i}-th ## largest element of x versus abscissa @var{q}(@var{i}f) = G((@var{i} - ## 0.5)/@var{n}). ## ## If the sample comes from F, except for a transformation of location ## and scale, the pairs will approximately follow a straight line. ## ## If the second argument is a vector @var{y} the empirical CDF of @var{y} ## is used as @var{dist}. ## ## The default for @var{dist} is the standard normal distribution. The ## optional argument @var{params} contains a list of parameters of ## @var{dist}. For example, for a quantile plot of the uniform ## distribution on [2,4] and @var{x}, use ## ## @example ## qqplot (x, "unif", 2, 4) ## @end example ## ## @noindent ## @var{dist} can be any string for which a function @var{distinv} or ## @var{dist_inv} exists that calculates the inverse CDF of distribution ## @var{dist}. ## ## If no output arguments are given, the data are plotted directly. ## @seealso{ppplot} ## @end deftypefn function [qout, sout] = qqplot (x, dist, varargin) if (nargin < 1) print_usage (); endif if (! isnumeric (x) || ! isreal (x) || ! isvector (x) || isscalar (x)) error ("qqplot: X must be a numeric vector of real numbers"); endif if (nargin == 1) f = @probit; else if (isnumeric (dist)) f = @(y) empirical_inv (y, dist); elseif (ischar (dist) && (exist (invname = [dist "inv"]) || exist (invname = [dist "_inv"]))) f = str2func (invname); else error ("qqplot: no inverse CDF found for distribution DIST"); endif endif; s = sort (x); n = length (x); t = ((1 : n)' - .5) / n; if (nargin <= 2) q = f (t); q_label = func2str (f); else q = f (t, varargin{:}); if (nargin == 3) q_label = sprintf ("%s with parameter %g", func2str (f), varargin{1}); else q_label = sprintf ("%s with parameters %g", func2str (f), varargin{1}); param_str = sprintf (", %g", varargin{2:end}); q_label = [q_label param_str]; endif endif if (nargout == 0) plot (q, s, "-x"); q_label = strrep (q_label, '_inv', '\_inv'); if (q_label(1) == '@') q_label = q_label(6:end); # Strip "@(y) " from anon. function endif xlabel (q_label); ylabel ("sample points"); else qout = q; sout = s; endif endfunction ## Test plotting %!test %! hf = figure ("visible", "off"); %! unwind_protect %! qqplot ([2 3 3 4 4 5 6 5 6 7 8 9 8 7 8 9 0 8 7 6 5 4 6 13 8 15 9 9]); %! unwind_protect_cleanup %! close (hf); %! end_unwind_protect ## Test input validation %!error qqplot () %!error qqplot ({1}) %!error qqplot (ones (2,2)) %!error qqplot (1, "foobar") %!error qqplot ([1 2 3], "foobar") statistics-release-1.6.3/inst/qrandn.m000066400000000000000000000062371456127120000177550ustar00rootroot00000000000000## Copyright (C) 2014 - Juan Pablo Carbajal ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or ## (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program. If not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{z} =} qrandn (@var{q}, @var{r}, @var{c}) ## @deftypefnx {statistics} {@var{z} =} qrandn (@var{q}, [@var{r}, @var{c}]) ## ## Returns random deviates drawn from a q-Gaussian distribution. ## ## Parameter @var{q} charcterizes the q-Gaussian distribution. ## The result has the size indicated by @var{s}. ## ## Reference: ## W. Thistleton, J. A. Marsh, K. Nelson, C. Tsallis (2006) ## "Generalized Box-Muller method for generating q-Gaussian random deviates" ## arXiv:cond-mat/0605570 http://arxiv.org/abs/cond-mat/0605570 ## ## @seealso{rand, randn} ## @end deftypefn function z = qrandn (q, R, C=[]) if (nargin < 2) print_usage; endif if (! isscalar (q)) error ("qrandn: the parameter q must be a scalar.")' endif ## Check that q < 3 if (q >= 3) error ("qrandn: the parameter q must be lower than 3."); endif if (numel (R) > 1) S = R; elseif (numel (R) == 1 && isempty (C)) S = [R, 1]; elseif (numel (R) == 1 && ! isempty (C)) S = [R, C]; endif ## Calaulate the q to be used on the q-log qGen = (1 + q) / (3 - q); ## Initialize the output vector z = sqrt (-2 * log_q (rand (S), qGen)) .* sin (2 * pi * rand (S)); endfunction ## Returns the q-log of x, using q function a = log_q (x, q) dq = 1 - q; ## Check to see if q = 1 (to double precision) if (abs (dq) < 10 * eps) ## If q is 1, use the usual natural logarithm a = log (x); else ## If q differs from 1, use the definition of the q-log a = (x .^ dq - 1) ./ dq; endif endfunction %!demo %! z = qrandn (-5, 5e6); %! [c x] = hist (z,linspace(-1.5,1.5,200),1); %! figure(1) %! plot(x,c,"r."); axis tight; axis([-1.5,1.5]); %! %! z = qrandn (-0.14286, 5e6); %! [c x] = hist (z,linspace(-2,2,200),1); %! figure(2) %! plot(x,c,"r."); axis tight; axis([-2,2]); %! %! z = qrandn (2.75, 5e6); %! [c x] = hist (z,linspace(-1e3,1e3,1e3),1); %! figure(3) %! semilogy(x,c,"r."); axis tight; axis([-100,100]); %! %! # --------- %! # Figures from the reference paper. ## Tests for input validation %!error qrandn ([1 2], 1) %!error qrandn (4, 1) %!error qrandn (3, 1) %!error qrandn (2.5, 1, 2, 3) %!error qrandn (2.5) ## Tests for output validation %!test %! q = 1.5; %! s = [2, 3]; %! z = qrandn (q, s); %! assert (isnumeric (z) && isequal (size (z), s)); statistics-release-1.6.3/inst/random.m000066400000000000000000000412031456127120000177420ustar00rootroot00000000000000## Copyright (C) 2007 Soren Hauberg ## Copyright (C) 2023-2024 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{r} =} random (@var{name}, @var{A}) ## @deftypefnx {statistics} {@var{r} =} random (@var{name}, @var{A}, @var{B}) ## @deftypefnx {statistics} {@var{r} =} random (@var{name}, @var{A}, @var{B}, @var{C}) ## @deftypefnx {statistics} {@var{r} =} random (@var{name}, @dots{}, @var{rows}, @var{cols}) ## @deftypefnx {statistics} {@var{r} =} random (@var{name}, @dots{}, @var{rows}, @var{cols}, @dots{}) ## @deftypefnx {statistics} {@var{r} =} random (@var{name}, @dots{}, [@var{sz}]) ## ## Random arrays from a given one-, two-, or three-parameter distribution. ## ## The variable @var{name} must be a string with the name of the distribution to ## sample from. If this distribution is a one-parameter distribution, @var{A} ## must be supplied, if it is a two-parameter distribution, @var{B} must also be ## supplied, and if it is a three-parameter distribution, @var{C} must also be ## supplied. Any arguments following the distribution parameters will determine ## the size of the result. ## ## When called with a single size argument, return a square matrix with the ## dimension specified. When called with more than one scalar argument the ## first two arguments are taken as the number of rows and columns and any ## further arguments specify additional matrix dimensions. The size may also ## be specified with a vector of dimensions @var{sz}. ## ## @var{name} must be a char string of the name or the abbreviation of the ## desired probability distribution function as listed in the followng table. ## The last column shows the required number of parameters that must be passed ## passed to the desired @qcode{*rnd} distribution function. ## ## @multitable @columnfractions 0.4 0.05 0.2 0.05 0.3 ## @headitem Distribution Name @tab @tab Abbreviation @tab @tab Input Parameters ## @item @qcode{"Beta"} @tab @tab @qcode{"beta"} @tab @tab 2 ## @item @qcode{"Binomial"} @tab @tab @qcode{"bino"} @tab @tab 2 ## @item @qcode{"Birnbaum-Saunders"} @tab @tab @qcode{"bisa"} @tab @tab 2 ## @item @qcode{"Burr"} @tab @tab @qcode{"burr"} @tab @tab 3 ## @item @qcode{"Cauchy"} @tab @tab @qcode{"cauchy"} @tab @tab 2 ## @item @qcode{"Chi-squared"} @tab @tab @qcode{"chi2"} @tab @tab 1 ## @item @qcode{"Extreme Value"} @tab @tab @qcode{"ev"} @tab @tab 2 ## @item @qcode{"Exponential"} @tab @tab @qcode{"exp"} @tab @tab 1 ## @item @qcode{"F-Distribution"} @tab @tab @qcode{"f"} @tab @tab 2 ## @item @qcode{"Gamma"} @tab @tab @qcode{"gam"} @tab @tab 2 ## @item @qcode{"Geometric"} @tab @tab @qcode{"geo"} @tab @tab 1 ## @item @qcode{"Generalized Extreme Value"} @tab @tab @qcode{"gev"} @tab @tab 3 ## @item @qcode{"Generalized Pareto"} @tab @tab @qcode{"gp"} @tab @tab 3 ## @item @qcode{"Gumbel"} @tab @tab @qcode{"gumbel"} @tab @tab 2 ## @item @qcode{"Half-normal"} @tab @tab @qcode{"hn"} @tab @tab 2 ## @item @qcode{"Hypergeometric"} @tab @tab @qcode{"hyge"} @tab @tab 3 ## @item @qcode{"Inverse Gaussian"} @tab @tab @qcode{"invg"} @tab @tab 2 ## @item @qcode{"Laplace"} @tab @tab @qcode{"laplace"} @tab @tab 2 ## @item @qcode{"Logistic"} @tab @tab @qcode{"logi"} @tab @tab 2 ## @item @qcode{"Log-Logistic"} @tab @tab @qcode{"logl"} @tab @tab 2 ## @item @qcode{"Lognormal"} @tab @tab @qcode{"logn"} @tab @tab 2 ## @item @qcode{"Nakagami"} @tab @tab @qcode{"naka"} @tab @tab 2 ## @item @qcode{"Negative Binomial"} @tab @tab @qcode{"nbin"} @tab @tab 2 ## @item @qcode{"Noncentral F-Distribution"} @tab @tab @qcode{"ncf"} @tab @tab 3 ## @item @qcode{"Noncentral Student T"} @tab @tab @qcode{"nct"} @tab @tab 2 ## @item @qcode{"Noncentral Chi-Squared"} @tab @tab @qcode{"ncx2"} @tab @tab 2 ## @item @qcode{"Normal"} @tab @tab @qcode{"norm"} @tab @tab 2 ## @item @qcode{"Poisson"} @tab @tab @qcode{"poiss"} @tab @tab 1 ## @item @qcode{"Rayleigh"} @tab @tab @qcode{"rayl"} @tab @tab 1 ## @item @qcode{"Rician"} @tab @tab @qcode{"rice"} @tab @tab 2 ## @item @qcode{"Student T"} @tab @tab @qcode{"t"} @tab @tab 1 ## @item @qcode{"location-scale T"} @tab @tab @qcode{"tls"} @tab @tab 3 ## @item @qcode{"Triangular"} @tab @tab @qcode{"tri"} @tab @tab 3 ## @item @qcode{"Discrete Uniform"} @tab @tab @qcode{"unid"} @tab @tab 1 ## @item @qcode{"Uniform"} @tab @tab @qcode{"unif"} @tab @tab 2 ## @item @qcode{"Von Mises"} @tab @tab @qcode{"vm"} @tab @tab 2 ## @item @qcode{"Weibull"} @tab @tab @qcode{"wbl"} @tab @tab 2 ## @end multitable ## ## @seealso{cdf, icdf, pdf, betarnd, binornd, bisarnd, burrrnd, cauchyrnd, ## chi2rnd, evrnd, exprnd, frnd, gamrnd, geornd, gevrnd, gprnd, gumbelrnd, ## hnrnd, hygernd, invgrnd, laplacernd, logirnd, loglrnd, lognrnd, nakarnd, ## nbinrnd, ncfrnd, nctrnd, ncx2rnd, normrnd, poissrnd, raylrnd, ricernd, trnd, ## trirnd, unidrnd, unifrnd, vmrnd, wblrnd} ## @end deftypefn function r = random (name, varargin) ## implemented functions persistent allDF = { ... {"beta" , "Beta"}, @betarnd, 2, ... {"bino" , "Binomial"}, @binornd, 2, ... {"bisa" , "Birnbaum-Saunders"}, @bisarnd, 2, ... {"burr" , "Burr"}, @burrrnd, 3, ... {"cauchy" , "Cauchy"}, @cauchyrnd, 2, ... {"chi2" , "Chi-squared"}, @chi2rnd, 1, ... {"ev" , "Extreme Value"}, @evrnd, 2, ... {"exp" , "Exponential"}, @exprnd, 1, ... {"f" , "F-Distribution"}, @frnd, 2, ... {"gam" , "Gamma"}, @gamrnd, 2, ... {"geo" , "Geometric"}, @geornd, 1, ... {"gev" , "Generalized Extreme Value"}, @gevrnd, 3, ... {"gp" , "Generalized Pareto"}, @gprnd, 3, ... {"gumbel" , "Gumbel"}, @gumbelrnd, 2, ... {"hn" , "Half-normal"}, @hnrnd, 2, ... {"hyge" , "Hypergeometric"}, @hygernd, 3, ... {"invg" , "Inverse Gaussian"}, @invgrnd, 2, ... {"laplace" , "Laplace"}, @laplacernd, 2, ... {"logi" , "Logistic"}, @logirnd, 2, ... {"logl" , "Log-Logistic"}, @loglrnd, 2, ... {"logn" , "Lognormal"}, @lognrnd, 2, ... {"naka" , "Nakagami"}, @nakarnd, 2, ... {"nbin" , "Negative Binomial"}, @nbinrnd, 2, ... {"ncf" , "Noncentral F-Distribution"}, @ncfrnd, 3, ... {"nct" , "Noncentral Student T"}, @nctrnd, 2, ... {"ncx2" , "Noncentral Chi-squared"}, @ncx2rnd, 2, ... {"norm" , "Normal"}, @normrnd, 2, ... {"poiss" , "Poisson"}, @poissrnd, 1, ... {"rayl" , "Rayleigh"}, @raylrnd, 1, ... {"rice" , "Rician"}, @ricernd, 2, ... {"t" , "Student T"}, @trnd, 1, ... {"tls" , "location-scale T"}, @tlsrnd, 3, ... {"tri" , "Triangular"}, @trirnd, 3, ... {"unid" , "Discrete Uniform"}, @unidrnd, 1, ... {"unif" , "Uniform"}, @unifrnd, 2, ... {"vm" , "Von Mises"}, @vmrnd, 2, ... {"wbl" , "Weibull"}, @wblrnd, 2}; if (! ischar (name)) error ("random: distribution NAME must a char string."); endif ## Get number of arguments nargs = numel (varargin); ## Get available functions rndnames = allDF(1:3:end); rndhandl = allDF(2:3:end); rnd_args = allDF(3:3:end); ## Search for RND function idx = cellfun (@(x)any(strcmpi (name, x)), rndnames); if (any (idx)) if (nargs == rnd_args{idx}) ## Check that all distribution parameters are numeric if (! all (cellfun (@(x)isnumeric(x), (varargin)))) error ("random: distribution parameters must be numeric."); endif ## Call appropriate RND r = feval (rndhandl{idx}, varargin{:}); elseif (nargs > rnd_args{idx}) ## Check that all distribution parameters are numeric if (! all (cellfun (@(x)isnumeric(x), (varargin(1:rnd_args{idx}))))) error ("random: distribution parameters must be numeric."); endif ## Call appropriate RND. SIZE arguments are checked by the RND function. r = feval (rndhandl{idx}, varargin{:}); else if (rnd_args{idx} == 1) error ("random: %s distribution requires 1 parameter.", name); else error ("random: %s distribution requires %d parameters.", ... name, rnd_args{idx}); endif endif else error ("random: %s distribution is not implemented in Statistics.", name); endif endfunction ## Test results %!assert (size (random ("Beta", 5, 2, 2, 10)), size (betarnd (5, 2, 2, 10))) %!assert (size (random ("beta", 5, 2, 2, 10)), size (betarnd (5, 2, 2, 10))) %!assert (size (random ("Binomial", 5, 2, [10, 20])), size (binornd (5, 2, 10, 20))) %!assert (size (random ("bino", 5, 2, [10, 20])), size (binornd (5, 2, 10, 20))) %!assert (size (random ("Birnbaum-Saunders", 5, 2, [10, 20])), size (bisarnd (5, 2, 10, 20))) %!assert (size (random ("bisa", 5, 2, [10, 20])), size (bisarnd (5, 2, 10, 20))) %!assert (size (random ("Burr", 5, 2, 2, [10, 20])), size (burrrnd (5, 2, 2, 10, 20))) %!assert (size (random ("burr", 5, 2, 2, [10, 20])), size (burrrnd (5, 2, 2, 10, 20))) %!assert (size (random ("Cauchy", 5, 2, [10, 20])), size (cauchyrnd (5, 2, 10, 20))) %!assert (size (random ("cauchy", 5, 2, [10, 20])), size (cauchyrnd (5, 2, 10, 20))) %!assert (size (random ("Chi-squared", 5, [10, 20])), size (chi2rnd (5, 10, 20))) %!assert (size (random ("chi2", 5, [10, 20])), size (chi2rnd (5, 10, 20))) %!assert (size (random ("Extreme Value", 5, 2, [10, 20])), size (evrnd (5, 2, 10, 20))) %!assert (size (random ("ev", 5, 2, [10, 20])), size (evrnd (5, 2, 10, 20))) %!assert (size (random ("Exponential", 5, [10, 20])), size (exprnd (5, 10, 20))) %!assert (size (random ("exp", 5, [10, 20])), size (exprnd (5, 10, 20))) %!assert (size (random ("F-Distribution", 5, 2, [10, 20])), size (frnd (5, 2, 10, 20))) %!assert (size (random ("f", 5, 2, [10, 20])), size (frnd (5, 2, 10, 20))) %!assert (size (random ("Gamma", 5, 2, [10, 20])), size (gamrnd (5, 2, 10, 20))) %!assert (size (random ("gam", 5, 2, [10, 20])), size (gamrnd (5, 2, 10, 20))) %!assert (size (random ("Geometric", 5, [10, 20])), size (geornd (5, 10, 20))) %!assert (size (random ("geo", 5, [10, 20])), size (geornd (5, 10, 20))) %!assert (size (random ("Generalized Extreme Value", 5, 2, 2, [10, 20])), size (gevrnd (5, 2, 2, 10, 20))) %!assert (size (random ("gev", 5, 2, 2, [10, 20])), size (gevrnd (5, 2, 2, 10, 20))) %!assert (size (random ("Generalized Pareto", 5, 2, 2, [10, 20])), size (gprnd (5, 2, 2, 10, 20))) %!assert (size (random ("gp", 5, 2, 2, [10, 20])), size (gprnd (5, 2, 2, 10, 20))) %!assert (size (random ("Gumbel", 5, 2, [10, 20])), size (gumbelrnd (5, 2, 10, 20))) %!assert (size (random ("gumbel", 5, 2, [10, 20])), size (gumbelrnd (5, 2, 10, 20))) %!assert (size (random ("Half-normal", 5, 2, [10, 20])), size (hnrnd (5, 2, 10, 20))) %!assert (size (random ("hn", 5, 2, [10, 20])), size (hnrnd (5, 2, 10, 20))) %!assert (size (random ("Hypergeometric", 5, 2, 2, [10, 20])), size (hygernd (5, 2, 2, 10, 20))) %!assert (size (random ("hyge", 5, 2, 2, [10, 20])), size (hygernd (5, 2, 2, 10, 20))) %!assert (size (random ("Inverse Gaussian", 5, 2, [10, 20])), size (invgrnd (5, 2, 10, 20))) %!assert (size (random ("invg", 5, 2, [10, 20])), size (invgrnd (5, 2, 10, 20))) %!assert (size (random ("Laplace", 5, 2, [10, 20])), size (laplacernd (5, 2, 10, 20))) %!assert (size (random ("laplace", 5, 2, [10, 20])), size (laplacernd (5, 2, 10, 20))) %!assert (size (random ("Logistic", 5, 2, [10, 20])), size (logirnd (5, 2, 10, 20))) %!assert (size (random ("logi", 5, 2, [10, 20])), size (logirnd (5, 2, 10, 20))) %!assert (size (random ("Log-Logistic", 5, 2, [10, 20])), size (loglrnd (5, 2, 10, 20))) %!assert (size (random ("logl", 5, 2, [10, 20])), size (loglrnd (5, 2, 10, 20))) %!assert (size (random ("Lognormal", 5, 2, [10, 20])), size (lognrnd (5, 2, 10, 20))) %!assert (size (random ("logn", 5, 2, [10, 20])), size (lognrnd (5, 2, 10, 20))) %!assert (size (random ("Nakagami", 5, 2, [10, 20])), size (nakarnd (5, 2, 10, 20))) %!assert (size (random ("naka", 5, 2, [10, 20])), size (nakarnd (5, 2, 10, 20))) %!assert (size (random ("Negative Binomial", 5, 2, [10, 20])), size (nbinrnd (5, 2, 10, 20))) %!assert (size (random ("nbin", 5, 2, [10, 20])), size (nbinrnd (5, 2, 10, 20))) %!assert (size (random ("Noncentral F-Distribution", 5, 2, 2, [10, 20])), size (ncfrnd (5, 2, 2, 10, 20))) %!assert (size (random ("ncf", 5, 2, 2, [10, 20])), size (ncfrnd (5, 2, 2, 10, 20))) %!assert (size (random ("Noncentral Student T", 5, 2, [10, 20])), size (nctrnd (5, 2, 10, 20))) %!assert (size (random ("nct", 5, 2, [10, 20])), size (nctrnd (5, 2, 10, 20))) %!assert (size (random ("Noncentral Chi-Squared", 5, 2, [10, 20])), size (ncx2rnd (5, 2, 10, 20))) %!assert (size (random ("ncx2", 5, 2, [10, 20])), size (ncx2rnd (5, 2, 10, 20))) %!assert (size (random ("Normal", 5, 2, [10, 20])), size (normrnd (5, 2, 10, 20))) %!assert (size (random ("norm", 5, 2, [10, 20])), size (normrnd (5, 2, 10, 20))) %!assert (size (random ("Poisson", 5, [10, 20])), size (poissrnd (5, 10, 20))) %!assert (size (random ("poiss", 5, [10, 20])), size (poissrnd (5, 10, 20))) %!assert (size (random ("Rayleigh", 5, [10, 20])), size (raylrnd (5, 10, 20))) %!assert (size (random ("rayl", 5, [10, 20])), size (raylrnd (5, 10, 20))) %!assert (size (random ("Rician", 5, 1, [10, 20])), size (ricernd (5, 1, 10, 20))) %!assert (size (random ("rice", 5, 1, [10, 20])), size (ricernd (5, 1, 10, 20))) %!assert (size (random ("Student T", 5, [10, 20])), size (trnd (5, 10, 20))) %!assert (size (random ("t", 5, [10, 20])), size (trnd (5, 10, 20))) %!assert (size (random ("location-scale T", 5, 1, 2, [10, 20])), size (tlsrnd (5, 1, 2, 10, 20))) %!assert (size (random ("tls", 5, 1, 2, [10, 20])), size (tlsrnd (5, 1, 2, 10, 20))) %!assert (size (random ("Triangular", 5, 2, 2, [10, 20])), size (trirnd (5, 2, 2, 10, 20))) %!assert (size (random ("tri", 5, 2, 2, [10, 20])), size (trirnd (5, 2, 2, 10, 20))) %!assert (size (random ("Discrete Uniform", 5, [10, 20])), size (unidrnd (5, 10, 20))) %!assert (size (random ("unid", 5, [10, 20])), size (unidrnd (5, 10, 20))) %!assert (size (random ("Uniform", 5, 2, [10, 20])), size (unifrnd (5, 2, 10, 20))) %!assert (size (random ("unif", 5, 2, [10, 20])), size (unifrnd (5, 2, 10, 20))) %!assert (size (random ("Von Mises", 5, 2, [10, 20])), size (vmrnd (5, 2, 10, 20))) %!assert (size (random ("vm", 5, 2, [10, 20])), size (vmrnd (5, 2, 10, 20))) %!assert (size (random ("Weibull", 5, 2, [10, 20])), size (wblrnd (5, 2, 10, 20))) %!assert (size (random ("wbl", 5, 2, [10, 20])), size (wblrnd (5, 2, 10, 20))) ## Test input validation %!error random (1) %!error random ({"beta"}) %!error ... %! random ("Beta", "a", 2) %!error ... %! random ("Beta", 5, "") %!error ... %! random ("Beta", 5, {2}) %!error ... %! random ("Beta", "a", 2, 2, 10) %!error ... %! random ("Beta", 5, "", 2, 10) %!error ... %! random ("Beta", 5, {2}, 2, 10) %!error ... %! random ("Beta", 5, "", 2, 10) %!error random ("chi2") %!error random ("Beta", 5) %!error random ("Burr", 5) %!error random ("Burr", 5, 2) statistics-release-1.6.3/inst/randsample.m000066400000000000000000000110161456127120000206070ustar00rootroot00000000000000## Copyright (C) 2014 - Nir Krakauer ## Copyright (C) 2022 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or ## (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program. If not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{y} =} randsample (@var{v}, @var{k}) ## @deftypefnx {statistics} {@var{y} =} randsample (@var{v}, @var{k}, @var{replacement}=false) ## @deftypefnx {statistics} {@var{y} =} randsample (@var{v}, @var{k}, @var{replacement}=false, [@var{w}=[]]) ## ## Sample elements from a vector. ## ## Returns @var{k} random elements from a vector @var{v} with @var{n} elements, ## sampled without or with @var{replacement}. ## ## If @var{v} is a scalar, samples from 1:@var{v}. ## ## If a weight vector @var{w} of the same size as @var{v} is specified, the ## probablility of each element being sampled is proportional to @var{w}. ## Unlike Matlab's function of the same name, this can be done for sampling with ## or without replacement. ## ## Randomization is performed using rand(). ## ## @seealso{datasample, randperm} ## @end deftypefn function y = randsample (v, k, replacement=false ,w=[]) if (isscalar (v) && isreal (v)) n = v; vector_v = false; elseif (isvector (v)) n = numel (v); vector_v = true; else error ("randsample: The input v must be a vector or positive integer."); endif if k < 0 || ( k > n && !replacement ) error (strcat (["randsample: The input k must be a non-negative "], ... ["integer. Sampling without replacement needs k <= n."])); endif if (all (length (w) != [0, n])) error ("randsample: the size w (%d) must match the first argument (%d)", ... length(w), n); endif if (replacement) # sample with replacement if (isempty (w)) # all elements are equally likely to be sampled y = round (n * rand (1, k) + 0.5); else y = weighted_replacement (k, w); endif else # sample without replacement if (isempty (w)) # all elements are equally likely to be sampled y = randperm (n, k); else # use "accept-reject"-like sampling y = weighted_replacement (k, w); while (1) [yy, idx] = sort (y); # Note: sort keeps order of equal elements. Idup = [false, (diff (yy)==0)]; if (! any (Idup)) break else Idup(idx) = Idup; # find duplicates in original vector w(y) = 0; # don't permit resampling ## remove duplicates, then sample again y = [y(! Idup), (weighted_replacement (sum (Idup), w))]; endif endwhile endif endif if vector_v y = v(y); endif endfunction function y = weighted_replacement (k, w) w = w / sum (w); w = [0, cumsum(w(:))']; ## distribute k uniform random deviates based on the given weighting y = arrayfun (@(x) find (w <= x, 1, "last"), rand (1, k)); endfunction %!test %! n = 20; %! k = 5; %! x = randsample(n, k); %! assert (size(x), [1 k]); %! x = randsample(n, k, true); %! assert (size(x), [1 k]); %! x = randsample(n, k, false); %! assert (size(x), [1 k]); %! x = randsample(n, k, true, ones(n, 1)); %! assert (size(x), [1 k]); %! x = randsample(1:n, k); %! assert (size(x), [1 k]); %! x = randsample(1:n, k, true); %! assert (size(x), [1 k]); %! x = randsample(1:n, k, false); %! assert (size(x), [1 k]); %! x = randsample(1:n, k, true, ones(n, 1)); %! assert (size(x), [1 k]); %! x = randsample((1:n)', k); %! assert (size(x), [k 1]); %! x = randsample((1:n)', k, true); %! assert (size(x), [k 1]); %! x = randsample((1:n)', k, false); %! assert (size(x), [k 1]); %! x = randsample((1:n)', k, true, ones(n, 1)); %! assert (size(x), [k 1]); %! n = 10; %! k = 100; %! x = randsample(n, k, true, 1:n); %! assert (size(x), [1 k]); %! x = randsample((1:n)', k, true); %! assert (size(x), [k 1]); %! x = randsample(k, k, false, 1:k); %! assert (size(x), [1 k]); statistics-release-1.6.3/inst/rangesearch.m000066400000000000000000000553001456127120000207470ustar00rootroot00000000000000## Copyright (C) 2024 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{idx} =} rangesearch (@var{X}, @var{Y}, @var{r}) ## @deftypefnx {statistics} {[@var{idx}, @var{D}] =} rangesearch (@var{X}, @var{Y}, @var{r}) ## @deftypefnx {statistics} {[@dots{}] =} rangesearch (@dots{}, @var{name}, @var{value}) ## ## Find all neighbors within specified distance from input data. ## ## @code{@var{idx} = rangesearch (@var{X}, @var{Y}, @var{r})} returns all the ## points in @var{X} that are within distance @var{r} from the points in @var{Y}. ## @var{X} must be an @math{NxP} numeric matrix of input data, where rows ## correspond to observations and columns correspond to features or variables. ## @var{Y} is an @math{MxP} numeric matrix with query points, which must have ## the same numbers of column as @var{X}. @var{r} must be a nonnegative scalar ## value. @var{idx} is an @math{Mx1} cell array, where @math{M} is the number ## of observations in @var{Y}. The vector @qcode{@var{Idx}@{j@}} contains the ## indices of observations (rows) in @var{X} whose distances to ## @qcode{@var{Y}(j,:)} are not greater than @var{r}. ## ## @code{[@var{idx}, @var{D}] = rangesearch (@var{X}, @var{Y}, @var{r})} also ## returns the distances, @var{D}, which correspond to the points in @var{X} ## that are within distance @var{r} from the points in @var{Y}. @var{D} is an ## @math{Mx1} cell array, where @math{M} is the number of observations in ## @var{Y}. The vector @qcode{@var{D}@{j@}} contains the indices of ## observations (rows) in @var{X} whose distances to @qcode{@var{Y}(j,:)} are ## not greater than @var{r}. ## ## Additional parameters can be specified by @qcode{Name-Value} pair arguments. ## ## @multitable @columnfractions 0.18 0.02 0.8 ## @headitem @var{Name} @tab @tab @var{Value} ## ## @item @qcode{"P"} @tab @tab is the Minkowski distance exponent and it must be ## a positive scalar. This argument is only valid when the selected distance ## metric is @qcode{"minkowski"}. By default it is 2. ## ## @item @qcode{"Scale"} @tab @tab is the scale parameter for the standardized ## Euclidean distance and it must be a nonnegative numeric vector of equal ## length to the number of columns in @var{X}. This argument is only valid when ## the selected distance metric is @qcode{"seuclidean"}, in which case each ## coordinate of @var{X} is scaled by the corresponding element of ## @qcode{"scale"}, as is each query point in @var{Y}. By default, the scale ## parameter is the standard deviation of each coordinate in @var{X}. ## ## @item @qcode{"Cov"} @tab @tab is the covariance matrix for computing the ## mahalanobis distance and it must be a positive definite matrix matching the ## the number of columns in @var{X}. This argument is only valid when the ## selected distance metric is @qcode{"mahalanobis"}. ## ## @item @qcode{"BucketSize"} @tab @tab is the maximum number of data points in ## the leaf node of the Kd-tree and it must be a positive integer. This ## argument is only valid when the selected search method is @qcode{"kdtree"}. ## ## @item @qcode{"SortIndices"} @tab @tab is a boolean flag to sort the returned ## indices in ascending order by distance and it is @qcode{true} by default. ## When the selected search method is @qcode{"exhaustive"} or the ## @qcode{"IncludeTies"} flag is true, @code{rangesearch} always sorts the ## returned indices. ## ## @item @qcode{"Distance"} @tab @tab is the distance metric used by ## @code{rangesearch} as specified below: ## @end multitable ## ## @multitable @columnfractions 0.05 0.2 0.75 ## @item @tab @qcode{"euclidean"} @tab Euclidean distance. ## @item @tab @qcode{"seuclidean"} @tab standardized Euclidean distance. Each ## coordinate difference between the rows in @var{X} and the query matrix ## @var{Y} is scaled by dividing by the corresponding element of the standard ## deviation computed from @var{X}. To specify a different scaling, use the ## @qcode{"Scale"} name-value argument. ## @item @tab @qcode{"cityblock"} @tab City block distance. ## @item @tab @qcode{"chebychev"} @tab Chebychev distance (maximum coordinate ## difference). ## @item @tab @qcode{"minkowski"} @tab Minkowski distance. The default exponent ## is 2. To specify a different exponent, use the @qcode{"P"} name-value ## argument. ## @item @tab @qcode{"mahalanobis"} @tab Mahalanobis distance, computed using a ## positive definite covariance matrix. To change the value of the covariance ## matrix, use the @qcode{"Cov"} name-value argument. ## @item @tab @qcode{"cosine"} @tab Cosine distance. ## @item @tab @qcode{"correlation"} @tab One minus the sample linear correlation ## between observations (treated as sequences of values). ## @item @tab @qcode{"spearman"} @tab One minus the sample Spearman's rank ## correlation between observations (treated as sequences of values). ## @item @tab @qcode{"hamming"} @tab Hamming distance, which is the percentage ## of coordinates that differ. ## @item @tab @qcode{"jaccard"} @tab One minus the Jaccard coefficient, which is ## the percentage of nonzero coordinates that differ. ## @item @tab @var{@@distfun} @tab Custom distance function handle. A distance ## function of the form @code{function @var{D2} = distfun (@var{XI}, @var{YI})}, ## where @var{XI} is a @math{1xP} vector containing a single observation in ## @math{P}-dimensional space, @var{YI} is an @math{NxP} matrix containing an ## arbitrary number of observations in the same @math{P}-dimensional space, and ## @var{D2} is an @math{NxP} vector of distances, where @qcode{(@var{D2}k)} is ## the distance between observations @var{XI} and @qcode{(@var{YI}k,:)}. ## @end multitable ## ## @multitable @columnfractions 0.18 0.02 0.8 ## @item @qcode{"NSMethod"} @tab @tab is the nearest neighbor search method used ## by @code{rangesearch} as specified below. ## @end multitable ## ## @multitable @columnfractions 0.05 0.2 0.75 ## @item @tab @qcode{"kdtree"} @tab Creates and uses a Kd-tree to find nearest ## neighbors. @qcode{"kdtree"} is the default value when the number of columns ## in @var{X} is less than or equal to 10, @var{X} is not sparse, and the ## distance metric is @qcode{"euclidean"}, @qcode{"cityblock"}, ## @qcode{"manhattan"}, @qcode{"chebychev"}, or @qcode{"minkowski"}. Otherwise, ## the default value is @qcode{"exhaustive"}. This argument is only valid when ## the distance metric is one of the four aforementioned metrics. ## @item @tab @qcode{"exhaustive"} @tab Uses the exhaustive search algorithm by ## computing the distance values from all the points in @var{X} to each point in ## @var{Y}. ## @end multitable ## ## @seealso{knnsearch, pdist2} ## @end deftypefn function [idx, dist] = rangesearch (X, Y, r, varargin) ## Check input data if (nargin < 2) error ("rangesearch: too few input arguments."); endif if (size (X, 2) != size (Y, 2)) error ("rangesearch: number of columns in X and Y must match."); endif ## Add default values P = 2; # Exponent for Minkowski distance S = []; # Scale for the standardized Euclidean distance C = []; # Covariance matrix for Mahalanobis distance BS = 50; # Maximum number of points per leaf node for Kd-tree SI = true; # Sort returned indices according to distance Distance = "euclidean"; # Distance metric to be used NSMethod = []; # Nearest neighbor search method DistParameter = []; # Distance parameter for pdist2 ## Parse additional parameters in Name/Value pairs PSC = 0; while (numel (varargin) > 0) switch (tolower (varargin{1})) case "p" P = varargin{2}; PSC += 1; case "scale" S = varargin{2}; PSC += 1; case "cov" C = varargin{2}; PSC += 1; case "bucketsize" BS = varargin{2}; case "sortindices" SI = varargin{2}; case "distance" Distance = varargin{2}; case "nsmethod" NSMethod = varargin{2}; otherwise error ("rangesearch: invalid NAME in optional pairs of arguments."); endswitch varargin(1:2) = []; endwhile ## Check input parameters if (PSC > 1) error ("rangesearch: only a single distance parameter can be defined."); endif if (! isscalar (P) || ! isnumeric (P) || P <= 0) error ("rangesearch: invalid value of Minkowski Exponent."); endif if (! isempty (S)) if (any (S) < 0 || numel (S) != columns (X) || ! strcmpi (Distance, "seuclidean")) error ("rangesearch: invalid value in Scale or the size of Scale."); endif endif if (! isempty (C)) if (! strcmp (Distance, "mahalanobis") || ! ismatrix (C) || ! isnumeric (C)) error (strcat (["rangesearch: invalid value in Cov, Cov can only"], ... [" be given for mahalanobis distance."])); endif endif if (! isscalar (BS) || BS < 0) error ("rangesearch: invalid value of bucketsize."); endif ## Select the appropriate distance parameter if (strcmpi (Distance, "minkowski")) DistParameter = P; elseif (strcmpi (Distance, "seuclidean")) DistParameter = S; elseif (strcmpi (Distance, "mahalanobis")) DistParameter = C; endif ## Check NSMethod and set kdtree as default if the conditions match if (isempty (NSMethod)) ## Set default method 'kdtree' if condintions are satistfied; if (! issparse (X) && (columns (X) <= 10) && ... (strcmpi (Distance, "euclidean") || strcmpi (Distance, "cityblock") || strcmpi (Distance, "minkowski") || strcmpi (Distance, "chebychev"))) NSMethod = "kdtree"; else NSMethod = "exhaustive"; endif else ## Not empty then check if is exhaustive or kdtree if (strcmpi (NSMethod,"kdtree") && ! ( strcmpi (Distance, "euclidean") || strcmpi (Distance, "cityblock") || strcmpi (Distance, "minkowski") || strcmpi (Distance, "chebychev"))) error (strcat (["rangesearch: 'kdtree' cannot be used with"], ... [" the given distance metric."])); endif endif ## Check for NSMethod if (strcmpi (NSMethod, "kdtree")) ## Build kdtree and search the query point ret = buildkdtree (X, BS); ## Return all neighbors as cell dist = cell (rows (Y), 1); idx = cell (rows (Y), 1); k = rows (X); for i = 1:rows (Y) ## Need to fix the kd-tree search to compare with r distance (not k-NN) NN = findkdtree (ret, Y(i, :), k, Distance, DistParameter); D = - ones (k, 1); D(NN) = pdist2 (X(NN,:), Y(i,:), Distance, DistParameter); Didx_row = find (D <= r & D >= 0)'; Dist_row = D(Didx_row)'; if (SI) [S, I] = sort (Dist_row); Dist_row = Dist_row(I); Didx_row = Didx_row(I); endif dist{i} = Dist_row; idx{i} = Didx_row; endfor else ## Calculate all distances dist = cell (rows (Y), 1); idx = cell (rows (Y), 1); for i = 1:rows (Y) D = pdist2 (X, Y(i,:), Distance, DistParameter); Didx_row = find (D <= r)'; Dist_row = D(Didx_row)'; if (SI) [S, I] = sort (Dist_row); Dist_row = Dist_row(I); Didx_row = Didx_row(I); endif dist{i} = Dist_row; idx{i} = Didx_row; endfor endif endfunction ## buildkdtree function ret = buildkdtree_recur (X, r, d, BS) count = length (r); dimen = size (X, 2); if (count == 1) ret = struct ("point", r(1), "dimen", d); else mid = ceil (count / 2); ret = struct ("point", r(mid), "dimen", d); d = mod (d, dimen) + 1; ## Build left sub tree if (mid > 1) left = r(1:mid-1); left_points = X(left,d); [val, left_idx] = sort (left_points); leftr = left(left_idx); ret.left = buildkdtree_recur (X, leftr, d); endif ## Build right sub tree if (count > mid) right = r(mid+1:count); right_points = X(right,d); [val, right_idx] = sort (right_points); rightr = right(right_idx); ret.right = buildkdtree_recur (X, rightr, d); endif endif endfunction ## Need to fix the kd-tree search to compare with r distance (not k-NN) ## wrapper function for buildkdtree_recur function ret = buildkdtree (X, BS) [val, r] = sort (X(:,1)); ret = struct ("data", X, "root", buildkdtree_recur (X, r, 1, BS)); endfunction function farthest = kdtree_cand_farthest (X, p, cand, dist, distparam) D = pdist2 (X, p, dist, distparam); [val, index] = max (D'(cand)); farthest = cand (index); endfunction ## function to insert into NN list function inserted = kdtree_cand_insert (X, p, cand, k, point, dist, distparam) if (length (cand) < k) inserted = [cand; point]; else farthest = kdtree_cand_farthest (X, p, cand, dist, distparam); if (pdist2 (cand(find(cand == farthest),:), point, dist, distparam)) inserted = [cand; point]; else farthest = kdtree_cand_farthest (X, p, cand, dist, distparam); cand (find (cand == farthest)) = point; inserted = cand; endif endif endfunction ## function to search in a kd tree function nn = findkdtree_recur (X, node, p, nn, ... k, dist, distparam) point = node.point; d = node.dimen; if (X(point,d) > p(d)) ## Search in left sub tree if (isfield (node, "left")) nn = findkdtree_recur (X, node.left, p, nn, k, dist, distparam); endif ## Add current point if neccessary farthest = kdtree_cand_farthest (X, p, nn, dist, distparam); if (length(nn) < k || pdist2 (X(point,:), p, dist, distparam) <= pdist2 (X(farthest,:), p, dist, distparam)) nn = kdtree_cand_insert (X, p, nn, k, point, dist, distparam); endif ## Search in right sub tree if neccessary farthest = kdtree_cand_farthest (X, p, nn, dist, distparam); radius = pdist2 (X(farthest,:), p, dist, distparam); if (isfield (node, "right") && (length(nn) < k || p(d) + radius > X(point,d))) nn = findkdtree_recur (X, node.right, p, nn, ... k, dist, distparam); endif else ## Search in right sub tree if (isfield (node, "right")) nn = findkdtree_recur (X, node.right, p, nn, k, dist, distparam); endif ## Add current point if neccessary farthest = kdtree_cand_farthest (X, p, nn, dist, distparam); if (length (nn) < k || pdist2 (X(point,:), p, dist, distparam) <= pdist2 (X(farthest,:), p, dist, distparam)) nn = kdtree_cand_insert (X, p, nn, k, point, dist, distparam); endif ## Search in left sub tree if neccessary farthest = kdtree_cand_farthest (X, p, nn, dist, distparam); radius = pdist2 (X(farthest,:), p, dist, distparam); if (isfield (node, "left") && (length (nn) < k || p(d) - radius <= X(point,d))) nn = findkdtree_recur (X, node.left, p, nn, k, dist, distparam); endif endif endfunction ## wrapper function for findkdtree_recur function nn = findkdtree (tree, p, k, dist, distparam) X = tree.data; root = tree.root; nn = findkdtree_recur (X, root, p, [], k, dist, distparam); endfunction %!demo %! ## Generate 1000 random 2D points from each of five distinct multivariate %! ## normal distributions that form five separate classes %! N = 1000; %! d = 10; %! randn ("seed", 5); %! X1 = mvnrnd (d * [0, 0], eye (2), 1000); %! randn ("seed", 6); %! X2 = mvnrnd (d * [1, 1], eye (2), 1000); %! randn ("seed", 7); %! X3 = mvnrnd (d * [-1, -1], eye (2), 1000); %! randn ("seed", 8); %! X4 = mvnrnd (d * [1, -1], eye (2), 1000); %! randn ("seed", 8); %! X5 = mvnrnd (d * [-1, 1], eye (2), 1000); %! X = [X1; X2; X3; X4; X5]; %! %! ## For each point in X, find the points in X that are within a radius d %! ## away from the points in X. %! Idx = rangesearch (X, X, d, "NSMethod", "exhaustive"); %! %! ## Select the first point in X (corresponding to the first class) and find %! ## its nearest neighbors within the radius d. Display these points in %! ## one color and the remaining points in a different color. %! x = X(1,:); %! nearestPoints = X (Idx{1},:); %! nonNearestIdx = true (size (X, 1), 1); %! nonNearestIdx(Idx{1}) = false; %! %! scatter (X(nonNearestIdx,1), X(nonNearestIdx,2)) %! hold on %! scatter (nearestPoints(:,1),nearestPoints(:,2)) %! scatter (x(1), x(2), "black", "filled") %! hold off %! %! ## Select the last point in X (corresponding to the fifth class) and find %! ## its nearest neighbors within the radius d. Display these points in %! ## one color and the remaining points in a different color. %! x = X(end,:); %! nearestPoints = X (Idx{1},:); %! nonNearestIdx = true (size (X, 1), 1); %! nonNearestIdx(Idx{1}) = false; %! %! figure %! scatter (X(nonNearestIdx,1), X(nonNearestIdx,2)) %! hold on %! scatter (nearestPoints(:,1),nearestPoints(:,2)) %! scatter (x(1), x(2), "black", "filled") %! hold off ## Test output %!shared x, y, X, Y %! x = [1, 2, 3; 4, 5, 6; 7, 8, 9; 3, 2, 1]; %! y = [2, 3, 4; 1, 4, 3]; %! X = [1, 2, 3, 4; 2, 3, 4, 5; 3, 4, 5, 6]; %! Y = [1, 2, 2, 3; 2, 3, 3, 4]; %!test %! [idx, D] = rangesearch (x, y, 4); %! assert (idx, {[1, 4, 2]; [1, 4]}); %! assert (D, {[1.7321, 3.3166, 3.4641]; [2, 3.4641]}, 1e-4); %!test %! [idx, D] = rangesearch (x, y, 4, "NSMethod", "exhaustive"); %! assert (idx, {[1, 4, 2]; [1, 4]}); %! assert (D, {[1.7321, 3.3166, 3.4641]; [2, 3.4641]}, 1e-4); %!test %! [idx, D] = rangesearch (x, y, 4, "NSMethod", "kdtree"); %! assert (idx, {[1, 4, 2]; [1, 4]}); %! assert (D, {[1.7321, 3.3166, 3.4641]; [2, 3.4641]}, 1e-4); %!test %! [idx, D] = rangesearch (x, y, 4, "SortIndices", true); %! assert (idx, {[1, 4, 2]; [1, 4]}); %! assert (D, {[1.7321, 3.3166, 3.4641]; [2, 3.4641]}, 1e-4); %!test %! [idx, D] = rangesearch (x, y, 4, "SortIndices", false); %! assert (idx, {[1, 2, 4]; [1, 4]}); %! assert (D, {[1.7321, 3.4641, 3.3166]; [2, 3.4641]}, 1e-4); %!test %! [idx, D] = rangesearch (x, y, 4, "NSMethod", "exhaustive", ... %! "SortIndices", false); %! assert (idx, {[1, 2, 4]; [1, 4]}); %! assert (D, {[1.7321, 3.4641, 3.3166]; [2, 3.4641]}, 1e-4); %!test %! eucldist = @(v,m) sqrt(sumsq(repmat(v,rows(m),1)-m,2)); %! [idx, D] = rangesearch (x, y, 4, "Distance", eucldist); %! assert (idx, {[1, 4, 2]; [1, 4]}); %! assert (D, {[1.7321, 3.3166, 3.4641]; [2, 3.4641]}, 1e-4); %!test %! eucldist = @(v,m) sqrt(sumsq(repmat(v,rows(m),1)-m,2)); %! [idx, D] = rangesearch (x, y, 4, "Distance", eucldist, ... %! "NSMethod", "exhaustive"); %! assert (idx, {[1, 4, 2]; [1, 4]}); %! assert (D, {[1.7321, 3.3166, 3.4641]; [2, 3.4641]}, 1e-4); %!test %! [idx, D] = rangesearch (x, y, 1.5, "Distance", "seuclidean", ... %! "NSMethod", "exhaustive"); %! assert (idx, {[1, 4, 2]; [1, 4]}); %! assert (D, {[0.6024, 1.0079, 1.2047]; [0.6963, 1.2047]}, 1e-4); %!test %! [idx, D] = rangesearch (x, y, 1.5, "Distance", "seuclidean", ... %! "NSMethod", "exhaustive", "SortIndices", false); %! assert (idx, {[1, 2, 4]; [1, 4]}); %! assert (D, {[0.6024, 1.2047, 1.0079]; [0.6963, 1.2047]}, 1e-4); %!test %! [idx, D] = rangesearch (X, Y, 4); %! assert (idx, {[1, 2]; [1, 2, 3]}); %! assert (D, {[1.4142, 3.1623]; [1.4142, 1.4142, 3.1623]}, 1e-4); %!test %! [idx, D] = rangesearch (X, Y, 2); %! assert (idx, {[1]; [1, 2]}); %! assert (D, {[1.4142]; [1.4142, 1.4142]}, 1e-4); %!test %! eucldist = @(v,m) sqrt(sumsq(repmat(v,rows(m),1)-m,2)); %! [idx, D] = rangesearch (X, Y, 4, "Distance", eucldist); %! assert (idx, {[1, 2]; [1, 2, 3]}); %! assert (D, {[1.4142, 3.1623]; [1.4142, 1.4142, 3.1623]}, 1e-4); %!test %! [idx, D] = rangesearch (X, Y, 4, "SortIndices", false); %! assert (idx, {[1, 2]; [1, 2, 3]}); %! assert (D, {[1.4142, 3.1623]; [1.4142, 1.4142, 3.1623]}, 1e-4); %!test %! [idx, D] = rangesearch (X, Y, 4, "Distance", "seuclidean", ... %! "NSMethod", "exhaustive"); %! assert (idx, {[1, 2]; [1, 2, 3]}); %! assert (D, {[1.4142, 3.1623]; [1.4142, 1.4142, 3.1623]}, 1e-4); ## Test input validation %!error rangesearch (1) %!error ... %! rangesearch (ones (4, 5), ones (4)) %!error ... %! rangesearch (ones (4, 2), ones (3, 2), 1, "Distance", "euclidean", "some", "some") %!error ... %! rangesearch (ones (4, 5), ones (1, 5), 1, "scale", ones (1, 5), "P", 3) %!error ... %! rangesearch (ones (4, 5), ones (1, 5), 1, "P",-2) %!error ... %! rangesearch (ones (4, 5), ones (1, 5), 1, "scale", ones(4,5), "distance", "euclidean") %!error ... %! rangesearch (ones (4, 5), ones (1, 5), 1, "cov", ["some" "some"]) %!error ... %! rangesearch (ones (4, 5), ones (1, 5), 1, "cov", ones(4,5), "distance", "euclidean") %!error ... %! rangesearch (ones (4, 5), ones (1, 5), 1, "bucketsize", -1) %!error ... %! rangesearch (ones (4, 5), ones (1, 5), 1, "NSmethod", "kdtree", "distance", "cosine") %!error ... %! rangesearch (ones (4, 5), ones (1, 5), 1, "NSmethod", "kdtree", "distance", "mahalanobis") %!error ... %! rangesearch (ones (4, 5), ones (1, 5), 1, "NSmethod", "kdtree", "distance", "correlation") %!error ... %! rangesearch (ones (4, 5), ones (1, 5), 1, "NSmethod", "kdtree", "distance", "seuclidean") %!error ... %! rangesearch (ones (4, 5), ones (1, 5), 1, "NSmethod", "kdtree", "distance", "spearman") %!error ... %! rangesearch (ones (4, 5), ones (1, 5), 1, "NSmethod", "kdtree", "distance", "hamming") %!error ... %! rangesearch (ones (4, 5), ones (1, 5), 1, "NSmethod", "kdtree", "distance", "jaccard") statistics-release-1.6.3/inst/ranksum.m000066400000000000000000000255501456127120000201510ustar00rootroot00000000000000## Copyright (C) 2022 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{p} =} ranksum (@var{x}, @var{y}) ## @deftypefnx {statistics} {@var{p} =} ranksum (@var{x}, @var{y}, @var{alpha}) ## @deftypefnx {statistics} {@var{p} =} ranksum (@var{x}, @var{y}, @var{alpha}, @var{Name}, @var{Value}) ## @deftypefnx {statistics} {@var{p} =} ranksum (@var{x}, @var{y}, @var{Name}, @var{Value}) ## @deftypefnx {statistics} {[@var{p}, @var{h}] =} ranksum (@var{x}, @var{y}, @dots{}) ## @deftypefnx {statistics} {[@var{p}, @var{h}, @var{stats}] =} ranksum (@var{x}, @var{y}, @dots{}) ## ## Wilcoxon rank sum test for equal medians. This test is equivalent to a ## Mann-Whitney U-test. ## ## @code{@var{p} = ranksum (@var{x}, @var{y})} returns the p-value of a ## two-sided Wilcoxon rank sum test. It tests the null hypothesis that two ## independent samples, in the vectors X and Y, come from continuous ## distributions with equal medians, against the alternative hypothesis that ## they are not. @var{x} and @var{y} can have different lengths and the test ## assumes that they are independent. ## ## @code{ranksum} treats NaN in @var{x}, @var{y} as missing values. ## The two-sided p-value is computed by doubling the most significant one-sided ## value. ## ## @code{[@var{p}, @var{h}] = ranksum (@var{x}, @var{y})} also returns the ## result of the hypothesis test with @code{@var{h} = 1} indicating a rejection ## of the null hypothesis at the default alpha = 0.05 significance level, and ## @code{@var{h} = 0} indicating a failure to reject the null hypothesis at the ## same significance level. ## ## @code{[@var{p}, @var{h}, @var{stats}] = ranksum (@var{x}, @var{y})} also ## returns the structure @var{stats} with information about the test statistic. ## It contains the field @code{ranksum} with the value of the rank sum test ## statistic and if computed with the "approximate" method it also contains the ## value of the z-statistic in the field @code{zval}. ## ## @code{[@dots{}] = ranksum (@var{x}, @var{y}, @var{alpha})} or alternatively ## @code{[@dots{}] = ranksum (@var{x}, @var{y}, "alpha", @var{alpha})} returns ## the result of the hypothesis test performed at the significance level ALPHA. ## ## @code{[@dots{}] = ranksum (@var{x}, @var{y}, "method", @var{M})} defines the ## computation method of the p-value specified in @var{M}, which can be "exact", ## "approximate", or "oldexact". @var{M} must be a single string. When "method" ## is unspecified, the default is: "exact" when ## @code{min (length (@var{x}), length (@var{y})) < 10} and ## @code{length (@var{x}) + length (@var{y}) < 10}, otherwise the "approximate" ## method is used. ## ## @itemize ## @item ## "exact" method uses full enumeration for small total sample size (< 10), ## otherwise the network algorithm is used for larger samples. ## @item ## "approximate" uses normal approximation method for computing the p-value. ## @item ## "oldexact" uses full enumeration for any sample size. Note, that this option ## can lead to out of memory error for large samples. Use with caution! ## @end itemize ## ## @code{[@dots{}] = ranksum (@var{x}, @var{y}, "tail", @var{tail})} defines the ## type of test, which can be "both", "right", or "left". @var{tail} must be a ## single string. ## ## @itemize ## @item ## "both" -- "medians are not equal" (two-tailed test, default) ## @item ## "right" -- "median of X is greater than median of Y" (right-tailed test) ## @item ## "left" -- "median of X is less than median of Y" (left-tailed test) ## @end itemize ## ## Note: the rank sum statistic is based on the smaller sample of vectors ## @var{x} and @var{y}. ## ## @end deftypefn function [p, h, stats] = ranksum(x, y, varargin) ## Check that x and y are vectors if ! isvector (x) || ! isvector (y) error ("X and Y must be vectors"); endif ## Remove missing data and make column vectors x = x(! isnan (x))(:); y = y(! isnan (y))(:); if isempty (x) error ("Not enough data in X"); endif if isempty (y) error ("Not enough data in Y"); endif ## Check for extra input arguments alpha = 0.05; method = []; tail = "both"; ## Old syntax: ranksum (x, y, alpha) if nargin > 2 && isnumeric (varargin{1}) && isscalar (varargin{1}) alpha = varargin{1}; varargin(1) = []; if isnan (alpha) || alpha <= 0 || alpha >= 1 error ("Alpha does not have a valid value"); endif end ## Check for Name:Value pairs arg_pairs = length (varargin); if ! (int16 (arg_pairs / 2) == arg_pairs / 2) error ("Extra arguments are not in Name:Value pairs"); endif num_pair = 1; while (arg_pairs) name = varargin{num_pair}; value = varargin{num_pair + 1}; switch (lower (name)) case "alpha" alpha = value; if (isnan (alpha) || alpha <= 0 || alpha >= 1 || ! isnumeric (alpha) ... || ! isscalar (alpha)) error ("Alpha does not have a valid value"); endif case "method" method = value; if ! any (strcmpi (method, {"exact", "approximate", "oldexact"})) error ("Wrong value for method option"); endif case "tail" tail = value; if ! any (strcmpi (tail, {"both", "right", "left"})) error ("Wrong value for tail option"); endif endswitch arg_pairs -= 2; num_pair += 2; endwhile ## Determine method nx = length (x); ny = length (y); ns = min (nx, ny); if isempty (method) if (ns < 10) && ((nx + ny) < 20) method = "exact"; else method = "approximate"; endif endif % Determine computational technique switch method case "approximate" technique = "approximation"; case "oldexact" technique = "exact"; case "exact" if (nx + ny) < 10 technique = "exact"; else technique = "network_algorithm"; endif endswitch % Compute the rank sum statistic based on the smaller sample if nx <= ny [ranks, tieadj] = tiedrank ([x; y]); x_y = true; else [ranks, tieadj] = tiedrank ([y; x]); x_y = false; endif srank = ranks(1:ns); ranksumstat = sum (srank); ## Calculate p-value according to selected technique switch technique case "exact" allpos = nchoosek (ranks, ns); sumranks = sum (allpos, 2); np = size (sumranks, 1); switch tail case "both" p_low = sum (sumranks <= ranksumstat) / np; p_high = sum (sumranks >= ranksumstat) / np; p = 2 * min (p_low, p_high); if p > 1 p = 1; endif case "right" if x_y p = sum (sumranks >= ranksumstat) / np; else p = sum (sumranks <= ranksumstat) / np; endif case "left" if x_y p = sum (sumranks <= ranksumstat) / np; else p = sum (sumranks >= ranksumstat) / np; endif endswitch case "network_algorithm" ## Calculate contingency table u = unique ([x; y]); ct = zeros (2, length (u)); if x_y ct(1,:) = histc (x,u)'; ct(2,:) = histc (y,u)'; else ct(1,:) = histc (y,u)'; ct(2,:) = histc (x,u)'; endif ## Calculate weights for wmw test colsum = sum (ct,1); tmp = cumsum (colsum); weights = [0 tmp(1:end - 1)] + .5 * (1 + diff ([0 tmp])); ## Compute p-value using network algorithm for contingency tables [p_net, p_val] = exact2xkCT (ct, weights, ranksumstat); ## Check if p = NaN if any (isnan (p_net)) || any (isnan (p_val)) p = NaN; else switch tail case "both" p = 2 * p_net; if p > 1 p = 1; endif case "right" if x_y p = p_val(2) + p_val(3); else p = p_val(2) + p_val(1); endif case "left" if x_y p = p_val(2) + p_val(1); else p = p_val(2) + p_val(3); endif endswitch endif case "approximation" wmean = ns * (nx + ny + 1) / 2; tiescores = 2 * tieadj / ((nx + ny) * (nx + ny - 1)); wvar = nx * ny * ((nx + ny + 1) - tiescores) / 12; wc = ranksumstat - wmean; ## compute z-value, including continuity correction switch tail case "both" z = (wc - 0.5 * sign (wc)) / sqrt (wvar); if ! x_y z = -z; endif p = 2 * normcdf (-abs(z)); case "right" if x_y z = (wc - 0.5) / sqrt (wvar); else z = -(wc + 0.5) / sqrt (wvar); endif p = normcdf (-z); case "left" if x_y z = (wc + 0.5) / sqrt (wvar); else z = -(wc - 0.5) / sqrt (wvar); endif p = normcdf (z); endswitch ## For additional output argument if (nargout > 2) stats.zval = z; endif endswitch ## For additional output arguments if nargout > 1, h = (p <= alpha); if (nargout > 2) if x_y stats.ranksum = ranksumstat; else stats.ranksum = sum (ranks(ns+1:end)); endif endif endif endfunction ## testing against mileage data and results from Matlab %!test %! mileage = [33.3, 34.5, 37.4; 33.4, 34.8, 36.8; ... %! 32.9, 33.8, 37.6; 32.6, 33.4, 36.6; ... %! 32.5, 33.7, 37.0; 33.0, 33.9, 36.7]; %! [p,h,stats] = ranksum(mileage(:,1),mileage(:,2)); %! assert (p, 0.004329004329004329, 1e-14); %! assert (h, true); %! assert (stats.ranksum, 21.5); %!test %! year1 = [51 52 62 62 52 52 51 53 59 63 59 56 63 74 68 86 82 70 69 75 73 ... %! 49 47 50 60 59 60 62 61 71]'; %! year2 = [54 53 64 66 57 53 54 54 62 66 59 59 67 76 75 86 82 67 74 80 75 ... %! 54 50 53 62 62 62 72 60 67]'; %! [p,h,stats] = ranksum(year1, year2, "alpha", 0.01, "tail", "left"); %! assert (p, 0.1270832752950605, 1e-14); %! assert (h, false); %! assert (stats.ranksum, 837.5); %! assert (stats.zval, -1.140287483634606, 1e-14); %! [p,h,stats] = ranksum(year1, year2, "alpha", 0.01, "tail", "left", ... %! "method", "exact"); %! assert (p, 0.127343916432862, 1e-14); %! assert (h, false); %! assert (stats.ranksum, 837.5); statistics-release-1.6.3/inst/regress.m000066400000000000000000000147761456127120000201530ustar00rootroot00000000000000## Copyright (C) 2005, 2006 William Poetra Yoga Hadisoeseno ## Copyright (C) 2011 Nir Krakauer ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {[@var{b}, @var{bint}, @var{r}, @var{rint}, @var{stats}] =} regress (@var{y}, @var{X}, [@var{alpha}]) ## ## Multiple Linear Regression using Least Squares Fit of @var{y} on @var{X} ## with the model @code{y = X * beta + e}. ## ## Here, ## ## @itemize ## @item ## @code{y} is a column vector of observed values ## @item ## @code{X} is a matrix of regressors, with the first column filled with ## the constant value 1 ## @item ## @code{beta} is a column vector of regression parameters ## @item ## @code{e} is a column vector of random errors ## @end itemize ## ## Arguments are ## ## @itemize ## @item ## @var{y} is the @code{y} in the model ## @item ## @var{X} is the @code{X} in the model ## @item ## @var{alpha} is the significance level used to calculate the confidence ## intervals @var{bint} and @var{rint} (see `Return values' below). If not ## specified, ALPHA defaults to 0.05 ## @end itemize ## ## Return values are ## ## @itemize ## @item ## @var{b} is the @code{beta} in the model ## @item ## @var{bint} is the confidence interval for @var{b} ## @item ## @var{r} is a column vector of residuals ## @item ## @var{rint} is the confidence interval for @var{r} ## @item ## @var{stats} is a row vector containing: ## ## @itemize ## @item The R^2 statistic ## @item The F statistic ## @item The p value for the full model ## @item The estimated error variance ## @end itemize ## @end itemize ## ## @var{r} and @var{rint} can be passed to @code{rcoplot} to visualize ## the residual intervals and identify outliers. ## ## NaN values in @var{y} and @var{X} are removed before calculation begins. ## ## @seealso{regress_gp, regression_ftest, regression_ttest} ## @end deftypefn function [b, bint, r, rint, stats] = regress (y, X, alpha) if (nargin < 2 || nargin > 3) print_usage; endif if (! ismatrix (y)) error ("regress: y must be a numeric matrix"); endif if (! ismatrix (X)) error ("regress: X must be a numeric matrix"); endif if (columns (y) != 1) error ("regress: y must be a column vector"); endif if (rows (y) != rows (X)) error ("regress: y and X must contain the same number of rows"); endif if (nargin < 3) alpha = 0.05; elseif (! isscalar (alpha)) error ("regress: alpha must be a scalar value") endif notnans = ! logical (sum (isnan ([y X]), 2)); y = y(notnans); X = X(notnans,:); [Xq Xr] = qr (X, 0); pinv_X = Xr \ Xq'; b = pinv_X * y; if (nargout > 1) n = rows (X); p = columns (X); dof = n - p; t_alpha_2 = tinv (alpha / 2, dof); r = y - X * b; # added -- Nir SSE = sum (r .^ 2); v = SSE / dof; # c = diag(inv (X' * X)) using (economy) QR decomposition # which means that we only have to use Xr c = diag (inv (Xr' * Xr)); db = t_alpha_2 * sqrt (v * c); bint = [b + db, b - db]; endif if (nargout > 3) dof1 = n - p - 1; h = sum(X.*pinv_X', 2); #added -- Nir (same as diag(X*pinv_X), without doing the matrix multiply) # From Matlab's documentation on Multiple Linear Regression, # sigmaihat2 = norm (r) ^ 2 / dof1 - r .^ 2 / (dof1 * (1 - h)); # dr = -tinv (1 - alpha / 2, dof) * sqrt (sigmaihat2 .* (1 - h)); # Substitute # norm (r) ^ 2 == sum (r .^ 2) == SSE # -tinv (1 - alpha / 2, dof) == tinv (alpha / 2, dof) == t_alpha_2 # We get # sigmaihat2 = (SSE - r .^ 2 / (1 - h)) / dof1; # dr = t_alpha_2 * sqrt (sigmaihat2 .* (1 - h)); # Combine, we get # dr = t_alpha_2 * sqrt ((SSE * (1 - h) - (r .^ 2)) / dof1); dr = t_alpha_2 * sqrt ((SSE * (1 - h) - (r .^ 2)) / dof1); rint = [r + dr, r - dr]; endif if (nargout > 4) R2 = 1 - SSE / sum ((y - mean (y)) .^ 2); # F = (R2 / (p - 1)) / ((1 - R2) / dof); F = dof / (p - 1) / (1 / R2 - 1); pval = 1 - fcdf (F, p - 1, dof); stats = [R2 F pval v]; endif endfunction %!test %! % Longley data from the NIST Statistical Reference Dataset %! Z = [ 60323 83.0 234289 2356 1590 107608 1947 %! 61122 88.5 259426 2325 1456 108632 1948 %! 60171 88.2 258054 3682 1616 109773 1949 %! 61187 89.5 284599 3351 1650 110929 1950 %! 63221 96.2 328975 2099 3099 112075 1951 %! 63639 98.1 346999 1932 3594 113270 1952 %! 64989 99.0 365385 1870 3547 115094 1953 %! 63761 100.0 363112 3578 3350 116219 1954 %! 66019 101.2 397469 2904 3048 117388 1955 %! 67857 104.6 419180 2822 2857 118734 1956 %! 68169 108.4 442769 2936 2798 120445 1957 %! 66513 110.8 444546 4681 2637 121950 1958 %! 68655 112.6 482704 3813 2552 123366 1959 %! 69564 114.2 502601 3931 2514 125368 1960 %! 69331 115.7 518173 4806 2572 127852 1961 %! 70551 116.9 554894 4007 2827 130081 1962 ]; %! % Results certified by NIST using 500 digit arithmetic %! % b and standard error in b %! V = [ -3482258.63459582 890420.383607373 %! 15.0618722713733 84.9149257747669 %! -0.358191792925910E-01 0.334910077722432E-01 %! -2.02022980381683 0.488399681651699 %! -1.03322686717359 0.214274163161675 %! -0.511041056535807E-01 0.226073200069370 %! 1829.15146461355 455.478499142212 ]; %! Rsq = 0.995479004577296; %! F = 330.285339234588; %! y = Z(:,1); X = [ones(rows(Z),1), Z(:,2:end)]; %! alpha = 0.05; %! [b, bint, r, rint, stats] = regress (y, X, alpha); %! assert(b,V(:,1),4e-6); %! assert(stats(1),Rsq,1e-12); %! assert(stats(2),F,3e-8); %! assert(((bint(:,1)-bint(:,2))/2)/tinv(alpha/2,9),V(:,2),-1.e-5); statistics-release-1.6.3/inst/regress_gp.m000066400000000000000000000474421456127120000206350ustar00rootroot00000000000000## Copyright (c) 2012 Juan Pablo Carbajal ## Copyright (C) 2023-2024 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or ## (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {[@var{Yfit}, @var{Yint}, @var{m}, @var{K}] =} regress_gp (@var{X}, @var{Y}, @var{Xfit}) ## @deftypefnx {statistics} {[@var{Yfit}, @var{Yint}, @var{m}, @var{K}] =} regress_gp (@var{X}, @var{Y}, @var{Xfit}, @qcode{"linear"}) ## @deftypefnx {statistics} {[@var{Yfit}, @var{Yint}, @var{Ysd}] =} regress_gp (@var{X}, @var{Y}, @var{Xfit}, @qcode{"rbf"}) ## @deftypefnx {statistics} {[@dots{}] =} regress_gp (@var{X}, @var{Y}, @var{Xfit}, @qcode{"linear"}, @var{Sp}) ## @deftypefnx {statistics} {[@dots{}] =} regress_gp (@var{X}, @var{Y}, @var{Xfit}, @var{Sp}) ## @deftypefnx {statistics} {[@dots{}] =} regress_gp (@var{X}, @var{Y}, @var{Xfit}, @qcode{"rbf"}, @var{theta}) ## @deftypefnx {statistics} {[@dots{}] =} regress_gp (@var{X}, @var{Y}, @var{Xfit}, @qcode{"rbf"}, @var{theta}, @var{g}) ## @deftypefnx {statistics} {[@dots{}] =} regress_gp (@var{X}, @var{Y}, @var{Xfit}, @qcode{"rbf"}, @var{theta}, @var{g}, @var{alpha}) ## @deftypefnx {statistics} {[@dots{}] =} regress_gp (@var{X}, @var{Y}, @var{Xfit}, @var{theta}) ## @deftypefnx {statistics} {[@dots{}] =} regress_gp (@var{X}, @var{Y}, @var{Xfit}, @var{theta}, @var{g}) ## @deftypefnx {statistics} {[@dots{}] =} regress_gp (@var{X}, @var{Y}, @var{Xfit}, @var{theta}, @var{g}, @var{alpha}) ## ## Regression using Gaussian Processes. ## ## @code{[@var{Yfit}, @var{Yint}, @var{m}, @var{K}] = regress_gp (@var{X}, ## @var{Y}, @var{Xfit})} will estimate a linear Gaussian Process model @var{m} ## in the form @qcode{@var{Y} = @var{X}' * @var{m}}, where @var{X} is an ## @math{NxP} matrix with @math{N} observations in @math{P} dimensional space ## and @var{Y} is an @math{Nx1} column vector as the dependent variable. The ## information about errors of the predictions (interpolation/extrapolation) is ## given by the covarianve matrix @var{K}. ## By default, the linear model defines the prior covariance of @var{m} as ## @code{@var{Sp} = 100 * eye (size (@var{X}, 2) + 1)}. A custom prior ## covariance matrix can be passed as @var{Sp}, which must be a @math{P+1xP+1} ## positive definite matrix. The model is evaluated for input @var{Xfit}, which ## must have the same columns as @var{X}, and the estimates are returned in ## @var{Yfit} along with the estimated variation in @var{Yint}. ## @qcode{@var{Yint}(:,1)} contains the upper boundary estimate and ## @qcode{@var{Yint}(:,1)} contains the upper boundary estimate with respect to ## @var{Yfit}. ## ## @code{[@var{Yfit}, @var{Yint}, @var{Ysd}, @var{K}] = regress_gp (@var{X}, ## @var{Y}, @var{Xfit}, @qcode{"rbf"})} will estimate a Gaussian Process model ## with a Radial Basis Function (RBF) kernel with default parameters ## @qcode{@var{theta} = 5}, which corresponds to the characteristic lengthscale, ## and @qcode{@var{g} = 0.01}, which corresponds to the nugget effect, and ## @qcode{@var{alpha} = 0.05} which defines the confidence level for the ## estimated intervals returned in @var{Yint}. The function also returns the ## predictive covariance matrix in @var{Ysd}. For multidimensional predictors ## @var{X} the function will automatically normalize each column to a zero mean ## and a standard deviation to one. ## ## Run @code{demo regress_gp} to see examples. ## ## @seealso{regress, regression_ftest, regression_ttest} ## @end deftypefn function [Yfit, Yint, varargout] = regress_gp (X, Y, Xfit, varargin) ## Check input arguments if (nargin < 3) print_usage; endif if (ndims (X) != 2) error ("regress_gp: X must be a 2-D matrix."); endif if (! isvector (Y) || size (Y, 2) != 1) error ("regress_gp: Y must be a column vector."); endif if (size (X, 1) != length (Y)) error ("regress_gp: rows in X must equal the length of Y."); endif if (size (X, 2) != size (Xfit, 2)) error ("regress_gp: X and XI must have the same number of columns."); endif ## Add defauts kernel = "linear"; Sp = 100 * eye (size (X, 2) + 1); theta = 5; g = 0.01; alpha = 0.05; ## Parse extra arguments if (nargin > 3) tmp = varargin{1}; if (ischar (tmp) && strcmpi (tmp, "linear")) kernel = "linear"; sinput = true; elseif (ischar (tmp) && strcmpi (tmp, "rbf")) kernel = "rbf"; sinput = true; elseif (isnumeric (tmp) && ! isscalar (tmp)) kernel = "linear"; sinput = false; Sp = tmp; elseif (isnumeric (tmp) && isscalar (tmp)) kernel = "rbf"; sinput = false; theta = tmp; else error ("regress_gp: invalid 4th argument."); endif endif if (nargin > 4) tmp = varargin{2}; if (sinput) if (isnumeric (tmp) && ! isscalar (tmp)) if (strcmpi (kernel, "rbf")) error ("regress_gp: theta must be a scalar when using RBF kernel."); endif Sp = tmp; if (! isequal (size (Sp), (size (X, 2) + 1) * [1, 1])) error ("regress_gp: wrong size for prior covariance matrix Sp."); endif elseif (isnumeric (tmp) && isscalar (tmp)) if (strcmpi (kernel, "linear")) error ("regress_gp: wrong size for prior covariance matrix Sp."); endif theta = tmp; else error ("regress_gp: invalid 5th argument."); endif else if (strcmpi (kernel, "linear")) error ("regress_gp: invalid 5th argument."); endif g = tmp; endif endif if (nargin > 5) tmp = varargin{3}; if (isnumeric (tmp) && isscalar (tmp) && sinput) g = tmp; elseif (isnumeric (tmp) && isscalar (tmp) && ! sinput) alpha = tmp; else error ("regress_gp: invalid 6th argument."); endif endif if (nargin > 6) tmp = varargin{4}; if (isnumeric (tmp) && isscalar (tmp) && sinput) alpha = tmp; else error ("regress_gp: invalid 7th argument."); endif endif ## User linear kernel if (strcmpi (kernel, "linear")) ## Add constant vector X = [ones(1,size(X,1)); X']; ## Juan Pablo Carbajal ## Note that in the book the equation (below 2.11) for the A reads ## A = (1/sy^2)*X*X' + inv (Vp); ## where sy is the scalar variance of the of the residuals (i.e Y = X' * w + epsilon) ## and epsilon is drawn from N(0,sy^2). Vp is the variance of the parameters w. ## Note that ## (sy^2 * A)^{-1} = (1/sy^2)*A^{-1} = (X*X' + sy^2 * inv(Vp))^{-1}; ## and that the formula for the w mean is ## (1/sy^2)*A^{-1}*X*Y ## Then one obtains ## inv(X*X' + sy^2 * inv(Vp))*X*Y ## Looking at the formula bloew we see that Sp = (1/sy^2)*Vp ## making the regression depend on only one parameter, Sp, and not two. ## Xsq = sum (X' .^ 2); ## [n, d] = size (X); ## sigma = 1/sqrt(2); ## Ks = exp (-(Xsq' * ones (1, n) -ones (n, 1) * Xsq + 2 * X * X') / (2 * sigma ^ 2)); A = X * X' + inv (Sp); K = inv (A); wm = K * X * Y; ## Add constant vector Xfit = [ones(size(Xfit,1),1), Xfit]; ## Compute predictions Yfit = Xfit*wm; Ysd = Xfit * K * Xfit'; dy = diag (Ysd); Yint = [Yfit+dy, Yfit-dy]; if (nargout > 2) varargout{1} = wm; endif if (nargout > 3) varargout{2} = K; endif endif ## User RBF kernel if (strcmpi (kernel, "rbf")) ## Normalize predictors if (size (X, 2) > 1) [X, MU, SIGMA] = zscore (X); Xfit = (Xfit - MU) ./SIGMA; endif ## Get number of training samples n = size (X, 1); ## Calculate squared distance matrix of training input D = squareform (pdist (X) .^2); ## Compute kernel covariance for training quantities S = exp (-D / theta) + g * eye (n); ## Compute kernel covariance for testing quantities Dxi = squareform (pdist (Xfit) .^ 2); Sxi = exp (-Dxi / theta) + g * eye (size (Dxi, 1)); ## Compute kernel covariance for prediction Dx = pdist2 (Xfit, X) .^ 2; Sx = exp (-Dx / theta); ## Caculate predictive covariance K = inv (S); ## Calculate response output Yfit = Sx * K * Y; ## Estimate scale parameter for predictive variance scale = (Y' * K * Y) / size (Y, 1); ## Calculate standard deviation of the response output Ysd = scale * (Sxi - Sx * K * Sx'); ysd1 = sqrt (diag (Ysd)); ## Calculate prediction intervals Yint = norminv (alpha, 0, ysd1); Yint = [Yfit+Yint, Yfit-Yint]; if (nargout > 2) varargout{1} = Ysd; endif endif endfunction %!demo %! ## Linear fitting of 1D Data %! rand ("seed", 125); %! X = 2 * rand (5, 1) - 1; %! randn ("seed", 25); %! Y = 2 * X - 1 + 0.3 * randn (5, 1); %! %! ## Points for interpolation/extrapolation %! Xfit = linspace (-2, 2, 10)'; %! %! ## Fit regression model %! [Yfit, Yint, m] = regress_gp (X, Y, Xfit); %! %! ## Plot fitted data %! plot (X, Y, "xk", Xfit, Yfit, "r-", Xfit, Yint, "b-"); %! title ("Gaussian process regression with linear kernel"); %!demo %! ## Linear fitting of 2D Data %! rand ("seed", 135); %! X = 2 * rand (4, 2) - 1; %! randn ("seed", 35); %! Y = 2 * X(:,1) - 3 * X(:,2) - 1 + 1 * randn (4, 1); %! %! ## Mesh for interpolation/extrapolation %! [x1, x2] = meshgrid (linspace (-1, 1, 10)); %! Xfit = [x1(:), x2(:)]; %! %! ## Fit regression model %! [Ypred, Yint, Ysd] = regress_gp (X, Y, Xfit); %! Ypred = reshape (Ypred, 10, 10); %! YintU = reshape (Yint(:,1), 10, 10); %! YintL = reshape (Yint(:,2), 10, 10); %! %! ## Plot fitted data %! plot3 (X(:,1), X(:,2), Y, ".k", "markersize", 16); %! hold on; %! h = mesh (x1, x2, Ypred, zeros (10, 10)); %! set (h, "facecolor", "none", "edgecolor", "yellow"); %! h = mesh (x1, x2, YintU, ones (10, 10)); %! set (h, "facecolor", "none", "edgecolor", "cyan"); %! h = mesh (x1, x2, YintL, ones (10, 10)); %! set (h, "facecolor", "none", "edgecolor", "cyan"); %! hold off %! axis tight %! view (75, 25) %! title ("Gaussian process regression with linear kernel"); %!demo %! ## Projection over basis function with linear kernel %! pp = [2, 2, 0.3, 1]; %! n = 10; %! rand ("seed", 145); %! X = 2 * rand (n, 1) - 1; %! randn ("seed", 45); %! Y = polyval (pp, X) + 0.3 * randn (n, 1); %! %! ## Powers %! px = [sqrt(abs(X)), X, X.^2, X.^3]; %! %! ## Points for interpolation/extrapolation %! Xfit = linspace (-1, 1, 100)'; %! pxi = [sqrt(abs(Xfit)), Xfit, Xfit.^2, Xfit.^3]; %! %! ## Define a prior covariance assuming that the sqrt component is not present %! Sp = 100 * eye (size (px, 2) + 1); %! Sp(2,2) = 1; # We don't believe the sqrt(abs(X)) is present %! %! ## Fit regression model %! [Yfit, Yint, Ysd] = regress_gp (px, Y, pxi, Sp); %! %! ## Plot fitted data %! plot (X, Y, "xk;Data;", Xfit, Yfit, "r-;Estimation;", ... %! Xfit, polyval (pp, Xfit), "g-;True;"); %! axis tight %! axis manual %! hold on %! plot (Xfit, Yint(:,1), "m-;Upper bound;", Xfit, Yint(:,2), "b-;Lower bound;"); %! hold off %! title ("Linear kernel over basis function with prior covariance"); %!demo %! ## Projection over basis function with linear kernel %! pp = [2, 2, 0.3, 1]; %! n = 10; %! rand ("seed", 145); %! X = 2 * rand (n, 1) - 1; %! randn ("seed", 45); %! Y = polyval (pp, X) + 0.3 * randn (n, 1); %! %! ## Powers %! px = [sqrt(abs(X)), X, X.^2, X.^3]; %! %! ## Points for interpolation/extrapolation %! Xfit = linspace (-1, 1, 100)'; %! pxi = [sqrt(abs(Xfit)), Xfit, Xfit.^2, Xfit.^3]; %! %! ## Fit regression model without any assumption on prior covariance %! [Yfit, Yint, Ysd] = regress_gp (px, Y, pxi); %! %! ## Plot fitted data %! plot (X, Y, "xk;Data;", Xfit, Yfit, "r-;Estimation;", ... %! Xfit, polyval (pp, Xfit), "g-;True;"); %! axis tight %! axis manual %! hold on %! plot (Xfit, Yint(:,1), "m-;Upper bound;", Xfit, Yint(:,2), "b-;Lower bound;"); %! hold off %! title ("Linear kernel over basis function without prior covariance"); %!demo %! ## Projection over basis function with rbf kernel %! pp = [2, 2, 0.3, 1]; %! n = 10; %! rand ("seed", 145); %! X = 2 * rand (n, 1) - 1; %! randn ("seed", 45); %! Y = polyval (pp, X) + 0.3 * randn (n, 1); %! %! ## Powers %! px = [sqrt(abs(X)), X, X.^2, X.^3]; %! %! ## Points for interpolation/extrapolation %! Xfit = linspace (-1, 1, 100)'; %! pxi = [sqrt(abs(Xfit)), Xfit, Xfit.^2, Xfit.^3]; %! %! ## Fit regression model with RBF kernel (standard parameters) %! [Yfit, Yint, Ysd] = regress_gp (px, Y, pxi, "rbf"); %! %! ## Plot fitted data %! plot (X, Y, "xk;Data;", Xfit, Yfit, "r-;Estimation;", ... %! Xfit, polyval (pp, Xfit), "g-;True;"); %! axis tight %! axis manual %! hold on %! plot (Xfit, Yint(:,1), "m-;Upper bound;", Xfit, Yint(:,2), "b-;Lower bound;"); %! hold off %! title ("RBF kernel over basis function with standard parameters"); %! text (-0.5, 4, "theta = 5\n g = 0.01"); %!demo %! ## Projection over basis function with rbf kernel %! pp = [2, 2, 0.3, 1]; %! n = 10; %! rand ("seed", 145); %! X = 2 * rand (n, 1) - 1; %! randn ("seed", 45); %! Y = polyval (pp, X) + 0.3 * randn (n, 1); %! %! ## Powers %! px = [sqrt(abs(X)), X, X.^2, X.^3]; %! %! ## Points for interpolation/extrapolation %! Xfit = linspace (-1, 1, 100)'; %! pxi = [sqrt(abs(Xfit)), Xfit, Xfit.^2, Xfit.^3]; %! %! ## Fit regression model with RBF kernel with different parameters %! [Yfit, Yint, Ysd] = regress_gp (px, Y, pxi, "rbf", 10, 0.01); %! %! ## Plot fitted data %! plot (X, Y, "xk;Data;", Xfit, Yfit, "r-;Estimation;", ... %! Xfit, polyval (pp, Xfit), "g-;True;"); %! axis tight %! axis manual %! hold on %! plot (Xfit, Yint(:,1), "m-;Upper bound;", Xfit, Yint(:,2), "b-;Lower bound;"); %! hold off %! title ("GP regression with RBF kernel and non default parameters"); %! text (-0.5, 4, "theta = 10\n g = 0.01"); %! %! ## Fit regression model with RBF kernel with different parameters %! [Yfit, Yint, Ysd] = regress_gp (px, Y, pxi, "rbf", 50, 0.01); %! %! ## Plot fitted data %! figure %! plot (X, Y, "xk;Data;", Xfit, Yfit, "r-;Estimation;", ... %! Xfit, polyval (pp, Xfit), "g-;True;"); %! axis tight %! axis manual %! hold on %! plot (Xfit, Yint(:,1), "m-;Upper bound;", Xfit, Yint(:,2), "b-;Lower bound;"); %! hold off %! title ("GP regression with RBF kernel and non default parameters"); %! text (-0.5, 4, "theta = 50\n g = 0.01"); %! %! ## Fit regression model with RBF kernel with different parameters %! [Yfit, Yint, Ysd] = regress_gp (px, Y, pxi, "rbf", 50, 0.001); %! %! ## Plot fitted data %! figure %! plot (X, Y, "xk;Data;", Xfit, Yfit, "r-;Estimation;", ... %! Xfit, polyval (pp, Xfit), "g-;True;"); %! axis tight %! axis manual %! hold on %! plot (Xfit, Yint(:,1), "m-;Upper bound;", Xfit, Yint(:,2), "b-;Lower bound;"); %! hold off %! title ("GP regression with RBF kernel and non default parameters"); %! text (-0.5, 4, "theta = 50\n g = 0.001"); %! %! ## Fit regression model with RBF kernel with different parameters %! [Yfit, Yint, Ysd] = regress_gp (px, Y, pxi, "rbf", 50, 0.05); %! %! ## Plot fitted data %! figure %! plot (X, Y, "xk;Data;", Xfit, Yfit, "r-;Estimation;", ... %! Xfit, polyval (pp, Xfit), "g-;True;"); %! axis tight %! axis manual %! hold on %! plot (Xfit, Yint(:,1), "m-;Upper bound;", Xfit, Yint(:,2), "b-;Lower bound;"); %! hold off %! title ("GP regression with RBF kernel and non default parameters"); %! text (-0.5, 4, "theta = 50\n g = 0.05"); %!demo %! ## RBF fitting on noiseless 1D Data %! x = [0:2*pi/7:2*pi]'; %! y = 5 * sin (x); %! %! ## Predictive grid of 500 equally spaced locations %! xi = [-0.5:(2*pi+1)/499:2*pi+0.5]'; %! %! ## Fit regression model with RBF kernel %! [Yfit, Yint, Ysd] = regress_gp (x, y, xi, "rbf"); %! %! ## Plot fitted data %! r = mvnrnd (Yfit, diag (Ysd)', 50); %! plot (xi, r', "c-"); %! hold on %! plot (xi, Yfit, "r-;Estimation;", xi, Yint, "b-;Confidence interval;"); %! plot (x, y, ".k;Predictor points;", "markersize", 20) %! plot (xi, 5 * sin (xi), "-y;True Function;"); %! xlim ([-0.5,2*pi+0.5]); %! ylim ([-10,10]); %! hold off %! title ("GP regression with RBF kernel on noiseless 1D data"); %! text (0, -7, "theta = 5\n g = 0.01"); %!demo %! ## RBF fitting on noisy 1D Data %! x = [0:2*pi/7:2*pi]'; %! x = [x; x]; %! y = 5 * sin (x) + randn (size (x)); %! %! ## Predictive grid of 500 equally spaced locations %! xi = [-0.5:(2*pi+1)/499:2*pi+0.5]'; %! %! ## Fit regression model with RBF kernel %! [Yfit, Yint, Ysd] = regress_gp (x, y, xi, "rbf"); %! %! ## Plot fitted data %! r = mvnrnd (Yfit, diag (Ysd)', 50); %! plot (xi, r', "c-"); %! hold on %! plot (xi, Yfit, "r-;Estimation;", xi, Yint, "b-;Confidence interval;"); %! plot (x, y, ".k;Predictor points;", "markersize", 20) %! plot (xi, 5 * sin (xi), "-y;True Function;"); %! xlim ([-0.5,2*pi+0.5]); %! ylim ([-10,10]); %! hold off %! title ("GP regression with RBF kernel on noisy 1D data"); %! text (0, -7, "theta = 5\n g = 0.01"); ## Test input validation %!error regress_gp (ones (20, 2)) %!error regress_gp (ones (20, 2), ones (20, 1)) %!error ... %! regress_gp (ones (20, 2, 3), ones (20, 1), ones (20, 2)) %!error ... %! regress_gp (ones (20, 2), ones (20, 2), ones (20, 2)) %!error ... %! regress_gp (ones (20, 2), ones (15, 1), ones (20, 2)) %!error ... %! regress_gp (ones (20, 2), ones (20, 1), ones (20, 3)) %!error ... %! regress_gp (ones (20, 2), ones (20, 1), ones (10, 2), {[3]}) %!error ... %! regress_gp (ones (20, 2), ones (20, 1), ones (10, 2), "kernel") %!error ... %! regress_gp (ones (20, 2), ones (20, 1), ones (10, 2), "rbf", ones (4)) %!error ... %! regress_gp (ones (20, 2), ones (20, 1), ones (10, 2), "linear", 1) %!error ... %! regress_gp (ones (20, 2), ones (20, 1), ones (10, 2), "rbf", "value") %!error ... %! regress_gp (ones (20, 2), ones (20, 1), ones (10, 2), "rbf", {5}) %!error ... %! regress_gp (ones (20, 2), ones (20, 1), ones (10, 2), ones (3), 5) %!error ... %! regress_gp (ones (20, 2), ones (20, 1), ones (10, 2), "linear", 5) %!error ... %! regress_gp (ones (20, 2), ones (20, 1), ones (10, 2), "rbf", 5, {5}) %!error ... %! regress_gp (ones (20, 2), ones (20, 1), ones (10, 2), "rbf", 5, ones (2)) %!error ... %! regress_gp (ones (20, 2), ones (20, 1), ones (10, 2), 5, 0.01, [1, 1]) %!error ... %! regress_gp (ones (20, 2), ones (20, 1), ones (10, 2), 5, 0.01, "f") %!error ... %! regress_gp (ones (20, 2), ones (20, 1), ones (10, 2), 5, 0.01, "f") %!error ... %! regress_gp (ones (20, 2), ones (20, 1), ones (10, 2), "rbf", 5, 0.01, "f") %!error ... %! regress_gp (ones (20, 2), ones (20, 1), ones (10, 2), "rbf", 5, 0.01, [1, 1]) %!error ... %! regress_gp (ones (20, 2), ones (20, 1), ones (10, 2), "linear", 1) statistics-release-1.6.3/inst/regression_ftest.m000066400000000000000000000214331456127120000220520ustar00rootroot00000000000000## Copyright (C) 1995-2017 Kurt Hornik ## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {[@var{h}, @var{pval}, @var{stats}] =} regression_ftest (@var{y}, @var{x}, @var{fm}) ## @deftypefnx {statistics} {[@dots{}] =} regression_ftest (@var{y}, @var{x}, @var{fm}, @var{rm}) ## @deftypefnx {statistics} {[@dots{}] =} regression_ftest (@var{y}, @var{x}, @var{fm}, @var{rm}, @var{Name}, @var{Value}) ## @deftypefnx {statistics} {[@dots{}] =} regression_ftest (@var{y}, @var{x}, @var{fm}, [], @var{Name}, @var{Value}) ## ## F-test for General Linear Regression Analysis ## ## Perform a general linear regression F test for the null hypothesis that the ## full model of the form @qcode{y = b_0 + b_1 * x_1 + b_2 * x_2 + @dots{} + ## b_n * x_n + e}, where n is the number of variables in @var{x}, does not ## perform better than a reduced model, such as @qcode{y = b'_0 + b'_1 * x_1 + ## b'_2 * x_2 + @dots{} + b'_k * x_k + e}, where k < n and it corresponds to the ## first k variables in @var{x}. Explanatory (dependent) variable @var{y} and ## response (independent) variables @var{x} must not contain any missing values ## (NaNs). ## ## The full model, @var{fm}, must be a vector of length equal to the columns of ## @var{x}, in which case the constant term b_0 is assumed 0, or equal to ## the columns of @var{x} plus one, in which case the first element is the ## constant b_0. ## ## The reduced model, @var{rm}, must include the constant term and a subset of ## the variables (columns) in @var{x}. If @var{rm} is not given, then a constant ## term b'_0 is assumed equal to the constant term, b_0, of the full model or 0, ## if the full model, @var{fm}, does not have a constant term. @var{rm} must be ## a vector or a scalar if only a constant term is passed into the function. ## ## Name-Value pair arguments can be used to set statistical significance. ## @qcode{"alpha"} can be used to specify the significance level of the test ## (the default value is 0.05). If you want pass optional Name-Value pair ## without a reduced model, make sure that the latter is passed as an empty ## variable. ## ## If @var{h} is 1 the null hypothesis is rejected, meaning that the full model ## explains the variance better than the restricted model. If @var{h} is 0, it ## can be assumed that the full model does NOT explain the variance any better ## than the restricted model. ## ## The p-value (1 minus the CDF of this distribution at @var{f}) is returned ## in @var{pval}. ## ## Under the null, the test statistic @var{f} follows an F distribution with ## 'df1' and 'df2' degrees of freedom, which are returned as fields in the ## @var{stats} structure along with the test's F-statistic, 'fstat' ## ## @seealso{regression_ttest, regress, regress_gp} ## @end deftypefn function [h, pval, stats] = regression_ftest (y, x, fm, rm, varargin) ## Check for valid input if (nargin < 3) print_usage (); endif ## Check for finite real numbers in Y, X if (! all (isfinite (y)) || ! isreal (y)) error ("regression_ftest: Y must contain finite real numbers."); endif if (! all (isfinite (x(:))) || ! isreal (x)) error ("regression_ftest: X must contain finite real numbers."); endif ## Set default arguments alpha = 0.05; ## Check additional options i = 1; while (i <= length (varargin)) switch lower (varargin{i}) case "alpha" i = i + 1; alpha = varargin{i}; ## Check for valid alpha if (! isscalar (alpha) || ! isnumeric (alpha) || ... alpha <= 0 || alpha >= 1) error ("regression_ftest: invalid value for alpha."); endif otherwise error ("regression_ftest: invalid Name argument."); endswitch i = i + 1; endwhile ## Get size of response (independent) variables [s, v] = size (x); ## Add a constant term of 1s in X x = [ones(s, 1), x]; ## Check the size of explanatory (dependent) variable if (! (isvector (y) && (length (y) == s))) error ("regression_ftest: Y must be a vector of length 'rows (X)'."); endif y = reshape (y, s, 1); ## Check the full model if (! (isvector (fm) && (length (fm) == v || length (fm) == v + 1))) error (strcat (["regression_ftest: full model, FM, must be a vector"], ... [" of length equal to 'rows (X)' or 'rows (X) + 1'."])); endif ## Make it row vector and add a constant = 0 if necessary fm_len = length (fm); fm = reshape (fm, 1, fm_len); if (fm_len == v) fm = [0, fm]; fm_len += 1; endif ## Check the reduced model if (nargin - length (varargin) == 4) if (isempty (rm)) rm = [fm(1), zeros(1, fm_len - 1)]; rm_len = 1; else if (! isvector (rm) || ! isnumeric (rm)) error (strcat (["regression_ftest: reduced model, RM, must be a"], ... [" numeric vector or a scalar."])); endif rm_len = length (rm); if (rm_len >= fm_len - 1) error (strcat (["regression_ftest: reduced model, RM, must have"], ... [" smaller length than the full model, FM."])); endif rm = reshape (rm, 1, rm_len); rm = [rm, zeros(1, fm_len - rm_len)]; endif else rm = [fm(1), zeros(1, fm_len - 1)]; rm_len = 1; endif ## Calculate the fitted response for full and reduced models y_fm = sum (x .* fm, 2); y_rm = sum (x .* rm, 2); ## Calculate Sum of Squares Error for full and reduced models SSE_fm = sumsq (y - y_fm); SSE_rm = sumsq (y - y_rm); ## Calculate the necessary statistics stats.df1 = fm_len - rm_len; stats.df2 = s - v; stats.fstat = ((SSE_rm - SSE_fm) / stats.df1) / (SSE_fm / stats.df2); pval = 1 - fcdf (stats.fstat, stats.df1, stats.df2); ## Determine the test outcome ## MATLAB returns this a double instead of a logical array h = double (pval < alpha); endfunction ## Test input validation %!error regression_ftest (); %!error ... %! regression_ftest ([1 2 3]', [2 3 4; 3 4 5]'); %!error ... %! regression_ftest ([1 2 NaN]', [2 3 4; 3 4 5]', [1 0.5]); %!error ... %! regression_ftest ([1 2 Inf]', [2 3 4; 3 4 5]', [1 0.5]); %!error ... %! regression_ftest ([1 2 3+i]', [2 3 4; 3 4 5]', [1 0.5]); %!error ... %! regression_ftest ([1 2 3]', [2 3 NaN; 3 4 5]', [1 0.5]); %!error ... %! regression_ftest ([1 2 3]', [2 3 Inf; 3 4 5]', [1 0.5]); %!error ... %! regression_ftest ([1 2 3]', [2 3 4; 3 4 3+i]', [1 0.5]); %!error ... %! regression_ftest ([1 2 3]', [2 3 4; 3 4 5]', [1 0.5], [], "alpha", 0); %!error ... %! regression_ftest ([1 2 3]', [2 3 4; 3 4 5]', [1 0.5], [], "alpha", 1.2); %!error ... %! regression_ftest ([1 2 3]', [2 3 4; 3 4 5]', [1 0.5], [], "alpha", [.02 .1]); %!error ... %! regression_ftest ([1 2 3]', [2 3 4; 3 4 5]', [1 0.5], [], "alpha", "a"); %!error ... %! regression_ftest ([1 2 3]', [2 3 4; 3 4 5]', [1 0.5], [], "some", 0.05); %!error ... %! regression_ftest ([1 2 3]', [2 3; 3 4]', [1 0.5]); %!error ... %! regression_ftest ([1 2; 3 4]', [2 3; 3 4]', [1 0.5]); %!error ... %! regression_ftest ([1 2 3]', [2 3 4; 3 4 5]', [1 0.5], ones (2)); %!error ... %! regression_ftest ([1 2 3]', [2 3 4; 3 4 5]', [1 0.5], "alpha"); %!error ... %! regression_ftest ([1 2 3]', [2 3 4; 3 4 5]', [1 0.5], [1 2]); ## Test results statistics-release-1.6.3/inst/regression_ttest.m000066400000000000000000000163031456127120000220700ustar00rootroot00000000000000## Copyright (C) 1995-2017 Kurt Hornik ## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{h} =} regression_ttest (@var{y}, @var{x}) ## @deftypefnx {statistics} {[@var{h}, @var{pval}] =} regression_ttest (@var{y}, @var{x}) ## @deftypefnx {statistics} {[@var{h}, @var{pval}, @var{ci}] =} regression_ttest (@var{y}, @var{x}) ## @deftypefnx {statistics} {[@var{h}, @var{pval}, @var{ci}, @var{stats}] =} regression_ttest (@var{y}, @var{x}) ## @deftypefnx {statistics} {[@dots{}] =} regression_ttest (@var{y}, @var{x}, @var{Name}, @var{Value}) ## ## Perform a linear regression t-test. ## ## @code{@var{h} = regression_ttest (@var{y}, @var{x})} tests the null ## hypothesis that the slope @math{beta1} of a simple linear regression equals ## 0. The result is @var{h} = 0 if the null hypothesis cannot be rejected at ## the 5% significance level, or @var{h} = 1 if the null hypothesis can be ## rejected at the 5% level. @var{y} and @var{x} must be vectors of equal ## length with finite real numbers. ## ## The p-value of the test is returned in @var{pval}. A @math{100(1-alpha)%} ## confidence interval for @math{beta1} is returned in @var{ci}. @var{stats} is ## a structure containing the value of the test statistic (@qcode{tstat}), ## the degrees of freedom (@qcode{df}), the slope coefficient (@qcode{beta1}), ## and the intercept (@qcode{beta0}). Under the null, the test statistic ## @var{stats}.@qcode{tstat} follows a @math{T}-distribution with ## @var{stats}.@qcode{df} degrees of freedom. ## ## @code{[@dots{}] = regression_ttest (@dots{}, @var{name}, @var{value})} ## specifies one or more of the following name/value pairs: ## ## @multitable @columnfractions 0.05 0.2 0.75 ## @headitem @tab Name @tab Value ## @item @tab @qcode{"alpha"} @tab the significance level. Default is 0.05. ## ## @item @tab @qcode{"tail"} @tab a string specifying the alternative hypothesis ## @end multitable ## @multitable @columnfractions 0.1 0.25 0.65 ## @item @tab @qcode{"both"} @tab @math{beta1} is not 0 (two-tailed, default) ## @item @tab @qcode{"left"} @tab @math{beta1} is less than 0 (left-tailed) ## @item @tab @qcode{"right"} @tab @math{beta1} is greater than 0 (right-tailed) ## @end multitable ## ## @seealso{regression_ftest, regress, regress_gp} ## @end deftypefn function [h, pval, ci, stats] = regression_ttest (y, x, varargin) ## Check for valid input if (nargin < 2) print_usage (); endif ## Check for finite real numbers in Y, X if (! all (isfinite (y)) || ! isreal (y)) error ("regression_ttest: Y must contain finite real numbers."); endif if (! all (isfinite (x(:))) || ! isreal (x)) error ("regression_ttest: X must contain finite real numbers."); endif # Get number of observations n = length (y); ## Check Y and X have the same number of observations if (! isvector (y) || ! isvector (x) || length (x) != n) error ("regression_ttest: Y and X must be vectors of equal length."); endif ## Set default arguments alpha = 0.05; tail = "both"; ## Check additional options i = 1; while (i <= length (varargin)) switch lower (varargin{i}) case "alpha" i = i + 1; alpha = varargin{i}; ## Check for valid alpha if (! isscalar (alpha) || ! isnumeric (alpha) || ... alpha <= 0 || alpha >= 1) error ("regression_ttest: invalid value for alpha."); endif case "tail" i = i + 1; tail = varargin{i}; if (! any (strcmpi (tail, {"both", "left", "right"}))) error ("regression_ttest: invalid value for tail."); endif otherwise error ("regression_ttest: invalid Name argument."); endswitch i = i + 1; endwhile y_bar = mean (y); x_bar = mean (x); stats.beta1 = cov (x, y) / var (x); stats.beta0 = y_bar - stats.beta1 * x_bar; y_hat = stats.beta0 + stats.beta1 * x_bar; SSE = sum ((y - y_hat) .^ 2); stats.df = n - 2; SE = sqrt (SSE / stats.df); term = SE / sqrt (sum ((x - x_bar) .^ 2)); stats.tstat = stats.beta1 / term; ## Based on the "tail" argument determine the P-value, the critical values, ## and the confidence interval. switch lower (tail) case "both" pval = 2 * (1 - tcdf (abs (stats.tstat), stats.df)); tcrit = - tinv (alpha / 2, stats.df); ci = [stats.beta1 - tcrit * term; stats.beta1 + tcrit * term]; case "left" pval = tcdf (stats.tstat, stats.df); tcrit = - tinv (alpha, stats.df); ci = [-inf; stats.beta1 + tcrit * term]; case "right" pval = 1 - tcdf (stats.tstat, stats.df); tcrit = - tinv (alpha, stats.df); ci = [stats.beta1 - tcrit * term; inf]; endswitch ## Determine the test outcome h = double (pval < alpha); h(isnan (pval)) = NaN; endfunction ## Test input validation %!error regression_ttest (); %!error regression_ttest (1); %!error ... %! regression_ttest ([1 2 NaN]', [2 3 4]'); %!error ... %! regression_ttest ([1 2 Inf]', [2 3 4]'); %!error ... %! regression_ttest ([1 2 3+i]', [2 3 4]'); %!error ... %! regression_ttest ([1 2 3]', [2 3 NaN]'); %!error ... %! regression_ttest ([1 2 3]', [2 3 Inf]'); %!error ... %! regression_ttest ([1 2 3]', [3 4 3+i]'); %!error ... %! regression_ttest ([1 2 3]', [3 4 4 5]'); %!error ... %! regression_ttest ([1 2 3]', [2 3 4]', "alpha", 0); %!error ... %! regression_ttest ([1 2 3]', [2 3 4]', "alpha", 1.2); %!error ... %! regression_ttest ([1 2 3]', [2 3 4]', "alpha", [.02 .1]); %!error ... %! regression_ttest ([1 2 3]', [2 3 4]', "alpha", "a"); %!error ... %! regression_ttest ([1 2 3]', [2 3 4]', "some", 0.05); %!error ... %! regression_ttest ([1 2 3]', [2 3 4]', "tail", "val"); %!error ... %! regression_ttest ([1 2 3]', [2 3 4]', "alpha", 0.01, "tail", "val"); statistics-release-1.6.3/inst/ridge.m000066400000000000000000000156701456127120000175650ustar00rootroot00000000000000## Copyright (C) 2023 Mohammed Azmat Khan ## ## This file is part of the statistics package for GNU Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or ## (at your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, ## see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{b} =} ridge (@var{y}, @var{X}, @var{k}) ## @deftypefnx {statistics} {@var{b} =} ridge (@var{y}, @var{X}, @var{k}, @var{scaled}) ## ## Ridge regression. ## ## @code{@var{b} = ridge (@var{y}, @var{X}, @var{k})} returns the vector of ## coefficient estimates by applying ridge regression from the predictor matrix ## @var{X} to the response vector @var{y}. Each value of @var{b} is the ## coefficient for the respective ridge parameter given @var{k}. By default, ## @var{b} is calculated after centering and scaling the predictors to have a ## zero mean and standard deviation 1. ## ## @code{@var{b} = ridge (@var{y}, @var{X}, @var{k}, @var{scaled})} performs the ## regression with the specified scaling of the coefficient estimates @var{b}. ## When @qcode{@var{scaled} = 0}, the function restores the coefficients to the ## scale of the original data thus is more useful for making predictions. When ## @qcode{@var{scaled} = 1}, the coefficient estimates correspond to the scaled ## centered data. ## ## @itemize ## @item ## @code{y} must be an @math{Nx1} numeric vector with the response data. ## @item ## @code{X} must be an @math{Nxp} numeric matrix with the predictor data. ## @item ## @code{k} must be a numeric vectir with the ridge parameters. ## @item ## @code{scaled} must be a numeric scalar indicating whether the coefficient ## estimates in @var{b} are restored to the scale of the original data. By ## default, @qcode{@var{scaled} = 1}. ## @end itemize ## ## Further information about Ridge regression can be found at ## @url{https://en.wikipedia.org/wiki/Ridge_regression} ## ## @seealso{lasso, stepwisefit, regress} ## @end deftypefn function b = ridge (y, X, k, scaled) ## Check input arguments if (nargin < 3) error ("ridge: function called with too few input arguments."); endif if (! isvector (y) || columns (y) != 1 || isempty (y)) error ("ridge: Y must be a numeric column vector."); endif if (! ismatrix (X) || isempty (X)) error ("ridge: X must be a numeric matrix."); endif if (rows (y) != rows (X)) error ("ridge: Y and X must contain the same number of rows."); endif ## Parse 4th input argument if (nargin < 4 || isempty (scaled)) unscale = false; elseif (scaled == 1) unscale = false; elseif (scaled == 0) unscale = true; else error ("ridge: wrong value for SCALED argument."); endif ## Force y to a column vector y = y(:); ## Rremove any missing values notnans = ! logical (sum (isnan ([y, X]), 2)); y = y(notnans); X = X(notnans,:); ## Scale and center X to zero mean and StD = 1 m = mean (X); stdx = std (X, 0, 1); z = (X - m) ./ stdx; ## Add pseudo observations Z_pseudo = [z; (sqrt(k(1)) .* eye (columns(X)))]; Y_pseudo = [y; zeros(columns(X), 1)]; ## Compute coefficients b = Z_pseudo \ Y_pseudo; nk = numel (k); ## Compute the coefficient estimates for additional ridge parameters. if (nk >= 2) ## Adding a multiple of the identity matrix to the last p rows. ## b is set to 0 for the current ridge parameter value b(end,nk) = 0; for i=2:nk Z_pseudo(end-columns(X)+1:end, :) = sqrt (k(i)) .* eye (columns (X)); b(:,i) = Z_pseudo \ Y_pseudo; endfor endif ## Changing back to the scale if (unscale) b = b ./ repmat (stdx', 1, nk); b = [mean(y)-m*b; b]; endif endfunction %!demo %! ## Perform ridge regression for a range of ridge parameters and observe %! ## how the coefficient estimates change based on the acetylene dataset. %! %! load acetylene %! %! X = [x1, x2, x3]; %! %! x1x2 = x1 .* x2; %! x1x3 = x1 .* x3; %! x2x3 = x2 .* x3; %! %! D = [x1, x2, x3, x1x2, x1x3, x2x3]; %! %! k = 0:1e-5:5e-3; %! %! b = ridge (y, D, k); %! %! figure %! plot (k, b, "LineWidth", 2) %! ylim ([-100, 100]) %! grid on %! xlabel ("Ridge Parameter") %! ylabel ("Standardized Coefficient") %! title ("Ridge Trace") %! legend ("x1", "x2", "x3", "x1x2", "x1x3", "x2x3") %! %!demo %! %! load carbig %! X = [Acceleration Weight Displacement Horsepower]; %! y = MPG; %! %! n = length(y); %! %! rand("seed",1); % For reproducibility %! %! c = cvpartition(n,'HoldOut',0.3); %! idxTrain = training(c,1); %! idxTest = ~idxTrain; %! %! idxTrain = training(c,1); %! idxTest = ~idxTrain; %! %! k = 5; %! b = ridge(y(idxTrain),X(idxTrain,:),k,0); %! %! % Predict MPG values for the test data using the model. %! yhat = b(1) + X(idxTest,:)*b(2:end); %! scatter(y(idxTest),yhat) %! %! hold on %! plot(y(idxTest),y(idxTest),"r") %! xlabel('Actual MPG') %! ylabel('Predicted MPG') %! hold off %! ## Test output %!test %! b = ridge ([1 2 3 4]', [1 2 3 4; 2 3 4 5]', 1); %! assert (b, [0.5533; 0.5533], 1e-4); %!test %! b = ridge ([1 2 3 4]', [1 2 3 4; 2 3 4 5]', 2); %! assert (b, [0.4841; 0.4841], 1e-4); %!test %! load acetylene %! x = [x1, x2, x3]; %! b = ridge (y, x, 0); %! assert (b,[10.2273;1.97128;-0.601818],1e-4); %!test %! load acetylene %! x = [x1, x2, x3]; %! b = ridge (y, x, 0.0005); %! assert (b,[10.2233;1.9712;-0.6056],1e-4); %!test %! load acetylene %! x = [x1, x2, x3]; %! b = ridge (y, x, 0.001); %! assert (b,[10.2194;1.9711;-0.6094],1e-4); %!test %! load acetylene %! x = [x1, x2, x3]; %! b = ridge (y, x, 0.002); %! assert (b,[10.2116;1.9709;-0.6169],1e-4); %!test %! load acetylene %! x = [x1, x2, x3]; %! b = ridge (y, x, 0.005); %! assert (b,[10.1882;1.9704;-0.6393],1e-4); %!test %! load acetylene %! x = [x1, x2, x3]; %! b = ridge (y, x, 0.01); %! assert (b,[10.1497;1.9695;-0.6761],1e-4); ## Test input validation %!error ridge (1) %!error ridge (1, 2) %!error ridge (ones (3), ones (3), 2) %!error ridge ([1, 2], ones (2), 2) %!error ridge ([], ones (3), 2) %!error ridge (ones (5,1), [], 2) %!error ... %! ridge ([1; 2; 3; 4; 5], ones (3), 3) %!error ... %! ridge ([1; 2; 3], ones (3), 3, 2) %!error ... %! ridge ([1; 2; 3], ones (3), 3, "some") statistics-release-1.6.3/inst/rmmissing.m000066400000000000000000000162721456127120000205020ustar00rootroot00000000000000## Copyright (C) 1995-2023 The Octave Project Developers ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{R} =} rmmissing (@var{A}) ## @deftypefnx {statistics} {@var{R} =} rmmissing (@var{A}, @var{dim}) ## @deftypefnx {statistics} {@var{R} =} rmmissing (@dots{}, @var{Name}, @var{Value}) ## @deftypefnx {statistics} {[@var{R} @var{TF}] =} rmmissing (@dots{}) ## ## Remove missing or incomplete data from an array. ## ## Given an input vector or matrix (2-D array) @var{A}, remove missing data ## from a vector or missing rows or columns from a matrix. @var{A} ## can be a numeric array, char array, or an array of cell strings. ## @var{R} returns the array after removal of missing data. ## ## The values which represent missing data depend on the data type of @var{A}: ## ## @itemize ## @item ## @qcode{NaN}: @code{single}, @code{double}. ## ## @item ## @qcode{' '} (white space): @code{char}. ## ## @item ## @qcode{@{''@}}: string cells. ## @end itemize ## ## Choose to remove rows (default) or columns by setting optional input ## @var{dim}: ## ## @itemize ## @item ## @qcode{1}: rows. ## ## @item ## @qcode{2}: columns. ## @end itemize ## ## Note: data types with no default 'missing' value will always result in ## @code{R == A} and a TF output of @code{false(size(@var{A}))}. ## ## Additional optional parameters are set by @var{Name}-@var{Value} pairs. ## These are: ## ## @itemize ## @item ## @qcode{MinNumMissing}: minimum number of missing values to remove an entry, ## row or column, defined as a positive integer number. E.g.: if ## @qcode{MinNumMissing} is set to @code{2}, remove the row of a numeric matrix ## only if it includes 2 or more NaN. ## @end itemize ## ## Optional return value @var{TF} is a logical array where @code{true} values ## represent removed entries, rows or columns from the original data @var{A}. ## ## @end deftypefn ## ## @seealso{fillmissing, ismissing, standardizeMissing} function [R, TF] = rmmissing (A, varargin) if ((nargin < 1) || (nargin > 4)) print_usage (); endif if ndims(A) > 2 error ("rmmissing: input dimension cannot exceed 2"); endif optDimensionI = 2; # default dimension: rows optMinNumMissingI = 1; ## parse options if (nargin > 1) if (isnumeric (varargin{1})) ## option "dim" switch (varargin{1}) case 1 optDimensionI = 2; case 2 optDimensionI = 1; otherwise error ("rmmissing: 'dim' must be either 1 or 2"); endswitch pair_index = 2; else [r, c] = size (A); ## first non singleton dimension, but only two dimensions considered if (r == 1 && c != 1) optDimensionI = 1; endif pair_index = 1; endif ## parse name-value parameters while (pair_index <= (nargin - 1)) switch (lower (varargin{pair_index})) ## minimum number of missing values to remove entries; ## it must be a positive integer number case "minnummissing" if (! isnumeric (varargin{pair_index + 1}) || ! isscalar (varargin{pair_index + 1}) || floor (varargin{pair_index + 1}) != varargin{pair_index + 1} || varargin{pair_index + 1} < 1) error (["rmmissing: 'MinNumMissing' requires a positive integer"... " number as value"]); endif optMinNumMissingI = varargin{pair_index + 1}; otherwise error ("rmmissing: unknown parameter name '%s'", ... varargin{pair_index}); endswitch pair_index += 2; endwhile endif ## main logic TF = ismissing (A); if (isvector (A)) R = A(TF == 0); elseif (iscellstr(A) || ismatrix (A)) ## matrix: ismissing returns an array, so it must be converted to a row or ## column vector according to the "dim" of choice if (optMinNumMissingI > 1) TF = sum (TF, optDimensionI); TF(TF < optMinNumMissingI) = 0; TF = logical (TF); else TF = any (TF, optDimensionI); endif if (optDimensionI == 2) ## remove the rows R = A((TF == 0), :); else ## remove the columns R = A(:, (TF == 0)); endif else error ("rmmissing: unsupported data"); endif endfunction %!assert (rmmissing ([1,NaN,3]), [1,3]) %!assert (rmmissing ('abcd f'), 'abcdf') %!assert (rmmissing ({'xxx','','xyz'}), {'xxx','xyz'}) %!assert (rmmissing ({'xxx','';'xyz','yyy'}), {'xyz','yyy'}) %!assert (rmmissing ({'xxx','';'xyz','yyy'}, 2), {'xxx';'xyz'}) %!assert (rmmissing ([1,2;NaN,2]), [1,2]) %!assert (rmmissing ([1,2;NaN,2], 2), [2,2]') %!assert (rmmissing ([1,2;NaN,4;NaN,NaN],"MinNumMissing", 2), [1,2;NaN,4]) ## Test second output %!test %! x = [1:6]; %! x([2,4]) = NaN; %! [~, idx] = rmmissing (x); %! assert (idx, logical ([0, 1, 0, 1, 0, 0])); %! assert (class(idx), 'logical'); %! x = reshape (x, [2, 3]); %! [~, idx] = rmmissing (x); %! assert (idx, logical ([0; 1])); %! assert (class(idx), 'logical'); %! [~, idx] = rmmissing (x, 2); %! assert (idx, logical ([1, 1, 0])); %! assert (class(idx), 'logical'); %! [~, idx] = rmmissing (x, 1, "MinNumMissing", 2); %! assert (idx, logical ([0; 1])); %! assert (class(idx), 'logical'); %! [~, idx] = rmmissing (x, 2, "MinNumMissing", 2); %! assert (idx, logical ([0, 0, 0])); %! assert (class(idx), 'logical'); ## Test data type handling %!assert (rmmissing (single ([1 2 NaN; 3 4 5])), single ([3 4 5])) %!assert (rmmissing (logical (ones (3))), logical (ones (3))) %!assert (rmmissing (int32 (ones (3))), int32 (ones (3))) %!assert (rmmissing (uint32 (ones (3))), uint32 (ones (3))) %!assert (rmmissing ({1, 2, 3}), {1, 2, 3}) %!assert (rmmissing ([struct, struct, struct]), [struct, struct, struct]) ## Test empty input handling %!assert (rmmissing ([]), []) %!assert (rmmissing (ones (1,0)), ones (1,0)) %!assert (rmmissing (ones (1,0), 1), ones (1,0)) %!assert (rmmissing (ones (1,0), 2), ones (1,0)) %!assert (rmmissing (ones (0,1)), ones (0,1)) %!assert (rmmissing (ones (0,1), 1), ones (0,1)) %!assert (rmmissing (ones (0,1), 2), ones (0,1)) %!error rmmissing (ones (0,1,2)) ## Test input validation %!error rmmissing () %!error rmmissing (ones(2,2,2)) %!error rmmissing ([1 2; 3 4], 5) %!error rmmissing ([1 2; 3 4], "XXX", 1) %!error <'MinNumMissing'> rmmissing ([1 2; 3 4], 2, "MinNumMissing", -2) %!error <'MinNumMissing'> rmmissing ([1 2; 3 4], "MinNumMissing", 3.8) %!error <'MinNumMissing'> rmmissing ([1 2; 3 4], "MinNumMissing", [1 2 3]) %!error <'MinNumMissing'> rmmissing ([1 2; 3 4], "MinNumMissing", 'xxx') statistics-release-1.6.3/inst/runstest.m000066400000000000000000000300551456127120000203540ustar00rootroot00000000000000## Copyright (C) 2013 Nir Krakauer ## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{h} =} runstest (@var{x}) ## @deftypefnx {statistics} {@var{h} =} runstest (@var{x}, @var{v}) ## @deftypefnx {statistics} {@var{h} =} runstest (@var{x}, @qcode{"ud"}) ## @deftypefnx {statistics} {@var{h} =} runstest (@dots{}, @var{Name}, @var{Value}) ## @deftypefnx {statistics} {[@var{h}, @var{pval}, @var{stats}] =} runstest (@dots{}) ## ## Run test for randomness in the vector @var{x}. ## ## @code{@var{h} = runstest (@var{x})} calculates the number of runs of ## consecutive values above or below the mean of @var{x} and tests the null ## hypothesis that the values in the data vector @var{x} come in random order. ## @var{h} is 1 if the test rejects the null hypothesis at the 5% significance ## level, or 0 otherwise. ## ## @code{@var{h} = runstest (@var{x}, @var{v})} tests the null hypothesis based ## on the number of runs of consecutive values above or below the specified ## reference value @var{v}. Values exactly equal to @var{v} are omitted. ## ## @code{@var{h} = runstest (@var{x}, @qcode{"ud"})} calculates the number of ## runs up or down and tests the null hypothesis that the values in the data ## vector @var{x} follow a trend. Too few runs indicate a trend, while too ## many runs indicate an oscillation. Values exactly equal to the preceding ## value are omitted. ## ## @code{@var{h} = runstest (@dots{}, @var{Name}, @var{Value})} specifies ## additional options to the above tests by one or more @var{Name}-@var{Value} ## pair arguments. ## ## @multitable @columnfractions 0.15 0.05 0.8 ## @headitem Name @tab @tab Value ## @item @qcode{"alpha"} @tab @tab the significance level. Default is 0.05. ## ## @item @qcode{"method"} @tab @tab a string specifying the method used to ## compute the p-value of the test. It can be either @qcode{"exact"} to use an ## exact algorithm, or @qcode{"approximate"} to use a normal approximation. The ## default is @qcode{"exact"} for runs above/below, and for runs up/down when ## the length of x is less than or equal to 50. When testing for runs up/down ## and the length of @var{x} is greater than 50, then the default is ## @qcode{"approximate"}, and the @qcode{"exact"} method is not available. ## ## @item @qcode{"tail"} @tab @tab a string specifying the alternative hypothesis ## @end multitable ## @multitable @columnfractions 0.2 0.15 0.05 0.5 ## @item @tab @qcode{"both"} @tab @tab two-tailed (default) ## @item @tab @qcode{"left"} @tab @tab left-tailed ## @item @tab @qcode{"right"} @tab @tab right-tailed ## @end multitable ## ## @seealso{signrank, signtest} ## @end deftypefn function [h, pval, stats] = runstest (x, v, varargin) ## Check arguments if (nargin < 1) print_usage; endif ## Check X being a vector of scalar values if (! isvector (x) || ! isnumeric (x)) error ("runstest: X must be a vector a scalar values."); else ## Remove missing values (NaNs) x(isnan (x)) = []; endif ## Check second argument being either a scalar reference number or "ud" string if (nargin > 1) if (isempty (v)) v = mean (x); endif if (isnumeric (v) && isscalar (v)) x = sign (x - v); rm = x == 0; if (sum (rm) > 0) warning ("runstest: %d elements equal to V were omitted.", sum (rm)); endif x(rm) = []; N = numel(x); UD = false; elseif (strcmpi (v, "ud")) x = diff (x); rm = x == 0; if (sum (rm) > 0) warning ("runstest: %d repeated elements were omitted.", sum (rm)); endif x(rm) = []; N = numel(x) + 1; UD = true else error ("runstest: V must be either a scalar number or 'ud' char string."); endif v = v; else v = mean (x); x = sign (x - v); rm = x == 0; if (sum (rm) > 0) warning ("runstest: %d elements equal to 'mean(X)' were omitted.", ... sum (rm)); endif x(rm) = []; N = numel(x); UD = false; endif ## Get number of runs n_up = sum (x==1); n_dn = numel (x) - n_up; ## Add defaults alpha = 0.05; if (N < 50 || ! UD) method = "exact"; else method = "approximate"; endif tail = "both"; ## Parse optional arguments and validate parameters while (numel (varargin) > 1) switch (lower (varargin{1})) case "alpha" alpha = varargin{2}; if (! isscalar (alpha) || ! isnumeric (alpha) || alpha <= 0 || alpha >= 1) error ("runstest: invalid value for alpha."); endif case "method" method = varargin{2}; if (! any (strcmpi (method, {"exact", "approximate"}))) error ("runstest: invalid value for method."); endif if (strcmpi (method, "exact") && N > 50) warning ("runstest: exact method is not available for N > 50."); method = "approximate"; endif case "tail" tail = varargin{2}; if (! any (strcmpi (tail, {"both", "left", "right"}))) error ("runstest: invalid value for tail."); endif otherwise error ("runstest: invalid optional argument."); endswitch varargin([1:2]) = []; endwhile ## Do the calculations here if (N > 0) R_num = sum (x([1:end-1]) != x([2:end])) + 1; ##R_num = sum ((x(1:(end-1)) .* x(2:end)) < 0) + 1; #number of runs ## Special case if (N == 1) z = NaN; ## Compute with z statistic else ## Handle up/down or above/below if (UD) R_bar = (2 * N - 1) / 3; R_std = sqrt ((16 * N - 29) / 90); else R_bar = 1 + 2 * n_up * n_dn / N; R_std = sqrt (2 * n_up * n_dn * (2 * n_up * n_dn - N) / ... (N ^ 2 * (N - 1))); end ## Handle tail if (strcmpi (tail, "both")) tc = -0.5 * sign (R_num - R_bar); elseif (strcmpi (tail, "left")) tc = 0.5; else tc = -0.5; endif ## Compute z value if (R_std > 0) z = (R_num + tc - R_bar) / R_std; else z = Inf * sign (R_num + tc - R_bar); endif endif ## Exact method if (strcmpi (method, "exact")) if (UD) R_max = N - 1; ## Get precalculated results from rundist.mat file temp = load ("rundist.mat"); runD = temp.rundist; M = runD{N}; p = M / sum (M); p = p([1:R_max]); else R_max = 2 * min ([n_up, n_dn]) + 1; if (n_up == 0 || n_dn == 0) p = 1; else R_vec = [1:R_max]; p = zeros (size (R_vec)); t = mod (R_vec, 2) == 0; ## Compute even if (any (t)) k = R_vec(t) / 2; p(t) = 2 * exp (logBinoCoeff (n_up - 1, k - 1) + ... logBinoCoeff (n_dn - 1, k - 1) - ... logBinoCoeff (N, n_dn)); endif ## Compute odd if (any (! t)) k = floor (R_vec(! t) / 2); logdenom = logBinoCoeff (N, n_dn); p(! t) = exp (logBinoCoeff (n_up - 1, k - 1) + ... logBinoCoeff (n_dn - 1, k) - logdenom) + ... exp (logBinoCoeff (n_up - 1, k) + ... logBinoCoeff (n_dn - 1, k - 1) - logdenom); endif endif endif if (isempty (p)) p_ex = 1; else p_ex = p(R_num); end p_lo = sum (p([1:R_num-1])); p_hi = sum (p([R_num+1:end])); else ## Compute with z statistic p_ex = 0; p_lo = normcdf (z); p_hi = normcdf (-z); end ## Assume a constant vector in data else R_num = NaN; p_ex = 1; p_lo = 0; p_hi = 0; z = NaN; endif ## Compute tail probability if (strcmpi (tail, "both")) pval = min([1, 2*(p_ex + min ([p_lo, p_hi]))]); elseif (strcmpi (tail, "left")) pval = p_ex + p_lo; else pval = p_ex + p_hi; endif ## Retyrn decision of test h = double (pval <= alpha); if (nargout > 2) stats.nruns = R_num; stats.n1 = n_up; stats.n0 = n_dn; stats.z = z; endif endfunction ## Compute the log of the binomial coefficient function logBC = logBinoCoeff(N,n) logBC = gammaln (N + 1) - gammaln (n + 1) - gammaln (N - n + 1); endfunction %!test %! ## NIST beam deflection data %! ## http://www.itl.nist.gov/div898/handbook/eda/section4/eda425.htm %! data = [-213, -564, -35, -15, 141, 115, -420, -360, 203, -338, -431, ... %! 194, -220, -513, 154, -125, -559, 92, -21, -579, -52, 99, -543, ... %! -175, 162, -457, -346, 204, -300, -474, 164, -107, -572, -8, 83, ... %! -541, -224, 180, -420, -374, 201, -236, -531, 83, 27, -564, -112, ... %! 131, -507, -254, 199, -311, -495, 143, -46, -579, -90, 136, ... %! -472, -338, 202, -287, -477, 169, -124, -568, 17, 48, -568, -135, ... %! 162, -430, -422, 172, -74, -577, -13, 92, -534, -243, 194, -355, ... %! -465, 156, -81, -578, -64, 139, -449, -384, 193, -198, -538, 110, ... %! -44, -577, -6, 66, -552, -164, 161, -460, -344, 205, -281, -504, ... %! 134, -28, -576, -118, 156, -437, -381, 200, -220, -540, 83, 11, ... %! -568, -160, 172, -414, -408, 188, -125, -572, -32, 139, -492, ... %! -321, 205, -262, -504, 142, -83, -574, 0, 48, -571, -106, 137, ... %! -501, -266, 190, -391, -406, 194, -186, -553, 83, -13, -577, -49, ... %! 103, -515, -280, 201, 300, -506, 131, -45, -578, -80, 138, -462, ... %! -361, 201, -211, -554, 32, 74, -533, -235, 187, -372, -442, 182, ... %! -147, -566, 25, 68, -535, -244, 194, -351, -463, 174, -125, -570, ... %! 15, 72, -550, -190, 172, -424, -385, 198, -218, -536, 96]; %! [h, p, stats] = runstest (data, median (data)); %! expected_h = 1; %! expected_p = 0.008562; %! expected_z = 2.6229; %! assert (h, expected_h); %! assert (p, expected_p, 1E-6); %! assert (stats.z, expected_z, 1E-4); %!shared x %! x = [45, -60, 1.225, 55.4, -9 27]; %!test %! [h, p, stats] = runstest (x); %! assert (h, 0); %! assert (p, 0.6, 1e-14); %! assert (stats.nruns, 5); %! assert (stats.n1, 3); %! assert (stats.n0, 3); %! assert (stats.z, 0.456435464587638, 1e-14); %!test %! [h, p, stats] = runstest (x, [], "method", "approximate"); %! assert (h, 0); %! assert (p, 0.6481, 1e-4); %! assert (stats.z, 0.456435464587638, 1e-14); %!test %! [h, p, stats] = runstest (x, [], "tail", "left"); %! assert (h, 0); %! assert (p, 0.9, 1e-14); %! assert (stats.z, 1.369306393762915, 1e-14); %!error runstest (ones (2,20)) %!error runstest (["asdasda"]) %!error ... %! runstest ([2 3 4 3 2 3 4], "updown") %!error ... %! runstest ([2 3 4 3 2 3 4], [], "alpha", 0) %!error ... %! runstest ([2 3 4 3 2 3 4], [], "alpha", [0.02 0.2]) %!error ... %! runstest ([2 3 4 3 2 3 4], [], "alpha", 1.2) %!error ... %! runstest ([2 3 4 3 2 3 4], [], "alpha", -0.05) %!error ... %! runstest ([2 3 4 3 2 3 4], [], "method", "some") %!error ... %! runstest ([2 3 4 3 2 3 4], [], "tail", "some") %!error ... %! runstest ([2 3 4 3 2 3 4], [], "option", "some") statistics-release-1.6.3/inst/sampsizepwr.m000066400000000000000000001225231456127120000210530ustar00rootroot00000000000000## Copyright (C) 2022 Andrew Penn ## Copyright (C) 2022 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{n} =} sampsizepwr (@var{testtype}, @var{params}, @var{p1}) ## @deftypefnx {statistics} {@var{n} =} sampsizepwr (@var{testtype}, @var{params}, @var{p1}, @var{power}) ## @deftypefnx {statistics} {@var{power} =} sampsizepwr (@var{testtype}, @var{params}, @var{p1}, [], @var{n}) ## @deftypefnx {statistics} {@var{p1} =} sampsizepwr (@var{testtype}, @var{params}, [], @var{power}, @var{n}) ## @deftypefnx {statistics} {[@var{n1}, @var{n2}] =} sampsizepwr (@qcode{"t2"}, @var{params}, @var{p1}, @var{power}) ## @deftypefnx {statistics} {[@dots{}] =} sampsizepwr (@var{testtype}, @var{params}, @var{p1}, @var{power}, @var{n}, @var{name}, @var{value}) ## ## Sample size and power calculation for hypothesis test. ## ## @code{sampsizepwr} computes the sample size, power, or alternative parameter ## value for a hypothesis test, given the other two values. For example, you can ## compute the sample size required to obtain a particular power for a ## hypothesis test, given the parameter value of the alternative hypothesis. ## ## @code{@var{n} = sampsizepwr (@var{testtype}, @var{params}, @var{p1})} returns ## the sample size N required for a two-sided test of the specified type to have ## a power (probability of rejecting the null hypothesis when the alternative is ## true) of 0.90 when the significance level (probability of rejecting the null ## hypothesis when the null hypothesis is true) is 0.05. @var{params} specifies ## the parameter values under the null hypothesis. P1 specifies the value of ## the single parameter being tested under the alternative hypothesis. For the ## two-sample t-test, N is the value of the equal sample size for both samples, ## @var{params} specifies the parameter values of the first sample under the ## null and alternative hypotheses, and P1 specifies the value of the single ## parameter from the other sample under the alternative hypothesis. ## ## The following TESTTYPE values are available: ## ## @multitable @columnfractions 0.05 0.1 0.85 ## @item @tab "z" @tab one-sample z-test for normally distributed data with ## known standard deviation. @var{params} is a two-element vector [MU0 SIGMA0] ## of the mean and standard deviation, respectively, under the null hypothesis. ## P1 is the value of the mean under the alternative hypothesis. ## @item @tab "t" @tab one-sample t-test or paired t-test for normally ## distributed data with unknown standard deviation. @var{params} is a ## two-element vector [MU0 SIGMA0] of the mean and standard deviation, ## respectively, under the null hypothesis. P1 is the value of the mean under ## the alternative hypothesis. ## @item @tab "t2" @tab two-sample pooled t-test (test for equal means) for ## normally distributed data with equal unknown standard deviations. ## @var{params} is a two-element vector [MU0 SIGMA0] of the mean and standard ## deviation of the first sample under the null and alternative hypotheses. P1 ## is the the mean of the second sample under the alternative hypothesis. ## @item @tab "var" @tab chi-square test of variance for normally distributed ## data. @var{params} is the variance under the null hypothesis. P1 is the ## variance under the alternative hypothesis. ## @item @tab "p" @tab test of the P parameter (success probability) for a ## binomial distribution. @var{params} is the value of P under the null ## hypothesis. P1 is the value of P under the alternative hypothesis. ## @item @tab "r" @tab test of the correlation coefficient parameter for ## significance. @var{params} is the value of r under the null hypothesis. ## P1 is the value of r under the alternative hypothesis. ## @end multitable ## ## The "p" test for the binomial distribution is a discrete test for which ## increasing the sample size does not always increase the power. For N values ## larger than 200, there may be values smaller than the returned N value that ## also produce the desired power. ## ## @code{@var{n} = sampsizepwr (@var{testtype}, @var{params}, @var{p1}, ## @var{power})} returns the sample size N such that the power is @var{power} ## for the parameter value P1. For the two-sample t-test, N is the equal sample ## size of both samples. ## ## @code{[@var{n1}, @var{n2}] = sampsizepwr ("t2", @var{params}, @var{p1}, ## @var{power})} returns the sample sizes @var{n1} and @var{n2} for the two ## samples. These values are the same unless the "ratio" parameter, ## @code{@var{ratio} = @var{n2} / @var{n2}}, is set to a value other than ## the default (See the name/value pair definition of ratio below). ## ## @code{@var{power} = sampsizepwr (@var{testtype}, @var{params}, @var{p1}, [], ## @var{n})} returns the power achieved for a sample size of @var{n} when the ## true parameter value is @var{p1}. For the two-sample t-test, @var{n} is the ## smaller one of the two sample sizes. ## ## @code{@var{p1} = sampsizepwr (@var{testtype}, @var{params}, [], @var{power}, ## @var{n})} returns the parameter value detectable with the specified sample ## size @var{n} and power @var{power}. For the two-sample t-test, @var{n} is ## the smaller one of the two sample sizes. When computing @var{p1} for the "p" ## test, if no alternative can be rejected for a given @var{params}, @var{n} and ## @var{power} value, the function displays a warning message and returns NaN. ## ## @code{[@dots{}] = sampsizepwr (@dots{}, @var{n}, @var{name}, @var{value})} ## specifies one or more of the following @var{name} / @var{value} pairs: ## ## @multitable @columnfractions 0.05 0.15 0.8 ## @item @tab "alpha" @tab significance level of the test (default is 0.05) ## @item @tab "tail" @tab the type of test which can be: ## @end multitable ## ## @multitable @columnfractions 0.1 0.20 0.7 ## @item @tab "both" @tab two-sided test for an alternative @var{p1} not equal ## to @var{params} ## ## @item @tab "right" @tab one-sided test for an alternative @var{p1} larger ## than @var{params} ## ## @item @tab "left" @tab one-sided test for an alternative @var{p1} smaller ## than @var{params} ## @end multitable ## ## @multitable @columnfractions 0.05 0.15 0.8 ## @item @tab "ratio" @tab desired ratio @var{n2} / @var{n2} of the larger ## sample size @var{n2} to the smaller sample size @var{n1}. Used only for the ## two-sample t-test. The value of @code{@var{ratio}} is greater than or equal ## to 1 (default is 1). ## @end multitable ## ## @code{sampsizepwr} computes the sample size, power, or alternative hypothesis ## value given values for the other two. Specify one of these as [] to compute ## it. The remaining parameters (and ALPHA, RATIO) can be scalars or arrays of ## the same size. ## ## @seealso{vartest, ttest, ttest2, ztest, binocdf} ## @end deftypefn function [out, N2] = sampsizepwr (TestType, params, p1, power, n, varargin) ## Check for valid number of input arguments narginchk (3, Inf); ## Add defaults for 3 or 4 input arguments if (nargin == 3) power = 0.90; n = []; elseif (nargin == 4) n = []; endif ## Add defaults for extra arguments alpha = 0.05; tail = "both"; ratio = 1; ## Check for valid test type and corresponding size of parameters t_types = {"z", "t", "t2", "var", "p", "r"}; nparams = [2, 2, 2, 1, 1, 1]; if (isempty (TestType) || ! ischar (TestType) || size (TestType, 1) != 1) error ("sampsizepwr: test type must be a non-empty string."); endif if (sum (strcmpi (TestType, t_types)) != 1) error ("sampsizepwr: invalid test type."); endif if (! isnumeric (params)) error ("sampsizepwr: parameters must be numeric."); endif if (length (params) != nparams(strcmpi (TestType, t_types))) error ("sampsizepwr: invalid size of parameters for this test type."); endif ## Check for correct number of output arguments if ((nargout > 1) && ! strcmpi (TestType, "t2")) error ("sampsizepwr: wrong number of output arguments for this test type."); endif Lbound = [-Inf, -Inf, -Inf, 0, 0, -1]; Ubound = [ Inf, Inf, Inf, Inf, 1, 1]; Lbound = Lbound(strcmpi (TestType, t_types)); Ubound = Ubound(strcmpi (TestType, t_types)); ## Check for invalid parameters specific to each test type switch (lower (TestType)) case "z" if (params(2) <= 0) error ("sampsizepwr: negative or zero variance."); endif PowerFunction = @PowerFunction_N; case "t" if (params(2) <= 0) error ("sampsizepwr: negative or zero variance."); endif PowerFunction = @PowerFunction_T; case "t2" if (params(2) <= 0) error ("sampsizepwr: negative or zero variance."); endif PowerFunction = @PowerFunction_T2; case "var" if (params(1) <= 0) error ("sampsizepwr: negative or zero variance."); endif PowerFunction = @PowerFunction_V; case "p" if (params(1) <= 0 || params(1) >= 1) error ("sampsizepwr: out of range probability."); endif PowerFunction = @PowerFunction_P; case "r" if (params(1) <= -1 || params(1) >= 1) error ("sampsizepwr: out of range regression coefficient."); elseif (params(1) == 0) error ("sampsizepwr: regression coefficient must not be 0."); endif PowerFunction = @PowerFunction_R; endswitch ## Get and validate optional parameters numarg = numel (varargin); argpos = 1; while (numarg) argname = varargin{argpos}; switch (lower (argname)) case "alpha" alpha = varargin{argpos + 1}; if (! isnumeric (alpha) || any (alpha(:) <= 0) || any( alpha(:) >= 1)) error ("sampsizepwr: invalid value for 'alpha' parameter."); endif case "tail" tail = varargin{argpos + 1}; if (! ischar (tail) || (size (tail, 1) != 1)) error ("sampsizepwr: 'tail' parameter must be a non-empty string."); endif if (sum (strcmpi (tail, {"left","both","right"})) != 1) error ("sampsizepwr: invalid value for 'tail' parameter."); endif case "ratio" ratio = varargin{argpos + 1}; if (! isnumeric (ratio) || any (ratio(:) < 1)) error ("sampsizepwr: invalid value for 'ratio' parameter."); endif endswitch numarg -= 2; argpos += 2; endwhile ## Check that only one of either p1, power, or n are missing if (isempty(p1) + isempty(power) + isempty(n) != 1) error ("sampsizepwr: only one of either p1, power, or n must be missing."); endif ## Check for valid P1 if (! isempty (p1)) if (! isnumeric (p1)) error ("sampsizepwr: alternative hypothesis parameter must be numeric."); elseif ((! strcmpi (tail, "right") && any (p1(:) <= Lbound)) || ... (! strcmpi (tail, "left") && any (p1(:) >= Ubound))) error ("sampsizepwr: alternative hypothesis parameter out of range."); endif endif ## Check for valid POWER if (! isempty (power) && ... (! isnumeric (power) || any (power(:) <= 0) || any (power(:) >= 1))) error ("sampsizepwr: invalid value for POWER."); endif if (! isempty (power) && any (power(:) <= alpha(:))) error ("sampsizepwr: Cannot compute N or P1 unless POWER > 'alpha'."); endif ## Expand non-empty P1/POWER/N so they are all the same size if (isempty (p1)) [err, power, n, alpha, ratio] = common_size (power, n, alpha, ratio); outclass = getclass (power, n, alpha, ratio); elseif (isempty (power)) [err, p1, n, alpha, ratio] = common_size (p1, n, alpha, ratio); outclass = getclass (p1, n, alpha, ratio); else # n is empty [err, p1, power, alpha, ratio] = common_size (p1, power, alpha, ratio); outclass = getclass (power, p1, alpha, ratio); endif if (err > 0) error ("sampsizepwr: input arguments size mismatch."); end ## Check for valid options when computing N if (isempty (n)) if (any (p1(:) == params(1))) error ("sampsizepwr: Same value for null and alternative hypothesis."); elseif (strcmpi (tail, "left") && any (p1(:) >= params(1))) error ("sampsizepwr: Invalid P1 for testing left tail."); elseif (strcmpi (tail, "right") && any(p1(:) <= params(1))) error ("sampsizepwr: Invalid P1 for testing right tail."); endif endif ## Allocate output of proper size and class out = zeros (size (alpha), outclass); ## Compute whichever one of P1/POWER/N that is now empty if (isempty (p1)) ## Compute effect size given power and sample size switch (lower (TestType)) case "z" ## z (normal) test out(:) = findP1z (params(1), params(2), power, n, alpha, tail); case "t" ## t-test out(:) = findP1t (params(1), params(2), power, n, alpha, tail); case "t2" ## two-sample t-test out(:) = findP1t2 (params(1), params(2), power, n, alpha, tail, ratio); case "var" ## chi-square (variance) test out(:) = findP1v (params(1), power, n, alpha, tail); case "p" ## binomial (p) test out(:) = findP1p (params(1), power, n, alpha, tail); case "r" ## regression coefficient (r) test out(:) = findP1r (params(1), power, n, alpha, tail); endswitch elseif (isempty (power)) ## Compute power given effect size and sample size switch (lower (TestType)) case {"z", "t"} out(:) = PowerFunction (params(1), p1, params(2), alpha, tail, n); case "t2" out(:) = PowerFunction (params(1), p1, params(2), alpha, tail, n, ratio); case {"var", "p", "r"} out(:) = PowerFunction (params(1), p1, alpha, tail, n); endswitch else ## Compute sample size given power and effect size switch (lower (TestType)) case {"z", "t"} ## Calculate one-sided Z value directly out(:) = z1testN (params(1), p1, params(2), power, alpha, tail); ## Iterate upward from there for the other cases if (strcmpi (TestType, "t") || strcmp (tail, "both")) if (strcmpi (TestType, "t")) out = max (out, 2); endif ## Count upward until we get the value we need elem = 1:numel (alpha); while (! isempty (elem)) actualpower = PowerFunction_T (params(1), p1(elem), params(2), ... alpha(elem), tail, out(elem)); elem = elem(actualpower < power(elem)); out(elem) = out(elem) + 1; endwhile endif case "t2" ## Initialize second output argument N2 = zeros (size (alpha), outclass); ## Caculate one-sided two-sample t-test iteratively [out(:), N2(:)] = t1testN (params(1), p1, params(2), power, ... alpha, tail, ratio); case "var" ## Use a binary search method out(:) = searchbinaryN (PowerFunction, [1, 100], params(1), ... p1, power, alpha, tail); case "p" ## Use a binary search method out(:) = searchbinaryN (PowerFunction, [0, 100], params(1), ... p1, power, alpha, tail); ## Adjust for discrete distribution t = out <= 200; if (any (t(:))) ## Try values from 1 up to N (out) and pick the smallest value out(t) = adjdiscreteN (out(t), PowerFunction, params(1), ... p1(t), alpha(t), tail, power(t)); endif if (any (! t(:))) warning ("sampsizepwr: approximate N."); endif case "r" ## Calculate sample size using Student's t distribution out(:) = r1testN (params(1), p1, power, alpha, tail); endswitch endif endfunction ## Define class for output function out = getclass (varargin) if (class (varargin{1}) == "single" || class (varargin{2}) == "single" || ... class (varargin{3}) == "single" || class (varargin{4}) == "single") out = "single"; else out = "double"; endif endfunction ## Sample size calculation for the one-sided Z test function N = z1testN (mu0, mu1, sig, desiredpower, alpha, tail) ## Compute the one-sided normal value directly if (strcmp (tail, "both")) alpha = alpha ./ 2; endif z1 = -norminv (alpha); z2 = norminv (1 - desiredpower); mudiff = abs (mu0 - mu1) / sig; N = ceil (((z1 - z2) ./ mudiff) .^ 2); endfunction ## Sample size calculation for R test function N = rtestN (r0, r1, desiredpower, alpha, tail) ## Compute only for 2-tailed test if (strcmp (tail, "both")) alpha = alpha ./ 2; else error ("sampsizepwr: only 2-tailed testing for regression coefficient."); endif ## Get quantiles of the standard normal deviates for alpha and power Za = norminv (alpha); Zb = norminv (1 - desiredpower); ## Compute difference in regression coefficients rdiff = abs (r0 - r1) C = 0.5 * log ((1 + rdiff) / (1 - rdiff)); ## Compute sample size N = ((Za + Zb) / C) .^ 2 + 3; endfunction ## Find alternative hypothesis parameter value P1 for Z test function mu1 = findP1z (mu0, sig, desiredpower, N, alpha, tail) if (strcmp (tail, "both")) alpha = alpha ./ 2; end sig = sig ./ sqrt (N); ## Get quantiles of the normal or t distribution if (strcmp (tail, "left")) z1 = norminv (alpha); z2 = norminv (desiredpower); else # upper or two-tailed test z1 = norminv (1 - alpha); z2 = norminv (1 - desiredpower); endif mu1 = mu0 + sig .* (z1 - z2); ## For 2-sided test, refine by taking the other tail into account if (strcmp (tail, "both")) elem = 1:numel (alpha); desiredbeta = 1 - desiredpower; betahi = desiredbeta; betalo = zeros (size (desiredbeta)); while (true) ## Compute probability of being below the lower critical value under H1 betalo(elem) = normcdf (-z1(elem) + (mu0 - mu1(elem)) ./ sig(elem)); ## See if the upper and lower probabilities are close enough elem = elem(abs ((betahi(elem) - betalo(elem)) - desiredbeta(elem)) > ... 1e-6 * desiredbeta(elem)); if (isempty (elem)) break endif ## Find a new mu1 by adjusting beta to take lower tail into account betahi(elem) = desiredbeta(elem) + betalo(elem); mu1(elem) = mu0 + sig(elem) .* (z1(elem) - norminv (betahi(elem))); endwhile endif endfunction ## Find alternative hypothesis parameter value P1 for t-test function mu1 = findP1t (mu0, sig, desiredpower, N, alpha, tail) if (strcmp (tail, "both")) a2 = alpha ./ 2; else a2 = alpha; endif ## Get quantiles of the normal or t distribution if (strcmp (tail, "left")) z1 = norminv(alpha); z2 = norminv(desiredpower); else # upper or two-tailed test z1 = norminv(1-a2); z2 = norminv(1-desiredpower); endif mu1 = mu0 + sig .* (z1-z2) ./ sqrt (N); ## Refine using fzero for j=1:numel (mu1) if (mu1(j) > mu0) F0 = @(mu1arg) PowerFunction_T (mu0, max (mu0, mu1arg), sig, alpha(j), ... tail, N(j)) - desiredpower(j); else F0 = @(mu1arg) desiredpower(j) - PowerFunction_T (mu0, min (mu0, ... mu1arg), sig, alpha(j), tail, N(j)); endif mu1(j) = fzero (F0, mu1(j)); endfor endfunction ## Sample size calculation for the one-sided two-sample t-test function [N1, N2] = t1testN (mu0, mu1, sig, desiredpower, alpha, tail, ratio) if (strcmp (tail, "both")) alpha = alpha ./ 2; endif ## Compute the initial value of N, approximated by normal distribution z1 = -norminv (alpha); z2 = norminv (1 - desiredpower); n_0 = ceil ((z1 - z2) .^2 .* (sig ./ abs ((mu0 - mu1))) .^ 2 * 2); ## n need to be > 1, otherwise the degree of freedom of t < 0 n_0(n_0 <= 1) = 2; N = ones (size (n_0)); ## iteratively update the sample size if (strcmp (tail, "both")) for j = 1:numel (n_0) F = @(n) nctcdf (tinv (alpha(j), n + ratio(j) .* n - 2), ... n + ratio(j) .* n - 2, abs (mu1(j) - mu0) ./ ... (sig .* sqrt (1 ./ n + 1 ./ (ratio(j) .* n)))) + ... (1 - nctcdf (- tinv (alpha(j), n + ratio(j) .* n - 2), ... n + ratio(j) .* n - 2, abs (mu1(j) - mu0) ./ ... (sig .* sqrt (1 ./ n + 1 ./ (ratio(j) .* n)))))- ... desiredpower(j); N(j) = localfzero (F, n_0(j), ratio); endfor else for j = 1:numel (n_0) F = @(n) (1 - nctcdf (- tinv (alpha(j), n + ratio(j) .* n - 2), ... n + ratio(j) .* n - 2, abs (mu1(j) - mu0) ./ (sig .* ... sqrt (1 ./ n + 1 ./ (ratio(j) .* n))))) - desiredpower(j); N(j) = localfzero (F, n_0(j), ratio); endfor endif N1 = ceil (N); N2 = ceil (ratio .* N); endfunction ## Find alternative hypothesis parameter value P1 for two-sample t-test function mu1 = findP1t2 (mu0, sig, desiredpower, N, alpha, tail, ratio) if (strcmp (tail, "both")) a2 = alpha ./ 2; else a2 = alpha; endif ## Get quantiles of the normal or t distribution if (strcmp (tail, "left")) t1 = tinv (alpha, N + ratio .* N - 2); t2 = tinv (desiredpower, N + ratio .* N - 2); else # upper or two-tailed test t1 = tinv (1 - a2, N + ratio .* N - 2); # upper tail under H0 t2 = tinv (1 - desiredpower, N + ratio .* N - 2); # lower tail under H1 endif mu1 = mu0 + sig .* (t1 - t2) .* sqrt (1 ./ N + 1 ./ (ratio .* N)); ## Refine using fzero for j = 1:numel (mu1) if (mu1(j) > mu0) F0 = @(mu1arg) PowerFunction_T2 (mu0, max (mu0, mu1arg), sig, ... alpha(j), tail, N(j), ratio(j)) - desiredpower(j); else F0 = @(mu1arg) desiredpower(j) - PowerFunction_T2 (mu0, min (mu0, ... mu1arg), sig, alpha(j), tail, N(j), ratio(j)); endif mu1(j) = fzero (F0, mu1(j)); endfor endfunction ## Find alternative hypothesis parameter value P1 for variance test function p1 = findP1v (p0, desiredpower, N, alpha, tail) ## F and Finv are the cdf and inverse cdf F = @(x,n,p1) chi2cdf (x .* (n - 1) ./ p1, n - 1); # cdf for s^2 Finv = @(p,n,p1) p1 .* chi2inv (p, n - 1) ./ (n - 1); # inverse if (strcmp (tail, "both")) alpha = alpha ./ 2; endif desiredbeta = 1 - desiredpower; ## Calculate critical values and p1 for one-sided test if (! strcmp (tail, "left")) critU = Finv (1 - alpha, N, p0); p1 = 1 ./ Finv (desiredbeta, N, 1 ./ critU); endif if (! strcmp (tail, "right")) critL = Finv (alpha, N, p0); endif if (strcmp (tail, "left")) p1 = 1 ./ Finv (desiredpower, N, 1 ./ critL); endif if (strcmp (tail, "both")) ## For 2-sided test, we have the upper tail probability under H1. ## Refine by taking the other tail into account. elem = 1:numel (alpha); betahi = desiredbeta; betalo = zeros (size (desiredbeta)); while (true) ## Compute probability of being in the lower tail under H1 betalo(elem) = F (critL(elem), N(elem), p1(elem)); ## See if the upper and lower probabilities are close enough obsbeta = betahi(elem) - betalo(elem); elem = elem(abs (obsbeta - desiredbeta(elem)) > 1e-6 * desiredbeta(elem)); if (isempty (elem)) break endif ## Find a new mu1 by adjusting beta to take lower tail into account betahi(elem) = desiredbeta(elem) + betalo(elem); p1(elem) = 1 ./ Finv (betahi(elem), N(elem), 1 ./ critU(elem)); endwhile endif endfunction ## Find alternative hypothesis parameter value P1 for p test function p1 = findP1p (p0, desiredpower, N, alpha, tail) ## Get critical values [critL, critU] = getcritP (p0, N, alpha, tail); ## Use a normal approximation to find P1 values sigma = sqrt (p0 .* (1 - p0) ./ N); p1 = findP1z (p0, sigma, desiredpower, N, alpha, tail); ## Problem if we have no critical region left if (strcmp (tail, "both")) t = (critL == 0 & critU == N); elseif (strcmp (tail, "right")) t = (critU == N); else t = (critL == 0); endif if (any (t)) warning ("sampsizepwr: No Valid Parameter"); p1(t) = NaN; endif ## Force in bounds t = p1 <= 0; if (any (t(:))) p1(t) = p0 / 2; end t = p1 >= 1; if (any (t(:))) p1(t) = 1 - p0 / 2; end ## Refine using fzero for j=1:numel(p1) if (! isnan (p1(j))); if (p1(j) > p0) F0 = @(p1arg) PowerFunction_P (p0, max (p0, min (1, p1arg)), ... alpha(j), tail, N(j), critL(j), critU(j)) - desiredpower(j); else F0 = @(p1arg) desiredpower(j) - PowerFunction_P (p0, max (0, ... min (p0, p1arg)), alpha(j), tail, N(j), critL(j), critU(j)); endif p1(j) = fzero (F0, p1(j)); endif endfor endfunction ## Find alternative hypothesis parameter value P1 for r test function p1 = findP1r (p0, desiredpower, N, alpha, tail) ## Compute only for 2-tailed test if (! strcmp (tail, "both")) error ("sampsizepwr: only 2-tailed testing for regression coefficient."); endif ## Set initial search boundaries for p1 p1_lo = eps; p1_hi = 1 - eps; ## Compute initial sample size N0 according to P0, POWER and ALPHA N0 = rtestN (p0, 0, desiredpower, alpha, tail); ## Find P0 for N0 == N while (N != N0) if (N0 < N) p1_hi = p0; p1 = (p0 + p1_lo) / 2; p0 = p1; N0 = rtestN (p1, 0, desiredpower, alpha, tail); else p1_lo = p0; p1 = (p0 + p1_hi) / 2; p0 = p1; N0 = rtestN (p1, 0, desiredpower, alpha, tail); endif endwhile endfunction ## Get upper and lower critical values for binomial (p) test. function [critL, critU] = getcritP (p0, N, alpha, tail) ## For two-sided tests, this function tries to compute critical values ## favorable for p0<.5. It does this by allocating alpha/2 to the lower ## tail where the probabilities come in larger chunks, then using any ## left-over alpha, probably more than alpha/2, for the upper tail. ## Get part of alpha available for lower tail if (strcmp (tail, "both")) Alo = alpha ./ 2; elseif (strcmp (tail, "left")) Alo = alpha; else Alo = 0; endif ## Calculate critical values critU = N; critL = zeros(size(N)); if (! strcmp (tail, "right")) critL = binoinv (Alo, N, p0); Alo = binocdf (critL, N, p0); t = (critL < N) & (Alo <= alpha / 2); critL(t) = critL(t) + 1; Alo(! t) = Alo(! t) - binopdf (critL(! t), N(! t), p0); endif if (! strcmp (tail, "left")) Aup = max(0, alpha - Alo); critU = binoinv(1 - Aup, N, p0); endif endfunction ## Sample size calculation via binary search function N = searchbinaryN (F, lohi, p0, p1, desiredpower, alpha, tail) ## Find uper and lower bounds nlo = repmat(lohi(1),size(alpha)); nhi = repmat(lohi(2),size(alpha)); obspower = F(p0,p1,alpha,tail,nhi); ## Iterate on n until we achieve the desired power elem = 1:numel (alpha); while (! isempty (elem)) elem = elem(obspower(elem) < desiredpower(elem)); nhi(elem) = nhi(elem) * 2; obspower(elem) = F (p0, p1(elem), alpha(elem), tail, nhi(elem)); endwhile ## Binary search between these bounds for required sample size elem = find(nhi > nlo+1); while (! isempty (elem)) n = floor ((nhi(elem) + nlo(elem)) / 2); obspower = F (p0, p1(elem), alpha(elem), tail, n); toohigh = (obspower > desiredpower(elem)); nhi(elem(toohigh)) = n(toohigh); nlo(elem(! toohigh)) = n(! toohigh); elem = elem(nhi(elem) > nlo(elem) + 1); endwhile N = nhi; endfunction ## Adjust sample size to take discreteness into account function N = adjdiscreteN (N, PowerFunction, p0, p1, alpha, tail, power) for j=1:numel(N) allN = 1:N(j); obspower = PowerFunction (p0, p1(j), alpha(j), tail, allN); N(j) = allN(find (obspower >= power(j), 1, "first")); endfor endfunction ## Normal power calculation function power = PowerFunction_N (mu0, mu1, sig, alpha, tail, n) S = sig ./ sqrt (n); if (strcmp (tail, "both")) critL = norminv (alpha / 2, mu0, S); critU = mu0 + (mu0 - critL); power = normcdf (critL, mu1, S) + normcdf (-critU, -mu1, S); elseif (strcmp (tail, "right")) crit = mu0 + (mu0 - norminv (alpha, mu0, S)); power = normcdf (-crit, -mu1, S); else crit = norminv (alpha, mu0, S); power = normcdf (crit, mu1, S); endif endfunction ## T power calculation function power = PowerFunction_T (mu0, mu1, sig, alpha, tail, n) S = sig ./ sqrt (n); ncp = (mu1 - mu0) ./ S; if (strcmp (tail, "both")) critL = tinv (alpha / 2, n - 1); critU = -critL; power = nctcdf (critL, n - 1, ncp) + nctcdf (-critU, n - 1, -ncp); elseif (strcmp (tail, "right")) crit = tinv (1 - alpha, n - 1); power = nctcdf (-crit, n - 1, -ncp); else crit = tinv (alpha, n - 1); power = nctcdf (crit, n - 1, ncp); endif endfunction ## Two-sample T power calculation function power = PowerFunction_T2 (mu0, mu1, sig, alpha, tail, n, ratio) ncp = (mu1 - mu0) ./ (sig .* sqrt (1 ./ n + 1 ./ (ratio .* n))); if (strcmp (tail, "both")) critL = tinv (alpha / 2, n + ratio .* n - 2); critU = -critL; power = nctcdf (critL, n + ratio .* n - 2, ncp) + ... nctcdf (-critU, n + ratio .* n - 2, -ncp); elseif (strcmp (tail, "right")) crit = tinv (1 - alpha, n + ratio .* n - 2); power = nctcdf (-crit, n + ratio .* n - 2, -ncp); else crit = tinv (alpha, n + ratio .* n - 2); power = nctcdf (crit, n + ratio .* n - 2, ncp); endif endfunction ## Chi-square power calculation function power = PowerFunction_V (v0, v1, alpha, tail, n) if (strcmp (tail, "both")) critU = v0 .* chi2inv (1 - alpha / 2, n - 1); critL = v0 .* chi2inv (alpha / 2, n - 1); power = chi2cdf (critL ./ v1, n - 1) + chi2cdf (critU ./ v1, n - 1); elseif (strcmp (tail, "right")) crit = v0 .* chi2inv (1 - alpha, n - 1); power = chi2cdf (crit ./ v1, n - 1); else crit = v0 .* chi2inv (alpha, n - 1); power = chi2cdf (crit ./ v1, n - 1); endif endfunction ## Binomial power calculation function [power, critL, critU] = PowerFunction_P (p0, p1, alpha, ... tail, n, critL, critU) if (nargin < 6) [critL, critU] = getcritP (p0, n, alpha, tail); endif if (strcmp (tail, "both")) power = binocdf (critL - 1, n, p1) + 1 - binocdf (critU, n, p1); elseif (strcmp (tail, "right")) power = 1 - binocdf (critU , n, p1); else power = binocdf (critL - 1, n, p1); endif endfunction ## Regression power calculation function power = PowerFunction_R (r0, r1, alpha, tail, n) ## Compute only for 2-tailed test if (! strcmp (tail, "both")) error ("sampsizepwr: only 2-tailed testing for regression coefficient."); endif ## Set initial search boundaries for power dp_lo = eps; dp_hi = 1 - eps; power = 0.5; ## Compute initial sample size N0 according to P0, POWER and ALPHA N0 = rtestN (r0, r1, power, alpha, tail); ## Find POWER for N0 == N while (N != N0) if (N0 < N) dp_hi = power; power = (power + dp_lo) / 2; N0 = rtestN (r0, r1, power, alpha, tail); else dp_lo = power; power = (power + pd_hi) / 2; N0 = rtestN (r0, r1, power, alpha, tail); endif endwhile endfunction ## Local zero function for "t2" test function N = localfzero (F, N0, ratio) ## Set minN according to ratio if (ratio >= 2) minN = 1; else minN = 2; endif ## Return minN if function gives a value above zero if (F(minN) > 0) N = minN; return; endif ## Make sure that fzero does not try values below minN if (N0 == minN) N0 = N0 + 1; endif ## Find solution if (F(N0) > 0) N = fzero (F, [minN, N0], optimset ('TolX',1e-6)); # N0 is an upper bound else N = fzero (F, N0, optimset ('TolX',1e-6)); # N0 is a starting value endif endfunction ## Demos %!demo %! ## Compute the mean closest to 100 that can be determined to be %! ## significantly different from 100 using a t-test with a sample size %! ## of 60 and a power of 0.8. %! mu1 = sampsizepwr ("t", [100, 10], [], 0.8, 60); %! disp (mu1); %!demo %! ## Compute the sample sizes required to distinguish mu0 = 100 from %! ## mu1 = 110 by a two-sample t-test with a ratio of the larger and the %! ## smaller sample sizes of 1.5 and a power of 0.6. %! [N1,N2] = sampsizepwr ("t2", [100, 10], 110, 0.6, [], "ratio", 1.5) %!demo %! ## Compute the sample size N required to distinguish p=.26 from p=.2 %! ## with a binomial test. The result is approximate, so make a plot to %! ## see if any smaller N values also have the required power of 0.6. %! Napprox = sampsizepwr ("p", 0.2, 0.26, 0.6); %! nn = 1:250; %! pwr = sampsizepwr ("p", 0.2, 0.26, [], nn); %! Nexact = min (nn(pwr >= 0.6)); %! plot(nn,pwr,'b-', [Napprox Nexact],pwr([Napprox Nexact]),'ro'); %! grid on %!demo %! ## The company must test 52 bottles to detect the difference between a mean %! ## volume of 100 mL and 102 mL with a power of 0.80. Generate a power curve %! ## to visualize how the sample size affects the power of the test. %! %! nout = sampsizepwr('t',[100 5],102,0.80); %! nn = 1:100; %! pwrout = sampsizepwr('t',[100 5],102,[],nn); %! %! figure; %! plot (nn, pwrout, "b-", nout, 0.8, "ro") %! title ("Power versus Sample Size") %! xlabel ("Sample Size") %! ylabel ("Power") ## Input validation %!error ... %! out = sampsizepwr ([], [100, 10], [], 0.8, 60); %!error ... %! out = sampsizepwr (3, [100, 10], [], 0.8, 60); %!error ... %! out = sampsizepwr ({"t", "t2"}, [100, 10], [], 0.8, 60); %!error ... %! out = sampsizepwr ("reg", [100, 10], [], 0.8, 60); %!error ... %! out = sampsizepwr ("t", ["a", "e"], [], 0.8, 60); %!error ... %! out = sampsizepwr ("z", 100, [], 0.8, 60); %!error ... %! out = sampsizepwr ("t", 100, [], 0.8, 60); %!error ... %! out = sampsizepwr ("t2", 60, [], 0.8, 60); %!error ... %! out = sampsizepwr ("var", [100, 10], [], 0.8, 60); %!error ... %! out = sampsizepwr ("p", [100, 10], [], 0.8, 60); %!error ... %! out = sampsizepwr ("r", [100, 10], [], 0.8, 60); %!error ... %! [out, N1] = sampsizepwr ("z", [100, 10], [], 0.8, 60); %!error ... %! [out, N1] = sampsizepwr ("t", [100, 10], [], 0.8, 60); %!error ... %! [out, N1] = sampsizepwr ("var", 2, [], 0.8, 60); %!error ... %! [out, N1] = sampsizepwr ("p", 0.1, [], 0.8, 60); %!error ... %! [out, N1] = sampsizepwr ("r", 0.5, [], 0.8, 60); %!error ... %! out = sampsizepwr ("z", [100, 0], [], 0.8, 60); %!error ... %! out = sampsizepwr ("z", [100, -5], [], 0.8, 60); %!error ... %! out = sampsizepwr ("t", [100, 0], [], 0.8, 60); %!error ... %! out = sampsizepwr ("t", [100, -5], [], 0.8, 60); %!error ... %! [out, N1] = sampsizepwr ("t2", [100, 0], [], 0.8, 60); %!error ... %! [out, N1] = sampsizepwr ("t2", [100, -5], [], 0.8, 60); %!error ... %! out = sampsizepwr ("var", 0, [], 0.8, 60); %!error ... %! out = sampsizepwr ("var", -5, [], 0.8, 60); %!error ... %! out = sampsizepwr ("p", 0, [], 0.8, 60); %!error ... %! out = sampsizepwr ("p", 1.2, [], 0.8, 60); %!error ... %! out = sampsizepwr ("r", -1.5, [], 0.8, 60); %!error ... %! out = sampsizepwr ("r", -1, [], 0.8, 60); %!error ... %! out = sampsizepwr ("r", 1.2, [], 0.8, 60); %!error ... %! out = sampsizepwr ("r", 0, [], 0.8, 60); %!error ... %! out = sampsizepwr ("r", 0.2, [], 0.8, 60, "alpha", -0.2); %!error ... %! out = sampsizepwr ("r", 0.2, [], 0.8, 60, "alpha", 0); %!error ... %! out = sampsizepwr ("r", 0.2, [], 0.8, 60, "alpha", 1.5); %!error ... %! out = sampsizepwr ("r", 0.2, [], 0.8, 60, "alpha", "zero"); %!error ... %! out = sampsizepwr ("r", 0.2, [], 0.8, 60, "tail", 1.5); %!error ... %! out = sampsizepwr ("r", 0.2, [], 0.8, 60, "tail", {"both", "left"}); %!error ... %! out = sampsizepwr ("r", 0.2, [], 0.8, 60, "tail", "other"); %!error ... %! out = sampsizepwr ("r", 0.2, [], 0.8, 60, "ratio", "some"); %!error ... %! out = sampsizepwr ("r", 0.2, [], 0.8, 60, "ratio", 0.5); %!error ... %! out = sampsizepwr ("r", 0.2, [], 0.8, 60, "ratio", [2, 1.3, 0.3]); %!error ... %! out = sampsizepwr ("z", [100, 5], [], [], 60); %!error ... %! out = sampsizepwr ("z", [100, 5], 110, [], []); %!error ... %! out = sampsizepwr ("z", [100, 5], [], 0.8, []); %!error ... %! out = sampsizepwr ("z", [100, 5], 110, 0.8, 60); %!error ... %! out = sampsizepwr ("z", [100, 5], "mu", [], 60); %!error ... %! out = sampsizepwr ("var", 5, -1, [], 60); %!error ... %! out = sampsizepwr ("p", 0.8, 1.2, [], 60, "tail", "right"); %!error ... %! out = sampsizepwr ("r", 0.8, 1.2, [], 60); %!error ... %! out = sampsizepwr ("r", 0.8, -1.2, [], 60); %!error ... %! out = sampsizepwr ("z", [100, 5], 110, 1.2); %!error ... %! out = sampsizepwr ("z", [100, 5], 110, 0); %!error ... %! out = sampsizepwr ("z", [100, 5], 110, 0.05, [], "alpha", 0.1); %!error ... %! out = sampsizepwr ("z", [100, 5], [], [0.8, 0.7], [60, 80, 100]); %!error ... %! out = sampsizepwr ("t", [100, 5], 100, 0.8, []); %!error ... %! out = sampsizepwr ("t", [100, 5], 110, 0.8, [], "tail", "left"); %!error ... %! out = sampsizepwr ("t", [100, 5], 90, 0.8, [], "tail", "right"); ## Warning test %!warning ... %! Napprox = sampsizepwr ("p", 0.2, 0.26, 0.6); %!warning ... %! Napprox = sampsizepwr ("p", 0.30, 0.36, 0.8); ## Results validation %!test %! mu1 = sampsizepwr ("t", [100, 10], [], 0.8, 60); %! assert (mu1, 103.67704316, 1e-8); %!test %! [N1,N2] = sampsizepwr ("t2", [100, 10], 110, 0.6, [], "ratio", 1.5); %! assert (N1, 9); %! assert (N2, 14); %!test %! nn = 1:250; %! pwr = sampsizepwr ("p", 0.2, 0.26, [], nn); %! pwr_out = [0, 0.0676, 0.0176, 0.0566, 0.0181, 0.0431, 0.0802, 0.0322]; %! assert (pwr([1:8]), pwr_out, 1e-4 * ones (1,8)); %! pwr_out = [0.59275, 0.6073, 0.62166, 0.6358, 0.6497, 0.6087, 0.6229, 0.6369]; %! assert (pwr([243:end]), pwr_out, 1e-4 * ones (1,8)); %!test %! nout = sampsizepwr ("t", [100, 5], 102, 0.80); %! assert (nout, 52); %!test %! power = sampsizepwr ("t", [20, 5], 25, [], 5, "Tail", "right"); %! assert (power, 0.5797373588621888, 1e-14); %!test %! nout = sampsizepwr ("t", [20, 5], 25, 0.99, [], "Tail", "right"); %! assert (nout, 18); %!test %! p1out = sampsizepwr ("t", [20, 5], [], 0.95, 10, "Tail", "right"); %! assert (p1out, 25.65317979360237, 1e-14); %!test %! pwr = sampsizepwr ("t2", [1.4, 0.2], 1.7, [], 5, "Ratio", 2); %! assert (pwr, 0.716504004686586, 1e-14); %!test %! n = sampsizepwr ("t2", [1.4, 0.2], 1.7, 0.9, []); %! assert (n, 11); %!test %! [n1, n2] = sampsizepwr ("t2", [1.4, 0.2], 1.7, 0.9, [], "Ratio", 2); %! assert ([n1, n2], [8, 16]); statistics-release-1.6.3/inst/shadow9/000077500000000000000000000000001456127120000176625ustar00rootroot00000000000000statistics-release-1.6.3/inst/shadow9/mad.m000066400000000000000000000317171456127120000206120ustar00rootroot00000000000000## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{m} =} mad (@var{x}) ## @deftypefnx {statistics} {@var{m} =} mad (@var{x}, @var{flag}) ## @deftypefnx {statistics} {@var{m} =} mad (@var{x}, @var{flag}, @qcode{"all"}) ## @deftypefnx {statistics} {@var{m} =} mad (@var{x}, @var{flag}, @var{dim}) ## @deftypefnx {statistics} {@var{m} =} mad (@var{x}, @var{flag}, @var{vecdim}) ## ## Compute the mean or median absolute deviation (MAD). ## ## @code{mad (@var{x})} returns the mean absolute deviation of the values in ## @var{x}. @code{mad} treats NaNs as missing values and removes them. ## ## @itemize ## @item ## If @var{x} is a vector, then @code{mad} returns the mean or median absolute ## deviation of the values in @var{X}. ## @item ## If @var{x} is a matrix, then @code{mad} returns the mean or median absolute ## deviation of each column of @var{X}. ## @item ## If @var{x} is an multidimensional array, then @code{mad (@var{x})} operates ## along the first non-singleton dimension of @var{x}. ## @end itemize ## ## @code{mad (@var{x}, @var{flag})} specifies whether to compute the mean ## absolute deviation (@qcode{flag = 0}, the default) or the median absolute ## deviation (@qcode{flag = 1}). Passing an empty variable, defaults to 0. ## ## @code{mad (@var{x}, @var{flag}, @qcode{"all"})} returns the MAD of all the ## elements in @var{x}. ## ## The optional variable @var{dim} forces @code{mad} to operate over the ## specified dimension, which must be a positive integer-valued number. ## Specifying any singleton dimension in @var{x}, including any dimension ## exceeding @code{ndims (@var{x})}, will result in a MAD equal to ## @code{zeros (size (@var{x}))}, while non-finite elements are returned as NaNs. ## ## @code{mad (@var{x}, @var{flag}, @var{vecdim})} returns the MAD over the ## dimensions specified in the vector @var{vecdim}. For example, if @var{x} ## is a 2-by-3-by-4 array, then @code{mad (@var{x}, [1 2])} returns a ## 1-by-1-by-4 array. Each element of the output array is the median of the ## elements on the corresponding page of @var{x}. If @var{vecdim} indexes all ## dimensions of @var{x}, then it is equivalent to @code{mad (@var{x}, "all")}. ## Any dimension in @var{vecdim} greater than @code{ndims (@var{x})} is ignored. ## ## @seealso{median, mean, mode} ## @end deftypefn function m = mad (x, flag=0, varargin) if (nargin < 1 || nargin > 3) print_usage (); endif if (! (isnumeric (x))) error ("mad: X must be numeric."); endif ## Set initial conditions all_flag = false; perm_flag = false; vecdim_flag = false; dim = []; nvarg = numel (varargin); varg_chars = cellfun ("ischar", varargin); szx = sz_out = size (x); ndx = ndims (x); if (isempty (flag)) flag = 0; endif if (! (flag == 0 || flag == 1)) error ("mad: FLAG must be either 0 or 1."); endif ## Process optional char argument. if (any (varg_chars)) for argin = varargin(varg_chars) switch (tolower (argin{:})) case "all" all_flag = true; otherwise print_usage (); endswitch endfor varargin(varg_chars) = []; nvarg = numel (varargin); endif ## Process special cases for in/out size if (nvarg > 0) ## dim or vecdim provided dim = varargin{1}; vecdim_flag = ! isscalar (dim); if (! (isvector (dim) && dim > 0) || any (rem (dim, 1))) error ("mad: DIM must be a positive integer scalar or vector."); endif ## Adjust sz_out, account for possible dim > ndx by appending singletons sz_out(ndx + 1 : max (dim)) = 1; sz_out(dim(dim <= ndx)) = 1; szx(ndx + 1 : max (dim)) = 1; if (vecdim_flag) ## vecdim - try to simplify first dim = sort (dim); if (! all (diff (dim))) error ("mad: VECDIM must contain non-repeating positive integers."); endif ## dims > ndims(x) and dims only one element long don't affect mad sing_dim_x = find (szx != 1); dim(dim > ndx | szx(dim) == 1) = []; if (isempty (dim)) ## No dims left to process, return input as output m = zeros (sz_out); return; elseif (numel (dim) == numel (sing_dim_x) && unique ([dim, sing_dim_x]) == dim) ## If DIMs cover all nonsingleton ndims(x) it's equivalent to "all" ## (check lengths first to reduce unique overhead if not covered) all_flag = true; endif endif else ## Dim not provided. Determine scalar dimension. if (all_flag) ## Special case 'all': Recast input as dim1 vector, process as normal. x = x(:); szx = [length(x), 1]; dim = 1; sz_out = [1, 1]; elseif (isrow (x)) ## Special case row vector: Avoid setting dim to 1. dim = 2; sz_out = [1, 1]; elseif (ndx == 2 && szx == [0, 0]) ## Special case []: Do not apply sz_out(dim)=1 change. dim = 1; sz_out = [1, 1]; else ## General case: Set dim to first non-singleton, contract sz_out along dim (dim = find (szx != 1, 1)) || (dim = 1); sz_out(dim) = 1; endif endif if (isempty (x)) ## Empty input - output NaN m = NaN (sz_out); return; endif if (all (isnan (x)) || all (isinf (x))) ## NaN or Inf input - output NaN m = NaN (sz_out); return; endif if (szx(dim) == 1) ## Operation along singleton dimension - nothing to do m = zeros (sz_out); m(! isfinite (x)) = NaN; return; endif ## Permute dim to simplify all operations along dim1. At func. end ipermute. if (numel (dim) > 1 || (dim != 1 && ! isvector (x))) perm = 1 : ndx; if (! vecdim_flag) ## Move dim to dim 1 perm([1, dim]) = [dim, 1]; x = permute (x, perm); szx([1, dim]) = szx([dim, 1]); dim = 1; else ## Move vecdims to front perm(dim) = []; perm = [dim, perm]; x = permute (x, perm); ## Reshape all vecdims into dim1 num_dim = prod (szx(dim)); szx(dim) = []; szx = [num_dim, ones(1, numel(dim)-1), szx]; x = reshape (x, szx); dim = 1; endif perm_flag = true; endif if (isvector (x)) if (flag) # Compute median absolute deviation ## Checks above ensure either dim1 or dim2 vector x = sort (x, dim); x = x(! isnan (x)); n = length (x); k = floor ((n + 1) / 2); if (mod (n, 2)) ## odd c = x(k); v = sort (abs (x - c)); m = v(k); else ## even c = (x(k) + x(k + 1)) / 2; v = sort (abs (x - c)); m = (v(k) + v(k + 1)) / 2; endif m(sum (isinf (x)) > 0) = Inf; else # Compute mean absolute deviation x = x(! isnan (x)); n = length (x); m = sum (abs (x - (sum (x) / n))) / n; m(sum (isinf (x)) > 0) = Inf; endif else if (flag) # Compute median absolute deviation m = median (abs (x - median(x, dim, "omitnan")), dim, "omitnan"); m(sum (isinf (x), 2) > 0) = Inf; else # Compute mean absolute deviation idx = isnan (x); n = sum (! idx, dim); x1 = x; x1(idx) = 0; m1 = sum (x1, dim) ./ n; x2 = abs (x - m1); x2(idx) = 0; m = sum (x2, dim) ./ n; m(sum (isinf (x), 2) > 0) = Inf; endif endif if (perm_flag) ## Inverse permute back to correct dimensions m = ipermute (m, perm); endif endfunction %!assert (mad (1), 0) %!assert (mad (1,1), 0) %!assert (mad (1,0,3), 0) %!assert (mad (1,1,3), 0) %!assert (mad (1,[],5), 0) %!assert (mad ([1,2,3]), 2/3) %!assert (mad ([1,2,3],[]), 2/3) %!assert (mad ([1,2,3],0), 2/3) %!assert (mad ([1,2,3],1), 1) %!assert (mad ([1,2,3],0,2), 2/3) %!assert (mad ([1,2,3],[],2), 2/3) %!assert (mad ([1,2,3],1,2), 1) %!assert (mad ([1,2,3],0,1), zeros (1,3)) %!assert (mad ([1,2,3],1,1), zeros (1,3)) %!assert (mad ([1,2,3]',0,2), zeros (3,1)) %!assert (mad ([1,2,3]',1,2), zeros (3,1)) %!assert (mad ([1,2,3]',0,1), 2/3) %!assert (mad ([1,2,3]',1,1), 1) %!assert (mad ([1,2,3]',1,1), 1) ## Test vector or matrix input with scalar DIM %!test %! A = [57, 59, 60, 100, 59, 58, 57, 58, 300, 61, 62, 60, 62, 58, 57]; %! AA = [A;2*A;3*A]; %! m0 = [38.000, 39.333, 40.000, 66.667, 39.333, 38.667, 38.000, 38.667, ... %! 200.000, 40.667, 41.333, 40.000, 41.333, 38.667, 38.000]; %! m1 = [32.569;65.138; 97.707]; %! %! assert (mad (AA), m0, 1e-3); %! assert (mad (AA,1), A); %! assert (mad (AA,1,1), A); %! assert (mad (AA,0,2), m1, 1e-3); %! assert (mad (AA,1,2), [2;4;6]); %! assert (mad (A,0,1), zeros (size (A))); %! assert (mad (A,1,1), zeros (size (A))); ## Test n-dimensional input and optional arguments "all", VECDIM %!test %! x = repmat ([2 2.1 2.2 2 NaN; 3 1 2 NaN 5; 1 1.1 1.4 5 3], [1, 1, 4]); %! m0 = repmat ([0.6667, 0.4667, 0.3111, 1.5, 1], [1, 1, 4]); %! m1 = repmat ([1, 0.1, 0.2, 1.5, 1], [1, 1, 4]); %! assert (mad (x), m0, 1e-4); %! assert (mad (x, 1), m1, 1e-14); %! assert (mad (x, [], [1, 2]), 1.0036 * ones(1,1,4), 1e-4) %! assert (mad (x, 1, [1, 2]), 0.9 * ones(1,1,4), 1e-14) %! assert (mad (x, 0, [1, 3]), m0(1,:,1), 1e-4) %! assert (mad (x, 1, [1, 3]), m1(1,:,1), 1e-14) %! assert (mad (x, 0, [2, 3]), [0.075; 1.25; 1.36], 1e-14) %! assert (mad (x, 1, [2, 3]), [0.05; 1; 0.4], 1e-14) %! assert (mad (x, 0, [1, 2, 3]) == mad (x, 0, "All")) %! assert (mad (x, 1, [1, 2, 3]) == mad (x, 1, "All")) ## Test dimension indexing with vecdim in n-dimensional arrays %!test %! x = repmat ([1:20;6:25], [5 2 6 3]); %! assert (size (mad (x, [], [3 2])), [10 1 1 3]); %! assert (size (mad (x, 0, [1 2])), [1 1 6 3]); %! assert (size (mad (x, 1, [1 2 4])), [1 1 6]); %! assert (size (mad (x, [], [1 4 3])), [1 40]); %! assert (size (mad (x, 1, [1 2 3 4])), [1 1]); ## Test exceeding dimensions %!assert (mad (ones (2,2), 0, 3), zeros (2,2)) %!assert (mad (ones (2,2,2), 1, 99), zeros (2,2,2)) %!assert (mad (magic (3), 1, 3), zeros (3)) %!assert (mad (magic (3), 1, [1 3]), [1, 4, 1]) %!assert (mad (magic (3), 1, [1 99]), [1, 4, 1]) ## Test empty, NaN, Inf inputs %!assert (mad ([]), NaN) %!assert (mad ([], 1), NaN) %!assert (mad (NaN), NaN) %!assert (mad (NaN, 1), NaN) %!assert (mad (Inf), NaN) %!assert (mad (Inf, 1), NaN) %!assert (mad (-Inf), NaN) %!assert (mad (-Inf, 1), NaN) %!assert (mad ([-Inf Inf]), NaN) %!assert (mad ([-Inf Inf], 1), NaN) %!assert (mad ([3 Inf]), Inf) %!assert (mad ([3 4 Inf]), Inf) %!assert (mad ([3 4 Inf], 1), Inf) %!assert (mad ([Inf 3 4]), Inf) %!assert (mad ([Inf 3 4], 1), Inf) %!assert (mad ([Inf 3 Inf]), Inf) %!assert (mad ([Inf 3 Inf], 1), Inf) %!assert (mad ([1 2; 3 Inf]), [1 Inf]) %!assert (mad ([1 2; 3 Inf], 1), [1 Inf]) %!assert (mad ([]), NaN) %!assert (mad (ones(1,0)), NaN) %!assert (mad (ones(0,1)), NaN) %!assert (mad ([], 0, 1), NaN(1,0)) %!assert (mad ([], 0, 2), NaN(0,1)) %!assert (mad ([], 0, 3), NaN(0,0)) %!assert (mad (ones(1,0), 0, 1), NaN(1,0)) %!assert (mad (ones(1,0), 0, 2), NaN(1,1)) %!assert (mad (ones(1,0), 0, 3), NaN(1,0)) %!assert (mad (ones(0,1), 0, 1), NaN(1,1)) %!assert (mad (ones(0,1), 0, 2), NaN(0,1)) %!assert (mad (ones(0,1), 0, 3), NaN(0,1)) %!assert (mad (ones(0,1,0,1), 0, 1), NaN(1,1,0)) %!assert (mad (ones(0,1,0,1), 0, 2), NaN(0,1,0)) %!assert (mad (ones(0,1,0,1), 0, 3), NaN(0,1,1)) %!assert (mad (ones(0,1,0,1), 0, 4), NaN(0,1,0)) ## Test complex inputs (should sort by abs(a)) %!assert (mad([1 3 3i 2 1i]), 1.5297, 1e-4) %!assert (mad([1 3 3i 2 1i], 1), 1) %!assert (mad([1 2 4i; 3 2i 4]), [1, 1.4142, 2.8284], 1e-4) %!assert (mad([1 2 4i; 3 2i 4], 1), [1, 1.4142, 2.8284], 1e-4) %!assert (mad([1 2 4i; 3 2i 4], 1, 2), [1; 1]) %!assert (mad([1 2 4i; 3 2i 4], 0, 2), [1.9493; 1.8084], 1e-4) ## Test input case insensitivity %!assert (mad ([1 2 3], 0, "aLL"), 2/3) %!assert (mad ([1 2 3], 1, "aLL"), 1) ## Test input validation %!error mad () %!error mad (1, 2, 3, 4) %!error mad ("text") %!error mad ({2 3 4}) %!error mad (1, "all", 3) %!error mad (1, "b") %!error mad (1, 1, "foo") %!error mad (1, [] ,ones (2,2)) %!error mad (1, [], 1.5) %!error mad (1, [], 0) %!error mad ([1 2 3], [], [-1 1]) %!error mad(1, [], [1 2 2]) statistics-release-1.6.3/inst/shadow9/mean.m000066400000000000000000000517101456127120000207640ustar00rootroot00000000000000## Copyright (C) 2022 Andreas Bertsatos ## Copyright (C) 2022 Kai Torben Ohlhus ## Copyright (C) 2023 Nicholas Jankowski ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{m} =} mean (@var{x}) ## @deftypefnx {statistics} {@var{m} =} mean (@var{x}, "all") ## @deftypefnx {statistics} {@var{m} =} mean (@var{x}, @var{dim}) ## @deftypefnx {statistics} {@var{m} =} mean (@var{x}, @var{vecdim}) ## @deftypefnx {statistics} {@var{m} =} mean (@dots{}, @var{outtype}) ## @deftypefnx {statistics} {@var{m} =} mean (@dots{}, @var{nanflag}) ## ## Compute the mean of the elements of @var{x}. ## ## @itemize ## @item ## If @var{x} is a vector, then @code{mean(@var{x})} returns the ## mean of the elements in @var{x} defined as ## @tex ## $$ {\rm mean}(x) = \bar{x} = {1\over N} \sum_{i=1}^N x_i $$ ## ## @end tex ## @ifnottex ## ## @example ## mean (@var{x}) = SUM_i @var{x}(i) / N ## @end example ## ## @end ifnottex ## @noindent ## where @math{N} is the length of the @var{x} vector. ## ## @item ## If @var{x} is a matrix, then @code{mean(@var{x})} returns a row vector ## with the mean of each columns in @var{x}. ## ## @item ## If @var{x} is a multidimensional array, then @code{mean(@var{x})} ## operates along the first nonsingleton dimension of @var{x}. ## @end itemize ## ## @code{mean (@var{x}, @var{dim})} returns the mean along the operating ## dimension @var{dim} of @var{x}. For @var{dim} greater than ## @code{ndims (@var{x})}, then @var{m} = @var{x}. ## ## @code{mean (@var{x}, @var{vecdim})} returns the mean over the ## dimensions specified in the vector @var{vecdim}. For example, if @var{x} ## is a 2-by-3-by-4 array, then @code{mean (@var{x}, [1 2])} returns a ## 1-by-1-by-4 array. Each element of the output array is the mean of the ## elements on the corresponding page of @var{x}. If @var{vecdim} indexes all ## dimensions of @var{x}, then it is equivalent to @code{mean (@var{x}, "all")}. ## Any dimension in @var{vecdim} greater than @code{ndims (@var{x})} is ignored. ## ## @code{mean (@var{x}, "all")} returns the mean of all the elements in @var{x}. ## The optional flag "all" cannot be used together with @var{dim} or ## @var{vecdim} input arguments. ## ## @code{mean (@dots{}, @var{outtype})} returns the mean with a specified data ## type, using any of the input arguments in the previous syntaxes. ## @var{outtype} can take the following values: ## @itemize ## @item "default" ## Output is of type double, unless the input is single in which case the output ## is of type single. ## ## @item "double" ## Output is of type double. ## ## @item "native". ## Output is of the same type as the input (@code{class (@var{x})}), unless the ## input is logical in which case the output is of type double or a character ## array in which case an error is produced. ## @end itemize ## ## @code{mean (@dots{}, @var{nanflag})} specifies whether to exclude NaN values ## from the calculation, using any of the input argument combinations in ## previous syntaxes. By default, NaN values are included in the calculation ## (@var{nanflag} has the value "includenan"). To exclude NaN values, set the ## value of @var{nanflag} to "omitnan". ## ## @seealso{trimmean, median, mad, mode} ## @end deftypefn function m = mean (x, varargin) if (nargin < 1 || nargin > 4) print_usage (); endif ## Set initial conditions all_flag = false; omitnan = false; out_flag = false; nvarg = numel (varargin); varg_chars = cellfun ("ischar", varargin); outtype = "default"; szx = size (x); ndx = ndims (x); if (nvarg > 1 && ! varg_chars(2:end)) ## Only first varargin can be numeric print_usage (); endif ## Process any other char arguments. if (any (varg_chars)) for argin = varargin(varg_chars) switch (lower (argin{:})) case "all" all_flag = true; case "omitnan" omitnan = true; case "includenan" omitnan = false; case "default" if (out_flag) error ("mean: only one OUTTYPE can be specified.") endif if (isa (x, "single")) outtype = "single"; else outtype = "double"; endif out_flag = true; case "native" outtype = class (x); if (out_flag) error ("mean: only one OUTTYPE can be specified.") elseif (strcmp (outtype, "logical")) outtype = "double"; elseif (strcmp (outtype, "char")) error ("mean: OUTTYPE 'native' cannot be used with char type inputs."); endif out_flag = true; case "double" if (out_flag) error ("mean: only one OUTTYPE can be specified.") endif outtype = "double"; out_flag = true; otherwise print_usage (); endswitch endfor varargin(varg_chars) = []; nvarg = numel (varargin); endif if (strcmp (outtype, "default")) if (isa (x, "single")) outtype = "single"; else outtype = "double"; endif endif if ((nvarg > 1) || ((nvarg == 1) && ! (isnumeric (varargin{1})))) ## After trimming char inputs can only be one varargin left, must be numeric print_usage (); endif if (! (isnumeric (x) || islogical (x) || ischar (x))) error ("mean: X must be either a numeric, boolean, or character array."); endif ## Process special cases for input/output sizes if (nvarg == 0) ## Single numeric input argument, no dimensions given. if (all_flag) x = x(:); if (omitnan) x = x(! isnan (x)); endif if (any (isa (x, {"int64", "uint64"}))) m = int64_mean (x, 1, numel (x), outtype); else m = sum (x, "double") ./ numel (x); endif else ## Find the first non-singleton dimension. (dim = find (szx != 1, 1)) || (dim = 1); n = szx(dim); if (omitnan) idx = isnan (x); n = sum (! idx, dim); x(idx) = 0; endif if (any (isa (x, {"int64", "uint64"}))) m = int64_mean (x, dim, n, outtype); else m = sum (x, dim, "double") ./ n; endif endif else ## Two numeric input arguments, dimensions given. Note scalar is vector! vecdim = varargin{1}; if (isempty (vecdim) || ! (isvector (vecdim) && all (vecdim > 0) && all (rem (vecdim, 1)==0))) error ("mean: DIM must be a positive integer scalar or vector."); endif if (ndx == 2 && isempty (x) && szx == [0,0]) ## FIXME: This special case handling could be removed once sum ## compatibly handles all sizes of empty inputs. sz_out = szx; sz_out (vecdim(vecdim <= ndx)) = 1; m = NaN (sz_out); else if (isscalar (vecdim)) if (vecdim > ndx) m = x; else n = szx(vecdim); if (omitnan) nanx = isnan (x); n = sum (! nanx, vecdim); x(nanx) = 0; endif if (any (isa (x, {"int64", "uint64"}))) m = int64_mean (x, vecdim, n, outtype); else m = sum (x, vecdim, "double") ./ n; endif endif else vecdim = sort (vecdim); if (! all (diff (vecdim))) error ("mean: VECDIM must contain non-repeating positive integers."); endif ## Ignore dimensions in VECDIM larger than actual array vecdim(find (vecdim > ndims (x))) = []; if (isempty (vecdim)) m = x; else ## Calculate permutation vector remdims = 1 : ndx; # All dimensions remdims(vecdim) = []; # Delete dimensions specified by vecdim nremd = numel (remdims); ## If all dimensions are given, it is equivalent to 'all' flag if (nremd == 0) x = x(:); if (omitnan) x = x(! isnan (x)); endif if (any (isa (x, {"int64", "uint64"}))) m = int64_mean (x, 1, numel (x), outtype); else m = sum (x, "double") ./ numel (x); endif else ## Permute to push vecdims to back perm = [remdims, vecdim]; x = permute (x, perm); ## Reshape to squash all vecdims in final dimension sznew = [szx(remdims), prod(szx(vecdim))]; x = reshape (x, sznew); ## Calculate mean on final dimension dim = nremd + 1; if (omitnan) nanx = isnan (x); x(nanx) = 0; n = sum (! nanx, dim); else n = sznew(dim); endif if (any (isa (x, {"int64", "uint64"}))) m = int64_mean (x, dim, n, outtype); else m = sum (x, dim, "double") ./ n; endif ## Inverse permute back to correct dimensions m = ipermute (m, perm); endif endif endif endif endif ## Convert output if necessary if (! strcmp (class (m), outtype)) if (! islogical (x)) m = feval (outtype, m); endif endif endfunction function m = int64_mean (x, dim, n, outtype) ## Avoid int overflow in large ints. Smaller ints processed as double ## avoids overflow. Large int64 values as double can have floating pt error. ## Use integer math and remainder correction to avoid this. if (any (abs (x(:)) >= flintmax / n)) rmdr = double (rem (x, n)) / n; rmdr_hilo = logical (int8 (rmdr)); # Integer rounding direction indicator ## Native int summation to prevent double precision error, ## then add back in lost round-up/down remainders. m = sum (x/n, dim, "native"); ## rmdr.*!rmdr_hilo = remainders that were rounded down in abs val ## signs retained, can be summed and added back. ## rmdr.*rmdr_hilo = remainders that were rounded up in abs val. ## need to add back difference between 1 and rmdr, retaining sign. rmdr = sum (rmdr .* !rmdr_hilo, dim) - ... sum ((1 - abs (rmdr)) .* rmdr_hilo .* sign(rmdr), dim); if (any (abs (m(:)) >= flintmax)) if (any (strcmp (outtype, {"int64", "uint64"}))) m += rmdr; else m = double (m) + rmdr; endif else m = double(m) + rmdr; switch (outtype) case "int64" m = int64 (m); case "uint64" m = uint64 (m); endswitch endif else m = double (sum (x, dim, "native")) ./ n; endif endfunction %!test %! x = -10:10; %! y = x'; %! z = [y, y+10]; %! assert (mean (x), 0); %! assert (mean (y), 0); %! assert (mean (z), [0, 10]); %!assert (mean (magic (3), 1), [5, 5, 5]) %!assert (mean (magic (3), 2), [5; 5; 5]) %!assert (mean (logical ([1 0 1 1])), 0.75) %!assert (mean (single ([1 0 1 1])), single (0.75)) %!assert (mean ([1 2], 3), [1 2]) ## Test outtype option %!test %! in = [1 2 3]; %! out = 2; %! assert (mean (in, "default"), mean (in)); %! assert (mean (in, "default"), out); %! assert (mean (in, "double"), out); %! assert (mean (in, "native"), out); %!test %! in = single ([1 2 3]); %! out = 2; %! assert (mean (in, "default"), mean (in)); %! assert (mean (in, "default"), single (out)); %! assert (mean (in, "double"), out); %! assert (mean (in, "native"), single (out)); %!test %! in = logical ([1 0 1]); %! out = 2/3; %! assert (mean (in, "default"), mean (in), eps); %! assert (mean (in, "default"), out, eps); %! assert (mean (in, "double"), out, eps); %! assert (mean (in, "native"), out, eps); %!test %! in = char ("ab"); %! out = 97.5; %! assert (mean (in, "default"), mean (in), eps); %! assert (mean (in, "default"), out, eps); %! assert (mean (in, "double"), out, eps); %!test %! in = uint8 ([1 2 3]); %! out = 2; %! assert (mean (in, "default"), mean (in)); %! assert (mean (in, "default"), out); %! assert (mean (in, "double"), out); %! assert (mean (in, "native"), uint8 (out)); %!test %! in = uint8 ([0 1 2 3]); %! out = 1.5; %! out_u8 = 2; %! assert (mean (in, "default"), mean (in), eps); %! assert (mean (in, "default"), out, eps); %! assert (mean (in, "double"), out, eps); %! assert (mean (in, "native"), uint8 (out_u8)); %! assert (class (mean (in, "native")), "uint8"); %!test # internal sum exceeding intmax %! in = uint8 ([3 141 141 255]); %! out = 135; %! assert (mean (in, "default"), mean (in)); %! assert (mean (in, "default"), out); %! assert (mean (in, "double"), out); %! assert (mean (in, "native"), uint8 (out)); %! assert (class (mean (in, "native")), "uint8"); %!test # fractional answer with internal sum exceeding intmax %! in = uint8 ([1 141 141 255]); %! out = 134.5; %! out_u8 = 135; %! assert (mean (in, "default"), mean (in)); %! assert (mean (in, "default"), out); %! assert (mean (in, "double"), out); %! assert (mean (in, "native"), uint8 (out_u8)); %! assert (class (mean (in, "native")), "uint8"); %!test <54567> # large int64 sum exceeding intmax and double precision limit %! in_same = uint64 ([intmax("uint64") intmax("uint64")-2]); %! out_same = intmax ("uint64")-1; %! in_opp = int64 ([intmin("int64"), intmax("int64")-1]); %! out_opp = -1; %! in_neg = int64 ([intmin("int64") intmin("int64")+2]); %! out_neg = intmin ("int64")+1; %! %! ## both positive %! assert (mean (in_same, "default"), mean (in_same)); %! assert (mean (in_same, "default"), double (out_same)); %! assert (mean (in_same, "double"), double (out_same)); %! assert (mean (in_same, "native"), uint64 (out_same)); %! assert (class (mean (in_same, "native")), "uint64"); %! %! ## opposite signs %! assert (mean (in_opp, "default"), mean (in_opp)); %! assert (mean (in_opp, "default"), double (out_opp)); %! assert (mean (in_opp, "double"), double (out_opp)); %! assert (mean (in_opp, "native"), int64 (out_opp)); %! assert (class (mean (in_opp, "native")), "int64"); %! %! ## both negative %! assert (mean (in_neg, "default"), mean (in_neg)); %! assert (mean (in_neg, "default"), double(out_neg)); %! assert (mean (in_neg, "double"), double(out_neg)); %! assert (mean (in_neg, "native"), int64(out_neg)); %! assert (class (mean (in_neg, "native")), "int64"); ## Additional tests int64 and double precision limits %!test <54567> %! in = [(intmin('int64')+5), (intmax('int64'))-5]; %! assert (mean (in, "native"), int64(-1)); %! assert (class (mean (in, "native")), "int64"); %! assert (mean (double(in)), double(0) ); %! assert (mean (in), double(-0.5) ); %! assert (mean (in, "default"), double(-0.5) ); %! assert (mean (in, "double"), double(-0.5) ); %! assert (mean (in, "all", "native"), int64(-1)); %! assert (mean (in, 2, "native"), int64(-1)); %! assert (mean (in, [1 2], "native"), int64(-1)); %! assert (mean (in, [2 3], "native"), int64(-1)); %! assert (mean ([intmin("int64"), in, intmax("int64")]), double(-0.5)) %! assert (mean ([in; int64([1 3])], 2, "native"), int64([-1; 2])); ## Test input and optional arguments "all", DIM, "omitnan". %!test %! x = [-10:10]; %! y = [x;x+5;x-5]; %! assert (mean (x), 0); %! assert (mean (y, 2), [0, 5, -5]'); %! assert (mean (y, "all"), 0); %! y(2,4) = NaN; %! assert (mean (y', "omitnan"), [0 5.35 -5]); %! z = y + 20; %! assert (mean (z, "all"), NaN); %! assert (mean (z, "all", "includenan"), NaN); %! assert (mean (z, "all", "omitnan"), 20.03225806451613, 4e-14); %! m = [20 NaN 15]; %! assert (mean (z'), m); %! assert (mean (z', "includenan"), m); %! m = [20 25.35 15]; %! assert (mean (z', "omitnan"), m); %! assert (mean (z, 2, "omitnan"), m'); %! assert (mean (z, 2, "native", "omitnan"), m'); %! assert (mean (z, 2, "omitnan", "native"), m'); ## Test boolean input %!test %! assert (mean (true, "all"), 1); %! assert (mean (false), 0); %! assert (mean ([true false true]), 2/3, 4e-14); %! assert (mean ([true false true], 1), [1 0 1]); %! assert (mean ([true false NaN], 1), [1 0 NaN]); %! assert (mean ([true false NaN], 2), NaN); %! assert (mean ([true false NaN], 2, "omitnan"), 0.5); %! assert (mean ([true false NaN], 2, "omitnan", "native"), 0.5); ## Test char inputs %!assert (mean ("abc"), double (98)) %!assert (mean ("ab"), double (97.5), eps) %!assert (mean ("abc", "double"), double (98)) %!assert (mean ("abc", "default"), double (98)) ## Test NaN inputs %!test %! x = magic (4); %! x([2, 9:12]) = NaN; %! assert (mean (x), [NaN 8.5, NaN, 8.5], eps); %! assert (mean (x,1), [NaN 8.5, NaN, 8.5], eps); %! assert (mean (x,2), NaN(4,1), eps); %! assert (mean (x,3), x, eps); %! assert (mean (x, 'omitnan'), [29/3, 8.5, NaN, 8.5], eps); %! assert (mean (x, 1, 'omitnan'), [29/3, 8.5, NaN, 8.5], eps); %! assert (mean (x, 2, 'omitnan'), [31/3; 9.5; 28/3; 19/3], eps); %! assert (mean (x, 3, 'omitnan'), x, eps); ## Test empty inputs %!assert (mean ([]), NaN(1,1)) %!assert (mean (single([])), NaN(1,1,"single")) %!assert (mean ([], 1), NaN(1,0)) %!assert (mean ([], 2), NaN(0,1)) %!assert (mean ([], 3), NaN(0,0)) %!assert (mean (ones(1,0)), NaN(1,1)) %!assert (mean (ones(1,0), 1), NaN(1,0)) %!assert (mean (ones(1,0), 2), NaN(1,1)) %!assert (mean (ones(1,0), 3), NaN(1,0)) %!assert (mean (ones(0,1)), NaN(1,1)) %!assert (mean (ones(0,1), 1), NaN(1,1)) %!assert (mean (ones(0,1), 2), NaN(0,1)) %!assert (mean (ones(0,1), 3), NaN(0,1)) %!assert (mean (ones(0,1,0)), NaN(1,1,0)) %!assert (mean (ones(0,1,0), 1), NaN(1,1,0)) %!assert (mean (ones(0,1,0), 2), NaN(0,1,0)) %!assert (mean (ones(0,1,0), 3), NaN(0,1,1)) %!assert (mean (ones(0,0,1,0)), NaN(1,0,1,0)) %!assert (mean (ones(0,0,1,0), 1), NaN(1,0,1,0)) %!assert (mean (ones(0,0,1,0), 2), NaN(0,1,1,0)) %!assert (mean (ones(0,0,1,0), 3), NaN(0,0,1,0)) ## Test dimension indexing with vecdim in N-dimensional arrays %!test %! x = repmat ([1:20;6:25], [5 2 6 3]); %! assert (size (mean (x, [3 2])), [10 1 1 3]); %! assert (size (mean (x, [1 2])), [1 1 6 3]); %! assert (size (mean (x, [1 2 4])), [1 1 6]); %! assert (size (mean (x, [1 4 3])), [1 40]); %! assert (size (mean (x, [1 2 3 4])), [1 1]); ## Test exceeding dimensions %!assert (mean (ones (2,2), 3), ones (2,2)) %!assert (mean (ones (2,2,2), 99), ones (2,2,2)) %!assert (mean (magic (3), 3), magic (3)) %!assert (mean (magic (3), [1 3]), [5, 5, 5]) %!assert (mean (magic (3), [1 99]), [5, 5, 5]) ## Test results with vecdim in N-dimensional arrays and "omitnan" %!test %! x = repmat ([1:20;6:25], [5 2 6 3]); %! m = repmat ([10.5;15.5], [5 1 1 3]); %! assert (mean (x, [3 2]), m, 4e-14); %! x(2,5,6,3) = NaN; %! m(2,1,1,3) = NaN; %! assert (mean (x, [3 2]), m, 4e-14); %! m(2,1,1,3) = 15.52301255230125; %! assert (mean (x, [3 2], "omitnan"), m, 4e-14); ## Test input case insensitivity %!assert (mean ([1 2 3], "aLL"), 2) %!assert (mean ([1 2 3], "OmitNan"), 2) %!assert (mean ([1 2 3], "DOUBle"), 2) ## Test limits of single precision summation limits on each code path %!assert <*63848> (mean (ones (80e6, 1, "single")), 1, eps) %!assert <*63848> (mean (ones (80e6, 1, "single"), "all"), 1, eps) %!assert <*63848> (mean (ones (80e6, 1, "single"), 1), 1, eps) %!assert <*63848> (mean (ones (80e6, 1, "single"), [1 2]), 1, eps) %!assert <*63848> (mean (ones (80e6, 1, "single"), [1 3]), 1, eps) ## Test limits of double precision summation %!assert <63848> (mean ([flintmax("double"), ones(1, 2^8-1, "double")]), ... %! 35184372088833-1/(2^8), eps(35184372088833)) ## Test input validation %!error mean () %!error mean (1, 2, 3) %!error mean (1, 2, 3, 4) %!error mean (1, "all", 3) %!error mean (1, "b") %!error mean (1, 1, "foo") %!error mean ("abc", "native") %!error mean ({1:5}) %!error mean (1, ones (2,2)) %!error mean (1, 1.5) %!error mean (1, 0) %!error mean (1, []) %!error mean (1, -1) %!error mean (1, -1.5) %!error mean (1, NaN) %!error mean (1, Inf) %!error mean (repmat ([1:20;6:25], [5 2]), -1) %!error mean (repmat ([1:5;5:9], [5 2]), [1 -1]) %!error mean (1, ones(1,0)) %!error mean (1, [2 2]) statistics-release-1.6.3/inst/shadow9/median.m000066400000000000000000000576421456127120000213130ustar00rootroot00000000000000## Copyright (C) 2022-2023 Andreas Bertsatos ## Copyright (C) 2023 Nicholas Jankowski ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{m} =} median (@var{x}) ## @deftypefnx {statistics} {@var{m} =} median (@var{x}, "all") ## @deftypefnx {statistics} {@var{m} =} median (@var{x}, @var{dim}) ## @deftypefnx {statistics} {@var{m} =} median (@var{x}, @var{vecdim}) ## @deftypefnx {statistics} {@var{m} =} median (@dots{}, @var{outtype}) ## @deftypefnx {statistics} {@var{m} =} median (@dots{}, @var{nanflag}) ## ## Compute the median value of the elements of @var{x}. ## ## When the elements of @var{x} are sorted, say ## @code{@var{s} = sort (@var{x})}, the median is defined as ## @tex ## $$ {\rm median} (x) = \cases{s(\lceil N/2\rceil), & $N$ odd; ## \cr (s(N/2)+s(N/2+1))/2, & $N$ even.} $$ ## ## @end tex ## @ifnottex ## ## @example ## @group ## | @var{s}(ceil (N/2)) N odd ## median (@var{x}) = | ## | (@var{s}(N/2) + @var{s}(N/2+1))/2 N even ## @end group ## @end example ## ## @end ifnottex ## @noindent ## where @math{N} is the number of elements of @var{x}. ## ## If @var{x} is an array, then @code{median (@var{x})} operates along the first ## non-singleton dimension of @var{x}. ## ## The optional variable @var{dim} forces @code{median} to operate over the ## specified dimension, which must be a positive integer-valued number. ## Specifying any singleton dimension in @var{x}, including any dimension ## exceeding @code{ndims (@var{x})}, will result in a median equal to @var{x}. ## ## @code{median (@var{x}, @var{vecdim})} returns the median over the ## dimensions specified in the vector @var{vecdim}. For example, if @var{x} ## is a 2-by-3-by-4 array, then @code{median (@var{x}, [1 2])} returns a ## 1-by-1-by-4 array. Each element of the output array is the median of the ## elements on the corresponding page of @var{x}. If @var{vecdim} indexes all ## dimensions of @var{x}, then it is equivalent to ## @code{median (@var{x}, "all")}. Any dimension in @var{vecdim} greater than ## @code{ndims (@var{x})} is ignored. ## ## @code{median (@var{x}, "all")} returns the median of all the elements in ## @var{x}. The optional flag "all" cannot be used together with @var{dim} or ## @var{vecdim} input arguments. ## ## @code{median (@dots{}, @var{outtype})} returns the median with a specified ## data type, using any of the input arguments in the previous syntaxes. ## @var{outtype} can take the following values: ## @itemize ## @item @qcode{"default"} ## Output is of type double, unless the input is single in which case the ## output is of type single. ## ## @item @qcode{"double"} ## Output is of type double. ## ## @item @qcode{"native"} ## Output is of the same type as the input (@code{class (@var{x})}), unless the ## input is logical in which case the output is of type double. ## @end itemize ## ## The optional variable @var{nanflag} specifies whether to include or exclude ## NaN values from the calculation using any of the previously specified input ## argument combinations. The default value for @var{nanflag} is ## @qcode{"includenan"} which keeps NaN values in the calculation. To ## exclude NaN values set the value of @var{nanflag} to @qcode{"omitnan"}. ## The output will still contain NaN values if @var{x} consists of all NaN ## values in the operating dimension. ## ## @seealso{mean, mad, mode} ## @end deftypefn function m = median (x, varargin) if (nargin < 1 || nargin > 4) print_usage (); endif if (! (isnumeric (x) || islogical (x))) error ("median: X must be either numeric or logical."); endif ## Set initial conditions all_flag = false; omitnan = false; perm_flag = false; out_flag = false; vecdim_flag = false; dim = []; nvarg = numel (varargin); varg_chars = cellfun ("ischar", varargin); szx = sz_out = size (x); ndx = ndims (x); outtype = class (x); if (nvarg > 1 && ! varg_chars(2:end)) ## Only first varargin can be numeric print_usage (); endif ## Process any other char arguments. if (any (varg_chars)) for argin = varargin(varg_chars) switch (tolower (argin{:})) case "all" all_flag = true; case "omitnan" omitnan = true; case "includenan" omitnan = false; case "native" if (out_flag) error ("median: only one OUTTYPE can be specified.") endif if (strcmp (outtype, "logical")) outtype = "double"; endif out_flag = true; case "default" if (out_flag) error ("median: only one OUTTYPE can be specified.") endif if (! strcmp (outtype, "single")) outtype = "double"; endif out_flag = true; case "double" if (out_flag) error ("median: only one OUTTYPE can be specified.") endif outtype = "double"; out_flag = true; otherwise print_usage (); endswitch endfor varargin(varg_chars) = []; nvarg = numel (varargin); endif if ((nvarg == 1 && ! isnumeric (varargin{1})) || nvarg > 1) ## After trimming char inputs should only be one numeric varargin left print_usage (); endif ## Process special cases for in/out size if (nvarg > 0) ## dim or vecdim provided if (all_flag) error ("median: 'all' cannot be used with DIM or VECDIM options."); endif dim = varargin{1}; vecdim_flag = ! isscalar (dim); if (! (isvector (dim) && dim > 0) || any (rem (dim, 1))) error ("median: DIM must be a positive integer scalar or vector."); endif ## Adjust sz_out, account for possible dim > ndx by appending singletons sz_out(ndx + 1 : max (dim)) = 1; sz_out(dim(dim <= ndx)) = 1; szx(ndx + 1 : max (dim)) = 1; if (vecdim_flag) ## vecdim - try to simplify first dim = sort (dim); if (! all (diff (dim))) error ("median: VECDIM must contain non-repeating positive integers."); endif ## dims > ndims(x) and dims only one element long don't affect median sing_dim_x = find (szx != 1); dim(dim > ndx | szx(dim) == 1) = []; if (isempty (dim)) ## No dims left to process, return input as output if (! strcmp (class (x), outtype)) m = feval (outtype, x); # convert to outtype else m = x; endif return; elseif (numel (dim) == numel (sing_dim_x) && unique ([dim, sing_dim_x]) == dim) ## If DIMs cover all nonsingleton ndims(x) it's equivalent to "all" ## (check lengths first to reduce unique overhead if not covered) all_flag = true; endif endif else ## Dim not provided. Determine scalar dimension. if (all_flag) ## Special case 'all': Recast input as dim1 vector, process as normal. x = x(:); szx = [length(x), 1]; dim = 1; sz_out = [1 1]; elseif (isrow (x)) ## Special case row vector: Avoid setting dim to 1. dim = 2; sz_out = [1, 1]; elseif (ndx == 2 && szx == [0, 0]) ## Special case []: Do not apply sz_out(dim)=1 change. dim = 1; sz_out = [1, 1]; else ## General case: Set dim to first non-singleton, contract sz_out along dim (dim = find (szx != 1, 1)) || (dim = 1); sz_out(dim) = 1; endif endif if (isempty (x)) ## Empty input - output NaN or class equivalent in pre-determined size switch (outtype) case {"double", "single"} m = NaN (sz_out, outtype); case ("logical") m = false (sz_out); otherwise m = cast (NaN (sz_out), outtype); endswitch return; endif if (szx(dim) == 1) ## Operation along singleton dimension - nothing to do if (! strcmp (class (x), outtype)) m = feval (outtype, x); # convert to outtype else m = x; endif return; endif ## Permute dim to simplify all operations along dim1. At func. end ipermute. if (numel (dim) > 1 || (dim != 1 && ! isvector (x))) perm = 1 : ndx; if (! vecdim_flag) ## Move dim to dim 1 perm([1, dim]) = [dim, 1]; x = permute (x, perm); szx([1, dim]) = szx([dim, 1]); dim = 1; else ## Move vecdims to front perm(dim) = []; perm = [dim, perm]; x = permute (x, perm); ## Reshape all vecdims into dim1 num_dim = prod (szx(dim)); szx(dim) = []; szx = [num_dim, ones(1, numel(dim)-1), szx]; x = reshape (x, szx); dim = 1; endif perm_flag = true; endif ## Find column locations of NaNs nanfree = ! any (isnan (x), dim); if (omitnan && nanfree(:)) ## Don't use omitnan path if no NaNs are present. Prevents any data types ## without a defined NaN from following the omitnan codepath. omitnan = false; endif x = sort (x, dim); # Note: pushes any NaN's to end for omitnan compatibility if (omitnan) ## Ignore any NaN's in data. Each operating vector might have a ## different number of non-NaN data points. if (isvector (x)) ## Checks above ensure either dim1 or dim2 vector x = x(! isnan (x)); n = length (x); k = floor ((n + 1) / 2); if (mod (n, 2)) ## odd m = x(k); else ## even m = (x(k) + x(k + 1)) / 2; endif else ## Each column may have a different n and k. Force index column vector ## for consistent orientation for 2D and nD inputs, then use sub2ind to ## get correct element(s) for each column. n = sum (! isnan (x), 1)(:); k = floor ((n + 1) / 2); m_idx_odd = mod (n, 2) & n; m_idx_even = (! m_idx_odd) & n; m = NaN ([1, szx(2 : end)]); if (ndims (x) > 2) szx = [szx(1), prod(szx(2 : end))]; endif ## Grab kth value, k possibly different for each column if (any (m_idx_odd)) x_idx_odd = sub2ind (szx, k(m_idx_odd), find (m_idx_odd)); m(m_idx_odd) = x(x_idx_odd); endif if (any (m_idx_even)) k_even = k(m_idx_even); x_idx_even = sub2ind (szx, [k_even, k_even+1], ... (find (m_idx_even))(:,[1 1])); m(m_idx_even) = sum (x(x_idx_even), 2) / 2; endif endif else ## No "omitnan". All 'vectors' uniform length. ## All types without a NaN value will use this path. if (all (!nanfree)) m = NaN (sz_out); else if (isvector (x)) n = length (x); k = floor ((n + 1) / 2); m = x(k); if (! mod (n, 2)) ## Even if (any (isa (x, "integer"))) ## avoid int overflow issues m2 = x(k+1); if (sign(m) != sign(m2)) m += m2; m /= 2; else m += (m2 - m) / 2; endif else m += (x(k+1) - m) / 2; endif endif else ## Nonvector, all operations were permuted to be along dim 1 n = szx(1); k = floor ((n + 1) / 2); if (isfloat (x)) m = NaN ([1, szx(2 : end)]); else m = zeros ([1, szx(2 : end)], outtype); endif if (! mod (n, 2)) ## Even if (any (isa(x, "integer"))) ## avoid int overflow issues ## Use flattened index to simplify N-D operations m(1,:) = x(k, :); m2 = x(k+1, :); samesign = prod (sign ([m(1,:); m2]), 1) == 1; m(1,:) = samesign .* m(1,:) + ... (m2 + !samesign .* m(1,:) - samesign .* m(1,:)) / 2; else m(nanfree) = (x(k, nanfree) + x(k+1, nanfree)) / 2; endif else ## Odd. Use flattened index to simplify n-D operations m(nanfree) = x(k, nanfree); endif endif endif endif if (perm_flag) ## Inverse permute back to correct dimensions m = ipermute (m, perm); endif ## Convert output type as requested if (! strcmp (class (m), outtype)) m = feval (outtype, m); endif endfunction %!assert (median (1), 1) %!assert (median ([1,2,3]), 2) %!assert (median ([1,2,3]'), 2) %!assert (median (cat(3,3,1,2)), 2) %!assert (median ([3,1,2]), 2) %!assert (median ([2,4,6,8]), 5) %!assert (median ([8,2,6,4]), 5) %!assert (median (single ([1,2,3])), single (2)) %!assert (median ([1,2], 3), [1,2]) %!test %! x = [1, 2, 3, 4, 5, 6]; %! x2 = x'; %! y = [1, 2, 3, 4, 5, 6, 7]; %! y2 = y'; %! %! assert (median (x) == median (x2) && median (x) == 3.5); %! assert (median (y) == median (y2) && median (y) == 4); %! assert (median ([x2, 2 * x2]), [3.5, 7]); %! assert (median ([y2, 3 * y2]), [4, 12]); ## Test outtype option %!test %! in = [1 2 3]; %! out = 2; %! assert (median (in, "default"), median (in)); %! assert (median (in, "default"), out); %!test %! in = single ([1 2 3]); %! out = 2; %! assert (median (in, "default"), single (median (in))); %! assert (median (in, "default"), single (out)); %! assert (median (in, "double"), double (out)); %! assert (median (in, "native"), single (out)); %!test %! in = uint8 ([1 2 3]); %! out = 2; %! assert (median (in, "default"), double (median (in))); %! assert (median (in, "default"), double (out)); %! assert (median (in, "double"), out); %! assert (median (in, "native"), uint8 (out)); %!test %! in = logical ([1 0 1]); %! out = 1; %! assert (median (in, "default"), double (median (in))); %! assert (median (in, "default"), double (out)); %! assert (median (in, "double"), double (out)); %! assert (median (in, "native"), double (out)); ## Test single input and optional arguments "all", DIM, "omitnan") %!test %! x = repmat ([2 2.1 2.2 2 NaN; 3 1 2 NaN 5; 1 1.1 1.4 5 3], [1, 1, 4]); %! y = repmat ([2 1.1 2 NaN NaN], [1, 1, 4]); %! assert (median (x), y); %! assert (median (x, 1), y); %! y = repmat ([2 1.1 2 3.5 4], [1, 1, 4]); %! assert (median (x, "omitnan"), y); %! assert (median (x, 1, "omitnan"), y); %! y = repmat ([2.05; 2.5; 1.4], [1, 1, 4]); %! assert (median (x, 2, "omitnan"), y); %! y = repmat ([NaN; NaN; 1.4], [1, 1, 4]); %! assert (median (x, 2), y); %! assert (median (x, "all"), NaN); %! assert (median (x, "all", "omitnan"), 2); %!assert (median (cat (3, 3, 1, NaN, 2), "omitnan"), 2) %!assert (median (cat (3, 3, 1, NaN, 2), 3, "omitnan"), 2) ## Test boolean input %!test %! assert (median (true, "all"), logical (1)); %! assert (median (false), logical (0)); %! assert (median ([true false true]), true); %! assert (median ([true false true], 2), true); %! assert (median ([true false true], 1), logical ([1 0 1])); %! assert (median ([true false NaN], 1), [1 0 NaN]); %! assert (median ([true false NaN], 2), NaN); %! assert (median ([true false NaN], 2, "omitnan"), 0.5); %! assert (median ([true false NaN], 2, "omitnan", "native"), double(0.5)); ## Test dimension indexing with vecdim in n-dimensional arrays %!test %! x = repmat ([1:20;6:25], [5 2 6 3]); %! assert (size (median (x, [3 2])), [10 1 1 3]); %! assert (size (median (x, [1 2])), [1 1 6 3]); %! assert (size (median (x, [1 2 4])), [1 1 6]); %! assert (size (median (x, [1 4 3])), [1 40]); %! assert (size (median (x, [1 2 3 4])), [1 1]); ## Test exceeding dimensions %!assert (median (ones (2,2), 3), ones (2,2)) %!assert (median (ones (2,2,2), 99), ones (2,2,2)) %!assert (median (magic (3), 3), magic (3)) %!assert (median (magic (3), [1 3]), [4, 5, 6]) %!assert (median (magic (3), [1 99]), [4, 5, 6]) ## Test results with vecdim in n-dimensional arrays and "omitnan" %!test %! x = repmat ([2 2.1 2.2 2 NaN; 3 1 2 NaN 5; 1 1.1 1.4 5 3], [1, 1, 4]); %! assert (median (x, [3 2]), [NaN NaN 1.4]'); %! assert (median (x, [3 2], "omitnan"), [2.05 2.5 1.4]'); %! assert (median (x, [1 3]), [2 1.1 2 NaN NaN]); %! assert (median (x, [1 3], "omitnan"), [2 1.1 2 3.5 4]); ## Test empty, NaN, Inf inputs %!assert (median (NaN), NaN) %!assert (median (NaN, "omitnan"), NaN) %!assert (median (NaN (2)), [NaN NaN]) %!assert (median (NaN (2), "omitnan"), [NaN NaN]) %!assert (median ([1 NaN 3]), NaN) %!assert (median ([1 NaN 3], 1), [1 NaN 3]) %!assert (median ([1 NaN 3], 2), NaN) %!assert (median ([1 NaN 3]'), NaN) %!assert (median ([1 NaN 3]', 1), NaN) %!assert (median ([1 NaN 3]', 2), [1; NaN; 3]) %!assert (median ([1 NaN 3], "omitnan"), 2) %!assert (median ([1 NaN 3]', "omitnan"), 2) %!assert (median ([1 NaN 3], 1, "omitnan"), [1 NaN 3]) %!assert (median ([1 NaN 3], 2, "omitnan"), 2) %!assert (median ([1 NaN 3]', 1, "omitnan"), 2) %!assert (median ([1 NaN 3]', 2, "omitnan"), [1; NaN; 3]) %!assert (median ([1 2 NaN 3]), NaN) %!assert (median ([1 2 NaN 3], "omitnan"), 2) %!assert (median ([1,2,NaN;4,5,6;NaN,8,9]), [NaN, 5, NaN]) %!assert <*64011> (median ([1,2,NaN;4,5,6;NaN,8,9], "omitnan"), [2.5, 5, 7.5], eps) %!assert (median ([1 2 ; NaN 4]), [NaN 3]) %!assert (median ([1 2 ; NaN 4], "omitnan"), [1 3]) %!assert (median ([1 2 ; NaN 4], 1, "omitnan"), [1 3]) %!assert (median ([1 2 ; NaN 4], 2, "omitnan"), [1.5; 4], eps) %!assert (median ([1 2 ; NaN 4], 3, "omitnan"), [1 2 ; NaN 4]) %!assert (median ([NaN 2 ; NaN 4]), [NaN 3]) %!assert (median ([NaN 2 ; NaN 4], "omitnan"), [NaN 3]) %!assert (median (ones (1, 0, 3)), NaN (1, 1, 3)) %!assert (median (NaN("single")), NaN("single")) %!assert (median (NaN("single"), "omitnan"), NaN("single")) %!assert (median (NaN("single"), "double"), NaN("double")) %!assert (median (single([1 2 ; NaN 4])), single([NaN 3])) %!assert (median (single([1 2 ; NaN 4]), "double"), double([NaN 3])) %!assert (median (single([1 2 ; NaN 4]), "omitnan"), single([1 3])) %!assert (median (single([1 2 ; NaN 4]), "omitnan", "double"), double([1 3])) %!assert (median (single([NaN 2 ; NaN 4]), "double"), double([NaN 3])) %!assert (median (single([NaN 2 ; NaN 4]), "omitnan"), single([NaN 3])) %!assert (median (single([NaN 2 ; NaN 4]), "omitnan", "double"), double([NaN 3])) ## Test omitnan with 2D & 3D inputs to confirm correct sub2ind orientation %!test <*64011> %! x = [magic(3), magic(3)]; %! x([3, 7, 11, 12, 16, 17]) = NaN; %! ynan = [NaN, 5, NaN, NaN, 5, NaN]; %! yomitnan = [5.5, 5, 4.5, 8, 5, 2]; %! assert (median (x), ynan); %! assert (median (x, "omitnan"), yomitnan, eps); %! assert (median (cat (3, x, x)), cat (3, ynan, ynan)); %! assert (median (cat (3, x, x), "omitnan"), cat (3, yomitnan, yomitnan), eps); %!assert (median (Inf), Inf) %!assert (median (-Inf), -Inf) %!assert (median ([-Inf Inf]), NaN) %!assert (median ([3 Inf]), Inf) %!assert (median ([3 4 Inf]), 4) %!assert (median ([Inf 3 4]), 4) %!assert (median ([Inf 3 Inf]), Inf) %!assert (median ([]), NaN) %!assert (median (ones(1,0)), NaN) %!assert (median (ones(0,1)), NaN) %!assert (median ([], 1), NaN(1,0)) %!assert (median ([], 2), NaN(0,1)) %!assert (median ([], 3), NaN(0,0)) %!assert (median (ones(1,0), 1), NaN(1,0)) %!assert (median (ones(1,0), 2), NaN(1,1)) %!assert (median (ones(1,0), 3), NaN(1,0)) %!assert (median (ones(0,1), 1), NaN(1,1)) %!assert (median (ones(0,1), 2), NaN(0,1)) %!assert (median (ones(0,1), 3), NaN(0,1)) %!assert (median (ones(0,1,0,1), 1), NaN(1,1,0)) %!assert (median (ones(0,1,0,1), 2), NaN(0,1,0)) %!assert (median (ones(0,1,0,1), 3), NaN(0,1,1)) %!assert (median (ones(0,1,0,1), 4), NaN(0,1,0)) ## Test complex inputs (should sort by abs(a)) %!assert (median([1 3 3i 2 1i]), 2) %!assert (median([1 2 4i; 3 2i 4]), [2, 1+1i, 2+2i]) ## Test multidimensional arrays %!shared a, b, x, y %! old_state = rand ("state"); %! restore_state = onCleanup (@() rand ("state", old_state)); %! rand ("state", 2); %! a = rand (2,3,4,5); %! b = rand (3,4,6,5); %! x = sort (a, 4); %! y = sort (b, 3); %!assert <*35679> (median (a, 4), x(:, :, :, 3)) %!assert <*35679> (median (b, 3), (y(:, :, 3, :) + y(:, :, 4, :))/2) %!shared ## Clear shared to prevent variable echo for any later test failures ## Test n-dimensional arrays with odd non-NaN data points %!test %! x = ones(15,1,4); %! x([13,15],1,:) = NaN; %! assert (median (x, 1, "omitnan"), ones (1,1,4)) ## Test non-floating point types %!assert (median ([true, false]), true) %!assert (median (logical ([])), false) %!assert (median (uint8 ([1, 3])), uint8 (2)) %!assert (median (uint8 ([])), uint8 (NaN)) %!assert (median (uint8 ([NaN 10])), uint8 (5)) %!assert (median (int8 ([1, 3, 4])), int8 (3)) %!assert (median (int8 ([])), int8 (NaN)) %!assert (median (single ([1, 3, 4])), single (3)) %!assert (median (single ([1, 3, NaN])), single (NaN)) ## Test same sign int overflow when getting mean of even number of values %!assert <54567> (median (uint8 ([253, 255])), uint8 (254)) %!assert <54567> (median (uint8 ([253, 254])), uint8 (254)) %!assert <54567> (median (int8 ([127, 126, 125, 124; 1 3 5 9])), ... %! int8 ([64 65 65 67])) %!assert <54567> (median (int8 ([127, 126, 125, 124; 1 3 5 9]), 2), ... %! int8 ([126; 4])) %!assert <54567> (median (int64 ([intmax("int64"), intmax("int64")-2])), ... %! intmax ("int64") - 1) %!assert <54567> (median ( ... %! int64 ([intmax("int64"), intmax("int64")-2; 1 2]), 2), ... %! int64([intmax("int64") - 1; 2])) %!assert <54567> (median (uint64 ([intmax("uint64"), intmax("uint64")-2])), ... %! intmax ("uint64") - 1) %!assert <54567> (median ( ... %! uint64 ([intmax("uint64"), intmax("uint64")-2; 1 2]), 2), ... %! uint64([intmax("uint64") - 1; 2])) ## Test opposite sign int overflow when getting mean of even number of values %!assert <54567> (median (... %! [intmin('int8') intmin('int8')+5 intmax('int8')-5 intmax('int8')]), ... %! int8(-1)) %!assert <54567> (median ([int8([1 2 3 4]); ... %! intmin('int8') intmin('int8')+5 intmax('int8')-5 intmax('int8')], 2), ... %! int8([3;-1])) %!assert <54567> (median (... %! [intmin('int64') intmin('int64')+5 intmax('int64')-5 intmax('int64')]), ... %! int64(-1)) %!assert <54567> (median ([int64([1 2 3 4]); ... %! intmin('int64') intmin('int64')+5 intmax('int64')-5 intmax('int64')], 2), ... %! int64([3;-1])) ## Test int accuracy loss doing mean of close int64/uint64 values as double %!assert <54567> (median ([intmax("uint64"), intmax("uint64")-2]), ... %! intmax("uint64")-1) %!assert <54567> (median ([intmax("uint64"), intmax("uint64")-2], "default"), ... %! double(intmax("uint64")-1)) %!assert <54567> (median ([intmax("uint64"), intmax("uint64")-2], "double"), ... %! double(intmax("uint64")-1)) %!assert <54567> (median ([intmax("uint64"), intmax("uint64")-2], "native"), ... %! intmax("uint64")-1) ## Test input case insensitivity %!assert (median ([1 2 3], "aLL"), 2) %!assert (median ([1 2 3], "OmitNan"), 2) %!assert (median ([1 2 3], "DOUBle"), 2) ## Test input validation %!error median () %!error median (1, 2, 3) %!error median (1, 2, 3, 4) %!error median (1, "all", 3) %!error median (1, "b") %!error median (1, 1, "foo") %!error <'all' cannot be used with> median (1, 3, "all") %!error <'all' cannot be used with> median (1, [2 3], "all") %!error median ({1:5}) %!error median ("char") %!error median(1, "double", "native") %!error median (1, ones (2,2)) %!error median (1, 1.5) %!error median (1, 0) %!error median ([1 2 3], [-1 1]) %!error median(1, [1 2 2]) statistics-release-1.6.3/inst/shadow9/std.m000066400000000000000000000755151456127120000206470ustar00rootroot00000000000000## Copyright (C) 2022-2023 Andreas Bertsatos ## Copyright (C) 2023 Nicholas Jankowski ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{s} =} std (@var{x}) ## @deftypefnx {statistics} {@var{s} =} std (@var{x}, @var{w}) ## @deftypefnx {statistics} {@var{s} =} std (@var{x}, @var{w}, "all") ## @deftypefnx {statistics} {@var{s} =} std (@var{x}, @var{w}, @var{dim}) ## @deftypefnx {statistics} {@var{s} =} std (@var{x}, @var{w}, @var{vecdim}) ## @deftypefnx {statistics} {@var{s} =} std (@dots{}, @var{nanflag}) ## @deftypefnx {statistics} {[@var{s}, @var{m}] =} std (@dots{}) ## ## Compute the standard deviation of the elements of @var{x}. ## ## @itemize ## @item ## If @var{x} is a vector, then @code{std (@var{x})} returns the standard ## deviation of the elements in @var{x} defined as ## @tex ## $$ {\rm std}(x) = \sqrt{{1\over N-1} \sum_{i=1}^N |x_i - \bar x |^2} $$ ## ## @end tex ## @ifnottex ## ## @example ## std (@var{x}) = sqrt ((1 / (N-1)) * SUM_i (|@var{x}(i) - mean (@var{x})|^2)) ## @end example ## ## @end ifnottex ## @noindent ## where @math{N} is the length of the @var{x} vector. ## ## @item ## If @var{x} is a matrix, then @code{std (@var{x})} returns a row vector with ## the standard deviation of each column in @var{x}. ## ## @item ## If @var{x} is a multi-dimensional array, then @code{std (@var{x})} operates ## along the first non-singleton dimension of @var{x}. ## @end itemize ## ## @code{std (@var{x}, @var{w})} specifies a weighting scheme. When @var{w} = 0 ## (default), the standard deviation is normalized by N-1 (population standard ## deviation), where N is the number of observations. When @var{w} = 1, the ## standard deviation is normalized by the number of observations (sample ## standard deviation). To use the default value you may pass an empty input ## argument [] before entering other options. ## ## @var{w} can also be an array of non-negative numbers. When @var{w} is a ## vector, it must have the same length as the number of elements in the ## operating dimension of @var{x}. If @var{w} is a matrix or n-D array, or the ## operating dimension is supplied as a @var{vecdim} or "all", @var{w} must be ## the same size as @var{x}. NaN values are permitted in @var{w}, will be ## multiplied with the associated values in @var{x}, and can be excluded by the ## @var{nanflag} option. ## ## @code{std (@var{x}, [], @var{dim})} returns the standard deviation along the ## operating dimension @var{dim} of @var{x}. For @var{dim} greater than ## @code{ndims (@var{x})}, then @var{s} is returned as zeros of the same size as ## @var{x} and @var{m} = @var{x}. ## ## @code{std (@var{x}, [], @var{vecdim})} returns the standard deviation over ## the dimensions specified in the vector @var{vecdim}. For example, if @var{x} ## is a 2-by-3-by-4 array, then @code{var (@var{x}, [1 2])} returns a ## 1-by-1-by-4 array. Each element of the output array is the standard ## deviation of the elements on the corresponding page of @var{x}. ## If @var{vecdim} indexes all dimensions of @var{x}, then it is equivalent to ## @code{std (@var{x}, "all")}. Any dimension in @var{vecdim} greater than ## @code{ndims (@var{x})} is ignored. ## ## @code{std (@var{x}, "all")} returns the standard deviation of all the ## elements in @var{x}. The optional flag "all" cannot be used together with ## @var{dim} or @var{vecdim} input arguments. ## ## @code{std (@dots{}, @var{nanflag})} specifies whether to exclude NaN values ## from the calculation using any of the input argument combinations in previous ## syntaxes. The default value for @var{nanflag} is "includenan", and keeps NaN ## values in the calculation. To exclude NaN values, set the value of ## @var{nanflag} to "omitnan". ## ## @code{[@var{s}, @var{m}] = std (@dots{})} also returns the mean of the ## elements of @var{x} used to calculate the standard deviation. If @var{s} is ## the weighted standard deviation, then @var{m} is the weighted mean. ## ## @seealso{var, mean} ## @end deftypefn function [s, m] = std (x, varargin) if (nargin < 1 || nargin > 4) print_usage (); endif ## initialize variables all_flag = false; omitnan = false; nvarg = numel (varargin); varg_chars = cellfun ('ischar', varargin); ## Check all char arguments. if (nvarg == 3 && ! varg_chars(3)) print_usage (); endif if (any (varg_chars)) for i = varargin(varg_chars) switch (lower (i{:})) case "all" all_flag = true; case "omitnan" omitnan = true; case "includenan" omitnan = false; otherwise print_usage (); endswitch endfor varargin(varg_chars) = []; nvarg = numel (varargin); endif # FIXME: when sparse can use broadcast ops, remove sparse checks and hacks sprs_x = issparse (x); w = 0; weighted = false; # true if weight vector/array used vecdim = []; vecempty = true; vecdim_scalar_vector = [false, false]; # [false, false] for empty vecdim szx = size (x); ndx = ndims (x); ## Check numeric arguments if (! (isnumeric (x))) error ("std: X must be a numeric vector or matrix."); endif if (isa (x, "single")) outtype = "single"; else outtype = "double"; endif if (nvarg > 0) if (nvarg > 2 || any (! cellfun ('isnumeric', varargin))) print_usage (); endif ## Process weight input if (any (varargin{1} < 0)) error ("std: weights must not contain any negative values."); endif if (isscalar (varargin{1})) w = varargin{1}; if (! (w == 0 || w == 1) && ! isscalar (x)) error ("std: normalization scalar must be either 0 or 1."); endif elseif (numel (varargin{1}) > 1) weights = varargin{1}; weighted = true; endif if (nvarg > 1) ## Process dimension input vecdim = varargin{2}; if (! (vecempty = isempty (vecdim))) ## Check for empty vecdim, won't change vsv if nonzero size empty vecdim_scalar_vector = [isscalar(vecdim), isvector(vecdim)]; endif if (! (vecdim_scalar_vector(2) && all (vecdim > 0)) ... || any (rem (vecdim, 1))) error ("std: DIM must be a positive integer scalar or vector."); endif if (vecdim_scalar_vector(1) && vecdim > ndx && ! isempty (x)) s = zeros (szx, outtype); sn = ! isfinite (x); s(sn) = NaN; m = x; return; endif if (vecdim_scalar_vector == [0 1] && (! all (diff (sort (vecdim))))) error ("std: VECDIM must contain non-repeating positive integers."); endif endif endif ## Check for conflicting input arguments if (all_flag && ! vecempty) error ("std: 'all' flag cannot be used with DIM or VECDIM options."); endif if (weighted) if (all_flag) if (isvector (weights)) if (numel (weights) != numel (x)) error ("std: weight vector element count does not match X."); endif elseif (! (isequal (size (weights), szx))) error ("std: weight matrix or array does not match X in size."); endif elseif (vecempty) dim = find (szx > 1, 1); if length (dim) == 0 dim = 1; endif if (isvector (weights)) if (numel (weights) != szx(dim)) error (["std: weight vector length does not match operating ", ... "dimension."]); endif elseif (! isequal (size (weights), szx)) error ("std: weight matrix or array does not match X in size."); endif elseif (vecdim_scalar_vector(1)) if (isvector (weights)) if (numel (weights) != szx(vecdim)) error (["std: weight vector length does not match operating ", ... "dimension."]); endif elseif (! isequal (size (weights), szx)) error ("std: weight matrix or array does not match X in size."); endif elseif (vecdim_scalar_vector(2) && ! (isequal (size (weights), szx))) error ("std: weight matrix or array does not match X in size."); endif endif ## Force output for X being empty or scalar if (isempty (x)) if (vecempty && (ndx == 2 || all ((szx) == 0))) s = NaN (outtype); if (nargout > 1) m = NaN (outtype); endif return; endif if (vecdim_scalar_vector(1)) szx(vecdim) = 1; s = NaN (szx, outtype); if (nargout > 1) m = NaN (szx, outtype); endif return; endif endif if (isscalar (x)) if (isfinite (x)) s = zeros (outtype); else s = NaN (outtype); endif if (nargout > 1) m = x; endif return; endif if (nvarg == 0) ## Only numeric input argument, no dimensions or weights. if (all_flag) x = x(:); if (omitnan) x = x(! isnan (x)); endif n = length (x); m = sum (x) ./ n; s = sqrt (sum (abs (x - m) .^ 2) ./ (n - 1 + w)); if (n == 1) s = 0; endif else dim = find (szx > 1, 1); if length (dim) == 0 dim = 1; endif n = szx(dim); if (omitnan) n = sum (! isnan (x), dim); xn = isnan (x); x(xn) = 0; endif m = sum (x, dim) ./ n; dims = ones (1, ndx); dims(dim) = szx(dim); if (sprs_x) m_exp = repmat (m, dims); else m_exp = m .* ones (dims); endif if (omitnan) x(xn) = m_exp(xn); endif s = sqrt (sumsq (x - m_exp, dim) ./ (n - 1 + w)); if (numel (n) == 1) divby0 = n .* ones (size (s)) == 1; else divby0 = n == 1; endif s(divby0) = 0; endif elseif (nvarg == 1) ## Two numeric input arguments, w or weights given. if (all_flag) x = x(:); if (weighted) weights = weights(:); wx = weights .* x; else weights = ones (length (x), 1); wx = x; endif if (omitnan) xn = isnan (wx); wx = wx(! xn); weights = weights(! xn); x = x(! xn); endif n = length (wx); m = sum (wx) ./ sum (weights); if (weighted) s = sqrt (sum (weights .* (abs (x - m) .^ 2)) ./ sum (weights)); else s = sqrt (sum (weights .* (abs (x - m) .^ 2)) ./ (n - 1 + w)); if (n == 1) s = 0; endif endif else dim = find (szx > 1, 1); if length (dim) == 0 dim = 1; endif if (! weighted) weights = ones (szx); wx = x; else if (isvector (weights)) dims = 1:ndx; dims([1, dim]) = [dim, 1]; weights = zeros (szx) + permute (weights(:), dims); endif wx = weights .* x; endif n = size (wx, dim); if (omitnan) xn = isnan (wx); n = sum (! xn, dim); wx(xn) = 0; weights(xn) = 0; endif m = sum (wx, dim) ./ sum (weights, dim); dims = ones (1, ndims (wx)); dims(dim) = size (wx, dim); if (sprs_x) m_exp = repmat (m, dims); else m_exp = m .* ones (dims); endif if (omitnan) x(xn) = m_exp(xn); endif if (weighted) s = sqrt (sum (weights .* ((x - m_exp) .^ 2), dim) ... ./ sum (weights, dim)); else s = sqrt (sumsq (x - m_exp, dim) ./ (n - 1 + w)); if (numel (n) == 1) divby0 = n .* ones (size (s)) == 1; else divby0 = n == 1; endif s(divby0) = 0; endif endif elseif (nvarg == 2) ## Three numeric input arguments, both w or weights and dim or vecdim given. if (vecdim_scalar_vector(1)) if (!weighted) weights = ones (szx); wx = x; else if (isvector (weights)) dims = 1:ndx; dims([1, vecdim]) = [vecdim, 1]; weights = zeros (szx) + permute (weights(:), dims); endif wx = weights .* x; endif n = size (wx, vecdim); if (omitnan) n = sum (! isnan (wx), vecdim); xn = isnan (wx); wx(xn) = 0; weights(xn) = 0; endif m = sum (wx, vecdim) ./ sum (weights, vecdim); dims = ones (1, ndims (wx)); dims(vecdim) = size (wx, vecdim); if (sprs_x) m_exp = repmat (m, dims); else m_exp = m .* ones (dims); endif if (omitnan) x(xn) = m_exp(xn); endif if (weighted) s = sqrt (sum (weights .* ((x - m_exp) .^ 2), vecdim) ... ./ sum (weights, vecdim)); else s = sumsq (x - m_exp, vecdim); sn = isnan (s); s = sqrt (s ./ (n - 1 + w)); if (numel (n) == 1) divby0 = n .* ones (size (s)) == 1; else divby0 = n == 1; endif s(divby0) = 0; s(sn) = NaN; endif else ## Weights and nonscalar vecdim specified ## Ignore exceeding dimensions in VECDIM remdims = 1 : ndx; # all dimensions vecdim(find (vecdim > ndx)) = []; ## Calculate permutation vector remdims(vecdim) = []; # delete dimensions specified by vecdim nremd = numel (remdims); ## If all dimensions are given, it is similar to all flag if (nremd == 0) x = x(:); if (weighted) weights = weights(:); wx = weights .* x; else weights = ones (length (x), 1); wx = x; endif if (omitnan) xn = isnan (wx); wx = wx(! xn); weights = weights(! xn); x = x(! xn); endif n = length (wx); m = sum (wx) ./ sum (weights); if (weighted) s = sqrt (sum (weights .* (abs (x - m) .^ 2)) ./ sum (weights)); else s = sqrt (sum (weights .* (abs (x - m) .^ 2)) ./ (n - 1 + w)); if (n == 1) s = 0; endif endif else ## Apply weights if (weighted) wx = weights .* x; else weights = ones (szx); wx = x; endif ## Permute to bring remaining dims forward perm = [remdims, vecdim]; wx = permute (wx, perm); weights = permute (weights, perm); x = permute (x, perm); ## Reshape to put all vecdims in final dimension szwx = size (wx); sznew = [szwx(1:nremd), prod(szwx(nremd+1:end))]; wx = reshape (wx, sznew); weights = reshape (weights, sznew); x = reshape (x, sznew); ## Calculate var on single, squashed dimension dim = nremd + 1; n = size (wx, dim); if (omitnan) xn = isnan (wx); n = sum (! xn, dim); wx(xn) = 0; weights(xn) = 0; endif m = sum (wx, dim) ./ sum (weights, dim); m_exp = zeros (size (wx)) + m; if (omitnan) x(xn) = m_exp(xn); endif if (weighted) s = sqrt (sum (weights .* ((x - m_exp) .^ 2), dim) ... ./ sum (weights, dim)); else s = sqrt (sumsq (x - m_exp, dim) ./ (n - 1 + w)); if (numel (n) == 1) divby0 = n .* ones (size (s)) == 1; else divby0 = n == 1; endif s(divby0) = 0; endif ## Inverse permute back to correct dimensions s = ipermute (s, perm); if (nargout > 1) m = ipermute (m, perm); endif endif endif endif ## Preserve class type if (nargout < 2) if strcmp (outtype, "single") s = single (s); else s = double (s); endif else if strcmp (outtype, "single") s = single (s); m = single (m); else s = double (s); m = double (m); endif endif endfunction %!assert (std (13), 0) %!assert (std (single (13)), single (0)) %!assert (std ([1,2,3]), 1) %!assert (std ([1,2,3], 1), sqrt (2/3), eps) %!assert (std ([1,2,3], [], 1), [0,0,0]) %!assert (std ([1,2,3], [], 3), [0,0,0]) %!assert (std (5, 99), 0) %!assert (std (5, 99, 1), 0) %!assert (std (5, 99, 2), 0) %!assert (std ([5 3], [99 99], 2), 1) %!assert (std ([1:7], [1:7]), sqrt (3)) %!assert (std ([eye(3)], [1:3]), sqrt ([5/36, 2/9, 1/4]), eps) %!assert (std (ones (2,2,2), [1:2], 3), [(zeros (2,2))]) %!assert (std ([1 2; 3 4], 0, 'all'), std ([1:4])) %!assert (std (reshape ([1:8], 2, 2, 2), 0, [1 3]), sqrt ([17/3 17/3]), eps) %!assert (std ([1 2 3;1 2 3], [], [1 2]), sqrt (0.8), eps) ## Test single input and optional arguments "all", DIM, "omitnan") %!test %! x = [-10:10]; %! y = [x;x+5;x-5]; %! assert (std (x), sqrt (38.5), 1e-14); %! assert (std (y, [], 2), sqrt ([38.5; 38.5; 38.5]), 1e-14); %! assert (std (y, 0, 2), sqrt ([38.5; 38.5; 38.5]), 1e-14); %! assert (std (y, 1, 2), ones (3,1) * sqrt (36.66666666666666), 1e-14); %! assert (std (y, "all"), sqrt (54.19354838709678), 1e-14); %! y(2,4) = NaN; %! assert (std (y, "all"), NaN); %! assert (std (y, "all", "includenan"), NaN); %! assert (std (y, "all", "omitnan"), sqrt (55.01533580116342), 1e-14); %! assert (std (y, 0, 2, "includenan"), sqrt ([38.5; NaN; 38.5]), 1e-14); %! assert (std (y, [], 2), sqrt ([38.5; NaN; 38.5]), 1e-14); %! assert (std (y, [], 2, "omitnan"), ... %! sqrt ([38.5; 37.81842105263158; 38.5]), 1e-14); ## Tests for different weight and omitnan code paths %!assert (std ([4 NaN 6], [1 2 1], "omitnan"), 1, eps) %!assert (std ([4 5 6], [1 NaN 1], "omitnan"), 1, eps) %!assert (std (magic(3), [1 NaN 3], "omitnan"), sqrt(3)*[1 2 1], eps) %!assert (std ([4 NaN 6], [1 2 1], "omitnan", "all"), 1, eps) %!assert (std ([4 NaN 6], [1 2 1], "all", "omitnan"), 1, eps) %!assert (std ([4 5 6], [1 NaN 1], "omitnan", "all"), 1, eps) %!assert (std ([4 NaN 6], [1 2 1], 2, "omitnan"), 1, eps) %!assert (std ([4 5 6], [1 NaN 1], 2, "omitnan"), 1, eps) %!assert (std (magic(3), [1 NaN 3], 1, "omitnan"), sqrt(3)*[1 2 1], eps) %!assert (std (magic(3), [1 NaN 3], 2, "omitnan"), sqrt(3)*[0.5;1;0.5], eps) %!assert (std (4*[4 5; 6 7; 8 9], [1 3], 2, 'omitnan'), sqrt(3)*[1;1;1], eps) %!assert (std ([4 NaN; 6 7; 8 9], [1 1 3], 1, 'omitnan'), [1.6 sqrt(3)/2], eps) %!assert (std (4*[4 NaN; 6 7; 8 9], [1 3], 2, 'omitnan'), sqrt(3)*[0;1;1], eps) %!assert (std (3*reshape(1:18, [3 3 2]), [1 2 3], 1, 'omitnan'), ... %! sqrt(5)*ones(1,3,2), eps) %!assert (std (reshape(1:18, [3 3 2]), [1 2 3], 2, 'omitnan'), ... %! sqrt(5)*ones(3,1,2), eps) %!assert (std (3*reshape(1:18, [3 3 2]), ones (3,3,2), [1 2], 'omitnan'), ... %! sqrt(60)*ones(1,1,2),eps) %!assert (std (3*reshape(1:18, [3 3 2]), ones (3,3,2), [1 4], 'omitnan'), ... %! sqrt(6)*ones(1,3,2),eps) %!assert (std (6*reshape(1:18, [3 3 2]), ones (3,3,2), [1:3], 'omitnan'), ... %! sqrt(969),eps) %!test %! x = reshape(1:18, [3 3 2]); %! x([2, 14]) = NaN; %! w = ones (3,3,2); %! assert (std (16*x, w, [1:3], 'omitnan'), sqrt(6519), eps); %!test %! x = reshape(1:18, [3 3 2]); %! w = ones (3,3,2); %! w([2, 14]) = NaN; %! assert (std (16*x, w, [1:3], 'omitnan'), sqrt(6519), eps); ## Test input case insensitivity %!assert (std ([1 2 3], "aLl"), 1); %!assert (std ([1 2 3], "OmitNan"), 1); %!assert (std ([1 2 3], "IncludeNan"), 1); ## Test dimension indexing with vecdim in n-dimensional arrays %!test %! x = repmat ([1:20;6:25], [5, 2, 6, 3]); %! assert (size (std (x, 0, [3 2])), [10, 1, 1, 3]); %! assert (size (std (x, 1, [1 2])), [1, 1, 6, 3]); %! assert (size (std (x, [], [1 2 4])), [1, 1, 6]); %! assert (size (std (x, 0, [1 4 3])), [1, 40]); %! assert (size (std (x, [], [1 2 3 4])), [1, 1]); ## Test matrix with vecdim, weighted, matrix weights, omitnan %!assert (std (3*magic(3)), sqrt([63 144 63]), eps) %!assert (std (3*magic(3), 'omitnan'), sqrt([63 144 63]), eps) %!assert (std (3*magic(3), 1), sqrt([42 96 42]), eps) %!assert (std (3*magic(3), 1, 'omitnan'), sqrt([42 96 42]), eps) %!assert (std (3*magic(3), ones(1,3), 1), sqrt([42 96 42]), eps) %!assert (std (3*magic(3), ones(1,3), 1, 'omitnan'), sqrt([42 96 42]), eps) %!assert (std (2*magic(3), [1 1 NaN], 1, 'omitnan'), [5 4 1], eps) %!assert (std (3*magic(3), ones(3,3)), sqrt([42 96 42]), eps) %!assert (std (3*magic(3), ones(3,3), 'omitnan'), sqrt([42 96 42]), eps) %!assert (std (3*magic(3), [1 1 1; 1 1 1; 1 NaN 1], 'omitnan'), ... %! sqrt([42 36 42]), eps) %!assert (std (3*magic(3), ones(3,3), 1), sqrt([42 96 42]), eps) %!assert (std (3*magic(3), ones(3,3), 1, 'omitnan'), sqrt([42 96 42]), eps) %!assert (std (3*magic(3), [1 1 1; 1 1 1; 1 NaN 1], 1, 'omitnan'), ... %! sqrt([42 36 42]), eps) %!assert (std (3*magic(3), ones(3,3), [1 4]), sqrt([42 96 42]), eps) %!assert (std (3*magic(3), ones(3,3), [1 4], 'omitnan'), sqrt([42 96 42]), eps) %!assert (std (3*magic(3), [1 1 1; 1 1 1; 1 NaN 1],[1 4],'omitnan'), ... %! sqrt([42 36 42]), eps) ## Test results with vecdim in n-dimensional arrays and "omitnan" %!test %! x = repmat ([1:20;6:25], [5, 2, 6, 3]); %! v = repmat (sqrt (33.38912133891213), [10, 1, 1, 3]); %! assert (std (x, 0, [3, 2]), v, 1e-14); %! v = repmat (sqrt (33.250), [10, 1, 1, 3]); %! assert (std (x, 1, [3, 2]), v, 1e-14); %! x(2,5,6,3) = NaN; %! v(2,1,1,3) = NaN; %! assert (std (x, 1, [3, 2]), v, 1e-14); %! v = repmat (sqrt (33.38912133891213), [10 1 1 3]); %! v(2,1,1,3) = NaN; %! assert (std (x, [], [3, 2]), v, 1e-14); %! v(2,1,1,3) = sqrt (33.40177912169048); %! assert (std (x, [], [3, 2], "omitnan"), v, 1e-14); ## Testing weights vectors & arrays %!assert (std (ones (2,2,2), [1:2], 3), [(zeros (2, 2))]) %!assert (std (magic (3), [1:9], "all"), 2.581988897471611, 1e-14) ## Test exceeding dimensions %!assert (std (ones (2,2), [], 3), zeros (2,2)) %!assert (std (ones (2,2,2), [], 99), zeros (2,2,2)) %!assert (std (magic (3), [], 3), zeros (3,3)) %!assert (std (magic (3), [], 1), sqrt ([7, 16, 7])) %!assert (std (magic (3), [], [1 3]), sqrt ([7, 16, 7])) %!assert (std (magic (3), [], [1 99]), sqrt ([7, 16, 7])) ## Test empty inputs %!assert (std ([]), NaN) %!assert (class (var (single ([]))), "single") %!assert (std ([],[],1), NaN(1,0)) %!assert (std ([],[],2), NaN(0,1)) %!assert (std ([],[],3), []) %!assert (class (var (single ([]), [], 1)), "single") %!assert (std (ones (1,0)), NaN) %!assert (std (ones (1,0), [], 1), NaN(1,0)) %!assert (std (ones (1,0), [], 2), NaN) %!assert (std (ones (1,0), [], 3), NaN(1,0)) %!assert (class (var (ones (1, 0, "single"), [], 1)), "single") %!assert (std (ones (0,1)), NaN) %!assert (std (ones (0,1), [], 1), NaN) %!assert (std (ones (0,1), [], 2), NaN(0,1)) %!assert (std (ones (0,1), [], 3), NaN(0,1)) %!assert (std (ones (1,3,0,2)), NaN(1,1,0,2)) %!assert (std (ones (1,3,0,2), [], 1), NaN(1,3,0,2)) %!assert (std (ones (1,3,0,2), [], 2), NaN(1,1,0,2)) %!assert (std (ones (1,3,0,2), [], 3), NaN(1,3,1,2)) %!assert (std (ones (1,3,0,2), [], 4), NaN(1,3,0)) %!test %! [~, m] = std ([]); %! assert (m, NaN); ## Test optional mean output %!test <*62395> %! [~, m] = std (13); %! assert (m, 13); %! [~, m] = std (single(13)); %! assert (m, single(13)); %! [~, m] = std ([1, 2, 3; 3 2 1], []); %! assert (m, [2 2 2]); %! [~, m] = std ([1, 2, 3; 3 2 1], [], 1); %! assert (m, [2 2 2]); %! [~, m] = std ([1, 2, 3; 3 2 1], [], 2); %! assert (m, [2 2]'); %! [~, m] = std ([1, 2, 3; 3 2 1], [], 3); %! assert (m, [1 2 3; 3 2 1]); ## Test mean output, weighted inputs, vector dims %!test <*62395> %! [~, m] = std (5,99); %! assert (m, 5); %! [~, m] = std ([1:7], [1:7]); %! assert (m, 5); %! [~, m] = std ([eye(3)], [1:3]); %! assert (m, [1/6, 1/3, 0.5], eps); %! [~, m] = std (ones (2,2,2), [1:2], 3); %! assert (m, ones (2,2)); %! [~, m] = std ([1 2; 3 4], 0, 'all'); %! assert (m, 2.5, eps); %! [~, m] = std (reshape ([1:8], 2, 2, 2), 0, [1 3]); %! assert (m, [3.5, 5.5], eps); %!test %! [v, m] = std (4 * eye (2), [1, 3]); %! assert (v, sqrt ([3, 3]), 1e-14); %! assert (m, [1, 3]); ## Test mean output, empty inputs, omitnan %!test <*62395> %! [~, m] = std ([]); %! assert (m, NaN); #%! [~, m] = std ([],[],1); #%! assert (m, NaN(1,0)); #%! [~, m] = std ([],[],2); #%! assert (m, NaN(0,1)); #%! [~, m] = std ([],[],3); #%! assert (m, []); #%! [~, m] = std (ones (1,3,0,2)); #%! assert (m, NaN(1,1,0,2)); ## Test mean output, nD array %!test %! x = repmat ([1:20;6:25], [5, 2, 6, 3]); %! [~, m] = std (x, 0, [3 2]); %! assert (m, mean (x, [3 2])); %! [~, m] = std (x, 0, [1 2]); %! assert (m, mean (x, [1 2])); %! [~, m] = std (x, 0, [1 3 4]); %! assert (m, mean (x, [1 3 4])); %!test %! x = repmat ([1:20;6:25], [5, 2, 6, 3]); %! x(2,5,6,3) = NaN; %! [~, m] = std (x, 0, [3 2], "omitnan"); %! assert (m, mean (x, [3 2], "omitnan")); ## Test Inf and NaN inputs %!test <*63203> %! [v, m] = std (Inf); %! assert (v, NaN); %! assert (m, Inf); %!test <*63203> %! [v, m] = std (NaN); %! assert (v, NaN); %! assert (m, NaN); %!test <*63203> %! [v, m] = std ([1, Inf, 3]); %! assert (v, NaN); %! assert (m, Inf); %!test <*63203> %! [v, m] = std ([1, Inf, 3]'); %! assert (v, NaN); %! assert (m, Inf); %!test <*63203> %! [v, m] = std ([1, NaN, 3]); %! assert (v, NaN); %! assert (m, NaN); %!test <*63203> %! [v, m] = std ([1, NaN, 3]'); %! assert (v, NaN); %! assert (m, NaN); %!test <*63203> %! [v, m] = std ([1, Inf, 3], [], 1); %! assert (v, [0, NaN, 0]); %! assert (m, [1, Inf, 3]); %!test <*63203> %! [v, m] = std ([1, Inf, 3], [], 2); %! assert (v, NaN); %! assert (m, Inf); %!test <*63203> %! [v, m] = std ([1, Inf, 3], [], 3); %! assert (v, [0, NaN, 0]); %! assert (m, [1, Inf, 3]); %!test <*63203> %! [v, m] = std ([1, NaN, 3], [], 1); %! assert (v, [0, NaN, 0]); %! assert (m, [1, NaN, 3]); %!test <*63203> %! [v, m] = std ([1, NaN, 3], [], 2); %! assert (v, NaN); %! assert (m, NaN); %!test <*63203> %! [v, m] = std ([1, NaN, 3], [], 3); %! assert (v, [0, NaN, 0]); %! assert (m, [1, NaN, 3]); %!test <*63203> %! [v, m] = std ([1, 2, 3; 3, Inf, 5]); %! assert (v, sqrt ([2, NaN, 2])); %! assert (m, [2, Inf, 4]); %!test <*63203> %! [v, m] = std ([1, Inf, 3; 3, Inf, 5]); %! assert (v, sqrt ([2, NaN, 2])); %! assert (m, [2, Inf, 4]); %!test <*63203> %! [v, m] = std ([1, 2, 3; 3, NaN, 5]); %! assert (v, sqrt ([2, NaN, 2])); %! assert (m, [2, NaN, 4]); %!test <*63203> %! [v, m] = std ([1, NaN, 3; 3, NaN, 5]); %! assert (v, sqrt ([2, NaN, 2])); %! assert (m, [2, NaN, 4]); %!test <*63203> %! [v, m] = std ([Inf, 2, NaN]); %! assert (v, NaN); %! assert (m, NaN); %!test <*63203> %! [v, m] = std ([Inf, 2, NaN]'); %! assert (v, NaN); %! assert (m, NaN); %!test <*63203> %! [v, m] = std ([NaN, 2, Inf]); %! assert (v, NaN); %! assert (m, NaN); %!test <*63203> %! [v, m] = std ([NaN, 2, Inf]'); %! assert (v, NaN); %! assert (m, NaN); %!test <*63203> %! [v, m] = std ([Inf, 2, NaN], [], 1); %! assert (v, [NaN, 0, NaN]); %! assert (m, [Inf, 2, NaN]); %!test <*63203> %! [v, m] = std ([Inf, 2, NaN], [], 2); %! assert (v, NaN); %! assert (m, NaN); %!test <*63203> %! [v, m] = std ([NaN, 2, Inf], [], 1); %! assert (v, [NaN, 0, NaN]); %! assert (m, [NaN, 2, Inf]); %!test <*63203> %! [v, m] = std ([NaN, 2, Inf], [], 2); %! assert (v, NaN); %! assert (m, NaN); %!test <*63203> %! [v, m] = std ([1, 3, NaN; 3, 5, Inf]); %! assert (v, sqrt ([2, 2, NaN])); %! assert (m, [2, 4, NaN]); %!test <*63203> %! [v, m] = std ([1, 3, Inf; 3, 5, NaN]); %! assert (v, sqrt ([2, 2, NaN])); %! assert (m, [2, 4, NaN]); ## Test sparse/diagonal inputs %!test <*63291> %! [v, m] = std (2 * eye (2)); %! assert (v, sqrt ([2, 2])); %! assert (m, [1, 1]); %!test <*63291> %! [v, m] = std (4 * eye (2), [1, 3]); %! assert (v, sqrt ([3, 3])); %! assert (m, [1, 3]); %!test <*63291> %! [v, m] = std (sparse (2 * eye (2))); %! assert (full (v), sqrt ([2, 2])); %! assert (full (m), [1, 1]); %!test <*63291> %! [v, m] = std (sparse (4 * eye (2)), [1, 3]); %! assert (full (v), sqrt ([3, 3])); %! assert (full (m), [1, 3]); %!test <*63291> %! [v, m] = std (sparse (eye (2))); %! assert (issparse (v)); %! assert (issparse (m)); %!test <*63291> %! [v, m] = std (sparse (eye (2)), [1, 3]); %! assert (issparse (v)); %! assert (issparse (m)); ## Test input validation %!error std () %!error std (1, 2, "omitnan", 3) %!error std (1, 2, 3, 4) %!error std (1, 2, 3, 4, 5) %!error std (1, "foo") %!error std (1, [], "foo") %!error std ([1 2 3], 2) %!error std ([1 2], 2, "all") %!error std ([1 2],0.5, "all") %!error std (1, -1) %!error std (1, [1 -1]) %!error ... %! std ([1 2 3], [1 -1 0]) %!error std ({1:5}) %!error std ("char") %!error std (['A'; 'B']) %!error std (1, [], ones (2,2)) %!error std (1, 0, 1.5) %!error std (1, [], 0) %!error std (1, [], 1.5) %!error std ([1 2 3], [], [-1 1]) %!error ... %! std (repmat ([1:20;6:25], [5 2 6 3]), 0, [1 2 2 2]) %!error ... %! std ([1 2], eye (2)) %!error ... %! std ([1 2 3 4], [1 2; 3 4]) %!error ... %! std ([1 2 3 4], [1 2; 3 4], 1) %!error ... %! std ([1 2 3 4], [1 2; 3 4], [2 3]) %!error ... %! std (ones (2, 2), [1 2], [1 2]) %!error ... %! std ([1 2 3 4; 5 6 7 8], [1 2 1 2 1; 1 2 1 2 1], 1) %!error ... %! std (repmat ([1:20;6:25], [5 2 6 3]), repmat ([1:20;6:25], [5 2 3]), [2 3]) %!error std ([1 2 3; 2 3 4], [1 3 4]) %!error std ([1 2], [1 2 3]) %!error std (1, [1 2]) %!error std ([1 2 3; 2 3 4], [1 3 4], 1) %!error std ([1 2 3; 2 3 4], [1 3], 2) %!error std ([1 2], [1 2], 1) %!error <'all' flag cannot be used with DIM or VECDIM options> ... %! std (1, [], 1, "all") %!error ... %! std ([1 2 3; 2 3 4], [1 3], "all") %!error ... %! std (repmat ([1:20;6:25], [5 2 6 3]), repmat ([1:20;6:25], [5 2 3]), "all") statistics-release-1.6.3/inst/shadow9/var.m000066400000000000000000000743061456127120000206420ustar00rootroot00000000000000## Copyright (C) 2022-2023 Andreas Bertsatos ## Copyright (C) 2023 Nicholas Jankowski ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{v} =} var (@var{x}) ## @deftypefnx {statistics} {@var{v} =} var (@var{x}, @var{w}) ## @deftypefnx {statistics} {@var{v} =} var (@var{x}, @var{w}, "all") ## @deftypefnx {statistics} {@var{v} =} var (@var{x}, @var{w}, @var{dim}) ## @deftypefnx {statistics} {@var{v} =} var (@var{x}, @var{w}, @var{vecdim}) ## @deftypefnx {statistics} {@var{v} =} var (@dots{}, @var{nanflag}) ## @deftypefnx {statistics} {[@var{v}, @var{m}] =} var (@dots{}) ## ## Compute the variance of the elements of @var{x}. ## ## @itemize ## @item ## If @var{x} is a vector, then @code{var(@var{x})} returns the variance of the ## elements in @var{x} defined as ## @tex ## $$ {\rm var}(x) = {1\over N-1} \sum_{i=1}^N |x_i - \bar x |^2 $$ ## ## @end tex ## @ifnottex ## ## @example ## var (@var{x}) = (1 / (N-1)) * SUM_i (|@var{x}(i) - mean (@var{x})|^2) ## @end example ## ## @end ifnottex ## @noindent ## where @math{N} is the length of the @var{x} vector. ## ## @item ## If @var{x} is a matrix, then @code{var (@var{x})} returns a row vector with ## the variance of each column in @var{x}. ## ## @item ## If @var{x} is a multi-dimensional array, then @code{var (@var{x})} operates ## along the first non-singleton dimension of @var{x}. ## @end itemize ## ## @code{var (@var{x}, @var{w})} specifies a weighting scheme. When @var{w} = 0 ## (default), the variance is normalized by N-1 (population variance) where N is ## the number of observations. When @var{w} = 1, the variance is normalized by ## the number of observations (sample variance). To use the default value you ## may pass an empty input argument [] before entering other options. ## ## @var{w} can also be an array of non-negative numbers. When @var{w} is a ## vector, it must have the same length as the number of elements in the ## operating dimension of @var{x}. If @var{w} is a matrix or n-D array, or the ## operating dimension is supplied as a @var{vecdim} or "all", @var{w} must be ## the same size as @var{x}. NaN values are permitted in @var{w}, will be ## multiplied with the associated values in @var{x}, and can be excluded by the ## @var{nanflag} option. ## ## @code{var (@var{x}, [], @var{dim})} returns the variance along the operating ## dimension @var{dim} of @var{x}. For @var{dim} greater than ## @code{ndims (@var{x})} @var{v} is returned as zeros of the same size as ## @var{x} and @var{m} = @var{x}. ## ## @code{var (@var{x}, [], @var{vecdim})} returns the variance over the ## dimensions specified in the vector @var{vecdim}. For example, if @var{x} ## is a 2-by-3-by-4 array, then @code{var (@var{x}, [1 2])} returns a ## 1-by-1-by-4 array. Each element of the output array is the variance of the ## elements on the corresponding page of @var{x}. If @var{vecdim} indexes all ## dimensions of @var{x}, then it is equivalent to @code{var (@var{x}, "all")}. ## Any dimension in @var{vecdim} greater than @code{ndims (@var{x})} is ignored. ## ## @code{var (@var{x}, "all")} returns the variance of all the elements in ## @var{x}. The optional flag "all" cannot be used together with @var{dim} or ## @var{vecdim} input arguments. ## ## @code{var (@dots{}, @var{nanflag})} specifies whether to exclude NaN values ## from the calculation using any of the input argument combinations in previous ## syntaxes. The default value for @var{nanflag} is "includenan", and keeps NaN ## values in the calculation. To exclude NaN values, set the value of ## @var{nanflag} to "omitnan". ## ## @code{[@var{v}, @var{m}] = var (@dots{})} also returns the mean of the ## elements of @var{x} used to calculate the variance. If @var{v} is the ## weighted variance, then @var{m} is the weighted mean. ## ## @seealso{std, mean} ## @end deftypefn function [v, m] = var (x, varargin) if (nargin < 1 || nargin > 4) print_usage (); endif ## initialize variables all_flag = false; omitnan = false; nvarg = numel (varargin); varg_chars = cellfun ('ischar', varargin); ## Check all char arguments. if (nvarg == 3 && ! varg_chars(3)) print_usage (); endif if (any (varg_chars)) for i = varargin(varg_chars) switch (lower (i{:})) case "all" all_flag = true; case "omitnan" omitnan = true; case "includenan" omitnan = false; otherwise print_usage (); endswitch endfor varargin(varg_chars) = []; nvarg = numel (varargin); endif # FIXME: when sparse can use broadcast ops, remove sparse checks and hacks sprs_x = issparse (x); w = 0; weighted = false; # true if weight vector/array used vecdim = []; vecempty = true; vecdim_scalar_vector = [false, false]; # [false, false] for empty vecdim szx = size (x); ndx = ndims (x); ## Check numeric arguments if (! (isnumeric (x))) error ("var: X must be a numeric vector or matrix."); endif if (isa (x, "single")) outtype = "single"; else outtype = "double"; endif if (nvarg > 0) if (nvarg > 2 || any (! cellfun ('isnumeric', varargin))) print_usage (); endif ## Process weight input if (any (varargin{1} < 0)) error ("var: weights must not contain any negative values."); endif if (isscalar (varargin{1})) w = varargin{1}; if (! (w == 0 || w == 1) && ! isscalar (x)) error ("var: normalization scalar must be either 0 or 1."); endif elseif (numel (varargin{1}) > 1) weights = varargin{1}; weighted = true; endif if (nvarg > 1) ## Process dimension input vecdim = varargin{2}; if (! (vecempty = isempty (vecdim))) ## Check for empty vecdim, won't change vsv if nonzero size empty vecdim_scalar_vector = [isscalar(vecdim), isvector(vecdim)]; endif if (! (vecdim_scalar_vector(2) && all (vecdim > 0)) ... || any (rem (vecdim, 1))) error ("var: DIM must be a positive integer scalar or vector."); endif if (vecdim_scalar_vector(1) && vecdim > ndx && ! isempty (x)) ## Scalar dimension larger than ndims(x), variance of any single number ## is zero, except for inf, NaN, and empty values of x. v = zeros (szx, outtype); vn = ! isfinite (x); v(vn) = NaN; m = x; return; endif if (vecdim_scalar_vector == [0 1] && (! all (diff (sort (vecdim))))) error ("var: VECDIM must contain non-repeating positive integers."); endif endif endif ## Check for conflicting input arguments if (all_flag && ! vecempty) error ("var: 'all' flag cannot be used with DIM or VECDIM options."); endif if (weighted) if (all_flag) if (isvector (weights)) if (numel (weights) != numel (x)) error ("var: weight vector element count does not match X."); endif elseif (! (isequal (size (weights), szx))) error ("var: weight matrix or array does not match X in size."); endif elseif (vecempty) dim = find (szx > 1, 1); if length (dim) == 0 dim = 1; endif if (isvector (weights)) if (numel (weights) != szx(dim)) error (["var: weight vector length does not match operating ", ... "dimension."]); endif elseif (! isequal (size (weights), szx)) error ("var: weight matrix or array does not match X in size."); endif elseif (vecdim_scalar_vector(1)) if (isvector (weights)) if (numel (weights) != szx(vecdim)) error (["var: weight vector length does not match operating ", ... "dimension."]); endif elseif (! isequal (size (weights), szx)) error ("var: weight matrix or array does not match X in size."); endif elseif (vecdim_scalar_vector(2) && ! (isequal (size (weights), szx))) error ("var: weight matrix or array does not match X in size."); endif endif ## Force output for X being empty or scalar if (isempty (x)) if (vecempty && (ndx == 2 || all ((szx) == 0))) v = NaN (outtype); if (nargout > 1) m = NaN (outtype); endif return; endif if (vecdim_scalar_vector(1)) szx(vecdim) = 1; v = NaN (szx, outtype); if (nargout > 1) m = NaN (szx, outtype); endif return; endif endif if (isscalar (x)) if (isfinite (x)) v = zeros (outtype); else v = NaN (outtype); endif if (nargout > 1) m = x; endif return; endif if (nvarg == 0) ## Only numeric input argument, no dimensions or weights. if (all_flag) x = x(:); if (omitnan) x = x(! isnan (x)); endif n = length (x); m = sum (x) ./ n; v = sum (abs (x - m) .^ 2) ./ (n - 1 + w); if (n == 1) v = 0; endif else dim = find (szx > 1, 1); if length (dim) == 0 dim = 1; endif n = szx(dim); if (omitnan) n = sum (! isnan (x), dim); xn = isnan (x); x(xn) = 0; endif m = sum (x, dim) ./ n; dims = ones (1, ndx); dims(dim) = szx(dim); if (sprs_x) m_exp = repmat (m, dims); else m_exp = m .* ones (dims); endif if (omitnan) x(xn) = m_exp(xn); endif v = sumsq (x - m_exp, dim) ./ (n - 1 + w); if (numel (n) == 1) divby0 = n .* ones (size (v)) == 1; else divby0 = n == 1; endif v(divby0) = 0; endif elseif (nvarg == 1) ## Two numeric input arguments, w or weights given. if (all_flag) x = x(:); if (weighted) weights = weights(:); wx = weights .* x; else weights = ones (length (x), 1); wx = x; endif if (omitnan) xn = isnan (wx); wx = wx(! xn); weights = weights(! xn); x = x(! xn); endif n = length (wx); m = sum (wx) ./ sum (weights); if (weighted) v = sum (weights .* (abs (x - m) .^ 2)) ./ sum (weights); else v = sum (weights .* (abs (x - m) .^ 2)) ./ (n - 1 + w); if (n == 1) v = 0; endif endif else dim = find (szx > 1, 1); if length (dim) == 0 dim = 1; endif if (! weighted) weights = ones (szx); wx = x; else if (isvector (weights)) dims = 1:ndx; dims([1, dim]) = [dim, 1]; weights = zeros (szx) + permute (weights(:), dims); endif wx = weights .* x; endif n = size (wx, dim); if (omitnan) xn = isnan (wx); n = sum (! xn, dim); wx(xn) = 0; weights(xn) = 0; endif m = sum (wx, dim) ./ sum (weights, dim); dims = ones (1, ndims (wx)); dims(dim) = size (wx, dim); if (sprs_x) m_exp = repmat (m, dims); else m_exp = m .* ones (dims); endif if (omitnan) x(xn) = m_exp(xn); endif if (weighted) v = sum (weights .* ((x - m_exp) .^ 2), dim) ./ sum (weights, dim); else v = sumsq (x - m_exp, dim) ./ (n - 1 + w); if (numel (n) == 1) divby0 = n .* ones (size (v)) == 1; else divby0 = n == 1; endif v(divby0) = 0; endif endif elseif (nvarg == 2) ## Three numeric input arguments, both w or weights and dim or vecdim given. if (vecdim_scalar_vector(1)) if (!weighted) weights = ones (szx); wx = x; else if (isvector (weights)) dims = 1:ndx; dims([1, vecdim]) = [vecdim, 1]; weights = zeros (szx) + permute (weights(:), dims); endif wx = weights .* x; endif n = size (wx, vecdim); if (omitnan) n = sum (! isnan (wx), vecdim); xn = isnan (wx); wx(xn) = 0; weights(xn) = 0; endif m = sum (wx, vecdim) ./ sum (weights, vecdim); dims = ones (1, ndims (wx)); dims(vecdim) = size (wx, vecdim); if (sprs_x) m_exp = repmat (m, dims); else m_exp = m .* ones (dims); endif if (omitnan) x(xn) = m_exp(xn); endif if (weighted) v = sum (weights .* ((x - m_exp) .^ 2), vecdim) ... ./ sum (weights, vecdim); else v = sumsq (x - m_exp, vecdim); vn = isnan (v); v = v ./ (n - 1 + w); if (numel (n) == 1) divby0 = n .* ones (size (v)) == 1; else divby0 = n == 1; endif v(divby0) = 0; v(vn) = NaN; endif else ## Weights and nonscalar vecdim specified ## Ignore exceeding dimensions in VECDIM remdims = 1 : ndx; # all dimensions vecdim(find (vecdim > ndx)) = []; ## Calculate permutation vector remdims(vecdim) = []; # delete dimensions specified by vecdim nremd = numel (remdims); ## If all dimensions are given, it is similar to all flag if (nremd == 0) x = x(:); if (weighted) weights = weights(:); wx = weights .* x; else weights = ones (length (x), 1); wx = x; endif if (omitnan) xn = isnan (wx); wx = wx(! xn); weights = weights(! xn); x = x(! xn); endif n = length (wx); m = sum (wx) ./ sum (weights); if (weighted) v = sum (weights .* (abs (x - m) .^ 2)) ./ sum (weights); else v = sum (weights .* (abs (x - m) .^ 2)) ./ (n - 1 + w); if (n == 1) v = 0; endif endif else ## FIXME: much of the reshaping can be skipped once octave's sum can ## take a vecdim argument. ## Apply weights if (weighted) wx = weights .* x; else weights = ones (szx); wx = x; endif ## Permute to bring remaining dims forward perm = [remdims, vecdim]; wx = permute (wx, perm); weights = permute (weights, perm); x = permute (x, perm); ## Reshape to put all vecdims in final dimension szwx = size (wx); sznew = [szwx(1:nremd), prod(szwx(nremd+1:end))]; wx = reshape (wx, sznew); weights = reshape (weights, sznew); x = reshape (x, sznew); ## Calculate var on single, squashed dimension dim = nremd + 1; n = size (wx, dim); if (omitnan) xn = isnan (wx); n = sum (! xn, dim); wx(xn) = 0; weights(xn) = 0; endif m = sum (wx, dim) ./ sum (weights, dim); m_exp = zeros (sznew) + m; if (omitnan) x(xn) = m_exp(xn); endif if (weighted) v = sum (weights .* ((x - m_exp) .^ 2), dim) ./ sum (weights, dim); else v = sumsq (x - m_exp, dim) ./ (n - 1 + w); if (numel (n) == 1) divby0 = n .* ones (size (v)) == 1; else divby0 = n == 1; endif v(divby0) = 0; endif ## Inverse permute back to correct dimensions v = ipermute (v, perm); if (nargout > 1) m = ipermute (m, perm); endif endif endif endif ## Preserve class type if (nargout < 2) if strcmp (outtype, "single") v = single (v); else v = double (v); endif else if strcmp (outtype, "single") v = single (v); m = single (m); else v = double (v); m = double (m); endif endif endfunction %!assert (var (13), 0) %!assert (var (single (13)), single (0)) %!assert (var ([1,2,3]), 1) %!assert (var ([1,2,3], 1), 2/3, eps) %!assert (var ([1,2,3], [], 1), [0,0,0]) %!assert (var ([1,2,3], [], 3), [0,0,0]) %!assert (var (5, 99), 0) %!assert (var (5, 99, 1), 0) %!assert (var (5, 99, 2), 0) %!assert (var ([5 3], [99 99], 2), 1) %!assert (var ([1:7], [1:7]), 3) %!assert (var ([eye(3)], [1:3]), [5/36, 2/9, 1/4], eps) %!assert (var (ones (2,2,2), [1:2], 3), [(zeros (2,2))]) %!assert (var ([1 2; 3 4], 0, 'all'), var ([1:4])) %!assert (var (reshape ([1:8], 2, 2, 2), 0, [1 3]), [17/3 17/3], eps) %!assert (var ([1 2 3;1 2 3], [], [1 2]), 0.8, eps) ## Test single input and optional arguments "all", DIM, "omitnan") %!test %! x = [-10:10]; %! y = [x;x+5;x-5]; %! assert (var (x), 38.5); %! assert (var (y, [], 2), [38.5; 38.5; 38.5]); %! assert (var (y, 0, 2), [38.5; 38.5; 38.5]); %! assert (var (y, 1, 2), ones (3,1) * 36.66666666666666, 1e-14); %! assert (var (y, "all"), 54.19354838709678, 1e-14); %! y(2,4) = NaN; %! assert (var (y, "all"), NaN); %! assert (var (y, "all", "includenan"), NaN); %! assert (var (y, "all", "omitnan"), 55.01533580116342, 1e-14); %! assert (var (y, 0, 2, "includenan"), [38.5; NaN; 38.5]); %! assert (var (y, [], 2), [38.5; NaN; 38.5]); %! assert (var (y, [], 2, "omitnan"), [38.5; 37.81842105263158; 38.5], 1e-14); ## Tests for different weight and omitnan code paths %!assert (var ([1 NaN 3], [1 2 3], "omitnan"), 0.75, eps) %!assert (var ([1 2 3], [1 NaN 3], "omitnan"), 0.75, eps) %!assert (var (magic(3), [1 NaN 3], "omitnan"), [3 12 3], eps) %!assert (var ([1 NaN 3], [1 2 3], "omitnan", "all"), 0.75, eps) %!assert (var ([1 NaN 3], [1 2 3], "all", "omitnan"), 0.75, eps) %!assert (var ([1 2 3], [1 NaN 3], "omitnan", "all"), 0.75, eps) %!assert (var ([1 NaN 3], [1 2 3], 2, "omitnan"), 0.75, eps) %!assert (var ([1 2 3], [1 NaN 3], 2, "omitnan"), 0.75, eps) %!assert (var (magic(3), [1 NaN 3], 1, "omitnan"), [3 12 3], eps) %!assert (var (magic(3), [1 NaN 3], 2, "omitnan"), [0.75;3;0.75], eps) %!assert (var ([4 4; 4 6; 6 6], [1 3], 2, 'omitnan'), [0;0.75;0], eps) %!assert (var ([4 NaN; 4 6; 6 6], [1 2 3], 1, 'omitnan'), [1 0]) %!assert (var ([4 NaN; 4 6; 6 6], [1 3], 2, 'omitnan'), [0;0.75;0], eps) %!assert (var (3*reshape(1:18, [3 3 2]), [1 2 3], 1, 'omitnan'), ones(1,3,2)*5) %!assert (var (reshape(1:18, [3 3 2]), [1 2 3], 2, 'omitnan'), 5*ones(3,1,2)) %!assert (var (3*reshape(1:18, [3 3 2]), ones (3,3,2), [1 2], 'omitnan'), ... %! 60 * ones(1,1,2)) %!assert (var (3*reshape(1:18, [3 3 2]), ones (3,3,2), [1 4], 'omitnan'), ... %! 6 * ones(1,3,2)) %!assert (var (6*reshape(1:18, [3 3 2]), ones (3,3,2), [1:3], 'omitnan'), 969) %!test %! x = reshape(1:18, [3 3 2]); %! x([2, 14]) = NaN; %! w = ones (3,3,2); %! assert (var (16*x, w, [1:3], 'omitnan'), 6519); %!test %! x = reshape(1:18, [3 3 2]); %! w = ones (3,3,2); %! w([2, 14]) = NaN; %! assert (var (16*x, w, [1:3], 'omitnan'), 6519); ## Test input case insensitivity %!assert (var ([1 2 3], "aLl"), 1); %!assert (var ([1 2 3], "OmitNan"), 1); %!assert (var ([1 2 3], "IncludeNan"), 1); ## Test dimension indexing with vecdim in n-dimensional arrays %!test %! x = repmat ([1:20;6:25], [5, 2, 6, 3]); %! assert (size (var (x, 0, [3 2])), [10, 1, 1, 3]); %! assert (size (var (x, 1, [1 2])), [1, 1, 6, 3]); %! assert (size (var (x, [], [1 2 4])), [1, 1, 6]); %! assert (size (var (x, 0, [1 4 3])), [1, 40]); %! assert (size (var (x, [], [1 2 3 4])), [1, 1]); ## Test matrix with vecdim, weighted, matrix weights, omitnan %!assert (var (3*magic(3)), [63 144 63]) %!assert (var (3*magic(3), 'omitnan'), [63 144 63]) %!assert (var (3*magic(3), 1), [42 96 42]) %!assert (var (3*magic(3), 1, 'omitnan'), [42 96 42]) %!assert (var (3*magic(3), ones(1,3), 1), [42 96 42]) %!assert (var (3*magic(3), ones(1,3), 1, 'omitnan'), [42 96 42]) %!assert (var (2*magic(3), [1 1 NaN], 1, 'omitnan'), [25 16 1]) %!assert (var (3*magic(3), ones(3,3)), [42 96 42]) %!assert (var (3*magic(3), ones(3,3), 'omitnan'), [42 96 42]) %!assert (var (3*magic(3), [1 1 1; 1 1 1; 1 NaN 1], 'omitnan'), [42 36 42]) %!assert (var (3*magic(3), ones(3,3), 1), [42 96 42]) %!assert (var (3*magic(3), ones(3,3), 1, 'omitnan'), [42 96 42]) %!assert (var (3*magic(3), [1 1 1; 1 1 1; 1 NaN 1], 1, 'omitnan'), [42 36 42]) %!assert (var (3*magic(3), ones(3,3), [1 4]), [42 96 42]) %!assert (var (3*magic(3), ones(3,3), [1 4], 'omitnan'), [42 96 42]) %!assert (var (3*magic(3), [1 1 1; 1 1 1; 1 NaN 1],[1 4],'omitnan'), [42 36 42]) ## Test results with vecdim in n-dimensional arrays and "omitnan" %!test %! x = repmat ([1:20;6:25], [5, 2, 6, 3]); %! v = repmat (33.38912133891213, [10, 1, 1, 3]); %! assert (var (x, 0, [3, 2]), v, 1e-14); %! v = repmat (33.250, [10, 1, 1, 3]); %! assert (var (x, 1, [3, 2]), v, 1e-14); %! x(2,5,6,3) = NaN; %! v(2,1,1,3) = NaN; %! assert (var (x, 1, [3, 2]), v, 4e-14); %! v = repmat (33.38912133891213, [10 1 1 3]); %! v(2,1,1,3) = NaN; %! assert (var (x, [], [3, 2]), v, 4e-14); %! v(2,1,1,3) = 33.40177912169048; %! assert (var (x, [], [3, 2], "omitnan"), v, 4e-14); ## Testing weights vector & arrays %!assert (var (ones (2,2,2), [1:2], 3), [(zeros (2, 2))]) %!assert (var (magic (3), [1:9], "all"), 6.666666666666667, 1e-14) ## Test exceeding dimensions %!assert (var (ones (2,2), [], 3), zeros (2,2)) %!assert (var (ones (2,2,2), [], 99), zeros (2,2,2)) %!assert (var (magic (3), [], 3), zeros (3,3)) %!assert (var (magic (3), [], 1), [7, 16, 7]) %!assert (var (magic (3), [], [1 3]), [7, 16, 7]) %!assert (var (magic (3), [], [1 99]), [7, 16, 7]) ## Test empty inputs %!assert (var ([]), NaN) %!assert (class (var (single ([]))), "single") %!assert (var ([],[],1), NaN(1,0)) %!assert (var ([],[],2), NaN(0,1)) %!assert (var ([],[],3), []) %!assert (class (var (single ([]), [], 1)), "single") %!assert (var (ones (1,0)), NaN) %!assert (var (ones (1,0), [], 1), NaN(1,0)) %!assert (var (ones (1,0), [], 2), NaN) %!assert (var (ones (1,0), [], 3), NaN(1,0)) %!assert (class (var (ones (1, 0, "single"), [], 1)), "single") %!assert (var (ones (0,1)), NaN) %!assert (var (ones (0,1), [], 1), NaN) %!assert (var (ones (0,1), [], 2), NaN(0,1)) %!assert (var (ones (0,1), [], 3), NaN(0,1)) %!assert (var (ones (1,3,0,2)), NaN(1,1,0,2)) %!assert (var (ones (1,3,0,2), [], 1), NaN(1,3,0,2)) %!assert (var (ones (1,3,0,2), [], 2), NaN(1,1,0,2)) %!assert (var (ones (1,3,0,2), [], 3), NaN(1,3,1,2)) %!assert (var (ones (1,3,0,2), [], 4), NaN(1,3,0)) %!test %! [~, m] = var ([]); %! assert (m, NaN); ## Test optional mean output %!test <*62395> %! [~, m] = var (13); %! assert (m, 13); %! [~, m] = var (single(13)); %! assert (m, single(13)); %! [~, m] = var ([1, 2, 3; 3 2 1], []); %! assert (m, [2 2 2]); %! [~, m] = var ([1, 2, 3; 3 2 1], [], 1); %! assert (m, [2 2 2]); %! [~, m] = var ([1, 2, 3; 3 2 1], [], 2); %! assert (m, [2 2]'); %! [~, m] = var ([1, 2, 3; 3 2 1], [], 3); %! assert (m, [1 2 3; 3 2 1]); ## Test mean output, weighted inputs, vector dims %!test <*62395> %! [~, m] = var (5,99); %! assert (m, 5); %! [~, m] = var ([1:7], [1:7]); %! assert (m, 5); %! [~, m] = var ([eye(3)], [1:3]); %! assert (m, [1/6, 1/3, 0.5], eps); %! [~, m] = var (ones (2,2,2), [1:2], 3); %! assert (m, ones (2,2)); %! [~, m] = var ([1 2; 3 4], 0, 'all'); %! assert (m, 2.5, eps); %! [~, m] = var (reshape ([1:8], 2, 2, 2), 0, [1 3]); %! assert (m, [3.5, 5.5], eps); %!test %! [v, m] = var (4 * eye (2), [1, 3]); %! assert (v, [3, 3]); %! assert (m, [1, 3]); ## Test mean output, empty inputs, omitnan %!test <*62395> %! [~, m] = var ([]); %! assert (m, NaN); #%! [~, m] = var ([],[],1); #%! assert (m, NaN(1,0)); #%! [~, m] = var ([],[],2); #%! assert (m, NaN(0,1)); #%! [~, m] = var ([],[],3); #%! assert (m, []); #%! [~, m] = var (ones (1,3,0,2)); #%! assert (m, NaN(1,1,0,2)); ## Test mean output, nD array %!test <*62395> %! x = repmat ([1:20;6:25], [5, 2, 6, 3]); %! [~, m] = var (x, 0, [3 2]); %! assert (m, mean (x, [3 2])); %! [~, m] = var (x, 0, [1 2]); %! assert (m, mean (x, [1 2])); %! [~, m] = var (x, 0, [1 3 4]); %! assert (m, mean (x, [1 3 4])); %!test %! x = repmat ([1:20;6:25], [5, 2, 6, 3]); %! x(2,5,6,3) = NaN; %! [~, m] = var (x, 0, [3 2], "omitnan"); %! assert (m, mean (x, [3 2], "omitnan")); ## Test Inf and NaN inputs %!test <*63203> %! [v, m] = var (Inf); %! assert (v, NaN); %! assert (m, Inf); %!test <*63203> %! [v, m] = var (NaN); %! assert (v, NaN); %! assert (m, NaN); %!test <*63203> %! [v, m] = var ([1, Inf, 3]); %! assert (v, NaN); %! assert (m, Inf); %!test <*63203> %! [v, m] = var ([1, Inf, 3]'); %! assert (v, NaN); %! assert (m, Inf); %!test <*63203> %! [v, m] = var ([1, NaN, 3]); %! assert (v, NaN); %! assert (m, NaN); %!test <*63203> %! [v, m] = var ([1, NaN, 3]'); %! assert (v, NaN); %! assert (m, NaN); %!test <*63203> %! [v, m] = var ([1, Inf, 3], [], 1); %! assert (v, [0, NaN, 0]); %! assert (m, [1, Inf, 3]); %!test <*63203> %! [v, m] = var ([1, Inf, 3], [], 2); %! assert (v, NaN); %! assert (m, Inf); %!test <*63203> %! [v, m] = var ([1, Inf, 3], [], 3); %! assert (v, [0, NaN, 0]); %! assert (m, [1, Inf, 3]); %!test <*63203> %! [v, m] = var ([1, NaN, 3], [], 1); %! assert (v, [0, NaN, 0]); %! assert (m, [1, NaN, 3]); %!test <*63203> %! [v, m] = var ([1, NaN, 3], [], 2); %! assert (v, NaN); %! assert (m, NaN); %!test <*63203> %! [v, m] = var ([1, NaN, 3], [], 3); %! assert (v, [0, NaN, 0]); %! assert (m, [1, NaN, 3]); %!test <*63203> %! [v, m] = var ([1, 2, 3; 3, Inf, 5]); %! assert (v, [2, NaN, 2]); %! assert (m, [2, Inf, 4]); %!test <*63203> %! [v, m] = var ([1, Inf, 3; 3, Inf, 5]); %! assert (v, [2, NaN, 2]); %! assert (m, [2, Inf, 4]); %!test <*63203> %! [v, m] = var ([1, 2, 3; 3, NaN, 5]); %! assert (v, [2, NaN, 2]); %! assert (m, [2, NaN, 4]); %!test <*63203> %! [v, m] = var ([1, NaN, 3; 3, NaN, 5]); %! assert (v, [2, NaN, 2]); %! assert (m, [2, NaN, 4]); %!test <*63203> %! [v, m] = var ([Inf, 2, NaN]); %! assert (v, NaN); %! assert (m, NaN); %!test <*63203> %! [v, m] = var ([Inf, 2, NaN]'); %! assert (v, NaN); %! assert (m, NaN); %!test <*63203> %! [v, m] = var ([NaN, 2, Inf]); %! assert (v, NaN); %! assert (m, NaN); %!test <*63203> %! [v, m] = var ([NaN, 2, Inf]'); %! assert (v, NaN); %! assert (m, NaN); %!test <*63203> %! [v, m] = var ([Inf, 2, NaN], [], 1); %! assert (v, [NaN, 0, NaN]); %! assert (m, [Inf, 2, NaN]); %!test <*63203> %! [v, m] = var ([Inf, 2, NaN], [], 2); %! assert (v, NaN); %! assert (m, NaN); %!test <*63203> %! [v, m] = var ([NaN, 2, Inf], [], 1); %! assert (v, [NaN, 0, NaN]); %! assert (m, [NaN, 2, Inf]); %!test <*63203> %! [v, m] = var ([NaN, 2, Inf], [], 2); %! assert (v, NaN); %! assert (m, NaN); %!test <*63203> %! [v, m] = var ([1, 3, NaN; 3, 5, Inf]); %! assert (v, [2, 2, NaN]); %! assert (m, [2, 4, NaN]); %!test <*63203> %! [v, m] = var ([1, 3, Inf; 3, 5, NaN]); %! assert (v, [2, 2, NaN]); %! assert (m, [2, 4, NaN]); ## Test sparse/diagonal inputs %!test <*63291> %! [v, m] = var (2 * eye (2)); %! assert (v, [2, 2]); %! assert (m, [1, 1]); %!test <*63291> %! [v, m] = var (4 * eye (2), [1, 3]); %! assert (v, [3, 3]); %! assert (m, [1, 3]); %!test <*63291> %! [v, m] = var (sparse (2 * eye (2))); %! assert (full (v), [2, 2]); %! assert (full (m), [1, 1]); %!test <*63291> %! [v, m] = var (sparse (4 * eye (2)), [1, 3]); %! assert (full (v), [3, 3]); %! assert (full (m), [1, 3]); %!test<*63291> %! [v, m] = var (sparse (eye (2))); %! assert (issparse (v)); %! assert (issparse (m)); %!test<*63291> %! [v, m] = var (sparse (eye (2)), [1, 3]); %! assert (issparse (v)); %! assert (issparse (m)); ## Test input validation %!error var () %!error var (1, 2, "omitnan", 3) %!error var (1, 2, 3, 4) %!error var (1, 2, 3, 4, 5) %!error var (1, "foo") %!error var (1, [], "foo") %!error var ([1 2 3], 2) %!error var ([1 2], 2, "all") %!error var ([1 2],0.5, "all") %!error var (1, -1) %!error var (1, [1 -1]) %!error ... %! var ([1 2 3], [1 -1 0]) %!error var ({1:5}) %!error var ("char") %!error var (['A'; 'B']) %!error var (1, [], ones (2,2)) %!error var (1, 0, 1.5) %!error var (1, [], 0) %!error var (1, [], 1.5) %!error var ([1 2 3], [], [-1 1]) %!error ... %! var (repmat ([1:20;6:25], [5 2 6 3]), 0, [1 2 2 2]) %!error ... %! var ([1 2], eye (2)) %!error ... %! var ([1 2 3 4], [1 2; 3 4]) %!error ... %! var ([1 2 3 4], [1 2; 3 4], 1) %!error ... %! var ([1 2 3 4], [1 2; 3 4], [2 3]) %!error ... %! var (ones (2, 2), [1 2], [1 2]) %!error ... %! var ([1 2 3 4; 5 6 7 8], [1 2 1 2 1; 1 2 1 2 1], 1) %!error ... %! var (repmat ([1:20;6:25], [5 2 6 3]), repmat ([1:20;6:25], [5 2 3]), [2 3]) %!error var ([1 2 3; 2 3 4], [1 3 4]) %!error var ([1 2], [1 2 3]) %!error var (1, [1 2]) %!error var ([1 2 3; 2 3 4], [1 3 4], 1) %!error var ([1 2 3; 2 3 4], [1 3], 2) %!error var ([1 2], [1 2], 1) %!error <'all' flag cannot be used with DIM or VECDIM options> ... %! var (1, [], 1, "all") %!error ... %! var ([1 2 3; 2 3 4], [1 3], "all") %!error ... %! var (repmat ([1:20;6:25], [5 2 6 3]), repmat ([1:20;6:25], [5 2 3]), "all") statistics-release-1.6.3/inst/sigma_pts.m000066400000000000000000000077451456127120000204650ustar00rootroot00000000000000## Copyright (C) 2017 - Juan Pablo Carbajal ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or ## (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program. If not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{pts} =} sigma_pts (@var{n}) ## @deftypefnx {statistics} {@var{pts} =} sigma_pts (@var{n}, @var{m}) ## @deftypefnx {statistics} {@var{pts} =} sigma_pts (@var{n}, @var{m}, @var{K}) ## @deftypefnx {statistics} {@var{pts} =} sigma_pts (@var{n}, @var{m}, @var{K}, @var{l}) ## ## Calculates 2*@var{n}+1 sigma points in @var{n} dimensions. ## ## Sigma points are used in the unscented transfrom to estimate ## the result of applying a given nonlinear transformation to a probability ## distribution that is characterized only in terms of a finite set of statistics. ## ## If only the dimension @var{n} is given the resulting points have zero mean ## and identity covariance matrix. ## If the mean @var{m} or the covaraince matrix @var{K} are given, then the resulting points ## will have those statistics. ## The factor @var{l} scaled the points away from the mean. It is useful to tune ## the accuracy of the unscented transfrom. ## ## There is no unique way of computing sigma points, this function implements the ## algorithm described in section 2.6 "The New Filter" pages 40-41 of ## ## Uhlmann, Jeffrey (1995). "Dynamic Map Building and Localization: New Theoretical Foundations". ## Ph.D. thesis. University of Oxford. ## ## @end deftypefn function pts = sigma_pts (n, m = [], K = [], l = 0) if isempty (K) K = eye (n); endif if isempty (m) m = zeros (1, n); endif if (n ~= length (m)) error ("Dimension and size of mean vector don't match.") endif if any(n ~= size (K)) error ("Dimension and size of covariance matrix don't match.") endif if isdefinite (K) <= 0 error ("Covariance matrix should be positive definite.") endif pts = zeros (2 * n + 1, n); pts(1,:) = m; K = sqrtm ((n + l) * K); pts(2:n+1,:) = bsxfun (@plus, m , K); pts(n+2:end,:) = bsxfun (@minus, m , K); endfunction %!demo %! K = [1 0.5; 0.5 1]; # covaraince matrix %! # calculate and build associated ellipse %! [R,S,~] = svd (K); %! theta = atan2 (R(2,1), R(1,1)); %! v = sqrt (diag (S)); %! v = v .* [cos(theta) sin(theta); -sin(theta) cos(theta)]; %! t = linspace (0, 2*pi, 100).'; %! xe = v(1,1) * cos (t) + v(2,1) * sin (t); %! ye = v(1,2) * cos (t) + v(2,2) * sin (t); %! %! figure(1); clf; hold on %! # Plot ellipse and axes %! line ([0 0; v(:,1).'],[0 0; v(:,2).']) %! plot (xe,ye,'-r'); %! %! col = 'rgb'; %! l = [-1.8 -1 1.5]; %! for li = 1:3 %! p = sigma_pts (2, [], K, l(li)); %! tmp = plot (p(2:end,1), p(2:end,2), ['x' col(li)], ... %! p(1,1), p(1,2), ['o' col(li)]); %! h(li) = tmp(1); %! endfor %! hold off %! axis image %! legend (h, arrayfun (@(x) sprintf ("l:%.2g", x), l, "unif", 0)); %!test %! p = sigma_pts (5); %! assert (mean (p), zeros(1,5), sqrt(eps)); %! assert (cov (p), eye(5), sqrt(eps)); %!test %! m = randn(1, 5); %! p = sigma_pts (5, m); %! assert (mean (p), m, sqrt(eps)); %! assert (cov (p), eye(5), sqrt(eps)); %!test %! x = linspace (0,1,5); %! K = exp (- (x.' - x).^2/ 0.5); %! p = sigma_pts (5, [], K); %! assert (mean (p), zeros(1,5), sqrt(eps)); %! assert (cov (p), K, sqrt(eps)); %!error sigma_pts(2,1); %!error sigma_pts(2,[],1); %!error sigma_pts(2,1,1); %!error sigma_pts(2,[0.5 0.5],[-1 0; 0 0]); statistics-release-1.6.3/inst/signtest.m000066400000000000000000000167151456127120000203340ustar00rootroot00000000000000## Copyright (C) 2014 Tony Richardson ## Copyright (C) 2022 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {[@var{pval}, @var{h}, @var{stats}] =} signtest (@var{x}) ## @deftypefnx {statistics} {[@var{pval}, @var{h}, @var{stats}] =} signtest (@var{x}, @var{m}) ## @deftypefnx {statistics} {[@var{pval}, @var{h}, @var{stats}] =} signtest (@var{x}, @var{y}) ## @deftypefnx {statistics} {[@var{pval}, @var{h}, @var{stats}] =} signtest (@var{x}, @var{y}, @var{Name}, @var{Value}) ## ## Test for median. ## ## Perform a signtest of the null hypothesis that @var{x} is from a distribution ## that has a zero median. @var{x} must be a vector. ## ## If the second argument @var{m} is a scalar, the null hypothesis is that ## X has median m. ## ## If the second argument @var{y} is a vector, the null hypothesis is that ## the distribution of @code{@var{x} - @var{y}} has zero median. ## ## The argument @qcode{"alpha"} can be used to specify the significance level ## of the test (the default value is 0.05). The string ## argument @qcode{"tail"}, can be used to select the desired alternative ## hypotheses. If @qcode{"tail"} is @qcode{"both"} (default) the null is ## tested against the two-sided alternative @code{median (@var{x}) != @var{m}}. ## If @qcode{"tail"} is @qcode{"right"} the one-sided ## alternative @code{median (@var{x}) > @var{m}} is considered. ## Similarly for @qcode{"left"}, the one-sided alternative @code{median ## (@var{x}) < @var{m}} is considered. ## ## When @qcode{"method"} is @qcode{"exact"} the p-value is computed using an ## exact method. When @qcode{"method"} is @qcode{"approximate"} a normal ## approximation is used for the test statistic. When @qcode{"method"} is not ## defined as an optional input argument, then for @code{length (@var{x}) < 100} ## the @qcode{"exact"} method is computed, otherwise the @qcode{"approximate"} ## method is used. ## ## The p-value of the test is returned in @var{pval}. If @var{h} is 0 the ## null hypothesis is accepted, if it is 1 the null hypothesis is rejected. ## @var{stats} is a structure containing the value of the test statistic ## (@var{sign}) and the value of the z statistic (@var{zval}) (only computed ## when the 'method' is 'approximate'. ## ## @end deftypefn function [p, h, stats] = signtest (x, my, varargin) ## Check X being a vector if ! isvector (x) error ("signtest: X must be a vector."); endif ## Add defaults my_default = 0; alpha = 0.05; tail = "both"; ## Matlab compliant default method selection method_present = false; if length (x) < 100 method = "exact"; else method = "approximate"; endif ## When called with a single input argument of second argument is empty if nargin == 1 || isempty (my) my = zeros (size (x)); endif ## If second argument is a scalar convert to vector or check for Y being a ## vector and that X and Y have equal lengths if isscalar (my) my = repmat (my, size (x)); elseif ! isvector (my) error ("signtest: Y must be either a scalar of a vector."); elseif numel (x) != numel (my) error ("signtest: X and Y vectors have different lengths."); endif ## Get optional input arguments i = 1; while (i <= length (varargin)) switch lower (varargin{i}) case "alpha" i = i + 1; alpha = varargin{i}; case "tail" i = i + 1; tail = varargin{i}; case "method" i = i + 1; method = varargin{i}; method_present = true; otherwise error ("signtest: Invalid Name argument."); endswitch i = i + 1; endwhile ## Check values for optional input arguments if (! isnumeric (alpha) || isnan (alpha) || ! isscalar (alpha) ... || alpha <= 0 || alpha >= 1) error ("signtest: alpha must be a numeric scalar in the range (0,1)."); endif if ! isa (tail, 'char') error ("signtest: tail argument must be a string"); elseif sum (strcmpi (tail, {"both", "right", "left"})) < 1 error ("signtest: tail value must be either 'both', right' or 'left'."); endif if ! isa (method, 'char') error("signtest: method argument must be a string"); elseif sum (strcmpi (method, {"exact", "approximate"})) < 1 error ("signtest: method value must be either 'exact' or 'approximate'."); end ## Calculate differences between X and Y vectors: remove equal values of NaNs XY_diff = x(:) - my(:); NO_diff = (XY_diff == 0); XY_diff(NO_diff | isnan (NO_diff)) = []; ## Recalculate remaining length of X vector (after equal or NaNs removal) n = length (XY_diff); ## Check for identical X and Y input arguments if n == 0 p = 1; h = 0; stats.sign = 0; stats.zval = NaN; return; endif ## Re-evaluate method selection if ! method_present && n < 100 method = "exact"; else method = "approximate"; endif ## Get the number of positive and negative elements from X-Y differences pos_n = length (find (XY_diff > 0)); neg_n = n - pos_n; ## Calculate stats according to selected method and tail switch lower(method) case "exact" stats.zval = nan; switch lower(tail) case "both" p = 2 * binocdf (min (neg_n, pos_n), n, 0.5); p = min (1, p); case "left" p = binocdf (pos_n, n, 0.5); case "right" p = binocdf (neg_n, n, 0.5); endswitch stats.zval = NaN; case 'approximate' switch lower(tail) case 'both' z_value = (pos_n - neg_n - sign (pos_n - neg_n)) / sqrt (n); p = 2 * normcdf (- abs (z_value)); case 'left' z_value = (pos_n - neg_n + 1) / sqrt (n); p = normcdf (z_value); case 'right' z_value = (pos_n - neg_n - 1) / sqrt (n); p = normcdf (- z_value); endswitch stats.zval = z_value; endswitch stats.sign = pos_n; h = double (p < alpha); endfunction ## Test suite %!error signtest (); %!error signtest ([]); %!error signtest (ones(1,10), ones(1,8)); %!error signtest (ones(1,10), ones(2,10)); %!error signtest (ones(2,10), 0); %!error signtest (ones(1,10), zeros(1,10), "alpha", 1.4) %!error signtest (ones(1,10), zeros(1,10), "tail", "<") %!error signtest (ones(1,10), zeros(1,10), "method", "some") %!test %! [pval, h, stats] = signtest ([-ones(1, 1000) 1], 0, "tail", "left"); %! assert (pval, 1.091701889420221e-218, 1e-14); %! assert (h, 1); %! assert (stats.zval, -31.5437631079266, 1e-14); %!test %! [pval, h, stats] = signtest ([-2 -1 0 2 1 3 1], 0); %! assert (pval, 0.6875000000000006, 1e-14); %! assert (h, 0); %! assert (stats.zval, NaN); %! assert (stats.sign, 4); %!test %! [pval, h, stats] = signtest ([-2 -1 0 2 1 3 1], 0, "method", "approximate"); %! assert (pval, 0.6830913983096086, 1e-14); %! assert (h, 0); %! assert (stats.zval, 0.4082482904638631, 1e-14); %! assert (stats.sign, 4); statistics-release-1.6.3/inst/silhouette.m000066400000000000000000000151471456127120000206570ustar00rootroot00000000000000## Copyright (C) 2016 Nan Zhou ## Copyright (C) 2021 Stefano Guidoni ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {} silhouette (@var{X}, @var{clust}) ## @deftypefnx {statistics} {[@var{si}, @var{h}] =} silhouette (@var{X}, @var{clust}) ## @deftypefnx {statistics} {[@var{si}, @var{h}] =} silhouette (@dots{}, @var{Metric}, @var{MetricArg}) ## ## Compute the silhouette values of clustered data and show them on a plot. ## ## @var{X} is a n-by-p matrix of n data points in a p-dimensional space. Each ## datapoint is assigned to a cluster using @var{clust}, a vector of n elements, ## one cluster assignment for each data point. ## ## Each silhouette value of @var{si}, a vector of size n, is a measure of the ## likelihood that a data point is accurately classified to the right cluster. ## Defining "a" as the mean distance between a point and the other points from ## its cluster, and "b" as the mean distance between that point and the points ## from other clusters, the silhouette value of the i-th point is: ## ## @tex ## \def\frac#1#2{{\begingroup#1\endgroup\over#2}} ## $$ S_i = \frac{b_i - a_i}{max(a_1,b_i)} $$ ## @end tex ## @ifnottex ## @verbatim ## bi - ai ## Si = ------------ ## max(ai,bi) ## @end verbatim ## @end ifnottex ## ## Each element of @var{si} ranges from -1, minimum likelihood of a correct ## classification, to 1, maximum likelihood. ## ## Optional input value @var{Metric} is the metric used to compute the distances ## between data points. Since @code{silhouette} uses @code{pdist} to compute ## these distances, @var{Metric} is quite similar to the option @var{Metric} of ## pdist and it can be: ## @itemize @bullet ## @item A known distance metric defined as a string: @qcode{Euclidean}, ## @qcode{sqEuclidean} (default), @qcode{cityblock}, @qcode{cosine}, ## @qcode{correlation}, @qcode{Hamming}, @qcode{Jaccard}. ## ## @item A vector as those created by @code{pdist}. In this case @var{X} does ## nothing. ## ## @item A function handle that is passed to @code{pdist} with @var{MetricArg} ## as optional inputs. ## @end itemize ## ## Optional return value @var{h} is a handle to the silhouette plot. ## ## @strong{Reference} ## Peter J. Rousseeuw, Silhouettes: a Graphical Aid to the Interpretation and ## Validation of Cluster Analysis. 1987. doi:10.1016/0377-0427(87)90125-7 ## @end deftypefn ## ## @seealso{dendrogram, evalclusters, kmeans, linkage, pdist} function [si, h] = silhouette (X, clust, metric = "sqeuclidean", varargin) ## check the input parameters if (nargin < 2) print_usage (); endif n = size (clust, 1); ## check size if (! isempty (X)) if (size (X, 1) != n) error ("First dimension of X <%d> doesn't match that of clust <%d>",... size (X, 1), n); endif endif ## check metric if (ischar (metric)) metric = lower (metric); switch (metric) case "sqeuclidean" metric = "squaredeuclidean"; case { "euclidean", "cityblock", "cosine", ... "correlation", "hamming", "jaccard" } ; otherwise error ("silhouette: invalid metric '%s'", metric); endswitch elseif (isnumeric (metric) && isvector (metric)) ## X can be omitted when using this distMatrix = squareform (metric); if (size (distMatrix, 1) != n) error ("First dimension of X <%d> doesn't match that of clust <%d>",... size (distMatrix, 1), n); endif endif ## main si = zeros(n, 1); clusterIDs = unique (clust); # eg [1; 2; 3; 4] m = length (clusterIDs); ## if only one cluster is defined, the silhouette value is not defined if (m == 1) si = NaN * ones (n, 1); return; endif ## distance matrix showing the distance for any two rows of X if (! exist ('distMatrix', 'var')) distMatrix = squareform (pdist (X, metric, varargin{:})); endif ## calculate values of si one by one for iii = 1 : length (si) ## allocate values to clusters groupedValues = {}; for jjj = 1 : m groupedValues{clusterIDs(jjj)} = [distMatrix(iii, ... clust == clusterIDs(jjj))]; endfor ## end allocation ## calculate a(i) ## average distance of iii to all other objects in the same cluster if (length (groupedValues{clust(iii)}) == 1) si(iii) = 1; continue; else a_i = (sum (groupedValues{clust(iii)})) / ... (length (groupedValues{clust(iii)}) - 1); endif ## end a(i) ## calculate b(i) clusterIDs_new = clusterIDs; ## remove the cluster iii in clusterIDs_new(find (clusterIDs_new == clust(iii))) = []; ## average distance of iii to all objects of another cluster a_iii_2others = zeros (length (clusterIDs_new), 1); for jjj = 1 : length (clusterIDs_new) a_iii_2others(jjj) = mean (groupedValues{clusterIDs_new(jjj)}); endfor b_i = min (a_iii_2others); ## end b(i) ## calculate s(i) si(iii) = (b_i - a_i) / (max ([a_i; b_i])); ## end s(i) endfor ## plot ## a poor man silhouette graph vBarsc = zeros (m, 1); vPadding = [0; 0; 0; 0]; Bars = vPadding; for i = 1 : m vBar = si(find (clust == clusterIDs(i))); vBarsc(i) = length (Bars) + (length (vBar) / 2); Bars = [Bars; (sort (vBar, "descend")); vPadding]; endfor figure(); h = barh (Bars, "hist", "facecolor", [0 0.4471 0.7412]); xlabel ("Silhouette Value"); ylabel ("Cluster"); set (gca, "ytick", vBarsc, "yticklabel", clusterIDs); ylim ([0 (length (Bars))]); axis ("ij"); endfunction %!demo %! load fisheriris; %! X = meas(:,3:4); %! cidcs = kmeans (X, 3, "Replicates", 5); %! silhouette (X, cidcs); %! y_labels(cidcs([1 51 101])) = unique (species); %! set (gca, "yticklabel", y_labels); %! title ("Fisher's iris data"); ## Test input validation %!error silhouette (); %!error silhouette ([1 2; 1 1]); %!error silhouette ([1 2; 1 1], [1 2 3]'); %!error silhouette ([1 2; 1 1], [1 2]', "xxx"); statistics-release-1.6.3/inst/slicesample.m000066400000000000000000000220251456127120000207640ustar00rootroot00000000000000## Copyright (C) 1995-2022 The Octave Project Developers ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {[@var{smpl}, @var{neval}] =} slicesample (@var{start}, @var{nsamples}, @var{property}, @var{value}, @dots{}) ## ## Draws @var{nsamples} samples from a target stationary distribution @var{pdf} ## using slice sampling of Radford M. Neal. ## ## Input: ## @itemize ## @item ## @var{start} is a 1 by @var{dim} vector of the starting point of the ## Markov chain. Each column corresponds to a different dimension. ## ## @item ## @var{nsamples} is the number of samples, the length of the Markov chain. ## @end itemize ## ## Next, several property-value pairs can or must be specified, they are: ## ## (Required properties) One of: ## ## @itemize ## @item ## @var{"pdf"}: the value is a function handle of the target stationary ## distribution to be sampled. The function should accept different locations ## in each row and each column corresponds to a different dimension. ## ## or ## ## @item ## @var{logpdf}: the value is a function handle of the log of the target ## stationary distribution to be sampled. The function should accept different ## locations in each row and each column corresponds to a different dimension. ## @end itemize ## ## The following input property/pair values may be needed depending on the ## desired outut: ## ## @itemize ## @item ## "burnin" @var{burnin} the number of points to discard at the beginning, the default ## is 0. ## ## @item ## "thin" @var{thin} omitts @var{m}-1 of every @var{m} points in the generated ## Markov chain. The default is 1. ## ## @item ## "width" @var{width} the maximum Manhattan distance between two samples. ## The default is 10. ## @end itemize ## ## Outputs: ## @itemize ## ## @item ## @var{smpl} is a @var{nsamples} by @var{dim} matrix of random ## values drawn from @var{pdf} where the rows are different random values, the ## columns correspond to the dimensions of @var{pdf}. ## ## @item ## @var{neval} is the number of function evaluations per sample. ## @end itemize ## Example : Sampling from a normal distribution ## ## @example ## @group ## start = 1; ## nsamples = 1e3; ## pdf = @@(x) exp (-.5 * x .^ 2) / (pi ^ .5 * 2 ^ .5); ## [smpl, accept] = slicesample (start, nsamples, "pdf", pdf, "thin", 4); ## histfit (smpl); ## @end group ## @end example ## ## @seealso{rand, mhsample, randsample} ## @end deftypefn function [smpl, neval] = slicesample (start, nsamples, varargin) if (nargin < 4) error ("slicesample: function called with too few input arguments."); endif sizestart = size (start); pdf = []; logpdf = []; width = 10; burnin = 0; thin = 1; for k = 1:2:length (varargin) if (ischar (varargin{k})) switch lower (varargin{k}) case "pdf" if (isa (varargin{k+1}, "function_handle")) pdf = varargin{k+1}; else error ("slicesample: pdf must be a function handle."); endif case "logpdf" if (isa (varargin{k+1}, "function_handle")) pdf = varargin{k+1}; else error ("slicesample: logpdf must be a function handle."); endif case "width" if (numel (varargin{k+1}) == 1 || numel (varargin{k+1}) == sizestart(2)) width = varargin{k+1}(:).'; else error ("slicesample: width must be a scalar or 1 by dim vector."); endif case "burnin" if (varargin{k+1}>=0) burnin = varargin{k+1}; else error ("slicesample: burnin must be greater than or equal to 0."); endif case "thin" if (varargin{k+1}>=1) thin = varargin{k+1}; else error ("slicesample: thin must be greater than or equal to 1."); endif otherwise warning (["slicesample: Ignoring unknown option " varargin{k}]); endswitch else error (["slicesample: " varargin{k} " is not a valid property."]); endif endfor if (! isempty (pdf) && isempty (logpdf)) logpdf = @(x) rloge (pdf (x)); elseif (isempty (pdf) && isempty (logpdf)) error ("slicesample: pdf or logpdf must be input."); endif dim = sizestart(2); smpl = zeros (nsamples, dim); if (all (sizestart == [1 dim])) smpl(1, :) = start; else error ("slicesample: start must be a 1 by dim vector."); endif maxit = 100; neval = 0; fgraterthan = @(x, fxc) logpdf (x) >= fxc; ti = burnin + nsamples * thin; rndexp = rande (ti, 1); crand = rand (ti, dim); prand = rand (ti, dim); xc = smpl(1, :); for i = 1:ti neval++; sliceheight = logpdf (xc) - rndexp(i); c = width .* crand(i, :); lb = xc - c; ub = xc + width - c; #Only for single variable as bounds can not be found with point when dim > 1 if (dim == 1) for k=1:maxit neval++; if (! fgraterthan (lb, sliceheight)) break endif lb -= width; end if (k == maxit) warning ("slicesample: Step out exceeded maximum iterations"); endif for k = 1:maxit neval++; if (! fgraterthan (ub, sliceheight)) break endif ub += width; end if (k == maxit) warning ("slicesample: Step out exceeded maximum iterations"); endif end xp = (ub - lb) .* prand(i, :) + lb; for k=1:maxit neval++; isgt = fgraterthan (xp,sliceheight); if (all (isgt)) break endif lc = ! isgt & xp < xc; uc = ! isgt & xp > xc; lb(lc) = xp(lc); ub(uc) = xp(uc); xp = (ub - lb) .* rand (1, dim) + lb; end if (k == maxit) warning ("slicesample: Step in exceeded maximum iterations"); endif xc = xp; if (i > burnin) indx = (i - burnin) / thin; if rem (indx, 1) == 0 smpl(indx, :) = xc; end end end neval = neval / (nsamples * thin + burnin); endfunction function y = rloge (x) y = -inf (size (x)); xg0 = x > 0; y(xg0) = log (x(xg0)); endfunction %!demo %! ## Define function to sample %! d = 2; %! mu = [-1; 2]; %! rand ("seed", 5) # for reproducibility %! Sigma = rand (d); %! Sigma = (Sigma + Sigma'); %! Sigma += eye (d)*abs (eigs (Sigma, 1, "sa")) * 1.1; %! pdf = @(x)(2*pi)^(-d/2)*det(Sigma)^-.5*exp(-.5*sum((x.'-mu).*(Sigma\(x.'-mu)),1)); %! %! ## Inputs %! start = ones (1,2); %! nsamples = 500; %! K = 500; %! m = 10; %! rande ("seed", 4); rand ("seed", 5) # for reproducibility %! [smpl, accept] = slicesample (start, nsamples, "pdf", pdf, "burnin", K, "thin", m, "width", [20, 30]); %! figure; %! hold on; %! plot (smpl(:,1), smpl(:,2), 'x'); %! [x, y] = meshgrid (linspace (-6,4), linspace(-3,7)); %! z = reshape (pdf ([x(:), y(:)]), size(x)); %! mesh (x, y, z, "facecolor", "None"); %! %! ## Using sample points to find the volume of half a sphere with radius of .5 %! f = @(x) ((.25-(x(:,1)+1).^2-(x(:,2)-2).^2).^.5.*(((x(:,1)+1).^2+(x(:,2)-2).^2)<.25)).'; %! int = mean (f (smpl) ./ pdf (smpl)); %! errest = std (f (smpl) ./ pdf (smpl)) / nsamples^.5; %! trueerr = abs (2/3*pi*.25^(3/2)-int); %! fprintf ("Monte Carlo integral estimate int f(x) dx = %f\n", int); %! fprintf ("Monte Carlo integral error estimate %f\n", errest); %! fprintf ("The actual error %f\n", trueerr); %! mesh (x,y,reshape (f([x(:), y(:)]), size(x)), "facecolor", "None"); %!demo %! ## Integrate truncated normal distribution to find normilization constant %! pdf = @(x) exp (-.5*x.^2)/(pi^.5*2^.5); %! nsamples = 1e3; %! rande ("seed", 4); rand ("seed", 5) # for reproducibility %! [smpl, accept] = slicesample (1, nsamples, "pdf", pdf, "thin", 4); %! f = @(x) exp (-.5 * x .^ 2) .* (x >= -2 & x <= 2); %! x = linspace (-3, 3, 1000); %! area (x, f(x)); %! xlabel ("x"); %! ylabel ("f(x)"); %! int = mean (f (smpl) ./ pdf (smpl)); %! errest = std (f (smpl) ./ pdf (smpl)) / nsamples ^ 0.5; %! trueerr = abs (erf (2 ^ 0.5) * 2 ^ 0.5 * pi ^ 0.5 - int); %! fprintf("Monte Carlo integral estimate int f(x) dx = %f\n", int); %! fprintf("Monte Carlo integral error estimate %f\n", errest); %! fprintf("The actual error %f\n", trueerr); ## Test output %!test %! start = 0.5; %! nsamples = 1e3; %! pdf = @(x) exp (-.5*(x-1).^2)/(2*pi)^.5; %! [smpl, accept] = slicesample (start, nsamples, "pdf", pdf, "thin", 2, "burnin", 0, "width", 5); %! assert (mean (smpl, 1), 1, .1); %! assert (var (smpl, 1), 1, .2); ## Test input validation %!error slicesample (); %!error slicesample (1); %!error slicesample (1, 1); statistics-release-1.6.3/inst/squareform.m000066400000000000000000000103031456127120000206430ustar00rootroot00000000000000## Copyright (C) 2015 Carnë Draug ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or ## (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{z} =} squareform (@var{y}) ## @deftypefnx {statistics} {@var{y} =} squareform (@var{z}) ## @deftypefnx {statistics} {@var{z} =} squareform (@var{y}, @qcode{"tovector"}) ## @deftypefnx {statistics} {@var{y} =} squareform (@var{z}, @qcode{"tomatrix"}) ## ## Interchange between distance matrix and distance vector formats. ## ## Converts between an hollow (diagonal filled with zeros), square, and ## symmetric matrix and a vector with of the lower triangular part. ## ## Its target application is the conversion of the vector returned by ## @code{pdist} into a distance matrix. It performs the opposite operation ## if input is a matrix. ## ## If @var{x} is a vector, its number of elements must fit into the ## triangular part of a matrix (main diagonal excluded). In other words, ## @code{numel (@var{x}) = @var{n} * (@var{n} - 1) / 2} for some integer ## @var{n}. The resulting matrix will be @var{n} by @var{n}. ## ## If @var{x} is a distance matrix, it must be square and the diagonal entries ## of @var{x} must all be zeros. @code{squareform} will generate a warning if ## @var{x} is not symmetric. ## ## The second argument is used to specify the output type in case there ## is a single element. It will defaults to @qcode{"tomatrix"} otherwise. ## ## @seealso{pdist} ## @end deftypefn function y = squareform (x, method) if (nargin < 1 || nargin > 2) print_usage (); elseif (! isnumeric (x) || ! ismatrix (x)) error ("squareform: Y or Z must be a numeric matrix or vector."); endif if (nargin == 1) ## This is ambiguous when numel (x) == 1, but that's the whole reason ## why the "method" option exists. if (isvector (x)) method = "tomatrix"; else method = "tovector"; endif endif switch (tolower (method)) case "tovector" if (! issquare (x)) error ("squareform: Z is not a square matrix."); elseif (any (diag (x) != 0)) error ("squareform: Z is not a hollow matrix."); elseif (! issymmetric(x)) warning ("squareform:symmetric", "squareform: Z is not a symmetric matrix"); endif y = vec (tril (x, -1, "pack"), 2); case "tomatrix" ## the dimensions of y are the solution to the quadratic formula for: ## length (x) = (sy - 1) * (sy / 2) sy = (1 + sqrt (1 + 8 * numel (x))) / 2; if (fix (sy) != sy) error ("squareform: the numel of Y cannot form a square matrix."); endif y = zeros (sy, class (x)); y(tril (true (sy), -1)) = x; # fill lower triangular part y += y.'; # and then the upper triangular part otherwise error ("squareform: invalid METHOD '%s'.", method); endswitch endfunction %!shared v, m %! v = 1:6; %! m = [0 1 2 3;1 0 4 5;2 4 0 6;3 5 6 0]; ## make sure that it can go both directions automatically %!assert (squareform (v), m) %!assert (squareform (squareform (v)), v) %!assert (squareform (m), v) ## treat row and column vectors equally %!assert (squareform (v'), m) ## handle 1 element input properly %!assert (squareform (1), [0 1;1 0]) %!assert (squareform (1, "tomatrix"), [0 1; 1 0]) %!assert (squareform (0, "tovector"), zeros (1, 0)) %!warning squareform ([0 1 2; 3 0 4; 5 6 0]); ## confirm that it respects input class %!test %! for c = {@single, @double, @uint8, @uint32, @uint64} %! f = c{1}; %! assert (squareform (f (v)), f (m)) %! assert (squareform (f (m)), f (v)) %! endfor statistics-release-1.6.3/inst/standardizeMissing.m000066400000000000000000000164431456127120000223340ustar00rootroot00000000000000## Copyright (C) 1995-2023 The Octave Project Developers ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{B} =} standardizeMissing (@var{A}, @var{indicator}) ## ## Replace data values specified by @var{indicator} in @var{A} by the ## standard 'missing' data value for that data type. ## ## @var{A} can be a numeric scalar or array, a character vector or array, or ## a cell array of character vectors (a.k.a. string cells). ## ## @var{indicator} can be a scalar or an array containing values to be ## replaced by the 'missing' value for the class of @var{A}, and should have ## a data type matching @var{A}. ## ## 'missing' values are defined as : ## ## @itemize ## @item ## @qcode{NaN}: @code{single}, @code{double} ## ## @item ## @qcode{" "} (white space): @code{char} ## ## @item ## @qcode{@{""@}} (empty string in cell): string cells. ## @end itemize ## ## Compatibility Notes: ## @itemize ## @item ## Octave's implementation of @code{standardizeMissing} ## does not restrict @var{indicator} of type @qcode{char} to row vectors. ## ## @item ## All numerical and logical inputs for @var{A} and @var{indicator} may ## be specified in any combination. The output will be the same class as ## @var{A}, with the @var{indicator} converted to that data type for ## comparison. Only @code{single} and @code{double} have defined 'missing' ## values, so @var{A} of other data types will always output ## @var{B} = @var{A}. ## @end itemize ## ## @end deftypefn ## ## @seealso{fillmissing, ismissing, rmmissing} function A = standardizeMissing (A, indicator) if (nargin != 2) print_usage (); endif input_class = class(A); do_nothing_flag = false; ## Set missing_val. ## Compatibility requirements: ## Numeric/logical: Only double and single have 'missing' values defined, ## so other numeric and logical pass through unchanged. ## Other: only char & cellstr have 'missing' values defined, others produce ## error. ## ## TODO: as implemented in Octave, add table, string, timetable, ## categorical, datetime, and duration to class checks and BISTs ## ## TODO: when 'missing' class is implemented, these switch blocks can all ## be removed and the final assignment updated to call missing instead of ## missing_val if (isnumeric(A) || islogical(A)) switch (input_class) case "double" missing_val = NaN ("double"); case "single" missing_val = NaN ("single"); otherwise do_nothing_flag = true; endswitch else switch (input_class) case "char" missing_val = " "; case "cell" if iscellstr(A) missing_val = {""}; else error ("stardardizeMissing: only cells of strings are supported."); endif otherwise error ("standardizeMissing: unsupported data type %s.", input_class); endswitch endif if (! do_nothing_flag) ## if A is an array of cell strings and indicator just a string, ## convert indicator to a cell string with one element if (iscellstr (A) && ischar (indicator) && ! iscellstr (indicator)) indicator = {indicator}; endif if ((isnumeric (A) && ! (isnumeric (indicator) || islogical (indicator))) || (ischar (A) && ! ischar (indicator)) || (iscellstr (A) && ! (iscellstr (indicator)))) error (strcat (["standardizeMissing: 'indicator' and 'A' must"], ... [" have the same data type."])); endif A(ismember (A, indicator)) = missing_val; endif endfunction ## numeric tests %!assert (standardizeMissing (1, 1), NaN) %!assert (standardizeMissing (1, 0), 1) %!assert (standardizeMissing (eye(2), 1), [NaN 0;0 NaN]) %!assert (standardizeMissing ([1:3;4:6], [2 3; 4 5]), [1, NaN, NaN; NaN, NaN, 6]) %!assert (standardizeMissing (cat (3,1,2,3,4), 3), cat (3,1,2,NaN,4)) ## char and cellstr tests %!assert (standardizeMissing ('foo', 'a'), 'foo') %!assert (standardizeMissing ('foo', 'f'), ' oo') %!assert (standardizeMissing ('foo', 'o'), 'f ') %!assert (standardizeMissing ('foo', 'oo'), 'f ') %!assert (standardizeMissing ({'foo'}, 'f'), {'foo'}) %!assert (standardizeMissing ({'foo'}, {'f'}), {'foo'}) %!assert (standardizeMissing ({'foo'}, 'test'), {'foo'}) %!assert (standardizeMissing ({'foo'}, {'test'}), {'foo'}) %!assert (standardizeMissing ({'foo'}, 'foo'), {''}) %!assert (standardizeMissing ({'foo'}, {'foo'}), {''}) ## char and cellstr array tests %!assert (standardizeMissing (['foo';'bar'], 'oar'), ['f ';'b ']) %!assert (standardizeMissing (['foo';'bar'], ['o';'a';'r']), ['f ';'b ']) %!assert (standardizeMissing (['foo';'bar'], ['o ';'ar']), ['f ';'b ']) %!assert (standardizeMissing ({'foo','bar'}, 'foo'), {'','bar'}) %!assert (standardizeMissing ({'foo','bar'}, 'f'), {'foo','bar'}) %!assert (standardizeMissing ({'foo','bar'}, {'foo', 'a'}), {'','bar'}) %!assert (standardizeMissing ({'foo'}, {'f', 'oo'}), {'foo'}) %!assert (standardizeMissing ({'foo','bar'}, {'foo'}), {'','bar'}) %!assert (standardizeMissing ({'foo','bar'}, {'foo', 'a'}), {'','bar'}) ## numeric type preservation tests %!assert (standardizeMissing (double (1), single (1)), double (NaN)) %!assert (standardizeMissing (single (1), single (1)), single (NaN)) %!assert (standardizeMissing (single (1), double (1)), single (NaN)) %!assert (standardizeMissing (single (1), true), single (NaN)) %!assert (standardizeMissing (double (1), int32(1)), double (NaN)) ## Passttrough tests %!assert (standardizeMissing (true, true), true) %!assert (standardizeMissing (true, 1), true) %!assert (standardizeMissing (int32 (1), int32 (1)), int32 (1)) %!assert (standardizeMissing (int32 (1), 1), int32 (1)) %!assert (standardizeMissing (uint32 (1), uint32 (1)), uint32 (1)) %!assert (standardizeMissing (uint32 (1), 1), uint32 (1)) ## Test input validation %!error standardizeMissing (); %!error standardizeMissing (1); %!error standardizeMissing (1,2,3); %!error standardizeMissing ({'abc', 1}, 1); %!error standardizeMissing (struct ('a','b'), 1); %!error <'indicator' and 'A' must have > standardizeMissing ([1 2 3], {1}); %!error <'indicator' and 'A' must have > standardizeMissing ([1 2 3], 'a'); %!error <'indicator' and 'A' must have > standardizeMissing ([1 2 3], struct ('a', 1)); %!error <'indicator' and 'A' must have > standardizeMissing ('foo', 1); %!error <'indicator' and 'A' must have > standardizeMissing ('foo', {1}); %!error <'indicator' and 'A' must have > standardizeMissing ('foo', {'f'}); %!error <'indicator' and 'A' must have > standardizeMissing ('foo', struct ('a', 1)); %!error <'indicator' and 'A' must have > standardizeMissing ({'foo'}, 1); %!error <'indicator' and 'A' must have > standardizeMissing ({'foo'}, 1); statistics-release-1.6.3/inst/stepwisefit.m000066400000000000000000000137661456127120000210450ustar00rootroot00000000000000## Copyright (C) 2013-2021 Nir Krakauer ## Copyright (C) 2014 Mikael Kurula ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {[@var{X_use}, @var{b}, @var{bint}, @var{r}, @var{rint}, @var{stats}] =} stepwisefit (@var{y}, @var{X}, @var{penter} = 0.05, @var{premove} = 0.1, @var{method} = "corr") ## ## Linear regression with stepwise variable selection. ## ## @subheading Arguments ## ## @itemize @bullet ## @item ## @var{y} is an @var{n} by 1 vector of data to fit. ## @item ## @var{X} is an @var{n} by @var{k} matrix containing the values of @var{k} potential predictors. No constant term should be included (one will always be added to the regression automatically). ## @item ## @var{penter} is the maximum p-value to enter a new variable into the regression (default: 0.05). ## @item ## @var{premove} is the minimum p-value to remove a variable from the regression (default: 0.1). ## @item ## @var{method} sets how predictors are selected at each step, either based on their correlation with the residuals ("corr", default) ## or on the p values of their regression coefficients when they are successively added ("p"). ## @end itemize ## ## @subheading Return values ## ## @itemize @bullet ## @item ## @var{X_use} contains the indices of the predictors included in the final regression model. The predictors are listed in the order they were added, so typically the first ones listed are the most significant. ## @item ## @var{b}, @var{bint}, @var{r}, @var{rint}, @var{stats} are the results of @code{[b, bint, r, rint, stats] = regress(y, [ones(size(y)) X(:, X_use)], penter);} ## @end itemize ## @subheading References ## ## @enumerate ## @item ## N. R. Draper and H. Smith (1966). @cite{Applied Regression Analysis}. Wiley. Chapter 6. ## ## @end enumerate ## @seealso{regress} ## @end deftypefn function [X_use, b, bint, r, rint, stats] = stepwisefit(y, X, penter = 0.05, premove = 0.1, method = "corr") if nargin >= 3 && isempty(penter) penter = 0.05; endif if nargin >= 4 && isempty(premove) premove = 0.1; endif #remove any rows with missing entries notnans = !any (isnan ([y X]) , 2); y = y(notnans); X = X(notnans,:); n = numel(y); #number of data points k = size(X, 2); #number of predictors X_use = []; v = 0; #number of predictor variables in regression model iter = 0; max_iters = 100; #maximum number of interations to do r = y; while 1 iter++; #decide which variable to add to regression, if any added = false; if numel(X_use) < k X_inds = zeros(k, 1, "logical"); X_inds(X_use) = 1; switch lower (method) case {"corr"} [~, i_to_add] = max(abs(corr(X(:, ~X_inds), r))); #try adding the variable with the highest correlation to the residual from current regression i_to_add = (1:k)(~X_inds)(i_to_add); #index within the original predictor set [b_new, bint_new, r_new, rint_new, stats_new] = regress(y, [ones(n, 1) X(:, [X_use i_to_add])], penter); case {"p"} z_vals=zeros(k,1); for j=1:k if ~X_inds(j) [b_j, bint_j, ~,~ ,~] = regress(y, [ones(n, 1) X(:, [X_use j])], penter); z_vals(j) = abs(b_j(end)) / (bint_j(end, 2) - b_j(end)); endif endfor [~, i_to_add] = max(z_vals); #try adding the variable with the largest z-value (smallest partial p-value) [b_new, bint_new, r_new, rint_new, stats_new] = regress(y, [ones(n, 1) X(:, [X_use i_to_add])], penter); otherwise error("stepwisefit: invalid value for method") endswitch z_new = abs(b_new(end)) / (bint_new(end, 2) - b_new(end)); if z_new > 1 #accept new variable added = true; X_use = [X_use i_to_add]; b = b_new; bint = bint_new; r = r_new; rint = rint_new; stats = stats_new; v = v + 1; endif endif #decide which variable to drop from regression, if any dropped = false; if v > 0 t_ratio = tinv(1 - premove/2, n - v - 1) / tinv(1 - penter/2, n - v - 1); #estimate the ratio between the z score corresponding to premove to that corresponding to penter [z_min, i_min] = min(abs(b(2:end)) ./ (bint(2:end, 2) - b(2:end))); if z_min < t_ratio #drop a variable dropped = true; X_use(i_min) = []; [b, bint, r, rint, stats] = regress(y, [ones(n, 1) X(:, X_use)], penter); v = v - 1; endif endif #terminate if no change in the list of regression variables if ~added && ~dropped break endif if iter >= max_iters warning('stepwisefit: maximum iteration count exceeded before convergence') break endif endwhile endfunction %!test %! % Sample data from Draper and Smith (n = 13, k = 4) %! X = [7 1 11 11 7 11 3 1 2 21 1 11 10; ... %! 26 29 56 31 52 55 71 31 54 47 40 66 68; ... %! 6 15 8 8 6 9 17 22 18 4 23 9 8; ... %! 60 52 20 47 33 22 6 44 22 26 34 12 12]'; %! y = [78.5 74.3 104.3 87.6 95.9 109.2 102.7 72.5 93.1 115.9 83.8 113.3 109.4]'; %! [X_use, b, bint, r, rint, stats] = stepwisefit(y, X); %! assert(X_use, [4 1]) %! assert(b, regress(y, [ones(size(y)) X(:, X_use)], 0.05)) %! [X_use, b, bint, r, rint, stats] = stepwisefit(y, X, 0.05, 0.1, "corr"); %! assert(X_use, [4 1]) %! assert(b, regress(y, [ones(size(y)) X(:, X_use)], 0.05)) %! [X_use, b, bint, r, rint, stats] = stepwisefit(y, X, [], [], "p"); %! assert(X_use, [4 1]) %! assert(b, regress(y, [ones(size(y)) X(:, X_use)], 0.05)) statistics-release-1.6.3/inst/tabulate.m000066400000000000000000000127131456127120000202670ustar00rootroot00000000000000## Copyright (C) 2003 Alberto Terruzzi ## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {} tabulate (@var{x}) ## @deftypefnx {statistics} {@var{table} =} tabulate (@var{x}) ## ## Calculate a frequency table. ## ## @code{tabulate (x)} displays a frequency table of the data in the vector ## @var{x}. For each unique value in @var{x}, the tabulate function shows the ## number of instances and percentage of that value in @var{x}. ## ## @code{@var{table} = tabulate (@var{x})} returns the frequency table, ## @var{table}, as a numeric matrix when @var{x} is numeric and as a cell array ## otherwise. When an output argument is requested, @code{tabulate} does not ## print the frequency table in the command window. ## ## If @var{x} is numeric, any missing values (@qcode{NaNs}) are ignored. ## ## If all the elements of @var{x} are positive integers, then the frequency ## table includes 0 counts for the integers between 1 and @qcode{max (@var{x})} ## that do not appear in @var{x}. ## ## @seealso{bar, pareto} ## @end deftypefn function table = tabulate (x) ## Check input for being either numeric or a cell array if (! (isnumeric (x) && isvector (x)) && ! (iscellstr (x) && isvector (x)) && ! ischar (x)) error (strcat (["tabulate: X must be either a numeric vector, a"], ... [" vector cell array of strings, or a character matrix."])); endif ## Remove missing values (NaNs) if numeric if (isnumeric (x)) x(isnan (x)) = []; endif ## Handle positive integers separately if (isnumeric (x) && all (x == fix (x)) && all (x > 0)); [count, value] = hist (x, (1:max (x))); posint = true; else [g, gn, gl] = grp2idx (x); [count, value] = hist (g, (1:length (gn))); posint = false; endif ## Calculate percentages percent = 100 * count ./ sum (count); ## Display results is no output argument if (nargout == 0) if (posint) fprintf (" Value Count Percent\n"); fprintf (" %5d %5d %6.2f%%\n", value', count', percent'); else valw = max (cellfun ("length", gn)); valw = max ([5, min([50, valw])]); header = sprintf (" %%%ds %%5s %%6s\n", valw); result = sprintf (" %%%ds %%5d %%6.2f%%%%\n", valw); fprintf (header, "Value", "Count", "Percent"); for i = 1:length (gn) fprintf (result, gn{i}, count(i), percent(i)); endfor endif ## Create output table else if (posint) table = [value', count', percent']; elseif (isnumeric (x)) table = [gl, count', percent']; else table = [gn, num2cell([count', percent'])]; endif endif endfunction %!demo %! ## Generate a frequency table for a vector of data in a cell array %! load patients %! %! ## Display the first seven entries of the Gender variable %! gender = Gender(1:7) %! %! ## Compute the equency table that shows the number and %! ## percentage of Male and Female patients %! tabulate (Gender) %!demo %! ## Create a frequency table for a vector of positive integers %! load patients %! %! ## Display the first seven entries of the Gender variable %! height = Height(1:7) %! %! ## Create a frequency table that shows, in its second and third columns, %! ## the number and percentage of patients with a particular height. %! table = tabulate (Height); %! %! ## Display the first and last seven entries of the frequency table %! first = table(1:7,:) %! %! last = table(end-6:end,:) %!demo %! ## Create a frequency table from a character array %! load carsmall %! %! ## Tabulate the data in the Origin variable, which shows the %! ## country of origin of each car in the data set %! tabulate (Origin) %!demo %! ## Create a frequency table from a numeric vector with NaN values %! load carsmall %! %! ## The carsmall dataset contains measurements of 100 cars %! total_cars = length (MPG) %! ## For six cars, the MPG value is missing %! missingMPG = length (MPG(isnan (MPG))) %! %! ## Create a frequency table using MPG %! tabulate (MPG) %! table = tabulate (MPG); %! %! ## Only 94 cars were used %! valid_cars = sum (table(:,2)) %!test %! load patients %! table = tabulate (Gender); %! assert (table{1,1}, "Male"); %! assert (table{2,1}, "Female"); %! assert (table{1,2}, 47); %! assert (table{2,2}, 53); %!test %! load patients %! table = tabulate (Height); %! assert (table(end-4,:), [68, 15, 15]); %! assert (table(end-3,:), [69, 8, 8]); %! assert (table(end-2,:), [70, 11, 11]); %! assert (table(end-1,:), [71, 10, 10]); %! assert (table(end,:), [72, 4, 4]); %!error tabulate (ones (3)) %!error tabulate ({1, 2, 3, 4}) %!error ... %! tabulate ({"a", "b"; "a", "c"}) statistics-release-1.6.3/inst/tiedrank.m000066400000000000000000000111431456127120000202630ustar00rootroot00000000000000## Copyright (C) 2022 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {[@var{r}, @var{tieadj}]} = tiedrank (@var{x}) ## @deftypefnx {statistics} {[@var{r}, @var{tieadj}]} = tiedrank (@var{x}, @var{tieflag}) ## @deftypefnx {statistics} {[@var{r}, @var{tieadj}]} = tiedrank (@var{x}, @var{tieflag}, @var{bidir}) ## ## @code{[@var{r}, @var{tieadj}] = tiedrank (@var{x})} computes the ranks of the ## values in vector @var{x}. If any values in @var{x} are tied, @code{tiedrank} ## computes their average rank. The return value @var{tieadj} is an adjustment ## for ties required by the nonparametric tests @code{signrank} and ## @code{ranksum}, and for the computation of Spearman's rank correlation. ## ## @code{[@var{r}, @var{tieadj}] = tiedrank (@var{x}, 1)} computes the ranks of ## the values in the vector @var{x}. @var{tieadj} is a vector of three ## adjustments for ties required in the computation of Kendall's tau. ## @code{tiedrank (@var{x}, 0)} is the same as @code{tiedrank (@var{x})}. ## ## @code{[@var{r}, @var{tieadj}] = tiedrank (@var{x}, 0, 1)} computes the ranks ## from each end, so that the smallest and largest values get rank 1, the next ## smallest and largest get rank 2, etc. These ranks are used in the ## Ansari-Bradley test. ## ## @end deftypefn function [r, tieadj] = tiedrank (x, tieflag, bidir) ## Check input arguments and add defauls if (nargin < 1 || nargin > 3) print_usage (); endif if (nargin < 2) tieflag = false; endif if (nargin < 3) bidir = false; endif ## X must be a vector if isvector (x) ## Sort X and leave NaNs at the end of vector [sx, idx] = sort (x(:)); NaNs = sum (isnan (x)); xLen = length (x) - NaNs; ## Count ranks from low end if ! bidir ranks = [1:xLen NaN(1,NaNs)]'; ## Count ranks from both ends else ## For even number of samples if mod(xLen,2)==0 ranks = [(1:xLen/2), (xLen/2:-1:1), NaN(1,NaNs)]'; ## For odd number of samples else ranks = [(1:(xLen+1)/2), ((xLen-1)/2:-1:1), NaN(1,NaNs)]'; endif endif ## Define number of adjustments if ! tieflag tieadj = 0; else tieadj = [0; 0; 0]; endif ## Check precision of X if isa (x, "single") ranks = single (ranks); tieadj = single (tieadj); endif ## Adjust for ties ties = sx(1:xLen-1) >= sx(2:xLen); tieloc = [find(ties); xLen+2]; maxTies = length (tieloc); tiecount = 1; while (tiecount < maxTies) tiestart = tieloc(tiecount); ntied = 2; while(tieloc(tiecount+1) == tieloc(tiecount)+1) tiecount = tiecount + 1; ntied = ntied + 1; endwhile if ! tieflag tieadj = tieadj + ntied * (ntied - 1) * (ntied + 1) / 2; else n2minusn = ntied * (ntied - 1); tieadj = tieadj + [n2minusn/2; n2minusn*(ntied-2); n2minusn*(2*ntied+5)]; endif ## Compute mean of tied ranks ranks(tiestart:tiestart+ntied-1) = ... sum (ranks(tiestart:tiestart+ntied-1)) / ntied; tiecount = tiecount + 1; endwhile ## Reshape ranks including NaN where required. r(idx) = ranks; r = reshape (r, size (x)); else error ("X must be a vector"); endif endfunction ## testing against mileage data and results from Matlab %!test %! mileage = [33.3, 34.5, 37.4; 33.4, 34.8, 36.8; ... %! 32.9, 33.8, 37.6; 32.6, 33.4, 36.6; ... %! 32.5, 33.7, 37.0; 33.0, 33.9, 36.7]; %! [r,tieadj] = tiedrank([10, 20, 30, 40, 50]); %! assert (r, [1, 2, 3, 4, 5]); %! assert (tieadj, 0); %! [r,tieadj] = tiedrank([10, 20, 30, 40, 50]'); %! assert (r, [1; 2; 3; 4; 5]); %!test %! mileage = [33.3, 34.5, 37.4; 33.4, 34.8, 36.8; ... %! 32.9, 33.8, 37.6; 32.6, 33.4, 36.6; ... %! 32.5, 33.7, 37.0; 33.0, 33.9, 36.7]; %! [r,tieadj] = tiedrank([10, 20, 30, 40, 50], 1); %! assert (r, [1, 2, 3, 4, 5]); %! assert (tieadj, [0 0 0]'); statistics-release-1.6.3/inst/trimmean.m000066400000000000000000000271271456127120000203070ustar00rootroot00000000000000## Copyright (C) 2001 Paul Kienzle ## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{m} =} trimmean (@var{x}, @var{p}) ## @deftypefnx {statistics} {@var{m} =} trimmean (@var{x}, @var{p}, @var{flag}) ## @deftypefnx {statistics} {@var{m} =} trimmean (@dots{}, @qcode{"all"}) ## @deftypefnx {statistics} {@var{m} =} trimmean (@dots{}, @var{dim}) ## @deftypefnx {statistics} {@var{m} =} trimmean (@dots{}, @var{dim}) ## ## Compute the trimmed mean. ## ## The trimmed mean of @var{x} is defined as the mean of @var{x} excluding the ## highest and lowest @math{k} data values of @var{x}, calculated as ## @qcode{@var{k} = n * (@var{p} / 100) / 2)}, where @var{n} is the sample size. ## ## @code{@var{m} = trimmean (@var{x}, @var{p})} returns the mean of @var{x} ## after removing the outliers in @var{x} defined by @var{p} percent. ## @itemize ## @item If @var{x} is a vector, then @code{trimmean (@var{x}, @var{p})} is the ## mean of all the values of @var{x}, computed after removing the outliers. ## @item If @var{x} is a matrix, then @code{trimmean (@var{x}, @var{p})} is a ## row vector of column means, computed after removing the outliers. ## @item If @var{x} is a multidimensional array, then @code{trimmean} operates ## along the first nonsingleton dimension of @var{x}. ## @end itemize ## ## To specify the operating dimension(s) when @var{x} is a matrix or a ## multidimensional array, use the @var{dim} or @var{vecdim} input argument. ## ## @code{trimmean} treats @qcode{NaN} values in @var{x} as missing values and ## removes them. ## ## @code{@var{m} = trimmean (@var{x}, @var{p}, @var{flag})} specifies how to ## trim when @math{k}, i.e. half the number of outliers, is not an integer. ## @var{flag} can be specified as one of the following values: ## @multitable @columnfractions 0.2 0.05 0.75 ## @headitem Value @tab @tab Description ## @item @qcode{"round"} @tab @tab Round @math{k} to the nearest integer. This ## is the default. ## @item @qcode{"floor"} @tab @tab Round @math{k} down to the next smaller ## integer. ## @item @qcode{"weighted"} @tab @tab If @math{k = i + f}, where @math{i} is an ## integer and @math{f} is a fraction, compute a weighted mean with weight ## @math{(1 – f)} for the @math{(i + 1)}-th and @math{(n – i)}-th values, and ## full weight for the values between them. ## @end multitable ## ## @code{@var{m} = trimmean (@dots{}, @qcode{"all"})} returns the trimmed mean ## of all the values in @var{x} using any of the input argument combinations in ## the previous syntaxes. ## ## @code{@var{m} = trimmean (@dots{}, @var{dim})} returns the trimmed mean along ## the operating dimension @var{dim} specified as a positive integer scalar. If ## not specified, then the default value is the first nonsingleton dimension of ## @var{x}, i.e. whose size does not equal 1. If @var{dim} is greater than ## @qcode{ndims (@var{X})} or if @qcode{size (@var{x}, @var{dim})} is 1, then ## @code{trimmean} returns @var{x}. ## ## @code{@var{m} = trimmean (@dots{}, @var{vecdim})} returns the trimmed mean ## over the dimensions specified in the vector @var{vecdim}. For example, if ## @var{x} is a 2-by-3-by-4 array, then @code{mean (@var{x}, [1 2])} returns a ## 1-by-1-by-4 array. Each element of the output array is the mean of the ## elements on the corresponding page of @var{x}. If @var{vecdim} indexes all ## dimensions of @var{x}, then it is equivalent to @code{mean (@var{x}, "all")}. ## Any dimension in @var{vecdim} greater than @code{ndims (@var{x})} is ignored. ## ## @seealso{mean} ## @end deftypefn function m = trimmean (x, p, varargin) if (nargin < 2 || nargin > 4) print_usage; endif if (p < 0 || p >= 100) error ("trimmean: invalid percent."); endif ## Parse extra arguments if (nargin < 3) flag = []; dim = []; elseif (nargin < 4) if (ischar (varargin{1}) && ! strcmpi (varargin{1}, "all")) flag = varargin{1}; dim = []; elseif (isnumeric (varargin{1}) || strcmpi (varargin{1}, "all")) flag = []; dim = varargin{1}; endif else flag = varargin{1}; dim = varargin{2}; endif ## Get size of X szx = size (x); ndx = numel (szx); ## Handle special case X = [] if (isempty (x)) m = NaN (class (x)); return endif ## Check FLAG if (isempty (flag)) flag = "round"; endif if (! any (strcmpi (flag, {"round", "floor", "weighted"}))) error ("trimmean: invalid FLAG argument."); endif ## Check DIM if (isempty (dim)) (dim = find (szx != 1, 1)) || (dim = 1); endif if (strcmpi (dim, "all")) x = x(:); dim = 1; endif if (! (isvector (dim) && all (dim > 0) && all (rem (dim, 1) == 0))) error ("trimmean: DIM must be a positive integer scalar or vector."); endif vecdim_flag = false; if (numel (dim) > 1) dim = sort (dim); if (! all (diff (dim))) error ("trimmean: VECDIM must contain non-repeating positive integers."); endif vecdim_flag = true; endif ## If DIM is a scalar greater than ndims, return X if (isscalar (dim) && dim > ndx) m = x; return endif ## If DIM is a scalar and size (x, dim) == 1, return X if (isscalar (dim) && size (x, dim) == 1) m = x; return endif ## If DIM is a vector, ignore any value > ndims (x) if (numel (dim) > 1) dim(dim > ndx) = []; endif ## Permute dim to simplify all operations along dim1. At func. end ipermute. if (numel (dim) > 1 || (dim != 1 && ! isvector (x))) perm = 1:ndx; if (! vecdim_flag) ## Move dim to dim 1 perm([1, dim]) = [dim, 1]; x = permute (x, perm); szx([1, dim]) = szx([dim, 1]); dim = 1; else ## Move vecdims to front perm(dim) = []; perm = [dim, perm]; x = permute (x, perm); ## Reshape all vecdims into dim1 num_dim = prod (szx(dim)); szx(dim) = []; szx = [num_dim, ones(1, numel(dim)-1), szx]; x = reshape (x, szx); dim = 1; endif perm_flag = true; else perm_flag = false; endif ## Create output matrix sizem = size (x); sizem(dim) = 1; ## Sort X along 1st dimensions x = sort (x); ## No missing data, all columns have the same length if (! any (isnan (x(:)))) if (isempty (x)) n = 0; else n = size (x, 1); end m = trim (x, n, p, flag, sizem); m = reshape (m, sizem); ## With missing data, each column is computed separately else m = NaN (sizem, class (x)); for j = 1:prod (sizem(2:end)) n = find (! isnan (x(:,j)), 1, "last"); m(j) = trim (x(:,j), n, p, flag, [1, 1]); endfor endif ## Inverse permute back to correct dimensions (if necessary) if (perm_flag) m = ipermute (m, perm); endif endfunction ## Help function for handling different flags function m = trim (x, n, p, flag, sizem) switch (lower (flag)) case "round" k = n * p / 200; k0 = round (k - eps (k)); if (! isempty (n) && n > 0 && k0 < n / 2) m = mean (x((k0+1):(n-k0),:), 1); else m = NaN (sizem, class (x)); endif case "floor" k0 = floor (n * p / 200); if (! isempty (n) && n > 0 && k0 < n / 2) m = mean (x((k0+1):(n-k0),:), 1); else m = NaN (sizem, class (x)); endif case "weighted" k = n * p / 200; k0 = floor (k); fr = 1 + k0 - k; if (! isempty (n) && n > 0 && (k0 < n / 2 || fr > 0)) m = (sum (x((k0+2):(n-k0-1),:),1) + fr * x(k0+1,:) + fr * x(n-k0,:)) ... / (max (0, n - 2 * k0 - 2) + 2 * fr); else m = NaN (sizem, class (x)); endif endswitch endfunction ## Test output %!test %! x = reshape (1:40, [5, 4, 2]); %! x([3, 37]) = -100; %! assert (trimmean (x, 10, "all"), 19.4722, 1e-4); %!test %! x = reshape (1:40, [5, 4, 2]); %! x([3, 37]) = -100; %! out = trimmean (x, 10, [1, 2]); %! assert (out(1,1,1), 10.3889, 1e-4); %! assert (out(1,1,2), 29.6111, 1e-4); %!test %! x = reshape (1:40, [5, 4, 2]); %! x([3, 37]) = -100; %! x([4, 38]) = NaN; %! assert (trimmean (x, 10, "all"), 19.3824, 1e-4); %!test %! x = reshape (1:40, [5, 4, 2]); %! x([3, 37]) = -100; %! out = trimmean (x, 10, 1); %! assert (out(:,:,1), [-17.6, 8, 13, 18]); %! assert (out(:,:,2), [23, 28, 33, 10.6]); %!test %! x = reshape (1:40, [5, 4, 2]); %! x([3, 37]) = -100; %! x([4, 38]) = NaN; %! out = trimmean (x, 10, 1); %! assert (out(:,:,1), [-23, 8, 13, 18]); %! assert (out(:,:,2), [23, 28, 33, 3.75]); %!test %! x = reshape (1:40, [5, 4, 2]); %! x([3, 37]) = -100; %! out = trimmean (x, 10, 2); %! assert (out(:,:,1), [8.5; 9.5; -15.25; 11.5; 12.5]); %! assert (out(:,:,2), [28.5; -4.75; 30.5; 31.5; 32.5]); %!test %! x = reshape (1:40, [5, 4, 2]); %! x([3, 37]) = -100; %! x([4, 38]) = NaN; %! out = trimmean (x, 10, 2); %! assert (out(:,:,1), [8.5; 9.5; -15.25; 14; 12.5]); %! assert (out(:,:,2), [28.5; -4.75; 28; 31.5; 32.5]); %!test %! x = reshape (1:40, [5, 4, 2]); %! x([3, 37]) = -100; %! out = trimmean (x, 10, [1, 2, 3]); %! assert (out, trimmean (x, 10, "all")); ## Test N-D array with NaNs %!test %! x = reshape (1:40, [5, 4, 2]); %! x([3, 37]) = -100; %! x([4, 38]) = NaN; %! out = trimmean (x, 10, [1, 2]); %! assert (out(1,1,1), 10.7647, 1e-4); %! assert (out(1,1,2), 29.1176, 1e-4); %!test %! x = reshape (1:40, [5, 4, 2]); %! x([3, 37]) = -100; %! x([4, 38]) = NaN; %! out = trimmean (x, 10, [1, 3]); %! assert (out, [2.5556, 18, 23, 11.6667], 1e-4); %!test %! x = reshape (1:40, [5, 4, 2]); %! x([3, 37]) = -100; %! x([4, 38]) = NaN; %! out = trimmean (x, 10, [2, 3]); %! assert (out, [18.5; 2.3750; 3.2857; 24; 22.5], 1e-4); %!test %! x = reshape (1:40, [5, 4, 2]); %! x([3, 37]) = -100; %! x([4, 38]) = NaN; %! out = trimmean (x, 10, [1, 2, 3]); %! assert (out, trimmean (x, 10, "all")); %!test %! x = reshape (1:40, [5, 4, 2]); %! x([3, 37]) = -100; %! x([4, 38]) = NaN; %! out = trimmean (x, 10, [2, 3, 5]); %! assert (out, [18.5; 2.3750; 3.2857; 24; 22.5], 1e-4); ## Test special cases %!assert (trimmean (reshape (1:40, [5, 4, 2]), 10, 4), reshape(1:40, [5, 4, 2])) %!assert (trimmean ([], 10), NaN) %!assert (trimmean ([1;2;3;4;5], 10, 2), [1;2;3;4;5]) ## Test input validation %!error trimmean (1) %!error trimmean (1,2,3,4,5) %!error trimmean ([1 2 3 4], -10) %!error trimmean ([1 2 3 4], 100) %!error trimmean ([1 2 3 4], 10, "flag") %!error trimmean ([1 2 3 4], 10, "flag", 1) %!error ... %! trimmean ([1 2 3 4], 10, -1) %!error ... %! trimmean ([1 2 3 4], 10, "floor", -1) %!error ... %! trimmean (reshape (1:40, [5, 4, 2]), 10, [-1, 2]) %!error ... %! trimmean (reshape (1:40, [5, 4, 2]), 10, [1, 2, 2]) statistics-release-1.6.3/inst/ttest.m000066400000000000000000000154061456127120000176330ustar00rootroot00000000000000## Copyright (C) 2014 Tony Richardson ## Copyright (C) 2022 Andrew Penn ## Copyright (C) 2022 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {[@var{h}, @var{pval}, @var{ci}, @var{stats}] =} ttest (@var{x}) ## @deftypefnx {statistics} {[@var{h}, @var{pval}, @var{ci}, @var{stats}] =} ttest (@var{x}, @var{m}) ## @deftypefnx {statistics} {[@var{h}, @var{pval}, @var{ci}, @var{stats}] =} ttest (@var{x}, @var{y}) ## @deftypefnx {statistics} {[@var{h}, @var{pval}, @var{ci}, @var{stats}] =} ttest (@var{x}, @var{m}, @var{Name}, @var{Value}) ## @deftypefnx {statistics} {[@var{h}, @var{pval}, @var{ci}, @var{stats}] =} ttest (@var{x}, @var{y}, @var{Name}, @var{Value}) ## ## Test for mean of a normal sample with unknown variance. ## ## Perform a t-test of the null hypothesis @code{mean (@var{x}) == ## @var{m}} for a sample @var{x} from a normal distribution with unknown ## mean and unknown standard deviation. Under the null, the test statistic ## @var{t} has a Student's t distribution. The default value of ## @var{m} is 0. ## ## If the second argument @var{y} is a vector, a paired-t test of the ## hypothesis @code{mean (@var{x}) = mean (@var{y})} is performed. If @var{x} ## and @var{y} are vectors, they must have the same size and dimensions. ## ## @var{x} (and @var{y}) can also be matrices. For matrices, @qcode{ttest} ## performs separate t-tests along each column, and returns a vector of results. ## @var{x} and @var{y} must have the same number of columns. The Type I error ## rate of the resulting vector of @var{pval} can be controlled by entering ## @var{pval} as input to the function @qcode{multcompare}. ## ## @qcode{ttest} treats NaNs as missing values, and ignores them. ## ## Name-Value pair arguments can be used to set various options. ## @qcode{"alpha"} can be used to specify the significance level ## of the test (the default value is 0.05). @qcode{"tail"}, can be used ## to select the desired alternative hypotheses. If the value is ## @qcode{"both"} (default) the null is tested against the two-sided ## alternative @code{mean (@var{x}) != @var{m}}. ## If it is @qcode{"right"} the one-sided alternative @code{mean (@var{x}) ## > @var{m}} is considered. Similarly for @qcode{"left"}, the one-sided ## alternative @code{mean (@var{x}) < @var{m}} is considered. ## When argument @var{x} is a matrix, @qcode{"dim"} can be used to select ## the dimension over which to perform the test. (The default is the ## first non-singleton dimension). ## ## If @var{h} is 1 the null hypothesis is rejected, meaning that the tested ## sample does not come from a Student's t distribution. If @var{h} is 0, then ## the null hypothesis cannot be rejected and it can be assumed that @var{x} ## follows a Student's t distribution. The p-value of the test is returned in ## @var{pval}. A 100(1-alpha)% confidence interval is returned in @var{ci}. ## ## @var{stats} is a structure containing the value of the test statistic ## (@var{tstat}), the degrees of freedom (@var{df}) and the sample's standard ## deviation (@var{sd}). ## ## @seealso{hotelling_ttest, ttest2, hotelling_ttest2} ## @end deftypefn function [h, p, ci, stats] = ttest (x, my, varargin) ## Set default arguments my_default = 0; alpha = 0.05; tail = "both"; ## Find the first non-singleton dimension of x dim = min (find (size (x) != 1)); if (isempty (dim)) dim = 1; endif if (nargin == 1) my = my_default; endif i = 1; while (i <= length (varargin)) switch lower (varargin{i}) case "alpha" i = i + 1; alpha = varargin{i}; case "tail" i = i + 1; tail = varargin{i}; case "dim" i = i + 1; dim = varargin{i}; otherwise error ("ttest: Invalid Name argument."); endswitch i = i + 1; endwhile if (! isa (tail, "char")) error ("ttest: tail argument must be a string."); endif if (any (and (! isscalar (my), size (x) != size (my)))) error ("ttest: Arrays in paired test must be the same size."); endif ## Set default values if arguments are present but empty if (isempty (my)) my = my_default; endif ## This adjustment allows everything else to remain the ## same for both the one-sample t test and paired tests. x = x - my; if (! isscalar (my)) my = 0; endif ## Calculate the test statistic value (tval) n = sum (!isnan (x), dim); x_bar = mean (x, dim, "omitnan"); stats.tstat = []; stats.df = n - 1; stats.sd = std (x, 0, dim, "omitnan"); x_bar_std = stats.sd ./ sqrt(n); tval = (x_bar) ./ x_bar_std; stats.tstat = tval; ## Based on the "tail" argument determine the P-value, the critical values, ## and the confidence interval. switch lower (tail) case "both" p = 2 * (1 - tcdf (abs (tval), n - 1)); tcrit = - tinv (alpha / 2, n - 1); ci = [x_bar-tcrit.*x_bar_std; x_bar+tcrit.*x_bar_std] + my; case "left" p = tcdf (tval, n - 1); tcrit = - tinv (alpha, n - 1); ci = [-inf*ones(size(x_bar)); my+x_bar+tcrit.*x_bar_std]; case "right" p = 1 - tcdf (tval, n - 1); tcrit = - tinv (alpha, n - 1); ci = [my+x_bar-tcrit.*x_bar_std; inf*ones(size(x_bar))]; otherwise error ("ttest: Invalid value for tail argument."); endswitch ## Reshape the ci array to match MATLAB shaping if (isscalar (x_bar) && dim == 2) ci = ci(:)'; elseif (size (x_bar, 2) < size (x_bar, 1)) ci = reshape (ci(:), length (x_bar), 2); endif ## Determine the test outcome ## MATLAB returns this a double instead of a logical array h = double (p < alpha); endfunction %!test %! x = 8:0.1:12; %! [h, pval, ci] = ttest (x, 10); %! assert (h, 0) %! assert (pval, 1, 10*eps) %! assert (ci, [9.6219 10.3781], 1E-5) %! [h, pval, ci0] = ttest (x, 0); %! assert (h, 1) %! assert (pval, 0) %! assert (ci0, ci, 2e-15) %! [h, pval, ci] = ttest (x, 10, "tail", "right", "dim", 2, "alpha", 0.05); %! assert (h, 0) %! assert (pval, 0.5, 10*eps) %! assert (ci, [9.68498 Inf], 1E-5) %!error ttest ([8:0.1:12], 10, "tail", "invalid"); %!error ttest ([8:0.1:12], 10, "tail", 25); statistics-release-1.6.3/inst/ttest2.m000066400000000000000000000153421456127120000177140ustar00rootroot00000000000000## Copyright (C) 2014 Tony Richardson ## Copyright (C) 2022 Andrew Penn ## Copyright (C) 2022 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {[@var{h}, @var{pval}, @var{ci}, @var{stats}]} = ttest2 (@var{x}, @var{y}) ## @deftypefnx {statistics} {[@var{h}, @var{pval}, @var{ci}, @var{stats}]} = ttest2 (@var{x}, @var{y}, @var{Name}, @var{Value}) ## ## Perform a t-test to compare the means of two groups of data under the null ## hypothesis that the groups are drawn from distributions with the same mean. ## ## @var{x} and @var{y} can be vectors or matrices. For matrices, @qcode{ttest2} ## performs separate t-tests along each column, and returns a vector of results. ## @var{x} and @var{y} must have the same number of columns. The Type I error ## rate of the resulting vector of @var{pval} can be controlled by entering ## @var{pval} as input to the function @qcode{multcompare}. ## ## @qcode{ttest2} treats NaNs as missing values, and ignores them. ## ## For a nested t-test, use @qcode{anova2}. ## ## The argument @qcode{"alpha"} can be used to specify the significance level ## of the test (the default value is 0.05). The string argument @qcode{"tail"}, ## can be used to select the desired alternative hypotheses. If @qcode{"tail"} ## is @qcode{"both"} (default) the null is tested against the two-sided ## alternative @code{mean (@var{x}) != @var{m}}. If @qcode{"tail"} is ## @qcode{"right"} the one-sided alternative @code{mean (@var{x}) > @var{m}} is ## considered. Similarly for @qcode{"left"}, the one-sided alternative ## @code{mean (@var{x}) < @var{m}} is considered. ## ## When @qcode{"vartype"} is @qcode{"equal"} the variances are assumed to be ## equal (this is the default). When @qcode{"vartype"} is @qcode{"unequal"} the ## variances are not assumed equal. ## ## When argument @var{x} and @var{y} are matrices the @qcode{"dim"} argument can ## be used to select the dimension over which to perform the test. ## (The default is the first non-singleton dimension.) ## ## If @var{h} is 0 the null hypothesis is accepted, if it is 1 the null ## hypothesis is rejected. The p-value of the test is returned in @var{pval}. ## A 100(1-alpha)% confidence interval is returned in @var{ci}. @var{stats} ## is a structure containing the value of the test statistic (@var{tstat}), ## the degrees of freedom (@var{df}) and the sample standard deviation ## (@var{sd}). ## ## @seealso{hotelling_ttest2, anova1, hotelling_ttest, ttest} ## @end deftypefn function [h, p, ci, stats] = ttest2 (x, y, varargin) ## Set defaults alpha = 0.05; tail = "both"; vartype = "equal"; ## Find the first non-singleton dimension of x dim = min (find (size (x) != 1)); if (isempty (dim)) dim = 1; endif ## Evaluate optional input arguments i = 1; while ( i <= length(varargin) ) switch lower(varargin{i}) case "alpha" i = i + 1; alpha = varargin{i}; case "tail" i = i + 1; tail = varargin{i}; case "vartype" i = i + 1; vartype = varargin{i}; case "dim" i = i + 1; dim = varargin{i}; otherwise error ("ttest2: Invalid Name argument."); endswitch i = i + 1; endwhile ## Error checking if (! isa (tail, "char")) error ("ttest2: tail argument must be a string."); endif if (size (x, abs (dim - 3)) != size (y, abs (dim - 3))) error ("ttest2: The data in a 2-sample t-test must be commensurate") endif ## Calculate mean, variance and size of each sample m = sum (!isnan (x), dim); n = sum (!isnan (y), dim); x_bar = mean (x, dim, "omitnan") - mean (y, dim, "omitnan"); s1_var = var (x, 0, dim, "omitnan"); s2_var = var (y, 0, dim, "omitnan"); ## Perform test-specific calculations switch lower (vartype) case "equal" stats.tstat = []; stats.df = (m + n - 2); sp_var = ((m - 1) .* s1_var + (n - 1) .* s2_var) ./ stats.df; stats.sd = sqrt (sp_var); x_bar_std = sqrt (sp_var .* (1 ./ m + 1 ./ n)); n_sd = 1; case "unequal" stats.tstat = []; se1 = sqrt (s1_var ./ m); se2 = sqrt (s2_var ./ n); sp_var = s1_var ./ m + s2_var ./ n; stats.df = ((se1 .^ 2 + se2 .^ 2) .^ 2 ./ ... (se1 .^ 4 ./ (m - 1) + se2 .^ 4 ./ (n - 1))); stats.sd = [sqrt(s1_var); sqrt(s2_var)]; x_bar_std = sqrt (sp_var); n_sd = 2; otherwise error ("ttest2: Invalid value for vartype argument."); end stats.tstat = x_bar ./ x_bar_std; ## Based on the "tail" argument determine the P-value, the critical values, ## and the confidence interval. switch lower(tail) case "both" p = 2 * (1 - tcdf (abs (stats.tstat), stats.df)); tcrit = - tinv (alpha / 2, stats.df); ci = [x_bar-tcrit.*x_bar_std; x_bar+tcrit.*x_bar_std]; case "left" p = tcdf (stats.tstat, stats.df); tcrit = - tinv (alpha, stats.df); ci = [-inf*ones(size(x_bar)); x_bar+tcrit.*x_bar_std]; case "right" p = 1 - tcdf (stats.tstat, stats.df); tcrit = - tinv (alpha, stats.df); ci = [x_bar-tcrit.*x_bar_std; inf*ones(size(x_bar))]; otherwise error ("ttest2: Invalid value for tail argument."); endswitch ## Reshape the ci array to match MATLAB shaping if (isscalar (x_bar) && dim == 2) ci = ci(:)'; stats.sd = stats.sd(:)'; elseif (size (x_bar, 2) < size (x_bar, 1)) ci = reshape (ci(:), length (x_bar), 2); stats.sd = reshape (stats.sd(:), length (x_bar), n_sd); endif ## Determine the test outcome ## MATLAB returns this a double instead of a logical array h = double (p < alpha); endfunction %!test %! a = 1:5; %! b = 6:10; %! b(5) = NaN; %! [h,p,ci,stats] = ttest2 (a,b); %! assert (h, 1); %! assert (p, 0.002535996080258229, 1e-14); %! assert (ci, [-6.822014919225481, -2.17798508077452], 1e-14); %! assert (stats.tstat, -4.582575694955839, 1e-14); %! assert (stats.df, 7); %! assert (stats.sd, 1.4638501094228, 1e-13); %!error ttest2 ([8:0.1:12], [8:0.1:12], "tail", "invalid"); %!error ttest2 ([8:0.1:12], [8:0.1:12], "tail", 25); statistics-release-1.6.3/inst/vartest.m000066400000000000000000000201201456127120000201450ustar00rootroot00000000000000## Copyright (C) 2014 Tony Richardson ## Copyright (C) 2022 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{h} =} vartest (@var{x}, @var{v}) ## @deftypefnx {statistics} {@var{h} =} vartest (@var{x}, @var{v}, @var{name}, @var{value}) ## @deftypefnx {statistics} {[@var{h}, @var{pval}] =} vartest (@dots{}) ## @deftypefnx {statistics} {[@var{h}, @var{pval}, @var{ci}] =} vartest (@dots{}) ## @deftypefnx {statistics} {[@var{h}, @var{pval}, @var{ci}, @var{stats}] =} vartest (@dots{}) ## ## One-sample test of variance. ## ## @code{@var{h} = vartest (@var{x}, @var{v})} performs a chi-square test of the ## hypothesis that the data in the vector @var{x} come from a normal ## distribution with variance @var{v}, against the alternative that @var{x} ## comes from a normal distribution with a different variance. The result is ## @var{h} = 0 if the null hypothesis ("variance is V") cannot be rejected at ## the 5% significance level, or @var{h} = 1 if the null hypothesis can be ## rejected at the 5% level. ## ## @var{x} may also be a matrix or an N-D array. For matrices, @code{vartest} ## performs separate tests along each column of @var{x}, and returns a vector of ## results. For N-D arrays, @code{vartest} works along the first non-singleton ## dimension of @var{x}. @var{v} must be a scalar. ## ## @code{vartest} treats NaNs as missing values, and ignores them. ## ## @code{[@var{h}, @var{pval}] = vartest (@dots{})} returns the p-value. That ## is the probability of observing the given result, or one more extreme, by ## chance if the null hypothesisis true. ## ## @code{[@var{h}, @var{pval}, @var{ci}] = vartest (@dots{})} returns a ## 100 * (1 - @var{alpha})% confidence interval for the true variance. ## ## @code{[@var{h}, @var{pval}, @var{ci}, @var{stats}] = vartest (@dots{})} ## returns a structure with the following fields: ## ## @multitable @columnfractions 0.05 0.2 0.75 ## @item @tab @qcode{chisqstat} @tab the value of the test statistic ## @item @tab @qcode{df} @tab the degrees of freedom of the test ## @end multitable ## ## @code{[@dots{}] = vartest (@dots{}, @var{name}, @var{value}), @dots{}} ## specifies one or more of the following name/value pairs: ## ## @multitable @columnfractions 0.05 0.2 0.75 ## @headitem @tab Name @tab Value ## @item @tab @qcode{"alpha"} @tab the significance level. Default is 0.05. ## ## @item @tab @qcode{"dim"} @tab dimension to work along a matrix or an N-D ## array. ## ## @item @tab @qcode{"tail"} @tab a string specifying the alternative hypothesis ## @end multitable ## @multitable @columnfractions 0.1 0.15 0.75 ## @item @tab @qcode{"both"} @tab variance is not @var{v} (two-tailed, default) ## @item @tab @qcode{"left"} @tab variance is less than @var{v} (left-tailed) ## @item @tab @qcode{"right"} @tab variance is greater than @var{v} ## (right-tailed) ## @end multitable ## ## @seealso{ttest, ztest, kstest} ## @end deftypefn function [h, pval, ci, stats] = vartest (x, v, varargin) ## Validate input arguments if (nargin < 2) error ("vartest: too few input arguments."); endif if (! isscalar (v) || ! isnumeric(v) || ! isreal(v) || v < 0) error ("vartest: invalid value for variance."); endif ## Add defaults alpha = 0.05; tail = "both"; dim = []; if (nargin > 2 && mod (numel (varargin(:)), 2) == 0) for idx = 3:2:nargin name = varargin{idx-2}; value = varargin{idx-1}; switch (lower (name)) case "alpha" alpha = value; if (! isscalar (alpha) || ! isnumeric (alpha) || ... alpha <= 0 || alpha >= 1) error ("vartest: invalid value for alpha."); endif case "tail" tail = value; if (! any (strcmpi (tail, {"both", "left", "right"}))) error ("vartest: invalid value for tail."); endif case "dim" dim = value; if (! isscalar (dim) || ! ismember (dim, 1:ndims (x))) error ("vartest: invalid value for operating dimension."); endif otherwise error ("vartest: invalid name for optional arguments."); endswitch endfor elseif (nargin > 2 && mod (numel (varargin(:)), 2) != 0) error ("vartest: optional arguments must be in name/value pairs."); endif ## Figure out which dimension mean will work along if (isempty (dim)) dim = find (size (x) != 1, 1); endif ## Replace all NaNs with zeros is_nan = isnan (x); x_dims = ndims (x); x(is_nan) = 0; ## Find sample size for each group (if more than one) if (any (is_nan(:))) sz = sum (! is_nan, dim); else sz = size (x, dim); endif ## Find degrees of freedom for each group (if more than one) df = max (sz - 1, 0); ## Calculate mean for each group (if more than one) x_mean = sum (x, dim) ./ max (1, sz); ## Center data if (isscalar (x_mean)) x_centered = x - x_mean; else rep = ones (1, x_dims); rep(dim) = size (x, dim); x_centered = x - repmat (x_mean, rep); endif ## Replace all NaNs with zeros x_centered(is_nan) = 0; ## Calculate chi-square statistic sumsq = sum (abs (x_centered) .^ 2, dim); if (v > 0) chisqstat = sumsq ./ v; else chisqstat = Inf (size (sumsq)); chisqstat(sumsq == 0) = NaN; endif ## Calculate p-value for the test and confidence intervals (if requested) if (strcmpi (tail, "both")) pval = chi2cdf (chisqstat, df); pval = 2 * min (pval, 1 - pval); if (nargout > 2) ci = cat (dim, sumsq ./ chi2inv (1 - alpha / 2, df), ... sumsq ./ chi2inv (alpha / 2, df)); endif elseif (strcmpi (tail, "right")) pval = chi2cdf (chisqstat, df); if (nargout > 2) ci = cat (dim, sumsq ./ chi2inv (1 - alpha, df), Inf (size (pval))); endif elseif (strcmpi (tail, "left")) pval = chi2cdf (chisqstat, df); if (nargout > 2) ci = cat (dim, zeros (size (pval)), sumsq ./ chi2inv (alpha, df)); endif endif ## Determine the test outcome h = double (pval < alpha); h(isnan (pval)) = NaN; ## Create stats output structure (if requested) if (nargout > 3) stats = struct ("chisqstat", chisqstat, "df", df); endif endfunction ## Test input validation %!error vartest (); %!error vartest ([1, 2, 3, 4], -0.5); %!error ... %! vartest ([1, 2, 3, 4], 1, "alpha", 0); %!error ... %! vartest ([1, 2, 3, 4], 1, "alpha", 1.2); %!error ... %! vartest ([1, 2, 3, 4], 1, "alpha", "val"); %!error ... %! vartest ([1, 2, 3, 4], 1, "tail", "val"); %!error ... %! vartest ([1, 2, 3, 4], 1, "alpha", 0.01, "tail", "val"); %!error ... %! vartest ([1, 2, 3, 4], 1, "dim", 3); %!error ... %! vartest ([1, 2, 3, 4], 1, "alpha", 0.01, "tail", "both", "dim", 3); %!error ... %! vartest ([1, 2, 3, 4], 1, "alpha", 0.01, "tail", "both", "badoption", 3); %!error ... %! vartest ([1, 2, 3, 4], 1, "alpha", 0.01, "tail"); ## Test results %!test %! load carsmall %! [h, pval, ci] = vartest (MPG, 7^2); %! assert (h, 1); %! assert (pval, 0.04335086742174443, 1e-14); %! assert (ci, [49.397; 88.039], 1e-3); statistics-release-1.6.3/inst/vartest2.m000066400000000000000000000222751456127120000202440ustar00rootroot00000000000000## Copyright (C) 2014 Tony Richardson ## Copyright (C) 2022 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{h} =} vartest2 (@var{x}, @var{y}) ## @deftypefnx {statistics} {@var{h} =} vartest2 (@var{x}, @var{y}, @var{name}, @var{value}) ## @deftypefnx {statistics} {[@var{h}, @var{pval}] =} vartest2 (@dots{}) ## @deftypefnx {statistics} {[@var{h}, @var{pval}, @var{ci}] =} vartest2 (@dots{}) ## @deftypefnx {statistics} {[@var{h}, @var{pval}, @var{ci}, @var{stats}] =} vartest2 (@dots{}) ## ## Two-sample F test for equal variances. ## ## @code{@var{h} = vartest2 (@var{x}, @var{y})} performs an F test of the ## hypothesis that the independent data in vectors @var{x} and @var{y} come from ## normal distributions with equal variance, against the alternative that they ## come from normal distributions with different variances. The result is ## @var{h} = 0 if the null hypothesis ("variance are equal") cannot be rejected ## at the 5% significance level, or @var{h} = 1 if the null hypothesis can be ## rejected at the 5% level. ## ## @var{x} and @var{y} may also be matrices or N-D arrays. For matrices, ## @code{vartest2} performs separate tests along each column and returns a ## vector of results. For N-D arrays, @code{vartest2} works along the first ## non-singleton dimension and @var{x} and @var{y} must have the same size along ## all the remaining dimensions. ## ## @code{vartest} treats NaNs as missing values, and ignores them. ## ## @code{[@var{h}, @var{pval}] = vartest (@dots{})} returns the p-value. That ## is the probability of observing the given result, or one more extreme, by ## chance if the null hypothesisis true. ## ## @code{[@var{h}, @var{pval}, @var{ci}] = vartest (@dots{})} returns a ## @math{100 * (1 - @var{alpha})%} confidence interval for the true ratio ## var(X)/var(Y). ## ## @code{[@var{h}, @var{pval}, @var{ci}, @var{stats}] = vartest (@dots{})} ## returns a structure with the following fields: ## ## @multitable @columnfractions 0.05 0.2 0.75 ## @item @tab @qcode{fstat} @tab the value of the test statistic ## @item @tab @qcode{df1} @tab the numerator degrees of freedom of the test ## @item @tab @qcode{df2} @tab the denominator degrees of freedom of the test ## @end multitable ## ## @code{[@dots{}] = vartest (@dots{}, @var{name}, @var{value}), @dots{}} ## specifies one or more of the following name/value pairs: ## ## @multitable @columnfractions 0.05 0.2 0.75 ## @headitem @tab Name @tab Value ## @item @tab @qcode{"alpha"} @tab the significance level. Default is 0.05. ## ## @item @tab @qcode{"dim"} @tab dimension to work along a matrix or an N-D ## array. ## ## @item @tab @qcode{"tail"} @tab a string specifying the alternative hypothesis ## @end multitable ## @multitable @columnfractions 0.1 0.15 0.75 ## @item @tab @qcode{"both"} @tab variance is not @var{v} (two-tailed, default) ## @item @tab @qcode{"left"} @tab variance is less than @var{v} (left-tailed) ## @item @tab @qcode{"right"} @tab variance is greater than @var{v} ## (right-tailed) ## @end multitable ## ## @seealso{ttest2, kstest2, bartlett_test, levene_test} ## @end deftypefn function [h, pval, ci, stats] = vartest2 (x, y, varargin) ## Validate input arguments if (nargin < 2) error ("vartest2: too few input arguments."); endif if (isscalar (x) || isscalar(y)) error ("vartest2: X and Y must be vectors or matrices or N-D arrays."); endif ## If X and Y are vectors make them the same orientation if (isvector (x) && isvector (y)) if (size (x, 1) == 1) y = y(:)'; else y = y(:); endif endif ## Add defaults alpha = 0.05; tail = "both"; dim = []; if (nargin > 2 && mod (numel (varargin(:)), 2) == 0) for idx = 3:2:nargin name = varargin{idx-2}; value = varargin{idx-1}; switch (lower (name)) case "alpha" alpha = value; if (! isscalar (alpha) || ! isnumeric (alpha) || ... alpha <= 0 || alpha >= 1) error ("vartest2: invalid value for alpha."); endif case "tail" tail = value; if (! any (strcmpi (tail, {"both", "left", "right"}))) error ("vartest2: invalid value for tail."); endif case "dim" dim = value; if (! isscalar (dim) || ! ismember (dim, 1:ndims (x))) error ("vartest2: invalid value for operating dimension."); endif otherwise error ("vartest2: invalid name for optional arguments."); endswitch endfor elseif (nargin > 2 && mod (numel (varargin(:)), 2) != 0) error ("vartest2: optional arguments must be in name/value pairs."); endif ## Figure out which dimension mean will work along if (isempty (dim)) dim = find (size (x) != 1, 1); endif ## Check that all non-working dimensions of X and Y are of equal size x_size = size (x); y_size = size (y); x_size(dim) = 1; y_size(dim) = 1; if (! isequal (x_size, y_size)) error ("vartestt2: input size mismatch."); endif ## Compute statistics for each sample [df1, x_var] = getstats(x,dim); [df2, y_var] = getstats(y,dim); ## Compute F statistic F = NaN (size (x_var)); t1 = (y_var > 0); F(t1) = x_var(t1) ./ y_var(t1); t2 = (x_var > 0) & ! t1; F(t2) = Inf; ## Calculate p-value for the test and confidence intervals (if requested) if (strcmpi (tail, "both")) pval = 2 * min (fcdf (F, df1, df2), 1 - fcdf (F, df1, df2)); if (nargout > 2) ci = cat (dim, F .* finv (alpha / 2, df2, df1), ... F ./ finv (alpha / 2, df1, df2)); endif elseif (strcmpi (tail, "right")) pval = 1 - fcdf (F, df1, df2); if (nargout > 2) ci = cat (dim, F .* finv (alpha, df2, df1), Inf (size (F))); endif elseif (strcmpi (tail, "left")) pval = fcdf (F, df1, df2); if (nargout > 2) ci = cat (dim, zeros (size (F)), F ./ finv (alpha, df1, df2)); endif endif ## Determine the test outcome h = double (pval < alpha); h(isnan (pval)) = NaN; ## Create stats output structure (if requested) if (nargout > 3) stats = struct ("fstat", F, "df1", df1, "df2", df2); endif endfunction ## Compute statistics for one sample function [df, data_var] = getstats (data, dim) ## Calculate sample size and df by ignoring NaNs is_nan = isnan (data); n_data = sum (! is_nan, dim); df = max (n_data - 1, 0); ## Calculate mean data(is_nan) = 0; m_data = sum (data, dim) ./ max (1, n_data); ## Calculate variance if (isscalar (m_data)) c_data = data - m_data; else rep = ones (1, ndims (data)); rep(dim) = size (data, dim); c_data = data - repmat (m_data, rep); end c_data(is_nan) = 0; data_var = sum (abs (c_data) .^ 2,dim); t = (df > 0); data_var(t) = data_var(t) ./ df(t); data_var(! t) = NaN; ## Make df a scalar if possible if (numel (df) > 1 && all (df(:) == df(1))) df = df(1); end endfunction ## Test input validation %!error vartest2 (); %!error vartest2 (ones (20,1)); %!error ... %! vartest2 (rand (20,1), 5); %!error ... %! vartest2 (rand (20,1), rand (25,1)*2, "alpha", 0); %!error ... %! vartest2 (rand (20,1), rand (25,1)*2, "alpha", 1.2); %!error ... %! vartest2 (rand (20,1), rand (25,1)*2, "alpha", "some"); %!error ... %! vartest2 (rand (20,1), rand (25,1)*2, "alpha", [0.05, 0.001]); %!error ... %! vartest2 (rand (20,1), rand (25,1)*2, "tail", [0.05, 0.001]); %!error ... %! vartest2 (rand (20,1), rand (25,1)*2, "tail", "some"); %!error ... %! vartest2 (rand (20,1), rand (25,1)*2, "dim", 3); %!error ... %! vartest2 (rand (20,1), rand (25,1)*2, "alpha", 0.001, "dim", 3); %!error ... %! vartest2 (rand (20,1), rand (25,1)*2, "some", 3); %!error ... %! vartest2 (rand (20,1), rand (25,1)*2, "some"); ## Test results %!test %! load carsmall %! [h, pval, ci, stat] = vartest2 (MPG(Model_Year==82), MPG(Model_Year==76)); %! assert (h, 0); %! assert (pval, 0.6288022362718455, 1e-13); %! assert (ci, [0.4139; 1.7193], 1e-4); %! assert (stat.fstat, 0.8384, 1e-4); %! assert (stat.df1, 30); %! assert (stat.df2, 33); statistics-release-1.6.3/inst/vartestn.m000066400000000000000000000404461456127120000203400ustar00rootroot00000000000000## Copyright (C) 2022 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {} vartestn (@var{x}) ## @deftypefnx {statistics} {} vartestn (@var{x}, @var{group}) ## @deftypefnx {statistics} {} vartestn (@dots{}, @var{name}, @var{value}) ## @deftypefnx {statistics} {@var{p} =} vartestn (@dots{}) ## @deftypefnx {statistics} {[@var{p}, @var{stats}] =} vartestn (@dots{}) ## @deftypefnx {statistics} {[@var{p}, @var{stats}] =} vartestn (@dots{}, @var{name}, @var{value}) ## ## Test for equal variances across multiple groups. ## ## @code{@var{h} = vartestn (@var{x})} performs Bartlett's test for equal ## variances for the columns of the matrix @var{x}. This is a test of the null ## hypothesis that the columns of @var{x} come from normal distributions with ## the same variance, against the alternative that they come from normal ## distributions with different variances. The result is displayed in a summary ## table of statistics as well as a box plot of the groups. ## ## @code{vartestn (@var{x}, @var{group})} requires a vector @var{x}, and a ## @var{group} argument that is a categorical variable, vector, string array, or ## cell array of strings with one row for each element of @var{x}. Values of ## @var{x} corresponding to the same value of @var{group} are placed in the same ## group. ## ## @code{vartestn} treats NaNs as missing values, and ignores them. ## ## @code{@var{p} = vartestn (@dots{})} returns the probability of observing the ## given result, or one more extreme, by chance under the null hypothesis that ## all groups have equal variances. Small values of @var{p} cast doubt on the ## validity of the null hypothesis. ## ## @code{[@var{p}, @var{stats}] = vartestn (@dots{})} returns a structure with ## the following fields: ## ## @multitable @columnfractions 0.05 0.2 0.75 ## @item @tab @qcode{chistat} @tab -- the value of the test statistic ## @item @tab @qcode{df} @tab -- the degrees of freedom of the test ## @end multitable ## ## ## @code{[@var{p}, @var{stats}] = vartestn (@dots{}, @var{name}, @var{value})} ## specifies one or more of the following @var{name}/@var{value} pairs: ## ## @multitable @columnfractions 0.20 0.8 ## @item @qcode{"display"} @tab @qcode{"on"} to display a boxplot and table, or ## @qcode{"off"} to omit these displays. Default @qcode{"on"}. ## ## @item @qcode{"testtype"} @tab One of the following strings to control the ## type of test to perform ## @end multitable ## ## @multitable @columnfractions 0.03 0.25 0.72 ## @item @tab @qcode{"Bartlett"} @tab Bartlett's test (default). ## ## @item @tab @qcode{"LeveneQuadratic"} @tab Levene's test computed by ## performing anova on the squared deviations of the data values from their ## group means. ## ## @item @tab @qcode{"LeveneAbsolute"} @tab Levene's test computed by performing ## anova on the absolute deviations of the data values from their group means. ## ## @item @tab @qcode{"BrownForsythe"} @tab Brown-Forsythe test computed by ## performing anova on the absolute deviations of the data values from the group ## medians. ## ## @item @tab @qcode{"OBrien"} @tab O'Brien's modification of Levene's test with ## @math{W=0.5}. ## @end multitable ## ## The classical Bartlett's test is sensitive to the assumption that the ## distribution in each group is normal. The other test types are more robust ## to non-normal distributions, especially ones prone to outliers. For these ## tests, the STATS output structure has a field named @qcode{fstat} containing ## the test statistic, and @qcode{df1} and @qcode{df2} containing its numerator ## and denominator degrees of freedom. ## ## @seealso{vartest, vartest2, anova1, bartlett_test, levene_test} ## @end deftypefn function [p, stats] = vartestn (x, group, varargin) ## Validate input arguments if (nargin < 1) error ("vartestn: too few input arguments."); endif if (isscalar (x)) error ("vartestn: X must be a vector or a matrix."); endif if (nargin < 2) group = []; endif if (nargin > 1 && any (strcmpi (group, {"display", "testtype"}))) varargin = [{group} varargin]; group = []; endif if (isvector (x) && (nargin < 2 || isempty (group ))) error ("vartestn: if X is a vector then a group vector is required."); endif ## Add defaults plotdata = true; testtype = "Bartlett"; if (numel (varargin(:)) > 0 && mod (numel (varargin(:)), 2) == 0) for idx = 1:2:numel (varargin(:)) name = varargin{idx}; value = varargin{idx+1}; switch (lower (name)) case "display" plotdata = value; if (! any (strcmpi (plotdata, {"on", "off"}))) error ("vartestn: invalid value for display."); endif if (strcmpi (plotdata, "on")) plotdata = true; else plotdata = false; endif case "testtype" testtype = value; if (! any (strcmpi (testtype, {"Bartlett", "LeveneAbsolute", ... "LeveneQuadratic", "BrownForsythe", "OBrien"}))) error ("vartestn: invalid value for testtype."); endif otherwise error ("vartestn: invalid name for optional arguments."); endswitch endfor elseif (numel (varargin(:)) > 0 && mod (numel (varargin(:)), 2) != 0) error ("vartestn: optional arguments must be in name/value pairs."); endif ## Convert group to cell array from character array, make it a column if (! isempty (group) && ischar (group)) group = cellstr (group); endif if (size (group, 1) == 1) group = group'; endif ## If x is a matrix, convert it to column vector and create a ## corresponging column vector for groups if (length (x) < prod (size (x))) [n, m] = size (x); x = x(:); gi = reshape (repmat ((1:m), n, 1), n*m, 1); if (length (group) == 0) ## no group names are provided group = gi; elseif (size (group, 1) == m) ## group names exist and match columns group = group(gi,:); else error ("vartestn: columns in X and GROUP length do not match."); endif endif ## Check that x and group are the same size if (! all (numel (x) == numel (group))) error ("vartestn: GROUP must be a vector with the same number of rows as x."); endif ## Identify NaN values (if any) and remove them from X along with ## their corresponding values from group vector nonan = ! isnan (x); x = x(nonan); group = group(nonan, :); ## Convert group to indices and separate names [group_id, group_names] = grp2idx (group); group_id = group_id(:); ## Compute group summary statistics [group_mean, group_ster, group_size] = grpstats (x, group_id, ... {"mean", "sem", "numel"}); ## Compute group degreed of freedom and variances group_DF = group_size - 1; groupVAR = group_size .* group_ster .^ 2; sum_DF = sum (group_DF); ## Caculate pooled variance if (sum_DF > 0) pooledVAR = sum (group_DF .* groupVAR) / sum_DF; else pooledVAR = NaN; end ## Get number of groups k = length (group_DF); ## Test for equal variance according to specified testtype switch (lower (testtype)) case "bartlett" ## Calculate degrees of freedom Bdf = max(0, sum (group_DF > 0) - 1); ## Get valid groups msgroups = group_DF > 0; ## For valid groups if (Bdf > 0 && sum_DF > 0) B = log (pooledVAR) * sum (group_DF) - ... sum (group_DF(msgroups) .* log (groupVAR(msgroups))); C = 1 + (sum (1 ./ group_DF(msgroups)) - 1 / sum (group_DF)) / (3 * Bdf); F = B / C; else F = NaN; endif ## Compute p-value p = 1 - chi2cdf (F, Bdf); testname = "Bartlett's statistic "; if (nargout > 1) stats = struct("chisqstat", F, "df", Bdf); endif case {"leveneabsolute", "levenequadratic"} ## Remove single-sample groups ssgroups = find (group_size < 2); msgroups = ! ismember (group_id, ssgroups); ## Center each group with mean x_center = x(msgroups) - group_mean(group_id(msgroups)); ## Get number of valid groups (group size > 1) n_groups = length (group_size) - length (ssgroups); ## Perform one-way anova and extract results from the anova table if (n_groups > 1) if (strcmpi (testtype, "LeveneAbsolute")) [p, atab] = anova1 (abs (x_center), group_id(msgroups), "off"); testname = "Levene's statistic (absolute) "; else [p, atab] = anova1 (x_center .^ 2, group_id(msgroups), "off"); testname = "Levene's statistic (quadratic) "; endif ## Get F statistic and both degrees of freedom F = atab{2,5}; Bdf = [atab{2,3}, atab{3,3}]; else p = NaN; F = NaN; Bdf = [0, (length (x_center) - n_groups)]; endif if (nargout > 1) stats = struct("fstat", F, "df", Bdf); endif case "brownforsythe" ## Remove single-sample groups ssgroups = find (group_size < 2); msgroups = ! ismember (group_id, ssgroups); ## Calculate group medians group_md = grpstats (x, group_id, "median"); ## Center each group with median xcbf = x(msgroups) - group_md(group_id(msgroups)); ## Get number of valid groups (group size > 1) n_groups = length(group_size) - length(ssgroups); ## Perform one-way anova and extract results from the anova table if (n_groups > 1) [p, atab] = anova1 (abs (xcbf), group_id(msgroups), "off"); ## Get F statistic and both degrees of freedom F = atab{2,5}; Bdf = [atab{2,3}, atab{3,3}]; else p = NaN; F = NaN; Bdf = [0, (length (xcbf) - n_groups)]; end testname = "Brown-Forsythe statistic "; if (nargout > 1) stats = struct("fstat", F, "df", Bdf); endif case "obrien" ## Remove single-sample groups ssgroups = find (group_size < 2); msgroups = ! ismember (group_id, ssgroups); ## Center each group with mean x_center = x(msgroups) - group_mean(group_id(msgroups)); ## Calculate OBrien Z_ij xcs = x_center.^2; W = 0.5; xcw = ((W + group_size(group_id(msgroups)) - 2) .* ... group_size(group_id(msgroups)) .* xcs - W .* ... (group_size(group_id(msgroups)) - 1) .* ... groupVAR(group_id(msgroups))) ./ ... ((group_size(group_id(msgroups)) - 1) .* ... (group_size(group_id(msgroups)) - 2)); ## Get number of valid groups (group size > 1) n_groups = length(group_size) - length(ssgroups); ## Perform one-way anova and extract results from the anova table if (n_groups > 1) [p, atab] = anova1 (xcw, group_id(msgroups), "off"); ## Get F statistic and both degrees of freedom F = atab{2,5}; Bdf = [atab{2,3}, atab{3,3}]; else p = NaN; F = NaN; Bdf = [0, length(xcw)-n_groups]; end testname = "OBrien statistic "; if (nargout > 1) stats = struct("fstat", F, "df", Bdf); endif endswitch ## Print Group Summary Table (unless opted out) if (nargout == 0 || plotdata) groupSTD = sqrt (groupVAR); printf ("\n Group Summary Table\n\n"); printf ("Group Count Mean Std Dev\n"); printf ("------------------------------------------------------------\n"); for i = 1:k printf ("%-20s %10i %9.4f %1.6f\n", ... group_names{i}, group_size(i), group_mean(i), groupSTD(i)); endfor printf ("Pooled Groups %10i %9.4f %1.6f\n", ... sum (group_size), mean (group_mean), mean (groupSTD)); printf ("Pooled valid Groups %10i %9.4f %1.6f\n\n", ... sum (group_size(group_id(msgroups))), ... mean (group_mean(group_id(msgroups))), ... mean (groupSTD(group_id(msgroups)))); printf ("%s %7.5f\n", testname, F); if (numel (Bdf) == 1) printf ("Degrees of Freedom %10i\n", Bdf); else printf ("Degrees of Freedom %10i, %3i\n", Bdf(1), Bdf(2)); endif printf ("p-value %1.6f\n\n", p); endif ## Plot data using BOXPLOT (unless opted out) if (plotdata) boxplot (x, group_id, "Notch", "on", "Labels", group_names); endif endfunction %!demo %! ## Test the null hypothesis that the variances are equal across the five %! ## columns of data in the students’ exam grades matrix, grades. %! %! load examgrades %! vartestn (grades) %!demo %! ## Test the null hypothesis that the variances in miles per gallon (MPG) are %! ## equal across different model years. %! %! load carsmall %! vartestn (MPG, Model_Year) %!demo %! ## Use Levene’s test to test the null hypothesis that the variances in miles %! ## per gallon (MPG) are equal across different model years. %! %! load carsmall %! p = vartestn (MPG, Model_Year, "TestType", "LeveneAbsolute") %!demo %! ## Test the null hypothesis that the variances are equal across the five %! ## columns of data in the students’ exam grades matrix, grades, using the %! ## Brown-Forsythe test. Suppress the display of the summary table of %! ## statistics and the box plot. %! %! load examgrades %! [p, stats] = vartestn (grades, "TestType", "BrownForsythe", "Display", "off") ## Test input validation %!error vartestn (); %!error vartestn (1); %!error ... %! vartestn ([1, 2, 3, 4, 5, 6, 7]); %!error ... %! vartestn ([1, 2, 3, 4, 5, 6, 7], []); %!error ... %! vartestn ([1, 2, 3, 4, 5, 6, 7], "TestType", "LeveneAbsolute"); %!error ... %! vartestn ([1, 2, 3, 4, 5, 6, 7], [], "TestType", "LeveneAbsolute"); %!error ... %! vartestn ([1, 2, 3, 4, 5, 6, 7], [1, 1, 1, 2, 2, 2, 2], "Display", "some"); %!error ... %! vartestn (ones (50,3), "Display", "some"); %!error ... %! vartestn (ones (50,3), "Display", "off", "testtype", "some"); %!error ... %! vartestn (ones (50,3), [], "som"); %!error ... %! vartestn (ones (50,3), [], "some", "some"); %!error ... %! vartestn (ones (50,3), [1, 2], "Display", "off"); ## Test results %!test %! load examgrades %! [p, stat] = vartestn (grades, "Display", "off"); %! assert (p, 7.908647337018238e-08, 1e-14); %! assert (stat.chisqstat, 38.7332, 1e-4); %! assert (stat.df, 4); %!test %! load examgrades %! [p, stat] = vartestn (grades, "Display", "off", "TestType", "LeveneAbsolute"); %! assert (p, 9.523239714592791e-07, 1e-14); %! assert (stat.fstat, 8.5953, 1e-4); %! assert (stat.df, [4, 595]); %!test %! load examgrades %! [p, stat] = vartestn (grades, "Display", "off", "TestType", "LeveneQuadratic"); %! assert (p, 7.219514351897161e-07, 1e-14); %! assert (stat.fstat, 8.7503, 1e-4); %! assert (stat.df, [4, 595]); %!test %! load examgrades %! [p, stat] = vartestn (grades, "Display", "off", "TestType", "BrownForsythe"); %! assert (p, 1.312093241723211e-06, 1e-14); %! assert (stat.fstat, 8.4160, 1e-4); %! assert (stat.df, [4, 595]); %!test %! load examgrades %! [p, stat] = vartestn (grades, "Display", "off", "TestType", "OBrien"); %! assert (p, 8.235660885480556e-07, 1e-14); %! assert (stat.fstat, 8.6766, 1e-4); %! assert (stat.df, [4, 595]); statistics-release-1.6.3/inst/violin.m000066400000000000000000000267631456127120000200000ustar00rootroot00000000000000## Copyright (C) 2016 - Juan Pablo Carbajal ## Copyright (C) 2022-2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This progrm is free software; you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or ## (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program. If not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {} violin (@var{x}) ## @deftypefnx {statistics} {@var{h} =} violin (@var{x}) ## @deftypefnx {statistics} {@var{h} =} violin (@dots{}, @var{property}, @var{value}, @dots{}) ## @deftypefnx {statistics} {@var{h} =} violin (@var{hax}, @dots{}) ## @deftypefnx {statistics} {@var{h} =} violin (@dots{}, @code{"horizontal"}) ## ## Produce a Violin plot of the data @var{x}. ## ## The input data @var{x} can be a N-by-m array containg N observations of m ## variables. It can also be a cell with m elements, for the case in which the ## variables are not uniformly sampled. ## ## The following @var{property} can be set using @var{property}/@var{value} pairs ## (default values in parenthesis). ## The value of the property can be a scalar indicating that it applies ## to all the variables in the data. ## It can also be a cell/array, indicating the property for each variable. ## In this case it should have m columns (as many as variables). ## ## @table @asis ## ## @item Color ## (@asis{"y"}) Indicates the filling color of the violins. ## ## @item Nbins ## (50) Internally, the function calls @command{hist} to compute the histogram ## of the data. This property indicates how many bins to use. ## See @command{help hist} for more details. ## ## @item SmoothFactor ## (4) The fuction performs simple kernel density estimation and automatically ## finds the bandwith of the kernel function that best approximates the ## histogram using optimization (@command{sqp}). ## The result is in general very noisy. To smooth the result the bandwidth is ## multiplied by the value of this property. The higher the value the smoother ## the violings, but values too high might remove features from the data ## distribution. ## ## @item Bandwidth ## (NA) If this property is given a value other than NA, it sets the bandwith of ## the kernel function. No optimization is peformed and the property ## @asis{SmoothFactor} is ignored. ## ## @item Width ## (0.5) Sets the maximum width of the violins. Violins are centered at integer ## axis values. The distance between two violin middle axis is 1. Setting a ## value higher thna 1 in this property will cause the violins to overlap. ## @end table ## ## If the string @asis{"Horizontal"} is among the input arguments, the violin ## plot is rendered along the x axis with the variables in the y axis. ## ## The returned structure @var{h} has handles to the plot elements, allowing ## customization of the visualization using set/get functions. ## ## Example: ## ## @example ## title ("Grade 3 heights"); ## axis ([0,3]); ## set (gca, "xtick", 1:2, "xticklabel", @{"girls"; "boys"@}); ## h = violin (@{randn(100,1)*5+140, randn(130,1)*8+135@}, "Nbins", 10); ## set (h.violin, "linewidth", 2) ## @end example ## ## @seealso{boxplot, hist} ## @end deftypefn function h = violin (ax, varargin) old_hold = ishold (); # First argument is not an axis if (~ishandle (ax) || ~isscalar (ax)) x = ax; ax = gca (); else x = varargin{1}; varargin(1) = []; endif ###################### ## Parse parameters ## parser = inputParser (); parser.CaseSensitive = false; parser.FunctionName = 'violin'; parser.addParamValue ('Nbins', 50); parser.addParamValue ('SmoothFactor', 4); parser.addParamValue ('Bandwidth', NA); parser.addParamValue ('Width', 0.5); parser.addParamValue ('Color', "y"); parser.addSwitch ('Horizontal'); parser.parse (varargin{:}); res = parser.Results; c = res.Color; # Color of violins if (ischar (c)) c = c(:); endif nb = res.Nbins; # Number of bins in histogram sf = res.SmoothFactor; # Smoothing factor for kernel estimation r0 = res.Bandwidth; # User value for KDE bandwith to prevent optimization is_horiz = res.Horizontal; # Whether the plot must be rotated width = res.Width; # Width of the violins clear parser res ###################### ## Make everything a cell for code simplicity if (~iscell (x)) [N Nc] = size (x); x = mat2cell (x, N, ones (1, Nc)); else Nc = numel (x); endif try [nb, c, sf, r0, width] = to_cell (nb, c, sf, r0, width, Nc); catch err if strcmp (err.identifier, "to_cell:element_idx") n = str2num (err.message); txt = {"Nbins", "Color", "SmoothFactor", "Bandwidth", "Width"}; error ("Octave:invalid-input-arg", ... ["options should be scalars or call/array with as many values as" ... " numbers of variables in the data (wrong size of %s)."], txt{n}); else rethrow (lasterror()) endif end ## Build violins [px py mx] = cellfun (@(y,n,s,r)build_polygon(y, n, s, r), ... x, nb, sf, r0, "unif", 0); Nc = 1:numel (px); Ncc = mat2cell (Nc, 1, ones (1, Nc(end))); ## get hold state old_hold = ishold (); ## Draw plain violins tmp = cellfun (@(x,y,n,u, w)patch(ax, (w * x + n)(:), y(:) ,u'), ... px, py, Ncc, c, width); h.violin = tmp; hold on ## Overlay mean value tmp = cellfun (@(z,y)plot(ax, z, y,'.k', "markersize", 6), Ncc, mx); h.mean = tmp; ## Overlay median Mx = cellfun (@median, x, "unif", 0); tmp = cellfun (@(z,y)plot(ax, z, y, 'ok'), Ncc, Mx); h.median = tmp; ## Overlay 1nd and 3th quartiles LUBU = cellfun (@(x,y)abs(quantile(x,[0.25 0.75])-y), x, Mx, "unif", 0); tmp = cellfun (@(x,y,z)errorbar(ax, x, y, z(1),z(2)), Ncc, Mx, LUBU)(:); ## Flatten errorbar output handles tmp2 = allchild (tmp); if (~iscell (tmp2)) tmp2 = mat2cell (tmp2, ones(length (tmp2), 1), 1); endif tmp = mat2cell (tmp, ones (length (tmp), 1), 1); tmp = cellfun (@vertcat, tmp, tmp2, "unif", 0); h.quartile = cell2mat (tmp); hold off ## Rotate the plot if it is horizontal if (is_horiz) structfun (@swap_axes, h); set (ax, "ytick", Nc); else set (ax, "xtick", Nc); endif if (nargout < 1); clear h; endif ## restore hold state if (old_hold) hold on endif endfunction function y = stdnormal_pdf (x) y = (2 * pi)^(- 1/2) * exp (- x .^ 2 / 2); endfunction function k = kde(x,r) k = mean (stdnormal_pdf (x / r)) / r; k /= max (k); endfunction function [px py mx] = build_polygon (x, nb, sf, r) N = size (x, 1); mx = mean (x); sx = std (x); X = (x - mx ) / sx; [count bin] = hist (X, nb); count /= max (count); Y = X - bin; if isna (r) r0 = 1.06 * N^(1/5); r = sqp (r0, @(r)sumsq (kde(Y,r) - count), [], [], 1e-3, 1e2); else sf = 1; endif sig = sf * r; ## Create violin polygon ## smooth tails: extend to 1.83 sigmas, i.e. ~99% of data. xx = linspace (0, 1.83 * sig, 5); bin = [bin(1)-fliplr(xx) bin bin(end)+xx]; py = [bin; fliplr(bin)].' * sx + mx; v = kde (X-bin, sig).'; px = [v -flipud(v)]; endfunction function tf = swap_axes (h) tmp = mat2cell (h(:), ones (length (h),1), 1); tmpy = cellfun(@(x)get(x, "ydata"), tmp, "unif", 0); tmpx = cellfun(@(x)get(x, "xdata"), tmp, "unif", 0); cellfun (@(h,x,y)set (h, "xdata", y, "ydata", x), tmp, tmpx, tmpy); tf = true; endfunction function varargout = to_cell (varargin) m = varargin{end}; varargin(end) = []; for i = 1:numel(varargin) x = varargin{i}; if (isscalar (x)) x = repmat (x, m, 1); endif if (iscell (x)) if (numel(x) ~= m) # no dimension equals m error ("to_cell:element_idx", "%d\n",i); endif varargout{i} = x; continue endif sz = size (x); d = find (sz == m); if (isempty (d)) # no dimension equals m error ("to_cell:element_idx", "%d\n",i); elseif (length (d) == 2) ## both dims are m, choose 1st elseif (d == 1) # 2nd dimension is m --> transpose x = x.'; sz = fliplr (sz); endif varargout{i} = mat2cell (x, sz(1), ones (m,1)); endfor endfunction %!demo %! clf %! x = zeros (9e2, 10); %! for i=1:10 %! x(:,i) = (0.1 * randn (3e2, 3) * (randn (3,1) + 1) + 2 * randn (1,3))(:); %! endfor %! h = violin (x, "color", "c"); %! axis tight %! set (h.violin, "linewidth", 2); %! set (gca, "xgrid", "on"); %! xlabel ("Variables") %! ylabel ("Values") %!demo %! clf %! data = {randn(100,1)*5+140, randn(130,1)*8+135}; %! subplot (1,2,1) %! title ("Grade 3 heights - vertical"); %! set (gca, "xtick", 1:2, "xticklabel", {"girls"; "boys"}); %! violin (data, "Nbins", 10); %! axis tight %! %! subplot(1,2,2) %! title ("Grade 3 heights - horizontal"); %! set (gca, "ytick", 1:2, "yticklabel", {"girls"; "boys"}); %! violin (data, "horizontal", "Nbins", 10); %! axis tight %!demo %! clf %! data = exprnd (0.1, 500,4); %! violin (data, "nbins", {5,10,50,100}); %! axis ([0 5 0 max(data(:))]) %!demo %! clf %! data = exprnd (0.1, 500,4); %! violin (data, "color", jet(4)); %! axis ([0 5 0 max(data(:))]) %!demo %! clf %! data = repmat(exprnd (0.1, 500,1), 1, 4); %! violin (data, "width", linspace (0.1,0.5,4)); %! axis ([0 5 0 max(data(:))]) %!demo %! clf %! data = repmat(exprnd (0.1, 500,1), 1, 4); %! violin (data, "nbins", [5,10,50,100], "smoothfactor", [4 4 8 10]); %! axis ([0 5 0 max(data(:))]) ## Test plotting %!test %! hf = figure ("visible", "off"); %! unwind_protect %! data = exprnd (0.1, 500,4); %! violin (data, "color", jet(4)); %! axis ([0 5 0 max(data(:))]) %! unwind_protect_cleanup %! close (hf); %! end_unwind_protect %!test %! hf = figure ("visible", "off"); %! unwind_protect %! data = {randn(100,1)*5+140, randn(130,1)*8+135}; %! subplot (1,2,1) %! title ("Grade 3 heights - vertical"); %! set (gca, "xtick", 1:2, "xticklabel", {"girls"; "boys"}); %! violin (data, "Nbins", 10); %! axis tight %! unwind_protect_cleanup %! close (hf); %! end_unwind_protect %!test %! hf = figure ("visible", "off"); %! unwind_protect %! data = {randn(100,1)*5+140, randn(130,1)*8+135}; %! subplot (1,2,1) %! title ("Grade 3 heights - vertical"); %! set (gca, "xtick", 1:2, "xticklabel", {"girls"; "boys"}); %! violin (data, "Nbins", 10); %! axis tight %! subplot(1,2,2) %! title ("Grade 3 heights - horizontal"); %! set (gca, "ytick", 1:2, "yticklabel", {"girls"; "boys"}); %! violin (data, "horizontal", "Nbins", 10); %! axis tight %! unwind_protect_cleanup %! close (hf); %! end_unwind_protect %!test %! hf = figure ("visible", "off"); %! unwind_protect %! data = repmat(exprnd (0.1, 500,1), 1, 4); %! violin (data, "nbins", [5,10,50,100], "smoothfactor", [4 4 8 10]); %! axis ([0 5 0 max(data(:))]) %! unwind_protect_cleanup %! close (hf); %! end_unwind_protect %!test %! hf = figure ("visible", "off"); %! unwind_protect %! data = repmat(exprnd (0.1, 500,1), 1, 4); %! violin (data, "width", linspace (0.1,0.5,4)); %! axis ([0 5 0 max(data(:))]) %! unwind_protect_cleanup %! close (hf); %! end_unwind_protect statistics-release-1.6.3/inst/wblplot.m000066400000000000000000000271741456127120000201600ustar00rootroot00000000000000## Copyright (C) 2014 Bj{\"o}rn Vennberg ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or ## (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program. If not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {} wblplot (@var{data}, @dots{}) ## @deftypefnx {statistics} {@var{handle} =} wblplot (@var{data}, @dots{}) ## @deftypefnx {statistics} {[@var{handle}, @var{param}] =} wblplot (@var{data}) ## @deftypefnx {statistics} {[@var{handle}, @var{param}] =} wblplot (@var{data}, @var{censor}) ## @deftypefnx {statistics} {[@var{handle}, @var{param}] =} wblplot (@var{data}, @var{censor}, @var{freq}) ## @deftypefnx {statistics} {[@var{handle}, @var{param}] =} wblplot (@var{data}, @var{censor}, @var{freq}, @var{confint}) ## @deftypefnx {statistics} {[@var{handle}, @var{param}] =} wblplot (@var{data}, @var{censor}, @var{freq}, @var{confint}, @var{fancygrid}) ## @deftypefnx {statistics} {[@var{handle}, @var{param}] =} wblplot (@var{data}, @var{censor}, @var{freq}, @var{confint}, @var{fancygrid}, @var{showlegend}) ## ## Plot a column vector @var{data} on a Weibull probability plot using rank ## regression. ## ## @var{censor}: optional parameter is a column vector of same size as ## @var{data} with 1 for right censored data and 0 for exact observation. ## Pass [] when no censor data are available. ## ## @var{freq}: optional vector same size as @var{data} with the number of ## occurences for corresponding data. ## Pass [] when no frequency data are available. ## ## @var{confint}: optional confidence limits for ploting upper and lower ## confidence bands using beta binomial confidence bounds. If a single ## value is given this will be used such as LOW = a and HIGH = 1 - a. ## Pass [] if confidence bounds is not requested. ## ## @var{fancygrid}: optional parameter which if set to anything but 1 will turn ## off the fancy gridlines. ## ## @var{showlegend}: optional parameter that when set to zero(0) turns off the ## legend. ## ## If one output argument is given, a @var{handle} for the data marker and ## plotlines is returned, which can be used for further modification of line and ## marker style. ## ## If a second output argument is specified, a @var{param} vector with scale, ## shape and correlation factor is returned. ## ## @seealso{normplot, wblpdf} ## @end deftypefn function [handle, param] = wblplot (data, censor = [], freq = [], ... confint = [], fancygrid = 1, showlegend = 1) [mm, nn] = size (data); if (mm > 1 && nn > 1) error ("wblplot: can only handle a single data vector") elseif (mm == 1 && nn > 1) data = data(:); mm = nn; endif if (any (data <= 0)) error ("wblplot: data vector must be positive and non zero") endif if (isempty (freq)) freq = ones (mm, 1); N = mm; else [mmf nnf] = size (freq); if ((mmf == mm && nnf == 1) || (mmf == 1 && nnf == mm)) freq = freq(:); N = sum (freq); ## Total number of samples if (any (freq <= 0)) error ("wblplot: frequency vector must be positive non zero integers") endif else error ("wblplot: frequency must be vector of same length as data") endif endif if (isempty (censor)) censor = zeros(mm,1); else [mmc, nnc] = size(censor); if ((mmc == mm && nnc == 1) || (mmc == 1 && nnc == mm)) censor = censor(:); else error ("wblplot: censor must be a vector of same length as data") endif ## Make sure censored data is sorted corectly so that no censored samples ## are processed before failures if they have the same time. if (any (censor > 0)) ind = find (censor > 0); ind2 = find (data(1:end-1) == data(2:end)); if ((! isempty (ind)) && (! isempty (ind2))) if (any (ind == ind2)) tmp = censor(ind2); censor(ind2) = censor(ind2 + 1); censor(ind2+1) = tmp; tmp = freq(ind2); freq(ind2) = freq(ind2 + 1); freq(ind2 + 1) = tmp; endif endif endif endif ## Determine the order number wbdat = zeros (length (find (censor == 0)), 3); Op = 0; Oi = 0; c = N; nf = 0; for k = 1 : mm if (censor(k, 1) == 0) nf = nf + 1; wbdat(nf, 1) = data(k, 1); for s = 1 : freq(k, 1); Oi = Op + ((N + 1) - Op) / (1 + c); Op = Oi; c = c - 1; endfor wbdat(nf, 3) = Oi; else c = c - freq(k, 1); endif endfor ## Compute median rank a = wbdat(:, 3) ./ (N - wbdat(:, 3) + 1); f = finv(0.5, 2 * (N - wbdat(:, 3) + 1), 2 * wbdat(:, 3)); wbdat(:, 2) = a ./ (f+a); datx = log (wbdat(:,1)); daty = log (log (1 ./ (1 - wbdat(:,2)))); ## Rank regression poly = polyfit (datx, daty, 1); ## Shape factor beta_rry = poly(1); ## Scale factor eta_rry = exp (-(poly(2) / beta_rry)); ## Determine min-max values of view port aa = ceil (log10 (max (wbdat(:,1)))); bb = log10 (max (wbdat(:,1))); if ((aa - bb) < 0.2) aa = ceil (log10 (max (wbdat(:,1)))) + 1; endif xmax = 10 ^ aa; if ((log10 (min (wbdat(:,1))) - floor (log10 (min (wbdat(:,1))))) < 0.2) xmin = 10 ^ (floor (log10 (min (wbdat(:,1)))) - 1); else xmin = 10 ^ floor (log10 (min (wbdat(:,1)))); endif if (min (wbdat(:,2)) > 0.20) ymin = log (log (1 / (1 - 0.1))); elseif (min (wbdat(:,2)) > 0.02) ymin = log (log (1 / (1 - 0.01))); elseif (min (wbdat(:,2)) > 0.002) ymin = log (log (1 / (1 - 0.001))); else ymin = log (log (1 / (1 - 0.0001))); endif ymax= log (log (1 / (1 - 0.999))); x = [0;0]; y = [0;0]; label = char('0.10', '1.00', '10.00', '99.00'); prob = [0.001 0.01 0.1 0.99]; tick = log (log (1 ./ (1 - prob))); xbf = [xmin; xmax]; ybf = polyval (poly, log (xbf)); newplot(); x(1, 1) = xmin; x(2, 1) = xmax; if (fancygrid == 1) for k = 1 : 4 ## Y major grids x(1, 1) = xmin; x(2, 1) = xmax*10; y(1, 1) = log (log (1 / (1 - 10 ^ (-k)))); y(2, 1) = y(1, 1); ymajorgrid(k) = line (x, y, 'LineStyle', '-', 'Marker', 'none', ... 'Color', [1 0.75 0.75], 'LineWidth', 0.1); endfor ## Y Minor grids 2 - 9 x(1, 1) = xmin; x(2, 1) = xmax * 10; for m = 1 : 4 for k = 1 : 8 y(1, 1) = log (log (1 / (1 - ((k + 1) / (10 ^ m))))); y(2, 1) = y(1, 1); yminorgrid(k) = line (x, y, 'LineStyle', '-', 'Marker', 'none', ... 'Color', [0.75 1 0.75], 'LineWidth', 0.1); endfor endfor ## X-axis grid y(1, 1) = ymin; y(2, 1) = ymax; for m = log10 (xmin) : log10 (xmax) x(1, 1) = 10 ^ m; x(2, 1) = x(1, 1); y(1, 1) = ymin; y(2, 1) = ymax; xmajorgrid(k) = line (x, y, 'LineStyle', '-', 'Marker', 'none', ... 'Color', [1 0.75 0.75]); for k = 1 : 8 ## X Minor grids - 2 - 9 x(1, 1) = (k + 1) * (10 ^ m); x(2, 1) = (k + 1) * (10 ^ m); xminorgrid(k) = line (x, y, 'LineStyle', '-', 'Marker', 'none', ... 'Color', [0.75 1 0.75], 'LineWidth', 0.1); endfor endfor endif set (gca, 'XScale', 'log'); set (gca, 'YTick', tick, 'YTickLabel', label); xlabel ('Data', 'FontSize', 12); ylabel ('Unreliability, F(t)=1-R(t)', 'FontSize', 12); title ('Weibull Probability Plot', 'FontSize', 12); set (gcf, 'Color', [0.9, 0.9, 0.9]); set (gcf, 'name', 'WblPlot'); hold on h = plot (wbdat(:,1), daty, 'o'); set (h, 'markerfacecolor', [0, 0, 1]); set (h, 'markersize', 8); h2 = line (xbf, ybf, 'LineStyle', '-', 'Marker', 'none', ... 'Color', [0.25 0.25 1], 'LineWidth', 1); ## If requested plot beta binomial confidens bounds if (! isempty (confint)) cb_high = []; cb_low = []; if (length (confint) == 1) if (confint > 0.5) cb_high = confint; cb_low = 1 - confint; else cb_high = 1 - confint; cb_low = confint; endif else cb_high = confint(2); cb_low = confint(1); endif conf = zeros (N + 4, 3); betainv = 1 / beta_rry; N2 = [1:N]'; N2 = [0.3; 0.7; N2; N2(end) + 0.5; N2(end) + 0.8]; ## Extend the ends a bit ypos = medianranks (0.5, N, N2); conf(:, 1) = eta_rry * log (1 ./ (1 - ypos)) .^ betainv; conf(:, 2) = medianranks (cb_low, N, N2); conf(:, 3) = medianranks (cb_high, N, N2); confy = log (log (1 ./ (1 - conf(:,2:3)))); confu = [conf(:,1) confy]; if (conf(1,1) > xmin) ## It looks better to extend the lines. p1 = polyfit (log (conf(1:2,1)), confy(1:2,1), 1); y1 = polyval (p1, log (xmin)); p2 = polyfit (log (conf(1:2,1)), confy(1:2,2), 1); y2 = polyval (p2, log (xmin)); confu = [xmin y1 y2; confu]; endif if (conf(end,1) < xmax) p3 = polyfit (log (conf(end-1:end,1)), confy(end-1:end,1), 1); y3 = polyval (p3, log (xmax)); p4 = polyfit (log (conf(end-1:end,1)), confy(end-1:end,2), 1); y4 = polyval (p4, log (xmax)); confu = [confu; xmax, y3, y4]; endif h3 = plot (confu(:,1), confu(:,2:3), 'LineStyle', '-' ,'Marker', 'none', ... 'Color', [1 0.25 0.25], 'LineWidth', 1); endif ## Correlation coefficient rsq = corr (datx, daty); if (showlegend == 1) s1 = sprintf (' RRY\n \\beta=%.3f \n \\eta=%.2f \n \\rho=%.4f', ... beta_rry, eta_rry, rsq); if (! isempty (confint)) s2 = sprintf ('CB_H=%.2f', cb_high); s3 = sprintf ('CB_L=%.2f', cb_low); legend ([h; h2; h3], "Data", s1, s2, s3, "location", "northeastoutside"); else legend ([h; h2], "Data", s1, "location", "northeastoutside"); endif legend ("boxoff"); endif axis ([xmin, xmax, ymin, (log (log (1 / (1 - 0.99))))]); hold off if (nargout >= 2) param = [eta_rry, beta_rry, rsq]; if (! isempty (confint)) handle = [h; h2; h3]; else handle = [h; h2]; endif endif if (nargout == 1) if (! isempty (confint)) handle = [h; h2; h3]; else handle = [h; h2]; endif endif endfunction function ret = medianranks (alpha, n, ii) a = ii ./ (n - ii + 1); f = finv (alpha, 2 * (n - ii + 1), 2 * ii); ret = a ./ (f + a); endfunction %!demo %! x = [16 34 53 75 93 120]; %! wblplot (x); %!demo %! x = [2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67]'; %! c = [0 1 0 1 0 1 1 1 0 0 1 0 1 0 1 1 0 1 1]'; %! [h, p] = wblplot (x, c); %! p %!demo %! x = [16, 34, 53, 75, 93, 120, 150, 191, 240 ,339]; %! [h, p] = wblplot (x, [], [], 0.05); %! p %! ## Benchmark Reliasoft eta = 146.2545 beta 1.1973 rho = 0.9999 %!demo %! x = [46 64 83 105 123 150 150]; %! c = [0 0 0 0 0 0 1]; %! f = [1 1 1 1 1 1 4]; %! wblplot (x, c, f, 0.05); %!demo %! x = [46 64 83 105 123 150 150]; %! c = [0 0 0 0 0 0 1]; %! f = [1 1 1 1 1 1 4]; %! ## Subtract 30.92 from x to simulate a 3 parameter wbl with gamma = 30.92 %! wblplot (x - 30.92, c, f, 0.05); ## Test plotting %!test %! hf = figure ("visible", "off"); %! unwind_protect %! x = [16, 34, 53, 75, 93, 120, 150, 191, 240 ,339]; %! [h, p] = wblplot (x, [], [], 0.05); %! assert (numel (h), 4) %! assert (p(1), 146.2545, 1E-4) %! assert (p(2), 1.1973, 1E-4) %! assert (p(3), 0.9999, 5E-5) %! unwind_protect_cleanup %! close (hf); %! end_unwind_protect statistics-release-1.6.3/inst/x2fx.m000066400000000000000000000207171456127120000173600ustar00rootroot00000000000000## Copyright (C) 2022 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software; you can redistribute it and/or modify it under ## the terms of the GNU General Public License as published by the Free Software ## Foundation; either version 3 of the License, or (at your option) any later ## version. ## ## This program is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more ## details. ## ## You should have received a copy of the GNU General Public License along with ## this program; if not, see . ## -*- texinfo -*- ## @deftypefn {statistics} {[@var{d}, @var{model}, @var{termstart}, @var{termend}] =} x2fx (@var{x}) ## @deftypefnx {statistics} {[@var{d}, @var{model}, @var{termstart}, @var{termend}] =} x2fx (@var{x}, @var{model}) ## @deftypefnx {statistics} {[@var{d}, @var{model}, @var{termstart}, @var{termend}] =} x2fx (@var{x}, @var{model}, @var{categ}) ## @deftypefnx {statistics} {[@var{d}, @var{model}, @var{termstart}, @var{termend}] =} x2fx (@var{x}, @var{model}, @var{categ}, @var{catlevels}) ## ## Convert predictors to design matrix. ## ## @code{@var{d} = x2fx (@var{x}, @var{model})} converts a matrix of predictors ## @var{x} to a design matrix @var{d} for regression analysis. Distinct ## predictor variables should appear in different columns of @var{x}. ## ## The optional input @var{model} controls the regression model. By default, ## @code{x2fx} returns the design matrix for a linear additive model with a ## constant term. @var{model} can be any one of the following strings: ## ## @multitable @columnfractions 0.05 0.2 0.75 ## @item @tab "linear" @tab Constant and linear terms (the default) ## @item @tab "interaction" @tab Constant, linear, and interaction terms ## @item @tab "quadratic" @tab Constant, linear, interaction, and squared terms ## @item @tab "purequadratic" @tab Constant, linear, and squared terms ## @end multitable ## ## If @var{x} has n columns, the order of the columns of @var{d} for a full ## quadratic model is: ## ## @itemize ## @item ## The constant term. ## @item ## The linear terms (the columns of X, in order 1,2,...,n). ## @item ## The interaction terms (pairwise products of columns of @var{x}, in order ## (1,2), (1,3), ..., (1,n), (2,3), ..., (n-1,n). ## @item ## The squared terms (in the order 1,2,...,n). ## @end itemize ## ## Other models use a subset of these terms, in the same order. ## ## Alternatively, MODEL can be a matrix specifying polynomial terms of arbitrary ## order. In this case, MODEL should have one column for each column in X and ## one r for each term in the model. The entries in any r of MODEL are powers ## for the corresponding columns of @var{x}. For example, if @var{x} has ## columns X1, X2, and X3, then a row [0 1 2] in @var{model} would specify the ## term (X1.^0).*(X2.^1).*(X3.^2). A row of all zeros in @var{model} specifies ## a constant term, which you can omit. ## ## @code{@var{d} = x2fx (@var{x}, @var{model}, @var{categ})} treats columns with ## numbers listed in the vector @var{categ} as categorical variables. Terms ## involving categorical variables produce dummy variable columns in @var{d}. ## Dummy variables are computed under the assumption that possible categorical ## levels are completely enumerated by the unique values that appear in the ## corresponding column of @var{x}. ## ## @code{@var{d} = x2fx (@var{x}, @var{model}, @var{categ}, @var{catlevels})} ## accepts a vector @var{catlevels} the same length as @var{categ}, specifying ## the number of levels in each categorical variable. In this case, values in ## the corresponding column of @var{x} must be integers in the range from 1 to ## the specified number of levels. Not all of the levels need to appear in ## @var{x}. ## ## @end deftypefn function [D, model, termstart, termend] = x2fx (x, model, categ, catlevels) ## Get matrix size [m,n] = size(x); ## Get data class if (isa (x, "single")) data_class = 'single'; else data_class = 'double'; endif ## Check for input arguments if (nargin < 2 || isempty (model)) model = 'linear'; endif if (nargin < 3) categ = []; endif if (nargin < 4) catlevels = []; endif ## Convert models parsed as strings to numerical matrix if (ischar (model)) if (strcmpi (model, "linear") || strcmpi (model, "additive")) interactions = false; quadratic = false; elseif (strcmpi (model, "interactions")) interactions = true; quadratic = false; elseif (strcmpi (model, "quadratic")) interactions = true; quadratic = true; elseif (strcmpi (model, "purequadratic")) interactions = false; quadratic = true; else D = feval (model, x); termstart = []; termend = []; return endif I = eye(n); ## Construct interactions part if (interactions && n > 1) [r, c] = find (tril (ones (n) ,-1)); nt = length(r); intpart = zeros(nt,n); intpart(sub2ind (size (intpart),(1:nt)', r)) = 1; intpart(sub2ind (size (intpart),(1:nt)', c)) = 1; else intpart = zeros(0,n); endif ## Construct quadratic part if (quadratic) quadpart = 2 * I; quadpart(categ,:) = []; else quadpart = zeros(0,n); endif model = [zeros(1,n); I]; model = [model; intpart; quadpart]; endif ## Process each categorical variable catmember = ismember (1:n, categ); var_DF = ones(1,n); if (isempty (catlevels)) ## Get values of each categorical variable and replace them with integers for idx=1:length(categ) categ_idx = categ(idx); [Y, I, J] = unique (x(:,categ_idx)); var_DF(categ_idx) = length (Y) - 1; x(:,categ_idx) = J; endfor else ## Ensure all categorical variables take valid values var_DF(categ) = catlevels - 1; for idx = 1:length (categ) categ_idx = categ(idx); if (any (! ismember (x(:,categ_idx), 1:catlevels(idx)))) error("x2fx: wrong value %f in category %d.", ... catlevels(idx), categ_idx); endif endfor endif ## Get size of model martix [r, c] = size (model); ## Check for equal number of columns between x and model if (c != n) error("x2fx: wrong number of columns between x and model"); endif ## Check model category column for values greater than 1 if (any (model(:,categ) > 1, 1)) error("x2fx: wrong values in model's category column"); endif ## Allocate space for the dummy variables for all terms termdf = prod (max (1, (model > 0) .* repmat (var_DF, r, 1)), 2); termend = cumsum (termdf); termstart = termend - termdf + 1; D = zeros (m, termend(end), data_class); allrows = (1:m)'; for idx = 1:r cols = termstart(idx):termend(idx); pwrs = model(idx,:); t = pwrs > 0; C = 1; if (any (t)) if (any (pwrs(! catmember))) pwrs_cat = pwrs .* !catmember; C = ones (size (x, 1), 1); collist = find (pwrs_cat > 0); for idx = 1:length (collist) categ_idx = collist(idx); C = C .* x(:,categ_idx) .^ pwrs_cat(categ_idx); endfor endif if (any (pwrs(catmember) > 0)) Z = zeros (m, termdf(idx)); collist = find (pwrs > 0 & catmember); xcol = x(:,collist(1)); keep = (xcol <= var_DF(collist(1))); colnum = xcol; cumdf = 1; for idx=2:length(collist) cumdf = cumdf * var_DF(collist(idx-1)); xcol = x(:,collist(idx)); keep = keep & (xcol <= var_DF(collist(idx))); colnum = colnum + cumdf * (xcol - 1); endfor if (length (C) > 1) C = C(keep); endif Z(sub2ind(size(Z),allrows(keep),colnum(keep))) = C; C = Z; endif endif D(:,cols) = C; endfor endfunction %!test %! X = [1, 10; 2, 20; 3, 10; 4, 20; 5, 15; 6, 15]; %! D = x2fx(X,'quadratic'); %! assert (D(1,:) , [1, 1, 10, 10, 1, 100]); %! assert (D(2,:) , [1, 2, 20, 40, 4, 400]); %!test %! X = [1, 10; 2, 20; 3, 10; 4, 20; 5, 15; 6, 15]; %! model = [0, 0; 1, 0; 0, 1; 1, 1; 2, 0]; %! D = x2fx(X,model); %! assert (D(1,:) , [1, 1, 10, 10, 1]); %! assert (D(2,:) , [1, 2, 20, 40, 4]); %! assert (D(4,:) , [1, 4, 20, 80, 16]); %!error x2fx ([1, 10; 2, 20; 3, 10], [0; 1]); %!error x2fx ([1, 10, 15; 2, 20, 40; 3, 10, 25], [0, 0; 1, 0; 0, 1; 1, 1; 2, 0]); %!error x2fx ([1, 10; 2, 20; 3, 10], "whatever"); statistics-release-1.6.3/inst/ztest.m000066400000000000000000000167021456127120000176410ustar00rootroot00000000000000## Copyright (C) 2014 Tony Richardson ## Copyright (C) 2022 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{h} =} ztest (@var{x}, @var{m}, @var{sigma}) ## @deftypefnx {statistics} {@var{h} =} ztest (@var{x}, @var{m}, @var{sigma}, @var{Name}, @var{Value}) ## @deftypefnx {statistics} {[@var{h}, @var{pval}] =} ztest (@dots{}) ## @deftypefnx {statistics} {[@var{h}, @var{pval}, @var{ci}] =} ztest (@dots{}) ## @deftypefnx {statistics} {[@var{h}, @var{pval}, @var{ci}, @var{zvalue}] =} ztest (@dots{}) ## ## One-sample Z-test. ## ## @code{@var{h} = ztest (@var{x}, @var{v})} performs a Z-test of the hypothesis ## that the data in the vector @var{x} come from a normal distribution with mean ## @var{m}, against the alternative that @var{x} comes from a normal ## distribution with a different mean @var{m}. The result is @var{h} = 0 if the ## null hypothesis ("mean is M") cannot be rejected at the 5% significance ## level, or @var{h} = 1 if the null hypothesis can be rejected at the 5% level. ## ## @var{x} may also be a matrix or an N-D array. For matrices, @code{ztest} ## performs separate tests along each column of @var{x}, and returns a vector of ## results. For N-D arrays, @code{ztest} works along the first non-singleton ## dimension of @var{x}. @var{m} and @var{sigma} must be a scalars. ## ## @code{ztest} treats NaNs as missing values, and ignores them. ## ## @code{[@var{h}, @var{pval}] = ztest (@dots{})} returns the p-value. That ## is the probability of observing the given result, or one more extreme, by ## chance if the null hypothesisis true. ## ## @code{[@var{h}, @var{pval}, @var{ci}] = ztest (@dots{})} returns a ## 100 * (1 - @var{alpha})% confidence interval for the true mean. ## ## @code{[@var{h}, @var{pval}, @var{ci}, @var{zvalue}] = ztest (@dots{})} ## returns the value of the test statistic. ## ## @code{[@dots{}] = ztest (@dots{}, @var{Name}, @var{Value}, @dots{})} ## specifies one or more of the following @var{Name}/@var{Value} pairs: ## ## @multitable @columnfractions 0.05 0.2 0.75 ## @headitem @tab @var{Name} @tab @var{Value} ## @item @tab "alpha" @tab the significance level. Default is 0.05. ## ## @item @tab "dim" @tab dimension to work along a matrix or an N-D array. ## ## @item @tab "tail" @tab a string specifying the alternative hypothesis: ## @end multitable ## @multitable @columnfractions 0.1 0.15 0.75 ## @item @tab "both" @tab "mean is not @var{m}" (two-tailed, default) ## @item @tab "left" @tab "mean is less than @var{m}" (left-tailed) ## @item @tab "right" @tab "mean is greater than @var{m}" (right-tailed) ## @end multitable ## ## @seealso{ttest, vartest, signtest, kstest} ## @end deftypefn function [h, pval, ci, zvalue] = ztest (x, m, sigma, varargin) ## Validate input arguments if (nargin < 3) error ("ztest: too few input arguments."); endif if (! isscalar (m) || ! isnumeric(m) || ! isreal(m)) error ("ztest: invalid value for mean."); endif if (! isscalar (sigma) || ! isnumeric(sigma) || ! isreal(sigma) || sigma < 0) error ("ztest: invalid value for standard deviation."); endif ## Add defaults alpha = 0.05; tail = "both"; dim = []; if (nargin > 3) for idx = 4:2:nargin name = varargin{idx-3}; value = varargin{idx-2}; switch (lower (name)) case "alpha" alpha = value; if (! isscalar (alpha) || ! isnumeric (alpha) || ... alpha <= 0 || alpha >= 1) error ("ztest: invalid VALUE for alpha."); endif case "tail" tail = value; if (! any (strcmpi (tail, {"both", "left", "right"}))) error ("ztest: invalid VALUE for tail."); endif case "dim" dim = value; if (! isscalar (dim) || ! ismember (dim, 1:ndims (x))) error ("ztest: invalid VALUE for operating dimension."); endif otherwise error ("ztest: invalid NAME for optional arguments."); endswitch endfor endif ## Figure out which dimension mean will work along if (isempty (dim)) dim = find (size (x) != 1, 1); endif ## Replace all NaNs with zeros is_nan = isnan (x); ## Find sample size for each group (if more than one) if (any (is_nan(:))) sz = sum (! is_nan, dim); else sz = size (x, dim); endif ## Calculate mean, strandard error and z-value for each group x_mean = sum (x(! is_nan), dim) ./ max (1, sz); stderr = sigma ./ sqrt (sz); zvalue = (x_mean - m) ./ stderr; ## Calculate p-value for the test and confidence intervals (if requested) if (strcmpi (tail, "both")) pval = 2 * normcdf (- abs (zvalue), 0, 1); if (nargout > 2) crit = norminv (1 - alpha / 2, 0, 1) .* stderr; ci = cat (dim, x_mean - crit, x_mean + crit); endif elseif (strcmpi (tail, "right")) p = normcdf (- zvalue,0,1); if (nargout > 2) crit = norminv (1 - alpha, 0, 1) .* stderr; ci = cat (dim, x_mean - crit, Inf (size (p))); endif elseif (strcmpi (tail, "left")) p = normcdf (zvalue, 0, 1); if (nargout > 2) crit = norminv (1 - alpha, 0, 1) .* stderr; ci = cat (dim, - Inf (size (p)), x_mean + crit); endif endif ## Determine the test outcome h = double (pval < alpha); h(isnan (pval)) = NaN; endfunction ## Test input validation %!error ztest (); %!error ... %! ztest ([1, 2, 3, 4], 2, -0.5); %!error ... %! ztest ([1, 2, 3, 4], 1, 2, "alpha", 0); %!error ... %! ztest ([1, 2, 3, 4], 1, 2, "alpha", 1.2); %!error ... %! ztest ([1, 2, 3, 4], 1, 2, "alpha", "val"); %!error ... %! ztest ([1, 2, 3, 4], 1, 2, "tail", "val"); %!error ... %! ztest ([1, 2, 3, 4], 1, 2, "alpha", 0.01, "tail", "val"); %!error ... %! ztest ([1, 2, 3, 4], 1, 2, "dim", 3); %!error ... %! ztest ([1, 2, 3, 4], 1, 2, "alpha", 0.01, "tail", "both", "dim", 3); %!error ... %! ztest ([1, 2, 3, 4], 1, 2, "alpha", 0.01, "tail", "both", "badoption", 3); ## Test results %!test %! load carsmall %! [h, pval, ci] = ztest (MPG, mean (MPG, "omitnan"), std (MPG, "omitnan")); %! assert (h, 0); %! assert (pval, 1, 1e-14); %! assert (ci, [22.094; 25.343], 1e-3); %!test %! load carsmall %! [h, pval, ci] = ztest (MPG, 26, 8); %! assert (h, 1); %! assert (pval, 0.00568359158544743, 1e-14); %! assert (ci, [22.101; 25.335], 1e-3); %!test %! load carsmall %! [h, pval, ci] = ztest (MPG, 26, 4); %! assert (h, 1); %! assert (pval, 3.184168011941316e-08, 1e-14); %! assert (ci, [22.909; 24.527], 1e-3); statistics-release-1.6.3/inst/ztest2.m000066400000000000000000000132151456127120000177170ustar00rootroot00000000000000## Copyright (C) 1996-2017 Kurt Hornik ## Copyright (C) 2023 Andreas Bertsatos ## ## This file is part of the statistics package for GNU Octave. ## ## This program is free software: you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation, either version 3 of the ## License, or (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; see the file COPYING. If not, see ## . ## -*- texinfo -*- ## @deftypefn {statistics} {@var{h} =} ztest2 (@var{x1}, @var{n1}, @var{x2}, @var{n2}) ## @deftypefnx {statistics} {@var{h} =} ztest2 (@var{x1}, @var{n1}, @var{x2}, @var{n2}, @var{Name}, @var{Value}) ## @deftypefnx {statistics} {[@var{h}, @var{pval}] =} ztest2 (@dots{}) ## @deftypefnx {statistics} {[@var{h}, @var{pval}, @var{zvalue}] =} ztest2 (@dots{}) ## ## Two proportions Z-test. ## ## If @var{x1} and @var{n1} are the counts of successes and trials in one ## sample, and @var{x2} and @var{n2} those in a second one, test the null ## hypothesis that the success probabilities @math{p1} and @math{p2} are the ## same. The result is @var{h} = 0 if the null hypothesis cannot be rejected at ## the 5% significance level, or @var{h} = 1 if the null hypothesis can be ## rejected at the 5% level. ## ## Under the null, the test statistic @var{zvalue} approximately follows a ## standard normal distribution. ## ## The size of @var{h}, @var{pval}, and @var{zvalue} is the common size of ## @var{x}, @var{n1}, @var{x2}, and @var{n2}, which must be scalars or of common ## size. A scalar input functions as a constant matrix of the same size as the ## other inputs. ## ## @code{[@var{h}, @var{pval}] = ztest2 (@dots{})} returns the p-value. That ## is the probability of observing the given result, or one more extreme, by ## chance if the null hypothesisis true. ## ## @code{[@var{h}, @var{pval}, @var{zvalue}] = ztest2 (@dots{})} returns the ## value of the test statistic. ## ## @code{[@dots{}] = ztest2 (@dots{}, @var{Name}, @var{Value}, @dots{})} ## specifies one or more of the following @var{Name}/@var{Value} pairs: ## ## @multitable @columnfractions 0.05 0.2 0.75 ## @headitem @tab @var{Name} @tab @var{Value} ## @item @tab @qcode{"alpha"} @tab the significance level. Default is 0.05. ## ## @item @tab @qcode{"tail"} @tab a string specifying the alternative hypothesis ## @end multitable ## @multitable @columnfractions 0.1 0.25 0.65 ## @item @tab @qcode{"both"} @tab @math{p1} is not @math{p2} ## (two-tailed, default) ## @item @tab @qcode{"left"} @tab @math{p1} is less than @math{p2} ## (left-tailed) ## @item @tab @qcode{"right"} @tab @math{p1} is greater than @math{p2} ## (right-tailed) ## @end multitable ## ## @seealso{chi2test, fishertest} ## @end deftypefn function [h, pval, zvalue] = ztest2 (x1, n1, x2, n2, varargin) if (nargin < 4) print_usage (); endif if (! isscalar (x1) || ! isscalar (n1) || ! isscalar (x2) || ! isscalar (n2)) [retval, x1, n1, x2, n2] = common_size (x1, n1, x2, n2); if (retval > 0) error ("ztest2: X1, N1, X2, and N2 must be of common size or scalars."); endif endif if (iscomplex (x1) || iscomplex (n1) || iscomplex (x2) || iscomplex(n2)) error ("ztest2: X1, N1, X2, and N2 must not be complex."); endif ## Add defaults and parse optional arguments alpha = 0.05; tail = "both"; if (nargin > 4) params = numel (varargin); if ((params / 2) != fix (params / 2)) error ("ztest2: optional arguments must be in NAME-VALUE pairs.") endif for idx = 1:2:params name = varargin{idx}; value = varargin{idx+1}; switch (lower (name)) case "alpha" alpha = value; if (! isscalar (alpha) || ! isnumeric (alpha) || ... alpha <= 0 || alpha >= 1) error ("ztest2: invalid VALUE for alpha."); endif case "tail" tail = value; if (! any (strcmpi (tail, {"both", "left", "right"}))) error ("ztest2: invalid VALUE for tail."); endif otherwise error ("ztest2: invalid NAME for optional arguments."); endswitch endfor endif p1 = x1 ./ n1; p2 = x2 ./ n2; pc = (x1 + x2) ./ (n1 + n2); zvalue = (p1 - p2) ./ sqrt (pc .* (1 - pc) .* (1 ./ n1 + 1 ./ n2)); cdf = normcdf (zvalue); if (strcmpi (tail, "both")) pval = 2 * min (cdf, 1 - cdf); elseif (strcmpi (tail, "right")) pval = 1 - cdf; elseif (strcmpi (tail, "left")) pval = cdf; endif ## Determine the test outcome h = double (pval < alpha); h(isnan (pval)) = NaN; endfunction ## Test input validation %!error ztest2 (); %!error ztest2 (1); %!error ztest2 (1, 2); %!error ztest2 (1, 2, 3); %!error ... %! ztest2 (1, 2, 3, 4, "alpha") %!error ... %! ztest2 (1, 2, 3, 4, "alpha", 0); %!error ... %! ztest2 (1, 2, 3, 4, "alpha", 1.2); %!error ... %! ztest2 (1, 2, 3, 4, "alpha", "val"); %!error ... %! ztest2 (1, 2, 3, 4, "tail", "val"); %!error ... %! ztest2 (1, 2, 3, 4, "alpha", 0.01, "tail", "val"); %!error ... %! ztest2 (1, 2, 3, 4, "alpha", 0.01, "tail", "both", "badoption", 3); statistics-release-1.6.3/io.github.gnu_octave.statistics.metainfo.xml000066400000000000000000000022271456127120000260670ustar00rootroot00000000000000 io.github.gnu_octave.statistics org.octave.Octave FSFAP GPL-3.0-or-later Statistics The Statistics package for GNU Octave Octave Statistics

The Statistics package for GNU Octave is a collection of functions for statistical analysis.

https://github.com/gnu-octave/statistics/issues https://gnu-octave.github.io/statistics Octave Community octave-maintainers@gnu.org
statistics-release-1.6.3/src/000077500000000000000000000000001456127120000161165ustar00rootroot00000000000000statistics-release-1.6.3/src/Makefile000066400000000000000000000003611456127120000175560ustar00rootroot00000000000000# Makefile for compiling required oct files all: $(MKOCTFILE) libsvmread.cc $(MKOCTFILE) libsvmwrite.cc $(MKOCTFILE) svmpredict.cc svm.cpp svm_model_octave.cc $(MKOCTFILE) svmtrain.cc svm.cpp svm_model_octave.cc statistics-release-1.6.3/src/libsvmread.cc000066400000000000000000000131631456127120000205610ustar00rootroot00000000000000/* Copyright (C) 2022 Andreas Bertsatos Adapted from MATLAB libsvmwrite.c file from the LIBSVM 3.25 (2021) library by Chih-Chung Chang and Chih-Jen Lin. This file is part of the statistics package for GNU Octave. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, see . */ #include #include #include #include #include #include #include #include #include #include #include #include #include #ifndef max #define max(x,y) (((x)>(y))?(x):(y)) #endif #ifndef min #define min(x,y) (((x)<(y))?(x):(y)) #endif using namespace std; static char *line; static int max_line_len; static char* readline(FILE *input) { int len; if(fgets(line,max_line_len,input) == NULL) { return NULL; } while(strrchr(line,'\n') == NULL) { max_line_len *= 2; line = (char *) realloc(line, max_line_len); len = (int) strlen(line); if(fgets(line+len,max_line_len-len,input) == NULL) { break; } } return line; } // read the file in libsvm format void read(string filename, ColumnVector &label_vec, SparseMatrix &instance_mat) { int max_index, min_index, inst_max_index; size_t elements, k, i, l=0; FILE *fp = fopen(filename.c_str(),"r"); char *endptr; octave_idx_type *ir, *jc; double *labels, *samples; if(fp == NULL) { printf("can't open input file %s\n",filename.c_str()); return; } max_line_len = 1024; line = (char *) malloc(max_line_len*sizeof(char)); max_index = 0; min_index = 1; // our index starts from 1 elements = 0; while(readline(fp) != NULL) { char *idx, *val; // features int index = 0; inst_max_index = -1; strtok(line," \t"); while (1) { idx = strtok(NULL,":"); val = strtok(NULL," \t"); if(val == NULL) break; errno = 0; index = (int) strtol(idx,&endptr,10); if(endptr == idx || errno != 0 || *endptr != '\0' || index <= inst_max_index) { printf("libsvmread: wrong input format at line %d.\n", (int)l+1); return; } else inst_max_index = index; min_index = min(min_index, index); elements++; } max_index = max(max_index, inst_max_index); l++; } rewind(fp); // y label_vec = ColumnVector(l, 1); // x^T if (min_index <= 0) { octave_idx_type r = max_index-min_index+1; octave_idx_type c = l; octave_idx_type val = elements; instance_mat = SparseMatrix(r, c, val); } else { octave_idx_type r = max_index-min_index+1; octave_idx_type c = l; octave_idx_type val = elements; instance_mat = SparseMatrix(r, c, val); } labels = (double*)label_vec.data(); samples = (double*)instance_mat.data(); ir = (octave_idx_type*)instance_mat.ridx(); jc = (octave_idx_type*)instance_mat.cidx(); k=0; for(i=0;i start from 0 ir[k] = strtol(idx,&endptr,10) - min_index; errno = 0; samples[k] = strtod(val,&endptr); if (endptr == val || errno != 0 || (*endptr != '\0' && !isspace(*endptr))) { printf("libsvmread: wrong input format at line %d.\n", (int)i+1); return; } ++k; } } jc[l] = k; fclose(fp); free(line); // transpose instance sparse matrix in row format instance_mat.transpose(); } DEFUN_DLD (libsvmread, args, nargout, "-*- texinfo -*- \n\n\ @deftypefn {statistics} {[@var{labels}, @var{data}] =} libsvmread (@var{filename})\n\ \n\ \n\ This function reads the labels and the corresponding instance_matrix from a \ LIBSVM data file and stores them in @var{labels} and @var{data} respectively. \ These can then be used as inputs to @code{svmtrain} or @code{svmpredict} \ function. \ \n\ \n\ @end deftypefn") { if(args.length() != 1 || nargout != 2) { error ("libsvmread: wrong number of input or output arguments."); } if(!args(0).is_string()) { error ("libsvmread: filename must be a string."); } string filename = args(0).string_value(); octave_value_list retval(nargout); ColumnVector label_vec; SparseMatrix instance_mat; read(filename, label_vec, instance_mat); retval(0) = label_vec; retval(1) = instance_mat.transpose(); return retval; } /* %!error [L, D] = libsvmread (24); %!error ... %! D = libsvmread ("filename"); %!test %! [L, D] = libsvmread (file_in_loadpath ("heart_scale.dat")); %! assert (size (L), [270, 1]); %! assert (size (D), [270, 13]); %!test %! [L, D] = libsvmread (file_in_loadpath ("heart_scale.dat")); %! assert (issparse (L), false); %! assert (issparse (D), true); */ statistics-release-1.6.3/src/libsvmwrite.cc000066400000000000000000000111111456127120000207670ustar00rootroot00000000000000/* Copyright (C) 2022 Andreas Bertsatos Adapted from MATLAB libsvmwrite.c file from the LIBSVM 3.25 (2021) library by Chih-Chung Chang and Chih-Jen Lin. This file is part of the statistics package for GNU Octave. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, see . */ #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; void write(string filename, ColumnVector label_vec, SparseMatrix instance_mat) { // open file FILE *fp = fopen(filename.c_str(),"w"); if (fp == NULL) { error ("libsvmwrite: error opening file for write."); } else { // check for equal number of instances and labels int im_rows = (int)instance_mat.rows(); int lv_rows = (int)label_vec.rows(); if(im_rows != lv_rows) { // close file fclose (fp); remove (filename.c_str()); error ("libsvmwrite: length of label vector does not match instances."); } // transpose instance sparse matrix in column format SparseMatrix instance_mat_col = instance_mat.transpose(); octave_idx_type *ir, *jc, k, low, high; size_t i, l, label_vector_row_num; double *samples, *labels; // each column is one instance labels = (double*)label_vec.data(); samples = (double*)instance_mat_col.data(); ir = (octave_idx_type*)instance_mat_col.ridx(); jc = (octave_idx_type*)instance_mat_col.cidx(); for(int i = 0; i < lv_rows; i++) { fprintf(fp, "%.17g", labels[i]); low = jc[i], high = jc[i+1]; for(k=low;k 0) { error ("libsvmwrite: wrong number of output arguments."); return octave_value_list(); } // Transform the input Matrix to libsvm format if(args.length() == 3) { if(!args(1).is_double_type() || !args(2).is_double_type()) { error ("libsvmwrite: label vector and instance matrix must be double."); } if(!args(0).is_string()) { error ("libsvmwrite: filename must be a string."); } string filename = args(0).string_value(); if(args(2).issparse()) { ColumnVector label_vec = args(1).column_vector_value(); SparseMatrix instance_mat = args(2).sparse_matrix_value(); write(filename, label_vec, instance_mat); } else { error ("libsvmwrite: instance_matrix must be sparse."); } } else { error ("libsvmwrite: wrong number of input arguments."); } return octave_value_list(); } /* %!shared L, D %! [L, D] = libsvmread (file_in_loadpath ("heart_scale.dat")); %!error libsvmwrite ("", L, D); %!error ... %! libsvmwrite (tempname (), [L;L], D); %!error ... %! OUT = libsvmwrite (tempname (), L, D); %!error ... %! libsvmwrite (tempname (), single (L), D); %!error libsvmwrite (13412, L, D); %!error ... %! libsvmwrite (tempname (), L, full (D)); %!error ... %! libsvmwrite (tempname (), L, D, D); */ statistics-release-1.6.3/src/svm.cpp000066400000000000000000002007551456127120000174400ustar00rootroot00000000000000/* Copyright (C) 2021 Chih-Chung Chang and Chih-Jen Lin This file is part of the statistics package for GNU Octave. Permission granted by Chih-Jen Lin to the package maintainer to include this ile and double license under GPLv3 by means of personal communication. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, see . */ #include #include #include #include #include #include #include #include #include #include "svm.h" int libsvm_version = LIBSVM_VERSION; typedef float Qfloat; typedef signed char schar; #ifndef min template static inline T min(T x,T y) { return (x static inline T max(T x,T y) { return (x>y)?x:y; } #endif template static inline void swap(T& x, T& y) { T t=x; x=y; y=t; } template static inline void clone(T*& dst, S* src, int n) { dst = new T[n]; memcpy((void *)dst,(void *)src,sizeof(T)*n); } static inline double powi(double base, int times) { double tmp = base, ret = 1.0; for(int t=times; t>0; t/=2) { if(t%2==1) ret*=tmp; tmp = tmp * tmp; } return ret; } #define INF HUGE_VAL #define TAU 1e-12 #define Malloc(type,n) (type *)malloc((n)*sizeof(type)) static void print_string_stdout(const char *s) { fputs(s,stdout); fflush(stdout); } static void (*svm_print_string) (const char *) = &print_string_stdout; #if 1 static void info(const char *fmt,...) { char buf[BUFSIZ]; va_list ap; va_start(ap,fmt); vsnprintf(buf,sizeof(buf),fmt,ap); va_end(ap); (*svm_print_string)(buf); } #else static void info(const char *fmt,...) {} #endif // // Kernel Cache // // l is the number of total data items // size is the cache size limit in bytes // class Cache { public: Cache(int l,long int size); ~Cache(); // request data [0,len) // return some position p where [p,len) need to be filled // (p >= len if nothing needs to be filled) int get_data(const int index, Qfloat **data, int len); void swap_index(int i, int j); private: int l; long int size; struct head_t { head_t *prev, *next; // a circular list Qfloat *data; int len; // data[0,len) is cached in this entry }; head_t *head; head_t lru_head; void lru_delete(head_t *h); void lru_insert(head_t *h); }; Cache::Cache(int l_,long int size_):l(l_),size(size_) { head = (head_t *)calloc(l,sizeof(head_t)); // initialized to 0 size /= sizeof(Qfloat); size -= l * sizeof(head_t) / sizeof(Qfloat); size = max(size, 2 * (long int) l); // cache must be large enough for two columns lru_head.next = lru_head.prev = &lru_head; } Cache::~Cache() { for(head_t *h = lru_head.next; h != &lru_head; h=h->next) free(h->data); free(head); } void Cache::lru_delete(head_t *h) { // delete from current location h->prev->next = h->next; h->next->prev = h->prev; } void Cache::lru_insert(head_t *h) { // insert to last position h->next = &lru_head; h->prev = lru_head.prev; h->prev->next = h; h->next->prev = h; } int Cache::get_data(const int index, Qfloat **data, int len) { head_t *h = &head[index]; if(h->len) lru_delete(h); int more = len - h->len; if(more > 0) { // free old space while(size < more) { head_t *old = lru_head.next; lru_delete(old); free(old->data); size += old->len; old->data = 0; old->len = 0; } // allocate new space h->data = (Qfloat *)realloc(h->data,sizeof(Qfloat)*len); size -= more; swap(h->len,len); } lru_insert(h); *data = h->data; return len; } void Cache::swap_index(int i, int j) { if(i==j) return; if(head[i].len) lru_delete(&head[i]); if(head[j].len) lru_delete(&head[j]); swap(head[i].data,head[j].data); swap(head[i].len,head[j].len); if(head[i].len) lru_insert(&head[i]); if(head[j].len) lru_insert(&head[j]); if(i>j) swap(i,j); for(head_t *h = lru_head.next; h!=&lru_head; h=h->next) { if(h->len > i) { if(h->len > j) swap(h->data[i],h->data[j]); else { // give up lru_delete(h); free(h->data); size += h->len; h->data = 0; h->len = 0; } } } } // // Kernel evaluation // // the static method k_function is for doing single kernel evaluation // the constructor of Kernel prepares to calculate the l*l kernel matrix // the member function get_Q is for getting one column from the Q Matrix // class QMatrix { public: virtual Qfloat *get_Q(int column, int len) const = 0; virtual double *get_QD() const = 0; virtual void swap_index(int i, int j) const = 0; virtual ~QMatrix() {} }; class Kernel: public QMatrix { public: Kernel(int l, svm_node * const * x, const svm_parameter& param); virtual ~Kernel(); static double k_function(const svm_node *x, const svm_node *y, const svm_parameter& param); virtual Qfloat *get_Q(int column, int len) const = 0; virtual double *get_QD() const = 0; virtual void swap_index(int i, int j) const // no so const... { swap(x[i],x[j]); if(x_square) swap(x_square[i],x_square[j]); } protected: double (Kernel::*kernel_function)(int i, int j) const; private: const svm_node **x; double *x_square; // svm_parameter const int kernel_type; const int degree; const double gamma; const double coef0; static double dot(const svm_node *px, const svm_node *py); double kernel_linear(int i, int j) const { return dot(x[i],x[j]); } double kernel_poly(int i, int j) const { return powi(gamma*dot(x[i],x[j])+coef0,degree); } double kernel_rbf(int i, int j) const { return exp(-gamma*(x_square[i]+x_square[j]-2*dot(x[i],x[j]))); } double kernel_sigmoid(int i, int j) const { return tanh(gamma*dot(x[i],x[j])+coef0); } double kernel_precomputed(int i, int j) const { return x[i][(int)(x[j][0].value)].value; } }; Kernel::Kernel(int l, svm_node * const * x_, const svm_parameter& param) :kernel_type(param.kernel_type), degree(param.degree), gamma(param.gamma), coef0(param.coef0) { switch(kernel_type) { case LINEAR: kernel_function = &Kernel::kernel_linear; break; case POLY: kernel_function = &Kernel::kernel_poly; break; case RBF: kernel_function = &Kernel::kernel_rbf; break; case SIGMOID: kernel_function = &Kernel::kernel_sigmoid; break; case PRECOMPUTED: kernel_function = &Kernel::kernel_precomputed; break; } clone(x,x_,l); if(kernel_type == RBF) { x_square = new double[l]; for(int i=0;iindex != -1 && py->index != -1) { if(px->index == py->index) { sum += px->value * py->value; ++px; ++py; } else { if(px->index > py->index) ++py; else ++px; } } return sum; } double Kernel::k_function(const svm_node *x, const svm_node *y, const svm_parameter& param) { switch(param.kernel_type) { case LINEAR: return dot(x,y); case POLY: return powi(param.gamma*dot(x,y)+param.coef0,param.degree); case RBF: { double sum = 0; while(x->index != -1 && y->index !=-1) { if(x->index == y->index) { double d = x->value - y->value; sum += d*d; ++x; ++y; } else { if(x->index > y->index) { sum += y->value * y->value; ++y; } else { sum += x->value * x->value; ++x; } } } while(x->index != -1) { sum += x->value * x->value; ++x; } while(y->index != -1) { sum += y->value * y->value; ++y; } return exp(-param.gamma*sum); } case SIGMOID: return tanh(param.gamma*dot(x,y)+param.coef0); case PRECOMPUTED: //x: test (validation), y: SV return x[(int)(y->value)].value; default: return 0; // Unreachable } } // An SMO algorithm in Fan et al., JMLR 6(2005), p. 1889--1918 // Solves: // // min 0.5(\alpha^T Q \alpha) + p^T \alpha // // y^T \alpha = \delta // y_i = +1 or -1 // 0 <= alpha_i <= Cp for y_i = 1 // 0 <= alpha_i <= Cn for y_i = -1 // // Given: // // Q, p, y, Cp, Cn, and an initial feasible point \alpha // l is the size of vectors and matrices // eps is the stopping tolerance // // solution will be put in \alpha, objective value will be put in obj // class Solver { public: Solver() {}; virtual ~Solver() {}; struct SolutionInfo { double obj; double rho; double upper_bound_p; double upper_bound_n; double r; // for Solver_NU }; void Solve(int l, const QMatrix& Q, const double *p_, const schar *y_, double *alpha_, double Cp, double Cn, double eps, SolutionInfo* si, int shrinking); protected: int active_size; schar *y; double *G; // gradient of objective function enum { LOWER_BOUND, UPPER_BOUND, FREE }; char *alpha_status; // LOWER_BOUND, UPPER_BOUND, FREE double *alpha; const QMatrix *Q; const double *QD; double eps; double Cp,Cn; double *p; int *active_set; double *G_bar; // gradient, if we treat free variables as 0 int l; bool unshrink; // XXX double get_C(int i) { return (y[i] > 0)? Cp : Cn; } void update_alpha_status(int i) { if(alpha[i] >= get_C(i)) alpha_status[i] = UPPER_BOUND; else if(alpha[i] <= 0) alpha_status[i] = LOWER_BOUND; else alpha_status[i] = FREE; } bool is_upper_bound(int i) { return alpha_status[i] == UPPER_BOUND; } bool is_lower_bound(int i) { return alpha_status[i] == LOWER_BOUND; } bool is_free(int i) { return alpha_status[i] == FREE; } void swap_index(int i, int j); void reconstruct_gradient(); virtual int select_working_set(int &i, int &j); virtual double calculate_rho(); virtual void do_shrinking(); private: bool be_shrunk(int i, double Gmax1, double Gmax2); }; void Solver::swap_index(int i, int j) { Q->swap_index(i,j); swap(y[i],y[j]); swap(G[i],G[j]); swap(alpha_status[i],alpha_status[j]); swap(alpha[i],alpha[j]); swap(p[i],p[j]); swap(active_set[i],active_set[j]); swap(G_bar[i],G_bar[j]); } void Solver::reconstruct_gradient() { // reconstruct inactive elements of G from G_bar and free variables if(active_size == l) return; int i,j; int nr_free = 0; for(j=active_size;j 2*active_size*(l-active_size)) { for(i=active_size;iget_Q(i,active_size); for(j=0;jget_Q(i,l); double alpha_i = alpha[i]; for(j=active_size;jl = l; this->Q = &Q; QD=Q.get_QD(); clone(p, p_,l); clone(y, y_,l); clone(alpha,alpha_,l); this->Cp = Cp; this->Cn = Cn; this->eps = eps; unshrink = false; // initialize alpha_status { alpha_status = new char[l]; for(int i=0;iINT_MAX/100 ? INT_MAX : 100*l); int counter = min(l,1000)+1; while(iter < max_iter) { // show progress and do shrinking if(--counter == 0) { counter = min(l,1000); if(shrinking) do_shrinking(); info("."); } int i,j; if(select_working_set(i,j)!=0) { // reconstruct the whole gradient reconstruct_gradient(); // reset active set size and check active_size = l; info("*"); if(select_working_set(i,j)!=0) break; else counter = 1; // do shrinking next iteration } ++iter; // update alpha[i] and alpha[j], handle bounds carefully const Qfloat *Q_i = Q.get_Q(i,active_size); const Qfloat *Q_j = Q.get_Q(j,active_size); double C_i = get_C(i); double C_j = get_C(j); double old_alpha_i = alpha[i]; double old_alpha_j = alpha[j]; if(y[i]!=y[j]) { double quad_coef = QD[i]+QD[j]+2*Q_i[j]; if (quad_coef <= 0) quad_coef = TAU; double delta = (-G[i]-G[j])/quad_coef; double diff = alpha[i] - alpha[j]; alpha[i] += delta; alpha[j] += delta; if(diff > 0) { if(alpha[j] < 0) { alpha[j] = 0; alpha[i] = diff; } } else { if(alpha[i] < 0) { alpha[i] = 0; alpha[j] = -diff; } } if(diff > C_i - C_j) { if(alpha[i] > C_i) { alpha[i] = C_i; alpha[j] = C_i - diff; } } else { if(alpha[j] > C_j) { alpha[j] = C_j; alpha[i] = C_j + diff; } } } else { double quad_coef = QD[i]+QD[j]-2*Q_i[j]; if (quad_coef <= 0) quad_coef = TAU; double delta = (G[i]-G[j])/quad_coef; double sum = alpha[i] + alpha[j]; alpha[i] -= delta; alpha[j] += delta; if(sum > C_i) { if(alpha[i] > C_i) { alpha[i] = C_i; alpha[j] = sum - C_i; } } else { if(alpha[j] < 0) { alpha[j] = 0; alpha[i] = sum; } } if(sum > C_j) { if(alpha[j] > C_j) { alpha[j] = C_j; alpha[i] = sum - C_j; } } else { if(alpha[i] < 0) { alpha[i] = 0; alpha[j] = sum; } } } // update G double delta_alpha_i = alpha[i] - old_alpha_i; double delta_alpha_j = alpha[j] - old_alpha_j; for(int k=0;k= max_iter) { if(active_size < l) { // reconstruct the whole gradient to calculate objective value reconstruct_gradient(); active_size = l; info("*"); } fprintf(stderr,"\nWARNING: reaching max number of iterations\n"); } // calculate rho si->rho = calculate_rho(); // calculate objective value { double v = 0; int i; for(i=0;iobj = v/2; } // put back the solution { for(int i=0;iupper_bound_p = Cp; si->upper_bound_n = Cn; info("\noptimization finished, #iter = %d\n",iter); delete[] p; delete[] y; delete[] alpha; delete[] alpha_status; delete[] active_set; delete[] G; delete[] G_bar; } // return 1 if already optimal, return 0 otherwise int Solver::select_working_set(int &out_i, int &out_j) { // return i,j such that // i: maximizes -y_i * grad(f)_i, i in I_up(\alpha) // j: minimizes the decrease of obj value // (if quadratic coefficeint <= 0, replace it with tau) // -y_j*grad(f)_j < -y_i*grad(f)_i, j in I_low(\alpha) double Gmax = -INF; double Gmax2 = -INF; int Gmax_idx = -1; int Gmin_idx = -1; double obj_diff_min = INF; for(int t=0;t= Gmax) { Gmax = -G[t]; Gmax_idx = t; } } else { if(!is_lower_bound(t)) if(G[t] >= Gmax) { Gmax = G[t]; Gmax_idx = t; } } int i = Gmax_idx; const Qfloat *Q_i = NULL; if(i != -1) // NULL Q_i not accessed: Gmax=-INF if i=-1 Q_i = Q->get_Q(i,active_size); for(int j=0;j= Gmax2) Gmax2 = G[j]; if (grad_diff > 0) { double obj_diff; double quad_coef = QD[i]+QD[j]-2.0*y[i]*Q_i[j]; if (quad_coef > 0) obj_diff = -(grad_diff*grad_diff)/quad_coef; else obj_diff = -(grad_diff*grad_diff)/TAU; if (obj_diff <= obj_diff_min) { Gmin_idx=j; obj_diff_min = obj_diff; } } } } else { if (!is_upper_bound(j)) { double grad_diff= Gmax-G[j]; if (-G[j] >= Gmax2) Gmax2 = -G[j]; if (grad_diff > 0) { double obj_diff; double quad_coef = QD[i]+QD[j]+2.0*y[i]*Q_i[j]; if (quad_coef > 0) obj_diff = -(grad_diff*grad_diff)/quad_coef; else obj_diff = -(grad_diff*grad_diff)/TAU; if (obj_diff <= obj_diff_min) { Gmin_idx=j; obj_diff_min = obj_diff; } } } } } if(Gmax+Gmax2 < eps || Gmin_idx == -1) return 1; out_i = Gmax_idx; out_j = Gmin_idx; return 0; } bool Solver::be_shrunk(int i, double Gmax1, double Gmax2) { if(is_upper_bound(i)) { if(y[i]==+1) return(-G[i] > Gmax1); else return(-G[i] > Gmax2); } else if(is_lower_bound(i)) { if(y[i]==+1) return(G[i] > Gmax2); else return(G[i] > Gmax1); } else return(false); } void Solver::do_shrinking() { int i; double Gmax1 = -INF; // max { -y_i * grad(f)_i | i in I_up(\alpha) } double Gmax2 = -INF; // max { y_i * grad(f)_i | i in I_low(\alpha) } // find maximal violating pair first for(i=0;i= Gmax1) Gmax1 = -G[i]; } if(!is_lower_bound(i)) { if(G[i] >= Gmax2) Gmax2 = G[i]; } } else { if(!is_upper_bound(i)) { if(-G[i] >= Gmax2) Gmax2 = -G[i]; } if(!is_lower_bound(i)) { if(G[i] >= Gmax1) Gmax1 = G[i]; } } } if(unshrink == false && Gmax1 + Gmax2 <= eps*10) { unshrink = true; reconstruct_gradient(); active_size = l; info("*"); } for(i=0;i i) { if (!be_shrunk(active_size, Gmax1, Gmax2)) { swap_index(i,active_size); break; } active_size--; } } } double Solver::calculate_rho() { double r; int nr_free = 0; double ub = INF, lb = -INF, sum_free = 0; for(int i=0;i0) r = sum_free/nr_free; else r = (ub+lb)/2; return r; } // // Solver for nu-svm classification and regression // // additional constraint: e^T \alpha = constant // class Solver_NU: public Solver { public: Solver_NU() {} void Solve(int l, const QMatrix& Q, const double *p, const schar *y, double *alpha, double Cp, double Cn, double eps, SolutionInfo* si, int shrinking) { this->si = si; Solver::Solve(l,Q,p,y,alpha,Cp,Cn,eps,si,shrinking); } private: SolutionInfo *si; int select_working_set(int &i, int &j); double calculate_rho(); bool be_shrunk(int i, double Gmax1, double Gmax2, double Gmax3, double Gmax4); void do_shrinking(); }; // return 1 if already optimal, return 0 otherwise int Solver_NU::select_working_set(int &out_i, int &out_j) { // return i,j such that y_i = y_j and // i: maximizes -y_i * grad(f)_i, i in I_up(\alpha) // j: minimizes the decrease of obj value // (if quadratic coefficeint <= 0, replace it with tau) // -y_j*grad(f)_j < -y_i*grad(f)_i, j in I_low(\alpha) double Gmaxp = -INF; double Gmaxp2 = -INF; int Gmaxp_idx = -1; double Gmaxn = -INF; double Gmaxn2 = -INF; int Gmaxn_idx = -1; int Gmin_idx = -1; double obj_diff_min = INF; for(int t=0;t= Gmaxp) { Gmaxp = -G[t]; Gmaxp_idx = t; } } else { if(!is_lower_bound(t)) if(G[t] >= Gmaxn) { Gmaxn = G[t]; Gmaxn_idx = t; } } int ip = Gmaxp_idx; int in = Gmaxn_idx; const Qfloat *Q_ip = NULL; const Qfloat *Q_in = NULL; if(ip != -1) // NULL Q_ip not accessed: Gmaxp=-INF if ip=-1 Q_ip = Q->get_Q(ip,active_size); if(in != -1) Q_in = Q->get_Q(in,active_size); for(int j=0;j= Gmaxp2) Gmaxp2 = G[j]; if (grad_diff > 0) { double obj_diff; double quad_coef = QD[ip]+QD[j]-2*Q_ip[j]; if (quad_coef > 0) obj_diff = -(grad_diff*grad_diff)/quad_coef; else obj_diff = -(grad_diff*grad_diff)/TAU; if (obj_diff <= obj_diff_min) { Gmin_idx=j; obj_diff_min = obj_diff; } } } } else { if (!is_upper_bound(j)) { double grad_diff=Gmaxn-G[j]; if (-G[j] >= Gmaxn2) Gmaxn2 = -G[j]; if (grad_diff > 0) { double obj_diff; double quad_coef = QD[in]+QD[j]-2*Q_in[j]; if (quad_coef > 0) obj_diff = -(grad_diff*grad_diff)/quad_coef; else obj_diff = -(grad_diff*grad_diff)/TAU; if (obj_diff <= obj_diff_min) { Gmin_idx=j; obj_diff_min = obj_diff; } } } } } if(max(Gmaxp+Gmaxp2,Gmaxn+Gmaxn2) < eps || Gmin_idx == -1) return 1; if (y[Gmin_idx] == +1) out_i = Gmaxp_idx; else out_i = Gmaxn_idx; out_j = Gmin_idx; return 0; } bool Solver_NU::be_shrunk(int i, double Gmax1, double Gmax2, double Gmax3, double Gmax4) { if(is_upper_bound(i)) { if(y[i]==+1) return(-G[i] > Gmax1); else return(-G[i] > Gmax4); } else if(is_lower_bound(i)) { if(y[i]==+1) return(G[i] > Gmax2); else return(G[i] > Gmax3); } else return(false); } void Solver_NU::do_shrinking() { double Gmax1 = -INF; // max { -y_i * grad(f)_i | y_i = +1, i in I_up(\alpha) } double Gmax2 = -INF; // max { y_i * grad(f)_i | y_i = +1, i in I_low(\alpha) } double Gmax3 = -INF; // max { -y_i * grad(f)_i | y_i = -1, i in I_up(\alpha) } double Gmax4 = -INF; // max { y_i * grad(f)_i | y_i = -1, i in I_low(\alpha) } // find maximal violating pair first int i; for(i=0;i Gmax1) Gmax1 = -G[i]; } else if(-G[i] > Gmax4) Gmax4 = -G[i]; } if(!is_lower_bound(i)) { if(y[i]==+1) { if(G[i] > Gmax2) Gmax2 = G[i]; } else if(G[i] > Gmax3) Gmax3 = G[i]; } } if(unshrink == false && max(Gmax1+Gmax2,Gmax3+Gmax4) <= eps*10) { unshrink = true; reconstruct_gradient(); active_size = l; } for(i=0;i i) { if (!be_shrunk(active_size, Gmax1, Gmax2, Gmax3, Gmax4)) { swap_index(i,active_size); break; } active_size--; } } } double Solver_NU::calculate_rho() { int nr_free1 = 0,nr_free2 = 0; double ub1 = INF, ub2 = INF; double lb1 = -INF, lb2 = -INF; double sum_free1 = 0, sum_free2 = 0; for(int i=0;i 0) r1 = sum_free1/nr_free1; else r1 = (ub1+lb1)/2; if(nr_free2 > 0) r2 = sum_free2/nr_free2; else r2 = (ub2+lb2)/2; si->r = (r1+r2)/2; return (r1-r2)/2; } // // Q matrices for various formulations // class SVC_Q: public Kernel { public: SVC_Q(const svm_problem& prob, const svm_parameter& param, const schar *y_) :Kernel(prob.l, prob.x, param) { clone(y,y_,prob.l); cache = new Cache(prob.l,(long int)(param.cache_size*(1<<20))); QD = new double[prob.l]; for(int i=0;i*kernel_function)(i,i); } Qfloat *get_Q(int i, int len) const { Qfloat *data; int start, j; if((start = cache->get_data(i,&data,len)) < len) { for(j=start;j*kernel_function)(i,j)); } return data; } double *get_QD() const { return QD; } void swap_index(int i, int j) const { cache->swap_index(i,j); Kernel::swap_index(i,j); swap(y[i],y[j]); swap(QD[i],QD[j]); } ~SVC_Q() { delete[] y; delete cache; delete[] QD; } private: schar *y; Cache *cache; double *QD; }; class ONE_CLASS_Q: public Kernel { public: ONE_CLASS_Q(const svm_problem& prob, const svm_parameter& param) :Kernel(prob.l, prob.x, param) { cache = new Cache(prob.l,(long int)(param.cache_size*(1<<20))); QD = new double[prob.l]; for(int i=0;i*kernel_function)(i,i); } Qfloat *get_Q(int i, int len) const { Qfloat *data; int start, j; if((start = cache->get_data(i,&data,len)) < len) { for(j=start;j*kernel_function)(i,j); } return data; } double *get_QD() const { return QD; } void swap_index(int i, int j) const { cache->swap_index(i,j); Kernel::swap_index(i,j); swap(QD[i],QD[j]); } ~ONE_CLASS_Q() { delete cache; delete[] QD; } private: Cache *cache; double *QD; }; class SVR_Q: public Kernel { public: SVR_Q(const svm_problem& prob, const svm_parameter& param) :Kernel(prob.l, prob.x, param) { l = prob.l; cache = new Cache(l,(long int)(param.cache_size*(1<<20))); QD = new double[2*l]; sign = new schar[2*l]; index = new int[2*l]; for(int k=0;k*kernel_function)(k,k); QD[k+l] = QD[k]; } buffer[0] = new Qfloat[2*l]; buffer[1] = new Qfloat[2*l]; next_buffer = 0; } void swap_index(int i, int j) const { swap(sign[i],sign[j]); swap(index[i],index[j]); swap(QD[i],QD[j]); } Qfloat *get_Q(int i, int len) const { Qfloat *data; int j, real_i = index[i]; if(cache->get_data(real_i,&data,l) < l) { for(j=0;j*kernel_function)(real_i,j); } // reorder and copy Qfloat *buf = buffer[next_buffer]; next_buffer = 1 - next_buffer; schar si = sign[i]; for(j=0;jl; double *minus_ones = new double[l]; schar *y = new schar[l]; int i; for(i=0;iy[i] > 0) y[i] = +1; else y[i] = -1; } Solver s; s.Solve(l, SVC_Q(*prob,*param,y), minus_ones, y, alpha, Cp, Cn, param->eps, si, param->shrinking); double sum_alpha=0; for(i=0;il)); for(i=0;il; double nu = param->nu; schar *y = new schar[l]; for(i=0;iy[i]>0) y[i] = +1; else y[i] = -1; double sum_pos = nu*l/2; double sum_neg = nu*l/2; for(i=0;ieps, si, param->shrinking); double r = si->r; info("C = %f\n",1/r); for(i=0;irho /= r; si->obj /= (r*r); si->upper_bound_p = 1/r; si->upper_bound_n = 1/r; delete[] y; delete[] zeros; } static void solve_one_class( const svm_problem *prob, const svm_parameter *param, double *alpha, Solver::SolutionInfo* si) { int l = prob->l; double *zeros = new double[l]; schar *ones = new schar[l]; int i; int n = (int)(param->nu*prob->l); // # of alpha's at upper bound for(i=0;il) alpha[n] = param->nu * prob->l - n; for(i=n+1;ieps, si, param->shrinking); delete[] zeros; delete[] ones; } static void solve_epsilon_svr( const svm_problem *prob, const svm_parameter *param, double *alpha, Solver::SolutionInfo* si) { int l = prob->l; double *alpha2 = new double[2*l]; double *linear_term = new double[2*l]; schar *y = new schar[2*l]; int i; for(i=0;ip - prob->y[i]; y[i] = 1; alpha2[i+l] = 0; linear_term[i+l] = param->p + prob->y[i]; y[i+l] = -1; } Solver s; s.Solve(2*l, SVR_Q(*prob,*param), linear_term, y, alpha2, param->C, param->C, param->eps, si, param->shrinking); double sum_alpha = 0; for(i=0;iC*l)); delete[] alpha2; delete[] linear_term; delete[] y; } static void solve_nu_svr( const svm_problem *prob, const svm_parameter *param, double *alpha, Solver::SolutionInfo* si) { int l = prob->l; double C = param->C; double *alpha2 = new double[2*l]; double *linear_term = new double[2*l]; schar *y = new schar[2*l]; int i; double sum = C * param->nu * l / 2; for(i=0;iy[i]; y[i] = 1; linear_term[i+l] = prob->y[i]; y[i+l] = -1; } Solver_NU s; s.Solve(2*l, SVR_Q(*prob,*param), linear_term, y, alpha2, C, C, param->eps, si, param->shrinking); info("epsilon = %f\n",-si->r); for(i=0;il); Solver::SolutionInfo si; switch(param->svm_type) { case C_SVC: solve_c_svc(prob,param,alpha,&si,Cp,Cn); break; case NU_SVC: solve_nu_svc(prob,param,alpha,&si); break; case ONE_CLASS: solve_one_class(prob,param,alpha,&si); break; case EPSILON_SVR: solve_epsilon_svr(prob,param,alpha,&si); break; case NU_SVR: solve_nu_svr(prob,param,alpha,&si); break; } info("obj = %f, rho = %f\n",si.obj,si.rho); // output SVs int nSV = 0; int nBSV = 0; for(int i=0;il;i++) { if(fabs(alpha[i]) > 0) { ++nSV; if(prob->y[i] > 0) { if(fabs(alpha[i]) >= si.upper_bound_p) ++nBSV; } else { if(fabs(alpha[i]) >= si.upper_bound_n) ++nBSV; } } } info("nSV = %d, nBSV = %d\n",nSV,nBSV); decision_function f; f.alpha = alpha; f.rho = si.rho; return f; } // Platt's binary SVM Probablistic Output: an improvement from Lin et al. static void sigmoid_train( int l, const double *dec_values, const double *labels, double& A, double& B) { double prior1=0, prior0 = 0; int i; for (i=0;i 0) prior1+=1; else prior0+=1; int max_iter=100; // Maximal number of iterations double min_step=1e-10; // Minimal step taken in line search double sigma=1e-12; // For numerically strict PD of Hessian double eps=1e-5; double hiTarget=(prior1+1.0)/(prior1+2.0); double loTarget=1/(prior0+2.0); double *t=Malloc(double,l); double fApB,p,q,h11,h22,h21,g1,g2,det,dA,dB,gd,stepsize; double newA,newB,newf,d1,d2; int iter; // Initial Point and Initial Fun Value A=0.0; B=log((prior0+1.0)/(prior1+1.0)); double fval = 0.0; for (i=0;i0) t[i]=hiTarget; else t[i]=loTarget; fApB = dec_values[i]*A+B; if (fApB>=0) fval += t[i]*fApB + log(1+exp(-fApB)); else fval += (t[i] - 1)*fApB +log(1+exp(fApB)); } for (iter=0;iter= 0) { p=exp(-fApB)/(1.0+exp(-fApB)); q=1.0/(1.0+exp(-fApB)); } else { p=1.0/(1.0+exp(fApB)); q=exp(fApB)/(1.0+exp(fApB)); } d2=p*q; h11+=dec_values[i]*dec_values[i]*d2; h22+=d2; h21+=dec_values[i]*d2; d1=t[i]-p; g1+=dec_values[i]*d1; g2+=d1; } // Stopping Criteria if (fabs(g1)= min_step) { newA = A + stepsize * dA; newB = B + stepsize * dB; // New function value newf = 0.0; for (i=0;i= 0) newf += t[i]*fApB + log(1+exp(-fApB)); else newf += (t[i] - 1)*fApB +log(1+exp(fApB)); } // Check sufficient decrease if (newf=max_iter) info("Reaching maximal iterations in two-class probability estimates\n"); free(t); } static double sigmoid_predict(double decision_value, double A, double B) { double fApB = decision_value*A+B; // 1-p used later; avoid catastrophic cancellation if (fApB >= 0) return exp(-fApB)/(1.0+exp(-fApB)); else return 1.0/(1+exp(fApB)) ; } // Method 2 from the multiclass_prob paper by Wu, Lin, and Weng static void multiclass_probability(int k, double **r, double *p) { int t,j; int iter = 0, max_iter=max(100,k); double **Q=Malloc(double *,k); double *Qp=Malloc(double,k); double pQp, eps=0.005/k; for (t=0;tmax_error) max_error=error; } if (max_error=max_iter) info("Exceeds max_iter in multiclass_prob\n"); for(t=0;tl); double *dec_values = Malloc(double,prob->l); // random shuffle for(i=0;il;i++) perm[i]=i; for(i=0;il;i++) { int j = i+rand()%(prob->l-i); swap(perm[i],perm[j]); } for(i=0;il/nr_fold; int end = (i+1)*prob->l/nr_fold; int j,k; struct svm_problem subprob; subprob.l = prob->l-(end-begin); subprob.x = Malloc(struct svm_node*,subprob.l); subprob.y = Malloc(double,subprob.l); k=0; for(j=0;jx[perm[j]]; subprob.y[k] = prob->y[perm[j]]; ++k; } for(j=end;jl;j++) { subprob.x[k] = prob->x[perm[j]]; subprob.y[k] = prob->y[perm[j]]; ++k; } int p_count=0,n_count=0; for(j=0;j0) p_count++; else n_count++; if(p_count==0 && n_count==0) for(j=begin;j 0 && n_count == 0) for(j=begin;j 0) for(j=begin;jx[perm[j]],&(dec_values[perm[j]])); // ensure +1 -1 order; reason not using CV subroutine dec_values[perm[j]] *= submodel->label[0]; } svm_free_and_destroy_model(&submodel); svm_destroy_param(&subparam); } free(subprob.x); free(subprob.y); } sigmoid_train(prob->l,dec_values,prob->y,probA,probB); free(dec_values); free(perm); } // Return parameter of a Laplace distribution static double svm_svr_probability( const svm_problem *prob, const svm_parameter *param) { int i; int nr_fold = 5; double *ymv = Malloc(double,prob->l); double mae = 0; svm_parameter newparam = *param; newparam.probability = 0; svm_cross_validation(prob,&newparam,nr_fold,ymv); for(i=0;il;i++) { ymv[i]=prob->y[i]-ymv[i]; mae += fabs(ymv[i]); } mae /= prob->l; double std=sqrt(2*mae*mae); int count=0; mae=0; for(i=0;il;i++) if (fabs(ymv[i]) > 5*std) count=count+1; else mae+=fabs(ymv[i]); mae /= (prob->l-count); info("Prob. model for test data: target value = predicted value + z,\nz: Laplace distribution e^(-|z|/sigma)/(2sigma),sigma= %g\n",mae); free(ymv); return mae; } // label: label name, start: begin of each class, count: #data of classes, perm: indices to the original data // perm, length l, must be allocated before calling this subroutine static void svm_group_classes(const svm_problem *prob, int *nr_class_ret, int **label_ret, int **start_ret, int **count_ret, int *perm) { int l = prob->l; int max_nr_class = 16; int nr_class = 0; int *label = Malloc(int,max_nr_class); int *count = Malloc(int,max_nr_class); int *data_label = Malloc(int,l); int i; for(i=0;iy[i]; int j; for(j=0;jparam = *param; model->free_sv = 0; // XXX if(param->svm_type == ONE_CLASS || param->svm_type == EPSILON_SVR || param->svm_type == NU_SVR) { // regression or one-class-svm model->nr_class = 2; model->label = NULL; model->nSV = NULL; model->probA = NULL; model->probB = NULL; model->sv_coef = Malloc(double *,1); if(param->probability && (param->svm_type == EPSILON_SVR || param->svm_type == NU_SVR)) { model->probA = Malloc(double,1); model->probA[0] = svm_svr_probability(prob,param); } decision_function f = svm_train_one(prob,param,0,0); model->rho = Malloc(double,1); model->rho[0] = f.rho; int nSV = 0; int i; for(i=0;il;i++) if(fabs(f.alpha[i]) > 0) ++nSV; model->l = nSV; model->SV = Malloc(svm_node *,nSV); model->sv_coef[0] = Malloc(double,nSV); model->sv_indices = Malloc(int,nSV); int j = 0; for(i=0;il;i++) if(fabs(f.alpha[i]) > 0) { model->SV[j] = prob->x[i]; model->sv_coef[0][j] = f.alpha[i]; model->sv_indices[j] = i+1; ++j; } free(f.alpha); } else { // classification int l = prob->l; int nr_class; int *label = NULL; int *start = NULL; int *count = NULL; int *perm = Malloc(int,l); // group training data of the same class svm_group_classes(prob,&nr_class,&label,&start,&count,perm); if(nr_class == 1) info("WARNING: training data in only one class. See README for details.\n"); svm_node **x = Malloc(svm_node *,l); int i; for(i=0;ix[perm[i]]; // calculate weighted C double *weighted_C = Malloc(double, nr_class); for(i=0;iC; for(i=0;inr_weight;i++) { int j; for(j=0;jweight_label[i] == label[j]) break; if(j == nr_class) fprintf(stderr,"WARNING: class label %d specified in weight is not found\n", param->weight_label[i]); else weighted_C[j] *= param->weight[i]; } // train k*(k-1)/2 models bool *nonzero = Malloc(bool,l); for(i=0;iprobability) { probA=Malloc(double,nr_class*(nr_class-1)/2); probB=Malloc(double,nr_class*(nr_class-1)/2); } int p = 0; for(i=0;iprobability) svm_binary_svc_probability(&sub_prob,param,weighted_C[i],weighted_C[j],probA[p],probB[p]); f[p] = svm_train_one(&sub_prob,param,weighted_C[i],weighted_C[j]); for(k=0;k 0) nonzero[si+k] = true; for(k=0;k 0) nonzero[sj+k] = true; free(sub_prob.x); free(sub_prob.y); ++p; } // build output model->nr_class = nr_class; model->label = Malloc(int,nr_class); for(i=0;ilabel[i] = label[i]; model->rho = Malloc(double,nr_class*(nr_class-1)/2); for(i=0;irho[i] = f[i].rho; if(param->probability) { model->probA = Malloc(double,nr_class*(nr_class-1)/2); model->probB = Malloc(double,nr_class*(nr_class-1)/2); for(i=0;iprobA[i] = probA[i]; model->probB[i] = probB[i]; } } else { model->probA=NULL; model->probB=NULL; } int total_sv = 0; int *nz_count = Malloc(int,nr_class); model->nSV = Malloc(int,nr_class); for(i=0;inSV[i] = nSV; nz_count[i] = nSV; } info("Total nSV = %d\n",total_sv); model->l = total_sv; model->SV = Malloc(svm_node *,total_sv); model->sv_indices = Malloc(int,total_sv); p = 0; for(i=0;iSV[p] = x[i]; model->sv_indices[p++] = perm[i] + 1; } int *nz_start = Malloc(int,nr_class); nz_start[0] = 0; for(i=1;isv_coef = Malloc(double *,nr_class-1); for(i=0;isv_coef[i] = Malloc(double,total_sv); p = 0; for(i=0;isv_coef[j-1][q++] = f[p].alpha[k]; q = nz_start[j]; for(k=0;ksv_coef[i][q++] = f[p].alpha[ci+k]; ++p; } free(label); free(probA); free(probB); free(count); free(perm); free(start); free(x); free(weighted_C); free(nonzero); for(i=0;il; int *perm = Malloc(int,l); int nr_class; if (nr_fold > l) { nr_fold = l; fprintf(stderr,"WARNING: # folds > # data. Will use # folds = # data instead (i.e., leave-one-out cross validation)\n"); } fold_start = Malloc(int,nr_fold+1); // stratified cv may not give leave-one-out rate // Each class to l folds -> some folds may have zero elements if((param->svm_type == C_SVC || param->svm_type == NU_SVC) && nr_fold < l) { int *start = NULL; int *label = NULL; int *count = NULL; svm_group_classes(prob,&nr_class,&label,&start,&count,perm); // random shuffle and then data grouped by fold using the array perm int *fold_count = Malloc(int,nr_fold); int c; int *index = Malloc(int,l); for(i=0;ix[perm[j]]; subprob.y[k] = prob->y[perm[j]]; ++k; } for(j=end;jx[perm[j]]; subprob.y[k] = prob->y[perm[j]]; ++k; } struct svm_model *submodel = svm_train(&subprob,param); if(param->probability && (param->svm_type == C_SVC || param->svm_type == NU_SVC)) { double *prob_estimates=Malloc(double,svm_get_nr_class(submodel)); for(j=begin;jx[perm[j]],prob_estimates); free(prob_estimates); } else for(j=begin;jx[perm[j]]); svm_free_and_destroy_model(&submodel); free(subprob.x); free(subprob.y); } free(fold_start); free(perm); } int svm_get_svm_type(const svm_model *model) { return model->param.svm_type; } int svm_get_nr_class(const svm_model *model) { return model->nr_class; } void svm_get_labels(const svm_model *model, int* label) { if (model->label != NULL) for(int i=0;inr_class;i++) label[i] = model->label[i]; } void svm_get_sv_indices(const svm_model *model, int* indices) { if (model->sv_indices != NULL) for(int i=0;il;i++) indices[i] = model->sv_indices[i]; } int svm_get_nr_sv(const svm_model *model) { return model->l; } double svm_get_svr_probability(const svm_model *model) { if ((model->param.svm_type == EPSILON_SVR || model->param.svm_type == NU_SVR) && model->probA!=NULL) return model->probA[0]; else { fprintf(stderr,"Model doesn't contain information for SVR probability inference\n"); return 0; } } double svm_predict_values(const svm_model *model, const svm_node *x, double* dec_values) { int i; if(model->param.svm_type == ONE_CLASS || model->param.svm_type == EPSILON_SVR || model->param.svm_type == NU_SVR) { double *sv_coef = model->sv_coef[0]; double sum = 0; for(i=0;il;i++) sum += sv_coef[i] * Kernel::k_function(x,model->SV[i],model->param); sum -= model->rho[0]; *dec_values = sum; if(model->param.svm_type == ONE_CLASS) return (sum>0)?1:-1; else return sum; } else { int nr_class = model->nr_class; int l = model->l; double *kvalue = Malloc(double,l); for(i=0;iSV[i],model->param); int *start = Malloc(int,nr_class); start[0] = 0; for(i=1;inSV[i-1]; int *vote = Malloc(int,nr_class); for(i=0;inSV[i]; int cj = model->nSV[j]; int k; double *coef1 = model->sv_coef[j-1]; double *coef2 = model->sv_coef[i]; for(k=0;krho[p]; dec_values[p] = sum; if(dec_values[p] > 0) ++vote[i]; else ++vote[j]; p++; } int vote_max_idx = 0; for(i=1;i vote[vote_max_idx]) vote_max_idx = i; free(kvalue); free(start); free(vote); return model->label[vote_max_idx]; } } double svm_predict(const svm_model *model, const svm_node *x) { int nr_class = model->nr_class; double *dec_values; if(model->param.svm_type == ONE_CLASS || model->param.svm_type == EPSILON_SVR || model->param.svm_type == NU_SVR) dec_values = Malloc(double, 1); else dec_values = Malloc(double, nr_class*(nr_class-1)/2); double pred_result = svm_predict_values(model, x, dec_values); free(dec_values); return pred_result; } double svm_predict_probability( const svm_model *model, const svm_node *x, double *prob_estimates) { if ((model->param.svm_type == C_SVC || model->param.svm_type == NU_SVC) && model->probA!=NULL && model->probB!=NULL) { int i; int nr_class = model->nr_class; double *dec_values = Malloc(double, nr_class*(nr_class-1)/2); svm_predict_values(model, x, dec_values); double min_prob=1e-7; double **pairwise_prob=Malloc(double *,nr_class); for(i=0;iprobA[k],model->probB[k]),min_prob),1-min_prob); pairwise_prob[j][i]=1-pairwise_prob[i][j]; k++; } if (nr_class == 2) { prob_estimates[0] = pairwise_prob[0][1]; prob_estimates[1] = pairwise_prob[1][0]; } else multiclass_probability(nr_class,pairwise_prob,prob_estimates); int prob_max_idx = 0; for(i=1;i prob_estimates[prob_max_idx]) prob_max_idx = i; for(i=0;ilabel[prob_max_idx]; } else return svm_predict(model, x); } static const char *svm_type_table[] = { "c_svc","nu_svc","one_class","epsilon_svr","nu_svr",NULL }; static const char *kernel_type_table[]= { "linear","polynomial","rbf","sigmoid","precomputed",NULL }; int svm_save_model(const char *model_file_name, const svm_model *model) { FILE *fp = fopen(model_file_name,"w"); if(fp==NULL) return -1; char *old_locale = setlocale(LC_ALL, NULL); if (old_locale) { old_locale = strdup(old_locale); } setlocale(LC_ALL, "C"); const svm_parameter& param = model->param; fprintf(fp,"svm_type %s\n", svm_type_table[param.svm_type]); fprintf(fp,"kernel_type %s\n", kernel_type_table[param.kernel_type]); if(param.kernel_type == POLY) fprintf(fp,"degree %d\n", param.degree); if(param.kernel_type == POLY || param.kernel_type == RBF || param.kernel_type == SIGMOID) fprintf(fp,"gamma %.17g\n", param.gamma); if(param.kernel_type == POLY || param.kernel_type == SIGMOID) fprintf(fp,"coef0 %.17g\n", param.coef0); int nr_class = model->nr_class; int l = model->l; fprintf(fp, "nr_class %d\n", nr_class); fprintf(fp, "total_sv %d\n",l); { fprintf(fp, "rho"); for(int i=0;irho[i]); fprintf(fp, "\n"); } if(model->label) { fprintf(fp, "label"); for(int i=0;ilabel[i]); fprintf(fp, "\n"); } if(model->probA) // regression has probA only { fprintf(fp, "probA"); for(int i=0;iprobA[i]); fprintf(fp, "\n"); } if(model->probB) { fprintf(fp, "probB"); for(int i=0;iprobB[i]); fprintf(fp, "\n"); } if(model->nSV) { fprintf(fp, "nr_sv"); for(int i=0;inSV[i]); fprintf(fp, "\n"); } fprintf(fp, "SV\n"); const double * const *sv_coef = model->sv_coef; const svm_node * const *SV = model->SV; for(int i=0;ivalue)); else while(p->index != -1) { fprintf(fp,"%d:%.8g ",p->index,p->value); p++; } fprintf(fp, "\n"); } setlocale(LC_ALL, old_locale); free(old_locale); if (ferror(fp) != 0 || fclose(fp) != 0) return -1; else return 0; } static char *line = NULL; static int max_line_len; static char* readline(FILE *input) { int len; if(fgets(line,max_line_len,input) == NULL) return NULL; while(strrchr(line,'\n') == NULL) { max_line_len *= 2; line = (char *) realloc(line,max_line_len); len = (int) strlen(line); if(fgets(line+len,max_line_len-len,input) == NULL) break; } return line; } // // FSCANF helps to handle fscanf failures. // Its do-while block avoids the ambiguity when // if (...) // FSCANF(); // is used // #define FSCANF(_stream, _format, _var) do{ if (fscanf(_stream, _format, _var) != 1) return false; }while(0) bool read_model_header(FILE *fp, svm_model* model) { svm_parameter& param = model->param; // parameters for training only won't be assigned, but arrays are assigned as NULL for safety param.nr_weight = 0; param.weight_label = NULL; param.weight = NULL; char cmd[81]; while(1) { FSCANF(fp,"%80s",cmd); if(strcmp(cmd,"svm_type")==0) { FSCANF(fp,"%80s",cmd); int i; for(i=0;svm_type_table[i];i++) { if(strcmp(svm_type_table[i],cmd)==0) { param.svm_type=i; break; } } if(svm_type_table[i] == NULL) { fprintf(stderr,"unknown svm type.\n"); return false; } } else if(strcmp(cmd,"kernel_type")==0) { FSCANF(fp,"%80s",cmd); int i; for(i=0;kernel_type_table[i];i++) { if(strcmp(kernel_type_table[i],cmd)==0) { param.kernel_type=i; break; } } if(kernel_type_table[i] == NULL) { fprintf(stderr,"unknown kernel function.\n"); return false; } } else if(strcmp(cmd,"degree")==0) FSCANF(fp,"%d",¶m.degree); else if(strcmp(cmd,"gamma")==0) FSCANF(fp,"%lf",¶m.gamma); else if(strcmp(cmd,"coef0")==0) FSCANF(fp,"%lf",¶m.coef0); else if(strcmp(cmd,"nr_class")==0) FSCANF(fp,"%d",&model->nr_class); else if(strcmp(cmd,"total_sv")==0) FSCANF(fp,"%d",&model->l); else if(strcmp(cmd,"rho")==0) { int n = model->nr_class * (model->nr_class-1)/2; model->rho = Malloc(double,n); for(int i=0;irho[i]); } else if(strcmp(cmd,"label")==0) { int n = model->nr_class; model->label = Malloc(int,n); for(int i=0;ilabel[i]); } else if(strcmp(cmd,"probA")==0) { int n = model->nr_class * (model->nr_class-1)/2; model->probA = Malloc(double,n); for(int i=0;iprobA[i]); } else if(strcmp(cmd,"probB")==0) { int n = model->nr_class * (model->nr_class-1)/2; model->probB = Malloc(double,n); for(int i=0;iprobB[i]); } else if(strcmp(cmd,"nr_sv")==0) { int n = model->nr_class; model->nSV = Malloc(int,n); for(int i=0;inSV[i]); } else if(strcmp(cmd,"SV")==0) { while(1) { int c = getc(fp); if(c==EOF || c=='\n') break; } break; } else { fprintf(stderr,"unknown text in model file: [%s]\n",cmd); return false; } } return true; } svm_model *svm_load_model(const char *model_file_name) { FILE *fp = fopen(model_file_name,"rb"); if(fp==NULL) return NULL; char *old_locale = setlocale(LC_ALL, NULL); if (old_locale) { old_locale = strdup(old_locale); } setlocale(LC_ALL, "C"); // read parameters svm_model *model = Malloc(svm_model,1); model->rho = NULL; model->probA = NULL; model->probB = NULL; model->sv_indices = NULL; model->label = NULL; model->nSV = NULL; // read header if (!read_model_header(fp, model)) { fprintf(stderr, "ERROR: fscanf failed to read model\n"); setlocale(LC_ALL, old_locale); free(old_locale); free(model->rho); free(model->label); free(model->nSV); free(model); return NULL; } // read sv_coef and SV int elements = 0; long pos = ftell(fp); max_line_len = 1024; line = Malloc(char,max_line_len); char *p,*endptr,*idx,*val; while(readline(fp)!=NULL) { p = strtok(line,":"); while(1) { p = strtok(NULL,":"); if(p == NULL) break; ++elements; } } elements += model->l; fseek(fp,pos,SEEK_SET); int m = model->nr_class - 1; int l = model->l; model->sv_coef = Malloc(double *,m); int i; for(i=0;isv_coef[i] = Malloc(double,l); model->SV = Malloc(svm_node*,l); svm_node *x_space = NULL; if(l>0) x_space = Malloc(svm_node,elements); int j=0; for(i=0;iSV[i] = &x_space[j]; p = strtok(line, " \t"); model->sv_coef[0][i] = strtod(p,&endptr); for(int k=1;ksv_coef[k][i] = strtod(p,&endptr); } while(1) { idx = strtok(NULL, ":"); val = strtok(NULL, " \t"); if(val == NULL) break; x_space[j].index = (int) strtol(idx,&endptr,10); x_space[j].value = strtod(val,&endptr); ++j; } x_space[j++].index = -1; } free(line); setlocale(LC_ALL, old_locale); free(old_locale); if (ferror(fp) != 0 || fclose(fp) != 0) return NULL; model->free_sv = 1; // XXX return model; } void svm_free_model_content(svm_model* model_ptr) { if(model_ptr->free_sv && model_ptr->l > 0 && model_ptr->SV != NULL) free((void *)(model_ptr->SV[0])); if(model_ptr->sv_coef) { for(int i=0;inr_class-1;i++) free(model_ptr->sv_coef[i]); } free(model_ptr->SV); model_ptr->SV = NULL; free(model_ptr->sv_coef); model_ptr->sv_coef = NULL; free(model_ptr->rho); model_ptr->rho = NULL; free(model_ptr->label); model_ptr->label= NULL; free(model_ptr->probA); model_ptr->probA = NULL; free(model_ptr->probB); model_ptr->probB= NULL; free(model_ptr->sv_indices); model_ptr->sv_indices = NULL; free(model_ptr->nSV); model_ptr->nSV = NULL; } void svm_free_and_destroy_model(svm_model** model_ptr_ptr) { if(model_ptr_ptr != NULL && *model_ptr_ptr != NULL) { svm_free_model_content(*model_ptr_ptr); free(*model_ptr_ptr); *model_ptr_ptr = NULL; } } void svm_destroy_param(svm_parameter* param) { free(param->weight_label); free(param->weight); } const char *svm_check_parameter(const svm_problem *prob, const svm_parameter *param) { // svm_type int svm_type = param->svm_type; if(svm_type != C_SVC && svm_type != NU_SVC && svm_type != ONE_CLASS && svm_type != EPSILON_SVR && svm_type != NU_SVR) return "unknown svm type"; // kernel_type, degree int kernel_type = param->kernel_type; if(kernel_type != LINEAR && kernel_type != POLY && kernel_type != RBF && kernel_type != SIGMOID && kernel_type != PRECOMPUTED) return "unknown kernel type"; if((kernel_type == POLY || kernel_type == RBF || kernel_type == SIGMOID) && param->gamma < 0) return "gamma < 0"; if(kernel_type == POLY && param->degree < 0) return "degree of polynomial kernel < 0"; // cache_size,eps,C,nu,p,shrinking if(param->cache_size <= 0) return "cache_size <= 0"; if(param->eps <= 0) return "eps <= 0"; if(svm_type == C_SVC || svm_type == EPSILON_SVR || svm_type == NU_SVR) if(param->C <= 0) return "C <= 0"; if(svm_type == NU_SVC || svm_type == ONE_CLASS || svm_type == NU_SVR) if(param->nu <= 0 || param->nu > 1) return "nu <= 0 or nu > 1"; if(svm_type == EPSILON_SVR) if(param->p < 0) return "p < 0"; if(param->shrinking != 0 && param->shrinking != 1) return "shrinking != 0 and shrinking != 1"; if(param->probability != 0 && param->probability != 1) return "probability != 0 and probability != 1"; if(param->probability == 1 && svm_type == ONE_CLASS) return "one-class SVM probability output not supported yet"; // check whether nu-svc is feasible if(svm_type == NU_SVC) { int l = prob->l; int max_nr_class = 16; int nr_class = 0; int *label = Malloc(int,max_nr_class); int *count = Malloc(int,max_nr_class); int i; for(i=0;iy[i]; int j; for(j=0;jnu*(n1+n2)/2 > min(n1,n2)) { free(label); free(count); return "specified nu is infeasible"; } } } free(label); free(count); } return NULL; } int svm_check_probability_model(const svm_model *model) { return ((model->param.svm_type == C_SVC || model->param.svm_type == NU_SVC) && model->probA!=NULL && model->probB!=NULL) || ((model->param.svm_type == EPSILON_SVR || model->param.svm_type == NU_SVR) && model->probA!=NULL); } void svm_set_print_string_function(void (*print_func)(const char *)) { if(print_func == NULL) svm_print_string = &print_string_stdout; else svm_print_string = print_func; } statistics-release-1.6.3/src/svm.h000066400000000000000000000102451456127120000170760ustar00rootroot00000000000000/* Copyright (C) 2021 Chih-Chung Chang and Chih-Jen Lin This file is part of the statistics package for GNU Octave. Permission granted by Chih-Jen Lin to the package maintainer to include this ile and double license under GPLv3 by means of personal communication. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, see . */ #ifndef _LIBSVM_H #define _LIBSVM_H #define LIBSVM_VERSION 325 #ifdef __cplusplus extern "C" { #endif extern int libsvm_version; struct svm_node { int index; double value; }; struct svm_problem { int l; double *y; struct svm_node **x; }; enum { C_SVC, NU_SVC, ONE_CLASS, EPSILON_SVR, NU_SVR }; /* svm_type */ enum { LINEAR, POLY, RBF, SIGMOID, PRECOMPUTED }; /* kernel_type */ struct svm_parameter { int svm_type; int kernel_type; int degree; /* for poly */ double gamma; /* for poly/rbf/sigmoid */ double coef0; /* for poly/sigmoid */ /* these are for training only */ double cache_size; /* in MB */ double eps; /* stopping criteria */ double C; /* for C_SVC, EPSILON_SVR and NU_SVR */ int nr_weight; /* for C_SVC */ int *weight_label; /* for C_SVC */ double* weight; /* for C_SVC */ double nu; /* for NU_SVC, ONE_CLASS, and NU_SVR */ double p; /* for EPSILON_SVR */ int shrinking; /* use the shrinking heuristics */ int probability; /* do probability estimates */ }; // // svm_model // struct svm_model { struct svm_parameter param; /* parameter */ int nr_class; /* number of classes, = 2 in regression/one class svm */ int l; /* total #SV */ struct svm_node **SV; /* SVs (SV[l]) */ double **sv_coef; /* coefficients for SVs in decision functions (sv_coef[k-1][l]) */ double *rho; /* constants in decision functions (rho[k*(k-1)/2]) */ double *probA; /* pariwise probability information */ double *probB; int *sv_indices; /* sv_indices[0,...,nSV-1] are values in [1,...,num_traning_data] to indicate SVs in the training set */ /* for classification only */ int *label; /* label of each class (label[k]) */ int *nSV; /* number of SVs for each class (nSV[k]) */ /* nSV[0] + nSV[1] + ... + nSV[k-1] = l */ /* XXX */ int free_sv; /* 1 if svm_model is created by svm_load_model*/ /* 0 if svm_model is created by svm_train */ }; struct svm_model *svm_train(const struct svm_problem *prob, const struct svm_parameter *param); void svm_cross_validation(const struct svm_problem *prob, const struct svm_parameter *param, int nr_fold, double *target); int svm_save_model(const char *model_file_name, const struct svm_model *model); struct svm_model *svm_load_model(const char *model_file_name); int svm_get_svm_type(const struct svm_model *model); int svm_get_nr_class(const struct svm_model *model); void svm_get_labels(const struct svm_model *model, int *label); void svm_get_sv_indices(const struct svm_model *model, int *sv_indices); int svm_get_nr_sv(const struct svm_model *model); double svm_get_svr_probability(const struct svm_model *model); double svm_predict_values(const struct svm_model *model, const struct svm_node *x, double* dec_values); double svm_predict(const struct svm_model *model, const struct svm_node *x); double svm_predict_probability(const struct svm_model *model, const struct svm_node *x, double* prob_estimates); void svm_free_model_content(struct svm_model *model_ptr); void svm_free_and_destroy_model(struct svm_model **model_ptr_ptr); void svm_destroy_param(struct svm_parameter *param); const char *svm_check_parameter(const struct svm_problem *prob, const struct svm_parameter *param); int svm_check_probability_model(const struct svm_model *model); void svm_set_print_string_function(void (*print_func)(const char *)); #ifdef __cplusplus } #endif #endif /* _LIBSVM_H */ statistics-release-1.6.3/src/svm_model_octave.cc000066400000000000000000000214061456127120000217560ustar00rootroot00000000000000/* Copyright (C) 2022 Andreas Bertsatos Based on the Octave LIBSVM wrapper created by Alan Meeson (2014) based on an earlier version of the LIBSVM (3.18) library for MATLAB. Current implementation is based on LIBSVM 3.25 (2021) by Chih-Chung Chang and Chih-Jen Lin. This file is part of the statistics package for GNU Octave. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, see . */ #include #include #include #include #include #include "svm.h" #define NUM_OF_RETURN_FIELD 11 #define Malloc(type,n) (type *)malloc((n)*sizeof(type)) static const char *field_names[] = { "Parameters", "nr_class", "totalSV", "rho", "Label", "sv_indices", "ProbA", "ProbB", "nSV", "sv_coef", "SVs" }; const char *model_to_octave_structure(octave_value_list &plhs, int num_of_feature, struct svm_model *model) { int i, j, n; double *ptr; octave_scalar_map osm_model; // Parameters ColumnVector cm_parameters (5); cm_parameters(0) = model->param.svm_type; cm_parameters(1) = model->param.kernel_type; cm_parameters(2) = model->param.degree; cm_parameters(3) = model->param.gamma; cm_parameters(4) = model->param.coef0; osm_model.assign("Parameters", cm_parameters); // nr_class osm_model.assign("nr_class", octave_value(model->nr_class)); // total SV osm_model.assign("totalSV", octave_value(model->l)); // rho n = model->nr_class*(model->nr_class-1)/2; ColumnVector cm_rho(n); for(i = 0; i < n; i++) { cm_rho(i) = model->rho[i]; } osm_model.assign("rho", cm_rho); // Label if(model->label) { ColumnVector cm_label(model->nr_class); for(i = 0; i < model->nr_class; i++) { cm_label(i) = model->label[i]; } osm_model.assign("Label", cm_label); } else { osm_model.assign("Label", ColumnVector(0)); } // sv_indices if(model->sv_indices) { ColumnVector cm_sv_indices(model->l); for(i = 0; i < model->l; i++) { cm_sv_indices(i) = model->sv_indices[i]; } osm_model.assign("sv_indices", cm_sv_indices); } else { osm_model.assign("sv_indices", ColumnVector(0)); } // probA if(model->probA != NULL) { ColumnVector cm_proba(n); for(i = 0; i < n; i++) { cm_proba(i) = model->probA[i]; } osm_model.assign("ProbA", cm_proba); } else { osm_model.assign("ProbA", ColumnVector(0)); } // probB if(model->probB != NULL) { ColumnVector cm_probb(n); for(i = 0; i < n; i++) { cm_probb(i) = model->probB[i]; } osm_model.assign("ProbB", cm_probb); } else { osm_model.assign("ProbB", ColumnVector(0)); } // nSV if(model->nSV) { ColumnVector cm_nsv(model->nr_class); for(i = 0; i < model->nr_class; i++) { cm_nsv(i) = model->nSV[i]; } osm_model.assign("nSV", cm_nsv); } else { osm_model.assign("nSV", ColumnVector(0)); } // sv_coef Matrix m_sv_coef(model->l, model->nr_class-1); for (i = 0; i < model->nr_class-1; i++) { for(j = 0; j < model->l; j++) { m_sv_coef(j,i) = model->sv_coef[i][j]; } } osm_model.assign("sv_coef", m_sv_coef); // SVs { int ir_index, nonzero_element; octave_idx_type *ir, *jc; //mxArray *pprhs[1], *pplhs[1]; if(model->param.kernel_type == PRECOMPUTED) { nonzero_element = model->l; num_of_feature = 1; } else { nonzero_element = 0; for(i = 0; i < model->l; i++) { j = 0; while(model->SV[i][j].index != -1) { nonzero_element++; j++; } } } // SV in column, easier accessing SparseMatrix sm_rhs = SparseMatrix((octave_idx_type)num_of_feature, (octave_idx_type)model->l, (octave_idx_type)nonzero_element); ir = sm_rhs.ridx(); jc = sm_rhs.cidx(); ptr = (double*) sm_rhs.data(); jc[0] = ir_index = 0; for(i = 0; i < model->l; i++) { if(model->param.kernel_type == PRECOMPUTED) { // make a (1 x model->l) matrix ir[ir_index] = 0; ptr[ir_index] = model->SV[i][0].value; ir_index++; jc[i+1] = jc[i] + 1; } else { int x_index = 0; while (model->SV[i][x_index].index != -1) { ir[ir_index] = model->SV[i][x_index].index - 1; ptr[ir_index] = model->SV[i][x_index].value; ir_index++, x_index++; } jc[i+1] = jc[i] + x_index; } } // transpose back to SV in row sm_rhs = sm_rhs.transpose(); osm_model.assign("SVs", sm_rhs); } /* return */ plhs(0) = osm_model; return NULL; } struct svm_model *octave_matrix_to_model(octave_scalar_map &octave_model, const char **msg) { int i, j, n, num_of_fields; double *ptr; int id = 0; struct svm_node *x_space; struct svm_model *model; model = Malloc(struct svm_model, 1); model->rho = NULL; model->probA = NULL; model->probB = NULL; model->label = NULL; model->sv_indices = NULL; model->nSV = NULL; model->free_sv = 1; // XXX //Parameters ColumnVector cm_parameters = octave_model.getfield("Parameters").column_vector_value(); model->param.svm_type = (int)cm_parameters(0); model->param.kernel_type = (int)cm_parameters(1); model->param.degree = (int)cm_parameters(2); model->param.gamma = cm_parameters(3); model->param.coef0 = cm_parameters(4); //nr_class model->nr_class = (int)octave_model.getfield("nr_class").int_value(); //total SV model->l = (int)octave_model.getfield("totalSV").int_value(); //rho n = model->nr_class * (model->nr_class-1)/2; model->rho = (double*) malloc(n*sizeof(double)); ColumnVector cm_rho = octave_model.getfield("rho").column_vector_value(); for(i = 0; i < n; i++) { model->rho[i] = cm_rho(i); } //label if (!octave_model.getfield("Label").isempty()) { model->label = (int*) malloc(model->nr_class*sizeof(int)); ColumnVector cm_label = octave_model.getfield("Label").column_vector_value(); for(i = 0; i < model->nr_class; i++) { model->label[i] = (int)cm_label(i); } } //sv_indices if (!octave_model.getfield("sv_indices").isempty()) { model->sv_indices = (int*) malloc(model->l*sizeof(int)); ColumnVector cv_svi = octave_model.getfield("sv_indices").column_vector_value(); for(i = 0; i < model->l; i++) { model->sv_indices[i] = (int)cv_svi(i); } } // probA if(!octave_model.getfield("ProbA").isempty()) { model->probA = (double*) malloc(n*sizeof(double)); ColumnVector cv_proba = octave_model.getfield("ProbA").column_vector_value(); for(i = 0; i < n; i++) { model->probA[i] = cv_proba(i); } } // probB if(!octave_model.getfield("ProbB").isempty()) { model->probB = (double*) malloc(n*sizeof(double)); ColumnVector cv_probb = octave_model.getfield("ProbB").column_vector_value(); for(i = 0; i < n; i++) { model->probB[i] = cv_probb(i); } } // nSV if(!octave_model.getfield("nSV").isempty()) { model->nSV = (int*) malloc(model->nr_class*sizeof(int)); ColumnVector cv_nsv = octave_model.getfield("nSV").column_vector_value(); for(i = 0; i < model->nr_class; i++) { model->nSV[i] = (int)cv_nsv(i); } } // sv_coef Matrix m_sv_coef = octave_model.getfield("sv_coef").matrix_value(); ptr = (double*) m_sv_coef.data(); model->sv_coef = (double**) malloc((model->nr_class-1)*sizeof(double)); for(i = 0; i < model->nr_class - 1; i++ ) { model->sv_coef[i] = (double*) malloc((model->l)*sizeof(double)); } for(i = 0; i < model->nr_class - 1; i++) { for(j = 0; j < model->l; j++) { model->sv_coef[i][j] = ptr[i*(model->l)+j];//m_sv_coef(i,j); } } // SV { int sr, sc, elements; int num_samples; octave_idx_type *ir, *jc; // transpose SV SparseMatrix sm_sv = octave_model.getfield("SVs").sparse_matrix_value(); sm_sv = sm_sv.transpose(); sr = (int)sm_sv.cols(); sc = (int)sm_sv.rows(); ptr = (double*)sm_sv.data(); ir = sm_sv.ridx(); jc = sm_sv.cidx(); num_samples = (int)sm_sv.nzmax(); elements = num_samples + sr; model->SV = (struct svm_node **) malloc(sr * sizeof(struct svm_node *)); x_space = (struct svm_node *)malloc(elements * sizeof(struct svm_node)); // SV is in column for(i = 0; i < sr; i++) { int low = (int)jc[i], high = (int)jc[i+1]; int x_index = 0; model->SV[i] = &x_space[low+i]; for(j = low; j < high; j++) { model->SV[i][x_index].index = (int)ir[j] + 1; model->SV[i][x_index].value = ptr[j]; x_index++; } model->SV[i][x_index].index = -1; } id++; } return model; } statistics-release-1.6.3/src/svm_model_octave.h000066400000000000000000000023771456127120000216260ustar00rootroot00000000000000/* Copyright (C) 2022 Andreas Bertsatos Based on the Octave LIBSVM wrapper created by Alan Meeson (2014) based on an earlier version of the LIBSVM (3.18) library for MATLAB. Current implementation is based on LIBSVM 3.25 (2021) by Chih-Chung Chang and Chih-Jen Lin. This file is part of the statistics package for GNU Octave. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, see . */ #include #include #include "svm.h" const char *model_to_octave_structure(octave_value_list &plhs, int num_of_feature, struct svm_model *model); struct svm_model *octave_matrix_to_model(octave_scalar_map &octave_struct, const char **error_message); statistics-release-1.6.3/src/svmpredict.cc000066400000000000000000000327041456127120000206130ustar00rootroot00000000000000/* Copyright (C) 2022 Andreas Bertsatos Based on the Octave LIBSVM wrapper adapted by Alan Meeson (2014) based on an earlier version of the LIBSVM (3.18) library for MATLAB. Current implementation is based on LIBSVM 3.25 (2021) by Chih-Chung Chang and Chih-Jen Lin. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, see . */ #include #include #include #include #include #include #include #include #include "svm.h" #include "svm_model_octave.h" #define CMD_LEN 2048 int print_null(const char *s,...) {return 0;} int (*info)(const char *fmt,...) = &printf; void read_sparse_instance(const SparseMatrix &args, int index, struct svm_node *x) { int i, j, low, high; octave_idx_type *ir, *jc; double *samples; ir = (octave_idx_type*)args.ridx(); jc = (octave_idx_type*)args.cidx(); samples = (double*)args.data(); // each column is one instance j = 0; low = (int)jc[index], high = (int)jc[index+1]; for(i=low;iparam.kernel_type == PRECOMPUTED) { // precomputed kernel requires dense matrix, so we make one t_data = args(1).matrix_value(); } else { //If it's a sparse matrix with a non PRECOMPUTED kernel, transpose it pplhs = args(1).sparse_matrix_value().transpose(); } } else { t_data = args(1).matrix_value(); } ptr_instance = (double*)t_data.data(); if(predict_probability) { if(svm_type==NU_SVR || svm_type==EPSILON_SVR) { info("Prob. model for test data: target value = predicted value + z,\nz: Laplace distribution e^(-|z|/sigma)/(2sigma),sigma=%g\n", svm_get_svr_probability(model)); } else { prob_estimates = (double*) malloc(nr_class*sizeof(double)); } } ColumnVector cv_predictions(testing_instance_number); tplhs(0) = cv_predictions; if(predict_probability) { // prob estimates are in plhs[2] if(svm_type == C_SVC || svm_type == NU_SVC) { Matrix m_pe(testing_instance_number, nr_class); tplhs(2) = m_pe; } else { Matrix m_pe(0,0); tplhs(2) = m_pe; } } else { // decision values are in plhs[2] if(svm_type == ONE_CLASS || svm_type == EPSILON_SVR || svm_type == NU_SVR || nr_class == 1) { Matrix m_pe(testing_instance_number, 1); tplhs(2) = m_pe; } else { Matrix m_pe(testing_instance_number, nr_class*(nr_class-1)/2); tplhs(2) = m_pe; } } ptr_predict_label = (double*)tplhs(0).column_vector_value().data(); ptr_prob_estimates = (double*)tplhs(2).matrix_value().data(); ptr_dec_values = (double*)tplhs(2).matrix_value().data(); x = (struct svm_node*)malloc((feature_number+1)*sizeof(struct svm_node)); for(instance_index=0;instance_indexparam.kernel_type != PRECOMPUTED) { read_sparse_instance(pplhs, instance_index, x); } else { for(i = 0; i < feature_number; i++) { x[i].index = i+1; x[i].value = ptr_instance[testing_instance_number*i+instance_index]; } x[feature_number].index = -1; } if(predict_probability) { if(svm_type == C_SVC || svm_type == NU_SVC) { predict_label = svm_predict_probability(model, x, prob_estimates); ptr_predict_label[instance_index] = predict_label; for(i = 0; i < nr_class; i++) { ptr_prob_estimates[instance_index + i * testing_instance_number] = prob_estimates[i]; } } else { predict_label = svm_predict(model,x); ptr_predict_label[instance_index] = predict_label; } } else { if(svm_type == ONE_CLASS || svm_type == EPSILON_SVR || svm_type == NU_SVR) { double res; predict_label = svm_predict_values(model, x, &res); ptr_dec_values[instance_index] = res; } else { double *dec_values = (double *) malloc(sizeof(double) * nr_class*(nr_class-1)/2); predict_label = svm_predict_values(model, x, dec_values); if(nr_class == 1) { ptr_dec_values[instance_index] = 1; } else { for(i = 0; i < (nr_class * (nr_class - 1)) / 2; i++) { ptr_dec_values[instance_index + i * testing_instance_number] = dec_values[i]; } } free(dec_values); } ptr_predict_label[instance_index] = predict_label; } if(predict_label == target_label) { ++correct; } error += (predict_label-target_label)*(predict_label-target_label); sump += predict_label; sumt += target_label; sumpp += predict_label*predict_label; sumtt += target_label*target_label; sumpt += predict_label*target_label; ++total; } if(svm_type==NU_SVR || svm_type==EPSILON_SVR) { info("Mean squared error = %g (regression)\n",error/total); info("Squared correlation coefficient = %g (regression)\n", ((total*sumpt-sump*sumt)*(total*sumpt-sump*sumt))/ ((total*sumpp-sump*sump)*(total*sumtt-sumt*sumt))); } else { info("Accuracy = %g%% (%d/%d) (classification)\n", (double)correct/total*100,correct,total); } // return accuracy, mean squared error, squared correlation coefficient ColumnVector cv_acc(3); ptr = (double*)cv_acc.data(); ptr[0] = (double)correct/total*100; ptr[1] = error/total; ptr[2] = ((total*sumpt-sump*sumt)*(total*sumpt-sump*sumt))/ ((total*sumpp-sump*sump)*(total*sumtt-sumt*sumt)); tplhs(1) = cv_acc; free(x); if(prob_estimates != NULL) { free(prob_estimates); } switch(nlhs) { case 3: plhs(2) = tplhs(2); plhs(1) = tplhs(1); case 1: case 0: plhs(0) = tplhs(0); } } DEFUN_DLD (svmpredict, args, nargout, "-*- texinfo -*- \n\n\ @deftypefn {statistics} {@var{predicted_label} =} svmpredict (@var{labels}, @var{data}, @var{model})\n\ @deftypefnx {statistics} {@var{predicted_label} =} svmpredict (@var{labels}, @var{data}, @var{model}, ""libsvm_options"")\n\ @deftypefnx {statistics} {[@var{predicted_label}, @var{accuracy}, @var{decision_values}] =} svmpredict (@var{labels}, @var{data}, @var{model}, ""libsvm_options"")\n\ @deftypefnx {statistics} {[@var{predicted_label}, @var{accuracy}, @var{prob_estimates}] =} svmpredict (@var{labels}, @var{data}, @var{model}, ""libsvm_options"")\n\ \n\ \n\ This function predicts new labels from a testing instance matrtix based on an \ SVM @var{model} created with @code{svmtrain}. \ \n\ \n\ @itemize \n\ @item @var{labels} : An m by 1 vector of prediction labels. If labels \ of test data are unknown, simply use any random values. (type must be double) \ \n\ \n\ @item @var{data} : An m by n matrix of m testing instances with n features. \ It can be dense or sparse. (type must be double) \ \n\ \n\ @item @var{model} : The output of @code{svmtrain} function. \ \n\ \n\ @item @code{libsvm_options} : A string of testing options in the same format \ as that of LIBSVM. \ \n\ \n\ @end itemize \ \n\ \n\ @code{libsvm_options} :\n\ \n\ @itemize \n\ @item @code{-b} : probability_estimates; whether to predict probability \ estimates. For one-class SVM only 0 is supported.\n\ \n\ @end itemize \ \n\ @multitable @columnfractions 0.1 0.1 0.8 \n\ @item @tab 0 @tab return decision values. (default) \n\ \n\ @item @tab 1 @tab return probability estimates. \ \n\ @end multitable \ \n\ \n\ @itemize \n\ @item @code{-q} : quiet mode. (no outputs) \ \n\ @end itemize \ \n\ \n\ The @code{svmpredict} function has three outputs. The first one, \ @var{predicted_label}, is a vector of predicted labels. The second output, \ @var{accuracy}, is a vector including accuracy (for classification), mean \ squared error, and squared correlation coefficient (for regression). The \ third is a matrix containing decision values or probability estimates \ (if @code{-b 1}' is specified). If @math{k} is the number of classes in \ training data, for decision values, each row includes results of predicting \ @math{k(k-1)/2} binary-class SVMs. For classification, @math{k = 1} is a \ special case. Decision value +1 is returned for each testing instance, \ instead of an empty vector. For probabilities, each row contains @math{k} \ values indicating the probability that the testing instance is in each class. \ Note that the order of classes here is the same as @code{Label} field in the \ @var{model} structure. \ \n\ @end deftypefn") { int nlhs = nargout; int nrhs = args.length(); octave_value_list plhs(nlhs); int prob_estimate_flag = 0; struct svm_model *model; info = &print_null; if(nlhs == 2 || nlhs > 3) { error ("svmpredict: wrong number of output arguments."); } if(nrhs > 4 || nrhs < 3) { error ("svmpredict: wrong number of input arguments."); } if(!args(0).is_double_type() || !args(1).is_double_type()) { error ("svmpredict: label vector and instance matrix must be double."); } if(args(2).isstruct()) { const char *error_msg; // parse options if(nrhs==4) { int i, argc = 1; char cmd[CMD_LEN], *argv[CMD_LEN/2]; // put options in argv[] strncpy(cmd, args(3).string_value().c_str(), CMD_LEN); if((argv[argc] = strtok(cmd, " ")) != NULL) { while((argv[++argc] = strtok(NULL, " ")) != NULL); } for(i=1;i=argc) && argv[i-1][1] != 'q') { fake_answer(nlhs, plhs); return plhs; } switch(argv[i-1][1]) { case 'b': prob_estimate_flag = atoi(argv[i]); break; case 'q': i--; info = &print_null; break; default: printf("svmpredict: unknown option: -%c\n", argv[i-1][1]); fake_answer(nlhs, plhs); return plhs; } } } octave_scalar_map osm_model = args(2).scalar_map_value(); model = octave_matrix_to_model(osm_model, &error_msg); if (model == NULL) { printf("svmpredict: can't read model: %s\n", error_msg); fake_answer(nlhs, plhs); return plhs; } if(prob_estimate_flag) { if(svm_check_probability_model(model)==0) { svm_free_and_destroy_model(&model); error ("svmpredict: model does not support probabiliy estimates.\n"); } } else { if(svm_check_probability_model(model)!=0) info("Model supports probability estimates, but disabled in prediction.\n"); } predict(nlhs, plhs, args, model, prob_estimate_flag); // destroy model svm_free_and_destroy_model(&model); } else { error ("svmpredict: model should be a struct array."); } return plhs; } /* %!test %! [L, D] = libsvmread (file_in_loadpath ("heart_scale.dat")); %! model = svmtrain (L, D, '-c 1 -g 0.07'); %! [predict_label, accuracy, dec_values] = svmpredict (L, D, model); %! assert (size (predict_label), size (dec_values)); %! assert (accuracy, [86.666, 0.533, 0.533]', [1e-3, 1e-3, 1e-3]'); %! assert (dec_values(1), 1.225836001973273, 1e-14); %! assert (dec_values(2), -0.3212992933043805, 1e-14); %! assert (predict_label(1), 1); %!shared L, D, model %! [L, D] = libsvmread (file_in_loadpath ("heart_scale.dat")); %! model = svmtrain (L, D, '-c 1 -g 0.07'); %!error ... %! [p, a] = svmpredict (L, D, model); %!error p = svmpredict (L, D); %!error ... %! p = svmpredict (single (L), D, model); %!error p = svmpredict (L, D, 123); */ statistics-release-1.6.3/src/svmtrain.cc000066400000000000000000000364231456127120000203000ustar00rootroot00000000000000/* Copyright (C) 2022 Andreas Bertsatos Based on the Octave LIBSVM wrapper adapted by Alan Meeson (2014) based on an earlier version of the LIBSVM (3.18) library for MATLAB. Current implementation is based on LIBSVM 3.25 (2021) by Chih-Chung Chang and Chih-Jen Lin. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, see . */ #include #include #include #include #include #include #include #include #include "svm.h" #include "svm_model_octave.h" #define CMD_LEN 2048 #define Malloc(type,n) (type *)malloc((n)*sizeof(type)) void print_null(const char *s) {} //void print_string_octave(const char *s) {printf(s);} // svm arguments struct svm_parameter param; // set by parse_command_line struct svm_problem prob; // set by read_problem struct svm_model *model; struct svm_node *x_space; int cross_validation; int nr_fold; double do_cross_validation() { int i; int total_correct = 0; double total_error = 0; double sumv = 0, sumy = 0, sumvv = 0, sumyy = 0, sumvy = 0; double *target = Malloc(double,prob.l); double retval = 0.0; svm_cross_validation(&prob,¶m,nr_fold,target); if(param.svm_type == EPSILON_SVR || param.svm_type == NU_SVR) { for(i=0;i 2) { // put options in argv[] strncpy(cmd, args(2).string_value().c_str(), CMD_LEN); //mxGetString(args[2], cmd, mxGetN(args[2]) + 1); if((argv[argc] = strtok(cmd, " ")) != NULL) while((argv[++argc] = strtok(NULL, " ")) != NULL) ; } // parse options for(i=1;i=argc && argv[i-1][1] != 'q') // since option -q has no parameter return 1; switch(argv[i-1][1]) { case 's': param.svm_type = atoi(argv[i]); break; case 't': param.kernel_type = atoi(argv[i]); break; case 'd': param.degree = atoi(argv[i]); break; case 'g': param.gamma = atof(argv[i]); break; case 'r': param.coef0 = atof(argv[i]); break; case 'n': param.nu = atof(argv[i]); break; case 'm': param.cache_size = atof(argv[i]); break; case 'c': param.C = atof(argv[i]); break; case 'e': param.eps = atof(argv[i]); break; case 'p': param.p = atof(argv[i]); break; case 'h': param.shrinking = atoi(argv[i]); break; case 'b': param.probability = atoi(argv[i]); break; case 'q': print_func = &print_null; i--; break; case 'v': cross_validation = 1; nr_fold = atoi(argv[i]); if(nr_fold < 2) { printf("n-fold cross validation: n must >= 2\n"); return 1; } break; case 'w': ++param.nr_weight; param.weight_label = (int *)realloc(param.weight_label,sizeof(int)*param.nr_weight); param.weight = (double *)realloc(param.weight,sizeof(double)*param.nr_weight); param.weight_label[param.nr_weight-1] = atoi(&argv[i-1][2]); param.weight[param.nr_weight-1] = atof(argv[i]); break; default: printf("svmtrain: unknown option -%c\n", argv[i-1][1]); return 1; } } svm_set_print_string_function(print_func); return 0; } // read in a problem (in svmlight format) int read_problem_dense(ColumnVector &label_vec, Matrix &instance_mat) { int i, j, k; int elements, max_index, sc, label_vector_row_num; double *samples, *labels; prob.x = NULL; prob.y = NULL; x_space = NULL; labels = (double*)label_vec.data();//mxGetPr(label_vec); samples = (double*)instance_mat.data(); sc = (int)instance_mat.cols(); elements = 0; // the number of instance prob.l = (int)instance_mat.rows(); label_vector_row_num = (int)label_vec.rows(); if(label_vector_row_num!=prob.l) { printf("svmtrain: length of label vector does not match # of instances.\n"); return -1; } if(param.kernel_type == PRECOMPUTED) elements = prob.l * (sc + 1); else { for(i = 0; i < prob.l; i++) { for(k = 0; k < sc; k++) if(samples[k * prob.l + i] != 0) elements++; // count the '-1' element elements++; } } prob.y = Malloc(double,prob.l); prob.x = Malloc(struct svm_node *,prob.l); x_space = Malloc(struct svm_node, elements); max_index = sc; j = 0; for(i = 0; i < prob.l; i++) { prob.x[i] = &x_space[j]; prob.y[i] = labels[i]; for(k = 0; k < sc; k++) { if(param.kernel_type == PRECOMPUTED || samples[k * prob.l + i] != 0) { x_space[j].index = k + 1; x_space[j].value = samples[k * prob.l + i]; j++; } } x_space[j++].index = -1; } if(param.gamma == 0 && max_index > 0) param.gamma = 1.0/max_index; if(param.kernel_type == PRECOMPUTED) for(i=0;i max_index) { printf("svmtrain: wrong input format: sample_serial_number out of range\n"); return -1; } } return 0; } int read_problem_sparse(ColumnVector &label_vec, SparseMatrix &instance_mat) { int i, j, k, low, high; octave_idx_type *ir, *jc; int elements, max_index, num_samples, label_vector_row_num; double *samples, *labels; // transposed instance sparse matrix SparseMatrix instance_mat_col = instance_mat.transpose(); prob.x = NULL; prob.y = NULL; x_space = NULL; // each column is one instance labels = (double*)label_vec.data(); samples = (double*)instance_mat_col.data(); ir = (octave_idx_type*)instance_mat_col.ridx(); jc = (octave_idx_type*)instance_mat_col.cidx(); num_samples = (int)instance_mat_col.nzmax(); // the number of instance prob.l = (int)instance_mat_col.cols(); label_vector_row_num = (int)label_vec.rows(); if(label_vector_row_num!=prob.l) { printf("svmtrain: length of label vector does not match # of instances.\n"); return -1; } elements = num_samples + prob.l; max_index = (int)instance_mat_col.rows(); prob.y = Malloc(double,prob.l); prob.x = Malloc(struct svm_node *,prob.l); x_space = Malloc(struct svm_node, elements); j = 0; for(i=0;i 0) { param.gamma = 1.0/max_index; } return 0; } static void fake_answer(int nlhs, octave_value_list &plhs) { int i; for(i=0;i 1) { error ("svmtrain: wrong number of output arguments."); } // Transform the input Matrix to libsvm format if(nrhs > 1 && nrhs < 4) { int err; if(!args(0).is_double_type() || !args(1).is_double_type()) { error ("svmtrain: label vector and instance matrix must be double."); } if(parse_command_line(nrhs, args, NULL)) { svm_destroy_param(¶m); error ("svmtrain: wrong values in parameter string."); } if(args(1).issparse()) { if(param.kernel_type == PRECOMPUTED) { // precomputed kernel requires dense matrix, so we make one ColumnVector cv_lab = args(0).column_vector_value(); Matrix m_dat = args(1).matrix_value(); err = read_problem_dense(cv_lab, m_dat); } else { ColumnVector cv_lab = args(0).column_vector_value(); SparseMatrix m_dat = args(1).sparse_matrix_value(); err = read_problem_sparse(cv_lab, m_dat); } } else { ColumnVector cv_lab = args(0).column_vector_value(); Matrix m_dat = args(1).matrix_value(); err = read_problem_dense(cv_lab, m_dat); } // svmtrain's original code error_msg = svm_check_parameter(&prob, ¶m); if(err || error_msg) { if (error_msg != NULL) { printf("svmtrain: %s\n", error_msg); } svm_destroy_param(¶m); free(prob.y); free(prob.x); free(x_space); fake_answer(nlhs, plhs); return plhs; } if(cross_validation) { double ptr = do_cross_validation(); plhs(0) = octave_value(ptr); } else { int nr_feat = (int)args(1).matrix_value().cols(); const char *error_msg; model = svm_train(&prob, ¶m); error_msg = model_to_octave_structure(plhs, nr_feat, model); if(error_msg) { printf("svmtrain: can't convert libsvm model to matrix structure: %s\n", error_msg); } svm_free_and_destroy_model(&model); } svm_destroy_param(¶m); free(prob.y); free(prob.x); free(x_space); return plhs; } else { error ("svmtrain: wrong number of input arguments."); } } /* %!test %! [L, D] = libsvmread (file_in_loadpath ("heart_scale.dat")); %! model = svmtrain(L, D, '-c 1 -g 0.07'); %! [predict_label, accuracy, dec_values] = svmpredict(L, D, model); %! assert (isstruct (model), true); %! assert (isfield (model, "Parameters"), true); %! assert (model.totalSV, 130); %! assert (model.nr_class, 2); %! assert (size (model.Label), [2, 1]); %!shared L, D %! [L, D] = libsvmread (file_in_loadpath ("heart_scale.dat")); %!error [L, D] = svmtrain (L, D); %!error ... %! model = svmtrain (single (L), D); %!error ... %! model = svmtrain (L, D, "", ""); */